

Bitcoin基础:数据结构

黄华威

副教授

中山大学 数据科学与计算机学院 Http://xintelligence.pro

Outline & Keywords of this Class

Part 1: Hash Pointer

Part 2: Merkel Tree

Part 3: A Bitcoin Block

Intro: What are there inside a block?

Data Structure of a Bitcoin Block

Size	Field	Description
4 bytes	Version	A version number to track software/protocol upgrades
32 bytes	Previous Block Hash	A reference to the hash of the previous (parent) block in the chain
32 bytes	Merkle Root	A hash of the root of the merkle tree of this block's transactions
4 bytes	Timestamp	The approximate creation time of this block (seconds from Unix Epoch)
4 bytes	Difficulty Target	The proof-of-work algorithm difficulty target for this block
4 bytes	Nonce	A counter used for the proof-of-work algorithm

Intro: Blockchain structure (Antonopoulos, 2014)

Revisit: Data Link Tables

• 链表

Part 1: Hash Pointer

- A normal pointer: *ptr = & data
 - Tells you the position where a data is

- A Hash Pointer: *ptr = H(Data)
 - Not only tells you where a data is
 - But also enables you to verify whether such data has been tampered or not

A blockchain == blocks + chains

- How to compute a hash pointer in bitcoin?
 - hash pointer := H(header || body) ?
 - hash pointer := H(header) ?

Part 2: Merkle Tree

NOT Angela Merkel + tree

Ralph Merkle

Proposed in 1979, by Ralph Merkle

Where is a Merkle Tree in Bitcoin?

- 使用哈希指针的二叉树 —— Merkle Tree
- The Merkle tree is a way of structuring large amounts of data in the form of hashes, and representing that data with a single hash.

Huang LA www.xintelligence.pro

What can Merkel Tree do in Bitcoin?

Merkle root hash (32 Bytes)

- The hash of the <u>Merkle Tree root</u> of all transactions in the block.
- If any transaction is changed, removed, or reordered, it will change the merkle root hash.
- This is what locks all of the transactions in the block.

A Question: 为何区块链可以防篡改?

- Why would we say that blockchain can prevent the ledger data from tampering?
 - Ledger is with the append-only property
 - If someone modifies any part in previous blocks, we know it immediately. Why?
 - 篡改会顺着链传导(图示: 2个维度)

Two types of hash in Bitcoin Blockchain

- #1: hash chains
- #2: hashes in Merkle Tree inside each block body

A Question: 为何区块链可以防篡改?

- When an attacker tries to tamper a block data (e.g., a Tx)
 - He may try to keep changing the previous hash pointers
 - Can he make it?
 - No, because we have the Genesis block

Genesis Block

- The first block in any blockchain is termed the genesis block.
- If you start at any block and follow the chain backwards chronologically, you will arrive at the genesis block.
- The genesis block is statically encoded within the client software, that it cannot be changed.

The first block of a blockchain

because there was no previous block.

The Genesis Block is the ancestor to every block in the blockchain.

The first ever Genesis Block, from the Bitcoin blockchain, was mined in 2009.

Genesis Block

- Every node can identify the genesis block's hash and structure, the fixed time of creation, and the single transaction within it.
- Thus, every node has a secure "root", from which it is possible to build a trusted blockchain.

RAW HEX VERSION

BITCOIN GENESIS BLOCK

00000000	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000020	00	00	00	00	3B	A3	ED	FD	7A	7B	12	B2	7A	C7	2C	3E	;£íýz{.2zÇ,>
00000030	67	76	8F	61	7F	C8	18	C3	88	8A	51	32	3A	9F	B8	AA	gv.a.È.Ā^ŠQ2:Ÿ,a
00000040	4B	1E	5E	4A	29	AB	5F	49	FF	FF	00	1D	1D	AC	2B	7C	K.^J)«_IŸŸ¬+
00000050	01	01	00	00	00	01	00	00	00	00	00	00	00	00	00	00	
00000060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000070	00	00	00	00	00	00	FF	FF	FF	FF	4D	04	FF	FF	00	1D	уууум.уу
00000080	01	04	45	54	68	65	20	54	69	6D	65	73	20	30	33	2F	EThe Times 03/
00000090	4A	61	6E	2F	32	30	30	39	20	43	68	61	6E	63	65	6C	Jan/2009 Chancel
000000A0	6C	6F	72	20	6F	6E	20	62	72	69	6E	6B	20	6F	66	20	lor on brink of
000000В0	73	65	63	6F	6E	64	20	62	61	69	6C	6F	75	74	20	66	second bailout f
000000C0	6F	72	20	62	61	6E	6B	73	FF	FF	FF	FF	01	00	F2	05	or banksÿÿÿÿò.
000000D0	2A	01	00	00	00	43	41	04	67	8A	FD	BO	FE	55	48	27	*CA.gŠý°þUH'
000000E0	19	67	F1	A6	71	30	B7	10	5C	D6	A8	28	E0	39	09	A6	.gñ q0 · . \Ö"(à9 .
000000F0	79	62	E0	EA	1F	61	DE	B6	49	F6	BC	3F	4C	EF	38	C4	ybàê.ab¶lö½?Lï8Ä
00000100	F3	55	04	E5	1E	Cl	12	DE	5C	38	4D	F7	BA	OB	8D	57	óU.å.Á.⊅\8M+ºW
00000110	8A	4C	70	2B	6B	F1	1D	5F	AC	00	00	00	00				ŠLp+kñ¬····

The Times
03/Jan/2009
Chancellor on
brink of
second bailout
(拯救) for
banks.

Part 3: A Bitcoin Block

- What does it look exactly?
 - {block header} {transactions}
- What components?
 - Block Header: {version 4B} {previous block hash 32B} {merkle root hash 32B} {time 4B}{bits 4B} {nonce 4B}
 - Transactions: a bunch of TXs

Block Header

Size	Field	Description
4 bytes	Version	A version number to track software/protocol upgrades
32 bytes	Previous Block Hash	A reference to the hash of the previous (parent) block in the chain
32 bytes	Merkle Root	A hash of the root of the merkle tree of this block's transactions
4 bytes	Timestamp	The approximate creation time of this block (seconds from Unix Epoch)
4 bytes	Difficulty Target	The proof-of-work algorithm difficulty target for this block

A counter used for the proof-of-work algorithm

- version 01000000 (1)
- previous block hash —

4 bytes Nonce

- merkle root hash 3ba3edfd7a7b12b27ac72c3e67768f617fc81bc3888a51323a9fb8aa4b1e5e4a
- **time** dae5494d (1296688602 Wednesday, February 2, 2011 11:16:42 PM GMT)
- nonce 02000000 (decimal 2)

总结

Hash Pointer

Merkle Tree

What is inside a Bitcoin's block

加入我们!

InplusLab

- 8位教授/副教授导师,研究方向涉及区块链、人工智能、数据挖掘、分布式学习,物联网,等等方向
- 请随时投简历到邮箱: inpluslab@yeah.net
- 如果对我(黄华威)的研究方向感兴趣,
 - 可以提前联系我内推
 - 请邮件联系: <u>huanghw28@mail.sysu.edu.cn</u>
 - HuangLab 主页: http://xintelligence.pro/

InplusLab 实验室公众号