## Assignment 3 Part 2

CS4172 Machine Learning Lab

Name: Abhiroop Mukherjee

Enrolment Number: 510519109

## Task 6

Download the Forest Cover Type dataset (https://www.kaggle.com/uciml/forest-cover-type-dataset) and pre-process the dummy variables to create training, test, and development set. Reduce the train data size if the system unable to process the whole dataset.

```
In []: import pandas as pd
    _FILE_PATH = './../ML_DRIVE/Assign_3/covtype/covtype.csv'
    cov_df = pd.read_csv(_FILE_PATH)
    cov_df
```

| Out[ ]: |        | Elevation | Aspect | Slope | Horizontal_Distance_To_Hydrology | Vertical_Distance_To_Hydrology | Horizontal_Distance_To_Roadways | Hillshade_9am | Hillshade_Noo |
|---------|--------|-----------|--------|-------|----------------------------------|--------------------------------|---------------------------------|---------------|---------------|
|         | 0      | 2596      | 51     | 3     | 258                              | 0                              | 510                             | 221           | 23            |
|         | 1      | 2590      | 56     | 2     | 212                              | -6                             | 390                             | 220           | 23            |
|         | 2      | 2804      | 139    | 9     | 268                              | 65                             | 3180                            | 234           | 23            |
|         | 3      | 2785      | 155    | 18    | 242                              | 118                            | 3090                            | 238           | 23            |
|         | 4      | 2595      | 45     | 2     | 153                              | -1                             | 391                             | 220           | 23            |
|         | •••    |           |        |       |                                  |                                |                                 | •••           |               |
|         | 581007 | 2396      | 153    | 20    | 85                               | 17                             | 108                             | 240           | 23            |
|         | 581008 | 2391      | 152    | 19    | 67                               | 12                             | 95                              | 240           | 23            |
|         | 581009 | 2386      | 159    | 17    | 60                               | 7                              | 90                              | 236           | 24            |
|         | 581010 | 2384      | 170    | 15    | 60                               | 5                              | 90                              | 230           | 24            |
|         | 581011 | 2383      | 165    | 13    | 60                               | 4                              | 67                              | 231           | 24            |

581012 rows × 55 columns

In [ ]: from sklearn.preprocessing import StandardScaler

def standardize(df: "pd.DataFrame", col name: "str") -> "pd.DataFrame":

```
cov_df.columns
Out[ ]: Index(['Elevation', 'Aspect', 'Slope', 'Horizontal Distance To Hydrology',
                'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways',
               'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm',
               'Horizontal Distance To Fire Points', 'Wilderness Area1',
                'Wilderness Area2', 'Wilderness Area3', 'Wilderness Area4',
                'Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5',
                'Soil_Type6', 'Soil_Type7', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10',
                'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14',
                'Soil Type15', 'Soil Type16', 'Soil Type17', 'Soil Type18',
               'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22',
               'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26',
                'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30',
               'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34',
               'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38',
               'Soil_Type39', 'Soil_Type40', 'Cover_Type'],
              dtype='object')
```

| Out[ ]: |        | Elevation | Aspect    | Slope     | Horizontal_Distance_To_Hydrology | Vertical_Distance_To_Hydrology | Horizontal_Distance_To_Roadways | Hillshade_9am | Hillshad |
|---------|--------|-----------|-----------|-----------|----------------------------------|--------------------------------|---------------------------------|---------------|----------|
|         | 0      | -1.297805 | -0.935157 | -1.482820 | -0.053767                        | -0.796273                      | -1.180146                       | 0.330743      | 0        |
|         | 1      | -1.319235 | -0.890480 | -1.616363 | -0.270188                        | -0.899197                      | -1.257106                       | 0.293388      | 0        |
|         | 2      | -0.554907 | -0.148836 | -0.681563 | -0.006719                        | 0.318742                       | 0.532212                        | 0.816364      | 0        |
|         | 3      | -0.622768 | -0.005869 | 0.520322  | -0.129044                        | 1.227908                       | 0.474492                        | 0.965786      | 0        |
|         | 4      | -1.301377 | -0.988770 | -1.616363 | -0.547771                        | -0.813427                      | -1.256464                       | 0.293388      | 0        |
|         | •••    | •••       |           |           |                                  |                                |                                 |               |          |
|         | 581007 | -2.012130 | -0.023740 | 0.787408  | -0.867697                        | -0.504653                      | -1.437962                       | 1.040496      | 0        |
|         | 581008 | -2.029988 | -0.032675 | 0.653865  | -0.952383                        | -0.590424                      | -1.446299                       | 1.040496      | 0        |
|         | 581009 | -2.047847 | 0.029873  | 0.386780  | -0.985317                        | -0.676194                      | -1.449506                       | 0.891075      | 0        |
|         | 581010 | -2.054990 | 0.128163  | 0.119694  | -0.985317                        | -0.710502                      | -1.449506                       | 0.666942      | 1        |
|         | 581011 | -2.058562 | 0.083486  | -0.147392 | -0.985317                        | -0.727656                      | -1.464256                       | 0.704298      | 1        |

