$\rho_3(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

$\rho_{3}(1690)$ MASS

VALUE (MeV) DOCUMENT ID

1688.8±2.1 OUR AVERAGE Includes data from the 5 datablocks that follow this one.

2π MODE

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

1686± 4 OUR AVERAGE

1677 ± 14		EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow 2\pi p$
1679 ± 11	476					$15 \pi^+ p \rightarrow \pi^+ \pi^- n$
1678 ± 12	175	$^{ m 1}$ ANTIPOV	77	CIBS	0	$25 \pi^- p \rightarrow p3\pi$
1690 ± 7	600	¹ ENGLER	74	DBC	0	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
$1693\pm$ 8		² GRAYER	74	ASPK	0	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1678 ± 12		MATTHEWS	71 C	DBC	0	$7 \pi^+ N$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1734 ± 10		³ CORDEN	79	OMEG		12–15 $\pi^- p \rightarrow n2\pi$
$1692\!\pm\!12$		^{2,4} ESTABROOKS	75	RVUE		$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1737 ± 23		ARMENISE	70	DBC		9 π^+ N
1650 ± 35	122	BARTSCH	70 B	HBC	+	$8 \pi^+ p \rightarrow N2\pi$
1687 ± 21		STUNTEBECK	70	HDBC	0	8 π^- p, 5.4 π^+ d
1683 ± 13		ARMENISE	68	DBC	0	$5.1 \pi^+ d$
1670 ± 30		GOLDBERG	65	HBC	0	6 $\pi^+ d$, 8 $\pi^- p$

¹ Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

$K\overline{K}$ AND $K\overline{K}\pi$ MODES

VALUE (MeV) <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

1696± 4 OUR AVERAGE

1699 ± 5		ALPER	80	CNTR 0	•
1698 ± 12	6k	^{5,6} MARTIN	78 D	SPEC	$10 \pi p \rightarrow K_S^0 K^- p$
1692 ± 6		BLUM	75	ASPK 0	18.4 $\pi^- p \to nK^+K^-$
1690 ± 16		ADERHOLZ	69	HBC +	$8 \pi^+ p \rightarrow K \overline{K} \pi$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1694 \pm 8 OMEG 10 $\pi^- p \rightarrow K^+ K^- n$

 $[\]frac{2}{2}$ Uses same data as HYAMS 75.

³ From a phase shift solution containing a $f_2'(1525)$ width two times larger than the $K\overline{K}$ result.

⁴ From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

⁵ From a fit to $J^P = 3^-$ partial wave.

 $^{^{\}rm 6}\,{\rm Systematic}$ error on mass scale subtracted.

⁷ They cannot distinguish between $\rho_3(1690)$ and $\omega_3(1670)$.

$(4\pi)^{\pm}$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT **EVTS** The data in this block is included in the average printed for a previous datablock.

1686 +	5 OUR	AVERAGE	Error includes	scale factor	of 1.1.
T000 T	3 OUI	AAFIXAGE	LITOI IIICIUUES 3	Scale lactor	OI 1.1.

1694 ± 6		⁸ EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
1665 ± 15	177	BALTAY	78 B	HBC	+	$15 \pi^+ p \rightarrow p4\pi$
1670 ± 10		THOMPSON	74	HBC	+	13 $\pi^+ p$
1687 ± 20		CASON	73	HBC	_	8,18.5 $\pi^- p$
1685 ± 14		⁹ CASON	73	HBC	_	8,18.5 $\pi^- p$
1680 ± 40	144	BARTSCH	70 B	HBC	+	$8 \pi^+ p \rightarrow N4\pi$
$1689 \!\pm\! 20$	102	⁹ BARTSCH	70 B	HBC	+	8 $\pi^+ p \rightarrow N2\rho$
1705 ± 21		CASO	70	HBC	_	$11.2 \pi^- p \rightarrow n\rho 2\pi$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1718 ± 10		¹⁰ EVANGELIS	81	OMEG -	$12 \pi^- p \rightarrow p4\pi$
1673± 9		¹¹ EVANGELIS	81	OMEG -	$12 \pi^- p \rightarrow p4\pi$
1733± 9	66	⁹ KLIGER	74	HBC –	$4.5 \pi^- p \rightarrow p4\pi$
1630 ± 15		HOLMES	72	HBC +	10 – $12~K^+p$
1720 ± 15		BALTAY	68	HBC +	7, 8.5 $\pi^+ p$

 $^{^8}$ From $\rho^-\,\rho^0$ mode, not independent of the other two EVANGELISTA 81 entries. 9 From $\rho^\pm\,\rho^0$ mode.

