OPTICAL RESIN MATERIAL OF REFRACTIVE INDEX DISTRIBUTION TYPE, METHOD OF MAKING SAID MATERIAL, AND OPTICAL TRANSMITTER.

Publication number: JP3332922B2

Publication date:

2002-10-07

Inventor: Applicant: Classification:

- european:

- international: C08F2/00; C08K5/00; C08L67/07; G02B1/04; C08F2/00;

C08K5/00; C08L67/00; G02B1/04; (IPC1-7): G02B6/18;

C08F2/00; C08L101/00; G02B1/04; G02B6/00

C08K5/00P; C08L67/07; G02B1/04; G02B1/04D; G02B6/02B Application number: JP19930507610T 19921022

Priority number(s): JP19910274354 19911022; WO1992JP01381 19921022

Also published as:

EP0566744 (A1) WO9308488 (A1 US5541247 (A1) EP0566744 (A4) EP0566744 (B1)

more >>

Report a data error he

Abstract not available for JP3332922B2 Abstract of corresponding document: EP0566744

A method of making an optical resin, in which a polymerization vessel is filled with solution of a mixture including at least one kind of polymeric monomer or a sol of such polymeric monomer and at least one kind of substance whose solubility parameter and refractive index differ from those of a polymer produced by polymerization of said monomer by 7 1/2 (cal/cm<3>) or under and 0.001 or more, respectively, and, with heating or irradiation of rays of energy from the periphery of the polymerization vessel, polymerization reaction is caused and developed preferentially from a particular part of solution so that concentration gradient in substances different in refractive index may be caused and thus providing a refractive index continuously changing along a specific direction. The polymerization vessel may be composed of such polymer as swelling and dissolving from the inner wall of the vessel into the solution of mixture. An optical transmitter is obtained by applying thermal stretching to said optical resin after completion of polymerization reaction thereof. Further, after-treatment based on crosslinking reaction is applied to said transmitter for improvement in resistance thereof to heat.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(51) Int.Cl.7

(12) 特 許 公 報 (B2)

FΙ

(11)特許番号

特許第3332922号 (P3332922)

(45)発行日 平成14年10月7日(2002.10.7)

酸別記号

(24)登録日 平成14年7月26日(2002.7.26)

(31) 1111. (31.	神外の引きして	F I
G 0 2 B 6/18	•	G 0 2 B 6/18
C08F 2/00		C 0 8 F 2/00 Z
C 0 8 L 101/00		C 0 8 L 101/00
G 0 2 B 1/04		G 0 2 B 1/04
6/00	366	6/00 3 6 6
		請求項の数15(全 26 頁)
(21)出願番号	特顯平5-507610	(73)特許権者 999999999
		小池 康博
(86) (22)出顧日	平成4年10月22日(1992.10.22)	神奈川県横浜市緑区市ヶ尾町534ー23
		(72)発明者 小池 康博
(86)国際出願番号	PCT/JP92/01381	神奈川県横浜市緑区市が尾町534ー23
(87)国際公開番号	WO93/08488	(74)代理人 999999999
(87)国際公開日	平成5年4月29日(1993.4.29)	弁理士 竹本 松司 (外3名)
審查請求日	平成11年10月19日(1999.10.19)	
(31)優先権主張番号	特願平3-274354	審査官 笹野 秀生
(32)優先日	平成3年10月22日(1991.10.22)	
(33)優先権主張国	日本 (JP)	(56)参考文献 特開 昭61-170705 (JP, A)
		特開 平1-265208 (JP, A)
		特開 昭59-137905 (JP, A)
		特開 平3-43423 (JP, A)
		特開 平3-143945 (JP, A)
	· .	最終頁に続く

(54) 【発明の名称】 屈折率分布型光学樹脂材料とその製造方法並びに光伝送体

1

(57)【特許請求の範囲】

【請求項1】透明な高分子樹脂マトリックスを構成する少なくとも1種類のポリマーと、

該ポリマーとの比較において溶解性パラメータの差が7(cal/cm³) 1/1以内であると共に屈折率の差が0.00以上であり、且つ、非重合性である少なくとも1種類の物質とからなり、

前記少なくとも1種類の物質の濃度が半径方向に沿って 勾配を有することで半径方向の屈折率分布が形成されて いる光ファイバー。

【請求項2】光学樹脂を延伸することによって形成された光ファイバーであって、

前記光学樹脂は、透明な高分子樹脂マトリックスを構成 する少なくとも1種類のボリマーと、

該ポリマーとの比較において溶解性パラメータの差が7

2

(cal/cm³) 1/3以内であると共に屈折率の差が0.001以上であり、且つ、非重合性である少なくとも1種類の物質とからなり

前記少なくとも1種類の物質の濃度が半径方向に沿って 勾配を有することで半径方向の屈折率分布が形成されて いる、前記光ファイバー。

【請求項3】通信用の光ファイバーであって、コア部分の屈折率プロファイルを次式(1)で表した時、該式中の屈折率分布係数αが、0.6~6の範囲にある、請求項1または請求項2に記載された光ファイバー;

n (r) = n_0 [1-2 Δ (r/Rc)] $^{0.5}$ ··· (1) $0 \le r \le Rc$ (コア部)

但し、

10

r;コアの中心軸からの距離

n。;コア中心軸 (r=0) における屈折率

3

Rc:コア半径

△;次式(2)で表される比屈折率差 $\triangle = (n_0^2 - n_1^2) / 2n_0^2$ ことで、n,は、クラッド・コア境界(光ファイバー中で

最も屈折率の低い部分) における屈折率

【請求項4】炭素-水素結合の少なくとも一部につい て、水素が重水素である、請求項1~請求項3のいずれ か1項に記載された、光ファイバー。

【請求項5】重合容器内に、少なくとも1種類の重合性 単量体あるいは重合性単量体のゾルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7(cal/cm²)¹ノ゚以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充 填し、

特定の部位から優先的に重合反応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより、

特定の方向に沿って屈折率が連続的に変化する屈折率分 布型光学樹脂材料を製造する方法。

【請求項6】重合体で構成された重合容器内に、少なく とも1種類の重合性単量体あるいは重合性単量体のゾル

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm²) 1/2以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充 填し、

前記容器を構成する重合体を内壁部分から前記混合溶液 内に膨潤溶解させつつ、特定の部位から優先的に重合反 30 応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより、特定の方向に沿って 屈折率が連続的に変化する屈折率分布型光学樹脂材料を 製造する方法。

【請求項7】重合容器内に、少なくとも1種類の重合性 単量体あるいは重合性単量体のゾルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm²) 1/2以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充 填し、

特定の部位から優先的に重合反応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより、

特定の方向に沿って屈折率が連続的に変化する屈折率分 布型光学樹脂材料を形成し、

前記屈折率分布型光学樹脂材料を延伸することにより、 光ファイバーを製造する方法。

【請求項8】重合体で構成された重合容器内に、少なく 50 樹脂材料。

とも1種類の重合性単量体あるいは重合性単量体のゾル

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm³) 1/2以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 である少なくとも1種類の物質とを含む混合溶液を充填

前記容器を構成する重合体を内壁部分から前記混合溶液 内に膨潤溶解させつつ、特定の部位から優先的に重合反 応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させるととにより、特定の方向に沿って 屈折率が連続的に変化する屈折率分布型光学樹脂材料を

前記屈折率分布型光学樹脂材料を延伸することにより、 光ファイバーを製造する方法。

【請求項9】前記光ファイバーが通信用光ファイバーで ある、請求項7または請求項8に記載された、光ファイ バーの製造方法。

【請求項10】前記重合容器あるいは該重合容器内に充 20 填される材料が有する炭素 - 水素結合の少なくとも一部 について、水素が重水素である、請求項7、請求項8ま たは請求項9に記載された、光ファイバーの製造方法。

【請求項11】重合容器内に、少なくとも1種類の重合 性単量体あるいは重合性単量体のゾルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm³) 1/1以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充 填し、

特定の部位から優先的に重合反応を生起進行させ、 該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより製造された。

特定の方向に沿って屈折率が連続的に変化する屈折率分 布型光学樹脂材料。

【請求項12】重合体で構成された重合容器内に、少な くとも1種類の重合性単量体あるいは重合性単量体のゾ ルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm²) 1/2以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充

前記容器を構成する重合体を内壁部分から前記混合溶液 内に膨潤溶解させつつ、特定の部位から優先的に重合反 応を生起進行させ、

該重合反応過程を通して前記少なくとも 1 種類の物質の 濃度勾配を形成させることにより製造された、特定の方 向に沿って屈折率が連続的に変化する屈折率分布型光学

【請求項13】重合容器内に、少なくとも1種類の重合 性単量体あるいは重合性単量体のゾルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm²) 1/2 以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも1種類の物質とを含む混合溶液を充 填し、

特定の部位から優先的に重合反応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより、

特定の方向に沿って屈折率が連続的に変化する屈折率分 布型光学樹脂材料を形成し、

前記屈折率分布型光学樹脂材料を延伸することにより製 造された光ファイバー。

【請求項14】重合体で構成された重合容器内に、少な くとも1種類の重合性単量体あるいは重合性単量体のゾ ルと、

該単量体の重合によって生成される重合体との比較にお いて溶解性パラメータの差が7 (cal/cm²) 1/2以内であ ると共に屈折率の差が0.001以上であり、且つ、非重合 性である少なくとも 1 種類の物質とを含む混合溶液を充

前記容器を構成する重合体を内壁部分から前記混合溶液 内に膨潤溶解させつつ、特定の部位から優先的に重合反 応を生起進行させ、

該重合反応過程を通して前記少なくとも1種類の物質の 濃度勾配を形成させることにより、特定の方向に沿って 屈折率が連続的に変化する屈折率分布型光学樹脂材料を 形成し、

