Finite Combinatorial Pre-geometries

Finite Combinatorial Pre-geometries

matroids

What is a Matroid?

Any one of these 6 easy definitions

- A pair (E,I) of a set E and a family, I, of subsets of E such that:
 - 1) I is nonempty, 2) (B in I and A a subset of B) => (A in I), and 3) for all A, B in I with |A|<|B|, there exists a b in B such that (A u {b}) in I.
- A pair (E,B) of a set E and a family, B, of subsets of E such that:
 - 1) B is nonempty, 2) for all X, Y in B, and for all x in X\Y, there exists a y in Y\X such that $(X\setminus\{x\})$ u $\{y\}$ is in B.
- A pair (E,r) of a set E and a function $r:2^E -> N$ such that r satisfies:
 - 1) For all subsets A of E, 0 <= r(A) <= |A|, 2) For all subsets A and B of E, r(A)+r(b)>=r(AuB)+r(A intersect B), and 3) for all A subset of E, x in E, x not in A, r(A)<=r(Au{x})<=r(A)+1</p>
- ► A pair (E,cl) of a set E and a function cl:2^E->2^E such that cl satisfies
 - To all A in P(E), A contained in cl(A), 2) cl(A) = cl(cl(A)), 3) for all A, B in P(E), A in B implies cl(A) in cl(B), and 4) for all a and b in E, and all subsets Y of E, a in cl(Yu{b})\cl(Y) iff b in cl(Yu{a})\cl(Y)
- A pair (E,F) of a set E and a family, F, of subsets of E such that:
 - 1) E in F, 2) A and B in F implies (A intersect B) in F, and 3) if S in F, then the sets in F that cover S under the containment relationship form a partition of E\S.
- A finite atomic semimodular lattice

Got That? Let's Proceed...

No JK. All of that is true, but what <u>IS</u> a matroid?

What even is math?

Big theme: idea becomes encapsulated by an object

- Linearity encapsulated by vector spaces
- Continuity encapsulated by topological spaces
- Symmetry encapsulated by groups
- Smoothness encapsulated by manifolds
- "Volume" encapsulated by measurable spaces (and sigma algebras)
- Connectivity encapsulated by graphs
- Relatedness encapsulated by posets and lattices
- Composition encapsulated by a category
- Things that might happen encapsulated by a probability space

Big theme: idea becomes encapsulated by an object

- Linearity encapsulated by vector spaces *
- Continuity encapsulated by topological spaces
- Symmetry encapsulated by groups *
- Smoothness encapsulated by manifolds
- "Volume" encapsulated by measurable spaces (and sigma algebras)
- Connectivity encapsulated by graphs *
- Relatedness encapsulated by posets and lattices *
- Composition encapsulated by a category *
- Things that might happen encapsulated by a probability space

Big theme: idea becomes encapsulated by an object

- Linearity encapsulated by vector spaces
- Continuity encapsulated by topological spaces *
- Symmetry encapsulated by groups
- Smoothness encapsulated by manifolds *
- "Volume" encapsulated by measurable spaces (and sigma algebras) *
- Connectivity encapsulated by graphs
- Relatedness encapsulated by posets and lattices
- Composition encapsulated by a category
- Things that might happen encapsulated by a probability space *

Secondary theme: "object" means set with structure

- Algebraic structure: operations, relations, what have you
- Structure could be like a function on the set (e.g. metric on a metric space, atlas of charts on a manifold)
- Sometimes, structure means certain distinguished subsets of some set based on the original, or the original itself (e.g. topological spaces, sigma algebras, relations, graphs)

Then the axioms!

Matroids fit all these patterns

They also reveal deep similarities between

- Linear Algebra
- Graph Theory
- Finite Geometry

Pictures of Matroids

<- not quite actually

How exactly matroids do this

Idea: linear independence, or redundancy

Execution: set along with a collection of subsets

Some History

- Witney
- Rota
 - "It is as if one were to condense all trends of present-day mathematics onto a single finite structure, a feat that anyone would a priori deem impossible, were it not for the mere fact that matroids do exist."
 - He really lobbied hard to call them Combinatorial Geometries
- Robbins

Example for the non math person

- Pages in a book
 - You have to read some history book chapter for a class
 - You've got a strong feeling that any 5 pages will suffice
 - Boom, Matroid

Examples for the math person

Vectors in a vector space

Edges in a graph

Definitions Revisited - Independent Sets

- A pair (E,I) of a set E and a family, I, of subsets of E such that:
 - 1) I is nonempty
 - 2) (B in I and A a subset of B) => (A in I),
 - > 3) for all A, B in I with |A|<|B|, there exists a b in B such that (A u {b}) in I.

Definitions Revisited - Basis Sets

- A pair (E,B) of a set E and a family, B, of subsets of E such that:
 - 1) B is nonempty
 - 2) for all X, Y in B, and for all x in X\Y, there exists a y in Y\X such that (X\{x\}) u \{y\} is in B.

Definitions Revisited - Rank Function

- A pair (E,r) of a set E and a function r:2^E -> N such that r satisfies:
 - ► 1) For all subsets A of E, 0 <= r(A) <= |A|</p>
 - 2) For all subsets A and B of E, r(A)+r(b)>=r(AuB)+r(A intersect B)
 - 3) for all A subset of E, x in E, x not in A, r(A)<=r(Au{x})<=r(A)+1</p>

Definitions Revisited - Closure Operator

- A pair (E,cl) of a set E and a function cl:2^E->2^E such that cl satisfies:
 - ► 1) For all A in P(E), A contained in cl(A)
 - 2) cl(A) = cl(cl(A))
 - 3) for all A, B in P(E), A in B implies cl(A) in cl(B)
 - 4) for all a and b in E, and all subsets Y of E, a in cl(Yu{b})\cl(Y) iff b in cl(Yu{a})\cl(Y)

Definitions Revisited - Flats (closed sets)

- A pair (E,F) of a set E and a family, F, of subsets of E such that:
 - 1) E in F
 - 2) A and B in F implies (A intersect B) in F
 - > 3) if S in F, then the sets in F that cover S under the containment relationship form a partition of E\S.

Why do we care

Cliched answer - matroids are nice

Greedy algorithm

- How nice? Greedy algorithm!
 - if your elements have weights, you can always build a minimum weight basis set by adding the cheapest element that isn't dependent with anything else you've added so far.

Example of Greedy Alg on a (simple) Graphic Matroid - Kruskal's Algorithm

Further Reading

James Oxley - Matroid Theory

Gordon, McNulty - Matroids, a Geometric Introduction

Wikipedia

Thanks for Coming

