Big Data Tools

Resilient Distributed Dataset (RDD)

What is an RDD?

- A RDD is a read-only, partitioned collection of records.
- •RDDs can only be created through operations on either (1) data in stable storage or (2) other RDDs.
- •It is a restricted Distributed shared Memory System.

RDD Contains:

- •A set of partitions: Atomic pieces of the dataset
- •A set of dependencies on parent RDDs (For fault tolerance)
- •A function for computing the dataset based on its parents (For fault Tolerance)
 Metadata about its partitioning scheme and data placement

Resilient Distributed Dataset (RDD) – cont.

Two important features:

- Fault tolerance:
 - That is achieved through lineage retrieval
- Lazy Evaluation:
 - A RDD will not be created until a reduce-like job or persist job called.
- Zaharia, Matei, et al. "Spark: cluster computing with working sets." in Proceedings of the 2nd USENIX conference on Hot topics in cloud computing. 2010.
- Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." in Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012.

Data Management in Apache Spark: RDD Abstraction

RDD Operations

Transformations to build RDDs through deterministic operations on other RDDs

- transformations include map, filter, join
- lazy operation

actions to return value or export data

- actions include count, collect, save
- triggers execution

Job Example

```
val log = sc.textFile("hdfs://...")
val errors =
file.filter(_.contains("ERROR"))
errors.cache()
errors.filter(_.contains("I/0")).count
()
errors.filter(_.contains("timeout")).c
ount()
```


Driver

Worker Cache 1 Block1

Worker Cache 2 Block2

Worker Cache 3 Block3

RDD Partition-Level View

2...

Log:

HadoopRDD

path = hdfs://...

Errors:

FilteredRDD

func = _.contains(...) shouldCache = true

Dataset-level view

Job Scheduling

Directed Acyclic Graph (DAG) in Spark

DAG(Directed Acyclic Graph)

Data processing Operations are sorted in a directed acyclic graph

DAG Scheduler in Spark

Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing." Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012.

Comparing Spark and Hadoop

Spark

- Spark has an advanced DAG(Directed Acyclic Graph) execution engine
- Spark supports in-memory cluster computing – Thanks to RDD
- Rich Data Processing API (map, filter, reduce, join...)
- Runs on myriad storage engines (HDFS, Cassandra, HBase, S3...)

Hadoop

- Only supports two Runtime phases: Map / Reduce (and hidden data shuffling pahse)
- Intermediate data has to be on disk.
- Everything is programmed using Map/Reduce
- Loads data from HDFS

Spark Ecosystem

Spark Ecosystem

https://spark.apache.org

Spark Streaming: Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

Spark Streaming: Discretized Stream Processing

- Batch sizes as low as ½ second, latency ~ 1 second
- Potential for combining batch processing and streaming processing in the same system

Example 1 - Get hashtags from Twitter

Dstream: A sequence of RDD representing a stream of data

```
val tweets = ssc.twitterStream(<Twitter
username>, <Twitter password>)
```


Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

```
val hashTags = tweets.flatMap (status => getTags(status))
                                          batch@t
                         Twitter Streaming
                                                           batch@t+1
                                                                             batch@t+2
                         API
                         Tweets Dstream
                         hashTags Dstream
```

Example 1 - Get hashtags from Twitter

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoop Twitter Streaming
                                        batch@t
                                                        batch@t+1
                                                                         batch@t+2
                        APL
                        Tweets Dstream
                        hashTags Dstream
                                              save
                                                                              save
                                                              save
```

Java Example

Scala

```
val tweets =
ssc.twitterStream(<Twitter</pre>
username>, <Twitter password>)
val hashTags = tweets.flatMap
(status => getTags(status))
hashTags.saveAsHadoopFiles("hdf
s://...")
```

Java

s://...")

```
JavaDStream<Status> tweets =
ssc.twitterStream(<Twitter
username>, <Twitter password>)

JavaDstream<String> hashTags =
tweets.flatMap(new
Function<...> { })

hashTags.saveAsHadoopFiles("hdf
```

Fault-tolerance

RDDs are

- remember the sequence of operations that created it from the original faulttolerant input data
- Batches of input data are replicated in memory of multiple worker nodes, therefore fault-tolerant
- Data lost due to worker failure, can be recomputed from input data

Key Concepts

DStream

- Sequence of RDDs representing a stream of data
- Twitter, HDFS,
 Kafka, Flume,
 ZeroMQ, Akka Actor,
 TCP sockets

Transformations

- Modify data from on DStream to another
- Standard RDD operations – map, countByValue, reduce, join, …
- Stateful operations window, countByValueAndWindow, ...

Output Operations – send data to external entity

- saveAsHadoopFiles
 saves to HDFS
- foreach do
 anything with each
 batch of results

Example: Count the hastags

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
  val hashTags = tweets.flatMap (status => getTags(status))
  val tagCounts = hashTags.countByValue()
Tweets
hashTags
tagCounts [(#cat, 10), (#dog,
25), ... ]
```

