

# IRF510, IRF511, IRF512, IRF513

4.9A, and 5.6A, 80V and 100V, 0.54 and 0.74 Ohm, N-Channel Power MOSFETs

January 1998

#### **Features**

- 4.9A, and 5.6A, 80V and 100V
- $r_{DS(ON)} = 0.54\Omega$  and  $0.74\Omega$
- Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- Related Literature
  - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

#### **Ordering Information**

| PART NUMBER | PACKAGE  | BRAND  |
|-------------|----------|--------|
| IRF510      | TO-220AB | IRF510 |
| IRF511      | TO-220AB | IRF511 |
| IRF512      | TO-220AB | IRF512 |
| IRF513      | TO-220AB | IRF513 |

NOTE: When ordering, include the entire part number.

#### Description

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17441.

#### Symbol



#### Packaging

#### JEDEC TO-220AB



# IRF510, IRF511, IRF512, IRF513

| <b>Absolute Maximum Ratings</b> T <sub>C</sub> = 25°C, Unless Otherw          | vise Specified |            |            |            |          |
|-------------------------------------------------------------------------------|----------------|------------|------------|------------|----------|
|                                                                               | IRF510         | IRF511     | IRF512     | IRF513     | UNITS    |
| Drain to Source Voltage (Note 1)                                              | 100            | 80         | 100        | 80         | V        |
| Drain to Gate Voltage ( $R_{GS} = 20k\Omega$ ) (Note 1) $V_{DGR}$             | 100            | 80         | 100        | 80         | V        |
| Continuous Drain CurrentI <sub>D</sub>                                        | 5.6            | 5.6        | 4.9        | 4.9        | Α        |
| $T_C = 100^{\circ}C \dots I_D$                                                | 4              | 4          | 3.4        | 3.4        | Α        |
| Pulsed Drain Current (Note 3)                                                 | 20             | 20         | 18         | 18         | Α        |
| Gate to Source VoltageV <sub>GS</sub>                                         | ±20            | ±20        | ±20        | ±20        | V        |
| Maximum Power DissipationPD                                                   | 43             | 43         | 43         | 43         | W        |
| Linear Derating Factor                                                        | 0.29           | 0.29       | 0.29       | 0.29       | W/oC     |
| Single Pulse Avalanche Energy Rating (Note 4)                                 | 19             | 19         | 19         | 19         | mJ       |
| Operating and Storage Temperature RangeT <sub>J</sub> , T <sub>STG</sub>      | -55 to 175     | -55 to 175 | -55 to 175 | -55 to 175 | οС       |
| Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from 25ase for 10s | 300<br>260     | 300<br>260 | 300<br>260 | 300<br>260 | °C<br>°C |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

#### NOTE:

1.  $T_J = 25^{\circ}C$  to  $150^{\circ}C$ .

