Rangkaian Op-Amp Linier

A. Tujuan Praktikum

Memahami operasi dari *Operational Amplifier* (Op-Amp) dalam aplikasi rangkaian Op-Amp linier.

B. Dasar Teori

Blok diagram *op amp* ditunjukkan oleh Gambar 9.1. *Stage* masukan berupa suatu penguat diferensial (*differential amplifier*) yang diikuti oleh beberapa *stage* penguat dan sebuah *emiter follower*. Karena penguat diferensial berada pada *stage* pertama, maka akan menentukan karakteristik masukan dari *op amp*. Simbol untuk sebuah *op amp* dalam rangkaian ditunjukkan oleh Gambar 9.2.

Gambar 9.1. Blok diagram *op amp*.

Sumber: https://electronicspost.com/operational-amplifier/

Gambar 9.2. Simbol op amp.

Rangkaian ekuivalen op amp ditunjukkan oleh Gambar 9.3. Tegangan keluaran, v_{out} , diberikan oleh

$$v_{out} = A_{0L}(v_1 - v_2) \tag{9.1}$$

Gambar 9.3. Rangkaian ekuivalen op amp.

Properti utama dari op amp adalah,

- 1. Gain tegangan lup terbuka, A_{OL} , sangat tinggi, sekitar 10^{-5} untuk dc dan ac frekuensi rendah, dan akan berkurang dengan meningkatnya frekuensi masukan.
- 2 Impedansi masukan, R_{in} , yang tinggi, sekitar 10^6 sampai $10^{12} \Omega$, sehingga arus dari sumber daya sangat kecil dan *loss* tegangan masukan yang dilewatkan *op amp* akan kecil.
- 3. Impedansi keluaran, R_{out} , yang kecil, sekitar 100 Ω , sehingga tegangan keluaran dapat dipindahkan secara efektif ke hambatan beban yang lebih besar beberapa k Ω dari impedansi keluaran.

Karakteristik Transfer

Grafik karakteristik transfer menunjukkan bagaimana tegangan keluaran, v_{out} , bervariasi terhadap tegangan masukan ($v_2 - v_1$) seperti yang ditunjukkan oleh Gambar 9.4. *Range* tegangan masukan yang linier terhadap tegangan keluaran hanya terbatas pada POQ. Di luar *range* tersebut, tegangan keluaran akan saturasi pada $+V_{CC}$ atau $-V_{EE}$. Hal ini disebabkan karena gain tegangan lup terbuka, A_{OL} , yang sangat tinggi. Semakin tinggi A_{OL} semakin sempit range POQ dari $op\ amp$.

Gambar 9.4. Karahteristik tegangan op amp.

Bandwidth

Gain tegangan lup terbuka tidak konstan untuk semua frekuensi karena efek kapasitif yang terjadi pada frekuansi tinggi. Gambar 9.5 menunjukkan karakteristik gain-bandwidth dari op amp 741. Dapat dilihat, gain tegangan konstan pada frekuensi kurang dari 10 Hz, tetapi pada frekuensi lebih tinggi, gain akan berkurang 20 dB tiap dekade. Gain-Bandwith Product (GBP) adalah perkalian antara gain tegangan linier, A, dengan bandwidth pada gain tersebut, f_{2CL} , yang besarnya sama dengan frekuensi saat gain lup tertutup sama dengan satu atau frekuensi unity, f_{unity} ,

10⁷

Gambar 9.5. Karakteristik gain-bandwidth dari op amp 741.

Frequency (Hz)

Salah satu contoh *op amp* praktis adalah IC LM741 yang memiliki properti yang mendekati ideal, yaitu,

- 1. Gain tegangan lup terbuka, A_{OL} , sebesar 2×10^5 kali.
- 2. Impedansi masukan, R_{in} , sebesar $2x10^6$.
- 3. Impedansi keluaran, R_{out} , sebesar 75 Ω .

Gambar 9.6. Susunan kaki IC LM741.

Rangkaian *op amp* linier, adalah rangkaian yang mempunyai sinyal keluaran dengan bentuk yang sama dengan sinyal masukan.

C. Alat dan Komponen

Tabel 9.1. Daftar Alat dan Komponen yang Dibutuhkan

No.	Komponen dan Alat	Spesifikasi	Jumlah
1.	Resistor	100 Ω	2
		200 Ω	1
		1 kΩ	3
		10 kΩ	1
2.	IC LM 741C		1
3.	Kapasitor	0,47 μF	2
		220 nF	1
4.	Generator Sinyal		1
5.	Project board		1
6.	Osiloskop		1
7.	Catu Daya DC	±12 V	1
8.	Kabel jumper		Secukupnya

D. Prosedur Praktikum

Percobaan 1 : Linier IC Amplifier

- 1. Untuk harga R pada Tabel 1 Lembar Laporan Sementara, hitung besar A_{CL} dan $f_{2(CL)}$ rangkaian Gambar 9.7 dengan $f_{unity} = 1$ MHz untuk 741C.
- 2 Rangkai pada Gambar 9.7 dengan frekuensi sinyal masukan 100 Hz. Atur amplitudo sinyal masukan agar mendapat sinyal keluaran dengan amplitudo 500 mV p-p.
- 3 Ukur besar *peak to peak* tegangan masukan dan hitung *AcL* dari hasilpengukuran.
- 4. Ubah frekuensi sinyal masukan dari 1 sampai 20 kHz. Amati sinyal gelombang keluaran sampai mengalami distorsi.
- 5. Ukur $f_{2(CL)}$, yaitu besar frekuensi saat gelombang mulai mengalami distorsi.
- 6 Ulangi untuk semua *R* pada Tabel 1 Lembar Laporan Sementara.
- 7. Analisa hasil dan beri kesimpulan.

