This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 96/38590

C12Q 1/68, C07H 21/04, C12N 15/09

(43) International Publication Date:

5 December 1996 (05.12.96)

(21) International Application Number:

PCT/US96/08197

(22) International Filing Date:

31 May 1996 (31.05.96)

(30) Priority Data:

08/458,434

2 June 1995 (02.06.95)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on Not furnished (CIP)
Not furnished

(71) Applicant (for all designated States except US): OSTEO-SCREEN, INC. [US/US]; Suite 201, 2040 Babcock Road, San Antonio, TX 78229 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HARRIS, Stephen, E. [US/US]; 9209 Pony Express, San Antonio, TX 78225 (US). MUNDY, Gregory, R. [US/US]; 3719 Morgan's Creek, San Antonio, TX 78230 (US). GHOSH-CHOUDHURY, Nandini [IN/US]; 7615 Aspen Park, San Antonio, TX 78249 (US). FENG, Jian, Q. [CN/US]; 10615 Lost Bluff, San Antonio, TX 78240 (US).

(74) Agents: MILLMAN, Robert, A. et al.; Morrison & Foerster L.L.P., 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHODS AND COMPOSITIONS FOR IDENTIFYING OSTEOGENIC AGENTS

(57) Abstract

Methods and compositions for identifying osteogenic agents are disclosed, wherein a bone morphogenetic protein promoter is utilized in an assay system to modulate the production of an assayable product of a reporter gene.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	ĦU	Huogary	NO	Norway
BF	Burkina Faso	Œ	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Кепуа	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	K R	Republic of Korea	5G	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Caracroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	11	Trinidad and Tobego
KE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	· MG	Madagascar	UG	Uganda
T	Finland	ML	Mail	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritmia	VN	Viet Nam

METHODS AND COMPOSITIONS FOR IDENTIFYING OSTEOGENIC AGENTS

Technical Field

5

15

20

25

30

The present invention relates to assay techniques for identifying agents which modulate bone growth.

Background of the Invention

Although there is a great deal of information available on the factors which influence the breakdown and resorption of bone, information on growth factors which stimulate the formation on growth factors which stimulate the formation of new bone is more limited. Investigators have searched for sources of such activities and have found that bone tissue itself is a storehouse for factors which have the capacity for stimulating bone cells. Thus, extracts of bovine tissue obtained from slaughterhouses contain not only structural proteins which are responsible for maintaining the structural integrity of bone, but also biologically active bone growth factors which can stimulate bone cells to proliferate. Among these latter factors are transforming growth factor β , the heparinbinding growth factors (acidic and basic fibroblast growth factor), the insulin-like growth factors (insulin-like growth factor I and insulin-like growth factor II) and a recently described family of proteins called bone morphogenetic proteins (BMPs). All of these growth factors have effects on other types of cells as well as on bone cells.

The BMPs are novel factors in the extended transforming growth factor β family. They were first identified in extracts of demineralized bone (Urist 1965, Wozney et al., 1988). Recombinant BMP-2 and BMP-4 can induce new bone formation when they are injected locally into the subcutaneous tissues of rats (Wozney 1992, Wozney & Rosen 1993). These factors are expressed by normal osteoblasts as they differentiate, and have been shown to stimulate osteoblast differentiation and bone nodule formation in vitro as well as bone formation in vivo (Harris et al., 1994). This latter property suggests potential usefulness as therapeutic agents in diseases which result in bone loss.

The cells which are responsible for forming bone are osteoblasts. As osteoblasts differentiate from precursors to mature bone-forming cells, they express and secrete a number of the structural proteins of the bone matrix including Type-1 collagen, osteocalcin, osteopontin and alkaline phosphates (Stein et al., 1990, Harris et al., 1994). They also

10

15

20

25

30

synthesize a number of growth regulatory peptides which are stored in the bone matrix and are presumably responsible for normal bone formation. These growth regulatory peptides include the BMPs (Harris et al, 1994). In studies of primary cultures of fetal rat calvarial osteoblasts, BMPs 1, 2, 3, 4, and 6 are expressed by cultured cells prior to the formation of mineralized bone nodules (Harris et al, 1994). Expression of the BMPs coincides with expression of alkaline phosphatase, osteocalcin and osteopontin.

Although the BMPs have powerful effects to stimulate bone formation in vitro and in vivo, there are disadvantages to their use as therapeutic agents to enhance bone healing. Receptors for the bone morphogenetic proteins have been identified in many tissues, and the BMPs themselves are expressed in a large variety of tissues in specific temporal and spatial patterns. This suggests that they may have effects on many tissues other than bone, potentially limiting their usefulness a therapeutic agents when administered systematically. Moreover, since they are peptides, they would have to be administered by injection. These disadvantages are severe limitations to the development of BMPs as therapeutic agents.

It is an object of the present invention to overcome the limitations inherent in known osteogenic agents by providing a method to identify potential drugs which would stimulate production of BMPs locally in bone.

Prior Art

Sequence data on small fragments of the 5'-flanking region of the BMP-4 gene have been published (Chen et al, 1993, Kurihara et al, 1993), but the promoter has not been previously functionally identified or isolated.

Disclosure of the Invention

A cell-based assay technique for identifying and evaluating compounds which stimulate the growth of bone is provided, comprising culturing a host cell line comprising an expression vector comprising a DNA sequence encoding a promoter region of at least one bone morphogenetic protein, operatively linked to a reporter gene encoding an assayable product under conditions which permit expression of said assayable product, contacting the cultured cell line with at least one compound suspected of possessing osteogenic activity, and identifying osteogenic agents by their ability to modulate the expression of the reporter gene and thereby increase the production of the assayable product.

10

15

20

25

This assay technique specifically identifies osteogenic agents which stimulate bone cells to produce bone growth factors in the bone morphogenetic protein family. These osteogenic agents display the capacity to increase the activity of the promoters of genes of members of the BMP family and other bone growth factors normally produced by e.g. bone cells.

Also provided in accordance with the present invention are isolated DNA sequences encoding a promoter region of at least one bone morphogenetic protein, and a system for identifying osteogenic agents comprising an expression vector comprising such promoter sequences operatively linked to a reporter gene encoding an assayable product, and means for detecting the assayable product produced a response to exposure to an osteogenic compound.

Brief Description of the Drawings

Figure 1A graphically depicts a restriction enzyme map of mouse genomic BMP-4 and a diagram of two transcripts. The mouse BMP-4 gene transcription unit is -7kb and contains 2 coding exons (closed boxes) and 3 non-encoding exons, labeled exons 1A, 1B and 2. This 19kb clone has an -6kb 5' -flanking region and an -7kb 3' -flanking region. The diagram shows approximately 2.4kb of the 5' -flanking region, and a small region of the 3' -flanking region. The lower panel shows two alternative transcripts of BMP-4. Both have the same exons 2, 3 and 4 but a different exon 1. Transcript A has exon 1A and transcript B has exon 1B whose size was estimated according to RT-PCR and primer extension analysis in FRC cells;

Figure 1B depicts the DNA sequence of selected portions of mouse genomic BMP-4 (SEQ. ID NO. 1) and the predicted amino acid sequences of the identified coding exons (SEQ. ID NO. 2). The numbers on the right show the position of the nucleotide sequence and the bold numbers indicate the location of the amino acid sequence of the coding region. Most of the coding sequence is in exon 4. The end of the transcription unit was estimated based on a 1.8kb transcript. Primer 1 in exon 1A was used in RT-PCR analysis with Primer 3 in exon 3. Primer 2 in exon 1B was used in RT-PCR analysis with Primer B1 and B2 were used in primer extension reactions;

Figure 1C portrays the sequence of the BMP-4 exon 1A 5'-flanking region and potential response elements in the mouse BMP-4 1A promoter (SEQ. ID NO. 3). The

15

20

25

30

sequences of 2688 bp of the mouse BMP-4 gene are shown. Nucleotides are numbered on the left with +1 corresponding to the major transcription start site of the 1A promoter. The response elements of DR-1A Proximal and DR-1A Distal oligonucleotides are indicated. The other potential response DNA elements in the boxes are p53, RB (retinoblastoma), SP-1, AP-1, and AP-2. Primer A, indicated by the line above the DNA sequence at +114 to +96, was used for primer extension analysis of exon 1A-containing transcripts;

Figure 2 depicts the results of a primer extension assay. Total RNAs prepared from FRC cells (on the left frame) and mouse embryo 9.5 days (on the right) were used with primer A or the complement of primer 2. Two major extended fragments, 67 and 115 bp, indicated a lane A were obtained from primer A. Two 1B primers, primer B1 and primer B2, also gave negative results with both FRC and mouse embryo total RNA as template. Transcript B is not detectable with this assay. By RT-PCR, transcript B can be detected and quantified;

Figure 3A is a photographic representation of gel electrophoresis of 1A-3 and 1B-3 RT-PCR products of the BMP-4 gene. RT-PCR was performed with two pairs of primers using FRC cell poly A⁺ mRNA as the template. The products were verified by the DNA sequence;

Figure 3B is a schematic diagram of spliced BMP-4 RT-PCR products with 1A and 1B exons in FRC cells. RT-PCR was performed with two pairs of primers using FRC cell poly A* mRNA as the template. The diagram shows where the primers are located in the BMP-4 genomic DNA. RT-PCR product 1A-2-3 which contains exon 1A, exon 2 and the 5' region of exon 3, was produced with primer 1 and primer 3. Primer 2 and primer 3 generated two RT-PCR products with the exon 1B-2-3 pattern. The heterogeneity in size of exon 1B is indicated. The 1A promoter is predominantly utilized in bone cells:

Figure 4A provides a map of the BMP-4 1A 5'-flanking-CAT plasmid and promoter activity in FRC cells. The 2.6kb EcoR1 and Xba fragment, 1.3 kb Pst fragment, 0.5kb SphI and Pst fragment, and 0.25kb PCR fragment were inserted into pBLCAT3. The closed box indicates the non-coding exon 1A. The CAT box represents the CAT reporter gene. The values represent percentages of CAT activity expressed by pCAT-2.6 set at 100%. The values represent the average of four independent assays;

10

Figure 4B provides an autoradiogram of CAT assays using FRC cells transfected with BMP-4 1A 5'-flanking-CAT plasmids identified in Figure 4A;

Figure 5 portrays the nucleotid sequence of the mouse BMP-2 gene 5'-flanking region from -2736 to +139 (SEQ. ID NO. 4). The transcription start site is denoted by +1;

Figure 6A depicts an autoradiogram showing products of a primer extension assay for determination of the transcription start site of the BMP2 gene, separated on a 8% denaturing urea-polyacrylamide gel, in which Lane 1: Total RNA from fetal rat calvarial osteoblast cells, and Lane 2: Control lane with 10μg of yeast tRNA. All RNA samples were primed with a ³²p-labeled oligonucleotide from exon 1 to the mouser BMP2 gene, as indicated in Figure 6B. Lane M: ³²p-labeled MspI digested λ phage DNA, containing DNA fragments spanning from 623 bp to 15 bp (size marker);

Figure 6B provides a schematic representation of the primer extension assay. The primer used is a 18mer synthetic oligonucleotide, 5'-CCCGGCAAGTTCAAGAAG-3' (SEQ. ID NO. 5);

Figure 7 provides a diagram of selected BMP-2 promoter - luciferase reporter constructs. BMP-2 5'-flanking sequences are designated by hatched boxes (1) and luciferase cDNA is designated by the filled box (1). Base +114 denotes the 3' end of the BMP-2 gene in all the constructs;

Figure 8 displays the luciferase enzyme activity for the BMP-2 gene-LUC

constructs (shown in Figure 7) transfected in primary fetal rat calvarial osteoblasts (A),

HeLa cells (B) and ROS 17/2.8 osteoblasts (C). The luciferase activity has been normalized to β-galactosidase activity in the cell lysates;

Figure 9A-F depicts the DNA sequence of the mouse BMP-2 promoter and gene (SEQ. ID NO. 6); and

Figure 10A-D depicts the DNA sequence of the mouse BMP-4 promoter and gene (SEQ. ID NO. 7).

Figure 11 depicts the resequencing of the BMP-2 5' flanking region.

Detailed Description of the Preferred Embodiments

A cell-based assay technique for identifying and evaluating compounds which stimulate the growth of bone is provided, comprising culturing a host cell line comprising an expression vector comprising a DNA sequence encoding a promoter region of at least one bone morphogenetic protein operatively linked to a reporter gene encoding an assayable product under conditions which permit expression of said assayable product, contacting the cultured cell line with at least one compound suspected of possessing osteogenic activity, and identifying osteogenic agents by their ability to modulate the expression of the reporter gene and thereby increase the production of the assayable product.

10

15

20

25

30

The present invention is distinguished from other techniques for identifying boneactive compounds, as it specifically identifies chemical compounds, agents, factors or other
substances which stimulate bone cells to produce the bone growth factors in the bone
morphogenetic protein (BMP) family (hereinafter "osteogenic agents"). These osteogenic
agents are identified by their capacity to increase the activity of the promoters of genes of
members of the BMP family and other bone growth factors which are normally produced
by bone cells, and other cells including cartilage cells, tumor cells and prostatic cells. When
patients are treated with such chemical compounds, the relevant BMP will be produced by
bone cells and then be available locally in bone to enhance bone growth or bone healing.
Such compounds identified by this assay technique will be used for the treatment of
osteoporosis, segmental bone defects, fracture repair, prosthesis fixation or any disease
associated with bone loss.

Compounds that inhibit bone morphogenetic protein expression in bone or cartilage may also be useful in clinical situations of excess bone formation which occurs in such diseases as osteoblastic metastases or osteosclerosis of any cause. Such compounds can also be identified in accordance with the present invention.

Also provided in accordance with the present invention are isolated DNA sequences encoding a promoter region of at least one bone morphogenetic protein, and a system for identifying osteogenic agents comprising an expression vector comprising such promoter sequences operatively linked to a reporter gene encoding an assayable product, and means for detecting the assayable product produced in response to exposure to an osteogenic compound.

The promoters of the genes for BMP-4 and BMP-2 are complex promoters which can be linked to reporter genes, such as e.g. the firefly luciferase gene. When the hybrid genes (for example, bone cell BMP-4 promoter or bone cell BMP-2 promoter and firefly luciferases, chloramphenical acetyl transferase (CAT) cDNAs, or cDNA's for other reporter genes such as β -galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase, β -glucuronidase, and the like) are transfected into bone cells, osteogenic agents which activate the BMP-4 or BMP-2 promoters can be identified by their capacity in vitro to increase luciferase activity in cell lysates after cell culture with the agent.

5

10

15

20

25

30

Sequence data on small fragments of the 5'-flanking region of the BMP-4 gene have been published (Chen et al, 1993; Kurihara et al, 1993), but the promoter has not been previously identified or isolated, and methods for regulating transcription have not been shown. The present invention isolates the promoters for the BMP genes and utilizes these promoters in cultured bone cells so that agents could be identified which specifically increase BMP-2 or BMP-4 production locally in bone. Since it is known that the BMPs are produced by bone cells, a method for enhancing their production specifically in bone should avoid systemic toxicity. This benefit is obtained by utilizing the unique tissue specific promoters for the BMPs which are provided herein, and then using these gene promoters to identify agents which enhance their activity in bone cells.

By utilizing the disclosure provided herein, other promoters can be obtained from additional bone morphogenetic proteins such as BMP-3, BMP-5, BMP-6, and BMP-7, to provide comparable benefits to the promoters herein specifically described.

In addition, the present invention contemplates the use of promoters from additional growth factors in osteoblastic cells. Included are additional bone morphogenetic proteins, as well as fibroblast growth factors (e.g. FGF-1, FGF-2, and FGF-7), transforming growth factors β -1, β -2, and β -3, insulin-like growth factor-1, insulin-like growth factor-2, platelet-derived growth factor, and the like. Such promoters will readily be utilized in the present invention to provide comparable benefits.

The cells which can be utilized in the present invention include primary cultures of fetal rat calvarial osteoblasts, established bone cell lines available commercially (MC3T3-E1 cells, MG-63 cells, U2OS cells, UMR106 cells, ROS 17/2.8 cells, SaOS2 cells, and the like

as provided in the catal g from the American Type Culture Collection (ATCC)), and bone cell lines established from transgenic mice, as well as other cell lines capable of serving as hosts for the present vectors and systems. In addition, a number of tumor cell lines also express BMPs, including the prostate cancer cell lines PC3, LNCAP, and DUI145, as well as the human cancer cell line HeLa. Thus, any of a number of cell lines will find use in the present invention and the choice of an appropriate cell line will be a matter of choice for a particular embodiment.

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

10

15

30

EXPERIMENTAL

In the experimental disclosure which follows, the following abbreviations apply: eq (equivalents); M (Molar); mM (millimolar); μ M (micromolar); N (Normal); mol (moles); mmol (millimoles); μ mol (micromoles); nmol (nanomoles); kg (kilograms); gm (grams); mg (milligrams); μ g (micrograms); ng (nanograms); L (liters); ml (milliliters); μ l (microliters); vol (volumes); and °C (degrees Centigrade).

Example 1: DESCRIPTION AND CHARACTERIZATION OF MURINE BMP-4 GENE PROMOTER

20 (a) Library Screening, Cloning and Sequencing of Gene

A mouse genomic lambda fix II spleen library (Stratagene, La Jolla, CA) was screened with a mouse embryo BMP-4 cDNA kindly provided by Dr. B.L.M. Hogan (Vanderbilt University School of Medicine, Nashville, TN). The probe was labeled with [α-32 P]dCTP using a random-primer labeling kit from Boehringer-Mannheim (Indianapolis, IN). Plaque lift filters were hybridized overnight in 6X SSC, 5X Denhardt's. 0.5% SDS containing 200μg/ml sonicated salmon sperm DNA, 10μg/ml Poly A and 10μg/ml t-RNA at 68° C. The filters were washed at 55° C for 20 min, twice in 2X SSC, 0.1% SDS buffer, once in 0.5X SSC, 0.1% SDS. The isolated phage DNA clones were analyzed according to standard procedures (Sambrook *et al.*, 1989).

Fragments from positive clones were subcloned into pBluescrpt vectors (Stratagene, La Jolla, CA) and sequenced in both directions using the Sequenase SUBSTITUTE SHEET (RULE 26)

dideoxynucleotide chain termination sequencing kit (U.S. Biochemical Corp., Cleveland, OH).

Three clones were isolated from 2x10⁶ plaques of mouse spleen 129 genomic library using full length coding region mouse embryo BMP-4 cDNA probe (B. Hogan, Vanderbilt University, Nashville, TN). One 19kb clone contained 5 exons and 6kb 5'-flanking region and a 7kb 3'-flanking region, as shown in Figure 1A. The 7kb transcription unit and the 5'-flanking region of the mouse BMP-4 gene were sequenced (Figure 10).

The nucleotide sequence of selected portions of mouse BMP-4 and the deduced amino acid sequence of the coding exons (408 residues; SEQ. ID NO. 2) is shown in Figure 1B. Primers used in the RT-PCR experiments described below are indicated in this Figure.

10

15

20

25

30

Figure 1C shows the DNA sequence of 2372bp of the 5'-flanking region and the candidate DNA response elements upstream of exon 1A. Primers used in primer extensions are also shown in Figures 1B and 1C.

(b) Primer Extension Mapping of the Transcriptional Start-Site of the Mouse BMP-4
Gene

The transcriptional start-sites were mapped by primer extension using the synthetic oligonucleotide primer A 5'-CGGATGCCGAACTCACCTA-3' (SEQ. ID NO. 8), corresponding to the complement of nucleotides +114 to +96 in the exon 1A sequence and the oligonucleotide primer B1 5'-CTACAAACCCGAGAACAG-3' (SEQ. ID NO. 9), corresponding to the complement of nucleotides +30 to +13 of the exon 1B sequence. Total RNA from fetal rat calvarial (FRC) cells and 9.5 day mouse embryo (gift of B. Hogan, Vanderbilt University) was used with both primers. The primer extension assay was carried out using the primer extension kit from Promega (Madison, WI). The annealing reactions were, however, carried out at 60°C in a water bath for 1 hr. The products were then electrophoresed on 8% denaturing-urea polyacrylamide gels and autoradiographed.

One additional oligonucleotide primer B2 5'-CCCGGCACGAAAGGAGAC-3' (SEQ. ID NO. 10), corresponding to the complement of nucleotide sequence +69 to +52 of exon 1B, was also utilized in primer extension reactions with FRC and mouse embryo RNAs.

1. Evidence for utilization of two alternate exon 1 sequences for the BMP-4 gene.

Several BMP-4 cDNAs were sequenced from prostate cancer cell in PC-3 and from primary FRC cells. Four independent FRC cell BMP-4 cDNAs all contained exon 1A. However, the human prostate carcinoma cell line (PC-3) cDNA contained an apparently unique exon 1B sequence spliced to exon 2 (Chem et al, 1993). A doubt-stranded oligonucleotide roble (70bp) to exon 1B was synthesized based on the human PC-3 exon 1B sequence. This exon 1B probe was then used to identify the exon 1B region in the mouse genomic BMP-4 clone. The candidate exon 1B is 1696bp downstream from the 3' end of exon 1A.

2. Primer extension analysis

5

10

15

20

30

Primer extension analysis was performed to map the mouse BMP-4 gene transcription start sites. Primer A, an oligonucleotide from exon 1A, was used and two oligonucleotides from exon 1B. Total RNA was utilized both from mouse embryo and FRC cells. As shown in Figure 2, a major extended fragment from primer A was obtained in both mouse embryo and FRC cell total RNAs, which migrates at 115bp. The extended 5'-end of the 115bp fragment represents the major transcription start site for 1A-containing transcripts. The site of this 5' non-coding exon 1A is 306bp. A major extended fragment from the complement of primer B1 (exon 1B) was not detected using both mouse embryo and FRC cell total RNAs. One other primer from exon 1B also gave negative results, suggesting that in 9.5 day mouse embryo and FRC cells, the exon 1B-containing transcripts were not detectable, which suggests that transcripts containing exon 1B are less abundant in these cells and tissues than transcripts containing exon 1A. All primer extensions were carried out after annealing of primers at high stringency. Lower stringency annealing with 1B primers gave extended products not associated with BMP-4 mRNA.

25 (c) BMP-4 Gene 5 Flanking Region for Exon 1A and 1B Transcripts.

Four FRC BMP-4 cDNA were sequenced and found to contain exon 1A sequences spliced to exon 2. The human U20S BMP-4 cDNA sequence also contains exon 1A (Wozney et al, 1988). This suggests the BMP-4 gene sequences upstream or exon 1A are used primarily in bone cells.

To test whether the BMP-4 1B promoter is utilized at all in FRC cells, oligonucleotide primers were designed to ascertain whether spliced 1B-2-3 exon products

SUBSTITUTE SHEET (RULE 26)

10

15

and 1A-2-3 exon (control) products could be obtained by more sensitive RT-PCR technique using FRC poly (A⁺)-RNA. The 3' primer was in exon 3 (Figure 1B - Primer 3) and the 5' primers were either in exon 1A (primer 1) or exon 1B (primer 2).

The RT-PCR products were cloned and sequenced. A photograph and diagram of the products obtained are presented in Figure 3A and B. Both 1A-2-3 and 1B-2-3 products were obtained. The results indicate FRC osteoblasts produce transcripts with either 1A exon or a 1B exon, but not both. This suggests that the intron region between 1A and 1B exons could contain regulatory response elements under certain conditions. Of the 1B-2-3 RT-PCR products obtained from FRC osteoblasts, two products were obtained with different 3' splice sites for the exon 1B. By comparison with the genomic DNA, both 3' ends of the two exon 1Bs have reasonable 5' splice consensus sequences, consistent with an alternate splicing pattern obtained for the 1B-2-3 RT-FCR products. Most importantly, no 1A-1B-2-3 RT-PCR splice products of the BMP-4 gene were obtained. Thus, 1B does not appear to be alternatively spliced 5'-non-encoding exon. By quantitative RT-PCR, it was shown that 1A transcripts are 10 to 15X more abundant in primary bone cells.

The technique of performing RT-PCR will be described. First-strand cDNA was synthesized from 1µg FRC cell poly (A+)-RNA with an 18mer dT primer using Superscript™ reverse transcriptase (Gibco BRL) in a total volume of 20µ1. The cDNA was then used as a template for PCR with two sets of synthesized primers. As shown in Figure 1B, primer 1 (5'-GAAGGCAAGAGCGCGAGG-3) (SEQ. ID No. 11), 20 corresponding to a 3' region of exon 1A and primer 3 (5'-CCGGTCTCAGGTATCA-3') (SEQ. ID No. 12), corresponding to a 5' region of exon 3 were used to generate exon 1A-2-3 spliced PCR product. Primer 2 (5'-CAGGCGGAAAGCTGTTC-3') (SEQ. ID NO. 13), corresponding to a 3' region (+2 to +18) of exon 1B, and primer 3 were used to generate exon 1B-2-3 spliced PCR products. GeneAmp PCR kit was used according to the 25 manufacturer's procedure (Perkin-Elmer/Cetus, Norwalk, CT). Each cycle consisted of a denaturation step (94°C for 1 min), an annealing step (59°C for 2 min) and an elongation step (72°C for 1 min). The PCR products were analysed by agarose gel electrophoresis for size determination. The products were subcloned into pCR II vector using TA cloning kit (InVitrogen, San Diego, CA). The inserts were sequenced in both directions with a 30 sequencing kit from U.S. Biochemical (Cleveland, OH).

20

25

30

Northern analysis demonstrated that the single 1.8kb BMP-4 transcript detected in FRC cells during bone cell differentiation hybridizes to both a pure 1A exon probe and a 2-4 exons probe. The ratio of the 1A to 2-4 signal is constant through the changing levels of BMP-4 expression during differentiation. Using a 1B exon probe no detectable hybridization to the BMP-4 exon 2-4 1.8kb signal was observed. This again indicates that 1A containing transcripts predominate in bone cells, although 1B transcripts can be detected by the more sensitive PCR method. By quantitative PCR it was shown that 1A transcripts are 10-15X more abundant than 1B in FRC cells.

(d) BMP-4 Promoter 1A Plasmid Construction and Transfection, and Detection of
Promoter Activity in Osteoblasts.

Three BMP-4 1A promoter/plasmids were constructed by excising fragments from the 5' flanking region of the mouse BMP-4 gene and cloning into pBL3CAT expression vectors (Luckow and Schutz, 1987). The pCAT-2.6 plasmid was the pBLCAT3 vector with a 2.6kb EcoR1 and Xba I fragment (-2372/+258) of the BMP-4 gene. The pCAT-1.3 plasmid was similarly generated from a 1.3kb Pst fragment (-1144/+212). The pCAT-0.5 plasmid was made from a 0.5kb SphI and Pst fragment (-260/+212). Both the pCAT-1.3 and the pCAT-0.5 plasmids have 212bp of exon 1A non-coding region. An additional promoter/plasmid was created from a PCR amplified product, corresponding to the 240bp sequence between nucleotides -25 and +212, and referred to as the pCAT-0.24. The amplified fragment was first cloned into pCR II vector using TA cloning kit (InVitrogen, San Diego, CA) and then the fragment was released with Hind III and Xho I, and relegated into pBL3CAT. Correct orientation of all inserts with respect to the CAT vector was verified by DNA sequencing.

The cells used for transient transfection studies were isolated from 19 day-old fetal rat calvariae by sequential digestion with trypsin and collagenase, as described by Bellows et al, (1986) and Harris et al, (1994). In brief, the calvarial bone were surgically removed and cleaned by washing in α minimal essential media (α MEM) containing 10% V/V fetal calf serum (FCS) and antibiotics. The bones were minced with scissors and were transferred to 35mm tissue culture dish containing 5ml of sterile bacterial collagenase (0.1%) and trypsin l (0.05%). This was then incubated at 37°C for 20 min. The cells released at this time were collected and immediately mixed with an equal volume of FCS to inactivate trypsin. This procedure is repeated 6 times to release cells at 20 min intervals.

Cells released from 3rd, 4th, 5th and 6th digestion (enriched for osteoblasts) were combined and the cells are collected by centrifugation at 40 Xg for 5 min. The cells were then plated in aMEM containing 10% FCS and antibiotics and were grown to confluency (2-3 days). At this stage the cells were plated for transfection in 60mm tissue culture dishes at a cell density of 5 x 10⁵ cells per dish. These primary osteoblast cultures are capable of self-organizing into bone-like structure in prolonged cultures (Bellows et al, 1986; Harris et al, 1994). HeLa, ROS 17/2.8, and CV-1 cells were purchased from the ATCC.

The isolated FRC cells, enriched for the osteoblast phenotype, were used as recipient cells for transient transfection assays. BMP-4 mRNA is modulated in these cells in a transient fashion during prolonged cultured (Harris et al, 1994b). The technique of electroporation was used for DNA transfection (Potter, 1988; van den Hoff et al, 1992). After electroporation, the cells were divided into aliquots, replated in 100mm diameter culture dishes and cultured for 48 hours in modified Eagle's minimal essential media (MEM, GIBCO, Grand Island, NY) with 10% fetal calf serum (FCS). The extracts were assayed for CAT actively according to the method described by Gorman (1988) and CAT activity was normalized by β-galactosidase assay according to the method of Rouet et al (1992).

