20080814 168

AFML-TR-73-83

MECHANICAL PROPERTIES, FRACTURE TOUGHNESS, FATIGUE, ENVIRONMENTAL FATIGUE CRACK GROWTH RATES AND CORROSION CHARACTERISTICS OF HIGH-TOUGHNESS ALUMINUM ALLOY FORGINGS, SHEET AND PLATE

> C. F. Babilon, R. H. Wygonik, G. E. Nordmark and B. W. Lifka Aluminum Company of America

TECHNICAL REPORT AFML-TR-73-83 April, 1973

Air Force Materials Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

MECHANICAL PROPERTIES, FRACTURE TOUGHNESS, FATIGUE, ENVIRONMENTAL FATIGUE CRACK GROWTH RATES AND CORROSION CHARACTERISTICS OF HIGH-TOUGHNESS ALUMINUM ALLOY FORGINGS, SHEET AND PLATE

C. F. Babilon, R. H. Wygonik, G. E. Nordmark and B. W. Lifka

FOREWORD

This investigation was conducted by the Alcoa Research Laboratories, Aluminum Company of America, New Kensington, Pennsylvania, under USAF Contract No. F33615-71-C-1571, Project No. 7381, "Materials Applications", Task No. 738106, "Engineering and Design Data". The work was under the direction of the Materials Laboratory, Wright-Patterson Air Force Base, Ohio, with Mr. A. W. Gunderson (AFML/MXE) as project engineer.

This report covers work done from May 1971 through February 1973.

The investigation was made under the supervision of Mr. C. F. Babilon with Mr. R. H. Wygonik as project leader for the phase covering the mechanical properties including fracture toughness and fatigue. Mr. G. E. Nordmark was the project leader for the phase covering the fatigue-crack propagation rates and Mr. B. W. Lifka was project leader for the phase covering the corrosion characteristics. The statistical analyses were made by Mr. R. H. Wygonik. Significant advisory and technical assistance were supplied by Messrs. J. G. Kaufman, R. A. Kelsey and D. O. Sprowls.

The report was released by the authors for publication in March.

This technical report has been reviewed and is approved.

ALBERT OLEVITCH

allest Olevitch

Chief, Materials Engineering Branch Systems Support Division

Air Force Materials Laboratory

ABSTRACT

The tensile, compressive, shear, bearing, fracture-toughness and axial-stress fatigue properties, fatigue crack growth rates and corrosion characteristics have been determined for a total of 21 lots of 7049-T73 and 7175-T736 forgings (≤5.000-in. thick), 25 lots of 7475-T61 and T761 sheet (0.032 through 0.249-in. thick) and 10 lots of 2124-T851 plate (1.75 through 6.00-in. thick). Supplemental data for bare and Alclad 7475 sheet and 2124-T851 plate are also presented.

Tables of computed design mechanical properties and typical stress-strain and compressive tangent modulus curves were prepared.

The plane-strain stress-intensity factor, K_{Ic} , was determined for the forging and plate samples and the critical stress-intensity factor, K_{C} , determined for the sheet samples.

Log-mean fatigue lives were calculated from tests made in ambient air. Axial-stress fatigue tests were also made in a salt fog environment.

The rates of fatigue crack propagation of these products generally do not vary significantly with specimen orientation. Humid and salt fog environments increased the rate of fatigue crack propagation for most specimens. Propagation is slower in 2124-T851 plate than for 2024-T851 plate but rates for sheet alloys 7475-T61, 7475-T761 and Alclad 7475-T61 are essentially equivalent as are rates for 7175-T736 and 7075-T7352 hand forgings.

The 7175-T736 forgings, 7475-T761 sheet and 2124-T851 plate have a high resistance to exfoliation while the 7049-T73 forging and the 7475-T61 sheet show some susceptibility to exfoliation. All of the materials are resistant to stress corrosion cracking when stressed in the longitudinal and long-transverse grain direction. The resistance to SCC in the short-transverse direction of all the materials is representative of the respective alloys and tempers.

Key Words: 7049, 7175, 7475, 2124, aluminum, die forgings, hand forgings, sheet, plate, tensile, compressive, shear, bearing, fracture-toughness, fatigue, crack propagation, stress-corrosion, exfoliation.

TABLE OF CONTENTS

SECTION		PAGE
I	Introduction	1
II	Material	2
III	Procedure	3
IV	Results of Tests	11
V	Discussion of Results	12
VI	Summary and Conclusions	31
	Appendix	217
	References	223

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	7049-T73 Die Forging Die No. B5786 (Sample Number 410694)	35
2	7049-T73 Die Forging Die No. B6204 (Sample Number 410696)	36
3	7049-T73 Die Forging Die No. B2362 (Sample Number 410700)	37
4	7049-T73 and 7175-T736 Die Forging Die No. 9078 (7049-T73 - Sample Number 410693, 7175-T736 - Sample Number 410983)	38
5	7049-T73 and 7175-T736 Die Forging Die No. 15789 (7049-T73 - Sample Number 410698, 7175-T736 - Sample Number 410699)	39
6	7049-T73 and 7175-T736 Die Forging Die No. 40006 (7049-T73 - Sample Number 410695, 7175-T736 - Sample Number 410984)	40
7	7049-T73 and 7175-T736 Die Forging Die No. 40005 (7049-T73 - Sample Number 410697, 7175-T736 - Sample Number 410705)	41
8	7175-T736 Die Forging Die No. F17961 (Sample Number 410704)	42
9	7175-T736 Die Forging Die No. F17976 (Sample Number 410706)	43
10	General Dimensions of Tensile Specimens	44
11	General Dimensions of Compressive and Shear Specimens	45
12	General Dimensions of Bearing Specimens	46
13	General Dimensions of Tensile Specimens For Modulus and Stress-Strain Tests	47
14	Compact Tension Fracture Toughness Specimen	48
15	Fracture Specimen Orientations	49

FIGURE		PAGE
16	Setup for Fatigue Cracking Compact-Tension Fracture Specimens	50
17	Setup for Testing Compact-Tension Fracture Specimens	51
18	Center-Slotted Fracture-Toughness Panels	52
19	Setup for Testing 16-in. Wide Center Slotted Fracture Specimens	53
20	Smooth and Notched Axial-Stress Fatigue Specimens	54
21	Smooth and Notched Sheet Type Axial-Stress Fatigue Specimens	55
22	Crack Propagation Specimen for Sheet	56
23	EDM Notched Crack Propagation Specimen	57
24	Compact Tension Crack Growth Specimen	58
25	Environmental Chamber for Fatigue Crack Propagation Tests of Sheet	59
26	ARL 50,000-1b Structural Fatigue Machines	60
27	Compact Tension Crack Propagation Specimen in Fatigue Machine	61
28	Setup for Tests to Measure Environmental Fatigue-Crack-Growth Rate	62
29	Sketch Showing Location of SCC Smooth Specimens on the Cross-Section of the Die Forgings	63
30	Shows the 1/8-in. Diameter Tensile Specimen, the Various Parts of the Stressing Frame and the Final Stressed Assembly	64
31	Sheet-Type Tensile Specimens and Preformed Blanks in Stress Corrosion Frames	65

FIGURE		PAGE
32	Configuration of DCB Specimen Used for Plate and Hand Forgings	66
33	Longitudinal Slice from the 2-in. 7049-T73 Hand Forgings Macroetched to Show Grain Flow	67
34	Sketch Showing Two Locations of DCB Stress- Corrosion Specimens from Die Forged Shape 9078	68
35	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7049-T73 Die Forgings (≤4.000 in.)	69
36	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7175-T736 Die Forgings (≤3.000 in.)	70
37	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7049-T73 Hand Forgings (2.001-5.000 in.)	71
38	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7175-T736 Hand Forgings (≤4.000 in.)	72
39	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7475-T61 Sheet (0.040-0.249 in.)	73
40	Typical Stress-Strain and Compressive Tangent Modulus Curves for 7475-T761 Sheet (0.040-0.249 in.)	74
41	Typical Stress-Strain and Compressive Tangent Modulus Curves for 2124-T851 Plate (1.501-5.000 in.)	75
42	Plane-Stress Fracture Toughness of Bare and Alclad 7475-T61 Sheet Determined in Tests of 16-in. Wide Panels	76
43	Plane-Stress Fracture Toughness of Bare and Alclad 7475-T761 Sheet Determined in Tests of 16-in. Wide Panels	77

FIGURE		PAGE
44	Crack Growth Resistance, Kr, vs Crack Growth of 7475-T61 Sheet, L-T Orientation	78
45	Crack Growth Resistance, K_{r} , vs Crack Growth of 7475-T61 Sheet, T-L orientation	7.9
46	Crack Growth Resistance, K _r , vs Crack Growth of 7475-T761 Sheet, L-T Orientation	80
47	Crack Growth Resistance, Kr, vs Crack Growth of 7475-T761 Sheet, T-L Orientation	81
48	Crack Resistance Curves for 7475 Sheet	82
49	Plots of Threshold, Apparent and Critical Instability of 0.063-in. Thick, 16-in. Wide 7475-T61 Sheet, L-T Orientation	83
50	Plots of Threshold, Apparent and Critical Instability of 0.063-in. Thick, 16-in. Wide 7475-T61 Sheet, T-L Orientation	84
51	Plots of Threshold, Apparent and Critical Instability of 0.063-in. Thick, 16-in. Wide 7475-T761 Sheet, L-T Orientation	85
52	Plots of Threshold, Apparent and Critical Instability of 0.063-in. Thick, 16-in. Wide 7475-T761 Sheet, T-L Orientation	86
53	Axial-Stress Fatigue Curve for 7049-T73 Die Forgings (Smooth)	87
54	Axial-Stress Fatigue Curve for 7049-T73 Die Forgings (Notched)	88
55	Axial-Stress Fatigue Curve for 7175-T736 Die Forgings (Smooth)	89
56	Axial-Stress Fatigue Curve for 7175-T736 Die Forgings (Notched)	90
57	Axial-Stress Fatigue Curve For 7049-T73 Hand Forgings (Smooth)	91

FIGURE		PAGE
58	Axial-Stress Fatigue Curve for 7049-T73 Hand Forgings (Notched)	92
59	Axial-Stress Fatigue Curve for 7175-T736 Hand Forgings (Smooth)	93
60	Axial-Stress Fatigue Curve for 7175-T736 Hand Forgings (Notched)	94
61	Axial-Stress Fatigue Curve for 7475-T61 Sheet (Smooth)	95
62	Axial-Stress Fatigue Curve for 7475-T61 Sheet (Notched)	96
63	Axial-Stress Fatigue Curve for 7475-T761 Sheet (Smooth)	97
64	Axial-Stress Fatigue Curve for 7475-T761 Sheet (Notched)	98
65	Axial-Stress Fatigue Curve for 2124-T851 Plate (Smooth)	99
66	Axial-Stress Fatigue Curve for 2124-T851 Plate (Notched)	100
67	Effect of Salt Fog on Axial-Stress Fatigue Strength of 7049-T73 Hand Forging	101
68	Effect of Salt Fog on Axial-Stress Fatigue Strength of 7175-T736 Hand Forging	102
69	Effect of Salt Fog on Axial-Stress Fatigue Strength of 7475-T61 Sheet	103
70	Effect of Salt Fog on Axial-Stress Fatigue Strength of 7475-T761 Sheet	104
71	Effect of Salt Fog on Axial-Stress Fatigue Strength of 2124-T851 Plate	105

FIGURE		PAGE
72	Fatigue Crack Growth Data for 4×16 -in. $7049-T73$ Hand Forging, T-L Orientation, (CT Specimens)	106
73	Fatigue Crack Growth Data for 5 x 20-in. $7049-T73$ Hand Forging, T-L Orientation, (CT Specimens)	107
74	Fatigue Crack Growth Data for 5 x 20-in. $7049-T73$ Hand Forging, T-L Orientation, (CN Specimens)	108
75	Fatigue Crack Growth Data for 5 x 20-in. $7049-T73$ Hand Forging, L-T Orientation, (CN Specimens)	109
76	Fatigue Crack Growth Data for 5 x 20-in. $7049-T73$ Hand Forging, S-T Orientation, (CT Specimens)	110
77	Fatigue Crack Growth Data for 4 x 16-in. 7175-T736 Hand Forging, T-L Orientation, (CT Specimens)	111
78	Fatigue Crack Growth Data for 5 x 20-in. $7175-T736$ Hand Forging, T-L Orientation, (CT Specimens)	112
79	Fatigue Crack Growth Data for 5 x 20-in. $7175-T736$ Hand Forging, T-L Orientation, (CN Specimens)	113
80	Fatigue Crack Growth Data for 5 x 20-in. $7175-T736$ Hand Forging, L-T Orientation, (CN Specimens)	114
81	Fatigue Crack Growth Data for 5 x 20-in. $7175-T736$ Hand Forging, S-T Orientation, (CT Specimens)	115
82	Fatigue Crack Growth Data for 0.040-in. 7475-T61 Sheet, T-L Orientation, (CN Specimens)	116
83	Fatigue Crack Growth Data for 0.125-in. 7475-T61 Sheet, T-L Orientation, (CN Specimens)	117
84	Fatigue Crack Growth Data for 0.125-in. 7475-T61 Sheet, L-T Orientation, (CN Specimens)	118
85	Fatigue Crack Growth Data for 0.040-in. 7475-T761 Sheet, T-L Orientation, (CN Specimens)	119
86	Fatigue Crack Growth Data for 0.125-in. 7475-T761 Sheet, T-L Orientation, (CN Specimens)	120
87	Fatigue Crack Growth Data for 0.125-in. 7475-T761 Sheet, L-T Orientation, (CN Specimens)	121
88	Fatigue Crack Growth Data for 2-in. 2124-T851 Plate, T-L Orientation, (CN Specimens)	122

FIGURE		PAGE
89	Fatigue Crack Growth Data for 4.5-in. 2124-T851 Plate, T-L Orientation, (CN Specimens)	123
90	Fatigue Crack Growth Data for 4.5-in. 2124-T851 Plate, L-T Orientation, (CN Specimens)	124
91	Fatigue Crack Growth Data for 4.5-in. 2124-T851 Plate, S-L Orientation, (CT Specimens)	125
92	Typical Example of the Four Degrees of Exfoliation Indicated by Code Letters E-A, E-B, E-C and E-D	106
93	Illustrates Visual Appearance of the 7475 Sheet After 48 Hours Exposure to EXCO	126
94	Photomicrographs Showing Corrosive Attack in 7475-T61 and T761 Sheet Exposed 48 Hours to EXCO	128
95	Photomicrographs Showing Auxiliary Intergranular Cracks in Failed 7049-T73 and 7175-T736 Die Forging Specimens	129
96	Comparison of Per Cent Survival for Short-Transverse 1/8-in. Diameter Specimens from 7049-T73 and 7175-T736 Die Forgings that Permitted a Specimen Perpendicular to and Across the Parting Plane	130
97	Photomicrographs Showing Presence of Intergranular Auxiliary Cracks in the Fractured Specimens from the Thin 2124-T851 Plates Indicating SCC as the Probable Cause of Failure	131
98	Per Cent Survival of Short-Transverse Specimens of 2124-T851 Plate Exposed to 3.5% NaCl Alternate Immersion Showing the Better Performance of the Thicker Plate	132
99	DCB Specimens from Web Region of 7049-T73 and 7175-T736 Die Forgings	133
100	Fractured Faces of DCB Specimens from 2124-T851 Plate by Producer A after Being Forced Fractured at the Conclusion of the 30 Day Test.	134

FIGURE		PAGE
101	Photomacrograph of Total Crack in DCB Specimens from 1.75 and 5.5-in. 2124-T851 Plate at the Mid-Width of the Specimen	135
102	Photomicrograph of the Tip of the Crack in DCB Specimens from 1.75 and 5.5-in. 2124-T851 Plate	136

LIST OF TABLES

TABLE		PAGE
I	Chemical Compositions of 7049-T73 and 7175-T736 Die Forgings	137
II	Chemical Compositions of 7049-T73 and 7175-T736 Hand Forgings	138
III	Chemical Compositions of 7475-T61 and T761 Sheet .	139
IV	Chemical Compositions of 2124-T851 Plate	140
V	Mechanical Properties of 7049-T73 Die Forgings	141
VI	Mechanical Properties of 7175-T736 Die Forgings	142
VII	Mechanical Properties of 7049-T73 Hand Forgings	143
VIII	Mechanical Properties of 7175-T736 Hand Forgings .	144
IX	Mechanical Properties of 7475-T61 Sheet	145
X	Mechanical Properties of 7475-T761 Sheet	146
XI	Supplemental Mechanical Properties of Bare and Alclad 7475-T61 and T761 Sheet	147,148
XII	Mechanical Properties of 2124-T851 Plate	149
XIII	Supplemental Mechanical Properties of 2124-T851 Plate	150
XIV	Specified Minimum Tensile Properties for Some Aluminum Alloy Forgings, Sheet and Plate	151
XV	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7049-T73 Die Forgings	152
XVI	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7175-T736 Die Forgings	153
XVII	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7049-T73 Hand Forgings	154
XVIII	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 7175-T736 Hand Forgings.	155

LIST OF TABLES

TABLE		PAGE
XIX	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of Bare and Alclad 7475-T61 Sheet	156
XX	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of Bare and Alclad 7475-T761 Sheet	157
XXI	Ratios Among the Tensile, Compressive, Shear and Bearing Properties of 2124-T851 Plate	158
XXII	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Edgewise Bearing Properties of 7049-T73 Die Forgings	159
XXIII	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Edgewise Bearing Properties of 7175-T736 Die Forgings	160
XXIV	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Edgewise Bearing Properties of 7049-T73 Hand Forgings	161
XXV	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Edgewise Bearing Properties of 7175-T736 Hand Forgings	162
XXVI	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Flatwise Bearing Properties of Bare and Alclad 7475-T61 Sheet	163
XXVII	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Flatwise Bearing Properties of Bare and Alclad 7475-T761 Sheet	164
XVIII	Statistical Analysis of Ratios Among Tensile, Compressive, Shear and Flatwise Bearing Properties of 2124-T851 Plate	165
XXIX	Ratios for Computing Design Mechanical Properties of 7049-T73 Die Forgings	166
XXX	Ratios for Computing Design Mechanical Properties of 7175-T736 Die Forgings	167
XXXI	Ratios for Computing Design Mechanical Properties of 7049-T73 Hand Forgings	168

LIST OF TABLES

TABLE		PAGE
XXXII	Ratios for Computing Design Mechanical Properties of 7175-T736 Hand Forgings	169
XXXIII	Ratios for Computing Design Mechanical Properties of Bare and Alclad 7475-T61 and T761 Sheet	170
XXXIV	Ratios for Computing Design Mechanical Properties of 2124-T851 Plate	171
XXXV	Computed Design Mechanical Properties of 7049-T73 Die Forgings	172
IVXXX	Computed Design Mechanical Properties of 7175-T736 Die Forgings	173
IIVXXX	Computed Design Mechanical Properties of 7049-T73 Hand Forgings	174
XXXVIII	Computed Design Mechanical Properties of 7175-T736 Hand Forgings	175
XXXIX	Computed Design Mechanical Properties of Bare and Alclad 7475-T61 Sheet	176
XL	Computed Design Mechanical Properties of Bare and Alclad 7475-T761 Sheet	177
XLI	Computed Design Mechanical Properties of 2124-T851 Plate	178
XLII	Results of Tensile and Compressive Stress-Strain and Modulus of Elasticity Tests of 7049-T73 and 7175-T736 Die Forgings	179
XLIII	Results of Tensile and Compressive Stress-Strain and Modulus of Elasticity Tests of 7049-T73 and 7175-T736 Hand Forgings	180
XLIV	Results of Tensile and Compressive Stress-Strain and Modulus of Elasticity Tests of 7475-T61 and T761 Sheet	181
XLV	Results of Tensile and Compressive Stress-Strain and Modulus of Elasticity Tests of 2124-T851 Plate	182

LIST OF TABLES (Concluded)

TABLE		PAGE
XLVI	Summary of Average Modulus Values of 7049-T73 and 7175-T736 Forgings, 7475-T61 and T761 Sheet and 2124-T851 Plate	183
XLVII	Typical Tensile and Compressive Properties	184
XLVIII	Results of Compact-Tension Fracture Toughness Tests of 7049-T73 Die Forgings	185
XLIX	Results of Compact-Tension Fracture Toughness Tests of 7175-T736 Die Forgings	186
L	Results of Compact-Tension Fracture Toughness Tests of 7049-T73 and 7175-T736 Hand Forgings	187
LI	Results of Compact-Tension Fracture Toughness Tests of 2124-T851 Plate	188
LII	Supplemental Compact-Tension Fracture Toughness Data of 2124-T851 Plate	189,190
LIII	Results of Fracture-Toughness Tests of 16-in. Wide Panels from 7475-T61 Sheet	191
LIV	Results of Fracture-Toughness Tests of 16-in. Wide Panels from 7475-T761 Sheet	192
LV	Results of Supplemental Fracture Toughness Tests of 16-in. Wide Panels from Alclad 7475-T61 Sheet	193
LVI	Results of Longitudinal Smooth and Notched ($K_t=3$) Axial-Stress Fatigue Tests of 7049-T73 Die Forgings (R=0.0)	194
LVII	Results of Longitudinal Smooth and Notched ($K_{t}=3$) Axial-Stress Fatigue Tests of 7175-T736 Die Forgings (R=0.0)	195
LVIII	Results of Smooth and Notched (Kt=3) Axial- Stress Fatigue Tests of 7049-T73 and 7175- T736 Hand Forgings (R=0.0)	196
LVIX	Results of Smooth and Notched (Kt=3) Axial- Stress Fatigue Tests of 7475-T61 Sheet	
	(R=0.0)	197

LIST OF TABLES (Continued)

TABLE		PAGE
LX	Results of Smooth and Notched (K _t =3) Axial- Stress Fatigue Tests of 7475-T761 Sheet (R=0.0)	198
LXI	Results of Smooth and Notched Axial-Stress Fatigue Tests of 2124-T851 Plate (R=0.0)	199
LXII	Results of Smooth and Notched (Kt=3) Axial- Stress Fatigue Tests of 7049-T73 and 7175- T736 Hand Forgings and 2124-T851 Plate in Salt Fog	200
LXIII	Results of Smooth and Notched (Kt=3) Axial- Stress Fatigue Tests of 7475-T61 and T761 Sheet in Salt Fog	201
LXIV	Rates of Fatigue Crack Propagation	202
LXV	System for Visual Rating of Exfoliation Corrosion Contained in ASTM Method G34-72 .	203
LXVI	Results of Accelerated Exfoliation Tests on 7049-T73 Forgings	204
LXVII	Results of Accelerated Exfoliation Tests on 7175-T736 Forgings	205
LXVIII	Results of Accelerated Exfoliation Tests on 7475 Sheet	206
LXIX	Results of Accelerated Exfoliation Tests on 2124-T851 Plate	207
LXX	Results of Longitudinal and Long-Transverse Accelerated SCC Test on 7049-T73 and 7175-T736 Die Forgings	208
LXXI	Results of Short-Transverse Accelerated SCC Tests on 7049-T73 and 7175-T736 Die Forgings	209
LXXII	Comparison of Per Cent Survival Versus Exposure Time for Short-Transverse Specimens from 7049-T73 and 7175-T736 Die Forgings	210
LXXIII	Status of Atmospheric SCC Tests of 7049-T73 and 7175-T736 Die Forgings	211

LIST OF TABLES (Concluded)

PAGE		TABLE
212	alts of Accelerated SCC Tests on 7049-T73 and Forgings	LXXIV
213	alts of Accelerated SCC Tests on 7175-T736 and Forgings	LXXV
214	alts of Accelerated SCC Tests of 7475 neet	LXXVI
215	alts of SCC Tests of 2124-T851 Plate	LXXVII
216	alts of SCC Tests with Precracked Specimens	LXXVIII
218	gue Crack Growth Data for 7049-T73 Hand orgings	LXXIX
219	gue Crack Growth Data for 7175-T736 Hand orgings	LXXX
220	gue Crack Growth Data for 7475-T61 Sheet	LXXXI
221	gue Crack Growth Data for 7475-T761 Sheet	LXXXII
222	igue Crack Growth Data for 2124-T851 Plate	LXXXIII

SECTION I

INTRODUCTION

A concerted effort has been made in recent years to develop information on the design mechanical properties, fracture toughness, fatigue, and corrosion characteristics of a number of high strength aluminum alloys in suitable tempers and products. Particular attention has been given in recent investigations to the influence of environment on properties, notably rates of fatigue crack growth, as the importance of this variable has become evident.

Within the past few years, several new high-toughness and/or corrosion resistant aluminum alloy products namely 7049-T73 and 7175-T736 die and hand forgings, 7475-T61 and T761 sheet and 2124-T851 plate were developed and have been evaluated in this investigation in a manner similar to that utilized in previous contracts(1-5). Tests of these aluminum alloy products were made to provide statistically reliable data for deriving design mechanical properties for inclusion in MIL-HDBK-5B(6) and to develop typical stress-strain and compressive tangent modulus curves. Additional data concerning fracture toughness, axial-stress fatigue, fatigue crack growth rates and stress-corrosion characteristics of the materials have been obtained.

SECTION II

MATERIAL

A total of twenty-one 7049-T73 and 7175-T736 die and hand forging samples, twenty-five 7475-T61 and T761 sheet samples and ten 2124-T851 plate samples were obtained from three producers for this investigation. Three of the 7049 forgings and five of the 2124 plate samples were produced by Kaiser (designated hereafter as Producer B) and Reynolds (Producer C) with the remainder being produced by Alcoa (Producer A). Each of the samples were fabricated independently to represent an individual lot of material.

The identity, size and chemical compositions of the forging, sheet and plate samples, together with the respective specified composition limits, are shown in Tables I through IV. The compositions are within the applicable limits specified in the Interim Federal Specification QQ-A-00250/29, Aerospace Material Specifications 4111 and 4149 and "Aluminum Standards and Data", The Aluminum Association (7).

The samples represent commercial production material with a variety of thicknesses and grain flow patterns and provide adequate correlation to previous programs. Photographs of the 7049-T73 and 7175-T736 die forging samples are shown in Figs. 1 to 9.

SECTION III

PROCEDURE

A. Mechanical Properties

A.1. Tensile, Compressive, Shear and Bearing

The test specimens and procedures used were, in general, in accordance with ASTM Methods, and where appropriate the same as those used in previous investigations of plate, extrusions and forgings (1-5). These methods are essentially in agreement with Federal Test Method 151(8).

The tests were conducted using the most appropriate load ranges of an Amsler 20,000-lb (Type 10SZBDA58), an Olsen Electomatic 30,000-lb, an Olsen Super-L 20,000-lb, or a Southwark-Tate-Emery 50,000-lb capacity Universal Testing Machine. The machines were calibrated prior to and during the investigation; the accuracy of each was within that required by ASTM(9) and Federal specifications.

Single specimens were tested except in a few instances where a review of the data indicated that check tests were needed.

Tensile, compressive, shear and bearing tests were made using longitudinal, long-transverse and short-transverse specimens from the hand forging and plate samples, longitudinal and short-transverse specimens from the die forgings and longitudinal and long-transverse specimens from the sheet samples. All specimens from the die and hand forgings were taken from the middle third of the cross-section; for the plate samples, longitudinal and long-transverse specimens were from the thickness/4 location and the short-transverse specimens from the thickness/2 location. All specimens from the sheet samples were full thickness with the exception of 3/16-in. diameter shear specimens tested from the 0.188-in. and 0.249-in. thick sheet.

Tensile tests of all the samples were made in accordance with ASTM Methods E8(10). Tests of the forging and plate samples were made using 1/2-in. diameter tapered seat specimens except where it was necessary (in the short-transverse direction and across the parting plane) to use subsize round specimens. Tests of the sheet samples were made using full thickness standard 1/2-in. wide sheet-type specimens. The dimensions of the specimens are shown in Fig. 10.

Compressive tests of the forging and plate samples were made using 1/2-in. diameter x 1-7/8-in. long cylindrical specimens

having a slenderness ratio (1/r) of 15 and those from the sheet samples were full thickness sheet-type specimens (Fig. 11). The tests were conducted in accordance with ASTM Method E9(11) using a subpress (Fig. 3 of Methods E9). Lateral support of the sheet-type specimens was provided by a Montgomery-Templin jig (Fig. 4 of Methods E9). When possible, specimens 3/4-in. diameter and 3-1/2-in. long were used to determine the modulus of elasticity.

Tensile and compressive yield strengths were determined from autographic load-strain diagrams at 0.2 per cent offset.

Shear tests of the forging and plate samples were made using 3/8-in. diameter specimens (Fig. 11). Tests of the sheet samples were made in one of two ways: For sheet <0.063-in. thick, the blanking shear strength was determined by measuring the load required to punch a 2-3/4-in. diameter circle from a 4x4-in. blank with a hardened steel punch and die. For thicker sheet ($t \ge 0.187$ -in.), 3/16-in. diameter specimens of the type used from the forging and plate samples were tested. The cylindrical specimens were tested with an Amsler double-shear tool in which a l-in. length is sheared from the center of a 3-in. long specimen, the end thirds being supported throughout their lengths. For tests of the thinner plate and forging samples in the short-transverse direction, two specimens approximately 1-1/2-in. long were butted together at the center of the Amsler shear tool and tested simultaneously. In the tests of the longitudinal and long-transverse specimens, the loads were applied in the direction normal to the major surface of the samples; in the tests of the short-transverse specimens, the loads were applied in the direction parallel to the major axis(12).

Bearing tests were made in accordance with ASTM Methods E238-68(13), using longitudinal and long-transverse 1-1/2-in. wide or 2-in. wide sheet-type specimens of the type shown in Fig. 12. Edgewise specimens from the forging samples and specimens taken flatwise from the plate were machined 0.094-in. thick x 1-1/2-in. wide. Specimens from the sheet samples were full thickness x 1-1/2-in. or 2-in. wide. The bearing ultimate and yield strengths were determined at edge distances of 1.5 and 2.0 times the pin diameter. The bearing yield strength was determined as the stress at a permanent deformation of 2 per cent of the pin diameter as indicated on autographic load-deformation diagrams.

Tensile and compressive stress-strain tests, including modulus determinations were made of longitudinal, long-transverse and short-transverse specimens taken from a selected number of samples. The tests were, in general, conducted in accordance with ASTM Method Elll(14) using uniform reduced-section specimens (Figs. 11 and 13). The strains were measured with two Tuckerman

optical strain gages positioned diametrically opposite over gage lengths of 1 in. or 2 in.; the smaller gage lengths were used to measure the strains of the smaller specimens. The instruments used meet the ASTM requirements of a Class A extensometer (15). In several instances, where the specimens were too short to mount the Tuckerman optical strain gages, the strains were measured using Micro-Measurements Type EA-13-031CF-120 foil strain gages. The moduli of elasticity values were determined by the strain deviation method described in ASTM Method Ell1(14). Representative typical tensile and compressive stress-strain curves and compressive tangent-modulus curves were then developed based on the data obtained from these tests. The procedures used in developing these curves are outlined in Sections 3.2.3, 3.2.5 and 3.2.6 of Technical Report AFML-TR-66-386(16).

A.2. Fracture Toughness

Duplicate fatigue cracked compact-tension specimens of the type shown in Fig. 14 were used to determine the planestrain stress-intensity factor, KIc, of all the forging and plate samples. The specimen orientations (shown in Fig. 15), dimensions, chevron notching, fatigue cracking and testing procedures were essentially in accordance with ASTM Method E399-72(17). The specimens were fatigue-cracked by axial loading (R=+0.1) in Krouse fatigue machines. The test setups for fatigue cracking and fracture toughness testing are shown in Figs. 16 and 17. The tests were made in a 30,000-lb capacity Olsen Electromatic testing machine and plots of load vs COD (crack opening displacement) were recorded using a Mosley X-Y plotter. Candidate values of critical planestrain stress-intensity factor, KQ, were calculated using the load at 5 per cent secant offset. If all the validity criteria specified in ASTM Method E399-72 were met, the candidate value was designated as KIC.

The critical stress-intensity factor, K_{C} , of all the sheet samples were determined from tests of 16-in. wide center slotted panels of the type shown in Fig. 18(18) using guidelines published some years ago(19). The specimens were loaded monotonically (Fig. 19) in an Amsler 300,000-lb capacity testing machine; no anti-buckling guides were used. The crack opening displacement was measured over an 11.3-in. gage length. Plots of load vs COD were made using a Mosley X-Y plotter. The critical crack lengths were measured two ways: (1) the ink stain method where ink follows the slow crack growth and (2) conversion of COD to crack length measurement through a compliance calibration. The critical stress-intensity factor, K_{C} , was calculated at the point of instability to complete fracture using the two values of critical crack length. Plots of the data were presented using the technique proposed by C. E. Fedderson(20). In addition, crack resistance curves of the materials were developed as described by Heyer and McCabe(21).

A.3. Axial-Stress Fatigue

Tests of smooth and notched axial-stress fatigue specimens of the types shown in Figs. 20 and 21 were made at three stress levels (R=0.0) using appropriate specimens taken in the longitudinal and long-transverse directions from selected forging, sheet and plate samples. Single tests of the remaining samples were made at the corresponding intermediate stress level. All of the tests were made in Krouse fatigue machines operating at 13.3, 25.0 or 28.8 Hz.

Smooth and notched specimens having test sections similar to those shown in Figs. 20 and 21 were subjected to axial-stress fatigue tests (R=0.0) in a salt fog environment. These specimens were taken in the long-transverse direction from two thicknesses of each of the three products. A chamber was placed around the test section and the specimen was subjected to a 20-second spray of a 3-1/2% salt solution at 5-minute intervals. The tests were made in 5-kip capacity Krouse fatigue machines operating at $18.3~\mathrm{Hz}$.

B. Fatigue Crack Propagation Tests

Fatigue crack propagation rates for the sheet samples were determined using full thickness, center-notch specimens as shown in Fig. 22. Center-notch specimen, Fig. 23, and compact tension type specimen, Fig. 24, were used for the plate and hand forgings. Data were developed for each alloy and temper in:

(a) Dry air, (b) Humid air and (c) 3-1/2% NaCl salt fog. Specimens were taken from two thicknesses of each alloy and temper; for the thicker product, the effect of specimen orientation was studied. Some tests were also made to determine the effect of load level.

The center-notch specimens contained a 0.20-in. long EDM (electrical discharge machining) crack-starter notch. specimens were precracked to obtain an initial crack length of 0.5 in., from which point crack propagation data were recorded; the final 0.1 in. of precracking was carried out at test loads. The sheet specimens were tested in a 15-kip Krouse fatigue machine as shown in Fig. 25 at a frequency of 13.3 Hz. The tests of the 3/4-in. thick center-notch specimens were made in 50,000-lb capacity structural fatigue machines of the type shown in Fig. 26, at a frequency of 5.2 Hz. The compact tension type crack propagation specimens were tested in a 5-kip Krouse machine at a frequency of 18.3 Hz using fixtures similar to those shown in Fig. 27. As for the center-notch specimens, the compact tension specimens were precracked, with the last 0.10 in. of precracking being performed at test loads. The compact-tension type specimens were utilized for the short-transverse specimens and the long-transverse specimens from the smaller forgings. Both center-notch and compact tension

specimens were taken in the long-transverse direction of the 5x20-in. hand forgings so that the effect of specimen type could be determined. All tests were performed at a stress ratio of one-third (R=+1/3).

For most specimens, the crack propagation was determined by taking periodic measurements of the crack length using a magnifier to read a grid photographically reproduced on the specimen.

To control the test environment, the test section of each specimen was contained in a chamber such as shown in Figs. 2 and 28. Dry air (relative humidity <10 per cent) was obtained using dessicants; humid air (relative humidity >90 per cent) was obtained by having a water reservoir in the chamber. For the tests at 5.2 Hz, the salt fog consisted of a one-minute spraying of 3-1/2% NaCl saltwater solution into the compartment at 15-minute intervals. For tests at 13.3 and 18.3 Hz, a 20 second spray was applied at 5-minute intervals.

Crack length (a) was plotted as a function of the number of cycles (N). The rate of fatigue crack growth, da/dN, was determined by fitting a second degree polynomial through each three successive data points. The rates of crack growth were plotted as a function of ΔK , the range of stress intensity factor, where K is defined as follows:

$$K = Y \frac{P\sqrt{a}}{BW}$$

Where a = crack length, in. (half of total crack length for center-notch specimens)

B = specimen thickness, in.

W = specimen width, in. (load line to end of specimen for compact tension specimen)

P = load, kips

Y = (center-notch specimen) = 1.77 + 0.277 $(\frac{2a}{W})$ - 0.510 $(\frac{2a}{W})^2$ + 2.7 $(\frac{2a}{W})^3$ (Ref. 23)

Y = (compact-tension specimen) = 30.96-195.8 $(\frac{a}{W})$ + 730.6 $(\frac{a}{W})^2$ - 1186.3 $(\frac{a}{W})^3$ (Ref. 24)

(H/W = 0.485, where H is one-half the specimen height)

These data were computer analyzed and plotted.

C. Corrosion Characteristics

C.l. Resistance to Exfoliation

Resistance to exfoliation of each of the items was evaluated by means of 2x4-in. panels machined to the T/10 plane (10% of the section thickness machined from one of the fabricated surfaces) and exposed to the EXCO test per ASTM Standard Test Method G34-72(25). The EXCO test involves total immersion for 48 hours (144 hours used for 2124-T851 plate) to a 4N. NaCl + 0.5N. KNO3 + 0.1N. HNO3 solution. In addition, selected lots of each product were exposed for one week to the acidified salt spray test required by Military specifications for T76 temper products and to seacoast atmosphere at Point Judith, Rhode Island. Specimens exposed to the two accelerated environments were rated visually according to the classifications and photographic standards contained in ASTM G34-72.

C.2. Resistance to Stress-Corrosion Cracking (SCC) - Smooth Specimens

C.2.1. Forgings and Plate

The resistance to SCC of susceptible aluminum alloys and tempers is most critical in the short-transverse direction (perpendicular to or across the parting plane in the case of die forgings); consequently the majority of tests were made on specimens oriented in this direction. Certain items of each product were also tested in the longitudinal and long-transverse directions.

