Triangulating with many tetrahedra

Luis Barba Jean Cardinal Stefan Langerman

Abstract

For any given integer k, let $Z_k = \{(x, y, z) \in \mathbb{R}^3 : z = k\}$. Given a set P consisting of n points in Z_0 and n points in X_1 , we show that there exists a triangulation of P that consists of $\Omega(n \log \log n)$ tetrahedra.

1 Introduction

1.1 Outline

2 Preliminaries

For any given integer k, let $Z_k = \{(x, y, z) \in \mathbb{R}^3 : z = k\}$. Let $P = P_0 \cup P_1$ be a set of 2n points in \mathbb{R}^3 such that $|P_0| = |P_1|$ and $P_i \subset Z_i$ for $i \in \{0, 1\}$. Throughout, we assume that P is in general position: no three points lie on a line, no two points have the same y-coordinate and no two parallel lines contain more than one point.

Given an angle $-\pi \leq \phi \leq \pi$, we use it to define a partial order on the points of P_i . To this end, let $\vec{v} = (1,0)$ and let $\vec{v}_{\phi} = (\cos \phi, \sin \phi)$ be the vector that makes an angle ϕ with the positive x-axis. For each point $p \in P_i$, let $\kappa_{\phi}(p) = \{p + \alpha \vec{v} + \beta \vec{v}_{\phi} \in Z_i : \alpha > 0, \beta \geq 0\}$ be the cone contained in Z_i apexed at p (if $\phi = \pi$, $\kappa_{\phi}(p)$ is the halfplane containing all the points with y-coordinate larger or equal to x). Let (P_i, \leq_{ϕ}) be a partial order set (poset) defined as follows: Given two points $p, q \in P_i$, we say that $p \leq_{\phi} q$ if and only if $q \in \kappa_{\phi}(p)$; see Figure 1 for an illustration.

We say that two partial orders (P_i, \leq') and (P_i, \leq'') are *complementary* if every two points of P_i are comparable in $(P_i, \leq') \cup (P_i, \leq'')$ and only symmetric pairs (of the form (p, p)) are comparable in $(P_i, \leq') \cap (P_i, \leq'')$.

For ease of notation, given $0 \le \theta \le \pi$, we let $\overline{\theta} = \theta - \pi$.

Lemma 2.1. Given $0 \le \theta \le \pi$, the posets (P_i, \le_{θ}) and $(P_i, \le_{\overline{\theta}})$ are complementary.

Proof. Let p and q be two distinct points in P_i . Note that the union of $\kappa_{\theta}(p)$ and $\kappa_{\overline{\theta}}(p)$ defines a halfplane passing through p whose boundary makes an angle of θ with the positive x-axis. Moreover, since no two points share the same y-coordinate by the general position assumption, no point of P_i other than p lies in $\kappa_{\theta}(p) \cap \kappa_{\overline{\theta}}(p)$. That is only symmetric pairs are comparable in $(P_i, \leq_{\overline{\theta}}) \cap (P_i, \leq_{\overline{\theta}})$.

Assume without loss of generality that $q \in \kappa_{\theta}(p) \cup \kappa_{\overline{\theta}}(p)$, otherwise invert the roles of p and q. Therefore, q lies either in $\kappa_{\theta}(p)$ or in $\kappa_{\overline{\theta}}(p)$. This implies that either $p \leq_{\theta} q$

Figure 1:

or $p \leq_{\overline{\theta}} q$, but not both. Since p and q are arbitrary points, we conclude that any two points are either comparable in $(P_i, \leq_{\overline{\theta}})$ or in $(P_i, \leq_{\overline{\theta}})$. That is, $(P_i, \leq_{\overline{\theta}})$ and $(P_i, \leq_{\overline{\theta}})$ are complementary; see Figure 1.

3 Triangulation using chains and antichains

Let $0 \le \theta \le \pi$ be an arbitrary angle. Let $C = \{p_1, \ldots, p_k\}$ be a chain of (P_0, \le_{θ}) and let $A = \{q_1, \ldots, q_t\}$ be an antichain of (P_1, \le_{θ}) . Recall that an antichain in (P_1, \le_{θ}) is a chain in $(P_1, \le_{\overline{\theta}})$ by Lemma 2.1. Assume without loss of generality that the elements of C are sorted according to $\le_{\overline{\theta}}$ and that the elements of C are sorted according to $\le_{\overline{\theta}}$. In this section, we show how to construct a triangulation of $C \cup A$ that has at least $|C| \cdot |A|$ tetrahedra.

