Kompilator języka strukturalnego

David Korenchuk

August, 23, 2023

Spis treści

1	Wprowadzenie	3	
2	Teoria 2.1 Języki formalne		
3	Analiza leksykalna	5	
	3.1 Wyrażenia regularne 3.2 Flex	5	
4	Analiza składniowa 4.1 Definicja	7 8 8	
5	Analiza semantyczna 5.1 Analiza nieużywanych zmiennych	10	
6	System typów 6.1 Opis 6.2 Definicja systemu		
7	Generacja warstwy pośredniej	13	
8	Interpreter 1		
9	Annex: Gramatyka w BNF	15	

1 Wprowadzenie

W dniu dzisiejszym istnieje wiele języków programowania. Przyczyna na istnienie narzędzia takiego rodzaju jest taka, że człowiek myśli i mówi zdaniami. Aby móc przeprowadzić ludzkie zdania do formy, zrozumiałej do komputera, niezbędnie te zdania muszą być przeprowadzone do zestawu dużo prostszych zdań, niż w ludzkich językach.

...

2 Teoria

2.1 Języki formalne

Według teorii automatów, automat – jest to jednostka wykonawcza. Jednostki te, zależnie od swojej struktury i tego, jaki **język formalny** oni mogą obrobić, dzielą się na klasy.

Klasy te opisane są **hierarchią Chomsky'ego**. Mówi ona o tym, że języki formalne dzielą się na 4 typy:

- Typ 3 języki regularne
- Typ 2 języki bezkontekstowe
- Typ 1 języki kontekstowe
- Typ 0 języki rekurencyjnie przeliczalne

Jako przykład języka typu 3 według hierarchii Chomsky'ego można podać wyrażenia regularne. Język ten opisuje się automatem skończonym deterministycznym (DFA). Bardziej szczegółowo wyrażenia regularne będą rozpatrzone w opisaniu analizy leksykalnej.

2.2 Klasyfikacja gramatyczna

Niniejszy język nie może być odniesiony do żadnej z klas hierarchii Chomsky'ego, chociaż jest on językiem regularnym. Tak jest dlatego, że można napisać gramatycznie poprawny kod, który jednak prowadzi do błędów kontekstowych i logicznych. Naprzykład

```
void f() {
    return argument + 1;
}
```

Kolejną z przyczyn niemożliwości odniesienia naszego języka do jednej z klas hierarchii Chomsky'ego jest niejednoznaczność konstrukcji językowych. Przykład niżej pokazuje, że nie można jednoznacznie stwierdzić, czy data * d jest deklaracją zmiennej albo operatorem mnożenia dwóch zmiennych. Aby móc poprawnie prowadzić analizę składniową, musimy zadbać o rozróżnienie kontekstu.

```
void f() {
     data *d;
}
```

3 Analiza leksykalna

Jednym ze sposobów na sprowadzanie kodu źródłowego do postaći listy tokenów jest narzędzie flex. Przyjmuje ono zestaw reguł w postaći wyrażeń regularnych, według których działa rozbicie tekstu wejściowego. Można jednak ominąć lex i zaimplemenetować lexer ręcznie, ale ta praca nie skupia się na tym.

3.1 Wyrażenia regularne

Wyrażenie regularne – łańcuch znaków, zawierający pewne polecenia do wyszukiwania tekstu.

Mówimy, że wyrażenie regularne określone nad alfabetem Σ , jeżeli zachodzą następujące warunki:

- Ø wyrażenie regularne, reprezentujące pusty zbiór.
- \bullet ϵ wyrażenie regularne, reprezentujące pusty łańcuch.
- $\forall_{a \in \Sigma}$, a reprezentuje jeden znak.
- Warunek indukcyjny: jeżeli R_1, R_2 wyrażenia regularne, (R_1R_2) stanowi konkatenację R_1 i R_2 .
- Warunek indukcyjny: jeżeli R wyrażenie regularne, R* stanowi domknięcie Kleene'ego.

