Mulitple Linear Regression Modelling of TotChol from NHANES Data

Edward J. Lee

2025-04-05

```
##Data Cleaning and Preliminary model
library(NHANES) # NHANES dataset
library(dplyr)
               # Data wrangling
library(ggplot2) # Visualization
library(car)
                 # Multicollinearity check (VIF)
library(ggResidpanel) # Advanced diagnostic plots
library(knitr) #for KABLE
library(gridExtra) #for scatterplot matrix
#Turning of scientific notation for interpretability
options(scipen = 999)
#Reading NHANES data package
data("NHANES")
nrow(NHANES) #10,000 observations
## [1] 10000
#Applying filters on Age for sample of adults
#Removing O entries/misinputs prevalent in BP variables based on problematic
# observations screening
nhanes_filtered <- NHANES %>% filter(Age>20, Height>0, Weight>0,
                                      BPDia1>10,BPDia2>10,BPDia3>10,BPDiaAve>10,
                                      BPSys1>10,BPSys2>10,BPSys3>10,BPSysAve>10,
                                      TotChol>0)
nrow(nhanes_filtered) #5989 observations
## [1] 5989
# Remove NA entries and only select columns of interest
nhanes_data <- nhanes_filtered %>%
  dplyr::select(Height, Age, Weight, BPSysAve, BPDiaAve,
                TotChol, SmokeNow, PhysActiveDays) %>%
 na.omit()
n <- nrow(nhanes_data) #1289 observations</pre>
#Categorical predictors
nhanes_data$SmokeNow <- as.factor(nhanes_data$SmokeNow)</pre>
nhanes data <- data.frame(nhanes data)</pre>
```

```
#Preliminary model
model <- lm(TotChol ~ Age + Weight + Height + BPSysAve + BPDiaAve + SmokeNow +
             PhysActiveDays,
           data = nhanes_data)
summary(model)
##
## Call:
## lm(formula = TotChol ~ Age + Weight + Height + BPSysAve + BPDiaAve +
      SmokeNow + PhysActiveDays, data = nhanes_data)
##
## Residuals:
      Min
##
               1Q Median
                              3Q
                                     Max
## -2.9808 -0.7045 -0.0874 0.6185 5.2610
##
## Coefficients:
##
                   Estimate Std. Error t value
                                                       Pr(>|t|)
## (Intercept)
                4.2510002 0.6049335 7.027 0.00000000003414 ***
                0.0079190 0.0021614 3.664 0.000259 ***
## Age
## Weight
                 0.0004503 0.0017764 0.253
                                                       0.799939
                 -0.0084607 0.0035455 -2.386
## Height
                                                       0.017163 *
## BPSysAve
                0.0020588 0.0020282 1.015
                                                       0.310258
## BPDiaAve
                0.0218750 0.0028088 7.788 0.00000000000014 ***
## SmokeNowYes
                 0.0327591 0.0631304 0.519
                                                      0.603912
## PhysActiveDays -0.0001130 0.0163047 -0.007
                                                       0.994471
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.042 on 1281 degrees of freedom
## Multiple R-squared: 0.08085,
                                  Adjusted R-squared: 0.07583
## F-statistic: 16.1 on 7 and 1281 DF, p-value: < 0.00000000000000022
#Multicollinearity Check
vif(model) #No serious multicollinarity, all <5</pre>
##
             Age
                         Weight
                                       Height
                                                    BPSysAve
                                                                  BPDiaAve
##
        1.446074
                       1.322625
                                     1.300929
                                                    1.474744
                                                                  1.242024
        SmokeNow PhysActiveDays
##
##
        1.159322
                       1.012534
```

