Classic Flag Algebras

Fix a hereditary class of graphs $\mathcal G$ and some type σ . Take the vector space $\mathbb R\mathcal G^\sigma$. Define a subspace $\mathcal K^\sigma \subset \mathbb R\mathcal G^\sigma$ as the span of vectors of the form

$$F - \sum_{F' \in \mathcal{G}^\sigma} p(F;F') F$$

for F a σ -flag and $n \geq |F|$. Define the quotient space $\mathcal{A}^{\sigma} := \mathbb{R}\mathcal{G}^{\sigma}/\mathcal{K}^{\sigma}$. To turn this space into an algebra we need to define a product: For σ -flags F, F' define

$$F \cdot F' = \left[\sum_{H \in \mathcal{G}^\sigma} p(F, F'; H) H
ight]$$

(where $[\cdot]$ means the corresponding coset in the quotient space) for any n large enough s.t. F, F' fit in a σ -flag of size n. This turns \mathcal{A}^{σ} into an algebra after extending bilinearly to the whole space.

We call \mathcal{A}^{σ} the (classic) flag algebra of type σ .

This algebra is commutative, associative and unital if σ is **non-degenerate** meaning \mathcal{G}^{σ} is infinite. This implies $\sigma \notin \mathcal{K}^{\sigma}$: Lemma 2.4 (Razborov - 2007).

We extend our classic density function to this space bilinearly (in the first argument).

Lemma: Densities in \mathcal{A}^{σ} are multiplicative in the limit. Meaning for any $f,g\in A^{\sigma}$ and σ -flag G we have:

$$p((f\cdot g);G)=p(f;G)p(g;G)+O\left(rac{1}{|G|}
ight).$$

Local Flag Algebras

Fix a class of graphs $\mathcal G$ and consider its hereditary closure $\overline{\mathcal G}$. Let σ be some fixed type. Then $\mathcal G^\sigma_{\mathrm{loc}}\subseteq \overline{\mathcal G}^\sigma$ is the class of local σ -flags.

Take the vector space $\mathbb{R}\mathcal{G}^{\sigma}_{\mathrm{loc}}$, the set of formal real linear combinations of local σ -flags.

⊘ Important

This vector space consists only of finite combinations.

NB: Unlike in the classic flag algebra we do not quotient the space.

⊘ Todo

Can we quotient by something? e.g. $\mathrm{ext}_i^\sigma - \mathrm{ext}_i^\sigma$ in the regular-graph case.

As with the classic case we extend the local density function ho linearly from $\mathcal{G}^{\sigma}_{\mathrm{loc}}$ to the whole space $\mathbb{R}\mathcal{G}^{\sigma}_{\mathrm{loc}}$: For vector $f=\sum_{F\in\mathcal{G}^{\sigma}_{\mathrm{loc}}}c_FF$ and $G\in\mathcal{G}^{\sigma}$ define

$$ho(f;G) = \sum_{F \in \mathcal{G}^{\sigma}_{ ext{loc}}} c_F \cdot
ho(F;G).$$

Again we need to define a product. We actually adopt the product from classic algebras with 2 minor adjustments:

- 1. We don't need a coset as we aren't quotienting the space.
- 2. This means we need to pick a specific value of n. We choose n exactly large enough to fit both flags.

Definition (Local Product): Let $F, F' \in \mathcal{G}^{\sigma}_{loc}$ be given. Let $n := |F| + |F'| - |\sigma|$, the minimum size to exactly fit F and F'. Then define:

$$F \cdot F' := \sum_{H \in \mathcal{G}^{\sigma}_{\mathrm{loc},n}} p(F,F';H) \cdot H.$$

Note

This is p, the classic density, not ρ . We've never defined ρ on more than one input flag.

Extend this product bilinearly to the space $\mathbb{R}\mathcal{G}^{\sigma}_{loc}$ to make it an algebra. This algebra is associative and unital which we prove later.

Definition (Local Flag Algebra \mathcal{L}^{σ}): For a type σ define the local flag algebra \mathcal{L}^{σ} to be the space $\mathbb{R}\mathcal{G}^{\sigma}_{loc}$ imbued with the product above.