前記屈折率分布型光学樹脂材料を延伸することにより製 30 造された光ファイバー。

【請求項15】前記光ファイバーが通信用光ファイバー である、請求項13または請求項14亿記載された、光ファ イバー。

【発明の詳細な説明】

技術分野

本発明は、屈折率が勾配を有する光学樹脂材料とそれ を用いた光ファイバ、特に通信用に好適な光ファイバ ー、並びにそれらの製造方法に関し、更に詳しく言え ば、特定方向に沿って屈折率が勾配を有する光学樹脂材 40 料とそれを用いた光ファイバー、並びにそれらの製造方 法に関する。

背景技術

屈折率分布型の光ファイバー、光導波路、光集積回 路、あるいはそれらの母材 (ブリフォーム) 等を含めた 光伝送体の材料として、光学樹脂を用いることは既に公 知となっている。

これら屈折率分布型の光伝送体に用いる光学樹脂に は、高い透明性と正確に制御された屈折率分布が要求さ れるのが通常である。例えば、屈折率分布型の通信用光 50

ファイバーにおいては、低損失で広い伝送帯域を得る為 に、透明度の高い樹脂材料に正確に制御された径方向の 屈折率分布を形成する必要がある。

屈折率分布型の光学樹脂材料を得る技術として従来よ り知られている手法を分類すると、共重合法と拡散法に 大別することが出来るが、いずれの技術によっても上記 の要求を十分に満足する光学樹脂材料は得られていない のが実状である。

共重合法は、2種類あるいはそれ以上の種類の単量体 10 を共重合させる方法であり、例えば、特公昭54-30301 号公報及び特開昭61-130904号公報には、反応性比r1、 r2の相異する単量体の共重合反応を利用し、重合初期と 重合後期に生成されるポリマーに含まれるそれぞれの単 **量体ユニットの割合を変化させることにより、屈折率勾** 配を有する光伝送体を製造することが記載されている。

との方法の場合、共重合の反応性比r1、r2の相異を利 用することから、r1、r2の値に差がある程屈折率差を形 成し易くなるが、とれらの値の差が大きいと、共重合過 程が生起する割合に比べて、それぞれが単独で重合を起 とす割合が高くなる。その結果、反応生成物の間で相分 離現象が起こるととが避けられなくなる。そして、との ような相分離によって屈折率分布にゆらぎが生じると、 光伝送体に散乱損失が発生することになる。

相分離が強く生じた場合には、白濁現象として観測さ れることになり、光ファイバー、光導波路、光集積回路 等の用途には全く使えないということも起こり得る。

また、モノマー間の反応性比の差を大きくすると、反 応性の低いモノマーは重合過程の末期までモノマーのま まで残留することになり、重合過程が完全に終局に達し ていない場合には、製品となった光学素子に経時変化が 起とり、特性が劣化するいう不都合を招く原因となって

このような共重合法に対して、拡散法は単量体でゲル を製造し、その中に別の種類の単量体を注入して拡散さ せた後、完全に重合させる方法である。

例えば、特公昭52-5857号公報には、まず透明な3次 元の架橋構造を有するポリマー前駆体(プレポリマーゲ ル)を製造し、これとは異なる屈折率を有する重合体を 形成する単量体を周辺から拡散させた後、これを後処理 するととにより完全に重合固化させて屈折率分布型光伝 送体を得る方法が提案されている。

しかしながら、この方法においては、まずポリマー前 駆体を前もって製造しておく必要があり、また、とのポ リマー前駆体においては、重合を途中段階で止めること が必要となるが、一定の転化率に達した段階で再現性良 く重合反応を停止させることは容易でない。この転化率 にばらつきがあると、その後のモノマー拡散過程に影響 を及ぼし、光伝送体の屈折率分布を正確に制御すること が難しくなるという問題が生ずる。

更に、ポリマー前駆体は、その形状を保持するために

架橋性を有する多官能性単量体で製造するか、あるいは 1官能性単量体と多官能性単量体との共重合体として製造する必要があるが、架橋性の単量体を含むポリマーは 熱可塑性に乏しい傾向があるため、重合後の加工が難しいという欠点も無視出来ない。特に、光ファイバーのように長尺の光伝送体を製造する場合に、熱延伸による方法が適用困難であるという点で非常に不利である。 発明の開示

本発明は、従来技術のように基本的に2種類以上の単量体を不可欠な原材料とするのではなく、原材料の単量体としては基本的に1種類のものを用意すれば足りる手法を提供するものである。すなわち、光学樹脂のマトリックスの原材料として1種類または2種類以上の単量体を用意し、重合反応自体には実質的に関与しない、つまり非重合性である異屈折率物質を混入し、例えば、重合容器の周辺から熱エネルギー(加熱)や光エネルギー(紫外線照射等)を与えるという新規な原理に基づいて屈折率分布を有する光学樹脂を製造し、これを光ファイバー、あるいはそのブリフォームとして用いるものである

すなわち、本発明者は従来技術が共重合過程に基礎を おいて屈折率分布を得んとしている点に本質的な問題が あるということに着目し、本質的に共重合によらない過 程によって屈折率分布を形成する本発明に固有な手法を 想到するに至ったものである。

本発明によれば、従来の2種類以上の単量体の共重合 過程に基礎をおいたことに起因した諸々の欠点を回避 し、透明性と屈折率分布制御性に優れ、経済的にも有利 な屈折率分布型光学材料とその製造方法が提供され、また、該光学樹脂材料によって構成された高品質の光伝送 30 体あるいはそのプリフォームが得られるものである。

より具体的に言えば、本発明は、透明な高分子樹脂マトリックスを構成する少なくとも1種類のポリマーと、該ポリマーとの比較において溶解性パラメータの差が7(cal/cm³)¹/³以内であると共に屈折率の差が0.001以上である物質とからなり、該物質の濃度が特定の方向に沿って勾配を有している光学樹脂を提供するものである。

そして、このような光学樹脂の製造方法として、次の 2方法を提供するものである。

(A) 重合容器内に、少なくとも1種類以上の重合性単 量体あるいは重合性単量体のゾルと、該単量体の重合に よって生成される重合体との比較において溶解性パラメ ータの差が7(cal/cm³)¹¹以内であると共に屈折率の 差が0.001以上である少なくとも1種類の物質とを含む 混合溶液を充填し、加熱あるいはエネルギー線の重合容 器周辺からの照射によって、特定の部位から優先的に重 合反応を生起進行させ、該重合反応過程を通して前記少 なくとも1種類の物質の濃度勾配を形成させることによ り、特定の方向に沿って屈折率が連続的に変化する屈折 率分布型光学樹脂を製造する方法。

(B) 重合体で構成された容器内に、少なくとも1種類以上の重合性単量体あるいは重合性単量体のゾルと、該単量体の重合によって生成される重合体との比較において溶解性パラメータの差が7 (cal/cm³) 1/1 以内であると共に屈折率の差が0.001以上である少なくとも1種類の物質とを含む混合溶液を充填し、前記容器を構成する重合体が内壁部分から前記混合溶液内に膨潤溶解させつつ、加熱あるいはエネルギー線の前記容器周辺からの照射によって、特定の部位から優先的に重合反応を生起進行させ、該重合反応過程を通して前記少なくとも1種類の物質の濃度勾配を形成させるととにより、特定の方向に沿って屈折率が連続的に変化する屈折率分布型光学樹脂を製造する方法。

即ち、製造法(A)は、例えば重合管のような重合容器内に重合性の単量体であるメチルメタクリレート(MA)等と、該重合性単量体との間で実質的に反応性を有しない異屈折率化合物であるブロモベンゼン等を、熱重合ラジカル開始剤であるベンゾイルバーオキサイドや、紫外線ラジカル重合開始剤であるベンゾインメチルエーテル等と、連鎖移動剤であるノルマルブチルメルカブタン等を適宜の割合で注入し、重合管の周辺から加熱あるいは紫外線照射等のエネルギー供給を行って、重合反応を生起進行させるものである。

上記の反応性を有しない、つまり、非重合性の異屈折率物質は高分子樹脂マトリックスを形成する重合反応に関与せず、従って、マトリックスを形成する物質と反応して共重合体を形成するととがなく、且つ、重合反応過程を通して、例えば、重合管(重合容器)の内壁部分から中心部に向かって徐々にその含有率が増大するような型の分布を形成するので、これに対応して周辺部から中心部に向かって屈折率が増大する屈折率分布型光学合成樹脂材料を得ることが出来る。

この方法における重合容器は、通常のガラス等の非溶解性材料製のもので良く、前もって製造しておいたものを使用して差し支えない。

また、方法(B)は、重合容器器として、充填される 混合溶液と接触した際に容器自身の内壁部分から前記混 合溶液内に膨潤溶解するような重合体を使用することが 特徴となっている。即ち、この重合容器自身の膨潤溶解 現象と、重合容器内壁部分から単量体が重合体となって 析出する現象とが同時に起こる為に、前記膨潤溶解を起 こさない重合容器を使用した場合に比べて、より大きな 異屈折率物質の濃度勾配を形成することが出来る。

従って、この(B)の方法は、相対的に大きな屈折率 勾配を有する屈折率分布型光学樹脂を製造するのに適し ている。

合反応を生起進行させ、該重合反応過程を通して前記少 また、本発明の1つの形態によれば、上記の各方法になくとも1種類の物質の濃度勾配を形成させることによ おいて使用される各材料物質(単量体及びこれに混合さり、特定の方向に沿って屈折率が連続的に変化する屈折「50 れる異屈折率物質)が有する炭素-水素結合(C-H結

合)のH原子をD原子(重水素原子)に代えることによ り、可視光あるいは近赤外光の領域で生じるC-H結合 の伸縮の振動モードに起因した吸収損失を取り除き、透 明度のより高い光学樹脂が提供される。

更に、本発明は、上記のような光学樹脂材料乃至上記 のような方法によって製造された屈折率分布型光学樹脂 材料で構成される光ファイバー等の光伝送体を提供する ものである。

光ファイバーのような長尺の光伝送体は、屈折率分布 型光学樹脂材料を熱延伸することによって製造すること 10

本発明によって提供される光ファイバーの屈折率プロ ファイルは、正確に制御された滑らかな曲線となり得る ので、同じ比屈折率差△を有するSI型 (ステップインデ ックス型)の光ファイバーと比較して、2倍以上の伝送 帯域を有する帯域特性の優れた屈折率分布型(GI型;グ レイデッドインデックス型)光ファイバーが得られると とになる。

