1. For which $a, b \in \mathbb{Q}$ is the matrix

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 & 0 \\ 1 & a & 1 & -1 & b \end{pmatrix}$$

partition regular?

used PR

- \mathbf{Z} . Deduce from Ramsey's theorem that whenever \mathbb{N} is finitely coloured there exist x, y, z with $\{x, y, z, x + y, y + z, x + y + z\}$ monochromatic.
- 3. Verify directly that the matrix corresponding to the Finite Sums theorem has the columns property.
- 4. A rational matrix A is called partition regular over \mathbb{Z} (resp. \mathbb{Q}) if whenever $\mathbb{Z} \{0\}$ (resp. $\mathbb{Q} \{0\}$) is finitely coloured there is a monochromatic vector x with Ax = 0. Show that A is partition regular over \mathbb{Z} if and only if it is partition regular over \mathbb{N} . If A is partition regular over \mathbb{Q} , must it be partition regular over \mathbb{N} ?
- 5. For each $k \in \mathbb{N}$, construct a rational matrix A such that A is not partition regular but, whenever \mathbb{N} is k-coloured, there is a monochromatic vector x with Ax = 0.
- 6. For each $m \in \mathbb{N}$, prove that whenever the collection of finite non-empty subsets of \mathbb{N} is finitely coloured there exist disjoint F_1, \ldots, F_m with $\{\bigcup_{i \in I} F_i : \emptyset \neq I \subset [m]\}$ monochromatic.
- 7. Do the partition regular subsets of \mathbb{N} form an ultrafilter?
- 8. Show that the sequence of principal ultrafilters $1, 2, \ldots$ in $\beta \mathbb{N}$ has no convergent subsequence. Is the topology on $\beta \mathbb{N}$ induced by a metric?
- 9. Prove that $\beta \mathbb{N} \mathbb{N}$ is not separable (meaning: it has no countable dense subset).
- 10. Show that if $\mathcal{U}, \mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n$ are distinct ultrafilters on \mathbb{N} then we can find $A \in \mathcal{U}$ such that $A \notin \mathcal{U}_i$ for all i. Show also that if $\mathcal{U}, \mathcal{U}_1, \mathcal{U}_2, \dots$ are distinct ultrafilters on \mathbb{N} then there need not exist $A \in \mathcal{U}$ such that $A \notin \mathcal{U}_i$ for all i. What happens if we insist that each \mathcal{U}_i is non-principal?
- $^{+}11$. How many ultrafilters are there on \mathbb{N} ?

For which
$$a,b\in\mathbb{Q}$$
 is the matrix
$$\begin{pmatrix} 1 & 0 & 0 & -1 & 1\\ 1 & -1 & 0 & 1 & 0\\ 1 & a & 1 & -1 & b \end{pmatrix}$$

partition regular?

PR=> CP by Rado. To find B, for which
$$\sum_{i \in B_1} c^{(i)} = 0$$
must have $B_i = \S2,4,5\S$ or $B_i = \S2,3,4,5\S$ by looking at the first two rows.

B = {2,3,4,5} Betton cew is a+b=0 => b=-a

1. Show have to use column 2 in B,

1 -10 1 0 2. Show have to have $B_1 = \{2,3,4,5\}$ or $\{2,4,5\}$ 1 0 1 -1 b 3. $B_1 = \{2,3,4,5\}$ we have $B_1 = \{2,3,4,5\}$ or $\{2,4,5\}$ So long as A + b = 0 (to ensure $\sum_{i \in B_1}^{C_1} e^{-i} = 0$) $B_1 = \{2,4,5\}$ Sust need to show $C_2 + C_1 \in Span B_1$ (other cases are implied by this).

Since $\sum_{i \in B_1}^{C_1} e^{-i} = 0$ can consider only columns 2,5.

Should get A + b = 1, b - a = 2

		/	()	Q - 1		\	.,			
Usino	Rado:		Q 1	(0	-10	satisfi ag. with	ias the c	alums,	properti	4
\sim						, '	<i>-</i> -	. –		י
			1 1	, Ó	Q -1	'ag. with	B1= 32,	4,5,6{		
			`			.7				
							B2 = \$1,3	·ξ so b	y Rado	
									_	
						WINF	C 3 ma	anachromat	ic sol	ution.
1.3.4				c. 1			٥.		0	
Withou	it Rada:	het	<i>د: ۱۱</i> ۷	- \k)	be	an arbitra	ry finite	colouring a	\$ 1N	and
		_	. (2)	٠.٦			J .	7		
induce	م	colouring	C,: 110,	- (k)	with	c1(0p) = c	(b-a).			
		•								
Вц	Ransey	J ma	one 4	-set	30.P10	.,03.				
-	_									
het	x = b - a	. , 4= 0	: ב , פ-	- 9-c	Hen	x+4- C	a ,4+2	= 9-P		

Note: This works for higher soms, but is always falling short of the

Cinite sums theorem.

and x+y+2= c-a which are all

monochromatic.

3. Verify directly that the matrix corresponding to the Finite Sums theorem has the columns property.

At time 1, take x and the corresponding -1's in the places whose in the places whose in the places whose in the places whose in the x has a 1.

At time 2, take any new entry's in (1) (2) by and the -1's corresponding to those new entries.

Take a bad colouring of IN: Want to manufacture out of a colouring of IN

Given colouring of N

Reflect IN to -IN

and create duplicate colours for each

colour to give a bad colouring of Z

Whenever have k-colouring of Q. q....., 2n <u>CLAIM</u>: 3 finite part of Q s.t. Whenever q....., qn k-co

Q as Sq., q2,... }

Order

<u>CLAIM</u>: 3 finite part of Q s.t. Whenever q_1, \dots, q_n k-coloured 3 mon solution to Ax = 0

Compactness argument. This is the usual argument ance you have said &-coloured, solving in set 23 solving in some finite part of the set.

