(2): "="

We have known |
$$|f_n - f|^p \in 2^p (|f_{n,n}| |f_n|^p + |f_n|^p)$$

We want to apply DCT. so first let $h_n = 2^p |f_n|^p + 2^p |f_n|^p$.

I): $f_n \rightarrow f$ a.e => $h_n \rightarrow 2^{p+1} |f_n|^p$ a.e.

2): $||f_n||_p \rightarrow ||f_n||_p = ||f_n||_p ||f_n||$

So Apply DCT on
$$1f_n-f_1^P$$
:
$$\int \lim_{n\to\infty} |f_n-f_1|^P = \lim_{n\to\infty} \int |f_n-f_1|^P = 0.$$
So $1|f_n-f_1|_P \to 0.$

2. ① Let $F = \left\{ \sum_{i=1}^{n} C_{i} \int_{j=1}^{d} \left(a_{ij}, b_{ij}\right) : n \in \mathbb{Z}^{+}, C_{i} \text{ is rational vector.} \right\}$ $C_{ij} : b_{ij} \in \mathbb{Q}$

(2) Claim: (c (Rd) is dense in Lp(Rd)

Proof: we know simple functions are dense in Lp (Rd) So just need to show: $\forall \exists x \in \mathbb{C} \subset \mathbb{R}^d$. S.t. $| \exists h \in \mathbb{C} \subset \mathbb{R}^d \cap \mathbb{C} \subset \mathbb{R}^d \cap \mathbb{C} \subset \mathbb{R}^d$.

Lebesgue measure tells me:

IKEAED, k is compact. Ois open. M(K) < M(O) + EP.

Rn is locally compact and Hansdorff.

By Vrysohn: Ih & C(Rd, [0,17]) is to

Ik & h & O

So such $h \in C_{c}(\mathbb{R}^{d})$, and $||h-J_{A}||_{P}^{P} = \int_{\mathbb{R}^{d}} |h-J_{A}|^{P} \cdot d\mathcal{U}$ $= \int_{K} |h-J_{A}|^{P} d\mathcal{U} + \int_{O\setminus K} |h-J_{A}|^{P} d\mathcal{U}$ $+ \int_{O} c \cdot |h-J_{A}|^{P} d\mathcal{U}$ $= \int_{O\setminus K} |h-J_{A}|^{P} d\mathcal{U}$ $\leq \mathcal{U}(O\setminus K) = \mathcal{E}^{P}.$

Let Y- { & Cil + (aij, big) n 62+. aig, big 60%. (3) Claim: 7 is dense on CccRd) Proof: $\forall f \in C_c(\mathbb{R}^d)$ let A = a cube with rational coordinate containing support (f). Now we split A into countable small cubes. Qi, Qn, --these $\{Qn\}$ s.t. Pithe coordinates of Qn are rational these $\{Qn\}$ s.t. Pithe coordinates of Qn are rational (Here actually I'm not U $\{Qn\}$ are disjoint $\{Qn\}$ are disjoint $\{Qn\}$ $\{$ 1. 11f-911p = SR If-91p du = San If-91pdu < SP. (MA)+ E) Pick 8 and & properly, we can get: For Y 270. 3 +g &7 st 14-911p 5人 4 F is dense on T. & F is countable.

then .

$$\mu(\{x: |f\omega| > A \}) = 0$$
 $\mu(\{x: |f\omega| > A \}) = 0$
 $\mu(\{x: |g(x)| > B\}) = 0$
 $\mu(\{x: |f\omega| + g(x)| > A + B\})$
 $\in \mu(\{x: |f\omega| + g(x)| > A + B\})$

=
$$1-\mu\left(\left\{x:|f\infty|+|g\infty|\leq A+B\right\}\right)$$

(C)

$$\exists : \mathcal{U}\left(\left\{X: |f_{n}(x)-f\infty| > 0\right\}\right) \rightarrow 0$$

=> fn>f uniformly on E, M(E)=0

let $\{f^{(n)}\}$ be a Canchy seg in I^{∞} . $\{f^{n}\}\}$ is Canchy (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$ $\exists 1 f^{n} - f^{m} | I_{\infty} < 2$ (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=) $\forall 2^{70}$, $\exists N$. $\Rightarrow t$. (=)

... $\forall x. \{f^n(x)\}\ is \ (auchy, thus converge.$ Assuing that $f^n(x) \to f(x)$ as $n \to \infty$. almost surely

So $f^n \to f$ uniformly $a \to s$.