W rzeczywistości, takich zasad może być więcej.

Zazwyczaj wyrażenie regularne jest realizowane za pomocą DFA (Deterministic finite automaton, Deterministyczny automat skończony). Lex sprowadza podany zbiór zasad do takiego automatu.

Podamy przykład automatu dla wyrażenia -?[0-9]+

Aby odśledzić wykonane kroki, można wypełnić tabelę przejść pomiędzy stanami. Podamy przykład dla łańcucha -22

Biężący stan	Akcja
0	zaakceptować -
0, 1	zaakceptować 2
0, 1, 2	zaakceptować 2

3.2 Flex

Flex jest narzędziem projektu GNU. Pozwala ono w wygodny sposób podać listę reguł dla analizy leksykalnej (ang. Scanning). Flex jest mocno powiązany z językiem C, dlatego program w flex'u korzysta z konstrukcji języka C. Pokażemy przykład użycia flex'u

Listing 1: Przykład użycia flex

```
#include "portrzebny-do-analizy-plik.h"
/* Kod w jezyku C. */
%}
/* Opcje flex */
%option noyywrap nounput noinput
%option yylineno
%% /* Reguly w postaci wyrazen regularnych. */
/* Wzorzec
                             | Akcja przy znalezieniu takiego wzorcu */
                      ********************
-?[0-9]+
                              LEX_CONSUME_WORD (TOK_INTEGRAL_LITERAL)
-?[0-9]+\.[0-9]+
                              LEX_CONSUME_WORD (TOK_FLOATING_POINT_LITERAL)
\"([^\"\\]*(\\.[^\"\\]*)*)\"
                              LEX_CONSUME_WORD (TOK_STRING_LITERAL)
\'.\'
                              LEX_CONSUME_WORD (TOK_CHAR_LITERAL)
                              { /* Znaleziony niewiadomy znak.
                                   Zglosic blad.
                                 */ }
%%
```

Zauważmy, że flex próbuje szukać wzorców w tekscie dokładnie w takiej kolejności, która jest podana w jego kodzie. Dlatego często robią ostatnią regułe z wyrażeniem regularnym".", który akceptuje dowolny znak, i umieszczają tam komunikat o błędzie.

W naszym przypadku, lex generuje kod, który gromadzi wszystkie znalezione lexemy do tablicy.

4 Analiza składniowa

4.1 Definicja

Mając listę składników elementarnych wejściowego programu, jesteśmy w stanie przejść do następnego etapu kompilacji – analizy składniowej. Jest to proces generacji struktury drzewiastej, a mianowicie AST (Abstract Syntax Tree).

AST może być stworzony po zdefiniowaniu gramatyki regularnej danego języka. Stosuje się do tego notacja BNF (Backus–Naur form). Pełny opis gramatyki pokazany jest w końcu pracy. Pokażemy tylko kilka przykładów:

```
 \langle program \rangle \qquad ::= (\langle function-decl \rangle \mid \langle structure-decl \rangle)^* 
 \langle var-decl \rangle \qquad ::= \langle type \rangle \ (*) * \langle id \rangle = \langle logical-or-stmt \rangle \ ; 
 \langle stmt \rangle \qquad ::= \langle block-stmt \rangle 
 | \langle selection-stmt \rangle 
 | \langle iteration-stmt \rangle 
 | \langle decl \rangle 
 | \langle expr \rangle 
 | \langle assignment-stmt \rangle 
 | \langle primary-stmt \rangle
```

4.2 Znane problemy

Projektując gramatykę, należy wziąć pod uwagę problem rekurencji lewej (Left recursion). Są produkcje gramatyczne, nie pozwalające kodu, które je implementuje przejść do następnego terminalu, stosując tą samą produkcję, co prowadzi do rekurencji nieskończonej.

