Contribution à l'amélioration de la rétention des apprenants par l'IA : État de l'art

Doudou COLY

20 avril 2025

1 Introduction

L'enseignement supérieur est en pleine mutation, stimulé par la digitalisation qui ouvre l'accès à l'apprentissage à un public plus large et géographiquement dispersé. Les plateformes d'enseignement en ligne sont devenues des instruments essentiels dans cette transformation. Pourtant, l'un des plus grands défis reste la rétention des apprenants : seuls environ 30 % des étudiants inscrits complètent leur formation en ligne.

Les causes sont multiples : manque de soutien personnalisé, déconnexion entre le parcours choisi et le profil de l'apprenant, engagement faible ou contraintes socio-économiques. Face à ces enjeux, l'intelligence artificielle (IA) émerge comme une solution prometteuse, capable de personnaliser les parcours, de prédire les risques d'abandon et de créer des environnements d'apprentissage plus engageants.

Cet article examine la façon dont l'IA est utilisée pour améliorer la rétention des apprenants, aussi bien dans l'enseignement que dans d'autres secteurs comme le marketing, la finance, les télécommunications et le divertissement. Nous cherchons à répondre à la question suivante : Comment les solutions d'IA, validées dans d'autres secteurs, peuvent-elles être adaptées à l'enseignement en lique pour réduire le décrochage scolaire?

2 Méthodologie de la revue

Cette revue de littérature adopte une approche comparative multi-sectorielle. Les sources ont été sélectionnées entre 2015 et 2024, en fonction de leur pertinence thématique (rétention, personnalisation, prédiction), de leur contribution technologique (modèles IA avancés) et de leur contexte d'application (académique ou industriel).

Les travaux sont classés selon trois grandes fonctions de l'IA pour la rétention :

- 1. La personnalisation adaptative,
- 2. L'optimisation des parcours,
- 3. La prédiction des performances.

Les secteurs analysés sont l'éducation, le marketing, les finances, le divertissement et les télécommunications.

Limitations: La revue reste exploratoire. Peu de travaux font l'objet de validation empirique sur le terrain africain ou dans le contexte spécifique de l'UN-CHK.

3 Applications de l'IA dans l'enseignement en ligne

3.1 Personnalisation adaptative

- **HMABITS** (Clément, 2019) : Personnalisation dynamique des séquences d'apprentissage via multi-armed bandits.
- ALSAI (Kaouni et al., 2023) : Système adaptatif fondé sur NLP et LSTM.
- SIDDP (Mourali, 2022) : Recommandation adaptative par clustering et régression.

3.2 Optimisation des parcours

- Adaptiv'Math (Bouchet & Roy, 2021): Combinaison de ZPDES et SACCOM.
- SPACe-L (Sabeima et al., 2022) : Ontologies + systèmes multi-agents.

3.3 Prédiction des performances

- ECM (El Bendadi & Lakhdar, 2022): Clustering évidentiel.
- DNN Kalboard360 (Bendangnuksung, 2018): Deep learning pour classification.

TABLE 1: Comparatif des solutions IA dans l'éducation en ligne

SOLUTION	OBJECTIF	MÉTHODE PRINCIPALE	RÉSULTATS OBSERVÉS	LIMITES IDENTI- FIÉES
HMABITS	Personnalisation des séquences	Multi-armed bandits	Amélioration de la motivation	Complexité de définition des activités
ALSAI	Apprentissage adaptatif	LSTM + NLP	Réduction des écarts appre- nants	Infrastructure technique lourde
SIDDP	Aide à la décision pédago- gique	K-means + ré- gression	Précision des re- commandations	Dépendance à la qualité des don- nées
ADAPTIV'MATH	Optimisation de parcours	ZPDES + SAC- COM	Engagement ac- cru des élèves	Besoin de forma- tion pour les en- seignants
SPACE-L	Personnalisation collaborative	Ontologies + SMA	Meilleure syn- chronisation	Coûts tech- niques élevés

ECM	Prédiction de	C-moyenne évi-	Regroupement	Sensibilité aux
ECM	performance	$\operatorname{dentielle}$	plus pertinent	paramètres
DNN KAL- BOARD360	Classification réussite/échec	Réseaux neuro- naux	Précision de 84,3 %	Surapprentissage, peu de données réelles

4 Leçons issues d'autres secteurs

4.1 Marketing

- Clustering comportemental (K-means)
- Prédiction du churn par modèles RFM + IA
- Recommandation via filtrage collaboratif

4.2 Finance / Banque

- Segmentation de clients à risque
- Prédiction d'attrition par forêts aléatoires ou CNN

4.3 Divertissement

- Algorithmes de recommandation personnalisée (TikTok, Netflix)
- Gamification (ex : Duolingo, Fitbit)

4.4 Télécommunications

— Churn prediction avec RF et CNN

TABLE 2: Synthèse des apports intersectoriels adaptables à l'éducation

SECTEUR	APPROCHES IA UTILISÉES	ADAPTABILITÉ À L'ÉDUCATION EN LIGNE	LIMITES IDENTI- FIÉES
MARKETING	Clustering, filtrage collaboratif	Recommandation de contenus, segmentation	Historique utilisateur riche requis
FINANCE	Prédiction du churn, segmentation	Identification des étu- diants à risque	Données éducatives souvent partielles
DIVERTISSEMENT	Recommandation, gamification	Personnalisation lu- dique, engagement accru	Risque de superficia- lité

TELECOMS	Modèles prédictifs sur	Prévention du décro-	Interprétation com-
	abonnements	chage	plexe des modèles

5 Enjeux éthiques et conditions d'implémentation

- Collecte responsable des données (RGPD)
- Risque de discrimination algorithmique
- Opacité des systèmes (black-box)
- Nécessité d'équilibre humain-machine

Solutions proposées:

- Audit des modèles (IA explicable)
- Supervision humaine
- Adaptation aux infrastructures locales

6 Perspectives pour l'UN-CHK

6.1 Objectifs de l'expérimentation

- Identifier les facteurs prédictifs du décrochage étudiant.
- Tester les modèles IA personnalisés pour la rétention.
- Valider l'acceptabilité et l'éthique d'implémentation.

