Misura della velocità all'aria

$$\mathbf{v} = f[(\mathbf{p_t} - \mathbf{p_s}), \mathbf{k_i}]$$
 o $\mathbf{v} = f[\Delta \mathbf{p}, \mathbf{k_i}]$ o $\mathbf{v} = f[\mathbf{p_d}, \mathbf{k_i}]$

Essendo $\mathbf{p_s}$, ρ , $\mathbf{T_s}$, \mathbf{v} , \mathbf{c} le grandezze della corrente libera e supponendo che nel processo d'arresto l'aria sia incomprimibile si ha:

$$\mathbf{p_t} - \mathbf{p_s} = \frac{1}{2} \rho \mathbf{v}^2 \implies \mathbf{v}^2 = 2 \frac{\mathbf{p_d}}{\rho} \implies \mathbf{v} = \sqrt{2 \frac{\mathbf{p_d}}{\rho}} \implies \mathbf{v} = \mathbf{f} [\mathbf{p_d}, \rho]$$

Sostituendo a
$$\rho$$
 il valore di riferimento ρ_0 si ha: $\mathbf{v}_{\mathsf{EQU}} = \sqrt{2\frac{\mathbf{p}_\mathsf{d}}{\rho_0}} \implies \mathbf{v}_{\mathsf{EQU}} = \mathbf{f}[\mathbf{p}_\mathsf{d}, \, \rho_0] \Rightarrow \, \mathbf{v}_{\mathsf{EQU}} = \mathbf{v}\sqrt{\sigma}$

Se supponiamo invece che tra le condizioni di corrente libera e la sezione d'arresto

il fluido evolva secondo una trasformazione <u>adiabatica</u>: $T_t = T_s + \frac{1}{2} \frac{v^2}{c_p}$

e isoentropica:
$$\mathbf{p_t} = \mathbf{p_s} \left(\frac{\mathbf{T_t}}{\mathbf{T_s}} \right)^{\frac{\gamma}{\gamma}-1}$$
 si ha: $\frac{\mathbf{p_t}}{\mathbf{p_s}} = \left[\left(\mathbf{T_s} + \frac{1}{2} \frac{\mathbf{v}^2}{\mathbf{c_p}} \right) \frac{1}{\mathbf{T_s}} \right]^{\frac{\gamma}{\gamma}-1} = \left(1 + \frac{\gamma - 1}{2} \mathbf{M}^2 \right)^{\frac{\gamma}{\gamma}-1}$

$$\mathbf{p_t} - \mathbf{p_s} = \mathbf{p_s} \left[\left(1 + \frac{1}{2} \frac{\mathbf{v}^2}{\mathbf{c_p} \mathbf{T_s}} \right)^{\frac{\gamma}{\gamma} - 1} - 1 \right] \qquad \Rightarrow \qquad \mathbf{v}^2 = 2\mathbf{c_p} \mathbf{T_s} \left[\left(1 + \frac{\mathbf{p_t} - \mathbf{p_s}}{\mathbf{p_s}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

da
$$\mathbf{R} = \mathbf{c}_{p} - \mathbf{c}_{v}$$
 \Rightarrow $\frac{\mathbf{p}_{s}}{\rho \mathbf{T}_{s}} = \mathbf{c}_{p} - \frac{\mathbf{c}_{p}}{\gamma}$ \Rightarrow $\mathbf{c}_{p} \mathbf{T}_{s} \left(1 - \frac{1}{\gamma} \right) = \frac{\mathbf{p}_{s}}{\rho}$ \Rightarrow $\mathbf{c}_{p} \mathbf{T}_{s} = \frac{\gamma}{\gamma - 1} \frac{\mathbf{p}_{s}}{\rho}$

$$\mathbf{v}^{2} = 2 \frac{\gamma}{\gamma - 1} \frac{\mathbf{p}_{s}}{\rho} \left[\left(1 + \frac{\mathbf{p}_{d}}{\mathbf{p}_{s}} \right)^{\gamma - 1/\gamma} - 1 \right] \Rightarrow \mathbf{v} = \mathbf{f} \left[\mathbf{p}_{d}, \ \mathbf{p}_{s}, \rho \right]$$

