

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

5. DIVIDE AND CONQUER I

merge and count demo

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 2 and add x to inversion count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 3 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 7 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 10 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 11 and add x to increment count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 14 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 16 and add x to increment count

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

compare minimum entry in each list: copy 18 and decrement x

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 20

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

list A exhausted: copy 23

Given two sorted lists *A* and *B*,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

done: return 8 inversions

