## **REMARKS**

Claims 1-20 are pending. Claims 2, 3, 6-16 and 18 have been allowed, and claims 1, 4, 5, 17, 19 and 20 have been rejected. Reconsideration of the application in view of the amendments and remarks contained herein is respectfully requested.

It is stated in the office action that claims 1, 4, 5, 17, 19 and 20 have been rejected under 35 U.S.C. § 102(b) as being anticipated by Cross, and specific reference is made to Example 17 thereof. The Applicants assume that the Examiner meant to write "Renfroe" (EP 080154) rather than "Cross", since: 1) Applicants believe that there is no Cross reference in the list of references cited, 2) Renfroe is the reference enclosed with the office action and listed on the enclosed Notice of References Cited, and 3) Example 17 in Renfroe appears to be the one to which the Examiner has referred. If the Applicants are mistaken, clarification is respectfully requested. Applicants traverse this rejection for the following reasons.

In the claims as amended herein, R<sub>3</sub> cannot be pyridyl, whereas Renfroe requires a pyridyl substituent at that position of the indole. The cited art does not teach or suggest the claimed invention. For these reasons, Applicants respectfully request withdrawal of this rejection.

Applicants respectfully request the allowance of all of claims 1-20, and prompt advancement of the case to issue. No fee is believed to be due herewith, but should a fee be due it should be charged to Deposit Acct. No. 01-1425.

oseph M. Mazzarese

Reg. No. 32,803

Wyeth
Patent Law Department
Five Giralda Farms
Madison, NJ 07940-0874
Tel. No. (973) 683-2150

## **Version With Markings To Show Changes Made**

1 (Thrice Amended). A compound of the formulae:

$$R_1$$
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_1$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 

wherein:

 $R_1$  and  $R_{1'}$  are independently selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, -S-C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -HN(C<sub>1</sub>-C<sub>6</sub>), -N(C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub>, or -OH;

or a moiety of the formulae:

$$R_7$$
 $R_6$ 
 $R_7$ 
 $R_7$ 
 $R_7$ 
 $R_7$ 
 $R_7$ 
 $R_6$ 
 $R_7$ 
 $R_7$ 

 $R_6$  is selected from H,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, -C(O)CH<sub>3</sub>, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub>, or -OH;

 $R_7$  is selected from -(CH<sub>2</sub>)<sub>n</sub>-COOH, -(CH<sub>2</sub>)<sub>n</sub>-N-(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -(CH<sub>2</sub>)<sub>n</sub>-NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -N-(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>,

pyridinyl, thienyl, furyl, pyrrolyl, quinolyl,  $(CH_2)_n$ phenyl, phenyl, -O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, - $(CH_2)_n$ -phenyl-O-phenyl, - $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl- $(CH_2)_n$ -phenyl)2, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, -NH2, -NO2, -CF3,CO2H, or -OH;

 $R_2$  is selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>6</sub> alkyl, -N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -N-SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, or -SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl;

 $R_3$  is selected from H, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, -C<sub>1</sub>-C<sub>6</sub> alkyl, -C<sub>3</sub>-C<sub>10</sub> cycloalkyl, -CHO, halogen, (CH<sub>2</sub>)<sub>n</sub>C(O)NH<sub>2</sub> or a moiety of the formula – L<sup>1</sup>-M<sup>1</sup>:

L<sup>1</sup> indicates a linking or bridging group of the formulae -(CH<sub>2</sub>)<sub>n</sub>-, -S-, -O-,

-C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>n</sub>-, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>n</sub>-, C(O)C(O)X, -(CH<sub>2</sub>)<sub>n</sub>-N-(CH<sub>2</sub>)<sub>n</sub>-;

M¹ is selected from the group consisting of:

- a) H,  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $C_3$ - $C_{10}$  cycloalkyl, phenyl, and benzyl, the cycloalkyl, phenyl and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, - $NO_2$ , - $NH_2$ , -CN, and - $CF_3$ , with the proviso that  $M^1$  cannot be H when  $L^1$  is -O-;
- b) [a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>;
- c)] a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH; and

