Baysian modeling of hurricane trajectories P8160 Group Project 3 Baysian modeling of hurricane trajectories

Jingchen Chai, Yi Huang, Zining Qi, Ziyi Wang, Ruihan Zhang

Columbia University

2023-04-30

Introduction

Introduction

- Hurricanes cause fatalities and property damage
- there is a growing need to accurately predict hurricane behavior, including location and speed
- This project aims to forecast wind speeds by modeling hurricane trajectories using a Hierarchical Bayesian Model.

Dataset

Dataset

- Hurrican703 dataset: 22038 observations × 8 variables
 - 702 hurricanes in the North Atlantic area since 1950

EDA-Count of Hurricanes in each Month/Year/Nature

EDA-Count of Hurricanes in each Month/Year/Nature

200 -

EDA - Average Speed (knot) of Hurricanes in Each Year

EDA - Average Speed (knot) of Hurricanes in Each Year

overview the hurrican data

overview the hurrican data

the hurrican data in the world map

the hurrican data in the world map

Additional Plots

Additional Plots

Atlantic named Windstorm Trajectories (1950 - 2013)

Show hurricance tracks by month

Show hurricance tracks by month

Atlantic named Windstorm Trajectories by Month (1950 - 2013)

Bayesian Model Setting

Model

The suggested Bayesian model is

$$Y_i(t+6) = \beta_{0,i} + \beta_{1,i}Y_i(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t) + \epsilon_i(t)$$

- where $Y_i(t)$ the wind speed at time t (i.e. 6 hours earlier), $\Delta_{i,1}(t)$, $\Delta_{i,2}(t)$ and $\Delta_{i,3}(t)$ are the changes of latitude, longitude and wind speed between t and t-6, and $\epsilon_{i,t}$ follows a normal distributions with mean zero and variance σ^2 , independent across t.
- $\beta_i = (\beta_{0,i}, \beta_{1,i}, ..., \beta_{5,i})$, we assume that $\beta_i \sim N(\mu, \Sigma_{d \times d})$, where d is dimension of β_i .

Priors

Priors

$$P(\mu) = \frac{1}{\sqrt{2\pi} |\mathbf{V}|^{\frac{1}{2}}} \exp\{-\frac{1}{2}\mu^{\top}\mathbf{V}^{-1}\mu\} \propto |\mathbf{V}|^{-\frac{1}{2}} \exp\{-\frac{1}{2}\mu^{\top}\mathbf{V}^{-1}\mu\} \quad (2)$$

$$P(\Sigma^{-1}) \propto |\Sigma|^{-\frac{(\nu+d+1)}{2}} \exp(-\frac{1}{2}tr(S\Sigma^{-1}))$$
 (3)

$$P(\gamma) \propto exp(-\frac{\gamma^2}{2*(0.05)^2}) = e^{-200\gamma^2}$$
 (4)

$$P(\sigma) = \frac{2\alpha}{\pi + \alpha^2} \propto \frac{1}{\sigma^2 + \alpha^2} \tag{5}$$

Posterior

Posterior

Let $\mathbf{B} = (\beta_1^\top, ..., \beta_n^\top)^\top$, derive the posterior distribution of the parameters $\Theta = (\mathbf{B}^\top, \boldsymbol{\mu}^\top, \sigma^2, \boldsymbol{\Sigma}, \gamma)$.

Let

$$\mathbf{Z}_{i}(t)\beta_{i}^{\top} = \beta_{0,i} + \beta_{1,i}Y_{i}(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t)$$

We can find that

$$\mathbf{Y}_{i} \sim MVN(\mathbf{Z}_{i}\boldsymbol{\beta}_{i}, \sigma^{2}\boldsymbol{I})$$
 (6)

The likelihood for our data is

$$L(\mathbf{Y}_i \mid \mathbf{B}_i, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2}(\mathbf{y}_i - \mathbf{Z}_i\beta_i - \mathbf{X}_i\gamma_i)^\top (\sigma^2 I)^{-1}(\mathbf{y}_i - \mathbf{Z}_i\beta_i - \mathbf{X}_i\gamma_i)^\top (\sigma^2 I)^\top (\sigma$$

′

Joint Posrerior

$$P(\Theta|Y) = P(B, \mu, \sigma^{2}, A, \gamma|Y)$$

$$\propto L(Y|B, \sigma^{2})L(B|\mu, \Sigma)p(\mu)p(\sigma)p(A)p(\gamma)$$

$$\propto \frac{1}{\sigma^{N}(\sigma^{2} + 10^{2})} \prod_{i=1}^{n} \exp\left\{-\frac{1}{2}(\mathbf{Y}_{i} - \mathbf{Z}_{i}\beta_{i} - \mathbf{X}_{i}\gamma_{i})^{\top}(\sigma^{2}I)^{-1}(\mathbf{Y}_{i} - \mathbf{Y}_{i})^{\top}(\mathbf{Y}_{i})$$

MCMC Algorithm

MCMC Algorithm

$$f(\mathbf{B}|\boldsymbol{\mu}^{\top}, \sigma^{2}, A, \gamma, Y^{\top}) \sim \\ MVN_{d}((\frac{Z_{j}^{\top}Z_{j}}{\sigma^{2}} + A)^{-1}(\frac{Y_{j}^{\top}Z_{j}^{\top} - X_{j}^{\top}Z_{j}\gamma}{\sigma^{2}} + \mu^{\top}A)^{\top}, \frac{Z_{j}^{\top}Z_{j}}{\sigma^{2}} + A)^{-1})$$

- $(NA + \frac{1}{y})^{-1} (\sum_{i=1}^{n} \beta_{i}A)^{\top}, (NA + \frac{1}{y})^{-1})$
- $f(\sigma|B^{\top}, \mu^{\top}, A, \gamma, Y^{\top}) \sim MVN_d((X_i^{\top} \sigma^{-2} I X_i + 400 I)^{-1} (X_i^{\top} \sigma^{-2} I Y_i X_i^{\top} \sigma^{-2} I Z_i \beta_i), (X_i^{\top} \sigma^{-2} I X_i + 400 I)^{-1})$
- $\bullet f(A|B^{\top}_{-}\sigma^2,\gamma,Y^{\top}) \sim \underline{w}^{-1}(S + \sum_{i}^{n}(\beta_{i} \mu)(\beta_{i} \mu)^{\top}, n + \nu)$
- **5** $f(\gamma|B^{\top}, \mu^{t}op, \sigma^{2}, A, Y^{\top}) \sim MVN((\frac{X_{j}^{\top}X_{j}}{\sigma^{2}} + 400I)^{-1}(\sum_{i}^{n}Y_{j}^{\top}X_{j} \sum_{i}^{n}X_{j}Z_{j}\beta_{j})^{\top}, (\frac{X_{j}^{\top}X_{j}}{\sigma^{2}} + 400I)^{-1})$

MCMC Results

Details

- 5000 iterations
- Estimates and inferences based on 5000 MCMC samples

MCMC Results - Beta Plots 1

MCMC Results - Beta Plots 1

-Trace plots of variance parameters, based on 5000 MCMC sample.

MCMC Results - Beta Plots 2

MCMC Results - Beta Plots 2

-Trace plots of variance parameters, based on 5000 MCMC sample.

