Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Problems

Chris Doble

June 2023

Contents

1	Vec	ors	6
	1.1	Vectors in 2-Space	6
		1.1.1	6
		1.1.9	6
		1.1.15	6
		1.1.19	6
		1.1.21	7
		1.1.25	7
		1.1.31	7
		1.1.37	7
		1.1.41	7
		1.1.43	8
		1.1.45	8
		1.1.47	8
		1.1.49	9
	1.2	Vectors in 3-Space	9
		1.2.7	9
		1.2.9	9
		1.2.13	9
		1.2.15	9
		1.2.17	9
		1.2.19	9
		1.2.21	9
		1.2.31	10
		1.2.33	10
		1.2.37	10
	1.3	Dot Product	10
	-		10
			10

	1.3.13																					10
	1.3.17																					11
	1.3.19																					11
	1.3.21																					12
	1.3.25																					12
	1.3.29																					13
	1.3.33																					13
	1.3.37																					13
	1.3.39																					13
	1.3.43																					14
	1.3.45																					14
	1.3.47																					14
1.4	Cross Pr	od	uc	t																		14
	1.4.1																					14
	1.4.11																					15
	1.4.17																					15
	1.4.19																					15
	1.4.21																					15
	1.4.23																					15
	1.4.37																					15
	1.4.53																					16
1.5	Lines and	d I	Pla	an	es	in	3	3-S	Вр	ac	e											16
	1.5.1								_													16
	1.5.7																					16
	1.5.13																					16
	1.5.19																					16
	1.5.23																					17
	1.5.25																					17
	1.5.29																					17
	1.5.31																					17
	1.5.35																					17
	1.5.37																					18
	1.5.39																					18
	1.5.45																					18
	1.5.51																					18
	1.5.63																					19
	1.5.65																					19
	1.5.69																					19
	1.5.73																					20
	1.5.75																					20
1.6	Vector S	pa	ce	\mathbf{s}																		20
	1.6.1																					20
	1.6.3																					20
	1.6.5																					20
	1.6.7																					21
	169																					21

	1.6.11		1
	1.6.13		1
	1.6.15		1
	1.6.17		1
	1.6.19		1
	1.6.23		1
	1.6.25		2
	1.6.27		2
	1.6.29		2
	1.6.31		2
1.7		9	3
	1.7.1		3
	1.7.3		3
	1.7.5		4
	1.7.9		5
	1.7.17		6
	1.7.19		7
	1.7.21		8
1.8			9
	1.8.1		9
	1.8.3		9
	1.8.5		9
	1.8.7		9
	1.8.9		9
	1.8.11		9
	1.8.13		9
	1.8.15		9
	1.8.17		9
	1.8.19		0
	1.8.21		0
	1.8.23		0
	1.8.25		0
	1.8.27		0
	1.8.29		1
	1.8.31		1
	1.8.33		1
	1.8.35		1
	1.8.37		1
	1.8.39		1
	1.8.41		2
	1.8.43		2
	1.8.45		3
	1.8.47		3

2	Ma	minos	,,
4			33
	2.1		33
			33
			33
			33
			34
			34
			34
			34
			34
			34
			35
			35
			35
		2.1.27	35
		2.1.29	35
		2.1.41	35
		2.1.43	35
		2.1.45	36
		2.1.47	36
		2.1.49	36
		2.1.51	36
	2.2	Systems of Linear Algebraic Equations	36
		· -	36
		2.2.5	37
	2.3	Rank of a Matrix	37
		2.3.1	37
		2.3.3	38
		2.3.5	38
			39
			39
			39
			39
	2.4		40
			40
			40
			40
			40
			$\frac{10}{40}$
			40
			40
			40
			41
			41
	2.5		41
	2.0	-	11 11

	2.5.3																															41
	2.5.5	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	41
	2.5.7	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	41
	2.5.9	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	41
	2.5.11	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	41
	2.5.13	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.15	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.17	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.19	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.15 $2.5.25$	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.27	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.21 $2.5.29$	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	42
	2.5.23 $2.5.37$	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	43
	2.5.37 $2.5.39$	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	43
	2.5.39 $2.5.41$	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	43
2.6	Inverse o	f c	. 1/	ı. Kai	t ni:		•	٠	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	43
2.0	2.6.3	ı a	, IV.	ıaı	lΠ.	X	•	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	43
	2.6.5	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	44
	2.6.5 $2.6.7$	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	44
	2.6.15	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	44
	2.6.15 $2.6.17$	•		•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
	2.6.17	•		•	•	•	•	٠	•	٠	٠	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	45
		•		•	•	•	•	٠	•	٠	٠	•	٠	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	45
	2.6.29	•		•	٠	•	٠	٠	•	٠	٠	٠	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	45
	2.6.31	•		•	٠	•	٠	٠	•	٠	•	٠	•	•	•	•	•		•	•	٠	•	•	•	•	•	•	•	•	•	•	45
	2.6.45	•		•	٠	•	•	٠	•	٠	٠	•	٠	•	•		•		•	٠	•	•	•	•	•			•	•	•	•	46
	2.6.49	٠		•	٠	•	•	•	٠	٠	•	٠	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	46
~ -	2.6.55		٠,	•	٠	•	•	•	٠	٠	•	٠	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	46
2.7	Cramer's	R	ule	е.	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	47
	2.7.1	•		•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	47
	2.7.11			•		•	•	•		٠			•	•			•		•	•		•						•	•	•		47
	2.7.13		٠.	•		٠	٠.			٠			•	•	•	•	•		•	•	•	•	•		•	•			•	•		48
2.8	The Eige	nv	alι	ıe	Pι	ro	bl	er	n				•	•	•	•			•	•	•		•			•				•		48
	2.8.1					•							•						•										•	•		48
	2.8.3					•							•						•										•	•		48
	2.8.5																		•													48
	2.8.7																		•													48
	2.8.9																															49
	2.8.11																															50
	2.8.23																															50
2.9	Powers o	f N	Ла	tri	ce	\mathbf{S}																										51
	2.9.1																															51
	2.9.3																															52
	2.9.5																															53
	2.9.11																															54
	2.9.13																															55
	2.9.15																															55

2.10	Orthogor	ıal	. 1	Æε	atı	ric	es	S																55
	2.10.5																							55
	2.10.7																							55
	2.10.9																							56
	2.10.11																							56
	2.10.13																							56
	2.10.19																							57
	2.10.21																							57
2.11	Approxir	na	tio	on	1 (of	\mathbf{E}	ig	er	ıv	al	ue	es											59
	2.11.1																							59
	2.11.3																							59
	2.11.7																							60
	2.11.11																							60
	2.11.13																							60

1 Vectors

1.1 Vectors in 2-Space

1.1.1

- (a) $3\mathbf{a} = 6\mathbf{i} + 12\mathbf{j}$
- (b) $\mathbf{a} + \mathbf{b} = \mathbf{i} + 8\mathbf{j}$
- (c) $\mathbf{a} \mathbf{b} = 3\mathbf{i}$
- (d) $||\mathbf{a} + \mathbf{b}|| = \sqrt{1 + 8^2} = \sqrt{65}$
- (e) $||\mathbf{a} \mathbf{b}|| = 3$

1.1.9

- (a) $4\mathbf{a} 2\mathbf{b} = \langle 6, -14 \rangle$
- (b) $-3\mathbf{a} 5\mathbf{b} = \langle 2, 4 \rangle$

1.1.15

$$\overrightarrow{P_1P_2} = \langle 2, 5 \rangle$$

1.1.19

(1, 18)

- (a) Yes
- (b) Yes
- (c) Yes
- (d) No
- (e) Yes
- (f) Yes

1.1.25

(a)
$$\frac{\mathbf{a}}{||\mathbf{a}||} = \frac{\langle 2, 2 \rangle}{\sqrt{2^2 + 2^2}} = \frac{1}{2\sqrt{2}} \langle 2, 2 \rangle = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

(b)
$$\langle -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \rangle$$

1.1.31

$$2\tfrac{\mathbf{a}}{||\mathbf{a}||} = 2\tfrac{\langle 3,7\rangle}{\sqrt{3^2+7^2}} = \tfrac{2}{\sqrt{58}}\langle 3,7\rangle = \langle \tfrac{6}{\sqrt{58}},\tfrac{14}{\sqrt{58}}\rangle$$

