Leçon 104. Groupes abéliens et non abéliens finis. Exemples et applications.

1. Ordre dans un groupes finis

1.1. Notion d'ordre

- 1. DÉFINITION. L'ordre d'un groupe fini G est son cardinal |G| en tant qu'ensemble.
- 2. EXEMPLE. Pour un entier $n \ge 1$, le groupe fini $\mathbb{Z}/n\mathbb{Z}$ est d'ordre n.
- 3. Théorème (Lagrange). Soient G un groupe fini et $H \subset G$ un sous-groupe. Alors l'ordre du groupe H divise celui du groupe G.
- 4. DÉFINITION. Avec les mêmes notations, l'indice du sous-groupe H dans le groupe G est l'entier $[G:H] := |G|/|H| \in \mathbf{N}^*$.
- 5. EXEMPLE. Le sous-groupe \mathfrak{A}_n est d'indice 2 dans le groupe \mathfrak{S}_n .
- 6. Proposition. Avec les mêmes notations, on a [G:H] = |G/H|.
- 7. Proposition. Un sous-groupe d'indice 2 est distingué.
- 8. DÉFINITION. Soit G un groupe. L'ordre d'un élément $g \in G$ est le cardinal du groupe $\langle g \rangle$, noté $o(g) \in \mathbb{N}^* \cup \{+\infty\}$.
- 9. EXEMPLE. Le neutre est toujours d'ordre 1. Pour $n \ge 2$, la permutation $(1\ 2) \in \mathfrak{S}_n$ est d'ordre 2.
- 10. Proposition. Soient G un groupe fini et $g \in G$ un élément. Alors
 - l'ordre de l'élément g est fini et divise l'ordre du groupe G, c'est-à-dire $o(g) \mid |G|$.
 - $o(g) = \min\{k \in \mathbb{N} \mid g^k = 1\};$
 - pour tout entier $k \in \mathbb{N}$, on a $g^k = 1 \Leftrightarrow o(g) \mid n$.
- 11. COROLLAIRE. Soient G un groupe fini d'ordre $n\geqslant 1$ et $g\in G$ un élément quelconque. Alors $g^n=1$.
- 12. APPLICATION (petit théorème de Fermat). Pour tout nombre premier p et tout entier $a \in \mathbf{Z}^*$ tel que $p \nmid a$, on a $a^{p-1} \equiv 1 \mod p$.
- 13. Proposition. Soient G un groupe fini et $g,h\in G$ deux éléments commutant. Alors l'élément gh est d'ordre ppcm(o(g),o(h)).

1.2. Action d'un groupe fini sur un ensemble fini

14. DÉFINITION. Soit G un groupe agissant sur un ensemble X. L'orbite d'un élément $x \in X$ est l'ensemble

$$\operatorname{Orb}_G(x) := \{g \cdot x \mid g \in G\} \subset X$$

et son stabilisateur est l'ensemble

$$\operatorname{Stab}_{G}(x) := \{ g \in G \mid g \cdot x = x \} \subset G.$$

L'ensemble des orbites est noté G/X.

- 15. EXEMPLE. En considérant l'action du groupe \mathfrak{S}_3 sur l'ensemble $\{1,2,3\}$, le stabilisateur de l'entier 1 est l'ensemble $\mathrm{Stab}_{\mathfrak{S}_3}(1) = \{\mathrm{Id},(2\ 3)\}$ et son orbite est l'ensemble $\mathrm{Orb}_{\mathfrak{S}_3}(1) = \{1,2,3\}$.
- 16. Proposition. Les stabilisateurs sont des sous-groupes de G.
- 17. Proposition. Soit $x \in X$ un élément. Alors l'application

$$\left| \begin{array}{c} G/\mathrm{Stab}_G(x) \longrightarrow \mathrm{Orb}_G(x), \\ g\,\mathrm{Stab}_G(x) \longmapsto g \cdot x \end{array} \right|$$

est une bijection.

18. COROLLAIRE. Soit $x \in X$ un élément. Alors $|\operatorname{Orb}_G(x)| = [G : \operatorname{Stab}_G(x)]$. En particulier, si le groupe G est fini, alors

$$|\operatorname{Orb}_G(x)| = |G| / |\operatorname{Stab}_G(x)|.$$

19. Théorème (équation aux classes). Soit G un groupe agissant sur ensemble fini X. Soit $\{x_1, \ldots, x_r\}$ un système de représentants des orbites. Alors

$$|X| = \sum_{i=1}^{r} \frac{|G|}{|\operatorname{Stab}_{G}(x_{i})|}.$$

- 20. Remarque. Si l'action est transitive, alors $|X| = |G| / |\operatorname{Stab}_G(x)|$ avec $x \in X$.
- 21. COROLLAIRE. Soit $\{x_1,\ldots,x_r\}$ un système de représentants des orbites non ponctuelles. Alors

