ADVANCED THRUST VECTOR CONTROL PRELIMINARY DESIGN COMPUTER PROGRAM

Volume I Program Description Book 1 Requirements

THIOKOL / WASATCH DIVISION

A DIVISION OF THIOKOL CHEMICAL CORPORATION

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE ROCKET PROPULSION LABORATORY EDWARDS AIR FORCE BASE, CALIFORNIA

Best Available Copy

FOREWORD

The ASC/TMC Preliminary Design Computer Program for air and surface launched missiles was developed under Contract F04611-71-C-0013 by the Thiokol Chemical Corporation, Wasatch Division, Brigham City, Utah. The program was started on 1 October 1970 and completed on 1 September 1972. The Air Force Project Monitor was 14 Louis Fox, MKCD.

Wasatch Division personnel who contributed significantly to development of the computer program and to preparation of this final report are identified in the following tabulation.

NAME

AREA OF RESPONSIBILITY

Management

J. W. Wilson, A.-R. Osburn
B. C. Brinton, L. F. Carter,
D. P. Dahle
Program Managers
Project Engineer and Principal Investigators

Technical

L. F. Carter Trajectory, duty cycle, test cases and evaluation study G. L. Dewcy. Aerodynamics R. A. Ellis, D. P. Dahle Nozzle design J. R. Lavery, B. H. Prescott Nozzle torque Actuation and roll system J. A. Poyd T. L. Nickens LITVC actuation and pressurization D. M. Cox Hot gas TVC L. H. Erickson LITVC performance S. V. Peterson Jet tabs V. L. Ruggles Mass properties

Computer programing

Scientific Programing Section

Technical Documentation

Publications Department

This icchaical report has been reviewed and is approved.

Charliss II., Cooke Chief, Solid Rocket Division

Security Classification	*			
-	DOCUMENT CONT			
: (Security classification of title,		annotation must be e		
Thiokol Chemical Corporate	uthor) tion		1	CURITY CLASSIFICATION
Wasatch Division			Unclass	illed
Brigham City, UT 84302		-	26. GROUP	,
a. REPORT TITLE Advanced Thrust Vector C	ontrol Preliminary I	Design Comput	er Progra	m:
Volume I Program Descrip	_			
Book 1 Requirements	,			
4. DESCRIPTIVE NOTES (Type of report			·	
Final Report 1 Oct 1970 to				
	Alfred R. Randall Charles W. Vogt			
6. REPORT DATE	·	78. TOTAL NO. OF	PAGES	76. NO. OF REFS
September 1972		645		-
SE. CONTRACT OR GRANT NO.		98. ORIGINATOR'S		BER(\$)
F04611-71-C-0013		872-34438		
	<u></u>			
·		Sb. OTHER REPOR	T NO(S) (Any o	ther numbers that may be availaned
d	•	AFRPL-T	R-72-75	
10. DISTRIBUTION STATEMENT		%		
Approved for public releas	se; distribution unlin	nited	u.	
13. SUPPLEMENTARY NOTES		12 sponsoning a	Propulsion	vitt n Laboratory
		Edwards A		₹
•		California		

UNCLASSIFIED ABSTRACT

This Cmai report documents work accomplished under contract F04611-71-C-0013. The program discussion describes the intent and c. pabilities of the computer program which was developed to (1) evaluate preliminary duty cycles for missile systems, (2) develop smallications for the control system being employed, (3) perform preliminary design analysis on any of the consol options, and (4) predict the performance capability of a vehicle utilizing the control system characteristics obtained from the program. The seven potential control inputs are liquid injection thrust vector control, hot gas thrust vector control, gimbal ring, ball and socket, flexible seal, jet tabs, and acrodynamic surfaces. The program has the capability to determine the thrust magnitude required to fly any one of the six types of trajectories where thrust vector and thrust magnitude control is required. The nezzle design capability includes two types of fixed nozzles and five types of movable nezzles. The program also incorporates design capability for pintle nozzle single chamber thrust magnitude control with or without thrust vector control. Two material options are available for case design, metal and filament wound glass. A three dimensional six degrees of freedom trajectory routine is available in the program.

UNCLASSIFIED ABSTRACT

This final report documents work accomplished under contract F04611-71-C-0013. The program discussion describes the intent and capabilities of the computer program which was developed to (1) evaluate preliminary duty cycles for missile systems, (2) develop specifications for the control system being employed, (3) perform prelimmary design analysis on any of the control options, and (4) predict the performance capability of a vehicle utilizing the control system characteristics obtained from the program. The seven potential control inputs are liquid injection thrust vector control, hot gas thrust vector centrol, gimbal ring, ball and socket, flexible seal, jet tabs, and aerodynamic surfaces. The program has the capability to determine the thrust magnitude required to fly any one of the six types of trajectories where thrust vector and thrust magnitude centrel is required. The nozzle design capability includes two types of fixed nozzles and five types of movable nozzles. The program also incorporates design capability for pintle nozzle single chamber thrust magnitude control with or without thrust vector control. Two material options are available for case design, metal and filament wound glass. A three dimensional six degrees of freedom trajectory routine is available in the program.

TABLE OF CONTENTS

			Page
I	PRO	OGRAM SUMMARY	1
п	AE	RODYNAMIC COEFFICIENTS	7
	- ~ À.	Eody Axial Force Coefficient	7
		1. Forebody Pressure Forces	9
		2. Viscous Forces (Skin Friction)	9
	-	3. Base Pressure Forces	12
		4. Total Axial Force Coefficient	12
-		5. Nomenclature	12
	B.	Body Subsenie - Transonie Normal Force Coefficient	15
		1. Normal Force Coefficient Slope	16
		2. Normal Force Center of Pressure	\sim
	c.	Body Supersonic Normal Force Coefficient	
	•	1. Normal Force Coefficient Slope	
		2. Unit Normal Force Loading Distribution	,
		3. Normal Force Center of Pressure	4.
	÷	4. Limits on Parameters	54
		5. Nomenclature	56 -
		6. Subscripts	57-
	D.	Lifting Surfaces Aerodynamic Paramèters	59
	٥.	1. Basic Force and Moment Equations	59
	:	2. Input Parameters	65
-		3. Determination of Parameters	71
		4. Lifting Surface Weight and Center-of-Gravity	81
_		5. Equations for Lifting Surface Geometric	•
		Parameters	86
-		6. Nomenclature	87
		7. Subscripts	93
		t. bussoupes	00
Ш	SIX	DEGREES OF FREEDOM TRAJECTORY PROGRAM	95
	Α.	Introduction	95
	•	1. Diagrams	98
-		2 Definitions	98

TABLE OF CONTENTS (Cont)

		Page
B.	Equations of Motion	220
	1. Linear Momenta Equations	220
	2. Angular Momenta Equations	226
c.	Control Tables	229
	1. Mede Control Table	229
	2. Flight Control Table	231
	3. Thrust Modulation Control Table	255
D.	Attitude Control System	268
	1. Pitch and Yaw Thrust Deflections	269
	2. Roll Centrol	280
E.	Missile Location	285
	1. Altitude and Earth Centered Coordinates	285
	2. Heading Azimuth, Latitude and Longitude	286
	3. Ground and Slant Ranges	287
F.	Flight Environment and Forces	289
	1. Atmospheric Parameters	289-
	2. Winds	293
	3. Angles of Attack and Side Slip	306
	4. Mach Number and Dynamic Pressure	311
G.	Aerodynamic Characteristics	312
	1. Aerodynamic Stages	312
	2. Aerodynamic Moments	322
H.	Missile Thrust and Weight	331
	1. Thrust-Weight Stages	331
	2. Thrust Forces and Moments	369
	3. Vehicle Weight	377
I.	Mass Properties	381
	1. Center-of-Gravity	581
	2. Moments of Inertia	383
	3. Lever Arms	386
J.	Trajectory Parameters	388
- •	1. Orbital Elements and Impact Determinations	389
	2. Integrals	400
-	3. Target Position	403
	4. Missile-Target Coordinates	406
Ī	5. General	411
	6. TVC Requirements and Duty Cycle	418

HOLDER BERNESSER STATE OF THE SECOND OF THE

TABLE OF CONTENTS (Cont)

			Page
	к.	Trajectory Logic	437
		1. Initiation - Termination	437
		2. Compute Time	442
		3. Print	449
	L.	Hunting Procedure	452
		1. Incremental Hunting Procedure (P1)	452
		2. Simultaneous Hunting Procedure (P2)	457
	-	3. Special Routines	468
	M.	Input	495
		1. General Input	495
		2. Input L-Number List	496
		3. Switching Code	520
		4. Load Sheets	557
	N.	Printout	586
		1. Input Print	586
		2. Output Print	603
IV	RO	LL CONTROL REQUIREMENTS	629
	Α.	Linkage with Trajectory Routine	629
		Program Instructions	630
		1. Roll Torque	636
		2. Roll Control Subroutine Nomenclature	639
		•	

LIST OF ILLUSTRATIONS

Figure		Page
1	Subsonic-Transonic Normal Force Parameter, K1	17
2	Subsonic-Transonic Normal Force Parameter, K2	17
3	Subsonic-Transonic Normal Force Parameter	19
4	Subsonic-Transonic Center of Pressure Parameter, K3	20
5	Subsonic-Transonic Center of Pressure Parameter, K4	20
6	Body Description	23
7	Missile Axis System	66
8	Lifting Surface Geometry Parameters	67
9	Lifting Surfaces Pitch, Yaw, and Deflection Angles and Force Coefficients	68
10	Cruciform Configuration	69
11	Range of Aspect Ratios Accommodated for Calculation of $C_{L\alpha}$	70
12	Subsonic Linear Lift Curve Slope	72
13	Supersonic Linear Lift Curve Slope	73
14	Nonlinear Lift Factor	74
15	Turbulent Skin Friction Coefficient for Insulated Flat Plate	77
16	Center of Pressure Factor	79
177	2 D. Coowlingto Systems	99

LIST OF ILLUSTRATIONS (Cont)

Figure		Page
18	Euler Angles	100
19	Forces and Rates	101
**	Aerodynamic Control Fin Schematte	192
21	Thrust Vector Control Schematic	103
23	Control Loop Diagram	104
23	Vehicle Attitude Errors	105
24	3-D Missile Location	106
25	3-D Down Range-Cross Range Coordinates	107
26	Impact Parameters	108
27	3-D Angles of Attack	109
28	Clustered Motor Configuration	110
29	Typical Variation of Thrust History	111
30	Maximum TVC Deflection Angle vs Stage Listoff Weight	633
31	Offset Distance vs Case Diameter	635
32	Maximum qa vs Vacuum Thrust to Weight	638

LIST OF TABLES

Table		Page
1	Stored Mach Number Tables	8.
2	Subsonic and Transonic Forebody Pressure Drag Coefficient (KFE)	10
3	Variation of Reynold's Number Per Foot vs Mach	11.
4	Base Pressure Coefficient (CPB)	: 13
3	References	2 5
6	Equations for T for a Convex Corner	36
· 7 .	Equations for I for a Concave Corner	. 37
⊋ 8	Values of CNATC Per Degree	44
<u>.</u> 9	Variation of Reynold's Number Per Foot vs Mach Number	76

SECTION I

PROGRAM SUMMARY

The preliminary design and evaluation of a thrust vector control (TVC) system previously required the expenditure of considerable effort and time over a period of months.

To alleviate this situation, the Rocket Propulsion Laboratory. Edwards Air Force Base. California, funded the first TVC design program, under Contract AF 04(611)-9720, which was completed by Thiokol in 1964. Subsequent changes in state-of-the-art and a need to expand this capability led to the program entitled. "Advanced Thrust Vector Control Preliminary Design Program" developed under Contract AF 04(611)-11647. The program resulting from this contract is described in the "Final Report, Advanced Thrust Vector Control Preliminary Design Computer Program." January 1968, designated Technical Report AFRPL-TR-67-318. Subsequent further changes in the state-of-the-art and the need to expand the TVC design capability to provide advanced steering and thrust magnitude control (ASC/TMC) led to the program described in this report. This additional capability was accomplished through additions and modifications to the previously developed Advanced TVC Preliminary Design Computer Program. The major additions to this program are:

- 1. Capability to determine the thrust magnitude required to fly any one of six types of trajectorios where thrust vector and thrust magnitude control is required; and
- 2. Design capability for a pintle nozzle single chamber thrust magnitude control concept with or without TVC.

Additionally, data permanently stored within the computer program have been improved and equations have been updated for use in the current subroutines for the design and performance prediction functions. Changes have been made to improve basic accuracy and to extend the range applicability of the design models to include nozzle designs with throat diameters ranging from 0.5 to 100 inches. Included in the models updated are the nozzle, torque and actuation subroutines.

The program also has been modified to improve its efficiency through allowing more flexibility in performing multiple runs, minimizing program input requirements, and improving capability for debugging program input through the use of computer print flags.

A three-dimensional, six degrees of freedom trajectory routine is available in this computer program. Included is the capability to simulate a linear control system using either input or internally calculated control system gains. An associated optimization procedure for flight path shaping is included. The complete discussion of the trajectory routine is contained in subsequent sections of this book. The nozzle design capability provided in this computer program represents comprehensive design calculations for two types of fixed nozzles and five types of movable nozzles: submerged fixed; external fixed; subsonic splitline, hinged, integral, submerged inlet supersonic splitline; and external inlet supersonic splitline. The exit cone design can be either conical or contoured. The output from the nozzle subroutine includes nozzle dimensional characteristics, nozzle performance parameters, and nozzle mass properties information.

Additionally, a pintle nozzle subroutine has been added which is capable of designing a movable pintle for nozzle throat area control. This subroutine has been so designed and integrated that a pintle can be incorporated in any of the nozzle types in which this feature is practical. These types are the subsonic splitling, external fixed hinged, integral and external entry supersonic splitline.

The pintle nozzle subroutine generally applies to the nozzle designs

incorporating an external inlet (convergent cone), rather than for those with submerged inlets. In addition, provision has been made to design a pintle for use with integral nozzles which have gimbal ring or flexible seal TVC.

The incorporation of a pintle does not affect the incorporation of TVC in any of these designs. The program includes an election of the preferred material. For throats less than 10 in. in diameter, tungsten is the preferred material. Solid tungsten pintles are designed for throat diameters less than 2 in. in diameter, while tungsten shell pintles are designed for throat diameters between 2 and 10 inches. Ablatives are preferred for pintles larger than 10 in. in diameter. The full range of insulation and structural materials is included in the rozzle routine for the remaining pintle components. Thermal sizing is accomplished with the insulation design section; structural sizing is part of the pintle subroutine. Provision for area balancing of the pintles is incorporated. The pintle will be supported by insulated struts with the number to vary from two to six.

The pintle will be hydraulically actuated by a single, double-acting actuator for small sized and an optional annular actuator for the larger pintles. Fluid is supplied and returned through the passages in the struts. The actuation auxiliary power unit is sized in the actuation and roll control subroutine.

The computer program includes capability for simulation of a nonprogramed thrust profile. Thrust control systems simulated are either a
perfect system (i.e., achieved thrust equals commanded thrust), or a pintle
controller network. The pintle controller commands the time rate change of throat
area from a control law consisting of a chamber pressure error with time rate change
feedback. Thrust control modes incorporated include: specific velocity-time
profile, axial acceleration proportional to line of sight rates, constant Mach
number, thrust proportional to commanded turning rates, minimum velocity

during a commanded turn, and dynamic pressure constraints.

The pintle nozzle TMC portion of the program defines performance, structure, insulation, actuation, and system components for both fixed and movable nozzles.

The thrust control system logic used in the trajectory simulation is broken into two separate parts: (I) the command thrust logic, and (2) the centrollable motor thrust dynamics. The command thrust logic, or thrust control law chosen, will provide the needed thrust command for the motor to enable the missile system to achieve the desired trajectory condition. The criteria for evaluating the commanded thrust is established by flight performance parameters such as specified velocity history, stipulated Mach number, commanded turning rates, minimum velocity or constrained dynamic pressure.

This final report is organized into three basic volumes:

- Program Description
- II User's Manual
- III Test Cases

Volume I contains a summary of equations used in formulating the mathematical models used in the program. This volume contains two major books: Book I - Requirements, and Book 2 - Hardware. The trajectory documentation is included as a separate section in Book I, as are the zerodynamic coefficients and the roll control requirements. Book 2 of Volume I includes a complete description of the nardware and component design routines and theory.

THE WASHINGTON TO THE WASHINGT

In Volume II - User's Manual, instructions for use of the program are given; however, the input portion of the trajectory program write-up is also needed for reference by the user.

Sample test cases are contained in Volume III. The description of each

test case is given, along with a listing of the computer input card deck and a reproduction of the complete computer output.

References to the source of the material used in developing this program are included in the particular sections to which they apply.

SECTION II

AERODYNAMIC COEFFICIENTS

The subroutines contained in this section provide the capability of determining the forces and moments generated on a missile by the flow of air over the external surface of an airborne vehicle. The approach used was to separate the forces and moments into two groups: those produced on the missile body (payload, motors, interstages, etc.), and those produced on the lifting surfaces (canards, fins).

The forces are represented by the nondimensional lift coefficient, C_{NZ} for bodies, C_{LZ} and $C_{L\delta}$ for canards and fins, and the drag coefficients, C_{A} for bodies, and C_{DO} and C_{DL} for canards and fins. The moments are determined from the forces and the point of application, referred to as centers of pressure. The coefficients are calculated at the Mach numbers listed in Table 1.

Included in the subroutine generated for lifting surfaces is the capability of calculating a weight estimate of the surfaces and the location of their longitudinal and lateral center-of-gravity.

A. BODY AXIAL FORCE COEFFICIENT

This subsection presents the method used for calculating the aerodynamic extal force coefficient of a body of revolution in axial flow which is composed of con.; cone-frustums, and cylindrical sections.

The total aerodynamic axial force of a body is composed of three separate components: forebody pressure forces, viscous forces (skin friction), and the base pressure forces. The axial force coefficient for each of these forces must be calculated separately.

TABLE 1
STORED MACH NUMBER TABLES

First Stage Mach No.		Upper Stage Mach No.
0.00		1.25
0.50		1.50
0.75		2.00
0.95		2.50
1.00		3.00
1.25	***	4.00
1.50		5.00
2.00		6.00
2.60	:	8.00
3.00		10.00
4.00	ng Signal Signal	
5.00		
6.00		
8.00		-
10.00		-

FOREBODY PRESSURE FORCES

$$c_{A_{FB}} = c_{P_{FB}} \frac{D_2^2 - D_1^2}{D_{rer}^2}$$
 (1)

$$c_{P_{FB}} = c_{P_1} + c_{P_2}$$

$$= 2.1 \sin^2 \sigma + \frac{\sin \sigma}{2 \sqrt{M^2 - 1}}$$
 (2)

The forebody axial force coefficient is calculated separately for each section of the body, which is either a cone or cone frustum. Where the first section of a body is a blunted cone and the equivalent nose radius is less than 20 percent of the cone base radius, the section can be considered as a pointed cone. The axial force coefficient, C_{AFB} , is calculated for M = 3.0; the value at M = 3.0 is multiplied by the factor K_{FB} shown in Table 2. Thus,

$$(C_{A_{FB}})_{M} = 2.0 = (K_{FB})_{M} = 2.0 = (C_{A_{FB}})_{M} = 3.0$$
 (3)

and so on for values of $M \le 3.0$.

The pressure coefficient $C_{\mbox{\sc P}_{\mbox{\sc PB}}}$ is calculated using Equation 2.

2. VISCOUS FORCES (SKIN FRICTION)

$$c_{AF} = c_F \frac{A_{\text{wet}}}{S_{\text{ref}}} \tag{4}$$

The axial force coefficient due to the viscous effects of the fluid is a function of Reynold's No., Mach No., and the surface area in contact with the fluid. Typ. al values of Reynold's No. per foot vs Mach No. are provided in Table 3 for a small ballistic missile, a larger ballistic missile, a large booster type vehicle, and a small air launched missile. To determine the flat plate coefficient, Cp. Reynold's No. vs Mach No. must be calculated in the foll wing manner. Using Table 3, RN/ft is determined

TABLE 2
SUBSONIC AND TRANSONIC FOREBODY
PRESSURE DRAG COEFFICIENT (KFB)

Mach No.	$\frac{K_{FB}}{}$
Ò. 00-	0.36
0.50	0.36
· 0.75	0.53
0.95	1.00
1.00	1.24
1.25:	1.71
1.50	1.58
2.00	1.31
2.60	1.09
3.00	1.00
3.00	1.00
3,00	1.00
3.00	1.00
3.00	1.00

TABLE 3 VARIATION OF REYNOLD'S NUMBER PER FOOT VS MACH NUMBER

Mach		(R _N /ft) 10 ^{-6*}		
No.	11)	(2)	_(3)_	(4)
0.00	3.70	3.30	3.55	1.976
0.50	-3.70	3.30	3.55	1,976
0.75	5.25	4.62	4.68	2.964
0.95	6.25	5. 55	5.45	3.754
1.00	6.50	5.77	5.55	3,952
1.25	7.47	6.57	6.21	4.940
1.50	8.22	7.13	6.75	5.928
2.00	9.02	7.87	7.40	7.904
2.60	9.20	8.21	₌ 7.50	10, 275
3.00	- 8.90	8.15	7.04	11.856
4.00	7.00	6.70	4.52	15.808
5.00	4.75	4.85	2.62	19.760
6.00	3.10	3.40	1.44	23,712
8.00	1.05	1.18	0.48	31 . €16
10.00	0.45	0.42	0.36	39.520

^{* (1)} Small ballistic missile

⁽²⁾ Large ballistic missile
(3) Large booster vehicle
(4) Small air launched missile

at a particular Mach number. Then $R_N = R_H/ft \times L$, where L is the length of the missile in feet from the nose to the end of the aft skirt. Knowing K_N and Mach No., the appropriate value of C_F can be calculated using Eq 5.

$$c_{F} = \left[\frac{0.445}{(\log_{10} R_{N})^{2.58}}\right] \left[(1 + 0.162 M^{2})^{-0.58} \right]$$
 (5)

The parameter A_{wet} is the total surface area of the missile excluding the base area. Total wetted area is the sum of the wetted area of the parts; therefore,

SOUNDERSON SOUNDERSON SOUNDESCONDESSON SOUNDESSON SOUND

 $C_{A_{\mathbf{F}}}$ then can be calculated using Eq 4.

3. BASE PRESSURE FORCES

$$c_{AB} = -c_{P_B} \frac{A_{base}}{S_{ref}} \tag{7}$$

Buse pressure coefficient, Cp_B , vs Mach No. is given in Table 4. The effective base area, A_{base} , is considered equal to one-half the difference between the base area of the missile and the total nozzle exit area. Using Eq 7, CAB then is calculated.

4. TOTAL AXIAL FURCE COEFFICIENT

Total axial force coefficient is as shown in Eq 8.

$$c_A = c_{AFB} + c_{AF} + c_{AB} \tag{8}$$

5. NOMENCIATURE

Symbol	Definition	Units
D ₂	Largest diameter of a frustum of a cone	ไล้-
D ₁	Smallest diameter of a frustum of a cone	in.

TABLE 4 BASE PRESSURE COEFFICIENT (C_{PB})

First Stage		Upper Stages		
<u>M</u>	c_{p_B}	M	c_{p_B}	
0.00	-0.800	1.25	-0.289	
0.50	-0.483	1.50	-0.206	
0.75	-0.417	2.00	-0.152	
0.95	-0.466	2.60	-0.116	
1.00	-0.516	3.00	-0.098	
1.25	-0.289	4.00	-0.067	
1.50	-9.206	5.60	-0.047	
2.00	-0.152	6.00	-0.032	
2.60	-0.116	8.00	-0.013	
3.00	-0.098	10.00	-0.000	
1,00	-0.067			
5.00	-0.047	-		
6.00	-0.932	-	- 3	
3.00	-0.013		-	
10,00	-0.000	•	-	

<u>Ŝyabel</u>	Definition	Unita
S	Semivertex angle of a cone or fructum of a cone	deg
K ^{BB'}	Subsonic and transonic forebody pressure drag factor	din.
$c_{A_{\mathbf{F}B}}$	Forebody axial force coefficient due to pressure	Cim.
CPFE	Forebody pressure coefficient $\left(C_{p} = \frac{p - p_{q}}{q}\right)$	dim.
9	Pressure on local surface	1b/sq ft
Pa	Aubient pressure	lb/sq ft
q	Dynamic pressure	1b/sq ft
Dréf	Reference dismeter (usually taken as diameter of largest motor)	ft .
CAP	Axial force coefficient due to viscous forces	dim.
R _N	Reynold's No. $\left(R_{N} = \frac{\text{oVL}}{\mu} = \frac{\text{VL}}{12}\right)$	địm.
·ρ	Density of air	šlug/cu fţ
ÿ	Velocity	ft/sec
L	Characteristic length (length of missile)	ft
. µ	Viscosity of air	slug/ft sec
ั _ง	Kinematic viscosity of air, p/µ	sq ft/sec
C _F	Flat plate skin friction coefficient	dim.
Awet	Missile wetted area (surface area in contact with the sir)	sq ft
Sref	Reference area $\left(\frac{r}{4}\frac{D_{ref}^2}{4}\right)$	sq ft
-C _{AB}	Axial force coefficient due to base pressure	dim.
c _{PB}	Base pressure coefficient $\left(C_{B} = \frac{P_{B} - P_{a}}{q}\right)$	dim.
PB	Base pressure	1b/sq ft
Abase	Effective base area of missile (hosse " > (cross- sections: area of motor base minus nozzle exit area	aç ft

THE EX THE PROPERTY OF THE PRO

B. BODY SUBSONIC-TRANSONIC NORMAL FORCE COEF

This subroutine is used to calculate the initial slope of the normal force coefficient vs angle of attack and the longitudinal position of the normal force coefficient center of pressure over the subsonic-transonic range of Mach numbers. The method used is applicable to bodies of revolution which are composed of conical sections (cones and cone frustums) and cylinders, such as are encountered with most ballistic missile configurations. One restraint must be applied to conical sections: the slope of these sections must be forward facing (no boat-tail sections) at zero angle of attack.

This procedure for determining $C_{N_{CC}}$ and x_{CP} for the subsonic-cransonic Mach No. range is limited to the No. range of M = 0 to M = 2.0.

1. NORMAL FORCE COEFFICIENT SLOPE

The initial slope of the curve of normal force coefficient, C_N , versus angle of attack, α , is defined in this procedure by the following equation.

$$C_{N_{G}} = \left(\frac{dC_{N}}{d\alpha}\right)_{\alpha = 0} = K_{N} \left[\frac{A_{B}}{S} \sin 2\alpha \cos \alpha/2 + \eta C_{d_{C}} A_{p}/S \sin^{2}\alpha\right]$$
(1)

where $\alpha = 1^{\circ}$.

Therefore;
$$C_{NC} = K_N[.0349 A_B/S + .00031 \eta C_{d_C} A_P/S]$$
 (2)

= .0349
$$K_{\tilde{N}} A_{\tilde{B}}/S + .00031 K_{\tilde{N}} C_{\tilde{d}_{\tilde{G}}} \eta A_{\tilde{P}}/S$$
 (2a)

$$= K_1 A_B/S - K_2 \eta A_2/S$$
 (35)

The factors K_1 and K_2 are functions of Maci number only and are provided in Figures 1 and 2. The factors S_{ref} , A_B , and A_p , and a_B are functions of body geometry and are defined below.

Specifical area of the first stage motor cylindrical section (S = $\frac{\pi}{4} \frac{d^2}{cyl}$) and is the reference area on which C_N is based. (ft²)

Cross-sectional area of the largest cylindrical section if there is no conical frustum on the aft end of the vehicle. If there is a conical frustum on the aft end of the vehicle, A_B is equal to the cross-sectional area of the conical frustum at the point of its largest diameter. (ft²)

Planform area of the total vehicle which is the lateral projected area of the body. As the vehicle will be composed of comes, conical frustume, and cylinders, the areas of these sections are as follows: (ft²)

Cones and Conical Frustums

$$\Delta A_p = \left(\frac{d_n + d_{n+1}}{2}\right)(x_{n+1} - x_n)$$
 (3)

Figure 1. Subsonic-Transonic Normal Force Parameter K₁

Figure 2. Subsonic-Transonic Normal Force Parameter \mathbf{K}_2

Cylinder

$$\Delta A_p = d_n(x_{n+1} - x_n)$$

$$X_n = x_{n+1}$$

Therefore:

$$\Lambda_p = \Sigma \Delta \Lambda_p + \Sigma \Delta \Lambda_p + \Sigma \Delta \Lambda_p$$
cones conical cylinder frustum

L/d Total body fineness ratio where L is the length of the body, and d is the diameter of the largest cylindrical section.

(nondimensional)

η Factor which is a function of total body fineness ratio.
(Figure 3) (nondimensional)

K₁, K₂ Constants which are a function of Mach number. (Figures 1 and 2) (nondimensional)

2. NORMAL FORCE CENTER OF PRESSURE

The normal force center of pressure, x_{cp} , as defined in this procedure, is the location of a point, measured from the nose reference station of the vehicle, at which the total normal force acting on the body could be placed to produce the same moment about the body nose reference station as would the distributed normal force.

The following equation is used to calculate this parameter:

$$x_{cp} = x_{1} - \frac{K_{x}}{C_{N_{x}}} \left\{ .4188 \left[\frac{Q - A_{BL}}{S_{ref}} \right] - .60366 x_{c} \eta C_{d_{c}} A_{p} / S_{ref} \right\}$$

$$= x_{1} - \frac{1}{C_{N_{x}}} \left\{ .4188 K_{x} \left[\frac{Q - A_{BL}}{S_{ref}} \right] - .60366 K_{x} C_{d_{c}} x_{c} \eta A_{p} / S_{ref} \right\}$$
(5a)

$$= x_1 - \frac{1}{c_{\text{K}\alpha}} \left\{ K_3 \left[\frac{Q - A_B L}{S_{\text{ref}}} \right] - K_4 x_c \eta A_p / S_{\text{ref}} \right\}$$
 (inches) (5b)

The parameters A_B , S_{ref} , η , L, A_p , and C_{K_2} are the same as defined for the purpose of calculating the slope of the normal force coefficient, C_{K_2} . The factors K_1 and K_4 are a function of Mach number and are provided in Figures 4 and 5, while Q and K_2 are functions of body geometry and are defined as follows:

Figure 3. Subsonic-Transonic Normal Force Parameter η

Figure 4. Subsonic-Transonic Center of Pressure Parameter K3

Figure 5. Subsonic-Transonic Center of Pressure Parameter K4

Centroid of Cones and Frustums

$$\ddot{x} = x_n + (x_{n+1} - x_n) \left[\frac{3(d_n/2) + 2!(d_{n+1}/2) - (d_n/2)!}{6(d_n/2) + 3!(d_{n+1}/2) - (d_n/2)!} \right]$$

NOTE: For a cone $d_n = 0$

Centrold of Cylinder

$$\bar{x} = x_n + \left(\frac{x_{n+1} - x_n}{2}\right) \tag{7}$$

Q

Body volume of the total venicle (Figure 6). The equations to be used to calculate the volumes of the cones, conical frustums, and cylinders are as follows: (ft³)

Cones and Conical Frustums

$$\Delta Q = \pi \left(\frac{x_{n+1} - x_n}{3}\right) \left[\left(\frac{d_n}{2}\right)^2 + \left(\frac{d_n}{2}\right) \left(\frac{d_{n+1}}{2}\right) + \left(\frac{d_{n+1}}{2}\right)^2 \right]$$

$$+ \left(\frac{d_{n+1}}{2}\right)^2$$
(8)

NOTE: For A cone $d_n = 0$

Cylinder

$$\Delta Q = \pi \left(\frac{d_{n+1}}{2}\right)^2 (x_{n+1} - x_n)$$
 (9)

Therefore

L

Length of vehicle (ft)

x

Centroid of the total planform area measured from the body nose along the body longitudinal axis. (ft)

$$x_{c} = \frac{\Sigma \text{ Moment of Area}}{\Sigma \text{ Area}} = \frac{\Sigma \Delta A p \tilde{x}}{\Sigma \Delta A p} - x_{1}$$
 (10)

Figure 6. Body Description

C. BODY SUPERSONIC NORMAL FORCE COEFFICIENT

The method described herein has been generated for the purpose of calculating the slope of the normal force coefficient, C_{NC} , the normal force center of pressure, $x_{\rm cp}$, and the normal force loading distribution, ${\rm d}C_{NC}/{\rm d}x$, for a pointed nose body of revolution near zero angle of attack in supersonic air flow. The Mach number range for this method is considered to be from 2.60 to 10. This method is based on second-order shock expansion theory as presented in reference 1* and an extension of the method derived in reference 2*.

Though the current approach was intended to produce a means of calculating values of the above parameters for a body of revolution composed of conical and cylindrical sections, bodies with curved profiles can be accommodated by approximating curved sections with straight line sections.

1. NORMAL FORCE COEFFICIENT SLOPE, CNO

Beginning with the standard definition for the normal force coefficient, $\mathbf{C}_{\mathbf{N}},$ we have

$$C_{N} = \frac{N}{q S_{ref}}$$
 (1)

$$= \frac{N}{\frac{\gamma}{2} P_{\infty} M_{\infty}^2 S_{\text{ref}}}$$
 (1a)

$$= \frac{2}{\sum_{P_{\infty} M_{\infty}^{Z} S_{\text{ref}}}} \int_{0}^{1} \int_{0}^{\pi} P r \cos \varphi \, d\varphi \, dx \qquad (1b)$$

$$= \frac{4}{\gamma P_{\infty} M_{\infty}^2 S_{\text{ref}}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} P r \cos \varphi \, d\varphi \, dx \qquad (1c)$$

As the slope of the normal force coefficient is desired, the equation for $\mathbf{C_N}$ is differentiated with respect to angle of attack, α . Thus

$$C_{NCZ} = \frac{dC_N}{dG} = \frac{4}{7 P_m H_m^2 S_{rot}} \int_{0}^{1} \int_{0}^{\pi} \frac{dP}{d\alpha} r \cos \varphi \, d\varphi \, dx \qquad (2)$$

^{*}These references are listed in Table 5.

TABLE 5

REFERENCES

- 1. Syvertson, C. A. and Dennis, D. H.: A Second-Order Shock-Expansion Method Applicable to Bodies of Revolution Near Zero Lift. NACA TR-1328.
- 2. Capiaux, R.: An Extension of Second-Order Shock-Expansion Theory. IMSD 48381, Lockheed Aircraft Corporation.
- 3. Blick, E. F.: "Similarity Rule Estimation Methods for Cones,"

 AIAA Journal Volume 1, Number 10, 2,415-2,416, 1963.
- 4. Linnell, R. D. and Bailey, J. Z.: "Similarity-Rule Estimation Methods for Cones and Parabolic Noses," <u>Journal Aeronautical Sciences</u>. 23, 796-797 (1956).
- 5. Sims, J. L.: <u>Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack</u>. NASA SP-3007.

Now defining Λ as the non-dimensional loading on a chin disk, the equation for Λ is

$$\Lambda = \frac{2}{7 P_{\infty} M_{\infty}^2 \pi} \int_{0}^{\pi} \frac{dP}{d\alpha} \cos \varphi \, d\varphi$$
 (3)

and the equation for $\mathbf{C}_{\mathbf{N}\mathbf{C}}$, after substitution, becomes

$$c_{N\alpha} = \frac{2\pi}{A_B} \int_0^2 \Lambda r \, dx \tag{4}$$

where $A_B = \pi r_i^2$ and r_i is the radius at the base of the body section for which C_{NC} is being calculated.

The basic problem at this point is to define the loading parameter, Λ , for each section of the body. As shown by equation (3), to define Λ it is necessary to define $\frac{dP}{d\alpha}$. In reference 1, the pressure at any point on the body is defined as

$$P = P_{c} - (P_{c} - P_{2}) e^{-\eta}$$
 (5)

$$= (1 - e^{-\eta}) P_c + e^{-\eta} P_2$$
 (5a)

Differenting with respect to angle of attack, α , gives

$$\frac{dP}{d\alpha} = (1 - e^{-\eta}) \frac{dP_c}{d\alpha} + e^{-\eta} \left[\frac{dP_2}{d\alpha} \right]$$
 (6)

where

$$\eta = (\frac{\partial P_2}{\partial S}) \frac{x - x_2}{(P_c - P_2) \cos \sigma_2} \tag{7}$$

Referring to equations (3) and (6), we can define Λ as

$$A = A_a + A_b \tag{8}$$

where

$$\Lambda_{g} = \frac{2}{\gamma P_{\infty} M_{\infty}^{Z}} \int_{0}^{\pi} (1 - e^{-\eta}) \frac{dP_{c}}{d\alpha} \cos \varphi d\varphi$$
 (9)

=
$$(1 - e^{-\eta})$$
 tan $\sigma C_{NCL_{TC}}$ (9a)

and

$$\Lambda_{\rm b} = \frac{2}{\gamma P_{\rm co} M_{\rm co}^2 \pi} \int_{0}^{\pi} e^{-\eta} \frac{dP_{\rm b}}{d\phi} \cos \phi \, d\phi \qquad (10)$$

$$= e^{-\eta} \Gamma$$
 (10a)

where

$$\Gamma = \frac{2}{7 P_{\infty} M_{\infty}^2 \pi} \int_{0}^{\pi} \frac{dP_{2}}{d\alpha} \cos \varphi \, d\varphi \tag{11}$$

Thus

$$\Lambda = (1 - e^{-\eta}) \tan \sigma C_{NX_{TC}} + e^{-\eta} r$$
 (12)

with

$$\Lambda = \Lambda_a + i\Lambda_b \tag{8}$$

then

$$c_{N\alpha} = c_{N\alpha_a} + c_{N\alpha_b} \tag{13}$$

and the value of C_{NC} for each body section can be calculated in two increments:

$$c_{NX_a} = \frac{2\pi}{A_8} \int_0^1 (1 - e^{-\eta}) \tan \sigma c_{NX_{TC}} r dx$$
 (14)

and

$$c_{N\alpha_b} = \frac{2\pi}{A_B} \int_0^1 e^{-\eta} \Gamma r dx$$
 (15)

Two parameters now remain to be defined, $(\partial P/\partial S)_2$ in equation (7) and $dP_2/d\alpha$ in equation (11). Each must be defined separately for convex corners and concave corners.

A convex corner, as used herein, is defined as a corner for which the section downstream of the corner has an angle σ which is smaller than the angle σ of the section upstream of the corner. It follows then that a concave corner is one where the angle σ of the downstream section is larger than the angle σ of the upstream section.

The definitions of $(\partial P/\partial S)_2$, which are contained in reference 1, for convex and concave corners will be used in this method. They are, with substitution of symbols:

Convex Corner

$$\left(\frac{\partial P}{\partial S}\right)_{2} = \frac{b_{z}}{r} \left(\frac{\Omega_{1}}{\Omega_{z}} \sin \sigma_{1} - \sin \sigma_{z}\right) + \frac{b_{z}}{b_{1}} \frac{\Omega_{1}}{\Omega_{z}} \left(\frac{\partial P}{\partial S}\right)_{1}$$
(16)

where

$$b = \frac{7 P M^2}{2(M^2 - 1)} \tag{17}$$

$$\Omega = \frac{1}{M} \left[\frac{1 + \left(\frac{\gamma - 1}{2} \right) M^2}{\frac{\gamma + 1}{2}} \right]^{\frac{\gamma + 1}{2(\gamma + 1)}}$$
(18)

$$\left(\frac{\partial P}{\partial S}\right)_{1} = \left(\frac{\partial P}{\partial S}\right)_{3} = \left(\frac{P_{c} - P_{2}}{P_{c} - P_{2}}\right) \left(\frac{\partial P}{\partial S}\right)_{2} \tag{19}$$

$$= e^{-\eta_3} \left(\frac{\partial P}{\partial S} \right)_2 \tag{19a}$$

THE PROPERTY OF THE PROPERTY O

Concave Corner

$$\frac{\left(\frac{\partial P}{\partial S}\right)_{2}}{\cot \left(\varepsilon + \sigma_{1} - \sigma_{2}\right) + \tan \mu_{2}} \left\{\frac{2b_{2}}{r} \left[\frac{\sin \varepsilon \sin \sigma_{1}}{\sin(\varepsilon + \sigma_{1} - \sigma_{2})} - \sin \sigma_{2}\right] + \left(\frac{\partial P}{\partial S}\right)_{1} \left[\frac{b_{2}}{\sin(\varepsilon + \sigma_{1} - \sigma_{2})} + \left(\frac{P_{2}}{P_{1}} - F\right) \frac{\cos \varepsilon \tan \mu_{2}}{\sin(\varepsilon + \sigma_{1} - \sigma_{2})}\right]\right\} \tag{20}$$

$$\mu = \sin^{-1}\left(\frac{1}{M}\right) \tag{21}$$

$$b = \frac{7 P M^2}{2 (M^2 - 1)}$$
 (22)

$$\left(\frac{\partial P}{\partial S} \right)_1 = \left(\frac{\partial P}{\partial S} \right)_3 = \left(\frac{P_c - P_a}{P_c - P_a} \right) \left(\frac{\partial P}{\partial S} \right)_2$$
 (23)

$$= e^{-\eta_3} \left(\frac{\partial P}{\partial S} \right)_2 \tag{23a}$$

$$F \approx \left(\frac{4}{\gamma+1}\right)\left(1+\frac{\gamma-1}{2}M_{\Lambda}^{2}\right)(\sin \epsilon) ; \qquad (24)$$

where

$$\zeta = \frac{[(\gamma + 1) \tan(\sigma_2 - \sigma_1) \cos \varepsilon - \sin \varepsilon] M_1^2 \sin^2 \varepsilon + \sin \varepsilon}{1 + [1 - 2\sin^2 \varepsilon + 2\tan(\sigma_2 - \sigma_1) \sin \varepsilon \cos \varepsilon] M_1^2 \sin^2 \varepsilon}$$
 (25)

To define $dP_2/d\alpha$, the definitions as found in reference 2 for both convex and concave corners are used with only slight changes in nomencle cure.

Convex Corner

$$\frac{dP_{E}}{d\alpha} = \left(\frac{dF_{1}}{d\alpha}\right)A + \left(\frac{dP_{E1}}{d\alpha}\right)B$$
 (26)

where

$$A = \left(\frac{\partial M_1/\partial P_1}{\partial K_2/\partial P_2}\right) \left(\frac{\partial E/\partial M_2}{\partial E/\partial M_2}\right)$$
 (27)

$$3 = \left(\frac{\partial H_2/\partial P_{t,t}}{\partial H_2/\partial P_{t,t}}\right) \left(\frac{\partial E/\partial H_2}{\partial E/\partial H_2}\right) - \left(\frac{\partial H_2/\partial P_{t,2}}{\partial H_2/\partial P_{t,2}}\right)$$

Concave Corner

$$\frac{dP_2}{d\alpha} = \left(\frac{dP_1}{d\alpha}\right)c + \left(\frac{dP_{E1}}{d\alpha}\right)D \tag{29}$$

$$\frac{dP_{t2}}{d\alpha} = \left(\frac{dP_{t1}}{d\alpha}\right)G + \left(\frac{dP_{1}}{d\alpha}\right)H$$
(30)

$$c = \frac{\partial P_2}{\partial P_2} + \left(\frac{\partial P_2}{\partial P_1}\right) \left(\frac{\partial M_1}{\partial P_1}\right) - \left(\frac{\partial P_2}{\partial P_2}\right) \left(\frac{\partial M_1}{\partial M_1}\right) \left(\frac{\partial \theta}{\partial \theta} + \frac{\partial \theta}{\partial \theta}\right)$$
(31)

$$D = \left(\frac{\partial P_{z}}{\partial H_{1}}\right) \left(\frac{\partial M_{1}}{\partial P_{E1}}\right) - \left(\frac{\partial P_{z}}{\partial \epsilon}\right) \left(\frac{\partial Q}{\partial H_{1}}\right) \left(\frac{\partial M_{1}}{\partial P_{E1}}\right) \left(\frac{\partial Q}{\partial \epsilon}\right)$$
(32)

$$G = \left(\frac{\partial P_{t2}}{\partial P_{t1}}\right) + \left(\frac{\partial P_{t2}}{\partial M_{1}}\right) \left(\frac{\partial M_{1}}{\partial P_{t1}}\right) - \left(\frac{\partial P_{t2}}{\partial \varepsilon}\right) \left(\frac{\partial g}{\partial M_{1}}\right) \left(\frac{\partial M_{1}}{\partial P_{t1}} / \frac{\partial g}{\partial \varepsilon}\right)$$
(33)

$$H = \left(\frac{\partial P_{L2}}{\partial N_1}\right) \left(\frac{\partial N_1}{\partial P_1}\right) \quad \left(\frac{\partial P_{L2}}{\partial \varepsilon}\right) \left(\frac{\partial N_1}{\partial N_1}\right) \left(\frac{\partial N_1}{\partial \varepsilon}\right) \quad \left(\frac{\partial N_1}{\partial \varepsilon}\right) \quad (34)$$

At this point it is desirable to recapitulate in such a manner as to consider the equations previously given as being the general equations of this method and the equations that follow will be those to be used for numerical calculations. This requires modifying the subscript nomenclature to make possible calculations for a multi-sectioned body.

Rewriting equations (4), (5), (7), (9), (10), (11), (12), (13), (14) and (15) gives

$$C_{N\alpha_{(n)}} = \frac{2\pi}{A_{B(n)}} \int_{0}^{\ell} \Lambda_{(n)} r_{(n)} dx$$
 (35)

$$r_{(n)} = r_n + (x - x_n) \tan \sigma_{(n)}$$
 (36)

$$P_{(n)} = (1 - e^{-\tau_i(n)}) P_{c(n)} + e^{-\eta_i(n)} P_{n2}$$
 (37)

$$\eta_{(n)} = \frac{\partial P_{n2}}{\partial S} \frac{x - x_n}{(P_{c(n)} - P_{n2}) \cos \sigma_{(n)}}$$
(38)

$$\Lambda_{a(n)} = (1 - e^{-\eta(n)}) \cdot tan \sigma_{(n)} C_{NQ}$$
 (39)

$$\Lambda_{b(n)} = e^{-\eta(n)} \Gamma_{(n)} \tag{40}$$

$$\Gamma_{(n)} = \frac{2}{\gamma P_{n1} M_{n1}^2 \pi} \int_0^{\pi} \left(\frac{dP_{n2}}{d\alpha}\right) \cos \varphi \, d\varphi$$
 (41)

$$\Lambda_{(n)} = (1 - e^{-\eta(n)}) \tan \sigma_{(n)} C_{N\alpha_{TC(n)}} + e^{-\eta(n)} \Gamma_{(n)}$$
 (42)

$$c_{N\alpha_{(r)}} = c_{N\alpha_{a(n)}} + c_{N\alpha_{b(n)}}$$
(43)

$$C_{N\alpha_{a(n)}} = \frac{2\pi}{A_{B(n)}} \int_{0}^{2} (1 - e^{-\eta(n)}) \tan \sigma_{(n)} C_{N\alpha_{TC(n)}} r_{(n)} dx$$
 (44)

and the control of the desired of the control of th

$$c_{N\alpha_{b(n)}} = \frac{2\pi}{A_{B(n)}} \int_{0}^{1} e^{-\eta(n)} \Gamma_{(n)} r_{(n)} dx$$
 (45)

The terms $\left(\frac{\partial p_{n,k}}{\partial s}\right)$ in equation (38) and $\left(\frac{dP_{n,k}}{d\alpha}\right)$ in equation (41), as noted.previously, must be defined separately for a convex corner and a concave corner and are as follows;

Convex Corner

Using the definition for $\left(\frac{\partial P}{\partial S}\right)_2$ given in equations (16) through (19) and applying subscripts results in the following:

$$\frac{\partial P_{n2}}{\partial S} = \frac{b_{n2}}{r_n} \left(\frac{\Omega_{n1}}{\Omega_{n2}} \sin \sigma_{(n-1)} - \sin \sigma_{(n)} \right) + \frac{b_{n2}}{b_{n1}} \frac{\Omega_{n1}}{\Omega_{n2}} \left(\frac{\partial P}{\partial S} \right)_{n1}$$
(46)

$$b_{nz} = \frac{7 \cdot P_{nz} \cdot M_{nz}^2}{2 \cdot (M_{nz}^2 - 1)} \tag{47}$$

$$b_{n1} = \frac{7 P_{n1} M_{n1}^2}{2(M_{n3}^2 - 1)} \tag{48}$$

$$b_{n_1} = \left(\frac{P_{n_2}}{P_{n_1}}\right) \left(\frac{M_{n_2}^2}{M_{n_1}^2}\right) \left(\frac{M_{n_2}^2 - 1}{M_{n_2}^2 - 1}\right)$$
(49)

$$\Omega_{n_1} = \frac{1}{M_{n_2}} \left[\frac{1 + \frac{\gamma - 1}{2} N_{n_1}^2}{\frac{\gamma + 1}{2}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
 (50)

$$\Omega_{n2} = \frac{1}{M_{n2}} \left[\frac{1 + \frac{\gamma - 1}{2} N_{n2}^2}{\frac{\gamma + 1}{2}} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
 (51)

THE PARTY OF THE P

$$\frac{\Omega_{n1}}{\Omega_{n2}} = \left(\frac{M_{n2}}{M_{n1}}\right) \left[\frac{1 + \frac{\gamma - 1}{2} M_{n2}^2}{1 + \frac{\gamma - 1}{2} M_{n2}^2}\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$
(52)

$$\left(\frac{\partial P}{\partial S}\right)_{n_1} = e^{-\eta(n-1)} \left(\frac{\partial P}{\partial S}\right)_{(n-1)2}$$
 (53)

where $\left(\frac{\partial P}{\partial S}\right)_{(n-1)2}$ is defined in calculations for body section (n-1)

Concave Corner

Using the definition for $\left(\frac{\partial P}{\partial S}\right)_2$ given in equations (20), (21), (22), and (23) and applying subscripts produces:

$$\left(\frac{\partial P}{\partial S}\right)_{n,z} = \frac{\tan\left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right]}{\tan\left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right] + \tan\mu_{n,z}} \left[\frac{.7 P_{n,z} N_{n,z}^2}{r_{n,z} N_{n,z}^2} \left(\frac{\sin\epsilon_{(n)} \sin\sigma_{(n-1)}}{\sin\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}}\right] - \sin\sigma_{(n)}\right] \\
+ \left(\frac{\partial P}{\partial S}\right)_{n,z} \left(\frac{P_{n,z} N_{n,z}^2}{P_{n,z} N_{n,z}^2} \frac{(N_{n,z}^2 - 1)}{(N_{n,z}^2 - 1)} \frac{\sin\epsilon_{(n)}}{\sin\epsilon_{(n)} + \sigma_{(n-2)} - \sigma_{(n)}}\right] \\
+ \left[\frac{P_{n,z}}{P_{n,z}} - F\right] \frac{\cos\epsilon_{(n)} \tan\mu_{n,z}}{\sin\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}}\right]$$
(54)

where

$$F = \left(\frac{4}{\gamma+1}\right)\left(1+\frac{\gamma-1}{2}\,\aleph_{n1}^2\right)\left(\sin\,\epsilon_{(n)}\right)\,\zeta \tag{55}$$

$$\zeta = \frac{\left((\gamma+1) \tan \left[\sigma_{(n)} - \sigma_{(n-1)}\right] \cos \varepsilon_{(n)} - \sin \varepsilon_{(n)}\right) M_{n1}^{2} \sin^{2} \varepsilon_{(n)} + \sin \varepsilon_{(n)}}{1 + \left(1 - 2\sin^{2} \varepsilon_{(n)} + 2\tan \left[\sigma_{(n)} - \sigma_{(n-1)}\right] \sin \varepsilon_{(n)} \cos \varepsilon_{(n)}\right) M_{n1}^{2} \sin^{2} \varepsilon_{(n)}}$$
(55a)

Using the definitions for dP_2/dC , equation (26) for convex corners and equations (29) and (30) for concave corners, and applying subscripts provides the following:

Convex Corner

$$\left(\frac{dP_{z}}{d\alpha}\right)_{n} = \left(\frac{dP_{1}}{d\alpha}\right)_{n} A_{n} + \left(\frac{dP_{z1}}{d\alpha}\right)_{n} B_{n}$$
 (56)

Concave Corner

$$\left(\frac{dP_{z}}{d\alpha}\right)_{n} = \left(\frac{dP_{1}}{d\alpha}\right)_{n} c_{n} + \left(\frac{dP_{t_{1}}}{d\alpha}\right)_{n} D_{n}$$
(57)

$$\left(\frac{dP_{t,2}}{d\alpha}\right) = \left(\frac{dP_{t,2}}{d\alpha}\right)G \div \left(\frac{dP_{t,2}}{d\alpha}\right)H \tag{58}$$

The subscript n has been omitted on equation (58) because the pressures are a function of the body sections which have preceded body section (n). Consider equation (57) and note that $\left(\frac{dP_2}{d\alpha}\right)_n$ is a function of $\left(\frac{dP_{r,1}}{d\alpha}\right)_n$ which is a function of $\left(\frac{dP_{r,2}}{d\alpha}\right)_{n-1}$ which in turn is a function of $\left(\frac{dP_{r,1}}{d\alpha}\right)_{n-1}$ and so forth upstream until $\left(\frac{dP_{r,1}}{d\alpha}\right) = 0$. Thus there is established a recurrence formula which, in the process of defining $\left(\frac{dP_2}{d\alpha}\right)_n$, also defines the parameter f.

Definitions of parameters A, B, C, D, G and H are provided in equations (59) through (37).

The recurrence formulas providing for the evaluation of I for convex corners are shown in Table 6 and those for concave corners in Table 7.

TABLE 6

EQUATIONS FOR Γ FOR A CONVEX CORNER

Equation No.	No. of Concave Corners Preceding	Γ _{(1ι})
(1)	nose cone	An tan o(n-1) CNC TC(n-1)
(2)	preceded by convex corners only	A _n A _{n1}
(3)	1	Eq (2) + $B_n H_K \Lambda_{K1}$
- (4)	2	Eq (3) + $B_n(G_K H_L \Lambda_{L1})$
(5)	3	Eq (4) + $B_n(G_K G_L H_M \Lambda_{M1})$
(6)	4	Eq (5) + $B_n(G_K G_L G_M H_N \Lambda_{N1})$
(7)	5	Eq (6) + $B_n(G_K G_L G_M G_N H_O \Lambda_{O1})$
(8)	6	Eq (7) + $B_n (G_K G_L G_M G_N G_O H_P \Lambda_{P1})$
(9)	7	E_{q} (8) + $B_{n}(G_{K} G_{L} G_{M} G_{N} G_{O} G_{P} H_{Q} \Lambda_{Q1})$
(10)	8	Eq (9) + $B_n (G_K G_L G_M G_N G_O G_P G_Q H_R \Lambda_{R1})$
(11)	9	Eq (10) + $B_n(G_K G_L G_M G_D G_D G_D G_R H_S \Lambda_{S1})$
(12)	10	Eq (11) + $B_n(G_K G_L G_M G_N G_O G_P G_Q G_R G_S H_T \Lambda_{T1})$

$$\Lambda_{\text{convex corner}} = \Lambda_{(n)} = (1 - e^{-\eta(n)}) \tan \sigma_{(n)} C_{NC_{TC(n)}} + e^{-\eta(n)} \Gamma_{(n)}$$

TABLE 7

EQUATIONS FOR Γ FOR A CONCAVE CORNER

Equation No.	No. of Concave Corners Preceding	r _(n)
(1)	nose cone	C _n A _n
(2)	0	C A (assumes only nose cone plus convex corners precede)
(3)	1	$C_n \Lambda_{n1} + D_n (H_K \Lambda_{K1})$
(4)	2	Eq (3) + $D_n(G_K H_L \Lambda_{L1})$
(5)	3	Eq (4) $+ D_n (G_K G_L H_M \Lambda_{M1})$
(6)	4	Eq (5) + D_n ($G_K G_L G_M H_N \Lambda_{N1}$)
(7)	5	Eq (6) + D_n (G_K G_L G_M G_N H_O Λ_{O1})
(8)	6	Eq (7) + $D_n (G_K G_L G_M G_N G_O H_P \Lambda_{p_1})$
(9)	7	Eq (8) + D_n (G_K G_L G_M G_R G_O G_P H_Q Λ_{Q1})
(10)	8	Eq (9) + D_n ($C_K G_L G_M G_N G_O G_P G_Q H_R \Lambda_{RL}$)
(11)	9	Eq (10) + D_n ($G_K G_L G_M G_N G_O G_F G_Q G_R H_S A_{Si}$)
(12)	10	Eq (11) + D_n ($G_K G_L G_M G_M G_O G_F G_Q G_R G_S H_T \Lambda_{T!}$)

$$\Lambda_{\text{concave corner}} = \Lambda_{(n)} = (1 - e^{-\eta_{(n)}}) \tan \sigma_{(n)} C_{N\alpha_{\text{TC}(n)}} + e^{-\eta_{(n)}} \Gamma_{(n)}$$

TABLE 7 (Cont)

Where the Subscripts* Are

- Upstream corner of body section being analyzed n K Upstream corner of nearest concave body section upstream of body section (n) L Upstream corner of nearest concave body section upstream of body section (K) M Same as L except upstream of body section (L) N (M) 0 (N) P (0) Q (P) R (Q) S (R) T **(S)**
- When used with a lecter subscript (Example K1); refers to conditions on upstream side of corner.

[&]quot;These subscripts are applicable to both Tables 6 and 7.

$$A = \left(\frac{gM_{n2}/gL^{u_1}}{gM_{n_1}/gL^{u_1}}\right) \left(\frac{gE/gM_{n_1}}{gE/gM_{n_2}}\right)$$
(59)

$$B = \left(\frac{9M^{uS}/9L^{uS}}{9M^{u1}/9L^{uI}}\right) \left(\frac{9E/9M^{uS}}{9E/9M^{uI}}\right) - \left(\frac{9M^{uS}/9E^{uS}}{9H^{uS}/9L^{uS}}\right)$$
(60)

$$c = \frac{g_b^{ur}}{g_b^{ur}} + \left(\frac{g_u^{ur}}{g_b^{ur}}\right) \left(\frac{g_b^{ur}}{g_u^{ur}}\right) - \left(\frac{g_e^{(u)}}{g_b^{ur}}\right) \left(\frac{g_u^{ur}}{g_u^{ur}}\right) \left(\frac{g_u^{ur}}{g_u^{ur}}\right) \left(\frac{g_u^{ur}}{g_u^{ur}}\right)$$
(61)

$$D = \left(\frac{\partial P_{n2}}{\partial M_{n1}}\right) \left(\frac{\partial M_{n1}}{\partial P_{t_{n1}}}\right) - \left(\frac{\partial P_{n2}}{\partial \epsilon_{(n)}}\right) \left(\frac{\partial \theta_{n}}{\partial M_{n1}}\right) \left(\frac{\partial M_{n1}}{\partial P_{t_{n1}}} / \frac{\partial \theta_{n}}{\partial \epsilon_{(n)}}\right)$$
(62)

$$G = \left(\frac{\partial b^{r_{1}}}{\partial b^{r_{1}}}\right) + \left(\frac{\partial b^{r_{1}}}{\partial b^{r_{1}}}\right) \left(\frac{\partial b^{r_{1}}}{\partial b^{r_{1}}}\right) - \left(\frac{\partial b^{r_{1}}}{\partial b^{r_{1}}}\right) \left(\frac{\partial b^{r_{1}}}{\partial b$$

$$H = \left(\frac{g_{L^{15}}}{g_{L^{15}}}\right) \left(\frac{g_{L^{15}}}{g_{L^{15}}}\right) - \left(\frac{g_{L^{15}}}{g_{L^{15}}}\right) \left(\frac{g_{L^{15}}}{g_{L^{15}}}\right$$

$$E = \left\{ \cos^{-1} \frac{1}{M} + \frac{1}{2} \left(\frac{\gamma + 1}{\gamma - 1} \right)^{\frac{1}{2}} \cos^{-1} \left(1 - \frac{\gamma + 1}{1 + \frac{\gamma - 1}{2} M^2} \right) \right\}$$
 (65)

$$\frac{\partial M_{n_1}}{\partial P_{n_1}} = -\frac{1}{\gamma M_{n_1} P_{n_1}} \left(\frac{P_{t_{n_1}}}{P_{n_1}}\right) \frac{\gamma - 1}{\gamma}$$
 (66)

$$\frac{\partial r_{n2}}{\partial P_{n2}} = -\frac{1}{\gamma M_{n2}} \frac{P_{tn2}}{P_{n2}} \left(\frac{P_{tn2}}{P_{n2}}\right) \frac{\gamma - 1}{\gamma}$$
(67)

$$\frac{\partial E}{\partial M_{n_{1}}} = \frac{1}{M_{n_{1}}(M_{n_{1}}^{2}-1)^{\frac{1}{2}}} - \frac{1}{2}(\gamma+1)^{\frac{3}{2}}(\gamma-1)^{\frac{1}{2}} \left(\frac{\frac{M_{n_{1}}}{1+\frac{\gamma-1}{2}M_{n_{1}}^{2}}}{1-\left(1-\frac{\gamma+1}{1+\frac{\gamma-1}{2}M_{n_{1}}^{2}}\right)^{2}\right]^{\frac{1}{2}}}$$
(68)

$$\frac{\partial E}{\partial M_{n2}} = \frac{1}{M_{n2}(M_{n2}^2 - 1)^{\frac{1}{2}}} - \frac{1}{2}(\gamma + 1)^{\frac{3}{2}}(\gamma - 1)^{\frac{1}{2}} \left\{ \frac{\frac{M_{n2}}{1 + \frac{\gamma - 1}{2}M_{12}^2}}{\left[1 - \left(1 - \frac{\gamma + 1}{1 + \frac{\gamma - 1}{2}M_{n2}^2}\right)^2\right]^{\frac{1}{2}}} \right\}$$
(69)

$$\frac{\partial M_{n1}}{\partial P_{t_{n1}}} = \frac{1}{\gamma P_{n1} M_{n1}} \left(\frac{P_{t_{n_1}}}{P_{n_1}}\right)^{-\frac{1}{\gamma}}$$
(70)

$$\frac{\partial M}{\partial P_{t_{n2}}} = \frac{1}{\gamma P_{n2} M} \left(\frac{P_{t_{n2}}}{P_{n2}} \right)^{-\frac{1}{\gamma}}$$
(71)

$$\frac{\partial P_{n_2}}{\partial P_{n_1}} = \frac{2 \gamma M_{n_1}^2 \sin^2 \epsilon_{(n)} - (\gamma - 1)}{\gamma + 1}$$
 (72)

$$\frac{\partial P_{n_2}}{\partial M_{n_1}} = P_{n_1} \left(\frac{4\gamma}{\gamma+1}\right) M_{n_1} \sin^2 \epsilon_{(n)}$$
 (73)

$$\frac{\partial P_{n_2}}{\partial \epsilon_{(n)}} = \frac{4 \gamma P_{n_1}}{\gamma + 1} M_{n_1}^2 \sin \epsilon_{(n)} \cos \epsilon_{(n)}$$
 (74)

$$\frac{\partial\theta_{n}}{\partial\varepsilon_{(n)}} = \frac{\left[2 + M_{n_{1}}^{2}(\gamma+1-2\sin^{2}\varepsilon_{(n)})\right]\left[4M_{n_{1}}^{2}\cos^{2}\varepsilon_{(n)}-2M_{n_{1}}^{2} + \frac{2}{\sin^{2}\varepsilon_{(n)}}\right]}{\left[2 + M_{n_{1}}^{2}(\gamma+1-2\sin^{2}\varepsilon_{(n)})\right]^{2} + \left[2 M_{n_{1}}^{2}\sin\varepsilon_{(n)}\cos\varepsilon_{(n)}-2\cot\varepsilon_{(n)}\right]^{2}} + \frac{\left[2M_{n_{1}}^{2}\sin\varepsilon_{(n)}\cos\varepsilon_{(n)}-2\cot\varepsilon_{(n)}\right]\left[4 M_{n_{1}}^{2}\sin\varepsilon_{(n)}\cos\varepsilon_{(n)}-2\cot\varepsilon_{(n)}\right]}{\left[2 + M_{n_{1}}^{2}(\gamma+1-2\sin^{2}\varepsilon_{(n)})\right]^{2} + \left[2 M_{n_{2}}^{2}\sin\varepsilon_{(n)}\cos\varepsilon_{(n)}-2\cot\varepsilon_{(n)}\right]^{2}}$$
(75)

$$\frac{\partial G}{\partial H_{n_1}} = \frac{(, 1) M_{n_1} \cot \varepsilon_{(n)}}{\left[1 - M_{n_1}^2 (\sin^2 \varepsilon_{(n)} - \frac{\gamma + 1}{2})\right]^2 + \left[M_{n_1}^2 \sin \varepsilon_{(n)} \cos \varepsilon_{(n)} - \cot \varepsilon_{(n)}\right]^2}$$
(76)

$$\frac{\partial P_{t_{n2}}}{\partial P_{t_{n1}}} = \left[\left(\frac{\gamma + 1}{2 \gamma} \right) \left[\frac{1}{M_{n_{1}}^{2} \sin^{2} \epsilon_{(n)} - \left(\frac{\gamma - 1}{2 \gamma} \right)} \right] \left[\left(\frac{\gamma + 1}{2} \right) \left(\frac{2 M_{n_{1}}^{2} \sin^{2} \epsilon_{(n)}}{2 + (\gamma - 1) M_{n_{1}}^{2} \sin^{2} \epsilon_{(n)}} \right) \right]^{\gamma} \right]$$
(77)

$$\frac{\partial P_{t_{n2}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{\rho_{n2}}{\rho_{n1}}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{P_{n1}}{P_{n2}}\right)^{\frac{1}{\gamma-1}} + P_{t_{n1}} \left[\left(\frac{P_{n1}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}}\right] + \left(\frac{\rho_{n2}}{\rho}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} + P_{t_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial M_{n1}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial P_{t_{n2}}}{\partial M_{n2}} = \frac{\partial P_{t_{n1}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial P_{t_{n2}}}{\partial M_{n2}} = \frac{\partial P_{t_{n2}}}{\partial M_{n1}} \left(\frac{P_{n2}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial P_{t_{n2}}}{\partial M_{n2}} = \frac{\partial P_{t_{n2}}}{\partial M_{n2}} \left(\frac{P_{t_{n2}}}{P_{n2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{\partial P_{t_{n2}}}{\partial M_{n2}} = \frac{\partial P_{t_{n2}}}{\partial M_{n2}} = \frac{\partial P_{t$$

$$\frac{\partial P_{t_{n2}}}{\partial \epsilon_{(n)}} = t_{n2} \left[\left(\frac{P_{n1}}{P_{n2}} \right)^{\frac{1}{\gamma - 1}} \frac{\partial \left(\rho_{n2} / \rho_{n1} \right)^{\frac{\gamma}{\gamma - 1}}}{\partial \epsilon_{(n)}} + \left(\frac{\rho_{n2}}{\rho_{n1}} \right)^{\frac{\gamma}{\gamma - 1}} \frac{\partial \left(P_{n1} / P_{n2} \right)^{\frac{1}{\gamma - 1}}}{\partial \epsilon_{(n)}} \right]$$
(79)

$$\frac{\partial \left(P_{n_1}/k_{1/2}\right)^{\frac{1}{\gamma-1}}}{\partial M_{n_1}} = \left(\frac{-1}{\gamma-1}\right) \left[\frac{\gamma+1}{2\gamma X_{n_1} - (\gamma-1)}\right]^{\frac{2-\gamma}{\gamma-1}} \left\{\frac{(\gamma+1) \left[4 \gamma X_{n_1}/M_{n_1}\right]}{\left[2 \gamma X_{n_1} - (\gamma-1)\right]^2}\right\}$$
(80)

$$\frac{\partial \left(\rho_{HF}/\rho_{n_{1}}\right)^{\gamma-1}}{\partial M_{n_{2}}} = \frac{\gamma}{\gamma-1} \left[\frac{(\gamma+1) X_{n_{1}}}{(\gamma-1) X_{n_{1}}+2} \right]^{\frac{1}{\gamma-1}} \left\{ \frac{4(\gamma+1) X_{n_{1}}/M_{n_{2}}}{[(\gamma-1) X_{n_{1}}+2]^{2}} \right\}$$
(81)

$$\frac{\left\langle \frac{P_{n1}/P_{n2}}{\sqrt{\gamma-1}} \right\rangle^{\frac{1}{\gamma-1}}}{\frac{1}{0} \epsilon_{(n)}} = -(4 \gamma) \left(\frac{\gamma+1}{\gamma-1} \right) \left(\frac{P_{n1}}{P_{n2}} \right)^{\frac{2-\gamma}{\gamma-1}} \left\{ \frac{\chi_{n_1} \cot \epsilon_{(n)}}{\left[2 \gamma \chi_{n_1} - (\gamma-1) \right]^2} \right\}$$
(82)

$$\frac{\partial \left(\rho_{n2}/\rho_{n1}\right)^{\frac{\gamma}{\gamma-1}}}{\partial \epsilon_{(n)}} = (4 \gamma) \left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{\rho_{n2}}{\rho_{n1}}\right)^{\frac{1}{\gamma-1}} \left\{ \frac{\chi_{n1} \cot \epsilon_{(n)}}{\left[\left(\gamma-1\right)\chi_{n1}+2\right]^{2}} \right\}$$
(83)

$$\frac{P_{n1}}{P_{n2}} = \frac{\gamma + 1}{2 \gamma M_{n1}^2 \sin^2 \epsilon_{(n)} - (\gamma - 1)}$$
 (84)

$$\frac{\rho_{n2}}{\beta_{n1}} = \frac{(7+1) H_{n1}^2 \sin^2 \epsilon_{(n)}}{(7-1) H_{n1}^2 \sin^2 \epsilon_{(n)} + 2}$$
(85)

$$\chi_{n1} = M_{n1}^2 \sin^2 \epsilon_{(n)} \tag{86}$$

$$\frac{\partial P_{c}}{\partial M_{n1}} = \gamma P_{n1} M_{n1} \left(1 + \frac{\gamma - 1}{2} M_{n1}^{2} \right)^{\frac{1}{\gamma - 1}}$$
(87)

Referring now to equations (5) and (12), it is seen that values of the pressure on a cone, P_C, and the slope of the normal force coefficient for a cone, C_{NC}, are required. Both of these parameters are a function of Mach number and, therefore, the surface Mach number or a cone is also required. Values of these parameters can be determined from several sources, but to simplify the procedure for machine calculation, equations will be used to calculate the pressure and Mach number on the cone surface. Values from reference 5 will be used for values of C_{NC} and these are contained in Table 8.

The Mach number, as derived from reference 3, is

$$M_{n} = \frac{M_{n_{1}} \cos \sigma_{(n)} \left(1 - \frac{\sin \sigma_{(n)}}{M_{n_{1}}}\right)^{\frac{1}{2}}}{\left[1.0 + 0.35 \left(M_{n_{1}} \sin \sigma_{(n)}\right)^{1.5}\right]^{\frac{1}{2}}}$$
(88)

for
$$0 \le M_{n_1} \sin \sigma_{(n)} \ge 1.0$$

and

$$M_{n2} = \frac{M_{n1} \cos \sigma_{(n)} \left(1 - \frac{\sin \sigma_{(n)}}{M_{n1}}\right)^{\frac{1}{2}}}{\left\{ \left[1 + \exp\left(-1 - 1.52 M_{n1} \sin \sigma_{(n)}\right)\right] \left[1 + \left(\frac{M_{n1} \sin \sigma_{(n)}}{2}\right)\right]^{\frac{1}{2}}}$$
(89)

for
$$\underset{n_1}{\text{M}} \sin \sigma_{(n)} \ge 1.0$$

The pressure on a cone, P_c, is calculated from the equation for pressure coefficient in references 3 and 4, which is in current nomenclature,

TABLE 8

Values of C_{NOTC} per Degree

																			<u> </u>	,		L	
35.0	.02260	.02176	.02200	.02240	.02272	.02298	.02317	.02329	.02335	,02344	.02351	.02356	09270*	.02363	.02368	.02369	.02370	,02373	.02373	.02374	.02374		
30.0°	00770	.02417	.02441	.02493	.02530	.02556	.02575	.02589	.02600	.02615	.02625	,02631	,02639	.02643	95970"	.02647	*02648	*02649	.02650	.02652	705654		
27.5°	.02499	.02522	.02556	.02509	.02.648	.02676	.02697	.02712	.02725	.02741	.02752	.02760	.02769	.02774	.02777	.02779	.02780	.02781	.02782	.02786	.02789		
25.0°	,02592	.02631	.02664	.02717	.02757	.02786	.02809	,02826	68820	.02859	.02871	.02880	.02891	.02897	.02901	.02902	.02903	.02905	•02306	.02909	.02912		
22.5°	.02698	.02734	.02764	.02816	,02855	.02886	.02910	.02929	.02943	.02965	.02980	.02990	.03062	,03010	.03013	.03016	.03018	.03020	.03021	. 53028	\$03035		
20.0°	.02802	.02331	.02857	.02903	.02942	.02973	86620*	.03018	'38080°	.03059	.03076	.03088	.03103	21180	.03117	03119	.03120	.03122	.03125	.03126	.03129		
17.5°	.02902	.02922	.02942	.02981	.03017	.03047	.03073	.03094	.03112	.03139	.03158	,03172	.03191	.03202	.03209	.03211	.03212	.03216	.03219	.03223	.03230		
15.0°	.02999	•03000	.03021	.03049	.03079	.03107	.03132	.03154	.03173	.03203	.03225	.03241	.03264	.03278	.03287	.03290	.03293	.03297	•03300	,03301	.03303		
12.5°	. 03095	.03094	.03096	.03110	.03131	.03154	*03178	.03197	.03216	.03248	.03273	.03292	.03319	,03337	.03349	.03353	.03358	.03362	.03367	.03375	,03377		
10.0°	.03190	.03180	.03173	.03169	.03176	.03190	.03267	.03224	.03241	.03272	.03299	.03320	.03353	.03376	.03391	.03398	.03402	.03410	.03417	.03429	.03434		
7.5°	.03284	,03270	.03256	.03237	.03227	.03226	.03231	.03240	,03251	,03276	,03300	.03322	.03359	.03387	.03407	,03416	,03422	.03434	.03445	.03462	.03473		
5,0°	.03374	,03361	.03347	.03322	.03301	.03285	.03274	.03268	.03266	.03270	.03282	.03297	.03329	.03358	.03333	.03394	.03404	.03421	.03436	.03462	.03483		
2.5°	.03450	• 03443	•03436	.03421	•03402	.03390 .03285	\$103375	.03362	,03349	.03327	.03311	.03299	.03290	76260*	\$0880	.03312	.03320	.03337	.03351	,03382	.03413		
°0	06780*	06760'	06560*	.03490	.03490	.03490	36780.	.03490	.03450	.03490	.03490	.03490	.03490	06780	06760*	03490	06760*	.03490	,03490	.03490	.03490		
$M_{n,2}$ $\sigma(n)$	1.5	1.75	2.0	2.,	3.0	3.5	4.0	4.5	0.5	6.0	7.0	8.0	10.0	1.2.0	14.0	15.0	16.0	18.0	20.0	25.0	30,0		

$$C_{p} = \frac{(4 \sin^{2} \sigma_{(n)})(2.5 + 8 \sqrt{M_{n2}^{2} - 1} \sin \sigma_{(n)})}{1 + 16 \sqrt{M_{n1}^{2} - 1} \sin \sigma_{(n)}}$$
(90)

But also

$$C_{p} = \frac{P/P_{\infty} - 1}{\frac{\gamma}{2} M_{\infty}^{2}}$$
 (91)

therefore

$$P_{c(n)} = P_{n_1} \left(1 + \frac{7}{2} M_{n_1}^2 C_p\right)$$
 (92)

$$= P_{n1} \left\{ 1 + \frac{7}{2} M_{n1}^{2} \left[\frac{(4 \sin^{2} \sigma_{(n)})(2.5 + 6 \sqrt{M_{n1}^{2} - 1} \sin \sigma_{(n)})}{1 + 16 \sqrt{M_{n1}^{2} - 1} \sin \sigma_{(n)}} \right] \right\} (92z)$$

It has been shown that this method of calculating C_{NC} for a vehicle calculates the incremental contribution of each body section. These incremental contributions are nondimensionalized by the dynamic pressure, q, immediately upstream of the particular body section and the cross-sectional area at the downstream end of the same body section. It is necessary to use common nondimensionalizing factors and these will be the dynamic pressure of the free stream immediately ahead of the vehicle and the cross-sectional area of the largest cylindrical section of the vehicle. These factors are identified by the symbol qual for the free stream dynamic pressure and S_{ref} for the cross-sectional reference area.

Thus

$$c_{N\alpha_{t}} = \sum_{(1)}^{(n)} \Delta c_{N\alpha_{(n)}} = \sum_{(1)}^{(n)} (c_{N\alpha_{(n)}}) \frac{q_{n1}}{q_{n1}} \frac{A_{B(n)}}{S_{ref}}$$
 (93)

$$q_{n1} = \frac{7}{2} P_{n1} R_{n2}^2$$
 (94)

$$q_{11} = \frac{\chi}{2} p_{11} M_{11}^2 \tag{95}$$

$$A_{B(n)} = \epsilon r_{n+1}^{2}$$
 (96)

$$S_{ref} = \pi r_{ref}^{2}$$
 (97-)

2. UNIT NORMAL FORCE LOADING DISTRIBUTION

The longitudinal loading distribution of the normal force coefficient is expressed by the parameter dC_{NO}/dx and is developed below.

Previously the slope of the normal force coefficient was defined as

$$C_{N\alpha} = \frac{2\pi}{A_B} \int_{0}^{1} \Lambda r dx$$
 (4)

but it can also be defined as

$$C_{N\alpha} = \int_{0}^{1} (dC_{N\alpha}/dx) dx$$
 (98)

therefore

$$(dC_{NX}/dx) = \frac{2\pi}{A_B} \Lambda r \tag{99}$$

where, as before,

$$\Lambda = \Lambda_{2} + \Lambda_{5} \tag{8}$$

$$= (I - e^{-\eta}) \tan \sigma C_{NC_{TC}} + \underline{e}^{-\eta} \Gamma \qquad (12)$$

and

$$r = r_2 + x \tan v \tag{100}$$

Thuż

$$(d\tilde{c}_{NX}/dx) = \frac{2x}{\tilde{c}_{B}} \left[\left[1 - e^{-\eta} \right] \tan u \, C_{NX} + e^{-\eta} \, r \right] (r_{A} + x \, ran \, \epsilon) \qquad (101)$$

The distribution in the above form is referenced to the dynamic pressure immediately upstream of the subject body section and to the cross-sectional area at the downstream end of the same body section. Once again, it is necessary that the incremental values be referenced to the same value of the dynamic pressure q₁₁, and area S_{ref}. The equation for the loading distribution then becomes

$$(\Delta C_{N\alpha}/dx) = \frac{2 \pi q_{n_1}}{12 q_{11} S_{ref}} \left[(1 - e^{-\eta}) \tan \sigma C_{N\alpha_{TC}} + e^{-\eta} r \right] (r_1 + x \tan \tau)$$
(102)

The above development for the leading distribution dC_{NC}/dx), provides the general equation for this parameter. Adding appropriate subscripts produces the form of the equation to be used for calculating the loading distribution over each body section of a multi-sectioned vehicle. This is

$$\frac{d\Delta C_{NC}/dx}{(n)} = \frac{2 \pi q_{n_1}}{12 q_{11} S_{ref}} \left[\left(1 - e^{-\eta}(n) \right) \tan \sigma_{(n)} C_{NC}(n) + e^{-\eta}(n) \Gamma_{(n)} \right] \left(r_n + x \tan \sigma_{(n)} \right)$$
(103)

where $x = x_{ni} - x_n$

For most body sections, the loading distribution should be adequately described by values at six longitudinal body stations. These points will be at the forward end, aft end and at four intermediate locations equally spaced along the body section of the vehicle. This will apply to each body section of the vehicle.

3. NORMAL FORCE CENTER OF PRESSURE

The center of pressure, as used here, will be defined as the longitudinal location, in body station, of the centroid of the normal force loading distribution.

Using the normal definition of a moment of force and the usual sign convention

$$Mom = -Nx$$

$$= N(x_{ref} - x_{cp})$$
(104)

Mary Comment of the C

Now

$$N = C_{N\alpha} \alpha q S_{ref}$$
 (105.

and

$$Mom = C_{m\alpha} \alpha q S_{ref}^{\alpha} d \qquad (106)$$

Thus

$$c_{m\alpha} \alpha q s_{ref} d = c_{N\alpha} \alpha q s_{ref} (x_{ref} - x_{cp})$$
 (107)

Rearranging

$$x_{cp} = \frac{c_{m\alpha} \alpha c_{s_{ref}} d}{c_{N\alpha} \alpha c_{s_{ref}}}$$
(108)

$$=\frac{C_{mQ}}{C_{NC}} - x_{ref}$$
 (108a)

If x_{ref} is defined as zero body station, then $x_{ref} = 0$ and

$$x_{cp} = \frac{C_{mox} d}{C_{Nox}}$$
 (169)

In reference 1, the definition of $\mathbf{C}_{m\boldsymbol{\alpha}}$ is given as

$$C_{m\alpha} = \frac{2 \pi}{A_B d} \int_0^1 \Lambda \pi \pi dx$$
 (110)

with

$$\Lambda = (1 - 2^{-\eta}) \tan \theta C_{NX_{TC}} + e^{-\eta} \Gamma$$
 (12)

then

$$C_{max} = \frac{2 \pi}{A_B} \int_{0}^{2} \left[(1 - e^{-\eta}) \tan \sigma C_{max} + e^{-\eta} \Gamma \right] rx dx$$
 (131)

and

$$c_{NX} = \frac{2 \cdot \pi}{A_B} \int_0^1 \left[(1 - e^{-\eta}) \tan \sigma c_{NX_{TC}} + e^{-\eta} \Gamma \right] r dx \qquad (112)$$

and the center of pressure is

$$\mathbf{x}_{\mathrm{cp}} = \begin{cases} \frac{2 \pi}{A_{\mathrm{B}} d} \int_{0}^{2} \left[(1 - e^{-\eta}) \tan \sigma C_{\mathrm{N} \alpha_{\mathrm{TC}}} + e^{-\eta} \Gamma \right] r x dx \end{cases} d$$

$$\frac{2 \pi}{A_{\mathrm{B}}} \int_{0}^{2} \left[(1 - e^{-\eta}) \tan \sigma C_{\mathrm{N} \alpha_{\mathrm{TC}}} + e^{-\eta} \Gamma \right] r dx$$
(113)

$$= \frac{\int_{0}^{1} \left[(1 - e^{-\eta}) \tan \sigma C_{NX_{TC}} + e^{-\eta} \Gamma \right] r dx}{\int_{0}^{1} \left[(1 - e^{-\eta}) \tan \sigma C_{NX_{TC}} + e^{-\eta} \Gamma \right] r dx}$$
(1132)

Equation (13) is then the general equation for the center of pressure.

The same equation with the proper subscripts added will be used for calculations and is

$$x_{cp(n)} = \frac{\int_{0}^{1} \left[\left(1 - e^{-\eta_{(n)}} \right) \tan \sigma_{(n)} C_{NC_{TC(n)}} + e^{-\eta_{(n)}} \Gamma_{(n)} \right] \Gamma_{(n)} \chi_{(n)} dx}{\int_{0}^{1} \left[\left(1 - e^{-\eta_{(n)}} \right) \tan \sigma_{(n)} C_{NC_{TC(n)}} + e^{-\eta_{(n)}} \Gamma_{(n)} \right] \Gamma_{(n)} dx}$$

where

$$x_{(n)} = (x - x_n) \tag{13}$$

and

$$r_{(n)} = r_n + (x - x_n) \tan \sigma_{(n)}$$
 (36)

The above equation defines the center of pressure for one particular body section, whereas the center of pressure of the loading over the complete body is desired; therefore, equation (115) defines the summation to be und

$$\mathbf{x}_{cp_{total}} = \frac{\sum_{(1)}^{(n)} \int_{0}^{1} \left[(1 - e^{-\eta_{(n)}}) \tan \sigma_{(n)} C_{NX_{TC(n)}} + e^{-\eta_{(n)}} \Gamma_{(n)} \right]_{r_{(n)} X_{(n)}}^{(n)} dx}{\sum_{(1)}^{(n)} \int_{0}^{1} \left[(1 - e^{-\eta_{(n)}}) \tan \sigma_{(n)} C_{NX_{TC(n)}} + e^{-\eta_{(n)}} \Gamma_{(n)} \right]_{r_{(n)}}^{1} dx}$$

To utilize this method for determining the normal force coefficient cencer of pressure and loading distribution, it is first necessary to calculate the variation along the body of the static and total pressure, Mach number, pressure gradient and the loading parameter F. The following equations, (116-138), are to be used for this purpose.

$$P_{n2} = P_{n1} \left[\frac{2\gamma M_{n1}^2 \sin^2 \epsilon_{(n)} - (\gamma - 1)}{\gamma + 1} \right]$$
 116

$$M_{n2} = \left\{ \frac{(\gamma + 1)^{2} M_{n1}^{4} \sin^{2} \epsilon_{(n)} - 4 (M_{n1}^{2} \sin^{2} \epsilon_{(n)} - 1) (\gamma M_{n1}^{2} \sin^{2} \epsilon_{(n)} + 1)}{\left[2\gamma M_{n1}^{2} \sin^{2} \epsilon_{(n)} - (\gamma - 1) \right] \left[(\gamma - 1) M_{n1}^{2} \sin^{2} \epsilon_{(n)} + 2 \right]^{\frac{1}{2}}} \right\}$$
117

$$P_{t_{n_2}} = P_{t_{n_1}} \left[\frac{(\gamma + 1) M_{n_1}^2 \sin^2 \epsilon_{(n)}}{(\gamma - 1) M_{n_1}^2 \sin^2 \epsilon_{(n)} + 2} \right]^{\frac{\gamma}{\gamma - 1}} \left[\frac{\gamma + 1}{2\gamma M_{n_1}^2 \sin^2 \epsilon_{(n)} - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}}$$
118

$$M_{n1} = \left\{ \frac{2 \left[\cot \epsilon_{(n)} + \operatorname{Tan} \left(\sigma_{(n)} - \sigma_{(n-1)}\right)\right]}{\sin 2 \epsilon_{(n)} - (\gamma + \cos 2 \epsilon_{(n)}) \operatorname{Tan} \left(\sigma_{(n)} - \sigma_{(n-1)}\right)} \right\}$$

$$(\sigma_{(n)} - \sigma_{(n-1)}) = Tan^{-1} \left[\frac{2(M_{n_1}^2 \sin^2 \epsilon_{(n)} - 1) \cot \epsilon_{(n)}}{M_{n_1}^2 (\gamma + 1 - 2 \sin^2 \epsilon_{(n)}) + 2} \right]$$
120

$$\cot(\sigma_{(n)} - \sigma_{(n-1)}) = \tan \epsilon_{(n)} \left[\frac{(\gamma + 1) \, M_{n_1}^2}{2 \, (M_{n_1}^2 \, \sin^2 \epsilon_{(n)} - 1)} - 1 \right]$$

$$\sigma_{(n)} = \left[\cos^{-1}\frac{1}{M_{n_2}} + \frac{1}{2}\left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}}\cos^{-1}\left(1 - \frac{\gamma+1}{1+\frac{\gamma-1}{2}M_{n_2}^2}\right)\right]$$

$$-\left[\cos^{-1}\frac{1}{M_{n_1}} + \frac{1}{2}\left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}}\cos^{-1}\left(1 - \frac{\gamma+1}{1+\frac{\gamma-1}{2}M_{n_1}^2}\right)\right]$$
122

$$M_{n1} = \left\{ \frac{2}{\gamma - 1} \left[\left(\frac{P_{t_{n1}}}{P_{n_1}} \right)^{\frac{\gamma}{\gamma}} - 1 \right] \right\}^{\frac{1}{2}}$$
123

$$M_{n_2} = \left\langle \frac{2}{\gamma - 1} \left(\frac{P_{t_{n_2}}}{P_{n_2}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\rangle^{\frac{1}{2}}$$
124

$$P_{t_{n_1}} = P_{n_2} \left(1 + \frac{\gamma - 1}{2} M_{n_2}^2 \right)^{\frac{\gamma}{\gamma - 1}}$$
 (125)

$$P_{t_{n_2}} = P_{n_2} \left(1 + \frac{\gamma - 1}{2} \, \mu_{n_2}^2 \right)^{\frac{\gamma}{\gamma} - 1}$$
 126

$$P_{n_1} = \frac{P_{t_{n_1}}}{\left(1 + \frac{\gamma - 1}{2} \, M_{n_1}^2\right)^{\gamma - 1}}$$

$$P_{n2} = \frac{P_{t_{n2}}}{\left(1 + \frac{\gamma - 1}{2} M_{n2}^2\right)^{\frac{\gamma}{\gamma - 1}}}$$

$$P_{c_{(n)}} = P_{n_1} \left(1 + \frac{7}{2} h_{n_1}^2 C_{p_{c_{(n)}}} \right)$$
 129

$$\left(\frac{\partial P}{\partial S}\right)_{nz} = \frac{b_{nz}}{r_n} \left[\frac{\Omega_{nz}}{\Omega_{nz}} \sin \sigma_{(n-1)} - \sin \sigma_{(n)} \right] + \frac{b_{nz}}{b_{nz}} \frac{\Omega_{nz}}{\Omega_{nz}} \left(\frac{\partial P}{\partial S}\right)_{nz}$$
130

$$\eta_{(n)} = \left(\frac{\partial F}{\partial S}\right)_{n2} \frac{x - x_n}{(P_{c(n)} - F_{n2}) \cos \sigma_{(n)}}$$
131

$$P_{nx} = P_{c_{(n)}} - (P_{c_{(n)}} - P_{nz}) e^{-\eta_{(n)x}}$$
 132

$$\left(\frac{\partial p}{\partial \varepsilon}\right)_{(n+1)_1} = \left(\frac{P_{c_{(n)}} - P_{n_2}}{P_{c_{(n)}} - P_{n_2}}\right) \left(\frac{\partial p}{\partial \varepsilon}\right)_{n_2}$$
133

$$\left(\frac{\partial P}{\partial S}\right)_{nz} = \frac{\tan \left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right]}{\tan \left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right] + \tan \mu_{nz}} \left[\frac{7 P_{nz} M_{nz}^2}{r_n M_{nz}^2 - 1} \left(\frac{\sin \epsilon_{(n)} \sin \sigma_{(n-1)}}{\sin \left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right]}\right) - \sin \sigma_{(n)}\right] + \left(\frac{\partial P}{\partial S}\right)_{nz} \left(\frac{P_{nz}}{P_{nz}} \frac{M_{nz}^2}{M_{nz}^2} \frac{(M_{nz}^2 - 1)}{(M_{nz}^2 - 1)} \frac{\sin \epsilon_{(n)}}{\sin \left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right]}\right) + \left(\frac{P_{nz}}{P_{nz}} - F\right) \frac{\cos \epsilon_{(n)} \tan \mu_{nz}}{\sin \left[\epsilon_{(n)} + \sigma_{(n-1)} - \sigma_{(n)}\right]}\right)$$

134

$$F = \left(\frac{4}{\gamma+1}\right)\left(1+\frac{\gamma-1}{2}M_{n1}^2\right)\sin\epsilon_{(n)} \xi$$

where

$$\zeta = \frac{[(7+1) \tan (\sigma_{(n)} - \sigma_{(n-1)}) \cos \epsilon_{(n)} - \sin \epsilon_{(n)}] M_{n1}^{2} \sin^{2} \epsilon_{(n)} + \sin \epsilon_{(n)}}{1 + [1 - 2 \sin^{2} \epsilon_{(n)}] + 2 \tan (\sigma_{(n)} - \sigma_{(n-1)}) \sin \epsilon_{(n)} \cos \epsilon_{(n)}] M_{n1}^{2} \sin^{2} \epsilon_{(n)}}$$

$$0 \leq M_{n1} \sin \sigma_{(n)} \leq 1.0$$

$$M_{nz} = \frac{M_{nz} \cos \sigma_{(n)} \left(1 - \frac{\sin \sigma_{(n)}}{M_{nz}}\right)^{\frac{1}{2}}}{\left[1.0 + 0.35(M_{nz} \sin \sigma_{(n)})^{\frac{1}{2} \cdot 5}\right]^{\frac{1}{2}}}$$
136

$\frac{M}{n_1} \sin \sigma_{(n)} \stackrel{\geq}{=} 1.0$

$$M_{n \ge -} = \frac{M_{n_1} \cos \sigma_{(n)} \left(1 - \frac{\sin \sigma_{(n)}}{M_{n_1}}\right)^{\frac{1}{2}}}{\left\{\left[1 + \exp\left(-1 - 1.52 M_{n_1} \sin \sigma_{(n)}\right)\right]\left[1 + \left(\frac{M_{n_1} \sin \sigma_{(n)}}{2}\right)\right]^{\frac{1}{2}}}$$
137

$$C_{p} = \frac{(4 \sin^{2} \sigma_{(n)})(2.5 + 8\sqrt{N_{n1}^{2} - 1} \sin \sigma_{(n)})}{(1 + 16\sqrt{N_{n1}^{2} - 1} \sin \sigma_{(n)})}$$
138

4. LIMITS ON PARAMETERS

a.
$$0^{\circ} < (\sigma_{(n)} - \sigma_{(n-1)}) \le 30.0^{\circ}$$

a.
$$2.6 \le M_{n_1} \le 10.0$$

3. $\left(\frac{P}{PS}\right)_{n\geq 2}$ for a convex corner, $\left(\sigma_{(n)} < \sigma_{(n-1)}\right)$

a.
$$\left(\frac{\Delta p}{\Delta S}\right)_{n,2} \ge 0.0$$

b. Must have same sign as the pressure difference $(P_{c(n)} - P_{n_2})$

4,
$$\left(\frac{\partial P}{\partial S}\right)_{n2}$$
 for a concave corner, $\left(\sigma_{(n)} > \sigma_{(n-1)}\right)$

b. Must have same sign as the pressure difference $(P_{c(n)} - P_{n2})$

5. $\eta_{(n)}$ for both convex and concave body sections

a. Because of 3 and 4 above, it follows that $\eta_{(n)} \ge 0.0$

5. NOMENCLATURE		
Symbol .	<u>Definition</u>	Units
A	Parameter Defined by Equation (59)	
A _B	Base Area of Body Section (n)	sq ft
ь	Parameter Defined by Equation (17)	
В	Parameter Defined by Equation (60)	
С	Parameter Defined by Equation (61)	
c _{Max} , dc _M /da	Slope of Pitching Moment Coefficient	1/deg
C _N	Normal Force Coefficient	dim.
$\mathbf{c}_{\mathbf{p}}$	Pressure Coefficient	dim.
	$(= P - P_{\omega}/\frac{\gamma}{2} P_{\infty} M_{\omega}^2)$	
. c _{N\alpha} , dc _N /d\alpha	Slope of Normal Force Coefficient	1/deg
C _{NOT} TC	Slope of Normal Force Coefficient for a Tangent Cone	1/deg
dC _{N⊄} /dx	Longitudinal Loading Parameter	1/deg-in.
d	Body Diameter	in. ft
D	Parameter Defined by Equation (62)	
e	Base of Naperian Logarithm	dim.
£	Parameter Defined Equation (65)	dim.
F	Parameter Defined by Equation (55) and (55a)	dim.
G	Parameter Defined by Equation (63)	dim.
Н	Parameter Defined by Equation (64)	dim.
ı	Upper Limit of Integration	ít
м	Mach Number	dim.
Mom	Mom en 5	in-lb
N	Normal Force	1b
P	Pressure	psi psf
P ₂	Static Pressure at Downstream Side of a Corner	psi psf
P _c	Cone Surface Static Pressure 55	psi psf

q	Dynamic Pressure	psf
	$(\frac{7}{2} \text{ PM}^2)$	
r	Body Radius	in.
S .	Distance Along Streamline	ft. in.
Sref	Reference Area (Cross-sectional Area of Largest Cylindrical Body Section)	sq ft
x	Longitudinal Distance Along Body (Body Station)	in. ft
×ср	Normal Force Center of Pressure, Body Station	in.
α	Angle of Attack in Fitch Plane	deg
7	Ratio of Specific Hears	dim.
r	Loading Parameter Defined by Equation (11)	dim.
δ	Shockwave Angle Relative to Body Centerline	deg
€	Shock Wave Angle Relative to Flow Direction Immediately Upstream of Body Corner (Two-Dimensional Flow)	deg
ζ	Parameter Defined by Equation (55a)	
η	Exponent of e	dim.
Ð	Flow Turn Angle (o(n) - o(n-1))	deg
Δ :	Loading Parameter Defined by Equation (3) & (12)	dim.
μ	$\sin^{-1}\frac{1}{M}$	đim.
p	Density	Slugn/cu ft
π	Pi = 3.1416	dim.
•	Body Surface Angle Relative to Body Centerline	deg
Φ	Body Meridional Angle	deg
Ω	Parameter Defined by Equation (18)	

6. SUBSCRIPTS

是一个人,我们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人

0. 5025000	•
a	First Increment
b	Second Increment
В	Base
c	Cone Value
ср	Center of Pressure
i	i th Section or Location
(n)	Body Section for which Values are being Calculated
n	Upstream Corner of Body Section (n)
n1	Upstream Side of Upstream Corner of Body Section (n)
n2	Downstream Side of Upstream Corner of Body Section (n)
ns	Upstream Side of Downstream Corner of Body Section (r.) (Same as $(n + 1)1$)
к	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Section (n)
ĩ.	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner K
м	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner L
N	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner M
0	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner N
P	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner O
Q	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner P
R	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner Q

S	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner R
T	Nearest Body Corner at which a Concave Corner Occurs Upstream of Body Corner S
t	Total
TC	Tangent Cone
ref	Reference
1	Upstream Side of Upstream Corner of Body Section
2	Downstream Side of Upstream Corner of Body Section
3	Upstream Side of Downstream Corner of Body Section
11	Body Free Stream Value
α	Derivative with Respect to Angle of Attack @
6	Local Free Stream Value

D. LIFTING SURFACES AERODYNAMIC PARAMETERS

This subroutine is designed to provide the capability of predicting the force and moment contribution of lifting surfaces to missile perodynamics and control. The planforms of the surfaces are restricted to a basic delta planform with an unswept trailing edge and taper ratios in the range of 0.0 to 0.60 (0.0 $\leq \lambda \leq$ 0.60).

The surfaces, whether they are canards or tail fins, are considered to occur in sets consisting of two pairs of surfaces in a cruciform configuration. Deflections for pitch and yaw control are possible but only by deflecting the full semi-span surface (i.e. no provisions for partial chord flaps) and each surface of a pair is deflected identically to the other (i.e. no differential deflections).

The basic aerodynamic parameters derived from this procedure are $C_{L\alpha}$, C_{D0} , C_{DL} , and x_{cp} versus Mach number for canards and fins. The force coefficients $C_{L\alpha}$, C_{D0} and C_{DL} are calculated per pair based on the exposed planform area, S_{exp} , of the particular lifting surface. As it is desired to use the values of these parameters as they apply to a missile system, equations are provided to resolve them into normal, side and axial force coefficients, C_N , C_X , and C_A in the missile axis system and based on S_{ref} , the missile reference area.

In addition, equations are provided for devermination of hinge moments produced by the lifting surfaces and a procedure for calculating an estimated weight and center of gravity of the lifting surfaces. The weight calculated is an estimate only of the weight of the exposed surfaces and does not include an estimate for attachment or actuation system weights.

1. BASIC FORCE AND MOMENT EQUATIONS

Assuming a missile system composed of an axisymmetric body with cruciform canards and cruciform fins, the following equations can be written, referenced to the missile axis system.

Static Forces

$$N = N_b + N_c + N_{\bar{E}} \qquad (Fitch) \qquad (1)$$

$$Y = Y_b + Y_c + Y_f \qquad (Yaw) \qquad (2)$$

$$A = A_b + A_c + A_f$$
 (Axial) (3)

Whore

$$N_b = C_{lib} + S_{ref} \tag{4}$$

$$\hat{N_f} = C_{Nf} \hat{q} S_{ref}$$
 (6)

$$Y_b = C_{Yb} q s_{ref}$$
 (7)

$$y_c = C_{Yc} q S_{rer}$$
 (8)

$$Y_f = C_{Yf} \neq S_{ref}$$
 (9)

And

$$c_{Nb} = c_{N00} \alpha \tag{10}$$

$$= \frac{s_c}{s_{ref}} \left(\left[c_{lac} (\alpha + \delta_{cP}) + c_{1c} (\alpha + \delta_{cP})^2 \right] \cos \alpha \right)$$

$$+\left\{c_{D0c}+K_{Lc}\left[c_{L\alpha c}(\alpha+\delta_{cp})+c_{1c}(\alpha+\delta_{cp})^{2}\right]^{2}\right\}\sin\alpha\right) (11)$$

$$= \frac{S_{f}}{S_{ref}} \left(\left[c_{L/2f}(\alpha + \delta_{fP}) + c_{1f}(\alpha + \delta_{fP})^{2} \right] \cos \alpha \right)$$

$$+\left\{c_{DOf}^{+K}_{Lf}\left[c_{LOE}^{*}(\alpha+\delta_{fP}^{*})+c_{1f}^{*}(\alpha+\delta_{fP}^{*})^{2}\right]^{2}\right\}\sin\gamma\right\} (12)$$

$$\mathbf{c}_{\mathbf{Yb}} = \mathbf{c}_{\mathbf{NOb}} \mathbf{\beta} \tag{13}$$

Cyc = Cwac effc
$$\frac{S_c}{S_{ref}}$$

$$= \frac{S_{c}}{S_{ref}} \left(\left[c_{L/2c} (\beta + \delta_{cY}) + c_{1c} (\beta + \delta_{cY})^{2} \right] \cos \beta$$

$$+\left\{c_{DOc}+K_{Lc}\left[c_{Loc}(\beta+\delta_{cY})+c_{1c}(\beta+\delta_{cY})^{2}\right]^{2}\right\}\sin\beta\right) (14)$$

$$C_{Yf} = C_{NOf}^{\beta}_{efff} \frac{S_f}{S_{ref}}$$
 (15)

$$= \frac{S_{f}}{S_{ref}} \left(\left[C_{LQf} (B + \delta_{fY}) + C_{1f} (B + \delta_{fY})^{2} \right] \cos \beta$$

$$+\left[c_{DOf}+K_{Lf}\left[c_{I\alpha f}(\beta+\delta_{fY})+c_{1f}(\beta+\delta_{fY})^{2}\right]^{2}\sin\beta\right) \quad (15)$$

For the Axial Force

$$A_b = C_{Ab} q S_{ref}$$
 (16)

$$A_{c} = (C_{AcP} + C_{AcY}) q S_{ref}$$
 (17)

$$A_f = (C_{AfP} + C_{AfY}) \neq S_{ref}$$
 (18)

Where

$$z_{Ab} = c_{Ab} \tag{19}$$

$$c_{AcP} = \left(\left\{ c_{DOc} + K_{Lc} \left[c_{L\alpha c} (\alpha + \delta_{cP}) + c_{1c} (\alpha + \delta_{cP})^2 \right]^2 \right\} \cos \alpha - \left[c_{L\alpha c} (\alpha + \delta_{cP}) + c_{1c} (\alpha + \delta_{cP}) + c_{1c} (\alpha + \delta_{cP})^2 \right] \sin \alpha \right) \frac{S_c}{S_{ref}}$$
(20)

$$c_{AcY} = \left(\left\{ c_{DOc} + K_{Lc} \left[c_{LOC} (\beta + \delta_{cY}) + c_{1c} (\beta + \delta_{cY})^2 \right]^2 \right\} \cos \beta$$

$$- \left[c_{LOC} (\beta + \delta_{cY}) + c_{1c} (\beta + \delta_{cY})^2 \right] \sin \beta \right) \frac{S_c}{S_{ref}}$$
(21)

$$c_{AfP} = \left(\left\{ c_{DOf} + K_{Lf} \left[c_{Loe} (\alpha + \delta_{fP}) + c_{lf} (\alpha + \delta_{fP})^2 \right]^2 \right\} \cos \alpha$$

$$-\left[c_{\underline{L}\alpha\underline{f}}(\alpha+\delta_{\underline{f}P})+c_{\underline{l}\underline{f}}(\alpha+\delta_{\underline{f}P})^{2}\right]\sin\alpha\right)\frac{S_{\underline{f}}}{S_{\underline{ref}}}$$
 (22)

$$C_{AfY} = \left(\left\{ C_{DOf} + K_{Lf} \left[C_{LQf} (\beta + \delta_{fY}) + C_{1f} (\beta + \delta_{fY})^2 \right]^2 \right\} \cos \beta$$

$$-\left[C_{Lot}(\beta+\delta_{fY})+C_{lf}(\beta+\delta_{fY})^{2}\right]\sin \beta\left(\frac{S_{f}}{S_{ref}}\right)$$
 (23)

Static Moments

$$Mom = M_b + M_c + M_f$$
 (24)

Pitch Moment

$$M_{v} = N_{b} \, \bar{x}_{b} + N_{c} \, \bar{x}_{c} + N_{f} \, \bar{x}_{f} + A_{b} \bar{z}_{b} \tag{25}$$

Yaw Moment

$$M_{z} = Y_{b} \bar{x_{b}} + Y_{c} \bar{x_{c}} + Y_{f} \bar{x_{f}} + A_{b} \bar{y_{b}}$$
 (26)

Roll Moment

$$M_{x} = -N_{b} \bar{y}_{b} - Y_{b} \bar{z}_{b} - N_{c} y_{cg} - N_{f} y_{cg} - Y_{c} z_{cg} - Y_{f} z_{cg}$$
 (27)

$$= -N_{b} \bar{y}_{b} - Y_{b} \bar{z}_{b} - N_{c} \bar{y}_{b} - N_{f} \bar{y}_{b} - Y_{c} \bar{z}_{b} - Y_{f} \bar{z}_{b}$$
 (28)

$$= -(N_b + N_c + N_f) \tilde{y}_b - (Y_b + Y_c + Y_f) \tilde{z}_b$$
 (29)

The forces N_b , N_c , N_f , A_b , Y_b , Y_c and Y_f have been defined leaving the definition of the moment arms. These are as follows:

$$\ddot{x}_b = x_{cg} - x_{cpb}$$
 (30)

$$\ddot{x}_{c} = x_{cg} - x_{cpc}$$
 (31)

$$\bar{x}_f = x_{cg} - x_{cpf}$$
 (32)

$$\ddot{z}_b = z_{cg}$$
 (33)

$$\bar{y}_b = y_{cg}$$
 (34)

Lifting Surface Hinge Homent

The general equations for the lifting surface hinge moments and moment arms are:

$$(H,M.)_{y} = N\bar{z}_{h} - C_{A}\bar{z}_{h}$$
(35)

$$(H,M_*)_z = Y \hat{x}_h + C_A \tilde{y}_h$$
 (36)

Where

$$\bar{x}_{h} = (x_{H} - x_{cp}) \cos \delta \tag{37}$$

$$\bar{y}_{h} = (x_{H} - x_{cp}) \sin \delta \tag{38}$$

$$\bar{z}_{h} = (x_{H} - x_{cp}) \sin \delta \tag{39}$$

Thus, for the canards

(H.M.)
$$y_c = N_c(x_{Hc} - x_{cpc})\cos \delta_{cP} + C_{AcP}(x_{Hc} - x_{cpc})\sin \delta_{cP}$$
 (40)

$$(H.M.)_{zc} = Y_c (x_{Hc} - x_{cpc})\cos \delta_{cY} + C_{AcY} (x_{Hc} - x_{cpc}) \sin \delta_{cY}$$
(41)

and similarly for the fins

$$(H.H.)_{yf} = N_f (x_{Hf} - x_{cpf}) c \approx \delta_{fP} + C_{AfP} (x_{Hf} - x_{cpf}) \sin \delta_{fP}$$
 (42)

$$(H_*M_*)_{zf} = Y_f (x_{Hf} - x_{cpf}) \cos \delta_{fY} + C_{AfY} (x_{Hf} - x_{cpf}) \sin \delta_{fY}$$
 (43)

INPUT PARAMETERS

The parameters required as input are x_{or} , c_R , c_L , λ , t, x_H , r_b and d_{ref} . Except for d_{ref} , sets of values of the other parameters must be provided for each set of lifting surfaces, canards and tail fins.