We hope to achieve multiplicative local density in the limit as $\Delta \to \infty$.

Theorem 1: For fixed $f,f'\in\mathcal{L}^\sigma$ and $G\in\mathcal{G}^\sigma_{\mathrm{loc}}$ we have:

$$ho(f\cdot f';G)=
ho(f;G)
ho(f';G)+O\left(rac{1}{\Delta(G)}
ight).$$

Before proving this we prove a result about embedding pairs of local flags into larger flags.

Lemma: If F, F' are local σ -flags and G is a σ -flag of size $n = |F| + |F'| - |\sigma|$ such that p(F, F'; G) > 0 then G is also a local σ -flag.

√ Proof √

Let θ, θ' be the σ embeddings for F, F' and η the σ embedding for G.

To prove G is a local flag we first need to show that $\rho(G;\cdot)$ is a bounded function. i.e. $c(G;\cdot)\in O(\Delta^{|G|-|\sigma|})$.

As p(F,F';G)>0 there is some $U,U'\subseteq V(G)$ such that $U\cap U'=\operatorname{im}\eta$ and $F\cong G[U]\wedge F'\cong G[U']$ as σ flags.

Let (H,ζ) be another σ -flag. If c(G;H)=0 we're done so assume otherwise and let $\operatorname{im} \zeta \subseteq V \subseteq V(H)$ be such that $G \cong H[V]$ as σ -flags. In particular then this isomorphism ϕ induces an embedding of U,U' into V(H) such that $\operatorname{im} \eta = \zeta(U) \cap \zeta(U')$ and $H[\zeta(U)] \cong F \wedge H[\zeta(U')] \cong F'$ as σ -flags. Hence any choice of an instance of G in H and choice of instances U,U' of F,F' in G gives rise to a pair of instances of F and F' in F. There are at most some constant number F instances of F in F (as the size of F is fixed).

Note then also that any choice of a pair of instances of F,F' in H can be derived from at most 1 instance of G, as the size of G was chosen to be the minimum possible such that both F,F' fit. If the two instances overlap (outside of the required intersection at $\operatorname{im} \zeta$) then they don't correspond to an instance of G. If they don't overlap then their union corresponds to a single possible instance of G.

In summary each instance of G gives rise to some non-zero but bounded number of pairs of instances of F,F' in H, and each pair of instances is induced by at most 1 instance of G. Therefore $c(G;H) \leq \frac{1}{C} \cdot c(F;H) \cdot c(F';H)$. $c(F;\cdot)$ and $c(F',\cdot)$ are $\in O(\Delta^{|F|-|\sigma|})$ and $\in O(\Delta^{|F'|-|\sigma|})$ respectively as F,F' are local flags hence their product is $\in O(\Delta^{|F|+|F'|-2|\sigma|}) = O(\Delta^{|G|-|\sigma|})$ so $c(G,\cdot) \in O(\Delta^{|G|-|\sigma|})$ showing $\rho(G,\cdot)$ is a bounded function as required.

It remains to prove that G still has bounded density after fixing any unlabelled vertices. This argument is extremely similar to what we saw already. Label some new vertex v in G, extending η to η' . We know V(G) can be split into U,U' disjoint outside $\operatorname{im} \eta$ such that $G[U] \cong F, G[U'] \cong F'$ in some constant number of ways. Then for each such split $v \in U \setminus \operatorname{im} \eta$ or $v \in U' \setminus \operatorname{im} \eta$. WLOG assume $v \in U \setminus \operatorname{im} \eta$. Then for every embedding of (G,η') into H we can again use the U,U' split to derive copies of F,F' in H. But we know $v \in U$ so as F is a local flag we have $\in O(\Delta^{|F|-|\sigma|-1})$ possible copies. There are $O(\Delta^{|F'|-|\sigma|})$ copies of F' leading to a bound of order $O(\Delta^{|G|-|\sigma|-1})$ as required.

