Floer Talk

D. Zack Garza

Wednesday 15th April, 2020

Contents

1	Background and Notation		1
2	Talk	:	4
	2.1	8.3: The Space of Perturbations of H	4
	2.2	Review 8.2	8
	2.3	8.4: Linearizing the Floer equation: The Differential of \mathcal{F}	8

1 Background and Notation

From the text:

- $(W, \omega \in \Omega_2(W))$ is a (compact?) symplectic manifold
- $C^{\infty}(A, B)$ is the space of smooth maps with the C^{∞} topology (idea: uniform convergence of a function and all derivatives on compact subsets)
- $C^{\infty}_{loc}(A,B)$ is the space with the C^{∞} uniform convergence topology on compact subsets of A
- $H \in C^{\infty}(W; \mathbb{R})$ a Hamiltonian with X_H its vector field.
- $H \in C^{\infty}(W \times \mathbb{R}; \mathbb{R})$ given by $H_t \in C^{\infty}(W; \mathbb{R})$ is a time-dependent Hamiltonian.
- The action functional is given by

$$\mathcal{A}_H : \mathcal{L}W \longrightarrow \mathbb{R}$$

$$x \mapsto -\int_{\mathbb{D}} u^* \omega + \int_0^1 H_t(x(t)) dt$$

where $\mathcal{L}W$ is the contractible loop space of $W, u : \mathbb{D} \longrightarrow W$ is an extension of $x : S^1 \longrightarrow W$ to the disc with $u(\exp(2\pi it)) = x(t)$.

- Example:
$$W = \mathbb{R}^{2n} \implies A_H(x) = \int_0^1 (H_t \ dt - p \ dq).$$

- Critical points of the action functional A_H are given by orbits, i.e. contractible loops $x, y \in \mathcal{L}W$
- In general, x, y are two periodic orbits of H of period 1.

• The Floer equation is given by

$$\frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} + \operatorname{grad} H_t(u) = 0.$$

This is a first-order perturbation of the Cauchy-Riemann equations, for which solutions would be J-holomorphic curves.

- Solutions are functions $u \in C^{\infty}(\mathbb{R} \times S^1; W) = C^{\infty}(\mathbb{R}; \mathcal{L}W)$
 - They correspond to "embedded cylinders" with sides u and contractible caps x, y regarded as loops in W.
 - They also correspond to paths in $\mathcal{L}W$ from $x \longrightarrow y$ (precisely: trajectories of the vector field $-\operatorname{grad}\mathcal{A}_H$)

Fig. 6.5

Here $u(s) \in \mathcal{L}W$ is a loop with value at time t given by u(s,t), and $\lim_{s \to -\infty} u_s(t) = x$, $\lim_{s \to \infty} u_s(t) = y$.

- The energy of a solution is $E(u) = \int_{\mathbb{R} \times S^1} |\partial_s u|^2 ds dt$.
- $\mathcal{M} = \{u \in C^{\infty}(\mathbb{R}; \mathcal{L}W) \mid E(u) < \infty\}$ (contractible solutions of finite energy), which is compact.
- $\mathcal{M}(x,y)$ is the space of solutions of the Floer equation connecting orbits x and y.
- $C_{\searrow}(x,y)$:

$$C_{\searrow}(x,y) := \left\{ u \in C^{\infty}(\mathbb{R} \times S^{1}; W) \; \middle| \; \lim_{s \to -\infty} u(s,t) = x(t), \quad \lim_{s \to \infty} u(s,t) = y(t), \\ \left| \frac{\partial u}{\partial s}(s,t) \right| \le Ke^{-\delta|s|}, \qquad \left| \frac{\partial u}{\partial t}(s,t) - X_{H}(u) \right| \le Ke^{-\delta|s|} \right\}$$

where $K, \delta > 0$ are constants depending on u. So

$$|\partial_s u(s,t)|, |\partial_t u(s,t) - X_H(u)| \sim e^{|s|}.$$

From the Appendices

- Relatively compact: has compact closure.
- Compact operator: the image of bounded sets are relatively compact.
- Index of an operator: dim ker dim coker.
- Fredholm operators: those for which the index makes sense, i.e. $\dim \ker < \infty$, $\dim \operatorname{coker} < \infty$.
- Elliptic operators: generalize the Laplacian Δ , coefficients of highest order derivatives are positive, principal symbol is invertible (???)
- Locally integrable: integrable on every compact subset