Limitations exist on the range of permissible values for some of these parameters and are defined below. Definitions of all the parameters can be found in the section on nomenclature and sketches defining the axis system; lifting surface geometry and missile geometry are provided in Figures 7 thru 10.

24.0°
$$\leq \epsilon_{L} \leq 70.0$$
°
0.0 $\leq \lambda \leq 0.60$
0.03 $\leq \tau \leq 0.12$
 $x_{orf} \leq x_{e} = c_{Rf}$

The above are limitations on the input parameters and must be controlled at that point. Additional limitations exist relative to values of some of the parameters which are calculated. These are:

AR Limits on this parameter are defined in Figure 11 as a function of the limits imposed on ϵ_L and λ .

Figure 7. Missile Axis System

Figure 8. Lifting Surface Geometry Parameters

Figure 9. Lifting Surfaces Picch, Yaw and Deflection Angles and Force Coefficients

作,这种是一种,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们们是一个人,我们们是一个人,我们们是一个人,我们们们是一个人,我们们也

0

Figure 10. Cruciform Configuration

THE PARTY OF THE P

The interpretability of the properties of the pr

A CONTRACTOR OF THE PROPERTY O

Figure 11. Range of Aspect Ratios Accommodated for Calculation of $C_{L_{\alpha}}$

3. DETERMINATION OF PARAMETERS

An examination of the equations which define the static forces and moments will show that values must be determined for the parameters C_{LC} , C_{I} , C_{DO} , K_{I} , S_{exp} and C_{CP} . Values of the parameters versus Mach number must be determined for each set of surfaces.

 $c_{L\alpha}$

The linear value of lift curve slope for canards and fins is determined versus Mach number. For subsonic values of Mach number, $0 \le M \le 1.0$, C_{LC} is determined from Figure 12 as a function of $\sqrt{1-M^2}$ tan ϵ_L and taper ratio, λ ; and for superscnic Mach numbers, M > 1.0, C_{LC} is determined from Figure 13 and the equation shown on that figure as a function of $\sqrt{M^2-1}$ AR and taper ratio. The parameter determined in this manner is C_{LC}/AR per cadian, and to produce C_{LC} per degree use the equation below:

$$c_{L\alpha} = \left(\frac{c_{L\alpha}}{AR}\right) \frac{AR}{57.3} \tag{44}$$

Data provided for the above will accommodate values of BAR up to 109.34788 which corresponds to a condition of M = 10.0, AR = 10.98988 and λ = 0.

c

The parameter C₁ is defined as the nonlinear lift curve factor and is obtained from Figure 14 for the appropriate aspect ratio.

CDO

The drag coefficient at zero lift, C_{DO} , is composed of two components, friction drag coefficient, C_{DF} , and form or pressure drag coefficient, C_{DP} . For incompressible flow, the form drag coefficient is small enough relative to the friction drag coefficient, that the parameter C_{DO} for M<1.0 is defined as follows:

$$c_{D0} = \frac{1.11 \ c_{DF}}{\sqrt{1-M^2}}$$
 $M < 1.0$ (45)

The above is limited to the case where M < 1.0, therefore, another definition for C_{DO} must be used for the case where M > 1.0, thus

Figure 12. Subsonic Linear Lift Curve Slope

The state of the s

Figure 13. Supersonic Linear Lift Curve Slope

Figure 14. Nantinear Lift Factor

THE STATE OF THE PARTY OF THE P

$$c_{DC} = c_{DF} + c_{DP}$$
 $M > 1.0$ (46)

where

$$C_{DP} = F_D \tau^2 \left\{ B(10)^{CAR^1} \left[(M - 0.9) + DAR^{\frac{1}{2}} \right]^{EAR^R} \right\}$$
 (46a)

のできた。 というできない 100mm 1

with

$$B = 0.51393$$
 i ==0.79948
 $C = 0.35801$ j ==1.4767
 $D = 1.65$ k ==-0.1765
 $E = -1.0613$ K_D = 5.743

The friction drag coefficient $C_{
m DF}$ is a function of Reynolds number and wetted area and is determined in the following manner.

- a. For a given Mach number and type of missile, determine R_N/FT from Table 9.
- b. Calculate c in feet

$$\ddot{c} = \frac{c_R}{18} \left(1 + \frac{\lambda^2}{1 + \lambda}\right) \tag{47}$$

where c_R is in inches

c. Calculate R_N

$$R_{N} = (R_{N}/FT) \quad \tilde{c}$$
 (48)

d. For given M and corresponding R_{N} calculate C_{f} from equation 49

$$C_{\mathbf{f}} = \left[\frac{0.455}{(\log_{10} R_{N})^{2.58}} \right] \left[(1 + 0.162 M^{2})^{-0.58} \right]$$
 (49)

or, for hand calculations, $\mathbf{C}_{\mathbf{f}}$ may be obtained from Figure 15.

e. Calculate CDF

$$c_{DF} = c_{f} \frac{A_{WET}}{s_{Exp}}$$

$$= 2c_{f}$$
(50)

TABLE 9

VARIATION OF REYNOLDS NUMBER PER FOOT VERSUS MACH NUMBER

Mach		(R _N /FT)	10 ^{~6*}	
Number	<u> Li</u>	(2)	(3)	(4)
0.0	3.70	3,30	3,55	1.976
0.50	3.70	3.30	3.55	1.976
0.75	5.25	4.62	4.68	2.964
0.95	6.25	5.55	5.45	3.754
1.00	6.50	5.77	5.55	3.952
1.25	7.47	6.57	6.23	4.940
1.50	8.22	7.13	6.75	5.928
2.00	9.02	7.87	7.40	7.904
2.60	9.20	8.21	7.50	10.275
3.00	8.90	8.15	7.04	11.856
4.00	7.90	6.70	4.52	15.808
5.00	4.75	4,85	2.62	19.760
6.00	3.10	3.40	1.44	23.712
8.00	1.05	1.18	0.48	31.616
10.00	0.45	0.42	0.30	39.520

LANCE SERVICE SERVICE

⁽¹⁾ Small Ballistic Missile

⁽²⁾ Large Ballistic Missile

⁽³⁾ Large Booster Vehicle

⁽⁴⁾ Small Air Launched Missile

Figure 15. Turbulent Skin Friction Coefficient for Insulated Flat Plate

A SOUTH A SHARE WAS A SOUTH A

€**y**

<u>K</u>_

The drag due to lift factor, K_L , describes the shape of the drag polar as a function of C_2^2 and, combined with C_{DO} , provides the drag coefficient of the lifting surface. As used in this procedure, the following definition applies.

$$K_{\underline{L}} = \frac{1}{C_{\underline{L}^{\gamma}}} \tag{51}$$

where $C_{I\alpha}$ is in radian units.

S_{Exp}

The exposed planform area, S_{Exp} is defined as the planform area of the lifting surface which exists external to the body and is calculated from the equation below.

$$S_{Exp} = (1 - \lambda^2) c_R^2 \tan \epsilon_L$$
 (52)

×cp.

The longitudinal location of the lifting surface center of pressure is defined in inches of missile body station and is determined from the equations below as a function of geometric location and Mach number.

$$x_{cp} = x_{or} + \bar{x}_{LE} + K_{cp} \bar{c}$$
 (53)

where

$$\bar{x}_{LE} = \frac{\bar{y}}{\tan c_L}$$

$$= \frac{(1+2\lambda) (1-\lambda) c_R}{3 (1+\lambda)}$$
(54)

and

$$\vec{c} = \frac{2}{3} c_R \left(1 + \frac{\lambda^2}{1 + \lambda} \right)$$

and K is determined as a function of Mach number from Figure 16.

A STATE OF THE PROPERTY OF THE

Figure 16. Center of Pressure Factor

وماره فللمهام ما ملامات بالماهية فياها فالمرابع المائية الإرائد المائية المائية المائية المائية إلى المائية إلى

y cp and z cp

The spanwise center of pressure is determined from the basic assumption that the spanwise loading distribution over the lifting surfaces is elliptical in shape at all Mach numbers. With this assumption then, the center of pressure is a constant fraction of the lifting surface semi-span, b/2, and the definition below will be used.

$$y_{cp} = r_b + 0.42441 \text{ (b/2)}$$
 (56)

and

$$z_{cp} = r_b + 0.42441 \text{ (b/2)}$$
 (57)

For application in the controls section of the trajectory subroutine, it is desired that the center of n: essure and hinge line be referenced from the root chord leading edge in fraction of the root chord. This can be accomplished by using the equations below.

$$\frac{x_{cp}}{c_R} = \frac{x_{LE} + K_{cp}}{c_R}$$
 (58)

$$\frac{x_{H}}{c_{R}} = \frac{x_{H} - x_{or}}{c_{R}} \tag{59}$$

4. LIFTING SURFACE WEIGHT AND CENTER-OF-GRAVITY

The weight and center of gravity of the lifting surfaces, as formulated below, will be based on a symmetric double wedge type airfoil section. The volume of material for each fin will be calculated assuming a solid airfoil section. The resulting weight will be calculated from the volume and the density of the material used. An option between two materials, steel and aluminum alloy, is provided.

Using the approach of a solid airfoil section for the lifting surfaces will provide an estimate of what should be a near maximum weight for a set of canards or fins in a cruciform configuration.

a. Lifting Surface Weight

$$t = \tau c \tag{60}$$

$$I_{nN} \zeta = \frac{t}{2} / \frac{c}{2} = \frac{t}{c}$$
 (61)

Gross Sectional Area

$$A = (4) (\frac{1}{2}) (\frac{c}{2}) (\frac{c}{2})$$
 (62)

Where
$$\tau = \frac{t}{c}$$

$$c = x_{mp} - x_{rp}$$
(63)

$$x_{TE} * x_{or} + c_{R}$$
 (64)

$$x_{LE} = x_{or} + y \cot z_{L}$$
 (65)

$$c = c_{R} - y \cot \epsilon_{L}$$
 (66)

$$VOL = 4 \int_{0}^{b/2} A_{x-sect} dy$$

$$= 4 \int_{0}^{b/2} \frac{1}{2} \tau c^{2} dy$$

$$= 2\tau \int_{0}^{b/2} (c_{R} - y \cot \epsilon_{L})^{2}$$

$$= 2\pi \left[c_{R}^{2} y - 2c_{R} \cot \epsilon_{L} \frac{y^{2}}{z} + \frac{y^{3}}{3} \cot^{2} \epsilon_{L} \right]_{0}^{b/2}$$
(67)

$$= \tau \left[b c_{R}^{2} = \frac{1}{2} c_{R} b^{2} \cot \epsilon_{L} + 1/12 b^{3} \cot^{2} \epsilon_{L} \right]$$
 (67)

WT = (p) (VCL)
=
$$\tau \rho \left[b c_R^2 - \frac{1}{2} c_R^2 b^2 \cot \epsilon_L + 1/12 b^3 \cot^2 \epsilon_T \right]$$
 (68)

Where p is determined from

Density

Material	p lb/in ²
Aluminum Alloy	.101
Steel	-286

b. Lifting Surface Center-of-Gravity

The center of gravity of each lifting surface will be calculated using the same assumption of a solid airfoil section as for the weight calculation. The coordinate system is as shown in the sketch below with the equations following.

Longitudinal Location of Center of Gravity

is

$$\bar{x} = x_{or} + c_R/2 + \bar{x}_o$$
 (69)

$$\tilde{x}_0 = \frac{\text{Moment of Fin Volume about }^{c} \tilde{x}^2 \text{ Axis}}{\text{Volume per Fin}}$$
 (70)

The volume per fin, as defined for the weight calculation,

$$Vol = \int_{0}^{b/2} A_{x-sect} dy$$
 (71)

$$VCL = \int_{0}^{\frac{\tau}{2}} \frac{\tau}{2} (c_{R} - y \cot \epsilon_{L})^{2} dy$$

$$= \frac{\tau}{16} \left[4kr_{R}^{2} - 2b^{2}c_{R} \cot \epsilon_{L} + \frac{1}{3}b^{3} \cot^{2}\epsilon_{L} \right]$$
 (72)

and the moment about an axis at $c_{\rm R}/2$ normal to the x axis is

$$Mom_{x} = Vol \cdot \bar{x}_{0}$$
 (73)

$$\overline{x}_{0} = \frac{Mom}{ve1}$$
 (74)

$$Mcm_{x} = \int_{0}^{b/2} A_{x-sect} \bar{x}_{i} dy$$
 (75)

where $\bar{x}_i = y/2 \cot \epsilon_L$

$$\operatorname{Mom}_{X} = \int_{0}^{b/2} \frac{\tau}{2} (c_{R} - y \cot \epsilon_{L})^{2} (y/2 \cot \epsilon_{L}) dy$$

$$= \int_{0}^{b/2} \frac{\tau}{4} \left(c_{R}^{2} y \cot \epsilon_{L} - 2y^{2} c_{R} \cot^{2} \epsilon_{L} + y^{3} \cot^{3} \epsilon_{L}\right) dy$$

$$= \frac{\tau}{32} \left[b^2 c_R^2 \cot \epsilon_L - \frac{2}{3} b^3 c_R \cot^2 \epsilon_L + \frac{1}{8} b^4 \cot^3 \epsilon_L \right]$$
 (76)

thus

$$\bar{\mathbf{x}}_{0} = \frac{[b^{2} c_{R}^{2} \cot \epsilon_{L} - \frac{2}{3} b^{3} c_{R} \cot^{2} \epsilon_{L} + \frac{1}{8} b^{4} \cot^{3} \epsilon_{L}]}{2[4bc_{R}^{2} - 2b^{2} c_{R} \cot \epsilon_{L} + \frac{1}{3} b^{3} \cot^{2} \epsilon_{L}]}$$
(77)

Lateral Location of Center of Gravity

$$\bar{Y} = r_b + \bar{y}_c \tag{78}$$

$$\bar{y}_0 = \frac{\text{Moment of Fin Volume about c}_R}{\text{Volume per Fin}}$$
 (79)

The volume per fin is as defined before, and the moment about an axis parallel to the x axis and located at the root chord of the surface is

$$Mom_{v} = Vol \cdot \bar{y}_{o}$$
 (80)

$$\frac{1}{y_0} = \frac{\text{Mom}_y}{\text{Vol}} \tag{81}$$

$$\operatorname{Mom}_{y} = \int_{0}^{b/2} A_{x-\operatorname{sect}} \bar{y}_{i} dy \tag{82}$$

where $y_i = y$

Thus

$$\operatorname{Mom}_{y} = \int_{0}^{b/2} \frac{\tau}{2} (c_{R} - y \cot \epsilon_{L})^{2} y dy$$

$$= \int_{0}^{\frac{\pi}{2}} (ye_{R}^{2} - 2y^{2}e_{R} \cot \epsilon_{L} + y^{3} \cot^{2}\epsilon_{L})dy$$

$$= \frac{\tau}{16} \left[b^2 c_R^2 - \frac{2}{3} b^2 c_R \cot \epsilon_L + \frac{1}{8} b^4 \cot^2 \epsilon_L \right]$$
 (83)

and

$$\bar{y}_{0} = \frac{\left[b^{2} c_{R}^{2} - \frac{2}{3} b^{3} c_{R} \cot \epsilon_{L} + \frac{1}{8} b^{4} \cot^{2} \epsilon_{L}\right]}{\left[4bc_{R}^{2} - 2b^{2} c_{R} \cot \epsilon_{L} + \frac{1}{3} b^{3} \cot^{2} \epsilon_{L}\right]}$$
(84)

As the cruciform configuration is symmetrical then \bar{z}_0 is numerically equal to \bar{y}_0 , therefore

$$\mathbf{z}_0 * \mathbf{y}_0$$
 (85)

5. EQUATIONS FOR LIFTING SURFACE GEOMETRIC PARAMETERS

$$\epsilon_{\rm T} = 90.0^{\circ}$$
 (1A)

$$\tilde{c}_{R} = \frac{c_{T}}{c_{R}}$$
 (2A)

$$AR = \frac{4 (b!2)^2}{S_{Exp}} = \frac{4 \tan \epsilon_L (1-\lambda)}{1+\lambda}$$
(3A)

$$\bar{c} = \frac{2}{3} c_R \left(1 + \frac{\lambda^2}{1 + \lambda} \right)$$
 (4A)

$$\bar{y} = \frac{(1+2\lambda)(1-\lambda)}{3(1+\lambda)} \quad c_R \tan \epsilon_L$$
 (5Â)

$$\ddot{x}_{LE} = \bar{y} \cot \epsilon_{L}$$
 (6A)

$$x_{LE} = y \cot \epsilon_{L}$$
 (7A)

$$x_{TE} = c_{R} \tag{8A}$$

$$c = x_{TE} - x_{LE} = c_R - y \cot \epsilon_L$$
 (9A)

$$\frac{b}{2} = (1 - \lambda) c_R \tan \epsilon_L \tag{10A}$$

$$S_{Exp} = 2(\frac{b}{2}) \left(\frac{c_R + c_T}{2}\right) = (1 - \lambda^2) c_R^2 \tan \epsilon_L$$
 (11A)

$$s_{ref} = \frac{\pi}{\lambda} d_{ref}^2$$
 (12A)

$$\times_{ce} = \frac{[3 - (1 - \lambda)^{2}]c_{R}}{3(1 + \lambda)}$$
 (13A)

$$y_{ce} = \left[\frac{1 + \lambda - 2\lambda^2}{3(1 + \lambda)} \right] c_R \text{ TAN } \epsilon_L$$
 (14A)

6. NOMENCLATURE

Symbol	Definition	Units
Ā	Axial Force in Missile Axis System Also, Area	lb sq in,
A _{WET}	Surface Area	sq in.
A x-sect	Area of Airfoil Cross-Section	sq in.
AR	Lifting Surface Aspect Ratio	dim.
b/2	Lifting Surface Semi-Span (y distance From Body External Contour to Lifting Surface Tip Chord	in.
В	Constant in Equation 46a	dim.
c	Length of Lifting Surface Chord	ia,
c _R	Length of Lifting Surface Root Chord	in.
$c_{\mathbf{T}}$	Lifting Surface Tip Chord	in.
č	Length of Mean Aerodynamic Chord	in.
С	Constant in Equation 46a	dim.
$c_{ t DF}$	Friction Drag Coefficient	dim.
c_{DL}	Lifting Surface Drag Due to Lift Coefficient	dim.
c _{DO}	Lifting Surface Drag Coefficient at Zero Lift	đim.
c _£	Flat Plate Fristion Drag Coefficient	dim.
c ^V	Axial Force Coefficient in Missile Axis System	dim.
$c_D^{}$	Drag Coefficient	dim.
CDP	Pressure Drag Coefficient	dim.
c^{Γ}	Lift Coefficient	dim.
cra	Slope of Lifting Surface Linear Lift Coefficient Curve	1/deg, 1 RAD

$c_N^{}$	Normal Force Coefficient in Pitch Plane of the Missile Axis System	dim.
C ^{MX}	Slope of Normal Force Coefficient	1/deg
C,	Normal Force Coefficient in Yaw Plane of the Missile Axis System	dim.
c_1	Non-Linear Lift Coefficient Factor	1/deg ²
^d ref	Reference Diameter (Diameter of Largest Cylindrical Section of Missile Body	in.
dy	Differential Length in y	in.
D	Constant in Equation 46a	dim.
E	Constant in Equation 462	dim.
Fwd	Forward	dim.
(HM) _y	Hinge Moment in Pitch Plane	in1b
(HM)	Hinge Moment in Yaw Plane	in1b
i	Constant in Equation 46a	dim.
j	Constant in Equation 46a	dim.
k	Constant in Equation 46a	dim.
K _{cp}	Factor Locating Lifting Surface Center of Pressure as a Fraction of c Measured From the Leading Edge of c	dim.
κ_{D}	Constant in Equation 46a	dim.
κ ^r	Drag Due to Lift Factor	rad
M :	Mach Number	dim.
м _b	Moment Due to Body Aerodynamic Forces	in1b
M _C	Moment Due to Canard Aerodynamic Forces	in1b
Mf	Moment Due to Fin Aerodynamic Forces	in1b
M _x	Moment About x Axis	in1b
му	Moment About y Axis	in1b

Mz	Moment About z Axis	in1b
Mom	Noment	in1b
Mom _x	Longitudinal Moment of Lifting Surface Weight About Midpoint of Root Chord	in1b
Mom y	Lateral Moment of Lifting Surface Weight About Root Chord	in1b
N	Normal Force in the Pitch Plane of the Missile Axis System	16
q	Dynamic Pressure (= $\frac{7}{2}$ P M ²)	psf
r _b	Average Radius of Missile Body Between the Root Chord Leading and Trailing Edges	in.
R_{N}	Reynolds Number	dim.
s	Planform Area Per Pair of Lifting Surfaces	sq in./sq ft
S _{Exp}	Area of Two Lifting Surface Semi-Spans Outside the Body External Contour	sq in./sq ft
S _{ref}	Missile System Reference Area (****\d^2_{ref}/4)	sq in./sq ft
t	Thickness of Airfoil Section (Lifting Surface)	in.
V	Relative Velocity	fps
Vol	Volume of Set of Lifting Surfaces (4 Semi-Spans)	cu in.
Wt	Weight of Set of Lifting Surfaces (4 Semi-Spans)	1b
x	Longitudinal Distance	in.
x _{ce}	Longitudinal Distance the Planform Centroid Lies Aft of Root Chord Leading Edge	in.
к ^{ср}	Longitudinal Location of Center of Pressure	in.
x _e	Body Station at End of Aft Skirt	in.
^x or	Body Station of Lifting Surface Root Chord Leading Edge	in.
x _{I.}	Longitudinal Location of Hinge Axis (Canards and Fins)	in.
×LE	Distance of Lifting Surface Leading Edge From X or	in.

William Control of the Control of th

^X TE	Distance of Lifting Surface Trailing Edge- From x	in.
x	Distance Between Component Center of Pressure and Missile Center of Gravity	in.
× _h	Longitudinal Distance Between Center of Pressure and Hinge Axis	in.
x _o	Longitudinal Distance of Lifting Surface Center of Gravity from Root Chord Midpoint	in.
x LE	Distance Lifting Surface Mean Aerodynamic Chord Leading Edge Lies Behind Root Chord Leading Edge	ia.
ıx	Body Station of Missile Body Theoretical Nose	in.
x	Longitudinal Location of Lifting Surface Center of Gravity Relative to Body Station 0.0	in.
у	Lateral Distance	in.
y _{ce}	Lateral Distance the Planform Centroid for one Semi-Span lies Outboard From the Root Chord	in.
уср	Lateral Location of Lifting Surface Center of Pressure Relative to Vehicle Centerline Axis	in.
Y	Normal Force in the Yaw Plane of the Missile Axis System	1 b
ÿ	Lateral Distance of Nean Aerodynamic Chord From Root Chord	in.
\bar{y}_{o}	Lateral Distance of Lifting Surface Center of Gravity from Root Chord	in.
ў ₅	y Distance of Missile cg From Body Centerline	in.
\bar{y}_h	Lateral Distance Between Center of Pressure and Hinge Axis	in.
Ÿ	Lateral Location of Lifting Surface Center of Gravity Relative to Vehicle Centerline Axis	in,
z	Vertical Distance	in.
^z cp	Vertical Location of Lifting Surface Center of Pressure Relative to Vehicle Centerline Axis	in.
ž _b	z Distance of Missile cg From Body Centerline	in.
ž _h	Vertical Distance Between Center of Pressure and Hinge Axis	in.

žo	Vertical Distance of Lifting Surface Center of Gravity From Root Chord	in.
ž	Vertical Location of Lifting Surface Center of Gravity Relative to Vehicle Centerline Axis	in.
£	Centerline	dim

THE PARTY OF THE P

α	Angle of Attack in Pitch Plane	deg
a _{eff}	Effective Angle of Attach in Pitch Plane (Canards and Fins)	deg
Þ	Angle of Attack in Yaw Plane	deg
	$\sqrt{M^2-1}$ (Where 1.0 < M \(\left\) 10.0)	dim.
eta eff	Effective Angle of Attack in Yaw Plane (Canards and Fins)	de;;
7	Ratio of Specific Heats	dim.
δ	Deflection Angle of Lifting Surface	deg
€L	Complement of Lifting Surface Leading Edge Sweep-Back Angle	deg
€ _T	Complement of Lifting Surface Trailing Edge Sweep-Back Angle	deg
ζ	Surface Angle of Airfoil Section Relative to Chord Plane (Double Wedge Section)	deg
λ	Lifting Surface Taper Ratio ($=c_T/c_R$)	dim.
π	3.1416	dim.
ρ	Density	lb/cu in.
ч	Thickness Ratio of Airfoil Section (=t/c)	dim.

7. SUBSCRIPTS

ь	Body
c	Canard
cg	Center of Gravity
cР	Canard for Pitch Control
cĩ	Canard for Yaw Control
f	Fin
fP	Fin for Pitch Control
fY	Fin For Yaw Control
P	In Pitch Plane
••	I - Van Diana

SECTION III

SIX DEGREES OF FREEDOM TRAJECTORY PROGRAM

A. INTRODUCTION

This document describes a versatile digital trajectory program developed by the Wasatch Division of Thiokol Chemical Corporation. The program was developed, as are most programs, in an evolutionary manner. As a result, most of the general capabilities are the result of past experience, thus making the program well adapted to most forms of missile system flight simulation.

The equations and logic permit the simulation of missile flight in three dimensions with an additional three degrees of freedom possible, i.e., the vehicle can pitch, yaw, and roll about its center-of-gravity. A spherical rotating earth model is utilized for missile location. The gravitational forces are calculated from an oblate earth model.

The program has three general capabilities in three dimensions:

(2) Alight simulation of a rigid body point mass missile system, (b) flight simulation of a rigid body missile system with angular momentum considered plus attitude stability provided by a closed loop control system, and (c) flight simulation of a rigid body point mass missile system with a quasi-attitude control system which exactly balances the disturbing pitching moments. These three capabilities are primarily used in (1) performance requirements for analysis, (2) vehicle control requirements determination, and (3) vehicle stability, control and loads analysis, respectively.

Vehicle launch can occur at any azimuth and altitude and from any latitude and longitude. The vehicle is commanded with respect to an inertial system which does not rotate with the earth. Flight path through the atmosphere can be commanded by (1) input turning rates, (2) gravity turn equations, (3) steering

equations whose coefficients are determined internally, (4) rail launch equations, (5) constant altitude equations, (6) constant normal load factor equations, (7) intercept guidance equations, and (8) homers guidance equations. These different methods of flight path control can be changed for different parts of the flight, thus allowing wide variations in hight path determination and accurate results with relative case by the user.

Program input is minimal, the input complexity being dictated by the sophizication the user wishes to employ. Mandatory input includes the missile launch conditions, data describing the flight path desired, and data describing missile characteristics. Massile characteristics include weight, thrust history, specific impulse, exit area, and aerodynamic coefficients versus Mach number. Up to four discrete propulsion stages can be simulated.

Missile thrust is computed from an input thrust history table and atmospheric back pressure. Instantaneous weight is a function of stage initial weight, weight flow, thrust, and propellant vacuum specific impulse. The capability of simulating simultaneous operation of motors having different characteristics is available by the use of separate tabular input.

A pintle nezzle thrust modulation control motor can be simulated. This thrust control system logic is broken into two reparate parts: (1) the command thrust logic and (2) the controllable motor thrust dynamics. The command thrust logic or thrust control law provides the needed thrust command for the motor so the missile system will achieve the desired trajectory conditions. The criteria for evaluating the commanded thrust is established by flight performance parameters such as a specified velocity history, stipulated Mach number, commanded turning rates, minimum velocity, constrained dynamic pressure or line of sight rate.

The actual motor thrust dynamic is based on the solution of the time rate of change of chamber pressure equation. This equation is a function of nozzle throat area, internal gas properties, free volume, burning surface area, and propellant burning rate characteristics. The instantaneous vacuum thrust is evaluated from the pintle throat area and the motor chamber pressure. The motor

ballistic characteristics are evaluated from one of the three input options: (a) thrust time table. (b) chamber pressure table, or (c) surface area-web depth fraction table.

The effective thrust gimbal point can be located at any place about the missile. Pitch, what, and roll moments of inertia are specified as functions of instantaneous rehicle weight.

Pitch and yaw thrust vectoring are obtained from first or second order transfer functions or from an infinite autopilot gain model. Roll control results from the operation of a system separate from the main propulsive one. A first-order transfer function is used to simulate a bang-bang with deadband or proportional roll control system. Pitch, yaw, and roll control system commands can be generated by vehicle attitude errors, rates, and steady state errors.

The controlling pitch, yaw and roll moments are determined for each computed interval. The required thrust vector slew rate, duty cycle, and other thrust vector control requirements are evaluated for the TVC design stage.

THE PROPERTY OF THE PROPERTY O

Aerodynamic forces are functions of Mach number, input aerodynamic coefficients, and angle of attack. Up to a third degree normal force slope coefficient can be used. The angles of attack are modified to that flight with values up to 180 degrees can be simulated with axial forces going to zero at ± 90 degrees and normal forces zero at 0 and 180 degrees. Normal force center of pressure is a function of Mach number. Aerodynamic damping forces and moments are determined from input coefficients, rate change of angle of attack, pitch rate, and dynamic pressure.

Movable aerodynamic control fins can be simulated. Fir aerodynamic characteristics are determined from input fin lift and drag coefficient plus center of pressure and hinge location.

Dynamic forces include gravity, thrust, jet damping, and aerodynamic.

The dynamics include overturning moments created by differences in thrust level

of individual motors in a clustered solid propellant rocket motor stage. These moments are determined by statistical techniques from the cluster geometry and single motor variances in burning time and total impulse.

Program options which provide utility to the users are special print capabilities, flexibility in inputting thrust time curves, variable methods of terminating a propulsion stage, and an efficient and highly sophisticated hunting procedure. The hunting procedure can maximize, minimize or isolate any dependent variable subject to a maximum of seven constraint conditions.

1. DIAGRAMS

The more important symbols with geometric interpretation are shown on Figures 17 thru 29,

2. DEFINITIONS

Input, output, and internal program parameters are designated by symbols defined in this section.

a. General Comments—Parameter uni's required by program logic or for input are abbreviated as follows:

dbi	Determined by input	1b	Pound
deg	Degree	min	Minutes
dim	Dimensionless	nm	Nautical mile
ft	Feet	rad	Radian
in.	Inch	sec	Second

Multipliers are associated with many of the input parameters. Since only the unit of the product of the parameter and multiplier is specified by program logic, the units of the parameter, and multiplier are an option of the program user. Dimensions are designated dbi for parameters which have optional units. Units of the

Figure 17. 3-D Coordinate Systems

Figure 18. Euler Angles

A STANDARD OF THE STANDARD OF THE STANDARD BOTH OF THE STANDARD OF THE STANDAR

Figure 19. Forces and Rates

Figure 20. Aerodynamic Control Fin Schematic

A CONTRACTOR OF THE PROPERTY O

The man of the state of the sta

The code (1917) 19 12 com to the contraction of the state of the state of the contraction of the state of th

Figure 21. Thrust Vector Control Schematic

Figure 22. Contre' Loop Diagram

THE STATES OF A SECTION OF THE PROPERTY OF THE

Figure 23. Vehicle Attitude Errors

Figure 24. 3-D Missile Location

では、100mmので

Figure 25. 3-D Dewn Range-Cross Range Coordinates

Figure 26. Impact Parameters

Figure 27. 3-D Angles of Attack

Figure 28. Clustered Motor Configuration

Figure 29. Typical Variation of Thrust History

parameters used by the program should be noted so that the provide so its are the same.

Because of the four-stage capability of the program, many parameters are applicable for each stage. When further clarification is necessary, the subscript k is shown with the symbol of the parameter.

Two tables, for a main stage and a complementary stage, are available for inputting thrust, weight, and weight flow data. Parameters which apply to one or the other table are referenced accordingly.

b. Coordinate System-Coordinates are referenced to right-handed Cartesian systems having X, Y, and Z with lower-case subscripts as the coordinate axis. For the coordinate axis are axis $\overline{X_{ee}}$, e.g., $\overline{X_{ee}}$ represents a value along the appropriate coordinate axis. In some instances, vector and matrix notation are used to simplify the writing of equation; i.e.,

$$\overline{X}_{ee} = \overline{X}_{ee} i + Y_{ee} j + Z_{ee} k = \begin{cases} X_{ee} \\ Y_{ee} \end{cases}$$

where i, j, and k are unit vector parallel to the coordinate axis X_{ee} , Y_{ee} , and Z_{ee} , respectively.

The coordinate systems discussed below have coincident origins; i.e., no translation is involved in their relations with other systems. However, defining them with their origins at the conceptual locations rather than all simply rotated about one another is convenient. Furthermore, velocity and acceleration components would be affected only by rotation and not translation. The coordinate systems are shown in the illustrations appearing in Section III. A. I and are defined as follows:

Definitions

- b Missile orientation coordinates. Origin is fixed at the vehicle center-of-gravity with X_b parallel to the vehicle centerline, positive forward. As seen from the rear of the vehicle Z_b is positive down.
- e Earth fixed system whose origin is located at sea level at the launch latitude and longitude. The X axis is positive north, the Y_e axis is positive east, and the Z_e axis is along the launch vertical, positive down.
- e_o Initially coincident with the e system, but does not rotate with the earth.
- Earth fixed, launch centered, azimuth oriented coordinate system.

 The orientation of this system about the e system is specified by the input Euler angles bg. 9g, and og.
- Origin is coincident with the e_0 system. The orientation of this system is specified by input Euler angles θ_i , θ_i , and θ_i .
- $X_{e_{\circ}}$ and X_{ee} are the components of missile acceleration and velocity in a right-handed Cartesian coordinate system whose origin is fixed at sea level at the input launch latitude, ρ_{L} and longitude μ_{L} . The X_{e} axis is positive north, Y_{e} axis positive east, and Z_{e} , the vertical axis, positive down. This coordinate system is the one in which the equations of linear motion are integrated.

X_{ee} is defined in section B. 1, as the linear momenta equations.

$$\vec{X}_{ee} = \vec{X}_{eeo} + t_o \int_0^t \vec{X}_{ee} dt$$

$$\vec{X}_{ee} = \vec{X}_{eeo} + t_o \int_0^t \vec{X}_{ee} dt$$

eo \dot{x}_{eo} are the components of velocity which are initially coincident with the e system, but do not rotate with the earth. Components in this system are not calculated directly because the eo system is an intermediate system in evaluating the missile achieved and components.

$$\vec{\dot{x}}_{eo} = [\dot{A}_{eo}] \vec{\dot{x}}_{ee}$$

Syctems

Definitions

ii

Origin is coincident with the eo system. The orientation of this system about the eo system is specified by input Euler angles $\psi_{\,i},$ $\theta_{\,i},$ and $\phi_{\,i}.$ The position, velocity, and acceleration in this axis system represent the components aligned with the inertial platform. Components in this system are not calculated directly because the ii system is an intermediate system in evaluating the missile achieved and commanded components.

$$\vec{\dot{x}}_{ii} = [A_i] \vec{\dot{x}}_{ec}$$

bb

X_{bb}, X_{bb} are the earth fixed launch centered components of missile position and velocity, respectively. Position, forward along missile body station axis:

$$\vec{x}_{bb} = [D]^{-1} \vec{x}_{ee} + [\dot{D}]^{-1} \vec{x}_{ee}$$

$$\overline{X}_{bb} = [D]^{-1} \overline{X}_{ee}$$

mm

Missile orientation coordinates with axis coincident with those of the b system, if control system operation is not being simulated. For simulated control operation, the coordinate axes orientation is specified by commanded turning rates or specified value evaluated by the type of flight. Components in this system are not calculated directly because the angles relatively between it and the mm system are those of interest.

$$\vec{X}_{mm} = [D]^{-1} \vec{X}_{ee}$$

gg

Earth fixed, launch centered, azimuth oriented coordinate system. The orientation of this system about the eo system is specified by the input Euler angles ψ g, θ g, and ϕ g. The velocity components of this system are used in the velocity steering logic.

$$\vec{x}_{gg} = [A_g] \vec{x}_{ee}$$

$$\vec{\dot{x}}_{gg} = [A_g] \vec{\dot{x}}_{ee}$$

$$\vec{X}_{gg} = [A_g] \vec{X}_{ee}$$

11

 \dot{x}_{11} and \dot{x}_{11} are the each fixed velocity and acceleration components in the local system (the i^{11} system). \dot{x}_{11} is positive in the local north direction, \dot{y}_{11} is positive in the local easterly direction and

Systems

Definitions

 \dot{z}_{11} is positive toward the center of the earth. Note this system travels along with the missile center.

$$\vec{\dot{x}}_{11} = [A_1]^{-1} \vec{\dot{x}}_{ee}$$

$$\vec{\dot{x}}_{11} = [A_1]^{-1} \vec{\dot{x}}_{ee} + [\dot{A}_1]^{-1} \vec{\dot{x}}_{ee}$$

wee

 $\overrightarrow{X}_{\text{wee}}$ is the wind velocity component in the ce system.

$$X_{\text{wee}} = [A_1] X_{\text{w11}}$$

w11 X_{w11} and X_{w11} are the Cartesian components of wind velocity and acceleration in the local coordinate system (the 11 system).

$$\frac{1}{\hat{X}_{w12}} = -\nu_w \begin{cases}
\cos \psi_w \\
\sin \psi_w \\
0
\end{cases}$$

$$\frac{1}{X_{w11}} = -\dot{\nu}_w \begin{Bmatrix} \cos \psi_w \\ \sin \psi_w \\ 0 \end{Bmatrix} - (\pi/180) \dot{\psi}_w \nu_w \begin{Bmatrix} -\sin \psi_w \\ \cos \psi_w \\ 0 \end{Bmatrix}$$

cc

 X_{CC} and X_{CC} are the earth geocentric coordinate position and velocity with the origin at the center of the earth. The X_{CC} is positive toward the earth north pole, Y_{CC} is positive 90 degree longitude eastward from earth surface launcher point and Z_{CC} is negative through the equator at the launcher longitude.

$$\overline{X}_{cc} = \begin{bmatrix}
\cos \rho_{L} & 0 & -\sin \rho_{L} \\
0 & 1 & 0 \\
\sin \rho_{L} & 0 & \cos \rho_{L}
\end{bmatrix}
\overline{X}_{ee} + \gamma_{e} \begin{cases}
\sin \rho_{L} \\
0 \\
-\cos \rho_{L}
\end{cases}$$

Systems

Definitions

$$\dot{\dot{x}}_{cc} = \begin{bmatrix} \cos \rho_L & 0 & -\sin \rho_L \\ 0 & 1 & 0 \\ \sin \rho_L & 0 & \cos \rho_L \end{bmatrix} \dot{\dot{x}}_{ee}$$

abb \ddot{X}_{abb} and \ddot{X}_{abb} are the components of missile velocity and acceleration in the missile oriented coordinate (the b system).

$$\dot{\dot{x}}_{abb} = [D]^{-1} \dot{x}_{aee}$$

$$\vec{\hat{x}}_{abb} = [D]^{-1} \vec{\hat{x}}_{ee} + [D]^{-1} \vec{\hat{x}}_{ee} - [D]^{-1} \vec{\hat{x}}_{w11}$$

$$- \begin{bmatrix} D \end{bmatrix}^{-1} \begin{bmatrix} \dot{A}_1 \end{bmatrix} \overline{\dot{x}}_{w11} - \begin{bmatrix} D \end{bmatrix}^{-1} \begin{bmatrix} A_1 \end{bmatrix} \overline{\dot{x}}_{w11}$$

Systems

Definitions

aee

Xaee are the earth fixed launch centered velocity components with respect to the local ambient air.

$$\dot{X}_{aee} = \dot{X}_{ee} = \dot{X}_{wee}$$

c. Rotation Matrices—The Euler angle rotation matrices have the properties of being a uniorthogonal array. Their determinate in unity and A-inverse ($[A]^{-1}$) is equal to A-transpose ($[A]^{T}$). (The transpose of a matrix is obtained by interchanging rows and columns.)

The Euler angle rotation matrices used in the trajectory program are defined as follows:

Systems

Definitions

- [A_{eO}] The Euler angle rotation matrix which rotates the e system to the e_O system thru the angles ρ_L at (2), ωt at (1), and ρ_L to (2). This rotation accounts for the effect of the launcher point rotating with the earth. The matrix is defined in section B. 1. c (D Matrix).
- [A_i] The Euler angle rotation matrix which rotates the i system to the c_0 system thru the angles ϕ_i at (1), θ_i at (2), and ψ_i at (3). These Euler angles represent the inertial platform alignment angles such that ψ_i defines the reference azimuth, θ_i defines the reference elevation and ϕ_i defines the reference roll attracte. This matrix is defined in section B.1.c. (D Matrix).
- [A_b] The Euler angle rotation matrix which rotates the b system to the i system thru the angles φ_b at (1), ψ_b at (3), and θ_b at (2). These angles are the achieved vehicle attitude angles.
- [D] The Euler angle rotation matrix which rotates the b system to the e system as $[D] = [A_{eo}] [A_i] [A_b]$
- A_{mi} The Euler angle rotation matrix which rotates the m system to the i system thru the angles ϕ _m at (1), ψ _m at (3), and θ _m at (2). These angles are the command vehicle attitude angles.

Systems	,

Definitions

[K] The Euler angle rotation matrix which rotates the m system to the b system. The pitch $(\Delta\theta_b)$, yaw $(\Delta\psi_b)$, and roll $(\Delta\phi_b)$ attitude error angles are the direction cosines between the achieved and desired vehicle attitude and are defined as elements of this matrix,

$$[K] = [A_m]^{-1}[A_b]$$

- [A₁] The Euler angle rotation matrix which rotates the e system to the 1 system thru the angles $-\rho$ at (2), μ at (1), and ρ at (2). These angles are the launcher latitude, missile instantaneous change in longitude and missile instaneous latitude. This rotation basically rotates the earth fixed launcher coordinate to the local earth fixed coordinates. Winds and gravity are defined in local coordinates then transformed to the e system for inclusion in the equations of motion.
- [Ag] The Euler angle rotation matrix which rotates the e system to the g system thru the generalized coordinate orientation angles ϕ_g at (1), ψ_g at (3), and θ_g at (2). This rotation is used in velocity steering logic.
- The Euler angle rotation matrix which rotates the e system to the TM system thru the angle ζ at (1), ϕ at (2), and ψ at (3). These angles are the firing azimuth angle, down range angle, and cross range angle. This rotation matrix is used in evaluation of the missile-target coordinates.
- [A_c] The Euler angle rotation matrix which rotates the vehicle velocity vector to the m system thru the angles φ_c at (1), α_c at (2), and β_c at (3). ? nis rotation is used in commanding the desired vehicle attitude.
- [A_{γ1}] The Euler angle rotation matrix which rotates the local azimuth oriented velocity vector to the missile velocity vector thru the elevation flight path angle.
- The Euler angle rotation matrix which rotates the local velocity vector in the 11 system to the local azimuth orient velocity vector thru the aximuth flight path angle.

$$\begin{cases} v_{\epsilon} \\ 0 \\ 0 \end{cases} = \begin{bmatrix} A_{\gamma 1} \end{bmatrix} \begin{bmatrix} A_{\gamma 2} \end{bmatrix} \vec{\hat{X}}_{11}$$

Systems	<u>Definitions</u>
[A _n]	The Euler angle rotation matrix which rotates the roll and yaw compensated no-wind velocity vector to the b system thru the no-wind angle of attack $\overline{\alpha}$.
[A _β ']	The Euler angle rotation matrix which rotates the roll oriented nowind velocity vector to the roll and yaw compensated no-wind velocity vector thru the angle $\bar{\beta}$.
[φ]	The Euler angle rotation matrix which rotates the no-wind velocity vector such that the z axis passes thru the center of the earth. This rotation is used in evaluating the local vehicle back angle attitide.
k	Stage number. For example, one value of the parameter \bar{I}_Y is needed in each stage, and \bar{I}_{YK} appears in many equations as the particular value of \bar{I}_Y applicable to the current stage.
o	An initial condition, e.g., the trajectory start time, to.
f	The value of a parameter at impact or intercept.
J	The final value in a table. Severa unctions are input in tabular form, and often it is unnecessary to fill one entire table to define a function. Thus, in some equations involving tabular functions, statements like "if W > W _J " appear.
•	First derivative with respect to time, e.g., the pitch thrust vector deflection angular rate δp is $d\delta p/d_t$.
• •	Second derivative with respect to time, e.g., the vehicle pitch angular acceleration $\ddot{\theta}_b$ is ${\rm d}^2\theta_b/{\rm dt}^2$
*	Input modified by the program, e.g., the input radius of the earth re if input zero is set to 20,926,490 feet.

Symbols

Symbols appearing in this document are defined on the following pages.

Those symbols which are input to the pregram or output from the program have their associated "L-numbers" following the description. Input data have L-numbers less than 5,000, extput data have L-numbers greater than (or equal) to 5,000.

<u>a, A</u>

Symbol	<u>Definition</u>	Units
$\mathbf{a}_{\mathbf{f}_{\cdot}}$	Input value of the dependent variable to be isolated by the hunting procedure (Pl) (L0082)	(dbi)
a¹ s	Input nozzle separation polynominal coefficient used in the separated flow nozzle thrust equation. If input zero is set to 0.3 (Lk017)	
^a TC	Target transverse acceleration (L5446)	(g¹s)
^a TCj	Input target earth reference acceleration crosswise to the target velocity vector for the j-th period of the target dynamical condition table 'L0643, 647, etc.)	(g¹s)
^a Tj	Input transformation constant used in the simultaneous hunting procedure (P2) j - 1,2,7 (L0099, 108, etc.)	(dbi)
^a TN	Target normal to its velocity vector acceleration (L5445)	(g'5)
^a TNj	Input target earth reference acceleration normal to the target velocity vector for the j-th period of the target dynamical condition table (L0642, 646, etc.)	(g¹s;
a _{TT}	Target tangential acceleration (L5444)	(g³s)
^a TTj	Input target earth reference acceleration tangential to the target velocity vector for the j-th period of the target dynamical condition table (L0641, 645, etc.)	(g's)
^a Xb	Component of vehicle acceleration due to total thrust and aerodynamic forces. Positive in the direction of the coordinate axes of b system (L5504)	(g¹s)

a, A

The Royal Commence of the State of the State

Some the second of the second

Symbol	Definition	Units
aXb(B1)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage I (L5911)	(g's)
a Xb(B2)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage II (L5936)	(g¹s)
a Xb(B3)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage III (L5961)	(g¹s)
aXb(B4)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage IV (L5986)	(g¹s)
^a Yb	Component of vehicle acceleration due to total thrust and aerodynamic forces. Positive in the direction of the coordinate Y axes of the b system (L5505)	(g¹s)
^a Zb	Components of vehicle acceleration due to total thrust and aerodynamic forces. Positive in the direction of the coordinate Z axes of b system (L5506)	(g¹s)
a _{o, jk}	Input constants used in the Zgg and constant components nontarget dependent pitch steering equations for the k-th stage (Lk391-392)	(rad)
A _{ax}	Earth fixed axial acceleration, constrain to be greater than zero, during rail launch type of flight.	(ft/sec ²)
^A _e C	Input complementary thrust-weight table stage nozzle exit area (Lk104)	(ft [?] ,
A _{Eij}	Elements of the (A _E) matrix which define the commanded turning rates for type 2 flight.	(deg/sec)
A'eM	Input main thrust-weight table input stage nozzle exit area (Lk011)	(ft ²)

a,A

Symbol	<u>Definition</u>	Units
Afw1, AFW1	Input and output respectively Stage I vacuum thrust to liftoff weight used in the vehicle characteristics pertinent to roll requirement (L0675)	(g¹s)
^A L	Input amplitude of limit cycle for the k-th stage. (Lk386)	(deg)
A ¹	Input and utilized relative integration tolerance, j = 1, 2,, 7 (L0281, 283, etc)	(dbi)
^A SI	Burn surface area (L5079).	(in ²)
At	Pintle nozzle throat area. Used in TMC logic (L5735).	(in ²)
åt	Time rate change of pintle throat area (L5785).	(in ² /sec)
At	Input absolute allowable break-up tolerance of time (L0306).	(dim)
Atcc	Commanded throat area (L5080).	(in ²)
A ¹ _x	Input absolute allowable break-up tolerance of target value (L0308).	(sec)
AxI	Propellant extinguishment throat area (L5085).	(in ²)

<u>b, B</u>

Symbol	Definition	Units
^b jk	Input constants used in the X_{gg} , X_{gg}^2 , and X_{gg}^3 components of the nontarget dependent pitch steering equation for the k-th stage, $j = 1, 2, 3$ (Lk393-395).	(rad-sec/ft rad-sec/ft and rad-sec)
b's	Input nozzle separation polyneminal coefficient used in the separated flow nozzle thrust equation if input zero is set to 0.7 (Lk018).	(dim)
BD	Inpu' basic deck number (L0000).	(dim)
$B_{\mathbf{t}}^{t}$	Input relative allowable break-up tolerance of time (L0307).	(dim)
B _X	Input relative allowable breakeup to'erance of target value (L0309).	(dim)

Symbol	Definition	Units
c [†] s	Input nozzle separation polynominal coefficient used in the separated flow nozzle thrust equation. If input zero is set to 0.884 (Lk019).	(dim)
C	Instantaneous aerodynamic axial force (L5164).	(1Ե)
Ĉ'	Input stage axial force control function and multiplier. If input zero, the multiplier is set to one; if nonzero, the axial force is determined from input and multiplied by C (Lk186).	(dim)
Ca	Speed of sound at the missile (L5066).	(ft/sec)
C _A	Instantaneous aerodynamic axial force coefficient (L5573).	(dim)
C _{Aj}	Input and instantaneous (with Mach number M.) aerodynamic axial force coefficients, respectively, where j = 1, 2, , 15 per stage (Lk189, 191, etc).	(dim)
can	Added aerodynamic base drag coefficient due to nozzles not thrusting (L5574).	(dim)
D C ₁	input and calculated nozzle efficiency coefficient used in the separated flow nozzle thrust equation (Lk015).	(dim)
$C_{\mathbf{D}\mathbf{z}}$	Instantaneous aerodynamic pitch movable fin drag coefficient (L5566).	(dim)
Č' _{Dz}	Input aerodynamic pitch lin drag coefficient multiplier. If zero set equal to one (Lk708).	(dim)
C _{Dzj}	Instantaneous aerodynamic pitch movable fin total drag coefficient (L5579).	(dim)
C _{Dzj}	Input aerodynamic pitch fin drag coefficient j = 1, 2,, 15 per stage (Lk713, 719, etc).	(dim)

c, C

Symbol	<u>Definition</u>	<u>Units</u>
C _{Fyj}	Input thrust system proportionality system gain of the j-th type TMC (L0804, 814, etc).	(dim)
C _{FI}	Thrust coefficient (Lk5081).	(dim)
C _{FO}	Thrust coefficient at optimum expansion $(P_e = P_a)$ (1.5082).	(dim)
	Instantaneous aerodynamic yaw movable fin total lift coefficient (L5577).	(dim)
Č'iz	Input aerodynamic nonlinear pitch fin drag coefficient multiplier. If input zero is set to 1.0 (Lk707).	(dim)
Ciz	Instantaneous aerodynamic pitch movable fin nonlinear fin lift coefficient (L5565).	(1/deg ²)
$C_{\mathbf{L}\mathbf{z}}$	Instantaneous aerodynamic pitch movable fins linear fin lift coefficient (L5564).	(1/deg ²)
C _{l2j}	Input and calculated aerodynamic pitch fin nonlinear lift coefficient j = 1,2,, 15 per stage (Lk712, 718, etc)	(1/deg ²)
Č' _{Lz}	Input aerodynamic linear pitch fin lift coefficient multiplier. If input zero is set to 1.0 (Lk706).	(dim)
c _{Lz}	Instantaneous aerodynamic pitch movable fin total lift coefficient (L5578).	(dim)
C _{Lzj}	Input and calculated aerodynamic pitch fin nonlinear lift coefficient j = 1, 2,, 15 per stage (Lk711, 717, etc).	(I/deg ²)
C _{MQ}	Calculated and unadjusted for translation aerodynamic pitch damping moment due to pitch rate coefficient (L5575).	(1/deg)
C _{MQj}	Input aerodynamic pitch damping moment due to pitch rate coefficient where j = 1, 2,, 15 per stage (Lk306, 309, etc).	

TO THE STATE OF THE PARTY OF THE STATE OF TH

<u>c, C</u>

Symbol	<u>Definition</u>	<u>Units</u>
^С ма́	Calculated and unadjusted for trans- lation aerodynamic pitch damping moment due to rate change of angle of attack coefficient (L5576).	(1/deg)
C _{Md} j	Input aerodynamic pitch damping moment due to rate change of angle of attach coefficient where j = 1,2,,15 per stage (Lk307,310, etc.).	(1/deg)
c^N	Instantaneous aerodynamic normal force coefficient (L5569).	(dim)
CN ₁ CN ₂ CN ₃	Instantaneous first, second, and third derivatives, respectively, of C_N with respect to the angle of attack (L5570, 5571, 5572).	(1/deg ₂ 1/deg ₃ 1/deg ³)
C _{N1} , 2, 3j	Input values of $C_{N1, 2, 3}$ respectively, corresponding to M_j where $j = 1, 2,, 15$ per stage (Lk224-226, 229-231).	(deg/deg ² /deg ³)
C _{RRj}	Input raceway aerodynamic force coefficient corresponding to the M_{Rj} , $j = 1, 2,, 10$ (Lk674, 676).	(dim)
c _{&z}	Aerodynamic pitch fin axial force (L5155).	(lb)

d, D

CONTRACTOR OF THE SECOND STATES OF THE SECOND SECON

Symbol	<u>Definition</u>	<u>Units</u>
dC _a /dh	Partial derivative of the speed of sound with a ltitude (L5067).	(1/sec)
dP _a /dh	Partial derivative of ambient pressure with altitude (L5069).	(1b/ft)
D _b	Propellant bur., depth. Used in TMC logic (L5733).	(in)
DB	Output TVC duty cycle stage case diameter from axial force reference area.	(in)
D _i	Input roll control system hysteresis for the i-th zone, i = 1, 2, or 3 (Lk640, 650, etc.).	(dim)
D _p	Input diameter of propellant (Lk001).	(in)
D _r l	Rail launch friction drag (L5154).	(lb)
D _{RN}	Input aerodynamic reference diameter (Lk298).	(ft)
Dy	Input initial or restart discontingity print flag (L0009).	(dim)

,我们是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就会会会会会会会会会会会会会会会会会会会会会

e,E

Symbol	<u>Definition</u>	Units
е	Eccentricity of the missile path during the glide phase (L5112).	(dim)
E/m	Total missile energy per unit mass during the glide phase. Potential energy at the launcher is taken as zero (L5109).	(ft ² -sec ²)

f, F

<u>Symbol</u>	Definition	Units
a ¹	Input and flag specifying maximization and isolation of the same parameter used in hunt procedure (P2). If f_D is nonzero, the function f is maximized relative to the independent variables x_2, x_3, \ldots, x_n and is isolated to a value f_D by varying x_1 (L0089).	(dbi)
^f Gik	Input attitude control system gain control flag. If equal to zero, input gains are utilized; if not equal to zero, the automatic gains are utilized for the j-th control zone, i = 1, 2, or 3; and k-th stage, k = 1, 2, 3, or 4 (Lk456, 465, etc.).	
F	Total instantaneous thrust acting along missile centerline. Positive when thrust vector points forward along missile centerline (L5122).	(1b)
Ē	Instantaneous delivered thrust per motor during the TVC design stage.	(1b)
F _C	Instantaneous complementary thrust (L5127).	(1b)
f _c	Thrust required to maintain V; i.e., retarding axial force used in TMC logic (L5134).	(lb)
FCALOS	Command thrust to provide acceleration proportional to LOS rate used in TMC logic (L5137).	(1p)
Fcclos	Command thrust to provide a minimum missile to target closing rate used in TMC logic (L5138).	(1b)

Symbol	<u>Definition</u>	Units
^F Cj	Input value of the complementary vacuum thrust to be used during t c t s t C(j+1), where j = 1, 2,, 25 per stage (Lk112, 115).	(1b)
Fcom	Commanded altitude thrust used in TMC logic (L5130).	(lb)
Fcqmax	Maximum thrust so that the venicle will not exceed the maximum dynamic pressure used in TMC logic (L5136).	(1b) e
Fcqmin	Require thrust so that the vehicle will maintain the minimum dynamic pressure used in TMC logic (L5135).	(1b)
F _C V	Instantaneous complementary vacuum thrust (L5128).	(lb)
Fcv	Instantaneous complementary vacuum. thrust time rate (L5129).	(lb/sec)
Fcv	Commanded vacuum thrust used in TMC logic (L5131).	(lb)
Fo	Instantaneous roll control system phase plane signal (£5449).	(deg)
F _h	Vacuum thrust of the σ_{tb} short-time trace.	(lb)
FJFy	Jet damping yawing transverse force (L5149).	(1b)
F _{JD2}	Jet damping pitching transverse force (L5149).	(lb)
FL	Vacuum thrust of the other long-time trace.	(lb)
F _M	Instantaneous main thrust (L5124).	(lb)
F _{Mj}	Input value of the main vacuum thrust to be used during $t_{Mj} \le t \le t_{Mj+1}$, where $j = 1, 2,, 25$ per stage (Lk021, 024, etc).	(1b)

<u>f, F</u>

Symbol	Definition	Units
F _{MV}	Instantaneous main vacuum thrust (L5125).	(1b)
· Mν	Instantaneous main vacuum thrust ate (L5126).	(1b)
F _n	Nominal vacuum thrust of each motor.	(lb)
F _N	Nominal altitude thrust used in TMC logic.	(1b)
ř g	Delivered motor thrust (F) at tBq during TVC design stage.	(1b)
F _R	Instantaneous roll control thrust. Positive if the vehicle is intended to rotate clockwise as seen from the rear of the vehicle. (L5714).	(lb)
F _R	Time rate change of roll control thrust (L5769).	(lb/sec)
FRe	Instantaneous roll control system thrust command signal (L5721).	(lb)
FRO	Input per stage initial roll thrust (Lk424).	(15)
F _{TDy}	Movable nozzle tail-wag-dog force in yaw, positive to the right (L5147).	(15)
FTDz	Movable nozzle tail-way-dog force in pitch, positive down (L5148).	(1b)
F _v	Instantaneous total vacuum thrust (L5123).	(15)
F _{VN}	Nominal vacuum thrust used in TMC logic (L5132).	(lb)
lF/ŵl	Instantaneous effective specific impulse (L5115).	(sec)
FW1	Input Stage I vacuum thrust to liftoff weight used in the vehicle characteristics pertinent to roll requirement (L0675).	(g's)
F _x	Components of total vehicle thrust parallel to the coordinate axes of the b system (L5141).	(lb)

THE SECOND SECON

f, F

Symbol	Definition	Units
Fx	Thrust force along nozzle centerline (L5144).	(1b)
F _y	Components of total vehicle thrust parallel to the coordinate axes of the b system (L5142).	(lb)
F _Y	Component of total vehicle thrust moved to nozzle centerline, positive right (L5145).	(lb)
F _{yj}	Input thrust control law code for the j-th type of TMC table (L6800, 810, etc).	(dim)
Fz	Components of total vehicle thrust parallel to the coordinate axes of the b system (L5143).	(lb)
FZ	Component of total vehicle thrust normal to nozzle centerline, positive down (L5146).	(1ь)
F _{Ai}	Input maximum roli control thrust for the i-th zone, i = 1,2, or 3 (Lk641, 651,661).	(lb)
Fvave	Output TVC duty cycle stage average vacuum thrust.	(lb)
Fvac	Nominal input vacuum thrust time curve	(1b)
F vac	Instantaneous vacuum motor thrust	(lb)
F vacq	Output vacuum motor thrust (F) during the TVC design stage at t Bq.	(jp)

g, G

Eymbol	<u>Definition</u>	Units
g _e	Gravitational force at the missile.	(ft/sec^2)
ğ	Input mass conversion gravity. If input 2010, set equal to 32.174 (L0024).	(ft/sec ²)
g <mark>i</mark>	Input gravitational acceleration at the surface of the reference body. If input zero, set equal to 32.14625 (L0025).	(ft/sec ²)
g _i	Lagranian constraining function of the i-th dependent variables y _i used in the hunting procedure (P2).	(dbi)
$^{\mathrm{g}}_{\mathrm{PI}}$	Fraction of propellant removed (L5084).	(dim)
g _{w1}	Percent web (L5077).	(dim)
g _{xe}	Launch centered earth fixed northernly component of gravity (L5041).	(ft/sec ²)
$g_{\mathbf{x}\mathbf{l}}$	Local northernly component of gravity (L5038).	(ft/sec ²)
g _{ye}	Launch centered earth fixed easternly component of gravity (L5042).	(ft/sec ²)
g _{yľ}	Local easternly component of gravity (L5039).	(ft/sec ²)
g _{ze}	Launch centered earth fixed downward component of gravity (L5043).	(ft/sec ²)
g_{zl}	Local downward component of gravity (L5040).	(ft/sec ²)
$^{\rm G}_{ m Z}$	Partial derivatives of altitude accelera- tion to vehicle altitude (L5455).	(ft/sec ² -deg)
G	Lagrangian constraining function maximized or minimized to provide an external of the function f subject to one or more constraints used in the hunting procedure (P2).	(dim)

TO THE SECTION OF THE PROPERTY OF THE PROPERTY

<u>h, H</u>

Symbol	Definition	Units
h	Missile geometric altitude. Distance between the surface of the reference body and the missile measured along the local vertical. Positive away from the reference body (L5028)	(ft)
h	Time rate change of missile geometric altitude rate between the surface of the reference body and missile measured along the local vertical positive away from the reference body (L5029)	(ft/sec)
h	Instantaneous altitude acceleration (L5030)	(ft/sec ²)
h _a	Apogee altitude of the missile during the glide phase (L5031)	(n.m)
h ab	Altitude above launcher (L5034)	(ft)
ha(B1)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage I (L5915)	(nm)
^h a(B2)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage II (L5940)	(nm)
^h a(B3)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage III (L5965)	(nm)
h a(B4)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage IV (L5990)	(nm)
h _{ap}	Height of apogee + paragee (L5033)	(nm)
h(B1)	Missile geometric altitude at the termination of stage I (L5902)	(ft)
h(B2)	Missile geometric altitude at the termination of stage II (L5927)	(22)
h _(B3)	Missile geometric altitude at the termination of stage III (L5952)	(ft)

The second of the second of the same of the second of the

`a

Control of the second s

Symbol	<u>Definition</u>	<u>Units</u>
h (B4)	Missile geometric altitude at the termination of stage IV (1.5977)	(ft)
h _. BI	Base geopotential altitude associated with the atmosphere representation	(ft)
h_j	Input commanded altitude used in the constant altitude type of flight (Ty=8) (L0313, 320, etc)	(ft)
h _e	Input altitude of atmospheric entry (L0042)	(ft)
h _E	Input altitude above which ambient pressure and aerodynamic forces are zero and speed of sound is 1,000 ft/sec. If input zero is set to 300,000 ft (L0021)	(ft)
h _f	Input altitude at the termination of the glide phase (L0039)	(ft)
h _j _	Input wind velocity altitude sociated with v	(ft)
	and ψ_{wj} where j = 1, 2,, 30 (L0410, 413, etc)	
$^{ m h}{ m L}$	Input launcher aititude (L0019)	(ft)
h _{MI}	Estimated altitude at target intercept (L5442)	(fi)
h mxwd	Input altitude of maximum wind velocity. Also flag to set up wind table per MMRBM wind shear criteria (L0682)	(ft)
h _p	Perigee altitude of the missile during the glide phase (L5032)	(nm)
^h р(В1)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage I (L5914)	(nm)
^h р(Б2)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage II (L5939)	(nm)
^h р(В3)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage III (L5964)	(nm)

<u>h. H</u>

Symb _∪ l	<u>Deficition</u>	Units
h p(B4)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage IV (L5989)	(nm)
h _T	Target altitude (L5730)	(ft)
h _{To}	Input target initial altitude at the start of the target maneuvering (L0634)	(ft)
h _α	Input final attitude of maximum wind shear used in TVC duty cycle siew rate calculations (I.0672)	(ft)
^h β	Input initial altitude of maximum wind shear used in TVC duty cycle slew rate calculations (L0673)	(ft)
h o	Input missile altitude at the trajectory start time (L0012)	(ft)
H _e	Heating parameter. Integral of qv from stage initiation to the time being printed (L5747)	(lb/ft)
$\mathbf{\dot{h}_{T}}$	Target aititude rate (L5780)	(ft/sec)

Symbol	<u>Definition</u>	<u>Units</u>
i	Orbital inclination angle (L5111)	(deg)
1	Total missile impulse measured from stage initiation to the time being printed (L5737)	(lb-sec)
ĩ	Output motor thrust impulse for TVC duty cycle stage	(lb-sec)
^I FC(1)	Calculated complementary table nozzle back pressure impulse for stage I (L5847)	(lb-sec)
¹ FC(2)	Calculated complementary table nozzle back pressure impulse for stage II (L5862)	(lb-sec)
I _{FC(3)}	Calculated complementary table nozzle back pressure impulse for stage III (L5877)	(lb-sec)
I _{FC(4)}	Calculated complementary table nozzle back pressure impulse for stage IV (L5892)	(lb-sec)
^I FM(1)	Calculated main table nozzle back pressure impulse for stage I (L5841)	(lb-sec)
^I FM(2)	Calculated main table nozzle back pressure impulse for stage II (L5856)	(lb-sec)
I _{FM(3)}	Calculated main table nozzle back pressure impulse for stage III (L5871)	[(lb-sec)
I _{FM(4)}	Calculated main table nozzle back pressure impulse for stage IV (L5886)	(lb-sec)
I _n	Input stage movable portion nozzle movement of inertia about the gimbal point (Lk483)	(slug-ft ²)
IPRD	Pitch inertia rotation damping moment integral (L5193)	(ft-lb-sec)
^I p	Pitch control thrust impulse from stage initiation to the time being printed (L5739)	(lb-sec)
Īp	Output pitch control thrust impulse per control motor from TVC duty cycle initiation to stage termination	(lb-sec)
IR	Auxiliary roll control system delivered total impulse (L5745)	(lb-sec)

のできない。 では、これでは、これでは、これでは、これでは、これできない。 では、これでは、これでは、これでは、これでは、これできない。

Symbol	<u>Definition</u>	<u>Units</u>	
IRRD	Roll inertia rotation dampir g moment integral (L5195)	(ft-lb-sec)	
spaug	Input and output estimated TVC system caused specific impulse augmentation (positive) or degradation (negative). Used in trajectory TVC Design program refly (L0679)	(sec)	
I spC	Input complementary specific impulse user's compute vehicle weight flow. If zero weight to we is determined from input weight flow (1.03)	(sec)	
1 spC(1)	Calculated complementary table adjusted to vacuum specific impulse for stage I (L5852)	(sec)	
I _{spC(2)}	Calculated complementary table adjusted to vacuum specific impulse for stage II (L5867)	(sec)	
IspC(3)	Calculated complementary table adjusted to vacuum specific impulse for stage III (L5882)	(sec)	ل
IspC(4)	Calculated complementary table adjusted to vacuum specific impulse for stage IV (L5897)	(sec)	
I _{spM}	Input main specific impulse used to compute vehicle weight flow. If zero, weight flow is determined from the input weight flow. Also output in the TVC duty cycle (Lk016)	(sec)	
I spM(1)	Calculated main table adjusted to vacuum specific impulse for stage I (L5846)	(sac)	
I spM(2)	Calculated main table adjusted to vacuum specific impulse for stage II (L5861)	(sec)	
I spM(3)	Calculated main table adjusted to vacuum specific impulse for stage III (L5876)	(sec)	
spM(4)	Calculated main table adjusted to vacuum specific impulse for stage IV (L5891)	(sec)	
I SPRi	Input roll control motor specific impulse for the i-th zone, i = 1, 2, or 3 (Lk646, 656, 666)	(sec)	
Ľ	Total missile vacuum impulse, measured from stage initiation to the time being printed (L5738)	(lb-sec)	٠_)

Symbol	<u>Definition</u>	<u>Units</u>
^L V(B1)	Total missile vacuum impulse for stage I (L5913)	(lb-sec)
I _{V(B2)}	Total missile vacuum impulse for stage II (L5938)	(lb-sec)
I _{V(B3)}	Total missile vacuum impulse for stage III (L5963)	(lb-sec)
^I V(B4)	Total missile vacuum impulse for stage IV (L5988)	(lb-sec)
$\overline{I}_{\mathbf{v}}$	Output motor vacuum thrust impulse for TVC duty cycle stage	(lb-sec)
I'vC	Input complementary stage total vacuum impulse (Lk196)	(lb-sec)
I'' vC	Vacuum impulse under input complementary firust curve (L5105)	(lb-sec)
I _{vC(l)}	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage I (L5849)	(lb-sec)
^I vC(2)	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage II (L5863)	(lb-sec)
^I vC(3)	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage III (L5879)	(lb-sec)
^I vC(4)	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage IV (L5893)	(lb-sec)
Î _{vC(1)}	Calculated complementary table input total impulse adjusted to vacuum condition for stage I (L5849)	(lb-sec)
Î _{vC(2)}	Calculated complementary table input total impulse adjusted to vacuum condition for stage II (L5863)	(lb-sec)
ÎvC(2) ÎvC(3) ÎvC(4)	Calculated complementary table input total impulse adjusted to vacuum conditions for stage III (L5878)	(lb-sec)
ÎvC(4)	Calculated complementary table input total impulse adjusted to vacuum conditions for stage IV (L5893)	(lb-sec)

Symbol	<u>Definition</u>	<u>Units</u>
I* vC(1)	Calculated complementary table vacuum adjusted thrust integral for stage I (L5850)	(lb-sec)
ĭ* vC(2)	Calculated complementary table vacuum adjusted thrust integral for stage II (L5863)	(lb-sec)
I* vC(3)	Calculated complementary table vacuum adjusted thrust integral for stage III (L5879)	(lb-sec)
I* vC(4)	Calculated complementary table vacuum adjusted thrust integral for stage IV (L5893)	(lb-sec)
l' _{vM}	Input main stage total vacuum impulse (Lk005)	(lb-sec)
I'' VM	Vacuum impulse under mput main thrust curve (L5104)	(lb-sec)
I vM(1)	Calculated input vacuum corrected main table time adjusted thrust integral for stage I (L5943)	(lb-sec)
I vM.(2)	Calculated input vacuum corrected main table time adjusted thrusi integral for stage II (L5858)	(lb-sec)
I vM(3)	Calculated input vacuum corrected main table time adjusted thrust integral for stage III (L5873)	(lb-sec)
I vM(4)	Calculated input vacuum corrected main table time adjusted thrust integral for stage IV (L5888)	(lb-sec)
Î _{VM(1)}	Calculated main table input total impulse adjusted to vacuum conditions for stage I (L5842)	(lb-sec)
î vM(2)	Calculated main table input total impulse adjusted to vacuum conditions for stage II (L5857)	(lb-sec)
Î _v M(3)	Calculated main table input total impulse adjusted to vacuum conditions for stage III (L5872)	(lb-sec)
Î vM(4)	Calculated main table input total impulse adjusted to vacuum conditions for stage IV (L5887)	(lb-sec)
I* vM(1)	Calculated main table vacuum adjusted thrust integral for stage I (L5844)	(ib-sec)
I* vM(2)	Calculated main table vacuum adjusted thrust integral for stage II (L5859)	(lb-sec)

to make the first of the control of the first of the firs

Symbol .	<u>Definition</u>	Units
*vM(3)	Calculated main table vacuum adjusted thrust integral for stage III (L5874)	(lb-sec)
I* vM(4)	Calculated main table vacuum adjusted thrust integral for stage IV (L5889)	(lb-sec)
I' VT	Input total of the main and complementary vacuum impulse (Lk004)	(lb-sec)
^I vT(1)	Calculated input vacuum corrected main and complementary impulse corrected for stage I (L5855)	(lb-sec)
¹ yT(2)	Calculated input vacuum corrected main and complementary impulse time corrected for stage II (L5870)	(lb-sec)
I vT(3)	Calculated input vacuum corrected main and complementary impulse time corrected for stage III (L5885)	(lb-sec)
I vT(4)	Calculated input vacuum corrected main and complementary impulse time corrected for stage IV (L5900)	(lb-sec)
Î _{VT(1)} Î _{VT(2)}	Calculated input main and complementary impulse corrected to vacuum condition for stage I (L5853)	(lb-sec)
Î vT(2)	Calculated input main and complementary impulse corrected to vacuum conditions for stage II (L5868)	(lb-sec)
Î vT(3)	Calculated input main and complementary impulse corrected to vacuum conditions for stage III (L5883)	(lb-sec)
Î _{vT(4)}	Calculated input main and complementary impulse corrected to vacuum conditions for stage IV (L5898)	(lb-see)
I* vT(1)	Calculated main and complementary vacuum adjusted thrust integral for stage I (L5854)	(lb-sec)
* vT(2)	Calculated main and complementary vacuum adjusted thrust integral for stage II (L5869)	(lb-sec)
I* vT(3)	Calculated main and complementary vacuum adjusted thrust integral for stage III (£5884)	(lb-sec)

Company of the second of the s

Baris Cingan Shire Shaked with Mister and Sinks who his sink with the wish of the state of the s

Symbol	<u>Definition</u>	Units
I* VT(4)	Calculated main and complementary vacuum adjusted thrust integral for stage IV (£5899)	(lb-sec)
I _{vT} "	Output integral of the stage main plus complementary thrust tables as adjusted by the calculated multipliers	(lb-sec)
\overline{I}_{X}	Input roll moment of inertia multipler (Lk477)	(dbi)
I _{Xj}	Input total vehicle roll moment of inertia weight input Wj, where j = 1, 2,, 15 per stage (Lk494, 504)	(slug ît ²)
Ixx	Roll moment of inertia about vehicle center-of- gravity (L5175)	(ft··lb-sec ²)
i _{xx}	Time rate change of roll moment of inertia (L5184)	(ft-lb-sec)
IXY	Roll-yaw product of inertia about vehicle center-of- gravity (L5176)	(ft-lb-sec ²)
i _{XY}	Time rate change of roll-yaw product of inertia (L5185)	(ft-ib-sec)
I _{XYj}	Input total vehicle roll-yaw product of inertia corresponding to the total weight input W1, where ; -1, 2,, 15 per stage (Lk495, 505)	(slug ft ²)
I _{XZ}	Roll-pitch product of inertia about vehicle center- of-gravity (L517?)	(ft-lb-sec ²)
i _{xz}	Time rate change of roll-pitch product of inertia (L5186)	(ft-lb-sec)
$\mathbf{I}_{\mathbf{\check{Y}}}$	Yaw control thrust impulse from stage initiation to the time being printed (L5740)	(lb-sec)
<u>ī</u> y	Input moment of inertia multiplier (Lk4?5)	(dbi)
^I Yj	Input total vehicle pitch moment of inertia corresponding to the total vehicle weight input Wj where $j=1, 2, \ldots, 15$ per stage (Lk490, 500)	(dbi)
Ī _y	Output yaw control thrust impulse per control moter from TVC stage initiation to stage termination	(lb-sec)

<u>i, I</u>

Symbol	<u>Definition</u>	Units
I* vT(4)	Calculated main and complementary vacuum adjusted thrust integral for stage IV (L5899)	(lb-sec)
vT	Output integral of the stage main plus complementary thrust tables as adjusted by the calculated multipliers	(ib-sec)
\bar{i}_{x}	Input roll moment of inertia multipler (Lk477)	(dbi)
^I xj	Input total vehicle roll moment of inertia weight input Wj, where j = 1, 2,, 15 per stage (Lk494, 504)	(slug ft ²)
ıxx	Roll moment of inertia about vehicle center-of- gravity (L5175)	(ft-lb-sec ²)
i_{xx}	Time rate change of roll moment of inertia (L5184)	(ft-lb-sec)
I _{XY}	Roll-yaw product of inertia about vehicle center-of- gravity (£5176)	(ft-lb-sec ²)
i_{XY}	Time rate change of roll-yaw product of inertia (L5185)	(ft-lb-sec)
[‡] xyj	Input total vehicle roll-gaw product of inertia corresponding to the total weight input Wj, where j = 1, 2,, 15 per stage (Lk495, 505)	(slug ft ²)
1xz	Roll-pitch product of inertia about vehicle center- of-gravity (L5177)	(ft-lb-sec ²)
ixz	Time rate change of roll-pitch product of inertia (L5186)	(ft-lb-sec)
ī	Yaw control thrust impulse from stage initiation to the time being printed (L5740)	(lb-sec)
\overline{i}_{Y}	Input moment of inertia multiplier (Lk475)	(dbi)
ī	Input total-vehicle pitch moment of inertia corresponding to the total vehicle weight input Wi where j=1, 2,, 15 per stage (Lk490, 500)	(dbi)
Ĭ,	Ouipui vaw control thrust impulse per coatrol motor from TVC stage initiation to stage termination	(lb-sec)

i, I

الأرواع الأرار يعد يافالأطاب والاستخارية المسائرة والمقالة المافالم المافاة

1888 W. British Belle State Come Sold British College College College College College College College College

Symbol	<u>Definition</u>	Units
I _{YRD}	Yaw inertia rotation damping moment integral (L5194)	(ft-lb-sec)
I _{YY}	Pitch moment of inertia about vehicle center-of-gravity (L5179)	(ft-lb-sec ²)
i _{YY}	Time rate change of pitch moment of inertia (L5188)	(ft-lb-sec)
I _{YZ}	Yaw-pitch product of inertia about vehicle center- of-gravity (L5180)	(ft-lb-sec ²)
¹ YZ	Time rate change of yaw-pitch product of inertia (L5189)	(ft-lb-sec)
I _{YZj}	Input total vehicle yaw pitch product of inertia corresponding to the total vehicle weight input Wj, where $j=1, 2, \ldots, 15$ per siage (Lk496, 506)	(slug it ²)
$ar{f i}_{f Z}$	Input yaw moment of inertia multiplier (Lk476)	(dbi)
^I Zj	Input total vehicle yaw moment of inertia corresponding to the total vehicle weight input W, where $j = 1, 2,, 15$ per stage (Lk492, 502)	(slug ft ²)
I _{ZXj}	Input total vehicle pitch-roll product of inertia corresponding to the total vehicle weight input Wj, where j = 1, 2,, 15 per stage (Lk497, 507)	(slug ft ²)
I _{ZŽ}	Yaw moment of inertia about vehicle center-of- gravity (L5183)	(ft-lb-sec ²)
$\mathbf{i}_{\mathbf{z}\mathbf{z}}$	Time rate change of yaw moment of inertia (L5192)	(ft-lb-sec)
I ¿P	Sum of pitch angular thrust vectoring velocities from stage initiation to the time being printed (L5741)	(deg)
īòp	Sum of pitch angular thrust vectoring velocities from stage initiation to the time being printed corrected for dither (L5116)	(deg)
Į į	Sum of yaw angular thrust vectoring velocities from stage initiation to the time being printed (L5742)	(deg)
ī ģy	Sum of yaw angular thrust vectoring velocities from stage initiation to the time being printed corrected for dither (L5117) 143	(deg)

Symbol	<u>Definition</u>	Units
J	Input gravitational value which accounts for the earth's oblateness (I.0003)	(dim)

Symbol	<u>Definition</u>	<u>Units</u>
к ₃	Input quantity which determines stage termination (Lk003)	(dbi)
K _a	Input isolation-maximization control function. If zero, isolation is specified and if nonzero, maximization of the dependent variables will occur used in hunting procedure (Pl) (L0076)	(dim)
K _{BD}	Input flag which stipulates that the main nozzle exit area will be used in the base drag calculations when splitting main and complementary tables to allow for up to 47 thrust time points (Lk108)	(dim)
K	Commanded thrust velocity error gain used in TMC (L5452)	(lb-sec/ft)
K	Commanded thrust dynamic pressure error gain used in TMC (L5453)	(ft ²)
K _{c1,2}	Input lower and upper limits, respectively, for computation of orbital elements and impact determination computations (L0037, 38)	(dbi)
K _{de}	Input and output stage number of TVC duty cycle stage (L0671)	(dim)
KDP	Instantaneous control system pitch attitude error gain (L5461)	(dim)
K _{DPj}	Input control system pitch attitude error gain for the j-th control region j = 1, 2, or 3 (Lk450, 459, etc)	(dim)
KDR	Instantaneous control system roll attitude error gain · (L5463)	(dim)
KDRi	Input roll control system attitude error gain for the i-th zone, $i = 1, 2$, or 3 (Lk643, 653, 663)	(dim)
KDY	Instantaneous control system yaw attitude error gain (L5462)	(dim)
K _{DYj}	Input control system yaw attitude error gain for the j-th control region j = 1, 2, or 3 (Lk451, 450, etc)	(dim)

Symbol	Definition	Units
K' _{FC}	input multiplier of the complementary vacuum thrust. If input zero for the k-th stage and I' _{vT} =	(dim)
	$I'_{VT} = 0$, the complementary thrust for the k-th	
	stage are zero (Lk100)	
K" FC	Calculated vacuum scale factor for back pressure term for complementary thrust time table	(dim)
K* FC(1)	Calculated complementary table thrust multiplier for stage I (L5851)	(dim)
K* FC(2)	Calculated complementary table thrust multiplier for stage II (L5866)	(dım)
K* FC(3)	Calculated complementary table thrust multiplier for stage III (L5881)	(dim)
K* FC (4)	Calculated complementary table thrust multiplier for stage IV (L5896)	(dim)
K _{fj}	Input limit of the j-th type of flight where j = 1, 2,, or 16 (L0312, 319, etc)	(dbi)
K _{FM}	Input multipliers of the main vacuum thrust (Lk007)	(đim)
K'' FM	Calculated vacuum scale factor for back pressure term for main thrust time table	(dim)
K* FM(1)	Calculated main table thrust multiplier for stage I (L5845)	(dim)
K* FM(2)	Calculated main table thrust multiplier for stage II (L5860)	(dim)
K* FM(3)	Calculated main table thrust multiplier for stage III (L5875)	(dim)
K* FM(4)	Calculated main table thrust multiplier for stage IV (L5890)	(dim)
K _{Fyj}	Input limit of the j-th type TMC (L9802, 812, etc)	(dbi)
K _{Gik}	Input attitude control system gain zone limits $(i = 1, 2, or 3)$ and the k-th stage $k = 1, 2, 3, or 4$ (Lk458, 467)	(dbi)

のでは、10mmのでは、

Symbol	<u>Definition</u>	Units
K _{glk}	Input quantity which designates the start of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage, k = 1, 2, 3, or 4 (Lk398)	(dbi)
K _{g2k}	Input quantity which designates the end of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage, $k = 1, 2, 3$, or 4 (Lk400)	(dbi)
K _h	Input wind altitude multiplier and flag. If zero, no wind effects are considered (L0407)	(dbi)
KHG;	Input navigation constant used in the Homing Guidance (Ty=11) (L0313, 320, etc)	(dim)
К _{іј}	i-th row, j-th column of the [K] Euler angle rotation matrix which retates the m system to the b system. These elements are the direction cosines between the achieved and desired vehicle attitude, ie, the error angles	i .
K _{IP}	Instantaneous control system angle of attack gain (L5469)	(dim)
K _{IPj}	Input pitch angle of attack gain for the j-th control region j = 1, 2, or 3 (Lk454, 463, etc)	(dim)
K _{IR}	Roil control attitude bias gain (L5466)	(1/sec)
KIY	Instantaneous control system angle of side slip gain (L5465)	(dim)
K _{IYj}	Input yaw angle of slide slip gain for the j-th control region $j = 1, 2, \text{ or } 3$ (Lk455, 464)	(dim)
K _{Jj}	Input value of that parameter at which the weight W_{JTj} is to be jettisoned where $j = 1, 2,$ or 8 (L0051, 54, etc)	(dbi)
K' k	Input stage start control function. If 1, 2, 3, or 4, the run starts at the initiation of the first, second, third, or fourth stage, respectively if input zero set equal to 1 (L0003)	(dim)

Symbol	Definition	Units
K _{Lz}	Instantaneous aerodynamic pitch movable fin drag due to lift factor (L5567)	(álm)
K' _{Lz}	Input aerodynamic pitch fin drag due to lift multiplier. If zero set equal to 1 (Lk709)	(dim)
K _{Lzj}	Input aerodynamic pitch fin drag due to lift factor (Lk714, 720, etc.)	(rad)
K _{Mj}	Input quantity which designates the limit of the j-th mode type end where $j = 1, 2,, 10$ (L062, 605, etc)	(dim)
K _{NOk}	Input complementary thrust-weight table weight carryover flag for the k-th stage. If K _{Ok} and K _{NOk} are nonzero, separation has occurred with regards	(dim)
	to the complementary weight. If Kok is nonzero and	
	and K _{NOk} is zero, the total vehicle weight at the	
	termination of the k-1 stage is used as the initial weight of the k-th stage (Lk107)	
K _{Ok}	Input main thrust-weight table weight carryover flag for the k-th stage. If zero, separation has occurred with regards to the main and complementary weights. If nonzero, the main weight at the termination of the k-1 stage is used as the initial main weight of the k-th stage (Lk012)	(dim)
K _p	Pressure rate gain used in pintle area control low in the TMC (L5451)	(sec)
K _{cf}	Input aerodynamic pitch fin deflection angle multiplier (Lk705)	(dim)
K _Q	Input aerodynamic pitch damping moment due to pitch rate multiplier (Lk301)	(dim)
K _{RC}	Input roll control system flag. If equal 1, an auxiliary roll thruster system is simulated. If equal 2, aerodynamic central fins are used (Lk405)	(dim)
K _{RP}	Instantaneous control system pitch rate gain (L5467)	(sec)

T

Symbol	<u>Definition</u>	<u>Units</u>
K _{RPj}	Input control system pitch attitude rate gain for j-th control region, j = 1, 2, or 3 (Lk452, 461, etc)	(sec)
K _{RR}	Instantaneous control system roll rate gain (L5469)	(sec)
K _{RRi}	Input roll control system attitude rate gain for the i-th zone, $i = 1, 2$, or 3 (Lk645, 655, 665)	(sec)
K _{RY}	Instantaneous control system yaw rate gain (L5468)	(sec)
K _{RYj}	Input control system yaw attitude rate gain for the j-th control region, j=1, 2, or 3 (Lk453, 462, etc.)	(sec)
K _S	Pressure error gain used in pintle area control low in the TMC (£5450)	(in. 4/lb-sec)
K _S	Input stage print control function. A nonzero value is required to print the trajectory at the termination of each stage during the hunting procedure (L0074)	(dim)
F _{sh}	Input shaper control flag where: if it equals zero, ignore routine 1. maximize range, 2. maximize payload to a given range, or 3. determine payload to a circular orbit (L0598)	(dim)
K'tc	Input complementary switching time multiplier. If zero, the program assumes a value of 1 (Lk102)	(dim)
K _{tj}	Input value when a trajectory printout is desired where $j = 1, 2,, 8$ (L0237, 239, etc)	dbi)
K'tM	Input main switching time multipliers. If zero, the program assumes a value of 1. If $\sigma_{\rm g}$ is	(dbi)
	designated at t_B , then K_3 is multiplied by K_{tm}^{t} .	
	(Lk009)	
K _{tM}	Output for the TVC duty cycle stage, the main switching time multiplier	(dim)
KTPF	Input titled print flag (L0683)	(dim)

THE STATE OF THE S

Symbol	<u>Definition</u>	Units
K _{Tto}	Input quantity which designates the start of target maneuvering (L0631)	(dbi)
K _v	Input wind speed multiplier (L0408)	(dbi)
K'WC	Input complementary weight flow multiplier. If input zero is set to 1.0 (Lk101)	(din _i)
K _{WM}	Input mainweight flow multiplier. If input zero is set to 1.0 (Lk008)	(dim)
K _{XXX}	Commanded thrust system gain. Set equal to KCPR	(dim)
	if Fy=3 and K _{ALOS} if Fy=6 (L5454)	
K' ycf	Input aerodynamic yaw fin deflection angle multiplier (Lk704)	(dim)
K yk	Input gain constant in the nontarget dependent yaw steering equation for the k-th stage (Lk401)	(dim)
$\kappa_{\mathbf{Z}}$	Altitude error gain used in type 8 flight (L5456)	(deg/ft)
^K ż	Altitude rate gain used in type 8 flight (L5457)	(deg-sec/ft)
ĸ _ż	Altitude acceleration gain used in type 8 flight (L5458)	(deg-sec ² /ft)
Κå	Input aerodynamic pitch damping moment due to time rate change of angle of attack multiplier (Lk303)	(dim)
Kγ	Input glide phase termination control function. A value of plus 1 will specify impact after apogee, while a minus 1 will specify impact before apogee (L0040)	(dim)
Kδ	Input thrust control flag. If zero, control thrust is determined from instantaneous vehicle thrust. If 1, the control thrust is obtained from the instantaneous main stage thrust, if 2 control thrust is nonexistent (Lk434)	(dim)

Symbol	<u>Definition</u>	Units
$^{K_{\Delta}^{1}}$	Input side impulse multiplier. If input zero is set to 1 (Lk387)	(dim)
К	Command attitude pitch attitude angular acceleration gain used in type of flight 8 and 9 (L5459)	(sec ²)
κ_{ψ}	Fout wind azimuth multiplier (L0409)	(dim)
Κ "	Command attitude, yaw attitude angular acceleration gain used in type of flight 8 and 9 (L5460)	(sec ²)

<u>l, L</u>

Symbol	<u>Definition</u>	<u>Units</u>
L _{bz} .	Input pitch fin base root length (Lk703)	(ft)
^L ep	Vehicle center-of-gravity to aerodynamic center- of-pressure distance (L5596)	(ft)
^L e	Gimbal point to vehicle center-of-gravity distance (L5593)	(ft)
$oldsymbol{\iota}_{\mathbf{E}}$	Nozzle exit to center-of-gravity distance (L5594)	(ft)
2 _{hz}	Pitch movable control fin center-of-pressure to hinge axis lever arm (L5602)	(ft)
· · r	Missile travel distance on the rail launcher used in ground launch tape of flight (Ty=6) (L5113)	(ft)
£ n	Movable portion of the nozzle center-of-gravity to gimbal point distance (L5595)	(ft)
e _N	Vehicle center-of-gravity to stop-start motor thrust point distance (L5597)	(ft)
L _{Pa}	Aft end of propellant grain to center-of-gravity distance (L5599)	(ft)
₽ _{Pf}	Forward end of propellant grain to center-of-gravity distance (L5598)	(ft)
2 _{Ri}	Input thruster roll control lever arm for the i-th center zone (I.k638, 648, 658)	(ft)
e sr	Input roll fin radial center-of-pressure to missile centerline distance (Lk404)	(ft)
e dy	Yaw movable control fin center-of-pressure to vehicle center-of-gravity lever arm (L5600)	(ft)
ε _{δz}	Pitch movable control fin center-of-pressure to vehicle center-of-gravity lever arm (L5601)	(ft)
T _D	Drag velocity loss from stage ignition (L5746)	(ft/sec)
L _{D(B1)}	Drag velocity loss for stage I (L5907)	(ft/sec)

<u>l. L</u>

O

Symbol	<u>Definition</u>	Units
L D(B2)	Drag velocity loss for stage II (L5932)	(ft/sec)
L _{D(B3)}	Drag velocity loss due to back pressure for stage III (L5957)	(ft/sec)
L _{D(B4)}	Drag velocity loss for stage IV (L5982)	(ft/sec)
^L _F	Output total velocity loss due to back pressure from stage initiation to the time being printed (L5743)	(ft/sec)
L _{F(B1)}	Total thrust velocity loss due to back pressure for stage I (L590%)	(ft/sec)
L _{F(B2)}	Total thrust velocity loss due to back pressure for stage II (L5931)	(ft/sec)
L _{F(B3)}	Total thrust velocity loss due to back pressure for stage III (L5956)	(ft/sec)
L _{F(B4)}	Total thrust velocity loss due to back pressure for stage IV (L5981)	(ft/sec)
Lg	Gravity losses, from trajectory initiation to the time being printed (L5748)	(ft/sec)
Lg(B1)	Gravity velocity loss for stage I (L5908)	(ft/sec)
Lg(B2)	Gravity velocity loss for stage II (L5933)	(ft/sec)
L _{g(B3)}	Gravity velocity loss for stage III (L5918)	(ft/sec)
L g(B4)	Gravity velocity loss for stage IV (L5983)	(it/sec)
L	Input control system where $j = 1, 2,, 10$ per stage. If zero, a limit is not applied; otherwise, L_j limits the	(deg)
	following parameters where the statement number is j	
	(1) $K_{DP} \Delta \theta_b$, (2) δ_{Pc} , (3) δ_{P} , (4) $\dot{\delta}_{P}$ and	
	(5) $\ddot{\delta}_{P}$, (6) $K_{DY} \Delta \psi_{b}$, (7) δ_{YC} , (9) $\dot{\delta}_{Y}$ (10) $\ddot{\delta}_{Y}$ (Lk440-449)	

l, L

Symbol	<u>Definition</u>	<u>Units</u>
L RCi	Liput maximum roll control thrust for the i-th zone, i = 1, 2, or 3 (Lk642, 652, 662)	(lb)
$\mathbf{L}_{\mathbf{v}}$	Output ideal velocity vectoring losses (L5118)	(ft/sec)
L _{V(B1)}	Vectoring velocity loss for stage I (L5909)	(ft/sec)
L _{V(B2)}	Vectoring velocity loss for stage II (L5934)	(ft/sec)
L _{V(B3)}	Vectoring velocity loss for stage III (L5959)	(ft/sec)
L _{V(B4)}	Vectoring velocity loss for stage IV (L5984)	(ft/sec)

The state of the s

Symbol	Definition	Units
m	Instantaneous missile mass (L5092)	(lb-sec ^Z /ft)
M	Missile Mach number (L5063)	(dim)
M _{Aj}	Input Mach number for aerodynamic axial representation where j = 1,2,, 15 per stage (Lk188, 190, etc)	(dim)
M _{CP}	Controlling moment about vehicle center-of-gravity in roll (L5210)	(ft-lb)
M _{CQ}	Controlling moment about vehicle center-of-gravity in pitch (L5208)	(ft-lb)
M _{CR}	Centrolling moment about vehicle center-of-gravity in yaw (L5209)	(ft-lb)
MCYG	Aerodynamic axial force center-of- gravity offset yawing moment (L5229)	(ft-lb)
M _{CZG}	Aerodynamic axial force center-of- gravity offset pitching moment (L5230)	(ft-lb)
$^{ m M}_{ m Dj}$	Input Mach number for aerodynamic representation where j = 1, 2,, 15 per stage (Lk305, 308, etc).	(dim)
M _{DP}	Perturbing moment about vehicle center- of-gravity in roll (L5207)	(ft-lb)
MDQ	Perturbing moment about vehicle center- of-gravity in pitch (L5205)	(ft-lb)
M _{DR}	Perturbing moment about vehicle center- of-gravity in yaw (L5206)	(ft-lb)
$^{\mathrm{M}}$ FCP	Auxiliary roll thrust control moment (L5225)	(ft-lb)
M _{FCR}	Thrust vector control pitching moment (L5223)	(ft-1b)
M _{FCR}	Thrust vector control yawing moment (L5224)	(ft-lb)

Symbol	Definition	Units
MFj	Input Mach number for aerodynamic fin representation where j = 1, 2, , 15 per stage (Lk710, ?16, etc)	(dim)
M _{FOP}	Thrust offset rolling moment due to pitch and yaw TVC (L5216)	(ft-1b)
M _{FOQ}	Thrust offset pitching moment (L5214)	(ft-lb)
M _{FOR}	Thrust offset yawing moment (L5215)	(ft-lb)
M _{FVP}	Rolling moment about vehicle ster- of-gravity due to vortexing effect of axial gas flow through the nozzle (L5219)	(ft-lb)
M _{Hy}	Torque about the yaw fin hinge axis (L5247)	(ft-lb)
$^{ m M}_{ m Hz}$	Torque about the pitch fin hinge axis (L5248)	(ft-lb)
MIN	Input minimum velocity or constant Mach number of the j-th type of TMC (L0806, 816, etc)	idim or ft/sec)
M_{JDQ}	Jet damping pitching moment (£5220)	(ft-lb)
M _{JDR}	Jet damping yawing moment (L5221)	(ft-lb)
M _{IP}	Unbalanced roll moment about vehicle center-of-gravity (L5204)	(ft-lb)
M _{IQ}	Unbalanced pitching moment about vehicle center-of-gravity (L5202)	(ft-lb)
M _{IR}	Unbalanced yaw moment about vehicle center-of-gravity (L5203)	(ft-lb)
M _{hymax}	Output maximum of the absolute value yaw fin hinge torque for the TVC design stage	(ft-lb)
M _{hzmax}	Output maximum of the absolute value pitch fin hinge torque for the TVC design stage	(ft-lb)

Symbol	Definition	Units
M _{NDQ}	Aerodynamic damping moment about vehicle center-of-gravity in pitch (L5235)	(ft-lb)
M _{NDR}	Aerodynamic damping moment about vehiche center-of-gravity in yaw (L5236)	(ft-lb)
M _{N,j}	Input Mach number for aerodynamic normal force coefficient representation where j = 1, 2, , 15 per stage (Lk223, 228, etc)	(dim)
M _{NP}	Aerodynamic rolling moment about vehicle center-of-gravity (L5213)	(ft-lb)
M _{NQ}	Aerodynamic yawing moment about vehicle center-of-gravity (L5211)	(ft-lb)
M _{NF}	Aerodynamic yawing moment about vehicle center-of-gravity (L5212)	(ft-lb)
M _{NSQ}	Aerodynamic static pitching moment about vehicle center-of-gravity (L5332)	(ft-lb)
M _{NSR}	Aerodyanmic static yawing moment about vehicle center-of-gravity (L5233)	(ft-lb)
M _{PAC}	Pitch aerodynamic control moment per radian angle of attack (L5241)	(ft-lb)
M_{PAD}	Pitch aerodynamic disturbing moment per radian angle of attack (L5244)	(ft-lb)
M _{PCD}	Total pitch control moment per radian deflection angle (L5251)	(ft-lb)
M _{PDA}	Total pitch disturbing moment per radian angle of attack (L5250)	(ft-lb)
M _{PMC}	Pitch main thrust control moment per rädial TVC deflection angle (L5234)	(ft-lb)
M _{PRR}	Pitch inertial rotation reaction moment used in the automatic gain logic (L5235)	(ft-lb)

Symbol	Definition	Units
MPTC	Pitchtotal thrust control moment per radian TVC deflection angle (L5231)	(ft-lb)
\overline{M}_{Q}	Input aerodynamic pitch damping moment due to pitch rate multiplier (Lk299)	(dim)
$M_{q\alpha}^{i}$	Output Mach number at maximum qo' during the TVC duty cycle stage	(dim)
M _{RAC}	Roll aerodynamic control moment per radian fin deflection angle (L5243)	(ft-lb)
M _{RAP}	Aerodynamic rolling moment induced by raceways (L5222)	(ft-lb)
M ¹ Rj	Input Mach number for aerodynamic rolling moment, j = 1, 2,, 10 (Lk673, 675, etc)	(dim)
M _{RRR}	Roll Rotation Reaction moment used in the automatic gain logic (L5240)	(ft-lb)
M _{TDQ}	Movable nozzle tail-wag-dog moment about vehicle center-of-gravity in pitch (L5217)	(ft-lb)
M _{TDR}	Movable nozzle tail-wag-dog moment about vehicle center-of-gravity in yaw (L5218)	(ft-lb)
My	Mcde type	(dim)
M [†] y	Input initial or restart type of mode control flag (L0007)	(dim)
MYAC	Yaw aerodynamic control moment per radian angle of side slip (L5242)	(ft-lb)
MYAD	Yaw aerodynamic disturbing moment per radian angle of side slip (L5245)	(ft-ib)
M yj	Input and output mode type control where j = 1, 2,, 10. If 1 rigid body with controls, and 2 rigid body with controls (L0600, 603, etc)	(dim)

Symbol	Definition	Units
M _{YRR}	Yaw inertial rotation reaction moment used in the automatic altitude gain logic (L5239)	(ft-lb)
\overline{M}_{lpha}	Input aerodynamic pitch damping moment due to rate change of angle of attack multiplier (Lk300)	(dim)
$^{\mathrm{M}}$ $_{\delta\mathbf{P}}$	Rolling moment due to the aerodynamic control force (L5228)	(ft-lb)
$^{M}_{\delta Q}$	Pitching moment due to the aerodynamic control force (L5226)	(ft-lb)
$M_{\delta R}$	Yawing moment due to the aerodynamic control force (L5227)	(ft-lb)

<u>n, N</u>

Symbol	<u>Definition</u>	Units
ⁿ dc	Output of number TVC duty cycle t B data points	(dim)
n g	Output number of velocity data points used in calculating the coefficients for the pitch steering equations	(dim)
n,	Output iteration number of the hunting procedure	(dim)
n	Burning rate exponent used in internal ballistic evaluation is set to 0.6 if not input (Lk097)	(dim)
n ^t c	Input and output internally calculated number of control nozzles for the cluster motor logic (Lk381)	(dim)
n ^t m	Input and output internally calculated number of motors in the stage cluster (Lk381)	(dim)
ⁿ t1	Input trajectory number limit. No more than n trajectories will be computed during the hunting procedure (P1) by varying X (L0075)	(dim)
ⁿ t2	Input specified maximum number of hunt predictions (P2) beyond the initial array. If n_{t2} is input a negative number, the hunt will restart after $ n_{t2} $ iterations (L0090)	(dim)
$ ilde{N}_{ ext{k}}$	Input normal force control function and normal force multiplier. If input zero, the multiplier is set to 1 and if nonzero, the normal force is determined from input and multiplied by N _k where k = 1, 2, 3, 4 (Lk221)	(dim)
N _{NVA}	Force normal to velocity vector per radian angle of attack (L5161)	(1b)
N _{PAC}	Pitch aerodynamic control normal force per radian fin deflection angle (L5158)	(1b)

n, N

Symbol	Definition	Units
N _{PAD}	Pitch aerodynamic disturbing normal force per radian angle of attach (L5159)	(1b)
N _{PCD}	Total pitch control normal force per radian deflection angle (L5162)	(lb)
N _{PDA}	Total pitch disturbing normal force per radian angle of attack (L5160)	(1b)
N _{PEA}	Pitch trim normal force per radian angle of attack (L5163)	(1b)
N _{PY}	Aerodynamic force due to damping in yaw (L5167)	(lb)
N _{PZ}	Aerodynamic force due to damping and pitch (L5168)	(lb)
	Instantaneous yaw aerodynamic axial normal forces directed opposite to the direction of the Y _b axis (L5165)	(1b)
NZ	Instantaneous pitch aerodynamic normal forces directed opposite to the direction of the Z _b axes (L5166)	(lb)
N δy	Aerodynamic yaw fin normal force (L5156)	(lb)
N _{δz}	Aerodynamic pitch fin normal force (L5157)	(lb)