$\omega\pi$ MODE

DOCUMENT ID TECN CHG COMMENT VALUE (MeV)

The data in this block is included in the average printed for a previous datablock.

1681± 7 OUR AVERAGE

1670 ± 25	¹² ALDE 95	GAM2	$38 \pi^- p \rightarrow \omega \pi^0 n$
1690 ± 15	EVANGELIS 81	OMEG -	12 $\pi^- p \rightarrow \omega \pi p$
1666 ± 14	GESSAROLI 77	HBC	$11 \; \pi^- p \rightarrow \; \omega \pi p$
1686± 9	THOMPSON 74	HBC +	13 $\pi^{+}p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

+ 10 $K^+ p \rightarrow \omega \pi X$ 1654 ± 24 BARNHAM HBC

$\eta \pi^+ \pi^-$ MODE

(For difficulties with MMS experiments, see the $a_2(1320)$ mini-review in the 1973 edition.)

DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

1682±12 OUR AVERAGE

$1685 \pm 10 \pm 20$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
1680 ± 15	FUKUI	88	SPEC 0	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1700 ± 47	¹³ ANDERSON	69	MMS	_	16 $\pi^- p$ backward
1632 ± 15		66	MMS	_	$712 \ \pi^- p \rightarrow p \text{MM}$
1700 ± 15	^{13,14} FOCACCI	66	MMS	_	$7-12 \pi^- p \rightarrow pMM$
1748 ± 15	^{13,14} FOCACCI	66	MMS	_	$7-12 \pi^- p \rightarrow pMM$

HTTP://PDG.LBL.GOV

Page 2

 $^{^{10}}$ From $^{2}a_{2}(1320)^{-}\pi^{0}$ mode, not independent of the other two EVANGELISTA 81 entries.

 $^{^{11}\,\}mathrm{From}\,\,^{-}\!\!\!a_{2}^{-}(1320)^{0}\,\pi^{-}\,$ mode, not independent of the other two EVANGELISTA 81 entries.

¹² Supersedes ALDE 92C.

ρ_3 (1690) WIDTH

2π , $K\overline{K}$, AND $K\overline{K}\pi$ MODES

VALUE (MeV)

DOCUMENT ID

161\pm10 OUR AVERAGE Includes data from the 5 datablocks that follow this one. Error includes scale factor of 1.5. See the ideogram below.

 $ho_3(1690)$ width, 2π , $K\overline{K}$, and $K\overline{K}\pi$ modes (MeV)

2π MODE

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

186±14 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.

220 ± 29		DENNEY	83	LASS		10 π^+ N
246 ± 37		EVANGELIS	81	OMEG		$12 \pi^- p \rightarrow 2\pi p$
116 ± 30	476			_	0	$15 \pi^+ p \rightarrow \pi^+ \pi^- n$
162 ± 50	175	¹⁵ ANTIPOV	77	CIBS	0	$25 \pi^- p \rightarrow p3\pi$
$167\!\pm\!40$	600		74	DBC	0	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
$200\!\pm\!18$		¹⁶ GRAYER	74	ASPK	0	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
156 ± 36		MATTHEWS	71 C	DBC	0	$7~\pi^+$ N
$171\!\pm\!65$		ARMENISE	70	DBC	0	$9 \pi^+ d$

HTTP://PDG.LBL.GOV

Page 3

¹³ Seen in 2.5–3 GeV/c $\overline{p}p$. $2\pi^+2\pi^-$, with 0, 1, 2 $\pi^+\pi^-$ pairs in ρ band not seen by OREN 74 (2.3 GeV/c $\overline{p}p$) with more statistics. (Jan. 1976)

 $^{^{14}\,\}mathrm{Not}$ seen by BOWEN 72.