- Sobolev spaces: in dimension 1, define $||u(t)||_{s,p} = \sum_{i=0}^{s} ||\partial_t^i u(t)||_{L^p}$ on $C^{\infty}(\overline{U})$, then take the completion and denote $W^{s,p}(\overline{U})$. Yields a distribution space, elements are functions with weak derivatives.
- Distribution: $C_c^{\infty}(U)^{\vee}$, the dual of the space of smooth compactly supported functions on an open set $U \subset \mathbb{R}^n$.

2 Talk

Overview: Analyze the space $\mathcal{M}(x,y)$ of solutions to the Floer equation connecting two orbits x,y of H. Show $\mathcal{M}(x,y)$ is in fact a manifold of dimension $\mu(x) - \mu(y)$.

Strategy:

- 1. Describe $\mathcal{M}(x,y)$ as the zero set of a section of a vector bundle over the Banach manifold $\mathcal{P}(x,y)$.
- 2. Apply the Sard-Smale theorem: perturb H to make $\mathcal{M}(x,y)$ the inverse image of a regular value of some map.
- 3. Show that the tangent maps (?) are Fredholm operators of index $\mu(x) \mu(y) = \dim \mathcal{M}(x,y)$.

Goals:

- 8.3: Overview and big picture
- 8.4: Formula for linearization of \mathcal{F} .

2.1 8.3: The Space of Perturbations of H

Goal: given a fixed Hamiltonian $H \in C^{\infty}(W \times S^1; \mathbb{R})$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.

Start by trying to construct a subspace $\mathcal{C}^{\infty}_{\varepsilon}(H) \subset \mathcal{C}^{\infty}(W \times S^1; \mathbb{R})$, the space of perturbations of H depending on a certain sequence $\varepsilon = \{\varepsilon_k\}$, and show it is a dense subspace.

Idea: similar to how you build $L^2(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x},t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon = \{ \varepsilon_k \mid k \in \mathbb{Z}^{\geq 0} \} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W, t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$\left| d^k h(\mathbf{x}, t) \right| = \max \left\{ d^{\alpha} h(\mathbf{x}, t) \mid |\alpha| = k \right\},$$

the maximum over all sets of multi-indices α of length k.

Note: I interpret this as

$$d^{\alpha_1,\alpha_2,\cdots,\alpha_k}h = \frac{\partial^k h}{\partial x_{\alpha_1}\ \partial x_{\alpha_2}\cdots\partial x_{\alpha_k}},$$

the partial derivatives wrt the corresponding variables.

• Define a norm on $C^{\infty}(W \times S^1; \mathbb{R})$:

$$||h||_{\varepsilon} = \sum_{k>0} \varepsilon_k \sup_{(x,t)\in W\times S^1} \left| d^k h(x,t) \right|.$$

• Since $W \times S^1$ is assumed compact (?), fix a finite covering $\{B_i\}$ of $W \times S^1$ such that

$$\bigcup_{i} B_{i}^{\circ} = W \times S^{1}.$$

- Choose them in such a way we obtain charts

$$\Psi_i: B_i \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2n+1}$$
 (?).

• Obtain the computable form

$$||h||_{\varepsilon} = \sum_{k>0} \varepsilon_k \sup_{(x,t) \in W \times S^1} \sup_{i,z \in B(0,1)} \left| d^k(h \circ \Psi_i^{-1})(z) \right|.$$

Define

$$C_{\varepsilon}^{\infty} = \left\{ h \in C^{\infty}(W \times S^{1}; \mathbb{R}) \mid \|h\|_{\varepsilon} < \infty \right\} \subset C^{\infty}(W \times S^{1}; \mathbb{R}),$$

which is a Banach space (normed and complete).

• Show that the sequence $\{\varepsilon_k\}$ can be chosen so that C_{ε}^{∞} is a *dense* subspace for the C^{∞} topology, and in particular for the C^1 topology.

Proposition 2.1.

Such a sequence $\{\varepsilon_k\}$ can be chosen.

