Lösungsvorschläge zu Aufgabenblatt 4

(Verbände und Äquivalenzrelationen)

Aufgabe 4.1

Betrachte N ausgestattet mit der "teilt"-Ordnung.

- (a) Bestimmen Sie $\inf\{a,b\}$ und $\sup\{a,b\}$ für alle $a,b \in \mathbb{N}$.
- (b) Es sei $n \in \mathbb{N}$ und $T(n) := \{k \in \mathbb{N} \mid k \mid n\} \subseteq M$ die Menge aller Teiler von n. Zeigen Sie, dass T(n) ein Verband ist.

Hinweis: Es wird ggf. Schulwissen über elementare Zahlentheorie benötigt.

Lösungsskizze

Es seien $a, b \in \mathbb{N}$. Dann gilt $\inf\{a, b\} = \operatorname{ggT}(a, b)$ (größter gemeinsamer Teiler von a und b) und $\sup\{a, b\} = \operatorname{kgV}(a, b)$ (kleinstes gemeinsames Vielfaches von a und b). Tatsächlich folgt dies unmittelbar aus der allgemeinen Definition (sofern bekannt):

Die Zahl $g \in \mathbb{N}$ ist größter gemeinsamer Teiler von a und b genau dann, wenn folgendes gilt:

- (1) g|a und g|b (d.h. g ist untere Schranke von $\{a,b\}$, und
- (2) Ist $c \in \mathbb{N}$ ein weiterer gemeinsamer Teiler von a und b, gilt also c|a und c|b, so folgt c|g (d.h. q ist **größte** untere Schranke von $\{a,b\}$.

Die Zahl $k \in \mathbb{N}$ ist kleinstes gemeinsames Vielfaches von a und b genau dann, wenn folgendes gilt:

- (1) a|k und b|k (d.h. k ist obere Schranke von $\{a,b\}$, und
- (2) Ist $c \in \mathbb{N}$ ein weiteres gemeinsames Vielfaches von a und b, gilt also a|c und b|c, so folgt k|c (d.h. k ist **kleinste** obere Schranke von $\{a,b\}$.
- (b) Dies folgt unmittelbar aus (a) und der Definition eines Verbands.

Aufgabe 4.2

Definiere auf der Menge $M := \{(0,0), (0,1), (1,0), (1,1), (-1,-1), (0,-1), (0,-2)\}$ die Relation $(x_1,x_2) \equiv (y_1,y_2) :\Leftrightarrow x_1^2 + x_2^2 = y_1^2 + y_2^2 \quad \text{für alle } (x_1,x_2), (y_1,y_2) \in M.$

- (a) Zeigen Sie, dass \equiv eine Äquivalenzrelation auf M definiert.
- (b) Bestimmen Sie die Äquivalenzklassen von (0,0),(1,0) und (1,1).
- (c) Notieren Sie die Menge $M/\!\!\equiv$ explizit.
- (d) Geben Sie ein Repräsentantensystem an.

Lösung

- (a) Seien $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$.
- \equiv ist reflexiv: Es gilt $x_1^2 + x_2^2 = x_1^2 + x_2^2$, also gilt nach Definition $(x_1, x_2) \equiv (x_1, x_2)$.
- \equiv ist symmetrisch: Es gelte $(x_1,x_2) \equiv (y_1,y_2)$. Dann gilt $x_1^2 + x_2^2 = y_1^2 + y_2^2$, also auch $y_1^2 + y_2^2 = x_1^2 + x_2^2$, also gilt nach Definition $(y_1,y_2) \equiv (x_1,x_2)$.
- \equiv ist transitiv: Es gelte $(x_1, x_2) \equiv (y_1, y_2)$ und $(y_1, y_2) \equiv (z_1, z_2)$. Dann gilt $x_1^2 + x_2^2 = y_1^2 + y_2^2$ und $y_1^2 + y_2^2 = z_1^2 + z_2^2$, also auch $x_1^2 + x_2^2 = z_1^2 + z_2^2$ und damit gilt nach Definition auch $(x_1, x_2) \equiv (z_1, z_2)$.
- (b) Es gilt:

$$[(0,0)] = \{(x_1,x_2) \in M \mid x_1^2 + x_2^2 = 0\} = \{(0,0)\},$$

$$[(1,0)] = \{(x_1,x_2) \in M \mid x_1^2 + x_2^2 = 1\} = \{(1,0),(0,1),(0,-1)\},$$

$$[(1,1)] = \{(x_1,x_2) \in M \mid x_1^2 + x_2^2 = 2\} = \{(1,1),(-1,-1)\}.$$

(c) Es gilt:

$$M/\equiv = \{\{(0,0)\}, \{(1,0), (0,1), (0,-1)\}, \{(1,1), (-1,-1)\}, \{(0,-2)\}\}.$$

(d) Ein Vertretersystem ist z.B. $V = \{(0,0), (1,0), (1,1), (0,-2)\}.$

Aufgabe 4.3

Definiere auf der Menge $M:=\mathbb{N}\times\mathbb{N}$ die Relation

$$(a,b) \equiv (c,d) :\Leftrightarrow a+d=b+c$$
 für alle $(a,b),(c,d) \in M$.

- (a) Zeigen Sie, dass \equiv eine Äquivalenz relation auf M definiert.
- (b) Bestimmen Sie die Äquivalenzklassen von (1,1),(1,2) und (2,1).