 $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$

1.1.37

$$\mathbf{x} = -(\mathbf{a} + \mathbf{b})$$

1.1.41

$$\mathbf{b} = \mathbf{i} + \mathbf{j}$$

$$\mathbf{c} = \mathbf{i} - \mathbf{j}$$

$$\mathbf{i} = \frac{1}{2}(\mathbf{b} + \mathbf{c})$$

$$\mathbf{j} = \frac{1}{2}(\mathbf{b} - \mathbf{c})$$

$$\mathbf{a} = 2\left(\frac{1}{2}(\mathbf{b} + \mathbf{c})\right) + 3\left(\frac{1}{2}(\mathbf{b} - \mathbf{c})\right)$$

$$= \mathbf{b} + \mathbf{c} + \frac{3}{2}\mathbf{b} - \frac{3}{2}\mathbf{c}$$

$$= \frac{5}{2}\mathbf{b} - \frac{1}{2}\mathbf{c}$$

$$y = \frac{1}{4}x^2 + 1$$

$$y(2) = 2$$

$$y' = \frac{1}{2}x$$

$$y'(2) = 1$$

$$\mathbf{v} = \pm \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

1.1.45

(a)

$$\mathbf{F}_{n} = \mathbf{F} \cos \theta$$

$$\mathbf{F}_{g} = \mathbf{F} \sin \theta$$

$$||\mathbf{F}_{f}|| = \mu ||\mathbf{F}_{n}||$$

$$|| - \mathbf{F}_{g}|| = \mu ||\mathbf{F}_{n}||$$

$$|| - \mathbf{F} \sin \theta || = \mu ||\mathbf{F} \cos \theta ||$$

$$||\mathbf{F}|| \sin \theta = \mu ||\mathbf{F}|| \cos \theta$$

$$\tan \theta = \mu$$

(b) $\theta = \arctan \mu \approx 31^{\circ}$

1.1.47

$$\begin{split} F_x &= \frac{qQ}{4\pi\epsilon_0} \int_{-a}^{a} \frac{L \, dy}{2a(L^2 + y^2)^{3/2}} \\ &= \frac{LqQ}{8\pi\epsilon_0} \int_{-a}^{a} (L^2 + y^2)^{-3/2} \, dy \\ &= \frac{LqQ}{8\pi\epsilon_0} \frac{2a}{L^2 \sqrt{a^2 + L^2}} \\ &= \frac{aqQ}{4\pi\epsilon_0 L \sqrt{a^2 + L^2}} \\ F_y &= -\frac{qQ}{4\pi\epsilon_0} \int_{-a}^{a} \frac{y \, dy}{2a(L^2 + y^2)^{3/2}} \\ &= 0 \\ \mathbf{F} &= \langle \frac{1}{4\pi\epsilon_0} \frac{qQ}{L\sqrt{a^2 + L^2}}, 0 \rangle \end{split}$$

Let the three sides of the triangle be vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . The triangle is closed so it must be the case that

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0.$$

This gives

$$\mathbf{c} = -(\mathbf{a} + \mathbf{b}).$$

The vector from the midpoint of side ${\bf a}$ to the midpoint of side ${\bf b}$ is

$$\left(\mathbf{a} + \frac{1}{2}\mathbf{b}\right) - \frac{1}{2}\mathbf{a} = \frac{1}{2}(\mathbf{a} + \mathbf{b})$$

which is parallel with ${\bf c}$ and half its length.

1.2 Vectors in 3-Space

1.2.7

A plane at z = 5 parellel with the x-y plane.

1.2.9

A line parallel to the z axis at x = 2 and y = 3.

1.2.13

- (a) (0,5,4), (-2,0,4), (-2,5,0)
- (b) (-2,5,-2)
- (c) (3,5,4)

1.2.15

The planes x = 0, y = 0, and z = 0.

1.2.17

$$(-1, 2, -3)$$

1.2.19

The planes $z = \pm 5$.

1.2.21

$$\sqrt{(6-3)^2 + (4+1)^2 + (8-2)^2} = \sqrt{9+25+36} = \sqrt{70}$$

1.2.31

$$\sqrt{(2-x)^2 + (1-2)^2 + (1-3)^2} = \sqrt{21}$$

$$(2-x)^2 + 1 + 4 = 21$$

$$(2-x)^2 = 16$$

$$2-x = \pm 4$$

$$x = 2 \pm 4$$

$$= -2 \text{ or } 6$$

- 1.2.33
- $\left(4, \frac{1}{2}, \frac{3}{2}\right)$
- 1.2.37
- (-3, -6, 1)

1.3 Dot Product

- 1.3.1
- $\mathbf{a} \cdot \mathbf{b} = 12$
- 1.3.11

$$\left(\frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}\cdot\mathbf{b}}\right)\mathbf{b} = \frac{12}{30}\mathbf{b} = \langle -\frac{2}{5}, \frac{4}{5}, 2 \rangle$$

- 1.3.13
- $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos \theta = 25\sqrt{2}$

$$\mathbf{a} \cdot \mathbf{v} = 0$$

$$3x_1 + y_1 - 1 = 0$$

$$\mathbf{b} \cdot \mathbf{v} = 0$$

$$-3x_1 + 2y_2 + 2 = 0$$

$$3y_2 + 1 = 0$$

$$y_2 = -\frac{1}{3}$$

$$3x_1 - \frac{1}{3} - 1 = 0$$

$$x_1 = \frac{4}{9}$$

$$\mathbf{v} = \langle \frac{4}{9}, -\frac{1}{3}, 1 \rangle$$

1.3.19

$$\mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot \left(\mathbf{b} - \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||^2} \mathbf{a} \right)$$
$$= \mathbf{a} \cdot \mathbf{b} - \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||^2} \mathbf{a} \cdot \mathbf{a}$$
$$= 0$$

$$||\mathbf{a}|| = \sqrt{3^2 + 1^2}$$

$$= \sqrt{10}$$

$$||\mathbf{b}|| = \sqrt{2^2 + 2^2}$$

$$= \sqrt{8}$$

$$= 2\sqrt{2}$$

$$\mathbf{a} \cdot \mathbf{b} = 4$$

$$\theta = \arccos \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||}$$

$$= \arccos \frac{4}{(\sqrt{10})(2\sqrt{2})}$$

$$= \arccos \frac{1}{\sqrt{5}}$$

$$\approx 63^{\circ}$$

1.3.25

$$||\mathbf{a}|| = \sqrt{1^2 + 2^2 + 3^3}$$

$$= \sqrt{14}$$

$$\cos \alpha = \frac{1}{\sqrt{14}}$$

$$\alpha \approx 75^{\circ}$$

$$\cos \beta = \frac{2}{\sqrt{14}}$$

$$\beta \approx 58^{\circ}$$

$$\cos \gamma = \frac{3}{\sqrt{14}}$$

$$\gamma \approx 37^{\circ}$$

$$\overrightarrow{AD} = \langle s, -s, s \rangle$$

$$||\overrightarrow{AD}|| = s\sqrt{3}$$

$$\overrightarrow{AB} = \langle s, 0, 0 \rangle$$

$$||\overrightarrow{AB}|| = s$$

$$\theta = \arccos \frac{\overrightarrow{AD} \cdot \overrightarrow{AB}}{||\overrightarrow{AD}||||\overrightarrow{AB}||}$$

$$= \arccos \frac{s^2}{s^2\sqrt{3}}$$

$$= \arccos \frac{1}{\sqrt{3}}$$

$$\approx 55^{\circ}$$

1.3.33

$$comp_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||}$$
$$= \frac{5}{7}$$

1.3.37

$$\operatorname{comp}_{\overrightarrow{OP}} \mathbf{a} = \frac{\mathbf{a} \cdot \overrightarrow{OP}}{||\overrightarrow{OP}||}$$
$$= \frac{72}{\sqrt{109}}$$

1.3.39

$$proj_{\mathbf{b}}\mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= \frac{35}{25} \mathbf{b}$$
$$= \langle -\frac{21}{5}, \frac{28}{5} \rangle$$

$$\mathbf{a} + \mathbf{b} = \langle 3, 4 \rangle$$

$$\operatorname{proj}_{\mathbf{a} + \mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot (\mathbf{a} + \mathbf{b})}{(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})} \right) (\mathbf{a} + \mathbf{b})$$

$$= \frac{24}{25} (\mathbf{a} + \mathbf{b})$$

$$= \langle \frac{72}{25}, \frac{96}{25} \rangle$$

1.3.45

$$W = \mathbf{F} \cdot \mathbf{d} = Fd\cos\theta = 1000$$

1.3.47

(a)
$$W = 0$$

(b)

$$||\mathbf{d}|| = \sqrt{4^2 + 3^2}$$

$$= 5$$

$$\mathbf{F} = F\hat{\mathbf{d}}$$

$$= F\frac{\mathbf{d}}{||\mathbf{d}||}$$

$$= F\langle \frac{4}{5}, \frac{3}{5} \rangle$$

$$= \langle 24, 18 \rangle$$

$$W = \mathbf{F} \cdot \mathbf{d}$$

$$= 150 \,\mathrm{J}$$

1.4 Cross Product

1.4.1

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 0 \\ 0 & 3 & 5 \end{vmatrix}$$
$$= -5\mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$$

1.4.11

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 2 & -4 \\ -3 & 1 & 1 \end{vmatrix}$$
$$= 6\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$$

1.4.17

(a)

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$
$$= \mathbf{j} - \mathbf{k}$$
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 0 & 1 & -1 \end{vmatrix}$$
$$= -\mathbf{i} + \mathbf{j} + \mathbf{k}$$

1.4.19

 $2\mathbf{k}$

1.4.21

$$\mathbf{k} \times (2\mathbf{i} - \mathbf{j}) = (\mathbf{k} \times 2\mathbf{i}) - (\mathbf{k} \times \mathbf{j})$$
$$= \mathbf{i} + 2\mathbf{j}$$

1.4.23

$$[(2\mathbf{k}) \times (3\mathbf{j})] \times (4\mathbf{j}) = (-6\mathbf{i}) \times (4\mathbf{j})$$
$$= -24\mathbf{k}$$

1.4.37

 $12\mathbf{i} - 9\mathbf{j} + 18\mathbf{k}$

1.4.53

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 6 & -6 \\ \frac{5}{2} & 3 & \frac{1}{2} \end{vmatrix}$$
$$= 21\mathbf{i} - 14\mathbf{j} - 21\mathbf{k}$$
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 4 \times 21 + 6 \times (-14)$$
$$= 0$$

They are coplanar.

