Time complexity. & space complexity

* order complexity Anglysis

Amount of space or Time taken to an algorithm / code as function of input size.

Not the actual time taken.

if it determine the for relation between for

· linear gearch (logrest find)

not operations 1

* Case 1

n 1 + 1

Tan
! Time is for of n

* Case 3

n 1 transtant

: Time is not for of n

Time complexity for.

I'e TC = O(n)

J=070+b

ie it igner cost

J= n

* Big omega Notation

bound remoi theresease ti of t + ie it & shows Best case Tc. it.c= 25 (Us) then to of code will be more it n3 , n4. n5 3 50 on

* Big Theta (a) Notation

3 it greprest average atc

when code our in o(n2) -) woost ic 8 12(02) -> Best 70

" O(n2) -> average TC 1. O (n2) 2+00 +500 sont

(n)0 31

* Space complexity

memory spare > stack > functions

space complexity = input space auxiliary space

```
* Time complexity Analysis
                          0(1)
 9) Fox (int i = 0) 120; i++) :-
   for (in) i=0; i<n; i++)
 2)
    (o(n^2))
      1=0
            n-2 +
              n-3 1
   for Cint 1=0; 1<0; 1++)
   ₹ for (in+j=o; j<+; j++) & }
    ON 1=0100 To John Dones
      1=1 (1100 100=0 10 0
          5=0 to 7
      1=2
             v= 0 +02
      1 - 3
    4) for (int i=0; i<n; i= i+k)
  € for (int j=1+1; j<=K; j++) & 3}
   1:50
     5 10 15 20
                  inner loop= k
  outer(oop= K
  0 ( p x/d = 0 (n)
```

* Binary search =) 0 → 60 j While (start + z end) $cour_J$ most rase 1. 2 El 1 1090 Recursive Algorithm trail to to the Time complexity · total work done = (no of calls * work in each (all) · Recubbence equi * Space complexity space complexity = (max depth * memory in each Prs. in fact (int n) return nx facto(n-1) 1(0) 1(5) woo = no of calls & work in each call £(3) K n 19 Sc= max depth, wach 10 mmore hereth 61 collstuct WE n xk TC= OCO O Cn)

```
2) sum of n No
                            f(n)= n + f(n-))
  int Sum (int n)
                         ie this Larrotte & tracepoint
  2 return n + Som (n-1); some of the
        no of call a work in each call
                      Sc = height x
          * K (10 1+6 m rep) bedry
   = 0
   <u>D(n)</u> (n)04 /2 6 m & 700 = n * k
                               s(=_0(n)
3) Fibonacci - (1) + (10) + (10)
Sit (U==011 U==1) (0+ (210) 1/2 = (210) - 2

School (210) (210) 1/2 = (210) - 2
2 ctore tip (U-1) + tip (U-5); (U) 28 (U) + t
.. Gecorrence edou = (t(u)= t(u-1)+ t(u-5))
  T(n) = T(n-1) + T(n-2) + K. 7 -- by master theorem
  +(n-1) = +(n-2) + T(n-3)+K
  +(n-2) = +(n-3) + T(n-4) + K
  +(n-3)=+(n-4)+T(n-5)+W
  T(2): T(1) + T(0) +K
         D + (4) F(2)
                             E(10)
                   (TC=0C27) 80/7
```

ound to moe a 4) Merge Boot mergesort (int occil, int s), inter) (and much { if (six=e1) & return;} int mid = Si + Cel -s1) + 2 . (confegesof (ares, sl, mid); of wedgeset (ask, mig+1, 61); 3 meade (doe si, mid, si); ->o(n) T(n): T(n/2) + T(n/2) + (m) T(n) = 2T(n/2)+(R). The state of 2 T(n/2) = 4T (n/4) (2010) 4+(n/4)=82+(n/8)+1016) -8+(0/8)-16 CN/16)-80-10 -The T T(n) = T(n-1) + T(n-2) + 16: 1 T(1)= 0(1) +(n-1) = (+(n-2) + (-n)+ K : n -) 1 20 + (1-1) = + (1-3) + + (1-1) = < > - (1-4) - T(n-5)+8 カノンナ ショ N147 22 n= 2 × 109 1 = 8 + (2 D (10gn)) 8 6 50 (10gn)

So (10gn)

Tez OCO+ layn (nk) (SC-OCOD) in more

```
f(a,n) (a)
s power function
int power (inta, int n)
                                           9 x f(0, n-1) 9 ml
  e it (u==0)
     ₹ 8 etu80 1; }
                                          a = f(a, n-z) an-2
    retion a * pairs (a, n-1), }
                                         a * f(a,n-3) an3
MD= no or call & time to born
                     Cell
                                    (4) f(d'0) a
                          SC: no of call a memory
                                              in each call
                            = n + o(1)
                         sc = o(n)
x bonner touction-5
  int powers 2 ( int q, int n)
                                         (10 0 CM)
     if (n==0) & return 1:3
                                          0(10yn)
                       o(log n)
   int half powers of = powers (12 int q, 112) > powers 2(9,112).
    if (n):2 1=0) & return a* half power sq:
    return half paper sq;
    TC= O(dogn) O(n)
    EN EU3
   in powers (int a, int a)
   3 : If half pours = pourso(3, n12);
     int half bone 22d = bone tall bone > be full bone;
   if (U) 5150) & septoru d> Halfboraced: 3
   requen half powers sq;
                                or (090)
```

6

gottonet grifivi6 * Master Theorem for (F(n) = a T (n/b) + f(n)) a = 1 & b > f(n)= o(nx log P) Case 1:- if log a >K then O(n 10gng) case 5: but 108 9 0 = K -- 0 (PK 10 b+1) 100 jt onp>=1 memory source --0 (n 15 1g 1gn) NO ERENTAL 24 p = -1 $\frac{1}{(ases)}$: it $\frac{1}{(ases)}$: if $\frac{1}{(ases)}$: if $\frac{1}{(ases)}$: $\frac{1$ TECHT 00 (1000) (2000) DE be wood floy at voltoe 3 (0-4-2/10) to option hat pours sq (Co) (organo) oca) EM 249 1 (of power 2 (in) 4, in) Com, Eleveron (source that he ? trocally of the bond the soul control to etimestable an usulas a controlla setupe halfrondssay (npo) 9

大大大