#### **Electrical Specifications** $T_C = 25^{\circ}C$ , Unless Otherwise Specified

| PARAMETER                                                | SYMBOL              | TEST CONDITIONS                                                                                                                                                                                                                                                 |     | TYP | MAX  | UNITS |
|----------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| Drain to Source Breakdown Voltage<br>IRF510 IRF512       | BV <sub>DSS</sub>   | $V_{GS} = 0V$ , $I_D = 250\mu A$ , (Figure 10)                                                                                                                                                                                                                  |     | -   | -    | V     |
| IRF511, IRF513                                           |                     |                                                                                                                                                                                                                                                                 | 80  | -   | -    | ٧     |
| Gate to Threshold Voltage                                | V <sub>GS(TH)</sub> | $V_{GS} = V_{DS}$ , $I_D = 250\mu A$                                                                                                                                                                                                                            | 2.0 | -   | 4.0  | ٧     |
| Zero-Gate Voltage Drain Current                          | I <sub>DSS</sub>    | V <sub>DS</sub> = Rated BV <sub>DSS</sub> , V <sub>GS</sub> = 0V                                                                                                                                                                                                |     | -   | 25   | μΑ    |
|                                                          |                     | $V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0 \text{V T}_{J} = 150^{\circ}\text{C}$                                                                                                                                                                        | -   | -   | 250  | μΑ    |
| On-State Drain Current (Note 2) IRF510, IRF511           | I <sub>D(ON)</sub>  | V <sub>DS</sub> > I <sub>D(ON) x</sub> r <sub>DS(ON)MAX</sub> , V <sub>GS</sub> = 10V, (Figure 7)                                                                                                                                                               |     | -   | -    | А     |
| IRF512, IRF513                                           |                     |                                                                                                                                                                                                                                                                 | 4.9 | -   | -    | Α     |
| Gate to Source Leakage Current                           | I <sub>GSS</sub>    | V <sub>GS</sub> = ±20V                                                                                                                                                                                                                                          | -   | -   | ±100 | nA    |
| Drain to Source On Resistance (Note 2)<br>IRF510, IRF511 | r <sub>DS(ON)</sub> | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.4A, (Figures 8, 9)                                                                                                                                                                                                    |     | 0.4 | 0.54 | Ω     |
| IRF512, IRF513                                           | 1                   |                                                                                                                                                                                                                                                                 |     | 0.5 | 0.74 | Ω     |
| Forward Transconductance (Note 2)                        | 9fs                 | V <sub>GS</sub> = 50V, I <sub>D</sub> = 3.4A, (Figure 12)                                                                                                                                                                                                       | 1.3 | 2.0 | -    | S     |
| Turn-On Delay Time                                       | t <sub>d(ON)</sub>  | $\begin{split} &I_D\approx 5.6\text{A, R}_{GS}=24\Omega\text{ , V}_{DD}=50\text{V, R}_{L}=9\Omega\\ &V_{DD}=50\text{V, V}_{GS}=10\text{V, (Figures 17, 18)}\\ &MOSFET \text{ switching times are essentially independent of operating temperature} \end{split}$ |     | 8   | 11   | ns    |
| Rise Time                                                | t <sub>r</sub>      |                                                                                                                                                                                                                                                                 |     | 25  | 36   | ns    |
| Turn-Off Delay Time                                      | t <sub>d(OFF)</sub> |                                                                                                                                                                                                                                                                 |     | 15  | 21   | ns    |
| Fall Time                                                | t <sub>f</sub>      |                                                                                                                                                                                                                                                                 |     | 12  | 21   | ns    |
| Total Gate Charge<br>(Gate to Source + Gate to Drain)    | Q <sub>g(TOT)</sub> | $V_{GS}$ = 10V, $I_D$ = 5.6A, $V_{DS}$ = 0.8 x Rated BV <sub>DSS</sub> , $I_{G(REF)}$ = 1.5mA (Figures 14, 19, 20) Gate charge is essentially independent of operating temperature                                                                              |     | 5.0 | 7.7  | nC    |
| Gate to Source Charge                                    | Q <sub>gs</sub>     |                                                                                                                                                                                                                                                                 |     | 2.0 | -    | nC    |
| Gate to Drain "Miller" Charge                            | Q <sub>gd</sub>     |                                                                                                                                                                                                                                                                 |     | 3.0 | -    | nC    |