• • We do not use the following data for averages, fits, limits, etc. • • •

$322\!\pm\!35$		⁷ CORDEN				$1215 \ \pi^- \ p \rightarrow \ n2\pi$
240 ± 30	16,18	BESTABROOKS	5 75	RVUE		$17 \pi^- p \rightarrow \pi^+ \pi^- n$
$180\!\pm\!30$	122	BARTSCH	70 B	HBC	+	$8 \pi^+ p \rightarrow N2\pi$
$267 {+72 \atop -46}$		STUNTEBECK	70	HDBC	0	8 π^- p, 5.4 π^+ d
$188\!\pm\!49$		ARMENISE	68	DBC	0	$5.1 \pi^+ d$
$180\!\pm\!40$		GOLDBERG	65	HBC	0	$6 \pi^{+} d$, $8 \pi^{-} p$

 $^{^{15}}$ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

 $\rho_3(1690)$ width, 2π mode (MeV)

$K\overline{K}$ AND $K\overline{K}\pi$ MODES

DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

204±18 OUR AVERAGE

$199\!\pm\!40$	6000	¹⁹ MARTIN	78D SPEC	$10 \pi p \rightarrow K_S^0 K^- p$
205 ± 20		BLUM	75 ASPK 0	18.4 $\pi^- p \to nK^+K^-$
1A/ I			C'. 1' '.	

We do not use the following data for averages, fits, limits, etc.

219± 4	ALPER	80	CNTR 0	62 π^- p $\rightarrow K^+K^-$ n
186 ± 11	²⁰ COSTA	80	OMEG	$10 \pi^- p \rightarrow K^+ K^- n$
112 ± 60	ADERHOLZ	69	HBC +	$8 \pi^+ p \rightarrow K \overline{K} \pi$

 19 From a fit to $J^P = 3^-$ partial wave.

 $^{^{16}}$ Uses same data as HYAMS 75 and BECKER 79. 17 From a phase shift solution containing a $f_2^\prime(1525)$ width two times larger than the $K\overline{K}$ $^{\mbox{\scriptsize 18}}$ From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

 $^{^{20}\,\}text{They cannot distinguish between}~\rho_3(1690)$ and $\omega_3(1670).$

$(4\pi)^{\pm}$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT **EVTS** The data in this block is included in the average printed for a previous datablock.

129±10 OUR AVERAGE

123 ± 13		²¹ EVANGELIS	81	OMEG -	_	$12 \pi^- p \rightarrow p4\pi$
105 ± 30	177	BALTAY	78 B	HBC -	+	15 $\pi^+ p \rightarrow p4\pi$
169^{+70}_{-48}		CASON	73	HBC -	_	8,18.5 $\pi^- p$
135 ± 30	144					$8 \pi^+ p \rightarrow N4\pi$
160 ± 30	102	BARTSCH	70 B	HBC -	+	$8 \pi^+ p \rightarrow N2\rho$

• • • We do not use the following data for averages, fits, limits, etc. • • •

T T TTC GO HOL GOC LINC		ing data for average		,	C.C	• •
$230\!\pm\!28$		²² EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
$184\!\pm\!33$		²³ EVANGELIS	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
150	66	²⁴ KLIGER	74	HBC	_	$4.5 \pi^- p \rightarrow p4\pi$
$106\!\pm\!25$		THOMPSON	74	HBC	+	13 $\pi^{+}p$
$125 ^{+83}_{-35}$		²⁴ CASON	73	HBC	_	8,18.5 $\pi^- p$
$130\!\pm\!30$		HOLMES				$10-12 K^+ p$
$180\!\pm\!30$	90	²⁴ BARTSCH	70 B	HBC	+	$8 \pi^+ p \rightarrow N a_2 \pi$
$100\!\pm\!35$		BALTAY	68	HBC	+	7, 8.5 $\pi^+ p$

$\omega\pi$ MODE

DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

190±40 OUR AVERAGE

230 ± 65	²⁵ ALDE	95	GAM2	$38 \pi^- p \rightarrow \omega \pi^0 n$
190 ± 65	EVANGELIS	81	OMEG -	$12 \pi^- p \rightarrow \omega \pi p$
160 ± 56	GESSAROLI	77	HBC	$11 \; \pi^- \rho \to \; \omega \pi \rho$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$89\!\pm\!25$	THOMPSON	74	HBC	+	13 $\pi^+ p$
130^{+73}_{-43}	BARNHAM	70	НВС	+	10 $K^+ p \rightarrow \omega \pi X$

²⁵ Supersedes ALDE 92C.