Lemma 2.2.

 $C^{\infty}(W \times S^1; \mathbb{R})$ with the C^1 topology is separable as a topological space (contains a countable dense subset).

Proof (of Lemma, Sketch).

First prove for C^0 :

- Idea: reduce to polynomials in \mathbb{R}^m .
- Embed $W \times S^1 \hookrightarrow [-M, M]^m \cong I^m \subset \mathbb{R}^m$ for some large m, reduces to proving it for $C^{\infty}(I^m; \mathbb{R})$.
- Recall Stone-Weierstrass:

For $A \leq C^0(X;\mathbb{R})$ a subalgebra with X compact Hausdorff and A containing a nonzero constant function, A is dense iff it separates points (for all $a \neq b \in X$ there exists $f \in A$ such that $f(a) \neq f(b)$)

• Apply to $A = \mathbb{Q}[x_1, \dots, x_m]$ the subalgebra of polynomial functions, the nonzero constant function c(x) = 1, and show it separates points via f(x) = x - a, then f(a) = 0 and $f(b) = a - b \neq 0$ by assumption.

• Thus A is a countable dense subset.

Then prove for C^1 :

- Idea: Take polynomials convolved with a countable sequence of bump functions, which is still a countable dense subset.
- Choose a smooth bump function χ supported on B(0,1)
- Define the sequence $\chi_k(x) := k^m \chi(kx)$.
- Prove that $(f * \chi_k) \xrightarrow{k \longrightarrow \infty} f$ in the C^0_{loc} sense (?) Show that for a fixed k, any other sequence $g_\ell \longrightarrow f$ in C^∞_{loc} , we have $g_\ell * \chi_k \longrightarrow f * \chi_k$ in the C_{loc}^0 sense using

$$|g_{\ell} - f| \longrightarrow 0 \implies \sup_{K} \left| \frac{\partial}{\partial x_{i}} (g_{\ell} - f) * \chi_{k} \right| \le \sup_{k} |g_{\ell} - f| \cdot (\cdots) \longrightarrow 0 \quad \forall i$$

- Conclude $\lim_{\ell} \lim_{k} g_{\ell} * \chi_{k} = f$.
- Taking g_{ℓ} to be polynomial approximations, the following subset is countable and dense:

$$\bigcup_{k\in\mathbb{Z}^{\geq 0}} \left\{ P * \chi_k \mid P \in \mathbb{Q}[x_1, \cdots, x_m] \right\}$$

which are pushed through the charts Ψ_i to actually compute.

The second part of this proof generalizes to C^{∞} .

Proof (of Proposition, Sketch).

- By the lemma, produce a sequence $\{f_n\} \subset C^{\infty}(W \times S^1; \mathbb{R})$ dense for the C^1 topology.
- Using the norm on $C^n(W \times S^1; \mathbb{R})$ for the f_n , define

$$\frac{1}{\varepsilon_n} = 2^n \max \left\{ \|f_k\| \mid k \le n \right\} \implies \varepsilon_n \sup |d^n f_k(x, t)| \le 2^{-n}$$

which is summable.

Why does this imply density? I don't know.

The next proposition establishes a version of this theorem with compact support:

Proposition 2.3.

For any $(\mathbf{x},t) \subset U \in W \times S^1$) there exists a $V \subset U$ such that every $h \in C^{\infty}(W \times S^1; \mathbb{R})$ can be approximated in the C^1 topology by functions in C_{ε}^{∞} supported in U.

Then fix a time-dependent Hamiltonian H_0 with nondegenerate periodic orbits and consider

$$\left\{h \in C_{\varepsilon}^{\infty}(H_0) \mid h(x,t) = 0 \text{ in some } U \supseteq \text{the 1-periodic orbits of } H_0\right\}$$

Then supp(h) is "far" from $Per(H_0)$, so

$$||h||_{\varepsilon} \ll 1 \implies \operatorname{Per}(H_0 + h) = \operatorname{Per}(H_0)$$

and are both nondegenerate.

2.2 Review 8.2

What is \mathcal{F} ?