The value of this lemma is that is tells us that our sum over local flags in the definition of the product does include all flags for which F,F^\prime can be embedded.

√ Proof of Theorem 1 √

⊘ Todo

Address assuming $F, F' \neq \sigma$

⊘ Todo

Use of Δ is sloppy.

Let F,F' be local σ -flags, and G a σ -flag. We can compute

$$\begin{split} &\rho(F;G) \cdot \rho(F';G) - \rho(F \cdot F';G) \\ &= \rho(F;G) \cdot \rho(F';G) - \left(\sum_{H \in \mathcal{L}_n^{\sigma}} p(F,F';H) \rho(H;G) \right) \\ &= \frac{c(F;G) \cdot c(F';G)}{\binom{\Delta}{|F|-k} \binom{\Delta}{|F'|-k}} - \frac{\sum_{H \in \mathcal{L}_n^{\sigma}} c(F,F';H) c(H;G)}{\binom{n-k}{|F|-k} \binom{\Delta}{n-k}} \end{split}$$
 (†)

where $k=|\sigma|$ and n=|F|+|F'|-k. First we note both denominators are asymptotically equivalent:

$$\binom{\Delta}{|F|-k}\binom{\Delta}{|F'|-k} = \frac{\Delta!}{(|F|-k)!(\Delta-(|F|-k))!} \frac{\Delta!}{(|F'|-k)!(\Delta-(|F'|-k))!}$$

and

$$\binom{n-k}{|F|-k} \binom{\Delta}{n-k} = \frac{(n-k)!}{(|F|-k)!(n-k-(|F|-k))!} \frac{\Delta!}{(n-k)!(\Delta-(n-k))!}$$

$$= \frac{\Delta!}{(|F|-k)!(n-|F|)!(\Delta-(n-k))!}$$

$$= \frac{\Delta!}{(|F|-k)!(|F'|-k)!(\Delta-(n-k))!} .$$

Hence

$$rac{inom{\Delta}{(|F|-k)}inom{\Delta}{(|F'|-k)}}{inom{n-k}{(|F|-k)}inom{\Delta}{(n-k)}} = rac{\Delta!(\Delta-(n-k))!}{(\Delta-(|F|-k))!(\Delta-(|F'|-k))!}$$

Remembering that (n-k)=(|F|-k)+(|F'|-k) we see that this is of the form

$$\frac{\Delta(\Delta-1)\dots(\Delta-(a-1))}{(\Delta-b)(\Delta-b-1)\dots(\Delta-b-(a-1))}$$

where a=|F|-k, b=|F'|-k. Both numerator and denominator are composed of a terms. This expression has limit 1 as $\Delta \to \infty$ showing

$$egin{pmatrix} \Delta \ (|F|-k) igg(\Delta \ |F'|-k igg) \sim igg(n-k \ |F|-k igg) igg(\Delta \ n-k igg).$$

⊘ Todo

Do I need this whole argument at all? Is it too verbose?

As the denominators in (†) are asymptotically equivalent we can write

$$rac{c(F;G) \cdot c(F';G)}{\binom{\Delta}{|F|-k}\binom{\Delta}{|F'|-k}} - rac{\sum_{H \in \mathcal{L}_n^\sigma} c(F,F';H)c(H;G)}{\binom{n-k}{|F|-k}\binom{\Delta}{n-k}} \ \sim rac{c(F;G) \cdot c(F';G) - \sum_{H \in \mathcal{L}_n^\sigma} c(F,F';H)c(H;G)}{\binom{n-k}{|F|-k}\binom{\Delta}{n-k}}$$

Now we look the asymptotics of the numerator:

$$c(F;G) \cdot c(F';G) - \left(\sum_{H \in \mathcal{L}_{g}^{\sigma}} c(F,F';H)c(H;G)\right) \tag{\dagger\dagger}$$

Let θ, θ', η be the embedding of σ into F, F', G resp. The product $c(F; G) \cdot c(F'; G)$ counts the number of pairs $\operatorname{im} \eta \subseteq U, U' \subseteq V(G)$ such that $G[U] \cong F \wedge G[U'] \cong F'$ as σ -flags.

