Universidad de Granada	Fundamentos Físicos y Tecnológicos	Práct	ica de Laboratorio 2
Apellidos: Líndez Martínez			Firma:
Nombre: Mario	DNI: 77021242 - S	Grupo: A2	

1. Simula un circuito divisor de tensión con una fuente de tensión de valor V=10 V en serie con dos resistencias de $R_1=2.2k\Omega$ y $R_2=4.7$ k Ω . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos V_1 y V_2 respectivamente) así como la corriente que atraviesa cada una (que llamaremos I_1 e I_2 respectivamente). Completa la siguiente tabla con los resultados obtenidos:

V	R_1	R_2	V_1	V_2	I_1	I_2
10 V	2.2 kΩ	4.7 kΩ	3.19 V	6.81 V	1.45 mA	1.45 mA

a) El divisor de tensión anterior sería un buen divisor si los valores V₁ y V₂ de la tabla anterior se mantienen constantes independientemente de si se conecta a R₁ o a R₂ una nueva resistencia. Para ver si el divisor anterior es un buen divisor, añade al circuito anterior una resistencia R_L (la L viene del inglés load, carga) en paralelo con R₂. Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V, R₁, R₂ y R_L que se muestran en ella:

V	R_1	R_2	R_L	V_I	V_2	V_L	I_1	I_2	I_L
10 V	2.2 kΩ	4.7 kΩ	10 Ω	9.95 V	0.0452 V	0.0452 V	4.52 mA	9.61*10 ⁻³ mA	4.52 mA
10 V	2.2 kΩ	4.7 kΩ	1 kΩ	7.27 V	2.73 V	2.73 V	3.31 mA	0.58 mA	2.73 mA
10 V	2.2 kΩ	4.7 kΩ	20 ΜΩ	3.19 V	6.81 V	6.81 V	1.45 mA	1.45 mA	3.41*10 ⁻⁴ mA

b) A la vista de los resultados de la tabla anterior, ¿qué relación debe existir entre los valores de R_1 , R_2 y R_L para que el divisor de tensión se comporte como un buen divisor? Justifica tu respuesta. Recuerda que un buen divisor es aquel en el que la división de la tensión realizada (valores V_1 y V_2) es constante y no se ve alterada al conectarle R_L .

Para que el divisor de tensión se comporte como un buen divisor, R_L debe ser mucho mayor que R_1 y R_2 . Esto lo hemos comprobado experimentalmente y podemos ver en la tabla que cuando RL es mucho mayor, los valores de V_1 y de V_2 no se ven alterados.

Lo que queremos es que, al introducir R_L , por R_2 pase la misma intensidad y para ello R_L debe ser mucho mayor para que muy pocas cargas pasen por ella.

2. Utiliza el simulador para determinar el equivalente Thevenin de un circuito divisor de corriente con una fuente de corriente de valor I= 1mA en serie con dos resistencias en paralelo de valores de R_1 =2.2 k Ω y R_2 =4.7 k Ω .

I	R_1	R_2	R_{Th}	V_{Th}
1 mA	2.2 kΩ	4.7 kΩ	1.5 kΩ	1.5 V

- 3. Para comprobar el Principio de Superposición simula el circuito de la Figura 3.6 (página 47 del Material de Prácticas de Laboratorio).
 - *a)* Realiza una simulación DC para determinar la diferencia de potencial y la intensidad que atraviesa R_3 usando $V_1 = 10V$, $V_2 = 5V$, $R_1 = 1$ k Ω , $R_2 = 2$ k Ω y $R_3 = 3$ k Ω .

V_1	V_2	R_1	R_2	R_3	V_{R3}	I_{R3}
10 V	5 V	1 kΩ	2 kΩ	3 kΩ	6 V	2 mA

b) Anula la fuente V₁ y realiza una simulación DC para determinar la diferencia de potencial y la intensidad que atraviesa R₃.

V_1	V_2	R_1	R_2	R_3	V_{R3}	I_{R3}
anulada	5 V	1 kΩ	$2 k\Omega$	3 kΩ	0 V	0 mA

c) Anula la fuente V₂ y realiza una simulación DC para determinar la diferencia de potencial y la intensidad que atraviesa R₃.

V ₁	V_2	R_1	R_2	R_3	V_{R3}	I_{R3}
anulada	5 V	1 kΩ	2 kΩ	3 kΩ	6 V	2 mA

d) A la vista de los resultados, ¿se cumple el Principio de Superposición? Justifica tu respuesta.

Sí que se cumple el principio de superposición. Comprobamos que, si sumamos los valores obtenidos experimentalmente al ir anulando las fuentes, obtenemos como resultados los valores del voltaje e intensidad de R3 del circuito completo.

$$6 V + 0 V = 6 V$$

4. Usando el simulador, determina el equivalente Thevenin del circuito de la siguiente figura entre los puntos A yB teniendo en cuenta que I=1 mA, V=5 V, R_1 =1 k Ω , R_2 =2 k Ω , R_3 =3 k Ω , R_4 =4 k Ω y R_5 =5 k Ω .

V_{Th}	R_{Th}
3.64 V	$3.64~\mathrm{k}\Omega$

5. Usando el simulador y el Principio de Superposición determina la intensidad que circula por R_2 teniendo en cuenta que I=1 mA, V=5 V, R_1 =1 k Ω , R_2 =2 k Ω , R_3 =3 k Ω , R_4 =4 k Ω y R_5 =5 k Ω .

Fuente anulada	I_{R_2}
V_1	0.0006 A
V ₂	- 0.001 A
Ninguna	- 0.0004 A

Como vemos, se cumple el principio de superposición, pues 0.0006 A - 0.001 A = -0.0004 A