Algoritmos de ordenamiento sobre secuencias

Algoritmos y Estructuras de Datos I

Ordenamiento de vectores

 Modificamos el vector solamente a través de intercambios de elementos.

```
proc swap(inout s: seq\langle \mathbb{Z} \rangle, in i,j: \mathbb{Z}) {
    Pre \{0 \leq i,j < |s| \land s = S_0\}
    Post \{s[i] = S_0[j] \land s[j] = S_0[i] \land (\forall k: \mathbb{Z}) (0 \leq k < |s| \land i \neq k \land j \neq k \rightarrow_L s[k] = S_0[k])\}
}
```

► Propiedad 1:

$$s = S_0 \rightarrow mismos(s, S_0)$$

► Propiedad 2:

```
\{mismos(s, S_0)\}\

swap(s,i,j)

\{mismos(s, S_0)\}
```

▶ De esta forma, nos aseguramos que $mismos(s, S_0)$ a lo largo de la ejecución del algoritmo.

Ordenamiento de vectores

```
▶ proc ordenar(inout s : seq\langle \mathbb{Z} \rangle){
	Pre \{s = S_0\}
	Post \{mismos(s, S_0) \land ordenado(s)\}
}

▶ pred mismos(s, t : seq\langle \mathbb{Z} \rangle){
	(\forall e : \mathbb{Z})(\#apariciones(s, e) = \#apariciones(t, e))
}

▶ fun \#apariciones(s : seq\langle T \rangle, e : T) : \mathbb{Z} = \sum_{i=0}^{|s|-1} (\text{if } s[i] = e \text{ then } 1 \text{ else } 0 \text{ fi})

▶ pred ordenado(s : seq\langle \mathbb{Z} \rangle){
	(\forall i : \mathbb{Z})(0 \le i < |s| - 1 \rightarrow_L s[i] \le s[i + 1])
}
```

Ordenamiento por selección (Selection Sort)

▶ Idea: Seleccionar el mínimo elemento e intercambiarlo con la primera posición del vector. Repetir con el segundo, etc.

```
void selectionSort(vector<int> &s) {
for(int i=0; i<s.size(); i++) {
   int minPos = // posicion del minimo elemento de s entre i y s.size()
   swap(s, i, minPos);
}
}</pre>
```

Ordenamiento por selección (Selection Sort)

Podemos refinar un poco el código:

```
void selectionSort(vector<int> &s) {
    for(int i=0; i<s.size()-1; i++) {
        int minPos= findMinPosition(s, i, s.size());
        swap(s, i, minPos);
    }
}</pre>
```

► Entonces surge la necesidad de especificar el problema auxiliar de buscar el mínimo entre i y s.size():

```
proc findMinPosition(in \ s: seq\langle \mathbb{Z}\rangle, in \ d, h: \mathbb{Z}, out \ min: \mathbb{Z})\{

Pre \{0 \leq d < h \leq |s|\}

Post \{d \leq min < h

\land_L \ (\forall i: \mathbb{Z})(d \leq i < h \rightarrow_L s[min] \leq s[i])\}

}
```

Buscar el Mínimo Elemento

▶ ¿Qué invariante de ciclo podemos proponer?

$$d \leq \min \langle i \leq h \land_L (\forall j : \mathbb{Z}) (d \leq j \langle i \rightarrow_L s[\min] \leq s[j])$$

▶ ¿Qué función variante podemos usar?

$$fv = h - i$$

¿Cómo lo implementamos?

```
int findMinPosition(vector<int> &s, int d, int h) {
    int min = d;
    for(int i=d+1; i<h; i++) {
        if (s[i]<s[min]) {
            min = i;
        }
     }
    return min;
}</pre>
```

Buscar el Mínimo Elemento

Recap: Teorema de corrección de un ciclo

- **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

... entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

Buscar el Mínimo Elemento

```
▶ P_C \equiv 0 \le d < h \le |s| \land min = d \land i = d + 1

▶ Q_C \equiv d \le min < h
\land_L(\forall i : \mathbb{Z})(d \le i < h \rightarrow_L s[min] \le s[i])

▶ B \equiv i < h

▶ I \equiv d \le min < i \le h
\land_L (\forall j : \mathbb{Z})(d \le j < i \rightarrow_L s[min] \le s[j])

▶ fv = h - i

int findMinPosition(vector<int> &s, int d, int h) {
  int min = d;
  for(int i=d+1; i<h; i++) {
   if (s[i] < s[min]) {
      min = i;
   }
```