1.5 Lines and Planes in 3-Space

1.5.1

$$\mathbf{r} = \langle 1, 2, 1 \rangle + t \langle 2, 3, -3 \rangle$$

1.5.7

$$x = 2 + 4t$$
$$y = 3 - 4t$$
$$z = 5 + 3t$$

1.5.13

$$x = 1 + 9t$$

$$y = 4 + 10t$$

$$z = -9 + 7t$$

$$\frac{x - 1}{9} = \frac{y - 4}{10} = \frac{z + 9}{7}$$

1.5.19

$$x = 4 + 3t$$

$$y = 6 + \frac{1}{2}t$$

$$z = -7 - \frac{3}{2}t$$

$$\frac{x - 4}{3} = \frac{y - 6}{1/2} = -\frac{z + 7}{3/2}$$

$$x = 6 + 2t$$
$$y = 4 - 3t$$
$$z = -2 + 6t$$

1.5.25

$$x = 2 + t$$
$$y = -2$$
$$z = 15$$

1.5.29

$$(0,5,15), (5,0,\frac{15}{2}), (10,-5,0)$$

1.5.31

$$4 + t_x = 6 + 2t_x$$

$$t_x = -2$$

$$5 + t_y = 11 + 4t_y$$

$$t_y = -2$$

$$-1 + 2t_z = -3 + t_z$$

$$t_z = -2$$

1.5.35

(2, 3, -5)

$$\mathbf{a} = \langle -1, 2, -2 \rangle$$

$$||\mathbf{a}|| = 3$$

$$\mathbf{b} = \langle 2, 3, -6 \rangle$$

$$||\mathbf{b}|| = 7$$

$$\theta = \arccos \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||}$$

$$\approx 40.37^{\circ}$$

$$\mathbf{a} = \langle 1, 1, 1 \rangle$$

$$\mathbf{b} = \langle -2, 1, -5 \rangle$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ -2 & 1 & -5 \end{vmatrix}$$

$$= \langle -6, 3, 3 \rangle$$

$$x = 4 - 6t$$

$$y = 1 + 3t$$

$$z = 6 + 3t$$

1.5.39

$$\langle 2, -3, 4 \rangle \cdot (\mathbf{r} - \langle 5, 1, 3 \rangle) = 0$$

 $2(x-5) - 3(y-1) + 4(z-3) = 0$
 $2x - 3y + 4z - 19 = 0$

1.5.45

$$\mathbf{a} = \langle 3, 5, 2 \rangle$$

$$\mathbf{b} = \langle 2, 3, 1 \rangle$$

$$\mathbf{c} = \langle -1, -1, 4 \rangle$$

$$\mathbf{a} - \mathbf{c} = \langle 4, 6, -2 \rangle$$

$$\mathbf{b} - \mathbf{c} = \langle 3, 4, -3 \rangle$$

$$(\mathbf{a} - \mathbf{c}) \times (\mathbf{b} - \mathbf{c}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 6 & -2 \\ 3 & 4 & -3 \end{vmatrix}$$

$$= \langle -10, 6, -2 \rangle$$

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{c}) = 0$$

$$\langle -10, 6, -2 \rangle \cdot (\langle x, y, z \rangle - \langle -1, -1, 4 \rangle) = 0$$

$$-10(x+1) + 6(y+1) - 2(z-4) = 0$$

$$-10x + 6y - 2z + 4 = 0$$

1.5.51

$$\langle 1, 1, -4 \rangle \cdot (\mathbf{r} - \langle 2, 3, -5 \rangle) = 0$$

 $(x-2) + (y-3) - 4(z+5) = 0$
 $x + y - 4z = 25$

- (a) Not perpendicular
- (b) Not perpendicular
- (c) Perpendicular
- (d) Perpendicular

1.5.65

$$5x - 4y - 9t = 8$$

$$x + 4y + 3t = 4$$

$$6x - 6t = 12$$

$$x = 2 + t$$

$$y = \frac{1}{2} - t$$

$$z = t$$

1.5.69

$$2(1+2t) - 3(2-t) + 2(-3t) = -7$$

 $t = -3$
 $x = -5$
 $y = 5$
 $z = 9$

$$x + y - 4t = 2$$

$$2x - y + t = 10$$

$$3x - 3t = 12$$

$$x = 4 + t$$

$$2(4 + t) - y + t = 10$$

$$8 + 2t - y + t = 10$$

$$y = -2 + 3t$$

$$z = t$$

$$x = 5 + t$$

$$y = 6 + 3t$$

$$z = -12 + t$$

1.5.75

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 5 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \langle -6, 2, 4 \rangle$$
$$\mathbf{n} \cdot (\mathbf{r} - \langle 4, 0, 1 \rangle) = 0$$
$$-6(x - 4) + 2y + 4(z - 1) = 0$$
$$-6x + 2y + 4z = -20$$
$$3x - y - 2z = 10$$

1.6 Vector Spaces

1.6.1

Violates axiom 6

1.6.3

Violates axiom 10

1.6.5

Vector space

1.6.7

Violates axiom 2

1.6.9

Vector space

1.6.11

 ${\bf Subspace}$

1.6.13

Not a subspace

1.6.15

Subspace

1.6.17

Subspace

1.6.19

Not a subspace

1.6.23

(a)

$$k_1 \mathbf{u}_1 + k_2 \mathbf{u}_2 + k_3 \mathbf{u}_3 = \mathbf{0}$$

$$k_1 \langle 1, 0, 0 \rangle + k_2 \langle 1, 1, 0 \rangle + k_3 \langle 1, 1, 1 \rangle = \mathbf{0}$$

$$k_3 = 0$$

$$k_2 + k_3 = 0$$

$$k_2 = 0$$

$$k_1 + k_2 + k_3 = 0$$

$$k_1 = 0$$

(b)
$$\mathbf{a} = 7\mathbf{u}_1 - 12\mathbf{u}_2 + 8\mathbf{u}_3$$

1.6.25

Dependent

1.6.27

Independent

1.6.29

f(x) is undefined at x = -3 and x = -1.

1.6.31

$$||x|| = \sqrt{(x, x)}$$

$$= \sqrt{\int_0^{2\pi} x^2 dx}$$

$$= \sqrt{\left[\frac{1}{3}x^3\right]_0^{2\pi}}$$

$$= \sqrt{\frac{8}{3}\pi^3}$$

$$||\sin x|| = \sqrt{(\sin x, \sin x)}$$

$$= \sqrt{\int_0^{2\pi} \sin^2 x dx}$$

$$= \sqrt{\left[\frac{x}{2} - \frac{1}{4}\sin 2x\right]_0^{2\pi}}$$

$$= \sqrt{\pi}$$

1.7 Gram-Schmidt Orthogonalization Process

1.7.1

$$\begin{split} \langle \frac{12}{13}, \frac{5}{13} \rangle \cdot \langle \frac{5}{13}, -\frac{12}{13} \rangle &= 0 \\ \sqrt{\left(\frac{12}{13}\right)^2 + \left(\frac{5}{13}\right)^2} &= 1 \\ \mathbf{u} &= \left(\langle 4, 2 \rangle \cdot \langle \frac{12}{13}, \frac{5}{13} \rangle\right) \langle \frac{12}{13}, \frac{5}{13} \rangle \\ &+ \left(\langle 4, 2 \rangle \cdot \langle \frac{5}{13}, -\frac{12}{13} \rangle\right) \langle \frac{5}{13}, -\frac{12}{13} \rangle \\ &= \left(\frac{58}{13}\right) \langle \frac{12}{13}, \frac{5}{13} \rangle - \left(\frac{4}{13}\right) \langle \frac{5}{13}, -\frac{12}{13} \rangle \end{split}$$

$$\begin{split} \langle 1,0,1\rangle \cdot \langle 0,1,0\rangle &= 0 \\ \langle 1,0,1\rangle \cdot \langle -1,0,1\rangle &= 0 \\ \langle 0,1,0\rangle \cdot \langle -1,0,1\rangle &= 0 \\ B' &= \{\langle \frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\rangle, \langle 0,1,0\rangle, \langle -\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\rangle \} \\ \mathbf{u} &= -\frac{3}{\sqrt{2}}\langle \frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\rangle + 7\langle 0,1,0\rangle - \frac{23}{\sqrt{2}}\langle -\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\rangle \end{split}$$

