Matrix Completion

Hon Ming Chun

The Problem

Recovering a large matrix from a small subset of its entries (the famous Netflix problem).

Rating Matrix

The Problem

- Recovering a large matrix from a small subset of its entries (the famous Netflix problem).
- The matrix should be of low-rank.
 - (User preferences can often be described by a few factors, such as the movie genre and time of release.)
- The matrix is extremely sparse
 - (The ratings matrix could be about 99% sparse. This make sense since user can only watch and rate a few movies out of the whole movie list)

Solving with singular value thresholding (SV

- minimize $\|X\|_*$ Convex relaxation: subject to $X_{ij} = M_{ij}, \quad (i, j) \in \Omega,$

 Ω is the set of location of the nonzero entries of the matrix M

Orthogonal projection: $\|X\|_*$ $\mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(M),$

 P_{Ω} project onto the span of matrices vanishing outside of Ω so that the (i, j)th component of $P_{\Omega}(X)$ is equal to X_{ij} if $(i, j) \in \Omega$ and zero otherwise

Solving with SVT (cont)

Orthogonal projection: $\begin{array}{ccc} & \text{minimize} & \|X\|_* \\ & \text{subject to} & \mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(M), \end{array}$

minimize
$$\tau \| \boldsymbol{X} \|_* + \frac{1}{2} \| \boldsymbol{X} \|_F^2$$

subject to $\mathcal{P}_{\Omega}(\boldsymbol{X}) = \mathcal{P}_{\Omega}(\boldsymbol{M})$. (Final target)

 τ is the parameter threshold 'T' in the SVT

This minimization converges as $\tau \to {}^\infty$

Similar minimization:

SVT solve matrix completion using an iterative algorithm with a large τ

Inspired by

- SVT was inspired by the linearized Bregman iterations and iterative softthresholding algorithms which can be used in L1 minimization
- SVT can be regarded as an extension of classic iterative soft-thresholding since it finds a sparse vector of singular values and the bases instead of finds sparse solutions
- Classic iterative soft-thresholding algorithms fails to solve the target minimization and have different limits

SVT basic idea

- Iterate two matrices X and Y until the escaping condition is reached X and Y both are n x m which is the same size as M
- Set Y = M initially
- ► Each iteration we calculate the truncated SVD of Y (soft-thresholding) and use only the dominant singular values and singular vectors to calculate X
- Calculate the new Y using the new X and old Y
- Break the loop if error is small or maximum iteration is reached
- Set Xopt = X where Xopt is the solution

SVT basic idea

$$egin{aligned} oldsymbol{X}^k &= \mathcal{D}_{ au}(oldsymbol{Y}^{k-1}), \ oldsymbol{Y}^k &= oldsymbol{Y}^{k-1} + \delta_k \mathcal{P}_{\Omega}(oldsymbol{M} - oldsymbol{X}^k) \end{aligned}$$

where $\mathcal{D}_{ au}$ is called the soft-thresholding operator

$$\mathcal{D}_{\tau}(\boldsymbol{X}) := \boldsymbol{U}\mathcal{D}_{\tau}(\boldsymbol{\Sigma})\boldsymbol{V}^*, \quad \mathcal{D}_{\tau}(\boldsymbol{\Sigma}) = \operatorname{diag}(\{\sigma_i - \tau)_+\})$$

$$\mathcal{D}_{\tau}(Y) = \arg\min_{X} \frac{1}{2} ||X - Y||_{F}^{2} + \tau ||X||_{*}$$

- lacktriangleright Essentially, $\mathcal{D}_{ au}(oldsymbol{Y}^{k-1})$ is the truncated SVD of Y^{k-1}
- But what is $Y^{k-1} + \delta_k \mathcal{P}_{\Omega}(M X^k)$?

