

Doc. 1-1 on ss 6 from WPIL using MAX

©Derwent Information

Use of enamine derivatives as ultraviolet-A filters - are more stable than current UV-A filters

Patent Number: EP-852137

International patents classification: A61K-007/42 C07C-057/00 C07C-255/04 C07C-409/22 A61K-007/00 A61K-007/06 A61K-007/40 A61K-007/48 A61K-031/13 A61K-031/13 A61K-007/00 A61K-007/06 A61K-007/00 A61K-007/40 A61K 031/235 A61K-031/255 A61K-031/275 A61K-031/425 A61K-031/66 C07C-022/00 C07C-211/49 C07C-217/54

• Abstract :

EP-852137 A Use of enamine derivatives of formula (R3)(R4NH)C=C(R1)(R2) (I) as UV filters in cosmetic and pharmaceutical preparations for protection of hair or skin against sun-radiation, alone or in combination with UV absorbers is new: R1 = COOR5, COR5, CONR5R6, CN, SO2R5, SO2OR5 or P(=O)OR7OR8; R2 = COOR6, COR6, CONR5R6, CN, SO2R6, SO2OR6 or P(=O)OR7OR8; R3 = H, or optionally substituted aliphatic, cycloaliphatic, arylaliphatic or aromatic residue with up to 18C; R4 = optionally substituted 5-12C aromatic or heteroaromatic residue; and R5, R6 = H or aliphatic, arylaliphatic, cycloaliphatic, or optionally substituted aromatic with up to 18C; or R3-R8 together with their bonded carbon atoms may form a 5-6 membered ring which may be further annelated.

Patentee & Inventor(s):

USE - (I) are useful as UV-A filters (claimed).

ADVANTAGE - (I) show greater photostability than usual UV-A filters. (Dwg.0/0)

Publication data :

Patent Family: EP-852137 A2 19980708 DW1998-31 A61K-007/42 Ger 53p * AP: 1997EP-0119397 19971106 DSR: AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

JP10158140 A 19980616 DW1998-34 A61K-007/42 58p AP:

1997JP-0328052 19971128

AU9745406 A 19980604 DW1998-39 C07C-057/00 AP:

1997AU-0045406 19971127

DE19712033 A1 19980924 DW1998-44 A61K-007/42 AP:

1997DE-1012033 19970321

BR9706035 A 19990518 DW1999-25 C07C-409/22 AP:

1997BR-0006035 19971127

US5945091 A 19990831 DW1999-42 A61K-007/42 AP:

1997US-0972391 19971118

MX9709075 A1 19980501 DW2000-07 A61K-007/42 AP:

1997MX-0009075 19971125

US6037487 A 20000314 DW2000-20 C07C-255/04 FD: Div ex US5945091 AP: 1997US-0972391 19971118; 1999US-

0266968 19990312

Priority nº: 1997DE-1012033 19970321; 1996DE-1049381

19961129

Covered countries: 29 Publications count: 8

Accession codes :

Accession No : 1998-350154 [31] Related Acc. No.: 1998-313409 Sec. Acc. nº CPI: C1998-108199 • Derwent codes :

Manual code: CPI: A08-A03 A12-V04C B05-B01E B05-B01F B07-H B10-A08 B10-A09B B10-A15 B10-B02 B14-R05 D08-B09A D09-E E05-G01 E05-G02 E05-G03 E07-H03 E10-A09B E10-A10C E10-A10D E10-A15A E10-A15C E10-B02 E10-B04A2

E10-B04B

Derwent Classes: A96 B07 D21 E19

Patent assignee: (BADI) BASF AG Inventor(s): AUMULLER A; HABECK T; SCHEHLMANN V: WESTENFELDER H; WUNSCH T; AUMUELLER A; HAREMZA S; WUENSCH T

Update codes :

Basic update code:1998-31 Equiv. update code: 1998-34; 1998-39; 1998-44; 1999-25; 1999-42; 2000-07; 2000-

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK DEUTSCHLAND

(5) Int. Cl.⁶: A 61 K 7/42 A 61 K 31/235

A 61 K 31/235 A 61 K 31/425 A 61 K 31/275

(2) Aktenzeichen: 197 12 033.4
 (2) Anmeldetag: 21. 3. 97
 (3) Offenlegungstag: 24. 9. 98

① Anmelder:

BASF AG, 67063 Ludwigshafen, DE

@ Erfinder:

Habeck, Thorsten, Dr., 67149 Meckenheim, DE; Aumüller, Alexander, Dr., 67435 Neustadt, DE; Schehlmann, Volker, Dr., 67354 Römerberg, DE; Westenfelder, Horst, 67435 Neustadt, DE; Wünsch, Thomas, Dr., 67346 Speyer, DE; Haremza, Sylke, Dr., 69151 Neckargemünd, DE

(A) Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen

S Verwendung von Verbindungen der Formel I

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung hahen.

 R^{1} COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=

O, R⁷O-P(-OR⁸)=O; R² COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)= O, R⁷O-P(-OR⁸)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

R⁴ einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen; R⁵ bis

R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zu-

wobei die Variablen R^o bis R^o untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- bis 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Beschreibung

Die Erfindung betrifft die Verwendung von Enaminderivaten als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Epidermis oder menschliche Haare gegen UV-Strahlung, speziell im Bereich von 320 bis 400 nm.

Die in kosmetischen und pharmazeutischen Zubereitungen eingesetzten Lichtschutzmittel haben die Aufgabe, schädigende Einflüsse des Sonnenlichts auf die menschliche Haut zu verhindern oder zumindest in ihren Auswirkungen zu reduzieren. Daneben dienen diese Lichtschutzmittel aber auch dem Schutz weiterer Inhaltsstoffe vor Zerstörung oder Abhau durch UV-Strahlung. In haarkosmetischen Formulierungen soll eine Schädigung der Keratinfaser durch UV-Strahlen vermindert werden.

Das an die Erdoberfläche gelangende Sonnenlicht hat einen Anteil an UV-B- (280 bis 320 nm) und an UV-A-Strahlung (> 320 nm), welche sich direkt an den Bereich des sichtbaren Lichtes anschließen. Der Einfluß auf die menschliche Haut macht sich besonders bei der UV-B-Strahlung durch Sonnenbrand bemerkbar. Dementsprechend bietet die Industrie eine größere Zahl von Substanzen an, welche die UV-B-Strahlung absorbieren und damit den Sonnenbrand verhindern.

Nun haben dermatologische Untersuchungen gezeigt, daß auch die UV-A-Strahlung durchaus Hautschädigungen und Allergien hervorrufen kann, indem beispielsweise das Keratin oder Elastin geschädigt wird. Hierdurch werden Elastizität und Wasserspeichervermögen der Haut reduziert, d. h. die Haut wird weniger geschmeidig und neigt zur Faltenbildung. Die auffallend hohe Hautkrebshäufigkeit in Gegenden starker Sonneneinstrahlung zeigt, daß offenbar auch Schädigungen der Erbinformationen in den Zellen durch Sonnenlicht, speziell durch UV-A-Strahlung, hervorgerufen werden. All diese Erkenntnisse lassen daher die Entwicklung effizienter Filtersubstanzen für den UV-A-Bereich notwendig erschei-

Es besteht ein wachsender Bedarf an Lichtschutzmitteln für kosmetische und pharmazeutische Zubereitungen, die vor allem als UV-A-Filter dienen können und deren Absorptionsmaxima deshalb im Bereich von ca. 320 bis 380 nm liegen sollten. Um mit einer möglichst geringen Einsatzmenge die gewünschte Wirkung zu erzielen, sollten derartige Lichtschutzmittel zusätzlich eine hoch spezifische Extinktion aufweisen. Außerdem müssen Lichtschutzmittel für kosmetische Präparate noch eine Vielzahl weiterer Anforderungen erfüllen, beispielsweise gute Löslichkeit in kosmetischen Ölen, hohe Stabilität der mit ihnen hergestellten Emulsionen, toxikologische Unbedenklichkeit sowie geringen Eigengeruch und geringe Eigenfärbung.

Eine weitere Anforderung, der Lichtschutzmittel genügen müssen, ist eine ausreichende Photostabilität. Dies ist aber mit den bisher verfügbaren UV-A absorbierenden Lichtschutzmitteln nicht oder nur unzureichend gewährleistet.

In der französischen Patentschrift Nr. 2 440 933 wird das 4-(1,1-Dimethylethyl)-4'-methoxydibenzoylmethan als UV-A-Filter beschrieben. Es wird vorgeschlagen, diesen speziellen UV-A-Filter, der von der Firma GIVAUDAN unter der Bezeichnung "PAR-SOL 1789" verkauft wird, mit verschiedenen UV-B-Filtern zu kombinieren, um die gesamten UV-Strahlen mit einer Wellenlänge von 280 bis 380 nm zu absorbieren.

Dieser UV-A-Filter ist jedoch, wenn er allein oder in Kombination mit UV-B-Filtern verwendet wird, photochemisch nicht beständig genug, um einen anhaltenden Schutz der Haut während eines längeren Sonnenbades zu gewährleisten, was wiederholte Anwendungen in regelmäßigen und kurzen Abständen erfordert, wenn man einen wirksamen Schutz der Haut gegen die gesamten UV-Strahlen erzielen möchte.

Deshalb sollen gemäß EP 0514491 die nicht ausreichend photostabilen UV-A-Filter durch den Zusatz von 2-Cyan-3,3-diphenylacrylsäureestern stabilisiert werden, die selbst im UV-B-Bereich als Filter dienen.

Weiterhin wurde gemäß EP 251 398 schon vorgeschlagen, UV-A- und UV-B-Strahlung absorbierende Chromophore durch ein Bindeglied in einem Molekül zu vereinen. Dies hat den Nachteil, daß einerseits keine freie Kombination von UV-A- und UV-B-Filtern in der kosmetischen Zubereitung mehr möglich ist und daß Schwierigkeiten bei der chemischen Verknüpfung der Chromophore nur bestimmte Kombinationen zulassen.

Es bestand daher die Aufgabe, Lichtschutzmittel für kosmetische und pharmazeutische Zwecke vorzuschlagen, die im UV-A-Bereich mit hoher Extinktion absorbieren, die photostabil sind, eine geringe Eigenfarbe d. h. eine scharfe Bandenstrukur aufweise und je nach Substituent in Öl oder Wasser löslich sind.

Diese Aufgabe wurde erfindungsgemäß gelöst durch Verwendung von Verbindungen der Formel I

50

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt die Variablen folgende Bedeutung haben: R^1 COOR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R⁷O-P(-OR⁸)=O; R^2 COOR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=O, R⁷O-P (-OR⁸)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

R⁴ einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁵ bis R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen,

wobei die Variablen R3 bis R8 untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann,

als UV-Filter, insbesondere UV-A-Filter, in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Dahei sind solche Verbindungen der Formel I bevorzugt, in der R3 für Wasserstoff, R1 für CN, COOR5 und COR5 und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphati-

sche oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

Besonders bevorzugt ist die Verwendung von Verbindungen der Formel I, in der R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten und R⁴ für einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit bis zu 10 C-Atomen im Ring, insbesondere einen substituierten Phenyl-, Furyl-, Pyridyl-, Indolyl- oder Naphthylenrest und besonders bevorzugt für einen gegebenenfalls substituierten Phenyl- oder Thienylrest steht.

Als Substituenten kommen sowohl lipophile als auch hydrophile Substituenten mit z. B. bis zu 20 C-Atomen in Betracht. Lipophile d. h. die Öllöslichkeit der Verbindungen der Formel I verstärkende Reste sind z. B. aliphatische oder cycloaliphatische Reste insbesondere Alkylreste mit 1 bis 18 C-Atomen, Alkoxy-, Mono- und Dialkylamino-, Alkoxycarbonyl-, Mono- und Dialkylaminocarbonyl-, Mono- und Dialkylaminosulfonylreste, ferner Cyan-, Nitro-, Brom-, Chlor-, Iod- oder Fluorsubstituenten.

Hydrophile d. h. die Wasserlöslichkeit der Verbindungen der Formel I ermöglichende Reste sind z. B. Carboxy- und Sulfoxyreste und insbesondere deren Salze mit beliebigen physiologisch verträglichen Kationen, wie die Alkalisalze oder wie die Trialkylammoniumsalze, wie Tri-(hydroxyalkyl)-ammoniumsalze oder die 2-Methylpropan-1-ol-2-ammoniumsalze. Ferner kommen Alkylammoniumreste mit beliebigen physiologisch verträglichen Anionen in Betracht.

Als Alkoxyreste kommen solche mit 1 bis 12 C-Atomen, vorzugsweise mit 1 bis 8 C-Atomen in Betracht.

Beispielsweise sind zu nennen:

methoxy

n-propoxyn-butoxy-

2-methylpropoxy-

1,1-dimethylpropoxy-

hexoxy-

heptoxy-

2-ethylhexoxy-

isopropoxy-

1-methylpropoxy-

n-pentoxy-

3-methylbutoxy-

2,2-dimethylpropoxy-

1-methyl-1-ethylpropoxy-

octoxy-.

Als Mono- oder Dialkylaminoreste kommen z. B. solche in Betracht, die Alkylreste mit 1 bis 8 C-Atomen enthalten, wie Methyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, 2-Ethylhexyl-, Isopropyl-, 1-Methylpropyl-, n-Pentyl-, 3-Methylbutyl-, 2,2-Dimethylpropyl-, 1-Methyl-1-ethylpropyl- und Octyl in Betracht. Diese Reste sind gleichermaßen in den Mono- und Dialkylaminocarbonyl- und Sulfonylresten enthalten.

Alkoxycarhonylreste sind z. B. Ester, die die oben genannten Alkoxyreste oder Reste von höheren Alkoholen z. B. mit bis zu 20 C-Atomen, wie iso-C₁₅-Alkohol, enthalten.

Die Erfindung betrifft auch die neuen Verbindungen der Formel II

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonyl-, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carhoxyreste oder durch wasserlöslich machende Reste ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten substituiert ist. Solche Reste sind z. B. Alkalicarboxylat oder Carbonyloxy-tri-(hydroxyethyl)ammoniumreste.

Weiterhin betrifft die Erfindung die neuen Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert ist und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

Beispielhaft sind in der folgenden Tabelle 1 die bevorzugten erfindungsgemäßen Verbindungen der Formel III genannt.

65

20

25

30

40

Tabelle 1

$R^{4} - HN = C - COCH_{3}$ $R^{4} - HN = C - COCH_{3}$	(x) _n
---	------------------

	X	R ⁵	n	Position
15	C ₃ H ₇ OCO	CH ₃	1	para
	C ₃ H ₇ OCO	CH ₃	1	meta
	C ₃ H ₇ OCO	CH ₃	1	ortho
	C ₃ H ₇ OCO	CH ₃	2	ortho/para
20	C ₄ H ₉ OCO	CH ₃	1	para
	C ₄ H ₉ OCO	CH ₃	1	meta
	C ₄ H ₉ OCO	CH ₃	1	ortho
	C ₄ H ₉ OCO	CH ₃	2	ortho/para
25	C ₅ H ₁₁ OCO	CH ₃	1	para
	C ₅ H ₁₁ OCO	CH ₃	1	meta
	C ₅ H ₁₁ OCO	CH ₃	1	ortho
	C ₅ H ₁₁ OCO	CH ₃	2	ortho/para
30	C ₆ H ₁₃ OCO	CH ₃	1	para
	C ₆ H ₁₃ OCO	CH ₃	1	meta
	C ₆ H ₁₃ OCO	CH ₃	1	ortho
	C ₆ H ₁₃ OCO	CH ₃	2	ortho/para
35	C ₈ H ₁₇ OCO	CH ₃	1	para
	C ₈ H ₁₇ OCO	CH ₃	1	meta
	C ₈ H ₁₇ OCO	CH ₃	1	ortho
	C ₈ H ₁₇ OCO	CH ₃	2	ortho/para
40	C ₁₂ H ₂₅ OCO	CH ₃	1	para

Х	R ⁵	n	Position	
C ₁₂ H ₂₅ OCO	CH ₃	1	meta	
C ₁₂ H ₂₅ OCO	CH ₃	1	ortho	 5
C ₁₂ H ₂₅ OCO	CH ₃	2	ortho/para	
C ₁₃ H ₂₇ OCO	CH ₃	1	para	
C ₁₃ H ₂₇ OCO	CH ₃	1 -	meta	
C ₁₃ H ₂₇ OCO	CH ₃	1	ortho	10
C ₁₃ H ₂₇ OCO	CH ₃	2	ortho/para	
C ₁₄ H ₂₉ OCO	CH ₃	1 -	para	
C ₁₄ H ₂₉ OCO	CH ₃	1	meta	
C ₁₄ H ₂₉ OCO	CH ₃	1	ortho	
C ₁₄ H ₂₉ OCO	CH ₃	2	ortho/para	
C ₁₅ H ₃₁ OCO	CH ₃	1	para	
C ₁₅ H ₃₁ OCO	CH ₃	1	meta	
C ₁₅ H ₃₁ OCO	CH ₃	1	ortho	20
C ₁₅ H ₃₁ OCO	CH ₃	2	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃	1	para	
C ₁₆ H ₃ 3OCO	CH ₃	+ 1	meta	
C ₁₆ H ₃₃ OCO	CH ₃	1 1	ortho	25
C ₁₆ H ₃₃ OCO	CH ₃	2	ortho/para	
C ₁₇ H ₃₅ OCO	CH ₃	1 1	para	
C ₁₇ H ₃₅ OCO	CH ₃	1	meta	
C ₁₇ H ₃₅ OCO	CH ₃	1	ortho	30
C ₁₇ H ₃₅ OCO	CH ₃	1 2	ortho/para	
C ₁₈ H ₃₇ OCO	CH ₃	 	para	
C ₁₈ H ₃₇ OCO	CH ₃	1	meta	
C ₁₈ H ₃₇ OCO	CH ₃	 1	ortho	
C ₁₈ H ₃₇ OCO	CH ₃	$\frac{1}{2}$	ortho/para	
C ₃ H ₇ OCO	C ₂ H ₅	1 1	para	
C ₃ H ₇ OCO	C ₂ H ₅	1	meta	40
C ₃ H ₇ OCO	C ₂ H ₅	1	ortho	
C ₃ H ₇ OCO	C ₂ H ₅	2	ortho/para	
C ₄ H ₉ OCO	C ₂ H ₅	1	para	
C ₄ H ₉ OCO	C ₂ H ₅	1	meta	45
C ₄ H ₉ OCO	C ₂ H ₅	1	ortho	
C ₄ H ₉ OCO	C ₂ H ₅	2	ortho/para	
C5H11OCO	C ₂ H ₅	1	para	
C5H11OCO	C ₂ H ₅	1	meta	50
C ₅ H ₁₁ OCO	C ₂ H ₅	1	ortho	"
C ₅ H ₁₁ OCO	C ₂ H ₅	2	ortho/para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	meta	55
C ₆ H ₁₃ OCO	C ₂ H ₅	1	ortho	
C ₆ H ₁₃ OCO	C ₂ H ₅	2	ortho/para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	meta	66
C ₈ H ₁₇ OCO	C ₂ H ₅	1	ortho	
C ₈ H ₁₇ OCO	C ₂ H ₅	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	meta	
	-23	1 -	Imera	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	para
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	para
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nara
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	para
$C_{14}H_{29}OCO$ $C_{2}H_{5}$ 1 para	
$C_{14}H_{29}OCO$ $C_{2}H_{5}$ 1 meta	
$C_{14}H_{29}OCO$ $C_{2}H_{5}$ 1 ortho	
$C_{14}H_{29}OCO$ $C_{2}H_{5}$ 2 ortho/	para
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$C_{15}H_{31}OCO$ $C_{2}H_{5}$ 1 meta	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Carre OCO Carre 2 Ortho	para
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F
$C_{16}H_{33}OCO$ $C_{2}H_{5}$ 1 meta	
$\begin{array}{c cccc} C_{16}B_{33}CCO & C_{2}B_{5} & 1 & \text{ortho} \\ \hline C_{16}B_{33}CCO & C_{2}B_{5} & 1 & \text{ortho} \\ \hline \end{array}$	
G W OCO C-W- 2 Ortho	/para
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pu
$C_{17}H_{35}OCO$ $C_{2}H_{5}$ 1 meta	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C VI 2	/para
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$C_{18}H_{37}OCO$ $C_{2}H_{5}$ 1 meta	
$C_{18}H_{37}OCO$ $C_{2}H_{5}$ 1 ortho	
35 C ₁₈ H ₃₇ OCO C ₂ H ₅ 2 ortho,	/para
C ₃ H ₇ OCO C ₃ H ₇ 1 para	=
C ₃ H ₇ OCO C ₃ H ₇ 1 meta	
C_3H_7OCO C_3H_7 1 ortho	
40 C_3H_7OCO C_3H_7 2 ortho	/para
C_4H_9OCO C_3H_7 1 para	
C_4H_9OCO C_3H_7 1 meta	
C_4H_9OCO C_3H_7 1 ortho	
45 C_4H_9OCO C_3H_7 2 ortho	/para
$C_5H_{11}OCO$ C_3H_7 1 para	
$C_5H_{11}OCO$ C_3H_7 1 meta	
$C_5H_{11}OCO$ C_3H_7 1 ortho	
-57	/para
$C_6H_{13}OCO$ C_3H_7 1 para	
$C_6H_{13}OCO$ C_3H_7 1 meta	
$C_6H_{13}OCO$ C_3H_7 1 ortho	
	/para
$C_8H_{17}OCO$ C_3H_7 1 para	
$C_8H_{17}OCO$ C_3H_7 1 meta	
$C_8H_{17}OCO$ C_3H_7 1 ortho	
	/para
$C_{12}H_{25}OCO$ C_3H_7 1 para	
$C_{12}H_{25}OCO$ $C_{3}H_{7}$ 1 meta	
$C_{12}H_{25}OCO$ C_3H_7 1 ortho	
12 20	o/para
$C_{13}H_{27}OCO$ $C_{3}H_{7}$ 1 para	

Х	R ⁵	n	Position	
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	meta	_
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	ortho	5
C ₁₃ H ₂₇ OCO	C ₃ H ₇	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	para	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	meta	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	ortho	10
C ₁₄ H ₂₉ OCO	C ₃ H ₇	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	para	i
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	meta	٠. ا
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	ortho	15
C ₁₅ H ₃₁ OCO	C ₃ H ₇	2	ortho/para	1
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	para	1
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	meta	20
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	ortho	1 ""
C ₁₆ H ₃₃ OCO	C ₃ H ₇	2	ortho/para	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	para	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	meta	25
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	ortho	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇	2	ortho/para	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	para	ĺ
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	meta	30
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	ortho	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇	2	ortho/para	j
C ₃ H ₇ OCO	C ₄ H ₉	1	para	·
C ₃ H ₇ OCO	C ₄ H ₉	1	meta	. 35
C ₃ H ₇ OCO	C ₄ H ₉	1	ortho	1
C ₃ H ₇ OCO	C ₄ H ₉	2	ortho/para	
C ₄ H ₉ OCO	C ₄ H ₉	1	para	
C ₄ H ₉ OCO	C ₄ H ₉	1	meta	40
C ₄ H ₉ OCO	C ₄ H ₉	1	ortho	
C ₄ H ₉ OCO	C ₄ H ₉	2	ortho/para	
C ₅ H ₁₁ OCO	C ₄ H ₉	1	para]
C ₅ H ₁₁ OCO	C ₄ H ₉	1	meta	45
C ₅ H ₁₁ OCO	C ₄ H ₉	1	ortho	
C ₅ H ₁₁ OCO	C ₄ H ₉	2	ortho/para	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	para	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	meta	50
C ₆ H ₁₃ OCO	C ₄ H ₉	1	ortho	
C ₆ H ₁₃ OCO	C ₄ H ₉	2	ortho/para	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	para	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	meta	5:
C ₈ H ₁₇ OCO	C ₄ H ₉	1	ortho	1
C ₈ H ₁₇ OCO	C ₄ H ₉	2	ortho/para	4
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	para	- 6
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	meta	· °
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	ortho	4
C ₁₂ H ₂₅ OCO	C ₄ H ₉	2	ortho/para	4
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	para	4
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	meta	.
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	ortho	J

	X	R ⁵	n	Position
i			2	ortho/para
5	C ₁₃ H ₂₇ OCO	C ₄ H ₉		
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	para
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	meta
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	ortho
10	C ₁₄ H ₂₉ OCO	C ₄ H ₉	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	meta
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	ortho
15	C ₁₅ H ₃₁ OCO	C ₄ H ₉	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	para
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	meta
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	ortho
20	C ₁₆ H ₃₃ OCO	C ₄ H ₉	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	ortho
25	C ₁₇ H ₃₅ OCO	C ₄ H ₉	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	ortho
30	C ₁₈ H ₃₇ OCO	C ₄ H ₉	2	ortho/para
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	para
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	meta
	C ₃ H ₇ OCO	C5H11	1	ortho
35	C ₃ H ₇ OCO	C5H11	2	ortho/para
	C ₄ H ₉ OCO	C5H11	1	para
	C ₄ H ₉ OCO	C5H11	1	meta
	C ₄ H ₉ OCO	C5H11	.1	ortho
40	C ₄ H ₉ OCO	C5H11	2	ortho/para
	C ₅ H ₁₁ OCO	C5H11	1	para
	C ₅ H ₁₁ OCO	C5H11	1	meta
	C ₅ H ₁₁ OCO	C5H11	1	ortho
45	C ₅ H ₁₁ OCO	C5H11	2	ortho/para
	C ₆ H ₁₃ OCO	C5H11	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	meta
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	ortho
50	C ₆ H ₁₃ OCO	C ₅ H ₁₁	2	ortho/para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	meta
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	ortho
55	C ₈ H ₁₇ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	para
	C ₁₂ H ₂₅ OCO	C5H11	1	meta
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	ortho
60	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₃ H ₂₇ OCO	C5H11	1	para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁	1	meta
	C ₁₃ H ₂₇ OCO	C5H11	1	ortho
65	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₄ H ₂₉ OCO	C5H11	1	para

				7	
Х	R ⁵	n	Position		
C ₁₄ H ₂₉ OCO	C5H11	1	meta	1	
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	ortho	1	. 5
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	2	ortho/para	7	
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	para	7	•
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	meta	1	10
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	ortho		10
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	2	ortho/para		
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	para	7	
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	meta	7	16
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	ortho	1	15
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	2	ortho/para	7	
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	para		
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	meta	7	20
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	ortho	1	20
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	2	ortho/para	7	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	para	₫	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	meta		25
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	ortho	-	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	- 2	ortho/para		
C ₃ H ₇ OCO	C ₆ H ₁₃	1	para	1	
C ₃ H ₇ OCO	C ₆ H ₁₃	1	meta	7	30
C ₃ H ₇ OCO	C ₆ H ₁₃	1	ortho	7	
C ₃ H ₇ OCO	C ₆ H ₁₃	2	ortho/para	7	
C ₄ H ₉ OCO	C ₆ H ₁₃	1	para	-	
C ₄ H ₉ OCO	C ₆ H ₁₃	1	meta	7	35
C ₄ H ₉ OCO	C ₆ H ₁₃	1	ortho	7	
C ₄ H ₉ OCO	C ₆ H ₁₃	2	ortho/para		
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	para		
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	meta		40
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	ortho		
C ₅ H ₁₁ OCO	C ₆ H ₁₃	2	ortho/para		
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	para		
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	meta		45
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	ortho		
C ₆ H ₁₃ OCO	C ₆ H ₁₃	2	ortho/para		
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	para		
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	meta		50
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	ortho		
C ₈ H ₁₇ OCO	C ₆ H ₁₃	2	ortho/para		
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	para		
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	meta		55
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	ortho		
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	para		
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	meta		60
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	ortho		
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	2	ortho/para		
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	para		
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	meta		65
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	ortho		

	X	R ⁵	n	Position
5	C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	2	ortho/para
٠ .	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	para
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	ortho
10	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	2	ortho/para
10	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	ortho
15	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	2	ortho/para
13	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	ortho
20	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	ortho
25	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	2	ortho/para
	C ₃ H ₇ OCO	CH ₃ O	1	para
	C ₃ H ₇ OCO	CH ₃ O	1	meta
	C ₃ H ₇ OCO	CH ₃ O	1	ortho
30	C ₃ H ₇ OCO	CH ₃ O	2	ortho/para
	C ₄ H ₉ OCO	CH ₃ O	1	para
	C ₄ H ₉ OCO	CH ₃ O	1	meta
	C ₄ H ₉ OCO	CH ₃ O	1	ortho
35	C ₄ H ₉ OCO	CH₃O	2	ortho/para
	C ₅ H ₁₁ OCO	CH ₃ O	1	para
	C ₅ H ₁₁ OCO	CH ₃ O	1	meta
	C ₅ H ₁₁ OCO	CH ₃ O	1	ortho
40	C5H11OCO	CH ₃ O	2	ortho/para
	C ₆ H ₁₃ OCO	CH ₃ O	1	para
	C ₆ H ₁₃ OCO	CH ₃ O	1	meta
	C ₆ H ₁₃ OCO	CH ₃ O	1	ortho
45	C ₆ H ₁₃ OCO	CH ₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	CH ₃ O	1	para
	C ₈ H ₁₇ OCO	CH ₃ O	1	meta
50	C ₈ H ₁₇ OCO	CH ₃ O	1	ortho
50	C ₈ H ₁₇ OCO	CH ₃ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	CH ₃ O	1 1	para
	C ₁₂ H ₂₅ OCO	CH ₃ O		meta ortho
55	C ₁₂ H ₂₅ OCO	CH ₃ O	2	ortho/para
-	C ₁₂ H ₂₅ OCO	CH ₃ O	1	para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	meta
	C ₁₃ H ₂₇ OCO	CH ₃ O	1 1	ortho
60	C ₁₃ H ₂₇ OCO	CH ₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	para
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	meta
	C ₁₄ H ₂₉ OCO	CH ₃ O	1 1	ortho
65	C ₁₄ H ₂₉ OCO	CH ₃ O	2	ortho/para
-	C ₁₄ H ₂₉ OCO	CH ₃ O	1	para
	C ₁₅ H ₃₁ OCO	CH ₃ O		Ihera

