

机器学习第一次作业报告

1501214415 位冰镇 1501210408 朱铭健 1300010680 朱垣金

2016年10月29日

1. 项目介绍

- 1). 所选用的机器学习算法:
 - a 决策树
 - b 支持向量机
- 2). 数据集的选取:

UCI 网站数据集: Car Evaluation

链接: http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

2. 数据预处理

我们小组经过筛选比较,选定了 Car Evaluation 作为数据集. 该数据集数据量适中,特征数目和特征值类型,类别都比较多. 适合进行机器学习的训练和测试. 数据的具体特征如下:

• 类别 (4 类):

unacc, acc, good, vgood

• 特征 (5 种):

buying: vhigh, high, med, lowmaint: vhigh, high, med, low

doors: 2, 3, 4, 5more

person: 2, 4

lugboot: small, med, big
safety: low, med, high

可见各维特征均为离散型变量,不过取值类型不统一,需要对数据进行预处理.我们通过代码分析了原始数据类别的分布情况

数据类别分布情况如下:

类别	数目	百分比%	
unacc acc good vgood	1210 384 69	70.023 22.222 3.993 3.762	
总计	1728	1.000	

Process finished with exit code 0

为了方便起见,我们对数据进行了数值化.具体来讲,就是将每一个特征非数值的分量赋予一个合理的数值,以便进一步的处理。当然,赋予什么值也在我们的考虑之中,考虑到决策树对于数值的绝对值并不敏感(因为对于决策数来讲,特征之间的距离并不会影响预测的效果),所以我们暂时对特征属性由低到高赋予 1 2 3 4 ... 这样的数值。而对于 svm 来说,特征的数值会很大程度影响学习的效果,但是我们依然可以通过对变量权重的改变来控制着一点,所以这么赋值也是可以接受的,关于这一点,我们将在下文讨论。

3. 算法实现

3.1 决策树模型

3.1.1 问题分析与程序实现

调用 python 中的 package sklearn.tree 中的函数来帮助完成决策树模型的实现。 DecisionTreeClassifier() 函数可以创建一个决策树分类器实例 clf_tree ,之后便可以调用方法 clf.fit()、clf.score() 对数据进行训练和检验。这里,我们是随机选取了 1000 个样本进行训练,余下 728 个样本进行验证。多次随机抽样、训练并测试的结果如下:

决策树开始训练! 决策树训练结束!

开始测试! 测试结束!

tree时间20.470619201660156 准确率0.9672447013487476 决策树开始训练! 决策树训练结束!

开始测试! 测试结束!

tree时间19.240379333496094 准确率0.9672447013487476 央策树开始训练!

央策树训练结束!

开始测试! 测试结束!

tree时间22.480487823486328 准确率0.9672447013487476

我们发现每一次分类器的准确率都高达 0.95 这说明决策树模型能很好地对此数据及进行分类。

3.1.2 数据可视化

我们画出了决策树的可视图 (因为空间有限, 更细致的观察请查看文件 car.pdf)

为了更加直观的对分类效果进行可视化,我们想到将数据投影到2维,观测分类效果。

Decision surface of a decision tree using paired features

因为是数据在二维上的投影, 所以很明显会损失一部分的准确率:

0:buying	δı	maint	准備率	0.628131021194605
1:buying		doors	准确率	0.4913294797687861
2:buying	&		准确率	0.628131021194605
3:buying	&	lug_boot	准确率	0.5009633911368016
4:buying	&	safety	准确率	0.6705202312138728
5:maint	&	doors	准确率	0.371868978805395
6:maint	&	persons	准确率	0.5703275529865125
7:maint	&	lug_boot	准确率	0.5645472061657033
8:maint	&	safety	准确率	0.6551059730250481
9:doors	&	persons	准确率	0.5645472061657033
10:doors	&	lug_boot	准确率	0.5414258188824663
11:doors	&	safety	准确率	0.6184971098265896
12:persons	&	lug_boot	准确率	0.6242774566473989
13:persons	&	safety	准确率	0.720616570327553
14: lug_boot	&	safety	准确率	0.5934489402697495

3.2 svm 模型

3.2.1 程序实现

调用 sklearn.svm 包中的 SVC 函数。SVC() 可以创建一个分类器实例,紧接着可以调用 fit、score 方法进行训练和检验,我们随机选取 1000 个样本进行训练,余下的 728 个样本进行测试。不断改变训练时对于不同特征的权重,可以得分类器的分类结果。

5VM开始训练! 5VM训练结束!

