Комплексный анализ

Данил Заблоцкий

2 марта 2024 г.

Оглавление

L			оные функции
	1.1	Комплексная плоскость	
			Комплексные числа
		1.1.2	Топология комплексной плоскости
		1.1.3	Пути, кривые и области
	1.2	Функі	ции комплексного переменного
		1.2.1	Структура функции комплексного переменного
		1.2.2	Степенные ряды
	Спи	сок ист	пользуемой литературы

Глава 1

Голоморфные функции

Лекция 1: Начало

от 15 фев 12:45

1.1 Комплексная плоскость

1.1.1 Комплексные числа

Примечание. $\mathbb{R}^2 \coloneqq \mathbb{R} \times \mathbb{R}$

$$(x_1, y_1) + (x_2, y_2) \coloneqq (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1)(x_2, y_2) \coloneqq (x_1x_2 - y_1y_2, x_1y_2 - x_2y_1)$

Рис. 1.1: $x = r \cos \phi$, $y = r \sin \phi$

$$z = (x, y) = x + iy$$

$$\overline{z} = x - iy$$

$$(1, 0) = 1, \quad (0, 1) = i, \quad (0, 0) = 0$$

$$x = Rez, \quad y = Imz$$

$$r = \sqrt{x^2 + y^2} = |z|$$

$$\phi = argz, \qquad 0 \leqslant argz < 2\pi$$
 главное значение аргумента
$$Argz \coloneqq argz + 2\pi k, \ k \in \mathbb{Z}$$

$$e^{i\phi} = \cos\phi + i \cdot \sin\phi, \ \forall \phi \in \mathbb{R} - \text{формула Эйлера}$$

$$z = |z|(\cos argz + i \cdot \sin argz) - \text{тригонометрическая форма записи}$$

$$z = |z|e^{iargz} - \text{показательная форма записи}$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy}, \quad e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$$

$$z^n = |z|^n e^{inargz}, \quad z = re^{ir}$$

$$z^n = r^n(\cos n\phi + i\sin n\phi) - \text{формула Муавра}$$

$$z^n = z_0, \quad \sqrt[n]{z_0} = \sqrt[n]{|z_0|} \cdot e^{i\frac{argz_0+2\pi k}{n}}, \ 0 \leqslant k \leqslant n-1$$

Теорема 1 (Свойства комплексных чисел). $\forall z, z_1, z_2 \in \mathbb{C}$ справедливы равенства:

1.
$$z \cdot \overline{z} = |z|^2$$
.

$$2. \ \overline{(z_1+z_2)} = \overline{z_1} + \overline{z_2}$$

3.
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$4. \ \overline{\overline{z}} = z.$$

5.
$$\overline{z} = z \Leftrightarrow z \in \mathbb{R}$$

6.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

7.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
.

8.
$$||z_1| - |z_2|| \le |z_1 - z_2|$$
.

9.
$$arg(z_1 \cdot z_2) = argz_1 + argz_2$$
.
 $(mod \ 2\pi)$

10.
$$arg\left(\frac{z_1}{z_2}\right) = argz_1 - argz_2$$
.

Примечание.

$$\xi = \frac{x}{1+|z|^2}, \quad \eta = \frac{y}{1+|z|^2}, \quad \zeta = \frac{|z|^2}{1+|z|^2},$$
$$\xi^2 + \eta^2 + \zeta^2 - \zeta = 0.$$

Рис. 1.2: Сфера Римана S

$$P: \mathbb{C} \xrightarrow{\mathrm{Ha}} S \smallsetminus \{N\}, \quad P(z) = (\xi, \eta, \zeta)$$

$$A(x^2 + y^2) + Bx + Cy + D = 0, \quad A, B, C, D \in \mathbb{R},$$

$$\gamma - \text{окружность на } \mathbb{C}, \quad P(\Upsilon) - \text{окружность на } S.$$

$$|z|^2 = x^2 + y^2 = \frac{\zeta}{1 - \zeta}, \quad \left\{ \begin{array}{l} x = \frac{\xi}{1 - \zeta} \\ y = \frac{\eta}{1 - \zeta} \end{array} \right.$$

$$A\zeta + B\xi + C\eta + D(1 - \zeta) = 0,$$

$$\overline{\mathbb{C}} \coloneqq \mathbb{C} \cup \{\infty\}, \quad P(\infty) \coloneqq N.$$