After 48 hrs of transfections with various BMP-4-CAT reporter gene plasmid

constructs, the cells were harvested and the CAT activity was determined. As indicated in
Figure 4A and 4B, pCAT-0.24 plasmid (-25/+212) has little CAT activity. This plasmid

contains -25 to +212 of the 5' non-coding exon 1A and was 3-fold lower that the parent

pBL3CAT plasmid. The pCAT-0.5 (-260/+212), pCAT-1,3 (-1144/+212), and pCAT-2.6

(-2372/+258) showed progressive increasing CAT activity when transfected into FRC cells.

These data are shown in Figure 4B. With pCAT-0.5 (-260/+212) there is a 10-fold

increase in CAT activity relative to pCAT-0.24 (-25/+212). pCAT-1.3 (-1144/+212)

shows a further 6-fold increase and pCAT-2.6 (-2372/+258) shows further 2-fold change

over pCAT-1.3 (-1144/+212). Thus the net increase in CAT activity between the pCAT
0.24 (+257/+212) and the pCAT-2.6 (-2372/+258) in FRC cells is approximately 100-fold.

30

10

15

Example 2: DESCRIPTION AND CHARACTERIZATION OF MURINE BMP-2 GENE PROMOTER

SUBSTITUTE SHEET (RULE 26)

(a) Cloning of Mouse BMP-2 Genomic DNA.

Genomic clones of the mouse BMP-2 gene were isolated in order to determine the transcriptional regulation of the BMP-2 gene in primary osteoblasts. 5 x 10⁶ plaques were screened from a mouse genomic library, B6/CBA, (purchased from Stratagene, San Diego, CA) using BMP-2 cDNA as probe. The BMP-2 cDNA clone was isolated from a cDNA library of PC3 prostate cancer cells (Harris et al, 1994). The human BMP-2 probe was a 1.1kb Smal fragment containing most of the coding region.

PCT/US96/08197

The BmP-2 genomic clones were sequenced by dideoxy chain termination method (Sanger et al, 1977), using deoxyadenosine 5'-[α[³⁵S]thio] triphosphate and Sequenase

(United States Biochemical, Cleveland, OH). All fragments were sequenced at least twice and overlaps were established using the appropriate oligonucleotic primer. Primers were prepared on an Applied Biosystems Model 392 DNA Synthesizer. Approximately 16kb of one of these BMP-2 clones was completely sequenced (Figure 9). Analysis of this sequence showed that the mouse BMP-2 gene contains one encoding and two coding exons (Feng et al, 1994). Analysis of the 5' flanking sequence showed that the BMP-2 gene does not contain typical TATA oar CAAT boxes. However, a number of putative response elements and transcription factor recognition sequences were identified upstream of exon 1 (Figure 5). The 5'-flanking region is GC rich with several SP-1, AP-1 P53, E-box, homeobox, and AP-2 candidate DNA binding elements.

20 (b) Analysis of Transcription Start Site for BMP-2 Gene.

25

The transcription start sites for the BMP-2 gene were identified using the primer extension technique. Primer extension was carried out as described (Hall et al., 1993). The primer used was a ³²p-labeled 18 mer oligonucleotide 5'-CCCGGCAATTCAAGAAG-3' (SEQ. ID NO> 5). Total RNA obtained from primary fetal rat calvarial osteoblasts, was used for the primer extension. The results were shown in Figure 6. The major extension product was 68bp and was used to estimate the major transportation start site (+1, Figure 5). These results were confirmed by Rnase protection assays.

- (c) Identification of BMP-2 Promoter and Enhancer

 Activity Using Luciferase (LUC) Reporter Gene Constructs.
- The BMP-2-LUC constructs (Figure 7) were designed to contain variable 5' boundaries from BMP-2 5'-flanking sequences spanning the transcription start site (+1).

 SUBSTITUTE SHEET (RULE 26)

10

15

20

25

Each construct contained the 3' boundary at +114 9 in exon 1 (Figure 6). These constructs were individually transfected into primary cultures of fetal rat calvarial osteoblasts, ROS 17/2.8 osteosarcoma cells, HeLa cells, and CV-1 cells by the calcium-phosphate precipitation technique and the promoter activity for each of these constructs was assayed 24 hrs following transfection by measuring the luciferase enzyme activity for each individual cell lysate. The LUC (luciferase enzyme assay) technique is described below under (f). Plasmid psvβGal was co-transfected with each plasmid construct to normalize for the transfection efficiency in each sample. The experiments were repeated at least five times in independent fetal rat calvarial cultures, with each assay done in triplicate. The mean values from a representative experiment are shown in Figure 8.

(d) Isolation of Primary Fetal Rat Calvarial Osteoblasts for Functional Studies of BMP-2 Gene Promoter.

The cells used for transient transfection studies were isolated from 19 day-old fetal rat calvariae by sequential digestion with trypsin and collagenase, as described by Bellow et al., (1986) and Harris et al., (1994). In brief, the calvarial bone were surgically removed and cleaned by washing in a minimal essential media (aMEM) containing 10% V/V fetal calf serum (FCS) and antibiotics. The bones were minced with scissors and was transferred to 35 mm tissue culture dish containing 5 ml of sterile bacterial collagenase (0.1%) and trypsin (0.05%). This was then incubated at 37°C for 20 min. The cells released at this time were collected and immediately mixed with an equal volume of FCS to inactivate trypsin. This procedure was repeated 6 times to release cells at 20 min intervals. Cells released from 3rd, 4th, 5th and 6th digestion (enriched for osteoblasts) were combined and the cells were collected by centrifugation at 400 g for 5 min. The cells were then plated in aMEM containing 10% FCS and antibiotics and were grown to confluency (2-3 days). At this stage the cells were plated for transfection in 60 mm tissue culture dishes at a cell density of 5 x 10⁵ cells per dish. These primary osteoblst cultures are capable f mineralized bone in prolonged cultures (Bellows et al, 1986; Harris et al, 1994). HeLa, ROS 17/2.8, and CV-1 cells were purchased from the ATCC.

(e) Transient Transfection Assay.

For transient transfection assay, the primary osteoblast cells were plated at the above mentioned cell density 18-24 hrs prior to transfection. The transfection was carried out using a modified calcium-phosphate precipitation method (Graham & van der Eb 1973;

20

Frost & Williams 1978). The cells were incubated for 4 hrs. at 37°C with 500µl of a calcium phosphate precipitate of plasmid DNA containing 10µg of reporter plasmid construct and 1µg of pSVβGal (for normalization of transfection efficiency) in 0.15M CaCl₂ and Hepes buffered saline (21mM Hepes, 13.5mM NaCl, 5mM KCl, 0.7mM Na₂HPO₄, 5.5mM dextrose, pH 7.05-7.1). After the 4 hr. incubation period of cells with precipitate, the cells were subjected to a 2 min treatment of 15% glycerol in aMEM, followed by addition of fresh aMEM containing insulin, transferrin and selenium (ITS) (Upstate Biotechnology Lake Placid, NY). The cells were harvested 24 hrs post transfection.

10 (f) Luciferase and β -galactosidase Assay.

Cells lysates were prepared and luciferase enzyme assay was carried out using assay protocols and the assay kit from Promega (Madison, WI). Routinely 20μ1 of cell lysate was mixed with 100μ1 of luciferase assay reagent (270μM coenzyme A, 470μM luciferin and 530μM ATP) and the luciferase activity was measured for 10 sec in a TURNER TD-20e luminometer. The values were normalized with respect to the β-galactosidase enzyme activity, obtained for each experimental sample

The β-galactosidase enzyme activity was measured in the cell lysate using a 96 well microtiter plate according to Rouet et al. (1992). 10-20μ1 cell lysate was added to 90-80μ1 β-galactosidase reaction buffer containing 88mM phosphate buffer, PH 7.3, 11mM KCL, 1mM MgCl₂, 55mM β mercaptoethanol, 4.4mM chlorophenol red β-D-galactopyranoside (Boehringer-Mannheim Corp., Indianapolis, IN). The reaction mixture was incubated at 37°C for 30-60 min, depending on transfection efficiency, and the samples were read with an ELISA plate reader at 600nm.

(g) Plasmid Construction

The luciferase basic plasmid (pGL basic) was the vector used for all constructs (purchased from Promega, Madison, WI). Different lengths of DNA fragments from the BmP-2 5'-flanking region were cloned at the multiple cloning sites of this plasmid, which is upstream of the firefly luciferase cDNA. The BMP-2 DNA fragments were isolated either by using available restriction enzyme sites (constructs -196/+114, -876/+114, -1995/+114, -2483/+114, and -2736/+114) or by polymerase chain reaction using specific oligonucleotide primers (constructs -23/+114, -123/+114 and +29/+114.

The minimal promoter activity for the BMP-2 gene was identified in the shortest construct containing 23bp upstream of the transcription start site (-23/+114). No luciferase activity was noted in the construct and did not include the transcription start site (+29/+114). Two other constructs containing increasing lengths of 5' sequences up to -196bp showed reproducible decreases in promoter activity in fetal rat calvarial osteoblasts and HeLa cells (Figure 8). The -876/+114 construct showed a 5-fold increase in activity in HeLa cells. The -1995/+114, -2483/+114 and -2736/+114 constructs showed decreased promoter activity when compared to the -876/+114 construct only in HeLa cells (Figure 8).

PCT/US96/08197

In the primary fetal rat calvarial osteoblasts, the 2.6kb construct (-2483/+114) demonstrated a 2-3-fold increase in luciferase activity over that of the -1995/+114 construct (Figure 8). These results suggest that one or more positive response regions are present between -196 and -1995 and that the DNA sequence between -1995 and -2483bp was other positive regulatory elements that could modulate BMP-2 transcription. The largest 2.9kb construct (-2836/+114) repeatedly demonstrated a 20-50% decrease in promoter activity compared to the -2483/+114 construct, in these primary fetal rat calvarial osteoblasts (Figure 8).

In ROS 17/2.8 osteosarcoma cells, the BMP-2 promoter activity was consistently higher than either the primary fetal rat calvarial osteoblasts or HeLa cells (Figure 8). All of the deletion constructs showed similar promoter activity in ROS 17/2.8 osteosrcoma cells. The transformed state in ROS 17/2.8 cells may be responsible for the marked expression of the BMP-2 gene. ROS 17/2.8 cells represent a well differentiated osteosrcoma and they produce high levels of BMP-2 mRNA. They form tumors in nude mice with bone-like material in the tumor (Majeska et al, 1978; Majeska et al, 1980).

(h) Specificity of the BMP-2 Promoter.

10

15

To analyze the activity of the BMP-2 promoter in cell types not expressing BMP-2 mRNA, BMP-2 promoter constructs were transfected into CV-1 cells (monkey kidney cells). The BMP-2 promoter activity was found to be very low for all constructs. This suggests that this region of the BMP-2 promoter is functional only in cells such as primary fetal rat calvarial osteoblasts, HeLa and ROS 17/2.8 that express endogenous BMP-2 mRNA (Anderson & Coulter 1968). CV-1 cells do not express BMP-2 mRNA. The

10

15

20

25

30

BMP-2 promoter is likely active in other cell types that express BMP-2, such as prostate cells and chondrocytes, although regulation of transcription may be different in these cells.

Example 3: USE OF PLASMID CONSTRUCTS CONTAINING BMP PROMOTERS WITH REPORTER GENES TO IDENTIFY OSTEOGENIC AGENTS

Plasmid constructs containing BMP promoters with reporter genes have been transfected into osteoblastic cells. The cells which have been utilized include primary cultures of fetal rat calvarial osteoblasts, cell lines obtained as gifts or commercially (MC3T3-E12 cells, MG-63 cells, U2OS cells, UMR106 cells, ROS 17/2.8 cells, Sa)S2 cells, and the like as provided in the catalog from the ATCC) and bone and cartilage cell lines established from transgenic mice. The bone cells are transfected transiently or stably with the plasmid constructs, exposed to the chemical compound, agent or factor to be tested for 48 hours, and then luciferase or CAT activity is measure in the cell lysates.

Regulation of expression of the growth factor is assessed by culturing bone cells in α MEM medium with 10% fetal calf serum and 1% penicillin/streptomycin and 1% glutamine. The cells are placed in microtiter plates at a cell density of 5×10^3 cells /100 μ 1/well. The cells are allowed to adhere and then incubated at 37°C at 5% CO₂ for 24 hours and then the media is removed and replaced with 50 μ 1 α MEM and 4% fetal calf serum, 50 μ 1 aliquots containing the compound or factor to be tested in 0.1% BSA solution is added to each well. The final volume is 100 μ 1 and the final serum concentration is 2% fetal calf serum. Recombinant rat BMP-2 expressed in Chinese hamster ovarian cells is used as a positive control.

The treated cells are incubated at 37°C at 5% CO₂ for 48 hours. The media is then removed and the cells are rinsed 3 times with phosphate buffered saline (PBS). Excess PBS is removed from the wells and 100µ1 of cell culture lysing reagent (Promega #E153A) is added to each well. After 10 minutes, 10µ1 of the cell lysate is added to a 96-well white luminometric plate (Dynatech Labs #07100) containing 100µ1 luciferase assay buffer with substrate (Promega #E152A). The luciferase activity is read using a Dynatech ML2250 automated 96-well luminometer. The data is expressed as either picograms of luciferase activity per well or picograms of luciferase per µg protein.

15

20

25

30

Example 4: DEMONSTRATION THAT BONE CELLS TRANSFECTED WITH BMP PROMOTERS CAN BE USED TO SCREEN FOR OSTEOGENIC AGENTS

To demonstrate that the present invention is useful in evaluating potential osteogenic agents, a random array of chemical compounds from a chemical library obtained 5 commercially was screened. It was found that approximately 1 in 100 such compounds screened produces a positive response in the present assay system compared with the positive control, recombinant BMP-2, which is known to enhance BMP-2 transcription. Compounds identified from the random library were subjected to detailed dose-response curves, to demonstrate that they enhance BMP messenger RNA expression, and that they enhance other biological effects in vitro, such as expression of structural proteins including osteocalcin, osteopontin and alkaline phosphase, and enhance bone nodule formation in prolonged primary cultures of calvarial rodent osteoblasts.

Compounds identified in this way can be tested for their capacity to stimulate bone formation in vitro in mice. To demonstrate this, the compound can be injected locally into subcutaneous tissue over the calvarium of normal mice and then the bone changes are followed histologically. It has been found that certain compounds identified by the presentinvention stimulate the formation of new bone in this in vivo assay system.

The effects of compounds are tested in ICR Swiss mice, aged 4-6 weeks and weighing 13-26g. The compound at 20mg/kg or vehicle along (100µl of 5% DMSO and phosphate-buffered 0.9% saline) are injected three times daily for 7 days. The injections are given into the subcutaneous tissues overlying the right side of the calvaria of five mice in each treatment group in each experiment.

Mice are killed by either inhalation on day 14, i.e. 7 days after the last injection of compound. After fixation in 10% phosphate-buffered formalin, the calvariae are examined. The occipital bone is removed by cutting immediately behind and parallel to the lambdoid suture, and the frontal bone is removed by cutting anterior to the coronal suture using a scalpel blade. The bones are then bisected through the coronal plane and the 3- to 4mm strips of bone are decalcified in 14% EDTA, dehydrated in graded alcohols, and embedded in paraffin. Four 3 µm thick nonconsecutive step sections are cut from each specimen and stained using hematoxylin and eosin.

Two representative sections from the posterior calvarial strips are used. Histological measurements are carried out using a digitizing tablet and the Osteomeasure SUBSTITUTE SHEET (RULE 26)

10

15

20

image analysis system (Osteometrics Inc., Atlanta, GA) on the injected and noninjected sides of the calvariae in a standard length of bone between the sagittal suture and the muscle insertion of the lateral border of each bone. Measurements consist of (1) Total bone area (i.e., bone and marrow between inner and outer periosteal surfaces); (2) Area of new woven bone formed on the outer calvarial surface; (3) The extent of osteoblast lined surface on the outer calvarial surface; (4) The area of the outer periosteum; and (5) The length of calvarial surface. From these measurements, the mean width of new bone and periosteum and the percentage of surface lined by osteoblasts on the outer calvarial surface, can be determined.

By reference to the above disclosure and examples, it is seen that the present invention provides a new cell-based assay for identifying and evaluating compounds which stimulate the growth of bone. Also provided in accordance with the present invention are promoter regions of bone morphogenetic protein genes, and a system for identifying osteogenic agents utilizing such promoters operatively linked to reporter genes in expression vectors.

The present invention provides the means to specifically identify osteogenic agents which stimulate bone cells to produce bone growth factors in the bone morphogenetic protein family. These osteogenic agents are shown to be useful to increase the activity of the promoters of genes of members of the BMP family and other bone growth factors normally produced by bone cells.

Example 5: RESEQUENCING OF THE BMP-2 5 FLANKING REGION

The BMP-2 5' flanking region described in Example 2 was resequenced. The nucleotide sequence of the 5' flanking region of the mouse BMP-2 gene is provided in Figure 11. The sequence information in Figure 11 corrects sequencing errors that are present in Figures 5 and 9. The nucleotide sequence of Figure 11 replaces bases -2736 to +119 provided in Figure 5 and bases 1 to 2855 provided in Figure 9. The non-nucleotide sequence information provided in Figure 5 is applicable to the corresponding bases in Figure 11 where such bases are present.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application are [is] specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent to those of ordinary skill in the art in light of the teaching of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

Anderson, H.C. and P.R. Coulter (1968) Fed. Proc. 27, 475.

Bellows, C.G., J.E. Aubin, J.N.M. Heersche and M.E. Antosz (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvarial cell populations. *Calcif. Tissue Int.* 38, 143-154.

Chen, D., J.Q. Feng, M. Feng, M.A. Harris, G.R. Mundy and S.E. Harris (1993) Biochim Biophys Acta 1174, 289-292.

Feng, J.Q., M.A. Harris, N. Ghosh-Choudhury, M. Feng, G.R. Mundy and S.E. Harris (1994) Biochem. Biophys. Acta 1218, 221-224.

Frost, E. and J. Williams (1978) Virology 91, 39-50.

Gorman, C. (1988) in DNA Cloning, A Practical Approach (Gover, D.M., ed) Vol. II, pp. 157-158, IRL Press, Oxford, England.

Graham, F.L., and A.J. van der Eb (1973) Virology 52, 456-467.

Hall, J.A., M.A. Harris, R. Intres, and S.E. Harris (1993) J Cell Biochem 51, 116-127.

Harris, S.E., L.F. Bonewald, M.A. Harris, M. Sabatini, S. Dallas, J. Feng, N. Ghosh-Choudhury, J. Wozney and G.R. Mundy (1994) Effects of TGFβ on bone nodule formation and expression of bone morphogenetic protein-2, osteocalcin, osteopontin, alkaline phosphatase and Type I collagen mRNA in prolonged cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 9, 855-863.

Harris, S.E., M. Sabatini, M.A. Harris, J.Q. Feng, J. Wozney and G.R. Mundy (1994) Expression of bone morphogenetic protein messenger RNA in prolonged cultures of fetal rat calvarial cells. *J Bone Min Res* 9, 389-394.

Harris, S.E., M. Harris, M. Mahy, J. Wozney, J. Feng and G.R. Mundy (1994) Expression of bone morphogenetic proteins by normal rat and human prostate and prostate cancer cells. the Prostate 24, 204-211.

Kurihara, T., K. Kitamura, K. Takaoka, H. Nakazato (1993) Murine bone morphogenetic protein-4 gene: existence of multiple promoters and exons for the 5'-untranslated region. Biochem Biophys Res Commun 1992, 1049-1056.

Luckow, B. and G. Schutz (1987) Nucleic Acids Res. 15, 5490.

Majeska, R.J., S.B. Rodan and G.A. Rodan (1978) Maintenance of parathyroid hormone response in clonal rat osteosarcoma lines. Exp Cell Res 111, 465-468.

Majeska, R.J., S.B. Rodan and G.A. Rodan (1980) Parathyroid hormone responsive clonal cell lines from rat osteosarcoma. *Endocrinology* 107, 1494-1503.

Potter, H. (1988) Anal Biochem 174, 361-373.

Rouet, P., G. Raguenez and J-P Salier (1992) Biotechniques 13, 700-701.

Sambrook, J., E.F. Fritsch and T. Maniatis (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Sanger, F., S.G. Nicklen and A.R. Coulson (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.

Stein, G.S., J.B. Lian and T.A. Owen (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. *FASEB J* 4, 3111-3123.

Urist, M.R. (1965) Bone: Formation by autoinduction. Science 150, 893.

van den Hoff, M.J.B., A.F.M. Moorman, and W.H. Lamers (1992) Nucleic Acids Res., 20 2902.

Wozney, J.M., V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick and E.A. Wange (1988) Novel regulators of bone formation: Molecular clones and activities. *Science* 242, 1528-1534.

Wozney, J.M. (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32, 160-167.

Wozney, J.M. and V. Rosen (1993) Bone morphogenetic proteins. In: *Physiology and Pharmacology of Bone* (edited by Mundy GR, Martin TJ). Springer-Verlag, Chapter 20, 725-743.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Harris Ph.D., Stephen E. Mundy M.D., Gregory R.
 - Gosh-Choudhury Ph.D., Nandini

Feng Ph.D., Jian Q.

- (ii) TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR IDENTIFYING OSTEOGENIC AGENTS
- (iii) NUMBER OF SEQUENCES: 13
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: James C. Weseman, Esq.
 - (B) STREET: 401 B. Street, Suite 1700
 - (C) CITY: San Diego
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 92101
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Weseman, James C.
 - (B) REGISTRATION NUMBER: 30,507
 - (C) REFERENCE/DOCKET NUMBER: P00060US0
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (619) 699-3604
 - (B) TELEFAX: 619-236-1048
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2310 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 768..1991

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GG	GAGG	AAGG	GAA	GAAA	GAG :	AGGG	AGGG	A AA	AGAG	AAGG.	A AG	gagt	AGAT	GTG	AGAGG	GT 6	C
GG	TGCT	GAGG	GTG	GGAA	GGC 2	AAGA	GCGC	GA G	GCCT	GGCC	C GG.	AAGC	TAGG	TGA	GTTCG	SC 12	0
AT	CCGA	GCTG	AGA	GACC	CCA (GCCT/	AAGA	CG C	CTGC	GCTG	CAA	CCCA	GCCT	GAG	TATCT	GG 18	0
TC	rccg:	rccc	TGA'	rgggj	ATT (TCG	CTA	AA C	CGTC	rtgg/	A GC	CTGC.	AGCG	ATC	CAGTCI	IC 24	0
TG	GCCC.	rcga	CCA	GGTT	CAT 1	rgcac	CTT	C T	AGAGO	STCC	C CA	BAAG	CAGC	TGC	rggcgz	.G 30	0
cco	GCT	CTG	CAG	GAACC	CAA 1	rggte	AGCI	C G	AGTG	CAGGO	C CG1	VAA G(CTGT	TCT	CGGGTI	T 36	0
GTA	IGAC	CTT	GGG	ATCGC	GC 1	TGGG	GTCI	.c c	TTC	TGC	GG(TAG	GAGT	TGT	VAAGCO	T 42	0
TTG	CAAC	TCT	GAG2	ATCGI	AA A	AAA	ATGT	G AI	rgcgc	CTCTI	TCI	TTG	GCGA	CGC	TGTTT	T 480	כ
GGA	ATCI	GTC	CGG	GTTA	GA A	GCTC	AGAC	G TC	CACC	cccc	: ACC	ccc	GCC	CACC	CCCTC	T 540)
GCC	TTGA	ATG	GCAC	CGCC	GA C	CGGT:	TTCT	g aa	GGAT	CTGC	TTO	GCTG	GAG	CGGZ	CGCTG	A 600)
GGT	TGGC	'AGA	CACG	GTGT	GG A	TTTT	AGGA	G CC	ATTO	CGTA	GTG	CCAT	TCG	GAGC	GACGC	A 660)
CTG	CCGC	AGC	TTCI	CTGA	GC C	TTTC	CAGC	A AG	TTTG	TTCA	AGA	TTGG	CTC	CCAA	GAATC	A 720)
TGG	ACTG	TTA :	TTAT	GCCT	TG T	TTTC	TGTC	A GT	GAGT	'CCAG	AGA	CACC			CCT	776	•
						-							1	_	PLO	·	
GGT Gly	AAC Asn	CGA	ATG Met	CTG Leu	ATG Met	GTC Val	GTT Val	TTA	TTA	TGC	CAA	GTC	CTG	CTA	GGA Gly	824	
•	5					10				Cyb	15	VAL	Den	red	GIÀ		
GGC Gly	GCG Ala	AGC Ser	CAT His	GCT Ala	AGT Ser	TTG Leu	'ATA Ile	CCT	GAG	ACC	GGG	AAG	AAA	AAA	GTC	872	
20					25					30	GLY	шуз	Typ	гуя	35		
GCC Ala	GAG Glu	ATT Ile	CAG Gln	GGC Gly	CAC His	GCG Ala	GGA Glv	GGA Glv	CGC	CGC	TCA	GGG	CAG	AGC	CAT	920	
				40			7	,	45		Der	GIY	GIII	50	nis		
GAG Glu	CTC Leu	CTG Leu	CGG Arg	GAC Asp	TTC Phe	GAG Glu	GCG Ala	ACA Thr	CTT	CTA	CAG	ATG	TTT	GGG	CTG	968	
			55				,	60	200	ale u	GIII	Mec	65	GIY	Leu		
CGC	CGC	CGT	CCG	CAG Gln	CCT	AGC	AAG	AGC	GCC	GTC	ATT	CCG	GAT	TAC	ATG	1016	
J	5	70		~-··		~~~	75	PEI	٧ıα	val	116	80	Asp	ıyr	met		
AGG	GAT	CTT	TAC	CGG	CTC	CAG	TCT	GGG	GAG	GAG	GAG	GAG	GAA	GAG	CAG	1064	
- 9	8 5	₩.	47-	Arg	₽¢#	90	JUL	GTÅ	GTA	GIU	95 •	Glu	Glu	Glu	Gln		

WO 96/38590 PCT/US96/08197

	Glr					·Glu					Pro				GCC Ala 115	1112
					Phe					His					CCA Pro	1160
				Ser					Phe					Ser	AGC Ser	1208
Ile	Pro	Glu 150	Asn	Glu	Val	Ile	Ser 155	Ser	Ala	Glu	Leu	Arg 160	Leu	Phe	CGG Arg	1256
Glu	Gln 165	Val	Asp	Gln	Gly	Pro 170	Asp	Trp	Glu	Gln	Gly 175	Phe	His	Arg		1304
As n 180	Ile	Tyr	Glu	Val	Met 185	Lys	Pro	Pro	Ala	Glu 190	Met	GTT Val	Pro	Gly	His 195	1352
Leu	Ile	Thr	Arg	Leu 200	Leu	Asp	Thr	Arg	Leu 205	Val	His	CAC His	Asn	Val 210	Thr	1400
Arg	Trp	Glu	Thr 215	Phe	Asp	Val	Ser	Pro 220	Ala	Val	Leu	CGC	Trp 225	Thr	Arg	1448
Glu	Lys	Gln 230	Pro	Asn	Tyr	Gly	Leu 235	Ala	Ile	Glu	Val	ACT Thr 240	His	Leu	His	1496
Gln	Thr 245	Arg	Thr	His	Gln	Gly 250	Gln	His	Val	Arg	11e 255	AGC Ser	Arg	Ser	Leu	1544
Pro 260	Gln	Gly	Ser	Gly	Asp 265	Trp	Ala	Gln	Leu	Arg 270	Pro	CTC Leu	Leu	Val	Thr 275	1592
Phe	Gly	His	Asp	Gly 280	Arg	Gly	His	Thr	Leu 285	Thr	Arg	AGG Arg	Arg	Ala 290	Lys	1640
Arg	Ser	Pro	Lys 295	His	His	Pro	Gln	Arg 30 0	Ser	Arg	Lys		Asn 305	Lys	Asn	1688
TGC Cys	Arg	CGC Arg 310	CAT His	TCA Ser	CTA Leu	Tyr	GTG Val 315	GAC Asp	TTC . Phe	AGT Ser	qzA	GTG Val 320	GJY	TGG Trp	TAA neA	1736

