Оглавление

1	Жо	рданова форма оператора	2
	1.1	Определения	2
		1.1.1 Напоминание: собственные числа	2
	1.2	Собственные подпространства	3
	1.3	Операторы с диагональными и блочно-диагональными матрицами	4

Глава 1

Жорданова форма оператора

1.1. Определения

Определение 1. Жорданова клетка:

$$Jr(\lambda) = \begin{pmatrix} \lambda & 0 & 0 & \cdot \\ 1 & \lambda & 0 & \cdot \\ 0 & 1 & \lambda & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Пример.

$$\begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix}$$

Определение 2. Жорданова форма — матрица, у которой на главной диагонали жордановы клетки

$$\begin{pmatrix} Jr(\lambda_1) & 0 & 0 & .\\ 0 & Jr(\lambda_2) & 0 & .\\ 0 & 0 & Jr(\lambda_3) & .\\ . & . & . & . \end{pmatrix}$$

1.1.1. Напоминание: собственные числа

Определение 3. \mathcal{A} — оператор на V

Число λ называется собственным для \mathcal{A} , если

$$\exists v \underset{v \neq 0}{\in} V: \quad \mathcal{A}v = \lambda v$$

v называется собственным вектором, соответствующим λ

Определение 4. А — квадратная матрица

Число λ называется собственным, если

$$\exists$$
 столбец $X:$ $AX = \lambda X$

Х называется собственным столбцом

Определение 5. А — квадратная матрица

Характеристическим многочленом A называется $\chi_A(t) = \det(A - tE)$

Теорема 1. Собственные числа A — корни $\chi_A(t)$

1.2. Собственные подпространства

Определение 7. V — векторное пространство, \mathcal{A} — оператор на V, λ — с. ч. Собственным подпространством, соответствующим λ , называется множество с. в., соответствующих λ

Обозначение. V_{λ}

Определение 8. U — подпространство V

U называется инвариантным относительно \mathcal{A} , если

$$\forall x \in U \quad \mathcal{A}x \in U$$

Утверждение 1. V_{λ} — инвариантное подпространство

Доказательство.

• Подпространство

$$-u, v \in V_{\lambda} \implies \begin{cases} \mathcal{A}u = \lambda u \\ \mathcal{A}v = \lambda v \end{cases} \implies \mathcal{A}(u+v) \implies u+v \in V_{\lambda}$$

$$-u \in V_{\lambda}, k \in K \implies \mathcal{A}(ku) = k \mathcal{A}(u) = k \mathcal{A}(u) \implies ku \in V_{\lambda}$$

• Инвариантность

$$u \in V_{\lambda} \implies \mathcal{A}u = \lambda u \in V_{\lambda}$$

Теорема 2 (о сумме собственных подпространств). $\lambda_1, \dots, \lambda_k$ — различные собственные числа Тогда сумма $V_{\lambda_1} + \dots + V_{\lambda_k}$ является прямой

Доказательство. Индукция по k

- **База.** k = 1 очевидно
- Переход. $k-1 \to k$ Пусть $u_1+\cdots+u_{k-1}+u_k=0, \qquad u_i \in V_{\lambda_i}$

$$0 = \mathcal{A}(\underbrace{u_1 + \dots + u_{k-1} + u_k}) - \lambda_k(\underbrace{u_1 + \dots + u_{k-1} + u_k}) = \underbrace{0}$$

$$= \lambda_1 u_1 + \dots + \lambda_{k-1} u_{k-1} + \lambda_k u_k - \lambda_k u_1 - \dots - \lambda_k u_{k-1} - \lambda_k u_k = \underbrace{(\lambda_1 - \lambda_k)}_{\neq 0} u_1 + \dots + \underbrace{(\lambda_{k-1} - \lambda_k)}_{\neq 0} u_{k-1}$$

(т. к. по условию собственные числа различны)

$$(\lambda_1 - \lambda_k)u_1 \in V_{\lambda_1}, \quad \dots, \quad (\lambda_{k-1} - \lambda_k)u_{k-1} \in V_{\lambda_{k-1}}$$

По индукционному предположению, $V_{\lambda_1}\oplus\cdots\oplus V_{\lambda_{k-1}}$

А мы представили 0 в виде суммы. Значит, все слагаемые нулевые:

$$(\lambda_1 - \lambda_k)u_1 = \cdots = (\lambda_{k-1} - \lambda_k)u_{k-1} = 0 \implies u_1 = \cdots = u_{k-1} = 0 \implies u_k = 0$$

Следствие. $\lambda_1,\dots,\lambda_k$ — различные с. ч., $u_i\in V_{\lambda_i}, \quad u_i\neq 0$ Тогда u_1,\dots,u_k ЛНЗ

Доказательство. Пусть $a_1u_1 + \cdots + a_ku_k = 0$

$$a_1u_1 \in V_{\lambda_1}, \dots, a_ku_k \in V_{\lambda_k} \implies a_1u_1 = \dots = a_ku_k = 0 \implies a_1 = \dots = a_k = 0$$

1.3. Операторы с диагональными и блочно-диагональными матрицами

В этом параграфе рассматриваем конечномерные пространства

Определение 9. Оператор \mathcal{A} , действующий на V называется диагонализуемым, если его матрица в некотором базисе диагональна

Определение 10. A — оператор, λ — с. ч.