<u>p, P</u>

Symbol	Definition	Units
P	Glide phase orbital period (L5014)	(min)
Pa	Ambient pressure at the missile (L5068)	(lb/ft ²)
P*	Main motor nozzle critical pressure used in separated flow equations (L5072)	(lb/in ²)
ParC	Input complementary table thrust reference atmospheric pressure (Lk109)	(lb/ft ²)
PaRM	Input main table thrust reference atmos- pheric pressure (Lk520)	(lb/ft ²)
P _b	Instantaneous vehicle angular roll velocity, roll clockwise is positive (L5709)	(deg/sec)
P _b	Instantaneous vehicle angular roll acceleration, roll clockwise positive (L5759)	(deg/sec ²)
P _{bo}	Input initial vehicle roll rate (L0033)	(deg/sec)
p c	Main motor chamber pressure used in separated flow equation (L5734)	(lb/in. ²)
Р _С	Time rate change of chamber pressure (L5784)	(lb/insec)
Pca	Output action time average motor chamber pressure for the TVC design duty cycle stag	
P _{cc}	Commanded chamber pressure used in pintle motor control logic (L5071)	(lb/in. ²)
Pe	Main motor exit pressure used in separated flow equations (L5074)	(1b/ft ²)
PL-DA GB, K, KB, N, O	Input flag where nonzero values are required if printlines DA, GB, K, KB, N, O are desired (L0200-209)	(dim)
$P_{\mathbf{d}}$	Base pressure	(lb/in.2)
P _m	Instantaneous desired roll turning rate (L5403)	(deg/sec)

<u>p, P</u>

Symbol	<u>Definition</u>	Units
Pmax	Maximum allowable chamber pressure used in internal ballistic evaluation (Lk099)	(lb/in. ²)
P _{Mj}	Input vehicle roll turning rate positive if the vehicle is intended to roll clockwise looking at if from the aft end (Ty=1) (L0315, 322, etc)	(deg/secĵ
Ps	Main motor nozzle separation pressured used in separated flow equations (L5073)	(1b/in.)
P ₁	Input flag to specify hunt procedure (P1) (L0073)	(dim)
P ₂	Input flag to specify hunt procedure (P2). If $P_2 = 0$, by-pass hunt procedure 2; $P_2 = 1$, use a linear response; $ P_2 = 2$, use a quadratic response surface where +2 maximizes and -2 minimizes; $ P_2 = 3$, use an incomplete quadratic response surface where +3 maximizes and -3 minimizes. (L0084)	(dim)

q, Q

Symbol	Definition	Units
$q_{\mathbf{q}}^{\alpha^{1}}$	Output dynamic pressure at maximum $q\alpha$ during the TVC duty cycle stage	(1b/ft)
qα ¹ max	Output product of the maximum absolute value of the dynamic pressure-angle of attack for the TVC design stage	(lb-deg/ft ²)
q	Missile dynamic pressure (L.5070)	(lb/ft ²)
q _{maxj}	Input maximum allowable dynamic pressure of the j-th type of TMC (L807, 817, etc)	(1b/ft ²)
q min	Input minimum allowable dynamic pressure of the j-th type of TMC (L0808, 818, etc)	(1b/ft ²)
q a †	Product of total angle of attack and dynamic pressure (L5110)	(lb/deg/ft ²)
^q (B1)	Missile dynamic pressure at the termination of stage I (L5912)	(lb/ft ²)
q(B2)	Missile dynamic press re at the termination of stage II (L5937,	(lb/ft ²)
^q (B3)	Missile dynamic pression at the termination of stage III (L5962)	(lb/ft ²)
^q (B4)	Missile dynamic pressure at the termination of stage IV (L5987)	(15/ft ²)
$D_{\mathbf{b}}$	Instantaneous vehicle angular pitch velocity. Pitch up is positive (L5707)	(deg/sec)
$\dot{\mathfrak{Q}}_{b}$	Instantaneous vehicle angular pitch acceleration. Fitch up positive (L5757)	(deg/sec ²)
Q _{bo}	Input initial vehicle pitch rate (L0031)	(deg/sec)
Q _m	Instantaneous desired pitch turning rate (L5401)	(deg/sec)

q,Q

Sales The men of the second of

The second of th

Symbol	Definition	Units
Q _{mj}	Input vehicle pitch turning rate. Positive if the vehicle is intended to pitch up (Ty=1) 'L0313, 320, etc)	(deg/sec)
Q _{mo}	Input initial command pitch attitude (L0028)	(deg)

<u>r, R</u>

Symbol	Definition	Units
r a	Distance between the center of the reference body and apogee during the glide phase	(ft)
r _b	Propellant burn rate (L5783)	(m/sec)
rb1000	Input burning rate of propellant at 1,000 lb/in chamber pressure and flag to determine evaluation option (Lk002)	(in/sec)
^r c	Instantaneous distance between the center of the reference body and the missile (L5035)	(ft)
rt c	Value of r at the beginning of the glide phase	(ft)
rco	Initial missile radius from center of earth	(ft)
r _e	Radius of the earth	(ft)
r ^t e	Input geometric radius of the earth. If input zero, set equal to 20,926,400 (L0026)	(ft)
r _f	Radial distance at the termination of the glide phase	(ft)
^r p	Distance between the center of the reference body and perigee during the glide phase	(ft)
^r Ri	Input distance from the vehicle center- line to the i-th raceway center of pressure, i = 1, 2 (Lk668, 671)	(in)
R	Altitude associated geopotential carth radius used in atmosphere model	(St)
R*	Universal gas constant	(joules! kilogram ^O K)
R _b	Instantaneous vehicle angular yaw velocity. Yaw right is positive (L5708)	(deg/sec)

r, R

and the second second second with the second second

Symbol	Definition	Units
Ř _b	Instantaneous vehicle angular yaw acceleration. Yaw right positive (L5758)	(deg/sec ²)
R _{bo}	Input initial vehicle yaw rate (L0932)	(deg/sec)
R _c	Input radius of cluster for the k-th stage (Lk382)	(ft)
R _m	Instantaneous desired yaw turning rate (L5402)	(deg/sec)
P. _{MI}	Estimated range to target intercept (L5400)	(ft)
R _{mj}	Input vehicle yaw turning rate positive if the vehicle is intended to turn right (Ty=1) (L0314, 321, etc)	(deg/sec)
R _{MT}	Missile to target range distance (L5437)	(ft)
Ř _{MT}	Time rate change of missile to target distance (L5438)	(ft/sec)
R _{PFV}	Output ratio of motor chamber pressure to vacuum thrust of the main thrust 'Lile of the TVC design stage	(1/in. ⁷)
RR	Input reference run number (L0001)	(dim)
RUN	Input run number (L0002)	(dim)

s, S

C. Marketter Comments	H. (M. Strait V. A. Str.) - Str St		Charger States
		•	
	· .	s, S	
	Symbol	Definition	Units
	S	Missile ground range. Distance along the surface of the earth measured clockwise from the launch vertical to the local vertical down range (L5018)	(ft)
	Ś	Time rate change of missile down range (L5019)	(ft/sec)
	s_{a}	Total missile ground range at flight apogee (L5022)	(nm)
	S _c	Missile cross ground range. Distance along the surface of the earth measured clockwise from launch azimuth (L5028)	(ft)
	\$ _c	Time rate change of missile cross range (L5021)	(ft/sec)
	s _{CMI}	Estimated earth surface closs range at target intercept (L5443)	(ft)
	Sco	Input initial earth surface cross-range at trajectory start time (L0043)	(nm)
	s _e	Total missile ground range to atmospheric entry (L5023)	(nm)
	$\mathtt{S}_{\mathbf{f}}$	Total missile ground range at the termination of the glide phase (L5024)	(nm)
	$s_{\mathtt{Fz}}$	Input aerodynamic pitch fin lift and drag coefficient reference area (Lk700)	(ft ²)
	S _{f(B2)}	T. I missile ground range at the termination of the glide phase if the powered flight were to end at the termination of stage I (L5905)	(nm)
	S _{f(B2)}	Total missile ground range at the ter- minstion of the glide phase of the powered flight were to end at the termination of stage II (L5930)	(nm)

Symbol	Definition	Units
S _{f(B3)}	Total missile ground range at the termination of the glide phase of the powered flight were to end at the termination of stage III (L5955)	(nm)
S _{f(B4)}	Total missile ground range at the termination of the glide phase if the powered flight were to end at the termination of stage IV (L5980)	(nm)
S _{MI}	Estimated earth surface down range at target intercept (L5441)	(ft)
S _{PF}	Input missile platform area used in cal- culating tumbling aerodynamic axial force coefficients (Lk218)	(ft ²)
SRC	Input aerodynamic chord force coefficient reference areas (Lk185)	(ft ²)
s _{RN}	Input aerodynamic normal force coefficient reference area (Lk220)	(ft ²)
ERRi	Input reference area of the i-th raceway, i = 1, 2 (Lk667, 670)	(ft ²)
S _s	Missile slant ground range. Distance along earth surface from the launch vertical to the local vertical slantwise (L5025)	(ft)
Ssh	Input tanget range or orbital altitude (LC599)	(nni)
зsт,	Start time stage II (L5006)	(sec)
SST ₃	Stattime stage III (L5007)	(sec)
SST ₄	Start time stage IV (L500L)	(sec)
$s_{_{f T}}$	Target down range 'L5731)	(ft)
S _{TC}	Target cross range (L5732)	(ft)
STCO	Input mitial target position cross range (L0637)	(nm)

s, S

Symbol	Definition	Units
S _{TO}	Input initial target position down range (L0636)	(nm)
Sy	Input initial or restart special print flag (L0008)	(dim)
So	Input missile ground range at the trajectory start time (L0013)	(ft)
s _T	Target down range rate (L5781)	(ft/sec)
s _{TC}	Target cross range rate (L5782)	(ft/sec)

<u>t, T</u>

Symbol	<u>Definition</u>	Units
t	Instantaneous time (L5000)	(sec)
t a	Total flight time to the glide phase apogee altitude (L5012)	(sec)
t _{Ba}	Output TVC duty cycle stage time	(sec)
t _B	Time from the current stage initiation (L5001)	(sec)
^{t.} B2	Time from stage II initiation zero if I-II staging has not occurred (L5002)	(sec)
[£] B3	Time from stage III initiation zero if II-III staging has not occurred (L5003)	(sec)
^t B4	Time from stage IV initiation zero if III-IV staging has not occurred (L5004)	(sec)
^t Bf	Trajectory burnout time for the stage below (L5009)	(sec)
^t Bqj	Output stage time which TVC duty points occur	(sec)
t cj	Input limit of the computing interval Atc; where j = 1, 2,, 8 (L0169, 171, etc)	(sec)
t' _{Cj}	Input complementary thrust-weight switching time from stage initiation where j = 1, 2, 3,, 25 per stage (Lklli, 114, etc)	(sec)
^t E	Total flight time to atmospheric entry (L5013)	(sec)
^t f	Total flight time to the termination of the glide phase (L5014)	(sec)
tf(B1)	Total flight time to the termination of the glide phase if the powered flight were to en at the termination of stage I (L5916)	(sec) d

t, T

Symbol	<u>Definition</u>	Units
f(B2)	Total fligit to the termination of the glide phase 1. 3.2 powered flight were to end at the termination of stage II (L5941)	(sec)
t _{f(B3)}	Total flight time to the termination of the glide phase if the powered flight were to end at the termination of stage III (L5966)	(sec)
t _{f(B4)}	Total flight time to the termination of the glide phase if the powered flight were to end at the termination of stage IV (L5991)	(sec)
t _k	Stage start time (L5005)	(sec)
t ¹ _k	Input start time with the initial stage K (L0005)	(sec)
t _{MI}	Estimated time to intercept (L5439)	(ft)
t ^t Mj	Input main thrust-weight switching time from stage initiation where j = 2, 3,, or 25 per stage (Lk023, 026, etc)	(sec)
t pj	Input limit of the main printline print interval where j = 1, 2,, 8 (L0185, 187, etc)	(sec)
^t Pj	Input limit of the auxiliary printline pr nt interval where j = 1, 2,, 11 (L0221, 223, etc)	(sec)
t qα'	Output TVC duty cycle stage time at maximum $q\alpha'$	(sec)
t'Ri	Input operating time from stage initiation of the rell control function for the i-th zone, i = 2, 3 (Lk647,667)	(sec)
tŢ	Time from target maneuvering initiation (L5010)	(sec)
^t Tj	Input target time terminating the j-th target acceleration value of dynamical condition 1351e (L0640, 644, etc)	(sec)

t, T

الكاليام والمعالية والمعارفة والمعارفة المعاراة ليسمالهما المسارة والمراقية معارفها والمراود المداخلة أوالالالمالية والمعارفة

The designation of the section of the section of the first first of the contract of the section of the section

Symbol	Definition	Units
t _{TS}	Target start time (L5011)	(sec)
^t VPj	Input time value for specific velocity - time profile used in Fy=1 TMC j = 1, 2,, 15 (L0870, 872, etc)	(sec)
^t η _P	Output stage time at which maximum magnitude pitch thrust vector deflection angle occurs during the TVC design stage ($\delta_{\rm Pmax}$)	(sec)
to	Input trajectory start time (L0004)	(sec)
T _{Bj}	Input staging values flag, $j = 1, 2,, 5$ (L0270, 272, etc)	(dim)
T _{mj}	Input maximum print region flag (L0260, 262, etc)	(dim)
^T Tj	Input transformation flag used in hunting procedure (P2) j = 1, 2,, 7 (L0098, 107, etc)	(dim)
TMC	Input thrust dynamic mode of the j-th type TMC (L0803, 813, etc)	(dim)
T _M	Instantaneous molecular scale temperature	(°K)
T _{MB} , T _{MBj}	Base molecular scale temperature and tabular values associated with the atmosphere representation	(°K)
T _{Tj}	Input transformation flag used in hunting procedure (P2) j = 1, 2,, 7 (L0090, 107,, 152)	(dim)
T _y	Type of flight	(dim)
T' yk	Input initial or restart type of flight control flag (L0006)	(dim)
туј	Input and output type of flight control flag where j = 1, 2,, or 16 (L0310, 31? etc)	(dim)

u, U

Symbol	Definition	Units
^u j	Elements (j = 1, 2,, 5) of the vector containing the numeric value of the independent variables used in the generation of steering coefficients	(dbi)
$\begin{bmatrix} \mathbf{n} \end{bmatrix}$	Matrix containing specified elements \mathbf{u}_{j} for use in the steering equation coefficient acquisition	(dbi)
$\begin{bmatrix} \mathbf{u}_{\mathbf{z}} \end{bmatrix}$	A vector containing specified elements u for use in the steering equation coefficient acquisition	(dbi)
U cz	Output pitch aerodynamic control fin center of pressure as a ratio of fin chord length (L5568)	(dim)
Uczj	Input pitch aerodynamic control fin center of pressure as a ratio of fin chord length (Lk715, Lk721)	(dim)
[ប ម្វ	A vector which contains a scaled version of the steering equation steering coefficients	(dim)
Ugi	Elements of the $[U_g]$ vertor which are the scaled version of the steering equation steering coefficients i = 1, 2, 3, or 4	(úim) nts
บ go	Mean of the regressed least squares fit for use in the steering equation coefficient acquisition	(dim)
U _{hz}	Input pitch movable control fin hinge axis to the leading fin base root location distance to the pitch fin base root length ratio (Lk702)	(dim)

<u>v, V</u>

Symbol	Definition	Units
v _{TO}	Input target initial velocity at start of start of target maneuvering (L0632)	(ft/sec)
v w	Instantaneous wind speed change (L5056)	(ft/sec)
v w	Instantaneous wind speed time rate change (L5057)	(ft/sec)
^Y wj	Input (with altitude h) wind speeds where j = 1, 2,, 30 (L0411, 414, etc)	(ft/sec;
$v_{\mathbf{a}}$	Missile velocity with respect to air (L5049)	(ft/sec)
V _a E	Velocity with respect to the ambient air at entry (L5058)	(ft/sec)
$v_{_{\mathbf{C}}}$	Target transverse velocity (L5727)	(ft/sec)
v	Chamber volume (L5078)	(in. ³)
V	Missile earth referenced velocity (L5046)	(it/sec)
v e	Time rate change of missile earth reference velocity (L5047)	(ft/sec ²)
v ecq	Command acceleration to constrain dynamic pressure used in the TMC command logic (L5062)	(ft/sec ²)
v _{ek}	Earth fixed velocity at stages (L.5048)	(ft/sec)
V eo	Input missile velocity at the trajectory start time (L0010)	(ft/sec)
v	Missile intertial velocity (L5050)	(ft/sec)
v _{Ia}	Missile inertial velocity at apogee if powered flight ends at the time being printed (L5041)	(ft/sec)
V _{I(B1)}	Missile inertial velocity at the termination of stage I (L5901)	(ft/sec)
V ₄ (B2)	Missile inertial velocity at the termination of stage II (L5926.	(ít/sec)

Khother according the property of the property

<u>v, V</u>

Symbol	Definition	Units
V _{I(B3)}	Missile inertial velocity at the termination of stage III (L5951)	(ft/sec)
V _{I(B4)}	Missile inertial velocity at the termination of stage IV (L5976)	(ft/sec)
VIE	Inertial velocity at entry conditions (L5059)	(ft/sec)
V _{If}	Missile inertial velocity at apogee and impact of intercept, respectively, if powered flight and the atmosphere end at the time being printed (L5042)	(ft/sec)
V _{If(B1)}	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termin on of stage I (L5918)	(ft/sec)
V _{II(B2)}	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage II (L5945)	(ft/sec)
(B3)	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage III (L5968)	(ft/sec)
v _{If(B4)}	Missile inertial velocity at the termination of the glide phase if the pover ed flight were to end at the termination of stage IV (L5993)	(ft/sec)
v _N	Target normal velocity (L5726)	(ft/sec)
v _T	Target tangential velocity (L5725)	(ft/sec)
V _{VPj}	Input earth reference velocity for the specific velocity - time profile used in Fy=1, TMC j = 1, 2,, 15 (L0871, 873, etc)	(ft/sec)
V xxx	Command velocity used in the TMC command 'ngic. V if Fy = 1, V if Fy = 4 (L5060)	(ft/sec ²)
v xxx	Command acceleration used in the TMC command logic. \dot{V} if Fy = 1, \dot{V}_{ecm} if Fy = 2, and zero i Fy = 1 and Fy = 2 (L5061)	(ft/sec ²)

<u>v, V</u>

Symbol	<u>Definition</u>	<u>Units</u>
^v сj	Target transverse acceleration (L5777)	(ft/sec)
v _{Nj}	Target normal acceleration (L5776)	(ft/sec)
$\dot{ ext{v}}_{ ext{Ti}}$	Target tangential acceleration (L5775)	(ſt/sec)

w, W

Symbol	<u>Definition</u>	Units
w	Total instantaneous missile weight (L5093)	(lb)
ŵ	Total expended instantaneous missile mass flow weight (L5094)	(lb/sec)
w̄	Input stage weight multiplier. If input zero, is set internally to one and if nonzero, he input weight used in the mass properties table W; (j = 1, 2,, 15) is multiplied by W (Lk478)	(dim)
ŵ	Instantaneous total motor weight flow	(lb/sec)
w_{B}	Instantaneous gross vehicle weight minus the useful load (L5095)	(1b)
w _(B1)	Total missile weight at the termination of stage I (L5904)	(1b)
W _(B2)	Total instantaneous missie weight at the termination of stage II (L5929)	(lb)
W _(B3)	Total instantaneous missile weight at the termination of stage III (L5954)	(1b)
W(B4)	Total instantaneous missile weight at the termination of stage IV (L5979)	(1b)
wc	Total instantaneous expended complementary weight (L5099)	(1b)
w _C	Total instantaneous expended complementary weight flow rate (L5100)	(lb/sec)
ŵc	Total complementary weight flow at t	(lb/sec)
w _{Cj}	Input comp entary weight flow at t'Cj where j = 1, 2,, 25 per stage (Lk113, 116, etc)	(lb/sec)
W _{Cok}	input initial complementary weight for the k-th stage (Lk105)	(lb)
W exi	Input estimated weight of the TVC system expend weight during the TVC design stage during the original vehicle flight (L0678)	(1b)

ARTHORN CONTROL OF THE STATE OF THE STAT

w, W

Symbol	<u>Definition</u>	Units
$\mathbf{w}_{\mathtt{J}\mathbf{T}}$	Total weight jettisoned (L5096)	(lb)
$w_{\mathtt{JTj}}$	Input weight to be jettisoned when σ_j parameter had K. miue (L0049, 52, etc)	(1b)
$\mathbf{w}_{\mathbf{j}}$	Input vehicle weight to relate the input moment of inertia values j = 1, 2,, 15 per stage (Lk488-498)	(1b)
W kdc	Output main motor stage weight for the design stage	(lb)
W _M	Total instantaneous expended main weight (L5097)	(lb)
w _M	Total instantaneous expended main weight flow rate (L5098)	(lb/sec)
w _{Mj}	Input main weight flow at t_{Mj}^{i} where $j = 1, 2, \dots, 25$ per stage (Lk022, 025, etc)	(lb/sec)
$\hat{\hat{\mathbf{w}}}_{\mathbf{M}\mathbf{j}}$	Total instantaneous main weight flow at t_{Mj} where $j = 1, 2,, or 25$	(lb/sec)
W _{MO}	Input initial main weight for the k-th stage (Lk006)	(1b)
w _{MP}	Mass flow rate of gases thru pintle nozzle throat (L5786)	(lb/sec)
W _n	Input stage movable portion nozzle weight (Lk482)	(1b)
$\mathtt{w}_{\mathtt{PL}}$	Input payload weight (L0020)	(1ь)
$\mathbf{w}_{\mathtt{pr}}$	Weight of propellant removed. Used in TMC logic (L5736)	(1b)
w _q	Output motor weight flow (\mathring{W}) at $t_{\mbox{\footnotesize Bq}}$ the TVC duty cycle point	(lb/sec)
W_{R}	Instantaneous expended weight due to roll control motor operation (L5720)	(lb)
$\dot{\mathbf{w}}_{\mathbf{R}}$	Roll control system mass flow rate (L5770)	(lb/sec)

w, W

Symbol	Definition	Uvits
w _s	Stage weight (L5101)	(1b)
w _{sc}	Initial weight of complementing motor (L5103)	(1b)
W _{SM}	Initial weight of main motor (L5102)	(1b)
W _{TVC}	Input and output estimated TVC system fixed weight. Used in TVC design stage for the refly option (L0677)	(1b)
w _{ol}	Input stage I liftoff weight used in roll control requirements (L0676)	(lb)
Wo	Output TVC duty cycle stage liftoff weight used in the roll control requirements	(1b)

x, X

Symbol	Definition	Units
x _{abb}	X component of missile velocity with respect to the ambient air in the b system (L5507)	(ft/sec)
X abb	x component of missile acceleration with respect to ambient air in the b system (LJ510)	(f./sec ²)
х _{рр}	Inertial component of missile velocity along x axis (L5537)	(ft/sec)
\ddot{x}_{b}	Missile acceleration along vehicle body axes, position forward (L5540)	(ft/sec ²)
X _{cc}	Earth centered missile position northern axis component (L5513)	(ft)
x _{cc}	Northern component of missile velocity in earth centered coordinates (L5516)	(ft/sec)
х сс	Northern component of missile acceleration in earth centered coordinates (L5519)	(ft/sec ²)
х сg	Instantaneous center-of-gravity body station numbers (L5584)	(ft)
^x cgj	Input instantaneous (i ith total vehicle weight, W_j) center-of-gravity body station numbers, respectively, where $j = 1, 2,, 15$ per stage (Lk489, 499, etc)	(dbi & ft)
Xcgq	Output vehicle center-of-gravity at t _{Bq} ; the TVC duty cycle point	(ft)
^x cp	Input and instantaneous (with Mach number M) aerodynamic normal force center of pressure body station numbers, respectively, where j = 1, 2,, 15 per stage respectively (L5583)	(ft & dbi)
^x cpj	Input and output instantaneous (with Mach number M) aerodynamic normal force center of pressure body station numbers, respectively where j = 1, 2,, 15 per stage (Lk227, 232,	
x_e^t	Input stage thrust gimbal body station numbers, also output for the TVC duty cycle (Lk431)	(ft)

x, X

Symbol	Definition	Units
x'E	Input and computed stage nozzle exit body station (Lk41?)	(ft)
X gg	Instantaneous component of vehicle position in the generalized coordinates down range from launcher (L5522)	(ft)
х́gg	Instantaneous component of vehicle velocity in the generalized coordinates down range from launcher (L5525)	(ft/sec)
X gg	Instantaneous component of vehicle acceleration in the generalized coordinates down range from launcher (L5528)	(ft/sec ²)
xhz	Input missile body station of the pitch fin hinge axis (Lk701)	(ft)
×ij	Input initial array reference independent variable designated by code input that is used in hunting procedure (P2) (L0092, 101, etc)	(dbi)
x,	Independent variable designated by code input that is varied during hunting procedure (P2) where $j = 1, 2,, \text{ or } 7$	(dbi)
^x Lj	Input lower limit that an independent variable may assume a value in hunt procedure (P2) where j = 1, 2,, 7 (L0161-167)	(dbi)
x _n	Input stage movable portion of nozzle center- of-gravity body station (Lk484)	(dbi)
x _{nf}	Input body station of nozzle flange. Use in the TVC design program (L0680)	(ft)
x _{Pa}	Computed stage aft end propellant grain body station (L5588)	(ft)
x'Pa	Input stage aft end of propellant grain body station (Lk418)	(ft)

_x, X

のでは、10mmのでは、

Symbol	<u>Definition</u>	Units
^x Pc	Input missile body station of the centroid of the platform area (Lk219)	(ft)
x _{pf}	Computed stage forward end of propellant grain body station (L5587)	(ft)
$\mathbf{x_{Pf}^{t}}$	Input stage forward end of propellant grain body station (Lk417)	(ft)
xt RQ	Input and calculated pitch damping moment due to pitch rate reference moment point body station (Lk302)	(dbi & ft)
x!* Rα	Input and calculated pitch damping moment due to rate change of angle of attack reference moment point body station (Lk304)	(dbi & ft)
× _{Ūj}	Input upper limit that an independent variable may assume a value used in hunt procedure (P2) where j = 1, 2,, 7 (L0154-160)	(dbi)
X wee	Transformed launcher northerly component of wind velocity at missile location (L5549)	(ft/sec)
\dot{x}_{wl1}	Local northerly component of wind velocity (L5531)	(ft/sec)
\ddot{x}_{wll}	Local time rate change of northern component of wind velocity (L5534)	(ft/sec)
x ₁₁	Local northerly component of missile velocity (L5534)	(ft/sec)
\ddot{x}_{11}	Local northerly component of missile acceleration (£5546)	(ft/sec ²)
х _ш	Local northerly component of missile inertial velocity (L5552)	(ft/sec)
x	Output independent variable designated by code input that is varied during the hunting procedure (P1)	(dbi)
X _{cco}	Initial earth centered missile northern axis component	(ft)

The solve on the Model Missenson of the constant of the accordance of restrict indication is a description of the solve of the constant of the

<u>x, X</u>

Symbol	<u>Definition</u>	Units
Xcg	Input stage center-of-gravity position , multiplier (Lk479)	(dbi)
\vec{X}_{cp}	Input stage aerodynamic normal force center of pressure multiplier (Lk222)	(dbi)
X _e	Input stage thrust gimbal position multiplier (Lk430)	(dbi)
х _{ее}	Instantaneous components of vehicle velocity, north of the launcher (L5701)	(ft/sec)
Xee	Instintaneous component of vehicle position north of launcher (L5704)	(ft)
X ee	Instantaneous northerly component of vehicle acceleration at launcher (L5751)	(ft/sec ²)
X ee	Northern component along launcher of missile position	(ft)
X	Initial component of vehicle position north of launcher	(ft)
х eeo	Initial component of vehicle velocity north of launcher	(ft/sec)
$\mathbf{x_{i}}$	Input value of the first guess of X used in hunting procedure (L0080)	(dbi)
x _j	Output independent variable used in hunting procedure (P2) where $j = 1, 2,,$ or 7	(dbi)
\bar{x}_{j}	Computed value of X during the hunting procedure (P1) where j = 1, 2,, 4	(dbi)

Symbol	<u>Definition</u>	Units
Y _{abb}	Y component of the missile velocity with respect to the ambient air in the b system (L5508)	(ft/sec)
Yabb	y component of missile acceleration with respect to the ambient air in the b system (L5511)	(ft/sec)
Y _{bb}	Inertial component of missile velocity along y _b axis (L5538)	(ft/sec)
Y _b	Inertial component of missile acceleration yb axes (L5541)	(ft/sec)
Y _{cc}	Earth centered missile position east from launcher (L5514)	(ft)
Y _{cc}	East from launcher component of missile velocity in earth centered coordinate (L5517)	(ft/sec)
Ycc	East from launcher component of missile acceleration in earth centered coordinates (L5520)	(ft/sec ²)
y _{cg}	Center-of-gravity offset bias distance positive in the Z _b direction (L5585)	(ft)
y'cg	Input center-of-gravity offset bias distance in yaw, positive to the right (Lk481)	(dbi)

AND SECOND ASSESSMENT OF A SECOND SEC

Symbol	<u>Definition</u>	Units
y _{cgj}	Input instantaneous (with total vehicle weight, W) center of gravity butt line number, where j = 1, 2,, 15 per stage (Lk493, 503, etc)	(dbi and ft)
y _e	Thrust gimbal yaw point eccentricity position in the Y _b axis direction (L5589)	(it)
y'e	Input stage thrust gimbal yaw eccentricities. Positive in the Yb axis direction (Lk432)	(ft)
Ygg	Instantaneous component of vehicle position in the generalized coordinates cross range from launcher (L5523)	(ft)
· ¥gg	Instantaneous component of vehicle velocity in the generalized coordinates crosswise from launcher (L5526)	(ft/sec)
Y gg	Instantaneous component of vehicle accelera- tion in the generalized coordinates cross- wise from launcher (L5529)	(ft/sec ²)
y _i	Dependent variable used in hunting procedure (P2) where j = 1, 2,, or 7	(dbi)
y _{Li}	Input desired dependent variable or lower constraint boundary of the dependent variable designated by code input that is used in hunting procedure (P2) where j = 1, 2,, 7 (L0095, 104, etc)	(dbi)

Symbol	<u>Definition</u>	Units
у _{Ųi}	Input upper constraint boundary of the dependent variable designated by code input that is used in hunting procedure (P2) where j = 1, 2,, 7 (L0096, 105, etc)	(dbi)
Y _{wee}	Transformed launcher easterly com- ponent of wind velocity at missile location (L5550)	(ft/sec)
y wil	Local easterly component of wind velocity (L5532)	(ft/sec)
Ywll	Local time rate change of easterly component of wind velocity (L5535)	(ft/sec ²)
Y _{II}	Local easterly component of missile velocity(L5544)	(ft/sec)
Ÿn	Local easterly component of missile acceleration (L5547)	(ft/sec ²)
ř _{III.}	Local easterly component of missile inertial velocity (L5553)	(ft/sec)
Y _{cco}	Initial earth centered missile position east from launcher	(ft)
Y.ee	Instantaneous component of vehicle position east of launcher (L5705)	(ft)

Some of the control o

Symbol	<u>Definition</u>	Units
Y _{ee}	Instantaneous components of vehicle velocity, east of the launcher (L5703)	(ft/sec)
Yee	Instantaneous easternly component of vehicle acceleration at launcher (L5752)	(ft/sec ²)
Ÿ* ee	Eastern component along launcher of missile position	(ft)
Ā	Initial component of vehicle position east of launcher	(<u>f</u> t)
Yeeo	Initial component of vehicle velocities east of launcher	(ft)

Symbol	Definition	Unit
ž	Input dependent variable to be maxi- mized or minimized designated by code input used in the hunting procedure (P2)	(dbi)
zcg	Center-of-gravity offset bias distance, positive down (L5586)	(dbi)
zicg	Input center-of-gravity offset bias distance, in pitch, positive down (Lk480)	(dbi)
^z cgj -	Input instantaneous (with total vehicle weight, W _j) center-of-gravity offsets, respectively, where j = 1, 2,,15 per stage. Positive in the Z _b axis direction (Lk491, 501, etc)	(dbi and ft)
^z e	Thrust gimbal pitch point position in the Z _b axis direction (L5590)	(ft)
z† e	Input stage thrust gimbal pitch point eccentricities, respectively. Positive in the Z _b axis direction (Lk433)	(dbi and ft)
Zabb	z component of missile velocity with respect to the ambient air in the b system (L5509)	(ft/sec)
Ž _{abb}	z component of missile acceleration with respect to the ambient air in the b system (L5512)	(ft/sec ²)
Ż _{bb}	Inertial component of missile velocity along z _b axis (L5539)	(ft/sec)

Symbol	<u>Definition</u>	Units
'Ż b	Inerial components of missile accelera- tion along zb axis (L5542)	(ft/sec ²)
Ž	Output primary dependent variable which is to be maximized or minimized used in hunting procedure (P2)	(dbi)
$\mathbf{z_{j}}$	Output secondary or constrained dependent variables which are used in hunting procedure (P2), j = 1, 2,, 7	(dbi)
Zcc	Earth centered missile position away from earth axis at launcher longitude (L5515)	(ft)
Ż _{cc}	Away from launcher longitude component of missile velocity in earth centered coordinates (L5518)	(ft/sec)
Ž _{cč}	Away from launcher longitude component of missile acceleration in earth centered coordinates (L5521)	(ft/sec ²)
Z _{cco}	Initial earth-centered missile position away from earth axis at launcher longitude	(ft)
Z ee	Instantaneous component of vehicle position negative up from sea level launcher latitude (L5706)	(ft)
Ż _{ee}	Instantaneous component of vehicle velocity negative up from sea level launcher latitude (L5703)	(ft/sec)
Z _{ee}	Instantaneous downward component of vehicle acceleration of launcher (E5753)	(ft/sec ²)

Symbol	<u>Definition</u>	Units
Ž* ee	Nownward component along launcher of missile position	(ft)
Z.eeo	Initial component of vehicle position negative up from sea level launcher	`(£t)
Z _{éeo}	Initial component of vehicle velocity negative up from sea level launcher	(ft/sec)
$\mathbf{z}_{\mathbf{g}\mathbf{g}}$	Instantaneous component of vehicle positive vertical from launcher (L5524)	(ft)
Zgg	Instantaneous component of vehicle velocity in the generalized coordinates vertical from launcher (L5527)	(ft/sec)
Żgg	Instantaneous component of vehicle accelera- tion in the generalized coordinates vertical from launcher (L5530)	(ft/sec ²)
Z _{wee}	Transformed launcher downward component of wind velocity at missile location (L5551)	(ft/sec)
Ż _{w11}	Logal downward component of wind velocity (L5533)	(ft/sec)
Ż _{w11}	Local time rate change of downward component of wind velocity (L5536)	(ft/sec ²)
. Ž ₁ 1	Local downward component of missile velocity (L5545)	(ft/sec)
Żn	Local downward component of missile acceleration (L5548)	(ft/sec ²)

Symbol	<u>Definition</u>	Units
ż _{11I}	Local downward component of missile inertial velocity (L5554)	(ft/sec)

α

Symbol	Definition	Units
ά	Instantaneous pitch angle of attack; positive if the vehicle centerline is above the air velocity vector (L5301)	(deg)
ά	Time rate change of angle of attack (L5302)	(deg/sec)
α '	Total vehicle angle of attack; angle between the centerline of the vehicle and the missile air velocity vector; always positive (L5309)	(deg)
- ~	Still wind angle of attack (L5310)	(deg)
α' α	Still air total angle of attack (L5305)	(deg)
ā	Time rate change of still wind angle of attack (L5307)	(deg/sec)
ξα c,	Input command angle of attack (L5303)	(deg)
- α. - α.	Commanded angle of attack	(deg)
α _c	Input commanded angle of attack used in the constant angle of attack and angle of side slip (Ty = 2) (L0313, 320, etc)	(deg)
α'd c	Input nozzle half angle used in the separated flow nozzle thrust equation (Lk\$16)	(deg)
œ́E	Effective pitch angle of attack used to compute the aerodynamic normal force (L5311)	(deg)
ά <mark>E</mark>	Effective total angle of attack used to compute the aerodynamic normal force (L5304)	(deg)
α _L	Angle of attack rotated to command vertical	(deg)
$\alpha_{\rm ni}$	Commanded angle of attack for constant angle of attack flight (Ty = 2) (L5312)	(deg)
amaxi	Input limit of angle of attack during the j-th type of flight (L0315, 322, etc.)	(deg)

α

Definition

Definition

Units

Propellant diffusivity used in internal ballistic
ev. ation is set to 0.00027 if not input (Lk090)

B

Symbol	<u>Definition</u>	Units
β	Angle of side slip. Positive if the vehicle centerline is left of the air velocity vector when viewed from the rear of the vehicle (L5315)	(deg)
B	Time rate change of angle of side slip (L5316)	(deg/sec)
B	Still wind angle of side slip (L5318)	(deg)
. B	Time rate change of still wind angle of side slip (L5308)	(deg/sec)
βi	Still wind angle of side slip in the commanded coordinate system used to evaluate the local bank angle (L5319)	(deg)
β _c	Commanded angle of side slip (L5317)	(deg)
e,	Input commanded angle of side slip used in the constant angle of attack and angle of side slip (Ty = 2). (Le314, 321, etc)	(deg)
$oldsymbol{eta}_{\mathbf{E}}$	Effective yaw angle of side slip used to compute the aerodynamic normal face (L5320)	(deg)
Bet	Angle of side slip rotated to the commanded horizontal	(deg)

γ,Γ

The second secon

Symbol	<u>Definition</u>	Units
γ'n	Input and output calculated ratio of specific heats of the rocket motor exhaust gases. If input zero 1.18 is used. Used in separated flow nozzle thrust equations (Lk034)	(dim)
$\gamma_{f G}$	Calculated local angle of velocity to be gained (L5335)	(deg)
$\boldsymbol{\gamma}_{\mathbf{M}}$	Relative-azimuthal velocity vector angle in missile- target coordinates (L5336)	(deg)
$\hat{\gamma}_{\mathrm{M}}$	Relative azimuthal velocity vector angular rate in missile-target coordinates (L5337)	(deg)
$\gamma_{ m R}$	Output required velocity flight path angle at the missile instantaneous position (L5334)	(deg)
$\check{m{\gamma}}_{\mathbf{T}}$	Target pitch flight path angle (L5728)	(deg)
γ _{TO}	Input initial target flight path angle at start of target maneuvering (L0633)	(deg)
. 7.1	Pitch flight path angle. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (L5321)	(deg)
$\dot{\gamma}_1$	Pitch flight path angular rate. Positive up (L5322)	(deg/sec)
ž ŽįE	Pitch flight path angle with respect to the ambient air at entry conditions (L5327)	(deg)
y _{ir}	Inertial pitch flight path angle. Angle between the in- ertial velocity vector and the local tangent plane. Positive away from the earth (L5330)	(deg)
Y _{IIE}	Entry conditions inertial pitch flight path angles, if powered flight and the atmospheric end at the time being printed (L5328)	(deg)
Ÿ _{lif}	Impact or intercept inertial pitch flight path angle, if powered flight and the atmosphere end at the time being printed (L5332)	(deg)

γ,Γ

Symbol	<u>Definition</u>	Units
γ _{1 (B1)}	Pitch flight path angle at the termination of Stage I angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (L5903)	(deg)
^у 1 (В2)	Pitch flight path angle at the termination of Stage II. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (L5928)	(deg)
γ ₁ (B3)	Pitch flight path angle at the termination of Stage III. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (L5953)	(deg)
γ _{1.(B4)}	Pitch flight path angle at the termination of Stage IV. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (L5978)	(deg)
y _{llf} (B1)	Impact or intercept inertial pitch flight path angle if the powered flight were to end at the termination of Stage I (L5917)	(deg)
γ _{11f} (B2)	Impact or intercept inertial pitch flight path angle if the powered flight were to end at the termination of Stage II (L5942)	(deg)
γ _{11f (B3)}	Impact or intercept inertial pitch flight paul angle if the powered flight were to end at the termination of Stage III (L5967)	(deg)
γ _{11f (B4)}	Impact or intercept inertial pitch flight path angle if the powered flight were to end at the termination of Stage IV (L5992)	(sēc)
γ ₁₀	Input flight path angle at the trajectory start time, -180° <7 ₁₀ ≤180° (L0011)	(deg)
γ ₂ .	Azimuthal flight path angle. Angle between the horizontal projection of the earth reference velocity vector and the local north, Positive clockwise from north (L5323)	(deg)

<u>γ,Γ</u>

Symbol	<u>Definition</u>	<u>Units</u>
$\dot{\gamma}_2$	Azimuthal flight path angular rate (L5324)	(deg/sec)
γ_{21}	Inertial azimuth flight path angle. Angle between local north clockwise to the projection of the inertial velocity vector on the local tangent plane (L5331)	(deg)
γ _{2Ia}	hertial azimuth flight path angle at apogee (L5326)	(deg)
γ _{2IE}	Entry conditions inertial yaw flight path azimuth angle, if powered flight and the atmosphere end at the time being printed (L5329)	(deg)
γ _{21f}	Impact or intercept inertial yaw flight path azimuthal angle, if powered flight and the atmosphere end at the time being printed (L5333)	(deg)
720	Input azimuthal flight path angle at trajectory start time (L0044)	(deg)
r _d	Ratio of specific heats functional constants used in separated flow thrust equations	(dim)
$\dot{\gamma}_{\Gamma}$	Target pitch flight path angular rate (L5778)	(deg/sec)

<u>8,4</u>

Symbol	<u>Definition</u>	Units
δ ave	Output average TVC deflection angle per control motor for the TVC design stage	(dég)
å me	Input maximum vector angle design limit also output in TVC design duty cycle (L0681)	(deg)
$\delta_{ m MI}$	Azimuth flight path error to intercept. Used in type 10 flight (L5338)	(deg)
$\delta_{ m MR}$	Input roll system fin misalignment angle (Lk403)	(deg)
$\delta_{ ext{MP}}$	Input nozzle misalignment angle in pitch (Lk389)	(deg)
δ _{MT}	Seeker yaw look angle (L5351)	(deg)
MT	Seeker yaw look angular rate (E5352)	(deg/sec)
Û MY	Input nozzle misalignment angle in yaw (Lk390)	(deg)
ð p	Pitch thrust deflection angle. Positive up-(L5716)	(deg)
- š . .p	Pitch thrust deflection angular rate positive up (L5713)	(deg/sec)
ö p	Pitch thrust deflection angular acceleration angle positive up (L5763)	(deg/sec ²)
$oldsymbol{ar{\delta}_{\mathbf{p}}}$	Modified pitch thrust deflection angle to include limit cycle and misalignment angle (L5342)	(deg)
$oldsymbol{\delta_{ ext{Pc}}}$	Pitch plane thrust deflection commands (L5339)	(deg)
$\delta_{\mathrm{PO}}, \delta_{\mathrm{PO}}$	Input per stage initial pitch thrust vector deflection angle and angular rate at the trajectory initiation or stage initiation (Ek420-421)	(deg and deg/ sec)
5 _{PH}	Pitch nozzle deflection angle at final altitude of maximum wind shear	(deg)
δ _{PL}	Nozzle deflection angle at initial altitude of maximum wind shear	(deg)

THE SECTION OF THE PROPERTY OF

δ,Δ

Symbol	<u>Definition</u>	Units
₹ Pmax	Output maximum magnitude pitch thrust vector de- flection angles respectively, per control motor for the TVC design stage	(deg)
δ i Pmax	Maximum pitch deflection outside region of maximum wind shear	(deg)
$\delta_{ m Pmax}$	Output maximum pitch thrust vector deflection angular rate, respectively for the TVC design stage	(deg/sec)
8 Pq	Pitch thrust deflection angle at $\mathbf{t_{Bj}}$	(deg)
$oldsymbol{ar{\delta}}_{pq}$	Output modified the TVC design duty cycle points pitch thrust deflection angle at $t_{\tilde{R}j}$	(deg)
· · · · · · · · · · · · · · · · · · ·	Maximum pitch within region of maximum wind shear	(deg)
8	Output pitch slew angle for TVC design stage	(deg)
δ _{.S}	TVC design stage vehicle slew angle	(deg)
i s s	Output control system design slew rate for TVC design stage	(deg/sec)
ð _R	Aerodynamic roll fins deflection angle (L5718)	(deg)
$\dot{\delta}_{ m R}$	Aerodynamic roll fins deflection angular rate (L5715)	(deg/sec)
$\delta_{ m Rc}$	Commanded roll control fin deflection angle (L5341)	(deg)
: ð y	Yaw thrust deflection angle, positive left (L5717)	(ಡಆಕ್ರ)
ð. _Y	Yaw thrust deflection angular rate, positive left (L5714)	(deg/sec)
ΰy	Yaw thrust deflection angular acceleration angle positive left	(deg/sec ²)
$\tilde{\overline{X}}$	Modified yaw thrust deflection angle to include limit cycle and missignment angles (L5343)	(deg)
Yc	Yaw plane thrust deflection commands (L5340)	(deg)

δ, Δ

Symbol

Definition

Units

δχο, δ_{YO}

Input per stage initial yaw thrust vector deflection angle and angular rate at the trajectory initiation or stage initiation (Lk422-423)

(deg and deg/ sec) <u>ŏ,∆</u>

Syribol	Definition	Units
∆ _a	Input hunting procedure (P1) values that "a" should be computed within the isolation or maximization routine (L0083)	(dbi)
$\Delta_{\mathbf{a}}^{i}$	Pitch flare-in angle (L5349)	(deg):
$\Delta_{ m ak}$	Pitch flare in constant used in evaluation Δ_{ak}^{r} for restart (L5347)	(deg)
Δ'	Yaw flare-in angle (L5350)	(deg)
$\Delta_{ m bk}$	Flare-in constant used in evaluating $\Delta_{\mathrm{bk}}^{\prime}$ for restart (L5348-)	(deg)
$\Delta_{ m dc}$	Input value of number of desired duty cycle points (100 maximum) if input zero, set equal to 50 (L0670)	(dim)
- 4 _h	Calculated altitude difference of the target and missile (L5435)	(ft)
å _h	Calculated time rate change of the altitude difference of the target and missile (L5436)	(ft/sec)
∆Q _b	Input stage pitch attitude reaction angular impulse; i.e., added to θ_b at staging (Lk428)	(deg)
∆R _b	Input stage yaw attitude reaction angular impulse; i.e., added to $\psi_{\rm b}$ at staging (Lk429)	(deg)
∆ _S	Calculated earth surface down range difference of the target and missile (L5431)	(ft)
∆ _S	Calculated time rate change of the earth surface down range difference of the target and missile (L5432)	(ft/sec)
⊿ s _c	Calculated earth surface cross range difference of the target and missile (L5433)	(ft)
∆ s _c	Calculated time rate change of the earth surface cross range difference of the target and missile (L5434)	(ft/sec):

THE PROPERTY OF THE PROPERTY O

<u>δ, Δ</u>

Symbol	Definition	Units	-
$\Delta_{\mathbf{t_{cj}}}$	Input computing interval during $t_{cj-1} \le t \le t_{cj}$ where $J = 1, 2,, 8$ (L0168, 170, etc.)	(sec)	-
∆t pj	Input main printing interval during $t_{p(j-1)} \le t \le t_{pj}$ where $J = 1, 2,, 8$ (L0184, 186, etc.)	(sec)	
$\Delta_{\mathbf{t}_{\mathbf{Pj}}}$	Input auxiliary printline interval during t p $(j-1)$	(sec)	
	$\leq t \leq t$ where j = 1, 2,, 8 (L0220, 222, etc)		
AV	Ideal missile velocity resulting from achieved thrust (L5744)	(ft/sec)	
⁻ Δν _(B1)	Ideal missile velocity for Stage I (L5910)	(ft/sec)	-
Δv _(B2)	Ideal missile velocity for Stage I (L5935)	(ft/sec)	
Δ _V (B3)	Ideal missile velocity for Stage III (L5960)	(ft/sec)	
Δ _V (B4)	Ideal missile velocity for Stage IV (L5985)	(ft/sec)	-
Δx	Input increments that X is incremented during the hunting procedure (P1) (L0081)	(dbi)	ž
$\Delta_{\mathbf{x_{ij}}}$	Input increment of x_{ij} used in incrementing during hunting procedure (P2), $J = 1, 2,, 7$ (L0093, 102, etc)	(dbi)	
Λθ	Vehicle pitch attitude error angle (L5344)	(deg)	
∆¢ b	Vehicle roll attitude error angle (L5348)	(deg):	
$\Delta\psi_{\mathbf{b}}$	Vehicle yaw attitude error angle (L5345)	(deg)	-

E

Symbol	<u>Definition</u>	Units
€	Total angle of attack roll orientation angle. Angle between total angle of attack plane and yaw axis. Measured counterclockwise (L5353)	(deg)
Ē	No wind total angle of attack roll orientation angle (L5354)	(deg)
€ _{cj}	Input tolerance on the j-th condition of constraint used in hunt procedure (P2) were $J=1, 2,, 7$ (L0097, 106, etc.)	(dbi)
e _d	Input and output nozzle expansion ratio used in the separated flow nozzle thrust equations (Lk013)	(dím)
em :	Input flag to specify model error used in hunt procedure (P2). If ϵ < 0, the model will be iterated until an	(dim)
	extremal solution has a 95 percent probable model error. If $\epsilon_{\rm m} = 0$, the extremal solution is obtained without regard	- - -
Ξ	to probable model error (L0087)	
$\epsilon_{ m MI}$	Flight path error to estimated intercept (L5355)	(deg)
€ _{MT}	Seeker pitch look angle (L5356)	(deg)
ċ _{MT}	Seeker pitch look angular rate (L5357)	(deg/sec)
€ _B	Main motor nozzle separation expansion ratio used in separated flow equation (L5075)	(diṃ)
ž	Input value specifying the tolerance of the predicted maximization parameter (z). Used in the hunt procedure (P2) (L0086)	(dbi)

Symbol	<u>Definition</u>	Units
. 6	Cross range angle. Angle between local vertical and vertical on firing azimuth down range location. Positive if positive is left of firing azimuth (L5358).	(deg)
ζ	Cross range angular rate (I,5359)	(deg/sec)
\$	Input stage pitch control systems damping ratio for the thrust vector deflection second-order transfer function (Lk436)	(dim)
ζį	Input vehicle controlled damping ratio (Lk438)	(dim)
ζŢ	Target azimuthal flight path angle (L5729)	(deg)
ζ <u>το</u>	Input initial target azimuthal flight path angle at start of target maneuvering (L0635)	(deg)
ζzj	Input constant altitude (Ty = 8) control damping ratio where J = 1, 2,, or 16 (L0315, 322, etc.)	(dim)
ζ _o	Initial cross range angle	(deg)
F	Target azimuthal path sagular rate (L5779)	(dey/sec)

Symbol	<u>Definition</u>	Units
- · · · · ἡ · · ·	Transformed value of the independent variable x used in hunt procedure (P2)	(ábi)
η_{ba}	Acceleration load factor along velocity vector (L5169)	(g's)
η_{ba}	Acceleration load factor normal to the velocity vector (L5171)	(g's)
$\eta_{ m bt}$	Acceleration load factor transverse to the velocity vector (L5170)	(g's)
η _{cn}	Commanded load normal factor	(g¹s)
η _{oj}	Input command normal load factor for constant load factor type of flight where $J=1, 2, \ldots,$ or 13 (Ty = 9) (L0313, 320, etc)	(g's)
$\eta_{ m ct}$	Commanded load crosswire factor	(g's)
η _{ctj}	Input command load factor crosswise to the velocity vector used for constant load factor type of flight where $j = 1, 2, \ldots$ (Ty = 9) (L0314, 321, etc)	(g¹s)
η_{en}	Achieved load factor normal to the velocity vector in the commanded local roll coordinates	(g's)
η ₂ t	Achieved load factor crosswise to the velocity vector in the command local roll coordinates	(g's)
$\hat{\pmb{\eta}}_{\mathbf{v}\hat{\mathbf{r}}}$	Input disturbing roll nozzle vortex multiplier. If not input is set to 0.00363 (Lk496)	(ft)

Symbol	<u>Definition</u>	Units
$\theta_{\mathbf{b}}$	Achieved missile Euler angle pitch attitude (L5710)	(deg)
ė	Achieved vehicle Euler angle pitch rate (L5760)	(deg/sec)
вро	Input pitch orientation angle at the trajectory start time, ~180°< θ bo \(\text{L0034} \)	(deg)
$\boldsymbol{\theta_i}$	Input inertial elevation axis Euler angle relating the i and e systems (10015)	(deg)
eg	Input generalized coordinate orientation for velocity steering. First rotation angle (about the X e -axis) of	(deg)
	the set θ , ψ , and ϕ (L0047)	
. θ m	Desired missile attitude Euler angle relating the m and i system (L5722)	(deg)
.	Desired vehicle pitch Euler angular rate (L5772)	(deg/sec)

<u>λ</u>

Symbol	Definition	Units
$\lambda_{ ext{MT}}$	Angle of missile to target line projection on horizontal and firing azimuth (L5360)	(deg/sec)
$\lambda_{ ext{MT}}$	Angular rate of missile to target line projection or horizontal and firing azimuth (L5361)	(deg/sec)
$\lambda_{\mathbf{i}}$	Lagrange multiplier used in the simultaneous hunt (P2) for the i-th constraint function	(dbi)
$\lambda_{\mathbf{a}}$	Apogee longitude	(deg)
$\lambda_{\mathbf{d}}$	Nozzle half angle momentum correction coefficient	(dim)

THE CONTROL OF THE PROPERTY OF

μ

Symbol	<u>Definition</u>	<u>Units</u>
μ.	Instantaneous vehicle longitude. Value is positive or negative west or east of Greenwich, England, respectively (L5362)	(deg)
μ̄¹ .	Instantaneous vehicle change of longitude from launch longitude. Value is positive east (L5363)	(deg)
$\hat{\boldsymbol{\mu}}^{i}$	Vehicle longitude time rate change (L5364)	(deg/sec)
$\mu_{\tilde{\mathbf{a}}_{\cdot}}$	Vehicle apogee longitude if powered flight and the atmosphere end at the time being printed (L5365)	(deg)
$oldsymbol{\mu_f}$	Missile impact or intercept longitude if powered flight and the atmosphere end at the time being printed (L5366)	(deg)
$\mu_{ m L}$	Input launcher longitude (L0012)	(deg)
μ^i_{o}	Initial change in longitude from launch longitude	(deg)

Ξ

Symbol Definition Units

Ratio of specific heats function constant used in separated flow thrust equation (dim)

ρ

Symbol	<u>Definition</u>	Units
ρ	Instantaneous vehicle latitude positive north of the equator $-90^{\circ} \le \rho \ge 90^{\circ}$ (L5367)	(deg)
¢	Vehicle latitude time rate change (L5368)	(deg/sec)
$ ho_{\mathbf{a}}$	Vehicle apogee latitude if powered flight and the atmosphere end at the time being printed (L5369)	(deg)
$ ho_{\mathbf{f}}$	Missile impact or intercept latitude if powered flight and the atmosphere end at the time being printed (L5370)	(deg)
$ ho_{ extbf{L}:}$	Input launch latitude, $-90^{\circ} \le p \ge 90^{\circ}$ (L0017)	(deg)
$ ho_{ m p}$	Density of propellant used in internal ballistic evaluation is set to 0.065 if not input (Lk095)	(lb/in. ³)
Po	Initial vehicle latitude	(deg)

Symbol	<u>Definition</u>		
o _a	Input code which designates the dependent variable in the hunting procedure (P1) (L0078)	(dim)	
$\sigma_{\hat{\mathbf{A}}\hat{\mathbf{j}}}$	Input code which designates the integration tolerance parameters where $J=1, 2,, \text{ or } 7 \text{ (L0280, 283, etc.)}$	(dbi)	
$\sigma_{\mathbf{Bj}}$	Input code which designates the quantities whose values at staging are to be available to the hunting procedure, $j = 1, 2,, 5$ (L0271, 273, etc.)	(dim)	
σ _{BX1} σ _{BX2}	Values which are designated by input, at staging which are available to the hunting procedure (I.5496-500)	(dbi)	
σ _{BX3}			
σ _{BX4}		2	
σ _{BX5}		-	
Öc . =	Input code which designates the quantity that determines the flight region when the orbital elements and impact determination are desired (L0041)	(dim)	
σ _{Dj}	Input code which designates the quantity that determines when to print a discontinuity where $j=1, 2, \ldots, 8$ (L0252-259)	(dim)	
$\sigma_{\mathbf{f}}$	Standard of vacuum thrust to nominal vacuum thrust at any nominal time point	(dim)	
σ _{fj}	Input code which designates the quantity that determines when the j-th type of flight ends where $j=1, 2,, 16$ (L0311, 318, etc)	(dim)	
σ _{Fyj}	Input code which designates the quantity that determines when the j-th type of TMC ends (L0801, 811, etc)	(dim)	
$\sigma_{\mathbf{Gj}}$	Input code which designates attitude control system gain zone limits (j = 1, 2, or 3) (Lk457, 466)	(dim)	

Symbol	<u>Definition</u>	Units
$\sigma_{\rm g1k}$	Input code which designates the start of the acquisition zone for evaluation of the steering equations coef-ficients for the k-th stage, k = 1, 2, 3, or 4 (Lk397)	(dbi)
σ _{g2k}	Input quantity which designates the end of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage, $k = 1, 2, 3, \text{ or } 4$ (Lk399)	(dbi)
σ _{It}	Input standard deviation of the ratio of total impulse to nominal total impulse for the k-th stage (Lk383)	(dim)
$\sigma_{\mathbf{J}\mathbf{j}}$	Input code which designates the quantity that determines when the W_{JT} weight is to be jettisoned where $j=1$,	(dim)
•	2,, or 8 (L0050, 53, etc)	:
· o MI	Local flight path angle to estimated target, intercept (L5373)	(deg)
σ _{mj}	Input code which designates the quantity whose maximum value is to be printed following each stage time where $j = 1, 2,, 5$ (L0261, 263, etc)	(dbi)
σ _{Mj}	Input code which designates the quantity that determines when the j-th mode type ends where $j = 1, 2,, 10$ (L0601, 609, etc)	(dim)
$\sigma_{ ext{MT}}$	Angle of missile to target line and local horizontal (L5371)	(deg)
ġ _M Ţ	Angular rate of missile to target line and local horizontal (L5372)	(deg/sec)
σ_{mx1}	Values which are designated by input, as quantity whose maximum value is to be printed following each	(dbi)
vmx2	stage time (L5491, 495)	-
σ _{mx3}	-	z
σ _{mx4}	•	
omx5		

The second control of the first of the first

Symbol	<u>Definition</u>	<u>Units</u>
$\sigma_{\mathbf{p_j}}$	Input code designates the quantity to be printed in printline Z where j = 1, 2,, 8 (L0209-219)	(sec)
$\sigma_{\mathbf{S}\mathbf{k}}$	Input code which designates the quantity that determines when a stage is terminated where $k=1,\ 2,\ 3,\ 4$ (Lk000)	(dim)
σ _{tb}	Input standard deviation of the ratio of web burntime to nominal burntime for the k-th stage (Lk384)	(dim)
σ _{tj}	Input code which designates the quantity that determines when to print a special time where $j = 1, 2,, 8$ (L0236, 238, etc.)	(dim)
σ _{Tto}	Input code designating start of target manuevering (L0630)	(dim)
$\sigma_{\widetilde{X}}$	Input code which designates the independent variable in the hunting procedure (Pi) (£0077)	(dim)
σ _{xj}	Input code which designates the independent variables used in hunting procedure (P2) where $j=1, 2,, 7$ (L0091, 100, etc)	(dim)
σ уј	Input code which designates the dependent variables used in hunting procedure (P2) where $j = 1, 2,, 7$ (L9094, 103, etc)	(dim)
o z	Input code. The σ_z identifies the dependent variable being maximized or minimized. Used in hunt procedure (P2). If $\sigma_z < 0$, the values of x_1, x_2, \ldots, x_{in} (L0085)	(dim)

Symbol	<u>Definition</u>	<u>Units</u>
$ au_{ ilde{f c}}$	Input stage pitch and yaw control systems time constant for the thrust vector deflection first order transfer function (Lk435)	(sec)
r cf	First order lead constant which will be set proportional to equivalent first order lag of controllable motor used in the TMC command logic	(sec)
τ _{fk}	Input pitch flare-in time constant for k-th stage used in velocity steering type of flight (Ty = 4) (Lk396)	(sec)
Fyj	Input control system time constant of the j-th type TMC (£0805, 815, etc)	(sec)
τ HGj	Input pitch and yaw flare-in factor used in the Homing Guidance (Ty = 11) (L0314, 321, etc)	(sec)
τ _{IGj}	Input pitch and yaw flare-in factor used in the intercept guidance (Ty = 10) (L0314, 321, etc)	(Sec)
^τ MIj	Input guidance associated first order intercept guidance controller time constant used in type 10 flight where j = 1, 2,, or 13 (L0313, 320, etc)	(sec)
$ au_{ m Ri}$	Input stage roll control system time constant, for the first order transfor (Lk639, 549, 659)	(sec)
7. w	Web fraction used in internal ballistic evaluation is set to 0.8 if not input (Lk096)	(dim)
$ au_{ m yk}$	Input time constant in the nontarget dependent yaw steering equation for the k-th stage (Lk402)	(sec)
$ au_{\eta_{\mathbf{j}}}$	Input flare-in time constant for constant load factor type of flight (Ty = 9) (L0315, 322, etc.)	(g's)

Live to the second control of the second con

T

 $\frac{\text{Symbol}}{T_{\text{MI}}} \qquad \frac{\text{Definition}}{\text{Azimuthal angle to target intercept (L5374)}} \qquad \text{(deg)}$

A STATE OF THE CONTROL OF STATES OF

φ,φ

Symbol	<u>Definition</u>	Units
¢	Instantaneous down range angle. Angle between the launch vertical and the local vertical on the down range azimuth point. Positive as shown in Figure 1.1, $\infty < \phi < \infty$ (L5375)	(deg)
$\dot{\phi}$	Instantaneous range angular rate. Positive down range (L5578)	(deg/sec)
$\phi_{\mathbf{a}}$	Glide range angle to the apogee vertical (L5378)	(deg)
$\phi_{\mathbf{a}}$ a ₄	Glide range angle to the apogee vertical (L5114)	(deg)
$\phi_{\mathbf{b}}$	Achieved missile Euler angle roll attitude (L5712)	(deg)
$\phi_{\mathbf{b}}$	Achieved vehicle Euler angle roll rate (L5762)	(deg/sec)
ф _{b0} .	Input roll orientation angle at the trajectory start time –180°< $\phi_{\rm bc} \le 180^{\circ}$ (L0036)	(deg)
$\phi_{\mathbf{f}}$	Glide range angle to glide phase termination vertical used in Keperian impact-predictions (L5381)	(deg)
$\phi_{f g}$	Input generalized coordinate orientation angle. Final rotation angle (about the X_g axis) of the set θ_g , ψ_g , and ϕg	(deg)
$\phi_{\mathbf{i}_{-}}$	Input inertial meridional axis Euler angle relating the i and e systems (L0016)	(deg)
. Ø m	Desired missile attitude Euler angle relating the m and i systems (L5724).	(deg)
$\phi_{ m m}$	Desired vehicle roll Euler angular rate (L5774)	(deg/sec)
$\phi_{ m mo}$	Input initial commanded roll attitude (L0030)	(deg)
$\phi_{ m Ri}$	Input bank angle location of the i-th raceway where i = 1, 2. As seen from the rear of the vehicle, a positive angle is measured clockwise from the Z, axis direction (Lk669, 672)	(deg)

THE SECTION OF THE PROPERTY OF

ϕ, φ

Symbol	<u>Definition</u>	
$\phi_{\mathtt{g}}$	Instantaneous slant range angle. Angle between the launch vertical and the local vertical (L5379)	(deg)
$\dot{\phi}_{ m v}$	Input bivariant consideration axis for the k-th stage (Lk385)	(deg)
ϕ_{0}	Initial down range angle	(deg)
φ	Local bank angle (L5380)	(deg)
$oldsymbol{arphi}_{oldsymbol{c}}$	Commanded bank angle (L537?)	(deg)
$\varphi_{\mathbf{c}\mathbf{j}}$	Input command roll attitude used in the constant angle of attack and angle of side slip type of flight (Ty = 7) or the constant load factor type of flight where i = 1 2 or 13 (Ty = 9) (L0315, 322, etc)	(deg)

	$\underline{m{\psi}}$	~
Symbol	<u>Definition</u>	<u>Units</u>
ħ	Vehicle azimuth in the launch horizontal plane (L5382)	(deg)
$\psi_{\mathbf{b}}$	Achieved missile Euler angle yaw attitude (L5711)	(deg)
ψ _b	Achieved vehicle Euler angle yaw rate (L5761)	(deg/sec)
\$bo	Input yaw orientation angle at the trajectory start time -180 % ψ bo ≤ 180 ° (L-0035)	(deg)
·ψg.	Input generalized coordinate orientation angle. Second rotation angle (about the resulting Z axis after rotating through θ_g , ψ_g , and φ_g (L0046)	(deg)
$\psi_{\mathbf{i}}$	Input flight plane azimuth angle. Angle measured north to the flight plane, $-180^{\circ} \le \psi \le 180^{\circ}$ (L0014)	(ft)
ψ m	Desired missile attitude Euler angle relating the m and i systems (L5723)	(deg)
ψ m	Desired vehicle yaw Euler angular rate (L5773)	(deg/sec)
ψ mo	Input initial commanded yaw attitude (L0029)	(deg)
$\dot{\psi}_{\mathbf{w}}$	Instantaneous wind azimuth angles, measured in a plane parallel to the local tangent plane where $j = 1$,	(deg)
	2,, 30. Angle measured clockwise from north to the direction from which the wind is coming (L5383)	ş 2 -
ψwj	Input instantaneous (with altitude h) wind azimuth angles, measured in a plane parallel to the local tangent plane where $j = 1, 2,, 30$. Angle measured clockwise from north to the direction from which the wind is coming. (L0417, 415, etc)	(deg and dbi)

ω	,	$\mathcal{Q}_{}$

Symbol	<u>Definition</u>	<u>Units</u>
ω ⁻	Input magnitude of the earth's angular velocity. If input greater than 0.5, set equal to 7.29211 E-5 (L0027)	(rad/sec)
$\omega_{\mathbf{c}}$	Input stage pitch control systems forcing frequency for the thrust vector deflection second-order transfer function (Lk437)	(rad/sec)
~	Output slew frequency used in the TVC design stage slew rate calculations	(rad/sec)
ω <u>.</u>	Input frequency of limit cycle for the k-th stage	(rad/sec)
$\omega_{\mathbf{p}}$	Pintle control frequency (L5083)	(rad/sec)
ω _s	Input slew frequency used in the TVC design stage slew rate calculations (L0674)	(rad/sec)
$\omega_{\mathbf{v}}^{\mathbf{r}}$	Input vehicle controlled frequency for the k-th stage (Lk439)	(rad/sec)
$\omega_{\mathbf{z}\mathbf{j}}$	Input attitude control frequency used in constant attitude type of flight where $j = 1, 2,, 16$ (Ty = 8) (L0314, 321, etc)	(rad/sec)
$\Omega_{ m d}$	Ratio of specific heats functional constant. Used in separated flow thrust equations	(dim)

and the control of th

B. EQUATIONS OF MOTION

The equations and logic given in this section establish the trajectory program which simulates missile flight in three dimensions with an additional three degrees of freedom possible, i.e., the vehicle can pitch, yaw, and roll about its center of gravity. A spherical rotating earth mode is utilized for missile location; gravitational forces from an oblate earth can be included.

Differential equations requiring numerical integration are as follows:

- 1. Linear momenta equations
- 2. Angular momenta equations
- 3. Desired missile attitude angular velocities
- 4. Achieved missile attitude angular velocities
- 5. Thrust vectoring equations

To yield an essentially point mass solution, items 2, 4, and 5 are ignored if $M_{_{\rm U}} = 1$ or 4.

1. Linear Momenta Equations

The linear momenta equations which yield the three-dimensional missile acceleration components are computed from the real forces acting on the missile and the accelerations arising from the earth rotation. The equations are:

$$\begin{cases}
\ddot{X}_{ee} \\
\ddot{Y}_{ee}
\end{cases} = [D] \begin{cases}
a_{Xb}\ddot{g}_{e} \\
a_{Yb}\ddot{g}_{e}
\end{cases} - \begin{cases}
2\omega Y_{ee} \sin \rho_{L} \\
-2\omega (\dot{X}_{ee} \sin \rho_{L} + \dot{Z}_{ee} \cos \rho_{L})
\end{cases} - \begin{cases}
g_{Xe} \\
g_{Ye}
\end{cases}$$

$$2\omega \dot{Y}_{ee} \cos \rho_{L}$$

$$2\omega \dot{Y}_{ee} \cos \rho_{L}$$

The above parameters are defined as follows:

 \ddot{X}_{ee} and \dot{X}_{ee} are the components of missile acceleration and velocity in a right handed Cartesian coordinate system whose origin is fixed at sea level at the input launch latitude, ρ_L . The X_e axis is positive north, Y_e -axis positive east, and Z_e , the vertical axis, is positive down.

a. Initial Condition

The initial condition position and velocity vector are as follows:

Down Range Angle

$$\phi_0 = (180/\pi) S_0/r_{\epsilon}$$

Cross Range Angle

$$\xi_0 = (180/\pi) \, s_{co}/r_e$$

Radius From Center of Earth

$$r_{c_0} = h_0 + r_e$$

Launch Centered Coordinates

$$X_{ee0} = r_{co} (\cos \psi_i \cos \zeta_0 \sin \phi_0 - \sin \psi_i \sin \zeta_0)$$

$$Y_{eeo} = r_{co} (\sin \psi_i \cos \zeta_0 \sin \phi_0 + \cos \psi_i \sin \zeta_0)$$

$$Z_{eeo} = r_e - r_{co} \cos \xi_0 \cos \phi_0$$

Initial Earth Geocentric Coordinates

$$X_{cco} = X_{ceo} \cos \rho_L - Z_{eeo} \sin \rho_L + r_e \sin \rho_L$$

$$z_{cco} = x_{eeo} \sin \rho_L + z_{eeo} \cos \rho_L - r_e \cos \rho_L$$

Initial Latitude and Differential Lognitude

$$\sin \rho_0 = X_{cco}/r_{co}$$

$$\cos \rho_0 = (Y_{cco}^2 + Z_{cco}^2)^{\frac{1}{2}}/r_{co}$$

$$\sin \mu_0^{\dagger} = Y_{cco}/(Y_{cc}^2 + Z_{cc}^2)^{\frac{1}{2}}$$

$$\cos \mu_0^{\dagger} = -Z_{cc}/(Y_{cc}^2 + Z_{cc}^2)^{\frac{1}{2}}$$

Initial Launch Centered Velocity Coordinates

$$\begin{bmatrix} \dot{x}_{eeo} \\ \dot{y}_{eeo} \\ \dot{z}_{eeo} \end{bmatrix} = \begin{bmatrix} \cos \rho_L & 0 & \sin \rho_L \\ 0 & 1 & 0 \\ \sin \rho_L & 0 & \cos \rho_L \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \mu_0 & -\sin \mu_0 \\ 0 & \sin \mu_0 & \cos \mu_0 \end{bmatrix}$$

$$\begin{bmatrix} \cos \rho_0 & 0 & -\sin \rho_0 \\ 0 & 1 & 0 \\ \sin \rho_0 & 0 & \cos \rho_0 \end{bmatrix} \begin{bmatrix} v_{eo} \cos \gamma_{10} \cos \gamma_{20} \\ v_{eo} \cos \gamma_{10} \sin \gamma_{20} \\ -v_{e} \sin \gamma_{10} \end{bmatrix}$$

b. D Matrix

The matrix [D], which rotates components from the b system to the e system, is computed from:

$$[b] = [A_{eq}][A_i][A_b]$$

where ω is input, $[A_r]$ rotates components from the b system to the i system, $[A_i]$ from the i system to the e_0 system, and $[A_{e0}]$ from the eo system to the e system. The coordinate axes are discussed in Section A.2.c and shown in Figure 17. These rotation matrices are defined as follows:

$$[A_{e0}] = \begin{bmatrix} \cos \rho_L & 0 & \sin \rho_L \\ 0 & 1 & 0 \\ -\sin \rho_L & 0 & \cos \rho_L \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \omega t & \sin \omega t \\ 0 & -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} \cos \rho_L & 0 & -\sin \rho_L \\ 0 & 1 & 0 \\ \sin \rho_L & 0 & \cos \rho_L \end{bmatrix}$$

$$\begin{bmatrix} \cos \psi_i & -\sin \psi_i & 0 \\ \sin \psi_i & \cos \psi_i & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_i & 0 & \sin \theta_i \\ 0 & 1 & 0 \\ -\sin \theta_i & 0 & \cos \theta_i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_i & -\sin \phi_i \\ 0 & \sin \phi_i & \cos \phi_i \end{bmatrix}$$

with

$$[A_{m}] = \begin{bmatrix} \cos \theta_{m} & G & \sin \theta_{m} \\ 0 & 1 & 0 \\ -\sin \theta_{m} & 0 & \cos \theta_{m} \end{bmatrix} \begin{bmatrix} \cos \psi_{m} & -\sin \psi_{m} & 0 \\ \sin \psi_{m} & \cos \psi_{m} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{m} & -\sin \phi_{m} \\ 0 & \sin \phi_{m} & \cos \phi_{m} \end{bmatrix}$$

$$[A_{b}] = \begin{bmatrix} \cos \theta_{b} & 0 & \sin \theta_{b} \\ 0 & 1 & 0 \\ -\sin \theta_{b} & 0 & \cos \theta_{b} \end{bmatrix} \begin{bmatrix} \cos \psi_{b} & -\sin \psi_{b} & 0 \\ \sin \psi_{b} & \cos \psi_{b} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{b} & -\sin \phi_{b} \\ 0 & \sin \phi_{b} & \cos \phi_{b} \end{bmatrix}$$

where t is the instantaneous time, θ_i , \tilde{v}_i , ϕ_i the input Euler angles defining the relation between i and e_0 systems, and the subscript m and b Euler angles are computed from the integration of their rate equations. The angles are shown in Figure 17 and Figure 18.

. Inertial Acceleration Components

The components of acceleration arising from the thrust and aerodynamic forces acting on the missile are:

$$a_{Xb} = [F_{x} - C - C_{\delta_{z}} - D_{rl} sgn (x_{bb})]/W$$

$$a_{Yb} = (F_{y} + F_{JDy} + F_{TDy} + N_{Py} - N_{y} + N_{\delta y})/W$$

$$a_{Zb} = (F_{z} + F_{JDz} + F_{TDz} + N_{Pz} - N_{z} + N_{\delta z})/W$$

where $F_{x,y,z}$ are the components of missile thrust, main and/or complementary; F_{JDy} and F_{JDz} are the jet damping forces in yaw and pitch respectively; K_{Py} and N_{Pz} are the aerodynamic damping forces in yaw and pitch respectively; F_{TDy} and F_{TDz} are the movable nozzle tail-wag-dog force in yaw and pitch respectively; and F_{TDz} are the aerodynamic force components. F_{Sy} and F_{Sz} are the control fins normal force in yaw and pitch respectively; and F_{Sz} are the control fins normal force in yaw and pitch respectively; and F_{Sz} are the control fin axial force. F_{Tz} is the input rail drag. The mass conversion gravity value, F_{Sz} , is input.

The second and third terms of the linear momenta equations result from Coriolis and gravitional accelerations.

Some of these forces are depicted on Figures 19 and 20.

d. Gravity

The gravitational force is specified by the two components shown in Figure 24; one directed down from the missile towards the earth center and the other perpendicular to the preceding component, directed towards the equatorial plane. Both components are functions of vehicle geocentric latitude and radial distances and include the accelerations due to mass attraction and centrifugal force.

The local components of gravity are:

$$g_{X1} = -(2r_e^4 g_e^4 J/r_c^4 + \omega^2 r_c^2) \cos \rho \sin \rho$$

$$g_{Y1} = 0$$

$$g_{Z1} = r_e^2 g_e \left[1 - J r_e^2 (3 \sin^2 \rho - 1)/r_c^2 - \omega^2 r_c \cos^2 \rho \right]$$

where r_e , g_e , t, and ω are input and r_c and ρ are the instantaneous missile earth center distance and latitude, respectively.

The components in the e system are

$$\frac{1}{g_e} = [A_1] \frac{1}{g_1}$$

where the matrix $[A_1]$ is defined in Section F.2.b.

The energy per unit mass is:

$$E/m = g_e r_c - g_e r_e^2/r_c + V_1^2/2$$

2. Angular Momenta Equations

The angular momenta equations which yield the angular acceleration components about the vehicle center of gravity are defined as follows:

$$\begin{bmatrix} \mathbf{I}_{XX} & \mathbf{I}_{XY} & \mathbf{I}_{XZ} \\ -\mathbf{I}_{XZ} & \mathbf{I}_{YY} & \mathbf{I}_{YZ} \\ -\mathbf{I}_{XZ} & \mathbf{I}_{YZ} & \mathbf{I}_{ZZ} \end{bmatrix} \qquad \begin{cases} \dot{P}_{b} \\ \dot{Q}_{b} \\ \dot{R}_{b} \end{cases} + \begin{bmatrix} \dot{\mathbf{I}}_{XX} & -\dot{\mathbf{I}}_{XY} & -\dot{\mathbf{I}}_{XZ} \\ -\dot{\mathbf{I}}_{XZ} & -\dot{\mathbf{I}}_{YZ} & \dot{\mathbf{I}}_{ZZ} \end{bmatrix} \begin{pmatrix} \dot{P}_{b} \\ \dot{Q}_{b} \\ \dot{R}_{b} \end{pmatrix}$$

$$+ \begin{bmatrix} \mathbf{C} & -\mathbf{R}_{b} & \mathbf{Q}_{b} \\ \mathbf{R}_{b} & 0 & -\mathbf{P}_{b} \\ -\mathbf{Q}_{b} & \mathbf{P}_{b} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{XX} & -\mathbf{I}_{XY} & -\mathbf{I}_{XZ} \\ -\mathbf{I}_{XY} & \mathbf{I}_{YY} & -\mathbf{I}_{YZ} \\ -\mathbf{I}_{XZ} & -\mathbf{I}_{YZ} & \mathbf{I}_{ZZ} \end{bmatrix} \begin{pmatrix} \dot{P}_{b} \\ \dot{Q}_{b} \\ \dot{R}_{b} \end{pmatrix} = \begin{pmatrix} \dot{\mathbf{M}}_{\mathbf{I}} \dot{P} \\ \dot{\mathbf{M}}_{\mathbf{I}} \dot{Q} \\ \dot{\mathbf{M}} \end{pmatrix}$$

where P_b , Q_b and R_b are the roll, pitch and yaw turning rates about the missile center of gravity (Figure 21), I_{XX} , I_{YY} and I_{ZZ} are the roll, pitch and yaw moments of inertia respectively; I_{XY} , I_{XZ} , and I_{YZ} are the products of inertia; and M_{IP} , M_{IQ} and M_{IR} are the roll, pitch, and yaw unbalance moments respectively.

a. Initial Conditions, Angles, and Angular Rates

Initial values of θ_b , ψ_b , and ϕ_b , at the trajectory start time, t_o, are obtained from input and thereafter, at the initiation of the mode are equated to the values existing at the end of the previous mode segment. At staging, the input stage attitude reaction angular impulse, ΔQ_b is added to Q_b and ΔR_b is added to R_b .

. Angular Moments

Angular moments are defined as follows.

Perturbing Pitching Moments

$$M_{DQ} = M_{NQ} + M_{FOQ} + M_{TDQ} + M_{JDQ}$$

where ${\rm M_{NQ}}$ is the aerodynamic pitching moment, ${\rm M_{FOQ}}$ is the thrust offset pitching moment, ${\rm M_{TDQ}}$ is the movable nozzle tail-wag-dog pitching moment, and ${\rm M_{JDQ}}$ is the jet damping pitching moment.

Controlling Pitching Mcments

$$M_{CQ} = M_{FCQ} + M_{EQ}$$

where ${\rm M}_{\rm FCQ}$ is the thrust vector control pitching moment and ${\rm M}_{\rm EQ}$ is the movable pitch control fin moment.

Unbalance Pitching Moment

$$M_{IQ} = M_{DQ} + M_{CQ}$$

Perturbing Yaw Moments

where $\rm M_{NR}$ is the aerodynamic yawing moment, $\rm M_{FOR}$ is the thrust offset yawing moment, $\rm M_{TDR}$ is the movable nozzle tail-wag-dog yawing moment, and $\rm M_{JDR}$ is the jet damping yawing moment.

Controlling Yawing Moment

where $M_{\overline{FCR}}$ is the thrust vector control yawing moment and $M_{\overline{\delta R}}$ is the movable yaw control fin moment.

Unbalance Yawing Moment

$$M_{\overline{LR}} = M_{\overline{DR}} + M_{\overline{CR}}$$

Perturbing Roll Moments

$$M_{DP} = M_{NP} + M_{FOP} + M_{FVP} + M_{RAP}$$

where M_{NP} is the aerodynamic normal force offset rolling moment, M_{FOP} is the thrust offset rolling moment, M_{FVP} is the thrust vortex rolling moment, and M_{RAP} the raceway aerodynamic rolling moment.

Controlling Rolling Moment

where $M_{\mbox{FCP}}$ is the auxilliary roll control rolling moment and $M_{\mbox{\scriptsize oR}}$ is the aerodynamic fin rolling control moment.

Unbalance Rolling Moment

$$M_{IP} = M_{DP} + M_{CP}$$

C. CONTROL TABLES

Three different control tables regulate the type of trajectory simulation. The mode control table stipulates the degrees of freedom to be simulated, the attitude control table dictates the type of flight, and the thrust modulation control table specifies the thrust control law.

1. Mode Control Table

The mode table controls the degree of sophistication that is obtained in the simulation of missile flight. Options such as rigid body with and without thrust vector control are controlled by the mode table. The desired option or mode is determined by the type of mode input M.

If the input only is zero, all of the logic given below is ignored and only the Mode I option of a rigid body-without controls is applicable throughout the run.

The following logic applies to the mode regions: Inputting a maximum of ten mode regions per trajectory is possible. Let σ_{Mj} (j = 1, 2, ..., 10) be the achieved value of a parameter designated by code input and let K_{Mj} be the input of the parameter; then the j-th mode region will apply until $\sigma_{Mj} = K_{Mj}$, then mode is switched to next mode type.

The time when equality in the above occurs will be determined and is defined as t_{Mj} . The K_{Mj} criteria are checked monotonically with respect to the j index. The trajectory is terminated if the final t_{Mj} is reached. The applicable region at the beginning of a trajectory run is determined from

the region start flag, M'_{yj} , as follows:

- 1. The j-th (j = 1, 2, ..., 10) region applies if $M'_{vi} = j \neq 0$
- 2. If $M_{yj}^{i} = 0$, the first margin applies.

At the initiation of Mode 4, the initial thrust vector angles and rates are obtained from input unless they are not input; then, they are equated to the values at the end of the previous mode region.

The nodes have the following meaning:

- a. Point mass simulation $(M_y = 4)$ Mode 4 simulates in three dimensions—the vehicle motion—as a rigid body without controls (point mass).
- b. Rigid body simulation ($M_y = 5$)

 Mode 5 simulates in three dimensions the vehicle motion as a rigid body with controls.

The trajectory will be terminated with an error message and dump if any mode other than 4 or 5 is encountered.

2. Flight Control Table

Desired missile attitude (the relation between the m and i aystems) as shown in Figure 18 will be computed by on of the many types of flight methods given below. The m system is the basic coordinates that the autopilot controls. The command m system is calculated for desired angles of attack, angle of sideslip and back angle for certain types of flight. The type of attitude control desired will be determined by the "type of flight" input T according to the following logic:

programmed flight is desired. Missile atxi: do is determined from the input turning rates.

If
$$\tilde{T}_y = 2$$

stipulated angle of attack and angle of sideslip for a given back angle is desired. Commanded pitch, yaw, and roll attitudes are determined from the commanded relative attitude from achieved earth reference velocity vector.

If
$$T_y = 4$$

nominarget dependent guided flight is desired. Missile attitude is determined from velocity steering equations.

$$\mathbf{If} \qquad \mathbf{T}_{\mathbf{y}} = \mathbf{6}$$

rail launch dynamic is desired. Missile attitude is fixed in pitch and yaw but the roll attitude is allowed to be commanded from input roll rate.

If
$$T_y = 0$$

constant attitude is specified. Hissile attitude will be controlled from a command law specifying angle of attack and angle of side slip. Roll attitude will be specified from command back angle.

If
$$T_y = 9$$

constant normal load factor flight is desired. Missile attitude will be controlled from command law specifying angle of attack, and angle of side slip. Roll attitude will be specified from command back angle.

intercept guidance flight is desired. Missile attitude is commanded so as to fly the missile on a collision course to intersect with the input moving target coordinates.

Homing Guîdance flight is desired. Missile attitude is calculated to home on a target by so called proportional navigational steering.

The following logic applies to all types of flight:

A maximum of 13 types of flight per trajectory can be input. Let $\sigma_{f,j}$ (j = 1, 2, ..., 13) be the achieved value of a parameter designated by code input and let $K_{f,j}$ be the input value of the parameter; then, the j-th type of flight will apply for as long as $\sigma_{f,j}$ does not equal $K_{f,j}$. An error will occur if $\sigma_{f,j}$ and $K_{f,j}$ are equal at the beginning of the j = the type of flight.

The j-th type of flight will end and the trajectory will be computed when equality occurs. Criterion for ending the (j+1)-type of flight is not checked until the j-th type of flight ends. Once the j-th type of flight ends, it cannot be re-entered during the trajectory.

a. Programmed Flight $(T_y = 1)$

When Ty = 1 during the joth type of flight, the pitch, yaw and roll turning rates are obtained from input and the desired vehicle attitude is determined from:

area consistentia del presidentia estado destado Calendros estados estados estados estados estados estados esta

$$\frac{\dot{\theta}_{m}}{\dot{\theta}_{m}} = (Q_{mj} \cos \phi_{m} \sim R_{mj} \sin \phi_{m})/\cos \phi_{m}$$

$$\frac{\dot{\phi}_{m}}{\dot{\phi}_{m}} = Q_{mj} \sin \phi_{m} + R_{mj} \cos \phi_{m}$$

$$\dot{\phi}_{m} = R_{mj} - \dot{\theta}_{m} \sin \phi_{m}$$

where Q_{mj} , R_{mj} , and P_{mj} are the input turning rates in the attitude control table whose positive directions are shown in Figure 19.

The initial values of $\theta_{\rm m}$, $\phi_{\rm m}$, and $\psi_{\rm m}$ are obtained from input if $t=t_0$, or from the last computed values from the previous type of flight.

b. Constant Angle of Attack and Angle of Side Slip $(T_y = 2)$

When Ty = 2 during the j-th type of flight, the desired verticle attitude is determined from:

$$\theta_{\rm m} = \arctan \left[(-A_{\rm m31})/(A_{\rm m11}) \right]$$
 - 180° < $\theta_{\rm m} \le 180^{\circ}$
 $\psi_{\rm m} = \arcsin \left[(A_{\rm m21})/(A_{\rm m22}) \right]$ -180° < $\phi_{\rm m} \le 180^{\circ}$
 $\phi_{\rm m} = \arctan \left[(-A_{\rm m23})/(A_{\rm m22}) \right]$ -180° < $\phi_{\rm m} \le 180^{\circ}$

where

$$[A_{m}] = [A_{\underline{i}}]^{-1} [A_{eo}]^{-1} [A_{1}] [A_{\gamma_{2}}]^{-1} [A_{\gamma_{1}}]^{-1} [A_{c}]^{-1}$$

where

$$[A_{c}] = \begin{bmatrix} \cos \alpha_{c} & 0 & -\sin \alpha_{c} \\ 0 & 1 & 0 \\ \sin \alpha_{c} & 0 & \cos \alpha_{c} \end{bmatrix} \begin{bmatrix} \cos \beta_{c}^{1} & -\sin \beta_{c}^{1} & 0 \\ \sin \beta_{c}^{1} & \cos \beta_{c}^{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_{c} & \sin \phi_{c} \\ 0 & -\sin \phi_{c} & \cos \phi_{c} \end{bmatrix}$$

where

$$\beta_c^* = \arctan [(\tan \beta_c)/(\sec \alpha_c)]$$

The values of α_c , β_c and ϕ_c are input in the flight control table in the Q_m , R_m , and \underline{P}_m columns.

$$\begin{bmatrix} A_{m} \end{bmatrix}^{-1} = \begin{bmatrix} A_{c} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{2}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix}^{-1} \quad \begin{bmatrix} A_{eo} \end{bmatrix}$$

$$+ \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{2}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix}^{-1} \quad \begin{bmatrix} A_{eo} \end{bmatrix}$$

$$+ \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{2}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix}^{-1} \quad \begin{bmatrix} A_{eo} \end{bmatrix}$$

$$+ \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{2}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{2}} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix}^{-1} \quad \begin{bmatrix} A_{eo} \end{bmatrix} \quad \begin{bmatrix} A_{\gamma_{1}} \end{bmatrix}$$

$$[\dot{\mathbf{A}}_{eo}] = \omega \begin{bmatrix} 0 & -\sin\rho_{\mathbf{L}} & 0 \\ \sin\rho_{\mathbf{L}} & 0 & \cos\rho_{\mathbf{L}} \\ 0 & -\cos\rho_{\mathbf{L}} & 0 \end{bmatrix} [\mathbf{A}_{eo}]$$

$$[A_{\tilde{E}}] = [A_{\tilde{m}}]^{-1} [A_{\tilde{m}}]$$

$$P_m = A_{E23}$$

$$Q_{m} = A_{E31}$$

and $\dot{\theta}_{m}$, $\dot{\psi}_{m}$, and $\dot{\phi}_{m}$ are determined as in $T_{y} = 1$.

c. Pitch Steering (Ty=4)

When Ty=4 during the j-th segment of flight, the vehicle attitude and rate are obtained from instantaneous missile position and velocity components as follows:

$$\theta_{m} = (180/\pi) [a_{1k} \dot{z}_{gg} + a_{0k} + b_{1k} \dot{x}_{gg} + b_{2k} \dot{x}_{gg}^{2} + b_{3k} \dot{x}_{gg}^{3} + \Delta_{ak}]$$

$$\dot{\theta}_{m} = (180/\pi) [a_{1k} \ddot{z}_{gg} + b_{1k} \ddot{x}_{gg} + 2b_{2k} \ddot{x}_{gg} \ddot{x}_{gg} + 3b_{3k} \dot{x}_{gg}^{2} \ddot{x}_{gg} + \Delta_{ak}]$$

The constants a_{1k} , a_{0k} , b_{1k} , b_{2k} , b_{3k} (k=1,2,3, or 4) are input per stage, computed under acquisition of coefficients for steering equation logic delineates in section L.3.a, or obtained from previous run if $\sigma_{glk} < 0$. Also,

$$\Delta_{ak} = \Delta_{ak}^{t} \exp \left[(t_{Bf}^{ont} - t) / \tau_{sk} \right]$$

$$\Delta_{ak} = -(\Delta_{bk}/\tau_{fk}) \exp[(t_{Bf} = t)/\tau_{fk}]$$

where values of the whicle attitude angle and velocity components with subscript if are determined at the beginning of this sugment or at staging, whichever is the last occurring event, tis the time, take is the value of time when Ty=4 flight begins or is zero at staging, and Tik is the input pitch flare-in time constant for the k-th stage.

(1) Commanded Yaw Attitude

$$\psi_{m} = - (180/\pi) K_{yk} [\tau_{yk} \dot{Y}_{gg} + Y_{gg}]$$

$$\dot{\psi}_{m} = - (180/\pi) K_{yk} [\tau_{yk} \ddot{Y}_{gg} + \dot{Y}_{gg}]$$

(2) Command Roll Attitude

$$\phi_{\rm m} = \phi_{\rm m} = 0$$

d. Rail Launch ($T_V = 6$)

When T = 6 during the j-th segment of flight, the vehicle flight path will simulate flying down a launcher rail or tube.

The linear momenta equations are set as

$$\begin{bmatrix} \ddot{x}_{ee} \\ \ddot{y}_{ee} \\ \ddot{z}_{ee} \end{bmatrix} = [D] \begin{bmatrix} A_{ax} \\ 0 \\ 0 \end{bmatrix}$$

where

where the quantities are delineated in section B.1.

set

$$\theta_{b} = \theta_{m}$$

$$\psi_{b} = \psi_{m}$$

$$\left\{
\begin{array}{l}
P_{m} \\
Q_{m} \\
R_{m}
\end{array}
\right\} = [D] \quad \left\{
\begin{array}{l}
\omega \\
0 \\
0
\end{array}
\right\}$$

$$\theta_{m} = \frac{(Q_{m} \cos \phi - R \sin \phi)}{\cos \phi_{m}}$$

$$_{m}^{*} = Q_{m} \sin \phi + R_{m} \cos \phi_{m}$$

The distance traveled along the rail is

$$l_{lr} = [(X_{ee} - X_{ee}^*)^2 + (Y_{ee} - Y_{ee}^*)^2 + (Z_{ee} - Z_{ee}^*)^2]^{\frac{1}{2}}$$

where t_{lr} is assigned a "P" number 5113 and

$$X_{ee}^* = X_{eeo} + X_{eeo}(t - t_o)$$

$$\dot{Y}_{\text{ee}}^{\star} = \dot{Y}_{\text{eeo}} + \dot{Y}_{\text{eeo}} (t-t_{\text{o}})$$

$$Z_{\text{ee}}^{\star} = Z_{\text{eeo}} + \dot{Z}_{\text{eeo}} (t-t_{\text{o}})$$

where X_{eeo} , Y_{eeo} , Z_{eec} , and t_o are the initial values of X_{ee} , and Y_{ee} , Z_{ee} , and t at the beginning of the segm. ... of flight.

e. Constant Altitude $(T_y = 8)$

The constant altitude type of flight will command the vehicle so as to fly the missile to a specified altitude and then maintain that altitude. The directed flight path azimuth will be down the generalized coordinates $X_{gg} = Z_{gg}$ plane. The transition of the varicle initial altitude to the desired altitude is accomplished by a second order transfer function characterized by an input altitude control frequency and damping ratio.

When T_y = 8 during the j-th segment of flight, the vehicle attitude is obtained from instantaneous values of no-wind total angle of attack, roll angle of total angle of attack orientation, bank angle, altitude distance, rate, body angular attitude, and acceleration, as well as from input values, command altitude, altitude control frequency, and damping ratio.

The commanded angle of attack and angle of side slip is defined as follows:

(1) Commanded Angle of Attack

$$\alpha_{c} = \begin{bmatrix} 45^{\circ} + \Delta_{ak} & \text{If } \alpha_{c}^{*} > 45^{\circ} \\ -45^{\circ} + \Delta_{ak} & \text{If } \alpha_{c}^{*} < -45^{\circ} \\ \alpha_{c}^{*} + \Delta_{ak} & \text{Otherwise} \end{bmatrix}$$

where

$$\alpha_{c}^{*} = \alpha_{l} + [(h_{c} - h) K_{z} - \dot{h} K_{\dot{z}} - \ddot{h} K_{\dot{z}}] \cos \varphi_{c}$$

$$+ [Y_{gg} K_{z} + \dot{Y}_{gg} \dot{K}_{z} + \dot{Y}_{gg} K_{\dot{z}}] \sin \varphi_{c}$$

$$- K_{\ddot{\theta}} Q_{b} \cos (\varphi - \varphi_{c}) - K_{\ddot{z}} \dot{R}_{b} \sin (\varphi - \varphi_{c})$$

om secondo XX

and the angle of attack exponential flair-in factor is determined as follows:

$$\Delta_{ak} = \begin{bmatrix} \Delta_{ak}^{t} \exp \left\{ -(t_{Bf} - t) \left[\frac{\omega_{z}}{2} \right] \right] & \text{If } \omega_{z} > 0 \\ 0 & \text{Otherwise} \end{bmatrix}$$

where

$$\Delta_{ak}^{t} = [\alpha_{cf}^{t} - \alpha_{lf}]$$

and the angle of attack rotated to the commanded vertical is

$$\alpha_{\ell} = \arctan \{ [\tan \tilde{\alpha}'] / [\sec (\phi - \phi_c + \bar{\epsilon})] \}$$

where the values of the vehicle trajectory parameters with subscript "f" are determined at the beginning of this segment of flight type control.

(2) Commanded Angle of Side Slip

$$\beta_{c} = \begin{bmatrix} 45 + \Delta_{bk} & \text{If } \beta_{c}^{*} > 45^{\circ} \\ -45 + \Delta_{bk} & \text{If } \beta_{c} < -45 \\ \beta_{c}^{*} + \Delta_{bk} & \text{Otherwise} \end{bmatrix}$$

where

$$\beta_{c}^{*} = \beta_{L} + [Y_{gg} K_{z} + \dot{Y}_{gg} K_{z} + \ddot{Y}_{gg} K_{z}] \cos \varphi_{c}$$

$$- [(h_{c} - h) K_{z} - \dot{h} K_{\dot{z}} - \ddot{h} K_{\dot{z}}] \sin \varphi_{c}$$

$$+ K_{\ddot{\theta}} Q_{b} \sin (\varphi - \varphi_{c}) - K_{\ddot{\phi}} R_{b} \cos (\varphi - \varphi_{c})$$

and the angle of side slip exponential flare-in factor is determined as follows:

$$\Delta_{bk} = \begin{bmatrix} \Delta_{bk}^{r} \exp \left\{ (t_{Bf} - t) \left[\omega_{z} / (2 \zeta_{z}) \right] & \text{If } \omega_{z} > 0 \\ \\ 0 & \text{Otherwise} \end{bmatrix}$$

and the angle of sideslip in the horizontal is:

$$\beta_{\ell} = \arctan \{ [(\tan \bar{\alpha}^i)] / [\csc (\phi - \phi_c + \bar{\epsilon})] \}$$

where

$$\Delta_{bk}^{c} = [\beta_{zf} - \beta_{cf}^{*}]$$

where the values of the vehicle trajectory parameters with subscript "f" are determined at the beginning of this segment of flight type control. The above gain are defined as:

$$K_{z} = \frac{\omega^{2}}{z} / G_{z}$$

$$K_{\dot{z}} = 2\zeta_{z} |\omega_{z}| G_{z}$$

$$K_{\dot{z}} = 1/G_{z}$$

where the values of h_c , w_z , and ζ_z are input in the attitude control table in the locations of Q_{mj} , R_{mj} , and P_{mj} , respectively for the j-th type of flight row and the variable gain factor is determined as:

$$G_{z} = (\pi/180) [\ddot{a}_{Xb} \, \ddot{g}_{e} + N_{PEA} \, g_{e}/W]$$

$$K_{p} = \begin{bmatrix} 0 & \text{if } M_{y} = 1 \text{ or } 4 \\ \\ N_{PCD} & I_{YY}/(N_{NVA}M_{PCD} + N_{PCD} \cdot M_{PDA}) & \text{Otherwise} \end{bmatrix}$$

Pitch aerodynamic control normal force per radian fin deflection angle

$$N_{PAC} = (189/\pi) C_{Lz} q S_{Fz}$$

Pitch aerodynamic disturbing normal force per radian angle of attack

$$N_{PAD} = (180/\pi) C_{N1} q S_{RN} \bar{N}$$

Pitch total thrust control moment per radian TVC deflection angle

Pitch main thrust control moment per radian TVC deflection angle

$$M_{PMC} = F_{H} L_{e}$$

Pitch aerodynamic control moment per radian fin deflection angle

Pitch aerodynamic disturbing moment per radian angle of attack

Total pitch control moment per radian deflection angle

$$M_{PCD} = \begin{bmatrix} K_{cf} & M_{PAC} + M_{PTC} & \text{if } K_{6} = 0 \text{ or } K_{6} > 2 \\ K_{cf} & M_{PAC} + M_{PMC} & \text{if } K_{6} = 1 \\ M_{PAC} & \text{if } K_{6} = 2 \end{bmatrix}$$

Total pitch disturbing moment per radian angle of attack

Total pitch control normal force per radian deflection angle

$$N_{PCD} = \begin{bmatrix} K_{cf} & N_{PAC} + F & \text{if } K_{6} = 0 \\ K_{cf} & N_{PAC} + F_{M} & \text{if } K_{6} = 1 \\ N_{PAC} & \text{if } K_{6} = 2 \end{bmatrix}$$

Total pitch disturbing normal force per radian angle of attack

$$N_{PDA} = N_{PAD} + N_{PAC}$$

Pitch trim normal force per radian angle of actack

$$N_{PEA} = \begin{bmatrix} N_{PDA} & \text{if } M_y = 1 \text{ or } 4 \\ N_{PDA} + (M_{PDA}/M_{PCD})N_{PCD} & \text{Otherwise} \end{bmatrix}$$

Force normal to velocity vector per radian angle of attack

$$N_{NVA} = a_{Xb} W + N_{PDA}$$

$$K_{\phi}^{*} = \left(1_{zz}/1_{yy}\right)K_{\theta}^{*}$$

Commanded bank angle

f. Constant Normal Load Factor $(T_y = 9)$

The programmed normal load factor type of flight will command the vehicle attitude so as to fly the missile with a specified acceleration in g's normal to the earth reference velocity vector. The transition from the initial load factor to the desired load factor is accomplished by a first order transfer function characterized by an input load factor flare-in constant.

The values of $\eta_{cn},~\eta_{ct},$ and ϕ_{c} are input in the attitude control table in the $Q_{mj},~R_{mj},$ and P_{mj} locations.

Defining the achieved load factor along the velocity vector is:

$$\begin{cases}
\eta_{ba} \\
-\eta_{bt} \\
-\eta_{bn}
\end{cases} = [A_{\beta}]^{-1} [A_{\alpha}]^{-1} [\tilde{X}_{b}] 1/\overline{g}_{e}$$

where η_{ba} is the acceleration along the velocity vector, η_{bt} is the acceleration transverse to the velocity vector, and η_{bn} is the acceleration normal to the velocity vector.

The achieved load factor along the velocity vector is:
(in commanded local roll coordinates).

$$\eta_{lt} = \eta_{bt} \cos (\phi - \phi_c) - \eta_{bn} \sin (\phi - \phi_c)$$

$$\eta_{ln} = \eta_{bt} \sin (\varphi - \varphi_c) + \eta_{bn} \cos (\varphi - \varphi_c)$$

The commanded angle of attack

$$\alpha_{c} = \begin{bmatrix} 45^{\circ} + \Delta_{ak} & \text{If } \alpha_{c}^{*} > 45^{\circ} \\ -45^{\circ} + \Delta_{ak} & \text{If } \alpha_{c}^{*} < -45^{\circ} \\ \alpha_{c}^{*} + \Delta_{ak} & \text{Otherwise} \end{bmatrix}$$

where

$$\dot{c} = \alpha_{\ell} + (\eta_{cn} - \eta_{\ell n}) K_{\hat{\eta}}$$

$$- K_{\hat{\theta}} Q_b \cos (\varphi - \varphi_c) - K_{\hat{\phi}} R_b \sin (\varphi - \varphi_c)$$

and the angle of attack experimental flare-in factor is determined as follows:

$$\Delta_{ak} = \begin{bmatrix} 0 & & \text{if } \tau_f = 0 \\ \Delta'_{ak} \exp \left[(t_{Bf} - t_f) / \tau_f \right] & & \text{Otherwise} \end{bmatrix}$$

$$\Delta'_{ak} = \begin{bmatrix} 0 & & \text{if } \tau_f = 0 \\ 0 & & \text{if } \tau_f = 0 \end{bmatrix}$$

$$\Delta'_{ak} = \begin{bmatrix} 0 & & \text{otherwise} \end{bmatrix}$$

$$\Delta'_{ak} = \begin{bmatrix} 0 & & \text{otherwise} \end{bmatrix}$$

The commanded angle of sideslip

$$\beta_{c} = \begin{cases} 45^{\circ} + \Delta_{bk} & \text{If } \beta_{c}^{*} > 45^{\circ} \\ -45^{\circ} + \Delta_{bk} & \text{If } \alpha_{c}^{*} < -45^{\circ} \\ \alpha_{c}^{*} + \Delta_{bk} & \text{Otherwise} \end{cases}$$

where

$$\beta_{c}^{*} = \beta_{\ell} - (\hat{\eta}_{ct} - \eta_{\ell n}) K_{\eta}$$

$$+ K_{\theta} Q_{b} \sin (\phi - \phi_{c}) + K_{\theta} R_{b} \cos (\phi - \phi_{c})$$

and the angle of side slip exponential flure-in factor is determined as follows:

$$\Delta_{bk} = \begin{bmatrix} 0 & & & \text{If } \tau_f = 0 \\ \Delta_{bk}^{\dagger} & \text{exp} & (t_{Bf}^{\prime} - t) & & \text{Otherwise} \end{bmatrix}$$

$$\Delta_{bk}^{\dagger} = \begin{bmatrix} 0 & & & \text{If } \tau_f = 0 \\ 0 & & & \text{If } \tau_f = 0 \end{bmatrix}$$

$$\Delta_{bk}^{\dagger} = \begin{bmatrix} 0 & & & \text{Otherwise} \end{bmatrix}$$

$$(\beta_{Zf} - \beta_{Cf}^{\star}) & & \text{Otherwise} \end{bmatrix}$$

g. Intercept Guidance ($T_y = 10$)

The intercept guidance type of flight will command the vehicle so as to fly the missile on a collision course to intersect with the input moving target coordinates. This type of flight represents a radio command guidance system where the signals are generated by an external facility which keeps tract of the missile and target dynamical characteristics.

