Chapter 8 Flows and Lie Bracket

- 8.1 Integral curves (covered last week)
- 8.2 Flow of a vector field (covered last week)
- 8.3 Lie bracket (covered last week)
- 8.4 Lie derivative
- 8.5 Lie algebra of a Lie group (EXTRA)
- 8.6 The Frobenius theorem (EXTRA)

8.1 Integral curves

8.1 Integral curves

Let M be a smooth manifold and X a smooth vector field on M.

Definition

A smooth curve $\gamma: I \subseteq \to M$ is called an *integral curve* of X if, for all $t \in I$:

$$\gamma'(t) = X_{\gamma(t)} \; .$$

Example 1. Consider the constant vector field $Y = \frac{\partial}{\partial y}$ in \mathbb{R}^2 . $\gamma(t) = (x(t), y(t))$ is an integral curve $\Leftrightarrow (x'(t), y'(t)) = (0, 1)$. Integral curves: $\gamma(t) = (x_0, t + y_0)$. Integral curves = vertical lines.

Example 2. Consider the vector field $X = -y \frac{\partial}{\partial y} + x \frac{\partial}{\partial y}$. Integral curves = Circles centered at the origin. Exercise.

8.1 Integral curves

Theorem

There exists a unique integral curve through any point.

More precisely: $\forall p \in M, \exists !$ integral curve $\gamma : I \to M$, with I maximal, s.t. $\gamma(0) = p$.

Proof. If $U \subseteq \mathbb{R}^m$, X is a given by $F \colon U \to \mathbb{R}^m$, and the equation of an integral curve is $\gamma'(t) = F(\gamma(t))$. Conclude by the Picard-Lindelöf (i.e. Cauchy-Lipschitz) theorem.

In general, use charts to apply with previous result in local charts. This shows local existence and uniqueness, and conclude.

Remark. Prerequisite: Basic theory of ODEs. Reference: [Lee, Appendix D]. In addition to the existence and uniqueness result, we have:

- Smooth dependence of solutions of ODEs on initial condition.
- If the maximal interval I has a finite bound, for instance I=(a,b) with $b<+\infty$, then $\gamma(t)$ leaves every compact set when $t\to b^-$.

In particular, if M is compact, then $I = \mathbb{R}$: all integral curves are *complete*, i.e. X is complete.

8.1 Integral curves

Remark. If $X_{|_p}=0$, then the constant curve $\gamma(t)=p$ is an integral curve. p is called a **zero** or a **singular point** of the vector field.

8.2 Flow of a vector field

Let M be a smooth manifold and X a smooth vector field on M.

For any $p \in M$, denote $\varphi^X_t(p) \coloneqq \gamma(t)$, where γ is the integral curve of X through p. *Remark.* A priori, $\varphi^X_t(p)$ is only well-defined for t sufficiently small.

Theorem

- The map $\mathbb{R} \times M \to M$, $(t,p) \mapsto \varphi_t^X(p)$ is smooth on its domain of definition (which is a neighborhood of $\{0\} \times M$).
- $\varphi_s^X \circ \varphi_t^X(p) = \varphi_{t+s}^X(p)$ whenever well-defined.

Any map $\mathbb{R} \times M \to M$ as in the theorem is called a smooth *flow* on M.

Proof.

- Smooth dependence of solution of an ODE on initial condition.
- If γ is the integral curve through p, then so is $\gamma(t_0+t)$ is the integral curve through $\gamma(t_0)$.

Corollary

- $\varphi_0^X : M \to M$ is the identity map.
- If φ^X_t is well-defined, then it is a diffeomorphism of M with inverse φ^X_{-t} .
- If well-defined, the map $t \mapsto \varphi^X_t$ is a group homomorphism $\mathbb{R} \to \mathrm{Diff}(M)$.

Terminology. The flow is called *complete* if it is defined on $\mathbb{R} \times M$, i.e. all integral curves are complete (defined on \mathbb{R}), i.e. X is a *complete vector field*.

Fact. If M is compact, any vector field on M is complete.

Example. Let
$$X=\frac{\partial}{\partial y}$$
 on $M=\mathbb{R}^2.$ Then $\varphi^X_t(x,y)=(x,y+t).$

Exercise. Let $M = \mathbb{R}^2 - \{0\}$. Find two vector fields whose integral curves are rays emanating from the origin, one complete, the other incomplete.

