Nam	ie: ID:				
	IT549: Deep Learning				
	2 st In-Semester Exam (3rd April 2023)				
	DA-IICT, Gandhinagar				
	Time Duration: 60 Minutes				
	Total Marks: 22				
Q.1 (4	l points)				
Answ	er True or False. 0.5 points for the correct answer and -0.25 for the wrong answer, 0				
point	s if do not attempt it.				
(a)	The gradient of the "Relu" activation function is bounded between -1 to 1.				
(b)	Multiple linear regression can be used for solving non-linear regression.				
(c)	When using batch normalization, the mean of the output from the given node				
	became zero.				
(d)	The sigmoid function in the output layer can be used for multiple regression.				
(e)	ADAM optimization, but not SGD, always find the global minima in the non-linear				
	ANN model				
(f)	CNN used the Error-backpropagation algorithm for parameter training.				
(g)	In a deep neural network, when the error is near zero, the model is converged, and				
	training is stopped				
(h)	In CNN, increasing the image size will increase the number of parameters				
Q.2 F	ill in the gap (3 points)				
	he output size of valid convolution in which image size 64x64 with Kernal size 5X5 is				

(b) In the CNN model, for predicting **ordinal value** target outcome, you will choose

function.

negative input, value is_____.

____as an activation function in the output layer and _____as a loss

(c) The gradient value of the **linear activation** function for positive input is ______, and for

- Q.3 For the CNN model given below, answer the following (2 points)
 - (a) How many parameters are in the first CNN layer:_____
 - (b) How many parameters are in the last layer in FCN:

Q.4 Given the confusing matrix, compute the performance measures, e.g. **precision**, **recall**, **and specificity** for the 'C3' class from the following confusion matrix. (3 points)

		Predicted		
	classes	C1	C2	С3
	C1	100	150	250
Actual	C2	150	200	150
Actual	СЗ	100	100	300

- Q.5 how will you determine whether the model is over-fitted or not? (2 points)
- Q.6 what do you mean by regularization? What is the use of it in deep learning? (2 points)
- Q.7 What do local connectivity and parameter sharing in CNN mean? (2 points)
- Q.8 What do you mean by batch normalization? What is the use of it? (2 points)
- **Q.9** what do you mean by adaptive gradient? What is the impact of it in training the model? You may explain with the help of RMSprop or ADAM. (**2 points**)