Fondements de l'apprentissage machine

Automne 2014

Roland Memisevic

Leçon 5

Roland Memisevic Fondements de l'apprentissage machine

Sur-apprentissage et réglage de la capacité

Plan

- ▶ Sur-apprentissage et moyens pour le prévenir
- ► Raisonnement bayésien
- Distributions a priori conjuguées
- ► Évidence et sélection du modèle

Roland Memisevic Fondements de l'apprentissage machine

Aspects du sur-apprentissage

- ► Biais/variance
- ► Taille de l'espace des hypothèses
- Dimension VC
- Malédiction de la dimensionalité

Prévenir le sur-apprentissage

- 1. weight decay (terme de pénalité)
- 2. Arrêt prématuré (early stopping)
- 3. Ajouter des pseudo-comptes (lors de l'estimation d'une distribution discrète)
- 4. Choisir une classe de modèles restrictifs
- ► Ceux-ci sont également appelés "lissage" ou "régularisation"
- Les paramètres qui contrôlent la complexité du modèle (par exemple le nombre de pseudo-comptes ou le multiplieur λ pour weight decay) sont appelés hyper-paramètres.

Roland Memisevic

Fondements de l'apprentissage machine

Biais inductif

- ▶ Des connaissances sur la tâche à accomplir peuvent également être utilisées pour la régularisation.
- ► Ces connaissances peuvent prendre différentes formes. Par exemple, nous pouvons savoir que
 - ▶ les dépendances entre les entrées et les sorties sont linéaires ; quadratiques ; sinusoïdales, etc.
 - les classes sont séparées par de grandes marges
 - ▶ les données sont structurées comme une séquence; un arbre; une grille, etc.
- ► Il n'y a pas d'apprentissage sans faire des suppositions ("no free lunch").

Réglage des hyper-paramètres

- Il existe différentes approches analytiques pour choisir de bonnes valeurs pour les hyper-paramètres : BIC, AIC, MDL. dimension VC.
- L'approche la plus commune et pratiquement éprouvée est de mettre de côté des données de validation pour évaluer les choix des valeurs des hyper-paramètres après l'apprentissage.
- ▶ Une variante plus commune, qui nous permet d'utiliser toutes les données d'entraı̂nement, est la K-validation croisée : Partitionner les données d'entraı̂nement en K groupes. Utilisez K-1 groupes pour l'entraı̂nement et l'autre pour la validation à chaque fois.

Roland Memisevic

Fondements de l'apprentissage machin

Modélisation bayésienne

- La modélisation bayésienne est une façon d'apprendre différente de toutes les méthodes dont nous avons discutées jusqu'ici.
- ► Elle *n'est pas* basée sur l'optimisation d'une fonction de perte.
- ► Elle est basée sur l'inférence probabiliste, traitant les données et les paramètres comme des variables aléatoires.
- ▶ Dans le cadre de la modélisation bayésienne, l'obligation de faire des suppositions pour être en mesure d'apprendre se reflète dans l'exigence de définir une distribution *a priori* sur les paramètres.

Modélisation bayésienne

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) d\boldsymbol{\theta}}$$

- Pour obtenir la distribution a posteriori sur les paramètres θ , il faut multiplier la vraisemblance, $p(D|\theta)$, avec la distribution a priori, $p(\theta)$, et normaliser.
- ► (Cela nécessite d'interpréter une probabilité comme quelque chose d'autre qu'une fréquence relative, ce qui a causé de nombreux débats philosophiques, les bayésiens acceptant cela, au contraire des fréquentistes.)

Roland Memisevi

Fondements de l'apprentissage machine

Distribution prédictive

- Pour appliquer le modèle à des données de test (dans un problème supervisé), il faut utiliser les règles de probabilité pour calculer la probabilité sur des sorties sachant l'entrée et les données d'entraı̂nement $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{t}_1), \dots, (\mathbf{x}_N, \mathbf{t}_N)\}$
- ► La distribution prédictive s'avère être une moyenne de modèles pondérés par leur postérieur :

$$p(\mathbf{t}|\mathcal{D}, \mathbf{x}) = \int p(\mathbf{t}|\boldsymbol{\theta}, \mathbf{x}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

Modélisation bayésienne

- ▶ Il faut fournir une distribution a priori qui reflète la croyance du modélisateur avant d'avoir vu les données.
- ► Au lieu d'une seule «bonne» réponse, la modélisation bayésienne donne une distribution a posteriori, ce qui reflète la croyance du modélisateur après avoir vu les données.
- ▶ Dans un contexte où nous obtenons des données de façon séquentielle, nous pouvons traiter $p(\theta|\mathcal{D})$ comme distribution a priori et la mettre à jour lorsque plus de données arrivent.
- ▶ Dans ce cas, on écrit parfois $p(\theta|\mathcal{D})$ à la fois pour la distribution a posteriori et la distribution a priori, où \mathcal{D} est un ensemble vide pour cette dernière.

