Calculus I Lecture 4 Continuity

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Continuity

Outline

Continuity

Intermediate Value Theorem

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Continuity

• Let *f* be a function and *a* be a point in its domain.

Continuity

- Let *f* be a function and *a* be a point in its domain.
- Suppose $\lim_{x\to a} f(x)$ exists.

Continuity

- Let *f* be a function and *a* be a point in its domain.
- Suppose $\lim_{x\to a} f(x)$ exists.

Definition (Continuous at a Number)

We say that f is continuous at a if

$$\lim_{x\to a}f(x)=f(a).$$

Definition (Discontinuous at a Number)

Suppose *f* is defined at *a*. We say *f* is discontinuous at *a* if it is not continuous at *a*.

Definition (Discontinuous at a Number)

Suppose f is defined at a. We say f is discontinuous at a if it is not continuous at a.

Physical phenomena are often continuous. The majority of the physical phenomena that are understood are continuous. Examples:

Discontinuous phenomena examples:

Definition (Discontinuous at a Number)

Suppose f is defined at a. We say f is discontinuous at a if it is not continuous at a.

Physical phenomena are often continuous. The majority of the physical phenomena that are understood are continuous. Examples:

- Motion of a vehicle with respect to time without sudden brakes.
- Orbits of planets and celestial bodies with respect to time.
- A person's height with respect to time.
- And many more.

Discontinuous phenomena examples:

Definition (Discontinuous at a Number)

Suppose f is defined at a. We say f is discontinuous at a if it is not continuous at a.

Physical phenomena are often continuous. The majority of the physical phenomena that are understood are continuous. Examples:

- Motion of a vehicle with respect to time without sudden brakes.
- Orbits of planets and celestial bodies with respect to time.
- A person's height with respect to time.
- And many more.

Discontinuous phenomena examples:

- Particle velocities during collisions and explosions.
- Electric current phenomena, gating events in porins (the event of a molecule passing in and out of a cell).
- Particle physics phenomena.
- And many more.

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

Example

The picture below shows a graph of a function f. At which numbers is f either discontinuous or not defined? Why?

Not defined at 1:

Discontinuous at 2:

Discontinuous at 4:

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\bullet \lim_{x\to 1} f(x)$
- f(1)
- Discontinuous at 2:
- f(2)
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\bullet \lim_{x\to 1} f(x) ?$
- f(1)
- Discontinuous at 2:
- f(2)
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1)
- Discontinuous at 2:
- f(2)
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1)?
- Discontinuous at 2:
- f(2)
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2)
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) ?
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\bullet \lim_{x\to 2} f(x)$
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$?
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4)
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4) ?
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4) is defined.
- $\bullet \lim_{x\to 4} f(x)$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4) is defined.
- $\bullet \lim_{x\to 4} f(x) ?$

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4) is defined.
- $\lim_{x\to 4} f(x)$ exists.

Example

The picture below shows a graph of a function *f*. At which numbers is *f* either discontinuous or not defined? Why?

- Not defined at 1:
- $\lim_{x\to 1} f(x)$ exists.
- f(1) is not defined.
- Discontinuous at 2:
- f(2) is defined.
- $\lim_{x\to 2} f(x)$ doesn't exist.
- Discontinuous at 4:
- f(4) is defined.
- $\lim_{x\to 4} f(x)$ exists.
- $\bullet \lim_{x\to 4} f(x) \neq f(4).$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix}
4 \end{bmatrix} = ?$$

