Esame di Ricerca Operativa del 05/07/16

(Cogn	ome)	(Nome)	(Corso di laurea)
Esorgizio 1 Complet	ero le goguento tabelle conside	orando il problema di pu	programmaziona linearo:

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\left\{ \begin{array}{l} \min \ 8 \ y_1 + 40 \ y_2 + 4 \ y_3 - 8 \ y_4 - 20 \ y_5 - 8 \ y_6 \\ 8 \ y_2 - 2 \ y_3 - 2 \ y_4 - 4 \ y_5 - 3 \ y_6 = -3 \\ -y_1 - y_2 - y_3 + y_4 + 3 \ y_5 + y_6 = -1 \\ y \ge 0 \end{array} \right.$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(si/no)	(si/no)
{1, 2}	x =		
{3, 6}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	(1 =)					
1 Herazione	{1,5}					
2° iterazione						

Esercizio 3. Un'industria siderurgica produce due laminati A e B da un composto C. L'industria può acquistare al più 180 quintali di composto C, ad un costo di 70 Euro al quintale. Per ottenere A e B è necessario un processo di lavorazione il cui costo per quintale prodotto è rispettivamente di 80 e 70 Euro. Inoltre la massima percentuale di A e B ottenibile da C è rispettivamente di 50 e 60. Sapendo che l'industria rivende sul mercato A e B a 10 e 7 Euro al kg rispettivamente, determinare la produzione che massimizza il profitto.

0 1	 I	
variabili decisionali:		
modello:		

COMANDI DI MATLAB							
c= [-780 ; -515.8]	intlin=						
A=[2 ; 10/6]	b=[180]						
Aeq=	beq=						
lb=	ub=						

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,3)$ $(3,4)$				
(4,6)(5,6)	(2,4)	x =		
(1,3) $(2,3)$ $(2,6)$				
(4,6)(5,6)	(1,2)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,6) (3,5) (4,6) (5,6)	
Archi di U	(3,4)	
Titem di C	$(0,\pm)$	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$ $N_t =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 11 \ x_1 + 5 \ x_2 \\ 7 \ x_1 + 6 \ x_2 \ge 68 \\ 5 \ x_1 + 14 \ x_2 \ge 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	93	63	43
2		26	55	57
3			11	13
4				14

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni

sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{35} , x_{13} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 - 2x_2$ sull'insieme

$${x \in \mathbb{R}^2 : 2x_1^2 + x_2^2 - 1 \le 0, -x_1 x_2 \le 0}.$$

Soluzioni del sist	ema LKT		Mass	imo	Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
(0,1)							
$\left(-\frac{\sqrt{2}}{2},\ 0\right)$							
,							
$\left(\frac{\sqrt{2}}{2},\ 0\right)$							
(0,-1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -4 x_1^2 - 6 x_1 x_2 + 4 x_2^2 - 4 x_1 - 6 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (2,2) , (2,0) , (-3,1) e (-2,-3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(2,\frac{4}{3}\right)$						

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} &\min \ 8 \ y_1 + 40 \ y_2 + 4 \ y_3 - 8 \ y_4 - 20 \ y_5 - 8 \ y_6 \\ &8 \ y_2 - 2 \ y_3 - 2 \ y_4 - 4 \ y_5 - 3 \ y_6 = -3 \\ &-y_1 - y_2 - y_3 + y_4 + 3 \ y_5 + y_6 = -1 \\ &y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (4, -8)	SI	NO
{3, 6}	$y = \left(0, \ 0, \ \frac{6}{5}, \ 0, \ 0, \ \frac{1}{5}\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{1, 5}	(-1, -8)	$\left(\frac{13}{4},\ 0,\ 0,\ 0,\ \frac{3}{4},\ 0\right)$	3	$\frac{13}{10}, \frac{3}{2}$	1
2° iterazione	{3, 5}		$\left(0,\ 0,\ \frac{13}{10},\ 0,\ \frac{1}{10},\ 0\right)$	4	$\frac{13}{2}, \frac{1}{4}$	5

Esercizio 3.