8.2 Flow of a vector field

A normal form theorem:

Theorem

Let X be a smooth vector field on M. If $p \in M$ is regular (i.e. nonsingular) point, then there exists local coordinates x^1, \ldots, x^p near p s.t. $X = \frac{\partial}{\partial x^1}$.

Remark. For the proof of this theorem and more details on flows, refer to Lee's book.

8.3 The Lie bracket

Recall that a *derivation* on an algebra A is a \mathbb{R} -linear map $D: A \to A$ s.t.

$$D(fg) = D(f) g + f D(g)$$

Fact. If D_1 and D_2 are derivations, then $D := D_1 \circ D_2 - D_2 \circ D_1$ is a derivation.

Proof. Stupid algebra computation. Do it!!

Definition

D is denoted $[D_1, D_2]$ and called the **Lie bracket** (or *commutator*) of D_1 and D_2 .

Recall that there is a bijection between smooth vector fields and derivations on a smooth manifold, more precisely there is a linear isomorphism

$$\Gamma(TM) \to \{ \text{Derivations on } C^{\infty}(M, \mathbb{R}) \}$$

$$X \mapsto (f \mapsto X \cdot f)$$

With this correspondence, we get the *Lie bracket* of vector fields:

Proposition

If X and Y are smooth vector fields on M, there exists a unique smooth vector field [X,Y] such that for any smooth function $f:M\to\mathbb{R}$,

$$[X,Y]\cdot f=X\cdot (Y\cdot f)-Y\cdot (X\cdot g)\;.$$

Proposition (Properties of the Lie bracket)

- $[\cdot, \cdot]$ is \mathbb{R} -bilinear: $[\lambda X_1 + \mu X_2, Y] = \dots$ and $[X, \lambda Y_1 + \mu Y_2] = \dots$
- $[\cdot,\cdot]$ is antisymmetric: [Y,X]=-[X,Y]. In part. [X,X]=0.
- Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Proof. Idiotic algebra computations. Do it!

Definition

A vector space A equipped with a bilinear map $[\cdot,\cdot]:A\times A\to A$ satisfying the properties above is called a *Lie algebra*.

Examples.

- 1. $[\cdot, \cdot] = 0$. (abelian Lie algebra)
- 2. {Derivations on $C^{\infty}(M,\mathbb{R})$ }
- 3. $\Gamma(TM)$
- 4. Lie algebra of a Lie group (see later).

Proposition (Further properties of the Lie bracket)

- $[fX, Y] = f[X, Y] (Y \cdot f)X$.
- Naturality of the Lie bracket: $f_*[X, Y] = [f_*X, f_*Y]$.

Proof. Moronic algebra computations. Do it!

Proposition (Lie bracket in coordinates)

$$\begin{bmatrix} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \end{bmatrix} = 0$$

$$\begin{bmatrix} \sum_{i=1}^{m} X^{i} \frac{\partial}{\partial x^{i}}, \sum_{j=1}^{m} Y^{j} \frac{\partial}{\partial x^{j}} \end{bmatrix} = \sum_{i,j=1}^{m} \left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}} - Y^{i} \frac{\partial X^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}$$

8.4 The Lie derivative

Let M be a smooth manifold and $X \in \Gamma(TM)$. Assume that for t > 0 sufficiently small, the flow $\varphi_t^X := \varphi_t \in \mathrm{Diff}(M)$ is well-defined.

Lie derivative of a function

For any $f \in C^{\infty}(M, \mathbb{R})$, the **pullback** of f by φ_t is the function $(\varphi_t)^* f \in C^{\infty}(M, \mathbb{R})$ defined by $(\varphi_t)^* f := f \circ \varphi_t$.

Definition

The *Lie derivative* of $f \in C^{\infty}(M,\mathbb{R})$ with respect to X is the function $\mathcal{L}_{X}f \in C^{\infty}(M,\mathbb{R})$ defined by

$$\mathcal{L}_X f \coloneqq \frac{\mathrm{d}}{\mathrm{d}t}_{|_{t=0}} (\varphi_t)^* f$$

Proposition

 $\mathcal{L}_X f$ is well-defined and $\mathcal{L}_X f = X \cdot f$ (i.e. $\mathcal{L}_X = \mathrm{d} f(X)$).

Proof. Let us prove the identity pointwise. Let $p \in M$.

For t > 0 sufficiently small, $(\varphi_t)^* f(p) = f \circ \varphi_t(p)$ is well-defined.