Lagrange multiplier and SVT

- Lagrangian multipliers find local extrema of f(x) subjected to a constrant g(x)=0 using the lagrangian function $\ \mathcal{L}(x,\lambda)=f(x)+\lambda g(x)$
- Recall minimize $\tau \| \boldsymbol{X} \|_* + \frac{1}{2} \| \boldsymbol{X} \|_F^2$ subject to $\mathcal{P}_{\Omega}(\boldsymbol{X}) = \mathcal{P}_{\Omega}(\boldsymbol{M}).$

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}) = f_{\tau}(\boldsymbol{X}) + \langle \boldsymbol{Y}, \mathcal{P}_{\Omega}(\boldsymbol{M} - \boldsymbol{X}) \rangle$$

where
$$f_{ au}(\boldsymbol{X}) = au \|\boldsymbol{X}\|_* + \frac{1}{2} \|\boldsymbol{X}\|_F^2$$

Lagrange multiplier and SVT

Use Uzawa's algorithm which minimize by finding saddle point and is a subgradient method

$$\begin{cases} \mathcal{L}(\boldsymbol{X}^{k}, \boldsymbol{Y}^{k-1}) = \min_{\boldsymbol{X}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}^{k-1}), \\ \boldsymbol{Y}^{k} = \boldsymbol{Y}^{k-1} + \delta_{k} \mathcal{P}_{\Omega}(\boldsymbol{M} - \boldsymbol{X}^{k}), \end{cases}$$

- Since $\partial_{\boldsymbol{Y}}g_0(\boldsymbol{Y}) = \partial_{\boldsymbol{Y}}\mathcal{L}(\tilde{\boldsymbol{X}},\boldsymbol{Y}) = \mathcal{P}_{\Omega}(\boldsymbol{M}-\tilde{\boldsymbol{X}})$ then $\boldsymbol{Y}^k = \boldsymbol{Y}^{k-1} + \delta_k\partial_{\boldsymbol{Y}}g_0(\boldsymbol{Y}^{k-1}) = \boldsymbol{Y}^{k-1} + \delta_k\mathcal{P}_{\Omega}(\boldsymbol{M}-\boldsymbol{X}^k)$
- Note $\arg\min f_{\tau}(\boldsymbol{X}) + \langle \boldsymbol{Y}, \mathcal{P}_{\Omega}(\boldsymbol{M} \boldsymbol{X}) \rangle = \arg\min \tau \|\boldsymbol{X}\|_{*} + \frac{1}{2}\|\boldsymbol{X} \mathcal{P}_{\Omega}\boldsymbol{Y}\|_{F}^{2}$
- lacktriangle Minimizer is $\mathcal{D}_ au(\mathcal{P}_\Omega(m{Y}))$ and since $m{Y}^k=\mathcal{P}_\Omega(m{Y}^k)$

$$\begin{cases} \boldsymbol{X}^k = \mathcal{D}_{\tau}(\boldsymbol{Y}^{k-1}), \\ \boldsymbol{Y}^k = \boldsymbol{Y}^{k-1} + \delta_k \mathcal{P}_{\Omega}(\boldsymbol{M} - \boldsymbol{X}^k) \end{cases}$$

The algorithm

Algorithm 1. Singular value thresholding (SVT) algorithm.

```
Input: sampled set \Omega and sampled entries \mathcal{P}_{\Omega}(M), step size \delta, tolerance \epsilon,
parameter \tau, increment \ell, and maximum iteration count k_{\text{max}}
Output: X^{\text{opt}}
Description: Recover a low-rank matrix M from a subset of sampled entries
        Set Y^0 = k_0 \delta \mathcal{P}_{\Omega}(M) (k_0 is defined in (5.3))
        Set r_0 = 0
       for k=1 to k_{\text{max}}
                Set s_k = r_{k-1} + 1
                repeat
                        Compute [\boldsymbol{U}^{k-1}, \boldsymbol{\Sigma}^{k-1}, \boldsymbol{V}^{k-1}]_{s_k}
               Set s_k = s_k + \ell
until \sigma_{s_k - \ell}^{k-1} \le \tau
               Set r_k = \max\{j : \sigma_j^{k-1} > \tau\}
              Set X^k = \sum_{j=1}^{r_k} (\sigma_j^{k-1} - \tau) u_j^{k-1} v_j^{k-1}
              \begin{aligned} &\text{if } \|\mathcal{P}_{\Omega}(\boldsymbol{X}^{k}-\boldsymbol{M})\|_{F}/\|\mathcal{P}_{\Omega}\boldsymbol{M}\|_{F} \leq \epsilon \text{ then break} \\ &\text{Set } Y_{ij}^{k} = \begin{cases} 0 & \text{if } (i,j) \not\in \Omega, \\ Y_{ij}^{k-1} + \delta(M_{ij}-X_{ij}^{k}) & \text{if } (i,j) \in \Omega \end{cases} \end{aligned} 
       end for k
       Set X^{\text{opt}} = X^k
```

