

Ministry of Education

Proportional reasoning is used to make sense of multiplicative relationships. Mathematics informs financial decision making.

# **BIG IDEAS**

**3D objects** are often represented and described in 2D space.

Flexibility with number builds meaning, understanding, and confidence.

Representing and analyzing data allows us to **notice and wonder** about relationships.

# **Learning Standards**

| Curricular Competencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Content                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Students are expected to do the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Students are expected to know the following:                                                                                                                                                                                                                                     |
| <ul> <li>Pevelop thinking strategies to solve puzzles and play games</li> <li>Explore, analyze, and apply mathematical ideas using reason, technology, and other tools</li> <li>Estimate reasonably and demonstrate fluent, flexible, and strategic thinking about number</li> <li>Model with mathematics in situational contexts</li> <li>Think creatively and with curiosity and wonder when exploring problems</li> </ul>                                                                                                                                                                                              | <ul> <li>financial literacy: personal investments, loans, and budgeting</li> <li>rate of change</li> <li>how probability and statistics are used in different contexts</li> <li>interpreting graphs in society</li> <li>3D objects: angles, views, and scale diagrams</li> </ul> |
| <ul> <li>Understanding and solving</li> <li>Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving</li> <li>Visualize to explore and illustrate mathematical concepts and relationships</li> <li>Apply flexible and strategic approaches to solve problems</li> <li>Solve problems with persistence and a positive disposition</li> <li>Engage in problem-solving experiences connected with place, story, cultural practices, and perspectives relevant to local First Peoples communities, the local community, and other cultures</li> </ul> |                                                                                                                                                                                                                                                                                  |



Ministry of Education

# **Learning Standards (continued)**

| Curricular Competencies                                                                                                                             | Content |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Communicating and representing                                                                                                                      |         |
| Explain and justify mathematical ideas and decisions in many ways                                                                                   |         |
| Represent mathematical ideas in concrete, pictorial, and symbolic forms                                                                             |         |
| <ul> <li>Use mathematical vocabulary and language to contribute to discussions<br/>in the classroom</li> </ul>                                      |         |
| Take risks when offering ideas in classroom discourse                                                                                               |         |
| Connecting and reflecting                                                                                                                           |         |
| Reflect on mathematical thinking                                                                                                                    |         |
| <ul> <li>Connect mathematical concepts with each other, other areas, and<br/>personal interests</li> </ul>                                          |         |
| <ul> <li>Use mistakes as opportunities to advance learning</li> </ul>                                                                               |         |
| <ul> <li>Incorporate First Peoples worldviews, perspectives, knowledge, and<br/>practices to make connections with mathematical concepts</li> </ul> |         |

# **Big Ideas - Elaborations**

### Proportional reasoning:

reasoning about comparisons of relative size or scale instead of numerical difference

### multiplicative:

the multiplicative relationship between two numbers or measures is a relationship of scale rather than an additive difference (e.g., "12 is three times the size of 4" is a multiplicative relationship; "12 is 8 more than 4" is an additive relationship)

Sample questions to support inquiry with students:

- How are proportions used to describe changes in size?
- How are proportions used to solve problems in different contexts?
- How can proportions be used to represent and analyze rates of change?
- As the proportions of a shape change, what happens to the angles?

### decision making:

Sample questions to support inquiry with students:

- How do we make informed financial decisions?
- What factors should be considered when making a large purchase?
- What are the benefits of making responsible financial decisions?

### 3D objects:

Sample questions to support inquiry with students:

- Why is it important to represent 3D objects on a 2D plane?
- Where are representations of 3D objects used outside the classroom?
- Why is accuracy of measurement important when looking at scale diagrams?
- Can all 3D objects be described using 2D representations?
- What do we notice about angles in scale diagrams?

# understanding:

Sample questions to support inquiry with students:

- How does solving puzzles and playing games relate to mathematics?
- How does experiential learning facilitate deeper understanding?

#### · notice and wonder:

Sample questions to support inquiry with students:

- How can statistical analysis help us make inferences about the future?
- How can a trend be determined from a set of given data?
- How can mathematics be used to influence our decisions around positive changes in society?

