Inferência Estatística I

Métodos de estimação - Programação

Prof. Paulo Cerqueira Jr Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr (7)

Introdução

Introdução

• Nessa unidade estaremos interessados no seguinte:

Problema 1: Seja $f:\Theta o\mathbb{R}$. Encontre um ponto $\theta\in\Theta$ que minimiza a função f.

- É importante observar que o problema de encontrar um ponto $\theta\in\Theta$ que maximiza uma função $g:\Theta\to\mathbb{R}$, recai no problema anterior, basta ver que maximizar g é o mesmo que minimizar f=-g.
- Problemas de otimização (ou seja, de minimização ou maximização) ocorrem com frequência em diversas áreas das Ciências Exatas, em particular, na Estatística.

Caso unidimensional - Descrição do Método.

- O método de Newton-Raphson é um algoritmo apropriado para encontrar raízes (ou zeros) de funções.
- Formalmente, estamos interessados em encontrar um ponto $\hat{\theta}$ no domínio de uma função $h:\Theta \to \mathbb{R}$ tal que $h(\hat{\theta})=0$.
- Inicialmente vamos considerar o caso onde f é uma função de uma única variável.

Newton-Raphson para Otimização

Newton-Raphson para Otimização

- ullet Considere o problema 1 para o caso em que f é uma função de uma única variável.
- ullet O método de Newton-Raphson é apropriado para resolver numericamente este problema de otimização, basta encontrar as raízes de $h=f^{'}$.
- Neste caso o mínimo θ pode ser encontrado seguindo os seguintes passos:
- 1. Fixe um número real $\epsilon > 0$;
- 2. Dê uma aproximação inicial θ_0 para $\hat{\theta}$;
- 3. Para $k \geq 0$, faça

$$heta_{k+1} = heta_k - rac{f^{'}(heta_k)}{f^{''}(heta_k)}.$$

4. Pare o processo iterativo se $| heta_{k+1} - heta_k| < \epsilon$. Caso contrário, volte para o passo anterior.

Utilize o método de Newton-Raphson para encontrar o mínimo da função $f(\theta)=\theta^2-\sin(\theta).$

Solução:

• Fixe $\epsilon=0,0001$ e $heta_0=\pi/8$, itere e para $k\geq 0$

$$egin{array}{lll} heta_{k+1} &=& heta_k - rac{f'(heta_k)}{f''(heta_k)} \ &=& heta_k - rac{2 heta_k - \cos(heta_k)}{2 + \sin(heta_k)} \end{array}$$

- O R também possui funções prontas para pesquisar, dentro de um intervalo, um ponto de mínimo (ou de máximo) de uma função.
- Veja o código abaixo aplicado para o exemplo em questão:

- Seja (X_1,\ldots,X_n) uma a.a. de tamanho n da distribuição de uma v.a. X com densidade $f(x;\theta)$ onde θ pertence ao espaço paramétrico Θ (por enquanto, considere que Θ é unidimensional).
- A função de verossimilhança de $heta\left(L:\Theta o\mathbb{R}
 ight)$ associada à a.a. observada $\mathbf{x}=(x_1,\ldots,x_n)$ é definida por

$$L(heta) = L(heta, \mathbf{x}) = \prod_{i=1}^n f(x_i; heta)$$

• Seja a função de log verossimilhança dada por:

$$\ell(\theta) = \ln(L(\theta)).$$

e a função escore:

$$U(heta) = rac{d \ln L(heta)}{d heta} = rac{d \ell(heta)}{d heta} = \ell^{'}.$$

• Portanto o estimador de máxima verossimilhaça, denotado por $\hat{\theta}$, satisfaz as seguintes equações:

$$U(\hat{ heta}) = 0 \quad \Rightarrow \quad \hat{ heta} = \max^{ heta \in \Theta} \ell(heta).$$

- Em alguns casos pode ser difícil obter uma solução analítica explícita para as equações.
- Nesses casos, é possível obter uma soluçãao aproximada para $\hat{\theta}$ por meio de métodos numéricos.
- Um alternativa consiste em utilizar o método de Newton-Raphson para aproximar a raiz da função escore (ou maximizar a logverossimilhança).

