Name:

Making Decisions Practical

5. (13 points) Consider the following MDP with k + 4 states. There are two actions, a_1 and a_2 . Arrows with no labels represent a transition for both actions with probability 1. Arrows labeled a/p make the transition on action a with probability p. States with no label have reward 0. Two states have reward +1, obtained when taking an action in that state. There are k-2 states between s_1 and s_k , with a deterministic transition on any action (so that once you are in s1 you are guaranteed to end up in s_k in k-1 steps).

We are interested in the infinite-horizon discounted values of some states in this MDP.

- (a) What is $V(s_1)$ as a function of k when $\gamma = 0$? _____
- (b) What is $V(s_1)$ as a function of k when $\gamma = 1$?
- (d) What is $V(s_x)$ when $\gamma = 0$? _____
- (e) What is $V(s_x)$ when $\gamma = 1$? _____1
- (f) What is $V(s_x)$ when $0 < \gamma < 1$? $\gamma/(2-\gamma)$

Name:	

(g) Under what conditions on k and γ would we prefer to take action a_1 in state s_0 ? Write down a specific mathematical relationship.

Solution: When $(9/10)\gamma^{k-1} > \gamma/(2-\gamma)$.