Sprawozdanie 1 Perceptron prosty i Adaline

Szymon Woźniak, 23504015.10.2019

1 Opis badań eksperymentalnych

Celem badań jest poznanie właściwości dwóch modeli neuronu: perceptronu prostego i Adaline, oraz ich porównanie. Mają one również na celu przeanalizowanie wpływu doboru zakresu wag początkowych, współczynnika uczenia α oraz funkcji przejścia neuronu na szybkość uczenia.

2 Opis aplikacji wykorzystywanej do badań

Aplikacja do badań właściwości modeli neuronu została zaimplementowana w języku C++ w standardzie 17.

3 Charakterystyka zbiorów danych użytych do badań

Do przeprowadzenia badań zostały użyte zbiory danych skonstruowane z argumentów i wartości funkcji logicznych OR i AND. Dodatkowo do użycia z funkcją bipolarną, wszystkie wartości 0 były reprezentowane przez -1.

Tabela 1: Funkcja logiczna OR

\boldsymbol{x}	y	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Tabela 2: Funkcja logiczna AND

x	y	f(x,y)
0	0	0
0	1	0
1	0	0
1	1	1

4 Badania

Eksperyment 1. Wpływ zakresu początkowych wartości wag na szybkość uczenia

Założenia

Perceptron:

• unipolarna funkcja z progiem aktywacji 0.5,

- współczynnik uczenia $\alpha = 0.05$,
- warunek końca uczenia brak błędnie zaklasyfikowanych wzorców.

Adaline:

- bipolarna funkcja aktywacji z progiem 0,
- współczynnik uczenia $\alpha = 0.05$,
- $\bullet\,$ warunek końca uczenia błąd średniokwadratowy na ciągu uczącym mniejszy niż 0.3.

Dla obu modeli neuronu badano następujące zakresy wag: [-2, 2], [-1, 1], [-0.8, 0.8], [-0.5, 0.5], [-0.2, 0.2], [-0.1, 0.1], [-0.05, 0.05], [-0.01, 0.01], [-0.001, 0.001].

Przebieg eksperymentu

Badano liczbę iteracji prowadzącą do osiągnięcia warunku końca uczenia. Wyniki zostały uśrednione z 50 przebiegów.

Wyniki

Tabela 3: Średnia liczba iteracji prowadząca do wyuczenia neuronu w zależności od zadanego zakresu losowania wag

		Perceptron		Adaline	
min	max	OR	AND	OR	AND
-2	2	79.04	38.00	4.92	5.42
-1	1	56.16	24.24	3.16	2.32
-0.8	0.8	55.04	26.40	3.14	2
-0.5	0.5	45.84	23.12	2.88	1.68
-0.2	0.2	41.92	26.40	3.08	1.32
-0.1	0.1	38.24	25.84	3	1.06
-0.05	0.05	37.28	26.00	3	1
-0.01	0.01	36.88	26.00	3	1
-0.001	0.001	37.12	26.16	3	1

Komentarz

W tabeli 3 widać, że dobry zakres losowych wag jest różny dla różnych problemów oraz inny dla różnych modeli neuronu. Można również zauważyć generalną tendencję, że mniejsze zakresy dają większą szybkość uczenia.

Eksperyment 2. Wpływ wartość współczynnika uczenia α na szybkość uczenia

Założenia

Dla obu modeli poczynione zostały następujące założenia:

- bipolarna funkcja aktywacji z progiem 0,
- $\bullet\,$ zakres losowania wag [-0.1, 0.1].

Dla obu modeli neuronu badano następujące wartości współczynnika uczenia: [0.001, 0.01, 0.05, 0.1, 0.2, 0.5].

Warunki końca uczenia były takie jak w sekcji 4.

Przebieg eksperymentu

Badano liczbę iteracji potrzebnych do osiągnięcia warunku końca uczenia, w zależności od zadanego parametru α . Eksperyment był powtarzany 50 razy dla każdej wartości współczynnika, a następnie wyniki zostały uśrednionie.

Wyniki

Tabela 4: Średnia liczba iteracji prowadząca do wyuczenia neuronu w zależności od zadanego współczynnika uczenia α

	Perceptron		Adaline	
α	OR	AND	OR	AND
0.001	37.2	9.6	169.3	171.4
0.01	9.2	4.48	17.72	17.94
0.05	8.24	4.4	4	4
0.1	7.6	4.64	2	2
0.2	7.92	4.48	4	4
0.5	7.76	4.4	647.88	647.92

Komentarz

W tabeli 4 można zauważyć, że za równo za małe jak i za duże wartości współczynnika α skutkują zmniejszeniem szybkości uczenia. Widać również, że model Adaline jest mniej odporny na skrajnie duże i małe wartości.

Eksperyment 3. Wpływ funkcji przejścia neuronu na szybkość uczenia

Założenia

W obu przypadkach przyjętę zostały następujące założenia:

- współczynnik uczenia $\alpha = 0.05$
- zakres losowania wag [-0.1, 0.1].

W przypadku funkcji unipolarnej próg aktywacji został ustawiony na 0.5.

Przebieg eksperymentu

Badano liczbę iteracji potrzebnych do osiągnięcia warunku końca uczenia, w zależności od wybranej funkcji aktywacji. Eksperyment był powtarzany 50 razy dla obu funkcji, a następnie wyniki zostały uśrednionie.

Wyniki

Tabela 5: Średnia liczba iteracji do wyuczenia neuronu w zależności od wybranej funkcji aktywacji.

	f. unipolarna	f. bipolarna
OR	38.8	8.08
AND	19.12	4.32

Komentarz

Jak widać w tabeli 5 wybór funkcji bipolarnej znacząco poprawia szybkość uczenia neuronu.

5 Podsumowanie

Model Adaline w większości przypadków daje lepszą szybkość uczenia niż perceptron prosty. Zakresy losowania wag bliższe 0 dają zazwyczaj lepsze wyniki, ale optimum leży w różnych miejscach dla różnych problemów. Wartość współczynnika uczenia ma bardzo istotny wpływ na szybkość uczenia. Ustawienie zbyt małej lub zbyt dużej wartości znacząco wydłuża uczenie. W badaniach szczególnie uwidoczniło się to w przypadku modelu Adaline. Bipolarna funkcja aktywacji daje znacznie lepszą szybkość uczenia niż unipolarna.