REPORT

Rule Mining

By Jaideep Reddy

Dataset:90656 rows and 21 columns

Top 20 variables from the feature importance by XGBoost.

The last column is risk probability.

0.2 is the cut-off. Data points with probability greater than 0.2 are classified as high risk and low risk otherwise.

Var 1: Hospital.Admissions_ndc_index_FY Used log(x+1) for binning the variable. Got a good spread and therefore went ahead and binned them accordingly

Var 2: mo12_Age Binned age into 6 equal width bins based on histogram. Age had a good spread so didn't require any transformation.

Var 3: mo12_Hospital.Admissions_PCP_index

Binned -9, -1 and 0 separately. For the positive values used log(30x) and log(1000x) to compare. Went forward with log(1000x) because it shifts the median just above 1 which means at least 50 percent of the positive values are above 1.

We wanted majority of the values on the positive side of the log(x) vs. x curve therefore went with log(1000x)

Var 4: mo12_Socio.Economic.Risk Good spread. Didn't need any transformation. Binned based on histogram.

Var 5: Hospital.Admissions_icd_index_FY Used log(x+1) for better spread. Used equal width bins.

Var 6: mo12_ER.Visits_PCP_index

Saw the data and binned it based on that.

Majority of the values were binned into -9,-1. All the positive points are very small numbers between 0 and 1. The median is 0.02. I'm using log(10x) to better separate the positive points

log(10 * df\$mo12_ER.Visits_PCP_index[which(df\$mo12_ER.Visits_PCP_index]>

The full histogram log(10x) histogram of values greater than 0

Var 7: Average_Monthly_Cost_ndc_index_FY
The cost already has a good spread across the x axis with values ranging from 0 to 20000

Var 8: ER.Events_icd_index_FY Similarly as above did not need any transformation. Binned the values based on the data

Var 9: mo12_Access.To.Care.Risk
Did not need any transformation. Data was well spread across. Split into equal width bins.

Var 10: Mon_Enroll Similarly, did not need any transformation. Data was well spread across. Split into equal width bins.

Var 11: mo12_Months.since.Lipid.Panel Again, did not need any transformation. Data was well spread across. Split into equal width bins.

Var 12: Hospital.Admissions_icd_index_qt4 No transformation. Subjective splitting.

Var 13: exp_mv_avg_Gaps.In.Care.Count Didn't need any transformation

Var 14: mv_avg_index_Avg.HCC.Risk
No change at all with log transformation. Therefore, discretizing by looking at the data.

Var 15: mo9_Avg.HCC.Risk Used log(x+1) transformation. Got a better spread for smaller values.

Var 16: mo12_Avg.HCC.Risk

The spread here was more or less the same with or without transformation but using log(x+1) h elped in better spread less frequent data therefore better discretization of minority values.

Var 17: mo12_Months.Since.Flu.Shot No transformation required.

Var 18: mv_avg_index_Gaps.In.Care.Count
Transformation did not give any better results. Binned the original data.

Var 19: simple_mv_avg_mtl_Cost Just as discussed during the meeting I binned these values into 3 bins based on the scatterplot

Var 20: Average_Monthly_Cost_icd_index_qt1
The log(x+1) transformation helped in binning the minority values better.

Association rule mining:

The top 5 rules sorted by lift in decreasing order.

The top 5 rules sorted by lift in decreasing order.						
1hs		rhs	support	confidence	lift	count
<pre>[1] {Hospital.Admissions_ndc_index_FY=(1,2],</pre>	=>	{prob_new=risk}	0.002371603	0.9148936	36.20279	215
<pre>[2] {Hospital.Admissions_ndc_index_FY=(1,2],</pre>						
simple_mv_avg_mtl_Cost=(1e+03,4.5e+04]}	=>	{prob_new=risk}	0.002106866	0.9138756	36.16251	191
<pre>[3] {Hospital.Admissions_ndc_index_FY=(1,2], ER.Events_icd_index_FY=(10,15]}</pre>	=>	{prob_new=risk}	0.002570155	0.9137255	36.15657	233
<pre>[4] {Hospital.Admissions_ndc_index_FY=(1,2],</pre>						
Average_Monthly_Cost_icd_index_qt1=(8,10]} [5] {Average_Monthly_Cost_ndc_index_FY=(1e+04,1.5e+04],		{prob_new=risk}	0.002294388	0.9122807	36.09940	208
ER.Events_icd_index_FY=(10,15]}		{prob_new=risk}	0.002040681	0.9113300	36.06178	185

From the above rules we can say that, if these patterns are present in a record then with almost 90% confidence we can say that the patient has a higher risk to be admitted to ER next year.

1hs	rhs	support	confidence	lift	count
<pre>[1] {mo12_ER.Visits_PCP_index=(0.03,1],</pre>	{prob_new=risk}	0.00559257	0.758982	30.03329	507
mo12_ER.Visits_PCP_index=(0.03,1], ER.Events_icd_index_FY=(10,15]}	{prob_new=risk}	0.00543814	0.756135	29.92063	493

For these specific rules there is a much higher support. There are 2291 high risk patients and in almost 50% of them the above patterns are observed. With the above factors alone we can be 75% confident that the patient has a higher chance of getting admitted to ER next year.

Conclusion:

The results from Association rule mining are pretty much in line with the results obtained from XGBoost. Association rules are pretty good at finding frequently occurring patterns which gives us a lot more understanding of the data and helps us figuring out causation or correlation between different features(such as chronic illness or symptoms leading to a health issue) in health data. However, here we did not have the data in such format so could not mine rules with enough quality.