Singulare Locus

"Recall"

- · Z quasi-proj. complex alg. variety, smooth, irred.
- $T = T^n = Spec \mathbb{C}[x_1^{\pm 1}, ..., x_n^{\pm 1}]$
- · field extension: Cck
- · base change : Zk := Z x spec & Spec k
- · K = C(x), x = (x,..., 2,)
- · X compl. alg. variety , $\Pi: X \longrightarrow Z$ marphism
- · Xz = | Euler characteristic of n'(z)/≥0
- · 2× = generic value
- · Y smooth off. variety

Just a bit more...

$$C(N) = \sum_{g \in Supp(Sr(N))} m_g V(g)$$
 - already records angularities

 $Supp(Sr(N)) = Supp(C(N)) = Sup$

2.2. Euler discriminant

Good: $\nabla_{z}(Z, \mathcal{M}_{\Pi}^{\text{hyp}}(y)) = Sing(\mathcal{M}_{\Pi}^{\text{hyp}}(y)) \subseteq Z$ $\exists z \in Z \mid \mathcal{X}_{z}(\mathcal{M}) < \mathcal{X}^{*} \end{bmatrix} \neq \nabla_{z}^{\Pi}(Z) = \forall z \in Z \mid \mathcal{X}_{z} < \mathcal{X}^{*} \end{bmatrix}$ Set $\mathcal{X}_{z}(\mathcal{M}) \stackrel{!}{=} \sum_{i=0}^{l} (-1)^{i} \text{clime } Ext_{D_{z}}(\mathcal{M}, O_{z}^{\text{an}})$,

and the generic Euler char. value $\mathcal{X}^{*} = \text{"holoromic rank } \mathcal{M}^{"}$,

and $\overline{L}_{z}: \{z\} \hookrightarrow Z$.

Lem 2.5/10 \mathcal{M} holonomic D_z -module, $Sing(\mathcal{M})^{1}$ the union of all codimension Λ components of $Sing(\mathcal{M})$. Then, $Sing(\mathcal{M})^{1} = \nabla_{\mathcal{X}}(\mathcal{Z}, \mathcal{M})^{1} \subset \nabla_{\mathcal{Z}}(\mathcal{Z}, \mathcal{M})$

Proof: "c" det $z \in Sing(M)^{1}$ be a generic i.e. smooth pownt. In the singular locus. Then, by construction $\exists p \in supp_{o}(gr(W)) : \overline{w}^{-1}(z) \in Spec(O_{T*z}/p) \subset T^{*}Z$

with $m_p > 0$. Then, by Kashiwara's index formula $\chi_z(\mathcal{M}) = \sum_j (-1)^d C_z(Z_d) m_d$

"and in the very affine case the number can only alrop" it follows that $\chi_z(M) < \chi^*$.

Then, $z \in V_2(Z, M)$ by definition, and the claim follows by taking Zariski closure.

">" General D-module theory shows integrable connections
e.g. holonomic D-modules on the smooth Cocus have generic
Euler characteristic.

"<u>demma:</u> Index is Euler characteristic"

$$\begin{array}{l} \mathcal{N}_{n}^{\text{hyp}}(\mathbf{b}) & \text{Mashwara,} \\ \mathcal{X}_{\mathbf{z}}(\mathcal{M}) & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Ext}_{\mathbf{D}_{\mathbf{z}}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{D}_{\mathbf{z}}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{D}_{\mathbf{z}}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right] \\ & = \sum_{i=0}^{\infty} (-1)^{i} \text{dim}_{\mathbf{C}} \left[\operatorname{Hom}_{\mathbf{C}}(\mathcal{M}, \mathcal{O}_{\mathbf{z}}^{\text{an}}) \right]$$

where ix: Xz -> ZxT, 172: Xz -> dz}.

The local system d_{ν} on $T=T^{n}$ with monodromy in the \overline{c} -th axis $e^{2\pi i F T} P_{i}$ is given by

$$d - d\log(x^{2} \dots x^{2n}) \wedge$$

$$\left(= \left(d - \frac{y_{2}}{x_{1}} dx_{1} + \dots + \frac{y_{n}}{x_{n}} dx_{n} \Lambda \right) x_{1}^{2n} \dots x_{n}^{2n} \right)$$

encoding solutions to differential equations.

