1: Let $F = x^3 + y^3 - 2xyz$, and consider $\mathbb{V}(F) \subset \mathbb{P}^2_{\mathbb{C}}$.

- (a) The tangent line to $\mathbb{V}(F)$ at [1:1:1] is the projective closure of the tangent line to V(f) at (1,1)where $f = x^3 + y^3 - 2xy$. The tangent line to V(f) at (1,1) is $f_x(1,1)(x-1) + f_y(1,1)(y-1)$. Now $f_x = 3x^2 - 2y$ and $f_y = 3y^2 - 2x$, so $f_x(1,1) = 1 = f_y(1,1)$, so $T_{(1,1)}V(f) = V(x+y-2)$. Hence the tangent line to $\mathbb{V}(F)$ becomes $\mathbb{V}(x+y-2z)$.
- (b) P is a singular point of $\mathbb{V}(F)$ if and only if $F(P)=F_x(P)=F_y(P)=F_z(P)=0$. Now, $F_x=3x^2-2yz$, $F_y=3y^2-2xz$ and $F_z=-2xy$. If x=0 then y=0, so $z\neq 0$. If y=0 then x=0so $z \neq 0$. Since F_z must be zero at a singular point, either no singular point is in U_3^c . So the only singular point is [0:0:1].
- (c) The multiplicity of [0:0:1] is the multiplicity of (0,0) for $f=x^3+y^3-2xy$ which is 2 and the tangent cone is $V(xy) = V(x) \cup V(y)$.

- 2: Let $f=y^4+y^3-x^2$, and consider $V(f)\subset \mathbb{A}^2_{\mathbb{C}}$. (a) The homogenization of f is $F=y^4+y^3z-x^2z^2$, so the projective closure of V(f) is $\mathbb{V}(y^4+y^3z-x^2z^2)$.
- (b) F is Eisenstein in x^2 , and hence irreducible. Now $F_x = -2xz^2$, $F_y = 4y^3 + 3y^2z$ and $F_z = y^3 2zx^2$. If x=0 then y=0, so $z\neq 0$. If z=0 then y=0, so $x\neq 0$. So the only singular points are [0:0:1] and [1:0:0].
- (c) The multiplicity of [0:0:1] is the multiplicity of (0,0) of f which is 2 and the tangent cone is $V(x^2) = V(x)$ so the tangent cone for [0:0:1] is $\mathbb{V}(x)$. The mult of [1:0:0] is the mult of (0,0) of $g=y^4+y^3z-z^2$ which is 2 and the tangent cone of [1:0:0]is $\mathbb{V}(z)$.

3: (a)

$$\begin{split} I_P(xy+y^3,x^2+2xy+y^3) &= I_P\left(y(x+y^2),x(x+y)\right) \\ &= I_P(y,x) + I_P(y,x+y) + I_P(x+y^2,x) + I_P(x+y^2,x+y) \\ &= 1+1+2+I_P(y(y-1),x+y) \\ &= 4+\underbrace{I_P(y,x+y)}_{=1} + I_P(y-1,x+y) \end{split}$$

If we instead follow the algorithm:

First reduce to $I_P(y, x^2 + 2xy + y^3) + I_P(x + y^2, x^2 + 2xy + y^3)$ by (6).

Now, the first one reduces to $I_P(y, x^2) = 2$.

The second is $I_P(x+y^2,2xy) = I_P(x+y^2,x) + I_P(x+y^2,y) = 2+1=3$. So we recover $I_P(xy+y^3,x^2+2xy+y^3) = 5$.

(b) We have that the tangent cone of y^2-x^3 is V(y) and the tangent cone of $xy+x^4+y^4$ is $V(x)\cup V(y)$. Let $f=y^2-x^3$ and $g=xy+x^4+y^4$. Then $f(x,0)=-x^3$ and $g(x,0)=x^4$. We have case 2 in (6), with deg $f\leq \deg g$, so write $h_2=g+xf=xy+y^4+xy^2$. Then $I_P(f,g)=I_P(f,h_2)$.

Now back to step (2).

 $h_2 = y(x + y^3 + xy)$, so h_2 and f have no common factor.

