Introduction to Number Theory 1

Division (cont.)

If n|(a-b), i.e., a and b have the same residues modulo n: $(a \mod n) =$ $(b \bmod n)$, we write $a \equiv b \pmod n$ and say that a is **congruent** to bmodulo n.

The integers can be divided into n equivalence classes according to their residue modulo n:

$$[a]_n = \{a + kn : k \in Z\}$$

$$Z_n = \{[a]_n : 0 \le a \le n - 1\}$$

or briefly

$$Z_n = \{0, 1, \dots, n-1\}$$

© Eli Biham - May 3, 2005

Greatest Common Divisor

Division **Definition**: Let a and b be integers. We say that a divides b, or a|b if $\exists d$

Division Theorem: For any integer a and any positive integer n, there are

The value $r = a \mod n$ is called the **remainder** or the **residue** of the division.

unique integers q and r such that $0 \le r < n$ and a = qn + r.

 $m(\alpha r + \beta s)$, i.e., m divides this number. QED

Theorem: If m|a and m|b then $m|\alpha a + \beta b$ for any integers α, β . **Proof**: a = rm; b = sm for some r, s. Therefore, $\alpha a + \beta b = \alpha rm + \beta sm =$

Let a and b be integers

1. gcd(a, b) (the greatest common divisor of a and b) is

$$gcd(a, b) \stackrel{\Delta}{=} max(d : d|a \text{ and } d|b)$$

(for $a \neq 0$ or $b \neq 0$).

s.t. b = ad. If $b \neq 0$ then $|a| \leq |b|$.

Note: This definition satisfies gcd(0, 1) = 1.

2. lcm(a, b) (the least common multiplier of a and b) is

$$lcm(a, b) \stackrel{\Delta}{=} min(d > 0 : a|d \text{ and } b|d)$$

(for $a \neq 0$ and $b \neq 0$).

3. a and b are **coprimes** (or **relatively prime**) iff gcd(a,b)=1.

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Greatest Common Divisor (cont.)

Theorem: Let a,b be integers, not both zero, and let d be the smallest positive element of $S = \{ax + by : x, y \in Z\}$. Then, gcd(a, b) = d.

Proof: S contains a positive integer because $|a| \in S$.

By definition, there exist x, y such that d = ax + by. $d \le |a|$, thus there exist q, r such that

$$a = qd + r, \qquad 0 < r < d.$$

Thus.

$$r=a-qd=a-q(ax+by)=a(1-qx)+b(-qy)\in S.$$

r < d implies r = 0, thus d|a

By the same arguments we get d|b

d|a and d|b, thus $d < \gcd(a,b)$.

On the other hand gcd(a,b)|a and gcd(a,b)|b, and thus gcd(a,b) divides any linear combination of a, b, i.e., gcd(a, b) divides all elements in S, including d, and thus $\gcd(a,b) \leq d$. We conclude that $d = \gcd(a,b)$. QED

© Eli Biham - May 3, 2005

Greatest Common Divisor (cont.)

Corollary: For any a, b, and d, if d|a and d|b then $d|\gcd(a, b)$.

Proof: gcd(a, b) is a linear combination of a and b.

Lemma: For $m \neq 0$

$$\gcd(ma, mb) = |m| \gcd(a, b).$$

Proof: If $m \neq 0$ (WLG m > 0) then $\gcd(ma, mb)$ is the smallest positive element in the set $\{amx+bmy\}$, which is m times the smallest positive element in the set $\{ax + by\}$.

Greatest Common Divisor (cont.)

Corollary: a and b are coprimes iff

 $\exists x, y \text{ such that } xa + yb = 1.$

Proof:

 (\Leftarrow) Let d = gcd(a, b), and xa + yb = 1. d|a and d|b and therefore, d|1, and

 (\Rightarrow) a and b are coprimes, i.e., $\gcd(a,b)=1$. Using the previous theorem, 1 is the smallest positive integer in $S = \{ax + by : x, y \in Z\}$, i.e., $\exists x, y$ such that ax + by = 1. QED

The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic: If c|ab and $\gcd(b,c)=1$ then

Proof: We know that clab. Clearly, clac.

Thus.

 $c|\gcd(ab, ac) = a \cdot \gcd(b, c) = a \cdot 1 = a.$

QED

Prime Numbers and Unique Factorization

Definition: An integer $p \ge 2$ is called **prime** if it is divisible only by 1 and itself

Theorem: Unique Factorization: Every positive number can be represented as a product of primes in a unique way, up to a permutation of the order of primes.

246

Introduction to Number Theory 1 (10)

$\underline{\text{Prime Numbers and Unique Factorization (cont.)}}$

Proof: Every number can be represented as a product of primes, since if one element is not a prime, it can be further factored into smaller primes.

Assume that some number can be represented in two distinct ways as products of primes:

$$p_1p_2p_3\cdots p_s=q_1q_2q_3\cdots q_r$$

where all the factors are prime, and no p_i is equal to some q_j (otherwise discard both from the product).

Then.

