

BAZY DANYCH teoria

dimon.work/kurs.html

Podstawowe pojęcia

Baza danych (BD) — zbiór powiązanych ze sobą danych

 System zarządzania bazą danych (SZBD) — zestaw narzędzi programowych do zarządzania danymi

> Database Management System, DBMS

odpowiada za:

- obsługę języka bazy danych
- przechowywanie i pobieranie danych
- optymalizację BD

Rodzaje SZBD

Plik – Serwer: MS Access

Pliki danych są centralnie przechowywane na serwerze plików, natomiast SZBD jest zainstalowany na każdym komputerze klienckim.

Klient – Serwer: MySQL, PostgreSQL...

Zarówno SZBD, jak i sama baza danych znajdują się na serwerze i są dostępne zdalnie z komputerów klienckich

Wbudowane: SQLite

lżejsza wersja SZBD często używana jako część aplikacji mobilnej.

Klient-Serwerowe SZBD

- MySQL
- PostgreSQL
- Oracle
- Ms SQL
- Maria DB (~ MysQL)

Wszystkie są **relacyjne**.

Wszystkie obsługują SQL

NIE relacyjne modele

HIERARCHICZNY

Hierarchiczny model - W tym modelu przechowywane dane są zorganizowane w postaci odwróconego drzewa. Informacja jest zawarta w dokumentach oraz w strukturze drzewa

NoSQL, mongoDB opierają się na hierarchiczne modele

NIE relacyjne modele

SIECIOWY

Zmodyfikowana wersja modelu hierarchicznego, pozwalająca na definiowanie relacji wiele-do-wielu w postaci struktury drzewiastej bez powtarzania poszczególnych wartości w ramach obiektu danych.... Rekordy zawierają pola przechowujące dane.

Relacyjne Modele

- Podstawą relacyjnych modeli jest algebra relacji.
- Algebra relacyjna definiuje system operacji na relacjach (tabelach):przecięcie, odejmowanie, łączenie itp.
- Wszystkie te operacje są wyrażone przez SQL (Structured Query Language)

Relacyjna Baza Danych

Relacyjna baza danych – to opisany i zorganizowany <u>zbiór tabel połączonych relacjami</u> – związkami między sobą. Ten sposób przechowywania informacji pozwala na uniknięcie redundancji (powtarzania się danych) oraz przeprowadzanie analiz na podstawie wielu tabel. Każda tabela składa się z rekordów (tak nazywamy pojedyncze wiersze). Poszczególne rekordy składają się z pól (komórek), przechowujących jedną daną.

Tabela

• Relacja – tabela

• Krotka – wiersz-

	4	contact_name character varying (30) △	address character varying (60)	city character varying (15)
	1	Maria Anders	Obere Str. 57	Berlin
	2	Ana Trujillo	Avda. de la Constitución 2222	México D.F.
Ī	3	Antonio Moreno	Mataderos 2312	México D.F.
	4	Thomas Hardy	120 Hanover Sq.	London
	5	Christina Berglund	Berguvsvägen 8	Luleå
	6	Hanna Moos	Forsterstr. 57	Mannheim
	7	Frédérique Citeaux	24, place Kléber	Strasbourg
	8	Martín Sommer	C/ Araquil, 67	Madrid
	9	Laurence Lebihan	12, rue des Bouchers	Marseille
	10	Elizabeth Lincoln	23 Tsawassen Blvd.	Tsawassen
	11	Victoria Ashworth	Fauntleroy Circus	London
	12	Patricio Simpson	Cerrito 333	Buenos Aires
	13	Francisco Chang	Sierras de Granada 9993	México D.F.

Klucz obcy

Klucz obcy (ang. foreing key) – to kolumna w tabeli, która ustanawia powiązanie między danymi w dwóch różnych tabelach. Tworzy relację między tabelami, odwołując się do kolumny (kolumn) klucza podstawowego innej tabeli.

Customer Table

Customer ID	Name	Address	Phone#	
	Primary Key	Da	tabaseTown.com	
Order Table		Foreign Key		
Order No.	Customer ID	Item ID	Order Detail	

jeden do jednego

• Relacja jeden do jednego - oznacza, że dla wiersza w tabeli A może istnieć <u>maksymalnie jeden</u> zgodny wiersz w tabeli B i odwrotnie

PrzewodniczącyKlas						
PrzewodniczacyID	Imie	Nazwisko	Telefon			
1	Zbigniew	Pracowity	693456945			
2	Andrzej	Sumienny	705763497			
3	Paweł	Cichy	623094886			
Klasy						

Klasy			
KlasalD	Nazwa	PrzewodniczacyID	LiczbaUczniów
1	ILO	2	30
2	III TI	1	25
3	IV TM	3	27

jeden do wielu

IV TM

Relacja jeden do wielu - jest najbardziej powszechnym rodzajem relacji. W przypadku relacji tego typu dla wiersza w tabeli A może istnieć wiele zgodnych wierszy w tabeli B. Natomiast dla wiersza w tabeli B może istnieć tylko jeden zgodny wiersz w tabeli A.

