ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

7. Dźwięk o częstotliwości f przechodzi w czasie t z głośnika znajdującego się na wysokości h₁ nad lustrem wody, do mikrofonu zanurzonego na głębokości h₂ – pionowo pod głośnikiem. Prędkość dźwięku w powietrzu wynosi V₁. Obliczyć zmianę długości fali odbieranej przez mikrofon oraz prędkość fali dźwiękowej w wodzie.

"latex article amsmath

Dane wejściowe

Czestotliwość dźwieku: f

Wysokość głośnika nad lustrem wody: h_1

Głebokość mikrofonu: h_2

Predkość dźwieku w powietrzu: V_1

Zadanie

Obliczyć zmiane długości fali odbieranej przez mikrofon oraz predkość fali dźwiekowej w wodzie.

Rozwiazanie

Predkość dźwieku w wodzie:

Z danych zadania wynika, że dźwiek przechodzi bezpośrednio z głośnika do mikrofonu przez wode. Predkość dźwieku w wodzie oznaczamy jako V_2 .

Długość fali dźwieku w powietrzu:

Długość fali dźwieku w powietrzu, oznaczona jako λ_1 , można obliczyć z wzoru:

$$\lambda_1 = \frac{V_1}{f} \tag{1}$$

Długość fali dźwieku w wodzie:

Długość fali dźwieku w wodzie, oznaczona jako λ_2 , można obliczyć z wzoru:

$$\lambda_2 = \frac{V_2}{f} \tag{2}$$

Predkość i długość fali dźwiekowej w wodzie:

Predkość dźwieku w wodzie typowo wynosi około $V_2=1500\,\mathrm{m/s}$ (wartość orientacyjna, należy określić ja dokładnie z danych eksperymentalnych). Podstawiamy ta wartość do wzoru na długość fali w wodzie:

$$\lambda_2 = \frac{1500}{f} \tag{3}$$

Zmiana długości fali:

Zmiana długości fali przy przejściu do wody jest dana różnica $\Delta \lambda = \lambda_2 - \lambda_1$:

$$\Delta \lambda = \frac{1500}{f} - \frac{V_1}{f} \tag{4}$$

Uproszczajac, otrzymujemy:

$$\Delta \lambda = \frac{1500 - V_1}{f} \tag{5}$$

Podstawienie danych i wynik końcowy:

Zakładajac konkretne wartości V_1 i
 f,uzyskamy wartość liczbowa.

Dla przykładu, jeżeli $V_1=343\,\mathrm{m/s}$ i $f=1000\,\mathrm{Hz},$ to:

$$\Delta \lambda = \frac{1500 - 343}{1000} = \frac{1157}{1000} = 1.157 \,\mathrm{m} \tag{6}$$

Wynik końcowy: $\Delta \lambda = 1.157 \,\mathrm{m}$