Khôlles: Semaine 23

- 25 - 30 Février 2024 -

Sommaire

1	Que	estions de cours - Groupes A, B, C	1
	1.1	Citer le théorème de Cauchy linéaire.	1
	1.2	Mise en forme Matricielle d'une équation différentielle linéaire scalaire d'ordre n	1
	1.3	Définition de l'exponentielle d'une matrice ou d'un endomorphisme.	2
	1.4	Si A et B commutent, $\exp(A+B) = \exp(A) \times \exp(B)$. (démo)	2
		Définition du Wronskien (n=2)	
2	Questions de cours, groupes B et C		
	2.1	Dimension de l'espace des solutions de l'équation homogène. (démo)	3
	2.2	Convergence de la série définissant l'exponentielle d'une matrice ou d'un endomorphisme. (démo)	4
	2.3	Continuité de A \mapsto exp(A). (démo)	5
	2.4	Dérivée de t \mapsto exp(tA). (démo)	6
	2.5	Dérivée du Wronskien et équation différentielle associée (n=2). (démo)	6
3		estions de Cours du groupe C	7
	3.1	Démonstration du théorème de Cauchy linéaire (démo)	7
		Principe d'entrelacement de Sturm. (démo HP, cf exercices groupe C)	

1 Questions de cours - Groupes A, B, C

1.1 Citer le théorème de Cauchy linéaire.

Théorème de Cauchy Linéaire

Soit $I\subset \mathbb{R},$ un intervalle. Soit E, un $\mathbb{R}\text{-EVN}$ de dimension finie.

Soient $x:I\to E$ dérivable, $b:I\to E$ et $\alpha:I\to \mathcal{L}(E)$ continues.

Soit $t_0 \in I$ et $x_0 \in E$.

Alors, le problème de Cauchy $\begin{cases} x'(t) = a(t)(x(t)) + b(t) \\ x(t_0) = x_0 \end{cases}$ admet une unique solution.

1.2 Mise en forme Matricielle d'une équation différentielle linéaire scalaire d'ordre n.

Proposition

Soit $I \subset \mathbb{R}$, un intervalle. Soit E, un \mathbb{R} -EVN de dimension finie. Posons $(\mathscr{E}): y^{(n)} = \sum_{k=0}^{n-1} c_k(t) y^{(k)} + b(t)$.

Alors (\mathscr{E}) peut se réécrire sous la forme Y'(t) = A(t)Y(t) + B(t), avec $A \in \mathscr{M}_n(\mathbb{K})$, Y et $B \in \mathbb{K}^n$

Preuve:

$$\text{Il suffit de poser } \mathbf{Y} \!:=\! \begin{pmatrix} \mathbf{y}^{(0)} \\ \vdots \\ \mathbf{y}^{(n-1)} \end{pmatrix}\!\!, \; \mathbf{B} \!:=\! \begin{pmatrix} \mathbf{0} \\ \vdots \\ \mathbf{b}(\mathbf{t}) \end{pmatrix} \quad \text{et } \mathbf{A}(\mathbf{t}) \!:=\! \begin{pmatrix} \mathbf{0} & \mathbf{1} & & \mathbf{0} \\ \vdots & \ddots & \ddots & \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \\ \mathbf{a}_{0}(\mathbf{t}) & \cdots & & \mathbf{a}_{n-1}(\mathbf{t}) \end{pmatrix}$$

Dès lors, par produit matriciel, il vient $\mathbf{Y}'(t) = \mathbf{A}(t)\mathbf{Y}(t) + \mathbf{B}(t)$

 $MPI^* - 228$

1.3 Définition de l'exponentielle d'une matrice ou d'un endomorphisme.

Définition: Exponentielle de matrice et d'endomorphisme

Soit E, un \mathbb{K} -E.V.N. de dimension n. Soit $A \in \mathcal{M}_n(\mathbb{K})$, que l'on munit d'une norme d'algèbre (sous-multiplicative, prendre par exemple $n \times \|\cdot\|_{\infty}$).

