

Laboratorio 1

PROCESAMIENTO DE SEÑALES E IMÁGENES

Profesores:

• Violeta Chang C.

· Leonel E. Medina

Ayudante: Luis Corral

Introducción a MATLAB

En MATALB representamos las variables numéricas como vectores y matrices. Cuando omitimos el punto y coma al final de una línea de código, su valor puede ser visto en el panel lateral. Podemos utilizar los operadores de suma, resta multiplicación, división y exponenciación (+,-,*,/,^). Un punto antes del operador indica operación elemento a elemento.

Las funciones generadoras permiten crear datos enteros y de punto flotante de manera simple. Existen variadas formas de crear matrices y vectores, las cuales pueden ser consultadas en la documentación MATLAB Help.

20.2500

16.0000

4.0000

6.2500

9.0000

12.2500

```
c_1 = 0:1:5
                          % Vectores espaciados linealmente
c_1 = 1 \times 6
    0
          1
                2
                      3
                            4
                                  5
                          % inicio:distancia:fin o,
c_2 = linspace(0,5,6) % linspace(inicio,fin,largo).
c_2 = 1 \times 6
          1
                                  5
    0
                2
                      3
d = zeros(2,3)
                          % Matriz de zeros 2x3
d = 2 \times 3
    0
          0
                0
     O
```

Para cambiar las dimensiones y valores, utilizamos concatenaciones, slicing, reshape, o permute (más la ya mencionada transpuesta) según corresponda:

```
d_2 = permute(d,[2,1]) % Matriz de zeros 3x2.
d_2 = 3 \times 2
    0
          0
     0
           0
                            % Se cambian los valores desde la
c_1(1,3:end) = 0
c_1 = 1 \times 6
    0
          1
                 0
                       0
                                   0
                            % posición 3 hasta el final por 0.
c_3 = [[c_1; c_2] d]
                            % Matriz de 2x9
c_3 = 2 \times 9
     0
          1
                 0
                       0
                             0
                                   0
                                         0
                                               0
                                                     0
     0
          1
                 2
                       3
                                   5
                                               0
                                                     0
c_4 = [1 \ 2;3 \ 4]
                            % Matriz de 2x2
```

```
c_4 = 2 \times 2
1
2
3
4
```

```
d = reshape(d,[1,6]) % Vector de zeros 1x6

d = 1x6
0 0 0 0 0 0
```

Señales discretas

La representación de señales discretas se puede realizar utilizando la función stem(eje_x, eje_y) para generar gráficos. Las funciones title, xlabel, ylabel e ylim nos permiten dar formato al gráfico. Las funciones trigonométricas funcionan sobre el arreglo directamente.

Para señales de mayor cantidad de muestras, la función plot(eje_x, eje_y) nos entrega un gráfico de líneas entre cada muestra. Ambas señales son discretas, pero utilizamos plot para mejorar la visualización.

Representación de señales como suma de sinusoides

Una señal se puede aproximar como la suma de señales sinusoidales. Podemos generar esta señal a partir de un ciclo for (floor redondea hacia -infinito):

```
clearvars
t = -0.5:0.01:1;
                                     % Equivalente a 1 1/2 ciclos.
N = length(t);
                                     % Onda cuadrada.
d = -ones(1,N);
d(1,floor(N/3)+1:2*floor(N/3)+1) = 1;
y_t = \sin(2*pi*t);
                                      % Sinusoidal del igual periodo.
                                     % Cantidad de sinusoides.
fin = 3;
for i = 3:2:fin
                                      % Ciclo for.
    y_t = y_t + \sin(i*2*pi*t)/i;
                                     % i se utiliza como coeficientes
                                      % de Fourier.
                                      % El último valor de i = fin.
end
figure
stairs(t,d)
                                     % Gráfico de escaleras para
hold on
                                      % visualizar funciones discontinuas.
plot(t,(4/pi)*y_t)
hold off
```


Energía y potencia

Señal de energía total finita (en el intervalo $0 \le n \le 10$) x[n] = 1 para $0 \le n \le 10$ x[n] = 0 en el resto:


```
E_{inf_rect} = sum(abs(x_n).^2)/T % Energía total.
```

E_inf_rect = 1

Señal de potencia promedio finita x[n] = 4 para todo n (sum suma todos los valores):


```
P_prom_const = (1/(2*N_v+1))*sum(x_n.^2) % Potencia promedio.
```

P_prom_const = 16

Transformaciones en variable independiente

Desplazamiento de tiempo (shifting):

```
clearvars
t = 0:0.1:5;
T = 10;
                                 % 10 muestras serán equivalente a 1.
y = zeros(1, length(t));
y(1,1:2*T+1) = 1;
                                 % Señal Figura 1.13 Oppenheim.
y(1,T:2*T+1) = y(1,T:2*T+1)-linspace(0,1,T+2);
t = [-5:0.1:-0.1 t];
y = [zeros(1,50) y];
y_shift = circshift(y,-10);
                                 % Desplaza la señal de manera circular
                                 % manteniendo el número de muestras.
figure
subplot(2,1,1)
                                 % Subgráficos de 2 filas 1 columna.
stem(t,y)
xlim([-2 3])
```

```
ylim([0 2])
title('Señal original.')
xlabel('t')
subplot(2,1,2)
stem(t,y_shift)
xlim([-2 3])
ylim([0 2])
title('Señal desplazada -10.')
xlabel('t')
```


