Отчет по лабораторной работе №8

дисциплина: Архитектура компьютера

Бондарь Татьяна Владимировна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Реализация циклов в NASM	8 8
5	Задания для самостоятельной работы	14
6	Выводы	16

Список иллюстраций

4.1	Переход в каталог и создание файла	8
4.2	Программа вывода значений регистра есх	9
4.3	Исполнение программы из листинга 8.1	9
4.4	Исправленный текст программы lab8-1.asm	10
4.5	Исполнение программы lab8-1	10
4.6	Исправленный текст программы lab8-1.asm	10
	Исполнение программы lab8-1.asm	11
4.8	Текст программы из листинга 8.2	11
4.9	Исполнение программы	11
4.10	Текст программы из листинга 8.3	12
4.11	Исполнение программы	12
4.12	Измененный текст программы из листинга 8.3	12
4.13	Исполнение программы	13
5.1	Текст программы lab8-4.asm	14
5.2	Запуск программы	15

Список таблиц

1 Цель работы

Целью работы является приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки в NASM.

2 Задание

1. . Напишите программу, которая находит сумму значений функции f(x) для x = x1, x2, ..., xn, т.е. программа должна выводить значение f(x1) + f(x2) + ... + f(xn). Значения xi передаются как аргументы. Вид функции f(x) выбрать из таблицы 8.1 вариантов заданий в соответствии c вариантом, полученным при выполнении лабораторной работы N^{o} 7. Создайте исполняемый файл и проверьте его работу на нескольких наборах x = x1, x2 ..., xn.

3 Теоретическое введение

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

1. Создаю каталог для программ лабораторной работы №8, перехожу в него и создаю файл lab8-1.asm.

```
tvbondar@fedora:~$ mkdir ~/work/arch-pc/lab08
tvbondar@fedora:~$ cd ~/work/arch-pc/lab08
tvbondar@fedora:~/work/arch-pc/lab08$ touch lab8-1.asm
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.1: Переход в каталог и создание файла

2. Ввожу в файл lab8-1.asm текст программы из листинга 8.1. Запускаю исполняемый файл.

```
; Программа вывода значений регистра 'есх'
%include !in_out.asm!
SECTION .data
       msgl db 'Введите N: ',0h
SECTION .bss
       N: resb 10
SECTION .text
global start
_start:
               ; ---- Вывод сообщения 'Введите N: '
       mov eax,msgl
       call sprint
               ; ---- Ввод 'N'
       mov ecx, N
       mov edx, 10
       call sread
               ; ---- Преобразование 'N' из символа в число
       mov eax,N
       call atoi
       mov [N],eax
               ; ----- Организация цикла
       mov ecx,[N] ; Счетчик шикла, `ecx=N`
label:
       mov [N],ecx
       mov eax,[N]
       call inrintLF ; Вывод значения `N`
loop label
                      ; `есх=есх-1` и если `есх` не '0'
              ; переход на `label`
call quit
```

Рис. 4.2: Программа вывода значений регистра есх

```
tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-1.o -o lab8-1
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 4
4
3
2
1
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.3: Исполнение программы из листинга 8.1

3. Изменим текст программы, добавив изменение значение регистра есх в цикле. Запустим исправленную программу. Число проходов цикла не соответствует значению, введенному с клавиатуры.

```
label:

sub ecx,1 ; `ecx=ecx-1`

mox [N],ecx

mox eax,[N]

call inrintLF

loop label

; Derexon Ha `label`

call quit
```

Рис. 4.4: Исправленный текст программы lab8-1.asm

```
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 4
3
1
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.5: Исполнение программы lab8-1

4. Внесем изменения в текст программы добавив команды push и pop (добавления в стек и извлечения из стека) для сохранения значения счетчика цикла loop. Запустим программу и проверим ее работу. Теперь число проходов цикла соответствует числу, введенному с клавиатуры.

```
label:

push ecx ; добавление значения ecx в стек
sub ecx,1
mov [N],ecx
mov eax,[N]
call iprintLF
pop ecx ; извлечение значения ecx из стека
loop label
; переход на `label`
call quit
```

Рис. 4.6: Исправленный текст программы lab8-1.asm

```
tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-1.o -o lab8-1
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-1
Введите N: 4
3
2
1
0
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.7: Исполнение программы lab8-1.asm

4.2 Обработка аргументов командной строки

5. Создаем файл lab8-2.asm. Вводим в него программу из листинга 8.2. Программа обработала 4 аргумента.

Рис. 4.8: Текст программы из листинга 8.2

```
tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-2.o -o lab8-2
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-2
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-2
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-2
apryment1
apryment1
apryment1
apryment
2
apryment3
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.9: Исполнение программы

6. Создадим файл lab8-3.asm и введем в него текст программы из листинга 8.3.

Рис. 4.10: Текст программы из листинга 8.3

```
**Ttvbondar@fedora:~/work/arch-pc/lab08$ touch lab8-3.asm
    tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
    tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-3.o -o lab8-3
    tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-3 12 4 1 45
    Peзультат: 62
    tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.11: Исполнение программы

7. Изменяю текст программы для вычисления произведения аргументов командной строки.

Рис. 4.12: Измененный текст программы из листинга 8.3

```
tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-3.o -o lab8-3
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-3 2 3
Результат: 6
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 4.13: Исполнение программы

5 Задания для самостоятельной работы

1. Напишем программу, которая находит сумму значений функции f(x) для x=x1, x2, ..., xn, т.е. программа должна выводить значение $f(\Box 1) + f(\Box 2) + ... + f(xn)$. Мой вариант - 12. Создадим исполняемый файл и проверим его работу на нескольких наборах x=x1, x2, ..., xn. Программа работает корректно.

Рис. 5.1: Текст программы lab8-4.asm

```
tvbondar@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
tvbondar@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 lab8-4.o -o lab8-4
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-4 2 3 4
Функция: f(x)=15x-9 Peзультат: 108
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-4 15 12 24
Функция: f(x)=15x-9 Peзультат: 738
tvbondar@fedora:~/work/arch-pc/lab08$ ./lab8-4 100 1000 20000
Функция: f(x)=15x-9 Peзультат: 316473
tvbondar@fedora:~/work/arch-pc/lab08$
```

Рис. 5.2: Запуск программы

6 Выводы

В результате выполнения лабораторной работы я приобрела навыки написания программ с использованием циклов и обработкой аргументов командной строки в NASM.