Hệ thống vào ra

Nội dung

- Tổng quan về hệ thống vào ra
- Các phương pháp điều khiển vào ra
- Nối ghép TBNV
- Các cổng vào ra thông dụng trên PC

Tổng quan về hệ thống vào ra

- Giới thiệu chung
- Chức năng của hệ thống vào ra: Trao đổi thông tin giữa máy tính với thế giới bên ngoài
- Các thao tác cơ bản
 - Vào dữ liệu
 - Ra dữ liệu
- Các thành phần cơ bản
 - Các thiết bị ngoại vi
 - Modul vào ra

Đặc điểm vào ra

- Tồn tại đa dạng các TBNV khác nhau về:
 - Nguyên tắc hoạt động
 - Tốc độ
 - Khuôn dạng dữ liệu
- Tất cả các thiết bị ngoại vi đều chậm hơn CPU và bộ nhớ chính
- Cần có modul vào ra để nối ghép
 TBNV với CPU và bộ nhớ chính

Các thiết bị ngoại vi

- Chức năng: Chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính
- Phân loại
 - TBNV giao tiếp người-máy: Bàn phím, máy in. màn hình
 - TBNV giao tiếp máy-máy: Thiết bị theo dõi và kiểm tra
 - TBNV truyền thông: Modem, NIC

Cấu trúc chung của TBNV

Các thành phần của TBNV

- Bộ chuyển đổi dữ liệu: Chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính
- Bộ đệm dữ liệu: Đệm dữ liệu khi truyền giữa modul vào ra và TBNV
- Khối logic điều khiển: Điều khiển hoạt động của TBNV đáp ứng theo yêu cầu từng modul vào ra

Modul vào ra

- Chức năng của modul vào ra
 - Điều khiển và định thời
 - Trao đổi thông tin với CPU
 - Trao đổi thông tin với TBNV
 - Đệm giữa bên trong máy tính với TBNV
 - Phát hiện lỗi của các TBNV

Cấu trúc chung của modul vào ra

Các thành phần của modul vào ra

- Thanh ghi đệm dữ liệu: Đệm dữ liệu trong quá trình trao đổi
- Các cổng vào ra: Kết nối với TBNV,
 mỗi cổng có một địa chỉ xác định
- Thanh ghi trạng thái/điều khiển: Lưu giữ thông tin trạng thái cho các cổng vào ra
- Khối logic điều khiển: Điều khiển modul vào ra

Các phương pháp địa chỉ hoá cổng vào ra

- Vào ra riêng biệt
- Vào ra theo bản đồ bộ nhớ

Vào ra riêng biệt

- Cổng vào ra được đánh địa chỉ theo không gian địa chỉ vào ra
- CPU trao đổi dữ liệu với cổng vào ra thông qua các lệnh vào ra chuyên dụng
- Chỉ có thể thực hiện trên các hệ thống có quản lý không gian địa chỉ vào ra riêng biệt

Vào ra theo bản đồ bộ nhớ

- Cổng vào ra được đánh địa chỉ theo không gian địa chỉ bộ nhớ
- Vào ra giống như đọc ghi bộ nhớ
- CPU trao đổi dữ liệu với cổng vào ra thông qua các lệnh truy nhập dữ liệu bộ nhớ
- Có thể thực hiện trên mọi hệ thống

Các phương pháp điều khiển vào ra

- Vào ra bằng chương trình (Programmed I/O)
- Vào ra điều khiển bằng ngắt (Interupt Driven I/O)
- Truy nhập bộ nhớ trực tiếp DMA (Direct Memory Access)

Vào ra bằng chương trình

- Nguyên tắc chung: CPU trực tiếp điều khiển vào ra bằng chương trình
 - Kiểm tra trạng thái của TBNV
 - Phát tín hiệu điều khiển đọc/ghi
 - Trao đổi dữ liệu

Hoạt động của vào ra bằng chương trình

- CPU yêu cầu thao tác vào ra
- Modul vào ra thực hiện thao tác
- Modul vào ra thiết lập các bit trạng thái
- CPU kiểm tra các bit trạng thái
 - Nếu chưa sẵn sàng thì quay lại kiểm tra
 - Nếu sẵn sàng thì chuyển sang trao đổi dữ liệu với modul vào ra

Hoạt động của vào ra bằng chương trình (tiếp)

Lưu đồ chương trình

Hoạt động của vào ra bằng chương trình (tiếp)

Đặc điểm

- Vào ra do ý muốn của người lập trình
- CPU trực tiếp điều khiển vào ra
- CPU đợi modul [] tiêu tốn thời gian của CPU

Vào ra điều khiển bằng ngắt

- Nguyên tắc chung:
 - CPU không phải đợi trạng thái sẵn sàng của mô-đun vào-ra, CPU thực hiện một chương trình nào đó
 - Khi mô-đun vào-ra sẵn sàng thì nó phát tín hiệu ngắt CPU
 - CPU thực hiện chương trình con vào-ra tương ứng để trao đổi dữ liệu
 - CPU trở lại tiếp tục thực hiện chương trình đang bị ngắt

Vào ra điều khiển bằng ngắt (tiếp)

Chuyển điều khiển đến chương trình con phục vụ ngắt

Các phương pháp nối ghép ngắt

- Sử dụng nhiều đường yêu cầu ngắt
- Kiểm tra vòng bằng phần mềm (Software Poll)
- Kiểm tra vòng bằng phần cứng (Daisy Chain or Hardware Poll)
- Sử dụng bộ điều khiển ngắt (PIC)

