The Data Science Cycle Unsupervised Learning - Clustering

Andres Mendez-Vazquez

September 21, 2016

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{1}$$

In the case of .

We have the following function:

$$g\left(\boldsymbol{x}\right) = w_1 x_1 + w_2 x_2 + w_0$$

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{1}$$

In the case of \mathbb{R}^2

We have the following function:

$$g(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_0$$
 (2)

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

Splitting The Space \mathbb{R}^2

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

which g(x) is filled the decision surface is all hyperpia

Given x_1 and x_2 are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$

 $\boldsymbol{w}^{\perp} \boldsymbol{x}_2 + w_0 = 0$

 $oldsymbol{w}^Toldsymbol{x}_1+w_0=oldsymbol{w}^Toldsymbol{x}_2+w_0$

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Given x_1 and x_2 are both on the decision surface:

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$

$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Given \boldsymbol{x}_1 and \boldsymbol{x}_2 are both on the decision surface:

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$

$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

Thus

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = \boldsymbol{w}^T \boldsymbol{x}_2 + w_0$$

Thus

$$\boldsymbol{w}^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=0\tag{4}$$

Remark: Any vector in the hyperplane is perpendicular to \boldsymbol{w}^T i.e. \boldsymbol{w}^T is normal to the hyperplane.

Therefore

Some Properties of the Hyperplane

We can say the following

ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.

We can say the following

- ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- ullet Any $x\in\mathcal{R}_2$ is on the negative side of H.

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

- x_p is the normal projection of x onto H
 r is the desired distance
 Positive, if x is in the positive side
 - ightharpoonup Negative, if x is in the negative side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

ullet x_p is the normal projection of x onto H.

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

- ullet x_p is the normal projection of x onto H.
- r is the desired distance

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

- ullet x_p is the normal projection of x onto H.
- r is the desired distance
 - Positive, if x is in the positive side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - ▶ Positive, if *x* is in the positive side
 - Negative, if x is in the negative side

We have something like this

Since $g\left(\boldsymbol{x}_{\boldsymbol{p}}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

Since $g(\boldsymbol{x}_p) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

Since $g\left(\overline{oldsymbol{x_p}}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$
$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

 $r = rac{g\left(oldsymbol{x}
ight)}{\|oldsymbol{w}\|}$

Since $g\left(\overline{oldsymbol{x_p}}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

Since $g\left(\boldsymbol{x_p}\right) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

Since $g(\boldsymbol{x}_p) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

$$r = \frac{g\left(\boldsymbol{x}\right)}{\|\boldsymbol{x}\|}$$

(5)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

Remarks

• If $w_0 > 0$, the origin is on the positive side of H.

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

Remarks

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.
- If $w_0 = 0$, the hyperplane has the homogeneous form $w^T x$ and hyperplane passes through the origin.

In addition...

If we do the following

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$x_0=1$$
 and $y=\left(egin{array}{c}1\\x_1\\\vdots\\x_d\end{array}
ight)=\left(egin{array}{c}1\\x\\\end{array}
ight)$

u is called an augmented feature vector.

In addition...

If we do the following

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$x_0=1$$
 and $oldsymbol{y}=\left(egin{array}{c}1\\x_1\\ dots\\x_d\end{array}
ight)=\left(egin{array}{c}1\\oldsymbol{x}\end{array}
ight)$

In addition...

If we do the following

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$x_0 = 1$$
 and $oldsymbol{y} = \left(egin{array}{c} 1 \ x_1 \ dots \ x_d \end{array}
ight) = \left(egin{array}{c} 1 \ oldsymbol{x} \end{array}
ight)$

Where

y is called an augmented feature vector.

In a similar way

We have the augmented weight vector
$$\pmb{w}_{aug} = \left(\begin{array}{c} w_0 \\ w_1 \\ \vdots \\ w_d \end{array} \right) = \left(\begin{array}{c} w_0 \\ \pmb{w} \end{array} \right)$$

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

Remarks

ullet The addition of a constant component to x preserves all the distance relationship between samples.

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

Remarks

- ullet The addition of a constant component to x preserves all the distance relationship between samples.
- ullet The resulting $oldsymbol{y}$ vectors, all lie in a d-dimensional subspace which is the $oldsymbol{x}$ -space itself.

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

Initial Setup

Important

We get away from our initial normalization of the samples!!!

Initial Setup

Important

We get away from our initial normalization of the samples!!!

