Computer Networks 1 | CN1

Summary

001	UTER	UTO
1.111	\i i i ⊢ i	\I I \
CUI	NTEI	4 I J

1. Application Layer (7,6,5) 2
1.1. Common Ports
1.2. HTTP 2
1.2.1. HTTP1 2
1.2.2. HTTP1.1 2
1.2.3. HTTP2 2
1.2.4. HTTP3 2
1.3. DNS 2
2. Transport Layer (4) 2
2.1. Primary responsibilities 2
2.2. TCP
2.2.1. Reliability 3
2.2.2. Throughput
2.2.3. Flow control 4
2.2.4. Congestion control
2.3. UDP 5
2.4. QUIC 5
3. Network Layer (3)
4. Binary. Decimal. Hex

1. APPLICATION LAYER (7,6,5)

Combines Layers 7 (Application), 6 (Presentation) and 5 (Session).

1.1. COMMON PORTS

Protocol	Port	Layer 4
DNS	53	UDP, TCP
HTTP	80	TCP
HTTPS	443	TCP
FTP	20, 21	TCP
SMTP	25 (server) 587 (client)	TCP
P0P3	110	TCP
DHCP	67 (server) 68 (client)	UDP

- 1.2. HTTP
- 1.2.1. HTTP1
- 1.2.2. HTTP1.1
- 1.2.3. HTTP2
- 1.2.4. HTTP3

1.3. DNS

- recursive vs iterative

2. TRANSPORT LAYER (4)

Segment size: 1440-1480b when using IPv4, ≤1460b when using IPv6

2.1. PRIMARY RESPONSIBILITIES

- Process-to-process delivery (distinguish between multiple applications via ports)
- Ensure reliable transfer (acknowledgments, retransmissions & reordering)
- Flow control (sender does not overwhelm receiver)
- Congestion control (network is not overloaded)

Term	Definition
Port 16 bit long numbers (0d0-0d65535) for identifying app to send packets to.	
	<pre>Well-Known: OdO-Od1023 for universal TCP/IP applications, managed by the IANA. Registered: Od1024-Od49151 for known applications, also managed by the IANA. Private: Od49152-Od65535 for custom applications, not managed</pre>
	by the IANA.

Term	Definition	
Socket	Combination of IP:Port.	
Multiplexing	Sending data from multiple sockets at sender.	
Demultiplexing	emultiplexing Delivering segments to correct socket at receiver.	
Checksum	Detect errors (i.e., flipped bits) in transmitted segment.	

2.2. TCP

Connection-oriented, bidirectional, reliable, managed data flow.

Term	Definition
Handshake	Agreement on starting sequence numbers, maximum segment size and window scaling. - SEQ - SEQ+ACK - ACK
FIN	Termination of a connection FIN - FIN+ACK - ACK
Round Trip Time	RTT is the time it takes for a packet to be sent to the receiver and acknowledged back to the sender.
Buffer size	Maximum amount of data (measured in bytes) that can be stored in memory while waiting to be processed or transmitted.
Maximum Segment Size	MSS is the maximum payload size of a TCP packet. In IPv4 networks, typically, the size of the MSS is 1460 bytes because it is encapsulated in the data link layer Ethernet frame size of 1500 bytes.

2.2.1. Reliability

Term	Definition
SEQ/ACK	
Retransmission timeout	If an acknowledgment is not received before the timer for a segment expires, a retransmission timeout occurs, and the segment is automatically retransmitted .
Packet loss rate	

2.2.2. Throughput

Term	Definition
Throughput	Denoted by T , is the amount of data that can be transmitted during a specified time. $T = \frac{W}{R} \le C_{L3}$

Term	Definition
Continuous sending	Sender transmits a stream of data packets in the given window size without waiting for acknowledgments.
Delayed ACK	Receiver waits for a short period to acknowledge multiple segments with a single ACK.
Selective ACK	Instead of asking for a retransmission of all missing segments, <i>SACK</i> (specified by the receiver) allows the sender to send only the lost segments, significantly improving efficiency.

2.2.3. Flow control

So that the sender does not overwhelm the receiver.

Term	Definition
Window Size	Denoted by W , is a $16\ bit$ number sent with each packet by the receiver inside of the $rwnd$ header field, indicating the amount of data he still has space for.
Window scale	Used when the TCP window size needs to be increased beyond the traditional maximum of 65,535 bytes due to the demands of high-speed networks. If the handshake header includes the window scale option and the packet header includes the scaling factor then the effective window size is calculated as such: window size * scaling factor

2.2.4. Congestion control

To prevent network congestion.

Term	Definition	
Congestion window	cwnd	
	last byte ACKed sent, but not- yet ACKed ("in-flight") available but not used last byte sent	
Sliding Window	Describes the process of the congestion window sliding to the right after receiving ACKs.	
Slow start	Gradual growth (doubling cwnd every RTT) within the congestion window size at the start of a connection or after a period of state of no activity. Purpose: Allows the sender to probe the available bandwidth in a controlled way.	
Congestion avoidance	Transition from sluggish start to congestion avoidance segment after accomplishing a threshold. Purpose: Maintains a truthful share of the community bandwidth even as heading off excessive congestion.	
Fast Retransmit	Detects packet loss through duplicate acknowledgments and triggers speedy retransmission without waiting for the retransmission timeout . Purpose : Speeds up the recuperation method with the aid of retransmitting lost packets without looking ahead to a timeout.	
Fast Recovery	Enters a quick healing state after detecting packet loss, lowering congestion window and transitioning to congestion avoidance. Purpose: Accelerates healing from congestion by way of avoiding a complete go back to slow begin after packet loss.	
AIMD	Adjusts the congestion window size based on network situations following the Additive Increase, Multiplicative Decrease principle. Purpose: Provides a balanced approach by way of linearly growing the window all through congestion avoidance and halving it on packet loss.	

2.3. UDP

2.4. OUIC

Actually a layer 7 Protocol, running on top of UDP

3. NETWORK LAYER (3)

Packet size: 1500b

4. BINARY, DECIMAL, HEX

 $0 \times A46A = 0b1010010001101010 = 0d42090$