(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Februar 2005 (24.02.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/016985 A1

(51) Internationale Patentklassifikation⁷: C08G 18/40, 18/72, 18/80, C09D 175/04

(21) Internationales Aktenzeichen: PCT/EP2004/007636

(22) Internationales Anmeldedatum:

10. Juli 2004 (10.07.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 103 35 491.3 2. August 2003 (02.08.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF COATINGS AG [DE/DE]; Glasuritstr. 1, 48165 Münster (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KLEIN, Günter [DE/DE]; Neisemeyer Weg 23, 48165 Münster (DE). RÖCKRATH, Ulrike [DE/DE]; Vikarsbusch 8, 48308 Senden (DE). NIEMANN, Jürgen [DE/DE];

Emil-Nolde-Weg 91 A, 48165 Münster (DE). **POTH, Ulrich** [DE/DE]; Albachtener Str. 97, 48163 Münster (DE). **BROSSEIT, Andre** [DE/DE]; Mittorpsweg 27, 59077 Hamm (DE). **WERMELT, Karin** [DE/DE]; Fleigenweg 23, 48565 Steinfurt (DE). **SCHMELING, Alexandra** [DE/DE]; Schillerstr. 32, 59065 Hamm (DE).

- (74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

(54) Title: THERMALLY HARDENING, TRANSPARENT COATING SUBSTANCE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE

(54) Bezeichnung: THERMISCH HÄRTENDER, TRANSPARENTER BESCHICHTUNGSSTOFF, VERFAHREN ZU SEINER HERSTELLUNG UND SEINE VERWENDUNG

(57) Abstract: The invention relates to a thermally hardening, transparent coating substance containing, each time with regard to A), (B), (C) and (D): (A) 10 to 40 % by weight of a (meth)acrylate (co)polymer having a numerical mean molecular weight ranging from 1,000 to 6,000 Dalton, a glass transition temperature ranging from -15 to +70 °C and a hydroxyl number ranging from 80 to 200 mg KOH/g; (B) 10 to 40 % by weight of a polyester having a numerical mean molecular weight ranging from 800 to 6,000 Dalton, a hydroxyl number ranging from 80 to 200 mg KOH/g and an acid number ranging from 1 to 50 mg KOH/g containing, with regard to the polyester, 30 to 70 % by weight of cycloaliphatic structural units; (C) 10 to 40 % by weight of a blocked polyisocyanate, wherein the blocked polyisocyanate groups are bound to flexible- rendering structural units that, as a constituent of a three-dimensional network, lowers the glass transition temperature thereof, and; (D) 10 to 40 % by weight of a blocked polyisocyanate, wherein the blocked polyisocyanate groups are bound to hard-rendering structural units that, as a constituent of a three-dimension network, increases the glass temperature thereof. The invention also relates to a method for producing the inventive coating substance and to the use of this substance.

(57) Zusammenfassung: Thermisch härtender, transparenter Beschichtungsstoff, enthaltend, jeweils bezogen auf (A), (B), (C) und (D), (A) 10 bis 40 Gew.-% eines (Meth)Acrylat(co)polymerisats mit einem zahlenmittleren Molekulargewicht von 1.000 bis 6.000 Dalton, einer Glasübergangstemperatur von -15 bis +70 °C und einer Hydroxylzahl von 80 bis 200 mg KOH/g, (B) 10 bis 40 Gew.-% eines Polyesters mit einem zahlenmittleren Molekulargewicht von 800 bis 6.000 Dalton, einer Hydroxylzahl von 80 bis 200 mg KOH/g und einer Säurezahl von 1 bis 50 mg KOH/g, enthaltend, bezogen auf den Polyester, 30 bis 70 Gew.-% cycloaliphatischer Struktureinheiten, (C) 10 bis 40 Gew.-% eines blockierten Polyisocyanats, worin die blockierten Polyisocyanatgruppen an flexibilisierende Struktureinheiten gebunden sind, die als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur erniedrigt, und (D) 10 bis 40 Gew.-% eines blockierten Polyisocyanats, worin die blockierten Polyisocyanatgruppen an hart machende Struktureinheiten gebunden sind, die als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur erhöht; Verfahren zu seiner Herstellung und seine Verwendung.

WO 2005/016985 A1

EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Thermisch härtender, transparenter Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung

Die vorliegende Erfindung betrifft einen neuen, thermisch härtenden, transparenten Beschichtungsstoff. Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung eines thermisch härtenden, transparenten Beschichtungsstoffs. Des Weiteren betrifft die vorliegende Erfindung die Verwendung des neuen, thermisch härtenden, transparenten Beschichtungsstoffs für die Herstellung von transparenten Beschichtungen nach dem Coil-Coating-Verfahren.

Moderne Personenkraftwagen, insbesondere Personenkraftwagen der Oberklasse, weisen farbund/oder effektgebende Mehrschichtlackierungen auf. Bekanntermaßen umfassen diese eine 15 Elektrotauchlackierung, Füllerlackierung, eine Steinschlagschutzgrundierung oder Funktionsschicht, eine farb- und/oder effektgebende Basislackierung und eine Klarlackierung. Mehrschichtlackierungen werden mit Hilfe so genannter Nass-in-nass-Verfahren hergestellt, bei denen man auf eine getrocknete, indes nicht gehärtete Basislackschicht eine Klarlackschicht appliziert, wonach man 20 zumindest Basislackschicht und Klarlackschicht gemeinsam thermisch dieses Verfahren kann auch die Herstellung härtet. Elektrotauchlackierung und der Füllerlackierung, Steinschlagschutzgrundierung oder Funktionsschicht einbezogen werden.

25

10

Die farb- und/oder effektgebenden Mehrschichtlackierungen müssen die so genannte Automobilqualität aufweisen. Gemäß dem europäischen Patent EP 0 352 298 B 1, Seite 15, Zeile 42, bis Seite 17, Zeile 14, bedeutet dies, dass die betreffenden Mehrschichtlackierungen

30

(1) einen hohen Glanz,

- (2) eine hohe Abbildungsunterscheidbarkeit (DOI, distinctiveness of the reflected image),
- (3) ein hohes und gleichmäßiges Deckvermögen,
- (4) eine einheitliche Trockenschichtdicke,
- 5 (5) eine hohe Benzinbeständigkeit,
 - (6) eine hohe Lösemittelbeständigkeit,
 - (7) eine hohe Säurebeständigkeit,
 - (8) eine hohe Härte,
 - (9) eine hohe Abriebfestigkeit,
- 10 (10) eine hohe Kratzfestigkeit,
 - (11) eine hohe Schlagfestigkeit,
 - (12) eine hohe Zwischenschichthaftung und Haftung auf dem Substrat und
 - (13) eine hohe Witterungsstabilität und UV-Beständigkeit.

15

Weitere wesentliche technologische Eigenschaften sind

- (14) eine hohe Beständigkeit gegenüber Schwitzwasser,
- (15) keine Neigung zum Weißanlaufen und
- 20 (16) eine hohe Stabilität gegenüber Baumharz und Vogelkot.

Dabei prägen insbesondere die Klarlackierungen so wesentliche technologische Eigenschaften wie

- 25 (1) Glanz,
 - Abbildungsunterscheidbarkeit (DOI, distinctiveness of the reflected image),
 - (5) Benzinbeständigkeit,
 - (6) Lösemittelbeständigkeit,
- 30 (7) Säurebeständigkeit,
 - (8) Härte,

3

- (9) Abriebfestigkeit,
- (10) Kratzfestigkeit,
- (13) Witterungsstabilität und UV-Beständigkeit,
- (14) Beständigkeit gegenüber Schwitzwasser,
- 5 (15) Beständigkeit gegenüber Weißanlaufen und
 - (16) Stabilität gegenüber Baumharz und Vogelkot.

An die Qualität der Klarlackierungen werden deshalb besonders hohe Anforderungen gestellt.

10

15

Aber auch an die technologischen Eigenschaften der Klarlacke, aus denen diese Klarlackierungen hergestellt werden, werden besondere Anforderungen gestellt. Zunächst einmal müssen sie die Klarlackierungen in der erforderlichen Qualität problemlos und hervorragend reproduzierbar liefern und sie müssen in einfacher und hervorragend reproduzierbarer Weise herstellbar sein.

Der Herstellung von Mehrschichtlackierungen nach dem vorstehend beschriebenen Verfahren wird in der Linie beim Automobilhersteller 20 durchgeführt und erfordert einen hohen ökologischen, verfahrenstechnischen und apparativen Aufwand, der einen signifikanten Teil der Herstellungskosten verursacht.

Es sich daher ein Bestreben der Automobilindustrie, Teile der Karosserie, wie Motorhaube, Heckklappe oder Türen, durch bereits fertig in der Wagenfarbe lackierte Teile zu ersetzen.

Eine ganz wesentliche Voraussetzung für solches Verfahren ist aber, dass entsprechende beschichtete Coils mit Hilfe des Coil-Coating-Verfahrens 30 hergestellt und im lackierten Zustand durch formgebende Verfahren, insbesondere durch Tiefziehen, vom Automobilhersteller oder vom

Hersteller von Anbauteilen in die gewünschte Form gebracht werden können.

Unter Bandbeschichtung oder Coil Coating versteht man eine Spezialform der Walzlackierung (Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 617, "Walzlackierung") sowie vereinzelt der Spritz- und Gießlackierung von Metallbändern mit flüssigen Lacken. Es handelt sich um ein kontinuierlich arbeitendes Verfahren, d.h. alle Arbeitsabläufe wie Reinigung, Vorbehandlung, Lackierung und Härtung usw. werden in einem Arbeitsgang in einer Anlage durchgeführt. Die Bandbeschichtung umfaßt schematisch die folgenden Schritte: Nach Reinigung und Entfettung des Bandes erfolgt mit anschließender eine mehrstufige chemische Vorbehandlung Passivierung, Spülung und Trocknung. Nach dem Abkühlen erfolgt das einseitige oder zweiseitige Aufbringen des flüssigen Beschichtungsstoffs mit zwei oder drei Walzen, meist nach dem Reverse-Roller-Coating-Verfahren. Nach einer sehr kurzen Abdunstzeit erfolgt die thermische Härtung der applizierten Schicht bei Temperaturen von 180 bis 260°C während 20 bis 60 s. Bei der Herstellung einer Mehrschichtlackierung werden Applikation und Härtung wiederholt. Die Geschwindigkeiten von 20 Bandbeschichtungsanlagen betragen bis zu 250 m/min (Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 55, "Bandbeschichtung").

Die Übertragung dieses an sich vorteilhaften Verfahrens auf den Automobilsektor ist bisher im wesentlichen daran gescheitert, dass die bisher eingesetzten Klarlacke schon vor der Verformung nicht die erforderliche Automobilqualität aufweisen. Vor allem ist es nicht möglich, die von der Automobilindustrie geforderten Farbtöne und optischen Effekte sowie den geforderten Glanz und optischen Gesamteindruck

(Appearance) nachzustellen, weil die beschichteten Coils mit bloßem Auge sichtbare Walzenstrukturen aufweisen.

Außerdem werden in Coil-Coating-Verfahren häufig Klarlacke auf der Basis von Polyestern als Bindemitteln und Melaminharzen als Vernetzungsmitteln eingesetzt. Diese Klarlacke sind wegen ihrer guten Benetzung und ihrem guten Verlauf gut verarbeitbar Die hieraus hergestellten Beschichtungen sind zwar sehr flexibel und können sehr gut verformt werden, erfüllen aber hinsichtlich der Chemikalienbeständigkeit und der Witterungsbeständigkeit nicht die erforderliche Automobilqualität.

Klarlacke auf der Basis von (Meth)Acrylat(co)polymerisaten als Bindemitteln und blockierten Polyisocyanaten als Vernetzungsmitteln liefern zwar üblicherweise Klarlackierungen von hoher Automobilqualität, insbesondere was den Glanz, die Härte und die Chemikalienbeständigkeit betrifft. Ein optimaler Verlauf der Klarlacke und eine optimale Witterungsbeständigkeit und Abbildungsunterscheidbarkeit können nur durch die Zugabe von Additiven erreicht werden. Die Klarlacke können im Coil-Coating-Verfahren wegen der geringeren Flexibilität der betreffenden Klarlackierungen nicht eingesetzt werden.

