NOTAS DE AULAS – PROF. FABIO DIAS (UFC QUIXADÁ)

Raízes de Equações

Nosso objetivo é apresentar dois métodos numéricos para resolver equação do tipo f(x) = 0. Resolver essas equações significar encontrar números β 's, denominados de raízes, tais que $f(\beta) = 0$. Equações até do quarto grau, existe forma analítica direta para encontrara as raízes. A partir daí não. Além das equações não lineares.

Interpretação geográfica das raízes. As raízes ocorrem quando a função intercepta o eixo x e esses valores de x são chamados de raízes.

Os métodos que veremos parte de uma aproximação inicial e refinar essa aproximação. Isso é feito utilizando duas fases: fase de isolamento e fase de refinamento.

Fase de Isolamento

Nesta fase o objetivo é o de determinar um intervalo [a, b], o menor possível, que contenha uma única raiz.

Teorema de Cauchy-Bolzano: Seja f uma função contínua em um intervalo [a, b]. Se f(a) * f(b) < 0 então existe pelo menos um ponto $\beta \in [a, b] : f(\beta) = 0$.

Observem na figura abaixo as duas situações:

Mas precisamos garantir que no intervalor [a,b] tenha apenas uma raiz. Isso é feito usando o resultado abaixo.

Resultado 2: Se f' preservar o sinal em [a, b] e o Teorema de Cauchy-Bolzano for verificado neste intervalo então a raiz β é única.

Encontrando o intervalor [a,b]

Vamos gerar uma tabela com vários pontos (x, f(x)) da equação. O importante nessa tabela será o sinal de f(x) e não necessariamente o valor.

Exemplos:

a)
$$f(x) = 2x - \cos x = 0$$
.

x_i	$f(x_i)$
:	:
-2	-3.58
-1	-2.54
0	-1
1	1.46
2	4.42
:	:

Como $f(0) * f(1) < 0 \rightarrow \beta \in [0, 1]$. Sendo $f'(x) = 2 + \text{sen } x > 0 \ \forall x \rightarrow \beta \text{ \'e unica.}$

b)
$$f(x) = x^{1/2} - 5e^{-x}$$

- / / /				
Х	0	1	2	3
f(x)	-5	-0,83	0,73	1,48

 $f'(x) = (\frac{1}{2}) x^{-1/2} + 5e^{-x} > 0$, $\forall x > 0$. Logo f(x) admite uma única raiz no intervalo [1, 2].

c)
$$f(x) = x^3 - 9x + 3$$
. $f'(x) = 3x^2 - 9$

x	- ∞	-100	-10	-5	-3	-1	0	1	2	3	4	5
f(x)	-	_	_	_	+	+	+	_	_	+	+	+

Fase de Refinamento

Antes de apresentarmos os métodos propriamente dito, precisamos definir os critérios de paradas. Lembrem-se, os métodos que veremos são iterativos e a cada iteração encontra uma aproximação de raiz. Pode ocorrer do método precisar de muitas iterações para encontrar uma raiz de fato, e em muitas situações práticas, uma boa aproximação é suficiente.

Critérios de Parada

Dizemos que x_k é uma "boa" aproximação para uma raiz β de uma equação f(x) = 0 se os critérios abaixo forem satisfeitos:

- a) $|f(x_k)| < \epsilon$;
- b) $|x_k \beta| < \epsilon$;
- c) A quantidade máxima de iterações. (Critério adicional não relacionado a qualidade da aproximação)

Onde ϵ é a precisão (tolerância) admitida.

O critério (a) verifica o quão próximo de zero está o valor da função para a aproximação. Já o (b) o quão próximo do valor da raiz β está x_k . O (c) é necessário pois dependendo do método e da função, a convergência pode demorar.

ATENÇÃO: Os dois critérios não são equivalentes. Vejamos onde cada um pode falha.

Desta forma, devemos impor os dois critérios, adicionado a quantidade máxima de iterações.

Como avaliar o critério de parada (b) se não se conhece β?

Assim, sendo $b - a < \epsilon \rightarrow \forall x_k \in [a, b]$ tem-se $|x_k - \beta| < b - a < \epsilon$. Logo, $|x_k - \beta| < \epsilon$ e qualquer $x_k \in [a, b]$ é uma boa aproximação para a raiz β .

Método da Bisseção

A ideia do Método da Bisseção é reduzir o intervalo [a, b] que contém a raiz β dividindo-o ao meio a cada iteração.

Exemplo: Determinar com precisão $\epsilon < 0.01$ e com um máximo de 10 iterações, a raiz da equação $f(x) = 2x - \cos x = 0$.

Isolamento da raiz: Já foi visto que $\beta \in [0, 1]$.

k	a	b	x_k	$f(x_k)$	b-a	Conclusão
0	0	1	0.500	0.122	1	$\xi \in [0.000, 0.500]$
1	0	0.500	0.250	-0.469	0.500	$\xi \in [0.250, 0.500]$
2	0.250	0.500	0.375	-0.181	0.250	$\xi \in [0.375, 0.500]$
3	0.375	0.500	0.438	-0.031	0.125	$\xi \in [0.438, 0.500]$
4	0.438	0.500	0.469	0.045	0.063	$\xi \in [0.438, 0.469]$
5	0.438	0.469	0.453	0.007	0.031	$\xi \in [0.438, 0.453]$
6	0.438	0.453	0.445	-0.012	0.016	$\xi \in [0.445, 0.453]$
7	0.445	0.453	0.449	-0.002	0.008	Pare! pois $b-a<\varepsilon$ e $ f(x_k) <\varepsilon$

Temos que $b-a=0.453-0.445=0.008 < \epsilon=0.01$ e $|f(x_7)|=0.008 < \epsilon=0.01$. Desta forma, $x_7=0.449$ é uma aproximação para a raiz com precisão $\epsilon=0.01$.