 $p_1|q_1q_2q_3\cdots q_r$.

But $gcd(p_1, q_1) = 1$ and thus

 $p_1|q_2q_3\cdots q_r$

Similarly we continue till

 $p_1|q_r$.

Contradiction. QED

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Euclid's Algorithm

Let a and b be two positive integers, a>b>0. Then the following algorithm computes $\gcd(a,b)$:

$$\begin{array}{l} r_{-1} = a \\ r_0 = b \\ \text{for } i \text{ from 1 until } r_i = 0 \\ \exists q_i, r_i : r_{i-2} = q_i r_{i-1} + r_i \text{ and } 0 \leq r_i < r_{i-1} \\ \text{k=i-1} \end{array}$$

Example: a = 53 and b = 39.

 $53=1 \cdot 39 + 14$ $39=2 \cdot 14 + 11$ $14=1 \cdot 11 + 3$ $11=3 \cdot 3 + 2$ $3=1 \cdot 2 + 1$ $2=2 \cdot 1 + 0$

Thus, gcd(53, 39) = 1.

© Eli Biham - May 3, 2005

48

Introduction to Number Theory 1 (10)

Extended Form of Euclid's Algorithm

Example (cont.): a = 53 and b = 39.

```
\begin{array}{lll} 53 = 1 \cdot 39 + 14 & \Rightarrow & 14 = 53 - 39 \\ 39 = 2 \cdot 14 + 11 & \Rightarrow & 11 = 39 - 2 \cdot 14 = -2 \cdot 53 + 3 \cdot 39 \\ 14 = 1 \cdot 11 + 3 & \Rightarrow & 3 = 14 - 1 \cdot 11 = 3 \cdot 53 - 4 \cdot 39 \\ 11 = 3 \cdot 3 + 2 & \Rightarrow & 2 = 11 - 3 \cdot 3 = -11 \cdot 53 + 15 \cdot 39 \\ 3 = 1 \cdot 2 + 1 & \Rightarrow & 1 = 3 - 1 \cdot 2 = 14 \cdot 53 - 19 \cdot 39 \\ 2 = 2 \cdot 1 + 0 \end{array}
```

Therefore, $14 \cdot 53 - 19 \cdot 39 = 1$.

We will use this algorithm later as a modular inversion algorithm, in this case we get that $(-19) \cdot 39 \equiv 34 \cdot 39 \equiv 1 \pmod{53}$.

Note that every r_i is written as a linear combination of r_{i-1} and r_{i-2} , and ultimately, r_i is written as a linear combination of a and b.

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Proof of Euclid's Algorithm

Claim: The algorithm stops after at most $O(\log a)$ steps.

Proof: It suffices to show that in each step $r_i < r_{i-2}/2$:

For $i=1:\ r_1< b< a$ and thus in $a=q_1b+r_1,\ q_1\geq 1.$ Therefore, $a\geq 1b+r_1>r_1+r_1,$ and thus $a/2>r_1.$

For i>1: $r_i< r_{i-1}< r_{i-2}$ and thus $r_{i-2}=q_ir_{i-1}+r_i,\ q_i\geq 1.$ Therefore, $r_{i-2}\geq 1r_{i-1}+r_i>r_i+r_1,$ and thus $r_{i-2}/2>r_i.$

After at most $2\log a$ steps, r_i reduces to zero. QED

Proof of Euclid's Algorithm (cont.)

Claim: $r_k = \gcd(a, b)$.

Proof:

 $r_k|\gcd(a,b)$: $r_k|r_{k-1}$ because of the stop condition. $r_k|r_k$ and $r_k|r_{k-1}$ and therefore r_k divides any linear combination of r_{k-1} and r_k , including r_{k-2} . Since $r_k|r_{k-1}$ and $r_k|r_{k_2}$, it follows that $r_k|r_{k-3}$. Continuing this way, it follows that $r_k|a$ and that $r_k|b$, thus $r_k|\gcd(a,b)$.

 $\gcd(a,b)|r_k$: r_k is a linear combination of a and b; $\gcd(a,b)|a$ and $\gcd(a,b)|b$, therefore, $\gcd(a,b)|r_k$.

We conclude that $r_k = \gcd(a, b)$. QED

© Eli Biham - May 3, 2005

250

Introduction to Number Theory 1 (10)

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Groups

A ${\bf group}\ (S,\oplus)$ is a set S with a binary operation \oplus defined on S for which the following properties hold:

- 1. Closure: $a \oplus b \in S$ For all $a, b \in S$.
- 2. **Identity**: There is an element $e \in S$ such that $e \oplus a = a \oplus e = a$ for all $a \in S$.
- 3. Associativity: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ for all $a, b, c \in S$.
- 4. **Inverses**: For each $a \in S$ there exists an unique element $b \in S$ such that $a \oplus b = b \oplus a = e$.

If a group (S,\oplus) satisfies the **commutative law** $a\oplus b=b\oplus a$ for all $a,b\in S$ then it is called an **Abelian group**.

