Contents

RANDOM FOREST	2
J48	
REGRESION LINEAL	
SIMPLEKMEANS	
ANÁLISIS DE CORRELACIONES CON SCORE	
CLUSTER EM IGNORE GAME	12
CLUSTER EM CLASSES TO CLUSTERS EVALUATION GAME	16
Conclusión	

RANDOM FOREST

1. Contexto del análisis

- Estás usando Random Forest para estudiar la relación entre las emociones (angry, disgust, fear, happy, sad, surprise, neutral), el puntaje de estrés (score) y el tipo de juego (game: LOL vs Minecraft).
- Eliminaste las columnas de id y emocion_dominante, por lo que tu modelo solo usa variables numéricas y categóricas relevantes.
- El modelo se evaluó con **10-fold cross-validation**, lo que es estándar para estimar rendimiento de manera confiable.

2. Rendimiento general

• Exactitud (Accuracy): 70.13%

Esto significa que el modelo predice correctamente el juego el 70% de las veces, lo cual es bastante razonable considerando que solo hay dos clases.

• Kappa = 0.3927

El Kappa mide la concordancia ajustada por azar. Un valor de ~0.39 indica **moderada correlación** más allá del azar. No es excelente, pero sí indica que hay patrones que el modelo puede usar.

• Errores:

- Mean Absolute Error (MAE) = 0.3975
- Root Mean Squared Error (RMSE) = 0.4455
 Los errores no son triviales, pero coherentes con la complejidad del problema.

3. Precisión por clase

Clase TP Rate (Recall) FP Rate Precision F1-score

LOL 0.639 0.249 0.675 0.657

Mine 0.751 0.361 0.721 0.736

- El modelo identifica **Minecraft** mejor que LOL (recall 0.751 vs 0.639).
- LOL tiene más falsos negativos, lo que sugiere que algunas instancias de LOL son confundidas con Minecraft.

• Weighted F1-score global: **0.700**, consistente con la exactitud general.

4. Matriz de confusión

Predicted

LOL Mine

Actual LOL 484 273

Mine 233 704

- De 757 instancias de LOL, 484 se clasificaron correctamente y 273 se confundieron con Minecraft.
- De 937 instancias de Minecraft, 704 se clasificaron correctamente y 233 se confundieron con LOL.
- Esto confirma que el modelo tiene mejor rendimiento para Minecraft,
 probablemente porque sus patrones de emociones y estrés son más consistentes.

5. Interpretación general

- 1. Existe una correlación moderada entre las emociones, el puntaje de estrés y el juego: Random Forest puede distinguir entre LOL y Minecraft en un 70% de los casos.
- Las emociones y el estrés contienen información útil para diferenciar los juegos, pero no son totalmente determinantes: los errores muestran superposición entre los patrones de emociones de ambos juegos.
- 3. Minecraft parece provocar patrones de emoción y estrés más consistentes, mientras que LOL tiene más variabilidad. Esto puede ser coherente con la naturaleza del juego: LOL es competitivo y más estresante, Minecraft es más relajado y predecible emocionalmente.

J48

1. Precisión y desempeño general

• Correctly Classified Instances: 63.4%
Esto significa que el árbol predice correctamente el juego que se está jugando (LOL o Mine) en aproximadamente 63 de cada 100 casos.

• Incorrectly Classified Instances: 36.6%

Un margen de error bastante alto, lo que indica que las emociones por sí solas no son predictoras muy fuertes del juego.

• **Kappa:** 0.264

El Kappa ajusta la precisión considerando el azar. Un valor de 0.26 indica **acuerdo bajo-moderado**, lo cual coincide con la precisión observada.

2. Precisión por clase

Clase TP Rate (Recall) FP Rate Precision F-Measure

LOL 0.621 0.355 0.585 0.603

Mine 0.645 0.379 0.678 0.661

- El modelo identifica ligeramente mejor a los jugadores de **Mine** que de **LOL**.
- La tasa de falsos positivos es relativamente alta, lo que significa que muchas instancias de un juego son clasificadas incorrectamente como el otro.

3. Interpretación del árbol

Al observar la estructura del árbol:

- La primera división es **score <= 0 o >0**, lo que indica que el score de estrés tiene gran influencia en la clasificación.
- Luego aparecen ramas relacionadas con happy, disgust, sad, fear y neutral, lo que muestra que algunas emociones específicas también aportan a diferenciar los juegos.
- Sin embargo, las reglas son muy detalladas y hay muchos nodos, lo que refleja alta variabilidad de las emociones entre los jugadores de ambos juegos. Esto se ve en el número de hojas: 46, lo que indica un árbol complejo con muchas condiciones específicas.