- Геометрической кратностью λ называется dim V_{λ}
- Арифметической кратностью λ называется кратность λ как корня $\chi_{\mathcal{A}}(t)$

Теорема 3 (критерий диагонализуемости в терминах геометрической кратности).

(I) \mathcal{A} диагонализуем \iff (II) сумма геометрических кратностей всех с. ч. равна dim V

Доказательство.

 $\mathcal A$ диагонализуем \iff в нек. базисе e_1,\ldots,e_n матрица $\mathcal A$ имеет вид $A=\begin{pmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \end{pmatrix}$

 \iff для некоторого базиса e_1,\ldots,e_n выполнено

$$Ae_i = 0e_1 + \dots + a_ie_i + \dots + 0e_n = a_ie_i$$

 \iff (I') существует базис из с. в.

Докажем, что $(I') \iff (II)$:

Пусть $U = V_{\lambda_1} + \cdots + V_{\lambda_k}$

$$n := \dim V, \qquad d_i := \dim V_{\lambda_i}$$

 \bullet (II) \Longrightarrow (I') Имеем $d_1 + \cdots + d_k = n$

$$V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k} \implies \dim U = n \xrightarrow[U - \text{подпр-во } V]{} U = V$$

 $V_{\lambda_1}\oplus\cdots\oplus V_{\lambda_k}\implies$ объединение базисов V_{λ} является базисом U=V

Эти базисы состоят из с. в.

Объединение базисов состоит из с. в.

Это базис V

 \bullet (I') \Longrightarrow (II)

Сущетсвует базис V из с. в.

Они распределяются по V_{λ} (но не обязательно для каждого V_{λ} представлен весь его базис):

$$\underbrace{e_1^{(1)},\dots,e_{t_1}^{(1)}}_{\text{cootb. }\lambda_1},\underbrace{e_1^{(2)},\dots,e_{t_2}^{(2)}}_{\text{cootb. }\lambda_2},\dots\dots\dots\dots\dots\dots$$

$$e_1^{(i)},\dots,e_{t_i}^{(i)}\text{ ЛНЗ} \implies t_i \leq d_i \quad \forall i$$
 (т. к. они лежат в большом-большом базисе)

Сложим все эти неравенства:

$$\left. \begin{array}{l} d_1 + d_2 + \dots + d_k \geq t_1 + \dots + t_k = n \\ n \geq \dim U \xrightarrow[U = V_{\lambda_1} \oplus \dots \oplus V_{\lambda_k}]{} d_1 + \dots + d_k \end{array} \right\} \implies n = d_1 + \dots + d_k$$

Следствие (достаточное условие диагонализуемости). Пусть $\dim V = n$

Если у \mathcal{A} есть n различных с. ч., то \mathcal{A} диагонализуем

Доказательство. $\dim V_{\lambda_i} \geq 1$

$$n \ge \dim(V_{\lambda_1} + \dots + V_{\lambda_k}) \xrightarrow{\text{IID. CYMMB}} \dim V_{\lambda_1} + \dots + \dim V_{\lambda_k} \ge n$$

Значит, достигается равенство

Напоминание (определитель ступенчатой матрицы).

$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}, \quad A, C - \text{kb.} \implies |M| = |A| \cdot |C|$$

Теорема 4 (арифм. и геом. кратности). λ — с. ч. \mathcal{A}

Геом. кратность $\lambda \leq$ арифм. кратности λ

Доказательство. Пусть $n=\dim V,\quad k$ — геом. кр. λ

Выберем базис e_1, \ldots, e_k пространства V_{λ}

Дополним его до базиса $V: e_1, \ldots, e_k, \ldots, e_n$

При $i \leq k$ выполнено $\mathcal{A}e_i = \lambda e_i = 0 \cdot e_1 + \dots + \lambda e_i + \dots + 0 \cdot e_n$

Матрица \mathcal{A} в базисе e_1, \ldots, e_n :

$$A = \begin{pmatrix} \lambda & \cdot & B \\ \cdot & \lambda & \\ 0 & 0 & C \\ 0 & 0 & \end{pmatrix}$$

Для некоторых $B_{k\times n-k}$, $C_{n-k\times n-k}$

$$\chi(t) = \begin{vmatrix} (\lambda - t)E_k & B \\ 0 & C - tE_{n-k} \end{vmatrix} = \det\left((\lambda - t)E_k\right) \cdot \det(C - tE_{n-k}) = (\lambda - t)^k \cdot \det(C - tE_{k-n})$$

Следствие (критерий диагонализуемости в терминах арифметических и геометрических кратностей). Оператор $\mathcal A$ диагонализуем \iff

- 1. $\chi_{\mathcal{A}}(t)$ раскладывается на линейные множители
- 2. \forall с. ч. λ арифм. кр. = геом. кр.

Доказательство. Пусть λ_i- с. ч., d_i- геом. кр., a_i- арифм. кр., $n=\dim C$

$$\chi(t) - (t - \lambda_1)^{a_1} \dots (t - \lambda_k)^{a_k} \cdot f(t)$$

$$n = \deg \chi(t) \ge a_1 + \dots + a_k \ge d_1 + \dots + d_k$$

Диагонал. $\iff n = d_1 + \cdots + d_k \iff$ везде достигаются равенства