$$\begin{bmatrix}
4.8 \end{bmatrix} = \\
\begin{bmatrix}
\pi \end{bmatrix} = \\
\begin{bmatrix}
\sqrt{2} \end{bmatrix} = \\
\begin{bmatrix}
-\frac{1}{2} \end{bmatrix} = \\
\begin{bmatrix}
-\pi \end{bmatrix} =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4 \\
 \lfloor 4.8 \rfloor = \\
 \lfloor \pi \rfloor = \\
 \lfloor \sqrt{2} \rfloor = \\
 -\frac{1}{2} \end{bmatrix} = \\
 \lfloor -\pi \rfloor =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4 \\
 \begin{bmatrix} 4.8 \end{bmatrix} = ? \\
 \begin{bmatrix} \pi \end{bmatrix} = \\
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = \\
 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} = \\
 \begin{bmatrix} -\pi \end{bmatrix} =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4 \\
 \begin{bmatrix} 4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix} \pi \end{bmatrix} = \\
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = \\
 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} = \\
 \begin{bmatrix} -\pi \end{bmatrix} =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4 \\
 \begin{bmatrix} 4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix} \pi \end{bmatrix} = ? \\
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = \\
 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} = \\
 \begin{bmatrix} -\pi \end{bmatrix} =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4 \\
 \begin{bmatrix} 4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix} \pi \end{bmatrix} = 3 \\
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = \\
 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} = \\
 \begin{bmatrix} -\pi \end{bmatrix} = 4 \\$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\lfloor 4 \rfloor = 4$$
 $\lfloor 4.8 \rfloor = 4$
 $\lfloor \pi \rfloor = 3$
 $\lfloor \sqrt{2} \rfloor = ?$
 $\lfloor -\frac{1}{2} \rfloor =$
 $\lfloor -\pi \rfloor =$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4
 [4.8] = 4
 [\pi] = 3
 [\sqrt{2}] = 1
 -\frac{1}{2} =
 [-\pi] =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix} 4 \end{bmatrix} = 4
 [4.8] = 4
 [\pi] = 3
 [\sqrt{2}] = 1
 [-\frac{1}{2}] = ?
 [-\pi] =$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix}
4 \end{bmatrix} = 4 \\
 \begin{bmatrix}
4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix}
\pi \end{bmatrix} = 3 \\
 \begin{bmatrix}
\sqrt{2} \end{bmatrix} = 1 \\
 \begin{bmatrix}
-\frac{1}{2} \end{bmatrix} = -1 \\
 \begin{bmatrix}
-\pi \end{bmatrix} = 6$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix}
4 \end{bmatrix} = 4 \\
 \begin{bmatrix}
4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix} \pi \end{bmatrix} = 3 \\
 \begin{bmatrix} \sqrt{2} \end{bmatrix} = 1 \\
 -\frac{1}{2} \end{bmatrix} = -1 \\
 \begin{bmatrix} -\pi \end{bmatrix} = ?$$

Definition (Greatest Integer Function)

The *greatest integer function* $\lfloor x \rfloor$ is defined as the largest integer that is less than or equal to x.

In computer science this function is called the *floor* function.

$$\begin{bmatrix}
4 \end{bmatrix} = 4 \\
 \begin{bmatrix}
4.8 \end{bmatrix} = 4 \\
 \begin{bmatrix}
\pi \end{bmatrix} = 3 \\
 \begin{bmatrix}
\sqrt{2} \end{bmatrix} = 1 \\
 \begin{bmatrix}
-\frac{1}{2} \end{bmatrix} = -1 \\
 \begin{bmatrix}
-\pi \end{bmatrix} = -4$$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\bullet \lim_{x\to 2} f(x)$

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\bullet \lim_{x\to 2} f(x) ?$

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\lim_{x\to 2} f(x)$ exists (= 3).

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\lim_{x\to 2} f(x)$ exists (= 3).
- $\bullet \lim_{x\to 2} f(x) \neq f(2).$

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\lim_{x\to 2} f(x)$ exists (= 3).
- $\bullet \lim_{x\to 2} f(x) \neq f(2).$
- Discontinuous at 2.

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if} \quad x \neq 2\\ 1 & \text{if} \quad x = 2 \end{cases}$$

- f(2) is defined (f(2) = 1).
- $\lim_{x\to 2} f(x)$ exists (= 3).
- $\bullet \lim_{x\to 2} f(x) \neq f(2).$
- Discontinuous at 2.
- This is called a removable discontinuity because we can redefine f at one point to make f continuous.

