Question 1 (1 point)

Using the PCA algorithm as described in lectures, what does the

 α

parameter represent?

- the largest eigenvalue of the covariance matrix
- the minimum fraction of total variance to be preserved
- the minimum number of principal components to use
- the minimum number of new attributes to create

Question 2 (1 point)

What is the product SRx, where S, R and x are defined as below:

$$S = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

$$R = \begin{pmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix}$$

$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\left(\begin{array}{c} \frac{3-3\sqrt{3}}{2} \\ 2+2\sqrt{3} \end{array}\right)$$

$$\left(\begin{array}{c} \frac{3+3\sqrt{3}}{2} \\ \sqrt{3}-1 \end{array}\right)$$

$$\left(\begin{array}{c}2+2\sqrt{3}\\\frac{3-3\sqrt{3}}{2}\end{array}\right)$$

$$\left(\begin{array}{c}\sqrt{3}-1\\\frac{3+3\sqrt{3}}{2}\end{array}\right)$$

Question 3 (1 point)

Which of the following is a disadvantage of the PCA algorithm?
The new attributes produced by PCA can be correlated with one another, making it difficult to determine which new attributes contribute most to the the observed variance in the data.
PCA can reduce the dimensionality of a data set to two or three dimensions, but not 4 or more.
PCA cannot project data onto nonlinear subspaces, and thus fails to capture nonlinear relationships in the attributes of a data set.
PCA cannot be applied to data sets of very high dimensionality (e.g., 1000 or more attributes)

Question 5 (1 point)

Consider the following graph:

What is the clustering coefficient of node

 x_3

?

 \bigcirc C

 $\frac{5}{6}$

 \bigcirc

 $\frac{2}{3}$

1

Question 6 (1 point)

Consider the following graph:

What is the closeness centrality of vertex

 x_4

?

 $\frac{1}{9}$

8

 $\frac{1}{8}$

9

Question 7 (1 point)

Consider the following data matrix:

$$D = \begin{cases} X_1 & X_2 & X_3 & X_4 \\ x_1 & 0.2 & 23 & 5.7 & A \\ x_2 & 0.4 & 1 & 5.4 & C \\ X_3 & 1.8 & 0.5 & 5.2 & C \\ x_4 & 5.6 & 0.8 & 5.1 & A \\ x_5 & -0.5 & 34 & 5.3 & B \\ x_6 & 0.4 & 19 & 5.4 & C \\ x_7 & 1.1 & 11 & 5.5 & C \end{cases}$$

What is the Euclidean distance between

 x_3

and

 x_4

after label-encoding attribute

 X_4

with the labels:

$$A = 1, B = 2, C = 3$$

- 4.31
- **4.97**
- 3.94
- 4.85

Question 8 (1 point)

Consider the following contingency table, showing the overlap between a ground-truth clustering with two clusters

 T_1

and

 T_2

and the clustering output of some clustering algorithm that produced three clusters,

 C_1, C_2, C_3

.

$$T_1$$
 T_2

 C_1 5 0

 C_2 1 9

 C_3 0 13

What is the precision of cluster

 C_2

- 0.90
- 0.83
- 0.17
- 0 1.00

Question 9 (1 point)

Consider the two vectors

 \boldsymbol{a}

and

b

below:

$$a = \begin{pmatrix} 1 & -1 & -2 & 4 \end{pmatrix}$$

$$b = \begin{pmatrix} 2 & -1 & -1 & 3 \end{pmatrix}$$

What is the Euclidean distance between the two vectors (what is

$$||a - b||_2$$

?

1/3

 $\sqrt{2}$

1

 $\sqrt{7}$

Question 12 (1 point)

Consider the following contingency table, showing the overlap between a ground-truth clustering with two clusters

 T_1

and

 T_2

and the clustering output of some clustering algorithm that produced three clusters,

 C_1, C_2, C_3

:

 T_1 T_2 C_1 5 0 C_2 1 9 C_3 0 13

What is the recall of cluster

 C_2

- 0.17
- 0.59
- 0.83
- 0.41

Question 13 (1 point)

Consider the two vectors

 \boldsymbol{a}

and

b

below:

$$a = \begin{pmatrix} 1 & -1 & -2 & 4 \end{pmatrix}$$

$$b = \begin{pmatrix} 2 & -1 & -1 & 3 \end{pmatrix}$$

What is the dot product

 $a^T b$

- **11**
- **17**
- **22**
- **15**

Question 14 (1 point)
The DBSCAN algorithm requires the number of clusters to discover as an input parameter.
○ True
○ False
Question 15 (1 point)
What is the volume of a sphere with radius 1 in 6 dimensions?
<u>4.059</u>
<u>2.550</u>
<u>5.168</u>
<u> </u>

Question 16 (1 point)

Consider the following data matrix that we want to convert into graph data:

		X_1	X_2	X_3
D =	x_1	0.2	23	5.7
	x_2	0.4	1	5.4
	x_3	1.8	0.5	5.2
	x_4	5.6	50	5.1
	x_5	-0.5	34	5.3
	x_6	0.4	19	5.4
	<i>x</i> ₇	1.1	11	5.5

Using the similarity function

$$sim(x_i, x_j) = e^{\frac{-||x_i - x_j||^2}{2\sigma^2}}$$

,

What would be the similarity between

 x_1

and

 x_5

after standard-normalizing the data matrix, when

 $\sigma = 1$

- 0.1
- 0.0
- 0.6
- 0.98

Question 17 (1 point)

Consider the data matrix below, with instances in rows and attributes in columns.

