Operatines ignifest to the Help

https://powcoder.com

Lecture 7b

Previously

Memory management

- O Addressing and address specifient Project Exam Help
- O Partitioning and segmentation https://powcoder.com

Today

Memory management

- O Virtual memory
- O Paging

Assignment Project Exam Help

https://powcoder.com

Recap: Questions

- What is a logical address?
- What are the two main purposes of the memory management unit?
- Why do we have to hing gntrought rejecte Exam Help
- When is address-binding during run-time mandatory?
 https://powcoder.com
 Which of the techniques we know performs non-contiguous memory allocation?
- How is access to a process'dde Merchattipio mycrotler ted?
- What is segmentation?
- What is internal fragmentation and when does it occur?
- What is external fragmentation and when does it occur?

Virtual memory

Objectives

- O Hide physical memor Assignment Project Exam Help
- O Memory protection https://powcoder.com
- O Illusion of unbounded memory

Add WeChat powcoder

- O Logical address space
- O Partitioning/segmentation
 - O Problem: Limited size of processes/segments overlays required

Solution: Paging – we load processes only partially into memory

Principles

- O Physical memory divides is much by the project size and the project size and the project size and project size and the project size a
- O Process image divided in pages: % phe some size m
- O Pages loaded into frames
- O Secondary (swap) storage for pages that are not in memory

Properties

- O Non-contiguous allocatistignment Project Exam Help
- O Process image can be larger than pygilable main memory
- O Many processes can reside (partially) in memory
- O Invisible to user (unlike segmentation or overlays)

Data structures: Page table for each process

- O Current frame number for each page
- O Free frame list

Page table

One page table per process

- O Indexed by page nur Assignment Project Exam Help
- O Present bit (loaded?) https://powcoder.com
- O Frame number (if present)
- O Modified bit (written since delewatchat powcoder
- O Control and access bits (read-write-execute, kernel/user, etc)

Page table

Effect of page size

- O Equal page size: ElimiAcstrigenmental Progrecto Extiam Help
- O Larger page size: Larger internal fragmentation https://powcoder.com
- O Smaller page size: Larger page tables

Add WeChat powcoder

Example:

- O 4KB page size, 48 bit logical address space
- O 8 bytes per table entry → 512 GB just for storing the page table

Multi-Level Paging

Page table itself is paged

E.g. four levels on many Intel architectures

Hashed Page Table

Hashed Page Table

Table size ~number of used frames

E.g. Solaris on SPARC

Inverted Page Table

One table for all processes

E.g. Power PC

Translation Look-Aside Buffer (TLB)

Page table in main memory

O Each address translations igquines not the project to the manufactories of the project to the

https://powcoder.com

Translation Look-Aside Buffer Add WeChat powcoder

- O Cache in MMU for page table entries
- O Cache policy, e.g. most recently used
- O Associative access
- O Cleared on each context switch

Translation Look-Aside Buffer (TLB)

Cache Memory and Associativity

Cache Memory and Associativity

Page Faults and Thrashing

Resident set

O Pages of a process that are currently assigned to frame in

Page fault

https://powcoder.com

- O Access to a page that is not resident
 - → need to swap in page
- O Which page should be replaced?
 - → page replacement
- O What to do on process start?
 - → demand vs prepaging

Page Faults and Thrashing

Thrashing

- O Performance degradation by high project of page faults, i.e. resident set is too small
- O How many pages should bettps:depoper potentials
 → working set

Shared pages

- O Shared memory
- O Shared libraries

Summary

Memory management

O Paging

- Assignment Project Exam Help
- O Basis for modern virtual memory systems https://powcoder.com
- O Page table implementations Add WeChat powcoder
 - O Page tables can be large
 - O Clever implementations are essential
- O Hardware support in MMU (e.g. Translation Look-Aside Buffer)

Read

- O Tanenbaum & Bos., Modern Operating Systems
 - O Chapter 3

Assignment Project Exam Help

- O Silberschatz et al., Operatihttps://epowooden.com
 - O Chapter 8

Homework

- O Start reviewing the module content we have covered thus far.
- O Finish remaining question sheets and exercises, if you haven't done so already.
 Assignment Project Exam Help

Add WeChat powcoder Easter!

Next Lecture

- O Introduction O Deadlocks
- O Operating System Architectures Assignment Project Exam Help
- O Processes O File Systems
- O Threads Programming https://powcederpcombutput
- O Process Scheduling Evaluation WeCharpswerthend Virtualisation
- O Process Synchronisation