FOUNDATIONS OF REPRESENTATION THEORY

2. Exercise sheet

Jendrik Stelzner

November 7, 2013

Exercise 5 and 6:

Let V be a 2-dimensional module. The following are equivalent:

- (i) V has at least 5 submodules.
- (ii) Every subspace of V is a submodule.
- (iii) V is not cyclic.

Proof.
$$(i) \Rightarrow (ii)$$

Let $j \in J$ be fixed but arbitrary. Since V has at least 5 submodules, at least 3 of these submodules have to be nontrivial. Since these three have to be 1-dimensional, we find pairwise linear independent $v_1, v_2, v_3 \in V$ with $v_i \neq 0$ for all i, such that $\langle v_1 \rangle$, $\langle v_2 \rangle$ and $\langle v_3 \rangle$ are submodules. Since $\phi_j(v_i) \in \langle v_i \rangle$ for all i, it follows that every v_i is an eigenvector of ϕ_j . Let λ_i be the eigenvalue of v_i . If the λ_i were pairwise different, $\{v_1, v_2, v_3\}$ would be linear independent, which is not possible because V is only 2-dimensional. So there must be $i_1, i_2 \in \{1, 2, 3\}$ with $i_1 \neq i_2$ but $\lambda_{i_1} = \lambda_{i_2}$. Since v_{i_1} and v_{i_2} are linear independent, it follows that $\{v_{i_1}, v_{i_2}\}$ is a basis of V. From this it follows that every every $v \in V, v \neq 0$ is an eigenvector of ϕ_j with eigenvalue λ_{i_1} . This directly implies that every subspace of V is ϕ_j invariant. Because j is arbitrary it follows that every subspace is ϕ_j invariant for all $j \in J$, so every subspace is a submodule.

$$(ii) \Rightarrow (i)$$

Let $\{v_1, v_2\}$ be a basis of V. Since v_1, v_2 and $v_1 + v_2$ are pairwise linear independent, $\{0\}, \langle v_1 \rangle, \langle v_2 \rangle, \langle v_1 + v_2 \rangle$ and V are five pairwise different submodules of V.

$$(ii) \Rightarrow (iii)$$

Since for every $v \in V$, $U(v) = \langle v \rangle$ is an at most 1-dimensional submodule of V, there is no $v \in V$ such that U(v) = V. So V is not cyclic.

$$(iii) \Rightarrow (ii)$$

Assume that not every subspace of V is a submodule. Than we find a subspace $U\subseteq V$ such that U is not a submodule of V. This implies that U is nontrivial, so U must be 1-dimensional. Let $v\in U$ be a basis vector of U. Because U is a subspace but no submodule of V there exist $j\in J$ such that $\phi_j(v)\not\in U=\langle v\rangle$. This means that v and $\phi_j(v)$ are linear independent and thus $\{v,\phi_j(v)\}$ is a basis of V and V=U(v). So V is cyclic.

 $(i) \Rightarrow (ii)$ shows Exercise 5, and $\neg(i) \Rightarrow \neg(iii)$ shows Exercise 6.

Exercise 7:

A matrice $A = (a_{ij}) \in M_3(K)$ describes a vector space endomorphism of K^3 , which is a module endomorphism of V if and only if

$$A \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} A \text{ and } A \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A. \quad (1)$$

By matrix multiplication we get

$$\begin{pmatrix} a_{12} & 0 & 0 \\ a_{22} & 0 & 0 \\ a_{32} & 0 & 0 \end{pmatrix} = A \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\begin{pmatrix} a_{13} & 0 & 0 \\ a_{23} & 0 & 0 \\ a_{33} & 0 & 0 \end{pmatrix} = A \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} \end{pmatrix}.$$

So A does satisfy (1) if and only if $a_{12} = a_{13} = a_{23} = a_{32} = 0$ and $a_{11} = a_{22} = a_{33}$. The set of all matrices satisfying this conditions is

$$\left\{ \begin{pmatrix} a & 0 & 0 \\ b & a & 0 \\ c & 0 & a \end{pmatrix} : a, b, c \in K \right\}.$$

V is not simple, because

$$U = \langle e_2, e_3 \rangle = \ker \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \ker \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

is a nonzero proper submodule of V.

V is indecomposable: For submodules $U_1,U_2\subseteq V$ with $U_1\oplus U_2=V$ there exist $\lambda,\mu\in K$ such that $e_1+\lambda e_2+\mu e_3\in U_1$ or $e_1+\lambda e_2+\mu e_3\in U_2$, because otherwise v and e_1 would be linear independent for all $v\in U_1$ and $v\in U_2$, so v and e_1 would be linear independent for all $v\in U_1\oplus U_2=V$, which is obviously not the case. W.l.o.g. we can assume that $e_1+\lambda e_2+\mu e_3\in U_1$. Because U_1 is a submodule of V it follows

that

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (e_1 + \lambda e_2 + \mu e_3) = e_2 \in U_1 \text{ and}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} (e_1 + \lambda e_2 + \mu e_3) = e_3 \in U_1.$$

This implies that

$$V = \langle e_1, e_2, e_3 \rangle = \langle e_1 + \lambda e_2 + \mu e_3, e_2, e_3 \rangle \subseteq U_1 \subseteq V$$

so $U_1=V$. Because $U_1\cap U_2=\{0\}$ this means that $U_2=\{0\}$ and that V is indecomposable.

