Относно едната задача от допълнителното упражнение, проведено на 24.04.2024 г.

Задача. Нека $L = \mathcal{L}[0^{10}1^* + 0^*1^{10}]$. Да се докаже, че не може да се построи недетерминиран краен автомат $\mathcal{N} = \langle \Sigma, Q, s, \Delta, F \rangle$ с $\mathcal{L}(\mathcal{N}) = L$ и $|Q| \leq 20$.

Решение. Да допуснем, че такъв автомат $\mathcal{N} = \langle \Sigma, Q, s, \Delta, F \rangle$ съществува.

- 1. За $x \in \{0,1\}$ знаем, че $x^{10} \in L$, следователно има път от s до някое финално състояние с етикет x^{10} . Нека $p_0^x, p_1^x, \dots, p_{10}^x$ са състоянията, които се срещат (точно в тази последователност) в този път. Тук отбелязваме, че $p_0^x = s$ и $p_{10}^x \in F$.
- 2. Нека за $x\in\{0,1\}$ дефинираме $P_x=\{p_i^x\mid 0\le i\le 10\}$. Ясно е, че $|P_x|\le 11$. Тъй като $|P_0\cup P_1|\le |Q|\le 20$, имаме следните възможности:
 - 1 сл. $|P_x|<11$ за някое $x\in\{0,1\}$. Нека б.о.о. $|P_0|<11$. Тогава има $0\le i< j\le 11$, за които $p_i^0=p_j^0$. Но в такъв случай редицата $p_0^0,\dots,p_{i-1}^0,p_i^0,p_{j+1}^0,\dots,p_{10}^0$ ще бъде път от $p_0^0=s$ до $p_{10}^0\in F$ с етикет $0^{10-(j-i)}$. Това ще означава, че $0^{10-(j-i)}\in\mathcal{L}(\mathcal{N})=L$, което е абсурд.
 - 2 сл. $|P_x|=11$ за $x\in\{0,1\}$. Тогава $(P_0\cap P_1)\setminus\{s\}\neq\varnothing$, защото иначе $|Q|\geq |P_0\cup P_1|=21>20$, което е противоречие. Ще покажем, че единственият елемент на $(P_0\cap P_1)\setminus\{s\}$ е $p_{10}^0=p_{10}^1$. Тъй като $\mathcal N$ не разпознава думи от вида 1^n0^k за $n+k\geq 10$ и $n,k\neq 0$, нямаме преходи със никоя буква от p_i^1 до p_j^0 за никои $1\leq i,j\leq 10$. Тогава $p_i^1\notin\{p_0^0,\ldots,p_9^0\}$ за $1\leq i\leq 10$. Също така понеже $1^t\notin L$ за t<10, за всяко $1\leq i<10$ е изпълнено, че $p_i^1\notin F$. Така $p_i^1\notin P_0$ за $1\leq i<10$ и $p_{10}^1\notin P_0\setminus\{p_{10}^0\}$. Тогава остава само възможността p_{10}^1 да бъде p_{10}^0 . Следователно $P_0\cup P_1=Q$, понеже $P_0\cap P_1=\{s,p_{10}^0\}$ и $|P_0|=|P_1|=11$. Така в автомата $\mathcal N$ ще има единствено финално състояние $f=p_{10}^0=p_{10}^1$. Тъй като $\mathcal N$ разпознава $0^{10}1$, то f има примка с буквата 1, но тогава $1^{11}\in\mathcal L(\mathcal N)$, абсурд.

Във всички случаи получихме противоречие, следователно няма как да има такъв автомат.