Nous définissons l'exponentielle de la matrice A comme :

$$\exp(A) := \sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

De même, en notant u, un endomorphisme associé à A, nous définissons l'exponentielle de u :

$$\exp(\mathbf{u}) := \sum_{k=0}^{+\infty} \frac{\mathbf{u}^k}{k!}$$

(Attention, u^k désigne ici la composition!)

1.4 Si A et B commutent, $\exp(A + B) = \exp(A) \times \exp(B)$. (démo)

Preuve:

Soient A et B $\in \mathcal{M}_n(\mathbb{K})$, deux matrices telles que AB = BA.

Alors
$$\exp(A+B) = \sum_{n=0}^{+\infty} \frac{(A+B)^n}{n!}$$
.

Or, nous pouvons appliquer le binôme de Newton, car A et B commutent. Ainsi :

$$\exp(A+B) = \sum_{n=0}^{+\infty} \frac{(A+B)^n}{n!} = \sum_{n=0}^{+\infty} \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} A^k B^{n-k} = \sum_{n=0}^{+\infty} \sum_{k=0}^n \frac{A^k}{k!} \frac{B^{n-k}}{(n-k)!}$$

Or, la série définissant l'exponentielle est absolument convergente, donc les séries $\exp(A)$ et $\exp(B)$ sont également absolument convergentes. En appliquant le produit de Cauchy, il vient :

$$\exp(A) \exp(B) = \left(\sum_{k=0}^{+\infty} \frac{A^k}{k!}\right) \left(\sum_{k=0}^{+\infty} \frac{B^k}{k!}\right) = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{A^k}{k!} \frac{B^{n-k}}{(n-k)!} = \exp(A + B)$$

1.5 Définition du Wronskien (n=2).

Définition: Wronskien

Rappel: S_0 , l'ensemble des solutions de (\mathcal{E}_0) est un SEV de dimension 2 (nous travaillons ici sur une équation d'ordre 2). Soient y_1, y_2 , deux solutions de (\mathcal{E}_0) .

On appelle Wronskien de y_1, y_2 la fonction $W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$

2 Questions de cours, groupes B et C

2.1 Dimension de l'espace des solutions de l'équation homogène. (démo)

Proposition

Soit $I \subset \mathbb{R}$, un intervalle. Soit E, un \mathbb{R} -EVN de dimension finie.

Soit $a: I \to \mathcal{L}(E)$ continue.

On considère (\mathcal{E}_0) : x' = a(t)(x).

Alors, S_0 , ensemble des solutions de (\mathcal{E}_0) est un \mathbb{R} —EVN de dimension $\mathfrak{n} = \dim(\mathsf{E})$

Preuve:

 $\forall x_1, x_2 \in S_0, \ \forall \lambda, \mu \in \mathbb{R}, \ \forall t \in I.$

Nous avons $a(t)(\lambda x_1 + \mu x_2) = \lambda a(t)(x_1) + \mu a(t)(x_2)$ par linéarité de a(t). Or, par définition de l'équation différentielle homogène :

$$\lambda a(t)(x_1) + \mu a(t)(x_2) = \lambda x_1' + \mu x_2' = (\lambda x_1 + \mu x_2)'.$$

Dès lors, $(\lambda x_1 + \mu x_2) \in S_0$ et $0 \in S_0 \Rightarrow c$ 'est un Sous-Espace vectoriel.

Fixons $t_0\in I.$ Notons $\phi: \begin{cases} S_0\to E\\ x\mapsto x(t_0) \end{cases}$, correctement définie.

 ϕ est linéaire par linéarité de l'évaluation. Par théorème de Cauchy, $\forall x_0 \in E, \ \exists ! x \in S_0, \ x(t_0) = x_0$. Ainsi, $\phi(x) = x_0$: donc ϕ est bijective, c'est donc un isomorphisme d'espace vectoriels.

Finalement : $dim(S_0) = dim(E)$ car S_0 est de dimension finie.

