Devoir surveillé n°9 Version n°2

Durée : 3 heures, calculatrices et documents interdits

I. Borne de Cramér-Rao pour un estimateur sans biais.

On se donne un réel $p \in [0, 1]$ et un entier naturel $n \ge 1$. Sur un espace probabilisé fini (Ω, P) , on définit n variables aléatoires X_1, \ldots, X_n mutuellement indépendantes, de loi de Bernoulli de paramètre p.

L'objectif de ce problème est la construction d'un estimateur de p appelé estimateur du maximum de vraisemblance, de l'étude de sa consistance et enfin de son optimalité au sens du critère quadratique.

I – Estimateur du maximum de vraisemblance.

On fixe n valeurs x_1, \ldots, x_n dans $\{0, 1\}$. On définit aussi la fonction de vraisemblance par

$$\mathcal{L}(p; x_1, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n)$$

et la fonction de log-vraisemblance par

$$L(p; x_1, \ldots, x_n) = \ln(\mathcal{L}(p; x_1, \ldots, x_n)).$$

- 1) Exprimer $P(X_1 = x_1)$ en fonction de x_1 et de p, uniquement.
- **2)** En déduire que $L(p; x_1, ..., x_n) = \ln(p) \sum_{k=1}^n x_k + \ln(1-p) \left(n \sum_{k=1}^n x_k\right)$.
- 3) En déduire que \mathscr{L} admet un maximum et l'atteint en une unique valeur \hat{p} , que l'on précisera.

II – Moyenne empirique.

On considère la variable aléatoire

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- 4) Déterminer $E[\hat{p}_n]$.
- 5) Déterminer aussi $V(\hat{p}_n)$ et en déduire l'existence et la valeur de la limite lorsque n tend vers $+\infty$ de $\mathbb{E}[(\hat{p}_n p)^2]$.
- **6)** Montrer que pour tout $\varepsilon > 0$, $P(|\hat{p}_n p| > \varepsilon) \xrightarrow[n \to +\infty]{} 0$.

III – Borne de Cramér-Rao.

Soit $T:[0,1]^n\to\mathbb{R}$ telle que

$$E[T(X_1,\ldots,X_n)]=p.$$

On reprend les notations de la partie 1) en prenant pour n-uplet (x_1, \ldots, x_n) la variable aléatoire (X_1, \ldots, X_n) . La fonction de vraisemblance est donc maintenant une variable aléatoire, que l'on notera toujours $\mathcal{L}(p; X_1, \ldots, X_n)$. La fonction de log-vraisemblance est donc maintenant la variable aléatoire

$$L(p; X_1, ..., X_n) = \ln(\mathcal{L}(p; X_1, ..., X_n)) = \ln(p) \sum_{k=1}^n X_k + \ln(1-p) \sum_{k=1}^n (1-X_k).$$

On définit la variable aléatoire de score du modèle comme la dérivée de la log-vraisemblance par rapport à p:

$$S(p; X_1, \dots, X_n) = \frac{\mathrm{d}}{\mathrm{d}p} L(p; X_1, \dots, X_n) = \frac{1}{\mathscr{L}(p; X_1, \dots, X_n)} \frac{\mathrm{d}}{\mathrm{d}p} \mathscr{L}(p; X_1, \dots, X_n).$$

On définit enfin l'information de Fisher comme

$$I(p) = \mathbb{E}\left[S(p ; X_1, \dots, X_n)^2\right]$$

7) Question préliminaire : soit X et Y deux variables aléatoires réelles définies sur (Ω, P) . En étudiant le trinôme V(X+tY), montrer l'inégalité de Cauchy-Schwarz :

$$|Cov(X,Y)| \le \sqrt{V(X)}\sqrt{V(Y)}.$$

- 8) Montrer que $E[S(p; X_1, ..., X_n)] = 0$. Indication: on pensera à utiliser la formule de transfert.
- 9) Montrer que $Cov(S(p; X_1, \ldots, X_n), T(X_1, \ldots, X_n)) = \frac{\mathrm{d}}{\mathrm{d}p} \mathbb{E}[T(X_1, \ldots, X_n)].$
- 10) En déduire l'inégalité de Cramér-Rao:

$$V(T(X_1,\ldots,X_n)) \geqslant \frac{1}{I(p)}.$$

- 11) Calculer l'information de Fisher I(p).
- 12) Discuter des résultat obtenus dans cette partie et dans la partie précédente.