Box-Cox Transformation and Polynomial Term

```
b <- boxcox(poly_model)</pre>
```



```
## Call:
## lm(formula = pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve +
       BPDiaAve + SmokeNow + PhysActiveDays, data = p.BXCX.frame)
##
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -4.5764 -0.6158 -0.0084 0.6574 3.8416
##
## Coefficients:
##
                    Estimate Std. Error t value
                                                            Pr(>|t|)
## (Intercept)
                   4.6682540 0.6104391
                                          7.647
                                                0.000000000000401 ***
```

```
## Age
## Age2
                 -0.0009453 0.0001135 -8.331 < 0.0000000000000000 ***
## Weight
                 -0.0006614
                            0.0016858 -0.392
                                                           0.69487
                                       -2.617
                                                           0.00897 **
## Height
                 -0.0087700
                             0.0033509
## BPSysAve
                  0.0057045
                             0.0019803
                                        2.881
                                                           0.00404 **
## BPDiaAve
                  0.0128515
                            0.0028416
                                        4.523
                                                0.0000066733181871 ***
## SmokeNowYes
                             0.0596913
                                        0.214
                                                           0.83053
                  0.0127777
## PhysActiveDays -0.0128377 0.0154387 -0.832
                                                           0.40583
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9849 on 1280 degrees of freedom
## Multiple R-squared: 0.1264, Adjusted R-squared: 0.121
## F-statistic: 23.15 on 8 and 1280 DF, p-value: < 0.00000000000000022
\#\#Transformed Poly Model Diagnostics
#FITTED AND RESIDUAL VALUES FROM TRANSFORMED
fitted <- fitted(p.BXCX.model)</pre>
residuals <- resid(p.BXCX.model)</pre>
#DATA FRAME FOR PLOTTING
plot_data <- data.frame(fitted = fitted, residuals = residuals)</pre>
#PAIRWISE PLOTS OF ORIGINAL MODEL
pairs(~pb.TotChol+Age+Age2+Weight+Height+
       BPSysAve+BPDiaAve+SmokeNow+PhysActiveDays,
     data = p.BXCX.frame,
     main = "Pairwise ScatterPlots of Transformed Polynomial Model",
     col = "blue")
```

Pairwise ScatterPlots of Transformed Polynomial Model

Residual Plots

Residuals vs Fitted Values (BXCX and Poly)

Normal Q-Q Plot (BXCX and Poly)

Residuals vs Age (BXCX and Poly)

Residuals vs Weight (BXCX and Poly)

Residuals vs Height (BXCX and Poly)

Residuals vs BPSysAve (BXCX and Poly)

Residuals vs BPDiasAve (BXCX and Poly)


```
#RESIDUALS VS SmokeNow (BOXPLOT)
res_smoke_plot <- ggplot(
   p.BXCX.frame, aes(x = as.factor(SmokeNow), y = residuals)) +
   geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
   geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
   theme_minimal() +
   ggtitle("Residuals vs Current Smoker (BXCX and Poly)") +
   xlab("Currently Smokes") +
   ylab("Residuals") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
   print(res_smoke_plot)</pre>
```

Residuals vs Current Smoker (BXCX and Poly)

Currently Smokes

```
#RESIDUALS VS PhysActiveDays (BOXPLOT)
res_active_plot <- ggplot(
   p.BXCX.frame,
   aes(x = as.factor(PhysActiveDays), y = residuals)) +
   geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
   geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
   theme_minimal() +
   ggtitle("Residuals vs Physically Active Days") +
   xlab("Days in a Week of Physical Activity") +
   ylab("Residuals") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
   print(res_active_plot)</pre>
```


