Transformed proposal distributions

This note was originally written by Johan Lindström (Lund University, Sweden) and is now hosted at Umberto Picchini's research blog https://umbertopicchini.wordpress.com/.

A random walk update for a constrained variable $x \in I$ with density f, can be constructed by using an invertible transformation function, g(x), such that $g(x) : \mathbb{R} \to I$. The resulting proposal is given by:

$$\begin{split} x^* &= g\left(g^{-1}(x) + \epsilon\right), \qquad \epsilon \sim \mathcal{N}(0, \sigma^2). \\ q\left(x^* \mid x\right) &= f_{\mathcal{N}(g^{-1}(x), \sigma^2)}\left(g^{-1}(x^*)\right) \cdot \frac{\partial g^{-1}(x^*)}{\partial x^*}. \end{split}$$

Here the $f_{\mathcal{N}(g^{-1}(x),\sigma^2)}$ parts cancel in the acceptance probability and the adjustment due to change of variable becomes

$$\frac{q(x \mid x^*)}{q(x^* \mid x)} = \frac{\frac{\partial}{\partial x}g^{-1}(x)}{\frac{\partial}{\partial x^*}g^{-1}(x^*)}.$$

Some typical examples include:

Constrain		Functions		Acceptance
	g(x)	$g^{-1}(x)$	$\partial g^{-1}(x)$	$\frac{q(x x^*)}{q(x^* x)}$
x > 0	$\exp(x)$	$\log(x)$	x^{-1}	$\frac{1/x}{1/x^*} = \frac{x^*}{x}$
x > a	$\exp(x) + a$	$\log(x-a)$	$\frac{1}{x-a}$	$\frac{x^* - a}{x - a}$
x < a	$a - \exp(x)$	$\log(a-x)$	$\frac{-1}{a-x}$	$\frac{a-x^*}{a-x}$
$x \in [0, 1]$	$\frac{e^x}{e^x + 1}$	$\log(x) - \log(1 - x)$	$\frac{1}{x(1-x)}$	$\frac{x^*(1-x^*)}{x(1-x)}$
$x \in [a,b]$	$\frac{be^x + a}{e^x + 1}$	$\log(x-a) - \log(b-x)$	$\frac{b-a}{(b-x)(x-a)}$	$ \frac{(x^*-a)(b-x^*)}{(x-a)(b-x)} $