MATLAB CHEAT SHEET - MODELING AND SIMULATION

Small variables like x and y will be either row or column vectors and A will always be a matrix. (You can click on the blue hyperlinks in the cheat sheet!)

Basic Commands	
clc	Clear command window
clear (all)	Clear all variables
close all	Close all plots
clf	Clear all plots
doc command	Extensive help page for command
help command	Quick help page for command
%This is a comment	Indicates a comment
a = 5;	Semicolon suppresses output
whos	Lists all variables defined
<pre>disp('text')</pre>	Print text
save 'file.mat'	Save variables to file.mat
load 'file.mat'	Load variables from file.mat
diary on	Record input/output to file diary

Keyboard Shortcuts	
F1	Help/documentation for highlighted function
F5	Run Code
F9	Run highlighted code
F10	Run code line
F11	Run code line, enter functions
F12	Insert break point
Ctrl-D	Open highlighted codes file
Ctrl-R	Comment code
Ctrl-T	Uncomment code
Ctrl-N	Open new script
Ctrl-W	Close script
Ctrl-C	Abort operation

Entries o	f Matrices and Vectors
abs(x)	The absolute value of x
eps	Floating point accuracy
1e6	10^{6}
sum(x)	Sums elements in x
round	Rounds to the nearest integer
ceil	Rounds to nearest integer greater than or equal to that element
fix	Rounds to the nearest integer toward zero
floor	Rounds to the nearest integer less than or equal to that element

Cell Manipulation	
x = cell(a, b)	a × b cell array
x{n,m}	Access cell element n,m
<pre>cell2mat(x)</pre>	Transforms cell to matrix

Manipulation of Variables	
a = 500	Define variable a to be 500
x = [3, 1, 4]	Set x to be the row vector $[3,1,4]$
x = [3; 1; 4]	Set x to be the column vector $[3,1,4]^T$
A = [3, 1, 4, 1; 5, 9, 2, 6; 5, 3, 5, 8]	Set A to be a 3×4 matrix
x(2) = 7	Change x from $\left[3,1,4\right]$ to $\left[3,7,4\right]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Basic Arithmetic and Functions	
1*2, 3+4, 5-6, 7/8	Multiply, add, subtract and divide
2^8	Compute 2 ⁸
sqrt(16)	Compute $\sqrt{16}$
log(5)	Compute $\ln(5)$
log10(100)	Compute $\log_{10}(100)$
abs(-10)	Compute $ -10 $
sin(2*pi/6)	Compute $\sin(2\pi/6)$
ceil(3.8)	Outputs 4.0
floor(3.8)	Outputs 3.0

Construct Matrices and Vectors	
zeros(5, 5)	Create a 5×5 matrix of zeros (Pre-Allocation!)
ones(6, 7)	Create a 6×7 matrix of ones
eye(3)	Create a 3×3 identity matrix
eye(9, 10)	Make a 9×10 identity matrix
linspace(X, Y, N)	Generates N points between X and Y
logspace(X1, Y1, N1)	Creates a vector with N1 elements where the log of the spacing is evenly increasing between X1 and Y1
1:99	Row vector of $1, 2, \ldots, 88, 99$

Operation	s on Matrices and Vectors
x + 5	Add 5 to every element of x
x + y	Elementwise addition of two vectors x and y
10 * x	Multiply every element of x by 10
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices (Important if matrices are not quadratic)
A ^ 4	Square matrix A to the fourth power
A .^ 4	Every element of A to the fourth power
cos(A)	Compute the cosine of every element of ${\cal A}$
abs(A)	Compute the absolute values of every element of ${\cal A}$
Α'	Transpose of A
det(A)	Compute the determinant of A
size(A)	Get the size of A

MATLAB CHEAT SHEET - MODELING AND SIMULATION

Plotting	
plot(x,y)	Plot y versus x (same dimension!)
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a log scale)
semilogx(x, y)	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x text')</pre>	Add a label to the x axis
<pre>ylabel('y text')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid on/off	Add a grid to the plot
figure	Start a new plot
figure(i)	i th figure
<pre>subplot(a,b,c)</pre>	For multiple figures in one plot
hold on	Retains current figure when adding new stuf
hold off	Default settings (no hold on!)
set(fig1, 'LineWidth', 2)	Change line width
<pre>set(fig1, 'LineStyle', '-')</pre>	Change dot marker
set(fig1, 'Marker', '.')	Change marker type
set(fig1, 'MarkerSize', 10)	Change marker size
set(fig1, 'FontSize', 14)	Change font size