## IRF510, IRF511, IRF512, IRF513

## **Electrical Specifications** $T_C = 25^{\circ}C$ , Unless Otherwise Specified (Continued)

| PARAMETER                              | SYMBOL           | TEST CONDITIONS                                                                        |                                                           | MIN | TYP | MAX | UNITS |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|-----|-----|-------|
| Input Capacitance                      | C <sub>ISS</sub> | $V_{GS} = 0V$ , $V_{DS} = 25V$ , $f = 1.0MHz$ , (Figure 11)                            |                                                           | -   | 135 | -   | pF    |
| Output Capacitance                     | C <sub>OSS</sub> |                                                                                        |                                                           | -   | 80  | -   | pF    |
| Reverse-Transfer Capacitance           | C <sub>RSS</sub> |                                                                                        |                                                           | -   | 20  | -   | pF    |
| Internal Drain Inductance              | L <sub>D</sub>   | Measured From the<br>Contact Screw On Tab<br>To Center of Die                          | Modified MOSFET<br>Symbol Showing the<br>Internal Devices | -   | 3.5 | -   | nΗ    |
|                                        |                  | Measured From the<br>Drain Lead, 6mm<br>(0.25in) From Package<br>to Center of Die      | Inductances                                               | -   | 4.5 | -   | nH    |
| Internal Source Inductance             | LS               | Measured From The<br>Source Lead, 6mm<br>(0.25in) From Header to<br>Source Bonding Pad | L <sub>S</sub> E                                          | -   | 7.5 | -   | nΗ    |
| Thermal Resistance Junction to Case    | $R_{\theta JC}$  |                                                                                        |                                                           | -   | -   | 3.5 | °C/W  |
| Thermal Resistance Junction to Ambient | $R_{\theta JA}$  | Free air operation                                                                     |                                                           | -   | -   | 80  | °C/W  |

#### **Source to Drain Diode Specifications**

| PARAMETER                              | SYMBOL           | Test Conditions                                                    |     | MIN  | TYP | MAX  | UNITS |
|----------------------------------------|------------------|--------------------------------------------------------------------|-----|------|-----|------|-------|
| Continuous Source to Drain Current     | I <sub>SD</sub>  | Modified MOSFET                                                    | ŶD  | -    | -   | 5.6  | А     |
| Pulse Source to Drain Current (Note 3) | I <sub>SDM</sub> | Symbol Showing the<br>Integral Reverse<br>P-N Junction Diode       | e s | -    | -   | 20   | А     |
| Source to Drain Diode Voltage (Note 2) | V <sub>SD</sub>  | $T_J = 25^{\circ}C$ , $I_{SD} = 5.6A$ , $V_{GS} = 0V$ (Figure 13)  |     | -    | -   | 2.5  | V     |
| Reverse Recovery Time                  | t <sub>rr</sub>  | $T_J = 25^{o}C$ , $I_{SD} = 5.6A$ , $dI_{SD}/d_t = 100A/\mu s$     |     | 4.6  | 96  | 200  | ns    |
| Reverse Recovered Charge               | Q <sub>RR</sub>  | $T_J = 25^{\circ}C$ , $I_{SD} = 5.6A$ , $dI_{SD}/d_t = 100A/\mu s$ |     | 0.17 | 0.4 | 0.83 | μC    |

#### NOTES:

- 2. Pulse test: pulse width  $\leq 300 \mu s$ , duty cycle  $\leq 2\%$ .
- 3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4.  $V_{DD}$  = 25V, start  $T_J$  = 25°C, L = 910 $\mu$ H,  $R_G$  = 25 $\Omega$ , peak  $I_{AS}$  = 5.6A (See Figure 15, 16).

#### Typical Performance Curves Unless Otherwise Specified





FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE



FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE







FIGURE 5. OUTPUT CHARACTERISTICS

#### Typical Performance Curves Unless Otherwise Specified (Continued)





FIGURE 6. SATURATION CHARACTERISTICS

FIGURE 7. TRANSFER CHARACTERISTICS





FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE





FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

# Typical Performance Curves Unless Otherwise Specified (Continued)





FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE



FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

#### Test Circuits and Waveforms



FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT



FIGURE 16. UNCLAMPED ENERGY WAVEFORMS



FIGURE 17. SWITCHING TIME TEST CIRCUIT



FIGURE 18. RESISTIVE SWITCHING WAVEFORMS



FIGURE 19. GATE CHARGE TEST CIRCUIT



FIGURE 20. GATE CHARGE WAVEFORM