

problem 1

we started by doing some Data Preprocessing

- handling missing data by two methods:
- 1. imputation mode for categorical data
- 2. imputation means for linear data.
- encoding categorical variables.

```
data = pd.read_csv("drug.csv")
for column in data.columns:
   if data[column].dtype == 'object':
       # handle miss values in categorical value by Imputation mode / most frequent
       mode value = data[column].mode()[0]
       data[column].fillna(mode_value, inplace=True)
       # encode categorical values
       label_encoder = LabelEncoder()
       data[column] = label_encoder.fit_transform(data[column])
       # let`s check if the null value disappeared or not
       print(column , "has number of missing values = ",data[column].isnull().sum())
       # numerical values
       # perform Imputation mean to handle miss values
       mean value = data[column].mean()
       data[column].fillna(mean_value, inplace=True)
        # let`s check if the null value disappeared or not
       print(column , "has number of missing values = ",data[column].isnull().sum())
```

First experiment

Training and Testing with Fixed Train-Test Split Ratio 30% for Testing and 70% for Training

and repeated this experiment five times with different random splits of the data into training and test sets: 0 - 10 - 20 - 30 - 40.

```
best_accuracy = 0
best_random_state = 0
best_model = None
features = data[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']]
target = data['Drug']
# 0 - 40 with step 10
random_state = np.arange(0,41,10)
print(random_state)
# 0 - 10 - 20 - 30 - 40
for i in random_state:
    train_data, test_data, train_labels, test_labels = train_test_split(
       target.
       test_size=0.3,
       random state=i # Use a different random seed for each iteration
    model = DecisionTreeClassifier()
    model.fit(train_data, train_labels)
   predictions = model.predict(test data)
    accuracy = accuracy_score(test_labels, predictions)
   if accuracy >= best_accuracy:
       best accuracy = accuracy
       best_random_state = i
       best_model = model
    print(f"Random State: {i} | Accuracy: {accuracy}")
print("\nBest Performing Model:")
print(f"Random State: {best_random_state} | Best Accuracy: {best_accuracy}")
```

here is the Comparison the results of different models and selecting the one that achieves the highest overall performance.

Random State	0	10	20	30	40
Accuracy	1.0	0.966	0.9833	0.9833	1.0

Second experiment

```
accuracies = []
tret_sec = []
tret_sec
```

Training and Testing with a Range of Train-Test Split Ratios: training size 30 - 40 - 50 - 60 - 70, For each training set size: ran the experiment with five different random seeds 10 - 20 - 30 - 40 - 50.

Here's the table of all statistics of each train set with its seeds:

split Ratio	minimum accuracy	average accuracy	maximum accuracy	minimum tree size	average tree size	maximum tree size
0.3	0.842	0.944	0.985	9	12	15
0.4	0.95	0.973	0.991	11	11	15
0.5	0.96	0.976	0.99	11	12	15
0.6	0.975	0.982	1.0	11	12	15
0.7	0.983	0.99	1.0	11	14	15

Here's the plot of the relation between both of accuracy against training set size and the number of nodes in the final tree against training set size.

problem 2

First, we did some Data preprocessing.

- Normalize each feature column separately for training and test objects using Min-Max Scaling
- divide the data into 70% for training and 30% for testing.

```
data = pd.read_csv("diabetes.csv")
features = data[['pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']]
target = data['outcome']
data=np.array(data)
np.random.shuffle(data)
data = data.T

newdata = []
for column in data:
    min_val = column.min()
    max_val = column.max()
    column = (column - min_val) / (max_val - min_val)
    newdata.append(column)
data = np.array(newdata).T

test_data, train_data = np.split(data, [int(0.3 * len(data))])
    x_train = np.array(train_data.T[:-1].T)
    y_train = np.array(trest_data.T[:-1].T)
    y_test = np.array(test_data.T[:-1].T)
    y_test = np.array(test_data.T[:-1].T)
```

KNN

we did a model KNN for predicate the category the new data by Euclidean distance for computing distances between instances.

```
def KNN (x_test,x_train,y_train,K):
   m = y_train.shape[0]
   n = x_train.shape[1]
   distance = 0
   distances = np.zeros(m)
   result= np.zeros(K)
   for item in range(m):
       for i in range(n) :
           distance = distance + pow(x_test[i] - x_train[item][i],2)
       distance =math.sqrt(distance)
       distances[item] = distance
       distance = 0
   sorted_indices = np.argsort(distances)
   distances = distances[sorted indices]
   y_train = y_train[sorted_indices]
   for j in range(K) :
       result[j] = y train[j]
   result = result.astype(int)
   most_frequent_result = np.where(np.bincount(result) == np.max(np.bincount(result)))[0].tolist()
   if(np.size(most frequent result) == 1):
       return most_frequent_result[0]
```

for handle the tie case where the voting equals "won't play penalty" calculate the distance between the instance and select the vote of high weight "low distances"

```
else:
    zero_distance = 0
    one_distance = 0
    for i in range(K):
        if(y_train[i] == 0):
            zero_distance = zero_distance + distances[i]
        else:
            one_distance = one_distance + distances[i]
    if(zero_distance > one_distance):
        return 1
    else:
        return 0
```

we repeat the model 5 time with 5 different k from 1 to 5.

and store the info about the results:

```
K_values = np.arange(1,6)
n = x_test.shape[0]
avrage_Accuracy = 0
for K in K_values:
   number correction = 0
   for i in range(n):
      if(KNN(x_test[i],x_train,y_train,K) == y_test[i]):
           number_correction = number_correction + 1
   print("K value:",K)
   print("Number of correctly classified instances:",number correction)
   print("Total number of instances:",n)
   Accuracy = (number_correction / n) *100
   avrage_Accuracy = avrage_Accuracy + Accuracy
   print("Accuracy:",Accuracy,"%")
   print("----")
avrage_Accuracy = avrage_Accuracy / K_values.shape[0]
print(avrage_Accuracy)
```

К	Accuracy	Number of correctly classified instances	Total number of instances
1	71.7	165	230
2	71.7	165	230
3	75.2	173	230
4	74.7	172	230
5	73.9	170	230
Average	73.4		