(a)

$$B = \{\langle -3, 2 \rangle, \langle -1, -1 \rangle\}$$

$$\mathbf{v}_1 = \mathbf{u}_1$$

$$= \langle -3, 2 \rangle$$

$$\mathbf{v}_2 = \mathbf{u}_2 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_2$$

$$= \langle -1, -1 \rangle - \left(\frac{\langle -1, -1 \rangle \cdot \langle -3, 2 \rangle}{\langle -3, 2 \rangle \cdot \langle -3, 2 \rangle}\right) \langle -3, 2 \rangle$$

$$= \langle -1, -1 \rangle - \frac{1}{13} \langle -3, 2 \rangle$$

$$= \langle -\frac{10}{13}, -\frac{15}{13} \rangle$$

$$\mathbf{w}_1 = \langle -\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}} \rangle$$

$$\mathbf{w}_2 = \sqrt{\frac{169}{325}} \langle -\frac{10}{13}, -\frac{15}{13} \rangle$$

$$= \frac{\sqrt{13}}{5} \langle -\frac{10}{13}, -\frac{15}{13} \rangle$$

$$= \langle -\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}} \rangle$$

$$B = \{\langle 1, 1, 0 \rangle, \langle 1, 2, 2 \rangle, \langle 2, 2, 1 \rangle\}$$

$$\mathbf{v}_{1} = \langle 1, 1, 0 \rangle$$

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{2}$$

$$= \langle 1, 2, 2 \rangle - \left(\frac{\langle 1, 2, 2 \rangle \cdot \langle 1, 1, 0 \rangle}{\langle 1, 1, 0 \rangle \cdot \langle 1, 1, 0 \rangle}\right) \langle 1, 1, 0 \rangle$$

$$= \langle 1, 2, 2 \rangle - \frac{3}{2} \langle 1, 1, 0 \rangle$$

$$= \langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \operatorname{proj}_{\mathbf{v}_{1}} \mathbf{u}_{3} - \operatorname{proj}_{\mathbf{v}_{2}} \mathbf{u}_{3}$$

$$= \langle 2, 2, 1 \rangle - \left(\frac{\langle 2, 2, 1 \rangle \cdot \langle 1, 1, 0 \rangle}{\langle 1, 1, 0 \rangle \cdot \langle 1, 1, 0 \rangle}\right) \langle 1, 1, 0 \rangle$$

$$- \left(\frac{\langle 2, 2, 1 \rangle \cdot \langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle}{\langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle}\right) \langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle$$

$$= \langle 2, 2, 1 \rangle - 2\langle 1, 1, 0 \rangle - \frac{4}{9}\langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle$$

$$= \langle 2, 2, 1 \rangle - 2\langle 1, 1, 0 \rangle - \frac{4}{9}\langle -\frac{1}{2}, \frac{1}{2}, 2 \rangle$$

$$= \langle \frac{2}{9}, -\frac{2}{9}, \frac{1}{9} \rangle$$

$$\mathbf{w}_{1} = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle$$

$$\mathbf{w}_{2} = \langle -\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}} \rangle$$

$$\mathbf{w}_{3} = 3\langle \frac{2}{9}, -\frac{2}{9}, \frac{1}{9} \rangle$$

$$= \langle \frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \rangle$$

$$\begin{split} B &= \{1, x, x^2\} \\ \mathbf{v}_1 &= \mathbf{u}_1 \\ &= 1 \\ \mathbf{v}_2 &= \mathbf{u}_2 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_2 \\ &= \mathbf{u}_2 - \left(\frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 \\ &= x - \frac{\int_{-1}^1 x \, dx}{\int_{-1}^1 dx} \\ &= x - \frac{\left[\frac{1}{2}x^2\right]_{-1}^1}{2} \\ &= x \\ \mathbf{v}_3 &= \mathbf{u}_3 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_3 - \operatorname{proj}_{\mathbf{v}_2} \mathbf{u}_3 \\ &= \mathbf{u}_3 - \left(\frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 \\ &= x^2 - \frac{\int_{-1}^1 x^2 \, dx}{\int_{-1}^1 dx} - \frac{\int_{-1}^1 x^3 \, dx}{\int_{-1}^1 x^2 \, dx} \\ &= x^2 - \frac{\left[\frac{1}{3}x^3\right]_{-1}^1}{2} - \frac{\left[\frac{1}{4}x^4\right]_{-1}^1}{\left[\frac{1}{3}x^3\right]_{-1}^1} x \\ &= x^2 - \frac{1}{3} \end{split}$$

$$||\mathbf{v}_{1}||^{2} = \int_{-1}^{1} dx$$

$$= 2$$

$$\mathbf{w}_{1} = \frac{1}{\sqrt{2}}$$

$$||\mathbf{v}_{2}||^{2} = \int_{-1}^{1} x^{2} dx$$

$$= \left[\frac{1}{3}x^{3}\right]_{-1}^{1}$$

$$= \frac{2}{3}$$

$$\mathbf{w}_{2} = \frac{3}{\sqrt{6}}x$$

$$||\mathbf{v}_{3}||^{2} = \int_{-1}^{1} \left(x^{2} - \frac{1}{3}\right)^{2} dx$$

$$= \int_{-1}^{1} \left(x^{4} - \frac{2}{3}x^{2} + \frac{1}{9}\right) dx$$

$$= \left[\frac{1}{5}x^{5} - \frac{2}{9}x^{3} + \frac{1}{9}x\right]_{-1}^{1}$$

$$= \frac{1}{5} - \frac{2}{9} + \frac{1}{9} + \frac{1}{5} - \frac{2}{9} + \frac{1}{9}$$

$$= \frac{2}{5} - \frac{2}{9}$$

$$= \frac{8}{45}$$

$$\mathbf{w}_{3} = \sqrt{\frac{45}{8}} \left(x^{2} - \frac{1}{3}\right)$$

$$= \frac{5}{2\sqrt{10}} \left(3x^{2} - 1\right)$$

$$\begin{aligned} (\mathbf{p}, \mathbf{w}_1) &= \int_{-1}^{1} \frac{1}{\sqrt{2}} (9x^2 - 6x + 5) \, dx \\ &= \frac{1}{\sqrt{2}} \left[3x^3 - 3x^2 + 5x \right]_{-1}^{1} \\ &= \frac{1}{\sqrt{2}} (3 - 3 + 5 + 3 + 3 + 5) \\ &= \frac{16}{\sqrt{2}} \end{aligned}$$

$$(\mathbf{p}, \mathbf{w}_2) &= \int_{-1}^{1} \frac{3}{\sqrt{6}} x (9x^2 - 6x + 5) \, dx \\ &= \frac{3}{\sqrt{6}} \left[\frac{9}{4} x^4 - 2x^3 + \frac{5}{2} x^2 \right]_{-1}^{1} \\ &= \frac{3}{\sqrt{6}} \left(\frac{9}{4} - 2 + \frac{5}{2} - \frac{9}{4} - 2 - \frac{5}{2} \right) \\ &= \frac{3}{\sqrt{6}} \left(\frac{9}{4} - 8 + \frac{10}{4} - \frac{9}{4} - \frac{8}{4} - \frac{10}{4} \right) \\ &= -\frac{12}{\sqrt{6}} \end{aligned}$$

$$(\mathbf{p}, \mathbf{w}_3) &= \int_{-1}^{1} \frac{5}{2\sqrt{10}} (3x^2 - 1)(9x^2 - 6x + 5) \, dx \\ &= \frac{5}{2\sqrt{10}} \int_{-1}^{1} (27x^4 - 18x^3 + 6x^2 + 6x - 5) \, dx \\ &= \frac{5}{2\sqrt{10}} \left[\frac{27}{5} x^5 - \frac{9}{2} x^4 + 2x^3 + 3x^2 - 5x \right]_{-1}^{1} \\ &= \frac{5}{2\sqrt{10}} \left(\frac{27}{5} - \frac{9}{2} + 2 + 3 - 5 + \frac{27}{5} + \frac{9}{2} + 2 - 3 - 5 \right) \\ &= \frac{5}{2\sqrt{10}} \left(\frac{54}{10} - \frac{45}{10} + \frac{20}{10} + \frac{30}{10} - \frac{50}{10} + \frac{54}{10} + \frac{45}{10} + \frac{20}{10} - \frac{30}{10} - \frac{50}{10} \right) \\ &= \frac{5}{2\sqrt{10}} \frac{48}{10} \\ &= \frac{12}{\sqrt{10}} \\ &\mathbf{p} = \frac{16}{\sqrt{2}} \mathbf{w}_1 - \frac{12}{\sqrt{6}} \mathbf{w}_2 + \frac{12}{\sqrt{10}} \mathbf{w}_3 \end{aligned}$$