# **Curricular Competencies – Elaborations**

#### thinking strategies:

- using reason to determine winning strategies
- generalizing and extending

#### • analyze:

examine the structure of and connections between mathematical ideas (e.g., rate of change, trigonometry calculations)

#### · reason:

- inductive and deductive reasoning
- predictions, generalizations, conclusions drawn from experiences (e.g., with puzzles, games, and coding)

#### technology:

- graphing technology, dynamic geometry, calculators, virtual manipulatives, concept-based apps
- can be used for a wide variety of purposes, including:
  - generating and testing inductive conjectures
  - mathematical modelling

#### · other tools:

manipulatives such as algebra tiles and other concrete materials

### • Estimate reasonably:

be able to defend the reasonableness of an estimated value or a solution to a problem or equation (e.g., trigonometric angle/side relations and rate of change calculations)

# • fluent, flexible and strategic thinking:

- includes:
  - using known facts and benchmarks and partitioning (e.g., creating and interpreting 3D diagrams and making financial decisions based on evidence)
  - choosing from different ways to think of a number or operation (e.g., Which will be the most strategic or efficient?)

#### Model:

- use mathematical concepts and tools to solve problems and make decisions (e.g., in real-life and/or abstract scenarios)
- take a complex, essentially non-mathematical scenario and figure out what mathematical concepts and tools are needed to make sense of it

#### situational contexts:

including real-life scenarios and open-ended challenges that connect mathematics with everyday life

### • Think creatively:

- by being open to trying different strategies
- refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music

# **Curricular Competencies – Elaborations**

### · curiosity and wonder:

asking questions to further understanding or to open other avenues of investigation

#### inquiry:

- includes structured, guided, and open inquiry
- noticing and wondering
- determining what is needed to make sense of and solve problems

#### Visualize:

- create and use mental images to support understanding
- Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

### flexible and strategic approaches:

- deciding which mathematical tools to use to solve a problem
- choosing an appropriate strategy to solve a problem (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play)

#### • solve problems:

- interpret a situation to identify a problem
- apply mathematics to solve the problem
- analyze and evaluate the solution in terms of the initial context
- repeat this cycle until a solution makes sense

# persistence and a positive disposition:

- not giving up when facing a challenge
- problem solving with vigour and determination

#### connected:

- through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
- by posing and solving problems or asking questions about place, stories, and cultural practices

# Explain and justify:

- use mathematical arguments to convince
- includes anticipating consequences

#### decisions:

Have students explore which of two scenarios they would choose and then defend their choice.

### · many ways:

- including oral, written, visual, use of technology
- communicating effectively according to what is being communicated and to whom

# **Curricular Competencies – Elaborations**

### • Represent:

- using models, tables, graphs, words, numbers, symbols
- connecting meanings among various representations

#### discussions:

partner talks, small-group discussions, teacher-student conferences

#### · discourse:

- is valuable for deepening understanding of concepts
- can help clarify students' thinking, even if they are not sure about an idea or have misconceptions

#### · Reflect:

share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

### Connect mathematical concepts:

to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

#### mistakes:

range from calculation errors to misconceptions

#### · opportunities to advance learning:

- by:
  - analyzing errors to discover misunderstandings
  - making adjustments in further attempts
  - identifying not only mistakes but also parts of a solution that are correct

### • Incorporate:

- by:
  - collaborating with Elders and knowledge keepers among local First Peoples
  - exploring the <u>First Peoples Principles of Learning</u> (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
  - making explicit connections with learning mathematics
  - exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

### • knowledge:

local knowledge and cultural practices that are appropriate to share and that are non-appropriated

### · practices:

- Bishop's cultural practices: counting, measuring, locating, designing, playing, explaining
- Aboriginal Education Resources
- Teaching Mathematics in a First Nations Context, FNESC

### **Content – Elaborations**

### • financial literacy:

- personal investments, loans (lease versus buy), credit cards, mortgages, graphical representations of financial growth
- to purchase, own, or lease and to operate and maintain a vehicle
- banking services
- other significant purchases

### • rate of change:

- slope of 3D objects, angle of elevation
- interest rates

#### · contexts:

- exploring games of chance and insurance payout likelihood
- reading about and interpreting surveys and information in the media to make informed decisions
- understanding statistical vocabulary

### • interpreting graphs:

- investigating graphs in the media (e.g., news articles, blogs, social media, websites, advertisements)
- how data and media influence social justice issues and personal decisions

# • 3D objects:

- creating and interpreting exploded diagrams and perspective diagrams
- drawing and constructing 3D objects