Final Presentation

Course: Electrical Engineering lab (Automatic Control)

Semester: Fall, 2018 Instructor: Feng-Li Lian

Final Project: Wheeled Inverted Pendulum

Date: Jan, 2019

Classroom: EE1 Room 401

B05502097 B04502031

B04502139

B04502097

王琮文 施力維

戴瑋辰

吳政穎

Outline

- Introduction
- Design principal
- System ID
- Modeling
- P controller design
- PID controller design
- Experiment result
- Live demo

Introduction

Wheeled Inverted Pendulum

Actuator: Motor (speed)

Sensor: Pendulum Encoder (degree)

Motor Encoder (degree)

Controller: Arminno

Wheeled Inverted Pendulum

Actuator: Motor (speed)

Sensor: Pendulum Encoder (degree)

Motor Encoder (degree)

Controller: Arminno

Error: $\delta\theta$, δx

Objective: $\delta\theta=0, \ \delta x=0$

Challenge

- 1. Nonlinear System (due to pendulum)
- 2. Unstable equilibrium point
- Other nonlinear effects: motor friction etc.

Time domain spec

Pendulum Angle θ

- settling time < 10 sec.
- —steady state error < 5°

Vehicle Position *x*

— settling time < 30 sec.

Design Principal

Controller Design SOP

Controller Block Diagram—tracking θ

Controller Block Diagram—tracking θ

Controller Design SOP for Position tracking

Controller Block Diagram—tracking θ & x

Controller Block Diagram—tracking θ & x

System ID

System

Time axis

Left Encoder

Right Encoder

Input Speed

	Α	В	С	D	E
1	tm Value	IPdec Value	LdecValue	Rdec Value	int(direction)*speed
2	458	0	0	0	0
3	6642161	0	Ū	0	100
4	12366044	0	22	14	100
5	17373888	0	94	58	0
6	21963747	0	163	117	100
7	26819513	1	228	185	100
8	31515748	2	309	254	0
9	36453164	1	393	335	100
10	41250104	-1	465	411	100
11	45963693	1	547	489	0
12	50720404	1	630	571	0
13	55710127	-1	700	642	100
14	60571922	2	769	712	0
15	65097052	2	839	776	100
16	70104102	0	910	849	100
17	3016683	0	992	925	100
18	7788989	0	1078	1009	0
19	12418820	0	1160	1089	0
20	17248851	1	1229	1160	100
21	22103644	0	1297	1229	100
22	26829926	0	1379	1300	0
23	31648049	2	1460	1377	0
24	36653542	2	1525	1447	100
25	41299016	2	1588	1510	0
26	46067766	-1	1663	1576	100
27	50772267	8	1727	1643	0
28	55690195	-2	1807	1710	0
29	60173741	3	1862	1765	100
30	65413592	2	1927	1832	0
31	69820527	0	1990	1886	0
32	2878127	7	2041	1940	100
33	7666431	0	2097	1994	0
34	12290520	1	2162	2049	100
35	17502802	3	2229	2117	0
4	+	speed_100_n	ew 🕒		

System Identification

Transfer Function

Input: drive speed

Output: actual speed

From input to output "y1":
$$\frac{V(s)}{input} = \frac{-7.043 \text{ s}^3 + 0.5402 \text{ s}^2 + 236.4 \text{ s} - 18.13}{3.421 \text{ s}^3 + 117.4 \text{ s}^2 + 329 \text{ s}}$$

$$\frac{A(s)}{input} = \frac{V(s)}{input} \times s$$

Modelling

Overall Model

Physics Model_[2]

From Newton's Law,

$$\ddot{\theta} = \frac{g \cdot \sin(\theta)}{l} - \frac{\ddot{x} \cdot \cos(\theta)}{l}$$

$$\theta \approx 0$$

$$-\ddot{x} = l\ddot{\theta} - g\theta$$

$$\text{Laplace} \qquad \frac{\Theta(s)}{X(s)} = \frac{-s^2}{ls^2 - g}$$
 or
$$\frac{\Theta(s)}{A(s)} = \frac{-1}{ls^2 - g}$$

Physics Model

According to the measurement:

$$l = 0.2923 \text{ m}$$

$$g = 9.81 \text{ m/s}^2$$

$$m = 0.289 \text{ kg}$$

One of the poles > 0

→ Unstable system

System Model

Transfer function(speed command to acceleration)

$$\frac{-7.043s^3 + 0.5402s^2 + 236.4s - 18.13}{3.421s^2 + 117.4s + 329}$$

Transfer function(acceleration to pendulum degree)

$$\frac{-3.421}{s^2 - 33.56}$$

Overall transfer function =
$$\frac{7.043s - 0.5402}{s^2 + 34.32s + 96.16}$$

P Controller Design

P Controller (θ >9°)

- 最外層的P Controller之目的便是讓倒單擺擺起來,使其到均衡點,進入線性區 域。
- P Controller 所使用的區域不適用於線性模型,因此我們也做出了諸多特別的設計來彌補。
- 我們設計讓P Controller在作用之前,先往反方向運動,以增加其速度變化量, 如此較容易達成將倒單擺擺起來的目的。

What happened if the value of Kp is too small or too large?

PD Controller Design

PD controller design ($5^{\circ} < \theta < 9^{\circ}$)

filename	KP	KD	Overshoot(deg)
PD_1_0.1.csv	1	0.1	3.69
PD_1_0.2.csv	1	0.2	4.59
PD_1_0.05.csv	1	0.05	6.84
PD_1_0.15.csv	1	0.15	4.5
PD_2_0.2.csv	2	0.2	5.58
PD_2_0.3.csv	2	0.3	5.56
PD_2_0.4.csv	2	0.4	6.03
PD_3_0.3.csv	3	0.3	6.48
PD_3_0.5.csv	3	0.5	6.75
PD_3_0.7.csv	3	0.7	6.66

PD controller design

Rising time: 3>2>1
Overshoot: 1<2<3

$$1 + 0.1s$$

$$2 + 0.2s$$

$$3 + 0.3s$$

PID Controller Design

PID controller design (θ <5°)

filename	KP	KI	KD	Overshoot(deg)
PID_3.5_9_0.2.csv	3.5	9	0.2	5.49
PID_3.5_10.3_0.2.c	3.5	10.3	0.2	5.94
PID_3.9_10.3_0.2.c	3.9	10.3	0.2	6.84
PID_3.9_10.3_0.4.c	3.9	10.3	0.4	6.48
PID_3.9_10.3_0.05.	3.9	10.3	0.05	9.18
PID_3.9_12_0.2.csv	3.9	12	0.2	2.79
PID_4.3_10.3_0.2.c sv	4.3	10.3	0.2	3.06

PID controller design (θ <5°)

$$3.5 + \frac{10.3}{s} + 0.2s$$

$$3.9 + \frac{12}{s} + 0.2s$$

Position Controller Design

Inspiration

Inspiration

Using P control to achieve better performance

Setpoint > 0

Position controller design

Position controller design—detail

Position controller design—further detail

Experiment Result

Pendulum degree

Max Error: 4.41 degrees
Min Error: -4.86 degrees
Ave Error: -0.00074 degree

Std : 1.1228

Vehicle Position

Live Demo

https://youtu.be/Kn8Ok2zyNI4

Reference

Reference

[1] 自動控制Final Project實驗講義

[2] Kent Lundberg, "The Inverted Pendulum System", http://web.mit.edu/klund/www/papers/UNP_pendulum.pdf