

ITA DISCURSIVO 3

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8\,{\rm m\,s^{-1}}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
 - Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
 - Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$
- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} \text{Massa Molar} \\ (\text{g mol}^{-1}) \end{array}$
Н	1	1,01	Р	15	30,97
$^{\mathrm{C}}$	6	12,01	\mathbf{S}	16	32,06
N	7	14,01	Cl	17	$35,\!45$
O	8	16,00	Br	35	79,90
\mathbf{F}	9	19,00	Ag	47	107,87
Na	11	22,99	I	53	126,90
${ m Mg}$	12	24,31	$_{\mathrm{Ba}}$	56	$137,\!33$

Questão 11. Um reator de 24,6 L foi carregado com 1 mol de N_2O_4 em 300 K e o equilíbrio foi estabelecido:

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

A pressão total registrada no reator foi 1,2 atm.

Quando o reator é aquecido até $360\,\mathrm{K}$, a pressão total sobe para $1.8\,\mathrm{bar}$

- a. **Determine** a constante de equilíbrio da reação em 300 K.
- b. **Determine** a constante de equilíbrio da reação em 350 K.
- c. **Determine** a entalpia padrão de reação.
- d. **Determine** a entropia padrão de reação

Questão 12. Considere os hidrocarbonetos que produzem 2,4-dimetilpent-1-eno por hidrogenação catalítica.

- a. Apresente a reação dos hidrocarbonetos com bromo.
- b. Apresente a reação dos hidrocarbonetos com uma solução aquosa de bromo.
- c. Apresente as rotas de síntese para interconversão entre os isômeros.

Questão 13. A cianamida, H_2NCN , é um produto de grande relevância industrial. Esse composto é produzido conforme as etapas:

$$CaC_2(s) + N_2(g) \longrightarrow CaNCN(s) + C(g)$$

 $CaNCN(s) + 2H_2O(l) \longrightarrow Ca(OH)_2(s) + H_2NCN(aq)$

Uma das aplicações da cianamida é a síntese da melamina, a 1,3,5-triazina-2,4,6-triamina, $C_3H_6N_6$.

$$\begin{aligned} & H_2NCN \longrightarrow NCNC(NH_2)_2 \\ & NCNC(NH_2)_2 \longrightarrow C_3H_6N_6 \end{aligned}$$

- a. Apresente a estrutura de Lewis das espécies NCN^{2-} , H_2NCN , $NCNC(NH_2)_2$ e $C_3H_6N_6$.
- b. Compare a carga dos átomos de nitrogênio na espécie NCN^{2-} .
- c. Ordene as ligações C-N no $NCNC(NH_2)_2$ em função de seu comprimento.

Questão 14. A entalpia de ressonância é a diferença entre a entalpia média de uma ligação e a entalpia da mesma ligação em um composto onde há ressonância. Esse parâmetro é utilizado para quantificar a estabilidade de compostos aromáticos e pode ser estimado a partir de dados termodinâmicos.

- a. **Determine** a entalpia de hidrogenação do cicloexeno em 25 °C.
- b. **Determine** a entalpia de hidrogenação do benzeno em 25 °C.
- c. **Determine** a entalpia de ressonância do benzeno.

Dados em 298 K	cicloexano(g)	cicloexeno(g)	benzeno(g)	$H_2(g)$
Entalpia padrão de combustão, $\Delta H_{\mathrm{c}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-3950	-3750	-3300	-394

Questão 15. O composto binário $\bf A$ foi completamente dissolvido por reação com ácido nítrico concentrado. Foram formados ânions oxigenados a partir do composto $\bf A$ e foi liberado um gás castanho $\bf B$ 1,59 vezes mais denso que o ar.

Quando excesso de cloreto de bário foi adicionado à solução resultante, um sólido branco $\bf C$ precipitou. A solução foi filtrada e o sólido obtido pesou cerca de $10\,{\rm mg}$ quando seco. O filtrado foi tratado com excesso de uma solução saturada de sulfato de prata, levando a precipitação dos sólidos $\bf C$ e $\bf D$.

Ao novo filtrado foi adicionado hidróxido de sódio lentamente. Quando o pH da solução chega a 7, um sólido amarelo $\bf E$ precipita. O sólido $\bf E$ tem 77,31% de prata em massa, massa molar 2,06 vezes maior que a de $\bf C$ e pesou cerca de 24 mg quando seco.