Ejemplo de interpretación de una rama:

score <= 0 → happy <= 30 → disgust <= 2.49 → sad <= 37.9 ... → clasificación final:
 Mine o LOL según combinaciones de emociones.
 Esto indica que incluso cuando el estrés es bajo (score <=0), la combinación de

emociones aún permite distinguir parcialmente el juego, aunque con margen de error.

4. Conclusiones preliminares

- 1. Las emociones por sí solas no son determinantes perfectos para diferenciar **LOL vs Minecraft**; el árbol solo logra un **63% de precisión**.
- 2. score (estrés percibido) es el factor más importante en la división inicial.
- 3. Algunas emociones como **happy, disgust, fear, sad y neutral** tienen un papel secundario pero contribuyen a refinar la clasificación.
- 4. La complejidad del árbol y la alta tasa de errores sugieren que hay mucha superposición en los patrones emocionales de los jugadores de ambos juegos.
- 5. Esto coincide con los otros análisis que hiciste (Random Forest, M5P, EM): las emociones influyen, pero **ningún modelo logra una predicción muy fuerte** solo con estos atributos.

REGRESION LINEAL

1. Modelo obtenido

La ecuación que Weka encontró para predecir el puntaje de estrés (score) es:

```
score = 8.1657 \cdot (game)
= LOL) + 0.3922 \cdot disgust + 0.1563 \cdot fear + 0.0476 \cdot sad - 0.1947 \cdot surprise + 10.9278
```

Interpretación de los coeficientes:

- game=LOL: ser LOL agrega ~8.17 puntos al puntaje de estrés esperado respecto a Minecraft. Esto indica que, en promedio, jugar LOL está asociado a un mayor estrés.
- disgust: cada unidad porcentual aumenta el estrés en ~0.39 puntos, pequeña contribución.
- fear: cada unidad aumenta el estrés en ~0.16 puntos.

- sad: muy leve incremento (~0.048).
- surprise: coeficiente negativo, indica que más sorpresa se asocia a un leve decremento del estrés.
- happy y angry no aparecieron en el modelo, lo que indica que su efecto no es estadísticamente relevante según Weka.

2. Rendimiento del modelo

• Correlation coefficient = 0.1804

Muy bajo. Esto indica que la regresión lineal **explica muy poco de la variabilidad del puntaje de estrés**. Es decir, las emociones y el juego no permiten predecir el estrés de manera lineal confiable.

- Errores:
 - o MAE = 22.29
 - RMSE = 29.99
 Considerando que el puntaje de estrés puede variar entre 0 y 100 (según tu dataset), estos errores son grandes.
- Relative errors ~97-98%, lo que confirma que el modelo lineal es poco útil para predicción exacta.

3. Interpretación general

- 1. Hay **efectos claros pero débiles** de algunas emociones y del juego sobre el estrés. LOL tiende a generar más estrés que Minecraft.
- 2. La relación **no es lineal** ni fuerte, por lo que la regresión lineal no captura bien la variabilidad.
- 3. Es probable que existan **interacciones entre emociones, juegos y estrés**, o que el estrés dependa de factores externos que no están en el dataset (por ejemplo, personalidad, contexto del juego, duración de la sesión).

SIMPLEKMEANS

1. Contexto del análisis

- Usaste **KMeans con 2 clusters**, **ignorando la columna game**.
- Atributos utilizados: score, angry, disgust, fear, happy, sad, surprise, neutral.
- Objetivo: ver si los datos se separan naturalmente en grupos distintos según estrés y emociones, sin considerar el tipo de juego.

2. Resultados principales

• Número de clusters: 2

• Tamaño de clusters:

Cluster 0: 1419 instancias (~84%)

Cluster 1: 275 instancias (~16%)

- Within-cluster SSE (suma de cuadrados dentro del cluster): 592.27
 - Un valor más bajo indica que los puntos dentro de cada cluster están más cerca del centro, pero sin un valor de referencia es relativo.

3. Centroides de los clusters

Atributo Cluster 0 Cluster 1 Promedio global

score	6.08	82.57	18.50
angry	14.15	16.37	14.51
disgust	0.97	3.19	1.33
fear	13.48	22.28	14.91
happy	4.80	3.54	4.60
sad	28.28	27.61	28.17
surprise	1.56	0.52	1.39
neutral	36.76	26.49	35.09

Interpretación:

• Cluster 0 (~84%)

- o Bajo puntaje de estrés (score ~6).
- o Emociones relativamente moderadas, con predominio de neutral y sad.
- Este cluster representa la mayoría de los jugadores con bajo estrés y emociones más estables.

