Dot Density Mapping II

GEOG380 FA 2018

Contents

- Combining dot size and dot value
- Proportional symbol and dot mapping
- Perceptual issues

Effect of combining dot-value and dot-size (recall 'Dot Density Mapping 1' lecture note)

Land in Potato Production

Wisconsin, 1947

The number in each map represents the unit value (in hectares) of a dot.

Q. The best one?

(source: Slocum et al.)

True and conceptual points

- Think about how the map scale matches spatial distribution of the phenomena
 - True points are always at correct (true) locations
 - Conceptual points can "move" around the map
 - Which points are true and which are conceptual below? How do you know?

Central PA annual snowfall

Central PA population

Proportional Symbol Mapping

- Uses a selected symbol varied by size throughout the map based on proportions of the quantities it represents
- ▶ Good for mapping...
 - total counts, OK with ratios
- Bad for mapping...
 - density or standardized information
 - Standardized values do not tell the original values
 - > ex) choropleth mapping
 - A symbol varied by size does not fill out a unit area with the symbol
 → may lead misunderstanding

Central PA population

Handling overlap on proportional symbol maps

FIGURE 17.15 Effect of varying the amount of overlap: (A) too much overlap—the map appears crowded; (B) not enough overlap—the map appears empty; (C) and (D) are examples of maps having an appropriate amount of overlap.

Choice of the symbol in Proportional Symbol Maps

- Any symbol can be used, but circles and squares are preferred. Why?
 - Compact geometric form

- More visually stable than other symbols
 - Less eye movement around the map

Scaling such symbols without computer is less difficult than other symbols

"Continuous" scaling of the symbols

Mathematical scaling

- Simple linear formulas used for standard geometric symbols such as circles, squares, cubes, and spheres
 - E.g. if data values of a point object are 4 times larger than other data values, then the area of the point symbol is 4 times as large.

Perceptual scaling

Follows a psychological scaling based on experiments so that a perceived size matches true values for human

Exercise: Scaling the symbols – perceptual issues

Which of the circles is twice as big as the upper one?

Scaling the symbols (cont.)

- Mathematical scaling
 - Area of points proportional to data
 - ▶ E.g. if data value is 10 times the other data value, then the area of the point symbol is 10 times as large.
- Map readers tend to underestimate the size of larger symbols
 - Suggested solution
 - Perceptual scaling to account for people's underestimation

Scaling with perception

- Perceptual / Psychological Scaling
 - Adjusts size to account people's underestimation
 - One common power function is the Flannery Scaling method (J.J. Flannery, 1971).
 - E.g., square root scaling to 0.57
 - Nonlinear scale

Square symb	ols	less	sensitive	to
perceptual et	ffect	ts		

Data	10	100
Mathematical		
Flannery		

(The lower circle is increased by a power function using square root scaling to 0.57 to account for the user's underestimation of the change in areas.)

Group Activity

Linear & Perceptual Scaling using ArcGIS

- Download the dataset "proportional symbol.zip" from the BeachBoard and unzip to your own USB drive. You will see shapefile data of partial areas of LA County.
- Open proportional symbol.mxd in the dataset in ArcMap.
- Open layer properties window of sample_LACounty layer.
- Go to Symbology tap > Quantities > Proportional Symbols.
- See how the symbols are shown in different proportions in the map.
- Check "Appearance Compensation (Flannery)" option in the Layer Properties window and see what happens in the map.

Scaling (cont.)

- Spatial context plays cognitive tricks on us
 - ▶ The Ebbinghaus illusion
 - Q.Which of the two circles in the center looks bigger?

 These problems suggest need for alternative solutions for comparison of different sizes of symbols

Scaling the symbols - classification

- Range-graded symbols can avoid the perceptual problem
 - E.g., choropleth mapping
- Divide data into groups or classes and represent them with symbols with different sizes

 Symbols only convey ordination, actual values (value ranges) found in the legend as labels

Geometric vs. pictographic symbols

- Geometric symbols
 - Easy to model size & quantity relationship
- Pictographic symbols
 - Intuitive to readers
 - Can get cluttered on the map

Summary

- Qualitative dot mapping
 - Visual variables for dots
- Proportional symbol and dot mapping
 - Size and placement of symbols
 - Perceptual issues
- Demonstration of dot-values and dot-size using ArcGIS

Introduction to Term Project and Project Memo (PM) I

Until next time...

- Reading
 - Ch. II
- ▶ Term Project introduction
 - Due Oct. 30
- WS3
 - Due today
- ▶ Test2 on Nov. 6