 Ω : location of nonzero entries δ : step size ϵ : loop escaping tolerance τ : threshold parameter ℓ : increment to s_k if $\sigma_{s_k-\ell}^{k-1} > \tau$ K_{max} : maximum iteration count s_k : number singular values of Y^{k-1} to be computed at the kth iteration R_k : rank(X^k)

The algorithm (remark)

- The solution is of low-rank since most singular value (factors) of the original M is "kill" by the parameter threshold τ
- Y^k is always sparse with the project operator P_O
- ► The SVD and the respective X^k can be computed quickly

- One important part of the SVT algorithm is that it computes the truncated SVD instead of the full SVD to improve performance
- To implement this part of the SVT, we can use a library called sparsesvd Documentation

The *sparsesvd* module offers a single function, *sparsesvd*, which accepts two parameters. One is a sparse matrix in the *scipy.sparse.csc_matrix* format, the other the number of requested factors (an integer):

- u1, s1, v1 = sparsesvd(ss.csc_matrix(Y), s)
- ► The first argument is the matrix to decomposed and second argument is the number of eigenvalue we want to calculate

► The original paper use relative error

relative error =
$$\|\boldsymbol{X}^{\text{opt}} - \boldsymbol{M}\|_F / \|\boldsymbol{M}\|_F$$

- Use rmse to measure because there is no such thing as the real unknown matrix in real movie data set
- The rmse is measured using the nonzero entries of the predicted matrix and the original matrix

- ► The algorithm is demonstrated using the MovieLens 1M Dataset
- ▶ 1,000,209 ratings with 6040 users and 3883 movies

Time: 4610s RMSE: 0.257 Rank=153

- The dataset matrix is not that low rank and the computation time is quite high
- Note that the computation become slower as the iteration number increases
- ► The following comparisons use 400 iterations instead of the full iterations

Code step size δ , tolerance ϵ , parameter τ , increment ℓ

Time:2839s RMSE: 0.300 Rank=140

Time:735s RMSE: 0.701 Rank=35

Low tau require more SVD computation each iteration, resulting high computation time

step size δ , tolerance ϵ , parameter τ , increment ℓ

Time:735s RMSE: 0.701 Rank=35

Time: 98s RMSE: 0.872 Rank=10

High tau require less SVD computation but it may be too conservative and slow to converge

step size δ , tolerance ϵ , parameter τ , increment ℓ

Time:94s RMSE: 0.96 Rank=6

Time:735s RMSE: 0.701 Rank=35

Lower delta (0-2) guarantee to converge, but the converge speed is slow (takes more iterations to converge)

Code step size δ , tolerance ϵ , parameter τ , increment ℓ

Time:735s RMSE: 0.701 Rank=35 Time:2169s RMSE: 0.476 Rank=95

Higher delta may increase the converge speed but it may not converge if delta is too high

Comparison (stochastic gradient descent)

- The SVT can be seen as a projected gradient-descent algorithms
- compare SVT with a stochastic gradient descent matrix factorization approach
- It is basically the gradient descent approach but we only use a mini-batch for each step instead of using all the data

Comparison (stochastic gradient descent)

SVT Time:735s RMSE: 0.701

SGD Time:665s RMSE: 0.829

With similar amount of time, SVT can reach a much lower RMSE and perform better compared to the classic stochastic gradient descent approach

Pros and Cons of SVT

Pros:

- make good use of the characteristics of sparsity and low rank of the problem to increase performance
- relatively easy to understand and implement

Cons:

- the origin matrix need to be very low rank or else it may not converge or has poor performance
- ▶ It is an algorithm published in 2008, there are new algorithms with better performances created during this 14 years

Algorithms for matrix completion

Convex relaxation (SVT)

Gradient descent

Alternating least squares minimization (AltMinComplete)

References

- https://cpb-usw2.wpmucdn.com/blog.nus.edu.sg/dist/d/11132/files/2019/01/SVT-112fnaa.pdf
- https://pypi.org/project/sparsesvd/
- https://towardsdatascience.com/stochastic-gradient-descent-clearlyexplained-53d239905d31
- https://dl.acm.org/doi/10.1145/2488608.2488693