Incomplete Data Analysis

V. Inácio de Carvalho & M. de Carvalho

University of Edinburgh

September 13, 2023

Context

- → Often we have missing values in more than one variable.
- → What should we do in such a case?

Monotone pattern

- → In the case of a monotone missing pattern, we can use the technique used for univariate missing data (e.g., stochastic regression imputation) in a chain.
- → Let us consider a specific example to understand how we should proceed.

Y_1	Y_2	Y_3	Y_4
~	\checkmark	✓	~
✓	\checkmark	\checkmark	NA
✓	\checkmark	NA	NA
✓	NA	NA	NA
/	NA	NA	NA

- \hookrightarrow Impute Y_2 given Y_1 .
- \hookrightarrow Impute Y_3 given Y_1 and Y_2 .
- \hookrightarrow Impute Y_4 given Y_1 , Y_2 , and Y_3 .

Non-monotone pattern

- → There are two popular approaches for imputation in multivariate non-monotone missing data:
 - \hookrightarrow Joint model imputation.
 - → Fully conditional specification.

Joint model imputation

- → Joint model imputation fits a multivariate model to all the variables that have missingness, thus generalising what we have seen before.
- \hookrightarrow For instance, if we have p variables, say (Y_1, \ldots, Y_p) and if Y_1, Y_2 , and Y_3 are subject to missingness, joint model imputation requires to specify a model for $f(Y_1, Y_2, Y_3 \mid Y^*)$, where $Y^* = (Y_4, \ldots, Y_p)$.
- → The main drawback of this approach is that it is not always trivial to set up a reasonable multivariate regression model.
- → As a consequence, in practice, an off-the-shelf model is typically used, most commonly the
 multivariate normal or t distributions for continuous variables and a multinomial distribution
 for discrete variables.
- → The positive point is that software exists to fit such models automatically (e.g., the norm, cat, mix, jomo, and jointAI packages).

Fully conditional specification

- → Fully conditional specification (FCS) (or multiple imputation by chained equations (MICE)) imputes multivariate missing data on a variable-by-variable basis.
- \hookrightarrow As before, suppose we have partially observed variables (Y_1, Y_2, Y_3) and some fully observed variables $Y^* = (Y_4, \dots, Y_p)$.
- Under the fully conditional specification approach, we specify regression models for

$$f(Y_1 \mid Y_2, Y_3, Y^*),$$

 $f(Y_2 \mid Y_1, Y_3, Y^*),$
 $f(Y_3 \mid Y_1, Y_2, Y^*).$

- \hookrightarrow If, for instance Y_1 is continuous, we might choose a linear regression for the first model.
- \hookrightarrow If, for instance Y_2 is binary, we might choose a logistic regression for the second model.

Fully conditional specification

- \hookrightarrow Fully conditional specification would consist of the following steps:
 - 1 Initially impute missing values in Y_1 , Y_2 , and Y_3 by randomly sampling from the observed values.
 - 2 Impute missing values in Y_1 using the model $f(Y_1 | Y_2, Y_3, Y^*)$ (using observed Y_1 values and observed and imputed values of Y_2 and Y_3 and fully observed variables Y^*).
 - Impute missing values in Y_2 using the model $f(Y_2 \mid Y_1, Y_3, Y^*)$ (using observed Y_2 values and observed and imputed values of Y_1 and Y_3 and fully observed variables Y^*).
 - Impute missing values in Y_3 using the model $f(Y_3 \mid Y_1, Y_2, Y^*)$ (using observed Y_3 values and observed and imputed values of Y_1 and Y_2 and fully observed variables Y^*).
 - 5 Iterate between the three steps above until approximate convergence.

Fully conditional specification

- → A theoretical issue with FCS/MICE is that there is no guarantee is that the algorithm draws imputations from a well defined joint/multivariate model.
- → Recent work (e.g., Hughes et al. 2014) has identified certain conditions when it does and the key condition is that the conditional models are compatible.
- → By compatible the authors mean that there exist multivariate distributions whose conditionals are those specified in FCS/MICE.