Correctitud: Buscar el Mínimo Elemento

```
I \equiv d \le \min < i \le h
\land_L (\forall j : \mathbb{Z})(d \le j < i \rightarrow_L s[\min] \le s[j])
```

ightharpoonup fv = h - i

return min:

```
int findMinPosition(vector<int> &s, int d, int h) {
    int min = d;
    for(int i=d+1; i<h; i++) {
        if (s[i] < s[min]) {
            min = i;
        }
    }
    return min;
}</pre>
```

- ¿I se preserva en cada iteración (punto 2.)? √
- ¿La función variante es estrictamente decreciente (punto 4.)?√

Correctitud: Buscar el Mínimo Elemento

- $P_C \equiv 0 \le d < h \le |s| \land min = d \land i = d+1$
- \triangleright $B \equiv i < h$
- $I \equiv d \le \min < i \le h$ $\land_L (\forall j : \mathbb{Z})(d \le j < i \rightarrow_L s[\min] \le s[j])$
- ightharpoonup fv = h i
- il es se cumple al principio del ciclo (punto 1.)? √
- ¿Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)? √
- ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)? √

Ordenamiento por selección (Selection Sort)

▶ Volvamos ahora al programa de ordenamiento por selección:

```
void selectionSort(vector<int> &s) {
for(int i=0; i<s.size(); i++) {
   int minPos = findMinPosition(s, i, s.size());
   swap(s, i, minPos);
}
</pre>
```

- ho $P_C \equiv i = 0 \land s = S_0$
- $ightharpoonup Q_C \equiv mismos(s, S_0) \land ordenado(s)$
- $ightharpoonup B \equiv i < |s|$
- I ≡ ?
 - ¡Luego de la i-ésima iteración, subseq(s, 0, i) contiene los i primeros elementos ordenados! ¿Tenemos entonces el invariante del ciclo?
 - ► $I \equiv mismos(s, S_0) \land ((0 \le i \le |s|) \land_L ordenado(subseq(s, 0, i)))$
- fv = |s| i

Ordenamiento por selección (Selection Sort)

- ► $I \equiv mismos(s, S_0) \land ((0 \le i \le |s|) \land_I ordenado(subseq(s, 0, i)))$
- ightharpoonup fv = |s| i

```
void selectionSort(vector<int> &s) {
    for(int i=0; i<s.size(); i++) {
        int minPos = findMinPosition(s, i, s.size());
        swap(s, i, minPos);
    }
}</pre>
```

- ▶ ¿/ se preserva en cada iteración (punto 2.)? 🗶
- ► Contraejemplo:
 - ▶ Si arrancamos la iteración con i = 1 y $s = \langle 100, 2, 1 \rangle$
 - ► Terminamos con i = 2 y $s = \langle 100, 1, 2 \rangle$ que no satisface I

Debemos reforzar el invariante para probar la corrección:

```
I \equiv \textit{mismos}(s, S_0) \land ((0 \le i \le |s|) \land_L (\textit{ordenado}(\textit{subseq}(s, 0, i))) \land (\forall j, k : \mathbb{Z})((0 \le j < i \land i \le k < |s|) \rightarrow_L s[j] \le s[k]))
```

Correctitud: Ordenamiento por selección (Selection Sort)

- $ightharpoonup P_C \equiv i = 0 \land s = S_0$
- $ightharpoonup Q_C \equiv mismos(s, S_0) \land ordenado(s)$
- $ightharpoonup B \equiv i < |s|$
- ► $I \equiv mismos(s, S_0) \land ((0 \le i \le |s|) \land_L$ (ordenado(subseq(s, 0, i))) $\land (\forall j, k : \mathbb{Z})((0 \le j < i \land i \le k < |s|) \rightarrow_L s[j] \le s[k]))$
- fv = |s| i
- ¿I es se cumple al principio del ciclo (punto 1.)? √
- ¿Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)?√
- ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)?√

Correctitud: Ordenamiento por selección (Selection Sort)

```
I \equiv mismos(s, S_0) \land ((0 \le i \le |s|) \land_L (ordenado(subseq(s, 0, i))) \land (\forall j, k : \mathbb{Z})((0 \le j < i \land i \le k < |s|) \rightarrow_L s[j] \le s[k]))
```

Gráficamente:

Correctitud: Ordenamiento por selección (Selection Sort)

