2 Differentialrechnung für Funktionen mehrerer Veränderlicher

mit dem Parameter $t \in \mathbb{R}$. Dann gilt für y = x = t:

$$\lim_{t \to 0} \frac{t^2}{t^2 + t^2} = \frac{1}{2}.$$

Dagegen erhält man für y = 2x = 2t:

$$\lim_{t \to 0} \frac{2t^2}{t^2 + 4t^2} = \frac{2}{5}.$$

Der Grenzwert ist aber, wenn er existiert eindeutig bestimmt. **Deshalb existiert der Grenzwert** $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ **nicht.** Dagegen existieren die Grenzwerte

$$\lim_{x \to 0} f(x,0) = 0 = \lim_{y \to 0} f(0, y).$$

Bemerkung 4: Die Stetigkeit von z=f(x,y) in (x_0,y_0) ergibt sich jedoch **nicht** aus der Stetigkeit der "partiellen" Funktionen $x\mapsto f(x,y_0)$ und $y\mapsto f(x_0,y)$. Sondern man müsste nachweisen, das für alle möglichen Kurven $(x(t),y(t))\to (x_0,y_0)$ die Funktion f(x,y) immer den gleichen Grenzwert hat. Diese Vorgehensweise ist deshalb nur günstig, um die Unstetigkeit zu zeigen, d.h. es gibt zwei Kurven wo verschiedene Grenzwerte angenommen werden.

2.1.3 Partielle Ableitungen und Gradient

Sei $D \subseteq \mathbb{R}^n$ offen, $f: D \to \mathbb{R}$ und $\vec{a} = (a_1, a_2, \dots, a_n) \in D$. Existiert die Ableitung der "partiellen" Funktion

$$x_i \mapsto f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$$

an der Stelle $x_i = a_i$, so nennt man diese die partielle Ableitung von f nach x_i im Punkt \vec{a} ; sie wird mit

$$\left. \frac{\partial f(\vec{x})}{\partial x_i} \right|_{\vec{x} = \vec{a}} \quad \text{oder} \quad \frac{\partial f}{\partial x_i}(\vec{a}) \quad \text{oder} f_{x_i}(\vec{a})$$

bezeichnet.

Die Berechnung erfolgt wie für eine Funktion einer Veränderlichen. Es gilt

$$\frac{\partial f(\vec{x})}{\partial x_i} := \lim_{t \to 0} \frac{1}{t} \left[f(x_1, \dots, x_i + t, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n) \right] = \lim_{t \to 0} \frac{1}{t} \left[f(\vec{x} + t\vec{e_i}) - f(\vec{x}) \right].$$

2 Differentialrechnung für Funktionen mehrerer Veränderlicher

Bezeichnungen für höhere partielle Ableitungen:

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right), \dots$$

f heißt (stetig) partiell differenzierbar, wenn alle partiellen Ableitungen f_{x_i} existieren (und stetig sind).

Beispiel 13: $f(x,y) = x^2y^3 + y \ln x$, (x > 0). Dann sind die 1. partiellen Ableitungen:

$$f_x(x,y) = 2xy^3 + y\frac{1}{x}, \quad f_y(x,y) = x^2 3y^2 + \ln x$$

und die 2. partiellen Ableitungen:

$$f_{xx}(x,y) = xy^3 - \frac{y}{x^2}, \quad f_{yy}(x,y) = 6x^2y, \quad f_{xy}(x,y) = 6xy^2 + \frac{1}{x} = f_{yx}(x,y).$$

f heißt k-mal (stetig) partiell differenzierbar, wenn alle k-ten partiellen Ableitungen f_{x_i} existieren (und stetig sind).

Satz 7: Satz von Schwarz. Für jede zweimal **stetig** partiell differenzierbare Funktion $f: D \to \mathbb{R}, \ D \subseteq \mathbb{R}^n$ offen, gilt

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right), \qquad 1 \le i, \ j \le n.$$

Ist $f:D\to\mathbb{R}$ partiell differenzierbar, so heißt der Vektor der ersten partiellen Ableitungen im Punkt \vec{x} Gradient von f an der Stelle \vec{x} :

$$\operatorname{grad} f(\vec{x}) := \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x}) \\ \frac{\partial f}{\partial x_2}(\vec{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\vec{x}) \end{pmatrix} \in \mathbb{R}^n.$$

2 Differentialrechnung für Funktionen mehrerer Veränderlicher

Beispiel 14: $f(x, y, z) = e^{x+2y} + 2x \sin z + z^2 xy$,

$$\operatorname{grad} f(x, y, z) = \begin{pmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{pmatrix} = \begin{pmatrix} e^{x+2y} + 2\sin z + z^2y \\ 2e^{x+2y} + xz^2 \\ 2x\cos z + 2zxy \end{pmatrix}$$

Beispiel 15: Man bestimme ggf. die ersten partiellen Ableitungen von f, den Gradienten von f sowie grad f(1,1) von