比屈折率差△や異屈折率物質の濃度勾配の緩急を制御 して、種々の屈折率分布を持った光ファイバーを得ると とが出来る。

例えば、光ファイバーのコア部分の屈折率プロファイ ルが次式(1)で表され、該式中の α を0.6から6に亘 る広い範囲の中の値とした多モード光伝送体を得ること が出来る。

n (r) =
$$n_0$$
 [1 - 2 Δ (r/Rc) α] α · · · (1)

0 ≦ r ≦Rc (コア部)

但し、αは屈折率分布係数、rはコアの中心軸からの 距離、 n_o はコア中心軸(r=0)における屈折率、Rcは 30 コア半径である。また、△は比屈折率差で、次式(2) で表されるものとする。

 $\Delta = (n_0^2 - n_1^2) / 2n_0^2$ $\cdot \cdot \cdot (2)$ ここで、n_iは、クラッド・コア境界における屈折率であ り、通常はこの境界領域は光ファイバー中で最も屈折率 の低い部分となっている。

αが上記範囲の値をとる時、本発明で得られた屈折率 分布型合成樹脂光ファイバーが有する伝送帯域は、現在 市販されているボリマー材料製の光ファイバーの約11倍 ~1000倍にも達する。

本発明の更に別の形態として、重合反応を完了した屈 折率分布型光学樹脂乃至該樹脂から作られた光学素子に 後処理の形でγ線照射等を施して、架橋反応を生起させ ることが含まれる。これにより耐熱性に優れた屈折率分 布型光伝送体を得ることが出来る。

以上の概略説明から理解されるように、本発明の方法 の基本的な形態に従えば、所定のサイズ、形状、及び材 質を有する重合容器中に単量体と重合に関与しない異屈 折率物質を含む混合溶液を充填し、重合反応制御に必要 なラジカル重合開始剤、連鎖移動剤等を加え、重合容器 50 れるものではなく、例えば、

の所定の部分から順次加熱を行うか、所定の方向より順 次紫外線等のエネルギーを照射するか、あるいは場合に よっては、それらを組合わせることにより、重合反応を 順次生起・進行させて屈折率分布型光学樹脂材料が製造 される。

そして、本発明は、上記基本的形態に更に、材質中の H原子をD原子とすることによって、製造される屈折率 分布型光学樹脂材料の透明性をより向上させるという技 術思想を融合させた形態をとり得るものである。

との形態によってより透明性の高い屈折率分布型光学 樹脂材料からなる広帯域低損失光ファイバー等の光伝送 体が提供される。

本発明の更に別の形態によれば、重合反応を完了した 屈折率分布型光学樹脂乃至該樹脂から作られた光伝送体 に後処理の形でγ線照射等のプロセスが追加され、架橋 反応が生起される。これにより耐熱性に優れ、熱変形を 起とし難い屈折率分布型光伝送体を得るととが出来る。

以下、説明の便宜上、[1]重合性単量体と異屈折率 物質~[8]後処理(架橋)の各項目に分けて、本発明 について更に詳しく述べる。

[1] 重合性単量体と異屈折率物質

本発明では、混合する重合性単量体と異屈折率物質に ついて、該単量体が重合して生成される重合体の溶解性 パラメータと該異屈折率物質が示す溶解性パラメータの 差が7 (cal/cm²) 1/2以内であるとともに屈折率の差が 1.001以上であるという要件を課している。

このような要件を満たす材料の組合せは、極めて多岐 にわたるが、例えば重合性単量体を表 1 に挙げられたも のの中から選び、異屈折率物質を表2に挙げたものの中 から選ぶことが出来る。

また、重合性単量体の重合反応により得られる高分子 樹脂マトリックスを構成するポリマーとの屈折率差が0. 001以上であれば、表1に例示された重合性単量体から 生成されるポリマーあるいはオリゴマーを、表2に挙げ られた物質と同様に、屈折率分布を形成する為の異屈折 率物質として用いることも出来る。

更に、表1に例示された重合性単量体が重合した形態 のポリマーまたはオリゴマー以外であっても、溶解性パ ラメータの差が7 (cal/cm³) 1/3 以内で屈折率差が0.00 1以上という要件を満たす限り、例えば、エステルアク リレート系、エステルメタクリレート系、エチレングリ コールモノアクリレート系あるいはエチレングリコール モノメタクリレート系のポリマーやオリゴマー等の高分 子あるいは"中分子"の化合物を、屈折率分布形成の為 に混在させる物質として使用することが出来る。(ここ で、"中分子"の化合物とは、分子量が2000程度までの ものを指し、高分子とはそれ以上の分子量の化合物のと とを言う。)

異屈折率物質についても、表2に挙げたものに限定さ

ジベンジルエーテル(屈折率n=1.562)、 フェノキシトルエン(n=1.573)、 1、1 ビスー(3、4、ジメチルフェニル)エタン(n=1.564) ジフェニルエーテル(n=1.579) ビフェニル(n=1.587 [at75°C]) ジフェニルスルフィド(n=1.633)

* ジフェニルメタン (n=1.577) フタル酸ジオクチル (n=1.486)

等を用いることが出来る。フタル酸ジオクチルは比較 的低屈折率なので、重合容器の中心部で高濃度となるよ うに異屈折率物質を分布させる方法で、光発散性の光伝 送体を製造する場合に適した異屈折率物質の1つであ

1

表

単量体	屈折率 (ま゚リマー)	溶解性パラメータ (ポリマー;cal/cm³) ¹/²
		(, , , , , , , , , , , , , , , , , , ,
2、2、2- トリフルオロエチルメタクリレ	- 1.420	7.8
メチルメタクリレート	1.492	9.2
4 ― メチルシクロヘキシルメタクリレート	1.4975	9.16
シクロヘキシルメタクリレート	1.5066	9.04
フルフリルメ タ クリレート	1.5381	9.93
1 フェニルエチルメタクリレート	1.5487	9.29
1 フェニルシクロヘキシルメタクリレート	1.5645	8.91
へ" ンシ" ルメタクリレート	1.5680	9.54
フェニルメタクリレート	1.5706	9.65

表

屈折率 溶解性パラメータ 物質 $(cal/cm^3)^{1/2}$ (異屈折率) フタル酸 ペンジル― n ― プチル 9.64 1.575 9.74 1 -- メトキシフェニル-- 1 -- フェニルエタン 1.571 安息香酸ペンジル 10.7 1.568 プロモペンセ゚ン 1.557 9.9 ο --- ジクロロベンゼン 1.551 10.0 m ー ジクロロベンゼン 1.543 9.9 1 . 2 -- シ ブ ロモエタン 1.538 10.4 3 --- 7: = 1 --- 7° a n° / - 1 1.532 11.4

重合性単量体に対する異屈折率物質の混合割合は、その異屈折率物質が有する屈折率の値と、作製される光学樹脂に要求されている屈折率プロファイルの勾配の大きさ、光学樹脂に必要な機械的強度と透明度等を考慮して定められることが望ましい。実際的な1つの目安としては、99wt%~50wt%の重合性単量体に対して異屈折率物質1wt%~50wt%という範囲が考えられ、より好ましい範囲としては、重合性単量体95wt%~70wt%に対して異屈折率物質5wt%~30wt%という範囲を選択することが出来る。

尚、溶解性パラメータとは、一般に液体のモル蒸発エネルギー Δ Eをモル体積Vで除した値(凝集エネルギー密度)の平方根(Δ E/V) Uで定義される熱力学的な量である。この量は、ポリマーに関する議論にも適用され、その値は、多成分共存系における相分離(光学樹脂の白濁の原因となる)の生起の有無を論ずる際の目安となる。

即ち、ポリマー及び異屈折率物質の溶解性パラメータを各々るp、るcとした時、その差、 | るp - るc|が大きいと両者は相分離を起こし白濁現象を生じ易いということが出来る。本発明は、光学樹脂材料を提供するものであるから、基本的に濁りによる散乱が生じない透明な材料が得られる条件を考えて、

 $|\delta p - \delta c| \le 7 (cal/cm^3)^{1/2}$

を満たすことを要件としている。

また、本発明では高分子樹脂マトリックスの屈折率と 共存物質(異屈折率物質)の屈折率に関しても一定の差 (0.001以上)を要求しているが、これは作製された光 学樹脂材料内における濃度分布を介して、屈折率分布型 光学材料として実質的に意味ある屈折率分布の勾配乃至 大きさ(最大屈折率と最小屈折率の差)を実現する為に 必要とされる値を定めたものである。

上記のような溶解性バラメータ及び屈折率差の条件を同時に満足させるととによって、従来の光学樹脂では実現が困難であった、高い透明性と十分な屈折率差乃至勾配を有した光ファイバー、光導波路、単焦点あるいは多焦点のレンズ等の光伝送体を得ることが可能となる点に本発明の一つの重要な特徴がある。

[2]ラジカル重合開始剤

本発明の方法における重合反応に使用されるラジカル 重合開始剤は、反応系に供給されるエネルギーの形態に 応じて適切に選択されることが好ましい。例えば、熱重 合や赤外線重合であれば、ベンゾイルパーオキサイド (BPO) などの過酸化物を用いて良く、紫外線重合を行 う場合であれば、ベンゾインメチルエーテル (BME) 等 を使用して良い。

[3] 重合反応の為のエネルギー供給と屈折率分布の形

50 成

本発明では、高分子樹脂マトリックスを形成させる重 合反応の為に供給するエネルギーの種類に特に制限はな いが、一般的には熱エネルギーによる熱重合あるいはエ ネルギー線照射による重合が考えられる。

照射されるエネルギー線としては、紫外線、赤外線、 γ線、電子線、中性子線、重荷電粒子線、マイクロ波等 がある。これらエネルギー線には透過力や重合反応促進 能力に差異があるので、後述するように、エネルギー線 の種類、強さと入射方向(あるいはそれらの時間的変 化)、及びこれに適合したラジカル重合開始剤を選択す ることによって、製造される光学樹脂の屈折率分布を制 御することが出来る。