Example: Count the hashtags over last 10 mins

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()
```

Example: Count the hashtags over last 10 mins

Val = hashTags.window(Minutes(10), Seconds(1)).countByValue()

Example: Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

Smart window-based reduce

- Technique to incrementally compute count generalizes to many reduce operations
 - Need a function to "inverse reduce" ("subtract" for counting)

Could have implemented counting as:

hashTags.reduceByKeyAndWin
dow(_ + _, _ - _,
Minutes(1), ...)

Apache Hadoop Ecosystem

Apache Hadoop Ecosystem

Apache Hive → SQL-like (HiveQL) data warehouse on top of Hadoop

Apache Pig → Process data flow programs (Pig Latin Language) on top of Hadoop

Apache Hbase → NoSQL distributed database (based on BigTable) on top of HDFS

Apache ZooKeeper → distributed configuration service, synchronization service and registry for Hadoop

Spatial Data Management in Apache Spark

Ge@Spark

SELECT superhero name FROM city, superhero WHERE ST_Contains(city.geom, superhero.geom)

SELECT superhero_name FROM city, superhero_ WHERE >1_Contains(city.geom, superhero.geom AND city.name = 'Gotham';

Spatial partitioning, Index

SELECT superhero.name
FROM city, superhero
WHERE ST_Contains[city.geom, superhero.geom
AND city.name = 'Gotham';

Query result

Query optimization

Spatial RDD / DataFrame

Spatial partitioning, Index

Spatial partitioning

Spatial partitioning

Range query, Join query

Not scalable

Scalable and fast

Spatial partitioning

KDB-Tree

Spatial indexing

Spatial indexing

Spatial range query

SELECT *
FROM TaxiTripTable
WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint)

Spatial KNN query

SELECT ST_Neighbors(MyLocation Restaurants.Locations, 20) FROM Restaurants

query optimizer (v1.2.0)

Predicate pushdown

```
SELECT *
FROM TaxiStopStations, TaxiTripTable
WHERE ST_Contains(TaxiStopStations.bound, TaxiTripTable.pickuppoint)
AND ST_Contains(Manhattan, TaxiStopStations.bound)
```


Predicate merging

```
SELECT *
FROM TaxiTripTable
WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint) AND ST_Contains(Queens,
TaxiTripTable.pickuppoint)
```

Predicate merging

```
SELECT *
FROM TaxiTripTable
WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint) AND ST_Contains(Queens, TaxiTripTable.pickuppoint)

(a) AND, take the intersection

SELECT *
FROM TaxiTripTable
WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint) OR ST_Contains(Queens, TaxiTripTable.pickuppoint)
```

Predicate merging

Intersection query rewrite

```
SELECT ST_Intersection(Lions.habitat, Zebras.habitat)
FROM Lions, Zebras

SELECT ST_Intersection(Lions.habitat, Zebras.habitat)
FROM Lions, Zebras
WHERE ST_Intersects(Lions.habitat, Zebras.habitat);
```

Intersection query rewrite

```
SELECT ST_Intersection(Lions.habitat, Zebras.habitat) FROM Lions, Zebras
```

Cross join, slow

```
SELECT ST_Intersection(Lions.habitat, Zebras.habitat)
FROM Lions, Zebras
WHERE ST_Intersects(Lions.habitat, Zebras.habitat);
```

Optimized GeoSpark inner join, fast

Cost based optimization

- Cost: based on GeoSpark statistics, MBR, count
- Index scan selection: Index scan VS DataFrame scan, based on query selectivity
- Spatial join algorithm selection: partition-wise GeoSpark join VS broadcast join

- 1.3 billion points join 171 thousand polygons
- 72.7 million line strings join 171 thousand polygons
- 263 million polygons join 171 thousand polygons

4 machines

Optimize the database engine for spatial data

Optimize the database engine for spatial data

Convert Spatial Data to 1D data

Spatial Indexes

Spatial Indexing Methods

Conclusion

Spatial data is special

We had to extend SQL to support spatial data

 Many opportunities to optimize the query processing and indexing/storage layers for spatial data