Laboratorium Fizyki Ciała Stałego	3	Prz	ewodnictwo cieplne	Zespół w składzie:		
Wydział:	Kierunek:			Rok:		
Data wykonania:			Data oddania:	Ocena:		

Cel ćwiczenia

Utrwalenie wiadomości o zjawisku przewodnictwa cieplnego. Zapoznanie się z charakterem przewodnictwa cieplnego w różnych materiałach oraz jego pomiaru metodą niestacjonarnego przepływu ciepła.

Wymagane wiadomości teoretyczne

Ciepło właściwe i przewodnictwo cieplne (jego definicja i rodzaje). Równanie dyfuzji ciepła. Definicja współczynnika przewodnictwa cieplnego. Zależność współczynnika przewodnictwa cieplnego od temperatury oraz nośniki ciepła w różnych materiałach. Metody pomiaru przewodnictwa cieplnego.

Literatura

- Karol Krop (red.), *Fizyka Ciała Stałego . Laboratorium*, Skrypt Uczelniany AGH nr 900, http://winntbg.bg.agh.edu.pl/skrypty2/0162/
- C. Kittel, Wstęp do fizyki ciała stałego, PWN (wydanie dowolne)

Instrukcja wykonania ćwiczenia

- 1. Włączyć komputer.
- 2. Uruchomić termostat (grzałkę i mieszadło) i nastawić potencjometr na temperaturę ok. 45°C. Odczekać kilka minut na ustalenie się temperatury wody w zbiorniku. W miedzy czasie zmierzyć rozmiary badanych brył i wykonać punkt A opracowania wyników.
- 3. Podłączyć pierwszą próbkę do aparatury pomiarowej (woltomierza).
- 4. Uruchomić program do pomiaru temperatury w funkcji czasu, uruchomić pomiar i umieścić próbkę w kapieli wodnej.
- 5. Obserwować zmianę napięcia termopary (temperatury wnętrza bryły) w czasie aż do jej ustalenia. Trwa to, w zależności od bryły, od 2 do 20 minut.
- 6. Zapisać dane pomiarowe i wyjąć próbkę z kąpieli wodnej, a następnie odłączyć ją od aparatury.
- 7. Wykonać pomiar (pkt. 3-6) dla pozostałych próbek podając z każdym razem inną nazwę pliku dla zapisu danych.
- 8. Po zakończeniu pomiarów wyłączyć grzałkę i mieszadło.
- 9. Wykonać opracowanie wyników i podsumować ćwiczenie.
- 10. Wyłączyć komputer.

Wstęp teoretyczny

Opracowanie wyników

Studenci wykonują opracowanie wyników podczas zajęć. Ocena z ćwiczenia jest wypadkową przygotowania teoretycznego, staranności wykonania pomiarów oraz jakości i ilości wykonanych punktów opracowania.

A. Wartości własne λ równia dyfuzji ciepła

Zmierzyć wymiary (średnie) każdej z brył i określić niepewność pomiaru w oparciu o dokładność przyrządu pomiarowego lub rozrzut wyników dla wielu pomiarów. Uzyskane wyniki wpisać do tabel i obliczyć wartości własne λ_1 dla każdej z brył w oparciu o poniższe zależności.

kula o promieniu R	walec o długości <i>a</i> i promieniu <i>R</i>	prostopadłościan o bokach a, b, c
$\lambda^2 = (\pi/R)^2$	$\lambda^2 = (2,4/R)^2 + (\pi/a)^2$	$\lambda^2 = (\pi/a)^2 + (\pi/b)^2 + (\pi/c)^2$

Wyniki zapisać wraz z ich błędami wyznaczonymi z prawa przenoszenia błędów oraz jednostką fizyczną.

Próbka	а	Δа	b	Δb	С	Δc	R	ΔR	λ^2	$\Delta \lambda^2$
PIODKA	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[]	[]
								······		

B. Zależność temperatury od czasu i współczynnik przewodnictwa cieplnego

Z pliku z danymi pomiarowymi dla każdej z brył wybrać 20 punktów zebranych w równych odstępach czasu w zakresie asymptotycznej stabilizacji temperatury (spowalniającego wzrostu temperatury w funkcji czasu). Dane przepisać do tabeli, a następnie określić temperaturę asymptotyczną, T_{∞} . Zależność asymptotyczna powinna zostać dopasowana numerycznie wyrażeniem:

$$T(t) = T_{\infty} + A \exp(-t/\lambda^2 K).$$

Najprostszą metodą dopasowania jest zlogarytmowanie obustronne powyższej zależności. Obliczone wartości $\ln[T_{\infty}-T(t)]$ należy wpisać do tabeli a następnie nanieść na wykres. Zależność ta powinna być liniowa, a jej współczynnik nachylenia (współczynnik kierunkowy prostej) wynosi:

$$|a| = \frac{\lambda_T^2 K_T \lambda^2 K}{\lambda_T^2 K_T + \lambda^2 K} = \frac{0.08798[1/s] \cdot \lambda^2 K}{0.08798[1/s] + \lambda^2 K},$$

Gdzie $\lambda_T^2 K_T = 0.08798 [1/s]$ jest poprawką na przewodnictwo cieplne termometru. Współczynnik przewodnictwa, K, wyznaczyć dla co najmniej trzech materiałów, przy czym dla jednego z nich dla dwóch różnych próbek. Opracowując wyniki należy skorzystać z załączonych poniżej tabel i wykresów uzupełniając ich etykiety i osie.

<i>t</i> [s]	<i>T</i> [K]	$In(T_{\infty}$ - $T)$

$$a = []; \lambda^2 K = []; K = \pm []$$

t [s]	<i>T</i> [K]	$In(T_{\infty}-T)$

t [s]	<i>T</i> [K]	$In(T_{\infty}-T)$

$$a = []; \lambda^2 K = []; K = \pm []$$

t [s]	<i>T</i> [K]	$In(T_{\infty}-T)$

$$a = []; \lambda^2 K = []; K = \pm []$$

Podsumowanie

Należy zwięźle opisać przebieg ćwiczenia	i jego wyniki.	Opisać w jaki s	sposób z	ostały c	szacowane i	błędy.
Porównać uzyskane wyniki i skomentować	różnice.					