Exam problem: profit/ overbooking.

$$e_i = y_i - (\alpha + \beta x_i)$$

Least squares estimates $\hat{\alpha}^*$ and $\hat{\beta}^*$ minimize $\sum_{i=1}^n e_i^2$
Why e_i^2 ?, it is easier than the leid.

Formula: Theorem 14.2

$$\hat{A}^* = \hat{Y} - \hat{\beta}^* \hat{x} \qquad \hat{\beta}^* = \frac{S_{xy}}{S_{xx}}$$
where $\hat{Y} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

$$S_{xy} = \sum_{i=1}^{n} (X_i - \bar{X})(y_i - \bar{Y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

$$S_{xx} = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

Proof:
let
$$q = \sum_{i=1}^{n} (y_i - (\hat{a} + \hat{\beta} x_i))^2$$

$$\frac{\partial q}{\partial \hat{\alpha}} = \sum_{i=1}^{n} (-2) \left(y_i - (\hat{\alpha} + \hat{\beta} \chi_i) \right) = 0$$

$$\int_{\alpha} \frac{\partial q}{\partial \hat{\beta}} = \sum_{i=1}^{n} (-2 x_i) (y_i - (\hat{\alpha} + \hat{\beta} x_i)) = 0$$

Solving system for $\hat{\alpha}$, $\hat{\beta}$, we get desired result.

$$\hat{\beta}^* = 3.471 \quad \hat{\alpha}^* = 21.69$$

So Least-squares line is
$$y = 21.69 + 3.471 \chi$$

Remerk: X could be multidimensional. i.e. linear function of several variables.

§ 14.4: Normal Regression Apalysis.

recall that
$$M_{y|x} = \mathbb{E}(Y|x) = \int_{-\infty}^{\infty} y \, \omega(y|x) \, dy$$

In particular, ve assume

$$W(y|x) = \frac{1}{\sigma \sqrt{2\pi}} \left(x p \left(\frac{1}{2\sigma^2} \left(y - (\alpha + px) \right)^2 \right) \right)$$

(normal density with m = d+ Bx and variance or

- 1) the estimation of o, a, B.
- (1) test of hypotheses concerningthese
- (3) predictions based on estimate MyIX = â+ p X
- D MLE of X, 3, 5

The literal
$$X_{ij}$$
 and X_{ij} are X_{ij} are X_{ij} are X_{ij} and X_{ij} are X_{ij} are X_{ij} are X_{ij} and X_{ij} are X_{ij} are X_{ij} and X_{i

 $=\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-\left(y_{i}-\hat{\beta}_{i}+\hat{\beta}_{i}\chi_{c}\right)\right)^{2}$

$$= \frac{1}{n} \left[\frac{2}{3!} \left(\frac{1}{3!} - \left(\frac{1}{3} - \frac{1}{3!} \times + \frac{1}{3!} \times x_i \right) \right]^2$$

$$= \frac{1}{n} \left[\frac{2}{3!} \left(\frac{1}{3!} - \frac{1}{3} - \frac{1}{3!} \left(\frac{1}{3!} - \frac{1}{3!} \right) \left(\frac{1}{3!} - \frac{1}{3!} \right) \right] + \hat{\beta}^2 \frac{2}{3!} \left(\frac{1}{3!} - \frac{1}{3!} \right)^2$$

$$= \frac{1}{n} \left[\frac{1}{3!} \left(\frac{1}{3!} - \frac{1}{3!} \right) \left(\frac{1}{3!} - \frac{1}{3!} - \frac{1}{3!} \right) \left(\frac{1}{3!} - \frac{1}{3!} - \frac{1}{3!} \right) \left(\frac{1}{3!} - \frac{1$$

$$\Rightarrow \hat{\sigma} = \sqrt{\frac{1}{n}(s_{yy} - \hat{\beta}s_{xy})}$$