COMANDI DI MATLAB c=[-780; -515.8]intlin= A=[2;10/6]b=[180] Aeq=[] beq=[] lb=[0; 0] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

		(=,=)		
Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,3)$ $(3,4)$				
(4,6) (5,6)	(2,4)	x = (0, 6, -5, 9, 0, 5, 0, 0, 10, -4)	NO	NO
(1,3) $(2,3)$ $(2,6)$				
(4,6) (5,6)	(1,2)	$\pi = (0, -2, 7, 1, -4, 6)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,6) (3,5) (4,6) (5,6)	(1,2) (1,3) (2,6) (3,5) (4,6)
Archi di U	(3,4)	(3,4)
x	(0, 6, 0, 0, 4, 6, 4, 0, 2, 0)	(0, 6, 0, 0, 4, 6, 4, 0, 2, 0)
π	(0, 18, 7, 21, 16, 26)	(0, 7, 7, 10, 16, 15)
Arco entrante	(1,2)	(3,4)
ϑ^+, ϑ^-	1,0	1,2
Arco uscente	(5,6)	(2,6)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		4 6		2		ę	}	7	7		5
nodo 2	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 5	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	2	21	3	21	3	21	3
nodo 6	$+\infty$	-1	9	4	9	4	9	4	9	4	9	4	9	4
nodo 7	$+\infty$	-1	$+\infty$	-1	23	6	23	6	19	3	19	3	19	3
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	2, 3	, 7	3, 5	5, 7	5,	7	ţ	Ď	()	ý

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	7	(0, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0)	7
1 - 2 - 5 - 7	6	(6, 7, 0, 0, 6, 0, 7, 0, 0, 6, 0)	13
1 - 3 - 5 - 7	3	(6, 10, 0, 0, 6, 3, 7, 0, 0, 9, 0)	16
1 - 4 - 6 - 7	7	(6, 10, 7, 0, 6, 3, 7, 0, 7, 9, 7)	23

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 11 \ x_1 + 5 \ x_2 \\ 7 \ x_1 + 6 \ x_2 \ge 68 \\ 5 \ x_1 + 14 \ x_2 \ge 50 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{34}{3}\right)$$
 $v_I(P) = 57$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (0, 12) $v_S(P) = 60$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $6x_1 + 5x_2 \ge 57$
 $r = 4$ $5x_1 + 4x_2 \ge 46$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	93	63	43
2		26	55	57
3			11	13
4				14

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:
$$(1,2)(1,5)(2,3)(3,4)(3,5)$$
 $v_I(P)=103$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 3 - 5 - 1 - 2$$
 $v_S(P) = 132$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{35} , x_{13} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 - 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2: 2x_1^2 + x_2^2 - 1 \le 0, -x_1x_2 \le 0\}.$$

Soluzioni del	sistema LKT	Massimo		Mini	Sella		
x	λ	μ	globale locale		globale	locale	
(0, 1)	(1,1)		NO	NO	SI	SI	NO
$\left(-\frac{\sqrt{2}}{2},\ 0\right)$	$\left(\frac{\sqrt{2}}{4}, 2\sqrt{2}\right)$		NO	NO	NO	SI	NO
$\left(\frac{\sqrt{2}}{2},\ 0\right)$	$\left(-\frac{\sqrt{2}}{4}, -2\sqrt{2}\right)$		NO	SI	NO	NO	NO
(0, -1)	(-1, -1)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -4 x_1^2 - 6 x_1 x_2 + 4 x_2^2 - 4 x_1 - 6 x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\,P\,\,\grave{\mathrm{e}}\,\,\mathrm{il}\,\,\mathrm{poliedro}\,\,\mathrm{di}\,\,\mathrm{vertici}\,\,(2,2)\,\,,\,(2,0)\,\,,\,(-3,1)\,\,\mathrm{e}\,\,(-2,-3).\,\,\mathrm{Fare}\,\,\mathrm{una}\,\,\mathrm{iterazione}\,\,\mathrm{del}\,\,\mathrm{metodo}\,\,\mathrm{del}\,\,\mathrm{gradiente}\,\,\mathrm{proiettato}.$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(2,\frac{4}{3}\right)$	(1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(0,-\frac{22}{3}\right)$	$\frac{2}{11}$	$\frac{2}{11}$	(2,0)