When T_y = 10 during the j-th segment of flight, the vehicle attitude is obtained from instantaneous values of flight path angle (γ_1) , the flight path error to intercept angle (ϵ_{MI}) , the flight path azimuth error to intercept (ϵ_{MI}) , the partial derivative of the linear inertial acceleration normal to the velocity vector to the vehicle angle of attack (G_2) , the earth gravity and rotation acceleration (g_{Z1}) , and vehicle velocity (V_e) as well as the guidance associated first order intercept guidance controller time constant (τ_{MI}) , and maximum angle of attack (α_{max}) input in the attitude control table in the Q_{mj} and R_{mj} locations.

The command angles of attack angle of sideslip are defined as follows:

$$\alpha_{c} = \begin{bmatrix} \alpha_{IG}^{t} + \Delta_{ak} & \text{if } -\alpha_{max} < \alpha_{IG}^{t} < \alpha_{max} \text{ or } \alpha_{max} = 0 \\ \alpha_{max}^{t} + \Delta_{ak} & \text{if } \alpha_{IG}^{t} > \alpha_{max} \\ -\alpha_{max}^{t} + \Delta_{ak} & \text{if } \alpha_{max}^{t} > \alpha_{IG}^{t} \end{bmatrix}$$

where

Commanded angle of attack

$$\alpha_{c}^{*} = \begin{bmatrix} 0 & \text{if } G_{Z} = 0 \\ \epsilon_{MI} + \frac{g_{Z1} \cos \gamma_{1}}{G_{Z}} & \text{if } \tau_{MI} = 0 \\ \frac{(\pi/180) \ V_{c} \left(\frac{\epsilon_{MI}}{\tau_{MI}} + \dot{\sigma}_{MT}\right) + \ g_{Z1} \cos \gamma_{1}}{G_{Z}} & \text{if } \tau_{MI} \neq 0 \end{bmatrix}$$

$$\beta_{C}^{1} + \Delta_{Dk}$$

$$\alpha_{max} +$$

Commanded angle of side slip

$$\beta_{C}^{*} = \begin{bmatrix} 0 & \text{if } G_{Z} = 0 \\ -\delta_{MI} & \text{if } \tau_{MI} = 0 \end{bmatrix}$$

$$\frac{-(\pi/180) \text{ V}_{e} \left(\frac{\delta_{MI}}{\tau_{MI}} + \lambda_{MI} \right)}{G_{Z}}$$
where

G, is formulated in section C. 2. e (Type 8 flight), $\epsilon_{\rm MI}$, $\dot{\sigma}_{\rm MI}$, $\dot{\sigma}_{\rm MI}$, and $\lambda_{\rm MI}$ are formulated in section J.4.c, "Missile Target Coordinates"

The exponental flare-in factor is determined as follows:

$$\Delta_{ak} = \begin{bmatrix} 0 & \text{if } \tau_{IG} = 0 \\ \\ \Delta_{ak}' = \text{exp } [(t_{Bf} - t)/\tau_{IG}] & \text{Otherwise} \end{bmatrix}$$

where

$$\Delta_{ak}^{i} = \begin{bmatrix} 0 & \text{If } \tau_{f} = 0 \\ [\alpha_{IGF}^{i} - \alpha_{If}] & \text{Otherwise} \end{bmatrix}$$

$$\Delta_{bk}^{i} = \begin{bmatrix} 0 & \text{If } \tau_{f} = 0 \\ \\ \Delta_{bk} \exp[(t_{Bf} - t)/\tau_{IG}] & \text{Otherwise} \end{bmatrix}$$

$$\Delta_{bk}^{2} = \begin{bmatrix} 0 & \text{If } \tau_{f} = 0 \\ (\beta_{\ell f} - \beta_{Cf}^{*}) & \text{Otherwise} \end{bmatrix}$$

where the values of the vehicle trajectory parameters with subscript "f" are determined at the beginning of the segment of flight type control.

h. Homing Guidance $(T_y = 11)$

The homing guidance type of flight will command the vehicle so as to fly the missile to a specified moving target. This type of flight is also called proportional navigation steering which commands the time rate change of the missile flight path angle proportional to the turning rate of the look angle between the missile seeker and the target.

When T_y = 11 during the j-th segment of flight the vehicle attitude is obtained from instantaneous values of flight path angle (γ_1) ; time rate change of the angle to target in pitch (α_{MT}) , time rate change of the angle to target in yaw (λ_{MT}) partial derivative of the linear inertial acceleration normal to the velocity vector to the vehicle angle of attack (G_z) , the earth gravity and rotation acceleration (R_1) , and vehicle velocity (V_e) as well as the navigation constant (K_{HG}) , flare-in time factor (τ_{HG}) , and maximum angle of attack (α_{max}) input in the attitude control table in the Q_{mj} , R_{mj} , and P_{mj} locations.

Commanded Angle or Attack

$$\alpha_{c} = \begin{bmatrix} \alpha_{HG}^{t} + \Delta_{ak} & \text{If } -\alpha_{max} < \alpha_{c}^{*} < \alpha_{max} \text{ or } \alpha_{max} = 0 \\ \alpha_{max} + \Delta_{ak} & \text{If } \alpha_{c}^{*} > \alpha_{max} \\ -\alpha_{max} + \Delta_{ak} & \text{If } \alpha_{max} > \alpha_{c}^{*} \end{bmatrix}$$

where

$$\alpha_{c}^{*} = \begin{bmatrix} 0 & \text{If } G_{z} = 0 \\ [K_{HG}] (\pi/180) & v_{e} + (g_{Z_{2}} \cos \gamma_{1})]/G_{z} \end{bmatrix}$$

$$\beta_{c} = \begin{bmatrix} \beta_{c}^{*} + \Delta_{ck} & \text{If } -\alpha_{max} < \beta_{c}^{*} < \alpha_{max} \text{ or } \alpha_{max} = 0 \\ \alpha_{max} + \Delta_{ck} & \text{If } \beta_{c}^{*} > \alpha_{max} \\ -\alpha_{max} + \Delta_{ck} & \text{If } \alpha_{max} > \beta_{c}^{*} \end{bmatrix}$$

$$\beta \stackrel{\star}{K} = \begin{bmatrix} 0 & \text{If } G_z = 0 \\ - [K_{HG} (\pi/180) \dot{\lambda}_{MT} V_e/G_z] & \text{Otherwise} \end{bmatrix}$$

where

 G_z is formulated in paragraph C.2.e, σ_{MT} and λ_{MT} are formulated in section J.4.c, "Missile to Target Angles."

The exponential flare-in factor is determined as follows:

不是一句话,我们就是一句话,我们就是一句话,我们是一个人的话,我们就是一个人的话,我们就是一个人的话,我们也是一个人的话,我们也是一个人的话,我们也是一个人的话

$$\Delta_{ak} = \begin{bmatrix} 0 & \text{If } \tau_f = 0 \\ \\ \Delta_{ak}^* \exp \left[(t_{Bf} - t) / \tau_f \right] & \text{Otherwise} \end{bmatrix}$$

where

$$\Delta_{ak}^{i} = \begin{bmatrix} 0 & \text{if } \tau_{HG} = 0 \\ (\alpha_{HGf}^{i} - \alpha_{ff}^{i}) & \text{Otherwise} \end{bmatrix}$$

$$\Delta_{bk} = \begin{bmatrix} 0 & & \text{if } \tau_f = 0 \\ \\ \Delta_{bk}^t \exp & [(t_{Bf} - t) / \tau_f] & & \text{Otherwise} \end{bmatrix}$$

where -

$$\Delta_{bk}^{\dagger} = \begin{bmatrix} 0 & \text{If } \tau_{f} = 0 \\ (\beta_{c}^{\pm} - \beta_{\ell f}) & \text{Otherwise} \end{bmatrix}$$

where the values of the vehicle trajectory parameters with subscript "f" are determined at the beginning of the segment of flight type control.

3. Thrust Modulation Control Table

ane control law type shall be determined from a sequential input table. Each row in this table contains the following ten control variables.

- 1. Fy thrust control law mode dim

 Fy = 1 Specific velocity-time profile

 Fy = 2 Constant Mach number-time profile

 Fy = 3 Proportional-to-commanded turning rate profile

 Fy = 4 Minimum velocity during commanded turn profile

 Fy = 5 Constrained dynamic pressure profile

 Fy = 6 Axial acceleration proportional to line-of-sight rate
- 2. Code which designates the quanity that dim determines when the j-th type of TMC ends Limit of the j-th type of TMC dbi 3. K_{Fy} 4. TMC Thrust dynamics mode dim IMC = 0.Achieved thrust equals commanded (solve P equation) TMC = 1.First order response system Thrust system proportionality system gain dim 5. 5. Control system time constant sec τ_{Fy} 7. Minimum velocity or constant Mach number dim/ft/sec MIN lb/ft² 8 Maximum allowable dynamic pressure q max

9. q_{min} Minimum allowable dynamic pressure 1b/ft²

10. Open

Inputting a maximum of seven segments of thrust mode control per trajectory is possible. Let σ_{Fyj} (j = 1, 2, ..., 7) be the achieved value of a parameter designated by input and let K_{Fy} , be the input value of the parameter, then the j-th segment of thrust modulation control will apply for:

The time when equality in the above occurs will be determined and is defined as t_{Fyj}. When the criteria for leaving a segment has been satisfied, that segment is not re-entered during the trajectory.

اهماوا ماسان ماماري فياما فيام مامار ما ته يكر الإسلام أبداع إلى أيها والإيامية الإيلامية ويدريه مسانيا مدين تركيا والإيلامية الإيلامية والمديرة الإيلامية والمديرة المامية والمديرة المامية والمديرة والمديرة المامية والمديرة والمديرة والمديرة المديرة المدي

The K_{Fyj} criteria are checked monotonically with respect to the j-index. The table is input in the L800-L869 region.

The following discussion provides a description of the control laws which will be used to determine the centrol thrust command, $F_{\rm c}$. These control laws are based upon the commanded thrust being proportional to the error in the control variable modified with a signal proportional to the control variable rate of change. The control gains will be determined internally within the program unless input by the program user.

a. Specific Velocity-Time Profile

If Fy = 1, the flight for a preprogramed velocity-time profile will be established from specifying the command velocity history in tabular form. This tabular input will be in the L-number region L870-L399. The time coordinate $t_{\rm VPj}$ will be input in L870, L872, ..., L898 and the velocity $V_{\rm Pj}$ in L871, L873, ..., L899. This corresponds to a maximum of 15 points. If the time is less than or greater than the first or last points in the table, the corresponding end point velocity are used. The points in the input velocity-time table are fit with a third order quadratic function, and the velocity and its time derivative are evaluated as $V_{\rm CCV}$ and $\dot{V}_{\rm CCV}$ are respectively.

To minimize the collective system error and provide the desired velocity history, the following control equation for the thrust required to provide the desired acceleration is:

$$F_c = \hat{F}_c + K_{cv} (V_{ccv} - V_c) + m V_{ccv}$$

where $V_{\rm ecv}$ is the command velocity, $V_{\rm e}$ is the achieved velocity, $K_{\rm cv}$ is a velocity error gain, $\hat{F}_{\rm c}$ is the thrust required to maintain $V_{\rm e}$ a constant value, m is the missile mass and $\hat{V}_{\rm ecv}$ is the time rate change of the command velocity. The vehicle mass divided by the velocity error gain magnitude represents the time required to eliminate the accumulated velocity error. The automatic control of this gain will be

$$K_{cv} = m/\tau_{CF}$$

where m is the missile mass and τ_{CF} represents the first order lead constant which will be set proportional to the equivalent first order lag of the controllable motor or to the input value.

$$\tau_{CF} = \begin{bmatrix} 5/\omega_p & \text{If } \tau_{Fy} = 0 \\ \tau_{Fy} & \text{Otherwise} \end{bmatrix}$$

where ω_p is the pintle control frequency and τ_{Fy} is control system time constant input in the thrust modulation control table.

The thrust required to maintain $\mathbf{V_e}$, i.e., retarding force is:

$$\hat{F}_{c} = C + C_{\delta z} - (N_{py} - N_{Y} - N_{\delta y}) \sin \bar{\beta}/\cos \bar{\alpha}^{t}$$

$$- (N_{pz} - N_{Z} - N_{\delta Z}) \sin \bar{\alpha}/\cos \bar{\alpha}^{t}$$

$$+ g_{z1} \sin \gamma_{1} m/\cos \bar{\alpha}^{t}$$

where C, N_Y and N_Z are the aerodynamic force components, N_{SY} and N_{SZ} are the control fins normal force in yaw and pitch respectively. $C_{\delta Z}$ is the control fin axial force, $\tilde{\alpha}$ is the still wind angle of attack, $\tilde{\beta}$ is the still wind angle of yaw, and $\tilde{\alpha}'$ is the still wind total angle of attack. N_{py} and N_{pz} are the aerodynamic normal forces due to yaw and pitch damping.

b. Constant Mach Number Flight

If Fy = 2, a constant Mach number flight path is utilized in a cruise type vehicle such as SRAM. Flying constant Mach number can be used to maximize the vehicle lift to drag for a maximum range glide trajectory.

The command acceleration for constant Mach number flight is:

$$\dot{v}_{ecm} = v_e M \frac{d Ca}{dh} \sin \gamma_1$$

where V_e is the achieved missile velocity, M is the achieved missile Mach number, d Ca/dh is the rate change of the speed of sound with change in altitude, and γ_1 is the flight path angle. The command velocity is:

$$V_{ecm} = M_c C_a$$

where M_c is the command Mach number input in the thrust modulation control table as MIN and C_a is the instantaneous speed of sound.

To provide the transition to achieve initially required steady state Mach number and to minimize the collective system error, the control law presented in Fy = 1 is used, i.e.,

$$F_c = \hat{F}_c + K_{cv} (v_{ecm} - v_e) + m \dot{v}_{ecm}$$

c. Proportional-to-Commanded Turning Rate

If Fy = 3, the thrust level will be commanded proportional to the attitude command turning rate. For air-to-air missiles, the guidance and control logic is benefited by a propulsion system in which the time rate change of flight path is proportional to the seeker look angle rate. The trajectory control forces to provide the time rate change of flight path angle are those normal to the missile flight path angle. Current air-to-air missile control the angular rate change by pulling angle of attack, which provides an aerodynamic lift force.

A different, and possibly more desirable, method of providing the forces to change the flight path angle is by TVC system and propulsion thrust, or a combination of lift and TVC. The thrust magnitude proportional-to-commanded turning rate can be used in simulation of advanced air-to-air missile TVC and TMC propulsion systems.

The control equation is as follows:

$$F_c = (\pi/180) K_{CPR} F_N (\dot{\theta}_R^2 + \dot{\psi}_M^2)^{\frac{1}{2}}$$

where $\dot{\theta}_{\rm m}$ is the commanded pitch rate, $\dot{\psi}_{\rm m}$ is the commanded yaw rate, ${\rm F_N}$ is the nominal delivered thrust and ${\rm K_{CPR}}$ is the thrust magnitude proportional to commanded turning rate system gain. This gain will be input in the thrust mode control table as ${\rm C_{Fyi}}$?

Son the contract of the second of the second

d. Minimum Velocity

If Fy = 4, the trajectory will use the thrust time history input into the trajectory program when the value of velocity is greater than the minimum specified value; if the input thrust produces velocity less than the specific value, the thrust will be modulated to a value adequate to maintain the missile specified minimum velocity. The following logic will be used to perform this control. The command thrust is

$$F_{c} = \begin{cases} F_{N} & \text{If } V_{cv} < V_{e} \\ \\ \hat{F}_{c} + K_{cv} (V_{cv} - V_{e}) & \text{If } V_{cv} \ge V_{e} \end{cases}$$

The control law presented in Fy = 1 is that used for $V_{cv} \ge V_{e}$, and V_{cv} is the imput minimum velocity value set in the TMC table as MIN. F_N is the nominal thrust.

e. Constrained Dynamic Pressure Profile

If Fy = 5, the thrust shall be commanded to constrain the dynamic pressure between an upper and lower value input in the TMC cable as q_{min} and q_{max}. The missile structural loads are established by the forces and moment on the body during flight in the atmosphere. These forces result from thrust and aerodynamics. One of the severest structural loads is the bending moments caused by aerodynamic lift which is proportional to the dynamic pressure, and the angle of attack. Thus, if the dynamic pressure were to be constrained to be less than some specified value by using thrust magnitude controls, the missile critical loads could be controlled. For air-to-air missiles depending on aerodynamic surfaces for lift and for control; a desirable property of the propulsion system is that it be capable of providing enough thrust to keep the vehicle from "stalling out". A thrust magnitude control to guarantee a minimum dynamic pressure will prevent this stall condition. The control equations for the specified thrust for a constrained dynamic pressure are:

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - q) + r V_{ccq}$$

$$F_{cqmax} = \hat{F}_{c} + K_{cq} (q_{max} - a) + m V_{ccq}$$

$$F_{cqmax} = \hat{F}_{c} + K_{cq} (q_{max} - a) + m V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{c} + K_{cq} (q_{min} - a) + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{cqmin} + K_{cq} + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{cqmin} + K_{cq} + r V_{ccq}$$

$$F_{cqmin} = \hat{F}_{cqmin} + r V$$

The command acceleration to constrain dynamic pressure is:

$$\dot{v}_{ecq} = \left(\frac{d C_a}{dh} M - \frac{d P_a}{dh} \frac{V_e}{2P_a}\right) V_e \sin \gamma_1$$

where d C_a/dh is the change in the speed. sound with change in altitude, d P_a/dh is the change in atmospheric pressure with change in altitude; both are a function of altitude and arc evaluated in the Atmosphere Parameter (F-1) routine. M is the instantaneous Mach number, P_a is the instantaneous atmospheric pressure, V_c is the instantaneous velocity and γ_1 is the instantaneous flight path angle, where \hat{F}_c is the thruse required to maintain V_c delineated in Fy = 1 logic, F_N is the nominal delivered thrust and K_{cq} is the dynamic pressure error gain.

This gain error term will not! the residual dynamic pressure error.

The dynamic pressure error gain is:

$$\kappa_{cq} = \frac{v_{cm}}{2 q \tau_{cq}}$$

the time constant is:

$$\tau_{eq} = \begin{cases} 5/\omega p & \text{if } \tau_{Fy} = 0 \\ \\ \tau_{Fy} & \text{Otherwise} \end{cases}$$

 ω_p is the control frequency of the controllable motor and τ_{Fy} is the control system gain input in the TMC table.

f. Axial Acceleration Proportional to Line-of-Sight Rate

If F_y = 6, the thrust shall be commanded so that the axial acceleration is proportional to the line-of-sight rate between the attacking missile and its target. In addition, the missile-to-target distance rate shall be maintained less than a specified value. For an air-to-air missile, complex guidance and control logic is greatly enhanced by a propulsion system in which the axial acceleration is proportional to the line-of-sight rate between the missile and the target, subject to the constraint of minimum closing rate and constrained dynamic pressure bond,

のではないかないのではないできてきないのできないのできないからないからないできないのであると

And the second of the second s

The basic philosophy of this mode of TMC is that the flight path changes are needed only whon changes in the missile-target collision flight path are needed. Thus, if the missile is coasting towards the target, no thrust is needed except that to maintain closing rate. The trajectory control forces that provide time rate change of flight path angle are those normal to the missile flight path angle. Thus, when the target performs evasive maneuvers, power must be applied to charge the missile flight path. Current air-to-air missiles control the angular rate change by pulling angle of attack, which provides an aerodynamic lift force. Advanced systems will provide the side force by attitude changes with TVC systems. Both systems are greatly improved by increased thrust during the turn. The constraint of dynamic pressure will assure, on the lower limit, that enough aerodynamic control force is available to provide control and the upper limit, that the aerodynamic bias on the vehicle will not cause structural failure. This type of thrust mcdulation control is essentially a mixture of (3) pronortional-tocommanded rate prefile, (4) minimum velocity during command turn profile, ad (5) constrained dynamic pressure profile.

The commanded thrust to provide acceleration proportional to LOS rate is

$$F_{cALOS}$$
 $v_{e}^{m} (\pi/180) (\dot{\sigma}_{MT}^{2} \div \dot{\lambda}_{MT}^{2})^{1/2} + \hat{F}_{c}$

where K_{ALOS} is the system gain set equal to C_{Fyj} ir the thrust modulation control table. $.V_e$ is the instantaneous missile velocity, m is the missile mass, $\dot{\sigma}_{MT}$ and $\dot{\lambda}_{MT}$ are the LOS rates in pitch and yaw respectively, and \hat{F}_c is the thrust required to maintain constant velocity delineated in Fy = 1.

The command thrust to provide a minimum missile to target closing rate is:

$$F_{colos} = \hat{F}_c + K_{cv} (\hat{R}_{MTmin} - \hat{R}_{MT})$$

where K_{cv} is the velocity error gain delineated in Fy = 1, R_{MTmin} is the minimum closing velocity input in the thrust modulation control table as MIN, and R_{MT} is the time rate change of the missile to target distance.

The commanded thrust to maintain the dynamic pressure is:

$$F_{\text{cqmin}} = \hat{F}_{c} + K_{\text{cq}} (q_{\text{min}} - q) + m \hat{V}_{\text{ecq}}$$

and the commanded thrust to maintain the dynamic pressure below the upper construct is:

$$F_{\text{eqmax}} = \hat{F}_{c} + K_{cq} (q_{\text{max}} - q) + m \hat{V}_{ccq}$$

where the control laws and therms are the same as those given in Fy = 5, constrained dynamic pressure thrust profile.

The commanded thrust for Fy = 6 is as follows:

D. ATTITUDE CONTROL SYSTEM

For point mass systems (My = 1 or 4) the achieved attitude is identical to the commanded attitude, or

$$\theta_{b} = \theta_{m}$$

$$\psi_{\mathbf{b}} = \psi_{\mathbf{m}}$$

$$\phi_{\rm b} = \dot{\phi}_{\rm m}$$

and all other attitude control system calculations are ignored.

For finite-mass systems (My = 2 or 5), the achieved missile attitude (the relation between the b and i systems as shown in Figure 18) is a function of the angular velocities about the missile center-of-gravity:

$$\dot{\theta}_{b} = (Q_{b} \cos \phi_{b} - R_{b} \sin \phi_{b}) / \cos \psi_{b}$$

$$\dot{\psi}_{b} = Q_{b} \sin \phi_{b} + R_{b} \cos \phi_{b}$$

$$\dot{\theta}_{b} = P_{b} - \dot{\theta}_{b} \sin \psi_{b}$$

Initial values of θ_b , ψ_b and ϕ_b are obtained from input.

If My equals 1 or 4 and Ty = 8, 9, 10, or 11 at the end of the compute interval, set:

$$\dot{\theta}_{m} = (\theta_{m(j+1)} - \theta_{mj}) / \Delta t_{cj}$$

$$\dot{\psi}_{m} = (\psi_{m(j+1)} - \psi_{mj}) / \Delta t_{cj}$$

$$\dot{\phi}_{m} = (\phi_{m(j+1)} - \phi_{mj}) / \Delta t_{cj}$$

where Δt_{cj} is the compute interval

$$P_{m} = \dot{\phi}_{m} + \dot{\theta}_{m} \sin \psi_{m}$$

$$Q_{m} = \dot{\theta}_{m} \cos \psi_{m} \cos \phi_{m} + \dot{\psi}_{m} \sin \phi_{m}$$

$$R_{m} = \dot{\psi}_{m} \cos \phi_{m} - \dot{\theta}_{m} \cos \psi_{m} \sin \phi_{m}$$

$$P_{b} = P_{m}$$

$$Q_{b} = Q_{m}$$

$$R_{b} = R_{m}$$

1. PITCH AND YAW THRUST DEFLECTIONS

Thrust deflections are functions of missile attitude errors, angular velocities, and steady state errors and whether the simulated thrust vector control system is for a first of second order transfer function.

a. Attitude Error Angles--The pitch (Δa_b) and yaw ($\Delta \psi_b$) attitude errors shown in Figure 23 are the difference between the achieved and desired vehicle attitude and are formulated as follows:

$$\Delta\theta_{\rm b} = \arcsin (-K_{13})$$

$$\Delta v_b = \arcsin K_{12}$$

with

$$-90^{\circ} \leq \Delta\theta_{b}, \Delta\psi_{b} \leq 90^{\circ}$$

where K_{13} and K_{12} are the elements of the K-matrix defined by:

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} A_m \end{bmatrix}^{-1} \begin{bmatrix} A_b \end{bmatrix}$$

b. Autopilot Control Law--The control loop diagram depicting those control laws are shown on Figure 22.

The command deflection signals are determined from

$$\delta_{Pc} = K_{DP} \Delta \theta_b - K_{RP}Q_b - K_{IP} \alpha$$

and

$$\delta_{Ye} = -K_{DY} \Delta \psi_b + K_{RY}R_b + K_{IY}\beta$$

where $K_{DP,\ Y}$ and $K_{RP,\ Y}$ are the attitude error and rate gains, respectively.

c. TVC Deflection Angle Achieved to Commanded Transfer Function—The thrust vector control system can be represented by a zero order, first order, or a second order transfer function. The second order transfer function is needed if the tail-wag-dog effect of a gimbal nozzle is to be simulated. If $\overline{I}_y = 0$ or $\overline{I}_z = 0$, quasi-finite mass calculations are used for δ_P and δ_V respectively.

The following differentia, equations and logic are employed

1. Zero order

$$\begin{split} &\left(\omega_{\mathbf{c}} = \tau_{\mathbf{c}} = 0\right) \\ &\delta_{\mathbf{p}} = \delta_{\mathbf{p}\mathbf{c}}, \ \overleftarrow{\delta}_{\mathbf{p}} = 0 \ (\overleftarrow{\mathbf{I}}_{\mathbf{Y}} \neq 0) \\ &\delta_{\mathbf{Y}} = \delta_{\mathbf{Y}\mathbf{c}}, \ \overleftarrow{\delta}_{\mathbf{Y}} = 0 \ (\overleftarrow{\mathbf{I}}_{\mathbf{Z}} \neq 0) \\ &\overleftarrow{\delta}_{\mathbf{p}} \text{ and } \overleftarrow{\delta}_{\mathbf{Y}} \text{ are obtained by n} \quad \text{erically differentiating } \delta_{\mathbf{p}} \text{ and } \delta_{\mathbf{Y}} \end{split}$$

2. First order

$$\begin{aligned} & \left(\omega_{\mathbf{c}} = 0 \text{ and } \tau_{\mathbf{c}} \neq 0\right) \\ & \tau_{\mathbf{c}} \dot{\delta}_{\mathbf{p}} + \delta_{\mathbf{p}} = \delta_{\mathbf{p}\mathbf{c}}, \text{ and } \ddot{\delta}_{\mathbf{p}} = 0 \ \vec{\mathbf{q}}_{\mathbf{y}} \neq 0) \\ & \tau_{\mathbf{c}} \dot{\delta}_{\mathbf{y}} + \delta_{\mathbf{y}} = \delta_{\mathbf{y}\mathbf{c}}, \text{ and } \ddot{\delta}_{\mathbf{y}} = 0 \ \vec{\mathbf{q}}_{\mathbf{z}} \neq 0) \end{aligned}$$

3. Second order

$$\begin{aligned} & \left(\omega_{\mathbf{c}} \neq 0 \text{ and } \mathbf{I}_{\mathbf{n}} = 0\right) \\ & \ddot{\kappa}_{\mathbf{p}} + 2.0 \, \xi_{\mathbf{c}} \, \omega_{\mathbf{c}} \, \dot{\kappa}_{\mathbf{p}} + \omega_{\mathbf{c}}^2 \, \kappa_{\mathbf{p}} = \omega_{\mathbf{c}}^2 \, \delta_{\mathbf{p}\mathbf{c}} \, (\overline{\alpha}_{\mathbf{y}} \neq 0) \\ & \ddot{\delta}_{\mathbf{y}} + 2.0 \, \xi_{\mathbf{c}} \, \omega_{\mathbf{c}} \, \dot{\delta}_{\mathbf{y}} + \omega_{\mathbf{c}}^2 \, \delta_{\mathbf{y}} = \omega_{\mathbf{c}}^2 \, \delta_{\mathbf{y}\mathbf{c}} \, (\overline{\alpha}_{\mathbf{z}} \neq 0) \end{aligned}$$

4. Second order, including tail-wag-dog effect $(\omega_c \neq 0, I_n \neq 0)$

$$\begin{split} \ddot{\delta}_{\mathbf{p}} + 2.0 \, \xi_{\mathbf{c}} \, \omega_{\mathbf{c}} \, \delta_{\mathbf{p}} + \omega_{\mathbf{c}}^{2} \, \delta_{\mathbf{p}} &= \omega_{\mathbf{c}}^{2} \, \delta_{\mathbf{p}\mathbf{c}} + Q_{\mathbf{b}} \, \left[1.0 + \left[W_{\mathbf{n}} \, \ell_{\mathbf{e}} \, \ell_{\mathbf{n}} / (\mathbf{I}_{\mathbf{n}} \, \bar{\mathbf{g}}_{\mathbf{e}}) \right] \right] \\ &+ W_{\mathbf{n}} \, \ell_{\mathbf{n}} \, Z_{\mathbf{b}\mathbf{b}} \, (180/\pi) / (\mathbf{g}_{\mathbf{e}} \, \mathbf{I}_{\mathbf{n}}) \, (\bar{\mathbf{I}}_{\mathbf{Y}} \neq 0) \\ \ddot{\delta}_{\mathbf{Y}} + 2.0 \, \xi_{\mathbf{c}} \, \omega_{\mathbf{c}} \, \dot{\delta}_{\mathbf{Y}} + \omega_{\mathbf{c}}^{2} \, \delta_{\mathbf{Y}} &= \omega_{\mathbf{c}}^{2} \, \delta_{\mathbf{Y}\mathbf{c}} + \dot{R}_{\mathbf{b}} \, \left[1.0 + \left[W_{\mathbf{n}} \, \ell_{\mathbf{e}} \, \ell_{\mathbf{n}} / (\mathbf{I}_{\mathbf{n}} \, \bar{\mathbf{g}}_{\mathbf{e}}) \right] \right] \\ &+ W_{\mathbf{n}} \, \ell_{\mathbf{n}} \, \ddot{\mathbf{Y}}_{\mathbf{b}\mathbf{b}} \, (180/\pi) / (\bar{\mathbf{g}}_{\mathbf{e}} \, \mathbf{I}_{\mathbf{n}}) \, (\bar{\mathbf{I}}_{\mathbf{Z}} \neq 0) \end{split}$$

Values of δ_{Po} and δ_{Po} and δ_{Po} and δ_{Po} , the initial values of the pitch and yaw thrust vector deflection angles and angular rates, are obtained from input per stage or equated to the values existing at the end of the previous mode segment.

If $\overline{I}_{Y} = 0$, the logic and equations used to determine θ_{P} are:

$$\dot{\delta}_{\mathbf{p}} = 0 \qquad \dot{\delta}_{\mathbf{p}} = 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 0 \text{ and } K_{Pcf} = 0$$

$$\int_{DQ}^{M_{PMC}} If K_{\delta} = 1 \text{ and } K_{Pcf} = 0$$

$$\int_{DQ}^{M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} = 0$$

$$\int_{DQ}^{M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} = 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 0 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 1 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{Pcf} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{PMC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{DC} \neq 0$$

$$\int_{DQ}^{M_{DQ}/M_{DC}} If K_{\delta} = 2 \text{ and } K_{C} \neq$$

If \overline{I}_Z = 0 and My = 5, the logic and equations used for δ_Y are:

$$\dot{\delta}_{\mathbf{Y}} = 0, \qquad \dot{\delta}_{\mathbf{Y}} = 0$$

$$\int_{DR}^{M} f_{PTC} \qquad \qquad \text{If } K_{\delta} = 0 \text{ and } K_{Yef} = 0$$

$$\int_{DR}^{M} f_{PTC} \qquad \qquad \text{If } K_{\delta} = 1 \text{ and } K_{Yef} = 0$$

$$\int_{Y} = (-\delta_{MY}) + (180/\pi) \int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 0 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 1 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{Yef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} \qquad \text{If } K_{\delta} = 2 \text{ and } K_{\gammaef}^{\prime} \neq 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} = 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} = 0$$

$$\int_{DR}^{M} f_{PTC} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} = 0$$

$$\int_{DR}^{M} f_{PTC}^{\prime} f_{PTC}^{\prime} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} = 0$$

$$\int_{DR}^{M} f_{PTC}^{\prime} f_{PTC}^{\prime} + M_{YAC}^{\prime} \cdot K_{Yef}^{\prime} = 0$$

$$\int_{DR}^{M} f_{PTC}^{\prime} f_{PTC}^{\prime} f_{PTC}^{\prime} + M_{YAC}^{\prime} + M_{YAC}^{\prime} + M_{YAC}^{\prime} + M_{YAC}^{\prime} + M_{YAC}^{\prime} + M_{YAC}^{\prime} +$$

Where $\mathbf{w}_{\mathbf{c}}$ is the input stage control system forcing frequency for the thrust vector deflection second order transfer fraction, $\mathbf{\tau}_{\mathbf{c}}$ is the input stage control system time constant for the thrust vector deflection first-order transfer function, $\mathbf{\zeta}_{\mathbf{c}}$ is the input stage control system damping ratio for the thrust vector deflection second order transfer function, $\mathbf{\delta}_{\mathbf{pc}}$ and $\mathbf{\delta}_{\mathbf{yc}}$ are the pitch and yaw thrust deflection angle commands, $\mathbf{\delta}_{\mathbf{p}}$ & $\mathbf{\delta}_{\mathbf{y}}$, $\dot{\mathbf{\delta}}_{\mathbf{p}}$ & $\dot{\mathbf{\delta}}_{\mathbf{y}}$, and $\ddot{\mathbf{\delta}}_{\mathbf{p}}$ & $\ddot{\mathbf{\delta}}_{\mathbf{y}}$ are the pitch and yaw thrust deflection angles, angular rates, and angular accelerations, respectively, $\mathbf{W}_{\mathbf{n}}$ is the input stage movable portion nozzle weight, $\mathbf{l}_{\mathbf{n}}$ is the movable portion nozzle center of gravity gimbal point distance, $\mathbf{l}_{\mathbf{n}}$ is the input stage movable portion nozzle moment of inertia about the gimbal point, $\ddot{\mathbf{Q}}_{\mathbf{b}}$ and $\ddot{\mathbf{R}}_{\mathbf{b}}$ are the pitch and yaw missile attitude angular acceleration, $\ddot{\mathbf{V}}_{\mathbf{b}}$ and $\ddot{\mathbf{Z}}_{\mathbf{b}}$ are the inertianal value of the missile gimbal point to center of gravity distance.

d. Autopilot Gains—Three gain zones are available for the control system of each stage. Zone durations are as follows:

from stage initiation until
$$\sigma_{G1} = K_{G1}$$
 Zone 1 until $\sigma_{C2} = K_{G2}$ Zone 2

のできるというできない。 これのできないできないできないできない。 これのできないのできないできないのできないというできないというできない。 これのできないのできない。 これのできないのできないのできない。 これのできない

where σ_{Gi} (i = 1, 2) are the achieved values of quantities designated 5 code input and K_{Gi} (i = 1, 2) are the input zone limits. The time of n equality occurs is always computed.

The control system gains per gain zone and stage are as follows:

Pitch Rotation Reaction Moment

$$M_{PRR} = I_{YY} \omega_{V}^{2} + |M_{PAD} - M_{PAC}|$$

Yaw Rotation Reaction Moment

$$M_{YRR} = I_{ZZ} \omega_{V}^{2} + |M_{YAD} - M_{YAC}|$$

Pitch Rotation Damping Moment Integral

$$I_{PRD} = 2 \zeta_v I_{YY} \omega_v$$

Yaw Rotation Damping Moment Integral

$$I_{YRD} = 2 \zeta_v I_{ZZ} \omega_v$$

Pitch and Yaw Total Thrust Control Moment per Radian TVC Deflection Angle

$$M_{PTC} = F \ell_{e}$$

Pitch and Yaw Main Thrust Control Moment per Radian TVC Deflection Angle

$$M_{PMC} = F_{M} l_{e}$$

Pitch Aerodynamic Control Moment per Radian Fin Deflection Angle

$$M_{PAC} = (180/\kappa) C_{Lz} q S_{Fz} \ell_{\delta}$$

Yaw Aerodynamic Control Moment per Radian Fin Deflection Angle

Pitch Aerodynamic Disturbing Moment per Radian Angle of Attack

$$M_{\text{PAD}} = (180/\pi) C_{NI} q S_{RN} \bar{R} \ell_{\text{cp}}$$

Yaw Aerodynumic Disturbing Moment per Radian Angle of Attack

$$M_{YAD} = M_{PAD}$$

Pitch Attitude Error Gain

$$K_{DP} = \begin{cases} 0 & \text{if } \overline{i}_{Y} = 0 \\ M_{PRR}/M_{PTC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 0 \text{ and } K_{Pcf} = 0 \\ M_{PRR}/M_{Ff'C} & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 1 \text{ and } K_{Pcf} = 0 \\ 0 & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 2 \text{ and } K_{Pcf} = 0 \\ M_{PRR}/(M_{PTC} + M_{PAC} \cdot K_{Pcf}) & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 0 \text{ and } K_{Pcf} \neq 0 \\ M_{PRR}/(M_{PMC} + M_{PAC} \cdot K_{Pcf}) & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 1 \text{ and } K_{Pcf} \neq 0 \\ M_{PRR}/M_{PAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 2 \text{ and } K_{Pcf} \neq 0 \\ M_{PRR}/M_{PAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 2 \text{ and } K_{Pcf} \neq 0 \\ M_{PRR}/M_{PAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{b} = 2 \text{ and } K_{Pcf} \neq 0 \\ M_{PRR}/M_{PAC} & \text{otherwise} \end{cases}$$

Yaw Attitude Error Gain

$$K_{DY} = \begin{cases} 0 & \text{if } \tilde{I}_{Z} = 0 \\ M_{YRR}/M_{PTC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 0 \text{ and } K_{Ycf} = 0 \\ M_{YRP}/M_{PMC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 1 \text{ and } K_{Ycf} = 0 \\ 0 & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Ycf} = 0 \\ M_{YRR}/(M_{PTC} + M_{YAC} \cdot K_{Ycf}) & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 0 \text{ and } K_{Ycf} \neq 0 \\ M_{YRR}/(M_{PMC} + M_{YAC} \cdot K_{Ycf}) & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 1 \text{ and } K_{Ycf} \neq 0 \\ 0 & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Ycf} \neq 0 \\ 0 & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Ycf} \neq 0 \\ 0 & \text{and } V_{a} = 0 \end{cases}$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

$$M_{YRR}/M_{YAC} & \text{if } f_{Gi} \neq 0 \text{ and } K_{\delta} = 2 \text{ and } K_{Y:f} \neq 0$$

Pitch Angle of Attack Gain

Fitch angle of Attack Gain

$$\begin{array}{c}
0 & \text{If } \ddot{I}_{Y} = 0 \text{ or } f_{Gi} = 1 \\
(M_{PAD} - M_{PAC})/(M_{PTC} + M_{PAC} \cdot K_{Pcf}) & \text{If } f_{Gi} = 2 \text{ and } K_{\delta} = 0 \\
(M_{PAD} - M_{PAC})/(M_{PMC} + M_{PAC} \cdot K_{Pcf}) & \text{If } f_{Gi} = 2 \text{ and } K_{\delta} = 1 \\
0 & \text{If } f_{Gi} = 2 \text{ and } K_{\delta} = 2 \text{ and } \gamma_{a} = 0 \\
(M_{PAD} - M_{PAC})/(M_{PAC}) & \text{If } f_{Gi} = 2 \text{ and } K_{\delta} = 2
\end{array}$$

$$\begin{array}{c}
K_{IPi} & \text{If } f_{Gi} = 0
\end{array}$$

Taw Angle of Side Slip Gain

$$\begin{bmatrix}
0 & \text{If } \overline{I}_z = 0 \text{ or } f_{Gi} = 1 \\
(M_{YAD} - M_{YAC})/(M_{PTC} + M_{YAC} \cdot K_{Ycf}) \text{ If } f_{Gi} = 2 \text{ and } K_{E} = 0 \\
(M_{YAD} - M_{YAC})/(M_{PMC} + M_{YAC} \cdot K_{Ycf}) \text{ If } f_{Gi} = 2 \text{ and } K_{E} = 1 \\
0 & \text{If } f_{Gi} = 2 \text{ and } K_{E} = 1 \\
(M_{YAD} - M_{YAC})/(M_{YAC}) & \text{If } f_{Gi} = 2 \text{ and } K_{E} = 2
\end{cases}$$

$$\begin{bmatrix}
K_{IY} = K_{IY} & K_{I$$

Pitch Attitude Rate Gain

$$If \ \tilde{I}_{Y} = 0$$

$$I_{PRD}/M_{PTC}$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 0 \text{ and } K_{Pcf} = 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 1 \text{ and } K_{Pcf} = 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} = 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} = 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 0 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 0 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 1 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{Pcf} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{Gi} \neq 0 \text{ and } K_{g} = 2 \text{ and } K_{g} \neq 0$$

$$If \ f_{$$

Yaw Attitude Rate Gain

$$If \ \overline{I}_{z} = 0$$

$$I_{YRD}/M_{PTC} \qquad If \ f_{Gi} \neq 0 \ and \ K_{0} = 0 \ and \ K_{Yef} = 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 1 \ and \ K_{Yef} = 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 1 \ and \ K_{Yef} = 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} = 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 0 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 1 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 1 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{Yef} \neq 0$$

$$If \ f_{Gi} \neq 0 \ and \ K_{0} = 2 \ and \ K_{0} =$$

where the criteria for evaluating vehicle damping ratio and the vehicle control frequency are given in section D.1.e.

The following parameters are limited by input:

$$\begin{split} |\mathsf{K}_{\mathrm{DP}}\triangle\theta_{\mathrm{b}}| & \leq \mathsf{L}_{\mathrm{L}} & |\mathsf{K}_{\mathrm{DY}}\triangle\#_{\mathrm{b}}| \leq \mathsf{L}_{\mathrm{B}} \\ |\delta_{\mathrm{Pc}}| & \leq \mathsf{L}_{\mathrm{2}} & |\delta_{\mathrm{Yc}}| \leq \mathsf{L}_{\mathrm{7}} \\ |\delta_{\mathrm{p}}| & \leq \mathsf{L}_{\mathrm{3}} & |\delta_{\mathrm{Y}}| \leq \mathsf{L}_{\mathrm{B}} \\ |\mathring{\delta}_{\mathrm{p}}| & \leq \mathsf{L}_{\mathrm{4}} & |\mathring{\delta}_{\mathrm{Y}}| \leq \mathsf{L}_{\mathrm{B}} \\ |\mathring{\delta}_{\mathrm{p}}| & \leq \mathsf{L}_{\mathrm{5}} & |\mathring{\delta}_{\mathrm{Y}}| \leq \mathsf{L}_{\mathrm{10}} \end{split}$$

where L_j (j = 1, 2, ..., 10) are input for each stage. If a limit is zero, then no limit of the parameter will be made.

The angular velocities, $\delta_{\underline{p}}$ and $\delta_{\underline{Y}}$ are further limited by the following:

Ιf

$$\delta_{\mathbf{p}} = \mathbf{L}_{3}$$
, then $\dot{\delta}_{\mathbf{p}} = 0$

or

$$\delta_{y} = L_{8}$$
, then $\delta_{y} = 0$

e. Vehicle Control Frequency and Damping Fatio

$$\xi_{v} = \begin{cases}
\xi'_{v} & \text{If } \xi'_{v} \neq 0 \\
0.7 & \text{Otherwise}
\end{cases}$$

$$u_{v} = \begin{cases}
u'_{v} & \text{If } u'_{v} \neq 0 \\
u'_{v} & \text{If } u'_{v} \neq 0
\end{cases}$$

$$u_{v} = \begin{cases}
\text{anti } \ell_{n} & [10.132079 - 1.382972 (\ell_{n} W_{01}) \\
+ 0.0624466 (\ell_{n} W_{01})^{2} - 0.00093655891 (\ell_{n} W_{01})^{3}
\end{cases}$$

where $\zeta_{v}^{\,\imath}$ and $\omega_{v}^{\,\imath}$ are input per stage

where the liftoff weight is

The stage I liftoff weight is determined as follows:

$$\begin{bmatrix}
w_{01} & & & & \text{if } w_{01} > 0 \\
1 \times \hat{w}_{01} & & & \text{if } K_k < 2 \\
3 \times \hat{w}_{02} & & & \text{if } K_k = 2 \\
7 \times \hat{w}_{03} & & & \text{if } K_k = 3 \\
11 \times \hat{w}_{04} & & & \text{if } K_k = 4
\end{bmatrix}$$

where $\hat{\mathbf{w}}_{0k}$ is the vehicle initial weight of the \mathbf{K}_k -th stage.

2. ROLL CONTROL

The simulated roll control system discussed below assumes either a power source from the main propulsive one (Figure 19), or aerodynamic control fins. If $K_{RC}=0$, a roll system does not exist. If $K_{RC}=1$, an auxiliary thrust control system is operating and if $K_{RC}=2$ aerodynamic fins provide roll control. A bang-bang system with dead band is simulated if K_{DR} is zero and a proportional system is simulated if K_{DR} is nonzero. The force signal is a function of vehicle roll attitude error, angular velocity, and steady state error. The roll control equations are ignored if either $M_y \neq 5$ or I_x is zero

a. Roll Attitude Error Angle

The roll attitude error shown in Figure 23 is determined from

$$\Delta \phi_{\rm b} = {\rm archtan} \ (K_{23} - K_{32})/(K_{22} + K_{33})$$

with

$$\sim 180^{\circ} < \Delta \phi_{\rm b} \leq 180^{\circ}$$

and the roll attitude error rate (not integrated) is

$$\dot{\Delta}\phi_{b} = P_{m} - P_{b} + (Q_{m}K_{21} + R_{m}K_{31} - Q_{b}K_{12} - R_{b}K_{13})/(1 + K_{11})$$

where K_{DR} and K_{IR} are the attitude error and bias gains determined from input, K_{ij} 's are the elements of the K matrix and P_m , Q_m , and R_m are the current input roll, pitch, and yaw commands, respectively.

b. Auxiliary Roll Thrusters

The roll command signal is determined from one of the following if $K_{\mbox{\scriptsize RC}} = 1$

Zero Order Thrusters

If
$$K_{DR} \neq 0$$
 and $K_{IR} = 0$, then $F_c = K_{DR} \Delta \phi_b - K_{RR} P_b$

First Order Thrusters

If
$$K_{DR} \neq 0$$
 and $K_{IR} \neq 0$, then $\dot{F}_c = K_{DR} \Delta \phi_b - K_{RR} \dot{P}_b + K_{IR} \Delta \phi_b$
and F_c is the integral of \dot{F}_c .

Bang-Bang Thrusters (KDR = 0)

$$F_{c} = \frac{L_{Rc}}{2} \left[1 \cdot \text{sign} \left[F_{D} - F_{\Delta} \left[1 - D \left(1 + 1 \cdot \text{sign} \ \dot{F}_{D} \right) / 2 \right] \right] + 1 \cdot \text{sign} \left[F_{D} + F_{\Delta} \left[1 + D \left(1 + 1 \cdot \text{sign} \ \dot{F}_{D} \right) / 2 \right] \right]$$

where the rate gain, K_{RR} , the dead band control quantity, F_{Δ} , and the hysteresis, D, are determined from input and if F_c is integrated to obtain F_c , then its initial value at stage initiation is obtained from input. The phase plane signal and derivative (not integrated) are

$$F_{D} = \Delta \phi_{b} - K_{RR} P_{b}$$

$$\dot{F}_{D} = \Delta \dot{\phi}_{b} - K_{RR} \dot{P}_{b}$$

The roll command signal is limited if $L_{\rm Rc}$ # 0 such that

$$|F_c| \leq L_{Rc}$$

where LRc is determined from imput.

The achieved roll thrust level is computed from

$$\dot{F}_R = (F_c - F_R)/\tau_R$$

where the roll control time constant, τ_R is determined from input and the initial value at stage initiation is obtained from input.

LOCALIST CONTRACTOR CO

Three sets of roll control system of rameters can be input for each stage. Values are determined as follows:

$$\tau_{R1} \quad \cdots \quad \text{if } t_B \leq t_{R2}^{\dagger}$$

$$\tau_{R}, \quad F_{\Delta}, \quad D, \quad L_{Rc}, \quad K_{PR_i}^{\dagger}, \quad K_{RR_i}^{\dagger}, \quad K_{IR_i}^{\dagger}$$

$$\tau_{R2} \quad \cdots \quad \text{if } t_{R2}^{\dagger} \leq t_B \leq t_{R3}^{\dagger}$$

$$\tau_{R3} \quad \cdots \quad \text{if } t_B \geq t_{R3}^{\dagger}$$

where τ_{Rj} , $\tau_{\Delta j}$, τ_{Dj} , τ_{Rcj} , τ_{Dj} , τ_{Rcj} , and τ_{Rj} and $\tau_{R2,3}$ are input for each stage and where τ_{Rj} is the roll control motor lever arm shown in Figure 1.5 and used in the angular momenta equation.

Thrust Control Moment

c. Roll Control Aerodynamic Fins

The roll command signal for aerodynamic control fine is as follows:

If $\ddot{I}_R \neq 0$ and $K_{Rc} = 2$ the following differential equations and logic are employed:

1. Zero Order
$$(\omega_{c} = \tau_{c} = 0)$$

$$\delta_{R} = \delta_{Rc}, \ \delta_{R} = \delta_{Rc} \ \text{and} \ \delta_{R} = 0$$

2. First Order
$$(\omega_c = 0 \text{ and } \tau_c \neq 0)$$

$$\tau_c \, \dot{\delta}_R + \delta_R = \delta_{Rc}, \text{ and } \ddot{\delta}_R = 0$$

3. Second Order $(\omega_c \neq 0)$

$$\ddot{\delta}_{R}$$
 + 2.0 $\zeta_{c}\omega_{c}\dot{\delta}_{R}$ ÷ $\omega_{c}^{2}\delta_{R}$ = $\omega_{c}^{2}\delta_{Rc}$

If $\overline{I}_R = 0$, quasi-finite mass equations are used:

$$\dot{\delta}_{R} = 0$$
, $\dot{\delta}_{R} = 0$ and

$$\delta_{\rm R} = (-\delta_{\rm MR}) + (180/\pi) \, M_{\rm DP}/M_{\rm RAC}$$

d. Roll Control Gains

Roll Aerodynamic Control Moment per Radian Fin Deflection Angle

$$M_{RAC} = 2 (180/\pi) q S_{Fz} C_{Lz} l_{\delta r}$$

Roll Rotation Reaction Moment

$$M_{RRR} = I_{xx} \omega_{y}^{2}$$

Roll Rotation Damping Moment Integral

$$I_{RRD} = 2 \zeta_v I_{xx} \omega_v$$

Roll Attitude Error Gain

$$K_{DR} = \begin{bmatrix} 0 & \text{If } \vec{I}_{X} = 0 \\ M_{RRR}/M_{RAC} & \text{If } K_{DRi}^{\dagger} = 0 \& K_{RC} \neq 0 \\ K_{DRi}^{\dagger} & \text{Otherwise} \end{bmatrix}$$

Roll Attitude Rate Gain

$$K_{RR} = \begin{bmatrix} 0 & \text{if } \tilde{I}_{X} = 0 \\ I_{RRD}/M_{RAC} & \text{if } K_{RRi}' = 0 \text{ and } K_{RC} \neq 0 \\ K_{RRi}' & \text{Otherwise} \end{bmatrix}$$

$$K_{IR} = K_{IR}_{I}$$

Roll control commanded Aerodynamic Fin Angle

$$\delta_{RC} = K_{DR} \Delta \phi_b - K_{RR} P_b$$

Z. MISSILE LOCATION

The vehicle location with respect to a spherical earth is defined. Parameters are shown in Figure 24.

1. Altitude and Earth Centered Coordinates

Vehicle altitude and rate change are determined from position components defined in an earth geocentric coordinate system as follows:

$$\begin{aligned} &\mathbf{X_{cc}} = \mathbf{X_{ee}} &\cos \rho_{L} - \mathbf{Z_{ee}} &\sin \rho_{L} + \mathbf{r_{e}} &\sin \rho_{L} \\ &\mathbf{Y_{cc}} = \mathbf{Y_{ee}} \\ &\mathbf{Z_{cc}} = \mathbf{X_{ee}} &\sin \rho_{L} + \mathbf{Z_{ee}} &\cos \rho_{L} - \mathbf{r_{e}} &\cos \rho_{L} \\ &\mathbf{X_{cc}} = \mathbf{X_{ee}} &\cos \rho_{L} - \mathbf{Z_{ee}} &\sin \rho_{L} \\ &\mathbf{X_{cc}} = \mathbf{X_{ee}} &\cos \rho_{L} + \mathbf{Z_{ee}} &\cos \rho_{L} \\ &\mathbf{Z_{cc}} = \mathbf{X_{ee}} &\cos \rho_{L} - \mathbf{Z_{ee}} &\cos \rho_{L} \end{aligned}$$

where the launch latitude, ρ_L , and the earth radius, r_e , are input and position components X_{ee} , Y_{ee} , and Z_{ee} are obtained from the integration of the linear momenta equations.

Yehicle distance from the earth center is

$$r_c = (\ddot{X}_{cc}^2 + Y_{cc}^2 + Z_{cc}^2)^{\frac{1}{2}}$$

$$\dot{r}_c = (\dot{X}_{cc} X_{cc} + \dot{Y}_{cc} Y_{cc} + \dot{Z}_{cc} Z_{cc})/r_c$$

and the vehicle altitude and rate change are

$$h = r_c - r_e$$

$$h = r_c$$

Heading Azimuth, Latitude and Longitude
 Vehicle azimuth in the launch horizontal plane is

v?th

Latitude and Longitude

The vehicle latitude is

$$\rho = \arcsin X_{cc}/r_{c}$$

with

and the change in longitude from launch is

$$\mu' = \arctan Y_{cc}/-Z_{cc}$$

with

$$0 \le \mu^{5} < 360^{\circ}$$

The longitude is defined so that west of Greenwich, England is positive and east is negative. The longitude is

$$\mu = \begin{bmatrix} \mu_L - \mu' & \text{ If -180°} < \mu_L - \mu' \\ \\ 360° + \mu_L - \mu' & \text{ Otherwise} \end{bmatrix}$$

where the launch longitude, $\mu_L^{},$ is input.

3. Ground and Slant Ranges

The down range-cross range coordinates are shown in Figure 25.

The range angle is

$$\phi_{s} = \begin{bmatrix} \arcsin (X_{ee}^{2} + Y_{ee}^{2})^{\frac{1}{2}}/r_{c} & \text{If } \sin \phi \leq 0.7 \\ \arccos (r_{e} - Z_{ee})/r_{c} & \text{Otherwise} \end{bmatrix}$$

with

$$0 \le \phi_8 < 180^\circ$$

and the ground range is

$$s_s = (\pi/180)r_e \phi_s$$

The cross range angle is

$$\zeta = \arcsin \left[(Y_{ee} \cos \psi_i - X_{ee} \sin \psi_i)/r_c \right]$$

$$\dot{\zeta} = \frac{(180/\pi)(\dot{Y}_{ee} \cos \phi_i - \dot{X}_{ee} \sin \phi_i - \dot{r}_c \sin \zeta)}{r_c \cos \zeta}$$

where

the cross range is

$$s_c = (\pi/180) r_e \zeta$$

$$\dot{s}_{e} = (\pi/180) r_{e} \dot{\zeta}$$

the down range angle is

$$\phi = \arctan \left[(X_{ee} \cos \phi_i + Y_{ee} \sin \phi_i) / (r_e - Z_{ee}) \right]$$

$$\dot{\phi} = (180/\pi) \left[(\dot{X}_{ee} \cos \phi_i + \dot{Y}_{ee} \sin \phi_i) \cos^2 \phi \quad \dot{Z}_{cc} \sin \phi \cos \phi \right] / (r_e - Z_{ee})$$

where

$$-180^{\circ} < \phi \le 180^{\circ}$$

the down range is

$$S = (\pi/180) r_e \Phi$$

$$\dot{s} = (\pi/180) r_e \dot{\phi}$$

F. FLIGHT ENVIRONMENT AND FORCES

Parameters which define the vehicle flight environment and aerodynamic forces are ε en below.

1. Atmosphereic Parameters

The ambient pressure, P_a , the speed of sound, C_a , the partial derivative of ambient pressure with altitude, $\partial P_a/\partial h$, and, the partial derivative of the speed of sound with altitude, $\partial C_a/\partial h$, are functions of the mixxile altitude, h, and the formulas and constants contained in National Aeronautics and Space Administration, "U.S. Standard Atmosphere, 1962".

a. Speed of Sound, ft/sec

$$C_a = \begin{bmatrix} 1,177.7301 & \text{If } h \le -16,391.307 \\ \\ 3,417.9390 & \text{If } h \ge 2,296,587.9 \\ \\ \sqrt{G_{RZ} T_M} & \text{Otherwise} \end{bmatrix}$$

where

$$G_{RZ} = 2403.1756$$

Temperature Gradient, °R/ft

$$S_{B} = \begin{cases} 0.0 & \text{If } h \le -16,391.307 \\ 0.0 & \text{If } h \ge 2,296,587.9 \\ \frac{T_{MB}(i+1) - T_{MBi}}{h_{B}(i+1) - h_{Bi}} & \text{Otherwise} \end{cases}$$

Temperature, °R

$$T_{M} = T_{MBi} + S_{B}$$
 (h = h_{Bi})

The values of T_{MB} and h_B are given in the table at the end of this section. The index value i is set such that $h_{Bi} \le h < h_{B(i+1)}$.

b. Partial Derivative of the Speed of Sound with Altitude, (1/sec)

$$\frac{\partial C_{a}}{\partial h} = \begin{cases} 0.0 & \text{If } h \le -16,391.307 \\ 0.0 & \text{If } h \ge 2,296,587.9 \end{cases}$$

$$\frac{G_{RZ} S_{B}}{2 C_{a}} \qquad \text{Otherwise}$$

c. Ambient Pressure, 1b/ft2

$$P_{a} = \begin{bmatrix} \frac{Z_{MGM} (h_{B} - h)}{R^{*} (S_{B}^{R}_{B} - T_{MB}) R R_{B}} \\ \frac{Z_{MGM} (h_{B} - h)}{R^{*} (S_{B}^{R}_{B} - T_{MB}) R R_{B}} \end{bmatrix} = \frac{\frac{Z_{MGM} S_{B}}{R^{*} (S_{B}^{R}_{B} - T_{MB})^{2}}}{\frac{Z_{MGM} S_{B}}{R^{*} (S_{B}^{R}_{B} - T_{MB})^{2}}}$$

where

$$R = h + R_Z$$
 $Z_{MXGM} = 40.80696 \times 10^{16}$
 $R_B = h_B + R_Z$ $R_Z = 20,925,780$.
 $R^* = 49718.9585$

and

$$Z_{MGM} = Z_{MXGM} \times Z_{K}$$

d. Partial Derivative of Ambient Pressure with Altitude (lb/ft^S)

$$\frac{\partial P_{a}}{\partial h} = \begin{bmatrix} \frac{Z_{MGM}}{R^{*} (S_{B}R_{B} - T_{MB})R^{*}} \\ -\frac{Z_{MGM}}{R^{*} (S_{B}R_{B} - T_{MB})R^{*}} \\ \end{bmatrix}$$
Otherwise

e. U. S. Standard Atmosphere Alticude - Temperature - Pressure Table

Altitude, h _B , ft	Temperature R	Pressure, P _B , 1b/ft ²	Correction Z_{K} , dim
-16,391.307	577.17	3711.0756	1.00000969
0.0	518.67	2116.22	1.00006922
36,151.798	389.97	472.68122	0.99997683
65,823.897	389.97	114.3456	0.99994861
105,518.46	411.57	18.12897	0.99988460
155 ,3 48.08	487.17	2.3163292	0.99994118
172,010.76	487.17	1.2322622	0.99994953
202,070.31	454.77	0.38032587	1.00007811
262,447.98	325.17	2.1673089 x 10 ⁻²	0.99990452
295,275.59	325.17	3.433025 x 10 ⁻³	0.99988145
328,083.99	379.17	6.28115 x 10 ⁻¹⁶	0.99987195
360,892.39	469.17	1.5360 x 10 ⁻⁴	0.99984532
393,700.79	649.17	5.2667 x 10 ⁻⁵	0.99983723
492,125.98	1729.17	1.0572 x 10 ⁻⁵	0.99994038
524,934.38	1999.37	7.7157 x 10 ⁻⁸	0.99979481
557,742.78	2179.17	5.8325 x 10 ⁻⁶	0.99978217
623,359.58	2431.17	3.5197 x 10 ⁻⁸	0.99978447
754,593.18	2791.17	1.4537 x 10-8	0.99968987
984,251.97	3295.17	3.9345×10^{-7}	0.99959327
1,312,336.C	3889.17	8.4177×10^{-8}	0.99944931
1,640,419.9	4357.17	2.2885 x 10 ⁻⁸	0.99941075
1,968,503.9	4663.17	7.2059 x 10 ⁻⁹	0,99921789
2,296,587.9	4861.17	2.489% x 10 ⁻⁹	

2. Winds

a. Wind Speed and Azimuth

The wind velocity is a function of vehicle altitude and input wind speed, v_{w} , and azimuth ψ_{w} . The wind direction is directed parallel to the local horizontal with ψ_{w} being the clockwise angle from north to the direction the wind is coming from.

If the input altitude multiplier, $K_{\hat{\Omega}}$, is zero, or the vehicle is outside the atmosphere

$$\mathbf{v}_{\mathbf{w}} = \dot{\mathbf{v}}_{\mathbf{w}} = \psi_{\mathbf{w}} = \dot{\psi}_{\mathbf{w}} = \mathbf{0}$$
 and

where \dot{X}_{aee} are the vehicle velocity components with respect to the air as measured in the 3-system and \ddot{X}_{ee} the still air components.

For

$$K_h \neq 0$$
 and $K_h h_j \leq h \leq K_h h_{j+1}$

$$\begin{aligned} v_{w} &= K_{v} [K_{h} (h_{j} v_{w(j+1)} - h_{j+1} v_{wj}) + h(v_{wj} - v_{w(j+1)})] / (h_{j} - h_{j+1}) K_{h} \\ &= K [K_{h} (h_{j} v_{w(j+1)} - h_{j+1} v_{wj}) + h(v_{wj} - v_{w(j+1)})] / (h_{j} - h_{j+1}) K_{h} \\ &\text{If } h > K_{h} h_{j} \text{ (J denoting the last input where J = 1, 2, ..., 32),} \\ &\text{then } v_{w} = K_{v} v_{wj} \text{ and } v_{w} = K_{v} v_{wj} \end{aligned}$$

$$\text{If } h < K_{h} h_{j}, \text{then } v_{w} = K_{v} v_{wj} \text{ and } v_{w} = K_{v} v_{wj} \end{aligned}$$

The derivatives are calculated as

$$\dot{v}_{ij} = (dv_{ij}/dh)\dot{h}$$

witn

$$0 \le \psi_{w} < 360^{\circ}$$

$$dv_{w}/dh = \begin{bmatrix} 0 & \text{if } h < K_{h}h_{1} \text{ or } h > K_{h}h_{j} \\ K_{v}(v_{w(j+1)} - v_{wj})/[K_{h}(h_{j+1} - h_{j})] & \text{Otherwise} \end{bmatrix}$$

$$d\psi_{\mathbf{w}}/dh = \begin{bmatrix} 0 & \text{If } h < K_{h}h_{1} \text{ or } h > K_{h}h_{J} \\ K_{\psi}(\psi_{\mathbf{w}(j+1)} - \psi_{\mathbf{w}j})/[K_{h}(h_{j+1} - h_{j})] & \text{Otherwise} \end{bmatrix}$$

where v_{wj} , v_{wj} , and h_j (j = 1, 2, ..., 32), K_v , and K_p are input.

b. Wind Local and Launch Centered Cartesian Coordinate

The Cartesian components of wind velocity and acceleration in the local coordinate system (the losystem) are

$$\dot{x}_{w11} = -v_w \cos \psi_w$$

$$\dot{y}_{w11} = -v_w \sin \psi_w$$

$$\dot{z}_{w11} = 0$$

$$\ddot{x}_{w11} = -v_w \cos \psi_w + (\pi/180) \dot{\psi}_w v_w \sin \psi_w$$

$$\ddot{y}_{w11} = -v_w \sin \psi_w - (\pi/180) \dot{\psi}_w v_w \cos \psi_w$$

$$z_{v11} = 0$$

where \dot{x}_{wl1} is positive north, \dot{y}_{wl1} east, and \dot{z}_{wl1} along the vector connecting the missile and earth center, positive down.

From Figure 24, the wind velocity components in the e-system are

with

$$\left[\mathbf{A}_{\mathbf{I}} \right] = \begin{bmatrix} \cos \rho_{\mathbf{L}} & 0 & \sin \rho_{\mathbf{L}} \\ 0 & 1 & 0 \\ -\sin \rho_{\mathbf{L}} & 0 & \cos \rho_{\mathbf{L}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \mu' & -\sin \mu' \\ 0 & \sin \mu' & \cos \mu' \end{bmatrix} \begin{bmatrix} \cos \rho & 0 & -\sin \rho \\ 0 & 1 & 0 \\ \sin \rho & 0 & \cos \rho \end{bmatrix}$$

where ρ_L is the input latitude and ρ and μ^* the instantaneous vehicle latitude and longitude change, respectively.

c. Artificial Wind Profile

The MMREM TVC design wind profile is constructed from the input specified peak wind altitude, howard (L0682). This artificial altitude-wind velocity table is set into the wind profile table. The final and initial altitude of maximum wind shear used in the TVC duty cycle slow rate calculations are also set.

If $h_{mxwd} > 0$ the wind profile is established as

$$h_{\text{mxwd}} = \begin{bmatrix} 240,000 & \text{If } h_{\text{mxwd}} > 240,000 \\ h_{\text{mxwd}} & \text{Otherwise} \end{bmatrix}$$

Altitudes of maximum wind shear

$$h_{\text{cr}} = h_{\text{mxwd}} + 3000$$

$$\begin{cases} 0 & \text{If } h_{\text{mxwd}} < 3000 \\ h_{\text{mxwd}} - 3000 & \text{Otherwise} \end{cases}$$

Velocity of wind shear

where $V_{\rm wmax}$ is the maximum wind velocity and $S_{\rm ik}$, $S_{\rm 3k}$, and $S_{\rm 5k}$ are the wind shear for 1,000, 3,000, & 5,000 feet depths respectively, all of which are function of the peak wind altitude.

If $0 < h_{mocwd} \le 1,000$

$$h_1 = 0$$

$$V_{w1} = [V_{w1k} h_{mxwd} - V_{wmax} (h_{mxwd} - 1,000)]/1000$$

$$h_2 = h_{mxwd}$$

$$h_3 = h_{maxwd} + 1,000$$

$$v_{w3} = v_{w1k}$$

$$h_4 = h_{mxwd} + 3,000$$

$$v_{w4} = v_{w3k}$$

$$h_5 = h_{mxwd} + 5,000$$

$$v_{w5} = v_{w5k}$$

$$h_6 = 80,000$$

$$y_{w6} = 75$$

$$h_7 = 100,000$$

$$h_8 = 300,000$$

If $1,000 < h_{mxwd} \le 3,000$

$$h_1 = 0$$

$$V_{w1} = [V_{w3k} (h_{mxwd} - 1,000) - V_{w1k} (h_{mxwd} - 3000)]/2,000$$

$$h_2 = h_{mxwd} - 1,000$$

$$v_{w2} = v_{w1k}$$

$$h_3 = h_{mxwd}$$

$$v_{w3} = v_{wmax}$$

$$h_5 = h_{mxwd} + 3,000$$

$$h_6 = h_{mxyd} + 5,000$$

$$v_{w6} = v_{w5k}$$

 $h_7 = 80,000$

v_{w7} = 75

 $h_8 = 100,000$

 $v_{w8} = 90$

 $h_9 = 300,000$

 $v_{w9} = 90$

If $3,000 < h_{mxwd} \le 5,000$

 $h_1 = 0$

 $V_{w1} = [V_{w5k} (h_{mxwd} - 3000) - V_{w3k} (h_{mxwd} - 5000)]/2,000$

 $h_2 = h_{mxwd} - 3,000$

 $v_{w2} = v_{w3k}$

 $h_3 = h_{mxwd} - 1,000$

 $v_{w3} = v_{w1k}$

h₄ = h_{mxwd}

 $v_{w4} = v_{wmax}$

 $h_5 = h_{mxwd} + 1,000$

 $v_{w5} \approx v_{w_{-}^{1}k}$

 $h_6 = h_{mxwd} + 3,000$

 $v_{w6} = v_{w3k}$

 $h_7 = h_{mxwd} + 5,000$

 $v_{w7} = v_{w5k}$

 $h_8 = 80,000$

v_{w8} = 75

h₉ = 100,000

 $v_{w9} = 90$

 $h_{10} = 300,000$

 $v_{w10} = 90$

If 5,000 < h_{mxid} ≤ 10,000

h₁ = 0

 $v_{w1} = 50 - .003 h_{mxwd}$

$$h_2 = h_{mxwd} - 5,000$$
 $V_{w2} = V_{wbk}$
 $h_3 = h_{mxwd} - 3,000$ $V_{w3} = V_{w3k}$
 $h_4 = h_{mxwd} - 1,000$ $V_{w4} = V_{w1k}$

$$h_5 = h_{mxwd}$$
 $v_{w5} = v_{smax}$

$$h_6 = h_{mxwd} + 1,000$$
 $V_{w6} = V_{w1k}$

$$h_7 = h_{mxwd} + 3,000$$
 $V_{w7} = V_{w3k}$

$$h_8 = h_{mxwd} \div 5,000 \qquad v_{w8} = v_{w5k}$$

$$h_9 = 30,000$$
 $v_{w9} = 75$

$$h_{10} = 100,000$$
 $v_{w10} = 96$

$$h_{11} = 300,000$$
 $v_{w11} = 90$

$$\hat{IF}$$
 10,000 < $h_{mxwd} \le 32,000$

$$h_1 = 0$$
 $v_{w1} = 20$

$$h_2 = h_{\text{maxwd}} = 5,000$$
 $V_{w2} = V_{w5k}$

$$h_3 = h_{mxwd} - 3,000$$
 $v_{w3} = v_{w3k}$

$$h_4 = h_{mxwd} - 1,000$$
 $V_{w4} = V_{w1k}$

$$h_5 = h_{mxwd}$$
 $v_{w5} = v_{wmax}$

$$h_{6} = h_{mxwd} + 1,000$$
 $V_{w6} = V_{w1k}$

$$h_7 = h_{mxwd} + 3,000$$
 $V_{w7} = V_{w3k}$
 $h_8 = h_{mxwd} + 5,000$ $V_{w8} = V_{w5k}$
 $h_9 = 80,000$ $V_{w9} = 75$
 $h_{10} = 100,000$ $V_{w10} = 90$
 $h_{11} = 300,000$ $V_{w11} = 90$

If $32,000 < h_{mxwd} \le 42,000$

If
$$h_{mxwd} > 42,000$$

$$h_1 = 0$$
 $v_{w1} = 20$
 $h_2 = 10,000$ $v_{w2} = 50$
 $h_3 = h_{mxwd} - 5,000$ $v_{w3} = v_{w5k}$
 $h_4 = h_{mxwd} - 3,000$ $v_{w4} = v_{w3k}$
 $h_5 = h_{mxwd} - 1,000$ $v_{w5} = v_{w1k}$
 $h_6 = h_{mxwd}$ $v_{w6} = v_{wmax}$
 $h_7 = h_{mxwd} + 1,000$ $v_{w7} = v_{w1k}$
 $h_8 = h_{mxwd} + 3,000$ $v_{w8} = v_{w3k}$
 $h_9 = h_{mxwd} + 3,000$ $v_{w9} = v_{w5k}$
 $h_{10} = h_{mxwd} + 38,000$ $v_{v10} = 75$
 $h_{11} = h_{mxwd} + 58,000$ $v_{w11} = 90$
 $h_{12} = 300,000$ $v_{w12} = 90$

Maximum Wind Velocity

The maximum wind velocity is a tabular function of the input altitude of peak winds. The table is linearly interpolated.

Peak Wind Altitude h_mxwd, feet	Maximum Wind Velocity Vwmax, ft/sec
O	92
19,000	210
32,000	348
42 _± 000 -	348
61,500	197
90,000	197
196,000	590
œ	590

Wind Shears

The wind envelope shears for incremental altitude of 1,000, 3,000, and 5,000 feet from the input design wind altitude (L682). Tables for the shears are listed at 1,000 feet intervals, starting at zero feet altitude and ending at 90,000 feet altitude. If Peak Wind Altitude exceeds 90,000 feet values at 90,000 feet are used. The table is linearly interpolated.

Wind Shear Table

Peak Wind	Shear Depth		
Altitude	1,000 feet	3,000 feet	5,000 feat
h _{mxwd} , feet	S _{1k} , 1/sec x 10 ³	S _{3k} , 1/sec x 10 ³	S _{5k} , 1/sec x 10 ³
0	.0425	.0325	.0145
1,000	.0409	.6305	.0153
2,009	.0393	.0288	.0161
3,000	.0378	.0272	.0168
4,000	.0362	.0258	.0173
5,000	.0348	.0247	.0177
6,000	.0348	.0238	0179
7,000	.0321	.0232	.0178
8,000	.0308	.0227	.0175
9,000	.0296	.0224	.0171
10,000	.0284	.0222 302	.0167

Wind Shear Table (Cont'd)

Peak Wind Altitude	1,000 feet	Shear Depth 3,000 feet	5,000 feet_
h mxwd', feet	S _{1k} , i/sec x 10 ³	S _{3k} , 1/sec x 10 ³	S _{5k} , 1/sec x 10 ³
11,000	.0273	.0220	.0164
12,000	.0263	.0219	.0161
13,000	.0253	.0216	.0158
1.4,000	.0244	.0210	.0156
15,000	.0237	.9203	.0158
16,000	.0230	.0198	.0163
17,000	.0226	.0194	.0169
18,000	.0226	.0192	.0176
19,000	.0232	.0193	.0183
20,000	.0226	.0200	.0190
21,000	,0271	.0208	.0197
22,000	.0300	.0217	.0203
23,000	.0311	.0227	.0210
24,000	.0318	.0236	.0216
25,000	.0324	.0247	.0223
26,000	.0331	.0258	.0230
27,000	.0341	.0274	.0236
28,000	.0360	.0295	.0245
29,000	, 04ở7	.0318	.0258
30,000	.0550	.0347	.0235 -
31,000	.0588_	.0384	.0308
32,000	.0631	.0432	.0321
33,000	.0683	.0478	.0328
34,000	.0758	.0501	.0332
35,000	.0764	.0503	.0334
36,000	.0759	.0482	,0333
37,000	0744	.0386	.0330
38,000	.0707	.0356	.0325
39,000	.0651	.0337	0316
40,000	.0562	.0325	.0300
41,000	.0487	.0316	.0277

Wind Shear Table (Cont'd)

Peak Wind Altitude	1,000 feet	Shear Depth 3,000 feet	5,000 feet
h _{mxwd} , feet	S _{1k} , 1/sec x 10 ³	S _{3k} , 1/sec x 10 ³	S _{5k} , 1/sec x 10 ³
42,000	.0442	.0308	.0256
43,000	.0407	.0303	.0243
44,000	.0379	.0299	.0235
45,000	.0359	.0296	.0228
46,000	.0346	.0295	.0222
47,000	.0338	.0294	.0217
48,000°	.0336	.0292	.0212
49,000	.0342	.0291	.0207
50,000	.0363	.0288	.0202
51,000	.0397	.0287	-0198
52,000	.0428	,0286	.0195
53,000	.0440	.0283	.0191
54,000	₃0442	.0280	.0187
55,000	.0432	.0277	.0183
56,000	.6428	.G272	.0179
57,000	.0411	.0267	.0175
58,000	.0389	.0259	.0171
59,000	.0368	.0252	.0168
60,000	.0348	.0243	.0164
61,000	,0327	.0233	.0160
62,000	.0308	.0223	.0157
63,000	.0291	.0213	.0153
64,000	. 0275	.0203	.0149
65,000	.0262	.0193	.0146
66,000	.0249	.0186	.0143
67,000	.0239	.0178	.0140
68,060	.0231	.0172	.0137
69,000	.0223	.0166	.0134
70,000	.0217	.6140	.0131
71,000	.0213	.0156	.0128
72,000	.0209	.0152	.0126

Wind Shear Table (Cont'd)

Peak Wind	Shear Depth		
Altitude	1,000 feet	3,000 feet	5,000 feet
h mxwd, feet	S _{lk} , 1/sec x 10 ³	S _{3k} , 1/sec x 10 ³	S _{5k} , 1/ser x 10 ³
73,000	.0206	.0148	.0124
74,000	.0205	.0145	.0122
75,000	.0204	.0142	.0120
76,000	.0204	.0139	.0118
77,000	.0203	.0136	.0116
78,000	.0202	.0133	,0114
79,000	.0201	.0131	.0112
80,000	.0200	.0128	.0110
81,000	.0198	.0126	.0109
82,000	.0197	.0124	.0107
83,000	.0193	.0122	.0105
84,000	.0 191	.0119	.0103
85,000	.0188	.0117	.0102
\$6,000	.0185	.0113	.0100
87 , 000	.0132	.0110	.0098
88,000	.0179	.0107	.0096
89,000	.0176	.0103	.0994
90,000	.0173	.0100	.0093
œ	.0173	.0100	.0093

3. Angles of Attack and Side Slip

The angles of attack and side slip are shown in Figure 27.

a. Still Air Angles of Attack

The still air angles of attack are functions of the component of missile velocity in the ${\sf b}$ system.

$$\vec{\dot{x}}_{bb} = [D]^{-1} \vec{\dot{x}}_{ee} + [\dot{\dot{D}}]^{-1} \vec{\dot{x}}_{ee}$$

The still air angle of attack is

$$\bar{\alpha} = \begin{bmatrix} 0 \\ \text{arctan } (-\dot{z}_{bb}/\dot{x}_{bb}) \end{bmatrix}$$

If
$$\dot{x}_{bb} = \dot{z}_{bb} = 0$$

Otherwise

$$\bar{\beta} = \begin{bmatrix} 0 \\ \arctan (\dot{Y}_{bb}/\dot{X}_{bb}) \end{bmatrix}$$

If
$$\dot{X}_{bb} = \dot{Y}_{bb} = 0$$

Otherwise

$$\bar{\alpha}' = \begin{bmatrix} 0 & \text{If } V_e = 0 \\ \\ \arctan \left[\left(\dot{Z}_{bb}^2 + \dot{x}_{bb}^2 \right)^{\frac{1}{2}} \right] / \dot{X}_{bb} \right] \text{ Otherwise}$$

$$\epsilon = \begin{bmatrix} 0 & \text{If } \dot{Y}_{bb} = \dot{Z}_{bb} = 0 \\ \arctan (\dot{Y}_{bb}/\dot{Z}_{bb}) & \text{Otherwise} \end{bmatrix}$$

The vehicle velocity components with respect to the air are

and the total velocity is

$$V_a = (\dot{X}_{aee}^p + \dot{Y}_{aee}^p + \dot{Z}_{aee}^p)^{\frac{1}{2}}$$

b. Angles of Attack with Winds

Angles of attack are a function of missile velocity with respect to air and missile attitude. The components of missile velocity in the b-system are

$$\ddot{X}_{abb} = [D]^{-1} \dot{X}_{aee}$$

where the matrix [D] is defined in Section B.1.b

The component angles of attack (see Figure 27) are

$$\alpha = \begin{bmatrix} \tilde{\alpha} & \text{If outside atmosphere or } \dot{x}_{abb} = \dot{z}_{abb} = 0 \\ \arctan (\dot{z}_{abb}/\dot{x}_{abb}) \end{bmatrix}$$

$$\beta = \begin{cases} \vec{B} & \text{If outside atmosphere or } \dot{X}_{abb} = \dot{Y}_{abb} = 0 \\ \text{arctan } (\dot{Y}_{abb} / \dot{X}_{abb}) \end{cases}$$

$$\epsilon = \begin{cases} \vec{\epsilon} & \text{If outside atmosphere or } \dot{Y}_{abb} = \dot{Z}_{abb} = 0 \\ \arctan (\dot{Y}_{abb}/\dot{Z}_{abb}) \end{cases}$$

with

-180° < α, β ≤ 180°

and the total angle of attack is

$$\ddot{\alpha}$$
 If outside atmosphere arctan $(\ddot{z}_{abb}^{p} + \dot{y}_{abb}^{p})^{\frac{1}{2}}/\dot{x}_{abb}$ Otherwise

The effective angles of attack used to compute the aerodynmaic normal forces are given below. These values account for the reduction in the forces as the angles of attack move from ± 90 degrees to ± 180 degrees. The values are

$$\alpha_{\rm E} =
\begin{bmatrix}
\alpha & \text{If } -90^{\circ} \le \alpha \le 90^{\circ} \\
180^{\circ} - \alpha & \text{If } 90^{\circ} < \alpha \le 180^{\circ} \\
-180^{\circ} - \alpha & \text{If } 80^{\circ} < \alpha < -90^{\circ}
\end{bmatrix}$$

and

$$β_E =$$

$$\begin{cases}
β & \text{If } -90^\circ \le β \le 90^\circ \\
180^\circ - β & \text{If } 90^\circ \le β \le 180^\circ \\
-180^\circ - β & \text{If } -180^\circ \le β \le -90^\circ
\end{cases}$$

and

$$\alpha_E^{i}$$
 α_E^{i} α_E^{i} . If $0 \le \alpha \le 90^\circ$ α_E^{i} α_E^{i} Otherwise

c. Time Rate Change of Angle of Attack

The time rate change of angle of altack shall be calculated if the input multiplier, $\tilde{H}_{\alpha} \neq 0$ and the mode type $M_{v} = 5$.

Pitch
$$\dot{\alpha} = \begin{bmatrix} 0 & \text{If } \dot{z}_{abb} = \dot{x}_{abb} = 0 \\ (130/\pi)(\dot{x}_{abb}\ddot{z}_{abb} - \dot{z}_{abb}\ddot{x}_{abb})/(\dot{x}_{abb}^{p} + \dot{z}_{abb}^{p}) & \text{Otherwise} \end{bmatrix}$$

Yaw
$$\beta = \begin{bmatrix}
0 & \text{If } \dot{Y}_{abb} = \dot{X}_{abb} = 0 \\
(180/\pi) (\dot{X}_{abb} \ddot{Y}_{abb} - \dot{Y}_{abb} \ddot{X}_{abb}) / (\dot{X}_{abb}^{p} + \dot{Y}_{abb}^{p}) & \text{Otherwise}
\end{bmatrix}$$

where X_{abb} , the missile velocity components with respect to the surrounding air in the b-coordinate directions, are given in Section F. 3. a and the corresponding components of the missile acceleration are:

$$\vec{\ddot{x}}_{abb} = [D]^{-1} \vec{\ddot{x}}_{ee} + [\dot{D}]^{-1} \vec{\dot{x}}_{ee} - [D^{1-1} [A_1] \vec{\ddot{x}}_{w11} - [D]^{-1} [\dot{A}_1] \vec{\ddot{x}}_{w11} - [D]^{-1}$$

$$[A_1] \vec{\ddot{x}}_{w11}$$

where \dot{X}_{ee} and \ddot{X}_{ee} are the components of missile velocity and acceleration in a right handed Cartesian coordinate system located at the launcher; \ddot{X}_{wl1} and \ddot{X}_{wl1} are the components of wind acceleration and velocity in the local coordinate system (the 1 system; the matrix D is defined in section B.1.b and the time derivative of the inverse is

$$[\dot{\mathbf{b}}]^{-1} = [\dot{\mathbf{A}}_{\dot{\mathbf{b}}}]^{-1} [\dot{\mathbf{A}}_{\dot{\mathbf{i}}}]^{-1} [\dot{\mathbf{A}}_{\dot{\mathbf{e}}\dot{\mathbf{o}}}]^{-1} + [\dot{\dot{\mathbf{A}}}_{\dot{\mathbf{b}}}]^{-1} [\dot{\mathbf{A}}_{\dot{\mathbf{i}}}]^{-1} [\dot{\mathbf{A}}_{\dot{\mathbf{e}}\dot{\mathbf{o}}}]^{-1}$$

where the matrix $[A_i]$ which rotates the inertial axes coordinate components from the i-system to the eo-system is defined in section B. 1. b; the matrix $[A_{eo}]$ which rotates the inertial axes coordinate components from the eo-system to the e-system is defined in section B. 1. b and the time derivative of the inverse is

where ω is the input magnitude of the earth's angular velocity and ρ_T is the input launcher latitude.

The matrix [A_b] which rotates the inertial axes coordinate components from the b-system to the i-system is defined in Section B. 1. b and the time derivative of the inverse is

$$\begin{bmatrix} A_b \end{bmatrix}^{-1} = \begin{bmatrix} 0 & +R_b & -Q_b \\ -R_b & 0 & +P_b \\ Q_b & -P_b & 0 \end{bmatrix}$$

$$\begin{bmatrix} A_b \end{bmatrix}^{-1}$$

where $P_b^{},\;Q_b^{}$ and $R_b^{}$ are the instantaneous vehicle angular velocities in roll, pitch, and yaw respectively.

The matrix $[A_1]$ which rotates the axes compenents from the 1-system to the 3-system is defined in Section F. 2. b and the time derivative is

$$\left[\hat{A}_{1} \right] (\pi/180) = \begin{cases} \hat{\mu}' \begin{bmatrix} 0 & \sin \rho_{L} & 0 \\ -\sin \rho_{L} & 0 & -\cos \rho_{I} \end{bmatrix} + \hat{\rho} \begin{bmatrix} 0 & \cos \rho_{L} \sin \mu' & -\cos \mu' \\ -\cos \rho_{L} \sin \mu' & 0 & \sin \rho_{L} \sin \mu' \end{bmatrix} \begin{bmatrix} \hat{A}_{1} \end{bmatrix}$$

$$\cos \mu' \quad -\sin \rho_{L} \sin \mu' \quad 0 \quad \text{os } \mu' \quad \text$$

where time rate change of vehicle longitude change from the launcher and vehicle latitude are

$$\dot{\hat{\mu}}' = (180/\pi)(\dot{Z}_{cc}^{Y}_{cc} - \dot{Y}_{cc}^{Z}_{ce})/(\dot{Y}_{cc}^{P} + \ddot{Z}_{cc}^{P})$$

$$\dot{\hat{\rho}} = (180/\pi)[\dot{X}_{cc}^{Y}_{cc} + \dot{Z}_{cc}^{P}] - \dot{Y}_{cc}^{X}_{cc}^{Y}_{cc} - \dot{Z}_{cc}^{X}_{cc}^{Z}_{ce}]/[\dot{r}_{c}^{P}(\dot{Y}_{cc}^{P} + \dot{Z}_{cc}^{P})^{\frac{1}{2}}]$$

where \vec{X}_{cc} and \vec{X}_{cc} are the earth's geocentric coordinate system vector and time derivative respectively.

The rate change of the missile velocity components is:

THE THE WAS THE TAX THE STATE OF THE STATE O

$$\ddot{\ddot{x}}_{bb} = [D]^{-1} \ddot{\ddot{x}}_{ee} + [\dot{D}]^{-1} \dot{\ddot{x}}_{ee}$$

thus

Pitch

$$\dot{\vec{\alpha}} = \begin{bmatrix} 0 & \text{if } \dot{z}_{bb} = \dot{x}_{bb} = 0 \\ (180/\pi) & (\dot{x}_{bb} \ \dot{z}_{bb} - \dot{z}_{bb} \ \dot{x}_{bb}) / (\dot{x}_{bb}^2 + \dot{z}_{bb}^2) \end{bmatrix}$$

Yaw

$$\frac{1}{\beta} = \begin{bmatrix} 0 & \text{if } Y_{bh} = X_{bb} = 0\\ (180/\pi) & (\dot{Y}_{bb}\dot{Y}_{bb} - \dot{Y}_{bb}\dot{X}_{bb}) / (\dot{X}_{bb}^2 + \dot{Y}_{bb}^2) \end{bmatrix}$$

These are calculated only if $T_y = 10$ or 11.

4. Mach Number and Dynamic Pressure

The Mach number is

$$M = V_a/C_a$$

and dynamic pressure is

$$q = (0.7) P_a M^2$$

G. AERODYNAMIC CHARACTERISTICS

The aerodynamic force and moments are contained here. The aerodynamic representative is applicable only to a symmetrical body about the longitudinal axis.

1. Aerodynamic Stages

There are four aerodynamic stages. All aerodynamic characteristics are input as functions of Mach number. The Mach numbers are input monotonically increasing. The following logic and comments apply to all parameters:

where M₁ is the first input Mach number, then the coefficients are held at the first input values.

where M_J (J = 1, 2, ..., 15) is the last input Mach number, then the coefficients are held at the last input values.

a. Body Axial Force

A maximum of fifteen axial force coefficients can be input per stage. The anial force multiplier is স্থানী ক্রিক্টার ক্রিক্টার ক্রিক্টার করে। ক্রিক্টার করে করা করিব করেবল করাকে ক্রেক্টারকে করাক্তাকে করাকে করাকে

$$\tilde{C}_{k} = \begin{bmatrix}
\tilde{C}_{i} & 0 \\
\tilde{C}_{k}^{i} & 0
\end{bmatrix}$$
Otherwise

The axial force during the current stage is

$$C = S_{RC} + C_A \bar{C}_k |\cos \alpha'| \cos \alpha'$$

Where S_{RC} and \tilde{C}_{k}^{t} are input.

The axial force coefficient for

$$M_j \leq |M| \leq M_{j+1}$$

is

$$C_{A} = \begin{cases} M_{j} & C_{A(j+1)} - M_{j+1} & C_{Aj} + [C_{Aj} - C_{A(j+1)}]M \}/\\ M_{j} - M_{j+1}) + C_{BN} & \text{if } |\alpha| \leq 90\\ C_{CA} & \text{Otherwise} \end{cases}$$

where CAj and its corresponding Mach number Mj (not necessarily the same Mach numbers as those for the normal force) are input.

The added aerody amic base drag coefficient due to nozzles not thrusting is

$$C_{BN} = \begin{cases} 0 & \text{if } K_{ED} = 1 \text{ or 2 and} \\ C_{BAM} + C_{BAC} & C_{ED} / 2.0 & \text{Otherwise} \end{cases}$$

Area coefficient for main motor

$$c_{BAM} = \begin{cases} A_{eM}/s_{RC} & \text{If } F_{M} = 0 \text{ and } K_{BD} \neq 1 \\ 0.0 & \text{Otherwise} \end{cases}$$

Area coefficient for complementary motor

$$G_{\text{BAC}} = \begin{bmatrix} A_{\text{eC}}/S_{\text{RC}} & \text{If } F_{\text{C}} = 0 \text{ and } K_{\text{BD}} \neq 2 \\ 0.0 & \text{Otherwise} \end{bmatrix}$$

Generalized base drag coefficient

C_{BD}

0.79996568 + 0.28892727 |M| - 10.60569
$$M^2$$
 + 105.77183 |M|3 -486.47910 M^4 + 943.6044 |M|3 - 647.72025 M^6 if |M| < 0.5

3.4709 - 26.428046 |M| + 102.16591 M^2 - 213.47669 |M|3 +247.78677 M^4 - 150.51554 |M|5 + 37.510830 M^6 if 0.5 \leq |M| < 1.0

41.875203 - 153.36892 |M| + 238.07985 M^2 - 198.19504 |M|5 + 92.924624 M^4 - 23.211652 |M|5 + 2.4099132 M^6 if 1.0 \leq |M| < 2.0

0.34063761 - 0.95438446 |M| - 0.01990222 M^2 + 0.15989115 |M|5 - 0.0034737133 M^4 + 0.00033548493 |M|5 - 0.000012362510 M^6 if 2.0 \leq |M| < 7.0

0.007 - 0.007 |M| if 7.0 \leq |M| < 10.0

The drag coefficient at 180° angle of attack

where A_{eM} , and A_{eC} are the input nozzle exit areas for the main motor and complementary motor, respectively, F_{M} and F_{C} are the delivered thrusts of the main motor and complementary motor respectively, S_{RC} is the input aerodynamic axial force coefficient reference, M is the Mach number, and K_{BD} is the input base drag suppression flag input in Lk108.

b. Body Normal Forces Due to Angles of Attack A maximum of fifteen normal force coefficients can be input per stage.

The normal force multiplier is

$$\tilde{N}_{k} = \begin{bmatrix} 1.0 & \text{if } \tilde{N}_{k}^{t} = 0 \\ \\ \tilde{N}_{k}^{t} & \text{Otherwise} \end{bmatrix}$$

The normal force for the current stage is:

$$N_Y = S_{RNg} C_N \bar{N} = 0$$

$$N_z = S_{RNg} C_N \tilde{N} \cos \epsilon$$

where e is the bank angle.

where S_{RN} is input and C_N is defined as follows

$$\begin{bmatrix} c_{N1} & \alpha_{E}' + c_{N2} \alpha_{E}' & |\alpha_{E}'| + c_{N3} & \alpha_{E}^{3} & \text{if } s_{pF} = 0 \\ c_{N1} & \alpha_{E}' + [(s_{pF}/s_{RN})c_{CN} - (180/\pi)(\pi/2)c_{N1}] & \sin \alpha_{E}' \\ |\sin \alpha_{E}'| & \text{Otherwise} \end{bmatrix}$$

The coefficients for

$$M_{j} \leq |M| \leq M_{j+1}$$

are

$$c_{N1} = \{M_j c_{N1(j+1)} - M_{j+1} c_{N1j} + \{c_{N1j} - c_{N1(j+1)}\}M\}/(M_j - M_{j+1})$$

$$c_{N2} = \{M_j c_{N2(j+1)} - M_{j+1} c_{N2j} + [c_{N2j} - c_{N2(j+1)}]M\}/(M_j - M_{j+1})$$

$$c_{N3} = \{M_j c_{N3(j+1)} - M_{j+1} c_{N3j} + [c_{N3j} - c_{N3(j+1)}]M\}/(M_j - M_{j+1})$$

where c_{N1j} , c_{N2j} , and c_{N3j} and their corresponding Mach number M_j (j = 1, 2, ..., 15) are input.

The following logic apply:

If
$$c_{N21} = c_{N22} = 0$$
, then

and if
$$C_{N31} = C_{N32} = 0$$
, then

$$C_{N3} = 0$$
 for all M

where $c_{\rm N21}$, $c_{\rm N22}$, $c_{\rm N31}$, and $c_{\rm N32}$ are input. where the normal force coefficient at 90° angle of attack

$$C_{CN} = \begin{cases} 0.84584966 + 0.32629796 & |M| - 3.1030112 & |M|^2 + 11.086155 & |M|^3 \\ - 16.513306 & |M|^4 + 9.3484993 & |M|^5 & \text{if } |M| < 0.9 \\ -628.76609 + 2.827.6544 & |M| -5.095.6157 & |M|^2 + 4.584.0631 & |M|^3 \\ - 2.070.4406 & |M|^4 + 374.70503 & |M|^5 & \text{if } 0.9 < |M| < 1.2 \\ 4.3744073 - 5.5002559 & |M| + 4.1332796 & |M|^2 - 1.6453339 & |M|^3 \\ & + 0.33668120 & |M|^4 - 9.026740990 & |M|^5 & \text{if } 1.2 \le |M| < 2.2 \\ 1.268 & \text{if } |M| \ge 2.2 \end{cases}$$

c. Aerodynamic Normal Force Due to Damping

The transverse force, positive down or to the left, attributable to the vehicle pitching and yawing and to rate change of angle of attack is:

$$N_{\text{Py}} = \begin{bmatrix} 0 & \text{If } V_{\text{a}} = 0 \\ \\ q S_{\text{RN}} C_{\text{Nl}} Z_{\text{cp}} (\vec{N}_{\text{Q}} R_{\text{b}} + \vec{N}_{\alpha} \dot{\beta})/(2V_{\text{a}}) \end{bmatrix}$$

$$N_{p_z} = \begin{bmatrix} 0 & \text{If } V_a = 0 \\ q S_{RN} C_{N1} \ell_{cp} (\vec{N}_Q Q_b + \vec{N}_{\alpha} \dot{\alpha})/(2V_a) \end{bmatrix}$$

where V_a is the missile velocity with respect to the air, Q_b and R_b are the missile angular pitch and yaw rates respectively, α and β are the angular angle of attack rate in pitch and yaw respectively, q is the dynamic pressure ℓ_{cp} is the center of gravity to center of pressure distance, C_{Nl} is the linear normal force coefficient, and S_{RN} , M_Q and M_{α} are input.

d. Aerodynamic Fin Force Coefficient

A maximum of fifteen aerodynamic pitch movable fin linear fin lift coefficients, C_{Lz} , nonlinear fin lift coefficients, C_{lz} , drag coefficient, C_{Dz} , and drag due to lift factor, K_{Lz} can be input per stage.

the coefficient for

$$M_j \leq |M| \leq M_{(j+1)}$$

let

$$K_{\text{int}} = \frac{M_{(j+1)} - M}{M_{(j+1)} - M_{j}}$$
 and linearly interpolate

$$\begin{split} & c_{Lz} = \tilde{c}_{Lz} \ [K_{int} \ c_{Lz(j+1)} + (1 - K_{int}) \ c_{Lzj}] \\ & c_{1z} = \tilde{c}_{1z} \ [K_{int} \ c_{1z(j+1)} + (1 - K_{int}) \ c_{1zj}] \\ & c_{Dz} = \tilde{c}_{Dz} \ [K_{int} \ c_{Ez(j+1)} + (1 - K_{int}) \ c_{Dzj}] \\ & K_{Lz} = \tilde{K}_{Lz} \ [K_{int} \ K_{Lz(j+1)} + (1 - K_{int}) \ K_{Lzj}] \end{split}$$

where C_{Lzj} , C_{1zj} , C_{Dzj} , and K_{Lzj} and their corresponding Mach numbers M_j (j = 1, 2, ..., 15) are input in the same table with the pitch aerodynamic control fin center of pressure data.

First and last input logic for the aerodynamic pitch movable fin force coefficients are

$$C_{Lz} = \begin{bmatrix} \bar{c}_{Lz} & c_{Lz1} & \text{if } |M| < M_1 \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| > M_J \\ \bar{c}_{1z} & c_{1z1} & \text{if } |M| > M_J \\ \bar{c}_{1z} & c_{1z1} & \text{if } |M| > M_J \\ \bar{c}_{1z} & c_{1zJ} & \text{if } |M| > M_J \\ \bar{c}_{Dz} & c_{DzJ} & \text{if } |M| > M_J \\ \bar{c}_{Dz} & c_{DzJ} & \text{if } |M| > M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & c_{LzJ} & \text{if } |M| < M_J \\ \bar{c}_{Lz} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} \\ \bar{c}_{Lz} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} \\ \bar{c}_{Lz} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} \\ \bar{c}_{Lz} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_{LzJ} & c_$$

where the subscript I refers to the first table input coefficient and the subscript J refers to the last table entry.

The coefficients multipliers

$$\bar{C}_{Lz} = \begin{bmatrix} 1.0 \text{ if } \bar{C}_{Lz} = 0 \\ \bar{C}_{Lz}^{!} \text{ otherwise} \end{bmatrix}$$

$$\bar{C}_{Lz} = \begin{bmatrix} 1.0 \text{ if } \bar{C}_{Lz}^{!} = 0 \\ \bar{C}_{Lz}^{!} \text{ otherwise} \end{bmatrix}$$

$$\bar{C}_{Dz} = \begin{bmatrix} 1.0 \text{ if } \bar{C}_{Dz}^{!} = 0 \\ \bar{C}_{Dz}^{!} \text{ otherwise} \end{bmatrix}$$

$$\bar{C}_{Dz} = \begin{bmatrix} 1.0 \text{ if } \bar{C}_{Dz}^{!} = 0 \\ \bar{C}_{Dz}^{!} \text{ otherwise} \end{bmatrix}$$

$$\bar{C}_{Dz} = \begin{bmatrix} 1.0 \text{ if } \bar{C}_{Dz}^{!} = 0 \\ \bar{C}_{Dz}^{!} \text{ otherwise} \end{bmatrix}$$

where \tilde{C}_{lz} , \tilde{c}_{lz} , \tilde{C}_{pz} , and \tilde{K}_{pz} are input

e. Aerodynamic Fin Forces

Fin angle of Attack

$$\alpha_{cf} = \alpha_{E} - \kappa_{cf} \delta_{p}$$

$$\alpha_{cf_{1}} = \alpha_{cf} + \delta_{R} + \delta_{R} - \alpha_{he}$$

$$\alpha_{cf_{p}} = \alpha_{cf} - \delta_{R} - \delta_{MR} - \alpha_{he}$$

$$\beta_{cf} = \beta_{E} - \kappa_{cf} \delta_{y}$$

$$\beta_{cf_{1}} = \beta_{cf} + \delta_{R} + \delta_{MR} + \alpha_{he}$$

$$\beta_{cf} = \beta_{cf} - \delta_{R} - \delta_{MR} - \alpha_{he}$$

where the Helix Angle of attack is: α_{he} = arctan {[P_b (π /180) ($\ell_{\delta r}$)/ [V_e]]

where the lift coefficient is:

$$\begin{split} \hat{c}_{Lz_1} &= c_{LZ} \ \alpha_{cf_1} + c_{1Z} \ \alpha_{cf_1} \ | \alpha_{cf_1} | \\ \hat{c}_{Lz} &= c_{LZ} \ \alpha_{cf_7} + c_{1Z} \ \alpha_{cf_7} \ | \alpha_{cf_7} | \\ \hat{c}_{Lz} &= (\hat{c}_{Lz_1} + \hat{c}_{Lz_7})/2 \\ \hat{c}_{Ly} &= c_{LZ} \ \beta_{cf} + c_{1Z} \ \beta_{cf_1} \ | \beta_{cf_1} | \\ \hat{c}_{Ly} &= c_{LZ} \ \beta_{cf_7} + c_{1Z} \ \beta_{cf_7} \ | \beta_{cf_7} | \\ \hat{c}_{Ly} &= (\hat{c}_{Ly_1} + \hat{c}_{Ly_7})/2 \end{split}$$

the drag coefficient is:

$$\hat{c}_{DZ1} + c_{DZ} + \kappa_{LZ} \hat{c}_{LZ1}^{2}$$

$$\hat{c}_{DZ2} = c_{DZ} + \kappa_{LZ} \hat{c}_{LZ2}^{2}$$

$$\hat{c}_{DZ} = (\hat{c}_{DZ1} + \hat{c}_{DZ2})/2.0$$

$$\hat{\mathbf{c}}_{\mathtt{Dy1}} = \mathbf{c}_{\mathtt{DZ}} + \kappa_{\mathtt{LZ}} \; \hat{\mathbf{c}}_{\mathtt{Ly1}}^{\mathtt{z}}$$

$$\hat{c}_{\mathrm{Dyz}} = c_{\mathrm{bZ}} + \kappa_{\mathrm{LZ}} \; \hat{c}_{\mathrm{Lyz}}^{\mathrm{z}}$$

$$\hat{c}_{Dy} = (\hat{c}_{Dy_1} + \hat{c}_{Dy_2})/2.0$$

Normal Force

Pitch

$$N_{\delta z} = S_{Fz} q (\hat{c}_{Lz} \cos \alpha_E + \hat{c}_{DZ} \sin \alpha_E)$$

Yaw

$$N_{\delta y} = -S_{Fz} q (\hat{c}_{Ly} \cos \beta_E + \hat{c}_{Dy} \sin \beta_E)$$

Drag

$$c_{\delta z} = s_{FZ} q (\hat{c}_{DZ} \cos \alpha_E + \hat{c}_{Dy} \cos \beta_E - \hat{c}_{Lz} \sin \alpha_E - \hat{c}_{Ly} \sin \beta_E)$$

2. Aerodynamic Moments

a. Body Center of Pressure

A maximum of fifteen total center of pressure body stations can be input.