We started with the unadorned Floer map:

$$\mathcal{F}: \mathcal{C}^{\infty}\left(\mathbb{R} \times S^{1}; W\right) \longrightarrow \mathcal{C}^{\infty}\left(\mathbb{R} \times S^{1}; TW\right)$$
$$u \mapsto \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \operatorname{grad}_{u}\left(H_{t}\right)$$

and promoted this to a map of Banach spaces

$$\mathcal{F}: \mathcal{P}^{1,p}(x,y) \longrightarrow \mathcal{L}^p(x,y)$$
$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J(u) \frac{\partial u}{\partial t} + \operatorname{grad} H_t(u).$$

What is the LHS? It is the space of maps

$$\mathcal{P}^{1,p}(x,y):?\longrightarrow?$$
 $(s,t)\mapsto \exp_{w(s,t)}Y(s,t).$

where $Y \in W^{1,p}(w^*TW)$ and $w \in C^{\infty}_{\searrow}(x,y)$.

2.3 8.4: Linearizing the Floer equation: The Differential of \mathcal{F}

Choose $m > n = \dim(W)$ and embed $TW \hookrightarrow \mathbb{R}^m$ to identify tangent vectors (such as Z_i , tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^m .

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify

im
$$\mathcal{F} = C^{\infty}(\mathbb{R} \times S^1; \mathbb{R}^m)$$
 or $L^p(\mathbb{R} \times S^1; W)$,

and we seek to compute its differential $d\mathcal{F}$.

We've just replaced the codomain here.

Recall that

- x, y are contractible loops in W that are nondegenerate critical points of the action functional
- u ∈ M(x, y) ⊂ C[∞]_{loc} denotes a fixed solution to the Floer equation,
 C_{\(\sigma\)}(x, y) was the set of solutions u : ℝ × S¹ → W satisfying some conditions.

Recall:

$$C_{\searrow}(x,y) := \{ u \in C^{\infty}(\mathbb{R} \times S^1; W) \mid \lim_{s \to -\infty} u(s,t) = x(t), \quad \lim_{s \to \infty} u(s,t) = y(t) \}$$
$$\left| \frac{\partial u}{\partial t}(s,t) \right| \quad \text{and} \quad \left| \frac{\partial u}{\partial t}(s,t) - X_H(u) \right| \sim \exp(|s|)$$

Fix a solution

$$u \in \mathcal{M}(x,y) \subset C^{\infty}_{loc}(\mathbb{R} \times S^1; W).$$

We lift each solution to a map

$$\tilde{u}: S^2 \longrightarrow W$$

in the following way: the loops x, y are contractible, so they bound discs. So we extend by pushing these discs out slightly::

From earlier in the book, we have

Assumption (6.22):

For every $w \in C^{\infty}(S^2, W)$ there exists a symplectic trivialization of the fiber bundle w^*TW , i.e. $\langle c_1(TW), \pi_2(W) \rangle = 0$ where c_1 denotes the first Chern class of the bundle TW.

Note: I don't know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections) and are defined inductively:

$$c_1(TW) = e(\Lambda^n(TW)) \in H^2(W; \mathbb{Z})$$

Assumption is satisfied when all maps $S^2 \longrightarrow W$ lift to $B^3 \iff \pi_2(W) = 0$.

We have a pullback that is a symplectic fiber bundle:

$$\tilde{u}^*TW \xrightarrow{d\tilde{u}} TW
\downarrow \qquad \downarrow \qquad \downarrow
S^2 \xrightarrow{\tilde{u}} W$$

• Using the assumption, trivialize the pullback \tilde{u}^*TW to obtain an orthonormal unitary frame

$$\{Z_i\}_{i=1}^{2n} \subset T_{u(s,t)}W$$

where

– The frame depends smoothly on $(s,t) \in S^2$,

 $-\lim_{s \to \infty} Z_i \text{ exists for each } i.$

$$\frac{\partial}{\partial s}$$
, $\frac{\partial^2}{\partial s^2}$, $\frac{\partial^2}{\partial s \partial t}$ $\curvearrowright Z_i \stackrel{s \to \pm \infty}{\longrightarrow} 0$ for each i

Claim: such trivializations exist, "using cylinders near the spherical caps in the figure".

Recall what $\mathcal{P}^{1,p}(x,y), J, X_t$ are here.