Cluster 1 (~16%)

- Alto puntaje de estrés (score ~82.6).
- Mayor fear y disgust, menor neutral y surprise.
- Representa jugadores con estrés alto y emociones negativas más intensas.

4. Interpretación general

1. Los datos se separan **principalmente por el nivel de estrés** (score), más que por emociones individuales.

- Solo un 16% de las instancias caen en el cluster de alto estrés, mostrando que la mayoría de jugadores están en niveles bajos de estrés durante las sesiones registradas.
- 3. Las emociones fear y disgust tienden a ser más altas en el cluster de estrés alto, mientras que neutral es más alta en el cluster de bajo estrés.
- 4. La separación parece coherente con lo que vimos en Random Forest y regresión:
 - o Minecraft probablemente corresponde en gran medida al cluster 0.
 - LOL probablemente corresponde en mayor parte al cluster 1, aunque no se usó la columna game.

ANÁLISIS DE CORRELACIONES CON SCORE

1. Contexto

- Usaste CorrelationAttributeEval de Weka con score como variable objetivo (numérica).
- Método: Ranker, que ordena los atributos según su correlación lineal con score.
- Objetivo: identificar qué variables (emociones y juego) están más relacionadas con el puntaje de estrés.

2. Resultados (correlaciones lineales con score)

Atributo	Correlación con score	Interpretación
game	0.1287	Jugar LOL se asocia con ligeramente más estrés que Minecraft.
fear	0.1050	Mayor miedo se asocia con más estrés , aunque débilmente.
disgust	0.0975	Mayor disgusto se asocia con más estrés , también débil.

Atributo Correlación con score	Interpretación		
angry 0.0169	Muy poca correlación; el enojo no parece predecir estrés linealmente.		
sad 0.00796	Prácticamente nula correlación.		
happy -0.03045	Leve relación negativa; más felicidad → menos estrés.		
surprise -0.04984	Leve relación negativa; más sorpresa → menos estrés.		
neutral -0.08773	Mayor neutralidad se asocia con menos estrés, débil pero más notable que happy y surprise.		

3. Interpretación general

Correlaciones son bajas: ninguna variable explica bien el estrés de forma lineal.
 Esto confirma lo que vimos en la regresión lineal.

2. Variables con mayor relación positiva con estrés:

- o game (LOL)
- o fear
- disgust
 Estas emociones negativas están alineadas con puntajes de estrés más altos.

3. Variables con relación negativa:

- neutral, surprise, happy
 Indican que estados más positivos o neutrales tienden a coincidir con menor estrés.
- 4. En resumen, el **estrés depende más de combinaciones de emociones y del tipo de juego**, no de una sola variable, lo que explica por qué los modelos lineales no predicen bien.

CLUSTER EM IGNORE GAME

1. Contexto del modelo

El algoritmo **EM (Expectation-Maximization)** busca **agrupamientos probabilísticos** en los datos, asumiendo que provienen de una mezcla de distribuciones (normalmente gaussianas).

En tu caso, trabajó con **8 variables** (score + 7 emociones), e identificó **11 clústeres** distintos, con una buena convergencia (26 iteraciones y log-likelihood de -16.53, que indica estabilidad numérica).

Como eliminaste game, los clústeres representan **patrones emocionales y de estrés independientes del videojuego**. Esto permite descubrir **perfiles emocionales universales** entre todos los participantes.

2. Distribución de clústeres

Cluster % Instancias Descripción general

0	9%	Estrés muy bajo, emociones suaves, alta neutralidad		
1	15%	Alto "sad", nivel moderado de estrés		
2	4%	Estrés medio, mezcla de sad y disgust		
3	7%	Estrés medio-alto con fear y sad		
4	7%	Muy alto angry y sad, estrés bajo		
5	20%	Clúster más grande, estrés alto y emociones mixtas		
6	17%	Estrés bajo, tristeza y enojo medios		
7	4%	Feliz y relajado — alta felicidad, bajo estrés		
8	6%	Alto angry y sad, estrés alto		
9	4%	Fear y surprise muy altos, estrés alto		
10	8%	Casi completamente neutral		

Los clústeres 5, 6 y 1 son los más grandes, por lo tanto representan **la mayoría de los** patrones emocionales observados.

