Durée de préparation : 1 heure 30.

Question de cours :

Quelle est la définition d'une suite géométrique ? Quand est-ce qu'une suite géométrique converge ? Quand est-ce que la série d'une suite géométrique converge ?

Exercice 1

Dans un modèle économique, on considère un indice u_n dépendant de l'année n en fonction des années antérieures, selon la relation de récurrence suivante :

$$u_n = 0.5 \ u_{n-2} + 0.25 \ (u_{n-1} + u_{n-3})$$

et des premiers termes $u_0 = u_1 = 1$ et $u_2 = 2$.

- 1. Démontrer que pour tout entier n > 2, on a $1 < u_n < 2$.
- 2. On admet que la suite de terme u_n admet une limite l. Montrer qu'il existe un réel k ne dépendant pas de n tel que pour tout entier n, $u_n + 0$, 75 $u_{n-1} + 0$, 25 $u_{n-2} = k$. En déduire alors que la valeur de la limite l de la suite de terme u_n est égale à 1, 5.
- 3. On pose le vecteur U_n à trois composantes $\begin{pmatrix} u_n \\ u_{n-1} \\ u_{n-2} \end{pmatrix}$. Déterminer la matrice A qui permet d'exprimer U_n en fonction de U_{n-1} .
- 4. Dans cette question, on ne cherchera pas à diagonaliser la matrice A. On cherche en revanche à connaître la limite de A^n lorsque n tend vers l'infini. Cette matrice, que l'on notera M, est appelée la matrice d'échange. Expliquer pourquoi le vecteur U_n admet une limite lorsque n tend vers l'infini. Quel est le vecteur limite?
- 5. Montrer que $U_n = A^{n-2}U_2$. En déduire U_{n+1} en fonction de A et de U_3 , et U_{n+2} en fonction de A et de U_4 .

On note

$$M = \left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{array}\right)$$

la limite de A^n lorsque n tend vers l'infini, c'est-à-dire la matrice d'échange. En utilisant la question 5, déterminer les éléments de la matrice M. La calculatrice est particulièrement conseillée ici pour résoudre les systèmes.

Exercice 2

Partie A

f est la fonction définie sur [0,1] par

$$f(x) = -\frac{\ln(x)}{\ln(2)}.$$

Si A est un événement de probabilité $\mathbf{P}(A)$ non-nulle, on note $i(A) = f(\mathbf{P}(A))$ l'incertitude de l'événement A

- 1. (a) A est un événement tel que P(A) = 1. Calculer i(A) et commenter le résultat.
 - (b) Calculer $\lim_{x\to 0} f(x)$ et interpréter ce résultat en terme d'incertitude.
- 2. (a) A et B sont deux événements de probabilités non-nulles tel que $A \subset B$. Comparer i(A) et i(B).
 - (b) On prélève une main de 4 cartes dans un jeu de 32 cartes bien mélangé. A est l'événement "la main contient les quatre as", et B l'événement "la main ne contient pas de figures". Calculer i(A) et i(B) puis comparer ces deux nombres.
- 3. A et B sont deux événements tels que $\mathbf{P}(A \cap B) \neq 0$. Montrer que A et B sont indépendants si et seulement si $i(A \cap B) = i(A) + i(B)$.

Partie B

h est la fonction définie sur [0,1] par h(0)=0 et pour tout x de]0,1] par h(x)=x f(x). Si X est une variable aléatoire discrète d'univers-image $\{0,1,\ldots,n\}$ et de loi de probabilité $p_i=\mathbf{P}(X=i)$ pour $0 \le i \le n$, l'incertitude moyenne de X, notée H(X), s'appelle entropie de X et est définie par $H(X)=\sum_{i=0}^n h(p_i)$.

- 1. Montrer que pour tout x de [0,1], $h(x) \geq 0$. Que peut-on en déduire pour H(X)?
- 2. Montrer que l'on a l'équivalence suivante :

 X_c est une variable aléatoire certaine $\Leftrightarrow H(X_c) = 0$.

- 3. Calculer l'entropie d'une variable aléatoire X_u qui suit la loi uniforme sur $\{0,1,\ldots,n\}$.
- 4. (a) Montrer que pour tout x de $]0,+\infty[$, $\ln(x) \le x-1$ avec égalité lorsque x=1.
 - (b) En déduire que si (p_0, \ldots, p_n) et (q_0, \ldots, q_n) sont deux lois de probabilité sur $\{0, 1, \ldots, n\}$ et si $p_i, q_i \neq 0$ pour tout i, alors

$$\sum_{i=0}^{n} p_i \ln \left(\frac{q_i}{p_i} \right) \le 0$$

avec égalité lorsque pour tout i on a $p_i = q_i$. (Cette inégalité s'appelle l'inégalité de Gibbs.)

(c) En utilisant l'inégalité de Gibbs, montrer que si la loi de X est (p_0, \ldots, p_n) , alors

$$H(X) \le \frac{\ln(n+1)}{\ln(2)}.$$

5. Déduire des questions précédentes que pour toute variable aléatoire X discrète d'ensemble-image $\{0,1,\ldots,n\}$, on a $H(X) \leq H(X_u)$ où X_u suit la loi uniforme sur $\{0,1,\ldots,n\}$. Commenter ce résultat.

Sujet 1 2 E.N.S. de Cachan