- Explicitamente, basta seguir o seguinte algoritmo:
- 1. Fixe um número real $\epsilon > 0$;
- 2. Dê uma aproximação inicial θ_0 para $\hat{\theta}$;
- 3. Para $k \geq 0$, faça

$$heta_{k+1} = heta_k - rac{U(heta_k)}{U'(heta_k)} = heta_k - rac{\ell'(heta_k)}{\ell''(heta_k)}.$$

- 4. Pare o processo iterativo se $| heta_{k+1} heta_k| < \epsilon$. Caso contrário, volte para o passo anterior.
- ullet A sequência $(heta_k)_{k\geq 0}$ converge para $\hat{ heta}$ quando $k o\infty$, se $heta_0$ é escolhido próximo de $\hat{ heta}$

(Dica: um gráfico de \$U(\theta)\$ ou \$\ell(\theta)\$ pode ajudar nessa escolha inicial).

Método Escore

Método Escore

- Em alguns casos, a substituição de $U^{'}(\theta_k)$ por $E(U^{'}(\theta_k))$, apresenta significativa simplificação no procedimento.
- Esse método é conhecido como método do escore e pode ser descrito assim:
- 1. Fixe um número real $\epsilon > 0$;
- 2. Dê uma aproximação inicial θ_0 para $\hat{\theta}$;
- 3. Para $k \geq 0$, faça

$$heta_{k+1} = heta_k - rac{U(heta_k)}{E(U^{'}(heta_k))} = heta_k - rac{U(heta_k)}{I(heta_k)}.$$

em que $I(\theta_k)$ é a informação de Fisher de θ .

- 4. Pare o processo iterativo se $| heta_{k+1} heta_k| < \epsilon$. Caso contrário, volte para o passo anterior.
- Novamente, a sequência $(\theta_k)_{k\geq 0}$ converge para $\hat{\theta}$ quando $k\to\infty$, se θ_0 é escolhido próximo de $\hat{\theta}$.

Sejam X_1,\ldots,X_n uma a.a. de X, com função densidade dada por

$$f(x \mid heta) = rac{1}{2}(1 + heta x), \; -1 \leq x \leq 1, \; -1 \leq heta \leq 1.$$

Determine o EMV para θ pelo método de Newton-Raphson e Escore.

Sol. Inicalmente temos que a função de verossimilhança é dada por

$$L(x\mid heta) = rac{1}{2^n} \prod_{i=1}^n (1+ heta x_i),$$

de modo que

$$U(heta) = \ell^{'} = \sum_{i=1}^n rac{x_i}{1+ heta x_i}$$

E dessa forma

$$U^{'}(heta) = \ell^{''} = -\sum_{i=1}^{n} rac{x_i^2}{(1+ heta x_i)^2}.$$

A informação de Fisher de θ é igual,

$$I(heta) = rac{1}{2 heta^3}iggl\{ \logiggl(rac{1+ heta}{1- heta}iggr) - 2 heta iggr\}\,.$$

Gerou-se n=20 valores, com $\theta=0.4$ usando a função densidade do exemplo via método da transformação inversa, logo

$$x=rac{-1+2\sqrt{1/4- heta(1/2- heta/4-u)}}{ heta}.$$

em que $U \sim U(0,1)$.

• Código em R:

```
1 set.seed(123456)
2 n <- 200
3 theta <- 0.4
4 u <- runif(n,0,1)
5 raiz <- 1-(theta*(2-theta))+(4*the dados <-(-1+sqrt(raiz))/(theta)</pre>
```


Exemplo - Comparação dos métodos:

Newton-Raphson:

[1] 0.3398224

```
1 theta.zero \leftarrow 0.15
         2 precisao <- 0.00001
         3 dif <- 1
         4 while(dif > precisao) {
         5 num <- S(theta.zero)
          6 den <- S.prime(theta.zero)</pre>
         7 theta.um <- theta.zero - (num/den
         8 dif <- abs(theta.um - theta.zero)
         9 theta.zero <- theta.um
        10 print(theta.zero)
        11 }
[1] 0.3459363
[1] 0.3398386
  0.3398224
   0.3398224
         1 raiz.NR <- theta.zero
```

2 raiz.NR # Método NR.

Escore:

```
1 theta.zero <- 0.15
         2 dif <- 1
         3 while(dif > precisao) {
         4 num <- S(theta.zero)
         5 a <- 2*theta.zero
         6 b \leftarrow log((1+theta.zero)/(1-theta.
             den <- n*(1/(2*theta.zero^3))*b
             theta.um <- theta.zero + (num/den
             dif <- abs(theta.um - theta.zero)</pre>
             theta.zero <- theta.um
             print(theta.zero)
        11
        12 }
[1] 0.3433802
   0.3397711
   0.3398231
[1] 0.3398223
         1 raiz.E <- theta.zero
          2 raiz.E # Método Escore
```

Caso Multidimensional

- Agora considere o problema de otimização quando Θ é um espaço multidimensional.
- Antes de apresentar o método de Newton-Raphson nesse caso, vejamos alguns conceitos básicos de Cálculo.