まず、最も一般的なケースとして、ガラス管を重合容 器として使用し、エネルギー線をガラス管周辺より照射 して、ガラス管の内壁近傍から重合を開始させる場合に ついて説明する。

重合性単量体と重合に関与しない異屈折率物質の混合 溶液にラジカル重合開始剤等を添加して、赤外線等のエ ネルギー線を照射すると、ラジカル重合開始剤がラジカ ルを発生し、重合反応が開始される。エネルギー密度が 内壁付近で最も高い通常の条件では、この重合反応は内 壁付近から始まり、徐々に中心部へ及ぶように反応が進 行する。その結果、ガラス管の内壁付近から高転化率領 域が形成され、ボリマーが該領域で優先的に析出して外 部分の体積の大半を占拠する現象が起こる。

一方、ガラス管の中心部では重合反応は緩やかに進行 するので、反応開始時点ではガラス内壁付近に存在して いた異屈折率物質が、濃縮された混合溶液の形で徐々に 中心部に集まって来ることになる。重合反応過程の末期 には、重合反応は中心部に及んでいるが、異屈折率物質 の濃度は該中心部において相当高まった状態となってい

従って、重合反応が完了した段階では、異屈折率物質 濃度が中心部から周辺部に向かって低下する分布を持つ ことになる。異屈折率物質が高分子樹脂マトリックスの 屈折率よりも高ければ、異屈折率物質の高濃度領域では その高屈折率が相対的に大きく寄与して低濃度領域に比 して屈折率の高い領域となる。異屈折率物質が高分子樹 脂マトリックスよりも低屈折率であれば、屈折率分布と 異屈折率物質濃度分布が逆の関係を示すことは言うまで 40 る。 もない。

上記プロセスにより、異屈折率物質に高屈折率物質を 選択して屈折率分布光学樹脂を製造し、これをプリフォ ームとして熱延伸処理を施して屈折率分布型光伝送体を 得ることが出来る。

このように、透過力の比較的弱いエネルギー線を重合 容器の周辺から照射すれば、異屈折率物質は中心部に集 中する傾向が生ずる。重合反応が相当程度進行するまで エネルギーを周辺部にのみ集中すれば、この傾向は更に

れることになる。

逆に、透過力の比較的強いエネルギー線を重合容器の 中心部に向けてあらゆる方向から照射した場合(重合容 器を回転する場合が多い。)には、異屈折率物質は周辺 部に拡がって分布する傾向を生じ、ゆるやかな屈折率勾 配が得られることになる。更に、例えばマイクロ波のエ ネルギーを中心部に集中するような照射形態をとれば、 中心部より周辺部において異屈折率物質の濃度の高い領 域を形成することも原理的に可能である。当然との場合 には、通常の場合と逆向きの屈折率勾配が形成されると とになる。

[4]重合容器

重合容器として最も一般的なのは、上述したガラス製 の管状のものであるが、形状・寸法及び材質について種 々の形態が考えられる。

まず形状・寸法については、重合反応完了時に得られ る屈折率分布型光学樹脂の形状と寸法を規定するもので あるから、該時点において希望される形状と寸法に合わ せて容器形状を選択すれば良い。例えば、プリフォーム の熱延伸によって光ファイバーを製造することを希望す る場合には、該プリフォームの形状と寸法に整合した内 壁形状の容器を選択するのが合理的である。

管状乃至円筒状以外の具体的形状としては、球状、直 方体状、円錐状、三角錐状、U字状等が考えられるが、 一般には全く任意というべきである。寸法についても、 基本的には無制限であり、重合完了後に最終製品たる光 伝送体を得る為の加工プロセスにとって有利な寸法を選 択することが好ましい。例えば、発光ダイオードや半導 体レーザ、導波路用素子等の光デバイスの用途に対して は微小サイズのものが使用されるかもしれないし、ソー ラーシステムに組み込まれるような大型のレンズ素子や 導光体を製造する場合であれば、大型の容器が準備され るかも知れない。

重合容器の材質については、前述の方法(A)に使用 するのであれば、重合性単量体と異屈折率物質の混合溶 液及び重合開始剤等添加物に対して反応性あるいは溶解 性を示さないものを選択すれば良い。但し、重合反応に おけるエネルギー効率を考慮して、使用するエネルギー を良好に透過乃至伝達するこのが好ましいのは勿論であ

前述したように、方法(B)においては重合容器にモ ノマーに対して膨潤性を示すポリマー材料を使用する。 ポリマーからなる、例えば管状の容器に異屈折率物質 とラジカル重合開始剤を含むモノマー溶液を入れると、 モノマー溶液に接した容器内壁部分が時間経過とともに 膨潤する。その結果、層状の膨潤相が内壁部分に形成さ れる。との膨潤相層内のボリマー濃度は均一ではなく、 重合管の内壁から中心部へ向かって離れるに従って、重 合管から溶出したボリマー濃度は徐々に低くなる。即 強まって、比較的急峻な屈折率勾配が狭い範囲に形成さ「50」ち、膨潤相内にポリマーの濃度分布が形成される。

てのような状態で重合管の周辺からエネルギー線を照射すると、ガラス管を使用した場合と同様に、ラジカル重合開始剤がラジカルを発生し、重合管内壁付近から重合反応が開始される。この場合、ポリマーがモノマー溶液に溶出した膨潤相層が存在し、該層部分のポリマーとの相溶性も良好な状態にある為に、反応系全体の転化率が比較的低い段階からポリマーの析出が開始される。

この早期析出現象は、膨潤層内でも特に溶出ポリマーの濃度が高い部分で顕著な傾向を示すから、析出したポリマー内に残留する異屈折率物質の濃度に勾配が形成される。系全体の転化率が上昇するに従って、異屈折率物質が濃縮された未転化モノマー溶液は中心部に集まって来る。重合反応過程の末期には、相当高濃度の異屈折率物質が共存した状態でモノマーが重合して高分子樹脂マトリックスが形成されることになる。

総じて言えば、膨潤相層の生成による早期のボリマー 析出現象によって、ガラス等の膨潤を起こさない重合容 器を使用した場合に比して、より強い優先度を以て重合 容器内壁付近からボリマー析出が生起されるので、それ に対応して容器内壁付近と中心部との異屈折率物質の濃 度差も大きくなる。即ち、得られる光学樹脂材料の屈折 率分布曲線の尖頭の高さ(あるいは谷の深さ)の値が大 きくなる。

[5] 重合性単量体のゾル化

屈折率勾配を大きくする手段として、上記 [4]で述べたポリマー製重合容器を使用する方法の外に、重合性 単量体を予めゾル化しておくという方法がある。

重合性単量体を重合反応開始前にもってゾル化しておくと、より早い段階でポリマー析出が起こると同時に異屈折率物質と混ざり難くなるので、異屈折率物質濃度に 30大きな勾配が形成されることになる。従って、この事前のゾル化によっても屈折率分布曲線の尖頭の高さ(ある、いは谷の深さ)の値を大きくすることが出来る。

[6] 重水素化

屈折率分布型光学樹脂材料の透明性すなわち透光度 は、該材料で構成された光学素子の使用波長において特 に高いことが望ましい。ところが、樹脂材料を使用する と炭素-水素結合(C-H結合)の伸縮モードに起因し た光吸収が不可避的に起こり、その吸収ピーク波長が使 用波長に重なる場合がある。C-H結合の伸縮振動の基 40 本モードに対応した吸収波長は3390nmであり、4倍音、 5倍音、6倍音及び7倍音に相当する吸収波長は各々90 1nm、736nm、627nm及び549nmである。これら4、5、 6、7各倍音に相当する波長は、光通信分野で主として 使用されている波長領域に属する。C-H結合を有する 材料で光伝送体を作製した場合、理論的な限界伝送損失 は、 $\lambda = 516$ nmにおいて37dB/km、 $\lambda = 568$ nmで35dB/km。 λ = 580nmで106dB/kmとなる。現在、石英系の光ファイ バーでは、約0.20dB/km (λ=約1300nm) が達成されて おり、上記伝送損失値は満足すべき数値とは言えない。

そこで、本発明の光学樹脂材料の分子が有するC-H 結合をC-D結合に置き換えたものを考えると、基本モードの3390nm、4倍音、5倍音、6倍音及び7倍音の90 1nm、736nm、627nm、549nmにおける吸収ピークは消失 し、代わりに基本モード、6倍音、7倍音、8倍音に対応して、4484nm、808nm、704nm、626nmに吸収ピークが現れる。

この場合、C-H結合の場合に比して吸収波長帯が長波長側にシフトしているので、実用上特に問題となる近赤外領域以下(約750nm以下)における吸収ピークの倍音の次数がC-H結合の場合に比して大きいので、強い吸収を生じるととはない。理論上の限界伝送損失値は、 $\lambda=680$ nmにおいて9.1dB/km、 $\lambda=780$ nmで14dB/km、 $\lambda=850$ nmで39dB/kmとなり、C-H結合の場合に比して格段に改善された値が示される。

C-H結合をC-D結合に置き換えた光学樹脂材料を得るには、例えば、H原子をD電子に置換したMMA-d8モノマーを用いて重合を行うことによって樹脂を製造すれば良い。異屈折率物質についても、H原子を含まないものを使用することが好ましいのは言うまでもないことである。

[7] 伝送帯域

光ファイバーを通信用に用いる場合には、光信号の長距離を行う為に伝送損失の低さが要求されるのは当然のことであるが、大量の情報の高速伝送を実現するには、伝送帯域の広さが特に重要なファクターであることは良く知られている事実である。現在、通信幹線において一般的に用いられている石英系の材料からなるシングルモード光ファイバーの伝送帯域は、数十GHz・kmの程度である。

これに対して、市販されているポリマー系材料からなる光ファイバーは多モード・ステップインデックス型(マルチモードSI型)のもののみであり、その伝送帯域の大きさは計算値で5M-tz・km、実測値で6M-tz・km程度(Δ=0.057)と非常に狭い。多モード光ファイバーの伝送帯域は、コア・クラッドの屈折率差に依存するが、屈折率分布形状にも大きく左右される。

