TD Maths discrètes

William Hergès*

26 septembre 2025

^{*}Sorbonne Université

1. Supposons que R soit réflexive. On a que pour tout x dans R, $(x,x) \in R$, ce qui est la définition de l'identité.

Supposons que $\mathrm{Id}_E\subseteq R.$ On a que pour tout x dans R, $(x,x)\in R$ car $(x,x)\in \mathrm{Id}_E.$

2.

$$\begin{split} R \text{ sym\'etrique } &\Longleftrightarrow \forall (x,y) \in E^2, (x,y) \in R \implies (y,x) \in R \\ &\iff R = \{(x,y) \in R | (y,x) \in R \} \\ &\iff R = R^{-1} \end{split}$$

3. À faire par équivalence classiquement.

Si R est relation d'équivalence sur E, alors la classe d'équivalence de $a \in R$ est l'ensemble :

$$\{(a,x)\in R\}$$

- 1. R est réflexive, donc $a \in [a]$ car $(a,a) \in R$
- 2. Si [a]=[b], alors pour tout x dans A, on a $(a,x)\in R$ et $(b,x)\in R$, donc $(a,b)\in R$ par symétrie et transitivité.

Pareil dans l'autre sens.

- 3. Supposons que $[a]\cap[b]\neq\varnothing$. Alors, $\exists x\in[a]\cap[b]$ tel que $(a,x)\in R$ et $(b,x)\in R$. Par symétrie et transitivité, on a $(b,x)\in R\iff (x,b)\in R$ $\iff (a,b)\in R$. Absurde car si $(a,b)\in R$, on a que [a]=[b], ce qui est faux par hypothèse.
- 4. $\{[a]|a \in A\}$ est une partition de A car
 - tous les éléments de [a] pour tout $a \in A$ sont dans A par définition;
 - toutes les classes d'équivalence sont disjointes (3);
 - tous les éléments de A sont présents dans cet ensemble car $a \in [a]$ (1).

Ceci est un résultat important!

L'application $\{(a,b),(b,b)\}$ dans $\{a,b\}$ n'est ni injective, ni surjective.

- 1. f_1 est injective, mais pas surjective, car il n'existe pas d'inverse sur \mathbb{N} . f_2 est bijective, car il existe un inverse sur \mathbb{Q} .
- 2. f est surjective, car f(0) = 0, f(1) = 1, f(2) = 2 et f(3) = 0.
- 3. f est surjective, car $\forall x \in \mathbb{N}, f(x,0) = x$ et f(1,0) = f(0,1).
- 4. f est bijective, car :
 - si f(n) est pair, alors son antécédent est n+1
 - si f(n) est impair, alors son antécédent est n-1
 - si $f(n_1) = f(n_2)$, alors $n_1 + 1 = n_2 + 1$ ou $n_1 1 = n_2 1$, i.e. $n_1 = n_2$
- 5. f n'est pas surjective, car les mots ne finissant par par b ne sont jamais atteint. f est injective, car $f(u_1) = f(u_2) \implies u_1.b = u_2.b \implies u_1 = u_2.$

Il existe $2^3=9$ applications différentes de $\{a,b,c\}$ vers $\{1,2\}$ (pour chaque élément de $\{a,b,c\}$, on possède deux choix), dont aucune injective, $3\times 2=6$ surjectives (on choisit quel élément est le premier et quel élément est le deuxième, le troisième est libre) et aucune bijective (car aucune n'est injective).

Soit $n \in \mathbb{N}$.

Si n est pair, alors n+1 est impair. Donc,

$$\exists ! p \in \mathbb{N}, \quad n+1 = 2p+1$$

On pose x = 0 et y = p, alors

$$n = 2^{0}(2p+1) - 1 = 2^{x}(2y+1)$$

Par conséquent, les nombres pairs s'écrivent comme :

Si n est impair, il existe un unique p dans $\mathbb N$ tel que n=2p+1. Donc,

$$n+1 = 2p+2 = 2(p+1)$$

Or, un nombre pair s'écrit d'une manière unique avec $(q,r)\in\mathbb{N}^2$ avec q non nul comme :

$$2^{q}(2r+1)$$

On pose x=q et p=r, alors

$$n = 2^{q}(2r+1) - 1 = 2^{x}(2y+1) - 1$$

Par conséquent, les nombres pairs s'écrivent comme :