Lecture 23 Introduction To Hypothesis Testing

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Estimation

Population parameters	Sample		
Parameters	Point estimate	Interval estimate (95% CI)	
μ	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$	
σ^2	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^{2}$	$\left(\frac{(n-1)s^2}{\chi_{0.025,n-1}^2}, \frac{(n-1)s^2}{\chi_{0.975,n-1}^2}\right)$	
π	$p = \frac{m}{n}$	$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$	

ABO Blood Type Distribution

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao, ^{1,a} Yan Yang, ^{2,a} Hanping Huang, ^{3,a} Dong Li, ^{4,a} Dongfeng Gu, ¹ Xiangfeng Lu, ⁵ Zheng Zhang, ² Lei Liu, ² Ting Liu, ³ Yukun Liu, ⁶ Yunjiao He, ¹ Bin Sun, ¹ Meilan Wei, ¹ Guangyu Yang, ^{7,b} Xinghuan Wang, ^{8,b} Li Zhang, ^{3,b} Xiaoyang Zhou, ^{4,b} Mingzhao Xing, ^{1,b} and Peng George Wang, ^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

ABO Blood Type Distribution In COVID-19 Patients

The ABO blood group distribution in 1,775 COVID-19 patients from Wuhan Jinyintan Hospital:

Total		Α	В	AB	0
Number Proportion	1,775	670	469	178	458
Proportion	1	0.38	0.26	0.1	0.26

ABO Blood Type Distribution

- Question 1: what is the proportion of blood type AB in the COVID-19 patients?
- ✓ Estimations from the random sample: point (0.1) and interval (95% CI: 0.083 0.117).
- Question 2: ask questions by incorporating the previous knowledge.

From "ABO blood types distribution in Han Chinese" by Deren Peng in 1992.

Data from Hubei:

 Total
 A
 B
 AB
 O

 1
 0.32
 0.25
 0.09
 0.34

Blood Type AB In COVID-19 Patients

- Question 2: is the proportion of blood type AB in the COVID-19 patients different from 0.09?
- ✓ If the proportion of blood type AB in the COVID-19 patients were 0.09, the probability of observing the proportion of blood type AB in 1,775 COVID-19 patients is 0.1 would be ... ?
- Using binomial probability (n = 1775, p = 0.09):

$$P(X = 178) = {1775 \choose 178} 0.09^{178} 0.91^{1597} = 0.01$$

• Using the sampling distribution of the proportion:

$$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} = \frac{0.1 - 0.09}{\sqrt{\frac{0.09 \times 0.91}{1775}}} = 1.47$$

$$\mu_p = 0.09, \ \sigma_p = 0.008$$

Blood Type A COVID-19 Patients

- Question 1: what is the proportion of blood type A in the COVID-19 patients?
- ✓ Estimations from the random sample: point (0.38) and interval (95% CI: 0.352 0.408).
- Question 2: ask questions by incorporating the previous knowledge.

From "ABO blood types distribution in Han Chinese" by Deren Peng in 1992.

Data from Hubei:

Total	Α	В	AB	О
1	0.32	0.25	0.09	0.34

Blood Type A COVID-19 Patients

- **Question 2:** is the proportion of blood type A in the COVID-19 patients higher than 0.32?
- ✓ If the proportion of blood type A in the COVID-19 patients were less or equal to 0.32, the probability of observing the proportion of blood type A in 1,175 COVID-19 patients is 0.38 would be ... ?

$$\mu_p = 0.32, \ \sigma_p = 0.014$$

Using the sampling distribution of the proportion:

$$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \geqslant \frac{0.38 - 0.32}{\sqrt{\frac{0.32 \times 0.68}{1775}}} = 4.4$$

Measuring Body Temperature

In 1868: the German physician Carl Reinhold August Wunderlich concluded that the average body temperature of normal people was 37.0 $^{\circ}$ C (1 million readings from around 25,000 people).

- How is the body temperature measured?
- In the rectum (rectal temperature)
- In the mouth (oral temperature)
- Under the arm (axillary temperature)
- In the ear (tympanic temperature)
- On the skin of the forehead over the temporal artery
- In 1992, Mackowiak et al. JAMA (36.8 °C).

• Question 1: what is the mean body temperature of normal people ?

✓ Estimations from a random sample: point and interval.

• Question 2: is the mean body temperature of normal people really 37 °C?

 \checkmark If the mean body temperature of normal people were 37 $^{\circ}\text{C},$ then we would expect to see ... with a probability of ...

Brief Report

A Critical Appraisal of 98.6°F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich

Philip A. Mackowiak, MD; Steven S. Wasserman, PhD; Myron M. Levine, MD

- Mackowiak et al. JAMA 268: 1578 - 80.
- A random sample with 700 temperature readings.
- Mean: 36.8 °C.
- Standard deviation: 0.4 °C.

How to assess: If the mean body temperature of normal people were 37 °C (μ), the probability of observing 700 temperature readings with a mean of 36.8 °C (\bar{x}) or more extreme is ?

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{36.8 - 37}{\frac{0.4}{\sqrt{700}}} = -12.23$$

Probability vs. Statistics

