Big Data y Aprendizaje automático en Economía y Ciencias Sociales

Natalia da Silva

Instituto de Estadística-FCEA-UdelaR XXXIV Jornadas Anuales de Economía

natalia@iesta.edu.uy - natydasilva.com - @pacocuak

21 de Agosto

- Motivación
- 2 Popurrí de términos
- 3 Aprendizaje automático
- 4 Algunas tendencias recientes

Algo de material

Algunos términos

• Big data: datos complejos por Volumen, Variedad o Velocidad

 Aprendizaje automático: métodos y algoritmos para detectar patrones predecir nuevos datos.

Más Términos

Google trends, mundo

Google trends, Argentina

Google trends, Argentina

Motivación Popurrí de términos Aprendizaje automático Algunas tendencias recientes Bibliografía

Denominador común

¿Cuál es el denominador común en todos esos términos?

Denominador común

¿Cuál es el denominador común en todos esos términos?

Estadística es una ciencia transversal que se encarga de recolectar información, analizar y entender los datos y modelar la incertidumbre de los mismos.

Estadística

- El centro del campo de la estadística se ha movido en los últimos 60 años desde lo más matemático y lógico a lo más computacional.
- Antes de la era de la computación (1950) era la era del cálculo y antes de big data trabajábamos con pequeñas muestras.

Evolución

Development of the statistics discipline since the end of the nineteenth century, as discussed in the text. • 1900: Pearson: test χ^2

• 1908: Fisher: estadístico t-Student

• 1933: Pearson: test de hipótesis óptimo

• 1962: Tukey: el futuro del análisis estadístico

• 1963: Morgan y Sonquist: primer algoritmo de árboles

1979: Efron: Bootstrap

• 2001: Brieman: Random forest

2016: Ciencia de datos

Algoritmos e inferencia

"... algorithms are what statisticians do while inference says why they do them."

(Efron, B., Hastie, T. (2016))

Desafíos en la era de big data

La estadística es fundamental para asegurar la obtención de información precisa y con sentido de big data.

- Desarrollamos métodos estadísticos adecuados para big data
- Debemos fortalecer las habilidades de programación eficientes
- Herramientas que faciliten el limpiado y consistenciado de bases de datos
- Herramientas para almacenar grandes volúmenes de información

General

- Mayor flexibilidad en relaciones entre variables
- Aprendizaje supervisado o no supervisado

Supervisado: árboles de clasificación y regresión, bosques aleatorios, SVM, redes neuronales,

No Supervisado: análisis de grupos, componentes principales, MDS...

Explicar o predecir

Especial énfasis en performance predictiva:

- Dividir los datos en entrenamiento y testeo.
- ② Se evalúa la perfromance predictiva de los métodos en la muestra de testeo.
- Se hace validación cruzada para seleccionar los parámetros del modelo o comparar modelos

Un modelo que predice muy mal fuera de la muestra, ¿puede dar explicaciones válidas y generalizables?

Tendencias recientes

- En economía, relación entre aprendizaje automático y causalidad.
- Se están desarrollando herramientas para que estos métodos sean más interpretables.
- Visualización estadística tanto en la exploración como para el diagnóstico de modelos.
- Otro desafío es la reproducibilidad.

Comentarios

- En economía y las ciencias sociales apostar más al trabajo colaborativo y grupos interdisciplinarios.
- Los nuevos desafíos implican el desarrollo de nuevas habilidades, incluir en los programas de maestría y doctorado estos temas.
- Aunque no se trabaje con aprendizaje automático incluir algunas de las enseñanzas, al menos separar en training y test.
- Un modelo que sólo explica la muestra no es generalizable.

Motivación Popurrí de términos Aprendizaje automático Algunas tendencias recientes Bibliografía

GRACIAS

- Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745-766.
- Efron, B., & Hastie, T. (2016). Computer age statistical inference (Vol. 5). Cambridge University Press
- Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85.
- Tukey, J. W. (1962). The future of data analysis. The annals of mathematical statistics, 33(1), 1-67.
- Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3-28.