

IN THE CLAIMS

Please amend the claims as follows:

1. (original) Method of writing information to a record medium, wherein 152 code words $[11(j)]$ each having 248 bytes $[m_1(i,j)]$ and 12 BIS words each having 62 BIS bytes $[b_2(r,s)]$ are combined so as to form an ECC block (M3) having 38440 elements $[m_3(v,w)]$, which elements are consecutively written to said medium.
2. (Original) Method of writing information to a record medium, comprising the following steps:
 - (a) calculating a predetermined number (N_e) of error correction bytes (B_e) on the basis of a predetermined number (N_d) of data bytes (B_d) so as to form a code word (11) of 248 code word bytes;
 - (b) repeating step (a) until 152 of said code words $[11(j)]$ have been formed, each comprising 248 code word bytes $[m_1(i,j)]$, j representing an index ranging from 0 to 151, i representing an index ranging from 0 to 247;
 - (c) generating 3 BIS lines $[BL(s)]$ each comprising 248 BIS bytes $[b_2(r,s)]$, s representing an index ranging from 0 to 2, r representing an index ranging from 0 to 247;
 - (d) writing the combination of 152×248 code word bytes $[m_1(i,j)]$ and 3×248 BIS bytes $[b_2(r,s)]$ in an order obtainable by:
 - (d1) placing the 152 code words $[11(j)]$ as columns in a 152×248 first matrix (M1) having first matrix elements $[m_1(i,j)]$;
 - (d2) performing a predefined cyclic row shift operation on this first matrix (M1) so as to obtain a 152×248 second matrix (M2) having second matrix elements $[m_2(t,u)]$;

(d3) placing the second matrix elements [$m_2(t,u)$] of this second matrix (M_2) at location [$m_3(v,w)$] of a 155×248 third matrix (M_3) in accordance with the following formulas:

$v = t$

$w = u + \text{DIV}(u, 38)$

(d4) placing the BIS bytes [$b_2(r,s)$] at location [$m_3(v,w)$] of said 155×248 third matrix (M_3) in accordance with the following formulas:

$v = r$

$w = 39*s + 38$

(d5) writing the elements [$m_3(v,w)$] of said 155×248 third matrix (M_3) in a row-by-row fashion in accordance with the following formula:

$B(\xi) = m_3(\text{DIV}(\xi, 155), \text{MOD}(\xi, 155))$, wherein

$B(\xi)$ indicates the ξ -th byte to be written, ξ being an index ranging from 0 to 38 439.

3. (Original) Method according to claim 2, wherein said cyclic row shift is performed in accordance with the following formulas:

$t = i$

$u = \text{MOD}(j - \text{MOD}(3*i, 152) + 152, 152)$

4. (original) Method according to claim 2, further comprising the steps of:

generating 12 BIS code words, each having 62 BIS bytes [$b_{\text{BIS}}(n, c)$], c representing an index ranging from 0 to 11, n representing an index ranging from 0 to 61; and generating said 3 BIS lines [$BL(s)$] by combining 4 of said BIS code words so as to form a BIS line.

5. (Original) Method according to claim 4, wherein a relationship between said BIS bytes [$b_2(r,s)$] of said 3 BIS lines [BL(s)] on the one hand and said BIS bytes [$b_{BIS}(n,c)$] of said 12 BIS code words on the other hand complies with the following formulas:

$b_2(r,s) = b_{BIS}(n,c)$, with:

$s = \text{MOD}(\{c + 30 - \text{DIV}(n,2)\}, 3)$ and $r = 31*uu + \text{DIV}(n,2)$, wherein
 $uu = \text{MOD}(\{\text{DIV}(n,2) + 4 - \text{DIV}(c,3)\}, 4) + 4*\text{MOD}(n,2)$