1.8 Chapter in Review

1.8.1

True

1.8.3

$$\mathbf{u} = \langle 5, -2, 1 \rangle$$
$$\mathbf{v} = \langle 2, 3, -4 \rangle$$

False

1.8.5

True

1.8.7

True

1.8.9

True

1.8.11

$$9\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

1.8.13

$$(-\mathbf{k}) \times (5\mathbf{j}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & -1 \\ 0 & 5 & 0 \end{vmatrix}$$
$$= 5\mathbf{i}$$

1.8.15

$$||-12\mathbf{i}+4\mathbf{j}+6\mathbf{k}|| = \sqrt{12^2+4^2+6^2} = 14$$

1.8.17

$$\langle -6,1,-7\rangle$$

1.8.19

$$x = 1 + t$$
$$y = -2 + 3t$$
$$z = -1 + 2t$$

$$x + 2y - z = 13$$

$$(1+t) + 2(-2+3t) - (-1+2t) = 13$$

$$1 + t - 4 + 6t + 1 - 2t = 13$$

$$-2 + 5t = 13$$

$$t = 3$$

$$x = 4$$
$$y = 7$$
$$z = 5$$

1.8.21

$$\overrightarrow{P_1P_2} = \overrightarrow{P_2} - \overrightarrow{P_1}$$

$$\overrightarrow{P_2} = \overrightarrow{P_1P_2} + \overrightarrow{P_1}$$

$$= \langle 3, 5, -4 \rangle + \langle 2, 1, 7 \rangle$$

$$= \langle 5, 6, 3 \rangle$$

1.8.23

$$\mathbf{a} \cdot \mathbf{b} = -36\sqrt{2}$$

1.8.25

$$x = 12, y = -8, z = 6$$

1.8.27

$$\frac{1}{2}(\mathbf{a} \times \mathbf{b}) = \frac{1}{2} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{vmatrix}$$
$$= \frac{1}{2} \langle 5, -4, -7 \rangle$$
$$= \langle \frac{5}{2}, -2, -\frac{7}{2} \rangle$$

The area is $\sqrt{\left(\frac{5}{2}\right)^2 + (-2)^2 + \left(-\frac{7}{2}\right)^2} = \frac{3}{2}\sqrt{10}$

1.8.29

9

1.8.31

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -2 & 1 \end{vmatrix}$$
$$= \langle 1, -1, -3 \rangle$$
$$||\mathbf{a} \times \mathbf{b}|| = \sqrt{11}$$
$$\operatorname{norm}(\mathbf{a} \times \mathbf{b}) = \langle \frac{1}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, -\frac{3}{\sqrt{11}} \rangle$$

1.8.33

$$comp_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||} = \frac{10}{5} = 2$$

1.8.35

$$\mathbf{a} = \langle 1, 2, -2 \rangle$$

$$\mathbf{b} = \langle 4, 3, 0 \rangle$$

$$\mathbf{a} + \mathbf{b} = \langle 5, 5, -2 \rangle$$

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{a} + \mathbf{b}) = \left(\frac{(\mathbf{a} + \mathbf{b}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$$

$$= \frac{19}{9} \langle 1, 2, -2 \rangle$$

$$= \langle \frac{19}{9}, \frac{38}{9}, -\frac{38}{9} \rangle$$

1.8.37

- (a)
- (b) A plane with normal a

1.8.39

$$\frac{x-7}{4} = \frac{y-3}{-2} = \frac{z+5}{6}$$

1.8.41

1.8.43

$$\mathbf{v} = \langle 1, 1, 3 \rangle$$

$$\mathbf{n} = \mathbf{u} \times \mathbf{v}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & -2 \\ 1 & 1 & 3 \end{vmatrix}$$

$$= \langle 14, -5, -3 \rangle$$

 $\mathbf{u} = \langle 1, 4, -2 \rangle$

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{v}) = 0$$

$$\langle 14, -5, -3 \rangle \cdot (\langle x, y, z \rangle - \langle 1, 1, 3 \rangle) = 0$$

$$14(x - 1) - 5(y - 1) - 3(z - 3) = 0$$

$$14x - 5y - 3z = 0$$

1.8.45

$$\mathbf{F} = \langle \frac{10}{\sqrt{2}}, \frac{10}{\sqrt{2}}, 0 \rangle$$
$$\mathbf{d} = \langle 3, 3, 0 \rangle$$
$$\mathbf{F} \cdot \mathbf{d} = 30\sqrt{2} \,\mathbf{J}$$

1.8.47

$$\begin{aligned} \mathbf{F}_{1} &= \langle 200, 0, 0 \rangle \\ \mathbf{F}_{2} &= \langle \frac{200}{\sqrt{2}}, \frac{200}{\sqrt{2}}, 0 \rangle \\ \mathbf{F}_{2} &= \mathbf{F}_{1} + \mathbf{F}_{3} \\ \mathbf{F}_{3} &= \mathbf{F}_{2} - \mathbf{F}_{1} \\ &= \langle \frac{200}{\sqrt{2}}, \frac{200}{\sqrt{2}}, 0 \rangle - \langle 200, 0, 0 \rangle \\ &= \langle \frac{200}{\sqrt{2}} - 200, \frac{200}{\sqrt{2}}, 0 \rangle \\ ||\mathbf{F}_{3}|| &= \sqrt{\left(\frac{200}{\sqrt{2}} - 200\right)^{2} + \left(\frac{200}{\sqrt{2}}\right)^{2}} \\ &= \sqrt{\frac{40000}{2} - \frac{80000}{\sqrt{2}} + 40000 + \frac{40000}{2}} \\ &= 200\sqrt{2\left(1 - \frac{1}{\sqrt{2}}\right)} \\ &\approx 153 \, \mathrm{lb} \end{aligned}$$

2 Matrices

2.1 Matrix Algebra

- 2.1.1
- 2×4
- 2.1.3
- 3×3
- 2.1.5
- 3×4

No

2.1.9

No

2.1.11

$$x = y - 2$$

$$3x - 2 = y$$

$$2x - 2 = 2$$

$$2x = 4$$

$$x = 2$$

$$2 = y - 2$$

$$y = 4$$

2.1.13

$$c_{23} = 9$$

$$c_{12} = 12$$

2.1.15

(a)
$$\begin{pmatrix} 2 & 11 \\ 2 & -1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -6 & 1\\ 14 & -19 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 28 \\ 12 & -12 \end{pmatrix}$$

2.1.17

(a)
$$\begin{pmatrix} -11 & 6 \\ 17 & -22 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -32 & 27 \\ -4 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 19 & -18 \\ -30 & 31 \end{pmatrix}$$

- $(d) \begin{pmatrix} 19 & 6 \\ 3 & 22 \end{pmatrix}$
- 2.1.21
- (a) 180
- (b) $\begin{pmatrix} 4 & 8 & 10 \\ 8 & 16 & 20 \\ 10 & 20 & 25 \end{pmatrix}$
- $\begin{array}{c}
 (c) & \begin{pmatrix} 6 \\ 12 \\ -5 \end{pmatrix}
 \end{array}$
- 2.1.23
- (a) $\begin{pmatrix} 7 & 38 \\ 10 & 75 \end{pmatrix}$
- (b) $\begin{pmatrix} 7 & 38 \\ 10 & 75 \end{pmatrix}$
- 2.1.25
- $\begin{pmatrix} -14\\1 \end{pmatrix}$
- 2.1.27
- $\begin{pmatrix} -38 \\ -2 \end{pmatrix}$
- 2.1.29
- 4×5
- 2.1.41

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + x_{22}x_2 = b_2$$

$$(x \quad y) \begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x \quad y) \begin{pmatrix} ax + \frac{1}{2}by \\ \frac{1}{2}bx + cy \end{pmatrix}$$

$$= ax^2 + \frac{1}{2}bxy + \frac{1}{2}bxy + cy^2$$

$$= ax^2 + bxy + cy^2$$

- 2.1.45
- $\langle -1, 1 \rangle$
- 2.1.47
- $\langle -2, 0 \rangle$
- 2.1.49
- $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- 2.1.51
- (b)

$$\begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix} = \begin{pmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- 2.2 Systems of Linear Algebraic Equations
- 2.2.1

$$\begin{pmatrix}
1 & -1 & | & 11 \\
4 & 3 & | & -5
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & | & 11 \\
0 & 7 & | & -49
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & | & 11 \\
0 & 1 & | & -7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & | & 4 \\
0 & 1 & | & -7
\end{pmatrix}$$

