第2课时 化学反应的限度

- 1. 认识可逆反应的特点。
- 2. 理解化学反应的限度。
- 3. 知道化学平衡的含义与特征,会判断可逆反应的 平衡状态。

- 1. 变化观念与平衡思想: 化学反应有一定限度, 是可以调控的。
- 2. 证据推理与模型认知:通过分析推理认识化学 平衡的特征。

新知	旦学
小 人	77

------- 启迪思维 探究规律

- 一、化学反应限度
- 1. Cl₂与 H₂O 的反应

化学方程式		
溶液中微粒	三分子	
10 10 1 10012	四离子	
反应特点		反应进行到底

2.FeCl₃溶液与 KI 溶液的反应

实验步骤	5~6滴0.1 mol·L ⁻¹ 的FeCl ₃ 溶液 0 0 5 mL 0.1 mol·L ⁻¹ KI溶液	↑ 滴加CCl₄ 振荡、静置	取上层清液, 滴加KSCN溶液	
实验现象				
实验结论	有生成	有生成	上层清液中含有	
离子方程式				
反应特点	I ⁻ 过量条件下,反应物 具有一定的	Fe ³⁺ 转化	为生成物,即可逆反应	

3.可逆反应

(1)概念:	
--------	--

(2)特征

- ①双向性:反应物 正向反应 生成物。
- ②双同性:正、逆反应是在 下同时进行的。
- ③共存性:反应物和生成物 存在。

■ 归纳总结 ■

- (1)化学反应限度是在给定的条件下,可逆反应所能达到或完成的程度。化学反应限度的意义在于决定了反应的最大转化率。
- (2)不同的可逆反应在给定条件下的化学反应限度不同;同一可逆反应在不同条件(如温度、浓度、压强等)下,其反应限度不同。

【例 1】 对于化学反应限度的叙述,错误的是()

- A. 任何可逆反应都有一定的限度
- B. 化学反应达到限度时,正、逆反应速率相等
- C. 化学反应的限度与时间的长短无关
- D. 化学反应的限度是不可改变的
- **【例 2】** $(2019 \cdot 余 姚中学质检)$ 在一个密闭容器中发生反应: $2SO_2(g) + O_2(g)$ $2SO_3(g)$ 。已知反应过程中的某一时间 SO_2 、 O_2 和 SO_3 的浓度分别为: 0.2 mol·L^{-1} 、 0.1 mol·L^{-1} 和 0.2 mol·L^{-1} 。当反应达到平衡时可能存在的数据正确的是()
- A. $c(O_2) = 0.2 \text{ mol} \cdot L^{-1}$
- B. $c(SO_2) = 0.25 \text{ mol} \cdot L^{-1}$
- C. $c(SO_2)+c(SO_3)=0.3 \text{ mol} \cdot \text{L}^{-1}$
- D. $c(SO_2) = c(SO_3) = 0.15 \text{ mol} \cdot \text{L}^{-1}$
- 二、化学平衡状态
- 1. 化学平衡状态的建立
- (1)可逆反应过程中正、逆反应速率的变化
- ①反应开始时:反应物浓度____,正反应速率____;生成物浓度为___,逆反应速率为___。
- ②反应过程中:反应物浓度逐渐____,正反应速率逐渐____;生成物浓度逐渐____,逆反应速率逐渐 。
- ③反应达平衡时:反应物的浓度和生成物的浓度都不再,正反应速率和逆反应速率。
- (2)用图像表示化学平衡状态的建立

2. 化学平衡状态

(1)化学平衡状态的概念

如果外界条件(温度、浓度、压强等)不发生改变,当_____反应进行到一定程度时,______与 相等,反应物的浓度与生成物的浓度不再改变,达到一种表面静止的状态,称为"化学平衡状态",简称化学平衡。

(2)化学平衡状态的特征

■ 归纳总结 ■

(1)可逆反应必须在一定的外界条件下(如温度、浓度、压强等)才能建立化学平衡。相同条件下(如温度、浓度、压强等),可逆反应无论是从正反应方向开始,还是从逆反应方向开始,最终达到的平衡状态是相同的,即"殊途同归"。

件下建立新的化学平衡, 即发生化学平衡的移动

(2)化学平衡状态的判断依据

	v _正 =v _₹	同一物质	生成速率等于消耗速率		
直接判断依据			化学反应速率之比等于化学计量		
		不同物质	数之比,且表示不同方向(即一正		
			一逆)		
	24. 压护甘	各组分的质量分数、物质的量分数、体积分数			
间接判断依据	各物质的某 些物理量保 持不变	保持不变			
		浓度保持不	· 变		