Definition: The **order** of a group, denoted by |S|, is the number of elements in S. If a group satisfies $|S| < \infty$ then it is called a **finite group**.

Lemma: $(Z_n, +_n)$ is a finite Abelian **additive group** modulo n.

Groups (cont.)

Basic Properties:

Let:

$$a^k = \bigoplus_{i=1}^k a = \underbrace{a \oplus a \oplus \ldots \oplus a}_k.$$

- 1. The identity element e in the group is unique.
- 2. Every element a has a ${\bf single}$ inverse, denoted by $a^{-1}.$ We define $a^{-k}=\oplus_{i=1}^k a^{-1}.$
- 3. $a^m \oplus a^n = a^{m+n}$
- 4. $(a^m)^n = a^{nm}$.

© Eli Biham - May 3, 2005 253 Introduction to Number Theory 1 (10)

Groups (cont.)

Definition: The **order** of a in a group S is the least t > 0 such that $a^t = e$, and it is denoted by order(a, S).

For example, in the group $(Z_3, +_3)$, the order of 2 is 3 since $2 + 2 \equiv 4 \equiv 1$, $2+2+2\equiv 6\equiv 0$ (and 0 is the identity in \mathbb{Z}_3).

Subgroups

Definition: If (S, \oplus) is a group, $S' \subseteq S$, and (S', \oplus) is also a group, then (S', \oplus) is called a **subgroup** of (S, \oplus) .

Theorem: If (S,\oplus) is a finite group and S' is any subset of S such that $a\oplus b\in S'$ for all $a,b\in S'$, then (S',\oplus) is a subgroup of (S,\oplus) .

Example: $(\{0, 2, 4, 6\}, +_8)$ is a subgroup of $(Z_8, +_8)$, since it is closed under

Lagrange's theorem: If (S, \oplus) is a finite group and (S', \oplus) is a subgroup of (S, \oplus) then |S'| is a divisor of |S|.

Subgroups (cont.)

Let a be an element of a group S, denote by $(\langle a \rangle, \oplus)$ the set:

$$\langle a \rangle = \{ a^k : \operatorname{order}(a, S) \ge k \ge 1 \}$$

Theorem: $\langle a \rangle$ contains order(a, S) distinct elements.

Proof: Assume by contradiction that there exists $1 \le i < j \le \operatorname{order}(a, S)$, such that $a^i = a^j$. Therefore, $e = a^{j-i}$ in contradiction to fact that order(a, S) > 0j - i > 0. QED

Lemma: $\langle a \rangle$ is a subgroup of S with respect to \oplus .

We say that a generates the subgroup $\langle a \rangle$ or that a is a generator of $\langle a \rangle$. Clearly, the order of $\langle a \rangle$ equals the order of a in the group. $\langle a \rangle$ is also called a

Example: $\{0, 2, 4, 6\} \subset \mathbb{Z}_8$ can be generated by 2 or 6.

Note that a cyclic group is always Abelian.

© Eli Biham - May 3, 2005

Subgroups (cont.)

Corollary: The order of an element divides the order of group.

Corollary: Any group of prime order must be cyclic.

Corollary: Let S be a finite group, and $a \in S$, then $a^{|S|} = e$.

Theorem: Let a be an element in a group S, such that $a^s = e$, then $\operatorname{order}(a, S)|_{S}$

Proof: Using the division theorem, $s = q \cdot \operatorname{order}(a, S) + r$, where $0 \le r < r$ order(a, S). Therefore,

$$e=a^s=a^{q\cdot\operatorname{order}(a,S)+r}=(a^{\operatorname{order}(a,S)})^q\oplus a^r=a^r.$$

Due to the minimality of order (a, S), we conclude that r = 0. QED

Fields

Definition: A **Field** (S, \oplus, \odot) is a set S with two binary operations \oplus and \odot defined on S and with two special elements denoted by 0, 1 for which the following properties hold:

- 1. (S, \oplus) is an Abelian group (0 is the identity with regards to \oplus).
- 2. $(S \setminus \{0\}, \odot)$ is an Abelian group (1 is the identity with regards to \odot).
- 3. Distributivity: $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$.

Corollary: $\forall a \in S, a \odot 0 = 0$.

Proof: $a \odot 0 = a \odot (0 \oplus 0) = a \odot 0 \oplus a \odot 0$, thus, $a \odot 0 = 0$.

Examples: $(Q, +, \cdot), (Z_p, +_p, \cdot_p)$ where p is a prime

Inverses

Lemma: Let p be a prime. Then,

 $ab \equiv 0 \pmod{p}$

iff

 $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.

Proof

 (\Leftarrow) From p|a or p|b it follows that p|ab.

 $(\Rightarrow)\ p|ab.$ If p|a we are done. Otherwise, $p\not|a.$ Since p a prime it follows that $\gcd(a,p)=1.$ Therefore, p|b (by the fundamental theorem of arithmetic). QED

© Eli Biham - May 3, 2005

Inverses (cont.)