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0)
- $\bullet \lim_{x\to 0} f(x)$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0)?
- $\bullet \lim_{x\to 0} f(x)$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0) is defined (f(0) = 1).
- $\bullet \lim_{x\to 0} f(x)$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0) is defined (f(0) = 1).
- $\bullet \lim_{x\to 0} f(x) ?$

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0) is defined (f(0) = 1).
- $\lim_{x\to 0} f(x)$ doesn't exist (∞) .

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0) is defined (f(0) = 1).
- $\lim_{x\to 0} f(x)$ doesn't exist (∞) .
- Discontinuous at 0.

Example

Where is this function discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0\\ 1 & \text{if} \quad x = 0 \end{cases}$$

- f(0) is defined (f(0) = 1).
- $\lim_{x\to 0} f(x)$ doesn't exist (∞) .
- Discontinuous at 0.
- This is called an infinite discontinuity.

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

$$f(1) ?$$

$$\lim_{x \to 1^{+}} f(x) = ?.$$

$$\lim_{x \to 1^{-}} f(x) = ?.$$

$$\lim_{x \to 1^{-}} f(x) ?$$

Example

Where is this function discontinuous?

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$
• $f(1)$ exists $(f(1) = 1)$.
• $\lim_{x \to 1^+} f(x) = ?$.
• $\lim_{x \to 1^-} f(x) ?$
• $\lim_{x \to 1} f(x) ?$

Example

Where is this function discontinuous?

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$
• $f(1)$ exists $(f(1) = 1)$.
• $\lim_{x \to 1^{+}} f(x) = 1$.
• $\lim_{x \to 1^{-}} f(x) = ?$.
• $\lim_{x \to 1} f(x)$?

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$
• $f(1)$ exists $(f(1) = 1)$.
• $\lim_{x \to 1^+} f(x) = 1$.
• $\lim_{x \to 1^-} f(x) = ?$.
• $\lim_{x \to 1} f(x) ?$

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$
• $f(1)$ exists $(f(1) = 1)$.
• $\lim_{x \to 1^+} f(x) = 1$.
• $\lim_{x \to 1^-} f(x) = 0$.
• $\lim_{x \to 1^-} f(x)$?
• $\lim_{x \to 1} f(x)$?

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$
• $f(1)$ exists $(f(1) = 1)$.
• $\lim_{x \to 1^{+}} f(x) = 1$.
• $\lim_{x \to 1^{-}} f(x) = 0$.
• $\lim_{x \to 1^{-}} f(x)$?

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

•
$$f(1)$$
 exists $(f(1) = 1)$.

$$\bullet \lim_{x\to 1^+} f(x) = 1.$$

$$\bullet \lim_{x\to 1^-} f(x) = 0.$$

• $\lim_{x\to 1} f(x)$ doesn't exist.

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

- f(1) exists (f(1) = 1).
- $\bullet \lim_{x\to 1^+} f(x) = 1.$
- $\bullet \lim_{x\to 1^-} f(x)=0.$
- $\lim_{x\to 1} f(x)$ doesn't exist.
- Discontinuous at 1.

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

- f(1) exists (f(1) = 1).
- $\bullet \lim_{X\to 1^+} f(X) = 1.$
- $\bullet \lim_{x\to 1^-} f(x)=0.$
- $\lim_{x\to 1} f(x)$ doesn't exist.
- Discontinuous at 1.
- Discontinuous at every integer n.

Example

Where is this function discontinuous?

$$f(x) = \lfloor x \rfloor$$

- f(1) exists (f(1) = 1).
 - $\lim_{x\to 1^+}f(x)=1.$
- $\bullet \lim_{x\to 1^-} f(x) = 0.$
- $\lim_{x\to 1} f(x)$ doesn't exist.
- Discontinuous at 1.
- Discontinuous at every integer n.
- The left and right limits both exist but are not equal.