So $f^n \to f$ $f^n(x) \to 0$

(e):

11f-9110 5 2

: Simple function are dense in L

Let M=11f11m

①: From the definition of 11-11m, we know:

For any £ > 0. we have: $\frac{\mathcal{L}(\{f>11f1|m-1-2\})>0}{\mathcal{L}(\{x:f(x)>11f1|m-2\}>0}$ Let $E = \{\{x:f(x)>11f1|m-2\}$. $= \{x:f(x)>m-2\}$

.. $\int_{X} |f|^{p} d\mu \nearrow \int_{E} |f|^{p} d\mu \nearrow \mathcal{M}^{(E)} \cdot |M-\varepsilon|^{p}$.. $||f||_{p} \nearrow (\mathcal{M}^{(E)})^{\frac{1}{p}} \cdot |M-\varepsilon|$ Fix ε , then $\mathcal{M}^{(E)}$ also fixed, as $p \rightarrow \infty$, we have $||f||_{p} \nearrow |M-\varepsilon|$. for any $\varepsilon \nearrow 0$

: (D+(2) => 11f11p=M as p-10

10.5 OT is a tpo of X* Pf:1): ϕ is open and compact $\leq x$, $x^* \setminus x^* = \phi$ su φ ∈T, X* ∈T 2) For any U Ox (Ox is open). If: Ya, \$\$ \$\open \text{Od}\$. Then U a is a open set \subset \times \chi\$. SO JEA OL ET If: ∃deA. ⋈ ∈ Od. Odo ∈T ⇒ X* \ Odo is compact. (U Ox) = Ox = Ox is compact So yet Ox ET 3): For any Di where Oi is open in Xt. If \vertilen in \vertilen i ÃOiET Else: suppose 1 = €1-n3. 5 × ∞ ∈ Qi. Oi then (MOi) = NOic = N (compact set)

= compact set : ÃOi ET.

2 (X*, T) is compact. Pf: For any open covering { DaJaEA of X#. Jd, s+ Od, 3 ∞.

Considering { Oa } ded, ata, : It's an open covering of Oa, Odi is compact => = finite subcover O1.02,... On So Od, O1, O2 -- ONIS are finite subcover of X7

3 (X*, T) is Hausdorff Axinex* xxy i) X, y ∈ X / [Because X is LCH\$, open sets in X ∈ T). 2] - If, WLOG, X= ∞. X is LCH => 目 O is open in X. st. YEO, X10 is compactly EX let A = such O, B=(X10)Uim3. x B is compact So both A.B is open in X*. JAMB= \phi. XEB \quad YEA (2): In clusion map i: X→X^{*} is an embedding Let Ti={Unicx): UET} = {Unx: UET} (i(X)=X)

Tie Ti is the topology of X So is an embedding

(5): extends continuously \Rightarrow fight: $g \in C_0(x)$. $f(x_0) = C$. Let f(x) = f(x) if $x \in X$.

C if $x = x_0$, cis a constant.

Let 9=f,- A.C. Y€70. {x∈X: 1g(x) | > € } = {x∈X: |f(x)-c| > € }. = X \ {xeX: |fxx-c| < & {

fi is continuous + B(c, €) is open => {x∈x= 1ficx)-c| < €3 is open And this open set contains w, so x \ \ {xe X = f(x)-c) < 2} is compact, so x/{xex:ffcx)-c/ce} is opt So {xex: 1gcx1743 is compact, g ∈ Co(X).

(1) f = g+c => f, is continuous. on x* For any open V EC. $f_{1}^{-1}(x) = \{w\} \cup f_{1}^{-1}(v) = g_{1}^{-1}(v) \cup \{w\}, g_{1}^{-1}(v-c) \cup \{w\}, g_{2}^{-1}(v-c) \cup \{w\}, g_{3}^{-1}(v-c) \cup \{w\}, g_{4}^{-1}(v-c) \cup \{w\}, g_{4}^{$ 9 E Co(X) => g-1(V-c) is open in X (=) 91 ((V-C)C) is closed in X. E7 (g-1(V-c)) is closed in X. $g^{-1}((V-c)^c) = \{x \in X : g(x) \in (V-c)^c\}$ YITSINCE CEV. so I a open ball B(0,8) CV-C. -1.9-1 ((V-C)°) = {x∈X: g(x) ∈ B(0,S)°} = {x∈X: |g(x)| ≥ €} 9 € Co(x) => {x ∈ X: 19(x) | > € } is cpt =7 g⁻¹((v-e)^c) is cpt. => gt(V=c) is open in xq.

 $2/2f \in V \cdot f_1^{-1}(V) = f^{-1}(V)$ is open in X.