To this end, we first construct a set of $|C| \cdot |A|$ tetrahedra that is a triangulation of a non necessarily convex polyhedra contained in $\mathrm{CH}(C \cup A)$. We then show how to extend this to a triangulation of $\mathrm{CH}(C \cup A)$ by gluing more tetrahedra.

Let $\varphi_0 = \bigcup \{p_j p_{j+1} : 1 \le j < k\}$ be the curve contained in Z_0 , obtained by the union of the segments connecting consecutive elements of A. Define $\varphi_1 = \bigcup \{q_i q_{i+1} : 1 \le i < t\}$ analogously.

For each $x \in \varphi_0$ and each $1 \le i < t$, let $\triangle_i(x) = \triangle(x, q_i, q_{i+1})$. Let $\Pi_i(x)$ be the plane extending $\triangle_i(x)$ and let $\Pi_i^+(x)$ be the closed halfspace supported by $\Pi_i(x)$ that contains p_k .

Lemma 3.1. For each $x, y \in \varphi_0$ such that $x \leq_{\theta} y \leq_{\theta} p_k$, it holds that $y \in \Pi_i^+(x)$.

Proof. Let λ be the line passing through q_i and q_{i+1} and let λ_x be the line parallel to λ passing through x. Thus, $\lambda_x \subset \Pi_i(x)$.

Recall that $\vec{v} = (1,0)$ and $\vec{v}_{\phi} = (\cos \theta, \sin \theta)$. Because q_i and q_{i+1} are not comparable in (P_1, \leq_{θ}) , λ (and λ_x) makes an angle larger than θ with the positive x-axis; otherwise

Figure 2:

 $q_i \in \kappa_{\theta}(q_{i+1})$ or $q_{i+1} \in \kappa_{\theta}(q)$. Therefore, both $x + \vec{v}$ and $x + \vec{v}_{\theta}$ lie on the same halfplane supported by λ_x in Z_0 , i.e., the cone $\kappa_{\theta}(x)$ is contained in this halfplane. Because $p_k, y \in \kappa_{\theta}(x)$ as $x \leq_{\theta} y \leq_{\theta} p_k$, and since $\Pi_i(x)$ contains λ_x , we conclude that $y \in \kappa_{\theta}(x) \subset \Pi_i^+(x)$; see Figure 2.

Note that for any two points $x, y \in \varphi_0$ such that y lies in the path contained in φ_0 connecting x with p_k , it holds that $x \leq_{\theta}, y \leq_{\theta} p_k$.

Let $S_x = \bigcup \{ \triangle_i(x) : 1 \le i < t \}$ be the wavefront at x. Because all points in A are coplanar, S_x is a surface topologically equivalent to a disk; see Figure 2.

Lemma 3.2. For each $x, y \in \varphi_0$ such that y lies in the path contained in φ_0 connecting x with p_k , it holds that $S_x \cap S_y = \varphi_1$.

Proof. Assume for a contradiction that there is a point $z \in \varphi_1$ such that the open segment zy intersects S_x , i.e., S_x and S_y intersect. Let $\triangle_i(x)$ be the first triangle intersected by zy when going from z towards y. Because the segment zy crosses the plane $\Pi_i(x)$, we conclude that zy is not contained in $\Pi_i^+(x)$.

Assume that z belongs to the segment q_jq_{j+1} for some $1 \leq j \leq t$. Thus, z lies on the boundary of $\Delta_j(x)$. Let $R = \Pi_i^+(x) \cap \Pi_j^+(x)$ and note that R is a convex set. Because $y \in R$ by Lemma 3.1 and since $z \in R$, we know that $zy \subset R$. Since $R \subset \Pi_i^+(x)$, we conclude that $zy \subset \Pi_i^+(x)$ —a contradiction. Therefore, for each $z \in \varphi_1$, the open segment zy does not intersect S_x . Consequently, $S_x \cap S_y = \varphi_1$.