Um die Vorteile der Klarlacke auf der Basis von (Meth)Acrylat (Co)Polymerisaten und blockierten Polyisocyanaten sowie der hieraus hergestellten Klarlackierungen auch im Coil-Coating-Verfahren zu nutzen, wird in der deutschen Patentanmeldung DE 100 59 853 A 1 ein Klarlack vorgeschlagen, der

(1) 10 bis 70 Gew.-% einer nicht wässrigen Lösung eines Polymers auf Acrylatbasis mit einer Hydroxylzahl zwischen 100 und 250,

20

10

- (2) 10 bis 70 Gew.-% einer nicht wässrigen Lösung eines fluormodifizierten Polymers mit einer Glasübergangstemperatur zwischen 20 und 40 °C und
- 5 (3) 20 bis 60 Gew.-% mindestens eines blockierten aliphatischen oder cycloaliphatischen Polyisocyanats

enthält, wobei das Gewichtsverhältnis von Komponente (1) zu Komponente (2) höchstens 1 beträgt und die Summe der Komponenten (1), (2) und (3) 100%, bezogen auf den Bindemittelgehalt, beträgt.

bekannte Dieser Beschichtungsstoff liefert zwar transparente Beschichtungen, die hinsichtlich Glanz. Härte, Flexibilität Chemikalienbeständigkeit Automobilgualität aufweisen. Wegen der vergleichsweise schlechten Benetzung und dem vergleichsweise schlechten Verlauf ist der bekannte Beschichtungsstoff nicht gut verarbeitbar. Die hieraus hergestellten Beschichtungen weisen den wesentlichen Nachteil auf, dass sie Fluorverbindungen in erheblichen Mengen enthalten. Es ist aber bekannt, dass Fluor beim Recycling von Altwagen erhebliche Probleme bereitet, 20 insbesondere die wenn Karosserie aus Aluminium aufgebaut ist. Außerdem können Beschichtungen nur schlecht überlackiert werden, was bei Autoreparaturlackierung erhebliche Probleme bereitet. Nicht zuletzt sind die Fluorverbindungen vergleichsweise teuer, was den Beschichtungsstoff und die hieraus hergestellten Beschichtungen wirtschaftlich weniger attraktiv macht.

Aufgabe der vorliegenden Erfindung ist es, einen neuen, thermisch härtenden, transparenten Beschichtungsstoff bereitzustellen, der die 30 Nachteile des Standes der Technik nicht mehr länger aufweist, sondern frei von organischen Fluorverbindungen ist, so dass die hieraus

die beschichteten Substrate, insbesondere hergestellten Automobilkarosserien auf der Basis von Aluminium, ohne Probleme recyclingfähig sind. Außerdem soll der neue, thermisch härtende, transparente Beschichtungsstoff eine besonders gute Benetzung und einen besonders guten Verlauf haben und daher besonders gut sein. Außerdem soll er mit Hilfe vergleichsweise verarbeitbar preisgünstiger Bestandteile hergestellt werden können, sodass er nicht nur technologisch, sondern auch wirtschaftlich vorteilhaft ist.

Der neue, thermisch härtende, transparente Beschichtungsstoff soll in einfacher Weise hergestellt und im Coil-Coating-Verfahren mit Vorteil eingesetzt werden können und transparente, insbesondere klare, Beschichtungen auf Coils liefern, die die Automobilqualität, insbesondere hinsichtlich des Glanzes, der Oberflächenglätte, der Abbildungsunterscheidbarkeit, der Härte, der Witterungsbeständigkeit und der Chemikalienbeständigkeit, aufweisen.

Des Weiteren sollen die neuen, transparenten, insbesondere klaren, Beschichtungen eine sehr gute Überlackierbarkeit haben, sodass sie sehr gut reparaturlackiert werden können.

Die vorbeschichteten Coils sollen auch nach ihrer formgebenden Verarbeitung die Automobilqualität weiterhin behalten, sodass die beschichteten Formteile als Anbauteile in entsprechend beschichtete, größere Einheiten, insbesondere entsprechend beschichtete Automobilkarosserien, eingebaut werden können, ohne dass sich ein optischer Unterschied, insbesondere im Bereich aneinander stoßender Kanten, nachteilig bemerkbar macht.

25

Dem gemäß wurde der neue, thermisch härtende, transparente Beschichtungsstoff gefunden, enthaltend, jeweils bezogen auf (A), (B), (C) und (D),

- 5 (A) 10 bis 40 Gew.-% mindestens eines (Meth)Acrylat(co)polymerisats mit einem zahlenmittleren Molekulargewicht von 1.000 bis 6.000 Dalton, einer Glasübergangstemperatur von -15 bis +70 °C und einer Hydroxylzahl von 80 bis 200 mg KOH/g,
- 10 (B) 10 bis 40 Gew.-% mindestens eines Polyesters mit einem zahlenmittleren Molekulargewicht von 800 bis 6.000 Dalton, einer Hydroxylzahl von 80 bis 200 mg KOH/g und einer Säurezahl von 1 bis 50 mg KOH/g, enthaltend, bezogen auf den Polyester, 30 bis 70 Gew.-% cycloaliphatischer Struktureinheiten,

15

20

25

- (C) 10 bis 40 Gew.-% mindestens eines blockierten Polyisocyanats, worin die blockierten Polyisocyanatgruppen an mindestens eine flexibilisierende Struktureinheit gebunden sind, die als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur erniedrigt, und
- (D) 10 bis 40 Gew.-% mindestens eines blockierten Polyisocyanats, worin mindestens eine der blockierten Polyisocyanatgruppen an mindestens eine hart machende Struktureinheit gebunden ist, die als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur erhöht.

Im Folgenden wird der neue, thermisch härtende, transparente Beschichtungsstoff als »erfindungsgemäßer Beschichtungsstoff« 30 bezeichnet.

Außerdem wurde das neue Verfahren zur Herstellung des erfindungsgemäßen Beschichtungsstoffs durch Vermischen der Bestandteile (A), (B), (C) und (D) sowie gegebenenfalls mindestens eines Zusatzstoffes (E) und Homogenisieren der resultierenden Mischung gefunden.

Im Folgenden wird das neue Verfahren zur Herstellung des erfindungsgemäßen Beschichtungsstoffs als »erfindungsgemäßes Herstellverfahren« bezeichnet.

10

Des Weiteren wurde die neue Verwendung des erfindungsgemäßen Beschichtungsstoffs für die Herstellung von transparenten Beschichtungen nach dem Coil-Coating-Verfahren gefunden.

15 Im Folgenden wird die neue Verwendung des erfindungsgemäßen Beschichtungsstoffs als »erfindungsgemäße Verwendung« bezeichnet.

Im Hinblick auf Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden 20 Erfindung zugrunde lag, mit Hilfe des erfindungsgemäßen Beschichtungsstoffs, des erfindungsgemäßen Herstellverfahrens und der erfindungsgemäßen Verwendung gelöst werden konnte.

Insbesondere war es überraschend, dass der erfindungsgemäße Beschichtungsstoff die Nachteile des Standes der Technik nicht mehr länger aufwies, sondern frei von organischen Fluorverbindungen war, so dass die hieraus hergestellten beschichteten Substrate, insbesondere die Automobilkarosserien auf der Basis von Aluminium, ohne Probleme recyclingfähig waren.

Außerdem wies der neue, thermisch härtende, transparente Beschichtungsstoff eine besonders gute Benetzung und einen besonders guten Verlauf auf und war daher besonders gut verarbeitbar. Außerdem konnte er aus vergleichsweise preisgünstigen Bestandteilen hergestellt werden, sodass er nicht nur technologisch, sondern auch wirtschaftlich vorteilhaft war.

Der neue, thermisch härtende, transparente Beschichtungsstoff konnte in einfacher Weise hergestellt und im Coil-Coating-Verfahren mit Vorteil eingesetzt werden und lieferte transparente, insbesondere klare, Beschichtungen auf Coils, die die Automobilqualität, insbesondere hinsichtlich des Glanzes, der Oberflächenglätte, der Abbildungsunterscheidbarkeit, der Härte, der Witterungsbeständigkeit und der Chemikalienbeständigkeit, aufwiesen.

15

Des Weiteren wiesen die neuen, transparenten, insbesondere klaren, Beschichtungen eine sehr gute Überlackierbarkeit auf, sodass sie sehr gut reparaturlackiert werden konnten

Die vorbeschichteten Coils behielten auch nach ihrer formgebenden Verarbeitung weiterhin die Automobilqualität, sodass die beschichteten Formteile als Anbauteile in entsprechend beschichtete, größere Einheiten, insbesondere entsprechend beschichtete Automobilkarosserien, eingebaut werden konnten, ohne dass sich ein optischer Unterschied, insbesondere im Bereich aneinander stoßender Kanten, nachteilig bemerkbar machte.

Der erfindungsgemäße Beschichtungsstoff konnte mit Hilfe des erfindungsgemäßen Herstellverfahrens in einfacher, sehr gut reproduzierbarer Weise hergestellt werden.

Insgesamt ermöglichte der erfindungsgemäße Beschichtungsstoff überraschenderweise die Übertragung des Coil-Coating-Verfahrens auf den Automobilsektor.

- Der erfindungsgemäße Beschichtungsstoff enthält als ersten wesentlichen Bestandteil, jeweils bezogen auf (A), (B), (C) und (D), 10 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-%, mindestens eines, insbesondere eines, (Meth)Acrylat(co)polymerisats (A), bevorzugt eines (Meth)Acrylatcopolymerisats (A) und insbesondere eines 10 Methacrylatcopolymerisats (A).
- (A) weist ein zahlenmittleres Molekulargewicht von 1.500 bis 5.000 Dalton, insbesondere 1.000 bis 6.000 Dalton, auf. Es hat eine Glasübergangstemperatur von –15 bis +70 °C, insbesondere –15 bis +60 °C. Seine Hydroxylzahl liegt bei 80 bis 200 mg KOH/g, insbesondere 100 bis 180 mg KOH/g. Es kann eine Säurezahl von 0 bis 30 mg KOH/g aufweisen.
- (A) wird durch radikalische (Co)Polymerisation, insbesondere
 Copolymerisation, radikalisch polymerisierbarer, olefinisch ungesättigter
 Monomere hergestellt.

Beispiele geeigneter olefinisch ungesättigter Monomere (a) für die Herstellung der (Meth)Acrylatcopolymerisate (A) sind

(a1) Monomere, welche mindestens eine Hydroxylgruppe pro Molekül tragen und obligatorisch eingesetzt werden, wie

25

- Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderen alpha,beta-olefinisch ungesättigten Carbonsäure, die sich von einem Alkylenglykol ableiten, das mit der Säure

5

10

15

verestert ist, oder die durch Umsetzung der alpha, betaolefinisch ungesättigten Carbonsäure mit einem Alkylenoxid wie Ethylenoxid oder Propylenoxid erhältlich sind, Hydroxyalkylester insbesondere der Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, oder Itaconsäure, Fumarsäure in denen die Hydroxyalkylgruppe bis zu 20 Kohlenstoffatome enthält, wie 2-Hydroxyethyl-, 2-Hydroxypropyl-, 3-Hydroxypropyl-, Hydroxybutyl-, 4-Hydroxybutylacrylat, -methacrylat, ethacrylat, -crotonat, -maleinat, -fumarat oder -itaconat; oder Hydroxycycloalkylester 1,4wie Bis(hydroxymethyl)cyclohexan-, Octahydro-4,7-methano-1H-Methylpropandiolmonoacrylat, inden-dimethanoloder monomethacrylat, -monoethacrylat, -monocrotonat, monomaleinat, -monofumarat oder -monoitaconat: Umsetzungsprodukte aus cyclischen Estern, wie z.B. epsilon-Caprolacton diesen Hydroxyalkyl- oder und cycloalkylestern;

- olefinisch ungesättigte Alkohole wie Allylalkohol;
 - Polyole wie Trimethylolpropanmono- oder diallylether oder
 Pentaerythritmono-, -di- oder –triallylether;
- 25 Umsetzungsprodukte Acrylsäure und/oder aus Methacrylsäure mit dem Glycidylester einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 C-Atomen je Molekül, insbesondere einer Versatic®-Säure, oder anstelle Umsetzungsproduktes eine äguivalenten des Menge 30 Acryl- und/oder Methacrylsäure, die dann während oder nach der Polymerisationsreaktion mit dem Glycidylester einer in

alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 C-Atomen je Molekül, insbesondere einer Versatic®-Säure, umgesetzt wird; und/oder

- Acryloxysilan-enthaltende Vinylmonomere, herstellbar durch Umsetzung hydroxyfunktioneller Silane mit Epichlorhydrin und anschließender Umsetzung des Reaktionsproduktes mit (Meth)acrylsäure und/oder Hydroxyalkyl- und/oder cycloalkylestern der (Meth)Acrylsäure und/oder weiterer hydroxylgruppehaltiger Monomere (a1).
 - (a2) Monomere, welche entweder mindestens eine Säuregruppe oder mindestens eine Aminogruppe pro Molekül tragen, wie
- Acrylsäure, beta-Carboxyethylacrylat, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure oder Itaconsäure;
- olefinisch ungesättigte Sulfon- oder Phosphonsäuren oder deren Teilester;
 - Maleinsäuremono(meth)acryloyloxyethylester,
 Bernsteinsäuremono(meth)acryloyloxyethylester oder
 Phthalsäuremono(meth)acryloyloxyethylester; oder

25 - Vinylbenzoesäure (alle

Methylvinylbenzoesäure

(alle Isomere), (alle Isomere)

alphaoder

Vinylbenzsolsulfonsäure (alle Isomere); und/oder

Aminoethylacrylat, Aminoethylmethacrylat, Allylamin oder N-Methyliminoethylacrylat.

