Advanced Data Structure and Algorithms fo Problem Solving

Lecture # 04

Vineet Gandhi

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Recursion

- Recursion is a mathematical technique that evaluates a function by calling the same function repeatedly on smaller inputs.
- Most programming languages support such a style of programming.
 - Often very elegant to study.
- Helps in problem solving too.

• Q: How many twists does it take to screw in a

Recursion

light bulb?

A: Is it already screwed in? Then zero. If not, then twist it once, ask me again, and add 1 to my answer.

Recursion

- Relates to mathematical induction
- Divide and Conquer algorithms

A mathematical view of computer science

Lets start with an examples

- A mathematical view of compater science
- factorial(n) = n* factorial(n-1)

Three Laws of Recursion

- factorial(n) = n* factorial(n-1)
- A recursive algorithm must change its state and move toward the base case.
- A recursive algorithm must call itself, recursively.

Factorial – deeper look

Space and time complexity

Factorial – deeper look

Inductive Reasoning

- A recursive algorithm must have a **base case**.
- If I call factorial(n) with n=1, I am done
- If I call factorial(n) with n>1, it makes a recursive call with a smaller value of n; must eventually reach n=1.

Recursion and Induction

Recursion with multiple base cases

Recursion with multiple base cases

Time and space complexity

Fibonacci deeper look

Recursion is not always good

Recursion with memoization

Exponentiation

Modular Exponentiation

Thank You