To construct the triangulation, imagining moving x continuously from p_1 to p_k along φ_0 and taking the union of all wavefronts S_x . Let T' be a set of $k \cdot t$ tetrahedra such that

$$T' = \{ CH(p_i, p_{i+1}, q_i, q_{i+1}) : 1 \le i < k, 1 \le j < t \}.$$

Lemma 3.3. The set T' consists of interior disjoint tetrahedra whose union defines a simple polyhedron.

Proof. Let $\sigma_{i,j} = \text{CH}(p_i, p_{i+1}, q_j, q_{j+1})$. Assume for a contradiction that the interiors of $\sigma_{i,j}$ and $\sigma_{s,r}$ intersect for some $i, s \in \{1, \ldots, k\}$ and $j, r \in \{1, \ldots, t\}$. Therefore, the boundaries of $\sigma_{i,j}$ and $\sigma_{s,r}$ intersect at a point not on φ_1 . That is, a triangle $\Delta_j(x)$ intersects a segment wy where $x \in p_i p_{i+1}, y \in p_s p_{s+1}$ and $w \in q_r q_{r+1}$. Since $\Delta_j(x) \subset S_x$ and since $wy \subset S_y$, this implies that the wavefronts S_x and S_y intersect—a contradiction with Lemma 3.2. Therefore, T' consists of interior disjoint tetrahedra.

To see that $\cup T'$ is a simple polyhedra, recall that S_x is topologically equivalent to a disk for each $x \in \varphi_0$. Notice that $\cup T' = \cup \{S_x : x \in \varphi_0\}$. Because each S_x is disjoint, $\cup T'$ is topologically equivalent to a sphere, i.e., it is a simple polyhedra.

By Lemmas 3.3, we conclude that T' is a triangulation of a simple polyhedron, say $\cup T'$, whose facets are triangles.

Our objective is to complete T' to a triangulation T of $CH(C \cup A)$. To this end, we proceed as follows. We say that two points are T-visible if the open segment joining them does not intersect the interior of $\cup T$. Let τ_i be a triangulation of P_i in Z_i such that γ_i is contained in the union of the edges of τ_i . Notice that for each point $z \in CH(C)$, either q_1 or q_t is T-visible from z.

In fact, the curve γ_i splits CH(C) into two sets, the one containing the points visible from q_1 and the other containing those points visible from q_t . This partition of CH(C) induces a partition of τ_1 into two sets of the triangles, those visible from q_1 and those visible form q_t . For each triangle $\Delta \in \tau_1$ visible from q_1 (resp. q_t), we add the tetrahedron $CH(\Delta, q_1)$ (resp. $CH(\Delta, q_t)$) to T'.

In the same way, the triangulation τ_0 can be partitioned into two sets of triangles, those visible from p_1 and those visible from p_k . We construct tetrahedra analogously for them and add them to T'. In this manner, we obtain a new triangulation T whose union is equal to $CH(C \cup A)$; see Figure 3 for an illustration. Since the triangulation T' has at least $|C| \cdot |A|$ tetrahedra and $T' \subseteq T$, T consists of at least $|C| \cdot |A|$ tetrahedra.

The following theorem summarizes the results presented in this section.

Theorem 3.4. Give a chain C of (P_0, \leq_{θ}) and an antichain A of (P_1, \leq_{θ}) , there exists a triangulation of $CH(C \cup A)$ that has at least $|C| \cdot |A|$ tetrahedra.

4 Large chains and antichains

For each $0 \leq \theta \leq \pi$, Dilworth's theorem implies the existence of a chain C_{θ}^{i} and an antichain A_{θ}^{i} of (P_{i}, \leq_{θ}) such that $|C_{\theta}^{i}| \cdot |A_{\theta}^{i}| \geq |P_{i}| = n$. Assume that C_{θ}^{i} and A_{θ}^{i} are the lexicographically minimum subsets of P_{i} with this property.

Let
$$x(\theta) = |C_{\theta}^{0}| - |A_{\theta}^{1}|$$
 and $y(\theta) = |C_{\theta}^{1}| - |A_{\theta}^{0}|$.

Lemma 4.1. For each $0 \le \theta \le \pi$, it holds that $x(\theta) = -x(\overline{\theta})$. Moreover, for x(0) = 1 - n and $x(\pi) = n - 1$.