Comparatively the sum $\sum_{H\in\mathcal{L}^\sigma_n}c(F,F';H)c(H;G)$ counts the number of pairs $U,U'\subseteq V(G)$ such that $G[U]\cong F\,\wedge\, G[U']\cong F'$ as $\sigma\text{-flags}$ and $U\cap U'=\operatorname{im}\eta.$ This fact depends on our previous lemma which guarantees that any $\sigma\text{-flag}$ H of size n inducing instances of F and F' is a local flag so is included in \mathcal{L}^σ_n .

Therefore $(\dagger\dagger)$ counts those pairs $\operatorname{im} \eta \subseteq U, U' \subseteq V(G)$ such that $G[U] \cong F \wedge G[U'] \cong F'$ as σ -flags but $U \cap U' \neq \operatorname{im} \eta$ meaning U, U' have a nonempty intersection outside of $\operatorname{im} \eta$.

This part needs diagrams.

Let $\operatorname{im} \eta \subseteq U \subseteq V(G)$ inducing F be fixed. Pick any $v \in U \setminus \operatorname{im} \eta$ and ask how many $\operatorname{im} \eta \subseteq U' \subseteq V(G)$ are there inducing F' such that $v \in U'$?

Let σ' be the type obtained by labelling $v\colon\thinspace\sigma\cong G[\operatorname{im}\eta\cup\{v\}]$.

If there are any $\operatorname{im} \eta \subseteq U' \subseteq V(G)$ inducing F' with $v \in U'$ then $\operatorname{im} \eta \cup \{v\} \subseteq U'$ so there is some induced embedding of σ' in F' meaning F' is a local σ' -flag. Otherwise there are no such U' and our answer to the question is 0 (for that choice of v).

Let θ' be any σ' -embedding into F'. Now we can express the question of how many embeddings of F' into G there are including v by extending the σ -embedding η to a σ' -embedding η' and asking for the value of $c((F',\theta'),(G,\eta'))$. We know (F',θ') is a local flag so we have $c((F',\theta'),(G,\eta')) \in O(\Delta^{|F'|-(k+1)})$. Let C be a corresponding constant so we have $c((F',\theta'),(G,\eta')) \leq C\Delta^{|F|-(k+1)}$.

There was a constant number of choices of θ' so we get some larger constant C' bounding the number of induced copies of F' including v by $C'\Delta^{|F|-(k+1)}$.

Then as $v\in U$ there was some constant number of choices of v meaning the total number of induced copies of F' that can overlap with a fixed induced copy of F is $\in O(\Delta^{|F'|-(k+1)})$. There are $O(\Delta^{|F|-k})$ induced copies of F in G leaving a total of $O(\Delta^{|F|-k}\Delta^{|F'|-(k+1)})=O(\Delta^{n-k-1})$ possible pairs U,U' inducing copies of F,F' which overlap outside of $\operatorname{im} \eta$.

$$\therefore$$
 (††) $\in O(\Delta^{n-k-1})$.

Now we finally can bound (\dagger) by realising $\binom{n-k}{|F|-k}\binom{\Delta}{n-k}\in\Omega(\Delta^{n-k})$ so we get

$$egin{aligned}
ho(F;G) \cdot
ho(F';G) -
ho(F \cdot F';G) &\sim & rac{c(F;G) \cdot c(F';G) - \sum_{H \in \mathcal{L}_n^{\sigma}} c(F,F';H) c(H;G)}{inom{n-k}{|F|-k}inom{\Delta}{|n-k|}} \ &= & rac{O(\Delta^{n-k-1})}{\Omega(\Delta^{n-k})} \ &= & O\left(rac{1}{\Delta}
ight). \end{aligned}$$

We've shown the result holds for fixed flags which then extends easily to a finite real combination of flags.

Lemma: For local type σ the local flag algebra \mathcal{L}^{σ} is associative.

