LEVEL-I

	$\lfloor v^2 \rfloor / 1 \rfloor$		
1.	Number of critical points of f (x) = $\frac{ x^2 - 4 }{x^2 - 1}$	are	
	(A) 1 (C) 3	(B) 2 (D) no	ne of these
2.	If the function f (x) = $\cos x - 2ax + b$ increa (A) $a \le b$ (C) $a < -1/2$	ses for (B) a = (D) a ≥	= b/2
3.	Area of the triangle formed by the posit $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is	ive x-a	xis and the normal and the tangent to
	(A) $2\sqrt{3}$ sq. units (C) $4\sqrt{3}$ sq. units	` '	sq. units ne of these
4.	A tangent to the curve $y = \frac{x^2}{2}$ which is para	allel to t	he line y = x cuts off an intercept from the
	y-axis is (A) 1 (C) 1/2	(B) -1. (D) -1.	
5.	A particle moves on a co-ordinate line so Then distance travelled by the particle durin (A) 4/3 (C) 16/3		me interval $0 \le t \le 4$ is
6.	The derivative of f (x) = $ x $ at x = 0 is (A) 1 (C) -1	(B) 0 (D) do	es not exist
7.	$f(x) = -[x^2 + 3x^4 + 5x^6 + 5]$ have only	· val	ue in $(-\infty,\infty)$ at $x =$
8.	If $y = a \log x + bx^2 + x$ has its extremum y	alues a	t x = -1 and x =2 then a=
	b =		
9.	The value of b for which the function $f(x) = $ is given by	sin x –b	ox + c is decreasing in the interval $(-\infty,\infty)$
	(A) b < 1 (C) b > 1	(B) b ≥ (D) b ≤	
10.	Equation of the tangent to the curve $y = e^{- x }$ (A) is $ey + x = 2$ (C) is $ex + y = 1$	at the	point where it cuts the line x=1 (B) is x + y = e (D) does not exist
11.	The greatest and least values of the functio the interval [0,1] are	n f(x) =	$ax + b \sqrt{x + c}$, when $a > 0$, $b > 0$, $c > 0$ in
	(A) a+b+c and c	(B)	a/2 b√2+c, c
	(C) $\frac{a+b+c}{\sqrt{2}}$, c	(D)	None of these

	(C) 1	(D) does not exist
23.	Pick up the correct statement of the followir (A) If $f(x)$ is continuous at $x = a$ then $[f(x)]$ (B) If $f(x)$ is continuous at $x = a$ then $[f(x)]$ (C) If $ f(x) $ is continuous at $x = a$ then $f(x)$ (D) None of these	is differentiable at $x = a$.
24.	The greatest value of f (x) = $\cos (xe^{[x]} + 7x^2)$ (A) -1 (C) 0	-3x), x ∈ [-1, ∞) is (B) 1 (D) none of these.
25.	The equation of the tangent to the curv y = 2 is (A) $x + 2y = 2$ (C) $x - 2y = 1$	The f (x) = 1 + e^{-2x} where it cuts the line (B) 2x + y = 2 (D) x - 2y + 2 = 0
26.	The angle of intersection of curves $y = 4 - x$	2 and y = x^{2} is
27.		$\frac{\sin 2x}{\ln \left(x + \frac{\pi}{4}\right)}$ on the interval $\left[0, \frac{\pi}{2}\right]$ is
28.	Let $f(x) = x - \sin x$ and $g(x) = x - \tan x$, when	Te $x \in \left(0, \frac{\pi}{2}\right)$. Then for these value of x.
	(A) $f(x)$, $g(x) > 0$	(B) $f(x) \cdot g(x) < 0$
	(C) $\frac{f(x)}{g(x)} > 0$	(D) none of these
29.	Suppose that $f(x) \ge 0$ for all $x \in [0, 1]$ an $\forall x \in [0, 1]$, f is	d f is continuous in [0, 1] and $\int_{0}^{1} f(x)dx = 0$, then
	(A) entirely increasing (B) (C) constant (D)	entirely decreasing None of these

LEVEL-II

- 1. Let h (x) = f (x) + $\ln\{f(x)\}$ + $\{f(x)\}^2$ for every real number x, then
 - (A) h (x) is increasing whenever f (x) is increasing
 - (B) h (x) is increasing whenever f (x) is decreasing
 - (C) h (x) is decreasing whenever f (x) is increasing
 - (D) nothing can be said in general
- 2. Let $f(x) = a_0 + a_1x^2 + a_2x^4 + \dots + a_nx^{2n}$, where $0 < a_0 < a_1 < a_2 < \dots < a_n$, then f(x) has
 - (A) no minimum