Anmerkung: Die Menge $\mathbb{N} \times \mathbb{N}/\equiv$ lässt sich über ein geeignetes Repräsentantensystem mit den ganzen Zahlen \mathbb{Z} identifizieren.

Lösung

- (a) Seien $(a, b), (c, d), (e, f) \in M$.
- \equiv ist reflexiv: Es gilt a + b = b + a, also ist $(a, b) \equiv (a, b)$.
- \equiv ist symmetrisch: Es gelte $(a,b) \equiv (c,d)$. Dann gilt a+d=b+c, also auch c+b=d+a, also nach Definition auch $(c,d) \equiv (a,b)$.
- \equiv ist transitiv: Es gelte $(a,b) \equiv (c,d)$ und $(c,d) \equiv (e,f)$. Dann gilt a+d=b+c und c+f=d+e, also auch

$$(a+f) + (c+d) = (a+d) + (c+f) = (b+c) + (d+e) = (b+e) + (c+d).$$

Subtrahieren von c+d auf beiden Seiten liefert a+f=b+e, also gilt nach Definition auch $(a,b)\equiv (e,f)$.

(b) Es gilt:

$$\begin{split} & \left[(1,1) \right] & = \left\{ (a,b) \in M \, | \, a+1=b+1 \right\} = \left\{ (a,b) \in M \, | \, b=a \right\} = \left\{ (a,a) \, | \, a \in \mathbb{N} \right\}, \\ & \left[(1,2) \right] & = \left\{ (a,b) \in M \, | \, a+2=b+1 \right\} = \left\{ (a,b) \in M \, | \, b=a+1 \right\} = \left\{ (a,a+1) \, | \, a \in \mathbb{N} \right\}, \\ & \left[(2,1) \right] & = \left\{ (a,b) \in M \, | \, a+1=b+2 \right\} = \left\{ (a,b) \in M \, | \, b=a-1 \right\} = \left\{ (a,a-1) \, | \, a \in \mathbb{N} \right\}. \end{split}$$

Aufgabe 4.4

Es sei M eine nichtleere Menge, und es sei $\mathcal{Z} \subseteq P(M) \setminus \{\emptyset\}$ eine Zerlegung von M, das heißt, es gelte:

$$\bigcup_{A\in\mathcal{Z}}A=M\quad\text{und}\ \, \forall\,A,B\in\mathcal{Z}:\,A\cap B=\varnothing\,\vee\,A=B.$$

Zeigen Sie, dass durch

$$x \equiv y : \Leftrightarrow \exists A \in \mathcal{Z} : \{x, y\} \subseteq A$$
 für alle $x, y \in M$

eine Äquivalenzrelation auf M definiert wird, für die gilt $M/\equiv = \mathcal{Z}$.

Lösung

Seien $x, y, z \in M$.

 $\equiv ist \ reflexiv$: Wegen $\bigcup_{A \in \mathcal{Z}} A = M$ existiert ein $A \in \mathcal{Z}$ mit $x \in A$, also folgt auch $\{x, x\} = \{x\} \subseteq A$ und damit $x \equiv x$ nach Definition.

 \equiv ist symmetrisch: Es gelte $x \equiv y$. Dann existiert ein $A \in \mathcal{Z}$ mit $\{x,y\} \subseteq A$. Wegen $\{x,y\} = \{y,x\}$ folgt dann auch $\{y,x\} \subseteq A$, also $y \equiv x$ nach Definition.

 $\equiv ist \ transitiv$: Es gelte $x \equiv y$ und $y \equiv z$. Dann existiert ein $A \in \mathcal{Z}$ mit $\{x,y\} \subseteq A$, und es existiert ein $B \in \mathcal{Z}$ mit $\{y,z\} \subseteq B$. Insbesondere folgt $y \in A \cap B$, also $A \cap B \neq \emptyset$. Nach Voraussetzung folgt hieraus aber bereits $A = B^1$. Also ist auch $z \in B = A$ und damit $\{x,z\} \subseteq A$, also gilt $x \equiv z$ nach Definition.

Es bleibt zu zeigen: $M/\equiv = \mathcal{Z}$.

Sei dazu $x \in M$. Dann gibt es ein $A \in \mathcal{Z}$ mit $x \in A$. Dann gilt aber schon [x] = A: Für alle $y \in M$ gilt nämlich

$$y \in [x] \Leftrightarrow y \equiv x \Leftrightarrow \{x,y\} \subseteq B \text{ für ein } B \in \mathcal{Z}.$$

Da aber bereits $x \in A$ ist und die Mengen in \mathcal{Z} disjunkt sind, folgt

$$y \in [x] \Leftrightarrow y \in A$$
, also $[x] = A$.

Damit folgt

$$M/\equiv = \{[x] \mid x \in M\} \subseteq \{A \mid A \in \mathcal{Z}\} = \mathcal{Z}.$$

Sei nun umgekehrt $A \in \mathcal{Z}$. Da $A \neq \emptyset$ ist, finden wir ein $x \in A$, und wie eben gezeigt folgt dann $A = [x] \in M/\equiv$. Also gilt auch $\mathcal{Z} \subseteq M/\equiv$.

¹Man beachte: Die Aussage $A \cap B = \emptyset \lor A = B$ ist äquivalent zu $A \cap B \neq \emptyset \Rightarrow A = B$