9/16/2024

- Hydrogenic Atoms
 - Schrodinger equation
 - Steps to solving the equation
 - Radial probability density
- Angular Momentum Operators
 - Review of angular momentum operators
 - Commutators
 - Shift operators
- Spin
 - Types of angular momentum
 - Eigenfunctions and eigenvalues
 - Matrix form

- Plan for Wednesday: Practice
 Midterm, shortened by 15 minutes to go over answers
- This lecture is designed to help you achieve the following learning objectives
 - Obtain and interpret solutions of the Schrodinger equation for tractable systems including the particle in a box, harmonic oscillator, rigid rotor, and hydrogen atom

Hydrogenic Atoms

- Hydrogen consists of a proton and an electron
- Potential energy based on Coulomb potential,

$$\hat{\mathbf{H}} = -\frac{\hbar^2}{2m_e} \hat{\nabla}_e^2 - \frac{\hbar^2}{2m_N} \hat{\nabla}_{\mathbf{N}}^2 - \frac{Ze^2}{4\pi\epsilon_o r}$$

- Also describes other *hydrogenic* atoms with one electron and a charged nucleus with arbitrary atomic number
- Can be thought of as a set of concentric spheres

Coordinate Transformation

Changing the coordinate system,

$$\hat{\mathbf{H}} = -\frac{\hbar^2}{2m}\hat{\nabla}_{cm}^2 - \frac{\hbar^2}{2\mu}\hat{\nabla}^2 - \frac{Ze^2}{4\pi\epsilon_o r}$$

- $m = m_e + m_N$ 1 1 1 = + -• $\mu m_e m_N$
- Terms 1 & 2 are like rigid rotor
- Term 1 is translation
- Terms 2 & 3 depend on relative positions

Separation of translational and internal variables

$$\begin{split} \hat{\mathbf{H}} \Psi_{total} &= \left[-\frac{\hbar^2}{2m} \hat{\nabla}_{cm}^2 - \frac{\hbar^2}{2\mu} \hat{\nabla}^2 - \frac{Ze^2}{4\pi\epsilon_o r} \right] \Psi_{total} = E_{total} \Psi_{total} \\ &\cdot \left[-\frac{\hbar^2}{2m} \hat{\nabla}_{cm}^2 \right] \Psi_{cm} = E_{cm} \Psi_{cm} \text{ for center of mass, will no longer consider} \\ &\cdot \left[-\frac{\hbar^2}{2\mu} \hat{\nabla}^2 - \frac{Ze^2}{4\pi\epsilon_o r} \right] \Psi = E \Psi \text{ for internal coordinates, will be focus here} \end{split}$$

Separation of radial and angular variables

•
$$\left[-\frac{\hbar^2}{2\mu}\hat{\nabla}^2 - \frac{Ze^2}{4\pi\epsilon_o r}\right]\Psi = E\Psi$$
 is for internal coordinates
• $\frac{1}{r}\frac{\partial^2}{\partial r^2}r\Psi + \frac{1}{r^2}\hat{\Lambda}^2\Psi + \frac{Ze^2\mu}{2\pi\epsilon_o\hbar^2r}\Psi = -\left(\frac{2\mu E}{\hbar^2}\right)\Psi$, by applying Laplacian in spherical polar coordinates and rearranging

• Assuming separation of variables, $\Psi(r,\theta,\phi)=R(r)Y(\theta,\phi)$,

$$\cdot \frac{1}{r} \frac{\partial^2}{\partial r^2} rRY + \frac{1}{r^2} \hat{\Lambda}^2 RY + \frac{Ze^2 \mu}{2\pi\epsilon_o \hbar^2 r} RY = -\left(\frac{2\mu E}{\hbar^2}\right) RY$$

$$\cdot \frac{1}{r} \frac{d^2}{dr^2} rR + \left(\frac{Ze^2 \mu}{2\pi\epsilon_o \hbar^2 r} - \frac{l(l+1)}{r^2}\right) R = -\left(\frac{2\mu E}{\hbar^2}\right) R, \text{ by dividing by Y}$$

• Thus, $Y(\theta, \phi)$ is independent of R. Solutions are spherical harmonics. What about radial portion?

