General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

N77-13535

(NASA-TH-I-73553) STANDARDIZED PERFCRMANCE
TESTS OF COLLECTORS OF SOLAR THERMAL ENERGY
- A FLAT-FLATE COPPER COLLECTOR WITH
PARALLEL MYLAE STRIPING (NASA) 8 p HC
A02/HF A01 CSCL 10A G3/44

Unclas 58230

NASA TECHNICAL MEMORANDUM

NASA TM X-73553

STANDARDIZED PERFORMANCE TESTS OF COLLECTORS OF SOLAR THERMAL ENERGY - A FLAT-PLATE COPPER COLLECTOR WITH PARALLEL MYLAR STRIPING

by Susan M. Johnson Lewis Research Center Cleveland, Ohio 44135 November 1976

NASA TM X-73553

1. Report No. NASA TM X-73553	2. Government Accession No.	3. Recipient's Catalog	No No	
4. Title and Subtitle STANDARDIZED	PERFORMANCE TESTS OF	5. Report Date		
	ERMAL ENERGY - A FLAT-PI	ATE		
	PARALLEL MYLAR STRIPING	6 Performing Organia	zation Code	
7. Author(s)		8. Performing Organiz E-8991	ration Report No.	
Susan M. Johnson				
9. Performing Organization Name and Address		10. Work Unit No.		
Lewis Research Center		11. Contract or Grant	No.	
National Aeronautics and Space	e Administration			
Cleveland, Ohio 44135		13. Type of Report ar	nd Period Covered	
12. Sponsoring Agency Name and Address		Technical Me		
National Aeronautics and Spac	14. Sponsoring Agency	. Code		
Washington, D.C. 20546		re. Sportsoring regency		
15. Supplementary Notes				
16. Abstract				
This preliminary data report	gives basic test results of a fla	t-plate solar collector	r whose per-	
		•	=	
formance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is corre-				
ranges of inlet temperatures,	fluxes and one coolant flow rate			
	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate			
ranges of inlet temperatures,	fluxes and one coolant flow rate	e. Collector efficienc		
ranges of inlet temperatures, lated in terms of inlet tempera	fluxes and one coolant flow rate ature and flux level. 18. Distribution S	e. Collector efficienc		
ranges of inlet temperatures, lated in terms of inlet tempera	fluxes and one coolant flow rate ature and flux level. 18. Distribution S	e. Collector efficienc		
ranges of inlet temperatures, lated in terms of inlet tempera 17. Key Words (Suggested by Author(s)) Solar simulator	fluxes and one coolant flow rate ature and flux level. 18. Distribution S	e. Collector efficienc		
ranges of inlet temperatures, lated in terms of inlet tempera 17. Key Words (Suggested by Author(s)) Solar simulator Solar collector	fluxes and one coolant flow rate ature and flux level. 18. Distribution S	e. Collector efficienc		
ranges of inlet temperatures, lated in terms of inlet tempera 17. Key Words (Suggested by Author(s)) Solar Simulator Solar collector Solar thermal energy	fluxes and one coolant flow rate ature and flux level. 18. Distribution S Unclassif	Statement fied - unlimited	cy is corre-	
ranges of inlet temperatures, lated in terms of inlet tempera 17. Key Words (Suggested by Author(s)) Solar simulator Solar collector	fluxes and one coolant flow rate ature and flux level. 18. Distribution S	e. Collector efficienc		

STANDARDIZED PERFORMANCE TESTS OF COLLECTORS OF

SOLAR THERMAL ENERGY - A FLAT-PLATE COPPER

COLLECTOR WITH PARALLEL MYLAR STRIPING

by Susan M. Johnson

Lewis Research Center

INTRODUCTION

An area that has been investigated by the NASA Lewis Research Center in its efforts to aid in the utilization of alternate energy sources is the use of solar energy for the heating and cooling of buildings. An important part of this effort was the evaluation of solar collectors which have the potential to be efficient, economical, and reliable.