WychowawcyKlas						
Wychowa	awcalD	Imie	Nazwi	sko	Telet	fon
1	1	Jan	Mądry	,	6934	56945
2	2	Jadwiga	Mentor		7055	67497
:	3	Anna	Wesoł	a	6891	94886
	//					
Klasy						
KlasalD	Nazwa	Wychowaw	calD	LiczbaUcz	zniów	
1	ILO	1		30		
2	III TI	\ 1		25		
			_			

wiele do wielu

Relacja wiele do wielu - dla wiersza w tabeli A <u>może istnieć wiele</u> <u>zgodnych</u> wierszy w tabeli B i odwrotnie. Taka relacja jest tworzona przez zdefiniowanie <u>trzeciej tabeli</u>, nazywanej tabelą łączącą. Klucz podstawowy tabeli skrzyżowań składa się z <u>kluczy obcych</u> zarówno z tabeli A, jak i z tabeli B.

Tabela łącząca

Relacja wiele do wielu i tabela łacząca.

Normalizacja baz danych

Normalizacja baz danych - modyfikacja struktury bazy danych w celu zlikwidowania nadmiarowości danych, oraz ułatwić dostęp do danych. Wyróżniamy 3 podstawowe "standardy" poprawnego tworzenia bazy danych, czyli <u>3 postacie normalne.</u>

Atomowość – 1NF

Relacja jest w pierwszej postaci normalnej, jeśli wartości pól są atomowe, czyli zawierają pojedyńczą informacje.

Tabela nie normalizowana

StudentID	Imię i Nazwisko	Kursy
1	Jan Kowalski	Matematyka, Fizyka
2	Anna Nowak	Biologia, Chemia
3	Piotr Wiśniewski	Informatyka

Klasy — 2NF

Relacja jest w drugiej postaci normalnej, wtedy kiedy jest w pierwszej oraz każda tabela powinna przechowywać dane dotyczące tylko konkretnej klasy obiektów.

Tabela nie normalizowana

StudentID	Przedmiot	Ocena	Imię i Nazwisko Studenta	Kierunek Studiów
1	Matematyka	4.0	Jan Kowalski	Informatyka
1	Fizyka	3.5	Jan Kowalski	Informatyka
2	Matematyka	5.0	Anna Nowak	Matematyka

Tabele po normalizacji — **2NF**

1. Tabela Studenci (przechowuje dane o studentach):

StudentID	Imię	Nazwisko	Kierunek Studiów
1	Jan	Kowalski	Informatyka
2	Anna	Nowak	Matematyka

2. Tabela Oceny (przechowuje dane o ocenach studentów):

StudentID	Przedmiot	Ocena
1	Matematyka	4.0
1	Fizyka	3.5
2	Matematyka	5.0

Relacja jest w trzeciej postaci normalnej, wtedy kiedy jest w <u>drugiej postaci</u> <u>normalnej</u> oraz kolumna informacyjna <u>nie należąca do klucza nie zależy też od innej kolumny informacyjnej</u>, nie należącej do klucza. Każdy niekluczowy argument jest zależny tylko od klucza głównego a nie od innej kolumny.

Tabela nie normalizowana

ZamówienieID	KlientID	KlientNazwa	KlientAdres	Miasto	KodPocztowy
1	1	Kowalski	UI. Kwiatowa 10	Warszawa	00-001
2	2	Nowak	UI. Słoneczna 5	Kraków	30-001
3	1	Kowalski	UI. Kwiatowa 10	Warszawa	00-001

Problemy w tej tabeli:

•Tabela jest w 2NF, ponieważ dane dotyczące klientów zostały znormalizowane, ale jest problem z zależnością między KlientAdres, Miasto, i KodPocztowy. Miasto i KodPocztowy zależą od KlientAdres, a nie bezpośrednio od klucza głównego (ZamówienieID).

Tabele po normalizacji — **3NF**

1. Tabela Klienci (przechowuje dane o klientach):

KlientID	KlientNazwa	KlientAdres
1	Kowalski	Ul. Kwiatowa 10
2	Nowak	UI. Słoneczna 5

2. Tabela Adresy (przechowuje dane o adresach):

KlientAdres	Miasto	KodPocztowy
UI. Kwiatowa 10	Warszawa	00-001
UI. Słoneczna 5	Kraków	30-001

3. Tabela Zamówienia (przechowuje dane o zamówieniach):

ZamówienieID	KlientID
1	1
2	2
3	1