Moreover, this is a smooth function of t, and by definition of the differential df:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{|t=0}^{\infty} f \circ \varphi_t(p) = (\mathrm{d}f)_{|\varphi_0(p)} \left(\frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} \varphi_t(p) \right)$$
$$= (\mathrm{d}f)_{|p} (X_p) .$$

End of proof.

Lie derivative of a vector field

For any $Y \in \Gamma(\mathrm{T}M)$, the **pullback** of Y by φ_t is the vector field $(\varphi_t)^*Y \in \Gamma(\mathrm{T}M)$ defined by $(\varphi_t)^*Y \coloneqq \left(\varphi_t^{-1}\right)_*Y$.

Definition

The *Lie derivative* of *Y* w.r.t. *X* is the vector field $\mathcal{L}_X Y \in \Gamma(TM)$ defined by

$$\mathcal{L}_X Y := \frac{\mathrm{d}}{\mathrm{d}t}_{|_{t=0}} (\varphi_t)^* Y .$$

Proposition

 $\mathcal{L}_X Y$ is well-defined and $\mathcal{L}_X Y = [X, Y]$.

Proof. Let us work in a local chart U. By naturality of the Lie bracket and the Lie derivative, it is enough to do the case $U \subseteq \mathbb{R}^m$.

Hence we can assume that *X* and *Y* are both smooth maps $U \to \mathbb{R}^m$.

We compute:

$$\begin{split} \left[(\varphi_t)^* Y \right]_{|_p} &= \left[(\varphi_t^{-1})_* Y \right]_{|_p} \\ &= (\mathrm{d} \varphi_t^{-1})_{|_{\varphi_t(p)}} (Y_{|_{\varphi_t(p)}}) \\ &= (\mathrm{d} \varphi_t|_p)^{-1} \left(Y(\varphi_t(p)) \right) \end{split}$$

Taking the derivative at t = 0:

$$\begin{split} (\mathcal{L}_X Y)(p) &= \left(\frac{\mathrm{d}}{\mathrm{d}t}_{\mid_{t=0}} (\mathrm{d}\varphi_{t\mid_{p}})^{-1}\right) Y(p) + \frac{\mathrm{d}}{\mathrm{d}t}_{\mid_{t=0}} Y(\varphi_{t}(p)) \\ &= -\mathrm{d}X_{\mid_{p}} (Y(p)) + \mathrm{d}Y_{\mid p} (X(p)) \\ &= -\partial_{Y} X(p) + \partial_{X} Y(p) \\ &= [X,Y](p) \;. \end{split}$$

8.5 Lie groups and Lie algebras (EXTRA)

8.5 Lie groups and Lie algebras (EXTRA)

Let G be a lie group.

For any $g \in G$, the left- and right- multiplication by g are smooth diffeomorphisms $L_g \colon G \to G$ and $R_g \colon G \to G$.

A vector field $X \in \Gamma(T G)$ is called *left-invariant* if $(L_g)_*X = X$ for all $g \in G$.

A left-invariant vector-field X is uniquely determined by $X_{|_{e}}$. More precisely:

Lemma

 $X \mapsto X_{|_e}$ is a linear isom. between the space of left-invariant vector fields and $T_e G$.

Moreover, the subspace of $\Gamma(TG)$ of left-invariant vector fields is stable under $[\cdot,\cdot]$.

Therefore, we can put a structure of Lie algebra on $T_e G$ using the isomorphism above. This is the *Lie algebra of* G, denoted Lie(G) of g.

8.5 Lie groups and Lie algebras (EXTRA)

Theorem (PSEUDO theorem)

There is more or less a bijective correspondence between finite-dimensional Lie algebras and Lie algebras of finite-dimensional Lie groups.

8.6 The Frobenius theorem (EXTRA)

8.6 The Frobenius theorem (EXTRA)

Definition

Let $D \subseteq TM$ be a subbundle. This is called a *distribution* on M.

- D is called *involutive* if it is stable under the Lie bracket.
- D is called *integrable* if for all $p \in D$, \exists a submanifold $N \subseteq M$ s.t. $D_p = T_p N$.

Theorem (Frobenius theorem)

D is integrable if and only if D is involutive.

Examples.

- 0-dimensional distributions, 1-dimensional, and m-dimensional distributions are integrable.
- Tangent spaces to foliations (e.g. fiber bundles) are integrable.
- completely non-integrable distributions: sub-Riemannian manifolds.