РІВНЯННЯ МАТЕМАТИЧНОЇ ФІЗИКИ

Література.

- 1. Владимиров В.С. Уравнения математической физики. М.: Наука, 1971.
- 2. Михлин С.Г. Курс математической физики. М.: Наука, 1968.
- 3. Перестюк М.О., Маринець В.В. Теорія рівнянь математичної фізики. К.:Либідь, 2014.

1. ВСТУП ТА ЗАГАЛЬНІ ПОНЯТТЯ

- **1.1.** Далі область G змінних $\mathbf{x} = (x_1, ..., x_r)$ це відкрита¹ зв'язна множина в \mathbb{R}^r , яка може обмеженою чи необмеженою, \overline{G} її замикання. Будемо вважати, що межа $\partial G = \overline{G} \setminus G$, тобто точки, що належать \overline{G} , але не належать G, утворює гладку² або кусково-гладку поверхню в \mathbb{R}^r . За необхідності розглядають гладкість більш високого порядку.
- C_G множина усіх функцій, неперервних в області G змінних \mathbf{x} ; C_G^p множина функцій, які мають неперервні частинні похідні (по сукупності змінних) в G до p -го порядку включно. У випадку однієї змінної також будемо використовувати позначення C[a,b] для функцій, неперервних на відрізку [a,b] або C(a,b) на відкритому інтервалі (a,b); аналогічно $C^p[a,b]$ та $C^p(a,b)$ для функцій, що мають неперервні похідні до p -го порядку включно.
- Функція $F(\mathbf{x})$ є квадратично інтегровною в області G, якщо існує інтеграл

$$\int_{G} |F(\mathbf{x})|^2 d^r \mathbf{x} < \infty,$$

множину таких функцій позначаємо L_G^2 .

$$g(\mathbf{X})$$
 , причому $\sum_{i=1}^r \left| \partial g / \partial x_i \right| \neq 0$.

¹ Тобто кожна точка належить області разом із своїм околом.

 $^{^{2}}$ Поверхня є гладкою, якщо її можна задати рівнянням $\,g({f x}) = 0\,$ з неперервно-диференційовною функцією

Нехай $u(\mathbf{x})$ — дійсна або комплексна вектор-функція змінних $\mathbf{x} \equiv (x_1,...,x_r)$, яка є неперервно-диференційовною достатньо високого порядку. Позначимо $u,_j \equiv \partial_j u \equiv \frac{\partial u}{\partial x_i}, \ i=1,...,r$, а для більшої кількості змінних

$$u,_{i_1 i_2 \dots i_n} \equiv \partial_{i_1} \partial_{i_2} \dots \partial_{i_n} u \equiv \frac{\partial^n u}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_n}}$$

(n - натуральне число); індекси можуть і співпадати, тобто диференціювання по деяким змінним може виконуватися декілька разів. Інколи також пишемо

$$\nabla u \equiv \left\{ \frac{\partial u}{\partial x_i}, \quad i = 1, ..., r \right\} \equiv \frac{\partial u}{\partial \mathbf{x}}.$$

• Оператор Лапласа (для r змінних) $\Delta \equiv \sum_{i=1}^r \frac{\partial^2}{\partial x_i^2}$, тобто $\Delta u \equiv \sum_{i=1}^r u_{i}$.

Диференціальним рівнянням з частинними похідними називають вираз виду

$$\mathbf{F}\{u, u_{i_1}, ..., u_{i_{i_1, i_2, ..., i_n}}, \mathbf{x}\} = 0, \tag{1}$$

де $u \equiv u(\mathbf{x})$ – вектор-функція змінних \mathbf{x} , $\mathbf{F} \equiv \{F_1,...,F_m\}$ – вектор-функція аргументів $\mathbf{x} \equiv (x_1,...,x_r)$.

Розв'язком рівняння (1) в G називатимемо таку функцію $u(\mathbf{x})$, для якої визначена ліва частина (1), причому $u(\mathbf{x})$ обертає (1) у тотожність в G.