Exercise 8:

well-defined

It first needs to be shown that the function is well-defined, i.e. that for all $f \in \operatorname{Hom}_J(V,W)$ Γ_f is a submodule of $V \times W$ with $\Gamma_f \oplus (0 \times W) = V \times W$. (It is clear that $0 \times W$ is a submodule of $V \times W$, since V is a submodule of V and V is a submodule of itself.)

Let $f \in \operatorname{Hom}_J(V,W)$. $\Gamma_f \subseteq V \times W$ is a subspace: It is $(0,0) = (0,f(0)) \in \Gamma_f$, for $(v,f(v)) \in \Gamma_f$ is $-(v,f(v)) = (-v,f(-v)) \in \Gamma_f$, for $(v,f(v)),(v',f(v')) \in \Gamma_f$ is $(v,f(v)) + (v',f(v')) = (v+v',f(v+v')) \in \Gamma_f$, and for $(v,f(v)) \in \Gamma_f$ and $\lambda \in K$ we find $\lambda(v,f(v)) = (\lambda v,f(\lambda v)) \in \Gamma_f$. To show that Γ_f is a submodule we also need to show that $(\phi_j \oplus \psi_j)(v,f(v)) \in \Gamma_f$ for all $j \in J$ and $v \in V$. This holds because f is an module homomorphism and so

$$(\phi_i \oplus \psi_i)(v, f(v)) = (\phi_i(v), \psi_i(f(v))) = (\phi_i(v), f(\phi_i(i))) \in \Gamma_f.$$

To show that $\Gamma_f \oplus (0 \times W) = V \times W$ we first notice that $\Gamma_f \cap (0 \times W) = \{(0,0)\}$: For $(x,y) \in \Gamma_f \cap (0 \times W)$ we find $v \in V$ und $w \in W$ such that (v,f(v)) = (x,y) = (0,w). So v=0 and w=f(v)=f(0)=0 and thus (x,y)=(0,0). To show that $\Gamma_f + (0 \times W) = V \times W$ we notice that for all $(v,w) \in V \times W$

$$(v, w) = (v, f(v)) + (0, w - f(v)) \in \Gamma_f + (0 \times W).$$

injective

To show that the function is injective we notice that for $f, g \in \text{Hom}_J(V, W)$

$$\begin{split} \Gamma_f &= \Gamma_g \Rightarrow \{(v,f(v)) : v \in V\} = \{(v,g(v)) : v \in V\} \\ &\Rightarrow (v,f(v)) = (v,g(v)) \text{ for all } v \in V \\ &\Rightarrow f(v) = g(v) \text{ for all } v \in V \\ &\Rightarrow f = g. \end{split}$$

surjective

To show that the function is surjective we construct for each submodule $U\subseteq V\times W$ with $U\oplus (0\times W)=V\times W$ a homomorphism $f_U\in \operatorname{Hom}_J(V,W)$ with $\Gamma_{f_U}=U$. Let $U\subseteq V\times W$ be a submodule with $U\oplus (0\times W)=V\times W$. For every $v\in V$ there exist a unique $w_v\in W$ with $(v,w_v)\in U$: To show the uniqueness we notice that for $(v,w),(v,w')\in U$ with (v,w)=(v,w')

$$U \ni (v, w) - (v, w') = (0, w - w') \in W \Rightarrow w - w' = 0 \Rightarrow w = w',$$

since $U\subseteq V\times W$ is a subspace and $U\cap (0\times W)=\{(0,0)\}$. To show that such a w_v exists we write $(v,w)\in V\times W$ uniquely as (v,w)=(v,w')+(0,w'') with $(v,w')\in U$ and $(0,w'')\in 0\times W$; this is possible because $V=U\oplus (0\times W)$. This now allows us to define a function $f:V\to W,v\mapsto w_v$. Note that from the definition of f it directly follows that $f(v)=w\Leftrightarrow (v,w)\in U$ and $\Gamma_f=U$. It turns out that f is a module homomorphism: Because $U\subseteq V\times W$ is a subspace we find that for $v,v'\in V$

$$(v + v', f(v) + f(v')) = (v, f(v)) + (v', f(v')) \in U,$$

so f(v+v')=f(v)+f(v'). We also find that for all $v\in V$ and $\lambda\in K$

$$(\lambda v, \lambda f(v)) = \lambda(v, f(v)) \in U,$$

so $f(\lambda v)=\lambda f(v)$. This shows that f is K-linear. To show that f is a module homomorphism we notice that for all $v\in V$ and $j\in J$

$$(v, f(v)) \in U \Rightarrow (\phi_i(v), \psi_i(f(v))) \in U,$$

because U is a submodule of $V \times W$. This implies $f(\phi_j(v)) = \psi_j(f(v))$ for all $v \in V$ and $j \in J$, so $f\phi_j = \psi_j f$ for all $j \in J$. This shows that f is a module homomorphism.