2.2.5

$$\begin{pmatrix} 1 & -1 & -1 & | & -3 \\ 2 & 3 & 5 & | & 7 \\ 1 & -2 & 3 & | & -11 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -1 & | & -3 \\ 0 & 5 & 7 & | & 13 \\ 0 & -1 & 4 & | & -8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -1 & | & -3 \\ 0 & 1 & \frac{7}{5} & | & \frac{13}{5} \\ 0 & -1 & 4 & | & -8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -1 & | & -3 \\ 0 & 1 & \frac{7}{5} & | & \frac{13}{5} \\ 0 & 0 & \frac{27}{5} & | & -\frac{27}{5} \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -1 & | & -3 \\ 0 & 1 & \frac{7}{5} & | & \frac{13}{5} \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & | & -4 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

2.3 Rank of a Matrix

2.3.1

$$\begin{pmatrix}
3 & -1 \\
1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{3} \\
1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{3} \\
0 & \frac{10}{3}
\end{pmatrix}$$

 ${\rm Rank}~2$

2.3.3

$$\begin{pmatrix} 2 & 1 & 3 \\ 6 & 3 & 9 \\ -1 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 6 & 3 & 9 \\ -1 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Rank 1

2.3.5

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 3 \\ 0 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 3 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Rank 3

2.3.7

$$\begin{pmatrix} 1 & -2 \\ 3 & -6 \\ 7 & -1 \\ 4 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 \\ 0 & 13 \\ 0 & 13 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 \\ 0 & 13 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 ${\rm Rank}\ 2$

2.3.11

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & -2 \\ 0 & -3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$

Linearly independent

2.3.15

5

2.3.17

 $rank(\mathbf{A}) = 2$

2.4 Determinants

2.4.1

9

2.4.3

1

2.4.5

$$M_{33} = \begin{vmatrix} 0 & 2 & 0 \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix}$$
$$= -2 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix}$$
$$= 2$$

2.4.7

$$C_{34} = (-1)^{3+4} \begin{vmatrix} 0 & 2 & 4 \\ 1 & 2 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= -\left(-2 \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}\right)$$
$$= 10$$

2.4.9

-7

2.4.11

17

2.4.13

$$(1 - \lambda)(2 - \lambda) - 6 = 2 - \lambda - 2\lambda + \lambda^2 - 6$$
$$= \lambda^2 - 3\lambda - 4$$
$$= (\lambda + 1)(\lambda - 4)$$

2.4.15

-48

2.4.23

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ 2 & 3 & 4 \end{vmatrix} = \begin{vmatrix} y & z \\ 3 & 4 \end{vmatrix} - \begin{vmatrix} x & z \\ 2 & 4 \end{vmatrix} + \begin{vmatrix} x & y \\ 2 & 3 \end{vmatrix}$$
$$= 4y - 3z - 4x + 2z + 3x - 2y$$
$$= -x + 2y - z$$

2.4.29

$$\begin{vmatrix} (-3-\lambda) & 10\\ 2 & (5-\lambda) \end{vmatrix} = 0$$
$$(-3-\lambda)(5-\lambda) - 20 = 0$$
$$-15+3\lambda - 5\lambda + \lambda^2 - 20 = 0$$
$$\lambda^2 - 2\lambda - 35 = 0$$
$$(\lambda - 7)(\lambda + 5) = 0$$
$$\lambda = -5 \text{ or } 7$$

2.5 Properties of Determinants

2.5.1

8.5.4

2.5.3

8.5.7

2.5.5

8.5.5

2.5.7

8.5.3

2.5.9

8.5.1

2.5.11

-5

2.5.13

-5

2.5.15

5

2.5.17

80

2.5.19

-105

2.5.25

$$\mathbf{A}\mathbf{A} = \mathbf{I}$$
$$\det \mathbf{A} \cdot \det \mathbf{A} = \det \mathbf{I}$$
$$(\det \mathbf{A})^2 = 1$$
$$\det \mathbf{A} = \pm 1$$

2.5.27

$$\begin{vmatrix} a & a+1 & a+2 \\ b & b+1 & b+2 \\ c & c+1 & c+2 \end{vmatrix} = \begin{vmatrix} a & 1 & 2 \\ b & 1 & 2 \\ c & 1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix}$$
$$= 0$$

2.5.29

$$\begin{vmatrix} 1 & 1 & 5 \\ 4 & 3 & 6 \\ 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 5 \\ 0 & -1 & -14 \\ 0 & -1 & 1 \end{vmatrix}$$
$$= -\begin{vmatrix} 1 & 1 & 5 \\ 0 & 1 & 14 \\ 0 & 0 & 15 \end{vmatrix}$$
$$= -15$$

2.5.37

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b^2-a^2 & c^2-a^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & 0 & c^2-a^2-(b+a)(c-a) \end{vmatrix}$$

$$= (b-a)(c^2-a^2-(b+a)(c-a))$$

$$= (b-a)(c^2-a^2-bc+ab-ac+a^2)$$

$$= (b-a)(c^2+ab-ac-bc)$$

$$= (b-a)(c-a)(c-b)$$

2.5.39

$$a_{21}C_{11} + a_{22}C_{12} + a_{23}C_{13} = (-1)(4) + (2)(5) + (1)(-6)$$

$$= 0$$

$$a_{13}C_{12} + a_{23}C_{22} + a_{33}C_{32} = (2)(5) + (1)(-7) + (1)(-3)$$

$$= 0$$

2.5.41

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 10 & 0 \\ 0 & -3 \end{pmatrix}$$
$$\det(\mathbf{A} + \mathbf{B}) = -30$$
$$\det \mathbf{A} = 10$$
$$\det \mathbf{B} = -31$$
$$-30 \neq 10 - 31$$

2.6 Inverse of a Matrix

2.6.3

$$\det \mathbf{A} = 9$$

$$\mathbf{A}^{-1} = \frac{1}{9} \begin{pmatrix} 1 & 1 \\ -4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{9} & \frac{1}{9} \\ -\frac{4}{9} & \frac{5}{9} \end{pmatrix}$$

2.6.5

$$\det \mathbf{A} = 12$$

$$\mathbf{A}^{-1} = \frac{1}{12} \begin{pmatrix} 2 & 0 \\ 3 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{6} & 0 \\ \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

2.6.7

$$\det \mathbf{A} = (1) \begin{vmatrix} 4 & 4 \\ -1 & 1 \end{vmatrix} - (3) \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} + (5) \begin{vmatrix} 2 & 4 \\ 1 & -1 \end{vmatrix}$$

$$= 8 + 6 - 30$$

$$= -16$$

$$\mathbf{A}^{-1} = -\frac{1}{16} \begin{pmatrix} 8 & 2 & -6 \\ -8 & -4 & 4 \\ -8 & 6 & -2 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{8} & \frac{1}{4} & -\frac{3}{8} \\ \frac{3}{2} & -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

2.6.15

$$\begin{pmatrix}
6 & -2 & | & 1 & 0 \\
0 & 4 & | & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{3} & | & \frac{1}{6} & 0 \\
0 & 1 & | & 0 & \frac{1}{4}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & | & \frac{1}{6} & \frac{1}{12} \\
0 & 1 & | & 0 & \frac{1}{4}
\end{pmatrix}$$

2.6.17

$$\begin{pmatrix} 1 & 3 & 1 & 0 \\ 5 & 3 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & -12 & -5 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & \frac{5}{12} & -\frac{1}{12} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -\frac{1}{4} & \frac{1}{4} \\ 0 & 1 & \frac{5}{12} & -\frac{1}{12} \end{pmatrix}$$

2.6.27

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

$$= \begin{pmatrix} \frac{2}{3} & \frac{4}{3} \\ -\frac{1}{3} & \frac{5}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ -\frac{17}{12} & \frac{55}{12} \end{pmatrix}$$

2.6.29

$$\begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}$$

2.6.31

$$\begin{pmatrix} 4 & -3 \\ x & -4 \end{pmatrix} = \frac{1}{3x - 16} \begin{pmatrix} -4 & -x \\ 3 & 4 \end{pmatrix}^T$$
$$= \frac{1}{3x - 16} \begin{pmatrix} -4 & 3 \\ -x & 4 \end{pmatrix}$$
$$-1 = \frac{1}{3x - 16}$$
$$16 - 3x = 1$$
$$3x = 15$$
$$x = 5$$

2.6.45

$$\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 14 \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} -1 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 14 \end{pmatrix}$$
$$= -\frac{1}{3} \begin{pmatrix} -18 \\ 6 \end{pmatrix}$$
$$= \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

2.6.49

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 5 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix}$$

$$\det \mathbf{A} = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 5 & -1 \end{vmatrix}$$

$$= 1 - 6$$

$$= -5$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -\frac{1}{5} \begin{pmatrix} 1 & 5 & -6 \\ -1 & -5 & 1 \\ -1 & 0 & 1 \end{pmatrix}^T \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix}$$

$$= -\frac{1}{5} \begin{pmatrix} 1 & -1 & -1 \\ 5 & -5 & 0 \\ -6 & 1 & 1 \end{pmatrix} \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix}$$

$$= -\frac{1}{5} \begin{pmatrix} -10 \\ -20 \\ 30 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 4 \\ -6 \end{pmatrix}$$