Noções preliminares:

Seja n um inteiro positivo e seja $D\subseteq\mathbb{R}^n$. Considere uma função g que associa a cada $\mathbf{x}=(x_1,\ldots,x_n)\in D$ um numero real $g(\mathbf{x})$, ou seja, $g:D\to\mathbb{R}$. O gradiente de g, denotado por

$$abla g(\mathbf{x}) = \left(rac{\partial g}{\partial x_1}, \ldots, rac{\partial g}{\partial x_n}
ight).$$

- Seja (X_1,\ldots,X_n) uma a.a. de tamanho n da distribuição de uma v.a. X com densidade $f(x;\theta)$ onde $\theta=(\theta_1,\ldots,\theta_n)$ pertence ao espaço paramétrico $\mathbf{\Theta}$.
- A função de verossimilhança de $heta\left(L:\Theta o\mathbb{R}
 ight)$ associada à a.a. observada $\mathbf{x}=(x_1,\ldots,x_n)$ é definida por

$$L(heta) = L(heta, \mathbf{x}) = \prod_{i=1}^n f(x_i; heta)$$

• Seja a função de log verossimilhança dada por:

$$\ell(\theta) = \ln(L(\theta)).$$

ullet O i-ésimo elemento do vetor escore, denotado por U(heta), é dado por

$$U_i(heta) = rac{\partial \ell(heta)}{\partial heta^{(i)}}.$$

ullet O (i,j)-elemento da matriz Hessiana, denotada por H(heta), é dado por

$$H_{ij} = rac{\partial^2 \ell}{\partial heta^{(i)} \partial heta^{(j)}}.$$

Portanto o estimador de máxima verossimilhança, denotado por $\hat{\theta}$, satisfaz as seguintes equações:

$$U(\hat{ heta}) = igtriangledown \ell(\hat{ heta}) = \mathbf{0} \qquad \hat{ heta} = ^{ heta \in \Theta} \max \ell(heta).$$

- Em alguns casos pode ser difícil obter uma solução analítica explícita para as equações.
- Nesses casos, é possível obter uma solução aproximada para $\hat{\theta}$ por meio de métodos numéricos.
- Um alternativa consiste em utilizar o método de Newton-Raphson para aproximar a raiz da função escore (ou maximizar a logverossimilhança).

- Explicitamente, basta seguir o seguinte algoritmo:
- 1. Fixe um número real $\epsilon > 0$;
- 2. Dê uma aproximação inicial θ_0 para $\hat{\theta}$;
- 3. Para $k \geq 0$, faça

$$heta_{k+1} = heta_k - [H(heta_k)]^{-1} U(heta_k).$$

- 4. Pare o processo iterativo se $| heta_{k+1} heta_k| < \epsilon$. Caso contrário, volte para o passo anterior.
- ullet A sequência $(heta_k)_{k\geq 0}$ converge para $\hat{ heta}$ quando $k o\infty$, se $heta_0$ é escolhido próximo de $\hat{ heta}$

Método Escore

- Por vezes substituir de $H(\theta_k)$ por $E(H(\theta_k))$ pode apresentar significativa simplificação no procedimento.
- Esse método é conhecido como método do escore e pode ser descrito assim:
- 1. Fixe um número real $\epsilon > 0$;
- 2. Dê uma aproximação inicial θ_0 para $\hat{\theta}$;
- 3. Para $k \geq 0$, faça

$$[heta_{k+1} = heta_k - [E(H(heta_k))]^{-1}U(heta_k) = heta_k - [-I(heta_k)]^{-1}U(heta_k),$$

onde $I(\theta_k)$ é a matriz de informação de Fisher de θ .

- 4. Pare o processo iterativo se $| heta_{k+1} heta_k| < \epsilon$. Caso contrário, volte para o passo anterior.
- ullet A sequência $(heta_k)_{k\geq 0}$ converge para $\hat{ heta}$ quando $k o\infty$, se $heta_0$ é escolhido próximo de $\hat{ heta}$