End-to-End Reward Decomposition and Explainable Interaction: A Medical Inverse Reinforcement Learning Framework

Lian
AI Thrust, Info Hub, HKUST(GZ)
xlian289@connect.hkust-gz.edu.cn

Introduction

Problem Statement:

- Patient Profile: 65 year old male admitted with diabetes, chronic kidney disease, and heart failure simultaneously.
- Treatment Dilemma
 - Doctors need to balance treatment effectiveness for all three diseases.
 - Must avoid drug conflicts and adverse reactions.
- Data and Interaction Issues
 - Incomplete records of disease progression.
 - Dynamic, complex interactions between the three conditions over time.

Research Motivation:

- How can we clearly decompose and explain multiple clinical objectives in complex medical decisions?
- How can we robustly complete and utilize patient data when observations are missing or incomplete?
- How can we make every step of AI-driven medical decisions fully transparent and traceable for clinicians?

Related Work

Research Direction	Recent Representative Works & References	Main Advances	Limitations & Challenges	
Inverse Reinforcement Learning (IRL) in Healthcare	 - Jayaraman & Desman, 2024 (Nat. Digital Med.): Federated IRL - Snoswell et al., 2024 (Front. Digital Health): Telemedicine preference IRL - Fang et al., 2024 (arXiv): Safe clinical IRL 	 Enables personalized medical recommendations Addresses privacy via federated learning Models patient preferences for telehealth 	 Assumes complete data Struggles with complex multimorbidity interactions Limited reward interpretability 	
Causal Modeling for Multimorbidity	 Langenberg et al., 2023 (Nat. Medicine): Multimorbidity causal framework Yin et al., 2025 (arXiv): Multiagent RL for disease interaction 	 Reveals disease progression patterns Captures dynamic interactions between multiple diseases 	 Difficult to disentangle temporal causal effects Lacks real-time, individualized decision support 	
Learning from Partially Observed Data	 - Liu et al., 2024 (ICLR): POMDP and inverse weighting - Xia et al., 2024 (OpenReview): Contrastive learning for EHR 	 Adapts to incomplete medical records Utilizes partial data effectively through contrastive learning 	Uncertaintyquantification issuesLimited theoreticalguarantees forconvergence	
Optimization of Multimorbidity Treatment Decisions	- Zhang et al., 2024 (AAAI): Multi-task RL for comorbidity - Tan et al., 2024 (arXiv): Hierarchical multi-agent RL for multi-organ care			

• IRL on incomplete, real-world multimorbidity data.

 Causal disentanglement of dynamic disease interactions.

Robust learning under partial observation and uncertainty.

Temporal conflict detection and multi-objective optimization.

Methodology

Core Technical Innovations

Transparent Reward Decomposition

- Breaks complex clinical goals into clear, independent components.
- Orthogonality and attention ensure each reward is clinically meaningful and explainable.

•

Robust Trajectory Completion

- Fills in missing patient data using a hybrid of deep learning and medical knowledge.
- Guarantees reliable, realistic recovery even with high data gaps.

Full-Path Explainability

- Visualizes every step of AI decision-making across time, features, and strategy.
- Empowers clinicians with dynamic, interactive, and traceable insights.

$$R(s,a) = \sum_{i=1}^{K} w_i(s) \cdot r_i(s,a), \quad L_{ortho} = \sum_{i
eq j} |r_i^T r_j|$$

 $L = ext{ELBO} + lpha \cdot KG_{Loss} + eta \cdot Temporal_Smoothness$

Experimental Results

1 Method Comparison

Table 1: Comparison of Different Methods

Method	Components					
	Reward Decomp.	Trajectory Comp.	Medical Align.	Visual.		
MERIT-IRL	✓	×	×	×		
XAI-Med	✓	×	✓	1		
PO-IRL	×	✓	×	×		
LRD-IIRL	✓	✓	✓	✓		