- $(3) (0,0) \in V(f) \cap V(h_2).$
- (4) Now the tangent cone of h_2 is $V(xy) = V(x) \cup V(y)$, so V(y) is again in common. Now $h_2(x,0) = 0$, so $\deg h_2(x,0) \leq \deg f(x,0)$. Write $h_2 = yh$, so $h = x + y^3 + xy$. Now, by (6), we have $I_P(f,h_2) = I_P(y,f) + I_P(h,f)$, and $I_P(y,f) = 3$, and $I_P(h,f) = I_P(x+y^3+xy,y^2-x^3)$. Back to (2). Tangent cone of $x+y^3+xy$ is V(x) and tangent cone of y^2-x^3 is V(y). No lines in common, so $I_P(x+y^3+xy,y^2-x^3) = \operatorname{mult}_{(0,0)}(x+y^3+xy)\operatorname{mult}_{(0,0)}(y^2-x^3) = 2$. Thus $I_P(f,g) = 3+2=5$.

(c) Let $f = x^2 + y^2 + x^4y^4$ and $g = x^3 - y^3 + 3xy^5$.

We have that the tangent cone of f at P is $V(x^2 + y^2)$ and the tangent cone of g at P is $V(x^3 - y^3) =$ $V((x-y)(x^2+xy+y^2))=V(x-y)\cup V(x^2+xy+y^2)$. Since they have no lines in common, we have $I_P(f,g) = \text{mult}_P(f)\text{mult}_P(g) = 2 \cdot 3 = 6.$

4: Let $\alpha = \frac{x^2 + xy}{3y^2} \in k(\mathbb{P}^1)$. What is the value of α at $[1:3] \in \mathbb{P}^1$? Where is α defined?

Solution: Since α is a fraction of homogeneous polynomials and $3y^2$ is nonzero at [1:3], we have that α is defined at [1:3] and is given by $\frac{1^2+1\cdot 3}{3\cdot 3^2}=\frac{4}{27}$. Now α is defined whenever $y\neq 0$, so α is defined on U_2 .

5: It is by definition of closure an algebraic set.

Suppose $\overline{\varphi(X)} = U \cup V$ with U and V algebraic sets which are both proper subsets of $\overline{\varphi(X)}$. We have $\varphi^{-1}(U \cup V) = \varphi^{-1}(U) \cup \varphi^{-1}(V) \supset X$, hence $X = U' \cup V'$ where $U' = \varphi^{-1}(U) \cap X$ and $V' = \varphi^{-1}(V) \cap X$ which are both open. Hence U' = X without loss of generality. So $\varphi^{-1}(U) = X$, but then $\varphi(X) = \varphi\left(\varphi^{-1}(U)\right) \subset U$, so $\overline{\varphi(X)} \subset \overline{U}$. Now We know U is open, and since $U \cup V = \overline{\varphi(X)}$, we have that U is closed in $\overline{\varphi(X)}$, so since $\overline{\varphi(X)}$ is closed in \mathbb{A}^m , we have that U is closed in \mathbb{A}^m too. So U is both closed and open. Hence $\overline{U} = U$, so $\overline{\varphi(X)} = U$, contradiction.

- **6:** Let $\varphi \colon \mathbb{A}^1 \to \mathbb{A}^3$ be the morphism given by $t \mapsto (t, t^2, t^3)$. Let x, y, z be the coordinates on \mathbb{A}^3 . (a) We have that $\Gamma(\mathbb{A}^3) = k [x, y, z] / I (\mathbb{A}^3) = k [x, y, z] / (0) = k [x, y, z]$, and similarly, $\Gamma(\mathbb{A}^1) = k [t]$. Now $\varphi^*(x)(t) = x (\varphi(t)) = x(t, t^2, t^3) = t$, $\varphi^*(y)(t) = y (t, t^2, t^3) = t^2$ and similarly, $\varphi^*(z)(t) = t^3$.
- (b) The image of φ is indeed closed as it is $V\left(y-x^2,z-x^3\right)$. Namely, for any $t\in\mathbb{A}$, we have $\varphi(t)=\left(t,t^2,t^3\right)$ which clearly lies in $V(y-x^2,z-x^3)$. Conversely, if $(x,y,z)\in V(y-x^2,z-x^3)$ then $y=x^2$ and $z=x^3$, so $(x,y,z)=(x,x^2,x^3)=\varphi(x)\in\mathrm{Im}\,\varphi$.

In fact, this also follows directly from the fact that φ^* maps $x \mapsto t$ and is thus surjective. By a proposition, we then have that Im φ is an algebraic set and even that φ is an isomorphism of the domain onto its image.

(c) This follows from the last comment of (b).

