

# FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE

## **HOMEWORK**

Discrete Mathematics

TUT-01: Problem Set 01

Instructor: Ms.c Nguyen Thi Huong

Release Date: September 7, 2021

Semester: Fall 2021

Let p and q be the propositions "Swimming at the New Jersey shore is allowed" and "Sharks have been spotted near the shore" respectively. Express each of these compound propositions as an English sentence.

- $\mathbf{a.} \ \neg q$
- **b.**  $p \wedge q$
- c.  $\neg p \lor q$
- **d.**  $p \rightarrow \neg q$
- $\mathbf{e.} \ \neg q \rightarrow p$
- **f.**  $\neg q \rightarrow \neg p$
- $\mathbf{g.} \ p \leftrightarrow \neg q$
- **h.**  $\neg p \land (p \lor \neg q)$

#### Problem 2

In an island, there are two kinds of inhabitants: knights, who always tell the truth and knaves, who always lie. You encounter two people, A and B. Determine, if possible, what A and B are if they address you in the ways described. If you cannot determine what these two people are, can you draw any conclusions?

- **a.** A says "At least one of us is a knave" and B says nothing.
- **b.** A says "The two of us are both knights" and B says "A is knave".
- **c.** A says "I am a knave or B is a knight" and B says nothing.
- **d.** Both A and B say "I am a knight."
- **e.** A says "We are both knaves" and B says nothing.

#### Problem 3

Show that  $(p \to r) \land (q \to r)$  and  $(p \lor q) \to r$  are logically equivalent.

#### Problem 4

Show that  $(p \to q) \lor (p \to r)$  and  $p \to (q \lor r)$  are logically equivalent.

Show that  $(p \to r) \lor (q \to r)$  and  $(p \land q) \to r$  are logically equivalent.

#### Problem 6

Let P(x) be the statement "x can speak Russian" and let Q(x) be the statement "x knows the computer language C++." Express each of these sentences in terms of P(x), Q(x), quantifiers, and logical connectives. The domain for quantifiers consists of all students at your school.

- **a.** There is a student at your school who can speak Russian and who knows C++.
- **b.** There is a student at your school who can speak Russian but who does not know C++.
- c. Every student at your school either can speak Russian or knows C++.
- **d.** No student at your school can speak Russian or knows C++.

#### Problem 7

Translate these specifications into English where F(p) is "Printer p is out of service", B(p) is "Printer p is busy", L(j) is "Printer job j is lost", and Q(j) is "Printer job j is queued."

- **a.**  $\exists p \ (F(p) \land B(p)) \rightarrow \exists j \ L(j)$
- **b.**  $\forall p \ B(p) \to \exists j \ Q(j)$
- **c.**  $\exists j \ (Q(j) \land L(j)) \rightarrow \exists p \ F(p)$
- **d.**  $(\forall p \ B(p) \land \forall j \ Q(j)) \rightarrow \exists j \ L(j)$

#### Problem 8

What are the truth values of these statements?

- **a.**  $\exists ! x \ P(x) \rightarrow \exists x \ P(x)$ .
- **b.**  $\forall x \ P(x) \rightarrow \exists! x \ P(x)$
- c.  $\exists !x \ \neg P(x) \rightarrow \neg \forall x \ P(x)$

Let L(x, y) be the statement "x loves y", where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements.

- **a.** Everybody loves Jerry.  $(\forall x, L(x, "Jerry"))$
- **b.** Everybody loves somebody.
- c. There is somebody whom everybody loves.
- d. Nobody loves everybody.
- e. There is somebody whom Lydia does not love.
- **f.** There is somebody whom no one loves.
- g. There is exactly one person whom everybody loves.
- h. There are exactly two people whom Lynn loves.
- i. Everyone loves himself or herself.
- j. There is someone who loves no one besides himself or herself.

#### Problem 10

Determine the truth value of each of these statements if the domain for all variables consists of all integers.

- **a.**  $\forall n \exists m \ (n^2 < m)$
- **b.**  $\forall n \exists m \ (n < m^2)$
- **c.**  $\forall n \exists m \ (n+m=0)$
- **d.**  $\exists n \forall m \ (nm = m)$
- **e.**  $\exists n \exists m \ (n^2 + m^2 = 5)$
- **f.**  $\exists n \exists m \ (n^2 + m^2 = 6)$
- g.  $\exists n \exists m \ (n+m=4 \land n-m=1)$
- **h.**  $\exists n \exists m \ (n + m = 4 \land n m = 2)$
- i.  $\forall n \forall m \exists p \ (p = (m+n)/2).$

Express each of these statements using quantifiers. Then form the negation of the statement so that no negation is to the left of a quantifier. Next, express the negation in simple English. (Do not simply use the phrase "It is not the case that.")

- 1. Every student in this class has taken exactly two mathematics classes at this school.
- 2. Someone has visited every country in the world except Libya.
- 3. No one has climbed every mountain in the Himalayas.
- 4. Every movie actor has either been in a movie with Kevin Bacon or has been in a movie with someone who has been in a movie with Kevin Bacon.

### References

- [1] K. H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill, 7th edition, 2011.
- [2] S. S. Epp, Discrete Mathematics with Applications, Cengage-Learning, 4th edition, 2010.
- [3] T. W. Judson and R. A. Beezer, *Abstract Algebra: Theory and Applications*, Free Software Foundation, 2017, [Online; accessed 08-September-2017].

TUT-01: Problem Set 01 Page 4 of 4