Recall the "monodromies" for $\mathcal{M}_{n}^{hyp}(\nu)$ were given as $\mathcal{M}_{n}^{hyp}(\nu) = H^{\circ} \int_{\Omega_{z}} \mathcal{B}_{x|z} \chi^{\nu}$

2.3 Pure codimensionality

Goal: " $\nabla_{\mathcal{X}}^{\pi}(Z)$ is of coolin 1 (unless empty)." - 2.11.

demma 2.12: Let \mathcal{M} be a holonomic D_z -module, $Z' \subset Z$ smooth closed subvariety of coolin at least two.

Assume the local cohomology groups $H_{z'}^{\circ}(\mathcal{M}) = H_{z'}^{1}(\mathcal{M}) = 0$ vanish and \mathcal{M} is integrable on $Z \setminus Z'$. Then, \mathcal{M} integrable on Z and $Sing(\mathcal{M}) \cap Z' = \emptyset$.

Proof: Let $g: Z \setminus Z' \hookrightarrow Z$ be the natural inclusion, then $g^*\mathcal{M} = E: g^*\mathcal{M} \longrightarrow g^*\mathcal{M} \otimes_{\mathcal{O}_Z} \mathcal{N}_Z$ is an integrable connection on Z. Consider the LES

 $H_{z'}(\mathcal{M}) \longrightarrow \mathcal{M} \longrightarrow H^{\circ}(\S_{g} \times \mathcal{M}) \longrightarrow H_{z'}(\mathcal{M})$ giving the iso $\mathcal{M} \simeq H^{\circ}(\S_{g} \times \mathcal{M})$, and as codim Z' > 1 we also have $H_{z'}(E) = H_{z'}(E) = 0$, and thus $E \simeq H^{\circ}(\S_{g} \times E)$. It follows that $\mathcal{M} \simeq E$ is an integrable connection on all of Z.

Then, integrable implies it has generic Euler characteristic

Then, integrable implies it has generic Euler characteristicand hence $Sing M \cap Z^1 = \emptyset$, by 2.2.5.

Thm 2.11: $\nabla_2^{\Pi}(2)$ is pure of cooling 1

Proof idea: For $Z' \subset Sing \mathcal{M}$ with coolin of two or greater we show the assumptions of 2.12 are satisfied, hence $Sing \mathcal{M} \cap Z' = \emptyset$.

2.4 Singularity of solutions

Groal: $\nabla_{\mathbf{Z}}^{\Pi}(\mathbf{Z}) = \operatorname{Sing}(\mathcal{M}_{\Pi}^{hyp}(\mathbf{Y})) = \operatorname{S}(\mathcal{M}_{\Pi}^{hyp}(\mathbf{Y}))$

failure of solutions to be holomorphic is a pure coolin 1 constraint

Idea: "Hartogs theorem for D-modules"

Prop 2.14: Let $\dim_{\mathbb{C}} \mathcal{L} = 1$. M is a regular holonomic $D_{\mathbb{C}}$ -module of th>1 and $O \in Sing(M) \subset \mathcal{L}$, and suppose $L^{-1}z_{0}^{*}M = 0$. Then, a holomorphic solution to M exists which can not be analytically continued to a neighbourhood of O.

Proof: By 4.16 in [4], $R Hom_{D_0}(D\bar{c}^*M, C) \simeq R Hom_{C_0^*D_2}(\bar{c}^*M, \hat{O}_{cs/2})$ The assumption $L'\bar{c}^*M = O$, implies that $dim_C Hom_{D_2}(M, O_0^{ah}) < \chi^* = hol. The M$

Prop 2.15: Extends 2.14 for dima 2 > 1

Thm 2.16: "Euler discriminant is the locus of non-holomorphicity of solutions"

Tor $\nu \in \mathbb{C}^n$ generic are get $\nabla^{\Pi}_{\varkappa}(z) = S_{w_{\eta}}(\mathcal{M}_{\Pi}^{h_{\gamma}p}(y)) = S(\mathcal{M}_{\Pi}^{h_{\gamma}p}(y))$