第九周习题课

- 1 (1) 叙述函数 f 在 x_0 处可微的定义.
 - (2) 证明: 一元函数 f 在 x_0 处可微的充分必要条件是 f 在 x_0 处可导.
 - (3) 设 g(0) = h(0) = 0, 且对任何 $x \in \mathbf{R}$ 都有 $|g(x)| \le |h(x)|$. 证明: 如果 g = h 在 x = 0 处都可导,则 $|g'(0)| \le |h'(0)|$.

2 (1) 设 k, n 是正整数且 $k \le n$, 计算函数极限

$$\lim_{x \to 1} \frac{(1 - x^n)(1 - x^{n-1})...(1 - x^{n-k+1})}{(1 - x^k)(1 - x^{k-1})...(1 - x^1)}.$$

- (2) 设 $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$, 计算数列极限 $\lim_{n\to\infty} \sqrt[n]{\frac{\alpha^n \beta^n}{\alpha \beta}}$.
- (3) 设数列 $\{a_n\}_{n=1}^{\infty}$ 每项非零且 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q < 1$. 计算极限 $\lim_{n\to\infty} a_n$.
- (4) 给定无理数 α 与实数 $x \in (-1,1)$. 计算数列极限

$$\lim_{n\to\infty}\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n.$$

- 3 设 $f: \mathbf{R} \to \mathbf{R}$ 是处处可导的双射, 其反函数为 $f^{-1}: \mathbf{R} \to \mathbf{R}$.
 - (1) f^{-1} 是否一定处处可导? 请说明理由.
 - (2) 设 f 的导函数处处非零. 设函数 f 与 $g: \mathbf{R} \to \mathbf{R}$ 都处处有二阶导数. 定义函数 $h(x) = g(f^{-1}(x))$, $\forall x \in \mathbf{R}$. 计算 h 的一阶导函数 h'(x) 与二阶导函数 h''(x), 要求用 f 与 g 的高阶导函数表示.

4 设 $P(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ 是实数系数的多项式. 证明: P(x) 在 \mathbf{R} 上有最小值, 即存在 $x_0 \in \mathbf{R}$, 使得对任何 $x \in \mathbf{R}$ 都有 $P(x) \geq P(x_0)$.

5 定义函数 $f: \mathbf{R} \to \mathbf{R}$ 为

$$f(x) = \begin{cases} e^{-1/x}, & \text{m} = x > 0 \\ 0, & \text{m} = x \le 0 \end{cases}$$

(1) 证明: 对每个正整数 n, 存在多项式 $P_n(t)$, 使得对每个 x>0, f 在点 x 处的 n 阶 导数为

$$f^{(n)}(x) = P_n(\frac{1}{x})e^{-1/x}.$$

(2) 对每个正整数 n, 计算 f 在 0 处的 n 阶导数 $f^{(n)}(0)$.

- 6 设函数 $f:[0,1] \rightarrow [0,1]$ 严格单调递增, 且满足:
 - (1) 对任何实数 $b \ge 1$, 有 $f(\frac{1}{b}) < \frac{1}{b+1}$;
 - (2) 对任何 t>1, 存在 $M\geq 1$, 使得当 $b\geq M$ 时, 总有 $f(\frac{1}{b})>\frac{1}{b+t}$. 定义数列 $\{a_n\}_{n=1}^\infty$ 为

$$0 < a_1 < 1, \quad a_{n+1} = f(a_n), \quad \forall n \ge 1.$$

证明: $\lim_{n\to\infty} na_n = 1$.

7 设 $f:(a,b)\in\mathbf{R}$ 满足对任何 $x,y\in(a,b)$ 以及任何 $\lambda\in[0,1]$, 总有

$$f\left((1-\lambda)x + \lambda y\right) \le (1-\lambda)f(x) + \lambda f(y).$$

(1) 证明: 对 (a,b) 上任何三点 $x_1 < x_2 < x_3$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

(2) 证明: $f \in (a,b)$ 上的连续函数.