✓ Proof: >

Let F_1,F_2,F_3 be local σ -flags. Then let $k:=|\sigma|$, $\ell:=|F_1|+|F_2|-k$, and $n:=|F_1|+|F_2|+|F_3|-2k$. We calculate

$$egin{aligned} (F_1 \cdot F_2) \cdot F_3 &= \left(\sum_{H \in \mathcal{L}_\ell^\sigma} p(F_1, F_2; H) H
ight) \cdot F_3 \ &= \sum_{H \in \mathcal{L}_\ell^\sigma} p(F_1, F_2; H) (H \cdot F_3) \ &= \sum_{H \in \mathcal{L}_\ell^\sigma} p(F_1, F_2; H) \left(\sum_{G \in \mathcal{L}_n^\sigma} p(H, F_3; G) G
ight) \ &= \sum_{G \in \mathcal{L}_n^\sigma} \left(\sum_{H \in \mathcal{L}_\ell^\sigma} p(F_1, F_2; H) p(H, F_3; G)
ight) G \ &= \sum_{G \in \mathcal{L}_n^\sigma} p(F_1, F_2, F_3; G) G \end{aligned}$$

where we use the chain rule for classic densities. This term is symmetric in all 3 of F_1, F_2, F_3 and the product is commutative so $(F_1 \cdot F_2) \cdot F_3 = F_1 \cdot (F_2 \cdot F_3)$

 (\blacksquare)

Lemma: For local type σ the local flag algebra \mathcal{L}^{σ} has unit σ .

✓ Proof >

For any $F,G\in\mathcal{L}^\sigma$ we have $p(\sigma,F;G)=p(F;G).$ Also if $F,F'\in\mathcal{L}^\sigma$ have the same size then p(F;F')=p(F';F)=0 hence

$$\sigma \cdot F = \sum_{H \in \mathcal{L}_{|F|}^{\sigma}} p(\sigma, F; H) H = \sum_{H \in \mathcal{L}_{|F|}^{\sigma}} p(F; H) H = F.$$
 $(lacksquare$

Averaging Operator

⊘ Todo

This theory can be generalised to partial unlabellings (See definition 10 in (Razborov - 2007: Flag Algebras).

Averaging Classic Flags

Definition ($\downarrow F$): If F is a σ -flag then $\downarrow F$ is the graph underlying the flag (equivalently a \emptyset -flag).

Definition $(q_{\sigma}(F))$: For a σ -flag F define $q_{\sigma}(F)$ to be the probability that a random injective θ : $[|\sigma|] \to V(F)$ is such that $(\downarrow F, \theta) \cong F$.

⊘ Todo

Probably easily related to the size of the automorphism group.

Definition: ($\llbracket \cdot \rrbracket$): We define the **downward operator** or **averaging operator** as follows: For σ -flag F define

$$\llbracket F \rrbracket := q_{\sigma}(F) \cdot {\downarrow} F.$$

Extend this operator linearly to get a linear map $\mathbb{R}\mathcal{G}^{\sigma} \to \mathbb{R}\mathcal{G}$.

Lemma: The averaging operator maps \mathcal{K}^{σ} to \mathcal{K}^{\emptyset} so forms a valid linear map $\mathcal{A}^{\sigma} \to \mathcal{A}^{\emptyset}$.

Lemma: Let F be a σ -flag and G a graph with $|G| \ge |F|$ such that $p(\sigma;G) > 0$. Let $\theta: [|\sigma|] \to V(G)$ be a uniformly random σ -embedding^[1] then:

$$\mathbb{E}_{ heta}[p(F;(G, heta)] = rac{p(\llbracket F
rbracket;G)}{p(\llbracket \sigma
rbracket;G)} = rac{q_{\sigma}(F)\cdot p(\downarrow F;G)}{q_{\sigma}(\sigma)\cdot p(\sigma;G)}$$

Averaging Local Flags

We adopt the same definitions for $\downarrow\!\! F$, $q_\sigma(F)$ and $\llbracket F \rrbracket$ from the classic case.

Note: unlabelling is not always well behaved in the local case.

Lemma: Let F be a local σ -flag. Then $\downarrow F$ is not necessarily a local \emptyset -flag.

