Principios de arreglos en línea

1) Teoría de arreglos en línea

Esta puede ser encontrada en el libro de Harry Olson, Acoustical Engineering, del año 1969.

Relación de fase sencilla

0° = Suma máxima 180° = Reducción máxima

Relación de fase compleja

2 señales con el mismo nivel y polaridad

1 Elemento

1 Subwoofer a 100Hz

2 elementos a 0.85 m

2 Subwoofers. Distancia 90° a 100Hz

2 Elementos a 1.13 m

2 Subwoofers. Distancia 120° a 100Hz

2 Elementos a 1.42 m

2 Subwoofers. Distancia 150° a 100Hz

2 Elementos a 1.70 m

2 Subwoofers. Distancia 180° a 100Hz

2 Elementos a 90°

2 Subwoofers a 100Hz

4 Elementos a 90°

4 Subwoofers a 100Hz

8 Elementos a 90°

8 Elementos a 120°

8 Elementos a 150°

8 Elementos a 180°

Comparación de arreglos convencionales (en bloque) y arreglos en línea

1 Subwoofer en bloque

2 Subwoofers en bloque

4 Subwoofers en bloque

8 Subwoofers en bloque

- 1.- Suma en eje
- 2.- Suma fuera de eje
- 3.- Poco estrechamiento de la direccionalidad

1 Subwoofer en línea

2 Subwoofers en línea

4 Subwoofers en línea

8 Subwoofers en línea

- 1.- Suma en eje
- 2.- Cancelación fuera de eje
- 3.- Fuerte estrechamiento de la direccionalidad

Comparación bloque/línea

8 Subwoofers en bloque

Comparación bloque/línea

8 Subwoofers en línea

Comparación bloque/línea

Comparación de 8 Subwoofers en línea con 8 Subwoofers en bloque

Cuál da más dB SPL en campo lejano?

Distancia = 65 m

8 Subwoofers en bloqueComparados con8 Subwoofers en línea

87.2 dB SPL a 65 m (bloque)

1 Subwoofer en bloque a 65 m

105.2 dB SPL a 65 m (bloque)

Relación en dB

 $20 \times \log (8/1) = +18 \, dB$

87.2 dB SPL + 18 dB SPL = 105.2 dB SPL

8 Subwoofers en bloque a 65 m

87.2 dB SPL a 65 m (línea)

1 Subwoofer en línea a 65 m

105.1 dB SPL a 65 m (línea)

Relación en dB 20 x log (8/1) = +18 dB 87.2 dB SPL + 18 dB SPL = 105.2 dB SPL

Diferencia 0.1 dB

8 Subwoofers en línea a 65 m

Subwoofers en bloque a 65 m

Subwoofers en línea a 65 m

SPL es igual en campo lejano

Arreglo en bloque: Distancia = 65m

1 Subwoofer = 87.2 dB SPL 2 Subwoofers = 93.2 dB SPL 4 Subwoofers = 99.2 dB SPL 8 Subwoofers = 105.2 dB SPL Arreglo en línea: Distancia = 65m

1 Subwoofer = 87.2 dB SPL 2 Subwoofers = 93.2 dB SPL 4 Subwoofers = 99.2 dB SPL 8 Subwoofers = 105.1 dB SPL

La suma en campo lejano es igual para los arreglos en bloque y en línea

Comparación bloque/línea

SPL es igual en campo lejano

Arreglos convencionales en bloque

- 1.- Suman en eje en campo lejano
- 2.- Suman fuera de eje en campo lejano
- 3.- El estrechamiento de la direccionalidad es muy pequeña

Arreglos en línea

- 1.- Suma en eje en campo lejano
- 2.- Cancelación fuera de eje en campo lejano
 - 3.- Gran estrechamiento de la direccionalidad

Cuál da más dB SPL en campo cercano?

Distancia = 5 m

8 Subwoofers en bloque comparados con8 Subwoofers en línea

111.2 dB SPL a 5 m (bloque)

1 Subwoofer en bloque a 5 m

128.9 dB SPL a 5 m (bloque)

Relación en dB 20 x log (8/1) = +18 dB 111.2 dB SPL + 18 dB SPL = 129.2 dB SPL

Diferencia 0.3 dB

8 Subwoofers en bloque a 5 m

111.2 dB SPL a 5 m (línea)

1 Subwoofer en línea a 5 m

120.1 dB SPL a 5 m (línea)

Relación en dB 20 x log (8/1) = +18 dB 111.2 dB SPL + 18 dB SPL = 129.2 dB SPL

Diferencia 9.1 dB

8 Subwoofers en línea a 5 m

Subwoofers en bloque a 5 m

Subwoofers en línea a 5 m

SPL NO es igual en campo cercano

Arreglo en Bloque: Distancia = 5m

```
1 Subwoofer = 111.2 dB SPL
2 Subwoofers = 117.2 dB SPL
```

4 Subwoofers = 122.9 dB SPL

8 Subwoofers = 128.9 dB SPL

Arreglo en línea: Distancia = 5m

```
1 Subwoofer = 111.2 dB SPL
```

2 Subwoofers = 116.7 dB SPL

4 Subwoofers = 120.8 dB SPL

8 Subwoofers = 120.1 dB SPL

Menos suma a 5m en el arreglo en línea

```
2 Subwoofers = -0.5 dB SPL
```

4 Subwoofers = -2.1 dB SPL

8 Subwoofers = -8.8 dB SPL

Los arreglos en bloque suman en campo cercano mientras que los arreglos en línea no suman lo suficiente en campo cercano

Comparación bloque/línea

SPL es diferente en campo cercano

Arreglo convencional en bloque

- 1.- Suma en eje en campo cercano
 - 2.- Suma en eje en campo lejano
- 3.- Suma fuera de eje en campo cercano
 - 4.- Suma fuera de eje en campo lejano
 - 5.- Muy poco estrechamiento de la direccionalidad

Suma en eje en campo lejano

Muy poco estrechamiento de la direccionalidad

Suma fuera de eje en campo lejano

Arreglos en línea

- 1.- SIN suma en eje en campo cercano
 - 2.- Suma en eje en campo lejano
- 3.- Cancelación fuera de eje en campo cercano
 - 4.- Cancelación fuera de eje en campo lejano
- 5.- Fuerte estrechamiento de la direccionalidad