 $\textbf{Definition}\text{: Let a be a number. If there exists b such that $ab\equiv 1\pmod m$,}$ then we call b the **inverse** of a modulo m, and write $b \stackrel{\Delta}{=} a^{-1} \pmod{m}$.

Theorem: If $\gcd(a,m)=1$ then there exists some b such that $ab\equiv 1$ \pmod{m}

Proof: There exist x, y such that

xa + ym = 1.

Thus,

 $xa \equiv 1 \pmod{m}$.

Conclusion: a has an inverse modulo m iff gcd(a, m) = 1. The inverse can be computed by Euclid's algorithm.

 Z_n^*

Definition: \mathbb{Z}_n^* is the set of all the invertible integers modulo n:

$$Z_n^* = \{i \in Z_n | \gcd(i, n) = 1\}.$$

Theorem: For any positive n, Z_n^* is an Abelian multiplicative group under multiplication modulo n.

Proof: Exercise.

 Z_n^* is also called an Euler group.

Example: For a prime $p, Z_p^* = \{1, 2, ..., p - 1\}$.

Z_n^* (cont.)

Examples

$$\begin{split} Z_2 &= \{0,1\} & Z_2^* &= \{1\} \\ Z_3 &= \{0,1,2\} & Z_3^* &= \{1,2\} \\ Z_4 &= \{0,1,2,3\} & Z_4^* &= \{1,3\} \\ Z_5 &= \{0,1,2,3,4\} & Z_5^* &= \{1,2,3,4\} \\ Z_1 &= \{0\} & Z_1^* &= \{0\} \end{split}$$

© Fli Piham May 2 2005

262

Introduction to Number Theory 1 (10)

Euler's Function (cont.)

Theorem: Let $n=p_1^{e_1}p_2^{e_2}\cdots p_l^{e_l}$ be the unique factorization of n to distinct primes. Then,

$$\varphi(n)=\Pi(p_i^{e_i-1}(p_i-1))=n\,\Pi(1-\frac{1}{p_i}).$$

Proof: Exercise.

Note: If the factorization of n is not known, $\varphi(n)$ is not known as well. **Conclusions**: For prime numbers $p \neq q$, and any integers a and b

1.
$$\varphi(p) = p - 1$$
.

2.
$$\varphi(p^e) = (p-1)p^{e-1} = p^e - p^{e-1}$$
.

3.
$$\varphi(pq) = (p-1)(q-1)$$
.

4. If
$$gcd(a, b) = 1$$
 then $\varphi(ab) = \varphi(a)\varphi(b)$.

© Eli Biham - May 3, 2005

264

Introduction to Number Theory 1 (10)

Euler's Function (cont.)

It remains to see for how many k's, $1 \le k \le n/d'$, it holds that

$$gcd(k, n/d') = 1.$$

But this is the definition of Euler's function, thus there are $\varphi(n/d')$ such k's. Since we count each a exactly once

$$\sum_{d'|n} \varphi(n/d') = n.$$

If d'|n then also $d=\frac{n}{d'}$ divides n, and thus we can substitute n/d' with d and get

$$\sum_{d|n} \varphi(d) = n.$$

QED

© Eli Biham - May 3, 2005

266

Introduction to Number Theory 1 (10)

Fermat's Little Theorem

 ${\bf Fermat's}$ little theorem: (המשפט הקטן של פרמה) Let p be a prime number. Then, any integer a satisfies

$$a^p \equiv a \pmod{p}$$
.

Proof: If p|a the theorem is trivial, as $a\equiv 0\pmod p$. Otherwise p and a are coprimes, and thus by Euler's theorem

$$a^{p-1} \equiv 1 \pmod{p}$$

and

$$a^p \equiv a \pmod{p}$$
.

QED

Euler's Function

Definition: Euler's function $\varphi(n)$ represents the number of elements in \mathbb{Z}_n^* :

$$\varphi(n) \stackrel{\Delta}{=} |Z_n^*| = |\{i \in Z_n | \gcd(i,n) = 1\}|$$

 $\varphi(n)$ is the number of numbers in $\{0,\ldots,n-1\}$ that are coprime to n.

Note that by this definition $\varphi(1) \stackrel{\Delta}{=} 1$ (since $Z_1^* = \{0\}$, which is because $\gcd(0,1)=1$).

© Fli Dibam May 2 2005

Introduction to Nu

Euler's Function (cont.)

Theorem:

$$\mathop{\textstyle\sum}_{d|n} \varphi(d) = n.$$

Proof: In this proof, we count the numbers $1, \ldots, n$ in a different order. We divide the numbers into distinct groups according to their gcd d' with n, thus the total number of elements in the groups is n.

It remains to see what is the number of numbers out of $1, \ldots, n$ whose gcd with n is d'.

Clearly, if $d'\not|n,$ the number is zero.