sostituendo a $\mathbf{p_s}$ e ρ i valori $\mathbf{p_{s_0}}$ e ρ_0 , si ottiene:

$$\mathbf{v}_{\mathsf{CAL}}^{2} = 2 \frac{\gamma}{\gamma - 1} \frac{\mathbf{p}_{\mathsf{s}_{0}}}{\rho_{0}} \left[\left(1 + \frac{\mathbf{p}_{\mathsf{d}}}{\mathbf{p}_{\mathsf{s}_{0}}} \right)^{\gamma - 1/\gamma} - 1 \right] \Rightarrow \mathbf{v}_{\mathsf{CAL}} = \mathbf{f} \left[\mathbf{p}_{\mathsf{d}}, \, \mathbf{p}_{\mathsf{s}_{0}}, \, \rho_{0} \right]$$

mentre

$$\mathbf{v}_{\text{IND}} = \mathbf{f} \left[\mathbf{p}_{d}, \ \mathbf{p}_{s_0}, \ \rho_{0}, \ \mathbf{k}_{i} \right]$$
 essendo \mathbf{k}_{i} i parametri di impianto

Definizioni

- Indicated airspeed (IAS) VIND
 - Value read on the airspeed indicator
- Calibrated airspeed (CAS) v_{CAL}

Velocity that provides the same impact pressure when flying at ISA SL

- Equivalent airspeed (EAS) v_{EQU}
 - Velocity that provides the same dynamic pressure when flying at ISA SL
- ■True airspeed (TAS) v_{TAS}

Velocity of the A/C with respect to the air mass

Impact pressure $q_c = p_t - p_s$

For incompressible flow $q_c = p_t - p_s = dynamic pressure p_d = \frac{1}{2} p v^2$

Riduzione delle velocità:

$${f v}_{\sf IND} \, \Rightarrow \, {f v}_{\sf CAL} \, \Rightarrow \, {f v}_{\sf EQU} \, \Rightarrow \, {f v}$$

La velocita vera ha solo interesse per i problemi di navigazione:

Errori di impianto

Configurazione

Disallineamento del Pitot

Errori di impianto

Cessna FR 172J

TAVOLA CORREZIONI VELOCITA' (MPH)												
	IAS	50	60	70	80	90	100	110	120	130	140	150
FLAPS UP	CAS	57	61	68	77	86	96	106	116	127	. 138	150
FLAPS DOWN	CAS	55	63	72	82	92	102			•		.

$$\mathbf{v}_{\mathsf{EQU}}^2 = \mathbf{v}^2 \frac{\rho}{\rho_0} \implies \mathbf{v}_{\mathsf{EQU}}^2 = 2 \frac{\gamma}{\gamma - 1} \frac{\mathbf{p}_{\mathsf{s}}}{\rho_0} \left[\left(1 + \frac{\mathbf{p}_{\mathsf{d}}}{\mathbf{p}_{\mathsf{s}}} \right)^{\gamma - 1/\gamma} - 1 \right]$$

da cui:

$$\mathbf{v_{EQU}} = \mathbf{v_{CAL}} \sqrt{\delta} \sqrt{\frac{\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_s}}\right)^{\gamma - 1/\gamma} - 1}{\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_s}}\right)^{\gamma - 1/\gamma}}} \text{ e quindi } \mathbf{v_{EQU}} \le \mathbf{v_{CAL}} \implies \text{EAS=CAS} + \Delta \mathbf{v_c}$$

ricordando che:

$$\frac{\mathbf{p}_{t}}{\mathbf{p}_{s}} = \left(1 + \frac{\gamma - 1}{2}\mathbf{M}^{2}\right)^{\gamma/\gamma - 1}$$
 si arriva a scrivere:

