

Transfer Learning and Fine Tuning

Dr. Mongkol Ekpanyapong

What is Transfer Learning?

TIPE OF TECHNOLOGY OF THE PROPERTY OF THE PROP

Transfer Learning

 In practice, very few people train an entire CNN from scratch

 The common practice is to use pretrain model and apply transfer learning

 Important low-level features are the same e.g., 4-legged animals such as dogs, cats, horses have some common features

Transfer Learning

Effective approach on small image dataset

Feature Extraction

Fine Tuning

Networks as Feature Extractors

Up until this point, we treated CNN as endto-end image classifiers:

- We input an image to the network
- The image forward propagates through the network
- We obtain the final classification probabilities from the end of the network

Can we use them to generate feature vectors

- Weights specifies the weight checkpoint
- Include_top refers to including (or not) the densely connected classifier
- input_shape is the shape of the input image that you'll feed to the network

VGG16 with feature extraction

Total params: 14,714,688 Manipolalo possesso, 14 714 600

>>> conv_base.summary()		
Layer (type)	Output Shape	Param #
=======================================	=======================================	========
<pre>input_1 (InputLayer)</pre>	(None, 150, 150, 3)	0
block1_conv1 (Convolution2D)	(None, 150, 150, 64) 1792	
1.1 - 1.1 / (2 1 - + / 2 P.)	(N 150 150 CA) 26000	

block1_conv1 (Convolution2D)	(None, 150, 150, 64)	1792
block1_conv2 (Convolution2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Convolution2D)	(None, 75, 75, 128)	73856
block2_conv2 (Convolution2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Convolution2D)	(None, 37, 37, 256)	295168
block3_conv2 (Convolution2D)	(None, 37, 37, 256)	590080
block3_conv3 (Convolution2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Convolution2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Convolution2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Convolution2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Convolution2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Convolution2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Convolution2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0

Final feature map has (4,4,512)

Extracting features using the pretrained convolutional base

```
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
train dir = os.path.join(base dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
datagen = ImageDataGenerator(rescale=1./255)
batch size = 20
def extract_features(directory, sample_count):
    features = np.zeros(shape=(sample_count, 4, 4, 512))
    labels = np.zeros(shape=(sample count))
    generator = datagen.flow from directory(
                                                        Note that because generators
        directory.
                                                      yield data indefinitely in a loop,
        target_size=(150, 150),
                                                          you must break after every
        batch_size=batch_size,
                                                          image has been seen once.
        class_mode='binary')
    i = 0
    for inputs_batch, labels_batch in generator:
        features batch = conv base.predict(inputs batch)
        features[i * batch size : (i + 1) * batch size] = features batch
        labels[i * batch_size : (i + 1) * batch_size] = labels_batch
        i += 1
        if i * batch_size >= sample_count:
            break
    return features, labels
train features, train labels = extract features(train dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)
```


Flatten the Data

 This code is to flatten the data before feeding them to another classifier

```
train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4 * 512))
```


Training the densely connected classifier

```
from keras import models
from keras import layers
from keras import optimizers
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
              loss='binary crossentropy',
              metrics=['acc'])
history = model.fit(train_features, train_labels,
                    epochs=30,
                    batch size=20,
                    validation_data=(validation_features, validation_labels))
```

Training is very fast since we deal with only two Dense layers


```
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```


Training and Validation accuracy

Training and Validation Loss

Complete codes


```
import keras from keras.applications import VGG16
```

import os import numpy as np from keras.preprocessing.image import ImageDataGenerator

```
base_dir = './images/kaggle_dogs_vs_cats/'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
```

datagen = ImageDataGenerator(rescale=1./255) batch_size = 20


```
i += 1
if i * batch_size >= sample_count:
    # Note that since generators yield data indefinitely in a loop,
    # we must `break` after every image has been seen once.
    break
return features, labels
```

features[i * batch_size : (i + 1) * batch_size] = features_batch

labels[i * batch_size : (i + 1) * batch_size] = labels_batch


```
train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)
```

train_features = np.reshape(train_features, (2000, 4 * 4 * 512)) validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512)) test_features = np.reshape(test_features, (1000, 4 * 4 * 512))

Train new classifier


```
from keras import models
from keras import layers
from keras import optimizers
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(Ir=2e-5),
         loss='binary_crossentropy',
         metrics=['acc'])
history = model.fit(train_features, train_labels,
            epochs=30,
            batch_size=20,
            validation_data=(validation_features, validation_labels))
```



```
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```


Fine Tuning

We have studied feature extractor using deep learning, the fine tuning is another technique for transfer learning

- We take fully-connected layers (head of the network) from a pre-trained CNN
- We replace the head with a new set of fullyconnected layers with random weight
- All layers below the head are frozen, and we retrain the new head with a small learning rate.