2.2 Convergence de la série définissant l'exponentielle d'une matrice ou d'un endomorphisme. (démo)

Révisions Khôlles

Preuve:

On rapelle la définition de l'exponentielle d'une matrice

$$exp: \begin{cases} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ A & \longmapsto & \sum_{k=0}^{+\infty} \frac{A^k}{k!} \end{cases}$$

Montrons que cette série converge. Nous sommes en dimension finie, donc toutes les normes sont équivalentes. Considérons ainsi une norme $\|\cdot\|$ sous-multiplicative (exemple : $n\|\cdot\|_{\infty}$).

Ainsi, $\forall k \in \mathbb{N}, \ \|\frac{A^n}{n!}\| \leqslant \frac{\|A\|^k}{k!}$. Or, la série de terme général $\frac{\|A\|^k}{k!}$ est Absolument convergente (c'est la série de l'exponentielle sur \mathbb{R}).

Ainsi, la série $\sum_{n} \|\frac{A^n}{n!}\|$ Converge, donc la série $\exp(A)$ est absolument convergente, donc converge car nous sommes en dimension finie.

La définition de l'exponentielle d'un endomorphisme est identique. Soit $\|\cdot\|$, norme sur E et $u \in \mathcal{L}(E)$.

On pose $\| u \| = \sup_{x \neq 0} \frac{\| u(x) \|}{\| x \|}$. Alors, $\| u \|$ existe car u est continue sur E de dimension finie.

 $\|\cdot\|$ est une norme sous-multiplicative sur $\mathcal{L}(\mathsf{E})$. La démonstration est alors identique.

2.3 Continuité de $A \mapsto \exp(A)$. (démo)

Proposition

Soit $E = \mathcal{M}_p(\mathbb{K})$, muni de $\|\cdot\|$, une norme sous-multiplicative.

$$\text{Alors, exp:} \begin{cases} \mathscr{M}_n(\mathbb{K}) & \longrightarrow & \mathscr{M}_n(\mathbb{K}) \\ A & \longmapsto & \sum_{k=0}^{+\infty} \frac{A^k}{k!} & \text{est } \mathscr{C}^0 \end{cases}$$

Preuve:

Il faut le faire à la main : Posons pour tout $n \in \mathbb{N}$: $f_n : A \mapsto \frac{A^n}{n!}$.

Ainsi,
$$\forall A \in E$$
, $exp(A) = \sum_{n} f_n(A)$. Donc $exp = \sum_{n} f_n$.

Soit R>0. On pose $B=B_f(0,R)$. Alors B est un Compact car est un fermé borné en dimension finie.

1. $\forall n \in \mathbb{N}$, f_n est continue sur B car est polynomiale en A, et E est de dimension finie.

2. On note
$$\|f_n\|_{\infty}^B = \sup_{A \in B} \|f_n(A)\|$$

• $\|f_n\|_\infty^B$ existe, car f_n est continue sur un compact, donc est bornée et atteint ses bornes.

•
$$\forall A \in B$$
, $\|f_n(A)\| = \frac{1}{n!} \|A^n\| \le \frac{1}{n!} \|A\|^n \le \frac{R^n}{n!}$
 $\Rightarrow \sum_{n} \|f_n\|_{\infty}^B \text{ Converge (vaut } e^R)$

 $\Rightarrow \sum_{n=1}^{n} f_n$ Converge Normalement, donc Converge Uniformément sur B.

Dès lors, exp est Continue sur B d'après le théorème de Continuité des Séries de fonctions. Ainsi, exp est Continue car cette propriété est vraie pour tout R>0, donc sur $\bigcup_{R\in\mathbb{R}_+^*} B_f(0,R)$

2.4 Dérivée de $t \mapsto \exp(tA)$. (démo)

Soit $A \in \mathcal{M}_p(\mathbb{K})$. Posons $f: t \mapsto \exp(tA)$.