1.1.2 Топология комплексной плоскости

Примечание. $M_1, M_2 \in \mathbb{R}^3$,

$$dist(M_1, M_2) := \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2},$$

 $d(z_1,z_2)\coloneqq |z_1-z_2|,\ z_1,z_2\in\mathbb{C}$ – расстояние на комплексной плоскости,

$$\rho(z_1, z_2) \coloneqq dist(P(z_1), P(z_2)).$$

$$B_{\varepsilon}(z_0) \coloneqq \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

Определение 1 (Окрестность). Множество называется окрестностью точки, если оно содержит шар с центром в этой точке.

Обозначение: $O_z, z \in \overline{\mathbb{C}}$.

Примечание.

$$\begin{aligned} \forall z \in \mathbb{C} & d(z, \infty) \coloneqq +\infty, \\ & d \colon \mathbb{C}^2 \longrightarrow \mathbb{R}, \\ & d \colon \mathbb{C}^2 \longrightarrow \overline{\mathbb{R}}, \\ & \rho \colon \overline{\mathbb{C}^2} \longrightarrow \mathbb{R}, \quad \rho(z, \infty) \in \mathbb{R}. \end{aligned}$$

Лекция 2: Продолжение

от 22 фев 12:45

Примечание (Свойства окрестностей).

- $$\begin{split} &1. \ \, \forall z \in \overline{\mathbb{C}}, \ \, \forall V \in O_z \quad z \in V. \\ &2. \ \, \forall z \in \overline{\mathbb{C}}, \ \, \forall U, V \in O_z \quad U \cap V \in O_z. \\ &3. \ \, \forall z \in \overline{\mathbb{C}}, \ \, \forall U \in O_z, \ \, \forall V \supset U \quad V \in O_z. \end{split}$$
- 4. $\forall z \in \overline{\mathbb{C}}, \ \forall V \in O_z, \ \exists U \in O_z : \ U \subset V \ \& \ \forall w \in U \quad U \in O_w.$

Определение 2 (Открытое множество). Множество называется *открытым*, если оно является окрестностью каждой своей точки.

Определение 3 (Окрестность множества). *Окрестностью множества* называется множество, являющееся окрестностью каждой точки исходного множества.

Примечание. $D \subset \overline{\mathbb{C}}, \ z \in \mathbb{C}$

$$dist(z,D) \coloneqq \inf_{w \in D} d(z,w).$$

$$D_1, D_2 \subset \overline{\mathbb{C}}$$

$$dist(D_1, D_2) \coloneqq \inf_{\substack{z \in D_1 \\ w \in D_2}} d(z, w).$$

Определение 4 (Внутренняя точка). $D \subset \overline{\mathbb{C}}, \ z \in D$ называется внутренней точкой множества D, если $D \in O_z$.

Определение 5 (Внутренность). Множество всех внутренних точек называется *внутренностью* и обозначается:

intD.

Определение 6 (Предельная точка множества). Точка называется *пре- дельной точкой множества*, если в любой ее окрестности есть точки множества, отличные от данной.

Замечание. Точка является предельной точкой множества на расширенной комплексной плоскости ⇔ любая ее окрестность содержит бесконечное число точек данного множества.

Определение 7 (Окрестность бесконечности). $V \subset \overline{\mathbb{C}}$ является *окрестностью бесконечности*, если $\exists \varepsilon > 0: \ \{z \in \overline{\mathbb{C}}: |z| > \varepsilon\} \subset V.$

Определение 8 (Точка прикосновения, замыкание). Точка $z \in \overline{\mathbb{C}}$ называется точкой прикосновения множества D, если $\forall V \in O_z \quad V \cap D \neq \emptyset$.