Now, we are going to use the method know as

Minimum Squared Error

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

We have a problem!!!

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

We have a problem!!!

Which is the problem?

We do not know the hyperplane!!!

Thus, what distance each point has to the hyperplane?

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- \bullet $\omega_2 \Longrightarrow -1$

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

• if $x \in \omega_1$ then $y_{ideal} = g_{ideal}(x) = +1$.

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- ② if $x \in \omega_2$ then $y_{ideal} = g_{ideal}(x) = -1$.

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- **1** if $x \in \omega_1$ then $y_{ideal} = g_{ideal}(x) = +1$.
- ② if $x \in \omega_2$ then $y_{ideal} = g_{ideal}(x) = -1$.

Remark: We have a problem with this labels!!!

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 + \epsilon$$
 (8)

It has a $\epsilon \sim N\left(\mu, \sigma^2\right)$

 $y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = g_{ideal}\left(\boldsymbol{x}\right) + \epsilon$

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 + \epsilon$$
 (8)

Where the ϵ

It has a $\epsilon \sim N\left(\mu, \sigma^2\right)$

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = g_{ideal}\left(\boldsymbol{x}\right) + \epsilon$$

(9)

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + \epsilon$$

 $y_{noise} = g_{noise}\left(\boldsymbol{x}\right) = g_{ideal}\left(\boldsymbol{x}\right) + \epsilon$

Where the ϵ

It has a $\epsilon \sim N\left(\mu,\sigma^2\right)$

Thus, we can do the following

1

Thus, we have

$$\epsilon = y_{noise} - g_{ideal}(\mathbf{x}) \tag{10}$$

Graphically

Thus, we have

What to do? $\epsilon = y_{noise} - g_{ideal}\left({m{x}} \right) \tag{10}$

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}))^2$$
(11)

Remark: Know as least squares (Fitting the vertical offset!!!)

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}))^2$$
(11)

Remark: Know as least squares (Fitting the vertical offset!!!)

Generalize

lf

• The dimensionality of each sample (data point) is d,

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}))^2$$
(11)

Remark: Know as least squares (Fitting the vertical offset!!!)

Generalize

lf

- The dimensionality of each sample (data point) is d,
- ullet You can extend each vector sample to be $oldsymbol{x}^T = (\mathbf{1}, oldsymbol{x'})$,

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}))^2$$
(11)

Remark: Know as least squares (Fitting the vertical offset!!!)

Generalize

lf

- The dimensionality of each sample (data point) is d,
- ullet You can extend each vector sample to be $oldsymbol{x}^T = (\mathbf{1}, oldsymbol{x}').$
- We have:

$$\sum_{i=1}^{N} (y_i - x^T w)^2 = (y - Xw)^T (y - Xw) = ||y - Xw||_2^2$$
 (12)

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

What is X

It is the Data Matrix
$$X = \begin{pmatrix} 1 & (x_1)_1 & \cdots & (x_1)_j & \cdots & (x_1)_d \\ \vdots & & \vdots & & \vdots \\ 1 & (x_i)_1 & & (x_i)_j & & (x_i)_d \\ \vdots & & \vdots & & \vdots \\ 1 & (x_N)_1 & \cdots & (x_N)_j & \cdots & (x_N)_d \end{pmatrix}$$
 (13)

$$\frac{dx^T Ax}{dx} = Ax + A^T x, \ \frac{dAx}{dx} = A$$

What is $oldsymbol{X}$

$$oldsymbol{X} = \left(egin{array}{ccccc} 1 & (oldsymbol{x}_1)_1 & \cdots & (oldsymbol{x}_1)_j & \cdots & (oldsymbol{x}_1)_d \ dots & & dots & dots \ 1 & (oldsymbol{x}_i)_1 & \cdots & (oldsymbol{x}_N)_j & \cdots & (oldsymbol{x}_N)_d \ dots & & dots & dots \ 1 & (oldsymbol{x}_N)_1 & \cdots & (oldsymbol{x}_N)_j & \cdots & (oldsymbol{x}_N)_d \end{array}
ight)$$

We know the following

$$\frac{d\mathbf{x}^T A \mathbf{x}}{d\mathbf{x}} = Ax + A^T x, \ \frac{dA\mathbf{x}}{d\mathbf{x}} = A$$
 (14)

(13)

Note about other representations

We could have
$$\boldsymbol{x}^T = (x_1, x_2, ..., x_d, 1)$$
 thus
$$\boldsymbol{X} = \begin{pmatrix} (x_1)_1 & \cdots & (x_1)_j & \cdots & (x_1)_d & 1 \\ & \vdots & & \vdots & \vdots \\ (x_i)_1 & & (x_i)_j & & (x_i)_d & 1 \\ & & \vdots & & \vdots & \vdots \\ (x_N)_1 & \cdots & (x_N)_j & \cdots & (x_N)_d & 1 \end{pmatrix}$$
 (15)

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(16)

$$\hat{\boldsymbol{w}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{17}$$

Note: X^TX is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get to

Any Ideas?