Рівняння з частинними похідними називають лінійним, якщо шукані функції та усі похідні входять лінійно в F. У разі лінійності F лише відносно старших похідних, рівняння називають квазілінійним; при цьому коефіцієнти при старших похідних можуть залежати від \mathbf{x} ,u та від похідних меншого порядку.

1.2. У цьому курсі ми розглядаємо **лінійні рівняння другого порядку** для **однієї функції** $u \equiv u(\mathbf{x})$:

$$\sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) u_{ij} + \sum_{j=1}^{r} B_{j}(\mathbf{x}) u_{j} + C(\mathbf{x})u + F(\mathbf{x}) = 0 , \qquad (2)$$

де
$$u_j \equiv u,_j \equiv \partial_j u \equiv \frac{\partial u}{\partial x_j}, u_{ij} \equiv u,_{ij} \equiv \partial_i \partial_j u \equiv \frac{\partial^2 u}{\partial x_i \partial x_j}$$
.

Як правило, ми будемо далі вважати, що функції A_{ij}, B_j, C, F є неперервно диференційовними. Якщо не зазначено додаткових умов (початкових, граничних тощо), розв'язком рівняння (2) в деякій області G будемо називати двічи неперервно диференційовну функцію $u(\mathbf{x})$, яка перетворює (2) на тотожність в цій області.

Важливу роль для вивчення властивостей розв'язку відіграє **тип рівняння,** який визначається коефіцієнтами при старших похідних. Тип

визначають у кожній точці \mathbf{x}_0 окремо; але ми далі будемо розглядати рівняння, тип яких не міняється в усьому просторі.

Запишемо характеристичну форму рівняння (2):

$$Q(\lambda_1,...,\lambda_n) = \sum_{i=1}^n \sum_{i=1}^n A_{ij}(\mathbf{x}_0) \lambda_i \lambda_j.$$

Це — квадратична форма змінних $\lambda_1,...,\lambda_n$; у кожній точці **х** її можна звести до канонічного виду за допомогою неособливого лінійного перетворення $\lambda_1,...,\lambda_n \to \lambda_1',...,\lambda_n'$:

$$Q = \sum_{i=1}^{n} \tilde{\mathbf{A}}_{i}(\mathbf{x}_{0}) \lambda_{i}^{2}.$$

• Якщо усі \tilde{A}_i не дорівнюють нулю та мають однаковий знак, рівняння (2) називають **еліптичним** (у точці \mathbf{x}).

Прикладом еліптичного рівняння ϵ рівняння Пуассона

$$\Delta u = f(\mathbf{x}); \quad u \equiv u(\mathbf{x}), \ \mathbf{x} \equiv (x_1, ..., x_r).$$

Це рівняння описує, наприклад, електростатичний потенціал або ньютонівський гравітаційний потенціал. Якщо $f \equiv 0$ маємо рівняння Лапласа

$$\Delta u = 0$$
;

функції, що задовольняють цьому рівнянню в усьому просторі називають гармонічними.

• Якщо усі $\tilde{\mathbf{A}}_i$ не дорівнюють нулю, але знак $\tilde{\mathbf{A}}_1$ відрізняється від знаку інших коефіцієнтів, наприклад, якщо $\tilde{\mathbf{A}}_1 > 0$, але $\tilde{\mathbf{A}}_i < 0$, i = 2,...,n, рівняння (2) називають **гіперболічним**.

Приклад: хвильове рівняння або рівняння д'Аламбера (J. D'Alembert):

$$\frac{\partial^2 u}{\partial t^2} - a^2 \Delta u = f(t, \mathbf{x}); \quad u \equiv u(t, \mathbf{x}), \ \mathbf{x} \equiv (x_1, ..., x_r) \ ;$$

воно описує різноманітні хвильові процеси, такі, як поширення та генерація хвиль, прочому параметр a визначає швидкість поширення хвиль. У стаціонарному випадку, коли відомо, що $u(t,\mathbf{x})$ не залежить від t, рівняння зводиться до рівняння Пуассона.