(B) only one minimum

(C) no maximum

- (D) neither a maximum nor a minimum
- 3. The maximum value of $\frac{\sin x \cos x}{\sin x + \cos x}$ in the interval $\left[0, \frac{\pi}{2}\right]$ is
 - (A) 1/2

(B) 1/4

(C) $\frac{1}{2\sqrt{2}}$

- (D) 1/3
- 4. If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \infty}}}$, then the value of $\frac{dy}{dx}$ is
 - (A) $\sqrt{\frac{\sin x}{y+1}}$

(B) $\frac{\sin x}{v+1}$

(C) $\frac{\cos x}{2y+1}$

- (D) $\frac{\cos x}{2y-1}$
- 5. The curve $y e^{xy} + x = 0$ has a vertical tangent at the point
 - (A) (1, 1)

(B) at no point

(C)(0,1)

- (D) (1, 0)
- 6. A differentiable function f(x) has a relative minimum at x = 0 then the function y = f(x) + ax + b has a relative minimum at x = 0 for
 - (A) all a and all b

(B) all b if a = 0

(C) all b > 0

- (D) all $a \ge 0$
- 7. Let $f(x) = \begin{cases} 1 + \sin x, & x < 0 \\ x^2 x + 1, & x \ge 0 \end{cases}$. Then
 - (A) f has a local maximum at x = 0
- (B) f has a local minimum at x = 0
- (C) f is increasing every where
- (D) f is decreasing everywhere
- 8. Let $f(x) = x^{n+1} + a$. x^n , where 'a' is a positive real number, $n \in I^+$. Then x = 0 is a point of
 - (A) local minimum for any integer n
- (B) local maximum for any integer n
- (C) local minimum if n is an even integer
- (D) local minimum if n is an odd integer
- 9. $f(x) = max (sinx, cosx) \forall x \in R$. Then number of critical points $\in [-2\pi, 2\pi]$ is /are;
 - (A) 5

(B) 7

(C) 9

- (D) none of these
- 10. Let $\phi(x) = (f(x))^3 3(f(x))^2 + 4f(x) + 5x + 3 \sin x + 4 \cos x$ $\forall x \in R$, then
 - (A) φ is increasing whenever f is increasing
 - (B) φ is increasing when ever f is decreasing
 - (C) ϕ is decreasing whenever f is decreasing

- (D) Nothing can be said
- 11. A function $f(x) = \frac{x^2 3x + 2}{x^2 + 2x 3}$ is:
 - (A) Maximum at x = -3

- (B) Minimum at x = -3 and maximum at x = 1
- (C) No point of maxima or minima
- (D) Function is decreasing in it's domain.
- 12. Let $f(x) = \begin{cases} \sin(x^2 3x) & x \le 0 \\ 5x^2 + 6x & x > 0 \end{cases}$. Then f(x) has
 - (A) local maxima at x = 0

- (B) Local minima at x = 0
- (C) Global maxima at x = 0
- (D) Global minima at x = 0
- 13. If a, b, c, d are four positive real numbers such that abcd =1, then minimum value of (1+a) (1+b) (1+c) (1+d) is
 - (A) 8

(B) 12

(C) 16

- (D) 20
- 14. If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in \mathbb{R}$, then f(x) is given as
 - (A) $\frac{(x-2)^2}{3}$

(B) $x^2 - 2$

(C) 1

- (D) None of these
- 15. $\lim_{x\to 5\pi/4} [\sin x + \cos x]$, where [.] denotes the Integral part of x.
 - (A) is equal to -1

(B) is equal to -2

(C) is equal to -3

- (D) Does not exist
- 16. If $f(x) = \frac{\ln(1+x)^{1+x}}{x^2} \frac{1}{x}$, then the value of f(0) so that f(x) is continuous at x = 0, is;
 - (A) 2

(B)

(C)1/2

(D) None of these

- 17. If f (x) = $\frac{x}{1+|x|}$, then
 - (A) f (x) is differentiable $\forall x \in R$
- (B) f (x) is no where differentiable
- (C) f (x) is not differentiable at finite no. of point
- (D) None of these
- 18. If $f_1(x) = \sin x + \tan x$, $f_2(x) = 2x$ then
 - (A) $f_1(x) > f_2(x) \forall x \in (0, \pi/2)$
 - (B) $f_1(x) < f_2(x) \forall x \in (0, \pi/2)$
 - (C) $f_1(x) f_2(x) = 0$ has exactly one root $\forall x \in (0, \pi/2)$
 - (D) None of these
- 19. Let $f(x) = \begin{cases} |x-1| + a, & x \le 1 \\ 2x + 3, & x > 1 \end{cases}$. If f(x) has a local minima at x = 1. Then exhaustive set of
 - values of 'a' is;
 - (A) $a \le 4$

