Трехмерная визуализация вращения флюгера

Студент: Зайцева А. А., ИУ7-52Б

Руководитель: Вишневская Т. И.

Цели и задачи

Цель работы: разработать программное обеспечение, которое предоставляет реалистичную трехмерную визуализацию вращения флюгера, учитывающую эффекты отражения и отбрасывания теней.

Задачи:

- 1. изучить и проанализировать существующие алгоритмы построения реалистичных изображений;
- 2. выбрать алгоритмы, наиболее подходящие для решения поставленной задачи;
- 3. спроектировать архитектуру будущего программного продукта и выбрать структуры данных для представления объектов синтезируемой сцены;
- 4. разработать программу на основе выбранных алгоритмов и структур данных;
- 5. на основе разработанной программы провести исследование зависимости времени рендеринга изображения от количества используемых потоков и от количества объектов на сцене.

Объекты синтезируемой сцены

- Флюгер
 - Цилиндры
 - Прямоугольные параллелепипеды
 - Сферы
 - Четырехугольные пирамиды
- Свет
 - Фоновое освещение
 - Направленные источники
 - Точечные источники
- Плоскость основания
- Фон

Выбор алгоритма удаления невидимых линий и поверхностей

<u>Критерий</u>: возможность учета эффектов отражения и отбрасывания теней.

- Алгоритм Робертса
- Алгоритм Варнока
- Алгоритм, использующий Z-буфер
- Алгоритм трассировки лучей

Алгоритм трассировки лучей

• Прямая трассировка

• Обратная трассировка

Выбор модели освещения

Критерий – возможность учета трех световых составляющих:

- фоновой (константа для всей сцены);
- диффузной (модель Ламберта)
- зеркальной (модель Фонга или Блинна- Фонга)

Фоновая и диффузная составляющие

- Фоновая составляющая: Ia = ka * ia
- Диффузная составляющая: $Id = kd * cos(\vec{L}, \vec{N}) * id$

Зеркальная составляющая

Модель Фонга:

$$Is = ks * (cos(\overrightarrow{R}, \overrightarrow{V}))^p * is$$

Модель Блинна-Фонга:

Is = ks *
$$(\cos(\vec{N}, \vec{H}))^p$$
 * is , где $\vec{H} = \frac{\vec{L} + \vec{V}}{|\vec{L} + \vec{V}|}$

Модель Фонга VS модель Блинна-Фонга

Схема алгоритма расчета интенсивности освещения в точке

FindIntensity

Схема алгоритма трассировки луча

Снижение времени отрисовки сцены

- Нормаль к плоскости
- Параллельные вычисления

Интерфейс программы

Пример работы (вращение)

Пример работы (изменение параметров материалов)

Пример работы (изменение параметров камеры и освещения)

Результаты исследования

Спасибо за внимание