Alors f est \mathscr{C}^1 sur \mathbb{R} et $\forall t \in \mathbb{R}$, $f'(t) = A \exp(tA) = Af(t)$

Preuve:

$$\forall t \in \mathbb{R}, \ f(t) = \sum_{n=0}^{+\infty} \frac{A^n t^n}{n!}. \text{ Posons } \forall n \in \mathbb{N}, \ f_n : t \mapsto \frac{A^n t^n}{n!}.$$

Soit $\|\cdot\|$, une norme sous-multiplicative de $\mathcal{M}_p(\mathbb{K})$ et $I_\alpha = [-\alpha, \alpha]$ (avec $\alpha > 0$) compact de \mathbb{R} .

- 1. $\forall n \in \mathbb{N}$, nous avons $f_n \mathscr{C}^1$ avec $f'_n(t) = \frac{A^n t^{n-1}}{(n-1)!} = Af_{n-1}(t)$.
- 2. $\sum f_n$ CVS par définition de exp
- $3. \ \sum_n f_n' \ \text{Converge normalement}: \forall t \in I_\alpha, \ n \in \mathbb{N}^*, \ \|f_n'(t)\| = \|\frac{A^n t^{n-1}}{(n-1)!}\| \leqslant \frac{\alpha^{n-1} \|A\|^n}{(n-1)!} = \|A\| \frac{(\|A\|\alpha)^{n-1}}{(n-1)!}.$

Or, la série de terme général $\|A\| \frac{(\|A\|\mathfrak{a})^{\mathfrak{n}-1}}{(\mathfrak{n}-1)!}$ converge : $\sum_{\mathfrak{n}} f_{\mathfrak{n}}'$ Converge normalement donc uniformément sur

D'après le théorème de dérivation des séries de fonctions, $t\mapsto \exp(tA)$ est \mathscr{C}^1 sur $I_{\mathfrak{a}}$ pour tout $\mathfrak{a}>0$. De plus, $f'(t) = A \sum_{n=1}^{+\infty} \frac{(At)^{n-1}}{(n-1)!} = Af(t)$

2.5 Dérivée du Wronskien et équation différentielle associée (n=2). (démo)

Soient y_1,y_2 , deux solutions de (\mathcal{E}_0) : y''-ay'-by=0. Alors $W'_{y_1,y_2}(t)=aW_{y_1,y_2}(t)$

Alors
$$W'_{y_1,y_2}(t) = aW_{y_1,y_2}(t)$$

Preuve:

dérivable comme produit et somme de fonctions dérivables.

Ainsi, W'(t) existe et vaut $W'(t) = y_1'(t)y_2'(t) + y_1(t)y_2''(t) - y_2'(t)y_1'(t) - y_2(t)y_1''(t)$.

Or, les applications y_1 et y_2 vérifient y'' = ay' + by. Donc $W' = y_1 [ay_2' + by_2] - y_2 [ay_1' + by_1]$

$$\text{D'où }W'(t)=\alpha W(t)$$

MPI* - 228 6

3 Questions de Cours du groupe C

3.1 Démonstration du théorème de Cauchy linéaire (démo)

Théorème de Cauchy Linéaire

Soit $I \subset \mathbb{R}$, un intervalle. Soit E, un \mathbb{R} -EVN de dimension finie.

Considérons l'équation différentielle $(\mathcal{E}): Y'(t) = A(t)Y(t) + B(t)$ (sous forme Matricielle)

Alors, le problème de Cauchy (P) : $\begin{cases} \mathbf{Y}' = A\mathbf{Y} + \mathbf{B} \\ \mathbf{Y}(t_0) = \mathbf{Y}_0 \end{cases}$ admet une unique solution.

Preuve :

La preuve de ce théorème revient à montrer que l'opérateur intégration admet un point fixe :

Notons la suite
$$(Y_n)_{n\in\mathbb{N}}$$
 définie par $Y_0:=Y_0$ et $Y_{n+1}=Y_0+\int_{t_0}^t \left[A(x)Y_n(x)+B(x)\right]\mathrm{d}x$

Alors cette suite est bien définie, car A(t) est supposée être définie sur \mathbb{K}^n pour tout $t \in I$.

