Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

Студент	Соколов Ефим	
Группа	ИУ7-63Б	
Дисциплина	Моделирование	
Преподаватель:		Градов В.М.
	подпись, дата	Фамилия, И.О.
Оценка		

Цель работы

Получение навыков разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.

Постановка задачи

Задана математическая модель. Уравнение для функции T(x,t).

$$c(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x}(k(T)\frac{\partial T}{\partial x}) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x)$$
 (1)

Краевые условия:

$$\begin{cases} t = 0, T(x, 0) = T_0, \\ x = 0, -k(T(0)) \frac{\partial T}{\partial x} = F_0, \\ x = l, -k(T(l)) \frac{\partial T}{\partial x} = \alpha_N(T(l) - T_0) \end{cases}$$

В обозначениях уравнения лекции:

$$p(x) = \frac{2}{R}\alpha(x), f(u) = f(x) = \frac{2T_0}{R}\alpha(x).$$

Разностная схема с разностным краевым условием при x=0:

$$\hat{A}_n \hat{y}_{n-1} - \hat{B}_n \hat{y}_n + \hat{D} \hat{y}_{n+1} = -\hat{F}_n \tag{2}$$

$$\frac{\left(\frac{h}{8}\hat{c}_{\frac{1}{2}} + \frac{h}{4}\hat{c}_{0} + \hat{\chi}_{\frac{1}{2}}\frac{\tau}{h} + \frac{\tau h}{8}p_{\frac{1}{2}} + \frac{\tau h}{4}p_{0}\right)\hat{y}_{0} + \left(\frac{h}{8}\hat{c}_{\frac{1}{2}} - \hat{\chi}_{\frac{1}{2}}\frac{\tau}{h} + \frac{\tau h}{8}p_{\frac{1}{2}}\right)\hat{y}_{1} = \\
= \frac{h}{8}\hat{c}_{\frac{1}{2}}(y_{0} + y_{1}) + \frac{h}{4}\hat{c}_{0}y_{0} + \hat{F}\tau + \frac{\tau h}{4}(\hat{f}_{\frac{1}{2}} + \hat{f}_{0})$$
(3)

Разностная схема с разностным краевым условием при x = l:

$$\int_{x_{N-\frac{1}{2}}}^{x_{N}} dx \int_{t_{m}}^{t_{m+1}} c(T) \frac{\partial T}{\partial t} dt =$$

$$\int_{x_{N-\frac{1}{2}}}^{x_{N}} dx \int_{t_{m}}^{t_{m+1}} f(x) dt - \int_{t_{m}}^{t_{m+1}} dt \int_{x_{N-\frac{1}{2}}}^{x_{N}} \frac{\partial F}{\partial x} dx - \int_{x_{N-\frac{1}{2}}}^{x_{N}} dx \int_{t_{m}}^{t_{m+1}} p(x) T dt$$
(4)

Применим метод правых прямоугольников для интегралов из правой части:

$$\int_{x_{N-\frac{1}{2}}}^{x_N} \hat{c}(\hat{T} - T) dx = \int_{x_{N-\frac{1}{2}}}^{x_N} \hat{f} \tau dx - \int_{t_m}^{t_{m+1}} (F_N - F_{N-\frac{1}{2}}) dt - \int_{x_{N-\frac{1}{2}}}^{x_N} p \hat{T} \tau dx$$
(5)

Интеграл $\int_{t_m}^{t_{m+1}} (F_N - F_{N-\frac{1}{2}}) dt$ решим с помощью метода правых прямоугольников, а оставшиеся методом трапеций:

$$\frac{\frac{h}{4}[\hat{c}_N(\hat{y}_N - y_N) + \hat{c}_{N-\frac{1}{2}}(\hat{y}_{N-\frac{1}{2}} - y_{N-\frac{1}{2}})] =
= \frac{h}{4}\tau(\hat{f}_N - \hat{f}_{N-\frac{1}{2}}) - \tau(\hat{F}_N - \hat{F}_{N-\frac{1}{2}}) - \frac{h}{4}\tau(p_N\hat{y}_N + p_{N-\frac{1}{2}}\hat{y}_{N-\frac{1}{2}})$$
(6)

Подставим в выражения для потока:

$$\frac{h}{4}[\hat{c}_{N}(\hat{y}_{N}-y_{N})+\hat{c}_{N-\frac{1}{2}}(\frac{\hat{y}_{N}+\hat{y}_{N-1}}{2}-\frac{y_{N}+y_{N-1}}{2})] =
= \frac{h}{4}\tau(\hat{f}_{N}-\hat{f}_{N-\frac{1}{2}})-\tau(\alpha_{N}(\hat{y}_{N}-T_{0})-\hat{\chi}_{N-\frac{1}{2}}\frac{\hat{y}_{N-1}-\hat{y}_{N}}{h})-
-\frac{h}{4}\tau(p_{N}\hat{y}_{N}+p_{N-\frac{1}{2}}\frac{\hat{y}_{N}+\hat{y}_{N-1}}{2})$$
(7)

Приведем к общему виду:

Применим простую аппроксимацию:

$$p_{N-\frac{1}{2}} = \frac{p_N + p_{N-1}}{2}, \hat{f}_{N-\frac{1}{2}} = \frac{\hat{f}_N + \hat{f}_{N-1}}{2}, \hat{c}_{N-\frac{1}{2}} = \frac{\hat{c}_N + \hat{c}_{N-1}}{2}$$

Если c(u)=0 и сократить au формула (8) перейдёт формулу для разностного краевого условия при x=l из предыдущей лабораторной работы.

