Model Free Control Bias Maximization and Double Q-Learning

Marius Lindauer

102

Leibniz Universität Hannover

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r\mid a=a_1)=(r\mid a=a_2)=0$
 - lacktriangle assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- ullet Assume there are prior samples of taking action a_1 and a_2

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$
 - lacktriangle assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- ullet Assume there are prior samples of taking action a_1 and a_2
- ullet Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of ${\sf Q}$
- ullet Use an unbiased estimator for Q, e.g.,

$$\hat{Q}(s, a_1) = \frac{1}{N(s, a_1)} \sum_{i=1}^{N(s, a_1)} r_i(s, a_1)$$

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$ assume that reward is stochastic (e.g., $\mathcal{N}(0,1)$)
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- ullet Assume there are prior samples of taking action a_1 and a_2
- ullet Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of ${\sf Q}$
- Use an unbiased estimator for Q, e.g., $\hat{Q}(s,a_1) = \frac{1}{N(s,a_1)} \sum_{i=1}^{N(s,a_1)} r_i(s,a_1)$
- Let $\hat{\pi} \in \arg\max_{a} \hat{Q}(s,a)$ be the greedy policy wrt the estimated \hat{Q}

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$
 - lacktriangle assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- ullet Assume there are prior samples of taking action a_1 and a_2
- ullet Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of ${\sf Q}$
- Use an unbiased estimator for Q, e.g., $\hat{Q}(s,a_1) = \frac{1}{N(s,a_1)} \sum_{i=1}^{N(s,a_1)} r_i(s,a_1)$
- Let $\hat{\pi} \in \arg\max_{a} \hat{Q}(s,a)$ be the greedy policy wrt the estimated \hat{Q}
- Even though each estimate of the state-action values is unbiased, the estimate of $\hat{\pi}$'s value $\hat{V}^{\hat{\pi}}$ can be biased:

$$\hat{V}^{\hat{\pi}}(s) = \mathbb{E}[\max \hat{Q}(s, a_1), \hat{Q}(s, a_2)]
\geq \max[\mathbb{E}[\hat{Q}(s, a_1)], \mathbb{E}[\hat{Q}(s, a_2)]]
= \max[0, 0] = V^{\pi}$$

(where the inequality comes from Jensens' inequality.)

Double Q-Learning

- The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- Avoid using max of estimates as estimate of max of true values
- Instead split samples and use to create two independent unbiased estimates of $Q_1(s_1,a_i)$ and $Q_2(s_1,a_i). \forall a \in A$
 - ▶ Use one estimate to select max action: $a^* \in \arg \max_{a \in A} Q_1(s_1, a)$
 - Use other estimate to estimate value of a^* : $Q_2(s, a^*)$
 - Yields unbiased estimate: $\mathbb{E}(Q_2(s, a^*)) = Q(s, a^*)$
- Unbiased estimate of the max state-action value because of independent samples to estimate the value

Double Q-Learning for Full MDP

- Initialization:
 - $Q_1(s,a)$ and $Q_2(s,a)$ $\forall s \in S, a \in A$
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- Loop
 - ▶ Select a_t using ϵ -greedy $\pi(s) \in \arg \max_{a \in A} Q_1(s_t, a) + Q_2(s_t, a)$
 - ▶ Observe (r_t, s_{t+1})
 - With 50-50 probability either

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in A} Q_2(s_{t+1}, a) - Q_1(s_t, a_t))$$
 or

▶ t = t + 1

Double Q-Learning for Full MDP

- Initialization:
 - $Q_1(s,a)$ and $Q_2(s,a)$ $\forall s \in S, a \in A$
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- Loop
 - ▶ Select a_t using ϵ -greedy $\pi(s) \in \arg \max_{a \in A} Q_1(s_t, a) + Q_2(s_t, a)$
 - ▶ Observe (r_t, s_{t+1})
 - With 50-50 probability either

- ▶ t = t + 1
- Doubles the memory, same computation requirements, data requirements are subtle might reduce amount of exploration needed due to lower bias

Double Q-Learning [Sutton & Barto 2018]

Due to the maximization bias, Q-learning spends much more time selecting sub-optimal actions ("left") than double Q-learning.