[d)]c) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH;

 $R_4$  is selected from the group of  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $-(CH_2)_n$ - $C_3$ - $C_6$  cycloalkyl,  $-(CH_2)_n$ - $C_3$ - $C_5$  cycloalkyl,  $-(CH_2)_n$ - $C_3$ - $C_5$  cycloalkyl, or the groups of:

a)  $-(CH_2)_n$ -phenyl-O-phenyl,  $-(CH_2)_n$ -phenyl- $-(CH_2)_n$ -phenyl,  $-(CH_2)_n$ -phenyl- $-(CH_2)_n$ -pheny

$$(CH_2)_n$$
,  $(CH_2)_n$ ,  $(CH_$ 

wherein n is independently selected in each appearance as an integer from 0 to 3, Y is  $C_3$ - $C_5$  cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -  $CF_3$ , -OH, - $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, - $NH_2$ , - $NO_2$  or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O; or

b) a moiety of the formulae  $-(CH_2)_n$ -A,  $-(CH_2)_n$ -S-A, or  $-(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

D is H, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, or -CF<sub>3</sub>;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen,  $-CF_3$ , -OH,  $-C_1-C_6$  alkyl,  $C_1-C_6$  alkoxy, or  $-NO_2$ ; or

## c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen,  $-CF_3$ , -OH,  $-C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $-NH_2$ , or  $-NO_2$ ; or

d) a moiety of the formula -L<sup>2</sup>-M<sup>2</sup>, wherein:

L<sup>2</sup> indicates a linking or bridging group of the formulae -(CH<sub>2</sub>)<sub>n</sub>-, -S-, -O-,

 $-SO_2$ -, -C(O)-,  $-(CH_2)_n$ -C(O)-,  $-(CH_2)_n$ -C(O)- $(CH_2)_n$ -,  $-(CH_2)_n$ -O- $(CH_2)_n$ -, or  $-(CH_2)_n$ -S- $(CH_2)_n$ -, - $(CH_2)_n$ -, or  $-(CH_2)_n$ -S- $(CH_2)_n$ -, or  $-(CH_2)_n$ -, or  $-(CH_2)_n$ -S- $-(CH_2)_n$ -, or  $-(CH_2)_n$ -S- $-(CH_2)_n$ -, or  $-(CH_2)_n$ -S- $-(CH_2)_n$ 

 $M^2$  is selected from the group of  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $C_3$ - $C_{10}$  cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, -

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH; or
- iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl,  $C_1$ - $C_{10}$  alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH;

n is an integer from 0 to 3;

R₅ is a moiety selected from the formulae –L³-M³

wherein L³ is a bridging or linking moiety selected from a chemical bond,  $-(CH_2)_n$ -, -S-, -O-,  $-SO_2$ -, -C(O)-,  $-(CH_2)_n$ --C(O)-,  $-(CH_2)_n$ --C(O)-( $-(CH_2)_n$ -,  $-(CH_2)_n$ -, or  $-(CH_2)_n$ -CH=CH- $-(CH_2)_n$ -O-;

M<sup>3</sup> is

where X = O, N

 $NO_2$ ,  $-NH_2$ , -CN, or  $-CF_3$ ; or

and n is an integer from 0 to 3;

 $R_9 \text{ is selected from H, halogen, -CF}_3, -OH, -COOH, -(CH}_2)_n\text{-COOH,} \\ -(CH}_2)_n\text{-C(O)-COOH, -C}_1\text{-C}_6 \text{ alkyl, -O-C}_1\text{-C}_6 \text{ alkyl, -NH(C}_1\text{-C}_6 \text{ alkyl), or -N(C}_1\text{-C}_6 \text{ alkyl)}_2;} \\ \text{n is an integer from 0 to 3;}$ 

or a pharmaceutically acceptable salt thereof.

Page 13 of 13