The center of pressure location for

$$M_j \leq M \leq M_{j+1}$$

is

$$x_{cp} = x_{pc} = 0$$

$$x_{pc} (\sin \alpha)^{2} + x_{cp} (\cos \alpha)^{2} \quad \text{if } |\alpha| < 90^{\circ} \& x_{pc} \neq 0$$

$$x_{pc} (\sin \alpha)^{2} + (0.8 x_{e} + 0.2 x_{pc}) (\cos \alpha)^{2} \quad \text{if } |\alpha| > 90^{\circ} \& x_{pc} \neq 0$$

where x_{pc} is the input plan form area centroid body station, x_{e} is the nozzle exit body station, and α is the angle of attack.

where
$$\hat{x}_{cp} = \bar{x}_{cp} \{M_j x_{cp(j+1)} - M_{j+1} x_{cpj} + [x_{cpj} - x_{cp(j+1)}]\}$$

 $M / (M_j - M_{j+1})$

where x_{cpj} and M_j (j = 1, 2, ..., 15) and \tilde{X}_{cp} are input.

$$\tilde{X}_{cp} = \begin{bmatrix} \tilde{X}_{cp} & \text{if } \tilde{X}_{cp} = 0 \\ 1.0 & \text{otherwise} \end{bmatrix}$$

The center of pressure and normal force coefficient values are input in the same table. The Mach numbers are input monotonically increasing so the $\rm M_1 < M_2$. , .

First and last input logic for the center of pressure is

$$\tilde{x}_{cp} = \begin{cases}
\tilde{x}_{cp}^{x}_{cp1} & \text{if } M < M_1 \\
\tilde{x}_{cp}^{x}_{cpJ} & \text{if } M > M_J
\end{cases}$$

where the x_{cpl} and M_l and the x_{cpJ} and M_J (J = 1, 2, ..., or 15) are the first and last input values, respectively.

b. Pitching and Yawing Damping Coefficients

The aerodynamic pitch damping moment coefficients are

$$C_{MQ} = \begin{cases} 0 \text{ if } D_{\overline{AN}} = 0 \\ \hat{C}_{MQ} + K_{Q} (2C_{N1}/D_{RN}^{2})[2x_{cp}(x_{RQ} - x_{cg}) - x_{cg}^{2} + x_{RQ}^{2}] \text{ otherwise} \end{cases}$$

$$C_{MN} = \begin{cases} 0 \text{ if } D_{RN} = 0 \\ \hat{C}_{MN} + K_{N} (D_{RN}^{2})[2x_{cp}(x_{RN} - x_{cg}) - x_{cg}^{2} + x_{RN}^{2}] \text{ otherwise} \end{cases}$$

where C_{MQ} and \hat{C}_{MA} are the unadjusted aerodynamic pitch damping moment coefficients, C_{N1} is the linear normal force coefficient, \mathbf{x}_{cp} is the aerodynamic center of pressure body station, \mathbf{x}_{cg} is the vehicle center of gravity body station, \mathbf{x}_{RQ} and \mathbf{x}_{RA} are the reference aerodynamic pitch damping moment body stations, and K_Q , K_{q} , D_{RN} are input.

Reference Pitch Damping Body Stations

The reference aerodynamic pitch damping moment body stations are

$$x_{RQ} = \tilde{\chi}_{cp} x_{RQ}$$

where x_{RO} , and x_{RO} ; are input

c. Unadjusted Aerodynamic Pitch Damping Moment Coefficient

A maximum of ten total unadjusted aerodynamic pitch damping moment coefficients can be input.

The coefficients for $M_j \le |M| \le M_{j+1}$ are

$$\hat{C}_{MQ} = H_j C_{MQ(j+1)} - M_{j+1} C_{MQj} + [C_{MQj} - C_{MQ(j+1)}] / (M_j - M_{j+1})$$

$$\hat{C}_{M\dot{M}} = H_{j}C_{M\dot{M}}(j+1) - H_{j+1}C_{M\dot{M}} + [C_{M\dot{M}} - C_{M\dot{M}}(j+1)] / (H_{j} - H_{j+1})$$

The unadjusted aerodynamic pitch damping moments coefficient for pitch rate and angle of attack rate are input in the same table. The Mach numbers are input monotonically increasing so that $\mathrm{M}_1 < \mathrm{M}_2$. . .

First and last input logic for the unadjusted aerodynamic pitch damping moment coefficients are

$$\hat{C}_{MQ} = \begin{bmatrix} C_{MQ1} & \text{if } |M| < M_1 \\ C_{MQJ} & \text{if } |M| < M_J \end{bmatrix}$$

$$\hat{C}_{MN} = \begin{bmatrix} C_{MN} & \text{if } |M| < M_1 \\ C_{MNJ} & \text{if } |M| < M_1 \\ C_{MNJ} & \text{if } |M| > M_J \end{bmatrix}$$

where the C_{MQ1} , C_{Mp1} , and M_1 and the C_{MQJ} , C_{MpJ} , and M_7 (J = 1, 2, ..., or 15) are the first and last input values respectively.

The state of the s

d. Aerodynamic Control Fin Center of Pressure

A maximum of fifteen pitch aerodynamic control fin center of pressure ratio of the input pitch fin base root length can be input.

The pitch aerodynamic control fin center of pressure location for

$$M_j \ge |M| \le M_{j+1}$$

is

$$u_{cz} = \{ M_{j} \ u_{cz(j+1)} + M_{(j+1)} \ u_{czj} - u_{cz(j+1)} \}$$

$$/ (M_{j} - M_{(j+1)})$$

where U_{czj} and M_j (j = 1, 2, ..., 15) are input

The pitch aerodynamic central fin center of pressure, and force coefficients are input in the same table. The Mach numbers are input monotonically increasing so that $\mathrm{M}_1 < \mathrm{M}_2$...

First and last input logic for the aerodynamic control surface center of pressure is

$$v_{cz} = \begin{bmatrix} v_{cz1} & \text{if } |\mathbf{M}| < \mathbf{M}_1 \\ v_{czJ} & \text{if } |\mathbf{M}| > \mathbf{M}_J \end{bmatrix}$$

where the U_{czl} and the U_{czJ} and M_J (J = 1, 2, ..., or 15) are the first and last input values, respectively.

Aerodynamic Disturbing Pitch and any Moments

The moments due to the aerodynamic normal forces are:

$$\begin{split} \mathbf{M}_{\text{CZG}} &= \mathbf{C} \cdot \mathbf{z}_{\text{cg}} \\ \mathbf{M}_{\text{NSQ}} &= \mathbf{N}_{\text{Z}} \cdot \mathbf{1}_{\text{cp}} \\ \mathbf{M}_{\text{NDQ}} &= \begin{bmatrix} 0 & \text{If } \mathbf{V}_{\text{a}} = 0 \\ & & &$$

 $M_{NP} = N_z y_{cg} - N_y z_{cg}$ where N_z and N_Z are the aerodynamic static normal forces, ℓ_{cp} is the center of pressure lever arm, q is the dynamic pressure, V_{α} is the missile velocity with respect to the air, c_{MQ} and c_{Mlpha} are the aerodynamic pitch damping moment derivative, $Q_{\hat{b}}$ and $R_{\hat{b}}$ are the missile angular pitch and yaw rates respectively, or and B are the angular angle of attack rates, and S_{RN} , D_{RN} , \tilde{M}_Q^{\dagger} and $\tilde{M}_{\tilde{Q}}^{\dagger}$ are the input.

f. Disturbing Aerodynamic Rolling Moment

An aerodynamic rolling moment may occur when the missile is not a body of revolution. The equations given below are developed considering raceways, but can be applied to other protuberances as well. Two raceways for each stage can be defined. Their locations (see Figure 19) and reference areas are specified by input. The aerodynamic characteristics of both raceways are specified by a single set of normal force coefficients. A maximum of 10 normal force coefficients versus Mach number can be input for each stage.

If the input roll force reference area, S_{RRI}, is zero for the current stage or there is no atmosphere, then the rolling moment equations are ignored. Otherwise, the rolling moment is:

$$M_{RAP} = \frac{(\gamma_a/2)P_a (|M_{R1}| M_{P1} C_{RR1}S_{RR1} r_{R1} + |M_{R2}| M_{R2} C_{RR2}S_{RR2} r_{R2})}{|M_{R2}| M_{R2} C_{RR2}S_{RR2} r_{R2}}$$

where the reference areas, S_{RR_i} , and the center of pressure radial locations from the missile centerline, r_{Ri} (i = 1, 2), are input and the other parameters are computed as follows:

The Mach number due to the velocity normal to the i-th raceway is:

$$M_{Ri} = (-Z_{abb} \sin \phi_{Ri} - Y_{abb} \cos \phi_{Ri})/c_a$$

where the bank angles of the raceways, ϕ_{Ri} , are input.

The instantaneous normal force coefficient for $M_j \leq |M_{Ri}| \leq M_{j+1}$ is:

$$c_{RR} = [M_j c_{RR(j+1)} - M_{j+1} c_{RRj} + (c_{RRj} - c_{RR(j+1)}) |M_{Ri}|]/$$

$$(M_j - M_{j+1})$$

where C_{RRj} (j = 1, 2, ..., 10) and its corresponding Mach number, M inot necessarily the same as in the above sections), are input.

g. Pitch, Yaw and Roll Control Moments

The pitching moment due to the aerodynamic control force is:

$$M_{\delta Q} = N_{\delta z} \cdot L_{\delta z}$$

where N_{δz} is the pitch fin normal force and $k_{\delta z}$ is the pitch movable control fin center of pressure to center of gravity distance.

The yawing moment due to the aerodynamic control force is:

where N $_{\delta y}$ is the yaw fin normal force and $\ell_{\delta y}$ is the yaw movable control fin center of pressure to center of gravity distance.

The rolling moment due to the aerodynamic control force is:

$$\mathbf{M}_{\delta P} = \frac{\mathcal{L}_{\delta \mathbf{r}} \, \mathbf{S}_{\mathbf{F}z} \, \mathbf{q}}{2.0} \left[(\hat{\mathbf{C}}_{\mathbf{L}Z\mathbf{1}} - \hat{\mathbf{C}}_{\mathbf{L}Z\mathbf{2}}) \cos \alpha_{\mathbf{E}} + (\hat{\mathbf{C}}_{\mathbf{D}Z\mathbf{1}} - \hat{\mathbf{C}}_{\mathbf{D}Z\mathbf{2}}) \sin \alpha_{\mathbf{E}} \right]$$

$$+ (\hat{\mathbf{C}}_{\mathbf{L}y\mathbf{1}} - \hat{\mathbf{C}}_{\mathbf{L}y\mathbf{2}}) \cos \beta_{\mathbf{E}} + (\hat{\mathbf{C}}_{\mathbf{D}y\mathbf{1}} - \hat{\mathbf{C}}_{\mathbf{D}y\mathbf{2}}) \sin \beta_{\mathbf{E}} \right]$$

where ℓ_{6r} is the fin radial center of pressure to missile centerline, S_{Fz} is the input fin reference area, c is the dynamic pressure, c is the effective angle of attack, β_E is the effective side slip angle, \hat{C}_{Lz_1} and \hat{C}_{Lz_2} are the pitch fin lift coefficients, \hat{C}_{Ly_1} and \hat{C}_{Ly_2} are the yaw fin lift coefficient, \hat{C}_{Dz_1} and \hat{C}_{Dz_2} are the pitch fin drag coefficient and \hat{C}_{Dy_1} and \hat{C}_{Dy_2} are the yaw fin drag coefficients.

The torque about the pitch fin hinge axis is:

$$M_{hz} = S_{fz} q \hat{c}_{L2} \cdot \lambda_{hz}$$

where $\mathbf{\ell}_{1:\mathbf{Z}}$ is the pitch movable control fin center of $_1$ ressure to hinge axis distance

$$M_{hy} = S_{Fz} q \hat{C}_{Ly} \cdot z_{hz}$$

where $\boldsymbol{\ell}_{hy}$ is the yaw movable control fin center of pressure to hinge axis location.

H. MISSILE THRUST AND WEIGHT

1. THRUST-WEIGHT STAGES

There are four thrust-weight stages. Missile thrust is computed either from input vacuum thrust, nozzle exit area, and atmospheric pressure or from internal ballistics. Instantaneous weight is a function of input stage weight, weight flow, and propellant vacuum specific impulse. There are two thrust-weight tables for each stage: the main and complementary thrust-weight tables. These two tables allow the capability of simulating the simultaneous operation of motors having different characteristics or they can be used in sequence. Twenty-five data points can be input in each table. Under the internal ballistics option, the input main thrust-weight table is replaced by a thrust vs time, a pressure vs time or a burning area vs web table.

Total axially directed thrust, F, is computed from main thrust, F_M , and complementary thrust, F_C , as follows:

$$F = F_M + F_C$$

a. Noninternal Ballistics Evaluation of Main Thrust Weight Table—The main thrust-weight table consists of the following inputs: stage termination control parameters, σ_s , k_s : total vacuum impulse quantities, i_{vT} , I_{vM} ; main stage weight, W_{MO} : thrust, weight flow and time perturbation factors, K_{FM} , K_{WM} , K_{tM} ; specific impulse, I_{spM} ; nozzle exit area, A_{eM} ; weight carryover flag, K_O ; nozzle separated flow parameters, ϵ_d , γ_d , C_d , α_d , α_s , c_s , and a maximum of 25, j = 1, 2, . . . , 25, monotonically increasing main thrust weight switching times, $t_M(j)$, with corresponding vacuum thrust, F_{M} , and weight flow, $\hat{W}_{M(j)}$.

An adjusted main thrust-weight table of 6 parameters and a maximum of 25 rows is generated as follows:

(1) Adjusted time switching points

$$t_{M(j)} = K_{tM} t_{M(j)}$$

(2) Adjusted vacuum thrust points

$$F_{M(j)} = K_{FM} F_{M(j)}$$

(3) Adjusted total main weight flow points

$$W_{M(j)} = \begin{cases} 0 & \text{if } \widehat{t}_{M(j+1)} = \widehat{t}_{Mj} \text{ or } j = J \text{ and } W_{MO}^{\dagger} < 0 \\ (W_{Mj} - W_{M(j+1)})/t_{M(j+1} - \widehat{t}_{Mj}) & \text{if } \widehat{t}_{M(j+1)} \neq \widehat{t}_{Mj} \text{ and } j \neq J \text{ and } W_{MO}^{\dagger} < 0 \\ K_{WM}W_{M(j)} & \text{if } I_{spM} = 0 \text{ and } W_{MO}^{\dagger} \ge 0 \\ K_{WM}W_{M(j)} + \widehat{F}_{M(j)}/I_{spM} & \text{Otherwise} \end{cases}$$

(4) Adjusted time rate change of vacuum thrust points

$$\hat{\hat{\mathbf{f}}}_{M(j)} = \begin{bmatrix} 0 & \text{if } \hat{\mathbf{f}}_{M(j)} \geq \mathbf{t}_{M(j+1)} \\ (\hat{\mathbf{f}}_{M(j+1)} - \hat{\mathbf{f}}_{M(j)}) & \text{ftherwise} \end{bmatrix}$$
of the first of the following section is the first of the following section of the following section is the first of the following section is the first of the following section of the following section is the first of the fir

(5) Adjusted time rate change of weight flow points

$$\hat{\hat{w}}_{H(j)} = \begin{bmatrix} 0 & \text{if } t_{H(j)} \ge t_{H(j+1)} \text{ or } w_{H0}' < 0 \\ & \\ [\hat{\hat{w}}_{H(j+1)} - \hat{\hat{w}}_{H(j)}] / [\hat{t}_{H(j+1)} - \hat{t}_{H(j+1)}] & \text{Otherwise} \end{bmatrix}$$

(6) Adjusted main table expended weight points

$$\hat{W}_{M(j)} = \begin{cases} \hat{u}_{M_{2}} - \hat{u}_{M_{3}} \\ \hat{u}_{M_{2}} - \hat{u}_{M_{3}} \\ \hat{v}_{M_{3}} - \hat{u}_{M_{3}} \end{cases}$$
 if $\hat{u}_{M_{3}} < 0$

$$\sum_{i=1}^{3} e_{i,3} \hat{u}_{M_{3}(i)} + \hat{u}_{M_{3}(i-1)} \hat{u}_{M_{3}(i)} - \hat{u}_{M_{3}(i-1)}$$
 Otherwise

Weight, weight flow and thrust are evaluated as:

weight expended for main motor

$$W_{M} = \hat{V}_{M(j)} + \hat{V}_{M(j)} \Delta t_{M} + 0.5 \hat{V}_{M(j)} \Delta t_{M}^{2}$$

weight flow rate

$$\dot{\vec{w}}_{M} = \dot{\vec{w}}_{M(j)} + \dot{\vec{w}}_{M(j)} \Delta c_{M}$$

vacuum thrust

$$F_{Mv} = \hat{F}_{M(j)} + \hat{\hat{F}}_{M(j)} \Delta t_{M}$$

where j is such that

$$\hat{t}_{M(j)} \leq t_B \leq \hat{t}_{M(j+1)}$$

and

$$\Delta t_{M} = t_{B} - \hat{t}_{M(j)}$$

b. Noninternal Ballistics Evaluation of Motor Chamber Pressure and Nozzle Vacuum Pressure Ratio—If the input propellant diameter (D_p) is less than or equal to zero and the nozzle expansion ratio ϵ_d is greater than 1.0, the following region is used to establish the motor chamber pressure (P_c) and the nozzle vacuum pressure ratio (P_c/P_e) .

Nozzle half angle momentum correction coefficient

°
$$\lambda_d$$
 ° (1 cos α_d)/2.

Nozzie half angle

$$\alpha_d = \begin{bmatrix} 15^\circ & \text{if } \alpha_d^* = 0 \\ \\ \alpha_d^* & \text{Otherwise} \end{bmatrix}$$

where a_d^i is the input nozzle half angle.

Optimum thrust coefficient ($P_e = P_d$)

$$c_{F0} = \Omega_d \left[1 - (P_e/P_e)^{-\Gamma_d}\right]^{\frac{1}{2}}$$

Chamber pressure

$$P_{c} = F_{Mv} \epsilon_{d} / \left\{ \left[C_{D} \lambda_{d} C_{FO} + \epsilon_{d} / (P_{c}/P_{e}) \right] \Lambda_{em} \times 144. \right\}$$

Nozzle efficiency coefficient

$$C_{D} = \begin{bmatrix} 0.96 & & \text{If } C_{D}^{*} = 0 \\ \\ C_{D}^{*} & & \text{Ctherwise} \end{bmatrix}$$

Where $C_D^{\,\prime}$ is the input nozzle efficiency coefficient

Ratio of specific heats functional constants

$$\begin{split} &\Gamma_{d} = (\gamma_{d} - 1)/\gamma_{d} \\ &\Xi_{d} = [(\gamma_{d} - 1)/(\gamma_{d} + 1)]^{\frac{1}{2}} [2/(\gamma_{d} + 1)]^{-\frac{1}{2}} [1/(\gamma_{d} - 1)] \\ &\Omega_{d} = \gamma_{d} [2/(\gamma_{d} - 1)]^{\frac{1}{2}} [2/(\gamma_{d} + 1)]^{-\frac{1}{2}} [(\gamma_{d} + 1)/(2(\gamma_{d} - 1))] \end{split}$$

$$\gamma_{d} =
\begin{bmatrix}
1.18 & \text{if } \gamma_{d}^{1} = 0 \\
\gamma_{d}^{1} & \text{Otherwise}
\end{bmatrix}$$

Where γ_d^i is the input exhaust gas ratio of specific heats.

Nozzle expansion ratio

$$\epsilon = \epsilon_d$$

Pressure ratio

Solve for (P_c/P_e) by Newton-Raphson iteration method

$$\epsilon_{d} = \Xi_{d} (P_{c}/P_{e})^{-(1/\gamma_{d})} [1 - (P_{c}/P_{e})^{-1/2}]^{-\frac{1}{2}}$$

Let
$$[P_c/P_e]_{(n)} = R_{(n)}$$

$$R_o = (0.3953 + 2.785 \gamma_d) \epsilon_d (0.28563 + 0.8631 \gamma_d)$$

Algorithm

$$R_{(n+1)} = R_{(n)} - F[R_{(n)}]F'[R_{(n)}] = 0, 1, 2, ...$$

Where

$$\begin{split} \mathbf{F}[\mathbf{R}_{(n)}] &= \Xi_{\mathbf{d}}(\mathbf{R}_{(n)})^{(1/\gamma_{\mathbf{d}})} \left\{ 1 - [\mathbf{R}_{(n)}]^{-\Gamma_{\mathbf{d}}} \right\}^{-\frac{1}{2}} - \epsilon_{\mathbf{d}} \\ \mathbf{F}'[\mathbf{R}_{(n)}] &= \Xi_{\mathbf{d}} (1/\gamma_{\mathbf{d}}) [\mathbf{R}_{(n)}]^{-\Gamma_{\mathbf{d}}} \left\{ 1 - [\mathbf{R}_{(n)}]^{-\Gamma_{\mathbf{d}}} \right\}^{-\frac{1}{2}} \\ &- (1/2) \Xi_{\mathbf{d}} \Gamma_{\mathbf{d}} [\mathbf{R}_{(n)}]^{-(2\Gamma_{\mathbf{d}})} \left\{ 1 - [\mathbf{R}_{(n)}]^{-\Gamma_{\mathbf{d}}} \right\}^{-3/2} \end{split}$$

Terminate iteration if

$$F[R_{(n)}]/\epsilon_d < 0.000001$$

Then set

$$(P_c/P_e) = P_{(n)}$$

Where $\epsilon_{
m d}$ input nozzle expansion ratio 335

c. <u>Internal Ballistic Evaluation of Main Thrust Weight Table</u>—If the input propellant diameter (D_p) is greater than zero, the following equations and logic are used to simulate the operation of a single chamber controllable motor.

L-Number	Symbol	<u>Definition</u>	Default
L-k901	$\mathbf{D}_{\mathbf{p}}$	Diameter of propellant, in.	0.0
L-k002	r. 1000	Burning rate of propellant at 1000 lb/sq in. chamber pressure and flag to determine evaluation option, in./sec	0.0
K-k013	€d	Nozzle expansion ratio, dim	0.0
L-k014	$\gamma_{ m d}$	Ratio of specific heats of the rocket motor exhaust gases, dim	1.18
L-k015	$\mathbf{c}_{\mathbf{p}}$	Nozzle efficiency coefficient, dim	0.96
K-k016	$\alpha_{\mathbf{d}_{-}}^{-}$	Nozzle effective half angle, deg	15
L-k095	$oldsymbol{ ho}_{\mathbf{P}}$	Density of propellant, lb/cu in.	0.065
L-k096	τw	Web fraction, dim	0.8
L-k097	n	Burn rate exponent, dim	0.6
L-k098	$\alpha_{ m p}$	Propellant diffusivity, sq in./sec	0.00027
L-k099	P max	Maximum allowable chamber pressure, lb/sq in.	0.0
L-k407	ω_{PC}	Pressure control frequency, rad/sec	0.0

The following logic will initialize the following tables depending on the input options: (a) Vacuum Thrust-Time Table, i.e., if $r_{b1000}^{\dagger} = 0$. (b) Chamber Pressure-Time, i.e., if $r_{b1000}^{\dagger} < 0$, (c) Surface Area-Web Depth Fraction, i.e., if $r_{b1000}^{\dagger} > 0$.

1	$\hat{\mathfrak{t}}_{ ext{Mj}}$	Time, sec
2	$\mathbf{\hat{F}}_{\mathbf{Mj}}$	Vacuum thrust, lb
3	P _{cj}	Chamber pressure, lb/sq in.
4	Р̂сј	Time change of chamber pressure, lb/sq insec
5	g _{wj}	Web depth fraction, dim
6	v _{ci}	Chamber volume, cu in.

9
$$A_{x}$$
 Throat extinguishment area, sq in.

In addition to these tabular values, the following constants are also calculated:

Thrust coefficient route (dim)

$$C_f = f(\gamma_d, \epsilon_d, \alpha_d, C_d)$$

Ratio of specific heats functional constants

$$\begin{split} &\Gamma_{d} = (\gamma_{d} - 1)/\gamma_{d} \\ &\Xi_{d} = \left[(\gamma_{d} - 1)/(\gamma_{d} + 1) \right]^{1/2} \left[2/(\gamma_{d} + 1) \right] \left[1/(\gamma_{d} - 1) \right] \\ &Q_{d} = \gamma_{d} \left[2/(\gamma_{d} - 1) \right]^{1/2} \left[2/(\gamma_{d} + 1) \right] \left\{ (\gamma_{d} + 1)/(2(\gamma_{d} - 1)) \right\} \end{split}$$

Pressure ratio

Solve for (P_c/P_e) by Newton-Raphson iteration method

$$\epsilon_{\rm d} = \mathcal{E}_{\rm d} (P_{\rm c}/P_{\rm e})^{(1/\gamma_{\rm d})} \left[1 - (P_{\rm c}/P_{\rm e}) - \Gamma_{\rm d} \right]^{-1/2}$$

let
$$\left[P_{c}/P_{e}\right] = R_{(l)}$$

$$R_o = (0.3953 + 2.785 \gamma_d) \epsilon_d (0.28563 + 0.8621 \gamma_d)$$

Algorithm

$$R_{(\ell_1+1)} = R_{(\ell_1)} - F_{(\ell_1)} - F_$$

$$F\left[R_{(\ell)}\right] = \Xi_{d}\left[R_{(\ell)}\right]^{(1/\gamma_{d})} \quad 1 - \left[R_{(\ell)}\right]^{-\Gamma_{d}} \quad - \varepsilon_{d}$$

$$F'\left[R_{(\ell)}\right] = \Xi_{d}^{-(1/\gamma_{d})}\left[R_{(\ell)}\right]^{-\Gamma_{d}} \quad \left\{1 - \left[R_{(\ell)}\right]^{-\Gamma_{d}}\right\}^{-1/2}$$

$$- (1/2) \Xi_{d}^{-\Gamma_{d}}\left[R_{(\ell)}\right]^{-(2\Gamma_{d})} \quad \left\{1 - \left[R_{(\ell)}\right]^{-3/2}\right\}^{-3/2}$$

Terminate iteration if

$$\left| \mathbf{F} \left[\mathbf{R}_{(\ell)} \right] / \epsilon_{\mathbf{d}} \right| < 0.000001 \text{ or } \ell = 10$$

then set

$$(P_c/P_e = R_{(l)})$$

Optimum thrust coefficient (Pe = Pd)

$$c_{FO} = Q_d \left[1 - (P_c/P_e)^{-\Gamma_d} \right] \frac{1/2}{2}$$

Vacuum thrust coefficient $(P_{d} = 0)$

$$c_f = c_p \lambda_d c_{f0} + \epsilon \frac{P_c}{P_c}$$

Characteristic Velocity (ft/sec)

$$c* = \frac{I_{spli} \hat{g}_e}{c_f}$$

Reference Throat Area (in2)

$$\Lambda_{\text{tref}} = \frac{\Lambda_{\text{eM}} \times 144}{\epsilon_{\text{d}}}$$

Web Thickness (in)

$$f_{wt} = \tau_w D_p/2$$

Number of points in table (dim)

Set J such that

$$t_{MJ}^{\prime} > t_{M(J+1)}^{\prime}$$

or when table is full J = 25

For option using input thrust versus time

if
$$r_{b1000}^{\dagger} = 0$$

the thrust multiplier logic is used to evaluate the adjusted vacuum thrust time points \hat{F}_{M} , and \hat{t}_{Mj}

Chamber Pressure (1b/in2)

$$P_{cj} = \hat{F}_{Mj}/(A_{tref} + C_f)$$

The total impulse (lb-sec)

$$I_{Th} = c.7 \sum_{j=1}^{J-1} (\hat{F}_{M(j+1)} + \hat{F}_{Mj}) (\hat{c}_{M(j+1)} - \hat{c}_{Mj})$$

Burn Rate Coefficient ([in/sec][in2/1b] 1)

$$a = \frac{f_{wt}}{I_r}$$

Where

$$I_{rb(jh)} = \begin{bmatrix} \frac{\{P_{c(j+1)}^{n+1} - P_{cj}^{n+1}\} \{\hat{t}_{M(j+1)} - \hat{t}_{Mj}\}}{(n+1) \{P_{c(j+1)} - P_{cj}\}} & \text{If } P_{c(j+1)} \neq P_{cj} \end{bmatrix}$$

$$I_{rb(jh)} = \begin{bmatrix} P_{cj}^{n} & \hat{t}_{M(j+1)} - \hat{t}_{Mj}\} & \text{Otherwise} \end{bmatrix}$$

$$I_{radius} = \begin{bmatrix} I_{rbj}^{n} & I_{rbj}$$

である。 第122章 大学のでは、「大学のできない。「大学のできない。」「大学のできない。「大学のできない。」「「大学のできない。」」「「大学のできない。」「「大学のできない。」「「大学のできない。」「「大学のできない。」」「「大学のできない。」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」」「「大学のできない。」」」「「大学のできない。」」「「大学のできない。」」「「大学のできない、」」」「「大学のできない。」」「「大学のできない。」」」「「大学のできない。」」」「「大学のできない、「「大学のできない。」」」」「「大学のできない、「「「「大学のできない、」」」」「「大学のできない、「「「大学のできない、」」」「「大学のできない、」」」「「大学のできない、「「「大学のできない、」」」」「「大学のできない。」」」「「大学のできない、「「そのできない、」」」」「「大学のできない、」」」「「大学のい、」」」」「「「大学のい、「「そのい、「「大学のい、」」」」「「「大学のできない、「「「大学のできない、」」」」「「「大学のい、」」」」「「「大学のできない、「「「大学のできない、」」」」」」」」」」」」「「「「大学のできない、」」」」「「大学の、」」」」」「「大学のできない、「「「そのい、「そのい、」」」」

Reference Burn Bate at 1000 psi (ip/ser)

$$r_{\text{bref}} = a(1000)^n$$

Fraction Web Burned at Thrust Time Points (dim)

$$g_{wj} = g_{w(j-1)} + \frac{a}{fwt} I_{rbj}$$

$$j = 2, \dots J$$

Fraction Propellant at Thrust Time Points (dim)

$$g_{pj} = 0$$

$$g_{pj} = g_{p(j-1)} + \frac{[\hat{F}_{M(j)} + \hat{F}_{M(j-1)}] [\hat{\iota}_{Mj} - \hat{\iota}_{M(j-1)}]}{2 * \hat{\iota}_{TM}}$$

$$j = 2, ... J$$

Total Propellant Weight (1b)

$$W_p = I_{TM}/I_{SPM}$$

Initial Chamber Volume (in3)

$$V_{c1} = \frac{W_p}{\rho_p} \left(\frac{(1-\tau_w)^2}{1 - (1-\tau_w)^2} \right)$$

Chamber Volume at Thrust Time Points (in3)

$$v_{cj} - v_{c1} + \frac{w_p}{\rho_p} g_{pj}$$

Time Rate Change of Chamber Pressure Between Thrust Time Points (lb/in²- sec)

$$\hat{v}_{c} = \begin{bmatrix} P_{c(j+1)} - P_{c} / (\hat{\iota}_{M(j+1)} - \hat{\iota}_{Mj}) & \text{If } \hat{\tau}_{M(j+1)} \neq \hat{\iota}_{Mj} \\ \vdots & \vdots & \vdots \\ P_{c(j+1)} - P_{cj} / \ell \cdot 0001 & \text{Otherwise} \end{bmatrix}$$

Last point

$$\dot{P}_{cJ} = 0$$

Burn Surface Coefficients (1/in), (in²/sec),([1b/in²-sec][in²/1b]ⁿ)

$$c_{ASI} = \frac{\bar{s}_{e} \left(\frac{\gamma_{d}+1}{2}\right)^{\frac{\gamma_{d}+1}{\gamma_{d}-1}}}{\gamma_{d} c \approx \frac{1}{2}}$$

$$c_{AS2} = \frac{A_{tref} \bar{g}_e}{C^*}$$

$$C_{AS3} = \rho_p a$$

Su iace Areas (in2)

$$A_{S1} = (CAS2/CAS3) P_{c1}^{1-n}$$

$$A_{Sj} = \frac{C_{AS1} \dot{P}_{cj} c_{j} \dot{AS2} c_{j}}{C_{AS3} \dot{P}_{cj}^{n}}$$

$$j = 2, ..., J$$

If
$$A_{Sj}$$
 < 0, A_{Sj} is set to zero

For option using input chamber pressure versus time

If
$$r_{b2000} < 0$$

Chamber Pressure (1b/in2)

$$P_{cj} = F_{Mj}^{i}$$
 j = 1, ..., J

Vacuum Thrust (1b)

$$\hat{\mathbf{F}}_{Mj} = \mathbf{P}_{cj} \mathbf{A}_{tref} \mathbf{C}_{f}$$
 $j = 1, ..., J$

Total Impulse (1b-sec)

$$t_{TM} = 0.5 \text{ K}_{t} \sum_{j=1}^{J-1} (\hat{r}_{M(j+1)} + \hat{r}_{Mj})(t_{M(j+1)} - t_{Mj})$$

では、100mので

The initialization parameters are set as:

$$I_{VT}' = 0$$

$$I_{\text{VM}}^{\dagger} = I_{\text{TM}}$$

$$P_{arm}^{\dagger} = 0$$

The thrust multiplier logic is used to evaluate the adjusted vacuum thrust time points \hat{x}_{Cj} and \hat{t}_{cj} and the logic in the option using the input thrust versus time is used to evaluate the ballistic parameters.

For option using input A_{Sj} versus g_{wj}

If
$$r_{b1000} > 0$$

Set

$$g_{wj} = 0$$

$$g_{wj} = t'_{Mj}$$

$$j = 2, \ldots,$$

Burn Rate Coefficient ([in/sec][in2/lb]")

$$a = r_{b1G90}^{t}/(1000)^{n}$$

Burn Surface Area Coefficients (1/in), (in2/sec), ([1b/in2-sec][in2(15]])

$$c_{AS1} = \frac{\bar{\epsilon}_{e} \left(\frac{\gamma_{d}+1}{2}\right)^{\gamma_{d}-1}}{\frac{12 \, \gamma_{d} \, c*z}{1}}$$

$$c_{AS2} = \frac{A_{tref} \tilde{g}_e}{C^*}$$

$$C_{AS3} = \rho_p a$$

Chamber Pressure Coefficients

$$C_{PC1} = \frac{C_{AS1} a}{(n+1) C_{AS2}}$$

$$c_{pc2} = \frac{c_{AS1}}{2 \rho_p}$$

$$C_{703} = \frac{C_{AS3}}{C_{AS2}}$$

Initial Chamber Pressure (1b/in2)

$$P_{c1} = (C_{PC3} A_{S1})^{\frac{1}{1-n}}$$

Evaluating V_{cj} , P_{cj} , \dot{P}_{cj} , \dot{r}_{Mj} at g_{wj} points

The following calculations are performed for j = 1, ..., J

Incremental Burn Distance

$$\Delta r_{bj} = (g_{wj+1} - g_{wj}) f_{wt}$$

Iteration for Chamber Pressure, i.e., Pc(i+1)

let

k = iteration number

$$\begin{split} F(P_{ck}) &= P_{ck} + C_{PC1} - \frac{V_{c(j-1)}}{\Delta r_{bj}} - \left(P_{ck}^{n+1} - P_{cj-1}^{n+1}\right) \\ &+ C_{PC2} - \left(P_{ck}^{2} - P_{cj-1}^{2}\right) - C_{PC3} - A_{S(j)} - P_{ck}^{n} \\ F'(P_{ck}) &= 1 + C_{PC1} - \frac{V_{c(j-1)}}{\Delta r_{bj}} - (n+1) - P_{ck}^{n} \\ &+ 2 - C_{PC2} - P_{ck} - nC_{PC3} - A_{S(j)} - P_{ck}^{n-1} \end{split}$$

Newton-Raphson Iteration Method

Algorithm

$$P_{(k+1)} = P_{ck} - F(P_{ck})F'(P_{ck})$$
 $k = 1, 2, ...$

Terminate iteration if:

$$\left(\frac{P_{c(k+1)} - P_{ck}}{|P_{ck}|}\right) < 1.E-10$$

or k = 50

Set

$$P_{c(j)} = P_{c(k+1)}$$

Time rate change of chamber pressure

$$\dot{P}_{cj} = \frac{P_{c(j)} - P_{c(j-1)}}{\tau} = \frac{a}{\Delta r_{bj(n+1)}} \left(P_{c(j)}^{n+1} - P_{cj-1}^{n+1}\right)$$

Initial chamber volume

$$V_{c1} = \frac{(1-\tau_w)^2}{1-(1-\tau_w)^2} \frac{fwt}{2} \sum_{j=1}^{J-1} (A_{S(j+1)} + A_{Sj}) (g_{w(j+1)} - g_{wi})$$

Chamber volume

$$V_{c(j+1)} = V_{cj} + \frac{C_{AS2}}{2 \rho} \tau_{j} (P_{c(j+1)} + P_{cj})$$

Incremental burn time (sec)

$$\tau_{j} = \frac{\Delta r_{bj} (n+1)}{a} \begin{bmatrix} \frac{P_{c(j+1)} - P_{cj}}{n+1} \\ \frac{P_{c(j+1)} - P_{cj}}{n+1} \end{bmatrix}$$

Time

$$\hat{t}_{M1} = 0$$

$$\hat{t}_{Mj} = \sum_{2}^{j} \hat{t}_{M(i-1) \tau_{i-1}}$$

Vacuum Thrust (1b)

$$\hat{F}_{Mj} = P_{\sigma j} C_f \Lambda_{tref}$$
 $j = 1, ..., J$

Total Impulse (1b-sec)

$$I_{TM} = 0.5 \sum_{j=1}^{j_{max-1}} (\hat{f}_{M(j+1)} + \hat{f}_{Mj})(\hat{t}_{M(j+1)} - \hat{t}_{Mj})$$

Total Propellant Weight (1b)

$$w_p = T_{TM}/T_{SIM}$$

Fraction Expended Propellant at Thrust Time Points for j = 1, 2, ..., J

the second of the second s

$$g_{pj} = 0$$

$$g_{pj} = g_{p(j-1)} + \frac{[\hat{F}_{M(j)} + \hat{F}_{M(j-1)}][\hat{t}_{Mj} - \hat{t}_{M(j-1)}]}{2 \times I_{TM}}$$

The initialization parameters are set as:

$$I_{3} = 0$$

$$I_{VM}^{\prime} = I_{TM}$$

$$P_{arm} = 0$$

The thrust multiplier logic is used to evaluate the adjusted complementary tube vacuum thrust time points \hat{F}_{Cj} and \hat{t}_{Cj} .

The following logic is applicable to all options when $D_p \neq 0$

Extinguishment Area

$$A_{xj} = 1.1 \frac{AS_j C_{AS3} C^*}{\bar{g}_e} \left[\frac{a}{n\alpha_p} \frac{V_{Cj} C_{AS1}}{AS_j \rho_p} \right]^{\frac{1-\eta}{1+\eta}}$$

Maximum ExtinguishmentArea

$$A_{xmax} = MAX (A_{xj} j = 1, ..., j_{max})$$

Average Keference Chamber Pressure

$$\hat{P}_{cref} = \frac{I_{TM}}{A_{tref} C_f \hat{t}_{M,I}}$$

Maximum Reference Chamber Pressure

$$p_{\text{emax}} = \text{MAX} (P_{\text{ej}} \quad j = 1, \ldots, J)$$

Maximum Allowable Chamber Pressure

$$P_{\text{CMXA}} \begin{bmatrix} 1.E 30 & P_{\text{max}} = 0 \\ P_{\text{max}} & P_{\text{max}} > 0 \\ -P_{\text{max}} & P_{\text{cmax}} & P_{\text{max}} < 0 \end{bmatrix}$$

Maximum Surface Area

$$A_{SMAX} = MAX (A_{Sj} j = 1, ..., J)$$

Minimum Throat Area

$$A_{xmin} = A_{SMAX} P_{CMXA}^{n-1} CAS3 \frac{C*}{g_e}$$

d. Controllable Motor Dynamics

The following logic and equations evaluate the dynamic internal ballistics of a pintle controlled single chamber motor.

Burn Rate

$$r_{b} = \begin{bmatrix} 0 & \text{If } A_{t} > A_{XI} \\ a P_{c}^{n} & \text{Otherwise} \end{bmatrix}$$

Burn Depth

$$D_b = \int_0^t r_b dt$$

Percent Web

$$g_{wl} = D_b / f_{wt}$$

Interpolation Formulas

Index Table

j is such that

$$g_{w_{i}} \leq g_{wi} < g_{w(j+1)}$$

Incremental Burn Distance

$$\Delta r_b = (g_{wI} - g_{wj}) f_{wt}$$

Interpolation Time

$$\tau = \begin{bmatrix} \frac{1/(n+1)}{\frac{\dot{P}_{cj}}{a}} & \frac{\Delta c_b}{a} + (P_{cj})^{n+1} \\ \frac{\dot{P}_{cj}}{\dot{P}_{cj}} & \frac{\Delta c_b}{a} + (P_{cj})^{n+1} \end{bmatrix} & P_{cj} \neq P_{c(j+1)}$$

$$\frac{\Delta r_b}{a} & P_{cj}^{-n} & \text{Otherwise}$$

Chamber Volume

$$V_{ci} = V_{cj} + \frac{A_{tref} \cdot \ddot{g}_{e}}{\rho_{p} C^{*}} (P_{cj} \tau + \dot{r} \dot{P}_{cj} \tau^{2})$$

Nominal Vacuum Thrust

$$F_{VN} = \hat{F}_{Mj} + \frac{\left(\hat{F}_{M(j+1)} - \hat{F}_{Mj}\right)}{\hat{c}_{M(j+1)} - \hat{c}_{Mj}} \tau$$

Nominal Delivered Thrust

$$F_N = F_{VN} - P_a A_{eM}$$

Burn Surface Areas

$$A_{SI} = \frac{C_{AS1} \dot{P}_{cj} V_{CI} + C_{AS2} (P_{cj} + \dot{P}_{cj} \tau)}{C_{AS3} (P_{cj} + \dot{P}_{cj} \tau)^{n}}$$

Time Change of Chamber Pressure

$$\dot{P}_{c} = \begin{bmatrix} (C_{AS3} A_{SI} P_{c}^{Tr} - \frac{A_{t}}{A_{tref}} C_{AS2} P_{c})/(C_{AS1} V_{cI}) & \text{If } A_{t} < A_{X} \\ -\frac{A_{t}}{A_{tref}} C_{AS2} P_{c}/C_{AS1} V_{cI} & \text{Otherwise} \end{bmatrix}$$

$$P_{ceq} = \begin{bmatrix} \frac{C_{AS3} A_{tref} A_{SI}}{A_{t} C_{AS2}} \end{bmatrix} \xrightarrow{\frac{1}{1-n}}$$

$$0 \qquad 0 \text{ Otherwise}$$

Chamber Pressure

$$P_{c} = \begin{cases} P_{co} + \int_{bk}^{t} & P_{c} dt & \text{If TMC} \neq 0 \\ P_{ceq} & \text{Otherwise} \end{cases}$$

where TMC is the thrust dynamic mode, if = 0, the achieved thrust equals command thrust and, if = 1, the first order response system is solved.

The initial chamber pressure is set at $P_{co} = P_{cl}$ (\dot{P}_{c} equation)

I , asion Ratio

$$\epsilon = \epsilon_d A_{tref}/A_t$$

Thrust Coefficient

$$c_{FI} = f (\gamma_d, \epsilon, \alpha_d, C_d)$$

Thrust

$$F_{HV} = P_{C}^{\Lambda} C_{FI}$$

Mass Weight Flow Rate

$$\dot{\tilde{W}}_{MP} = \frac{P_c A_t \bar{g}}{C^*} e$$

Mass Propellant Removed

$$w_{pr} = \int_{Bk=0}^{t_{Bk}} \dot{w}_{MP} dt$$

Fraction of Propellant Removed

$$g_{PI} = \frac{W_{PI}}{W_{P}}$$

Extinguishment Area

$$A_{XI} = \frac{A_{SI} c_{AS3} c^*}{\bar{g}_e} \left[\frac{a}{n\alpha_p} \frac{v_{CI}}{A_{SI}} \frac{c_{AS1}}{\rho_p} \right]^{\frac{2}{1+n}}$$

The following logic evaluates the commanded chamber pressure and equilibrium throat area for a given commanded thrust.

Commanded Vacuum at (1b)

$$F_{\text{vcom}} = F_c + P_a A_{eM}$$

Interste for RATCC

$$R_{ATCCO} = 1$$

$$\epsilon_{cci} = \epsilon_{d}/R_{ATcci}$$

$$c_{fi} = f (\gamma_d, \epsilon_{cci}, \alpha_d, c_d)$$

$$R_{ATcc(i+1)} = \begin{bmatrix} \frac{C_{AS3}}{C_{AS2}} & A_{SI} \end{bmatrix} \frac{1}{n} \quad \left(\frac{A_{tref} R_{ATcci} C_{fi}}{F_{vcom}}\right)^{\frac{1-n}{n}}$$

Converged if

$$\frac{\left|R_{\text{ATcc(i+1)}} - R_{\text{ATcci}}\right|}{R_{\text{ATcci}}} < 1. \times 10^{-6}$$

Command Chamber Pressure (1b/in2)

$$P_{cc} = \frac{F_{cv}}{A_{tcc} C_{fi}}$$

Pintle Area Control Law

Rate Change of Throat Area

$$\mathring{A}_{t} = K_{s} (P_{c} - P_{cc} + K_{p} \mathring{P}_{c})$$

where

the pintle control frequency (rad/sec)

$$\omega_{\mathbf{p}} = \frac{c_{\mathbf{AS2}} (1-n)}{c_{\mathbf{AS1}} v_{\mathbf{CI}}}$$

the dynamic constant (lb/in4-sec)

$$\lambda_{p} = \frac{c_{AS2}}{A_{tref} c_{AS1} v_{CI}} \left[\frac{c_{AS3} A_{SI}}{c_{AS2}} \right]^{\frac{1}{1-n}}$$

Controller Frequency

$$\omega_{pc} = \begin{bmatrix} \omega_{p} & \text{if } \omega'_{pc} = 0 \\ \omega_{pc} & \text{otherwise} \end{bmatrix}$$

Pressure Error Gain (in4/1b-sec)

$$K_S = \omega_{Pc}^2 \gamma_p$$

Pressure Rate Gain (sec)

$$K_{p} = \frac{.4}{\omega_{p_{c}}}$$

Throat Area
$$A_{tp} = \begin{bmatrix} A_{t0} + \int_{t_{Bk}}^{t} & A_{t} dt & \text{If TMC} \neq 0 \\ A_{tcc} & \text{Otherwise} \end{bmatrix}$$

$$A_{t} = \begin{bmatrix} A_{xmax} & \text{If } A_{tp} > A_{xmax} \\ A_{xmin} & \text{If } A_{tp} < A_{xmin} \\ A_{p} & \text{Otherwise} \end{bmatrix}$$

Initial Throat Area

e. Main Table Delivered Thrust

Thrust equation to include flow separation in the nozzle:

$$\begin{bmatrix} 0 & \text{if } F_{Mv} = 0 \\ F_{Mv} - P_d A_{eM} & \text{if } \epsilon_d = 0 \text{ or } P_s \leq P_e \\ \end{bmatrix}$$

$$F_M = \begin{bmatrix} 0 & \text{if } \epsilon_d \neq 0 \text{ and } P_c \leq P_d \\ \left[\lambda_d C_D \Omega_d \left[1 - (P_s/P_c) \Gamma d \right]^{1/2} + (P_s - P_d) \left(\epsilon_s/P_c \right) \right] \\ \left[(P_c A_{eM}/\epsilon) \quad (1/144) \right] & \text{Otherwise,} \end{bmatrix}$$

Where F_{Mv} is obtained from the main vacuum thrust-weight table, A_{eM} the input area, and P_d the static base pressure.

Nozzle exit pressure (lb/in. 2)

$$P_e = P_c/(P_c/P_e)$$
.

Nozzle separation pressure (lb/in. 2)

$$P_{g} = \begin{bmatrix} P_{d} (a_{s} + b_{s}) & \left[\left[\frac{2}{\gamma_{d}} + 1 \right] \right] & \left[\frac{\gamma_{d}}{\gamma_{d}} - 1 \right] \\ P_{c} > P^{*} \\ P_{d} & Otherwise \end{bmatrix}$$

Static base pressure (lb/in. 2)

$$P_d = P_a/144.0$$

Where P_{a} is the ambient pressure.

Where

Where a_s^i , b_s^i , and c_s^i are input nozzle separation polynomia. coefficients.

Nozzle separation expansion ratio

le separation expansion ratio
$$\epsilon_{s} = \begin{bmatrix}
\Xi_{d} & (P_{s}/P_{c})^{-(1/\gamma_{d})} [1 - (P_{s}/P_{c})^{\Gamma_{d}^{-\frac{1}{2}}}] & \text{If } F_{c} > P^{*} \\
1 & \text{Otherwise}
\end{bmatrix}$$

Nozzle critical pressure

$$P^* = P_c[2/(\gamma_d + 1)][\gamma_d/(\gamma_\alpha - 1)]$$

Complementary Thrust-Weight

ſ.

The complementary thrust-weight table consists of the following input: thrust, weight flow and time perturbation factors, K_{FC}^{i} , K_{WC}^{i} , K_{C}^{i} ; specific impulse, I_{spC}^{i} ; nozzle exit area, A_{eC}^{i} ; complementary stage weight, W_{CO}^{i} ; total vacuum impulse quantities, I_{VC}^{i} ; complementary weight carryover flag, K_{NO}^{i} ; and a maximum of 25, $i=1,2,\ldots,25$, monotonically increasing complementary thrust weight switching times, $t_{C(i)}^{i}$, and weight flow, $W_{C(i)}^{i}$.

The adjusted complementary thrust-weight table is as follows: At stage initiation set up a 5 parameter table with a maximum of 25 rows such that the:

Adjusted time switching points are:

$$\hat{t}_{C(j)} = K_{tC} t_{C(j)}$$

Adjusted vacuum thrust points are:

$$\hat{\mathbf{f}}_{\mathbf{C}(\mathbf{j})} = \mathbf{K}_{\mathbf{FC}} \mathbf{F}_{\mathbf{M}(\mathbf{j})}$$

Adjusted total complementary weight flow points are

$$\hat{\vec{w}}_{C(j)} = \begin{bmatrix} 0 & \text{If } \hat{\vec{t}}_{C(j+1)} = \hat{\vec{t}}_{Cj} \text{ or } j - J \text{ and } \vec{w}_{Co} < 0 \\ (\vec{y}_{Cj} - \vec{w}_{C(j+1)})/(\hat{\vec{t}}_{C(j+1)} - \hat{\vec{t}}_{Mj}) \\ & \text{If } \hat{\vec{t}}_{C(j+1)} \neq \hat{\vec{t}}_{Cj} \text{ and } j \neq J \text{ and } \vec{w}_{Co} < 0 \\ \vec{w}_{C(j)} & \text{If } I_{spC} = 0 \text{ and } \vec{w}_{Co} \ge 0 \\ \vec{w}_{C(j)} = \hat{\vec{t}}_{C(j)}/I_{spC} \\ & \text{Otherwise} \end{bmatrix}$$

Adjusted time rate change of vacuum thrust points is

$$\hat{\hat{\mathbf{f}}}_{C(j)} = \begin{bmatrix} 0 & \text{If } \hat{\mathbf{f}}_{C(j+1)} \\ \hat{\mathbf{f}}_{C(j+1)} - \hat{\mathbf{f}}_{C(j)} \end{bmatrix} / [\hat{\mathbf{f}}_{C(j+1)} - \hat{\mathbf{f}}_{C(j)}] & \text{Otherwise} \end{bmatrix}$$

Adjusted time rate change of weight flow points is

$$\hat{\vec{x}}_{C(j)} = \begin{bmatrix} 0 & \text{if } \hat{\vec{x}}_{C(j)} \ge \hat{\vec{x}}_{C(j+1)} & \text{or } W_{C0} < 0 \\ \hat{\vec{y}}_{C(j+1)} - \hat{\vec{y}}_{C(j)} \end{bmatrix} / \{\hat{\vec{x}}_{C(j+1)} - \hat{\vec{x}}_{C(j)} \}$$
Otherwise

Adjusted complementary table expended weight points are

$$\hat{w}_{C(j)} = \begin{cases} 0 & \text{if } j = 1 \\ w_{C1} - w_{Cj} & \text{if } w'_{C0} < 0 \\ \sum_{i=1}^{j} 0.5 \left[\hat{w}_{C(i)} = \hat{w}_{C(i-1)} \right] \left[\hat{t}_{C(i)} - \hat{t}_{C(i-1)} \right] & \text{otherwise} \end{cases}$$

For table interpolation:

Weight expended for complementary motor

$$\dot{W}_{C} = \dot{\hat{W}}_{C(j)} + \dot{\hat{W}}_{C(j)} \Delta_{CC} + 0.5 \hat{\hat{W}}_{C(j)} \Delta_{CC}$$

Weight flow rate

$$\dot{\hat{\mathbf{w}}}_{\mathbf{C}} = \hat{\hat{\mathbf{w}}}_{\mathbf{C}(\mathbf{j})} + \hat{\hat{\mathbf{w}}}_{\mathbf{C}(\mathbf{j})} \Delta \varepsilon_{\mathbf{C}}$$

Vacuum thrust

Where j is such that

$$\hat{\mathfrak{t}}_{\mathtt{C(j)}} \leq \mathfrak{t}_{\mathtt{B}} < \hat{\mathfrak{t}}_{\mathtt{C(j+1)}} \text{ or } \mathfrak{t}_{\mathtt{C(j+1)}} < \hat{\mathfrak{t}}_{\mathtt{C(j)}} < \mathfrak{t}_{\mathtt{B}}$$

出版 はないなかない ないない は、日本のでは、これのでは

Aná

$$\Delta t_{C} = t_{B} - \hat{t}_{E} - \hat{t}_{C(j)}$$

Thrust equation for the complementary thrust

$$F_{C} = \begin{bmatrix} 0 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Where F_{Cv} is the complementary thrust weight table vacuum thrust, A_{eC} is the input complementary exit area, and F_a is the atmospheric pressure.

g. Thrust Multipliers

The logic and equations presented in this section will accept the input thrust time tables to correspond to any reference altitudes and convert them to vacuum conditions so that the trajectory program may use them in the standard manner. The reference altitude pressure, input in pounds per square foot will stipulate that the input thrust time points will be for that atmospheric pressure and similarly designate that the input specific impulse and input total impulse be applicable at that altitude pressure.

A CONTRACTOR OF THE PROPERTY O

のでは、「日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、「日本のでは、「日本のでは、日本のでは、「日本のでは

Main table time multiplier

$$K_{\text{tM}} = \begin{bmatrix} 1.0 & \text{If } K_{\text{tM}}^* = 0.0 \\ K_{\text{tM}} & \text{Otherwise} \end{bmatrix}$$

Main table reference atmospheric pressure

$$P_{arM} = \begin{bmatrix} 2116 & If P'_{arM} < 0 \\ P'_{arM} & \text{otherwise} \end{bmatrix}$$

Calculate the back pressure impulse as

$$r_{\text{FM}} = P_{\text{arM}} A_{\text{eM}} K_{\text{tM}} \sum_{j=1}^{J_{\text{M}}-1} s_{\text{INj}} [c_{\text{M(j+1)}} - c_{\text{Mj}}]$$

Where

$$\delta_{\text{IKj}} = \begin{cases} 0 & \text{if } F_{\text{mj}}^{i} = F_{\text{M}(j+1)}^{i} = 0 \\ \\ 1.0 & \text{Otherwise} \end{cases}$$

The input main total impulse adjusted to vacuum total impulse is:

$$\hat{I}_{vM} = \begin{bmatrix} 0 & \text{if } I_{vM}^{1} = 0 \\ \\ I_{vM}^{1} + I_{FM}^{1} & \text{Otherwise} \end{bmatrix}$$

Main table time adjusted input thrust integral is:

$$I_{VK} = K_{tK} \frac{\int_{M^{-1}}^{J_{M}-1}}{\int_{j=1}^{j}} [F'_{M(j)} + F'_{M(j+1)}][c_{M(j+1)} - c_{M(j)}]/2$$

The main table time multiplier, K_{tM} is input in Lk009

The main table thrust reference atmospheric pressure, P_{arM}^{i} , is input in Lk020

The main tubie nozzle exit area, A om, is input in EkOll

The main table tabular time points, t_{Mj} , are input in LkOXX, where XX = 17 + 3j and t_{Ml} = 0

The main table tabular thrust points F'_{Mj} are input in LkOYY, where YY = 18 + 3j

The main table total impulse, I_{vM}^{*} , is input in LkOOS

The subscript j refers to the j-th row of the thrust weight table

 T_{M} refers to the last input row of the main thrust weight table. Such that $t_{\text{M}(j+1)} \ge t_{\text{M}(j)}$ or j = 25

Complementary table time multiplier:

$$K_{tC} = \begin{bmatrix} 1.0 & \text{if } K_{tM}^{t} = 0.0 \\ K_{tM}^{t} & \text{Otherwise} \end{bmatrix}$$

Complementary table reference atmospheric pressure:

$$P_{arC} =$$

$$\begin{bmatrix}
2116 & \text{If } P_{arC}' < 0 \\
P_{arC}' & \text{Otherwise}
\end{bmatrix}$$

Calculate the back pressure impulse as

$$I_{FC} = P_{arc} A_{ec} K_{tc} \sum_{j=1}^{J_{c-1}} \delta_{Icj} [t_{c(j+1)}^{-t} c_j]$$

Where

$$8_{ICj} = \begin{bmatrix} c & If F'_{Cj} = F'_{C(j+1)} = 0 \\ \\ 1.0 & Otherwise \end{bmatrix}$$

The input complementary total impulse adjusted to vacuum total impulse is:

$$I_{vC} = \begin{bmatrix} 0 & \text{if } I_{vC} = 0 \\ \\ I_{vC} + I_{FC} & \text{Otherwise} \end{bmatrix}$$

Complementary table adjusted input thrust integral

$$I_{vC} = K_{tC} \sum_{j=1}^{J_{c}-1} {\{F'_{c(j)} + F'_{c(j+1)}\}} {\{t_{c(j+1)} - t_{c(j)}\}}^{/2}$$

The complementary table time multiplier, K_{tC}^{t} , is input in Lk102

The complementary table thrust reference atmospheric pressure, P_{arC}^{i} , is input in Lkll0

The complementary table nozzle exit area, A_{eC}, is input in Lk104

The complementary table tabular time points, t_{Cj} , are input in LklXX, where XX = 7 + 3j and t_{Cl} = 0

The complementary tabular thrust points, F_{Cj}^{i} , are input in LklYY, where YY = 8 + 3j

The complementary table total impulse, I_{vC}^{*} , is input in Lk106

The subscript j refers to the j-th row of the thrust weight table, such that $t_{C(j+1)} \ge t_{C(j)}$ or j = 2j

 $\boldsymbol{J}_{\boldsymbol{C}}$ refers to the last input row of the complementary thrust weight table

Total main and complementary impulses corrected to vacuum

$$\hat{I}_{vT} = 0$$

$$If I'_{vT} = 0$$

$$I'_{vT} + I_{FM} + I_{FC}$$
Otherwise

The vacuum scale factors for the main and complementary stage thrust-time table, are determined as follows:

$$K_{FM}^{"} = \begin{cases} I_{vT}^{"}/(I_{vM} + I_{vC}) & \text{if } I_{vT}^{"} \neq 0 \\ I_{vT}^{"}/I_{vM} & \text{if } I_{vT}^{"} = 0 \text{ and } I_{vM}^{"} \neq 0 \\ K_{FM}^{"} & \text{if } I_{vT}^{"} = I_{vM}^{"} = 0 \\ 1.9 & \text{if } I_{vT}^{"} = I_{vM}^{"} = K_{FM}^{"} = 0 \end{cases}$$

$$K_{FC}^{"} = \begin{bmatrix} I_{vT}^{"}/(I_{vM} + I_{vC}) & \text{If } I_{vT}^{"} \neq 0 \\ I_{vT}^{"}/I_{vC} & \text{If } I_{vT}^{"} = 0 \text{ and } I_{vC}^{"} \neq 0 \\ K_{FC}^{"} & \text{If } I_{vT}^{"} = I_{vC}^{"} = 0 \\ 1.0 & \text{If } I_{vT}^{"} = I_{vC}^{"} = K_{FC}^{"} = 0 \end{bmatrix}$$

Main table vacuum adjusted thrust integral is:

$$I_{VM}^{\star} = I_{VM}^{\star} + I_{FM}^{\star} / K_{FM}^{\prime\prime}$$

The main table adjusted to vacuum thrust points are:

$$F_{Mj} = F'_{Mj} + P_{arm} A_{eM} \delta_{FMj}$$

Where

$$\delta_{\text{FMj}} = \begin{bmatrix} 0 & \text{if } F'_{\text{Mj}} = 0 \\ \\ 1.0 / K''_{\text{FM}} & \text{Otherwise} \end{bmatrix}$$

Complementary table vacuum adjusted thrust integral

$$I_{vC}^{\star} = I_{vC} + I_{FC}/K_{FC}^{"}$$

The complementary table adjusted to vacuum thrust points are:

Where

$$\delta_{FCj} = \begin{bmatrix} 0 & \text{If } F_C^t = 0 \\ \\ 1.0/K_{FC}^n & \text{Otherwise} \end{bmatrix}$$

The total of the main and complementary impulse, I_{VI}^* , is input in Lk004,

 $K_{\mbox{FM}}$ and $K_{\mbox{FC}}$, the multipliers of the main and complementary stage vacuum thrusts, respectively, are determined as follows:

$$K_{FM} = \begin{bmatrix} \hat{I}_{vT} / (I_{vM}^* + I_{vC}^*) & & & \hat{I}_{vT}^* \neq 0 \\ \hat{I}_{vM} / I_{vM}^* & & \text{if } I_{vT}^* = 0 \text{ and } I_{vM}^* \neq 0 \\ K_{FM}^* & & \text{if } I_{vT}^* = I_{vM}^* = 0 \\ 1.0 & & \text{if } I_{vT}^* = I_{vM}^* = K_{FM}^* = 0 \end{bmatrix}$$

$$K_{FC} = \begin{bmatrix} \hat{I}_{vT} / (I_{vM}^* = I_{vC}^*) & & \text{if } I_{vT}^* \neq 0 \\ \hat{I}_{vC} / I_{vM}^* = I_{vC}^*) & & \text{if } I_{vT}^* = 0 \text{ and } I_{vC}^* \neq 0 \\ K_{FC}^* & & \text{if } I_{vT}^* = I_{vM}^* = 0 \\ 1.0 & & \text{if } I_{vT}^* = I_{vM}^* = 0 \end{bmatrix}$$

Where the main table thrust multiplier, K_{FC}^{i} , is input in Lk007 The complementary table thrust multiplier, K_{FC}^{i} , is input in Lk100 The main table adjusted to vacuum specific impulse is:

$$I_{spM} = I_{spM}^{\dagger} I_{vM}^{\star} K_{FM} / (I_{vM}^{\star} K_{FM} - I_{FM})$$

Yhere

The main table specific impulse, I_{spM}^{t} is input in Lk010

The complementary table adjusted to vacuum specific impulse is:

$$I_{spC} = I_{spC}^{\dagger} I_{vC}^{t} K_{FC} / (I_{vC}^{\star} K_{FC} - I_{FC})$$

Where

The complementary table specific impulse, I's input in Lk103

The total main and complementary tables vacuum adjusted thrust integral

$$I_{vT}^{\star} = I_{vM}^{\star} \div I_{vC}^{\star}$$

Total main and complementary calculated total vacuum impulse

$$I_{vT} = I_{vM}^* K_{FM} + I_{vC}^* K_{FC}$$

h. Auxiliary Roll Control System

The weight expended for roll control is determined by integrating the roll control weight flow determined from:

$$\dot{\mathbf{w}}_{R} = \begin{bmatrix} 0 & \text{if } \mathbf{I}_{spR} = 0 \\ |\mathbf{F}_{R}|/\mathbf{I}_{spR} & \text{Otherwise} \end{bmatrix}$$

where $\mathbf{F}_{\mathbf{R}}$ is the instantaneous roll control thrust and:

$$I_{spR} = \begin{bmatrix} I_{spR1} & \text{for } t_B \leq t'_{R2} \\ I_{spR2} & \text{for } t'_{R2} \leq t_B \leq t'_{R3} \\ I_{spR3} & \text{for } t_B \geq t'_{R3} \end{bmatrix}$$

with I_{spRj} (j = 1, 2, 3) input for each stage with the roll control data and $t_{\rm B}$ the instantaneous current stage time.

At the initiation of the current stage, the expended roll control weight is:

$$W_{R} = \begin{bmatrix} 0 & \text{if } K_{0k} = 0 \\ W_{R} & (t_{S(k-1)}) & \text{if } K_{0k} \neq 0 \end{bmatrix}$$

where $W_R(t_{S(k-1)})$ is the expended roll control weight at the end of the previous stage.

The roll thrust, F_R , for lation is given in section D.2.b.

2. Thrust Forces and Moments

Thrust components and moments required in the li ear and angular momenta equations during the K-th stage as as follows:

のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のでは、「日本のです」、「「日本のでは、「

のでは、1918年に、1918年に、1

a. Axial Forces

$$F_{X} = \begin{cases} F/[1.0 + \tan^{2}(\delta_{p} + \delta_{MP}) + \tan^{2}(\delta_{y} + \delta_{MY})]^{\frac{1}{2}} & \text{If } K_{\delta} = 0 \\ \{F_{M}/[1.0 + \tan^{2}(\delta_{p} + \delta_{MP}) + \tan^{2}(\delta_{y} + \delta_{MY})]^{\frac{1}{2}} \} \\ + F_{C} & \text{If } K_{\delta} = 1 \\ F/[1.0 + \tan^{2}\delta_{MP} + \tan^{2}\delta_{MY}]^{\frac{1}{2}} & \text{If } K_{\delta} = 2 \end{cases}$$

$$F_{X} = \begin{cases} F/[1.0 + \tan^{2}\delta_{p} + \tan^{2}\delta_{y}]^{\frac{1}{2}} & \text{If } K_{\delta} = 0 \\ F_{M}/[1.0 + \tan^{2}\delta_{p} + \tan^{2}\delta_{y}]^{\frac{1}{2}} & \text{If } K_{\delta} = 1 \\ F & \text{If } K_{\delta} = 2 \end{cases}$$

b. Lateral

$$F_{y} = \begin{cases} [F \tan (\delta_{Y} + \delta_{MY})]/[1.0 + \tan^{2}(\delta_{P} + \delta_{MP}) + \tan^{2}(\delta_{Y} + \delta_{MY})]^{\frac{1}{2}} \\ If K_{\delta} = 0 \end{cases}$$

$$[F_{M} \tan (\delta_{Y} + \delta_{MY})]/[1.0 + \tan^{2}(\delta_{P} + \delta_{MP}) + \tan^{2}(\delta_{Y} + \delta_{MY})]^{\frac{1}{2}}$$

$$If K_{\delta} = 1$$

$$[F \tan \delta_{MY}]/[1.0 + \tan^{2}\delta_{MP} + \tan^{2}\delta_{MY}]^{\frac{1}{2}}$$

$$If K_{\delta} = 2$$

$$[F \tan \delta_{Y}]/[1.0 + \tan^{2}\delta_{P} + \tan^{2}\delta_{Y}]^{\frac{1}{2}}$$

$$[F_{M} \tan \delta_{Y}]/[1.0 + \tan^{2}\delta_{P} + \tan^{2}\delta_{Y}]^{\frac{1}{2}}$$

$$If K_{\delta} = 0$$

$$[F_{M} \tan \delta_{Y}]/[1.0 + \tan^{2}\delta_{P} + \tan^{2}\delta_{Y}]^{\frac{1}{2}}$$

$$If K_{\delta} = 0$$

$$[F_{M} \tan \delta_{Y}]/[1.0 + \tan^{2}\delta_{P} + \tan^{2}\delta_{Y}]^{\frac{1}{2}}$$

c. Transverce

$$F_{Z} = \begin{cases} [F \tan (\delta_{p} + \delta_{MP})]/[1.0 + \tan^{2} (\delta_{p} + \delta_{MP}) + \tan^{2} (\delta_{y} + \delta_{MY})]^{\frac{1}{2}} \\ If K_{\delta} = 0 \end{cases}$$

$$\{[F_{M} \tan (\delta_{p} + \delta_{MP})]/[1.0 + \tan^{2} (\delta_{p} + \delta_{MP}) + \tan^{2} (\delta_{y} + \delta_{MY})]^{\frac{1}{2}} \\ If K_{\delta} = 1 \end{cases}$$

$$[F \tan \delta_{MP}]/[1.0 + \tan^{2} \delta_{MP} + \tan^{2} \delta_{MY}]^{\frac{1}{2}}$$

$$If K_{\delta} = 2$$

$$[F \tan \delta_{p}]/[1.0 + \tan^{2} \delta_{p} + \tan^{2} \delta_{Y}]^{\frac{1}{2}} \quad If K_{\delta} = 0$$

$$[F_{M} \tan \delta_{p}]/[1.0 + \tan^{2} \delta_{p} + \tan^{2} \delta_{Y}]^{\frac{1}{2}} \quad If K_{\delta} = 1$$

$$0 \quad If K_{\delta} = 2$$

Where δ_P and δ_Y are the pitch and yaw thrust deflections, respectively, δ_{MP} and δ_{MY} are the stage input thrust vector misalignment angles, K_{δ} is the input per stage control flag, F is the total thrust, and F_{M} is the main thrust, F_C is the complementary thrust.

d. Thrust Moments

Pitch

$$M_{FQQ} = F_{x} (z_{e} - z_{e';})$$

$$Control$$

$$M_{FQQ} = F_{z} \ell_{e}$$

Yaw

<u>Ro11</u>

Officet

$$M = r_z (y_e - y_{cg}) - r_y (z_e - z_{cg})$$

Vortex

 $M_{FVP} = V_{rF}$

Where $\eta_{r} = 0.00363$

unless otherwise input

e. Jet Damping

The jet damping forces and moments on a missile having an internally burning fuel arise from the reaction to the Coriolis force exerted on the exhaust gas as it moves along the missile \mathbf{x}_b axis toward the nozzle exit plane in the presence of missile angular rotation.

a. Force

$$F_{JDy} = (\dot{v}/\bar{g}_e)(2\ell_E - \ell_{Pf} - \ell_{Pa}) R_b (\pi/180)$$

$$F_{\rm JDz} = (\dot{W}/\ddot{g}_{\rm e})(^{2}\ell_{\rm E} - \ell_{\rm Pf} - \ell_{\rm Pa}) Q_{\rm b} (\pi/180)$$

b. Moment

$$M_{JDQ} = -(\dot{W}/\dot{g}_{e}) [\ell_{E}^{2} - (\ell_{Pf}^{2} + \ell_{Pf}\ell_{Pa} + \ell_{Pa}^{2})/3] Q_{b} (\pi/180)$$

$$M_{JDR} = -(\dot{W}/\bar{g}_{e}) [\ell_{E}^{2} - (\ell_{Pf}^{2} + \ell_{Pf}\ell_{Pa} + \ell_{Pa}^{2})/3] R_{b} (\pi/180)$$

where W is the total instantaneous missile weight flow, \bar{g}_e is the input mass conversion gravity, Q_b and R_b are the instantaneous vehicle angular pitch and yaw velocities, and ℓ_E , ℓ_{pf} , and ℓ_{pa} are the nozzle exit, forward and aft propellant grain lever arms defined in Section I. 3.

f. Propellant Grain and Nozzle Exit Location

The values are computed as follows:

(1) Nozzle Exit

$$x_E = \begin{bmatrix} x_e & \text{If } x_E^{\dagger} = 0 \\ \bar{x}_e x_E^{\dagger} & \text{Otherwise} \end{bmatrix}$$

(2) Aft End of Propellant

$$x_{Pa} = \begin{bmatrix} x_{cg} & \text{If } x_{Pa}' = 0 \\ \bar{x}_{e} x_{Pa}' & \text{Otherwise} \end{bmatrix}$$

(3) Forward End of Propellant

$$x_{\text{pf}} = \begin{bmatrix} x_{\text{cg}} & \text{If } x_{\text{pf}}' = 0 \\ \bar{x}_{\text{e}} x_{\text{pf}}' & \text{Otherwise} \end{bmatrix}$$

where $x_B^{\ '}$, $x_{pf}^{\ '}$, and $x_{pa}^{\ '}$ are input per stage, x_e is the thrust gimbal location, and x_{cg} is the vehicle instantaneous center of gravity.

g. Thrust Gimbal Location

The thrust gimbal location is specified in the left-handed Cartesian coordinate system shown in Figure 27. Thrust location components are \mathbf{x}_e , the missile body station measured along the centerline, and \mathbf{y}_e and \mathbf{z}_e are measured from the vehicle centerline positive to the right and down, respectively. The gimbal components are input for each stage as constants. The Y and Z components represent a thrust eccentricity which yields moments during powered flight. The clustered motor configuration is shown in Figure 28 and the effect of typical variation of thrust history is pictured in Figure 29. The effect of clustered motors is simulated as follows as a thrust vector point offset.

$$x_{e} = \bar{X}_{e}x_{e}^{!}$$

$$n_{m}^{!} = 0 \text{ or } 1$$

$$y_{e} = \bar{X}_{e} y_{e}^{!}$$

$$z_{e} = \bar{X}_{e} z_{e}^{!}$$

$$y_{e} = [\sigma_{f} R_{c} / \sqrt{2}] \cos \phi_{v} + \bar{X}_{e} y_{e}^{!}$$

$$z_{e} = [\sigma_{f} R_{c} / \sqrt{2}] \sin \phi_{v} + \bar{X}_{e} z_{e}^{!}$$

$$n_{m}^{!} > 2 =$$

$$y_{e} = [\sigma_{f} R_{c} / \sqrt{2} n_{m}] \cos \phi_{v} + \bar{X}_{e} y_{e}^{!}$$

$$z_{e} = [\sigma_{f} R_{c} / \sqrt{2} n_{m}] \cos \phi_{v} + \bar{X}_{e} y_{e}^{!}$$

$$z_{e} = [\sigma_{f} R_{c} / \sqrt{2} n_{m}] \cos \phi_{v} + \bar{X}_{e} z_{e}^{!}$$

 $\sigma_{f} = [4.5 (F_{h}^{2} + F_{n}^{2} + F_{L}^{2})/(F_{h} + F_{n} + F_{L})^{2} - 1.5]^{\frac{1}{2}}$

and

$$F_L = \{1/(1 + \{[\sigma_{tb}^2 + \sigma_{lt}^2]/2\}^{\frac{1}{2}}\} \{f[F_{vac} (1 - \sigma_{tb}) t]\}$$

$$F_h = [1 + \{ [\sigma_{tb}^2 + \sigma_{It}^2]/2 \}^{\frac{1}{2}}] \{ f [F_{vac}(1 + \sigma_{tb})t] \}$$

$$F_n = F_{vac}$$

The following are input to this part of the program:

$$\mathbf{\bar{X}}_{\mathbf{e}}$$
 $\mathbf{X}_{\mathbf{e}}'$, $\mathbf{y}_{\mathbf{e}}'$, $\mathbf{z}_{\mathbf{e}}^{t}$, $\mathbf{n}_{\mathbf{m}}^{t}$, $\mathbf{R}_{\mathbf{c}}$, $\mathbf{\Phi}_{\mathbf{v}}$, $\sigma_{\mathbf{tb}}$, $\sigma_{\mathbf{It}}$, and $\mathbf{F}(\mathbf{t})$.

The following are required output from this analysis:

$$y_e = f(t)$$

$$z_e = f(t)$$

The internally calculated number of motors in a cluster (n_m) and the number of control nozzles in that cluster (n_c) are defined.

$$n_{m} = \begin{bmatrix} i & \text{If } n_{m}^{i} = 0 \\ \\ n_{m}^{i} & \text{Otherwise} \end{bmatrix}$$

$$n_{c} = \begin{bmatrix} n_{m}^{i} & \text{If } n_{c} = 0 \\ \\ n_{c}^{i} & \text{Otherwise} \end{bmatrix}$$

where $n_m^{\,\prime}$ is the input number of motors for the k th stage, $n_c^{\,\prime}$ is the input number of control motors for the k th stage.

h. Movable Nozzle Tail-Wag-Dog Forces Moments

Pitch

$$F_{TDz} =$$

$$\begin{cases} 0 & \text{if } I_n = 0 \text{ or } \omega_c = 0 \text{ or } M_y \neq 2, \text{ or } 5 \\ (\pi/180) & W_n & \varepsilon_n & \varepsilon_p/W \end{cases}$$
 Otherwise

$$M_{TDQ} = \begin{bmatrix} 0 & \text{if } I_n = 0 & \text{or } \omega_c = 0 & \text{or } M_y \neq 2, & \text{or } \delta \\ (\pi/180)(I_n + W_n \ell_e \ell_n/\bar{g}_e) \ddot{\delta}_p & \text{Otherwise} \end{bmatrix}$$

Yaw

$$F_{\text{TDy}} = \begin{bmatrix} 0 & \text{if } I_n = 0 & \text{or } \omega_c = 0 & \text{or } M_y \neq 5 \\ (\pi/180)W_n \ell_n \delta_Y / W & \text{Otherwise} \end{bmatrix}$$

$$M_{TDR} = \begin{bmatrix} 0 & \text{if } I_n = 0 & \text{or } \omega_c = 0 & \text{or } M_y \neq 5 \\ (\pi/180)(I_n + W_n \ell_e \ell_n/\tilde{g}_e)\tilde{b}_Y & \text{Otherwise} \end{bmatrix}$$

where I_n is the movable portion of the nozzle mass moment of inertia, W_n is the weight of the movable portion of the nozzle, ℓ_e is the vehicle center of gravity to nozzle gimbal point distance, ℓ_n is the movable portion of the nozzle center of gravity to the gimbal point distance, ω_c is the input second order TVC transfer function flag, \tilde{g}_e is the mass to weight conversion gravity, and $\tilde{\delta}_p$, $\tilde{\delta}_q$ are the nozzle angular deflection acceleration in pitch and yaw respectively.

3. Vehicle Weight

Instantaneous missile weight, W, is computed from the unadjusted staging weight, W_S , the expended main weight, W_M , the expended complementary weight, W_C , the expended roll control weight, W_R , and the jettisoned weight, W_{JT} , respectively, as follows:

$$W = W_S - W_M - W_C - W_R - W_{JT}$$

Main and complementary weights are functions of input initial stage weights, weight flows, vacuum thrust and specific impulse, and multipliers. In addition, the main weight is dependent upon input weights at each thrust-weight switching time. Roll control and auxiliary motor expended weights are functions of thrust and specific impulse. If $W \leq 0$, the run is halted and "WEIGHT HAS GONE TO ZERO" is printed.

Missile mass is computed as follows:

$$m = W/\bar{g}_e$$

where

$$\bar{g}_{e} = \begin{bmatrix} g_{e} & \text{If } \bar{g}_{e}^{\dagger} \text{ is input 1.4} \\ 32.174 & \text{If } \bar{g}_{e}^{\dagger} \text{ is input zero} \\ \bar{g}_{e}^{\dagger} & \text{Otherwise} \end{bmatrix}$$

The unadjusted staging weight defined as follows:

$$W_{PL} + \sum_{p=k}^{4} [W_{MO(p)} + W_{CO(p)}] \quad \text{if } k=K_k \text{ or } K_{O(k-1)} = 0$$

$$W_{S(k)} = W_{(g)}$$

$$W_{PL} - W_{C(g)} + W_{C)(k-1)} + \sum_{p=k}^{4} [W_{MO(p)} + W_{CO(p)}]$$

$$\text{if } K_{NO(k-1)} \neq 0 \text{ and}$$

$$K_{O(k-1)} = 0$$

Where k is the current stage number; K_k is the input stage start control function; $K_{O(k)}$ and $K_{NO(k)}$ are the input weight carryover flag and input complementary thrust-weight table carryover flag respectively; $W_{(g)}$ and $W_{C(g)}$ are the vehicle weight, and expended complementary weight at the termination of the (k-1)th stage respectively, $W_{MO(k)}$ and $W_{CO(k)}$ are the main and complementary initial stage weight for the k-th stage, and W_{PL} is the input payload weight.

hain and complementary weights are functions of input initial stage weights, weight flows, vacuum thrust and specific impulse, and multipliers. In addition, the main weight is dependent upon input weights at each thrust-weight switching time. If W ≤ 0, the run is halted and the statement "WEIGHT HAS GONE TO ZERO" is printed.

Total weight flow is

$$\dot{W} = \dot{W}_M + \dot{W}_C + \dot{W}_R$$

a. <u>Initial Stage Weight Calculations</u>--Initial stage weights are calculated as follows:

If the input main stage weight W_{MO} is input negative, the stage weight will be calculated as a function of stage time and the input values in the thrust weight table. The stage weight-history values are input in the column normally used for the input weight flow values. Linear interpolation between these input table weight points will be used to evaluate the instantaneous stage weight.

Similar logic holds for the complementary weight if \mathbf{W}_{CO} is input negative.

Main Table Weight

$$W_{MO} = \begin{cases} W_{M1} & \text{if } W'_{MO} < 0 \\ W'_{M0} & \text{Otherwise} \end{cases}$$

Where W_{MO}^{\prime} is the input main stage weight input in Lk006 and W_{M1} is the first input main table weight point input in Lk022.

Complementary table weight

$$W_{CO} = \begin{bmatrix} W_{C1} & \text{if } W_{CO}^{\dagger} < 0 \\ W_{CO}^{\dagger} & \text{Otherwise} \end{bmatrix}$$

Where W_{CO}^{1} is the input complementary stage weight input in LklO5 and W_{C1}^{1} is the first input complementary table weight point input in LkO12.

b. <u>Jettisen Weight Calculations</u>

The weight lost to jettisoning is

$$W_{JT} = \sum_{i=1}^{8} W_{JT(j)}$$

Where

$$W_{JT(j)} = \begin{bmatrix} 0 \text{ before } \sigma_{J(j)} = K_{J(j)} \\ W_{JT(j)} \text{ after } \sigma_{J(j)} = K_{J(j)} \end{bmatrix}$$

with $\sigma_{J(j)}(j=1,2,\ldots,8)$ the achieved value of the parameter designated by code input and $K_{J(j)}$ the input value of that parameter at which the weight, $W_{JT(j)}$, is to be jettisoned. Logically the jettisoning must be satisfied sequentially.

I. MASS PROPERTIES

1. Center-of-Gravity

The center of-gravity location is specified in the same left-handed coordinate system as the gimbal location. The Y and Z components represent a center-of-gravity offset which yields moments during powered and atmospheric flight. The center-of-gravity location will be input for each stage as a linear function of the total instantaneous vehicle weight.

a. Center-of-Gravity Body Station

Fifteen center of gravity body stations (x_{cg}) can be input for each stage. The body station is computed from input during the current stage as follows:

where \ddot{x}_{cg} , W_j , and x_{cgj} (j = 1, 2, ..., 15) are input for each stage with the moment of inertia data, and W is the instantaneous vehicle weight. The W_j are input monotonically decreasing so that $W_1 > W_2...$

The first and last input logic for the center of gravity is:

If $W > W_1$, then

$$x_{cg} = \overline{X}_{cg} x_{cg1}$$

or if $W < W_J$, then

$$x_{cg} = \bar{x}_{cg} x_{c;}$$

where the W_1 and x_{cgl} and the W_J (J = 1, 2, ... or 15) and x_{cgJ} are the first and last input values respectively.

b. <u>Center-of-Gravity Offset</u>

Fifteen offsets can be input for each stage. The Y and Z offsets for the current stage are as follows:

$$y_{cg} = z_{cg} = 0$$

Otherwise for $W_j \ge W \ge W_{j+1}$

$$y_{cg} = \bar{X}_{cg} [W_j y_{cg(j+1)} - W_{j+1} y_{cg,i} + (y_{cg,i} - y_{cg(j+1)})W/(W_i - W_{j+1})]$$

$$z_{cg} = \bar{X}_{cg} [W_j a_{cg(j+1)} - W_{j+1} z_{cg,i} + (z_{cg,i} - z_{cg(j+1)})W/(W_i - W_{j+1})]$$

where j = 1, 2, ..., 15 and e_j , y_{cgj} , and z_{cgj} are input for each stage in a table with the body station values. The w_j 's are input monotonically decreasing.

The first and last input logic given for the body station center of gravity are applicable for the offset lata.

2. Moments of Inertia

Fifteen pitch, I_{YY} , yaw, I_{ZZ} , and roll, I_{XX} , moment of inertia values can be input per stage. The moments of inertia are linear functions of total instantaneous vehicle weight and are computed as follows:

For
$$W_j \ge W \ge W_{j+1}$$

$$I_{XX} = \tilde{I}_{Xk}[W_j \ I_{X(j+1)} - W_{j+1} \ I_{Xj} + (I_{Xj} - I_{X(j+1)})W]/(W_j - W_{j+1})$$

$$I_{YY} = \tilde{I}_{Yk}[W_j \ I_{Y(j+1)} - W_{j+1} \ I_{Yj} + (I_{Yj} - I_{Y(j+1)})W]/(W_j - W_{j+1})$$

$$I_{ZZ} = \tilde{I}_{Zk}[W_j \ I_{Z(j+1)} - W_{j+1} \ I_{Zj} + (I_{Zj} - I_{Z(j+1)})W]/(W_j - W_{j+1})$$

$$I_{XY} = \tilde{I}_{X}[W_j \ I_{XY(j+1)} - W_{j+1} \ I_{XYj} + (I_{XYj} - I_{XY(j+1)})W]/(W_j - W_{j+1})$$

$$I_{XZ} = \tilde{I}_{X}[W_j \ I_{XZ(j+1)} - W_{j+1} \ I_{XZj} + (I_{XZj} \cdot I_{XZ(j+1)} \ W!/W_j - W_{j+1})$$

$$I_{YZ} = \tilde{I}_{X}[W_j \ I_{YZ(j+1)} - W_{j+1} \ I_{YZj} + (I_{YZj} - I_{YZ(j+1)}W]/(W_j - W_{j+1})$$
where \tilde{I}_{X} , Y , Z , W_j , and I_{X} , I_{Y} , I_{Z} , I_{XY} , I_{XZ} , I_{YZ} ($j = 1, 2, ..., 15$) are input for each stage with the body station center of gravity and W is the instantaneous vehicle weight. The W_j 's are input monotonically decreasing.

The time derivatives of the moments of inertia required in the angular momenta equations are:

For
$$W_j \ge W \ge W_{j+1}$$

$$i_{XX} = \begin{bmatrix}
0 & \text{If } \tilde{I}_{Xk} = 0 \\
- \tilde{W}\tilde{I}_{X} & (\tilde{I}_{Xj} - \tilde{I}_{X(j+1)})/(W_j - W_{j+1}) & \text{Otherwise}
\end{bmatrix}$$

$$\vec{I}_{YY} = -\vec{W} \vec{I}_{Y} (\vec{I}_{Yj} - \vec{I}_{Y(j+1)}) / (W_{j} - W_{j+1}) \quad \text{Otherwise}$$

$$\vec{I}_{ZZ} = \begin{bmatrix}
- \vec{W} \vec{I}_{Z} (\vec{I}_{Zj} - \vec{I}_{Z(j+1)}) / (W_{j} - W_{j+1}) & \text{If } \vec{I}_{Zk} \neq 0 \\
\vec{I}_{YY} & \text{Otherwise}
\end{bmatrix}$$

$$\vec{I}_{XY} = \begin{bmatrix}
0 & \text{If } \vec{I}_{X} = 0 \\
-\vec{W} \vec{I}_{X} (\vec{I}_{XYj} - \vec{I}_{XY(j+1)}) / (W_{j} - W_{j+1}) \\
& \text{Otherwise}
\end{bmatrix}$$
Otherwise

$$\mathbf{I}_{XZ} = \begin{bmatrix} 0 & \text{If } \mathbf{I}_{X} = 0 \\ -\mathbf{W}\mathbf{I}_{X}(\mathbf{I}_{XZj} - \mathbf{I}_{XZ(j+1)})/(\mathbf{W}_{j} - \mathbf{W}_{j+1}) \\ & \text{Otherwise} \end{bmatrix}$$

$$i_{YZ} = \begin{cases} 0 & \text{if } i_{X} = 0 \\ -wi_{X}(i_{YZj} - i_{YZ(j+1)})/(w_{j} - w_{j+1}) \end{cases}$$

Otherwise

where W is the total instantaneous vehicle weight flow.

The first and last input logic for the moments of inertia and their derivatives are:

$$I_{XX} = \begin{bmatrix} \bar{\mathbf{1}}_{X} \mathbf{1}_{XJ} & & & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{XJ} & & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{XJ} & & & & & \\ \bar{\mathbf{1}}_{Y} \mathbf{1}_{YJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{YJ} & & & & \\ \bar{\mathbf{1}}_{Z} \mathbf{1}_{ZJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{XYJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{XZJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{XZJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{YZJ} & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{YZJ} & & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{YZJ} & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{YZJ} & & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{X} & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{X} & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{X} \mathbf{1}_{X} & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{X} & & \\ \bar{\mathbf{1}}_{X} \mathbf{1}_{X} \mathbf{1}_{X} & & \\ \bar{$$

and if $W > W_1$ or $W < W_3$

where the W_1 and I_{X,Y,Z_1} and the W_J and I_{X,Y,Z_J} (J = 1, 2, ..., 15) are the first and last input values respectively.

3. Lever Arms

Significant distances shown in Figures 20 and 21 are given below:

a. Gimbal Point to Center-of-Gravity

b. Movable Portion of Nozzle Center-of-Gravity to Gimbal Point

$$\ell_n = (x_n^1 - x_e^1) \bar{X}_e$$

c. Center-of-Gravity to Center of Pressure Distance

$$\ell_{cp} = x_{cg} - x_{cp}$$

d. Nozzle Exit to Center-of-Gravity

$$\ell_E = x_E - x_{cg}$$

e. Forward End of Propellant Grain to Center-of-Gravity

$$\ell_{\text{Pf}} = \kappa_{\text{Pf}} - \kappa_{\text{cg}}$$

f. Aft End of Propellant Grain to Center-of-Gravity

$$L_{\text{Pa}} = x_{\text{Pa}} - x_{\text{cg}}$$

g. Pitch Movable Control Fin Center of Pressure to Hinge Axis

$$L_{hz} = (U_{cz} - U_{hz}) L_{bz}$$

h. Pitch Moyable Control Fin Center of Pressure to Center-of-Gravity

$$\ell_{\delta z} = x_{hz} - x_{cg} + \ell_{hz} \cos (\delta_{p} + K_{cf})$$

$$\ell_{\delta} = x_{hz} - x_{cg} + \ell_{hz}$$

 Yaw Movable Control Fin Center of Pressure to Centerof-Gravity
$$\ell_{\delta y} = x_{hz} - x_{cg} + \ell_{hz} \cos (\delta_y * K_{cf})$$

where $\mathbf{x_e}$ is the gimbal point body station, $\mathbf{x_n}$ is the movable portion of nozzle center of gravity body station, $\mathbf{x_{cp}}$ is the aerodynamic center of pressure body station $\mathbf{x_{cg}}$ is the vehicle center-of-gravity body station, $\mathbf{x_{E}}$ is the nozzle exit body station, $\mathbf{x_{pf}}$ is the forward end of propellant grain body station, $\mathbf{x_{pa}}$ is the aft end of propellant grain body station. $\mathbf{U_{cz}}$ is the pitch movable control fin center of pressure to the leading pitch fin base root location distance to the pitch fin base root length ration, $\mathbf{U_{hz}}$ is the pitch movable control fin hinge axis to the leading fin base root location distance to the pitch fin base root length ratio, $\mathbf{\ell_{bz}}$ is the input pitch fin base root length, $\mathbf{x_{hz}}$ is the input missile body station of the pitch fin hinge axis, $\mathbf{\delta_p}$ is the instantaneous pitch deflection angle , $\mathbf{\delta_y}$ is the instantaneous yaw deflection angle and $\mathbf{K_{cf}}$ is the fin control multiplier.

J. TRAJECTORY PARAMETERS

Parameters which have no effect on the solution of the momenta equations are formulated. The parameters are introduced because of their usefulness as switching functions and/or the additional trajectory characteristics they furnish. A few of the parameters that can be represented geometrically are shown in Figure 26.

1. Orbital Elements and Impact Determination

The equations in this section are computed if

 $K_{c1} \le \sigma_{c} \le K_{c2}$ or at termination of the final stage

where $\sigma_{_{\hbox{\scriptsize C}}}$ is the achieved value of a quantity designated by code input and $K_{_{\hbox{\scriptsize C}}1}$ and $K_{_{\hbox{\scriptsize C}}2}$ are input limits.

If the quantities in this section are involved as switching functions, e.g., flight segment initiation or termination, then the proper values of $\mathbb{K}_{c1,2}$ and σ_c must be input. However, the equations are always computed at cut-off, but cannot be used as cut-off switching function unless the σ_c -logic is satisfied. The print is always given at cut-off.

的是是是一个,他们是一个,他们是一个,他们是一个,他们们是一个,他们们是一个,他们也是一个,他们也是一个,他们也是一个,他们也是一个,他们也是一个,他们也是一个,他们

Once $\sigma_c \ge K_{c1}$ or $\sigma_c > K_{c2}$, the possibility that at some later time $\sigma_c < K_{c1}$ or $\sigma_c \le K_{c2}$ is ignored. Obtaining the limit values by interpolation is not done.

a. Orbital Elements

If the above criteria apply, the following are computed:

The parameters

$$a_1 = r_c V_I^2/g_e r_e^2$$

$$a_3 = a_1 \sin \gamma_{11} \cos \gamma_{11}$$

where r_c , V_I , and γ_{II} are current values

The eccentricity

$$e = [a_3^2 + (1 - a_2)^2]^{\frac{1}{2}}$$

and the perigee altitude

$$h_p = (r_p - r_e)/6076.1033$$

where r_e is input and $r_p = a_2 r_c / (1 + e)$

b. Apogee and Impact

If 0 < e < 1, compute:

The apogee altitude

$$h_a = (r_a - r_e)/6076.10333$$

THE PROPERTY OF THE PROPERTY O

where
$$r_a = a_2 r_c/(1 - e)$$

The velocity at apogee

$$y_{Ia} = | (r_c V_I \cot \gamma_{II})/r_a |$$

The angle to apogee

where $0 \le \phi_a < 360^{\circ}$ and

$$a_4 = \begin{bmatrix} +1 & \text{If } |\gamma_{11}| < 90^{\circ} \\ -1 & \text{Otherwise} \end{bmatrix}$$

The flight time to apogee

$$\tau_{a} = (r_{c}^{2} \forall_{I} \sin \gamma_{II})/GM (2 - a_{I})$$

$$+ 2[r_{c}^{3}/GM (2 - a_{I})^{3}]^{\frac{1}{2}} (\pi/180) \arctan \{[(1 + e)/(1 - e)]^{\frac{1}{2}}/(1/\tan \frac{1}{2} \phi_{a})\}$$

where 0 % arctan () < 180, t is the current time, and $\tau_a = 0$ if $\tan \frac{1}{2} \phi_a = 0$.

The total flight time to apogee

The orbital period

$$P = \pi [(r_a + r_p)/2]^{3/2}/30\sqrt{GM}$$

and the terminal radial distance

$$r_f = r_e + h_f$$

where h_f is input

Besides the above criteria, the following must be satisfied in order to compute the equations given below:

1. If
$$K_{\gamma}$$
 = -1, then, $\gamma_{11} > 0$, $r_{a} > r_{f}$, and $h < h_{f}$
2. If K_{γ} = +1, then, $r_{3} > r_{f}$, $r_{p} < r_{f}$, and if $\gamma_{11} < 0$, then, $h > h_{f}$

where K is input as plus or minus one, so that

 K_{γ} = +1 if impact is to occur at an altitude of h_{f} K_{γ} = -1 if ρ space intercept is to occur at an altitude of h_{f} If the above are satisfied, compute:

The glide range angle

$$\phi_f^1 = \phi_a + K_f \arctan \{[e^2 - (1 - a_2 r_c/r_f)^2]^{\frac{1}{2}}/(1 - a_2 r_c/r_f)\}$$

where 0 ≤ arctan {} < 180°

The modified range angle is

$$\phi_{\mathbf{f}} = \begin{bmatrix}
\phi_{\mathbf{f}}^{\dagger} & \text{if } \phi_{\mathbf{f}}^{\dagger} < 360^{\circ} \\
\phi_{\mathbf{f}}^{\dagger} - 360^{\circ} & \text{Otherwise}
\end{bmatrix}$$

If $E_{\gamma} = 1$, $r_{a} > r_{f}$, and $r_{p} \ge r_{f}$, compute the modified range angle as follows:

$$\begin{split} \phi_{\rm f} &= (180/\pi) - \pi \{ ({\rm r_c/r_f}) a_1 + 1 + 2[1 - ({\rm r_f/r_c})]/[1 - ({\rm r_c^2/r_f^2}) \cos \frac{2}{\gamma} 11] \} \\ &+ (\pi/180) \arctan - \{ 2a_4 [{\rm r_c/r_f}) - 1 \} \tan \gamma_{11} \}/[({\rm r_c/r_f} - 1]^2 - \\ &+ \tan^2 \gamma_{11} \} \end{split}$$

where -180° < arctan
$$\{2a_4 [(r_c/r_f) - 1] \tan \gamma_{11}\}/\{[r_c/r_f - 1]^2 - \tan^2 \gamma_{11}\} \le 180°$$

The glide time is

$$F = r_f [(1 - a_2) \sin \phi_f + a_3 a_4 (-\cos \phi_f + r_c/r_f)]/(2 - a_1) V_I |\cos \gamma_{1I}|$$

$$+ 2[r_c^3/GH(2 - a_1)^3]^{\frac{1}{2}} (\pi/186) \arctan \{[(-1 + 2/a_1)^{\frac{1}{2}} \sin (\phi_f/2)]/$$

$$\cos (a_5 + \phi_f/2)\} + \tau_p$$

在大学的主义,是一个人,我们们们的一个人,我们们们们的一个人,他们们们们们的一个人,他们们们们们们们们们们们们们们们们们的一个人,他们们们们们们们们们们们们们们

where 0 ≤ arctan () ≤ 180° and

$$a_{5} = \begin{bmatrix} \gamma_{11} & & & & & & & \\ -180 - \gamma_{11} & & & & & & \\ 180 - \gamma_{11} & & & & & & \\ \end{bmatrix}$$
 If $a_{4} > 0$ and $\gamma_{11} < 0$ Otherwise

and

$$\tau_{\rm P} = \begin{bmatrix} 0 & \text{If } \phi_{\rm f} < 360^{\circ} \\ 60 \text{ P} & \text{Otherwise} \end{bmatrix}$$

Total flight time is

$$t_f = t + \tau_f$$

where t is the current time.

The total range angle is

$$\phi_f = \phi + a_4 \phi_f - (180/\pi) \bar{\omega} t_f$$

where & is the current range angle and w is input.

The ground range is

$$s_f = (\pi/180) \, \phi_f r_e/6076.10333$$

The instantaneous latitude, longitudinal, and azimuthal flight path angles are:

$$\rho$$
 = arc sin (sin ρ_L cos ϕ + cos ρ_L sin ϕ cos ϑ_i)

where

-90°
$$\lesssim \rho \leq$$
 90°
$$\mu' = \arctan \left[(\sin \phi \sin \psi_i \cos \rho_L) / (\cos \phi - \sin \rho_L \sin \rho) \right]$$

$$393$$

where

$$-180^{\circ} < \mu \le 180^{\circ}$$

$$\mu = \mu_{L} - \mu'$$

$$-180^{\circ} < \mu \le 180^{\circ}$$

$$\gamma_{21} = \arctan \{ [V_{e} \cos \gamma_{1} \cos \rho_{L} \sin \psi_{i}] / [V_{e} \cos \gamma_{1} \cos \rho_{L} \cos \psi_{i}] / [V_{e} \cos \gamma_{1} \cos \rho_{L}] + \lim_{\epsilon \to \infty} \cos^{2} \rho \}$$

$$0^{\circ} \le \gamma_{21} < 360^{\circ}$$

 ρ_{f} and μ_{f} are calculated as follows:

Impact latitude is

$$\rho_f$$
 = arc sin (sin ρ cos $|\phi_f|$ + cos ρ sin $|\phi_f|$ cos γ_{21})

with

$$-90^{\circ} \leq \rho_{f} \leq 90^{\circ}$$

where ρ and $\gamma_{21}^{}$ are the instantaneous latitude and azimuthal flight path angle, respectively.

Change is inertial longitude, positive in eastward direction, $(0 \le \arctan [] \le 360^\circ) \mu_1^! = (\operatorname{sign} \phi_f)[\operatorname{sign} (\sin \gamma_{21})] \arctan [(\sin |\phi_f| | |\sin \gamma_{21}| \cos \rho)/(\cos |\phi_f| - \sin \rho_f \sin \rho)]$

Impact Longitude is

$$u_{f} = \begin{bmatrix} u - \mu_{I}^{1} + (180/\pi)\omega\tau_{f} & \text{If } -180^{\circ} < \mu - \mu_{I}^{1} + (180/\pi)\omega\tau_{f} \le +180 \\ 360^{\circ} + \mu - \mu_{I}^{1} + (180/\pi)\omega\tau_{f} \\ & \text{If } -180 \le \mu - \mu_{I}^{1} + (180/\pi)\omega\tau_{f} \\ -360^{\circ} + \mu - \mu_{I}^{1} + (180/\pi)\omega\tau_{f} \\ & \text{If } 180 < \mu - \mu_{I}^{1} + (180/\omega\tau_{f})\omega\tau_{f} \end{bmatrix}$$

where ω is the input angular velocity of the earth.

The components of inertial velocity and total inertial velocity at the terminal altitude are

$$\dot{r}_{f} = \{V_{I} \cos \gamma_{1I} [a_{3}a_{4} \cos \phi_{f} - (1 - a_{2}) \sin \phi_{f}]/a_{2}\}a_{r}$$

$$r_{f} \dot{\phi}_{f} = (180/\pi) (r_{c}V_{I} \cos \gamma_{1I})/r_{f}$$

$$V_{If} = [\dot{r}_{f}^{2} + (\pi/180)^{2} (r_{f}\dot{\phi}_{f})^{2}]^{\frac{1}{2}}$$

and the terminal inertial flight path angle is

$$\gamma_{11f} = \arctan \dot{r}_f/r_f \dot{\phi}_f (\pi/180)$$

 $\gamma_{2\text{If,}}$ $\rho_{a},~\mu_{a},~S_{a},~\gamma_{2\text{Ia}},$ and i are calculated as follows:

 γ_{21f} = arctan [cos ρ sin γ_{21} sin $\phi_f/(\cos\phi_f$ sin ρ_f = sin ρ)]

with

$$-90^{\circ} \le \gamma_{11f} \le 90^{\circ}$$

and

$$0 \le \gamma_{\tt 2If} < 360^{\circ}$$

Apogee longitude is

$$\mu_{a} = \begin{bmatrix} \mu - \mu_{Ia}^{1} + (180/\pi)\omega\tau_{a} & \text{If } -180^{\circ} < \mu - \mu_{Ia}^{1} + (180/\cdot)\omega\tau_{a} \leq 180^{\circ} \\ 260^{\circ} + \mu - \mu_{Ia}^{1} + (180/\pi)\omega\tau_{a} & \text{If } -180^{\circ} \geq \mu - \mu_{Ia}^{1} + (180/\pi)\varepsilon\tau_{a} \\ -360^{\circ} + \mu - \mu_{Ia}^{1} + (180/\pi)\omega\tau_{a} & \text{If } 180^{\circ} < \mu - \mu_{Ia}^{1} + (180/\pi)\omega\tau_{a} \end{bmatrix}$$

The total ground range to apogee is

$$S_{a} = \frac{(\pi/180)^{\kappa}e}{6076.10333} \begin{bmatrix} \arccos{(\cos{\rho_{L}}\cos{\rho_{a}}\cos{\Delta_{a}} + \sin{\rho_{L}}\sin{\rho_{a}})} \\ \text{If } 0 \leq \Lambda_{a} < 180^{\circ} \\ 360^{\circ} - \arccos{(\cos{\rho_{L}}\cos{\rho_{a}}\cos{\Delta_{a}} + \sin{\rho_{L}}\sin{\rho_{a}})} \\ \text{If } 180^{\circ} \leq \Lambda_{a} < 360^{\circ} \end{bmatrix}$$

where 0 ≨ arccos [] ≤ 180°

$$\Lambda_{\mathbf{a}} = \left| \mu_{\mathbf{L}} - \mu_{\mathbf{a}} \right|$$

Inertial azimuthal flight path angle at apogee is

$$\gamma_{2Ia} = \arctan \left[(\cos \rho \sin \gamma_{2I} \sin \phi_a) / (\cos \phi_a \sin \rho_a - \sin \rho) \right]$$

where $0 \le \gamma_{2Ia} < 360^{\circ}$

Inclination angle is

$$i = \arccos (\cos \beta \sin \gamma_{21})$$

where $0 \le i \le 180^{\circ}$

Calculate the atmospheric entry condition if the following criteria are met:

- 1. $h_e \neq 0$ where h_e is input
- 2. $r_a > r_E$
- 3. $r_E = r_e + h_e$. If $\gamma_{11} < 0$, then $h > h_e$

If the above are satisfied, compute the glide range to entry angle

-360° < ♠_E < 360°

The glide time is

$$\tau_{\rm E} = r_{\rm E} \left[(1-a_2) \sin \phi_{\rm E} + a_3 a_4 \left(-\cos \phi_{\rm E} + r_{\rm C}/r_{\rm E} \right) \right] / (2-a_1) V_{\rm I} \cos \gamma_{\rm II} \right]$$

$$+ 2 \left[r_{\rm C}^3 / \text{GM} (2-a_1)^3 \right]^{\frac{1}{2}} (\pi/180) \arctan \left\{ \left[(-1+2/a_1)^{\frac{1}{2}} \sin (\phi_{\rm E}/2) \right] / \cos (a_5 + \phi_{\rm E}) \right]$$

where 0 < arctan {} < 180° and

Total flight time to entry is

$$t_R = t + \tau_E$$

where t is the current time.