6. (Original) Method according to claim 4, further comprising the steps of:

generating 8 address words each having 9 address bytes [AF(x,y)],
x representing an index ranging from 0 to 7,
y representing an index ranging from 0 to 8;
putting said address bytes [AF(x,y)] into said 12 BIS code words,
wherein a relationship between said address bytes [AF(x,y)] of said address words on the one hand and said BIS bytes [$b_{BIS}(n,c)$] of said 12 BIS code words on the other hand complies with the following formulas:

$b_{BIS}(n,c) = AF(x,y)$ with:

$n = 2*\text{DIV}(x,3) + \text{DIV}(y,4)$

$c = 3*\text{MOD}(\{\text{DIV}(x,3) + 8 - y\}, 4) + \text{MOD}(\{x + \text{DIV}(x,3)\}, 3)$

7. Original) Method of reading information from a record medium, wherein an ECC block (M3) having 38 440 elements [m3(v,w)] is read, from which 152 code words [11(j)] each having 248 bytes [m1(i,j)] and 12 BIS words each having 62 BIS bytes [$b_2(r,s)$] are reconstructed.

8. (Original) Method of reading information from a record medium, comprising the following steps:

(a) reading 38 440 consecutive bytes [B(ξ)],

ξ representing an index ranging from 0 to 38439;

(b) reconstructing 152 code words $[l_1(j)]$ from said read bytes $[B(\xi)]$, each code word comprising 248 code word bytes $[m_1(i,j)]$,

j representing an index ranging from 0 to 151,

i representing an index ranging from 0 to 247;

wherein a relationship between said code word bytes $[m_1(i,j)]$ on the one hand and said read bytes $[B(\xi)]$ on the other hand complies with the following formulas:

$$m_1(i,j) = B(\xi), \text{ with } \xi = i*155 + u + \text{DIV}(u, 38)$$

wherein $u = \text{MOD}(j - \text{MOD}(3*i, 152) + 152, 152)$

9. (Original) Method according to claim 8, wherein, the 248 bytes are submitted to an error correction processing in each code word $[l_1(j)]$ thus reconstructed;

and wherein a predetermined number (N_d) from among the corrected bytes are outputted as data bytes (B_d).

10. (Original) Method according to claim 8, further comprising the step of reconstructing 12 BIS words from said read bytes $[B(\xi)]$, each BIS word comprising 62 BIS bytes $[b_{\text{BIS}}(n,c)]$;

c representing an index ranging from 0 to 11,

n representing an index ranging from 0 to 61;

wherein a relationship between said BIS bytes $[b_{\text{BIS}}(n,c)]$ on the one hand and said read bytes $[B(\xi)]$ on the other hand complies with the following formulas:

$$b_{\text{BIS}}(n,c) = B(\xi), \text{ with } \xi = r*155 + 39*s + 38$$

wherein: $s = \text{MOD}(\{c + 30 - \text{DIV}(n, 2)\}, 3)$

$$r = 31*uu + \text{DIV}(n, 2)$$

with $uu = \text{MOD}(\{\text{DIV}(n, 2) + 4 - \text{DIV}(c, 3)\}, 4) + 4*\text{MOD}(n, 2)$

11. (Original) Method according to claim 10, further comprising the step of reconstructing 8 address words from said reconstructed BIS words, each address word comprising 9 address bytes [AF(x,y)]; x representing an index ranging from 0 to 7, y representing an index ranging from 0 to 8; wherein a relationship between said address bytes [AF(x,y)] on the one hand and said BIS bytes [b_{BIS}(n,c)] on the other hand complies with the following formulas:

$$AF(x,y) = b_{BIS}(n,c), \text{ with } n = 2 * DIV(x,3) + DIV(y,4)$$

$$c = 3 * MOD(\{DIV(x,3) + 8 - y\}, 4) + MOD(\{x + DIV(x,3)\}, 3)$$

12. (Currently amended) Information recording/reading apparatus (1) designed to write information to a record medium (2) in accordance with any of claims 1-6, or to read information from a record medium (2) in accordance with ~~any of claims 7-11~~ claim 7, respectively.

13. (Currently amended) Record carrier (2) containing information written by a method in accordance with ~~any of claims 1-6~~ claim 1.