Roland Memisevi

Fondements de l'apprentissage machin

Distribution prédictive

- ► Cela donne souvent des prédictions plus précises que celles d'un modèle dont les paramètres ont été estimés par une estimation ponctuelle.
- ► La philosophie de la modélisation bayésienne peut être résumée comme ceci : "Mettez tout ce que vous savez sur la table, puis utilisez les règles de probabilité pour répondre à n'importe quelle question".
- ► En d'autres termes, nous spécifions une distribution jointe sur toutes les quantités d'intérêt. Le reste est inférence probabiliste.
- ▶ Le désavantage : la modélisation bayésienne est généralement exigeante, à la fois mathématiquement et en ce qui concerne les calculs. De plus, elle nécessite souvent une inférence approximative ou des méthodes d'échantillonnage.

Distributions conjuguées

Les dérivations peuvent se simplifier si le produit :

$$p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

a la même forme que les composants $P(\mathcal{D}|\boldsymbol{\theta})$ et $p(\boldsymbol{\theta})$

- Une distribution a priori qui satisfait cette propriété, pour une fonction de vraisemblance donnée, est appelée distribution a priori conjuguée.
- ▶ Des exemples de distributions conjuguées comprennent :
 - ► la distribution bêta (conjuguée à la distribution Bernoulli),
 - ► la distribution Dirichlet (pour la distribution multinomiale),
 - ▶ la distribution Wishart (pour la variance de la gaussienne).

Roland Memisevi

Fondements de l'apprentissage machine

Bernoulli et distribution bêta

La distribution conjuguée de la Bernoulli est

La Distribution Bêta

$$Beta(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

La moyenne et la variance sont

$$\mathbb{E}[\mu] = \frac{a}{a+b}, \quad \text{var}[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$

où a and b sont des paramètres de valeur réelle positive, et $\Gamma(\cdot)$ est la fonction Gamma : $\Gamma(a)=\int_0^\infty u^{a-1}e^{-u}\mathrm{d}u$

► Preuve :

$$p(\mu|\mathcal{D}, a, b) \propto \mu^{m+a-1} (1-\mu)^{l+b-1}$$

Bernoulli et distribution bêta

▶ Rappelons que la **distribution Bernoulli** peut être écrite

$$p(x|\mu) = \mu^x (1-\mu)^{1-x}$$

où x est 0 ou 1.

La vraisemblance de l'ensemble \mathcal{D} , composé de m entrées 1's et l=N-m entrées 0, est

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n} = \mu^{\sum_n x_n} (1-\mu)^{\sum_n (1-x_n)} = \mu^m (1-\mu)^l$$

• (Notez que si μ est une variable aléatoire, nous écrivons maintenant $p(x|\mu)$ au lieu de $p(x;\mu)$)

Roland Memisevic

Fondements de l'apprentissage machin

Distribution prédictive et pseudo-comptes

▶ $p(\mu|\mathcal{D}, a, b)$ est elle-même une distribution bêta, la constante de normalisation nous étant donnée par :

$$\frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)}$$

► La distribution prédictive est

$$p(x = 1|\mathcal{D}) = \int_0^1 p(x = 1|\mu)p(\mu|\mathcal{D}) d\mu = \int \mu p(\mu|\mathcal{D}) d\mu$$

(donc elle est l'espérance de la distribution a posteriori)

Distribution prédictive et pseudo-comptes

ightharpoonup L'entraı̂nement par un ensemble de $m\ 1$ et de $l\ 0$ nous donne :

$$p(x=1|\mathcal{D}) = \frac{m+a}{m+a+l+b}$$

▶ Cela signifie qu'utiliser la distribution a priori $\text{Beta}(\mu|a,b)$ conduit à l'ajout de **pseudo-comptes** a et b à l'estimation du maximum de vraisemblance, qui est

$$\mu = \frac{m}{m+l}$$

Roland Memisevi

Fondements de l'apprentissage machine

Distribution a posteriori \propto vraisemblance \times distribution a priori

- Notez que la distribution a priori et la vraisemblance prennent la même forme fonctionnelle (comme fonction de μ)
- ▶ Dans cet exemple, la distribution a priori est Beta(2,2), avec m=N=1, l=N-m=0, donc la distribution a posteriori est Beta(3,2)

Exemples de distributions bêta

Roland Memisevi

Fondements de l'apprentissage machin

Distributions multinoulli et Dirichlet

▶ Rappelons que la **distribution discrète** peut être écrite

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

où x est en codage orthogonal.

