

Digital University Theses, Publications and Staff

Milena Atanasova

milena.atanasova@studenti.unitn.it

Knowledge Graph Engineering 2022/2023 UniTrento

December 2022

Project GitHub repository: https://github.com/atanasova16/TrentinoDUniTPS

iTelos methodology

01. Purpose and Domain of Interest

02. Resources

03. Purpose Formalization

04. Inception

05. Informal modeling

06. Formal modeling

07. Outcome exploitation

08. Conclusions and open issues

Purpose and Dol

"A service which help the users to query and know about the different areas of academic and research interest being pursued at the University of Trento"

Academics at the University of Trento, including information mainly about research activities, between the years 2020 and 2022

Project Resources

Knowledge Sources	VIVO	FOAF		Scher	na.org	IAO	DCAT
Data Sources	Theses (Open Data Trentino)	Publications (Data Trenti	•	• •	oen Data tino)	ses (Open Data Trentino)	Digital Portal of UniTn
Software Used	Python (Visual Studio Code)	Protégé	Karma	data linker	KOS	Shapeness	GraphDB

Purpose Formalization

Overview

Scenarios

Identify a context in which the KG would be used

Concern time (w.r.t. academic year), place Personas

Users who would benefit from the KG and would like to learn something from it

11 characters, different age, occupation, nationality

Competency questions

A person in a scenario asks a query to be fulfilled by the KG

For each person, 4 to 6 questions

Purpose Formalization Scenarios

Aim to provide context for different uses of the knowledge graph.

Spring, school year, familiar with UniTN, Italy Spring, school year, already inside Unitn, Italy

Autumn, beginning of school year, already inside Unitn, Trento, Italy

Summer, before start of school year, not familiar with Unitn, outside Italy Summer, before start of school year, familiar with Unitn, outside Italy

Winter, school year, familiar with Unitn, Italy

Purpose Formalization

Personas

Marco Pierotti

Age: 19, Nationality: Italian
Occupation: high-school student

Description: Exploring study opportunities

Ivan Krumov

Age: 21, Nationality: Bulgarian

Occupation: Bachelor graduate

Description: Doing project in Al and is looking

for information and help

Elena Ranzani

Age: 25, Nationality: Italian

Occupation: Assistant in biology UniTN

Description: Wants to do a PhD

Ginnie Anderson

Age: 32, Nationality: British

Occupation: editor in a Maths journal

Description: Looking for innovative mathsrelated articles to include and offer to people

Donatello Ferrari

Age: 63, Nationality: Italian

Occupation: Full-time professor in Psychology

Description: Looking for students/alumni help him for his project

Paolo Lanza

Age: 44, Nationality: Italian

Occupation: Investor

Description: Passionate about Physics, wants to

organize a conference

Purpose Formalization

Competency Questions

Professors at Physics department?

courses of study at UniTN? Departments information?

Authors of publications for Al?

A way to contact such people?

Articles only in English?

Publications to help a PhD research?

Students and advisors for theses in Biology?

Biology publications?

Courses grouped by faculties and most prominent ones?

Most prominent researchers in several fields?

Theses from different degrees and their count?

Access point to math publications'

Inception phase

Data management

1. Separating nested structured datasets

- Extracting students, supervisors, co-supervisors, examiners from Theses
- Extracting files from publications
- Extracting positions from staff

2. Dealing with IDs

- Creation when not available
- Refined at Data Integration phase regarding the concept of URIs and Identification sets

3. Departments and Degrees

- Departments data was scraped from the Digital University Portal
- Degrees were extracted from the Courses distribution and then linked to theses and departments

4. Datasets as output informal resources:

- Theses
- Students
- Supervisors
- Co-supervisors
- Examiners
- Publications
- Files
- Authors
- Staff persons
- Positions
- Degrees
- Departments

12 datasets as semiformal resources to be utilized as input in the next phase. Format: CSV and JSON

