TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP.HCM KHOA CÔNG NGHỆ THÔNG TIN BTC ÔN THI HỌC KỲ 1 KHÓA 2016

Sửa Đề Toán Rời Rạc K15

➤ Vũ Lê Thế Anh

Cập nhật: 06/02/2017

Câu 3:

a/ Số dãy có thể tạo thành là kết quả phép hoán vị lặp 10 phần tử thuộc 3 loại, mỗi loại là một chữ số 2, 5 hoặc 8 có số phần tử tương ứng là 3, 3 và 4. Kết quả cần tìm là $P_{10}(3,3,4)=\frac{10!}{3!3!4!}=4200$.

b/ Để tạo thành một dãy thỏa yêu cầu, ta lần lượt:

- + Chọn chữ số đầu tiên của dãy là số lẻ. Có 1 cách chọn là chữ số 5.
- + Chọn chữ số cuối cùng của dãy là số chẵn. Xét hai trường hợp:

TH1: Chữ số cuối cùng của dãy là 2. Số dãy có thể tạo thành lúc này là kết quả phép hoán vị lặp 8 phần tử thuộc 3 loại, mỗi loại là một chữ số 2, 5 hoặc 8 có số phần tử tương ứng là 2, 2, 4. Kết quả cần tìm là $P_8(2,2,4) = \frac{8!}{2!2!4!} = 420$.

TH2: Chữ số cuối cùng của dãy là 8. Số dãy có thể tạo thành lúc này là kết quả phép hoán vị lặp 8 phần tử thuộc 3 loại, mỗi loại là một chữ số 2, 5 hoặc 8 có số phần tử tương ứng là 3, 2, 3. Kết quả cần tìm là $P_8(3,2,3) = \frac{8!}{3!2!3!} = 560$.

Theo nguyên tắc cộng và nguyên tắc nhân, số dãy có thể tạo thành là 1*(420+560) = 980.

Câu 4:

$$\begin{cases}
 a_0 = -1, a_1 = 25 (1) \\
 a_{n+2} = a_{n+1} + 6a_n + (60n + 51)3^n, \forall n \ge 0 (2)
\end{cases}$$

Xét hệ thức thuần nhất $a_{n+2} = a_{n+1} + 6a_n, \forall n \ge 0$ (3)

Đa thức tương ứng: $f(x) = x^2 - x - 6 = (x + 2)(x - 3)$

(3) có nghiệm tổng quát: $a_n' = p(-2)^n + q3^n, \forall n \ge 0 \ (p, q \in \mathbb{R})$

Có:
$$\varphi_m(n)\alpha^n = (60n + 51)3^n \Rightarrow \begin{cases} \alpha = 3 \\ \varphi_1(n) = 60n + 51, \ m = 1 \end{cases}$$

Do $f(\alpha)=0\neq f'(\alpha)$, chọn $a_n''=n\Psi_1(n)\alpha^n=n(rn+s)3^n$ $(r,s\in\mathbb{R})$ là một nghiệm cụ thể của (2) $\forall n\geq 0$ (và do đó $\forall n\in\mathbb{Z}$).

Thế $a_n^{\prime\prime}$ vào (2), ta có:

$$(n+2)[r(n+2)+s]3^{n+2} = (n+1)[r(n+1)+s]3^{n+1} + 6n(rn+s)3^n + (60n+51)3^n$$

$$\Rightarrow 9(n+2)[r(n+2)+s] = 3(n+1)[r(n+1)+s] + 6n(rn+s) + (60n+51)$$

Chọn n = -2:
$$0 = -3(-r+s) - 12(-2r+s) - 69 \Rightarrow 27r - 15s = 69$$

Chọn n = -1:
$$9(r+s) = -6(-r+s) - 9 \Rightarrow 3r + 15s = -9$$

$$\Rightarrow r = 2.s = -1$$

$$\Rightarrow a_n'' = n(2n-1)3^n, \forall n \geq 0$$

(2) có nghiệm tổng quát: $a_n = a'_n + a''_n = p(-2)^n + q3^n + n(2n-1)3^n, \forall n \ge 0$