Rekuręcja lewa może wyglądać następująco:

```
\langle factor \rangle \qquad ::= \langle factor \rangle '+' \langle term \rangle
```

Kod, wykonujący tą regułe będzie miał postać:

Listing 2: Rekurencja lewa

```
void factor() {
   factor(); // Rekurencja bez zadnego warunku wyjscia
   consume('+');
   term();
}
```

4.3 Implementacja AST

Zaimplementowany AST składa się ze struktury ast_node. Jest to główny typ węzła, zawierający niektóre zbędne informacje dla każdego typu węzła AST, i przechowujący konkretny węzęł jako wskaźnik.

Listing 3: Główny węzęł AST

```
struct ast_node {
   enum ast_type type;  /* Rozrozniamy typ wedlug tej flagi */
   void     *ast;  /* ast_num, ast_for, ast_while, et cetera */
   uint16_t     line_no;
   uint16_t     col_no;
};
```

Konkretne węzły definiujemy w następujący sposób:

Listing 4: Konkretny węzęł AST

```
struct ast_num {
   int32_t value;
};
```

Taki AST stanowi strukturę drzewiastą, mającą wszystkie zalety i wady drzew jako struktur danych. Mając takie drzewo, jesteśmy w stanie prowadzić zwykłe przeszukiwanie w głąb i wszerz. W danym przypadku taki algorytm się nazywa **AST visitor**. Dokładnie w ten sposób działa każda z przedstawionych niżej analiz semantycznych oraz generacja kodu pośredniego.

Algorithm 1 Przeszukiwanie AST

```
    procedure DFS(AST)
    for each child node Child of AST do
    DFS(Child)
    end for
    end procedure
```

4.4 Implementacja analizatora składniowego

W danym przypadku, analizator składniowy jest napisany ręcznie, chociaż są narzędzia od projektu GNU, takie jak GNU Bison i UNIX'owe, takie jak YACC. Niniejszy analizator jest napisany bez pomocy tych programów, aby jawnie pokazać, jak się przekładają produkcje BNF na język C.

Aby poradzić sobie z zadaniem pisania takiego analizatora, możemy zauważyć, że zadanie to sprowadza się do implementacji każdej produkcji gramatycznej osobno.

4.5 Reprezentacja wizualna AST

Jest pokazana też implementacja **visitor**'u, pozwalającego na przeprowadzenie AST do formy tekstowej. Do tego służy funkcja **ast_dump()**. Przyjmuje ona wskaźnik do węzła drewa i działa według algo-

rytmu DFS, opisanego wyżej, przy tym pisząc tekstową formę węzłów do pliku (ewentualnie, do stdout). Funkcjonalność ta jest bardzo ważna do prowadzenia testów jednostkowych samego AST oraz analizatoru składniowego. Niżej pokazany jest przykładowy wynik działania tej funkcji.

Listing 5: Tekstowa reprezentacja AST

```
CompoundStmt <line:0, col:0>
StructDecl <line:9, col:1> 'custom'
CompoundStmt <line:9, col:1>
VarDecl <line:10, col:5> int 'a'
VarDecl <line:11, col:5> int 'b'
VarDecl <line:12, col:5> int 'c'
ArrayDecl <line:13, col:5> char [1000] 'mem'
VarDecl <line:14, col:5> struct string 'description'
```

5 Analiza semantyczna

Aby zapewnić poprawność napisanego kodu, stosuje się wiele rodzajów analiz. Niniejszy kompilator dysponuje trzema:

- Analiza nieużytych zmiennych, oraz zmiennych, które są zdefiniowane, ale nie zostały użyte
- Analiza poprawności typów
- Analiza prawidłowego użycia funkcji

5.1 Analiza nieużywanych zmiennych

Podamy przykłady kodu prowadzącego do odpowiednich ostrzeżeń

Listing 6: Nieużywana zmienna

```
void f() {
   int argument = 0; // Warning: unused variable 'argument'
}
```

Listing 7: Nieużywany parametr

```
void f(int argument) {} // Warning: unused variable 'argument'
```

Listing 8: Nieodczytana zmienna

```
void f() {
   int argument = 0;
   ++argument; // Warning: variable 'argument' written, but never read
}
```

Rzecz polega na przejściu drzewa syntaksycznego i zwiększania liczników **read_uses** i **write_uses** dla każdego węzła typu **ast_sym**.

