Алгоритмы и структуры данных

Лекция 8 Продвинутые деревья

Кандауров Геннадий

Напоминание отметиться на портале

+ оставить отзыв

Квиз про прошлой лекции

Содержание занятия

- 1. Красно-черные деревья
- 2. В-дерево
- 3. Trie

Красно-черное дерево

Красно-черное дерево – двоичное дерево поиска, в котором баланс осуществляется на основе "цвета" узла дерева, который принимает только два значения: "красный" и "чёрный".

Все листья дерева являются фиктивными и не содержат данных, но относятся к дереву и являются чёрными.

Для экономии памяти фиктивные листья делают одним общим фиктивным листом.

Изобретатель - Рудольф Байер (1972г).

Красно-черное дерево – двоичное дерево поиска, у которого каждому узлу сопоставлен дополнительный атрибут – цвет и для которого выполняются следующие свойства:

- 1. Каждый узел промаркирован красным или чёрным цветом
- 2. Корень и конечные узлы (листья) дерева чёрные
- 3. У красного узла родительский узел чёрный
- 4. Все простые пути из любого узла **х** до листьев содержат одинаковое количество чёрных узлов

Черная высота вершины х – число черных вершин на пути из х в лист, не учитывая саму вершину х.

Пример.

Для вершин «-16» и «-88» черная высота = 1.

Для вершин «-7» и «0» черная высота = 2.

В красно-черном дереве с корнем в узле х содержится по крайней мере 2^{bh(x)} - 1 внутренних вершин.

Докажем по индукции по h(x):

- h(x) = 0Значит, x - лист (NIL). Тогда дерево с корнем x содержит $2^{bh(x)} - 1 = 2^0 - 1 = 0$ внутренних вершин.
- h(x) > 0.
 X внутренняя вершина, у нее 2 потомка. У каждого потомка черная высота либо bh(x), либо bh(x) 1, в зависимости от цвета потомка (красный и черный, соответственно).

Так как h(потомок x) < h(x), то к нему применимо предположение индукции: у каждого потомка по крайней мере $2^{bh(x)-1}-1$ внутренняя вершина. Тогда в дереве с корнем в x их по крайней мере $(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$

Переход доказан. Следовательно, утверждение верно и для всего дерева.

Теорема:

Красно-чёрное дерево с N ключами имеет высоту $h = O(\log N)$.

Доказательство:

D

Рассмотрим красно-чёрное дерево с высотой h. Так как у красной вершины чёрные дети, чёрных вершин не меньше, чем h/2.

По доказанной лемме, для количества внутренних вершин в дереве N выполняется неравенство:

$$N\geqslant 2^{h/2}-1$$

Прологарифмировав неравенство, имеем:

$$\log(N+1)\geqslant h/2$$

$$2\log(N+1) \geqslant h$$

$$h \leq 2\log(N+1)$$

- Каждый элемент вставляется вместо листа.
- Для выбора места вставки идём от корня в нужную сторону, как в наивном методе построения дерева поиска. До тех пор, пока не остановимся в листе (в фиктивной вершине).
- Вставляем вместо листа новый элемент красного цвета с двумя листами-потомками.
- Теперь восстанавливаем свойства красно-черного дерева.

Что можем сломать?

Поскольку добавленный узел автоматически окрашивается в красный цвет, то нарушить можем только эти свойства красно-черного дерева:

- Корень дерева чёрный
- У красного узла родительский узел чёрный

Ситуации после вставки:

- Если отец нового элемента черный, то ничего делать не надо.
- Если отец нового элемента красный, то возможны 3 случая (без учета симметрии):
 - 1. Отец красный, дядя красный.
 - 2. Отец красный, дядя черный, новый элемент левый потомок.
 - 3. Отец красный, дядя черный, новый элемент правый потомок.

Случай 1. Отец и дядя красные.

- Перекрашиваем «отца» и «дядю» в чёрный цвет, а «деда» в красный.
- Поскольку «дед» может нарушать свойство дерева (вдруг его отец красный), придется рекурсивно восстанавливать свойства дерева, двигаясь к предкам.
- Если мы таки образом дойдём до корня, то в нём в любом случае ставим чёрный цвет.