Entries of Matrices and Vectors	
x(5:8)	The $5^{ m th}$ to the $8^{ m th}$ elements of x
x(5:end)	The $5^{ ext{th}}$ to the last elements of x
x(1:2:end)	Every second element of \boldsymbol{x} from the first to last
A(3,:)	Get the third row of A
A(:,5)	Get the $5^{ m th}$ column of A
A(5, 2:5)	Get the first to fifth elements in the 5 th row

Constants	
pi	$\pi = 3.1415926533$
Inf	Infinity
NaN	Not a number (i.e. $0/0$)
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest positive floating-point number $2.2251 \cdot 10^{-308}$

Debugging	
tic	Starts timer
toc	Stops timer
try/catch	Good to track errors
dbclear	Clears breakpoints
break	Terminates execution of for/while loop

Data Import & Export	
xlsread/xlswrite	Spreadsheets (.xls,.xlsm)
load/save -ascii	Text files (txt,csv)
load/save	Matlab Files (.m)
imread/imwrite	Image Files

Solving linear equations	
inv(A)	Compute the inverse A^{-1}
eig(A)	Compute the eigenvalues of \boldsymbol{A}
[L,U,P] = lu(A)	The LU factorization $PA = LU$
[V,D] = eig(A)	V are the eigenvectors of A , and the diagonals $diag(D)$ are the eigenvalues of A
A\b	Compute the solution x to $Ax = b$

MATLAB CHEAT SHEET - MODELING AND SIMULATION

Logicals a = 20; % Assign a the value of 10 a == 5 % Test if a is equal to 5 false a == 20 % Test if a is equal to 10 true a >= 5 % Test if a is greater than or equal to 5 true a < 11 % Test if a is less than 11 false % Test if a is not equal to 4 a ~= 4 true $a > 1 \ \&\& a \sim = 10 \ \%$ Test if a is greater than 1 AND false % not equal to 10 $a > 1 \mid\mid a \sim= 5 \%$ Test if a is greater than 1 OR % not equal to 10

```
conditional Statements

if a > 90
    disp('Greater than 90');
elseif a == 90
    disp('a is 90');
else
    disp('None of the conditions is mets');
end
```

```
While loops

k = 0;
while k < 5
    k = k + 1;
end</pre>
```

```
functions

function [a, b] = testfct(x, y)
    a = x + y;
    b = x * y;
end

testfct(2, 3) %Call function in script or command window
```

```
Function Handles

sqr = @(n) n.^2;

x = sqr(3) %Outputs 9
```

```
Plotting & Subplot
x = linspace(-5*pi, 5*pi, 1000);
y1 = sin(x);
y2 = cos(x);
plot(x, y1, 'g-', 'LineWidth',3); % Plot black sin(x) curve
                                                % Adding additional curve
plot(x, y2, 'r-', 'LineWidth',3); % Plot red cos(x) curve
grid on
set(gca,'fontsize',20)
% Set the axis limits
axis([-5*pi, 5*pi, -1.5, 1.5])
% Add axis labels
xlabel('x', 'FontSize',20);
ylabel('y', 'FontSize',20);
title('A plot of cos(x) and sin(x)', 'FontSize', 20);
legend('sin(x)', 'cos(x)');
% Code for Subplots
x = linspace(0,10,50);
y = rand(50,1);
\label{eq:color_sin} $$ \sup \{0,2,1\}, \ plot(x,\sin(x),\ 'Color',\ 'red',\ 'LineWidth',3) $$ set(gca,\ 'fontsize',14) $$ axis([0,2*pi,-1,1]), axis square
\label{eq:subplot} $$\sup (2,2,2)$, $$plot(x,\cos(x),'Linewidth',3,'Color','blue')$ $$set(gca,'fontsize',14)$ $$axis([0,2*pi,-1,1])$, axis square
subplot(2,2,3:4)
y2 = rand(50,1); plot(x,y2,'LineWidth',3) set(gca,'fontsize',14)
                     A plot of cos(x) and sin(x)
    1.5
                                                       sin(x)
                                                       cos(x)
     0.5
       0
    -0.5
    -1.5
        -15
                -10
                          -5
                                   0
                                                   10
                                                            15
        0.5
                                       0.5
                                       -0.5
```