Compiladores: Parsing descendente

Christiano Braga Universidade Federal Fluminense Março 2021

Algoritmo descendente

Figure 1: Procedimento para parser descendente

Exemplo

Figure 2: Exemplo de parsing descendente

Figure 3: Exemplo de parsing descendente: derivação

FIRST I

- 1. If X is a terminal, then $FIRST(X) = \{X\}.$
- 2. If X is a nonterminal and $X \to Y_1Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in $\mathsf{FIRST}(X)$ if for some i, a is in $\mathsf{FIRST}(Y_i)$, and ϵ is in all of $\mathsf{FIRST}(Y_1), \ldots, \mathsf{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\mathsf{FIRST}(Y_j)$ for all $j = 1, 2, \ldots, k$, then add ϵ to $\mathsf{FIRST}(X)$. For example, everything in $\mathsf{FIRST}(Y_1)$ is surely in $\mathsf{FIRST}(X)$. If Y_1 does not derive ϵ , then we add nothing more to $\mathsf{FIRST}(X)$, but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add $\mathsf{FIRST}(Y_2)$, and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

Figure 4: FIRST de um símbolo

FIRST II

Now, we can compute FIRST for any string $X_1X_2\cdots X_n$ as follows. Add to FIRST $(X_1X_2\cdots X_n)$ all non- ϵ symbols of FIRST (X_1) . Also add the non- ϵ symbols of FIRST (X_2) , if ϵ is in FIRST (X_1) ; the non- ϵ symbols of FIRST (X_3) , if ϵ is in FIRST (X_1) and FIRST (X_2) ; and so on. Finally, add ϵ to FIRST $(X_1X_2\cdots X_n)$ if, for all i, ϵ is in FIRST (X_i) .

Figure 5: FIRST de uma string

FOLLOW

- 1. Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where $FIRST(\beta)$ contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

Exemplo I

Figure 6: Gramática 4.28

Exemplo II

- 1. FIRST(F) = FIRST(T) = FIRST(E) = $\{($, $\mathbf{id}\}$. To see why, note that the two productions for F have bodies that start with these two terminal symbols, \mathbf{id} and the left parenthesis. T has only one production, and its body starts with F. Since F does not derive ϵ , FIRST(T) must be the same as FIRST(F). The same argument covers FIRST(F).
- FIRST(E') = {+, ε}. The reason is that one of the two productions for E' has a body that begins with terminal +, and the other's body is ε. Whenever a nonterminal derives ε, we place ε in FIRST for that nonterminal.
- 3. FIRST $(T') = \{*, \epsilon\}$. The reasoning is analogous to that for FIRST(E').
- 4. FOLLOW(E) = FOLLOW(E') = {), \$}. Since E is the start symbol, FOLLOW(E) must contain \$. The production body (E) explains why the right parenthesis is in FOLLOW(E). For E', note that this nonterminal appears only at the ends of bodies of E-productions. Thus, FOLLOW(E') must be the same as FOLLOW(E).
- 5. FOLLOW(T) = FOLLOW(T') = {+,},\$}. Notice that T appears in bodies only followed by E'. Thus, everything except ε that is in FIRST(E') must be in FOLLOW(T); that explains the symbol +. However, since FIRST(E') contains ε (i.e., E' * ε), and E' is the entire string following T in the bodies of the E-productions, everything in FOLLOW(E) must also be in FOLLOW(T). That explains the symbols \$ and the right parenthesis. As for T', since it appears only at the ends of the T-productions, it must be that FOLLOW(T') = FOLLOW(T).
- 6. FOLLOW(F) = {+,*,),\$}. The reasoning is analogous to that for T in point (5).

Tabela de parsing

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

- 1. For each terminal a in FIRST(α), add $A \to \alpha$ to M[A, a].
- 2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A,\$] as well.

Figure 8: Algoritmo para construção da tabela de parsing

Exemplo para a Grm. 4.28

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \to TE'$			$E \to TE'$		
E'		$E' \to +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$
F	$F o \mathbf{id}$			$F \to (E)$		

Figure 9: Tab. de parsing para Grm. 4.28