Kết hợp (1), ta có:
$$\begin{cases} -1 = a_0 = p + q \\ 25 = a_1 = -2p + 3q + 3 \end{cases} \Leftrightarrow \begin{cases} p + q = -1 \\ 2p - 3q = -22 \end{cases} \Leftrightarrow \begin{cases} p = -5 \\ q = 4 \end{cases}$$

(2) có nghiệm riêng:
$$a_n = (-5)(-2)^n + 4 \cdot 3^n + n(2n-1)3^n$$
, $\forall n \ge 0$

Câu 5:

a/ Thực hiện phép chia Euclide nhiều lần:

$$396900 = 2(177282) + 42336 \tag{1}$$

$$177282 = 4(42336) + 7938 \tag{2}$$

$$42336 = 5(7938) + 2646 \tag{3}$$

$$7938 = 3(2646) + 0 \tag{4}$$

Từ (1)-(4), ta có:

$$d = (396900,177282) = (177282,42336) = (42336,7938) = (7938,2646) = 2646$$

Từ (4)-(1), ta có:

$$d = 2646 = 42336 - 5(7938) = 42336 - 5[177282 - 4(42336)]$$

$$= (-5)(177282) + 21(42336) = (-5)(177282) + 21[396900 - 2(177282)]$$

$$= 21(396900) + (-47)(177282)$$

Vậy d = rm + sn với r = 21 và s = -47

b/
$$e = \frac{|mn|}{d} = \frac{|396900*177282|}{2646} = 26592300$$

$$m = 396900 = 150d, n = 177282 = 67d$$

Vậy một dạng tối giản của $\frac{m}{n}$ là $\frac{150}{67}$

Do
$$mn>0$$
 nên $\frac{1}{e}=\frac{u}{m}+\frac{v}{n}$ với $u=s=-47$ và $v=r=21$.

Câu 6:

$$S = \left\{-7, -\frac{11}{2}, -\frac{9}{2}, -4, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, 3, \frac{15}{2}, 11\right\}$$

$$\forall x, y \in S, x \Re y \Leftrightarrow \exists k \in \mathbb{Z}, x - y = 2k$$

a/ Xét các tính chất của R trên S:

$$+\Re$$
 phản xạ vì $\forall x \in S, \exists k = 0 \in \mathbb{Z}, x - x = 0 = 2.0$

$$+\Re$$
 đối xứng vì $\forall x,y \in S, x \Re y \Rightarrow \exists k \in \mathbb{Z}, x-y=2k \Rightarrow \exists k'=-k \in \mathbb{Z}, y-x=-2k=2k' \Rightarrow y \Re x$

$$+ \Re \text{ không phản xứng vì } \exists \frac{3}{2}, \frac{15}{2} \in S, \begin{cases} \exists 3 \in \mathbb{Z}, \frac{15}{2} - \frac{3}{2} = 6 = 2.3 \\ \exists -3 \in \mathbb{Z}, \frac{3}{2} - \frac{15}{2} = -6 = 2(-3) \end{cases} \Rightarrow \frac{15}{2} \Re \frac{3}{2} v \grave{a} \frac{3}{2} \Re \frac{15}{2} \ m \grave{a} \frac{3}{2} \neq \frac{15}{2}$$

$$+\,\mathfrak{R}\,\operatorname{truy} "" \text{en vi} \ \forall x,y\in S, x\ \mathfrak{R}\,y\ v \text{a}\ y\ \mathfrak{R}\,z \Rightarrow \begin{cases} \exists\,k\in\mathbb{Z}, x-y=2k\\ \exists\,k'\in\mathbb{Z}, y-z=2k' \end{cases} \Rightarrow \exists\,k''=k+k'\in\mathbb{Z}, x-z=2k''$$

Vậy \Re là một quan hệ tương đương (do có 3 tính phản xạ, đối xứng, truyền) nhưng không phải quan hệ thứ tự (do không có tính phản xứng) trên S.