Otherwise, let d'|n and $1\leq a\leq n$ be a number such that $\gcd(a,n)=d'.$ Therefore, a=kd', for some $k\in\{1,\ldots,n/d'\}.$ Substitute a with kd', thus $\gcd(kd',n)=d',$ i.e., $\gcd(k,n/d')=1.$

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Euler's Theorem

Theorem: For any a and m, if gcd(a, m) = 1 then

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Proof: a is an element in the Euler group Z_m^* . Therefore, as a corollary from Lagrange Theorem, $a^{|Z_m^*|} = a^{\varphi(m)} = 1 \pmod{m}$. QED

© Eli Biham - May 3, 2003

Introduction to Number Theory 1 (10)

Properties of Elements in the Group \mathbb{Z}_m^*

Definition: For a, m such that gcd(a, m) = 1, let h be the smallest integer (h > 0) satisfying

$$a^h \equiv 1 \pmod{m}$$
.

(Such an integer exists by Euler's theorem: $a^{\varphi(m)} \equiv 1 \pmod{m}$). We call h the **order of a modulo m** (m 1717), and write $h = \mathbf{order}(a, \mathbf{Z}_m^*)$.

Obviously, it is equivalent to the order of a in the Euler group Z_m^*

5, 2005 268 Introduction to Number Theory 1 (10) © EB Biham - May 3, 2005 269 Introduction to Number Theory 1 (10)

Properties of Elements in the Group Z_m^* (cont.)

Lemma: If $a^s \equiv 1 \pmod{m}$, then order $(a, Z_m^*)|s$.

Proof: Let $h = \operatorname{order}(a, Z_m^*)$.

Write s = qh + r where $0 \le r < h$. Then

$$1 \equiv a^s \equiv a^{qh+r} \equiv (a^h)^q a^r \equiv a^r \pmod{m}$$

but r < h and thus we must conclude that

r = 0.

Therefore,

h|s.

QED

© Fli Piham May 2 200

970

Introduction to Number Theory 1 (10)

Properties of Elements in the Group Z_m^* (cont.)

Theorem: Let h be the order of a modulo m, then $h|\varphi(m)$

Proof: Follows as a corollary from Lagrange Theorem: the order of an element divides the order of the group. QED

We conclude that the order of a modulo a prime p (gcd(a, p) = 1) divides p-1.

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Properties of Elements in the Group Z_m^* (cont.)

Lemma: Let a be an element of Z_m^* and $h = \operatorname{order}(a, Z_m^*)$, then the numbers

$$1, a^1, a^2, a^3, \dots, a^{h-1}$$

are all distinct modulo m.

 $\mathbf{Proof:}$ Follows from the properties of groups. QED

© Eli Biham - May 3 2005

272

Introduction to Number Theory 1 (10)

Modular Exponentiation

Given a prime q and $a \in \mathbb{Z}_q^*$ we want to calculate $a^x \mod q$.

Denote \boldsymbol{x} in binary representation as

$$x = x_{n-1}x_{n-2}\dots x_1x_0,$$

where $x = \sum_{i=0}^{n-1} x_i 2^i$.

Therefore, $a^x \mod q$ can be written as:

$$a^x = a^{2^{(n-1)}x_{n-1}}a^{2^{(n-2)}x_{n-2}}\cdots a^{2x_1}a^{x_0}$$

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10) †

An Algorithm for Modular Exponentiation

$$a^x = a^{2^{(n-1)}x_{n-1}}a^{2^{(n-2)}x_{n-2}}\cdots a^{2x_1}a^{x_0}$$

Algorithm:

$$\begin{aligned} r &\leftarrow 1 \\ \text{for } i &\leftarrow n-1 \text{ down to } 0 \text{ do} \\ r &\leftarrow r^2 a^{x_i} \operatorname{mod} q \qquad (a^{x_i} \text{ is either } 1 \text{ or } a) \end{aligned}$$

At the end

$$r = \prod_{i=0}^{n-1} a^{x_i 2^i} = a^{(\sum_{i=0}^{n-1} x_i 2^i)} = a^x \pmod{q}.$$

Complexity: $O(\log x)$ modular multiplications. For a random x this complexity is $O(\log q)$.

© Eli Biham - May 3, 2005

27

Introduction to Number Theory 1 (10)

An Algorithm for Modular Exponentiation (cont.)

An important note:

$$(xy)\operatorname{mod} q = ((x\operatorname{mod} q)(y\operatorname{mod} q))\operatorname{mod} q,$$

i.e., the modular reduction can be performed every multiplication, or only at the end, and the results are the same.

The proof is given as an exercise.

© Eli Biham - May 3, 200

Introduction to Number Theory 1 (10)

The Chinese Remainder Theorem

Problem 1: Let n=pq and let $x\in Z_n$. Compute $x \bmod p$ and $x \bmod q$. Both are easy to compute, given p and q.

Problem 2: Let n=pq, let $x\in Z_p$ and let $y\in Z_q$. Compute $u\in Z_n$ such that

$$u \equiv x \pmod{p}$$

 $u \equiv y \pmod{q}$.

The Chinese Remainder Theorem (cont.)

Generalization: Given moduli m_1, m_2, \ldots, m_k and values y_1, y_2, \ldots, y_k . Compute u such that for any $i \in \{1, \ldots, k\}$

$$u \equiv y_i \pmod{m_i}$$
.