✓ Proof >

Consider the family $\mathcal G$ of 2 coloured (red/black) graphs where there are $\leq \Delta$ black vertices and the rest are red. Let $\sigma=\bullet$ and consider the trivial σ -flag \bullet (Encircling indicates labelling). This is a local flag as for any \bullet -embedding η into G there is exactly 1 label preserving map $\bullet \to (G;\eta)$. Hence $c(\bullet;(G,\eta)=1)$ and $\rho(\bullet;(G,\eta)=\frac{1}{\binom{\Delta}{\delta}}=1)$ is bounded so \bullet is a local flag.

However, $[\![ullet]\!] = ullet \bullet = ullet$ and so for any 2-coloured graph $G \in \mathcal{G}$ $c([\![ullet]\!];G)$ counts the number of red vertices which by our choice of \mathcal{G} is $\geq |G| - \Delta$. Hence $\rho([\![ullet]\!];G) \geq \frac{|G|-\Delta}{\Delta} = \frac{|G|}{\Delta} - 1$ which is not bounded as |G| can be arbitrarily large relative to Δ . Hence $[\![ullet]\!]$ is not a local \emptyset -flag.

 (\blacksquare)

This doesn't mean however that we cannot use the averaging operator, it still forms a valid linear map into \emptyset -flags (maybe non-local) $\mathcal{L}^{\sigma} \to \mathbb{R}\mathcal{G}^{\emptyset}$.

We have the averaging behaviour as in the classic case, but this time only in the limit.

Theorem 2: Let F be a (possibly non local) σ -flag and G a graph with $|G| \ge |F|$ such that $\rho(\sigma;G) > 0$. Let $\theta: [|\sigma|] \to V(G)$ be a uniformly random σ -embedding [1-1] then:

$$\mathbb{E}_{\theta}[\rho(F;(G,\theta)] \sim \frac{\rho(\llbracket F \rrbracket;G)}{\rho(\llbracket \sigma \rrbracket;G)} = \frac{q_{\sigma}(F) \cdot \rho(\mathop{\downarrow}\! F;G)}{q_{\sigma}(\sigma) \cdot \rho(\sigma;G)}$$

✓ Proof: ∨

We use the following identity relating the classic and local densities: For any $\sigma\text{-flag }H$ we have

$$\begin{split} \rho(\llbracket H \rrbracket;G) &= q_{\sigma}(H)\rho(\downarrow H;G) = \frac{q_{\sigma}(H)c(\downarrow H;G)}{\binom{\Delta}{|H|}} = \frac{\binom{|G|}{|H|}q_{\sigma}(H)c(\downarrow H;G)}{\binom{|G|}{|H|}\binom{\Delta}{|H|}} \\ &= \frac{\binom{|G|}{|H|}}{\binom{\Delta}{|H|}} \frac{q_{\sigma}(H)c(\downarrow H;G)}{\binom{|G|}{|H|}} = \frac{\binom{|G|}{|H|}}{\binom{\Delta}{|H|}}q_{\sigma}(H)p(\downarrow H;G) = \frac{\binom{|G|}{|H|}}{\binom{\Delta}{|H|}}p(\llbracket H \rrbracket;G). \end{split}$$

Then we compute

$$rac{
ho(\llbracket F
rbracket;G)}{
ho(\llbracket\sigma
rbracket;G)} = rac{p(\llbracket F
rbracket;G)}{p(\llbracket\sigma
rbracket;G)} rac{inom{|G|}{|F|}}{inom{|G|}{|F|}} rac{inom{\Delta}{|\sigma|}}{inom{|G|}{|F|}}.$$