<u>Случай 2.</u> «Дядя» черный и правый, новый элемент — левый потомок.

Просто выполнить перекрашивание отца в черный цвет нельзя, чтобы не нарушить

постоянство чёрной высоты дерева по ветви с отцом.

- Выполняем правый поворот В.
- Перекрашиваем А и В.
- Останавливаемся больше ничего делать не требуется.

<u>Случай З.</u> «Дядя» черный и правый, новый элемент — правый потомок.

Добавленный узел X — правый потомок отца A. Выполним левое вращение в A, тем самым сделав A левым потомком X.

Случай сводится к предыдущему.

Всего один шаг, если:

- Родитель черный, тогда вообще ничего делать не нужно
- Случай 1, когда отец деда черный или дед корень.
- Случай 2
- Случай 3

Длинная цепочка действий возможна только при многократном повторении случая 1.

Сложность вставки *O(logN)*.

Как производится удаление:

- 1. Если у удаляемой вершины нет детей, у родителя перенаправляем указатель на фиктивный лист.
- 2. Если только один потомок, у родителя перенаправляем указатель на этого потомка.
- 3. Если потомка два, ищем в поддеревьях следующую или предыдущую вершину. Вместо исходной, удаляем именно эту вершину способом из п.1 или п.2, предварительно скопировав её ключ в изначальную вершину.

Таким образом, удаление всегда выполняется для вершины, имеющей не более одной дочерней.

Что можем сломать?

- Корень дерева чёрный
- У красного узла родительский узел чёрный
- Все простые пути из любого узла х до листьев содержат одинаковое количество чёрных узлов

А. Удаление красной вершины

При удалении красной вершины свойства дерева не нарушаются.

Если потомок единственный

Красная вершина, не может иметь единственного потомка. Если бы потомок существовал, то он был бы черным и нарушилось бы свойство постоянства черной глубины для потомка и его соседней фиктивной вершины.

Если потомков нет

Действия:

- Удалить красную вершину (заменить на лист)
- Конец

Б. Удаление черной вершины с единственным потомком

Единственным потомком черной вершины может быть только красная вершина. Иначе нарушилось бы свойство постоянства черной глубины для потомка и его соседней фиктивной вершины.

Действия:

- В черную вершину заносим данные красной.
- Удаляем красную (заменяем на лист)
- Конец

В. Удаление черной вершины без потомков. Это самый сложный случай.

Действия:

- Удалим черную вершину (заменим на лист)
- Лист на месте удаленной вершины обозначим «х»

Путь в «*x*» имеет меньшее количество черных вершин (черную глубину), чем в другие вершины. Будем помнить об этом и называть «*x*» дважды черным.

Теперь с помощью перекрашиваний и вращений будем пытаться восстановить свойства красно-черного дерева.

Восстановление свойств. Случай О.

Если дважды черная вершина *х* – корень.

- Оставим корень просто черным (один раз черным)
- Конец

Так черная глубина всего дерева уменьшится на 1.

Восстановление свойств. Случай 1.

Если брат **b** дважды черной вершины **x** – красный.

- Делаем малый левый поворот в а. Бывший брат b становится дедом.
- Красим **b** в чёрный, **a** в красный цвет.

Теперь брат **х** – черный, переходим в случай 2, 3 или 4 в зависимости от цветов детей узла *с*.

Восстановление свойств. Случай 2.

Если брат \boldsymbol{b} вершины \boldsymbol{x} – черный, и оба дочерних узла брата \boldsymbol{c} и \boldsymbol{d} – черные. \boldsymbol{c} и \boldsymbol{d} могут быть листьями. Красим брата \boldsymbol{b} в красный цвет.

- Цвет отца *a* красный:
 - Красим отца *а* в черный цвет, так черная глубина *а* восстановится
- Цвет отца *a* черный:
 - Считаем отца \boldsymbol{a} дважды черным, рассматриваем его как x
 - Теперь может быть любой случай

Восстановление свойств. Случай 3.

Если брат \boldsymbol{b} дважды черной вершины \boldsymbol{x} – черный, левый ребенок брата \boldsymbol{c} – красный, а правый \boldsymbol{d} – черный.

