MATH-H204 - Calcul des probabilités et statistiques Yves DE SMET Résumé du cours

Rodrigue Van Brande 18 juillet 2015 TABLE DES MATIÈRES 2

Table des matières

T	Pre	Premiere partie 1.1 Statistique descriptive en 1D						
	1.1	Statistique descriptive en 1D						
	1.2	Statistique descriptive en 2D						
		1.2.1 Covariance						
		1.2.1.1 La covariance $ m_{11} \leq s_1 s_2$						
		1.2.1.2 La covariance maximale $ m_{11} = s_1 s_2$						
		1.2.2 Le coefficient de corrélation						
		1.2.3 Les droites de régression						
2	Deı	xième partie						
_	2.1	Probabilités						
		2.1.1 Axiomes de la théorie des probabilités						
		2.1.2 Probabilité conditionnelle et indépendance						
		2.1.3 Formule de Bayes						
	2.2	Variables aléatoires						
	2.2							
		2.2.1.1 Distribution d'une fonction monotone d'une variable aléatoire						
		2.2.1.2 Distribution de la somme de deux variables aléatoires						
		2.2.1.2.1 Cas discret						
		2.2.1.2.2 Cas continu						
		2.2.1.3 Distribution du produit de deux variables aléatoires						
		2.2.1.3.1 Cas continu						
3	Aut	Autres aides						
	3.1	Tableau du formulaire						
	3.2	Densité et répartition						
	3.3	Distributions						
	٥.٠							

1 Première partie

1.1 Statistique descriptive en 1D

1.2 Statistique descriptive en 2D

1.2.1 Covariance

1.2.1.1 La covariance $|m_{11}| \le s_1 s_2$

La covariance est le moment d'ordre (1,1) :

$$\alpha = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \underbrace{((x_i - \bar{x})(y_j - \bar{y}))^2}_{\text{2 car toujours } \geq 0}$$

$$= \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (u^2 (x_i - \bar{x})^2 + 2a(x_i - \bar{x})(y_j - \bar{y}) + (y_j - \bar{y})^2)$$

 $m_{11} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (x_i - \bar{x}) (y_j - \bar{y})$

Équation du second degré, on calcule son Δ :

 $=u^2s_1^2+2u\ m_{11}+s_2^2$

$$\Delta \le 0$$

$$m_{11}^2 - s_1^2 s_2^2 \le 0$$

$$m_{11}^2 \le s_1^2 s_2^2$$

$$|m_{11}| \le s_1 s_2^2$$

1.2.1.2 La covariance maximale $|m_{11}| = s_1 s_2$

La valeur absolue de la covariance est maximale et vaut $|m_{11}| = s_1 s_2$. Si les points observés se trouvent sur une droite ax + bx + c = 0, on a $ax_i + by_i + c = 0$. On multiplie par $\frac{n_{ij}}{n}$ et on somme sur ij.

$$0 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{n_{ij}}{n} (ax_i + by_j + c)$$

$$= a \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i + b \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} y_j + c \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$= a\bar{x} + b\bar{y} + c$$

On soustrait $ax_i + by_j + c = 0$ par $a\bar{x} + b\bar{y} + c = 0$.

$$= a(x_i - \bar{x}) + b(y_i + \bar{y})$$

On utilise $u_0 = \frac{a}{b}$

$$= u_0 b(x_i - \bar{x}) + \frac{a}{u_0} (y_j - \bar{y})$$

$$= u_0 b(x_i - \bar{x}) + \frac{u_0 b}{u_0} (y_j - \bar{y})$$

$$= u_0 (x_i - \bar{x}) + (y_j - \bar{y})$$

L'équation a la même forme que α , du coup...

$$0 = \Delta$$

$$= m_{11}^2 - s_1^2 s_2^2$$

$$m_{11}^2 = s_1^2 s_2^2$$

$$|m_{11}| = s_1 s_2$$

1.2.2 Le coefficient de corrélation

$$r = \frac{m_{11}}{s_1 s_2}$$

1.2.3 Les droites de régression

La droite de régression de y en x est la droite qui minimise la somme des carrés des écarts (parallèles à l'axe y) des points observés à cette droite.

$$g(a,b) = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (y_j - a \ x_i - b)^2$$

Dérivée par rapport à a.

$$0 = g(a,b)|_{a}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-x_{i})$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij} \ x_{i}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ x_{i} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b \ x_{i}$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}^{2} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} n_{i} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} n_{i} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

Dérivée par rapport à b.

$$0 = g(a,b)|_{b}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-1)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ y_{j} = a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$n \ \bar{y} = a \ n \ \bar{x} + b \ n$$

On a obtenu ces deux réponses

$$\begin{cases} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_i \ y_j = a \sum_{i=1}^{p} n_{i.} \ x_i^2 + b \sum_{i=1}^{p} n_{i.} \ x_i \end{cases} (1) \\ n \ \bar{y} = a \ n \ \bar{x} + b \ n \end{cases}$$

$$\bar{x} (2): n \bar{y} \bar{n} = a n \bar{x}^2 + b n \bar{n}$$
 (1) $-\bar{x} (2):$