$\eta \pi^+ \pi^-$ MODE

(For difficulties with MMS experiments, see the $a_2(1320)$ mini-review in the 1973

<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

126±40 OUR AVERAGE Error includes scale factor of 1.8.

$220 \pm 30 \pm 50$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
106 ± 27	FUKUI	88	SPEC 0	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$

 $^{^{21}\,{\}rm From}~\rho^-\rho^0$ mode, not independent of the other two EVANGELISTA 81 entries. $^{22}\,{\rm From}~a_2(1320)^-\pi^0$ mode, not independent of the other two EVANGELISTA 81 entries. $^{23}\,{\rm From}~a_2(1320)^0\pi^-$ mode, not independent of the other two EVANGELISTA 81 entries.

²⁴ From $\rho^{\pm} \rho^{0}$ mode.

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>26</sup> ANDERSON
                                                        MMS
                                                                        16 \pi^- p backward
                         <sup>26,27</sup> FOCACCI
                                                                        7-12 \pi^- p \rightarrow pMM
                                                        MMS
< 21
                         ^{26,27} FOCACCI
< 30
                                                        MMS
                                                                        7-12 \pi^- p \rightarrow pMM
                         26,27 FOCACCI
                                                 66
                                                       MMS
                                                                        7-12 \pi^- p \rightarrow pMM
< 38
```

$\rho_3(1690)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1 Γ_2	$4\pi \\ \pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(71.1 \pm 1.9)\%$ $(67 \pm 22)\%$	
Γ3	$\omega\pi$	$(16 \pm \ 6) \ \%$	
Γ_4	$\pi\pi$	(23.6 \pm 1.3) %	
Γ_5	$K\overline{K}\pi$	(3.8 ± 1.2) %	
Γ_6	K K	$(~1.58\pm~0.26)~\%$	1.2
Γ_7	$\eta\pi^+\pi^-$	seen	
Γ ₈	$ ho$ (770) η	seen	
Γ_9	$\pi\pi\rho$	seen	
	Excluding 2ρ and $a_2(1320)\pi$.		
Γ_{10}	$a_2(1320)\pi$	seen	
Γ_{11}	ho ho	seen	
Γ_{12}	$\phi\pi$		
Γ_{13}			
Γ ₁₄	$\pi^{\pm} 2\pi^{+} 2\pi^{-} \pi^{0}$		

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 10 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=$ 14.7 for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

²⁶ Seen in 2.5–3 GeV/ $c~\overline{p}p$. $2\pi^+2\pi^-$, with 0, 1, 2 $\pi^+\pi^-$ pairs in ρ^0 band not seen by OREN 74 (2.3 GeV/ $c~\overline{p}p$) with more statistics. (Jan. 1979)

²⁷ Not seen by BOWEN 72.

ho_3 (1690) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{total}$			Γ ₄ /Γ
VALUE	DOCUMENT ID	TECN CHG	COMMENT
0.236±0.013 OUR FIT	_		
0.243±0.013 OUR AVERAGE			
$0.259 ^{igoplus 0.018}_{-0.019}$	BECKER 79	ASPK 0	17 $\pi^- p$ polarized
