The Pigeonhole Principle

If a set of n distinct objects is partitioned into k subsets, where 0 < k < n, then at least one subset contains at least two elements.

Proof: Let |A| = n, and A_1, \ldots, A_k be a partition of A; in particular, each A_i is not empty.

Assume that each A_i has only one element. Since $A = \bigcup_{i=1}^k A_i$ is a partition of A, we know that $|A| = |\bigcup_{i=1}^k A_i|$, with the A_i pairwise disjoint, so $|\bigcup_{i=1}^k A_i| = \sum_{i=1}^k |A_i|$.

Notice that then $n = |A| = |\bigcup_{i=1}^k A_i| = \sum_{i=1}^k |A_i| = k$.

It is impossible for k < n and n = k, so we have a contradiction. So there is at least one A_i that has at least two elements.