4. A rational matrix A is called partition regular over \mathbb{Z} (resp. \mathbb{Q}) if whenever $\mathbb{Z} - \{0\}$ (resp. $\mathbb{Q} - \{0\}$) is finitely coloured there is a monochromatic vector x with Ax = 0. Show that A is partition regular over \mathbb{Z} if and only if it is partition regular over \mathbb{N} . If A is partition regular over \mathbb{Q} , must it be partition regular over \mathbb{N} ?

A PR over Z => A PR over IN A := mx1

Fix an arbitrary c and let $x \in \mathbb{Z} - 903$ be such that Cl_x is constant. Let yi = 1xi and $I = 3i \in [m]$: xi < 03.

Then AJy = 0 where $y \in IN$ and Jii = 1 if $i \in I$ and Jij = 0 often $i \in I$.

Thus AI is partition regular over IN and so AJ satisfies the columns property by Rado.

AIM: A3 satisfies columns property => A does

Note: Permuting rows does not offect satisfying columns property so WLOG $S = \begin{pmatrix} TrO \\ Q-T_1 \end{pmatrix}$ for $O \le r \le S \le N$ and r+S = N.

However permuting rows is connecessary. Let $A'_{(1)}$... $A'_{(n)}$ be the columns of A3 and $A_{(1)}$..., $A_{(n)}$ be the columns of A Hen

$$\begin{pmatrix} 1 & 1 & -2 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ -1 & -1 & 0 \end{pmatrix}$$

$$\begin{cases} 2 \times 3 & 3 \times 3 \\ 8_1 = \{1, 1, 1, 3\} = 7 & (P) \\ \begin{cases} 11, 13 \\ 11, 13 \end{cases} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

Ax =

5. For each $k \in \mathbb{N}$, construct a rational matrix A such that A is not partition regular but, whenever \mathbb{N} is k-coloured, there is a monochromatic vector x with Ax = 0.

A not PR => A doesn't satisfy the column's property Want Az= 0 mono for every k-colouring but I a 2+1 colouring for which Here is no a with Ax=0. K=1: A= (This was hard 10 colours look at 1,2,4,...,2" Hen some two have the same colour Try n -1 -1 ... -1 with den so nothing soms to a As long as n = sum of d 1's and 2's re. d<n < 2d then can solve this in \$1,23. n = sum of d is and 4s n = d+ multiple of 3 n = 0 + multiple of 7 n = sum of d is and 8s heap going to n= sum of d is and 2"s

Way to make it work with 10 colours is in set x of 11 points Here is always a solution.

6. For each $m \in \mathbb{N}$, prove that whenever the collection of finite non-empty subsets of \mathbb{N} is finitely coloured there exist disjoint F_1, \ldots, F_m with $\{\bigcup_{i \in I} F_i : \emptyset \neq I \subset [m]\}$ monochromatic.

By VdW can find as subsets M.J.... >Mu for N suff. large such that M=MN satisfies M(a), M(and),..., M(and),..., M(and) are all monochromatic and WOG RED.

Now by inductive argument, since M is as, whenever M is finitely adapted there exists disjoint F.,..., Fm-1 disjoint subsets of Mall of the same size such that SUF: 9 & ICM3 is monochromatic.

Could use Finite Soms theorem instead of Vender Waarden and this would have worked!

By applying hamsey many times can insist have M such that

M is wonachramatic for each Isrsk

141 is Monachramatic for each 1515 R

Then by Finite Soms can find $x_1, x_2, ..., x_m$ s.t. $FS(x_1, ..., x_m)$ is mono-chromatic.

Note: Could also do this proof in reverse

7. Do the partition regular subsets of $\mathbb N$ form an ultrafilter?

Note: If this were true it would be an explicit ultra	filter which does
net exist (was said in notes)	
	1
Ro'ld Pro	large sets
Take first PR matrix A, s.t. Ax=0. Take s, as all A	8
Take first PR matrix A, s.t. $Ax=0$. Take s, as all $\frac{A}{s}$ elements in $x \in s$,	AS, wage
Continue enumerating all PR sets then get X's	∟ λ"s₂
J	,
A, B disjoint and done.	
Alba kina Til ad in	
Alternative: Take adapting	
Take A as the red and B as the blue.	
Then 2A ⊆ 8 and 2B = A	

Q8 VAEU. All primes eventually belong to A where Ca is open neighboourhood of U. Not induced by a metric since the principal ultrafilters are dense. 99 BIN - IN Given sequence of ultrafilters U1, U2, ... want to find an open set A fley do not intersect. Pick on A: A. & U ∞ A₂ CA1: A2 € U2 Then pick x, EA, x2 E A2,.... Then {x1, x2,...} & U, since it is a subset of A Hen not in the for any & since only \$x1,..., xe-is could be in it and any finite amount, doesn't affect it.

of the x:

Q10 Find sets $A_1 \in \mathcal{U}$ $A_2 \in \mathcal{U}$ $A_n \in \mathcal{U}$ $A_n \notin \mathcal{U}$	Hen take A, n nAn
MARCHAL HAR W	
For infinite example take $U_1 = \widetilde{1}$, $U_2 = \widetilde{2}$,	Hen ∀n: n∉A so A∈U
	V~
What about without principal ultrafilters? Fix some ultrafi	(lter V) = (N
LEE CLIS HA H S.C. PINCI IS 620 - 19 10 13	, E V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Uz = All A s.t. Anczis BIG	
Let U= All A s.f. in: Anch is BIG is BIG	·.
	T. Control of the Con