Örnek

Bir motosikletli teslimat görevlisi, gelen siparişi adrese teslim etmek amacıyla dağıtım merkezinden harekete başlar. Bir süre sonra önüne kasis çıktığı için yavaşlar.

Teslimat görevlisine ait ϑ -t tablosu aşağıdaki gibi olduğuna göre teslimat görevlisinin her 1 s aralığındaki ivmesini bularak ivmenin pozitif ve negatif olma durumlarını yorumlayınız.

Zaman (s)	0	1	2	3	4	5
Hız Büyüklüğü (m/s)	0	6	12	18	18	12

Çözüm

Teslimat görevlisinin ivmesi $\vec{a} = \frac{\Delta \vec{\vartheta}}{\Delta t} = \frac{\vec{\vartheta}_{son} - \vec{\vartheta}_{ilk}}{t_{son} - t_{ilk}}$ matematiksel modeliyle hesaplanır.

Buna göre teslimat görevlisinin ivme büyüklüğü

(0-1) s arasında
$$a = \frac{6-0}{1-0} = 6 m/s^2$$
,

(1-2) s arasında
$$a = \frac{12-6}{2-1} = 6 m/s^2$$
,

(2-3) s arasında
$$a = \frac{18 - 12}{3 - 2} = 6 m/s^2$$
,

(3-4) s arasında
$$a = \frac{18-18}{4-3} = 0 m/s^2$$
,

(4-5) s arasında
$$a = \frac{12-18}{5-4} = -6 \text{ m/s}^2$$
 bulunur.

Elde edilen hesaplamalar aşağıdaki tabloda gösterilmiştir:

Zaman Aralığı (s)	(0-1)	(1-2)	(2-3)	(3-4)	(4-5)
İvme Büyüklüğü (m/s²)	6	6	6	0	-6

Tablodaki verilerde görüldüğü gibi teslimat görevlisinin

- (0-1) s zaman aralığında pozitif yönde hızlanarak hareket ettiği için ivmesi pozitif olur.
- (1-2) s zaman aralığında pozitif yönde hızlanarak hareket ettiği için ivmesi pozitif olur.
- (2-3) s zaman aralığında pozitif yönde hızlanarak hareket ettiği için ivmesi pozitif olur.
- (3-4) s zaman aralığında hızı değişmediği için ivmesi sıfır olur.
- (4-5) s zaman aralığında hızı pozitif yönde azaldığı için ivmesi negatif olur.