(a3) Monomere, die im wesentlichen oder völlig frei von reaktiven funktionellen Gruppen sind, wie:

5 Monomere (a31):

10

15

20

25

30

Im wesentlichen säuregruppenfreie (Meth)acrylsäureester wie (Meth)Acrylsäurealkyl- oder -cycloalkylester mit bis zu 20 Kohlenstoffatomen im Alkylrest, insbesondere Methyl-, Ethyl-, n-Propyl-, n-Butyl-, sec.-Butyl-, tert.-Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat oder -methacrylat; cycloaliphatische (Meth)acrvlsäureester. insbesondere Cyclohexyl-, Isobornyl-, Dicyclopentadienyl-, Octahydro-4,7-methano-1H-inden-methanoltert.-Butylcyclohexyl(meth)acrylat; oder (Meth)Acrylsäureoxaalkylester oder -oxacycloalkylester wie Ethoxytriglykol(meth)acrylat und Methoxyoligoglykol(meth)acrylat mit einem Molekulargewicht Mn von vorzugsweise 550 oder andere ethoxylierte und/oder propoxylierte hydroxylgruppenfreie (Meth)Acrylsäurederivate (weitere Beispiele geeigneter Monomere (31) dieser Art sind aus der Offenlegungsschrift DE 196 25 773 A 1, Spalte 3, Zeile 65, bis Spalte 4, Zeile 20, bekannt). Diese können in untergeordneten Mengen höherfunktionelle (Meth)Acrylsäurealkyloder -cycloalkylester wie Ethylengylkol-, Propylenglykol-, Diethylenglykol-, Dipropylenglykol-, Butylenglykol-, Pentan-1,5-diol-, Octahydro-4,7-methano-1H-inden-dimethanol-Hexan-1,6-diol-, -1,3oder -1,4-diol-di(meth)acrylat; oder Cyclohexan-1,2-, Trimethylolpropan-di- oder --tri(meth)acrylat; oder Pentaerythrit-di-, tri- oder -tetra(meth)acrylat enthalten. Rahmen der vorliegenden sind hierbei unter untergeordneten Mengen an Erfindung höherfunktionellen Monomeren (a31) solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der Copolymerisate 5

10

15

20

25

30

führen, es sei denn, sie sollen in der Form von vernetzten Mikrogelteilchen vorliegen.

Monomere (a32):

Vinylester von in alpha-Stellung verzweigten Monocarbonsäuren 18 C-Atomen im Molekül. Die verzweiaten Monocarbonsäuren können erhalten werden durch Umsetzung von Ameisensäure oder Kohlenmonoxid und Wasser mit Olefinen in Anwesenheit eines flüssigen, stark sauren Katalysators; die Olefine können Crack-Produkte von paraffinischen Kohlenwasserstoffen, wie Mineralölfraktionen, sein und können sowohl verzweigte wie geradkettige acyclische und/oder cycloaliphatische Olefine enthalten. Bei der Umsetzung solcher Olefine mit Ameisensäure bzw. mit Kohlenmonoxid und Wasser entsteht ein Gemisch aus Carbonsäuren, bei denen die Carboxylgruppen vorwiegend an einem quaternären Kohlenstoffatom sitzen. Andere olefinische Ausgangsstoffe sind z.B. Propylentrimer, Propylentetramer und Diisobutylen. Die Vinylester können aber auch auf an sich bekannte Weise aus den Säuren hergestellt werden, z.B. indem man die Säure mit Acetylen reagieren läßt. Besonders bevorzugt werden wegen der guten Verfügbarkeit - Vinylester von gesättigten aliphatischen Monocarbonsäuren mit 9 bis 11 C-Atomen, die am alpha-C-Atom verzweigt sind, eingesetzt. Vinylester dieser Art werden unter der Marke VeoVa® vertrieben (vgl. auch Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 598).

Monomere (a33):

Diarylethylene, insbesondere solche der allgemeinen Formel I:

 $R^{1}R^{2}C=CR^{3}R^{4} \qquad (I),$

. 5

10

15

20

25

30

worin die Reste R¹, R², R³ und R⁴ jeweils unabhängig voneinander für Wasserstoffatome oder substituierte oder unsubstituierte Alkyl-, Cycloalkyl-, Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl- Arylalkyl- oder Arylcycloalkylreste stehen, mit der Maßgabe, dass mindestens zwei der Variablen R1, R2, R3 und R4 für substituierte oder unsubstituierte Aryl-, Arylalkyl- oder Arylcycloalkylreste, insbesondere substituierte oder unsubstituierte Arylreste, stehen. Beispiele geeigneter Alkylreste sind Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, iso-Butyl, tert.-Butyl, Amyl, Hexyl oder 2-Ethylhexyl. Beispiele geeigneter Cycloalkylreste sind Cyclobutyl, Cyclopentyl oder Cyclohexyl. Beispiele geeigneter Alkylcycloalkylreste sind Methylencyclohexan, Ethylencyclohexan geeigneter Propan-1,3-diyl-cyclohexan. Beispiele oder Cycloalkylalkylreste sind 2-, 3- oder 4-Methyl-, -Ethyl-, -Propyl- oder -Butylcyclohex-1-yl. Beispiele geeigneter Arylreste sind Phenyl, Naphthyl oder Biphenylyl, vorzugsweise Phenyl und Naphthyl und insbesondere Phenyl. Beispiele geeigneter Alkylarylreste sind Benzyl oder Ethylen- oder Propan-1,3-diyl-benzol. Beispiele geeigneter Cycloalkylarylreste sind 2-, 3- oder 4-Phenylcyclohex-1yl. Beispiele geeigneter Arylalkylreste sind 2-, 3- oder 4-Methyl-, geeigneter Ethyl-, -Propyl- oder -Butylphen-1-yl. Beispiele sind 2-, 3- oder 4-Cyclohexylphen-1-yl. Arvicycloalkylreste Vorzugsweise handelt es sich bei den Arylresten R1, R2, R3 und/oder R4 um Phenyl- oder Naphthylreste, insbesondere Die in den Resten R¹, R², R³ und/oder R⁴ Phenylreste. sind vorhandenen Substituenten gegebenenfalls elektronenschiebende **Atome** oder elektronenziehende oder organische Reste, insbesondere Halogenatome, Nitril-, Nitro-, Alkyl-, Cycloalkyl-, halogenierte vollständig partiell oder Alkylcycloalkyl-, Cycloalkylalkyl-, Aryl-, Alkylaryl-, Cycloalkylaryl-

Arylcycloalkylreste; Alkyloxyund Aryloxy-, Arylalkylund Alkylthiound und/oder Arylthio-, Cycloalkyloxyreste; Cycloalkylthioreste. Besonders vorteilhaft sind Diphenylethylen, Dinaphthalinethylen, cis- oder trans- Stilben oder Vinyliden-bis(4nitrobenzol), insbesondere Diphenylethylen (DPE), weswegen sie bevorzugt verwendet werden. Im Rahmen der vorliegenden Erfindung werden die Monomeren (b33) eingesetzt, um die Copolymerisation in vorteilhafter Weise derart zu regeln, dass auch eine radikalische Copolymerisation in Batch-Fahrweise möglich ist.

10

20

25

5

Monomere (a34):

Vinylaromatische Kohlenwasserstoffe wie Styrol, Vinyltoluol oder alpha-Alkylstyrole, insbesondere alpha-Methylstyrol.

15 Monomere (a35):

Nitrile wie Acrylnitril und/oder Methacrylnitril.

Monomere (a36):

Vinylund/oder insbesondere Vinvlverbindungen. Vinylfluorid, Vinylchlorid, Vinylidendihalogenide wie Vinylidendichlorid oder Vinylidendifluorid; N-Vinylamide wie Vinyl-N-methylformamid, N-Vinylcaprolactam oder N-Vinylpyrrolidon; 1-Vinylimidazol; Vinylether wie Ethylvinylether, n-Propylvinylether, Isopropylvinylether, n-Butylvinylether, Isobutylvinylether und/oder Vinylacetat, Vinylester wie Vinylcyclohexylether; und/oder Vinylpropionat, Vinylbutyrat, Vinylpivalat und/oder der Vinylester der 2-Methyl-2-ethylheptansäure.

Monomere (a37):

Allylverbindungen, insbesondere Allylether und –ester wie Allylmethyl-, -ethyl-, -propyl- oder -butylether oder Allylacetat, -propionat oder –butyrat.

5 Monomere (a38):

Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 1.000 bis 40.000 und im Mittel 0,5 bis 2,5 ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen; insbesondere Polysiloxanmakromonomere, die ein zahlenmittleres Molekulargewicht Mn von 2.000 bis 20.000, besonders bevorzugt 2.500 bis 10.000 und insbesondere 3.000 bis 7.000 und im Mittel 0,5 bis 2,5, bevorzugt 0,5 bis 1,5, ethylenisch ungesättigte Doppelbindungen pro Molekül aufweisen, wie sie in der DE 38 07 571 A 1 auf den Seiten 5 bis 7, der DE 37 06 095 A 1 in den Spalten 3 bis 7, der EP 0 358 153 B 1 auf den Seiten 3 bis 6, in der US 4,754,014 A 1 in den Spalten 5 bis 9, in der DE 44 21 823 A 1 oder in der internationalen Patentanmeldung WO 92/22615 auf Seite 12, Zeile 18, bis Seite 18, Zeile 10, beschrieben sind.

20 Monomere (a39):

Olefine wie Ethylen, Propylen, But-1-en, Pent-1-en, Hex-1-en, Cyclohexen, Cyclopenten, Norbonen, Butadien, Isopren, Cylopentadien und/oder Dicyclopentadien.

25 und/oder

(a4) Epoxidgruppen enthaltende Monomere wie der Glycidylester der Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure oder Itaconsäure oder Allylglycidylether.

10

15

Die durch die Copolymerisation carboxylgruppenhaltiger Monomere (a3) gegebenenfalls vorhandenen Carboxylgruppen können als Zentren für polymeranaloge Umsetzungen mit epoxidgruppenhaltigen, aromatischen, aliphatischen und/oder cycloaliphatischen, insbesondere cycloaliphatischen, Verbindungen dienen. Dabei entstehen sekundäre Hydroxylgruppen, und die Glasübergangstemperatur von (A) kann mit Hilfe eingeführten aromatischen. aliphatischen und/oder cycloaliphatischen, insbesondere cycloaliphatischen, Gruppen variiert werden.

