Table of Symbols

Symbol	Meaning
$a, b, c, \alpha, \beta, \gamma$	Scalars are lowercase
$oldsymbol{x},oldsymbol{y},oldsymbol{z}$	Vectors are bold lowercase
$\boldsymbol{A},\boldsymbol{B},\boldsymbol{C}$	Matrices are bold uppercase
$\boldsymbol{x}^\top, \boldsymbol{A}^\top$	Transpose of a vector or matrix
$oldsymbol{A}^{-1}$	Inverse of a matrix
$\langle \boldsymbol{x}, \boldsymbol{y} \rangle$	Inner product of x and y
$oldsymbol{x}^ op oldsymbol{y}$	Dot product of x and y
$[\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}]$	Matrix of column vectors stacked horizontally
$(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$	(Ordered) tuple
\mathbb{R}^n	<i>n</i> -dimensional vector space of real numbers
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to b , i.e., $a = \text{const.} \cdot b$
$g \circ f$	Function composition; " g after f "
∇	Gradient
\mathfrak{L}	Lagrangian
\mathcal{L}	Negative log-likelihood
dim	Dimensionality of vector space
$\operatorname{rk}(\boldsymbol{A})$	Rank of matrix A
$\operatorname{Im}(\Phi)$	Image of linear mapping Φ
$\ker(\Phi)$	Kernel (null space) of a linear mapping Φ
$\operatorname{span}[\boldsymbol{b}_1]$	Span (generating set) of b_1
$\det(\mathbf{A})$	determinant of A trace of A
$\operatorname{tr}(oldsymbol{A}) \ \cdot $	Absolute value
•	Norm; Euclidean unless specified
\mathcal{A},\mathcal{C}	Sets
$a \in \mathcal{A}$	a is an element of the set \mathcal{A}
\mathcal{B}	Basis set
Ø	Empty set
λ	Eigenvalue
E_{λ}	Eigenspace of eigenvalue λ
e_i	Standard/canonical vector (where i is the component that is 1)
$\overset{\circ}{D}$	Number of dimensions; indexed by $d = 1, \dots, D$
N	Number of data points; indexed by $n = 1,, N$
heta	Parameter vector
$oldsymbol{I}_m$	identity matrix of size $m \times m$
$0_{m,n}$	matrix of zeros of size $m \times n$
$1_{m,n}$	matrix of ones of size $m \times n$
$\binom{n}{k}$	Binomial coefficient, n choose k
$\mathbf{V}[\cdot]$	Variance of argument
$\mathbb{E}[\cdot]$	Expectation of argument
$\mathbb{C}^{ ext{Cov}[\cdot]}_{\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})^{ ext{Peter D}}}$	Covariance of the argument Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Presidents and Covariance Σ
$\mathrm{Ber}(\mu)$	Bernoulli distribution with parameter μ
$\mathrm{Bin}(N,\mu)$	Binomial distribution with parameters μ, N
$x \sim p(\theta)$	Random variable x is distributed according to $p(\theta)$

578

Table of Acronyms

	Acronym	Meaning	Comments
	\iff	if and only if	
	\Longrightarrow	implies	
	a := f(x)	a is defined as $f(x)$	
79	\forall	For all possible values	
	$rac{\partial f}{\partial x} \ rac{\mathrm{d} f}{\mathrm{d} x} \ \mathbf{MLE}$	Partial derivative of f with respect to x Total derivative of f with respect to x Maximum Likelihood Estimation	
	PCA	Principal Component Analysis	
	PPCA	Probabilistic Principal Component Analysis	
	SVM	Support Vector Machines	