$$|X| = |X^G| + \sum_{i=1}^r \frac{|G|}{|\operatorname{Stab}_G(x_i)|}.$$

22. Théorème (Burnside). Soit G un groupe fini agissant sur un ensemble fini X. Pour un élément $g \in G$, on note

$$Fix(g) := \{ x \in X \mid g \cdot x = x \}.$$

Alors le nombre d'orbites $t \ge 1$ vérifiant la relation

$$\sum_{g \in G} |\operatorname{Fix}(g)| = t |G|.$$

1.3. Les p-groupes et les théorèmes de Sylow

- 23. DÉFINITION. Soit p un nombre premier. Un p-groupe est un groupe fini dont le cardinal est une puissance de l'entier p.
- 24. Exemple. Le groupe diédral \mathbf{D}_4 d'ordre 4 est un 2-groupe.
- 25. LEMME. Soit G un p-groupe agissant sur un ensemble fini X. On note $X^G \subset X$ l'ensemble des points fixes sous cette action. Alors

$$|X^G| \equiv |X| \mod p.$$

- 26. Théorème (Cauchy). Tout groupe fini d'ordre divisible par un nombre premier p admet un élément d'ordre p.
- 27. Proposition. Le centre d'un p-groupe non trivial est non trivial.
- 28. DÉFINITION. Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n = p^{\alpha}m$ avec $p \nmid m$. Un p-sous-groupe de Sylow de G est un sous-groupe de cardinal p^{α} .
- 29. EXEMPLE. Un p-sous-groupe de Sylow du groupe $GL_n(\mathbf{F}_p)$ est le groupe des matrices triangulaires supérieures dont les coefficients de la diagonale valent 1.
- 30. Théorème (Sylow). Soient G un groupe fini et p un diviseur de son ordre. Alors le groupe G contient au moins un p-sous-groupe de Sylow.
- 31. THÉORÈME (Sylow). Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n=p^{\alpha}m$ avec $p\nmid m$. Alors

- pour tout sous-groupe $H\subset G,$ il existe un p-sous-groupe de Sylow $S\subset G$ tel que $H\subset S$;
- les *p*-sous-groupes de Sylow sont conjugués ;
- le nombre de p-sous-groupes de Sylow vérifie $k \equiv 1 \mod p$ et $k \mid |G|$
- 32. COROLLAIRE. Soit S un p-sous-groupe de Sylow de G. Alors il est distingué si et seulement s'il est l'unique p-sous-groupe de Sylow de G.

2. Les groupes abéliens finis

2.1. Cyclicité d'un groupe

- 33. DÉFINITION. Un groupe G est monogène s'il existe un élément $g \in G$ tel que $G = \langle g \rangle$. Dans ce cas, on dit que l'élément g est un générateur du groupe G. Un groupe cyclique est un groupe fini monogène.
- 34. EXEMPLE. Le groupe $\mathbf{Z}/4\mathbf{Z}$ est cyclique et il est engendré par l'élément 1 ou 3. Le groupe \mathbf{Z} est monogène mais non cyclique.
- 35. PROPOSITION. Soit $n \ge 1$ un entier. Alors le groupe $\mathbb{Z}/n\mathbb{Z}$ est cyclique. Plus précisément, un élément $k \in \mathbb{Z}/n\mathbb{Z}$ le génère si et seulement si $n \wedge k = 1$.
- 36. Théorème. Tout groupe cyclique d'ordre n est isomorphe au groupe $\mathbb{Z}/n\mathbb{Z}$.
- 37. EXEMPLE. Le groupe $\mathbf{U}_n \subset \mathbf{C}^{\times}$ des racines n-ième de l'unité est cyclique, il est donc isomorphe au groupe $\mathbf{Z}/n\mathbf{Z}$.
- 38. COROLLAIRE. Deux groupes cycliques de même ordre sont isomorphes.
- 39. COROLLAIRE. Soient G un groupe fini et $g \in G$ un élément. Alors $\langle g \rangle \simeq \mathbf{Z}/\mathrm{o}(g)\mathbf{Z}$.
- 40. Proposition. Un groupe fini d'ordre premier est cyclique.
- 41. Proposition. Tout sous-groupe d'un groupe cyclique est cyclique.

2.2. Le théorème de structure des groupes abéliens finis

42. Théorème (de structure). Soit G un groupe abélien fini. Alors il existe un unique entier $r \ge 1$ et des uniques entiers $e_1, \ldots, e_r \ge 1$ vérifiant

$$G \simeq \mathbf{Z}/e_1\mathbf{Z} \times \cdots \times \mathbf{Z}/e_r\mathbf{Z}$$
 et $e_1 \mid \cdots \mid e_r$. (*

- 43. EXEMPLE. À isomorphisme près, il existe deux groupes d'ordre $60 = 2^2 \times 3 \times 5$.
- 44. COROLLAIRE. Soient k un corps et $G \subset k^{\times}$ un sous-groupe fini. Alors ce dernier est cyclique.
- 45. EXEMPLE. Le groupe \mathbf{F}_q^{\times} est isomorphe au groupe $\mathbf{Z}/(q-1)\mathbf{Z}$.
- 46. DÉFINITION. L'exposant d'un groupe est le PPCM des ordres de ses éléments.
- 47. COROLLAIRE. Soit G un groupe d'ordre e. On le décompose sous la forme (*). Alors $e=e_r$ et le groupe G admet un élément d'ordre e.