We can assume (without loss of generality) that all the m_i 's are coprimes in pairs $(\forall_{i\neq j} \gcd(m_i,m_j)=1)$. (If they are not coprimes in pairs, either they can be reduced to an equivalent set in which they are coprimes in pairs, or else the system leads to a contradiction, such as $u\equiv 1\pmod 3$ and $u\equiv 2\pmod 6$.)

Example: Given the moduli $m_1=11$ and $m_2=13$ find a number u (mod $11\cdot 13$) such that $u\equiv 7\pmod {11}$ and $u\equiv 4\pmod {13}$.

Answer: $u \equiv 95 \pmod{11 \cdot 13}$. Check: $95 = 11 \cdot 8 + 7$, $95 = 13 \cdot 7 + 4$.

Eli Biham - May 3, 2005 276 Introduction to Number Theory 1

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

The Chinese Remainder Theorem (cont.)

The Chinese remainder theorem: (משפט השאריות הסיני) Let $m_1,\ m_2,$ \ldots, m_k be coprimes in pairs and let y_1, y_2, \ldots, y_k . Then, there is an **unique solution** u modulo $m = \square m_i = m_1 m_2 \cdots m_k$ of the equations:

$$u \equiv y_1 \pmod{m_1}$$

 $u \equiv y_2 \pmod{m_2}$
:
 $u \equiv y_k \pmod{m_k}$,

and it can be efficiently computed.

The Chinese Remainder Theorem (cont.)

We remain with the problem of finding a and b. Notice that a is divisible by 13, and $a \equiv 1 \pmod{11}$.

Denote the inverse of 13 modulo 11 by $c \equiv 13^{-1} \pmod{11}$. Then,

$$13c \equiv 1 \pmod{11}$$
$$13c \equiv 0 \pmod{13}$$

We conclude that

$$a \equiv 13c \equiv 13(13^{-1} \pmod{11}) \pmod{11 \cdot 13}$$

and similarly

$$b \, \equiv \, 11(11^{-1} \pmod{13}) \pmod{11 \cdot 13}$$

Thus.

$$u \equiv 7 \cdot 13 \cdot 6 + 4 \cdot 11 \cdot 6 \equiv 810 \equiv 95 \pmod{11 \cdot 13}$$

The Chinese Remainder Theorem (cont.)

We still have to show that the solution is unique modulo m. By contradiction, we assume that there are two distinct solutions u_1 and u_2 , $u_1 \not\equiv u_2 \pmod{m}$. But any modulo m_i satisfy $u_1 - u_2 \equiv 0 \pmod{m_i}$, and thus

$$m_i|u_1 - u_2$$

Since m_i are pairwise coprimes we conclude that

$$m = \prod m_i |u_1 - u_2|$$

which means that

$$u_1 - u_2 \equiv 0 \pmod{m}$$
.

Contradiction. QED

$Z_{ab}^* \equiv Z_a^* \times Z_b^*$ (cont.)

Lemma: Ψ is onto.

Proof: Choose any $\alpha\in Z^*_a$ and any $\beta\in Z^*_b$, we can reconstruct u, using the Chinese remainder theorem, and $u\in Z^*_{ab}$ from previous lemma.

Lemma: Ψ is one to one.

Proof: Assume to the contrary that for $\alpha \in Z_a^*$ and $\beta \in Z_b^*$ there are $u_1 \not\equiv u_2$ (mod ab). This is a contradiction to the uniqueness of the solution of the Chinese remainder theorem.

OED

We conclude from the Chinese remainder theorem and these two Lemmas that Z_{ab}^* is 1-1 related to $Z_a^* \times Z_b^*$.

For every $\alpha \in Z_a^*$ and $\beta \in Z_b^*$ there exists a unique $u \in Z_{ab}^*$ such that $u \equiv \alpha \pmod{a}$ and $u \equiv \beta \pmod{b}$, and vise versa.

Note: This can be used to construct an alternative proof for $\varphi(pq) = \varphi(p)\varphi(q)$, where gcd(p, q) = 1.

The Chinese Remainder Theorem (cont.)

Example: Let

$$u \equiv 7 \pmod{11} \qquad \qquad u \equiv 4 \pmod{13}$$

then compute

$$u \equiv ? \pmod{11 \cdot 13}$$
.

 $a \equiv 1 \pmod{11}$

Assume we found two numbers a and b such that

$$b \equiv 0 \pmod{11}$$
 $b \equiv 1 \pmod{13}$

 $a \equiv 0 \pmod{13}$

Then.

$$u \equiv 7a + 4b \pmod{11 \cdot 13}.$$

The Chinese Remainder Theorem (cont.)