$$\mathbf{v_{EQU}} - \mathbf{v_{CAL}} = \Delta \mathbf{v_{c}} = \mathbf{v_{CAL}} \left\{ \sqrt{\delta} \frac{\left(\frac{\gamma - 1}{2} \mathbf{M}^{2}\right)}{\left\{ \left[\delta \left(1 + \frac{\gamma - 1}{2} \mathbf{M}^{2}\right)^{\frac{\gamma}{\gamma - 1}} + \left(1 - \delta\right)\right]^{\frac{\gamma - 1}{\gamma}} - 1 \right\}} - 1 \right\}$$

supponendo TAS =
$$\frac{\text{CAS}}{\sqrt{\sigma}}$$
 si ha: $\Delta \mathbf{v_c} = \mathbf{v_{CAL}} \left\{ \sqrt{\delta} \frac{0.2 \frac{1}{\sigma} \left(\frac{\mathbf{v_{CAL}}}{c} \right)^2}{\left\{ \left[\delta \left(1 + 0.2 \frac{1}{\sigma} \left(\frac{\mathbf{v_{CAL}}}{c} \right)^2 \right)^{3.5} + \left(1 - \delta \right) \right]^{0.2857} - 1 \right\}} - 1 \right\}$

$$cio\grave{e} \quad \Delta \mathbf{v_c} = \mathbf{f} \left(\mathbf{v_{CAL}}, \mathbf{H_p} \right)$$

Seconda formula di calibratura

$$\mathbf{v}^2 = 2\mathbf{c_pT_s} \left[\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_s}} \right)^{\frac{\gamma - 1/\gamma}{\gamma}} - 1 \right] = \frac{2\mathbf{c}^2}{\gamma - 1} \left[\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_s}} \right)^{\frac{\gamma - 1/\gamma}{\gamma}} - 1 \right]$$

quindi

$$\mathbf{v_{CAL}^2} = \frac{2\mathbf{c_0}^2}{\gamma - 1} \left[\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_{s_0}}} \right)^{\gamma - \frac{1}{\gamma}} - 1 \right]$$

$$\mathbf{p_d} = \mathbf{p_s_0} \left[\left(1 + \frac{\gamma - 1}{2} \frac{\mathbf{v_{CAL}^2}}{\mathbf{c_0}^2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

espandendo in serie il termine tra parentesi tonde si ha:

$$\left(1 + \frac{\gamma - 1}{2} \frac{\mathbf{v}_{CAL}^{2}}{\mathbf{c}_{0}^{2}}\right)^{\frac{\gamma}{\gamma - 1}} = 1 + \frac{\gamma}{2} \frac{\mathbf{v}_{CAL}^{2}}{\mathbf{c}_{0}^{2}} + \frac{\gamma}{8} \frac{\mathbf{v}_{CAL}^{4}}{\mathbf{c}_{0}^{4}} + \dots \quad \text{da cui:}$$

$$\mathbf{p_d} = \frac{\gamma}{2} \mathbf{p_s_0} \frac{\mathbf{v_{CAL}^2}}{\mathbf{c_0}^2} \left(1 + \frac{1}{4} \frac{\mathbf{v_{CAL}^2}}{\mathbf{c_0}^2} \right)$$

essendo $\mathbf{c_0}^2 = \frac{\mathbf{p_s}_0}{\rho_0} \gamma$ si ricava:

$$\mathbf{p_d} = \frac{\rho_0}{2} \mathbf{v_{CAL}^2} \left(1 + \frac{1}{4} \frac{\mathbf{v_{CAL}^2}}{\mathbf{c_0}^2} \right)$$

che è un'altra formula di calibratura.