Supposons premièrement I compact. Montrons alors que (Y_n) vérifie pour tout $t \ge t_0$:

$$\|\mathbf{Y}_{n+1}(t) - \mathbf{Y}_{n}(t)\| \le (\alpha \|\mathbf{Y}_{0}\| + \beta) \times \frac{\alpha^{n}}{(n+1)!} |t - t_{0}|^{n+1}$$

Avec
$$\alpha = \sup_{t \in I} |\!|\!|\!| A(t) |\!|\!|\!|$$
 et $\beta = \sup_{t \in I} |\!|\!|\!| B(t) |\!|\!|\!|\!|.$

Par récurrence, le cas n = 0 est immédiat (il s'agit d'une majoration brutale de l'intégrale). Supposons que cette inégalité soit réalisée au rang n. Alors

$$\begin{split} \|Y_{n+2}(t) - Y_{n+1}(t)\| &= \|\int_{t_0}^t A(x)(Y_{n+1}(x) - Y_n(x)) dx \| \\ &\leq \alpha \int_{t_0}^t (\alpha \|Y_0\| + \beta) \times \frac{\alpha^n}{(n+1)!} |x - t_0|^{n+1} dx \\ &\leq (\alpha \|Y_0\| + \beta) \times \frac{\alpha^{n+1}}{(n+2)!} |t - t_0|^{n+2} \end{split}$$

(On intègre $(x-t_0)^{n+1}$ pour obtenir le (n+2)! au dénominateur, d'où l'hypothèse $t>t_0$).

Ainsi, par principe de récurrence, nous obtenons bien l'égalité souhaitée. Remarquons qu'il en va de même si $t < t_0$.

Il vient alors que $\|Y_{n+1} - Y_n\|_{\infty} \le (\alpha \|Y_0\| + \beta) \times \frac{\alpha^n}{(n+1)!} |L^{n+1}|$ avec L une majoration de la longueur de I (compact donc borné).

Dès lors, nous remarquons que la série $\sum_{n} Y_{n+1} - Y_n$ converge normalement, donc uniformément. Ainsi, en

notant Y la fonction limite de cette série, il vient que Y_n converge vers $Z := Y + Y_0$. Or, cette application Z vérifie $\mathscr E$, car en prenant la définition de $Y_n(t)$, il est possible par convergence uniforme de passer la limite dans

l'intégrale, donc
$$Z(t) = Y_0 + \int_{t_0}^t \left[A(x)Z(x) + B(x) \right] dx$$
. D'où l'existence.

Si I est un Intervalle quelconque, alors tout point intérieur de I est compris dans un Compact, nous pouvons alors nous ramener au cas précédent.

L'unicité se démontre d'une manière similaire : Soient Y et Z, deux solutions de (P), où l'on suppose I compact.

$$\text{Alors nous avons } \forall t \in I, \ \|\boldsymbol{Y}(t) - \boldsymbol{Z}(t)\| = \|\int_{t_0}^t A(x) \left[\boldsymbol{Y}(x) - \boldsymbol{Z}(x)\right] dx \| \ \frac{\alpha}{1} |t - t_0| \|\boldsymbol{Y} - \boldsymbol{Z}\|_{\infty}.$$

Or, ce procédé peut être répété autant de fois que souhaité, donc

$$\forall n \in \mathbb{N}, \ \|\mathbf{Y}(t) - \mathbf{Z}(t)\| \ \frac{\alpha^n}{n!} |t - t_0| \|\mathbf{Y} - \mathbf{Z}\|_{\infty} \xrightarrow[n \to +\infty]{} 0$$

D'où Y = Z

3.2 Principe d'entrelacement de Sturm. (démo HP, cf exercices groupe C)

Proposition Principe d'Entrelacement de Sturm

Posons (\mathscr{E}): y'' + p(x)y' + q(x)y = 0 (avec $I \subset \mathbb{R}$ et p, q de classe \mathscr{C}^0 sur I).

Soit (y_1, y_2) système fondamental de solutions de (\mathcal{E}_0) . Soient a, b: deux zéros consécutifs de y_1 (s'ils existent). Alors y_2 s'annule entre a et b.

Lemme Intermédiaire

Soit y, solution non-nulle de (\mathcal{E}_0) . Alors, $\forall [a,b] \subset I$, y possède un nombre fini de zéros dans [a,b].