Proof: m/m_i and m_i are coprimes, thus m/m_i has an inverse modulo m_i . Denote

$$l_i \equiv (m/m_i)^{-1} \pmod{m_i}$$

and

$$b_i = l_i(m/m_i).$$

$$\begin{array}{ll} b_i \equiv 1 \pmod{m_i} \\ b_i \equiv 0 \pmod{m_j}, & \forall j \neq i \pmod{m_j|(m/m_i)}. \end{array}$$

The solution is

$$u \equiv y_1b_1 + y_2b_2 + \dots + y_kb_k$$

$$\equiv \sum_{i=1}^{m} y_ib_i \pmod{m}.$$

Introduction to Number Theory 1 (10)

$Z_{ab}^* \equiv Z_a^* \times Z_b^*$

Consider the homomorphism $\Psi: Z_{ab}^* \to Z_a^* \times Z_b^*$, $\Psi(u) = (\alpha = u \operatorname{mod} a, \beta = u \operatorname{mod} b).$

Lemma: $u \in Z_{ab}^*$ iff $\alpha \in Z_a^*$ and $\beta \in Z_b^*$, i.e., gcd(ab, u) = 1 iff gcd(a, u) = 1 and gcd(b, u) = 1.

 (\Rightarrow) Trivial $(k_1ab + k_2u = 1 \text{ for some } k_1 \text{ and } k_2)$.

 (\Leftarrow) By the assumptions there exist some $k_1,\,k_2,\,k_3,\,k_4$ such that

 $k_1a + k_2u = 1$ and $k_2b + k_4u = 1$.

Thus.

$$k_1 a (k_3 b + k_4 u) + k_2 u = 1$$

from which we get

$$k_1k_3ab + (k_1k_4a + k_2)u = 1.$$

OED

Introduction to Number Theory 1 (10) †•

Lagrange's Theorem

Theorem: A polynomial of degree n > 0

$$f(x) = x^{n} + c_{1}x^{n-1} + c_{2}x^{n-2} + \ldots + c_{n-1}x + c_{n}$$

has at most n distinct roots modulo a prime p.

Proof: It is trivial for n = 1.

By induction

Assume that any polynomial of degree n-1 has at most n-1 roots. Let a be a root of f(x), i.e., $f(a) \equiv 0 \pmod{p}$.

We can write

$$f(x) = (x - a)f_1(x) + r \pmod{p}$$

for some polynomial $f_1(x)$ and constant r (this is a division of f(x) by (x-a)).

Since $f(a) \equiv 0 \pmod{p}$ then $r \equiv 0 \pmod{p}$ and we get

$$f(x) = (x - a)f_1(x) \pmod{p}$$
.

Lagrange's Theorem (cont.)

Thus, any root $b \neq a$ of f(x) is also a root of $f_1(x)$:

$$0 \equiv f(b) \equiv (b - a)f_1(b) \pmod{p}$$

which causes

$$f_1(b) \equiv 0 \pmod{p}$$
.

 f_1 is of degree n-1, and thus has at most n-1 roots. Together with $a,\,f$ has at most n roots. QED

Note: Lagrange's Theorem does not hold for composites, for example:

$$x^2 - 4 \equiv 0 \pmod{35}$$

has 4 roots: 2, 12, 23 and 33.

© Eli Biham - May 3, 2003

286

Introduction to Number Theory 1 (10) •

Generators

Definition: a is called a **generator** (יוצר) of Z_n^* if $\operatorname{order}(a, Z_n^*) = \varphi(n)$.

Every group possesses at least one primitive root, but not all groups posses generators. If Z_n^* possesses a generator g, then Z_n^* is **cyclic**.

If g is a generator of Z_n^* and a is any element of Z_n^* then there exists a z such that $g^z \equiv a \pmod{n}$. This z is called the **discrete logarithm** or **index** of a modulo n to the base g. We denote this value as $\inf_{n,g}(a)$ or $\mathsf{DLOG}_{n,g}(a)$.

© Eli Biham - May 3, 2005

288

Introduction to Number Theory 1 (10

The Number of Primitive Roots (cont.)

Theorem: Let p be a prime and d|p-1. The number of integers in Z_p^* of order d is $\varphi(d)$.

Proof: Denote the number of integers in Z_p^* which are of order d by $\psi(d)$. We should prove that $\psi(d) = \varphi(d)$.

Assume that $\psi(d) \neq 0$, and let $a \in \mathbb{Z}_n^*$ have an order d ($a^d \equiv 1 \pmod{p}$).

The equation $x^d \equiv 1 \pmod{p}$ has the following solutions

$$1 \equiv a^d, a^1, a^2, a^3, \dots, a^{d-1},$$

all of which are distinct.

We know that $x\equiv a^i\pmod p$ has an order of d iff $\gcd(i,d)=1$, and thus the number of solutions with order d is $\psi(d)=\varphi(d)$.

© Eli Biham - May 3, 2005

290

Introduction to Number Theory 1 (10

The Number of Primitive Roots (cont.)

Conclusion: Let p be a prime. There are $\varphi(p-1)$ elements in Z_p^* of order p-1 (i.e., all of them are generators).

Therefore, Z_n^* is cyclic.

Theorem: The values of n>1 for which Z_n^* is cyclic are $2,4,p^e$ and $2p^e$ for all odd primes p and all positive integers e.