Множество всех точек прикосновения называется *замыканием* и обозначается:

clD.

Определение 9 (Замкнутое множество). Множество называется *замкнутым*, если его дополнение открыто.

Определение 10 (Граничная точка). Точка называется граничной точкой множества, если в любой ее окрестности есть как точки множества, так и точки его дополнения.

Обозначение: ∂D .

Примечание. Множество всех замкнутых подмножеств расширенной комплексной плоскости:

 $Cl\overline{\mathbb{C}}.$

Определение 11 (Компактное множество). Множество $\overline{\mathbb{C}}$ называется компактным, если любое его открытое покрытие имеет конечное под-

Примечание. v – покрытие множества D, если $D \subset \bigcup_{V \in v} V, \ v \subset \underbrace{\mathcal{P}(\overline{\mathbb{C}})}_{2^{\overline{\mathbb{C}}}}$

Теорема 2 (Критерий компактности (первый)). Подмножество С компактно ⇔ оно замкнуто и ограниченно.

Примечание. Множество ограниченно, если оно содержится в некотором шаре.

Замечание. $\overline{\mathbb{C}}$ – компактно.

Определение 12. $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится к $z\in\mathbb{C},$ если $\forall \varepsilon>0$ $\exists n_0\in\mathbb{N}:$ $\forall n\geqslant n_0 \quad |z_n-z|<\varepsilon.$ $d(z_n,z)\longrightarrow 0,$

$$d(z_n,z) \xrightarrow[n\to\infty]{} 0,$$

$$z_n \longrightarrow \infty$$
, если $\lim_{n \to \infty} |z_n| = \pm \infty$,

$$z = \lim_{n \to \infty} z_n, \quad z_n \xrightarrow[n \to \infty]{} z.$$

Замечание.
$$z_n \longrightarrow z$$
 в $\mathbb{C} \Leftrightarrow \left\{ \begin{array}{l} Rez_n \longrightarrow Rez \\ Imz_n \longrightarrow Inz \end{array} \right.$ в \mathbb{R} .

$$|z_n - z| = \sqrt{(Rez_n - Rez)^2 + (Imz_n - Imz)^2} \geqslant |Rez_n - Rez|,$$

$$Re(z_1 \pm z_2) = Rez_1 \pm Rez_2.$$

Теорема 3 (Критерий Коши). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится $\Leftrightarrow \forall \varepsilon>0 \ \exists n_0\in\mathbb{N}: \ \forall n,m\geqslant n_0$

$$|z_n - z_m| < \varepsilon$$
.

Теорема 4 (Критерий Коши (в $\overline{\mathbb{C}}$)). Последовательность $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n,m \geqslant n_0$

$$\rho(z_n, z_m) < \varepsilon.$$

Примечание. $z_n \xrightarrow[n\to\infty]{} z \Leftrightarrow \rho(z_n,z) \xrightarrow[n\to\infty]{} 0.$

Теорема 5 (Критерий компактности (второй)). $D \subset \overline{\mathbb{C}}, \ \forall \{z_n\}_{n \in \mathbb{N}} \subset D \exists \{z_{n_k}\}_{k \in \mathbb{N}} \subset \{z_n\}_{n \in \mathbb{N}}$:

 $z_{n_k} \longrightarrow z \in D.$

Примечание. $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$

$$S_n \coloneqq \sum_{k=1}^{\infty} z_k, \quad \sum_{n=1}^{\infty} z_n = \lim_{n \to \infty} S_n.$$

Определение 13 (Числовой ряд). *Числовым рядом* называется формальная сумма членов

Определение 14 (Абсолютно сходящийся числовой ряд). Числовой ряд называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty}|z_n|$.