The total range angle to entry is

$$\phi_{\underline{E}} = \phi + a_4 \phi_{\underline{E}} - (180/\pi) \bar{\omega} \tau_{\underline{E}}$$

where \diamondsuit is the current range angle and $\ddot{\omega}$ is the quasi earth rotation role.

The ground range is

$$S_E = (\pi/180) \phi_E r_e / 6076.10333$$

Entry latitude is

 $\rho_{\rm E}$ = arcsin (sin ρ cos $|\phi_{\rm E}|$ + cos ρ sin $|\phi_{\rm E}|$ cos γ_{21})

with

where ρ and γ_{21} are the instantaneous latitude and azimuthal flight path angle, respectively.

The components of inertial velocity and total inertial velocity at the entry altitude are

$$\dot{r}_{E} = \{V_{I} \cos \gamma_{1I} [a_{3}a_{4} \cos \phi_{E} - (1-a_{2}) \sin \phi_{E}]/a_{2}\}a_{4}$$

$$c_{F}\dot{\phi}_{E} = (180/\pi)(r_{c}V_{I} \cos \gamma_{1I})/r_{E}$$

$$V_{IE} = [\dot{r}_{E}^{2} + (\pi/180)^{2} (r_{E}\dot{\phi}_{E})^{2}]^{\frac{1}{2}}$$

and the entry inertial flight angle is

$$\gamma_{11E} = \arctan \dot{r}_E / [r_E \phi_E (\pi/180)]$$

where -180° $< \gamma_{IE} \le 180°$

 γ_{2IE} = arctan [cos ρ sin γ_{2I} sin $\phi_{E}/(\cos \phi_{E} \sin \phi_{E} - \sin \rho)$]

with

and

$$0 \le \gamma_{2IE} < 360^{\circ}$$

The velocity and flight path angle with respect to the ambient air at entry conditions are

$$\begin{aligned} & v_{aE} = (v_{1E}^2 - 2\omega \ v_{1E} \ r_e \sin \gamma_{2IE} \cos \rho_E \cos \gamma_{1IE} + r_E^2 \omega^2 \cos^2 \rho_E)^{\frac{1}{2}} \\ & \gamma_{1E} = \arcsin (v_{1E} \sin \gamma_{1IE} / v_{aE} \\ & -90^{\circ} \le \gamma_{1E} \le 90^{\circ} \end{aligned}$$

2. Integrals

a. <u>Motor Impulse</u>

The vacuum impulse is

$$I_{v} = \int_{t_{k}}^{t} F_{v} dt$$

and total impulse during the k-th stage is

$$I = \int_{t_k}^{t} F dt$$

where t_k is the time the k-th stage begins and t is the current time.

b. Control Impulse

The control system related integrals are

$$I_{p} = (1 + K_{\Delta}) \int_{t_{k}}^{t} |F_{z}| dt$$

$$I_Y = (1 + K_A) \int_{t_k}^{t} |F_Y| dt$$

where

$$K_{\Delta} = \begin{bmatrix}
K'_{\Delta} & \text{If } K'_{\Delta} \neq 0 \\
\Delta & \Delta
\end{bmatrix}$$
1.0 Otherwise

 ${\bf A}_L$ is the input amplitude of the limit cycle, ω_L is the input frequency of the limit cycle, ${\bf t}_B$ is stage time, ${\bf K}_\Delta^\bullet$ is the input side impulse multiplier.

$$I_{\hat{\delta}P} = 2 t_B A_L \omega_L / \pi + \int_{t_k}^{t} |\dot{\delta}_F| dt$$

$$I_{\delta Y} = 2 t_B A_L \omega_L / \pi + \int_{t_k}^{t} + |\delta_Y| dt$$

$$\bar{I}_{\delta P}^{\star} = (n_{m}^{\dagger}/n_{c}^{\dagger}) I_{\delta P}^{\star}$$

$$\overline{I}_{\delta Y} = (n_m^i/n_c^i) I_{\delta Y}$$

where

If
$$\tau_c$$
 and $\omega_c \neq 0$

$$\dot{\delta}_p = (\delta_{pj} - \delta_{p(j-1)}/\Delta t_c)$$

$$\dot{\delta}_Y = (\delta_{Yj} - \delta_{Y(j-1)}/\Delta t_c)$$

where I_P and I_T are the pitch and yaw side impulse, respectively; and $I_{\delta P}^*$ and $I_{\delta Y}^*$ are the sum of angular thrust vectoring velocities. The integrals are ignored if $M_V \neq 5$.

The roll control expended impulse is

$$I_R = \int_{c_k}^{c} F_R dt$$

. Aerodynamic Heating

The heat integral is

$$H_e = \int_0^t q V_a dt$$

where \mathbf{t}_o is the trajectory start time, q the missile dynamic pressure and \mathbf{V}_a the total vehicle velocity with respect to the air.

d. Delta Velocities

The following are computed merely for print purposes.

The thrust-to-weight-flow ratio

$$|F/\dot{W}| = \begin{cases} 0 & \text{If } \dot{W} = G \\ |F/\dot{W}| & \text{Otherwise} \end{cases}$$

where F and W are total instantaneous values.

The gravity loss from trajectory initiation

$$L_{g} = \int_{0}^{t} g_{Z_{1}} \sin \gamma_{1} dt$$

where t_o is the trajectory start time, G_{Z1} is the gravity acceleration components and γ_1 the instantaneous flight path angle.

The ideal velocity from stage initiation

$$\Delta V = \bar{g}_{e} \int_{t_{k}}^{t} (F/W) dt$$

where \bar{g}_{e} is gravity at the reference body surface and t_{k} is the stage initiation time.

The drag loss from stage initiation is

$$L_{D} = \bar{g}_{e} t_{k}^{f} \qquad [(c + c_{\delta P}) \cos \bar{\alpha}^{i} + (N_{Z} - N_{PZ} - N_{\delta Z}) \sin \bar{\alpha} + (N_{Y} - N_{PY} - N_{\delta Y}) \sin \bar{\beta}]/W dt$$

where C is the instantaneous aerodynamic axial force.

Instantaneous back pressure loss is

$$L_F = g_e \int_{t_k}^{t} (F_V - F)/W dt$$

where F_V is the instantaneous total vacuum thrust, F_V is the instantaneous delivered thrust g_e is the mass gravity and W is the instantaneous vehicle weight. Vector velocity loss from stage initiation is

$$L_V = \Delta V - L_F - L_g - L_D - V_e + V_{eok}$$

where V is the ideal velocity from stage initiation; L_F is the back pressure velocity loss. L_g is the gravity velocity loss, L_D is the drag velocity loss, V_e is the instantaneous missile earth reference velocity, and V_{eok} is the missile earth reference velocity at state initiation.

Target Position

The target position and velocities are determined from (1) input code (a_{Tto}), and value (K_{Tto}) which designates the start of the target maneuvering; (2) input initial velocity (V_{To}), flight path angle (γ_{To}), differential range azimuth (ζ_{To}), altitude (h_{To}), down range (S_{To}) and cross range (S_{TCo}) and; (3) tabular input target earth reference accelerations in "g's" tangential (a_{TTj}) normal (a_{TNj}) and transverse (a_{TCj}) to the target velocity vector and the target time terminating the j-th acceleration value (t_{Tj}).

a. Target Start Time

The target start time is set, i.e., ($t_{TS} = t$) when the specific value, K_{Tto} , delineated by the code, a_{Tto} , is achieved. If the value has not been achieved set:

$$c_{TO} = 0$$

$$a_{TT} = 0$$

$$V_{T} = 0$$

$$a_{TN} = 0$$

$$\gamma_{T} = \gamma_{TO}$$

$$a_{TC} = 0$$

$$c_{T} = c_{TO}$$

b. Target Coordinates

The target coordinates are as follows.

Acceleration (ft/sec)

$$\dot{v}_{Tj} = a_{TTj} \ \ddot{g}_{e}$$

$$\dot{v}_{Nj} = a_{TNj} \ \ddot{g}_{e}$$

$$\dot{v}_{Cj} = a_{TCj} \ \ddot{g}_{e}$$

where j is such that $t_{T(j-1)} \le t-t_{TS} < t_{Tj}$

If $t-t_{TS} \ge t_{TJ}$ set j = J

where J is the number of input time points such that $t_{T(k-1)} < t_{Tj}$

The following differentials (target coordinates) are numerically integrated with respect to time.

Flight Path Angle Rate

$$\dot{\gamma}_{\rm T} = (180/\pi) \dot{v}_{\rm N}/v_{\rm T}$$

Azimuthal Path Angle Rate

$$\dot{\zeta}_{\rm T} = (180/\pi) \dot{v}_{\rm c}/(v_{\rm T} \cos \gamma_{\rm T})$$

Altitude Rate

$$\hat{h}_T = V_T \sin \gamma_T$$

Down Range Rate

$$\dot{S}_{T} = V_{T} \cos \gamma_{T} \cos \zeta_{T}$$

Cross Range Rate

$$\dot{S}_{TC} = V_{T} \cos \gamma_{T} \sin \zeta_{T}$$

4. <u>Missile-Target Coordinates</u>

The relation between the target and missile is used in Intercept Guidance $(T_y = 10)$ and Homing Guidance $(T_y = 11)$ types of flight to direct the attacking missile to the target. The following equations and logic delineate missile to target; differential altitude and earth surface down range and crcss range distance (Δh , ΔS , and ΔS_c) distance rates (Δh , ΔS , and ΔS_c) and total range distance and distance rate (R $_{
m MT}$ and $\dot{\rm R}_{
m MT}$), angle and angular rate of the missile to target line and local horizontal (α_{MT} and $\dot{\alpha}_{MT}$), angle and angular rate of the missile to target line differential azimuth (λ_{MT} and λ_{MT}); seeker look angle and angular rate in pitch (ϵ_{MT} and $\dot{\epsilon}_{MT}$) and yaw (δ_{MT} and $\dot{\delta}_{MT}$); time to intercept (t_{MI}) ; range to target intercept (R_{MI}) ; intercept coordinates (S $_{\rm MI}$, S $_{\rm MCI}$, and h $_{\rm MI}$), local flight path angle to intercept $(\sigma_{\hspace{-0.1em}M\hspace{-0.1em}I\hspace{-0.1em}I})$ and differential flight path azimuth to intercept $(\gamma_{
m MI});$ flight path error to intercept $(\epsilon_{
m MI});$ and flight path azimuth error to intercept (δ_{MI}) .

a. Missile to Target Distance

Earth surface difference and distance rate

Down Range

$$\Delta S = S_T - S$$

$$\Delta \dot{s} = \dot{s}_T - \dot{s}$$

Cross Range

$$\Delta S_c = S_{TC} - S_c$$

$$\Delta \dot{s}_c = \dot{s}_{TC} - \dot{s}_c$$

Altitude Difference Distance and Distance Rate

$$\Delta h = h_{T} - h$$

$$\Delta \hat{h} = \hat{h}_{T} - \hat{h}$$

Missile to Target Distance and Distance Rate

$$R_{\text{MT}} = (\Delta S^2 + \Delta S_c^2 + \Delta h^2)^{\frac{1}{2}}$$

$$\dot{R}_{\text{MT}} = (\Delta S \Delta \dot{S} + \Delta S_c \Delta \dot{S}_c + \Delta h \Delta \dot{h}) / R_{\text{MT}}$$

Missile to Target Angles

Elevation

$$a_{\text{MT}} = \arcsin \left(\frac{\Delta h}{R_{\text{MT}}} \right) - 90 \le a_{\text{MT}} \le 90$$

$$a_{\text{MT}} = \frac{180}{\pi} \left(\frac{\Delta h}{R_{\text{MT}}} - \frac{R_{\text{MT}}}{R_{\text{MT}}} \right) \left(\frac{2}{R_{\text{MT}}} \cos a_{\text{MT}} \right)$$

Differential Azimuth

$$\lambda_{\text{MT}} = \arctan (\Delta S_c/\Delta S) - 180^{\circ} < \lambda_{\text{MT}} \le 180^{\circ}$$

$$\lambda_{\text{MT}} = (180/\pi)(\Delta S_c\Delta S - \Delta S_c\Delta S) \cos^2 \lambda_{\text{MT}}/\Delta S^2$$

Seeker Look Angle and Angular Rate

Relative Azimuthal velocity vector component

$$\gamma_{M} = \arctan (\dot{Y}_{TM} / \dot{X}_{TM}) - 180^{\circ} < \gamma_{M} \le 180^{\circ}$$

$$\dot{\gamma}_{M} = \begin{cases}
0 & \text{If } \dot{X}_{TM} = 0 \\
(180/\pi) \cos^{2} \gamma_{M} [(\ddot{Y}_{TM} \dot{X}_{TM} - \dot{Y}_{TM} \ddot{X}_{TM}) / \ddot{X}_{TM}^{2}]$$

where

$$[A_{TM}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \zeta & \sin \zeta \\ 0 & -\sin \zeta & \cos \zeta \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \psi_i & -\sin \psi_i & 0 \\ \sin \psi_i & \cos \psi_i & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\dot{\dot{x}}_{TM} = [A_{TM}] \dot{\dot{x}}_{ee}$$

$$\dot{\ddot{x}}_{TM} = [A_{TM}] \dot{\ddot{x}}_{ee} + [\dot{A}_{TM}] \dot{\ddot{x}}_{ee}$$

$$\begin{aligned} & \epsilon_{\text{MT}} = (\alpha_{\text{MT}} - \gamma_1) \cos \varphi + (\lambda_{\text{MT}} - \gamma_{\text{M}}) \sin \varphi - \bar{\alpha} \\ \\ & \dot{\epsilon}_{\text{MT}} = (\dot{\alpha}_{\text{MT}} - \dot{\gamma}_1) \cos \varphi + (\dot{\lambda}_{\text{MT}} - \dot{\gamma}_{\text{M}}) \sin \varphi - \dot{\bar{\alpha}} \\ \\ & ^{\prime} + \dot{\varphi} \left[(\lambda_{\text{MT}} - \gamma_{\text{M}}) \cos \varphi - (\alpha_{\text{MT}} - \gamma_{1}) \sin \varphi \right] \end{aligned}$$

$$\begin{split} \delta_{\text{MT}} &= (\alpha_{\text{MT}} - \gamma_1) \sin \varphi + (\lambda_{\text{MT}} - \gamma_{\text{M}}) \cos \varphi + \bar{\beta} \\ \dot{\delta}_{\text{MT}} &= (\dot{\alpha}_{\text{MT}} - \dot{\gamma}_2) \sin \varphi + (\dot{\lambda}_{\text{MT}} - \dot{\gamma}_{\text{M}}) \cos \varphi + \bar{\beta} \\ &+ \dot{\varphi} \left[(\alpha_{\text{MT}} - \gamma_1) \cos \varphi + (\lambda_{\text{MT}} - \gamma_{\text{M}}) \sin \varphi \right] \end{split}$$

c. Target Intercept Parameters

Time to Target Intercept

$$t_{M\tilde{I}} = R_{M\tilde{I}} / \{ [V_c^2 - V_T^2 \sin^2 \epsilon_{M\tilde{I}}^*]^{\frac{1}{2}} - V_T \cos \epsilon_{M\tilde{I}}^* \}$$

where

$$\epsilon_{\text{HI}}^{\star} = \arccos \left[\cos \sigma_{\text{T}} \cos \gamma_{\text{T}} \cos (\lambda_{\text{MT}} - \gamma_{\text{M}}) + \sin \sigma_{\text{T}} \sin \gamma_{\text{T}}\right]$$

Range to Target Intercept

$$R_{MI} = V_{e} t_{MI}$$

Intercept Coordinates

$$S_{MI} = S_{T} + \dot{S}_{T} t_{MI}$$

$$h_{MI} = h_T + \dot{h}_T t_{MI}$$

$$s_{CMI} = s_{CT} + \dot{s}_{CT} t_{MI}$$

Angle to Target Intercept

Elevation

$$\sigma_{\text{MI}} = \text{arc sin } [(h_{\text{MI}} - h)/R_{\text{MI}}]$$

Azimuth

$$T_{MI} = arc tan [(S_{CMI} - S_C)/(S_{MI} - S)]$$

$$- 180° < T_{MI} \le 180°$$

Flight Path Error to Intercept

Elevation

$$\epsilon_{\text{MI}} = \alpha_{\text{MI}} - \gamma_1$$
 $-180 < \epsilon_{\text{MI}} \le 180^{\circ}$

Azamuch

$$\delta_{\text{MI}} = T_{\text{MI}} - \gamma_{\text{M}}$$
 -180 $< \delta_{\text{MI}} < 160^{\circ}$

5. General

Because the following parameters can be involved as switching functions, their solutions are necessary after each integration step.

a. Stage Data

The instantaneous current stage time and main weight are

$$t_R = t - t_k$$

and

$$W_B = W_{gjk} - \Delta W_M$$

where t is the instantaneous time, t_k the stage start time, $w_{\rm gjk}$ the main step weight for the current stage at time $t_{\rm j}$, and $w_{\rm M}$ the main weight lost between $t_{\rm j}$ and $t_{\rm c}$.

b. <u>Earth Referenced Values</u>

The total vehicle velocity with respect to the launch site is

$$v_e = (\dot{x}_{ee}^2 + \dot{y}_{ee}^2 + \dot{z}_{ee}^2)^{\frac{1}{2}}$$

where \dot{X}_{ee} is obtained from the integration of the linear momenta equations.

The total vehicle acceleration along the flight path with respect to the launcher is

$$\dot{v}_{e} = \begin{bmatrix} (\ddot{x}_{ee}^{2} + \ddot{y}_{ee}^{2} + \ddot{z}_{ee}^{2})^{\frac{1}{2}} & \text{If } V_{e} = 0 \\ \frac{\dot{x}_{ee}\ddot{x}_{ee} + \dot{y}_{ee}\ddot{y}_{ee} + \dot{z}_{ee}\ddot{z}_{ee}}{V_{e}} & \text{Otherwise} \end{bmatrix}$$

where \ddot{X}_{ee} is obtained from the linear momenta equations.

The local pitch flight path angle is

$$\gamma_1 = \begin{bmatrix} 0 & \text{if } V_e = 0 \\ \\ \arcsin(-\dot{Z}_{11}/V_e) & \text{Otherwise} \end{bmatrix}$$

with

$$\dot{\gamma}_{1} = \begin{bmatrix} 0 & \text{If } V_{e} = 0 \\ (\dot{z}_{11}\dot{V}_{e} - \ddot{z}_{11}V_{e})/(V_{e}^{2} \cos \gamma_{1}) & \text{Otherwise} \end{bmatrix}$$

and the local azimuthal angle is

$$\gamma_2 = \begin{bmatrix} 0 & \text{If } V_e = 0 \\ \\ \text{arctan } (\dot{Y}_{11}/\dot{X}_{11}) & \text{Otherwise} \end{bmatrix}$$

where $0 \le \gamma_2 < 360^{\circ}$

$$\dot{\gamma}_{2} = \begin{cases} 0 & \text{If } \dot{x}_{11} = 0 \\ \frac{(\ddot{Y}_{11}\dot{X}_{11} - \ddot{X}_{11}\dot{Y}_{11})\cos^{2}\gamma_{2}}{\dot{X}_{11}^{2}} & \text{Otherwise} \end{cases}$$

where the velocity and acceleration components in the 1 system are

$$\dot{\dot{x}}_{11} = [A_1]^{-1} \dot{\dot{x}}_{ee}$$

$$\ddot{\ddot{x}}_{11} = [A_1]^{-1} \dot{\ddot{x}}_{ee} + [A_3]^{-1} \dot{\ddot{x}}_{ee}$$

Local Bank Attitude

c.

Transformation from the local, north, east, and down system to the missile axis system for a commanded angle of attack, angle of sideslip, and back angle is accomplished by

$$x_{bb} = [A_{\alpha}] [A_{\beta}] [A_{m}] [A_{\gamma_2}] [A_{\gamma_2}] \dot{x}_{11}$$

$$\dot{x}_{bb} = [D]^{-1} [A] \dot{x}_{\gamma_2}$$

where the azimuth velocity vector transformation is

$$\begin{bmatrix} -1 \\ A_{\gamma_2} \end{bmatrix} = \begin{bmatrix} \cos \gamma_2 & -\sin \gamma_2 & 0 \\ \sin \gamma_2 & \cos \gamma_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$\begin{vmatrix} \dot{A}_{\gamma_{2}} \\ \dot{A}_{\gamma_{2}} \end{vmatrix} = \dot{\gamma}_{2} \begin{bmatrix} -\sin \gamma_{2} \cdot \cos \gamma_{2} & 0 \\ \cos \gamma_{2} & -\sin \gamma_{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\dot{\gamma}_{2} & 0 \\ \dot{\gamma}_{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{\gamma_{2}} \\ A_{\gamma_{2}} \end{bmatrix}$$

where the elevation velocity vector transformation is

$$\begin{bmatrix} A_{\gamma_1} \\ \end{bmatrix} = \begin{bmatrix} \cos \gamma_1 & 0 & \sin \gamma_1 \\ 0 & 1 & 0 \\ \sin \gamma_1 & 0 & \cos \gamma_1 \end{bmatrix}$$

and

$$\begin{bmatrix} \dot{A}_{\gamma_{1}} \\ \dot{A}_{\gamma_{1}} \end{bmatrix} - \dot{\gamma}_{1} \begin{bmatrix} -\sin \gamma_{1} & 0 & \cos \gamma_{1} \\ 0 & 0 & 0 \\ \cos \gamma_{1} & 0 & -\sin \gamma_{1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dot{\gamma}_{1} \\ 0 & 0 & 0 \\ -\sin \gamma_{1} \end{bmatrix} \begin{bmatrix} -1 \\ A_{\gamma_{1}} \\ -1 \end{bmatrix}$$

The bank angle transformation is

$$[A_{\mathfrak{p}}] = \begin{bmatrix} 1 & \hat{0} & 0 \\ 0 & \cos \mathfrak{p} & \sin \mathfrak{p} \\ 0 & -\sin \mathfrak{p} & \cos \mathfrak{p} \end{bmatrix}$$

The angle of attack transformation is

$$\begin{bmatrix} A_{\alpha} \end{bmatrix}^{-1} = \begin{bmatrix} \cos \tilde{\alpha} & 0 & +\sin \tilde{\alpha} \\ 0 & 1 & 0 \\ -\sin \tilde{\alpha} & 0 & \cos \tilde{\alpha} \end{bmatrix}$$

$$\begin{bmatrix} A_{\alpha} \end{bmatrix}^{-1} = \begin{bmatrix} \cos \tilde{\alpha} & 0 & +\sin \tilde{\alpha} \\ 0 & 1 & 0 \\ -\sin \tilde{\alpha} & 0 & \cos \tilde{\alpha} \end{bmatrix}$$

$$\begin{bmatrix} A_{\alpha} \end{bmatrix}^{1} = \alpha \begin{bmatrix} -\sin \alpha & 0 & \cos \alpha \\ 0 & 0 & 0 \\ -\cos \alpha & 0 & -\sin \alpha \end{bmatrix} = \begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & 0 \\ \alpha & 0 & 0 \end{bmatrix} \begin{bmatrix} A_{\alpha} \end{bmatrix}^{-1}$$

The side slip angle transformation is

$$[A_{B'}] = \begin{bmatrix} \cos \bar{b}' & +\sin \bar{b}' & 0 \\ -\sin \bar{b}' & \cos \bar{c}' & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where $\bar{p}' = \arctan [(\tan \beta)/(\sec \alpha)]$

where
$$S' = \arctan \left\{ (\tan 3)' (\sec 4)' \right\}$$

$$\left[\dot{A}_{B}^{'} \right]^{-1} = \dot{B}' \quad \cos \dot{B}' \quad \cos \dot{B}' \quad 0 \\ -\cos \dot{B}' \quad -\sin \dot{B}' \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad \left[\dot{A}_{B}^{'} \right]^{-1}$$

的,我们是是一个一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,

where

$$\frac{1}{\beta} = \begin{bmatrix} 0 & \text{If } \cos \beta = 0 \\ \frac{2}{|\beta|} & \frac{1}{|\beta|} & \frac{1}{|\beta|} \cos \alpha + \alpha \sin \beta \cos \beta \sin \alpha \end{bmatrix} \text{ otherwise}$$

The instantaneous bank angle is

$$[A_{\alpha}] = [A_{\alpha}]^{-1} [A_{\alpha}]^{-1} [D]^{-1} [A_{\alpha}] [A_{\gamma}]^{-1} [A_{\gamma}]^{-1}$$

where $[A_{\alpha}] = [A_{\beta}]^{-1} [A_{\alpha}]^{-1} [D]^{-1} [A_{1}] [A_{\gamma 2}]^{-1} [A_{\gamma 1}]^{-1}$ $+[A_{p}^{*}]^{-1}[A_{q}]^{-1}[D]^{-1}[A_{1}][A_{y_{2}}]^{-1}[A_{y_{1}}]^{-1}$ $+[A_{\beta}^{*}]^{-1}[A_{\alpha}]^{-1}[D]^{-1}[A_{1}][A_{\gamma_{2}}]^{-1}[A_{\gamma_{1}}]^{-1}$ $+[A_{B}^{\dagger}]^{-1}[A_{C}]^{-1}[B]^{-1}[A_{1}][A_{2}]^{-1}[A_{2}]^{-1}$ $+[A_{B}^{1}]^{-1}[A_{\alpha}]^{-1}[D]^{-1}[A_{1}][A_{\gamma_{2}}]^{-1}[A_{\gamma_{1}}]^{-1}$ $+[A_B^*]^{-1}[A_O]^{-1}[D]^{-1}[A_1][A_{\gamma_2}]^{-1}[A_{\gamma_1}]^{-1}$

$$\dot{\Phi} = (180/\pi) \{a_{\phi 22} \dot{a}_{\phi 23} - a_{\phi 23} \dot{a}_{\phi 22}\}$$

Inertial Values

d.

 $\dot{\varphi} = (180/\pi)$

The inertial values are referenced to a system fixed in, but not rotating with the earth.

The missile energy per unit mass is

$$L/r_{c} = GM/r_{c} - GM/r_{c} + V_{I}^{2}/2$$

where zero potential energy is assumed at the surface of the reference body, $r_{\underline{\theta}}$ is the input reference body radius, on is computed from input, and r and VI are the missite distance from earth center and inertial velocity respectively.

The inertial velocity components are

$$\dot{x}_{111} = \dot{x}_{11}$$
 $\dot{y}_{111} = \dot{y}_{11} + \omega r_{c} \cos \rho$
 $\dot{z}_{111} = \dot{z}_{11}$

$$V_{\underline{I}} = (\dot{X}_{11}^2 + \dot{Y}_{111}^2 + \dot{Z}_{11}^2)^{\frac{1}{2}}$$

The flight path angles are

$$\gamma_{11} =$$

$$\begin{cases}
0 & \text{if } V_{I} = 0 \\
\arcsin (-\dot{Z}_{11}/V_{I}) & \text{Otherwise}
\end{cases}$$

and

$$\gamma_{21} = \begin{bmatrix} \gamma_{io} & \text{If } \dot{Y}_{111} = \dot{X}_{11} = 0 \\ \text{arctan } (\dot{Y}_{111} / \dot{X}_{11}) & \text{Otherwise} \end{bmatrix}$$

with

-
$$90^{\circ} \le \gamma_{11} < 90^{\circ}$$

 $0 \le \gamma_{21} < 360^{\circ}$

where \mathfrak{T}_{io} is the input azimuth angle.

e. Generalized Coordinates

The g system, introduced below, can be used to obtain vehicle position and velocity components in a coordinate system oriented about the e system. The system also is a part of the guidance system model. The orientation of the g system is specified by input Euler angles which perform the following rotations: θ_g about the Y_e-axis, ψ_g about the resulting Z-axis, and φ_g about the X-axis. The components are computed from the following

if the irput "PL-KB" is nonzero or if the type of flight, $T_y^{},$ is four or five or the current stage $\sigma_{g\,l\,k}^{}$ is nonzero.

$$x_{gg} = [A_g] x_{ee}$$

$$\dot{x}_{gg} = [A_g] \dot{x}_{ee}$$

$$\ddot{x}_{gg} = [A_g] \ddot{x}_{ee}$$

where
$$\begin{bmatrix} 1 & 0 & 0 \\ A_g \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos x_g & \sin x_g \\ 0 & -\sin x_g & \cos x_g \end{bmatrix} \begin{bmatrix} \cos x_g & \sin x_g & 0 \\ -\sin x_g & \cos x_g & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos x_g & 0 & -\sin x_g \\ 0 & 1 & 0 \\ \sin x_g & 0 & \cos x_g \end{bmatrix}$$

The orientation of the g system is shown in Figure 17 for and a equal to zero.

6. "TVC Requirements and Duty Cycle

The following parameters are calculated and stored in the L-7000-7999 block, if $K_{\mbox{dc}} \neq 0$ (L-671).

L-No.	Symbol	Definition	Units
7000	Ī	Motor thrust impulse for TVC duty cycle stage.	1b-sec
7001	ī _v	Motor vacuum thrust impulse for TVC duty cycle stage.	1b-sec
7002	^x e	TVC duty cycle stage thrust vector point body station.	ft
7003	^X nf	Body station of nozzle flange of the TVC design stage. Input in L-680.	ft
7004	δ me	Design maximum vector angle for TVC duty cycle stage. Input in L-681.	deg
7005	I _{SPM}	Main table specific impulse for the TVC duty cycle stage. Input in L- (K_{dc}) 010.	sec
7006	ωc	Slow frequency used in the TVC design stage slew rate calculation.	rad/sec
7007	δ _S	Control system design slew rate for TVC design stage.	deg/sec
7008	ទី _s	Slew angle for TVC design stage.	deg
7009	ī́p	Pitch control thrust impulse per control motor from TVC duty cycle initiation to stage termination.	1b-sec
7010	ī. Šp	Integral of the pitch angular thrust vectoring velocities from TVC duty cycle stage initiation to stage termination.	deg
7011	^t դP	Stage time at which maximum magnitude pitch thrust vector deflection angle occurs during the TVC design stage $(\bar{\delta}_{Pmax})$.	sec
7012	ੌp	Ratio of the delivered thrust (F) to vacuum thrust (Fvac) at maximum magnitude pitch TVC deflection angle (\tilde{b}_{Pmax}) .	đim
7013	δ Pmax	Maximum pitch thrust vector deflection angular rate, for the TVC design stage.	deg/sec
7014	ទី Pmax	Maximum magnitude pitch thrust vector deflection angle, per control motor for the TVC design stage.	deg

L-No.	Symbol Symbol	Definition	Units
7015	ī,	Yaw control thrust impulse per control motor from TVC stage initiation to stage termination.	lb-sec
7016	ī _š y	Yaw deflection rate integral per vehicle control motor.	deg
7017	۶ [†] ۲	Stage time at which maximum magnitude yaw thrust vector deflection angle occurs during the TVC design stage (δ_{Ymax}) .	sec
7018	ηγ	Ratio of the delivered thrust (F) to vacuum thrust (F) at maximum magnitude yaw TVC deflection angle (δ_{Ymax}).	dim
7019	δ Ymax	Maximum yaw thrust vector deflection angular rate, for the TVC design stage.	deg/sec
7020	8 Ymax	Maximum magnitude yaw thrust vector deflection angle, per control motor for the TVC design stage.	deg
7021	qa* max	Product of the maximum absolute value of the dynamic pressure-angle of attack for the TVC design stage.	1b-deg/sq ft
7022	$q_{q\alpha}^{t}$	Dynamic pressure at maximum $q\alpha^{\text{t}}$ during the TVC duty cycle stage.	1b/sq ft
7023	t _{q\alpha}	TVC duty cycle stage time at maximum $q\alpha^{\dagger}$.	sec
7024	c ^{Nod}	Aerodynamic normal force coefficient at maximum $q\alpha^{\dagger}$ during the TVC duty cycle stage.	1/deg
7025	$^{ ext{M}}_{ ext{q}lpha}$	Mach number at maximum $q\alpha^t$ during the TVC duty cycle stage.	dim.
7026	5 ave	Average TVC deflection angle per control motor for the TVC design stage.	deg
7027	K dc	Stage number of the TVC duty cycle stage. Input in 1671.	dim.
7028	$D_{\mathbf{B}}$	TVC duty cymle stage case diameter from axial force reference area.	in.
7029	A _{FW1}	Stage I vacuum thrust to liftoff weight used in the vehicle characteristics pertinent to roll requirements.	g's
7030	tB	TVC duty cycle stage time.	sec

	L-No.	Symbol Symbol	Definition	Units
•	7031	F vave	TVC duty cycle stage average vacuum thrust.	1b
	7032	W _o	TVC duty cycle stage liftoff weight used in the roll control requirements.	1b
	7033	^R PFV	Ratio of motor chamber pressure to vacuum thrust of the main thrust table of the TVC design stage.	1/sq in.
	7034	ξď	Nozzle average expansion ratio for TVC design stage. Input in L-(K_{dc}) 013.	dim.
	7035	А _t	Nozzle throat area for the main motor of the TVC design stage.	sq in.
	7036	$\bar{7}_d$	Ratio of specific heats of the rocket motor exhaust gases of the TVC design stage.	dim.
	7037	Pca	Action time average motor chamber pressure for the TVC design duty cycle stage.	lb/sq in.
	7038	C*	Rocket motor propellant characteristic velocity for the TVC design duty cycle stage.	ft/sec
,	7039	w _{TVC}	Estimated TVC system fixed weight. Used in TVC design stage for the refly option. Input in L-677.	1b
	7040	Wexi	Estimated weight of the TVC system expended weight during the TVC design stage during the original vehicle flight. Input in L-678.	1b
	7041	I spaug	Estimated TVC system caused specific impulse augmentation (positive) or degradation (negative). Used in trajectory TVC design program refly. Input in L-679.	sec
	7044	n m	Number of motors in the stage cluster	dim.
	7045	ⁿ c	Number of control nozzles for the cluster motor logic.	dim.
	7046	∆ _{dc}	Number TVC duty cycle t B data points.	dim.
	7047	M hzmax	Maximum of the absolute value pitch fin hinge torque for the TVC design stage.	ft-lb

L-No.	Symbol Symbol	Definition	Units
7048	M _{hymax}	Maximum of the absolute value yaw fin hinge torque forthe TVC design stage.	ft-lb
7052	h _{q\alpha1}	Altitude of TVC duty cycle stage maximum $q\alpha^{\dagger}$.	ft
7053	$^{\mathtt{P}}_{\mathtt{q}\alpha^{\mathtt{t}}}$	Atmospheric pressure of TVC duty cycle stage maximum $q\alpha^{\dagger}$.	lb/sq ft
7054	ī _{vm}	Integral of the vacuum thrust of the input main thrust table in the TVC duty cycle stage. Input in L-(K_{dc}) 005.	lb-sec
7055	₩ _{MO}	Initial main weight for the TVC duty cycle stage. Input in L-(K_{dc}) 006.	1b
7056	$\mathbf{\bar{k}}_{\mathtt{tM}}$	TVC duty cycle stage, the main switching time multiplier. Input in L-($K_{\mbox{dc}}$) 009.	dim.
7057	$\alpha_{\mathbf{q}\alpha^{\mathbf{t}}}$	Angle of attack in pitch at TVC design stage maximum $q\Omega^{\epsilon}$.	deg
7058	^β qα¹	Angle of side slip in yaw at TVC design stage maximum $q\alpha^{\bullet}$.	deg
7059	Pcmax	Maximum main motor chamber pressure in TVC duty cycle stage.	lb/sq ft
7060	A tmax	Pintle System required throat area rate.	in ² /sec
7061	I _{At}	Integral of the absolute value of the pintle throat area rate.	in
7062	Fmax	Pintle motor maximum vacuum thrust	1b
7063	Pcmax	Pintle motor chamber pressure at maximum vacuum thrust	lb/in. ²
7064	€ _{max}	Pintle motor expansion ratio at maximum vacuum thrust	dim.
7065	A _{tmin}	Pinole motor throat area at maximum vacuum thrust	in. ²

关于,我们是一个时间,我们就是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们就是一个人的,我们是 第一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就

L-No.	Symbol	Definition	Units
7066	C _{fmax}	Pintle motor vacuum thr coefficient at maximum vacuum thrust	dim.
7067	F _{min}	Pintle motor minimum vacuum thrust	1b
7068	Pcmin	Pintle motor chamber pressure at minimum vacuum thrust	lb/in. ²
7069	$\epsilon_{ exttt{min}}$	Pintle motor expansion ratio at minimum vacuum turust	dim.
7070	A tmax	Pintle motor throat area at minimum vacuum thrust	in. ²
7071	C _{fmin}	Fintle motor vacuum thrust coefficient at minimum vacuum thrust	dim.
7072	A xmax	Motor extinguishment throat area	in. ²
7073	Atmn	Pintle motor duty cycle minimum throat a e-	in. ²
7074	Atmx	Pintie motor duty cycle maximum throat area	in. ²
7100 7199	t _{Bq}	Stage time at which TVC duty points occur.	sec
7200 7299	⁸ ₽q	Pitch thrust deflection angle at t _{Bq} .	deg
7300 7399	δ Yq	Output modified yaw thrust deflection angle at $t_{\mbox{\footnotesize Bq}}$ for TVC design stage.	deg
7400 7499	$\mathbf{F}_{\mathbf{q}}$	Delivered motor thrust (F) at $t_{\mbox{\footnotesize Bq}}$ during TVC design stage.	16
7500 7599	X cgq	Vericle center-of-gravity at t_{Bq} ; the TVC duty cycle point.	ft
7600	Fvacq	Vacuum motor thrust during the TVC design stage (\bar{F}_{vac}) at t_{Bq} .	16
7706	w _q	Cutput motor weight flow (W) at t_{Bq} the	lb/sec

a. Slew Rate

The calculation of maximum TVC slew rate is computed as follows:

$$\delta_{\rm S} = 0.22797 \ \bar{\omega}_{\rm c} \ \bar{\delta}_{\rm S}$$

where $\tilde{\mathbf{5}}_{S}$ is the design slew rate, $\tilde{\mathbf{5}}_{S}$ is the pitch slew angle. The 0.45594 ($\omega_{c}/2$) factor is created by the maximum velocity of the response to a unit input step function at one-half band width frequency. If the input does not have ω_{c} , then the following logic is used for evaluating the actuator system band width frequency.

THE SECTION OF THE SE

Slew Frequency

$$\widetilde{\omega}_{c} = \begin{bmatrix} \omega_{s} & \text{If } \omega_{s} \neq 0 \\ \omega_{c} & \text{If } \omega_{s} = 0 \text{ and } \omega_{c} \neq 0 \\ \text{anti } \ln \left[12.146979 - 1.3829872 \text{ ($ln W}_{01}) \right] \\ + 0.062446656 \text{ ($ln W}_{01})^{2} - 0.00093655891 \text{ ($ln W}_{01})^{3} \end{bmatrix}$$
Otherwise

where W_{01} is the stage I liftoff weight, ω_s is the input slew frequency and ω_c is the input second order TVC frequency.

Slew Angle Amplitude

The deflection terms of the slew rate are computed as follows:

$$\delta_{Pmax}^{i} = \begin{bmatrix} \text{The maximum magnitude pitch deflection in the region where} \\ h_o < h < h_\beta \quad \text{and } h_\alpha < h \end{bmatrix}$$

and

$$\delta_{PW} = \begin{bmatrix} |\delta_{PM} - \delta_{PL}| \\ \text{or} \\ |\delta_{PM} - \delta_{PH}| \text{, whichever is greater} \end{bmatrix}$$

$$\delta_{YW} = \begin{bmatrix} |\delta_{YM} - \delta_{YL}| \\ \text{or} \\ |\delta_{YM} - \delta_{YH}| \text{, whichever is greater} \end{bmatrix}$$

where δ_{PM} and δ_{YM} are the maximum magnitude pitch and yaw deflection angle in the region where $h_{\beta} \leq h \leq h_{\chi}$ and δ_{PL} , δ_{FM} , δ_{YL} , and δ_{YH} are the pitch and yaw deflections at the input altitudes h_{β} and h_{χ} .

If h_{β} falls outside the TVC design stage altitude regime, set $\delta_{PL} = \delta_{YL} = 0$.

$$\delta_{S} = MAX (|\delta_{pmex}^{i}|, \delta_{pW}, \text{ and } \delta_{fW})$$

$$\delta_{S} = (n_{m}/n_{c}) \delta_{S}$$

where n and n are the internally calculated number of motors in a cluster and the number of control nozzles in that cluster respectively.

It is suggested that the altitudes h_{β} and h_{α} correspond to the altitude at which the wind shears start and stop, respectively. Using these altitudes will assure that the maximum thrust vector deflection used in evaluating design slew rates will be approximately compatible with the actual system requirements for near step function inputs.

b. Duty Cycle Storage Logic

The values of δ_{Pq} , δ_{Yq} , x_{cgq} , F_q , F_{vacq} , \mathring{w}_q at t_{Eq} are stored for the k_{dc} -th stage for use in the hardware design subroutine.

Where

 δ_{p_q} is the modified pitch thrust deflection angle (δ_p) at t_{Bq} (deg),

 δ_{Yq} is in emodified yaw thrust deflection angle (δ_Y) at t_{Bq} (deg),

 \mathbf{x}_{cgq} is the instantaneous vehicle center-of-gravity at \mathbf{t}_{Bq} (ft),

但是是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们就

 $\mathbf{F}_{\mathbf{g}}$ is the delivered motor thrust (\mathbf{F}) at $\mathbf{t}_{\mathbf{B}\mathbf{g}}$ (1b),

 \mathbf{F}_{vacq} is the vacuum motor thrust $(\mathbf{F}_{\text{vac}})$ at \mathbf{E}_{Bq} (1b),

 W_q is motor weight flow (W) at t_{Bq} (lb/sec)

Where

 t_{Bq} is the stage compute time just greater than or equal to Jt_f^i/Δ_{dc} (J = 0, 1, 2, . . . , Δ_{dc}) and t_B at stage termination. If any of these conditions coincide, one value shall be stored. The number of t_B data points shall be counted and stored as n_{dc} .

Where

t; is greatest, t; K or t; K (j = 1, 2, or 10) value on the input thrust time values for the TVC duty cycle stage,

 $\Delta_{
m dc}$ is the input value of number of desired daty cycle points (99 maximum) if input zero, set equal to 50,

K is the input stage number of the TVC duty cycle stage,

 $\kappa_{\mbox{\scriptsize t}}$ and $\kappa_{\mbox{\scriptsize tc}}$ are the switching time multipliers for the main and complementary thrust tables.

c. Modified Thrust Deflection Angle -- The modified thrust deflection angle is

$$\vec{\delta}_{p} = [\delta_{p} + A_{L} \sin (\omega_{L} [180/\pi] [t - t_{k}])] (n_{m}/n_{c})$$

$$\bar{\delta}_{y} = [\delta_{y} + A_{L} \sin(\omega_{L} [180/\pi] [t - t_{k}])] (n_{m}/n_{c})$$

$$\tilde{\delta}_p = [\delta_p + A_L \omega_L \cos(\omega_L [180/\pi] [t - t_k])] (n_m/n_c)$$

$$\bar{\delta}_{Y} = [\delta_{Y} + A_{L} \omega_{L} \cos (\omega_{L}[180/\pi] [t - t_{k}])] (n_{m}/n_{c})$$

Where

 $\boldsymbol{\delta}_{\boldsymbol{P}_{-},\boldsymbol{Y}}$ are the pitch and yaw thrust deflection angles (deg),

 $\delta_{p, Y}$ are the pitch and yaw thrust deflection angular rates (deg/sec)

 $A_{\rm f}$ is the amplitude of the limit cycle (deg),

t is the time (sec) and t_{ij} is stage initiation time (sec),

 \mathbf{w}_{L} is the frequency of the limit cycle (rad/sec),

n is internally calculated number of motors in a cluster (dim),

n is the number of control movors in the cluster (dim),

d. Medified Duty Cycle Thrust Vector Integrals and Weights Flow for a Single Motor

The thrust vector integrals and weight flow per motor of a cluster configuration is

Where

 $\bar{\mathbf{F}}$ is the instantaneous motor thrust (1b),

F_{vac} is the instantaneous vacuum motor thrust (1b),

W is the instantaneous motor weight flow (1b/sec),

I is the motor vacuum thrust impulse from TVC duty cycle stage initiation to stage termination (1b-sec),

I is the total vehicle vacuum thrust impulse from TVC duty cycle stage initiation to stage termination (lb-sec),

I is the total vehicle delivered thrust impulse from TVC duty cycle stage initiation to stage termination (lb-sec).

I is the pitch control thrust impulse per control motor from TVC duty cycle stage initiation to stage termination (lb-sec),

 \bar{I}_{Ep} is the pitch deflection rate integral per vehicle control motor (deg),

 $I_{\delta p}^{*}$ is the integral of pitch angular thrusting vectoring velocity from stage initiation (deg).

Vehicle Characteristics Pertinent to Roll Requirement

Average Stage Vacuum Thrust

$$F_{\text{vave}} = I_{\text{v}} / t_{\text{B}}$$

where I_{v} and t_{B} are the TVC duty cycle stage vacuum impulse and stage time respectively at stage termination.

TVC Stage Liftoff Weight

 $W_o = W_o$ (Kdc) is the vehicle weight at TVC duty cycle stage initiation.

Stage I Vacuum Thrust to Weight

$$A_{FW1} = \begin{bmatrix} A_{i} & \text{if } A_{FW1} \neq 0 \\ (I_{v}/t_{B1})/W_{o1} & \text{if } K_{k} = 1 \\ 3.0 & \text{Otherwise} \end{bmatrix}$$

Rase Diameter

$$P_{\rm B} = 24.0 \, (s_{\rm RC_{kdc}} h \tau)^{\frac{1}{4}}$$

Maximum Dynamic Pressure - Angle of Artack

The maximum q ' and the corresponding normal force coefficient and stage time are saved for the TVC duty cycle stage.

$$C_{NOQ} = |N_2| / [S_{RN} (q\alpha')]$$
 at $q\alpha'$ max

where N $_{\rm Z}$ is the normal force, S $_{\rm RN}$ is the aerodynamic normal reference area and ${\bf q}\alpha^{\rm t}$ is the dynamic pressure-angle of attack product.

的时候下的这些女子的那句话,他们是有了一个,他们是一个,他们

 $q\alpha^i = q\alpha^i$ at maximum $q\alpha^i$

 $t_{q\alpha} = t_B$ at maximum $q\alpha^t$ (stage time)

 $M_{q\alpha}$ = Mach number at maximum $q\alpha^t$

 $q_{q\alpha}^{t}$ = Dynamic pressure at maximum $q\alpha^{t}$

 $h_{\alpha C}^{t}$ = Altitude at maximum $q\alpha^{t}$

 $\alpha_{\alpha\alpha'}$ * Angle of attack at $\alpha\alpha'$

 $\beta_{\alpha\alpha'}$ = Angle of side slip at $q\alpha'$

Nozzle Parameter

The parameters input of internally calculated in the program germane to the nozzle design are R $_{\rm PFV}$, $\epsilon_{\rm d}$, $\bar{\rm A}_{\rm t}$, I $_{\rm spM}$, P $_{\rm ca}$, C*, and $\gamma_{\rm d}$ for the TVC design stage. $\epsilon_{\rm d}$ and I $_{\rm spM}$ are input and $\gamma_{\rm d}$ is specified in Main Thrust Weight logic.

Motor Chamber Pressure to Vacuum Thrust Ratio

$$R_{\text{PFV}} = \begin{bmatrix} 0 & \text{If } \epsilon_{\text{d}} = 0 \\ & \text{PCOFMY . } n_{\text{m}}/144 & \text{Otherwise} \end{bmatrix}$$

where PCOFMV is the ratio of chamber pressure to vehicle main vacuum thrust calculated in the nozzle separated flow logic, n is the number of motors in a cluster and ϵ_d is the input nozzle expansion ratio.

Motor Nozzle Throat Area

$$\bar{A}_t = \begin{bmatrix} 0 & \text{If } \epsilon_d = 0 \\ \\ 144 & A_{eM} / (\epsilon_d r_m) & \text{Otherwise} \end{bmatrix}$$

where $\mathbf{A}_{\mathbf{eM}}$ is the input nozzle exit area.

Action Time Average Motor Chamber Pressure

$$P_{ca} = \bar{I}_{v} \cdot R_{pFV}/t_{B}$$

where \bar{I}_v is the motor vacuum thrust impulse from TVC duty cycle stage initiation to stage termination, and t_B is the TVC duty cycle stage time.

Rocket Motor Propellant Characteristic Velocity

C* =
$$\begin{cases} C & \text{if } \epsilon_{\bar{d}} = 0 \\ PCOFMV \cdot A_{\bar{e}}M \cdot \bar{g}_{\bar{e}} \cdot I_{spM}/\epsilon_{\bar{d}} & \text{Otherwise} \end{cases}$$

where $\mathbf{I}_{\mbox{spM}}$ is the input vacuum specific impulse for the main thrust weight table.

Average Thrust Vector Deflection Angle

$$\tilde{\delta}_{ave} = arc \sin \{(\tilde{I}_p + \tilde{I}_y)/\tilde{I}\}$$

where \bar{I}_p and \bar{I}_y and \bar{I} are the pitch control thrust impulse, yaw control thrust impulse delivered thrust impulse per control motor for the TVC duty cycle stage.

e. Thrust Modulation Control Related Parameter

If $D_p \neq 0$ for the TVC design stage the following parameters are calculated and stored.

Pintle System Required Throat Area Rate (in 2/sec)

$$A_{tmax} = 0.45594 \quad \omega_{p} \quad (A_{xmax} - A_{xmin})$$

where ω_p is the pintle control frequency (rad/sec), $A_{\rm xmax}$ is the maximum extinguishment throat area and $A_{\rm xmin}$ is the minimum throat area and 0.45594 is the factor created by the maximum velocity of the response to a unit input step function at a band width frequency ω_p and amplitude of $(A_{\rm xmax} - A_{\rm xmin})$.

Integral of Pintle area rate (in)

$$I_{At} = \int_{0}^{t_{B}} |\dot{A}_{t}| dt$$

where A_t is the rate change of throat area and t_B is the stage time.

Minimum Throat Conditions

The minimum throat area value is evaluated from each compute interval and the corresponding values of thrust coefficient, chamber pressure, vacuum thrust, and nozzle expansion ratio are also saved.

$$C_{\text{fmax}} = C_{\text{FI}}$$

Minimum Throat Conditions

The minimum throat area value is evaluated from each computer interval and the corresponding values of thrust coefficient chamber pressure, vaccum thrust, and nozzle expansion ratio are also saved.

$$A_{tmin} = A_{T}$$

$$C_{fmax} = C_{FI}$$

$$F_{max} = F_{MV}$$

$$\epsilon_{max} = \epsilon$$

的,我们就是一个时间,我们就是一个时间,我们就是一个一个,我们就是一个一个,我们们就是一个一个,我们们的,我们们的一个一个一个一个,我们们的一个一个一个一个一个

Maximum Throat Conditions

The maximum throat area value is evaluated from each compute interval and the corresponding values of thrust coefficient chamber pressure, vacuum thrust and nozzle expansion ratio are also saved.

$$A_{tmax} = A_{T}$$

K.TRAJECTORY LOGIC

Logic governing stage initiation and termination, numerical integration step size, and the times at which trajectory values are printed are defined.

- 1. Initiation Termination
- a <u>Trajectory Initiation</u>

It is possible to start a trajectory at any stage initiation. Besides the initial values required for the differential equations and the values for vehicle characteristics, the following additional data are required input: (1) the stage designation parameter. K_k (k-1, 2, 3, or 4), (2) the trajectory start time. t_0 . (3) the type of flight segment, T_{yj}^i (j=1, 2, ..., or 16), and (4) the mode segment. M_{0j}^i (j=1, 2, ..., or 10). There are exceptions to the requirement of inputting the last two items. These are explained in Mode and Flight Control Sections.

b. Stage Termination

Each of the four stages will end when

$$\Delta_{k} = 0 (k = 1, 2, 3, 4)$$

with

$$\Delta_{k} = \sigma_{Sk} - k_{3k}$$

where σ_{Sk} is the achieved value of a quantity designated by code input, k_{3k} is input. If σ_{Sk} is designated as stage time. t_B or time, t, then the input k_{3k} is multiplied by the input k_{tk} ,

when
$$\Delta_k = 0$$
, let $t = t_{Sk}$

If $\sigma_{S1} = 0$, halt the run and print the reason.

If $\sigma_{S2} = 0$, only one stage is desired and cutoff occurs

when
$$\Delta_1 = 0$$

If $\sigma_{S3} = 0$, two-stage operation is desired and cutoff occurs

when
$$\Delta_2 = 0$$

If $\sigma_{S4} = 0$, three-stage operation is desired and cutoff occurs

when
$$\Delta_3 = 0$$

If $\sigma_{\rm S1}$, $\sigma_{\rm S2}$, $\sigma_{\rm S3}$, and $\sigma_{\rm S4} \neq 0$, four-stage operation is desired and cutoff occurs

when
$$\Delta_4 = 0$$

Unless other logic applies, the run ends when cutoff occurs. When the criterion for leaving a stage has been satisfied, that stage is not re-entered during the trajectory.

c. Staging Values

The values of specified values at the transaction of the k-th stage are made available to the hunting procedure control by specifying input $T_{\rm Bj}$ and $\sigma_{\rm Bj}$ (j = 1, 2, ..., 5). The $\sigma_{\rm Bj}$ specifies the achieves value of the parameter designated by code input at the termination of the input $T_{\rm Bj}$ stage. Certain selected trajectory parameters, i.e., $V_{\rm f}$, h, $\gamma_{\rm l}$, $V_{\rm f}$, $L_{\rm p}$,

d. Trajectory Halts

Certain computations and parameter values result in program logic terminating the run. The error which causes the abort and the location of the error are identified by the printout. The printout format is discussed in the final section of this volume.

2. Compute Time

The following are computed for all modes:

- 1. The main and complementary thrust-weight switching times.
- 2. The times when the trajectory begins and each stage ends.
- The times each segment of flight in the altitude control table and mode region ends.
- 4. The time when the special print is satisfied.
- 5. The times when weight jettison occur.
- 6. The times when TVC gains change.
- 7. The time when the main print occur.
- 8. The time when the auxiliary print occur.
- 9. If the wind table altitude multiplier K_h is nonzero at the time when the input wind altitude occurs.
- 10. The time each segment of target dynamical switch conditions occurs.
- 11. Time of lift off.
- 12. The time each segment of the TMC table ends.
- 13. The time each segment of the roll control values tables ends.

a. Variable Compute Interval with Accuracy Check

The numerical integration method utilized in the trajectory program is a fifth-order Runge-Kitta-Merson with a fourth-order/fifth-order accuracy check routine. Generally this routine functions as follows.

Let y be the vector to be integrated (σ code 5701 thru 5750) and let y' by the derivative vector (5751 thru 5800). The differential equation to solve is

ANN SER SERVICE SERVIC

$$y^{\dagger} = f(y, t)$$

Following standard Runge-Kutta notation, define

$$\begin{aligned} & k_1 = \inf \left[y_n, \ t_n \right] / 3 \\ & k_2 = \inf \left[y_n + k_1, \ t_n + h / 3 \right] / 3 \\ & k_3 = \inf \left[y_n + (k_1 + k_2) / 2, \ t_n + h / 3 \right] / 3 \\ & k_4 = \inf \left[y_n + 3k_1 / 8 + 9k_3 / 8, \ t_n + h / 2 \right] / 3 \\ & k_5 - \inf \left[y_n + 3k_1 / 2 - 9k_3 / 2 + 6k_4, \ t_n + h \right] / 3 \end{aligned}$$

Then two independent estimates of y are given by

$$y_{n+1} = y_{n+3}k_1/2 - 9k_3/2 + 6k_4 + 0 (h^4)$$

and

$$y_{n+1} = + (k_1 + 4k_4 + k_5)/2 + 0 (h^5)$$

The second of these is used in this program. An estimate of the error is the difference between the two, or

$$e = |k_1 - 9k_3/2 + 4k_4 - k_{5/2}|$$

The error index is calculated as

$$E_i = \frac{e_i}{R_i + R_i |Y_i|}$$
 $i = 1, 2, \dots 50$

where the $\mathbf{R}_{\mathbf{i}}$ are error tolerances, described below.

Code	Parameter	R	Code	<u>Parameter</u>	R
5701	XDEE	.01	5726	VN	.001
5702	YDEE	.01	5727	VC	.001
5703	ZDEE	.01	5728	GAMT	.001
5704	XEE	.001	5729	ZETAT	.001
5705	YEE	.001	5730	HT	.001
5706	ZEE	.001	5731	ST	.001
5707	QB	.1	5732	STC	.001
5708	RB	.1	5733	DB	.01
5709	PB	.1	5734	PC	.1
5710	THETAB	.01	5735	AT	.1
5711	PSIB	.01	5736	WPR	.01
5712	PHIB	.01	5737	IMP	.01
5713	DELDP	.01	5738	īV	.001
5714	DELDY	.01	5739	IP	.1
5715	DELDR	.01	5740	IY	.1
5716	DELP	.001	5741	IAT	1.0
5717	DELY	.001	5742	Open	
5718	DELR	.001	5743	LF	1.0
5719	FR	.01	5744	DELTAV	1.0
5720	WR	.1	5745	IR	1.0
5721	FRC	.1	5746	LD	1.0
5722	THETAM	.01	5747	LGG	. 1
5723	PSIM	.01	5748	HE	10.0
5724	РИІМ	.01	5749	Open	
5725	VT	.001	5750	Open	

The error tolerances may be modified by input. In input locations L280 thru L303, up to 12 pairs of index/multiplier may be entered. For any index in the range of 1 thru 50, the corresponding values of Ri arc multiplied by the input multiplier A'r.

The maximum Ei (EMAX) is employed to control the integration step size:

If EMAX \geq 1.0, halve the step size If EMAX \leq 0.031, triple the step size

b. Specified Maximum Compute Interval

If the compute interval is input in the compute interval table, the interval is limited as follows:

Interval	Maximum Compute Interval	
t \le t el	Δt _{cl}	
t _{cl} < t ≤ t _{cz}	Δt _{cz}	
• • •	•	
t _{c7} < t ≤ t _{c8}	Δt _{c8}	

 t_{cj} and Δt_{cj} (j = 1, 2, ..., 8) are input and t is the instantaneous time.

If $t > t_{cJ}$ where the subscript J refers to the last input point in the compute interval table, the compute interval is unlimited.

c. Discontinuity Print

The discontinuity print will occur when the input o_{Dj} specifies the first "L" number of an input table row.

TABLE

Jettison Weight Special Print Attitude Control Wind Profile Mode Control Main Thrust-Weight Complementary Thrust-Weight Gains Target dynamical condition

CODE PARAMETER

W _{JTj}	(j = 1, 2)	2,,	8)
σ _{tj}	(j = 1, 2)	2,,	8)
, yj	(j = 1, 2)	2,,	16)
h	(j = 1, 2)	· · · · ,	30)
муj	(j = 1, 2)	·,,	10)
tj	(j = 2, 3 Back side		25)
^t Ċj	(j = 2, 3 Back side	3,, e	25)
KDPi	(j = 1, 0)	or 2)	
t_{Tj} (j = 1, 2,, 10)			
Fyj $(j = 1, 2,, 7)$			
K_{DRj} (j = 1, or 2)			

d. <u>Variable Break-up Tolerances</u>

TMC

Roll Control

Compute internal break ups are used to exactly compute discontinuities for the following conditions:

- 1. Attitude Control Table
- 2. Grins (TVC) Table
- 3. Weight Jettison Table
- 4. Special Print Table
- 5. Wind Profile Table
- 6. Mode Control Table
- 7. Staging
- 8. Target Dynamical Conditions Table
- 9. Main Thrust-Weight Table
- 10. Complementary Thrust-Weight Table
- 11. Lift off
- 12. TMC Table
- 13. Target Dynamical Condition Table
- 14. Roll Control Table

A break-up will occur whenever either delta time or delta x becomes less than the corresponding tolerance, DT_{min} or DX_{min} , where delta x is the difference between a break-up variable and its target value, and

$$DT_{min} = A_t + B_t TIME$$

$$DX_{min} = A_x + B_x$$
 X_{target}

The default values, which are used unless over ridden by positive input values, are

では、これには、1990年には、1990

$$A_t = 2.E-4$$

$$B_{\rm c} = 1.E-5$$

$$A_{v} = 1.E-9$$

$$B_{x} = 1.E-5$$

Experience has shown these values to be reasonable most of the time. There is abably little danger in using values that are too small; the principal effect would be an increase in running time although it is possible to cause the integration routine to fail (with appropriate messages and a dump) if the tolerances are too tight. Looser tolerances allow a more random flight, and could cause the hunting procedures to fail.

Any given break-up point will depend almost entirely on only one of the four break-up tolerance parameters. In general, the following rules apply:

- A. If the break-p variable is changing slowly with time,

 DX will control
 - 1. if $|X_{target}|$ is small, A_{x} will control
 - 2. if |X_{target}| is large, B_x will control

- - 1. if TIME is small, At will control
 - 2. if TIME is large, B_t will control

3. Print

Trajectory print times are discussed. Two blocks of printout are featured, i.e., the main and auxiliary prints. The main print contains printlines A through and succeeding printlines that are given when special criteria are met. The auxiliary print is given in two lines which are labeled Printline Z and ZZ. Print times of the main and auxiliary prints are controlled by the logic given below.

a. Main Print Interval

Printout of the main print occurs when the rollowing times are achieved:

<u>Interval</u>	Print Time	
t ≦ t _{p1}	t = n Δ t _{pl}	
$t_{p1} < t \le t_{p2}$	$t = t_{p1} + n \Delta t_{p2}$	
t _{p7} < t ≤ t _{p8}	$t = t_{p7} + n \Delta t_{p8}$	

where t_{pj} and Δt_{pj} (j = 1, 2, ..., 8) are input.

If $\Delta t_{pj} < 0$, every compute point is output.

b. Si-ecial Print

The main print is given when the logic given below is satisfied.

With a_{tj} (j = 1, 2, ..., 8) the achieved value of a parameter designated by code input and K_{tj} the input value of that parameter, then, the main print is printed when $\delta_{tj} = K_{tj}$.

c. Max Print

The maximum print and hunting procedure control quantities are specified by input T_{mj} and σ_{mj} (j = 1, 2, ..., 5). The $|\sigma_{mj}|$ specifies the maximum or minimum achieved value of the parameter designated by the code input. Input $T_{mj} < 0$ specifies a minimum value; input $\sigma_{mj} = 0$ specifies ignore the max print logic for the j-th input; input $\sigma_{mj} > 0$ specifies a maximum value; and input $\sigma_{mj} < 0$ specifies the maximum absolute value regardless of the sign of T_{mj} .

The flag $|T_{mj}|$ directs the maximum control region. If $|T_{mj}| = 0$, the maximum print logic for the σ_{mj} parameter will be computed for each stage and the max print will appear after the termination of that stage. If $|T_{mj}| = k$ (k = 1, 2, 3, or 4), the max print logic for the σ_{mj} parameter will be computed for the k-th stage and the max print will appear after the termination of the k-th stage only. If $|T_{mj}| = 5$, the max print logic for the σ_{mj} parameter will be computed for the entire flight duration and the max print will appear after the termination of the last stage. When more than one parameter is designated, the prints occur in the order of the j-th index.

d. Auxiliary Print

The auxiliary print consists of time and eleven parameters designated by the code input σ_{Pj} (j = 1, 2, ..., 11). The print will occur if the input, σ_{Pj} is non-zero and when

Interval	Print Time
t ≤ t _{Pl}	t = n Atpl

<u>Interval</u>

Print Time

 $t_{P1} < t \le t_{P2}$

 $t = t_{P1} + n \Delta t_{P2}$

t_{P7} < t ≤ t_{P8}

 $t = t_{P7} + n \Delta t_{P8}$

where t_{Pj} and Δt_{Pj} (j = 1, 2, ..., 8) are input.

L. HUNTING PROCEDURE

Two methods of isolating variables and obtaining extremals are provided in the program. The first method incorporates an incremental hunting procedure (P1) which isolates and maximizes the dependent variable by varying the independent parameter. The second method incorporates a simultaneous hunting procedure (P2) which isolates and obtains extremals (maximum or minimum values) by varying up to seven parameters simultaneously. Either or both methods may be specified. If both methods are specified simultaneously, procedure 1 is used as a subroutine within procedure 2. (Experience has demonstrate that some problems will converge more rapidly if range is maximized by P1 while other parameters are simultaneously hunted using P2. Experience with the program will expose other are is where joint utilization of the hunting procedure is advantageous.)

The hunting procedures vary independent variables which are initially specified by input to obtain extremal and isolation solutions for dependent variables evaluated at cutoff.

Another cption delineated in this section is one that allows the coefficients utilized in the steering equations to be automatically computed.

1. Incremental Hunting Procedure (P1)

The hunting procedure logic and equations for this option apply if the input Pl is non-zero.

The hunting procedure makes it possible to obtain a trajectory in which a specified quantity "a" (the dependent variable), can be found (isolated) or may be maximized with a single controller independent variable. The value of X (the independent variable) and the resulting value of "a" (the dependent variable) are designated by inputing the proper sigma code for $\sigma_{\rm x}$ and $\sigma_{\rm a}$, respectively.

Isolation or maximization is an iterative process involving trajectory computations and hunting procedure logic. Dependent values for the first trajectory are computed with the input guess of the independent variable X_i . Then the value of X is computed from their previous values and the input increment ΔX until the isolation or maximization region is bracketed. Thereafter, the independent variables are found by interpolation using quadratic equations.

If ΔX is input zero, the error message "DELTA X INPUT ZERO" is output and the run is terminated. If Δa is input zero, the error message "INTERNAL TOLERANCE INPUT ZERO" is output and the run is terminated. If the quadratic fit is singular, the error message "SINGULARITY IN QUADRIT FIT" is output and the run is terminated. If for the first two iterations, the dependent quantity does not vary, the error message "DEPENDENT PARAMETER NOT VARYING" is output and the run is terminated.

a. Isolation

The isolation procedure in this section will apply if $K_n = 0$.

Desired value of the dependent variable is the input a_f . The achieved dependent values resulting from trajectories computed with the dependent values \bar{X}_j (j = 1, 2, 3, or 4) are \hat{a}_j .

(1) Isolation Incrementing Routine

The dependent variable \bar{a}_j is computed using the input starting value X_i then this point set (\bar{a}_1, \bar{X}_1) is transferred to the low point set (\bar{a}_3, \bar{X}_3) . The center point set (\bar{a}_2, \bar{X}_2) is computed using $\bar{X}_2 = \bar{X}_3 + \Delta X$.

If the desired dependent parameter is not bracketed but progressing in the correction direction, i.e., $\bar{a}_3 < \bar{a}_2 < a_f$ or $\bar{a}_3 > \bar{a}_2 > a_f$, then \tilde{X}_2 is determined by incrementing, i.e., $X_1 = X_2 + \Delta X$ and the

is evaluated by running a trajectory. The incremental process is continued until the desired dependent parameter is bracketed. Then the three data point sets are arranged such that the dependent variables are in descending order than sent to the quadratic interpolation routine. If after the incremental direction is established, the trend of the dependent variable reverse, i.e., diverges from the desired value a_f, then the error message "IMPOSSIBLE REGION EXISTS" is output and the run terminated.

If the desired dependent parameter is not bracketed but progressing in the wrong direction, i.e., $\bar{a}_2 < \bar{a}_3 < a_f$ or $\bar{a}_2 > \bar{a}_3 > a_f$, the second and third data sets are interchanged, the incremental direction changed, i.e., $\Delta X = -\Delta X$, and then the incremental process as described above is utilized.

(2) Isolation Linear Interpolation Routing

If the desired dependent parameter is bracketed then the two data sets are arranged in the first and third position such that $\bar{a}_1 > \bar{a}_3$, then \bar{X}_2 is determined by linear interpolation using a_f and then a_2 is evaluated by running a trajectory.

If the predicted dependent value is within the bracketed zone, then the three data points sets are such that the dependent variable are descending order and then sent to the quadratic interpolation routine. If not, the one point of the original point set and the newly predicted point which span the desired dependent variable are singled out and the process is repeated.

(3) Isolation Quadratic Interpolation Routine

When the dependent variable span the desired value, and are arranged in descending order, i.e., $\bar{a}_1 > a_f > \bar{a}_3$ and $\bar{a}_1 < \bar{a}_2 < \bar{c}_3$, then the predicted independent variable X_{Δ} is determined by

quadratic interpolation using $a_{\hat{f}}$ and the predicted dependent variable \bar{a}_{L} is evaluated by running a trajectory.

If the predicted dependent variable \bar{a}_4 is within the bracketed zone, then the bracket point sets and predicted point set are arranged such that the dependent variables are descending order, i.e., $\bar{a}_1 > \bar{a}_2 > \bar{a}_3$, and then transfer back to the quadratic interpolation routine.

If the predicted dependent variable \tilde{a}_4 is outside the bracketed zone, then the predicted point set and the one point set of the two bracketed point set which span the desired dependent variable are singled out and transfer back to the linear interpolate routine.

(4) Isolation Convergence Criteria

If at any place in the logic the value of the dependent variable out of the trajectory routine is within the input Δ_a distance of the desired value a_f , then the hunting procedure 1 isolation has converged.

b. Maximization-Minimization

The maximization procedure in this section will apply if $K_a \neq 0$.

The achieved dependent values resulting from trajectories computed with the dependent values, \bar{X}_j 9 j = 1, 2, 3, or 4) are a_j . If the input flag Pl is greater than zero, the function corresponding to σ_a is to be maximized. If the input flag Pl is ress than zero, the function corresponding to σ_a is to be minimized.

STATES OF STATES AND STATES OF STATES OF STATES AND STATES OF STAT

(1) Marimiration-Minimization Incrementing Routine

The dependent variable \bar{z}_i is computed using the input starting value \bar{X}_i , then this point set (\bar{a}_i, \bar{X}_i) is transferred to the low

point set (\bar{a}_3, \bar{X}_3) . The center point set (\bar{a}_2, \bar{X}_2) is computed using $\bar{X}_2 = \bar{X}_3 + \Delta X$, where ΔX is the input increment.

If the dependent variables are increasing for maximization or decreasing for minimization, i.e., $\bar{a}_2 > \bar{a}_3$ and p1 > 0 or $a_2 < 0$, \bar{X}_1 is determined by incrementing, i.e., $\bar{X}_1 = \bar{X}_2 + \Delta X$, and \bar{a}_1 is evaluated by running a trajectory. This incremental process is continued in a hill climber fashion until the peak has been crossed; that is, the dependent variable has become less than for maximization or greater than for minimization, the previous value, i.e., $\bar{a}_1 < \bar{a}_2$ and P1 > 0 or $\bar{a}_1 > \bar{a}_2$ and P1 < 0.

These three point sets which form a peak or a valley are then sent to the quadratic routine. If the dependent parameter is progressing in the wrong direction; that is, decreasing for maximization or increasing for minization, i.e., $\hat{a}_2 < \hat{a}_3$ and Pl > 0 or $\hat{a}_2 > \hat{a}_3$ and Pl < 0, the second and third data sets are interchanged, the incremental direction changed, i.e., $\Delta X = -\Delta X$, and then the incremental process as described above utilized.

(2) Maximization-Minimization Quadratic Routine and Convergence Criteria

When the dependent variables describe a peak for maximization or a valley for minimization, i.e., $\bar{a}_1 < \bar{a}_2$ and $\bar{a}_3 + \bar{a}_2$ and Pl > 0 or $\bar{a}_1 > \bar{a}_2$ and $a_3 > a_2$ and Pl < 0, then the predicted independent variable X_4 is determined at the inflection point by a quadratic equation, the corresponding curve fit dependent variable set to a_f , and the predicted dependent variable a_4 evaluated by running a trajectory. If the predicted dependent value is within the input convergence tolerance, distance of the curve fit dependent variable a_f , then the nu sing procedure 1 maximization-minimization has converged.

If the predicted dependent variable \tilde{a}_4 is progressing towards the optimum value; that is, the predicted dependent variable is greater than for maximization or less than for minimization, ..e.,

 $\bar{a}_4 > \bar{a}_2$ and Pi > 0 or $\bar{a}_4 < \bar{a}_2$ and Pi < 0, then the points sets are arranged such that the predicted point set (\bar{a}_4, \bar{X}_4) are in the center data set (\bar{a}_2, \bar{X}_2) and the two independent variables; X, closest to but one greater than and one less than the predicted independent variable X are transfer to the high (\bar{a}_1, \bar{X}_1) and low (\bar{a}_3, \bar{X}_3) point sets where high and low correspond to the value of the independent variable X. These three point sets which form a peak or valley are then sent to the quadratic routine.

If the predicted variable \tilde{a}_4 is not progressing towards the local optimum; that is, the predicted dependent variable is less than for maximization or greater than for minimization, the center set dependent variable, \tilde{a}_2 , i.e., $\tilde{s}_4 < \tilde{a}_2$ and Pl > 0 or $\tilde{a}_4 > \tilde{a}_2$ and Pl > 0, then another point set in which the dependent variable is half way between the two independent variable, not spanning the predicted independent variable \tilde{x}_a , is calculated by running another trajectory. Three point sets of the five inclusive of the center point set, $(\tilde{a}_2, \tilde{x}_2)$, in which the dependent variables form a peak for maximization or a valley for minimization with the independent values in numerical order are selected and then arranged such that the independent variable, \tilde{x}_a , are in descending order. These three data sets are then sent back to the quadratic routine.

Simultaneous Hunting Procedure (P2)

The hunting procedure logic and equations for this option apply if the input P2 is non-zero.

The logic for this section is contained in the OTTMZ subroutine writeup*, **which describes in detail a generalized hunting procedure. This hunting procedure uses one of three empirical models whose coefficients are estimated by least square fit

^{*}Brimhall,R. K., "Design Optimization Using Model Estimation Programming", Thiokol Chemical Corporation No. 1166-13.63 dated 23 January 1937

^{**}Ols n, R. A., "Determining Extremals and/or Constraints Using the Method of Lagrangers Multipliers", Thiokol Chemical Corporation Subroutine 9117 dated 4 November 1965.

The input code word P? determines which model will be sed.

+1 Linear Model Isolation Only
+2 Complete Quadratic--Maximization
-2 Complete Quadratic--Minimization
+3 Incomplete Quadratic--Minimization
-3 Incomplete Quadratic--Minimization

These three models will now be discussed to facilicate trajectory program input.

a) Linear Model

The logic in this section applies if P2 equals to one. The linear model is only used to isolate input dependent parameters. The linear empirical model consists of a system of polynomial equations equating the independent variables x_1, y_2, \ldots, x_n to each of the dependent variables y_1, y_2, \ldots, y_n .

$$y_{1} = a_{1}c + a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n}$$

$$y_{2} = a_{20} + a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n}$$

$$y_{3} = a_{30} + a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \dots + a_{3n}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$y_{n} = a_{n0} + a_{n1}x_{1} + a_{n2}x_{2} + a_{n3}x_{3} + \dots + a_{nn}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

wh -e n may vary from one to seven.

The generalized hunting procedure logic systematically varies the values of the independent variables (x's) from which the trajectory program evaluates the corresponding dependent variables (y's). The resulting dependent and independent variables are submitted to a multiper regression scheme to determine the coefficients (a's) of the above equation by at least square technique.

The desired value of the dependent variables (y's) specified by input are equated to their polynomial equations and this system of linear equations is solved for the independent variables (x's). These predicted independent variables (x's) are input in the trajectory program to evaluate the dependent variables (y's). Because the polynomial equations do not exactly match the true functions, the model determined dependent variables (y's) will yield some error; this resulting error between the predicted and the achieved is further reduced to an acceptable increment specified by input by an incremented process involving the differential of the model system of equations.

The required input for this option is σ_{x1} , σ_{x2} , ..., σ_{xn} to identify each independent variable; x_{i1} , x_{i2} , ..., x_{in} to specify the initial value for each of the corresponding independent variables (x's); Δx_{i1} , Δx_{i2} , ..., Δx_{in} to establish the model array size and also to establish the largest allowable change in the independent variables (y's) during an iteration; σ_{y1} , σ_{y2} , ..., σ_{yn} to identify the dependent variable being isolated; y_{U1} , y_{U2} , ..., y_{Un} to specify the desired value of the dependent variables; ϵ_{c1} , ϵ_{c2} , ..., ϵ_{cn} to stipulate a tolerance of convergence upon the dependent variables (y's); x_{L1} , x_{L2} , ..., x_{Ln} to estatish a lower restraint limit on the independent variables (x's); and x_{U1} , x_{U2} , ..., x_{Un} to establish an upper restraint limit on the independent variables (x's).

An example of utilizing the linear model isolation resultaneous hunting procedure is as follows:

Problem -- 100 nm circular orbital injection

Model P2 = 1
Independent variables

x1 = Q2 (Pitch rate at kickover)

x2 = Q4 (Terminal pitch rate)

x3 = Wp1 (Payload weight)

Set

$$\sigma_{xx} = 320$$
 $x_{ix} = 10$ $\Delta x_{ix} = 1$ $x_{Lx} = -15$ $x_{Ux} = -5$ $\sigma_{xx} = 333$ $x_{ix} = -0.05$ $\Delta x_{ix} = 0.01$ $x_{Lx} = -0.15$ $x_{Ux} = 0.05$ $\sigma_{xx} = 20$ $x_{ix} = 40,000$ $\Delta x_{ix} = 5,000$ $x_{Lx} = 20,000$ $x_{Ux} = 60,000$

Dependent variables

 $y_1 = V_I$ (circular orbital injection inertial velocity) $y_2 = \gamma_{1I}$ (circular orbital injection inertial flight path angle) $y_3 = h$ (circular orbital altitude)

$$\sigma_{y1} = 5029$$
 $y_{U1} = 25,570$ $\varepsilon_{c1} = 5$
 $\sigma_{x2} = 5255$ $y_{U2} = 0$ $\varepsilon_{c2} = 0.01$
 $\sigma_{y3} = 5501$ $y_{U3} = 607,610$ $\varepsilon_{c3} = 100$

The generalized hunting routine uses the technique of Lagrange to maximize or minimize the function f subject to the constraint functions g_1, g_2, \ldots, g_m . Thus

$$G = f(x_1, x_2, ..., x_n) + \sum_{i=1}^{i=m} \lambda_i [g_i (x_1, x_2, ..., x_n) - L_i]$$

where L_i is the value of the constraint, λ_i is the Lagrangian multiplier and G is the Lagrangian function. The Lagrangian function G is differentiated with respect to each x and each λ , then the partial derivatives of G are each equated to zero, and the system of n + m equations are solved for the n + m unknowns; thus yielding the required values of x_1, x_2, \ldots, x_n which maximizes or minimizes the Lagrangian function G.

The generalized hunting routine is designed so that only maximums, as specified by P2 = +2, or minimums, as specified by P2 = -2, will be obtained. There is no guarantee that the solution obtained will not be a local maxima or minima. Saddle point solutions will not be obtained.

The functions f and g are represented by a quadratic response surface of the form:

function f

$$z = a_{00}$$
+ $a_{10}x_1 + a_{20}x_1^2$
+ $a_{30}x_2 + a_{40}x_2x_2 + a_{50}x_2^2$
+ $a_{60}x_3 + a_{70}x_1x_3 + a_{80}x_2x_3 + a_{90}x_3^2$

function g

$$y_i = aoi$$

+ $a_{2i}x_1 + a_{2i}x_1^2$
+ $a_{2i}x_2 + a_{4i}x_1x_2 + a_{5i}x_2^2$
+ $a_{6i}x_3 + a_{7i}x_1x_3 + a_{8i}x_2x_3 + a_{9i}x_3^2$

where i = 1, 2, ..., m

The generalized hunt procedure will determine the coefficients
(a's) in the same manner as outlined for the linear model.

b. Complete Quadratic Response Surface

The logic in this section applies if P2 equals positive or negative two. The complete quadratic response surface model is used (1) to maximize or minimize a function subject to constraint or (2) to isolate a particular solution from a family of maximized or minimized functions subject to constraints.

If the input f_D equals zero, the generalized hunting procedure will maximize or minimize the primary dependent variables called z where $z = \hat{t}(c_1, x_2, \ldots, x_n)$, subject to constraints in m* secondary dependent variables called y_1, y_2, \ldots, y_n where $y_i = g_i(x_1, x_2, \ldots, x_n)$. The number of constraint functions may vary from zero to n where n is the number of independent variables (x's) and n cannot exceed seven.

If the input f_D equals non-zero, the generalized hunting procedure will isolate a particular solution from a family of maximized or minimized functions subject to constraints. This family relates the independent variable x_1 as function of the maximized or minimized dependent variable, z with respect to the independent variables x_2 , x_3 , ..., x_n subject to constraints in m dependent variables y_1 , y_2 , ..., y_m and m cannot exceed n-1. Isolation involves selecting the independent variables x_1 which yields the maximized or minimized dependent variable z specified by the input value f_D .

The required input for this solution is σ_z , identify the dependent variable for which the extremal solution is desired; σ_{x1} , σ_{x2} , ..., σ_{xn} , to identify the independent variables; κ_{i1} , κ_{i2} , ..., κ_{in} , to specify the initial values of the independent variables; $\Delta \kappa_{i1}$, $\Delta \kappa_{i2}$, ..., $\Delta \kappa_{in}$, to specify the model array size and to specify the maximum change of an independent variable during a given iteration; σ_{y1} , σ_{y2} , ..., σ_{ym} , to identify the dependent variables being constrained; γ_{L1} , γ_{L2} , ..., γ_{Lm} , to establish the lower constraint boundary; γ_{U1} , γ_{U2} , ..., γ_{Um} , to establish the upper constraint boundary; γ_{U1} , γ_{U2} , ..., γ_{Um} ,

to establish tolerances or the constraint solution; x_{L1} , x_{L2} , ..., x_{Ln} , to establish a lower restraining limit on the independent variables; and $x_{\tilde{U}1}$, $x_{\tilde{U}2}$, ..., $x_{\tilde{U}n}$, to establish an upper restraining limit on the independent variable.

An example of utilizing the complete quadratic response surface model to maximize a function subject to constraints is as follows:

Problem -- maximize range with fixed payload subject to
the constraint that the maximum dynamic pressure
be less than 1000 psf

Model P2 = +2

Dependent Variables

x₁ " Q₂ (Pitch rate at kickover)

 $x_2 = Q_4$ (Terminal pitch rate)

Set

$$\sigma_{x1} = 319$$
 $x_{(1)} = -12$ $/x_{(1)} = 2$ $x_{L1} = -20$ $x_{U1} = -4$
 $\sigma_{x2} = 331$ $x_{(2)} = -1$ $/x_{(2)} = 0.1$ $x_{L2} = -10$ $x_{U2} = 2$

Independent variables

$$\sigma_z = S_f$$
 (range)
 $\sigma_{y1} = q_{max}$ (maximum dynamic pressure)

Set

$$\sigma_{z} = 5013$$
 $y_{L1} = 0$ $y_{U1} = 1000$ $\epsilon_{z} = 0.5$
 $\sigma_{y1} = 271$ $\epsilon_{c1} = 1$
 $\sigma_{m1} = 5037$ $T_{m} = 5$

c. Incomplete Quadratic Response Surface

This model is used if P2 = +3 to specify maximization, or P2 = -3 to specify a minimization.

This model is used in identically the same manner as the complete quadratic response surface discussed in Section L.2.b. The relative merits between the two models are discussed in section L.2.c. The model used to estimate the dependent variables z and y_i is of the form:

function f

$$z = a_{00} + a_{10}x_{1} + a_{20}x_{1}^{2} + a_{30}x_{2} + a_{40}x_{2}^{2} + \dots + a_{(2n-1)_{0}x_{n}} + a_{40}x_{2}^{2} + \dots + a_{(2n-1)_{0}x_{n}}$$

function g

$$y_1 = a_{01} + a_{11}x_1 + a_{21}x_2^2 + a_{31}x_2 + a_{41}x_2^2 + \dots + a_{(pn-1)in} + a_{(2n)}$$

where i = 1, 2, ..., m*.

The required input is the same as that described in Section L. 2.b.

An example of utilizing the incomplete quadratic response surface model to isolate a particular solution from a family of maximized functions subject to constrai is as follows:

Problem -- determine the payload consistant with a maximum range trajectory for a range of 5500 nm subject to the constraint that the maximum dynamic pressure be less than 1000 psf.

Model P2 = +3

Independent variables

 $x_1 = W_{PL}$ (payload weight) $x_2 = Q_2$ (pitch rate at kickover) $x_3 = Q_4$ (terminal pitch rate)

Set

$$\sigma_{x_1} = 20$$
 $x_{i_1} = 10,000$ $\Delta x_{i_2} = 1,000$ $x_{L_1} = 0$ $x_{U_2} = 20,000$
 $\sigma_{x_2} = 320$ $x_{i_2} = -8$ $\Delta x_{i_2} = 1$ $x_{i_{L_2}} = -12$ $x_{U_2} = 3$
 $\sigma_{x_3} = 333$ is = -0.5 $\Delta x_{i_3} = 0.05$ $x_{L_3} = -5$ $x_{U_3} = 1$

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

Dependent variables

Set

$$\sigma_{_{12}} - 5024$$
 $y_{_{12}} = 0$ $y_{_{12}} = 1090$ $\varepsilon_{_{2}} = 0.5$ $\sigma_{_{22}} = 261$. $\varepsilon_{_{12}} = 1$ $\sigma_{_{22}} = 5070$ $\sigma_{_{22}} = 500$

d. Generalized Hunt Characteristics

The data described in this section is applicable to that described for each model.

In the extremal problem the variance of the model is evaluated at the apparent solution point. If the input parameter ϵ_m is

nonzero and if the probably is greater than 0.05 that the model error is greater than ϵ_m , the entire maximization (or minimization) will be repeated.

The independent variables may be transformed to aid the convergence of the model. A transform code input is available for each independent variable and is input T_{T1} , T_{T2} , ..., T_{Tn} . A constant of transformation a_{T1} , a_{T2} , ..., a_{Tn} is input for each transformation. The available transformations are:

$$T_{T} = 0$$

$$T_{T} = 1$$

$$T_{T} = 2$$

$$T_{T} = 3$$

$$T_{T} = 4$$

$$\eta = x + a_{T}$$

$$\eta = |x|^{a}T(x)/|x|$$

$$\eta = \ln a_{T}x$$

$$\eta = a_{T}/x$$

$$\eta = e^{a}T^{x}$$

where η is the transformed independent variable.

The relative merits of using the complete quadratic response surface as opposed to the incomplete quadratic response surface is in running time. If ϵ_m is non-zero and if it is the same value for either method, the same answer should be eventually obtained. Advantage to using the incomplete quadratic response surface model will probably not materialize until n=6 or 7. As a guide to choice and an aid to estimation of running time, the following table describes the number of trajectories necessary to estimate the coefficients required to make the first optimal prediction.

<u>n</u>	<u>Complete</u>	Quadratic	Incomplete	Quadratic
	Trajectories Simulated	Coefficients Estimated	Trajectories Simulated	Coefficients Estimated
1	3	3	5	3
2	6	6	9	5
3	15	10	13	7
4	25	15	17	9
5	27	21	21	11
6	45	28	25	13
7	79	36	29	15

The complete quadratic response surface model will always make better predictions for any given iteration; therefore, the incomplete quadratic response surface model should require more iterations. Experience will dictate the most efficient method for solving the hunting procedure problem.

The maximum number of hunt predictions beyond the initial array must be specified in n_{t2} . If n_{t2} is input, a negative number, the hunt will restart after n_{t2} -th iterations.

3. Special Routines

a. Acquisition of Coefficients for Steering Equations

The coefficients for the pitch steering equations are obtained by a least square curve fit of flight path parameters. This option automates the acquisition of these coefficients. The portion of the trajectory to be fit will be specified by sigms codes contained in the switching table.

1. $\sigma_{\rm glk}$ is zero, this option is by passed for the k-th stage. If $\sigma_{\rm glk} > 0$, the data locations containing the summation matrix and the observation counter n will be initially set to zero at the beginning of each stage. Over the portion of the trajectory which is to be fit, a summation of data will be generated in the following form for each integration step. Data will be processed over the open interval $K_{\rm glk} \leq \sigma_{\rm glk}$ to $\sigma_{\rm g2k} \leq K_{\rm g2k}$.

$$n_g = \Sigma 1.0$$

let

$$u_1 = \overset{\circ}{g}g$$

$$u_2 = \overset{\circ}{x}gg$$

$$u_3 = \overset{\circ}{x}^2gg$$

$$u_4 = \overset{\circ}{y}^3gg$$

$$u_5 = \theta_m \text{ (radians)}$$

Then the summation matrix appears as follows:

3. Special Routines

ð.

Acquisition of Coefficients for Steering Equations

The coefficients for the pitch steering equations are obtained by a least square curve fit of flight path parameters. This option automates the acquisition of these coefficients. The portion of the trajectory to be fit will be specified by signa codes contained in the switching table.

If $\sigma_{\rm glk}$ is zero, this option is by passed for the k-th stage. If $\sigma_{\rm glk} > 0$, the data locations containing the summation matrix and the observation counter n will be initially set to zero at the beginning of each stage. Over the portion of the trajectory which is to be fit, a summation of data will be generated in the following form for each integration step. Data will be processed over the open interval $K_{\rm glk} \leq \sigma_{\rm glk}$ to $\sigma_{\rm g2k} \leq K_{\rm g2k}$.

$$n_g = \Sigma 1.0$$

let

$$u_{1} = \overset{?}{z}_{88}$$

$$u_{2} = \overset{?}{x}_{88}$$

$$u_{3} = \overset{?}{x}_{28}^{2}$$

$$u_{4} = \overset{?}{x}_{38}^{3}$$

$$u_{5} = \theta_{m} \text{ (radians)}$$

Then the summation matrix appears as follows:

At the end of staging, after the printing of "TERMINATION OF STAGE K" before the printing of the note "MAXIMUM VALUES" the data generated should be processed.

If $\sigma_{\rm glk}>0$ and $n_{\rm g}<5$, a note should be printed as follows, "STEERING COEFFICIENTS NOT CALCULATED." The trajectory should continue as though this option were not called for.

If σ_{glk} is non-zero and $n_g \ge 5$, then data has been generated and should be processed as follows:

The summation of the product terms, $\sum_{i,j}$, is scaled by and corrected for the mean by multiplying by n_g^2 , dividing by $\sum_{i}\sum_{j}$ and subtracting n_g . The corrected terms will then be of the form

$$\frac{n_g^2 \, \Sigma u_i u_j}{\Sigma u_i \Sigma u_j} - n_g$$

The corrected matrix then is the following 4 X 5 matrix:

$$\frac{n_{g}^{2}\Sigma(u_{1})^{2}}{(\Sigma u_{1})^{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{1}u_{2}}{\Sigma u_{1}\Sigma u_{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{1}u_{3}}{\Sigma u_{1}\Sigma u_{3}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{1}u_{4}}{\Sigma u_{1}\Sigma u_{4}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{1}u_{5}}{\Sigma u_{1}\Sigma u_{5}} - n_{g}$$

$$\frac{n_{g}^{2}\Sigma u_{2}u_{1}}{\Sigma u_{2}\Sigma u_{1}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma(u_{2})^{2}}{(\Sigma u_{2})^{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{2}u_{3}}{\Sigma u_{2}\Sigma u_{5}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{2}u_{4}}{\Sigma u_{2}\Sigma u_{4}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{2}u_{5}}{2u_{2}\Sigma u_{5}} - n_{g}$$

$$\frac{n_{g}^{2}\Sigma u_{3}u_{1}}{\Sigma u_{3}\Sigma u_{1}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{3}u_{2}}{\Sigma u_{3}\Sigma u_{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{3}u_{5}}{(\Sigma u_{3})^{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{3}u_{4}}{\Sigma u_{3}\Sigma u_{4}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{3}u_{5}}{\Sigma u_{3}\Sigma u_{5}} - n_{g}$$

$$\frac{n_{g}^{2}\Sigma u_{4}u_{1}}{\Sigma u_{3}\Sigma u_{1}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{4}u_{2}}{\Sigma u_{4}\Sigma u_{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{4}u_{3}}{\Sigma u_{4}\Sigma u_{3}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{4}u_{5}}{(\Sigma u_{4})^{2}} - n_{g} \qquad \frac{n_{g}^{2}\Sigma u_{4}u_{5}}{\Sigma u_{4}\Sigma u_{5}} - n_{g}$$

where the first four columns are the matrix $\mathbf{U}_{\mathbf{j}}$ and the last column is the vector $\mathbf{U}_{\mathbf{2}}.$

Then the coefficient vector Ug is determined by

$$\{v_g\} = [v_1]^{-1} \{v_2\}$$

with the constant term defined as

$$u_{g0} = (1 - u_{g1} - u_{g2} - u_{g3} - u_{h4}) (\Sigma u_5)/n_g$$

The steering coefficients for the k-th stage will then be as follows:

$$a_{0k} = U_{g0}$$
 $a_{1k} = U_{g1} (\Sigma u_5)/(\Sigma u_1)$
 $b_{1k} = U_{g2} (\Sigma u_5)/(\Sigma u_2)$
 $b_{2k} = U_{g3} (\Sigma u_5)/(\Sigma u_3)$
 $b_{3k} = U_{g4} (\Sigma u_5)/(\Sigma u_4)$

The steering equation coefficients are saved to be available on the next run.

b. Shaper Subroutine

(1). Introduction

This routine utilizes a generalized attitude control table and sets up the hunting procedure to (1) maximize range for a given payload, (2) maximize payload to a given range or (3) isolate the payload weight for a given circular orbit. The generalized attitude control table specifies the following flight path.

- 1. The vehicle will fly vertically off the pad until a velocity of 170.0 feet per second has been obtained before initiating pitchover. This ascent will Assure that the vehicle has cleared the ground handling equipment and launching facilities.
- The vehicle will pitch down at a rate consistent with available TVC angle and reasonable stress levels in the interstage. This rate is established empirically as a function of the vehicle liftoff weight. The pitchover is terminated when a specific pitch attitude, \$\epsilon_{m2}\$, has been obtained.
- 3. The vehicle is maintained at this specific attitude until the velocity vector angle coincides with the vehicle centerline, i.e., at zero degrees angle of attack.
- 4. The final and major portion of flight is programmed as a gravity turn path such that the vehicle is thrusting along the velocity vector, i.e., at zero degrees angle of attack. This flight profile will be utilized for both the ballistic range trajectory and the orbital trajectory.

The prime inputs to the routine are the input control flag which specifies the mission, the input target range or orbital attitude, the stage rocket motor ballistic characteristics, as specified by the thrust-weight input and the input trajectory

initial conditions such as the launch azimuth, initial altitude, velocity, etc. Inherent in the hunting procedure are a starting point and a maximum walking distance. The hunting procedure in the trajectory program requires that the initial and incremental values of the independent parameters be specified. These initial values of the independent variables are determined as continuous functions of the vehicle ideal velocity, stage burn times, and initial conditions.

This program will simplify the input to the trajectory program when doing performance trajectory work.

(2) Shaper Equations and Logic

Input Control Flags

S_{sl.} * target range or orbital altitude (nmi)

Terminal Stage Number

 $n_{\mathbf{k}}$ = largest stage number containing a non-zero input, $\sigma_{\mathbf{s}}$ Calculate impulses and thrust multipliers

The input main weight flow integral:

$$\Delta W_{Mi} \approx K_{WM} K_{tM} \sum_{j=1}^{J_{M}-1} (\dot{W}_{M(j+1)} + \dot{W}_{M(j)}) (c_{M(j+1)} - c_{M(j)})/2.$$

The expended main propellant weight:

$$\Delta W_{Mf} = \frac{1}{2} \begin{cases} 0 & \text{if } I_{spM} = 0.0 \\ K_{FM} K_{tM}^{T} V_{M}^{T} I_{spM} & \text{Otherwise} \end{cases}$$

The complementary weight flow integral:

$$\Delta W_{Ci} = K_{WC}K_{tC} \sum_{j=1}^{J_{C}-1} (\dot{W}_{C(j+1)} + \dot{W}_{C(j)}) (t_{C(j+1)} - t_{C(\cdot)})/2$$

The expended complementary propellant weight

$$\Delta W_{Cf} = \begin{bmatrix} 0 & \text{if } I_{spC} = 0.0 \\ & & \\ K_{FC}K_{tC}I_{vC}/I_{spC}, & \text{otherwise} \end{bmatrix}$$

Total expended weight:

$$\Delta W = \Delta W_{Mi} + \Delta W_{Mf} + \Delta W_{Ci} + \Delta W_{Cf}$$

Stage effective specific impulse

Carryover weight:

Stage Weight:

Stage Weight Ratio:

$$W_B = W_{MO} + W_{CO} + W_{OV}$$
 $v = W_B/W_{B1}$

Stage duration:

$$t_B = t_{B(J_M)} K_{tM}$$

Earth rotation factor:

$$\vec{v}/\omega = \cos \rho_L \sin \psi_i$$

Propulsion system liftoff weight

$$W_{PLO_k} = W_{B_k} + \sum_{j=k+1}^{n_k} (W_{MO(j)} + W_{CO(j)})$$

Maximum Range:

If $K_{sh} = 1$, apply the following logic and equations

Ideal Velocity Equation:

$$\Delta V = \bar{g}_e \sum_{k=k_k}^{n_k} I_{speff_k} \quad l_n \left[\frac{W_{PL} + W_{PLO_k}}{W_{PL} + W_{PLO_k} - \Delta W_k} \right]$$

Vehicle Liftoff Weight:

$$W_{T} = W_{PL} + \sum_{k=k}^{n_{k}} W_{M)_{k}} + W_{CO_{k}}$$

Velocity at Pitch Over:

$$v_{PO} = \begin{bmatrix} 170.0 & \text{If } V_{eo} \le 160 \\ v_{eo} + 10 & \text{Otherwise} \end{bmatrix}$$

Pitch Over Pitch Rate:

$$Q_{m2} = \{2,186.428 + \ln (W_T) [-218.16888 + 5,4511537 \ln (W_T)] W_T^{1/3}$$

Pitch Over Angle:

- 5-
0
tot
u
Cond
Ē
Ö
rī
•
_
_
a]
(tial
(tial
tial

(geb)		(atib)	(dim)	(dim)	(dtm)	(dim)	(mib)	(deg)	(Nap.	(nmi)		(mib)		(360)	(3860)
Inicial flight path angle Initial command pitch attitude	Hunting Procedure Pl	Hunting procedure Pl flag	Stage print flag	Trajectory limit number	Isolation-maximization flag	Independent variable code $[K_{{f f},2}]$	Dependent variable rote [Sg]	Initial value of independent variable	Incremental value of independent variable	Convergence accuracy of dependent variable	Huntir Procedure P2	Hunting procedure P2 flag	Main Print	Main print time interval	Main print time limit
90.0		1.0	0.0	20.0	2.0	319.0	5024.0	6 m2	2.0	1.0		0.0		10.0	\$000.0
L)1 L28		1.73	174	175	T16	1.77	178	180	1.81	183		184		1184	1185

Discontinuity Print

(dim) (dim) (dim)	n	(din)	(d1m) (ft (gg))	(deafeer)	(dim)	(d fm)	(deg)	(400/200)	(dim)	(dim)	(deg)	(deg/sec)	(dim)	(47m)	(CCO)	(deg)
Code for discontinuity print at end of vertice! rise Code for discontinuity print at end of pitch wrat Jude for discontinuity print at start of gravity turn	Attitude Control	Parameter code for termination of notice and	Velocity to terminate reason 1	Fitch rate for region 1	Type of flight region 2 [command rate]	Parameter code for termination of region 2 [0]	Command attitude to terminate region 2	Pitch rate for region 2	Type of flight region 3 [command rate]	Rarameter code for termination of region 3 [or]	Angle of attack to terminate region 3	Pitch rate for region 3	Type of flight region 4 [gravity furn]	Parameter code for termination of region 4 [+]	Time to terminate region 4	Angle of attack for region 4
310.0 317 0 324.0	C	5046.0	VaV	0.0	1.0	5722.0	6 m2	Qm2	1.0	5310.0	0.0	0.0	2.0	5006.0	2000.0	0.0
1.252 1.253 1.254	1310	1.511	1312	1313	1316	1317	1318	L319	1322	1323	1324	1325	L328	L329	1330	1331

TO THE PROPERTY OF THE PROPERT

(3) Maximum Payload to a Given Range

If $K_{ah} = 2$, apply the following logic and equations:

Estimated required Ideal Velocity for Range ≤ 8000 Nautical Miles:

For Range > 8000 Nautical Miles.

V = 29000

Paylead Iteration Procedure

Ideal Velocity Equation

$$\Delta V^{\ell} = \tilde{g}_{e} \sum_{k=k_{k}}^{n_{k}} I_{speff} \ell n \left[\frac{W_{PL}^{\ell} + W_{PLO_{k}}}{W_{PL}^{\ell} + W_{PLO_{k}} - \Delta W_{k}} \right]$$

where ℓ is the iteration counter.