Fine Tuning

- Add your custom network on top of an already-trained base network
- Freeze the base network
- Train the part you added
- Unfreeze some layers in the base network
- Jointly train both these layers and the part you added

Freezing and Unfreezing

- Freezing is to keep weight unchanged
- Unfreeze layers should be trained with very small learning rate

Another Fine Tuning

Freezing the code

```
conv_base.trainable = True

set_trainable = False
for layer in conv_base.layers:
    if layer.name == 'block5_conv1':
        set_trainable = True
    if set_trainable:
        layer.trainable = True
    else:
        layer.trainable = False
```


Model Summary

>>> conv_base.summary()

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Convolution2D)	(None, 150, 150, 64)	1792
block1_conv2 (Convolution2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Convolution2D)	(None, 75, 75, 128)	73856
block2_conv2 (Convolution2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Convolution2D)	(None, 37, 37, 256)	295168
block3_conv2 (Convolution2D)	(None, 37, 37, 256)	590080
block3_conv3 (Convolution2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Convolution2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Convolution2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Convolution2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Convolution2D)	(None, 9, 9, 512) 23598	108
block5_conv2 (Convolution2D)	(None, 9, 9, 512) 23598	108
block5_conv3 (Convolution2D)	(None, 9, 9, 512) 23598	108
block5_pool (MaxPooling2D)	(None, 4, 4, 512) 0	


```
conv_base.trainable = True

set_trainable = False
for layer in conv_base.layers:
    if layer.name == 'block5_conv1':
        set_trainable = True
    if set_trainable:
        layer.trainable = True
    else:
        layer.trainable = False
```


Training/Validation Accuracy and Loss

Fine-tuning the model

 We should set very low learning rate. The reason is that you want to limit the magnitude of the modifications

Training and Validation Accuracy

Training and Validation Loss

Completed code


```
import keras
keras.__version___
from keras.applications import VGG16
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
import os
import numpy as np
from keras import models
from keras import layers
model = models.Sequential()
base_dir = './images/kaggle_dogs_vs_cats/'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
```



```
train_datagen = ImageDataGenerator(
   rescale=1./255,
   rotation_range=40,
   width_shift_range=0.2,
   height_shift_range=0.2,
   shear_range=0.2,
   zoom_range=0.2,
   horizontal_flip=True,
   fill mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
    train dir,
    target_size=(150, 150),
     batch_size=20,
    # Since we use binary_crossentropy loss, we need binary labels
     class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
    validation_dir,
    target_size=(150, 150),
     batch_size=20,
     class_mode='binary')
```



```
conv_base = VGG16(weights='imagenet',
           include_top=False,
           input_shape=(150, 150, 3)
conv_base.summary()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
conv base.trainable = True
set trainable = False
for layer in conv_base.layers:
  if layer.name == 'block5 conv1':
     set_trainable = True
  if set_trainable:
     layer.trainable = True
  else:
     layer.trainable = False
model.compile(loss='binary_crossentropy',
        optimizer=optimizers.RMSprop(Ir=1e-5),
        metrics=['acc'])
```



```
history = model.fit_generator(
    train_generator,
    steps_per_epoch=100,
    epochs=100,
    validation_data=validation_generator,
    validation_steps=50)
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
import matplotlib.pyplot as plt
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```


NANGE OF THE OF

Fine Tuning Advantages

 Fine tuning is super powerful method to obtain good accuracy from already trained network

Can work with even small datasets

Transfer Learning or Train from Scatch

	Similar Dataset	Different Dataset
Small Dataset	Feature extraction using FC layers + classifier	Feature extraction using lower level CONV layers + classifier
Large Dataset	Fine-tuning likely to work, but might have to train from scratch	Fine-tuning worth trying, but will likely not work; likely have to train from scratch

When is transfer learning useful?

- Use model that is trained from Huge datasets to solve similar problems
- Fine-tune existing trained model to your unique data
- Deploy model quickly with limited computing and data resources
- The model is deep

Is this good Transfer Learning?

Transfer Learning

Is transfer learning appropriate here?

 Fine tune AlexNet to distinguish different models of BMWs

 Fine tune AlexNet to predict credit card fraud

 Train a model on using US housing sales data and fine-tune to Bangkok housing sales data

Homework

 Implement transfer learning from mnist to mnisth cloth on your CNN network