2.6.55

$$\det \begin{pmatrix} 1 & 2 & -1 \\ 4 & -1 & 1 \\ 5 & 1 & -2 \end{pmatrix} = (1) \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} - (2) \begin{vmatrix} 4 & 1 \\ 5 & -2 \end{vmatrix} + (-1) \begin{vmatrix} 4 & -1 \\ 5 & 1 \end{vmatrix}$$
$$= 1 + 26 - 9$$
$$= 18$$

Only trivial solution

2.7 Cramer's Rule

2.7.1

$$\mathbf{A} = \begin{pmatrix} -3 & 1\\ 2 & -4 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 3\\ -6 \end{pmatrix}$$

$$\det \mathbf{A} = 10$$

$$\det \mathbf{A}_1 = -6$$

$$\det \mathbf{A}_2 = 12$$

$$x_1 = -\frac{3}{5}$$

$$x_2 = \frac{6}{5}$$

2.7.11

$$\mathbf{A} = \begin{pmatrix} 2-k & k \\ k & 3-k \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\det \mathbf{A} = (2-k)(3-k) - k^2$$

$$= 6 - 5k$$

$$\det \mathbf{A}_1 = 4(3-k) - 3k$$

$$= 12 - 7k$$

$$\det \mathbf{A}_2 = 3(2-k) - 4k$$

$$= 6 - 7k$$

$$x_1 = \frac{12 - 7k}{6 - 5k}$$

$$x_2 = \frac{6 - 7k}{6 - 5k}$$

The system is inconsistent when $k = \frac{6}{5}$

2.7.13

$$\mathbf{A} = \begin{pmatrix} \cos 25^{\circ} & -\cos 15^{\circ} \\ \sin 25^{\circ} & \sin 15^{\circ} \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 300 \end{pmatrix}$$

$$\det \mathbf{A} = \cos 25^{\circ} \sin 15^{\circ} + \cos 15^{\circ} \sin 25^{\circ}$$

$$= \sin 40^{\circ}$$

$$\det \mathbf{A}_{1} = 300 \cos 15^{\circ}$$

$$\det \mathbf{A}_{2} = 300 \cos 25^{\circ}$$

$$T_{1} = \frac{300 \cos 15^{\circ}}{\sin 40^{\circ}}$$

$$\approx 451 \text{ lb}$$

$$T_{2} = \frac{300 \cos 25^{\circ}}{\sin 40^{\circ}}$$

$$\approx 423 \text{ lb}$$

2.8 The Eigenvalue Problem

2.8.1

 \mathbf{K}_3 with $\lambda = -1$

2.8.3

 \mathbf{K}_3 with $\lambda = 0$

2.8.5

$$\mathbf{K}_2$$
 with $\lambda = 3$
 \mathbf{K}_3 with $\lambda = 1$

2.8.7

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -1 - \lambda & 2 \\ -7 & 8 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda)(8 - \lambda) + 14$$
$$= -8 + \lambda - 8\lambda + \lambda^2 + 14$$
$$= \lambda^2 - 7\lambda + 6$$
$$= (\lambda - 1)(\lambda - 6)$$
$$\lambda_1 = 1$$
$$\lambda_2 = 6$$

$$\begin{pmatrix} -2 & 2 & 0 \\ -7 & 7 & 0 \end{pmatrix}$$

$$x_1 = x_2$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & 2 & 0 \\ -7 & 2 & 0 \end{pmatrix}$$

$$x_1 = \frac{2}{7}x_2$$

$$\mathbf{X}_2 = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$$

Nonsingular

2.8.9

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -8 - \lambda & -1 \\ 16 & -\lambda \end{vmatrix}$$

$$= -\lambda(-8 - \lambda) + 16$$

$$= 8\lambda + \lambda^2 + 16$$

$$= (\lambda + 4)^2$$

$$\lambda_1 = \lambda_2 = -4$$

$$\begin{pmatrix} -4 & -1 & 0 \\ 16 & 4 & 0 \end{pmatrix}$$

$$x_1 = -\frac{1}{4}x_2$$

$$\mathbf{X}_1 = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

Nonsingular

2.8.11

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -1 - \lambda & 2 \\ -5 & 1 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda)(1 - \lambda) + 10$$

$$= -1 + \lambda - \lambda + \lambda^2 + 10$$

$$= \lambda^2 + 9$$

$$= (\lambda - 3i)(\lambda + 3i)$$

$$\lambda_1 = 3i$$

$$\lambda_2 = -3i$$

$$\begin{pmatrix} -1 - 3i & 2 & 0 \\ -5 & 1 - 3i & 0 \end{pmatrix}$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 - 3i \\ 5 \end{pmatrix}$$

$$\mathbf{X}_2 = \begin{pmatrix} 1 + 3i \\ 5 \end{pmatrix}$$

Nonsingular

2.8.23

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 5 - \lambda & 1 \\ 1 & 5 - \lambda \end{vmatrix}$$

$$= (5 - \lambda)^2 - 1$$

$$= 25 - 10\lambda + \lambda^2 - 1$$

$$= \lambda^2 - 10\lambda + 24$$

$$= (\lambda - 4)(\lambda - 6)$$

$$\lambda_1 = 4$$

$$\lambda_2 = 6$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\mathbf{X_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\lambda'_1 = \frac{1}{4}$$
$$\lambda'_2 = \frac{1}{6}$$
$$\mathbf{X}'_1 = \mathbf{X}_1$$
$$\mathbf{X}'_2 = \mathbf{X}_2$$

2.9 Powers of Matrices

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(5 - \lambda) + 8$$

$$= 5 - \lambda - 5\lambda + \lambda^2 + 8$$

$$= \lambda^2 - 6\lambda + 13$$

$$\mathbf{A}^2 = 6\mathbf{A} - 13\mathbf{I}$$

$$\begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} = 6 \begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix} - 13 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -12 \\ 24 & 17 \end{pmatrix} = \begin{pmatrix} -7 & -12 \\ 24 & 17 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (-1 - \lambda)(4 - \lambda) - 6$$

$$= -4 + \lambda - 4\lambda + \lambda^2 - 6$$

$$= \lambda^2 - 3\lambda - 10$$

$$= (\lambda - 5)(\lambda + 2)$$

$$\lambda^m = c_0 + c_1\lambda$$

$$(-2)^m = c_0 - 2c_1$$

$$(5)^m = c_0 + 5c_1$$

$$(-2)^m + \frac{2}{5}(5)^m = \frac{7}{5}c_0$$

$$\frac{5}{7}(-2)^m + \frac{2}{7}(5)^m = c_0$$

$$(5)^m - (-2)^m = 7c_1$$

$$\frac{1}{7}(5)^m - \frac{1}{7}(-2)^m = c_1$$

$$\mathbf{A}^m = \frac{1}{7} \begin{pmatrix} 5^m + 6(-2)^m & 3(5)^m - 3(-2)^m \\ 2(5)^m - 2(-2)^m & 6(5)^m + (-2)^m \end{pmatrix}$$

$$\mathbf{A}^3 = \frac{1}{7} \begin{pmatrix} 5^3 + 6(-2)^3 & 3(5)^3 - 3(-2)^3 \\ 2(5)^3 - 2(-2)^3 & 6(5)^3 + (-2)^3 \end{pmatrix}$$

$$= \begin{pmatrix} 11 & 57 \\ 38 & 106 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 8 & 5 \\ 4 & 0 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = -\lambda(8 - \lambda) - 20$$

$$= -8\lambda + \lambda^2 - 20$$

$$= \lambda^2 - 8\lambda - 20$$

$$= (\lambda - 10)(\lambda + 2)$$

$$\lambda^m = c_0 + c_1\lambda$$

$$(-2)^m = c_0 - 2c_1$$

$$10^m = c_0 + 10c_1$$

$$10^m + 5(-2)^m = 6c_0$$

$$\frac{1}{6}(10^m + 5(-2)^m) = c_0$$

$$\frac{1}{12}(2 \cdot 10^m + 10(-2)^m) = c_0$$

$$10^m - (-2)^m = 12c_1$$

$$\frac{1}{12}(10^m - (-2)^m) = c_1$$

$$\mathbf{A}^m = \frac{1}{12} \begin{pmatrix} 10 \cdot 10^m + 2(-2)^m & 5 \cdot 10^m - 5(-2)^m \\ 4 \cdot 10^m - 4(-2)^m & 2 \cdot 10^m + 10(-2)^m \end{pmatrix}$$

$$\mathbf{A}^5 = \begin{pmatrix} 83328 & 41680 \\ 33344 & 16640 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 7 & 3 \\ -3 & 1 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (7 - \lambda)(1 - \lambda) + 9$$