Standardized Residual Histogram

lematic Observations

```
##LEVERAGE POINTS
leverage <- hatvalues(p.BXCX.model)</pre>
p <- 8
high_lev \leftarrow 2*(p+1)/n
leverage_points <- p.BXCX.frame[leverage > high_lev,]
leverage_points <- leverage_points %>%
  mutate(row = row.names(leverage_points))
#FINDING OUTLIERS
st.residuals <- rstandard(p.BXCX.model)</pre>
outlier_points <- p.BXCX.frame[abs(st.residuals) > 4,]
#COOKS DISTANCE
cooks_value <- cooks.distance(p.BXCX.model)</pre>
f_{value} \leftarrow qf(0.50, 8, 1280)
cooks_points <- p.BXCX.frame[cooks_value > f_value,]
#DFFITS
dffits\_cutoff \leftarrow 2*(sqrt((p+1)/n))
dffits_value = dffits(p.BXCX.model)
dffits_points <- p.BXCX.frame[(abs(dffits_value) > dffits_cutoff),]
dffits_points <- dffits_points %>%
```

```
mutate(row = row.names(dffits_points))
#DFBETAS
dfbetas_cutoff <- 2/sqrt(n)</pre>
dfbeta_frame <- as.data.frame(dfbetas(p.BXCX.model))</pre>
dfbeta points <- round(dfbeta frame[apply(</pre>
 abs(dfbeta frame)>dfbetas cutoff,1,any),],4)
dfbeta_points <- dfbeta_points %>%
 mutate(row = row.names(dfbeta_points))
\#Problematic\ observations
influential_points <- c(728,823)
p.BXCX.frame[influential_points, ]
      Height Age Weight BPSysAve BPDiaAve SmokeNow PhysActiveDays Age2 pb.TotChol
## 728 160.9 72 108.0
                                                             5 5184
                            132
                                     52
                                             Yes
                                                                      3.65555
                  64.8
                                     62
                                                             6 1296
## 823 180.3 36
                                             Yes
                                                                     10.63743
                            117
clean.frame <- p.BXCX.frame %>%
dplyr::filter(!row_number() %in% influential_points)
clean_model <- lm(pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve +</pre>
   BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
summary(clean_model)
##
## lm(formula = pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve +
##
      BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
##
## Residuals:
##
      Min
              1Q Median
                              3Q
                                    Max
## -4.5691 -0.6185 0.0030 0.6555 3.1272
##
## Coefficients:
                   Estimate Std. Error t value
                                                          Pr(>|t|)
## (Intercept)
                 4.82829934   0.60556204   7.973   0.00000000000003403 ***
                 ## Age
                ## Age2
## Weight
                -0.00003742 0.00167529 -0.022
                                                           0.98218
## Height
                0.00315 **
## BPSysAve
                 0.00564643 0.00196213 2.878
                                                           0.00407 **
## BPDiaAve
                                       4.523 0.000006665615466859 ***
                 0.01274747 0.00281842
## SmokeNowYes
                 0.01780620 0.05923101
                                        0.301
                                                           0.76375
                                                           0.35604
## PhysActiveDays -0.01413432 0.01530911 -0.923
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9757 on 1278 degrees of freedom
## Multiple R-squared: 0.129, Adjusted R-squared: 0.1236
## F-statistic: 23.66 on 8 and 1278 DF, p-value: < 0.000000000000000022
```


Fitted values
Im(pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve + BPDiaAve + SmokeN
Q-Q Residuals

Theoretical Quantiles
Im(pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve + BPDiaAve + SmokeN

Im(pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve + BPDiaAve + SmokeN Residuals vs Leverage

Im(pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve + BPDiaAve + SmokeN ## Variable Selection

```
## Subset selection object
## Call: regsubsets.formula(pb.TotChol ~ ., data = clean.frame, nvmax = 8,
       nbest = 1, really.big = TRUE, method = "exhaustive")
## 8 Variables (and intercept)
##
                    Forced in Forced out
## Height
                        FALSE
                                    FALSE
## Age
                        FALSE
                                    FALSE
## Weight
                        FALSE
                                    FALSE
## BPSysAve
                        FALSE
                                    FALSE
## BPDiaAve
                        FALSE
                                    FALSE
## SmokeNowYes
                        FALSE
                                    FALSE
                        FALSE
                                    FALSE
## PhysActiveDays
                        FALSE
                                    FALSE
## Age2
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
##
             Height Age Weight BPSysAve BPDiaAve SmokeNowYes PhysActiveDays Age2
## 1
      (1)""
                     H H H H
                                 11 11
                                           "*"
                                                     11 11
                                                                  11 11
                                                                  11 11
     (1)""
                     "*" " "
                                 11 11
                                           11 11
                                                                                   "*"
## 2
## 3 (1) " "
                                 11 11
                                           "*"
                                                                                   "*"
                                           "*"
## 4
      (1)"*"
                                                                                   "*"
                                           "*"
                                                                                   "*"
## 5
      (1)"*"
## 6
      (1)"*"
                                 "*"
                                           "*"
                                                                                   "*"
## 7 (1) "*"
                                 "*"
                                           "*"
                                                     "*"
                                                                   "*"
                                                                                   "*"
## 8 (1) "*"
                                 "*"
                                           "*"
                                                     "*"
                                                                                   "*"
plot(best_subset,scale='adjr2')
   0.12 -
   0.12 -
   0.12 -
인 0.12 - 
명 0.12 -
   0.11
  0.087
  0.055
                                       Weight
              (Intercept)
                       Height
                               Age
                                                                                 Age2
                                                BPSysAve
                                                        BPDiaAve
                                                                SmokeNowYes
                                                                        PhysActiveDays
```

