- Connectives:

$\neg P$	Negation
P ^ Q	Conjunction
P v Q	Disjunction
P -> Q	Implication
$Q \rightarrow P$	Converse
$\neg Q -> \neg P$	Contrapositive
$\neg P \rightarrow \neg Q$	Inverse
P <-> Q	Biconditional

-Tautologies & Contradictions:

P->P and P v \neg P are always true P $^{\land}$ \neg P is always false.

-Logical Equivalences:

<use other sheet>

-Predicate Logic:

Rather than x>3 we can say P(x):

$$P(2)$$
 = False $P(42)$ = True

Predicate values give a T/F response.

-Quantifiers:

 $\forall x$: for all x $\exists x$: there exists x

x∈U: in the universal domain

$$\forall x.(P(x) \land P(y)) = \forall x.(P(x) \land \forall x.(P(y))$$

 $\exists x.(P(x) \lor P(y)) = \exists x.(P(x) \lor \exists x.(P(y))$
(does *not* work other way round!)

-Sets:

Look to logical equivalence sheets, however,

$$U = True$$
,
 $\emptyset = False$,
 $U = V$,
 $\Omega = \Lambda$,
 $A' = -\eta$.

A' or \overline{A} is the complement of set A. $U = \{1,2,3,4,5\}, A = \{1,2\}, \text{ then A'} = \{3,4,5\}$ |A| = cardinality of A, how many elements in P(A) = powerset, all possible subsets.

-Proving Set Equalities:

Four ways:

- o Venn Diagram,
- o membership table,
- containment proof (make RHS equal to LHS then other way, both contained in each other and therefore equal),
- set comprehension and logical equivalences

-Functions:

domain maps to *one* value in the codomain, otherwise not a function. Codomain can have 'free' values tho.

$$(f1 + f2)(x) = f1(x) + f2(x)$$
 (same for *)

-Injective, bijective, surjective and inverse:

Strictly increasing: x1 < x2 then f(x1) < f(x2)

In: one-to-one. Each element in x maps to a unique element of y.

Sur: each element of the codomain has *at least* one preimage (value in domain)
Bi: both of the above.

Inverse functions: the function *must* be bijective for it to work. Steps:

-divisibility

a|b – "a is a factor of b" and "b is a *ble of a" a = b * quotient + remainder

-Primes:

Fundamental theorem of arithmetic: every positive integer can be written as a unique product of primes. Eg: $42 = 2^{1*} 3^{1*} 7^{1}$.

GCD and Prime factorisation: can do as above. Also using the Euclidian Algorithm:

$$78 = 66(1) + 12$$

 $66 = 12(5) + 6$
 $12 = 6(2) + 0$
 $\therefore GCD(78) = 6$

Congruence: $a \equiv b \pmod{c}$ Iff a mod m= b mod m.

 $6 \equiv 11 \pmod{5}$: 6-11 = -5 and -5 is divisible by 5

-Matrices:

Can sum (+) two matrices is they are the same size

Α	В		E	F		A+E	B+F
С	D	+	G	Н	=	C+G	D+H

-Matrices (cont.)

Multiplication:

Α	В	*	Ε	F	ı	AE + BG	AF + BH
C	D	•	G	H		CE + DG	CF + DH

Transpose:

-Proofs:

Direct: P -> Q

Indirect: $\neg Q \rightarrow \neg P$ (assume Q is False)

Trivial: $P \rightarrow Q$, when Q = True

Contradiction: assume negation cannot hold

By Cases: like in AE

Vacuous: If P doesn't hold then done Existence: ∃x False, or ∀x True

Induction: find a base case that holds (base case) and then use that to prove that all other steps hold (inductive step).

Recursive functions: select a base case and

work your way down to it.

Recursively defined structures: Trees!

-Counting:

Product rule: |A| = m & |B| = n, then there are mn ways to combine one element from A with one from B. Works for 2+ products.

Sum rule: |A| = m & |B| = n, and A & B are disjointed then there is n + m ways to choose an element from A or B.

Inclusion-exclusion principle: The sum rule but when A and B have overlapping elements. $|A \cup B| = |A| + |B| - |A \cap B|$.

The pigeonhole principle: if n objects are placed in k containers, then at least one container has ceil(n/k) objects (round up to nearest int).

-Permutations:

An ordered arrangement of objects. P(n,r) is an ordered arrangement of size r of a set of size n.

$$P(n,r) = n!/(n-r)!$$

-Combinations:

An unordered arrangement of objects.

$$C(n,r) = n!/(r! \cdot (n-r)!)$$

-Combinations with repetitions:

B = number of objects to be selectedC = number of 'containers' that can be chosen from (minus one)

$$A = B + C$$

Combinations =
$$A! / (B! * C!)$$

Or
 $C(n+r-1, r)$.

-Permutations with indistinguishable objects:

n1 are indistinguishablen2 are indistinguishable

-Probability:

Theorising propositions on the likelihood of outcomes.

Eg. Drawing a 4 from a deck of cards:

4/52 or 1/13

 $0 \le P[A] \le 1$ for all events $A \subseteq \Omega$;

 $P[\Omega]=1$;

if A and B are mutually exclusive, then $P[A \cup B] = P[A] + P[B]$;

-Conditional probability:

If we are given the base B, then the probability of A is:

 $P[A/B] = P[A \cap B] / P[B]$

A and B are independent iff $P[A \cap B] = P[A] * P[B]$. If this is the case then P[A|B] = P[A].

Bayes' rule:

$$P[A/B] = P[B/A] *P[A]$$
$$P[B]$$

Random variables:

 $E[X] = [sum \ of, x \ in \ domain \ X] P[X=x] *x$

-Graphs:

Undirected graphs:

G = (V,E) – finite vertices, edges in vertices, of size 2.

Cannot self-loop, cannot have multiple edges. *Adjacent:* when there is an edge connecting *Degree:* how many edges a vertex has.

Directed Graphs:

Edges got directions! An ordered pair (x,y) In and Out degree, degree but measuring how many going in (+) and how many going out (-): $Deg^{+}(a) = 2.$

Isomorphic graphs:

Graphs that have same structure but a different arrangement (look different). To check you should see if a bijection can be made between the graphs. Look at the degree of each vertex and see if is it correlates.

Connectivity:

How many 'steps' (or vertices) do you need to cross to get from A to B.

A graph is connected if every pair in the graph can be joined by a path.

A tree is when it is connected and acyclic (no cycles)

-Relations:

Between elements in a set or between different sets. (e.g. Students to subjects) A relation between a and b is written as aRb. Binary: subset of cartesian product.

N-ary: a set of n-tuples

N = 1: urinary N = 2: binary N = 3: ternary $N = \dots : n-ary$

Can be represented as a directed graph.

Properties:

Reflexive: when every element is related to itself

Symmetric: if aRb then bRa

Transitive: if aRb and bRc then aRc

Combining relations:

R over A×B, S over B×C R combined with S (S oR) over A×C such that $(a,c)\in S\circ R$ if and only if there exists $b\in B$ such that $(a,b) \in R \& (b,c) \in S$

Closures:

The closure of relation R with respect to some property P is given by the relation S where S is R union the minimum number of tuples that ensures property P holds. Can be Symmetric, Transitive or Reflexive.

-Partial orders:

R over SxS is a partial order if it is reflexive, anti-symmetric and transitive. Denoted as: (S, \sqsubseteq) .

-Lexicographical ordering:

Effectively a generalisation of alphabetical ordering. All "A....." comes before all "B....."