【例 3】 (2019·舟山月考)下列对于可逆反应 2M(g)+N(g) 2P(g)达到平衡时的说法正确的是 ()

- A. M、N全部变成了P
- B. 反应已经停止
- C. 反应混合物中各组分的浓度不再改变
- D. v(M) : v(N) = 2 : 1

思维启迪

化学反应达到平衡时,各组分的浓度保持不变,不要理解为浓度相等,也不要理解为浓度之

比等于化学计量数之比。

- **【例 4】** 在体积固定的容器中,对于反应 A(g)+B(g) 3C(g)(正反应为放热反应),下列叙述为平衡状态标志的是()
- ①单位时间内由 A、B 生成 C 的分子数与分解 C 的分子数相等
- ②外界条件不变时, A、B、C浓度不随时间变化
- ③体系温度不再变化
- ④体系的压强不再变化
- ⑤体系的分子总数不再变化

A. (1)(2)

B. 123

C. (1)(2)(3)(4)

D. (1)(2)(3)(4)(5)

易错警示

- (1)化学平衡的实质是同种物质的正、逆反应速率相等。用不同物质的正、逆反应速率判断是 否达到化学平衡状态时,要根据化学反应速率之比等于化学计量数之比,转化为同种物质的 速率进行比较。
- (2)利用 $v_{\pm}=v_{\pm}>0$ 判断平衡状态时注意: 反应速率必须是一正一逆, 不能都是 v_{\pm} 或都是 v_{\pm} 。

◎ 学习小结

达标检测

检测评价 达标过关

- 1. (2018· 嘉兴市第一中学高一下学期期中)在 5 mL 0.1 mol·L $^{-1}$ KI 溶液中滴加 0.1 mol·L $^{-1}$ FeCl₃ 溶液 5 \sim 6 滴后,再进行下列实验,其中可证明 FeCl₃ 溶液和 KI 溶液的反应是可逆反应的是()
- A. 再滴加 AgNO3溶液,观察是否有 AgI 沉淀产生
- B. 加入 CCl₄ 振荡后,观察下层液体颜色
- C. 加入 CCl4振荡后,取上层清液,滴加 AgNO3溶液,观察是否有 AgCl 沉淀产生
- D. 加入 CCl₄振荡后,取上层清液,滴加 KSCN 溶液,观察是否有血红色
- 2. (2019·温州模拟)一定条件下的可逆反应 2NO₂(红棕色) 2NO(无色)+O₂(无色), 在恒压 密闭容器中充入 NO₂, 达到化学平衡状态的标志是()
- A. 反应停止了
- B. NO 的正反应速率与 O₂ 的逆反应速率相等
- C. $c(NO) : c(O_2) = 2 : 1$
- D. 气体的颜色不再变化

- A. 升高温度或充入一定量 O₂ 均能加快化学反应速率
- B. 达到平衡状态时, SO_2 、 O_2 、 SO_3 物质的量之比一定为 2:1:2
- C. 当 SO₂ 的生成速率与 SO₃ 的生成速率相等时,反应达到平衡状态
- D. 达到平衡状态时,生成 SO₃的物质的量一定小于 2 mol
- 4. $(2018 · 浙江 4 月学考)反应 N₂(g) + 3H₂(g) 2NH₃(g) <math>\Delta H$ <0,若在恒压绝热的容器中发
- 生,下列选项表明一定已达平衡状态的是()
- A. 容器内的温度不再变化
- B. 容器内的压强不再变化
- C. 相同时间内, 断开 H—H 键的数目和生成 N—H 键的数目相等
- D. 容器内气体的浓度 $c(N_2)$: $c(H_2)$: $c(NH_3)=1:3:2$
- 5. 在 2 L 密闭容器内, 800 ℃时反应 2NO(g)+O₂(g) 2NO₂(g)体系中, *n*(NO)随时间的变化如下表:

时间/s	0	1	2	3	4	5
n(NO)/mol	0.020	0.010	0.008	0.007	0.007	0.007

(1)上述反应 (填"是"或"不是")可逆反应,在第5s时,NO的转化率为。

(2)如图所示,表示 NO₂ 变化曲线的是____。用 O₂ 表示 $0\sim2$ s 内该反应的平均速率 v=

- (3)能说明该反应已达到平衡状态的是____(填字母)。
- a. $v(NO_2)=2v(O_2)$

- b. 容器内压强保持不变
- c. $v_{\text{iff}}(NO) = 2v_{\text{iff}}(O_2)$
- d. 容器内密度保持不变