Análise de Séries Temporais:

Métricas de acurácia e validação cruzada

Prof. Dr. José Augusto Fiorucci

Universidade de Brasília Departamento de Estatística

Métricas para a qualidade de ajuste

- Métricas tradicionais
 - Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |y_t - \hat{y}_t|$$

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2$$

Root mean squared error

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2}$$

Métricas para a qualidade de ajuste

- Métricas livre de escala
 - Mean Absolute Percentage Error

$$MAPE = 100 \frac{1}{n} \sum_{t=1}^{n} \frac{|y_t - \hat{y}_t|}{|y_t|}$$

Mean Squared Percentage Error

$$MSPE = \frac{1}{n} \sum_{t=1}^{n} \left(\frac{y_t - \hat{y}_t}{y_t} \right)^2$$

Root Mean Squared Percentage Error

$$RMSPE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} \left(\frac{y_t - \hat{y}_t}{y_t} \right)^2}$$

Métricas de acurácia para previsão

- Métricas dependentes de escala
 - Mean Absolute Error

$$MAE = \frac{1}{h} \sum_{i=1}^{h} |y_{n+i} - \hat{y}_{n+i|n}|$$

Mean Squared Error

$$MSE = \frac{1}{h} \sum_{i=1}^{h} (y_{n+i} - \hat{y}_{n+i|n})^2$$

Root mean squared error

$$RMSE = \sqrt{\frac{1}{h} \sum_{i=1}^{h} (y_{n+i} - \hat{y}_{n+i|n})^2}$$

Métricas de acurácia para previsão: MAPE

Mean Absolute Percentage Error

MAPE =
$$\frac{100}{h} \sum_{i=1}^{h} \frac{|y_{n+i} - \hat{y}_{n+i|n}|}{|y_{n+i}|}$$

- Utilizada nas competições
 M1 (1982) e M2 (1993))
- Invariante por escala
- Não simétrica,

$$MAPE(Y, \widehat{Y}) \neq MAPE(\widehat{Y}, Y)$$

Métricas de acurácia para previsão: sMAPE

symmetric Mean Absolute Percentage
 Error

$$\textit{sMAPE} = \frac{100}{h} \sum_{i=1}^{h} \frac{|y_{n+i} - \hat{y}_{n+i|n}|}{(|y_{n+i}| + |\hat{y}_{n+i|n}|)/2}$$

- Proposta e utilizada na competição M3 (2000)
- Invariante por escala
- Simétrica
- Favorece erros positivos 😂

1988

1990

1986

1980

Métricas de acurácia para previsão: MASE

Mean Absolute Scaled Error

$$MASE = \frac{n-f}{h} \frac{\sum_{i=1}^{h} |y_{n+i} - \hat{y}_{n+i|n}|}{\sum_{t=f+1}^{n} |y_{t} - y_{t-f}|}$$

sendo f a frequência da série. Exemplo, f=1 pra séries anuais e f=12 para séries mensais.

- Hyndman & Koehler (2006);
- Resolve todos os problemas anteriores;
- Métrica mais aceita atualmente;

Exemplo

Médias das métricas sMAPE e MASE calculadas para as 3003 séries do banco de dados da M3 (Fiorucci et al., 2016)

Data	Methods	Yearly	Quarterly	Monthly	Other	All	Time (min)
sMAPE metric (%)							
	Naive	17.88	11.32	18.18	6.30	16.58	0.31
Original data	SES	17.78	10.83	16.14	6.30	15.07	0.22
	Damped	17.07	10.96	16.25	4.30	15.02	1.05
	ETS	16.89	9.69	14.07	4.34	13.28	38.36
	ARIMA	17.62	9.99	15.30	4.54	14.27	23.48
	Naive	17.88	10.02	16.76	6.30	15.38	0.62
	SES	17.78	9.77	14.17	6.30	13.53	0.55
	Damped	17.07	9.79	13.96	4.30	13.24	1.52
	ETS	16.89	9.80	14.04	4.34	13.28	32.87
	ARIMA	17.62	9.74	15.68	4.54	14.49	21.40
Seasonally adjusted data	STheta	16.74	9.23	13.83	4.93	13.05	7.37
	DOTM	15.94	9.28	13.74	4.58	12.90	13.59
MASE metric							
	Naive	3.17	1.46	1.17	3.09	1.50	0.31
Original data	SES	3.17	1.41	1.09	3.10	1.43	0.22
	Damped	2.92	1.37	1.10	1.81	1.36	1.05
	ETS	2.83	1.18	0.86	1.79	1.15	38.36
	ARIMA	2.99	1.17	0.88	1.87	1.19	23.48
	Naive	3.17	1.25	1.04	3.09	1.37	0.62
	SES	3.17	1.24	0.93	3.10	1.29	0.55
	Damped	2.92	1.17	0.88	1.81	1.17	1.52
	ETS	2.83	1.18	0.87	1.79	1.16	32.87
	ARIMA	2.99	1.15	0.89	1.87	1.19	21.40
Seasonally adjusted data	STheta	2.77	1.12	0.86	2.28	1.16	7.37
	DOTM	2.59	1.12	0.85	1.94	1.12	13.59

Validação cruzada:

- Ideia básica: o melhor modelo é o modelo que gera as melhores previsões;
- A série é dividida em duas partes:
 - Treinamento: parte em que o modelo é ajustado
 - Teste: parte utilizada para verificar a acurácia do modelo
- Vários modelos são ajustados na parte de treinamento
- O modelo que obter as melhores previsões para a parte de teste (de acordo com uma métrica) é escolhido como o melhor

Validação cruzada: avaliação com origem fixa

Apenas uma origem e uma aplicação do processo;

Validação cruzada: avaliação por janela deslizante

- GROE: Generalized Rolling Origin Evaluation
 - Processo que permite p origens com regiões de teste sobrepostas;
 - Origens para previsão: n₁, n₂, ..., n_p;
 - Função groe() do pacote forecTheta e função tsCV() do pacote forecast.

Exemplo: avaliação por janela deslizante

```
require(forecTheta)
require(forecast)
require(Mcomp)
data(M3)
y \leftarrow M3[[1]]$x
## avaliação com janela deslizante
## origens: n1=n-7, n2=n-5, n3=n-3, n4=n-1
## retorna a soma dos erros absolutos
groe(v, ses, g="AE", n1=length(v)-7, m=2, H=5)
[1] 12648.21
groe(y, holt, g="AE", n1=length(y)-7,m=2,H=5)
Γ17 4051.717
groe(y, function(y,h) forecast(ets(y), h), g="AE",n1=length(y)-7,m=2,H=5)
[1] 10701.33
groe(y, function(y,h) forecast(auto.arima(y), h), g="AE", n1=length(y)-7,m=2,H=5)
[1] 3111.654
```