A TEMPLATE FOR THE ARXIV STYLE

A Preprint

David S. Hippocampus *

Department of Computer Science Cranberry-Lemon University Pittsburgh, PA 15213 hippo@cs.cranberry-lemon.edu Elias D. Striatum

Department of Electrical Engineering Mount-Sheikh University Santa Narimana, Levand stariate@ee.mount-sheikh.edu

May 20, 2024

Abstract

Enter the text of your abstract here.

Keywords blah \cdot blee \cdot bloo \cdot these are optional and can be removed

1 Introduction

Here goes an introduction text

2 Headings: first level

You can use directly LaTeX command or Markdown text.

LaTeX command can be used to reference other section. See Section 2. However, you can also use **bookdown** extensions mechanism for this.

2.1 Headings: second level

You can use equation in blocks

$$\xi_{ij}(t) = P(x_t = i, x_{t+1} = j | y, v, w; \theta) = \frac{\alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}$$

But also inline i.e z = x + y

2.1.1 Headings: third level

Another paragraph.

3 Examples of citations, figures, tables, references

You can insert references. Here is some text (Kour and Saabne 2014b, 2014a) and see Hadash et al. (2018).

The documentation for natbib may be found at

You can use custom blocks with LaTeX support from rmarkdown to create environment.

^{*}Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding agencies. Optional.

Figure 1: Sample figure caption.

Table 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	$ \sim 100 \\ \sim 10 \\ up to 10^6 $

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf%7D

Of note is the command \citet, which produces citations appropriate for use in inline text. You can insert LaTeX environment directly too.

\citet{hasselmo} investigated\dots

produces

Hasselmo, et al. (1995) investigated...

https://www.ctan.org/pkg/booktabs

3.1 Figures

You can insert figure using LaTeX directly.

See Figure 1. Here is how you add footnotes. [^Sample of the first footnote.]

But you can also do that using R.

plot(mtcars\$mpg)

You can use **bookdown** to allow references for Tables and Figures.

3.2 Tables

Below we can see how to use tables.

See awesome Table~1 which is written directly in LaTeX in source Rmd file.

You can also use R code for that. (Hadash et al. 2018; Kour and Saabne 2014a, 2014b)

Figure 2: Another sample figure

Figure 3: Population dynamics from a Gillespie simulation of the Levins model with large (N=1000, panel A) and small (N=100, panel B) number of sites (blue) show relatively weaker effects of demographic noise in the bigger system. Models are otherwise identical, with e=0.2 and c=1 (code in appendix A). Theoretical predictions for mean and plus/minus one standard deviation shown in horizontal re dashed lines.

Table 2: Head of mtcars table

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
18.1	6	225	105	2.76	3.460	20.22	1	0	3	1
	21.0 21.0 22.8 21.4 18.7	21.0 6 21.0 6 22.8 4 21.4 6 18.7 8	21.0 6 160 21.0 6 160 22.8 4 108 21.4 6 258 18.7 8 360	21.0 6 160 110 21.0 6 160 110 22.8 4 108 93 21.4 6 258 110 18.7 8 360 175	21.0 6 160 110 3.90 21.0 6 160 110 3.90 22.8 4 108 93 3.85 21.4 6 258 110 3.08 18.7 8 360 175 3.15	21.0 6 160 110 3.90 2.620 21.0 6 160 110 3.90 2.875 22.8 4 108 93 3.85 2.320 21.4 6 258 110 3.08 3.215 18.7 8 360 175 3.15 3.440	21.0 6 160 110 3.90 2.620 16.46 21.0 6 160 110 3.90 2.875 17.02 22.8 4 108 93 3.85 2.320 18.61 21.4 6 258 110 3.08 3.215 19.44 18.7 8 360 175 3.15 3.440 17.02	21.0 6 160 110 3.90 2.620 16.46 0 21.0 6 160 110 3.90 2.875 17.02 0 22.8 4 108 93 3.85 2.320 18.61 1 21.4 6 258 110 3.08 3.215 19.44 1 18.7 8 360 175 3.15 3.440 17.02 0	21.0 6 160 110 3.90 2.620 16.46 0 1 21.0 6 160 110 3.90 2.875 17.02 0 1 22.8 4 108 93 3.85 2.320 18.61 1 1 21.4 6 258 110 3.08 3.215 19.44 1 0 18.7 8 360 175 3.15 3.440 17.02 0 0	21.0 6 160 110 3.90 2.620 16.46 0 1 4 21.0 6 160 110 3.90 2.875 17.02 0 1 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 18.7 8 360 175 3.15 3.440 17.02 0 0 3

3.3 Lists

- Item 1
- Item 2
- Item 3

Biblio

Hadash, Guy, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. 2018. "Estimate and Replace: A Novel Approach to Integrating Deep Neural Networks with Existing Applications." arXiv Preprint arXiv:1804.09028.