- ► (Ceci est bien entendu une généralisation de la distribution Bernoulli)
- ► La vraisemblance des données \mathcal{D} , representées par la matrice \mathbf{X} , est

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{\sum_n x_{nk}} =: \prod_{k=1}^{K} \mu_k^{m_k}$$

Distributions multinoulli et Dirichlet

La distribution conjuguée de la distribution multinoulli est

La Distribution Dirichlet

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}, \ \alpha_0 = \sum_k \alpha_k$$

La moyenne et la variance sont

$$\mathbb{E}[\mu_k] = \frac{\alpha_k}{\alpha_0}, \quad \text{var}[\mu_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$$

où les α_k sont des paramètres de valeur réelle positive.

► Preuve :

$$p(\boldsymbol{\mu}|\mathcal{D}, \boldsymbol{\alpha}) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k + m_k - 1}$$

Roland Memisevic

Fondements de l'apprentissage machin

Des exemples de la distribution Dirichlet

- ▶ Distributions Dirichlet avec tous les $\alpha_1 = \ldots = \alpha_K = \{0.1(\text{gauche}), 1(\text{milleu}), 10(\text{droite})\}$
- La distribution Dirichlet est confinée au simplexe.

Distribution multinoulli et Dirichlet

▶ Comme $p(\mu|\mathcal{D}, \alpha)$ est elle-même une distribution Dirichlet, la constante de normalisation nous est donnée par :

$$\frac{\Gamma(\alpha_0 + N)}{\Gamma(\alpha_1 + m_1), \dots, \Gamma(\alpha_K + m_K)}$$

Le moyenne de la distribution a posteriori (ainsi que les paramètres de la distribution prédictive) sont également donnés par des **pseudo-comptes** ajoutés à l'estimation du maximum de vraisemblance :

$$\mathbb{E}[\mu_k] = \frac{m_k + \alpha_k}{\alpha_0}$$

Roland Memisevi

Fondements de l'apprentissage machine

Distributions conjuguées pour la gaussienne 1-D

- La distribution conjuguée pour la moyenne μ d'une distribution gaussienne 1-D dont la *variance est constante* est la gaussienne $p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$ avec des paramètres μ_0, σ_0^2
- ▶ Pour la distribution postérieure, la moyenne est $\frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \frac{\sum_n x_n}{N} \text{ et la précision (inverse de la variance) est } \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$
- ► La distribution conjuguée pour la précision λ d'une gaussienne 1-D dont la *moyenne est constante* est la distribution Gamma :

$$Gam(\lambda|a,b) = \frac{1}{\Gamma(a)}b^a\lambda^{a-1}\exp(-b\lambda)$$

La distribution conjuguée pour la moyenne et la précision d'une gaussienne 1-D est le produit $p(\mu, \lambda) = \mathcal{N}(\mu|\mu_0, (\beta\lambda)^-1) \mathrm{Gam}(\lambda|a, b)$

Distributions conjuguées pour la gaussienne multivariée

- La distribution conjuguée pour la moyenne μ d'une distribution gaussienne multivariée dont la matrice de covariance est constante est une gaussienne multivariée $p(\mu)$
- La distribution conjuguée pour la matrice de précision Λ (inverse de la matrice de covariance) d'une gaussienne multivariée dont la moyenne est constante est la distribution Wishart.
- ► La distribution conjuguée pour la moyenne et la matrice de précision d'une gaussienne multivariée est le produit d'une gaussienne avec une distribution Wishart.

Roland Memisev

Fondements de l'apprentissage machin

Régression linéaire bayésienne

▶ Un choix commode est

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

pour un certain paramètre de précision α .