Initial guess for VPL

For
$$\ell = 2$$
 $W_{PL}^{\ell=2} = 1.01 W_{PL}^{\ell=1}$

For
$$\ell \ge 3$$
 $W_{PL}^{\ell \ge 3} = W_{PL}^{\ell-1} - \frac{(\Delta \hat{V} - \Delta V^{\ell-1})(W_{PL}^{\ell-1} - W_{PL}^{\ell-2})}{(\Delta V^{\ell-2} - \Delta V^{\ell-1})}$

1f $W_{\text{FL}}^{\mathcal{L}} < 0$, then set $W_{\text{PL}}^{\mathcal{L}} = V_{\text{PL}}^{\mathcal{L}-1}/2.0$

If
$$\frac{\Delta \hat{V} - \Delta \hat{V}}{\Delta \hat{V}}$$
 < 0.00004, terminate iteration

If $\ell = 100$, terminate run and print

"PAYLOAD WEIGHT ITERATION DID NOT CONVERGE"

At the termination of the payload weight iteration,

Vehicle Liftoff Weight

$$W_{T} = W_{PL} + \sum_{k=k_{k}}^{n_{k}} W_{M} + W_{CCk}$$

Velocity at Pitch Over

(4) Pitch Over Pitch Rate

$$Q_{m2} = -(2,186.428 + \ln (W_T)) [-218.16888 + 6.4511537 \ln (W_T)]/W_T^{1/3}$$

Pitch Over Angle

Initial Conditions

(deg)	(deg)		(dim)		(dim)	(dîm)	(mu)	(mtb)	(uju)	(mn)	(d1m)	(qtp)	(19)	1e (1b)	(dim)	1e (1b)	(mip)	(geb)	(gop)	(m1p)	ble (deg)	(19)
Initial flight path angle	Initial command pitch attitude	Hunting Procedure Pl	Hunting procedure Pl flag	Hunting Procedure Pl.	Hunting procedure P2 flag [incomplete quadratic]	Maximized dependent variable code [Sg]	Tolerance of maximization parameter	Model accuracy	Run Time	isolated-maximized parameter $\{S_{f f}\}$	Trajectory limit number beyond base array	Isolation in ependent variable code $\{\mu_{ m pL}\}$	Initial, value of isolation independent variable	Incremental value of isolation independent variable	Transformation flag, first independent variable	Transformation constant, first independent variable	Second independent variable code [Kg2]	Initial value of independent variable	Incremental value of independent variable	Transformation flag, second independent variable	Transform tion constant, second independent variable	Upper limit first independent variable
0.06	0.06		0.0		3.0	5024.0	1,0	0.0	0.0	S	20.0	20.0	War	0.1 × Wp.	0.0	0.0	319.0	ر ش	2.0	0.0	0.0	. v. c
111	1.28		1.73		184	1.85	1.86	1.87	1.88	1.89	1.90	161	192	1,93	1.98	199	1100	1101	1102	1107	1108	7.4.4

TO SEE THE SECOND OF THE SECON

のではなる本をはいからいところないところともできないとう

(deg) (1b) (deg)	(sec)	(dim) (dim)	(dim) (ft/sec) (feg/sec) (dim) (dim) (deg) (deg) (deg)
Upper limit second independent variable Lower limit first independent variable Lower limit second independent variable Main Print	Main print time interval Main print time limit Discontinuity Print	Code for discontinuity print at end of vertical rise Code for discontinuity print at end of pitch over Code for discontinuity print at start of gravity turn Attitude Control	Type of flight region 1 [command rate] Parameter code for termination of region 1 [velocity to terminate region 1 Pitch rate for region 1 Type of flight region 2 [command rate] Parameter code for termination of region 2 [m] Command attitude to terminate region 2 Pitch rate for region 2 Pitch rate for region 3 Type of flight region 3 [command rate]
90.0	10.0	310.0 317.0 324.0	1.0 5046.0 VPO 0.0 0.0 1.0 5722.0 6 0.2 1.0
L155 L161 L162	L184 L185	L252 L253 L254	1.310 1.311 1.312 1.313 1.319 1.322

1323	5310.0	Parameter code for termination region 3	(mrp)
1324	0.0	Angle of attack to terminate region 3	(deg)
1325	0.0	Pitch rate for region 3	(deg/sec)
12,28	2.0	Type of flight region 4 [gravity turn]	(mib)
1329	5000.0	Parameter code for termination of region 4 [t]	(din.)
1330	2000.0	Time to terminate region A	(sec)
1331	0.0	Angle of attack for region 4	(deg)

AND THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART

(5) Payload to Circular Orbit

If $K_{sh} = 3$, apply the following logic and equations:

Estimated required Ideal Velocity

Payload Iteration Procedure

Ideal Velocity Equation

$$\Delta V^{\ell} = \bar{s}_{e} \sum_{k=k_{k}}^{n_{k}} I_{speff} \ell^{n} \frac{W_{PL}^{\ell} + W_{PLO_{k}}}{W_{PL}^{\ell} + W_{PLO_{k}} - \Delta W_{k}}$$

Initial guess for WPL

For
$$\ell = 1$$
 $W_{PL}^{\ell=1} = W_{PLO_{k}=k_{k}}/30.0$

For
$$\ell = 2$$
 $W_{PL}^{\ell=2} = 1.01 W_{PL}^{\ell}$

For
$$\ell = 3$$
 $W_{PL}^{\ell=3} = W_{PL}^{\ell-1} - \frac{(\Delta \hat{V} - \Delta V^{\ell-1})(W_{PL}^{\ell-1} - W_{PL}^{\ell-2})}{(\Delta V^{\ell-2} - \Delta V^{\ell-1})}$

If $W_{PL}^{\ell} < 0$, then set $W_{PL}^{\ell} = W_{PL}^{\ell-1}/2.0$

If $\frac{\Delta V + \Delta V^2}{\Delta V}$ < 0.00004, terminate iteration

If $\ell = 100$, terminate run and print

"PAYLOAD WEIGHT ITERATION DID NOT CONVERGE"

At the termination of the payload weight iteration,

Vehicle Liftoff Weight

$$W_{T} = W_{PL} + \sum_{k=k_{k}}^{n_{k}} W_{MOk} + W_{COk}$$

Velocity at Pitch Over

$$v_{p0} = \begin{cases} 170.0 & \text{If } v_{eo} = 160.0 \\ v_{eo} + 10.0 & \text{otherwise} \end{cases}$$

Circular Orbital Altitude

$$h_{CO} = S_{ah} \times 6076.10333$$

Inertial Circular Orbital Velocity

$$v_{ICO} = \left[\frac{g_e r_e^2}{(h_{CO} + r_e)}\right]^{\frac{1}{2}}$$

where

the gravitational constant is:

and earth radius is:

$$r_e = \begin{bmatrix} 20,926,400.0 & \text{If } r_e^t = 0 \\ r_e^t & \text{Otherwise} \end{bmatrix}$$

Pitch Over Pitch Rate

$$Q_{m2} = -\{2,186.428 + en (W_T) [-218.16888 + 6.4511537 en (W_T)]\}/W_T^{1/3}$$

Pitch Over Angle

 θ_{m2} for $v_0 \le 160$ feet per second:

$$\theta_{m2} = -26.618013 + .1013901$$
 $- .000083344619$
 h_{CO}
 $+ .7863$
 $+ .7863$
 $+ .0752$
 $- .6032$
 $+ 19.666608$
 $+ 19.666608$
 $+ 92.727271$
 $- .33013554$
 $- .00020876596$
 $- .011349661$
 $- .011349661$
 $- .011349661$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$
 $- .00020876697$

(6) Initial flight path angle to terminate next to last stage

$\hat{\gamma}_{-} = -4.3479152$	+ .0014201471	*	(nmi)
$7_{1g} = -4.3479152$	+ .0014201471	"co	(ttar 1)
•	+ .000014699632	^h co ₂ ^h co	
	010439863	t ₃₁	(sec)
	+ .00024116553	t _{B1} 2	
	+ .0047000003	t _{B2}	(sec)
	+ .075800000	t _{B3}	(sec)
	- 3.1327416	v_2	(dim)
	+ 20.151515	ν ₃	(dim)
	84360441	⊈ /ω	(dim)
	000020950557	h _o	(ft)
	00128745	v _o	(ft/aec)
	+ .0000013688082	v ₀ 2	

30
guo
Ö
-
ú
ā
70
g
-~
F 3
C
_
<u>-</u> 4
al.
<u>-</u> 4
al.
itial
itial
nitial
itial

111	90.0	Initial flight path angle	(deg)
1.28	90.0	Initial command attitude	(deg)
-	-	Hunting Procedure Pl	
173	0.0	Hunting procedure Pl flag	(d im)
		Runting Procedure P2	
	1.0	Hunting procedure P2 flag [11, near model]	(dim)
187	0.0	Model accuracy	(m;p)
	0.0	Run time	(mīm)
-	0.0	Isolation=maximized parameter [undefined]	(dp1)
	20.0	Trajectory limit number beyond base array	(dim)
	20.0	First indopendent variable code [Wpr.]	(d1m)
	id S	Initial value of first independent variable	(1 _b)
	0.1 × Wpr.	Incremental value of first independent variable	(16)
	5050.0	First dependent variable code $\left[\mathbf{V}_{\mathbf{I}} ight]$	(dib)
-	VTCO	First dependent variable isolation value	(ft/sec)
	, o.s.	Tolerance of first isolated wariable	(ft/sec)
	0.0	Transformation flag, first independent variable	(dim)
	0.0	Transformation constant, first independent variable	(11)
	319.0	Second independent variable code $\{K_{{f F}_2}\}$	(dim)
	6)	Initial value of second independent variable	(deg)
	2.0	Incremental value of second independent variable	(deg)

Hunting Procedure P2 (Continued)

(dim)	(deg)	(deg)	(dim)	(deg)	(dim).	(deg)	(deg)	(dlm)	(ft)	(ft)	(dim)	(řt)	(16)	(deg)	(deg)	(14)	(deg)	(deg)		(sec)	(sec)
Second dependent variable code γ_{1T}	Second dependent variable isolation value	Tolerance of second isolated variable	Transformation flag, second independent variable	Transformation constant, second independent variable	Third independent variable code $\{k_3(n_{k-1})\}$	Initial value of third independent variable	Incremental value of third independent variable	Third dependent variable code [h]	Third dependent variable isolation value	Tolerance of third isolated variable	Transformation flag, third independent variable	Transformation constant, third independent variable	Upper limit first independent variable	Upper limit second independent variable	Upper limit third independent variable	Lower limit first independent variable	Lower limit second independent variable	Lower limit third independent variable	Main Print	Main print time interval	Main print time limit
5330.0	9.0	0.01	0.0	0.0	(n _{k-1})1060 + 3	*I&	2.0	5028.0	္ပို့	100.0	0.0	0.0	0.2 W	0.06	20.0	0.0	20.0	0.0		10.0	2000.0
L103	1105	1106	1107	L108	1109	L110	1111	L112	1114	L115	L116	1117	L154	L155	L156	1361	1162	L163		1184	1.185

The control of the co

Discontinuity Print

1,252	310.0	Code for discontinuity print at end of vertical rise	(dim)
L253	317.0	Code for discontinuity print at and of pitchover	(dim)
L254	324.0	Code for discontinuity print at start of gravity turn	(dim)
-			
		Attitude Control	
1310	1.0	Type of flight region 1 [command rate]	(dim)
1311	5046.0	Paramuter code for termination of region 1 [Ve]	(dim)
1312	Ve	Velocity to terminate region 1	(ft/8ec)
L313	0.0	Pitch rate for region 1	(deg/sec)
1316	1.0	Type of flight region 2 [command rate]	(dim)
L317	5722.0	Parameter code for termination of region 2 [0]	(dim)
1318		Command attitude to terminate region 2	(deg)
1319	J	Pitch rate for region 2	(deg/sec)
L322	1.0	Type of flight region 3 [command rate]	(dim)
1323	5310.0	Parameter code for termination region 3	(deg)
1324	0.0	Angle of attack to terminate region 3	(deg)
1.325	0.0	Pitch rate for region 3	(deg/sec)
1328	2.0	Type of filght region 4 [gravity turn]	(dim)
1329	5009.0	Parameter code for termination of region 4 [ft]	(d2m)
1330	2000.0	Time to terminate region 4	(sec)
1331	0.0	Angle of attack for region 4	(deg)

Termination of Next to Last Stage

(dim)	(mib)	(u3b)	(deg)
Stage termination variable code [711]	Termination constant I	Termination constant 2	Termination isolation value
5330.0	0.0	0.0	ŶIB
L(n, 1)1000 + 0 5330.0	L _(n, 1) 1000 + 1	$L_{(n_{i-1})}1000 + 2$	L(n _{k-1})1000 + 3

The high strains and the strains of the strains of

(7) Shaper Subroutine Nome.aclature

Symbol	<u>Pefinition</u>	Units
GH .	Gravitational Constant (32.14625)	ft/sec**2
HGO	Circular ophical altitude	nm
но	Initial altitude	ft
ISPC	Comp specific impulse used to find vehicle weight flow	sec
ISPFFF	Stage effective specific impulse	sec
ISPM	Main specific impulse used to fine vehicle weight flow	sec
IVC	Integral of the complementary vacuum thrust cable	1b-sec
IVM	Integral of the main vacuum thrust table	lb-sec
IVT	Integral of the main and complementary vacuum thrust table	lb-sec
JC	Number of data in complementary thrust-weight table	••
JM	Number of data in main thrust-weight table	**
KEC	Multiplier of the complementary stage vacuum thrust	
KEM	Multiplier of the main stage vacuum thrust	~*
KK	Stage number	••
KNOK	Complementary thrust-weight table wt carry-over flag	₹æ.
KOK	Main thrust-weight table weight carry-over flag	• *
KSH	Control Flag indicating type of flight	• •
KTC	Time multiplier for the complementary thrust table	••
KTM	Time multiplier for the main thrust table	••
KWC	Input complementary weight flow multiplier	••
KM	Input main weight flow multiplier	••
NK	Largest stage number containing a non-zero input sigma	
QMP	Pitch over pitch rate	deg./sec

Symbol	Definition	Uniti
RE	Radius of the earth (20,925,400)	£t
SSH	Target range or orbital altitude	TUC:
TR	Stage duration	sec
TRJM	Stage time of last main thrust-weight point	εec
TCJ	Complementary thrust-weight switching times	sec
TIJ	Main thrust-weight switching times	sec
TICJ	Complementary thrust-weight switching times (stage start)	sec
TIMJ	Main thrust-weight swi : ching time from stage initiation	sec
VEO	Missile velocity at trajectory start time	ft/sec
VICO	Inertial circular orbital velocity	ft/sec
vo	Initial velocity of vehicle	ft/sec
VPO	Velocity at pitchover	ft/sec
WB	Stage weight	16
WBK	Total missile weight at the termination of Kth stage	16
WCO	Initial complementary weight	1b
WCOK	Initial complementary weight for the Kth stage	1 b
WDOT CJ	Complementary weight flow at T'CJ, J = 1,, 25 per stage	lb/sec
WDOT MJ	Main weight flow at T'MJ, J = 1,, 25 per stage	lb/seç
WMO	Initial main weight	1b
MOA	Carry-over weight	16
WPL	Weight of payload	1b
MBFOK	Propulsion system liftoff weight of Kth stage	16
WT	Vehicle liftoff weight	1b
GAMA IG	Inertial flight path angle to termination next to last stage	e deg
DELTA V	Total ideal velocity of missile	ft/sec
DELTA WMI	Integral of the main weight	15

Symbol Symbol	Definition	<u>Unit s</u>
DELTA W	Total expended weight	1ъ
DELTA WCF	Expended complementary propellant weight	1b
DELTA WCFK	Expended complementary propellant weight of Kth stage	1b
DZLTA WCI	Complementary weight flow integral	1 b
DELTA WCIK	Complementary weight flow integral of the Kth stage	1b
DELTA WK	Total expended weight of Kth stage	1b
DELTA WMF	Expended main propellant weight	1b
THETA M2	Pitch over angle between launch horizondat and command control line	deg
THETA HATM2	Initial value of theta F?	deg
NU 2	Patio of stage two weight to stage one weight, initially	
NU 3	Ratio of stage 3 weight to stage one weight, initially	
OMEG/OMEG	Earth rotation factor	

M. INPUT

Load sheets are provided to facilitate data input and are shown at the end of this section. Utilization of the load sheets are explained below.

1. GENERAL INPUT

It is possible to submit any load sheet as the first or last page of the basic deck or run. Any load sheet not required may be deteted from the basic deck or run. Columns one through seventy-two are available for program input. Because of program logic regarding the basic deck system, a minus zero is never input.

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, 第二十二章 第二

Unless a quantity is input in the basic deck or run, that quantity will be zero unless special program logic apply.

The decimal point will be input with the number in the load sheet. If the decimal point is not specified for an input quantity, the decimal will be assumed after the last input integer of that quantity.

If the value of the desired input is too large or too small to satisfactorily indicate it in the spaces provided, write the number, the letter "E" and the power of ten the number is to multiplied by. If no decimal is specified for the number, the decimal is assumed after the last integer before the "E".

The first entry for all tables must appear at the top of the table. The independent variables specified in the load sheets must be filled out monotonically, but the last value may be input before the table ends.

Load sheet pages II and beyond can be used for first, second, third, or fourth stage. The desired stage is designated by inserting the stage number in the box following the "L".

Inputs in 10, 11, and 12 are the identification basic deck, reference run, and run. The basic deck and the run number must be nonzero in order for the trajectory to run. These identification numbers are printed at the top of each page of output.

493

2. INPUT L-NUMBER LIST

L-number	Symbol -	Definition	Units
L0000	BD	Input basic deck number	dim
r0001	RR	Input reference run number	dim
L0002	RUN	Input run number	
L0003	κ' _k	Input stage start control function. If 1, 2, 3, or 4, the run starts at the initiation of the first, second, third, or fourth stage, respectively if input zero set is equal to 1	dim
L0004	t _o	Input trajectory start time	sec
L0005	t'k	Input start time with the initial stage $K_{\hat{\mathbf{k}}}$	sec
F0009	T_{yk}^{i}	Input initial or restort type of flight control flag	dim
1.0007	M'y	Input initial or restart type of mode control flag	dim
10008	s _y	Input initial or restart special print flag	dim
1.0009	n _y	Input initial or restart discontinuity print flag	dim
L 0010	V _{eo}	Input missile velocity at the trajectory start time	ft/sec
L0011	⁷ 10	Input flight path angle at the trajectory start time, $-180^{\circ} < \gamma_{10} \le 180^{\circ}$	deg
L0012	h _o	Input missile altitude at the trajectory start time	£t
L0013	s _o	Input missile ground range at the trajectory start time	ft
L0014	₹ i	Input flight plane azimuth angle. Angle measured north to the flight plane, -180°≤ \$ ≤ 180°	ft
L0015	$\theta_{\mathbf{i}}$	Input inertial elevation axis Euler angle relating the i and e systems	deg
L0016	$oldsymbol{\phi_i}$	Input inertial meridional axis Euler angle relating the \mathbf{i} and $\mathbf{e}_{\mathbf{o}}$ systems	deg

L-number	Symbol	Definition	Units
L0017	$^{ ho}{ m L}$	Input launch latitude, -90° ≤ ρ ≤ 90°	deg
L0018	$^{\mu}_{ m L}$	Input launcher longitude	deg
L0019	h _L	Input launcher altitude	ft
L0020	$w_{ m PL}$	Input payload weight	1b
L9021	h _E	Input altitude above which ambient pressure and aerodynamic forces are zero and speed of sound is 1,000 ft/sec. If input zero is set to 300,000 ft	ft
LC022		Open	
L0023	J	Input gravitational value which accounts for the earth's oblateness	dim
L0024	£ _e	Input mass conversion gravity. If input zero, set equal to 32.174	f.t./sec ²
L0025	g.! e	Input gravitational acceleration at the surface of the reference body. If input zero, set equal to 32.14625	ft/sec ²
L0026	r'e	Input geometric radius of the earth. If input zero, set equal to 20,926,400	fit
1.0027	ω	Input magnitude of the earth's angular velocity. If input greater than 0.5, set equal to 7.29211 E-5	rad/sec
L0028	Q^{mo}	Input initial command pitch attitude	deg
10039	∯ mo	Input initial commanded yaw attitude	deg
F0030	ϕ_{mo}	Input initial commanded roll attitude	deg
L0031	Q _{bo}	Input initial vehicle pitch rate	deg/sec
L0032	g _{bo}	Input initial vehicle yaw rate	deg/sec
T0033	P _{bo}	Input initial vehicle roll rate	deg/sec
L0034	$\theta_{ m bo}$	Input pitch orientation angle at the trajectory start time, $-180^{\circ} < \theta_{bc} \le 180^{\circ}$	deg
L0035	po	Input yaw orients tion angle at the trajectory start time $-180^{\circ} < z_{\rm bo}^{\circ} < 180^{\circ}$	geã

A CONTRACT OF THE PROPERTY OF

L-number	Sy bol	<u>Definitions</u>	<u>Units</u>
L0036	ϕ_{5o}	Input roll orientation angle at the trajectory start time -180° $< \phi_{\rm bo} \le 180^{\circ}$	deg
1.0037	K _{cl,2}	Input lower and upper limits, respectively, for computation of orbital elements and impact determination computations	dbi
L0039	h _f	Input altitude at the rememation of the glide phase	£¢
L0040	K _γ	Input glide phase termination control function. A value of plus one will specify impact after apogee, while a minus one will specify impact before apogee	dim
10041	σ c	Input code which designates the quantity that determines the flight region when the orbital elements and impact determination are desired	dim
L0042	h _e	Input altitude of atmospheric entry	ft
L0043	s _{co}	Input initial earth surface cross-range at trajectory start time	n.m.
L0044	γ ₂₀	Input azimuthal flight path angle at trajectory start time	deg
L0045	ξ	Open	
L0046	g g	Input generalized coordinate orientation angle. Second rotation angle (about the resulting Z axis after rotating through θ_g , θ_g , and ϕ_g	deg
L0047	9 g	Input generalized coordinate orientation for velocity steering. First rotation angle (about the Y _e -axis) of the set θ_g , θ_g , and θ_g .	deg
L0048	$oldsymbol{\phi}_{ ext{g}}$	Input generalized coordinate orientation angle. Final rotation angle (about the X_g axis) of the set θ_g , ψ_g , and ϕ_g .	deg
10049, 52, etc.	W _{JTj}	Input weight to be jettimoned when $\boldsymbol{\sigma}_j$ parameter had \boldsymbol{K}_j value	1b
L0050, 53, etc.	$\sigma_{ exttt{J} exttt{j}}$	input code which designates the quantity that determines when the W_{jT} weight is to be jettisoned where $j=1,\ 2,\ \ldots,\ or\ 8$	dim
L0051, 54, etc.	K _{Jj}	Input value of that parameter at which the weight W_{JTj} is to be jettisoned where $j=1,2,\ldots,$ or 8	dbi
L0073	- P ₁	Input flag so specify hunt procedure (P1)	dim
L0074	κ _s	Input stage print control function. A non- zero value is required to print the trajectory a the termination of each stage during the hunting procedura 198	

L-number	<u>Symbol</u>	Definition	Units
L0075	n _{t1}	Input trajectory number limit. No more than n trajectories will be computed during the hunting procedure (Pl) by varying X	dim
L0076	K _a	Input isolation-maximization control function. If zero, isolation is specified and if nonzero, maximization of the dependent variables will occur used in hunting procedure (Pl)	dim
L0077	σχ	Input code which designates the independent variable in the hunting procedure (PI)	dim
L0078	o - a	Input code which designates the dependent variable in the hunting procedure (P1)	dim
L0080	x	Input value of the first guess of X used in hunting procedure	dbi
L0081	Δ χ	Input increments that X is incremented during the hunting procedure (P1)	dbi
L0082-	^a f	Input value of the dependent variable to be isolated by the hunting procedure (Pl)	dbi
£0083	Δa	Input hunting procedur: (PI) values that "a" should be computed within the isolation or maximization routine	dbi
L0084	P ₂	Input flag to specify hunt procedure (P2). If $P_2 = 0$, by-pass hunt procedure 2; $P_2 = 1$, use a linear response; $ P_2 = 2$, use a quadratic response surface where +2 maximizes and -2 minimizes; $ P_2 = 3$, use an incomplete quadratic response surface where +3 maximizes and -3 minimizes	dim
L0085	g z	Input code. The σ_z identifies the dependent variable being maximized or minimized. Used in hunt procedure (F2). If $\sigma_z < 0$, the values of x_1, x_2, \dots, x_{in}	dim
L0086	€ Z	Input value specifying the tolerance of the predicted maximization parameter (z). Used in the hunt procedure (P2)	dbi
10087	€ m	Input flag to specify model error used in hunt procedure (P2). If $\epsilon_{\rm m} < 0$, the model will be iterated until an extremal solution has a 95 percent probable model error. If $\epsilon_{\rm m} = 0$, the extremal solution is obtained without regard to probable model error	dim

L-number	Symbol	Definition	<u>Units</u>
L0088	-	0pen	
L9089	fD	Input and flag specifying maximization and isolation of the same parameter used in hunt procedure (P2). If f_D is nonzero, the function f is maximized relative to the independent variables x_2, x_3, \ldots, x_n and is isolated to a value f_D by varying x_1	dbi
r0030	ⁿ t2	Input specified maximum number of hunt predictions (P2) beyond the initial array. If n _{t2} is input a negative number, the hunt will restart after n _{t2} iterations	din
10091, 100, etc.	o xj	Input code which designates the independent variables used in hunting procedure (P2) where $j = 1, 2,, 7$	dim
L0092, 101, euc.	*ij	Input initial array reference independent variable designated by code input that is used in hunting procedure (P2)	dbi
10093, 102, etc.	Δ× _{ij}	Input increment of x_{ij} used in incrementing during hunting procedure (P2), $j = 1, 2, \dots, 7$	dbi
10094, 103, etc.	о Ул	Input code which designates the dependent variables used in hunting procedure (P2) where $j \sim 1, 2,, 7$	d i m -
10095, 104, etc.	y _{Li}	Input desired dependent variable or lower constraint boundary of the dependent variable designated by code input that is used in hunting procedure (P2) where j - 1, 2,, 7	dbi
L0096 105, etc.	y _{Ui} ;	Input upper constraint boundary of the dependent variable designated by code input that is used in hunting procedure (P2) where j - 1, 2,, 7	dbi
L0097, 106, etc.	[€] cj	Input tolerance on the j-th condition of constraint used in hunt procedure (P2) where j - 1, 2,, 7	dbi
10098 107, etc.	, T _T j	Input transfermation flag used in hunting procedure (P2) $j = 1, 2,, 7$	d in
10099 108, etc.	^a Tj	Input transformation constant used in the simultaneous hunting procedure (P2) $j-1, 2, \ldots, 7$	dbi

-			
L-number	Symbol Symbol	Definition	Units
L0154-160	×vj	Input upper limit that an independent variable may assume a value used in hunt procedure (P2) where j - 1, 2,, 7	dbi
L0161-167	× _{Lj}	Input lower limit that an independent variable may assume a value in hunt procedure (P2) where j - 1, 2,, 7	dbi
L0168, 170	, Æ _{cj}	Input computing interval during $t_{cj-1} \le t \le t_{cj}$ where j - 1, 2,, 8	sec
L0169, 171, etc.	t _{cj}	Input limit of the computing interval Δt cj where j - 1, 2,, 8	sec
L0184, 186, etc.	Δt _{pj}	Input main printing interval during tp(j-1) t pj where j = 1, 2,, 8	sec
L0185, 187, etc.	^t pj	Input limit of the main printline print interval where $j = 1, 2,, 8$	sec
L0200-205	PL-DA GB,K,KB, N,O	Input flag where nonzero values are required if printlines DA, GB, K, KB, N, O are desired	dim
L0206-208		0pen	
L0209-219	^o Pj	Input code designates the quantity to be printed in printline Z where j - 1, 2,, 8	sec
L0220, 222, etc.	$\Delta \epsilon_{p_j}$	Input auxiliary printline interval during $t_{P(j-1)} < t \le t_{P_j}$ where $j = 1, 2,, 8$	sec
L0221, 223, etc.	^t Pj	Input limit of the auxiliary printline print interval where j - 1, 2,, li	sec
L0236, 238, etc.	σ _{tj}	Input code which designates the quantity that determines when to print a special time where $j=1, -,, 8$	dim _
10237, 239, etc.	κ _{tj}	Input value when a trajectory printout is desired where j = 1, 2,, 8	dbi
L0252-259	σ _{Dj}	Input code which designates the quantity that determines when to print a discontinuity where $j = 1, 2,, 8$	dim
10260, 252, etc.	T _{mj}	Input max print region flag	din

<u>L-number</u>	Symbol .	<u>Definition</u>	<u>Units</u>	ì
L0261, 263, etc.	σ mj	Input code which designates the quantity whose maximum value is to be printed following each stage time where $j = 1, 2,, 5$	dbi	J
L0270, 272, etc.	T _{Bj}	Input staging values flag, j = 1, 2,, 5	dim	
L0271, 273, etc.	σ _{Bj}	Input code which designates the quantities whose values at staging are to be available to the hunting procedure, $j = 1, 2,, 5$	dim	
L0280, 282, etc.	$^{\sigma}_{ ext{Aj}}$	Input code which designates the integration tolerance parameters where $j = 1, 2,,$ or 7	dbi	
L0281, 283, etc.	A _{ri}	Input and utilized relative integration tolerance, j = 1, 2,, 7	dbi	
L0304-305		Open		
L0306	At	Input absclute allowable break-up tolerance of time	dim	
L0307	B [†] t	Input relative allowable break-up tolerance of time	d im	
L0308	A _X	Input absolute allowable break-up tolerance of target value	sec	
L0309	3' x	Input relative allowable break-up tolerance of target value	dim	
10310 317, etc.	^T yj	Input and output type of flight control flag where j = 1, 2,, or 16	dim	
L0311, 318, etc.	σ _{fj}	Input code which designates the quantity that determines when the j-th type of flight ends where j = 1, 2,, 16	dim	
L0312, 319, etc.	κ _{fj}	Input limit of the j-th type of flight where j = 1, 2,, or 16	dbi	-
L0313, 320, etc.	$Q_{m,j}$	Input vehicle pitch turning rate. Positive if the vehicle is intended to pitch up (Ty=1)	deg/sec	
	ας:	Input commanded angle of attack used in the constant angle of attack and angle of side slip (Ty=2)	deg	
	^h cj	Input commanded altitude used in the constant altitude type of flight (Ty=8)	ft	

L-number	Symbol	<u>Definition</u>	Units
	η _{cj}	Input command load factor for constant load factor type of flight where j = 1, 2,, or 13 (Ty=9)	g¹s
	^T MIj	Input guidance associated first order intercept guidance controller time constant used in type 10 flight where j = 1, 2,, or 13	sec
-	K _{HGj}	Input navigation constant used in the Homing Guidance (Ty=11)	dim
L0314, 321, ecc.	R _{mj}	Input vehicle yaw turning rate positive if the vehicle is intended to turn right (Ty=1)	deg/sec
	B _{c j}	Input commanded angle of side slip used in the constnant angle of attack and angle of side slip (Ty=2)	deg
	w zj	Input attitude control frequency used in constant attitude type of flight where $j = 1$, 2,, 16 (Ty=8)	rad/seç
2	η _{ctj}	Input command load factor crosswise to the velocity vector used for constant load factor type of flight where j = 1, 2,, (Ty=9)	g † s
	^τ IGj	Input pitch and yaw flare-in factor used in the Intercept Guidance (Ty=10)	sec
	^т нсј	Input pitch and yaw flare-in factor used in the Homing Guidance (Ty=11)	sec
L0315, 322, etc.	P _{Mj}	Input vehicle roll turning rate positive if the vehicle is intended to roll clockwise looking at if from the aft end (Ty=1)	d eg/ sec
	^Ф сј	Input command roll attitude used in the constant angle of attack and angle of side slip type of flight (Ty=7)	deg
	t _{zj}	Input constant attitude (Ty=8) attitude control damping ratio where j = 1, 2,, or 16	đỉm
	^φ cj	Input command roll attitude used in the constant load factor type of flight where $j = 1, 2,,$ or 13 (Ty=9)	·
-	$lpha_{ exttt{maxj}}$	Input limit of angle of attack during the j-th type of flight	deg

The state of the s

A STATE OF THE PROPERTY OF THE

<u>L-number</u>	Symbol	<u>Definition</u>	<u>Units</u>	
L0316, 323, etc.	τηj	Input flare-in time constant for constant load factor type of flight (Ty=9)	g's	
L0401-405		Open		
L0407	ĸ _h	Input wind altitude multiplier and flag. If zero, no wind effects are considered	dbi	
L0408	K _v	Input wind speed multiplier	dbi	
L0409	K _₩	Input wind azimuth multiplier	dim	
L0410, 413, etc.	h _j	Input wind velocity altitude associated with v_{ij} and v_{ij} where $j = 1, 2,, 30$	dbi dbi	
L0411, 414, etc.	v _{wj}	Input (with altitude h) wind speeds where $j = 1, 2, \ldots, 30$	ft/sec	
L0412, 415, etc.	[†] wj	Input instantaneous (with altitude h.) wind azimuth angles, measured in a plane parallel to the local tangent plane where j = 1, 2,, 30. Angle measured clockwise from north to the direction from which the wind is coming.	deg and dbi	
L0300-597		Reserved for Aerodynamic Coefficient Calculation Routine	<u>-</u>	ang t
L0598	^K sh	Input shaper control flag where: if it equals 0, ignore routine 1. maximize range 2. maximize payload to a given range or, 3. determine payload to a circular orbit	9	***
L0599 -	S _{sh}	Input target range or orbital altitude	n.m.	
10600, 603, etc.	^М уј	Input and output mode type control where $j = 1, 2,, 10$. If 1 rigid body with controls and 2 rigid body with controls	dim	
L0601, 604, etc.	³ Nj	Input node which designates the quantity that determines when the J-th mode type ends where j = 1, 2,, 10	dim	
L0602, 605, etc	к _{мј}	Input quantity which designates the limit of the j-th mode type end where $j = 1, 2,, 10$	dim	
L0630	[⊄] Tto	Input code designating start of target maneuvering	g dim	
1.0631	K _{Tto}	Input quantity which designates the start of target maneuvering	dbi	
			š	, T.

L-number	Symbol	Definitions	Units
L0632	v _{TO}	Input target initial velocity at start of target maneuvering	ft/sec
L0633	γ _{TO}	Input initial target flight path argle at start of target maneuvering	űeg
L0634	h _{Tō}	Input target initial altitude at the start of the Earget maneuvering	ft
L0635	ζ_{TO}	Input initial target azimuthal flight path angle at start of target maneuvering	deg
L0636	STO	Input initial target position down range	n.m.
L063?	S _{TCO}	Input initial target position cross range	n.m.
L0638-639		Open	
L0640 644, etc.	^t Tj	Input target time terminating the j-th target acceleration value of dynam cal condition table	
10641, 645, etc.	^a TTj	Input target earth reference acceleration tangential to the target velocity vector for the j-th period of the target dynamical condition table	g's
L0642, 646, etc.	^a TNj	Input target earth reference acceleration normal to the target velocity vector for the j-th period of the target dynamical condition table	g¹s
L0643, 647, etc.	^a TCj	Input target earth reference acceleration crosswise to the target velocity vector for the j-th period of the target dynamical condition table	gʻs
L0668-669		Open	
L0670	∆ _{de}	Input value of number of desired duty cycle points (100 maximum) if input zero, set equal to 50	dim
L0671	Kdc	Input and cutput stage number of TVC duty cycle stage	dim
L0672	$^{ ext{h}}\alpha$	Input final attitude of maximum wind shear used in TVC duty cycle slew rate calculations	ft
L0673	^h ß	Input initial altitude of maximum wind shear used in TVC duty cycle slew rate calculations	ft
L0674	ω s	Input slew frequency used in the TVC design stage slew rate calculations	rad/sec

では、「一般では、「一般では、「一般では、「一般では、「一般では、「一般では、「一般では、「一般では、「」」」というでは、「」」」というでは、「」」」というでは、「」」」というでは、「」」

A CONTROLL OF THE STATE OF THE

A STATE OF THE STA

L-number	Symbol	<u>Definitions</u>	<u>Units</u>
L0675	fw1	Input stage I vacuum thrust to liftoff weight used in the vehicle characteristics pertinent to roll requirement	g¹s
L0676	Wol	Input stage I liftoff weight used in roll control requirements	1b
L0677	W _{TVC}	Input and output estimated TVC system fixed weight. Used in TVC design stage for the refly option	1ъ
L0678	W _{exi}	Input estimated weight of the TVC system expend weight during the TVC design stage during the original vehicle flight	-1.
L0679	I spaug	Input and output estimated TVC system caused specific impulse augmentation (positive) or degradation (negative). Used in trajectory TVC Design program refly	sec
L0680	x _{nf}	Input body station of n_{ℓ} -zzle flange. Used in the TVC design program	ft
L0681	δ me	Input maximum vector angle design limit also output in TVC design duty cycle	deg
L0682	h	Input altitude of maximum wind velocity. Also flag to set up wind table per MMRBM wind shear criteria	ft
10683	KTPF	Input titled print flag	dim
L0684	799	Reserved for plotter option	

L-number	Symbol .	Definition	Units
10800, 810, etc.	F _{yj}	Input thrust control law code for the j-th type of TMC table	dim
L0801, 811, etc.	^o Py j	Input code which designates the quantity that determines when the j-th type of TMC ends	dim
L0802, 812, etc.	K _{Fyj}	Input limit of the 3-th type TMC	dbi
L6803. 813, etc.	TMC _j	Input thrust dynamic mode of the j-th type TMC	dim
L0804, 814, etc.	c _{Fyj}	Input thrust system proportionality system gain of the j-th type TMC	dim
L0805, 815, etc.	^τ Fyj	Input control system time constant of the j-th type TMC	sec
L0806, 816, etc.	MINj	Input minimum velocity or constant Mach number of the j-th type of TMC	dim/ft/sec
L807, 817, etc.	q maxj	Input maximum allowable dynamic pressure of the j-th type of TMC	lb/ft ²
L0808, 818, etc.	d ^{mru}	Input minimum allowable dynamic pressure of the j-th type of TMC	lb/ft ²
L0809, 819, etc.		Open	
L0270, 872, etc.	^t vPj	Input time value for Specific Velocity - Time Profile used in Fy=1 TMC $j = 1, 2,, 15$	sec
L0871, 873, etc.	$v_{\mathtt{VPj}}$	Input earth reference velocity for the Specific Velocity - Time Profile used in Fy=1 TMC j = 1, 2,, 15	ft/sec
L0900-999		Special Coding	

The following parameters are input for each stage. The rirst digit of the L-number indicates the stage number.

L-number	Symbol .	Definition	Units
K000#	^σ Sk	Input code which designates the quantity that determines when a stage is reminated where $k = 1, 2, 3, 4$	dim
к001	D _p	Input diameter of propellant	in
к002	rb1000	Input burngate of propellant at 1000 lb/in ² chamber pressure and flag to determine evaluation option	in/sec
к003	к3	Input quantity which determines stage termination	dbi
к004	ī'vT	Input total of the main and complementary vacuum impulse	1b/sec
к005	I,	input main stage total vacuum impulse	lb/sec
K006	w _{MO}	Input initial main weight for the k-th stage	1b
к007	K _{FM}	Input multipliers of the main vacuum thrust	dim
KU08	K _{WM}	Input mainweight flow multiplier. If input zero is set to 1.9	d im
k003	K'tM	Input main switching time multipliers. If zero, the program assumes a value of one. If σ_s is designated at t_B , then k_3 is multiplied by k_{tm}^* .	db1.
K010	I _{spM}	Input main specific impulse used to compute vehicle weight flow. If zero, weight flow is determined from theinput weightflow. Also output in the TVC duty cycle.	sec
K031	A _{eM}	Input main thrust-weight table input stage nozzle exit area	fè ²
K912	K _{Ok}	Input main thrust-weight table weight carry- over flag for the k-th stage. If zero, separation has occurred with regards to the main and complementary weights. If non-zero, the main weight at the termination of the k-1 stage is used as the initial main weight of the k-th stage	dim
К013	ē ₃	Input and output nozzle expansion ratio used in the separated flow nozzle thrust equations	dim

The following parameters are input for each stage. The first digit of the L-number indicates the stage number.

L-number	Symbol	Définition	Units
кооо*	o _{Sł.}	Input code which designates the quantity that determines when a stage is terminated where $k=1,\ 2,\ 3,\ 4$	dim
K001	D _p	Input diameter of propellant	in
к002	ri b1000	Input burnrate of propellant at 1000 lb/in ² chamber pressure and flag to determine evaluation option	in/sec
K003	K ₃	Input quantity which determines stage termination	dbi
к004	I,	Input total of the main and complementary vacuum impulse	lb/sec
KC05	I'M	Input main stage total vacuum impulse	lb/sec
коо6	W _{MO}	Input initial main weight for the k-th stage	1b
К007	K _{FM}	Input multipliers of the main vacuum thrust	dim
к008	K	Input mainweight flow multiplier. If input zero is set to 1.0	dim
K009	KtM	Input main switching time multipliers. If zero, the program assumes a value of one. If σ_s is designated at τ_B , then κ_3 is multiplied by κ_{tm}^t .	dbi
X010	I _{spM}	Input main specific impulse used to compute vehicle weight flow. If zero, weight flow is determined from theinput weightflow. Also output in the TVC duty cycle.	sec
K011	A'eM	Input main thrust-weight table input stage nozzle exit area	ft ²
К012	ĸ ^O ķ	Input main thrust-weight table weight carry- over flag for the k-th stage. If zero, separation has occurred with regards to the main and complementary weights. If non-zero, the main weight at the termination of the k-1 stage is used as the initial main weight of the k-th stage	dim
K013	€ _d	Input and output nozzle expansion ratio used in the separate. Flow nozzle thrust equations	din

_	L-number	Symbol .	Definition	<u>Units</u>
	K014	7 d	Input and output calculated ratio of specific heats of the rocket motor exhaust gases. If input zero 1.18 is used. Used in separated flow nozzle thrust equations	d im
	K015	c_i^D	Input and calculated nozzle efficiency coefficient used in the separated flow nozzle thrust equation	dim
	к016	α <mark>'</mark>	Input nozzle half angle used in the separated flow nozzle thrust equation.	deg
	к017	a' s	Imput nozzle separation polynominal coefficient used in the separated flow nozzle thrust equation. If input zero is set to 0.3	d Im
	K018	b's	Input no zzle separation polynominal coefficient used in the separated flow nozzle thrust equation if input zero is set to 0.7	dim
	к919	c _s ;	Input nozzle separation polynominal coefficient used in the separated flow nozzle thrust equation. If input zero is set to 0.884	dir
	К020	P _{aRM}	Input main table thrust reference atmospheric pressure	lb/ft ²
	K021, 024, etc.	^р нј	Input value of the main vacuum thrust to be used during $t_{Mj} \le t \le t_{Mj+1}$ where $j = 1, 2,, 2$ per stage	16 5
	K@22, 025, etc.	u _r ij	Input main weight flow at t_{Mj}^{\dagger} where $j = 1, 2, \dots, 25$ per stage	lb/sec
	K023, 026, etc.	t' Mj	Input main thrust-weight switching time from stage initiation where $j=2, 3, \ldots,$ or 25 per stage	se c
	К095	ρp	Density of propellant used in Internal Rallistic evaluation is set to 9.063 if not input	lb/in ³
-	К096	T _w	Web fraction used in internal ballistic evaluation is set to 0.8 if not input	n dim
_	к097	n	Burnrate exponent used in internal ballistic evaluation is set to 0.6 if not input	dim
	K098	α _p	Propellant diffusivity used in internal ballistic evaluation is set to 0.00027 if not input	in ² /sec
	K099	P max	Maximum allowable chamber pressure used in internal ballistic evaluation	lb/in ²

N-number	Symbol .	Definition	<u>Units</u>	Ę
Ŕ1 0 0	^K rc	Input multiplier of the complementary vacuum thrust. If input zero for the k-th stage and $I_{VT}^{+} = I_{VT}^{+} = 0$, the complementary thrust for the k-th stage are zero	d i m	
K101	K. WC	Input complementary weight flow multiplier. If input zero is set to 1.0	dim	
K102	K'uc	Input complementary switching time multiplier. If zero, the program assumes a value of one.	dim	
K163	^I spC	Input complementary specific impulse used to compute vehicle weight flow. If zero weight flow is determined from input weight flow.	sec	
к104	A _{eC}	Input complementary thrust-weight table stage nozzle exit area	ft ²	
K105	W _{Cok}	Input initial complementary weight for the k-th stage	16	
к106	I,	Input complementary stage total vacuum impulse	lb-sec	
K107	K _{NO} k	Input complementary thrust-weight table weight carryover flag for the k-th stage. If $K_{\rm Ok}$ and $K_{\rm NOk}$ are non-zero, separation has occurred with regards to the complementary weight. If $K_{\rm Ok}$ is non-zero and $K_{\rm NOk}$ is zero, the total vehicle weight at the termination of the k-l stage is used as the initial weight of the k-th stage	dim	
K1 08	K _{BD}	Input flag which stipulates that the main nozzle exit area will be used in the base drag calculations when splitting main and complementary tables to allow for up to 47 thrust time points	dim	
K109	ParC	Input complementary table thrust reference atmospheric pressure	lb/ft ²	
K111, 114 etc	tċj	Input complementary thrust-weight switching time from stage initiation where j = 1, 2, 3,, 25 per stage	sec	
K112, 115, etc	F _{Gj}	Input value of the complementary vacuum thrust to be used during t _{Ci} ≤ t ≤ t _{C(j+1)} where j = 1, 2,, 25 per stage	15	
K113, 116 etc	^й сј	Input complementary weight flow at $\mathfrak{C}_{\mathcal{C}_{j}}^{i}$ where $j=1, 2, \ldots, 25$ per stage	lb/sec	
K185	^S RC	Input aerodynamic chord force coefficient reference areas	sq ft	

	L-number	Symbol	Definition	Units
0	K186	Ĉ'	Input stage axial force control function and multiplier. If input zero, the multiplier is set to one; if non-zero, the axial force is determined from input and multiplicative C	dim
	K187		Open	
	K188, 190, etc.	M _{Aj}	Input Mach number for aerodynamic axial representation where j = 1, 2,, 15 per stage	dim
-	K189, 191, etc.	C _{Aj}	Input and instantaneous (with Mach number H_j) aerodynamic axial force coefficients, respectively, where $j=1, 2, \ldots, 15$ per stage	dim
	K218	S _{PF}	Input missile platform area used in calculating tumbling aerodynamic axial force coefficients	sq ft
	к219	^x Pc	Input missile body station of the centroid of the platform area	ft
	K220	s _{RN}	Input gerodynamic normal force coefficient reference area	sq ft
	K221	$ar{N}_{\mathbf{k}}$	Input normal force control function and normal force multiplier. If input zero, the multiplier is set to one and if non-zero, the normal force is determined from input and multiplied by N_k where $k = 1, 2, 3, 4$	dim
	К222	x _{ep}	Input stage aerodynamic normal force center of pressure multiplier	dbi
	K223, 228, etc.	M _{Nj}	Input Mach number for aerodynamic normal force coefficient representation where $j = 1, 2,,$ 15 per stage	dim
-	K224-226	c _{N1,2,3j}	Input values of $C_{N1,2,3}$ respectively, corresponding to N_j where $j=1, 2,, 15$ per stage	deg/deg ² /deg ³
•	K227, 232, etc.	^К срј	Input and output instantaneous (with Mach number M) aerodynamic normal force center of pressure body station numbers, respectively, where j = 1, 2,, 15 per stage	dbi and it
	к298	D _{RN}	Input aerodynamic reference diameter	ft
	К299	M.Q	Input aerodynamic pitch damping moment due to pitch rate multiplier	dim
	K300	Ñά	Input aerodynamic pitch damping moment due to rate change of angle of attack multiplier	din

L-number	Symbol	Definition	Units	* <u>*</u>
К301	κ_{Q}	Input aerodynamic pitch damping moment due to pitch rate multiplier	dim	Ü
к302	צRQ	Input and calculated pitch damping moment due to pitch rate reference moment point body station	dùi and	ft
к303	κ.α	Input aerodynamic pitch damping moment due to time rate change of angle of attack multiplier	dim	
к304	×,. ×Rα	Input and calculated pitch damping moment due to rate change of angle of attack reference moment point body station	dbi and	ft
K305,308, etc	M _{Dj}	Input Mach number for aerodynamic representation where $j = 1, 2,, 15$ per stage	Jim	
K306,309 etc	с _{мQ ј}	Input aerodynamic pitch damping moment due to pitch rate coefficient where $j=1,2,\ldots,15$ per stage	/deg	
K307,310 etc	c _{Mαj}	Input aerodynamic pitch damping moment due to rate change of angle of attack coefficient where j = 1, 2,, 15 per stage	/deg	~*************************************
K350-379		Open		*)
к380	n t	Input and output internally calculated number of motors in the stage cluster	dim	
K381	n'c	Input and output internally calculated number of control nozzles for the cluster motor logic	dim	
К382	$R_{\mathbf{c}}$	Input radius of cluster for the k-th stage	ft	
к383	σ It	Input standard deviation of the ratio of total impulse to nominal total impulse for the K-th stage	dim	
К384	σ _{tb}	Input standard deviation of the ratio of web burntime to nominal burntime for the k-th stage	dim	
K385	$\phi_{\mathbf{v}}$	Input bivariant consideration axis for the k-th stage	deg	
. K386	4 1	Input amplitude of limit cycle for the k-th stage		
к387	Kζ	Input side impulse multiplier. If input zero is set to one	dim	<i>2</i> **•
K388	ω _L	Input frequency of limit cycle for the k-th stage	rad/sec	U ·

L-number	Symbol	Definition	<u>Units</u>
389	δ _M P	Input nozzle misaligament angle in pitch	deg
390	$\delta_{ m MY}$	Input nozzle misalignment angle in yaw	deg :
391-392	^a o,jk	Input constants used in the Zgg and constant components nontarget dependent pitch steering equations for the k-th stage	Units deg deg rad rad-sec/ft rad-sec2/ftt
393-395	^b jk	Input constants used in the X_{gg} , X^2_{gg} , and X^3_{gg} components of the nontarget dependent pitch steering equation for the k-th stage $j = 1$, 2, 3	rad-sec/fr rad-sec/ft and rad-sec
396	¹ fk	Input pitch flare-in time constant for k-th stage used in velocity steering type of flight (Ty=4)	Sec
397	g1k	Input code which designates the start of the acquisition zone for evaluation of the steering equations coefficients for the k-th stage k = 1, 2, 3, or 4	rad-sec4/ft and rad-sec4/ft and rad-sec4/ft development of the control of the con
398	K _{g1k}	Input quantity which designates the start of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage k = 1, 2, 3, or 4	doi - PH do service se
399	g̃2k	Input quantity which designates the end of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage, $k = 1$, 2, 3, or 4	dbi
460	K _{g2k}	Input quantity which designates the end of the acquisition zone for evaluation of the steering equation coefficient for the k-th stage, $k=1$ 2, 3, or 4	dbi
401	^K yk	Input gain constant in the nontarget dependent yaw steering equation for the k-th stage	dim server
402	τyk	Input time constant in the nonlarget dependent yaw steering equation for the k-th stage	sec starting
403	8 MR	Input roll system fin misalignment angle	deg
404	$\mathcal{L}_{\delta R}$	Input roll fin radial center of pressure to missile centerline distance	ft
405	K _{RC}	Input roll control system flag. If equal 1, an auxiliary roll thruster system is simulated. If equal 2, aerodynamic centeral fins are used	sec deg
		513	

L-number	Symbol .	Definition	Unit s
к406	n vr	Input disturbing roll nozzle vortex multiplier. It not input is set to 0.00363	ft
K407	$\omega_{ t Pc}$	Pintle control frequency	rad/sec 🔰
K408-416		Open	
X417	×'Pf	Input stage forward end of propellant grain body station	ft
K418	x'ra	Imput stage aft end of propellant grain body station	ft
К419	× E	Input and computed stage nozzle exit body station	ft
K420-421	δ _{PO} , δ _{PO}	Input per stage initial pitch thrust vector deflection angle and angular rate at the trajectory initiation or stage initiation	deg and deg/sec
K422-423	^δ Υ0, ^δ Υ0	Input per stage initial yaw thrust vector deflection angle and augular rate at the trajectory initiation or stage initiation	deg and deg/sec
K424	F _{RO}	Input per stage initial roll thrust	lb
K425-427		Open	
K428	ΔQ_{b}	Input stage pitch attitude reaction angular impulse; i.e., added to $\theta_{\rm b}$ at staging	deg
K429	△R _b	Input stage yaw attitud—reaction angular impulse; i.e., added to \mathfrak{P}_{b} at staying	deg
к430	$\mathbf{\tilde{x}_e}$	Input stage thrust gimbal position multiplier	dbi
K431	X¹ _€	Input stage thrust gimbal position body station	ft
K432	Çe Çe	Input stage thrust gimbal yaw eccentricities. Positive in the \mathbf{Y}_{b} axis direction.	ft
к433	z _e	Input stage thrust gimbal pitch point eccentricities, respectively. Positive in the Z _b axis direction	dbi and ft
к434	КВ	Input thrust control flag. If zero, control thrust is determined from instantaneous vehicle thrust. If one, the control thrust is obtained from the instantaneous main stage thrust, if two control thrust is nonexistent	d im
к435	₹ c -	Input stage pitch and yaw control systems time constant for the thrust vector deflection first order transfer function	sex

		-		
	<u>L-number</u>	Symbol	Definition	Units
	к436	ζ _c	Input stage pitch control systems damping ratio for the thrust vector deflection	dim
			second order transfer function	
	K437	မ	Input stage pitch control systems forcing frequency for the thrust vector deflection second order transfer function	rad/sec
	к438	$\zeta_{\mathbf{v}}^{i}$	Input vehicle controlled damping ratio	dim
	K4:39	ພູ¹ V	Input vehicle controlled frequency for the k-th stage	rad/sec
	K440-449	ī,	Input control system where j = 1, 2,, 10 per stage. If zero, a limit is not applied; otherwise, L _j limits the following parameters where the statement number is j	deg deg deg
			(1) $K_{pp} \triangle \theta_b$, (2) δ_{pc} , (3) δ_p , (4) δ_p and (5) δ_p	deg/sec
			(6) $K_{E_1} \triangle_b^{\sharp}$, (7) δ_{YC} , (8) δ_{Y} , (9) δ_{Y} (10) δ_{Y}	deg/sec ²
	K^50,459 etc	K _{DPj}	Input control system pitch attitude error gain for the j-th control region j = 1, 2, or 3	dim
à T	K451,460 etc	KDYj	Input control system yaw attitude error gain for the j-th control region j = 1, 2, or 3	dim
	K452,461 etc	K _{RPj}	Input control system pitch attitude rate gain for the j-th control region j = 1, 2, or 3	sec
	K453, 462 etc	K _{RYj}	Input control system yaw attitude rate gain for the j-th control region $j = 1, 2, \text{ or } 3$	sec
	K454, <u>4</u> 63 etc	K _{IPj}	Input pitch angle of attack gain for the j-th control region $j = 1, 2, \text{ or } 3.$	dim
	K455, 464 etc	K _{IYD}	Input your angle of side slip gain for the j-th control region j=1, 2, or 3	
	K456, 465 etc	^f Gik	Input attitude control system gain control flag. If equal to zero, input gains are utilized; if not equal to zero, the automatic gains are utilized for the j-th control zone i = 1, 2, or 3; and k-th stage, k = 1, 2, 3, or 4	dim
	к457, 466	[∂] Gj	Input code which designates attitude control system gain zone limits $(j = 1, 2, or 3)$	dim
	K458, 467	K _{Gik}	Input attitude control system gain zone limits ($i = 1, 2, \text{ or } 3$) and the k-th stage $k = 1, 2, 3, \text{ or } 4$	dbi
	к475	ĭ	Input mo ent of inertial multiplier	dbi

大統領の政権が政権が大権を持ちている。 1987年 - 1987年 -

L-number	Symbol	Definition	Units
K476	īz	Input yaw moment of inertia multiplier	dbi
K477	ĩx	Input roll moment of inertia raltiplier	dbi
к478	ធ	Input stage weight multiplier. If input zero, is set internally to one and if nonzero, the input weight used in the mass properties table W (j = 1, 2,, 15) is multiplied by W	dim
к479	X _{cg}	Input stage center of gravity position multiplier	dbi
K480	z¹ cg	Input center-of-gravity offset bias distance, in pitch, positive down	dbi
K481	γ'cg	Input center-of-gravity offset bias distance in yaw, positive to the right	dbi
к482	Wn	Input stage movable portion nozzle weight	16
к483	τ_n	Ir put stage movable portion nozzle moment of inertia about the gimbal point	slug-ft ²
K484	x _n	Input stage movable portion of mozzle center- of-gravity body station	dbi
K485-487		Open	
Ķ488- 498 etc	w _j	Input vehicle weight to relate the input moment of inertia values j = 1, 2,, 15 per stage	1b
K489, 499 etc	^x cg.j	Input instantaneous (with total vehicle weight, W.) center-of-gravity body station numbers, respectively, where j = 1, 2,, 15 per stage	dbi and ft
K490, 500 etc	I _{Yj}	Input total vehicle pitch moment of inertia corresponding to the total vehicle weight input W, where j = 1, 2,, 15 per stage	dbi
K491, 501 etc	z. cgj	Input instantaneous (with total vehicle weight, W_j) center of gravity offsets, respectively, where $j=1,2,\ldots,15$ per stage. Positive in the Z_j axis direction	dbi and ft
K4 3 2, 502	IZ	Input total vehicle yaw moment of inertia corresponding to the total vehicle weight input W, where j = 1, 2,, 15 per stage	slug-ft ²
K493, 503	^y cyj	Input instantaneous (with total vehicle weight, W) center of gravity butt line number, where j = 1, 2,, 15 per stage	dbi and ft

i-number	Symbol .	Definition	<u>Units</u>
K494, 504	^I xj	Input and vehicle roll moment of inertial weight input Wj, where j = 1, 2,, 15 per stage	slug fz ²
к495, 505	IXXJ	Input total vehicle roll-yaw product of inertia corresponding to the total weight input Wj, where j - 1, 2,, 15 per stage	slug ft ²
K496, 506	^I YZj	Input total vehicle yaw pitch product of inertia corresponding to the total vehicle weight input Wj, where j = 1, 2,, 15 per stage	slug ft ²
K497, 507	IZXj	Input total vehicle pitch-roll product of inertia corresponding to the total vehicle weight input Wj, where j 12,, 15 per stage	slug ft ²
K638, 648 658	$I_{ ext{Ri}}$	Input thruster roll cor	ft
K639, 649 659	^τ Ri.	Input stage roll control system time constant, for the first order transfer	sec
К640, 650 660	$\mathfrak{d}_{\mathbf{i}}$	Input roll control system hysteresis for the i-th zons, $i = 1, 2, \text{ or } 3$	dim
K641, 651, 661	^F ∆ i	Input maximum roll control thrust for the i -th zone, $i = 1, 2, \text{ or } 3$	1b
K&42, 652, 662	$^{ m L}_{ m RCi}$	Input maximum roll control thrust for the i-th zone, i = 1, 2, or 3	1b
K643, 653 663	*DRi	Input roll control system attitude error gain for the i-th zone, i = 1, 2, or 3	dim
K644, 654 664		Open	
K645, 655 665	K _{RR} :	Input roll control system attitude rate gain for the i-th zone, i = 1, 2, or 3	sec
K646, 656 666	^I SPRi	Input roll control motor specific impulse for the i-th zone, i = 1, 2, or 3	sec
K647, 667	t'Ri	Input operating time from stage initiation of the roll control function for the i-th zone, i = 2, 3	sec
к667, 670	s _{rri}	Input reference area of the i-th raceway, i = 1, 2	ft ²

L-number	Symbol	Definition	<u>Units</u>	
K668, 671	r _{Ri}	Input distance from the vehicle centerline to the i-th raceway center of pressure i = 1, 2	ft	
K669, 672	$oldsymbol{\phi}_{ ext{Ri}}$	Input bank angle location of the i-th raceway where i = 1, 2. As seen from the rear of the vehicle, a positive angle is measured clockwise from the Z _b axis direction	deg	
K673, 675, etc	M' Rj	Input Mach number For aerodynamic rolling moment, j = 1, 2,, 10	dim	
K674, 676, etc	C _{RK} j	Input raceway aerodynamic force coefficient corresponding to the M_{Rj} , $j=1,2,\ldots,10$	dim	
K693-699		0pen		
К 70∪	S Fz	Input aerodynamic pitch fin lift and drag coefficient reference area	sq ft	
к701	^x hz	Input missile body station of the pitch fin hinge axis	ft	
Ķ702	U _{hz}	Input pitch movable control fin hinge axis to the leading fin base root location distance to the pitch fin base root length ratio	dim	A STATE OF THE PARTY OF THE PAR
к703	£ _{bz}	Input pitch fin base root length	ft	
K704.	Kycf	input aerodynamic yaw fin deflection angle multiplier	dim	
к705	K _{pc1}	Input aerodynamic pitch fin deflection angle multiplier	dim	
к706	Č.	Input aerodyanmic linear pitch fin lift coefficient multiplier. If input zero is set to 1.0	dim	
к707	č¦z	Input aerodynamic nonlinear pitch fin drag coefficient multiplier. If input zero is set to 1.0	dim	
К 708	$\mathbf{\bar{c}_{b_{\mathbf{z}}}'}$	Input aerodynamic pitch fin drag coefficient multiplier. If zero set equal to one	dim	
к709	$ar{\mathtt{K}}_{\mathtt{Lz}}^{\prime}$	Input aerodynamic pitch fin drag due to lift multiplier. If zero set equal to one	dim	
K710, 716,	MFj	Input mach number for aerodynamic fin representation where $j=1, 2, \ldots, 15$ per stag	dim e	0
K711, 717, etc	C _{Lz} ;	Input and calculated aerodynamic pitch fin ionlinear lift coefficient j = 1, 2,, 15 per stage 518	2/deg	-

L-number	Symbol	Definition	<u>Units</u>
K712, 718 etc	C _{lzj}	Input and calculated aerodynamic pitch fin nonlinear lift coefficient j = 1, 2,, 15 per stage	$1/\text{deg}^2$
K713, 719, etc	C _{Dzj}	<pre>Input aerodynamic pitch fin drag coefficient j = 1, 2,, 15 per stage</pre>	dim
K714, 720, etc	K _{Lzj}	Input aerodynamic pitch fin drag due to lift factor	rad
K715, 721, etc	^U czj	Input pitch aerodynamic control fin center of pressure as a ratio of fin chord length	dim
к800-999		Open	

3. SWITCHING CODE

Quantities which can be involved as switching functions or in the hunting procedure are assigned a code number shown in succeeding pages. The code number is input in the appropriate space on the load sheet and the program determines the parameter which corresponds to the code number. The parameter and not the code input is used in program equations and logic.

The input parameter code is designated by inputting the L-number (delete the "L" of the parameters). These parameters can be used only as independent variables in the hunting procedure.

If the sigma code number is input negatively, the absolute value of the parameter is then utilized in the program equations and logic .

	L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>
	5000	r	t	Instantaneous time (sec)
	5001	TB	t _B	Time from the current stage initiation (sec)
	5002	TB2	t _{B2}	Time from Stage II initiation zero if I-II staging has not occurred (sec)
	5003	TB3	t. _{B3}	Time from Stage III initiation zero if II-III Staging has not occurred (sec)
	5004	TB4	t ₃₄	Time from Stage IV initiation zero if III-IV staging has not occurred (sec)
	5005	SST	t _k	Stage start time (sec)
	5006	SST2	sst ₂	Start time stage II (sec)
	5007	SST3	sst ₃	Start time stage III (sec)
	5008	SST4	sst ₄	Start time stage IV (sec)
	5009	TBF	t _{Bf}	Trajectory burnout time for the stage below (sec)
	5010	TŢ	$^{\mathrm{t}}\mathrm{_{T}}$	Time from target maneuvering initiation (sec)
Ì	5011	TTS	e _{TS}	Target stark time (sec)
	5012	TA	t _a	Total flight time to the glide phase apogee altitude (sec)
	5013	TE	i. b	Total flight time to atmospheric entry (sec)
	5014	TF	^t f	Total flight time to the termination of the glide phase (sec)
	5014	PERIO	P	Glide phase orbital period (min)
	5016-5017			Open
	5018	RAIGE	S	Missile ground range. Distance along the surface of the earth measured clockwise from the launch vertical to the local vertical down range (ft)
	5019	SD	Š	Time rate change of missile down range (ft/sec)
	5020	sc	s _c	Missile cross ground rage. Distance along earth surface from the launch vertical to the local vertical crosswise from launch azimuth (ft)
3	5021	SCD	s _c	Time rate change of missile cross range (ft/sec)
•	5022	SĀ	S _a	Total missile ground range at flight apogee (nm)

<u>L-number</u>	FORTRAN Symbol	Engineer's Symbol	Definition
5023	SE	SE	Total missile ground range to atmospheric entry (nm)
5024	SF	S _ź	Total missile ground cange at the termination of the glide phase (nm)
5025	SS	S _s	Missile slant ground range. Distance along earth surface from the launch vertical to the local vertical slantwise (ft)
5026-5027			Open
5028	Н	h	Missile geometric altitude. Distance between the surface of the reference body and the missile measured along the local vertical. Positive away from the reference body (ft)
5029	HD	ĥ	Time rate change of missile geometric altitude, Rate between the surface of the reference body and missile measured along the local vertical positive away from the reference body (ft/sec)
5030	HDD	h h	Instantaneous altitude acceleration (ft/sec2)
5031	fA	Ha	Apogee altitude of the missile during the glide phase (nm)
5032	НР	'n p	Perigee altitude of the missile during the glide phase (nm)
5033	HAP	h ap	Height of apogee + perigee (nm)
5034	HAB	hab	Allifitude above launcer (ft)
5035	RC	~c	Instantaneous distance between the center of the reference body and the missile (ft)
5036-5037	<u>.</u> -		Open
5038	GXI	g _{k.l.}	local northarmly component of gravity (ft/sec2)
5039	Syl	8 _{y1}	Local easternly component of gravity (ft/sec2)
5040	GZ I	8 _{c1}	Local downward component of gravity (ft/sec2)
5941	GXE	Ene	Launch centered earth fixed northernly component of gravity (ft/sec2)
3042	CAE	e Se-	Leunch centered earth Tixed enaternly component of gravity (ft/sec2)
5043	CZE	8 _{xe}	Launch centered earth fixed dewnward component of gravity (it/sec2)
504%-5045		-	Open .

المقيدة المتباه المتها والواقية والمتعاودة والمتعاودة المتعاودة المتحادة والمتحادة وال

a	<u>L-number</u>	FOLTRAN Symbol	Engineer's Symbol	<u>Definitions</u>
U	5046	VE.	v _e	Missile earth referenced velocity (ft/sec)
	5047	VDE	\dot{v}_e	Time rate charge of missile earth reference velocity (ft/sec2)
	5048	VĚK	v _{ek}	Earth fixed velocity at stages (ft/sec)
	5049	VA .	V _a	Missile velocity with respect to air (ft/sec)
	5050	VI	v _I	Missile inertial velocity (ft/sec)
	5051	AIV	v _{Ia}	Missile inertial velocity at apogee if powered flight ends at the time being printed (ft/sec)
	5052	VIF	v _{If}	Missile inertial velocity at apogee and impact of intercept, respectively, if powered flight and the atmosphere end at the time being printed (ft/sec)
	5053-5055			Open
	5056	V	A.	Instantaneous wind speeds and time rate change respectively (ft/sec and ft/sec ²)
	5057	VEW	ν _w	Open
	5r 3	VAE	v _{aE}	Velocity with respect to the ambient air at entry (ft/sec)
	5059	VIE	v _{ie}	Inertial velocity at entry conditions (ft/sec)
	5060	VXXX	v _{xxx}	Command velocity used in the TMC command logic. Vec if Fy = 1, Vec if Fy = 4 (ft/sec2)
	5061	VDXXX	v xxx	Command acceleration used in the TMC command logic. \dot{v}_{ecv} i Fy = 1, \dot{v}_{ecm} if Fy = 2, and
				zero if $Fy = 1$ and $Fy = 2$ (ft/sec ²)
	5062	VDECQ	şeq V	Command acceleration to constrain dynamic pressure used in the TMC command logic (ft/sec2)
	5063	*MACH	Ħ	Missile Mach number (dia)
	5064-5065			Open
	5066	CAV	ca	Speed of sound at the missile (ft/sec)
	5067	DCAYDH	dC _a /dh	Partial derivative of the speed of sound with altitude (1/sec)
	5068	PA	P _a	Ambient pressure at the missile (lb/ft ²)

TO STATE OF THE PARTY OF THE PA

The state of the s

L-number	FORTRAN Symbol	Engineer's Symbol	Definition	
5069	HTAAT	dP _a /th	Partial derivative of ambient pressure with altitude (1b/ft)	
5070	Q	q	Missile dynamic pressure (1b/ft 2)	
5071	PCC	Pcc	Commanded chamber pressure used in pintle motor control logic (lb/in2)	
5072	PSTAR	P *	Main motor nozzle critical pressure used in separated flow equations (IbAn 2)	
5073	PS	Ps	Main motor noz zle separation pressured used in separated flow equations ($1b/in^2$)	
5074	PE	Pe	Main rotor exit pressure used in separated flow equations $(1b/in^2)$	
50 75	EPSILS	€	Main motor mozzle separation expansion ratio used in separated flow equation (dim)	
5076			Open	
5077	GWI	g _{wi}	Percent web (dim)	
5078	VCI	v _c z	Chamber volume (in ³)	
5079	ASI	A _{SI}	Burn surface area (in ²)	and the
5080	ATCC	Atcc	Commanded throat area (in2)	
5081	CF	$\mathbf{c}_{\mathtt{FI}}$	Thrust coefficient (dim)	
5082	CFO	c_{FO}	Thrust coefficient at optimum expansion $(P_e = P_a)$ (dim)	
5083	OMEGAP	ω P	Pintle cortrol frequency (rad/sec)	
5084	GPI	$\mathbf{s_{PI}}$	Fraction of propellant removed (dim)	
5085	AXI	AXI	Propellant extinguishment throat area (in ²)	
5086-5091			Open	
5092	*Mass	m	Instantançous missile mass (lb-sec ² /ft)	
5093 5094	W WD	W W	Total instantaneous missile weight and total expended instantaneous missile flow respectively (1b and 1b/sec)	
5 095	WB	WB	Instantaneous gross vehicle weight minus the uzeful load (1b)	

はいかられている。 「日本のでは、日本のでは

	L-number	FORTRAN Symbol	Engineer!s Symbol	Definitions
	5096	TLW	W _{JT}	Total weight jettisoned
•	5097 5098	WM WDM	w _M w _M	Total instantaneous expended main weight and weight flow respectively (lb and lb/sec)
	5099 5100	WC WDC	₩ _C ¤C	Total instantaneous expended main weight and weight flow respective! (1b and 1b/sec)
	5101	WS	w _s	Stage weight (1b)
	3102	WSMAIN	W _{SM}	Initial weight of main motor (lb)
	5103	WSCOMP	₩sc	Initial weight of complementing motor (1b)
	5104	PIVM	I"vM	Vacuum impulse under input main thrust curve (lb-sec)
	5105	PIVC	I"vC	Vacuum impulse under input complement any thrust curve (1b-sec)
	5106~5108		-	Open
	5109	EOM	E/m	Total missile energy per unit mass during the glide phase. Potential energy at the launcher is taken as zero (ft sec)
	5110	QAP	qα'	Product of total angle of attack and dynamic pressure (lb/deg/ft ²)
	5111	INCL	i	Orbital inclination angle (deg) time rate change respectively
	5112	E	e	Eccentricity of the missile path during the glide phase (dim)
	5113	LLR	l _r	Missile travel distance on the rail launcher used in ground launch tape of flight (Ty=6) (ft)
	5116	PHIA4	фа a 4	Glide range angle to the apogee vertical (deg)
	5115	FOND	F/#	Instantaneous effective specific impulse (sec)
	5116	IBDDP	ī Šp	Sum of pitch angular thrust vectoring velocities from stage initiation to the time being printed corrected for dither (deg)
	5117	TBDDY	Ĭ Šý	Sum of yaw angular thrust vectoring velocities from stage initiation to the time being printed corrected for dither (deg)
(P	5118	LV	L _v	Output ideal velocity vectoring losses (ft/sec)
•	5119-5121			0pen

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5122	F	F	Total instantaneous thrust acting along missile centerline. Positive when thrust vector points forward along missile centerline(1b)
5123	FVAC	F _v	Instantaneous total vacuum thrust (1b)
5124	FM	F _M	Instantaneous main thrust (1b)
5125 5126	FMV FDMV	FMV FMV	Instantaneous main vacuum thrust and thrust rate respectively (1b and lb/sec)
5127	FC	^F C	Instantaneous complementary thrust (1b)
5128 5129	FCV FDCV	FCV FCV	Instantaneous complementary vacuum thrust and time rate respectively (1b and 1b/sec)
5130	FCOM	F	Commanded altitude thrust used in TMC logic (1b)
5131	FVCOM	Fvcom	Commanded vacuum thrust used in TMC logic (1b)
5132	FVN	$\mathbf{F}_{\mathbf{V}\mathbf{N}}$	Nominal vacuum thrust used in TMC logic (1b)
5133	FN	F _F	Nominal altitude thrust used in TMC Logic (lb)
5134	FHATC	F _c	Thrust required to maintain V; i.e., retarding axial force used in TMC logic (1b)
5135	FCQMIN	Feqmin	Require thrust so that the vehicle will maintain the minimum dynamic pressure used in TMC logic (lb)
5136	FCQMAX	Fequax	Maximum thrust so that the vehicle will not exceed the maximum dynamic pressured used in TMC logic (1b)
5137	FCALOS	FCALOS	Command thrust to provide acceleration proportional to LOS rated used in TMC logic (1b)
5138	FCCLOS	Fcc £ os	Command thrust to provide a minimum missile to target closing rate used in TMC logic (1b)
5139-5140			Open
5141	FX	F _x	Components of total vehicle thrust parallel to the coordinate axes of the b system (1b)
5142	FY	Fy	Components of total vehicle thrust parallel to the coordinate axes of the b system (1b)
5143	FZ	$\mathbf{r}_{\mathbf{z}}$	Components of total vehicle thrust parallel to the coordinate axes of the b system (1b)
5144	FXX	F _X	Thrust force along nozzle centerline (lb)

					N. S. A. A.
	L-number	FORTRAN Symbol	Engineer's Symbol	Definition	
	5145	FYY	F _Y	Component of total vehicle thrust moved to nozzle centerline; positive right (1b)	
	5146	FZZ.	FZ	Component of total vehicle thrust normal to nozzle centerline; positive down (1b)	
	5147	FTDY	F _{TDy}	Movable nozzle tail-wag-dog force in yaw positive to the right (lb)	
	5148	FTDZ	$^{ m F}_{ m TDz}$	Movable nozzle tail-wag-dog force in pitch positive to the down (lb)	
	5149	FJDY	F _{JF'}	Jet damping yawing transverse force (1b)	
	5150	FJDZ	FJDz	Jet damping pitching transverse force (lb)	
	5151-5153			Open	
	5154	DRL	D _r £	Rail launch friction drag (lb)	
	5133	CDELZ	$c_{\delta z}$	Aerodynamic pitch fin axial force (lb)	dik a geleta interior
	5156	NDELY	N _{бу}	Aerodynamic yaw fin normal force (1b)	balthigheitenkinger.
A	5157	NDELZ	$N_{\delta z}$	Aerodynamic pitch fin normal force (1b)	AINY Militarie "AC.as. vije
	5158	NPAC	N _{PAC}	Pitch aerodynamic control normal force per radian fin deflection angle (1b)	idite's utilities de l'activité de l'activit
	5159	NPAD	^N PAD	Pitch aerodynamic disturbing normal force per radian angle of attack (lb)	मुक्तामातान्त्रकः क्यानामात्राक्ष
	5160	NPDA	N _{PDA}	Total pitch disturbing normal force per radian angle of attack (1b)	หมะ oniqueguage supplement
	5161	NNVA	^N NVA	Force normal to velocity vector per radian angle of attack (lb)	olica inapapani
	5162	NPCD	N _{PCD}	Total pitch control normal force per radian deflection angle (ib)	enpetalingerapaken
	5163	NPEA	N _{PEA}	Pitch trim normal force per radian angle of attack (lb)	
	5164	С	С	Instantaneous aerodynamic axial prce (dbi)	
	5165	NY	N _Y	Instantaneous yaw aerodynamic axial normal forces directed opposite to the direction of the $\mathbf{Y}_{\hat{\mathbf{b}}}$ axis	
	5166	NZ	N _Z	Instantaneous pitch aerodynamic normal forces directed opposite to the direction of the 2 _b -axes (lb)	
	5167	NPY	N _{FY}	Aerodynamic force due to damping in yaw (lb)	

是对外,这种人,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的, 是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,他们也是一个人的,也是

L-number	FORTRAN Symbol	Engineer's Symbol	Definition	
5168	NPZ	N_{PZ}	Aerodynamic force due to damping and pitch (1b))
5169	ETARA	η _{ba}	Acceleration load factor along velocity vector (g's)	
5170	ETABT	η _{bt}	Acceleration load factor transverse to the velocity vector (g's)	
5171	ETABN	η _{bn}	Acceleration load factor normal to the velocity vector (g's)	
5172-5174			Open	
5175	IXX	ıxx	Roll moment of inertia about vehicle center- of-gravity (ft-lb-sec)	
5176	IXY	IXX	Roll-yaw product of inertia about vehicle center-of-gm vity (ft-lb-sec2)	
5177	IXZ	1 _{xz}	Roll-pitch product of inertia about vehicle center=of-gravity (ft-lb-sec2)	
5178			Open	
5179	IYY	I	Pitch moment of inertia about vehicle center - of-gravity (ft-lb-sec ²)	`.
5180	IYZ	I _{YZ}	Yaw-pitch product of inertia about vehicle center-of-gravity (ft-lb-sec ²))
5181-5182			Open	
5183	IZZ	ızz	Yaw moment of inertia_about vehicle center-of gravity (ft-lb-sec2)	
5184	IDXX	i _{xx}	Time rate change of roll moment of inertia (ft-lb-sec)	
5185	IDXY	i _{xx}	Time rate change of roll-yaw product of inertia (ft-lb-sec)	
5186	IDXZ	i _{X2}	Time rate change of roll-pitch product of inertia (ft-lb-sec)	
5187			Open	
5188	IDYY	i _{YY}	Time rate change of pitch moment of inertia (ft-lb-sec)	
5189	IDAS	i _{yz}	Time rate change of yaw-pitch product of inertia (ft-lb-sec)	
5190-5191			Open)

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5192	IDZZ	izz	Time rate change of yaw moment of inertia (ft-1b-sec)
. 193	IPRD	IPRD	Pitch inertia rotation damping moment integral (ft-lb-sec)
5194	TYRD	I _{YRD}	Yaw inertia rotation damping moment integral (ft-lb-sec)
5195	IRRD	^I RRD	Roll inertia rotation damping moment integral (ft/sec)
5196~5201			Cpen
5202	MIQ	MIQ	Unbalanced pitching moment about vehicle center-of-gravity (ft-lb)
52C3	MIR	^M IR	Unbalanced yaw moment about vehicle center- of-gravity (ft-lb)
5204	MIP	MIP	Unbalanced roll moment about vehicle center- of-gravity (ft-lb)
5205	MDQ	MDQ	Perturbing moment about vehicle center-of- gravity in pitch (ft-lb)
5206	MDR	M _{DR}	Perturbing moment about vehicle center-of- gravity in yaw (ft-1b)
5207	MDP	M _{DP}	Perturbing moment about vehicle center of gravity in roll (ft-1b)
5208	MCQ	М _{СQ}	Controlling moment about vehicle center-of- gravity in pitch (ft-lb)
5209	MCR	^M CR	Controlling moment about vehicle center-of- gravity in yaw (ft-1b)
5210	MCP	M _{CP}	Controlling moment about vehicle center-of- gravity in roll (ft-lb)
5211	МИО	H	Aerodynamic yawing moment about vehicle center-of-gravity (ft-lb)
5212	MNR	N _{NR}	Aerodynamic yawing moment about vehicle center-of-gravity (ft-lb)
5213	MNP	M _{NP}	Aerodynamic rolling moment about vehicle center-of-gravity (ft-lb)
5214	MFOQ	^M roq	Thrust offset pitching moment (ft-lb)
5215	MFOR	M _{FOR}	Thrust offset yawing moment (ft-lb)
5216	MFOP	N _{FOP}	Thrust offset rolling moment due to pitch and yaw TVC (ft-lb)
	5192 . 193 . 194 . 5195 . 5196~5201 . 5202 . 5203 . 5204 . 5205 . 5206 . 5207 . 5208 . 5209 . 5210 . 5211 . 5212 . 5213 . 5214 . 5215	L-number Symbol 5192 IDZZ 193 IPRD 5194 TYRD 5195 IRRD 5196-5201 5202 5202 MIQ 5203 MIR 5204 MIP 5205 MDQ 5206 MDR 5207 MDP 5208 MCQ 5210 MCP 5211 MNQ 5212 MNR 5213 MNP 5214 MFOQ 5215 MFOR	L-number Symbol Symbol 5192 IDZZ IZZ .193 IPRD IPRD 5194 TYRD IYRD 5195 IRRD IRRD 5196-5201 5202 MIQ MIQ 5203 MIR MIR 5204 MIP MIP 5205 MDQ MDQ 5206 MDR MDR 5207 MDP MDP 5208 MCQ MCQ 5209 MCR MCR 5210 MCP MCP 5211 MNQ MNR 5212 MNR NNR 5213 MNP NNP 5214 MFOQ MFOR 5215 MFOR NFOR 5216 MFOP NFOP

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5217	MTDQ	M _{TDQ}	Movable nozzle tail-wag-dog moment about vehicle center-of-gravity in pitch (ft-1b)
5218	MI'DR -	M _{TDP.}	Movable nozzle tail-wag-dog moment about vehicle center-of-gravity in yaw (ft-lb)
5219	MFVP	^M rvp	Rolling moment about vehicle center-of- gravity due to vortexing effect of axial gas flow through the nozzle (ft-lb)
5220	MJDQ	MJDQ	Jet damping pitching moment (ft-lb)
5221	MJDR	MJDR	Jet damping yawing moment (ft-lb)
5222	MRAP	^M rap	Aerodynamic rolling moment induced by raceways (ft-1b)
5223	MFCQ	M _{FCQ}	Thrust vector control pitching moment (ft-1b)
5224	MFCR	M _{FCR}	Thrust vector control yawing moment (ft-lb)
5225	MFCP	MFCP	Auxiliary roll thrust control moment (ft-lb)
5226	MDELQ	^M ōQ	Pitching moment due to the aerodynamic control force (ft-1b)
5227	MDELR	H _{&R}	Yawing moment due to the aerodynamic control force (ft-lb)
5228	MDELP	$M_{\delta P}$	Rolling moment due to the aerodynamic control force (ft-1b)
5229	нсүү	^M CYG	Aerodynamic axial force center of gravity offset yawing moment (ft-lb)
5230	MCZG	^M czg	Aerodynamic axial force center-of-gravity offset pitching moment (ft-1b)
523t	KPTC	^M PTC	Pitch total thrust control moment per radian TVC deflection angle (ft-lb)
5332	MNSQ	^M nsQ	Aerodynamic static pitching moment about vehicle center-of-gravity (ft-1b)
5233	MNSR	M _{NSR}	Aerodyanmic static yawing moment about vehicle center-of-gravity (ft-1b)
5234	MPMC	H _{PMC}	Pitch main thrust control moment per radial TVC deflection angle (ft-lb)
5235	HNDQ	^M NDQ	Aerodynamic damping moment about vehicle center-of-gravity in pitch (ft-lb)

i	L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5	5236	MNDR	M _{NDR}	Aerodynamic damping moment about vehicle center- of-gravity in yaw (ft-1b)
	5237			∩pen
	5238	MPRR	M _{PRR}	Pitch inertial rotation reaction moment used in the automatic gain logic (ft-lb)
	5239	MYRR	M YRR	Yaw inertial rotation reaction moment used in the automatic altitude gain logic (ft-1b)
	5240	MRRR	M _{RRR}	Roll Rotation reaction moment used in the automatic gain logic (ft-lb)
	5241	MPAC	^M PAC	Pitch aerodynamic control moment per radian angle of attack (ft-lb)
	5242	MYAC	^M YAC	Yaw aerodynamic control moment per radian angle of side slip (ft-lb)
	5243	MARC	^M RAC	Roll aerodynamic control moment per radian fin deflection angle (ft-lb)
and the same	5294	MPAD	^M PAD	Pitch aerodynamic disturbing moment per radian angle of attack (ft-lb)
	5245	MYAD	^М үлD	Yaw aerodynamic disturbing moment per radian angle of side slip (ft-lb)
	5246	MRAD	M _{RAD}	Open
	5247	уну	M_{Hy}	Torque about the yaw fin hinge axis (ft-lb)
	5248	MHZ	Miz	Torque about the pitch fin hinge axis (ft-lb)
	5249			Open
	5250	MPDA	M _{PDA}	Total pitch disturbing moment per radian angle of attack (ft-lb)
	5251	MPCD	MPCD	Total pitch control moment per radian deflection angle (ft-lb)
	5252-5300			Open
	5301 .	ALPHA	$\boldsymbol{\gamma}$	Instantaneous pitch angle of attack. Fositive if the vehicle centerline is above the air velocity vector (deg)
à	5302	ALPHAD	^	Time rate change of angle of attack (deg/sec)
	5303	ALPHAC	Υ c	Command angle of attack (deg)

第二次,是一个人,我们是我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,他

L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>
5304	ALPPE	α <u>ι</u>	Effective tot angle of attack used to compute the accodynamic normal force (deg)
5305	ALBAR	$ar{lpha}^{_1}$	Stilî air total angle of attack (deg)
5306	•		Open
5307	ALPHBD	ά	Time rate change of still wind angle of attack (deg/sec)
5308	BETABD	Β̈́	Time rate change of still wind angle of side slip (deg/sec)
5309	APHRIM	α¹	Total vehicle angle of attack. Angle between the centerline of the vehicle and the missile air velocity vector. Always positive (deg)
5310	ALBAR	ā	Still wind angle of attack (deg)
5311	ALPHAE	$\alpha_{ m E}^{}$	Effective pitch angle of attack used to compute the aerodynamic normal force (deg)
5312	Alpham	$\alpha_{ m m}$	Commanded angle of attack for constant angle of attack flight (Ty-2) (deg)
5313-5314			Open
5315	BETA	β	Angle of side slip. Positive if the vehicle centerline is left of the air velocity vector when viewed from the rear of the vehicle (deg)
5316	BETAD	B	Time rate change of angle of side slip (deg/sec)
5317	BETAC	β _c	Commanded angle of side slip (deg)
5318	BETBAR	Ē	Still wind angle of side slip
5319	RTPBAR	β'	Still wind angle of side slip in the commanded coordinate system used to evaluate the local bank angle
5320	BETAE	β _E	Effective yaw angle of side slip used to compute the aerodynamic normal face (deg)
5321	GAM1	71	Pitch flight path angle. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (deg)
5372	GAMD1	\dot{n}_1	Pitch flight path angular rate. Positive up (deg/sec)

<u>L-number</u>	FORTRAN Symbol	Engineer's Symbol	Definition
5323	GAM2	γ ₂	Azimuthal flight path angle. Angle between the horizontal projection of the earth reference velocity vector and the local north. Positive clockwise from north (deg)
5324 5325	GAMD2	\dot{r}_2	Azimuthal flight path angular rate (deg/sec) Open
5326	GAM2IA	γ _{2Ia}	Inertial azimuth flight path angle at apogee (deg)
5327	GAMLE	γ_{1E}	Pitch flight path angle with respect to the ambient air at entry conditions (deg)
5328	GAMLIE	Y _{lie}	Entry conditions inertial pitch flight path angles, if powered flight and the atmospheric end at the time being printed (dcg)
5329	GAM2IE	γ _{ZIE}	Entry conditions inertial yaw flight path azimuth angle, if powered flight and the atmosphere end at the time being printed (deg)
5330	GAMII	γ ₁₁	Inertial pitch flight path angle. Angle between the inertial velocity vector and the local tangent plane. Positive away from the earth (deg)
5331	GAM2I	γ_{2I}	Inertial azimuth flight path angle. Angle between local north clockwise to the projection of the inertial velocity vector on the local tangent plane (deg)
5332	GAMITF	η _{lif}	Impact or intercept inertial pitch flight path angle, if powered flight and the atmosphere end at the time being printed (deg)
5333	GAM2IF	γ _{2If}	Impact or intercept inertial yaw flight path azimuthal angle, if powered flight and the atmosphere end at the time being printed (deg)
5334	GAMMAR	γ_{R}	Output required velocity flight path angle at the missile instantaneous position (deg)
5335	GAMMAG	γ _G	Calculated local angle of velocity to be gained (deg)
5336	GAMM	γ_{M}	Relative azimuthal velocity vector angle in missile-target coordinates
5337	GAMDM	'n	Relative azimuthal velocity vector angular rate in missile-target coordinates
			^^

L-number	FORTRAN Symbol	Engineer's Symbol	Definition	- -
5338	DELMI	δ _{MI}	Azimuth flight path error to intercept, Used in type 10 flight (deg)	U
5339	DELPC	^გ ₽c	Pitch plane thrust deflection commands (deg)	
5349	DELYC	^S Yc	Yaw plane thrust deflection commands (deg)	
5341	DELRC	δ _{Rc}	Commanded roll control fin deflection angle (deg)	
5342	DELBRP	ē _p	Modified pitch thrust deflection angle to include limit cycle and misalignment angle (deg)	
5343	DELBRY	ξ̄γ	Modified yaw thrust deflection angle to include limit cycle and misalignment angles (deg)	
5344	DELTHB	∆9 _{.5}	Vehicle pitch attitude error angle (deg)	
5345	DELPSB	∆# _b	Vehicle yaw attitude error angle (deg)	
5346	DELPHB	∆Ф _b	Vehicle roll attitude error angle (deg)	
5347	DELAK	۵ ak	Pitch flare in constant used in evaluation Δ_{ak}^{t} for restart (deg)	
5348	DELBK	\triangle_{bk}	Flare-in constant used in evaluating Δ_{bk}^t for restart (deg)	
5349	DELAP	$\Delta_{\mathbf{a}}^{\mathbf{t}}$	Fitch flare-in angle (deg)	
5350	DELBP	Δ <u>'</u> ,	Yaw flare-in angle (deg)	
5351	DELMT	$\delta_{ ilde{ ext{MT}}}$	Seeke vaw look angle (deg)	
5352	DELDMT	δ _{MT}	Seeker yaw look angular rate (deg/sec)	
5353	epsiin	€	Total angle of attack roll orientation angle. Angle between total angle of attack plane and yaw axis. Measured counterclockwise (deg)
5354	EPSBAR	Ē	No-wind total angle of attack roll orientation angle (deg)	
5355	EPSMI	$\epsilon_{ t MI}$	Flight path error to estimated intercept (deg)
5356	EPSMT	$\epsilon_{ t MT}$	Seeker pitch look angle (deg)	
5357	EPSDMT	ent Ent	Seeker pitch look angular rate (deg/sec)	

THE POST OF THE PO

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5358	ZETA	ζ	Cross range angle. Angle between local vertical and vertical on firing azimuth down range location. Positive if positive is left of firing azimuth (deg)
5359	ZETAD	ξ	Cross range angular rate (deg/sec)
5360	LAMMI	$\lambda_{ m MT}$	Angle of missile to target line projection on horizontal and firing azimuth (deg)
5361	LAMDMT	$i_{ m MT}$	Angular rate of missile to target line projection or horizontal and firing azimuth (deg/sec)
5362	MU	μ	Instantaneous vehicle tongitude. Value is positive or negative west or east of Greenwich, England, respectively (Geg)
5363	eum?	R_{i}	Instantaneous vehicle change of longitude from launch longitude. Value is positive east (deg)
5364	MUPD	й, •	Vehicle longitude time rate change (deg/sec)
5365	MUA	μ _a	Yehicle apogee longitude if powered flight and the atmoshpere end at the time being printed (deg)
5366	MUF	μ f	Missile impact or intercept longitude if powered flight and the atmosphere end at the time being printed (deg)
5367	RHO	p	Instantaneous vehicle latitude positive north of the equation $-90^{\circ} \le \rho \ge 90^{\circ}$
5368	RHOD	ρ	Vehicle latitude time rate change (deg/sec)
5369	RHOA	ρ _a	Vehicle apogee latitude if powered flight and the atmosphere end at the time being printed (deg)
5370	BHOL	ρ _ξ	Missile impact or intercept latitude if powered flight and the atmosphere end at the time being printed (deg)
5371	SIGMT	TK	Angle of missile to target line and local horizational (deg)
5372	SIGDMT	^G MT	Angular rate of missil, to target line and local horizontal
5373	SIGMI	o ^{MI}	Local flight path angle to estimated target, intercept (deg)

A CONTRACTOR OF THE PROPERTY O

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5374	upsmi	TMI	Azimukhal angle to target intercept (deg)
5375	PHI .	ф	Instantaneous down range angle. Angle between the launch vertical and the local vertical on the down range esimuth point. Positive as shown in Figure 1.1, $\infty < \phi < \infty$ (deg)
5376	PHID	φ	Instantaneous range angular rate. Positive down range (deg/sec)
5377			Open
5378	Alkq	ф a	Glide range angle to the apogee vertical (deg)
5379	PHIS	φ _s	Instantaneous want range angle. Angle between the launch vertical and the local vertical (deg)
5380	SCRPHI	ф	Local bank angle (deg)
5381	PHIF	Φ _É	Glide range angle to glide phase termination vertical used in Keperian impact predictions (deg)
5382	PSI	ţ	Vehicle azimuth in the launch horizontal plane (deg)
5383	PSIW	Ai Ai	Instantaneous wind azimuth angles, measured in a plane parallel to the local tangent plane where j = 1, 2,, 30. Angle measured clockwise from north to the direction from which the wind is coming (deg)
5384-5400			Open
5401	QM	Q_{in}	Instantaneous desired pitch turning rate (deg/sec)
5402	RM	R _m	Instantaneous desired yaw turning rate (deg/sec)
5403	PM	P _m	Instantaneous desired roll turning rate (deg/sec)
5404-5430			Open
5431	DELS	Δ _S	Calculated earth surface down range difference of the target and missile (ft)
5432	DELSJ	$\dot{\Delta}_{\rm g}$	Calculated time rate change of the earth surface down range difference of the target and missil (ft/sec)

L-number	FORTRAN[Symbol	Engineer's Symbol	Definition
5433	DELSC	ΔS _c	Calculated earth surface cross range difference of the target and missile (fr)
5434	DELSOC	ΔS _c	Calculated time rate change of the earth surface cross range difference of the target and missile (ft/sec)
5435	DELH	$\Delta_{\mathbf{h}}$	Calculated alcitude difference of the target and missile (ft)
5436	DELHD	Δh	Calculated time rate change of the altitude difference of the target and missile (ft/sec)
5437	RMT	R _{MT}	Missile to target range distance (ft)
5438	RDMT	Ř _{MT}	Time rate charge of missile to target distance (ft/sec)
543 9	TMI	t _{MI}	Estimated time to intercept (ft)
5440	RMI	R_{MI}	Estimated range to target intercept (ft)
5441	SMI	S _{MI}	Estimated earth surface down range at target intercept (ft)
5442	HMI	h _{MI}	Estimated altitude at target intercept (ft)
5443	SONI	SCMI	Estimated earth surface cross range at orget intercept (ft)
5444	ATT	a _{TT}	Target tangential acceleration (g's)
5445	ATN	^a TN	Target normal to its velocity vector acceleration (g's)
5446	ATC	a _{TC}	Target transverse acceleration (g's)
5447-5448			0pen
5449	FD	$\mathbf{F}_{\mathbf{D}}$	Instantaneous roll control system phase plane signal (deg)
5450	KS	ĸ _s	Pressure error gain used in pintle area control low in the TMC (in 1/1c-sec)
5451	ΚÞ	K _p	Pressure rate gain used in pintle area control low in the TMC (sec)
5452	KCV	K _{cv}	Commanded thrust velocity error gain used in TMC (lb-sec/ft)
5453	KCQ	K _{cg}	Commanded thrust dynamic pressure error gain used in TMC (ft^2)

L-number	FORTRAN Symbol	Engineer's Symbol	Definit ion
5454	KXXX	KXXX	Commanded thrust system gain. Set equal to KCPR if Fy=3 and KALOS if Fy=6 (dim)
5455	GZ	$^{\mathtt{G}}\mathbf{z}$	Partial derivatives of altitude acceleration to vehicle altitude (ft/sec ² -deg)
5456	KZ	ĸ _z	Altîtude error gain used in type 3 flight (deg/ft)
5457	· KZD	ĸż	Altitude rate gain used in type 8 flight (deg-sec/ft)
5458	KZDD	ĸ _z	Altitude acceleration gain used in type 8 flight (deg-sec ² /ft)
5459	KTHDD	к "	Command attitude pitch attitude angular accleration gain used in type of flight 8 and 9 (sec ²)
5460	KPSDD	K.	Command attitude, yaw attitude angular acceleration gain used in type of flight 8 and 9 (sec ²)
5461	KDP	K _{DP}	Instantaneous control system pitch attitude error gaîn (dim)
5462	KDY	K _{DY}	Instantaneous control system yaw attitude error gain (dim)
5463	KDR	$\kappa_{ m DR}$	Instantaneous control system roll attitude error gain (dim)
5464	KIP	K _{IP}	Instantaneous control system angle of attack gain (dim)
5465	KIY	KIY	Instantaneous control system angle of side slip gain (dim)
5466	KIR	$\kappa_{\mathbf{I}_{\mathbf{R}}}$	Roll control attitude bias gain (1/sec)
5467	KRP	K _{KP}	Instantaneous control system pitch rate gain (sec)
5468	KŔŸ	K _{RY}	Instantaneous control system yaw rate gain (sec)
5469	KRR	K _{RR}	Instantaneous control system roll rate gain (sec)
5470-5490			(ipen

Monte of the Control of the Control

	L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>
	5491 5492 5493 5494 5495	MAXVAL(1) MAXVAL(2) MAXVAL(3) MAXVAL(4) MAXVAL(5)	mx1 mx2 mx3 mx4 mx5	Values which are designated by input, as quantity whose maximum value is to be printed following each stage time (dbi)
	5496 5497 5498 5499 5500	STGVAL(1) STGVAL(2) STGVAL(3) STGVAL(4) STGVAL(5)	σ _B χ1 σ _B χ2 σ _B χ3 σ _B χ4 σ _B χ5	Values which are designated by input, at staging which are available to the hunting procedure (dbi)
	5501-5503			Ope n
	5504	AXB	^a XÞ	Component of vehicle acceleration due to total thrust and aerodynamic forces. Postitive in the direction of the coordinate axes of b system (g's)
	5505	AYB	^a Yb	Component of vehicle acceleration due to total thrust and aerodynamic forces. Positive in the direction of the coordinate Y axes of the b system (g's)
0	5506	AZB	^a Zb	Components of vehicle acceleration due to total thrust and aerodynamic forces. Positive in direction of the coordinate Z axes of b system (g's)
	5507	XDAB8	x _{abb}	X component of missile velocity with respect to the ambient air in the b system (ft/sec)
	5508	YDABB	Ÿ _{abb}	Y component of the missile velocity with respect to the ambient air in the b system (ft/sec)
	5509	ZDABB	ż abb	z component of missile velocity with respect to the ambient air in the b system (ft/sec)
	5510	XDDZBB	 Xabb	x component of missile acceleration with respect to ambient air in the ℓ system (ft/sec ²)
	5511	УРДА ВВ	Y _{abb}	y component of missile acceleration with respect to the ambient air in the b-system (ft/sec^2)
	5512	ZDDABB	z z _{abb}	z component of missile acceleration with respect to the ambient air in the b system (ft/sec^2)
	5513	XCC	x _{cc}	Earth centered missile position northern axis component (ft)
	5514	YCC	Ycc	Earth centered missile position east from launcher (ft)

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5515	ZCC	Z cc	Earth centered missics position away from earth axis at launcher longitude (ft)
5516	XDCC	хсс	Northern component of missile velocity in earth centered coordinates (ft/sec)
5517	ADCC	Ý _{cc}	East from launcher component of missile clocity in earth centered coordinate (ft/sec)
5518	ZDCC	° CC	Away from launcher longitude component of missile velocity in earth centered coordinates (ft/sec)
5519.	XDDCC	х х _{сс}	Northern component of missile acceleration in earth contered coordinates (ft/sec^2)
5520	YDDCC	Y cc	East from launcher component of missile acceleration in earth centered coordinates (ft/sec^2)
5521	ZDDCC	 Z _{cc}	Away from launcher longitude component of missile acceleration in earth centered coordinates (ft/sec ²)
5522	XGG	x gg	instantaneous component of vehicle position in the generalized coordinates down range from launcher (ft)
5523	YGG	Y gg	Instantaneous component of vehicle position in the generalized coordinates cross range from launcher (ft)
5524	7.GG	z gg	Instantaneous component of vehicle positive vertical from launcher (ft)
5525	XDGG	x gg	Instantaneous component of vehicle velocity in the generalized coordinates down range from launcher (ft/sec)
5526	YDGG	Ý gg	Instantaneous component of vehicle velocity in the generalized coordinates crosswise from launcher (ft/sec)
5527	ZDGG	z gg	Instantaneous component of vehicle velocity in the generalized coordinates vertical from launcher (ft/sec)
5528	XDbGG	x gg	Instantaneous component of vehicle acceleration in the generalized coordinates down range from launcher (ft/sec2)
5529	YDDGG	 7 8g	Instantaneous component of vehicle acceleration in the generalized coordinates crosswise from launcher (ft/sec2)

	L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>
	5530	ZDDGG	egg	Instantaneous component of vehicle acceleration in the generalized coordinates vertical from launcher (ft/sec ²)
	5531	XDW11	x _{w11}	Local northernly component of wind velocity (ft/sec)
	5532	YDW11	Ý _{w11}	Local easternly component of wind velocity (ft/sec)
	5533	ZDW11	Ż _{wll}	Local downward component of wind velocity (ft/sec)
	5534	XDDW11	x _{w11}	Local time rate change of northern component of wind velocity (ft/sec ²)
	5535	YDDW11	Y _{wl1}	Local time rate change of easternly component of wind velocity (ft/sec ²)
	5536	ZDDW11	z _{w11}	Local time rate change of downward component of wind velocity (ft/sec^2)
<i>(</i> 33.	5337	XDBB	х̂ _{ьь}	Inertial component of missile velocity along x_b axis (ft/sec)
	5538	BB	Ÿ _{bb}	Inertial component of missile velocity along y _b axis (ft./sec)
	5539	ZDBB	ż _{bb}	Inertial component of missile velocity along z_b axis (ft/sec)
	5540	XDDBB	x _b	Missile acceleration along vehicle body axis, position forward (ft/sec ²)
	5541	YDDBB	Y _b	Inertial component of wissile acceleration y_b axes (ft/sec ²)
	5542	ZDDBB	z _b	Inertial components of missile acceleration along z _b axis (ft/sec ²)
	5543	XD11	x ₁₁	Local northernly component of missile velocity (ft/ser)
	5544	YBEL	⁹ 11	Local easternly component of missile velocity (ft/sec)
	5545	ZD11	\dot{z}_{11}	Local downward component of missile velocity (ft/sec)
•	5546	XDD11	 Х ₁₁	Local northernly component of missile acceleration (ft/sec ²)
	5547	YDD11	" Y ₁₁	Local easternly component of missile acceleration (ft/sec ²)

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5548	ZDD11	 z ₁₁	Local downward component of missile acceleration (ft/sec ²)
5549	XDWEE	X wee	Transformed launcher northernly component of wind velocity at missile location (ft/sec)
5550	YDWEE	Ý wee	Transformed launcher easternly component of wind velocity at missile location (ft/sec)
5551	2DW2E	z wee	Transformed launcher downward component of wind velocity at missile location (ft/sec)
5552	XD11I	x ₁₁₁	Local northernly component of missile inertial velocity (ft/sec)
5553	YD11I	Ý ₁₁₁	Local easternly component of missile inertial velocity (ft/sec)
5554	ZD11I	ż	Local downward component of missile inertial velocity (ft/sec)
5555-5563			Open
5564	CLZ	$c_{_{Lz}}$	Instantaneous aerodynamic pitch movable fins linear fin lift coefficient (1/deg ²)
5565	C1Z	c _{lz}	Instantaneous aerodynamic pitch movable fin nonlinear fin 12ft coefficient (1/deg ²)
5566	CDZ	$c_{_{ m Dz}}$	Instantaneous aerodynamic pitch movable fin drag coefficient (dim)
5567	KLZ	K _{Lz}	Instantaneous aerodynamic pitch movable fin drag due to lift factor (dim)
5568	UCZ	v _{cz}	Pitch zerodynamic control fin center of pressure ratio relative to the root chord (dim)
5569°	CN	c _N	Instantaneous aerodynamic normal force coefficient (dim)
5570	CN1	CN,	Instantaneous first, second, and third
5571	CN2	CN ₂	derivatives, respectively, of C, with
5572	CN3	cn ₃	respect to the angle of attack,"(/deg, /deg ² , /deg ³ , respectively)
5573	CA	C _A	Instantaneous aerodynamic axial force coefficient
5574	CBN -	C _{BN}	Added aerodynamic base drag coefficient due to nozzles not thrusting (dim)

~			
L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5575	CMQ	c _{MQ}	Calculated and unadjusted for translation aerodynamic pitch damping moment due to pitch rate coefficient (1/deg)
5576	CMAD	C _{MCX}	Calculated and unadjusted for translation aerodynamic pitch damping moment due to rate charge of angle of attack coefficient (/deg)
5577	CHLY	$\hat{c}_{I,y}$	Instantaneous aerodynamic yaw movable fin total lift coefficient (dim)
5578	CHLZ	\hat{c}_{Lz}	Instantaneous aerodynamic pitch movable fin cotal lift coefficient (dim)
5579	CHDZ	$\hat{c}_{_{Dz}}$	Instantateous aerodynamic pitch movable fin total drag coefficient (dim)
5580-5582			Open
5583	хср	* _{cp}	Input and instantaneous (with Mach number M) aerodynamic normal force center of pressure body station numbers, respectively, where j = 1, 2,, 15 per stage (ft and dbi, respectively)
5584	XCG	^x cg	Instantaneous center of gravity body station numbers (ft)
5585	XCG	y _{cg}	Center of gravity offset bias distance positive in the $\mathbf{Z}_{\mathbf{b}}$ direction (ft)
5586	ZCG	^z cg	Center of gravity offset bias distance positive down (dbi)
5587	XPF	*p£	Computed stage forward end of propellant grain body station (ft)
5588	XPA	x _{Pa}	Computed stage ait end propellant grain hody station (ft)
5589	YE	$\mathbf{y_e}$	Thrust gimbal yaw point eccentricity position in the Y_b axis direction (ft)
5590	ZE	^Z e	Thrust gimbal pitch point position in the $Z_{\hat{b}}$ axis direction (ft)
5591-5592			Open .
5593	LE	l _e	Gimbal point to vehicle center of gravity distance (ft)

L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>	Eliber.
5594	LEE	ı _E	Nozzle exit to center of gravity distance (ft)	1
5595	LN	2 n	Movable portion of the nozzle center of gravity to gimbal point distance (ft)	
5596	LCP	cp	Vehicle center of gravity to aerodynamic center of pressure distance (ft)	
5597	LNN	² N	Vehicle center of gravity to stop-start mover thrust point distance (ft)	
5598	LPF	l _{Pf}	Forward end of propellang grain to center of gravity distance (ft)	
5599	LPA	Pa	Aft end of propellant grain to center of gravity distance (ft)	
5600	LDELY	бу	Yaw movable control fin center of pressure to vehicle center of gravity lever arm (ft)	
5601	LPELZ	loz	Pitch movable control fin center of pressure to vehicle center of gravity lever arm (ft)	
5602	LHZ	hz	Pitch movable control fin center of pressure to hinge axis lever arm (ft)	- AllEster.
5603-5700		-	Open	
5701	XDEE	x _{ee}	Instartaneous components of vehicle velocity, north the launcher (ft/sec)	
5703	YDEE	Ÿ _{ee}	instantaneous components of vehicle velocity, eas' ? the launcher (ft/sec)	
5703 ·	ZDEE	ż _{ee}	Instantaneous component of vehicle welocity, negative up from sea level launcher latitude (ft/sec)	
5704	XEE	Х _{се}	Instantaneous component of vehicle position north of launcher (ft)	
5705	YEE	y _{ee}	Instantaneous component of vehicle position east of launcher (f;)	
5706	ZEE	Z _{ee}	Instantaneous component of vehicle position negative up from sea level launcher latitude (ft)	
5707	QB	Q _b	Instantaneous vehicle angular pitch velocity. Fitch up is positive (deg/sec)	Adliko.
5708	RB	R _b	Instantaneous vehicle angular yaw velocity. Yaw right is positive (deg/sec)	
			= · · · · · · · · · · · · · · · · · · ·	