What is the sample covariance between

$$X_1$$
 and X_2

- 8.92
- 0.05
- 3.33
- 0.21

Question 18 (1 point)

Consider the data matrix below, with instances in rows and attributes in columns. What is the mean of the data?

$$X_1 \quad X_2$$

$$D = \begin{pmatrix} x_1 & 0.2 & 2 \\ x_1 & 0.2 & 4 \end{pmatrix}$$

 x_3

$$x_2 = 0.3 = 4$$

0.5 -1

$$(0.2 \quad 0.3 \quad 0.5)$$

$$\bigcirc$$
 (2.18 0.66)

$$(0.33 \ 1.67)$$

$$(1.1 \quad 2.15 \quad -0.25)$$

Question 19 (1 point)

Which of the following are valid reasons for reducing the dimensionality of a data set?

- Visualizing the data (in two or three dimensions)
- Eliminating noise in the data (by focusing on important attributes)
- Improving computational efficiency of algorithms applied to the data (by requiring less operations for distance or similarity computations)
- All of the above
- None of the above

Question 20 (1 point)

Let D be a data matrix. Let Z be the matrix that represents the mean-centered D.

True or false: Using the PCA algorithm as described in lectures, if the matrix D is passed as input to the PCA algorithm, the output will differ from the output produced when using Z as the input in place of D (keeping the

 α

parameter set to the same value).	
True	
False	

Question 21 (1 point)

Suppose we have the following data matrix, and wish to find 2 clusters in the data using the k-means algorithm.

$$D = \begin{pmatrix} x_1 & x_2 \\ x_1 & 5 & 6 \\ x_2 & 4.9 & 5.1 \\ x_3 & -2 & 2 \\ x_4 & -3 & 1 \\ x_5 & 4.5 & 4 \\ x_6 & 4 & 4.5 \\ x_7 & -1.1 & 1.8 \\ x_8 & -1 & 0.7 \\ x_9 & 5.3 & 4.2 \\ x_{10} & -2 & 0.9 \\ x_{11} & 5.7 & 3.8 \end{pmatrix}$$

Suppose also that our initial means are set to

$$\mu_1 = (3.9, 4)$$

and

$$\mu_2 = (6.2, 6)$$

.

After the first pass through the cluster assignment step in k-means, which set of points will constitute cluster 2?

 (x_1)

 (x_1, x_2)

 $\{x_1, x_2, x_9\}$

 $\{x_1, x_2, x_9, x_{11}\}$

Question 22 (1 point)

Consider the following data matrix:

What is the Hamming distance between

 x_6

and

 x_7

(assume one-hot encoding is reasonable to use; that is, the data is categorical, and not ordinal).

- **1**
- **2**
- 0
- _ -1

Question 23 (1 point)

Consider the following data matrix, where dashes (-) indicate missing values:

If we use forward fill to fill in missing entries, what would be the vector representing the data instance

 x_5

- $(0.4 \quad 34 \quad 5.4)$
- $\begin{array}{ccccc} (1.8 & 34 & 5.1) \end{array}$
- (1.8 50 5.1)

Question 24 (1 point)

Consider the following graph:

Suppose we wish to find the prestige (eigenvector centrality) of each node in the network, and we are using Power Iteration. If we set the initial prestige vector

 p_0

to be a vector of all 1's, what is the prestige vector going to be after the third iteration (what is

$$\frac{p_3}{\max(p_3)}$$

going to be)?

 $\begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \\ 2 \end{pmatrix}$

0.33 0.33 1.00 0.33

 $\begin{pmatrix}
0.43 \\
0.57 \\
0.86 \\
0.14 \\
1.00
\end{pmatrix}$

 $\begin{pmatrix}
0.25 \\
0.75 \\
1.00 \\
0.25 \\
0.75
\end{pmatrix}$

Question 25 (1 point)

Consider the following data set D:

$$\begin{array}{cccc}
 & X1 \\
 & x1 & 4 \\
 & x2 & 1.1 \\
 & x3 & 12 \\
 & & & 16.4 \\
 & x5 & 2.3 \\
 & x6 & 5 \\
 & x7 & 15 \\
 & x8 & 13.7 \\
 & x9 & 3.5 \\
 \end{array}$$

Suppose a clustering algorithm returned the clusters:

$$C_1 = \{x_2, x_5\}$$

and

$$C_2 = \{x_1, x_3, x_4, x_6, x_7, x_8, x_9\}$$

.

What is the silhouette score

 s_1

of point

 x_1

- 0.76
- 0.50
- 0.86
- 0.67