- Делаем малое правое вращение в b
- Красим **b** в красный цвет
- Красим *с* в черный цвет

Так у брата правый ребенок станет красным.

После случая 3 всегда случай 4, затем конец.

Восстановление свойств. Случай 4.

Если брат \boldsymbol{b} дважды черной вершины \boldsymbol{x} – черный, правый ребенок брата \boldsymbol{d} – красный.

- Делаем малое левое вращение в а
- Красим **b** в цвет, который был у **a**
- Красим **а** в черный цвет

Так черная глубина **х** увеличится на 1, то есть восстановится. Готово.

Восстановление свойств

Последовательность обработки случаев:

- Случай $1 \rightarrow$ Случай $2 \rightarrow$ Конец (отец узла х гарантированно красный после Случая 1)
- Случай 1 → Случай 3
- Случай 1 → Случай 4
- Случай $3 \rightarrow$ Случай 4
- Случай 4 → Конец
- Случай 2 → Любой случай (если отец узла х черный)

Длинная цепочка возможна только при переходах Случай 2 ightarrow Случай 2.

Восстановление свойств

Вставка	Удаление
 Случай выбирается по цвету	 Случай выбирается по цвету
«дяди». Максимум 2 вращения	«брата» и его потомков. Максимум 3 вращения

Расход памяти и время работы

	В среднем случае	В худшем случае
Расход памяти	O(n)	O(n)
Поиск	O(log(n))	O(log(n))
Вставка	O(log(n))	O(log(n))
Удаление	O(log(n))	O(log(n))

Оценка высот АВЛ и красно-черных деревьев

Сравнение АВЛ и красно-черных деревьев

- AVL деревья более строго сбалансированы, быстрее выполняют поиск элемента.
 Максимальная высота ~1.44 * log₂n.
- Красно-черные деревья быстрее выполняют вставку и удаление элемента.
- AVL деревья хранят в узлах значение баланса или высоту узла, нужно тратить память на целочисленную переменную.
- Красно-черные деревья хранят в узлах цвет (всего 2 возможных значения).
- Красно-черные деревья получили более широкое распространение: стандартные контейнеры в C++ STL, Java, ядро Linux (например, планировщик) и пр.

- Сбалансированное дерево поиска, обобщает понятие двоичного дерева поиска.
- Узлы В-деревьев могут иметь тысячи потомков
- Оптимизирует работу с диском, минимизируя число операций чтения/записи.
- Многие БД хранят данные в В-деревьях

Придумано Р. Бэйером (англ. R. Bayer) и Э. МакКрейтом (англ. E. McCreight) в 1970 году.

В-дерево – дерево с корнем, обладающее следующими свойствами:

- 1) Каждый узел X содержит:
 - X.n число ключей в узле
 - Сами ключи в отсортированном порядке: $X.\text{key}_1 \leq X.\text{key}_2 \leq ... \leq X.\text{key}_n$
 - X.leaf булево значение "узел является листом"
- 2) Каждый внутренний узел также содержит:
 - X.n + 1 указателей х.с₁, х.с_{2, ...}, х.с_{n+1} на потомков.

- 3) Ключи Х.key, внутри узла определяют, в какое поддерево переходим при поиске/вставке/удалении.
- 4) Пусть $\{k_i\}$ все ключи из поддерева, на которое указывает $X.c_i$, тогда $\{k_1\} \le X.key_1 \le \{k_2\} \le X.key_2 \le ... \le X.key_{X.n} \le \{k_{X.n+1}\}$.

В-дерево

- 4) Все листья В-дерева находятся на одной глубине
- 5) Минимальная степень В-дерева целое число t ≥ 2, определяет минимум и максимум числа ключей в узле.
 - Все внутренние узлы, помимо корня, должны хранить не менее t 1 ключей (следовательно, иметь не менее t потомков). В непустом дереве в корне хранится по крайней мере 1 ключ.
 - Все узлы хранят максимум 2t 1 ключ (следовательно, имеют не более 2t потомков). Если в узле 2t 1 ключ, то его называют заполненным.
 - Чем больше t, тем меньше высота дерева.