开始测试! 则试结束!

svm 时间486.1021041870117 准确率0.9595375722543352

为了比较分类的性能, 我们可以改变 SVC() 的参数。首先考虑到 SVM 模型的优化问题:

$$\min_{\xi,\omega,b} \left\{ \frac{1}{2} \omega^T \omega + C \sum_{i=1}^m \xi_i \right\}$$

$$st.y_i(\omega^T \phi(x_i) + b) \ge 1 - \xi_i, \xi_i \ge 0$$

我们可以修改核函数 $\phi(x_i)$ 以及惩罚项系数 C, 来做出不同的分类器。

С	Kernel	runtime(ms)	accuracy	degree
1	rbf	273	0.96	
3	rbf	274	0.98	
10	rbf	370	0.98	
100	rbf	276	0.99	
3	linear	875	0.7938	
10	linear	875	0.79	
3	poly	18205	0.92	3
3	poly	溢出	-	5

通过改变核函数 $\phi(x_i)$ 和 C, 做出了不同的分类器。发现最影响分类效果的应该是核函数 $\phi(x_i)$, 而这之中效果最好的是高斯核函数,而线性核函数表现的效果是最差的。而采用多项式核函数的时候,时间复杂度有了明显的提高,甚至到了 degree=5 的情况下溢出了时间上限制,在准确率上只有微小的提升。考虑到我组选择的数据集比较密集,试想如果处理相对分散的数据集,多项式核函数处理下可能会引发过拟合的情况。而改变惩罚项系数 C, 确实会对分

类的效果有所提升,但是依然不是太明显,这不排除数据集比较特殊的因素,并不能作为普遍结论。而且 C 的值太大是有一定风险的,因为倘若存在一两个离群点,可能会使得这两个点的影响力度加大从而产生过拟合。

3.2.2 数据可视化

相应的结果是:

```
准确率
0:buying
           & maint
                                0.6994219653179191
1:buying
           & doors
                       准确率
                                0.6994219653179191
2:buying
           & persons
                       准确率
                                0.6994219653179191
           & lug_boot
                       准确率
                                0.6994219653179191
3:buying
4:buying
           & safety
                       准确率
                                0.6994219653179191
                       准确率
                                0.6994219653179191
5:maint
           & doors
                       准确率
                                0.6994219653179191
6:maint
           & persons
7:maint
           & lug_boot
                       准确率
                                0.6994219653179191
8:maint
           & safety
                       准确率
                                0.6994219653179191
9:doors
           & persons
                       准确率
                                0.6994219653179191
                       准确率
                                0.6994219653179191
10:doors
           & lug_boot
11:doors
           & safety
                       准确率
                                0.6994219653179191
                       准确率
                                0.6994219653179191
12:persons
           & lug_boot
13:persons & safety
                       准确率
                                0.7726396917148363
14:lug_boot & safety
                       准确率
                                0.6994219653179191
```

4. 结果分析

在我们选定的数据集 car evaluation 上,我们通过比较发现决策树模型的分类效果从时间、准确率综合考虑上,要优于 svm 模型。我们认为这是因为,car evluations 数据集的每一个特征下的属性种类比较少(最多有 5 个),而这种相对集中而规整的数据使用决策树是有优势的。

同时,结合对数据结构的观察,我们发现数据测采集是比较不平衡的(样本中 unacc 类别的样本占据总体的 70%),这是过抽样的,也可能对训练的效果产生影响。SVM 对于多分类问题需要转化为多个二分类问题,采用一对多或者一对一的分类方法,而决策树模型天然支持多分类问题。