La distribution postérieure pour des données $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$, representées par les matrices \mathbf{X} , \mathbf{t} , est

$$p(\mathbf{w}|\mathcal{D}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

οù

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{X}^{\mathrm{T}} \mathbf{t}$$

et

$$\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{X}^{\mathrm{T}} \mathbf{X}$$

Régression linéaire bayésienne

La régression linéaire peut être définie par la gaussienne conditionnelle

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|\mathbf{w}^{\mathrm{T}}\mathbf{x}, \beta^{-1})$$

Cela est une fonction exponentielle d'une fonction quadratique de w.

► Pour cette raison, la distribution conjuguée est également une gaussienne

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$$

▶ Pour le voir, complétez le carré dans l'exponentielle, ou utilisez les identités gaussiennes (par exemple, Bishop page 93).

Roland Memisevi

Fondements de l'apprentissage machir

Distribution prédictive

La distribution prédictive est

$$p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \alpha, \beta) d\mathbf{w}$$

► Ceci peut être simplifié à

$$p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}}\mathbf{x}, \sigma_N^2(\mathbf{x}))$$

οù

$$\sigma_N^2(\mathbf{x}) = rac{1}{eta} + \mathbf{x}^{\mathrm{T}} \mathbf{S}_N \mathbf{x}$$

- La variance dépend de x.
- ► La moyenne a la même forme que pour le modèle ridge regression.

Distribution prédictive : exemple

Roland Memisevic

Fondements de l'apprentissage machin

Estimation MAP et régularisation

- ► Le maximum de la distribution a posteriori s'appelle estimation maximum a-posteriori (MAP).
- ▶ Pour n'importe quel modèle de régression avec une distribution a priori gaussienne de moyenne zéro et dont la matrice de covariance est diagonale, l'estimation MAP est identique à la solution de ridge regression :

$$\log p(\mathbf{w}|\mathcal{D}) = \operatorname{const} + \log p(\mathcal{D}|\mathbf{w}) + \log p(\mathbf{w})$$
$$= \operatorname{const} - \frac{\beta}{2} \sum_{n=1}^{N} (t_n - f(\mathbf{x}_n; \mathbf{w}))^2 - \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Régression bayésienne 1-D : exemple revisité

Roland Memisevic

Fondements de l'apprentissage machin

Évidence et sélection de modèle

► La constante de normalisation

$$p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{w})p(\mathbf{w}) d\mathbf{w}$$

est également connue comme évidence.

- ► En marginalisant sur les paramètres, elle représente la probabilité de l'ensemble de données étant donné le type de modèle.
- ► Son application principale est la sélection de modèle :

Évidence et sélection de modèle

- L'évidence nous permet de choisir un modèle parmi un ensemble $\mathcal{M}_1, \dots, \mathcal{M}_L$ de modèles (par exemple, régression polynomiale d'ordres différents).
- Nous définissons une distribution a priori $p(\mathcal{M}_i)$ sur les classes and calculons les distributions a posteriori

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{D}|\mathcal{M}_i)p(\mathcal{M}_i)$$

où $p(\mathcal{D}|\mathcal{M}_i)$ est l'évidence pour le type du modèle \mathcal{M}_i . Alternativement, nous pouvons faire des prédictions en utilisant les règles de probabilité et en marginalisant sur les modèles.

Pour des gaussiennes et la régression linéaire, on peut calculer $p(\mathcal{D})$ en forme fermée (Bishop, page 169).

Roland Memisevi

Fondements de l'apprentissage machine

Évidence : intuition

- ▶ Des modèles simples attribuent beaucoup de masse de probabilité à un petit nombre d'ensembles de données.
- Des modèles complexes diffusent leur masse de probabilité sur de nombreux ensembles de données.

Régression polynomiale revisitée

L'exemple de la régression polynomiale de la leçon 2 :

La log-évidence pour différents ordres, ${\cal M}$:

Roland Memisevic

Fondements de l'apprentissage machin

Modèles non-linéaires

- L'inférence bayésienne est possible dans une forme fermée pour certains modèles simples seulement.
- ► Pour des modèles plus compliqués, il faut utiliser l'inférence approximative et l'échantillonnage.
- Quelques exemples dans le livre Bishop :
- Régression logistique (approximation Laplace), page 217
- ► Régression logistique (inférence variationnelle), page 498
- ► Réseaux de neurones (approximation Laplace), page 277
- ► Mélange de gaussiennes (inférence variationnelle), page 474

Un modèle de mélange bayésien peut déduire le nombre de grappes à partir des données

▶ Itération indiquée en haut à gauche.

Roland Memisevic

ondements de l'apprentissage machir

