

How they did that?

Self-Driving Vehicle

Is a vehicle that is capable of sensing its environment and moving safely with little or no human input. So, no more driving!

We hope this to happen in our country too!

Perception Dataset

Use raw camera and lidar inputs from our fleet of autonomous vehicles to train perception systems. To supplement the data, they've included human-labeled 3D bounding boxes of traffic agents and an underlying HD spatial semantic map.

The rasterization uses the HD semantic map and projected lidar point cloud to show the state around the vehicle. You can use this example solution as a starting point for your own experimentation.

Prediction Dataset

A raster generates a bird's eye view (BEV) top-down raster, which encodes all agents and the map. The network infers the future coordinates of the agent-based upon this raster.

The dataset is provided in zarr format. The dataset consists of frames and agent states. A frame is a snapshot in time which consists of ego pose, time, and multiple agent states. Each agent state describes the position, orientation, bounds, and type.

Data Structure

- scene Consists of 25-45 seconds of a car's journey in a given environment. Each scence is composed of many samples.
- sample A snapshot of a scence at a particular instance in time. Each sample is annoted with the objects present.
- sample_data Contains the data collected from a particular sensor on the car.
- sample_annotation An annotated instance of an object within our interest.
- instance An enumeration of all object instance we observed.
- category Taxonomy of object categories (e.g. vehicle, human).
- attribute Property of an instance that can change while the category remains the same.

- visibility (currently not used)
- sensor A specific sensor type.
- calibrated sensor Definition of a particular sensor as calibrated on a particular vehicle.
- ego_pose Ego vehicle poses at a particular timestamp.
- log Log information from which the data was extracted.
- map Map data that is stored as binary semantic masks from a top-down view.

Each snapshot in the data consists of two forms of information: image data and LiDAR data.

This is how a Self-Driving Vehicle sees

To segment an image...

U-Net Architecture Model

Lyft mentioned on their website that they uses U-net neural network segmentation architecture that was trained on the lidar portion of the dataset.

Don't worry, we're an expert in this.

We'll handle the Hyperparameter as well!

Epoch

How many times to train the model

Layers

How many layers to use

Activation

How the model should interpret the output

Filters

How many filters/units on each layer

Optimizer

How the model learn and reduce the error

Regularization

Early stopping, Dropout, Penalties, and much more...

The car should be ready!

Lidar

The car should be equipped with 40 and 64-beam lidars on the roof and bumper. They have an Azimuth resolution of 0.2 degrees and jointly produce ~216,000 points at 10 Hz. Firing directions of all lidars are synchronized.

One more thing...

Camera

The car should also equipped with six 360° cameras built in-house. One long-focal camera points upward. Cameras are synchronized with the lidar so the beam is at the center of each camera's field of view when images are captured.

Budget List (Labor)

	Details	Unit	Day	Hours	Rate (USD)	Total (USD)
	Project Lead	1	244	8	\$30	\$58,560
	Researcher	10	244	8	\$20	\$390,400
•	Consultant	2	244	8	\$20	\$78,080
	Total					\$527,040

Budget List (Tools & Production Research)

Details	Unit	Rate (USD)	Total (USD)
Test Vehicle Production	5	\$5,000	\$25,000
Lidar	15	\$200	\$3,000
Camera	5	\$200	\$1,000
Total			\$29,000

Budget List (Summary)

Details	Total (USD)		
Labor	\$527,040		
Tools & Production Research	\$29,000		
Total	\$556,040		

Thanks

Does anyone have any questions?

diemasaksya@gmail.com av-consulting.com

CREDITS: This presentation template was created by **Slidesgo**, including icon by **Flaticon**, and infographics & images from **Freepik**

Please keep this slide for attribution