10

Die durch die Copolymerisation epoxidgruppenhaltiger Monomere (a3) gegebenenfalls vorhandenen Epoxidgruppen können als Zentren für polymeranaloge Umsetzungen mit carboxylgruppenhaltigen, aromatischen, aliphatischen und/oder cycloaliphatischen, insbesondere 15 cycloaliphatischen, Verbindungen dienen. Auch dabei entstehen sekundäre Hydroxylgruppen, und die Glasübergangstemperatur von (A) kann mit Hilfe der eingeführten aromatischen, aliphatischen und/oder cycloaliphatischen, insbesondere cycloaliphatischen, Gruppen variiert werden.

20

25

Höherfunktionelle Monomere (a) der vorstehend beschriebenen Art werden im allgemeinen in untergeordneten Mengen eingesetzt. Hierunter sind solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der (Meth)Acrylatcopolymerisate (A) führen, es sei denn, man will gezielt vernetzte polymere Mikroteilchen herstellen.

Zur Herstellung von (A) werden die Monomeren (a) so ausgewählt, dass (A) die vorstehend beschriebenen Parameter aufweist.

30 Beispiele geeigneter Herstellverfahren für (A) werden in den europäischen Patentanmeldungen EP 0 767 185 A 1, den deutschen Patenten DE

22 14 650 B 1 oder DE 27 49 576 B 1 und den amerikanischen Patentschriften US 4,091,048 A 1, US 3,781,379 A 1, US 5,480,493 A 1, US 5,475,073 A 1 oder US 5,534,598 A 1 oder in dem Standardwerk Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Band 14/1, 5 Seiten 24 bis 255, 1961, beschrieben. Als Reaktoren für die Copolymerisation kommen die üblichen und bekannten Rührkessel, Rührkesselkaskaden, Rohrreaktoren, Schlaufenreaktoren oder Taylorreaktoren, wie sie beispielsweise in der Patentschriften und den Patentanmeldungen DE 1 071 241 B 1, EP 0 498 583 A 1 oder DE 198 28 742 A 1 oder in dem Artikel von K. Kataoka in Chemical Engineering Science, Band 50, Heft 9, 1995, Seiten 1409 bis 1416, beschrieben werden, in Betracht.

Der erfindungsgemäße Beschichtungsstoff enthält als zweiten 5 wesentlichen Bestandteile, jeweils bezogen auf (A), (B), (C) und (D), 10 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-%, mindestens eines, insbesondere eines Polyesters (B).

- (B) hat ein zahlenmittleres Molekulargewicht von 800 bis 6.000 Dalton, insbesondere 1.000 bis 5.500 Dalton. Seine Hydroxylzahl liegt bei 80 bis 200 mg KOH/g, insbesondere 100 bis 180 mg KOH/g. Die Säurezahl beträgt 1 bis 50 mg KOH/g, insbesondere 3 bis 25 mg KOH/g.
- Für (B) ist es wesentlich, dass er, bezogen auf (B), 30 bis 40 Gew.-%, 25 insbesondere 40 bis 60 Gew.-%, cycloaliphatischer Struktureinheiten enthält.

Geeignete cycloaliphatische Struktureinheiten sind zweibindige oder dreibindige, insbesondere zweibindige, cycloaliphatische Reste, inklusive olefinisch ungesättigte cycloaliphatische Reste, oder aliphatische Reste,

die mindestens einen cycloaliphatischen Rest, inklusive einen olefinisch ungesättigten, cycloaliphatischen Rest, enthalten.

Beispiele cycloaliphatischer Reste geeigneter, zweibindiger, 5 substituierte oder unsubstituierte. vorzugsweise unsubstituierte. Cycloalkandiyl-Reste mit 4 bis 20 Kohlenstoffatomen, wie Cyclobutan-1,3-Cyclopentan-1,3-diyl, Cyclohexan-1,2- -1,3oder -1.4-divl. Cvclohexen-1,2--1,3- oder -1,4-diyl, Cycloheptan-1,4-diyl, Norbornan-1,4diyl, Adamantan-1,5-diyl, Decalin-diyl, 3,3,5-Trimethyl-cyclohexan-1.5-diyl, 10 1-Methylcyclohexan-2,6-diyl, Dicyclohexylmethan-4,4'-diyl, Dicyclohexan-4,4'-diyl oder 1,4-Dicyclohexylhexan-4,4"-diyl, insbesondere 3.3.5-Trimethyl-cyclohexan-1,5-diyl oder Dicyclohexylmethan-4,4'-diyl. Daneben können in untergeordneten Mengen die entsprechenden Trivl-Reste angewandt werden.

15

Beispiele geeigneter, zweibindiger, aliphatischer Reste, die mindestens einen cycloaliphatischen Rest enthalten, sind Heptyl-1-pentyl-cyclohexan-3,4-bis(non-9-yl), Cyclohexan-1,2-, 1,4- oder -1,3-bis(methyl) Cyclohexan-1,2-, 1,4- oder -1,3-bis(eth-2-yl), Cyclohexan-1,3-bis(prop-3-yl) oder Cyclohexan-1,2-, 1,4- oder 1,3-bis(but-4-yl) sowie die entsprechenden Cyclohexenderivate.

Die vorstehend beschriebenen cycloaliphatischen Struktureinheiten können den bei der Herstellung von (B) eingesetzten Polyolen, 25 insbesondere Diolen, und/oder den Polycarbonsäuren, Polycarbonsäureanhydriden, Polycarbonsäureestern oder Polycarbonsäurehalogeniden, insbesondere Dicarbonsäuren, Dicarbonsäureestern und Dicarbonsäureanhydriden, entstammen.

30 Beispiele für geeignete cycloaliphatische und cyclische, olefinisch ungesättigte Dicarbonsäuren sind 1,2-Cyclobutandicarbonsäure, 1,3-

PCT/EP2004/007636

Cyclobutandicarbonsäure, 1,2-Cyclopentandicarbonsaure, 1,3-Cyclopentandicarbonsäure, Hexahydrophthalsäure, 1,3-Cyclohexandicarbonsäure, 1,4-Cyclohexandicarbonsäure, 4-Methylhexahydrophthalsäure, Tricyclodecandicarbonsäure, 5 Tetrahydrophthalsäure, 4-Methyltetrahydrophthalsäure oder polymere Fettsäuren, insbesondere solche mit einem Dimerengehalt von mehr als 90 Gew.-%, die auch als Dimerfettsäuren bezeichnet werden. Diese Dicarbonsäuren können sowohl in ihrer cis- als auch in ihrer trans-Form sowie als Gemisch beider Formen eingesetzt werden. Geeignet sind auch die von ihnen abgeleiteten Ester und Anhydride (sofern existent). 10

Beispiele geeigneter cycloaliphatischer Diole sind 1,2-, 1,3- oder 1,4-Cyclohexandiol, 1,2-, 1,3oder 1,4-Cyclohexandimethanol oder 1-Dihydroxymethyl-bicyclo[2.2.1]heptan.

15

20

Ansonsten können die bei der Herstellung von Polyestern üblicherweise eingesetzten acyclischen aliphatischen und aromatischen Polycarbonsäureester Polycarbonsäuren, Polycarbonsäureanhydride, oder Polycarbonsäurehalogenide, insbesondere Dicarbonsäuren, Dicarbonsäureester und Dicarbonsäureanhydride, eingesetzt werden.

Beispiele für geeignete aromatische Dicarbonsäuren sind Phthalsäure, Isophthalsäure, Terephthalsäure, Phthalsäure-, Isophthalsäure- oder Terephthalsäuremonosulfonat, oder Halogenphthalsäuren, wie Tetrachlor-25 bzw. Tetrabromphthalsäure, von denen Terephthalsäure vorteilhaft ist und deshalb bevorzugt verwendet wird.

Beispiele für geeignete acyclische aliphatische oder ungesättigte Dicarbonsäuren sind Oxalsäure, Malonsäure, Bernsteinsäure. 30 Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecandicarbonsäure oder Dodecandicarbonsäure oder Maleinsäure, Fumarsäure oder Itaconsäure.

Ansonsten können die bei der Herstellung von Polyestern üblicherweise 5 eingesetzten acyclischen aliphatischen und aromatischen Polyole, insbesondere Diole, eingesetzt werden.

Beispiele geeigneter Diole sind Ethylenglykol, 1,2- oder 1,3-Propandiol, 1,2-, 1,3- oder 1,4-Butandiol, Diethylenglykol, Dipropylenglykol, 1,2-, 1,3-, 10 1,4- oder 1,5-Pentandiol, 1,2-, 1,3-, 1,4-, 1,5- oder 1,6-Hexandiol, Hydroxypivalinsäureneopentylester, Neopentylglykol, 1,2-, 1,3- oder 1,4-Cyclohexandiol, 1,2-, 1,3oder 1,4-Cyclohexandimethanol, Trimethylpentandiol. Ethylbutylpropandiol, die stellungsisomeren Diethyloctandiole, 2-Butyl-2-ethylpropandiol-1,3, 2-Butyl-2-methylpropan-15 diol-1,3, 2-Phenyl-2-methylpropan-diol-1,3, 2-Propyl-2-ethylpropandiol-1,3, 2-Di-tert.-butylpropandiol-1,3, 2-Butyl-2-propylpropandiol-1,3, 2,2-Diethylpro-pandiol-1,3, 2,2-Dipropylpropandiol-1,3, 2-Cyclohexyl-2-methylpropandiol-1,3, 2,5-Dimethyl-hexandiol-2,5, 2,5-Diethylhexandiol-2,5, 2-Ethyl-5-methylhexandiol-2,5, 2,4-Dimethyl-20 pentandiol-2,4, 2,3-Dimethylbutandiol-2,3, 1,4-(2'-Hydroxypropyl)-benzol,1,3-(2'-Hydroxypropyl)-benzol oder die nachstehend beschriebenen, mit Hydroxylgruppen funktionalisierten Alkane.

Die funktionalisierten Alkane leiten sich ab von verzweigten, cyclischen oder acyclischen Alkanen mit 9 bis 16 Kohlenstoffatomen, welche jeweils das Grundgerüst bilden.

Beispiele geeigneter Alkane dieser Art mit 9 Kohlenstoffatomen sind 2-Methyloctan, 4-Methyloctan, 2,3-Dimethyl-heptan, 3,4-Dimethyl-heptan, 3,6-Dimethyl-heptan, 2-Methyl-4-ethyl-hexan oder Isopropyl-cyclohexan.

Beispiele geeigneter Alkane dieser Art mit 10 Kohlenstoffatomen sind 4-Ethyloctan, 2,3,4,5-Tetramethyl-hexan, 2,3-Diethyl-hexan oder 1-Methyl-2-n-propyl-cyclohexan.

5

Beispiele geeigneter Alkane dieser Art mit 11 Kohlenstoffatomen sind 2,4,5,6-Tetramethyl-heptan oder 3-Methyl-6-ethyl-octan.

Beispiele geeigneter Alkane dieser Art mit 12 Kohlenstoffatomen sind 4-10 Methyl-7-ethyl-nonan, 4,5-Diethyl-octan, 1´-Ethyl-butyl-cyclohexan, 3,5-Diethyl-octan oder 2,4-Diethyl-octan.

Beispiele geeigneter Alkane dieser Art mit 13 Kohlenstoffatomen sind 3,4-Dimethyl-5-ethyl-nonan oder 4,6-Dimethyl-5-ethyl-nonan.

15

Ein Beispiel eines geeigneten Alkans dieser Art mit 14 Kohlenstoffatomen ist 3,4-Dimethyl-7-ethyl-decan.

Beispiele geeigneter Alkane dieser Art mit 15 Kohlenstoffatomen sind 3,6-20 Diethyl-undecan oder 3,6-Dimethyl-9-ethyl-undecan.

Beispiele geeigneter Alkane dieser Art mit 16 Kohlenstoffatomen sind 3,7-Diethyl-dodecan oder 4-Ethyl-6-isopropyl-undecan.

Von diesen Grundgerüsten sind die Alkane mit 10 bis 14 und insbesondere 12 Kohlenstoffatomen besonders vorteilhaft und werden deshalb bevorzugt verwendet. Von diesen sind wiederum die Octanderivate ganz besonders vorteilhaft. Die funktionalisierten Alkane weisen im allemeinen primäre und/oder sekundäre Hydroxylgruppen auf; vorzugsweise sind primäre und sekundäre Gruppen vorhanden.

