Roll	No.:													

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch

: ECE

Semester

: 111

Title of the Course

: Digital Electronics

Course Code : ECB 202

Time: 3 Hours

Maximum Marks: 50

Note: 1. Do not write anything on the question paper except Roll number.

2. Attempt the question as per the order of section as well as question number.

Section A: Answer the 10 multiple choice questions. Each question carries 01 mark.

 $[10 \times 1 = 10]$

- A1. Each term in the standard SOP form is called a
 - a) minterm
- b) maxterm
- c) don't care
- d) literal

- A2. The dual of a Boolean expression is obtained by
 - a) interchanging all 0s and 1s
 - b) interchanging all 0s and 1s, all + and '.' signs
 - c) interchanging all 0s and 1s, all + and '.' signs and complementing all the variables
 - d) interchanging all + and '.' signs and complementing all the variables
- A3. In BCD addition, 0110 is required to be added to the sum for getting the correct result, if
 - a) the sum of two BCD numbers is not a valid BCD number
 - b) the sum of two BCD numbers is not a valid BCD number or a carry is produced
 - c) a carry is produced
 - d) none of the above is true
- A4. The logic gate used in parity checkers is
 - a) NOR
- b) NAND
- c) X-OR
- d) X-NOR

- A5. When a flip-flop is reset, its output will be
 - a) $Q = 0, \nabla = 0$

c) $Q = 0, \nabla = 1$

b) Q = 1, Q = 1

- d) $Q = 1, \nabla = 0$
- A mod-2 counter followed by a mod-5 counter is A6.
 - a) the same as a mod-5 counter followed by a mod-2 counter
 - b) a decade counter
 - c) a mod-7 counter
 - d) none of the above
- The characteristic equation of a J-K flip-flop is A7.

a)
$$Q_{n+1} = J Q_n + K Q_n$$

c)
$$Q_{n+1} = \mathcal{T}Q_n + \mathcal{K}Q_n$$

b)
$$Q_{n+1} = J Q_n + K Q_n$$

d)
$$Q_{n+1} = \mathcal{T} Q_n + K Q_n$$

A8.		binational PLD wi PROM		xed OR array PAL		gramm PLA		y is called a				
	a)	PROM	U)	TAL	C)	ILA	C) LI ROW				
A9.	The de	ecimal equivalent o	f the	e highest pos	sible addr	ess for	r an 8-bit addre	ss bus is				
	a)			128		255		l) 127				
A10.		itput of a clocked s ented by	equ	ential circuit	is indeper	ndent (of the input. Th	e circuit can be				
		Mealy model			c)	Eithe	er Mealy or Mo	ore model				
		Moore model			d)	Neith	ner Mealy or M	oore model				
Section	n R. Aı	nswer any 4 quest	ions	Each quest	tion carri	ies 05	mark.		[4×5=20]			
B1.												
B2.	Design a 4- bit binary to gray code converter using a PLA. Explain the mealy and moore model of FSM with the help of an example.											
B3.	Design a combinational circuit using basic logic gates which accepts a 3-bit binary											
В.		er and generates an										
B4.	Implement a full subtractor using PROM.											
B5.	Conve	ert the S-R flip-flop	into	J-K flip-flo	p.							
Section	on C: A	nswer any 2 ques	ions	s. Each ques	tion carr	ies 10	mark.		$[2 \times 10 = 20]$			
C1.		n a 4-bit Bi-Direc						the help of an				
	examp											
C2.	Design	n a synchronous M	OD-	6 binary up	counter us	sing J-	K Flip-flop.					
C3.	A stair	rease light is contro	lled	by two swite	ches; one	is at tl	ne top of the sta	airs and the				
	other a	at the bottom of the	sta	irs.								
	a)	Make a truth table	e for	this system.								
	b)	Write the logic ed	luati	on in the SO	P form.							
	c)	Realize the circui										
	d)	Realize the circui	t usi	ng minimum	number	of NA	ND gates.					