3. Des groupes non abéliens finis remarquables

3.1. Le groupe symétrique

- 48. Proposition. Le groupe symétrique \mathfrak{S}_n est d'ordre n! et il n'est pas abélien lorsque n>2. Il est engendré par
 - soit les transpositions de \mathfrak{S}_n ;
 - soit les transpositions de la forme (1 i) avec $i \in \{2, ..., n\}$;
 - soit les transpositions de la forme $(i \ i+1)$ avec $i \in \{1, \dots, n-1\}$.

- 49. PROPOSITION. L'action par translation sur un groupe G est fidèle et transitive. En particulier, elle donne un morphisme de groupes injectif $G \hookrightarrow \mathfrak{S}(G)$.
- 50. THÉORÈME (Cayley). Soit G un groupe fini d'ordre n. Alors il est isomorphe à un sous-groupe du groupe \mathfrak{S}_n .
- 51. DÉFINITION. Le groupe alterné est le groupe distingué $\mathfrak{A}_n < \mathfrak{S}_n$ défini comme étant le noyau du morphisme signature $\mathfrak{S}_n \longrightarrow \{\pm 1\}$
- 52. LEMME. Le groupe \mathfrak{A}_5 est simple.
- 53. THÉORÈME. Lorsque $n \ge 5$, le groupe \mathfrak{A}_n est simple.

3.2. Le groupe linéaire d'un espace vectoriel et ses sous-groupes

- 54. DÉFINITION. Soit E un k-espace vectoriel. Son groupe linéaire est le groupe $\mathrm{GL}(E)$ des automorphismes de l'espace E. Son groupe spécial linéaire est le noyau $\mathrm{SL}(E)$ du morphisme de groupes det: $\mathrm{GL}(E) \longrightarrow k^{\times}$.
- 55. Théorème. Le groupe SL(E) est engendré par les transvections.
- 56. COROLLAIRE. Le groupe GL(E) est engendré par les transvections et dilatations.
- 57. DÉFINITION. Soit E un espace euclidien. Le groupe orthogonal de l'espace E est le sous-groupe $\mathcal{O}(E) < \operatorname{GL}(E)$ des isométries. Son groupe spécial orthogonal est le sous-groupe $\operatorname{SO}(E) \coloneqq \operatorname{SL}(E) \cap \operatorname{O}(E)$.
- 58. Théorème. Le groupe $\mathcal{O}(E)$ est engendré par les réflexions.
- 59. COROLLAIRE. Le groupe SO(E) est engendré par les retournements.
- 60. REMARQUE. En introduisant les matrices de permutations, on obtient un morphisme injectif $\mathfrak{S}_n \hookrightarrow \mathrm{SO}(\mathbf{R}^n)$.

3.3. Les groupes d'isométries préservant un ensemble

- 61. DÉFINITION. Le groupe diédral de degré n est le groupe \mathbf{D}_n des isométries préservant le polygone régulier $\mathscr{P}_n \subset \mathbf{R}^2$ à n sommets.
- 62. Remarque. Le groupe \mathbf{D}_n agit naturellement sur le polygone \mathscr{P}_n et.
- 63. Proposition. Le groupe \mathbf{D}_n est d'ordre 2n et il est isomorphe au groupe

$$\langle r, s \mid r^n = e, \ s^2 = e, \ srs^{-1} = r^{-1} \rangle.$$

- 64. Proposition. Soit G un groupe. Alors les points suivants sont équivalents :
 - le groupe G est isomorphe au groupe \mathbf{D}_n ;
 - il est engendré par deux éléments $a, b \in G$ tels que o(a) = o(ab) = 2 et o(b) = n.
- 65. DÉFINITION. Soit $\mathscr E$ un espace affine. Une isométrie $\varphi \in \mathrm{Isom}(\mathscr E)$ stabilise une partie $X \subset \mathscr E$ si $\varphi(X) \subset X$. On note $\mathrm{Isom}(X)$ le groupe des isométries de $\mathscr E$ stabilisant X ainsi que $\mathrm{Isom}^+(X)$ le groupe des isométries positives de $\mathscr E$ stabilisant X
- 66. LEMME. Soit $X \subset \mathscr{E}$. On suppose que la partie X est l'enveloppe convexe d'une partie $S \subset \mathscr{E}$ et que les points de S sont extrémaux. Alors toute isométrie stabilisant X stabilise S, c'est-à-dire Isom(X) = Isom(S).
- 67. Théorème. Les groupes d'isométries du cube $C \subset \mathbf{R}^3$ sont

$$\operatorname{Isom}^+(C) \simeq \mathfrak{S}_4$$
 et $\operatorname{Isom}(C) \simeq \mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

- [1] Josette Calais. Éléments de théorie des groupes. 3º édition. Presses Universitaires de France, 1998.
- [2] Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome second. Calvage & Mounet, 2018.
- [3] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.
- [4] Felix Ulmer. Théorie des groupes. 2e édition. Ellipses, 2021.

Дı