Sử dụng nhiều đường ngắt

- Mỗi mô-đun vào-ra được nối với một đường yêu cầu ngắt
- CPU phải có nhiều đường tín hiệu yêu cầu ngắt
- Hạn chế số lượng mô-đun vào-ra
- Các đường ngắt được qui định mức ưu tiên

Kiểm tra vòng bằng phần mềm

- CPU thực hiện phần mềm hỏi lần lượt từng mô-đun vào-ra
- Chậm
- Thứ tự các mô-đun được hỏi vòng chính là thứ tự ưu tiên

Kiểm tra vòng bằng phần cứng

- CPU phát tín hiệu chấp nhận ngắt (INTA) đến mô-đun vào-ra đầu tiên
- Nếu mô-đun vào-ra đó không gây ra ngắt thì nó gửi tín hiệu đến mô-đun kế tiếp cho đến khi xác định được mô-đun gây ngắt
- Mô-đun vào-ra gây ngắt sẽ đặt vector ngắt lên bus dữ liệu
- CPU sử dụng vector ngắt để xác định nơi chứa chương trình con điều khiển ngắt
- Thứ tự các mô-đun vào-ra kết nối trong chuỗi xác định thứ tự ưu tiên

Bộ điều khiển ngắt lập trình được

- PIC Programmable Interrupt Controller
- PIC có nhiều đường vào yêu cầu ngắt có qui định mức ưu tiên
- PIC chọn một yêu cầu ngắt không bị cấm có mức ưu tiên cao nhất gửi tới CPU

Đặc điểm vào ra điều khiển bằng ngắt

- Có sự kết hợp giữa phần cứng và phần mềm
 - Phần cứng: gây ngắt CPU
 - Phần mềm: trao đổi dữ liệu
- CPU trực tiếp điều khiển vào-ra
- CPU không phải đợi mô-đun vào-ra → hiệu quả sử dụng CPU tốt hơn

DMA (Direct Memory Access)

- Vào-ra bằng chương trình và bằng ngắt do CPU trực tiếp điều khiển:
 - Chiếm thời gian của CPU
 - Tốc độ truyền bị hạn chế vì phải chuyển qua CPU
- Để khắc phục dùng DMA
 - Thêm mô-đun phần cứng trên bus → DMAC (Controller)
 - DMAC điều khiển trao đổi dữ liệu giữa môđun vào-ra với bộ nhớ chính

Sơ đồ cấu trúc của DMAC

- Thanh ghi dữ liệu: chứa dữ liệu trao đổi
- Thanh ghi địa chỉ: chứa địa chỉ ngăn nhớ dữ liệu
- Bộ đểm dữ liệu: chứa số từ dữ liệu cần trao đổi
- Logic điều khiển: điều khiển hoạt động của DMAC

- CPU "nói" cho DMAC
 - Vào hay Ra dữ liệu
 - Địa chỉ thiết bị vào-ra (cổng vào-ra tương ứng)
 - Địa chỉ đầu của mảng nhớ chứa dữ liệu → nạp vào thanh ghi địa chỉ
 - Số từ dữ liệu cần truyền → nạp vào bộ đếm dữ liệu
- CPU làm việc khác
- DMAC điều khiển trao đổi dữ liệu
- Sau khi truyền được một từ dữ liệu thì:
 - nội dung thanh ghi địa chỉ tăng
 - nội dung bộ đếm dữ liệu giảm
- Khi bộ đếm dữ liệu = 0, DMAC gửi tín hiệu ngắt
 CPU để báo kết thúc DMA

Các kiểu thực hiện DMA

- DMA truyền theo khối (Block-transfer DMA):
 DMAC sử dụng bus để truyền xong cả khối dữ liệu
- DMA lấy chu kỳ (Cycle Stealing DMA): DMAC cưỡng bức CPU treo tạm thời từng chu kỳ bus, DMAC chiếm bus thực hiện truyền một từ dữ liệu.
- DMA trong suốt (Transparent DMA): DMAC nhận biết những chu kỳ nào CPU không sử dụng bus thì chiếm bus để trao đổi một từ dữ liệu.

Cấu hình DMA

- Mỗi lần truyền, DMAC sử dụng bus hai lần
 - Giữa mô-đun vào-ra với DMAC
 - Giữa DMAC với bộ nhớ

Cấu hình DMA (cont.)

- DMAC điều khiển một hoặc vài mô-đun vào-ra
- Mỗi lần truyền, DMAC sử dụng bus một lần
 - Giữa DMAC với bộ nhớ

Cấu hình DMA (cont.)

- Bus vào-ra tách rời hỗ trợ tất cả các thiết bị cho phép DMA
- Mỗi lần truyền, DMAC sử dụng bus một lần
 - Giữa DMAC với bộ nhớ

Đặc điểm của DMA

- CPU không tham gia trong quá trình trao đổi dữ liệu
- DMAC điều khiển trao đối dữ liệu giữa bộ nhớ chính với mô-đun vào-ra (hoàn toàn bằng phần cứng) → tốc độ nhanh
- Phù hợp với các yêu cầu trao đổi mảng dữ liệu có kích thước lớn

Nối ghép thiết bị ngoại vi

- Các kiểu nối ghép
 - Nối ghép song song
 - Nối ghép nối tiếp

Nối ghép song song

- Truyền nhiều bit song song
- Tốc độ nhanh
- Cần nhiều đường truyền dữ liệu

Nối ghép nối tiếp

- Truyền lần lượt từng bit
- Cần có bộ chuyển đổi từ dữ liệu song song sang nối tiếp hoặc/và ngược lại
- Tốc độ chậm hơn
- Cần ít đường truyền dữ liệu

Các cổng vào ra

Sinh viên tự tìm hiểu