Radial Solution

$$\frac{1}{r} \frac{d^2}{dr^2} rR + \left(\frac{Ze^2 \mu}{2\pi\epsilon_o \hbar^2 r} - \frac{l(l+1)}{r^2} \right) R = -\left(\frac{2\mu E}{\hbar^2} \right) R$$

By setting u=rR and multiplying all by $-\frac{n^{-}}{2\mu}r$,

$$-\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} u + \left(-\frac{Ze^2}{4\pi\epsilon_o r} + \frac{l(l+1)\hbar^2}{2\mu r^2} \right) u = Eu$$

This is a 1D Schrodinger equation with $V_{e\!f\!f}=-\frac{Ze^2}{4\pi\epsilon_o r}+\frac{l(l+1)\hbar^2}{2\mu r^2}$, the sum of a Coulomb potential energy and angular momentum term

Radial Probability Densities

Probabilty of Finding Electron

$$R_{2,0}$$
, n=2, l=0

Probabilty of Finding Electron

$$R_{2,1}$$
, n=2, l=1

Probabilty of Finding Electron

$$R_{3.1}$$
, n=3, l=1

Probabilty of Finding Electron

Review of derivation

- Setting up coordinate system
- Separation of variables for center of mass and internal
- Separation of variables for radial and angular
- Solution for radial

General Angular Momentum Operators

Review: Classical Angular Momentum

$$\mathbf{l} = \mathbf{r} \times \mathbf{p} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ p_z & p_y & p_z \end{vmatrix}$$

Components are

•
$$l_x = yp_z - zp_y$$

•
$$l_{y} = zp_{x} - xp_{z}$$

•
$$l_z = xp_y - yp_x$$

- $E = l^2/2I$ is the rotational kinetic energy
- Classically, there are *no restrictions* on the magnitude or any of the components, except that none of the components may exceed the magnitude

Review: Angular Momentum Operators

 By substitution of the position and momentum operators into the classical expression, we obtain

$$\hat{\mathbf{l}}_{x} = \frac{\hbar}{i} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$$

$$\hat{\mathbf{l}}_{y} = \frac{\hbar}{i} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right)$$

$$\hat{\mathbf{l}}_{z} = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

- Previously we focused on $\hat{\mathbf{l}}_z$
- Notably, as I will show soon, components do not *commute*
- Properties of angular momentum may be derived
 - without a representation.
 - Results more general

Angular Momentum Commutators

$$= [yp_z, zp_x] - [yp_z, xp_z] - |zp_y, zp_x| + |zp_y, xp_z|$$

- Note that the middle terms are zero. Position and momenta for different directions commute.
- $= \left(yp_zzp_x zp_xyp_z\right) + \left(zp_yxp_z xp_zzp_y\right)$, by expanding commutators $= y\left[p_z,z\right]p_x + xp_y\left[z,p_z\right]$ $= i\hbar\left(-yp_x + xp_y\right) = i\hbar l_z$

 - . Similarly, $\left[\hat{\mathbf{l}}_{x}, \hat{\mathbf{l}}_{y}\right] = i\hbar\hat{\mathbf{l}}_{z}, \quad \left[\hat{\mathbf{l}}_{y}, \hat{\mathbf{l}}_{z}\right] = i\hbar\hat{\mathbf{l}}_{x}, \quad \left[\hat{\mathbf{l}}_{z}, \hat{\mathbf{l}}_{x}\right] = i\hbar\hat{\mathbf{l}}_{y}, \quad \left[\hat{\mathbf{l}}^{2}, \hat{\mathbf{l}}_{q}\right] = 0$
 - An observable is an angular momentum if its operators have these commutators

Shift Operators

- The shift operators are defined as,
 - $\hat{\mathbf{l}}_{+} = \hat{\mathbf{l}}_{x} + i\hat{\mathbf{l}}_{y}$
 - $\hat{\mathbf{l}}_{-} = \hat{\mathbf{l}}_{x} i\hat{\mathbf{l}}_{y}$
- The corresponding inverse operators are,

$$\hat{\mathbf{l}}_{x} = \frac{\hat{\mathbf{l}}_{+} + \hat{\mathbf{l}}_{-}}{2}$$

$$\hat{\mathbf{l}}_{y} = \frac{\hat{\mathbf{l}}_{+} - \hat{\mathbf{l}}_{-}}{2i}$$