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(16)

Making Possible to have by deriving with respect to $m{w}$ and assuming that $m{X}^Tm{X}$ is invertible

$$\hat{\boldsymbol{w}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{17}$$

Note: X^TX is always positive semi-definite. If it is also invertible, it is positive definite.

Any Ideas?

We can expand our quadratic formula!!!

Thus

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = \boldsymbol{y}^{T}\boldsymbol{y} - \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{y} - \boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{w} + \boldsymbol{w}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w}$$
(16)

Making Possible to have by deriving with respect to w and assuming that $oldsymbol{X}^Toldsymbol{X}$ is invertible

$$\hat{\boldsymbol{w}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{17}$$

Note: X^TX is always positive semi-definite. If it is also invertible, it is positive definite.

Thus, How we get the discriminant function?

Any Ideas?

The Final Discriminant Function

$$g(\boldsymbol{x}) = \boldsymbol{x}^T \hat{\boldsymbol{w}} = \boldsymbol{x}^T \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

(18)

Pseudo-inverse of a Matrix

Definition

Suppose that $A \in \mathbb{R}^{m \times n}$ and rank(A) = m. We call the matrix

$$A^+ = \left(A^T A\right)^{-1} A^T$$

the pseudo inverse of A.

$$A^\pm$$
 inverts A on its image

$$A^+ \mathbf{w} = A^+ A \mathbf{v} = \left(A^T A \right)^{-1} A^T A \mathbf{v}$$

Pseudo-inverse of a Matrix

Definition

Suppose that $A\in\mathbb{R}^{m\times n}$ and $rank\left(A\right)=m.$ We call the matrix

$$A^+ = \left(A^T A\right)^{-1} A^T$$

the pseudo inverse of A.

Reason

 A^+ inverts A on its image

If $oldsymbol{w} \in image\left(A
ight)$, then there is some $oldsymbol{v} \in \mathbb{R}^n$ such that $oldsymbol{w} = Aoldsymbol{v}$. Hence:

 $A^+ \boldsymbol{w} = A^+ A \boldsymbol{v} = \left(A^T A \right)^{-1} A^T A \boldsymbol{v}$

Pseudo-inverse of a Matrix

Definition

Suppose that $A \in \mathbb{R}^{m \times n}$ and $rank\left(A\right) = m.$ We call the matrix

$$A^+ = \left(A^T A\right)^{-1} A^T$$

the pseudo inverse of A.

Reason

 A^+ inverts A on its image

What?

If $\boldsymbol{w}\in image\left(A\right)$, then there is some $\boldsymbol{v}\in\mathbb{R}^{n}$ such that $\boldsymbol{w}=A\boldsymbol{v}.$ Hence:

$$A^+ \boldsymbol{w} = A^+ A \boldsymbol{v} = \left(A^T A \right)^{-1} A^T A \boldsymbol{v}$$

What lives where?

We have

- $X \in \mathbb{R}^{N \times (d+1)}$
- $Image(X) = span\left\{X_1^{col}, ..., X_{d+1}^{col}\right\}$

DataLal

- $X \in \mathbb{R}^{N \times (d+1)}$
- $\bullet \ Image\left(\boldsymbol{X} \right) = span\left\{ \boldsymbol{X}_{1}^{col},...,\boldsymbol{X}_{d+1}^{col} \right\}$
- $ullet oldsymbol{x_i} \in \mathbb{R}^d$
- \mathbf{X}^{col} $u \in \mathbb{R}^N$

- $X \in \mathbb{R}^{N \times (d+1)}$
- $\bullet \ Image\left(\boldsymbol{X} \right) = span\left\{ \boldsymbol{X_{1}^{col}},...,\boldsymbol{X_{d+1}^{col}} \right\}$
- $ullet x_i \in \mathbb{R}^d$
- $oldsymbol{v} \in \mathbb{R}^{d+1}$