plot(best_subset,scale='bic');

plot(best_subset,scale='Cp')

AIC <- step(clean_model, direction="both")

```
## Start: AIC=-54.33
## pb.TotChol ~ Age + Age2 + Weight + Height + BPSysAve + BPDiaAve +
##
       SmokeNow + PhysActiveDays
##
##
                    Df Sum of Sq
                                    RSS
## - Weight
                           0.000 1216.7 -56.334
                     1
                           0.086 1216.8 -56.244
## - SmokeNow
                     1
## - PhysActiveDays
                           0.811 1217.5 -55.476
                    1
## <none>
                                  1216.7 -54.335
## - BPSysAve
                           7.884 1224.5 -48.022
                     1
```

```
1
## - Height
                        8.333 1225.0 -47.550
                      19.475 1236.1 -35.897
## - BPDiaAve
                    1
## - Age2
                    1
                      65.377 1282.0 11.028
## - Age
                      74.647 1291.3 20.300
                    1
##
## Step: AIC=-56.33
## pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve + SmokeNow +
      PhysActiveDays
##
##
                   Df Sum of Sq
                                  RSS
                                          AIC
## - SmokeNow
                         0.088 1216.8 -58.241
                   1
## - PhysActiveDays 1
                          0.811 1217.5 -57.476
## <none>
                               1216.7 -56.334
## + Weight
                    1
                         0.000 1216.7 -54.335
## - BPSysAve
                        7.936 1224.6 -49.967
                    1
## - Height
                    1
                       10.536 1227.2 -47.237
## - BPDiaAve
                      19.546 1236.2 -37.823
                    1
## - Age2
                    1 65.904 1282.6 9.557
## - Age
                    1 75.216 1291.9 18.868
##
## Step: AIC=-58.24
## pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve + PhysActiveDays
##
                   Df Sum of Sq
##
                                  RSS
                                          AIC
## - PhysActiveDays 1
                          0.811 1217.6 -59.384
## <none>
                               1216.8 -58.241
## + SmokeNow
                    1
                          0.088 1216.7 -56.334
## + Weight
                         0.003 1216.8 -56.244
                    1
## - BPSysAve
                        8.071 1224.8 -51.731
                    1
## - Height
                    1 10.615 1227.4 -49.062
## - BPDiaAve
                    1 19.459 1236.2 -39.821
## - Age2
                    1
                        66.037 1282.8 7.779
## - Age
                    1 75.131 1291.9 16.872
##
## Step: AIC=-59.38
## pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve
##
##
                   Df Sum of Sq
                                 RSS
                                          AIC
## <none>
                                1217.6 -59.384
## + PhysActiveDays 1
                         0.811 1216.8 -58.241
## + SmokeNow 1
                         0.088 1217.5 -57.476
## + Weight
                         0.000 1217.6 -57.384
                    1
## - BPSysAve
                    1
                         7.982 1225.5 -52.974
## - Height
                    1 10.444 1228.0 -50.391
## - BPDiaAve
                    1 19.562 1237.1 -40.870
## - Age2
                    1 65.411 1283.0 5.965
## - Age
                    1
                        74.398 1292.0 14.949
summary(AIC)
##
## Call:
## lm(formula = pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve,
      data = clean.frame)
##
##
```

```
## Residuals:
##
      Min
              1Q Median
                             30
                                   Max
## -4.5880 -0.6170 -0.0140 0.6438 3.1057
##
## Coefficients:
##
               Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 4.8098341 0.5741846 8.377 < 0.0000000000000000002 ***
             ## Age
## Age2
             ## Height
             -0.0098211 0.0029628 -3.315
                                                    0.000943 ***
## BPSysAve
             0.0056469 0.0019487 2.898
                                                    0.003821 **
## BPDiaAve
             0.0127101 0.0028016 4.537 0.00000624991387098 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9749 on 1281 degrees of freedom
## Multiple R-squared: 0.1284, Adjusted R-squared: 0.125
## F-statistic: 37.73 on 5 and 1281 DF, p-value: < 0.000000000000000022
FINAL MODEL
final_model <- lm(pb.TotChol ~ Age+Age2+Height+BPSysAve+BPDiaAve,
                  data=clean.frame)
summary(final_model)
##
## Call:
## lm(formula = pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve,
##
      data = clean.frame)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
## -4.5880 -0.6170 -0.0140 0.6438 3.1057
##
## Coefficients:
               Estimate Std. Error t value
                                                    Pr(>|t|)
##
## (Intercept) 4.8098341 0.5741846 8.377 < 0.000000000000000002 ***
             0.0974977  0.0110200  8.847 < 0.0000000000000000 ***
## Age
## Age2
             -0.0009263 0.0001117 -8.296 0.00000000000000027 ***
## Height
             -0.0098211 0.0029628 -3.315
                                                    0.000943 ***
## BPSysAve
              0.0056469 0.0019487 2.898
                                                    0.003821 **
## BPDiaAve
             0.0127101 0.0028016 4.537 0.00000624991387098 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9749 on 1281 degrees of freedom
## Multiple R-squared: 0.1284, Adjusted R-squared: 0.125
## F-statistic: 37.73 on 5 and 1281 DF, p-value: < 0.00000000000000022
confint(final_model)
                                97.5 %
                    2.5 %
## (Intercept) 3.683388750 5.9362795086
              0.075878426 0.1191170717
## Age
```