Теорема 6 (Критерий Коши сходимости ряда). Ряд $\sum_{n=1}^{\infty} z_n$ сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists m \in \mathbb{N}: \ \forall n \geqslant m \ \forall k \in \mathbb{N}$

$$\underbrace{\left|z_{n+1} + z_{n+2} + \ldots + z_{n+k}\right|}_{\left|S_{n+k} - S_n\right|} < \varepsilon.$$

Следствие. Если ряд сходится, то его общий член стремится к нулю.

Следствие. Каждый абсолютно сходящийся числовой ряд – сходится.

1.1.3 Пути, кривые и области

Определение 15 (Путь). $\gamma:[a;b]\longrightarrow \mathbb{C},\ \gamma$ – непрерывное отображение [a;b] в \mathbb{C} – это nymb.

Пример. $\gamma(t) = e^{it}, \quad o \leqslant t \leqslant 2\pi.$

Определение 16 (Эквивалентные пути).

$$\gamma_1: [a_1; b_1] \longrightarrow \mathbb{C},
\gamma_2: [a_2; b_2] \longrightarrow \mathbb{C}.$$

 $\gamma_1 \sim \gamma_2,$ если \exists возрастающая непрерывная функция $\phi:[a_1;b_1] \longrightarrow [a_2;b_2]$:

$$\gamma_1(t) = \gamma_2(\phi(t)), \quad \forall t \in [a_1, b_1].$$

Пример.

$$\gamma_1(t) = t, \qquad 0 \leqslant t \leqslant 1$$

$$\gamma_2(t) = \sin t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}$$

$$\gamma_3(t) = \sin t, \quad 0 \leqslant t \leqslant \pi$$

$$\gamma_4(t) = \cos t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}$$

$$\phi(t) = \arcsin t$$
, $\gamma_1(t) = \gamma_2(\phi(t))$.

Определение 17 (Жорданов путь). Путь называется *экордановым*, если он является взаимно однозначной функцией.

Лемма 1. Для каждого жорданова пути $\exists \delta > 0$: для любой не кольцевой точки пути окружность с центром в этой точке с радиусом δ пересекает путь не более чем в двух точках (δ – стандартный радиус жорданова пути).

Определение 18 (Кривая). *Кривой* называется класс эквивалентных между собой путей.

Лекция 3: Продолжение

от 29 фев 12:45

Определение 19 (Связное множество). $A \subset \overline{\mathbb{C}}$ называется *связным*, если $\nexists U, V \in O_P \overline{\mathbb{C}}: \ U \cap A \neq \emptyset, \ U \cap V = \emptyset.$

 $O_P\overline{\mathbb{C}}$ – совокупность всех открытых множеств

Пример.
$$A = \{(0,y): -1 \le y \le 1\} \cup \{(x,\sin\frac{1}{x}): 0 < x \le 1\}$$
 — связное.

Определение 20 (Линейно связное множество). Множество называется *линейно связным*, если любые его точки можно соединить путем, значения которого лежат в этом множестве.

Замечание. В пространстве \mathbb{R}^n , и в частности $\overline{\mathbb{C}}$, любое открытое множество связно \Leftrightarrow оно линейно связно.

Определение 21 (Область). *Областью* в $\overline{\mathbb{C}}$ называется любое непустое открытое связное множество.

Определение 22 (Замкнутая область). *Замкнутой областью* будем называть замыкание области.

1.2 Функции комплексного переменного

1.2.1 Структура функции комплексного переменного

Примечание. $f:\mathbb{C}\longrightarrow\mathbb{C}$ dom f-область определения функции im f-область значения функции

Определение 23 (Предел отображения). $D \subset dom f, z_0 \in \overline{\mathbb{C}}$ – предельная точка D. Тогда $w_0 \in \overline{\mathbb{C}}$ называется npedenom omoбражения <math>f,

$$w_0 \coloneqq \lim_{D \circ z \to z_0} f(z)$$
, если $\forall V \in O_{w_0} \exists U \in O_{z_0} \colon f(\mathring{U} \cap D) \subset V$,

$$U \in O_{z_0}, \quad \mathring{U} = U \smallsetminus \{z_0\}.$$

Примечание. В случае, когда $z_0,w_0\in\mathbb{C}$ следует, что $\forall \varepsilon>0$ $\exists \delta>0:$ $\forall z\in D$

$$0 < |z - z_0| < \delta \Rightarrow |f(z) - w_0| < \varepsilon$$
.