そこで、屈折率分布形状が伝送帯域に与える影響を考 察オス

屈折率分布型の光ファイバーの特性を検討する際に通 常用いられる表式に従って、コア部分の屈折率分布を前 述の式(1)の形で表す。これを再記すると、

$$n(r) = n_0 [1 - 2\Delta (r/Rc)^{\alpha}]^{0.5}$$

• • • (1)

0 ≤ r ≤Rc (コア部)

である。

ことで、 α は屈折率分布係数、rはコアの中心軸からの距離、n。はコア中心軸(r=0)における屈折率、Rcはコア半径であり、 Δ は比屈折率差で、前述の式(2) - 50 で表されることは既に述べた通りである。式(1)と同

 $\Delta = (n_0^2 - n_1^2) / 2n_0^2 \cdot \cdot \cdot (2)$

ことで、n、は、クラッド・コア境界における屈折率であり、通常はこの境界領域は光ファイバー中で最も屈折率の低い部分となっていることは、既に述べた通りである。

 α の値によって、屈折率分布が変化する様子が図1に描かれている。図中の符号 $A\sim F$ は、 α の次の各値に対応している。

A; $\alpha = 0.5$

様に再記すると、

B; $\alpha = 1.0$

C; $\alpha = 2.0$

D; $\alpha = 5.0$

E; $\alpha = 10.0$

 $F: \alpha = \infty$

また、Rpはクラッド部を含めた光ファイバーの半径を表している。

Fのα=∞のケースは、ステップインデックス型の場合に相当している。

ことで、伝送帯域の大きさに直結する量であるインバ 20 ルス応答と αの値との関係について次の関係が成立する ことが知られている。式中、Tは、最低次モードから最高次モードまでの群遅延差であるインパルス応答の拡が り時間を表している。

$\alpha \neq 2$ の場合;

$$H(\tau) = [(\alpha+2)/\alpha] \cdot [\tau^{\alpha/2}/T \cdot \cdot \cdot \cdot (3)]$$

但し、 $T = (N_{\perp}/c) \Delta \cdot [(\alpha - 2) / (\alpha + 2)]$ $\alpha = 2 \sigma$ 場合:

$$H(\tau) = [1/T] \qquad \cdots \qquad (4)$$

但し、 $T = (N_1/c) \cdot (\Delta^2/2)$

また、最大の伝送帯域を与える α の値は次の式(5)で表される。

$$\alpha$$
 opt= 2+2.4 Δ · · · (5

ととで、本発明の屈折率分布型光伝送体における Δ の 1つの典型値0.01を当てはめると、 α opt=2.02となる。

実際的な観点から言えば、 α の値が2に近いという条件で伝送帯域は顕著な改善を示す。また、式(3-)の右辺に α の最適値を表す式(5)の右辺を代入して計算を実行した結果と、 $\alpha=\infty$ (SI型)の場合のインバルス応答とを比較すると、両者における群遅延の比は $\Delta/2$ となる。即ち、 Δ に通常の値を想定すると、 α optに対する群遅延差はSI型の場合の約200分の1 の程度に低減される。これは、光伝送中に起こる入力光信号波形の崩れが極めて小さいことを意味している。

また、 α optの条件下で入力光パルスの伝送速度の最大値f maxを、屈折率に通常の値を想定して計算すると、 $1.722/\Delta^2$ [Mb・km/sec] となる。 Δ として0.01を代入すれば、17.22 [Gb・km/sec] となる。

20

伝送帯域(3dB減衰を与える周波数)f 3dBは次式

(6)で表されるので、 $\alpha=2$ 、 $\Delta=0.01$ の場合、その値はf 3dB=2.4GHz・kmとなる。この値を、市販されているSI型光ファイバ($\alpha=\infty$: $\Delta=0.057$)の伝送帯域の値(理論計算値)と比較すると11.40倍になっている。

f
$$3dB = 0.6/T$$
 $\cdot \cdot \cdot (6)$

 α が最適の値から相当程度はずれた場合として、 α = 約10を想定し、最高伝送速度f maxを群遅延差の値から予測すると、0.129となり、伝送帯域f 3dBは18MHz・km 10 となる。これは、同じ比屈折率差 Δ を有するSI型光ファイバーの1.5倍、市販されているSI型光ファイバーの8.6 倍の大きさに当たる。

とのように、αの値が相当程度大きくても、伝送帯域はSI型の光ファイバーの場合に比べて改善される。

逆に、 α の値が最適値から小さい方向へずれた場合でも伝送帯域に同様の改善がもたらされる。屈折率差の条件を変えずに、例えば、 $\alpha=1$ の場合の群遅延差を求めるとSI型の1/3となる。また、 $\alpha=0.1$ でも0.9倍となり、市販されているポリマー系光ファイバーにおける屈折率差の条件を想定した場合との比較では、6.3倍となる

屈折率差を変えない条件で、伝送帯域がSI型の2倍以上となる範囲を求めると、ほぼ $0.67 \le \alpha \le 6$ の範囲がこれに該当する。

[8]後処理(架橋)

高分子樹脂マトリックス形成の為の重合反応が終了し、必要な熱延伸等を経て一応製品が出来上がった後に、後処理の形でヶ線、電子線等を照射することによって、架橋反応を生起させ耐熱性の高い光伝送体を得るという手法も本発明の一形態として位置付けられるべき技術事項である。

本発明の前記(A)あるいは(B)の方法に従って、前記表1、表2及び関連説明の中で述べた材料を使って屈折率分布型光伝送体を製造した場合、高分子樹脂マトリックスを構成する重合鎖同士が実質的に架橋されていないので、高温条件下で使用すると変形を生じる恐れがある。

そこで、光伝送体が高温条件下で使用されることが想定される場合には、前記-(-A) あるいは(B)の製造方法において、重合性単量体として、例えばγ線照射によって架橋反応を起こす架橋性の基を有するモノマーを使用し、光伝送体製造後にγ線照射等による架橋反応処理を実行することによって耐熱性を改善する。

このような架橋性基として好ましいものの一つは、グ リシジル基等のエポキシ基である。

本発明における後処理に関与し得ると考えられる架橋性基を有するモノマーを列挙すれば、まず、上記グリシジル基を有するビニル系モノマーとして、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)
50 アクリレート、アリルグリシジルエーテル、p-ビニル

安息香酸グリシジル等がある。

更に、エピチオ (メタ) アクリレート、ジシクロベン チニル (メタ) アクリレート、2 - (p-ビニルフェニ ル)プロピレンオキシド、4-ビニルエポキシシクロへ キサン、6-ビニルエポキシノルボルナン、6-エチリ デンエポキシノルボルナン、ケイ皮酸ビニル、αーシア ノケイ皮酸ビニル、シンナミリデンビルビン酸ビニル、 (メタ) アクリル酸シンナミル等の外に、イソホロン基 を持つビニル系モノマーが利用出来る。

以上、代表的な例を挙げたが、原理的観点から言え ば、高分子樹脂マトリックスが形成される重合反応過程 において不活性な基であって、重合終了後あるいはその 後の熱延伸終了後に架橋反応励起エネルギーが供給され た時に初めて架橋反応が開始されるという条件を満たす 限りいかなる架橋基を持つモノマーを用いても良い。

別の言い方をすれば、髙分子樹脂マトリックスを形成 する重合反応で利用されたエネルギーとは別種のエネル ギーで励起される架橋反応が利用されるということであ

例えば、高分子樹脂マトリックス形成が熱ラジカル重 20 合によるものであるならば、電子線照射による架橋反応 あるいは紫外線照射による架橋反応等が実行可能であ る。

紫外線照射による架橋反応の一つの類型として、光カ チオン架橋開始剤を用いる方法がある。この方法を実行 する場合には、光カチオン架橋開始剤を髙分子樹脂マト リックスを形成する原料のモノマー中に適量(通常、1 ~5wt%)添加しておけば良い。使用される光カチオン 架橋開始剤の種類に特に制限はなく、公知のものを適宜 選択すれば良い。具体例としては、アリールジアゾニウ ム塩、ジアリールヨードニウム塩、トリアリールスルホ ニウム塩、トリアリールセレニウム塩、ジアルキルフェ ナシルスルホニウム塩、ジアルキルー4-ヒドロキシス ルホニウム塩、スルホン酸エステル、鉄・アレーン化合 物、シラノール・アルミニウム錯体等がある。

紫外線あるいは可視光によってラジカル反応による架 橋を励起することも当然考えられるが、その場合にはい わゆる光開始剤を使用すれば、架橋反応の速度を向上さ せることが出来る。

なお、紫外線や可視光などの光エネルギーを用いる場 40 合には、光強度が強すぎると、着色現象を招来すること があるので注意が必要である。

また、照射エネルギー線の透過力に応じて、後処理を 施すのに適した寸法(径)があることにも注意がはらわ れるべきである。例えば、ブリフォームを熱延伸して光 伝送体とする場合に、プリフォーム自体の寸法に制限は ないが、熱延伸後の光伝送体が太すぎると架橋反応に支 障をきたすことが有り得る。特に紫外線や電子線等は透 過力が弱いので配慮が必要である。紫外線の場合、直径 20mm以上であることは好ましくない。通常用いられる波 50 送損失と波長との関係を表した図である。

22

長と強度の紫外線が中心部まで十分に透過し得る径は、 3mm程度であり、1mm以下であれば特に好ましい。

以上、照射エネルギーに関連して幾つかの例を挙げた が、一般的には、用いるエネルギー線の種類と照射条件 は、重合体の組成、寸法、分子量、架橋性基の含有量等 を総合的に勘案して定められるべきである。

本発明においては、通常使用するモノマー材料の種類 等の条件を考慮すれば、放射線の中でもγ線あるいは電 子線による架橋を採用することが実際的であると思われ 10 る。

本発明の細目についての説明は以上の通りであるが、 ことで若干の捕捉事項を付記しておく。

まず、本発明においては髙分子樹脂マトリックスの原 料としてのモノマーの種類、異屈折率物質の種類、供給 するエネルギーの種類や条件及びそれに対応して選択さ れるラジカル重合開始剤等に関して、同時に複数のもの を選択して組み合わせることを妨げない。