The principal test specimen used was a 0.125-in. diameter threaded end tensile specimen meeting the requirements of ASTM Method E8(10). Specimens were centered in the product thickness; except that for die forgings they were taken across the parting plane, 3/8 in. below the base of the flash or as close thereto as possible. For die forgings where the parting plane is located at one surface, specimens were taken perpendicular to the parting plane. The cross-section of the various die forged shapes at the region tested and the position of the test specimen are shown in Fig. 29. In addition two of the die forgings were tested using specimens positioned 3/16 in. from the flash and one flat shape was tested using 3/4-in. O.D. C-rings positioned 3/8 in. from the flash (Fig. 29). In some cases where quick failures were encountered, retests were made using a 0.225-in. diameter specimen.

Unstressed specimens were exposed in duplicate and stressed specimens in triplicate. Tensile specimens were stressed

in direct tension using Alcoa's wedge-load stressing frames (Fig. 30); the amount of stress being determined by measurement of the induced strain. C-ring specimens were stressed by applying a calculated amount of deflection. Stress levels used were:

- (a) Longitudinal and long-transverse specimens 75% of the actual yield strength
- (b) Short-transverse specimens: 7049-T73 45* and 35 ksi
 7175-T736 45, 35* and 25 ksi
 2124-T851 75% of actual shorttransverse yield strength
 and 58 and 50%* of the
 guaranteed long-transverse yield strength,
 (G.Y.S.).

Note: * Quoted capability in 30 day, 3.5% NaCl alternate immersion test.

The corrosive environments used were: (a) 84 days exposure to 3.5% NaCl by alternate immersion per Federal Test Standard 151b, Method 823(8), (b) seacoast atmosphere at Point Judith, R.I., and (c) industrial atmosphere at New Kensington, Pa. Atmospheric tests were scheduled for a minimum of 4 years exposure, but at report time had completed only about one year.

C.2.2. 7475 Sheet

Stress-corrosion tests of the sheet were made with two types of long-transverse specimens: a premachined tensile specimen (per ASTM Method E8) and a plastically deformed tensile specimen blank. Full thickness specimens were used for the 0.040 and 0.063-in. sheet; for thicknesses greater than 0.063-in., were machined on one side to 0.063 in. and the rolled surface was stressed in tension. Both types of specimens were stressed in bending by arcing them in a constant span fixture (Fig. 31); the tensile specimens being end-milled to a length to provide a stress of 75 per cent of the actual yield strength. Unstressed tensile specimens were also tested. All specimens, stressed and unstressed, were exposed to the 3.5% NaCl alternate immersion test per Federal Test Standard 151b. Method 823.

C.3. Resistance to SCC - Precracked Specimens

Stress corrosion tests of precracked specimens were made using duplicate, short-transverse, bolt-loaded double cantilever beam (DCB) specimens of the type shown in Fig. 32, taken in the S-L orientation. The items tested were; the die forged shape 9078 and the 2 and 5-in. thick hand forgings of

both 7049-T73 and 7175-T736 alloys, plus the 5 lots of 2124-T851 plate fabricated by producer A. Specimens from the hand forgings and plate were lxlx5 in., centered in the product thickness. Prior to obtaining the DCB specimens longitudinal slices from the hand forgings were macroetched to ensure that the specimen precrack was in line with the grain flow (Fig. 33). Specimens from the die forgings were 9/16xlx5 in. because of the forging geometry and were taken from the flange just below the parting plane and from the central web of the forging (Fig. 34).

The specimens were precracked in tension and loaded to pop-in (the first indication of unstable crack growth), the crack being innoculated with 3.5% NaCl solution at the time of pop-in. The specimens were then exposed for 30 days in an air environment of 80 F and 45 per cent relative humidity. Three times each working day, a few drops of 3.5% NaCl solution were dripped into the crack. This specimen and test procedure was developed by Boeing in their ARPA program No. 878(26)

SECTION IV

RESULTS OF TESTS

The results of the individual tensile, compressive, shear and bearing tests, including some supplemental data from 38 lots of bare and Alclad 7475 sheet and 9 lots of 2124-T851 plate, the ratios among these test results, the statistical analysis of these ratios, and the computed design values are shown in Tables V through XLI. Typical tensile and compressive stress-strain and compressive tangent-modulus curves are shown in Figs. 35 through 41.

The results of the compact-tension fracture toughness tests and those of the wide center-slotted panels are shown in Tables XLVIII through LV. Also included are the results of some supplemental compact-tension and wide center-slotted panel fracture toughness tests.

The results of the smooth and notched axial-stress fatigue tests (R=0.0) are shown in Tables LVI through LXI and Figs. 53 through 66. Those of smooth and notched long-transverse specimens in salt fog environment are presented in Tables LXII and LXIII and Figs. 67 through 71. For comparison, scatter bands of the long transverse specimens tested in air are also shown.

The results of the fatigue crack growth tests are plotted in Figs. 72 through 91 and summarized in Table LXIV. In each case, the raw data are presented in the \underline{a} version of each figure and the ΔK vs, da/dN data are shown in the \underline{b} version. In the following evaluations differences in fatigue crack-growth rates of less than 50 per cent are not considered significant.

A description of the visual ratings of exfoliation specimens contained in ASTM Method G34-72 is given in Table LXV and an example of the four degrees of exfoliation is shown in Fig. 92. Results of the exfoliation tests are given in Tables LXVI through LXIX and Figs. 93 and 94.

The results of stress corrosion tests with smooth specimens are shown in Tables LXX through LXXVII and Figs. 95 through 98. Results of tests with precracked specimens are in Table LXXVIII and Figs. 99 through 102.

SECTION V

DISCUSSION OF RESULTS

A. Mechanical Properties

A.1. Tensile, Compressive, Shear and Bearing

The tensile properties of each sample of each product tested exceeded the respective specified minimum property requirements (Table XIV).

The strengths of the 7049-T73 and 7175-T736 forgings (Tables V to VIII) are comparable based on the direct comparison of the values determined for identical shapes (Sample Nos. 410698 and 410699 and Sample Nos. 410697 and 410705). Harmsworth(27) in his evaluation of several landing gears indicated tensile properties of 7049-T73 forging samples to be 2 to 3 ksi higher than those of 7175-T736 forgings. Other investigations (28,29,30) of 7049-T73 and 7175-T736 forgings indicated properties comparable to those determined in this investigation.

The tensile properties of bare 7475-T61 sheet are higher than those of bare T761 sheet (Tables IX and X) and similar to those reported by R. R. Cervay(31).

Evaluation of the tensile and compressive properties of the 7049-T73 die forgings (Table V) and 2124-T851 plate (Table XII) indicated some apparent differences in the materials fabricated by the different producers. However, whether or not these differences are significant is questionable because of the small number of samples. The longitudinal tensile, tensile yield and compressive yield strengths of the 7049-T73 forgings fabricated by Producer A are considerably higher than those from Producer B (Table V). In the case of the 2124 plate (Table XII), for thicknesses greater than 4.000-in., the properties of plate from Producer A are somewhat higher than those of plate from Producer C.

The ratios among the tensile, compressive, shear and bearing properties of the individual 7049-T73 and 7175-T736 die and hand forging samples are shown in Tables XV through XVIII; the ratios among the properties of the 7475-T61 and T761 sheet samples and the ratios among the properties of the supplemental bare and Alclad 7475-T61 and T761 sheet samples are shown in Tables XIX and XX. The ratios among the properties of the contract and supplemental 2124-T851 samples are shown in Table XXI.

The statistical analysis of the ratio data were made in accordance with the procedures outlined in MIL-HDBK-5 Guidelines for presentation of Data(21). A regression analysis of each group of ratios was made to determine whether the data showed a significant correlation with thickness. Whenever a significant correlation with thickness was indicated, values of minimum ratios, Min \overline{R} , were selected which correspond with the lower limit of the confidence band around the regression line at the lower end of each respective thickness range. When no correlation was indicated, a single minimum value of \overline{R} was selected for all thicknesses. These values of minimum \overline{R} were used for determining derived design values for the respective thickness ranges.

No statistical analysis was made on a population containing less than eight data points. When a population of less than eight data points was encountered, the mean value, \overline{R} , was determined and adjusted downward by a factor of 0.01, the same decrease generally indicated when larger populations were analyzed statistically.

In view of the test variables (specimen alignment, contaminated test surfaces, etc.) that may affect the results of the bearing tests, some broader adjustments were made to the ratios. The bearing ratios for the bare and Alclad 7475-T61 and T761 sheet (L plus LT directions) were combined into four groups (BUS, BYS, 1.5D and 2.0D), analyzed as individual groups with a single minimum value, Min \overline{R} , being determined for each property and condition. The ratio values of Min \overline{R} , for all bearing tests, were then rounded to the nearest 0.05.

The distribution of the ratios, and the values for the various terms in the statistical analyses, are shown in Tables XXII through XXVIII. The results of the statistical analysis of the die and hand forging samples and bare and Alclad 7475-T61 and T761 sheet samples indicate, with the exception of the short-transverse compressive yield strength of the die forging samples, that no correlation with thickness exists among the ratios. The results of the statistical analysis of the data for plate indicate that all of the shear and bearing yield ratios (1-1/2D and 2D) show a general increase in most of the ratios with increase in thickness, while the longitudinal compressive yield shows a general decrease.

Since the shear and bearing tests were made with specimens taken in two or three directions (L, LT and ST), the Student's "t" test and the "f" test were applied to the ratios of each direction to determine if there were significant differences in the average ratios or in the variability for the different directions. Where none was indicated, the ratios for the different directions were combined for computation of the minimum ratios to be used; where

there was a significant difference, the most conservative value was used. No differences with direction were found in the shear and bearing ratios of the forgings, sheet and plate samples, except for the short-transverse shear strength ratios of the 2124-T851 plate. In the case of the hand forging samples, where there were so few tests, the L and LT bearing ratios were combined even though the statistical tests suggested they may not have come from the same population.

The ratio values used in computing the design values from the specified tensile properties of the respective thickness ranges of each alloy and product are summarized in Tables XXIX through XXXIV. The corresponding computed design values for each of the alloys and products are summarized in Tables XXXV through XLI; also shown, when applicable, are the differences between these values and the corresponding values presently in MIL-HDBK-5B.

In preparing the design tables for 7049-T73 die and hand forgings and 7175-T736 die forgings, the respective tensile-property values in AMS-4111 and 4149, as shown in Table XIV, were used as basis property "S" values. The tentative values for 7175-T736 hand forgings, 7475 sheet and 2124-T851 plate were based on Alcoa production data. The basis property values and the ratios shown in Tables XXIX through XXXIV, were used in computing the remaining design values.

The derived compressive and shear values of the 7049-T73 hand forgings differ no more than ± 2 ksi from the design values now published in MIL-HDBK-5B. Other than the tensile property values for 7049-T73 and 7175-T736 die forgings; no design values are shown for the remaining alloys in MIL-HDBK-5B.

The results of the tensile and compressive stress-strain tests, including modulus, are shown in Tables XLII through XLV and the average modulus values are shown in Table XLVI.

The results of the modulus tests indicated small differences in the modulus values with respect to direction (L, LT and ST). For the 7049-T73 and 7175-T736 die forgings, the tensile and compressive modulus values in the longitudinal direction were about 0.5 to 2.2 per cent higher than the short-transverse values; for the hand forgings, the long-transverse values were about 0.8 to 2.0 per cent higher than the longitudinal and short-transverse values. With one exception, the difference in modulus values with respect to direction for the 7475 sheet and 2124 plate was 0.7 per cent or less.

The average tensile and compressive modulus values of alloys and products are as follows:

Alloy	Product	Modulus, Tensile	10 ³ ksi Compressive
7049 & 7175	Die Forgings	10.2	10.7
7049 & 7175	Hand Forgings	10.2	10.6
7475	Sheet	10.0	10.5
2124	Plate	10.4	10.9

The average moduli for each product are indicated to be 4 or 5 per cent higher in compression than in tension.

The modulus values shown for the 7000 series forgings are about the same as those shown in MIL-HDBK-5B and slightly less, in most cases, than those determined in previous contracts on stress-relieved plate(1), extrusions(3) and forgings(5). For the typical stress-strain and compressive tangent modulus curves, the modulus values shown in the summary table above were used.

The results of the analysis of the individual stress-strain tests indicated that, for a given alloy, temper and direction, no apparent trend with thickness in the offsets from the modulus line at stresses expressed in per cent of the yield strength was evident. Typical tensile and compressive stress-strain and compressive tangent modulus curves have been prepared for each alloy and product and are shown in Figs. 35 through 41. The curves were derived and are presented in accordance with the procedures outlined in MIL-HDBK-5 Guidelines for Presentation of Data(16). The tensile yield strengths used in deriving the typical stress-strain curves are the typical values (Table XLVII) indicated in Alcoa's production in recent years; it is assumed that these values would be representative for the industry. The compressive yield strengths were based on the average of the ratios encompassed by the specified thickness range for the typical tensile values.

A.2. Fracture Toughness

The results of the compact-tension fracture toughness tests of the forging and plate samples are shown in Tables XLVIII through LI. Supplemental fracture toughness data for nine lots of 2124-T851 plate are shown in Table LII.

About 1/5 of the candidate K $_{\rm IC}$ values determined from tests of 7049-T73 forgings and about 2/3 of those determined from tests of 7175-T736 forgings are not strictly valid by all the criteria of the ASTM Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials(17). However, as indicated in the tables most of these calculated values are considered meaningful values of K $_{\rm IC}$ since the validity criteria were exceeded by only a small amount. The data from both the forgings and plate indicate

that the fracture toughness of each alloy and product is greatest in the longitudinal (L-T or L-S orientations) direction and generally lowest in the short-transverse (S-L orientation) direction.

The average $K_{\mbox{Ic}}$ values determined are summarized as follows along with some data from previous contracts:

Alloy and		KIc, ksi√in.		
Temper	Product	L-T & L-S	T-L	S-L
7049 - T73	Die Forging Hand Forging	31.2 29.8	20.9	22.5
7175-T736	Die Forging Hand Forging	35.1 * 34.6 *	26.9	25.8 23.3
7075-T7352+	Forgings	31	25	21
2124-T851	Plate (Producers A & C)	29.6	24.3	22.2
2024-T851+	Plate	23	20	17

^{*} Average of all KQ values considered meaningful.

As shown in the above table, the 7175-T736 forgings exhibit average long-transverse and short-transverse (T-L and S-L orientations) $\rm K_{Ic}$ values 2 to 6 ksi $\sqrt{\rm in}$. higher than the corresponding values exhibited by the 7049-T73 forgings, consistent with the findings of Harmsworth(27). In the longitudinal direction (L-T or L-S orientations) alloy 7175 was able to develop only two fully valid KQ values because of inability to take large enough specimens to meet the thickness criterion. However, these values do provide a good indication of the toughness that can be expected for 7175-T736 forgings.

No significant difference in the toughness of the 7049-T73 die forgings from the different producers was noted.

The KIc values determined for the 2124-T851 plate from Producers A and C and the supplemental lots are in the range expected for 2124-T851 plate; the values for the plate from Producer B are lower and more typical of commercial 2024-T851 plate. In view of this, data for 2124-T851 plate for Producer B was excluded from the average values.

⁺ Average values shown in MIL-HDBK-5B.

The following general observations concerning the toughness of the contract material as compared to data from MIL-HDBK-5B can be made:

- a) 7049-T73 die and hand forgings about equal to 7075-T7352 forgings in the L-T or L-S and S-L orientations and less than 7075-T7352 forgings in the T-L orientation.
- b) 7175-T736 die and hand forgings greater than 7075-T7352 forgings.
- c) 2124-T851 plate (Producers A & C) greater than 2024-T851 plate.

The results of 16-in. wide center slot fracture toughness specimens from the 7475-T61 and T761 sheet samples are shown in Tables LIII and LIV. Supplemental fracture toughness data from 3 lots (24 tests) of Alclad 7475-T61 sheet are shown in Table LV.

As a result of the high toughness of alloy 7475 in the T761 temper, nearly half of the candidate Kc values were from tests in which the net section stress exceeded 0.8 of the tensile yield strength, indicating excessive yielding in the tests. Although these values are not valid, they are useful in indicating the general toughness level of the material. Only three tests of the 7475-T61 sheet and four of the Alclad 7475-T61 sheet resulted in invalid tests; these also were considered indicative of general toughness levels.

Tests of center-slot specimens having an original crack length of 2t(0.125 in.) and modified center slot specimens (0.250-in. crack length and specimen width 14 in.) failed prematurely at the grip end. Although the fractures occurred prematurely, the high toughness of 7475 was evident since the net section stress developed by each specimen was about equal to the tensile yield strengths of the samples.

The critical stress-intensity factor, K_{C} , from the other tests was calculated using crack lengths obtained in two ways: the ink stain method where the ink follows the flow crack growth and the critical crack lengths are measured to the nearest hundredth of an inch with scale and dividers and by the compliance method where the critical crack lengths were determined by measurement of the secant offset to the fracture instability and conversion of the offset to crack length. The K_{C} values determined using both crack lengths are shown in the tables. It should be noted that the visual measurements generally result in the more conservative K_{C} value, as expected since no plastic zone correction was used with the visual measurements while the compliance technique automatically compensates for crack tip plasticity. The K_{C} values are presented for the T61 and T761 tempers in Figs. 42 and 43 as a function of thickness.

As may be noted in the table below, the critical stress-intensity factor, K_{C} , indicate substantially greater toughness for bare and Alclad 7475 sheet than for 7075-T6 sheet, and toughness comparable to that of 2024-T3 sheet from previous tests of 16-in. wide panels.

		Stress-Intens		K _c , ksi√in.
Alloy and Temper	Visual	Compliance	Visual	Compliance
7475-T61 7475-T761 Alc7475-T61 7075-T6 2024-T3	98.9 106.0 87.4 65.0 95.0	105.0 119.4 93.6 	92.0 101.4 85.7 60.0 80.0	96.4 112.5 94.4

The $\rm K_C$ values for 7475 sheet are high enough that the toughness of the alloy cannot be fully appreciated from tests of small panels; tests of much larger panels would be required to illustrate the full potential of the material. For example, in tests of 10-ft wide panels, Wang, of McDonnell Douglas, obtained values ranging from 130 to 160 ksi $\sqrt{\rm in.}(32)$. In similar tests of 2024-T3, they obtained values ranging from 150 to 175 ksi $\sqrt{\rm in.}$ This substantiates that the toughness of 7475 sheet approaches that of 2024-T3 and is vastly superior to that of 7075-T6.

In addition to the above analysis of the $\rm K_{C}$ values, crack resistance curves were developed for some of the T61 and T761 samples using the methods recommended by R. H. Heyer and D. E. McCabe $^{(21)}$ and are shown in Figs. 44 to 47. The developed curves show the crack growth resistance of a material as a function of crack extension and indicate that a crack in alloy 7475 may be expected to start to grow at a critical stress-intensity value, $\rm K_{C}$, of about 40 ksi $\sqrt{\rm in}$. but will continue to remain stable until R values well in excess of 100 ksi $\sqrt{\rm in}$. are attained with a crack growth of over 1 in. Analysis of the data also indicates the curves to be similar to those (Fig. 48) developed for 7475 sheet by other investigators (32,33,34,35).

Some of the K_C data was also analyzed using the method recommended by C. E. Fedderson(20), the results of which are shown in Figs. 49 to 52. Three "damage" levels are presented and are identified as "threshold" (beginning of slow crack growth and plasticity), "apparent" (no crack growth at critical instability) and "critical" (total crack plus crack growth at critical instability). The data suggest that the 7475-T761 sheet has a slightly higher critical damage level but a somewhat lower threshold level than the T61 sheet. However, the data do not fit the analysis well, possibly because anti-buckling guides were not used.

A.3. Axial-Stress Fatigue

A.3.1. Ambient Air Environment

The results of axial-stress fatigue tests (R=0.0) of smooth and notched specimens taken in the longitudinal direction of the die forgings and longitudinal and long-transverse direction of the hand forgings, sheet and plate are summarized in Tables LVI through LXI and shown in Figs. 53 to 66. Log-mean fatigue life values for many of the preselected stress levels are shown in the tables and curves have been drawn through these points in the figures to indicate the trend of the data. Log-mean lives could not be calculated for many of the tests made at the two lower stress levels, since at least one specimen did not fail within the number of cycles allotted for the test.

There does not appear to be any consistent correlation between the fatigue life and product thickness; except that for the 7175-T736 hand forgings, the fatigue lives of the smooth specimens tend to decrease with increasing thickness.

The following general observations have been made concerning the smooth and notched ($K_t=3$) log-mean fatigue lives of the various alloys, tempers and products:

7049-T73 and 7175-T736 Die Forgings (Figs. 53 through 56)

- a) the longitudinal fatigue lives of both alloys are about the same; however, the smooth specimen fatigue lives of 7175-T736 at the low stress level are longer than those of 7049-T73.
- b) at the high stress level, the lives of both alloys are about equal to or longer than those shown for 7075-T7352 hand forgings; at the low stress level, the lives are shorter.

7049-T73 and 7175-T736 Hand Forgings (Figs. 57 through 60)

- a) the smooth longitudinal fatigue lives of 7049-T73 are longer than the long-transverse lives.
- b) except for the 7049-T73 long-transverse fatigue lives at the low stress level being shorter, the fatigue lives of both alloys are about the same.
- c) the lives of both alloys are longer than those shown for 7075-T7352 hand forgings.

7475 Sheet Figs. 61 through 64)

a) at high stress levels, 7475-T61 shows longer lives than 7475-T761; at the lower stress levels, they are about the same.

b) the lives of the 7475-T61 and T761 are about equal to or greater than those of 2024-T3 and 7075-T6 sheet.

2124-T851 Plate (Figs. 65 and 66)

a) at the high stress level, the lives are about the same as those of 2024-T851 plate; at the low stress levels, the lives are shorter.

A.3.2. Salt Fog Environment

The salt fog environment lowers the fatigue strength of all products (Table LXIII and Figs. 67 through 71). As is common in corrosion-fatigue tests, the effect of the environment is greatest at the lower stresses where the time of exposure is longer. Further, the reduction in long-life fatigue strength is greater for the smooth than for the notched specimens. The number of corrosion-fatigue tests was small and several specimens failed outside the reduced section although such areas were coated with paint. However, the following observations can be made concerning the effect of the salt fog on the various alloys, tempers and products:

7049-T73 and 7175-T736 Hand Forgings (Fig. 67 and 68)

- a. The results for the smooth specimens of the two alloys appear equivalent.
- b. The notched 7049-T73 specimens have higher corrosion-fatigue strengths than the 7175-T736 specimens.
- c. The fatigue strength is generally higher for the thicker forgings.

7475-T61 and T761 Sheet (Figs. 69 and 70)

- a. For both smooth and notched specimens, the salt fog environment has a greater effect on the thinner sheet.
- b. The lives of the 7475-T61 and T761 specimens appear to be equivalent.

2124-T851 Plate (Fig. 71)

- a. The smooth and notched specimens from the 2-in. thick plate tend to have higher fatigue strengths than the corresponding specimens from the 4-1/2-in. plate.
- b. The fatigue strengths of smooth 2124-T851 plate specimens tested in salt fog approximate those obtained for the 7175-T736 forgings (Fig. 68), although the fatigue strength in air is substantially higher for the forging. Thus, the environmental effect is less for 2124-T851 plate than for 7175-T736 forgings.

B. Fatigue-Crack-Propagation Tests

Generally, crack-growth rate is significantly faster in humid air and salt fog than in dry air, especially at the lower growth rates. As discussed below, the notable exception is in the S-L and S-T specimens, wherein the crack growth rate in the humid environments are either comparable or slower than that in dry air. There is generally good agreement between the da/dN- Δ K relationships for tests made of duplicate specimens where the tests were made at either low or high loads, with an overlapping Δ K range. The effects of orientation, specimen type and environment are discussed below.

7049-T73 Hand Forgings

- a) For tests in both dry and humid air, the rates of fatigue-crack-propagation determined for T-L (long transverse) compact tension specimens are comparable for the 4x16-in. and 5x20-in. forgings, Figs. 72 and 73, respectively. Growth rates determined using center-notch specimens (Fig. 74) are generally agreeable with those for the compact tension specimens.
- b) In all three environments crack propagation is slower for the L-T (longitudinal) specimens (Fig. 75) than the T-L specimens (Fig. 74) at the higher stress intensities.
- c) The rates of crack propagation for the S-T (short transverse) specimen tested in dry air (Fig. 76) are surprisingly, slower than those obtained in humid air and faster than those of the corresponding T-L specimens. The specimen used for the test in humid air demonstrated much greater resistance to crack propagation during the precracking stage; apparently, this behavior carried over into the propagation stage of the test. (Fractographic examination is being made to determine if there is an explanation for this behavior. The results will be inserted into the final report.)

7175-T736 Hand Forging

- a) In all environments the rates of fatigue-crack-propagation determined using compact tension specimens taken in the T-L direction are comparable for the 4x16-in. and 5x20-in. hand forgings, Figs. 77 and 78, respectively.
- b) For the 5x20-in. forging, the crack propagation rates determined using T-L center-notch specimens (Fig. 79) are comparable to those obtained using T-L compact tension specimens (Fig. 78) for each environment. The results for one center notch specimen, WL5, indicate that the salt fog increases the rate of propagation over that of specimens tested in humid air, whereas,

the results for specimen WL6, tested at a load 63 per cent higher, indicate equivalent results for tests in humid and salt fog environments; this may result from the reduced time of exposure at the higher load. The effect of the humid air and salt fog environments is comparable to T-S specimens from 7075-T7352 hand forgings.

- c) For the L-T specimens, the salt fog doubled the rate of crack growth (Fig. 80). In the dry and humid air the rates of crack growth are equivalent to those determined for T-L specimens (Fig. 79).
- d) The rates of propagation for L-T and T-L specimens in dry air are equivalent to those of similar specimens from a 7075-T7352 hand forging tested previously(5) in ambient air (5 to 50 per cent relative humidity).
- e) Crack propagation of the S-T specimens (Fig. 81) appears to be unaffected by humidity or salt fog. At the lower stress intensities, crack propagation is slower for the S-T specimens than for the T-L specimens (Fig. 78). Further, at the lower stress intensities, crack propagation is significantly slower than that of S-L center-notch specimens from a 7075-T7352 hand forging(5) (15 to 50 per cent humidity).
- f) At the higher stress intensities, the rate of fatigue-crack-propagation for the 7175-T736 T-L specimens is generally slower than that of similar specimens from the 7049-T73 hand forgings.

7475-T61 and 7475-T761 Sheet

- a) For a given temper and environment fatigue crack growth rates are comparable for the T-L and L-T specimens (Figs. 82 through 87).
- b) The fatigue-crack-propagation behavior of the specimens from the T61 and T761 tempers are generally equivalent in both the dry air and salt fog environments. In humid air, propagation is somewhat slower in the 0.125-in. 7475-T761 sheet than in the T61 sheet.
- c) Fatigue-crack-propagation in sheet of either temper is two to three times faster in humid air than in dry air and about four times faster in the salt fog environment than in dry air.
- d) The data for tests in dry and humid air generally bracket the average curve representing unpublished Alcoa Research Laboratory data for 0.090-in. thick Alclad 7475-T651 sheet tested

in ambient air (generally within the range of 25 to 50 per cent relative humidity). Apparently the cladding does not greatly affect the rate of fatigue-crack propagation.

2124-T851 Plate

- a) In dry air the rates of propagation in the T-L specimens from the 4.5-in. plate (Fig. 89) are lower than those from the 2-in. plate (Fig. 88). The growth rates for the two thicknesses of plate are equivalent in both the humid air and salt fog environments.
- b) The L-T specimens (Fig. 90) have somewhat slower rates of propagation than the T-L (Fig. 89) specimens in the ΔK range of 10-15 ksi \sqrt{in} .
- c) The fatigue-crack-propagation rates determined for compact tension type, S-L specimens (Fig. 91) are comparable to those determined for center-notch, T-L specimens.
- d) For both L-T and T-L specimens, crack growth is slower than indicated by the average curves for 2024-T851 plate(3,36).
- e) Several delays (one to eleven days) occurred in the test of specimen LTF9 (Fig. 89) in salt fog, which may have resulted in blunting of the crack tip. The a vs N and da/dN vs ΔK data for this specimen was quite erratic. Accordingly, most of the subsequent tests in salt fog were conducted in a single day's testing time. The propagation of the few specimens subjected to a single overnight delay does not appear to be affected by the delays.
- f) Crack propagation was not accelerated appreciably by the humid or salt fog environments.

C. Corrosion Characteristics

C.l. Resistance to Exfoliation

C.1.1. 7049-T73 and 7175-T736 Forgings

In general, the 7049-T73 and 7175-T736 die and hand forgings, showed a high degree of resistance to exfoliation, with the 7175-T736 forgings being the more resistant of the two alloys. The only forging showing appreciable exfoliation was the 5-in. thick 7049-T73 hand forging, S. No. 410688 (Table LXVI). Two other 7049-T73 forgings (S. Nos. 410698 and 410686, Table LXVI) and one 7175-T736 forging (S. No. 410699), Table LXVII) developed very minor exfoliation, but because some was present they had to be rated in the E-A category (Table LXV and Fig. 92). However, the degree of susceptibility in the latter three forgings was so slight that it is quite likely they will not exfoliate in the seacoast atmosphere.

C.1.2. 7475 Sheet

The 12 lots of 7475-T61 sheet showed some exfoliation, with one lot showing appreciable exfoliation to a C degree. In contrast, all the 7475-T761 sheets encountered only pitting attack, Table LXVIII. The visual appearance of representative specimens is shown in Fig. 93. The form of corrosion present on the 7475-T61 sheet, S. No. 410658 was obviously exfoliation. However, one might question whether the remaining T61 lots incurred exfoliation or a severe degree of pit-blistering and also whether the T761 lots were completely free of exfoliation. Metallographic examination (Fig. 94) confirmed that the corrosion in T61 sheets was exfoliation resulting from intergranular attack and only pitting in the T761 temper sheets.

These results demonstrate the superiority of the T761 temper over the T61 temper from the standpoint of resistance to exfoliation. The performance of the 7475-T61 sheet was about as expected and even though it did show some susceptibility, it is still better than what is to be expected of 7075-T6 sheet. Past experience has shown that in the thicker gauges (50.125 in.) the majority of 7075-T6 sheet will show susceptibility to exfoliation to a greater degree than E-A.

C.1.3. 2124-T851 Plate

The EXCO test is recommended only for copper containing 7XXX series alloys and during development of the test it was shown that 4 or more days exposure is required to reveal susceptibility to exfoliation in 2XXX series alloys. Accordingly, a 6 day exposure period was used for the contract material. The spray test will reliably detect exfoliation susceptibility in 2XXX series alloys within one week exposure, but it too was lengthened to two weeks to ensure that a very slight degree of susceptibility would not be missed. Even with this prolonged exposure, all lots of 2124-T851 plate were fully resistant to exfoliation (Table LXIX).

C.2. Resistance to SCC - Smooth Specimens

C.2.1. 7049-T73 and 7175-T736 Forgings

C.2.1.1. Die Forgings

Results of stress corrosion tests on 7049-T73 and 7175-T736 die forgings in the longitudinal and long-transverse directions are shown in Table LXX. Neither alloy incurred any failure and the reduction in strength by corrosion was similar for both alloys.

The losses in strength of stressed specimens from the forgings less than 1-in. thick (S. Nos. 410693 and 410983) were somewhat high, approximately 50 per cent. The fractured faces of

these specimens were examined to determine whether incipient SCC was responsible for the high loss. The examination showed that the higher-than-normal reduction in strength resulted from short transgranular cracks emanating from sites of deep pitting corrosion and no evidence of intergranular SCC was detected.

Results of accelerated tests in the short-transverse direction are given in Table LXXXI. As regards the 30 day capability, alloy 7049-T73 is guaranteed at 45 ksi. At this stress, two of the 7049-T73 forgings, S. Nos. 410698 and 410700, failed in less than 30 days when tested with 0.125-in. specimens but survived 30 days when retested with 0.225-in. diameter specimens. Currently the procurement specifications do not stipulate the type or size of test specimen to be used. All of the 7175-T736 die forgings survived 30 days at the 35 ksi test stress required of this alloy and, in fact, only a single specimen failed in less than 30 days at 45 ksi. As such, all of the die forgings were considered to have met the required SCC performance.

With continued exposure to 84 days, most of the specimens of both alloys failed at the 45 and 35 ksi stresses. Representative specimens were examined metallographically to verify the nature of failure. Many of the specimens showed a mixture of transgranular and intergranular auxiliary cracks, but in all cases the extent of intergranular cracking was such that SCC was a probable cause of failure, (Fig. 95). Alloy 7049-T73 was not tested at 25 ksi, but it is likely that at this test stress it would exhibit a high degree of resistance to SCC, similar to that observed for 7175-T736.

The number of failures and the times to failure recorded in Table LXXXI for the 45 and 35 ksi test stresses are such that it is not obvious whether the two alloys are similar or if one has an SCC advantage. At both stresses the 7049-T73 forgings began to fail sooner, but incurred fewer total number of failures, than the 7175-T736 forgings. In order to resolve this, the cumulative per cent survival of forgings tested with a tensile specimen across the parting plane was compared using a procedure described by C. F. Lewis (37). Preparation of the data is shown in Part A of Table LXXII and a graphical comparison of the per cent survival is shown in Fig. 96. Part B of Table LXXII lists the expected life (mean failure time), estimated standard deviation and possible error for the two alloys. Based on this comparison it is concluded that the SCC resistance of the two alloys in these tests was not significantly different, but that the alternate immersion test was somewhat more variable for 7049-T73 than for 7175-T736. For the most part the alternate immersion tests of the two alloys were conducted concurrently, hence, the greater variability for 7049-T73 is most likely an alloy composition effect and not merely variations in separate alternate immersion runs.

It has been shown(38) that the correlation between SCC performance in the alternate immersion test and natural atmospheric

environments is not the same for all aluminum alloys. Thus far seacoast and industrial atmospheric tests on these forgings (Table LXXIII) have resulted in failure only for one 7049-T73 forging (S. No. 410698). These tests are of about one year duration and longer exposure is required to establish whether or not the atmospheric SCC performance of the two alloys differs significantly.

In summary, the resistance to SCC of 7049-T73 and 7175-T736 die forgings appears to be similar. Both alloys are markedly superior to other alloys such as 2014-T6, 7075-T6 and 7079-T6; but are less resistant than 7075-T73. They do, however, have a strength advantage over 7075-T73 die forgings.

Two side issues in this portion of the contract were: (a) the effect of specimen location for short transverse specimens from forgings made with conventional dies, and (b) the performance of specimens from forgings made in flat cover dies.

The forgings made in conventional dies were tested with short transverse specimens positioned 3/8 in. below the flash metal. Two shapes in each alloy were also tested with specimens positioned 3/16 in. below the flash (about as close to the forged surface as specimens could be taken) because the visual appearance of macroetched cross sections indicated a slightly more intense parting plane structure in this region. However, in three cases the results did not differ greatly with test location and in one case (S. No. 410693), the specimens closest to the flash were more resistant. While these data are not conclusive, they suggest that slight differences in the proximity of a short transverse specimen to the surface of the forging may not be as critical as expected. Forging geometry will limit how close a specimen can be positioned to the surface. For purposes of standardization, it would seem best to use a specimen location that would be possible for most forged shapes, something on the order of 3/8 to 5/8 in. below the flash.

Certain forged shapes are made with flat cover dies with the parting plane structure at the very base of the forging so that all or most of it will be removed during finish machining. Flat cover forgings in this program were tested with tensile specimens perpendicular to the parting plane (Fig. 29), but since they did not cross it, the grain structure in the gage length was transverse or long transverse rather than short transverse. The results show that these specimens were indeed more resistant than specimens taken across the parting plane. Hence, results obtained on flat cover forgings cannot be used to predict the performance of a forging in which a tensile stress can operate across the parting plane structure. An attempt was made to obtain a test across the parting plane flow of S. Nos. 410697 and 410705 through the use of C-rings. The results, however, indicate this test was no better, and perhaps even less critical, than the test with perpendicular tensile specimens.

C.2.1.2. Hand Forgings

The accelerated SCC data for hand forgings are given in Table LXXIV for alloy 7049-T73 and in Table LXXV for alloy 7175-T736. Short-transverse specimens are also being tested in seacoast and industrial atmospheres. Thus far no failure has occurred in the atmospheric tests, but they are only of 3 to 6 months duration.

Similar to the die forgings, hand forgings of both alloys had high resistance to SCC in the longitudinal and long-transverse directions with no failure occurring.

No short-transverse failure occurred during the first 30 days of test, hence, all hand forgings met the required SCC capability.

With continued exposure, both alloys had failures at the 45 and 35 ksi stresses. Metallographic examination showed a mixture of intergranular and transgranular auxiliary cracks in the failed specimens with intergranular cracking predominating so that all failures were considered to be SCC failures.

The majority of the 7049-T73 failures occurred at 45 ksi; whereas, for two of the 7175-T736 forgings (S. Nos. 410689 and 410986) most of the failures occurred at 35 ksi, which is somewhat unusual. The short-transverse grain flow characteristics will vary down the length of hand forgings (Fig. 33). Macroetched sections were obtained from all hand forgings prior to procuring specimens to ensure that all specimens had a short-transverse orientation. However, because specimens from hand forgings were used in sequential order, rather than being randomized, there is the possibility that some sets of specimens came from an area of more critical grain structures than did other sets.

Because these two alloys have some susceptibility to SCC, it might be expected that the greater reduction given to thinner forgings would increase the degree of grain directionality and have an adverse effect on resistance to SCC. However, the data obtained on the hand forgings do not indicate a significant effect from product thickness; though the hand forgings were somewhat more resistant than specimens from the highly directional parting plane area of die forgings.

In summary, tests on these particular eight hand forgings indicate that all forgings met the 30 day SCC capability claimed for the respective alloys and that the overall performance of the two alloys was similar.

C.2.2. 7475 Sheet

The 7475 sheet exhibited a high degree of resistance to SCC in the long-transverse direction for both the T61 and T761

tempers. No failure occurred even for the highly stressed preform specimen (Table LXXVI).