5 Besonders vorteilhaft sind die stellungsisomeren Dialkyloctandiole, insbesondere die stellungsisomeren Diethyloctandiole.

Die bevorzugten stellungsisomeren Diethyloctandiole enthalten eine lineare C₈-Kohlenstoffkette.

10

Bezüglich der beiden Ethylgruppen weist die C₈-Kohlenstoffkette das folgende Substitutionsmuster auf: 2,3, 2,4, 2,5, 2,6, 2,7, 3,4, 3,5, 3,6 oder 4,5. Erfindungsgemäß ist es von Vorteil, wenn die beiden Ethylgruppen in 2,4-Stellung stehen, d. h., dass es sich um 2,4-Diethyloctandiole handelt.

15

Bezüglich der beiden Hydroxylgruppen weist die C₈-Kohlenstoffkette das folgende Substitutionsmuster auf: 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 2,3, 2,4, 2,5, 2,6, 2,7, 2,8, 3,4, 3,5, 3,6, 3,7, 3,8, 4,5, 4,6, 4,8, 5,6, 5,7, 5,8, 6,7, 6,8 oder 7,8. Erfindungsgemäß ist es von Vorteil, wenn die beiden Hydroxylgruppen in 1,5-Stellung stehen, d. h., dass es sich um Diethyloctan-1,5-diole handelt.

Die beiden Substitutionsmuster werden in beliebiger Weise miteinander kombiniert, d. h., dass es sich bei den besonders vorteilhaften 25 Diethyloctandiolen um

2,3-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,

20

- 2,4-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5-, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
- 5 2,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8 -, -4,5-, -4,6-, -4,7-, -4,8-, -5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
- 2,6- Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5

 10 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-,
 5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
- 2,7- Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8-, -4,5-, -4,6-, -4,7-, -4,8-, -15 5,6-, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
 - 3,4-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8 -, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
 - 3,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8 -, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol,
- 25 3,6-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8 -, -4,5-, -4,6-, -4,7-, -4,8-, -5,6 -, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol oder um
- 4,5-Diethyloctan-1,2-, -1,3-, -1,4-, -1,5-, -1,6-, -1,7-, -1,8-, -2,3-, -2,4-, -2,5
 30 -, -2,6-, -2,7-, -2,8-, -3,4-, -3,5-, -3,6-, -3,7-, -3,8 -, -4,5-, -4,6-, -4,7-, -4,8-, 5,6 -, -5,7-, -5,8-, -6,7-, -6,8- oder -7,8-diol handelt.

Die stellungsisomeren Diethyloctandiole können als einzelne Verbindungen oder als Gemische von zwei oder mehr Diethyloctandiolen verwendet werden.

5

Ganz besondere Vorteile resultieren aus der Verwendung von 2,4-Diethyloctan-1,5-diol.

Die bevorzugt verwendeten stellungsisomeren Diethyloctandiole sind an sich bekannte Verbindungen und können mit Hilfe üblicher und bekannter Synthesemethoden der Organischen Chemie wie die basenkatalysierte Aldolkondensation hergestellt werden oder sie fallen als Nebenprodukte chemischer Großsynthesen wie der Herstellung von 2-Ethyl-hexanol an.

- 15 Die Herstellung von (B) erfolgt nach den bekannten Methoden der Veresterung, wie sie beispielsweise in der deutschen Patentanmeldung DE 40 24 204 A 1, Seite 4, Zeilen 50 bis 65, beschrieben werden. Die Umsetzung erfolgt dabei üblicherweise bei Temperaturen zwischen 180 280 °C, gegebenenfalls in Gegenwart eines aeeianeten Veresterungskatalysators, wie z.B. 20 Lithiumoctoat, Dibutylzinnoxid, Dibutylzinndilaurat oder para-Toluolsulfonsäure. Es können auch die aus der deutschen Patentanmeldung DE 199 07 861 A 1 bekannten heterogenen Veresterungksatalysatoren eingesetzt werden.
- Die Herstellung von (B) kann in Gegenwart geringer Mengen eines geeigneten Lösemittels als Schleppmittel durchgeführt werden. Als Schleppmittel werden z. B. aromatische Kohlenwasserstoffe, wie insbesondere Xylol und (cyclo)aliphatische Kohlenwasserstoffe, z. B. Cyclohexan oder Methylcyclohexan, eingesetzt.

WO 2005/016985 PCT/EP2004/007636 28

Der erfindungsgemäße Beschichtungsstoff enthält als dritten wesentlichen Bestandteil, jeweils bezogen auf (A), (B), (C) und (D), 10 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-%, mindestens eines, insbesondere eines, blockierten Polyisocyanats (C), worin die blockierten Polyisocyanatgruppen an mindestens eine flexibilisierende, vorzugsweise mindestens zwei und insbesondere mindestens drei flexibilisierende Struktureinheit(en) gebunden sind. Flexibilisierende Struktureinheiten erniedrigen als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur.

10

15

Die flexibilisierden Struktureinheiten sind vorzugsweise zweibindige flexibilisierenden organische Reste. Bevorzugt werden die der Gruppe, bestehend aus zweibindigen Struktureinheiten aus aliphatischen Kohlenwasserstoffresten und zweibindigen, Heteroatome enthaltenden, aliphatischen Kohlenwasserstoffresten, ausgewählt.

Beispiele geeigneter flexibilisierender, zweibindiger organischer Reste dieser Art sind substituierte oder unsubstituierte, bevorzugt unsubstituierte, lineare oder verzweigte, vorzugsweise lineare, Alkandiyl-Reste mit 4 bis 30, bevorzugt 5 bis 20 und insbesondere 6 Kohlenstoffatomen, die innerhalb der Kohlenstoffkette auch cyclische Gruppen enthalten können, sofern die Kohlenstoffketten zwischen den Isocyanatgruppen und den cyclischen Gruppen jeweils mehr als zwei Kohlenstoffatome enthalten.

25

Beispiele gut geeigneter linearer Alkandiyl-Reste sind sind Tetramethylen, Pentamethylen, Heptamethylen, Octamethylen, Nonan-1,9-diyl, Decan-1,10-diyl, Undecan-1,11-diyl Dodecan-1,12-diyl, Tridecan-1,13-diyl, Tetradecan-1,14-diyl, Pentadecan-1,15-diyl, Hexadecan-1,16-diyl, Heptadecan-1,17-diyl, Octadecan-1,18-diyl, Nonadecan-1,19-diyl oder Eicosan-1,20-diyl, bevorzugt Tetramethylen, Pentamethylen,

Hexamethylen, Heptamethylen, Octamethylen, Nonan-1,9-diyl, Decan-1,10-diyl, insbesondere Hexamethylen.

Beispiele gut geeigneter Alkandiyl-Reste, die in der Kohlenstoffkette auch cyclische Gruppen enthalten, sind 2-Heptyl-1-pentyl-cyclohexan-3,4-bis(non-9-yl), Cyclohexan-1,2-, 1,4- oder -1,3-bis(eth-2-yl), Cyclohexan-1,3-bis(prop-3-yl) oder Cyclohexan-1,2-, 1,4- oder 1,3-bis(but-4-yl).

Weitere Beispiele geeigneter zweibindiger organischer Reste, die 10 Heteroatome enthalten, sind zweiwertige Polyesterreste mit wiederkehrenden Polyesteranteilen der Formel -(-CO-(CHR⁵)_m- CH₂-O-)- aus. Hierbei ist der Index m bevorzugt 4 bis 6 und der Substitutent R⁵ = Wasserstoff, ein Alkyl-, Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome.

15

Weitere Beispiele geeigneter zweibindiger organischer Reste, die Heteroatome enthalten. sind zweiwertige lineare Polyetherreste. vorzugsweise mit einem zahlenmittleren Molekulargewicht von 400 bis 5.000, insbesondere von 400 bis 3.000. Gut geeignete Polyetherreste 20 haben die allgemeine Formel -(-O-(CHR⁶)_o-)_p-O-, wobei der Substituent R⁶ = Wasserstoff oder ein niedriger, gegebenenfalls substituierter Alkylrest ist, der Index o = 2 bis 6, bevorzugt 3 bis 4, und der Index p = 2 bis 100. bevorzugt 5 bis 50, ist. Als besonders gut geeignete Beispiele werden lineare oder verzweigte Polyetherreste, die sich von 25 Poly(oxyethylen)glykolen, Poly(oxypropylen)glykolen und Poly(oxybutylen)glykolen ableiten, genannt.

Des weiteren kommen auch lineare zweibindige Siloxanreste, wie sie beispielsweise in Siliconkautschuken vorliegen, hydrierte Polybutadien30 oder Polyisoprenreste, statistische oder alternierende Butadien-IsoprenCopolymerisatreste oder Butadien-Isopren-Pfropfmischpolymerisatreste,

die noch Styrol einpolymerisiert enthalten können, sowie Ethylen-Propylen-Dienreste in Betracht.

Als Substitutienten kommen alle organischen funktionellen Gruppen in Betracht, welche im wesentlichen inert sind, d. h., dass sie keine Reaktionen mit den Bestandteilen der erfindungsgemäßen Beschichtungsstoffe eingehen.

Beispiele geeigneter inerter organischer Reste sind Alkylgruppen, 10 insbesondere Methylgruppen, Halogenatome, Nitrogruppen, Nitrilgruppen oder Alkoxygruppen.

Von den vorstehend beschriebenen zweibindigen organischen Resten sind die Alkandiyl-Reste, die keine Substituenten und keine cyclischen Gruppen in der Kohlenstoffkette enthalten, von Vorteil und werden deshalb bevorzugt verwendet.

15

Beispiele geeigneter blockierter Polyisocyanate (C) sind die Oligomeren von Diisocyanaten, wie Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat,

Heptamethylendiisocyanat, Ethylethylendiisocyanat, Trimethylhexandiisocyanat oder acyclische aliphatische Diisocyanate, die eine cyclische
Gruppen in ihrer Kohlenstoffkette enthalten, wie Diisocyanate, abgeleitet
von Dimerfettsäuren, wie sie unter der Handelsbezeichnung DDI 1410 von
der Firma Henkel vertrieben und in den Patentschriften WO 97/49745 und
WO 97/49747 beschrieben werden, insbesondere 2-Heptyl-3,4-bis(9isocyanatononyl)-1-pentyl-cyclohexan, oder 1,2-, 1,4- oder 1,3-Bis(2isocyanatoeth-1-yl)cyclohexan, 13-Bis(3-isocyanatoprop-1-yl)cyclohexan

isocyanatoeth-1-yl)cyclohexan, 1,3-Bis(3-isocyanatoprop-1-yl)cyclohexan oder 1,2-, 1,4- oder 1,3-Bis(4-isocyanatobut-1-yl)cyclohexan. Letztere sind im Rahmen der vorliegenden Erfindung aufgrund ihrer beiden aussschließlich an Alkylgruppen gebundenen Isocyanatgruppen trotz ihrer cyclischen Gruppen zu den acyclischen aliphatischen Diisocyanaten

zu zählen. Von diesen Diisocyanaten wird Hexamethylendiisocyanat besonders bevorzugt eingesetzt.

Bevorzugt werden Oligomere (C) verwendet, die Isocyanurat-, Harnstoff-,
Urethan-, Biuret-, Uretdion-, Iminooxadiazindion, Carbodiimid- und/oder Allophanatgruppen enthalten. Beispiele geeigneter Herstellungsverfahren sind aus den Schriften CA 2,163,591 A, US 4,419,513 A, US 4,454,317 A, EP 0 646 608 A, US 4,801,675 A, EP 0 183 976 A 1, DE 40 15 155 A 1, EP 0 303 150 A 1, EP 0 496 208 A 1, EP 0 524 500 A 1, EP 0 566 037 A
10 1, US 5,258,482 A 1, US 5,290,902 A 1, EP 0 649 806 A 1, DE 42 29 183 A 1, EP 0 531 820 A 1 oder DE 100 05 228 A 1 bekannt.