Several commutators are,

•
$$\begin{bmatrix} \hat{\mathbf{l}}_{z}, \hat{\mathbf{l}}_{+} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{l}}_{z}, \hat{\mathbf{l}}_{x} + i\hat{\mathbf{l}}_{y} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{l}}_{z}, \hat{\mathbf{l}}_{x} \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{l}}_{z}, i\hat{\mathbf{l}}_{y} \end{bmatrix} = i\hbar\hat{\mathbf{l}}_{y} - i^{2}\hbar\hat{\mathbf{l}}_{x} = \hbar\left(i\hat{\mathbf{l}}_{y} + \hat{\mathbf{l}}_{x}\right) = \hbar\hat{\mathbf{l}}_{+}$$
•
$$\begin{bmatrix} \hat{\mathbf{l}}_{z}, \hat{\mathbf{l}}_{-} \end{bmatrix} = \hbar\hat{\mathbf{l}}_{-}$$
•
$$\begin{bmatrix} \hat{\mathbf{l}}_{+}, \hat{\mathbf{l}}_{-} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{l}}_{x} + i\hat{\mathbf{l}}_{y}, \hat{\mathbf{l}}_{x} - i\hat{\mathbf{l}}_{y} \end{bmatrix} = -i[\hat{\mathbf{l}}_{x}, \hat{\mathbf{l}}_{y}] + i[\hat{\mathbf{l}}_{y}, \hat{\mathbf{l}}_{x}] = -i(i\hbar\hat{\mathbf{l}}_{z}) + i(-i\hbar\hat{\mathbf{l}}_{z}) = 2\hbar\hat{\mathbf{l}}_{z}$$
•
$$\begin{bmatrix} \hat{\mathbf{l}}^{2}, \hat{\mathbf{l}}_{+} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{l}}^{2}, \hat{\mathbf{l}}_{-} \end{bmatrix} = 0$$

Eigenvalues of Angular Momentum Operators

- Consider a more general solution than the spherical harmonics. Suppose that $\begin{vmatrix} \lambda, m_l \end{vmatrix}$ is an eigenfunction of both $\hat{\mathbf{l}}_z$ and $\hat{\mathbf{l}}^2$ with quantum numbers λ and m_l .

 • $\hat{\mathbf{l}}_z \begin{vmatrix} \lambda, m_l \end{vmatrix} = m_l \hbar \begin{vmatrix} \lambda, m_l \end{vmatrix}$, where m_l is any *real* number. \hbar has the
- dimensionality of angular momentum.
- $\hat{\mathbf{l}}^2 | \lambda, m_l \rangle = f(\lambda, m_l) \hbar^2 | \lambda, m_l \rangle$, where $f(\lambda, m_l)$ is a function that we do not know yet. \hbar^2 has the dimensionality of squared angular momentum.
- What do we know about $f(\lambda, m_l)$? Is it real or complex? Is it negative or nonnegative? How do we know?

Effect of Shift Operators

- From the definition $\hat{\mathbf{l}}^2 = \hat{\mathbf{l}}_x^2 + \hat{\mathbf{l}}_y^2 + \hat{\mathbf{l}}_z^2$, $\left(\hat{\mathbf{l}}^2 \hat{\mathbf{l}}_z^2\right) \left| \lambda, m_l \right\rangle = \left(\hat{\mathbf{l}}_x^2 + \hat{\mathbf{l}}_y^2\right) \left| \lambda, m_l \right\rangle \ge 0$
- From the eigenvalues,

$$\left(\hat{\mathbf{l}}^2 - \hat{\mathbf{l}}_z^2\right) \left|\lambda, m_l\right\rangle = \left(f(\lambda, m_l)\hbar^2 - m_l^2\hbar^2\right) \left|\lambda, m_l\right\rangle \ge 0 \text{thus } f(\lambda, m_l) \ge m_l^2.$$

• This establishes that m_l has a minimum and maximum

Effect of Shift Operators

- Does $\hat{\mathbf{l}}_+$ affect $f(\lambda, m_l)$?
 - $\hat{\mathbf{l}}^2\hat{\mathbf{l}}_+ | \lambda, m_l \rangle = \hat{\mathbf{l}}_+ \hat{\mathbf{l}}^2 | \lambda, m_l \rangle = \hat{\mathbf{l}}_+ f(\lambda, m_l) \hbar^2 | \lambda, m_l \rangle$
 - No, it does not.
- Does $\hat{\mathbf{l}}_+$ affect the eigenvalue of l_z ?