Определение 24 (Непрерывная функция в точке). Функция f называется непрерывной в точке $z_0 \in \mathbb{C}$, если:

- 1. $z_0 \in dom f$.
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall z \in D$

$$0 < |z - z_0| < \delta \Rightarrow |f(z) - w_0| < \varepsilon.$$

Определение 25 (Непрерывная функция на множестве). Функция f: $\mathbb{C} \longrightarrow \mathbb{C}$ непрерывна на $D \subset \mathbb{C}$, если

- 1. $D \subset dom f$.
- 2. $\forall z_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in D$

$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \varepsilon.$$

Примечание (Функция Дирихле). $D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$, непрерывна на \mathbb{Q} , непрерывна на $\mathbb{R} \setminus \mathbb{Q}$.

Замечание. Если множество является открытым или совпадает с областью определения функции, то непрерывность функции на этом множестве равносильно ее непрерывности в каждой точке.

$$f_n: \mathbb{C} \to \mathbb{C}(n \in \mathbb{N}), \quad D \coloneqq \bigcap_{n \in \mathbb{N}} dom f_n.$$

Определение 26. $A \subset D, \ f: A \to \mathbb{C}, \ f_n \Rightarrow f$ на $A, \ \text{если} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} :$

$$|f_n(z)-f(z)|<\varepsilon.$$

 $|J_n(z) - J(z)| < \varepsilon.$ $(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0 \ \sup_{z \in A} |f_n(z) - f(z)| < \varepsilon, \ |z - z_0| < \delta \Rightarrow$

Теорема 7 (Вейерштрасса). Если $\{f_n\}_{n\in\mathbb{N}}\subset C(A),\ f_n\Rightarrow f,\ \text{то }f\in C(A).$

Определение 27 (Функциональный ряд). Функциональным рядом называется формальная сумма членов последовательности функции.

Обозначение:
$$\sum_{n=1}^{\infty} f_n$$
.

Определение 28 (Числовой ряд). $\forall z \in D \ \sum_{n=1}^{\infty} f_n(z)$ называется *число*вым рядом $\{f_n(z)\}_{n\in\mathbb{N}}$.

$$S_n \coloneqq \sum_{k=1}^n f_k$$
 – частичная сумма.

Теорема 8 (Признак Вейерштрасса). $\sum_{n=1}^{\infty} f_n$ таков, что $\forall n \in \mathbb{N} \ \forall z \in A \ |f_n| \leqslant c_n$, причем $\sum_{n=1}^{\infty} c_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} f_n$ равномерно абсолютно сходится на A.

Теорема 9 (Критерий Коши (равномерная сходимость)). $\{f_n\}_{n\in\mathbb{N}}$ равномерно сходится на $A \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n,m \geqslant n_0$

$$\sup_{z\in A} |f_n(z) - f_n(z_0)| < \varepsilon.$$

Определение 29 (Линейная функция). Функция $f:\mathbb{C}\longrightarrow\mathbb{C}$ называется линейной, если $\forall \alpha,\beta\in\mathbb{C}\ \forall z_1,z_2\in\mathbb{C}$

$$f(\alpha z_1 + \beta z_2) = \alpha f(z_1) + \beta f(z_2).$$

Замечание. Функция $f:\mathbb{C}\longrightarrow\mathbb{C}$ является линейной $\Leftrightarrow\exists a\in\mathbb{C}:\forall z\in\mathbb{C}$

$$f(z) = az$$

1.2.2 Степенные ряды

Примечание. $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, где $\{a_n\}_{n\in\mathbb{N}} \subset \mathbb{C}, \ z, z_0 \in \mathbb{C}$.