$$= 7 - 7\lambda - \lambda + \lambda^{2} + 9$$

$$= \lambda^{2} - 8\lambda + 16$$

$$= (\lambda - 4)^{2}$$

$$\lambda^{m} = c_{0} + c_{1}\lambda$$

$$m\lambda^{m-1} = c_{1}$$

$$4^{m-1}m = c_{1}$$

$$4^{m} = c_{0} + 4^{m}m$$

$$4^{m}(1 - m) = c_{0}$$

$$\mathbf{A}^{m} = \begin{pmatrix} 4^{m}(1 - m) + 7 \cdot 4^{m-1}m & 3 \cdot 4^{m-1}m \\ -3 \cdot 4^{m-1}m & 4^{m}(1 - m) + 4^{m-1}m \end{pmatrix}$$

$$= 4^{m} \begin{pmatrix} 1 - m + \frac{7}{4}m & \frac{3}{4}m \\ -\frac{3}{4}m & 1 - m + \frac{1}{4}m \end{pmatrix}$$

$$= 4^{m} \begin{pmatrix} 1 + \frac{3}{4}m & \frac{3}{4}m \\ -\frac{3}{4}m & 1 - \frac{3}{4}m \end{pmatrix}$$

$$\mathbf{A}^{6} = 4^{6} \begin{pmatrix} 1 + \frac{3}{4}6 & \frac{3}{4}6 \\ -\frac{3}{4}6 & 1 - \frac{3}{4}6 \end{pmatrix}$$

$$= 4^{5} \begin{pmatrix} 4 + 18 & 18 \\ -18 & 4 - 18 \end{pmatrix}$$

$$= 4^{5} \begin{pmatrix} 22 & 18 \\ -18 & -14 \end{pmatrix}$$

$$= \begin{pmatrix} 22528 & 18432 \\ -18432 & -14336 \end{pmatrix}$$

(a)

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(3 - \lambda) - 3$$
$$= 3 - \lambda - 3\lambda + \lambda^2 - 3$$
$$= \lambda^2 - 4\lambda$$
$$= \lambda(\lambda - 4)$$

$$\lambda^{m} = c_{1}\lambda$$

$$4^{m} = 4c_{1}$$

$$c_{1} = 4^{m-1}$$

$$\mathbf{A}^m = 4^{m-1}\mathbf{A}$$

2.9.15

$$\mathbf{A} = \begin{pmatrix} 2 & -4 \\ 1 & 3 \end{pmatrix}$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = (2 - \lambda)(3 - \lambda) + 4$$
$$= 6 - 2\lambda - 3\lambda + \lambda^2 + 4$$
$$= \lambda^2 - 5\lambda + 10$$
$$10\mathbf{I} = 5\mathbf{A} - \mathbf{A}^2$$
$$\mathbf{I} = \frac{1}{2}\mathbf{A} - \frac{1}{10}\mathbf{A}^2$$
$$\mathbf{A}^{-1} = \frac{1}{2}\mathbf{I} - \frac{1}{10}\mathbf{A}$$
$$= \begin{pmatrix} \frac{3}{10} & \frac{2}{5} \\ -\frac{1}{10} & \frac{1}{5} \end{pmatrix}$$

2.10 Orthogonal Matrices

2.10.5

 ${\bf Orthogonal}$

2.10.7

 ${\bf Orthogonal}$

2.10.9

Not orthogonal

2.10.11

$$\mathbf{A} = \begin{pmatrix} 1 & 9 \\ 9 & 1 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)^2 - 81$$

$$= \lambda^2 - 2\lambda + 1 - 81$$

$$= \lambda^2 - 2\lambda - 80$$

$$= (\lambda - 10)(\lambda + 8)$$

$$\begin{pmatrix} 9 & 9 \\ 9 & 9 \end{pmatrix}$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -9 & 9 \\ 9 & -9 \end{pmatrix}$$

$$\mathbf{X}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

2.10.13

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix}$$
$$\det(\mathbf{A} - \lambda \mathbf{I}) = (1 - \lambda)(9 - \lambda) - 9$$
$$= 9 - \lambda - 9\lambda + \lambda^2 - 9$$
$$= \lambda^2 - 10\lambda$$
$$= \lambda(\lambda - 10)$$
$$\begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix}$$
$$\mathbf{X}_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -9 & 3 \\ 3 & -1 \end{pmatrix}$$

$$\mathbf{X}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix}$$

2.10.19

$$\frac{3}{5}a + \frac{4}{5}b = 0$$

$$3a = -4b$$

$$a = -\frac{4}{3}b$$

$$a = -\frac{4}{5}$$

$$b = \frac{3}{5}$$

2.10.21

(b)
$$\lambda_1 = -2, \lambda_2 = -2, \lambda_3 = 4$$

$$\begin{aligned} \mathbf{W}_{1} &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \\ \mathbf{V}_{2} &= \mathbf{K}_{2} - (\mathbf{K}_{2} \cdot \mathbf{W}_{1}) \mathbf{W}_{1} \\ &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \\ |\mathbf{V}_{2}| &= \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \\ &= \sqrt{\frac{3}{3}} \\ \mathbf{W}_{2} &= \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\sqrt{\frac{2}{3}} \end{pmatrix} \\ \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \\ &= \sqrt{\frac{1}{2}} & \frac{1}{\sqrt{3}} \end{pmatrix} \end{aligned}$$

2.11 Approximation of Eigenvalues

2.11.1

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$

$$\mathbf{X}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{A}^5 \mathbf{X}_0 = 32 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{K}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\lambda_1 = \frac{\mathbf{A} \mathbf{X}_5 \cdot \mathbf{X}_5}{\mathbf{X}_5 \cdot \mathbf{X}_5}$$

2.11.3

$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 3 & 13 \end{pmatrix}$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{X}_2 = \begin{pmatrix} \frac{3}{8} \\ 1 \end{pmatrix}$$

$$\mathbf{X}_3 = \begin{pmatrix} 0.3363 \\ 1 \end{pmatrix}$$

$$\mathbf{X}_4 = \begin{pmatrix} 0.3335 \\ 1 \end{pmatrix}$$

$$\mathbf{X}_5 = \begin{pmatrix} 0.3333 \\ 1 \end{pmatrix}$$

$$\mathbf{K}_1 = \begin{pmatrix} \frac{1}{3} \\ 1 \end{pmatrix}$$

$$\lambda_1 = \frac{\mathbf{A}\mathbf{K}_1 \cdot \mathbf{K}_1}{\mathbf{K}_1 \cdot \mathbf{K}_1}$$

$$= 14$$

2.11.7

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$$

$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{A}^5 \mathbf{X}_1 = \begin{pmatrix} 0.5008 \\ 1 \end{pmatrix}$$

$$\lambda_1 = 7$$

$$\mathbf{K}_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$

$$\mathbf{B} = \mathbf{A} - \lambda_1 \mathbf{K}_1 \mathbf{K}_1^T$$

$$= \begin{pmatrix} \frac{8}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{2}{5} \end{pmatrix}$$

$$\mathbf{B}^5 \mathbf{X}_1 = \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$$

$$\lambda_2 = 2$$

2.11.11

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$$
$$\det \mathbf{A} = 1$$
$$\mathbf{A}^{-1} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}$$
$$\mathbf{X}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$(\mathbf{A}^{-1})^5 \mathbf{X}_1 = \begin{pmatrix} 1 \\ -0.7913 \end{pmatrix}$$
$$\lambda'_1 \approx 4.78$$
$$\lambda_1 \approx 0.21$$

2.11.13

(a)

$$EI\frac{d^{2}y}{dx^{2}} + Py = 0$$

$$EI\left(\frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}\right) + Py_{i} = 0$$

$$EI(y_{i+1} - 2y_{i} + y_{i-1}) + Ph^{2}y_{i} = 0$$

$$EI(y_2 - 2y_1) + Ph^2y_1 = 0$$
$$EI(2y_1 - y_2) = Ph^2y_1$$

$$EI(y_3 - 2y_2 + y_1) + Ph^2y_2 = 0$$
$$EI(-y_1 + 2y_2 - y_3) = Ph^2y_2$$

$$EI(-2y_3 + y_2) + Ph^2y_3 = 0$$
$$EI(-y_2 + 2y_3) = Ph^2y_3$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \frac{PL^2}{16EI} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

(c)

$$\det \mathbf{A} = 2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ 0 & 2 \end{vmatrix}$$

$$= 4$$

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \operatorname{adj} \mathbf{A}$$

$$= \frac{1}{4} \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{pmatrix}$$

(d)

$$\mathbf{X}_{1} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
$$(\mathbf{A}^{-1})^{6}\mathbf{X}_{1} = \begin{pmatrix} 0.7071\\1\\0.7071 \end{pmatrix}$$
$$\lambda'_{1} \approx 1.7071$$
$$\lambda_{1} \approx 0.59$$

$$\lambda_1 = \frac{PL^2}{16EI}$$

$$P = \frac{16EI\lambda_1}{L^2}$$

$$\approx \frac{9.44EI}{L^2}$$