Рівняння характеристик для хвильового рівняння має вид

$$\left(\frac{\partial S}{\partial t}\right)^2 - a^2 \left(\frac{\partial S}{\partial \mathbf{x}}\right)^2 = 0,$$

одним з його розв'язків є $S = at - \sqrt{\sum_{i=1}^{r} x_i^2}$. Рівняння S = const описує так званий характеристичний конусу майбутнього з вершиною у початку координат.

• Якщо хоча би один з коефіцієнтів $\tilde{\mathbf{A}}_i$ (але не всі) рівний нулю, то рівняння називається **параболічним** в точці x.

Приклад: рівняння теплопровідності або дифузії

$$\frac{\partial u}{\partial t} = \kappa \Delta u + f(t, \mathbf{x}); \quad u = u(t, \mathbf{x}), \ \mathbf{x} = (x_1, ..., x_r).$$

Це рівняння описує процеси поширення тепла чи дифузійні процеси, відповідно, параметр $\kappa > 0$ пропорційний коефіцієнту теплопровідності або дифузії. У стаціонарному випадку це рівняння також зводиться до рівняння Пуассона.

1.3. Характеристичні поверхні

Нехай скалярна функція $S(\mathbf{x}) \in C^1$ задовольняє рівняння

$$\sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) \frac{\partial S}{\partial x_i} \frac{\partial S}{\partial x_j} = 0$$
(3)

причому на будь-якій поверхні $S(\mathbf{x}) = C$ вектор $\nabla S(\mathbf{x}) \neq 0$. Тоді поверхні $S(\mathbf{x}) = const$ називають *характеристичними поверхнями* (або характеристиками) рівняння (2). Для двовимірного простору (r = 2) маємо справу з характеристичними лініями. Відповідно, (2) називають рівнянням характеристик.

Рівняння (2) не завжди має дійсні розв'язки; наприклад, для еліптичних рівнянь завдяки додатній визначеності квадратичної форми по змінним ∇S єдиним розв'язком є тривіальний $S(\mathbf{x}) \equiv const$. Втім, для певних задач комплексні характеристичні поверхні також можна використовувати для дослідження дійсних розв'язків.

1.3.1. Характеристики та поширення розривів

Як було зазначено вище, ми переважно матимемо справу з двічи неперервнодиференційовними розв'язками рівняння (2). Тим не менш, існують ситуації, коли $u \in C^1(G)$, але другі похідні є *кусково* неперервні. Це означає існування обмежених граничних значень $u_{i,j}(\mathbf{x})$ на поверхнях розривів, які, однак, можуть не збігатися на різних сторонах розривів. Виникає задача вивчення структури розривів у розв'язках. Зокрема, коли — у випадку рівнянь гіперболічного типу є виділена змінна, яку зазвичай можна розглядати як час, виникає питання про еволюцію розривів, що асоціюється з питанням про поширення хвильових збурень у фізичній системі.

Щоб з'ясувати це питання, розглянемо заміну змінних у рівнянні (2) $\mathbf{x} \to \mathbf{y} = \mathbf{y}(\mathbf{x}) \in C^2$, причому виберемо $y_1 = y_1(\mathbf{x}) = S(\mathbf{x})$, а інші $y_i, i = 2,...,r$ виберемо довільним чином, але так, щоб перетворення $\mathbf{x} \to \mathbf{y}$ було неособливим, нові змінні $y_i, i = 2,...,r$ були незалежні від y_1 та між собою і існувало обернене перетворення $\mathbf{x} = \mathbf{x}(\mathbf{y})$. При цьому

$$\sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) u_{ij} \equiv \sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} =$$

$$= \sum_{r=1}^{r} \sum_{n=1}^{r} \tilde{A}_{kn}(\mathbf{y}) \frac{\partial^{2} u}{\partial y_{k} \partial y_{n}} + \sum_{i=1}^{r} \sum_{j=1}^{r} \left[A_{ij}(\mathbf{x}) \sum_{n=1}^{r} \frac{\partial}{\partial x_{i}} \left(\frac{\partial y_{n}}{\partial x_{j}} \right) \frac{\partial u}{\partial y_{n}} \right] ,$$