В-дерево: высота

Теорема:

Если N \geq 1, то для любого B-дерева, содержащего N ключей и минимальной степенью t \geq 2, верно утверждение h $\leq \log_t \left(\frac{n+1}{2}\right)$.

Доказательство:

Корень В-дерева содержит по крайней мере 1 ключ, прочие узлы — по крайней мере t - 1 ключ. Следовательно, дерево T с высотой h имеет по крайней мере 2 узла на глубине 1, 2t узлов на глубине 2, 2t² узлов на глубине 3, ..., 2t^{h-1} узлов на глубине h.

(Продолжение на следующем слайде)

В-дерево: высота

Доказательство: (продолжение)

Иллюстрация для h = 3:

Таким образом, имеет место неравенство:

$$n \ge 1 + (t-1)\sum_{i=1}^h 2t^{i-1} = 1 + 2(t-1)\left(\frac{t^{h-1}}{t-1}\right) = 2t^h - 1$$
 Следовательно, $t^h \le \left(\frac{n+1}{2}\right)$. Возьмем \log_t от обеих частей неравенства: $h \le \log_t\left(\frac{n+1}{2}\right)$. Что и требовалось доказать.

В-дерево: устройство жесткого диска

- Данные хранятся на одной или несколько пластинах
- Пластины вращаются с постоянной скоростью вокруг шпинделя
- Считывающая головка перемещается к шпинделю/от шпинделя

В-дерево: RAM и HDD

- Стоимость 1Гб оперативной памяти в ~100 раз выше, чем стоимость 1Гб на жестком диске.
- Как правило, емкость установленных в компьютере жестких дисков как минимум на 2 порядка превышает объем доступной оперативной памяти.
- Доступ к данным в RAM занимает ~50 нс, в HDD ~8-11 мс (в 160,000 220,000 раз медленнее). Все из-за механики нужно прокрутить дисковые пластины и переместить считывающую головку.

В-дерево: особенности HDD

- Минимальная единица чтения/записи страница.
- Все страницы равного размера (обычно от 2 до 16 килобайт).
 Все биты в странице хранятся на диске единым неделимым блоком.
- Выгодно сразу читать/писать несколько страниц: основные траты времени приходятся на механическое позиционирование пластин и считывающей головки на начало первой страницы.
 - Само чтение/запись происходят быстро там одна электроника, без механики (без учета постоянного вращения пластины).

В-дерево: учитываем HDD

- Предполагается, что хранимые данные не помещаются в оперативную память.
- В-дерево держит в оперативной памяти ограниченное константой число страниц. По мере надобности страницы подгружаются с диска в память, а при модификации записываются на диск.
- Для оптимизации чтения/записи размер узла В-дерева подбирается под размер страницы жесткого диска. Это накладывает ограничения на число хранимых в узле ключей и, соответственно, число потомков.
- В больших В-деревьях фактор ветвления обычно от 50 до 2000 (зависит от размера ключа). Чем он больше, тем меньше высота дерева, а значит меньше доступов к диску.

В-дерево: учитываем HDD

Пример: фактор ветвления 1001, высота 2.

Помещается более миллиарда ключей. Если корень всегда в RAM, любой ключ достижим не более чем за 2 доступа к диску.

В-дерево

- Нет гарантий, что нужный нам узел X находится в RAM или не будет вскоре вытеснен из нее.
- Введем операцию DISK-READ(X), зачитывающую узел X с диска в RAM. Если X уже в ней, то DISK-READ не будет обращаться к диску.
- Операция DISK-WRITE(X) записывает на диск узел X. Необходимо ее вызывать после любой модификации узла X.
- Никогда не будем вытеснять корень дерева из RAM, поэтому для него DISK-READ не понадобится. Но при модификации корня все равно нужен DISK-WRITE.

В-дерево: создание

B-TREE-CREATE создает пустой корневой узел.

```
B-TREE-CREATE(T)
  X = ALLOCATE-NODE()
  X.leaf = TRUE
  X.n = 0
  DISK-WRITE(X)
  T.root = X
```

Вспомогательная операция ALLOCATE-NODE выделяет страницу для нового узла за O(1).

B-TREE-CREATE требует O(1) дисковых операций и O(1) процессорного времени.