b/ Các lớp tương đương của (S, \Re) :

a/S = Kar(f):

$$\overline{-7} = \{x \in S \mid x \Re(-7)\} = \{x \in S \mid \exists k \in \mathbb{Z}, x + 7 = 2k\} = \{-7,3,11\} = \overline{3} = \overline{11}$$

$$\overline{-\frac{11}{2}} = \left\{x \in S \mid x \Re\left(-\frac{11}{2}\right)\right\} = \left\{x \in S \mid \exists k \in \mathbb{Z}, x + \frac{11}{2} = 2k\right\} = \left\{-\frac{11}{2}, \frac{1}{2}\right\} = \overline{\frac{1}{2}}$$

$$\overline{-\frac{9}{2}} = \left\{x \in S \mid x \Re\left(-\frac{9}{2}\right)\right\} = \left\{x \in S \mid \exists k \in \mathbb{Z}, x + \frac{9}{2} = 2k\right\} = \left\{-\frac{9}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{15}{2}\right\} = \overline{-\frac{1}{2}} = \overline{\frac{3}{2}} = \overline{\frac{15}{2}}$$

$$\overline{-4} = \{x \in S \mid x \Re(-4)\} = \{x \in S \mid \exists k \in \mathbb{Z}, x + 4 = 2k\} = \{-4\}$$

Sơ đồ phân lớp (tự vẽ nha, tưởng tượng bản đồ 4 vùng mỗi vùng có mấy chấm mỗi chấm ứng với một phần tử).

Câu 7:
$$f(x, y, z, t) = \bar{x}\bar{y}zt \lor \bar{x}y\bar{z} \lor x\bar{y}\bar{z} \lor x\bar{y}zt \lor \bar{x}yz \lor xy\bar{z}$$

Các tế bào lớn của S: $T_1 = \bar{x}y$, $T_2 = x\bar{z}$, $T_3 = y\bar{z}$, $T_4 = x\bar{y}t$, $T_5 = \bar{y}zt$, $T_6 = \bar{x}zt$

b/ Ưu tiên 1: Chọn $(1,3) \in T_1$, $(4,1) \in T_2$. $S \setminus (T_1 \cup T_2) \neq \emptyset$.

Ưu tiên 2: Chọn (2,1) ∈ $S \setminus (T_1 \cup T_2)$ và để ý (2,1) ∈ $T_4 \cap T_5$.

Do
$$S \setminus (T_1 \cup T_2 \cup T_4) \neq \emptyset$$
, chọn $(2,4) \in S \setminus (T_1 \cup T_2 \cup T_4)$ và để ý $(2,4) \in T_5 \cap T_6$.

Do
$$S \setminus (T_1 \cup T_2 \cup T_4 \cup T_5) = \emptyset$$
, $S = T_1 \cup T_2 \cup T_4 \cup T_5$ (1)

Do
$$S \setminus (T_1 \cup T_2 \cup T_4 \cup T_6) = \emptyset$$
, $S = T_1 \cup T_2 \cup T_4 \cup T_6$ (2)

Do
$$S \setminus (T_1 \cup T_2 \cup T_5) = \emptyset, S = T_1 \cup T_2 \cup T_5$$
 (3)

(1) dư T_4 so với (3) nên (1) không là phép phủ tối tiểu. Ta có (2), (3) là hai phép phủ tối tiểu của S.

Các công thức đa thức tương ứng:

$$(2) \Rightarrow f(x, y, z, t) = \bar{x}y \lor x\bar{z} \lor x\bar{y}t \lor \bar{x}zt \ (2')$$

$$(3)\Rightarrow f(x,y,z,t)=\bar{x}y\vee x\bar{z}\vee \bar{y}zt\ (3')$$

Do (3') đơn giản hơn (2') nên công thức đa thức tối tiểu của f là $f(x, y, z, t) = \bar{x}y \vee x\bar{z} \vee \bar{y}zt$