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{für } (x,y) \neq (0,0), \\ 1 & \text{für } (x,y) = (0,0). \end{cases}$$

Für die ersten partiellen Ableitungen erhält man

$$\begin{split} f_x(x,y) &= \frac{2x(x^2+y^2)-2x(x^2-y^2)}{(x^2+y^2)^2} = \frac{4xy^2}{(x^2+y^2)^2} & \text{ für } (x,y) \neq (0,0), \\ f_y(x,y) &= \frac{-2y(x^2+y^2)-2y(x^2-y^2)}{(x^2+y^2)^2} = \frac{-4x^2y}{(x^2+y^2)^2} & \text{ für } (x,y) \neq (0,0). \end{split}$$

Für die partiellen Ableitungen in (0,0) erhält man

$$f_x(0,0) = \lim_{t \to 0} \frac{1}{t} \left[f(0+t,0) - f(0,0) \right] = \lim_{t \to 0} \frac{1}{t} \left[\frac{t^2}{t^2} - 1 \right] = 0.$$

Die partielle Ableitung f_y existiert dagegen in (0,0) nicht, da die partielle Funktion f(0,y) in (0,0) unstetig ist, da

$$f(0,y) = \begin{cases} -1, & y \neq 0, \\ 1, & y = 0, \end{cases}$$

bzw. aus der Definition der partiellen Ableitung ergibt sich:

$$f_y(0,0) = \lim_{t \to 0} \frac{1}{t} \left[f(0,0+t) - f(0,0) \right] = \lim_{t \to 0} \frac{1}{t} \left[\frac{-t^2}{t^2} - 1 \right] = \lim_{t \to 0} \frac{-2}{t}$$

und dieser Grenzwert existiert nicht. Damit gilt für den Gradienten:

$$\operatorname{grad} f(x,y) = \left\{ \begin{array}{l} \frac{4xy}{(x^2+y^2)^2} \left(\begin{array}{c} y \\ -x \end{array} \right), & \operatorname{f\"{u}r}(x,y) \neq (0,0), \\ \\ \operatorname{existiert\ nicht} & \operatorname{f\"{u}r}(x,y) = (0,0). \end{array} \right.$$

Insbesondere ist grad $f(1,1) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

2.1.4 Richtungsableitung

Die partiellen Ableitungen $\frac{\partial f}{\partial x_j}(\vec{x})$ geben die "momentane" Änderung der Funktionswerte in Richtung der Koordinatenachsen an.

Zu jedem Vektor $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$, nenne wir den Grenzwert

$$\partial_{\vec{v}} f(\vec{x}) := \lim_{t \to 0} \frac{1}{t} \left[f(\vec{x} + t\vec{v}) - f(\vec{x}) \right]$$

(sofern er existiert) die Ableitung von f an der Stelle \vec{x} längs \vec{v} .

Ist \vec{v} eine $Einheitsvektor~(|\vec{v}|=1)$, dann heißt $\partial_{\vec{v}}f(\vec{x})=\frac{\partial f}{\partial \vec{v}}(\vec{x})$ Richtungsableitung von f an der Stelle \vec{x} in Richtung \vec{v} .

Betrachtet man die Einschränkung von f längs der Geraden $\vec{x}+t\vec{v}$, also

$$h(t) := f(\vec{x} + t\vec{v}),$$

dann gilt nach Definition

$$\dot{h}(0) := \frac{d}{dt} f(\vec{x} + t\vec{v}) \bigg|_{t=0} = \lim_{t \to 0} \frac{1}{t} \left[f(\vec{x} + t\vec{v}) - f(\vec{x}) \right] = \partial_{\vec{v}} f(\vec{x}),$$

und deshalb

 $\partial_{\vec{v}} f(\vec{x}) > 0 \quad \Rightarrow \quad f(\vec{x}) \quad \text{nimmt in Richtung } \vec{v} \text{ zu.}$

 $\partial_{\vec{v}} f(\vec{x}) < 0 \implies f(\vec{x})$ nimmt in Richtung \vec{v} ab.

2.1.5 Parameterdarstellungen

Man nennt $\{\vec{x}(t),\,t_A\leq t\leq t_B\}$ eine **Parameterdarstellung** einer vektorwertigen Funktion. Jeder Funktionswert wird durch einen Wert des Parameters t bestimmt. Oder anders ausgedrückt, der Vektor $\vec{x}(t)$ variiert in Abhängigkeit des Parameters t. Wir betrachten daher vektorwertige, auf dem Intervall $I\subseteq\mathbb{R}$ erklärte Funktionen $\vec{x}:I\to\mathbb{R}^n$. Jede derartige Funktion besteht aus n Komponentenfunktionen $x_i:I\to\mathbb{R}$ $(1\leq i\leq n)$, d.h.

$$\vec{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad t \in I.$$

Die Begriffe des Grenzwerts, der Stetigkeit, der Differenzierbarkeit werden auf die Komponentenfunktionen zurückgeführt: