Machine Learning HW3 Report

學號:B05611038 系級:生機二 姓名:張育堂

1. (1%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何?

	Public Score	Private Score	Score
Model_1	0.58567	0.58930	0.587485
Model_2	0.65143	0.64984	0.650635
Model_3	0.67372	0.67511	0.674415

我的第一個 Model 是用原始數據經過 normalize 之後,用 Conv2D+MaxPooling2D 的方式疊了三層,經過 2 層 nerual 數為 666 的 Dense 層之後,這些層數的 activation function 都用 relu,最後再加上一層 activation function 為 softmax 的 7 個 nerual 的 Dense。

我的第二個 Model 是用和第一個 Model 相似的建法,只是 Conv2D+MaxPooling2D 的次數增加為 5 次,然後最重要的是使用了 Keras 的 ImageGenerator。

第三個 Model 是參考 CNN16 的建構方式,使用 2~3 層 Conv2D+1 次 MaxPooling 這類過程使用 3 次以後,再將資料丟進 nerual 數為 1024 的 Dense 層中,也有使用 ImageGenerator。

2. (1%) 請嘗試 data normalization, data augmentation,說明實行方法並且說明對準確率有什麼樣的影響?

Collaborators:B05611033 杜杰翰

	Public Score	Private Score	Score
Normalized	0.57982	0.59849	0.589155
Unnormalized	0.57954	0.59765	0.588595

當影像做 normalization 的時候,會使得一個 Image 的黑白更加分明, 因此在 train 的時候,輪廓、形狀會比較好抓出來,因此在 test 的時候可以 有更好的結果。

	Public Score	Private Score	Score
Augmented	0.64809	0.64224	0.645165
Unaugmented	0.58567	0.58930	0.587485

在 Data process 中,因為有時候沒有那麼多的 Data,而影像因為其 Data 特徵的組成可以拉伸、旋轉而依舊是有效 Data,所以在 Keras 中便可使用 ImageGenerator 來達成 Feature Augmentation 的效果。

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?

Collaborators:B05611033 杜杰翰

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

Collaborators:B04611003 林宏揚

Saliency Map

5. (1%) 承(4) 利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate 與觀察 filter 的 output。

Collaborators:B04611003 林宏揚

輸出了 Conv2D 層的 filter, 抓了幾個可以明顯觀察的 filter, 如下圖:

基本上可以觀察到的部分就是關於輪廓跟表情器官的部分較明顯,因為取的已經是比較後面的 Conv2D layer,因此容易被 activate 的部分通常都是可以決定一張圖片它的 class 決定的部分,對比隨便取一張圖如下:

可以觀察 filter 所 train 出來的資訊的確跟 input 的圖有關。