•
$$\hat{\mathbf{l}}_z\hat{\mathbf{l}}_+ | \lambda, m_l \rangle = (\hat{\mathbf{l}}_+\hat{\mathbf{l}}_z + [\hat{\mathbf{l}}_z, \hat{\mathbf{l}}_+]) | \lambda, m_l \rangle$$

$$= \left(\hat{\mathbf{l}}_{+} m_{l} \hbar + \hbar \hat{\mathbf{l}}_{+}\right) \left|\lambda, m_{l}\right\rangle$$

- $= (m_l + 1) \hbar \hat{\mathbf{l}}_+ | \lambda, m_l \rangle$
- We also know that

$$\hat{\mathbf{l}}_{+} | \lambda, m_l + 1 \rangle = (m_l + 1)\hbar | \lambda, m_l + 1 \rangle$$

Therefore

$$\hat{\mathbf{l}}_{+} \left| \lambda, m_l \right\rangle = c_+(\lambda, m_l) \hbar \left| \lambda, m_l + 1 \right\rangle$$
 where $c_+(\lambda, m_l)$ is a numerical coefficient.

• Similarly, we can show that l_{\perp} lowers m_l by one.

Eigenvalues of the angular momentum

- We know that there is a maximum value for m_l . Let us call that l.
 - For this state, $\hat{\bf l}_+ \, | \, \lambda, l \rangle = 0$ because there is no eigenstate with larger m_l
 - $\hat{\mathbf{l}}_{-}\hat{\mathbf{l}}_{+}$ $|\lambda,l\rangle=0$ because acting on nothing gives nothing
- We also know that

$$\hat{\mathbf{l}}_{-}\hat{\mathbf{l}}_{+} = \left(\hat{\mathbf{l}}_{x} - i\hat{\mathbf{l}}_{y}\right)\left(\hat{\mathbf{l}}_{x} + i\hat{\mathbf{l}}_{y}\right) = \hat{\mathbf{l}}_{x}^{2} + \hat{\mathbf{l}}_{y}^{2} + i\hat{\mathbf{l}}_{x}\hat{\mathbf{l}}_{y} - i\hat{\mathbf{l}}_{y}\hat{\mathbf{l}}_{x} = \hat{\mathbf{l}}_{x}^{2} + \hat{\mathbf{l}}_{y}^{2} + i\left[\hat{\mathbf{l}}_{x},\hat{\mathbf{l}}_{y}\right]$$

- $\bullet = \hat{\mathbf{l}}^2 \hat{\mathbf{l}}_z^2 \hbar l_z$
- . Therefore, $(\hat{\bf l}^2 \hat{\bf l}_z^2 \hbar l_z) | \lambda, l \rangle = 0$. This means that,
 - $f(\lambda, l)\hbar^2 l^2\hbar^2 l\hbar^2 = 0$
- $f(\lambda,l)=l^2+l=l(l+1)$ Because $\hat{\bf l}_-$ does not affect the eigenvalue of $\hat{\bf l}^2, f(\lambda,m_l)=l(l+1)$ is the same for all m_l .

Eigenvalues of the angular momentum

- Similarly, we know that there is a minimum value for m_l . Let us call that k.
 - For this state, $\hat{\mathbf{l}}_{-} | \lambda, k \rangle = 0$
 - $\hat{\mathbf{l}}_{+}\hat{\mathbf{l}}_{-} | \lambda, k \rangle = 0$
- By analogous logic as the previous slide, we can show that $f(\lambda, k) = k(k-1)$, and therefore l(l+1) = k(k-1)
 - Solutions are k = -l or k = l + 1
 - Only k = -l makes sense, because the lower bound must be less than the upper bound.
- Because m_l can go in integer steps, $f(\lambda, m_l) = l(l+1)$ for $m_l = -l, -l+1, ..., l$.
- What are allowed values of l? Any real number? Any integer? Any integer or half integer? Show series of numbers that satisfy or violate the conditions.
- So far we have shown that $l=0,\frac{1}{2},1,...$ and $m_l=-l,-l+1,...,l$. This differs from the previous treatment because we see half integral values of l are permitted.