- ► $I \equiv mismos(s, S_0) \land ((0 \le i \le |s|) \land_L$ (ordenado(subseq(s, 0, i))) $\land (\forall j, k : \mathbb{Z})((0 \le j < i \land i \le k < |s|) \rightarrow_L s[j] \le s[k]))$
- ▶ fv = |s| i

```
void selectionSort(vector<int> &s) {
    for(int i=0; i<s.size(); i++) {
        int minPos = findMinPosition(s, i, s.size());
        swap(s, i, minPos);
    }
}</pre>
```

- ¿I se preserva en cada iteración (punto 2.)? √
- ¿La función variante es estrictamente decreciente (punto 4.)?√

Ordenamiento por selección (Selection Sort)

```
int findMinPosition(vector<int> &s, int d, int h) {
    int min = d;
    for(int i=d+1; i<h; i++) {
        if (s[i] < s[min]) {
            min = i;
        }
     }
    return min;
    }
    void selectionSort(vector<int> &s) {
        for(int i=0; i<s.size(); i++) {
            int minPos = findMinPosition(s,i,s.size());
            swap(s, i, minPos);
     }
}</pre>
```

- ¿Cómo se comporta este algoritmo?
- ▶ Veámoslo en https://visualgo.net/es/sorting.

Ordenamiento por selección (Selection Sort)

- ► Variantes del algoritmo básico:
 - 1. Cocktail sort: consiste en buscar en cada iteración el máximo y el mínimo del vector por ordenar, intercambiando el mínimo con i y el máximo con |s| i 1.
 - Bingo sort: consiste en ubicar todas las apariciones del valor mínimo en el vector por ordenar, y mover todos los valores mínimos al mismo tiempo (efectivo si hay muchos valores repetidos).
- Ambas variantes también son algoritmos cuadráticos (iteran una cantidad cuadrática de veces).

Ordenamiento por selección (Selection Sort)

- ¿Cuántas iteraciones ejecuta este programa en peor caso?
 - ► Para ello contamos la cantidad de veces que se ejecuta el **if** de min

$$\operatorname{ejecuciones}_{if} \ = \ \sum_{i=0}^{|s|-1} |s|-i \ = |s| \times |s| - \frac{(|s|-1) \times |s|}{2} \le (|s|)^2.$$

- Decimos que el algoritmo de ordenamiento por selección es un algoritmo cuadrático (¡más información en algo2!).
- > ; Puede ejecutarse una cantidad menor de veces?
 - ➤ Siempre se ejecuta la misma cantidad de veces. El peor caso es igual al mejor caso.

Intervalo

Break!

Ordenamiento por inserción (Insertion Sort)

➤ Veamos otro algoritmo de ordenamiento, pero donde el invariante (a diferencia de selectionSort) es:

 $I \equiv mismos(s, S_0) \land (0 \le i \le |s| \land_L \land ordenado(subseq(s, 0, i)))$

- ► Esto implica que en cada iteración los primeros *i* elementos están ordenados, sin ser necesariamente los *i* elementos más pequeños del vector.
- ► La función variante de este algoritmo de ordenamiento (al igual que selectionSort) es:

$$fv = |s| - i$$

Ordenamiento por inserción (Insertion Sort)

Necesitamos desplazar s[i] hasta una posición donde subseq(s,0,i) esté ordenada de vuelta.

Ordenamiento por inserción (Insertion Sort)

- il es se cumple al principio del ciclo (punto 1.)? √
- ¿Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)? √
- ▶ ¿/ se preserva en cada iteración (punto 2.)?
 - Sabiendo que los primeros i elementos están ordenados, tenemos que hacer que los primeros i+1 elementos pasen a estar ordenados!
 - ¿Cómo lo podemos hacer?

Ordenamiento por inserción (Insertion Sort)

► Antes de comenzar el desplazamiento, tenemos que:

▶ Durante el desplazamiento, se cumple que que:

ordenada		ordenada	
	Х	> x	?
subseq(s,0,j)	s[j]	subseq(s,j+1,i+1)	subseq(s,i+1, s)

► Al finalizar el desplazamiento, nuevamente tenemos que:

Ordenamiento por inserción (Insertion Sort)

► Llamemos insert a la función auxiliar que desplaza el elemento s[i] ¿cuál es el invariante para esta función?

$$I \equiv 0 \leq j \leq i$$

$$\land mismos(subseq(s, 0, i + 1), subseq(S_0, 0, i + 1))$$

$$\land subseq(s, i + 1, |s|) = subseq(S_0, i + 1, |s|)$$

$$\land ordenado(subseq(s, 0, j)) \land ordenado(subseq(s, j, i + 1))$$

$$\land (\forall k : \mathbb{Z})(j < k \leq i \rightarrow_L s[j] < s[k])$$

¿Cuál es la función variante de insert?