Inversión:

Contracción:

```
figure
subplot(2,1,1)
stem(t,y)
xlim([-2 3])
ylim([0 2])
title('Señal original.')
xlabel('t')
subplot(2,1,2)
stem(-t*2/3,y_shift) % Se comprime los valores de t para el gráfico.
xlim([-1 1])
                       % Los valores de t no cambian.
hold on
xline(-2/3, '-r')
                       % Línea vertical roja en x = -2/3.
hold on
                       % Línea vertical roja en x = 2/3.
xline(2/3,'-r')
title('Señal comprimida en 2/3 e invertida.')
xlabel('t')
ylim([0 2])
```


Señales periódicas

En Matlab podemos utilizar la función gensig para generar señales periódicas.

Señales par e impar

Podemos generar señales pares es impares a partir de una señal de largo finito.

```
N = 100;
t = linspace(0,1,N);
y = \sin(2*pi*t) + \sin(4*pi*t);
y(N/2+1:end) = 0;
                           % Señal. Para vectores podemos omitir
figure
                           % el primer numero en la indexación.
subplot(3,1,1)
plot(t,y)
ylim([-2 2])
title('Señal original.')
xlabel('t')
y_s = [fliplr(y(2:end)) y]; % a derecha.
subplot(3,1,2)
plot(t_s,y_s)
ylim([-2 2])
title('Señal par.')
xlabel('t')
                           % Negando el valor de la señal se vuelve
y_as = [-fliplr(y(2:end)) y];
subplot(3,1,3)
                           % impar.
```

```
plot(t_s,y_as)
ylim([-2 2])
title('Señal impar.')
xlabel('t')
```


Señales exponenciales y sinusoidales discretas

Exponenciales:


```
a = 0.6;
y = C*a.^n;
figure
stem(n,y)
hold on
yline(1,'-r')
title('Señal exponencial a = 0.6;')
xlabel('x[n]')
```



```
a = -0.6;
y = C*a.^n;
figure
stem(n,y)
hold on
yline(1,'-r')
title('Señal exponencial a = -0.6;')
xlabel('x[n]')
```



```
a = -1.5;
y = C*a.^n;
figure
stem(n,y)
hold on
yline(1,'-r')
title('Señal exponencial a = -1.5;')
xlabel('x[n]')
```


Sinusoidales:

```
n = -12:12;
y = cos(2*pi*n/12);
figure
subplot(3,1,1)
stem(n,y)
title('Señales sinusoidales periódicas.')
xlabel('x[n]')
y = \cos(8*pi*n/31);
subplot(3,1,2)
stem(n,y)
y = cos(n/6);
                              % No periódica.
subplot(3,1,3)
stem(n,y)
title('Señal sinusoidal no periódica.')
xlabel('x[n]')
```


Sistema discreto

Podemos probar la linealidad de un sistema discreto que desplaza una señal en 3 muestras y la escala en 0.8 con dos señales distintas.

```
y[n] = 0.8x[n-3]
```

```
zpv = 12;
n = -zpv:zpv;
x_n_1 = zeros(1, length(n));
                                % Señal impulso unitario.
x_n_1(zpv+1) = 1;
                                % Señal impulso unitario desplazada en
x_n_2 = circshift(x_n_1, 2);
                                % 2 muestras.
figure
subplot(2,1,1)
stem(n,x_n_1)
title('Señal original 1.')
xlabel('x_2[n]')
subplot(2,1,2)
stem(n,x_n_2)
title('Señal original 2.')
```



```
y_1 = 0.8*circshift(x_n_1,3); % Dos salidas a partir de ingresar ambas
y_2 = 0.8*circshift(x_n_2,3); % señales al sistema por separado.
figure
subplot(2,1,1)
stem(n,y_1)
title('Salida y_1[n] señal 1.')
xlabel('y_1[n]')
subplot(2,1,2)
stem(n,y_2)
title('Salida y_2[n] señal 2.')
xlabel('y_2[n]')
```


Ejercicio

Cree una señal **discreta** a partir de la función impulso unitario $\delta[n]$ definida como:

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

para el intervalo $-10 \le n \le 10$. A partir de esta señal $\delta[n]$, cree la señal escalón unitario u[n] discreta para el mismo intervalo utilizando la transformación de corrimiento (shifting) vista anteriormente y una iteración con ciclo for. Se evalúa los conceptos en formato de texto, los comentarios dentro del código, la exactitud del algoritmo y la calidad de los gráficos generados. Muestre solo los valores más importantes.

Referencias

[1] Oppenheim, A.V. & Willsky, A.S. & Nawab, S.H. (1997). Señales y sistemas (2nd ed.). Prentice Hall.