Spin

Forms of the Angular Momentum

$$\mathbf{l} = \mathbf{r} \times \mathbf{p} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ p_z & p_y & p_z \end{vmatrix}$$

- Several types:
 - Orbital $\left|l,m_l\right>$ based on spherical harmonics. I is an integer.
 - Spin $|s, m_s\rangle$ has no spatial wave function.
 - Often depicted as a particle literally spinning around an axis
 - Spin is an intrinsic property of a particle, unrelated to any sort of motion in space
 - s is an integer or half integer1
- Generally,
- $\left|j,m_{j}\right\rangle$ is an eigenfunction of the angular momentum operators with eigenvalues,
 $\hat{\mathbf{J}}^{2}\left|j,m_{j}\right\rangle=j(j+1)\hbar^{2}\left|j,m_{j}\right\rangle$ $\hat{\mathbf{J}}_{z}\left|j,m_{j}\right\rangle=m_{j}\hbar\left|j,m_{j}\right\rangle$.

$$\hat{\mathbf{J}}^{2} \left| j, m_{j} \right\rangle = j(j+1)\hbar^{2} \left| j, m_{j} \right\rangle$$

- All types of angular momentum have the same commutators

Spin Angular Momentum

- Inferred from experiments, such as the Stern-Gerlach experiment
- Particles observed to have angular momentum that cannot be accounted for by orbital angular momentum alone.
- For an electron, the quantum numbers are $s = \frac{1}{2}$ and $m_s = \pm \frac{1}{2}$.
 - The two kets are, $\alpha = \left| \frac{2}{1}, \frac{1}{2} \right\rangle$ and

$$\beta = \left| \frac{1}{2}, -\frac{1}{2} \right\rangle.$$

 The effects of operators on these kets are

$$\hat{\mathbf{s}}_{z}\alpha = \frac{1}{2}\hbar\alpha$$

$$\hat{\mathbf{s}}^{2}\alpha = \frac{1}{2}\left(\frac{1}{2} + 1\right)\hbar^{2}\alpha = \frac{3}{4}\hbar^{2}\alpha$$

$$\hat{\mathbf{s}}_{z}\beta = -\frac{1}{2}\hbar\beta$$

$$\hat{\mathbf{s}}^{2}\beta = \frac{3}{4}\hbar^{2}\beta$$

$$\hat{\mathbf{s}}_{+}\alpha = 0, \hat{\mathbf{s}}_{+}\beta = \hbar\alpha, \hat{\mathbf{s}}_{-}\alpha = \hbar\beta, \hat{\mathbf{s}}_{-}\beta = 0$$

$$\hat{\mathbf{s}}^2 \beta = \frac{3}{4} \hbar^2 \beta$$

$$\hat{\mathbf{s}}_{+}\alpha = \hat{\mathbf{0}}, \hat{\mathbf{s}}_{+}\beta = \hbar\alpha, \hat{\mathbf{s}}_{-}\alpha = \hbar\beta, \hat{\mathbf{s}}_{-}\beta = 0$$

Matrix form of spin

- . As a reminder $\left\langle a\,|\,\hat{\Omega}\,|\,b\right\rangle \equiv \int \Psi_a^*\hat{\Omega}\Psi_b d\tau \equiv \Omega_{a,b}$. In the context of electron spin, the first row and column correspond to α . Second row and column are β .
- For example, $\hat{\mathbf{s}}_z = \begin{pmatrix} \frac{1}{2}\hbar & 0 \\ 0 & -\frac{1}{2}\hbar \end{pmatrix} = = \frac{1}{2}\hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{2}\hbar\sigma_z$, where $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Exercise: Write the matrices corresponding to the shift operators for electron spin
- Exercise: Use the inverse shift operators $\hat{\mathbf{s}}_x = \frac{\hat{\mathbf{s}}_+ + \hat{\mathbf{s}}_-}{2}$ and $\hat{\mathbf{s}}_y = \frac{\hat{\mathbf{s}}_+ \hat{\mathbf{s}}_-}{2i}$ to write the matrix elements for $\hat{\mathbf{s}}_x$ and $\hat{\mathbf{s}}_y$.

Review Questions

- Besides hydrogen, what is a system that the solution of the hydrogenic atom is applicable to?
- Are angular and radial solutions of the hydrogenic atom independent?
- How are the eigenvalues of the angular momentum operators more general than those of spherical harmonics?
- What is the effect of a raising and lowering operator?
- What are the eigenfunctions of the spin operator for an electron?