Pós e Contras: Para sua convergência, não é levado em consideração o comportamento do gráfico de f no intervalo [a, b]. Convergência lenta, no pior caso quando a raiz está próxima de um dos extremos.

O método da bisseção é mais usado para reduzir o intervalo antes de usar outro método de convergência mais rápida.

Estimativa do número de iterações

$$\begin{array}{c} b_0-a_0=b-a\\ b_1-a_1=(b_0-a_0)/2=(b-a)/2\\ b_2-a_2=(b_1-a_1)/2=(b_0-a_0)/4=(b-a)/2^2\\ \vdots\\ b_k-a_k=(b-a)/2^k\\ \text{Impondo }b_k-a_k<\varepsilon, \text{ vem:}\\ \frac{b-a}{2^k}<\varepsilon\Longrightarrow\frac{b-a}{\varepsilon}<2^k\Longrightarrow2^k>\frac{b-a}{\varepsilon}\Longrightarrow \ln 2^k>\ln\frac{b-a}{\varepsilon}\Longrightarrow k\ln 2^k\\ \end{array}$$

Método da Falsa Posição

A ideia deste método é a de tomar como aproximação x para a raiz β no intervalo [a, b] a média ponderada entre os extremos a e b com pesos |f(a)| e |f(b)|, respectivamente. Isto é:

$$x = \frac{a \times |f(b)| + b \times |f(a)|}{|f(b)| + |f(a)|}$$

Desta forma, x estará mais próximo do extremo cuja imagem for menor.

Como f(a) e f(b) têm valores de sinais contrários, então temos dois casos a considerar:

(i)
$$f(a) < 0$$
 e $f(b) > 0$
Neste caso, $|f(a)| = -f(a)$ e $|f(b)| = f(b)$. Logo:
$$x = \frac{a \times |f(b)| + b \times |f(a)|}{|f(b)| + |f(a)|} = \frac{a \times f(b) - b \times f(a)}{f(b) - f(a)}$$

(ii)
$$f(a) > 0$$
 e $f(b) < 0$
Neste caso, $|f(a)| = f(a)$ e $|f(b)| = -f(b)$. Logo:

$$x = \frac{a \times |f(b)| + b \times |f(a)|}{|f(b)| + |f(a)|} = \frac{-a \times f(b) + b \times f(a)}{-f(b) + f(a)} = \frac{a \times f(b) - b \times f(a)}{f(b) - f(a)}$$

Observamos que em ambos os casos temos:

$$x = \frac{a \times f(b) - b \times f(a)}{f(b) - f(a)}$$

Neste método, as aproximações são geradas conforme a expressão acima garantindo-se, a cada iteração, que elas estejam no intervalo [a, b] cujos extremos tenham valores de sinais contrários.

Esse método procurar gerar uma aproximação para a raiz cuja imagem seja a menor possível, isto é, uma aproximação tal que $|f(x_k)| < \epsilon$, sem se preocupar com a diminuição da amplitude (b - a).

Exemplo: Determinar com precisão $\epsilon < 0.01$ e com um máximo de 10 iterações, a raiz da equação $f(x) = 2x - \cos x = 0$ no intervalo [0, 1].

k	\boldsymbol{a}	b	x_k	$f(x_k)$	$ x_k - x_{k-1} $	Conclusão
0	0	1	0.407	-0.105	-	$\xi \in [0.407, 1.000]$
1	0.407	1.000	0.447	-0.009		$\xi \in [0.447, 1.000]$
2	0.447	1.000	0.450	-0.001	0.003	Pare! pois $ f(x_2) < 0.01 \text{ e } x_2 - x_1 < \varepsilon$

Logo, $x_2=0.450$ é uma aproximação para a raiz ξ da equação $f(x)=2x-\cos x=0$ com uma precisão $\varepsilon<0.01.$

$$f(x) = x^3 - 9x + 3$$
 $I = [0, 1]$ $\varepsilon_1 = \varepsilon_2 = 5 \times 10^{-4}$

Aplicando o método da posição falsa, temos:

Iteração	x	f(x)	b - a
1	.375	322265625	1
2	.338624339	-8.79019964 × 10 ⁻³	.375
3	.337635046	-2.25883909 × 10 ⁻⁴	.338624339

E portanto $\bar{x} = 0.337635046$ e $f(\bar{x}) = -2.25 \times 10^{-4}$.

Pós e Contras: Para sua convergência, não é levado em consideração o comportamento do gráfico de f no intervalo [a, b]. Entretanto, quando a convergência para a raiz só se faz a partir de um extremo do intervalo [a; b] e a imagem desse ponto fixo tem um valor muito elevado, a convergência é lenta.

Referencias:

- 1. BARROSO, Leônidas Conceição et al. Cálculo numérico: (com aplicações). 2. ed. São Paulo, SP: Harbra, c1987. 367 p. ISBN 8529400895.
- RUGGIERO, Márcia A. Gomes; LOPES, Vera Lucia da Rocha. Cálculo Numérico: aspectos teóricos e computacionais. 2. ed. São Paulo: Makron Books, 1996.