1.2, Finding Limits Graphically and Numerically

It is estimated that t years from now, the population of a certain community will be

$$P(t) = \frac{11t+12}{2t+3}$$
 thousand people.

a. What is the current population of the community?

b. What will the population be in 6 years?

c. When will there be 6000 people in the community, explain your answer.

Informal Definition of a Limit

If f(x) becomes arbitrarily close to a single number, L as x approaches c from either side, then the limit of f(x) as x approaches c is L.

Exploration (pg. 65)

х	1.75	1.9	1.99	1.999	2	2.001	2.01	2.1	2.25
f(x)	175	.9	- 99	.999		1.00/	1:01	1, 1	1.25

$$\lim_{X \to 2} \frac{X^2 - 3x + 2}{X - 2} = 1$$

Examples: Finding Limits from Tables and Graphs

$$\lim_{x \to 0} \frac{x}{\sqrt{x+9} - 3} = \emptyset$$

x	- /	!	01	-, 001	0	,001	.01	,	
f(x)									

$$\lim_{x \to 5} f(x) \text{ if } f(x) = \begin{cases} 1 & x \neq 5 \\ -2 & x = 5 \end{cases}$$

x	hof.	4.9	4,99	4.999	5	5.001	501	51	Last
f(x)	1	1	Green Park	1	- 2-	1	/	/	1

Common Behaviors for a Nonexistent Limit

- 1. f(x) approaches different values from the left and right.
- 2. f(x) increases or decreases without bound.
- 3. fa) oscillates.

Examples: Nonexistent Limits

$$\lim_{x\to 0} \frac{x}{|x|} = DNE$$
 Limit from the limit from the right.

х	***************************************	7.01	001	0001	0	,000/	1001	.01	. /
f(x)		[(r 1				And the state of t	economic.

$$\lim_{x\to 0}\frac{1}{x^4} = 0$$

Unbounded behavior

x	allow ,	01	001	0001	0	.0001	.001	101	
f(x)	10,000 .	1 × 100	1 ×1012	. /x/014		12 1014.	/ x /0/2	1 8/08	10,000

$$\lim_{x\to 0}\cos\frac{1}{x^2} = ONE \qquad Oscillating$$

					,				
x		-,01	- 1001	0001	70	,0001	1001	.01	<i>s</i> 1
f(x)	,86232	-,9522	,93675	- , sla34		-,3634	. 21625	901	. 26232

$arepsilon - \delta$ Definition of a Limit

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement:

Means that for each $\varepsilon < 0$ there exists a $\delta > 0$ such that if

Then

Examples: Using the $\varepsilon-\delta$ Definition

Given $\lim_{x\to 1} (5-4x) = 1$ find δ such that |5-4x-1| < 0.01 whenever $0<|x-1|<\delta$

Use the $\varepsilon - \delta$ definition of a limit to prove that $\lim_{x \to -2} (2x + 7) = 3$

$$|6x+7)-3|< E$$
 $|ax+4|< E$
 $|a(x+4)|< E$
 $|a(x+4)|< E$
 $|x-(-2)|< E$
 $|x-(-2)|< E$