7.9 Orthonormal Bases and the Gram-Schmidt Process

Definition

- A set of vectors in \mathbb{R}^n is said to be orthogonal if each pair of distinct vectors in the set is orthogonal.
- A set of vectors in \mathbb{R}^n is said to be orthonormal if it is orthogonal and each vector has norm 1.

Orthogonal and orthonormal bases

Example

Show that the vectors

$$\mathbf{v}_1 = (0, 2, 0), \mathbf{v}_2 = (3, 0, 3), \mathbf{v}_3 = (-4, 0, 4)$$

form an orthogonal basis for \mathbb{R}^3 and convert it into an orthonormal basis.

Orthogonal and orthonormal bases

Theorem

An orthogonal set of nonzero vectors in \mathbb{R}^n is linearly independent.

Recall that if W is a nonzero subspace of \mathbb{R}^n , and \mathbf{v} is a column vector in \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{x} = M(M^{T}M)^{-1}M^{T}\mathbf{x}$$

for any matrix M whose column vectors form a basis for W. In particular, if the column vectors of M are orthonormal, then $M^TM = I$, so

$$proj_W \mathbf{x} = MM^T \mathbf{x}$$

Example

Find the standard matrix P for the orthogonal projection of \mathbb{R}^3 onto the plane through the origin that is spanned by thr orthonormal vectors $\mathbf{v}_1=(0,1,0)$ and $\mathbf{v}_2=\left(-\frac{4}{5},0,\frac{3}{5}\right)$.

Theorem

(a) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then the orthogonal projection of a vector \mathbf{x} in \mathbb{R}^n onto W can be expressed as

$$proj_W \mathbf{x} = (\mathbf{x} \cdot \mathbf{v}_1)v_1 + (\mathbf{x} \cdot \mathbf{v}_2)v_2 + \cdots (\mathbf{x} \cdot \mathbf{v}_k)v_k$$

(b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n , then the orthogonal projection of a vector \mathbf{x} in \mathbb{R}^n onto W can be expressed as

$$proj_{W}\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}}\mathbf{v}_{1} + \frac{\mathbf{x} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}}\mathbf{v}_{2} + \cdot + \frac{\mathbf{x} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}}\mathbf{v}_{k}$$

Example

Find the orthogonal projection of $\mathbf{x}=(1,1,1)$ onto the plane W in \mathbb{R}^3 that is spanned by thr orthonormal vectors $\mathbf{v}_1=(0,1,0)$ and $\mathbf{v}_2=(-\frac{4}{5},0,\frac{3}{5})$.

Linear combinations of orthonormal basis vectors

Theorem

(a) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , and if \mathbf{w} is a vector in W, then

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{v}_1) v_1 + (\mathbf{w} \cdot \mathbf{v}_2) v_2 + \cdots (\mathbf{w} \cdot \mathbf{v}_k) v_k$$

(b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n , and if \mathbf{w} is a vector in W, then

$$\mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\mathbf{w} \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 + \cdot + \frac{\mathbf{w} \cdot \mathbf{v}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_k$$

Linear combinations of orthonormal basis vectors

Example

Express the vector $\mathbf{w} = (1, 1, 1)$ as a linear combination of the orthonormal basis vectors

$$\boldsymbol{v}_1 = \left(\frac{3}{7}, -\frac{6}{7}, \frac{2}{7}\right), \boldsymbol{v}_2 = \left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right), \boldsymbol{v}_3 = \left(\frac{6}{7}, \frac{2}{7}, -\frac{3}{7}\right)$$

Finding orthogonal and orthonormal bases (Gram-Schmidt Process)

Step 1. Choose any basis $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ of W and let $\mathbf{v}_1 = \mathbf{w}_1$.

Step 2. Let $W_1 = \text{span}\{\mathbf{v}_1\}$ and choose \mathbf{v}_2 as the vector component of \mathbf{w}_2 orthogonal to W_1 , i.e.,

$$\mathbf{v}_2 = \mathbf{w}_2 - \mathsf{proj}_{W_1} \mathbf{w}_2 = \mathbf{w}_2 - \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3. Let $W_2 = \text{span}\{w_1, w_2\}$ and choose v_3 as the vector component of v_3 orthogonal to v_2 , i.e.,

$$\mathbf{v}_3 = \mathbf{w}_3 - \mathsf{proj}_{W_2} \mathbf{w}_3 = \mathbf{w}_3 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{w}_3 \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

- Step 4. Continue in this way to produce an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.
- Step 5. Normalize each vector to get an orthonormal basis

$$\left\{\frac{\boldsymbol{v}_1}{\|\boldsymbol{v}_1\|}, \frac{\boldsymbol{v}_2}{\|\boldsymbol{v}_2\|}, \dots, \frac{\boldsymbol{v}_k}{\|\boldsymbol{v}_k\|}\right\}$$

Finding orthogonal and orthonormal bases

Example

Use the Gram-Schmidt process to construct an orthonormal basis for the plane x + y + z = 0 in \mathbb{R}^3 .