また、それらの組合せの選択を通して、製造される光 学樹脂の光学的性質(屈折率分布、透明度、分光透過特 性、ラディエーションダメージに対する耐性等)、機械 的性質(強度、剛性等)、化学的乃至熱的性質(耐薬品 性、耐湿性、耐熱性、熱膨張率等)に対する各種の要望 に対処することが出来る点に注意が向けられるべきであ

次に、重合反応の種類に関して、後述する実施例を含 めてラジカル重合を利用する場合について本発明の説明 を行っているが、これは発明をなんら限定する趣旨のも のではなく、熱または光エネルギーを使ったラジカル重 合が工業的に最も多用されているという技術背景を考慮 してのものである。従って、ラジカル重合以外にもアニ オン重合、カチオン重合等任意の重合方法を利用すると とを全く妨げるものではない。

架橋による後処理については、耐熱性の向上を企図し て行われるのが通常であるが、架橋による後処理を行っ た光伝送体を高温条件が想定されない条件下で使用する ことを特に排除するものでないことは勿論である。

図面の簡単な説明

図1は、コア部における屈折率分布の α に対する依存 性を示した図である。

図2は、MMAとBBを用いて製造したGI型光ファイバー の屈折率分布を表した図である。

図3は、図2の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図4は、長さ20mの伝送後に観測される出射光パルス 波形をSI型光ファイバーとGI型光ファイバーについて示 した図である。

図5は、MMAとo-ジクロロベンゼンを用いて製造し たGI型光ファイバーの屈折率分布を表した図である。

図6は、図5の屈折率分布を有する光ファイバーの伝

図7は、ゾル化したMMAとBBを用いて製造したGI型光 ファイバーの屈折率分布を表した図である。

図8は、図7の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図9は、PMM管を用い、ゾル化したMMとBBを用いて 製造したGI型光ファイバーの屈折率分布を表した図であ

図10は、図9の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図11は、MMA-d8とBB-d5を用いて製造したGI型光フ ァイバーの屈折率分布を表した図である。

図12は、図11の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図13は、MMAとフタル酸ベンジル-n-ブチルを用い て製造したGI型光ファイバーの屈折率分布を表した図で

図14は、図13の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図15は、MMAと安息香酸ベンジルを用いて製造したGI 型光ファイバーの屈折率分布を表した図である。

図16は、図15の屈折率分布を有する光ファイバーの伝 送損失と波長との関係を表した図である。

図17は、MMAとメタクリル酸とローダミン6Gとを用い て製造したGI型光ファイバーの屈折率分布を表した図で ある。

図18は、MMAとDRIを用いて製造したGI型光ファイバー の屈折率分布を表した図である。

図19は、異屈折率物質として用いられたポリエステル アクリレート系オリゴマーの構造式を示した図である。

図20は、MMAとポリベンジルメタクリレートを用いて 製造したGI型光ファイバーの屈折率分布を表した図であ

発明を実施するための最良の形態

発明を実施するための最良の形態を幾つかの実施例に よって、説明する。

<実施例1>

水平に保持した内径10mmのガラス管内に、メチルメタ クリレート(MMA)と、0.5wt%のベンゾイルパーオキサ イド (BPO)、0.15wt%のノルマルブチルメルカプタン (nBM)を充填し、両端を封管した後に1000rpmで回転さ せながら、80℃のオーブンに入れて熱重合させ、外径10 mm、内径6mm、分子量約10万のポリメチルメタクリレー ト管(PMM重合管)を製造した。

PMMA重合管を水平に保持し、重合性単量体と異屈折率 物質を含む混合溶液を充填した。重合性単量体は、メチ ルメタクリレート(MMA)とし、異屈折率物質はブロモ ベンゼン(BB)を用い、混合比は4:1(重量比)とし た。ラジカル重合開始剤としてベンゾインメチルエーテ ル (BME) を0.3wt%、連鎖移動剤としてノルマルブチル

気泡が残らないように注意して管の両端を封じた。回転 速度30rpmで回転させながら、通常のUV光源を使用して 紫外線を照射して重合を行った。約8時間を要して外径 10mmのロッド状の合成樹脂を得た。

との合成樹脂ロッドに対して、0.2mmHa以下、105℃の 条件下で減圧熱処理を24時間にわたって施した。これを 更に190℃から200℃に保たれた円筒状加熱炉の上部から 徐々に挿入し、十分に軟化した時点で、下部から一定速 度の紡糸を開始した。このようにして得られた直径0.6m m. 長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を 用いた横方向干渉法で測定したところ、全長にわたって 図2 に示した屈折率分布とほぼ一致したプロファイルが 観測された。

との屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値はほぼ1.98という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同 じ試料について伝送損失を測定したところ、図3に示し た結果を得た。例えば、波長580nmにおける伝送損失値 は98dB/kmであり、光学樹脂として高い透明度を有して 20 いることが確認された。

次に、伝送帯域について測定を行った。光源として波 長670nmのLD(レーザーダイオード)を用い、これをパ ルスジェネレータから送出される80psのパルスによって 駆動した。LDからの出射パルス光を、開口数0.5の対物 レンズを用いて集光し、試料となる光ファイバーの端面 から入射させた。該光ファイバー内を20m導光させた光 を出射端から取り出して光検知サンプリングヘッドで受 光し、出射光パルスの波形をサンプリングオシロスコー プで検出した。検出された波形は、図4中にGI POFで 示した通りのものであった。図4に併記されているSI POFは、市販されているSI型光ファイバーに対して同じ 測定を行った場合に検出された波形を示しており、INPU T PULSEは入力光パルス波形を表している。

SI POFでは入力パルス波形が大きく崩れているのに 対し、本実施例で得られた光ファイバーGI POFでは入 力波形に崩れが殆ど無いことが図4から直ちに判るであ

また、出力光パルスをフーリエ変換して、周波数特性 を測定し、3dB減衰を与える周波数を求めたところ、約1 CHz・kmであった。このことから、本実施例で得られた 光ファイバーは、市販されているSI型光ファイバーの約 200倍の伝送帯域を有していることが判った。 <実施例2>

内径10mmのガラス管を水平に保持し、重合性単量体と してメチルメタクリレート(MMA)を用い、異屈折率物 質としてo-ジクロロベンゼンを用いて、混合比4:1 (重量比)の混合溶液を充填した。ラジカル重合開始剤 としてベンゾインメチルエーテル (BME) を0.3wt%、連 鎖移動剤としてノルマルブチルメルカプタン(nBM)を メルカプタン(nBM)を0.15wt%添加してから、内部に 50 0.15wt%添加注入してから、内部に気泡が残らないよう

に注意して管の両端を封じた。回転速度30rpmで回転させながら、通常のUV光源を使用して紫外線を照射して重合を行った。約8時間を要して外径10mmのロッド状の合成樹脂を得た。

重合管(ガラス管)から取り出した合成樹脂ロッドに対し、0.2mmHq以下、105℃の条件下で減圧熱処理を24時間にわたって施した。これを更に190℃から200℃に保たれた円筒状加熱炉の上部から徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたって図5に示した屈折率分布とほぼ一致したプロファイルが観測された。

との屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数 α の値はほぼ1.90という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同じ試料について伝送損失を測定したところ、図6に示した結果を得た。例えば、波長580mkにおける伝送損失値は130dB/kmであり、光学樹脂として十分な透明度を有していることが確認された。

次に、伝送帯域について測定を行った。光源として波長670nmのLD(レーザーダイオード)を用い、これをパルスジェネレータから送出される80psのパルスによって駆動した。LDからの出射パルス光を、開口数0.5の対物レンズを用いて集光し、試料となる光ファイバーの端面から入射させた。該光ファイバー内を20m導光させた光を出射端から取り出して光検知サンプリングへッドで受光し、出射光パルスの波形をサンプリングオシロスコープで検出した。検出信号をフーリエ変換して、周波数特性を測定し、3dB減衰を与える周波数を求めたところ、約500MHz・kmであった。このことから、この実施例で得られた光ファイバーは、市販されているSI型光ファイバーの約100倍の伝送帯域を有していることが判った。<実施例3>

まず、試験管にMMAを入れ、0.5wt%のベンゾイルバーオキサイド(BPO)と、0.15wt%のノルマルブチルメルカプタン(nBM)を添加し、70℃で40分間加熱することにより、MMAのゾルを調製した。このMMAゾルに、異屈折率物質としてブロモベンゼン(BB)を、混合比4:1(重量比)となるように混合して十分に撹はんし、混合溶液を水平に保持した内径10mmのガラス管内に充填した。内部に気泡が残らないように注意して管の両端を封じ、回転速度30rpmで回転させながら、周囲より通常の方法に従って加熱することにより、約20時間にわたって熱重合を行った。合成された外径10mmのロッド状の樹脂をガラス管から取り出し、0.2mmHq以下、105℃の条件下で減圧熱処理を24時間にわたって施した。これを190℃から200℃に保たれた円筒状加熱炉の上部から徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。このようにして得られた直径0.6mm 長さ50mの光フ

ァイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉 法で測定したところ、全長にわたって図7に示した屈折 率分布とほぼ一致したプロファイルが観測された。

この屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値として

$\alpha \boxtimes 2$. 4

という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同じ試料について伝送損失を測定したところ、図8に示した結果を得た。波長580nmにおける伝送損失値は110dB/kmであり、光学樹脂として十分な透明度を有していることが確認された。

次に、伝送帯域について測定を行った。光源として波長670nmのLD(レーザーダイオード)を用い、これをパルスジェネレータから送出される80psのパルスによって駆動した。LDからの出射パルス光を、開口数0.5の対物レンズを用いて集光し、試料となる光ファイバーの端面から入射させた。該光ファイバー内を20m導光させた光を出射端から取り出して光検知サンプリングヘッドで受光し、出射光パルスの波形をサンプリングオシロスコープで検出した。検出信号をフーリエ変換して、周波数特性を測定し、3dB減衰を与える周波数を求めたところ、約150MHz・kmであった。このことから、この実施例で得られた光ファイバーは、市販されているSI型光ファイバーの約30倍の伝送帯域を有していることが判った。<実施例4>