Inception phase

Single datasets ontologies

- Using Protégé, small ontologies were defined for each dataset. Each one represents an entity, with the data
 properties present as fields from the dataset files, keeping those fields which are useful for the purpose.
- Later, those were imported in Protégé to link with object properties and create the teleology.
- Using Karma Data Linker, these small ontologies were mapped to the datasets.

has person	Staff_per		hone	
8	8	8	8	•
identifier▼	name▼	surname ▼	phone ▼ values ▼	position ▼
<mark>-</mark>				
3d22af80edc6910	Maurizio	Ferrari	9	guesto0008627_1
1547a72aafb2b91	Anna	Scalfi		guesto0008630_2
0c0c137493b2ec9	Bruno	Callegher		teasto0008632_3
3f561286a936502	Moreno	Ferrarese		teasto0008621_4
				teasto0008630_5
69872e46afd8f11	Paolo	Barbieri	0461 281326	fulsto0000371_6
			0461 281437	fulsto0008630_7
2ab203bc6bbbc9	Serena	Manara		ressto0008662_8
37dbdbf4b89959	Irene	Villa		teasto0008628_9
				ressto0008628 10

	Examiner1	
has_exam	iner_name।er_surna	me as_examiner_id
nome▼	cognome▼	id▼
1		
Ericka	Costa	c128c7355815327
Gabriella	Berloffa	0b10f60a65658db
Matteo	Ragni	matteoragni_9
Erik	Dassi	ca56af68877e89f4
Luigi Amedeo	Bianchi	ebb8c7f13d87a9fd
Andrea	Bonoldi	560f85206a1f3aec
Massimiliano	Vatiero	9fe0499c2fba78c7
Maria Caterina	Mione	cc1bfef2c074775d

Informal Modeling phase

ER model General

Informal Modeling phase

ER model Specific

Informal Modeling phase

Protégé Implementation Teleology

Formal modeling phase

Ontology

Showing hierarchical relations

 The higher-level of abstraction knowledge layer

 E-types taken from Reference ontology for the purpose of reusability

Formal modeling

Teleontology – combining ontology and teleology

- How the E-types with their Data and Object properties are mapped to the schema
- A complete view of the structure of the KG

Formal Modeling phase

Protégé Implementation

Formal modeling phase

Language annotation

Concepts defined for the use of this KG, which enlarge the dictionary of meaning of words

Offered_by verb	Has_department_director noun
 provide possibility to subscribe to a program/course/event 	Someone who is the main responsible person for a department
Publication noun	Has_license noun
 An abstract, article or paper in a journal or electronic repository 	Kind of permission a certain document has
Cosupervisor noun	Has_format noun
Someone who is a secondary supervisor	The electronic format of a file
File noun	Has_file_link noun
An electronic representation of a document	A reference to access a website

Data Integration. Knowledge Graph Construction

Entity Identification and Semantic Heterogeneity. Entity matching

- Some datasets already had IDs (persons, departments)
- For others Identification Sets had to be identified from the data (e.g. for Position: role + department)
- Since datasets were divided at the beginning, no nested structures
- Karma Data Linker efficiently manages these issues

Data Integration. Knowledge Graph Construction

Evaluation. Some statistics

GraphDB

Let's see a demo of SPARQL queries!

Conclusions and Open Issues

Result

Fairly well connected graph.

Two entity types with high number of outgoing links.

Not so much information about persons.

Artifacts as outcomes of the phases

Cleaned and organized datasets

Metadata
Teleology, Ontology, and Teleontology models
Inception sheet
Table with language annotation

Open Issues

Should Journals and/or Conferences be included in the KG and if yes, how should they be linked?

Is there a way to collect more information about people? This would provide more information about the issue of entity recognition, and if two people are the same.

Each entity person who belongs to different classes has DP coming from all of them and they overlap.

Is there a way to get some kind of indicator for quality of department/degree program?

Thank you!

Q&A