作业7简答

李子钰, 肖子达

2021年11月28日

习题 1.
$$Compute \det(B^4) \ for \ B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

解答.

$$\det (B^4) = \det(B)^4 = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix}^4 = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 0 \end{vmatrix}^4 = (-2)^4 = 16.$$

习题 2. Explain briefly the following assertion.

- 1. If A is invertible, then $det(A^{-1}) = det(A)^{-1}$.
- 2. Let A and B be square matrices. Even though AB and BA may not be equal, it is always true that det(AB) = det(BA).
- 3. Let A and P be square matrices with P invertible, then $det(PAP^{-1}) = det(A)$.
- 4. Let U be a square matrix such that $U^TU = I_n$, then $det(U) = \pm 1$.

解答. 1. 对 $A^{-1}A = I_n$ 取行列式, 得到 $\det(A^{-1})\det(A) = 1$.

- 2. $\det(AB) = \det(A) \det(B) = \det(B) \det(A) = \det(BA)$.
- 3. $\det(PAP^{-1}) = \det(P)\det(A)\det(P^{-1}) = \det(A)$.
- 4. 对 $U^TU = I_n$ 取行列式, 利用 $\det(U^T) = \det(U)$ 立刻得到.

习题 3. Compute the adjugate of the matrix $\begin{bmatrix} 3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$, and use the inver-

 $sion\ formula\ to\ calculate\ its\ inverse.$

解答. 直接计算

$$\operatorname{adj} \left[\begin{array}{ccc} 3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{array} \right] = \left[\begin{array}{ccc} -1 & -1 & 5 \\ 1 & -5 & 1 \\ 1 & 7 & -5 \end{array} \right], \quad \left[\begin{array}{cccc} 3 & 5 & 4 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cccc} -1/6 & -1/6 & 5/6 \\ 1/6 & -5/6 & 1/6 \\ 1/6 & 7/6 & -5/6 \end{array} \right].$$

习题 4. Suppose that all the entries of A are integers and det(A) = 1. Explain why all the entries of A^{-1} are integers.

解答. A^{-1} 的元素是 adj(A) 的元素除去 det(A), 由于 A 的元素都是整数,所以 adj(A) 的元素也都是整数,结合 det(A) = 1 得到答案.

习题 5. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,0,-3), (1,2,4) and (5,1,0).

解答. 体积 =
$$\begin{vmatrix} 1 & 1 & 5 \\ 0 & 2 & 1 \\ -3 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 7 & 15 \end{vmatrix} = 23.$$

习题 6. Let R be the triangle with vertices at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . Show that the area of R equals the absolute value of

$$\frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}.$$

解答. 注意
$$\frac{1}{2}$$
 $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 - x_1 & y_2 - y_1 & 0 \\ x_3 - x_1 & y_3 - y_1 & 0 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$, 右端即是向量 $(x_2 - x_1, y_2 - y_1)$ 与 $(x_3 - x_1, y_3 - y_1)$ 张成的三角形的面积.

习题 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation determined by the matrix $A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, with a, b, c positive. Let S be the unit ball, bounded by the surface $x^2 + x^2 + x^2 = 1$

- 1. Show that T(S) is bounded by the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$.
- 2. It is known that the volume of the unit ball is $\frac{4}{3}\pi$. Calculate the volume of T(S).

解答. 1. 设
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 是 S 中的任意点,则 $T(\vec{x}) = \begin{bmatrix} ax_1 \\ bx_2 \\ cx_3 \end{bmatrix}$,注意
$$\frac{(ax_1)^2}{a^2} + \frac{(bx_2)^2}{b^2} + \frac{(cx_3)^2}{c^2} = x_1^2 + x_2^2 + x_3^2 \le 1,$$

因而 $T(\vec{x})$ 是 $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ 中的点.

2. 题中椭球与单位球的体积比恰为 A 的行列式,从而 $T(S)=\det(A)\cdot \frac{4\pi}{3}=\frac{4}{3}\pi abc$.

习题 8. Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $0, \vec{e}_1, \vec{e}_2, \vec{e}_3$. Let S' be the tetrahedron with vertices at the vectors $0, \vec{v}_1, \vec{v}_2, \vec{v}_3$. See the figure.

- 1. Describe a linear transformation that maps S onto S'.
- 2. Find a formula for the volume of S', using the fact that the volume of S equals

 1 (very of the level) (beint)

 $\frac{1}{3} \cdot \{area \ of \ the \ base\} \cdot \{height\}.$

解答. 1. $\begin{bmatrix} \overrightarrow{v_1} & \overrightarrow{v_2} & \overrightarrow{v_3} \end{bmatrix}$.

2. S 的体积 = $\frac{1}{2}\frac{1}{3} = \frac{1}{6}$, 从而 S' 的体积 = $|\overrightarrow{v_1} \quad \overrightarrow{v_2} \quad \overrightarrow{v_3}| \cdot S$ 的体积 = $\frac{1}{6}|\overrightarrow{v_1} \quad \overrightarrow{v_2} \quad \overrightarrow{v_3}|$.