Теорема 10 (1-я теорема Абеля). Если ряд $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ сходится в точке $z_1 \in \mathbb{C}$, то он абсолютно сходится при $|z-z_0| < |z_1-z_0|$. А если ряд $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ расходится в точке $z_1 \in \mathbb{C}$, то он расходится и при $|z-z_0| > |z_1-z_0|$.

Доказательство.

1. $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ сходится $\Rightarrow |a_n (z_1 - z_0)^n| \xrightarrow[n \to \infty]{} 0$.

$$c \coloneqq \sup_{n \in \mathbb{N}} |a_n(z_1 - z_0)^n| < +\infty, \quad |z - z_0| < |z_1 - z_0|.$$

Рассмотрим

$$\sum_{n=0}^{\infty} \left| a_n (z-z_0)^n \right| = \sum_{n=0}^{\infty} \left| a_n (z_1-z_0)^n \right| \cdot \left| \frac{z-z_0}{z_1-z_0} \right|^n \leq c \cdot \sum_{n=0}^{\infty} \left| \frac{z-z_0}{z_1-z_0} \right|^n < +\infty.$$

2. добавить

Определение 30 (Радиус сходимости). Элемент $R \in [0; +\infty]$ называется радиусом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, если при $|z-z_0| < R$ исходный ряд абсолютно сходится, а при $|z-z_0| > R$ исходный ряд расходится.

Теорема 11 (Коши-Адамара). Для степенного ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ положим $l \coloneqq \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$. Тогда:

- 1. Если l=0, то исходный ряд сходится $\forall z \in \mathbb{C}.$
- 2. Если $l = \infty$, то исходный ряд сходится только в точке z_0 .
- 3. Если $l \in (0; +\infty)$, то при $|z-z_0| < \frac{1}{l}$, а при $|z-z_0| > \frac{1}{l}$ исходный ряд расходится.

Доказательство.

1. $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} = 0,$

$$z \in \mathbb{C}, \sum_{n=0}^{\infty} |a_n(z-z_0)^n|.$$

 $\lim_{n\to\infty} \sqrt[n]{|a_n(z-z_0)^n|} = \lim_{n\to\infty} \sqrt[n]{|a_n|} \cdot |z-z_0| = 0 \Rightarrow \text{ ряд сходится.}$ 2. $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty,$ $\exists \{a_{n_k}\}_{k\in\mathbb{N}} \subset \{a_n\}_{n\in\mathbb{N}}, \quad \sqrt[n_k]{|a_{n_k}|} \to +\infty.$ $\sqrt[n_k]{|a_{n_k}|} \cdot |z-z_0| \to +\infty \Rightarrow |a_{n_k}|.$ 3. $|z-z_0| < \frac{1}{l} \Rightarrow l|z-z_0| < 1.$

$$\exists \{a_{n_k}\}_{k \in \mathbb{N}} \subset \{a_n\}_{n \in \mathbb{N}}, \quad \sqrt[n_k]{|a_{n_k}|} \to +\infty$$

$$\sqrt[n_k]{|a_{n_k}|} \cdot |z - z_0| \to +\infty \Rightarrow |a_{n_k}|$$

Литература

- [1] Шабат «Введение в комплексный анализ, 1976» (том 1)
- [2] Привалов «Введение в ТФКП, 1967»
- [3] Бицадзе «Основы теории аналитических функций комплексного переменного, 1984»
- [4] Волковыский, Лунц, Араманович «Сборник задач по ТФКП», 1975»
- [5] Гилев В.М. «Основы комплексного анализа. Ч.1», 2000»
- [6] Исапенко К.А. «Комплексный анализ в примерах и упражнениях (Ч.1, 2017, Ч.2, 2018)»
- [7] Мещеряков Е.А., Чемеркин А.А. «Комплексный анализ. Практикум»
- [8] Боярчук А.К. «Справочное пособие по высшей математике» (том 4)