Alternatively, the map $\psi \colon \mathbb{A}^3 \to \mathbb{A}^1$ by $(x,y,z) \mapsto x$ is a polynomial map given by $P \mapsto (T(P))$ where T(x,y,z) = x. Furthermore, suppose $(x,y,z) \in \text{Im } \varphi$. Then $\varphi \circ \psi(x,y,z) = \varphi(x) = (x,x^2,x^3) = (x,y,z)$, and $\psi \circ \varphi(x) = \psi(x,x^2,x^3) = x$, so indeed φ is an isomorphism.

(d) We have

$$\varphi^{-1}(V(yz-x^5)) = V(\varphi^*(yz-x^5)) = V(t^2t^3-t^5) = V(0) = \mathbb{A}^1.$$

7: Let $X=V\left(x^2z,x^2+xz+yz+y^2\right)\subset\mathbb{A}^3_{\mathbb{C}}.$ If $x^2z=0$ then either x=0 or z=0. Suppose x=0, then $yz+y^2=y(z+y)=0$, so either y=0 or z=-y.

If instead z=0 then $x^2+y^2=(x+iy)(x-iy)=0$, so either x=-iy or x=iy. Thus

$$X = V(x, z + y) \cup V(x + iy) \cup V(x - iy)$$

where $V(x,y) \subset V(x+iy)$.

These are irreducible since $\Gamma(V(x,z+y))\cong k\left[x\right]$ which is an integral domain, so $I\left(V\left(x,z+y\right)\right)$ is prime and hence V(x,z+y) is irreducible. Now V(x+iy) and V(x-iy) are irreducible since $\Gamma(V(x+iy))\cong k\left[t,s\right]\cong \Gamma(v(x-iy))$ which is also an integral domain.

8: Let $J = (y^2 - x^2, y^2 + x^2) \subset \mathbb{C}[x, y]$.

(a) If
$$(x, y) \in V(J)$$
 then $y^2 - x^2 = 0 = y^2 + x^2$ so $x = 0$ and hence $y = 0$. So $V(J) = \{(0, 0)\}$.

(b)
$$\dim_{\mathbb{C}} \mathbb{C}[x, y] / J = \dim_{\mathbb{C}} \mathbb{C}[x, y] / (y^2 - x^2, y^2 + x^2)$$

In $\mathbb{C}\left[x,y\right]/J$, we have that $y^n=y^2y^{n-2}=0$ for $n\geq 2$ since $\frac{1}{2}\left[y^2-x^2+y^2+x^2\right]=y^2\in J$ and similarly $x^2=0$. Hence $\mathbb{C}\left[x,y\right]/J$ is generated by $\{1,x,y,xy\}$, so $\dim_{\mathbb{C}}\mathbb{C}\left[x,y\right]/J=4$.

(c)

$$I_{(0,0)}(y^2 - x^2, y^2 + x^2) = I_{(0,0)}(y^2 - x^2, 2y^2) = I_{(0,0)}(-x^2, 2y^2) = I_{(0,0)}(x^2, y^2) = 4I_{(0,0)}(x, y) = 4.$$

- (d) We have that $\mathbb{V}(J)$ is the projectivization of $V(J) = \{(0,0)\}$, so $\mathbb{V}(J) = \emptyset$.
- **9:** Find the projective closure of $V(x+y^3+z)\subset \mathbb{A}^3$ in \mathbb{P}^3 . Is it smooth?

Solution: The projective closure is the vanishing of the homogenization:

$$\mathbb{V}\left(xw^2 + y^3 + zw^2\right) \subset \mathbb{P}^3$$

This is smooth if it has no singular points. Now $xw^2+y^3+zw^2$ is Eisenstein in w^2 , and hence has no repeated factors. So a point $P\in\mathbb{P}^3$ is singular if and only if for $F=xw^2+y^3+zw^2$, we have $F(P)=F_x(P)=F_y(P)=F_z(P)=0$. Now $F_x=w^2,F_y=3y^2,F_z=w^2,F_w=2xw+2zw$. So if P=[x,y,z,w] then w=y=0. So any points of the form $\{a:0:b:0\}$ for either $a\neq 0$ or $b\neq 0$ is singular. Hence the closure is not smooth. This can be verified since e.g. $[1:0:0:0]\in U_1$ and hence letting $f=w^2+y^3+zw^2$, we have that $f_y=3y^2,f_z=w^2,f_w=2w+2zw$ all of which disappear at (0,0,0), so (0,0,0) is a singular point of V(f) and hence [1:0:0:0] is a singular point of $V(xw^2+y^3+zw^2)$.