水平に保持した内径10mmのガラス管内に、メチルメタクリレート (MMA) と、0.5wt%のベンゾイルパーオキサイド (BPO)、0.15wt%のノルマルブチルメルカブタン (nBM) を充填し、両端を封管した後に1000rpmで回転させながら、80°Cのオーブンに入れて熱重合させて、外径10mm、内径6mm、分子量約10万のポリメチルメタクリレート管 (PMMA管)を製造して水平に保持し、重合管とした

一方、試験管にMMAを入れ、0.5wt%のベンゾイルバーオキサイド (BPO) と、0.15wt%のノルマルブチルメルカプタン (nBM) を添加し、70°Cで40分間加熱することにより、MMAのゾルを調製した。とのMMAゾルに、異屈折率物質としてブロモベンゼン (BB) を、混合比4:1 (重量比)となるように混合して十分に撹はんし、混合溶液を先の水平に保持したPMMA製重合管内に充填した。内部に気泡が残らないように注意して管の両端を封じ、回転速度30rpmで回転させながら、周囲より通常の方法に従って加熱することにより、約20時間にわたって熱重合を行った。

から一定速度の紡糸を開始した。このようにして得られ た直径0.6mm、長さ50mの光ファイバーの屈折率分布を干 渉顕微鏡を用いた横方向干渉法で測定したところ、全長 にわたって図9に示した屈折率分布とほぼ一致したプロ ファイルが観測された。

との屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値として

$\alpha \boxtimes 1. 7$

という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同 じ試料について伝送損失を測定したところ、図10に示し た結果を得た。波長580nmにおける伝送損失値は110dB/k mであり、光学樹脂として十分な透明度を有していると とが確認された。

次に、伝送帯域について測定を行った。光源として波 長670nmのLD(レーザーダイオード)を用い、これをバ ルスジェネレータから送出される80psのパルスによって 駆動した。LDからの出射パルス光を、開口数0.5の対物 レンズを用いて集光し、試料となる光ファイバーの端面 から入射させた。該光ファイバー内を20m導光させた光 を出射端から取り出して光検知サンプリングヘッドで受 ・光し、出射光バルスの波形をサンプリングオシロスコー ブで検出した。検出信号をフーリエ変換して、周波数特 性を測定し、3dB減衰を与える周波数を求めたところ、 約130MHz・kmであった。とのととから、この実施例で得 られた光ファイバーは、市販されているSI型光ファイバ ーの約25倍の伝送帯域を有していることが判った。 <実施例5>

水平に保持した内径10mmのガラス管内に、すべての水 30 素原子(H原子)を重水素で置換した分子構造を有する メチルメタクリレート (MMA-d8) と、0.5wt%のベンゾ イルパーオキサイド(BPO)、0.15wt%のノルマルブチ ルメルカプタン (nBM) を充填し、両端を封管した後に1 000rpmで回転させながら、80℃のオーブンに入れて熱重 合させて、外径10mm、内径6mm、分子量約10万の重水素 化ポリメチルメタクリレート管 (PMMA-d8重合管)を製 造した。

ガラス管から取り出したPMMA = d8重合管を水平に保持 して重水素化された重合性単量体と重水素化された異屈 40 折率物質の混合溶液を充填した。即ち、すべてのH原子 をD原子で置き換えた形の分子構造を有する重水素化メ チルメタクリレート (MMA-d8) と、同じくすべてのH 原子をD原子で置き換えた形の分子構造を有する重水素 化ブロモベンゼン (BB-d5) とを、混合比4:1 (重量 比)で混合し、ラジカル重合開始剤としてベンゾインメ チルエーテル(BME)を0.3wt%、連鎖移動剤としてノル マルブチルメルカプタン(nBM)を0.15wt%添加してか ら、内部に気泡が残らないように注意して管の両端を封 じた。回転速度30rpmで回転させながら、通常のUV光源 50 を使用して紫外線を照射して重合を行った。約8時間を 要して外径10mmのロッド状の合成樹脂を得た。

28

この合成樹脂ロッドに対して、0.2mmHa以下、105℃の 条件下で減圧熱処理を24時間にわたって施した。これを 更に190℃から200℃に保たれた円筒状加熱炉の上部から 徐々に挿入し、十分に軟化した時点で、下部から一定速 度の紡糸を開始した。

とのようにして得られた直径0.6mm、長さ50mの光ファ イバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法 10 で測定したところ、全長にわたって図11に示した屈折率 分布とほぼ一致したプロファイルが観測された。

この屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値はほぼ1.7という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同 じ試料について伝送損失を測定したところ、図12に示し た結果を得た。

図12を図3、6、8及び10と比較して直ちに気付くと とは、600nmと650nmの間に存在した吸収ピークが消えて いることである。これは明らかに水素原子の重水素化に よる効果が現れたものである。比較的長波長(近赤外線 領域)の波長740mmにおいても伝送損失値は100dB/km程 度であり、該波長付近から可視光領域にわたる広い波長 範囲でコンスタントな透明度を有する光学樹脂が本実施 例の方法によって製造されたことを示している。

次に、伝送帯域について測定を行った。光源として波 長670nmのLD(レーザーダイオード)を用い、これをパ ルスジェネレータから送出される80psのパルスによって 駆動した。LDからの出射パルス光を、開口数0.5の対物 レンズを用いて集光し、試料となる光ファイバーの端面 から入射させた。該光ファイバー内を20m導光させた光 を出射端から取り出して光検知サンプリングヘッドで受 光し、出射光パルスの波形をサンプリングオシロスコー プで検出した。検出信号をフーリエ変換して、周波数特 性を測定し、3dB減衰を与える周波数を求めたところ、 約150MHz・kmであった。このことから、本実施例で得ら れた光ファイバーは、市販されているSI型光ファイバー の約30倍の伝送帯域を有していることが判った。 <実施例6>

水平に保持した内径10mmのガラス管内に、メチルメタ クリレート (MMA) と、0.5wt%のベンゾイルバーオキサ イド(BPO)、0.15wt%のノルマルブチルメルカプタン (nBM)を充填し、両端を封管した後に1000rpmで回転さ せながら、70℃のオーブンに入れて熱重合させて、外径 10mm、内径3mm、分子量約10万のポリメチルメタクリレ ート管 (PMMA管)を製造して水平に保持し、重合管とし た。

MMAに、異屈折率物質としてフタル酸ベンジルーnー ブチルを、混合比4:1(重量比)となるように混合し、 混合溶液を先の水平に保持したPMM製重合管内に充填し た。ラジカル重合開始剤としてBPOを0.5wt%、連鎖移動

剤としてnBMを0.15wt%添加注入し、内部に気泡が残らないように注意して管の両端を封じ、回転速度30rpmで回転させながら、周囲より通常の方法に従って加熱することにより、約20時間にわたって熱重合を行った。

合成された外径10mmのロッド状の樹脂を取り出し、0.2mmHa以下、180℃の条件下で減圧熱処理を24時間にわたって施した。これを210℃から220℃に保たれた円筒状加熱炉の上部から徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。

このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたって図13に示した屈折率分布とほぼ一致したプロファイルが観測された。

との屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数 α の値として α =約2.6という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同じ試料について伝送損失を測定したところ、図10に示した結果を得た。波長650nmにおける伝送損失値は150dB/kmであり、光学樹脂として相当の透明度を有していることが確認された。

次に、伝送帯域について測定を行った。光源として波長670nmのLD(レーザーダイオード)を用い、これをパルスジェネレータから送出される80psのパルスによって駆動した。LDからの出射パルス光を、閉口数0.5の対物レンズを用いて集光し、試料となる光ファイバーの端面から入射させた。該光ファイバー内を20m導光させた光を出射端から取り出して光検知サンプリングヘッドで受光し、出射光パルスの波形をサンプリングオシロスコープで検出した。検出信号をフーリエ変換して、周波数特性を測定し、3dB減衰を与える周波数を求めたところ、約100MHz・kmであった。このことから、この実施例で得られた光ファイバーは、市販されているSI型光ファイバーの約20倍の伝送帯域を有していることが判った。<実施例7>

水平に保持した内径10mmのガラス管内に、メチルメタクリレート (MMA) と、0.5wt%のベンゾイルパーオキサイド (BPO)、0.15wt%のノルマルブチルメルカプタン (nBM)を充填し、両端を封管した後に1000rpmで回転させながら、70°Cのオーブンに入れて熱重合させて、外径 4010mm、内径3mm、分子量約10万のポリメチルメタクリレート管 (PMM基合管)を製造した。

PMM組合管を水平に保持し、重合性単量体と異屈折率物質を含む混合溶液を充填した。重合性単量体は、メチルメタクリレート (MMA) とし、異屈折率物質は安息香酸ベンジルを用い、混合比は4:1 (重量比) とした。ラジカル重合開始剤としてBPOを0.5wt%、連鎖移動剤としてノルマルブチルメルカプタン (nBM) を0.15wt%添加してから、内部に気泡が残らないように注意して管の両端を封じた。回転速度30rpmで回転させながら、通常の50

方法に従って周辺から加熱し、重合を行った。約20時間 を要して外径10mmのロッド状の合成樹脂を得た。

との合成樹脂ロッドに対して、0.2mmHo以下、120℃の条件下で減圧熱処理を24時間にわたって施した。とれを更に210℃から220℃に保たれた円筒状加熱炉の上部から一定速度で徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。

このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたって図15に示した屈折率分布とほぼ一致したプロファイルが観測された。

この屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値はほぼ1.90という結果が得られた。

また、白色光源とスペクトラムアナライザを用いて同じ試料について伝送損失を測定したところ、図16に示した結果を得た。例えば、波長580nmにおける伝送損失値は150dB/kmであり、光学樹脂として相当程度の透明度を有していることが確認された。