Using the averaging result for classic algebras we get

$$\frac{\rho(\llbracket F \rrbracket;G)}{\rho(\llbracket \sigma \rrbracket;G)} = \frac{p(\llbracket F \rrbracket;G)}{p(\llbracket \sigma \rrbracket;G)} \frac{\binom{|G|}{|F|}}{\binom{\Delta}{|F|}} \frac{\binom{\Delta}{|\sigma|}}{\binom{|G|}{|\sigma|}} = \mathbb{E}_{\theta}[p(F;(G,\theta))] \frac{\binom{|G|}{|F|}}{\binom{\Delta}{|F|}} \frac{\binom{\Delta}{|\sigma|}}{\binom{|G|}{|\sigma|}}$$

where θ is a uniformly random σ -embedding. Then we use a similar identity which says

$$p(F;(G, heta)) =
ho(F;(G, heta)) rac{inom{\Delta}{|F|-|\sigma|}}{inom{|G|-|\sigma|}{|F|-|\sigma|}}$$

to get

$$\frac{\rho(\llbracket F \rrbracket;G)}{\rho(\llbracket \sigma \rrbracket;G)} = \mathbb{E}_{\theta}[p(F;(G,\theta))] \frac{\binom{|G|}{|F|}}{\binom{\Delta}{|G|}} \frac{\binom{\Delta}{|\sigma|}}{\binom{|G|}{|\sigma|}} = \mathbb{E}_{\theta}[\rho(F;(G,\theta))] \frac{\binom{\Delta}{|F|-|\sigma|}}{\binom{|G|-|\sigma|}{|F|-|\sigma|}} \frac{\binom{|G|}{|F|}}{\binom{\Delta}{|G|}} \frac{\binom{\Delta}{|\sigma|}}{\binom{|G|}{|\sigma|}}.$$

We now show this multiplicative factor is of the form (1+o(1)):

$$\frac{\binom{\Delta}{|F|-|\sigma|}}{\binom{|G|-|\sigma|}{|F|-|\sigma|}}\frac{\binom{|G|}{|F|}}{\binom{\Delta}{|F|}}\frac{\binom{\Delta}{|\sigma|}}{\binom{|G|}{|\sigma|}}=\frac{\binom{\Delta}{|F|-|\sigma|}\binom{\Delta}{|\sigma|}}{\binom{\Delta}{|F|}}\frac{\binom{|G|}{|\sigma|}}{\binom{|G|-|\sigma|}{|F|-|\sigma|}\binom{|G|}{|\sigma|}}.$$

We use the following binomial relation $\binom{n}{a}\binom{n-a}{b}=\binom{n}{a+b}\binom{a+b}{a}$ to reduce this to

$$rac{inom{\Delta}{|F|-|\sigma|}inom{\Delta}{|\sigma|}}{inom{\Delta}{|F|}}rac{1}{inom{|F|}{|\sigma|}}.$$

We then have the following relation in the limit $\binom{n}{a}\binom{n}{b}\sim\binom{n}{a+b}\binom{a+b}{a}$ so we get

$$rac{inom{\Delta}{|F|-|\sigma|}inom{\Delta}{|\sigma|}}{inom{\Delta}{|F|}}rac{1}{inom{|F|}{|\sigma|}}\simrac{inom{|F|}{|\sigma|}}{inom{|F|}{|\sigma|}}=1.$$

Therefore

$$\mathbb{E}_{\theta}[\rho(F;(G,\theta))] = (1 + o(1)) \frac{\rho(\llbracket F \rrbracket;G)}{\rho(\llbracket \sigma \rrbracket;G)}.$$

This result then extends linearly (linearity of expectation) to \mathcal{L}^{σ} : If $f \in \mathcal{L}^{\sigma}$ and (G, θ) a σ -flag then

$$\mathbb{E}_{\theta}[\rho(f;(G,\theta))] \sim \frac{\rho(\llbracket f \rrbracket;G)}{\rho(\llbracket \sigma \rrbracket;G)}.$$

Definition (Local Type): A type σ is a local type if $\downarrow F$ is a local \emptyset -flag for all $F \in \mathcal{G}^{\sigma}_{\mathrm{loc}}$.

Proposition: σ is a local type if σ is itself a local \emptyset -flag.

⊘ Todo

Prove this.

1. Note, different that the map is	t to a uniforly rando s an actual embedding	om injective map. g.⇔⇔	This is conditioned	on the property