$$\mathbf{v}^2 = 2 \frac{\gamma}{\gamma - 1} \frac{\mathbf{p_s}}{\rho} \left[\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_s}} \right)^{\gamma - 1/\gamma} - 1 \right] \qquad * \qquad \text{fluido comprimibile}$$

da

$$\mathbf{v_{CAL}}^2 = 2\frac{\gamma}{\gamma - 1} \frac{\mathbf{p_{s_0}}}{\rho_0} \left[\left(1 + \frac{\mathbf{p_d}}{\mathbf{p_{s_0}}} \right)^{\gamma - 1/\gamma} - 1 \right] \qquad \Rightarrow \qquad \mathbf{p_d} = \mathbf{p_{s_0}} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_0}{\mathbf{p_{s_0}}} \mathbf{v_{CAL}}^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

sostituendo in si ha:

$$\mathbf{v}_{compr.} = \sqrt{2 \frac{\gamma}{\gamma - 1} \frac{\mathbf{p}_{s}}{\rho}} \left[\left[1 + \frac{\mathbf{p}_{s_0}}{\mathbf{p}_{s}} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_0}{\mathbf{p}_{s_0}} \mathbf{v}_{CAL}^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] \right]^{\frac{\gamma - 1/\gamma}{\gamma}} - 1 \right]$$

$$\mathbf{v} = \sqrt{\frac{2}{\rho}} \mathbf{p_d} \Rightarrow \mathbf{v_{inc.}} = \sqrt{2 \frac{\mathbf{p_{s_0}}}{\rho}} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_0}{\mathbf{p_{s_0}}} \mathbf{v_{cAL}}^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

$$\frac{\mathbf{v_{compr.}}}{\mathbf{v_{inc.}}} = \sqrt{\frac{\frac{\gamma}{\gamma - 1} \left[\left[1 + \frac{\mathbf{p_{s_0}}}{\mathbf{p_s}} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_0}{\mathbf{p_{s_0}}} \mathbf{v_{cAL}}^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] \right]^{\frac{\gamma - 1}{\gamma \gamma}}}{\frac{\mathbf{p_{s_0}}}{\mathbf{p_s}} \left[\left(1 + \frac{\gamma - 1}{2\gamma} \frac{\rho_0}{\mathbf{p_{s_0}}} \mathbf{v_{cAL}}^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]}$$

Anemometro

Quadrante di uno strumento per l'aviazione minore

Anemometro

Anemometro sul PFD di un EFIS

Settori dell'anemometro

Linearizzazione della scala

Anemometro supersonico

$$\mathbf{v} = \mathbf{f} \left[\left(\mathbf{p}_{\mathbf{t}_2} - \mathbf{p}_{\mathbf{s}_1} \right), \ \mathbf{k}_{\mathbf{i}} \right]$$

corrente adiabatica e isoentropica ovunque salvo che attraverso l'onda d'urto

Relazione di Rayleigh

$$\frac{\mathbf{p_{t_2}}}{\mathbf{p_{s_1}}} = \left(\mathbf{M}^2 \frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}} \left(\frac{\gamma + 1}{2\gamma \mathbf{M}^2 - \gamma + 1}\right)^{\frac{1}{\gamma - 1}}$$

$$\frac{\mathbf{p}_{\mathsf{t}_2} - \mathbf{p}_{\mathsf{s}_1}}{\mathbf{p}_{\mathsf{s}_1}} = \left(\frac{\mathbf{v}^2}{\mathbf{c}^2} \frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}} \left(\frac{\gamma + 1}{2\gamma \frac{\mathbf{v}^2}{\mathbf{c}^2} - \gamma + 1}\right)^{\frac{1}{\gamma - 1}} - 1$$

introducendo $\mathbf{p}_{\mathbf{s}_1} = \mathbf{p}_{\mathbf{s}_0}$ e $\mathbf{c} = \mathbf{c}_0$ si ottiene:

$$\mathbf{p_{t_2}} - \mathbf{p_{s_1}} = \mathbf{p_{s_0}} \left(\frac{\mathbf{v_{cAL}}^2}{\mathbf{c_0}^2} \frac{\gamma + 1}{2} \right)^{\frac{\gamma}{\gamma - 1}} \left(\frac{\gamma + 1}{2\gamma \frac{\mathbf{v_{cAL}}^2}{\mathbf{c_0}^2} - \gamma + 1} \right)^{\frac{\gamma}{\gamma - 1}} - 1$$