			·	
X	R ⁵	n	Position	
C ₁₅ H ₃₁ OCO	CH₃O	1	meta	_
	CH ₃ O	$-\frac{1}{1}$	ortho	5
C ₁₅ H ₃₁ OCO C ₁₅ H ₃₁ OCO	CH ₃ O	2	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	para	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	meta	
	CH ₃ O	_ 1	ortho	10
C ₁₆ H ₃₃ OCO	CH ₃ O	2	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃ O	1	para	·
C ₁₇ H ₃₅ OCO	CH ₃ O	1	meta	
C ₁₇ H ₃₅ OCO	CH ₃ O	1	ortho	15
C ₁₇ H ₃₅ OCO	CH ₃ O	2	ortho/para	
C ₁₇ H ₃₅ OCO		1	para	1
C ₁₈ H ₃₇ OCO	CH ₃ O	1	meta	i
C ₁₈ H ₃₇ OCO	CH ₃ O	1	ortho	2()
C ₁₈ H ₃₇ OCO	CH ₃ O	2	ortho/para	·
C ₁₈ H ₃₇ OCO	CH ₃ O	1		4
C ₃ H ₇ OCO	C ₂ H ₅ O		para	
C ₃ H ₇ OCO	C ₂ H ₅ O	1	meta ortho	25
C ₃ H ₇ OCO	C ₂ H ₅ O	2	ortho/para	4
C ₃ H ₇ OCO	C ₂ H ₅ O			1
C ₄ H ₉ OCO	C ₂ H ₅ O	1	para	. 30
C ₄ H ₉ OCO	C ₂ H ₅ O	1	meta ortho	-
C ₄ H ₉ OCO	C ₂ H ₅ O	1	ortho/para	4
C ₄ H ₉ OCO	C ₂ H ₅ O	1		
C5H11OCO	C ₂ H ₅ O	$-\frac{1}{1}$	para	35
C ₅ H ₁₁ OCO	C ₂ H ₅ O		meta ortho	-{ ```
C5H11OCO	C ₂ H ₅ O	2	ortho/para	-
C ₅ H ₁₁ OCO	C ₂ H ₅ O	1	para	-
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	meta	40
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	ortho	┧ "
C ₆ H ₁₃ OCO	C ₂ H ₅ O	2	ortho/para	┪
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	para	╡
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	meta	45
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1 1	ortho	7
C ₈ H ₁₇ OCO	C ₂ H ₅ O	2	ortho/para	7
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	para	
C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1 -	meta	50
	C ₂ H ₅ O	1	ortho	7
C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1 2	ortho/para	7
	C ₂ H ₅ O	1	para	− [
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1 1	meta	55
C ₁₃ H ₂₇ OCO C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1 1	ortho	
	C ₂ H ₅ O	2	ortho/para	7
C ₁₃ H ₂₇ OCO C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para	-1
C14H29OCO	C ₂ H ₅ O	1	meta	٦ ه
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	ortho	7
C14H29OCO	C ₂ H ₅ O	2	ortho/para	7
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para	7
C ₁₅ H ₃₁ OCO		1	meta	-
C ₁₅ H ₃₁ OCO	C₂H₅O	1	ortho	-
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O		102010	 !

	X	R ⁵	n	Position
5	C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	2	ortho/para
_	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	ortho
10	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	ortho
15	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	ortho
20	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	2	ortho/para
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	para
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	meta
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	ortho
25	C ₃ H ₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	para
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	meta
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	ortho
30	C ₄ H ₉ OCO	C ₃ H ₇ O	2	ortho/para
	C5H11OCO	C ₃ H ₇ O	1	para
	C5H11OCO	C ₃ H ₇ O	1	meta
	C5H11OCO	C ₃ H ₇ O	1	ortho
35	C5H11OCO	C ₃ H ₇ O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	meta
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	ortho
40	C ₆ H ₁₃ OCO	C ₃ H ₇ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	meta
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	ortho
45	C ₈ H ₁₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C₃H ₇ O	1	para
	C ₁₂ H ₂₅ OCO	C₃H ₇ O	1	meta
50	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	1	ortho
50	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	para
	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	meta
55	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	ortho
33	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	para
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	meta
60	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	ortho
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	meta
65	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	ortho
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1_1	para

			·— · — — — · · · · · · · · · · · · · ·	
Х	R ⁵	n	Position	
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	meta	
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	ortho	5
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	2	ortho/para	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	para	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	meta	1
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	ortho	10
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	2	ortho/para	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	para	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	meta	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	ortho	15
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	2	ortho/para	1
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para	<u>-</u>
C ₃ H ₇ OCO	C ₄ H ₉ O	1	meta	1
C ₃ H ₇ OCO	C ₄ H ₉ O	1	ortho	20)
	C ₄ H ₉ O	2	ortho/para	╡
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para	-
C ₄ H ₉ OCO C ₄ H ₉ OCO		1	meta	┥
	C ₄ H ₉ O	1	ortho	25
C ₄ H ₉ OCO	C ₄ H ₉ O	2	ortho/para	-
C ₄ H ₉ OCO	C ₄ H ₉ O	1	para para	┪
C ₅ H ₁₁ OCO	C ₄ H ₉ O	L	meta	╡
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	ortho	30
C ₅ H ₁₁ OCO	C ₄ H ₉ O	2	ortho/para	4
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	para	┩ .
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	meta	-{
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	ortho	35
C ₆ H ₁₃ OCO	C ₄ H ₉ O	2	ortho/para	┥
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	para	┥
C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	meta	40
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	ortho	┨ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	C ₄ H ₉ O	2	ortho/para	┥
C ₈ H ₁₇ OCO C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	para	-
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	meta	45
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	ortho	-
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	2	ortho/para	╡
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	para	┪
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	meta	50
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	ortho	- .
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	2	ortho/para	╡
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	para	₫
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	meta	55
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	ortho	┪ .
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	2	ortho/para	┥ .
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	para	╡
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	meta	60
	C ₄ H ₉ O	1	ortho	-
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	2	ortho/para	-
C ₁₅ H ₃₁ OCO		1	para	-
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	meta	⊣ 65
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	ortho	⊣
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O		Tot cno	

1	X	R ⁵	n	Position
	_			
5	C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	ortho
10	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1 .	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	ortho
15	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	2	ortho/para
	C ₃ H ₇ OCO	C5H11O	- 1	para
	C ₃ H ₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₃ H ₇ OCO	C5H11O	1	ortho
20)	C ₃ H ₇ OCO	C5H11O	2	ortho/para
	C ₄ H ₉ OCO	C ₅ H ₁₁ O	1	para
	C ₄ H ₉ OCO	C5H11O	1	meta
	C ₄ H ₉ OCO	C5H11O	1	ortho
25	C ₄ H ₉ OCO	C5H11O	2	ortho/para
	C5H11OCO	C ₅ H ₁₁ O	1	para
	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	1	meta
	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	1	ortho
30	C ₅ H ₁₁ OCO	C5H11O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	meta
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	ortho
35	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	ortho
40	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	meta
46	C ₁₂ H ₂₅ OCO	C5H11O	1	ortho ortho/para
45	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	+ 1	ortho
50	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	$\frac{1}{2}$	ortho/para
	C ₁₃ H ₂₇ OCO		1	para
•	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	+ 1	meta
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	1 1	ortho
55	C ₁₄ H ₂₉ OCO C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	$\frac{1}{2}$	ortho/para
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O	$+\frac{1}{1}$	para
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O	+ - 1	meta
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		ortho
60	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		ortho/para
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O		para
	C ₁₆ H ₃₃ OCO	C5H110		meta
		C5H110		ortho
65	C16H33OCO	C ₅ H ₁₁ O		ortho/para
	C ₁₆ H ₃₃ OCO C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O		para
	C17A350C0	_1		15

				1	
Х	R ⁵	n	Position		
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	meta		5
C ₁₇ H ₃₅ OCO	C5H11O	1	ortho		_
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	2	ortho/para		
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	para	}	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	meta]	10
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	ortho	}	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	2	ortho/para	}	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para]	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	meta	· ·	15
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	ortho	1	
	C ₆ H ₁₃ O	2	ortho/para	1	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para	1	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	meta	1	20
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	ortho		
C ₄ H ₉ OCO		2	ortho/para	1	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	para	1	
C5H110C0	C ₆ H ₁₃ O	1	meta	┪	25
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	ortho	┪	23
C5H110C0	C ₆ H ₁₃ O	2	ortho/para	┪	
C5H110C0	C ₆ H ₁₃ O	1	para	4	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	meta	_	30
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	ortho	-	50
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	2	ortho/para	┥	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	para	- 	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	meta	╡	35
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1 .	ortho	┥	35
C _B H ₁₇ OCO	C ₆ H ₁₃ O	2	ortho/para	-{	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	para	-	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	meta	⊣	40
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	ortho	┥	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	2	ortho/para	┪	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	para	•	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	meta	7	45
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O C ₆ H ₁₃ O	1	ortho	-	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	2	ortho/para	-	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	para	7	
C ₁₄ H ₂₉ OCO		1	meta	-	50
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	ortho	7	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O C ₆ H ₁₃ O	2	ortho/para	7	
C ₁₄ H ₂₉ OCO		1	para		
C ₁₅ H ₃₁ OCO	C6H13O	1	meta	-	55
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	ortho		
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	2	ortho/para	ㅋ	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	para	_	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	meta	⊣	60
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	ortho	⊣	
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1 2	ortho/para		
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O			-	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	para	-	65
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	meta	\dashv	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	ortho		

5 C ₁₇ H ₃ 50CO C ₆ H ₁₃ O 2 ortho/para C ₁₈ H ₃ 70CO C ₆ H ₁₃ O 1 para C ₁₈ H ₃ 70CO C ₆ H ₁₃ O 1 ortho 10 C ₁₈ H ₃ 70CO C ₆ H ₁₃ O 1 ortho/para C ₃ H ₇ 0CO C ₇ H ₁₅ O 1 para C ₃ H ₇ 0CO C ₇ H ₁₅ O 1 ortho C ₃ H ₇ 0CO C ₇ H ₁₅ O 1 ortho C ₃ H ₇ 0CO C ₇ H ₁₅ O 1 ortho C ₃ H ₇ 0CO C ₇ H ₁₅ O 1 ortho C ₄ H ₉ 0CO C ₇ H ₁₅ O 1 ortho/para C ₄ H ₉ 0CO C ₇ H ₁₅ O 1 ortho C ₄ H ₉ 0CO C ₇ H ₁₅ O 1 ortho C ₄ H ₉ 0CO C ₇ H ₁₅ O 1 ortho C ₅ H ₁ 10CO C ₇ H ₁₅ O 1 para C ₅ H ₁ 10CO C ₇ H ₁₅ O 1 ortho/para C ₅ H ₁ 10CO C ₇ H ₁₅ O 1 ortho C ₆ H ₁₃ 0CO C ₇ H ₁₅ O 1					
Ciming		х	R ⁵	n	Position
C18H370C0 C6H30 1 para C18H370C0 C6H30 1 meta C18H370C0 C6H30 1 ortho/para C3H30C0 C7H150 1 para C3H30C0 C7H150 1 meta C3H30C0 C7H150 1 ortho/para C3H30C0 C7H150 1 ortho/para C3H30C0 C7H150 1 ortho/para C4H90C0 C7H150 1 para C4H90C0 C7H150 1 ortho/para C4H90C0 C7H150 1 ortho/para C4H90C0 C7H150 1 meta C4H90C0 C7H150 1 meta C4H90C0 C7H150 1 meta C5H110C0 C7H150 1 meta C5H110C0 C7H150 1 para C6H130C0 C7H150 1 para C6H130C0 C7H150 1 para C6H130C0	, h	C17H35OCO	C ₆ H ₁₃ O	2	ortho/para
C18H370C0 C6H330 1 meta C18H370C0 C6H330 1 ortho C3H50C0 C6H30 2 ortho/para C3H70C0 C7H150 1 para C3H70C0 C7H150 1 meta C3H70C0 C7H150 1 ortho C3H70C0 C7H150 1 ortho C3H70C0 C7H150 1 ortho C4H90C0 C7H150 1 para C4H90C0 C7H150 1 ortho C4H90C0 C7H150 1 ortho C5H110C0 C7H150 1 para C5H110C0 C7H150 1 ortho/para C5H110C0 C7H150 1 ortho/para C6H130C0 C7H150 1 para C6H130C0 C7H150 1 ortho/para C6H170C0 C7H150 1 para C8H170C0 C7H150 1 para C12H250C0	' t		C ₆ H ₁₃ O	1	para
C18H37OCO C6H130 1 ortho/para C3H7OCO C6H130 2 ortho/para C3H7OCO C7H150 1 para C3H7OCO C7H150 1 ortho C3H7OCO C7H150 1 ortho/para C4H9OCO C7H150 1 para C4H9OCO C7H150 1 meta C4H9OCO C7H150 1 ortho/para C4H9OCO C7H150 1 para C4H9OCO C7H150 1 ortho/para C4H9OCO C7H150 1 meta C4H9OCO C7H150 1 para C4H9OCO C7H150 1 meta C5H110CO C7H150 1 para C5H110CO C7H150 1 para C6H130CO C7H150 1 para C6H130CO C7H150 1 para C6H130CO C7H150 1 para C6H170CO	Ì		C ₆ H ₁₃ O	1	meta
C18H37OCO	t		C ₆ H ₁₃ O	1	
C3H7OCO	.,			2	ortho/para
C3H70C0 C7H150 1 meta C3H70C0 C7H150 1 ortho C3H70C0 C7H150 1 ortho/para C4H90C0 C7H150 1 para C4H90C0 C7H150 1 meta C4H90C0 C7H150 1 ortho/para C4H90C0 C7H150 1 para C5H110C0 C7H150 1 meta C5H110C0 C7H150 1 meta C5H110C0 C7H150 1 meta C5H110C0 C7H150 1 para C6H130C0 C7H150 1 para C6H130C0 C7H150 1 para C6H130C0 C7H150 1 ortho/para C8H170C0 C7H150 1 para C8H170C0 C7H150 1 para C12H250C0 C7H150 1 ortho/para C12H250C0 C7H150 1 para C12H250C0	10			1	para
C3H70CO				1	meta
C3H70C0				1	ortho
C4H30CO C7H150 1 para C4H30CO C7H150 1 meta C4H30CO C7H150 1 meta C4H30CO C7H150 1 ortho C5H10CO C7H150 1 para C5H10CO C7H150 1 meta C5H10CO C7H150 1 ortho C5H10CO C7H150 1 para C5H110CO C7H150 1 para C6H130CO C7H150 1 para C6H130CO C7H150 1 ortho C6H130CO C7H150 1 meta C6H130CO C7H150 1 ortho C6H130CO C7H150 1 para C8H170CO C7H150 1 meta C8H170CO C7H150 1 ortho/para C12H250CO C7H150 1 para C12H250CO C7H150 1 ortho/para C12H250CO C7H150	15			2	ortho/para
C₄B90C0 C7H150 1 meta C₄B90C0 C,H150 1 ortho C₄B90C0 C,H150 1 ortho/para C₅H10C0 C,H150 1 para C₅H10C0 C,H150 1 meta C₅H10C0 C,H150 1 ortho/para C₅H10C0 C,H150 1 para C₅H130C0 C,H150 1 para C₆H130C0 C,H150 1 ortho/para C₆H130C0 C,H150 1 para C₆H130C0 C,H150 1 para C₆H130C0 C,H150 1 para C₆H170C0 C,H150 1 para C₆H170C0 C,H150 1 ortho/para C₂H170C0 C,H150 1 para C12H250C0 C,H150 1 para C12H250C0 C,H150 1 ortho/para C12H250C0 C,H150 1 para C13H270C0	.,			1	para
C4B9CO C7H15O 1 ortho C4B9CO C,H15O 2 ortho/para C5H11OCO C7H15O 1 para C5H11OCO C7H15O 1 meta C5H11OCO C7H15O 1 ortho 25 C5H11OCO C7H15O 1 para C6H13OCO C7H15O 1 para C6H13OCO C7H15O 1 ortho 30 C6H13OCO C7H15O 1 meta C6H13OCO C7H15O 1 para C8H17OCO C7H15O 1 meta C8H17OCO C7H15O 1 ortho/para C8H17OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 para C13H27OCO C7H15O 1 ortho/para				1	meta
C4H9OCO				1	ortho
C5H110C0	20			2	ortho/para
C5H110C0				1	para
C5H110CO				1	meta
25 C ₅ H ₁₁ OCO C ₇ H ₁₅ O 2 ortho/para C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 para C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 meta C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 ortho C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 meta C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho </td <td></td> <td></td> <td></td> <td>1</td> <td>ortho</td>				1	ortho
C6H13OCO C7H15O 1 para C6H13OCO C7H15O 1 meta C6H13OCO C7H15O 1 ortho C6H13OCO C7H15O 1 ortho/para C8H17OCO C7H15O 1 para C8H17OCO C7H15O 1 ortho C8H17OCO C7H15O 1 ortho C12H25OCO C7H15O 1 para C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 para C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 meta C13H27OCO C7H15O 1 ortho/para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 ortho/para C15H310CO </td <td>25</td> <td></td> <td></td> <td>2</td> <td>ortho/para</td>	25			2	ortho/para
C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 meta C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 ortho C ₆ H ₁₃ OCO C ₇ H ₁₅ O 2 ortho/para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 meta C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para <td></td> <td></td> <td></td> <td>1</td> <td>para</td>				1	para
C ₆ H ₁₃ OCO C ₇ H ₁₅ O 1 ortho C ₆ H ₁₃ OCO C ₇ H ₁₅ O 2 ortho/para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 meta C ₈ H ₁₇ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 meta C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1				1	meta
30 C6H3OCO C7H15O 2 ortho/para C8H17OCO C7H15O 1 para C8H17OCO C7H15O 1 meta C8H17OCO C7H15O 1 ortho C8H17OCO C7H15O 1 para C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 ortho 40 C12H25OCO C7H15O 1 ortho 40 C12H25OCO C7H15O 1 ortho 40 C12H25OCO C7H15O 1 para C13H27OCO C7H15O 1 meta C13H27OCO C7H15O 1 ortho/para C13H27OCO C7H15O 1 ortho/para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 ortho/para C14H29OCO C7H15O 1 ortho/para C15H310CO C7H15O 1 para C15H310CO C				1	ortho
C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 para C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 meta C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 meta C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 meta C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₅ H ₃₃ OCO C ₇ H ₁₅ O 1 o	30			2	ortho/para
C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 meta C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 para C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₅ H ₃₃ OCO C ₇ H ₁₅ O 1 ortho <td></td> <td></td> <td></td> <td></td> <td>para</td>					para
C ₈ H ₁₇ OCO C ₇ H ₁₅ O 1 ortho C ₈ H ₁₇ OCO C ₇ H ₁₅ O 2 ortho/para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 para C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho 40 C ₁₂ H ₂₅ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 ortho/para C ₁₃ H ₂₇ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 para C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 meta C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₄ H ₂₉ OCO C ₇ H ₁₅ O 1 ortho C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 ortho C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1 ortho C ₁₅ H ₃₁ OCO C ₇ H ₁₅ O 1			C7H15O	1	meta
Carrest Carr				1	ortho
C12H25OCO C7H15O 1 para C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 ortho C12H25OCO C7H15O 2 ortho/para C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 1 para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 ortho C14H29OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C15H31OCO C7H15O 1 ortho/para C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 ortho C17H35	35		C7H15O	2	ortho/para
C12H25OCO C7H15O 1 meta C12H25OCO C7H15O 1 ortho C12H25OCO C7H15O 2 ortho/para C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 ortho 45 C13H27OCO C7H15O 2 ortho/para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 ortho 50 C14H29OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C15H31OCO C7H15O 1 ortho/para C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho 60 C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 ortho C17H35OCO C7H15O 1 ortho C17H35OCO C7H15O <td< td=""><td></td><td></td><td>C7H15O</td><td>1</td><td>para</td></td<>			C7H15O	1	para
C12H25OCO C7H15O 1 ortho C12H25OCO C7H15O 2 ortho/para C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 meta C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 1 para C14H29OCO C7H15O 1 meta C14H29OCO C7H15O 1 ortho C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 para C17H35OCO C7H15O 1 para			C7H15O	1	meta
C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 meta C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 1 para C13H27OCO C7H15O 1 para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 meta C14H29OCO C7H15O 1 ortho C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para			C7H15O		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	C ₁₂ H ₂₅ OCO			ortho/para
C13H27OCO C7H15O 1 ortho C13H27OCO C7H15O 2 ortho/para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 meta C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C15H31OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para		C ₁₃ H ₂₇ OCO	C7H15O		
Clastification Clas		C ₁₃ H ₂₇ OCO			
C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 meta C14H29OCO C7H15O 1 ortho C14H29OCO C7H15O 1 para C14H29OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C15H31OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para		C ₁₃ H ₂₇ OCO	C7H15O		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45		C7H15O		
C14H29OCO C7H15O 1 ortho C14H29OCO C7H15O 2 ortho/para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 ortho C15H31OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para					
C14H29OCO C7H15O 2 ortho/para C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 meta C15H31OCO C7H15O 1 ortho C15H31OCO C7H15O 1 para C15H31OCO C7H15O 1 para C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 meta C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C16H33OCO C7H15O 1 para C16H33OCO C7H15O 1 ortho C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 para C17H35OCO C7H15O 1 ortho C17H35OCO C7H15O 1 ortho					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 para C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 meta C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 ortho	60				
C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 meta C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 ortho	σU				
C ₁₇ H ₃₅ OCO C ₇ H ₁₅ O 1 ortho					
01/1.35000					
- ₩ 10 tt 000	65				
01/1135000	03	C ₁₇ H ₃₅ OCO	C7H15O		
C ₁₈ H ₃₇ OCO C ₇ H ₁₅ O 1 para		C ₁₈ H ₃₇ OCO	C7H15O	<u>' </u>	Dar a

