Aprendizado de Máquina

Máquinas de vetores de suporte

André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP

Principais tópicos

- Introdução
- Risco empírico e risco estrutural
- Margens
- Margens suaves
- SVMs
- Kernels
- Multiclasses

© André de Carvalho - ICMC/USP

- TCMC/USP

Teoria de Aprendizado Estatístico

- Algoritmos de AM
 - Estimam um função (modelo) a partir de um conjunto finito de exemplos
 - Função (classificador ou regressor)
- TAE estabelece princípios para induzir função com boa generalização
 - Vapnik e Chervonenkis em 1968
 - Base das máquinas de vetores de suporte

© André de Carvalho - ICMC/USP

TAE

- Sejam
 - h: classificador (hipótese, modelo, função)
 - H: conjunto de todos os classificadores que um algoritmo de AM pode induzir
- Algoritmo de AM utiliza conjunto de dados de treinamento para:
 - Induzir um classificador $\hat{h} \in H$
- Assume que dados são gerados de forma i.i.d. de acordo com P(x,y)

© André de Carvalho - ICMC/USP

TAE

- TAE define condições matemáticas para auxiliar na escolha de uma boa ĥ
 - A partir de um conjunto de dados de treinamento
 - Permite escolher h com menor risco esperado
 - Para manter bom desempenho com novos dados, valia:
 - Desempenho preditivo de h para dados do conjunto de treinamento
 - Complexidade de ñ

© André de Carvalho - ICMC/USP

Limites no risco esperado

- Isso é feito pelas máquinas de vetores de suporte (SVMs)
- Estratégia básica
 - Encontrar um hiperplano que maximize margem de separação (margem larga)
 - Distância da fronteira de decisão a um conjunto de "vetores de suporte"
 - Com erro marginal baixo
 - O mínimo de objetos entre as margens

© André de Carvalho - ICMC/USP

6

Margens suaves

- Não permitir exemplos entre as margens reduz tamanho da margem
 - Reduz generalização
- SVMs podem ser estendidas para tolerar exemplos dentro das margens
 - Relaxamento de restrições impostas ao problema de otimização
 - Introdução de variáveis de folga

© André de Carvalho - ICMC/USP

Linearmente separáveis

- SVMs apresentam bons desempenhos para problemas linearmente separáveis
- Não conseguem lidar com problemas não linearmente separáveis
- Alguns conjuntos de dados exigem fronteiras mais complexas que lineares
 - Para isso foram propostas alterações baseadas no teorema de Cover

© André de Carvalho - ICMC/USP

Teorema de Cover

Conjunto de dados não linearmente separáveis em um espaço podem ser transformados para outro espaço em que, com alta probabilidade, se tornam linearmente separáveis

- Condições:
 - Transformação seja não linear
 - Dimensão do novo espaço seja suficientemente alta

© André de Carvalho - ICMC/USP

Problemas não lineares

 Generalização de SVMs para problemas não lineares

© André de Carvalho - ICMC/USP 1

Exemplo

- Supor conjunto de dados com dois atributos preditivos
- Definir 3 pontos de localização no conjunto original
- Usar esses pontos para transformar 2 atributos originais em 3 novos atributos
 - Ex. distância entre cada exemplo x e cada um dos 3 pontos de localização

© André de Carvalho - ICMC/USP

Fronteiras mais complexas

- - Informação necessária: cálculo do produto escalar entre objetos
 - Pode ser feito por funções kernel (K)
 - Função kernel recebe dois pontos no espaço de entradas e calcula produto escalar deles no espaço de características
 - $K(x_i, x_i) = \Phi(x_i).\Phi(x_i)$

© André de Carvalho - ICMC/USP

Funções Kernel

- Variações
 - Gaussiana
 - Polinomial
 - Linear
 - Sigmoidal
 - Para aplicações específicas
- Segue condições estabelecidas pelo teorema de Mercer
- Parâmetros ajustáveis

© André de Carvalho - ICMC/USP

16

Funções Kernel

- Em geral, K é menos complexa que Φ
 - ${\color{blue} \bullet}$ É comum definir-se a função ${\it K}$ sem conhecer-se explicitamente ${\bf \Phi}$

Tipos de Kernel	Função $K(x_i, x_j)$ correspondente
Polinomial	$(x_i^T.x_j + 1)^p (p = 1, linear)$
Gaussiano	$exp(-1/(2\sigma^2) x_i - x_j ^2)$
Sigmoidal	$tanh(\beta_0 x_i x_j + \beta_l)$

© André de Carvalho - ICMC/USP

Funções Kernel

- Mede similaridade entre objetos
- Kernel linear:
 - Indicado quando #atributos > #objetos
 - Processamento mais rápido
- Kernel Gaussiano
 - Indicado quando #objetos > #atributos
- Kernels específicos são propostos para algumas aplicações

© André de Carvalho - ICMC/USP

18

Classificação multiclasses

- SVMs podem induzir apenas classificadores binários
 - Outros algoritmos de AM têm a mesma limitação
- Existe um grande número de problemas reais com mais que 2 classes
 - Necessidade de estratégias multiclasses

© André de Carvalho - ICMC/USP

Estratégias multiclasses

- Duas abordagens têm sido utilizadas:
 - Algoritmo de classificação é internamente adaptado
 - Modificação de parte de suas operações internas
 - Decomposição do problema multiclasses em vários problemas binários
 - Estratégias decomposicionais

© André de Carvalho - ICMC/USF

Estratégias decomposicionais

- Etapas
 - Decomposição da tarefa
 - Reconstrução
- Decomposição
 - Geralmente reduz a complexidade da tarefa
 - Permite processamento paralelo
 - Alternativas:
 - Matrizes de códigos (MC)
 - Hierarquias de classificadores

© André de Carvalho - ICMC/USP

2.

Estratégias Baseadas em MC

- Um-contra-todos (OAA)
 - Um classificador para cada classe
 - k classificadores para k classes
- Todos contra todos (AAA)
 - Um classificador para cada par de classes
 - k(k-1)/2 classificadores para k classes
- Error Correcting Output Codes (ECOC)
 - Um código de correção de erro representando cada classe

© André de Carvalho - ICMC/USP

© André de Carvalho - ICMC/USP