- a. Identifique o gás B.
- b. Identifique os sólidos C, D e E.
- c. Identifique o composto binário A.

Questão 16. Um composto $\bf A$ tem fórmula molecular $C_8H_{14}Cl_2$ e é opticamente ativo. Em um experimento, $\bf A$ foi submetido à hidrogenação catalítica na presença de paládio, sendo convertido no composto $\bf B$, opticamente inativo e com fórmula molecular $C_8H_{16}Cl_2$.

A reação de \mathbf{A} com ozônio formou o intermediário \mathbf{X} , que ao ser tratado com peróxido de hidrogênio levou à formação de ácido cloroacético e de um ácido carboxílico opticamente ativo \mathbf{C} . O tratamento do intermediário \mathbf{X} com zinco metálico resultou na formação dos produtos \mathbf{D} e \mathbf{E} . O composto \mathbf{D} apresenta configuração absoluta R.

Apresente a estrutura dos compostos A, B, C, D e E.

Questão 17. Um laboratório de análises foi encarregado de identificar um fertilizante.

- 1. Uma pequena amostra do fertilizante foi submetida a análise elementar. Os resultados da análise mostraram que essa substância é composta por carbono, hidrogênio, nitrogênio e oxigênio, apenas.
- 2. Uma amostra de 780 mg do fertilizante foi analisada por combustão. Os gases de combustão foram passados por um leito do composto higroscópico Mg(ClO₄)₂ e por um leito contendo NaOH. A massa do primeiro leito aumentou 540 mg e a massa do leito de hidróxido de sódio aumentou 440 mg.
- 3. Uma amostra de 390 mg do fertilizante foi analisada pelo método Kjeldahl. Todo nitrogênio do composto foi convertido em amônia que foi coletada em $50\,\mathrm{mL}$ de HCl $0.5\,\mathrm{mol}\,\mathrm{L}^{-1}$. A solução de amônia foi titulada com $15\,\mathrm{mL}$ de NaOH $1\,\mathrm{mol}\,\mathrm{L}^{-1}$.
- 4. Uma amostra de 975 mg do fertilizante foi dissolvida em 20 g de água. O ponto de congelamento da solução foi -2.5 °C. A constante crioscópica da água é $2\,\mathrm{K\,kg\,mol^{-1}}$.
- a. Determine a fórmula empírica do fertilizante.
- b. Proponha uma estrutura molecular plausível para o fertilizante.

Questão 18.

- a. Compare o comprimento das P-F no PCl₅.
- b. **Ordene** as moléculas SF₄, SeF₄, ClF₃ e IF₃ em função do ângulo de ligação F-X-F considerando os átomos de flúor mais afastados um do outro.
- c. Explique porque os ângulos de ligação nas moléculas SF_4 , SCl_4 e SBr_4 variam conforme os diagramas:

Questão 19. Um reator de 1L para desidrogenação do propano foi carregado com 2 atm de propano e 9 atm de dióxido de carbono. A mistura é aquecida e os equilíbrios são estabelecidos:

$$\begin{aligned} C_3H_8(g) & \Longleftrightarrow C_3H_6(g) + H_2(g) & \quad K_1 = 0.1 \\ CO_2(g) + H_2(g) & \Longleftrightarrow CO(g) + H_2O(g) & \quad K_2 \end{aligned}$$

No equilíbrio, a pressão total no reator é 12 atm

- a. Determine a concentração de propeno no equilíbrio.
- b. **Determine** a constante de equilíbrio K_2 .

Questão 20. A reação de Cannizzaro é o desproporcionamento induzido por base de duas moléculas de um aldeído não enolizável formando um álcool primário e um íon carboxilato:

Uma solução foi preparada contendo, inicialmente, $2 \mod L^{-1}$ de hidróxido de sódio e $1 \mod L^{-1}$ de benzaldeído. Essa solução é adicionada à uma célula cúbica de $17 \mod L$ com $3,4 \mod L$ comprimento.

No equilíbrio, a resistência da célula é $2\,\Omega$

- a. **Determine** a condutividade da solução no equilíbrio.
- b. Determine a concentração do íon benzoato no equilíbrio.
- c. **Determine** a contante de equilíbrio da reação.

${\rm Dados\ em\ 298K}$	$\mathrm{Na}^{+}(\mathrm{aq})$	$\mathrm{OH^-(aq)}$	$C_6H_5CO_2^-(aq)$
Condutividade iônica molar, $\lambda / \frac{S}{m M}$	5	20	3