				•	
X	R ⁵	n	Position		
C ₁₈ H ₃₇ OCO	C7H15O	1	meta		5
C ₁₈ H ₃₇ OCO	C7H15O	1	ortho		,
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	2	ortho/para	1	
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	para	1	
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	meta	1	10
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	ortho	1	
C ₃ H ₇ OCO	C ₈ H ₁₇ O	2	ortho/para		
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	para]	
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	meta]	15
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	ortho	1	
C ₄ H ₉ OCO	C ₈ H ₁₇ O	2	ortho/para	1	
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	para	1 .	
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	meta	1	20
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	ortho	7	
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	2	ortho/para	7	
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	para	1	
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	meta	7	25
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	ortho	7	
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	2	ortho/para	7	
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	para	7	
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	meta	7	30
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	ortho	7	
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	2	ortho/para	7	
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	para		
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	meta		35
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	ortho]	
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	2	ortho/para] .	
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	para	<u> </u>	
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	meta	_	40
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	ortho		
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	2	ortho/para		
C14H29OCO	C ₈ H ₁₇ O	1	para	_	
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	meta	_	- 45
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	ortho	⊣	
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	2	ortho/para	_	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	para	_	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	meta :	_	50
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	ortho	4	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	2	ortho/para		
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	para	4	
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	meta		55
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	ortho		
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	2	ortho/para		
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	para		-
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	meta	_	60
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	ortho		
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	2	ortho/para	⊣	
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	para	4	
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	meta		65
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	ortho		

	х	R ⁵	n	Position
	C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	2	ortho/para
5	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
10 .	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	para
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	2	ortho/para
15	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	para
	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	ortho
21)	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	2	ortho/para
٠,	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	para
	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	ortho
25	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	ortho
30	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	ortho
35	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	1	ortho
40	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	ortho
45	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	meta
50	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	ortho
30	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	$\frac{1}{1}$	meta ortho
55	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O		ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O		para
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O		meta
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O		ortho
60	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O		ortho/para
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O		para
	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O		meta
	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O		ortho
65	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O		ortho/para
	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O		para para
	C ₃ H ₇ OCO	C ₁₄ H ₂₉ O		- I Para

X	R ⁵	n	Position		
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	meta	5	
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	ortho]	
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	7	
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	para	7	
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	meta	10	
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	ortho	7 "	
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para]	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	para	7	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	meta	15	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	ortho	7	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	para	<u> </u>	
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	meta	20	
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	ortho]	
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	para		
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	meta	25	
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	meta	30	,
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	meta	35	i
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	ortho	_	
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	_	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	para	_	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	meta	 ⁴ ⁰)
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	ortho	-	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para	-	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	para	- -	_
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	meta		>
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	ortho	┥ .	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para	-	
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	para		0
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	meta ortho	⊣	•
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para	\dashv	
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O		para	- 	
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	meta	⊣ ₅	55
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	ortho		-
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para	-	
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	meta	⊢ ,	50
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	para		
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	meta	┥ ,	65
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	ortho	-	
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	I	Oreno		

				I Down & Laboratory
	X	R ⁵	n	Position
5	C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
,	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	ortho
10	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	2	ortho/para
10	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	para
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	ortho
15	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
13	C ₆ H ₁₃ OCO	· C ₁₆ H ₃₃ O	1	para
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	ortho
21)	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	ortho
25	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	ortho
30	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	ortho
35	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	.1	para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	ortho
40	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	ortho
45	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	meta
50	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	ortho
30	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	2	ortho/para
•	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	meta
55	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O		ortho
33	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O		para
60	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O		meta
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O		ortho
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O		ortho/para
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O		para
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O		meta
65	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O		ortho
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O		ortho/para
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1 1	para

х	R ⁵	n	Position	
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	meta	5
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	ortho	~
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	para	
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	meta	
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	ortho	┪ "*
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para	7
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	para	7
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	meta	٠
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	ortho	15
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	para	╡.
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	meta	20
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	ortho	 "
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	para	
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	meta	
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	ortho	-
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	para	
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	meta	30
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	ortho	⊣ ~
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	para	
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	meta	35
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	ortho	-
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	ī	para	
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	meta	44
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	ortho	
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	para	7
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	meta	4
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	• 1	ortho	
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	para	
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	meta	5
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	ortho	
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	para	7
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	meta	
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	ortho	
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
CH ₃ O	CH ₃	1	para	
CH ₃ O	CH ₃	1	meta	
CH ₃ O	CH ₃	1	ortho	
CH ₃ O	CH ₃	2	ortho/para	
C ₂ H ₅ O	CH ₃	1	para	
C ₂ H ₅ O	CH ₃	1	meta	
C ₂ H ₅ O	CH ₃	1	ortho	
				

[Х	R ⁵	n	Position
	C ₂ H ₅ O	CH ₃	2	ortho/para
5	C ₃ H ₇ O	CH ₃	1	para
	C ₃ H ₇ O	CH ₃	1	meta
•	C ₃ H ₇ O	CH ₃	1	ortho
	C ₃ H ₇ O	CH ₃	2	ortho/para
10	C ₄ H ₉ O	CH ₃	1	para
	C ₄ H ₉ O	CH ₃	1	meta
	C ₄ H ₉ O	CH ₃	1	ortho
	C ₄ H ₉ O	CH ₃	2	ortho/para
15	C ₅ H ₁₁ O	CH ₃	1	para
	C ₅ H ₁₁ O	CH ₃	1	meta
:	C ₅ H ₁₁ O	CH ₃	1	ortho
0.0	C ₅ H ₁₁ O	CH ₃	2	ortho/para
21)	C ₆ H ₁₃ O	CH ₃	1	para
	C ₆ H ₁₃ O	CH ₃	1	meta
	C ₆ H ₁₃ O	CH ₃	1	ortho
25	C ₆ H ₁₃ O	CH ₃	2	ortho/para
23	C ₈ H ₁₇ O	CH ₃	1	para
	C ₈ H ₁₇ O	CH ₃	1	meta
	C ₈ H ₁₇ O	CH ₃	1	ortho
30	C ₈ H ₁₇ O	CH ₃	2	ortho/para
50	C ₁₂ H ₂₅ O	CH ₃	1	para
	C ₁₂ H ₂₅ O	CH ₃	1	meta
	C ₁₂ H ₂₅ O	CH ₃	1	ortho
35	C ₁₂ H ₂₅ O	CH ₃	2	ortho/para
	C ₁₃ H ₂₇ O	CH ₃	1	para
	C ₁₃ H ₂₇ O	CH ₃	1	meta
	C ₁₃ H ₂₇ O	CH ₃	1	ortho
40	C ₁₃ H ₂₇ O	CH ₃	2	ortho/para
	C ₁₄ H ₂₉ O	CH ₃	1	para
	C ₁₄ H ₂₉ O	CH ₃	1	meta
	C ₁₄ H ₂₉ O	CH ₃	1	ortho
45	C ₁₄ H ₂₉ O	CH ₃	2	ortho/para
	C ₁₅ H ₃₁ O	CH ₃	1	para
	C ₁₅ H ₃₁ O	CH ₃	1	meta
	C ₁₅ H ₃₁ O	CH ₃	1	ortho
50	C ₁₅ H ₃₁ O	CH ₃	2	ortho/para
	C ₁₆ H ₃₃ O	CH ₃	1 1	para
	C ₁₆ H ₃₃ O	CH ₃	1 1	meta
	C ₁₆ H ₃₃ O	CH ₃	1	01 010
55	C ₁₆ H ₃₃ O	CH ₃	2	ortho/para
	C ₁₇ H ₃₅ O	CH ₃	1	para
	C ₁₇ H ₃₅ O	CH ₃	1 1	meta
60	C ₁₇ H ₃₅ O	CH ₃	1 2	ortho ortho/para
	C ₁₇ H ₃₅ O	CH ₃	2	
	C ₁₈ H ₃₇ O	CH ₃	1 1	para
	C ₁₈ H ₃₇ O	CH ₃	1	meta
	C ₁₈ H ₃₇ O	CH ₃	1	ortho
65	C ₁₈ H ₃₇ O	CH ₃	2	ortho/para
	CH ₃ O	C ₂ H ₅	1	para