0.23 ± 0.02	CORDEN 79	OMEG	12–15 $\pi^-p \to n2\pi$
0.22 ± 0.04	MATTHEWS 710	HDBC 0	$7 \pi^+ n \rightarrow \pi^- p$
• • • We do not use the following	owing data for averag	es, fits, limits,	etc. • • •
0.245 ± 0.006	ESTABROOKS 75	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
²⁸ One-pion-exchange model		on.	
²⁹ From phase-shift analysis	of HYAIVIS 75 data.		
$\Gamma(\pi\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$			Γ_4/Γ_2
VALUE	DOCUMENT ID	<u>TECN</u>	<u>CHG</u> <u>COMMENT</u>
0.35 ± 0.11	CASON	73 HBC	$-$ 8,18.5 $\pi^- p$
• • • We do not use the following	owing data for averag	es, fits, limits,	etc. • • •
< 0.2	HOLMES	72 HBC	$+$ 10–12 K^+p
< 0.12	BALLAM	71B HBC	$-$ 16 $\pi^{-}p$
$\Gamma(\pi\pi)/\Gamma(4\pi)$			Γ_4/Γ_1
VALUE	DOCUMENT ID) TECN	CHG COMMENT
	or includes scale facto		
0.30 ± 0.10	BALTAY	78B HBC	$0 15 \pi^+ p \rightarrow p4\pi$
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$			Γ_6/Γ_4
VALUE	DOCUMENT ID	TECN CI	HG COMMENT
0.067 ± 0.011 OUR FIT Erro	or includes scale facto	or of 1.2.	
0.118 ^{+0.040} _{-0.032} OUR AVERAGE	Error includes sca	le factor of 1.7	7. See the ideogram
= 0.032 below.			0
$0.191 ^{+0.040}_{-0.037}$	GORLICH 8	0 ASPK 0	17,18 $\pi^ p$ polarized
0.08 ± 0.03	BARTSCH 7	0в НВС +	8 π ⁺ p
$0.08 \begin{array}{l} +0.08 \\ -0.03 \end{array}$		8B HBC	•
-0.03	CREININELL 0	OD HDC	6.0 π ⁻ p

WEIGHTED AVERAGE 0.118+0.040-0.032 (Error scaled by 1.7)

П	$(K\overline{K}\pi)$	/[$(\pi\pi)$	١
• (/ \ / \ / \ / \	,,,,	/ / /	,

 Γ_5/Γ_4

Created: 5/30/2017 17:20

. (/、/、//)/ (// //)					. 2/ . 4
<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	<u>CHG</u>	COMMENT
0.16±0.05 OUR FIT					
0.16 ± 0.05	³⁰ BARTSCH	70 B	HBC	+	8 π^+ p
20		_			

³⁰ Increased by us to correspond to B($\rho_3(1690) \rightarrow \pi\pi)$ =0.24.

$\big[\Gamma\big(\pi\pi\rho\big)+\Gamma\big(a_2(1320)$	$\pi + \Gamma(\rho \rho) / \Gamma(\pi^{\pm}\pi^{+}\pi^{-})$	$^{-}\pi^{0})$	(F <u></u>	9+Г ₁₀ +Г ₁₁)	/Γ2
VALUE	DOCUMENT ID	TECN	CHG	COMMENT	

	<u>VALUE</u>	DOCUMENT ID		<u> TECN</u>	CHG	COMMENT
(0.94±0.09 OUR AVERAGE					
(0.96 ± 0.21	BALTAY	78 B	HBC	+	15 $\pi^+ p \rightarrow p4\pi$
(0.88 ± 0.15	BALLAM	71 B	HBC	_	16 $\pi^{-}p$
	1 ± 0.15	BARTSCH	70 B	HBC	+	8 π ⁺ p
•	consistent with 1	CASO	68	HBC	_	11 $\pi^- p$

$$\Gamma(\rho\rho)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$$
 Γ_{11}/Γ_{2}

VALUE __EVTS __DOCUMENT_ID __TECN __CHG __COMMENT_

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.12 ± 0.11		BALTAY	78 B	HBC	+	15 $\pi^+ p \rightarrow p 4\pi$
0.56	66	KLIGER	74	HBC	_	$4.5 \pi^- p \rightarrow p4\pi$
0.13 ± 0.09		³¹ THOMPSON	74	HBC	+	$13 \pi^+ p$
$0.7\ \pm0.15$		BARTSCH	70 B	HBC	+	$8 \pi^+ p$

 $^{^{31}}ho
ho$ and $a_2(1320)\pi$ modes are indistinguishable.