(B) $a \le 5$

(C) $a \le 6$

- (D) $a \le 7$
- 20. A differentiable function f(x) has a relative minimum at x = 0 then the function y = f(x) + ax + b has a relative minimum at x = 0 for

	(B) all a and all b (D) all b > 0	(B) all b if $a = 0$ (D) all $a \ge 0$
21.	The maximum value of $f(x) = x \ln x $ in $x \in (0)$,1) is;
	(A) 1/e (C) 1	(B) e (D) none of these
22.	If f (x) = $\int_{0}^{x} (t+1) (e^{t}-1) (t-2) (t+4) dt$ then f	(x) would assume the local minima at;
	(A) $x = -4$ (C) $x = 1$	(B) $x = 0$ (D) $x = 2$.
23.	$f(x) = tan^{-1} (sinx + cosx)$ is an increasing fun (A) $(0, \pi/4)$ (C) $(-\pi/4, \pi/4)$	ction in (B) $(0, \pi/2)$ (D) none of these.
24.	Let f: $R \rightarrow R$, where $f(x) = x^3$ - ax, $a \in R$. Then its entire domain is;	set of values of 'a' so that f(x) is increasing in
	(A) (-∞, 0) (C) (-∞, ∞)	(B) $(0, \infty)$ (D) none of these
25.	The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x +$	10 touch each other at the point
26.	Let f be differentiable for all x. if f (1) = -2 a (A) f (6) < 8 (C) f (6) \geq 5	and f' $(x) \ge 2$ for all $x \in [1, 6]$, then $(B) f (6) \ge 8$ $(D) f (6) \le 5$
27.	The function f (x) = $\frac{2x^2 - 1}{x^4}$ decreases in the	ne interval
28.	The function $f(x) = (x + 2) e^{-x}$ increases in decreases in	and
29.	The function $y = x - \cot^{-1} x - \log (x + \sqrt{x^2 + \cos x})$ (A) $(-\infty, 0)$ (C) $(0, \infty)$	-1) is increasing on (B) $(-\infty,\infty)$ (D) R $-\{0\}$
30.	Let f: $(0, \infty) \to R$ defined by $f(x) = x + \frac{9\pi^2}{x}$	+ cos x . Then minimum value of f(x) is
	(A) 10π – 1 (C) 3π – 1	(B) $6\pi - 1$ (D) none of these
31.	Let $a, n \in \mathbb{N}$ such that $a \ge n^3$ then $\sqrt[3]{a+1}$	- ³ √a is always
	(A) less than $\frac{1}{3n^2}$	(B) less than $\frac{1}{2n^3}$
	(C) more than $\frac{1}{n^3}$	(D) more than $\frac{1}{4n^2}$
32.	The global minimum value of function $f(x) = (A)$	$= x^3 + 3x^2 + 10x + \cos \pi x$ in [-2,3] is (B) 3-2 π

	(C)	16-2π		(D)	-15	5		
33.	The m (A) (C)	inimum value of the function do 0 1	efined t (B) (D)	oy f(x) = 1/2 3/2	= Ma	aximum {x, x+	-1, 2-x} is	
LEVE	L-III							
1.				(B) 144	4	and $a \in [1, 3]$, of these	then differe	ence between
2.		β and γ be the roots of f(x) = eatest integer function, is equa		-5x -1 (B) - 2 (D) - 3). Then $[lpha]$ + $[$	$eta]$ +[γ], whe	ere [.] denotes
3.	The nu (A) 0 (C) 2	umber of solutions of the equat	ion x ³ +	+2x ² +5 (B) 1 (D) 3	x +	2cosx = 0 in [[0, 2π] is	
4.	f(x)=2	•	ralues actly on	of pa e local (B) (-3 (D) (-0	max , 3)	ximum and ex	r which t cactly one lo	the equation ocal minimum.
5.	functio (A) Dif (C) not	der a function y = f (x) defined price of the first state of the first		(B) nor	n-di	x = 2t + t , y		∈ R. then
6.	If the lin	ne $ax + by + c = 0$ is normal to	the cur	ve x y +	+ 5 =	= 0 then		
	(A) a >	0 , b > 0		(B) b	> 0	, a < 0		
	(C) a <	< 0 , b < 0		(D) b	< 0	, a > 0		
7.	The nui (A) One (C) Thre		[1,2] is	(B) Tw		of these		
8.		c f(x) vanishes at $x = -2$ and h $(x) = \dots$	as extr	ema at	x =	$x = -1 \text{ and } x = \frac{1}{3}$	such that	$\int_{1}^{-1} f(x) dx = \frac{14}{3}$
9.	If g(x)	= f(x) + f(1-x) and $f''(x) < 0, 0$	$\leq x \leq 1$,					
	(A) g(x) is decreasing in (0, 1)		(B) g(x	k) is	decreasing ir	$1\left(0,\frac{1}{2}\right)$	