10:

- (1) Suppose L is a finite extension of k. This means that [L:k] is finite, i.e., that L as a k-vector space has finite dimension, which means that there exist l_1, \ldots, l_n such that $L = \sum k l_i$, i.e., L is finitely generated as a k-module. Now, L is an algebraic extension over k if for any $l \in L$, there exists some polynomial $f \in k[x]$ such that f(l) = 0. Now, $1, l, l^2, \ldots, l^n$ are linearly dependent as the dimension of the k-vector space L is n, so there exist k_0, \ldots, k_n such that $k_0 + k_1 l + \ldots + k_n l^n = 0$ and hence the polynomial $f = k_0 + k_1 x + \ldots + k_n x^n \in k[x]$ is a polynomial such that f(l) = 0, so l is algebraic over k. As l was arbitrary, we have that L is an algebraic extension of k.
- (2) False. Not all algebraic extensions are finite. Consider $k = \mathbb{Q}$ and $L = \mathbb{Q}\left[\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \ldots\right]$. Then L is clearly algebraic over k; however, L is not a finite extension as a basis is the infinite set $\left\{\sqrt[n]{2}\right\}_{n\geq 2}$.
- (3) True. Suppose $\varphi \colon X \to Y$ is an isomorphism with inverse $\psi \colon Y \to X$. Let first $y \in Y$. Then $\varphi (\psi(y)) = y$, so φ is surjective. Now If $x, x' \in X$ with $\varphi(x) = \varphi(x')$ then $x = \psi (\varphi(x)) = \psi(\varphi(x')) = x'$. So φ is injective.
- (4) Consider the map $\varphi \colon \mathbb{A}^1 \to V\left(y^3 x^2\right)$ by $t \mapsto (t^2, t^3)$. This is a bijection on points, however, φ is not an isomorphism, since

$$\Gamma(A^1) = k[x] \not\cong k[x, y]/(y^3 - x^2)$$

since the first is UFD, however, in $k[x,y]/(y^3-x^2)$, we have $y^3=x^2$, so since y and x are irreducible, we have that y is associate to x, which is a contradiction.

- (5) False. E.g. I is closed in the classical topology on \mathbb{A}^1 , however not in the Zariski topology since an infinite solution set implies that the function is identically zero.
- (6) True. The Zariski topology is coarser than the classical topology. This follows as polynomial maps are continuous.
- (7) False. $(xy) \subset (x)$ but $(1,0) \in V((xy))$ while $(1,0) \notin V(x)$, so $V((xy)) \not\subset V(x)$.
- (8) True.
- (9) False. $[0:1] \in Y = \{[1:0], [0:1]\}$, however $C(Y) = V(x) \cup V(y) \not\subset V(y)$ since $(0,1) \in C(Y)$ but $(0,1) \notin V(y) = C(X)$.
- (10) False. x vanishes on $\mathbb{V}(x)$ and y vanishes on $\mathbb{V}(y)$ but $x + y \in \mathbb{I}(\mathbb{V}(x)) + \mathbb{I}(\mathbb{V}(y)) = (x) + (y)$ does not vanish one $\mathbb{V}(x) \cup \mathbb{V}(y)$ since $[1:0] \in \mathbb{V}(x) \cup \mathbb{V}(y)$ but $(x+y)([1:0]) = 1 \neq 0$.
- (11) True.
- (12) False. Let $J=(x^2y^2)$. Then $[1:0] \in \mathbb{V}(J)$ and so $x \in \mathbb{I}(\mathbb{V}(J))$, however, $x \notin (x^2y^2)$ since we are dealing with an integral domain, so the degrees add.
- (13) It suffices to show it in the affine variety, since the projective tangent space of a projective alg set $X \subset \mathbb{P}^n$ at $P \in X$ with $P \in U_i$ is the projective closure of $T_P(X \cap U_i) \subset U_i$ and the projective

tangent cone of X at P is the projective closure of $TC_P(X \cap U_i)$. In the affine case, if we write $f = f_1 + \dots f_m$, then if $f_1 \neq 0$, we have that $T_P(X \cap U_i) = TC_P(X \cap U_i)$. If $f_1 = 0$ then $T_P(X \cap U_1) = \mathbb{A}^{n+1}$ and $TC_P(X \cap U_i) \subset \mathbb{A}^{n+1}$.