Prediction Accuracy and Model Validation

```
#PREDICTION ACCURACY
set.seed(123)
train_index <- sample(1:nrow(clean.frame), 0.7 * nrow(clean.frame))</pre>
train_data <- clean.frame[train_index, ]</pre>
test_data <- clean.frame[-train_index, ]</pre>
validation_model <- lm(pb.TotChol ~ Age + Age2 + Height + BPSysAve + BPDiaAve,
                         data = train_data)
predictions <- predict(validation_model, newdata = test_data)</pre>
# Compare predictions to actual
mean((predictions - test_data$pb.TotChol)^2) # MSE
## [1] 0.9542581
sqrt(mean((predictions - test_data$pb.TotChol)^2)) # RMSE
## [1] 0.9768613
#K-Fold (10-Fold) MODEL VALIDATION
library(caret)
#FINAL MODEL VALIDATION
train_control <- trainControl(method = "cv", number = 10)</pre>
cv_model <- train(</pre>
 pb.TotChol ~ Age+Age2+Height+BPSysAve+BPDiaAve,
 data = clean.frame,
 method = "lm",
 trControl = train_control
)
print(cv_model)
## Linear Regression
##
## 1287 samples
##
      5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1158, 1159, 1158, 1158, 1158, 1159, ...
## Resampling results:
##
##
     RMSE
                Rsquared
                           MAE
##
    0.9751559 0.1373103 0.7694394
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
#FULL_MODEL VALIDATION
train_control_full <- trainControl(method = "cv", number = 10)</pre>
cv_full_model <- train(</pre>
  pb.TotChol ~ .,
 data = clean.frame,
 method = "lm",
 trControl = train_control_full
print(cv_full_model)
## Linear Regression
## 1287 samples
##
      8 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1159, 1160, 1160, 1157, 1159, 1158, \dots
## Resampling results:
##
##
     RMSE
                Rsquared
##
    0.9751863 0.1249023 0.7700059
## Tuning parameter 'intercept' was held constant at a value of TRUE
#NULL_MODEL VALIDATION
train_control_null <- trainControl(method = "cv", number = 10)</pre>
cv_null_model <- train(</pre>
  pb.TotChol ~ SmokeNow,
  data = clean.frame,
 method = "lm",
  trControl = train_control_null
print(cv_null_model)
## Linear Regression
##
## 1287 samples
##
      1 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1159, 1159, 1159, 1159, 1158, 1158, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                            MAF.
##
     1.040307 0.01430996 0.822368
## Tuning parameter 'intercept' was held constant at a value of TRUE
```

```
#ORIGINAL MODEL VALIDATION
train_original <- trainControl(method = "cv", number = 10)</pre>
cv_original_model <- train(</pre>
 TotChol ~ Age+Height+BPSysAve+BPDiaAve,
 data = nhanes_data,
 method = "lm",
 trControl = train_original
print(cv_original_model)
## Linear Regression
## 1289 samples
      4 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1161, 1159, 1162, 1160, 1160, 1159, \dots
## Resampling results:
##
     RMSE
##
               Rsquared
##
     1.040968 0.08495365 0.811146
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
#ORIGINAL FULL MODEL VALIDATION
train_full.og <- trainControl(method = "cv", number = 10)</pre>
cv_full.og_model <- train(</pre>
 TotChol ~ .,
 data = nhanes_data,
 method = "lm",
 trControl = train_full.og
)
print(cv_full.og_model)
## Linear Regression
## 1289 samples
##
      7 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1159, 1160, 1161, 1160, 1160, 1160, ...
## Resampling results:
##
##
    RMSE
               Rsquared
     1.042695 0.07761385 0.8123572
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
library(glmnet)
lasso_model <- train(</pre>
```

```
pb.TotChol ~ .,
 data = clean.frame,
 method = "glmnet",
 trControl = train_control,
 tuneGrid = expand.grid(
    alpha = 1,
                      # Lasso
   lambda = 10^seq(-4, 1, length = 100) # Lambda grid
 )
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
\#\#: There were missing values in resampled performance measures.
print(lasso model)
## glmnet
##
##
  1287 samples
##
     8 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1157, 1159, 1159, 1159, 1157, 1157, ...
## Resampling results across tuning parameters:
##
##
    lambda
                   RMSE
                              Rsquared
                                         MAE
##
     0.0001000000 0.9758988 0.12666823 0.7709795
##
     0.0001123324 0.9758988 0.12666823
                                         0.7709795
##
     0.0001261857
                   0.9758999
                             0.12666666
                                         0.7709812
##
     0.0001417474 0.9759009 0.12666285