Proof: Exercise.

Primitive Roots

$$\operatorname{exponent}(S) = \max_{x \in S} \operatorname{order}(x, S).$$

Examples: Let p and q be odd primes, and let n = pq. Then

$$\operatorname{exponent}(Z_p^*) \ = \ \max_{x \in Z_*^*} \operatorname{order}(x, Z_p^*) = p - 1 = \varphi(p),$$

$$\operatorname{exponent}(Z_n^*) = \max_{x \in Z_n^*} \operatorname{order}(x, Z_n^*) = \operatorname{lcm}(p-1, q-1) < \varphi(n).$$

 ${f Definition}$: a is called a ${f primitive\ root}$ (שרש פרימיטיבי) of Z_n^* if

$$\operatorname{order}(a, Z_n^*) = \operatorname{exponent}(Z_n^*).$$

Lemma: For any $a \in \mathbb{Z}_n^*$, $a^{\text{exponent}(\mathbb{Z}_n^*)} \equiv 1 \pmod{n}$.

Conclusion: If g is a primitive root of Z_n^* then $g^x \equiv g^y \pmod n$ iff $x \equiv y \pmod exponent(Z_n^*)$.

© Eli Biham - May 3, 2005

ntroduction to Number Theory 1 (10)

The Number of Primitive Roots

Theorem: Let h be the order of a modulo m. Let s be an integer such that gcd(h, s) = 1, then the order of a^s modulo m is also h.

Proof: Denote the order of a by h and the order of a^s by h'.

$$(a^s)^h \equiv (a^h)^s \equiv 1 \pmod{m}.$$

Thus, h'|h.

On the other hand,

$$a^{sh'} \equiv (a^s)^{h'} \equiv 1 \pmod{m}$$

and thus h|sh'. Since gcd(h, s) = 1 then h|h'.

QED

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

The Number of Primitive Roots (cont.)

We should show that the equality holds even if $\psi(d)=0$. Each of the integers in $Z_p^*=\{1,2,3,\ldots,p-1\}$ has some order d|p-1. Thus, the sum of $\psi(d)$ for all the orders d|p-1 equals $|Z_p^*|$:

$$\mathop{\textstyle\sum}_{d|p-1} \psi(d) = p-1.$$

As we know that $\Sigma_{d|p-1} \varphi(d) = p-1$, it follows that:

$$\begin{array}{ll} 0 &=& \sum\limits_{d|p-1} (\varphi(d)-\psi(d)) = \\ &=& \sum\limits_{d|p-1,\psi(d)=0} (\varphi(d)-\psi(d)) + \sum\limits_{d|p-1,\psi(d)\neq 0} (\varphi(d)-\psi(d)) = \\ &=& \sum\limits_{d|p-1,\psi(d)=0} \varphi(d) + \sum\limits_{d|p-1,\psi(d)\neq 0} 0 = \sum\limits_{d|p-1,\psi(d)=0} \varphi(d) \end{array}$$

Since $\varphi(d) \ge 0$, then $\psi(d) = 0 \Rightarrow \varphi(d) = 0$. We conclude that for any d:

$$\psi(d) = \varphi(d).$$

QED

© Eli Biham - May 3, 2005

Introduction to Number Theory 1 (10)

Wilson's Theorem

Wilson's theorem: Let p be a prime.

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot (p-1) \equiv -1 \pmod{p}.$$

Proof: Clearly it holds for p=2. It suffices thus to prove it for $p\geq 3$. Let g be a generator of Z_p^* . Then,

$$Z_n^* = \{1, g, g^2, g^3, \dots, g^{p-2}\}$$

and thus

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (p-1) \equiv 1 \cdot g \cdot g^2 \cdot g^3 \cdot \dots \cdot g^{p-2}$$

$$\equiv g^{(p-2)(p-1)/2} \pmod{p}.$$

© Eli Biham - May 3, 2005 292 Introduction to Number Theory 1 (10) © Eli Biham - May 3, 2005

Wilson's Theorem (cont.)

If $g^{(p-1)/2} \equiv -1 \pmod{p}$, then it follows that

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot (p-1) \equiv g^{(p-2)(p-1)/2} \pmod{p}$$

$$\equiv (-1)^{p-2} \equiv -1 \pmod{p}.$$

It remains to show that $g^{(p-1)/2} \equiv -1 \pmod p.$ From Euler theorem it follows that

$$g^{p-1} \equiv 1 \pmod{p}$$
.

Thus,

$$0 \equiv g^{p-1} - 1 \equiv (g^{(p-1)/2} + 1)(g^{(p-1)/2} - 1) \pmod{p}.$$

 $g^{(p-1)/2}\not\equiv 1\pmod p\text{ since }\mathrm{order}(g,Z_p^*)=p-1\text{ (and }p\text{ is odd), and thus it must be that }g^{(p-1)/2}\equiv -1\pmod p.$

© Eli Biham - May 3, 2005 294 Introduction to Number Theory 1 (10)