```
\Gamma(\rho\rho)/[\Gamma(\pi\pi\rho)+\Gamma(a_2(1320)\pi)+\Gamma(\rho\rho)]
                                                                              \Gamma_{11}/(\Gamma_{9}+\Gamma_{10}+\Gamma_{11})
                                                                   TECN CHG COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.48 \pm 0.16
                                          CASO
                                                                   HBC
                                                                                    11 \pi^- p
\Gamma(a_2(1320)\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                               \Gamma_{10}/\Gamma_2
                                          DOCUMENT ID
                                                                   TECN CHG COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                    15 \pi^+ p \rightarrow p 4\pi
                                           BALTAY
                                                             78B HBC
0.66 \pm 0.08
                                       <sup>32</sup> THOMPSON
0.36 \pm 0.14
                                                            74
                                                                   HBC
                                                                                    13 \pi^{+} p
                                           CASON
                                                             73
                                                                   HBC
                                                                                    8,18.5 \pi^{-} p
not seen
0.6 \pm 0.15
                                          BARTSCH
                                                             70в НВС
                                                                                    8 \pi^{+} p
                                                                   HBC
0.6
                                          BALTAY
                                                             68
 ^{32}\,
ho\,
ho and _{22}(1320)\,\pi modes are indistinguishable.
\Gamma(\omega\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                                \Gamma_3/\Gamma_2
                                       DOCUMENT ID
                                                               TECN CHG COMMENT
   0.23±0.05 OUR AVERAGE Error includes scale factor of 1.2.
   0.33 \pm 0.07
                                       THOMPSON 74
                                                               HBC
                                                                                13 \pi^{+} p
   0.12 \pm 0.07
                                       BALLAM
                                                         71B HBC
  0.25 \pm 0.10
                                       BALTAY
                                                               HBC
   0.25 \pm 0.10
                                       JOHNSTON
                                                               HBC

    • • We do not use the following data for averages, fits, limits, etc.

                                                                                15 \pi^+ p \rightarrow p 4\pi
 < 0.11
                          95
                                       BALTAY
                                                         78B HBC
                                       KLIGER
                                                                                4.5 \pi^- p \rightarrow p4\pi
< 0.09
                                                               HBC
\Gamma(\phi\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                               \Gamma_{12}/\Gamma_2
                                          DOCUMENT ID
                                                                   TECN CHG COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                          BALTAY
                                                                   HBC
                                                                                    7,8.5 \pi^+ p
< 0.11
\Gamma(\pi^{\pm}2\pi^{+}2\pi^{-}\pi^{0})/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                               \Gamma_{14}/\Gamma_{2}
                                          DOCUMENT ID
                                                                 <u>TECN CHG COMMENT</u>
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                   7,8.5 \pi^{+} p
< 0.15
                                          BALTAY
                                                                   HBC
\Gamma(\eta\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                               \Gamma_{13}/\Gamma_2
                                          D<u>OCUMENT ID</u>
                                                                   TECN CHG
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          THOMPSON 74
                                                                                    13 \pi^{+} p
< 0.02
                                                                   HBC
\Gamma(K\overline{K})/\Gamma_{\text{total}}
                                                                                                  \Gamma_6/\Gamma
                                 DOCUMENT ID
                                                       TECN CHG COMMENT
0.0158±0.0026 OUR FIT Error includes scale factor of 1.2.
0.0130 ± 0.0024 OUR AVERAGE
                                                                          10 \ \pi^- p \rightarrow K^+ K^- n
                                 COSTA
                                                   80 OMEG 0
0.013 \pm 0.003
                             33 MARTIN
                                                   78B SPEC - 10 \pi p \to K_{S}^{0} K^{-} p
0.013 \pm 0.004
 <sup>33</sup> From (\Gamma_4 \Gamma_6)^{1/2} = 0.056 \pm 0.034 assuming B(\rho_3(1690) \rightarrow \pi \pi) = 0.24.
HTTP://PDG.LBL.GOV
                                              Page 9
                                                                    Created: 5/30/2017 17:20
```