Figure 3:

Proof. By Lemma 2.1 $(P_i, \leq_{\overline{\theta}})$ and $(P_i, \leq_{\overline{\theta}})$ are complementary. This implies that any chain in $(P_i, \leq_{\overline{\theta}})$ is an antichain in $(P_i, \leq_{\overline{\theta}})$ and viceversa. Therefore, $|C_{\overline{\theta}}^i| = |A_{\overline{\theta}}^i|$ and $|A_{\overline{\theta}}^i| = |C_{\overline{\theta}}^i|$. Consequently, $x(\theta) = -x(\overline{\theta})$.

For the second part, note that if $\theta = \pi$, then $\kappa_{\theta}(p)$ consists of a halfplane containing all the points with y-coordinate larger or equal than p. Because no two points have the same y-coordinate by our general position assumption, the longest chain in $(P_i, \leq_{\overline{\theta}})$ contains every point of P_i . On the other hand, every chain in $(P_i, \leq_{\overline{\theta}})$ consists of at most one point. Therefore, $x(\pi) = n - 1$. The first part of the lemma implies that, x(0) = 1 - n.

We say that a function $g:[0,\pi]\to\mathbb{R}$ is almost continuous if for any converging sequence $\{x_i\}_{i\in\mathbb{N}}$, there exists $n_0\in\mathbb{N}$ such that for any $i,j>n_0$, $|g(x_i)-g(x_j)|\leq 2$.

Lemma 4.2. The functions x and y are almost continuous.

Proof. By modifying the value of θ , we obtain changes in $x(\theta)$ only when a point stops (or starts) being inside a cone $\kappa_{\theta}(p)$ for some $p \in P_i$ as it changes its aperture. By the general position assumption of P_i , this change can only increase (*resp.* decrease) the size of a chain (*resp.* antichain) by at most two. Therefore, for a sufficiently small change in θ , the value of $x(\theta)$ changes by at most two. That is, x is almost continuous.

Consequently, for any converging sequence $\{\theta_i\}_{i\in\mathbb{N}}$ in $[0,\pi]$, there exists n_0 such that for any $i,j>n_0$, $|x(\theta_i)-x(\theta_i)|\leq 1$. The same argument holds for the function y.

Lemma 4.3. There exist continuous functions $g_x, g_y : [0, \pi] \to \mathbb{R}$ such that for any $\theta \in [0, \pi]$, it holds that $|x(\theta) - g_x(\theta)| \le 2$ and $|y(\theta) - g_y(\theta)| \le 1$.

Proof. Because discontinuities in x arise only when the boundary of a cone $\kappa_{\theta}(p)$ passes through a second point, function x has a finite set of discontinuities. Because x is almost continuous by Lemma 4.2, each of these discontinuities is a jump of at most two. Thus, if there is a discontinuity at a point θ_0 , we can define g_x in the neighborhood $[\theta_0 - \varepsilon, \theta_0 + \varepsilon]$ as a linear function that connects $x(\theta_0 - \varepsilon)$ with $x(\theta_0 + \varepsilon)$; see Figure ??. By repeating this process with every discontinuity of x, and making g_x coincide with x outside of these neighborhoods, we obtain a continuous function $g_x : [0, \pi] \to \mathbb{R}$ such that $|x(\theta) - g_x(\theta)| \le 1$ for all $0 \le \theta \le \pi$. An analogous proof applies for y.

Lemma 4.4. There exists $0 \le \theta^* \le \pi$ and an integer $i \in \{0,1\}$ such that $|C_{\theta^*}^i| \cdot |A_{\theta^*}^{1-i}| \ge n$, and both $C_{\theta^*}^i$ and $A_{\theta^*}^{1-i}$ have size at least $\sqrt{n} - 1$.

Proof. Because $g_x(0) = x(0) = 1 - n$ and $g_x(\pi) = x(\pi) = n - 1$, and since g_x is continuous, there exists a value θ^* such that $g_x(\theta^*) = 0$. Thus, by Lemma 4.3 we infer that $|x(\theta^*)| \leq 1$. Consequently

$$-1 \le x(\theta^*) = |C_{\theta^*}^0| - |A_{\theta^*}^1| \le 1.$$

That is, the sizes of $C_{\theta^*}^0$ and $A_{\theta^*}^1$ differ at most by one.