                                         0.7709869
##
     0.0001592283 0.9758998 0.12666193 0.7709929
##
     0.0001788650 0.9758984 0.12666299
                                         0.7709989
##
     0.0002009233 0.9758963 0.12666452
                                         0.7710054
##
     0.0002257020 0.9758946 0.12666494 0.7710128
##
     0.0002535364 0.9758924 0.12666557
                                         0.7710213
##
     0.0002848036 0.9758909
                              0.12666603
                                         0.7710309
##
     0.0003199267
                   0.9758887
                              0.12666674
                                         0.7710411
##
     0.0003593814 0.9758860 0.12666812 0.7710534
##
     0.0004037017 0.9758836 0.12666920
                                        0.7710672
##
     0.0004534879 0.9758815 0.12666968 0.7710833
##
     0.0005094138 0.9758796 0.12666983
                                         0.7711006
##
     0.0005722368 0.9758785 0.12666887
                                        0.7711209
##
     0.0006428073 0.9758784 0.12666621
                                         0.7711437
##
                                         0.7711696
     0.0007220809 0.9758798 0.12666199
##
     0.0008111308 0.9758819 0.12665717
                                         0.7712009
##
     ##
     0.0010235310 0.9758936 0.12663926 0.7712890
##
     0.0011497570 0.9759057
                             0.12662259
                                         0.7713466
##
     0.0012915497 0.9759227 0.12660071
                                         0.7714115
##
     0.0014508288 0.9759474 0.12656973
                                        0.7714889
##
                                         0.7715771
     0.0016297508 0.9759794 0.12653072
##
     0.0018307383
                   0.9760233
                              0.12647811
                                         0.7716849
##
     0.0020565123
                   0.9760816
                             0.12640925
                                         0.7718162
##
     0.0023101297
                   0.9761577
                             0.12631877
                                         0.7719638
##
     0.0025950242 0.9762578 0.12619962
                                         0.7721312
```

```
##
      0.0029150531
                     0.9763887
                                 0.12604303
                                              0.7723414
##
                                 0.12583663
                                              0.7725954
      0.0032745492
                     0.9765584
##
      0.0036783798
                     0.9767756
                                 0.12557097
                                              0.7728794
##
                                              0.7732245
      0.0041320124
                     0.9770538
                                 0.12522643
##
      0.0046415888
                     0.9774168
                                 0.12476170
                                              0.7736467
##
      0.0052140083
                     0.9778836
                                 0.12414338
                                              0.7741313
##
      0.0058570208
                     0.9784840
                                 0.12331670
                                              0.7747493
##
      0.0065793322
                     0.9792591
                                 0.12220102
                                              0.7755570
##
      0.0073907220
                     0.9802429
                                 0.12072598
                                              0.7765613
##
      0.0083021757
                     0.9814818
                                 0.11878954
                                              0.7778023
##
      0.0093260335
                     0.9829998
                                 0.11633587
                                              0.7792333
##
      0.0104761575
                     0.9849164
                                 0.11308017
                                              0.7809314
##
                     0.9873332
                                 0.10877773
                                              0.7829471
      0.0117681195
##
      0.0132194115
                     0.9904062
                                 0.10305807
                                              0.7853466