次に、伝送帯域について測定を行った。光源として波 長670nmのLD(レーザーダイオード)を用い、これをパ ルスジェネレータから送出される80psのパルスによって 駆動した。LDからの出射パルス光を、開口数0.5の対物 レンズを用いて集光し、試料となる光ファイバーの端面 から入射させた。該光ファイバー内を20m導光させた光を出射端から取り出して光検知サンプリングヘッドで受光し、出射光パルスの波形をサンプリングオシロスコープで検出した。検出信号をフーリエ変換して、周波数特性を測定し、3dB減衰を与える周波数を求めたところ、約300MHz・kmであった。このことから、本実施例で得ら 10 た光ファイバーは、市販されているSI型光ファイバーの約60倍の伝送帯域を有していることが判った。<実施例8>

水平に保持した内径10mmのガラス管内に、メチルメタクリレート(MMA)と、0.5wt%のベンゾイルバーオキサイド(BPO)、0.15wt%のノルマルブチルメルカプタン(nBM)を充填し、両端を封管した後に1000rpmで回転させながら、70°Cのオーブンに入れて熱重合させて、外径10mm、内径3mm、分子量約10万のポリメチルメタクリレート管(PMMA重合管)を製造した。

PMM重合管を水平に保持し、メチルメタクリレート (MMA) とメタクリル酸を1:1 (重量比) で混合した溶液 に、異屈折率物質としてローダミン6Cを6:1 (重量比) の割合で加えたものを充填した。そして、ラジカル重合 開始剤としてBPOを0.5wt%、連鎖移動剤としてノルマルブチルメルカプタン (nBM) を0.15wt%添加注入してから、内部に気泡が残らないように注意して管の両端を封じた。回転速度30rpmで回転させながら、通常の方法に従って周辺から加熱し、重合を行った。約20時間を要して外径10mmのロッド状の合成樹脂を得た。

との合成樹脂ロッドに対して、0.2mmHq以下、120℃の

条件下で減圧熱処理を24時間にわたって施した。これを 更に210°Cから220°Cに保たれた円筒状加熱炉の上部から 一定速度で徐々に挿入し、十分に軟化した時点で、下部 から一定速度の紡糸を開始した。

このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたって図1元に示した屈折率分布とほぼ一致したプロファイルが観測された。

との屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値はほぼ1.7という結果が得られた。 <実施例9>

水平に保持した内径10mmのガラス管内に、メチルメタクリレート(MMA)と、0.5wt%のベンゾイルパーオキサイド(BPO)、0.15wt%のノルマルブチルメルカプタン(nBM)を充填し、両端を封管した後に1000rpmで回転させながら、70°Cのオープンに入れて熱重合させて、外径10mm、内径3mm、分子量約10万のポリメチルメタクリレート管(PMMA重合管)を製造した。

PMM車合管を水平に保持し、メチルメタクリレート (MMA) に、異屈折率物質としてディスパーズレッド1 (DR1)を混合比4:1(重量比)の割合で加えたものを充填した。そして、ラジカル重合開始剤としてBPOを0.5wt%、連鎖移動剤としてノルマルブチルメルカプタン (nBM)を0.15wt%添加注入してから、内部に気泡が残らないように注意して管の両端を封じた。回転速度30rpmで回転させながら、通常の方法に従って周辺から加熱し、重合を行った。約20時間を要して外径10mmのロッド状の合成樹脂を得た。

この合成樹脂ロッドに対して、0.2mmHg以下、120℃の条件下で減圧熱処理を24時間にわたって施した。これを更に210℃から220℃に保たれた円筒状加熱炉の上部から一定速度で徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。

このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたって図18に示した屈折率分布とほぼ一致したプロファイルが観測された。

この屈折率分布を前記式(1)の形で近似すると、屈 折率分布係数αの値はほぼ1.5という結果が得られた。 <実施例10>

水平に保持した内径10mmのガラス管内に、メチルメタクリレート(MMA)と、0.5wt%のベンゾイルパーオキサイド(BPO)、0.15wt%のノルマルブチルメルカプタン(nBM)を充填し、両端を封管した後に1000rpmで回転させながら、80°Cのオーブンに入れて熱重合させて、外径10mm、内径6mm、分子量約10万のポリメチルメタクリレート管(PMMA重合管)を製造した。

PMM重合管を水平に保持し、重合性単量体と異屈折率 物質を含む混合溶液を充填した。重合性単量体は、メチ ルメタクリレート (MMA) とし、異屈折率物質には、図1 50 9に示した構造を有する分子量1500のポリエステルアクリレートオリゴマーを使用した。異屈折率物質の混合割合は10xt%とした。

32

そして、ラジカル重合開始剤としてベンゾインメチルエーテル(BME)を0.3wt%、連鎖移動剤としてノルマルブチルメルカプタン(nBM)を0.15wt%注入添加してから、内部に気泡が残らないように注意して管の両端を封じた。回転速度30rpmで回転させながら、通常のUV光源を使用して紫外線を照射して重合を行った。約8時間を到して外径10mmのロッド状の合成樹脂を得た。

この合成樹脂ロッドに対して、0.2mmHo以下、105℃の条件下で減圧熱処理を24時間にわたって施した。これを更に180℃に保たれた円筒状加熱炉の上部から徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。

このようにして得られた直径0.6mm、長さ50mの光ファイバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法で測定したところ、全長にわたってほぼ均等な屈折率分布を有していた。屈折率分布の形状は、中心軸部分から 周縁部に至る経路の約70%についてはいわゆる2乗分布型の曲線を描いて屈折率が減小し、そこから周縁部に至る残りの約30%の領域についてはほぼ一定の屈折率となっているものであった。

中心軸部分の屈折率と周縁部の屈折率の差は、約0.02 であった。

<実施例11>

40

水平に保持した内径10mmのガラス管内に、メチルメタクリレート(MMA)と、0.5wt%のベンゾイルバーオキサイド(BPO)、0.15wt%のノルマルブチルメルカプタン(nBM)を充填し、両端を封管した後に1000rpmで回転させながら、80°Cのオーブンに入れて熱重合させて、外径10mm、内径6mm、分子量約10万のポリメチルメタクリレート管(PMMA重合管)を製造した。

PMM重合管を水平に保持し、重合性単量体のメチルメタクリレート(MMA)に、異屈折率物質として、互いに等量のMMAとベンジルメタクリレートとの共重合体を20wt%の割合で溶解した混合溶液を充填した。ラジカル重合開始剤としてベンゾインメチルエーテル(BME)を0.3wt%、連鎖移動剤としてノルマルブチルメルカブタン(nBM)を0.15wt%注入添加してから、内部に気泡が残らないように注意して管の両端を封じた。回転速度30rpmで回転させながら、通常のUV光源を使用して紫外線を照射して重合を行った。約8時間を要して外径10mmのロッド状の合成樹脂を得た。

この合成樹脂ロッドに対して、0.2mmHq以下、105℃の条件下で減圧熱処理を24時間にわたって施した。これを更に200℃に保たれた円筒状加熱炉の上部から徐々に挿入し、十分に軟化した時点で、下部から一定速度の紡糸を開始した。

とのようにして得られた直径0.5mm、長さ50mの光ファ

イバーの屈折率分布を干渉顕微鏡を用いた横方向干渉法 で測定したところ、全長にわたってほぼ均等な屈折率分 布を有していた。屈折率分布の形状は、図20亿示したよ うに、中心軸部分から周縁部に至る経路の約80%につい てはいわゆる2乗分布型の曲線を描いて屈折率が減小 し、そこから周縁部に至る残りの約20%の領域について はほぼ一定の屈折率となっているものであった。中心軸 部分の屈折率と周縁部の屈折率の差は、約0.02であっ tc.

産業上の利用性

本発明によれば、従来の光学樹脂では実現が困難であ った、高い透明性と十分な屈折率差乃至勾配を有した光 ファイバー、光導波路、単焦点あるいは多焦点のレンズ 等の光伝送体を得ることが可能となる。

また、本発明の屈折率分布型光学樹脂の屈折率プロフ ァイルは各実施例における結果からも明らかなように、 極めて滑らかな曲線を与えるものである。

このことは、本発明の光学樹脂からなるプリフォーム を熱延伸して光ファイバを作製した場合に、その特性を 良好なものとする上で極めて有利に作用する。すなわ ち、屈折率プロファイル曲線が滑らかであるということ は、局所的な屈折率のゆらぎが小さいことを意味し、こ のことは低損失であると共に無用なモード変換(多モー ドファイバの場合)が生じない、安定した伝送帯域を有 する光ファイバが得られることに直結する。

* また、本発明では、髙分子樹脂マトリックスの原料と してのモノマーの種類、異屈折率物質の種類、供給する エネルギーの種類や条件とれ対応して選択されるラジカ ル重合開始剤等に関して、同時に複数のものを選択して 組み合わせることを妨げない。従って、それらの組合せ の選択を通して、製造される光学樹脂の光学的性質(屈 折率分布、透明度、分光透過特性、ラディエーションダ メージに対する耐性等)、機械的性質(強度、剛性 等)、化学的乃至熱的性質(耐薬品性、耐湿性、耐熱 10 性、熱膨張率等)に対する各種の要望に対処することが

出来る。

特に、耐熱性に関しては、高分子樹脂マトリックス形 成の為の重合反応が終了し、必要な熱延伸等を経て、一 応製品が出来上がった後に、後処理の形でγ線等を照射 して架橋反応を生起させることにより、著しく特性が改 善された光伝送体を得ることが出来る。

本発明によって提供される屈折率分布型光学樹脂を素 材とする光伝送体は、光ファイバー、各種レンズ、各種 光デバイスの構成要素(光導波路、光カップラー、分波 20 器等)、殆どすべての光学要素に利用し得るものであ り、通常用いられる石英系材料に比べて、加工性(熱延 伸可能)、経済性、軽量性等で優れているので、あらゆ る光学関連分野において高い有用性が発揮されることに 疑いはない。

【第1図】

【第4図】

【第19図】

フロントページの続き

(58)調査した分野(Int.Cl.', DB名)

G02B 1/04

G02B 6/00

G02B 6/18

C08F 2/00

COSL 101/00