601.445/601.645 Practical Cryptographic Systems

MPC and Private Browsing

Instructor: Alishah Chator

Housekeeping

- New (last!) assignment coming this week
- Will include written and programming portions
- Project Presentations coming up

News?

Review

- Today:
 - Finishing up Secret sharing
 - If time: TOR and private browsing

MPC

- Three basic properties we want to achieve
 - Correctness: the output of the function is actually what it should be
 - Privacy: nobody learns anything about honest parties' inputs (other than what they would learn from the function output)
 - Guaranteed output delivery (no dishonest party can prevent honest parties from getting outputs)

Adversarial model

Secret sharing

- Problem:
 - Take a given secret s and break it into N different pieces ("shares")
 - Want to recover the original secret from any M of the shares, M <= N
 - What is the security goal?

Secret sharing

- Two algorithms:
 - Share(N, M, s): outputs (t1,, tN)
 - Recover(N, M, t_i1, ..., t_iM): outputs s'

Secret sharing

- Correctness?
- Security definition:
 - (Informal) Given any subset of M-1 shares, no adversary learns <u>any</u> <u>information</u> about *s* (other than its size)
 - Alternative definition: Given a set of M-1 shares of s, and a set of M-1 shares of some random value s', no adversary can tell the difference
 - (E.g., there is no detectable difference between the shares of s and a random element of the same length.)

How do we build secret sharing

- Let's try to build 2-out-of-2 secret sharing
- We have a bitstring s, and wish to compute t1, t2 such that:
 - Neither t1 or t2 (by itself) reveals anything about s (other than length)
 - Given both t1, t2 we can recover s

How do we build secret sharing

- Let's try to build 2-out-of-2 secret sharing
- We have a bitstring s, and wish to compute t1, t2 such that:
 - Neither t1 or t2 (by itself) reveals anything about s (other than length)
 - Given both t1, t2 we can recover s
- Solution (share algorithm):
 - Pick a random string t1 such that |t1| = |s|
 - Set t2 = s XOR t1

How do we build secret sharing

• Let's try to build 2-out-of-3 secret sharing using the same technique

General secret sharing

- What are the downsides of the XOR approach?
- Can we build a more efficient, general-purpose approach?

- Let y=mx+b be the equation of a line
- Imagine I give you a point (x, y) for x != 0
- What can we learn about *b*?

- Let y=mx+b be the equation of a line
- Imagine I give you a point (x, y) for x != 0
- What can we learn about b?
 - For every b, (x, y) there exists a line that passes through (0, b)

- Let y=mx+b be the equation of a line
- Imagine I give you two distinct points (x2, y2), (x1, y1)
- What can we learn about *b*?

- Further optimization: instead of computing over the real numbers, let's compute over the field Zp
- Let y=mx+b mod p be the equation of a line
- Same questions

- This allows us to compute a 2-of-N secret sharing
- Fix some Zp (for largish p)
- Pick a line with constant term (y-intercept) set to s and a random coefficient (slope) m
- For x=1 to N, output shares:
 - t_i = (x, mx+s) mod p
- Recovery is just linear interpolation

Can we generalize this to M>2?

Can we generalize this to M>2?

- Shamir's observations:
 - Any degree-(M-1) polynomial can be uniquely interpolated given M distinct points (using Lagrangian interpolation)
 - Given only M-1 points (or fewer) the polynomial is not constrained

Can we generalize this to M>2?

- Share(M, N, s):
 - Fix Zp
 - Sample coefficients (a1, ..., a_{M-1}), and set P(x) to the polynomial defined by these coefficients, with constant term s
 - Compute shares: (1, P(1)), (2, P(2)), ..., (N, P(N))

Other nice facts about secret sharing

- Polynomials can be added easily
 - Given two (random) polynomials F(), G() with constant terms s1, s2
 - The sum of F() + G() has constant term s1+s2
 - Similarly, adding together a vector of secret shares for secrets s1, s2 (respectively) will produce a set of shares for (s1 + s2)

Other nice facts about secret sharing

- Polynomials can be added easily
 - Given two (random) polynomials F(), G() with constant terms s1, s2
 - The sum of F() + G() has constant term s1+s2
 - Similarly, adding together a vector of secret shares for secrets s1, s2 (respectively) will produce a set of shares for (s1 + s2)
 - Better yet, if F() and G() are random polynomials, then their sum will also be a random polynomial

Can we multiply secret shares?

- Not quite as elegantly
 - If we multiply two polynomials of degree d, we get a polynomial of degree 2d. Also it's not random anymore.
 - This also prevents us from just multiplying shares
 - However, there are interactive protocols for multiplying secret shares, then reducing the degree of the resulting polynomial

Recall: Universality

- Some combinations of gates are Universal
 - These gates can be combined to build any function
- Examples are {NAND}, {AND,OR,NOT}
- Often in cryptography we are limited to {AND, XOR}

NAND from AND + XOR

• We can build any function from {AND, XOR}, how does this help us?

Arithmetic Circuits

- Model for complexity of computing polynomials
- Inputs are either variables or fixed field elements
- Gates are Addition or Multiplication

$$x_2(x_1+x_2)(x_2+1)$$

- We can build any function from {AND, XOR}, how does this help us?
- In arithmetic circuits, Multiplication and Addition correspond to AND and XOR
 - Think about the mod 2 case

- We can build any function from {AND, XOR}, how does this help us?
- In arithmetic circuits, Multiplication and Addition correspond to AND and XOR
 - Think about the mod 2 case
- This means {Multiplication, Addition} is universal as well!

- We can build any function from {AND, XOR}, how does this help us?
- In arithmetic circuits, Multiplication and Addition correspond to AND and XOR
 - Think about the mod 2 case
- This means {Multiplication, Addition} is universal as well!
- So to recap:
 - Arithmetic Circuits are universal
 - Arithmetic Circuits model polynomials
 - Polynomials are homomorphic
 - We can secret share using polynomials

Represent function as a arithmetic circuit

- Represent function as a arithmetic circuit
- Secret share the inputs

- Represent function as a arithmetic circuit
- Secret share the inputs
- Evaluate the circuit gate by gate taking advantage of homomorphic secret sharing

- Represent function as a arithmetic circuit
- Secret share the inputs
- Evaluate the circuit gate by gate taking advantage of homomorphic secret sharing
- Reconstruct output