Suppose a linear program has ith matrix constraint

$$\mathbf{a_i} \mathbf{x} \leq b_i \text{ or } \mathbf{a_i} \mathbf{x} \geq b_i \text{ or } \mathbf{a_i} \mathbf{x} = b_i$$

and jth variable constraint

$$x_j \leq 0$$
 or $x_j \geq 0$ or x_j free (unrestricted).

Let **A** be the matrix with *i*th row $\mathbf{a_i}$, and let $\mathbf{A_j}$ be the *j*th column of **A**. Then

If the LP is a **minimization** problem, then

the matrix constraint
$$\mathbf{a_i x} \geq b_i$$
 dualizes to the variable constraint $y_i \geq 0$
 $\mathbf{a_i x} \leq b_i$
 $\mathbf{a_i x} = b_i$
 $y_i \leq 0$
 y_i free

the variable constraint $x_j \geq 0$ dualizes to the matrix constraint $\mathbf{y^T A_j} \leq c_j$
 $\mathbf{x_j} \leq 0$
 x_j free
 $\mathbf{y^T A_j} \leq c_j$
 $\mathbf{y^T A_j} = c_j$

If the LP is a maximization problem, then

the matrix constraint
$$\mathbf{a_i x} \geq b_i$$
 dualizes to the variable constraint $y_i \leq 0$
 $\mathbf{a_i x} \leq b_i$
 $\mathbf{a_i x} = b_i$
 $y_i \geq 0$
 y_i free

the variable constraint $x_j \geq 0$ dualizes to the matrix constraint $\mathbf{y^T A_j} \geq c_j$
 $\mathbf{y^T A_j} \leq c_j$
 $\mathbf{y^T A_j} \leq c_j$
 $\mathbf{y^T A_j} = c_j$