Example

Where is this function discontinuous?

•
$$f(1)$$
 exists $(f(1) = 1)$.

$$\lim_{x\to 1^+}f(x)=1.$$

$$\lim_{x\to 1^-}f(x)=0.$$

- $\lim_{x\to 1} f(x)$ doesn't exist.
- Discontinuous at 1.
- Discontinuous at every integer n.
- The left and right limits both exist but are not equal.
- Such discontinuities are called jump discontinuities (the function appears to "jump").

Definition (Continuous from the Right or Left)

A function f is continuous from the right at a number a if

$$\lim_{x\to a^+}f(x)=f(a)$$

and f is continuous from the left at a if

$$\lim_{x\to a^-}f(x)=f(a).$$

Example

Consider $f(x) = \lfloor x \rfloor$, and pick any integer n.

Example

Consider f(x) = |x|, and pick any integer n.

Example

Consider $f(x) = \lfloor x \rfloor$, and pick any integer n.

•
$$f(n) = ?$$
.

$$\bullet \lim_{X\to n^+} f(X) = ?.$$

$$\lim_{x\to n^-}f(x)=\mathbf{?}$$

Example

Consider $f(x) = \lfloor x \rfloor$, and pick any integer n.

Example

Consider $f(x) = \lfloor x \rfloor$, and pick any integer n.

Example

Consider $f(x) = \lfloor x \rfloor$, and pick any integer n.

Example

Consider f(x) = |x|, and pick any integer n.

$$\bullet \ f(n) = n.$$

- $\bullet \lim_{x\to n^+} f(x) = n.$
- Continuous from the right at n.
- $\bullet \lim_{x\to n^-} f(x) = ? \qquad .$

Example

Consider f(x) = |x|, and pick any integer n.

$$\bullet \ f(n) = n.$$

- $\bullet \lim_{x\to n^+} f(x) = n.$
- Continuous from the right at *n*.
- $\bullet \lim_{x\to n^-} f(x) = ? \qquad .$

Example

Consider f(x) = |x|, and pick any integer n.

$$\bullet \ f(n) = n.$$

- $\bullet \lim_{x\to n^+} f(x) = n.$
- Continuous from the right at n.
- $\bullet \lim_{x\to n^-}f(x)=n-1.$

Example

Consider f(x) = |x|, and pick any integer n.

$$\bullet$$
 $f(n) = n$.

- $\bullet \lim_{x\to n^+} f(x) = n.$
- Continuous from the right at n.
 - $\lim_{x\to n^-}f(x)=n-1.$
- Discontinuous from the left at n.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

• If *f* is defined at the right endpoint of an interval, continuous means continuous from the left.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

 If f is defined at the left endpoint of an interval, continuous means continuous from the right.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

- If f is defined at the left endpoint of an interval, continuous means continuous from the right.
- Think of a function that is continuous on an interval as a function that has no breaks in its graph, and so can be drawn "without lifting your pen".

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\begin{array}{ccc}
\bullet & f + g \\
\bullet & f - g
\end{array}$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1
$$f + g$$
 2 $f - g$

$$\lim_{x \to a} f(x) = f(a)$$
 and $\lim_{x \to a} g(x) = g(a)$.

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x\to a}(f+g)(x)$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\begin{array}{ccc}
\bullet & f + g \\
\bullet & f - g
\end{array}$$

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x\to a}(f+g)(x)=\lim_{x\to a}[f(x)+g(x)]$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\bullet$$
 $f+g$

fg

Proof.

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(by Law 1)}$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\begin{array}{ccc}
\bullet & f + g \\
\bullet & f - g
\end{array}$$

Proof.