тут старші похідні зосереджені лише у першому доданку, де позначено

$$\tilde{A}_{kn}(\mathbf{y}) = \sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) \frac{\partial y_k}{\partial x_j} \frac{\partial y_n}{\partial x_j}.$$

В нових змінних (2) набуває вигляду

$$\sum_{r=1}^{r} \sum_{n=1}^{r} \tilde{A}_{kn}(\mathbf{y}) \frac{\partial^{2} u}{\partial y_{k} \partial y_{n}} + R(\mathbf{y}, \nabla u, u) = 0, \qquad (2')$$

де $R(\mathbf{y}, \nabla u, u)$ не містить других похідних від u, а коефіцієнт при $\partial^2 u/\partial y_1^2$ є

$$\tilde{A}_{11}(\mathbf{y}) = \sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(\mathbf{x}) \frac{\partial S}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} . \tag{4}$$

Якщо функція $y_1 = S(\mathbf{x})$ задовольняє (3), маємо $\tilde{A}_{11}(\mathbf{y}) = 0$ і рівняння (2') не містить других похідних по y_1 . Звідси видно, що рівняння (3) є необхідною умовою існування розривів функції $\partial^2 u/\partial y_1^2$, причому усі члени в (2') є неперервними, оскільки це рівняння містить лише перші похідні по $y_1 = S(\mathbf{x})$, які, як будемо припускати, не містять розривів (диференціювання по іншим змінним вздовж поверхні S не призводить до розривів). Тоді єдина можливість мати розрив функції $\partial^2 u/\partial y_1^2$ полягає у виконанні умови (3). Таким чином, якщо $S(\mathbf{x})$ задовольняє (3), то поверхня $S(\mathbf{x}) = C$ для фіксованої константи C може бути поверхнею розриву другої похідної функції $u(\mathbf{x})$, яка реалізує деякий розв'язок рівняння (2). У конкретному випадку наявність чи відсутність розриву визначається граничними та початковими умовами. Наприклад, поверхня $S(\mathbf{x}) = 0$ може описувати поширення фронту хвилі, причому $u(\mathbf{x}) = 0$ в області $S(\mathbf{x}) > 0$, але $u(\mathbf{x}) \neq 0$ в області $S(\mathbf{x}) < 0$.

Легко бачити, що рівняння (2') задає певний зв'язок між функцією та її першими похідними на характеристичній поверхні. Дійсно, якщо на поверхні $y_1 = S(\mathbf{x})$ відомі функції

$$u(\mathbf{x})\big|_{y_1=const} = u_0(y_2,...,y_r), \qquad \frac{\partial u}{\partial y_1}\bigg|_{y_1=const} \frac{\partial u}{\partial x_i} \frac{\partial x_i}{\partial y_1}\bigg|_{y_1=const} = u_1(y_2,...,y_r)$$

то диференціюючи ці співвідношення по $y_2,...,y_r$ отримуємо усі перші похідні

$$\left. \frac{\partial u}{\partial y_1} \right|_{y_1 = const}$$
 та мішані похідні $\left. \frac{\partial^2 u}{\partial y_i \partial y_j} \right|_{y_1 = const}$, $\left. \frac{\partial^2 u}{\partial y_1 \partial y_j} \right|_{y_1 = const}$ $i, j \neq 1$, які входять в (2').

Щодо другої похідної $\left.\frac{\partial^2 u}{\partial y_1^2}\right|_{y_1=const}$, то вона в (2') відсутня. Таким чином, функції $u_0(y_2,...,y_r)$ та $u_1(y_2,...,y_r)$ не можуть бути задані незалежно.