##
      0.0148496826
                     0.9943045
                                 0.09554966
                                              0.7883378
##
      0.0166810054
                     0.9986372
                                 0.08715637
                                              0.7917896
##
      0.0187381742
                     1.0000214
                                 0.08473350
                                              0.7929129
##
                                 0.08494733
                                              0.7929042
      0.0210490414
                     1.0000562
      0.0236448941
                     1.0001824
##
                                 0.08502703
                                              0.7929373
##
      0.0265608778
                     1.0004079
                                 0.08495207
                                              0.7930512
##
      0.0298364724
                     1.0007144
                                 0.08481217
                                              0.7932449
##
      0.0335160265
                     1.0010958
                                 0.08463082
                                              0.7935107
##
      0.0376493581
                     1.0015599
                                 0.08441186
                                              0.7938229
##
      0.0422924287
                     1.0021305
                                 0.08413908
                                              0.7942505
##
      0.0475081016
                     1.0028265
                                 0.08379651
                                              0.7947587
##
      0.0533669923
                     1.0036968
                                 0.08331091
                                              0.7953587
##
      0.0599484250
                     1.0047976
                                 0.08259270
                                              0.7960690
##
      0.0673415066
                     1.0061616
                                 0.08156668
                                              0.7969913
##
      0.0756463328
                     1.0076840
                                 0.08041895
                                              0.7980038
##
                                 0.07970835
                                              0.7991879
      0.0849753436
                     1.0092618
##
      0.0954548457
                     1.0110954
                                 0.07890115
                                              0.8006928
##
      0.1072267222
                     1.0134043
                                 0.07743096
                                              0.8026675
##
      0.1204503540
                     1.0163388
                                 0.07457984
                                              0.8051721
##
      0.1353047775
                     1.0197924
                                 0.07010347
                                              0.8080000
##
                     1.0230368
                                 0.06637875
                                              0.8105885
      0.1519911083
##
      0.1707352647
                     1.0260602
                                 0.06605730
                                              0.8126892
##
      0.1917910262
                     1.0297810
                                 0.06605634
                                              0.8152489
##
      0.2154434690
                     1.0344526
                                 0.06605634
                                              0.8184422
##
      0.2420128265
                     1.0395529
                                 0.03679097
                                              0.8215551
##
      0.2718588243
                     1.0403394
                                              0.8219620
                                        NaN
##
      0.3053855509
                     1.0403394
                                        NaN
                                              0.8219620
##
                                              0.8219620
      0.3430469286
                     1.0403394
                                        NaN
##
      0.3853528594
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.4328761281
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.4862601580
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.5462277218