Algorytm operuje na blokach kodu, zawartego w $\{ \dots \}$. Po przejściu każdego bloku (w tym rekurencyjnie), analiza jest wykonana w następujący sposób:

Algorithm 2 Wyszukiwanie nieużywanych zmiennych

```
    procedure ANALYZE(AST)
    Set ← all declarations at current scope depth
    for each collected declaration Use in Set do
    if Use is not a function & Use.ReadUses is 0 then
    Emit warning
    end if
    end for
    end procedure
```

Do analizy nieużywanych funkcji stosuje się tem sam algorytm. Jedyne, co jest wtedy zmienione – sprawdzenie, czy nazwa rozpatrywanej funkcji nie jest **main**. Funkcja **main** jest wywołana automatycznie.

6 System typów

6.1 Opis

Wiele zasad, dotyczących pracy z typami mogą być precyzyjnie opisane zasadami typów (**Typing rules**). Jest to notacja matematyczna, znaczenie której niżej wyjaśnimy.

Kluczowym pojęciem w tej notacji jest statyczne środowisko typów (static typing environment). Oznacza się ono symbolem Γ . Mówimy, że to środowisko jest skonstruowane poprawnie pisząc

$$\Gamma \vdash \diamond$$

Mówimy, że zmienna ${\bf V}$ ma typ ${\bf T}$ w środowisku Γ pisząc

$$\Gamma \vdash V : T$$

Kreska pozioma mówi o tym, że zdanie wyżej jest konieczne, aby zaszło zdanie niżej

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \mathbf{V} : T}$$

Zauważmy, że notacja ta jest mocnyn narzędziem, pozwalającym opisać dość złożone systemy typów dla takich języków jak C++ i **Haskell**.

6.2 Definicja systemu

Opiszmy teraz system typów w naszym języku

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{true} : bool} \qquad \qquad \frac{\Gamma \vdash \diamond}{\Gamma \vdash \text{false} : bool}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \mathbf{n} : int}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash c : char}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash \mathbf{x} : float}$$

Oznaczmy tutaj dla $\mathbb{N},\mathbb{R}:\oplus\in\{=,+,-,*,/,<,>,\leqslant,\geqslant,==,\neq,||,\&\&\},$ wtedy

$$\frac{\Gamma \vdash e_1 : float}{\Gamma \vdash e_1 \oplus e_2 : float}$$

Dodamy do \oplus operacje tylko dla $\mathbb{N}: \oplus \ \cup \ \{|, \&, \hat{\ }, <<, >>, \%\},$ wtedy

$$\frac{\Gamma \vdash e_1 : int \qquad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 \oplus e_2 : int} \qquad \qquad \frac{\Gamma \vdash e_1 : int \qquad \Gamma \vdash e_2 : char}{\Gamma \vdash e_1 \oplus e_2 : char}$$

Wprowadzimy reguły niejawnej konwersji, które są niezbędne przy sprawdzaniu w warunku logicznym wyniku operacji arytmetycznej, zwracającej typ różny od bool. Oznaczmy reguły dla typów int, char i float.

$$\frac{\Gamma \vdash e : int}{\Gamma \vdash e : bool} \qquad \qquad \frac{\Gamma \vdash e : char}{\Gamma \vdash e : bool} \qquad \qquad \frac{\Gamma \vdash e : float}{\Gamma \vdash e : bool}$$