6.2 Protocole expérimental proposé

- Volet 1 : Audit des données, anonymisation, clustering.
- Volet 2 : Recommandation personnalisée, chatbot, tableau de bord prédictif.
- Volet 3 : Évaluation quantitative et qualitative, bilan RGPD et éthique.

6.3 Résultats attendus

- Réduction du taux d'abandon grâce à une meilleure détection des apprenants à risque.
- Amélioration du sentiment d'appartenance et d'accompagnement.
- Élaboration d'un cadre de référence pour le déploiement de solutions IA dans l'enseignement supérieur africain.

7 Conclusion

L'IA offre un levier stratégique pour améliorer la rétention dans l'enseignement supérieur. La combinaison de personnalisation, prédiction et gamification, appliquée dans un cadre éthique et localement adapté, peut transformer l'apprentissage en ligne en une expérience plus inclusive et durable.

Liste des tableaux

1	Comparatif des solutions IA dans l'éducation en ligne	2
2	Synthèse des apports intersectoriels adaptables à l'éducation	3

8 Références

- 1. Abdulhafedh, A. (2021a). Incorporating K-means, Hierarchical Clustering and PCA in Customer Segmentation. Journal of City and Development, 3(1). https://doi.org/10.12691/jcd-3-1-3
- 2. Abdulsalam, S. O., Ajao, J. F., Balogun, B. F., & Arowolo, M. (s. d.). A Churn Prediction System.... https://www.researchgate.net/publication/362296253_A_Churn_Prediction_System_for_Telecommunication_Company_Using_Random_Forest_and_Convolution_Neural_Network_Algorithms
- 3. Akande, O. N., et al. (2024). Customer Segmentation through RFM Analysis.... https://doi.org/10.1109/SEB4SDG60871.2024.10630052
- 4. Bendadi, K. E., & Lakhdar, Y. (2022). *Prédiction des performances des élèves....* https://revues.imist.ma/index.php/Joussour/article/view/49017
- 5. Bouchet, F., & Roy, D. (2021). L'apport combiné de deux algorithmes.... https://hal.science/hal-03625573
- 6. Chaouachi, M. (2015). *Modélisation de l'engagement....* https://papyrus.bib.umontreal.ca/xmlui/handle/1866/11958
- 7. Clément, B. (2018). Adaptive Personalization.... https://inria.hal.science/tel-01968241
- 8. Dussarps, C. (2015). L'abandon en formation à distance. https://doi.org/10.4000/dms.1039
- 9. Heninger, B. (2024). 10 Ways AI-powered Fitness Apps.... https://fitnesstechpros.com/10-ways-ai-powered-fitness-apps-are-using-gamification-to-motivate-users/
- 10. Kaouni, M., et al. (s.d.). The Design of An Adaptive E-learning Model.... https://www.researchgate.net/publication/369417839_The_Design_of_An_Adaptive_E-learning_Model_Based_on_Artificial_Intelligence_for_Enhancing_Online_Teaching
- 11. Kuswidyawan, R. P., et al. (2023). Customer segmentation with K-means.... https://doi.org/10.1063/5.0126981
- 12. Lakhal, S., et al. (2023). Les facteurs d'abandon des étudiant.e.s... https://doi.org/ 10.7202/1101216ar
- 13. Lakhiani, M. (2023). Breaking Down Duolingo's Growth Model. https://marishalakhiani.substack.com/p/breaking-down-duolingos-growth-model
- 14. Mohammed, T. (2018). Système de recommandation fondé sur les liens sociaux.
- 15. Mourali, Y. (2022). Évaluation automatique des contenus éducatifs.... https://theses. hal.science/tel-04011200
- 16. Narayanan, A. (s.d.). *Understanding Social Media Recommendation Algorithms*. http://knightcolumbia.org/content/understanding-social-media-recommendation-algorithms

- 17. Owolabi, O., et al. (s.d.). Comparative Analysis of Machine Learning Models.... https://www.researchgate.net/publication/382310514_Comparative_Analysis_of_Machine_Learning_Models_for_Customer_Churn_Prediction_in_the_US_Banking_and_Financial_Services_Economic_Impact_and_Industry-Specific_Insights
- 18. Reed, V. (2024). AI Accountability: Who Bears The Responsibility? https://aicompetence.org/ai-accountability-who-bears-the-responsibility/
- 19. Sabeima, M., et al. (2023). Vers une plateforme sémantique.... https://doi.org/10.46298/arima.8396
- 20. Students' Performance Prediction Using Deep Neural Network (s.d.). https://fr.scribd.com/document/525571591/ijaerv13n2-46
- 21. Tabianan, K., et al. (2022). *K-Means Clustering Approach....* https://doi.org/10. 3390/su14127243
- 22. Tahiru, F. (2021). AI in Education: A Systematic Literature Review. https://doi.org/10.4018/JCIT.2021010101
- 23. Vombatkere, K., et al. (2024). TikTok and the Art of Personalization. https://doi.org/10.48550/arXiv.2403.12410
- 24. Walz, R. (2024). 20 Sentiment Analysis Applications.... https://numerous.ai/blog/sentiment-analysis-application
- 25. Wang, Y. A. (2022). Netflix's Recommendation Systems. https://illumin.usc.edu/netflixs-recommendation-systems-entertainment-made-for-you/