В-дерево: поиск ключа

B-TREE-SEARCH(X, k) – поиск ключа k в B-дереве с корнем X. Если k в дереве, то вернет (Y, i) (где У – узел, i – индекс ключа в Y, такой что Y.key_i == k), иначе NIL.

```
B-TREE-SEARCH(X, k)
i = 1
while i \le X.n and k > X.key
i = i + 1
if i \le X.n and k == x.key
return (X, i)
elseif X.leaf
return NIL
else
    DISK-READ(X.c;)
return B-TREE-SEARCH(X.c;, k)
```

В-дерево: поиск ключа

Сложность поиска: $O(t * log_t N)$.

Пример:

В-дерево построено на согласных буквах английского алфавита, ищем в нем ключ R. Светлым подсвечены узлы, по которым пройдем при поиске ключа.

- Вставка сложнее, чем в бинарном дереве поиска: мы не можем создать новый лист в дереве – результат перестанет быть В-деревом.
- Будем добавлять ключ в какой-то существующий лист.
- Нельзя добавлять ключ в полный узел (хранящий 2t -1 ключей).
- Чтобы бороться с переполнением узлов, введем операцию B-TREE-SPLIT-CHILD, разбивающую полный узел Y по медианному ключу Y.key_t на 2 новых узла, в каждом по t - 1 ключей. Ключ Y.key_t перенесем в родителя Y. Новые деревья подцепим к нему же, Y.key_t станет для них разделителем.

Пример применения B-TREE-SPLIT-CHILD: В-дерево, минимальная степень t = 4. Узел у содержит 2t - 1 = 7 ключей, он полный. Разбиваем по медиане (S) на 2 новых узла, S добавляем к ключам родителя (x), новые деревья цепляем по указателям x.c_i и xc_{i+1}. У родителя +1 к ключам и +1 к потомкам.

- Внутри B-TREE-SPLIT-CHILD один из ключей разбиваемого узла поднимается к родителю. Но что если родитель тоже уже полный? Придется рекурсивно вызывать B-TREE-SPLIT-CHILD. Так можно до корня дойти.
- Дополнительная оптимизация: мы не будем ждать, пока потребуется добавлять ключ в полный узел. В процессе спуска по дереву для всех полных узлов заблаговременно вызываем B-TREE-SPLIT-CHILD (включая сам лист).
- Благодаря этому при вызове B-TREE-SPLIT-CHILD будем уверены, что у родителя есть место для нового ключа.

B-TREE-SPLIT-CHILD(X, i) – для неполного внутреннего узла X вызвать разбиение полного потомка по указателю X.c_..

```
B-TREE-SPLIT-CHILD(X, i)
 Z = ALLOCATE-NODE() // новый узел-потомок X
 Z.leaf = Y.leaf // если Y - лист, то Z тоже
 Z.n = t - 1 // половина ключей Y уходит в Z
  for j = 1 to t - 1 // переносим их
      Z.key_i = Y.key_{i+t}
  if not Y.leaf // если у Y есть потомки
      for j = 1 to t // половину потомков Y
          Z.c_i = Y.c_{i+t} // переносим в Z
  Y.n = t - 1 // поправим счетчик ключей в Y
  for j = X.n + 1 downto i + 1
      X.c_{i+1} = x.c_i // сдвиг указателей на 1 вправо
 x.c_{i+1} = z // чтобы добавить указатель на Z
  // продолжение на следующем слайде
```

B-TREE-SPLIT-CHILD(X, i) – для неполного внутреннего узла X вызвать разбиение полного потомка по указателю X.c_..

```
B-TREE-SPLIT-CHILD(X, i)
... //начало на предыдущем слайде
for j = X.n downto i // сдвиг ключей в X вправо
X.key<sub>j+1</sub> = X.key<sub>j</sub> // на 1 для вставки медианы
X.key<sub>i</sub> = Y.key<sub>t</sub> // бывшего узла Y (до разбиения)
X.n = X.n + 1 // из-за этого +1 к ключам в X
DISK-WRITE(Y)
DISK-WRITE(Z)
DISK-WRITE(X)
```

Сложность разбиения O(t).