(7) Without LC, we can still show Hausdorff. (see (3)) but we use LC when showing compact. (see (3)).

Hausdorff (3)

We construct
$$f: S^n \setminus \{X^o\} \rightarrow \mathbb{R}^n$$
, where
$$f((X_1, X_2, \dots X_{n+1})) = \frac{1}{1 - X_{n+1}} (X_1, X_2, \dots X_n)$$

Obviously f is well-defined

Proof:
$$\forall x, y \in S^{n} \mid \{x^{0}\}\ \text{if} \quad x \neq y \text{ but } f(x) = f(y)$$

then $\int \frac{x_{1}}{1-X_{n+1}} = \frac{y_{1}}{1-y_{n+1}}$ $\Rightarrow \int \frac{x_{1}}{1-y_{n+1}} y_{1}$
 $\frac{x_{2}}{1-X_{n+1}} = \frac{y_{2}}{1-y_{n+1}} \Rightarrow \int \frac{x_{1}}{1-y_{n+1}} y_{1}$
 $\frac{x_{1}}{1-x_{n+1}} = \frac{y_{1}}{1-y_{n+1}} \Rightarrow \int \frac{x_{1}}{1-y_{n+1}} y_{1}$
 $\frac{x_{1}}{1-x_{n+1}} = \frac{y_{1}}{1-y_{n+1}} = \frac{y_{1}}{1-y_{n+1}} y_{1}$

$$SQ \stackrel{\mathcal{L}}{\underset{i=1}{\sum}} Xi^2 = Xnti^2 + \stackrel{\mathcal{L}}{\underset{i=1}{\sum}} t^2 yi^2 = Xnti^2 + t^2 \cdot \stackrel{\mathcal{L}}{\underset{i=1}{\sum}} yi^2$$

$$= Xnti^2 + t^2 (1 - ymi)$$

$$= \chi_{n+1} + t^{2} (1 - y_{n+1}).$$
Since $= \frac{m!}{2} \chi_{1}^{2} = \chi_{n+1}^{2} + \frac{(1 - \chi_{n+1})^{2}}{(1 - y_{n+1})^{2}} \cdot (1 - y_{n+1}^{2})$

$$-\frac{\chi_{n+1}^{2}+\frac{(1-\chi_{n+1})^{2}}{1-y_{n+1}}\cdot(1+y_{n+1})}{-\frac{\chi_{n+1}^{2}-\chi_{n+1}^{2}y_{n+1}}{1-y_{n+1}}+\frac{\chi_{n+1}^{2}-2\chi_{n+1}+1+\chi_{n+1}^{2}y_{n+1}-2\chi_{n+1}y_{n+1}+y_{n+1}}{1-y_{n+1}}$$

An contradiction! So f is injective

3 f is surjective.

Y y & R" . suppose y=(y, ... yn). And we now find whether there's a solution for f(x)=y.

1) If
$$\frac{z}{2}y_1^2 = 1$$
. Then let $x = (y_1, y_2, y_1, 0)$
then $f(x) = y$

2): If $\frac{z}{2}y_1^2 + 1$. let $x_{11} = \frac{z_1^2 y_1^2 - 1}{z_2^2 y_1^2 + 1}$.

So $o < x_{11} < 1$.

Yielliz...ni. let $x_1 = y_1 \cdot (1 - x_{11})$.

So such x satisfies $f(x) = y$. And:

$$\frac{z_1^2}{z_1^2} x_1^2 + x_{11}^2 = (1 - x_{11})^2 \cdot \frac{z}{2} y_1^2 + x_{11}^2 \cdot \frac{z}{2} y_1^2 + x_{11}^2$$

4 f is continuous.

It suffices to show fi is continuous for all i Ellizions. Where fi is i-th coordinate of f.

fit (a,b) = { xi e R: a < xi - Xm < b} ns".

so if (a,b) is a open interval of R. then
-filab) is also open

G. Obviously. $\forall \{x^n\}$ in $s^n \{\{x^o\}\}$.

if $x^n \to x^o$. then $f(x^n) \to +\infty$.

SO $f(x^{\circ}) = +10$, and thus we get the function. T ($f(x^{\circ})$ can be written as top and doesn't affect continuity).

10.7 For any open E = U* ① D & E then d (E) = E is open ② \$\omega \in E \in \phi^{\dagger}(E) = X\\\phi^{\dagger}(\bu^*\\\\ E) WEE ⇒ U*\E is compact. inho 10.5 => U* is Hausdorff => U* | E is closed. φ-(U* \E) = U* \E is closed

(|since U*|E = U). So X \ \$\p'(U\\ \E) B open of (E) is open.