				_	
X	R ⁵	n	Position		
CH ₃ O	C ₂ H ₅	1	meta	1	5
CH ₃ O	C ₂ H ₅	1	ortho	7	,
CH ₃ O	C ₂ H ₅	2	ortho/para	7	
C ₂ H ₅ O	C ₂ H ₅	1	para		•
C ₂ H ₅ O	C ₂ H ₅	1	meta		10
C ₂ H ₅ O	C ₂ H ₅	1	ortho	7	
C ₂ H ₅ O	C ₂ H ₅	2	ortho/para	7	
C ₃ H ₇ O	C ₂ H ₅	1	para	- T	
C ₃ H ₇ O	C ₂ H ₅	1	meta	7	15
C ₃ H ₇ O	C ₂ H ₅	1	ortho	7	13
C ₃ H ₇ O	C ₂ H ₅	2	ortho/para	7	
C ₄ H ₉ O	C ₂ H ₅	1	para	7	•
C ₄ H ₉ O	C ₂ H ₅	1	meta	7	20
C ₄ H ₉ O	C ₂ H ₅	1	ortho	7	
C ₄ H ₉ O	C ₂ H ₅	2	ortho/para	7	
C ₅ H ₁₁ O	C ₂ H ₅	1	para	7	
C ₅ H ₁₁ O	C ₂ H ₅	1	meta	7	25
C ₅ H ₁₁ O	C ₂ H ₅	1	ortho	7	
C ₅ H ₁₁ O	C ₂ H ₅	2	ortho/para	7	
C ₆ H ₁₃ O	C ₂ H ₅	1	para	7	
C ₆ H ₁₃ O	C ₂ H ₅	1	meta		30
C ₆ H ₁₃ O	C ₂ H ₅	1	ortho	7	
C ₆ H ₁₃ O	C ₂ H ₅	2	ortho/para	7	
C ₈ H ₁₇ O	C ₂ H ₅	1	para	7	
C ₈ H ₁₇ O	C ₂ H ₅	1	meta		35
C ₈ H ₁₇ O	C ₂ H ₅	1	ortho		
C ₈ H ₁₇ O	C ₂ H ₅	2	ortho/para		
C ₁₂ H ₂₅ O	C ₂ H ₅	1	para		
C ₁₂ H ₂₅ O	C ₂ H ₅	1	meta		40
C ₁₂ H ₂₅ O	C ₂ H ₅	1	ortho		
C ₁₂ H ₂₅ O	C ₂ H ₅	2	ortho/para		
C ₁₃ H ₂₇ O	C ₂ H ₅	1	para	_	
C ₁₃ H ₂₇ O	C ₂ H ₅	1	meta	_	45
C ₁₃ H ₂₇ O	C ₂ H ₅	1	ortho	_	
C ₁₃ H ₂₇ O	C ₂ H ₅	2	ortho/para		
C ₁₄ H ₂₉ O	C ₂ H ₅	1	para		
C ₁₄ H ₂₉ O	C ₂ H ₅	1	meta		50
C ₁₄ H ₂₉ O	C ₂ H ₅	1	ortho	⊣	
C ₁₄ H ₂₉ O	C ₂ H ₅	2	ortho/para		
C ₁₅ H ₃₁ O	C ₂ H ₅	1	para		55
C ₁₅ H ₃₁ O	C ₂ H ₅	1	meta		33
C ₁₅ H ₃₁ O	C ₂ H ₅	1	ortho	_	
C ₁₅ H ₃₁ O	C ₂ H ₅	2	ortho/para		
C ₁₆ H ₃₃ O	C ₂ H ₅	1	para	_	60
C ₁₆ H ₃₃ O	C ₂ H ₅	1	meta	_	3.
C ₁₆ H ₃₃ O	C ₂ H ₅	1	ortho		
C ₁₆ H ₃₃ O	C ₂ H ₅	2	ortho/para	_	
C ₁₇ H ₃₅ O	C ₂ H ₅	1	para		69
C ₁₇ H ₃₅ O	C ₂ H ₅	1	meta		0.
C ₁₇ H ₃₅ O	C ₂ H ₅	1	ortho		

	х	R ⁵	n	Position
5	C ₁₇ H ₃₅ O	C ₂ H ₅	2	ortho/para
Ī	C ₁₈ H ₃₇ O	C ₂ H ₅	1	para
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	meta
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	ortho
10	C ₁₈ H ₃₇ O	C ₂ H ₅	2	ortho/para
	CH ₃ O	C ₃ H ₇	1	para
	CH ₃ O	C ₃ H ₇	1	meta
	CH ₃ O	C ₃ H ₇	1	ortho
15	CH ₃ O	C ₃ H ₇	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇	1	para
	C ₂ H ₅ O	C ₃ H ₇	1	meta
	C ₂ H ₅ O	C ₃ H ₇	1	ortho
20	C ₂ H ₅ O	C ₃ H ₇	2	ortho/para
	C ₃ H ₇ O	C ₃ H ₇	1	para
	C ₃ H ₇ O	C ₃ H ₇	1	meta
	C ₃ H ₇ O	C ₃ H ₇	1	ortho
25	C ₃ H ₇ O	C ₃ H ₇	2	ortho/para
	C ₄ H ₉ O	C ₃ H ₇	1	para
	C ₄ H ₉ O	C ₃ H ₇	1	meta
	C ₄ H ₉ O	C ₃ H ₇	1	ortho
30	C ₄ H ₉ O	C ₃ H ₇	2	ortho/para
	C5H11O	C ₃ H ₇	1	para
	C5H11O	C ₃ H ₇	1	meta
	C5H11O	C ₃ H ₇	. 1	ortho
35	C5H11O	C ₃ H ₇	2	ortho/para
	C ₆ H ₁₃ O	C ₃ H ₇	1	para
	C ₆ H ₁₃ O	C ₃ H ₇	1	meta
	C ₆ H ₁₃ O	C ₃ H ₇	1	ortho
40	C ₆ H ₁₃ O	C ₃ H ₇	2	ortho/para
	C ₈ H ₁₇ O	C ₃ H ₇	1	para
	C ₈ H ₁₇ O	C ₃ H ₇	1	meta
	C ₈ H ₁₇ O	C ₃ H ₇	1	ortho
45	C ₈ H ₁₇ O	C ₃ H ₇	2	ortho/para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	meta
50	C ₁₂ H ₂₅ O	C ₃ H ₇	1	ortho
50	C ₁₂ H ₂₅ O	C ₃ H ₇	2	ortho/para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	meta
<<	C ₁₃ H ₂₇ O	C ₃ H ₇	1	ortho
55	C ₁₃ H ₂₇ O	C ₃ H ₇	2	ortho/para
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	para
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	meta
60	C ₁₄ H ₂₉ O	C ₃ H ₇	1	ortho
50	C ₁₄ H ₂₉ O	C ₃ H ₇	2	ortho/para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	meta
65	C ₁₅ H ₃₁ O	C ₃ H ₇	1	ortho
	C ₁₅ H ₃₁ O	C ₃ H ₇	2	ortho/para
	C ₁₆ H ₃₃ O	C ₃ H ₇	1	para

				_	
X	R ⁵	n	Position	}	
C ₁₆ H ₃₃ O	C ₃ H ₇	1	meta	†	5
C ₁₆ H ₃ 3O	C ₃ H ₇	1	ortho	1	,
C ₁₆ H ₃₃ O	C ₃ H ₇	2	ortho/para	1	
C ₁₇ H ₃₅ O	C ₃ H ₇	1	para	1	
C ₁₇ H ₃₅ O	C ₃ H ₇	1	meta	1	10
C ₁₇ H ₃₅ O	C ₃ H ₇	1	ortho	1	10
C ₁₇ H ₃₅ O	C ₃ H ₇	2	ortho/para	1	
C ₁₈ H ₃₇ O	C ₃ H ₇	1	para	7	
C ₁₈ H ₃₇ O	C ₃ H ₇	1	meta	1	15
C ₁₈ H ₃₇ O	C ₃ H ₇	1	ortho	7	15
C ₁₈ H ₃₇ O	C ₃ H ₇	2	ortho/para	1	
CH ₃ O	C ₄ H ₉	1	para	┪	
CH ₃ O	C ₄ H ₉	1	meta	1	20
CH ₃ O	C ₄ H ₉	1	ortho	┥ .	2.,
CH ₃ O	C ₄ H ₉	2	ortho/para	1	
	C ₄ H ₉	1	para	╡	
C ₂ H ₅ O	C ₄ H ₉	1	meta	┪	25
C ₂ H ₅ O	C ₄ H ₉	1	ortho	┫	
C ₂ H ₅ O	C ₄ H ₉	2	ortho/para	7	
C ₂ H ₅ O .	C 77	1	para	┪	
	C ₄ H ₉	1	meta	┥	30
C ₃ H ₇ O	C ₄ H ₉	1	ortho	7	
C ₃ H ₇ O	C ₄ H ₉	2	ortho/para		
C ₃ H ₇ O	C ₄ H ₉	1	para	-	
C ₄ H ₉ O	C ₄ H ₉	1	meta	7	35
C ₄ H ₉ O C ₄ H ₉ O	C ₄ H ₉	1	ortho	7	
C ₄ H ₉ O	C ₄ H ₉	2	ortho/para	7	
C ₅ H ₁₁ O	C ₄ H ₉	1	para	7	
C ₅ H ₁₁ O	C ₄ H ₉	1	meta	7	40
C ₅ H ₁₁ O	C ₄ H ₉	1	ortho		
C ₅ H ₁₁ O	C ₄ H ₉	2	ortho/para		
C ₆ H ₁₃ O	C ₄ H ₉	1	para		
C ₆ H ₁₃ O	C ₄ H ₉	1	meta		45
C ₆ H ₁₃ O	C ₄ H ₉	1	ortho		
C ₆ H ₁₃ O	C ₄ H ₉	2	ortho/para		•
C ₈ H ₁₇ O	C ₄ H ₉	1	para		
C ₈ H ₁₇ O	C ₄ H ₉	1	meta		50
C ₈ H ₁₇ O	C ₄ H ₉	1	ortho		
C ₈ H ₁₇ O	C ₄ H ₉	2	ortho/para		
C ₁₂ H ₂₅ O	C ₄ H ₉	1	para		
C ₁₂ H ₂₅ O	C ₄ H ₉	1 .	meta	<u> </u>	55
C ₁₂ H ₂₅ O	C ₄ H ₉	1	ortho		
C ₁₂ H ₂₅ O	C ₄ H ₉	2	ortho/para		
C ₁₃ H ₂₇ O	C ₄ H ₉	1	para		
C ₁₃ H ₂₇ O	C ₄ H ₉	1	meta	_	60
C ₁₃ H ₂₇ O	C ₄ H ₉	1	ortho		
C ₁₃ H ₂₇ O	C4H9	2	ortho/para		
C ₁₄ H ₂₉ O	C ₄ H ₉	1	para	_	
C ₁₄ H ₂₉ O	C ₄ H ₉	1	meta		65
C ₁₄ H ₂₉ O	C ₄ H ₉	1	ortho	· ·	

	х	R ⁵	n	Position
	C ₁₄ H ₂₉ O	C ₄ H ₉	2	ortho/para
5	C ₁₅ H ₃₁ O	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	ortho
	C ₁₅ H ₃₁ O	C ₄ H ₉	2	ortho/para
10	C ₁₆ H ₃₃ O	C ₄ H ₉	1	para
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	meta
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	ortho
	C ₁₆ H ₃₃ O	C ₄ H ₉	2	ortho/para
15	C ₁₇ H ₃₅ O	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	ortho
20	C ₁₇ H ₃₅ O	C ₄ H ₉	2	ortho/para
2.1	C ₁₈ H ₃₇ O	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	ortho
25	C ₁₈ H ₃₇ O	C ₄ H ₉	2	ortho/para
	CH ₃ O	C5H11	1	para
	CH ₃ O	C ₅ H ₁₁	1	meta
	CH ₃ O	C5H11	1	ortho
30	CH ₃ O	C5H11	2	ortho/para
	C ₂ H ₅ O	C5H11	1	para
	C ₂ H ₅ O	C ₅ H ₁₁	1	meta
	C ₂ H ₅ O	C ₅ H ₁₁	1	ortho
35	C ₂ H ₅ O	C ₅ H ₁₁	2	ortho/para
	C ₃ H ₇ O	C ₅ H ₁₁	1	para
	C ₃ H ₇ O	C5H11	1	meta
	C ₃ H ₇ O	C5H11	1	ortho
40	C ₃ H ₇ O	C ₅ H ₁₁	2	ortho/para
	C ₄ H ₉ O	C5H11	1	para
	C ₄ H ₉ O	C ₅ H ₁₁	1	meta
	C ₄ H ₉ O	C ₅ H ₁₁	1	ortho
45	C ₄ H ₉ O	C ₅ H ₁₁	2	ortho/para
	C ₅ H ₁₁ O	C ₅ H ₁₁	1	para
	C ₅ H ₁₁ O	C ₅ H ₁₁	1	meta ortho
50	C ₅ H ₁₁ O	C ₅ H ₁₁	2	ortho/para
30	C ₅ H ₁₁ O	C ₅ H ₁₁	1	para
•	C ₆ H ₁₃ O	C ₅ H ₁₁	1 1	meta
	C-WO	C ₅ H ₁₁	1	ortho
55	C ₆ H ₁₃ O	C ₅ H ₁₁	2	ortho/para
33		C5H11	1	para
	C ₈ H ₁₇ O C ₈ H ₁₇ O	C ₅ H ₁₁	1	meta
	C ₈ H ₁₇ O	C ₅ H ₁₁	1	ortho
60	C ₈ H ₁₇ O	C ₅ H ₁₁	2	ortho/para
	C ₁₂ H ₂₅ O	C ₅ H ₁₁	1	para
	C ₁₂ H ₂₅ O	C5H11	1	meta
	C ₁₂ H ₂₅ O	C ₅ H ₁₁	1	ortho
65	C ₁₂ H ₂₅ O	C ₅ H ₁₁	2	ortho/para
•	C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	para
	C13112/0	-5-411		15

					•
Х	R ⁵	n	Position		
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	meta ·		
C ₁₃ H ₂₇ O	C5H11	1	ortho		5
C ₁₃ H ₂₇ O	C ₅ H ₁₁	2	ortho/para		
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	para		
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	meta		10
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	ortho		10
C ₁₄ H ₂₉ O	C ₅ H ₁₁	2	ortho/para		
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	para		
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	meta	•	15
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	ortho		13
C ₁₅ H ₃₁ O	C ₅ H ₁₁	2	ortho/para		
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	para		
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	meta		20
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	ortho		20
C ₁₆ H ₃₃ O	C ₅ H ₁₁	2	ortho/para	•	
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	para		
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	meta		25
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	ortho		
C ₁₇ H ₃₅ O	C ₅ H ₁₁	2	ortho/para		
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	para		
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	meta		30
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	ortho		
C ₁₈ H ₃₇ O	C ₅ H ₁₁	2	ortho/para		
CH ₃ O	C ₆ H ₁₃	1	para		
CH ₃ O	C ₆ H ₁₃	1	meta		35
CH ₃ O	C ₆ H ₁₃	1	ortho		
CH ₃ O	C ₆ H ₁₃	2	ortho/para		
C ₂ H ₅ O	C ₆ H ₁₃	1	para		
C ₂ H ₅ O	C6H13	1	meta	·	40
C ₂ H ₅ O	C ₆ H ₁₃	1	ortho		
C ₂ H ₅ O	C ₆ H ₁₃	2	ortho/para		
C ₃ H ₇ O	C ₆ H ₁₃	1	para		
C ₃ H ₇ O	C ₆ H ₁₃	1	meta		45
C ₃ H ₇ O	C ₆ H ₁₃	1	ortho		
C ₃ H ₇ O	C ₆ H ₁₃	2	ortho/para	·	
C ₄ H ₉ O	C ₆ H ₁₃	1	para		
C ₄ H ₉ O	C ₆ H ₁₃	1	meta		50
C ₄ H ₉ O	C ₆ H ₁₃	1	ortho		
C ₄ H ₉ O	C ₆ H ₁₃	2	ortho/para		
C ₅ H ₁₁ O	C ₆ H ₁₃	1	para		
C ₅ H ₁₁ O	C ₆ H ₁₃	1	meta	1	55
C ₅ H ₁₁ O	C ₆ H ₁₃	1	ortho	1	
C ₅ H ₁₁ O	C ₆ H ₁₃	2	ortho/para]	
C ₆ H ₁₃ O	C ₆ H ₁₃	1	para]	
C ₆ H ₁₃ O	C ₆ H ₁₃	1	meta	1	60
C ₆ H ₁₃ O	C ₆ H ₁₃	1	ortho		
C ₆ H ₁₃ O	C ₆ H ₁₃	2	ortho/para]	
C ₈ H ₁₇ O	C ₆ H ₁₃	1	para]	
C ₈ H ₁₇ O	C ₆ H ₁₃	1	meta]	65
C ₈ H ₁₇ O	C ₆ H ₁₃	1	ortho		
				-	