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.6135907273
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.6892612104
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.7742636827
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.8697490026
                     1.0403394
                                        NaN
                                              0.8219620
##
      0.9770099573
                     1.0403394
                                        NaN
                                              0.8219620
##
      1.0974987655
                     1.0403394
                                        NaN
                                              0.8219620
##
      1.2328467394
                                              0.8219620
                     1.0403394
                                        NaN
##
      1.3848863714
                     1.0403394
                                        NaN
                                              0.8219620
```

```
##
      1.5556761439 1.0403394
                                      NaN 0.8219620
      1.7475284000 1.0403394
##
                                      NaN 0.8219620
##
      1.9630406500 1.0403394
                                      NaN 0.8219620
##
      2.2051307399 1.0403394
                                      NaN 0.8219620
##
      2.4770763560 1.0403394
                                      NaN 0.8219620
##
      2.7825594022 1.0403394
                                      NaN 0.8219620
      3.1257158497 1.0403394
                                      NaN 0.8219620
##
      3.5111917342 1.0403394
                                      NaN 0.8219620
##
                                      NaN 0.8219620
##
      3.9442060594 1.0403394
##
      4.4306214576 1.0403394
                                      NaN 0.8219620
##
      4.9770235643 1.0403394
                                      NaN 0.8219620
      5.5908101825 1.0403394
##
                                      NaN 0.8219620
##
      6.2802914418 1.0403394
                                      NaN 0.8219620
##
                                      NaN 0.8219620
      7.0548023107 1.0403394
##
      7.9248289835 1.0403394
                                      NaN 0.8219620
      8.9021508545 1.0403394
##
                                      NaN 0.8219620
##
     10.000000000 1.0403394
                                      NaN 0.8219620
##
## Tuning parameter 'alpha' was held constant at a value of 1
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 1 and lambda = 0.0006428073.
# Get the best lambda chosen by caret
best_lambda <- lasso_model$bestTune$lambda</pre>
# Extract the coefficients at the best lambda
lasso_coefs <- coef(lasso_model$finalModel, s = best_lambda)</pre>
# To convert to a tidy data frame (optional)
lasso_coefs_df <- as.data.frame(as.matrix(lasso_coefs))</pre>
lasso_coefs_df$Variable <- rownames(lasso_coefs_df)</pre>
colnames(lasso_coefs_df)[1] <- "Coefficient"</pre>
# View non-zero coefficients only (optional)
subset(lasso_coefs_df, Coefficient != 0)
                    Coefficient
                                      Variable
## (Intercept)
                   4.9053321709
                                    (Intercept)
## Height
                  -0.0097653068
                                        Height
## Age
                  0.0941196741
                                           Age
## BPSysAve
                   0.0054486565
                                      BPSysAve
## BPDiaAve
                   0.0130758073
                                      BPDiaAve
## SmokeNowYes
                   0.0163610102
                                   SmokeNowYes
## PhysActiveDays -0.0133636084 PhysActiveDays
                  -0.0008885573
## Age2
                                           Age2
#LASSO MODEL VALIDATION
train_lasso <- trainControl(method = "cv", number = 10)</pre>
cv_lasso <- train(</pre>
 pb.TotChol ~ Height+Age+BPSysAve+BPDiaAve+SmokeNow+PhysActiveDays+Age2,
 data = clean.frame,
 method = "lm",
  trControl = train_lasso
)
```

print(cv_lasso)

```
## Linear Regression
##
## 1287 samples
      7 predictor
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1158, 1158, 1158, 1159, 1159, 1159, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                           MAE
##
    0.9772544 0.1289544 0.7713758
##
\mbox{\tt \#\#} Tuning parameter 'intercept' was held constant at a value of TRUE
```