											Phe				GGG Gly	1784
C1.C		000	~~~	222			63.m	63. 6			335					
															GCC	1832
	CAR	PIO	РЛЕ	PTO		ALA	Авр	HIS	Leu		Ser	Thr	Asn	His		
340	٠			• •	345					350		٠			355	`, .
														AAG		1880
Ile	Val	Gln	Thr		Val	Asn	Ser	Val	Asn	Ser	Ser	Ile	Pro	Lys	Ala	
				360					365					370		
														CTG		1928
Cys	CAa	Val	Pro	Thr	Glu	Leu	Ser	Ala	Ile	Ser	Met	Leu	Tyr	Leu	Asp	
			375					380					385			
GAG	TAT	GAC	AAG	GTG	GTG	TTG	AAA	AAT	TAT	CAG	GAG	ATG	GTG	GTA	GAG	1976
Glu	Tyr	qaA	Lys	Val	Val	Leu	Lys	Asn	Tyr	Gln	Glu	Met	Val	Val	Glu	
		390					395					400				
GGG	TGT	GGA	TGC	CGC	TGAG	ATCA	GA C	AGTO	CGGA	JG GG	CGGA	CACA	CAC	ACAC	'ACA	2031
			Cys													2031
	405															
CACA	CACA	CA C	ACAC	ACAC	A CA	CACA	CACA	CGT	TCCC	ידייניעי	റമമറ	ירא רר	ጥል (יא רי איז	'ACCAC	2091
													17.	~~~~	ACCAC	2091
ACAA	ACTG	CT T	ccci	ATAG	C TG	GACT	TITA	TCT	TAAA	AAA	AAAA	AAAA	ga a	AGAA	AGAAA	2151
GAAA	GAAA	GA A	AAAA	AATG	A AA	GACA	GAAA	AGA	AAAA	AAA .	AACC	CTAA	AC A	ACTO	ACCTT	2211
													••			
GACC	TTAT	TT A	TGAC	TTTA	C GT	GCAA	ATGT	TTT	GACC	ATA	TTGA	TCAT	AT T	TTGA	CAAAT	2271
TATA	TTAT	aa a	ACTA	CATA	T TA	aaag	AAAA	TAA	AATG	AG						2310

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 408 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ile Pro Gly Asn Arg Met Leu Met Val Val Leu Leu Cys Gln Val
1 5 10 15

Leu Leu Gly Gly Ala Ser His Ala Ser Leu Ile Pro Glu Thr Gly Lys
20 25 30

Lys Lys Val Ala Glu Ile Gln Gly His Ala Gly Gly Arg Arg Ser Gly 35 40 45

Gln Ser His Glu Leu Leu Arg Asp Phe Glu Ala Thr Leu Leu Gln Met 50 55 60

Phe 65		Leu	. Arg	Arg	Arg 70		Gln	Pro	Ser	Lys 75		Ala	. Val	İle	Pro 80
Asp	Tyr	Met	Arg	Asp 85		Tyr	Arg	Leu	Gln 90		Gly	Glu	Glu	95	Glu
Glu	Glu	Gln	Ser 100		Gly	Thr	Gly	Leu 105		Tyr	Pro	Glu	Arg		Ala
Ser	Arg	Ala 115		Thr	Val	Arg	Ser 120	Phe	His	His	Glu	Glu 125	His	Leu	Glu
Asn	Ile 130	Pro	Gly	Thr	Ser	Glu 135		Ser	Ala	Phe	Arg 140	Phe	Leu	Phe	Asn
Leu 145	Ser	Ser	Ile	Pro	Glu 150	Asn	Glu	Val	Ile	Ser 155	Ser	Ala	Glu	Leu	Arg 160
Leu	Phè	Arg	Glu	Gln 165	Val	Asp	Gln	Gly	Pro 170	Asp	Tŗp	Glu	Gln	Gly 175	Phe
His	Arg	Ile	Asn 180	Ile	Tyr	Glu	Val	Met 185	Lys	Pro	Pro	Ala	Glu 190	Met	Val
Pro	Gly	His 195	Leu	Ile	Thr	Arg	Leu 200	Leu	Asp	Thr	Arg	Leu 205	Val	His	His
	Val 210	Thr	Arg	Trp	Glu	Thr 215	Phe	Asp	Val	Ser	Pro 220	Ala	Val	Leu	Arg
Trp 225	Thr	Arg	Glu	Lys	Gln 230	Pro	Asn	Tyr	Gly	Leu 235	Ala	Ile	Glu	Val	Thr 240
His	Leu	His	Gln	Thr 245	Arg	Thr	His	Gln	Gly 250	Gln	His	Val	Arg	Ile 255	Ser
Arg	Ser	Leu	Pro 260	Gln	Gly	Ser	Gly	Asp 265	Trp	Ala	Gln	Leu	Arg 270	Pro	Leu
Leu '		Thr 275	Phe	Gly	His	Asp	Gly 280	Arg	Gly	His		Leu 285	Thr	Arg	Arg
Arg :	Ala : 290	Lys	Arg	Ser		Lys 295	His	His	Pro		Arg 300	Ser	Arg	Lys	Lys
Asn 1	Lys .	Ąsn	Сув	Arg	Arg 310	His	Ser	Leu		Val 315	qa A	Phe	Ser	qeA	Val 320

Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr

Cys His Gly Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr

Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile

360

345

325

355

SUBSTITUTE SHEET (RULE 26)

330

Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu 370 380

Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met 385 390 395 400

Val Val Glu Gly Cys Gly Cys Arg 405

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2688 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCGCTA GGTAGACCAG GCTGGCCCAG AACACCTAGA GATCATCTGG CTGCCTCTGT 60 CTCTTGAGTT CTGGGGCTAA AGCATGCACC ACTCTACCTG GCTAGTTTGT ATCCATCTAA 120 ATTGGGGAAG AAAGAAGTAC AGCTGTCCCC AGAGATAACA GCTGGGTTTT CCCATCAAAC 180 ACCTAGAAAT CCATTTTAGA TTCTAAATAG GGTTTGTCAG GTAGCTTAAT TAGAACTTTC 240 AGACTGGGTT TCACAGACTG GTTGGGCCAA AGGTCACTTT ATTGTCTGGG TTTCAGCAAA 300 ATGAGACAAT AGCTGTTATT CAAACAACAT TTGGGTAAGG AAGAAAAATG AACAAACACC 360 ACTCTCCCTC CCCCCGCTCC GTGCCTCCAA ATCCATTAAA GGCAAAGCTG CACCCCTAAG 420 GACAACGAAT CGCTGCTGTT TGTGAGTTTA AATATTAAGG AACACATTGT GTTAATGATT 480 GGAGCAGCAG TGATTGATGT AGTGGCATTG GTGAGCACTG AATCCGTCCT TCAACCTGCT 540 ATGGGAGCAC AGAGCCTGAT GCCCCAGGAG TAATGTAATA GAGTAATGTA ATGTAATGGA 600 GTTTTAATTT TGTGTTGTTG TTTTAAATAA TTAATTGTAA TTTTGGCTGT GTTAGAAGCT 660 GTGGGTACGT TTCTCAGTCA TCTTTTCGGT CTGGTGTTAT TGCCATACCT TGATTAATCG . 720 GAGATTAAAA GAGAAGGTGT ACTTAGAAAC GATTTCAAAT GAAAGAAGGT ATGTTTCCAA 780 TGTGACTTCA CTAAAGTGAC AGTGACGCAG GGAATCAATC GTCTTCTAAT AGAAAGGGCT 840 CATGGAGACC TGAGCTGAAT CTTTCTGTTC TGGATGAGAG AGGTGGTACC CATTGGAATG 900 AAAGGACTTA GTCAGGGGCA ATACAGTGTG CTCCAAGGCT GGGGATGGTC AGGATGTTGT 960 GCTCAGCCTC TAACACTCCT TCCAACCTGA CATTCCTTCT CACCCTTTGT CTCTGGCCAG TAGAATACAG GAACTCGTTC CTGTTTTTT TTTTTTAAAT TCTGAAGGTG TGTAAGTACA 1080 SUBSTITUTE SHEET (RULE 26)

AAGGTCAGAT	GAGCGGCCCT	AGGTCAAGAC	TGCTTTGTGG	TGACAAGGGA	GTATAACACC	1140
CACCCCAGA	ACCAAGAACC	GGAAATTGCT	' ATCTTCCAGC	CCTTTGAGAG	CTACCTGAAG	1200
CTCTGGGCTG	CTGGCCTCAC	CCCTTCCCTG	CAGCTTTCCC	TTTAGCAGAG	GCTGTGATTT	1260
CCTTCAGCGC	TTGGGCAAAT	ACTCTTAGCC	TGGCTCACCT	TCCCCATCCT	CGTTTGTAAA	1320
AACAAAGATG	AAGCTGATAG	TTCCTTCCCA	GCTCCATCAG	AGGCAGGGTG	TGAAATTAGC	,1380
TCCTGTTTGG	GAAGGTTTAA	AAGCCGGCCA	CATTCCACCT	CCCAGCTAGC	ATGATTACCA	1440
ACTCTTGTTT	CTTACTGTTG	TTATGAAAGA	CTCAATTCCT	CATCTCCCTT	TCCCTTCTTT	1500
TAAAAAGGGG	CCAAAGGGCA	CTTTGTTTTT	TTCTCTACAT	GGCCTAAAAG	GCACTGTGTT	1560
ACCTTCCTGG	AAGGTCCCAA	ACAAACAAAC	AAACAAACAA	AATAACCATC	TGGCAGTTAA	1620
GAAGGCTTCA	GAGATATAAA	TAGGATTTTC	TAATTGTCTT	ACAAGGCCTA	GGCTGTTTGC	1680
CTGCCAAGTG	CCTGCAAACT	ACCTCTGTGC	ACTTGAAATG	TTAGACCTGG	GGGATCGATG	1740
GAGGGCACCC	AGTTTAAGGG	GGGTTGGTGC	AATTCTCAAA	TGTCCACAAG	AAACATCTCA	1800
CAAAAACTTT	TTTGGGGGGA	AAGTCACCTC	CTAATAGTTG	AAGAGGTATC	TCCTTCGGGC	1860
ACACAGCCCT	GCTCACAGCC	TGTTTCAACG	TTTGGGAATC	CTTTAACAGT	TTACGGAAGG	1920
CCACCCTTTA	AACCAATCCA	ACAGCTCCCT	TCTCCATAAC	CTGATTTTAG	AGGTGTTTCA	1980
TTATCTCTAA	TTACTCGGGG	TAAATGGTGA	TTACTCAGTG	TTTTAATCAT	CAGTTTGGGC	2040
AGCAGTTATT	CTAAACTCAG	GGAAGCCCAG	ACTCCCATGG	GTATTTTTGG	AAGGTACAGA	2100
GACTAGTTGG	TGCATGCTTT	CTAGTACCTC	TTGCATGTGG	TCCCCAGGTG	AGCCCCGGCT	2160
GCTTCCCGAG	CTGGAGGCAT	CGGTCCCAGC	CAAGGTGGCA	ACTGAGGGCT	GGGGAGCTGT	2220
GCAATCTTCC	GGACCCGGCC	TTGCCAGGCG	AGGCGAGGCC	CCGTGGCTGG	ATGGGAGGAT	2280
GTGGGCGGG	CTCCCCATCC	CAGAAGGGGA	GGCGATTAAG	GGAGGAGGGA	AGAAGGGAGG	2340
GGCCGCTGGG	GGGAAAGACT	GGGGAGGAAG	GGAAGAAAGA	GAGGGAGGGA	AAAGAGAAGG	2400
AAGGAGTAGA	TGTGAGAGGG	TGGTGCTGAG	GGTGGGAAGG	CAAGAGCGCG .	AGGCCTGGCC	2460
CGGAAGCTAG	GTGAGTTCGG	CATCCGAGCT	GAGAGACCCC	agcctaagac (GCCTGCGCTG	2520
CAACCCAGCC	TGAGTATCTG	GTCTCCGTCC	CTGATGGGAT	TCTCGTCTAA	ACCGTCTTGG	2580
AGCCTGCAGC	GATCCAGTCT	CTGGCCCTCG	ACCAGGTTCA	TTGCAGCTTT (CTAGAGGTCC	2640
CCAGAAGCAG	CTGCTGGCGA	GCCCGCTTCT	GCAGGAACCA	ATGGTGAG		2688

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2875 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAATTCATT	T AAGCTGGATT	CACTTCTAGG	G TCCCATGCG	r ttacactca	T TTCCACCACA	60
AGAGGGCAG	C CATCTCTAA	AAAACAACAC	TCGAGTGCT	TTCAGAGAA	A TTGGGCCAAA	120
CTTGAGGAA	A GTTCCTGGG#	AAGGCTTTTT	AGCAGCACCT	CTCTGGGCT	A CAAAAAAGAA	180
GCCAGCAGG	C ACCACCAAGG	TGGAGTAACT	GTCCAGAGGC	ATCCATTTT	CCTCAGAGAC	240
TTGATTACT	A AGGATATCCT	AAACGGCCAA	ACTOTOTOT	CTGGTGTTC	AGAGGCCCAA	300
AGCTGCAAG	G CATTGTTGAT	GTCATCACCA	AAGGTTTCAT	TTTCATCTT	TCTTGGGGTT	360
GGTCCAACA	G CTGTCAGCTT	TCTCTTCCTC	ATTAAAGGCA	ACTITCTCAT	TTAAATCTCA	420
TATAGGTTC	GAGTTTCTTG	CTITGCTCCT	TCCGCCTCCG	CGATGACAGA	AGCAATGGTT	480
AACTTCTCA	TTAAACTTGA	TAGGGAAGGA	AATGGCTTCA	GAGGCGATCA	GCCCTTTTGA	540
CTTACACACT	TACACGTCTG	AGTGGAGTGT	TTTATTGCCG	CCTTGTTTGG	TGTCTCATGA	600
TTCAGAGTGA	CAACTTCTGC	AACACGTTTT	AAAAAGGAAT	ACAGTAGCTG	ATCGCAAATT	660
GCTGGATCTA	TCCCTTCCTC	TCCTTTAATT	TCCCTTGTAG	ACAGCCTTCC	TTCAAAAATA	720
CCTTATTTGA	CCTCTACAGC	TCTAGAAACA	GCCAGGGCCT	AATTTCCCTC	TGTGGGTTGC	780
TAATCCGATT	TAGGTGAACG	AACCTAGAGT	TATTITAGCT	AAAAGACTGA	AAAGCTAGCA	. 840
	AAAAAATCAT					900
•	GATCTGGTTC					960
					GCTCCTGAAT	1020
					GGACATTTCC	1080
				•	CCCAGTGGAG	1140
					TACCTGACTC	1200
					ATCGCTTCTA	
TAABABAAAT	TTCTATTAAC	TCTCATTGTC	CCTCACATGG	ACACACACAC	ACACACAC	1320

ACACACI	ACAC	ACACATCAC	r agaagggato	TCACTTTAC	A AGTGTGTAT	TATGTTCAGA	138
AACCTG	racc	CGTATTTTT	A TAATTTACAT	AAATAAATAC	TAAAATATA	A TATGCATCTT	144
TTTATT	GAT	TCATTTATT	CAATATAAD	GTATGAATAT	TTATAAAATC	TAATAATGCA	150
CTCAGAI	GTG	TATCGGCTAT	TTCTCGACAT	TTTCTTCTCA	CCATTCAAA	CAGAAGCGTT	156
TGCTCAC	ATT	TTTGCCAAAA	TGTCTAATAA	CTTGTAAGTT	CTGTTCTTCI	TTTTAATGTG	162
CTCTTAC	CTA	AAAACTTCAA	ACTCAAGTTG	ATATTGGCCC	: AATGAGGGAA	CTCAGAGGCC	168
AGTGGAC	TCT	GGATTTGCCC	TAGTCTCCCG	CAGCTGTGGG	CGCGGATCCA	GGTCCCGGGG	1740
GTCGGCT	TCA	CACTCATCCG	GGACGCGACC	CCTTAGCGGC	CGCGCGCTCG	CCCCGCCCCG	1800
CTCCACC	GCG	GCCCCGTACG	CGCCGTCCAC	ACCCCTGCGC	GCCCGTCCCG	CCCGCCCGGG	1860
GGATCCC	GGC	CGTGCTGCCT	CCGAGGGGGA	GGTGTTCGCC	ACGGCCGGGA	GGGAGCCGGC	1920
AGGCGGC	GTC	TCCTTTAAAA	GCCGCGAGCG	CGCGCCAGCG	CGGCTCGTCG	CCGCCGGAGT	1980
CCTCGCC	CTG	CCGCGCAGAG	CCCTGCTCGC	ACTGCGCCCG	CCGCGTGCGC	TTCCCACAGC	2040
CCGCCCG	GGA	TTGGCAGCCC	CGGACGTAGC	CTCCCCAGGC	GACACCAGGC	ACCGGGACGC	2100
CCTCCCG	GCG	AAAGACGCGA	GGGTCACCCG	CGGCTTCGAG	GGACTGGCAC	GACACGGGTT	2160
GGAACTC	CAG	ACTGTGCGCG	CCTGGCGCTG	TGGCCTCGGC	TGTCCGGGAG	AAGCTAGAGT	2220
CGCGGAC	CGA	CGCTAAGAAC	CGGGAGTCCG	GAGCACAGTC	TTACCCTCAA	TGCGGGGCCA	2280
CTCTGAC	CCA	GGAGTGAGCG	CCCAAGGCGA	TCGGGCGGAA	GAGTGAGTGG	ACCCCAGGCT	2340
GCCACAAI	AAG .	ACACTTGGCC	CGAGGGCTCG	GÄGCGCGAGG	TCACCCGGTT	TGGCAACCCG	2400
AGACGCG	CGG	CTGGACTGTC	TCGAGAATGA	GCCCCAGGAC	GCCGGGGCGC	CGCAGCCGTG	2460
CGGGCTCT	rgc '	TGGCGAGCGC	TGATGGGGGT	GCGCCAGAGT	CAGGCTGAGG	GAGTGCAGAG	2520
TGCGGCCC	GC (CCGCCACCCA	AGATCTTCGC	TGCGCCCTTG	CCCGGACACG	GCATCGCCCA	2580
CGATGGCT	rgc (CCCGAGCCAT	GGGTCGCGGC	CCACGTAACG	CAGAACGTCC	GTCCTCCGCC	2640
CGGCGAGT	rcc (CGGAGCCAGC	CCCGCGCCCC	GCCAGCGCTG	GTCCCTGAGG	CCGACGACAG	2700
CAGCAGCO	TT (GCCTCAGCCT	TCCCTTCCGT	CCCGGCCCCG	CACTCCTCCC	CCTGCTCGAG	2760
SCTGTGTG	TC 1	AGCACTTGGC	TGGAGACTTC	TTGAACTTGC	CGGGAGAGTG	ACTTGGGCTC	2820
CCACTTO	GC (SCCGGTGTCC	TCGCCCGGCG	GATCCAGTCT	TGCCGCCTCC	AGCCC	2875

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCCGGCAAGT TCAAGAAG

18

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15144 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCATTI AAGCTGGATT CACTTCTAGG TCCCATGCGT TTACACTCAT TTCCACCACA 60 AGAGGGCAGC CATCTCTAAA AAAACAACAG TCGAGTGCTC TTCAGAGAAA TTGGGCCAAA 120 CTTGAGGAAA GTTCCTGGGA AAGGCTTTTT AGCAGCACCT CTCTGGGCTA CAAAAAGAA 180 GCCAGCAGGC ACCACCAAGG TGGAGTAACT GTCCAGAGGC ATCCATTTTA CCTCAGAGAC 240 TIGATTACTA AGGATATCCT AAACGGCCAA ACTCTCTCTT CTGGTGTTCC AGAGGCCCAA 300 AGCTGCAAGG CATTGTTGAT GTCATCACCA AAGGTTTCAT TTTCATCTTT TCTTGGGGTT 360 GGTCCAACAG CTGTCAGCTT TCTCTTCCTC ATTAAAGGCA ACTTTCTCAT TTAAATCTCA 420 TATAGGTTCG GAGTTTCTTG CTTTGCTCCT TCCGCCTCCG CGATGACAGA AGCAATGGTT 480 AACTTCTCAA TTAAACTTGA TAGGGAAGGA AATGGCTTCA GAGGCGATCA GCCCTTTTGA 540 CTTACACACT TACACGTCTG AGTGGAGTGT TTTATTGCCG CCTTGTTTGG TGTCTCATGA 600 TTCAGAGTGA CAACTTCTGC AACACGTTTT AAAAAGGAAT ACAGTAGCTG ATCGCAAATT 660 GCTGGATCTA TCCCTTCCTC TCCTTTAATT TCCCTTGTAG ACAGCCTTCC TTCAAAAATA 720 CCTTATTTGA CCTCTACAGC TCTAGAAACA GCCAGGGCCT AATTTCCCTC TGTGGGTTGC 780 TAATCCGATT TAGGTGAACG AACCTAGAGT TATTTTAGCT AAAAGACTGA AAAGCTAGCA

CACGTGGGT	A AAAAAATCAT	TAAAGCCCCT	GCTTCTGGTC	TTTCTCGGT	TTTGCTTTGC	900
AAACTGGAAA	A GATCTGGTTC	ACAACGTAAC	GTTATCACTO	TGGTCTTCT	A CAGGAATGCT	960
CAGCCCATAG	TTTTGGGGGT	CCTGTGGGTA	GCCAGTGGTG	GTACTATAA	GCTCCTGAAT	1020
GTAGGGAGAA	ATGGAAAGAI	TCAAAAAAGA	ATCCTGGCTC	AGCAGCTTGG	GGACATTTCC	1080
AGCTGAGGAA	GAAAACTGGC	TTGGCCACAG	CCAGAGCCTT	CTGCTGGAGA	CCCAGTGGAG	1140
AGAGAGGACC	: AGGCAGAAAA	TTCAAAGGTC	TCAAACCGGA	ATTGTCTTGT	TACCTGACTC	1200
TGGAGTAGGT	GGGTGTGGAA	GGGAAGATAA	ATATCACAAG	TATCGAAGTG	ATCGCTTCTA	1260
TAAAGAGAAT	TTCTATTAAC	TCTCATTGTC	CCTCACATGG	ACACACACAC	ACACACACAC	1320
ACACACACAC	ACACATCACT	AGAAGGGATG	TCACTTTACA	AGTGTGTATC	TATGTTCAGA	1380
AACCTGTACC	CGTATTITIA	TAATTTACAT	AAATAAATAC	ATATAAAATA	TATGCATCTT	1440
TTTATTAGAT	TCATITATIT	GAATATAAAT	GTATGAATAT	TTATAAAATG	TAATAATGCA	1500
CTCAGATGTG	TATCGGCTAT	TTCTCGACAT	TTTCTTCTCA	CCATTCAAAA	CAGAAGCGTT	1560
TGCTCACATT	TTTGCCAAAA	TGTCTAATAA	CTTGTAAGTT	CTGTTCTTCT	TTTTAATGTG	1620
CTCTTACCTA	AAAACTTCAA	ACTCAAGTTG	ATATTGGCCC	AATGAGGGAA	CTCAGAGGCC	1680
AGTGGACTCT	GGATTTGCCC	TAGTCTCCCG	CAGCTGTGGG	CGCGGATCCA	GGTCCCGGGG	1740
GTCGGCTTCA	CACTCATCCG	GGACGCGACC	CCTTAGCGGC	CGCGCGCTCG	cccccccc	1800
CTCCACCGCG	GCCCCGTACG	CGCCGTCCAC	ACCCCTGCGC	GCCCGTCCCG	CCCGCCCGGG	1860
GGATCCCGGC	CGTGCTGCCT	CCGAGGGGGA	GGTGTTCGCC	ACGGCCGGGA	GGGAGCCGGC	1920
AGGCGGCGTC	TCCTTTAAAA	GCCGCGAGCG	CGCGCCAGCG	CGGCGTCGTC	GCCGCCGGAG	1980
TCCTCGCCCT	GCCGCGCAGA	GCCCTGCTCG	CACTGCGCCC	GCCGCGTGCG	CTTCCCACAG	2040
CCCGCCCGGG	ATTGGCAGCC	CCGGACGTAG	CCTCCCCAGG	CGACACCAGG	CACCGGAGCC	2100
CCTCCCGGCG	AAAGACGCGA	GGGTCACCCG	CGGCTTCGAG	GGACTGGCAC	GACACGGGTT	2160
GGAACTCCAG	ACTGTGCGCG	CCTGGCGCTG	TGGCCTCGGC	TGTCCGGGAG	AAGCTAGAGT	2220
CGCGGACCGA	CGCTAAGAAC	CGGGAGTCCG	GAGCACAGTC	TTACCCTCAA	TGCGGGGCCA	2280
CTCTGACCCA	GGAGTGAGCG	CCCAAGGCGA	TCGGGCGGAA	GAGTGAGTGG	ACCCCAGGCT	2340
GCCACAAAAG	ACACTTGGCC	CGAGGGCTCG	GAGCGCGAGG	TCACCCGGTT	TGGCAACCCG	2400
AGACGCGCGG	CTGGACTGTC	TCGAGAATGA	GCCCAGGAC	GCCGGGGCGC	CGCAGCCGTG	2460
CGGGCTCTGC	TGGCGAGCGC	TGATGGGGGT	GCGCCAGAGT	CAGGCTGAGG	GAGTGCAGAG	2520
TGCGGCCCGC	CCGCCACCCA	AGATCTTCGC	TECECCCTTE	CCCGGACACG	GCATCGCCCA	2580

