Imperial College London

113: Architecture

Spring 2018

Lecture: Floating Point Numbers and Arithmetics

Instructor: Dr. Jana Giceva

Quick note for tomorrow!

- Lecture on Memory Hierarchies
- Tutorial on the material we cover today (Floating Point Numbers)
- Lab: hands-on assignment for x86
 - Slides for last week's material on x86 are online (procedures and data structures)
 - During the first half of tomorrow's tutorial flipped classroom.
 Ask questions about the material from last week you'll need it for the lab.
 - Set-up for the lab assignment from 2-4pm with me and helpers in the lab rooms (202; 206; 219).

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point ranges
- Rounding, addition, multiplication
- Summary

Fractional binary numbers

What is 1011. 101₂?

$$1011.101_{2}$$

$$8 + 2 + 1 + \frac{1}{2} + \frac{1}{8} = 11.625_{10}$$

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represented fractional powers of 2
- Represents rational number:

$$\sum_{k=-1}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value Representation

5	3/4	101.11 ₂
2	7 /0	10111

2 7/8 10.111₂ 1 7/16 1 0111

1 7/16 1.0111₂

Observations:

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form $0.1111111..._2$ are just below 1.0

Representable Numbers

Limitation #1

- lacksquare Can only exactly represent numbers of the form $x/2^k$
- Other rational numbers have repeating bit representations

```
Value Representation
1/3 0.0101010101[01] ...2
1/5 0.001100110011[0011] ...2
1/10 0.0001100110011[0011] ...2
```

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? Very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point ranges
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Supported by all major CPUs

Driven by numerical concerns

- Scientists want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end: scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but ...
 - Hard to make fast in hardware
 - Can be order of magnitude slower than integer operations

Floating Point Representation

Numerical Form:

$$V_{10} = (-1)^s * M * 2^E$$

- Sign bit s determines whether number is negative or positive
- \blacksquare Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent *E* weights value by a (possibly negative) power of two

Encoding:

- MSB S is sign bit s
- \blacksquare **exp** field encodes E (but is **not equal** to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac

Precision options

IEEE 754 Single precision (32 bits)

IEEE 754 Double precision (64 bits)

Intel Extended Precision (80 bits)

■ IEEE 754 Quadruple Precision (128 bits)

Finite representation means that not all values can be represented exactly. Some will be approximated!

"Normalized" Values

$$V = (-1)^{s} * M * 2^{E}$$

$$E = Exp - Bias$$

- When: exp ≠ 000...0 and exp ≠ 111...1
 - Reserved for special values. We'll cover them later.
- Exponent coded as a biased value: E = Exp Bias
 - **Exp**: unsigned value **exp** ranging from 1 to $2^k 2$ (k==#bits in **exp**)
 - Bias = $2^{k-1} 1$
 - Single precision: 127 (*Exp*: 1...254, *E*:-126...127)
 - Double precision: 1023 (Exp: 1...2046, E:-1022...1023)
 - Enables negative values for E, for representing very small values!
- Significand coded with implied leading 1: $M = 1 \cdot xxx \cdot x_2$
 - xxx ... x: bits of frac
 - Minimum when frac = 000...0 (M=1.0)
 - Maximum when frac = 111...1 (M=2.0- ϵ)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
V = (-1)^{s} * M * 2^{E}
E = Exp - Bias
```

- Value: float F = 15213.0;
 - \blacksquare 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ × 2¹³ (normalized form)

Significand

```
M = 1.1101101101_2

frac = 11011011011010000000000002
```

Exponent: $E = \exp - Bias$, so $\exp = E + Bias$