1.4. Постановки основних задач

Легко перевірити, що, коли на $u(\mathbf{x})$ не накладати додаткові умови, окрім диференційованості, рівняння (4,5,6) мають безліч розв'язків. Сформулюємо на прикладі цих рівнянь деякі широко вживані постановки крайових задач, коли треба задовольнити певні умови на межі області змінних $\mathbf{x} \equiv (x_1,...,x_r)$.

Далі G — обмежена відкрита область змінних \mathbf{x} , \overline{G} — її замикання, $\partial G = \overline{G} \setminus G$ — гладка межа області, $\mathbf{n}(\mathbf{x})$ — нормаль до межі у точці $\mathbf{x} \in \partial G$. Нагадаємо, що для гладкої поверхні $S = \partial G$, що визначена рівнянням $g(\mathbf{x}) = 0$, нормаль $\mathbf{n} \equiv (n_1, ..., n_r)$ у точці $\mathbf{x} \in S$ — це одиничний вектор, колінеарний до $\nabla g(\mathbf{x}) \equiv \left\{g_{,1}(\mathbf{x}), ..., g_{,r}(\mathbf{x})\right\}$. Зазвичай, якщо не зазначено протилежне, вважатимемо, що нормаль є зовнішньою. Уведемо нормальну похідну у точці $\mathbf{x} \in \partial G$:

$$\left. \frac{\partial u}{\partial n} \right|_{S} \equiv \mathbf{n} \cdot \nabla g(\mathbf{x}) \equiv \sum_{i=1}^{r} n_{i} g_{,i}. \tag{5}$$

1.4.1. Еліптичні рівняння.

Якщо рівняння (2) є еліптичним і треба знайти його розв'язок в обмеженій області G, на її межі $S = \partial G$ часто накладають такі умови:

$$\left(A_1 u + A_2 \frac{\partial u}{\partial n}\right)\Big|_{S} = v(\mathbf{x}), \quad \mathbf{x} \in S,$$
(6)

 A_1, A_2, v — задані неперервні функції від **х** на S, причому, $|A_1| + |A_2| \neq 0$. На знак цих функцій також можуть бути накладені певні обмеження.

Різновидом задач з умовами (6) є такі.

• Задача Діріхле: шукаємо розв'язок (2) в G з умовою

$$u(\mathbf{x}) = u_0(\mathbf{x}), \quad \mathbf{x} \in S; \tag{7}$$

 u_0 – задана неперервна функція на S .

• Задача Неймана: шукаємо розв'язок (2) в G з умовою

$$\left. \frac{\partial u}{\partial n} \right|_{S} = u_{1}(\mathbf{x}), \quad \mathbf{x} \in S; \tag{8}$$

 u_1 – задана неперервна функція на S.

Якщо еліптичне рівняння розглядають в усьому просторі змінних $\mathbf{x} = (x_1, ..., x_r)$, додатковими умовами як правило є обмеження на поведінку розв'язків на нескінченності, зокрема, накладають певні умови спадання самих розв'язків та/або їх похідних.

Розглянемо, наприклад, рівняння Гельмгольца у тривимірному просторі

$$\Delta u + k^2 u = f(\mathbf{x}); \quad u \equiv u(\mathbf{x}), \, \mathbf{x} \in \mathbb{R}^3.$$
 (10)

Це рівняння є наслідком хвильового рівняння (див. далі), до якого застосовано перетворення Фур'є. Тут додатковими умовами на нескінченності, що обмежують вибір розв'язку, є **умови випромінювання Зоммерфельда** за $r \equiv |\mathbf{x}| \ge x_0$ для досить великого $x_0 > 0$:

$$|u(\mathbf{x})|r < C < \infty; \quad \lim_{r \to \infty} \{r[\mathbf{n} \cdot \nabla u - iku]\} = 0, \quad \mathbf{n} = \mathbf{x}/r;$$
 (11)

ці умови описують випромінювання, що уходить від джерела на нескінченність, але відкидають випадок хвиль, що приходять з нескінченності.

1.4.2. Гіперболічне рівняння: задача Коши та граничні умови.