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(by Law 1)}$$

$$= f(a) + g(a)$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\bullet$$
 $f+g$

fg

$$\lim_{x \to a} f(x) = f(a) \text{ and } \lim_{x \to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(by Law 1)}$$

$$= f(a) + g(a)$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\bullet$$
 $f+g$

fg

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \quad \text{(by Law 1)}$$

$$= f(a) + g(a) = (f+g)(a)$$

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\mathbf{0} f + g$$

fg

Proof.

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(by Law 1)}$$

$$= f(a) + g(a) = (f+g)(a)$$

This shows f + g is continuous at a.

Theorem (Algebra of Continuous Functions)

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

$$\bullet$$
 $f+g$

fg

Proof.

$$\lim_{x\to a} f(x) = f(a) \text{ and } \lim_{x\to a} g(x) = g(a).$$

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(by Law 1)}$$

$$= f(a) + g(a) = (f+g)(a)$$

This shows f + g is continuous at a. The other parts are similar.

Theorem (Classes of Continuous Functions)

The following types of functions are continuous at every number in their domains:

polynomials rational functions

root functions trigonometric functions

Theorem (Compositions of Continuous Functions)

If g is continuous at a and f is continuous at g(a), then the composition function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain.

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq ?$.

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x)$$

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{\substack{x \to -2 \\ f(-2)}} f(x)$$

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x)$$

$$= f(-2)$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x)$$

$$= f(-2)$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

$$= 2$$

Example

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

The function $f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$ is rational, so is continuous on its domain. Its domain is given by $x \neq \frac{5}{3}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x)$$

$$= f(-2)$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

$$= -\frac{1}{11}$$

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- \bullet k(x) =
- h(u) =
- g(v) =
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- k(x) = ?
- h(u) =
- g(v) =
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- h(u) =
- g(v) =
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- h(u) = ?
- g(v) =
- f(w) =

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) =
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $\bullet \ h(u) = \sqrt{u}.$
- g(v) = ?
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- f(w) =

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- f(w) = ?

Example

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- $\bullet \ f(w) = \tfrac{1}{w}.$

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- $\bullet \ f(w) = \tfrac{1}{w}.$
- These functions are continuous on their domains, so F is continuous on its domain.

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- $\bullet \ f(w) = \tfrac{1}{w}.$
- These functions are continuous on their domains, so F is continuous on its domain.
- Its domain is ?

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- $\bullet \ f(w) = \tfrac{1}{w}.$
- These functions are continuous on their domains, so F is continuous on its domain.
- Its domain is given by $x \neq 3$ and $x \neq -3$.

Example

Where is the function $F(x) = \frac{1}{\sqrt{x^2+7}-4}$ continuous?

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(u) = \sqrt{u}$.
- g(v) = v 4.
- $\bullet \ f(w) = \tfrac{1}{w}.$
- These functions are continuous on their domains, so F is continuous on its domain.
- Its domain is given by $x \neq 3$ and $x \neq -3$.
- Therefore *F* is continuous on $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a,b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a,b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Suppose f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let $f(x) = 4x^3 - 6x^2 + 3x - 2$.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

- Let $f(x) = 4x^3 6x^2 + 3x 2$.
- f is continuous.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

- Let $f(x) = 4x^3 6x^2 + 3x 2$.
- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.

2020

Example

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

- Let $f(x) = 4x^3 6x^2 + 3x 2$.
- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.
- f(1) = -1.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

- Let $f(x) = 4x^3 6x^2 + 3x 2$.
- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.
- f(1) = -1.
- f(2) = 12.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.
- f(1) = -1.
- f(2) = 12.
- f(1) < 0 < f(2).

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

- Let $f(x) = 4x^3 6x^2 + 3x 2$.
- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.
- f(1) = -1.
- f(2) = 12.
- f(1) < 0 < f(2).
- Therefore there is a c between 1 and 2 such that f(c) = 0.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

- f is continuous.
- Use the IVT with a = 1,
 b = 2, and N = 0.
- f(1) = -1.
- f(2) = 12.
- f(1) < 0 < f(2).
- Therefore there is a c between 1 and 2 such that f(c) = 0.