II. Endomorphismes cycliques et dérivations.

Soit E un espace-vectoriel réel et $f \in \mathcal{L}(E)$.

On dit que f est cyclique s'il existe $a \in E$ tel que la famille $(f^k(a))_{k \in \mathbb{N}}$ engendre E. Dans cette situation, on dit que a est associ'e à f.

On note $\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$ l'ensemble des endomorphismes commutant avec f.

On note $\mathscr{P}(f) = \{ \alpha_0 \mathrm{Id}_E + \alpha_1 f + \dots + \alpha_k f^k \mid k \in \mathbb{N}, \ (\alpha_0, \dots, \alpha_k) \in \mathbb{R}^{k+1} \}$ l'ensemble des polynômes en f.

Partie I : Questions préliminaires.

- 1) Démontrer que $\mathscr{C}(f)$ est un sous-espace vectoriel de $(\mathscr{L}(E), +, \cdot)$, contenant Id_E et stable par composition.
- 2) Soit $g \in \mathscr{C}(f)$, montrer que $\mathscr{P}(g) \subset \mathscr{C}(f)$.

Partie II: Étude en dimension finie.

On suppose dans cette partie que E est de dimension finie, égale à n, que f est cyclique et l'on considère $a \in E$ associé à f.

- 3) Justifier l'existence d'un plus grand entier naturel p tel que $(a, f(a), \ldots, f^{p-1}(a))$ soit une famille libre.
- 4) Démontrer que $(a, f(a), \ldots, f^{p-1}(a))$ est une base de E. Que vaut donc p?
- 5) Soit $g \in \mathcal{C}(f)$, soit $\alpha_0, \ldots, \alpha_{n-1}$ tels que $g(a) = \alpha_0 a + \alpha_1 f(a) + \cdots + \alpha_{n-1} f^{n-1}(a)$. On note $h = \alpha_0 \mathrm{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$. Démontrer que g = h.
- **6)** En déduire que $\mathscr{C}(f) = \mathscr{P}(f)$.
- 7) Démontrer que $(\mathrm{Id}_E, f, \ldots, f^{n-1})$ est une base de $\mathscr{P}(f)$.

Partie III : Dérivations discrète et formelle en dimension finie.

On suppose que $E = \mathbb{R}_n[X]$, soit a un réel non nul. On considère les endomorphismes D et Δ de $\mathbb{R}_n[X]$ définis par

$$D: P \to P'$$
 et $\Delta: P \to P(X+a) - P(X)$.

- 8) Montrer que si $P \in \mathbb{R}_n[X]$ n'est pas constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- 9) En déduire que Δ est cyclique. Quels sont les polynômes associés à Δ ?

- **10)** Montrer que $D \in \mathscr{P}(\Delta)$.
- 11) Démontrer que D est cyclique.
- 12) Montrer que $\mathscr{C}(D) = \mathscr{C}(\Delta)$.

Partie IV : Étude de ces dérivations en dimension infinie.

On considère maintenant les endomorphismes D et Δ étendus à $\mathbb{R}[X]$. Soit $\varphi \in \mathscr{C}(\Delta)$.

- **13)** Soit $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$. Démontrer que $P \in \mathbb{R}_n[X] \Leftrightarrow \Delta^{n+1}(P) = 0$.
- **14)** En déduire que, pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par φ .
- **15)** Démontrer alors que, pour tout $P \in \mathbb{R}[X]$, $\varphi(P') = [\varphi(P)]'$.
- 16) Démontrer que $\mathscr{C}(\Delta) = \mathscr{C}(D)$.
- 17) Montrer que Δ n'appartient pas à $\mathcal{P}(D)$.