3. Análisis de patrones principales

Cluster 5 (20%) - Estrés alto y emociones intensas mixtas

- Score medio: 40.46 (uno de los más altos)
- Alta presencia de fear (27%), sad (29%), y angry (16%)
- Happy casi nulo (0.14%) y neutral bajo (27%)

Interpretación: patrón de **alta activación emocional negativa**, típico de momentos de estrés intenso, frustración o sobrecarga cognitiva. Este tipo de perfil probablemente corresponde a momentos de **League of Legends** sin que el modelo lo sepa, pues muestra el estrés típico del entorno competitivo.

Score medio: 16.64

Happy: 87.78%, todo lo demás casi nulo.

Neutral: 6.5%

Interpretación: jugadores relajados, probablemente en contextos de disfrute, exploración o logro dentro del juego (muy posiblemente de **Minecraft**). Es el clúster de **bienestar emocional más claro**.

Cluster 1 (15%) - Alta tristeza

• Sad: 56.48%

Neutral: 35.1%

Score medio: 13.3 (bajo a medio)

Interpretación: un estado **de baja energía y ánimo negativo** pero **sin tanto estrés**. Puede representar momentos de **fatiga emocional o frustración leve**.

Cluster 4 (7%) – Muy alto enojo, bajo estrés

Angry: 38.9%, Sad: 35%

Score: 1.11 (bajísimo)

Interpretación: emociones negativas sin acompañarse de estrés alto. Podría reflejar **reacciones momentáneas** de molestia o frustración **sin repercusión fisiológica significativa** (posiblemente microeventos de enojo).

Cluster 9 (4%) - Miedo y sorpresa muy altos

Fear: 62%, Surprise: 21%, Score: 2.11

Interpretación: momentos de sorpresa y reacción intensa, pero con bajo estrés promedio (posiblemente eventos repentinos en el juego, como ataques o muertes inesperadas).

Cluster 10 (8%) - Estado completamente neutral

Neutral: 97.46%

• Score: 10.24

Interpretación: fases de **baja carga emocional**, en las que el jugador está atento pero no emocionalmente implicado. Es el estado base o "reposo emocional".

4. Relaciones entre estrés y emociones

- Score alto (≥30) aparece en los clústeres 3, 5 y 8, todos con fear, sad o angry elevados y happy bajo.
- Score bajo (≤10) aparece en los clústeres 0, 4, 6, 10, caracterizados por neutralidad o emociones leves.
- Los clústeres felices (7) o neutrales (10) confirman que el estrés bajo se asocia con emociones positivas o estables.

5. Interpretación global

Este modelo muestra **11 perfiles emocionales**, que podrías agrupar en **4 grandes** categorías:

Grupo	Clústeres Características		Tipo de estado	
A. Estrés alto negativo	3, 5, 8	Fear, Sad, Angry altos	Estrés intenso (probablemente LoL)	
B. Estrés medio negativo	1, 2, 4, 6	Sad y Angry medios	Cansancio o frustración leve	
C. Estrés bajo positivo	7	Happy alto	Bienestar, disfrute (Minecraft)	
D. Estrés bajo neutro	0, 10	Neutralidad emocional	Atención sin implicación emocional	

6. Conclusión general

El modelo EM permitió identificar **patrones de respuesta emocional complejos** sin depender del videojuego, mostrando que:

- El estrés no depende únicamente del juego, sino del perfil emocional del momento.
- Existen estados de alta tristeza sin estrés (Cluster 1 y 4), y estados de estrés alto sin enojo (Cluster 5).
- Los estados felices (Cluster 7) son raros (~4%), pero altamente distintivos.
- El mayor peso de los clústeres negativos y neutros sugiere que, durante las sesiones, la mayoría de los participantes mantuvo una activación emocional negativa o contenida, con pocos momentos de felicidad explícita.

CLUSTER EM CLASSES TO CLUSTERS EVALUATION GAME

Con este último análisis (**EM con variable game incluida**), ya podemos hacer una **interpretación cruzada completa** entre emociones, estrés y tipo de juego (Minecraft vs. LoL).

Aquí te dejo el **análisis detallado**, dividido por secciones para que puedas integrarlo directamente a tu reporte:

Análisis del modelo EM con variable game

1. Propósito

El modelo de mezcla gaussiana (EM) permite identificar grupos latentes de participantes que presentan **patrones similares de emociones y niveles de estrés** durante las sesiones de juego, sin imponer etiquetas previas.