In the aggressive alternate immersion environment, an appreciable amount of general corrosion occurred, as indicated by the reduction in tensile strength. When exposed unstressed the T761 temper incurred somewhat less loss in strength than did the T61 specimens.

No atmospheric tests were made on the 7475 sheet.

C.2.3. 2124-T851 Plate

All of the 2124-T851 plates tested had high resistance to SCC in the longitudinal and long-transverse directions, with no failure occurring during the 84 day test (Table LXVII).

All six plates tested incurred some short-transverse failures during the 84 day test (Table LXXVII). Fractured specimens, representative of each stress at which failure occurred, were examined metallographically. All specimens from the 1.75, 2.00 and 2.04 inch plates showed evidence of intergranular SCC (Fig. 97). However, failures from the 2.5 and 4.5-in. plates that occurred after 60 days appeared to result primarily from tensile overload due to deep pitting.

The better performance of the thicker plate was also evidenced by higher per cent survival and longer times to failure (Table LXXVII and Fig. 98). The four plates thicker than 2 in. passed the SCC requirement of 30 days at 50 per cent GYS. The 1.75 and 2.00-in. thick plates each had one failure in less than 30 days at 50 per cent GYS, but survived for more than 30 days when retested using 0.225-in. diameter specimens. This effect of plate thickness has been observed on other lots of 2124-T851 and is the reason why Alcoa currently does not guarantee the SCC capability of plate less than 2.0-in. thick.

Performance at a stress of 58 per cent GYS (32.5 ksi) was essentially the same as at 50 per cent GYS (28 ksi), but results indicate rather definitely that 2124-T851 plate would not consistently survive 30 days exposure to alternate immersion at a stress of 75 per cent GYS (42 ksi).

Preliminary results in the seacoast atmosphere (Table LXXVII) are tending to follow the trend observed in the accelerated test. The 1.75, 2.00 and 2.04-in. plates have all failed at 75 per cent YS within six months as compared with no failure to date for the 2.5 and 4.5-in. plates. Thus far no failure has occurred in the industrial atmosphere. A better performance in industrial atmosphere than in seacoast atmosphere is consistent with the general experience on Al-Cu alloys.

C.3. Resistance to SCC - Precracked Specimens

The various items tested with DCB tensile precracked specimens are listed in Table LXXVIII, along with the crack lengths measured at the end of test, and the results of metallographic examination to determine whether crack extension in the environment was caused by intergranular SCC. Although the crack lengths on the side of the specimens were measured periodically during the course of the test, it was concluded for various reasons (discussed later) that the results did not justify an attempt to quantitatively define SCC susceptibility by plots of crack length versus time of exposure and crack velocity versus stress intensity. Hence, the data have been interpreted qualitatively to compare: (a) the relative SCC performance of the various products and alloys and (b) trends established by the DCB specimen with those obtained with smooth tensile specimens.

C.3.1. 7049-T73 and 7175-T736 Forgings

Because of the forging geometry (Fig. 34), the DCB specimens from the die forgings were only 9/16 in. high rather than the standard 1 in. height. When the specimens were precracked in tension and loaded to pop-in, there appeared to be some plastic yielding in the specimen arms for 7049-T73 and obvious yielding for the 7175-T736 specimens, which were loaded to a value about 30 per cent higher because of the higher toughness of 7175-T736.

In addition, examination of the fracture faces after completion of the test showed considerable bowing of the crack front and faster propagation at the center of the specimen than at the edge for specimens from both die and hand forgings, (see total crack length edge versus center in Table LXXVIII and Fig. 99). Consequently it was concluded from previous results (26) that calculation of residual stress intensity by the compliance formula would be in error.

All specimens from the forgings incurred slight crack growth in the environment, the initial growth being detected after 2 days exposure for die forging specimens and 8 days exposure for hand forging specimens. Somewhat more growth occurred for 7175-T736 die forging specimens than for specimens from 7175-T736 hand forgings and 7049-T73 die and hand forgings, which were all similar (Table LXXVIII). Metallographic examination confirmed that in all cases the environmental growth was caused by SCC. An example of the intergranular nature of the crack growth is shown in Fig. 99.

The more directional parting plane grain flow near the flash metal did not influence crack growth in specimens from die forgings. Specimens from the flange of the die forgings performed about the same as those from the web. Also there was no appreciable difference in crack growth on the side of the flange specimen closest to the parting plane flash compared with growth on the side away from the flash.

In summary, the precracked specimen data ranked the two alloys in the same general manner as did smooth specimens. Both alloys were similar to each other, somewhat less resistant than 7075-T7351 (which would incur very little growth in such tests) and markedly superior to 7075-T651 (which incurs similar crack growth in a week of exposure and about 0.7-in. growth in 30 days).

C.3.2. 2124-T851 Plate

The DCB specimen from the 1-3/4-in. 2124-T851 plate incurred about 1/4 in. of crack growth during the 30 day test as a result of intergranular SCC. Although the crack front was bowed, the environment growth at the edge and center of this specimen was similar, (Fig. 100). The fracture faces illustrated in Fig. 100 were chemically cleaned prior to photographing but still show that considerable corrosion had occurred tending to obliterate contrasting appearance of the precrack and environment growth regions. Consequently, there may have been wedging from buildup of corrosion product preventing a decrease in stress-intensity as the crack propagated. Assuming no corrosion-product wedging (which is probably incorrect) a "Region II" plateau stress corrosion crack velocity of 3.3×10^{-4} in./hr (4.6×10^{-9} m/sec) was calculated for stress intensities of 23 to 33 ksi \sqrt{in} , which is somewhat faster than the value of 3×10^{-5} in./hr (4.2×10^{-10} m/sec) at 24×10^{-10} ksi \sqrt{in} , noted in similar tests of 7075-77351 plate.

DCB specimens from the four thicker (2.5 to 5.5 in.) 2124-T851 plate showed very little environmental growth (Fig. 100) and metallographic examination showed the environmental extension of the precrack was strictly transgranular, indistinguishable from the precrack. The intergranular growth in the 1.75-in. plate and the transgranular growth in the 5.5-in. plate are compared in Figs. 101 and 102. Residual stress-intensity on the DCB specimens from the thicker plates were of the order of 33 ksi $\sqrt{\text{in.}}$, but because no intergranular SCC occurred it does not seem relevant to calculate a crack velocity.

In comparison with smooth specimen tests, both types of data showed an effect of plate thickness, the 1.75-in. plate being significantly less resistant to SCC than the thicker plate. Results on thicker plate differed slightly, the DCB specimen showing no SCC whatsoever, whereas the smooth 1/8-in. dia. specimen detected some SCC susceptibility for the 2.5-in. plate at a stress of 75 per cent YS, but not for the 4.5-in. plate.

SECTION VI

SUMMARY AND CONCLUSIONS

Based on the results of tests of commercially produced die and hand forgings, sheet and plate that met the requirements for composition and tensile properties in applicable Federal, Military and Tentative specifications, the following conclusions seem warranted concerning the mechanical properties, including fracture toughness and fatigue, fatigue crack propagation rates and resistance to stress-corrosion and exfoliation of 7049-T73 and 7175-T736 die and hand forgings, 7475-T61 and T761 sheet and 2124-T851 plate:

A. Mechanical Properties

A.1. Tensile, Compressive, Shear and Bearing

- 1. Some apparent differences were indicated among the tensile and compressive properties of the 7049-T73 die forgings and 2124-T851 plate fabricated by different producers.
- 2. Ratios among the tensile, compressive, shear and bearing properties of the forging, sheet and plate samples and from supplemental data are shown in Tables XV through XXI.
- 3. Ratio values used in computing the design values from the specified tensile properties of the respective thickness ranges of each alloy and product are shown in Tables XXIX through XXXIV.
- 4. Computed design values for each alloy and product are shown in Tables XXXV through XLI.
- 5. The modulus of elasticity of each product is 4 or 5 per cent higher in compression than in tension; there are only small, if any, differences with respect to direction (L, LT and ST). The average modulus values for each product, in all directions, are:

		Modulus	, 103 ksi
Alloy	Product	Tensile	Compressive
7049 & 7175	Die Forging	10.2	10.7
7049 & 7175	Hand Forging	10.2	10.6
7475 2124	Sheet	10.0	10.5
2124	Plate	10.4	10.9

6. Typical stress-strain and compressive tangent-modulus curves are shown in Figs. 35 through 41.

A.2. Fracture Toughness

1. The average values of plane-strain stress-intensity factor, K_{IC} (ksi $\sqrt{\text{in.}}$), at 5 per cent secant offset using compact-tension specimens are as follows:

Alloy and		Orien	tation	
Temper	Product	L-T or L-S	T-L	S-L
7049-T73	Die Forging Hand Forging	31.2	- -	22.5
7175-T736	Die Forging Hand Forging	35.1* 34.6*	20.9	19.9
2124 - T851	Plate (Producer A&C)+		24.3	23.3

^{*} Average of all KQ values considered meaningful; not all values are technically valid.

2. The average critical stress-intensity factor, K_c , derived for bare 7475-T61 and T761 sheet and Alclad 7475-T61 sheet from tests of 16-in. wide panels tested without anti-buckling guides are:

Alloy	Orientation				
and		L-T	T-L		
Temper	Visual	Compliance	Visual	Compliance	
7475-T61 7475-T761 Alc7475-T61	98.9 106.0 87.4	105.0 119.4 93.6	92.0 101.4 85.7	96.4 112.5 94.4	

These illustrate that the toughness of 7475 sheet is well above that of 7075-T6 sheet and approaches that of 2024-T3 sheet.

A.3. Axial Stress Fatigue

l. The results of the smooth and notched ($K_t=3$) axialstress fatigue tests (R=0.0) are plotted in Figs. 53 through 66 and summarized in Tables LVI through LXI. Except for 7175-T736 forgings showing longer fatigue lives at the low stress level, the fatigue lives of both 7049-T73 and 7175-T73 forgings are about the same. In general, the 7049-T73 and 7175-T736 forgings showed longer lives than 7075-T7352 hand forgings. At the high stress level, 7475-T61 has longer fatigue lives than does 7475-T761. Both 7475-T61 and T761 have fatigue lives that are equal to or longer than those of 2024-T3 and 7075-T6 sheet. Alloy 2124-T851 plate has fatigue lives that are about the same as those of 2024-T851 plate at the high stress level; at the low stress level, the lives are shorter.

⁺ Values for plate from Producer B were lower, and not representative of high toughness product.

- 2. The salt fog environment lowers the fatigue strength of all products, with the greatest reduction occurring for the smooth specimens at the lower stresses.
- 3. The detrimental effect of the salt environment on fatigue strength of 7475-T61 and T761 sheet is greater for the thinner sheet.

B. Fatigue Crack Propagation

- 1. In most cases, there was little influence of orientation in fatigue crack growth rate; rates determined for longitudinal (L-T) or short transverse (S-T or S-L) specimen are equivalent to those obtained for long-transverse (T-L) specimens.
- 2. The rates of fatigue crack growth determined in dry air for longitudinal (L-T) and long transverse (T-L) specimens from 7175-T736 hand forgings are equivalent to those 7075-T7352 specimens tested in ambient air (relative humidity = 5-50 per cent).
- 3. At the higher stress intensities, the fatigue crack growth of T-L specimens is slower for alloy 7175-T736 than for 7049-T73 hand forgings in all environments; however, results for L-T specimens of the two forgings were equivalent.
- 4. The rates of fatigue crack growth for 7475-T61 and 7475-T761 sheet tested in dry air are essentially equivalent to those of Alclad 7475-T61 sheet in relatively dry air.
- 5. The humid air and salt fog environments increase the rate of fatigue crack propagation in 7475-T61 and T761 sheet by factors of three and four, respectively.
- 6. Fatigue crack growth is slower in alloy 2124-T851 than in alloy 2024-T851 plate.
- 7. For both hand forging alloys, comparable fatigue crack growth rates were obtained with center notch and compact tension specimens.
- 8. The rates of fatigue crack growth determined for the sheet, plate and hand forgings generally differ by no more than a factor of 4 in equivalent environments. The effect of salt fog environment on fatigue crack growth rate seemed to be greater for the 7475 sheet specimens than for the specimens from 7049 and 7175 hand forgings or 2124 plate. However, this was probably a result of the fact that the 7475 specimens were much thinner.

C. Corrosion Characteristics

1. Accelerated tests showed complete freedom from exfoliation for the 2124-T851 plate and the 7475-T761 sheet. The 7175-T736 forgings were also highly resistant, with only one of fifteen test specimens showing very slight exfoliation. The

7049-T73 forgings showed a slight tendency to be susceptible to exfoliation; but the majority were free of exfoliation. All of the 7475-T61 sheet material showed some visual exfoliation, but only one of the twelve lots of sheet showed visual exfoliation greater than the least degree (Exfoliation - A) in the ASTM rating system.

- 2. All of the materials were resistant to stress-corrosion cracking when stressed to 75 per cent YS in the longitudinal or long transverse grain directions.
- 3. The resistance to SCC in the short transverse grain direction of all the materials was representative of the respective alloys and tempers. All items met the specified 30 day capability in the alternate immersion test when tested with 0.125-in. dia tensile specimens with the exception of two of the 7049-T73 die forgings (one by Producer A and one by Producer B) and the two thinnest 2124-T851 plates (one by Producer A and one by Producer C). These latter four items met the 30 day capability when tested with 0.225-in. dia specimens.
- 4. In accelerated tests, the short-transverse SCC performances of 7049-T73 and 7175-T736 forgings were quite similar as regards the level of stress causing failure and mean failure times. Both alloys were resistant at stresses of 25 ksi or slightly higher, but were not immune at a stress of 45 ksi. Because of a less directional grain structure, hand forgings of both alloys were somewhat more resistant than die forgings. Thus far, the only atmospheric failures have been from one 7049-T73 die forging in seacoast atmosphere.
- 5. Short-transverse SCC performance of the 2124-T851 plate was in agreement with prior experience with regard to the effect of plate thickness. Plates 2-1/2-in. or thicker were resistant at a stress of 50 per cent YS, but showed some susceptibility at higher stresses. The thinner plates were less resistant, which is already corroborated by results of tests in seacoast atmosphere.
- 6. The general trends and comparisons obtained from tests of precracked DCB specimens from 7049-T73 and 7175-T736 forgings and 2124-T851 plate were similar to those obtained from tests with smooth tensile specimens. However, for various reasons the results did not permit a valid quantitative analysis of crack velocity vs stress intensity.

36

37

FIG. 4 7049-T73 AND 7175-T736 DIE FORGING
DIE NO. 9078 (7049-T73 SAMPLE NUMBER 410693, 7175-T736 SAMPLE NUMBER 410983)

FIG. 4

LOCATION OF SPECIMENS

FIG. 5

7049-T73 AND 7175-T736 DIE FORGING DIE NO. 15789 (7049-T73 SAMPLE NUMBER 410698, 7175-T736 SAMPLE NUMBER 410699)

FIG. 6 7049-T73 AND 7175-T736 DIE FORGING DIE NO. 40006 (7049-T73 SAMPLE NUMBER 410695, 7175-T736 SAMPLE NUMBER 410984)

FIG. 7 7049-T73 AND 7175-T736 DIE FORGING DIE NO. 40005 (7049-T73 SAMPLE NUMBER 410697, 7175-T736 SAMPLE NUMBER 410705)

FIG. 8 7175-T736 DIE FORGING DIE NO. F17961 (SAMPLE NUMBER 410704)

Fig. 8

43

Diamet	er,	-	ln.	Gage	Reduced		Diameter	Length
d1		(12	Length, in	Section Length in	Radius(R)	(D),	(L),
0.50 0±0. 005	dl	+	0.005	2.000±0.002	3-1/8	3/8	3/4	4-3/4
0.357±0.004	d ₁	+	0.004	1.400±0.00	2-15/64	17/64	17/32	3-3/8
0.25010.003	dl	+	0.002	1.000±0.00	2 1-9/16	3/16	3/8	2-3/8
0.160±0.002	dl	+	0.001	0.640±0.00	2 1	0.120	15/64	1-1/2

Tapered-Seat Tensile Specimens

Wid	ith, in.		Gage			Thickness,	T
W ₁	W ₂	W3	Length,	Section Length in	Radius(R).	(T),	Length(L)
0.500±0.010	$W_1 + \frac{0.005}{0.003}$	3/4	2.000±0.002		7/8	₹0.499	9 Min.
0.250±0.002	$W_1 + \frac{0.003}{0.002}$	3/8	1.000±0.00	1-1/4	3/8	æ 0.250	4 Min.
0.125 + 0.001	$W_1 + \frac{0.001}{0.001}$	3/16	0.500±0.002	5/8	3/16	20.125	2-1/4Min

Sheet-Type Specimens

Fig. 10 General Dimensions of Tensile Specimens

Nominal Diameter, in.	Diameter, in.	L, in.
1/2	0.498	1-7/8±1/32
3/4	0.751 <u>5</u> 0.7495	3-1/2 [±] 1/32

Round Compressive Specimens

Sheet-Type Compressive Specimens

	Nominal Diameter	D.in.
1	3/16	0.1865
	3/8	0.3730

Shear Specimen

Fig. 11 General Dimensions of Compressive and Shear Specimens

Specimen Thickness, in.	Pin Hole Diameter, in. D	Width, in.
0.094	4 t	1.500±0.004
0.125 to 0.249	0.500	2.000±0.004

Fig. 12 General Dimensions of Bearing Specimens

Width, in	n.	Gage	Reduced Section	Radius (R).
w_1	W ₂	Length, in.	Length, in.	in.
0.500 ± 0.003	3/4	3.000 ± 0.002	4	7/8

Sheet-Type Specimens

Diameter, in.		Gage	Section		Length (L),
D_1	D2	Length, in.	Length, in.	in.	in.
0.500 ±0.003	3/4	3.000 ± 0.002	4	5/8	6-1/2
0.250 ±0.003	3/8	1.000 ± 0.002	1-9/16	3/16	2-3/8
0.160 ±0.002	15/64	0.640 ± 0.002	1	0.20	1-1/2
0.375 ±0.003	9/16	2.000 ± 0.002	2-3/4	$\geq D_1$	5

Round Specimens

Fig. 13 General Dimensions of Tensile Specimens For Modulus and Stress-Strain Tests

Fig. 14 COMPACT TENSION FRACTURE TOUGHNESS SPECIMEN

SPECIMEN ORIENTATIONS FRACTURE 15 F18.

Fig. 16 Set Up for Fatigue Cracking Compact Tension Fracture Toughness Specimens

Fig. 17 Setup for Compact Tension Fracture Toughness Testing

Fig. 18 - Center Slotted Fracture-Toughness Panels.

Fig. 19 Setup for 16-in. Wide Center-Slot Fracture Toughness Testing

53 Fig. 19

Fig. 20 Smooth and Notched Axial-Stress Fatigue Specimens

Fig. 21 Smooth and Notched Sheet-Type Axial-Stress Fatigue Specimens.

Fig. 22 Crack Propagation Specimen for Sheet

Fig. 23 EDM Notched Crack Propagation Specimen

B, Thickness = 1.00"

Note 1 - Grain in this Direction for Longitudinal Specimens. Note 2 - Grain in this Direction for Transverse Specimens. Note 3 - Machining Lay in this Direction for all Types of

Specimens.

Fig. 24 Compact Tension Crack Growth Specimen

Fig. 25 Environmental Chamber for Fatigue Crack Propagation Tests of Sheet.

Fig. 26 ARL 50,000 lb Structural Fatigue Machine

Fig. 27 Compact Tension Crack Propagation Specimen in Fatigue Machine

Fig. 28 Setup for Tests to Measure Environmental Fatigue-Crack-Growth Rate

Fig. 29

Shows the 1/8-in. Diameter Tensile Specimen, the Various Parts of the Stressing Frame and the Final Stressed Assembly Fig. 30

Fig. 31 Sheet-Type Tensile Specimens and Preformed Blanks in Stress Corrosion Frames

Configuration of DCB specimen used for plate and hand forgings in Contract No. F-33615-71-C-1571. Specimens from die forgings were the same except height (dimension perpendicular to slot) was 9/16 in. Fig. 32

66

Approx. 1X

Longitudinal Slice From the 2-in. 7049-T73 Hand Forging Macroetched to Show **Gra**in Flow. An Undulating Grain Flow is Common in Hand Forgings, therefore Etched Slices were Obtained so that DCB Specimens could be Positioned with the Tip of the Precrack in Line with the Region of Maximum Grain Flow. Same Procedure was used for the 2-in. Forging of 7175-T736 and the 5-in. Forgings of both Alloys. Fig. 33

Fig. 33

Fig. 35 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7049-T73 Die Forgings (≤4.000 in.)

Fig. 36 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7175-T736 Die Forgings (≤3.000 in.)

Fig. 37 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7049-T73 Hand Forgings (2.001-5.000 in.)

Fig. 38 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7175-T736 Hand Forgings (\leq 4.000 in.)

Fig. 39 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7475-T61 Sheet (0.040-0.249 in.)

Fig. 40 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 7475-T761 Sheet (0.040-0.249 in.)

Fig. 41 Typical Stress-Strain and Compressive Tangent-Modulus Curves for 2124-T851 Plate (1.501-5.000 in.)

Fig. 42

Fig. 43

Fig. 44

Fig. 57

Fig. 58

Fig.59

S

MAXIMUM (P/A) STRESS IN CYCLE," KSI

PO/E1 - DE - BE1 MMOd

106

FATIGUE CRACK GROWTH DATA FOR 4 X 16-in. 7049-T73 HAND FORGING, ORIENTATION, CT SPECIMENS 7

Fig. 73

二

ORIENTATION, CT SPECIMENS

FATIGUE CRACK GROWTH DATA FOR 5 X 20-in. 7049-T73 HAND FORGING, L-T ORIENTATION, CN SPECIMENS

FATIGUE CRACK GROWTH DATA FOR 5 X 20-in. 7049-T73 HAND FORGING, S-T ORIENTATION, CT SPECIMENS

FATIGUE CRACK GROWTH DATA FOR 5 X 20-in. 7175-T736 HAND FORGING, T-L ORIENTATION, CT SPECIMENS

(12)

FATIGUE CRACK GROWTH DATA FOR 5 X 20-in. 7175-T736 **CN SPECIMENS** T-L ORIENTATION, HAND FORGING,

L-T ORIENTATION, CN SPECIMENS

SPECIMENS

S-T ORIENTATION, CT

FORGING,

FATIGUE CRACK GROWTH DATA FOR 0.125-in. 7475-T61 SHEET, SPECIMENS CN ORIENTATION, 7

FATIGUE CRACK GROWTH DATA FOR 0.125-in. 7475-T61 SHEET CN SPECIMENS L-T ORIENTATION,

Fig. 91

Typical Example of the Four Degrees of Exfoliation Indicated By Code Letters E-A, E-B, E-C and E-D. Fig. 92

Fig. 92

Neg. 185871A Mag: 100X S. No. 410659, 0.188-in. Thick Etch-Keller's

Longitudinal Section Through a 7475-T61 Sheet that was Rated Visually as E-A. Although Visually the Attack has an Appearance Somewhat Like Pit-Blistering (Fig. 93), Metallographic Examination Clearly Showed it was Exfoliation Resulting from Intergranular Attack.

Neg. 186445A Mag: 100X S. No. 410671, 0.188-in. Thick Etch-Keller's

Longitudinal Section Through a Representative 7475-T761 Sheet Showing Attack is Strictly Pitting.

Fig. 94 Photomicrographs Showing Corrosive Attack in 7475-T61 and T761 Sheet Exposed 48 Hours to EXCO.

S. No. 410695-N7 Mag: 100X

Mag: 500X

7049-T73, Stressed 45 ksi, Failed at 44 Days

S. No. 410983-N95 Mag: 100X Mag: 500X 7175-T736, Stressed 35 ksi, Failed at 56 Days

Fig. 95 Photomicrographs Showing Auxiliary Intergranular Cracks in Failed 7049-T73 and 7175-T736 Die Forging Specimens.

All the Die Forging Specimens Contained Such Intergranular Cracks, Hence it was Concluded that All Failed Specimens should be Regarded as Legitimate SCC Failures, Even Though Certain Specimens also Contained Auxiliary Transgranular Cracks.

Fig. 96

S. No. 410675-CN10

Mag: 100X Etch: Keller's

Short-Transverse Specimen from 1-3/4-in. 2124-T851 Plate. Specimen was Stressed to 50% Yield Strength and Failed after 7 Days Exposure to the Alternate Immersion Test.

S. No. 410680-CN10

Mag: 100X Etch: Keller's

Short-Transverse Specimen from 2-in. 2124-T851 Plate. Specimen was stressed 50% Yield Strength and Failed After 27 Days Exposure to the Alternate Immersion Test.

Fig. 97 Photomicrographs Showing Presence of Intergranular Auxiliary Cracks in the Fractured Specimens from the Thin 2124-T851 Plates Indicating SCC as the Probable Cause of Failure.

Fig. 98 Per Cent Survival of Short-Transverse Specimens of 2124-T851 Plate Exposed to 3.5% NaCl Alternate Immersion Showing the Better Performance of the Thicker Plate.

7175-T736 S. No. 410983-SL2W 100X Mag: 7049-T73

Fig.

99

100X

Mag:

DCB Specimens from Web Region of 7049-T73 and 7175-T736 Die Forgings. Photomicrographs of Tip of the Crack in the DCB Specimens. Fig. 99

after 30 Day Test.

Fractured Faces

Photomacrographs of

Fig. 100

S. No. 410675-SL2

Mag: 10X

Photomacrograph of Total Crack in DCB Specimen from 1.75-in. 2124-T851 Plate at the Mid-width of the Specimen. The Intergranular Nature of the Tip of the Crack is shown at Higher Magnification in Fig. 102.

S. No. 410679-SL2

Mag: 10X

Photomicrograph of Total Crack in DCB Specimen from 5.5-in. 2124-T851 Plate at the Mid-width of the Specimen. The Crack is much Shorter than in the 1.75-in. Plate and Completely Tensile in Nature (See Fig. 102). Photomicrograph is also Representative of the Cracking 2.5, 3.5 and 4.5-in. Thick Plates.

S. No. 410675-SL2

Photomicrograph of Tip of the Crack in the DCB Specimen from 1.75-in. 2124-T851 Plate Showing the Intergranular

S. No. 410679-SL2

Mag: 100X

Fig. 102 Photomicrograph of the Tip of the Crack in DCB Specimen from 5.5-in. 2124-T851 Plate. Crack Characteristics are Transgranular Similar to that of the Precrack.

TABLE I
CHEMICAL COMPOSITIONS OF 7049-T73 AND 7175-T736 DIE FORGINGS
(F33615-71-C-1571)

Alloy	Sample									,				
and Temper	Number	Thickness Range, in.	Die No.	Producer	SI	Fe	Cu	Mn	Element,	it, &	N.	Zn	E	8
77049-1773	410693 410698 410694	≤1.000 1.001-2.000	9078 15789 B5786	BAA	0.07	0.14	1.52	0.02	2.27	0.15 0.17 0.15	888	7.4.7	0.02	0.00
	410697 410695 410696 410700	2.001-3.000	40005 40006 B6204 B2362	AABB	0000	0.00	11111	000000000000000000000000000000000000000	9.000 9.000	0000	8888	7.537	0000	0.002
Limits* (ma	ximum unle	Limits* (maximum unless range is shown)	hown)		0.25	0.35	1.2-1.9	0.20	2.0-2.9	0.10-0.22	ŀ	7.2-8.2	0.10	0.05
7175-1736	410987 410699 410704 410705	≤1.000 1.001-2.000	9078 15789 F17961 40005	ययय	00000	11.00	999.66	00000	00000 0444 0024	00.00	88888	200 10 20 20 20 20 20 20 20 20 20 20 20 20 20	00000	0.0000
	410984	2.001-3.000	40006	ΑA	0.00	0.14	1.59	00.0	2.53	0.19	000	υπ ••• •••	0.05	000
imits* (ma	ximum unle	Limits* (maximum unless range is shown)	(mwor)		0.15	0.20	1.2-2.0	0.10	2.1-2.9	0.18-0.30	1	5.1-6.1	0.10	0.05

* Aluminum Association Alloy Designations and Chemical Composition Limits for Wrought Aluminum Alloys, revised March, 1972.

TABLE II
CHEMICAL COMPOSITIONS OF 7049-T73 AND 7175-T736 HAND FORGINGS
(F33615-71-0-1571)

Alloy	Š	Sample						į	F				
and Temper	Number	Dimensions, in.	Producer	Si	Fe Fe	Cu	Min	Mg Mg	& Cr	NI	uZ	ŢŢ	8
7049-173	411019 410686 410966 410988	2x16 3x16 4x16 5x20	ष्यप्ष	0.13	0.25	1.559	0000	0000 0000 0000 0000 0000	0.15 0.17 0.17	0000	77.77	0.000	0.0000
Limits* (N	Limits* (Maximum unless, range is shown,	ess own)		0.25	0.35	1.2-1.9	0.20	2.0-2.9	0.10-0.22	1	7.2-8.2	0.10	0.05
7175-1736	410689 410685 410691 410986	2×16 3×12 4×16 5×20	ব্ধধ্	0000	0000	1.58	0.01	0000 0400 0400	0000	0000	25.000 24.82.000 26.0000	0000	0.0000000000000000000000000000000000000
Limits* (N	Limits* (Maximum unless range is shown	ess own)		0.15	0.20	1.2-2.0	0.10	2.1-2.9	0.18-0.30	1	5.1-6.1	0.10	0.05

* Aluminum Association Alloy Designations and Chemical Composition Limits for Wrought Aluminum Alloys, revised Merch, 1972.

TABLE III

CHEMICAL COMPOSITIONS OF 7475-T61 AND 1761 SHEET (F33615-71-C-1571)

Fe Cu Mn 0.09 1.47 0.00 0.07 1.54 0.00 0.10 1.65 0.00 0.00 1.65 0.00
2 8888
8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Element, 2.21 2.32 2.333 2.333 2.333
RE LEGIENT, 10. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 2.32 0. 3.32 0
Element, % Cr. N. Cr. N
Element, % N1 Z 2.21 Cr N1 Z 2.22 0.21 0.00 5. 2.32 0.19 0.00 5. 2.33 0.20 0.00 5. 2.32 0.19 0.00 5.

* Aluminum Association Alloy Designations and Chemical Composition Limits for Wrought Aluminum Alloys, revised March, 1972.

TABLE IV
CHEMICAL COMPOSITIONSOF 2124-T851 PLATE
(F33615-71-C-1571)

, a	a Come S					Element,	Ь%				
Number	Thickness,	Producer	Si	년 e	Cu	Mn	Mg	Cr	Į. N	Zn	T.
410675	1.750	A	0.05	0.09	4.37	0.62	1.53	00.00	00.00	0.01	00.00
410680	2.000	O	0.05	0.14	4.08	0.55	1.39	00.0	00.0	0.03	0.02
410681	2.040	В	0.13	0.21	4.25	0.33	1.47	0.01	00.00	20.0	0.03
410676	2.500	А	90.0	0.05	4.20	0.74	1.40	00.0	00.00	00.0	0.02
410677	3.500	А	90.0	60.0	4.27	0.61	1.41	00.00	00.00	00.00	0.01
410682	4.000	В	0.08	0.19	4.23	0.36	1.45	0.01	00.0	0.19	0.04
410678	4.500	А	0.05	0.09	4.37	0.62	1.53	00.00	00.00	0.01	00.00
410683	4.500	O	0.04	0.10	4.12	0.42	1.30	00.00	00.00	0.02	0.01
410679	5.500	A	0.04	0.07	4.32	0.63	1.49	00.00	00.00	00.00	00.00
410684	000.9	Ö	0.04	0.11	4.00	64.0	1.36	00.00	00.0	0.02	0.01
Limits*		688	0.2	0.3	3.8-4.9	0.3-0.9	1.2-1.8	0.10	1	0.25	0.05
	range is sh	shown)									
											-

Interim Federal Specification QQ-A-00250/29.

TABLE V MECHANICAL PROPERTIES OF 7049-T73 DIE FORGINGS

(F33615-71-C-1571)

						Tensile	le		Compressive	Shear		Bearing**	± + + + + + + + + + + + + + + + + + + +	
	Sample						i		2000	4	Ultimate	Stre	Yield Strength,	ength,
Number	Thickness Range, in.	Direction	D1e No.	Producer	Ultimate Strength, ksi	Yteld Strength,* ks1	Elong. 1n 4D,	Meduction of Area,	Strength,*	Strength, ks1	e/D=1.5	e/ D= 2.0	e/D=1.5	e/D=2.0
410693	≤1.000	J.S.	9078	A	81.3	74.5	13.5	32	25.55	45.1	9.411	148.0	92.7	114.2
410698	1.001-2.000	ST	15789	A	81.3	74.8	15.0	37	79.8	52.9 49.7	120.3	162.5	102.4	120.3
410694		J. S.	B5786	В	75.9	67.0	13.5	80	888	47.3	107.2	152.7	94.9	122.1
410697A		J.S.	40005	A	77.8	9:12	11.0	120	80.1	45.8 43.9	117.4	151.6	97.1	116.7
p10697c		ST	40005	Ą	80.8	74.4	11.5	10	7.8.5	43.5			11	11
410695	2.001-3.000	J.S.	90004	Ą	80.3	66.3	12.5	926	68.0	45.3	113.1	146.8	95.2	113.5
410696		ST	B6204	В	75.0	65.5	13.5	15.co	Z2.1 66.7	47.6	123.6	146.7	104.7	114.0
410697B		J. S.	40005	¥	81.6	65.59	11.5	28	69.6	44.8	119.1	149.6	97.8	113.0
410700	4.001-5.000	J. S.	B2362	В	76.5	7:30	12.5	26	Z8.3 588.3	1.44	110.6	138.8	97.0	113.8

* Offset equals 0.2 per cent. † Offset equals 2 per cent of pin diameter. ** I_Longitudinal, 3T_Short Transverse ** Specimens and fixtures cleaned ultrasomically

MECHANICAL PROPERTIES OF 7175-T736 DIE FORGINGS (F33615-71-C-1571) TABLE VI

Number Range, Direction Rough Reduction Strength, St							Ten	Tensile		Compressive	Shear		Bear	Bearing**	
Lange Direction* Die Producer Strength, In 4D, of Area, Strength, Elong Elong		Samp	le										Edge		
L 9078 A 77.5 69.2 14.0 37 65.5 45.1 113.3 L 15789 A 73.4 77.4 62.2 7.9 34 77.2 45.5 116.9 Sr FIT961 A 77.4 68.4 13.0 34 77.2 46.5 116.7 L 40005 A 77.2 68.8 12.0 34 77.2 46.5 116.7 L 40005 A 77.2 68.8 12.0 36 77.2 44.6 116.7 Sr 40005 A 77.1 77.1 77.2 80.0 12.0 77.2 44.6 Sr 40005 A 77.1 77.1 77.2 80.0 12.5 75.2 44.6 116.7 L 40005 A 78.5 78.2 78.0 78.5 78.5 78.5 78.5 44.6 117.5 117.5 117.5 117.5 117.5	Number	Thickness Range, in.	Direction*	Die No.	Producer	Ultimate Strength, ksi		Elong in 4D,	Reduction of Area,	Yleld Strength,* ksi	Ultimate Strength, ks1	oltimate ks e/D=1.5	Strength,	Yield S	Strength', ks1 e/D=2.0
L F1761 A 81.4 74.7 13.0 34 75.2 46.5 116.9 ST F17961 A R17.4 66.2 13.0 34 75.2 46.5 121.3 L H0005 A 77.2 69.8 12.0 37 75.2 44.5 121.3 L H0005 A 77.2 69.8 12.0 36 77.9 44.5 116.7 L H0005 A 775.1 77.4 13.0 36 75.9 44.6 116.7 ST F17976 A 775.1 77.4 13.0 26 75.9 44.6 116.7 ST H0005 A 775.5 65.7 8.0 12.5 75.9 445.7 117.5 L H0006 A 776.2 66.4 77.5 35 76.9 445.7 117.5 ST H0006 A 776.2 66.4 77.5 36 <	410983	\$1.000	I. ST	9078	A	77.5	69.3	14.0	37	71.3	45.1 25.2	113.3	143.5	4.46	105.6
Lr F17961 A R2:9 76:9 13:0 34 72:5 45:2 121.3 Lr 40005 A 77:2 69:8 12:0 30 77:8 46:5 116.7 Lr 40005 A 77:1 72:1 72:4 36 75:2 44:6 116.7 Lr 40005 A 75:1 77:4 9:4 17 75:9 44:6 116.7 Lr 40005 A 76:5 76:7 8:0 29 75:4 48:3 103.2 Sr 40006 A 76:5 66:4 7:0 35 76:5 44:4:3 117.5 Sr 40006 A 76:2 66:4 7:0 36 36 46:7 117.5 Sr 40006 A 76:2 66:4 7:0 36 36 46:7 117.5 Sr 40006 A 76:8 68:0 15:5 38 68:8	410699	1.000-2.000	L	15789	A	81.4	7.4.7	13.0	34	75.1	4.5.4	116.9	153.9	0.96	126.1
Lr 40005 A 77.2 69.8 12.0 30 77.3 44.4 116.7 Lr 40005 A 75.1 72.4 13.0 36 75.2 44.6 116.7 Lr F17976 A 75.1 72.4 13.0 29 75.9 44.6 103.2 Sr 40005 A 776.5 66.7 12.5 35 76.2 445.7 117.5 Sr 40006 A 776.2 62.6 15.5 38 68.8 445.7 109.9	10704		L	F17961	А	82.9	76.9	13.0	34	79.5	7.27	121.3	158.0	101.3	119.3
LT 40005 A 79.1 72.4 13.0 36 75.3 44.6 LT F1/976 A 82.7 75.5 8.0 12.5 59.8 48.7 103.2 LT 40005 A 78.5 76.4 77.6 15.5 15.6 88.5 145.7 117.5 LT 40006 A 76.2 68.6 15.5 38 68.8 45.7 109.9	107054		LST	40005	А	77.2	69.8	12.0	30	8.77.8	44.50	116.7	155.5	0.76	116.3
L F17976 A 75.5 66.7 12.0 29 75.4 48.3 103.2 103.2 L 40005 A 78.5 71.8 12.5 35 68.5 445.4 117.5 117.5 15.5 38 68.8 445.7 117.5 15.5 38 68.8 445.7 109.9	107050		LST	40005	А	79.1	72.4	13.0	36	75.2	9.44	1.1	1 1	1 1	11
L 40005 A 78.5 71.8 12.5 35 68.5 44.4 1.5 117.5 15 58.5 444.4 1.5 117.5 12 58.5 12 68.8 145.7 109.9	10706		LST	F17976	А	82.7	2.52.5	12.0	29	4.52.	48.3	103.2	154.2	93.1	116.8
L 40006 A $^{76.9}$ 68.0 15.5 38 68.8 45.7 109.9	10705	2.001-3.000	ST	40005	A	78.5	71.8	12.5	35	76.2	45.7	117.5	151.6	100.0	115.9
	10984		ST	90001	A	76.9	68.0	15.5	38	68.8	45.7	109.9	141.0	90.2	103.1

• Offset equals 0.2 per cent.
† Offset equals 2 per cent of pin diameter.
† L-Longitudinal, ST-Short Transverse.
† Specimens and Fixtures cleaned ultrasonically.