	(C) g(x) is decreasing in $\left(\frac{1}{2}, 1\right)$	(D) g(x) is increasing in (0, 1)
10.	Let $g'(x) > 0$ and $f'(x) < 0 \ \forall \ x \in R$ then (A) $g(f(x + 1)) > g(f(x - 1))$ (C) $g(f(x + 1) < g(f(x - 1))$	(B) $f(g(x-1)) < f(g(x+1))$ (D) $g(g'(x+1)) < g(g(x+1))$
11.	The function $f(x) = \frac{ax+b}{(x-1)(x-4)}$ has a loc	cal maxima at (2, -1) then
40	(A) $b = 1$, $a = 0$ (C) $b = -1$, $a = 0$	(B) a = 1, b = 0 (D) None of these
12.	$f_1(x) = 2x$, $f_2(x) = 3\sin x - x - \cos x$, then (A) $f_1(x) < f_2(x)$	for $x \in (0, \pi/2)$: (B) $f_1 x < f_2 x $
	(C) $f_1(x) > f_2(x)$	(D) $f_1 x > f_2 x $
13.	y = f(x) is a parabola, having its axis paralle at $x = 1$ then	I to $y - axis$. If the line $y = x$ touches this parabola
	(A) $f''(1) - f'(0) = 1$ (C) $f''(1) + f'(0) = 1$	(B) $f''(0) - f'(1) = 1$ (D) $f''(0) + f'(1) = 1$
14.	If $f(x) = 2e^x - ae^{-x} + (2a+1)x - 3$ is increasing (A) $a \in (-\infty, \infty) - \{0\}$ (C) $a \in (0, \infty)$	ng for all values of 'x' then (B) $a \in (-\infty, 0]$ (D) $a \in [0, \infty)$
15.	If $2a + 3b + 6c = 0$, then equation $ax^2 + bx + (A)(0, 1)$ (C) (1, 2)	c=0 has roots in the interval (B) (2, 3) (D) (0, 2)
16.	The equation $3x^2 + 4ax + b = 0$ has at least (A) $4a + b + 3 = 0$ (C) $b = 0$, $a = -4/3$	one root in $(0, 1)$ if (B) $2a + b + 1 = 0$ (D) None of these
17.	If f(x) satisfies the conditions of Rolle's theo	rem in [1, 2] then $\int_{-\infty}^{2} f'(x) dx$ is equal to
	(A) 3 (C) 1	(B) 0 (D) -1
18.	If $f(x) = x^2 e^{-x^2/a^2}$ is a non-decreasing function (A) $x \in [a, 2a)$ (C) $x \in (-a, 0)$	on then for $a > 0$; (B) $x \in (-\infty, -a] \cup [0, a]$ (D) None of these
19.	The function $f(x) = \frac{x}{1 + x \tan x}$ has	
	 (A) One point of minimum in the interval (0, (B) One point of maximum in the interval (0, (C) No point of maximum, no point of minim (D) Two points of maximum in (0, π/2) 	, π/2)
20.		$g(x) + g(x) = 0$, where a > 0, $g(x) \neq 0$ and has
	(A) 1 (C) 4	(B) 2 (D) 0

ANSWERS

LEVEL -I

1.	Α	2.	С	3.	Α	4.	D
5.	С	6.	D	7.	0	8.	2, -1/2
9.	С	10.	Α	11.	Α	12.	В
13.	С	14.	D	15.	Α	16.	D
17.	Α	18.	С	19.	С	20.	D
21.	С	22.	С	23.	С	24.	В
25.	В	26.	$2\sqrt{2}$	27.	$\sqrt{2}$	28.	В
29.	С						

LEVEL -II

1.	Α	2.	В	3.	С		D
5.	D	6.	В	7.	Α	8.	С
9.	В	10.	Α	11.	С	12.	В
13.	С	14.		15.	В	16.	С
17.	С	18.	Α	19.	В	20.	В
21.	Α		D	23.	С	24.	Α
25.	3, 34; $-\frac{1}{3}$,	$-\frac{74}{9}$		26.	В	27.	$\left(-\frac{1}{2},0\right)\cup\left(\frac{1}{2},\infty\right)$
28.	(0, 1); R -	(0, 1)		29.	В	30.	В
31.	À	32.	D	33.	С		

LEVEL -III

1. 5.	C A	2. 6. A, C	3. 7.		4. 8.	D $-x^3 - x^2 + x - 2$
9. 13. 17.	C C B	10. C 14. D 18. B	11. 15. 19.	Α	12. 16. 20.	В