Как разбить полный корневой узел:

- Создаем новый пустой корневой узел и цепляем к нему потомком старый заполненный корневой узел.
- Вызываем B-TREE-SPLIT-CHILD на новом корневом узле. Старый корень распадется на 2 узла, они подцепятся к новому корню, бывшая медиана старого корня переместится в новый корень.
- В результате высота дерева увеличится на 1.
- Разбиение узлов единственный способ увеличить высоту В-дерева.

Пример вызова B-TREE-SPLIT-CHILD для полностью заполненного корня (t = 4): В отличие от бинарного дерева поиска, В-дерево растет вверх, а не вниз.

B-TREE-INSERT(T, k) добавляет ключ k в B-дерево T. Фактически вставка производится в B-TREE-INSERT-NONFULL.

```
B-TREE-INSERT(T, k)
  r = T.root
  if r.n == 2t - 1 // если корень заполнен
      s = ALLOCATE-NODE() // создаем новый узел
      T.root = s // делаем его корнем
      s.leaf = FALSE // у него будут потомки
      s.n = 0
      s.c<sub>1</sub> = r // цепляем к нему старый корень
      B-TREE-SPLIT-CHILD(s, 1) // старый корень
      B-TREE-INSERT-NONFULL(s, k)
  else
      B-TREE-INSERT-NONFULL(r, k)
```

B-TREE-INSERT-NONFULL(X, k) добавляет ключ k в неполный (обязательно!) узел X.

```
B-TREE-INSERT-NONFULL(X, k)
  i = X.n
  if X.leaf // если X - лист, в этот узел запишем ключ k
      // ищем позицию вставки справа налево, сдвигая обойденные ключи
на 1 вправо
      while i \ge 1 and k < X.key,
          X.key_{i+1} = X.key_i
            i = i - 1
      // добавляем ключ на освободившееся место
      X.\text{key}_{i+1} = k
      X.n = X.n + 1 // +1 к хранимым ключам
      DISK-WRITE(X)
     конец if, продолжение на следующем слайде
```

```
B-TREE-INSERT-NONFULL(X, k) добавляет ключ k в неполный (обязательно!) узел X.
B-TREE-INSERT-NONFULL(X, k)
  else // если же X - внутренний узел
      // надо найти потомка, куда будем писать
      while i \ge 1 and k < X.key,
           i = i - 1
      i = i + 1
      DISK-READ(X.c,)
      // если потомок полон, сначала разобъем его
      if X.c_{i}.n == 2t - 1
          B-TREE-SPLIT-CHILD(X, i)
          // в какого из новых потомков пойдем?
           if k > X.key,
               i = i + 1
      B-TREE-INSERT-NONFULL(X.c<sub>i</sub>, k)
```

Примеры ситуаций при вставке.

Исходное B-дерево, t = 3. Узел может содержать от 2-х до 5 ключей (корень должен содержать хотя бы 1).

Добавляем ключ В, он просто записывается в лист.

Добавляем ключ Q. Он должен попасть в лист RSTUV, но тот полон. Разбиваем его на RS и UV, T переносим в родительский узел, Q добавляем в левого потомка (RS).

Добавляем ключ L. По пути обнаруживаем, что корень полон, надо разбивать. Получаем новый корень P с потомками GM и TX. Высота дерева увеличилась на 1. L будет записан в лист JK.

Добавляем ключ F. Лист ABCDE полон, разбиваем на AB и DE. Ключ C переносим к родителю. F попадет в узел DE.

В рамках вызова B-TREE-INSERT-NONFULL производится O(1) вызовов DISK-READ и DISK-WRITE, значит вызов B-TREE-INSERT выполняет $O(h) = O(\log_+ N)$ дисковых операций.

Общая сложность алгоритма вставки ключа $0(t * h) = 0(t * log_t N)$.

Удаление сложнее вставки – удалять можно из произвольного узла, не только листа.

При вставке мы могли переполнить узел – превысить лимит на 2t - 1 ключ.

При удалении может произойти обратное – в узле станет менее t - 1 ключей.

При проходе по дереву в поиске удаляемого ключа будем принимать меры, чтобы у потомка, в который переходим, было по крайней мере t ключей (на 1 больше минимума).

