序号	教学内容	教学要求	学时	教学方式	对应课程 目标
1	集合、子集、集合的相等关系、幂集;集合并、交、差、对称差、补集、迪卡尔乘积运算,各运算的性质及相互联系;有穷集合的基数、基本计数法则、容斥原理及应用。	1. 掌握集合、子集、全集、空集和幂集等概念。熟悉常用的表示集合的方法。能够判定元素与集合、集合与集合之间的关系;熟练掌握两个集合相等关系和包含关系的定义和性质,能够利用定义证明两个集合相等。 2. 熟练掌握集合之间的各种运算以及集合运算的基本等式,能够利用它们来证明更复杂的集合等式。 3. 掌握余集与集合笛卡儿乘积的概念以及 De Morgan 公式。 4. 掌握求解与有穷集合计数相关的实际问题。		课堂讲授/ 慕课自学	课程目标 1
2	映射的基本定义、鸽巢原理、 映射的一般性质、映射的合 成、逆映射、置换、二元运算、 应用。	1.掌握映射的基本概念以及单射、满射、双射之间的区别。给定一个映射能够确定它是单射、满射、双射等? 2.掌握映射的合成和逆映射的定义以及他们存在的条件。 3.掌握集合的象及原象的定义及相关性质;掌握给定一个映射,能确定一点的象、一个集合的象和原象以及映射的合成等。 4.掌握针对具体问题构造映射来解决问题。 5.掌握把映射和其他章节有机的结合起来。	6	课堂讲授/	课程目标 1 课程目标 2
3	二(n)元关系、几个特殊二元关系、二元关系、二元关系的表示、关系的合成运算、传递闭包、等价关系与集合的划分、偏序关系。	1.掌握二元关系的形式定义及其各种表示方法:序对、矩阵、关系图等;能正确使用集合表达式、关系矩阵、关系图等给定的关系,并要求能够从一种形式写出另一种形式。 2.掌握关系的各种运算,包括集合运算及关系合成和关系的逆运算。 3.熟练掌握二元关系的各种特殊性质:自反、反自反、对称、反对称和传递等,并理解这些性质是如何反映在关系图上、关系矩阵上等。 4.掌握二元关系的闭包的意义和简单性质,能求出有限集合上的二元关系的闭包。	8	课堂讲授/ 慕课自学	课程目标 1 课程目标 2

		5.熟练掌握等价关系的概念,并掌握划分、等价类、商集的定义和基本性质,掌握等价关系与划分之间的关系。 6.熟练掌握偏序关系、偏序集、全序、良序等概念以及偏序集的极大元、极小元、最大元、最小元、上界、下界、上确界、下确界等概念:能画出有限偏序集的 Hasse 图,并根据图讨论偏序集的某些性质。			
4	可数集及其性质、存在不可数 集一对角线法,基数及其比 较、连续统、罗素悖论与数学 危机。	1. 掌握可数集,连续集和无穷集合基数的概念及其性质。 2. 熟练掌握 Cantor"对角线解法"的证明方法。 3. 掌握与无穷集合有关但与有穷集合不同的一些性质,从而深刻体会无穷的特征。	4	课堂讲授/ 慕课自学	课程目标1 课程目标2
5	图、路、圈、连通图、偶图、 补图、欧拉图、哈密顿图、图 的邻接矩阵、最短路径问题。	1.熟练掌握图的基础知识中的概念和定理和连通图的问题及其证明。 2.掌握欧拉图和哈密顿图的概念及判断方法。 3.掌握最短路的算法及其邮路问题。 4.能够判断和证明图的有关结论	8	课堂讲授/ 慕课自学	课程目标1 课程目标2
6	树及其性质、生成树、割点和 桥及其特征性质,最小生成树 问题。	1.掌握树的基础概念和定理。 2.掌握求连通图生成树的破圈法及求带权连通图的最小生成树的 Kruskal 算法和 Prim 算法。 3.掌握利用树的等价定义判断和证明树的有关理论。 4.掌握割点、桥和割集的定义、性质。	4	课堂讲授/ 慕课自学	课程目标 1 课程目标 2
7	顶点连通度与边连通度及其 系、偶图的匹配、Hall 定理。	1.掌握连通度的概念及其性质 2.掌握匹配、最大匹配、完备匹配和完 美匹配等概念;能够利用相异性条件和 t条件判定偶图是完全匹配?	4	课堂讲授/ 慕课自学	课程目标1 课程目标2
8	平面图及其欧拉公式、图的着 色、五色定理,介绍计算机证 明四色猜想。	,	4	课堂讲授/ 慕课自学	课程目标 1 课程目标 2
9	有向图、有向路、有向圈、有 向图的连通、有向图的邻接矩 阵、可达矩阵、关联矩阵、有 向树、有根树、有序树、比赛	和定理。 2. 掌握有向图同构的概念,会判断结	4	课堂讲授/ 慕课自学	课程目标1 课程目标2

	图。	3. 掌握可达性及其各种连通性并能熟			
		练地作出判断。			
		4. 对于上述的全部内容都能够用矩阵			
		熟练地加以判断。			
		5. 掌握根树和有序树的概念及其性质;			
		有序树(森林)的二元树表示方法。			
10	每部分内容对应 1-2 学时的习题课	复习课堂讲授的基本概念、基本理论、		课堂讲授/	YHII DI IT O
		基本方法,深入理解相关的内容,并能	16	以练代讲/	课程目标3
		运用所学知识解决相关问题。		翻转课堂	体性目标4

课程考核方法

本课程成绩满分 100 分。由以下部分构成:

考核环节	所占分值	考核与评价细则	对应课程目标		
1.随堂测试	10%	2-3 周一次学生小测验(5-8 分钟)	课程目标3		
1.随星侧风	10%	2-3 问 (人子主小侧弧(3-8 分析)	课程目标 4		
2.作业	10%	每章一次作业	课程目标3		
2.1F3K		平早 (人)上业	课程目标 4		
	· 考试 80%	期末考试采用笔试,考核概念是否理解占 40%,是否掌握			
3.期末考试		基本理论和基本方法占30%,考核学生能否灵活应用基本概念、	课程目标 1		
3.粉小与风	0070	基本理论、基本方法占 20%,较难题占 10%。	课程目标 2		
		期末考试卷面成绩满分为 100 分(占总分的 80%)。			
课程最终成绩 = 1+2+3					