Mając taką konwersję, możemy wprowadzić reguły do konstrukcji warunkowych:

$$\frac{\Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if (condition)} \ \{ \ e_1 \ \} \ \text{else} \ \{ \ e_2 \ \} : \tau}$$

$$\frac{\Gamma \vdash \text{condition} : bool}{\Gamma \vdash \text{while (condition)} \ \{\ e\ \} : \tau}$$

$$\frac{\Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash e : \tau}{\Gamma \vdash \text{do } \{\ e\ \} \text{ while (condition)} : \tau}$$

$$\frac{\Gamma \vdash \text{init} : \tau_1 \qquad \Gamma \vdash \text{condition} : bool \qquad \Gamma \vdash \text{increment} : \tau_2 \qquad \Gamma \vdash e : \tau_3}{\Gamma \vdash \text{for (init; condition; increment) } \Set{e} : \tau_3}$$

7 Generacja warstwy pośredniej

8 Interpreter

9 Annex: Gramatyka w BNF

```
\langle program \rangle
                                           ::= (\langle function-decl \rangle \mid \langle structure-decl \rangle)^*
\langle structure-decl \rangle
                                           ::= struct { \langle structure-decl-list \rangle }
                                           ::= ( \langle decl\text{-}without\text{-}initialiser \rangle ;
\langle structure-decl-list \rangle
                                                   \langle structure\text{-}decl \rangle ; )*
                                           ::= \langle ret - type \rangle \langle id \rangle ( \langle parameter - list - opt \rangle ) { \langle stmt \rangle * }
\langle function-decl \rangle
\langle ret\text{-}type \rangle
                                           ::=\langle type\rangle
                                                    \langle void\text{-}type \rangle
\langle type \rangle
                                           ::= int
                                                    float
                                                    char
                                                   string
                                                   boolean
\langle void\text{-}type \rangle
                                           ::= void
\langle constant \rangle
                                           ::= \langle integral-literal \rangle
                                                    \langle floating-literal \rangle
                                                    \langle string\text{-}literal \rangle
                                                    \langle char\text{-}literal \rangle
                                                    \langle boolean\text{-}literal \rangle
\langle integral-literal \rangle
                                           ::= \langle digit \rangle *
\langle floating-literal \rangle
                                           ::= \langle digit \rangle * . \langle digit \rangle *
                                           ::= ''( x00000000-x0010FFFF )*''
\langle string\text{-}literal \rangle
                                           ::= 'ASCII(0)-ASCII(127)'
\langle char\text{-}literal \rangle
\langle boolean\text{-}literal \rangle
                                           ::= true
                                                   false
\langle alpha \rangle
                                           ::= a | b | ... | z |
\langle digit \rangle
                                           ::= 0 | 1 | ... | 9
\langle id \rangle
                                           ::=\langle alpha \rangle \ (\langle alpha \rangle \mid \langle digit \rangle) *
\langle array-decl \rangle
                                           ::= \langle type \rangle ( * )* \langle id \rangle [ \langle integral\text{-}literal \rangle ]
\langle var-decl \rangle
                                           ::= \langle type \rangle ( * )* \langle id \rangle = \langle logical\text{-}or\text{-}stmt \rangle ;
\langle structure-var-decl \rangle
                                           :=\langle id \rangle ( * )* \langle id \rangle
```

```
\langle decl \rangle
                                            ::= \langle var\text{-}decl \rangle
                                                |\langle array-decl\rangle|
                                                      \langle structure-var-decl \rangle
\langle decl\text{-}without\text{-}initialiser \rangle ::= \langle type \rangle ( * )* \langle id \rangle
                                                     \langle array-decl \rangle
                                                     \langle structure-var-decl \rangle
                                            ::= \langle decl\text{-}without\text{-}initialiser \rangle , \langle parameter\text{-}list \rangle
\langle parameter-list \rangle
                                                      \langle decl\text{-}without\text{-}initialiser \rangle
\langle parameter-list-opt \rangle