Значения параметров для отладки (все размерности согласованы):

$$k(T) = a_1(b_1 + c_1 T^{m_1}),$$

$$c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2},$$

$$a_1 = 0.0134, b_1 = 1, c_1 = 4.35 * 10^{-4}, m_1 = 1,$$

$$a_2 = 2.049, b_2 = 0.563 * 10^{-3}, c_2 = 0.528 * 10^5, m_2 = 1,$$

$$\alpha(x) = \frac{c}{x - d}, \alpha_0 = 0.05, \alpha_N = 0.01,$$

$$l = 10, T_0 = 300, R = 5,$$

$$F(t) = 50.$$

Листинг кода

На листинге 1 приведен код программы на языке Python 3.

```
import matplotlib.pyplot as plt
2 import numpy as np
3 from math import fabs
_{5} a1 = 0.0134
_{6}|b1 = 1
_{7} c1 = 4.35e-4
_{8} m1 = 1
_{9}|a2 = 2.049
_{10}|b2 = 0.563e-3|
|c2| = 0.528e5
_{12} | m2 = 1
_{13} alpha0 = 0.05
_{14} alphaN = 0.01
15 I = 10
_{16} T0 = 300
_{17}|R = 0.5
_{18} | F0 = 50
_{19}|h = 1e-3
_{20} t = 1
```

```
22 def k(T):
      return a1 * (b1 + c1 * T ** m1)
23
24
25
 def c(T):
26
      return a2 + b2 * T ** m2 - (c2 / T ** 2)
27
28
29
 def alpha(x):
      d = (alphaN * I) / (alphaN - alpha0)
31
      c = - alpha0 * d
32
      return c / (x - d)
33
34
35
36 def p(x):
      return 2 * alpha(x) / R
37
38
39
 def f(x):
40
      return 2 * alpha(x) * T0 / R
41
42
43
 def func_plus_half(x, step, func):
      return (func(x) + func(x + step)) / 2
45
46
47
 def func minus half(x, step, func):
      return (func(x) + func(x - step)) / 2
49
50
51
52 def A(T):
      return t / h * func minus half(T, t, k)
54
55
56 def D(T):
      return t / h * func_plus_half(T, t, k)
58
59
60 def B(x, T):
      return A(T) + D(T) + c(T) * h + p(x) * h * t
61
62
```

```
63
 def F(x, T):
      return f(x) * h * t + c(T) * T * h
66
67
 def left_boundary_condition(T_prev):
68
      K0 = h / 8 * func_plus_half(T_prev[0], t, c) + h / 4 * c(
69
         T prev[0]) + \setminus
          func_plus_half(T_prev[0], t, k) * t / h + \
70
          t * h / 8 * p(h / 2) + t * h / 4 * p(0)
71
      M0 = h / 8 * func_plus_half(T_prev[0], t, c) - \setminus
72
          func plus half(T prev[0], t, k) * t / h + \setminus
73
          t * h * p(h / 2) / 8
74
      P0 = h / 8 * func_plus_half(T_prev[0], t, c) * (T_prev[0] +
75
         T prev[1]) + \setminus
          h / 4 * c(T_prev[0]) * T_prev[0] + \
76
          F0 * t + t * h / 8 * (3 * f(0) + f(h))
77
      return K0, M0, P0
78
79
80
 def right_boundary_condition(T_prev):
      KN = h / 8 * func_minus_half(T_prev[-1], t, c) + h / 4 * c(
         T prev[-1]) + \
          func minus half (T prev[-1], t, k) * t / h + t * alphaN +
83
          t * h / 8 * p(I - h / 2) + t * h / 4 * p(I)
      MN = h / 8 * func minus half(T prev[-1], t, c) - \setminus
85
          func_minus_half(T_prev[-1], t, k) * t / h + \
86
          t * h * p(I - h / 2) / 8
87
      PN = h / 8 * func_minus_half(T_prev[-1], t, c) * (T_prev[-1])
88
         + T prev[-2]) + \
          h / 4 * c(T prev[-1]) * T prev[-1] + t * alphaN * T0 + \setminus
          t * h / 4 * (f(I) + f(I - h / 2))
90
      return KN, MN, PN
91
92
 def run(T prev, K0, M0, P0, KN, MN, PN):
      eps = [0, -M0 / K0]
95
      eta = [0, P0 / K0]
96
      x = h
97
      n = 1
```

```
99
       while (x + h < 1):
100
           eps.append(D(T_prev[n]) / (B(x, T_prev[n]) - A(T_prev[n])
101
                * eps[n]))
           eta.append((F(x, T_prev[n]) + A(T_prev[n]) * eta[n]) / (B
102
               (x, T_prev[n]) - A(T_prev[n]) * eps[n]))
           n += 1
103
           x += h
104
105
       y = [0] * (n + 1)
106
       y[n] = (PN - MN * eta[n]) / (KN + MN * eps[n])
107
       for i in range (n - 1, -1, -1):
108
           y[i] = eps[i + 1] * y[i + 1] + eta[i + 1]
109
110
       return y
111
112
113
  def main():
       step1 = int(I / h)
115
       T = [T0] * (step1 + 1)
116
       T_{new} = [0] * (step1 + 1)
117
       ti = 0
118
       res = []
119
       res.append(T)
120
121
       while True:
122
           prev = T
123
           while True:
124
                KO, MO, PO = left_boundary_condition(prev)
125
                KN, MN, PN = right_boundary_condition(prev)
126
                T \text{ new} = run(prev, K0, M0, P0, KN, MN, PN)
127
                max = fabs((T[0] - T new[0]) / T new[0])
128
129
                for step2, j in zip(T, T_new):
130
                     d = fabs(step2 - j) / j
131
                     if d > max:
132
                         max = d
133
                if max < 1:
134
                     break
135
136
                prev = T new
137
```

```
138
            res.append(T_new)
139
            ti += t
140
141
            check eps = 0
142
            for i, j in zip(T, T_new):
143
                 if fabs ((i - j) / j) > 1e-2:
144
                      check_eps = 1
145
            if check_eps == 0:
146
                 break
147
            T = T_new
148
149
       x = [i \text{ for } i \text{ in } np.arange(0, 1, h)]
150
       te = [i for i in range(0, ti, t)]
151
       step1 = 0
152
       for i in res:
153
            if (step1 \% 2 == 0):
                 plt.plot(x, i[:-1])
155
            step1 += 1
156
157
       plt.plot(x, res[-1][:-1])
158
       plt.xlabel("x, cm")
159
       plt.ylabel("T, K")
160
       plt.grid()
161
       plt.show()
162
163
       step2 = 0
164
       while (step2 < 1 / 3):
165
            point = [j[int(step2 / h)] for j in res]
166
            plt.plot(te, point[:-1])
167
            step2 += 0.1
168
169
       plt.xlabel("t, sec")
170
       plt.ylabel("T, K")
171
       plt.grid()
172
       plt.show()
173
174
      name == " main ":
176 if
       main()
177
```