L-number	FORTRAM Symbol	Engineer's Symbol	Definition
5709	РВ	P _b	Instantaneous vehicle angular roll velocity. Roll Clockwise is positive (deg/sec)
5710	ТНЕТАВ	$\theta_{ m b}$	Achieved missile Euler angle pitch attitude (deg)
5711	PSIB	[‡] b	Achieved missile Euler angle yaw attitude (deg)
5712	РНЈВ	Ф	Achieved missile Euler angle roll attitude (deg)
5713	DELDF	δ̂p	Pitch thrust deflection angular rate positive up (deg/sec)
5714	DELDY	δ _Y	Yaw thrust deflection agular rate, positive left (deg/sec)
5715	DELDR	έ _R	Aerodynamic roll fins deflection angular rate (deg/sec)
5716	DELP	δ _F	Pitch thrust deflection angle. Positive up (deg)
5717	DELY	ōy	Yaw thrust deflection angle. Positive left (deg)
5718	DELR	δ _R	Aerodynamic roll fins deflection angle (deg)
5719	FR	$\mathbf{F}_{\mathbf{R}}$	Instantaneous roll control thrust. Positive if the vehicle is intended to rotate clockwise as seen from the rear of the vehicle (1b)
5720	WR	W _R	Instantaneous expended weight due to roll control motor operation (lb)
5721	FRC	F _{Re}	Instantaneous roll control system thrust command signal (lb)
5722	THETAM	$\theta_{ m m}$	Desired missile attitude Euler angle relating the m and i system (deg)
5723	PSIM	ប៉ា m	Desired missile attitude Euler angle relating the m and i systems (deg)
5724	рнім	Фт	Desired missive attitude Euler angle relating the m and i systems (deg)
5725	vr	$\mathbf{v}_{\mathbf{T}}$	Target tangential velocity (it/sec)
5726	VN	v _N	Target normal velocity (ft/sec)
5727	vc	$v_{\mathbf{c}}$	Target transverse velocity (ft/sec)

And the state of t

	-			
L-number	FORTRAN Symbol	Engineer's Symbol	Definition	a a
5728	GAMT	$\gamma^{}_{ m T}$	Target pitch flight path angle (deg)	
5729	ZETAT	$t_{_{\mathbf{T}}}$	Target azimuthal flight path angle (deg)	
5730	HT	$\mathbf{h_{T}}$	Target altituée (ft)	
5731	ST	$\mathtt{s}_{\mathtt{T}}$	Target down range (ft)	
5732	STC	STC	Target cross range (ft)	
5733	DB	D _b	Propellant burn depth. Used in TMC logic (in)	
5734	PC	^P c	Main motor chamber pressure used in separated flow equation (lb/in^2)	
5735	TA	A _E	Pintle nozzle throat area. Used in TMC logic (in^2)	
5736	WPR	W _{pr}	Weight of propellant removed. Used in TMC logic (1b)	
5737 5738	IMP IV	ı v	Total missile impulse and vacuum impulse, respectively, measured from stage initiation to the time being printed (lb-sec)	
5739	IP	^I P	Pitch control thrust impulse from stage initiation to the time being printed (1b-sec)	No.
5740	TY	I _Y	Yaw control thrust impulse from stage initiation to the time being printed (lb-sec)	
5741	IDELD?	ÖP	Sum of pitch angular thrust vectoring velocities from stage initiation to the time being printed (deg)	
5742	IDELDY	^I ė́Y	Sum of yaw angular thrust vectoring velocities from stage initiation to the time being printed (deg)	i
5743	LF	$L_{\mathbf{F}}$	Output total velocity loss due to back pressure from stage initiation to time being printed (lb-sec)	ì
5744	DELTAV	٥	Ideal missile velocity resulting from achieved thrust (ft/sec)	
5745	IR	I _R	Auxiliary roll control system delivered total impulse (lb-sec)	
5746	LD	r,D	Drag velocity loss from stage ignition (ft/sec)	3. 1980
5747	HE	H _e	Heating parameter. Integral of qv from .ge initiation to the time being print d (lb,ft)	•

THE SECTION OF THE PROPERTY OF

		FORTRAN	Engineer's	Defin ition
	L-number	Symbol	Symbol	
0	5748	LGG	Lg	Gravity losses, from trajectory initiation to the time being printed (ft/sec)
	5749-5750			Open
	5751	XDDEE	X _{ee}	Instantaneous northernly component of vehicle acceleration at launcher (ft/sec2)
	5752	YDDEE	 Y _{∈e}	Instantaneous easternly component of vehicle acceleration at launcher (ft/sec ²)
	5753	ZDDEE	 Z _{ee}	Instantaneous downward component of vehicle acceleration at launcher (ft/sec ²)
	5754-5756			Open
	5757	QDB	$\dot{\mathbf{q}}_{\mathbf{b}}$	Instantaneous vehicle angular pitch acceleration. Pitch up positive (deg/sec2)
-	5758	RDB	Ř	Instantaneous vehicle angular yaw acceleration. Yaw right positive (deg/sec ²)
	5759	PDB	P _b	Instantaneous vehicle angular roll accelemation, roll clockwise positive (deg/sec2)
~ \	5760	THETDB	ė _b	Achieved vehicle Euler angle pitch rate (deg/sec)
\bigcup'	5763	PSIDB	ii b	Achieved vehicle Euler angle yaw rate (deg/sec)
	5762	PHIDB	ψ _b	Achieved vehicle Euler angle roll rate (deg/sec)
	5763	DELDDP	 δ _p	Pitch thrust deflection angular acceleration angle positive up (dcg/sec2)
	5764	DELDDY	8	Yaw thrust deflection angular acceleration angle positive left (deg/sec ²)
	5765-5768			Open
	5769	FDR	₽ _R	Time rate change of roll control thrust (1b/sec)
	5770	WDR	₩ _R	Roll control system mass flow rate (1b/sec)
	5771			Open
	5772	THETIM	$\dot{\boldsymbol{\theta}}_{\mathrm{m}}$	Desired vehicle pitch Euler angular rate (deg/sec)
~?~	5773	PSIDM	វិ. ពា	Desired vehicle yaw Euler angular rate (deg/sec)
	5774	PHIDM	$\dot{\phi}_{ m m}$	Desired vehicle roll Euler angular gate (deg/sec)

THE RESERVED THE PROPERTY OF T

L-number	FORTRAN	Engineer's	
D-Hullioe1	Symbol	Symbol	<u>Definition</u>
5775	VTD	$\mathbf{\dot{v}_{Tj}}$	Target tangential acceleration (ft/sec)
5776	VND	$\mathbf{\hat{v}_{Nj}}$	Target normal acceleration (ft/sec)
5777	VCD	v̂ _{Сj}	Target transverse acceleration (ft/sec)
5778	GAMMTD	$\dot{\gamma}_{ m T}$	Target pitch flight path angular rate (deg/sec)
5779	ZETATD	$\dot{\zeta}_{ m T}$	Target azimuthal path angular rate (deg/sec)
5789	HTD	h _T	Target altitude rate (ft/sec)
5781	STD		Target down range rate (ft/sec,
5782	STCD	$\dot{\mathbf{s}}_{\mathbf{TC}}$	Target cross range rate (ft/sec)
5783	RBB	r _h	Propellant burn rate (in./sec)

L-nu iber	FORTRAN Symbol	Engineer's Symbol	Definition
5784	PDC	^P c	Time rate change of chamber pressure (1b/ln ² -sec)
5785	ADT	å	Time rate charge of pintle throat area (in ² -sec)
5786	WDMT	Ÿ _{MT}	Mass flow rate of gases three pintle nozzle throat (lb/sec)
578?-5800			0pen
5801∘5840	BLOCK(1)-(40)	Begin reserved for coding output block (dbi)
5841.	Z(1,1)	^I FM(1)	Calcub ted main table nexale back pressure impulse for stage I (lb-sec)
5842	2(2,1)	Î _{vN(1)}	Calculated main table input total impulse adjusted to vacuum conditions for stage I (1b-sec)
5843	2(3,1)	I _{vM(l)}	Calculated input vacuum corrected main table time adjusted thrust integral for stage 1 (lb=sec)
5844	Z(4,1)	^I ѷ҉M(1)	Calculated main table vacuum adjusted thrust integral for stage I (lb-sec)
5845	Z(5,1)	^К Fм(1)	Calculated main table thrust multiplier for stage I (lb-sec)
5846	Z(6,1)	IspM(1)	Calculated main table adjusted to vacuum specific impulse for stage I (sec)
5847	Z(7,1)	rc(1)	Calculated complementary table nozzle back prescure impulse for stage I (1b-sec)
5848	Z(8,1)	1vC(1)	Calculated complementary table input total impulse adjusted to vacuum condition for stage I (16-sec)
5849	2(5.73	¹ vc(1)	Calculated input acusm corrected complementary table time adjusted thrust integral for stage I (ib-sec)
5850	z(10,1)	I [*] c(1)	Calculated complementary table vacuum adjusted thrust integral for stage I (lb-sec)
5351	Z(11,1)	real)	Calculated complementary table thrust multiplier for stage I (dim)
5852	۵(12,1)	ispC(1)	Calcula ed complementary table adjusted to vacuum specific impulse for stage I (sec)

	<u>L-number</u>	FORTRAN Symbol	Engineer's Symbol	Definition
	5853	Z(13,1)	î _{vT(1)}	Calculated input main and complementary impulse corrected to vacuum condition for stage I (lb-sec)
	5854	Z(14,1)	I*vT(1)	Calculated main and complementary vacuum adjusted thrust integral for Stage I (lb-sec)
	5855	Z(15,1)	^I vT(1)	Calculated input vacuum corrected main and complementary impulse corrected for stage I (lb-sec)
	5856	Z(1,2)	^I FM(2)	Calculated main table nozzle back pressure impuls/ .or stage II (lb-sec)
	5857	7.(2,2)	î vM(2)	Calcul red main table input total impulse adjusted to vacuum conditions for stage II (lb-sec)
	5358	Z(3,2)	ĭ vm(2)	Calculated input vacuum corrected main table time adjusted thrust integral for stage II (lb-sec)
	5859	Z(4,2)	^I *W(2)	Calculated main table vacuum adjusted thrust integral for stage II (lb-sec)
	5860	Z(5,2)	K* FM(2)	Calc ated main table thrust multiplier for stage II (dim)
	5861	Z(6,2)	IspM(2)	Calculated main table adjusted to vacuum specific impulse for stage II (ser)
	5862	Z(7,2)	I _{FC(2)}	Calculated complementary table noz: 'e back pressure impulse for stage II (lb-sec)
	5863	Z(8,2)	Î vC(2)	Calculated complementary table input total impulse adjusted to vacuum condition for stage II (lb-sec)
	5864	Z(9,2)	¹ vC(2)	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage II (lb-sec)
	5865	Z(10,2)	1% vC(2)	Calculated complementary table wa cuum adjusted thrust integral for stage II (lb-sec)
	5866	Z(11,2)	KÈC(2)	Calculated complementary table thrust multiplier for stage II(Dim)
•	5867	7(22,7)	IspC(2)	Calculated complementary table adjusted to vacuum specific impulse for stage II (sec)

The movement of the contract o

L-number	FORTRAN Symbol	Engineer's Symbol	Definition	
5868	Z(13,2)	i _{vT} (2)	Calculated input main and complementary impulse corrected to vacuum conditions for stage II (lb-sec)	
5869	Z(14,2)	I*T(2)	Calculated main and complementary vacuum adjusted thrust integral for Stage II (1b-sec)	
587C	Z(15,2)	I _{vT(2)}	Calculated input vacuum corrected main and complementary impulse time corrected for stage II (lb-sec)	
5871	z(1,3)	^I fn(3)	Calculated main table norzle back pressurc impulse for stage III (lb-sec)	
5872	2(2,3)	î v#(3)	Calculated main table input total impulse adjusted to vacuum conditions for stage III (1b-sec)	
5873	Z(3,3)	I _{vm} (3)	Calculated input vacuum corrected main table time adjussed thrust integral for stage III (lb-sec)	
5874	2(4,3)	^I ÿn(3)	Calculated main table vacuum adjusted thrust integral for stage III (lb-sec)	-
5875	z(5,3)	K# FM(3)	Calculated main table thrust multiplier for stage III (dim)	Ú
5876	z(6,3)	^I spM(3)	Calculated main table adjusted to vacuum specific impulse for stage III (sec)	
5877	Z (7,3)	¹ FC(3)	Calculated complementary table nozzle back pressure impulse for stage 1%I (1b-sec)	
5878	7(8,3)	Î _v c(3)	Calcub ted complementary table input total impulse adjusted to vacuum conditions for stage III (lb-sec)	
5879	Z(9,3)	^I vC(3)	Calculated input vacuum corrected complementary table time adjusted thrust integ for stage III (lb-sec)	ral
5880	z(10,3)	^Ĩ ŸC(2)	Calculated complementary table vacuum adjusted thrust integral for stage III (lb-sec)	
5881	Z(11,3)	K* _{FC}	Calculated complementary table thrust multipler for stage III (dim)	
5882	Z(12,3)	¹ sp C (3)	Calculated complementary table adjusted to vacuum specific impulse for stage III (sec)	

L-number	FORTRAN Symbol	Engineer's Symool	<u>Nefinition</u>
5883	Z(13,3)	Î _v r(3,	Calculated input main and complementary impulse corrected to vacuum conditions for stage III (lb-sec)
5884	Z(14,3)	I [*] vT(3)	Calculated main and complementary vacuum adjusted thrust integral for stage III (lb-sec)
5885	Z(15,3)	^I vT(3)	Calculated input vacuum corrected main and complementary impulse time corrected for stage III (lb-sec)
5886	Z(1,4)	I _{FM} (4)	Caîculated main table nozzle back pressume impulse for stage IV(lb-sec)
5887	Z(2,4)	Î _{vH(4)}	Calculated main table input total impulse adjusted to vacuum conditions for Stage IV (lb-sec)
5888	Z(3,4)	^I vM(4)	Calculated input vacuum corrected main table time adjusted thrust integral for a age IV (1b-sec)
5889	Z(4,4)	^I πνM(4)	Calculated main table vacuum adjusted thrust integral for stage IV (lb-sec)
5890	Z(5,4)	К * FM(4)	Calculated main table thrust multiplier for stage IV (dim)
5891	Z(6,4)	I _{spM(4)}	Calculated main table adjusted to vacuum specific impulse for stage IV (sec)
5892	Z(7,4)	I _{FC(4)}	Calculated complementary table nozzle back pressure impulse for stage IV (15-sec)
5893	Z(8,4)	Î _v c(4)	Calculated complementary table input total impulse adjusted to vacuum conditions for stage IV (lb-sec)
5894	2(9,4)	^I vC(4)	Calculated input vacuum corrected complementary table time adjusted thrust integral for stage IV (lb-sec)
5895	2(10,4)	I‡C(4)	Calculated complementary table vaccum adjusted thrust integral for stage IV (lb-sec)
5896	Z(11,4)	'ϝ̃c(4)	Calculated complementary table thrust multiplier for stage IV (dim)
5897	3(12,4)	I _{spC(4)}	Calculated complementary table adjusted to vacuum specific impulse for stage IV (sec)

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5898	Z(13,4)	Î _{vT} (4)	Calculated input main and complementary impulse corrected to vacuum conditions for stage TV (lb-sec)
5899	Z(14,4)	I*vT(4)	Calculated main and complementary vacuum adjusted thrust integral for stage IV (lb-sec)
5900	Z(15,4)	^I vT(4)	Calculated input vacuum corrected main and complementary inpulse time corrected for stage IV (lb-sec)
5901	SAVED(1,1)	V _{1(B1)}	Missile inertial velocity at the termination of stage I (ft/sec)
5902	SAVED(2,1)	h (B1)	Missile geometric altitude at the termination of stage I (ft)
* 5903	SAVED(3,1)	γ _{1(B1)}	Pitch flight path angle at the termination of stage I angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (deg)
5904	SAVED(4,1)	W _(B1)	Total missile weight at the termination of stage I (lb)
5905	SAVTD(5,1)	S _{f(B1)}	Total missile ground range at the termination of the glide phase if the powered flight were to end at the termination of stage I (nm)
5906	SAVED(6,1)	LF(B1)	Total thrust velocity loss due to back pressure for stage I (ft/sec)
5907	SAVED(7,1)	L _{D(B1)}	Drag velocity loss for stage I (ft/sec)
5908	SAVED (8,1)	Lg(Bl)	Gravity velocity loss for stage I (Ft/sec)
5909	SAVED(9,1)		Vectoring velocity loss for stage I (ft/sec)
5910	SAVED(10,1)	^{∆V} (31)	Ideal missile velocity for stage I (ft/ser)
5911	SAVED(11,1)	axp(si)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage I (g's)
5912	SAVED(12,1)	ġ (31)	Missile dynamic pressure at the termination of stage I (lb/ft^2)
5913	SAVED(13,1)	L _{V(B1)}	Total missile vacuum impulse for stage I (lb-sec)
5914	SAVED(!1,1)	hp(81)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage I (nm)

Three his because the contraction of the contractio

^{*}stored values of saved angles are in degrees 552

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5915	SAVED(15,1)	h _a (Bl)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage I (nm)
5916	SAVED(16,1)	tf(Bl)	Total flight time to the termination of the glide phase if the powered flight were to end at the termination of stage I (sec)
*5917	SAVED(17,1)	γ _{lIf(Bl)}	Impact or intercept inertial pitch flight path angle if the powered flight were to end at the termination of stage I (deg)
5918	SAVED(18,1)	V _{If(Bl)}	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage I (ft/sec)
591.9-5925			Open
5926	SAVED(1,2)	V _{I(B2)}	Missile inertial velocity at the termination of stage II (ft/sec)
5927	SAVED(2,2)	h (B2)	Missile geometric altitude at the termination of stage II (ft)
*5928	SAVED(3,2)	^γ 1(B2)	Pitch flight path angle at the termination of stage II. Angle between the earth referenced velocity vector and the local tangert plane. Positive away from the earth. (deg)
5929	SAVED(4,2)	w(_{B2)}	Total instantaneous missile weight at the termination of stage II (1b)
5930	SAVED (5,2)	S _f (B2)	Total missile ground range at the termination of the glide phase of the powered flight were to end at the termination of stage [I (nm)
5931	SAVED(6,2)	^L F(B2)	Total thrust velocity loss due to back pressure for stage II (ft/sec)
5932	SAVED(7,2)	L _{D(B2)}	Drag velocity loss for stage II (ft/sec)
5933	SAVED(8,2)		Gravity velocity loss for stage II (ft/sec)
5934	SAVED(9,2)		Vectoring velocity loss for stage II (ft/sec)
5935	SAVED(10,2)	ΔV(_{B2})	Ideal missile velocity for stage II (ft/se2)
5936	SAVED(11,2)	^a Xb(B2)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage II (g's)

⁽Stored values of saved angles are in degrees)

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5937	SAVED(12,2)	^q (B2)	Missile dynamic pressure at the tem ination of stage II (lb/ft)
5938	SAVED(13,2)	^I V(B2)	Total missile vacuum impulse for stage II (1b-sec)
5939	SAVED(14,2)	^h p(B2)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage II (nm)
5940	SAVED(15,2)	^h a(B2)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage II (nm)
5941	SAVED(15,2)	^t f(32)	Total flight time to the termination of the flight phase if the powered flight were to end at the termination of stage II (sec)
5942	SAVED(17,2)	η _{lif(B2)}	Impact or intercept inertial pirch flight path angle if the powered flight were to end at the termination of stage II (deg)
5943	SAVED(18,2)	V _{If(B2)}	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage II (ft/set)
5944-5950			Open
5951	SAVED(1 3)	V _{I(B3)}	Missile inertial velocity at the termination of stage III (ft/sec)
5952	SA VED (2,3)	h(B3)	Missile geometric altitude at the termination of stage III (ft)
5953	SAVED(3,3)	⁷ 1(B3)	Pitch flight path angle at the termination of stage III. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (deg)
5954	SAVED(4,3)	W(B3)	Total instantaneous missile weight at the termination of stage III (1b)
5955	SAVED(5,3)	S _f (B3)	Total missile ground range at the termination of the glide phase if the powered flight were to end at the termination of stage III (nm)
5956	SAVED(6,3)	L _{F(B3)}	Total thrust velocity loss due to back pressure for stage III (ft/sec)
5957	SAVED(7,3)	L _D (B3)	Drag velocity loss due to back pressure for stage III (ft/sec)

L-number	FORTRAN Symbol	Engineer's Symbol	<u>Definition</u>
5958	SAVED(8,3)	^L g (B3)	Gravity velocity loss for stage III (ft/sec)
5959	SAVED(9,3)	L _{V(B3)}	Vectoring velocity loss for stage III (ft/sec)
5960	SAVED(10,3)	△ √(B3)	Ideal missile velocity for stage III (ft/sec)
5961	SAVED(11,3)	^a Xb(B3)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage III (g's)
5962	SAVED(12,3)	^q (B3)	Missile dynamic pressure at the termination of stage III $(1b/ft^2)$
5963	SAVED(13,3)	^I v(B3)	Total missile vacuum impulse for stage III (lb-sec)
5964	SAVED(14,3)	hp(B3)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage III (nm)
5965	SAVED(15,3)	lia (B3)	'pogee altitude of the glide phase if the powered flight were to end at the termination of stage III (nm)
5966	SAVED(16,3)	^t f (E3)	Total flight time to the termination of the glide phase if the powered flight were to end at the termination of stage III (sec)
5967	SAVED(17,3)	'lif(B3)	Impact or intercept iner ial 1 tch flight path angle if the powered flight were to end at the termination of stage III (deg)
5968	SAVED(18,3)	V _{If(B3)}	Missile intertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage III (ft/sec)
5969- 5975			Open
5976	SAVED(1,4)	V _{I(B4)}	Missile inertial velocity at the termination of stage IV (ft/sec)
5977	SAVED(2,4)	h (B4)	Missite geometric altitude at the termination of stage IV (ft)
5978	SAVED(3,4)	⁷ 1 (B4)	Pitch flight path angle at the termination of stage IV. Angle between the earth referenced velocity vector and the local tangent plane. Positive away from the earth (deg)
5979	SAVED(4,4)	W(34)	Total instantaneous missile weight at the termination of stage IV (lb)

・・・ TRANS A FEBRUAR ON THE SERVICE AND THE S

L-number	FORTRAN Symbol	Engineer's Symbol	Definition
5980	SAVED(5,4)	S _{f(B4)}	Total missile ground range at the termination of the glide phase if the powered flight were to end at the termination of stage IV (nm)
5981	SAVED(6,4)	L _F (B4)	Total thrust velocity loss due to back pressure for stage IV (ft/sec)
5982	SAVED(7,4)	L _{D(B4)}	Drag velocity loss for stage IV (ft/sec)
5983	SAVED (8,4)	Lg(64)	Gravity velocity loss for stage IV (ft/sec)
5984	SAVED(9,4)	L _{V(B4)}	Vectoring velocity loss for stage IV (ft/sec)
5985	SAVED(10,4)	ΔV (B4)	Ideal missile velocity for stage IV (ft/sec)
5986	SAVED(11,4)	^a Xb (B4)	Vehicle acceleration due to total thrust and aerodynamic force at the termination of stage IV (g's)
5987	SAVED(12,4)	^q (B4)	Missile dynamic pressure at the termination of stage IV $(1b/{\rm ft}^2)$
5988	SAVED(13,4)	I _{V (B4)}	Total missile vacuum impulse for stage IV (lb/sec)
5989	SAVE)(14,4)	h ₂ (B4)	Perigee altitude of the glide phase if the powered flight were to end at the termination of stage " (tim)
5990	SAVED(15,4)	ha (B4)	Apogee altitude of the glide phase if the powered flight were to end at the termination of stage IV (nm)
5991	SA7ED(16,4)	^t f(B4)	Total flight time to the termination of the glide phase if the powered flight were to end at the termination of stage IV (sec)
5992	SAVED(17,4)	γ _{11f(B4)}	Impact or intercept inertial pitch flight path angle if the powered flight were to end at the termination of stage IV (sec)
5993	SAVED(18,4)	V _{If(B4)}	Missile inertial velocity at the termination of the glide phase if the powered flight were to end at the termination of stage IV (ft/sec)
5994-5999		-	Open

4. Load Sheets

The load sheets are shown in the following pages.

THE PROPERTY OF THE PROPERTY O

HARING THE PROPERTY OF THE PRO

F. & Hodge	TO PART PART	$J = 0.001625$ $g_e = 32.174$ $orteg_e = 32.14625$ $r_e = 20,926,400$ Pace $u = 7.29211$ E = 5	
2 2 4 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 5 4 10 14 17 13 14 15 16 17 18 19 20 14 17 29 20 25 25 20 23	3 13 13 10 13 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10	2
rocation	N Basic Deck Ref Run Run		
3	Scase, Sure present to present	Stage Time, tk Att Start, Ty Mode Start, 1y Initial Conditions	
: T	So Pr Start. S. Disc Pr Start. D.	+	
1.8	+		ı
5	Velocity, Vap Flight Path, 719	Altitude, ho Range, So	ı
	Launch, Williamch, Oi	Launch, of Launch Lat, of Launch Long, E. Launcher Alt, hr Launcher	!!
, L.		+	!
112 0	Payload, WPL Atmos End, hE		1
	Mass Grave Se	Grav Accel, 8c Radius, re. Rotation, when the state of	1 1
E. 21 55	Doerred Amo Doerred	Downtrod 6	ı
. 27 173 8	T -	OIII	
	Miss Rat, Poo Miss Rat, Roo	Miss Rat. Pbo Achieved, Sho. Achieved Wbo Achieved Dbo	: 1
	From kei	Impact Alt, hf Ky oc Entry Altitude, ho Orbital Element Values	j
1,37,11	+		ı
1	Cross Range Seo Azimuth Flight Pat		
8 7 1	tien Coord, vg Gen Coord, Og	Gen Courd, 'e Gen'l Courd	
1.46			<u>.</u>
1 6 6 7 1	+ TTW TILL	+ KJJ KJZ H T T T T T T T T T T T T T T T T T T	ght
	WJT3 0J3	WJT4	1 '
	WITE	WJTG	1
L 6 1			ı <u>.</u>
	7.7.	178 + + + + + + + + + + + + + + + + + + +	
	miles title	ist . The state of	ie .

Wer-w						Married Married	witens approved			andress of the				wiene in	etasi.	C C			爱
	EE 65 70 71/72 73 74 75 76 77 78/79															and the state of t	and the second s		のでは、「一般のでは、「一般のでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないないない。」というないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないでは、「ないで
0476	48 149 567 31 57 531 54 55 4457 38 59 66 61 57 63 64:63 66 67											manufacture of the second of t		A CONTRACTOR OF THE CONTRACTOR					
	24 St								processor of the control of the cont	brus a de la composición del composición de la composición de la composición de la composición del composición de la composición del composición del composición del composición del composición				production of the control of the con	Ax, , , , , , , , , , , , , , , , , , ,				
	W 18. 2 11 (2) 22 22 22 23 24 24 24 24								promoting and the second of th		Processor of the control of the cont	Process Proces	Emiliaria del Composito del Co	processor of the control of the cont	t tale		· · · · · · · · · · · · · · · · · · ·		是,他们的一个,这个时间的时候,我们不会说,我们就是这个时间的时候,我们的时候,这样是这种时候,我们就是这种人的,我们就是一个人,我们们是这个人,我们们就是一个人,
The control of the co	19 12 18 18 18 18 18 18 18 18 18 18 18 18 18	JA1 A.1	0A2		TVS T		999		4 + + + + + + + + + + + + + + + + + + +	And Area			OA12	eakup Toleran	TW.			The second secon	を 関係の、このとは大学の、大学になり、自然のは、日本のでは、一般のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、「日本のでは
Jans 1 and	2		6 . 86 2 . 86 3 . 87	F'82'7	2.3	1, 2,8,8,	10 6 7 T	े हैं। - दें। - दें।	L, 2,9,4	Ligipie	L 29 8	1,36.0	L. 3 0 2	# · · · · · · · · · · · · · · · · · · ·	L306	•		* * * * * * * * * * * * * * * * * * *	Miles and the Miles No. 12.

CAN SERVICE

INPUT SHEET NAME NAME	DATE
[10] 11] 12] 14[15] 16[27] 18 [19] 20[27] 23[28] 28 [28] 28 [28] 28] 38] 38] 38] 28] 28] 28] 28] 28] 28] 28] 28] 28] 2	48 49 55 51 52 53 54 55 54 55 15 54 55 63 54 65 66 67 68 69 70, 1172 73, 14,75 16 77 78 79 80
+ + +	
王	
1 1 1 1 1 1 1 1 1 1	
1 3 6 6 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1	

	7.3		7-4-C	***************************************		8.			 		 	 		11.11.11.11
FIG. 1917. Wild. "Styles into the styles of the style of the styl	22 63 64 65 66 67 66 69 70 71 72 72 74 75 76 77 78 79 8												74 0 - 3 fg 0	The state of the s
The Prince of th	34 35 36 37 38 38 48 41 42 43 44 45 45 41 46 49 38 51 52 53 54 55 56 57 58 59 68 61 62 63 64 65 68 67 66 69 70 71 72 72 72 72 72 73 75 75 75 75 75 75 75 75	ange or orbital Alt Sch.											en vansk den er i Frederick et men i tres grek et hent i vansk sjellige (CC strangte).	india at the definition and analysis and a second of the control of
underlander, "kontra (* 1878)	6 27 38 38 40 41 42	e or orbite		For the control of th	j								THE STATE OF THE S	reas of the same territoring in the
HIGH PLEAS		Target range											Programme and the second of a second of the	Haberte den Karlbook and dan dan 1881 dan an in 1933 Habert
TRS PRYM	2. 3. 4. 5. 6, 7 6. 9 10 1112213 14 15; 16; 17 17 19 20 12 12 22 22 12 12 12 12 12 12 12 12 12	antrol flags, Kah											er Vermennen oppde gerichte en Schaffeld in 1988 für Gill 1987 (1987) Einstelle 1987 (1987)	A CONTROL OF THE CONT
TANK TUVAL	3 2:3 4 5 6 7 8	+ 86507		Steams processed for the second for	per agai personal for analis for analis for analis more read for analis	The range of the control of the cont	Darmar Darma Darma Darmar Darmar Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma Darma			promoted pro			 -	・ And

	INPUT SHE		And the state of t	A to E	MODE	CONTROL	L TABLE	A		-		-	DATE					* ***********************************	The second		-	
	1 2 3 4 5	1 2 3 4 5 6 7 18 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	E1 21 11 0J	14 15 16 1)	18 19 20	11 22 23 24	2 2 21 21	27 28 29 30 31 32 33	36 37 38 38	34 35 36 37 38 39, 40 41 42 43 44 46 45 45 41 48 49 30 51 52 53 56 55 55 57 58 50 60 61 62 63 64 65 66 64 65 66 64 70 71 72 73 74 75 75 77 78 79	4 C 15	05 64 99 7	sı 52 53 s	18 56 57	19 23 65 84	19(5) 29	89 C C (8)	4 1. z 69	2/13/14/15	15 77 28		
	T 6 0 0	W H	+	+	to K													Mode	Control	rol Tab	12-	
	2 6 03	Ŧ	+	+																		
			+	+																	1 .	_
-	1			+			Di l' despecialista								E							
	r 611/2 +				Ë																\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	15 11917																					
65	1. 6 1 8	+	β										E									
	1621	at the state of th		+		Print de la company de la comp																
	1624		+	+				The state of the s														
	1627			+																		_
	1				Value deput				目													
			potential I	-														目				T. T. T.
				1 m en	III III		, h				The state of the s											
-						The second secon															• - 4	
		Basestanisti Basestanisti Basestanisti Basestanisti		the parties of tops and	THE PERSON NAMED IN COLUMN	Yangungan an an an													 			
																			i	-		
	があるとのできる。 大学のでは、大学のようななどのできる。			i kinkisistakseksin vijid	Age provention New Tests	radio ration of the second	Ī	•	***	The second section of the	th production of the second	is the state of 1879 is	and shally his to a	polited, over all page go	Andrea Maria de La Caractería de La Cara	i iskal bushelis i . Jada	THE CALLET . LIKE IN THE WAS SET AND THE CALLET THE CALLET SEED OF THE	walken 1856				

encommon intellikatival attalka masika bada bahan muna kanamanan manaman bira debumahan

manual and former to the content of the content of

			The state of the s			***************************************	-	*************************************	or a service of				74 FEST		rendi			55
	3 6:												, ,	-			;	夏
	CB 25 85 15 36 25 15 ET 55 115 57			F	F	F								}	p		_	
M	15.76	-									 		} <u></u> }	F 4		1 -		· 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图
Or.	37.5	i					口							F 4	⊢	-	ا ما ا ا ما اه	1 3
	12															i _		
			<u> </u>							--			4	F 4		-		
	136 137		- 1	,					<u>i</u> ;		<u> </u>	; 				-	سر آب	- 1
	63 64:55 66 67	paramon 19	<u> </u>					- 1		-				-		1 -	•	3 3 3
	64.55		4					<u> </u>	₩ - #					•		1.		* * * * * * * * * * * * * * * * * * *
	S				+			-		;- i	F .		, .		•		• •	
	19 031 65 (86 . 15 45 (85) 85 (85) 85 (85) 181 (84) 88 (85) 88 (85) 88			=							,		4		•	-	 	
	- 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63 - 63						-				_		p	}	- -	-		
	18.									,	⊢ ·		-	b	×		-	
	58.	==-							<u> </u>	**d	· ·			* *	max	-	· • • • • • • • • • • • • • • • • • • •	
<u>.</u>	52/55							Ŀ	F	}	}	·			. ــ بط	<u></u>	- M pr-	1 2
DAY	is:					 				·		<u>-</u>		P= 4	_ +		-• •-	
	82	**************************************						1	- -	F 1	bu x de=u g		الا يو. چيند			l - 	* = :=	
	\$ 47,4	-	<u> </u>			÷	 	j= (•			<u> </u>	.	-		
	45.		L	<u> </u>		-		Ľ.	- 4	<u> i</u>	j= 1		** x	ins	<u> </u>	_		
∞	7	<u></u>	i 1				<u> </u>	<u> </u>	pa,		•				8 <u> </u>	-	- L	-1 <u>- 2</u>
							·			<u> </u>	<u>.</u>	670 a count		·	-	1	•	
ed)	, c		<u> </u>												- +	1		ille Acquire
; itinued)	= [}										•					- -		T. Commission
con	1 3	ස	-											*- *	• - • - •			And hellow
) a	33	2	,									man of	4	P	E	• -	• • • • · · · · · · · · · · · · · · · ·	i Ballania
BL	31.32	•>	-				·			********)		F - man		•		→ ,	A Selection of the sele
T.A	R.		-	+					+	+	-	·—·	7	jes.	. +			EXAMPle initial
MAIN THRUST-WEIGHT TABLE (con	1 7 23 24 25 75 72 73 73 74 74 74 74 74 74 74 74 74 74 74 74 74		<u></u>		H		ļ		7-1			<u></u>			/ =		- <u>-</u>	11
013	χ.					 i		P)							Padikindisi -
**	77	w	<u> </u>				;——		<u> </u>			•—-	1	\$1151 4 \$1151	>	•	• , • •	
UST	مسئيوسان وسائيو خار							· · · · · · · · · · · · · · · · · · ·				·——i	i		 ·	•		
HR								<u> </u>			<u></u>		}		• • • • • • • • • • • • • • • • • • •	·	, <u>.</u>	# %
i z	7.13		FE.	+	+	+		7		+		- ; 	+	<u> </u>			 ,	
Į.	15, 14, 15, 16, 17, 13, 19, 75,	,						<u></u>						;	\$ AM :			
	13 14 15	Santa —								<u></u>		_	1	·	6 00 to 100	# #000 7434 •		
	17 13	 	<u></u>				20	a	,		<u></u>			<u></u>	•~		• :	
	71/11 01	E .	j			Z						Z	77	<u> </u>	201	• -		
	10 C 8 5	- I			- []		-									. .	- ·	
-	4	Ŧ		F		<u>; ÷</u>		7	+!	17	,,-	; +	 + 			·	· ·	
13.3HS		<u> </u>	<u>5</u>	612	<u>।</u>	<u> </u>		74		8 0	- हि	86	. S	_ <u>~</u> ~.	(n)	_	• •	
<u> </u>		10	-			¥2. • 4	•	gen - max		F #4		150° 4	. ***.	, <u> </u>	, so		.	
7. S	-	,	j4 j	to ===		÷ 1		,	71	i	,	***************************************	• •	•	*	•	*	
				STORY OF THE		of many	100.5		1 de		K094672						#	- 3.

W 0 4 4	
	8 51 51 51 51 51 51 51 51 51 51 51 51 51
O A T R	\$\frac{\frac
HT TABLE	Port, K. Lmp, Lapper Lmp, Lapper Lapper
COMPLEMENTARY THRUS'L-WEIGHT	
CONTRACTOR	
INPUT SHEET	

איני שיני שיני שוני שואי שאויות אינות אונים אותר מאווים אינות אינות אונים אותר אונים אותר אונים אותר אונים אותר

CONFIENCE LINDS I WILLIAM AND	<u>Zene</u>
7 8 9 10 11/12 13/14/15 16/17/18/19/17/12/12/12/12/12/12/12/12/13/13/13/13/13/13/14/14/14/14/14/14/14/14/14/14/14/14/14/	<u> </u>
	COMPTE PA
	er bestin
	er en
ができた。 できたい できた できた できた できない かんだん できない かんかん かいかん かんかん かんかん かん かんかん かんしょう かんしゅう かんしょう かんしょ かんしょう かんしょく かんしょう かんしょ かんしょう かんしょう かんしょう かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ	

	28.52				Н			Ц	<u>L</u> _		<u></u>	<u> </u>		1 1			•
#AGE	11, 42, 43 44 45, 45, 42 48 49 59 51 52 53 54 55, 56 51 59 59 50 61 62 63 64 65 66 67 66 69, 10, 73,72 73,74 75, 76, 77 78 78														·	• • • • • • • • • • • • • • • • • • •	
	בו בנוניטו 69						property and parameters are a second training and a second training and a second training are a second training and a second training are a second training and a second training are a second trainin		para and								
-	64 65 66 67 E8								* ** * ** * ** * ** ** ** ** **	personal personal				ļ .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	59 50 61 52 63							,	parameter of param				- 4	producers producers producers		3 3 3 37 7 19	
	54 55 56 57 59						Com vota () () () () () () () ()		States as					in a		- 4	
DATE	15 25 15 25 23			- 4		pro-served		de constitution and con	- 25.4 				pro-			brance of	
	1 12 15 17 E				harmon harmon harmon harmon harmon		Lanna or			je manj porecraj maneraj			po			promote a significant of the sig	
ENT	3-5	3	+ +								JIH C		Services of Services	e w ref			The state of the s
COEFFICIENT	n n n n	Pert, N			- 4	Balt supplied Balt s				particular of the state of the			jan-re.	parament base only burners		The second of th	i i i i
ING	Palua io	A Tpin	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		, , , , , , , , , , , , , , , , , , ,									- 1	\$		I I I I
PITCH I	ह विद्या के स्वाम के स्वाम के स्वाम के स्वाम के स्वाम के स	lt					;										or y . y . t
AERODYNAMIC PITCH DAMP	19/20/11/20/21	Pitch Po										;; ; ; ;;					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														Section and the section of the secti	I grant protection of the contract of the cont
	a 10 11117 13 14 (S	Ret Dia, Du	TEN TO SERVICE STATE OF THE SE									X DB W	20, 1	<u>a</u>	210,	,	
	A. L. S. S	1		<u> </u>		******	14 4				+		Ŧ	三 三	- +	1	La feed
The state of the s	Margarente agreement	2 2 98	7010	30.5	3,0,8	਼ੁੱਟ ਨ			10[246] 76 13/210]	323	32	3.29	332	13/3/5	31318	, <u>E</u> ,	3.5

52 3 4 4

(1). Selection of the second of the first term into activities of second of Addition to the second of the second of

		SHITTLE	, j		63	<u>.</u>	2			Ö	GAINS	SS							•						₹					1 1	<u>۔</u>													4		E'a			i			
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7	1	10 12 17 13 14	1 2		15 16	16 17 19 13			~~	232 212 212 212	<u> </u>		22			N 3133 34 35	1 20	- = 1	×	1	4	(c) 45 45 45 45 45 45 47 48 40 50 51 57 53 54 55	1 3 1 S		12	<u>\$</u>	T S	52	13	3	3	S	56-57-58 53 50 63		63.	52 63 64 65 66 67	32	ಶ	22,12 01 :09			=	13 74 75 76 77 78 95 51	11	23	1 2 1			
دندستر	4		*	# 14	KD PD	<u>a</u>		*	7	Koyy	<u> </u>		9 12 14 14	a	KK	Ē-,8		# .	Rate	x x	ΑΥ. 	E		Bias	~ X	d «	<u></u>	m	Bias K	× 5	X		ਜ਼ <u>ੂ ਜੋ</u> ਉ-ਦੂ ਏ		g 6		- -	ਲ_ਂ <i>ਸ</i> ਼ੁ	<u> </u>	* * · · · · · · · · · · · · · · · · · ·		· 4	F- -		Q	Gains	si—		-)		ALTER-AL	
<u>, , , , , , , , , , , , , , , , , , , </u>	: द	ຸດີ ່ດີ	7	. Y				-	L DX	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	} }		=)			X	<u> </u>		<u> </u>						, • = === 	} }∡	<u> </u>		7-7-0	, , , , , , , , , , , , , , , , , , , 	pr -	<u>.</u> .	ب د مط و مسلم	+		<u> </u>										1			
د	. 4 .	. 35°	-	÷ •			<u> </u>		1	<u></u>			+			3	 -	· -	<u></u>	H			F		7	ļ	 -			<u></u>			· · ·					bon som f	=	·					H							
•		,				1.00000°	;				—					<u> </u>)		ف سسم			jurnament Jurnament	L			 i	parameter and		i	• -	1 1 becomes					j		二	+				日				
20 - W	- *				· •	محسنا المدينا	-		·	 1			-	<u> </u>	<u> </u>		tales of the			*	-	k-m m-4	i				1	•		b	: !		- 1	·	h					*				-								
	}***-**	,	T-laurant	4	!	-	<u></u>	-	i i	<u> </u>		<u> </u>					}	garanna garanna		ĝenios se Period k		*****	<u></u>	·	<u>}</u>	-	 -				h.				ta	pm=,-d	- ·	}			i		 						<u> </u>		**********	
5		-	Pour 4	-	* =	-									·	<u></u> ,	b	***	i⊷ •			,			; x					<u> </u>		• • •	50 45 20			F -	i .	in a				ļļ		-	ļ	F			1			
79	guer mag				·		——————————————————————————————————————							\$4 Apr 100	\$ *					97mm - 14 Ar - 18	·				-		- :		in a	- •	-		» t								i		口		₩ -4 ₩-4-4				<u>.</u> 1			B
· · · · · · · · · · · · · · · · · · ·	gan managerik	••••			.	À						<u></u>	; <u>-</u>	ters mand			# 2 mm	1			tern st			,			-		~ •	Jan 188	h4		* 4		·	محسد بداره پدستند م	i			h 1	- ·	÷ -4		-	1	7-3			1 1		Special Control	***************************************
	;- •			<u> </u>					b		house, and		,	# was	** *	-	-				_ :			***	:			Brown &	***	- :	F				<u>.</u>	~~···		-	-			<u> </u>					口	-	<u>i</u> 1			
	• 1 • 4		NA							 -	<u> </u>			her same	* ************************************			4	-	201 a. g			*-m - *		- 1		y		er	r 4		>		pr 4	·		- •	e 		p 4		·- ·	— - 1				لــــا لــــز		1			
				·	\$,—— <u>—</u>		<u>ب</u>	i		**************************************	more eq	-	Breen -		F = 234	Marine or god					• - •				₹ *~ •	*			er outstag	ja enj		P ====================================	i	F = 4				:		÷- :	i		j	F	<u></u>	-	<u>.</u> 1			775
*	: :	***	****			<u></u>	<u> </u>			1 mm - 1	*				p			-	-	• · ·								-		,	,		-		-	m •				F .	ann cas	-	}=- ▶ 4		r +	~ .	Fi	* (; 1			25.5
, ,	* = − ;	***	900 F 14	• i	•	ۇسىدە ئاسىدا	<u> </u>	p (*		•i	N	Side were 6	5 0	*** *	Phone	·			,		•		- 1				į	ة سو غ سو			- 1	-	-	-		. :	:			- 4	- 1	. !			-		- 1	1			
***** *******************************		· - •							90 x		** •				,			. :					••••		• • •	to	•	••		·	-		= •	-		-	•			*	*******		97 A		•	-		5- 1	* 5			
	-	•	*	•	•	•		5	•	Pi	-	· ·	•	_	-	-		-		-	•			9 1.	-	***		-	h-	-		•	*		**	-		•		•					• • ·	gen m E		,	1			
		AND THE TRANSPORT OF THE PROPERTY OF THE PROPE										の関係の関		PERNAMENTAL PROPERTY OF THE PERNAMENT PROPERTY PROPERTY OF THE PERNAMENT PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY	T. L. 7.3 Exysadinii			officensia.	AKIR-O		indiana.	Tropicy)		NAMES OF THE PERSON OF THE PER		STREET, STREET					OMA									交差	Ž	夏				THE PROPERTY OF STREET STREET,		3				

		A SEPTEMBER OF THE SEPT	THE PORT OF THE PARTY.		tid in Jacopia og		-	- 		·						
PAGE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. :	i i
•	6x 66 65 66 67 66 69 70 717															
care 11 > W2 >	1) 34 54 56 57 58 57 60 51 62															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GATE K	उन्ते अने के ब्या का का बाब का का का का इन										+					+
TS DATA	X .	H. Blas.														
INERL		Z S S S S S S S S S S S S S S S S S S S	Nozzle C.G.													
CENTER-OF-GRAVITY AND	4 im 11 12 13 14 15 15 17 13 24 25 27 27		Nozzle I		+ 1 1 1 1 +	#		+	+		+		+	T	- -	
- And	100		WE, W										6		3	77
13245 1748.	1 2 3 4 5 6 1	(D4 45 1-12	1, ~	4 8 2 +		+ 8 6 7	15081 +	+	+ 3/2/8 +	15 3 8 +	1548	1 8 8 8 8	4 1819,5	5.7.8	588	The Same of the Sa

A STATE OF THE PARTY OF THE PAR

					,		
-							
-	Roll Va						
PAGE	123233						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	149						-
	23/63/63				,		* *- *- *- *- *- *- *- *- *- *- *- *- *-
	25.80 6116					terms of the second of the sec	
	88.23						i de designation
	23.54.55						e and company
0476	3081 25						
-	C						- pusi:
	# 45 45 LRC1 tR2						
	X Fc.	F. F					
	१ हानु			and production for a	The second secon		
	# E - E			at brain, and some a man brain, and brain, and more Managard br	. pre-mail		
					- province has and	Second 1	
	1					processing posts 4 r processing and 4 Efficiency area	
ક્ષ							- mg mg - mg
ALUI	R1 Hyst. D Rate Ga		国目目				a de la companya del companya de la companya del companya de la co
ROLL VALUES							
RO	Column Co						
<u>₩</u> > 4							

1 A A A A A A A A A A A A A A A A A A A	Afte Ga			_		process of the second of the s	
INPUT WHEET	6 4 3 4 6	6 5 3	9 9			Francis of State of S	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
707	17.1	9 9			d promised process of the second seco	5 5 5 50 4 60 5 5 5 5 5 6 5 6 6 6 6	

N. PRINTOUT

The basic deck (BD), reference run (RR), and run (RUN) numbers and page number appear on every printout page. The date is also printed.

1. Input Print

Input is printed as shown in the following pages.

If all the parameters in a line are zero, the line is deleted. If the lines in a titled section contain all zeros, the title is deleted.

The T-card message is printed after the words "INPUT FOR".

INPUT PRINT

BD XXXX. RR XXXX. RU. XXXX. DATE XXX XX XXXX PAGE X INPUT FOR (MESSAGE IN TRAJECTORY RUN CARD, COLUMNS 2 THRU 57)

INITIAL CONDITIONS

 K_k C_0 C_k C_y C_y

ν_o γ_o h_o s_o

ψ_i θ_i α

14 OXXX.XXXXXX OXXX.XXXXXX CXXX.XXXXXX

 ρ_{L} μ_{L} h_{l}

17 OXX,XXXXXX CXX,XXXXXX OXX,XXXXXX

W_{PL} h_E

20 OXXXXXXXXXXXX OXXXXXXXXXXXX

J g_e g_e r_e ω

 $23 \quad 0XXX_*XXXXXX \quad 0XXX_*XXXXXX \quad 0XXX_*XXXXXXX \quad 0XXX_*XXXXXXXX \\$

mo mo mo

28 OXXX.XXXXX OXXX XXXXX OXXX.XXXXX

Q_{bo} ho bo

31 OXXX.XXXX OXXX.XXXXX OXXX.XXXXX

bo bo bo bo 34 OXXX.XXXXX OXXX.XXXXX

ORBITAL ELEMENT VALUES

 k_{c1} k_{c2} h_f γ σ_c h_e 37 **6**X.XXXXXEOXX OX.XXXXXEOXX OXXXXXXX OX. XXXX OXXXXXXX

TRANSVERSE INITIAL CONDITIONS

 s_{co} γ_{20}

43 OXXXXXXXXX OXXXXX OXXXXX XXX

GUIDANCE ALIGNMENT

g g g g 46 OXXX.XXXXX OXXX.XXXXX OXXX.XXXXX

JETTISON WEIGHT

 $w_{\rm JT1}$ $\sigma_{\rm J1}$ $K_{\rm J1}$ 49 OX.XXXXXEOXX XXXX OX.XXXXXEOXX

W_{JT8} σ_{J8} K_{J8}

70 OX,XXXXXXEOXX XXXX OX,XXXXXXEOXX

HUNT PROCEDURE 1

 P_1 K_x n_{t1} K_a α_x α_a K_b

73 OX. CX. OXXXX. OX. OXXXXX OXXXX OXXXX.

 $X_{\underline{i}}$ ΔX $A_{\underline{i}}$ $\Delta_{\underline{a}}$

HUNT PROCEDURE 2

P2 σ_z ϵ_z ϵ_m ϵ_t ϵ_D ϵ_{t2}

84 OX. OXXXXXXXEOXX OX.XXXXXXEOXX OX.XXXXXXEOXX OX.XXXXXXEOXX OX.X

 σ_{x1} x_{i1} Δx_{i1} σ_{y1} y_{L1} y_{U1}

91 OXXXX OX.XXXXXEOXX OX.XXXXXXEOXX OXXXXX OX.XXXXXXEOXX OX.XXXXXXEOXX

el ^TT1 ⁵T1

97 OX.XXXXXXEOXX OX.XXXXXEOXX

• • •

 σ_{x7} x_{i7} Δx_{i7} σ_{v7} y_{L7} y_{U7}

145 OXXXX OX,XXXXXXEOXX OX,XXXXXXEOXX OXXXXX OX,XXXXXXEOXX OX,XXXXXXEOXX

 $\epsilon_{ exttt{c7}}$

151 O. . YXXXXXYEOXX OX. XXXXXXXEOXX

UPPER LIMIT P-2

×_{U1} ×_{U2} ×_{U3} ×_{U4}

154 OX,XXXXXXEOXX OX,XXXXXXEOXX OX,XXXXXXEOXX OX,XXXXXXEOXX

^{-х}u5 ^{-х}u6 ^{-х}u7

158 OX,XXXXXXEOXX OX,XXXXXXECXX OX,XXXXXXEOXX

LOWER LIMIT P-2

161 OX.XXXXXXEOXX : ..XXXXXXEOXX OX.XXXXXXEOXX

COMPUTE INTERVAL

MAIN PRINT

PRINT FLAGS

PL-DA PL-GB Pio-K PL-KB PL-N PL-O
200 OX. CX. CX. OX. OX. OX. OX. OX. OX.

AUXILIARY PRINT

	∆t ₂₇	t _{P7}	∆t _{P8}	t _{P8}
232	XXXXX XXXXXX	XXXXX,XXXXX	XXXXXX,XXXXXX	XXXX XXXXX

SPECIAL PRINT

	$\sigma_{t,1}$	K _{t1}	$\sigma_{ t t 2}$	K _{t2}
236	OXXXX	OX XXXXXXXXXXXXX	OXXXXX	OX.XXXXXXEOXX
240	σ _{t-3} oxxxx	K _{t3}	σ _{t 4} ΟΧΧΧΧ	K _{t4} ox.xxxxxxeoxx
	σ_{t5}	κ _{t5}	σ_{t6}	K _{t6}
244	OXXXX	OX,XXXXXXECXX	OXXXX	OX.XXXXXXXEOXX
	ở _{t7}	K _{t7}	$\sigma_{ t t 8}$	K _{t8}
248	OXXXX	OX.XXXXXXXEOXX	OXXXX	OX.XXXXXXXEOXX

DISCONTINUITY PRINT

MAXIMUM PRINT

STAGING VALUES

INTEGRATION TOLERANCES

σ Α'ς Α12 'r8 302 CXXXX ΟΧ.ΧΧΧΧΧΧΕΟΚΧ

BREAK UP TOLERANCES

 A_t B_t A_x B_x A_x B_x A_x B_x A_x B_x A_x B_x A_x A_x

ATTITUDE CONTROL

 T_{y1} σ_{f1} K_{f1} $Q_{m16}, \alpha_{i1}, \kappa_{D1}$ $R_{m1}, \alpha_{i1}, \kappa_{R1}$ P_{m1}, α_{max1} 310 OX. OXXXX OX.XXXXXEOXX OX.XXXXXEOXX OX.XXXXXXEOXX OXXXXXXXXX

T_{y13} σ_{f.13} K_{f16} Q_{m16},α_{i16}, δ_{D16} R_{m16},α_{i16},κ_{R13} P_{m13},α_{max13} τ_{P,13}

394 OX. OXXXX OX.XXXXXXEOXX OX.XXXXXEOXX OX.XXXXXXEOXX OXXX.XXXXXX OX.XXXXXXX

401 OXXXX.XXXX OXXXX.XXXX OXXXXX.XXXX OXXXXX.XXXX WIND PROFILE

 K_{h} K_{s} K_{s}

407 OX.XXXXXEOXX OX.XXXXXEOXX OX.XXXXXXEOXX

h₁ v_{w1} w1
419 OX.XEXEXEOXX OX.XXXXXEOXX OXXX.XX

h₃₀ v_{w30} w30

497 OX.XXXXXXXEOXX OX.XXXXXXEOXX OXXX.XX

MODE

My1 M1 KM1 600 OX. OXXXX OX.XXXXXEOXX

M_y10 ^dM10 ^KM10 627 **O**K. OXXXX OX.XXXXXXXXXX

TARGET CYNAMICAL CONDITIONS

Tto Tto

 v_{TO} r_{TO} r_{TO} r_{TO} r_{TO} r_{TO} r_{TO} r_{TO}

a_{TC1} OXXXXX,XXXX OXXX,XXXXX OXXX,XXXXX OXXX,XXXXX 640 ^aTC7 XXXXX XXXX XXXX XXXX XXXX XXXXX 664 668 OXXXX.XXXX OXXXX.XXXX DUTY CYCLE AND SLEW RATE GRIT Ade kde ha XX. XXXXXXXX XX. XXXXXXXX XX 670 A_{FW1} 674 XXXX.XXXXXX OXX.XXXXXX XXXXXXXX. TVC PROPERTIES k I spang OX.XXXXXXEOXX GY.XXXXXXEOXX OXXX XXXXXXX 677 h mxwd XXXXX,XXXX OXX,XXXXX OXXXXXX.XX 680 OXX. TITLED PRINT FLAG KTPF KTIF

OXX. OXX

THRUST MODULATION CONTROL

 F_{y7} σ_{Fy7} K_{Fy7}

860 OXX OXXXX. OX.XXXXXXEOXX OXX. OX.XXXXXXEOXX OXXXXXXXX

MIN₇ q_{max 7} q_{min 7}

\$66 OX.XXXXXXEOXX OXXXXX.XXXXX OXXXXXX.XXXX

SPECIFIC VELOCITY TIME PROFILE

 $\mathbf{v}_{\mathbf{v}\mathbf{p}_{\mathbf{l}}}$

L870 OXXXXX.XXXXX OXXXXXXXX

t_{VP15} V_{p15}

L898 OXXXXX.XXXXX OXXXXXXXXX

INPUT PRINT

STAGE ONE

MAIN THRUST-WEIGHT

MAIN THRUST MOTOR BALLISTICS

K095	X.XXXX	x.xxxxxx	x.xxxxx	<u>+</u> O XXXXXXD <u>+</u> XX	XXXXXX
	CSTAR	ATREF	RB1000	FW'?	WP
	XXXXX.XXX	XXXX.XXXX	XX.XXXXX	xxxx.xxx	xxxxxxxxx
	ITM	Α	CAS1	CAS2	CAS3
	$\underline{+}$ 0,XXXXXX $\underline{+}$ XX	XXXXXXXXXXX	<u>+</u> O.XXXXXXD <u>+</u> XX	<u>+</u> O.XXXXXXD <u>+</u> XX	<u>+</u> 0.XXXXXXD <u>+</u> XX
	AXMAX	AXMIN	PCMXA	PCBREF	
	XXXXXXX	XXXXXXX	XXXXX,XXX	XXXXX.XXX	
J	TÎME	VAC THRUST	CH. PRES	PCDOT	PROP FRACT.
II	XXX.XXXXX	<u>+</u> O.XXXXXXD <u>+</u> XX	XXXXXX.XXX	+O.XXXXXXD+XX	x.xxxxxx
• .		•	•	•	•
•		•	•	•	•
IJ	XXX.XXXX	<u>+</u> 0.XXXXXXD <u>+</u> XX	XXXXX.XXX	<u>+</u> O.XXXXXXD <u>+</u> XX	X.XXXXX
J	Time	WEB	SURFACE	VOLUME	EX. AREA
	XXX.XXXX	x.xxxxx	±0.XXXXXD±XX	<u>+</u> o.xxxxxxd <u>+</u> xx	XXXXXXXXXX
•	•	•	•	•	
•	: •	•	•	•	•
13-	XXXXXXXXX	XXXXXXXXX	<u>+</u> 0.XXXXXXD <u>+</u> XX	<u>+</u> O.XXXXXXD <u>+</u> XX	XXXXXXX

COMPLEMENTARY THRUST-WEIGHT

•	K' FC	K _{WC}	KrC	I spC	A _e c
1100	XXXXXXXXXXX	XXXXXXXXXXXX	XXXXXXXXXXXXX	XXXXXXXX, XXXX	XXXXXXXXXXXXX
1105	OXXXXXXXXXXXX	OXXXXXXXXXXXXX	K _{BD} K _{BD} OX.X	ParC OXXXX,XXXXX	
1110	ci oxxxxx.xxxx	FC1	. OX.XXXXXX	EOXX	
	€	•	•		
	•	•	•		
-	t'25	F _{C25}	₩c25		
1187	XXXX, XXXXX	OX .XXXXXXXX OX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ECXX.	

AXIAL FORCE COEFFICIENTS

SRC C'
1185 OXXXX,XXXXX OXX,XXXXXX OXXXXXXX

M₁ C_{A1}
1186 OXXXX,XXXXX OXX,XXXXXX

M₁₅ C_{A15}
1216 OXXXX,XXXXX OXX,XXXXXX

PLAN FORM

S_{PF} ×_{PC}
1218 OXXXXXXXXXXX OXXXXXXXXXX

NORMAL FORCE COEFFICIENTS

S_{RN} Ñ' Ž_{CP}
1220 GXXXX,XXXXX GXX,XXXXXX OXX,XXXXXX

M₁ C_{N11} C_{N21} C_{N31} x_{cp1}
1223 OXXX.XXXXX OX.XXXXXEOXXXX.XXXXX OXXXX.XXXXX

AERODYNAMIC PITCH DAMPING COEFFICIENTS

D_{RN} M_Q M_G
1298 XXXXXX OXX.XXXXXX OXX.XXXXXX

M₁ C_{MQ1} C_{MQ1}
1305 XXX,XXXXX CX,XXXXXXXEOXX OX,XXXXXXXEOXX

M₁₅ C_{MQ15} C_{MQ15}
1347 XXX, XXXXXX OX, XXXXXXXEOXX OX, XXXXXXXEOXX

CLUSTER CHARACTERISTICS AND SIDE IMPULSE

n n n c R c o_{It} o_{tb} o_v

1380 XXXX XXXX OXX.XXXX OXX.XXXX OXX.XXXX

TVC ANOMALIES

A_L, K'_Λ ω_L δ_{MP} δ_{MY}

1386 ΟΧΧ.ΧΧΧ ΟΧΧ.ΧΧΧΧ ΟΧΧ.ΧΧΧΧ ΟΧΧ.ΧΧΧΧ

PITCH STEERING

^a91 ^a11

1391 OXXX.XXXXXXX OX.XXXXXXXEOXX

STEERING COEFFICIENT EVALUATION

σ_{g11} K_{g11} σ_{g21} K_{g21}
1397 ΟΧΧΧΧ ΟΧ.ΧΧΧΧΧΧΧ ΟΧΧΧΧΧ ΟΧ.ΧΧΧΧΧΧΕΟΧΧ

YAW STEERING

K yk

yk

1401 OX.XXXXXXXEOXX OXXXXX.XXXXX

ROLL ANOMALIES

 $\frac{\delta_{\text{MR}}}{\delta_{\text{RC}}}$ SR $\frac{\kappa_{\text{RC}}}{\delta_{\text{Vr}}}$

JET DAMPING

*Pf *Pa *E

INITIAL TVC CONDITIONS

FRO

1425 OXXXXX.XXXXX OXXXXXX.XXXXX OXXXXXX.XXXXX

STAGE ATTITUDE REACTION

ΔQ_b

 ΔQ_b ΔR_b 1428 0XXX.XXXXXX OXXX.XXXXXX

GIMBAL LOCATIONS

y' z'

TVC CHARACTERISTICS

LIMITS

 L_3 L_4 L_5 1440 XXXXX XXXX XXXXXX XX XXXXX XX XXXXX L₇ L₈ 1445 XXXXX.XXXX XXX.XXXX XX.XXXX XXXX.XXX XX.XXXX

GAINS

K_{DP1} K_{DY1} K_{RY1} K_{RY1} 1450 XXX.XXXXX XXX.XXXXX XX.XXXXX XX.XXXXXX

K_{IY1} f_{G1} σ_{G1} K_{G1}

K_{DY2} K_{RP2} K_{RY2}

 $\mathbf{F}_{\mathbf{I}\mathbf{Y}\mathbf{2}}$ $\mathbf{f}_{\mathbf{G}\mathbf{2}}$ $\mathbf{\sigma}_{\mathbf{G}\mathbf{2}}$

K_{DY3} K_{RY3} K_{RY3}

K_{IY3} f_{G3} 1472 XXX.XXXXXX XXX,XXXXXX OX.

MASS PROPERTIES īz 1475 OXX.XXXXXX OXX.XXXXXX OXX.XXXXXX OX.XXXXXX OXX.XXXXXX OXX.XXXXXXX OXXXXX.XXXXXO OXXXXXXXXO OXXXXXXXX X_{cg1} i yı OXXX.XXXXX OXXXXXXXXXXX Ι Y \mathbf{z}_{1} cgl Xl 1492 OXXXXXXX.XX GXXX, XXXXX GXXXXXXX.XX I 1 XY1 YZ1 ZX1 OXXXXXXO XXX OXXXXXXO XXX XXX X 15 cg15 Y15 cgl5 OXXXXXXXXX OXXXX, XXXXX OXXXXXXX, XX OXXX, XXXXXX I Y Ī Z15 cg15 X15 OXXXXXXX OXXXXXXX XX OXXXXXXXX I XY15 XZ15 ZX15 1695 OXXXXXX,XXX OXXXXXX,XXX GXXXXXXX,XXX

ROLL CONTROL

	r1	$ au_{ m R1}$	D ₁	F 1	L _{Rc1}
1638	xxxxx.xxxx	XX.XXXXXXXXX	X.XXXXXXXX	XXXXXXX XXX	XXXXX.XXXXX
	$\kappa_{ ext{DRi}}$		K _{RR1}	I spR1	r _{R2}
1643	XXXXX.XXXX	xx.xxxxxxxx	X.XXXXXXX	XXX.XXXXX	XXXXX.XXXXX
	^L R2	$ au_{ m R2}$	D_2	F 🔬 2	${ m ^{L}_{Rc2}}$
1648	XXXXX.XXXX K _{DR2}	XXXX.XXXXX	XX.XXXXXX ^K RR2	XXX.XXXXX ^I spR2	XXXXX.XXXXX t' _{R3}
1653	xxxx.xxxx	XXXXXXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXXX	XXXX.XXXXX
	$^{\iota}_{ m R3}$	$ au_{ m R3}$	$\mathbf{D_3}$	F 13	I _{Re\$}
1658	XXXXX.XXXXX K _{DR3}	XXXX.XXXXX	XX.XXXXXX K _{RR3}	XXX.XXXXX I _{spR3}	XXXX.XXXXX
1663	XXXX.XXXX	XXX.XXXXXXXX	XXXXXXXXXXXXX	XXXXXXXXX	
	AERODYNAMIC RO	OLLING MOMENT	-		્
	S _{RR1}	$\gamma_{ m R1}$	φ R1		
1667	OXXXXX,XXXXX	XXXX,XXXXXO	OXXXXX.XXXX		
	S _{RR2}	$\gamma_{ m R2}$	γ R2		
1670	OXXXXX.XXXX	XXXX.XXXX	OXXXXX.XXXX		
	M ₁	$c_1^{}$,	
1673	oxxxxxxxx	xx.xxxxxx			
-					
	M ₁₀	c ₁₀			
1691	OXXXXXXXXXX	OXXXXXXXX			

AERODYNAMIC MOVABLE PITCH CONTROL FINS COEFFICIENTS

1794 OXX,XXXX OXXX,XXXXXXX OX,XXXXXXXEOXX OX,XXXXXX OX,XXXXXX OX,XXXXXX

601

STAGE TWO

2. OUTPUT PRINT

The output print contains the parameters which are computed during the trajectory. The output print is separated into two formats. Format I contains stage identified time oriented blocks consisting of printlines A thru P, the main print: Y thru YD, the hunt print: Z thru ZB, the auxiliary print: X thru XA, the steering coefficients print: and V, the maximum print.

Format II consists of the TVC duty cycle print blocks consisting of printlines WA thru WO. Format II follows the entire trajectory Format I.

a. Format I Output Print

Format I output print is given following the input print defined in section 9.1 or the hunt print if it exists. Each stage is titled as specified in the "output stage identification" logic. The printline blocks in the main print, hunt print, and auxiliary print, are time sequenced. The steering coefficients print block are given at stage termination. The main print, hunt print, auxiliary print, and steering coefficients print arrangements are pictured in this section.

(1) Output Stage Identification

The start of each stage is identified by the message:

INITIATION OF STAGE K

where K_k is the stage number, i.e., 1, 2, 3, or 4 After the stage termination printout type: Following the time oriented print, one of these three messages will appear:

1. Normal stage termination

TERMINATION OF STAGE K

where K_{k} is the stage number, i.e., 1, 2, 3, or 4

- 2. End of flight control table

 TRAJECTORY HALTED-END OF FLIGHT CONTROL TABLE
- 3. End of mode control table

 TRAJECTORY HALTED-END OF MODE CONTROL TABLE

(2) Main Print

The main print contains printlines A, B, A, and succeeding printlines when the following special criteria are met. The main print is given when criteria of paragraph K.3.a, K.3.b, and K.3.c are satisfied.

Printline	Obtained
A	Λlways
AA	If $My = 4$ or 5
E	Always
BA	If $My = 4$ or 5
ВВ	If $My = 4$ or 5
С	Always
CA	If $My = 2$ or 5
CB	If $My = 5$
cc	If $\epsilon_d \neq 0$
CD	If My = 5 & $I_{XX} \neq 0$
CE.	If $\mathbf{n}_{\mathbf{p}} \neq 0$ for kth stage
CF	If D _p ≠0 for kth stage
CG	If D _p ≠0 for kth stage
CH	If Dp/0 for kth stage
CI	If F _v ≠0
CJ	If $F_y = 5$ or 6

```
D
                   If h_E \neq -1 or h < h_E
                   If D_{RN} \neq 0 or K_h \neq 0 or PL - DA \neq 0
DA
                   If (D_{RN} \neq 0) or (My = 4 \text{ or 5 and Ty} = 8, 9, 10 \text{ or 11}) or
DB
                    (PL - DA \neq 0)
                   If h_{E} \neq -1 or h < h_{E} and My = 2 or 5
DC
                   If h_{E} \neq -1 or h < h_{E} and My = 5
DD
                   If h_E \neq -1 or h < h_E and S_{fz} \neq 0
DE
                   If h_{\tilde{E}} \neq -1 or h < h_{\tilde{E}} and S_{\tilde{E}Z} \neq 0 and My = 4 or 5
DF
E
                   If My = 2 \text{ or } 5
ED
                   If My = 5
                   If My = 5 and 1_{XX} \neq 0
ΕB
F
                   If My = 2 or 5
                   If My = 5
FA
FB
                   If My - 2 or 5
FC
                   If My = 5
                   If My = 5 and I_{xx} \neq 0
FD
G
                   If t_{T1} \neq 0
                   If t_{T1} \neq 0 and My = 4 or 5
GA
                   If PL - GB # 9 or Ty = 10 or 11
GB
                   If (PL - GE \neq 0 \text{ or Ty} = 10 \text{ or } 11) and My = 4 \text{ or } 5
GC
                   If PL = GB \neq 0 or Ty = 10 or 11
GD
                   If (PL - GB \neq 0 \text{ or Ty} = 10 \text{ or } 11) and My = 4 \text{ or } 5
ئت
TE
                   If Ty = 6
                   If K_{cl} \leq \sigma_c \leq K_{cr} or at the stage termination of final
J
                   stage and the orbital criteria are satisfied.
```

Printline	Obtained
J	If K_{c1} σ_{c} K_{c2} or at the stage termination of final stage
	and the orbital criteria are satisfied.
JA	If $K_{cl} < \sigma_{c} \leq K_{c2}$ or at the stage termination of the
	final stage and the impact criteria are satisfied.
JB	If $K_{c1} \le \sigma_{c} \le K_{c2}$ or at the stage termination of the
	final stage and the impact criteria are satisfied and
	$h_{E} \neq 0$
JC	If K of S K or at the stage termination of the
	final stage and the impact or orbital criteria are
	satisfied.
К	If PL - K \neq 0 or Ty = 4 or $\sigma_{gg} \neq 0$
KA	If $(PL - K \neq 0 \text{ or } Ty = 0 \text{ or } \sigma \neq 0)$ and $My = 4 \text{ or } 5$
КВ	If PL - KB \neq 0 or Ty = 4 or $\sigma_{g1} \neq 0$
N	At stage termination or PL - N ≠ 0
0	At stage termination or PL - 0 ≠ 0
P	If t _B = 0
PA	If $P_{arm} \neq 0$ or $P_{avc} \neq 0$ and if $t_B \neq 0$
РВ	If $P_{arm} \neq 0$ or $P_{arc} \neq 0$ and if $t_B = 0$

THE PROPERTY OF THE PROPERTY O

Output Print Format I

Main Print

A	t XXXX.XXXX					a xb ovy yvyyy		
A		S _c			maan , aaa	AAAAA,	AA AA	
AA	-	c XXXXXXXXXX,			:			
		$\dot{ heta}_{ exttt{m}}$				a	v .	
В		XXXXXX OX						
	∜ m	ទំ _{ពារ}	გ	r_2	γ ₂₁	^a Yb	^η bt	
BA		OXX.XXXX O	X XXXX, XXX	XXXX.XX	XXXX, XXXX	XXXXX, XXO	OXX,XXX	
	ф m		P _m			5.2	ρ	
BB	XXXX.XXXX	OXX.XXXXX O						
_	W	v	F	F _V	[F/W) ^F x	Thr	
С								
CA		M _{DQ}	ovvvvvvvv	FCQ	at _u Axxo oxxa	Q J	Dz vyvye ovy	ig (
w	•							
СВ	ZZ OXXXXXXX	M _{DR} OXXXXXXX	OXXXXXXXXXX.	···FCR OXXXXXX	XXXXO XXX	C J XXXX. OXXX	Dy XXXXX OXX	IR XXXX
		Pe						
CC	CXXXXXXXX							
	I _{xx}	MDP	^M CP	^M FC	, M _{FV}	P M	fop ^M	17
CD	OXXXXXXXXX.							XXXXX
	$\mathbf{r}_{\mathbf{b}}$	$D_{\mathbf{b}}$	g_{W1}	v _c	1	^A sı	€	$v_{_{ m FI}}$
CE	XX.XXXXX	XXXX.XXXX	x.xxxxx	XXXXX	CXXXX. X	xxxxxxx	XXXXXX	XXXXXXXXXXXX
	ė c	P _c	Pcc	:	Fcom	F _{Ve}	om F VN	F N
CF	<u>+</u> XXXXXXXX	. XXXXXX	XX XXXX	x.xxx	XXXXXXX	x. xxxxxx	CXX. XXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	$\mathbf{\mathring{A}_{t}}$	$\mathbf{A_t}$	A _{tcc}		Ks	К _р	$\omega_{ m p}$	
CG	±XXXXXXX.X	XXXX.XXXX	xxxxx.x	XXX XXX	cx.xxxx	xxx.xxx	XXXXX X	XXXX
	w _{MP}	$\mathbf{w}_{\mathtt{pr}}$	g _{pl}	-	AxI			,
- СН	xxxxxx.xx	XXXXXXX	x. x.xx	608 608	XXXX.XX	XX		`

OUTPUT PRINT FORMAT I

MAIN PRINT

where: $V_{\text{ecn}} = \begin{bmatrix} V_{\text{ecv}} & \text{If } F_y = 1 \\ V_{\text{ecn}} & \text{If } F_y = 2 \\ V_{\text{ev}} & \text{If } F_y = 2 \\ 0 & \text{Otherwise} \end{bmatrix}$ $\dot{V}_{\text{XXX}} = \begin{bmatrix} \dot{V}_{\text{ecv}} & \text{If } F_y = 4 \\ \dot{V}_{\text{ecm}} & \text{If } F_y = 1 \\ \dot{V}_{\text{ecm}} & \text{If } F_y = 2 \\ 0 & \text{Otherwise} \end{bmatrix}$ $K_{\text{XXX}} = \begin{bmatrix} \dot{K}_{\text{CPR}} & \text{If } F_y = 3 \\ K_{\text{ALOS}} & \text{If } F_y = 6 \\ 0 & \text{Otherwise} \end{bmatrix}$

N_Z qoʻt ş. æ: DA OXXX,XXXO XXXX,XXXO XXXX,XXXX XXXX,XXXXO XXXX,XXXXO AXX ā' XXX.XXXO XXX.XXXX XXXX.XXXX XXXX.XXXX XXXX XXXX XXXX XXXX XXXX l_{cp} M_{NSQ} M_{CZG} MNQ М_{NDO} OXXXX.XXXX OXXXXXXXX. OXXX.XXXX GXXXXXXXX. OXXXXXXXX. OXXXXXXXX. M_{NSR} M_{CYG} M_{NDR} Nr $c_{\delta z}$ $i_{\delta z}$ N_{ōz} il hz N_{δy} θ_{h} Q_{h} X Z Cg XXXXXXXX OXX.XXXX XXXX.XXXX OXXX.XXXX OXXX.XXXX OXXX.XXXX \mathbf{I}_{ZZ} \mathbf{y}_{e} \mathbf{y}_{eg} \mathbf{v}_{b} \mathbf{R}_{b} \mathbf{R}_{b} \mathbf{x}_{b} \mathbf{x}_{b} \mathbf{x}_{b} $P_{\mathbf{b}}$ XXXXXXXX. OXX,XXXXX OXXX,XXXX OXX,XXXX OXXX,XXXX OXXX,XXXX. ΐ δ_p $\delta_{\mathbf{p}}$ $\mathbf{F}_{\mathbf{Z}}$ ∆0_b $^{\rm M}$ FOQ I_{SP} FB Λά M FOQ ĖY OXX.XXXXX XXXXXXXXX. XXXXX.XX OXXXXXXXX. OXXX,XXXX OXXXXXXXX CXXXXXXXX $\mathbf{I}_{\mathbf{R}}$ ΔΦ_b Fn h v_T $7_{
m T}$ 7_M ζŢ $\gamma_{\rm M}$

h_{MI} MI t_{Mî} SMI MI GB T_{MI} ی⊤ **GMT** XXXXXXX XXXO XXX,XXXO XXXX,XXXX GC $\dot{\epsilon}_{ ext{MT}}$ R_{MT} P_{MT} MT GD XXXXXX XXXXO XXXX,XXXXO XXXX,XXXXO GE 1₂ OX.XXXXXXEOXX IE ρ_{f} V_{If} γ_{IIf} tf Sf $\mu_{\mathbf{f}}$ Y_{1E} V_{1F} V_{aE} γ_{11E} JB γ_{2Ia} μ_a ρ_a х_{ее} Z_{ee} K Ÿ_{ec} KA Zgg CX.XXXXXXEOXX OX.XXXXXXXEOXX OX.XXXXXXXEOXX OX.XXXXXEOXX OX.XXXXXXEOX OX.XXXXXXEOXX OX.XXXXXXEOXX $\hat{\mathbf{i}}_{\mathtt{v}T}$ Î_{VM} ^Irc OX.XXXXXXEOXX OX.XXXXXXECXX OX.XXXXXXEOXX OX.XXXXXXEOXX IXT

(3) Hunt Print

Procedure 1

If Pl is non-zero, the printline Y is printed at trajectory termination. If the input flag $K_{_{\rm S}}$ is non-zero, the stipulated main print is output, i.e., as described for Pl equal P2 equal zero, for each trajectory run during this hunting procedure. The title for this hunt print is set at "ITERATION" and the number of iteration is output as $n_{_{\rm I}}$.

After convergence occurs the trajectory is printed as described for P1 equal to P2 equal zero

Procedure 2

If P2 is non-zero, printlines YA through YD are printed at end of each trajectory iteration. The hunt print printout continues until procedure 2 convergence occurs, then the trajectory is printed as described for P1 equal P2 equal zero. The hunt print title should be "ARRAY", "BASE CASE", or "ITERATION" for .ne indicated run. The number of trajectory runc is output as n .

(4) Auxiliary Print

Printlines Z, ZA (if σ_{p5} , σ_{p6} , σ_{p7} , or σ_{p8} is non-zero), and ZB (if σ_{p9} , σ_{p10} , or σ_{p11} is non-zero) when the auxiliary printline criteria of paragraph K.3.d are satisfied.

(5) Steering Coefficients Print

If $\sigma_{g1} > 0$ and $n_g > 5$, then the steering crefficients print is printed after the note "TERMINATION OF STAGE k" and before the note "MAXIMUM VALUES".

If $\sigma_{g1}>0$ and $n_g<5$, the note "STEERING COEFFICIENTS NOT CALCULATED" is printed after the note "TERMINATION OF STAGE k" and before the note "MAXIMUM VALUES".

是一个人,我们就是一个人,我们也没有一个人,我们也是一个人,我们也是一个人,我们也会一个人,我们也会一个人,我们也会一个人,我们也会一个人,我们也会一个人,我们

OUTPUT PRINT FORMAT I (Continued)

Hunt Print

Z₄ Z₅ Z₆ Z₇
YD OX.XXXXXXEOXX OX.XXXXXXEOXX OX.XXXXXXEOXX

Auxiliary Print

t σ_{P1} σ_{P2} σ_{P3} σ_{P4} z xxxx.xxxx ox.xxxxxxeoxx ox.xxxxxxeoxx ox.xxxxxxeoxx ox.xxxxxxeoxx ox.xxxxxxeoxx ox.xxxxxxeoxx ox.xxxxxxxeoxx ox.xxxxxxxeoxx

Steering Coefficient Print

STEERING COEFFICIENTS

Maximum Print

MAXIMUM VALUES

t σ_{mj} (value) σ_{mj} (code) σ_{mj}

(6) Maximum Print

If $\sigma_{mj} \neq T_{mj} = k_k$, or $T_{mj} = 1$ with $k_k = 4$, the maximum print (printline V) including the note "MAXIMUM VALUE" is printed after the steering coefficients print of the k-th stage.

(7) Optional Titled Output

If $K_{\mbox{\scriptsize TPF}}$ the titled print flag input in L683 is non-zero the following format is printed at the top of each page of the output print format I.

BD XXX. RR XX. RUN XXX. T CARD TITLE MESSAGE IS PRINTED ON THIS LINE

A	TIME	GROUND RANGE	GEOMETRIC ALTITUDE	EARTH VELOCITY	INERTIAL VELOCITY	AXIAL ACCEL	море түре
В	ATTITUDE ANGLE	ATTITUDE RATE	ATTACK ANGLE	FL 1GHT PATH ANGLE	INERTIAL FLIGHT PATH	TRANS ACCEL	EARTH VELOCITY RATE
С	WEIGHT	Weight Flow	TOTAL THRUST	VACUUM THRUST	SPECIFIC IMPULSE	AXIAL THRUST	VEHICLE LOAD FACTOR
D	MACH NUMBER	DYNAMIC PRESSURE	AIR VELOCITY	AXIAL FORCE	NORMAL FORCE	Q Alpha	ambient Pressure

b. Format II Output Print

Format II output prin: is given following the entire

Format I output print defined in section NI. The printline

block in the duty cycle print is sequenced to present general duty

cycle parameters first, then the time dependent duty cycle parameters.

The duty cycle print arrangement is pictured in this section.

(1) Duty Cycle Print

If $K_{D\bar{C}}$ is non-zero, the duty cycle print for the " $K_{D\bar{C}}$ "-th stage shall be given following the flexible body print.

OUTPUT PRINT FORMAT II

DITY CYCLE PRINT

x_{nf} X-NF D-DESIGN I-VAC X-E I-DEL $P_{q\alpha}$ 1SPVACM H-Q ALPHA P-Q ALPHA CONT FREQ SLEW D-SLEW
WB OXXXX.XXXX OXXXXXXX OXXXX.XXXX OXXX.XXXX OXXX.XXXX i δp t γP δ γmax
I-DDOTP T-NF ETA-P DDOT-FMAX To the state of th K_{de} D_B t_{Ba} F z_d PC/FMV EXP RAT AT CAMMA PCA C-STAR gybays I Wexi KZ-FXJ ISP-AUG n n c ndc hemax hymax H-N N-C N-DC H-HINGE-F M-HINGE-Y IVY-HAIN-GGT-MAIN

LANGER SOLDEN STORY OF SOLDEN SOLDEN

		Å tmax		I _{at}	A	ax		Ź
		ADTMAX		IAT	AXMA	K	-	
WK	xx.o <u>+</u> o.xx	XXXXEIXX	<u>+</u> 0.XX	XXXXEIXX	<u>+</u> XXXX	x.xxx		
		F _{max} FMAX	P emax PCMAX	€ max EPSM	A _{tı}		C _{fmax} CFMAX	
WI	±XXXX	XXXXX	<u>+</u> XXXXXX.>	XXXX <u>+</u> XXXX	.xxxx <u>+</u> x	xxxx.xxxx	<u>+</u> X.XXXXX	X
	F	Fmin 'MIN	P _{emin} PCMIN	€ mis EPSM		max MAX	C _{fmin} CFMIN	
W	M ±XXXX	XXXXX.XX	<u>+</u> XXXXX.X	XXX ±XXX	x.xxxx. ±xx	CXXX.XXXX	±x.xxxxxx	
WO	t Bq TIME XXXX XXX	δ _{pq} D-PITCH OX.XXXXX	Syq D-YAW OXX,XXXXX	F _q F-DEL XXXXXXXX.X	X X-CG XXXX.XXXXX	Pvacq F-VAC XXXXXXXXXXX	₩q w-dot xxxxxx.xx	
WO	XXXX.XXXX	•	0, X*XXXX	XXXXXXXX.X	XXXX.XXXX	XXXXXXXX . X	xxxxxxxxxxx	,

(2) Error Code

Certain computations and parameter values result in program logic terminating the run. The error which causes the abort is identified by printout. The printout occurs after the main print is given for the trajectory computation up to the time of error.

(a) Common Er or

Verbal descriptions of common errors are as follows:

- *Undefined type of flight check input L310, L317, etc.
- 2. *Undefined mode check input L600, L603, etc.
- 3. Undefined type of hunt check input L84
- 4. Invalid sigma 7 or Y check input L85, L94, L103, etc
- 5. Invalid sigma Y check input 1.77
- 6. Input card error
- 7. Dependent parameter not varying Hunt Procedure one
- 8. Impossible region exist Hunt Procedure one
- 9. Singularity in quadratic fit Hunz Procedure one
- 10. Delta X input zero check L81
- 11. Internal tolerance input zero check L83
- 12. Invalid sigma A : check input L78
- 13. *The missile weight has gone to zero dump follows

*These messages are followed by a formated dump

(b) Integration Routine Errors

In the event of an integration routine error, the following information is provided:

INTEGRATION ERROR TYPE X

Type 1 indicates the initial integration interval is too small: this error should seldom occur.

Type 2 indicates the CNTRL or MAXPRT rectine has cut the interval too far in attempting to meet accuracy criteria.

Type 3 indicates the integration routine has cut the interval too far.

The minimum allowable interval is 2 (t +1)x 10^{-8} .

AT TIME = XXXX - the time of the vilure

DELT = XXXX - the integration interval

CONTROL COUNTER. XXXX- the number of passes through the CNTRL routine; i.e., the number of time intervals integrated. Zero here indicates the trajectory cannot get started for some reason.

BREAKUP COUNTER. XXXX-The number of passes through the CNTRL routine in attempting the most recent breakup. An integer here and error type 2 indicates trouble with one or more of the following:

- 1. Attitude control Table
- 2. Gains Table
- 3. Special Print Table
- 4. Weight Jettison Table
- 5. Wind Profile Table
- 6. Mode Control Table
- 7. Staging
- 8. Target Dynamical Conditions Table
- 9. Lift off
- 10. Thrust Modulation Control Table

MAXPRT COUNTER XXXX- The number of passes through the MAXPRT reutine: a positive integer here and error type 2 indicates trouble finding a maximum print valve. A value of -1 indicates no maximum prints have been requested. INTEGRATION COUNTER XXXX- The number of times the integration interval has been cut. A positive integer here and error type 3 indicates trouble in maintaining integration accuracy.

TIME (START) - Time at call to integration routine DELT (START)-Initial integration interval.

EMAX- Maximum value of E,

JMAX - Index i of E,

Following the above there is a table of 5 columns of 50 items each, labeled Y (start), HK1, HK3, HK4, .nc. Y (start) is just that, and HK1, HK3, and HK4 are the \mathbf{h}_1 . \mathbf{h}_3 . and \mathbf{h}_4 of the Range-Kutter-Menson integration method (k2 is not saved and k5 can be found as \mathbf{D}_y in locations 751-800 of the P-region). INC is a logical variable indicating whether the particular equation is included in the integration vector. This information is of use only with type 3 errors.

(c) Formatted Dump

Certain error conditions cause the trajectory to terminate with a formatted dump consisting of the following sections:

P REGION (1000 locations) - this is the section described in switching code; i.e., the output variables identified by L5000-L5999.

GN REGION (100 locations) - this area contains real variables and constants.

JN REGION (100 locations) - this area contains integer variables, constants, counters and flags.

WGT TABLES (150 locations) - this is the WGTBLS common region. It contains supplemental main and complementary thrust-weight tables, each of which are 3 x 25 arrays. The table entries are the derivative of thrust, second derivative of weight, and weight.

STAGE TABLES (75 locations) - this is a 15 x 5 array, containing 15 values each of XOLD, XTEMP, XTARG, DET, and BRKTM. These values are used by the routines CNTRL and BKKPS to perform breakups. XOLD, is the past value of variable i, XTEMP, is the most recent value and XTARG is the target value. DET, is either the estimated time to achieve XTARG, or -108 if XTARG, has been achieved. BRKTM, is the time a previous breakup occurred and is used whenever MAXPRT requires repeated passes over the same interval to locate and extremal. The i index relates the type of breakup involved, as follows:

- i = 1. Attitude (flight) Control Table
 - 2. Gains (TVC) Table
 - 3. Weight Jettison Table
 - 4. Special Print Table
 - 5. Wind Profite Table
 - 6. Mode Control Table
 - 7. Staging
 - 8. Target Dynamical Conditions Table
 - 9. Listoss
- 10. Thrust Modulation Control Table The remaining locations (i = 9-15) are not used.

STAGE FLAGS (30 locations) - this is a 15 x 2 array of integers; 15 values each of LMP and KDP. These are used with the values above. LMP_i is the L-number, less 5000, of the variable X; for example, LMP = 0 means a breakup on the variable t, or LMP = 270 means a breakup on C. KDP_i is the L-number that identifies the breakup; for example, KDP = 31 means that the

breakup of the second line of the attitude control table was in progress. KDP = 0 means that breakup point has not yet been found. The index i is as above. A negative value for IMP_i indicates the corresponding table is not involved in the breakup process.

TVC REGION (800 locations) - this is an array of 100×8 , consisting of 100 each of the values printed on line WO, followed by the values printed on lines WA through WJ of the Duty Cycle Print.

(d) Simultaneous Hunt Errors

The following message is output if the hunting procedure 2 fails:

ERROR HAS OCCURRED IN OPTM2 ROUTINE - DUMP FOLLOWS

Trajectory Shaper Output Print

The following output format is used in presenting the trajectory Shaper parameters

Commence of the Max Commence of the Max Commence of the Commen

(OUTPUT FORMAT)

TRAJECTORY SHAPER SUBROUTINE

INPUT

		INPUI				- Total
L598	CONTRO K X ^s ħ	OL FLAG DIM	Yessage Инининниннинни	і Ікнини: Акинининні	нини	
L599	Sah	r condition x.xx nm output	./ essage НИННИНИНИННИННИН	2 .	Delete if K _{sh} =	i
		OUTPUL				
	NO STO DIM Nk X		OXXXXXX.XXX	EARTI. ROTATION , DIM OX.XXXXXXXX		
		STAGE I	STAGE II	STAGE III	STAGE IV	
ACTI	on time	t .	tno	OX .XXXXXXXEOXX	t _{b4} OX.XXXXXXEOXX	
,SE			I _{vT2}	I _{vT3}	I _{vT4}	
-		I _{vTl}	VT2		OX.XXXXXXXEOXX	
	-SEC	7	7	•	*	
•		speff1	speff2 OX.XXXXXXXEOXX	speff3	speff4 OX.XXXXXXXEOXX	
err. SE,	ISP C		Δ.	Δ.	Δ_{i}	
·		4 v).	-W2	W3	W4	
EXP.				OX.XXXXXXEOXX W _{B3}	OX.XXXXXXXEOXX ₩ _{B4}	•
		W _{B1}	W _{B2}		OX.XXXXXXXEOXX	
STG.		A	CX.XXXXXXXEOXX	A		
		WE/231	42/wb2	₩3/WB3	△w4/w83	
	MASS	•	XXO3X) XXXXX, XG		OX.XXXXXXEOXX	
	CT DI	DT\AD*	W _{BQ} /WBL	WB3/WB1	W34/WB1	
			COX.XXXXXXXEOXX		OX.XXXXXX£OXX	
.DIM		w _{PLO1}	W _{PLO2}	W _{PLO3}	W _{PLO4}	
	ULSION GHT, LB		XXO3XXXXXX.XO	OX.XXXXXXEOXX	OX.XXXXXXEOXX	
	IDEAL ,FT/		PAYLOAD WEIGHT	WEIGH	E LIFTOFF T, LB	
	OXXXXX	ΔV Χ - ΧΧΧ Ο)	WPL XXXXXXXXXXXX		VT XX.XXXX	
		-	PITCH OVER ANGUI.		E VELOCITY AT	
		E, DEG	RATE, DEG SEC		OVER, FT SEC	
	oxxx.x	9M2 XXXXX	OXXXX XXXXXX Gas	Veo OXXXX	xxxxxx.	
	CIRCU	LAR ONBITAL	THRMINAL STAGE		AR ORBITAL Dele	
		CITY FT SEC VICO	FLIGHT PATH AND Y 1T	•	hco	, <u>,</u> _
	OXXXXX	x.xxx	XXXXXX, XXO	OXXXX	XXX.XXX Ksht	્ર± 3

Message 1

MAXIMIZE RANGE WITH GIVEN PAYLOAD	If K _{sh} = 1
MAXIMIZE PAYLOAD TO A GIVEN RANGE	If K = 2
DETERMINE PAYLOAD TO A CIRCULAR ORBIT	If $K_{sh} = 3$
	5.

Message 2

TARGET RANGE

ORBITAL ALTITUDE

If $K_{sh} = 2$ If $K_{sh} = 3$

SECTION IV

ROLL CONTROL REQUIREMENTS

The roll control requirements are determined from estimates of the roll disturbing moments: the offset roll torque, the vortex roll torque, and the aerodynamic roll torque. The offset roll torque is caused by the transverse thrust vector and the distance between the TVC vector point and the offset center-of-gravity centerline. The vortex roll torque is caused by the spiralling exhaust gases leaving the nozzle. The aerodynamic roll torque is caused by the coupled aerodynamic normal force and the distance between the aerodynamic center of pressure and missile center-of-gravity centerline offsets.

A. LINKAGE WITH TRAJECTORY ROUTINE

The roll control requirement routine can operate with data from the trajectory output duty cycle or can operate independently of the trajectory program by inputting mandatory data. Options are available to input variables and constants or have them calculated internally.

The logic to use data from the TVC duty cycle is as follows.

- ¹. If the mandatory data are not input, i.e., K_k , D_B , F_{vac} , W_o , or F_{vac}/W_{o1} , then data on printline WF of the TVC duty cycle are used.
- 2. If the control flag K_{tr} is nonzero, the parameters C_{NCt} , $q_{\alpha^{\dagger}m}$, and δ^{\dagger}_{mx} are obtained from the TVC duty cycle parameter C_{NCtq} , $q^{\alpha^{\dagger}}_{max}$, and $\overline{\delta}_{p_{max}}$, respectively.

B. PROGRAM INSTRUCTIONS

1. RCLL TORQUE

$$M_{\text{rtk}} = \begin{bmatrix} M_{\text{rtk}} & \text{if } M_{\text{rtk}} & \text{is inpuc} \\ M_{\text{rtk}} & \text{if } M_{\text{rtk}} & \text{is inpuc} \end{bmatrix}$$

$$M_{\text{rtk}} = \begin{bmatrix} M_{\text{rtk}} & \text{if } M_{\text{rtk}} & \text{is inpuc} \\ M_{\text{rtk}} & \text{if } M_{\text{rtk}} & \text{is inpuc} \end{bmatrix}^{\frac{1}{2}} & \text{otherwise} \end{bmatrix}$$
(in-1bf)

Where M_{rtk} is the input roll torque (in-1bf), M_{osk} is the offset roll torque (in-lbf), M_{vrk} is the vortex roll torque (in-lbf) and M_{ark} is the aerodynamic roll torque (in-lbf).

Offset Roll Torque

Where Mosk is the input offset roll torque (in-1bf), Kosk is the offset roll torque multiplier. F_{vack} is the input average webtime vacuum thrust (lbf), δ_{mxk} is the maximum thrust vector deflection angle (deg) and ϵ_{osk} is the effective offset distance (in).

(1) Offset Roll Torque Multiplier

Where Kosk is the input offset torque multiplier (dimb

Vortex Roll Torque

Where K_{vrk} is the vortex roll torque multiplier (dim), η_{vrk} is the vortex roll torque per pound of thrust factor (in).

(1) Vortex Roll Torque Multiplier

Where K_{vrk} is the input vortex roll torque multiplier (dim.)

(2) Vortex Roll Torque Per Pound of Thrust Factor

$$\eta_{\text{vrk}} =$$
(in)
$$\eta_{\text{vrk}} =$$

$$0.00363 \text{ otherwise}$$

Where $\eta_{\text{Vrk}}^{'}$ is the input vortex roll torque per pound of thrust factor (in)

(3) Maximum Deflection Angle

Where

$$E_{\text{Smk}} \left[B_{\text{Bok}} + B_{\text{Blk}} \left(\ln W_{\text{ok}} \right) + B_{\text{B2K}} \left(\ln W_{\text{ok}} \right)^2 \right]$$
 otherwise Stage I

$$B_{321} = 0.046411178$$

$$K_{oml} = 1.0$$

Stage II

$$B_{502} = 10.480564$$

$$B_{812} = -1.072774$$

$$B_{822} = 0.032548762$$

$$K_{\delta_{m2}} = 1.0$$

Stage III

$$P_{513} = -0.58573616$$

$$B_{823} = 0.018176142$$

$$K_{\delta_{m3}} \approx 1.0$$

 $B_{014} = -0.58573616$

 $B_{524} = 0.018170142$

K_{δm4} * 1.0

Unless

$$j = 0,1$$
, or 2 $k = 1,2,3$, or 4

or

 $\kappa_{\delta_m k}$ is input, then set

$$k = 1,2,3, or 4$$

Where W_{ok} is the input k-th stage liftoff weight (lb), $B_{\delta jk}$ are coefficients and $K_{\delta mk}$ is the maximum deflection angle multiplier. The maximum deflection angle versus stage liftoff weight is shown in Figure 30.

(4) Effective Offset Distance

$$\epsilon_{osk} = \begin{bmatrix} \epsilon_{osk}^{'} & \text{if } \epsilon_{osk}^{'} & \text{is input} \\ \\ \epsilon_{osk} & \text{if } \epsilon_{osk}^{'} & \text{is input} \end{bmatrix}$$

$$\begin{bmatrix} K_{odk}^{'} & (B_{\epsilon 1}^{'} + B_{\epsilon 1}^{'}) B_{k}^{'} + B_{\epsilon 2}^{'} & D_{Ek}^{'} + B_{\epsilon 3}^{'} & D_{Ek}^{'} \end{bmatrix}$$

$$B_{\epsilon 0} = 0.51640019 \times 10^{-1}$$

$$B_{\epsilon 1} = 0.34855505 \times 10^{-2}$$

$$B_{\epsilon 2} = -0.21364594 \times 10^{-4}$$

$$B_{\epsilon 3} = 0.28005590 \times 10^{-6}$$
is input, then set

Unless B_{ϵ_1} is input, then set

$$B_{\epsilon j} = B_{\epsilon j}$$

Figure 30. Maximum TVC Deflection Angle vs Stage Liftoff Weight

ANTHE OF THE PARTY OF THE PARTY

Where $\mathbf{D}_{\mathbf{Bk}}$ is the input k-th stage case diameter(in.), $\mathbf{B}_{\mathbf{G}}$ are coefficients and $\mathbf{K}_{\mathbf{odk}}$ is the effective offset distance multiplier (dim.).

c. Aerodynamic Roll Torque

Where M_{ark} is the input aerodynamic roll torque (in-lbf), K_{ark} is the aerodynamic roll torque multiplier (dim), C_{NC} is the normal force coefficient (1/deg), D_{B} is the input case base diameter (in), qC_{mxk} is the maximum dynamic pressure-angle of attack product (1bf-deg/ft²). The offset distance versus case diameter is given in Figure 31.

(1) Aerodynamic Roll Torque Multiplier

Where Kark is the input aerodynamic roll torque multiplier (dim).

(2) Normal Force Coefficient

Figure 31. Offset Distance vs Case Diameter

THE PARTY OF THE P

(3) Maximum Dynamic Pressure-Angle of Attack

$$q\alpha_{mx1} = \begin{bmatrix} q\alpha_{mx1}' & \text{if } q\alpha_{mx1}' & \text{is input} \\ & & & & & & & & & \\ K_{q\alpha1}[B_{q01} + B_{q11} & (F_{vac1}/W_{01}) + B_{q21} & (F_{vac1}/W_{01})^2 + B_{q31} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

Where
$$B_{q01} = -1167.3282$$

 $B_{q11} = 5817.9004$
 $B_{q21} = 868.14226$
 $B_{q31} = -209.07636$

unless Boil is input, then set Eqj1 = Bqj1 1 = 0,1,2, or 3

$$K_{qCI} = \begin{bmatrix} K'_{qCI} & \text{if } K'_{qCI} & \text{is input} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

$$q_{mx2}^{2} = \begin{bmatrix} q_{mx2}^{2} & \text{if } q_{mx2}^{2} & \text{is input} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

 $B_{q02} = 2564.6454$ Where $B_{q12} = -3653.9365$ $B_{q22} = 1477.6228$ B_{q32} =-60.327994

unless B is input, then set B_{q12} = B_{qj2} i = 0,1,2, or 3

$$K_{qCZ} = \begin{cases} K_{qCZ} & \text{if } K_{qCZ} \\ 1.0 & \text{otherwise} \end{cases}$$

$$STAGE III$$

$$qC_{mx3} & \text{if } qC_{mx3} \\ 0 & \text{otherwise} \end{cases}$$

$$STAGE IV$$

$$q_{mx4} = \begin{cases} q_{mx4} & \text{if } q_{mx4} \\ 0 & \text{otherwise} \end{cases}$$

$$(1bf deg/ft^2)$$

$$(1bf deg/ft^2)$$

$$(1bf deg/ft^2)$$

Where B_{qjk} are coefficients (dim), K_{qek} are the maximum dynamic pressure-angle of attach multipliers (dim), F_{vacl} is the Stage I input average webtime vacuum thrust (lb' and W_{01} Stage I liftoff weight (lbm). The maximum $q\alpha$ versus vacuum thrust to weight is given in Figure 32.

Figure 32. Maximum qavs Vacuum Thrust to Weight

2. POLL CONTROL SUBROUTINE NOMENCLATURE

東京語画の記載の記載できた。 できることが必要は、「日本の日本のできるできるですが、これのできなっている。」

ZAMBLIF	OFFINITION	UNITS
	FACTOR OF MAX THRUST VECT DEFLITH ANGLE OF KTH STAGE	-
# EPS1 K	COMSTANTS USED TO COMPUTE EFFECTIVE OFFSET DISTANCE	••
	COEFFICIENTS FOR COMPUTING MAX DYN PRESS-ANGLE OF ATTK	
CNALPHA	INPUT NORMAL FORCE COEFFICIENT	(1/DEG)
CNALPHAQ	AERODYHAMIC NORMAL FORCE COEFFICIENT AT MAX QALPHA	(1/DEG)
DB	DUTPUT TVC DUTY CYCLE STAGE CASE DIAMETER	IN
DELTANKK	MAX THRUST VECTOR DEFLECTION ANGLE	CEG
UELTAPMXK	IMPUT MAX THRUST VECTOR DEFLECTION ANGLE	CEG
DEL TEARDMX	MAX MAGNITUDE PITCH VECTOR DEFLECTION ANGLE	CEG
positn ask	EFFECTIVE DEFEST DISTANCE	IN
FT4 VRK	VORTEX ROLL TORQUE PER POUND OF THOUST FACTOR	[4]
FTA. AK	INPUT VORTEX ROLL TORQUE PER POUND OF THRUST FACTOR	IN
		LB
FY1CK	INPUT AVFRAGE WEBTIME VACUUM THRUST	LBF
K 70 K	AERODYNAMIC ROLL TORQUE MULTIPLIER	
KUSETA MK	NOMINAL INPUT VACUUM THRUST-TIME CURVE INPUT AVERAGE WEBTIME VACUUM THRUST AERODYNAMIC ROLL TORQUE MULTIPLIER FACTOR OF MAX THPUST VECTOR DEFLECTION ANGLE	
KK	STAGE NUMBER	-
אהויא	EFFECTIVE OFFISET DISTANCE MULTIPLIER	
k JCK	OFFSET ROLL TORQUE MULTIPLIER	
XO ALPHA K	FACTOR OF MAX DYNAMIC PRESSURE-ANGLE OF ATTACK PRODUCT	
K Ask .	VORTEX ROLL TORQUE MULTIPLIER	
KallZk	INPUT OFFSET TORQUE MULTIPLIER	
MARK	AFRODYNAMIC ROLL TORQUE	IN-LBF
MIISK	OFFSET RILL TORQUE	IN-L BF
MRTK	SUFF LOW ONE	IN-L3F
NAGA	VOPTEX ROLL TORQUE	IN-L8F
Mo JCK	INPUT DEFSET ROLL TORQUE	IN-LBF
MOUTH	THPUT ROLL TOROUS	IN-LHF
Wensk	INPUT VORTEX ROLL TORQUE	IN-LBF
- P AHYJAO-	DYNAMIC PRESSURF	LR-FT**?
CALPHS 4XK	HAKIMUM DYNAMIC PRESSURE-ANGLE OF ATTACK PRODUCT	LBF-DEG/FT**2
W)	VORTEX ROLL TORQUE MULTIPLIER INPUT OFFSET TORQUE MULTIPLIER AFRODYNAMIC ROLL TORQUE OFFSET ROLL TORQUE COLL TORQUE TOPTEX ROLL TORQUE INPUT OFFSET ROLL TORQUE INPUT ROLL TORQUE INPUT VORTEX ROLL TORQUE INPUT VORTEX ROLL TORQUE OYNAMIC PRESSURE MAXIMUM DYNAMIC PRESSURE—ANGLE OF ATTACK PRODUCT STAGE LIFTOFF WEIGHT	L8

Company and the second of the State of the S

を必らな おきがない はっかっしゃ