Для рівнянь гіперболічного та параболічного типу маємо виділену змінну t. Розглянемо рівняння

$$\frac{\partial^2 u}{\partial t^2} = \sum_{i=1}^r \sum_{j=1}^r A_{ij}(t, \mathbf{x}) u_{,ij} + \sum_{j=1}^r B_j(t, \mathbf{x}) u_{,j} + C(t, \mathbf{x}) u + F(t, \mathbf{x}), \quad \mathbf{x} = (x_1, ..., x_r) . \quad (9)$$

Якщо за усіх значень аргументів $A_{ij}(t, \mathbf{x})$ — додатно визначена матриця, рівняння (9) є гіперболічним. Означимо циліндр H як прямий добуток обмеженої області G змінних \mathbf{x} та інтервалу (0,T) змінної $t: H = (0,T) \times G$ із замиканням \overline{H} .

Сформулюємо задачу Коші для рівняння (9). Шукатимемо розв'язки, , цього рівняння $u(t, \mathbf{x}) \in C^1_{\bar{H}} \cap C^2_H$ при $t \in [0, T]$, що задовольняють початковим умовам

$$u(0, \mathbf{x}) = u_0(\mathbf{x}), \quad \frac{\partial u}{\partial t}(0, \mathbf{x}) = u_1(\mathbf{x}), \quad \mathbf{x} \equiv (x_1, \dots, x_r) \in G;$$
 (10)

де $u_0 \in C_{\bar{G}}^1, u_1 \in C_{\bar{G}}$, а також крайовим (граничним) умовам

$$\left(A_{1}u + A_{2}\frac{\partial u}{\partial n}\right)_{S} = v(\mathbf{x}), \quad \mathbf{x} \in S;$$
(11)

для усіх $t \in [0,T]$, де функції A_1,A_2,v — задані й неперервні на S . Зазвичай ми вважаємо, що початкові функції $u_0(t,\mathbf{x})$ та $u_1(\mathbf{x})$ також задовольняють граничним умовам (11), але це не обов'язково.

Як вже було зазначено, постановки задач дещо відрізняються, коли розв'язки шукають у **необмеженій** області. Нехай $G = \mathbb{R}^r$. У цьому разі замість граничних умов типу (11) обмежують поведінку розв'язку на нескінченності. Це може бути зроблено безпосередньо через граничні властивості розв'язку або через належність розв'язку до класу функцій, наприклад, до L_G^2 .

Умови Коші (10) задають $u(t,\mathbf{x})$ та її похідні при t=0. Зазначимо, що разом із $\frac{\partial u}{\partial t}$

при t=0 визначені також $\frac{\partial u}{\partial x_i}=\frac{\partial u_0}{\partial x_i}$. Далі, за умови достатньої гладкості,

диференціюванням отримуємо мішані похідні другого порядку $\frac{\partial^2 u}{\partial t \partial x_i}$, $\frac{\partial^2 u}{\partial x_j \partial x_i}$. Звідси

похідні $\frac{\partial^2 u}{\partial t^2}$ отримуємо з рівняння (9) і так далі. Цей процес можна продовжити до

нескінченного порядку похідних, якщо усі функції, що входять в рівняння (9) та в початкові умови, ϵ аналітичними і таким чином, побудувати розв'язок у вигляді ряду Тейлора (теорема Ковалєвської). Однак у багатьох реальних задачах аналітичність умова аналітичності ϵ занадто жорсткою.

$$(t\equiv x_0)$$
, за умови $\left(rac{\partial S}{\partial t}
ight)^2 - \sum_{i=1}^r \sum_{j=1}^r A_{ij}(\mathbf{x}) \,\,rac{\partial S}{\partial x_j} rac{\partial S}{\partial x_j} > 0 \,.$

 $^{^{\}scriptscriptstyle \mathrm{i}}$ Можливо задавати початкові умови на гіперповерхні $S(x) = const\,$ простору змінних $x = \{x_0, x_1, ..., x_n\}$