

# Informe N° 8 "Ensayo de un ventilador radial"

Curso: Laboratorio de Máquinas (ICM 557-3)

Profesores: Cristóbal Galleguillos Ketterer

Tomás Herrera Muñoz

Alumna: Valeska Godoy Torres



# <u>Índice</u>

| Introducción | .3 |
|--------------|----|
| Desarrollo   | .4 |
| Conclusión   | .8 |



# **Introducción**

En el presente ensayo estudiamos un ventilador centrifugo radial, de acuerdo con las mediciones que se le practicaron donde se iba reduciendo el área de la sección de descarga.



### 1.- Objetivo.

Determinar el comportamiento de un ventilador radial.

# 2.- Trabajo de laboratorio.

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

- \* Pe4 presión diferencial [mmH2O]
- \* nx velocidad del ventilador [rpm]
- \* ta temperatura ambiente [°C]
- \* td temperatura de descarga [°C]
- \* W1, W2 Potencia eléctrica, método 2 wat. [kW]

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mmHg], se mide al inicio del ensayo.

## 3.- Informe.

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

#### 3.1-Tabla de valores medidos.

| VALORES MEDIDOS |       |                 |      |      |                |       |                     |
|-----------------|-------|-----------------|------|------|----------------|-------|---------------------|
|                 | nx    | P <sub>e4</sub> | ta   | td   | W <sub>1</sub> | $W_2$ | Patm                |
|                 | [rpm] | [mmca]          | [°C] | [°C] | [kW]           | [kW]  | [mm <sub>Hg</sub> ] |
|                 |       |                 |      |      |                |       |                     |
| 1               | 1831  | 5               | 21   | 23   | 0,44           | 0,82  | 758,8               |
| 2               | 1845  | 30              | 22   | 23   | 0,34           | 0,7   | 758,8               |
| 3               | 1867  | 45              | 22   | 23   | 0,19           | 0,56  | 758,8               |
| 4               | 1867  | 48,5            | 21   | 23   | 0,14           | 0,52  | 758,8               |
| 5               | 1871  | 57              | 21,5 | 23   | 0,11           | 0,49  | 758,8               |
|                 |       |                 |      |      |                |       |                     |



# 3.2 Fórmulas

Caudal.

$$q_{vm} = \, \alpha * s_5 * (\frac{2 + P_{e4}}{\rho_{05}})^{\frac{1}{2}} \left[ \frac{m^3}{s} \right]$$

| DATOS                 |                                |        |  |  |  |
|-----------------------|--------------------------------|--------|--|--|--|
| <b>D</b> <sub>5</sub> | D <sub>5</sub> /D <sub>4</sub> | α      |  |  |  |
| [mm]                  | [-]                            | [-]    |  |  |  |
| 00                    | 00                             | 0.600  |  |  |  |
| 90                    | 0.15                           | 0.6025 |  |  |  |
| 120                   | 0.2                            | 0.604  |  |  |  |
| 180                   | 0.3                            | 0.611  |  |  |  |
| 300                   | 0.5                            | 0.641  |  |  |  |

P<sub>e4</sub> en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[ \frac{m}{s} \right]$$

$$S_1 = 0.070686 [m2]$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 \; [KW]$$

Potencia hidráulica.

$$N_n = q_{vm} * \Delta P [W]$$

Rendimiento global.

$$N_{gl}=\frac{N_h*100}{N_{elec}}$$
 [%]

Corregir los valores respecto a la velocidad



### 3.3 Tabla de valores calculados.

| ρmedio     | Q <sub>vm</sub> | V1         | ΔΡ         | N <sub>elec</sub> | Nh         | Q <sub>vm</sub> | η <sub>gl</sub> |
|------------|-----------------|------------|------------|-------------------|------------|-----------------|-----------------|
| [kg/m3]    | [m3/s]          | [m/s]      | [Pa]       | [kW]              | [kW]       | [m3/h]          | [%]             |
| 1,19517336 | 0,4107626       | 5,81108844 | 54,3072754 | 1,26              | 0,0223074  | 1478,74535      | 1,770428373     |
| 1,19464056 | 0,34526472      | 4,88448513 | 297,748009 | 1,04              | 0,10280188 | 1242,95298      | 9,884796304     |
| 1,19564056 | 0,18578517      | 2,62831632 | 442,08613  | 0,75              | 0,08213305 | 668,826602      | 10,95107273     |
| 1,19767336 | 0,10822268      | 1,53103417 | 475,669176 | 0,66              | 0,05147819 | 389,601652      | 7,799726311     |
| 1,19715523 | 0               | 0          | 558,6      | 0,6               | 0          | 0               | 0               |

#### 3.4 Gráficos.

Trace los siguientes gráficos:

# 3.4.1 Curva P - qvm



3.4.1.1.¿Qué tipo de ventilador es? Descríbalo con detalle.

Es un ventilador con desplazamiento negativo. Funciona para aumentar la presión del aire o gases, pero no alcanza presiones tan altas como otras turbomáquinas. Es de tipo radial y es principalmente usado para mover otros gases.



3.4.2. Curva de potencia eléctrica vs caudal



# 3.4.2.1.¿Cuál es la potencia máxima consumida?

La potencia eléctrica máxima consumida fue de 1,26 [kW] y se obtiene en un valor de 1478,74535 [m3/h].

#### 3.4.3. Curva de rendimiento vs caudal



3.4.3.1. ¿Cuál es el punto de óptimo rendimiento?

Según lo que podemos observar del grafico el óptimo rendimiento ocurre en caudal cercano a los 900 [m3/h] y tiene un valor cercano a 11 [%].