142

MECHANICAL PROPERTIES OF 7049-T73 HAND FORGINGS (F33615-71-C-1571) TABLE VII

Ultimate Yield Vitimate Yield Vitimate Yield Vitimate Viteration Vitimate Viteration Vite		ive	Shear	æ	Bearing##	
2x16 A LL 75.4 68.8 3x16 A LL 74.2 65.4 3x16 A LL 75.2 65.2 4x16 A LL 75.2 62.3 4x16 A LL 75.2 62.3	* in 4D, in Area,	Yield U Strength,* S ksi		Edge Ultimate Strength,ksi e/D=1.5 e/D=2.0	Vise Vield e/D&I	Strength,ks1† .5 e/D=2.0
3x16 A LT 74.2 65.2 ST 75.2 62.3 4x16 A LT 75.4 62.3 ST 75.5 67.5	11.0 30	75.5 70.2 71.9	24 27.24 27.24	103.1 106.4 137.7	95.1	108.0
4x16 A L 80.0 72.8 1. 76.4 68.5 2.5 77.5 67.5	13.0 34	66.5 67.0 65.4	8 K.0.	118.0 155.0	101.4	118.2
2007	12.5	73.4	\$ 900 \$ 444 \$ 500 \$	108.5 150.0	991.	116.3
110000 5x20 A LT 66.1 59.1 1.2. ST 88.1 59.1 6.	13.5 12.0 6.0 6.0	62.6 62.1 61.3	42.6 40.7 41.2	98.1 139.9	86.2	107.5

* Offset equals 0.2 per cent.

* Offset equals 2 per cent of pin diameter.

* Licogitudinal; Il-Long-transverse; ST-Short-transverse.

* Specimens and fixtures cleaned ultrasonically.

TABLE VIII
MECHANICAL PROPERTIES OF 7175-T736 HAND FORGINGS (F33615-71-0-1571)

					Tensile	lle		Compressive	Sheep		Doorder #	# #	
Sem	Semple										Edgevise	se	
Number	Number Dimensions, Producer Direction*	Producer	Direction [‡]	Strength, ksi	<pre>Yleld Strength,* ks1</pre>	Elong in 4D,	Reduction in Area,	Yield Strength,* ksi	Ultimate Strength, ksi	Ultimate St e/D=1.5	ltimate Strength,ksi e/D=1.5 e/D=2.0	Yield Strength e/D=1.5 e/D=	ength,ks1 [†] e/D=2.0
410689	2×16	Ą	រដ្ឋន	27.27	25.50	0.00	368	70.1	45.17	116.0	149.4	9.66	114.7
410985	3x12	٨	ដែ្	2.47	8.02	14.5	38	0. 8.69 0. 8.8.	45.0 48.0 77.6	109.9	747.5	- 1.70	113.1
410691	91x4	Ą	is util	74.7	6. 4.65. 5. 4.65.	0.000	11 32 11	70.7	42.8	114.5	134:5	2.7.8	104.0
410986	5x20	ď	일달 ^다	1 5.000 1 5.000 1 5.000	62.1 58.5 58.5	0. 27.0	15 30 70 70	6. 6.99 6. 6.99 6. 6.99	4 744 4 010	96.1 105.9	129.4	888 9.59	98.7

* Offset equals 0.2 per cent. † Offset equals 2 per cent of pin diameter. † L-Longitudinal; II-Long-Transverse; ST-Short Transverse. ** Specimens and fixtures cleaned ultrasonically.

MECHANICAL PROPERTIES OF 7475-T61 SHEET (F33615-71-C-1571) TABLE IX

					Tensile		Compressive	Shear		Bearing**	ng**	
	Semple			111+4mo+0	7000	5				Flatwise	1se	
Number	Thickness, in.	Direction*	Producer	Strength,	d	t in 2 in.,	Strength,* ks1	Strength, ks1	Ultimate (Ullimate Strength,ksl Mield Strength,ksl e/bml.5 e/bm2.0 e/bml.5 e/bm2.0	e/D=1.5	e/D=2.0
410651	0,040	러타	A	81.5	76.2	11.0	71.1	#L6+	126.6	159.4	100.3	119.5
410652		니타	A	83.1	77.1	10.5	72.8	50.3#	129.0	173.4	102.8	114.1
410653	0.063	니타	A	80.8	74.1	12.0	75.0	#8.8#	132.5	168.2	106.4	117.2
410654		러타	A	81.9	75.7	0.11	71.3	#8.8#	132.9	165.5	103.2	118.7
410655	0.090	러타	A	80.3	74.2	11.0	72.9	11	128.8	165.8	108.8	120.2
410656		니타	A	80.1	73.7	12.0	73.4	11	128.9	164.9	108.6	122.3
410657	0.125	니타	A	4.08	74.5	13.0	74.5	11	132.2	164.7	115.0	129.5
410658		러타	A	82.0	76.8	11.5	76.1		134.4	167.8	113.6	131.2
410659	0.188	러타	A	80.4 79.4	72.3	12.5	71.8	11	128.8	164.2	109.0	124.2
410660		니타	A	80.2	75.6	13.0	73.3	52.6	128.9	167.2	110.0	126.9
410661	0.249	라	Ą	8.08	75.3	13.0	77.1	51.8	127.4	165.2	109.3	124.4
410662		HL	4	83.1	77.4	13.5	75.9	5.50	131.0	167.9	112.2	132.4

[•] Offset equals 0.2 per cent
• Offset equals 2 per cent of pin dismeter.
• L-Longitudinal, T-Transverse.

Punch-rype shear specimens, all others cylindrical.

** Specimens and fixtures cleaned ultresonically.

TABLE X

MECHANICAL PROPERTIES OF 7475-1761 SHEET

(F33615-71-C-1571)

					Tensile		Compressive	Shear		Beart	**	
Number	Sample Thickness, in.	Sample Thickness, Direction [†] in.	Producer	timate rength, ksi	Yield Strength,*	Elong in 2 in.,	Yield Strength,* ksi	Ultimate Strength, ksi	Ultimate e/D=1.5	Figure Strength, ksi 11 e/D=1.5 e/D=2.0 e/	ise Yield Strength,ksi e/D=1.5 e/D=2.0	e/b=2.0
\$10 8 88	0.032	니다	Ą	79.7	72.8	9.0	71.8	#8.3	116.4	161.7	98.0	4.111
410663	0,040	러타	A	80.0	8.67	11.0	70.7	48.3#	119.6	155.4	2.6.86	108.9
410664		러타	A	81.3	74.3	10.5	70.8	#1.61	128.1	166.7	96.96	118.8
410665	0.063	러타	Ą	79.0	69.69	10.0	73.5	#2.8#	124.5	156.1	108.7	115.5
410666		러단	4	75.2	4.99	11.0	8.58	45.5#	120.5	154.8	96.2	112.6
410667	060.0	러타	A	75.0	2.79	12.0	65.4		118.5	154.0	98.6	111.4
410668		러타	A	77.1	69.8	12.0	69.2	11	124.4	159.5	104.9	115.3
410669	0.125	러타	A	74.2	4.99	12.0	65.2	11	121.7	152.7	103.5	118.6
410670		러타	Ą	74.8	65.8	12.0	5.59	11	121.9	153.4	102.5	116.9
410671	0.188	러타	Ą	73.4	4.99	14.0	63.6	6.94	118.1	150.0	98.1	114.7
410672		러타	Ą	75.9	69.3	13.0	66.5	49.1	119.6	153.2	100.8	118.1
410673	0.249	러타	A	74.1	67.0	13.5	63.8	9.74	117.9	149.1	5.65	1.3.7
410674		니타	ď	76.0	67.8	14.0	66.5	49.1	120.3	153.5	101.0	118.2

• Offset equals 0.2 per cent.
• Offset equals 2 per cent of pin diameter.
• Longitudinal; T-Transverse.

Punch-type shear specimens, all others cylindrical.
• Specimens and fixtures cleaned ultrasonically.

146

SUPPLEMENTAL MECHANICAL PROPERTIES OF BARE AND ALCLAD 7475-T61 AND T761 SHEET (F33615-71-C-1571)

Allow						Tensile		Compressive	Shear		Bearing**	###	
and	Number	Sample er Thickness, in.	Direction*	Producer	Ultimate Strength, ksi	Yield Strength,* ksi	Elong in 2 in.,	Yield Strength,* ksi	Ultimate Strength, ksi	Ultimate e/D=1.5	Strength,ks1 e/D=2.0	Yield Strength,ksi e/D=1.5 e/D=2.0	
7475-161	769704	0.063	H	A	81.9	3.67	10.5	74.1	#9.64	1	1	1	1
	369544	060.0	HAI	A	2.0.	81.6	10.5	75.5	1.1	131.9	168.7	112.1	
	369621		타니	А	88° 60° 60°	72.5	12.5	78.3	1 1	130.1	167.6	112.6	
	369598		ㅋ리	A	80.08	75.0	12.0	77.9	1 1	129.6	166.7	110.4	
	369618		터니	A	885.0	77.52	12.0	75.6	1.1	7.22	170.7	114.4	
	369597	0.125	HAI	А	78.3	73.4	12.0	80.0	1 1	132.8	164.0	113.0	
	369543		터니티	А	2000	78.4	12.5	76.2	1 1	124.5	163.7	107.4	
	369548	0.188	∺⊣ı	А	0.00	77.50	12.0	75.5	1 1	136.0	172.2	118.0	
	369596		HH	A	0.47	74.5	12.5	75.9	1 1	134.6	171.0	116.4	
	369516	0.249	H⊢l	А	79.5	74.8	12.0	72.6	50.6	124:1	171.2	116.0	
	369517		ㅋ니타	А	82.0 82.0	77.0	0000	76.8	7.7.7. 5.0.0	1228.4	171.8	110.6	
-1761	369705	0.063	ы	A	81.2	73.6	10.0	72.1	1	1	1 1	1	
	369615	0.090	HH	A	74.0	71.4	10.2	4.99	1 1	119.4	151.8	101.6	
	369613		H	A	7.45 0 k / 0	7.02	5:11	70.7	1 1	117.8	151.8	105.2	
	369599	0.125	∺⊣i	A	24.00	6.0.	12.5	4.4	1 1	125.5	153.5	100.5	
	369542		HL	A	080	75.2	12.5	75.8	1 1	129.7	153.4	110.1	
	369509	0.249	HAI	A	7.80	9.99	12.5	C12.0	47.9	129.4	156.9	4.86	
	369510		HHE	A	74.0	7.0.7	1111 1011	71:2	51.0	126.9	151.8	1000.4	

(Continued)

TABLE XI (Concluded)

SUPPLEMENTAL MECHANICAL PROPERTIES OF BARE AND ALCLAD 7475-T61 AND T761 SHEET

(F33615-71-C-1571)

	Te	Direction* Producer Strength, Streng	A A 4.200 L																		A 69.4 60	
(F)2012-(1-0-12(1)	Tensile	Yield Elong Strength, in 2 in.,	5.6																		60.9	
	Compressive	Yield Strength,* ksi	7689 7.000	24.662	68.6	71.2	70.8	2009	7.52	74.2	9.42	72.5	0.00	725	72.0	61.4	1.00	74.0	1881	655	59.4	
	Shear	Ultimate Strength, ksi	46.0# 47.7#	46.1#	#0.0#	48.1#	47.6#	1 1	11	1 1	11	11	11	11	11	#3.5#	45.9#	11	11	1 1	11	
	Bear	Ultimate Strength,ksi e/D=1.5 e/D=2.0	124.8 120.8 120.8 138.8 119.2															111.0 142.6				
	Bearing ** Flatwise	Yield Strength,ks1 [†] e/D=1.5 e/D=2.0	7.411 9.201 98.0 109.8 98.0 116.9 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0 98.0 116.0															92.7 106.8				

• Offset equals 0.2 per cent.
• Offset equals 2.0 per cent of pin diameter.

* L-Longitudinal; "Trensverse

Punch-type shear specimens, all others cylindrical.

** Specimens and fixtures cleaned ultrasonically.

TABLE XII

MECHANICAL PROPERTIES OF 2124-T851 PLATE (F33615-71-C-1571)

1.750 L						Tensile	11e		Compressive	Shear		Bean Flai	Bearing** Flatwise	
1.790 LT	Number	Sample Thickness,		Producer	Ultimate Strength,		Elong. in 2 in. or 4D,	Reduction of Area,	Yield Strength,*	Ultimate Strength,		Strength,	1.5	trength.*cs1
2.000 L B	410675	1.750	Z I I	A	72.0	1	0.00	1882	2.29	41.9	107	139.5	94.8	109.8
2.500 LL A 77.15 65.4 8.5 8.6 65.7 41.2 105.4 170.8 65.7 7.0 8.6 65.7 7.0 8.6 65.7 7.0 8.6 65.7 7.0 8.6 65.7 7.0 8.6 65.7 7.0 8.6 65.0 11.0 105.4 176.3 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8	110680	2.000	1 TES	O	71.5	0.250	. 00W	25.0	0. 66.68	29.8 41.2 5.01	108.1	139.1	95.5	107.2
2.500 LL 4.500 LL A 7.0.5 6.5.7 6.5.4 6.5.7 6.5.6 6.5.0 1.4 6.6.7 6.6.7 6.6.7 6.6.7 6.7 6.7 6.7 6.7	10681	2.040	1 FZ	Д	70.8	65.52	4.75	8,5% 8,5%	47.00	41.2	105.7	138.3	92.0	105.8
3.500 L L B G6.5 G6.7 G6.5 G6.5 G6.7 G6.5 G6.7 G6.5 G6.7 G6.5 G6.7 G6.7 G6.7 G6.7 G6.7 G6.7 G6.7 G6.7	10676	2.500	LIT	A	71.5	63.52	000.	22 14 6	66.99	40.9 41.0 39.6	106.4	138.3	93.0	108.7
4.500 L A Good L A Go	10677	3.500	LITE	A	5.689 5.689 5.675	63.9	0.07	13	62.3	40.7 40.7 39.1	104.9	136.2	91.3	107.1
4.500 L	10682	4.000	LITE	М	-70.2 69.7 65.9	65.55	0.04 .v.v.o	10 11 6	65.57	7.04	103.7	133.8	94.5	106.3
4.500 L A 68.2 61.1 8.0 15 56.1 39.3 100.9 121.2 85.2 15 56.1 39.3 100.9 121.2 85.2 15 55.0 15 55.0 15 55.0 16 56.1 38.2 96.5 125.5 88.8 15 55.0 16 56.1 88.0 18 55.1 38.2 96.5 125.5 88.8 15 56.1 56.1 56.1 56.1 56.1 56.1 56.1 5	10678	4.500	n H E	A	65.5	63.4	0000	11 11	61.1 62.9 64.2	04.50 0.08 0.00	103.8	135.0	93.3	107.1
5.500 L 6.000 L 66.5 57.5 2.5 4 60.0 101.7 131.5 88.5 40.0 102.5 132.5 88.5 60.1 80.0 10 100.7 131.5 88.5 100.0 100.7 131.5 88.5 100.0 100.7 131.5 132.5 88.5 100.0 100.7 131.5 132.5 88.5 100.0 100.7 131.5 132.5	68901	4.500	n HE	O	67.8 64.5 64.1	58.8	0000	11,5	5.83.3	2000 1000 1000	100.9	131.2	85.2	98.4
6.000 L C 65.2 57.1 8.0 18 52.1 38.2 96.5 125.3 83.8 83.8 83.8 56.0 54.8 55.0 2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	62901	5.500	SEL	A	67.5 67.5 63.6	61.1 59.3 57.5	27.8	100	58.3	38.00	101.7	131.5	200	103.7
	10684	000.9	STL	O	665.0	57.1	3.50	18	56.0 56.0 58.5	20.50	96.5	125.3	83.8	97.0

* Offset equals 0.2 per cent. † Offset equals 2 per cent of pin diameter. ## Specimens and fixtures cleaned ultrasonically. ## Longitudinal; IT-Long Transverse; ST-Short Transverse; L & LT specimens taken from T/4 location; ST specimens taken from T/2 location.

TABLE XIII
SUPPLEMENTAL MECHANICAL PROFERTIES OF 2124-T851 PLATE
(F33615-71-C-1571)

					Tens1le	ile		Compressive	Shear		Bearing ^{‡‡}	ng**	
Number	Sample Thickness, Location in.	Location	Direction [‡]	Ultimate Strength,	Yield Strength,* ksi	Elong in 2 in. or 4D,	Reduction of Area,	Yield Strength,* ksi	Ultimate Strength, ksi	Ultimate ks e/D=1.5	Flatw Ultimate Strength, ksi e/D=1.5 e/D=2.0	1se Yleld Strength,† ks1 e/D=1.5 e/D=2.t	rength,† 1 e/D=2.0
369734-3	1.500	1/2	SHL	69.3	255 45 880	0000 2004	8,5%	66.55 64.55 69.00	39.2 39.1 37.9	111	111	111	111
369736-3			I I I	69.6 70.2 67.0	24.03 2.4.8.	20.00	9,00	0.45	39.6	101.8	132.9	888 -1	102.1
369738-3			L STE	71.6 71.6 68.5	66.7 66.0 64.2	0.00 0.00 0.00 0.00 0.00 0.00	rv8 a	7.99 7.99 6.69	41.02	104.0	135.6	90.7	106.4
369191-3			II SY	72.8 73.0 70.9	66.6 67.0 65.4	10.8	8220	68.0 67.2 70.8	40.0	102.0	135.0	91.3	107.0
337676	3.560	T/4 T/2	STILL	688. 65.31	62.4 61.7 59.8 61.7	0000	223	61.2 62.0 63.8	38.0.76	111	111	[1]	113
342615-1	000°†	T/T	SHL	67.50	62.03 59.3	10.0	25.T	62.4 62.4 62.4 62.4	できる のので のの14	96.3	125.1	86.8	102.7
342713-1		1/4 1/2	SHI	284 000	59.66	0,40,0 4,00,0	119	<i>\$60</i>	40.0 39.9 1.72	1000	128.6	88.7	105.8
340897	4.310	T/4 T/2	I FI	9,99,66,69	538.1 57.5	∞∞* ~°°°	18	0,270 0,250 0,40	2000 2000 404	[]]	111	[]]	111
337664	5.560	T/4 T/2	LIST	0.5°6 0.2°6	57 555 4. 5. 55	0.0.W	21 22	5,50	38.t 38.6 37.t	111	111	111	111

* Offset equals 0.2 per cent.

† Offset equals 2 per cent of pin diameter.

‡ L-Longitudinal; LT-Long-Transverse; ST-Short-Transverse.

‡ Specimens and fixtures cleaned ultrasonically.

SPECIFIED MINIMUM TENSILE PROFERFY VALUES FOR SOME ALMMINUM ALLOT FORGINGS, SHEET AND FIATE (F735615-71-C-1571)

	Specification	None 	ANS 4111	Tentative	AMB 4149	Tentative	Hone	Tentative	Tentative	Interim Federal Specification QQ-A-00250/29
	Elong th 2 in. or to,	lwad	MMMa	***	*	1 .	11	111	111	นนนน ก๋ก๋ก๋ก๋ก๋
Short-Transverse	1	1800	28.00.0 0.000	57.0 57.0 55.0	62.0	1	11	111	:::	77.77.77 00000
Short	Ultimate Strength, ksi	1868	77.0	388	71.0	1	11	111	111	400000 00000
98	frong frong or 4D,	1 a ww	1111	יטיטיט	1	0	١٥	900	500	೧೨೨೨
Long-Transverse	Tield Strength,*	0.000	1111	580.00	1	0.49	0.09	6100	6000	0.500.00
7	Ultimate Strength, ksi	0.000	1111	71.0	1	75.0	71.0	70.0	66.0	80040 00000
14	In 2 in.	low		010100	7	1	11	111	111	ขอเกเกเก
Longitudinal		0.000	80000 00000	9000	0.99	1	11	111	111	500000 00000
	Ultimate Strength, ksi	0000	72.0	0000	76.0	1	11	111	111	<i>%%%</i> 20 ooooo
	Thi chross,	\$ 2.000 2.001-3.000 3.001-4.000 4.001-5.000	\$1.000 2.001-2.000 2.001-3.000 4.001-5.000	\$3.000 \$3.001-4.000 \$3.001-5.000	€3.000	0.040-0.249	0.032	0.040-0.062	0.040-0.062	1.500-2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000
	Product	Sand Porging	Die Porging	Rand Forging	Die Porging	Sheet	Sheet	Sheet	Spect	Plate
	Alloy Temper	1049-173		7175-5717	-	7475-261	7475-2761	Alo.7475-761	446.7475-7761	2124-1851

. Offset equals 0.2 per cent.

RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES OF 7049-173 DIE FORGINGS (F33615-71-C-1571) TABLE XV

Sam	Sample										
2	Thickness	Die		Compre	Compressive	She	Shear		Bearing	Bearing (Edgewise)	
Number	Renge, in.	.cN	Producer	$\frac{\text{CYS}(L)}{\text{TYS}(L)}$	CYS(ST) TYS(ST)	SU(L)	SU(ST)	BUS(L)/ e/D=1.5	/TUS(L) e/D=2.0	BYS(L)/ e/D=1.5	/TYS(L) e/D=2.0
410693	1.000	8206	А	1.01	1.06	0.55	0.54	1.41	1.82	1.24	1.53
410698	1.001-2.000 15789	15789	А	1.07	1.08	0.65	0.61	1.47	2.00	1.37	1.61
410694		B5786	В	1.03	1.03	0.62	0.62	1.41	2.01	1.25	1.61
410697A		40005	A	1.12	1.05	0.59	0.56	1.51	1.95	1.36	1.63
410697C	•	40005	А	1.06	1.04	0.54	1	1	1	1	;
410695	2.001-3.900 40006	90004	Α ,	1.02	1.03	0.56	95.0	1.41	1.83	1.30	1.55
969014		B6204	В	1:10	1.03	69.0	0.61	1.65	1.96	1.60	1.74
410697B		40005	А	1.05	1.06	0.55	0.54	1.46	1.97	1.29	1.49
10700	410700 4.001-5.000 B2362	B2362	В	1.07	1.04	0.59	0.58	1.45	1.81	1.48	1.73
				` .							

RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES OF 7175-T736 DIE FORGINGS TABLE XVI

(F35615-71-C-1571)

Sar	Sample			Compressive	ssive	Shear	ar		Bearing (Edgewise	gewise)	
Number	Thickness Range, in.	Die No.	Producer	CYS(L)	CYS(ST) TYS(ST)	SU(L)	SU(ST) TUS(L)	BUS(L) e/D=1.5	BUS(L)/TUS(L) D=1.5 e/D=2.0	BYS(L), e/D=1.5	(TYS(L) e/D=2.0
410983	€1.000	8206	A	1.03	1.07	0.58	0.56	1.46	1.85	1.36	1.52
410699	1.001-2.000 15789	15789	A	1.01	1.06	0.58	09.0	1.44	1.89	1.29	1.69
410704		F17961	А	1.03	1.06	0.57	95.0	1.46	1.91	1.32	1.55
410705A		40005	A	1.11	1.06	0.60	0.58	1.51	2.01	1.39	1.67
410705c		40005	A	1.04	1.05	0.56	1	{	1	}	1
410706		F17976	A	1.03	. 1.05	0.58	0.58	1.25	1.86	1.27	1.60
410705B	2.001-3.000	40005	A	1.06	1.03	0.58	0.57	1.50	1.93	1.39	1.61
410984		90004	A	1.01	1.05	0.59	0.57	1.43	1.83	1.33	1.52

TABLE XVII RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND TEARING PROPERTIES OF $7049-775~{\rm HAND}$ FORGINGS

(F33615-71-C-1571)

				Compressive	a		Shear					Bearin	Bearing (Edgewise			
Sem!	Sample r Dimensions,	Producer	OYS (CYS (LF)	CYS (ST) TYS (ST)	SU(L)	SU(LI) TUS(LIF)	SU(ST) TUS(LIT)	BUS(L)/TUS(LT) e/D=1.5 e/D=2.0	TUS(LT) e/D=2.0	BYS(L)/TYS(LT) e/D=1.5 e/D=2.	/TYS(LT) e/D=2.0	BUS(LT)/TUS(LT) e/D=1.5 e/D=2	E/D=2.0	BYS(LT)/TYS(I e/D=1.5 e/D=	TYS(LT) e/D=2.0
	in.															
411019	2 x 16	A	1.10	1.05	1.15	09.0	0.61	0.58	1.37	1.78	1.42	1.61	1.42	1.83	1.50	1.69
410686	3x16	A	1.02	1.01	1.05	09.0	0.56	0.57	1.57	2.03	1.53	1.79	1.42	1.85	1.33	1.60
410966	4x16	A	0.91	1.02	1.09	0.59	0.57	0.58	1.42	1.96	1.34	1.70	1.47	1.91	1.44	1.73
410688	5x20	А	1.04	1.07	1.04	0.62	09.0	99.0	1.43	2.04	1.48	1.85	1.47	1.85	1.49	1.82

TABLE XVIII

RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND BEARING PROFERTIES

OF 7175-T736 HAND FORGINGS

(F35615-71-C-1571)

			0	Compressive			Shear					Bearin	Bearing (Edgewise)			
San	Sample		1	CYS(LIT)	CYS(ST)	SU(L)	SU(IL)	SU(ST)	BUS(L)/TUS(LT)		BYS(L)/TYS(LI	_ _	BUS (LT) /TUS (LT)	_ c	BYS (LIT) /T	TYS (LT)
Number	Dimensions,	Producer	TYS(L)	TYS (LIL)	TYS(ST)	TOS(LIT)	TOS(LIL)	_	e/D=I.5 e/L		2.15=1.5 C.1=0/5	_		1		0.7-7/2
410689	2x16	A	1.04	1.07	1.04	0.62	0.56	0.62		2.03	1.52 1.75		1.43 1.99	66	1.48	1.68
410985	3x12	A	0.97	1.06	1.07	0.65	19.0	09.0	1.48	86*	1.48 1.72		1.51 1.93	33	1.43	1.63
רפאחרע	4x16	A	1.08	1.08	1.04	09.0	0.58	0.58		1.90				35	1.42	1.74
410986	5x20	A	1.01	1.06	1.09	0.62	0.62	0.58		.86	1.38 1.64			35	1.47	1.71

TABLE XIX RATICS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND BRARING PROPERTIES OF BARE (F33615-71-C-1571)

0.0063 A A 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Alloy and Temper	Number	Sample Number Thickness, in.	Producer	Tensile TOS(L) TT	TIS(L)	Compressive CIS(L) CIS(LIT) TIS(LIT) TIS(LIT)	CIS	。苗	LIT) SU TOS(LIT)		SU TOS(LIT)	SU SU(L) TUS(LIT) TUS(LIT)	SU SULT) TUS(LIT) TUS(LIT)	SU SU(L) SU(LI) BUS(LI) TUS(LII) TUS(LIII) TUS(LIII) TUS(LIII)	SU SU(L) SU(LI) BUS(LI) TUS(LII) TUS(LIII) TUS(LIII) TUS(LIII)	30 30(1) 30(1) 80(1) 80s(1)/70s(1) 80s(1)/71s(1) 10s(1) 10s(1) 10s(1) 6/0=1.5 6/0=2.0	SU SU(L) SU(LT) BUS(LT) TUS(LT) TUS(LT) TUS(LT) TUS(LT)	SU SU(L) SU(LT) BUS(L)/TUS(LT) BUS(L)/TUS(LT) 105(LT)
0.0653 A A 0.099 1.005 1	7475-1161	410651	0.040	AA	1.00	1.05	0.98	1.05		0.61	0.61		11	11	1.56	1.56 1.96	1.56 1.96 1.36 1.64	1.56 1.96 1.36 1.64	1.56 1.96 1.54 1.54 2.02
0.090 A A 1.00 1.05 A A 1.00 1.05 A A 1.00 1.05 A A 1.00 1.05 1.04 A 1.00 1.05 1.04 1.06 1.05 1.05 1.05 1.05 1.06 1.06 1.07 1.06 1.06 1.07 1.06 1.07 1.06 1.07 1.07 1.06 1.07 1.06 1.07 1.06 1.07 1.06 1.07 1.06 1.07 1.07 1.06 1.07 1.07 1.06 1.07		369704 410653 410654	0.063	AAA	0.99	1.06	1.04	1:05	0.62	888		111	111	11:6	1.64 2.08	1.64 2.08 1.47	1.64 2.08 1.47 1.61	1.64 2.08 1.47 1.61 1.64 1.65 1.64 1.47 1.61 1.64 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.64 1.47 1.61 1.47 1.47 1.61 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.4	1.64 2.08 1.47 1.61 1.64 2.07
0.125 A A 0.99 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03		36958 36958 369598 369598 369598	060.0	4444	1111	000000	1.04	11.08	1111		111	111	111	4466	\$6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.64	1.65 2.09 1.55 1.75 1.75 1.75 1.75 1.75 1.75 1.75	1.64	1.64 2.09 1.55 1.74 1.65 2.08 1.55 1.70 1.65 2.08
0.189 A 0.99 1.02 1.02 1.02 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06		410655		V V	1.00	1.03	1.02	1:06	111			111	111	1111	1.66	1.62 2.07 1.54	1.62 2.07 1.54 1.73 1.60 2.05 1.51 1.60 1.60 2.05 1.51 1.70	1.62 2.07 1.54 1.73 1.60 2.05 1.51 1.60 1.60 2.05 1.51 1.70	1.65 2.05 1.51 1.65 1.56 1.55 1.56 1.56 1.56 1.5
0.249 A 1.00 1.04 1.02 1.06 1.06 1.00 1.00 1.00 1.00 1.00 1.00		369597 369543 410657 410658	0.125	4444	1.010	1.02	1.03	1.06	1111		1111	1111		1111	1.62 2.08	1.62 2.08 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	1.61 2.07 1.48 1.72 1.64 2.05 1.56 1.56 1.78 1.78 1.78 1.78 1.78 1.78	1.61 2.07 1.48 1.72 1.64 1.56 1.80 1.64 1.56 1.58 1.58 1.64 1.64 1.55 1.58 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.55 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64	1.62 2.06 1.56 1.64 2.07 1.64 2.07 1.64 2.04 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.64 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.54 2.04 1.55 1.78 1.78 1.54 2.04 1.55 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78
0.040 A 1.02 1.03 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05		369548 369596 410659 410660	0.188	AAAA	98.01.00	20000	1.02	1.06	1111		1119	0.65		111.65	0.65	1.65 2.07 1.56 2.07 1.57 0.65 1.65 2.07 1.51 1.57 0.65 1.65 2.07 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.5	1.65 2.07 1.56 1.74 1.65 2.07 1.57 1.72 0.65 1.62 2.07 1.51 1.72 1.72	1.65 2.07 1.55 1.78 1.66 1.56 1.65 1.65 1.65 1.65 1.65 1.65	1.65 2.07 1.57 1.74 1.65 2.08 1.65 2.06 1.52 1.52 1.55 1.55 1.55 1.55 1.55 1.55
0.065 A 1.02 1.04 1.03 1.04 1.05 1.07 0.065 A 1.07 1.08 1.03 1.07 1.07 1.08 1.03 1.07 1.07 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09		369516 369517 410661 410662	0.249	4444	00100	1.02	1.05	1.06	1111		3666		6464	00000 94.000 11.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0	00000	0.069	0.65 0.64 0.64 1.65 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 1.58 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.65 0.64 1.65 0.64 1.58 0.064 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 1.58 0.067 0.06	0.65 1.65 2.06 1.54 1.79 1.61 2.00 0.64 1.58 2.04 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56
0.063 A 1.02 1.04 1.03 1.07 1.07 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	A1c7475-T61	369505	0,040	44	1.00	1.01	1.04	1.05	0.64		11		11	1.70	1.70 2.04	1.70 2.04 1.59 1.63 1.97 1.48	7.77 2.04 1.59 1.77 1.48 1.77	7.70 2.00 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	1.70 2.04 1.45 1.77 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89
0.090 A 0.09 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.06 1.07 1.07 1.07 1.07 1.04 1.07 1.07 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.05 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00		369594 369616 369620 369617	0.063	4444	1.02	1.04	1.00.1	1.07	0.62		1111	1111	1111	1111	1.66	1.65 2.12 1.56 2.13 1.56 1.57 2.15 1.59 2.15 1.50 2.15 1.	1.65 2.12 1.45 1.75 1.75 1.76 1.76 1.76 1.76 1.77 1.77 1.77 1.77	1.65 2.12 1.45 1.69 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	1.65 2.12 1.45 1.66 2.12 1.66 2.15 1.66 2.15 1.66 2.15 1.66 2.15 1.66 2.15 1.66 2.15 1.66 2.15 1.66 2.16 1
0.125 A 1.00 1.06 1.06 1.09 1.09 0.188 A 0.99 1.02 1.01 1.04 0.249 A 0.99 1.03 1.03 1.02 1.06	and the state of t	369456 359507 369508 369619	0.090	4444	0.04 1.00 1.00	40.01	0.01.01.00	11.05	1111		1111	1111	1111	11.66	1.62 2.08	1.60 2.08 1.52 1.55 1.55 1.55 1.55 1.55 1.55 1.55	1.60 2.08 1.51 1.80 1.52 1.75 1.162 2.09 1.52 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	1.60 2.08 1.51 1.80 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	1.60 2.08 1.51 1.80 1.62 2.07 1.61 2
0.188 A 0.99 1.02 1.01 1.04 0.249 A 0.99 1.03 1.02 1.06		369145	0.125	44	0.98	1.06	1.06	1.09	11		11	11	11	1.60	1.60 2.05	1.60 2.05	1.60 2.05 1.52 1.75 1.75 1.75	1.60 2.05 1.52 1.75 1.59 1.59 1.59	1.60 2.05 1.52 1.59 2.06 1.59 2.06 1.59 2.06 1.59 2.06
0.249 A 0.99 1.03 1.02 1.06		269547	0.188	A	66.0	1.02	1.01	1.04	1		1	;	;	1.60	1.60 2.05	1.60 2.05 1.53	1.60 2.05 1.53 1.77	1.60 2.05 1.53 1.77 1.60	1.60 2.05 1.53 1.77 1.60 2.05
		264692	0.249	¥	0.99	1.03	1.02	1.06	1		1	1		1.61	1.61 2.05	1.61 2.05 1.53	1.61 2.05 1.53 1.79	1.61 2.05 1.53 1.79 1.60	1.61 2.05 1.53 1.79 1.60 2.09

ATTO				Tens	11e	Compressive	SSIVe		TRAIC				DEBLING	Bearing (Flatwise	1			
Remper	Number	Sample Number Thickness, in.	Producer	SEE SEE	(L) TYS(L)	TIS(L)	OYS (LIT)	SU TUS(LIT)	SUS(L)	SUS(LT) TUS(LT)	BUS(L)/TUS(LT) e/D=1.5 e/D=2.0	TUS(LT) e/D=2.0	BYS(L)/TUS(II) e/D=1.5 e/D=2.0		BUS(LT)	/TUS(LT) e/D=2.0	BYS (LT)/ e/D=1.5	/TUS(LT) e/D=2.
7475-1761	410888	0.032	A	1.02	1.05	1.03	1.05	0.62	1	1	1.50	2.08	1.33	1.61	1.60	2.05	1.43	1.64
	410663	0.040	4 Å	1.02	1.04	1.00	1.04	0.62	11	1-1	1.53	1.98	1.37	1.54	1.55	2.05	1.39	1.65
	369705 410665 410666	0.063	AAA	1.00%	1.03	1.00	1.05	0.67		111	1.62	2.03	1.43	1.67	1.63	2.05	1.45	1.69
	369615 369613 410667 410668	060.0	4444	0.99	1.02	1.02	1.08	1111	1111	1111	1.61	20.00	1.55.1	1.75	1.59	0.000 0.000 0.000	11111 94,74,4,	1.75
	369599 369542 410669 410670	0.125	4444	0100	1.02	1.005	1.06	1111	1111	1111	1.62	20.03	11.11	7.1.87.1.87.1.1.78	1.58	20.00 20.00 20.00 20.00	55.11	1.81 1.82 1.82 1.84
	410671	0.188	ΑA	0.99	1.02	0.99	1.04	11	0.64	0.63	1.60	2.03	1.52	1.76	1.58	2.01	1.52	1.76
	369509 369510 410673 410674	0.249	4444	9888	1.02	0.98	1.05	1111	0000 2004 2004	9999 9999	1.58	11.000	1.5.1	1.76	88.5.6	20.05	1.56	1.86
A1c7475-T761	369611	0.063	AA	1.00	1.02	1.01	1.08	0.61	1.1	11	1.61	2.08	1.53	1.83	1.62	2.08	1.56	1.81
	369458	0.090	AA	1.02	1.03	1.00	1.05	11	11	1 1	1.59	25.05	1.56	1.80	1.58	2.03	1.54	1.81
	369460	0.188	A	0.99	1.02	1.00	1.03	}	1	1	1.57	2.01	1.51	1.80	1.58	2.04	1.51	1.82
	369499	0.249	A	0.97	0.98	96.0	1.01	1	1	1	1.55	1.99	1.46	1.79	1.55	2.00	1.50	1.80

RATIOS AMONG THE TENSILE, COMPRESSIVE, SHEAR AND TEARING PROPERTIES OF BARE AND ALGLAD 7475-17/61 SHEET (F33615-71-0-1571) TABLE XX

Table XXI ratios among the tensile, compressive, shear and hearing properties of 2124-1851 plate (P35615-71-c-1571)

				Compressive	41		Shear					Bear	Bearing (Flatwise	1se)		
Semple Number	Thickness,	Producer	ONS(L)	CYS (LIT)	CYS(ST) TYS(ST)	SU(L) TUS(LT)	SU(LT) TUS(LT)	SU(ST) TUS(LT)	BUS(L)/TUS(LI e/D=1.5 e/D=	e/D=2.0	BYS(L)/IYS e/D=1.5		BOS(LT)/T e/D=1.5	e/D=2.0	BYS(LIT)/I	e/D=2.0
259728-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	1.300	ধ্বৰ্ব	1.02	1.00	1.08	0000 7000 7000 7000 7000	0000 75.55.57	0000 2000 2000	1.1.1	1.89	1.38	1.539	1.4.6	1.85	1.1.1	1
410675	1.750	4	1.00	1.02	1.04	0.59	0.59	0.56	1.50	1.95	1.44	1.67	1.50	1.95	1.43	1.66
410580	2.000	O	0.98	1.02	1.05	0.58	0.58	0.55	1.52	1.96	1.46	1.64	1.51	1.94	1.46	1.67
410631	2.040	М	96.0	1.01	1.06	0.58	0.58	0.56	1.49	1.95	1.41	1.62	1.49	1.92	1.42	1.63
410676	2.500	Ą	0.98	1.03	1.05	0.58	0.58	0.56	1.50	1.96	1.45	1.69	1.51	1.94	1.43	1.64
410677	3.500	A	96.0	1.02	1.06	0.58	0.58	0.56	1.50	1.95	1.46	1.71	1.51	1.94	1.47	1.67
337676	3.550	A	0.98	1.01	1.07	09.0	09.0	0.57	1	1	;	1	1	1	1	-
410682 342615-1 342713-1	4.000	PAB	96.0	1.00	1.09	000	000	000	1.49	11.38	1.47	1.66	1.573	1.95	1.43	1.66
740837	4.310	A	96.0	1.00	1.06	0.59	09.0	0.58	1	1	1	1	1	1	}	}
410679 410683	4.500	40	96.0	1.02	1.07	0.58	0.58	0.56	1.50	1.95	1.52	1.74	1.52	1.96	1.51	1.67
410675	5.500	A	0.95	1.01	1.07	0.59	0.59	0.57	1.51	1.95	1.52	1.75	1.52	1.96	1.49	1.77
737664	5.560	A	0.95	1.02	1.06	0.59	09.0	0.58	1	1	1	1	1	1	}	}
410684	6.000	O	0.91	1.02	1.07	0.59	0.59	95.0	1.49	1.94	1.52	1.76	1.51	1.96	1.53	1.71

TABLE XXII STATISTICAL ANALYSES OF RATICS AMONG TENSILE, COMPRESSIVE, SHEAR AND EDGEWISE BEARING PROPERTIES OF 7049-773 DIE FORGINGS

(F33615-71-C-1571)

	BYS(L) TYS(L)	TT T 8 T T T	00	1.611	.08951	1.551
	atio Cell	11. 11. 11. 11. 17. 17. 17. 17. 17. 17.		1.	9.	1.
	e/D=2.0 BUS(L) TUS(L) Re		∞	1.919	.08425	1.862
	Ratio Cell	0.00111111 1111 0.0000000000000000000000				
	BYS (L)		8	1.361	.12369	1.278
	1.5 Ratio Cell	0 8 50000000000000000000000000000000000				
1	e/D=1.5 BUS(L) TUS(L) Re	ת ח אחם א/	80	1.471	.08043	1.417
(T)(T=0=T)=(TO(C))	Ratio Cell	0 444444444444444444444444444444444444				
(1)	SUS(L,ST)* TUS(L)	רו הממ מה א'מא)	17	0.582	.03562	0.567
	SUS (ST) TUS (L)	H0 H 0 0	80	0.578		
	SUS(L)	н чн о чоч	0	0.587		
	Retio Cell	64664666646444		-		
	CYS(ST)	- 0-10m	6	1.047	.01732	1.036
	CYS(L)	л ч очч ччч	6	1.059	.03621	1.036
	Ratio Cell	11111111111111111111111111111111111111	c	ic:	OR	Min R

• Students "t"-test showed no significant difference between average ratios for L and ST directions and "f"-test showed no significant difference in variability for L and ST directions.

