

Please write clearly in	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM01) Unit FP1 Pure Mathematics

Monday 8 May 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
TOTAL				

FM01

	Answer all questions in the spaces provided.				
1	By considering the derivative of $y=x^{\frac{1}{2}}$ when $x=25$, find an estimate for $\sqrt{25.4}$ [6 marks]				

Answer

2		The integral I is defined by	outsi b
		$I = \int_4^\infty x^{-3} \mathrm{d}x$	
2	(a)	Explain why I is an improper integral. [1 mark]	
2	(b)	Evaluate I showing the limiting process. [3 marks]	
		Answer	4

3 (a))	Show that	$(x+1)^3 - (x-1)^3 = 6x^2 + 2$	[1 mark]
	-			
3 (b)	Use the method of difference	ences to show that	
		∑ 2 r=	$\sum_{n=15}^{n} (6r^2 + 2) = n^3 + (n+1)^3 - k$	
	,	where k is a constant.		[4 marks]

4	(a)	Find the	general	solution	of the	equation
---	-----	----------	---------	----------	--------	----------

$$\sin\left(\frac{x}{3} + \frac{\pi}{6}\right) = -\frac{\sqrt{2}}{2}$$

Give your answer in terms of $\,\pi\,$

[4 marks]

Answer____

4 (b) Find the sum of the four smallest positive solutions of the equation

$$\sin\left(\frac{x}{3} + \frac{\pi}{6}\right) = -\frac{\sqrt{2}}{2}$$

Give your answer in terms of $\,\pi\,$

[3 marks]

·	·	·	·	·	

Answer_

The equation	
$z^2 - az + (b+i) = 0$	
where a and b are real constants, has two complex roots.	
One of the roots of the equation is $\ 2+i$	
Find the other root of the equation.	[5 marks]
Answer	

A curve has equation $y = px^2 - 3x$ where p is a constant.	
A line passes through two points on the curve, one where $x = 7$ and the other where $x = 7 + h$	
Find the gradient of this line in terms of p and h	
Give your answer in its simplest form.	[3 marks
	•
Answer	
The curve has a stationary point at the point where $x = 7$	
	[2 marks
The curve has a stationary point at the point where $x = 7$	
The curve has a stationary point at the point where $x = 7$	
The curve has a stationary point at the point where $x = 7$	
The curve has a stationary point at the point where $x = 7$	[2 marks
The curve has a stationary point at the point where $x = 7$ Use your answer to part (a) to find the value of p	[2 marks

The quadra	tic equation
	The quadra

$$3x^2 - 2x + 9 = 0$$

has roots $\, \alpha \,$ and $\, \beta \,$

7	(a)	Write down the value of	$\alpha + \beta$	and the value of	αB
•	(ω)	Willia down the value of	$\alpha \cdot \rho$	and the value of	$\omega \rho$

[2 marks]

$$\alpha + \beta = \underline{\hspace{1cm}} \qquad \alpha \beta = \underline{\hspace{1cm}}$$

7	(h)	Hence show that	$\alpha^2 + R^2 = -$	50
•	(6)	Tichice Show that	$\alpha + \rho$	9

[2 marks]

Do not write outside the box

7 (c)	Find a quadratic equation, with integer coefficients, which has roots $ {\it a}^{ 4} $ and	d β^4 [4 marks]
	Answer	

8		The function f is defined by	
		$f(x) = \frac{x^2}{(x-1)(x+2)}$	
		(x-1)(x+2)	
8	(a)	Write down the equations of the asymptotes of the graph of $y = f(x)$	
	. ,		[2 marks]
		Answer	
8	(b)	It is given that the line $y = k$, where k is a constant, intersects the graph of	y = f(x)
		Find the set of possible values of k	
			[3 marks]
		Answer	
		WIISMEI	
8	(c)	Hence find the coordinates of the stationary points of the graph of $y = f(x)$	
			[3 marks]
		Anauran	
		Answer	

Do	not	write
ou	tside	e the
	ha	

8	(d)	Show that the graph of $y = f(x)$ intersects its horizontal asyn	nptote at one point.
		Find the coordinates of this point.	[2 marks]
		Answer	
3	(e)	Sketch the graph of $y = f(x)$ on the axes below.	
		Show the coordinates of the stationary points Show the coordinates of the point of intersection of the graph whorizontal asymptote.	vith its
		nonzoniai asymptote.	[3 marks]
		~ _	
		Ø	r.

9 (a	1)	Show that
		$\sum_{r=1}^{n} (r^{3} + r^{2}) = \frac{1}{12} n(n+a)(n+b)(cn+a)$
		where $a,\ b$ and c are integers.
		[4 marks]

9	(b)	Find all the possible values of n in the range $1 \le n \le 50$ such that $\sum_{r=1}^{n} (r^3 + r^3)$	2)	
		is divisible by 37	[2 manusa]	
			[3 marks]	
				Γ
		Answer		
			_	
		Turn over for the next question		

10	The locus of a point P is such that the distance from P to the point $(1,0)$ is equal to half the distance from P to the line $x = 4$	
	The locus of P is the curve E	
10 (a)	Show that the equation of E is $\frac{x^2}{4} + \frac{y^2}{3} = 1$	[3 marks]
10 (b)	The rectangular hyperbola H has equation $xy=\sqrt{3}$ Find the coordinates of the two points of intersection of H and E	[4 marks]

_			
	Answer		
Sketch H and E	on the axes below, showing	all significant feature	es. [4 marks]
	N. F.		
	n		2

Turn over ▶

11 The circle C is the locus of points on an Argand diagram such that

$$|z-3|=2$$

The point Q is the centre of C

The line L is the locus of points on an Argand diagram such that

$$|z-3| = |z+3-3i|$$

The point P is the point on L which is closest to C

11 (a) On the Argand diagram, draw C and L, and mark the points P and Q

[4 marks]

Do not write outside the

the quadrilateral PTQS	[5 mark
Answer	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