This preliminary data report gives basic test results of a collector whose performance was determined in the NASA-Lewis solar simulator. In the interest of providing performance data on this collector to the technical community as quickly as possible, the basic test results reported herein are presented without evaluation. Detailed analyses and interpretation of these results may be presented in subsequent papers or reports by this Center. Some of the results contained in this report may be changes as warranted by reviews and evaluations, or by obtaining additional data on this collector.

Reference 1 describes the solar-simulator test facility, as well as the basic test procedure.

COLLECTOR DESCRIPTION

This collector (the SS-6) was made by Sunsav, Inc. of Lawrence, Massachusetts. It consists of a copper roll bond absorber plate with an

absorber area of 19.38 sq ft. Black paint is utilized as the absorber coating. Mylar strips running the width of the collector are installed to decrease convection and reradiation losses. These mylar strips are 4 inches deep and are 3/8 of an inch apart. The collector housing is aluminum and has a single glass cover. The insulation of the collector is composed of several inches of glass wool and polyurethane. A photograph of the collector on the test stand is shown in figure 1.

COLLECTOR TEST RESULTS

Basic test results are given in Table I. Since this collector was larger than the area of radiation provided by the solar simulator, it was necessary to use a "shield" approach as explained in Reference 1. This technique allows one to determine the efficiency of the entire collector even though only a portion of it is actually exposed to radiation. By using the analytical method outlined in Reference 1 for a collector tested with a "shield", the results given for the flow rate in Table I were used for a determination of the performance correlation given in Figure 2.

In addition to the basic test performed on the collector, a series of incident angle tests were run to help predict the effect the mylar strips might have on collector performance for daily and seasonal changes of sun incidence angle. Table II lists the collector efficiency, at various rotation and incidence angles, along with $K_{\alpha\tau}$ values. One analytical method for interpreting and using this data can be found in Reference 1.

REFERENCE

1. Simon, Frederick F.: Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction. NASA TM X-71793, 1975.

TABLE I. - BASIC EXPERIMENTAL DATA

E-8991

 $[50/50 \text{ Water and ethylene glycol; incident angle} = 0^\circ; \text{ tilt angle} = 57^0 \text{ above horizontal.}]$

Efficiency					0.74423	. 77469	. 43823	. 55968	.64758E-01	. 29982
Ambient	temperature,				83.761	84.387	85.851	86. 491	80.497	80.827
Fluid inlet	temperature,	0 된			83.761	84.211	120.46	120.14	160.54	159.86
Fluid outlet	temperature,	0 _F			92.368	97.239	125.61	129.58	161.29	164.96
Incident	radiation	flux,	Btu/hr ft ²		182.03	265.66	186.86	270.93	184.52	274.03
Flow,	gal/min				0.35785	.35845	.35632	.35983	.35616	.35758
Flow per	radiated	surface	area,	lb/hr ft ²	19.194	19.232	18.981	19.170	18.681	18.763

TABLE II. - INCIDENT ANGLE MODIFIER DATA

Tilt angle ^a	Rotation angle ^b	Incidence angle ^C	Efficiency	Kατ
15 ⁰	0 ⁰	42. 0	0.690	0.915
	30	7. 7	.467	.619
	50	12. 7	.447	.593
	70	17. 2	.396	.525
30°	0	19. 2 27. 0	0.701	0. 930
	30 50 70 80	14. 9 24. 4 33. 3 37. 5	. 592 . 532 . 470 . 424	.785 .706 .623
45°	0	12. 1	0.694	0.920
	30	21. 1	.678	.899
	50	34. 8	.743	.985
	70	47. 9	.508	.674
	80	54. 1	.435	.577
57 [°]	0	0	0.754	1.0
	30	25	.713	.946
	50	41.4	.680	.902
	70	57.4	.603	.800
	80	61.9	.475	.630

^aTilt angle - the angle between the horizontal and the plane of the collector.

Incidence angle

Tilt Rotation

bRotation angle - the angle that is measured in relation to the x-axis when the collector is rotated around the z-axis.

^cIncidence angle - the angle that is measured between the beam of light and the normal to the plane of the collector.

PRECEDING PAGE BLANK NOT FILMED

Figure 1. - Collector on Test Stand

Figure 2. - Collector Performance Correlation