- (14) Not true. E.g. for $x^2 \in k[x,y]$, the tangent space is \mathbb{A}^2 but the tangent cone is V(x) which does not contain all of \mathbb{A}^2 .
- (15) True.
- (16) Not true. For example, (xy) is a radical ideal, however, it is not prime since $xy \in (xy)$ while neither x nor y are in (xy).

It is radical since if $f^n \in (xy)$ then $f^n = xy\alpha$ so $x, y \mid f^n$ and as x and y are irreducible, we have $x, y \mid f$ so $f \in (xy)$.

11: Let $C = V\left((x-x_0)^2 + (y-y_0)^2 - r^2\right) \subset \mathbb{A}^2_{\mathbb{C}}$ be a circle with center (x_0, y_0) and radius r.

(a) Let $\overline{C} \subset \mathbb{P}^2_{\mathbb{C}}$ be the projective closure of C, given by $\mathbb{V}\left((x-zx_0)^2+(y-zy_0)^2-(zr)^2\right)$. Then, the tangent line to \overline{C} at [1:i:0] is the tangent line to $V\left((1-zx_0)^2+(y-zy_0)^2-(zr)^2\right)$ at (i,0). Let $\varphi \colon \mathbb{A}^2 \to \mathbb{A}^2$ be the translation $(0,0) \mapsto (i,0)$. Then the tangent line $T_{(i,0)}V\left((1-zx_0)^2+(y-zy_0)^2-(zr)^2\right)$

$$\varphi\left(T_{(0,0)}V\left((1-zx_0)^2+(y+i-zy_0)^2-(zr)^2\right)\right)$$

Inserting (0,0), we get 0, and the degree one polynomial part is $-2zx_0+2iy-2iy_0z=2\left(-z\left(x_0+iy_0\right)+iy\right)$. So the tangent line is $V\left(-z(x_0+iy_0)+iy\right)$ which maps under φ to $V\left(-z(x_0+iy_0)+i(y-i)\right)$ whose projective closure is

$$\mathbb{V}\left(-z(x_0+iy_0)+i(y-xi)\right)$$

Similarly, for [1:-i:0], we get

$$\varphi\left(T_{(0,0)}V\left((1-zx_0)^2+(y-i-zy_0)^2-(zr)^2\right)\right)$$

so the internal polynomial becomes $2x_0z - 2iy_0z + 2iy$ which is mapped to

$$V(2x_0z - 2iy_0z + 2i(y+i))$$

whose projective closure becomes

$$\mathbb{V}(2x_0z - 2iy_0z + 2i(y + ix)) = \mathbb{V}(z(x_0 - iy_0) + i(y + ix))$$

- (b) In (a) we found that the projective tangent line is not dependent on the radius r, so $\overline{C_1}$ and $\overline{C_2}$ have the same tangent line at [1:i:0] and [1:-i:0] and are thus tangent at these points.
- (c) Let f be the equation for the circle C_1 and g the equation for the circle C_2 . Let F and G be the homogenizations. The intersection of C_1 and C_2 in $\mathbb{A}^2_{\mathbb{C}}$ is empty if

$$\sum_{P \in \mathbb{A}^2_{\mathbb{C}}} I_P(f, g) = 0$$

by (2) in intersection multiplicities. But

$$\sum_{P \in \mathbb{A}^{2}_{\mathbb{C}}} I_{P}(f, g) = \sum_{P \in \mathbb{P}^{2}} I_{P}(F, G)$$

Now, Bezout's theorem gives that $\sum_{P\in\mathbb{P}^2} I_P(F,G) = 4$ if $\mathbb{V}(F,G)$ is finite, i.e. if F and G share no components. But if $\alpha \mid F,G$ then $\alpha \mid G-F=(zr_F)^2-(zr_G)^2=z^2\left(r_F+r_G\right)\left(r_F-r_G\right)$, so assume wlog. that $\alpha=z$. However, $z \nmid F,G$ since $z \nmid 1+y^2$.