```
E = 13
Bias = 127
Exp = 13 + 127 = 140 = 10001100_2
```

"Denormalized" Values

$$V = (-1)^{s} * M * 2^{E}$$

$$E = 1 - Bias$$

Conditions: exp = 000...0

- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: $M = 0.xxx ... x_2$
 - xxx...x: bits of frac
- Cases:
 - **exp** = 000...0, **frac** = 000...0
 - Represents zero value
 - = exp = 000...0, frac \neq 000...0
 - Numbers closest to 0.0
 - Equi-spaced

Interesting Numbers

Description	exp	frac	Numerical value
Zero	0000	0000	0.0
Smallest possible denormalized $ \bullet \text{Single} \approx 1.4 \times 10^{-45} \\ \bullet \text{Double} \approx 4.9 \times 10^{-324} $	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
Largest possible denormalized • Single $\approx 1.18 \times 10^{-38}$ • Double $\approx 2.2 \times 10^{-308}$	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest possible normalizedJust larger than largest denormalized	0001	0000	
One			1.0
Largest normalized • Single $\approx 3.4 \times 10^{38}$ • Double $\approx 1.8 \times 10^{308}$	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Special Values

- **Condition: exp** = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- **Case:** exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric values can be determined
 - E.g., sqrt(-1), ∞ - ∞ , ∞ x0

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point ranges
- Rounding, addition, multiplication
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as the IEEE format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic range (positive only)

	s exp	frac E	Value
Denormalized Numbers	0 0000 0 0000 0 0000 0 0000	001 -6 010 -6 110 -6	1/8*1/64 = 1/512
	0 0001 0 0001 0 0110 0 0110	000 -6 001 -6 110 -1	8/8*1/64 = 8/512 smallest normalized 9/8*1/64 = 9/512 14/8*1/2 = 14/16
Normalized Numbers	0 0111 0 0111 0 0111 0 1110 0 1110	001 0 010 0	9/8*1 = 9/8 closest to 1 above $10/8*1 = 10/8$
	0 1111	000 n	/a inf

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1} 1 = 3$

Notice how the distribution gets denser toward zero.

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point ranges
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating point operations: basic idea

$$x +_f y = Round(x + y)$$

 $x \times_f y = Round(x \times y)$

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Note: Nearest-even in this example rounds to the closest whole number, and in the case of equal distance -> rounds to the closest even number!

Rounding Modes (illustrate with £ rounding)

	£1.40	£1.60	£1.50	£2.50	-£1.50
Towards zero	£1	£1	£1	£2	-£1
Round down $(-\infty)$	£1	£1	£1	£2	-£2
Round up (+∞)	£2	£2	£2	£3	-£1
Nearest Even (default)	£1	£2	£2	£2	-£2

- What could happen if we are repeatedly rounding the results?
 - If we always round in one direction, we can introduce a statistical bias.
- Round-to-even avoids this bias by rounding up about half the time, and rounding-down about half the time \rightarrow IEEE default mode.

Creating a floating point number

Steps

- Post-normalize to deal with effects of rounding

•			СХР	Hac
1.	Normalize to have leading 1	1	4-bits	3-bits
2	Round to fit within fraction			

frac

Case study

Convert 8-bit unsigned numbers to tiny floating point format

Value	Binary	Fraction	Exponent
128	10000000		
15	00001101		
17	00010001		
19	00010011		
138	10001010		
63	0011111		

Normalize

Requirement

- Set binary point so that numbers of form 1.xxxx
- Adjust all to have leading one
- Decrement exponent as shift left

S	ехр	frac
1	4-bits	3-bits

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

Round = 1, Sticky = $1 \rightarrow > 0.5$

Guard = 1, Round = 1, Sticky = $0 \rightarrow \text{Round to even}$

Value	Fraction	GRS	Inc?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Post-normalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once and incrementing exponent

Value	Rounded	Exponent	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Floating Point Multiplication

$$(-1)^{S1}M_12^{E1} \times (-1)^{S2}M_22^{E2}$$

- **Exact Result:** $(-1)^S M 2^E$
 - Sign s: $s_1 ^s_2$
 - Significand M: $M_1 * M_2$
 - Exponent E: $E_1 + E_2$
- Fixing:
 - If $M \geq 2$ shift M right, increment E
 - If *E* out of range, overflow
 - Round M to fit frac precision
- Implementation:
 - Biggest chore is multiplying significands

Floating Point Addition

$$+ \frac{(-1)^{s1} M1}{(-1)^{s} M2}$$

$$(-1)^{S1}M_12^{E1} + (-1)^{S2}M_22^{E2}$$

- lacksquare Assume $E_1 > E_2$
- **Exact Result:** $(-1)^S M 2^E$
 - Sign s, significand M: result of signed align and add
 - Exponent $E: E_1$

Fixing:

- If $M \geq 2$, shift M right, increment E
- If M < 1, shift M left k positions, decrement E by k
- Overflow if *E* is out of range
- Round M to fit frac precision

Mathematical Properties of FP Operations

Exponent overflow yields +inf or -inf

- Floats with value +inf, -inf, and NaN can be used in operations
 - Result usually still, +inf, -inf, or NaN; sometimes intuitive, sometimes not
- Floating point ops do not work like real math, due to rounding!
 - Not associative: $(3.14 + 1e100) 1e100 \neq 3.14 + (1.e100 1e100)$
 - Not distributive: $100 * (0.1 + 0.2) \neq 100 * 0.1 + 100 * 0.2$

30.0000000000003553 30

Not cumulative: repeatedly adding a very small number to a large one may do nothing

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038:** Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to Tmin in 2038
- Other related bugs:
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow and underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity and distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Further reading

- "What Every Programmer Should Know About Floating-Point Arithmetic" David Goldberg [http://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf]
- Chapter 2.4 in the Book "Computer Systems: A Programmer's Perspective".

- IEEE 754 standards:
 - Original document from 1985: http://ieeexplore.ieee.org/document/30711/
 - Revised version from 2008: http://ieeexplore.ieee.org/document/4610935/
 - ISO standard: https://www.iso.org/standard/57469.html