B-TREE-DELETE(X, k) удаляет ключ k из поддерева c корнем в узле X.

Псевдокод слишком громоздкий, чтобы привести его на слайдах, поэтому просто рассмотрим возможные случаи. С псевдокодом можно ознакомиться по ссылке: https://sites.math.rutgers.edu/~ajl213/CLRS/Ch18.pdf (страницы 9 и 10)

- 1. Ключ k нашелся в узле X, X лист. Удаляем k из X.
- 2. Ключ k нашелся в узле X, X внутренний узел.
 - а) Если потомок Y, предшествующий k в узле X, содержит не менее t ключей. Для ключа k находим в узле Y предшественника -- k′. Рекурсивно удаляем k′ из Y, а в X вместо k ставим k′.
 - b) Если в потомке Y только t 1 ключ, то пытаемся произвести симметричные действия с потомком Z, следующим за k в узле X. Если в Z хотя бы t ключей, тогда для ключа k находим в узле Z последующий ключ -- k'. Рекурсивно удаляем k' из Z, а в X вместо k ставим k'.

В рамках вызовов B-TREE-DELETE производится O(h) вызовов DISK-READ и DISK-WRITE, значит происходит $O(h) = O(\log_+ N)$ дисковых операций.

Общая сложность алгоритма удаления ключа $O(t * h) = O(t * log_t N)$.

В-дерево: дисковый кэш

Назначение дискового кэша:

- Хранит содержимое страницы (узла дерева) в RAM.
- Если запрошенной страницы нет в RAM, и там для нее есть место, загружает ее содержимое с диска. Если места в RAM нет, вытесняет одну из загруженных страниц, при этом записывает ее актуальную версию на диск.
- Если запрошенная страница уже загружена в RAM, возвращает закэшированную версию.
- Буферизует запись в страницы.

В+-дерево

В⁺-дерево – разновидность В-дерева, в котором ассоциированные с ключами значения хранятся только в листьях.

Внутренние узлы хранят лишь копии ключей-разделителей и ссылки на потомков. Обычно В⁺-деревья также хранят в листьях ссылки на соседние листья.

В+-дерево и В-дерево

Преимущества В⁺-дерева:

- Во внутренних узлах не храним значения, поэтому в них помещается больше ключей.
 Это позволяет увеличить коэффициент ветвления дерева, уменьшить его высоту.
- Если листья связаны ссылками на соседей, удобно делать обход диапазонов ключей.

Недостатки:

 Внутренние узлы не могут содержать значений, поэтому всегда придется спускаться до листьев. В обычном В-дереве путь до значения может быть короче.

В+-дерево: использование

- В файловых системах. Например, NTFS, APFS, ext4 (использует extent trees -- модифицированные B⁺-деревья).
- В реляционных БД. Например, Microsoft SQL Server, Oracle (с 8-й версии), SQlite.
- No-SQL БД. Например, CouchDB, MongoDB (при использовании подсистемы хранения WiredTiger), Tokyo Cabinet.

Префиксное дерево содержит данную строку-ключ тогда и только тогда, когда эту строку можно прочитать на пути из корня до некоторого (единственного для этой строки) выделенного узла.

В отличие от бинарных деревьев поиска, ключ, идентифицирующий конкретный узел дерева, не явно хранится в данном узле, а задаётся положением данного узла в дереве. Получить ключ можно выписыванием подряд символов, помечающих рёбра на пути от корня до узла.

```
structure Node
     Children Node[Alphabet-Size]
     Is-Terminal Boolean
     Value Data-Type
end structure
```

```
Trie-Insert(x, key, value)
  for 0 ≤ i < key.length do
       if x.Children[key[i]] = nil then
            x.Children[key[i]] := Node()
       end if
            x := x.Children[key[i]]
  repeat
  x.Value := value
  x.Is-Terminal := True</pre>
```

Расход памяти и время работы

	В среднем случае	В худшем случае
Расход памяти	O(n)	O(n)
Поиск	O(n)	O(n)
Вставка	O(n)	O(n)
Удаление	O(n)	O(n)

Домашнее задание #06

• Реализация trie

Hапоминание отметиться на портале Vol 2

+ оставить отзыв после лекции

Спасибо за внимание