                                            ::=\langle parameter-list\rangle \mid \epsilon
\langle stmt \rangle
                                            ::= \langle block\text{-}stmt \rangle
                                                     \langle selection\text{-}stmt \rangle
                                                      \langle iteration\text{-}stmt \rangle
                                                      \langle jump\text{-}stmt \rangle
                                                      \langle decl \rangle
                                                     \langle expr \rangle
                                                      \langle assignment\text{-}stmt \rangle
                                                      \langle primary\text{-}stmt \rangle
\langle member-access-stmt \rangle ::= \langle id \rangle. \langle member-access-stmt \rangle
                                                     \langle id \rangle . \langle id \rangle
\langle iteration\text{-}stmt \rangle
                                            ::=\langle stmt\rangle
                                                     break;
                                                     continue;
\langle block\text{-}stmt \rangle
                                            ::= \{ \langle stmt \rangle * \}
\langle iteration\text{-}block\text{-}stmt \rangle ::= \{ \langle iteration\text{-}stmt \rangle * \}
\langle selection\text{-}stmt \rangle
                                            ::= if ( \langle expr \rangle ) \langle block\text{-}stmt \rangle
                                                     if ( \langle expr \rangle ) \langle block\text{-}stmt \rangle else \langle block\text{-}stmt \rangle
\langle iteration\text{-}stmt \rangle
                                            ::= for ( \langle expr-opt \rangle ; \langle expr-opt \rangle ) \langle iteration-block-stmt \rangle
                                                     while (\langle expr \rangle) \langle iteration-block-stmt \rangle
                                                     do \langle iteration-block-stmt \rangle while ( \langle expr \rangle );
                                            := return \langle expr \rangle ?;
\langle jump\text{-}stmt \rangle
\langle assignment-op \rangle
                                                     /=
                                                     <<=
                                                     >>=
```

```
&=
                                                 ::= \langle assignment\text{-}stmt \rangle
\langle expr \rangle
                                                           \langle var\text{-}decl \rangle
\langle expr-opt \rangle
                                                :=\langle expr\rangle \mid \epsilon
\langle assignment\text{-}stmt \rangle
                                                ::= \langle logical - or - stmt \rangle
                                                           \langle logical\text{-}or\text{-}stmt \rangle \ \langle assignment\text{-}op \rangle \ \langle assignment\text{-}stmt \rangle
\langle logical\text{-}or\text{-}stmt \rangle
                                                ::= \langle logical\text{-}and\text{-}stmt \rangle
                                                           \langle logical\text{-}and\text{-}stmt \rangle \mid | \langle logical\text{-}or\text{-}stmt \rangle
\langle logical\text{-}and\text{-}stmt \rangle
                                                ::= \langle inclusive-or-stmt \rangle
                                                          \langle inclusive-or-stmt \rangle && \langle logical-and-stmt \rangle
                                                ::= \langle exclusive-or-stmt \rangle
\langle inclusive-or-stmt \rangle
                                                          \langle exclusive-or-stmt \rangle \mid \langle inclusive-or-stmt \rangle
\langle exclusive-or-stmt \rangle
                                                ::=\langle and\text{-}stmt\rangle
                                                          \langle and\text{-}stmt \rangle \hat{} \langle exclusive\text{-}or\text{-}stmt \rangle
\langle and\text{-}stmt \rangle
                                                ::= \langle equality\text{-}stmt \rangle
                                                           \langle equality\text{-}stmt \rangle \& \langle and\text{-}stmt \rangle
\langle equality\text{-}stmt \rangle
                                                ::=\langle relational\text{-}stmt\rangle
                                                          \langle relational\text{-}stmt \rangle == \langle equality\text{-}stmt \rangle