		·		
	X	R ⁵	n	Position
_	C ₈ H ₁₇ O	C ₆ H ₁₃	2	ortho/para
5	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	para
i	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	meta
,	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	ortho
10	C ₁₂ H ₂₅ O	C ₆ H ₁₃	2	ortho/para
10	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	meta
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	ortho
15 i	C ₁₃ H ₂₇ O	C ₆ H ₁₃	2	ortho/para
13	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	meta
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	ortho
20	C ₁₄ H ₂₉ O	C ₆ H ₁₃	2	ortho/para
2,	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	para
•	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	ortho
25	C ₁₅ H ₃₁ O	C ₆ H ₁₃	2	ortho/para
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	ortho
30	C ₁₆ H ₃₃ O	C ₆ H ₁₃	2	ortho/para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	ortho
35	C ₁₇ H ₃₅ O	C ₆ H ₁₃	2	ortho/para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	ortho
40	C ₁₈ H ₃₇ O	C ₆ H ₁₃	2	ortho/para
	CH ₃ O	CH ₃ O	1	para
•	CH ₃ O	CH ₃ O	1	meta
	CH ₃ O .	CH ₃ O	1	ortho
45	CH ₃ O	CH ₃ O	2	ortho/para
	C ₂ H ₅ O	CH ₃ O	1	para
	C ₂ H ₅ O	CH ₃ O	1	meta
	C ₂ H ₅ O	CH ₃ O	1	ortho
50	C ₂ H ₅ O	CH ₃ O	2	ortho/para
	C ₃ H ₇ O	CH ₃ O	1	para
	C ₃ H ₇ O	CH ₃ O	1	meta
	C ₃ H ₇ O	CH ₃ O	1	ortho
55	C ₃ H ₇ O	CH ₃ O	2	ortho/para
	C4H9O	CH ₃ O	1	para
	C ₄ H ₉ O	CH ₃ O	1	meta
60	C ₄ H ₉ O	CH ₃ O	1.	ortho
60	C ₄ H ₉ O	CH ₃ O	2	ortho/para
	C ₅ H ₁₁ O	CH ₃ O	1	para
	C5H11O	CH ₃ O	1	meta
66	C ₅ H ₁₁ O	CH ₃ O	1	ortho
65	C ₅ H ₁₁ O	CH ₃ O	2	ortho/para
	C ₆ H ₁₃ O	CH ₃ O	1	para

		n	Position		
	13O	1	meta	•	
1 Chail 10 . CE	I ₃ O	1	ortho	·	5
	130	2	ortho/para		
	I ₃ O	1	para		•
	I ₃ O	1	meta		
	130	1	ortho		10
	I ₃ O	2	ortho/para		
	H ₃ O	1	para		
	H ₃ O	1	meta		
	I ₃ O	1	ortho		15
	H ₃ O	2	ortho/para		
		1	para para		
	130	1	meta		
	130	1	ortho	•	20
	H ₃ O	2	ortho/para		
	I ₃ O				
	H ₃ O	1	para		
	I ₃ O	1	meta		25
	I ₃ O	1	ortho		
	I ₃ O	2	ortho/para		
	I ₃ O	1	para		
	I ₃ O	1	meta		30
	I ₃ O	1	ortho		
	I ₃ O	2	ortho/para		
	130	1	para		
	H ₃ O	1	meta		35
	H ₃ O	1	ortho	*	
	H ₃ O	2	ortho/para		
	H ₃ O	1	para	i •	
	H ₃ O	1	meta		40
	H ₃ O	1	ortho		
	H ₃ O	2	ortho/para		
	H ₃ O	1	para		
	H ₃ O	1	meta		45
	H ₃ O	1	ortho		
	H ₃ O	2	ortho/para		
	₂ H ₅ O	1	para		
	2H ₅ O	1	meta		50
-	₂ H ₅ O	1	ortho		
	₂ H ₅ O	2	ortho/para		
	₂ H ₅ O	1	para		
	2H ₅ O	1	meta		55
	2H5O	1	ortho		
	₂ H ₅ O	2	ortho/para	1	
	₂ H ₅ O	1	para		
C ₃ H ₇ O C	₂ H ₅ O	1	meta	·	60
C ₃ H ₇ O C	2H5O	1	ortho	1	
C ₃ H ₇ O C	₂ H ₅ O	2	ortho/para	1	
	₂ H ₅ O	1	para		•
	2H5O	1	meta]	65
	₂ H ₅ O	1	ortho]	

	Х	R ⁵	n	Position
	C ₄ H ₉ O	C ₂ H ₅ O	2	ortho/para
5	C ₅ H ₁₁ O	C ₂ H ₅ O	1	para
	C ₅ H ₁₁ O	C ₂ H ₅ O	1	meta
•	C ₅ H ₁₁ O	C ₂ H ₅ O	1	ortho
	C5H11O	C ₂ H ₅ O	2	ortho/para
10	C ₆ H ₁₃ O	C ₂ H ₅ O	1	para
•	C ₆ H ₁₃ O	C ₂ H ₅ O	1	meta
	C ₆ H ₁₃ O	C ₂ H ₅ O	1	ortho
	C ₆ H ₁₃ O	C ₂ H ₅ O	2	ortho/para
15	C ₈ H ₁₇ O	C ₂ H ₅ O	- 1	para
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	meta
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	ortho
20	C ₈ H ₁₇ O	C ₂ H ₅ O	2	ortho/para
24	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	para
	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	meta
	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	ortho
25	C ₁₂ H ₂₅ O	C ₂ H ₅ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	meta
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	ortho
30	C ₁₃ H ₂₇ O	C ₂ H ₅ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	meta
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	ortho
35	C ₁₄ H ₂₉ O	C ₂ H ₅ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	meta
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	ortho
40	C ₁₅ H ₃₁ O	C ₂ H ₅ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	para
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	ortho
45	C ₁₆ H ₃₃ O	C ₂ H ₅ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1 1	para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	ortho
50	C ₁₇ H ₃₅ O	C ₂ H ₅ O	2	ortho/para
30	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	para
•	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	meta
	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	ortho
55	C ₁₈ H ₃₇ O C ₁₈ H ₃₇ O	C ₂ H ₅ O	2	ortho/para
	CH ₃ O	C ₃ H ₇ O	1	meta
	CH ₃ O	C ₃ H ₇ O	1	para
	CH ₃ O	C ₃ H ₇ O	1	ortho
60	CH ₃ O	C ₃ H ₇ O	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇ O	1 1	para
	C ₂ H ₅ O	C ₃ H ₇ O	1	meta
	C ₂ H ₅ O	C ₃ H ₇ O	+ 1 -	ortho
65		C ₃ H ₇ O	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇ O	1	para
	C ₃ H ₇ O	1 031170		15

				٦	
X	R ⁵	n	Position		
C ₃ H ₇ O	C ₃ H ₇ O	1	meta	1	5
C ₃ H ₇ O	C ₃ H ₇ O	1	ortho	1	,
C ₃ H ₇ O	C ₃ H ₇ O	2	ortho/para	1	
C ₄ H ₉ O	C ₃ H ₇ O	1	para		
C ₄ H ₉ O	C ₃ H ₇ O	1	meta	1	10
C ₄ H ₉ O	C ₃ H ₇ O	1	ortho	-	10
C ₄ H ₉ O	C ₃ H ₇ O	2	ortho/para	-	
	C ₃ H ₇ O	1	para	-	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	meta	┪	15
C ₅ H ₁₁ O	C ₃ H ₇ O	1	ortho	-	13
C ₅ H ₁₁ O	C ₃ H ₇ O	2	ortho/para	┪	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	para	┪	•
C ₆ H ₁₃ O	C ₃ H ₇ O	1	meta	-	20
C ₆ H ₁₃ O	C ₃ H ₇ O	1	ortho	┥ .	20
C ₆ H ₁₃ O	C ₃ H ₇ O	2	ortho/para	╡	•
C ₆ H ₁₃ O	C ₃ H ₇ O	1	para		
C ₈ H ₁₇ O	C ₃ H ₇ O	1	meta	-	. 25
C ₈ H ₁₇ O		1	ortho	=	23
C ₈ H ₁₇ O	C ₃ H ₇ O	2	ortho/para	-	
C ₈ H ₁₇ O	C ₃ H ₇ O	1	para		
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	meta	_	30
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	ortho	╡	30
C ₁₂ H ₂₅ O	C ₃ H ₇ O	2	ortho/para	┥	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	para	-	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	meta	╡	35
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	ortho	-	35
C ₁₃ H ₂₇ O	C ₃ H ₇ O	2	ortho/para	-	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	para		
C14H29O	C ₃ H ₇ O	1	meta	⊣ ·	40
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	ortho		
C ₁₄ H ₂₉ O	C ₃ H ₇ O	2	ortho/para		
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	para	-	
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	meta		45
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1 1	ortho		
C ₁₅ H ₃₁ O C ₁₅ H ₃₁ O	C ₃ H ₇ O	2	ortho/para	-	
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	para	 [
C ₁₆ H ₃₃ O	C3H7O	1	meta	_	50
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	ortho		
C ₁₆ H ₃₃ O	C ₃ H ₇ O	2	ortho/para	1	
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	para	~	
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	meta		55
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	ortho		
C ₁₇ H ₃₅ O	C ₃ H ₇ O	2	ortho/para		
	C ₃ H ₇ O	1	para		
C ₁₈ H ₃₇ O	C ₃ H ₇ O	+ 1	meta		60
C18H37O	C ₃ H ₇ O	1 1	ortho		
C ₁₈ H ₃₇ O	C ₃ H ₇ O	2	ortho/para .		
C18H37O		1	meta	┪	
CH ₃ O	C ₄ H ₉ O	1	para		65
CH ₃ O	C ₄ H ₉ O	1	ortho	-	
CH ₃ O	C ₄ H ₉ O		101010	1	

	х	R ⁵	n	Position
5	CH ₃ O	C ₄ H ₉ O	2	ortho/para
'	C ₂ H ₅ O	C ₄ H ₉ O	1	para
	C ₂ H ₅ O	C ₄ H ₉ O	1	meta
•	C ₂ H ₅ O	C ₄ H ₉ O	1	ortho
	C ₂ H ₅ O	C ₄ H ₉ O	2	ortho/para
10	C ₃ H ₇ O	C ₄ H ₉ O	1	para
	C ₃ H ₇ O	C ₄ H ₉ O	1	meta
	C ₃ H ₇ O	C ₄ H ₉ O	1	ortho
15	C ₃ H ₇ O	C ₄ H ₉ O	2	ortho/para
13	C ₄ H ₉ O	C ₄ H ₉ O	1	para
	C ₄ H ₉ O	C ₄ H ₉ O	1	meta
	C ₄ H ₉ O	C ₄ H ₉ O	1	ortho
20	C ₄ H ₉ O	C ₄ H ₉ O	2	ortho/para
21	C ₅ H ₁₁ O	C ₄ H ₉ O	1	para
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	meta
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	ortho
25	C ₅ H ₁₁ O	C ₄ H ₉ O	2	ortho/para
23	C ₆ H ₁₃ O	C ₄ H ₉ O	1	para
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	meta
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	ortho
30	C ₆ H ₁₃ O	C ₄ H ₉ O	2	ortho/para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	meta
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	ortho
35	C ₈ H ₁₇ O	C ₄ H ₉ O	2	ortho/para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	meta
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	ortho
40	C ₁₂ H ₂₅ O	C ₄ H ₉ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	meta
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	ortho
45	C ₁₃ H ₂₇ O	C ₄ H ₉ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	para
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	meta
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	ortho
50	C ₁₄ H ₂₉ O	C ₄ H ₉ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	ortho
55	C ₁₅ H ₃₁ O	C ₄ H ₉ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	meta
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	ortho
60	C ₁₆ H ₃₃ O	C ₄ H ₉ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	ortho
65 .	C ₁₇ H ₃₅ O	C ₄ H ₉ O	2	ortho/para
1	C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	para

х	R ⁵	n	Position		
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	meta		5
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	ortho		
C ₁₈ H ₃₇ O	C ₄ H ₉ O	2	ortho/para		
CH ₃ O	C ₅ H ₁₁ O	1	meta		
CH ₃ O	C ₅ H ₁₁ O	1	para		10
CH ₃ O	C ₅ H ₁₁ O	1	ortho		
CH ₃ O	C ₅ H ₁₁ O	2	ortho/para		
C ₂ H ₅ O	C ₅ H ₁₁ O	1	para		
C ₂ H ₅ O	C ₅ H ₁₁ O	1	meta	·	15
C ₂ H ₅ O	C ₅ H ₁₁ O	1	ortho	ļ	
	C ₅ H ₁₁ O	2	ortho/para		
C ₂ H ₅ O	C ₅ H ₁₁ O	1	para	1	
C ₃ H ₇ O	C ₅ H ₁₁ O	1	meta	1	20
C ₃ H ₇ O	C ₅ H ₁₁ O	$\frac{1}{1}$	ortho	1	-
C ₃ H ₇ O	C ₅ H ₁₁ O	2	ortho/para	1	•
C ₃ H ₇ O	C ₅ H ₁₁ O		para	1	
C ₄ H ₉ O	C ₅ H ₁₁ O	1	meta	1	25
C ₄ H ₉ O	C ₅ H ₁₁ O	- 1	ortho	1	
C ₄ H ₉ O	C ₅ H ₁₁ O	2	ortho/para	1	
C ₄ H ₉ O	C ₅ H ₁₁ O	1	para	1	
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	meta	1	30
C ₅ H ₁₁ O	C5H11O	- 1	ortho	†	
C ₅ H ₁₁ O	C ₅ H ₁₁ O	2	ortho/para	1	
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	para	1	
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	meta	1	35
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	ortho	1	
C ₆ H ₁₃ O	C ₅ H ₁₁ O	2	ortho/para	1	
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	para	1	
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1.	meta	7	40
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	ortho		
C ₈ H ₁₇ O	C ₅ H ₁₁ O	2	ortho/para	7	
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	para		
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	meta]	45
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	ortho] .	
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	2	ortho/para]	
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	para]	
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	meta		50
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	ortho]	
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	2	ortho/para		
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	para		
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	meta		55
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	ortho		
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	2	ortho/para]	
	C ₅ H ₁₁ O	1	para		
C ₁₅ H ₃₁ O C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	meta		60
	C ₅ H ₁₁ O	1	ortho	\neg	
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1 2	ortho/para	7	
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	para	7	
C ₁₆ H ₃₃ O		1	meta	7	65
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1	ortho	_	
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	<u> </u>	101010		

	х	R ⁵	n	Position
5	C ₁₆ H ₃₃ O	C5H11O	2	ortho/para
,	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	para
	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	meta
	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	ortho
10	C ₁₇ H ₃₅ O	C5H11O	2	ortho/para
10	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	para
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	meta
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	ortho
15	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	2	ortho/para
13	CH ₃ O	C ₆ H ₁₃ O	1	meta
	CH ₃ O	C ₆ H ₁₃ O	1	para
	CH ₃ O	C ₆ H ₁₃ O	1	ortho
20	CH ₃ O	C ₆ H ₁₃ O	2	ortho/para
۵,	C ₂ H ₅ O	C ₆ H ₁₃ O	1	para
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	meta
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	ortho
25	C ₂ H ₅ O	C ₆ H ₁₃ O	2	ortho/para
23	C ₃ H ₇ O	C ₆ H ₁₃ O	1	para
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	meta
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	ortho
30	C ₃ H ₇ O	C ₆ H ₁₃ O	2	ortho/para
50	C ₄ H ₉ O	C ₆ H ₁₃ O	1	para
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	meta
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	ortho
35	C ₄ H ₉ O	C ₆ H ₁₃ O	2	ortho/para
	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	para
	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	meta
	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	ortho
40	C ₅ H ₁₁ O	C ₆ H ₁₃ O	2	ortho/para
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	para
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	meta
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	ortho
45	C ₆ H ₁₃ O	C ₆ H ₁₃ O	2	ortho/para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	meta
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	ortho
50	C ₈ H ₁₇ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	meta
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	ortho
55	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	meta
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	ortho
60	C ₁₃ H ₂₇ O :	C ₆ H ₁₃ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1 1	meta
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	+ 1	ortho
65	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1 1	para
	-15.4310	-611130	+	18

				_	
Х	R ⁵	n	Position		
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	meta		. 5
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	ortho	1	3
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	2	ortho/para		
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	para	i	
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	meta	1	10
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	ortho		
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	2	ortho/para	1 .	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	para		
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	meta		15
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	ortho	1	15
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	2	ortho/para	1	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	para	1	
	C ₆ H ₁₃ O	1	meta	1	20
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	ortho	1 ·	2.0
C ₁₈ H ₃₇ O C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	2	ortho/para	1 .	
CH ₃ O	C ₇ H ₁₅ O	1	meta		
	C ₇ H ₁₅ O	1	para	1	25
CH ₃ O	C ₇ H ₁₅ O	1	ortho	₹	
CH ₃ O	C ₇ H ₁₅ O	2	ortho/para	1	
C ₂ H ₅ O	C ₇ H ₁₅ O	1	para	₫	
C ₂ H ₅ O	C7H15O	1	meta	7	30
	C7H15O	1	ortho	7	
C ₂ H ₅ O C ₂ H ₅ O	C ₇ H ₁₅ O	2	ortho/para		
C ₃ H ₇ O	C7H15O	1	para	7	
C ₃ H ₇ O	C ₇ H ₁₅ O	1	meta	7	35
C ₃ H ₇ O	C ₇ H ₁₅ O	1	ortho	7	
C ₃ H ₇ O	C7H15O	2	ortho/para	7	
C ₄ H ₉ O	C7H15O	1	para]	
C ₄ H ₉ O	C7H15O	1	meta]	40
C ₄ H ₉ O	C7H15O	1	ortho		
C ₄ H ₉ O	C7H15O	2	ortho/para		
C ₅ H ₁₁ O	C7H15O	1	para		
C ₅ H ₁₁ O	C7H15O	1	meta		45
C ₅ H ₁₁ O	C7H15O	1	ortho		
C5H11O	C7H15O	2	ortho/para		
C ₆ H ₁₃ O	C7H15O	1	para	_	
C ₆ H ₁₃ O	C7H15O	1	meta		50
C ₆ H ₁₃ O	C7H15O	1	ortho		
C ₆ H ₁₃ O	C7H15O	2	ortho/para		
C ₈ H ₁₇ O	C7H15O	1	para	_	
C ₈ H ₁₇ O	C7H15O	1	meta	_ .	55
C ₈ H ₁₇ O	C7H15O	1	ortho		
C ₈ H ₁₇ O	C7H15O	2	ortho/para	_	
C ₁₂ H ₂₅ O	C7H15O	1	para	_	
C ₁₂ H ₂₅ O	C7H15O	1	meta		60
C ₁₂ H ₂₅ O	C7H15O	1	ortho		
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	2	ortho/para	⊣	
C ₁₃ H ₂₇ O	C ₇ H ₁₅ O	1	para	_	-
C ₁₃ H ₂₇ O	C7H15O	1	meta		6
C ₁₃ H ₂₇ O	C7H15O	1	ortho		

		<i></i>		
	X	R ⁵ .	n	Position
5	C ₁₃ H ₂₇ O	C7H15O	2	ortho/para
,	C ₁₄ H ₂₉ O	C7H15O	1	para
	C ₁₄ H ₂₉ O	C7H15O	1	meta
	C ₁₄ H ₂₉ O	C7H15O	1	ortho
10	C ₁₄ H ₂₉ O	C7H15O	2	ortho/para
10	C ₁₅ H ₃₁ O	C7H15O	1	para
	C ₁₅ H ₃₁ O	C7H15O	1	meta
	C ₁₅ H ₃₁ O	C7H15O	1	ortho
15	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	2	ortho/para
.5	C ₁₆ H ₃₃ O	C7H15O	1	para
1	C ₁₆ H ₃₃ O	C7H15O	1	meta
	C ₁₆ H ₃₃ O	C7H15O	1	ortho
20	C ₁₆ H ₃₃ O	C7H15O	2	ortho/para
	C ₁₇ H ₃₅ O	C7H15O	1	para
	C ₁₇ H ₃₅ O	C7H15O	1	meta
	C ₁₇ H ₃₅ O	C7H15O	1	ortho
25	C ₁₇ H ₃₅ O	C7H15O	2	ortho/para
	C ₁₈ H ₃₇ O	C7H15O	1	para
	C ₁₈ H ₃₇ O	C7H15O	1	meta
	C ₁₈ H ₃₇ O	C7H15O	1	ortho
30	C ₁₈ H ₃₇ O	C7H15O	2	ortho/para
	CH ₃ O	C ₈ H ₁₇ O	1	meta
	CH ₃ O	C ₈ H ₁₇ O	1	para
	CH ₃ O	C ₈ H ₁₇ O	1	ortho
35	CH ₃ O	C ₈ H ₁₇ O	2	ortho/para
	C ₂ H ₅ O	C _B H ₁₇ O	1	para
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	meta
	C ₂ H ₅ O	C _B H ₁₇ O	1	ortho
40	C ₂ H ₅ O	C ₈ H ₁₇ O	2	ortho/para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	meta
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	ortho
45	C ₃ H ₇ O	C ₈ H ₁₇ O	2	ortho/para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1	para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1 1	meta ortho
50	C ₄ H ₉ O	C ₈ H ₁₇ O	2	ortho/para
30	C ₄ H ₉ O	C ₈ H ₁₇ O	1	para
•	C ₅ H ₁₁ O	C ₈ H ₁₇ O	$\frac{1}{1}$	meta
	C ₅ H ₁₁ O	C ₈ H ₁₇ O	1	ortho
55	C ₅ H ₁₁ O	C ₈ H ₁₇ O	2	ortho/para
33	C ₅ H ₁₁ O	C ₈ H ₁₇ O	1	para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	meta
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	ortho
60	C ₆ H ₁₃ O	C ₈ H ₁₇ O	2	ortho/para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	para
	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	meta
	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	ortho
65	C ₈ H ₁₇ O	C ₈ H ₁₇ O	2	ortho/para
-	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	para para
	C ₁₂ H ₂₅ O	C ₈ H ₁₇ O		Para

10

15

20

30

35

x	R ⁵	n	Position
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	meta
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	meta
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	meta
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	ortho
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	meta
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	ortho
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	meta
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	ortho
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	meta
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	meta
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	2	ortho/para

Die erfindungsgemäß zu verwendenden Verbindungen der Formel I bis III können nach der Gleichung

$$R^{1}$$
— CH_{2} — R^{2} + R^{4} — NH_{2} + $R^{3}C(OR)_{3}$ $\xrightarrow{-3}$ ROH

 $R = CH_{3}, C_{2}H_{5}$

durch Kondensation hergestellt werden, wohei R1 bis R4 die ohen genannte Bedeutung hahen.

Beispielsweise ergibt die Umsetzung von 2,4-Pentandion mit Anthranilsäure-2-ethylhexylester und Triethylorthoformiat die Verbindung 24 in Tabelle 2.

Die Lichtschutzmittel enthaltenden kosmetischen und pharmazeutischen Zubereitungen sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zubereitungen allein auf wäßriger Basis bei Verwendung von Verbindungen mit hydrophilen Substituenten möglich. Demgemäß kommen Öle, Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, Cremes und Pasten, Lippenschutzstifunassen oder fettfreie Gele in Betracht.

Solche Sonnenschutzpräparate können demgemäß in flüssiger, pastöser oder fester Form vorliegen, beispielsweise als Wasser-in-Öl-Cremes, Öl-in-Wasser-Cremes und -Lotionen, Aerosol-Schaumcremes, Gele, Öle, Fettstifte, Puder, Sprays oder alkoholisch-wäßrige Lotionen.

Übliche Ölkomponenten in der Kosmetik sind beispielsweise Paraffinöl, Glycerylstearat, Isopropylmyristat, Diisopropyladipat, 2-Ethylhexansäurecetylstearylester, hydriertes Polyisobuten, Vaseline, Caprylsäure/Caprinsäure-Triglyceride, mikrokristallines Wachs, Lanolin und Stearinsäure.

Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat) und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/O- und daneben auch O/W-Emulgatoren wie etwa Polyglycerinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Typische Beispiele für Fette sind Glyceride; als Wachse sind u. a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen zu nennen. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Geeig-

nete Verdickungsmittel sind bezelelsweise vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner Fettalkohole, Monoglyceride und Fettsäuren, Polycrylate, Polyvinylalkohol und Polyvinylpyrrolidon. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaterniere Cellulose-Derivate und ähnliche Verbindungen. Als Konservicrungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxybenzoat oder Sorbinsäure. Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht. Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkoimmission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 80, vorzugsweise 6 bis 40 Gew.-% und der nicht wäßrige Anteil ("Aktivsubstanz") 20 bis 80, vorzugsweise 30 bis 70 Gew.-% – bezogen auf die Mittel – betragen. Die Herstellung der Mittel kann in an sich bekannter Weise, d. h. beispielsweise durch Heiß-, Kalt-, Heiß-Heiß/Kalt- bzw. PIT-Emulgierung erfolgen. Hierbei handelt es sich um ein rein mechanisches Verfahren, eine chemische Reaktion findet nicht statt.

Schließlich können weitere an sich bekannte im UV-A-Bereich absorbierenden Substanzen mitverwendet werden, sofern sie im Gesamtsystem der erfindungsgemäß zu verwendenden Kombination aus UV-B und UV-A-Filter stabil sind. Gegenstand der vorliegenden Erfindung sind weiterhin kosmetische und pharmazeutische Zubereitungen, die 0,1 bis 10 Gew.-%, vorzugsweise 1 bis 7 Gew.-%, bezogen auf die gesamte Menge der kosmetischen und pharmazeutischen Zu-

bereitung, eine oder mehrere der Verbindungen der Formel I zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-B-Bereich absorbierenden Verbindungen als Lichtschutzmittel enthalten, wobei die Verbindungen der Formel I in der Regel in geringerer Menge als die UV-B-absorbierenden Verbindungen eingesetzt werden

25 den.

Der größte Teil der Lichtschutzmittel in den zum Schutz der menschlichen Epidermis dienenden kosmetischen und pharmazeutischen Zubereitungen besteht aus Verbindungen, die UV-Licht im UV-B-Bereich absorbieren d. h. im Bereich von 280 bis 320 nm. Beispielsweise beträgt der Anteil der erfindungsgemäß zu verwendenden UV-A-Absorber 10 bis 90 Gew.-%, bevorzugt 20 bis 50 Gew.-% hezogen auf die Gesamtmenge von UV-B und UV-A-absorbierenden Substanzen.

Als UV-B-Filtersubstanzen, die in Kombination mit den erfindungsgemäß zu verwendenden Verbindungen der Formel I angewandt werden, kommen beliebige UV-B-Filtersubstanzen in Betracht. Beispielsweise sind zu nennen:

35

40

45

50

55

60

		CAS-Nr.	
Nr.	Stoff	(=Sāure)	
	4-Aminobenzoesāure	150-13-0	5
2	3-(4'Trimethylammonium)-benzylidenbornan-2-on- methylsulfat	52793-97-2	
3	3,3,5-Trimethyl-cyclohexyl-salicylat (Homosalatum)	118-56-9	10
4	2-Hydroxy-4-methoxy-benzophenon (Oxybenzonum)	131-57-7	
5	Oxybenzondmy 2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- u. Triethanolaminsalze	27503-81-7	15
6	3,3'-(1,4-Phenylendi- methin)-bis(7,7-dimethyl-2-oxobicyclo[2.2.1]hep- tan-1-methansulfonsäure) und ihre Salze	1	20
7	4-Bis(polyethoxy)amino-benzoesäurepolyethoxy-	113010-52-9	
8	4-Dimethylamino-benzoesäure-2-ethylhexylester	21245-02-3	25
9	Salicylsäure-2-ethylhexylester	118-60-5	
10	4-Methoxy-zimtsäure-2-isoamylester	7/6/7-10-2	
11	4-Methoxy-zimtsäure-2-ethylhexylester	5466-77-3	30
12	2-Hydroxy-4-methoxy-benzophenon-5-sulfon- (Sulisobenzonum) und das Natriumsalz	4065-45-6	
13	3-(4'-Sulfo)benzyliden-bornan-2-on und Salze	58030-58-6	
14	3-(4'-Methyl)benzyliden-bornan-2-on	36861-47-9	35
15	3-Benzylidenbornan-2-on	16087-24-8	
16	1-(4'-Isopropylphenyl)-3-phenylpropan-1,3-dion	63260-25-9	
	4-Isopropylbenzylsalicylat	94134-93-7	40
17	171-10-	88122-99-0	
19	und ihr Ethylester	104-98-3*	45
		5232-99-5	1
21	- 2 2: - k-r-vl servl säure - 2' - et hylhexyl-	6197-30-4	
22		134-09-8	50
23		136-44-7	55
24	2,2'-Dihydroxy-4-methoxybenzophenon (Dioxyben-	131-53-3	_
2	- A.mothylbenzonhenon (Mexo-		60
2	g-1 - g-1 - g-1 - b- '	2174-16-5	_
2	7 Dimethoxyphenylglyoxalsäure oder: 3.4-dimethoxy-phenyl-glyoxal-saures Natrium		6
2	8 3-(4'Sulfo)benzyliden-bornan-2-on und seine Salze	56039-58-8	
<u> </u>			

Schließlich sind auch mit werte Pigmente wie Titandioxid und Zinkoxid zu

Zum Schutz menschliche Fraure vor UV-Strahlen können die erfindungsgemäßen Lichtschutzmittel der Formel I in Shampoos, Lotionen, Gelen oder Emulsionen in Konzentrationen von 0,1 bis 10 Gew.-%, bevorzugt 1 bis 7 Gew.-% eingearbeitet werden. Die jeweiligen Formulierungen können dabei u. a. zum Waschen, Färben sowie zum Frisieren der Haare verwendet werden.

Die erfindungsgemäß zu verwendenden Verbindungen zeichnen sich in der Regel durch ein besonders hohes Absorptionsvermögen im Bereich der UV-A-Strahlung mit scharfer Bandenstruktur aus. Weiterhin sind sie gut in kosmetischen Ölen löslich und lassen sich leicht in kosmetische Formulierungen einarbeiten. Die mit den Verbindungen I hergestellten Emulsionen zeichnen sich besonders durch ihre hohe Stabilität, die Verbindungen I selber durch ihre hohe Photostabilität aus, und die mit I hergestellten Zubereitungen durch ihr angenehmes Hautgefühl aus.