$$fv = j$$

Ordenamiento por inserción (Insertion Sort)

- ► ¿Cuántas veces se ejecuta el **swap** del ciclo interior?
 - ► ¡Depende de los datos!
- Analizamos el peor caso (es decir, que insert realice i+1 iteraciones).

ejecuciones
$$_{if}$$
 = $\sum_{i=0}^{|s|} i + 1 = \frac{|s| \times (|s|+1)}{2} + |s| \le |s|^2$

- ► El algoritmo de ordenamiento por inserción también es un algoritmo cuadrático (itera una cantidad cuadrática de veces)
- ▶ Observación: Selection sort e insertion sort se pueden generalizar a secuencias de tipo T con un predicado de orden ≤ (no solamente funcionan con secuencias de Z)

Ordenamiento por inserción (Insertion Sort)

L'Cuál es una posible implementación de insert?

```
 \begin{array}{lll} & \mbox{void insert(vector} < \mbox{int} > \& s, \mbox{int i}) \; \{ \\ 2 & \mbox{for(int } j = i; \ j > 0 \; \&\& \; s[j] < s[j - 1]; \ j - -) \; \{ \\ 3 & \mbox{swap(s, j, j - 1);} \\ 4 & \mbox{} \} \\ 5 & \mbox{} \} \end{array}
```

¿Cuál es una posible implementación de insertSort?

```
void insertionSort(vector < int > &s) {
    for(int i=0; i < s.size(); i++) {
        insert(s,i);
    }
}</pre>
```

- ¿Cómo se comporta este algoritmo de ordenamiento?
- ▶ Veámoslo en https://visualgo.net/es/sorting.

Dutch National Flag Problem

Dado una secuencia que contiene colores (rojo, blanco y azul) ordenarlos de modo que respeten el orden de la bandera holandesa (primero rojo, luego blanco y luego azul)

Por ejemplo, si la secuencia es:

⟨White, Red, Blue, Blue, Red⟩

El programa debe modificar la secuencia para que quede:

⟨Red, Red, White, Blue, Blue⟩

Dutch National Flag Problem

- ➤ Si Red=0,White=1 y Blue=2, ¿Cuál sería la especificación del problema?
- ▶ proc $dutchNationalFlag(inout s : seq\langle \mathbb{Z} \rangle)$ {
 Pre $\{s = S_0 \land (\forall e : \mathbb{Z})(e \in s \leftrightarrow (e = 0 \lor e = 1 \lor e = 2))\}$ Post $\{mismos(s, S_0) \land ordenado(s)\}$ }
- L'Cómo podemos implementar una solución a este problema?
 - → ¿Podemos usar algún algoritmo de ordenamiento que conozcamos? Rta: podemos usar insertionSort o selectionSort.
 - ightharpoonup ¿Cuál es el peor caso? **Rta:** $(|s|)^2$
 - ▶ ¿Podemos hacer que tenga un peor caso mas eficiente?

Dutch National Flag Problem

```
#define RED 0
#define WHITE 1
#define BLUE 2

void dutchNationalFlag(vector<int> &s) {
// contamos la cantidad de apariciones de cada color
vector<int> colorCount = fillColorCount(s);

// usamos la cantidad de apariciones para repoblar la secuencia
populate(s,colorCount);
}
```

Dutch National Flag Problem

- 1. En una pasada contar la cantidad de apariciones de cada color: RED (0), WHITE (1) y BLUE (2), almacenándolas en una secuencia de tres elementos.
- 2. En una segunda pasada repoblar la secuencia usando las cantidades leídas.
- 3. ¿Qué cantidad de iteraciones se ejecutaría en peor caso?
 - **Rta:** $2 * |s| \le (|s|)^2$

Dutch National Flag Problem

¿Qué invariante de ciclo podemos usar para contar la cantidad de apariciones de cada color?