                                                          \langle relational\text{-}stmt \rangle != \langle equality\text{-}stmt \rangle
                                                ::=\langle shift\text{-}stmt\rangle
\langle relational\text{-}stmt \rangle
                                                          \langle shift\text{-}stmt \rangle > \langle relational\text{-}stmt \rangle
                                                          \langle shift\text{-}stmt \rangle < \langle relational\text{-}stmt \rangle
                                                          \langle shift\text{-}stmt \rangle \Rightarrow \langle relational\text{-}stmt \rangle
                                                          \langle shift\text{-}stmt \rangle \iff \langle relational\text{-}stmt \rangle
\langle shift\text{-}stmt \rangle
                                                 ::= \langle additive\text{-}stmt \rangle
                                                          \langle additive\text{-}stmt \rangle \iff \langle shift\text{-}stmt \rangle
                                                           \langle additive\text{-}stmt \rangle >> \langle shift\text{-}stmt \rangle
\langle additive\text{-}stmt \rangle
                                                ::= \langle multiplicative\text{-}stmt \rangle
                                                          \langle multiplicative\text{-}stmt \rangle + \langle additive\text{-}stmt \rangle
                                                          \langle multiplicative\text{-}stmt \rangle - \langle additive\text{-}stmt \rangle
\langle multiplicative\text{-}stmt \rangle
                                                ::= \langle prefix-unary-stmt \rangle
                                                          \langle prefix-unary-stmt \rangle * \langle multiplicative-stmt \rangle
                                                          \langle prefix-unary-stmt \rangle / \langle multiplicative-stmt \rangle
                                                          \langle prefix-unary-stmt \rangle % \langle multiplicative-stmt \rangle
```

```
\langle prefix-unary-stmt \rangle
                                                  := \langle postfix\text{-}unary\text{-}stmt \rangle
                                                            ++ \langle postfix\text{-}unary\text{-}stmt \rangle
                                                            -- \langle postfix-unary-stmt \rangle
                                                            * \langle postfix\text{-}unary\text{-}stmt \rangle
                                                            & \langle postfix\text{-}unary\text{-}stmt \rangle
                                                             ! \langle postfix-unary-stmt \rangle
\langle postfix-unary-stmt \rangle
                                                  ::=\langle primary\text{-}stmt\rangle
                                                             \langle primary\text{-}stmt \rangle ++
                                                             \langle primary\text{-}stmt \rangle --
\langle primary\text{-}stmt \rangle
                                                  ::=\langle constant \rangle
                                                            \langle symbol\text{-}stmt \rangle
                                                             ( \langle logical\text{-}or\text{-}stmt \rangle )
\langle symbol\text{-}stmt \rangle
                                                  ::= \langle function\text{-}call\text{-}stmt \rangle
                                                             \langle array-access-stmt \rangle
                                                             \langle member-access-stmt \rangle
                                                             \langle id \rangle
                                                 ::=\langle id \rangle ( [ \langle expr \rangle ] )*
\langle array-access-stmt \rangle
\langle function\text{-}call\text{-}arg\text{-}list \rangle ::= \langle logical\text{-}or\text{-}stmt \rangle , \langle function\text{-}call\text{-}arg\text{-}list \rangle
                                                     |\langle logical\text{-}or\text{-}stmt\rangle|
\langle \mathit{function\text{-}\mathit{call\text{-}arg\text{-}\mathit{list}\text{-}\mathit{opt}}}\rangle \ ::= \ \langle \mathit{function\text{-}\mathit{call\text{-}arg\text{-}\mathit{list}}}\rangle \ | \ \epsilon
\langle function\text{-}call\text{-}expr \rangle ::= \langle id \rangle \ ( \langle function\text{-}call\text{-}arg\text{-}list\text{-}opt \rangle \ )
```

Literatura

- $[1]\ https://www.bates.edu/biology/files/2010/06/How-to-Write-Guide-v10-2014.pdf$
- [2] http://lucacardelli.name/papers/typesystems.pdf