Отчет для лабораторной работе №7

НФИбд-02-18

Оразклычев Давут

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Вывод	13

List of Tables

List of Figures

2.1	Задание	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	Результат 1																															
3.2	Результат 2											•		•					•									•	•		•	8
3.3	Результат 3																															9

1 Цель работы

Решение заданий

2 Задание

Вариант № 41

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.205 + 0.000023n(t))(N - n(t))$$
2.
$$\frac{dn}{dt} = (0.0000305 + 0.24n(t))(N - n(t))$$
3.
$$\frac{dn}{dt} = (0.05\sin(t) + 0.03\cos(4t)n(t))(N - n(t))$$

При этом объем аудитории $N=2300\,$, в начальный момент о товаре знает 20 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Figure 2.1: Задание

3 Выполнение лабораторной работы

Импортируем библиотеки и переменные

```
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
N1 7 = 2300
x01 7 = 20
t0 7 = 0
tmax_7 = 30
dt_7 = 0.1
 Создаем список t
t_7 = np.arange(t0_7, tmax_7, dt_7)
t_7 = np.append(t_7, tmax_7)
 Создаем функции и уравнение:
def k(t_7):
  return 0.205
def p(t_7):
  return 0.000023
```

```
def f(x, t_7):
return (k(t_7) + p(t_7)*x)*(N1_7-x)
```

Создаем вектор значений

$$yf = odeint(f, x01_7, t_7)$$

Показать результаты на дисплее

```
plt.figure(figsize=(10,10))
plt.plot(t_7,yf,'r',label='S(t_7)')
plt.show()
```

получаем:

Figure 3.1: Результат 1

Figure 3.2: Результат 2

Figure 3.3: Результат 3

Код на Python для графика 1:

```
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
N1_7 = 2300
x01_7 = 20
t0_7 = 0
tmax_7 = 30
dt_7 = 0.1
t_7 = np.arange(t0_7, tmax_7, dt_7)
t_7 = np.append(t_7, tmax_7)
def k(t_7):
  return 0.205
def p(t_7):
```

```
return 0.000023
```

```
def f(x, t_7):
  return (k(t_7) + p(t_7)*x)*(N1_7-x)
yf = odeint(f, x01_7, t_7)
plt.figure(figsize=(10,10))
plt.plot(t_7,yf,'r',label='S(t_7)')
plt.show()
 Код на Python для графика 2:
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
N1 7 = 2300
x01 7 = 20
t0 7 = 0
tmax 7 = 30
dt_7 = 0.1
t_7 = np.arange(t0_7, tmax_7, dt_7)
t_7 = np.append(t_7, tmax_7)
def k(t_7):
  return 0.0000305
```

```
def p(t_7):
  return 0.24
def f(x, t_7):
  return (k(t_7) + p(t_7)*x)*(N1_7-x)
yf = odeint(f, x01_7, t_7)
plt.figure(figsize=(10,10))
plt.plot(t_7,yf,'r',label='S(t_7)')
plt.show()
 Код на Python для графика 3:
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.integrate import odeint
N1 7 = 2300
x01 7 = 20
t0_7 = 0
tmax_7 = 30
dt_7 = 0.1
t_7 = np.arange(t0_7, tmax_7, dt_7)
t_7 = np.append(t_7, tmax_7)
```

```
def k(t_7):
    return 0.05*math.sin(t_7)

def p(t_7):
    return 0.03*math.cos(4*t_7)

def f(x, t_7):
    return (k(t_7) + p(t_7)*x)*(N1_7-x)

yf = odeint(f, x01_7, t_7)

plt.figure(figsize=(10,10))
plt.plot(t_7,yf,'r',label='S(t_7)')
plt.show()
```

4 Вывод

Построили код на Python для решения и вывода на экран график распространения рекламы, математическая модель.