• Use this frame to define a chart centered at u of $\mathcal{P}^{1,p}(x,y)$ given by

$$\iota: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \longrightarrow \mathcal{P}^{1,p}(x,y)$$

$$\mathbf{y} = (y_1, \dots, y_{2n}) \longmapsto \exp_u\left(\sum y_i Z_i\right).$$

- Note that the derivative at zero is $\sum_{i=1}^{2n} y_i Z_i$.
- $\bullet\,$ Define and compute the differential of the composite map $\tilde{\mathcal{F}}$ defined as follows:

$$\mathcal{P}^{1,p}(x,y) \xrightarrow{\mathcal{F}} L^p\left(\mathbb{R} \times S^1; TW\right) \xrightarrow{} L^p\left(\mathbb{R} \times S^1; \mathbb{R}^m\right)$$

$$u \xrightarrow{\tilde{\mathcal{F}}} \frac{\partial u}{\partial s} + J(u)\left(\frac{\partial u}{\partial t} - X_t(u)\right)$$

- From now on, let \mathcal{F} denote $\tilde{\mathcal{F}}$.
- Take the vector

$$Y(s,t) := (y_1(s,t),\cdots) \in \mathbb{R}^{2n} \subset \mathbb{R}^m$$

- View Y as a vector in \mathbb{R}^m tangent to W, given by $Y = \sum_{i=1}^{2n} y_i Z_i$.
- Plug u + Y into the equation for \mathcal{F} , directly yielding

$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} - J(u)X_t(u)$$

$$\implies \mathcal{F}(u+Y) = \frac{\partial(u+Y)}{\partial s} + J(u+Y)\frac{\partial(u+Y)}{\partial t} - J(u+Y)X_t(u+Y)$$

• Extract the part that is linear in Y and collect terms:

$$(d\mathcal{F})_{u}(Y) = \frac{\partial Y}{\partial s} + (dJ)_{u}(Y)\frac{\partial u}{\partial t} + J(u)\frac{\partial Y}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y)$$

$$= \left(\frac{\partial Y}{\partial s} + J(u)\frac{\partial Y}{\partial t}\right) + \left((dJ)_{u}(Y)\frac{\partial u}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y)\right)$$

- This is a sum of two differential operators:
 - * One of order 1, one of order 2 (Perspective 1)
 - * The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate from this form)
- Now compute in charts. Need a lemma:

Lemma 2.4(Leibniz Rule).

For any source space X and any maps

$$J: X \longrightarrow \operatorname{End}(\mathbb{R}^m)$$

 $Y, v: X \longrightarrow \mathbb{R}^m$

we have

$$(dJ)(Y) \cdot v = d(Jv)(Y) - Jdv(Y).$$

Proof.

Differentiate the map

$$J \cdot v : X \longrightarrow \mathbb{R}^m$$
$$x \mapsto J(x) \cdot v(x)$$

to obtain

$$J(x+Y)v(x+y) = (J(x) + (dJ)_x(Y)) \cdot (v(x) + (dv)_x(Y)) + \cdots$$

= $J(x) \cdot v(x) + J(x) \cdot (dv)_x(Y) + (dJ)_x(Y) \cdot v(x) + (dJ)_x(Y) \cdot (dv)_x(Y) + \cdots$

$$\implies d(J \cdot v)_x(Y) = (dJ)_x(Y) \cdot v(x) + J(x) \cdot (dv)_x(Y).$$

• Using the chart ι defined by $\{Z_i\}$ to write $Y = \sum_{i=1}^{2n} y_i Z_i$ and thus

$$(d\mathcal{F})_u(Y) = O_0 + O_1$$

where O_0 are order 0 terms ("they do not differentiate the y_i ") and the O_1 are order 1 terms:

$$O_0 = \sum_{i=1}^{2n} \frac{\partial y_i}{\partial s} Z_i + \frac{\partial y_i}{\partial t} J(u) Z_i$$

$$O_1 = \sum_{i=1}^{2n} y_i \left(\frac{\partial Z_i}{\partial s} + J(u) \frac{\partial Z_i}{\partial t} + (dJ)_u(Z_i) \frac{\partial u}{\partial t} - J(u)(dX_t)_u Z_i - (dJ)_u(Z_i) X_t \right).$$

