Making Recommendations: Content Filtering Collaborative Filtering Latent Factors

Jay Urbain, Ph.D.
Electrical Engineering and Computer Science Department
Milwaukee School of Engineering

Credits: See last page with references

Recommendations

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near zero-cost dissemination of information about products
 - From scarcity to abundance
 - Gives rise to the "Long Tail" phenomenon (Wired)

Long Tail

Items ranked by popularity

Long Tail

- More choice necessitates better filters
- Recommendation engines
- How Into Thin Air made Touching the Void a bestseller (http://www.wired.com/wired/archive/12.10/tail.html)
- Examples
 - Books, movies, music, new car sales, medical treatments
 - People (friend recommendations on Facebook, LinkedIn, and Twitter)

Types of recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, Pandora ...
 - Our focus here

Recommendation Model

- **C** = set of **Customers**
- **S** = set of **Items**
- Utility function $u: C \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set, e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Problems

- Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - Not typically interested in knowing what you don't like but what you like
- Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't scale: only a small fraction of users leave ratings and reviews
- Implicit
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?

Extrapolating Utilities

- Key problem: matrix *U* is sparse
- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems
 - 1. Content-based
 - 2. Collaborative
 - 3. Latent factor based

Content-based

Main idea: Recommend items to customer **x** similar to previous items rated highly by **x**

Examples:

- Movies
 - Same actor(s), director, genre, ...
- Websites, blogs, news
 - Articles with "similar" content
- People
 - Recommend people with many common friends

Build item profiles, make recommendations from profile

Item profiles

- For each item, create an item profile
- Profile is a set of features
 - Movies: author, title, actor, director,...
 - Images, videos: metadata and tags
 - People: Set of friends
- Think of the item profile as a feature vector
 - One attribute per feature per item (e.g., each actor, director,...)
 - Vector might be boolean or real-valued or mix
- Predict how similar any item is to any other item

User profiles

- User has rated items with profiles $i_1,...,i_n$
- Simple: (weighted) average of rated item profiles
- Variant: Normalize weights using average rating of user
- More sophisticated aggregations possible learn feature weights.

Example 1: Boolean Utility Matrix

- Items are movies, only feature is "Actor"
 - Item profile: vector with 0 or 1 for each Actor
- Suppose user **x** has watched 5 movies
 - 2 movies featuring actor A
 - 3 movies featuring actor B
- User profile = mean of item profiles
 - Feature A's weight = 2/5 = 0.4
 - Feature B's weight = 3/5 = 0.6

Example 2: Star Ratings

- Same example, 1-5 star ratings
 - Actor A's movies rated 3 and 5
 - Actor B's movies rated 1, 2 and 4
- Useful step: Normalize ratings by subtracting user's mean rating (mean=3)
 - Actor A's normalized ratings = 0, +2
 - Profile weight = (0 + 2)/2 = 1
 - Actor B's normalized ratings = -2, -1, +1
 - Profile weight = -2/3

Making Predictions

- User profile x, Item profile I
- Estimate $U(\mathbf{x},\mathbf{i}) = \cos(\theta) = (\mathbf{x} \cdot \mathbf{i})/(|\mathbf{x}||\mathbf{i}|)$
- Or other similarity measurement

similarity =
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Pros: Content-based approach

- No need for data on other users
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
- No first-rater problem
- Explanations for recommended items
- Content features that caused an item to be recommended

Cons: Content-based approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Cold-start problem for new users
 - How to build a user profile?

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Similar Users

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Consider users \boldsymbol{x} and \boldsymbol{y} with rating vectors $\boldsymbol{r}_{\boldsymbol{x}}$ and $\boldsymbol{r}_{\boldsymbol{y}}$
- We need a similarity metric sim(x, y)
- Capture intuition that sim(A,B) > sim(A,C)

Jaccard Similarity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

•
$$sim(A,B) = | r_A \cap r_B | / | r_A \cup r_B |$$

- sim(A,B) = 1/5; sim(A,C) = 2/4
 - sim(A,B) < sim(A,C)</p>
- Problem: Ignores rating values!

Cosine Similarity

- = sim(A,B) = 0.38, sim(A,C) = 0.32
 - sim(A,B) < sim(A,C), but not by much</p>
- Problem: treats missing ratings as negative

Centered Cosine – Pearson Correlation Coefficient

Normalize ratings by subtracting row mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3
	l						
	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
$A \\ B$	1/3	1/3	-2/3				
α				1	- 1-		
C				-5/3	1/3	4/3	

Centered Cosine

	ı		HP3	TW	SW1	SW2	SW3
A	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D		0					0

- $sim(A,B) = cos(r_A, r_B) = 0.09; sim(A,C) = -0.56$ • sim(A,B) > sim(A,C)
- Captures intuition better
 - Missing ratings treated as "average"
 - Handles "tough raters" and "easy raters"
- Also known as Pearson Correlation

Rating Predictions

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have also rated item i
- Prediction for user x and item i
- Option 1: $r_{xi} = 1/k \sum_{y \in N} r_{yi}$
- Option 2: $r_{xi} = \sum_{y \in N} s_{xy} r_{yi} / \sum_{y \in N} s_{xy}$

where
$$s_{xy} = sim(x,y)$$

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

```
s<sub>ij</sub>... similarity of items i and j
r<sub>xj</sub>...rating of user x on item j
N(i;x)... set items rated by x similar to i
```

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- unknown rating

.

- rating between 1 to 5

users

		1	2	3	4	5	6	7	8	9	10	11	12
_	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		0.59

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ĕ	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

$$s_{13}$$
=0.41, s_{16} =0.59

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{15} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

Item-item vs. User-user

- In theory, user-user and item-item are dual approaches
- In practice, item-item outperforms user-user in many use cases
- Items are "simpler" than users
 - Items belong to a small set of "genres," users have varied tastes
 - Item Similarity is more meaningful than User Similarity