Decision Making Methods Presentation 1

Group 4

Md Tuhin Islam (32279) Shahnawaz Alam (32445) Safayet Hossain Shimul (32167) Al Jubaiar (26107)

Agenda

- The Assignment
- Stakeholder Profile
- Liquid Organic Hydrogen Carriers (LOHC)
- Problem Analysis
- Key Decision Points
- Potential LOHC import countries

The Assignment

Group	Stakeholder	Decision
4	Henkel AG & Co. KGaA	From which country should green hydrogen in the form of LOHC be imported?

- Analyze the problem
- Describe the decision that has to be taken
- Find reasonable solution options

Stakeholder Profile

Henkel AG & Co. KGaA is a globally recognized multinational corporation headquartered in Düsseldorf, Germany. Founded in 1876, Henkel is a leading producer of consumer and industrial products, with a strong focus on innovations and sustainability.

HENKEL 20 22

1 ADHESI TECHNO

3 LAUNDRY & HOME CARE

PRODUCTION SITES AROUND THE WORLD

LEADING BRANDS

LOCTITE

Persil

€22.4 bn

Düsseldorf

NUMBER OF COUNTRIES IN WHICH WE OPERATE

Source: Henkel AG & Co. KGaA, 2023, p. 6

Liquid Organic Hydrogen Carriers (LOHC)

Handling hydrogen as an oil

Problem Analysis

What are the long term targets and ambitions of Henkel regarding climate?

Achieved

Topic	Targets and ambitions	2022
Climate	Climate-positive operations (2030)	
	100 % of our electricity sourced from renewable sources (2030)	70 %
	– 65 % CO₂ emissions from our operations per ton of product (2025; vs. 2010)	- 55 %
	–30 % CO₂ emissions from raw materials and packaging per ton of product (2030; vs. 2017)	- 15 % ³
	– 100 million tons of CO₂ with customers, consumers and suppliers (2016–2025)	>78 million

Source: Henkel AG & Co. KGaA, 2023, p. 16,39

Problem Analysis

Why not produce green hydrogen onsite?

- High Energy Demand: Electrolysis for hydrogen production requires massive amounts of green electricity.
- **Space Constraints**: Obtaining the necessary space for electrolysis and renewables is a challenge, especially in less favorable regions.
- Infrastructure Complexities: Expanding the electricity grid to transmit large volumes of renewable energy is a complex task

Focus

Roland Berger

Hydrogen transportation | The key to unlocking the clean hydrogen economy

Getting hydrogen from global production sites to end users at the lowest possible cost will be key to the success of the green economy. The potential for onsite green hydrogen production in European demand centers is limited. First, huge amounts of green electricity will be needed to power the hydrogen-producing electrolyzers. The conversion of the European steel industry to a more emission-friendly process by using hydrogen for the direct reduction of iron alone would require up to 10 m tons of hydrogen per year. Depending on the system efficiency, the production of green hydrogen for the steel industry would require roughly 60 GW of electrolysis capacity and 120-180 GW of renewable energy capacity. To put those numbers in perspective, Germany's total installed capacity of onshore and offshore wind power stands at 63 GW today. Second, the physical space required to achieve such capacities is substantial, especially in regions with less favorable conditions for renewables. Such space is rarely available. And third, the expansion of the electricity grid to transport such huge amounts of renewable energy is a difficult undertaking. Many ongoing high voltage grid projects face delays and those delays in fact hinder a faster renewable energy buildout in Europe.

Berger, R. (2021), p. 4

Problem Analysis

Why to import in the form of LOHC?

Main characteristics		Ammonia	Liquefied hydrogen	LOHC (benzyltoluene)
Storage density	Volum. [kg H ₂ /m ³ of carrier] Gravim. [kg H ₂ /t of carrier]	121.2 ¹ 177.5 ¹	70.8 1,000	55.2 62.7
Energy needs	Conversion [MWh/t H ₂] Reconversion [MWh/t H ₂]	5.75 11.2	12.0 0.6	0.5 15.0
Technological and process maturity	Conversion – Small scale Conversion – Large scale Storage Transportation – Ship Transportation – Rail Transportation – Truck Reconversion			
Operational value propositions	Advantages	 High storage capacity Mature value chain, except for cracking process 	No reconversion requiredHigh purity hydrogen	 Easy to store and transport (diesel-like liquid) Use of existing infrastructure
	Disadvantages	 Additional purification step needed High energy require- ments for cracking process 	 Boil-off losses along value chain High energy require- ments for liquefaction Storage and transport complexity 	 Number of cycles impact environmental footprint High energy requirements for dehydrogenation
	Safety	Acute toxicity, flammable, explosive under heat, toxic to aquatic life	Highly flammable with no visible flame, can form explosive mixtures with air	Low toxicity, non- explosive, hazardous to aquatic environment

Berger, R. (2021), p. 12 Page 7

Key Decision Points

• **Source Strategy**: Determine the origin(s) of LOHC imports.