Листинг 1: Код программы

Выполнение заданий лабораторной работы

Представить разностный аналог краевого условия при x=l и его краткий вывод интегро-интерполяционным методом

Вывод разностный аналог краевого условия при x=l приведен выше (уравнения (4)-(8)).

График зависимости температуры $T(x,t_m)$ от координаты x при нескольких фиксированных значениях времени t_m (аналогично рисунку в лекции) при заданных выше параметрах. Обязательно представить распределение $T(x,t_m)$ в момент времени, соответствующий установившемуся режиму, когда поле перестает меняться с некоторой точностью т.е. имеет место выход на стационарный режим. На этой стадии левая часть дифференциального уравнения близка к нулю. График зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n . Обязательно представить случай n=0, т.е. $x=x_0=0$.

На рисунке 1 приведены графики зависимости температуры $T(x, t_m)$ от координаты x при нескольких фиксированных значениях времени t_m .

На рисунке 2 приведены графики зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n .

Рисунок 1: Графики зависимости $T(x,t_m)$

Рисунок 2: Графики зависимости $T(x_n,t)$

Ответы на контрольные вопросы

1. Приведите результаты тестирования программы (графики, общие соображения, качественный анализ)

1. При отрицательном тепловом потоке (например, при F=-5) слева идет съем тепла. На рисунках 3 и 4 приведены графики зависимости температуры от координаты и от времени, соответственно.

Рисунок 3: Графики зависимости $T(x, t_n)$ при F = -5

- 2. Если тепловой поток равен нулю (F=0), то температура стрежня будет равняться температуре окружающей среды, T=300 (см. рис. 5).
- 3. Если после разогрева стержня сделать тепловой поток равным 0, то стержень будет остывать пока температура не выровняется по всей длине и не станет равной температуре окружающей среды (см. рис. 6).
- 4. При произвольной зависимости потока F(t) от времени температурное поле будет как-то сложным образом отслеживать поток (см.

Рисунок 4: Графики зависимости $T(x_n,t)$ при F=-5

Рисунок 5: Графики зависимости $T(x_n,t)$ при F=0 (все графики совпадают)

рис. 7). На рисунке 8 приведен график зависимости теплового потока от времени (поток линейно изменялся со значения F=50 до F=-5 и затем фиксировался на этом значении).

Рисунок 6: Графики зависимости $T(x_n,t)$

Рисунок 7: Графики зависимости $T(x_n,t)$ при изменяющемся значении F(t)

Рисунок 8: Графики зависимости F(t)