UNIVERSIDADE FEDERAL DE SANTA CATARINA Campus Araranguá – ARA

Centro de Ciências, Tecnologias e Saúde

Departamento de Computação

Introdução a Engenharia de Computação – DEC7070

Aplicação do conceito de ponte H no TinkerCAD

RA: 20250326

Helder Henrique da Silva

Araranguá

2021

1. Circuito montado no TinkerCAD

Esta atividade teve como objetivo simular um circuito no TinkerCAD para mostrar os conceitos de funcionamento de um driver de ponte H (construído com transistores), assim como mostrar a utilização e integração da placa microcontroladora (Arduíno), e diversos componentes, como transistores (PNP e NPN), botões, protoboard, motores, e ainda, como são feitas as ligações em cada componente.

O circuito montado (Figura 1) deveria girar o motor no sentido horário ao pressionar o primeiro botão e, no sentido anti-horário, ao pressionar o segundo botão.

Ponte H com Transistores

Todas as alterações salvas

Toda

Figura 1: Circuíto da presente atividade.

Fonte: Próprio Autor.

 O circuito pode ser encontrado no link: https://www.tinkercad.com/things/3htxb0jbTda

2. Simulação do circuito no TinkerCAD

A simulação no circuito (Figura 2 e 3) foi rápida e atingiu os resultados esperados.

Figura 2: Circuito com botão 1 pressionado, motor girando no sentido horário.

Fonte: Próprio Autor.

Figura 3: Circuito com botão 2 pressionado, motor girando no sentido anti-horário.

Fonte: Próprio Autor.

3. Código fonte do circuito

```
// Ponte H com Transistores
#define M1_2 2
#define M2 3 3
#define M3_4 4
#define M4_5 5
#define BOTAO 1
                      8
#define BOTAO_2
                      9
void setup()
       pinMode(M1_2, OUTPUT);
       pinMode(M2_3, OUTPUT);
       pinMode(M3 4, OUTPUT);
       pinMode(M4_5, OUTPUT);
       pinMode(BOTAO_1, INPUT);
       pinMode(BOTAO_2, INPUT);
}
void loop()
{
       // Quando os botões não forem pressionados o motor deve permanecer
                                                                                  parado.
       if((digitalRead(BOTAO_1) == LOW) && (digitalRead(BOTAO_2) == LOW))
       {
               digitalWrite(M1_2, HIGH);
               digitalWrite(M2_3, HIGH);
               digitalWrite(M3_4, LOW);
               digitalWrite(M4_5, LOW);
       // Quando o botão 1 for pressionado o motor deve girar no sentido horário.
       else if(digitalRead(BOTAO_1) == HIGH)
       {
               digitalWrite(M1_2, HIGH);
               digitalWrite(M2 3, LOW);
               digitalWrite(M3_4, LOW);
               digitalWrite(M4_5, HIGH);
       // Quando o botão 2 for pressionado o motor deve girar no sentido anti- horário.
       else if(digitalRead(BOTAO_2) == HIGH)
       {
               digitalWrite(M1_2, LOW);
               digitalWrite(M2_3, HIGH);
               digitalWrite(M3_4, HIGH);
               digitalWrite(M4_5, LOW);
       }
}
```

4. Resultados

Os resultados obtidos já eram esperados, houve um pouco de dificuldade quanto a lógica de interação entre os componentes, porém foi um ponto de fácil resolução.

Observou-se que a ponte H criada serve como um driver de seleção para que uma determinada instrução ocorra, podendo por meio deste, informar se o motor rotacionaria no sentido horário ou anti-horário. Essa ponte H foi contruida por meio de 2 transistores do tipo NPN que funcionam quando colocados em nivel alto e jumpeados ao GND e dois transistores do tipo PNP que funcionam quando colocados em nivel baixo e jumpeados ao VCC (da bateria) e, para que a corrente seja transmitida corretamente para o componente, nesse caso o motor, deve ser feita uma ligação cruzada entre os transistores, especificamente para esse caso.

Diferentemente do projeto criado pelo professor em aula síncrona, este é constituído pelo acréscimo de dois botões para designar o sentido de giro. Além disso houve diferenciação quanto ao código fonte, sendo acrescentado uma estrutura de seleção para os botões que passariam os comandos aos transistores.

Observou-se também que foram usados resistores de 1kOhm para que não houvesse possíveis danificações nos componentes, fora isso os resistores presentes com os transistores podem obter a função de controle de velocidade de rotação do motor.