Filtres de Kalman Brique ROSE

Samuel Tardieu sam@rfc1149.net

École Nationale Supérieure des Télécommunications

Introduction

L'estimation de l'évolution d'un processus est compliquée dans un environnement bruité : les effecteurs ne sont pas fiables à 100% et les capteurs non plus. Lorsque les erreurs de mesure et d'action sont des bruits blancs dont on est capable d'estimer la covariance, il est possible de « rattraper » les erreurs de manière itérative avec les **filtres de Kalman**.

Représentation du système

Soit un processus discret x_k suivant la loi d'évolution :

$$x_k = Ax_{k-1} + Bu_k + w_{k-1}$$

- x_k est la grandeur caractéristique du système
- *u_k* représente la commande
- A et B sont des matrices représentant l'évolution souhaitée (elles sont constantes ici, mais peuvent ne pas l'etre)
- w_k est un bruit blanc indépendant de covariance Q

La mesure z_k de x_k est faite selon :

$$z_k = Hx_k + v_k$$

- *H* est une matrice (ici constante)
- v_k est un bruit blanc indépendant de covariance R

4 D > 4 B > 4 E > 4 E > E *) Q (*

Exemple: chute d'un objet

•
$$\ddot{y}(t) = -g$$

$$\dot{y}(t) = \dot{y}(t_0) - gt$$

•
$$y(t) = y(t_0) + t\dot{y}(t_0) - gt^2/2$$

En prenant une période de $t-t_0=1$ s, on obtient :

$$\left[\begin{array}{c} y(t) \\ \dot{y}(t) \end{array}\right] = \left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} y(t-1) \\ \dot{y}(t-1) \end{array}\right] + \left[\begin{array}{c} -g/2 \\ -g \end{array}\right]$$

On n'a ici pas de bruit sur la réalisation.

Samuel Tardieu (ENST)

Exemple: chute d'un objet (suite)

La mesure de la hauteur est faite toutes les secondes par un capteur imprécis avec une erreur modélisable sous forme de bruit blanc :

$$z(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + v(t)$$

v(t) est un bruit blanc de covariance R (ici une matrice 1×1).

État suivant

Soient \hat{x}_k^- l'estimation *a priori* du prochain état x_k , et \hat{x}_k l'estimation après la mesure de cet état. Les erreurs d'estimation sont alors :

$$\bullet \ e_k^- = x_k - \hat{x}_k^-$$

$$\bullet \ e_k = x_k - \hat{x}_k$$

La covariance des erreurs est alors :

•
$$P_{k}^{-} = E[e_{k}^{-}e_{k}^{-T}]$$

•
$$P_k = E[e_k e_k^T]$$

On calcule \hat{x}_k à partir de l'estimation *a priori* du prochain état, de l'estimation de la mesure et de la vraie mesure :

$$\bullet \hat{x}_k = \hat{x}_k^- + K(z_k - H\hat{x}_k^-)$$

K est le gain de Kalman.

Choix de K

Le but ici est de minimiser la covariance de l'erreur a posteriori P_k . En substituant e_k dans le calcul de P_k et en dérivant la trace de P_k par rapport à K pour chercher le minimum, on obtient :

$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1} = \frac{P_k^- H^T}{H P_k^- H^T + R}$$

- Plus la covariance de l'erreur de mesure R approche de zéro, plus le gain favorise le résidu (ou innovation) de la mesure $(z_k H\hat{x}_k^-)$.
- Plus la covariance de l'erreur de l'estimation a priori P_k^- approche de zéro, moins le résidu de la mesure a d'importance.

◆ロト ◆昼 ト ◆ 昼 ト ◆ 昼 ・ 夕 Q (*)

Samuel Tardieu (ENST) Filtres de Kalman 7 / 10

Calculs pratiques

Les équations nous permettent de projeter l'état estimé et l'estimation de la covariance de k-1 dans k :

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k-1}$$

$$P_k^- = AP_{k-1}A^T + Q$$

On peut donc calculer:

•
$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$$

•
$$P_k = (I - K_k H) P_k^-$$

On obtient donc à la fois une estimation de l'état et une estimation de la covariance de l'erreur sur l'état (la « confiance » dans l'état courant).

Samuel Tardieu (ENST)

État initial

On choisit:

- x₀ comme étant une croyance de l'état initial
- \bullet P_0 comme dépendant de la confiance dans l'état initial (intuition)
- Q comme dépendant de l'erreur des effecteurs
- R comme dépendant du bruit du capteur (mesures précédentes ou spec)

Exemples concrets

- Balises
 - L'état peut être composé de : x, y, α , \dot{x} , \dot{y} , $\dot{\alpha}$
 - On peut aussi prendre : ρ , θ , $\dot{\rho}$, $\dot{\theta}$
- Robot en équilibre
 - L'état peut être composé de : x, y, α , γ (inclinaison), \dot{x} , \dot{y} , $\dot{\alpha}$, $\dot{\gamma}$
- Les filtres de Kalman sont utilisés :
 - en aéronautique (projet autopilot)
 - pour synchroniser les GPS
- Ils peuvent être étendus pour des modèles non linéaires