Chapter SixDemand

Li Yan(李艳)
School of Economics
Central university of Finance and Economics

Properties of Demand Functions

• Comparative statics analysis (比较静态分析)of ordinary demand functions -- the study of how ordinary demands $x_1^*(p_1,p_2,y)$ and $x_2^*(p_1,p_2,y)$ change as prices p_1 , p_2 and income y change.

Structure

- Own-price changes
 - Price offer curve (价格提供曲线)
 - Ordinary demand curve
 - Inverse demand curve (反需求函数)
- Income changes
 - Income offer curve (收入提供曲线)
 - Engel curve (恩格尔曲线)
- Cross-price effects

- How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant?
- Suppose only p_1 increases, from p_1 ' to p_1 " and then to p_1 ".

- The curve containing all the utilitymaximizing bundles traced out as p₁
 changes, with p₂ and y constant, is the p₁price offer curve.
- The plot of the x_1 -coordinate of the p_1 price offer curve against p_1 is the ordinary
 demand curve for commodity 1.

 What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

Take
$$U(x_1, x_2) = x_1^a x_2^b$$
.

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = \frac{\ddot{a}}{a+b} \times \frac{y}{p_1}$$
 and
$$x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$$

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a rectangular hyperbola.

 What does a p₁ price-offer curve look like for a perfect-complements utility function?

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p₂ and y fixed, higher p₁ causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

As
$$p_1 \rightarrow \infty$$
, $x_1^* = x_2^* \rightarrow 0$.

Own-Price Changes Fixed p₂ and y.

 What does a p₁ price-offer curve look like for a perfect-substitutes utility function?

$$U(x_1,x_2) = x_1 + x_2.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 > p_2 \\ y/p_1 & \text{, if } p_1 < p_2 \end{cases}$$

and

$$x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y / p_2 & \text{, if } p_1 > p_2. \end{cases}$$

Own-Price Changes Fixed p_2 and y. $p_1 = p_1' < p_2$

- Usually we ask "Given the price for commodity I what is the quantity demanded of commodity I?"
- But we could also ask the inverse question "At what price for commodity I would a given quantity of commodity I be demanded?"

Own-Price Changes

 Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

Own-Price Changes

A Cobb-Douglas example:

$$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$

is the ordinary demand function and

$$p_1 = \frac{ay}{(a+b)x_1^*}$$

is the inverse demand function.

Own-Price Changes

A perfect-complements example:

$$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1 + \mathbf{p}_2}$$

is the ordinary demand function and

$$\mathsf{p}_1 = \frac{\mathsf{y}}{\mathsf{x}_1} - \mathsf{p}_2$$

is the inverse demand function.

Meaning of the Inverse Demand Function

- At optimal choice
- $|MRS| = P_1/P_2 \text{ or } p_1 = p_2|MRS|$
- If taking good 2 as money on other goods, then $p_2=I$ and $p_1=MRS$.
- This is the marginal willingness to pay.

• How does the value of x₁*(p₁,p₂,y) change as y changes, holding both p₁ and p₂ constant?

 A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

 An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1,x_2) = x_1^a x_2^b$$
.

The ordinary demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-Douglas Preferences

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:

$$y = \frac{(a+b)p_1}{a}x_1^*$$
 Engel curve for good 1

$$y = \frac{(a+b)p_2}{b}x_2^*$$
 Engel curve for good 2

Income Changes and Cobb-Douglas Preferences

Income Changes and Perfectly-Complementary Preferences

 Another example of computing the equations of Engel curves; the perfectlycomplementary case.

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

• The ordinary demand equations are

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Income Changes and Perfectly-Complementary Preferences

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Rearranged to isolate y, these are:

$$y = (p_1 + p_2)x_1^*$$
 Engel curve for good 1
 $y = (p_1 + p_2)x_2^*$ Engel curve for good 2

$$y = (p_1 + p_2)x_2^*$$

$$y = (p_1 + p_2)x_1$$

Income Changes and Perfectly-Substitutable Preferences

 Another example of computing the equations of Engel curves; the perfectlysubstitution case.

$$U(x_1,x_2) = x_1 + x_2.$$

The ordinary demand equations are

Income Changes and Perfectly-Substitutable Preferences

$$\begin{aligned} x_1^*(p_1,p_2,y) &= \begin{cases} 0 & \text{, if } p_1 > p_2 \\ y/p_1 & \text{, if } p_1 < p_2 \end{cases} \\ x_2^*(p_1,p_2,y) &= \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y/p_2 & \text{, if } p_1 > p_2. \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then

$$x_1^* = \frac{y}{p_1}$$
 and $x_2^* = 0$

$$y = p_1 x_1^*$$
 and $x_2^* = 0$.

Income Changes and Perfectly-Substitutable Preferences

Engel curve for good 1

Engel curve for good 2

- In every example so far the Engel curves have all been straight lines?
 Q: Is this true in general?
- A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity (位似偏好)

 A consumer's preferences are homothetic if and only if

$$(x_1,x_2) \prec (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \prec (ky_1,ky_2)$$

for every $k > 0$.

 That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

Quasilinear preferences are not

homothetic.
$$U(x_1, x_2) = v(x_1) + x_2$$
.

For example,

$$U(x_1,x_2) = \sqrt{x_1} + x_2.$$

Optimal interior consumption:

$$v'(x_1^*) = \frac{p_1}{p_2}.$$

Quasi-linear Indifference Curves

Income Changes; Quasilinear Utility

Income Changes; Quasilinear Utility

Income Changes; Quasilinear

Income Changes; Quasilinear

Income Effects

- A good for which quantity demanded rises with income is called normal (正常品).
- Therefore a normal good's Engel curve is positively sloped.

Income Effects

- A good for which quantity demanded falls as income increases is called income inferior (劣质品).
- Therefore an income inferior good's Engel curve is negatively sloped.

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Ordinary Goods (一般商品)

 A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

Fixed p_2 and y.

Fixed p_2 and y.

Downward-sloping

output

demand curve

Giffen Goods (吉芬商品)

• If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

Fixed p_2 and y.

Fixed p₂ and y.

- If an increase in p₂
 - increases demand for commodity I then commodity I is a gross substitute for commodity 2.
 - reduces demand for commodity I then commodity I is a gross complement for commodity 2.

A perfect-complements example:

so
$$x_1^* = \frac{y}{p_1 + p_2}$$
$$\frac{\partial x_1^*}{\partial p_2} = -\frac{y}{\left(p_1 + p_2\right)^2} < 0.$$

Therefore commodity 2 is a gross complement for commodity 1.

A Cobb- Douglas example:

so
$$x_{2}^{*} = \frac{by}{(a+b)p_{2}}$$
$$\frac{\partial x_{2}^{*}}{\partial p_{1}} = 0.$$

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.