- $X \in \mathbb{R}^{N \times (d+1)}$
- $\bullet \ Image\left(\boldsymbol{X} \right) = span\left\{ \boldsymbol{X_{1}^{col}},...,\boldsymbol{X_{d+1}^{col}} \right\}$
- $ullet oldsymbol{x_i} \in \mathbb{R}^d$
- $oldsymbol{v} \in \mathbb{R}^{d+1}$
- ullet $oldsymbol{X_i^{col}}, oldsymbol{y} \in \mathbb{R}^N$

We have

- $X \in \mathbb{R}^{N \times (d+1)}$
- $Image(\mathbf{X}) = span\left\{\mathbf{X}_{1}^{col}, ..., \mathbf{X}_{d+1}^{col}\right\}$
- $ullet x_i \in \mathbb{R}^d$
- $oldsymbol{w} \in \mathbb{R}^{d+1}$
- \bullet $X_i^{col}, y \in \mathbb{R}^N$

Basically y, the list of desired inputs the is being protected into

$$span\left\{ X_{1}^{col},...,X_{d+1}^{col}
ight\}$$

by the projection operator $X\left(X^TX\right)^{-1}X^T$.

(19)

We have

 $\bullet \ \, \text{The image of the mapping } \boldsymbol{w} \text{ to } \boldsymbol{X}\boldsymbol{w} \text{ is a linear subspace of } \mathbb{R}^{N}.$

- **1** The image of the mapping w to Xw is a linear subspace of \mathbb{R}^N .
- ② As w runs through all points \mathbb{R}^{d+1} , the function value Xw runs through all points in the image space

- ① The image of the mapping w to Xw is a linear subspace of \mathbb{R}^N .
- ② As w runs through all points \mathbb{R}^{d+1} , the function value Xw runs through all points in the image space $image\left(X\right) = span\left\{X_1^{col},...,X_{d+1}^{col}\right\}$.
- **3** Each w defines one point $Xw = \sum_{j=0}^d w_j X_j^{col}$.

- ① The image of the mapping w to Xw is a linear subspace of \mathbb{R}^N .
- ② As w runs through all points \mathbb{R}^{d+1} , the function value Xw runs through all points in the image space $image\left(X\right) = span\left\{X_1^{col},...,X_{d+1}^{col}\right\}$.
- **3** Each w defines one point $Xw = \sum_{j=0}^{d} w_j X_j^{col}$.
- $oldsymbol{\hat{w}}$ is the point which minimizes the distance $d\left(oldsymbol{y},image\left(oldsymbol{X}
 ight)
 ight).$

Geometrically

Outline

- Introduction
 - The Simplest Functions
 - Splitting the Space
 - The Decision Surface
 - Minimum Squared Error Procedure
 - The Error Idea
 - The Final Error Equation
 - The Data Matrix
 - Issues with Least Squares!!!

Robustness

- $lackbox{0}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- lacksquare If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of prediction

Robustness

- $lackbox{0}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- 2 If X^TX almost not invertible, least squares is numerically unstable.

Robustness

- $lackbox{1}{\bullet}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- $oldsymbol{2}$ If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

- Modern problems: Many dimensions/features/predictors (possibly thousands)
- Only a few of these may be important:
 - It needs some form of feature selection.
 - The lieus some form of reactive selections.

- Treats all dimensions equally
- Relevant dimensions are averaged with irrelevant ones

Robustness

- Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

Modern problems: Many dimensions/features/predictors (possibly thousands).

37 / 38

Robustness

- $lackbox{0}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands).
- Only a few of these may be important:

Robustness

- $lackbox{0}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands).
- Only a few of these may be important:
 - It needs some form of feature selection.

Robustness

- $lackbox{1}{\bullet}$ Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands).
- Only a few of these may be important:
 - It needs some form of feature selection.
 - Possible some type of regularization

Robustness

- lacksquare Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands).
- Only a few of these may be important:
 - It needs some form of feature selection.
 - Possible some type of regularization

Why?

Treats all dimensions equally

Robustness

- Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ② If X^TX almost not invertible, least squares is numerically unstable.
 - Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands).
- Only a few of these may be important:
 - It needs some form of feature selection.
 - Possible some type of regularization

Why?

- Treats all dimensions equally
- Relevant dimensions are averaged with irrelevant ones