Decide whether to work with single supplier or multiple suppliers.

• Supplier Selection: Identify potential suppliers based on profile, reputation and product quality.

• **Demand and Price**: Identify market demand to ensure that import quantities align with Henkel's needs.

Decide purchasing price/unit.

• Quality Standards: Establish quality standards and specifications for LOHC to ensure it meets

Henkel's Sustainable Development Goals (SDGs).

• Logistics and Transportation: Choose the mode of transportation and logistics providers that meets low

emissions logistics policies of Henkel.

Determine shipping schedule, volume, and import terminals.

Storage and Handling: Decide on storage and handling requirements.

• Safety Measurements: Define safety measures based on <u>Safety, Health and Environment (SHE) Standards</u>.

• Infrastructure: Required facilities for dehydrogenation process.

International cooperation and export potential on green hydrogen with Germany

Dertinger A., et al. (n.d.), p. 18

Covering Germany's green hydrogen demand: Transport options for enabling imports

Subscription Analytics

Software Solutions >

Advisorv

Commentary >

RENEWABLE HYDROGEN IMPORTS COULD **COMPETE WITH EU PRODUCTION BY 2030**

January 24, 2023

- Renewable hydrogen imports into the EU from Australia, Chile, and Morocco would be economically attra 2030, supporting the bloc's goal of sourcing half of its hydrogen consumption from imports by 2030. Aurc Research finds
- Imports of renewable hydrogen from Morocco, transported via ship in liquid form, would be the most com supply source compared to domestic hydrogen production by 2030, assuming the end user is in Germany modelling shows

Canada, and Saudi Arabia.

Dertinger A., et al. (n.d.), p. 17 Tracey, M. (2023)

Ivanova, A. (2022) Radowitz, B. (2022)

Germany plans to import hydrogen from UAE using 'liquid organic carrier' technology

Utility Uniper, start-up Hydrogenious LOHC and Jera Americas together with the Abu Dhabi National Oil Company (ADNOC) are eyeing up a plan to transport hydrogen fro the United Arab Emirates (UAE) to Germany using so-called liquid organic hydrogen carrier (LOHC) technology.

News Events Press Releases Research Advertising

Wind

Project targets green hydrogen import from Sweden to Germany by 2026

Hydrogenious LOHC Technologies GmbH is planning to transport up to 8,000 tonnes of green hydrogen per year from Sweden to Germany and the Netherlands by 2026, using the liquid organic hydrogen carriers (LOHC) technology.

- The EU and UK countries: UK, Spain, Sweden, Norway, Denmark, Finland
- The Middle East and North Africa (MENA) region countries: Saudi Arabia, Oman, UAE, Morocco, Turkey, Algeria
- Other countries: Australia, Brazil, Canada, Chile, New Zealand, USA, Iceland

Berger, R. (2021, October). Hydrogen transportation. Retrieved October 29, 2023, from https://www.rolandberger.com/publications/publication_pdf/roland_berger_hydrogen_transport.pdf

Dertinger, A., Schimmel, M., Jörling, K., Bietenholz, D., Schult, H., Steinbacher, D. K., & Kerres, P. (n.d.). Covering Germany's green hydrogen demand: Transport options for enabling imports. Guidehouse. Retrieved October 29, 2023, from https://guidehouse.com/-/media/www/site/insights/energy/2022/transport-options-for-covering-germanys-green-hydrogen-demand.pdf

Henkel AG & Co. KGaA. (2023, March 7). Sustainability Report 2022. Retrieved October 29, 2023, from https://www.henkel.com/resource/blob/1804850/56551a2284bd7d2c9838410b8395a5dd/data/2022-sustainability-report.pdf

Ivanova, A. (2022, October 12). Project targets green hydrogen import from Sweden to Germany by 2026. Renewables Now. https://renewablesnow.com/news/project-targets-green-hydrogen-import-from-sweden-to-germany-by-2026-800912/

Radowitz, B. (2022, March 21). Germany plans to import hydrogen from UAE using 'liquid organic carrier' technology. Recharge. https://www.rechargenews.com/energy-transition/germany-plans-to-import-hydrogen-from-uae-using-liquid-organic-carrier-technology/2-1-1188575

Tracey, M. (2023, January 24). Renewable hydrogen imports could compete with EU production by 2030. Aurora Energy Research. https://auroraer.com/media/renewable-hydrogen-imports-could-compete-with-eu-production-by-2030/

Thank You