1007ICT / 1807ICT / 7611ICT Compatem Systems & Metworks

https://powcoder.com

3A. Digitald Logich and Digital Circuits

Dr. Sven Venema

Dr. Vallipuram Muthukkumarasamy

Last Section: Data Representation

Topics Covered:

- Representing noting tengers am Help
- Conversion from hinary to desimal
- Hexadecimal and octal representations Add WeChat powcoder Binary number operations
- One's complement and two's complement
- Representing characters, images and audio

Lecture Content

- Learning objectives
- Digital logic, Basic logic gates, Boolean algebra
- Combinatorial logic gates

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Learning Objectives

At the end of this lecture you will have:

- Gained an understanding of basic logic gates
- Learnt the truth tables associated with the basic logic gates
- Gained an understanding of combinatorial logic gates
- Learnt the truth tables associated with combinatorial logic gates

https://powcoder.com

Add WeChat powcoder

Digital Logic (Section 2.2)

- All digital computers are built from a set of low level digital logic switches or Logic Gates.
- Gates operate on binary signals that only have one of two values:

 • Signals from 0 to 2 volts is used to represent a binary 0 (OFF)

 - Signals from 3 to 5 volts is used to represent a binary 1 (ON)
 Signals between 2 and 3 volts represent an invalid state
- Three basical orgin of the control of to binary signals:
 - AND: output true if ALL inputs are true
 - OR: output true if ANY input is true
 - NOT: output is the inverse of the input
 - More complex functions can be built from these three basic gates

Basic Logic Gates (Section 2.4)

Name

Symbol

Boolean expression

Truth Table

Boolean Algebra

There is a basic set of rules about combining simple binary functions.

Assignment Project Exam Relp

•
$$\mathbf{X} \cap \mathbf{R} \overset{\mathbf{Add}}{=} \overset{\mathbf{WeChat}}{\mathbf{X}}$$

•
$$x \text{ OR } x = 1$$

•
$$(\overline{X}) = X$$

$$\frac{\text{der.com}}{\text{ND}} = 0$$

•
$$X AND X = X$$

•
$$x \text{ AND } \overline{x} = 0$$

Combinatorial Logic Gates

Name
Symbol
Equivalent
Boolean
expression
Truth Table

A	\	В	X
C)	0	1
C)	1	1
1		0	1
1		1	0

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Algebra - 2

This second set of rules are more powerful.

OR - form

AND - form

$$(x \circ Assignment Project Exama Help) = x \circ y$$

https://powcoder.com

The eXclusive-OR Gate (XOR)

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

 Looking at the truth table we see that the XOR function can be described as:

https://powcoder.com
 This function can be built in 3 ways:

Add WeChat powcode pemorgan's Theorem

$$x = (a AND b) OR (a AND b)$$

$$x = (a AND b) OR (a AND b)$$

$$x = (a AND b) AND (a AND b)$$

Logic Unit

 Let's try to create a "programmable" logic unit that permits us to apply a predefined logic function to a given set of inputs.

We need a function that lets us select what operation to perform

Summary

Have considered:

- Operation of basic logic gates
- Combinatorial logic gates, Truth tables

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Next....

- Logic driff Selection Logic https://powcoder.com
- Multiplexingdanecdemultiplexing