Homework 2

Anthony Falcon

April 14, 2021

Problem 1-3

Submitted as a hand written pdf attached at the end of this report.

Problem 4

Problem 4 we were asked to plot the region of absolute stability for the following methods Predictor-corrector method (Heun's method), Classic 4th order Runge-Kutta method (RK4) and the 2s-DIRK method with $\alpha=1-1/\sqrt{2}$ and $\alpha=-.5$. We derived the stability function for the first 2 methods in problem 1 and the stability function for 2s-DIRK method was derived in problem 2. Below is a figure of the 4 contours

Χ

Problem 5

In problem 5 we were asked to solve an IVP to T=30 using the 2s-DIRK method using $\alpha=1-1/\sqrt{2}$.

$$u' = -(0.5 + \exp(20\cos(1.3t)))\sinh(u - \cos(t))$$
$$u(0) = 0$$

Part 1

In part 1 using a step size of $h = 2^{-5}$ we plot the numerical solution u(t) vs t and $\cos(t)$ vs t in the same figure inserted below. We can see that the numerical solution does not closely follow $\cos(t)$.

Part 2

For part 2 we were asked to plot $|u(t) - \cos(t)|$ vs $(0.5 + \exp(20\cos(1.3t)))$ for $t \in (0,30]$. Below is a figure of the plot. From the plot we can see that for a horizontal value of 10^5 or greater u(t) follows $\cos(t)$ under 10^{-6} accuracy.

Problem 6

In Problem 6 we once again solve the IVP from problem 5 this time using different step-sizes $h=\frac{1}{2^3},\frac{1}{2^4},...,\frac{1}{2^8}.$ We will calculate numerical error estimation for both 2s-DIRK method with $\alpha=1-1/\sqrt{2}$ and backward euler method.

Part 1

Part 1 asks us to calculate and plot the numerical estimation for both methods when $h=\frac{1}{2^5}$. Below is a figure of the plot.

Part 2 In part 2 we followed part one except we plotted for $h=\frac{1}{2^7}$ insead of $h=\frac{1}{2^5}.$