2 Quantitative Results

Table 2: Quantitative Results on MIMIC-IV Dataset

Method	Reward Reconstruction			Traj. Acc	Med. Rel
	MSE	RMSE	Rel. Error	Traj. Tree	Mod. Ho.
MERIT-IRL	0.9951	0.9975	0.9951	0.0049	0.80
XAI-Med	0.9932	0.9966	0.9932	0.0068	0.85
PO-IRL	1.0023	1.0011	1.0023	-0.0023	0.75
LRD-IIRL	0.9812	0.9905	0.9812	0.0068	0.87

6 Evaluation Metrics

Table 6: Evaluation Metrics Definition

Metric	Calculation	Clinical Meaning
Reward Error Traj. Acc Med. Rel Δ SOFA	$\frac{\frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2}{\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(s_i = \hat{s}_i)} $ $\frac{1}{n} \sum_{i=1}^{n} \sin(c_i, \hat{c}_i) $ SOFA _{t+1} - SOFA _t	Treatment effect prediction State prediction accuracy Concept alignment degree Safety indicator

3 Ablation Study

Table 3: Ablation Study Results

Config.	Performance Metrics			ΔSOFA
comig.	Reward Err.	Traj. Acc	Med. Rel	
Full Model	0.9812	0.0068	0.87	0.41
w/o Dyn. Reward	0.9935	0.0055	0.85	0.38
w/o Variational	0.9878	0.0042	0.86	0.39
w/o Med. Align	0.9966	0.0059	0.82	0.36
w/o Attention	0.9914	0.0060	0.84	0.37

4 Clinical Evaluation

Table 4: Clinical Evaluation Results

Scenario	Expert Ratings			Acc. Rate
Sections	Treatment	Interp.	Usability	1100. 14400
ICU Multi-morb.	4.7 ± 0.3	4.5 ± 0.4	4.6 ± 0.3	92%
Oncology	4.5 ± 0.4	4.3 ± 0.5	4.4 ± 0.4	88%
Emergency	4.3 ± 0.5	4.2 ± 0.6	4.3 ± 0.5	85%

0.996 0.994 0.994 0.992 0.990 0.998 0.988 0.39 0.39 0.39

Reward Error vs. ASOFA by Ablation Config

Dataset Statistics

Table 5: Dataset Statistics

Dataset	Sample Size			Miss. Rate
	Train	Val.	Test	. Miss. Itali
MIMIC-IV	15,000	3,000	2,000	5.2%
Synthetic	10,000	2,000	1,000	0.0%

Interactive System Performance

Adaptation Scenario

Clinical Decision Support:

Assists physicians in developing safe and effective treatment plans for patients with complex conditions like diabetes with heart failure.

Preventive Medicine:

Identifies early warning signs of disease interactions, enabling proactive interventions before complications develop.

Clinical Research:

Provides insights into disease interactions and treatment efficacy, supporting new therapeutic approach development.

Personalized Medicine:

Adapts recommendations to patientspecific factors, including disease duration and severity patterns.

Conclusion

Technical Innovations

- We introduce LRD-IIRL, an end-to-end framework that unifies reward decomposition, robust trajectory completion, and full-path explainability for clinical decision-making.
- Our method leverages orthogonal constraints and medical knowledge to disentangle multi-objective rewards, ensuring clinical interpretability.
- A hybrid variational autoencoder and knowledge graph module enables reliable patient trajectory recovery, even with high missingness.

Empirical Validation

- Extensive experiments on large-scale clinical datasets (e.g., MIMIC-IV) show LRD-IIRL outperforms state-of-the-art baselines in reward reconstruction, trajectory completion, and medical relevance.
- The framework achieves higher expert acceptance rates, demonstrating its value for trustworthy, real-world medical AI deployment.
- LRD-IIRL sets a new standard for interpretable and robust AI in healthcare.

Clinical Trust and Transparency

- The five-dimensional XAI-Viz system delivers transparent, interactive visualizations across time, features, rewards, policy, and expert comparison.
- Every AI decision is traceable and clinically aligned, bridging the trust gap between clinicians and intelligent systems.
- Our approach empowers doctors to understand, validate, and refine AI recommendations in real-world scenarios.

Q&A

Lian
AI Thrust, Info Hub, HKUST(GZ)
xlian289@connect.hkust-gz.edu.cn