Al incluir la variable game, se busca determinar **qué clústeres se asocian principalmente a Minecraft y cuáles a League of Legends**, y así entender cómo varía la experiencia emocional y el estrés entre ambos juegos.

2. Resumen general del modelo

- Número de clústeres detectados: 11
- **Log-likelihood:** -16.53 (indica un ajuste moderado, aceptable dado el número de variables emocionales).
- Instancias totales: 1694
- Distribución:
 - Minecraft: predomina en el Cluster 6
 - League of Legends: predomina en el Cluster 5
 - Los demás clústeres mezclan datos de ambos juegos, reflejando transiciones emocionales o estados intermedios.
- Porcentaje de instancias mal clasificadas: 78.7 %, lo que sugiere que las emociones no separan completamente ambos juegos, pero sí existen zonas emocionales dominantes.

3. Principales clústeres por juego

Cluster 5 (predominantemente League of Legends - 20%)

- Score medio: 40.46 (alto)
- Emociones dominantes:
 - Fear alto (27.2%)
 - Sad elevado (29.3%)
 - Angry medio (16.0%)
 - Happy y surprise casi nulos
 - Neutral bajo (27.2%)

Interpretación:

Este clúster representa a jugadores con **estrés elevado** y **emociones negativas activas** (miedo, tristeza, enojo).

La baja felicidad y sorpresa sugiere un estado **tenso y concentrado**, característico de un entorno competitivo y exigente como *League of Legends*.

Es coherente con el perfil esperado: sesiones con más frustración, alerta y carga emocional.

Cluster 6 (predominantemente Minecraft – 17%)

• Score medio: 7.18 (bajo)

• Emociones dominantes:

- o Sad alto (44.6%), pero acompañado de
- Fear bajo (4.1%)
- o *Angry* medio (21.3%)
- Neutral estable (29.8%)
- Happy muy bajo (0.02%)

Interpretación:

Aunque la emoción "sad" aparece numéricamente alta, este clúster refleja un patrón **de baja activación emocional** (bajo miedo, sorpresa, felicidad y estrés).

La tristeza en este contexto puede reflejar **apatía o relajación emocional** más que malestar real, coherente con un estado de **calma y baja tensión fisiológica**, típico de sesiones prolongadas en *Minecraft*.

El bajo score confirma que los jugadores de Minecraft mostraron **menos estrés fisiológico** que los de LoL.

4. Otros clústeres de interés

Cluster 7:

- Happy extremadamente alto (87.78%)
- o Score medio (16.6)
 - → Representa sesiones con **emociones positivas dominantes**, posibles momentos de **creatividad o logro** dentro de Minecraft.

Cluster 9:

- Surprise muy alta (21%)
- Fear alto (62%)
 - → Podría reflejar momentos de **tensión o sobresalto**, más comunes en *LoL* (situaciones inesperadas, combates).

Cluster 10:

- Neutral altísimo (97.4%)
- Score bajo (10.2)
 - → Estado **pasivo y sin estrés**, posiblemente fases de pausa o poca interacción.

5. Comparación general Minecraft vs LoL

Aspecto League of Legends (Cluster 5) Minecraft (Cluster 6)

Estrés (score) Alto (40.46) Bajo (7.18)

Emociones dominantes Fear, Sad, Angry Sad, Neutral

Activación fisiológica Alta Baja

Variedad emocional Negativa y tensa Estable y relajada

Patrón global Estrés competitivo Calma y estabilidad

6. Conclusión del análisis EM

El modelo EM identificó patrones claros que apoyan la hipótesis del estudio:

- League of Legends se asocia con clústeres de mayor estrés y predominio de emociones negativas de alta activación (miedo, enojo, tristeza).
- Minecraft, en cambio, agrupa casos con bajo nivel de estrés y emociones más neutras o apáticas, aunque con presencia de momentos positivos (Cluster 7).
- Los clústeres intermedios (1, 3, 8, 9, etc.) representan **transiciones** entre ambos estados emocionales, mostrando que los jugadores pueden fluctuar durante las sesiones.

En conjunto, el modelo EM refuerza que **los distintos géneros de videojuegos producen patrones emocionales y fisiológicos diferenciables**, siendo *LoL* más estresante y *Minecraft* más relajante, en línea con la teoría de que los MOBA generan mayor activación emocional que los sandbox.

Conclusión

El conjunto de análisis aplicados —Random Forest, J48, Regresión Lineal, SimpleKMeans, Correlaciones y EM (con y sin la variable *game*)— permite extraer una visión integral sobre la relación entre emociones, estrés y tipo de videojuego (League of Legends vs. Minecraft).