Außerdem kommt noch blockiertes Nonyltriisocyanat (NTI) (C) in Betracht.

- Der erfindungsgemäße Beschichtungsstoff enthält als vierten wesentlichen Bestandteil, jeweils bezogen auf (A), (B), (C) und (D), 10 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-%, mindestens eines, insbesondere eines, blockierten Polyisocyanats (D), worin die blockierten Polyisocyanatgruppen an mindestens eine hart machende, vorzugsweise mindestens zwei und insbesondere mindestens drei hart machende Struktureinheit(en) gebunden sind. Hart machende Struktureinheiten erhöhen als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur.
- 25 Die hartmachenden Struktureinheiten sind zwei- oder mehrbindige organische Reste. Vorzugsweise werden zweibindige organische Reste verwendet.

Beispiele gut geeigneter hartmachender Struktureinheiten sind

> zweibindige aromatische. cycloaliphatische und aromatischcycloaliphatische Reste, bei denen innerhalb der blockierten Polyisocyanate (D) mindestens eine verknüpfende Bindung direkt zur cycloaliphatischen und/oder aromatischen Struktureinheit führt.

5 sowie zweibindige alphatische Reste, bei denen innerhalb der blockierten Polyisocyanate (D) die beiden verknüpfenden Bindungen zu Methylengruppen führen, die mit einer aromatischen cycloaliphatischen, insbesondere cycloaliphatischen, Struktureinheit verbunden sind.

10

Die zweibindigen cycloaliphatischen, aromatischen und aliphatischen, insbesondere die cycloaliphatischen, Reste sind vorteilhaft und werden bevorzugt verwendet.

Beispiele geeigneter zweibindiger aromatischer Reste sind substituierte, 15 insbesondere methylsubstituierte, oder unsubstituierte aromatische Reste mit 6 bis 30 Kohlenstoffatomen im Molekül, wie Phen-1,4-, -1,3- oder -1,2ylen, Naphth-1,4-, -1,3-, -1,2-, -1,5- oder -2,5-ylen, Propan-2,2-di(phen-4'yl), Methan-di(phen-4'-yl), Diphenyl-4,4'-diyl oder 2,4- oder 2,6-Toluylen.

20

25

Beispiele geeigneter zweibindiger cycloaliphatischer Reste sind substituierte oder unsubstituierte, vorzugsweise unsubstituierte, Cycloalkandiyl-Reste mit 4 bis 20 Kohlenstoffatomen, wie Cyclobutan-1,3diyl, Cyclopentan-1,3-diyl, Cyclohexan-1,3- oder -1,4-diyl, Cycloheptan-1,4-diyl, Norbornan-1,4-diyl, Adamantan-1,5-diyl, Decalin-diyl, 3,3,5-Trimethyl-cyclohexan-1,5-diyl, 1-Methylcyclohexan-2,6-diyl, Dicyclohexylmethan-4,4'-diyl, 1,1'-Dicyclohexan-4,4'-diyl oder 1,4-Dicyclohexylhexan-4,4"-diyl, insbesondere 3,3,5-Trimethyl-cyclohexan-1,5-diyl oder Dicyclohexylmethan-4,4'-diyl. Daneben können in 30 untergeordneten Mengen die entsprechenden Triyl-Reste angewandt werden.

Beispiele geeigneter aliphatischer Reste sind Cyclohexan-1,2-, -1,4- oder - 1,3-bis(methyl).

5 Beispiele geeigneter Substituenten sind die vorstehend beschriebenen.

Beispiele geeigneter blockierter Polyisocyanate (D) sind die Oligomeren Diisocyanaten, wie Isophorondiisocyanat (= 5-Isocyanato-1isocyanatomethyl-1,3,3-trimethyl-cyclohexan), 5-Isocyanato-1-(2-10 isocyanatoeth-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-1-(3isocyanatoprop-1-yl)-1,3,3-trimethyl-cyclohexan. 5-Isocyanato-(4isocyanatobut-1-yl)-1,3,3-trimethyl-cyclohexan, 1-Isocyanato-2-(3isocyanatoprop-1-yl)-cyclohexan, 1-Isocyanato-2-(3-isocyanatoeth-1yl)cyclohexan, 1-lsocyanato-2-(4-isocyanatobut-1-yl)-cyclohexan, 1,2-15 Diisocyanatocyclobutan, 1,3-Diisocyanatocyclobutan, 1,2-Diisocyanatocyclopentan, 1,3-Diisocyanatocyclopentan, 1,2-Diisocyanatocyclohexan, 1,3-Diisocyanatocyclohexan, 1,4-Diisocyanatocyclohexan, 1,2-, 1,4oder 1,3-Bis(isocyanatomethyl)cyclohexan, Dicyclohexylmethan-2,4'-diisocyanat 20 oder Dicyclohexylmethan-4,4'-diisocyanat, insbesondere Isophorondiisocyanat.

Bevorzugt werden Oligomere (D) verwendet, die Isocyanurat-, Harnstoff-, Urethan-, Biuret-, Uretdion-, Iminooxadiazindion, Carbodiimid- und/oder Allophanatgruppen enthalten. Beispiele geeigneter Herstellungsverfahren sind aus den Patentschriften CA 2,163,591 A, US 4,419,513 A, US 4,454,317 A, EP 0 646 608 A, US 4,801,675 A, EP 0 183 976 A 1, DE 40 15 155 A 1, EP 0 303 150 A 1, EP 0 496 208 A 1, EP 0 524 500 A 1, EP 0 566 037 A 1, US 5,258,482 A 1, US 5,290,902 A 1, EP 0 649 806 A 1, DE 42 29 183 A 1 oder EP 0 531 820 A 1 bekannt oder sie werden in der

nicht vorveröffentlichten deutschen Patentanmeldung DE 100 05 228.2 beschrieben.

- Geeignete Blockierungsmittel für die Herstellung der blockierten Polyisocyanate sind die aus der US-Patentschrift US 4,444,954 Abekannten:
- i) Phenole wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol,
 Ethylphenol, t-Butylphenol, Hydroxybenzoesäure, Ester dieser
 Säure oder 2,5- di-tert.-Butyl-4-hydroxytoluol;
 - ii) Lactame, wie ε-Caprolactam, δ-Valerolactam, γ -Butyrolactam oder β -Propiolactam;
- 15 iii) aktive methylenische Verbindungen, wie Diethylmalonat, Dimethylmalonat, Acetessigsäureethyl- oder -methylester oder Acetylaceton;
- Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, niv) 20 Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laurylalkohol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonopropylether, Ethylenglykolmonobutylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, Propylenglykolmonomethylether, 25 Methoxymethanol, Glykolsäure, Glykolsäureester, Milchsäure, Milchsäureester. Methylolharnstoff, Methylolmelamin, Diacetonalkohol, Ethylenchlorohydrin, Ethylenbromhydrin, 1,3-Dichloro-2-propanol, 1,4-Cyclohexyldimethanol oder Acetocyanhydrin;

- v) Mercaptane wie Butylmercaptan, Hexylmercaptan, t-Butylmercaptan, t-Dodecylmercaptan, 2-Mercaptobenzothiazol, Thiophenol, Methylthiophenol oder Ethylthiophenol;
- 5 vi) Säureamide wie Acetoanilid, Acetoanisidinamid, Acrylamid, Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;
 - vii) Imide wie Succinimid, Phthalimid oder Maleimid;
- 10 viii) Amine wie Diphenylamin, Phenylnaphthylamin, Xylidin, N-Phenylxylidin, Carbazol, Anilin, Naphthylamin, Butylamin, Dibutylamin oder Butylphenylamin;
 - ix) Imidazole wie Imidazol oder 2-Ethylimidazol;

- x) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenharnstoff, Ethylenthioharnstoff oder 1,3-Diphenylharnstoff;
- xi) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2-20 Oxazolidon;
 - xii) Imine wie Ethylenimin;
- xiii) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim,

 Methylethylketoxim (Butanonoxim), Diisobutylketoxim,

 Diacetylmonoxim, Benzophenonoxim oder Chlorohexanonoxime;
 - xiv) Salze der schwefeligen Säure wie Natriumbisulfit oder Kaliumbisulfit;

- xv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder
- xvi) substituierte Pyrazole, insbesondere 3,5-Dimethylpyrazol, oder
 Triazole; sowie
 - xvii) Gemische dieser Blockierungsmittel.

Vorzugsweise sind die blockierten Polyisocyanate (C) mit substitiuierten 10 Pyrazolen, insbesondere 3,5-Dimethylpyrazol, und die blockierten Polyisocyanate (D) mit Oximen, insbesondere Butanonoxim, blockiert.

Vorzugsweise besteht der erfindungsgemäße Beschichtungsstoff aus den vorstehend beschriebenen, wesentlichen Bestandteilen (A), (B), (C) und (D) sowie mindestens einem Zusatzstoff (E). Der Gehalt an Zusatzstoffen (E) kann sehr breit variieren und richtet sich insbesondere nach der Funktion von (E).

Beispiele geeigneter Zusatzstoffe (E) sind Bindemittel, die von den vorstehend beschriebenen Bindemitteln (A) und (B) verschieden sind; von 20 beschriebenen Vernetzungsmitteln den vorstehend (C) und Vernetzungsmittel; verschiedene nicht deckende Piamente: molekulardispers lösliche Farbstoffe; Lichtschutzmittel, wie UV-Absorber und reversible Radikalfänger (HALS); Antioxidantien; niedrig- und hochsiedende ("lange") organische Lösemittel: Entlüftungsmittel: 25 Netzmittel; Emulgatoren; Slipadditive; Polymerisationsinhibitoren; Katalysatoren für die thermische Vernetzung; thermolabile radikalische Reaktivverdünner; Initiatoren; thermisch härtbare Haftvermittler; Verlaufmittel; filmbildende Hilfsmittel; Rheologiehilfsmittel (Verdicker und 30 strukturviskose Sag control agents, SCA); Flammschutzmittel: Korrosionsinhibitoren; Rieselhilfen; Wachse; Sikkative; Biozide und/oder WO 2005/016985 PCT/EP2004/007636

Mattierungsmittel; wie sie beispielsweise in dem Lehrbuch »Lackadditive« von Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, in der deutschen Patentanmeldung DE 199 14 896 A 1, Spalte 14, Seite 26, bis Spalte 15, Zeile 46, im Detail beschrieben werden. Ergänzend wird noch auf die DE 199 04 317 A 1 und DE 198 55 125 A 1 verwiesen.

Herstellung der erfindungsgemäßen Methodisch weist die sondern Beschichtungsstoffe keine Besonderheiten auf, erfolgt vorzugsweise mit Hilfe des erfindungsgemäßen Verfahrens durch das 10 Vermischen der vorstehend beschriebenen Bestandteile (A), (B), (C) und (D) sowie gegebenenfalls (E) und Homogenisieren der resultierenden Mischungen mit Hilfe üblicher und bekannter Mischverfahren und Vorrichtungen wie Rührkessel, Rührwerksmühlen, Extruder, Kneter, Ultraturrax, In-line-Dissolver, statische Mischer, Zahnkranzdispergatoren, Druckentspannungsdüsen und/oder Microfluidizer.

resultierenden erfindungsgemäßen Beschichtungsstoffe sind Die konventionelle, organische Lösemittel enthaltende Beschichtungsstoffe, wässrige Beschichtungsstoffe, im wesentlichen oder völlig lösemittel- und Beschichtungsstoffe (100%-Systeme), flüssige im wasserfreie völlig lösemittelund wasserfreie feste wesentlichen oder Beschichtungsstoffe (Pulverlacke) oder im wesentlichen oder völlig lösemittelfreie Pulverlacksuspensionen (Pulverslurries). Vorzugsweise sind sie konventionelle Beschichtungsstoffe.

25

20

Sie sind hervorragend zur Herstellung ein- und mehrschichtiger Klarlackierungen, sowie mehrschichtiger, farb- und/oder effektgebender Beschichtungen insbesondere nach dem Nass-in-nass-Verfahren geeignet bei dem ein Basislack, insbesondere ein Wasserbasislack, auf die Oberfläche eines Substrats appliziert wird, wonach man die resultierende Basislackschicht, ohne sie auszuhärten, trocknet und mit einer

Klarlackschicht überschichtet. Anschließend werden die beiden Schichten gemeinsam gehärtet.

