TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02B, 10 dez 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\int_0^\infty \frac{x \sec(kx)}{1 + \left(\frac{x}{a}\right)^2} \, dx = \operatorname{snl}(k) \frac{\pi a^2 e^{-a|k|}}{2}, \qquad a > 0, \qquad \operatorname{snl}(k) = \begin{cases} +1, & k > 0 \\ 0, & k = 0 \\ -1, & k < 0 \end{cases}$$

calcule a transformada de Fourier de

$$f(x) = \frac{x}{1 + \left(\frac{x}{a}\right)^2}, \qquad a > 0.$$

SOLUÇÃO DA QUESTÃO:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x}{1 + \left(\frac{x}{a}\right)^2} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x}{1 + \left(\frac{x}{a}\right)^2} \left[\cos(kx) - i\sin(kx)\right] dx$$

$$= \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x\cos(kx)}{1 + \left(\frac{x}{a}\right)^2} dx - \frac{i}{2\pi} \int_{x=-\infty}^{+\infty} \frac{x\sin(kx)}{1 + \left(\frac{x}{a}\right)^2} dx$$

$$= -\frac{i}{\pi} \int_{x=0}^{+\infty} \frac{x\sin(kx)}{1 + \left(\frac{x}{a}\right)^2} dx$$

$$= -\frac{i}{\pi} \sin(k) \frac{\pi a^2 e^{-a|k|}}{2}$$

$$= -i \sin(k) \frac{a^2 e^{-a|k|}}{2} \blacksquare$$

2 [25] Sem utilizar frações parciais, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

Uso o teorema da convolução,

$$\mathcal{L}[f*g] = \overline{f}(s)\overline{g}(s) \Rightarrow \mathcal{L}^{-1}\left\{\overline{f}(s)\overline{g}(s)\right\} = \int_{\tau=0}^t f(\tau)g(t-\tau)\,\mathrm{d}\tau.$$

Mas

$$\overline{f}(s) = \frac{1}{s} \Rightarrow f(t) = 1, \ \overline{g}(s) = \frac{1}{s^2 + 4} \Rightarrow g(t) = \frac{\operatorname{sen}(2t)}{2},$$

donde

$$\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\} = \int_{\tau=0}^{t} \frac{\sin(2(t-\tau))}{2} \,\mathrm{d}\tau = \frac{1-\cos(2t)}{4} \,\blacksquare$$

 $\mathbf{3}$ [25] O produto interno canônico de duas funções *reais* F(x) e G(x) no intervalo [a,b] é

$$\langle F, G \rangle \equiv \int_a^b F(x)G(x) \, \mathrm{d}x.$$

Sejam f(x) uma função real qualquer em [a, b], e

$$F(x) = xf(x),$$

$$G(x) = \frac{\mathrm{d}f}{\mathrm{d}x}.$$

Usando a desigualdade de Schwarz, obtenha o lado direito (ou seja: preencha os 3 pontos) de

$$\left| \int_{a}^{b} x f(x) \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x \right| \leq \dots$$

SOLUÇÃO DA QUESTÃO:

$$\left| \langle F, G \rangle \right| \le \sqrt{\langle F, F \rangle} \sqrt{\langle G, G \rangle};$$

$$\left| \int_{a}^{b} x f(x) \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x \right| \le \left[\int_{a}^{b} |x f(x)|^{2} \, \mathrm{d}x \right]^{1/2} \left[\int_{a}^{b} \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|^{2} \, \mathrm{d}x \right]^{1/2} \blacksquare$$

4 [25] Sabendo que

$$\mathscr{F}\left\{e^{-m|x|}\right\} = \frac{1}{\pi} \frac{m}{(m^2 + k^2)},$$

e utilizando o teorema de Parseval na forma

$$\int_{x=-\infty}^{+\infty} |f(x)|^2 dx = 2\pi \int_{k=-\infty}^{+\infty} |\widehat{f}(k)|^2 dk,$$

obtenha

$$\int_{k=0}^{\infty} \frac{m^2}{(m^2 + k^2)^2} \, \mathrm{d}k.$$

SOLUÇÃO DA QUESTÃO:

$$\int_{x=-\infty}^{+\infty} \left(e^{-m|x|} \right)^2 dx = 2\pi \int_{k=-\infty}^{+\infty} \left(\frac{1}{\pi} \right)^2 \frac{m^2}{(m^2 + k^2)^2} dk$$

$$\int_{x=-\infty}^{+\infty} e^{-2m|x|} dx = \frac{2}{\pi} \int_{k=-\infty}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$2 \int_{x=0}^{+\infty} e^{-2mx} dx = \frac{4}{\pi} \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$2 \times \frac{1}{2m} = \frac{4}{\pi} \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk$$

$$\frac{\pi}{4m} = \int_{k=0}^{+\infty} \frac{m^2}{(m^2 + k^2)^2} dk \blacksquare$$