Gegenstand der Erfindung sind auch die Verbindungen der Formel I zur Verwendung als Medikament sowie pharmazeutische Mittel zur vorbeugenden Behandlung von Entzündungen und Allergien der Haut sowie zur Verhütung bestimmter Hautkrebsarten, welche eine wirksame Menge mindestens einer Verbindung der Formel I als Wirkstoff enthalten.

Das erfindungsgemäße pharmazeutische Mittel kann oral oder topisch verabreicht werden. Für die orale Verabreichung liegt das pharmazeutische Mittel in Form von u. a. Pastillen, Gelatinekapseln, Dragees, als Sirup, Lösung, Émulsion oder Suspension vor. Die topische Anwendung der pharmazeutischen Mittel erfolgt beispielsweise als Salbe, Creme, Gel, Spray, Lösung oder Lotion.

Beispiele

I. Herstellung

Beispiel 1

Allgemeine Vorschrift (für die Verbindung der Nr. 1 der Tabelle 2)

0,1 mol p-Aminobenzoesäure-2-ethylhexylester, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol ahdestilliert wurde. Nach Ahkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 80%iger Ausbeute Verbindung 1 der Tabelle 2.

Beispiel 2

0,1 mol Anthranilsäure-2-ethylhexylester, 0,1 mol 2,4-Pentandion und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C crhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 24 der Tabelle 2.

Beispiel 3

0,1 mol m-Toluidin, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat und 1 g Zinkchlorid wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 2 der Tabelle 2.

Weitere so hergestellte Verbindungen sind in Tabelle 2 angegeben.

50

40

20

25

55

60

	$\begin{array}{c} H \\ C = C \\ CO \end{array}$	-C CH3 CH3		. 5
Nr.	R	λmax	E ¹ 1	10
1)	4-COOC ₈ H ₁₇ 1)	346	860	
2)	3-CH ₃	338	978	
3)	4-OCH ₃	348	841	15
4)	4-tert.C ₄ H ₉	342	888	
5)	4-n-C ₄ H ₉	342	884	•
6)	4-CONHC ₈ H ₁₇ 1)	346	773	20
7)	4-iso-C ₃ H ₇	342	903	
8)	4-n-C ₃ H ₇	342	918	
9)	2-COOC ₈ H ₁₇ 1)	348	717	25
10)	2 - CN	338	995	
11)		346	583	
12)		340	829	
13)	2-COO [⊕] x N [⊕] H (C ₂ H ₄ OH) ₃	346	667 (Wasser)	30
14)	2,5-Di-OCH ₃	362	491	
15)	2-COOH	346	965	
16)	4-SO ₃ -x +HN(C ₂ H ₄ OH) ₃	340	666 (Wasser)	35
17)	4-SO ₃ ⊖ _{Na} ⊕	340	1010 (Wasser)	
18)	2-OC ₂ H ₅	352	876	
19)	2-COOCH3	348	995	40
20)	2-COOCH ₂ CH (CH ₃) ₂	348	864	
21)	2-COOC4H9	346	825	
Nr.	Verbindung	λmax	E11	45
22)	H_C=C	380	768	
	HN COC (CH ₃) ₃			50
	CH ₃ COOC ₂ H ₅			55
23)	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	350	817	60
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			65

DE	197	12	033	A 1
ינע	171	12	\mathbf{U}	Δ

		·	
	E C C C C C C C C C C C C C C C C C C C	CH ₃	
	R CO	—c ← CH3	
Nr.	R	λmax	E11
24)	$C = C$ $COCH_3$ $COCC_8H_{17}$	344	795
25)	H COCH3	344	938
	COOC4H9		
26)	COCH3	336	1035
	OCH3		
27)	c = c $c = c$ $c = c$ $c = c$	346	1049
	COOC ₆ H ₁₇ 1)		
28)	$C = C$ $COCC_2H_5$	346	757
	COOC ₈ H ₁₇ 1)	1246	941
29)	COOCH3	346] 7#±
5	COOC ₈ H ₁₇ 1)	-	

	HN C=CCN CO-	-C ← CH ₃ CH ₃		5
Nr.	R	λmax	E11	
30)	COOCH3	344	1008	
31)	H, COCH-	344	717	20
	$C = C$ $COCH_3$ $COOC (CH_3)_3$ $COOC_8H_{17}$ 1)			25
				30
32)	c = c $c = c$ $c =$	346	646	35 40
33)	$C = C$ $C = C$ $COOC_8H_{17}$ COO	350	612	45
	H ₃ CO			50
34)	$C = C CN$ $COOC_8H_{17} 1)$	322	761	55
	H ₃ CO OCH ₃			

				
5		$\begin{array}{c} \text{HN} \\ \text{C} = \text{C} \\ \text{CO} - \text{C} \\ \end{array}$	$-C \stackrel{\text{CH}_3}{\underset{\text{CH}_3}{\leftarrow}}$	
	Nr.	R	λmax	E11
10	35)	$C = C C_{8H_{17}}$	332	1105
15			·	
20	36)	C=CCN	336	752
25 30		COOCH ₃		·
50				
35	37)	$C = C$ $COOC_2H_5$ $COOC_2H_5$	336	890
40				.
45	38)	$C = C \begin{pmatrix} COOC_2H_5 \\ COOC_2H_5 \end{pmatrix}$	335	630
50		COOC ₈ H ₁₇ 1)		·
55	39)	HN C=C COOC ₂ H ₅	320	700
60		COOC ₈ H ₁₇ 1)		
	L	COOCHIT!		

	C = C	-C CH3 CH3 CH3		. 5
Nr. R		λmax	E11	10
40)	HN C=C	358	743	10
	COOC ₈ H ₁₇ 1)		1191	. 20
41)	C=CCN	330		25
42)	COOC ₈ H ₁₇ 1)	374	1175	30
	HN C=C			35
43)	$COOC_8H_{17}$ 1) $C=C$ $COPh$	362	869	45
	COOC8H17 1)			50
44)	HN C=C	336	896	55
	COOC _B H ₁₇ 1)			60

1) $C_8H_{17} = 2-Ethylhexyl$

Allgemeine He zellvorschrift zur Herstellung von Emulsionen für kosmeusche Zwecke

Alle öllöslichen Bestandteile werden in einem Rührkessel auf 85°C erwärmt. Wenn alle Bestandteile geschmolzen sind, bzw. als Flüssigphase vorliegen, wird die Wasserphase unter Homogenisieren eingearbeitet. Unter Rühren wird die Emulsion auf ca. 40°C abgekühlt, parfümiert, homogenisiert und dann unter ständigem Rühren auf 25°C abgekühlt.

Zubereitungen

Beispiel 4

10

Zusammensetzung für die Lippenpflege

ad 100 Eucerinum anhydricum
10,00 Glycerin
5 10,00 Titanium Dioxid
0,5-10 Verbindung Nr. 1 der Tabelle 2
8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat Λdipat
3,00 Glyceryl Stearat SE
2,00 Bienenwachs
2,00 Microkristallines Wachs

2,00 Quaternium-18 Bentonit

1,50 PEG-45/Dodecyl Glycol Copolymer

Beispiel 5

Zusammensetzung für die Lippenpflege

30

inum ankudniaum

ad 100 Eucerinum anhydricum
10,00 Glycerin
10,00 Titanium Dioxid
0,5-10 Verbindung Nr. 24 der Tabelle 2
8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat
3,00 Glyceryl Stearat SE
2,00 Bienenwachs
2,00 Microkristallines Wachs
2,00 Quaternium-18 Bentonit
1,50 PEG-45/Dodecyl Glycol Copolymer

45

Beispiel 6

Zusammensetzung für Sunblocker mit Mikropigmenten

ad 100 Wasser 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl 6,00 Titanium Dioxid 0,5-10 Verbindung Nr. 1 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat 5.00 Propylen Glycol 3,00 Jojoba Öl 3,00 4-Methylhenzyliden Campher 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon 0,50 PEG-40-Hydrogenated Castor Öl 0.50 Tocopheryl Acetat 0,50 Phenoxyethanol 0,20 EDTA

Beispiel 7

Zusammensetzung für Sunblocker mit Mikropigmenten

ad 100 Wasser	5
0,00 Octyl Methoxcinnamat	
5,00 PEG-7-Hydrogenated Castor Ol	
5,00 Titanium Dioxid	
0,5–10 Verbindung Nr. 24 der Tabelle 2	10
5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat	
5,00 Propylen Glycol	
3,00 Jojoba Öl	
3,00 4-Methylbenzyliden Campher	
2,00 PEG-45/Dodecyl Glycol Copolymer	15
1,00 Dimethicon	
0,50 PEG-40-Hydrogenated Castor Öl	
0,50 Tocopheryl Acetat	
0.50 Phenoxyethanol	20
0,20 EDTA	
Beispiel 8	•
Fettfreies Gel	25
	25
ad 100 Wasser	
8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid	
0,5–10 Verbindung Nr. 1 der Tabelle 2	
5,00 Glycerin	30
5,00 PEG-25 PABΛ	
1,00 4-Methylbenzyliden Campher	
0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer	
0,30 Imidazolidinyl Urea	35
0,25 Hydroxyethyl Cellulose	33
0,25 Sodium Methylparaben	
0,20 Disodium EDTA 0,15 Fragrance	
0,15 Sodium Propylparaben	
0,10 Sodium Hydroxid	40
Beispiel 9	
Fettfreies Gel	
	45
ad 100 Wasser	
8,00 Octyl Methoxycinnamat	
7,00 Titanium Dioxid	
0,5–10 Verbindung Nr. 24 der Tabelle 2 5,00 Glycerin	50
5,00 PEG-25 PABA	
1,00 4-Methylbenzyliden Campher	
0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer	
0,30 Imidazolidinyl Urea	
0,25 Hydroxyethyl Cellulose	55
0,25 Sodium Methylparaben	
0,20 Disodium EDIA	
0,15 Fragrance	
0.15 Sodium Propylparaben	60
0,10 Sodium Hydroxid	
Beispiel 10	
Sonnencreme (LSF 20)	
20IIIIelicielite (TOL 50)	65
ad 100 Wasser	
8,00 Octyl Methoxycinnamat	
8,00 Titanium Dioxid	

6,00 PEG-7-Hydrogenated Coor Öl
0,5 10 Verbindung Nr. 1 der Tabelle 2
6,00 Mineral Öl
5,00 Zink Oxid
5,00 Isopropyl Palmitat
5,00 Imidazolidinyl Urea
3,00 Jojoba Öl
2,00 PEG-45/Dodecyl Glycol Copolymer
1,00 4-Methylbenzyliden Campher
0 0.60 Magnesium Stearat
0,50 Tocopheryl Acetat
0,25 Methylparaben
0,20 Disodium EDTA
0,15 Propylparaben

15

Beispiel 11

Sonnencreme (TSF 20) ad 100 Wasser 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid 6,00 PEG-7-Hydrogenated Castor Ol 0,5-10 Verbindung Nr. 24 der Tabelle 2 6,00 Mineral Öl 5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urca 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA

35 0,15 Propylparaben

60

Beispiel 12

Sonnencreme wasserfest

40 ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat
4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 1 der Tabelle 2 4,00 Glycerin 3,00 Jojoha Öl 50 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 55 0,50 Magnesium Stearat 0,15 Fragrance

Beispiel 13

ad 100 Wasser

8,00 Octyl Methoxycinnamat

5,00 PEG-7-Hydrogenated Castor Öl

5,00 Propylene Glycol

4,00 Isopropyl Palmitat

4,00 Caprylic/Capric Triglycerid

0,5-10 Verbindung Nr. 24 der Tabelle 2

Öl

Sonnencreme wasserfest

4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance		5
	Beispiel 14	
	Sonnenmilch (LSF 6)	
ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat		15
3,50 Octyl Methoxycinnamat 0,5 10 Verbindung Nr. 1 der Tabelle 2 3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer		20
0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 'locopheryl Acetat 0,30 Glyccrin 0,25 Methylparaben		25
0,15 Propylparaben 0,05 Tocopherol		30
	Beispiel 15	
	Sonnenmilch (LSF 6)	35
ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 0,5-10 Verbindung Nr. 24 der Tabelle 2		40
3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat		45
0,30 Glycerin 0,25 Methylparahen 0,15 Propylparaben 0,05 Tocopherol		50
	Beispiel 16	
	Sonnencreine wasserfest	55
ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 17 der Tabelle 2 0,5-10 Verbindung Nr. 24 der Tabelle 2		60
4,00 Glyccrin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid		.

1,50 PEG-45/Dodecyl Glyd polyn

1,50 Dimethicon

0,70 Magnesium Sulfat

0,50 Magnesium Stearat

5 0,15 Fragrance

Beispiel 17

Sonnenmilch

10

35

45

50

55

60

ad 100 Wasser 10,00 Mineral Öl

6,00 PEG-7-Hydrogenated Castor Öl

5,00 Isopropyl Palmitat

15 3,50 Octyl Methoxycinnamat

0,5-10 Verbindung Nr. 17 der Tabelle 2

3,00 Caprylic/Capric Triglycerid

3,00 Jojoha Öl

2,00 PEG-45/Dodecyl Glycol Copolymer

20 0,70 Magnesium Sulfat

0,60 Magnesium Stearat

0,50 Tocopheryl Acetat

0,30 Glycerin

0,25 Methylparaben

25 0,15 Propylparaben

0,05 Tocopherol.

Patentansprüche

Verwendung von Verbindungen der Formel I

R⁴—NH R²

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung haben:

R¹ COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R²O-P (-OR⁵)=O;

R² COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=O, R²O-P (-OR⁵)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aroma-

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen; R⁴ einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁵ bis R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen,

wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubergiungen zum Schutz der menschlichen Heut oder

als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

2. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 als UV-A-Filter.

3. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

4. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R⁴ für einen Alkoxyphenyl- oder Alkoxycarbonylphenylrest steht.

6. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wohei R⁴ für einen Phenylrest steht, der wasserlöslich machende Substituenten trägt, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Ammoniumresten.

7. Lichtschutzmittel enthaltende kosmetische und pharmazeutische Zubereitungen zum Schutz der menschlichen Epidermis oder menschlichen Haare gegen UV-Licht im Bereich von 280 bis 400 nm, dadurch gekennzeichnet, daß sie in einem kosmetisch und pharmazeutisch geeigneten Träger, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten im UV-Bereich absorbierenden Verbindungen, als photostabile UV-Filter wirkesme Mongen von Verbindungen der Filter wirkesme der Filter wi

65 Filter wirksame Mengen von Verbindungen der Formel I

$$C = C \stackrel{R^1}{\underset{R^2}{\longrightarrow}} C = C \stackrel{R^1}{\underset{R^2}{\longrightarrow}} C$$

enthalten, in der die Variablen die Bedeutung gemäß Anspruch 1 haben.

8. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ gegebenenfalls substituierte aliphatische oder aromatische Reste mit bis zu 8 C-Atomen bedeuten.

9. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

10. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen und R⁴ für einen Phenylrest steht, der durch Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen, oder mit Cyan- oder Carboxyresten, sowie mit wasserlöslich machenden Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

11. Neue Verbindungen der Formel II,

in der die C=C Doppelbindung in der E oder Z Konsiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

12. Neue Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Alkylammoniumresten, substituiert sein kann und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy-, oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe hedeutet.

13. Verbindungen der Formel I zur Verwendung als Arzneimittel.

14. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie eine wirksame Menge mindestens einer der

Verbindung der Formel I nach Anspruch 1 enthält.

45

10

60

- Leerseite -