LIF15 – Théorie des langages formels

Sylvain Brandel

2019 - 2020

sylvain.brandel@univ-lyon1.fr

CM 2

ALPHABETS ET LANGAGES

- Alphabet : ensemble fini, non vide, de symboles
 Généralement noté Σ
- Mot sur un alphabet Σ : suite finie d'éléments de Σ
- On note Σ* l'ensemble de tous les mots (y compris le mot vide) définis sur Σ

- Longueur : nombre de symboles d'un mot
- Deux mots u et v sont égaux ssi
 - ils ont même longueur
 - $\forall i \in \{1, ..., |u|\} : u_i = v_i$

Concaténation de 2 mots u et v de Σ*: mot noté uv et défini par :

$$- u = u_1u_2...u_n, v = v_1v_2...v_n \rightarrow w = u_1...u_nv_1...v_n$$

- $\forall i \in \{1, |u|\}$ $(uv)_i = u_i$
- $\forall i \in \{|u|+1, ... |u|+|v|\} (uv)_i = v_{i-|u|}$

Propositions

- la concaténation est régulière à droite et à gauche
 - $wu = wv \Rightarrow u = v$
 - $uw = vw \Rightarrow u = v$
- |uv| = |u| + |v|

- Facteur gauche de w : mot u tel que uv = w
- Facteur droit de w : mot v tel que uv = w
- Facteur de w : mot u tel que il existe v et v' tels que vuv' = w
- Miroir (Reverse)
 - − Fonction miroir $_$ ^R : Σ^{*} → Σ^{*} définie par récurrence :
 - w tq |w| = 0 : $w^R = e^R = \varepsilon$
 - w tq |w| > 0 : \exists a \in Σ tq w = au et w^R = (au)^R = u^Ra
- Propriété
 - $\forall u, v \in \Sigma^* : (uv)^R = v^R u^R$

Alphabets et langages Langage

- Langage sur Σ : ensemble de mots sur Σ
- Remarques de cardinalité
 - $-\Sigma$ fini
 - $-\Sigma^*$ infini dénombrable (rappel : dont on peut énumérer les éléments)
 - $P(\Sigma^*)$ est infini non dénombrable
- Opérations sur les langages
 - \cup , \cap , \neg (complément), \setminus ⇒ comme d'habitude (complément : \neg A = Σ * \ A)
 - Concaténation : L₁⊂ Σ*, L₂ ⊂ Σ*
 - L = L₁.L₂ ou L₁L₂ est défini par L = {w | \exists w₁ \in L₁ et \exists w₂ \in L₂ : w = w₁w₂}
 - Clôture de Kleene (Kleene star) ou étoile de L
 - $L^* = \{ w \in \Sigma^* \mid \exists k \in N, \exists w_1, w_2, ..., w_k \in L : w = w_1 w_2 ... w_k \}$

Représentation finie des langages

- Langages définis par
 - Éléments de base :
 - L'ensemble ∅
 - Le mot vide ε
 - Les singletons sur Σ
 - Opérations :
 - La concaténation de langages
 - La réunion de deux langages
 - La fermeture de Kleene
- De tels langages sont appelés langages rationnels

Représentation finie des langages

- Manipulation des langages rationnels
 - Expressions régulières
 - Automates finis
 - Grammaires régulières