projeto – controle de processos -

Projeto

Reator CSTR

PROJETO – IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE EM UM REATOR CSTR

Considere um reator CSTR não-isotérmico encamisado onde ocorrem as reações em série e paralelo apresentas abaixo:

$$C_{5}H_{6} \xrightarrow{\frac{k_{1}}{(+H_{2}O)}} C_{5}H_{7}OH \xrightarrow{\frac{k_{2}}{(+H_{2}O)}} C_{5}H_{8}(OH)_{2}$$
(A) (B) (C)
$$2C_{5}H_{6} \xrightarrow{k_{3}} C_{10}H_{12}$$
(A) (D)

O modelo matemático do reator consiste de balanços de massa dos componentes A e B e de balanço de energia para o reator:

$$\begin{split} & \frac{dC_A}{dt} = -k_1(T)C_A - k_3(T)C_A^2 + (C_{A0} - C_A)\frac{F}{V} \\ & \frac{dC_B}{dt} = k_1(T)C_A - k_2(T)C_B - C_B\frac{F}{V} \\ & \frac{dT}{dt} = \\ & = \frac{(-\Delta H_1)k_1(T)C_A + (-\Delta H_2)k_2(T)C_B + (-\Delta H_3)k_3(T)C_A^2 + Q_H}{\rho C_p} \\ & + (T_0 - T)\frac{F}{V} \end{split}$$

onde C_A and C_B são as concentrações molares dos componentes A e B, T é a temperatura intera do reator, F/V é a taxa de diluição e Q_H é

taxa de calor adicionado ou removido por unidade de volume. C_p e p

são o calor específico e a massa específica da mistura reacional, respectivamente e ΔH_i são os calores de reação do sistema.

As taxas de reação são dependentes

da temperatura do reator e seguem a equação de Arrhenius $k_i(T) = k_{i0}$ $\exp(E_i/RT)$; i = 1, 2, 3. Os parâmetros do sistema são apresentados na tabela 1. Os objetivos de controle são manter as saídas de temperatura interna do reator (T) e concentração do componente B (C_B) no valor de referência estabelecido. Inicialmente, o reator opera em regime permanente $C_A^e = 1,25 \text{ mol/l}$, $C_B^e = 0,90 \text{ mol/l}$ e $T^e = 407,15 \text{ K}$, com $F/V = 19,52/h e Q_H = -451,51 kJ/(l h)$.

DESENVOLVIMENTO DO MODELO NO SIMULINK

- 1 Desenvolva um modelo no Simulink/Matlab para o processo apresentado acima, utilizando subsistemas.
- 2 Apresente os valores dos regimes permanentes obtidos para as variáveis de estado quando o sistema é submetido a uma variação na temperatura de entrada.
- 3 Apresente os valores dos regimes permanentes obtidos paras as variáveis de estado quando o sistema é submetido a uma variação na concentração do componente A.
- 4 Para as mesmas perturbações apresente os gráficos dinâmicos obtidos para todas as variáveis de estado.

- 5 Defina as variáveis controlada, de controle (manipulada) e distúrbios que serão utilizados no sistema de controle.
- 6 Testar e apresentar graficamente o comportamento linear ou não linear do sistema.

IDENTIFICAÇÃO DO PROCESSO

Visando o projeto de controladores, utilizar a metodologia de identificação de processos para o sistema. Implementar no MatLab/Simulink os modelos identificados (funções de transferência no domínio de Laplace) para as variáveis controladas, comparando-os graficamente com os resultados do modelo fenomenológico.

REPRESENTAÇÃO EM DIAGRAMAS DE BLOCOS

Representar as funções de transferência do processo, encontradas na

identificação, em Diagrama de Blocos para malha fechada. Representar cada sistema com os controladores PI e PID e suas respectivas funções de transferência do sensor e do atuador.

ANÁLISE DE ESTABILIDADE

Realizar uma Análise de Estabilidade dos sistemas em malha fechada.

PROIETO DE CONTROLADORES CONVENCIONAIS PI E PID

Projetar controladores PI e PID para as variáveis de processo do (problema servo e regulatório), comparando acima graficamente as respostas PI, PID e sistema sem controle.

Apresentar os melhores valores de sintonia dos controladores projetados baseando-se nos critérios de resposta transiente e nos critérios de desempenho (integral do erro).

INFORMAÇÕES IMPORTANTES!!!

- Os relatórios do projeto de controle serão padronizados e o modelo será disponibilizado no Ensino Aberto.
- Relatórios com evidências de plágio nos dados e/ou redação receberão automaticamente a nota zero (0,0).
- Os ensaios de identificação e de avaliação dos controladores devem partir de um regime permanente.
- A avaliação dos controladores deve ser realizada com base em quatro perturbações em degrau, sucessivas.