2 DEUXIÈME PARTIE 7

2 Deuxième partie

2.1 Probabilités

2.1.1 Axiomes de la théorie des probabilités

$$\begin{cases} P(A) \ge 0 \\ P(E) = 1 \\ A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B) \end{cases}$$

2.1.2 Probabilité conditionnelle et indépendance

Probabilité conditionnelle de A sous la condition B ("sachant B") :

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Si A est indépendant de B:

$$P(A|B) = P(A)$$

alors

$$P(A \cap B) = P(A)P(B)$$

2.1.3 Formule de Bayes

$$\begin{array}{rclcrcl}
B & = & (A_1 \cap B) & \cup & (A_2 \cap B) & \cup & \dots & \cup & (A_m \cap B) \\
P(B) & = & P(A_1 \cap B) & + & P(A_2 \cap B) & + & \dots & + & P(A_m \cap B) \\
& = & P(B|A_1)P(A_1) & + & P(B|A_2)P(A_2) & + & \dots & + & P(B|A_m)P(A_m)
\end{array}$$

$$P(A_k|B) = \frac{A_k \cap B}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{j=1}^{m} P(B|A_j)P(A_j)}$$

2.2 Variables aléatoires

2.2.1 Opérations sur les variables aléatoires

2.2.1.1 Distribution d'une fonction monotone d'une variable aléatoire

2.2.1.2 Distribution de la somme de deux variables aléatoires

$$Z = V + W$$

2 DEUXIÈME PARTIE 8

2.2.1.2.1 Cas discret

$$F_Z(x) = \sum_{i} \sum_{j} p_{ij}$$
$$= \sum_{i} \sum_{j} P(V \le v_i, W \le w_i)$$

2.2.1.2.2 Cas continu

$$F_Z(x) = P(Z \le x)$$

$$F_{V+W}(x) = P(V \le x, W \le x)$$

$$= \iint_{\xi+\eta \le x} f_{(V,W)}(\xi, \eta) \, \delta\xi \, \delta\eta$$

On remplace par
$$\begin{cases} \xi &= u \\ \eta &= v - u \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = 1.1 - 0.(-1) = 1$$

$$= \iint_{v \leq x} f_{(V,W)}(u,v-u) \, |1| \, \delta u \, \delta v$$

$$= \int_{-\infty}^{x} \delta v \int_{-\infty}^{+\infty} f_{(V,W)}(u,v-u) \, \delta u$$

$$f_{Z}(x) = \frac{\delta F_{Z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}(u,x-u) \, \delta u$$

ou si indépendant

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{V}(u) \cdot f_{W}(x - u) \delta u$$

2.2.1.3 Distribution du produit de deux variables aléatoires

$$Z = VW$$

2.2.1.3.1 Cas continu

$$\begin{split} F_Z(x) &= P(Z \leq x) \\ F_{V.W}(x) &= P(V \leq x, W \leq x) \\ &= \iint\limits_{\xi.\eta \leq x} f_{(V,W)}(\xi,\eta) \ \delta \xi \ \delta \eta \end{split}$$

2 DEUXIÈME PARTIE 9

On remplace par
$$\begin{cases} \xi = u \\ \eta = \frac{v}{u} \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-1}{u^2} & \frac{1}{u} \end{pmatrix} = 1 \cdot \frac{1}{u} - 0 \cdot \frac{-1}{u^2} = \frac{1}{u}$$

$$= \iint_{v \leq x} f_{(V,W)}(u, v - u) \, \delta u \, \delta v$$

$$= \int_{-\infty}^{x} \delta v \int_{-\infty}^{+\infty} f_{(V,W)}(u, v - u) \, \delta u$$

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left| \frac{1}{u} \right| \delta u$$

ou si indépendant

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{V}(u) \cdot f_{W}\left(\frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \delta u$$

3 Autres aides

3.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$	
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$	
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$	
Exp_{λ}	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$	
Indicatrice(p)	p	p(1 - p)	$1 + p(e^t - 1)$	
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$	
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$	
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$	
t_n	0 n > 1	$\frac{n}{n-2}$ $n > 2$	aucun	
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun	

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

3.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\frac{\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]}{1 - e^{-\lambda x} x \ge 0}$
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
	$0 \qquad x < 0$	
	$P(V_A = 1) = n$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \end{cases}$
Indicatrice (p)	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 1 - p & 0 \le x < 1 \end{cases}$
	$(F(V_A=0)=1-p$	$1 x \ge 1$
	$\begin{pmatrix} 1 & a < x < b \end{pmatrix}$	$\int 0 \qquad x < a$
Uniforme $[a,b]$	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & sinon \end{cases}$	$\begin{cases} \frac{x-a}{b-a} & a \leq x < b \end{cases}$
	($\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$
$\mathcal{N}(\mu, \sigma)$	$ \frac{\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\begin{cases} \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} & x > 0\\ 0 & x \le 0 \end{cases}} $	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$
2	$\int \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} x > 0$	
$\chi^2_{(n)}$		$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$
t_n	Densité indépendante de σ	
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ	

3.3 Distributions