Note: this may not exactly be correct, the wording is ambiguous:

$$(d\mathcal{F})_{u}(Y) = \sum \left(\frac{\partial y_{i}}{\partial s} Z_{i} + \frac{\partial y_{i}}{\partial t} J(u) Z_{i}\right)$$

$$+ \sum y_{i} \left(\frac{\partial Z_{i}}{\partial s} + J(u) \frac{\partial Z_{i}}{\partial t} + (dJ)_{u}(Z_{i}) \frac{\partial u}{\partial t}\right)$$

$$- J(u)(dX_{t})_{u} Z_{i} - (dJ)_{u}(Z_{i}) X_{t}.$$

The terms on the first line are "of order 0", that is, they do not differentiate the y_i . We begin by studying the "order 1" terms, the remaining ones. It is

• Study O_1 first, which (claim) reduce to

$$O_1 = \sum_{i=1}^{2n} \left(\frac{\partial y_i}{\partial s} + J_0 \frac{\partial y_i}{\partial t} \right) Z_i = \bar{\partial}(y_1, \dots, y_{2n}).$$

where J_0 is the standard complex structure on $\mathbb{R}^{2n} = \mathbb{C}^n$

- The secon equality follows from the assumption that the Z_i are symplectic and orthonormal.
- Note that this writes $(d\mathcal{F})_u(Y) = O_0 + O_C R$, a sum of an order zero and a Cauchy-Riemann operator.
- Note that since we've computed in charts, we have actually computed the differential of \mathcal{F}_u in the following diagram

$$W^{1,p}(\mathbb{R} \times S^1; \mathbb{R}^{2n}) \longrightarrow \mathcal{P}^{1,p}(x,y) \xrightarrow{\mathcal{F}} L^p\left(\mathbb{R} \times S^1; TW\right) \longrightarrow L^p\left(\mathbb{R} \times S^1; \mathbb{R}^m\right)$$

$$u \xrightarrow{\tilde{\mathcal{F}}} \frac{\partial u}{\partial s} + J(u)\left(\frac{\partial u}{\partial t} - X_t(u)\right)$$

For every such smooth map $u: \mathbb{R} \times S^1 \longrightarrow W$, $(d\mathcal{F})_u(Y) = O_1 + O_0$ where O_i are differential operators of order i, and in fact O_1 can be chosen to be a Cauchy-Riemann operator. In this specific chart, we can in fact decompose $(d\mathcal{F})_u(Y) = \bar{\partial}Y + SY$ where $S: \mathbb{R} \times S^1 \longrightarrow \operatorname{End}(\mathbb{R}^n)$ is linear of order 0, and in fact we have

Proposition 2.5.

If u solves Floer's equation, then $(d\mathcal{F})_u = \bar{\partial} + S(s,t)$ where S is linear, tends to a symmetric operator as $s \longrightarrow \pm \infty$, and $\lim \partial_t S = 0$ uniformly in t.

There is a very long computational proof.

Denote the order 0 part of $(d\mathcal{F})_u$ as $Y \mapsto S \cdot Y$ so $S : \mathbb{R} \times S^1 \longrightarrow \operatorname{End}(\mathbb{R}^m)$ and define $S^{\pm} := \lim_{s \longrightarrow \pm \infty} S(s, \cdot)$.

Proposition 2.6.

The equation $\partial_t Y = J_0 S^{\pm} Y$ linearizes Hamilton's equation $\dot{z} = X_t(z)$ at $x = \lim_{s \to \pm \infty} u$ for S^+ and S^- respectively.

Proof: uses previous proposition.

Given a solution u, the product

$$u \cdot s :? \longrightarrow ?$$

 $(\sigma, t) \mapsto u(\sigma + s, t)$

is also a solution and $\mathcal{F}(u \cdot s) = 0$ for all s.

Punchline:

Thus $\frac{\partial u}{\partial s}$ is a solution of the linearized equation, since

$$0 = \frac{\partial}{\partial s} \mathcal{F}(u \cdot s) = (d\mathcal{F})_u \left(\frac{\partial u}{\partial s}\right).$$

Along any nonconstant solution connecting x and y, dim $\ker(d_{\mathcal{F}})_u \geq 1$.