#### Since the beginning of creation humans have valued data and time

# Introducing iSCSI Protocol on Online Based MapReduce Mechanism

International Conference On Computational Science and Its Application, ICCSA-2014

Guimaraes, Portugal.

Presented By

**Sung-Soon Park** 

#### **Contents**

- Introduction
- Motivation
- Proposed Schemes
- Experiments and Result Analysis
- Conclusion

## Introduction (1/4)









- Big data is a collection of huge amount of data sets. Data can be classified into three types:
  - Structured data: processed by NoSQL, MongoDB, and TerraStore
  - Unstructured data
  - Semi-structured data
- It will be better if <u>MapReduce</u> take little time to process the huge amount of data. Our goal is to optimize MapReduce.

# Introduction (2/4)



## Introduction (3/4)

#### **MapReduce Example**



## Introduction (4/4)

- Problems of MapReduce:
- Reducer waits for full completion of Map task
- Data overload and connection problem
- Time of completion
- Solution: Introducing iSCSI protocol



#### > Motivation

- In pipelining mechanism[ref], they used naïve implementation to send data directly from map to reduce tasks: <u>MapReduce</u>
- Big Data transition Map to Reduce process by using TCP: occur <u>data overload</u> and <u>connection problem</u>.
- Then, Map task retransmit the whole data.
- It has no mechanism to handle data overload
- MRA [MapReduce Agent]
- Transmit data without retransmission
- Has a mechanism to handle data overload

[ref: Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein UC Berkeley: MapReduce Online. Khaled Elmeleegy, Russell Sears(Yahoo! Research)2012]

# **Proposed Model (1/3)**

#### MapReduce Agent(MRA)



### **Proposed Model (2/3)**

# Overview of <u>Multi-connection and ErrorRecovery Method</u> of iSCSI



[ref: S.M.Allayear, Sung Soon Park: iSCSI Multi-Connection and Error Recovery Method for Remote Storage System in Mobile Appliance. The 2006 International Conference on Computational and It's Applications (ICCSA2006), Glasgow-Scotland. Springer-Verlag Berlin Heidelberg 2006, (SCI Indexed) LNCS 3981, pp.641-650.

## **Proposed Model (3/3)**

#### **Q-Chained Load Balancer:**

Being able to fully balance, **the workload** among the data connections in the event of packet losses due to bad channel characteristics.

| Data<br>Connection | 0                                   | 1        | 2                | 3                | 4                | 5                |
|--------------------|-------------------------------------|----------|------------------|------------------|------------------|------------------|
| Primary data       | Q <sub>0</sub>                      | $Q_1$    | $Q_2$            | $Q_3$            | $Q_4$            | Q 5              |
| Recovery data      | 100                                 |          | -                |                  | 2.72             | 70               |
| < data             | transm                              | ission w | ith multi        | TCPcon           | nections         | >                |
| Data<br>Connection | 0                                   | 1        | 2                | 3                | 4                | 5                |
| Primary data       | $Q_0$                               | F        | $Q_2$            | $Q_3$            | $Q_4$            | Q 5              |
| Recovery data      | 15-4                                | F        |                  | -                |                  |                  |
| < typica           | ltakeov                             | er sche  | me witho         | ut Load          | Balancin         | g >              |
| Data<br>Connection | 0                                   | 1        | 2                | 3                | 4                | 5                |
| Primary data       | $Q_0$                               | F        | $\frac{1}{5}Q_2$ | $\frac{2}{5}Q_3$ | $\frac{3}{5}Q_4$ | 4 Q 5            |
| Recovery<br>data   | $\frac{1}{5}$ <b>q</b> <sub>5</sub> | F        | $q_1$            | $\frac{4}{5}q_2$ | $\frac{3}{5}q_3$ | $\frac{2}{5}q_4$ |

# **Performance Evaluation (1/6)**

#### 10 GB Blocking



- CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 20 reduce tasks (512MB block size).
- The total job runtimes were 361 seconds for blocking.

## **Performance Evaluation (2/6)**

#### 10 GB pipelining



- CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 20 reduce tasks (512MB block size).
- The total job runtimes were 290 seconds for pipelining.

## **Performance Evaluation (3/6)**

#### 10 GB MRA



- CDF of map and reduce task completion times for a 10GB wordcount job using 20 map tasks and 20 reduce tasks (512MB block size).
- The total job runtimes were 240 seconds for MRA.

## **Performance Evaluation (4/6)**

#### 100 GB Blocking



- CDF of map and reduce task completion times for a 100GB wordcount job using 240 map tasks and 60 reduce tasks (512MB block size).
- The total job runtimes were 48 minutes for blocking.

# **Performance Evaluation (5/6)**

#### 100 GB pipelining



- CDF of map and reduce task completion times for a 100GB wordcount job using 240 map tasks and 60 reduce tasks (512MB block size).
- The total job runtimes were 36 minutes for pipelining.

## **Performance Evaluation (6/6)**

#### **100 GB MRA**



- CDF of map and reduce task completion times for a 100GB wordcount job using 240 map tasks and 60 reduce tasks (512MB block size).
- The total job runtimes were 32 minutes for MRA.

#### Conclusion

- In these circumstances, our proposed mechanism (MRA) may prove its better time completion for Hadoop technique.
- Now a days Hadoop technique is used in facebook, yahoo, cloud computing.
- So, our research can play an important role in the distributed file system and network storage area.

#### Reference

- DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified dataprocessing on large clusters. In OSDI (2004).
- SAM-3 Information Technology SCSI Architecture Model 3, Working Draft, T10 Project 1561-D, Revision7, 2003.
- S.M.Allayear, Sung Soon Park: iSCSI Multi-Connection and Error Recovery Method for Remote Storage System in Mobile Appliance. The 2006 International Conference on Computational and It's Applications (ICCSA2006), Glasgow- Scotland. Springer-Verlag Berlin Heidelberg 2006, (SCI Indexed) LNCS 3981, pp.641-650.
- Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein UC Berkeley: MapReduce Online. Khaled Elmeleegy, Russell Sears(Yahoo! Research)
- HELLERSTEIN, J. M., HAAS, P. J., AND WANG, H. J. Online aggregation. In SIGMOD (1997).