CAGCAGCCTT GECTCAGCCT TECCTTCCGT CCCGGCCCCG CACTCCTCCC CUTGCTCGAG GETGTGTGT AGCACTTGGC TGGAGACTTC TTGAACTTGC CGGGAGAGTG ACTTGGGCTC CCCACTTCGC GECGGTGTCC TCGCCCGGGG GATCCAGTCT TGCCGCCTCC AGCCCGATCA 286 CCTCTTCTCC TCAGCCCGGT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGAACACCC 294 GGAGAAGGAG GAGGAGGGGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC GGACAGAGGT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGCCGG GTCACACCGC TTCCCGCCCA ACGCAGGGGC CCTGGGAGGA CTGGTGGAGT GGAGTGGACG TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA 324 CCCCAAGATCC CTCTGCCTTG CCCACTGGCA CGGATCCCTA GAGGGGTTAG GCATTCCAAA GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TAAGAGATCC TGGCCTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGGCT TAGAGAATCC TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 342 TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTCACCGG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATT CTTGACTGCA CAGGAGTCTT GGGGAAAGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA CCTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CATTCATAAA 356 CCTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CATTCATAAA 372 CATTATCTAA ATATGCACAGA AATTGTATACA AGCCCTTAAA TAGTTAGGGC GAGGCCACAA CCTTGCCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAAGT TTGTCAGGGT CCACAAGAAAA 390 GGGTACAGCC GCCCAAGGCC CTCCTTGACA CCCGCATTCC CAGCTAAGTAC CACAAGAAAA 390 GCGCTCGGGA CTTCGGGGTC CTCCTGACA CCCGCATTCC CAGCTAGGTC CACAAGAAAA 390 CCGGCTGGGA CTTGGGGGTC CTCCTTGACA CCCGCATTCC CAGCTAGGTC CACAAGAAAA 390 CCGGCTGGGA CTTGGGGGTC CTCCTTCACC CAGCCCGCC AGTAAGAAAA 390 CCGGCTGGGA CTTGGGGGTC CTCCTTCACC CAGCCCGCC CTCCCTGGCC GCGCGCGGA GACTGGGG GAAACGTGG TGACTCACGT CGCCCCTGC CCCCGGGC GCGCGCGGA GACTCGG GGAACGTGG TGACTCACGT CCCCCAGGCC CTCCTTGGCG CCTTGTCCC GCGCTCGAA GACGTCCTA GGAACGTCC TCCCTGGCCC CCTTGTCCC GCGCTCGAA GACGTCCTA GGAACGTCC CCCCCGGCCC CCCTCTCCCGGCC CCTTGTCCCG GCCTCATTCCA GACGCTCCA CGCAAGAGTT CCCCCGGCCCCA CCCTCTCCCCGGCC CCTTGTCCCG GCCTCATTCCA GACGCTCCA CCCCAG	CGATGGCTGC CCCGAGCCAT GGGTCGCGGC CCACGTAACG CAGAACGTCC GTCCTCCGCC	2640
CCCACTTOGC GCCGGTGTCC TCGCCCGCC GATCCAGTCT TGCCGCCTCC AGCCCGATCA CCCACTTCGC GCCGGTGTCC TCGCCCGCC GATCCAGTCT TGCCGCCTCC AGCCCGATCA CCTCTCTTCC TCAGCCCGCT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGAACACCC GGAGAAGGAG GAGGAGGCGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGCGCG GTACACACCGC TTCCCGCCCA ACGCAGGGCC CCTGGGAGGA CTGGTGGAGT GGAGTGGACG CCCCAGATCC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTCC TCCTCCCCAA 310 GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 254 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATT CTTGACTGCA CAGGAGTCTT GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GGGTACAGT GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT GTGTCTGTA ACTACCAGGA AATTGTATAC AGCCCCTATA AGGAAGTCAC TTGTGCATTT GTGTCTGTAA ACTACCAGGA AATTGTATAC AGCCCCTATA AGGAAGTCAC TTGTGCATTT GGGTACAGAC GGTCAATGC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAAA 3900 GGGCGCGGGAG GACTGGGCC CTTCCTGACA CCCCCATTCC CAGCTAGGT CACAAGAAAA 3900 GCGCGCGGGAG GACTGGGCC CTTCCTAACA CCCCCATTCC CAGCTAGGCC GAGGCGCGG GCCGCCGGAG GACCGGCC TTCCTTCAG CCACCGAGTC CTCCTGGCC GCGCGCGGAG GACCGGCC GGAACGTGGG TGACTCACGT CCCCAGGCC CCCCTGTC CCCAGGGC GCCCGGC GCCGCGGGGG GACCGGC GGAACGTGGG TGACTCACGT CCCCAGGCC CCCCTGTC CCCAGGGC CCCCCTCCCAGGCC CCCCTTCCCAGGC CAGCGCGCGC GCCCCGCCCC	CGGCGAGTCC CGGAGCCAGC CCCGCGCCCC GCCAGCGCTG GTCCCTGAGG CCGACGACAG	2700
CCCACTTCEC GCCGGTGTCC TCGCCCGGCG GATCCAGTCT TGCCGCCTCC AGCCCGATCA CCTCTCTTCC TCAGCCCGCT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGAACACCC GAGAAAGGAG GAGGAGGGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCCGGGT TGGCTGGCGG GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG GTAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA CCCCAGATCC CTCTGCCTGC CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA GTTTTCGATA CATTATAAGG GCTGTTTTG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGACTCC TCGCTACCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTACACGTC CATTCATAAA 2544 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA CCTGCCAAGTC GCCTATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT GATATGCTCA ACTACCAGGA AATTGTATAC AGCCCCTTAA AGGAAGTCAC TTGTGCATTT GTGTCTGTTA ATATGCACAT GAGGTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCC ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA CCGGCGCGGAG GACCGGCT CTTCTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAAA CCGGCGCGGAG GACCGGCT CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA CCGGCGCGGAG GACCGGCG GGAACGTGGG TGACTCACGT CTCCTGGGCG GCGCGCGGAG GACCGGCG GGAACGTGGG TGACTCACGT CTCCTGGGCG CCATGGTGCC CGGGACCCCC TGTCTTCTAG TGTTTCTAG CTCCAGGCC CCCCTGGCC CCCTTGTCCCG CCTCCTCGAA GACGTCCCTA GCGAACTTC CCCCAGGTC CTCCTGGGCG CCCTTGTCCCG CCTCCTCGAA GACGTCCCTA GCCAAGAATTT CCCCAGGTC CTCCTGGGCG CCCTTGTCCCG CCCTCCGAA GACGTCCCTA GCCAAGAATTTCA GTTGAGGCCG CCCTCTCGGCCG CCCTTGTCCCG CCCTCCGAA GACGTCCCTA GCCAAGATTTCA GTTGAGGCCG CCCCTCTCCTGGGCC CCTTGTCCCC GCCTTCCGAA GACGTCCCCA GCGAATTTCA GTTGAGGCCTC CTCCTGGGCC CCTTGTCCCC GCCTTCCGAA GACGTCCTCA GCGAATTTCA GTTGA	CAGCAGCCTT GCCTCAGCCT TCCCTTCCGT CCCGGCCCCG CACTCCTCCC CCTGCTCGAG	2760
CCTCTCTTCC TCAGCCCGCT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGACACCC GGAGAAGGAG GAGGAGGGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC GGACAGAGCT TTTTCCATGT GGAGACTCCT TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGGCGG GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGATGGACG GTAACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGATGGACG CCCCAGATCC CTCACCCGGT GCACTGGCC TCCTTCCTCC AGCGGTTCC TCCTCCCCAA 330 GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAAGATCC TTGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACCA AAAGTTGGGG 348 TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 3540 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAAGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CCTGCCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAAGC CTTACACGTG CATTCATATA 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT GTGTCTGTTA ATATGCACAT GAGGTCGAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCC GATACACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTCT CACAAGTATA 3900 ACCAACCTAT GGCTCACCAG CTTCCTGACA CCCGCATTCC CAGCTAGTCT CACAAGAAAA 3900 CCGGCTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3900 CCGGCTGGGA CTTGGGGGT CTCCATCGGC CAGCCAGTCC CAGCGCCCGA AGTAAGAAGT 3900 CCGGCTGGGA CTTGGGGGG GAACGTGGG TGACTCACGT CGCCCGGCC GAGGCCCGGG GCCCATGGGC GACCTGGGC GAACGTGGG TGACTCACGT CCCCAGGTC CCCCAGGTCGA 4080 CCCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGTCT TCCCCAGGCC CTCCTGGGCC 4140 CCCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGTCT TCCCCAGGCC CTCCTGGCCG CCCATGGGCG CCCCCTCCGAAGAAGTT CCCCAGGCC CTCCTGGCCG 4140 CCCTTGTCCCG CCCTCCGAA GACCTCCTA GCGAAAAGATT CGCCCGCGCA TCCAGGCCGA CCCTTCCTCCGAA GACCTCCTA GCGCAATTTCA GTTGAGGCCC CTCAGGCCGA 4200 CCCTTGTCCCG CCCTCCGAAAAGATT CGCCCGCGCA TCCAGGCCGAC 4200	GCTGTGTGTC AGCACTTGGC TGGAGACTTC TTGAACTTGC CGGGAGAGTG ACTTGGGCTC	2820
GGAGAAGGAG GAGGAGGGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGCGGG GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGATTGCAAA 316 TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA 324 CCCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA 330 GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT 336 TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGGAAGGGG GAACAGGGT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3780 GGGGAAGGGG GAACAGGGT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3780 GGGTACAGAG GATTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GGGTACAGAC ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGAT TGTCAAGGCC AAGAAAAAA 3900 CCGGGCGGGAA CTTGGGGGTC CTCCATCGGC CAGCGAGCCCA AGTAAGAAAA 3900 CCGGCGGGGAA CTTGGGGGTC CTCCATCGGC CAGCGAGCCCA AGTAAGAAAA 3900 CCATGGTGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCCC AAGTAAGAAAA 3900 CCATGGTGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCCC AAGTAAGAAAA 3900 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT CCCCAGGCC CTCCTGGGCG 4020 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT CCCCAGGCC CTCCTGGGCG 4020 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT CCCCAGGCC CTCCTCGGCG 4140 CCCTTGTCCCG CCTCCTTCCAA GACCTCCCA GCGAAAAGTT CCCCCAGGCC CTCCTTGGGCG 4140 CCCTTGTCCCG CCCTCCTCCAA GACCTCCCA GCGAAAAGTT CCCCCAGGCC CTCCTCGGCGA 4140	CCCACTTCGC GCCGGTGTCC TCGCCCGGCG GATCCAGTCT TGCCGCCTCC AGCCCGATCA	2880
ACGACAGAGCT TITTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGGCGG ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGGCGG GTGACACCGC TTCCCCGCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTTACAAGTTT GTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTTACAAGTTT GTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTTACAAGTTT GTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAAGTT TGTCAGGGAT GCAGTGTCCG ACCAACCTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCC ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA GGGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTTAAGA CCAAGCCCCA AGTAAGAAGT CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGGCAGGCC GAGGCCCCGG GGCCGGGAA CATGGGGCC GGAACGTGGG TGACTCACGT CGCCCGGCC GAGGCCCGGG GCCGCGGGAA CATGGGGCC GGAACGTGGG TGACTCACGT CGCCCGGCC TCCCTGGGCG GCCGCGGGAA CATGGGGCC GGAACGTGGG TGACTCACGT CCCCAGGTC CTCCAGGCCG CCATGGTGGC CGCGCAGCCCC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCAGGCCG CCCTTGTCCCG CCCTCATTCCA GAGCTCCCCA GCGAATTTCA GTTGGCTGCT TCCCCAGGCC CTCCATGGCC CCTTGTCCCG CCCTCATTCCA GAGCTCCCA GCGAATTTCA GTTGCTGCT TCCCCAGGCC CTCCATGCCCGAC CCTTGTCCCC GCCCTCCATCCA GAGCACCCC TGCTCTCCAGCCGC CCCTTCTCCCCGGCC CTCCATCCCC GCCCTCTCCAGCCCGC CCCTCTCTCCCCCGCCC CCCCTCCATCCCC GCCCTCCTCCAGCCCC CCCCTCTCCCCCCCCCC	CCTCTCTTCC TCAGCCCGCT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGAACACCC	2940
ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGGCGG GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA 324 CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA 330 GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT 336 TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT 342 TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCCATGT GTGTTTACTG ACTATCCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 360 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 366 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GGGTACAGAC GGTCACCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGTAAA 3900 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGTAAA 3900 CCGGCTAGGAC CGTCAAGCTC TTTTTAATTG GGAGTTAAGA CTACAAGTTT CCCCAGGCC GAGGCCCGGG 4020 GGCGCGGGAG GACTGGGGC GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGAACCGCC TGTCTCTAG TGTGCTGTT TCCCCAGGCC GAGGCCCGGG 4020 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGTT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCCGAGTC CTCCTGGGCG 4140 CCATGGTGGC CGCCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCCGAGTC CTCCTGGGCG 4140 CCCTTGTCCCG GCCTTCCGGAA GACGTCCCCA GCAAGAAGTT CGCCCGAGCTC CTCCTGGGCG 4140 CCCTTGTCCCG GCCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTCATTCCA GAGCTCCCCA GCCAAGAAGTT CGCCCGAGCTC CTCCTGGGCG 4140 CCCTTGTCCCG GCCTCATTCCA GAGCTCCCCA GCCAAGAAGTT CGCCCGAGCTC CTCCTGGGCG 4120 CCTTGTCCCC GCCTCTCCCAG CGCAACAAGTT CGCCCGAGCTC CTCCTGGGCG 4120 CCTTGTCCCC GCCTCTCCCAG CCCACCTCCA GCCAAGAAGTT CGCCCGACCTCC CTCCTGGCCC 4140	GGAGAAGGAG GAGGAGGCGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC	3000
GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA 224 CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA 330 GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA CCTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 378 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 378 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 390 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGC GAGGCCCGA GGCGCGGGAG GACTGGGGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 CCATGGTGCC CCCCTTCTCCAA GACCTCCAAGAAGTT CGCCCCGGCA TCCAGCCGAC 4200 CCTTGTCCCG CCCTCATTCCA GAGCTGCCC GCAAGAAGTT CGCCCCGGCA TCCAGCCGAC 4200 CCTTGTCCCG CCCTCCTTCCAA GACCTCCAA GCCAAGCTC TCCAGCCGAC 4200 CCTTGTCCCG CCCTCATTCCA GAGCTGCCC GCAAGAAGTT CGCCCCGGCA TCCAGCCGAC 4200 CCTTGTCCCG CCCTCATTCCA GAGCTGCCC GCAAGAAGTT CGCCCCGCAC TCCAGCCGAC 4200 CCTTGTCCCG CCCTCATTCCA GAGCTGCCC GCAAGAAGTT CGCCCCGCAC TCCAGCCGAC 4200	GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG	3060
TARACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCARA 224 CCCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA 330 GTTTTCGATA CATTATAAGG GCTGTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT 336 TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA CACTATCTAT TTAGTTAATT GCAGGAAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTAGAT CTACAAGTTT GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCCAAGCCCCA AGTAAGAAAT GCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCCGGGG GCCGGCTGGGA GACTGGGCGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA CCCATGGTGCC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG GCCGCGCGGAC CCTCATTCCA GAGCTGCGC GCAAGAAGTT CGCCCCGGCA TCCCAGCCGAC CCCTTGTCCCG GCCTTCCGAA GACCTCCAA GCGAAGATT CGCCCCGCAC TCCCAGCCGAC CCCTTGTCCCG GCCTTCCGAA GACCTCCAA GCGAAGATT CGCCCCGGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGAA GACCTCCAA GCGAAGATT CGCCCCGCCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAGATT CGCCCCGGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAGATT CGCCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAATTCAA GTTGAGGGCTG CTCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAATTCAA GTTGAGGGCTG CTCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAATTCAA GTTGAGGGCTG CTCCAGCCCGAC 4200 CCTTGTCCCG GCCTTCCGGAA GACCTCCAA GCGAAATTCAA GTTGAGGGCTG CTCCAGCCCGAC 4200	ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGCCGGG GACCCGGGGT TGGCTGGCGG	3120
CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 2540 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GGGGAAGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA GTGTCTGTAA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT GCGGCGGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG GCCGGCTGGGA CTTGGGGGGT CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG GCCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCC GCGCGGCCGG CCTCATTCCA GAGCTGGGC GCAAGAAGTT CGCCCGGGCA TCCAGCCGAC CCCTTGTCCCG GCCTTCCGAA GACCTCCAG CCGAAGATTTGA GTTGAGGCTG CTCAGGCGAC 4200 CCCTTGTCCCG GCCTTCCGAA GACCTCCAC GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4200 CCCTTGTCCCG GCCTTCGGAA GACCTCCAA GCGAAGTTT CGCCCGGGCA TCCAGCCGAC 4200	GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG	3180
GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT 336 TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT 342 TAGAGATCCT TEGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 360 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 366 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 378 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 378 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 384 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 390 GGGTACAAGC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCCAGCCCCA AGTAAGAAGT 396 CCCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 402 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGCCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTCCTCA GCGAACTTTCA GTTGAGGAGTT CCCCCAGGTC CTCCTGGGCG 4200 CCCTTGTCCCG GCCTTCCGGAA GACGTCCTCA GCGAACTTTGA GTTGAGGCTG CTCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACGTCCTCA GCGAACTTTGA GTTGAGGCTG CTCCAGCCGAC 4200	TAAACATACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA	3240
TTAAGAGTAT GGCCAGTAGA TITTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 3540 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 3600 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGGG CCTCATTCCA GAGCTGGGC GCAAGAAGTT CGCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGAA GACGTGGCC GCAAGAAGTT CGCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGAA GACGTCGCCC GCAAGAAGTT CGCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4200	CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA	3300
TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG 348 TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 354 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 3600 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGGA GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGCC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGGCGGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCCAGCCGAC 4200	GTTTTCGATA CATTATAAGG GCTGTTTTGG GCTTTCAAAA AAAAAAATGC AGAAATCCAT	3360
TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA 3540 CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 3600 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGGT CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGAGGT TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCCGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4200	TTAAGAGTAT GGCCAGTAGA TITTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT	3420
CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT 3600 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3660 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCCAAGCCCCA AGTAAGAAGT 3960 CCCGGCTGGGA CTTGGGGGGT CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCCGCGCA TCCAGCCGAC 4200 CCCTTGTCCCG GCCTTCCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4260	TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTTAG GAAGATACTA AAAGTTGGGG	3480
GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA 3666 CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGGT CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4260	TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCATAG CTTACACGTG CATTCATAAA	3540
CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT 3720 GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT	3600
GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT 3780 GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCCGAC 4260	GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA	3660
GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG 3840 ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCCAGCATGT 4260	CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTTAGCG CTTACTGAAT CTACAAGTTT	3720
ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA 3900 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGGT CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGGGAG GACTGGGGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGGCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260 CCTTGTCCCCG GCCTTCCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260 CCTTGTCCCCG GCCTTCCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260 CCTTGTCCCCG GCCTTCCTCAGCATGT 4260 CCTTGTCCCCG GCCTTCCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260 CCTTGTCCCCGAC GCCTTCCTCAGCATGT 4260 CCTTGTCCCCGAC GCCTTCCTCAGCATGT 4260 CCTTGTCCCCGAC GCCCGAC CCTCAGCATGT 4260 CCTTGTCCCCGAC GCCCGAC CCTCAGCATGT 4260 CCTTGTCCCCGAC GCCCGCGCAC CCTCAGCATGT 4260 CCTTGTCCCCGAC GCCCGACATGT CCCCCGCGCAC CCTCAGCATGT 4260 CCTTGTCCCCGAC GCCCGACATGT CCCCCGCGCAC CCCTCAGCACACACACACACACACACACACACACACACAC	GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT	3780
GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT 3960 CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	GTGTCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG	3840
CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG 4020 GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	ACCAACCTAT GGCTTCCCAG CTTCCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA	3900
GGCGGCGGAG GACTGGGCG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTCGA 4080 CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT	3960
CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG 4140 GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG	4020
GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC 4200 CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	GGCGGCGGAG GACTGGGCGGGGGGGGGGGGGGGGGGGGG	4080
CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT 4260	CCATGGTGGC CGGGACCCGC TGTCTTCTAG TGTTGCTGCT TCCCCAGGTC CTCCTGGGCG	4140
•	GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCA TCCAGCCGAC	4200
TTGGCCTGAA GCAGAGACCC ACCCCCAGCA AGGACGTCGT GGTGCCCCCC TATATGCTAG 4320	CCTTGTCCCG GCCTTCGGAA GACGTCCTCA GCGAATTTGA GTTGAGGCTG CTCAGCATGT	4260
	TTGGCCTGAA GCAGAGACCC ACCCCCAGCA AGGACGTCGT GGTGCCCCCC TATATGCTAG	4320

WO 96/38590 PCT/US96/08197 -36-

ATCTGTACCG	CAGGCACTCA	GGCCAGCCAG	GAGCGCCCGC	CCCAGACCAC	CGGCTGGAGA	4380
GGGCAGCCAG	CCGCGCCAAC	ACCGTGCGCA	CGTTCCATCA	CGAAGGTGAG	CGGCGGCGG	4440
GTGGCGGGC	GGGGACGGCG	GGCGGGCGGA	GACTAGGCGG	GCAGCCCGGG	CCTCCACTAG	4500
CACAGTAGAA	GCCTTTCGG	CTTCTGTACG	GTCCCCTCTG	TGGCCCCAGC	CAGGGATTCC	4560
CCGCTTGTGA	GTCCTCACCC	TTTCCTGGCA	AGTAGCCAAA	AGACAGGCTC	CTCCCCTAG	4620
AACTGGAGGG	AAATCGAGTG	ATGGGGAAGA	GGGTGAGAGA	CTGACTAGCC	CCTAGTCAGC	4680
ACAGCATGCG	AGATTTCCAC	AGAAGGTAGA	GAGTTGGAGC	TCCTTAAATC	TGCTTGGAAG	4740
CTCAGATCTG	TGACTTGTGT	TCACGCTGTA	GTTTTAAGCT	AGGCAGAGCA	AGGGCAGAAT	4800
GTTCGGAGAT	AGTATTAGCA	AATCAAATCC	AGGGCCTCAA	AGCATTCAAA	TTTACTGTTC	4860
ATCTGGGCCT	AGTTTGAAAG	ATTTCTGAAT	CCCTATCTAA	TCCCCGTGGG	AGATCAATTC	4920
CACAATTCGT	CATATTGTTT	CCACAATGAC	CTTCGATTCT	TTGCTTAAAT	CTTAAATCTC	4980
CAAGTGGAGA	CAGCGCAACG	CTTCAGATAA	AAGCCTTTCT	CCCACTGCCT	GCTACCTTCC	5040
TAGGCAAGGC	AATGGGGTTT	TTAAACAAAT	ATATGAATAT	GATTTCCCAA	GATAGAATAA	5100
TGTTGTTTAT	TTCAGCTGAA	ATTTCCTGGA	TTAGAAAGGC	TGTAGAGGCC	TATTGAAGTC	5160
TCTTGCACCG	ATGTTCTGAA	AGCAGTTAGT	AAAAAATCAT	GACCTAGCTC	AATTCTGTGT	5220
GTGCCACTTT	CAATGTGCTT	TTGACTTAAT	GTATTCTCCA	TAGAACATCA	GTTCCTTCAA	.5280
GTTCTAGAAG	AATTCAGATT	TAAAGTTTTG	CTTTGCCTTG	CTGAGGGGAT	AAATTTTAAG	5340
TAGAAATCTA	GGCTCTGAAA	TGATAGCCCA	ACCCCATCTC	CAGTAAGGGA	TGACTGACTC	5400
AAACCTTGAG	AAGTCTGGGT	GATAATAGGA	AAAGTCCACA	AGCAGGTCAC	AGAGCGCGAG	5460
ATGGATCTGT	CTTGAGGCAG	CCAATGGTTA	TGAAGGGCAC	TGGAAATCCA	TCTCTTTCAA	5520
ACTGGTGTCT	AGGGCTTTCT	GGGAGCAAAG	CTTAGACCAC	ATTCTGCTCC	TCAAGGTTTG	5580
CCTACTGAAA	GCAGGGAGAT	TCTGGGTGTT	CACCCCCATC	CTTCACCCCC	AGGTGATTCT	5640
GGGCTTAGCT	AATCTCTCCT	GGTTAATATT	CATTGGAAAG	TTTTTATAGA	TCAAAACAAA	5700
CAAACCTACT	ATCCAGCACA	GGTGTTTTTC	CCACTGCCTC	TGGAGATATA	GCAAGAAAAC	5760
CATATATTCA	TGTATTTCCT	TATTAGTCTT	TTCTAACGTG .	AAAATTATTC	CTGACCTATA	5820
AAAAATGAAG	GAGGTATTTT	ATCTTAACTA	AGCTAAAAGA	ATCGCTTAAG	TCAATTGAAA	5880
CTCAAAAATC	CAATTGAATG	AAAGGTTCGT	CAATAAAAAT	CTACATTTTT	CTTACTCTTC	5940
CTTTGGAAAT .	AGCTTGATAA	AAACACAGAC .	AAAACAAAGT (CTGTGTGCTT .	ATTTGAAAAC	6000
TTAGTGAGCT	TCAGTTCATA .	AGCAAAAAAT	GTAGTTTAAA 2	AGTGATTTTT	CTGTTGTAAA	6060

ACGTGATAGA	AGTTATTGAC	TTGTTTAAAA	TAAACTTGCA	CTAACTTTAT	ACCTTGGTGC	6120			
AATTAGATGI	AATGTTTACT	GTAAATTTCA	GGAAAACCAT	TTTTTTTTT	TGGTCATGAT	6180			
CAGGTACACA	TGGCATTTGG	GAAGACTTTT	CACATTGTTG	AGTAACCTAG	AGTTTGTTTG	6240			
TTTGTTTGTT	TGTTTTTAAG	CATTCTTGTG	CCACTAGAAA	AACCTTAATA	AGCCATGTGT	6300			
TACTTGGTAG	ACTTCTTCCT	AAGTTCTAGA	AAGTGGCTTA	ATGCCACGAT	GAGACAAAAC	6360			
ATACCATAGT	AGTCTTTCAA	CCAGTGGCAG	AGTCTTCCAG	ACAAAATCTC	CTGTTGAACA	6420			
TTAAGACCAT	-GGATTTTTAT	CCAGGAGAGC	CCAGGCTTTG	CTGAATCACC	ACCCTCCAAC	6480			
CCCACTCCAA	GGTCACCGAA	GGCCTCCCCA	ACTGGCTGCC	ATTGAGAAAC	TGTTTGAAAT	6540			
TGATTGACTC	CATTGGCCCT	ACAGAGACTT	CTCCTTTAGT	GGCAGATCAT	ATACTGAAGG	6600			
ATCCAAGCTT	GCTCTTCTGA	CTATGAAGAG	CACAGTCTTT	CTTTTTCTTT	ATGGAATAAA	6660			
CAAACTATGT	GGCCCTGTGA	CTAAAGTTTT	CAAAGAGGGA	GAGATCCTGT	TAGCAGAAGT	6720			
GCAACTGCCC	AGAAACTAGC	CACAGGCTAG	GATATTCCAA	AGTACAACTC	TAAAGTATGG	6780			
TCCATCCTAA	ATTCTAGCAT	GGGGTTGAAT	ACCGGCATCC	AGGAATACTT	CTCTCTACCT	6840			
CTGGCTATTG	CAGTGAGATT	ACGAAGACCC	TGGGGGGAAA	AACAGTTGCT	TAGTTTACAG	6900			
ATGTTCCTTG	CCACAGATGT	TCTCAGTATC	TCTTGTTTGT	CAGAGGATCC	TTTCAATCCC	6960			
TCTTGACATT	TCCAATCTGC	TTTTGTCCTC	TCTACATGTG	CCTTGTGGCA	TTTCGCTTGG	7020			
TCTTTAGAGA	ATCCCTTTCT	GGAGCTGCAG	GTTCCCTTGT	AGGATCTGTG	TTCAGGAGAA	7080			
CAGGGACCTT	GGCAGGTTAG	TGACAACTAC	CAAACCCTGC	TTTCCTTCCC	TGCCACTTCC	7140			
TTTGTTGCCT	AATTAAAAAT	ACCTTAACTC	TCTGTGTCTA	AACCTTTTCT	TCTTCCTCTT	7200			
TGTCATTTAC	TTTATTTATT	TGTCATGTAC	TTTATCCTGT	AGAAAATCAC	AGTGTGGCCC	7260			
AAAGCCCCTT	GAATCTTGTT	GCAGCGGTGA	GATGCAGCTG	CTGATCTGGA	ATAGCCTTAG	. 7320			
GCTGTGTGTT	TGATCACAAT	GCTTTCTGTC	CAAAAGTGTG	CAAATCCTCC	AAGCTTAATG	7380			
ATAACTTTTG	AAATGAAACT	CACCCTACTT	TAGGGCAAAC	AAGTAGCCAC	AGAGAGCAGG	7440			
ATCTAAACAA	GGTCTGGTGT	CCCATTTGGC	TGTGTCCCTT	CAATTTTCTG	TTCATTTAGC	7500			
TCTGTCTGCA	TCTAAAGGGT	GCTGGGCAAT	AAGTTTTGAT	CTTCAGGGCA	AAACTCAATC	7560			
TTCAGTTACC	ATGGTATCAG	GTACCAATTC	CTAGTGATTT	GTGCTATGGC	TTAGGATTTG	7620			
ATTTCTCTCC	TACATTAGGT	AATATCTTTC	AATGGCTAGA	ACTTGGGCAT	TGCAGTACAC	7680			
TCAAGTTAAC	AGTTCTGTGA	CCTAAGGAAG	TCACATAACC	TCTCTGAATT	CTCTACTGTT	7740			
TCATTCACAA	aatggagaaa	ATCATGGCTC	TTTCTTAATG	TGCGAATTCA	TAGAAAGGTG	7800			
SUBSTITUTE SHEET (RULE 26)									

ATGACACCAG ATTTGGCAGA AGGAAGGAAA GGAAGGAAG AAGAAAGAA GAAAGAAAGA	7860
AAGAAAGAAA GAAAGAAAGA AAGAAAGAAA GGAAGGAAGG GAGAGAGAGA GAAGGGAAGG	7920
GAADGAADDA GODAADDAAA ADAADDAAADD AAADDAAADD	7980
GAAGGAAGGA AGGAAAAGAA AGAGAAGAAA GCATTCAGCA TATGAACTAA TGTTTCCTGG	8040
TGACTTTTTA TATCATATCC TTGTTCTAGG AAGTGGCCCT AGCCATATCT TTTGGGTTAT	8100
TTTGAGGTAG AGGATAATCA ACATAGTGTA GAACATTAAA TCTGGGTTTT GTTTCTAGAA	8160
GAGGCTAGAA TGGCATGGCT GTCCCACTTG CTCCTCTTTC AGGCAGTATG GCAGCCACCA	8220
TTCTCTCTGT AAGATCTAGG AGGCTGACAC TCAGGTTGGA GACAGGTCAG AATCCTGAAA	8280
TCACTTAGCA AGTTCAGCTG ATTCAACAAG GGATATTTAC AGAGAATTAA CAGCTATTCC	8340
AGCTTCCAAA AAGTGTACAT TACCTACTCT GTATTTTCAG AACCCCAGGT TTGCTGTGAT	8400
AATTTGGTAG AAGCCTTTTC CTGTAATTTT CTTTATTTAA AAGATATTTT CATTTTCCAC	8460
CCTCAAGAAG AGGTTGAAAC TTGTCCCTTG AAGTAGAAGA GGTGTTGTGT GTCCTGACCC	8520
TGAGGAAGTT GGCCTTGTTG AGGTCTTCTG TAAATTCTTG AATTCTCTGT ATAATTTCAA	8580
TGAATAGTCA TGTTTGATAC CTTGGTATAA AGGATGGGAT AAGATCTTTC AAGGCTTAGG	8640
CTGATGGAAA CGCTGCTGAA AGACTAGAGA TTGCTCTTTC CTTTGGCATC TGTCTTGGGT	8700
AGTAATATTG TTCTCTGTGA AGGCCCACIT ATTCTGTCTT GAAAATTCTT CTTACCTCCA	8760
GAGTGATAGG CCACAGGGAG TACTGTTTCT ATGTTTGCAG TTGAAAGATG ACAATTTCAT	8820
ATGGTCCAAA CTTGGCTTTA TTTCTTGGTG AGATATTATT CTGTTACTTC AATGACCTGT	8880
CTCCATTATT TATCTTGAGG CTCACCTCTT CCCTTTTGTT GACTGTTGTG CAATTTGTGG	8940
AAGGCCCTGG GTAGTCAGCC TTTATACTCT GTCTGTACAG GAAATAAAGT GCATGTCACC	9000
ATGCCAAAGT CAGGAGATGC CGGTGTGATT AGGGTCCACG GGATTTTGCT ACTGTTTTTA	9060 [°]
TTTCTATCGA TGAATTGCCT TAGGCAGAAA CATTAAGGGA CACCAGAATG GTGATGAAAG	9120
GCTTTTTATA ACAGAAGCTA AATGCAGTCC TTCATACTTC ATGGAATGCC CCTGTCCTAA	9180
AGTACCATTA ACCGATAGTG GAGTCAGAAC ATAAATGGCT CCCCAAAGGT ATCACCAAGA	9240
ACTITIGGCA AACAGATGCA AGAGGATTAT GAAGAATCGC AGCTIGGTCT GGTAATCTTC	9300
CTGTTGCAAA GAGAAGAGCT TTAGAAGACC CCCCTTGAGT CCCTGGCTGG CTTAACATAG	9360
CATGAACCCT CATGTGTTGG CCAACATTAA GGCTTTTTCT ATAAAAGTCT CCTCCTTCAT	9420
CAGTATACGC TCGAGTATGA AAAGCATCCT TTTAAACCTT GACTCTGTGT GGTCCAGAAA	9480
CAGCAGCATC CCTTGCTTAA GAGCTTAATG GAGATGCAGG AGTGCAGGCC TCTTCCCAGA	9540
CURCITITE CHEET /PHI F 26\	

CCGGCTGATG	TGCAGGTCAA	. AGTCTAAGCA	CTGCTGGATC	AACACAGAAG	TTATTCCGAA	9600
TGAGGATGAG	ATGGATACGA	GAGAACAGGA	AGTAGGAAGG	GATTTCTTTA	TCGTGAATTG	9660
CTACAGCAGO	CTAATGTCAC	CCCATACCCT	TCTGAAGAAC	TATGTCCCTG	TGGATGCCTT	9720
TGTCTCTAGA	GTTCTGAGCA	AAATGGTAGG	GTGTGCTTTG	CAAAATGTCA	TCATTGATGT	9780
TGAATTTCAA	AGTCTTTAAT	TAAGGGGCTG	AAATCTGTAT	ATTGAGATTT	GTAAATCATC	9840
TAAATTGTAG	AGTAATGTTT	GCACAGGCTG	CTTAAGGGAT	TGACATTAAA	GCTCGTTTTC	9900
TTAGTTAAGA	AATACAGTCA	TTTCCTCAAC	TCCTCAGTCA	TTAGCTCTCT	ACTAAGTACA	9960
GTGCTGACTT	TTTTAAAATT	AAAGTCTGTG	AATTCCAAAG	AAGTGTTTCA	CTATTTCCTC	10020
CATTATTATA	GCTACCTAGA	AGCTATGTTC	ATATATTGGA	TTAAAAACGT	AGCAATTACA	10080
AAGTTAATGT	GGCCATATAG	AAAAGGGAAA	AGAAACTCCG	CTTTCACTTT	AATATATATA	10140
TGTGTGTGTG	TATATCATAT	ATATACATGT	TGTGTGTGTA	TATATATATA	TATATATATA	10200
TATATATATA	TATATATATA	TATATATATA	TGTTGTGTTA	AGCAGTAAAC	TCAGGCCATG	10260
GACAGAGGGG	CAGACATTGT	ATCTCTAGGC	CTGACATTTT	TAATTTCTGG	TTGCAGGTTT	10320
TTATGTAGTT	TAACTTAAAC	CATGCACTGA	AGTTTTAAAT	GCTCGTAAGG	AATTAAGTTA	10380
CCATTGGCTC	TCTTACCAAA	TGCGTTTCTT	TTTTCTCTCC	ACCCTGATCA	AACTAGAAGC	10440
CGTGGAGGAA	CTTCCAGAGA	TGAGTGGGAA	AACGGCCCGG	CGCTTCTTCT	TCAATTTAAG	10500
TTCTGTCCCC	AGTGACGAGT	TTCTCACATC	TGCAGAACTC	CAGATCTTCC	GGGAACAGAT	10560
ACAGGAAGCT	TTGGGAAACA	GTAGTTTCCA	GCACCGAATT	AATATTTATG	AAATTATAAA	10620
GCCTGCAGCA	GCCAACTTGA	AATTTCCTGT	GACCAGACTA	TTGGACACCA	GGTTAGTGAA	10680
TCAGAACACA	AGTCAGTGGG	AGAGCTTCGA	CGTCACCCCA	GCTGTGATGC	GGTGGACCAC	10740
ACAGGGACAC	ACCAACCATG	GGTTTGTGGT	GGAAGTGGCC	CATTTAGAGG	AGAACCCAGG	10800
TGTCTCCAAG	AGACATGTGA	GGATTAGCAG	GTCTTTGCAC	CAAGATGAAC	ACAGCTGGTC	10860
ACAGATAAGG	CCATTGCTAG	TGACTTTTGG	ACATGATGGA	AAAGGACATC	CGCTCCACAA	10920
ACGAGAAAAG	CGTCAAGCCA	AACACAAACA	GCGGAAGCGC	CTCAAGTCCA	GCTGCAAGAG	10980
ACACCCTTTG	TATGTGGACT	TCAGTGATGT	GGGGTGGAAT	GACTGGATCG	TGGCACCTCC	11040
GGGCTATCAT	GCCTTTTACT	GCCATGGGGA	GTGTCCTTTT	CCCCTTGCTG	ACCACCTGAA	11100
CTCCACTAAC	CATGCCATAG	TGCAGACTCT	GGTGAACTCT	GTGAATTCCA	AAATCCCTAA	11160
GGCATGCTGT	GTCCCCACAG	AGCTCAGCGC	AATCTCCATG	TTGTACCTAG	ATGAAAATGA	11220
AAAGGTTGTG	CTAAAAAATT	ATCAGGACAT	GGTTGTGGAG	GGCTGCGGGT	GTCGTTAGCA	11280

WO 96/38590 PCT/US96/08197 -40-

	CAGCAAGAAT	AAATAAATAA	A ATATATATAT	TTTAGAAAC	A GAAAAAACC	TACTCCCCCT	11340
	GCCTCCCCC	CAAAAAAACC	AGCTGACACT	TTAATATTT	CAATGAAGAC	TTTATTTATG	11400
	GAATGGAATG	S AAAAAAACAC	AGCTATTTTG	TATATAAAA	TATATCGTAC	GAAAAGAAGT	11460
	TGGGAAAACA	AATATTTTAA	TCAGAGAATT	ATTCCTTAA	GATTTAAAAT	GTATTTAGTT	11520
	GTACATTTTA	TATGGGTTCA	ACTCCAGCAC	ATGAAGTATA	AGGTCAGAGT	TATTTTGTAT	11580
	TTATTTACTA	TAATAACCAC	: TTTTTAGGGA	AAAAAGATAG	TTAATTGTAT	TTATATGTAA	11640
	TCAGAAGAAA	TATCGGGTTT	GTATATAAAT	TTTCCAAAAA	AGGAAATTTG	TAGTTTGTTT	11700
	TTCAGTTGTG	TGTATTTAAG	ATGCAAAGTC	TACATGGAAG	GTGCTGAGCA	AAGTGCTTGC	11760
	ACCACTTGCT	GTCTGTTTCT	TGCAGCACTA	CTGTTAAAGT	TCACAAGTTC	AAGTCCAAAA	11820
	AAAAAAAAA	AGGATAATCT	ACTITGCTGA	CTTTCAAGAT	TATATTCTTC	AATTCTCAGG	11880
	AATGTTGCAG	AGTGGTTGTC	CAATCCGTGA	GAACTTTCAT	TCTTATTAGG	GGGATATTTG	11940
	GATAAGAACC	AGACATTACT	GATCTGATAG	AAAACGTCTC	GCCACCCTCC	CTGCAGCAAG	12000
	AACAAAGCAG	GACCAGTGGG	AATAATTACC	AAAACTGTGA	CTATGTCAGG	AAAGTGAGTG	12060
	AATGGCTCTT	GTTCTTTCTT	AAGCCTATAA	TCCTTCCAGG	GGGCTGATCT	GGCCAAAGTA	12120
	СТАААТАААА	TATAATATTT	CTTCTTTATT	AACATTGTAG	TCATATATGT	GTACAATTGA	12180
	TTATCTTGTG	GGCCCTCATA	AAGAAGCAGA	AATTGGCTTG	TATTTTGTGT	TTACCCTATC	12240
	AGCAATCTCT	CTATTCTCCA	AAGCACCCAA	TTTTCTACAT	TTGCCTGACA	CGCAGCAAAA	12300
	TTGAGCATAT	GTTTCCTGCC	TGCACCCTGT	CTCTGACCTG	TCAGCTTGCT	TITCTTTCCA	12360
	GGATATGTGT	TTGAACATAT	TTCTCCAAAT	GTTAAACCCA	TTTCAGATAA	TAAATATCAA	12420
	AATTCTGGCA	TTTTCATCCC	TATAAAAACC	CTAAACCCCG	TGAGAGCAAA	TGGTTTGTTT	12480
	GTGTTTGCAG	TGTCTACCTG	TGTTTGCATT	TTCATTTCTT	GGGTGAATGA	TGACAAGGTT	12540
	GGGGTGGGGA	CATGACTTAA	ATGGTTGGAG	AATTCTAAGC	AAACCCCAGT	TGGACCAAAG	12600
	GACTTACCAA	TGAGTTAGTA	GTTTTCATAA	GGGGGGGGG	GGAGTGAGAG	AAAGCCAATG	12660
	CCTAAATCAA	AGCAAAGTTT	GCAGAACCCA	AGGTAAAGTT	CCAGAGATGA	TATATCATAC	12720
	AACAGAGGCC	ATAGTGTAAA	AAAATTAAAG	AATGTCTGAT	CAGCGTCTCA	GCACATCTAC	12780
	CAATTGGCCA	GATGCTCAAA	CAGAGTGAAG	TCAGATGAGG	TTCTGGAAAG	TGAGTCCTCT	12840
•	ATGATGGCAG	AGCTTTGGTG	CTCAGGTTGG	AAGCAAAACC	TAGGGAGGGA	GGGCTTTGTG	12900
	GCTGTTTGCA	GATTGGGGAA	TCCAGTGCTA	GTTCCTGGCA	GGGTTTCAGG	TCAGTTTCCG	12960
	GAGTGTGTGT	CCTGTAGCCC	TCCGTCATGG	TTGAAGCCCA	GGTCTCACCT	CCTCTCCTGA	13020

CCCGTGCCTT AGAACTGACT TGGAAAGCGG TGTGCTTACA GCAAGACAGA CTGTTATAAT	13080
TARATTCTTC CCAAGGACCT CCGTGCAATG ACCCCAAGCA CACTTACCTT CGGAAACCTT	13140
AAGGTTCTGA AGATCTTGTT TTAAATGACT ACCCTGGTTA GCTTTTGATG TGTTCCTTAT	13200
CCCTTTAGTT GTTGCACAGG TAGAAACGAT TAGACCCAAC TATGGGTAGC CTTGTCCTCC	13260
TGGTCCTTCA GTCATTCTCT AATGTCTCTT GCTTGCCATG GGCACTGTAA CAAACTGCAA	13320
TCTTAACATC TTATAAAATG AATGAACCAC ATATTTACAT CTCCAAGTCC TCCAGATGGG	13380
AGTGCGATCA TTCCATAAGG ATCCCACCTT CTGGCAGGTC TATCCAGTAC ATATTTTATG	13440
CTTCATTGGT CTTGATTTTC TTGGCTAAAA TTACTTGTAG CACAGCAGGC CCCATGTGAC	13500
ATATAGGTAT ATACATACAT GTATGTGCAT ATAGTGTGTA CATGTTCTAA TTTATACATA	13560
GCTATGTGAA GATTATGTTA CATATGTAGA TGGTCGCACT TCTGATTTCC ATTTAGGTTC	13620
AGAGAGAGC GTCACAGTAA ATGGAGCTAT GTCATTGGTA TATCCCCGAG TGGTTCAGGT	13680
GTTCTCTCTA TTTTTTTAAG ATGGAGAACA CTCATCTGTA CTATCGAAAA CTGAGCCAAA	13740
TCACTTAGCA AATTTCTAGT CACTGCCTTG CTGTTAAGAT ACTGATTCAC TGGGTGCTGA	13800
CATGCTGAGC CCTGCCTACT TTTGCATGAA GGACAAGGAA GAGAGCTTGC AGTTAAGAAT	13860
GGTATATGTG GGGCTAGGGG GCGGCGTATA GACTGGCATA TATGTGAAGG AAGGTCACAA	13920
ACAGCCTGCA CTAATITCCC TTTTCTGGTT TTATGTCTTG GCAGGGGAAA GGACAGGTAG	13980
GGTGGGGTTG AGGGGGAGGG CACACACATC TACTTGGATA AATTGCATCT CCTCTTTCCT	14040
TCACCCCGCC ACCATATCTT AAAGCCTTAT GACATCCTCT AGGGCAGAAT TTTCTCACCA	14100
GCTCCCCGCC CTACCAACTT CAAAGTGAAC TTCTAACTAA CTTGAGGGGC CAAAGTTCTA	14160
AATAAAACTT GTTAGAGTTT AGCGGGCACC TCAGTCATCA GGAATGCCTC CAGGAAAGCA	14220
AAAAGCTTGA TGTGTGTACA GCCACGTGGT GGAGTCCTGC CACCCTATGA TTCCTGTCCC	14280
AGTGGTCGTG TGGGGCCTGA GATCCTGAAT TTCTAATGAG CTCCCAGTAC GCCCTGACTC	14340
ACTGTGCCAG AGGACTGCAG TTTGAGTAGC AAGGTTGTGT GACTGTCTTC GATCATGGCT	14400
ACAGAAGCTG GCTCAAGTAC AGCCCTTCGT GTGTAAAAGC CATGTGTAAA TGAGAAGAAA	14460
	14520
	14580
	14640
	14700
AGCAGGTGCA AGTCCTTAGA AATGTACTTT AAAAAACTTG AACACTTAAG TCAGTGTGCT	14760

GAGGTGCTCC TGTGTGATGT TAGGCCAAGC ACCTGAGTTA AAGGGATCTC TTTGAAGGCA 14820
GAGGGTAGAT GTCGTATGGT TGAAGCATTT GTTTATACTA AAATGATGCT TGACTTTTTT 14880
TCTAAGTTAT AAGACAGTAC ACTGTATAAG TTCATTGAAC CTAGAGGGTG GCATAGGACT 14940
CCAAATCTGG TATGGGAGGT TTGTTCTAAT GGAAGTTCGA ATCTTTTTTG CAGTTGGCTT 15000
GGAATAAAGT GCTTATGTGA ATGGGCTTAA GCTAGGGAAA AAAATGGGTT TCCCTCTGCA 15060
AAGAGGGTCA GCACAGAAAT AACTTCCTGG CTTTGCTTGC ATGAATGCCA CTTGTTAGCA 15120
GATGCCCTGT GGGGATCCGA ATTC 15144

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9299 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGCTA GGTAGACCAG GCTGGCCCAG AACACCTAGA GATCATCTGG CTGCCTCTGT 60 CTCTTGAGTT CTGGGGCTAA AGCATGCACC ACTCTACCTG GCTAGTTTGT ATCCATCTAA 120 ATTGGGGAAG AAAGAAGTAC AGCTGTCCCC AGAGATAACA GCTGGGTTTT CCCATCAAAC 180 ACCTAGAAAT CCATTITAGA TTCTAAATAG GGTTTGTCAG GTAGCTTAAT TAGAACTTTC 240 AGACTGGGTT TCACAGACTG GTTGGGCCAA AGGTCACTTT ATTGTCTGGG TTTCAGCAAA 300 ATGAGACAAT AGCTGTTATT CAAACAACAT TTGGGTAAGG AAGAAAAATG AACAAACACC 360 ACTCTCCCTC CCCCCGCTCC GTGCCTCCAA ATCCATTAAA GGCAAAGCTG CACCCCTAAG 420 GACAACGAAT CGCTGCTGTT TGTGAGTTTA AATATTAAGG AACACATTGT GTTAATGATT 480 GGAGCAGCAG TGATTGATGT AGTGGCATTG GTGAGCACTG AATCCGTCCT TCAACCTGCT 540 ATGGGAGCAC AGAGCCTGAT GCCCCAGGAG TAATGTAATA GAGTAATGTA ATGTAATGGA 600 GITTTAATIT TGTGTTGTTG TITTAAATAA TTAATTGTAA TITTGGCTGT GTTAGAAGCT 660 GTGGGTACGT TTCTCAGTCA TCTTTTCGGT CTGGTGTTAT TGCCATACCT TGATTAATCG 720 GAGATTAAAA GAGAAGGTGT ACTTAGAAAC GATTTCAAAT GAAAGAAGGT ATGTTTCCAA 780 TGTGACTTCA CTAAAGTGAC AGTGACGCAG GGAATCAATC GTCTTCTAAT AGAAAGGGCT 840 CATGGAGACC TGAGCTGAAT CTITCTGTTC TGGATGAGAG AGGTGGTACC CATTGGAATG 900 SUBSTITUTE SHEET (RULE 26).

AAAGGACTT	A GTCAGGGGCA	ATACAGTGTG	CTCCAAGGCT	GGGGATGGT	AGGATGTTGT	960
GCTCAGCCTC	TAACACTCCT	TCCAACCTGA	CATTCCTTCT	CACCCTTTG	CTCTGGCCAG	1020
TAGAATACAG	GAACTCGTTC	CTGTTTTTT	TTTTTTTAAAT	TCTGAAGGTC	TGTAAGTACA	1080
AAGGTCAGAT	GAGCGGCCCT	AGGTCAAGAC	TGCTTTGTGG	TGACAAGGG	GTATAACACC	1140
CACCCCAGAA	ACCAAGAACC	GGAAATTGCT	ATCTTCCAGC	CCTTTGAGAG	CTACCTGAAG	1200
CTCTGGGCTG	CTGGCCTCAC	CCCTTCCCTG	CAGCTTTCCC	TTTAGCAGAG	GCTGTGATTT	1260
CCTTCAGCGC	TTGGGCAAAT	ACTCTTAGCC	TGGCTCACCT	TCCCCATCCT	CGTTTGTAAA	1320
AACAAAGATG	AAGCTGATAG	TTCCTTCCCA	GCTCCATCAG	AGGCAGGGTG	TGAAATTAGC	1380
TCCTGTTTGG	GAAGGTTTAA	AAGCCGGCCA	CATTCCACCT	CCCAGCTAGC	ATGATTACCA	1440
ACTCTTGTTT	CTTACTGTTG	TTATGAAAGA	CTCAATTCCT	CATCTCCCTT	TCCCTTCTTT	1500
TAAAAAGGGG	CCAAAGGGCA	CTITGTTTTT	TTCTCTACAT	GGCCTAAAAG	GCACTGTGTT	1560
ACCTTCCTGG	AAGGTCCCAA	ACAAACAAAC	AAACAAACAA	AATAACCATC	TGGCAGTTAA	1620
GAAGGCTTCA	GAGATATAAA	TAGGATTTTC	TAATTGTCTT	ACAAGGCCTA	GGCTGTTTGC	1680
CTGCCAAGTG	CCTGCAAACT	ACCTCTGTGC	ACTTGAAATG	TTAGACCTGG	GGGATCGATG	1740
GAGGGCACCC	AGTTTAAGGG	GGGTTGGTGC	AATTCTCAAA	TGTCCACAAG	AAACATCTCA	1800
CAAAAACTTT	TTTGGGGGGA	AAGTCACCTC	CTAATAGTTG	AAGAGGTATC	TCCTTCGGGC	1860
ACACAGCCCT	GCTCACAGCC	TGTTTCAACG	TTTGGGAATC	CTTTAACAGT	TTACGGAAGG	1920
CCACCCTTTA	AACCAATCCA	ACAGCTCCCT	TCTCCATAAC	CTGATTTTAG	AGGTGTTTCA	1980
TTATCTCTAA	TTACTCGGGG	TAAATGGTGA	TTACTCAGTG	TTTTAATCAT	CAGTTTGGGC	2040
AGCAGTTATT	CTAAACTCAG	GGAAGCCCAG	ACTCCCATGG	GTATTTTTGG	AAGGTACAGA	2100
GACTAGTTGG	TGCATGCTTT	CTAGTACCTC	TTGCATGTGG	TCCCCAGGTG	AGCCCCGGCT	2160
GCTTCCCGAG	CTGGAGGCAT	CGGTCCCAGC	CAAGGTGGCA	ACTGAGGGCT	GGGGAGCTGT	2220
GCAATCTTCC	GGACCCGGCC	TTGCCAGGCG	AGGCGAGGCC	CCGTGGCTGG	ATGGGAGGAT	2280
GTGGGCGGG	CTCCCCATCC	CAGAAGGGGA	GGCGATTAAG	GGAGGAGGGA	AGAAGGGAGG	2340
GCCCCTGGG	GGGAAAGACT	GGGGAGGAAG	GGAAGAAAGA	GAGGGAGGGA	AAAGAGAAGG	2400
AAGGAGTAGA	TGTGAGAGGG	TGGTGCTGAG	GGTGGGAAGG	CAAGAGCGCG	AGGCCTGGCC	2460
CGGAAGCTAG	GTGAGTTCGG	CATCCGAGCT	GAGAGACCCC	AGCCTAAGAC	GCCTGCGCTG	2520
CAACCCAGCC	TGAGTATCTG	GTCTCCGTCC	CTGATGGGAT	TCTCGTCTAA	ACCGTCTTGG	2580
AGCCTGCAGC	GATCCAGTCT	CTGGCCCTCG	ACCAGGTTCA	TTGCAGCTTT	CTAGAGGTCC	2640

PCT/US96/08197 WO 96/38590

CCAGAAGCAG	CTGCTGGCGA	GCCCGCTTCT	GCAGGAACCA	ATGGTGAGCA	GGGCAACCTG	2700
GAGAGGGGCG	CTATTCTGAG	GATTCGAGGT	GCACCCGTAG	TAGAAGCTGG	GGATGGGGCT	2760
CAGGCTGTAA	CCGAGGCAAA	AGTTGGCCTA	TTCCTCCTTC	CTTCTCCAAC	AGTGTTGGAG	2820
GTGGGATGAT	GGAGGCTAAA	AGGCACCTCC	ATATATGTTA	CTGCGTCTAT	CAACCTACTT	2880
TAGGGAGGTG	CGGGCCAGGA	GAGGCGGGAA	GGAGAGAAGG	CCTTGGAAGA	GAGGTCATTG	2940
GGAAGAACTG	TGGGGTTTGG	TGGGTTTGCT	TCCACTTAGA	CTATAAGAGT	GGGAGAGGAG	3000
GGAGTCAACT	CTAAGTTTCA	ACACCAGTGG	GGGACTGAGG	ACTGCTTCAT	TAGGAGAGAG	3060
AACCTAGCCA	GAGCTAGCTT	TGCAAAAGAG	GCTGTAGTCC	TGCTTTGCTC	TAAAGCGCGA	3120
CCCGGGATAG	AGAGGCTTCC	TTGAGCGGGG	TGTCACCTAA	TCTTGTÇCCC	AACGCACCCC ·	3180
CTCCCAGCCC	CTGAGAGCTA	GCGAACTGTA	GGTACACAAC	TCGCTCCCAT	CTCCAGGAGC	3240
TATTTTCTTA	GACATGGGCA	CCCATGATTC	TGCCTTCTGG	TACTCTCCCC	TCCCTGGGAA	3300
AGGGGTGTAA	GGTTCCGACG	GAACCGTGGC	CAGGATGCCG	AAAGGCTACC	TGTGCGGGTC	3360
TTCTGCCATG	CTGTGTCTGT	GCGGACATGC	CAGCAGGGCT	AATGAGGAGC	TTGCGATACT	3420
CCAAAGGGTT	CGGGAATTGC	GGGGTCCTTA	CACGCAGTGG	AGTTGGGCCC	CTTTTACTCA	3480
GAAGGTTTCC	GCCACGGCTT	TGGTTGATAG	TTTTTTAGT	ATCCTGGTTT	ATGAACTGAA	3540
GGTTTTGTGA	GATGTTGAAT	CACTAGCAGG	GTCATATTTG	GCAAACCGAG	GCTACTATTA	3600
AATTTTGGTT	TTAGAAGAAG	ATTCTGGGGA	GAAAGTGAAG	GGTAACTGCC	TCCAGGAGCT	3660
GTATCAACCC	CATTAAGAAA	ATAAAAAATA	CCAGGAGATG	AAAATTTACT	TTGATCTGTA	3720
TTTTTTAATT	AAAAAAAATC	AGGGAAGAAA	GGAGTGATTA	GAAAGGGATC	CTGAGCGTCG	3780
GCGGTTCCAC	GGTGCCCTCG	CTCCGCGTGC	GCCAGTCGCT	AGCATATCGC	CATCTCTTTC	3840
CCCCTTAAAA	GCAAATAAAC	AAATCAACAA	TAAGCCCTTT	GCCCTTTCCA	GCGCTTTCCC	3900
AGTTATTCCC	AGCGGCGACG	CGTGTCGGGG	AATAGAGAAA	TCGTCTCAGA	AAGCTGCGCT	3960
GATGGTGGTG	AGAGCGGACT	GTCGCTCAGG	GGCGCCCGCG	GTCTCTGCAC	CCAGGGCAGC	4020
AGTGTGGGAT	GGCGCTGGGC	AGCCACCGCC	GCCAGGAAGG	ACGTGACTCT	CCATCCTTTA	4080
CACTTCTTTC	TCAAAGGTTT	CCCGAAAGTG	CCCCCCCCCT	CGAAAACTGG	GGCCGGTGCG	4140
GGGGGGGGA	GAGGTTAGGT	TGAAAACCAG	CTGGACACGT	CGAGTTCCTA	AGTGAGGCAA	4200
AGAGGCGGG	TGGAGCGGGC	TCTGGAGCGG	GGGAGTCCTG	GGACTCGGTC	CTCGGATGGA	4260
CCCCGTGCAA	AGACCTGTTG	GAACAAGAGT	TGCGCTTCCG	AGGTTAGAAC	AGGCCAGGCA	4320
TCTTAGGATA	GTCAGGTCAC	cccccccc	AACCCCACCC	GAGTTGTGTT	GGTGAATTTC	4380
		•				

TTGGAGGAAT	CTTAGCCGCG	ATTCTGTAGC	TGGTGCAAAA	GGAGGAAAGG	GGTGGGGGAA	4440
GGAAGTGGCT	GTGCGGGGGT	GGCGGTGGGG	GTGGAGGTGG	TTTAAAAAGT	AAGCCAAGCC	4500
AGAGGGAGAG	GTCGAGTGCA	GGCCGAAAGC	TGTTCTCGGG	TTTGTAGACG	CTTGGGATCG	4560
CGCTTGGGGT	CTCCTTTCGT	GCCGGGTAGG	AGTTGTAAAG	CCTTTGCAAC	TCTGAGATCG	4620
TAAAAAAAT	GTGATGCGCT	CTTTCTTTGG	CGACGCCTGT	TTTGGAATCT	GTCCGGAGTT	4680
AGAAGCTCAG	ACGTCCACCC	CCCACCCCCC	GCCCACCCCC	TCTGCCTTGA	ATGGCACCGC	4740
CGACCGGTTT	CTGAAGGATC	TGCTTGGCTG	GAGCGGACGC	TGAGGTTGGC	AGACACGGTG	4800
TGGGGACTCT	GGCGGGGCTA	CTAGACAGTA	CTTCAGAAGC	CGCTCCTTCT	AACTTTCCCA	4860
CACCGCTCAA	ACCCCGACAC	ccccccccc	GACTGAGTTG	GCGACGGGGT	CAGAGTCTTC	4920.
TGGCTGAAAG	TTAGATCCGC	TAGGGGTCGG	CTGCCTGTCG	CTAGAAGCAT	TATITGGCCT	4980
CTCGGAGACC	CGTGTGGAGG	AAGTGCTGĞA	GTGTGCGAGT	GTGTTTGCGT	GTGTGTGTGT	5040
GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGCGCGCGC	CCTTGGAGGG	TCCCTATGCG	5100
CTTTCCTTTT	CATGGAACGC	TGTCGTGAGG	CTTTGGTAAA	CTGTCTTTTC	GGTTCCTCTC	5160
TCGGCTGCAC	TTAAGCTTTG	TCGGCGCTGT	AAAGAGACGC	GTCTTCAAGT	GCACCCTGAT	5220
CCTCAGGCTT	CAGATAACCC	GTCCCCGAAC	CTGGCCAGAT	GCATTGCACT	GCGCGCCGCA	5280
GGTAGAGACG	TGCCCCACGT	CCCCTGCGTG	CAGCGACTAC	GACCGAGAGC	CGCGCCAGTG	5340
TGGTGTCCCG	CCGAGAGTTC	CTCAGAGCAG	GCGGGGACAA	CTCCCAGACG	GCTGGGGCTC	5400
CAGCTGCGGG	CGCGGAGGTT	GCCTCGCTC	GCAGGGGCTG	GACCCAGCCG	GGGTGGGAGG	5460
ATGGAGGAGG	GGCGGGCGGG	CTCTTCGGTG	AGTGGGGCGG	GGCCTCTGGG	TCCACGTGAC	5520
TCCTAGGGGC	TGGAAGAAA	ACAGAGCCTG	TCTGCTCCAG	AGTCTCATTA	TATCAAATAT	5580
CATTTTAGGA	GCCATTCCGT	AGTGCCATTC	GGAGCGACGC	ACTGCCGCAG	CTTCTCTGAG	5640
CCTTTCCAGC	AAGTTTGTTC	AAGATTGGCT	CCCAAGAATC	ATGGACTGTT	ATTATGCCTT	5700
GTTTTCTGTC	AGTGAGTAGA	CACCTCTTCT	TTCCCTTCTT	GGGATTTCAC	TCTGTCCTCC	5760
CATCCCTGAC	CACTGTCTGT	CCCTCCCGTC	GGACTTCCAT	TTCAGTGCCC	CGCGCCCTAC	5820
TCTCAGGCAG	CGCTATGGTT	CTCTTTCTGG	TCCCTGCAAG	GCCAGACACT	CGAAATGTAC	5880
GGGCTCCTTT	TARAGCGCTC	CCACTGTTTT	CTCTGATCCG	CTGCGTTGCA	AGAAAGAGGG	5940
AGCGCGAGGG	ACCAAATAGA	TGAAAGGTCC	TCAGGTTGGG	GCTGTCCCTT	GAAGGGCTAA	6000
CCACTCCCTT	ACCAGTCCCG	ATATATCCAC	TAGCCTGGGA	AGGCCAGTTC	CTTGCCTCAT	6060
AAAAAAAA	AAAAAAACAA	AAAACAAACA	GTCGTTTGGG	AACAAGACTC	TTTAGTGAGC	6120
		SUB	STITUTE SHEE	T (RULE 26)		

ATTITCAACG	CAGCGACCAC	AATGAAATAA	ATCACAAAGT	CACTGGGGCA	GCCCCTTGAC	6180
TCCTTTTCCC	AGTCACTGGA	CCTTGCTGCC	CGGTCCAAGC	CCTGCCGGCA	CAGCTCTGTT	6240
CTCCCCTCCT	CCTGTTCTTA	ACCAGCTGGA	AGTTGTGGAA	ATTGGGCTGG	AGGGCGGAGG	6300
AAGGCCGGG	GTGGGGGGT	GGAGAAGGTG	GGGGGGGG	AGGCTGAAGG	TCCGAAGTGA	6360
AGAGCGATGG	CATTTTAATT	CTCCCTCCGC	CTCCCCCCTT	TACCTCCTCA	ATGTTAACTG	6420
TTTATCCTTG	AAGAAGCCAC	GCTGAGATCA	TGGCTCAGAT	AGCCGTTGGG	ACAGGATGGA	6480
GGCTATCTTA	TTTGGGGTTA	TTTGAGTGTA	AACAAGTTAG	ACCAAGTAAT	TACAGGGCGA	6540
TTCTTACTTT	CGGGCCGTGC	ATGGCTGCAG	CTGGTGTGTG	TGTGTGTAGG	GTGTGAGGGA	6600
GAAAACACAA	ACTTGATCTT	TCGGACCTGT	TTTACATCTT	GACCGTCGGT	TGCTACCCCT	6660
ATATGCATAT	GCAGAGACAT	CTCTATTTCT	CGCTATTGAT	CGGTGTTTAT	TTATTCTTTA	6720
ACCTTCCACC	CCAACCCCCT	CCCCAGAGAC	ACCATGATTC	CTGGTAACCG	AATGCTGATG	6780
GTCGTTTTAT	TATGCCAAGT	CCTGCTAGGA	GGCGCGAGCC	ATGCTAGTTT	GATACCTGAG	6840
ACCGGGAAGA	AAAAAGTCGC	CGAGATTCAG	GGCCACGCGG	GAGGACGCCG	CTCAGGGCAG	6900
AGCCATGAGC	TCCTGCGGGA	CTTCGAGGCG	ACACTTCTAC	AGATGTTTGG	GCTGCGCCGC	6960
CGTCCGCAGC	CTAGCAAGAG	CGCCGTCATT	CCGGATTACA	TGAGGGATCT	TTACCGGCTC	702b
CAGTCTGGGG	AGGAGGAGGA	GGAAGAGCAG	AGCCAGGGAA	CCGGGCTTGA	GTACCCGGAG	7080
CGTCCCGCCA	GCCGAGCCAA	CACTGTGAGG	AGTTTCCATC	ACGAAGGTCA	GTTTCTGCTC	7140
TTAGTCCTGG	CGGTGTAGGG	TGGGGTAGAG	CACCGGGGCA	GAGGGTGGGG	GGTGGGCAGC	7200
TGGCAGGGCA	AGCTGAAGGG	GTTGTGGAAG	CCCCCGGGGA	AGAAGAGTTC	ATGTTACATC	7260
AAAGCTCCGA	GTCCTGGAGA	CTGTGGAACA	GGGCCTCTTA	CCTTCAACTT	TCCAGAGCTG	7320
CCTCTGAGGG	TACTTTCTGG	AGACCAAGTA	GTGGTGGTGA	TGGGGGAGGG	GGTTACTTTG	7380
GGAGAAGCGG	ACTGACACCA	CTCAGACTTC	TGCTACCTCC	CAGTGGGTGT	TCTTTAGCTA	7440
TACCAAAGTC	AGGGATTCTG	CCCGTTTTGT	TCCAAAGCAC	CTACTGAATT	TAATATTACA	7500
TCTGTGTGTT	TGTCAGGTTT	ATCAATAGGG	GCCTTGTAAT	ACGATCTGAA	TGTTTCCTAG	7560
CGGATGTTTC	TTTTCCAAAG	TAAATCTGAG	TTATTAATCC	TCCAGCATCA	TTACTGTGTT	7620
GGAATITATT	TTCCCTTCTG	TAACATGATC	AACAAGGCGT	GCTCTGTGTT	TCTAGGATCG	7680
CTGGGGAAAT	GTTTGGTAAC	ATACTCAAAA	GTGGAGAGGG	AGAGAGGGTG	GCCCCTCTTT	7740
TTCTTTACAA	CCACTTGTAA	AGAAAACTGT	ACACAAAGCC	AAGAGGGGGC	TTTAAAAGGG	7800
GAGTCCAAGG	GTGGTGGAGT	AAAAGAGTTG	ACACATGGAA	ATTATTAGGC	ATATAAAGGA	7860
		01150				

	GGTTGGGAGI	A TACTTTCTGT	CTTTGGTGTT	TGACAAATGT	GAGCTAAGTT	TTGCTGGTTT	7920
	GCTAGCTGCT	CCACAACTCT	GCTCCTTCAA	ATTAAAAGGC	ACAGTAATTT	CCTCCCCTTA	7980
ı	GGTTTCTACT	TATATAAGCAG	AATTCAACCA	ATTCTGCTAT	TTTTTGTTTT	TGTTTCTTGT	8040
. (TTTTGTTTTG	TITGGTTTTT	TTTTTTTT	TITTTTTTT	GTCTCAGAAA	AGCTCATGGG	8100
(CCTTTTCTT1	TCCCCTTTCA	ACTGTGCCTA	GAACATCTGG	AGAACATCCC	AGGGACCAGT	8160
(GAGAGCTCTG	CTTTTCGTTT	CCTCTTCAAC	CTCAGCAGCA	TCCCAGAAAA	TGAGGTGATC	8220
•	TCCTCGGCAG	AGCTCCGGCT	CTTTCGGGAG	CAGGTGGACC	AGGGCCCTGA	CTGGGAACAG	8280
(GGCTTCCACC	GTATAAACAT	TTATGAGGTT	ATGAAGCCCC	CAGCAGAAAT	GGTTCCTGGA	8340
(CACCTCATCA	CACGACTACT	GGACACCAGA	CTAGTCCATC	ACAATGTGAC	ACGGTGGGAA	8400
1	ACTTTCGATG	TGAGCCCTGC	AGTCCTTCGC	TGGACCCGGG	AAAAGCAACC	CAATTATGGG	8460
(CTGGCCATTG	AGGTGACTCA	CCTCCACCAG	ACACGGACCC	ACCAGGGCCA	GCATGTCAGA	8520
2	ATCAGCCGAT	CGTTACCTCA	AGGGAGTGGA	GATTGGGCCC	AACTCCGCCC	CCTCCTGGTC	8580
2	ACTTTTGGCC	ATGATGGCCG	GGGCCATACC	TTGACCCGCA	GGAGGGCCAA	ACGTAGTCCC	8640
3	AAGCATCACC	CACAGCGGTC	CAGGAAGAAG	AATAAGAACT	GCCGTCGCCA	TTCACTATAC	8700
G	STGGACTTCA	GTGACGTGGG	CTGGAATGAT	TGGATTGTGG	CCCCACCCGG	CTACCAGGCC	8760
7	TCTACTGCC	ATGGGGACTG	TCCCTTTCCA	CTGGCTGATC	ACCTCAACTC	AACCAACCAT	8820
G	CCATTGTGC	AGACCCTAGT	CAACTCTGTT	AATTCTAGTA	TCCCTAAGGC	CTGTTGTGTC	8880
C	CCACTGAAC	TGAGTGCCAT	TTCCATGTTG	TACCTGGATG	AGTATGACAA	GGTGGTGTTG	8940
A	AAAATTATC	AGGAGATGGT	GGTAGAGGGG	TGTGGATGCC	GCTGAGATCA	GACAGTCCGG	9000
A	LGGGCGGACA	CACACACACA	CACACACA	CACACACA	CACACACACA	CACGTTCCCA	9060
T	TCAACCACC	TACACATACC	ACACAAACTG	CTTCCCTATA	GCTGGACTTT	TATCTTAAAA	9120
A	AAAAAAAA	GAAAGAAAGA	AAGAAAGAAA	GAAAAAAAAT	Gaaagacaga	AAAGAAAAA	9180
A	AAACCCTAA	ACAACTCACC	TTGACCTTAT	TTATGACTTT	ACGTGCAAAT	GTTTTGACCA	9240
T	ATTGATCAT	ATTTTGACAA	TATTTTAT	AACTACATAT	TAAAAGAAAA	TAAAATGAG	9299
,	21 7377707147	AMION BOD CE	O TO MO. O				

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CGGATGCCGA ACTCACCTA				19
(2) INFORMATION FOR SEQ ID NO:9:		*	*	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				
(ii) MOLECULE TYPE: cDNA				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:				
CTACAAACCC GAGAACAG				18
(2) INFORMATION FOR SEQ ID NO:10:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			·	
(ii) MOLECULE TYPE: cDNA				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:				
CCCGGCACGA AAGGAGAC				18
(2) INFORMATION FOR SEQ ID NO:11:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			. *	٠
(ii) MOLECULE TYPE: cDNA	•		•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:				
GAAGGCAAGA GCGCGAGG		•		18

Claims

- 1. A system for identifying osteogenic agents comprising a recombinant host cell modified to contain an expression sequence comprising a promoter derived from a gene encoding a bone morphogenic protein operatively linked to a reporter gene encoding an assayable product.
- 2. The system of claim 1 wherein said bone morphogenic protein is selected from the group consisting of the BMP-2 and BMP-4 proteins.
- 3. The system of claim 1 or 2 wherein said reporter gene comprises a gene encoding the production of an assayable product selected from the group consisting of firefly luciferase, chloramphenical acetyl transferase, β -galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase and β -glucuronidase.
- 4. The system of claim 3 wherein said reporter gene comprises a gene encoding the production of firefly luciferase.
- 5. A method for identifying an osteogenic compound comprising the steps of:

 culturing the cells of any of claim 1-4 under conditions which permit expression of
 said assayable product from said reporter gene;

contacting said cells with at least one candidate compound suspected of possessing osteogenic activity;

measuring the amount of assayable product produced in the presence of said candidate compound and comparing said amount to the amount of assayable product produced in the absence of said candidate compound; and

identifying, as an osteogenic compound, a candidate compound that enhances the amount of said assayable product when present.

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCCGGTCTCA GGTATCA

17

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CAGGCCGAAA GCTGTTC

17

- 6. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the promoter region of a gene encoding bone morphogenetic protein selected from the group consisting of the BMP-2 and BMP-4 proteins.
- 7. The nucleic acid molecule of claim 6 which corresponds to a nucleotide sequence selected from the group consisting of positions -2372 to +316 of the BMP-4 gene depicted in Figure 1C (SEQ ID NO:3), a portion thereof which encodes a biologically active promoter, the BMP-2 sequence depicted in Figure 11, and a portion thereof which encodes a biologically active promoter.
- 8. A recombinant expression vector comprising the nucleotide sequence of claim 6 or 7.
- 9. The recombinant expression vector of claim 8 wherein said nucleotide sequence is operatively linked to a reporter gene encoding an assayable product.
- 10. The recombinant expression vector of claim 9 wherein said reporter gene comprises a gene encoding the production of an assayable product selected from the group consisting of firefly luciferase, chloramphenical acetyl transferase, β-galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase or β-glucuronidase.

FIGURE 1A

	5'FLANKING REGION	99949944 950	Hannenereschesenneren	GGAAGGAGTAGA	•
	- 65 +82				39
76762636766766767	SANGSCAAGAGCSCGAGGS	3' Primer 1 CIGGCCCGGAAGCTAGGT	EXON 1A GAGTTCGGCATCCGAGAGACACC		
SCCTGCGCTGCAACCCAGCCTGAGT	'illicatetecetecete			SEAGCETAAGAE	139
*			CETETTEGAGECTGCAGCGATCCAGT		239
ACCAGGTTCATTGCAGCTTTCTAGA	GGTCCCCAGAAGCAGCTGC	TGGCGAGCCCGCTTCTCC	INTRON (AGGAACCAATGgtgage1822 b	5,	•
+18 3' Primer			Admictarggtgage1822 b	P CCGagtGCA	2149
GGCCGAAAGCIGTTCTCGGGTTTGT	' Z 'AGACSTTTCCC+Teacoo	74445555 4 A B B B B B B B B B B B B B B B B B B	EXON 1B		•
		_	EXON 1B EEGGTAGGAGTTGTAAGCCTTTGCA 5' Primer 82	ACTCTGAGATCG	2249
TAMMATGTGATGCGCTCTTTC	+30 TTTGGCG4CGCCTGTTTTC	+52 =1476767666616***	+69 AAGETCAGAEGTCCACCCCCACCCC		
TOTOCCTTOAATGGCACCGCCGACC	GCTTTCTG14GG4TeTGCT	CCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AAGETEAGAEGTECAECCECAECCE INTRON: NEGETEGEAGACAEGGEGEGEAAA	CGCCCACCCCC	2349
		i dac i daxideauxegetg.	AGGTTGGCAGACACGGTGTGG771	bpatttt	3215
aggageeatteegtagtgeeatteg	GAGCGACGCACTGCCGCAG		EXON II GCAAGTITGTTCAAGATTGGCTCCCAA		
					3315
TGTTATTATGCCTTGTTTTCTGTCA	gtgagt1025 bpcc	1949ACACCATGATTCCT	EXON III	ITTATOCCIACT	4424
•	31	n . 1 Pr (Leav	4429 16
	1677764716676461666	or remarks			
L L G G A S H A S	SLIPETG	KKKVAE)SDJADDADDDDASTADDDDASTADA R R D D A K D D I	16CTCAGGGCAG	45 2 9 49
AGCCATGAGCTCCTGCGGGACTTCG	166661616776746464				49
SHELLROFE	ATLLOH	FGLRRR	TCCGCAGCCTAGCAAGAGCGCCGTCAT P	TCCGGATTACA	4629
TGAGGGATCTTTACCGSCTCCAGTC	[[[[]]]]				83
ROLYRLOS	GEEEEEE	9 \$ Q G T (GGCTTGAGTACCCGGAGCGTCCCGCC	recenter	.4729
	10704	w.) 71/			116
CACTGTGAGGAGTTTCCATCACGAAG	gtcagtttctg 985	pptgtgcctagAACI	LTCTGGLGLACATCCCAGGGACCAGTG	AGAGCTCTGCT	5801
		•	LEXIPGTSE	S S A	138.
FR FL FNLSS	I P E N E. V	ATCTCCTCGGCAGAGCTC	CCGCTCTTTCGGGACCAGGTGGACCA	GGGCCCTGACT	5901 172
GGGAACAGGGCTTCCACCGTATAAAC	ATTTATOSCOTTATOSACO				112
		, v c. v. A h	L. P. N. F. S. F. F.	D. T. R. L.	6001 205
AGTECATEACATGTGACACGGTGGG	MCLLICCT CALCUCCC	TGCAGTCCTTCGCTGCAC	CCGGGAAAGCAACCCAATTATGGGC	TGGECATTGAG	6101
		~ . r x a !	X E K. Q P N Y G. L	. A L E	7 7. 8
TO A L N Q. T R T	CCACCAGGGCCAGCATGTC	AGUAT CAGCCC LICCTTA	CCTCLAGGGAGTGGAGATTGGGGCCCA	ACTOCOCCOCC	6201
			h d e' 2 e' 0 A Y' 6'	LRPL	272
CONTRACTOR STATE OF S	R G'H'T'L T R	schedagegccaaaceta	واددسوساتددصصودووادد	AGELAGUA	6301
TAAGAACTGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				K. K. K N	305
TARGAACTGCCGTCGCCATTCACTAT	V D F S. D V	GGGTGGAATGATTGGAT G W N D W. [TGTGGCCCCACCCGGCTACCAGGCCT	TCTACTGCCAF	\$401 3385
GGGGACTGTCCCTTTTCCACTCCCTCA	*C155781167844884				
			F. A H Z A N. 2. 2. 1.	P. K. A C.	372
GTTGTGTCCCCACTGAACTGAGTGCC	ATTTCCATCTTCTACCTCC	751574764644		-	
			C. L. N. Y Q: E. N. Ven	V- E. G. C	· 405c
TGGATGCCGCTGAGATCAGACAGTCC	באבפכבבפובובובובובו	CACACACACACACA	ICAPACIONE DE COMPANION DE LA		
•	•				408
AGAMMAMACCETAMACACTCA					
37-5	LANKING REGIONS	TIACGTGCAMTGTTTT	CACCATATTCATCATATTTTGACAAA	IATATTTATAA-	_ 68011 6901
MCTACATATTAMAGARRAGERA	ag				•
					6925

	DR-5
-237	TOTAL
-225	CACCACTCTACCTGGCTAGTTTGTATCCATCTAAATTGGGGAAGAAAGA
-212	**************************************
-2097	SEEN NAGGTEN ETTTATTGTETSSGTTTENGENMTGNGLEMTAGETGTTATTELLICLICLITTGSGTAGGINGLILLITGE
-7016	****
-2010	THE TANK THE TELEVISION OF THE
-1922	TGTGAGTTTAMTATTAAGGUCACATTGTGTTAATGATTGGAGCAGCAGCAGTGATTGATGTAGTGGCATTGGTGAGCAC TGAATCLCGTG
-1834	CT TELACE TGETATGGGAGEACAGAGCETGATGCECCAGGAGTATGTATAGAGTATGTATGTATGGAGTTTTATTTTGTGTT
-1746	GITGITTILATIONAGITTAATITIGIGIT
-1656	
-1566	I WALAUT GALCOLATOLATOLATOLATA ANALALA
-1476	ACCCITEGATE ACCIETY CARACTER AND ACCEPTANCE OF THE ACCIDING THE ACCIDI
-1386	TACCCATTGGAATGAAAGGACTTAGTCAGGGGCAATACAGTGTGCTCAAGGCTGAGCTGAATCTTTCTGTTCTGGATGAGAGAGGTGG TCCTTCCAACCTGACATTCCTTCTCACCCTTTGTCTCTGGCCAGTAGAATACAGGAACTCGTTCGGATGTTGTGCTCAGCCTCTAACAC
	TCCTTCCAACCIGACATTCCTTCTCACCCTTTGTCTCTGGCCAGTAGAATACAGGAACTCGTTCCTGGTTGTGTGTG
-1306	GGTGTGTAAGTAGAA AGGTGA GATGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
	GGTGTGTALGTACAL AGGTCA GATGAGEGGECET AGGTCA AGACTGETTTGTGGTGACAGGGAGTATAL CACCCACCC CAGAL
-1222	ACCARGIACTOCIALITICATIVATARA CARATTERIA CARAT
-1132	ACCAMENACESCANATICETATETTECAGECETTTEAGAGETACETGAGETETGGGCTGCTGGGCTTCACCCCTTCCCTGCAGETTTCCC
-1042	TTTAGEAGAGGCTGTGATTTCCTTCAGCGCTTGGGCAAATACTCTTAGCCTGGGGTGCCTGCC
-952	MGCTGATAGTTCCTTCCCAGCTCCATCAGAGGCAGGGTGTGAAATTAGCTCCTGTTTGGGAAGGTTTAAAGCCGGCCACATTCCACCT CCCAGCTAGCATGATTACCAACTCTTGTTTCTTACTGTTGTTATGAA AGACTCA ATTCCTCATCTCCCTTCTTTTAAAG
	DR-14 Proximal
-365	GGGCCA A AGGGCA CTTTGTTTTTTCTCTACATGGCCTAAAGGCACTGTGTTACCTTCCTGGAAGGTCCCAACAACAACAACAA
-779	CHICHMANICATCTGGCAGTTAIGAIGGCTTCAGAGATATAATAGGATTTTCTAATTGTCTTACAGGCCTAGGCTGTTTGCCTG
-539	CONGTGCCTGCAACTACCTCTGTGCACTTGAAATGTTAGACCTGGGGGATCGATGGA GGGCACCC AGTTTAAGGGGGGTTGGTGCA
-601	ATTCTCAATGTCCACAACATCTCCCCAAAACCTTTTTTTT
-311	ATTETEMATETERICAGEMENTETERICAGEMENTETTTTTTGGGGGGGGAMGTERCETCCTAATAGTTGAGGGTATCTCCTTCGGGCA
	CACAGCCCTGCTCACAGCCTGTTTCACGTTTGGGAATCCTTTACAGTTTACGGAAG GCCACC CTTTAACCAATCCAACAGCTCCC
-423	TTCTCCATACCTGATTTTAGAGGTGTTTCATTATCTCTAATTACTCGGGGTAAATGGTGA TTACTCA GTGTTTTAATCATCAGTTTG
-335	GGCAGCAGTTATTCTAMCTCAGGGMGCCCAGACTCCCATGGGTATTTTTGGMAGGTACAG ACACTAGTTGGTGCATGCTT TCTAGT
	TCTAGT
-247	ACCTCTTGCATGTGGTCCCC1GGTG1GTCCCCCCCCCCCC
	ACCTETTGEATGTGGTCCCCAGGTGAGECEGGCTGCTTCCCGAGCTGGAGGCATCGGTCCCAGCCAA GGTGGC AACTGAGGGCTGGG
-159	CLOCATOTOCALICATICCOCALCOCALCOCALGOCOLOGOCOLOGOCOCCOCATOCALGOCALGOCALGOCALGOCALGOCALGOCALGOCALG
	CTCCCCATCCC
	•1'
-71°	ACTACEPERAGENERS
• •	AGNESSENEGECKTTANGSCNGENGENEANGGENEGEGECCGCTGGGGGGTUNGACTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	▲GC
•20	MENGLAGGIAGGIAGTAGATGT GLGAGGGTG GTGCTCAGGGTGGGAAGGCAAGGCAAGGCAAG
	L
	EXON' 1A.
►108 .	GCATCCGACCTGAGACACTCTCTAACACCCCCCCCCCCC
	SCATECIALGETGAGACACCECAGCETALGACGCETGCGCTGCACCCAGCETGAGTATCTGGTCTCCGTCCCTGATGGGATTCTCGTCTA.
288	ACCOCCUTTETECAGCACCATCCAGTCTCTCGCCCTCGACCAGGTTCATTCTCGTCTCCGTCCCTGATGGGATTCTCTCTATA. ACCOCCCCTTCTCCAGGACCAATGGtgag=INTRONI/IBIPTCCCCCT

Size Standard 10 ug: 10 ug: 10 ug: 10 ug: FRC Cell Mouse Embryo RNA RNA

FIGURE 2

1A-2-3 (453 bp)

FIGURE 3B

Filmer 2

lb·.2.3 (245 bp)

111.2.3 (495 hp)

A.

B.

FIGURE 4

```
-2736
 GAATTCATTTAAGCTGGATTCACTTCTAGGTCCCATGCGTTTACACTCATTTCCACCACAAGAGGGCAGCCATCTCTAAAAAAACAG
  TCGAGTGCTCTTCAGAGAAAATTGGGCCAAACTTGAGGAAAGTTCCTGGGA
                                                                                                                           TCTCTTGGCTXCXXXXXAXAGXAGC -2555
 CASCASSCACCACCAASSTSSACTAACTSTCCASAGCCATCTATTACCTCAGAGACTTSSATTACTAAGGATATCCTAGACCCAAACTC -2463
 tetettetaatatteekakaaeeeekkaeekkttattaktatektekkeatttektetttektetttaaaattaa
                                                                                                                                                                       -2375
                                                           AGGENACTTTCTCATTTANATOTCATATAGGTTCGGAGTTTCTTGCTTCCTTCCGC-2281
                                                 عدددي
 CACTTACACTTCTGAGTGGAGTGTTTTATTGCCGCCTTGTTTGGTGTCTCATGATTCAGAGTGACAACTTCTGCAACACGTTTTAAAAAG
 SAATACASTASCIGATCGCAAATTGCTGGATCTATCCCTTTCCTCTCTTTAAAATAGACAGCCTTTCTTCAAAAATACCT TAT
                         XDA -1996
                                                                                                   5
 TTGACCTCTACAGCTCTAGAAACAGCCAGGGCTTAATRTCCCTCTGTGGGTTGGTAATCCATTTAGGTGAACGAACGTAGTTATTTT
                                                                                                                                                                      -1921
                                           ASCTANNACACTERNALGETACCACCACTECTANANALATORITANACCCCCTGCTTCTCGGTCTTTCTCGGTCTTTGCTANCTG
                                                                                                                                                                      -1831
 SAAAGATCTSGTTCACAACSTAACSTTATCACTCTSGTCTTCTACAGGAATGCTCAGCCCATAGTTTTGGGGGTCCTSTGGGTAGCCAGTGG -1739
 TESTACTATAAGGCTCCTGAATGTAGGGAGAAATGGAAAGATTCAAAAAAGAATCCTGGCTCAGCAGCTTGG GGACATTT
                                                                                                                                                 -1553
                                                                                    Bea B1 -1511
GAATTGTCTTGTTACETGACTCTGGAGTAGGTGGGGAAGGATAAATATCACAAGTATCGAAGTGATCGCTTCTATAAAGAGA
                                                                                                                                                                     -1469
                                            E-cox 4
                                                                                              Ch Repeat
E-box 6 Bsa B1 -1232
ATTIATTISAATATAAAATGTATGAATATTTATAAAATG<u>TAATAAT</u>GCACT<mark>TAGATGTGTATCGCCTATTTCTCGACATTTTCTCCACCAT -1193</mark>
TOWNSHINGSTONGSTCHCATTTTTGCCANATGTGEAATRACTTGTAAGTTCTGTTCTTTTTTTTAATGTGCTCTTACCTAAAAACT ~1101
TCAAACTCAAGTTGATATTGGCCCCAATGAGGGAACTCAGAGGCCAGTGGACTCTGGATTTGCCCCTAGTCTCCCCGCAGTTGTGCCCC
                                                                                                                                   <u>E-box</u> 7
                                                                                                                                                                      -1015
   • BAH -1013
-925
                                                                                      · BAH -876
-837
-747
CCGCGCAGAGCCCTGCTCGCACTGCGCCGCGGGGTGCCGCTTCCCAACAGCCCGGGATTGGCAGCCCGGGACGTAGCCTCCCCAG
                                                                                                                                                                       -659
SCGACACCASGCACCCCCCCCCCCCCCCAAAAAACGCGACGCTCACCCGCCCTCCGACGACTCCCACGACACGCCTTCGAA
                                                                                                                                                                       -573
-481
-397
                   -307
-247
THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CO
                                                                                                                                                                       -130
-40
                                                 Z12268 -17 F-+1
                                                                                                                                     E-box 3
cycorecretesisecticycontrocaticoeticococcessisecticatesisecticarecretesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecticatesisecti
                                                                                                                                                                          47
139
                         Homeobox 10 and 12 are identical at 8/8 sites, in an inverted
                          Orientation.
 Candidate
                          Homeobox 3, 4, 5, 9 should bind MSX1 and/or MSX2 with
Homeo Box | relatively high affinity.
Binding
 Sites
```

FIGURE 6A

FIGURE 6B

FIGURE 7

FIGURE 8

				•	•
-	GAATTCATTT	AAGCTGGATT	CACTTCTAGG	TCCCATGCGT	TTACACTCAT
51	TTCCACCACA	AGAGGGCAGC	CATCTCTAAA	AAAACAACAG	TCGAGTGCTC
101	TTCAGAGAAA	TTGGGCCAAA	CTTGAGGAAA	GTTCCTGGGA	AAGGCTTTTT
151	AGCAGCACCT	CTCTGGGCTA	CAAAAAAGAA	GCCAGCAGGC	ACCACCAAGG
201	TGGAGTAACT	GTCCAGAGGC	ATCCATTTTA	CCTCAGAGAC	TIGATTACTA
251	AGGATATCCT	AAACGGCCAA	ACTCTCTCTT		%G%GGCCC%%
301	AGCTGCAAGG	CATTGTTGAT	GTCATCACCA	AAGGTTTCAT	TTTCATCTTT
35ì	TCTTGGGGTT	GGTCCAACAG	CTGTCAGCTT	TCTCTTCCTC	ATTAAAGGCA
401	ACTTTCTCAT	TTAAATCTCA	TATAGGTTCG	GAGTTTCTTG	CTTTGCTCCT
451	TCCGCCTCCG	CGATGACAGA	AGCAATGGTT	AACTTCTCAA	TTAAACTTGA
501	TAGGGAAGGA	AATGGCTTCA	GAGGCGATCA	GCCCTTTTGA	CTTACACACT
551	TACACGTCTG	AGTGGAGTGT	TTTATTGCCG	CCTTGTTTGG	TGTCTCATGA
601	TTCAGAGTGA	CAACTTCTGC	AACACGTTTT	AAAAAGGAAT	ACAGTAGCTG
651	ATCGCAAATT	GCTGGATCTA	TCCCTTCCTC	TCCTTTAATT	TCCCTTGTAG
701	ACAGCCTTCC	TTCAAAAATA	CCTTATTTGA	CCTCTACAGC	TCTAGAAACA
751	GCCAGGGCCT	AATTTCCCTC	TGTGGGTTGC	TAATCCGATT	TAGGTGAACG
801	AACCTAGAGT	TATTTTAGCT	AAAAGACTGA	AAAGCTAGCA	CACGTGGGTA
351	AAAAAATCAT	TAAAGCCCCT	GCTTCTGGTC	TTTCTCGGTC	TTTGCTTTGC
901	AAACTGGAAA	GATCTGGTTC	ACAACGTAAC	GTTATCACTC	TGGTCTTCTA
951	CAGGAATGCT	CAGCCCATAG	TTTTGGGGGT	CCTGTGGGTA	GCCAGTGGTG
1001	GTACTATAAG	GCTCCTGAAT	GTAGGGAGAA	ATGGAAAGAT	TCAAAAAGA
1051	ATCCTGGCTC	AGCAGCTTGG	GGACATTTCC	AGCTGAGGAA	GAAAACTGGC
1101	TTGGCCACAG	CCAGAGCCTT	CTGCTGGAGA	CCCAGTGGAG	AGAGAGGACC
1151	AGGCAGAAAA	TTCAAAGGTC	TCAAACCGGA	ATTGTCTTGT	TACCTGACTC
1201	TGGAGTAGGT	GGGTGTGGAA	GGGAAGATAA	ATATCACAAG	TATCGAAGTG
1251	ATCGCTTCTA	TAAAGAGAAT	TTCTATTAAC	TCTCATTGTC	CCTCACATGG
1301	ACACACACAC	ACACACACAC	ACACACACAC	ACACATCACT	AGAAGGGATG
1351	TCACTTTACA	AGTGTGTATC	TATGTTCAGA	AACCTGTACC	CGTATTTTTA
1401	TAATTTACAT	AAATAAATAC	ATATAAAATA	TATGCATCTT	TTTATTAGAT
1451	TCATTTATTT	GAATATAAAT	GTATGAATAT	TTATAAAATG	TAATAATGCA
1501	CTCAGATGTG	TATCGGCTAT	TTCTCGACAT	TTTCTTCTCA	CCATTCAAAA
1551				TGTCTAATAA	
1601					ACTCAAGTTG:
1651				AGTGGACTCT	
1701				GGTCCCGGGG	
1751				CGCGCGCTCG	
1301			= : :	ACCCCTGCGC:	
1851				CCGAGGGGGA	
1901				TCCTTTAAAA	
1951				TCCTCGCCCT	
2001				CTTCCCACAG	
				CITCCCACAG	
2051				·	GGACTGGCAC
2101		•	_	· 	
2151	-		·		TGGCCTCGGC
2201	_				CGGGAGTCCG.
2251					GGAGTGAGCG
2301					GCCACAAAAG
2351	-		. = -		TGGCAACCCG
2401	•	·			COCCEGGGCGCC
2451			- ·	•	GCGCCAGAGT
2501					. AGATCTTCGC
2551					CCCGAGCCAT
2601					CGGCGAGTCC
2651				•	CCGACGACAG
1701					CYCICCICCC
2751	CCTGCTCGAG	GCTGTGTGTC	. AGCACTIGGC	. TGGAGACTTC	TIGAACTTGC

2801	CGGGAGAGTG	ACTTGGGCTC	CCCACTTCGC	GCCGGTGTCC	TOSCOOGGOG
2851	GATCCAGTCT		AGCCCGATCA		TCAGCCCGCT
2901	GGCCCACCCC	AAGACACAGT	TCCCTACAGG	GAGAACACCC	GGAGAAGGAG
2951	GAGGAGGCGA	AGAAAAGCAA	CAGAAGCCCA	GTTGCTGCTC	CAGGTCCCTC
3001	GGACAGAGCT		GGAGACTCTC	TCAATGGACG	TGCCCCCTAG
3051	TGCTTCTTAG	ACGGACTGCG	GTCTCCTAAA	GGTAGAGGAC	
3101	GACCCGGGGT	TGGCTGGCGG	GTGACACCGC	TTCCCGCCCA	ACGCAGGGCG
3151	CCTGGGAGGA	CTGGTGGAGT	GGAGTGGACG	TAAACATACC	i i
3201	GCACGTGCAG	CGGATCCCTA	GAGGGGTTAG	GCATTCCAAA	CCCCAGATCC
3251	CTCTGCCTTG	CCCACTGGCC	TCCTTCCTCC	AGCCGGTTCC	TCCTCCCAA
3301	GTTTTCGATA	CATTATAAGG	GCTGTTTTGG	GCTTTCAAAA	AAAAAAATGC
3351	AGAAATCCAT	TTAAGAGTAT	GGCCAGTAGA	TTTTACTAGT	TCATTGCTGA
3401	CCAGTAAGTA	CTCCAAGCCT	TAGAGATCCT	TGGCTATCCT	TAAGAAGTAG
3451	GTCCATTTAG	GAAGATACTA	AAAGTTGGGG	TTCTCCATGT	GTGTTTACTG
3501	ACTATGCGAA	TGTGTCATAG	CTTACACGTG	CATTCATAAA	CACTATCTAT
3551	TTAGTTAATT	GCAGGAAGGT	GCATGGATTT	CTTGACTGCA	CAGGAGTCTT
3601	GGGGAAGGGG	GAACAGGGTT	GCCTGTGGGT	CAACCTTAAA	TAGTTAGGGC
3651	GAGGCCACAA	CTTGCAAGTG	GCGTCATTAG	CAGTAATCTT	GAGTTTAGCG
3701	CITACTGAAT	CTACAAGTTT	GATATGCTCA	ACTACCAGGA	AATTGTATAC
3751	AGCGCCTCTA	AGGAAGTCAC	TTGTGCATTT	GTGTCTGTTA	ATATGCACAT
3801	GAGGCTGCAC	TGTATAAGTT	TGTCAGGGAT	GCAGTGTCCG	ACCAACCTAT
3851	GGCTTCCCAG	CTTCCTGACA	CCCGCATTCC	CAGCTAGTGT	CACAAGAAAA
3901	GGGTACAGAC		TTTTTAATTG	GGAGTTAAGA	CCAAGCCCCA
3951	AGTAAGAAGT	CCGGCTGGGA	CTTGGGGGGTC	CTCCATCGGC	CAGCGAGCTC
4001	TATGGGAGCC	GAGGCGCGG	GGCGGCGGAG	GACTGGGCGG	GGAACGTGGG
4051	TGACTCACGT		CGCAGGTCGA	CCATGGTGGC	CGGGACCCGC
4101	TGTCTTCTAG		TCCCCAGGTC	CTCCTGGGCG	GCGCGGCCGG
4151	CCTCATTCCA	GAGCTGGGCC	GCAAGAAGTT	CGCCGCGGCA	TCCAGCCGAC
4201	CCTTGTCCCG	GCCTTCGGAA	GACGTCCTCA	. GCGAATTTGA	GTTGAGGCTG
4251	CTCAGCATGT	TIGGCCIGAA	GCAGAGACCC	ACCCCCAGCA	AGGACGTCGT
4301	GGTGCCCCCC				GCCAGCCAG .
4351	GAGCGCCCGC	CCCAGACCAC	CGGCTGGAGA	GGGCAGCCAG	CCGCGCCAAC
4401	ACCGTGCGCA	CGTTCCATCA	CGAAGGTGAG	CGGGCGGCGC	GIGGCGGGC
4451					CCTCCACTAG
4501	CACAGTAGAA	GGCCTTTCGG	CTTCTGTACC	GTCCCCTCTC	TGGCCCCAGC
4551	CAGGGATTCC	L CCGCTTGTGA	GTCCTCACC	l TTTCCTGGC	A AGTAGCCAAA
4601	AGACAGGCTC	CTCCCCCTAG	AACTGGAGG	- AAATCGAGT	G ATGGGGAAGA
4651					F AGATTTCCAC
4701					G CTCAGATCTG
4751	TGACTTGTGT	T TCACGCTGTA	GTTTTAAGC	I AGGCAGAGC	A AGGGCAGAAT
4801	GTTCGGAGAT	r AGTATTAGCA	AATCAAATC	C. YCCCCCCY	A AGCATTCAAA
4851	TTTACTGTT	L ATCTGGGCCT	AGTTTGAAA	G ATTTCTGAA	r ccctatctaa
4901	TCCCCGTGG	G AGATCAATTO	CACAATTCG	I CATATIGIT	T CCACAATGAC
4951	CTTCGATTC	r tigcitaaai	" CITAAATCT	C CAAGTGGAG	A. CAGCGCAACG
5001	CTTCAGATA	A AAGCCTTTCT	CCCACIGCC	I GCTACCTIC	C' TAGGCAAGGC
5051	AATGGGGTT	T TTAAACAAA	r atatgaata	I. CYLLICCCY	A GATAGAATAA
5101	TGTTGTTTA'	r trcagcigal	A ATTICCIGG	A TTAGAAAGG	C' TGTAGAGGCC
5151	TATTGAAGT	C TCTTGCACCO	I ATGITCIGA	A AGCAGTTAG	T AAAAAATCAT
5201	GACCTAGCT	C AATICIGIG	L GIGCCACIT	T CAATGTGCT	T TIGACITAAT
5251	GTATTCTCC	A. TAGAACATC	A. GTICCTICA	A: GTTCTAGAA	G AATICAGATT
5301	TAAAGTTTT	G CTTIGCCTT	E CIGAGGGGA	T AAATTTTAA	G: TAGAAATCTA
5351	GGCTCTGAA	A. TGATAGCCC	A ACCCCATCI	C CAGTAAGGG	A TGACTGACTC
5401	AAACCTTGA	G AYCICICCC	T GATAATAGG	A AAAGTCCAC	A AGCAGGTCAC
5451	AGAGCGCGA	G: ATGGATCTG	r crigheech	.G. CCAATGGTT	A TGAAGGGCAC
5501	TGGAAATCC	A TOTOTTICA	A ACTGGTGTC	T AGGGCTTTC	T GGGAGCAAAG
5551	CTTAGACCA	C ATTCTGCTC	C ICAAGGTII	G CCTACTGAA	A GCAGGGAGAT

5601	TCTGGGTGTT	CACCCCCATC	CTTC3 CCCC	A GGTG S mmcm	GGGCTTAGCT
	AATCTCTCCT			TTTTTATAGA	·
5651	CAAACCTACT	GGTTAATATT	GGTGTTTTTC		TCAAAACAAA
5701	GCAAGAAAAC	ATCCAGCACA		CCACTGCCTC	TGGAGATATA
5751		CATATATTCA	TGTATTTCCT	TATTAGTCTT	TTCTAACGTG
1035	AAAATTATTC	CTGACCTATA	AAAAATGAAG	GAGGTATTTT	ATCTTAACTA
5851	AGCTAAAAGA	ATCGCTTAAG	TCAATTGAAA	CTCAAAAATC	CAATTGAATG
5901	AAAGGTTCGT	CAATAAAAAT	CTACATTTTT	CTTACTCTTC	CTTTGGAAAT
5951	AGCTTGATAA	AAACACAGAC	AAAACAAAGT	CTGTGTGCTT	ATTTGAAAAC
6001	TTAGTGAGCT	TCAGTTCATA	AGCAAAAAAT	GTAGTTTAAA	
6051	CTGTTGTAAA	ACGTGATAGA	AGTTATTGAC	TTGTTTAAAA	TAAACTTGCA
6101	CTAACTTTAT	ACCTIGGIGC	AATTAGATGT	AATGTTTACT	GTAAATTTCA
6151	GGAAAACCAT	TTTTTTTTT	TGGTCATGAT	CAGGTACACA	TGGCATTTGG
6201	GAAGACTTTT	CACATTGTTG	AGTAACCTAG	AGTTTGTTTG	TTTGTTTGTT
6251	TGTTTTTAAG	CATTCTTGTG	CCACTAGAAA	AACCTTAATA	AGCCATGTGT
6301	TACTTGGTAG	ACTICITCCT	AAGTTCTAGA	AAGTGGCTTA	ATGCCACGAT
6351	GAGACAAAAC	ATACCATAGT	AGTCTTTCAA	CCAGTGGCAG	AGTCTTCCAG
6401	ACAAAATCTC	CTGTTGAACA	TTAAGACCAT	GGATTTTTAT	CCAGGAGAGC
6451	CCAGGCTTTG	CTGAATCACC	ACCCTCCAAC	CCCACTCCAA	GGTCACCGAA
6501	GGCCTCCCCA	ACTGGCTGCC	ATTGAGAAAC	TGTTTGAAAT	TGATTGACTC
6551	CATTGGCCCT	ACAGAGACTT	CTCCTTTAGT	GGCAGATCAT	ATACTGAAGG
6601	ATCCAAGCTT	GCTCTTCTGA	CTATGAAGAG	CACAGTOTTT	CTTTTTCTTT
6651	ATGGAATAAA	CAAACTATGT	GGCCCTGTGA	CTAAAGTTTT	CAAAGAGGGA
6701	GAGATCCTGT	TAGCAGAAGT		AGAAACTAGC	
6751	GATATTCCAA		TAAAGTATGG	TCCATCCTAA	
6301	GGGGTTGAAT	ACCGGCATCC	AGGAATACTT	CTCTCTACCT	
	CAGTGAGATT	ACGAAGACCC		AACAGTTGCT	
6851		CCACAGATGT	TCTCAGTATC		
6901	ATGTTCCTTG				
6951	TTTCAATCCC		TCCAATCTGC		
7001	CCTTGTGGCA			ATCCCTTTCT	
7051	GTTCCCTTGT		TTCAGGAGAA		
7101		CAAACCCTGC			
7151		ACCITAACIC			
72.01					AGAAAATCAC
7251					GATGCAGCTG
7301					GCTTTCTGTC
7351	·				AAATGAAACT
7401					T ATCTAAACAA
7451	GGTCTGGTGT	CCCATTTGGC	TGTGTCCCTT	CAATTTTCTC	TTCATTTAGC
7501	TCTGTCTGCA	TCTAAAGGGT	GCTGGGCAAT	" AAGTTTTGAT	" CTTCAGGGCA
7551.	AAACTCAATC	: TTCAGTTACC	ATGGTATCAG	. GTACCAATTO	CTAGTGATTT
7601	GTGCTATGGC	TTAGGATTTG	ATTTCTCTCC	TACATTAGG1	AATATCTTTC
7651	AATGGCTAGA	. ACTTGGGCAT	TGCAGTACAC	I TCAAGTTAAC	: AGTTCTGTGA
7701	CCTAAGGAAG	TCACATAACC	TCTCTGAATT	CICTACIGIT	TCATTCACAA
7751					L TAGAAAGGTG
7801					E AAGAAAGAAA
7851					GGAAGGAAGG
7901					AGAAAAGAAA
795L	= :				L AGGAAAAGAA
800L					TGACITITAL
					TTTGGGTTAT
805I					A. TCTGGGTTTT
8101					- CICCICITIC
8151					
3201					G AGGCTGACAC
8251					A AGTTCAGCTG
3301					C AGCTTCCAAA
8351	AAGTGTACA:	TACCIACIC	C GTATTTTCA	. AACCCCAGG	T TIGCTGIGAT

```
8401 AATTTGGTAG AAGCCTTTTC CTGTAATTTT CTTTATTTAA AAGATATTTT
8451 CATTTTCCAC CCTCAAGAAG AGGTTGAAAC TTGTCCCTTG AAGTAGAAGA
8501 GGTGTTGTGT GTCCTGACCC TGAGGAAGTT GGCCTTGTTG AGGTCTTCTG
8551 TAAATTCTTG AATTCTCTGT ATAATTTCAA TGAATAGTCA TGTTTGATAC
8601 CTTGGTATAA AGGATGGGAT AAGATCTTTC AAGGCTTAGG CTGATGGAAA
8651 CGCTGCTGAA AGACTAGAGA TTGCTCTTTC CTTTGGCATC TGTCTTGGGT
8701 AGTAATATTG TTCTCTGTGA AGGCCCACTT ATTCTGTCTT GAAAATTCTT
8751 CTTACCTCCA GAGTGATAGG CCACAGGGAG TACTGTTTCT ATGTTTGCAG
8801 TTGAAAGATG ACAATTTCAT ATGGTCCAAA CTTGGCTTTA TTTCTTGGTG
8851 AGATATTATT CTGTTACTTC AATGACCTGT CTCCATTATT TATCTTGAGG
8901 CTCACCTCTT CCCTTTTGTT GACTGTTGTG CAATTTGTGG AAGGCCCTGG
8951 GTAGTCAGCC TTTATACTCT GTCTGTACAG GAAATAAAGT GCATGTCACC
9001 ATGCCAAAGT CAGGAGATGC CGGTGTGATT AGGGTCCACG GGATTTTGCT
9051 ACTGTTTTTA TTTCTATCGA TGAATTGCCT TAGGCAGAAA CATTAAGGGA
9101 CACCAGAATG GTGATGAAAG GCTTTTTATA ACAGAAGCTA AATGCAGTCC
9151 TTCATACTTC ATGGAATGCC CCTGTCCTAA AGTACCATTA ACCGATAGTG
9201 GAGTCAGAAC ATAAATGGCT CCCCAAAGGT ATCACCAAGA ACTTTTGGCA
9251 AACAGATGCA AGAGGATTAT GAAGAATCGC AGCTTGGTCT GGTAATCTTC
9301 CTGTTGCAAA GAGAAGAGCT TTAGAAGACC CCCCTTGAGT CCCTGGCTGG
9351 CTTAACATAG CATGAACCCT CATGTGTTGG CCAACATTAA GGCTTTTTCT
9401 ATAAAAGTCT CCTCCTTCAT CAGTATACGC TCGAGTATGA AAAGCATCCT
9451 TTTAAACCTT GACTCTGTGT GGTCCAGAAA CAGCAGCATC CCTTGCTTAA
9501 GAGCTTAATG GAGATGCAGG AGTGCAGGCC TCTTCCCAGA CCGGCTGATG
9551 TGCAGGTCAA AGTCTAAGCA CTGCTGGATC AACACAGAAG TTATTCCGAA
9601 TGAGGATGAG ATGGATACGA GAGAACAGGA AGTAGGAAGG GATTTCTTTA
9651 TCGTGAATTG CTACAGCAGC CTAATGTCAC CCCATACCCT TCTGAAGAAC
9701 TATGTCCCTG TGGATGCCTT TGTCTCTAGA GTTCTGAGCA AAATGGTAGG
9751 GTGTGCTTTG CAAAATGTCA TCATTGATGT TGAATTTCAA AGTCTTTAAT
9801 TAAGGGGCTG AAATCTGTAT ATTGAGATTT GTAAATCATC TAAATTGTAG
9851 AGTAATGTTT GCACAGGCTG CTTAAGGGAT TGACATTAAA GCTCGTTTTC
9901 TTAGTTAAGA AATACAGTCA TTTCCTCAAC TCCTCAGTCA TTAGCTCTCT '
9951 ACTAAGTACA GTGCTGACTT TTTTAAAATT AAAGTCTGTG AATTCCAAAG
10001 AAGTGTTTCA CTATTTCCTC CATTATTATA GCTACCTAGA AGCTATGTTC
10051 ATATATTGGA TTAAAAACGT AGCAATTACA AAGTTAATGT GGCCATATAG
10101 AAAAGGGAAA AGAAACTCCG CTTTCACTTT AATATATAT TGTGTGTGTG
10151 TATATCATAT ATATACATGT TGTGTGTGTA TATATATATA TATATATATA
10201 TATATATAT TATATATATA TATATATATA TGTTGTGTTA AGCAGTAAAC
10251 TCAGGCCATG GACAGAGGGG CAGACATTGT ATCTCTAGGC CTGACATTTT
10301 TAATTTCTGG TTGCAGGTTT TTATGTAGTT TAACTTAAAC CATGCACTGA
10351 AGTTTTAAAT GCTCGTAAGG AATTAAGTTA CCATTGGCTC TCTTACCAAA
10401 TGCGTTTCTT TTTTCTCTCC ACCCTGATCA AACTAGAAGC CGTGGAGGAA
10451 CTTCCAGAGA TGAGTGGGAA AACGGCCCGG CGCTTCTTCT TCAATTTAAG
10501 TTCTGTCCCC AGTGACGAGT TTCTCACATC TGCAGAACTC CAGATCTTCC
1055L GGGAACAGAT ACAGGAAGCT TTGGGAAACA GTAGTTTCCA GCACCGAATT
10601 AATATTTATG AAATTATAAA GCCTGCAGCA GCCAACTTGA AATTTCCTGT
10651 GACCAGACTA TTGGACACCA GGTTAGTGAA TCAGAACACA AGTCAGTGGG
10701 AGAGCTTCGA CGTCACCCCA GCTGTGATGC GGTGGACCAC ACAGGGACAC
1075L ACCAACCATG. GGTTTGTGGT GGAAGTGGCC. CATTTAGAGG AGAACCCAGG
10801 TGTCTCCAAG AGACATGTGA GGATTAGCAG GTCTTTGCAC CAAGATGAAC
10851 ACAGCTGGTC ACAGATAAGG CCATTGCTAG TGACTTTTGG ACATGATGGA.
10901 AAAGGACATC CGCTCCACAA ACGAGAAAAG CGTCAAGCCA AACACAAACA
10951 GCGGAAGCGC CTCAAGTCCA GCTGCAAGAG ACACCCTTTG TATGTGGACT
11001 TCAGTGATGT GGGGTGGAAT GACTGGATCG TGGCACCTCC GGGCTATCAT
11051 GCCTTTTACT GCCATGGGGA GTGTCCTTTT CCCCTTGCTG ACCACCTGAA
11101 CTCCACTAAC CATGCCATAG TGCAGACTCT GGTGAACTCT GTGAATTCCA.
11151 AAATOOOTAA GGCATGOTGT GTOCCCACAG AGCTCAGCGC AATOTCCATG
```

11201	TIGIACCIAG	ATGAAAATGA	AAAGGTTGTG	CTAAAAAATT	ATCAGGACAT
11251	GGTTGTGGAG	GGCTGCGGGT	GTCGTTAGCA	CAGCAAGAAT	AATAAATAA
11301	TATATATATA	TTTAGAAACA	GAAAAAACCC	TACTCCCCT	GCCTCCCCC
11351	CYYYYYY	AGCTGACACT	TTAATATTTC	CAATGAAGAC	TTTATTTATG
11401	GAATGGAATG	AAAAAAACAC	AGCTATTTTG	AAAATATATT	TATATCGTAC
11451	GAAAAGAAGT	TGGGAAAACA	AATATTTTAA	TCAGAGAATT	ATTCCTTAAA
11501	GATTTAAAAT	GTATTTAGTT	GTACATTTTA	TATGGGTTCA	ACTCCAGCAC
11551	ATGAAGTATA		TATTTTGTAT	TTATTTACTA	TAATAACCAC
11601	TTTTTAGGGA	AAAAAGATAG	TTAATTGTAT	TTATATGTAA	TCAGAAGAAA
11651	TATCGGGTTT	GTATATAAAT	TTTCCAAAAA	AGGAAATTTG	TAGTTTGTTT
11701	TTCAGTTGTG	TGTATTTAAG	ATGCAAAGTC	TACATGGAAG	
•					GTGCTGAGCA
11751	AAGTGCTTGC	ACCACTTGCT	GTCTGTTTCT	TGCAGCACTA	CTGTTAAAGT
11601	TCACAAGTTC	AAGTCCAAAA	YYYYYYYYY	AGGATAATCT.	ACTITICITEA
11851	CTTTCAAGAT	TATATTCTTC	AATTCTCAGG	AATGTTGCAG	AGTGGTTGTC
11901	CAATCCGTGA	GAACTTTCAT	TCTTATTAGG	GGGATATTTG	GATAAGAACC
11951	AGACATTACT	GATCTGATAG	AAAACGTCTC	GCCACCCTCC	CTGCAGCAAG
12001	AACAAAGCAG	GACCAGTGGG	AATAATTACC	AAAACTGTGA	CTATGTCAGG
12051	AAAGTGAGTG	AATGGCTCTT	GTTCTTTCTT	AAGCCTATAA	TCCTTCCAGG
12101	GGGCTGATCT	GGCCAAAGTA	CTAAATAAAA	TATAATATTT	CTTCTTTATT
12151	AACATTGTAG	TCATATATGT	GTACAATTGA	TTATCTTGTG	GGCCCTCATA
12201	AAGAAGCAGA	AATTGGCTTG	TATTTTGTGT	TTACCCTATC	AGCAATCTCT
12251	CTATTCTCCA	AAGCACCCAA	TTTTCTACAT	TTGCCTGACA	CGCAGCAAAA
12301	TTGAGCATAT	GTTTCCTGCC	TGCACCCTGT	CTCTGACCTG	TCAGCTTCCT
12351	TTTCTTTCCA	GGATATGTGT	TTGAACATAT	TTCTCCAAAT	GTTAAACCCA
	TTTCAGATAA	TAAATATCAA		TTTTCATCCC	TATAAAAAACC
12401		TGAGAGCAAA			
12451	CTAAACCCCG				TGTCTACCTG
12501	TGTTTGCATT	TTCATTTCTT ATGGTTGGAG			GGGGTGGGGX
12551	CATGACTTAA				TGGACCAAAG
12601	GACTTACCAA	-		· - ·	
12651	AAAGCCAATG		AGCAAAGTTT		
12701	CCAGAGATGA				AAAATTAAAG
12751		·			GATGCTCAAA
12801					ATGATGGCAG
12851			·		GGGCTTTGTG
12901					GGGTTTCAGG
12951	•				TTGAAGCCCA
13001					TGGAAAGCGG
13051					CCAAGGACCT
13101				_	: AAGGTTCTGA
13151	AGATCTTGTT	' TTAAATGACI	" ACCCIGGITA	CCTTTTGATG	F TGTTCCTTAT
13201					TATGGGTAGC
13251	CTTGTCCTCC	TIGGTCCTTC:	GTCATTCTC	L AATGTCTCT!	T GCTTGCCATG
13301	GGCACTGTAA	L CAAACIGCAA	TCTTAACATO	T'TAAAAATC	F AATGAACCAC
13351	ATATTTACAT	T CTCCAAGTC	TCCAGATGG	F AGTGCGATC	Y TICCATAAGG
13401	ATCCCACCTI	T CTGGCAGGT	TATCCAGTAC	I ATATTTTATO	F. CITCATTGGT
13451	CITGATITI	TTGGCTAAA	L TTACTTGTAG	T CACAGCAGG	CCCATGTGAC
13501	ATATAGGTAT	Z ATACATACA	T GTATGTGCAT	L ATAGTGTGT	A CATGTTCTAA
13551					A TGGTCGCACT
13601					A. ATGGAGCTAT
13651					A TITITITAAG
13701					A TCACTTAGCA
13751					C TGGGTGCTGA
13801					A GAGAGCTTGC
					A GACTGGCATA
13851					- -
13901					C TITICIGGIT
13951		a GCAGGGGAA	n bonchool	G GGIGGGIT	e yeegegyee

15051 TCCCTCTGCA AAGAGGGTCA GCACAGAAAT AACTTCCTGG CTTTGCTTGC

15101 ATGAATGCCA CTTGTTAGCA GATGCCCTGT GGGGATCCGA ATTC

WO 96/38590

_ 1	GAATTCGCTA	GGTAGACCAG			SATCATCTGG
51	CTGCCTCTGT	CICTIGAGIT	CTGGGGCTAA		ACTCTACCTG
101	GCTAGTTTGT	- - • •	ATTGGGGAAG		AGCTGTCCCC
151	AGAGATAACA	GCTGGGTTTT	CCCATCAAAC		CCATTTTAGA .
201	TTCTAAATAG		GTAGCTTAAT		AGACTGGGTT
251	TCACAGACTG	GTTGGGCCAA	AGGTCACTTT	ATTGTCTGGG '	TTTCAGCAAA
301	ATGAGACAAT	AGCIGITATT	CAAACAACAT	TTGGGTAAGG .	AAGAAAATG 🧢
351	AACAAACACC	ACTCTCCCTC	CCCCCCCTCC	GTGCCTCCAA .	ATCCATTAAA
401	GGCAAAGCTG	CACCCCTAAG	GACAACGAAT	CGCTGCTGTT	TGTGAGTTTA
451	AATATTAAGG	AACACATTGT	GTTAATGATT	GGAGCAGCAG	TGATTGATGT
501	AGTGGCATTG	GTGAGCACTG	AATCCGTCCT	TCAACCTGCT	ATGGGAGCAC
551	AGAGCCTGAT	GCCCCAGGAG	TAATGTAATA	GAGTAATGTA	ATGTAATGGA
601	GTTTTAATTT	TGTGTTGTTG	TTTTAAATAA	TTAATTGTAA	TTTTGGCTGT
651	GTTAGAAGCT	GTGGGTACGT	TTCTCAGTCA	TCTTTTCGGT	CTGGTGTTAT
701	TGCCATACCT	TGATTAATCG	GAGATTAAAA	GAGAAGGTGT	ACTTAGAAAC
751	GATTTCAAAT	GAAAGAAGGT	ATGTTTCCAA	TGTGACTTCA	CTAAAGTGAC
801	AGTGACGCAG	GGAATCAATC	GTCTTCTAAT	AGAAAGGGCT	CATGGAGACC
851	TGAGCTGAAT	CTTTCTGTTC	TGGATGAGAG	AGGTGGTACC	CATTGGAATG
901	AAAGGACTTA	GTCAGGGGCA	ATACAGTGTG	CTCCAAGGCT	GGGGATGGTC
951	AGGATGTTGT	GCTCAGCCTC	TAACACTCCT	TCCAACCTGA	CATTCCTTCT
1.001	CACCCTTTGT	CTCTGGCCAG	TAGAATACAG	GAACTCGTTC	CTGTTTTTTT
1051	TTTTTTAAAT	TCTGAAGGTG	TGTAAGTACA	·	GAGCGGCCCT
1101	AGGTCAAGAC	TGCTTTGTGG	TGACAAGGGA	GTATAACACC	CACCCCAGAA
	ACCAAGAACC	GGAAATTGCT	ATCTTCCAGC	CCTTTGAGAG	
1151	CTCTGGGCTG	CTGGCCTCAC	CCCTTCCCTG	CAGCTTTCCC	
1201	GCTGTGATTT	CCTTCAGCGC	TTGGGCAAAT	ACTCTTAGCC	
1251	TCCCCATCCT	CGTTTGTAAA		AAGCTGATAG	TTCCTTCCCA
1301 1351	GCTCCATCAG		TGAAATTAGC	TCCTGTTTGG	GAAGGTTTAA
			CCCAGCTAGC		
1401	AAGCCGGCCA				•
1451	CTTACTGTTG				TCCCTTCTTT
1501	TAAAAAGGGG		CTTTGTTTTT		
1551				ACAAACAAAC	
1601		-		GAGATATAAA	
1651		• • • •		CTGCCAAGTG	· · · · · · · · · · · · · · · · · · ·
1701				GGGATCGATG	
1751				TGTCCACAAG.	
1801				CTAATAGTTG	
1851				TGTTTCAACG	
1901		== :	=	AACCAATCCA	· · · · —
1951				TTATCTCTAA	
2001		•		CAGTTTGGGC	
2051				GTATTTTTGG	
2101				TIGCATGTGG	
2151				CGGTCCCAGC	
2201				T GGACCCGGCC	
2251				L GIGGGCGGG	
2301				A YCYYGGGYGG	
2351				^l . Gaggaagga	
2401				⊋ GGTGGGAAGG	
2451				T CATCCGAGCI	
2501				TGAGTATCTG	
2551	CTGATGGGA!	T TCTCGTCTA	A ACCGICITG	G AGCCTGCAGO	I GAICCAGICI
2601	CTGGCCCTC	F, ACCAGGTTC	A TIGCAGCIT	T CTAGAGGTCC	CCAGAAGCAG
2651	CTGCTGGCG	A GCCCGCTTC	r gcaggaacc	a atggtgagci	L GGGCAACCTG
2701				T GCACCCGTAC	
2751				A AGTIGGCCIA	

2801 CTTCTCCAAC AGTGTTGGAG GTGGGATGAT GGAGGCTAAA AGGCACCTCC 2851 ATATATGTTA CTGCGTCTAT CAACCTACTT TAGGGAGGTG CGGGCCAGGA 2901 GAGGCGGGAA GGAGAGAAGG CCTTGGAAGA GAGGTCATTG GGAAGAACTG 2951 TGGGGTTTGG TGGGTTTGCT TCCACTTAGA CTATAAGAGT GGGAGAGGAG 3001 GGAGTCAACT CTAAGTTTCA ACACCAGTGG GGGACTGAGG ACTGCTTCAT 3051 TAGGAGAG AACCTAGCCA GAGCTAGCTT TGCAAAAGAG GCTGTAGTCC 3101 TGCTTTGCTC TAAAGCGCGA CCCGGGATAG AGAGGCTTCC TTGAGCGGGG 3151 TGTCACCTAA TCTTGTCCCC AACGCACCCC CTCCCAGCCC CTGAGAGCTA 3201 GCGAACTGTA GGTACACAAC TCGCTCCCAT CTCCAGGAGC TATTTTCTTA 3251 GACATGGGCA CCCATGATTC TGCCTTCTGG TACTCTCCCC TCCCTGGGAA 3301 AGGGGTGTAA GGTTCCGACG GAACCGTGGC CAGGATGCCG AAAGGCTACC 3351 TGTGCGGGTC TTCTGCCATG CTGTGTCTGT GCGGACATGC CAGCAGGGCT 3401 AATGAGGAGC TTGCGATACT CCAAAGGGTT CGGGAATTGC GGGGTCCTTA 3451 CACGCAGTGG AGTTGGGCCC CTTTTACTCA GAAGGTTTCC GCCACGGCTT 3501 TGGTTGATAG TTTTTTTAGT ATCCTGGTTT ATGAACTGAA GGTTTTGTGA 3551 GATGTTGAAT CACTAGCAGG GTCATATTTG GCAAACCGAG GCTACTATTA 3601 AATTITGGTT TTAGAAGAAG ATTCTGGGGA GAAAGTGAAG GGTAACTGCC 3651 TCCAGGAGCT GTATCAACCC CATTAAGAAA AAAAAAAATA CCAGGAGATG 3701 AAAATTTACT TTGATCTGTA TTTTTTAATT AAAAAAATC AGGGAAGAAA 3751 GGAGTGATTA GAAAGGGATC CTGAGCGTCG GCGGTTCCAC GGTGCCCTCG 3801 CTCCGCGTGC GCCAGTCGCT AGCATATCGC CATCTCTTTC CCCCTTAAAA 3851 GCAAATAAAC AAATCAACAA TAAGCCCTTT GCCCTTTCCA GCGCTTTCCC 3901 AGTTATTCCC AGCGGCGACG CGTGTCGGGG AATAGAGAAA TCGTCTCAGA 3951 AAGCTGCGCT GATGGTGGTG AGAGCGGACT GTCGCTCAGG GGCGCCCGCG 4001 GTCTCTGCAC CCAGGGCAGC AGTGTGGGAT GGCGCTGGGC AGCCACCGCC 4051 GCCAGGAAGG ACGTGACTCT CCATCCTTTA CACTTCTTTC TCAAAGGTTT 4101 CCCGAAAGTG CCCCCCGCCT CGAAAACTGG GGCCGGTGCG GGGGGGGGA 4151 GAGGTTAGGT TGAAAACCAG CTGGACACGT CGAGTTCCTA AGTGAGGCAA 4201 AGAGGCGGGG TGGAGCGGGC TCTGGAGCGG GGGAGTCCTG GGACTCGGTC 4251 CTCGGATGGA CCCCGTGCAA AGACCTGTTG GAACAAGAGT TGCGCTTCCG 4351 AACCCCACCC GAGTTGTGTT GGTGAATTTC TTGGAGGAAT CTTAGCCGCG 4401 ATTCTGTAGC TGGTGCAAAA GGAGGAAAGG GGTGGGGGAA GGAAGTGGCT 4501 AGAGGGAGAG GTCGAGTGCA GGCCGAAAGC TGTTCTCGGG TTTGTAGACG 4551 CTTGGGATCG CGCTTGGGGT CTCCTTTCGT GCCGGGTAGG AGTTGTAAAG 4601 CCTTTGCAAC TCTGAGATCG TAAAAAAAAT GTGATGCGCT CTTTCTTTGG 4651 CGACGCCTGT TTTGGAATCT GTCCGGAGTT AGAAGCTCAG ACGTCCACCC 4701 CCCACCCCC GCCCACCCCC TCTGCCTTGA ATGGCACCGC CGACCGGTTT 4751 CTGAAGGATC TGCTTGGCTG GAGCGGACGC TGAGGTTGGC AGACACGGTG 4801 TGGGGACTCT GGCGGGGCTA CTAGACAGTA CTTCAGAAGC CGCTCCTTCT 4851 AACTITCCCA CACCGCTCAA ACCCCGACAC CCCCGCGGGG GACTGAGTTG 4901 GCGACGGGGT CAGAGTCTTC TGGCTGAAAG TTAGATCCGC TAGGGGTCGG 4951 CTGCCTGTCG CTAGAAGCAT TATTTGGCCT CTCGGAGACC CGTGTGGAGG. 5001 AAGTGCTGGA GTGTGCGAGT GTGTTTGCGT GTGTGTGTGT 505L GTGTGTGT GTGTGTGT GTGCGCGCC CCTTGGAGGG TCCCTATGCG 5101 CTTTCCTTTT CATGGAACGC TGTCGTGAGG CTTTGGTAAA CTGTCTTTTC 5151 GGTTCCTCTC TCGGCTGCAC TTAAGCTTTG TCGGCGCTGT AAAGAGACGC 5201 GTCTTCAAGT GCACCCTGAT CCTCAGGCTT CAGATAACCC GTCCCCGAACT 5251 CTGGCCAGAT GCATTGCACT GCGCGCCGCA GGTAGAGACG: TGCCCCACGT 5301 CCCCTGCGTG, CAGCGACTAC GACCGAGAGC CGCGCCAGTG: TGGTGTCCCG 5351 CCGAGAGTTC CTCAGAGCAC GCGGGGACAA. CTCCCAGACG GCTGGGGCTC 5401 CAGCIGCGGG CGCGGAGGTI GGCCICGCIC GCAGGGGGCTG GACCCAGCCG 5451 GGGTGGGAGG ATGGAGGAGG GGCGGGCGGG CTCTTCGGTG AGTGGGGCGG 5501 GGCCTCTGGG TCCACGTGAC TCCTAGGGGC TGGAAGAAA ACAGAGCCTG 5551 TCTGCTCCAG AGTCTCATTA TATCAAATAT CATTTTAGGA GCCATTCCGT

5601 AGTGCCATTC GGAGCGACGC ACTGCCGCAG CTTCTCTGAG CCTTTCCAGC 5651 AAGTTTGTTC AAGATTGGCT CCCAAGAATC ATGGACTGTT ATTATGCCTT 5701 GTTTTCTGTC AGTGAGTAGA CACCTCTTCT TTCCCTTCTT GGGATTTCAC 5751 TCTGTCCTCC CATCCCTGAC CACTGTCTGT CCCTCCCGTC GGACTTCCAT 5801 TTCAGTGCCC CGCGCCCTAC TCTCAGGCAG CGCTATGGTT CTCTTTCTGG TCCCTGCAAG GCCAGACACT CGAAATGTAC GGGCTCCTTT TAAAGCGCTC 5851 5901 CCACTGTTTT CTCTGATCCG CTGCGTTGCA AGAAAGAGGG AGCGCGAGGG 5951 ACCAAATAGA TGAAAGGTCC TCAGGTTGGG GCTGTCCCTT GAAGGGCTAA 6001 CCACTCCCTT ACCAGTCCCG ATATATCCAC TAGCCTGGGA AGGCCAGTTC 6051 CTTGCCTCAT AAAAAAAAAA AAAAAAACAA AAAACAAACA GTCGTTTGGG 6101 AACAAGACTC TTTAGTGAGC ATTTTCAACG CAGCGACCAC AATGAAATAA 6151 ATCACAAAGT CACTGGGGCA GCCCCTTGAC TCCTTTTCCC AGTCACTGGA 6201 CCTTGCTGCC CGGTCCAAGC CCTGCCGGCA CAGCTCTGTT CTCCCCTCCT 6251 CCTGTTCTTA ACCAGCTGGA AGTTGTGGAA ATTGGGCTGG AGGGCGGAGG 6351 TCCGAAGTGA AGAGCGATGG CATTTTAATT CTCCCTCCNC CTCCCCCCTT 6401 TACCTCCTCA ATGTTAACTG TTTATCCTTG AAGAAGCCAC GCTGAGATCA 6451 TGGCTCAGAT AGCCGTTGGG ACAGGATGGA GGCTATCTTA TTTGGGGTTA 6501 TTTGAGTGTA AACAAGTTAG ACCAAGTAAT TACAGGGCGA TTCTTACTTT 6551 CGGGCCGTGC ATGGCTGCAG CTGGTGTGTG TGTGTGTAGG GTGTGAGGGA 6601 GAAAACACAA ACTTGATCTT TCGGACCTGT TTTACATCTT GACCGTCGGT TGCTACCCCT ATATGCATAT GCAGAGACAT CTCTATTTCT CGCTATTGAT 6651 6701 CGGTGTTTAT TTATTCTTTA ACCTTCCACC CCAACCCCCT CCCCAGAGAC 6751 ACCATGATTC CTGGTAACCG AATGCTGATG GTCGTTTTAT TATGCCAAGT 6801 CCTGCTAGGA GGCGCGAGCC ATGCTAGTTT GATACCTGAG ACCGGGAAGA 6851 AAAAAGTCGC CGAGATTCAG GGCCACGCGG GAGGACGCCG CTCAGGGCAG 6901 AGCCATGAGC TCCTGCGGGA CTTCGAGGCG ACACTTCTAC AGATGTTTGG 6951 GCTGCGCCGC CGTCCGCAGC CTAGCAAGAG CGCCGTCATT CCGGATTACA 7001 TGAGGGATCT TTACCGGCTC CAGTCTGGGG AGGAGGAGGA GGAAGAGCAG 7051 AGCCAGGGAA CCGGGCTTGA GTACCCGGAG CGTCCCGCCA GCCGAGCCAA 7101 CACTGTGAGG AGTTTCCATC ACGAAGGTCA GTTTCTGCTC TTAGTCCTGG-7151 CGGTGTAGGG TGGGGTAGAG CRCCGGGGCA GAGGGTGGGG GGTGGGCAGC 7201 TGGCAGGGCA AGCTGAAGGG GTTGTGGAAG CCCCCGGGGA AGAAGAGTTC 7251 ATGTTACATC AAAGCTCCGA GTCCTGGAGA CTGTGGAACA GGGCCTCTTA 7301 CCTTCAACTT TCCAGAGCTG CCTCTGAGGG TACTTTCTGG AGACCAAGTA 7351 GTGGTGGTGA TGGGGGAGGG GGTTACTTTG GGAGAAGCGG ACTGACACCA 7401 CTCAGACTTC TGCTACCTCC CAGTGGGTGT TCTTTAGCTA TACCAAAGTC 7451 AGGGATTCTG CCCGTTTTGT TCCAAAGCAC CTACTGAATT TAATATTACA 7501 TCTGTGTGTT TGTCAGGTTT ATCAATAGGG GCCTTGTAAT ACGATCTGAA 7551 TGTTTCCTAG CGGATGTTTC TTTTCCAAAG TAAATCTGAG TTATTAATCC 7601 TCCAGCATCA TTACTGTGTT GGAATTTATT TTCCCTTCTG TAACATGATC 7651 AACAAGGCGT GCTCTGTGTT TCTAGGATCG CTGGGGAAAT GTTTGGTAAC 7701 ATACTCAAAA GTGGAGAGGG AGAGAGGGTG GCCCCTCTTT TTCTTTACAA 7751 CCACTIGTAA AGAAAACTGT ACACAAAGCC AAGAGGGGGC TTTAAAAGGG 7801 GAGTCCAAGG GTGGTGGAGT AAAAGAGTTG ACACATGGAA ATTATTAGGC 7851 ATATAAGGA GGTTGGGAGA TACTTTCTGT CTTTGGTGTT TGACAAATGT 7901 GAGCTAAGTI TIGCTGGTTI GCTAGCTGCT CCACAACTCI GCTCCTTCAA 7951 ATTANAGGC ACAGTANTIT CCTCCCCTTA GGTTTCTACT ATATAAGCAG. 8001 AATTCAACCA ATTCTGCTAT TETTTGTTTE TGTTTCTTGT TTTTGTTTTG 8051 TETGGTTTTT TTTTTTTTTT TTTTTTTTTT GTCTCAGAAA AGCTCATGGG 8101 CCTTTCTTT TCCCCTTTCA ACTGTGCCTA GAACATCTGG: AGAACATCCC 8151 AGGGACCAGT GAGAGCTCTG CTTTTCGTTT CCTCTTCAAC CTCAGCAGCA 8201 TCCCAGAAAA TGAGGTGATC TCCTCGGCAG AGCTCCGGCT CTTTCGGGAG 8251 CAGGTGGACC AGGGCCCTGA CTGGGAACAG GGCTTCCACC GTATAAACAT 8301 TTATGAGGTT ATGAAGCCCC CAGCAGAAAT GGTTCCTGGA CACCTCATCA 8351. CACGACTACT GGACACCAGA CTAGTCCATC ACAATGTGAC ACGGTGGGAA

8401	ACTTTCGATG	TGAGCCCTGC	AGTCCTTCGC	TGGACCCGGG	2277CC77CC
8451	CAATTATGGG	CTGGCCATTG	AGGTGACTCA	CCTCCACCAG	ACACGCARCC
8501	ACCAGGGCCA	GCATGTCAGA	ATCAGCCGAT	CGTTACCTCA	ACCCOUNTCOL
8551	GATTGGGCCC	AACTCCGCCC	CCTCCTGGTC	ACTITIGGCC	AGGGAGIGGA
8601	GGGCCATACC	TTGACCCGCA	GGAGGGCCAA	ACGTAGTCCC	Algalggccg
8651	CACAGCGGTC		AATAAGAACT		
8701	GTGGACTTCA		CTGGAATGAT	GCCGTCGCCA	
8751	CTACCAGGCC		ATGGGGACTG	TGGATTGTGG	
8801	ACCTCAACTC		GCCATTGTGC	TCCCTTTCCA	
8851	AATTCTAGTA			AGACCCTAGT	
8901	-	_	CTGTTGTGTC	CCCACTGAAC	TGAGTGCCAT
- -	TTCCATGTTG			GGTGGTGTTG	AAAAATTATC
8951	AGGAGATGGT		TGTGGATGCC	GCTGAGATCA	GACAGTCCGG
9001	AGGGCGGACA	CACACACACA	CACACACACA	CACACACACA	CACACACACA
9051	CACGTTCCCA	TTCAACCACC	TACACATACC	ACACAAACTG	CTTCCCTATA
9101	GCTGGACTTT	TATCTTAAAA	AAAAAAAAA	GAAAGAAAGA	
9151	GAAAAAAAAT	GAAAGACAGA	AAAGAAAAA	AAAACCCTAA	ACAACTCACC
9201	TTGACCTTAT	TTATGACTTT	ACGTGCAAAT	GTTTTGACCA	
9251	ATTTTGACAA	ATATATTTAT	AACTACATAT	TAAAAGAAAA	
				TIMERIGINAN	TUVÚVICAG

bmp2p ATTCACTTCTAGGTCCCATGCGTTTACACI, AT GAATTCATTTAAACT TTCCACCACAAGAGGGCAGCCATCTCTAAAAAAACAACAGTCGAGTGCTC TTCAGAGAAATTGGGCCAAACTTGAGGAAAGTTCCTGGGAAAGGCTTTTT AGCAGCACCTCTCTGGGCTACAAAAAAGAAGCCAGCAGGCACCACCAAGG TGGAGTAACTGTCCAGAGGCATCCATTTTACCTCAGAGACTTGATTACTA AGGATATCCTAAACGGCCAAACTCTCTCTCTGGTGTTCCAGAGGCCCAA AGCTGCAAGGCATTGTTGATGTCATCACCAAAGGTTTCATTTTCATCTTT TCTTGGGGTTGGTCCAACAGCTGTCAGCTTTCTCTTCTTCATTAAAGGCA ACTITCTCATTTAAATCTCATATAGGTTCGGAGTTTCTTGCTTTGCTCCT TCCGCCTCCGCGATGACAGAAGCAATGGTTAACTTCTCAATTAAACTTGA TAGGGAAGGAAATGGCTTCAGAGGCGATCAGCCCTTTTGACTTACACACT TACACGTCTGAGTGGAGTGTTTTATTGCCGCCTTGTTTGGTGTCTCATGA TTCAGAGTGACAACTTCTGCAACACGTTTTAAAAAGGAATACAGTAGCTG ATCGCAAATTGCTGGATCTATCCCTTCCTCTCTTTAATTTCCCTTGTAG ACAGCCTTCCTTCAAAAATACCTTATTTGACCTCTACAGCTCTAGAAACA GCCAGGGCCTAATTTCCCTCTGTGGGTTGCTAATCCGATTTAGGTGAACG AACCTAGAGTTATTTTAGCTCCCCGACTGAAAAGCTAGCACACGTGGGTA AAAAAATCATTAAAGCCCCTGCTTCTGGTCTTTCTCGGTCTTTGCTTTGC AAACTGGAAAGATCTGGTTCACAACGTAACGTTATTCACTCTGGTCTTCT ACAGGAATGCTCAGCCCATAGTTTTGGGGGTCCTGTGGGTAGCCAGTGGT GGTACTATGAAGGCTCCTGAATGTAGGGAGAATGGAAAGATTTCAAAAA AGAATCCTGGCTCAGCAGCTTTGGGGACATTTCCAGCTGAGGAAGAAAAC GGACCAGGCAGAAAATTCAAAGGTCTCAAACCGGAATTGTCTTGTTACCT Gactetggagtaggtgggtgtggaagggaagataaatateacaagtateg AAGTGATCGCTTCTATAAAGAGAATTTCTATTAACTCTCATTGTCCCCTC GGGATGTCCACTTTACAAGTGTGTATCTATGTTCAGAAACCTGTACCCGT ATTTTTATAATTTACATAAATAAATACATATAAAATATATGCATCTTTTT ATTAGATTCATTTATTTGAATATAAATGTATGAATATTTATAAAATGTAA TAATGCACTCAGATGTGTATCGGCTATTTCTCGACATTTTCTCTCACCA TTCAAAACAGAAGCGTTTGCTCACATTTTTGCCAAAATGTCTAATAACTT CAAGTTGAATATTGGCCCAATGAGGGAACTCAGAGGCCAGTGGACTCTGG ATTTGCCCTAGTCTCCCGCAGCTGTGGGCGCGGATCCAGGTCCCGGGGGT CCGCCCGCTCCACCGCGCCCCCGTAGGGCGCGCCGTCCACACCCCT GCGCGCCGCCCGCCCGGGGGATCCCCGGCGCGCTGCGCCTCCGAG GGGGAGGTGTTCGGCCACGGCCGGGAGGGGAGCCGGCAGGCGCGTCTCCT TTAAAAGCCGCGAGCGCCGCCGCGCGCGCCGCCGGAG CGCTTCCCACAGCCCGCCCGGGATTGGCAGCCCCGGACGTAGCCTCCCCA GGCGACACCAGGCACCGGACGCCCTCCCGGCGAAAGACGCGAGGGTCACC CGCGGCTTCGAGGGACTGGCACGACACGGGTTGGAACTCCAGACTGTGCG CGCCTGGCGCTGTGGCCTCGGCTGTCCGGGAGAAGCTAGAGTCGCGGACC GACGCTAAGAACCGGGAGTCCGGAGCACAGTCTTACCCTCAATGCGGGGC GGACCCCAGGCTGCCACAAAAGACACTTGGCCCGAGGGCTCGGAGCGCGA GGTCACCCGGTTTGGCAACCCGAGACGCGCGGCTGGACTGTCTCGAGAAT GAGCCCCAGGACGCCGGGGCGCCGCGGCCGGGCTCTGCTGGCGAGC GCTGATGGGGGTGCGCCAGAGTCAGGCTGAGGGATGCAGAGTGGCGGCCC GCCCGCCACCCAGATCTTCGCTGCGCCCTTGCCCGGACACGGCATCGCCC ACGATGGCTGCCCCGAGCCATGGGTCGCGGCCCAGCTAACGCAGAACGTC CGTCCCTCGCCCGGCGAGTCCCGGAGCCAGCCCCGCGCCCCGCCAGCGCT GGTCCCTGAGGCCGACGACAGCAGCAGCCTTGCCTCCCTTCCC GTCCCGGCCCCGCACTCCTCCCCCTGCTCGAGGCTGTGTGTCAGCACTTG GCTGGAGACTTCTTGAACTTGCCGGGAGAGTGACTTGGGCTCCCCACTTC GCGCCGGTGTCCTCGCCCGGCGGATCC

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/08197

IPC(6)	ASSIFICATION OF SUBJECT MATTER :C12Q 1/68; C07H 21/04; C12N 15/09 :435/6, 172.3, 320.1; 536/23.1, 24.1					
	to International Patent Classification (IPC) or to bot	h national classification and IPC	•			
	LDS SEARCHED					
	socumentation searched (classification system follow	ed by classification symbols)				
U.S. :	435/6, 172.3, 320.1; 536/23.1, 24.1	•				
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields searched			
Electronic o	data base consulted during the international search (r	name of data base and, where practicable	, search terms used)			
APS, M search to Harris S	EDLINE, EMBASE, BIOSIS, CAPLUS, SCISEAR erms: bone morphogenic, osteogen?, DNA, nu	CH, WPIDS cleic, gene#, BMP-2A, BMP-2B, BM	P-2, BMP-4, Feng J,			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		·			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.			
A	US 5,166,058 A (WANG et al.) 24 1-2.	November 1992, columns	1-4, 6-10			
Y	WO 92/13091 A1 (ONCOGENE S 1991, pages 27-31.	SCIENCE, INC.) 06 August	1-4, 6-10			
×	GHOSH-CHOUDHURY et al. Expression of the BMP 2 gene during bone cell differentiation. Critical Reiews in Eukaryotic Gene Expression. 1994, Vol. 4, No. 2 & 3, pages 345-355, especially pages 349-353.					
x	KURIHARA et al. Murine bone mo	rphogenic protein 4 gene:	6, 7			
	Existence of multiple promoters	and exons for the 5'-				
Y	untranslated region. Biochem. Bio May 1993, Vol. 192, No. 3, pag page 1053.	ophys. Res. Commun. 14 es 1049-1056, especially	1-4, 8-10			
						
X Furth	er documents are listed in the continuation of Box C	Sec patent family annex.				
"A" doc	cial categories of cited documents; sument defining the general state of the art which is not considered so part of particular relevance	T hater document published after the inte date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the			
	lier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider	claimed invention cannot be			
cito	sument which may throw doubte on priority claim(s) or which is d to establish the publication date of another citation or other	when the document is taken alone	Ť			
0 doc	special reason (as specified) Y document of particular relevance; the chained investion cannot be considered to involve an investive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
	document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed					
Date of the	Date of the actual completion of the international search Date of mailing of the international search report					
09 SEPTE	MBER 1996	.1 1 OCT 1996				
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer SCOTT D. PRIEBE				
Washington Facsimile No	, D.C. 20231 o. (703) 305-3230	Telephone No. (703) 308-0196				

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/08197

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
Κ (FENG et al. Structure and sequence of mouse bone morphogenic protein-2 gene (BMP-2): Comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim. Biophys. Acta. 21 June 1994, Vol. 1218, pages 221-224.	6, 7
	HARRIS et al. Development of osteoblast cell lines from transgenic mice containing bone mporphogenic protein 2 (BMP2) promoter-T-antigen constructs: Analysis of BMP 2 retinoic acid and 1,25 (OH)2 vitamin D response regions in the BMP 2 promoter in the context of chromatin structure. J. Cell. Biochem. February 1994, Supplement O (18B), page 392.	1-4, 6-10
	HARRIS et al. Retinoid regulation of bone morphogenic protein 4 (BMP 4 or DVR 4): Analysis of the mouse BMP 4 gene promoter by transfection into primary cultures of fetal rat calvariae (FC) osteoblasts. J. Cell. Biochem. 1993, Supplement O (17 Part D), page 159.	1-3, 6-10 4
		· •
	·	
		•
į		
		·
	·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/08197

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. X Claims Nos.: 5 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
*
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*