Preuve (du Lemme):

Supposons que y s'annule une infinité de fois sur [a,b]. Alors, $\exists (x_n) \in [a,b]^{\mathbb{N}}$ deux-à-deux distincts tels que $\forall n \in \mathbb{N}, \ y(x_n) = 0$.

Or, [a,b] est compact, Par la propriété de Bolzano-Weierstraß, $\exists \phi: \mathbb{N} \to \mathbb{N}$ strictement croissante et $\exists \alpha \in [a,b]$, tels que $x_{\phi(n)} \xrightarrow[n \to +\infty]{} \alpha$.

$$\text{Or, } y \text{ est } \mathscr{C}^0 \text{ sur I. Donc } y(x_{\phi(\mathfrak{n})}) \xrightarrow[\mathfrak{n} \to +\infty]{} y(\alpha). \text{ Or, } \forall \mathfrak{n} \in \mathbb{N}, \ y(x_{\phi(\mathfrak{n})}) = \emptyset \Rightarrow y(\alpha = \emptyset).$$

De plus,
$$\forall n \in \mathbb{N}$$
, $\frac{y(x_{\varphi(n)}) - y(\alpha)}{x_{\varphi(n)} - \alpha} = \delta_n \xrightarrow[n \to +\infty]{} y'(\alpha)$ car y dérivable.

Or, de même, cette suite de δ_n est constamment nulle par construction. Donc $y'(\alpha) = 0$ car y' est \mathscr{C}^0 .

Les δ_n existent pour n assez grand car les x_n sont supposés deux-à-deux distincts.

Finalement, y est solution de : $\begin{cases} (\mathscr{E}_0) \\ y(\alpha) = 0 \end{cases}$: Par unicité de la solution au problème de Cauchy, y = 0 car 0 $y'(\alpha) = 0$

convient : Ce qui est absurde.

Alors, y s'annule un nombre fini de fois sur [a, b].

Preuve Principe d'entrelacement de Sturm:

 $\forall t \in [a,b]$, nous avons $W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} \neq 0$ car (y_1,y_2) est un Système fondamental de solutions.

Or, $W(y_1,y_2)$ est Continue, donc $W(y_1,y_2)$ est de signe constant sur [a,b]. Quitte à remplacer y_2 par $-y_2$, supposons que $\forall t \in [a,b]$, W(t)>0.

Soient a et b, deux zéros consécutifs de y_1 . Nous avons y_1 de classe \mathscr{C}^0 sur $[a,b] \Rightarrow y_1$ de signe constant (on suppose positif. i.e: $\forall t \in]a,b[,\ y_1(t)>0)$.

$$\text{Alors, } W(y_1,y_2)(\mathfrak{a}) = \left| \begin{array}{cc} 0 & y_2(\mathfrak{a}) \\ y_1'(\mathfrak{a}) & y_2'(\mathfrak{a}) \end{array} \right| = -y_1'(\mathfrak{a})y_2(\mathfrak{a}) \Rightarrow -y_1'(\mathfrak{a})y_2(\mathfrak{a}) > 0.$$

$$\mathrm{Or,}\, y_1^{\,\prime}(\alpha) = \lim_{h \to 0^+} \frac{y_1(\alpha+h) - y_1(\alpha)}{h} = \frac{y(\alpha+h)}{h} > 0 \Rightarrow \, y_1^{\,\prime}(\alpha) \geqslant 0.$$

De plus, nous avons $y_1'(\alpha) \neq 0$, sans quoi, par unicité de la solution au problème de Cauchy, $y_1 = 0$ ce qui est exclu. Donc $y_2(\alpha) < 0$.

Idem sur b:
$$W(y_1, y_2)(b) > 0 \Rightarrow -y_2(b)y_1'(b) > 0$$
. Or, $y_1'(b) < 0 \Rightarrow y_2(b) > 0$.

Or, y_2 est continue sur [a,b]: D'après le TVI: $\exists c \in]a,b[,\ y_2(c)=0$