581012 rows × 55 columns

cov\_df

scaler = StandardScaler()

```
In [ ]: cov_df[['Cover_Type']].value_counts()
```

```
Out[]: Cover_Type
                       283301
        1
                      211840
        3
                       35754
        7
                       20510
        6
                       17367
        5
                        9493
        4
                        2747
        dtype: int64
In [ ]: # NOTE: class imbalance is present but removing it will
        # remove the data that cover type 2 is the most common data in world
        cov_df = cov_df.sample(frac=0.1)
        X = cov_df.drop('Cover_Type', axis=1)
        y = cov_df[['Cover_Type']]
In [ ]: y.value_counts()
Out[]: Cover_Type
                      28395
        1
                      20996
        3
                       3653
        7
                       2064
        6
                       1766
        5
                        958
                        269
        dtype: int64
In [ ]: # 80% as train
        # 10% as validation
        # 10% as train
        from sklearn.model selection import train test split
        X train, X rest, y train, y rest = train test split(X, y, train size=0.8)
        X_val, X_val, y_val, y_val = train_test_split(_X_rest, _y_rest, train_size=0.5)
```

## Task 7

Train the one vs rest and one-vs-one SVM model on the above dataset for multiclass classification. Plot and Analyze the Confusion matrix for the above models. Show the accuracy in the graph. State the difference of the two approaches using the model parameters.

```
In [ ]: # hyper parameter tuning
        from sklearn.svm import SVC
        from sklearn.metrics import confusion matrix
        import seaborn as sns
        import matplotlib.pyplot as plt
        def display_confusion_matrix(X_test: "pd.DataFrame",
                                     y test: "pd.DataFrame",
                                      model: "SVC"):
            y_predict = model.predict(X_test)
            matrix = confusion matrix(y test, y predict)
            fig = plt.figure(figsize=(10,10))
            sns.heatmap(
                matrix,
                xticklabels=range(1,8),
                yticklabels=range(1,8),
                linewidth=0.5,
                cmap='coolwarm',
                 annot=True,
                cbar=True,
                 square=True)
            plt.title('HeatMap for the model')
            plt.ylabel('Actual Value')
            plt.xlabel('Predicted Value')
            plt.show()
        decision function shapes = ['ovo', 'ovr']
        models = [
            SVC(decision function shape=shape).fit(X train, y train.iloc[:, 0])
            for shape in decision function shapes
In [ ]: # Accuracies
        accuracies = [model.score(X val, y val) for model in models]
        print(pd.DataFrame(columns=['decision function shape', 'Accuracy'],
                     data=zip(decision function shapes, accuracies)))
        plt.bar(range(0, len(accuracies)), accuracies)
        plt.title('OvO vs OvR Accuracy')
        plt.ylabel('Accuracy')
```



HeatMap for the model - 1.6e+03 0 22 3.4e+02 2.4e+03 22 1 15 27 3.3e+02 0 16 m -Actual Value 14 12 79 14 50 -46 60 62 9 -51 1.7e+02 0 0 0 r -2 3 5 7 6 i 4 Predicted Value

- 2000 - 1500 - 1000 - 500

HeatMap for the model - 1.6e+03 22 3.4e+02 2.4e+03 22 1 15 27 3.3e+02 0 16 m -Actual Value 14 12 79 14 50 -46 60 62 9 -51 1.7e+02 0 0 0 r -2 3 5 7 6 i 4 Predicted Value

- 2000 - 1500 - 1000 - 500