Advanced Methods in Nonlinear Control (SS 2024) - Task 1

Dr.-Ing. Pascal Jerono, DPE/MVM

Exercise 1.1.

Show via Lyapunov's direct method the asymptotic stability of the system

$$\dot{x} = -f(x)$$

with f(x) > 0 for x > 0, f(0) = 0 and f(x) < 0 for x < 0.

Hint: Use $V(x) = \int_0^x f(\xi) d\xi$ as a Lyapunov function candidate.

Exercise 1.2.

Consider the system

$$\dot{x}_1 = -x_1 - x_2 - x_1(x_1^2 + x_2^2),
\dot{x}_2 = x_1 - x_2 - x_2(x_1^2 + x_2^2),
t > 0, x_1(0) = x_{10}
t > 0, x_2(0) = x_{20}$$

and show the asymptotic stability of the origin using Lyapunov's direct method.

Exercise 2.1.

Consider the system

$$\dot{x}_1 = x_1^3 + x_2,$$
 $t > 0,$ $x_1(0) = x_{10}$
 $\dot{x}_2 = u,$ $t > 0,$ $x_2(0) = x_{20}.$

Design a backstepping controller to ensure the asymptotic stability of the origin.

Bonus: Illustrate the behavior of the controller by showing a numerical simulation of the closed-loop system.

Exercise 3.1.

Consider a mass-spring-damper system with a nonlinear spring, that is modeled by

$$m\ddot{x} + d\dot{x} + k(x)x = F$$

with m, d > 0, $k : \mathbb{R} \to (0, \infty)$ and $F : [0, \infty) \to \mathbb{R}$. Show that the system with input–output pair (F, \dot{x}) is passive. Further show that with the proportional feedback control $F = -\kappa_c \dot{x}$ with $\kappa_c > -d$ the system can be asymptotically stabilized.

<u>Hint</u>: Bring the system into state–space form and use the total mechanical energy as storage function, i.e. $E_{\rm kin} = \frac{1}{2} m v^2$ for a velocity v and $E_{\rm elastic} = \int_0^s k(\xi) \xi \, \mathrm{d} \xi$ for the (nonlinear) spring *constant* k(s) (which is not independent from the distance s). For the stability analysis recall the Krasovskii-LaSalle invariance theorem.

Exercise 4.1.

Consider the system

$$\dot{x} = x^3 + \left(x^2 + \sin(x) + \frac{3}{2}\right)u, \qquad t > 0, \quad x(0) = x_0$$

with an external input u which can be modified for control purpose.

Construct a GAS stabilizing feedback controller u = k(x). Furtheremore consider the same systeme with a disturbance acting on the input, i.e.,

$$\dot{x} = x^3 + \left(x^2 + \sin(x) + \frac{3}{2}\right)(u+d), \quad t > 0, \quad x(0) = x_0$$

Construct (modify) a feedback controller $u = \tilde{k}(x)$ so that the states x are ISS with respect to the disturbance d.

<u>Bonus</u>: Illustrate the behavior of the controller $u = \tilde{k}(x)$ by showing a numerical simulation of the closed-loop system with some konstant or bounded function d(t).