Dutch National Flag Problem

¿Qué invariante de ciclo podemos usar para contar la cantidad de apariciones de cada color?

```
 \begin{array}{c|c|c|c} \hline W & W & R & B & R & B & W & W & W & R \\ \hline & & & \uparrow & \\ & & I \equiv (0 \leq i \leq |s|) \land_L \\ \\ & (colorCount[RED] = \#apariciones(subseq(s,0,i),RED) \land \\ \\ & colorCount[WHITE] = \#apariciones(subseq(s,0,i),WHITE) \land \\ \\ & colorCount[BLUE] = \#apariciones(subseq(s,0,i),BLUE)) \\ & \vdots \\ & Qu\'e funci\'on variante podemos usar en la primer pasada? \\ & fv \equiv |s| - i \\ \hline \end{array}
```

Dutch National Flag Problem

```
vector<int> fillColorCount(vector<int> &s) {
     vector<int> colorCount = \{0,0,0\}:
     for(int i=0; i<s.size(); i++) {
       if (s[i]==RED) {
4
         colorCount[RED]++;
5
       } else if (s[i]==WHITE) {
         colorCount[WHITE]++;
7
        } else {
8
         colorCount[BLUE]++;
10
11
     return colorCount;
12
13
```

¿Qué cantidad de iteraciones ejecuta fillColorCount en **peor** caso? Rta: Realiza 3 + |s|-iteraciones en peor caso.

Dutch National Flag Problem

```
I \equiv (0 \leq i \leq |s|) \land_L (colorCount[RED] = \#apariciones(subseq(s, 0, i), RED) \land colorCount[WHITE] = \#apariciones(subseq(s, 0, i), WHITE) \land colorCount[BLUE] = \#apariciones(subseq(s, 0, i), BLUE)) fv \equiv |s| - i  \cite{Como} podemos implementar fillColorCount respetando este invariante y función variante?}  vector < int> fillColorCount(vector < int> \&s) \{ ... \}
```

Dutch National Flag Problem

Ahora nos falta repoblar la secuencia con los valores. ¿Qué invariante de ciclo tendríamos que respetar?

$$I \equiv \big((0 \leq i \leq |s|) \land_L \\ \big(ordenado(subseq(s,0,i)) \land \\ \#a...(S_0,RED) = \#a...(subseq(s,0,i),RED) + colorCount[RED]) \land \\ \#a...(S_0,WHITE) = \#a...(subseq(s,0,i),WHITE) + colorCount[WHITE]) \land \\ \#a...(S_0,BLUE) = \#a...(subseq(s,0,i),BLUE) + colorCount[BLUE]))) \big)$$

¿Qué función variante podemos usar en la primer pasada?

$$fv \equiv |s| - i$$

Dutch National Flag Problem

```
void populate(vector<FlagColor> &s, vector<int> &colorCount) {
     for(int i=0; i<s.size(); i++) {
       if (colorCount[RED]>0) {
         s[i] = RED:
5
         colorCount[RED]--;
       } else if (colorCount[WHITE]>0) {
         s[i] = WHITE;
         colorCount[WHITE]--;
9
       } else {
10
         s[i] = BLUE;
11
         colorCount[BLUE]--;
12
13
14
15
```

¿Qué cantidad de iteraciones ejecuta populate en **peor caso**? **Rta:** Realiza |s|-iteraciones en peor caso.

Eficiencia de los Algoritmos de ordenamiento

- ► Tanto selection sort como insertion sort son algoritmos cuadráticos (iteran una cantidad cuadrática de veces)
- ¿Hay algoritmos con comportamiento más eficiente?
 - Quicksort y BubbleSort: Peor caso cuadrático $(|s|)^2$
 - ▶ Mergesort y Heapsort: Peor caso: $|s| \times log_2(|s|)$
 - ► Counting sort (para secuencias de enteros). Peor caso: |s|
 - Radix sort (para secuencias de enteros). Peor caso: 2³²
- ▶ Bubble sort está en la práctica 8. El resto los van a ver en algo2.

Dutch National Flag Problem

```
void dutchNationalFlag(vector < int > &s) {

// realiza (3+|s|)-iteraciones

vector < int > colorCount = fillColorCount(s);

// realiza |s|-iteraciones

populate(s,colorCount);

}
```

¿Qué cantidad de iteraciones ejecuta dutchNationalFlag en **peor caso**?

- ▶ Rta: Realiza 3 + |s| + |s|-iteraciones en peor caso.
- Por lo tanto, a partir de |s| > 3, se cumple que $3 + 2 * |s| < |s|^2$
- ► En otras palabras, en peor caso la implementación es mas eficiente que selectionSort o insertionSort

Bibliografía

- ▶ Vickers et al. Reasoned Programming
 - ▶ 6.5 Insertion Sort
- ▶ NIST- Dictionary of Algorithms and Data Structures
 - ► Selection Sort https://xlinux.nist.gov/dads/HTML/selectionSort.html
 - ▶ Bingo Sort https://xlinux.nist.gov/dads/HTML/bingosort.html
 - Cocktail Sort https://xlinux.nist.gov/dads/HTML/bidirectionalBubbleSort.html