Worksheet 4

1 Norms Equivalency

Two norms in a finite-dimensional linear space X (e.g.: \mathbb{R}^n), $\|\cdot\|_a$ and $\|\cdot\|_b$ are called equivalent if there is a constant c such that for all x in X,

$$\|x\|_a \le c\|x\|_b, \qquad \|x\|_b \le c\|x\|_a.$$
 (1)

1.1

Suppose $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent, and we know that an algorithm produces a sequence of vectors $\{x_n\}_{n\geq 1}$, $\|x_n\|_a \to 0$ as $n\to\infty$. What could we conclude about $\|x_n\|_b$'s behavior for $n\to\infty$?

1.2

Suppose $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent, $\|\cdot\|_b$ and $\|\cdot\|_c$ are equivalent. Are $\|\cdot\|_a$ and $\|\cdot\|_c$ equivalent?

1.3

We first show that the vector norms on \mathbb{R}^n , $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$, are equivalent. To do this prove the inequality:

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}.$$

1.4

The induced matrix norm on $\mathbb{R}^{n\times n}$: $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent as well. Prove the inequality

$$||A||_{\infty} \le \sqrt{n} ||A||_2,$$

$$||A||_2 \le \sqrt{n} ||A||_{\infty}.$$

1.5

(optional) Prove that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent on \mathbb{R}^n .

2 matrix 2-Norms

We are going to show that, if U is a unitary matrix $(U^TU = I)$, then

$$||AU||_2 = ||A||_2, \quad ||UA||_2 = ||A||_2$$

2.1

Suppose U is a unitary matrix, show that $||Ux||_2 = ||x||_2$ for any vector x.

2.2

recall that the definition of matrix 2-norm is $||A||_2 = \max_{x\neq 0} \frac{||Ax||_2}{||x||_2}$, show that $||UA||_2 = ||A||_2$ and $||AU||_2 = ||A||_2$ using the definition and above result.

2.3 connection with SVD

For any matrix $A \in \mathbb{R}^{m \times n}$, we can express it by Singular Value Decomposition (SVD)

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with non-negative entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0$ on the diagonal. Here r = rank(A). Based the uni-Invariance of the frobenius norm and 2-norm, we have,

$$||A||_2 = ||\Sigma||_2$$

Show that $\|\Sigma\|_2 = \sigma_1$.

2.4

show that $||A^{-1}|| = 1/\sigma_r$

3 An ill-conditioned matrix

3.1 review of condition number

$$\kappa(A) = ||A||_2 ||A^{-1}||_2$$

$$A = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$$

This matrix is real and symmetric, so it can be diagonalized as

$$A = Q\Lambda Q^T$$

Solve the eigenvalues of A and using the eigenvalues to compute the condition number of A.

3.2

Now we considet solve the linear system Ax = b with $b = [1, 1]^T$ and $Ax = \tilde{b}$ with $\tilde{b} = [1.1, 0.9]^T$. You can solve the linear system by LU decomposition or directly compute the inverse of A.

3.3

Compute the relative error of the solution x and input b. What is the theoretical upper bound of ratio of them? Compare the actual error with the theoretical bound.

3.4

Try $b = [1, -1]^T$ and $\tilde{b} = [1.1, -0.9]^T$. Also compute the ratio of errors.

4 Conditional number for the Hilbert matrix

The Hilbert matrix $H \in \mathbb{R}^{n \times n}$ is a matrix with entries

$$h_{ij} = \frac{1}{i+j-1}.$$

4.1

Using MATLAB, compute the 2-norm-based condition numbers for n = 3, 5, 10, 20, 25. You can use MATLAB's built-in function cond() to compute the condition number of a matrix.

4.2

Let's consider a relative right hand side perturbation $\delta \boldsymbol{b}$ of a linear system with $\|\delta \boldsymbol{b}\|_2 / \|\boldsymbol{b}\|_2 \approx 10^{-15}$. Write down the corresponding bounds $\|\delta \boldsymbol{x}\|_2 / \|\boldsymbol{x}\|_2$ from the theory we discussed in class.

4.3

Now, let's compute the actual error. Use the right-hand side vector with entries $b_i = \sum_{j=1}^n (j/(i+j-1))$ chosen such that the solution vector has entries $x_i = i$. Now, Compute the numerical solutions $x_i = i$ then re-compute $x_i = i$ and compare the relative right-hand side error and the relative error in the solutions. How much are these better than the estimates you got from the condition number?

¹Note that all these computations contain tiny errors due to the final precision of computer computations.