TABLE XXIII STATISTICAL ANALYSES OF RATIOS AMONG TENSILE, COMPRESSIVE, SHEAR AND EDGEWISE BEARING PROPERTIES OF 7175-1775 DIE FORGINGS

	1	ata						-	25	
		TYS(L)	п п	1	П	N	7	1.594	.06852	1.544
	e/b=2.0	Ratio Cell		4444444	1111 2000 2004	1.52				
	e'	TOS(T)	н	ппп	д.	- г	7	1.897	.06075	1.853
		Ratio Cell	9888899	iiiiiii \$6888 6 6	1.887	 24.86.				
		HYS (L)	0 11 11	т т			7	1.347	.03684	1.320
	.5	Ratio Cell		1.32						
	e/b=1.5	BUS(L)	нн °	44 4			7	1.453	.04680	1.418
(F33615-71-C-1571)		Ratio Cell		1.44						
(F3361		SUS(I&ST)* TUS(ST)	010 mm				15	0.577	.01280	0.572
		SUS (ST)	1 000				7	0.574		
		SUS(L)					80	0.580		
		Ratio Cell	0.00 0.5.0 0.5.0 7.7.0 0.5.0		i e					
		CYS(SY) TYS(SY)	⊢ 14/4/	н			80	1.054	.00420*	1.024
		TYS(L)	1 1	un a			8	1.040	.03251	1.018
		Ratio Cell	1111111	1.02			п	10%	P	Min R

Students "t"-test showed no significant difference between average ratios for L and ST directions and "f"-test showed no significant difference in variability for L and ST directions.

•• Regression analysis showed significant relationship with thickness. Value shown is $\delta_e \mathcal{N}_{n}$.

THRIE XXTV STATISTICAL AMALYSIS OF RATIOS AMONO TEMBLIE, COMPRESSIVE, SHEAR AND EXCHANGE BEARING PROPERTIES OF 7049-T73 HAND PURCINGS

Brs(Lift)*	1	7	-	4	4 44		60	1.724	.09226	1.662	
Brs (Lf)		-	-	4 -	4 11		4	1.710			
BES (L)	1	ч			ч		4	1.738			
Ratio Cell	1.85	28.8.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	22222	27.7.	1.61						
e/D=2.0 BUS(IALT) TUS(LT)		н	~ ~ ~	4	7		00	1.906	92560.	1.842	
TOS (LF)			LV	4			A	1.860			
TOS (C)		н			1		4	1.952			
Retio Cell	2.04	8888	96. 69.	200.00	1.78						
BYS(LELT)* TYS(LT)	-	ннн	н п		e	4	90	1.441	966.10	1.392	
Brs (LT)		нн	н			-4	4	1.440			
HIS (L)	1	-	н		d		А	1.442			of t
Ratio Cell	1.5%		111111 14444 10044/0	44.66	HHHH HANNA	1.33					Of directions and the 'f'-test showed no significant
e/D=1.5 BUS(LALIT) TUS(LIT)	1		Q	~4×/		П	60	1.446	12650.	1.407	st showed n
BUS (LIT)			CV.	C			a	1.445			the "f"-te
BUS(L)	н			44		-	at	1.448			lons and
Ratio Cell	1.57	uuuuu viriri	0.444.44	4444 4444 0400	11111 1000	1.37					and ST direct
SUS(LIPST).	1	de	004				00	0.591	.03227	0.570	LT or LT
SUS(IALT).		HHK	\d dd				80	165.0	96610.	0.580	retics for the L and
SUS(ST)	1		213				4	0.598			je retios
SUS (LT)							#	0.585			the sverse
(T) SOS (T)		~ 0	14				at	0.602			between
Ratio Cell	38.50	40000	00000								Students "f"-test showed no significant difference between the swerage : difference in warlability for the L and if or if and 37 directions.
CTS(ST)	1	-	4				4	1.082	26640.	2.07.	or the L an
COS(LE)				нн			а	1.038	45120.	977.	showed no
(7) SIL		-	,		4		a	1.018	.07932	900:	"f"-test
Ratio Oell	52	22222	38286	85838	0.91					In Me	Studenta d1fferen

TABLE XXV
SWATSPITCAL AMALINES OF PARTICE AND SECULE, CORPRESSION, SHEAR AND ROBATES BARLING PROPRIETES OF 7175-2775 BARD PORCINGS.

(173615-71-0-1571)

Matic Cell TES(L)	अस्ति मार्डिक	Table (Ratio Osil	TOS(III)	TOS (EL	TOS (Tar)	105(117)	Ratio Cell	TUS(III)	TOS (IT)	TUS(IE)	atio wil	TES (IE)	TES(LET)	TIS(LT)	Ratio Cell	TUS(LET)	TOS (TIE)	TOS(III)	Ratio Cell	THE PERSON NAMED IN COLUMN TWO	HS(E)	TIS(IN)
888	-	٦,	2000	1	1			25.1	1		1	1.63	1		1	2.03	1		1	1.75	нн	1	18
8888	40	7 2	 9848	8 4	1	1 1	# Q	25.6	т		1	3.4.0.3 3.4.0.3	7		-	9889	-	7		52.1.1	1	1	
			0000 0000 0000 0000 0000 0000 0000 0000 0000		н,	2	K	1.52			44	1111	7	мн	21	88.2				888		1	1
			8		-		н	44 444 500 E	7	1 1	1 2	111111 14444 14444		44	44	468688	1	51	1 51	8855	٦	1	
								36.00	1		1	388	7		1	11.88	7		1				
4	*	*		A	A	4	12		4	at	80		#	4	60		#	4	80		*	*	80
1.025	25 1.068	3 1.060		0.622	0.600	0.595	909.0		1.515	1.485	1.500		1.502	1.450	1.476		1.942	1.940	1.941		1.712	1.690	1.701
8	75600. 55940.	94450. To					.02712				06940.				17570.								.04643
1.015	15 1.058	050.1					0.592				1.448				1.425								1.670

162

STATISTICAL ANALYSES OF RATIOS ANGHO TENSILE, COMPRESSIVE, SEEER AND FLATWING BROTHLY PROPERTIES OF BARE AND ALCIAD 7475-761 SEEET TABLE XXVI

RYS(IALT) TES(IIT)	SHEE SHEETEN STATES OF SHEETEN	772	1.750	.06513*	1.75
開業	क्रिक्ट बन्धि बन्धाम्मक व्यवन न न न	9%	1.759		
BIS (L)	היינימי#מונימישמים א א מ א	36	1.735		
e/D=2.0	######################################				
BUS(LELT)		72	2.058	.04800	2.05
BUS (LT)		36	2.061		
BUS (L)	п п п ппппакиогия пп пп	36	2.071		
Ratio Cell	828113111111111111111111111111111111111		0.00		
BES LELT		72	1.512	.052ZT*	1.50
BES LE	नननम <i>ाक्षककककका</i> ल	36	1.522		
BYS(L)	ממאאינטאינטאינטאינטאינט מ מ מ	8	1.512		
Ratio	08882888888485555555555558888				
BUS (LELLY)	പ പ ഗ ഗപ്പുത്താപ്പ്റ്റോഗസ പ പ	72	1.610*	.03388*	1.60
BES LET	1 1 110##FQ#1F 1	36	1.622		
TI SOL	ה ה מיניים מיניי	36	1.622		
Ratio	######################################				7
SU(IAIT)*	יוטעים	10	0.644	.00843	0.639
SU(IL)	OIOIH	2	0.642		
SU(L)	Harry	9	949.0		
SU TUS(LLT)	addKKaa	11	0.618	.01722	609.0
Ratio	\$ \$\$ \$\$\$\$\$				1.
CTS (LF)	น เกเรียดน	K	1.068	.01535	1.067
CES(E)	Nadro-sau	K	.024	.02003	1.018
平(出)		1	.038	. 90910.	1.033 1
TUS(L) T	a a section	K	1.00%		0.998
	P. P				

* Students "t"-test showed - No significant difference between the average ratios for the L and LR directions and the "f" test showed no significant difference in variability for the L and LR directions.

* These values determined by analyzing all bare and alolad 7475-761 and 7761 ratios together.

TABLE XXVII
STATISTICAL ABAITSES OF BATICS ARCHO TENSILE, COMPRESSIVE, SHEAR AND BEARING
PROFERFIES OF BARE AND ALCIAD TATS-TIGL SHEEF
(F73615-71-0-1571)

1		
BYS (IALT)		50 1.750 [‡] .06513 [‡] 1.75 [‡]
BRS (LT)		1.76
(T) SM2	0 KNHM4HHNH H N H H	1.745
o.	\$	
BUS(IALT) BUS(IALT)	H W H WANDINGONONIA	50 2.058* .04800* 2.05*
BUS (LT)	ין ין מיימרימייטייט יי	2.046
BUS(L)	ल त क्षाताभारतात्त्व स्थ	2.046
Ret10 Oe11	a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	Q
BYS (LAIR) •	a 6000-1000-12-11-1 a a - a	50 1.512 [‡] .05227 [‡] 1.50 [‡]
BYS(LT)	ם איממאימאים החמה בו ה	
BYS(L)	л ку кужкукун о н н н о	1.499 1.508
Retio	SWERNANASERFATE WELL	
e/b=1.5 BUS(IAIT)* TUS(IT)	uuunasinnas u	50 1.610 [‡] .0338¢ [‡] 1.60 [‡]
BUS (LT)		25
BUS(L) B	ה אימטמאמטהה ה	1.593 1
Ratio	\$4000000 \$300000000000000000000000000000	4
SU(LALT)*	400	0.642 .00748 .0638
SU(LE)	- dr/a	0.638
U(L)	W/W/	0.645
SU SU SU STUDIO	O#100+4	8 0.620 0.01225
Ratio	<u> ୧୯</u> ୯୭,୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯ ୧୯୯	
CTS(LE)	HΩ*/WΩΦ# H	26 1.054 .02062 1.047
CTS(L)	44444444444444444444444444444444444444	26 1.007 .02513 0.998
TIS(L)	arogn an	26 26 1.024 1.007 0.01525 .02513 1.019 0.998
TUS(LL)	*******	26 1.002 0.996
Ratio Cell	285858688888	C IK K C

• Students "t'-test showed no significant difference between the average ratios for the L and LF directions and the "f" test showed no significant difference in variability for the L and LF directions.

• These values determined by analyzing all bere and sloled 7475-761 and 7761 ratios together.

STATISTICAL MALISIS OF NATIOS ANGHO TRIBLIE, CHEFRESSIVE, SHEAR AND FLATVISH ERACHO PROPERTIES OF 2124-7551 FLATS (F73515-71-C-1571) TABLE XXVIII

		38	94100	.608-
	0,	1.6	8.	1.6
	15	1.666		
444 4 4040 A 4444	15	1.671		
L2547545888888888888888888888888888888888				
00000 H4 HH0	30	1.926	69560.	1.915
* 0 × 1 × 1	.15	1.927		
000 H H0 HH	15	1.924		
%%\$\$%%&\$& \$ \$\$				
15/1 110#00#110 100	8	1.444	**00600.	1.388-
e a addadana a aa	15	444		
ה מהחום זו מום	15			
はははははななななななななながだ。 じがどびる語言されままままるものとないだが		1		
האינונים הההאההה ה	30	1.484	.03277	1.474
המשימת ההו ה	15	1.489		
ਜਿਕਾਵਾ ਜ ਪ ਜ ਜ	15	1.479		
これにははなるなるよう いろいのかあ ごろかなまかられる				
いらてこれよ	19	0.553	.0041100	0.534-
4112 6/4	38	0.580	·•• 12 £00°.	0.566-
MARCO OLO	19	0.580		
ur-00 u0	19	0.581		
20000000000000000000000000000000000000				, ,
arrowal	19	1.067	.01327	1.062
WO WAR HH	19	1.011	.01311	1.005
		01	.00734**	do
~ ~ ~ ~ ~ ~ ~ ~	19	0.982	100	0.946
	AND THE	######################################	2000 0000 0000 0000 0000 0000 0000 000	2000 0000 0000 0000 0000 0000 0000 000

165

TABLE XXIX

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF 7049-T73 DIE FORGINGS

(F33615-71-C-1571)

		Thickn	ess, in.	
Ratio	≤ 1.000	1.001-2.000	2.001- 3.000	4.001- 5.000
F _{cy} (L)/F _{ty} (L)	1.036	1.036	1.036	1.036
$F_{cy}(ST)F_{ty}(ST)$	1.036	1.036	1.036	1.036
F _{su} /F _{tu} (L)	0.567	0.567	0.567	0.567
F _{bru} (L)/F _{tu} (L) e/D=1.5 e/D=2.0	1.40	1.40 1.85	1.40 1.85	1.40
Fbry(L)/Fty(L) e/D=1.5 e/D=2.0	1.30 1.55	1.30	1.30 1.55	1.30 1.55

TABLE XXX

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF 7175-T736 DIE FORGINGS
(F33615-71-C-1571)

Ratio	Th	1.001- 2.000	
F _{Cy} (L)/F _{ty} (L)	1.018	1.018	1.018
F _{cy} (ST)/F _{ty} (ST)	1.055	1.040	1.024
F _{su} /F _{tu} (L)	0.572	0.572	0.572
Fbru(L)/Ftu(L) e/D=1.5 e/D=2.0	1.40 1.85	1.40 1.85	1.40
Fbry(L)/Fty(L) e/D=1.5 e/D=2.0	1.30 1.55	1.30	1.30

TABLE XXXI

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF 7049-T73 HAND FORGINGS

		Thickne	ss, in.	
Ratio	≤2.000	2.001- 3.000	3.001- 4.000	4.001- 5.000
F _{cy} (L)/F _{ty} (L)	1.008	1.008	1.008	1.008
F _{cy} (LT)/F _{ty} (LT)	1.028	1.028	1.028	1.028
F _{cy} (ST)/F _{cy} (ST)	1.072	1.072	1.072	1.072
F _{su} /F _{tu} (LT)	0.570	0.570	0.570	0.570
F _{bru} /F _{tu} (LT) e/D=1.5 e/D=2.0	1.40 1.85	1.40	1.40 1.85	1.40 1.85
F _{bry} /F _{ty} (LT) e/D=1.5 e/D=2.0	1.40 1.65	1.40 1.65	1.40 1.65	1.40 1.65

TABLE XXYII

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF 7175-T736 HAND FORGINGS

(F3361)	5-71-C-157	71)	
	Thi	lckness, i	n.
Ratio	≤3.000	3.001- 4.000	4.001- 5.000
F _{cy} (L)/F _{ty} (L)	1.015	1.015	1.015
F _{cy} (LT)/F _{ty} (LT)	1.058	1.058	1.058
F _{cy} (ST)/F _{ty} (ST)	1.050	1.050	1.050
F _{su} /F _{tu} (LT)	0.592	0.592	0.592
F _{bru} /F _{tu} (LT) e/D=1.5 e/D=2.0	1.45 1.90	1.45	1.45
F _{bry} /F _{ty} (LT) e/D=1.5 e/D=2.0	1.40 1.65	1.40 1.65	1.40

TABLE XXXIII

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF BARE AND ALCLAD 7475-T61 AND T761 SHEET

Ratios	T61 Thickness, in. 0.040-0.249	T761 Thickness, in. 0.040-0.249
F _{tu} (L)/F _{tu} (LT)	0.998	0.996
F _{ty} (L)/F _{ty} (LT)	1.033	1.019
F _{cy} (L)/F _{ty} (LT)	1.018	0.998
F _{cy} (LT)/F _{ty} (LT)	1.063	1.047
F _{su} /F _{tu} (LT)	0.609	0.611
F _{bru} /F _{tu} (LT) e/D=1.5 e/D=2.0	1.60 2.05	1.60
Fbry/Fty(LT) e/D=1.5 e/D=2.0	1.50 1.75	1.50 1.75

TABLE XXXIV

RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES
OF 2124-T851 PLATE

		T	nickness,	in.	
Ratio	1.501- 2.000	2.001 - 3.000	3.001- 4.000	4.001- 5.000	5.001- 6.000
F _{cy} (L)/F _{ty} (L)	1.006	0.998	0.980	0.963	0.946
F _{cy} (LT)/F _{ty} (LT)	1.005	1.005	1.005	1.005	1.005
F _{cy} (ST)/F _{ty} (ST)	1.062	1.062	1.062	1.062	1.062
F _{su} /F _{tu} (LT)	0.534	0.537	0.544	0.551	0.558
F _{bru} /F _{tu} (LT) e/D=1.5 e/D=2.0	1.45 1.90	1.45	1.45	1.45	1.45
F _{bry} /F _{ty} (LT) e/D=1.5 e/D=2.0	1.40	1.40	1.45 1.65	1.45 1.65	1.50

TABLE XXXV

COMPUTED DESIGN MECHANICAL PROPERTIES OF 7049-T73 DIE FORGINGS

()	F33615-71	-C-1571)		
Alloy			149	
Form		Die Fo		
Condition		Т7		
Thickness, in.	≤1.000	1.001-2.000	2.001- 3.000	4.001-5.000
Basis	S	S	S	S
Mechanical Properties:				
F _{tu} , ksi L ST	72 71	72 70	71 70	70 68
F _{ty} , ksi ST	62 61	62 60	61 60	60 58
F _{cy, ksi} L ST	64 * 63 *	64 * 62 *	6 3* 62 *	62 * 60 *
F _{su} , ksi	41 *	41*	40 *	39 *
F _{bru} (L), ksi e/D=1.5 e/D=2.0	101 * 133 *	101 * 133 *	99 * 131 *	98 * 129 *
F _{bry} (L), ksi e/D=1.5 e/D=2.0	80 * 96 *	80 * 96 *	79 * 95 *	78 * 93 *
e, per cent L ST	7 3	7 3	7 3	7 2
E, 103 ksi E _c ,103 ksi G, 103 ksi		10.2 10.7(- 3.9	-0.1)	

^{*} No values shown in MIL-HDBK-5B, September 1971.

TABLE XXXVI

COMPUTED DESIGN MECHANICAL PROPERTIES* OF 7175-T736 DIE FORGINGS (F33615-71-C-1571)

(1.2.	3013-11-0-	17/11	
Alloy	7	175 - T736	
Form	I	ie Forging	5
Condition		Т736	
Thickness, in.	≤1.000	1.001-2.000	2.001- 3.000
Basis	S	S	S
Mechanical Properties:			
F _{tu} , ksi L ST	76 71	76 71	76 71
Fty, ksi L ST	66 62	66 62	66 62
F _{cy} , ksi L ST	67 65	67 64	67 63
F _{su} , ksi	43	43	43
F _{bru} (L), ksi e/D=1.5 e/D=2.0	106 140	106 140	106 140
F _{bry} (L), ksi e/D=1.5 e/D=2.0	86 102	86 102	86 102
e, per cent L ST	7	7 4	7 4
E, 10 ³ ksi Ec, 10 ³ ksi G, 10 ³ ksi		10.2 10.7 3.9	

^{*} No values shown in MIL-HDBK-5B, September 1971.

TABLE XXXVII

COMPUTED DESIGN MECHANICAL PROPERTIES OF 7049-T73 HAND FORGINGS (F33615-71-C-1571)

Alloy		70	49	
Form		Hand 1	Forging	
Condition		T	73	
Thickness, in.	≤ 2.000	2.001- 3.000	3.001- 4.000	4.001- 5.000
Basis		S	S	. S .
Mechanical Properties; Ftu, ksi L LT ST	 	71 71 69	69 69 67	67 67 66
Fty, ksi L LT ST	 	61 59 58	59 57 56	56 56 55
F _{cy} , ksi L LT ST	 	61 (-2) 60 (-1) 59 *	59 (-2) 58 (-1) 60 *	56(-2) 57(-1) 59 *
F _{su} , ksi		40 (+2)	39 (+2)	38(+2)
Fbru, ksi e/D=1.5 e/D=2.0	==	99 * 131 *	96 * 127 *	94 * 124 *
Fbry, ksi e/D=1.5 e/D=2.0	<u></u>	82 * 97 *	80 * 94 *	78 * 92 *
e, per cent L LT ST	 	9 4 3	8 3 2	7 3 2
E, 10 ³ ksi Ec, 10 ³ ksi G, 10 ³ ksi	,		10.2 10.6 3.9	

NOTE: Numbers in parenthesis are differences from values from MIL-HDBK-5A, September, 1971.

^{*} No values shown in MIL-HDBK-5B, September 1971.

TABLE XXXVIII

COMPUTED DESIGN MECHANICAL PROPERTIES* OF 7175-T736 HAND FORGINGS

(F33	615-71-C-1	571)	
Alloy		7175	
Form	Н	and Forgi	ing
Condition		Т736	
Thickness, in.	≤ 3.000	3.001-4.000	4.001- 5.000
Basis			
Mechanical Properties:			
Ftu, ksi L LT ST	73 71 69	71 70 68	68 67 66
Fty, ksi LT ST	63 60 60	61 58 57	57 56 55
F _{cy} , ksi L LT ST	64 63 63	62 61 60	58 59 58
F _{su} , ksi	42	41	39
Fbru, ksi e/D=1.5 e/D=2.0	103 135	101 133	97 127
Fbry, ksi e/D=1.5 e/D=2.0	84 99	81 96	78 92
e, per cent L LT ST	9 5 4	9 5 4	8 5 4
E, 10 ³ ksi Ec, 10 ³ ksi E, 10 ³ ksi		10.2 10.6 3.9	

^{*} No values shown in MIL-HDBK-5B, September 1971.

TABLE XXXIX COMPUTED DESIGN MECHANICAL PROPERTIES* OF BARE AND ALCLAD 7475-T61 SHEET

Alloy	7	475		
Form	Bare Sheet	Al	clad Sheet	;
Condition	Т61		Т61	
Thickness, in.	0.040- 0.249	0.040-	0.063-	0.188-
Basis				
Mechanical Properties:				
F _{tu} , ksi L LT	75 75	69 69	70 70	72 72
Fty, ksi L LT	66 64	61 59	62 60	63 61
F _{cy} , ksi L LT	65 68	60 63	61 64	62 65
F _{su} , ksi	45	42	42	44
Fbru, ksi e/D=1.5 e/D=2.0	120 154	110 141	112 143	115 147
Fbry, ksi e/D=1.5 e/D=2.0	96 112	88 103	90 105	91 107
per cent L LT	- - 9	- <u>-</u> 9	 9	 9
E, 10 ³ ksi Ec, 10 ³ ksi E, 10 ³ ksi	10.0 10.5 3.8		10.0 [‡] 10.5 [‡] 3.8 [‡]	

^{*} No values shown in MIL-HDBK-5B, September, 1971. ‡ Primary modulus values, secondary values not determined.

TABLE XL COMPUTED DESIGN MECHANICAL PROPERTIES* OF BARE AND ALCLAD 7475-T761 SHEET (F33615-71-C-1571)

Alloy		7475		
Form	Bare Sheet	A	lclad Shee	et
Condition	Т761		T761	
Thickness, in.	0.040-	0.040-	0.063-	0.188
Basis				0.249
Mechanical Properties:				
F _{tu} , ksi				
L LT	71 71	66 66	67 67	69 69
Fty, ksi LT	61 60	56 55	57 56	58 57
Fcy, ksi L LT	60 63	55 57	56 58	57 59
su, ksi	43	40	41	42
bru, ksi e/D=1.5 e/D=2.0	113 145	105 135	107 137	110 141
bry, ksi e/D=1.5 e/D=2.0	90 105	82 96	84 98	85 100
, per cent L LT	<u></u> 9	 9	 9	 9
, 10 ³ ksi c, 10 ³ ksi , 10 ³ ksi	10.0		10.0 [‡] 10.5 [‡] 3.8 [‡]	9

^{*} No values shown in MIL-HDBK-5B, September, 1971. ‡ Primary modulus values, secondary values not determined.

TABLE XLI

COMPUTED DESIGN MECHANICAL PROPERTIES*OF 2124-T851 PLATE

(F33615-71-C-1571)

Alloy		1-0-15/1	2124		
Form			Plate		
Condition			Т851		
Thickness, in.	1.501-2.000	2.001- 3.000	3.001-	4.001- 5.000	5.001-6.000
Basis					
Mechanical Properties: Ftu, ksi L LT ST	66 66 64	65 65 63	65 65 62	64 64 61	63 63 59
Fty, ksi L LT ST	57 57 55	57 57 55	56 56 54	55 5 5 53	54 54 51
Fcy, ksi L LT ST	57 57 58	57 57 58	55 56 57	53 55 56	51 54 54
F _{su} , ksi	35	35	35	35	35
Fbru, ksi e/D=1.5 e/D=2.0	96 125	94 123	94 123	93 121	91 120
Fbry, ksi e/D=1.5 e/D=2.0	80 91	80 91	81 92	81 92	81 92
e, per cent L LT ST	6 5 1.5	6 4 1.5	5 4 1.5	5 4 1.5	5 4 1.5
E, 10 ³ ksi E _c , 10 ³ ksi G, 10 ³ ksi			10.4 10.9 4.0		

^{*} No values shown in MIL-HDBK-5B, September 1971.

TABLE XLII

RESULTS OF TENSILE AND COMPRESSIVE STRESS-STRAIN AND MODULUS OF ELASTICITY TESTS OF 7049-173 AND 7175-1736 DIE FORGINGS

						Long	Long1tudinal			Short-Transverse	Verse	
Alloy					Tensile	lle	Compressive	ssive	Tensile	ille	Compressive	sive
and Temper	Number	Sample r Thickness, in.	Die No.	Producer	Yield Strength,* ksi	Modulus 107 ksi	Yield Strength,* ksi	Modulus 103 ks1	Yield Strength,* ksi	Modulus 103 ks1	Yield Strength,*	Modulus 103 ks1
7049-IT73	410693 410698 410697A	\$1.000 1.001-2.000 2.001-3.000 Ave	9078 15789 40005 40006	4444	73.77	10.52 10.61 10.51 10.51	73.8 71.7 74.4	10.69 10.61 11.21 10.87	7.0500	10.51 10.07 10.24 10.18	74.7 71.8 67.8	10.79 10.49 11.01 10.84
7175-1736	410983 410699 410705A	≤1.000 1.001-2.000 2.001-3.000 Avg	9078 15789 40005 40006	AAAA	67.5 77.8 67.9	10.23	77.72.8	10.62 10.72 10.59 10.59	61.0 64.0 61.8	10.12 10.18 10.16 9.98 10.11	67.0 71.2 69.5 65.0	10.60

* Offset equals 0.2 per cent.

RESULTS OF TENSITE AND COMPRESSIVE STRESS-STRAIN AND MODULUS OF ELASTICITY TESTS OF 7049-T73 AND 7175-T736 HAND FORGINGS (F23615-71-C-1571) TABLE XLIII

The state The						Tomoth	ldfna1			Long-Transverse	sverse		S	Short-Trensverse		
Sample Freduces						-	Tombago	01170	Tens	fle	Compres	sive	Tens11		Compres	seive
#110019 2x16 A 68.0 10.10 68.3 10.55 65.3 10.20 69.4 10.49 66.8 10.34 71.7 41.0019 2x16 A 65.5 10.20 68.3 10.57 65.5 10.27 70.1 10.65 65.5 10.27 70.1 10.2	Alloy and Temper	Number	mple Thickness,	Producer	Yield Strength,*	Modulus 103 ksi	Yield Strength, ksi	Modulus 107 ks1	Yield Strength,*		Yield Strength ksi	Modulus 107 ks1	Yield Strength ksi	Modulus 10 ³ ks1	Yield Strenfth ksi	105 ks1
410689 2x16 A 67.1 10.10 70.0 10.50 65.3 10.31 72.1 10.95 66.5 10.07 69.0 10.95 65.3 10.17 69.0 10.95 65.3 10.07 69.0 10.95 65.3 10.07 69.0 10.95 65.3 10.07 69.0 10.95 65.3 10.07 69.0 10.95 65.3 10.04 65.7 10.77 59.9 10.24 65.5 10.08 57.6 10.09 57.6 10.09 67.4 10.05 10.	1049-1773	411019 410686 410966 410688	2x16 3x16 4x16 5x20 Avg	4444	8008 0000	10.10 10.20 10.00 10.08	1,086,0	10.53	2000 C	10.20 10.24 10.24 10.36	69.4 68.0 62.2	10.49 10.63 10.88 10.65	8.2.6.2 8.2.6.2	10.74 10.14 10.29 10.29	7.17 4.69 6.20 7.1.	10.65
	1175-1736	410689 410985 410691 410986	2x16 2x12 4x16 5x20 Ave	4444	\$ 2008	10.10 10.04 10.41 10.04 10.15	7.00	10.50	2000 2000 2000 2000	10.27 10.24 10.24 10.23	72.1	10.57	66.5 57.6 57.6	10.09	69.0 70.1 64.1 64.3	10.59 10.58 10.57 10.55 10.55

TABLE XLIV

RESULTS OF TENSILE AND COMPRESSIVE STRESS-STRAIN AND MODULUS OF ELASTICITY TESTS OF 7475-T61 AND T761 SHEET

(F33615-71-C-1571)

Tensile Compressive Tensile Compressive Strength,* 107 ksi ksi	75.1 10.12 72.7 10.50 71.7 10.03 76.0 10.48 74.2 9.89 74.9 10.34 71.3 9.95 76.7 10.55 76.7 10.55 76.7 10.55 76.7 10.55 76.7 10.55 76.4 10.55 75.2 10.00 72.4 10.57 71.3 10.10 76.6 10.58 75.1 10.17 77.4 10.55 10.56 10.58 76.4 10.55 10.05	73.2 10.23 69.9 10.45 69.7 10.16 71.9 10.54 71.7 10.11 69.9 10.47 10.12 10.54 71.6 10.12 71.6 10.27 66.6 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.27 65.0 10.10 67.0 10.27 65.0 10.10 67.0 10.58 10.58 10.05 65.0 10.01 67.0 10.58 10.58 10.05 65.0 10.01 67.7 10.58 10.58 10.05
Longit nsile Modulus, * 107 ksi	01 0.09 0.00 0.00 0.01 0.01	10.27 10.11 10.11 10.26 9.97 10.09
Producer	A A A 774-77-74-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	A A A A A A A A A A A A A A A A A A A
Sample Number Thickness, in.	410651 0.040 410655 0.063 410657 0.125 410659 0.188 410661 0.249	410888 0.032 410665 0.040 410665 0.063 410667 0.090 410673 0.249 410673 0.249
Temper 1	161	17 61

* Offset equals 0.2 per cent.

TABLE XLV
RESULTS OF TENSILE AND COMPRESSIVE STRESS-STRAIN AND MODULUS OF ELASTICITY TESTS OF 2124-T051 PLAIR (F375615-71-0-1571)

				Long	Longitudinal			Long-Transverse	sverse			Short-Transverse	nsverse	
			Tensile		Compressive	ssive	Tensile	lle	Compressive	ssive	Tensile	.le	Compi	Compressive
Number	Sample Thickness,	Producer	Yield Strength,*	* Modulus,	Yield Strength,	* Modulus,	Yield Strength,*	Modulus,	Yield Strength,* ksi	Modulus,	Yield Strength,* ksi	Modulus, 103 ks1	<pre>strength,* ks1</pre>	Modulus, 103 ks1
	ın.		KST	T GW /OT	TOW	100	1							
410675	1.750	A	67.5	10.49	67.2	10.90	65.5	10.48	68.5	11.02	9.59	10.05	0.69	10.84
410676	2.500	A	65.4	10.45	65.1	10.98	6.59	10.50	66.1	10.84	62.4	10.35	67.1	10.81
779011	3.500	A	63.6	10.39	63.0	10.84	62.5	10.38	4.49	10.94	62.0	10.47	9.59	10.87
879014	4.500	A	63.9	10.37	62.4	10.77	61.5	10.59	0.49	11.04	4.65	10.45	63.9	10.84
410679	5.500	A	61.2	10.55	59.5	10.85	59.3	10.53	7.09	10.90	57.5	10.47	62.5	10.86
-		AVR		10.45		10.87		10.50		10.95		10.36		10.84

* Offset equals 0.2 per cent.

TABLE XLVI

AND 7175-T736 FORGINGS, 7475-T61 AND T761 SHEET AND 2124-T851 PLATE

			Average Mo	odulus of Elas	Average Modulus of Elasticity Values, 10 $^3~\mathrm{ks1}$	103 ks1	
Alloy			Tension			Compression	,
Temper	Product	Longitudinal	Long- Transverse	Short- Transverse	Longitudinal	Long- Transverse	Short- Transverse
7049-T73	Die Forging	10.43	1	10.20	10.84	1	10.78
	Hand Forging	10.10	10.30	10.21	10.51	10.65	10.59
7175-T736	Die Forging	10.26	}	10.11	10.65	1	10.58
	Hand Forging	10.15	10.23	10.13	10.53	10.75	10.58
7475-T61	Sheet	10.03	10.03	1	10.46	10.53	1
-T761	Sheet	10.09	10.01	1	10.47	10.53	. }
2124-T851	Plate	10.45	10.50	10.36	10.87	10.95	10.84
			Av	Averages*, All Directions	Directions		
7049 7175 7049 7175 7475 2124	Die Forgings Hand Forgings Sheet Plate		10.2			10.7	

* Values rounded to nearest 100 ks1.