Überraschenderweise kann die Applikation der erfindungsgemäßen 5 Beschichtungsstoffe auch mit Hilfe des Coil-Coatings-Verfahrens erfolgen.

Die applizierten erfindungsgemäßen Beschichtungsstoffe werden auf den Bändern thermisch gehärtet. Die Aufheizung kann durch Konvektionswärmeübertragung, Bestrahlen mit nahem oder fernem Infrarot und/oder bei Bändern auf der Basis von Eisen durch elektrische Induktion erfolgen. Die maximale Objekttemperatur (peak metal temperature, PMT) liegt vorzugsweise bei 250°C.

Die Aufheizzeit, d.h. die Zeitdauer der thermischen Härtung variiert in Abhängigkeit von dem eingesetzten erfindungsgemäßen Beschichtungsstoff. Vorzugsweise liegt sie bei 35 s bis 2 min.

Wird im wesentlichen die Konvektionswärmeübertragung angewandt, werden bei den bevorzugten Bandlaufgeschwindigkeiten Umluftöfen einer 20 Länge von 30 bis 50, insbesondere 35 bis 45 m, benötigt.

Die resultierenden erfindungsgemäßen beschichteten Bänder können zu Coils gewickelt und bis zur weiteren Verwendung problemlos gelagert werden.

25

Sie sind hervorragend für die Herstellung von Formteilen durch formgebe Bearbeitung, insbesondere durch Tiefziehen, geeignet.

Die resultierenden erfindungsgemäßen Formteile weisen 30 Automobilqualität auf und sind deshalb hervorragend als Anbauteile für die Herstellung von Automobilkarosserien geeignet. Wegen ihrer besonders

vorteilhaften Eigenschaften kommen sie auch als Nutzfahrzeugaufbauten und Verkleidungen von Caravans, im Hausgerätebereich beispielsweise für die Herstellung von Waschmaschinen, Geschirrspülmaschinen, Kühlschränken, Gefrierschränken Trocknern, oder Herden. Leuchtenbereich für die Herstellung von Leuchten für den Innen- und Außenbereich oder im Baubereich im Innen- und Außenbereich, beispielsweise für die Herstellung von Decken- und Wandelementen, Türen, Toren Rohrisolierungen, Rollläden oder Fensterprofilen, in Betracht.

10

25

30

Beispiele

Herstellbeispiel 1

Die Herstellung eines Methacrylatcopolymerisats (A)

5-Liter-Juvo-Kessel mit Heizmantel, In einem ausgerüstet Thermometer, Rührer und Rückflusskühler, wurden 913,5 g Solvesso ® 150 vorgelegt. Unter Rührer und Überschleiern mit 200 cm³/min Stickstoff 20 wurde die Vorlage auf 140 °C erhitzt. Anschließend wurde aus einem Tropftrichter eine Mischung aus 76,9 g tert.-Butyperoxydhexylhexanoat und 48,1 g Solvesso ® 150 während 4,75 Stunden gleichmäßig zudosiert (Zulauf 1). 0,25 Stunden nach Beginn des Zulaufs 1 wurde aus einem weiteren Tropftrichter eine Mischung aus 250 g Cyclohexylmethacrylat, 153,9 g n-Butylacrylat, 192,3 g Styrol, 173,1 g Hydroxethylmethacrylat und 192,3 g Hydroxypropylmethacrylat während 4 Stunden gleichmäßig zudosiert (Zulauf 2). Nach der Beendigung des Zulaufs 2 wurde Temperatur noch während 2 Stunden bei 140 °C gehalten. Anschließend wurde die Reaktionsmischung auf 80 °C abgekühlt und über einen 5 µm-GAF-Beutelfilter filtriert. Die resultierende Lösung des Methacrylatcopolymerisats (A) wies einen Festkörpergehalt von 50 Gew.-

% (1 Stunde/130 °C) und eine Viskosität von 8,7 dPas, gemessen nach auf. DIN 53018 Das zahlenmittlere Molekulargewicht des Methacrylatcopolymerisats (A) lag bei 2.900 Dalton, die Glasübergangstemperatur bei 44 °C, die Hydroxylzahl bei 164 mg KOH/g und die Säurezahl bei 0 mg KOH/g.

Herstellbeispiel 2

Die Herstellung eines Polyesters (B)

10

20

25

30

ln einem 5-Liter-Juvo-Kessel mit Heizmantel, ausgerüstet mit Thermometer. Rührer und Rückflusskühler, wurden 218.5 g Terephthalsäure, 187,7 g Trimethylolpropan, 131,1 g Neopentylglykol, 268,9 Dimethylolcyclohexan, 190.5 g g Hydroxypivalinsäureneopentylglykolester und 3 Gew.-%, bezogen auf die Gesamtmenge der Reaktionsmischung, Xylol als Schleppmittel vorgelegt. Unter Rührer und Überschleiern mit 200 cm³/min Stickstoff wurde die Vorlage auf 180 °C und dann langsam weiter auf 200 °C erhitzt. Nachdem der größte Teil der Terephthalsäure abreagiert hatte und eine Säurezahl erreicht worden wurden von 10 mq KOH/g war, 503,3 Hexahydrophtalsäureanhydrid zugegeben. Die **Temperatur** der Reaktionsmischung wurde so lange bei 200 °C gehalten, bis eine Säurezahl von 18 mg KOH/g erreicht war. Danach wurde die Reaktionsmischung auf 150 °C abgekühlt und mit 500 g Solvesso ® 150 auf einen Festkörpergehalt von 75 Gew.-% eingestellt. Danach wurde sie auf 80 °C abgekühlt und über einen 5 µm-GAF-Beutelfilter filtriert. Der resultierende Polyester (B) wies einen Gehalt an cycloaliphatischen Struktureinheiten von 51,5 Gew.-% auf. Seine Säurezahl lag bei 18,1 mg KOH/g, seine Hydroxylzahl bei 136 mg KOH/g und sein zahlenmittleres Molekulargewicht bei 2.500 Dalton. Der Polyester (B) wies eine Viskosität von 7 dPas, gemessen nach DIN 53018 60%-ig in Solvesso ® 150.

WO 2005/016985 PCT/EP2004/007636 41

Herstellbeispiel 3

Die Herstellung eines Basislacks

5

20

25

In einem geeigneten Mischaggregat aus Kunststoff wurden 34,4 Gewichtsteile eines handelsüblichen Polyesters (Uralac ® ZW 5217 SN der Firma DSM Deutschland GmbH, 68,4-prozentig in Dibasicester ® der Firma DuPont) vorgelegt. Unter Rührer wurden 58 Gewichtsteile einer Celluloseacetobutyratlösung (15-prozentig in 81,5 Gew.-% Butylacetat und 3.5 Gew.-% Isotridecylalkohol) und 6,6 Gewichtsteile handelsüblichen, blockierten aliphatischen Polyisocyanats (Desmodur ® BL 3370 der Firma Bayer AG, 70-prozentig Methoxypropylacetat) zugegeben. Zur resultierenden Mischung wurden 0,4 Gewichtsteile eines handelsüblichen Verlaufmittels (Fisantrol ® AC 2575 SM der Firma DuPont Performance Coatings GmbH, 100-prozentig), 0,6 Gewichtsteile eines Entlüftungsmittels auf der Basis eines Copolymerisats aus Butylacrylat und Vinylisobutylether (Acronal ® 700 L, 50-prozentig in Ethylacetat) und 1,2 Gewichtsteile eines zweiten Entlüftungsmittels auf der Basis eines silikonfreien Polymers (Byk ® 075 der Firma Byk Chemie, 44-Alkylbenzolen und Methoxypropylacetat prozentia in Gewichtsteile Dibutylzinndilaurat und 52 Gewichtsteile Dibasicester ®. Anschließend wurden 4,3 Gewichtsteile Aluminiumeffektpigment (Alpate ® 8160N-AR der Firma Toyal, 65-prozentig in Testbenzin und Solvesso ® 100 1/1) und 4,2 Gewichtsteile Aluminiumeffektpigment (Alpate ® 7620 NS der Firma Toyal, 69-prozentig in Testbenzin und Solvesso ® 100 2,1/1) in 9 Gewichtsteilen Diacetonalkohol und 9 Gewichtsteilen Uralac ® ZW 5217 SN angeteigt. Nach 20 Minuten wurde die Aluminiumeffektpigmentpräparation der vorstehend beschriebenen 30 Mischung zugesetzt, wonach der resultierende Basislack homogenisiert Gewichtsteilen Dibutylether auf eine wurde und mit 6

Verarbeitungsviskosität von 100 bis 110 Sekunden im DIN-4-Auslaufbecher bei 20 °C eingestellt wurde.

Beispiel 1

5

Die Herstellung eines Klarlacks

In einem geeigneten Mischaggregat aus Metall wurden 84,9 Gewichtsteile der Lösung des Methacrylatcopolymerisats (A) des Herstellbeispiels 1 mit 40,4 Gewichtsteilen der Lösung des Polyesters (B) des Herstellbeispiels 2 gemischt. Zu der Mischung wurden 65 Gewichtsteile handelsüblichen, mit 3,5-Dimethylpyrazol blockierten, aliphatischen Polyisocyanats auf der Basis von Hexamethylendiisocyanat (Desmodur ® LS 2253 der Firma Bayer AG) und 84,4 Gewichtsteile handelsüblichen, mit Butanonoxim blockierten, cycloaliphatischen Polyisocyanats auf der Basis von Isophorondiisocyanat (Desmodur BL 4265 der Firma Bayer AG) hinzugegeben. Zu der resultierenden Mischung wurden 1,94 Gewichtsteile eines UV-Absorbers auf der Basis von Hydroxyphenyltriazin (Tinuvin ® 400 der Firma Ciba Specialty Chemicals), 1,94 Gewichtsteile eines sterisch gehinderten Amins (HALS, Tinuvin ® 20 der Firma Ciba Specialty Chemicals), 0,97 Gewichtsteile Dibutylzinndilaurat, 0,84 Gewichtsteile mit einem Polyester modifizierten Polydimethylsiloxan-Verlaufmittels (Byk ® 310 der Firma Byk Chemie) und 0,84 Gewichtsteile eines alkylmodifizierten Methylalkyl-Polysiloxan-Entlüftungsmittels (Byk ® 322 der Firma Byk Chemie) zugegeben. Der resultierende Klarlack wurde homogenisiert und mit 70 Gewichtsteilen Methoxypropylacetat auf eine Verarbeitungsviskosität von 100 Sekunden bei 20 °C im DIN-4-Auslaufbecher eingestellt.

30 Beispiel 2

Die Herstellung einer Mehrschichtlackierung

Für die Herstellung der Prüfbleche wurden die in der Coil-Coatings-Industrie üblichen, elektrolytisch verzinkten, phosphatierten Stahlbleche einer Dicke von 0,8 mm, die mit einem handelsüblichen, tiefziehfähigen 5 Korrosionsschutzprimer der Firma BASF Coatings AG mit einer Schichtdicke von 10 µm beschichtet waren, verwendet. Auf diese Primerschicht wurde der Basislack des Herstellbeispiels 3 so appliziert, dass nach der Härtung eine Trockenschichtdicke von 17 µm resultierte. Die Härtung der Basislackschicht erfolgte bei einer PMT (peak metal 10 temperature) von 241 °C. Anschließend wurde auf die resultierende Basislackierung der Klarlack des Beispiels 1 zweischichtig appliziert. bei einer PMT von 241 °C eine nach der Härtung sodass Trockenschichtdicke von 2 x 19 µm resultierte.

