

C. Sopsug

Име на задачата	Sopsug
Временско ограничување	5 секунди
Мемориско ограничување	1 гигабајт

Грушхог е недовршена станбена зона во околината на Лунд. Во моментов се гради неопходната инфраструктура, вклучувајќи го и најважниот дел од сè: одржување на отпадот. Како и во многу области во Шведска, ќе се користи *соūсу* (автоматизиран систем за собирање на отпад) за собирање на отпадот. Идејата е да се пренесува отпадот подземно преку цевки со помош на воздушен притисок.

Во Грушхог има N градби, нумерирани од 0 до N-1. Вашата задача е да поврзете некои парови на градби со цевки. Ако изградите цевка од градбата u кон некоја друга градба v, u ќе го испраќа сето нејзино ѓубре кон v (но секако, во спротивна насока нема да може тоа да се случува). Вашата цел е да создадете мрежа од N-1 цевки така што сите отпадоци ќе завршат во една градба. Со други зборови, сакате мрежата да формира кореново дрво, каде што ребрата се насочени кон коренот.

Но, веќе се изградени M цевки помеѓу градбите. Овие $\textit{мораа}\bar{w}$ да се користат во вашата мрежа. Овие цевки се насочени, па може да се користат само во една насока.

Освен тоа, има K парови на градби помеѓу кои е невозможно да се изгради цевка. Овие парови се подредени, па ако е невозможно да се изгради цевка од u кон v, можеби е можно да се изгради од v кон u.

Влез

Првиот ред од влезот содржи три цели броеви: N, M и K.

Секој од следните M редови содржи по два различни цели броеви a_i,b_i , што значи дека веќе постои цевка од a_i кон b_i .

Секој од следните K редови содржи по два различни цели броеви c_i, d_i , што значи дека е невозможно да се изгради цевка од c_i кон d_i .

Сите M+K подредени парови во влезот ќе бидат различни. Да забележиме дека (u,v) и (v,u) се сметаат за различни парови.

Излез

Ако нема решение, испечатете "NO".

Во спротивно, испечатете N-1 редови, во секој по два цели броеви u_i , v_i , што ќе значи дека треба да има цевка насочена од u_i кон v_i . Цевките може да ги испечатите во кој било редослед. Ако има повеќе решенија, можете да испечатите било кое од нив. Запомнете дека сите M веќе постоечки цевки мора да бидат вклучени во вашето решение.

Ограничувања и бодување

- $2 \le N \le 300\,000$.
- 0 < M < 300000.
- $0 \le K \le 300\,000$.
- $0 \leq a_i, b_i \leq N-1$ за $i=0,1,\ldots,M-1.$
- $0 \le c_i, d_i \le N-1$ за $i = 0, 1, \dots, K-1$.

Вашето решение ќе биде тестирано на множество од тест-групи, и секоја од нив ќе носи одреден број на поени. Секоја тест-група содржи множество од тест случаи. За да ги добиете поените за дадена тест-група, потребно е да ги решите сите тест случаи во таа тест-група.

Група	Поени	Ограничувања
1	12	M=0 и $K=1$
2	10	M=0 и $K=2$
3	19	K=0
4	13	$N \leq 100$
5	17	Се гарантира дека има решение во кое 0 е корен
6	11	M = 0
7	18	Без дополнителни ограничувања

Пример

Следните слики ги прикажуваат првата и втората група на тест случаи од примерот. Сините ребра ги означуваат цевките што веќе се изградени, а испрекинатите црвени ребра ги означуваат цевките кои е невозможно да се изградат.

Сликата лево го прикажува првиот пример, со решението од излезот за примерот, каде што цевките се прикажани со црни ребра (заедно со цевката што веќе е изградена од 4 кон 1 со синабоја). Во оваа мрежа, сите отпадоци ќе бидат собрани во градбата 0. Ова не е единственото решение; на пример, цевката од 1 кон 3 може да биде заменета со цевка од 0 кон 1 и тоа исто така ќе биде валидно решение.

За вториот пример од влез, на сликата десно можеме да видиме дека е невозможно да се изгради решение заради циклусот (2,3,4).

Влез	Излез
5 1 8 4 1 3 1 3 4 3 2 0 2 0 4 2 4 1 0 2 0	4 1 3 0 1 3 2 3
5 4 0 1 0 2 3 3 4 4 2	NO
3 0 1 0 1	1 0 2 0
4 0 2 0 1 1 0	2 0 3 0 1 3