TABLE XLVII

TYPICAL TENSILE AND COMPRESSIVE PROPERTIES
(F33615-71-C-1571)

					Typical	al	
Alloy and Temper	Product	Thickness Range, in.	Direction	Tensile Strength, ksi	Yield Strength,* ksi	Elong,	Compressive Yield Strength,*
7049-173	Die Forging	₩ 4.000	L ST	77.0	67.0	12.0	71.0
	Hand Forging	2.001-5.000	LL	7777	000.00000000000000000000000000000000000	12.0	66.0 65.0 67.0
7175-1736	Die Forging	3.000	LST	80.0	73.0	14.0	76.0
	Hand Forging	000° h	I I I I	77.075.0	668.0	11.0	70.0
7475-161	Sheet	0.040-0.249	LT	80.0	75.0	12.0	73.0
-1761	Sheet	0.040-0.249	LT	76.0	0.69	12.0	67.0
2124-T851	Plate	1.501-5.000	1 TIS	0.069.0	64.0	0.00	63.0 64.0 65.0

* Offset equals 0.2 per cent.

TABLE XLVIII RESULTS OF COMPACT-TENSION FRACTURE TOUGHNESS TESTS OF $7049\text{--}173\ \text{DIE}$ FORGINGS (F33615-71-C-1571)

Sa	mple				Tensile Yield				Ko 2		
Number	Thickness Range, in.	Die No.	Producer	Orientation [†]	Strength, (Oys) ksi	Specimen Number	Specimen Thickness, in.	Crack Length, in.	2.5((KQ)2	K _Q , ksi√in.	Valid ?
410693	≤1.000	9078	A	LS	74.5	L1 L2	0.50 0.50	0.50	0.39	29.3 30.1	No(3)
			A	SL	61.8	N1 N2	0.50	0.51	0.36	23.7 24.0 23.8	Yes Yes
410698	1.001-2.000	15789	A	LS	74.9	II II	1.00	1.06	0.36	28.5	Yes
			Av	SL	70.8	N1 N2	1.00	1.10	0.16	17.1 18.0	No(8)
10694		B5786	В	LT	67.0	LI L2	0.50 0.50	0.47	0.45	28.3	Yes Yes
			Av	SL	66.1	N1 N2	0.50 0.50	0.49	0.21	28.5 19.1 19.6 19.4	Yes Yes
10697-A		40005	A	LT	71.6	T5	0.50	0.48	0.53	33.1 34.1	No(1,2,3)
			Av	SL	67.6	N1 N2	0.75 0.75	0.80	0.29	23.1 23.4 23.2	Yes Yes
10697-C		40005	A	LT	74.4	L5 L6	0.50	0.48	0.42	30.6	Yes Yes
			Av	SL	67.1	N5 N6	0.50	0.46	0.31	30.7 23.5 21.9 22.7	Yes Yes
10695	2.001-3.000	40006	A Av	LS	73.1	L1 L2	0.75 0.75	0.78	0.53	33.6 32.6	Yes No(3)
			Av	SL	66.3	N5 N1	0.75 0.75	0.79	0.27	22.4 21.8 22.1	Yes Yes
10696		B6204	B Av.	LT	65.5	I.1 I.2	0.75 0.75	0.80	0.64		Yes Yes
			Av	SL	64.7	N1 N2	0.75 0.75	0:77	0.32	33.2 34.3 33.8 26.2 24.6	Yes Yes
10697-В		40005	A	LT	75.9	13	0.75 0.75	0.82	0.55	35.5 37.2	No(3,6) Yes
			Av	SL	64.9	N3 N4	0.75 0.75	0.82	0.38	25.4 25.1 25.2	Yes Yes
10700	4.001-5.000	B23 62	В	LT	65.7	LI L2	0.75	0.78	0.49		Yes
			Ava	SL	65.5	N1 N2	0.75	0.79	0.18	29.2 29.1 29.2 18.7 18.4 18.6	Yes Yes

⁽¹⁾ Specimen not thick enough.
(2) Patigue crack too short.
(3) Excessive yielding before crack extrusion, value considered meaningful.
(6) Patigue crack front curvature exceeded allowed amount, value considered meaningful.
(8) Stress-intensity was too high for the last step of fatigue cracking; value considered meaningful.

t Refer to Fig. 15 for description of orientation.

TABLE XLIX RESULTS OF COMPACT-TENSION FRACTURE TOUGHNESS TESTS OF 7175-1736 DIE FORGINGS (F33615-71-C-1571)

S	ample					Tensile						
Number	Thickness Range, in.	Die No.	Producer	Orienta	tion [‡]	Yield Strength, (OYS) ksi	Specimen Number	Specimen Thickness, in.	Crack Length, in.	2.5((KQ)	KQ, ksiVin.	Valid
410983	≤1.000	9078	Α	LS		69.3	L1 12	0.50	1.05	1.00	43.9 39.2	No(1,3) No(1,3,6)
				SL	Avg	62.2	N1 N2	0.49	1.07	0.65	31.6 29.9	No(1,3,6) No(1) No(1)
10699	1.001-2.000	15789	Α	LS		74.7	I.2	1.00	1.13	0.52	33.9 34.8	No(3,4,6) No(3,4,6)
				SL	Avg	67.0	N1 N2	1.00	1.16	0.28	22.5 25.2	No(3,4,6) No(4,6) No(6)
10704	*	F17961	Α	LT		76.9	L1 L2	0.50 0.50	0.48	0.42	31:5	Yes No(1,2,3)
				SL	Avg	68.4	N1 N2	0.50 0.50	0.46	0.25	21.5	No(6) Yes
10705-A		40005	Α	LT		69.8	I.2	0.50 0.50	0.51	0.73	37.7 39.8	No(1,2,3) No(1,2,3)
				SL	Avg	65.2	N1 N2	0.75 0.75	0.90	0.39	25.9 26.0	No(4,6) Yes
10705-0		40005	A	LT		72.4	1.5 1.6	0.50	0.49	0.52	33.0 34.0	No(1,2,3) No(1,2,3)
				SL	Avg	67.4	N5 N6	0.50 0.50	0.50	0.37	25.8 25.1 25.4	Yes Yes
.0706		F 17976	A	LS		73.2	L1 L2	0.75 0.75	0.78 0.77	0.58	25.4 35.3 38.4	No(3) No(3)
				SL	Avg	66.7	N1 N2	0.75 0.75	0.85	0.36	25.2 24.1	No(4,6) Yes
0705-B	2.001-3.000	40005	Α	LT		71.8	1.3 1.4	0.75 0.75	0.85	0.39	28.2 29.3	No(4,6) No(4,6)
				SL	Avg	66.4	N3 N4	0.75	0.85	0.41	27.0 27.8	No(4,6) No(4,6)
0984		40006	Α	LS		68.0	L3 L4	0.75 0.75	0.78 0.65	0.71 0.84	36.2 39.5	No(3) No(1,2,3,4,6
				SL	Avg	62.6	N3 N4	0.75	0.80	0.49	27.6 28.8 28.2	Yes Yes

⁽¹⁾ Specimen not thick enough.

2) Fatigue crack too short.

3) Excessive yielding before crack extension, value considered meaningful.

4) Crack length/width (A/W) not between 0.45 and 0.55, value considered meaningful.

6) Fatigue crack front curvature exceeded allowed amount, value considered meaningful.

^{*} Refer to Fig.15 for description of orientation.

RESULTS OF COMPACT-TENSION FRACTURE TOUGHNESS TESTS OF 7049-1773 TABLE L

(F33615-71-C-1571)

						(I-T)	(L-T) Orientation#	#ac					(T-L) Orientation#	station#						- S-1.	S-I. Ordentation			
Alloy and Temper	rumbe r	Sample Dimensi	Sample fumber Dimensions, Producer in.	Strength, Strength, ks1	Specimen Number	Specimen Specimen Crack Number Thickness, Length, in.		3 (St.	Ker Vin.	/alid	Tensile Yield Strength, (YS)	Specimen	Specimen Thickness, in.	Creck Length, in.	2.5(K) 2	ksrvin.	Valid	Tensile Yield Strength, (Crs.)	Specimen S	n Specimen C Thickness, L	reck forth, in.	2.5(K 2.5(K	kaiVin.	Velid
7049-173	411019	3x16	6 A AWB	8.89	23	1.00	1.04	0.42	26.2	Yeş No(6)	0.79	T-7-2	1.00	1.02	88.	18.7	Yeş ()	4.6	KA KA	1.88	1:08	0.14	15.6	Yes
	410686	3216	6 . A Avg	8.6.4	33	1.00	1.09	0.54	8.4.8 5.4.8	Yes	66.2	TI	1.00	1.10	0.31	4000	Yes	62.3	NI	1.00	1.06	0.33	22.7	Yes
	410966	4x16	6 A Avg	72.8	33	1.00	1.08	0.55	32.50	Yes	68.5	TI	1.00	1.06	0.25	28.5	Yes	67.5	N1 N2	1.00	1:06	₹.0	888	Yes
	410688	5x20	A AVB	60.1	33	1.00	1.04	0.47	22.53	Yes	58.1	11	1.00	1.05	0.25	18.4	Yes	59.1	N1 N2	1.00	1.05	988	19.4 19.8 19.8	Yes
7175-1736	410689	2×16	S A Awa	67.2	33	1,00	1.10	0.70	35.5	No(3,4,6)	4.59	TI	1.00	1.13	0.57	31.2	No(4,6)	4.98	NI N2	0.75	0.83	96.0	26.3	Yes, 6)
	410985	3x12	4	70.8	33	1.00	1.12	0.60	334.8	No(46)	7.59	127	1.00	1.10	0.39	26.1	Yes	9.6	N1 N2	1.00	1.08	0.31	23.0	Yes (4,6)
	410691	4x16	S A AVR	4.29	33	1.00	1.07	92.0	24.	No(3)	6.65	127	1.00	1.09	0.50	26.9	Yes	61.4	M1 M2	1.00	1.01	0.32	22.1 21.7 21.9	Yes
	410986	5x20	A Avg	62.1	33	1.50	1.51	0.75 0.75	6/6/	No(6) Yes	60.1	12	1.50	1.59	0.38	38.4.0	Yes	58.5	M 2	3.5	500	0.36	24.2	Mo(4,6,8)

Excessive yielding before crack extension; Batio of maximum load to securi load greater than 1.1; value considered meaningful.

Frace isnegative to the constant of the consta

THRESULES OF COMPACT-TERISION PRACTURE-POOTHNESS TESSES OF 2124-T651 PLATE (P39615-71-C-1571)

				(I-T)	(L-T) Orientation#	1 on#					(T-L)	(T-L) Orientation#	#ucl:				(S-L) Orientation#	tetion#			
Sample Thickness, in.	s, Producer	Tensile Yield Strength,	Specimen, Number	Speci Thickn	Crack Length, in.	2.5(NO) 2	Ko, ksiVin.	Valid S	Tensile Yield Strength,	Specimen	Specimen Crack Thickness, Length, in. in.	Crack Length, 1n.	2.5(Mg) ²	Ko, Velid	1	Tensile Yield Specimen Strength, Number ksi	en Specimen r Thickness, in In.	en Crack as, Length, in.	2.5(ME)	Ks I Vic.	Valid
1.750	A	67.0	127	1.50	1.58	0.45	28.674	Yes	65.7	1-1	1.50	1.56	0.33	24.0 Ye	Yes 65	65.3 N-1	0.50	0.49	0.22	200 200 200 200 200	Yes
2.000	C Avg	66.2	122	1.50	1.56	0.53	4 4/4	Yes	4.59	T-1	1.50	1.54	0.35	24.4 Yes 24.1 Yes 24.2		64.9 N-1	0.75	0.74 0.74	0.22	19.2	Yes
2.040	B Avg	4.69	1-1	0.75	0.75	0.26	21:3	Yes	65.2	F-1	0.75	42.0	0.22	19.5 Yes 19.4 Yes		62.7 N-1	0.75	57.0	0.20	17.6	Yes
2.500	A Av8	4.	77	1.00	1.01	44.0	27.2	Yes	64.2	F-F-	1.00	1.04	0.42	26.3 Ye 26.1 Ye 26.2	Yes 63	63.5 N-1	1.00	0.96	0.29	22.8	Yes
3.500	A Avg	63.9	175	1.50	1.51	0.61	331.6	Yes	62.7	7-1	1.50	1.55	94.0	26.4 Yes 26.8 Yes 26.6		61.4 N-1 N-2	1.00	0.99	0.47	3.50	Yes
4.000	B Avg	65.5	122	1.50	1.56	0.30	2022	Yes	64.2	T-1	1.50	1.59	0.27	21.0 Yes 20.8 Yes 20.9		60.2 N-1 N-2	1.50	1.56	12.0 0.27	20.00	Yes
4.500	A AVB	63.4	172	1.50	1.54	94.0	26.7	Yes	61.4	1-1	1.50	1.57	0.36	23.3 Yes 22.5 Yes 22.9	.es 59.	.8 N-1 N-2	1.50	1.53	0.36	22.5	Yes
4.500	CAVE	59.8	177	1.50	1.53	0.76	32.9	Yes	58.5	T-1	1.50	1.64	0.58	28.2 Not 26.5 Yes 26.5		57.3 N-1 N-2	1.50	1.54	0.51	8.5% 8.6%	Yes
5.500	A	61.1	122	1.50	1.50	0.55	28.8	Yes	5.65	T-2	1.50	1.54	0.35	22.3 Yes 21.8 Yes 22.0	57	.5 N-1	1.50	1.50	0.42	6.000 6.000	Yes
6.000	O	57.1	77	1.50	1.52	0.65	2.5%	Yes	55.0	1-1	1.50	1.58	94.0	24.1 Yes 23.7 Yes 23.9	.8 54.	.8 N-1 N-2	1.50	1.57	0.50	22.25	Yes

Patigue cracking stress-intensity factor KF was greater than 0.6xKg for last stop of fatigue cracking.
 Refer to Fig.15 for description of orientation.

TABLE LII SUPPLEMENTAL COMPACT-TENSION FRACTURE TOUGHNESS DATA OF 2124-T851 PLATE

Sample Froducer Continue Front Front											
1.570					Tensile			Fra	- 1	less	
1.570 A Avg	Sar Number	Thickness,	Producer	Ultimate Strength, ksi	Yield Strength,* ks1	Elong in 4D,	Specimen Thickness in.	Crack Length, in.		KQ, ksi/in.	Valid
1.570 A Avg					Longitudina		ientation)#				
2.500 A Avg 72.8 66.2 10.0 2.06 1.56 0.46 27.0 2.50	369722	1.570			65.2	11.5	1.50	1.48	0.69	325.0	Yes
Avg											
2.500 A Avg 71.5 66.2 10.0 2.00 2.15 0.59 26.5 26.5 26.0 2.50 A Avg 71.5 65.2 10.0 2.00 2.15 0.69 24.9 26.2 2.520 A Avg 71.0 65.4 9.0 2.00 0.94 0.35 26.5 26.0 2.50 A Avg 67.2 59.4 9.0 1.50 1.00 0.96 0.34 25.5 26.0 2.50 Avg Avg 67.2 59.4 9.0 1.00 0.99 0.52 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.	369724				64.2	10.5	1.50	1.59	0.46	24.6	Yeg6)
2.500 A AVB 71.5 66.2 10.0 2.00 2.16 0.69 34.9 26.2 2.50 2.15 0.65 34.2 2.50 2.15 0.65 34.2 2.50 2.15 0.65 34.2 2.50 2.15 0.65 34.2 2.50 2.50 2.10 0.77 36.4 25.6 2.00 2.10 0.77 36.4 25.6 2.00 2.10 0.77 36.4 25.6 2.00 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 2.50 2.10 0.77 36.4 25.5 25.2 25.2 25.2 25.2 25.2 25.2 25	369726		А	72.8	67.2	8.6	1.50	1.56	0.39	26.5	Yes
2.500 A Avg Avg 71.5 66.2 10.0 2.00 2.15 0.65 34.2 24.2 25.0 2.520 A Avg Avg Avg Avg Avg Avg Avg Avg Avg A			Avg				00:1	7.30	10.0	26.2	n D
Avg Avg Avg Avg 65.6 9.0 2.00 2.10 0.77 36.7 36.7 36.7 36.7 36.7 36.7 36.7 3	410752	2.500	A	71.5	2.99	10.0	2.00	2.16	000	9.45	Yes
2.520 A Avg			Avg				2	(1:1		34:5	r c
2.520 A 74.9 69.7 8.5 1.00 0.94 0.33 25.2 25.2 Avg Avg Avg Avg 67.2 59.4 9.4 1.00 1.00 0.59 0.55 25.5 25.5 4.310 A Avg 67.2 59.3 9.4 1.00 1.00 0.59 0.55 25.5 25.5 25.5 25.5 25.5 25.5 25.5	410853		A	70.8	9.59	0.6	000	2.10	0.78	7.9%	Yes
2.520 A Avg 69.7 8.5 1.00 0.94 0.35 25.2 26.0 25.0 0.95 0.35 25.5 25.0 0.95 0.95 0.35 25.5 25.5 25.0 0.95 0.95 0.35 25.5 25.5 25.0 0.95 0.95 0.95 25.5 25.5 25.0 0.95 0.95 0.95 25.5 25.5 25.0 0.00 0.95 0.95 25.5 25.5 25.5 25.0 0.00 0.95 0.95 25.5 25.5 25.5 25.5 25.5 25.5 25.5 2			Avg			-14/8	20.7	07.3		36.6	r co
Avg Avg 71.0 65.4 9.0 1.50 0.34 25.5 25.5 4.000 0.90 0.34 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.	410799	2.520	A	74.9	2.69	8.5	00.1	76.00	000	25.2	Yes
3.500 A Avg Avg 67.2 59.4 9.0 1.50 1.54 0.44 27.8 4.310 A Avg 67.2 59.3 9.4 1.00 0.99 0.52 28.9 28.9 4.310 Avg 67.2 59.3 9.4 1.00 1.00 0.59 26.8			Avg			o e e e e e e e e e e e e e e e e e e e	1.00	0.90	0.54	35.50	Yes
4.000 A Avg 67.2 59.4 9.4 1.00 1.00 0.59 28.9 4.310 A 67.2 59.3 9.4 1.00 0.99 0.52 26.8	410816	3.500	A	71.0	4.59	0.6	1.50	1.54	77.0	8.12	Yeş
4.510 A Avg 67.2 59.4 9.4 1.00 1.00 0.59 28.9 4.510 A 67.2 59.3 9.4 1.00 1.00 0.59 26.5 26.8			AVB			THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O	1.50	8:1	0.59	21.0	NO(4)
4.310 A 67.2 59.3 9.4 1.00 1.00 0.50 26.5 Avg 1.00 0.99 0.52 27.0 26.8	340900	4.000	A	67.2	4.65	4.6	1.00	1.00	0.59	28.9	Yes
4.310 A 67.2 59.3 9.4 1.00 1.00 0.50 26.5 27.0 Avg			Avg			By N Emilian cons	1.00	1.00	10.0	20.00	Yes
8.92	340896	4.310	A	67.2	5.65	4.6	00.1	00.1	0.50	26.5	Yes
			Avg			F WITE THE MELL IN THE		66.0	70.0	26.8	2

(Continued)

TABLE LII (CONCLUDED) SUPPLEMENTAL COMPACT-TENSION FRACTURE TOUGHNESS DATA OF 2124-T851 PLATE (F33615-71-C-1571)

				Tensile			Fr	acture Tous	ghness	
Number -	Thickness, in.	Producer	Ultimate Strength, ksi	Yield Strength,* ksi	Elong in 4D,	Specimen Thickness, in.	Crack Length, in.	2.5(KQ) ²	K _Q , ksi √ in.	Valid
				Long	g-Transvers	e (T-L Orientat	ion)			
369722	1.570	A	70.4	65.2	10.0	1.50 1.50	1.52	0.51	29.4 30.3 29.8	Yes Yes
369724		A Av	72.8 B	67.2	8.8	1.50 1.50	1.59	0.35	25.3 25.1 25.2	Yes Yes
369726		A Av	72.6	67.2	9.0	1.50 1.50	1.56	0.32 0.32	24.0 24.0 24.0	Yes Yes
410852	2.500	A Av	70.8	64.8	8.0	2.00	2.15	0.47	28.1 27.7 27.9	Yes Yes
410853		A Av	70.5	64.4	7.0	2.00	2.18 2.17	0.54	30.0 29.9 30.0	Yes Yes
410799	2.520	A	73.9	67.6	6.5	1.00	0.96 0.98	0.28 0.29	22.6 23.1 22.8	Yes Yes
410 816	3.500	A Ave	70.2	64.2	7.0	1.50 1.50	1.52 1.52	0.33	23.3 22.8 23.0	Yes Yes
340900	4.000	A Ave	67.8	60.0	8.8	1.00	1.01	0.31	21.0	No(6) Yes
340896	4.310	A Ave	68.3	60.8	8.5	1.00	1.00	0.38 0.39	23.6 23.9 23.8	Yes Yes
				Sh	ort-Transve	erse (S-L Orient	tation)		->	
369722	1.570	A Ave	67.1	63.0	3.1	0.50 0.50	0.50	0.28 0.29	21.0	No(3) Yes
369724		A	69.7	65.4	3.9	0.50	0.47	0.21	18.8	Yes
369726		A Ave	68.2	64.4	3.1	0.50	0.49	0.27	21.3 20.5 20.9	Yes Yes
410852	2.500	A Avg	68.5	62.9	3.6	1.00	0.93	0.28 0.28	21.1 21.2 21.2	Yes Yes
410853		A Avg	67.6	62.1	4.4	1.00	0.96	0.34	22.9 21.8 22.4	Yes Yes
410799	2.520	A Avg	73.7	66.3	7.0	1.00	0.95	0.20	18.8 20.6 19.7	Yes Yes
410816	3.500	A Avg	64.6	59.9	1.9	1.00	0.99	0.32	21.4 19.8 20.6	Yes Yes
340900	4.000	A Avg	66.1	59•3	4.5	1.00	0.98 0.98	0.44	24.8 23.1 24.0	Yes Yes
340896	4.310	Α	66.6	59.6	4.5	1.00	0.95 0.97	0.41	24.1 24.5 24.3	Yes Yes

 ⁽³⁾ Excessive yielding before crack extension. Ratio of maximum load to secant load greater than 1.1; value considered meaningful.
 (4) Crack length/vidth (A/W) not between 0.45 and 0.55.
 (5) Fatigue crack front curvature exceeded allowed amount, value considered meaningful.

^{*} Offset equals 0.2 per cent. # Refer to Fig.15 for description of orientation.

Table Liii results of practure-toughness tests of 16-in. Wide panels from $7475-761~{\rm SHEET}$

10055 11 0.000 76.2 4.08 5.10 30.2 40.2 0.55 0.14 4.08 4.08 5.10 30.2 40.2 0.55 0.14 4.08 4.08 5.10 30.2 40.2 0.55 0.14 4.08 4.08 6.05	Nominel Thickness, in.	Srmple		Specimen Number Thickness, in.	Tensile Yield Strength, (OYS) ksi	Original Crack Length	Creck Fai Visual Method, in.	Creck Length at Failure Sual Compilance thod, Method, in.	Gross Stress, (0) ks1	Stress, t (On)	O Pro	K _C Visual Method,# in.	Val1 Kc	Kc d Compliance 1 Method.# ksrVin.	Valid Kc
410055 III 110055 III								Longitudi	(L-T)						
10055 11 12 12 12 13 13 13 13	0,040	410651		0.040	76.2	00.4	4.28	5.10	20.5	46.8	0.53	79.5	Yes	4.06	Yes
1,10656 11 1,006 1,107 1,107 1,000 1,107 1,000 1,107 1,007	0.063	410653	22222	00000	7.7.7.7	88888	10 m/4 m/2	103.10	0.080	0.00 0.00 0.00 0.00 0.00	0.00	80.00 60.40	No* Yes Yes	104.9	No*
1,10656 11 0.069	,	410654		0000	74.1	288	400 286 286 286 286	5.75	7.000	41.7	00.00	888.5	Yes	100.8	Yes
HIOGS III 0.110 74.5 4.00 4.78 5.32 38.6 511.4 0.69 111.2 Yes 118.8	060.0	410655		0.091	74.2	4.00	5.22	6.75	0.47	50.7	869	115.8	Kes c	178.2	No.
110652 11 0.186 75.5 4.00 5.90 5.00 25.7 49.0 0.65 129.5 N° 114.5 110652 11 0.249 77.4 4.00 5.70 5.80 4.57 5.77 54.5 0.44 78.1 Yes 97.5 110652 11 0.249 77.4 4.00 5.70 5.80 4.57 5.75 4.00 5.70 5.80 4.55 5.75 5.75 6.75 64.8 6.55 84.5 Yes 97.5 110653 77.5 72.5 4.00 4.56 5.75 5.75 64.8 6.55 84.5 Yes 97.5 110654 77.5 72	0.125	410657	33	0.110	74.5	4.00	4.78	5.32	38.6	51.4	0.69	111.2	Yes	118.8	Kes K
#10652 TI 0.040 77.4 4.00 5.20 4.17 25.7 34.5 0.71 129.2 No. 120.7 110652 TI 0.040 77.4 4.00 5.20 1.64 2.55 31.7 42.3 0.59 84.5 Yes 99.1 120.5	.188	410659	33	0.182	75.0	4.00	5.98	5.00	36.7	49.0	0.65	129.5	No*	114.3	Yes
#10652 Til 0.040 72.9 4.00 4.56 5.45 31.7 42.3 0.59 84.5 Yes 99.77 410652 Til 0.040 72.9 4.00 4.56 5.45 31.7 42.3 0.59 84.5 Yes 99.77 410654 Til 0.040 72.9 4.00 4.56 5.45 51.7 42.3 0.59 84.5 Yes 99.77 410655 Til 0.062 72.6 5.00 5.84 5.78 45.9 52.5 0.72 93.4 Yes 99.7 Yes 99.7 Yes 10.05 72.6 5.00 5.88 5.78 45.9 52.5 0.72 93.4 Yes 99.7 Yes 90.7 Yes 10.05 72.6 5.00 5.88 5.78 45.9 52.5 0.72 93.4 Yes 90.7 Yes 9	642.0	410661 410662	33	0.240	75.3	4.00	5.70	5.80	40.1	57.5	0.71	129.2	No*	1,30.7	No.
410652 T1 0.040 72.9 4.00 4.56 5.45 31.7 40.4 0.55 84.5 Yes 93.7 410652 T1 0.042 73.1 4.00 4.56 5.45 31.7 40.4 0.59 84.5 Yes 99.7 410653 T2 0.063 72.6 1.00 1.64 2.55 60.7 64.8 0.89 98.5 Yes 99.7 T2 0.063 72.6 1.00 4.57 2.54 2.55 60.7 64.8 0.89 98.5 Yes 99.7 T1 0.063 72.6 4.00 4.57 2.78 40.4 0.57 96.5 99.4 Yes 99.7 410656 T1 0.063 72.6 4.00 6.89 7.75 22.5 27.8 40.4 90.5 99.3 Yes 90.7 410656 T1 0.090 72.1 4.00 5.25 29.3 29.3 90.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Transver</td><td>se (T-L)</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								Transver	se (T-L)						
#10653 T2 0.065 72.6 1.00 1.64 2.55 60.7 64.8 0.89 98.5 Not 123.7 72.6 1.00 2.54 2.05 45.9 64.8 0.89 98.5 Not 123.7 72.6 1.00 1.52 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	040.	410651	II.	0,040	72.9	4.00	4.52	5.35	30.7	40.4	0.55	84.5	Yes	95.7	Yes
110655 T1 0.090 72.1 4.00 4.88 5.40 34.3 4.91 0.55 80.5 Yes 89.6 High High High Trians 1.00 5.12 5.25 35.6 4.91 0.05 10.03 112.4 112.4 110.5 T1.9 4.00 5.12 5.25 35.6 4.74 0.64 110.6 Yes 112.4 112.4 110.65 T1 0.186 72.5 4.00 5.08 5.08 5.07 39.6 0.51 32.7 Yes 82.8 113.2 High Trians 1.00 5.08 5.08 5.07 35.5 0.51 32.1 Yes 80.7 High Trians 1.00 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5	.063	410653	22222	00000000000000000000000000000000000000	722.6	E0/31 E/4/10 E	10 1/4 100 2 4 4 0 00 0 0 0 0	0.0440 F	01%1/208 Foilogoi	40015 100 8 000040	000000	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Yes Yes Yes	5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,5,5,00 5,00 5,0	No* Yes Yes Yes
#10658 TI 0.126 77.1 4.00 5.36 5.56 29.7 47.4 0.65 110.1 Yes 113.2 #10659 TI 0.186 72.5 4.00 5.98 5.10 30.9 45.3 0.51 92.1 Yes 82.8 #10661 TI 0.240 77.4 4.00 5.00 5.07 5.67 35.9 0.51 92.1 Yes 80.7 #10662 TI 0.250 75.0 4.00 5.20 5.67 25.0 45.1 0.62 107.8 Yes 65.9	060.	410655	TI	0.091	72.1	00.4	4.88	54.0	1 4 6 1	4,7.8	0.0	100.2	Yes Yes	106.8	Yes Yes
#10659 T1 0.184 72.5 4.00 5.98 5.10 30.9 41.3 0.51 92.1 Yes 92.8 41.0659 T1 0.240 75.0 75.0 5.90 5.50 4.17 25.0 45.1 0.62 197.8 Yes 92.8 41.0650 T1 0.250 75.0 4.00 5.20 4.17 25.0 44.17 25.0 0.44 75.0 Yes 65.9	.125	410 65 7 410658	TI	0.110	72.6	4.00	5.36	2.6	35.6	47.4		110.1	Yes	1113.2	Yes Y
#10661 T1 0.240 73.4 4.00 5.60 5.67 33.9 45.1 0.62 107.8 Yes 108.7 45.5 0.44 73.0 Yes 65.9	.188	410659	TI	0.181	72.3	4.00	5.08	5.10	30.9	41.3		91.7	Yes	80.7	Yes
	.249	410661 410662	EE	0.240	73.4	00.4	5.58	5.67	25.0	45.1	0.62	107.8	Yes	108.7	Yes

Invalid Ko; NYS based on crack length at failure > 0.80 TXS.
 Based on original crack length.
 Calculated using the following equation:

 $K_{C} = \frac{p_{B}1/2}{B^{W}} \left[1.77 + 0.227 \left(\frac{a}{7} \right) - 0.510 \left(\frac{a}{7} \right)^{2} + 2.7 \left(\frac{a}{7} \right)^{2} \right]$

Where P = load, lbs.

a = original crack length, in.
B = specimen thickness, in.
W = specimen width, in.

TABLE LIV RESULTS OF PROCTURE TOUGHBESS TESTS OF 16-IN. WILE PANELS FROM 7475--1761 SHERT

Nominal Thickness,	Sample	Spe	Specimen Number Thickness,	Tensile Yield Strength, (TYS)	Original Crack Length in.	Creck I Fai VISUAL Method in.	Creck Length at Failure Isual Compliance ethod Method, in.	Gross Stress, (0) ks1	Net Stress, † (On) ksi	OYS +	Kc, Visual Method# ksfVin.	Valld Kc	K _c Compliance Method.# ksivin.	Valid Kc
						Long	Longitudinal (L-T)	(T-T)					100	
0.032	410888	3	0.032	72.8	4.00	94.4	5.70	0.75	35.9	64.0	74.5	Yes	86.8	Yes
0,040	410663	33	0.041	7.77	00.4	17 th	5.85	31.1	41.5	0.56	88.0	Yes	101.6	Yes
0.063	410665	ERFORCE	000000000000000000000000000000000000000	00000000000000000000000000000000000000	10 W 4 W 6 4	104/4/004 400/4/80/466 70/4/80/486	00400000000000000000000000000000000000	4.00044.	0044 WW4 00000000 0000000000000000000000	0000000 9850000 87104000	000 69999999999999999999999999999999999	Yes Yes Yes Yes	109.39 1006.68 1007.6 107.5	No* Yes Yes Yes
060.0	410667	33	0.091	69.3	4.00	5.54	6.88	38.9	51.9	0.77	118.8	NO*	143.6	No*
0.125	410669	古古	0.125	4.99	00.4	5.30	5.65	41.2	55.0	0.83	126.7	NO*	148.2	NO*
0.188	410671	33	0.185	4.999	4.00	6.00	6.45	46.2	56.0	0.84	140.2	No.	155.7	No*
0.249	410673	33	0.245	67.0	00.4	5.12	5.60	42.7	57.0	0.85	128.5	No* Yes	136.0	No*
						Tra	Transverse (T-L)	(1						
0.032	410888	TI	0.032	4.69	4.00	4.84	00.9	29.7	39.62	0.57	86.2	Yes	0.66	Yes
0.040	410663	II	0.041	70.8	00.4	7.42	5.50	30.6	40.9	0.58	89.7	Yes	96.4	Yes
0.063	410665	2525555	0000000	888888 666666	HUW4 WO4	10k/4 L/04 0004 L-900	04/4/0/00/0 64/0/01/0 0400/00/00	4284500	2000000 2000000 2000000000000000000000	44.000000	2901 14.05.099 14.06.0999 7.0999	No Yes Yes Yes	128.0 116.0 116.0 112.5 107.9 104.2	NO* NO* Yes Yes
0.090	410667	II.	0.0000	64.6	00.4	4.95	6.17	36.6	48.8	0.76	107.3	No	124.5	No
0.125	410669	TI	0.125	64.9	00.4	5.54	5.8.5	37.4	6.64	0.77	114.1	No	122.6	Non
0.188	410671	TI	0.185	65.3	4.00	5.66	6.25	8.60	53.1	0.81	127.6	No	136.6	88N
0.249	410673	TI	0.245	65.9	00.4	5.08	6.28	40.6	54.1	0.82	130.1	No	139.7	No.

• Invalid K₆; NTS based on crack length at failure > 0.80 TTS. † Based on original crack length. # Calculated using the following equation:

Calculated using the following equation: $K_C = \frac{P_B 1/2}{BW} \left[1.77 + 0.227 \left(\frac{A}{H} \right) - 0.510 \left(\frac{B}{H} \right)^2 + 2.7 \left(\frac{B}{H} \right)^2 \right]$ Where P = load, lbs. $\frac{a}{W} = \text{original creek length, in.}$ $\frac{a}{W} = \text{specimen Hickness, in.}$

RESULTS OF SUPPLEMENTAL FRACTURE-TOUGHNESS TESTS OF 16-IN. WIDE PANELS FROM ALCLAD 7475-T61 SHEET TABLE LV

Valid Kc		No	Yes	Kes	Kes	Yes	Yes		No*	Yes	Yes	No*	Yes	201	Yes
Kc Compliance Method.# ks\110.		120.3	104.7	0.86 0.86 0.86 0.86	7.75	77.1	94.9		118.7	107.9	000	1001	7.62		78.3
Valld Kc		No*	Yes	Ke a	Yes	Yes	Yes		No*	Yes	Yes	Yes	Yes		Yes
K _c Visual Method.# ksiVin.		102.2	100.50	700	22.10	72.6	91.9		6.96	7.5.5	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	88. 5.0.0	81.5	-	82.9
Ors +		0.83			40.00	000	0.58		0.92	000	1000	99.0	000		0.55
Net Stress, † (On) ksi		61.8	20.00	26.71	28.5	325.9	6.44		2.19	1.8.1	37.7 1.7 2.7	10.1	767 7604		39.7
Gross Stress (0) ks1	(I)	58.0	72.72	262.8	31.2	20.00	32.1		1	37.5	10.R .o.a	160 100 100	2362	8	29.7
Crack Length at Failure Visual Compilance Method, Method, in.	Longitudinal (L-T	2.64		7.13	w.r. 23.	4.74	4.98	Transverse (T-L)	2.63	+ rv.r	7.18	14. R	100 100 100 100 100 100 100 100 100 100		4.10
Crack Lengt Visual Method, in.	Lon	1.93	5.30	1.50	4.75	4.28 6.25	4.72	Tr		388	7.15	12 m	6.35	100	4.52
Original Crack Length,		3.00	00:	0.00	00.4	6.00	4.00		1.00	200	1.00	000	6.00	4.00	00.4
Tensile Yield Strength, (TYS) ksi		990 wiwi	860 v.v.	7.60	777	71:8	73.9		66.5	966 17.17.17.17.17.17.17.17.17.17.17.17.17.1	88.	*. *. *.	7.7.889	71.5	71.5
Thickness, in.		790.0	0.00	0.00		0.003	0.089		190.0	190.0	0.00	0.063	0.063	0.000	0.089
Specimen Number Thickne		23;	323	725	\$127	35	523		F17	114 105	E	125	T6	TS	T-2
Sample Number		369616		369617			36 96 19		369616		369617			369619	
Nominal Thickness, in.		0.063					0.090		690.0					0.090	

* Invalid Kc; NVTS based on crack length at failure >0.80 TYS. # Based on original crack length. # Calculated using the following equation: $K_C = \frac{Pa1/2}{BW} \left[1.77 + 0.227 \left(\frac{a}{V} \right) - 0.510 \left(\frac{a}{V} \right)^2 + 2.7 \left(\frac{a}{V} \right)^3 \right]$

P = load, lbs.
a = original crack length, in.
B = specimen thickness, in.
W = specimen width, in. Where

TABLE LVI

RESULTS OF LONGITUDINAL SMOOTH AND NOTCHED (Kt=3) AXIAL-STRESS FATIGUE TESTS OF 7049-T73 DIE FORGINGS (R=0.0)

(F33615-71-c-1571)

	والسوي					Cycles	to Failure	re	
	Thickness	Die				Maximum	n Stress,	ksi	
Number	Range, 1n.	No.	Producer	70.0	55.0	42.0		16.0	13.0
					Smooth			Notched	
α	€1.000	07	А	1	57 400	1	}	17 332 900	1
410698	1.001-2.000	15789 85786	Αď	15 900	1 ~	300	25 100	#007 79 80	#008 798 61
		100	A		59 200		- 1		
CD		00	A	1	0	!	!	N	-
	2.001-3.000	00	A	1	7 900	1	1	_	-
		62	В		8 000 26		29 600	5	98 40
		00	A	17 400	0 300 16	001 1	27 900	∞	696 800
	4.001-5.000	3	A		9 200 3		0	0	797 800
	Lo	Log Mean Life	Life	10 800	47 200 144	4 200	23 600		

Did not fail.
* Equipment malfunction, value not reliable.