If $\max\{|C_{\theta^*}^0|, |A_{\theta^*}^1|\} \ge \sqrt{n}$, then our result follows. Otherwise, we can assume that

$$\max\{|C_{\theta^*}^0|, |A_{\theta^*}^1|\} < \sqrt{n}. \tag{1}$$

Note that by definition $|C_{\theta^*}^i| \cdot |A_{\theta^*}^i| \ge n$ for $i \in \{0,1\}$. Therefore, by (1) we know that $|C_{\theta^*}^1| > \sqrt{n}$ and $|A_{\theta^*}^0| > \sqrt{n}$. Moreover, we have

$$(|C^0_{\theta^*}|\cdot|A^1_{\theta^*}|)(|C^1_{\theta^*}|\cdot|A^0_{\theta^*}|) \ge n^2.$$

Because $\max\{|C^0_{\theta^*}|,|A^1_{\theta^*}|)\} < \sqrt{n}$ by (1), $|C^0_{\theta^*}|\cdot|A^1_{\theta^*}| < n$. Consequently, $|C^1_{\theta^*}|\cdot|A^0_{\theta^*}| > n$ proving our result.

Corollary 4.5. There exists a set S of $2\sqrt{n}-2$ points of P such that CH(S) has a triangulation with $\Theta(n)$ tetrahedra.

5 Constructing complete triangulations

Let S be the set of $2\sqrt{n}-2$ points of P given by Corollary 4.5 having a triangulation with $\Theta(n)$ tetrahedra. To extend this triangulation of S to a triangulation of P, we proceed recursively. Let $\Sigma = \{\sigma_1, \ldots, \sigma_k\}$ be the set of planes that extend all the facets of $\mathrm{CH}(S)$. Because $|S| = \Theta(\sqrt{n})$, we know that $k = O(\sqrt{n})$ (several triangles are coplanar in either

 P_0 or P_1). We construct k sets P^1, \ldots, P^k as follows: Let P^i be the set of remaining points of P that lie on the halfspace supported by σ_i that does not contain CH(S). Remove P^i from P and continue the proceed recursively with i + 1. As a separation invariant, note that σ_i separates P_i from S and from the remaining points of P.

Since the convex hulls of the P^i s are pairwise disjoint, we can proceed recursively and obtain a triangulation of their convex hull. To complete the process, we merge the convex hull S with the convex hulls of the P^i s in reverse order. That is, we first merge CH(S) with $CH(P^k)$, then the resulting convex hull with $CH(P^{k-1})$ and so on. We claim that this merge is always possible.

To prove this claim, let $S_0 = S$, and let $S_j = S \cup (\bigcup_{i=0}^{j-1} P^{k-i})$ for each $1 \leq j \leq k$. Notice that by the separation invariant, for each $1 \leq j \leq k$, the plane σ_j separates $\operatorname{CH}(S_{j-1})$ from $\operatorname{CH}(P^j)$. Therefore, for each $1 \leq i < j \leq k$, $\operatorname{CH}(P^i)$ cannot intersect $\operatorname{CH}(S_j)$. Otherwise, σ_i does not separate $\operatorname{CH}(P^i)$ from $\operatorname{CH}(S_{i-1})$. Therefore, the recursive process ends with a triangulation of $\operatorname{CH}(S_k) = \operatorname{CH}(P)$.

It remains only to analyze the size of this triangulation. To this end, recall that the triangulation of S contains $\Theta(n)$ triangles. Moreover, since k = O(n), at least one of the P^i s has $\Omega(\sqrt{n})$ points. We obtain the following recurrence $T(n) = \sum_{i=1}^k T(n_i) + \Omega(n)$, where $k = O(\sqrt{n})$ and $\sum_{i=1}^k n_i = n - \sqrt{n}$ (and hence some $n_i = \Omega(\sqrt{n})$). By induction, we can show that $T(n) = \Omega(n \log \log n)$.

 $T(n) = \sum_{i=1}^k T(n_i) + \Omega(n)$, where $k = O(\sqrt{n})$ and $\sum_{i=1}^k n_i = n - \sqrt{n}$ (and hence some $n_i = \Omega(\sqrt{n})$). I want to show show that $T(n) = \Omega(n \log \log n)$.