Die resultierenden Mehrschichtlackierungen wies einen hervorragenden Verlauf auf. Sie war hochglänzend. Im T-Bend-Test nach dem ECCA-Prüfverfahren, genau beschrieben unter ECCA-T7 (Referenznormen: EN 2370: 1991/EN ISO 1519,1995/EN ISO 6860 im 1995/ASTM D 522-93a) erreichten die Prüftafeln einen T-Wert von 0,5 bis 1,5. Die Chemikalienbeständigkeit wurde mit Hilfe eines üblichen und bekannten Gradientenofen-Tests ermittelt. Dazu wurden Schwefelsäure, Pankreatin, Baumharz und Wasser auf die Oberfläche der Mehrschichtlackierung appliziert. Die Prüftafeln wurden auf einen vorgeheizten Gradientenofen gelegt. Nach dem Erhitzen wurden die Prüftafeln mit Wasser abgespült,
und es wurde jeweils die Temperatur ermittelt, bis zu der noch keine sichtbaren Beschädigungen der Lackoberfläche zu erkennen waren:

Schwefelsäure:

51 °C,

Pankreatin:

48 °C,

30 Baumharz:

57 °C und

Wasser:

> 75 °C.

WO 2005/016985 PCT/EP2004/007636

Die Ergebnisse untermauerten, dass der Klarlack des Beispiels 1 sehr gut für das Coil-Coating-Verfahren geeignet war und Mehrschichtlackierungen in Automobilqualität lieferte.

5

Darüber hinaus waren die mit den Mehrschichtlackierungen beschichteten Formteile recyclingfähig und sehr gut überlackierbar.

Patentansprüche

1. Thermisch härtender, transparenter Beschichtungsstoff, enthaltend, jeweils bezogen auf (A), (B), (C) und (D),

5

10

15

- (A) 10 bis 40 Gew.-% mindestens eines (Meth)Acrylat(co)polymerisats mit einem zahlenmittleren Molekulargewicht von 1.000 bis 6.000 Dalton, einer Glasübergangstemperatur von –15 bis +70 °C und einer Hydroxylzahl von 80 bis 200 mg KOH/g,
- (B) 10 bis 40 Gew.-% mindestens eines Polyesters mit einem zahlenmittleren Molekulargewicht von 800 bis 6.000 Dalton, einer Hydroxylzahl von 80 bis 200 mg KOH/g und einer Säurezahl von 1 bis 50 mg KOH/g, enthaltend, bezogen auf den Polyester, 30 bis 70 Gew.-% cycloaliphatischer Struktureinheiten,
- (C) 10 bis 40 Gew.-% mindestens eines blockierten Polyisocyanats, worin die blockierten Polyisocyanatgruppen an mindestens eine flexibilisierende Struktureinheit gebunden sind, die als Bestandteil eines dreidimensionalen Netzwerks dessen Glasübergangstemperatur erniedrigt, und
- 40 25 (D) 10 bis Gew.-% mindestens eines blockierten Polyisocyanats, worin mindestens eine der blockierten Polyisocyanatgruppen an mindestens eine hart machende Struktureinheit gebunden ist, die als Bestandteil eines dreidimensionalen Netzwerks dessen 30 Glasübergangstemperatur erhöht.

- 2. Beschichtungsstoff nach Anspruch 1, dadurch gekennzeichnet, dass er, bezogen auf (A), (B), (C) und (D), 10 bis 35 Gew.-% (A) enthält.
- 5 3. Beschichtungsstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er, bezogen auf (A), (B), (C) und (D), 10 bis 35 Gew.-% (B) enthält.
- 4. Beschichtungsstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass er, bezogen auf (A), (B), (C) und (D), 10 bis 35 Gew.-% (C) enthält.
- 5. Beschichtungsstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er, bezogen auf (A), (B), (C) und (D), 10 bis 35 Gew.-% (D) enthält.
 - 6. Beschichtungsstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass (A) ein zahlenmittleres Molekulargewicht von 1.000 bis 5.000 Dalton aufweist.

- 7. Beschichtungsstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass (A) eine Glasübergangstemperatur –15 bis +60 °C hat.
- 25 8. Beschichtungsstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass (A) eine Hydroxylzahl von 100 bis 180 mg KOH/g hat.
- 9. Beschichtungsstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass (B) ein zahlenmittleres Molekulargewicht von 1.000 bis 5.500 Dalton hat.

 Beschichtungsstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass (B) eine Hydroxylzahl von 100 bis 180 mg KOH/g hat.

5

- 11. Beschichtungsstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass (B) eine Säurezahl von 3 bis 25 mg KOH/g hat.
- 10 12. Beschichtungsstoff nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass (B), bezogen auf (B), 40 bis 60 Gew.-% cycloaliphatischer Struktureinheiten enthält.
- Beschichtungsstoff nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die flexibilisierenden Struktureinheiten von (C) flexibilisierenden Segmente aus der Gruppe, bestehend aus zweibindigen aliphatischen Kohlenwasserstoffresten und zweibindigen, Heteroatome enthaltenden, aliphatischen Kohlenwasserstoffresten ausgewählt werden.

- 14. Beschichtungsstoff nach Anspruch 13, dadurch gekennzeichnet, dass die flexibilisierenden Struktureinheiten Hexamethylenreste sind.
- 25 15. Beschichtungsstoff nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die hartmachenden Struktureinheiten von (D) aus der Gruppe, bestehend aus zwei- und mehrbindigen cycloaliphatischen Resten, ausgewählt werden.
- 30 16. Beschichtungsstoff nach Anspruch 15, dadurch gekennzeichnet, dass die cycloaliphatischen Reste Isophoronreste sind.

Beschichtungsstoff nach einem der Ansprüche 1 bis 16, dadurch 17. gekennzeichnet, dass die Blockierungsmittel für die Polyisocyanate (C) und (D) aus der Gruppe, bestehend aus Phenolen, Lactamen, aktiven methylenischen Verbindungen, Alkoholen, Mercaptanen, Aminen. Säureamiden, Imiden. Imidazolen, Harnstoffen, Carbamaten, Iminen, Oximen, Salzen der schwefeligen Säure, sowie substituierten Pyrazolen Hydroxamsäureestern und Triazolen, ausgewählt werden.

PCT/EP2004/007636

10

- 18. Beschichtungsstoff nach Anspruch 17, dadurch gekennzeichnet, dass die Polyisocyanate (C) mit substituierten Pyrazolen blockiert sind.
- 15 19. Beschichtungsstoff nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Polyisocyanate (D) mit Oximen blockiert sind.
- 20. Beschichtungsstoff nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass er aus (A), (B), (C) und (D) sowie mindestens einem Zusatzstoff (E) besteht.
- Verfahren zur Herstellung des thermisch härtbaren, transparenten Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 20 durch
 Vermischen der Bestandteile (A), (B), (C) und (D) sowie gegebenenfalls (E) und Homogenisieren der resultierenden Mischung.
- Verwendung des thermisch härtbaren, transparenten
 Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 20 und des mit Hilfe des Verfahrens gemäß Anspruch 21 hergestellten

thermisch härtbaren, transparenten Beschichtungsstoffs für die Herstellung von transparenten Beschichtungen nach dem Coil-Coating-Verfahren.

5 23. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass die transparenten Beschichtungen Automobilqualität aufweisen.

INT NATIONAL SEARCH REPORT

Interna all Application No

PCT/EP2004/007636 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8G18/40 CO8G C09D175/04 C08G18/72 C08G18/80 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C08G C09D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α WO 02/44237 A (BOLLIG & KEMPER) 1 - 236 June 2002 (2002-06-06) page 5, line 1 - page 12, line 6 page 14, line 1 - page 16, line 12 page 20, line 15 - line 19 page 22, line 22 - page 23, line 21; claims 1,7-24 1 - 23US 5 508 337 A (WAMPRECHT ET AL) 16 April 1996 (1996-04-16) column 2, line 32 - column 7, line 22; claims 1-20; tables 1-3 column 8, line 31 - line 52 US 5 869 566 A (THOMAS) 1 - 23Α 18 November 1997 (1997-11-18) column 2, line 13 - column 5, line 7; claims 1-4; example 5 Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 23/12/2004 17 December 2004 Authorized officer Name and mailing address of the ISA

Bourgonje, A

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

INT NATIONAL SEARCH REPORT

Internation No
PCT/EP2004/007636

100-21	POOLINEATO CONCIDENTA DE PARTICIONE	PCT/EP2004/007636			
(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT attegory o Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
alegoly -	oration of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
	WO 92/02590 A (BASF LACKE + FARBEN) 20 February 1992 (1992-02-20) cited in the application page 3, line 31 - page 6, line 27; claims 1-5	1-23			

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal al Application No PCT/EP2004/007636

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0244237	A	06-06-2002	DE AU WO EP US	10059856 A1 1900002 A 0244237 A1 1348001 A1 2004121160 A1	18-07-2002 11-06-2002 06-06-2002 01-10-2003 24-06-2004
US 5508337	А	16-04-1996	DE AT CA DE EP ES JP	4203876 A1 131840 T 2089029 A1 59301180 D1 0555705 A2 2083784 T3 6088043 A	12-08-1993 15-01-1996 12-08-1993 01-02-1996 18-08-1993 16-04-1996 29-03-1994
US 5869566	A	09-02-1999	NONE		
WO 9202590	A	20-02-1992	DE AT BR CA DE DK WO EP ES JP JP	4024204 A1 115171 T 9106715 A 2087338 A1 59103830 D1 541604 T3 9202590 A1 0541604 A1 2067946 T3 7033496 B 5507959 T	06-02-1992 15-12-1994 13-07-1993 01-02-1992 19-01-1995 08-05-1995 20-02-1992 19-05-1993 01-04-1995 12-04-1995 11-11-1993

INTERNATIONAL RECHERCHENBERICHT

Internal Pales Aktenzeichen
PCT/EP2004/007636

PCT/EP2004/007636 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08G18/40 C08G18/72 C08G18/80 C09D175/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C09D IPK 7 C08G Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Α WO 02/44237 A (BOLLIG & KEMPER) 1 - 236. Juni 2002 (2002-06-06) Seite 5, Zeile 1 - Seite 12, Zeile 6 Seite 14, Zeile 1 - Seite 16, Zeile 12 Seite 20, Zeile 15 - Zeile 19 Seite 22, Zeile 22 - Seite 23, Zeile 21; Ansprüche 1,7-24 Α US 5 508 337 A (WAMPRECHT ET AL) 1 - 2316. April 1996 (1996-04-16) Spalte 2, Zeile 32 - Spalte 7, Zeile 22; Ansprüche 1-20; Tabellen 1-3 Spalte 8, Zeile 31 - Zeile 52 US 5 869 566 A (THOMAS) Α 1 - 2318. November 1997 (1997-11-18) Spalte 2, Zeile 13 - Spalte 5, Zeile 7; Ansprüche 1-4; Beispiel 5 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen X Х Siehe Anhang Patentfamilie *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 17. Dezember 2004 23/12/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Bourgonje, A

INTERNATIONAL RECHERCHENBERICHT

Internal Pales Aktenzeichen
PCT/EP2004/007636

(ategorie°	ang) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
	- S.	Dea. Anspidon Ni.
	WO 92/02590 A (BASF LACKE + FARBEN) 20. Februar 1992 (1992-02-20) in der Anmeldung erwähnt Seite 3, Zeile 31 - Seite 6, Zeile 27; Ansprüche 1-5	1-23

INTERNATIONALE

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internal Cales Aktenzeichen
PCT/EP2004/007636

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 0244237	A	06-06-2002	DE AU WO EP US	10059856 A1 1900002 A 0244237 A1 1348001 A1 2004121160 A1	18-07-2002 11-06-2002 06-06-2002 01-10-2003 24-06-2004
US 5508337	A	16-04-1996	DE AT CA DE EP ES JP	4203876 A1 131840 T 2089029 A1 59301180 D1 0555705 A2 2083784 T3 6088043 A	12-08-1993 15-01-1996 12-08-1993 01-02-1996 18-08-1993 16-04-1996 29-03-1994
US 5869566	Α	09-02-1999	KEIN	IE	
WO 9202590	A	20-02-1992	DE AT BR CA DE DK WO EP ES JP JP US	4024204 A1 115171 T 9106715 A 2087338 A1 59103830 D1 541604 T3 9202590 A1 0541604 A1 2067946 T3 7033496 B 5507959 T 5326820 A	06-02-1992 15-12-1994 13-07-1993 01-02-1992 19-01-1995 08-05-1995 20-02-1992 19-05-1993 01-04-1995 12-04-1995 11-11-1993