```
\Gamma(\omega\pi)/\big[\Gamma(\omega\pi)+\Gamma(\rho\rho)\big]
                                                                                            \Gamma_3/(\Gamma_3+\Gamma_{11})
                                              DOCUMENT ID
                                                                      <u>TECN CHG COMMENT</u>
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              CASON
0.22 \!\pm\! 0.08
                                                                 73 HBC
                                                                                         8,18.5 \pi^- p
\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                        \Gamma_7/\Gamma
VALUE
                                   DOCUMENT ID
                                                             TECN COMMENT
                                                             SPEC 8.95 \pi^{-}p \to \eta \pi^{+}\pi^{-}n
                                   FUKUI
seen
                                                      88
\Gamma(a_2(1320)\pi)/\Gamma(\rho(770)\eta)
                                                                                                     \Gamma_{10}/\Gamma_{8}
                                                                        TECN COMMENT
VALUE
                                              DOCUMENT ID
                                                                                  37~\pi^-p\rightarrow~\eta\pi^+\pi^-n
5.5 \pm 2.0
                                              AMELIN
                                                                        VES
```

$\rho_3(1690)$ REFERENCES

AMELIN ALDE FUKUI DENNEY EVANGELIS ALPER COSTA GORLICH BECKER CORDEN BALTAY MARTIN MARTIN ANTIPOV GESSAROLI BLUM ESTABROOKS HYAMS ENGLER GRAYER KLIGER	00 95 92C 88 83 81 80 80 80 79 78 78 78D 77 75 75 75 74 74	NP A668 83 ZPHY C66 379 ZPHY C54 553 PL B202 441 PR D28 2726 NP B178 197 PL 94B 422 NP B175 402 NP B174 16 NP B151 46 NP B151 46 NP B157 250 PR D17 62 NP B140 158 PL 74B 417 NP B119 45 NP B126 382 PL 57B 403 NP B95 322 NP B100 205 PR D10 2070 NP B75 189 SJNP 19 428	D. Amelin et al. D.M. Alde et al. D.M. Alde et al. S. Fukui et al. D.L. Denney et al. C. Evangelista et al. B. Alper et al. G. Costa et al. L. Gorlich et al. H. Becker et al. M.J. Corden et al. C. Baltay et al. A.D. Martin et al. A.D. Martin et al. Y.M. Antipov et al. R. Gessaroli et al. W. Blum et al. P.G. Estabrooks, A.D. M. B.D. Hyams et al. A. Engler et al. G. Grayer et al. G.K. Kliger et al.	(VES Collab.) (GAMS Collab.) JP (BELG, SERP, KEK, LANL+) (SUGI, NAGO, KEK, KYOT+) (IOWA, MICH) (BARI, BONN, CERN+) (AMST, CERN, CRAC, MPIM+) (BARI, BONN, CERN, GLAS+) (CRAC, MPIM, CERN+) (MPIM, CERN, ZEEM, CRAC) (BIRM, RHEL, TELA+) JP (COLU, BING) (DURH, GEVA) (DURH, GEVA) (SERP, GEVA) (BGNA, FIRZ, GENO+) (CERN, MPIM) JP Martin (CERN, MPIM) (CMU, CASE) (CERN, MPIM) (ITEP)
OREN THOMPSON CASON BOWEN HOLMES BALLAM MATTHEWS ARMENISE BARNHAM BARTSCH CASO STUNTEBECK ADERHOLZ ANDERSON ARMENISE BALTAY CASO CRENNELL JOHNSTON FOCACCI GOLDBERG	74 74 73 72 72 71B 71C 70 70 70 69 69 68 68 68 68 68 68 68 66 65	Translated from YAF 19 3 NP B71 189 NP B69 220 PR D7 1971 PRL 29 890 PR D6 3336 PR D3 2606 NP B33 1 LNC 4 199 PRL 24 1083 NP B22 109 LNC 3 707 PL 32B 391 NP B11 259 PRL 22 1390 NC 54A 999 PRL 20 887 NC 54A 983 PL 28B 136 PRL 20 1414 PRL 17 890 PL 17 354	839. Y. Oren et al. G. Thompson et al. N.M. Cason et al. D.R. Bowen et al. R. Holmes et al. J. Ballam et al. J.A.J. Matthews et al. N. Armenise et al. K.W.J. Barnham et al. J. Bartsch et al. C. Caso et al. P.H. Stuntebeck et al. M. Aderholz et al. E.W. Anderson et al. N. Armenise et al. C. Baltay et al. C. Caso et al. D.J. Crennell et al. T.F. Johnston et al. M.N. Focacci et al. M. Goldberg et al.	(ANL, OXF) (PURD) (NDAM) (NEAS, STON) (ROCH) (SLAC) (TNTO, WISC) JP (BARI, BGNA, FIRZ) (BIRM) (AACH, BERL, CERN) (GENO, HAMB, MILA, SACL) (NDAM) (AACH3, BERL, CERN+) (BNL, CMU) (BARI, BGNA, FIRZ+)I (COLU, ROCH, RUTG, YALE)I (GENO, HAMB, MILA, SACL) (BNL) (TNTO, WISC) IJP (CERN) (CERN, EPOL, ORSAY+)