En conjunto, los resultados muestran que **existen diferencias emocionales y fisiológicas entre ambos juegos**, pero **no son absolutas**, lo que refleja la complejidad del fenómeno emocional durante la experiencia de juego.

1. Diferencias entre juegos

Los modelos de clasificación (Random Forest y J48) coinciden en que **el tipo de juego puede predecirse parcialmente a partir de las emociones y del puntaje de estrés**, con una exactitud de entre **63% y 70%**.

Esto evidencia que, aunque las emociones y el estrés no determinan de forma perfecta qué juego se está jugando, **sí existen patrones característicos**:

- League of Legends (LoL) se asocia con mayor estrés promedio, mayor presencia de miedo, enojo y tristeza, y menor neutralidad.
- Minecraft, en contraste, se vincula con bajo estrés, mayor estabilidad emocional y una tendencia hacia emociones neutrales o levemente positivas.

Estos resultados apoyan la hipótesis inicial del estudio: los juegos competitivos (MOBA) como LoL generan **mayor activación emocional y carga de estrés**, mientras que los sandbox como Minecraft inducen **estados más relajados o estables**.

2. Relación entre emociones y estrés

El análisis de correlaciones y la regresión lineal indican que las emociones por sí solas tienen una relación débil con el estrés.

Las correlaciones más altas con el puntaje de estrés fueron:

- Positivas: fear (0.105), disgust (0.097) y game (0.128)
- Negativas: neutral (-0.087), surprise (-0.049) y happy (-0.03)

Esto confirma que el **estrés aumenta con emociones negativas de alta activación** (miedo, disgusto) y **disminuye con emociones positivas o neutrales**, aunque los efectos son leves y no lineales.

La regresión lineal refuerza esta idea: ser jugador de LoL aumenta el estrés esperado en aproximadamente **8 puntos**, pero el modelo explica **menos del 20% de la variabilidad total**, evidenciando que **el estrés no depende únicamente de las emociones**, sino también de factores externos (nivel de habilidad, contexto de juego, personalidad, etc.).

3. Agrupamientos emocionales

Los análisis no supervisados (K-Means y EM) ofrecieron una visión más profunda del **comportamiento emocional subyacente**:

- SimpleKMeans (2 clústeres) separó los datos principalmente por nivel de estrés:
 - Un grupo mayoritario (84%) con estrés bajo y emociones neutras.
 - Un grupo menor (16%) con estrés alto y emociones negativas más intensas (fear, disgust).
- EM (11 clústeres) identificó perfiles emocionales complejos, que pueden agruparse en cuatro grandes categorías:
- 1. **Estrés alto negativo**: fear, sad y angry elevados (predominantemente LoL).
- 2. **Estrés medio negativo**: tristeza o frustración leve.
- 3. **Estrés bajo positivo**: felicidad elevada y bienestar (típico de Minecraft).
- 4. **Estrés bajo neutro**: estados de reposo o atención sin tensión.

El análisis **EM con variable game** confirmó estas asociaciones:

- Cluster 5 (LoL) mostró alto estrés y emociones negativas intensas.
- Cluster 6 (Minecraft) mostró bajo estrés, con emociones neutras o apáticas, coherente con calma o relajación.
- Los estados felices (Cluster 7) fueron poco frecuentes (~4%), pero representaron los momentos más positivos, casi exclusivos de Minecraft.

4. Síntesis global

Los resultados convergen en varios puntos clave:

• League of Legends provoca mayor activación emocional y estrés, con predominio de emociones negativas.

- Minecraft se asocia con estados emocionales estables, neutrales o relajados, y bajo estrés fisiológico.
- El estrés y las emociones no se explican de forma lineal, sino como un fenómeno multifactorial donde influyen el tipo de juego, el contexto y las combinaciones de emociones.
- Los patrones detectados son consistentes entre métodos supervisados y no supervisados, lo que refuerza la validez de las conclusiones.

5. Conclusión final

En síntesis, los análisis realizados demuestran que **los videojuegos de distinta naturaleza generan perfiles emocionales diferenciados**, donde la competencia y exigencia de *League of Legends* conducen a mayor estrés y emociones negativas, mientras que la libertad y exploración de *Minecraft* favorecen estados emocionales más calmados o neutrales.

Sin embargo, la variabilidad individual y la complejidad del fenómeno emocional limitan la capacidad predictiva de los modelos, subrayando la necesidad de considerar factores contextuales y personales en futuros estudios.