TABLE LVII

RESULTS OF LONGITUDINAL SMOOTH AND NOTCHED (Kt=3) AXIAL-STRESS FATIGUE TESTS OF 7175-T736 DIE FORGINGS (R=0.0)

(F33615-71-c-1571)

	13.0		61 812 900#
	16.0	Notched	149 900 161 900 17 204 800# 1 476 000 122 800 19 439 900 67 420 800
1 31	Stress, Ksi 25.0		19 300 24 400 22 700 30 000 23 800
	Maximum Sti		6 960 200 142 300 6 206 500 1 831 900
	55.0	Smooth	57 400 156 500 54 800 71 300 80 700 91 100 41 900
	70.0		13 100 13 700 14 300 19 100 14 900
	Producer		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2	No.		9078 15789 F17961 40005 40005 40005 40006
Sample	Inickness Range, 1n.		1.000 1.001-2.000 2.001-3.000 Lot Mean Life
8 8	Number		410983 410699 410704 410705A 410705C 410705B 410984

Did not fail.

TABLE LVIII

RESULTS OF SMOOTH AND NOTCHED (Kt.=3) AXIAL-STRESS FATIGUE TESTS OF 7049-T73 AND 7175-T736 HAND FORGINGS(R=0.0) (F33615-71-C-1571)

						Smoot	oth	2000				Notched	ped		
Alloy					Cycles to	to Fallure	1	Voles to Fallur	Fallure		Cycles to Fallure	BI		Long Transverse	36
bus	Sample								Maximum	n Stress,					
Тепрег	Number Dimensions, P	lons, F	Producer	65.0	55.0	0.04	65.0	55.0	0.04	25.0	16.0	13.0	25.0	16.0	13.0
7049-TT3		9	A				5 500				-	281			
	#10986 4x16	ο ω ,	4 4·	250	60 100 800 800	20 272 100	900 000 000	30 18 900 900	167 80 80 80 80 80	39 800	15 671 000#	13 028 300#	28 500	11 492 300#	11 251 900#
		0	A			372	4 900				136	958		139	
	Log Mean Life			10 700	37 000	2 592 400	6 200	23 700		25 800			20 800		
7175-1736	410689 2x16	\$0	4	16 000		12 459 900		69 200	-			732		208	530
		u.c	Υď		39,466	8 395 000	77	32		24° 24° 26° 26° 26° 26° 26° 26° 26° 26° 26° 26	2 432 600	10 945 400	23 700	13 287 000#	10 894 600#
		0	A						5 076 100	•	-	875	_	945	504
	Log Mean Life			10 600	45 000	2 268 000	8 700	35 800	_	26 500			29 400		
# Did not fail	: fail.														

TABLE LIX FESULTS OF SMOOTH AND NOTCHED ($K_t=3$) AXIAL-STRESS FATIGUE TESTS OF 7475-T61 SHEET (R=0.0) (F35615-71-C-1571)

	Fallure	15.0	228 300 13 413 00C# 235 800 209 600 601 400	
	Transverse Cycles to Fallure	25.0		27 700
	5	25.0	7 600 7 600 7 600 7 600 8 600 6 600	35
Not.ched	lure	5.0	7 977 200 668 000 26 280 700 32 409 400 241 800 140 900	00/01/2
	Longitudinal	25.0	\$ 68800000000000000000000000000000000000	
		ks1 25.0	7 700 7	
		Maximum Stress,	6 611 700 7 6 611 700 9 14 537 100 7 10 501 700 6 15 974 400# 9 52 168 000# 7 7	
E	Transverse Cycles to Failure	0.04	82 400 229 900 6629 900 6629 900 1111 700 39 917 800 524 100 1 406 500 1 406 500 50 654 200#	
q:		0.07	12.700 11.600 9.800 13.800 23.800 17.000 14.200	
Smooth	Hure	35.0	5 046 700 16 155 700 10 699 800 5 541 500 4 104 200 62 575 100#	
Tongt + 11dt ng T	Cycles to Fa	40.0	1 155 000 1259 700 1259 700 1551 700 15	
		70.0	12 300 12 800 9 200 14 100 19 200 17 700 13 800	
		Producer	.040 A A A A A A A A A A A A A A A A A A	
	Sample	Thickness in.	0.040 0.063 0.090 0.125 0.188 0.188	
	Sal	Number	410651 410652 410657 410657 410657 410657 410657 410659 410669 410660	

* Falled at grip end. # Did not fail.

TABLE LX

RESULTS OF SMOOTH AND NOTCHED (Kt=3) AXIAL STRESS FATIGUE TESTS OF 7475-1761 SHEET (R=0.0)

(F33615-71-C-1571)

				Smooth	oth					Notched	P		
			Longitudinal	1		Transverse			Longitudinal	linal		Tran	Transverse
		Cyc	Cycles To Fallur	ure	0	Cycles To Failure	ure	Cyc	Cycles To Failure	flure		Cycles '	To Failure
Sample							Maximum St	ress, ksi					
Number Thickness, in.	Producer	70.0	40.0	55.0	0.07	40.0	25.0	25.0	25.0	15.0	25.0	25.0	15.0
410888 0.032 410665 0.040 410665 0.045 410666 0.063 410667 0.090 410670 0.125 410671 0.188 410677 0.249	বববববববববব বব	17 700 10 100 9 100 6 600 7 800 6 100 9 700	119 800 1745 800 278 900 102 800 102 800 103 800 104 900 105 9	988 600• 1 366 300 13 240 600 6 051 700 770 200 21 900 500	14 900 13 900 7 600 11 100 6 100 8 800 12 600	26 700 102 600 102 600 102 600 103 600	832 600* 140 800 140 800 15 621 100 206 600 5 897 800 5 897 800 7 494 100#	6 800 6 900 6 900 7 200 7 200 6 200 5 700	\$	636 000 9 866 800 6 045 700 # 17 530 700 219 700 243 900	7 400 7 400 8 000 8 000 6 900 6 100	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 970 900# 5 529 900 17 724 900# 13 331 200 2 503 700 115 800
Log Mean Life		000 6	523 900		10 200			2 000	25 000		9 9	26 500	

Falled at grip end
 # Did not fail.
 x Falled 1" from center.

TABLE LXI RESULTS OF SMOOTH AND NOTCHED AXIAL-STRESS FATIGUE TESTS OF 2124-T851 PLATE (R=0.0)

(F33615-71-C-1571)

Specimen did not fail.

TABLE LXII

RESULTS OF SMOOTH AND NOTCHED (K $_{\rm E}=3$) AXIAL-STRESS FATIGUE TESTS OF 7049-T73 AND 7175-T736 HAND FORGINGS AND 2124-T851 PLATE IN SALT FOG

(F33615-71-C-1571)

	10683 (4-1/2-in.)	Cycles to Failure		68,400	410,200		18,100	3,842,500				
LATE	410683	Max. Stress, ksi		40.0	24.0		20.0	7.0				
2124-T851 PLATE)680 (2-in.)	Cycles to Failure		1.403,200	14,250,800		22,700	13,362,800				
	410680	Max. Stress, ksi		40.1	20.0		20.0	0.6				
	10986 5x20-in.)	Cycles to Failure		314,300*	539,500		19,500	171,500				
7175-T736 HAND FORGING	410986 (5x20-1	Max. Stress, ksi	va _l	40.0	25.9	SN	20.0	11.0				
7175-T736 H	10691 (4x16-1n.)	Cycles to Failure	SMOOTH SPECIMENS	76,900	4,694,600*	NOTCHED SPECIMENS	14,600	80,000				
	410691 (4x16-	Max. Stress, ksi	SMO	40.0		LON	20.0					
	410688 (5x20-in.)	410688 (5x20-in.)	688 20-1n.)	88 0-1n.)	388 20-1n.)	ss to		273,000+	3,968,700+		17,200+	7,922,400*
7049-T73 HAND FORGING			Max. Stress, ksi		40.0	24.0		20.0	11.0			
7049-T73 H	10966 4×16-1n.)	es to		96,000	903,000*+		17,400	2,621,700*				
	410966 (4x16-	Max. Stress, ksi		40.5	24.0		20.0	11.0				

Notes: Long-Transverse 7.30 Dia. Specimens (Fig. 20); R = 0.0, f = 18.3 Hz

^{*}Falled in grip end.

^{*}Fractographic examination(SEM) did not reveal any characteristics of stress corrosion cracking.

Table LXIII

RESULTS OF SMOOTH AND NOTCHED ($\kappa_{\rm t}=3$) AXIAL-STRESS FATIGUE TESTS OF 7475-T61 AND T761 SHEET IN SALT FOG

(F33615-71-C-1571)

	70 -in.)	Cycles to Failure		51,000	0		2,200	1,771,500
61	410670 (0.125-in.	Max. Stress, ksi		40.1	24.0		40.0	13.0
7475-1761	664 0-in.)	Cycles to Failure		29,600	1,276,700*		19,600	3,530,300
	410664 (0.040-in	Max. Stress, ksi	Smooth Specimens	39.9	20.0	Specimens	20.0	10.1
	658 5-in.)	Cycles to Failure	Smooth	62,500	86	Notched	19,700	1,375,100
161	410658 (0.125-in	Max. Stress, ksi		40.0	7		20.0	(4)
7475-T61	52 -in.)	Cycles to Failure		36,200	5,20		20,700	57,3
	410652 (0.040-1r	Max. Stress, ksi		39.9			20.0	0

Notes: Long-transverse sheet type specimens (Fig. 21); R = 0.0, f = 18.3 Hz.

* Failed in grip end.

Table LXIV

RATES OF FATIGUE CRACK PROPAGATION Constant Load Tests (F33615-71-C-1571)

								da/dN	at inc	indicated	ed AK	
Alloy and Temper	Product	Size	Sample se No.	Orientation	Specimen Type	Data Shown in Figs.	Dry 7	Air 12	micro-in./cy Humid Air 7 12	Air 12	Salt 7	Fog+
7049-173	Hand Forging	4x16 5x20 "	410966 410688 ""	H H H H H H H H H H H H H H H H H H H	CTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	72 74 75	N4N4W N0N00	130 140 80 23 70	10 10 7.5 6.55	150 160 95 32 19	11 - 12 12 12	150
7175-1736	Hand Forging	4x16 5x20 "	410691 410986 "	H H H H H H H H H H H H H H H H H H H	CA	77 78 78 81 81	4 WUVLI 0 U O O U	3 5 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16677	400 400 400 400 400	98 10 13 1.4	35 36 70 30
7475-161	Sheet	0.040	410652 410658	111- 1-1	CN	82 84 84	3.00	14 20 17	8.5	38 48 55	11 14 14	42 75
7475-1761	Sheet	0.040	410664 410670	7-L 1-L 1-1	CON	85 86 87	33.0	24 20 15	22.0	32	15	55
2124-T851	Plate	4.5"	410680 410683 "	1-F 1-1 1-3 1-3	CN CN CT	88 89 90 91	31.23	24 12 7 28	44 WW .000	28 15 34	3.5	3 2 8 2 8 2 8

* ksi $\sqrt{1n}$. + indicates time of exposure in tests. R = +1/3; f = 5.2 to 13.3 Hz

TABLE LXV

SYSTEM FOR VISUAL RATING OF EXFOLIATION CORROSION CONTAINED IN ASTM METHOD G34-72

(F33615-71-C-1571)

Code	Classification and Specimen Condition
И	No appreciable attack. Surface may be etched or discolored.
P or P-A,B or C	Pitting. Includes discrete pitting or pit-blistering In the latter case, attack results in a slight under-cutting of the surface, and can occur in varying degrees of severity. The degree of severity of pit-blistering should be indicated by addition of one of the letters A, B or C (increasing order of severity).
E-A,B,C or D	Exfoliation. Visible lifting of the surface. A range of exfoliation can occur of varying degrees of severity. The degree of severity of exfoliation should be indicated by addition of one of the letters A, B, C or D (increasing order of severity). An example of the four degrees of severity). An example of the four degrees of severity is shown in Figure .

TABLE LXVI

RESULTS OF ACCELERATED EXFOLIATION TESTS ON 7049-T73 FORGINGS

(F33615-71-C-1571)

S	Sample		Visual H	Rating*
Number	Thickness or Dimensions, in.	Producer	EXCO	Salt Spray
	PART A -	Die Forging	gs	
410693 410693	≤1.000 ≤1.000	A A	P P(T/2)	
410698 ** 410698	1.001-2.000	A A	P E-A(T/2)	E-A
410697	2.001-3.000	А	Р	
410695		А	Р	
410694	1.001-2.000	В	Р	
410696	2.001-3.000	В	P	
410700	4.001-5.000	В	Р	
	PART B -	- Hand Forgi	 Lngs	
411019**	2x16	А	P	P
410686	3x16	А	E-A	
410966	4x16	А	Р	
410688*	5x20	А	E - B	E-A

NOTE: All test specimens were T/10 panels except those noted to be T/2.

^{*} ASTM Method G34-72 (See Table LXV, Fig. 92)

^{**} T/10 panel from this item also exposed to seacoast atmosphere.

TABLE LXVII

RESULTS OF ACCELERATED EXFOLIATION TESTS ON 7175-T736 FORGINGS

(F33615 71 C 1571)

	(F33615	-71-C-1571)		
S	ample		Visual	Rating*
Number	Thickness or Dimensions, in.	Producer	EXCO	Salt Spray
	PART A -	Die Forging	S	
410983 410983	≤1.000 ≤1.000	A A	P P(T/2)	
410699 ** 410699	1.001-2.000	A A	P P(T/2)	E-A
410704		А	Р	
410706		А	Р	
410705	2.001-3.000	А	Р	
410984		А	Р	
	PART B -	Hand Forgin	gs	
410689**	2x16	А	Р	P
410985	3x12	А	Р	
410691	4x16	А	Р	
410986**	5x20	А	P	P

NOTE: All test specimens were T/10 panels except those noted to be T/2.

^{*} ASTM Method G34-72 (See Table LXV, Fig. 92).

^{**} T/10 panel from this item also exposed to seacoast atmosphere.

TABLE LXVIII RESULTS OF ACCELERATED EXFOLIATION TESTS ON 7475 SHEET (F33615-71-C-1571)

Sam			<u>Visual</u>	Rating* Salt
Number	Thickness,	Producer	EXCO	Spray+
	PART	ГА - 7475-T6	<u>L</u>	
410651 410652 410653 410654 410656 410657 410658 410660 410661 410662	0.040 0.040 0.063 0.063 0.090 0.125 0.125 0.188 0.188 0.249	A A A A A A A A	E-A E-A E-A E-A E-A E-C E-A E-A E-A	P P E-A + P E-C + P P P P P P P
	PART	 В - 7475-T76	51	
410663 410664 410665 4106667 410668 410669 410671 410672 410673 410674	0.040 0.040 0.063 0.063 0.090 0.125 0.125 0.125 0.188 0.188	A A A A A A A A A	P P P P P P P P	P P P P

NOTE: T/10 panels used in all tests.

^{*} ASTM Method G34-72; see Table LXV, Fig. 92. + Lots exposed to salt spray were also exposed to seacoast atmosphere. * Retest

TABLE LXIX

RESULTS OF ACCELERATED EXFOLIATION TESTS ON 2124-T851 PLATE

(F33615-71-C-1571)

S	ample		Visi	ual Rat	
Number	Thickness, in.	Product**	1	2	Salt Spray **
410675	1.75	А	Р	P	P
410680	2.00	C	P	P	
410681	2.04	В	P	P	
410676	2.50	А	P	P	P
410677	3.50	А	P	P	P
410682	4.00	В	P	P	
410678	4.50	А	P	P	P
410683	4.50	C	Р	P	
410679	5.50	А	P	P	P
410684	6.00	C	Р	P	

NOTE: All test specimens were T/10 panels.

^{*} ASTM Method G34-72 (See Table LXV)

^{**} Lots fabricated by Producer A were also exposed to seacoast atmosphere.

⁺ Specimens tested from opposite ends of samples.

^{*} Tested for 144 hrs rather than the 48 hr period specified for 7XXX series alloys.

[†] Tested for 2 weeks rather than the 1 week period specified for 7XXX series alloys.

TABLE LXX

RESULTS OF LONGITUDINAL AND LONG-TRANSVERSE ACCELERATED SCC TESTS ON 7049-T73 AND 7175-T736 DIE FORGINGS

(F33615-71-C-1571)

Original Tensile Properties Ultimate Yield Strength, Strength, Elong, ksi ksi ksi %	PART A - 7049-173	69.7 13.0 13 46 0/3 3 0K 84 72.2 14.0 19 19 0/5 3 0K 84	63.4 10.0 11 32 0/3 3 0K 84 73.3 13.0 20 20 84	PART B - 7175-1736	73.9 14.0 11 55 0/3 3 0K 84 76.2 12.0 16 27 0/3 3 0K 84	71.0 14.0 16 53 0/3 3 0K 84 72.7 12.0 17 32 0K 84
Original Ultimate Strength,		AA	AA		AA	AA
Thickness, Direction*		≤1.000 L 1.001-2.000	\$1.000 1.001-2.000		\$1.000 L	≤ 1.000 1.001-2.000
Sample Number Th		410693 410698	410697 410698		410983 410699	410987 410699

NOTE: 0.125-in. dia. tensile specimens exposed 84 days to 3.5% NaCl-AI per Federal Method 823.

* L-Longitudinal; LT-Long-Transverse.

† F/N denotes number of specimens failed over number exposed.

RESULTS OF SHORT-TRANSVERSE ACCELERATED SCC TESTS ON 7049-T73 AND 7175-T736 DIE FORGINGS (F33615-71-C-1571) TABLE LXXI

Semile	٩			Conductivity	Original 5	Tensile Properties	perties	% Los	% Loss in Tensile Strength			Stressed	ed 45 ks1	SCC Deta	Stressed 35 ks1	Stressed	ed 25 ks1
Number	Thickness, in.	Producer	Test Location	A IACS	Strength, ksi	Strength, ksi	Elong,	Unstressed	Stressed 45 ksi	Stressed 35 ks1	Stressed 25 ks1	FANT	Deys	FM+	Leys	F/N+	Leyn
							PART A -	7049-173									
10692	₹1.000	∢<	3/16" from flash		73.1	4.00	000	17	45	84	11		39,47,51		3-0K84 30,64,0K84	1.1	1 1
10698	1.001-2.000	বেৰ	3/16" from flash		80.5	74.4	00.	197	11	11	11		21,25,74		37,49,62	11	1 1
*10698		A d	3/8" from flash		77.7	68.7	10.5	12	1 1	1 1	1 1		38,44,62		53,53,73	1 1	1-1
410695 410700	2.001-3.000 4.001-5.000	1 < m m	5/8" from flash 3/8" from flash 3/8" from flash	14,17,100	787.7	765.7	1000	1 57 58	19	978 -	111	ulcon)	32,38,44 17,32,0K84 34,44,45	200	57,80,0K84 3-0K 84	111	111
410696* 410697* 410697*#	2.001-3.000	PAB	Perpendicular Perpendicular 3/8" from flash		76.0	67.1	9.0	1991	118	111	111	4/4/4/	14/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/	2/0	3-0K 84	111	111
							PART B -	7175-1736									
110987	₹1.000	A	3/16" from flash		74.9	64.2	0.0	174	1 1	1 1	# 0 H	n/n.	45,46,51		56,75,1-0KB4 57,57,60	11	65,2-0K8 84,2-0K8
#10699 #10699	1.001-2.000	4444	7/16" from flash 7/8" from flash 7/8" from flash	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	122	9882 jnisio	0000	8873	111	75	/a/12/a/	ininini	29,51,77	in co co	12, 12, 14 58, 73, 0K84 42, 57, 0K84	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110984	2.001-3.000	A	5/8" from flash		-			38	1	!	200	2/2	46,50,55		50,05,84	5/0	ONO4
410704* 410705* 410705*	1.001-2.000	444	Perpendicular Perpendicular 3/8" from flash	39.7	75.7	7.89	8.0	552	1861	52	111	4/4/4/	44,77,84 61,64,0K84 3-5K 84	0000	7-0K 84	111	111

NOTE: Test specimens: 0.125-in. dis. tensile specimens unless noted otherwise. Test Environment: $\delta 4$ days to 3.5% NeCl-AI per Pederal Method 827 .

• Retest using 0.225-m diam tensile specimen cannot be positioned across parting plane. First cover tie, tensile specimen cannot be positioned across parting plane. • P/N -in. 0.1D. by 0.005-fin. wall C-ring. • P/N denotes number of specimens failed over number exposed.

TABLE LXXII

COMPARISON OF PER CENT SURVIVAL VERSUS EXPOSURE TIME FOR SHORT-TRANSVERSE SPECIMENS
FROM 7049-IT73 AND 7175-IT36 DIR FONDINGS*

(F33615-71-C-1571)

	Survived			8.58.5528.0573		1667,964,483,886
	% Failed			00000000000000000000000000000000000000		0492400848051
ess Level	Frection			2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 4 2 4		84000000000000000000000000000000000000
35 ks1 Stress Level	Cumulative Failures			100400001101		0.040000401 0.00004040
	No. Of Failures	-1		מרחים מחיוים מ		מחחמשחחחחחחש
	Days of Exposure		_	882288474548	_	\$2472882754 \$4
	& Survived		7049-173	88886688784898	7175-1736	29807099844491
	% Falled	96		1 2 4 8 6 9 8 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9		788488888658788
45 ks1 Stress Level	Fraction	ng - See F1g.		20000000000000000000000000000000000000		WWW. STURE BELLOWNER WAY STURE BELLOWNER WAY STURE BELLOWNER WAY STURE BELLOWNER WAY
45 ks1 S	Cumulative Failures	Data for Plotting - See Fig. 96		100408010400		87044010 8000 tol
	No. of Fallures	Preparation of De		44440040404444		44044004444044
	Days of Exposure	PART A. Prepar		\$2574 57 777777777777777777777777777777777		20000000000000000000000000000000000000
		1				

PART B: Final Comparison of Data

Alloy	Stress, ks1	Expected Life Days*	No. of Tests	Standard Deviation	Possible Error	Range in Days Containing 90% Of the Pailures	Possible Range In Days of Expected (Avg.) Lift
7049-173 7175-1736	24	23	21 18	18.0	9.0%	21 - 57 35 - 57	32 - 46 41 - 51
7049-173 7175-1736	35	28	21	30.9	15.8%	29 - 101	58 - 82 52 - 68

NOTE: 0.125-in. diameter specimens taken perpendicular to or across the parting plane.

+ At a 90 per cent confidence level.

^{* 7049-}T73 - S. Nos. 410693, 410694, 410695, 410698 and 410700 7175-T736 - S. Nos. 410699, 410706, 410983 and 410984

^{*} Mean failure time, equals time for 50 per cent survival.

STATUS OF ATMOSPHERIC SCC TESTS OF 7049-T73 AND 7175-T736 DIE FORGINGS (F33615-71-C-1571) TABLE LXXIII

ata 35 ksi Days Stressed 25 ksi F/N Days	-	3-OK388 63,310,312 1-OK	3-0K265 3-0K312 0/3 3-0K312		3-OK446	1-0K315 0/3 3-0K315 1-0K348 0/3 3-0K348	
SCC Data Stressed 35 F/N+	ere	0/3 2/3 63,3	0/3	Atmosphere	0/3	0/3	
ssed 45 ksi Days	acoast Atmosphere	3-0K388 63,63,90	2-0K265 3- 0K31 2	Industrial Atmos	3-0K446 F348,2-0K348	3-0K315 3-0K348	
Stres F/N+	- Seac	9/3	0/2	- Indu	0/3	0/3	
Producer	PART A	A	A	PART B	A	A	
Sample r Thickness,		<u>4</u> 1.000 1.001-2.000	<pre><1.000 1.001-2.000</pre>		<pre>\$1.000 1.001-2.000</pre>	<pre>≤1.000 1.001-2.000</pre>	
Sar		410693	410983 410699		410693	410983	
Alloy and Temper		7049-T73	7175-1736		7049-173	7175-1736	

NOTE: Short-transverse (0.125-in. dia.) tensile specimens taken 3/8-in. from base of flash.

+ F/N denotes number of specimens failed over number exposed.

TABLE LXXIV
RESULTS OF ACCELERATED SCC TESTS ON 7049-T73 HAND FORGINGS (F33615-71-0-1571)

Number Dimens			Original Tensile Properties	nsile Prop	erties	% Loss In Tensile Strength	In trength	Stressed Yield Stre	Stressed 75% Yield Strength	1			
	Dimensions, in.	Producer	Strength, Strength, Skai	Strength, ksi	Elong,	Unstressed	75% Y.S.	FAN	Deys				
			PART A	1	Longitudinal Tests	t s				ı			
	2x16	А	74.3	9.59	14.0	14	54	0/3	0K84				
41 06 88 5x	5x20	A	72.7	61.5	14.0	16	19	2/0	0K84				
			PART B	1	Long-Transverse	Tests							
411019 2x	2x16	Ą	73.5	65.0	8.0	23	75	0/3	0K84				
410688 5x	5x20	A	4.69	58.3	8.0	56	36	6/0	0K84				
o Camp S			Conditionity	Original T	al Tensil	Tensile Properties	A Lose	n Tensile	Strength	7	At kai		KS KSI
Number Dimensions,	Jons,	Producer	& IACS			Strength, Elong,		ed 45 ksi	Unstressed 45 ksl 35 ksl	F/N+	Deys	F/N+	Days
				집	PART C - S	- Short-Transverse	rse Tests*						
2x2	2x16	A	4.04	73.9	67.1	.1 6.0	32	}	25	3/3	38,47,48	2/3	64,82,1-OK84
410686 3x	3x16	A	40.8	73.2	8.49	.8 10.0	56	!	45	3/3	59,63,72	5/0	OK84
410966 4x	4x16	А	41.3	70.1	58.7	0.6 7.	54	54	41	5/0	OK 84	5/0	0K84
410688 5x2	5x20	A	41.5	68.5	56.7	.7 8.0	12	1	37	3/3	66,78,80	5/0	0K84

NOTE: 0.125-in. diameter tensile specimens exposed 84 days to 3.5% NaCl-AI per Federal Method 823.

* Short-transverse specimens also exposed to seacoast and industrial atmospheres. † $F/\!N$ denotes number of specimens failed over number exposed.

TABLE LXXV
RESULTS OF ACCELERATED SCC TESTS ON 7175-1736 HAND FORGINGS

Days 35 ks1 F/N+ SCC Data Days 45 ks1 F/N+ 25 ks1 % Loss in Tensile Strength SCC Data Stressed 75% Y161d Strength 35 ks1 **OK84 OK8**4 **OK8**4 **OK8**4 45 ks1 0/2 0/2 6/0 0/3 Unstressed (F33615-71-C-1571) % Loss In Tensile Strength Unstressed 75% Y.S. 18 94 28 Tests Original Tensile Properties Ulfimate Yield Strength, Strength, Elong, ksi ksi ksi % PART A - Longitudinal Tests Long-Transverse 12 11 19 Original Tensile Properties
Ultimate Yield
Strength, Strength, Elong,
Ksil 14.0 16.0 14.0 15.0 PART B 67.3 6.99 59.9 65.7 Conductivity % IACS 76.0 9.47 70.1 75.1 Producer Number Dimensions, Producer A A A A Sample Number Dimensions, 2x16 2x16 5x20 5x20 th. 410986 410986 410689 410689

Days

25 ks1 F/N† De ОК84 ОК84 ОК84

500

47,55,70

60,2-0K84

Short-Transverse Tests*

8.0 7.0 8.0

> 66.0 65.5 59.1 64.2

75.0 75.0 69.9

41.0 41.1 41.4

2x16 3x12 4x16 5x20

410689 410985 410691 410986

A A A

99

22 22 24 23 23 23

0/3

60,64,82

3/3

OK84

0/2

OK84

32

50,50,57 80,2-0K84

3/3

35 35

1 20

1 25 13

NOTE: 0.125-in. diameter tensile specimens exposed 84 days to 3.5% NaCl-A.1. per Federal Method 823.

* Short-transverse specimens also exposed to seacoast and industrial atmospheres.
† R/M denotes number of specimens failed over number of specimens exposed.

RESULTS OF ACCELERATED SCC TESTS OF 7475 SHEET (F33615-71-C-1571) TABLE LXXVI

					22222	32	2222	I www
		Preforms	Days		2-0K182 2-0K182 2-0K182 2-0K182	2-0K1	2-0K182 2-0K182 2-0K182	2-0K1
		Pre	FANT		00000	0/5	0000	000 000
	SCC Data	sed 75% Strength	Days	3	2-0K84 2-0K84 2-0K84 2-0K84	2-0K84	2-0K84 2-0K84 2-0K84	2-0K84 2-0K84 2-0K84
		Stressed 75% Yield Strengt	F/N		00000	0/2	0000	000
		In Strength	75% Y.S.		85888 85888	1 17	228	30
Control of the Control of the Control		% Loss Tensile St	Unstressed	- 51	K#78#8		927	7777
The same of the same of the same of		perties	Elong,	_ - Т61 Тещрег	0.0111111111111111111111111111111111111	13.0 - 1761 Temper	100 100 100 100 100 100 100 100 100 100	13.0
j		Tensile Properties	Yield Strength, ksi	PART A	72.6	Д	8000	4.00 2.00
	9	riginal	Ultimate Strength, ksi		08888 2000 2004 2004 2004	8.08	78.3 76.9 74.1	7.7.7 7.0.0.
			Producer		ददददद	¥	444	444
			Sample Inickness,* in.		0.040 0.063 0.090 0.125 0.188	0.249	0.00 0.00 0.00 0.00	000
		•	Number		#10651 #10653 #10653 #10657	4 <u>10661</u>	410663 410665 410667	410669 410671 410673

Test specimens: Long transverse sheet, tensile and preforms Test Environment: 3.5% NaCl-AI per Federal Method 823 Exposure Periods: Tensiles - 84 days, Preforms - 182 days NOTE:

* 0.040 and 0.063-in gage tested full thickness, other gauges machined on one side to 0.063-in. and rolled surface stressed in tension.

† P/N denotes number of specimens failed over number of specimens exposed.

RESULTS OF SCC TESTS OF 2124-T651 PLATE (F33615-71-C-1571) TABLE LXXVII

	1						385
Seacoast Atmosphere*	.S. t Days		1111		1111		78,78,0K28; 78,182,0K34; 3-0K365; 3-0K365; 3-0K365; 3-0K365;
Sea	Stressed F/N+		1111		1111		W 0 0000
	Stt Days		1111	-	1111		7, 84, 84 57, 2-CK84 77, 46, 84 79, 45, 84 60, 2-OK84 7, -0K84 7, -0K84
	Stressed GYS##		1111		1111		WHWHWHOO KAKAKAKAKA
10d 823	Stressed 58% GrS## Deys		1111		1111		24, 0K84 24, 26, 32 41, 42, 63 65, 84, 0K84 3-0K84 57, 64, 0K84
rel Met	Stress GYS F/N†		1111		1111		2 12 12 12 100 00 00 00 00 00 00 00 00 00 00 00 00
84 Days to 3.5% MaCl by Alternate Immersion per Pederal Method 823	Stressed 75%, Y.S. t Days		**************************************		**************************************		1000000 mm
te Imm	Str F/M		0000	- m	2000	ts -	WHIMMINION
1 by Alterna	gth 50% GIS	A - Longitudinal Tests	1111	B - Long-Transverse Tests	7111	C - Short-Transverse Tests	12/13/144
3.5% NaC	le Stren 58% GYS	Longitud	1111	Long-Tre	1111	Short-Tr	21111380
84 Days to	% Loss in Tensile Strength of 75% I.S. 50% GIS	PART A -	113	PART B -	7823	PART C -	
	% Unstressed		8986		38216		K 4 25 64
	Elong,		0,000		0000		w w 4wwo
	Original Tensile Properties Ultimate Yield Strength, Strength, Elong, ksi ksi ksi		0.03.00 0.03.00 0.03.00		200182 5447		2 4 8000 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Original fullimate Strength,		72.0 71.5 67.8		71.5		5 8 8004 4 0 0000
	Producer		∢∪ ∢∪		4040		द ८ छ्दद
	Sample Number Thickness,		2.75 4.50 4.50		4.50		2.00 0.04
	Samp Number		410675 410680 410678 410683		410675 410680 410678 410683		410675 410680 410681 410681 410676

NOTE: 0.125-in. diameter specimen except where noted.

* These items are also being tested at 58 and 50% GTS and in industrial atmosphere. 75% of actual yield strength. ** 58 and 50% of the guaranteed long transverse yield strength. ** 58 and 50% of the guaranteed long transverse yield strength. ** Pketlographic examination detected only transgranular auxiliary cracks in these specimens. ** Retests using 0.225-in. diameter specimens.

TABLE LXXVIII
RESULTS OF SCC TESTS WITH PRECRACKED SPECIMENS
(F33615-71-0-1571)

Metallographic Nature of Cracking At Crack Tip	Intergranular Intergranular Intergranular Intergranular	Intergranular Intergranular Intergranular Intergranular	Intergranular Transgranular Transgranular Transgranular Transgranular
Center of Spec. Total ##	05.00 45.00 75.00	0.32 0.32 0.29 0.30	0.00 52 52 50 60 60 60 60 60
Crack Length - Inches* Specimen Cente tal* Total** T	0.07 0.10 71.0 0.15	0.08 0.00 0.08 0.06	0.037
Crack Len Edge of Specimen	0.02	0.05	0.08 0.09 0.05 0.05
Location in Die Forging (See Fig. 34)	Flange Web Flange Web		
Producer	44 44	स्य स्य	4444
Sample Thickness or Dimensions,		2x16 5x20 2x16 5x20	1.9 k/4.7.
Number	410693 410693 410983 410983	411019 410688 410689 410986	410675 410676 410677 410678 410679
Alloy and Temper	7049-173	7049-173 411019 410689 7175-1736 410689	2124-1851
Product	Die Forging	Hend Forging	Plate

NOTE: Test Specimen: Short-transverse (S-L) double cantilever beam precracked in tension and bolt loaded to pop-in.

Test Environment: Air at 80 F, 45% R.H. plus 3.5% NaCl dropwise three times per day for 30 days.

* Average of duplicate specimens. * Length of the creck that developed in the corrosive environment. ** Includes both the mechanical precrack and the environmental creck.