Thus $\sum_{P\in\mathbb{P}^2}I_P(F,G)=4$. Now, we want to calculate $I_{[1:i:0]}(F,G)$. We will assume without loss of generality that P=(0,0). Thus F becomes $x^2+y^2-(zr_F)^2$ and G becomes $x^2+y^2-(zr_G)^2$. Now, we

want to calculate

$$\begin{split} I_{(i,0)}(1+y^2-(zr_F)^2,1+y^2-(zr_G)^2) &= I_{(0,0)}\left(\varphi^*\left(1+y^2-(zr_F)^2\right),\varphi^*\left(1+y^2-(zr_G)^2\right)\right)\\ &= I_{(0,0)}\left(1+(y-i)^2-(zr_F)^2,1+(y-i)^2-(zr_G)^2\right)\\ &= I_{(0,0)}(1+(y-i)^2-(zr_F)^2,z^2(r_F-r_G)(r_F+r_G))\\ &= I_{(0,0)}\left(y^2-2iy,z^2(r_F-r_G)(r_F+r_G)\right)\\ &= I_{(0,0)}\left(y,z^2\right) + \underbrace{I_{(0,0)}\left(y-2i,z^2\right)}_{=0,\text{ by (2) since it does not vanish at (0,0)}}\\ &= 2 \end{split}$$

Hence the intersection multiplicities are each 2, so in particular, by (2), no other points is a common vanishing of both curves.

12: Let

$$F = a(x^{2} + y^{2}) + cxz + eyz + fz^{2} \in k[x, y, z].$$

Let $x' = x + \alpha z$ and $y' = y + \beta z$ and z' = rz for constants α, β, r . Write

$$F = a'(x'^2 + y'^2) + c'x'z' + e'y'z' + f'z'^2$$

for coefficients a', c', e', f' (which are themselves polynomials in a, c, e, f). Prove that the map $[a:c:e:f] \mapsto$ [a':c':e':f'] is a projective change of coordinates.

Solution: We must show that the map $(a, c, e, f) \mapsto (a', c', e', f')$ is a linear change of coordinates, i.e., an invertible linear transformation. We have

$$F = a' \left((x + \alpha z)^2 + (y + \beta z)^2 \right) + c' (x + \alpha z) rz + e' (y + \beta z) rz + f' (rz)^2$$

= $a' \left(x^2 + y^2 \right) + (2a\alpha + c'r) xz + (2a\beta + e'r) yz + \left(a \left(\alpha^2 + \beta^2 \right) + c' \alpha r + e' \beta r + f' r^2 \right) z^2$

Comparing coefficients, we have a' = a, so considering the map $T: \mathbb{A}^4 \to \mathbb{A}^4$, we have $T_1(a, c, e, f) = a$. Assume $r \neq 0$.

We have $c = 2a\alpha + c'r$, so $c' = \frac{c}{r} - \frac{2\alpha}{r}a$, so $T_2(a, c, e, f) = \frac{1}{r}c - \frac{2\alpha}{r}a$. We have $e = 2a\beta + e'r$, so $e' = \frac{e-2a\beta}{r} = \frac{1}{r}e - \frac{2\beta}{r}a = T_3(a, c, e, f)$.

We have $f = a\left(\alpha^2 + \beta^2\right) + \left(\frac{1}{r}c - \frac{2\alpha}{r}a\right)\alpha r + \left(\frac{1}{r}e - \frac{2\beta}{r}a\right)\beta r + f'r^2$, and again we can isolate f' to be a linear polynomial in a, c, e and f, namely

$$f' = \frac{1}{r^2} \left[f - a \left(\alpha^2 + \beta^2 \right) - \left(\frac{1}{r} c - \frac{2\alpha}{r} a \right) \alpha r - \left(\frac{1}{r} e - \frac{2\beta}{r} a \right) \beta r \right]$$

We have $T_4(1,0,0,0) = -\frac{\alpha^2 + \beta^2}{r^2} + \frac{2\alpha^2}{r^2} + \frac{2\beta^2}{r^2} = \frac{\alpha^2 + \beta^2}{r^2}$,

 $T_4(0,1,0,0) = -\frac{1}{r^2},$ $T_4(0,0,1,0) = -\frac{1}{r^2}$ and $T_4(0,0,0,1) = \frac{1}{r^2}$, so the matrix (T_{ij}) then becomes

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{2\alpha}{r} & \frac{1}{r} & 0 & 0 \\ -\frac{2\beta}{r} & 0 & \frac{1}{r} & 0 \\ \frac{\alpha^2 + \beta^2}{r^2} & \frac{-1}{r^w} & \frac{-\beta}{r^2} & \frac{1}{r^2} \end{pmatrix}$$

which has determinant $\frac{1}{r^4} \neq 0$.

If r = 0, we find

$$F = a'(x'^2 + y'^2) = a((x + \alpha z)^2 + (y + \beta z)^2)$$

so we find that T does not become invertible. . . So it is a projective change of coordinates if $r \neq 0$.