Gambar 9.7. Rangkaian percobaan 1.

Percobaan 2: Inverting Amplifier

- 1. Untuk harga R pada Tabel 2 Lembar Laporan Sementara, hitung besar A_{CL} dan $f_{2(CL)}$ rangkaian Gambar 9.8 dengan $f_{unity} = 1$ MHz untuk 741C.
- 2. Rangkai rangkaian Gambar 9.8 dengan frekuensi sinyal masukan 100 Hz. Atur amplitudo sinyal masukan agar mendapat sinyal keluaran dengan amplitudo 500 mV p-p.
- 3. Ukur besar *peak to peak* tegangan masukan dan hitung *AcL* dari hasil pengukuran.
- 4. Ubah frekuensi sinyal masukan dari 100 sampai 1 MHz. Amati sinyal gelombang keluaran sampai mengalami distorsi.
- 5. Ukur $f_{2(CL)}$, yaitu besar frekuensi saat gelombang mulai mengalami distorsi.
- 6. Ulangi untuk semua R pada Tabel 2 Lembar Laporan Sementara.
- 7. Analisis hasil dan beri kesimpulan.

Gambar 9.8. Rangkaian percobaan 2 : Rangkaian Inverting Amplifier

Percobaan 3: Integrator dan Differentiator

- 1. Rangkai rangkaian Gambar 9.9 pada *project board*. Atur sinyal masukan sebesar 200 mV p- p 1 kHz.
- 2. Amati bentuk gelombang dan beda fase sinyal masukan dan keluaran dengan osiloskop pada waktu yang bersamaan. Gambar secara detail di Tabel 3 Laporan Sementara.
- 3. Ulangi untuk sinyal masukan dengan amplitudo dan frekuensi yang berbeda.
- 4. Analisa hasil yang didapatkan dan berikan kesimpulan.

Gambar 9.8. Rangkaian percobaan 3 : Rangkaian *Integrator* (a); Rangkaian *Differentiator* (b).

Percobaan 4: Comparator

- 1. Rangkai rangkaian seperti pada Gambar 9.10 pada project board
- 2. Ubah nilai potensiometer hingga LED tepat berubah keadaannya.
- 3. Ukur besar V_{ref} yang terletak pada potensiometer dan catat hasil percobaan pada Tabel 4 Laporan Sementara.
- 4. Analisa hasil yang didapatkan dan berikan kesimpulan.

Gambar 9.10. Rangkaian percobaan 3 : Rangkaian Comparator

Percobaan 5: Follower / pre-amp

- 1. Rangkai rangkaian seperti pada Gambar 9.11 pada project board.
- 2. Variasikan tegangan masukan dan frekuensi sesuai tabel pengamatan.
- 3. Ukur besar tegangan keluaran dari rangkaian dan catat hasil percobaan pada Tabel 5 Laporan Sementara.
- 4. Analisis hasil dan beri kesimpulan.

Gambar 9.11. Rangkaian percobaan 5 : Rangkaian *Follower/pre-amp*

Percobaan 6: Differential Amplifier

- 1. Rangkai rangkaian Gambar 9.12 pada project board.
- 2. Variasikan tegangan input (dengan menarik *offset* pada *function generator*), frekuensi, R3 dan R4.
- 3. Ukur dan amati sinyal keluaran dari rangkaian dengan osiloskop dan catat hasil percobaan pada Tabel 6 Laporan Sementara.
- 4. Analisis hasil dan beri kesimpulan.

Gambar 9.12. Rangkaian percobaan 6 : Rangkaian Differential Amplifier

E. Daftar Pustaka

Malvino, Albert Paul. 1995. Electronic Principles, Fifth Edition, McGraw-Hill.USA

Malvino, Albert Paul. 1995. Experiments for Electronic Principles, Fifth Edition, McGraw-Hill.USA

LAPORAN SEMENTARA

Linier Op-Amp

Tabel 1. Hasil Percobaan 1 : Non-Inverting Amplifier

	Perhitungan		Pengukuran	
R	A_{CL}	$f_{2(CL)}$	A_{CL}	f2(CL)
100 Ω				
200 Ω				
1 kΩ				
10 kΩ				

Kesimpulan:		

Tabel 2. Hasil Percobaan 2 : Inverting Amplifier

R	Perhitungan		Pengukuran	
, A	ACL	f2(CL)	ACL	f2(CL)
100 Ω				
200 Ω				
1 kΩ				
10 kΩ				

esimpulan :	

Tabel 3. Hasil Percobaan 3 : Rangkaian Integrator dan Differensiator

Rangkaian Integrator						
Percobaan ke- Bentuk Sinyal Masukan Bentuk Sinyal Keluaran Beda Fas						
1						
2						

Rangkaian Differensiator						
Percobaan ke- Bentuk Sinyal Masukan Bentuk Sinyal Keluaran						
1						
1						
2						

Kesimpulan :	

Tabel 4. Hasil Percobaan 4 : Rangkaian Comparator

No	Keadaan LED	Nilai V _{ref}
1.		
2.		

Cesimpulan :			
1 1 5 II 'ID	1 5 5 1 5 5	11 /	
bel 5. Hasii Perco	baan 5 : Rangkaian <i>Fol</i>		
Vin (mV _{p-p})	$f_{in} = 50 \text{ Hz}$	Vout (mV_{p-p}) $f_{in} = 100 \text{ Hz}$	$f_{in} = 1k Hz$
	Tin = 30 HZ	Tin = 100 HZ	I _{in} = IK HZ
200			
500			
1000			
esimpulan :			

Tabel 6. Hasil Percobaan 6 : Differential Amplifier

Tegangan (V)	Frekuensi (Hz)	R3 = R4	Vout (V)
	•	•	

Kesimpulan:		