APPENDIX

TABLE LXXIX

FATIGUE CRACK GROWTH DATA FOR 7049-T73 HAND FORGINGS Constant Load Tests, Stress Ratio = +1/3

(F33615-71-C-1571)

	¥		CLPS.	6.												18, 3HZ		O IN.	KIPS																							
	RI 18.3HZ	E CRACK LINAL PEOCENT BACK CRACKED	10 = 3.90	35.0	37.8	41.8	43.2	40.64	53.4	55.5	58.3	63.1				2	PECCENT	T = 1.5010 IN.	D = 3.87.	36.4	38.1	40.7		51.0	53.9	56.6	62.4	100.1														
	SAZOIN S-I CI SPEC DRY AIR-RI	CIN.	DEX TO	1-460	1.580	1.580	1.900	1.960	2.120	2.240	2.320	3.810				EATTOIN COLOR	1		JAKY LOAD	1.250	1.270	1.360	1.730	1.920	2.050	2.250	2.420	3.810														
	CI SPEC	FROMT		1.250	1.300	1.500	1.550	1.720	1.940	2.070	2.120	2.360				SATIONE .	FRETH		1	1.520	1.630	1.720	. 980	1.960	2.100	2.280	2.450	.810														
	1-5 MI	CYCLES	4126885T1 _7242T23_	51300.	69800.	32900.	71700.	181000.	93900.	98300.	05000.	07500.				1-6 %	CYCLES		-SIZ_7848-I73	.3900.	10200.	5900.	.5199.	4400.	9200.	2599.	1556600.	9399.														
																•			12026	3	- 6	10	33	150	152	155	155	155														
275	1 20 20 20 20 20 20 20 20 20 20 20 20 20	AVG. LENGTH CRACKED	MAKLIDAD BIB. BALKIPS									79.50			ZHZ	LEMETH CIM.) NOTCH PERCENT	CRACKED	500 IN.		20.00	23.50	32.17	39.67	49.67	53.50	65.83	75.50	18.83		Ή	ERCENT	T . TAGS IN	Salve	16.69	18.86	26.38	34.39	41.74	55.43	70.28	16.0	
A10.07 4.247	TOTAL	LENGTH	AD 218.	.500	. 800	1.010	1.115	1.410	1.660	1.920	2.145	2.280	54.5		IR.RI S	TOTAL	(IN.)	7	200	. 600	.825	1.085	1.290	1.490	1.730	1.975	2.265	6.363		242 JA	TOTAL NOTCH P	LIN J	D 218.3		. 565					2.105	-	
	FATTGUE CRACK	AVG.		.140	.290	385	.435	.585	.710	.835	.945	1.055			HUMID A	CRACK (IN.)	AVG.	MAX LO									1.120			ALT FOG	CRACK	RIGHT	MAX LOAD BIB. 39 KIPS	.150	.225	.300	. 410	.620	. 740	.945	2002 -	
CN SPEC	FATIGUE	AVG.	-7242723	.160	.310	.425	.530	.625	.750	588.	1.000	1.130			N SPEC	FATIGUE	AVG.	723	140	.190	295	-425	.525	.620	740	940	. 945			SPECS	LENGTH CIN.) N		!							960		
SAZBIN L-T CN SPFC DRY		CYCLES		36200.	88500.	21300.	37300.	47000.	55900.	62000.	65200.	167000.			SAZOIN L-T CH SPEC HUMID AIRART SAZHZ		CYCLES	-78		25100.	.0058	6800.	16700.	3900.		4700.	107200.			SAZOIN L-T CN SPEC SALT FOGSRT SAZHZ	2000		70							76500.		
5X20			\$18088-L1												5X20			\$10688_L2		10.4	run			000	- 0 0	000		:		24201			\$10688_L3	-	- 2	7.7.	W. W.	996	22.2	51.61	8 8 4	
ZHZ	FRCENT	RIGHT (IN.)	3 KIPS	21.30	29.62	42.93	24.45	96.99	NI SO	A COPS	16.64	23.29	131	40.10	92 IN.	16.64	23.29			41.10	47.59	57.57	70.05	66.17					1				41									
B.RT S.	TOTAL NOTCH	CIN.	AD BIA.	.640	. 900	1.290	1.635	1.925		CLOAD ESQ. 34 KIPS	.500	1000	1.050	1.205	MAX 1 0AD = 18.53 KIPS	.500	.700	.950	1.060	1.235	1.430	1.730	2.105	061.3					İ													
SALT FO	CRACK	AVG.	DAX TO	.225	36.	.550	.725	. 886		DEX.	.145	245	982	. 445	MAX 1 DA	.155	.250	.375	.430	.515	.615	.765	0 0 0	200					İ													
5X201N T-L CN SPEC SALT F06+RT 5.2HZ	FATIGUE	AVG.		.215	340	. 540	.710	. 845		1737 -	.155	255	.450	.560	173	.145	.250	.300	.430	. 520	.615	.765	.965						1													
IN T-L		CYCLES	LS _7848723_	23200.	41900.	55100.	60200.	64000.		-7845		5900.	10000.	.0050	7.049	•	25700.	32300.	3200.	8100.	1500.	******	57100.				0		1	i												
5x20			\$10688KLS							\$126584L6 _724273_					\$10688MLZ _7049723														1	-												
	8.3HZ	CRACKED CRACKED 1.5010 IN.	20_KIPS	35.2				. ~ .				::-	1		747	FATIGUE CRACK TOTAL LEMGTH (IN.) NOTCH PERCENT	KACKED	PLAIPS	16.64	19.30	29.95	38.27	45.09	52.91	63.73	20 IN.	838-80_KIPS	16.64	26.46	35.11	41.26											
	7	CRACK	MD = 3.	5 6 5	569	3 3	15	9 4 4	150	44.5	150	000			R.RT S.	NOTCH P	(IN.)	D =18-	.500	.580	. 900	1-150	1.355	1.590	1.915	27.	4.0EE D	.585	. 795	1.055	1.240											
	F CRACK	BACK	DAGILXAN	1.420	1.500	1.600	1.700	1.820	1.960	2.100	2.200	2.370	1		T-L CN SPEC HUMID AIR.RT 5.2HZ	CRACK	RIGHT	OLX A	.145				.570				DAGL XAM	.190	.295	.410	4.450											
	CT SPEC FATIGUE	FRONT	1718	1.360											N SPEC	FATIGUE	FFT	1723	.155	195	.355	4	585	715	.915		7771	.195	.300	.445	.565											
	SAZOIN T-L CT SPEC HUMID FATIGUE CRACK	CYCLES	\$10688IL9 _7049T23_	6500.	20400	36600.	38600.	45400.	49100.	50500.	52000.	53300.			1		crates	47		13700.	.00009	74400.	81600.	85900.	89600.		L& _7849723	3500.	8700.	11300.	12200.											
	•		* 10688										1		SXZOIN			\$10688ML3									412688LA															
	245	CRACKED CRACKED F =5020 IN.	MO KIPS	33.8	4 1	0 0	2.5			*-			27		Z	PERCENT	CHACKED	BACKIPS	15.31	16.64	23.13	30.28	37.10	43.93	50.75	66.90	72.38	16 IN.	2477	19.96	27.28	33.10										2
	R.RT 18		DAD = 3										-		1.RT 5.2	NOTCH	(MI)	AD 218.	.460	. 500	.695	910	1.115	1.320	1.525	1.950	2.215		3 9	9.	. 820	566.										FIG.
ŧ	E CHACK	FROMT BACK CR.		1.340						2.010	2.140	2.250	3.810		DRY AIR	CRACK	RIGHT	DIE LE	.140	.200	255	.360	94.	.560	. 665	.815	.965	1	951	-205	.315	.400										
	9		2723	1.340						2.110	2.160	2.250	3.810		CN SPEC	LEMETH (IN.) NOTCH P	LEFT	_7849TZ3_	.120	.180	. 240	.350	5.45	.560	. 745	.815	1.040		! .	.195	.305	.395										1mer
	SAZBIN T-L			6700.	50800.	69800.	87400	104000.	115500.	124100.	126400.	28800.	129200.		SAZOIN T-L CN SPEC DRY AIR.RT 5.2 HZ		CICLE 3	-78		38200.	61100.	92200.	10500.	21900.	28500.	34300.	136600.		**************************************	3300.	7500.	8500.										Spec
			1968										1		282			412688WL1											1 HODGOH 1 S													tch
1	1 :	CRACKED CRACKED	1.21 ALP	37.3	5.0	8.3	0.5	48.6	51.2	0.0.	15	59.1	×-:	1	BAZHZ	1	CRACKED	SI KIPS		9.7	6.	0.0	4.	6.7	N 4	- 0	n e			THE	=	SO IN.		- 2	s &	v. eo u	n & e		~ ~	- N 10 =		Center Notch Specimen.
0.07 10	3	173											-		IR.RT 1	30.30	CRACK	AD = 3.	*	2 %	404	41	1 4	4 4	9 5	5,4	56.5	100		28T 18	PECEN	T = 1.4950 IN.	*	35.	40.	45.		4 4	52.0	55.2	100	nte
C 087 4	UE CRACK	BACK		1.510	1.680	1.730	1.950	2.000	2.100	2.150	2.240	2.400	3.810		HWID	E CRACK	FROMI BACK	DAG L XAV	1.330	1.450	1.540	1.580	1.670	1.720	1.950	2.080	2.180	3.810		SALT FO	CRACK	MAX LOAD	1.280	1.320	1.500	1.600	1.700	1.850	1.950	2.050	2.250	3
THE ST TO SEE ON A SEE OF THE SEC OF THE SEC	FATIGUE	FROMI		1.330											SELSIN T-L CT SPEC HIMID AIR, RT 18, 3HZ	FATIGUE	FROMI	-7242723									2.280			SAIBIN I-L CT SPEC SALT FOGSRT 18.3HZ	FATIGUE CRACK	1	٠.	1.400	1.510	1.660	1.790	1.900	2.050	2.290	2.350	S
AIN I-		CYCLES FROM		31400.	47000.	60500.	68100.	76800.	86200.	90200	93500.	94300	94900		1-1 NIS												56000.				-	\$12966_7L3_7049-173	•					58200.		67400.		3
4.8.1	1	410046											1		451		-	412966IL2								4				9176		410966		-	~ ~ .			ar un			200	NOTES
																							,	5.	18	3																

NOTES: CN = Center Notch Specimen, Fig. 23.

Grack lengths are average readings on front and back surface; total notch length includes machined flaw of 0.20 in.

CT = Compact Tension Crack Growth Specimen, Fig. 24. Crack lengths are measured from load line.

T = Specimen thickness.

TABLE LXXX

PATIGUE CRACK GROWTH DATA FOR 7175-T736 HAND FORGINGS Constant Load Tests, Stress Ratio = $\pm 1/3$

(F33615-71-C-1571)

747014 5-7 CT SPEC HOW ALMER 18, 742 CTCLE, EMILL MACA CONTENT CTCLE, EMILL MACA CONTENT 1940-511-21/5-1736, MACA CONTENT 1940-511-21/5-17	\$22014 \$-1 CT \$PEC MMIQ JIR #1 #4 Hr? Allow Cacce Land Line Line Line Line	512814 S-1 CI SPEC SALL FOR AL S. 2022 CVCUTY INDIAN AND ALCOHOL S. 2022 CVCUTY INDIAN AND ALCOHOL S. 2022 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S. 2020 S
This part 1 1 1 1 1 1 1 1 1	\$22014 L-T ON SPEC MANIES ALESAT S.PH.E. ALTONIC CRACK TOTAL ALTONIC C	\$42814 L-1 CH 9PC 54, T POOPE 5, 222 \$41904 CCCCC
STEPLY T. CT SPEC SALT FORM 1.2, 304	TATION C. SALT FOR ST. SALT POR ST. SALT ST. S	
No.	A A A A A A A A A A	
A	\$1220 h 1-4 CN SPC ONT ALCAST 5,2 MG TATION CARCA 1014, 100 CP PP (CRACA) \$11290 ML 1	men, P18, 23.
### 1-CT SPC ORT #10-11 10, PKC ENT # # # # # # # # # # # # # # # # # # #	Alion T. C. SPEC MULLO Albert 18.30. FATION CONT. Alios 1.12.2174-124. — MA. C. SACE 1.00 114. Bibol. 1.2.2174-124. — MA. C. SACE 1.00 114. Bibol. 1.2174-124. — MA. C. SACE 1.00	AMBIN 14 CT PPC SALT FOLDER! 18, DEC. COLOR 18, DEC

NOTES: CN = Center Notch Specimen, Fig. 27.
Crack lengths are average readings on front and back surface;
total notch length includes machined flaw of 0.20 in.

OT = Compact Tension Crack Growth Specimen, Fig. 24.
Crack lengths are measured from load line.

T = Specimen thickness.

219

TABLE LXXXI

FATIGUE CHACK GHOWTH DATA FOR 7475-T61 SHEET Constant Load Tests, Stress Ratio = + 1/3

(F33615-71-C-1571)

.125IN L-T CN SPEC DRY AIR.RT 13.3HZ	FATIGUE CRACK TOTAL EMETH. 13a. HOTH PERCENT CYCLES AVG. AVG. ENGIN CRACKED FFT RIGHT 11a.1	AD = 4.35	.150 .150 .200 .200 .300 .310 .360 .460	.505 .520 1.225 .550 .570 1.320 .600 .630 1.430 .600 .700 1.560	.820 .860 1.760 .820 .860 1.860 .875 .900 1.975 .940 .975 2.115	204900, 1,000 1,005 2,405 86.13 204900, 1,050 1,100 2,150 86.15 205600, 1,175 1,225 2,600 65.00 210500, 1,175 1,225 2,600 65.00 210500, 1,275 1,270 2,725 66.12	1.390 1.465 3.055 1.490 1.620 3.310 1.710 1.900 3.810	CM SPEC HUNID AIR, RT 13.	FATIGUE CRACK TOTAL LEMETH 11AL) NOTCH PERCENT CYCLES ANG. ANG. LEMETH CRACKED LEFT BIGHT INA.)	1,444	.215 .200 .265 .255 .315 .305	.490 .415 1.045 .490 .475 1.165	. 615 . 605 1.420 . 705 . 690 1.595 . 780 . 765 1.745 . 870 . 860 1.930	1.050 2.305 1.145 2.485 1.250 2.690 1.335 2.860	1.655 1.715 3.570		12514 L-T CN SPEC SALT FOGART 13.3HZ		191 5	700. 200 205 15.13 1660. 285 250 665 17.37 21300. 300 285 .795 19.88 27700. 317 325 .910 22.25 31700. 445 .435 1000 27.00	.490 .510 1.200 .580 .550 1.330 .705 .640 1.545	. 825 . 840 1.865 .965 . 950 2.135 1.125 1.090 2.415	1.565 11.85 2.905 1.590 1.480 3.270 1.705 1.635 3.540 1.900 1.900 4.000 1	
. 1251N T-L CN SPEC SALT FOG, RT 13.3HZ	FATIGUE CRACK T LENGTH (IM.) N CYCLES AVG. LE I FFT RIGHT I	1861 T 1862 . ALL TAYL . LOI 2727. IL 820812	0 - 130 1170 590 12.50 9900 - 136 220 - 665 15.13 1000 - 255 275 - 665 17.75 2200 - 255 135 - 262 20.50 2200 - 356 130 130 20.50 2200 - 356 130 130 20.50	. 550 . 515 1.185 . 550 . 580 1.330 . 605 . 675 1.480	. 755 .800 1.755 .905 .960 2.065 1.035 1.020 2.255 1.115 1.175 2.940	00. 1.500 1.900 4.000 1.900 1.900 1.915 1.12	165 .135 .500	5600. 330 310 840 5600. 330 310 840 5600. 440 30 600	9500500 .400 1.180 29.50 9200500 .540 1.300 12.50 9800620 .600 1.420 15.50 19500680 .660 1.440 18.50 1.100540 .740 1.700 42.50	12200870 .850 1.920 12800970 .950 2.120 13300 1.050 1.025 2.275	14200. 1.320 1.555 2.785 1.785 1.600. 1.500 1.400 4.000 1.600. 1.900 1.900 4.000	\$12656_12 _7475_161MAX_LOAD # 3.96	15786. 190 .210 .600 29100270 .290 .760 33700320 .340 .860 37100370 .390 .960	44600420 .446 1.050 44600475 .495 1.170 50900625 .645 1.470 53800720 .740 1.660 54.60780 .805 1.785	56666	62200. 1.280 1.310 2.790 63200. 1.460 1.460 63900. 1.595 1.655 3.450 64000. 1.640 1.755 3.565	20049							
. 125IN T-L CN SPEC HUMID AIR-RT 13.3MZ		LAM 161 2747- 47-820012	14400. 135 165 14400. 185 225 2530. 240 285 34900. 130 420	.505 .5480 1.115 .505 .545 1.250 .570 .615 1.385 .650 .690 1.540	.810 .855 1.865 .900 .945 2.045 .960 1.035 2.195 1.020 1.085 2.305	1.100 1.150 2.450 1.260 1.300 1.300 1.360 2.660 1.470 1.570 3.240 1.570 3.240 1.600 1.900 4.000	1. " T 1. " T IOL _ MAX 101 27	.150 .150 .500 .210 .215 .625 .275 .285 .760	11900352 .330 .973 .64.30 11900355 .390 .975 .64.31 15.000255 .530 1.255 .331 .38 17.00295 .600 1.395 .34.87	.916 .936 2.046	1.035 1.075 2.310 1.165 1.200 2.565 1.540 1.570 3.310 1.900 1.900 4.000	. 1262 IN. 1	.150 .150 .500 .195 .195 .590 .260 .250 .310	.375 .960 .460 1.125 .530 1.265 .595 1.395	10.190	1.060 2.320 1.120 2.435 1.200 2.595 1.270 2.735	1.355 1.360 2.915 1.425 1.435 3.060 1.550 1.575 3.325	1.900 4.000						
90 5365 75	FATIGUE CRACK TOTAL LENGTH LINAL NOTCH PERCENT CYCLES AVG. AVG. LENGTH CRACKED	S 161 - M	40500150 78000295 94900350	.505 .515 1.220 .506 .575 1.335 .543 .640 1.475	.825 .835 1.860 .885 .900 1.985 .930 .960 2.090 1.000 1.040 2.240		1.900 1.900 4.0	21. * 7 2.61 = 040x4v 161 2 2.61 = 051. 051.	7100 185 . 190 . 255 16.37 16.37 16.37 16.37 17.87 2700 260 . 255 . 715 17.87 2700 355 . 365	. 550 . 555 1.185 . 550 . 555 1.305 . 610 . 615 1.4c5	.830 .825 1.710 .830 .825 1.855 .905 .860 1.985	1.170 1.135 2.505	1.900 1.900 4.000											Secondarion Plan
THE E! TO SEE YOU THEN AT 1-1 MINES	Tres	\$10652-11 -7475 IG1MAX_LDAD = .0422 IN.	0135 900180 800235 100305	.430 .485 1.115 .485 .540 1.225 .555 .610 1.365 .635 .680 1.515	.750 .810 1.760 .820 .890 1.910 .885 .955 2.040 .940 1.030 2.170	192500. 1999 1.155 2.295 57.36 199500. 1.155 1.255 2.415 64.27 209900. 1.156 1.215 2.710 64.75 205900. 1.250 1.310 2.710 67.75	1.380 1.570 3.150 1.490 1.900 3.590		AND T-L CN SPEC HMID AIR-RT 13.3HZ FATIOUE CRACK TOTAL EMETH (1M.) NOTON PERCENT CYCLES ANG. ANG. LENGTH CARCKED	1 - 4-22 IN. T - 4-22 IN 4-22 IN 4-22 IN 4-23 IN 4-23 IN 4-24	.150 .150 .500 .240 .240 .680 .290 .290 .780	.475 .470 1.145	.590 .585 1.375 .640 .635 1.475 .725 .725 1.650	.995 1.000 2.195 1.070 1.080 2.350 1.155 1.160 2.515	70000 1.235 1.310 2.815 66.88 70000 1.305 1.310 2.815 70.30 80000 1.350 1.500 2.920 73.00 80500 1.550 1.650 3.100 82.75		.040IN T-L CN SPEC SALT FOG,RT 13.3HZ	FAITOUR CRACK NOTH PERCENT CACLES AVG. AVG. LENGTH CRACKED LET RIGHT (IN.)	\$12052_13_7475_161MAX.LDAD = 1.65.KIPS	.240 .230 .670 .340 .370 .340 .430 .420 1.950	.550 .550 1.300	.730 .730 1.660 .730 1.780 .780 1.940	\$100.00 1.00	1.685 1.900 3.785

NOTES: CN = Center Notch Specimen, Fig. 22.
Crack lengths are averages of readings on front and back surface;
total notch length includes machined flaw of 0.20 in.

T = Specimen thickness.

TABLE LXXXII

PATIGUE CRACK GROWTH DATA FOR 7475-1761 SHEET Constant Load Tests, Stress Ratio = + 1/3

(F33615-71-C-1571)

A A A A A A A A A A	
A A A A A A A A A A	
175 N 14 C 50 C 10 M	
A	

NOTES: ON - Center Notch Specimen, 718, 22.
Crack lengths are averages of readings on front and back surfaces; total notch length includes machined flav of 0.20 in.

T = Specimen thickness.

TABLE LXXXIII

FATIGUE CRACK GROWTH DATA FOR 2144-T651 PLATE Constant Load Tests, Stress Ratio = + 1/3

(F33615-71-C-1571)

		FATIGUE FATIGUE CYCLES FROM	-SL1-212&7851 - JMAX.100	1.220 1.240	1.380 1.420 1.420 1.440 1.470	1.550 1.590 1.600 1.630	1.770 1.730	1.920 1.950		2.160 2.190 2.210 2.250 2.260 2.300	200000. 2.360 2.430 62.9 201000. 2.460 2.430 62.9 201000. 2.460 2.480 64.1 201000. 3.810 3.810 100.1	* Silver or commercial to the Milker	FATIGUE CRACK	SL2_212&T&S1	1.460	1.530 1.560 1.570 1.600 1.630 1.650	1.830	. 1.920 1.950 . 1.970 2.000 . 2.030 2.060	2.190 2.220	116800. 2.240 2.270 59.3 118200. 2.250 2.310 66.4 119500. 2.350 2.400 62.4 120400. 2.400 2.450 63.7	3.810	ヹ	용되니	SL3.21287851 - JAKLIDA	1.490 1.570	1.700 1.590	1.850 1.820	2.020 1.980 2.070 2.010 2.120 2.060	2.210 2.170 2.280 2.230	131600. 2.300 6.300 00.8 131600. 2.300 6.35 134000. 2.500 2.400 65.4 134100. 3.810 3.810 100.1
	4.5IN L-T CN SPEC DRY AIR, RT 5.2HZ	IN LIM.) NOTCH PERCENT AVG. LENGTH CRACKED AVG. LENGTH CRACKED BIGHT T = 7496 IM.	100	.250 .200 .600 19.97 .225 .230 .655 21.80 .275 .240 .735 24.44	.325 .310 .835 27.79 .375 .345 .920 30.62 .430 .390 1.020 33.94	.535 .440 1.120 37.27 .535 .495 1.230 40.93 .585 .530 1.315 43.76	.635 .590 1.425 47.42 .710 .660 1.570 52.25	.875 .780 1.855 61.73 .955 .830 1.985 66.06	397300, 1.895 .910 2.205 73.38 398700, 1.155 .945 2.300 76.54 399300, 1.210 .965 2.375 79.03	CN SPEC HUMID AIR, RT 5, 2HZ	FATIGUE CRACK TOTAL LEMETH IM. 1 NOTCH PERCENT CLES AVG. AVG. LENGTH CRACKED	T = .7500 IN.	.150 .150 .500 16.61 .200 .200 .600 19.93 .255 .245 .700 23.26	.310 .305 .815 .365 .375 .940 .435 .445 1.080	.540 .530 1.175 .540 .530 1.270 .590 .585 1.375		287000895 .890 1.985 65.95 290500975 .985 2.160 71.76 29200. 1.050 1.090 2.340 77.74	1.500 1.510 2.610 86.71		FATIGUE CRACK TOTAL LEMETH (1M.) NOTCH PERCENT CYCLES AVG. AVG. LENGTH CRACKED	AIROBILE 1 21247851 - MAKLDAR BIR.57 KIPS	8290 - 150 - 150 - 500 16.64 4.51N 8290 - 200 - 200 19.97 4.51N 95300 - 240 240 19.97	135506 .340 .340 .680 20.28 171706 .390 .390 .960 32.61 184100 .450 .450 .450 1.100 36.61	.510 .510 1.220 .665 .670 1.535 .795 .790 1.785	.950 .940 2.090 64.23 1.040 1.025 2.265 75.37	1.165 1.115 2.480 82.53 1.200 1.120 2.520 83.86				
1-10-	4.5IN T-L CN SPEC SALT FOG.RT 5.2HZ	FATTERE CRACE TOTAL MOTOR PERCENT CYCLES AWS. AWS. LEAD. MOTOR PERCENT LEADTH LIAL. MOTOR PERCENT LEADTH LIAL. MOTOR PERCENT LEADTH LIAL. MOTOR PERCENT AND	49.91 005. 551. 5	.210 .190 .600 .260 .245 .705 .350 .345 .895	481500400 .400 1.000 33.28 542600475 .425 1.100 36.61 562200505 .495 1.200 39.93	.650 .600 1.450	1.265 1.075 2	7. T T T T T T T T T T T T T T T T T T T	0. 150 .150 .500 16.66 8900210 .200 .600 19.99 15800275 .270 .745 .248.2 20600350 .340 .890 .29.65	.505 1.220 .575 1.350	.045 .045 1.490 .015 .785 1.800 .935 .920 2.055	MAX LOAD BIB-57 XIPS	47000, 210 .250 .500 16.66 47000, 210 .215 .625 20.82 75100, 260 .250 .710 23.65 89700, 290 .250 .775 25.82	.340 .320 .860 .390 .970 .480 .470 1.150	.540 1.280 .595 1.415	.900 .715 1.705 .900 .845 1.945 1.010 .980 2.190			•		gie									
	4+51". T-L CN SPEC HUR	FATTORE CAAC TOTAL LEAGTH ILM HOTCH PERCENT CYCLES AVG. M. LINGTH CRACKED FFT RIGHT LINGTH CRACKED FFT RIGHT LINGTH CRACKED FFT RIGHT CANCELLE AVG.	1120E3LTE-21281ES1 - MAX.LIMIL BIR.34.A.T.	.210 .170 .540	126700320 .315 .635 27.79 149700360 .385 .965 32.11 156200425 .445 1.070 35.61	.520 .530 1.250 .575 .575 1.350	.635 .645 1.480 .680 .695 1.575 .760 .740 1.700	.830 .825 1.855 61.73 .885 .880 1.965 65.39 .960 .915 2.075 69.05	1.115 1.030 2.345 T = T	. 150	16600255 .255 .710 23.64 21800310 .320 .830 27.63 26400365 .375 .940 31.29 29400425 .435 1.060 35.29	.575 .480 1.155 38.45 .530 .535 1.265 42.11 .575 .590 1.365 45.44	.685 .700 .770 .835	AT. " T	.150 .500	.305 .255 .705 .305 .295 .800 .350 .350 .900	.500 .500 1.200 .550 1.300 .550 1	205600, .655 .645 1.500 50.00 209100, .710 .690 1.600 53.33 212500, .755 .745 1.700 56.67 216800, .800 .800 1.800 60.00	.925 .910 2.035	1.075 1.050 2.325 1.075 1.050 2.325										
	4.5IN T-L CN SPEC DRY AIR.RT 5.2HZ	FATIG LENGI CYCLES AVG.	18683LTEC_212&T851 .	.175 .185 .560 .235 .220 .655	.330 .320 .850 .375 .365 .940	.520 .510 1.230 .575 .565 1.340	.690 .675 1.565		314700935 .940 2.075 69.17 316400. 1.000 1.000 2.200 73.33 316800. 1.040 1.055 2.295 76.50	A TARRET TO STATE THE TARK TO A TARK	0140 .160 .500	29100. 300 310 810 37900. 375 360	45900490 .490 1.180 19.28 49000545 .540 1.285 42.78 50600595 .590 1.385 46.11	.650 .635 1.485 .710 .690 1.600 .755 .730 1.685	757. " T 124. ISA I GADL XAM [24. 52.	0165 .135 .500 0215 .175 .590	.260 .225 .685 .300 .250 .750 .350 .310 .860 .460 .345 .955	.535 .445 1.180 .605 .500 1.305	229100. 715 .590 1.505 236200. 765 .640 1.605	241990. 1825 .470 1.695 56.46 249400. 1895 .740 1.835 61.13 253500. 1745 .785 1.960 65.29 256500. 1.445 .835 2.000 69.29	258400. 1.195 .965 2.300 258400. 1.195 .905 2.300									
	2.01N T-L CH SPEC DRY AIR, RT 5.2HZ	GUE CRACK TOTAL TH (IAL) NOTCH PERCENT AVG. LENGTH CRACKED RIGHT (IAL) RIGHT (IAL) - 7565 IN.	MAX LONG BIB-50_KIPS	.145 .155 .500 .185 .195 .580 .245 .245 .690	105700350 .345 .095 29.76 134500410 .395 1.005 33.42 146000470 .440 1.10 36.91	.530 .490 1.220	.715 .645 1.560	.925 .800 1.925 1.010 .855 2.065	A5377 EAA* CC111	2.01N T-L CH SPEC HIMID AIR-RT 5.2HZ	FATIOUE CRACK TOTAL LEMBIN (1M.) NOTCH PERCENT CYCLES AVG. AFG. LENT CRACKED	\$12680LTE2_21287851MAX_LOAD BIB.57_KIPS	.205 .195 .600 .205 .195 .600	.310 .290 .800 .355 .345 .900 .455 .345 .900	15770495 .500 1.195 39.76 1.4960550 .845 1.295 43.11 14980600 .615 1.415 47.10	.660 .665 1.525 50.77 .720 .715 1.635 54.43 .795 .790 1.785 59.42	164-600965 .895 2.000 66.56 165-600970 .965 2.135 71.07 165-600. 1.030 1.035 2.365 75.40		2.01M T-L CH SPEC SALT FOGART 5.2HZ	FATIGUE CRACK TOTAL LENGIN LIM. IN OUTCH PERCENT CYCLES AVG. AVG. LENGTH CRACKED LEFT RIGHT LIM.)	A18680LTE3_21287851 _ MAX_LOAD B18.53_KIPS	.150 .150 .500 .220 .230 .650 .375 .375 .950	13400515 .515 1.230 41.00 13940600 .595 1.395 46.50 14570675 .645 1.546 51.33 14840750 .750 1.700 56.67	.965 .915 2.020	502.5 500.1 000.1					

NOTES: CN = Center Notch Specimen, Fig. 27.
Crack lengths are average readings on front and back surface;
total notch length includes machined flaw of 0.20 in.

CT = Compact Tension Crack Growth Specimen, Fig. 24. Crack lengths are measured from load line.

T = Specimen thickness.

- 1. G. W. Stickley and D. J. Brownhill, "Mechanical Properties of Stress-Relieved Stretched Aluminum Alloy Plate", Technical Report AFML-TDR-64-105, May, 1964.
- 2. J. G. Kaufman, G. E. Nordmark and B. W. Lifka, "Fracture Toughness, Fatigue and Corrosion Characteristics of 7075-T651, 7075-T7351 and 7079-T651 Aluminum Alloys", Technical Report AFML-TR-65-170, May, 1965.
- 3. J. G. Kaufman, G. E. Nordmark and B. W. Lifka, "Fracture Toughness, Fatigue and Corrosion Characteristics of 2020-T651, 2024-T851, 2219-T851 and 7001-T75 Aluminum Alloys", Technical Report AFML-TR-66-291, September, 1966.
- 4. D. J. Brownhill, R. E. Davies and D. O. Sprowls, "Mechanical Properties, Including Fracture Toughness and Fatigue, and Resistance to Stress Corrosion Cracking, of Stress-Relieved Stretched Aluminum Alloy Extrusions", Technical Report AFML-TR-68-34, February, 1968.
- 5. D. J. Brownhill, C. F. Babilon, G. E. Nordmark and D. O. Sprowls, "Mechanical Properties Including Fracture Toughness and Fatigue, Corrosion Characteristics and Fatigue Crack Propagation Rates of Stress-Relieved Aluminum Alloy Hand Forgings", Technical Report AFML-TR-70-10, February, 1970.
- 6. Military Standardization Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, Volume 1, September 1, 1971.
- 7. "Aluminum Standards and Data", The Aluminum Association, 1972-73.
- 8. "Federal Test Method Standard No. 151b", November 1967.
- 9. "Standard Methods of Verification of Testing Machines, E4-64", 1972 Book of ASTM Standards, Part 31.
- 10. "Standard Methods of Tension Testing of Metallic Materials, E8-68", 1972 Book of ASTM Standards, Part 31.
- 11. "Standard Methods of Compression Testing of Metallic Materials, E9-67", 1972 Book of ASTM Standards, Part 31.
- 12. R. E. Davies and J. G. Kaufman, "Effects of Test Method and Specimen Orientation on Shear Strengths of Aluminum Alloys", ASTM Proceedings, Vol. 64, 1964, pp. 999-1010.
- 13. "Standard Method for Pin-Type Bearing Test of Metallic Materials, E238-68", 1972 Book of ASTM Standards, Part 31.
- 14. "Standard Method for Determination of Young's Modulus at Room Temperature, Ell1-61", 1972 Book of ASTM Standards, Part 31.

(Continued)

- 15. "Standard Method of Verification and Classification of Extensometers, E83-67", 1972 Book of ASTM Standards, Part 31.
- 16. D. P. Moon and W. S. Hyler, "MIL_HDBK-5 Guidelines for Presentation of Data", Technical Report AFML-TR-66-386, February, 1967.
- 17. "Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, E399-72", 1972 Book of ASTM Standards, Part 31.
- 18. J. G. Kaufman and A. H. Knoll, "Kahn-Type Tear Tests and Crack Toughness of Aluminum Sheet," Materials Research and Standards, Vol. 4, No. 4, April 1964, pp. 151-155.
- 19. "Fracture Testing of High Strength Sheet Materials", ASTM Bulletin No. 243, January 1960, p. 29; also No. 244, February 1960, p. 18.
- 20. C. E. Fedderson, "Evaluation and Prediction of the Residual Strength of Center-Cracked Tension Panels," Battelle Memorial Institute, Columbus, Ohio (presented at the ASTM Annual Meeting, Toronto, Canada, June, 1970).
- 21. R. H. Heyer and D. F. McCabe, "Plane Stress Fracture Toughness Testing Using a Crack-Line Loaded Specimen", Progress Report for Meeting of Subcommittee I of ASTM Committee E24, March 26, 1969; National Symposium of Fracture Mechanics, Lehigh University, August, 1969.
- 22. C. E. Jasko, C. E. Fedderson and K. B. Davies, "Analysis of Fatigue, Fatigue-Crack Propagation and Fracture Data," Quarterly Progress Report, May 19, 1972, sponsored by NASA Langley Research Center.
- 23. W. F. Brown, Jr. and J. E. Srawley, "Plane Strain Crack Toughness Testing of High Strength Metallic Materials", ASTM STP No. 410, 1967.
- 24. W. G. Clark, Jr., ASTM E24.4, "Fatigue Crack Growth Rate Testing Round Robin Program", Task Group Progress Report No. 3, May 14, 1971.
- 25. "Standard Method of Test for Exfoliation Corrosion Susceptibility in 7XXX Series Copper-Containing Aluminum Alloys (EXCO Tests)", G34-72, 1972 Book of ASTM Standards, Part 31.

(Continued)

- 26. B. F. Brown, Naval Research Laboratory, Washington, D.C., "Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys", 1972.
 - M. V. Hyatt and M. O. Speidel, "High Strength Aluminum Alloys", ARPA Order No. 878.
- 27. C. L. Harmsworth, "Evaluation of Landing Gears Fabrication from 7175-T736 and 7049-T73 Aluminum Alloys", May 25, 1972.
- 28. R. E. Jones, "Fracture Toughness and Fatigue Crack Growth Properties of 7175-T736 Aluminum Alloy Forgings at Several Temperatures", Technical Report AFML-TR-72-1, February, 1972.
- 29. K. J. Oswalt, "Engineering Property Evaluation of 7049-T73 Die Forged Material", Northrop Corporation Aircraft Division Report, March 5, 1971.
- 30. O. L. Deel and H. Mindlin, "Engineering Data on New and Emerging Structural Materials", Technical Report AFML-TR-70-252, October 1970.
- 31. R. R. Cervay, "Engineering Design Data for Aluminum Alloy 7475 in the T761 and T61 Condition", Technical Report AFML-TR-72-173, September 1972.
- 32. D. Y. Wang, "Plane-Stress Fracture Toughness and Fatigue Crack Propagation of Aluminum Alloy Wide Panels; Douglas Aircraft Company Paper 6054.
- 33. D. E. McCabe and R. H. Heyer, "Test Method -- Fracture Toughness Measured by Crack Growth Resistance; Armco-Research and Technology Report, February 25, 1971.
- 34. C. N. Freed, A. M. Sullivan and J. Stoop, "Crack-Growth Resistance Characteristics of High Strength Sheet Alloys", Naval Research Laboratory Report 7374, January 31, 1972.
- 35. A. F. Liu and J. M. Van Orden, "Evaluation of X7475-T61 Clad Sheet", Lockheed California Company, Report LR-24951, February, 1972.

(Concluded)

- 36. G. E. Nordmark and J. G. Kaufman, "Fatigue-Crack Propagation Characteristics of Aluminum Alloys in Thick Sections," Engineering Fracture Mechanics, Vol. 4, pp. 193-204, 1972.
- 37. C. F. Lewis, "Statistics A Useful Tool for the Examination of Corrosion Data", Corrosion, 9, No. 1, 38 (1953) January.
- 38. B. W. Lifka and D. O. Sprowls, "Stress Corrosion Testing", ASTM Special Technical Publication No. 425, 342 (1967).

Security Classification

DOCUMENT CO	NTROL DATA - R&								
(Security classification of title, body of abstract and index	ing annotation must be en	tered when	the overall report is classified)						
1. ORIGINATING ACTIVITY (Corporate author)		2a. REPO	RT SECURITY C LASSIFICATION						
Aluminum Company of America		Ţ	INCLASSIFIED						
		2 b. GROU							
3 REPORT TITLE									
Mechanical Properties, Fracture Tou	ghness. Fatigue	Enwiw	commont ol						
Fatigue Crack Growth Rates and Corr	osion Character	istics	of High-						
Toughness Aluminum Alloy Forgings.	Sheet and Plate								
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)									
Final May 1971 - February 1973									
5. AUTHOR(S) (Last name, first name, initial) C. F. Robilon, P. U. M. C. R.									
C. F. Babilon, R. H. Wygonik, G. E.	Nordmark and B	.W. Lif	ka						
6. REPORT DATE	74. TOTAL NO. OF PA	0.50							
	74 FORERO. OF PA	.025	76. NO. OF REFS						
F33615-71-C-1571	94. ORIGINATOR'S RE	PORT NUM							
199019-71-0-1971		- OIL HOM							
b. PROJECT NO.									
7381									
738106	9 b. OTHER REPORT N	o(S) (Any	other numbers that may be assigned						
d.	AFML-TI	R-73-83							
10. A VAIL ABILITY/LIMITATION NOTICES									
Approved for Public Release; Distrib	ution Unlimited								
,									
11. SUPPL EMENTARY NOTES	12. SPONSORING MILIT	ARY ACTIV	VITY						
None	Air Force Materials Laboratory(MAAE) Air Force Systems Command								
	Wright-Patters	son Air	Force Base, Ohio						
13. ABSTRACT The mechanical properties, in	ncluding toughne	on and	Sotions Soti						
crack growth rates and corrosion chara	acteristics have	hoan	datamminad for a tatal						
01 JU 1018 DI /U49=1/3 and /1/5=1/736	forgings 7475 T	67 and	Traca -1 -1						
2124-T851 plate. Supplemental data for plate are also presented.	or bare and Alcl	ad 7475	sheet and 2124-T851						
Tables of computed design mechani									
and combigosive fattkent moduling clients	hara nranarad								
Ine plane-strain strass-intensity	facton Kt w	oe date	rmined for the forging						
and plate samples and the critical strange sheet samples.	ess-intensity i	actor,	Kc, determined for the						
Log-mean fatigue lives were calcu	lated from test	s made	in ambient sin. Avial						
COLUMN TACIBLE CEDID MELE MINO MADE IT	THE REPORT TO A PROPERTY	19 25 A 20 MM A 14							
The rates of latigue crack propagation of these products generally do not									
vary significantly with specimen orientation. Humid and salt fog environments increased the rate of fatigue crack propagation for most specimens. Propagation									
The Cartest of the Cartest of the Country of the cartest of the ca									
7475-T61, 7475-T761 and Alclad 7475-T6 for 7175-T736 and 7075-T7352 hand forg		ly equi	valent as are rates						
ine (1/2-1/20 lorgings, 7475-1761	sheet and 2124	-T851 -	late have a high						
resistance to exidiation while the 70	49-T73 forging	and the	7475_T61 shoot show						
some susceptibility to exiolistion.	II of the mater	iple av	a magistant to start						
Corresion exicilation. All of the mat	erials are reci	etant +	a atmosa comment						
cracking when stressed in the longitud The resistance to SCC in the short-tra	inal and long-t	MANAMAN	ma mania dimentina						
representative of the respective alloy	s and tempers.	on of a	II the materials is						

UNCLASSIFIED

Fracture-Toughness

Fatigue

Security Classifi	ication					- 15	
14.	KEY WORDS	LIN	LINE	(B	LINKC		
	ROLE	WT	ROLE	WT	ROLE	WT	
7049	Crack Propagation						
7175	Stress-Corrosion						
7475	Exfoliation						
2124		1		1		1	
Aluminum							
Die Forgings					*		
Hand Forgings							
Sheet				1			
Plate		1					
Tensile							
Compressive							
Shear							
Bearing							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: It appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSO: ING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED