ABSTRACT ALGEBRA - FIRST MIDTERM EXAM

(1) Let $\omega \in \mathbb{C}$ be a solution of the equation

$$\omega^2 + \omega + 1 = 0.$$

Consider the set $\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\}$. Show that the set $\mathbb{Z}[\omega]$ is closed under the ordinary addition and under the ordinary multiplication. Conclude that $\mathbb{Z}[\omega]$ is a ring which is a subring of the field of complex numbers.

- (2) Consider the set $\mathbb{Z}[2i] = \{a+2bi \mid a,b \in \mathbb{Z}\}$. Standard number addition and multiplication turn $\mathbb{Z}[2i]$ into a commutative integral domain with identity.
 - (a) Prove that 2 is irreducible in this ring.
 - (b) Prove that 2i is irreducible in this ring.
 - (c) Is it true that $2 \mid 2i$ in this ring?
 - (d) Are 2 and 2i associates in this ring?
 - (e) Can you provide two factorizations of 4 into irreducibles?
 - (f) Is 2 prime in this ring? Justify your claim.
 - (g) Is 2i prime in this ring? Justify your claim.
 - (h) Is $\mathbb{Z}[2i]$ a Euclidean domain? Is it a PID?
- (3) Let I be an ideal of a commutative ring R with identity. Define the following set:

$$rad(I) = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N}\}.$$

Note: \mathbb{N} is the set of positive integers only. In particular, $0 \notin \mathbb{N}$.

- (a) Suppose temporarily that $R = \mathbb{Z}$. Find rad(I) for the following choices of I:
 - (i) I = (9);
 - (ii) I = (43);
 - (iii) I = (72).
- (b) Going back to the general situation, show rad(I) is an ideal. Hint: Look at your very first homework assignment.