PROTOCOLOS

- > Características dos Protocolos
- > Funcionalidade dos Protocolos
- >Protocolos OSI
- **≻Protocolos TCP/IP**

Características dos Protocolos

- As principais caraterísticas de um protocolo são:
 - Direto ou Indireto
 - Monolítico ou Estruturado
 - Simétrico ou Assimétrico
 - Padronizado ou Não-Padronizado

Direto ou Indireto

Direto

 Dados/controle são transmitidos entre sistemas sem a intervenção de agentes ativos

Direto ou Indireto

• Indireto

 A transferência de dados depende do funcionamento de outras entidades

Monolítico ou Estruturado

- A comunicação entre entidades em diferentes sistemas é uma tarefa muito complexa;
- Muito complexa para ser realizada através de um único módulo ⇒ mudança em um aspecto significa modificar o módulo como um todo

 Projeto Estruturado divide o problema em unidades menores

Estrutura em Camadas

Simétrico ou Assimétrico

- Simétrico
 - Comunicação entre entidades
 se me lhantes em termos de funcionalidade ("peer entities")
- Assimétrico
 - Cliente/Servidor
 - Computador efetua "polling"/"select" de um número de terminais.

Padrão x Não-padrão

- Protocolos não-padronizados são desenvolvidos para computadores e tarefas específicas
- Seja: K fontes de informação deve se comunicar com L receptores

Padronizado

Não-padronizado K + L diferentes implementações

K*L diferentes protocolos e2*K*L diferentes implementações

Padrão x Não-padrão

<u>Não-padronizado</u>: 12 protocolos diferentes 24 implementações

<u>Padronizado</u>: 1 protocolo 7 i mplementações

PROTOCOLOS

- > Características dos Protocolos
- > Funcionalidade dos Protocolos
- >Protocolos OSI
- **≻Protocolos TCP/IP**

Funcionalidade dos Protocolos

- ✓ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Encapsulamento

- Adição de informações de controle aos dados
 - informação de endereço
 - código de detecção de erro
 - controle do protocolo.
- Forma o PDU = Protocol Data Unit

Funcionalidade dos Protocolos

- ✓ Encapsulamento
- ✓ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Segmentação/Fragmentação

- Geralmente, a transferência de informação é realizada como uma sequência de <u>blocos</u> de dados com um certo tamanho limite;
- Unidade de dados de aplicação = mensagem podem ser grandes.
- Níveis inferiores de protocolo podem necessitar de "quebrar" as mensagens em blocos menores (PDUs)

- Segmentação ou Fragmentação (TCP/IP)
 - blocos ATM (cells) são de 53 bytes;
 - blocos Ethemet (frames) são de 1526 bytes no máximo.

Por que Fragmentar?

Vantagens

- Controle de erro mais eficiente;
- Acesso mais equilibrado/justo às facilidades/serviços da rede;
- Atrasos menores;
- Necessidade de menos buffer.

Desvantagens

- mais overhead;
- Aumento do número de interrupções no receptor;
- Maior tempo de processamento.

- √ Encapsulamento
- ✓ Segmentação e Re-agrupamento
- √ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- ✓ Serviços de Transmissão

Controle de Conexão

- Serviço sem conexão (Connectionless)
 - os PDUs (<u>datagrama</u>) são transmitidos de forma independente dos PDUs anteriores.
- Serviço com conexão (Connection Oriented)
 - uma conexão lógica (circuito virtual) é formada entre as duas entidades para a troca de dados;
 - adequado para longa troca de dados e/ou na necessidade de se ajustar detalhes do protocolo dinamicamente;
 - consiste de três fases:
 - · Estabelecimento da Conexão
 - Transferência de Dados
 - Término da Conexão

Transferência de Dados Orientada a Conexão

Controle de Conexão

Utiliza Número de Sequência

- Cada entidade numera sequencialmente os PDUs enviados para a outra entidade;
- Mantém controle do número de sequência de transmissão e de recepção.
- Uso de *Número de Sequência* fornece:
 - Entrega ordenada de dados
 - Controle de Fluxo
 - Controle de Erro

- √ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Entrega Ordenada de Dados

- PDUs podem percorrer caminhos diferentes através da rede para se chegar no mesmo destino;
- PDUs podem chegar fora de ordem;
- O número de sequência permite a reordenação dos PDUs;
- ⇒ A numeração deve ser grande o suficiente para não haver repetição de PDUs pendentes.

- √ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- √ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Controle de Fluxo

- Função efetuada pela entidade receptora;
- Limita a quantidade/taxa de dados que é enviada pelo transmissor;
- · Métodos:
 - Stop and wait ⇒ mais simples.
- Função necessária em vários níveis de protocolo.

- ✓ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- √ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Controle de Erro

- Protege contra a perda ou dano nos dados e/ou controle.
- Função efetuada em duas etapas:
 - Detecção de Erro
 - Correção de Erro (Retransmissão)
- Função também necessária em diversos níveis de protocolo.

Controle de Erro

Detecção de Erro

- transmissor acrescenta bits de detecção de erro em cada PDU enviado;
- receptor verifica a validade dos bits;
- se código válido, reconhece o recebimento livre de erro (Acknowledgement)
- se erro, PDU é descartado.

- Correção de Erro

- transmissor recebe um aviso do erro (ack negativo) ou não recebe acknowledgement em tempo hábil
 ⇒retransmite.
- Existe código de correção de erro mas o overhead é muito grande.

Funcionalidade dos Protocolos

- ✓ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- ✓ Serviços de Transmissão

Endereçamento

- O conceito de endereçamento cobre vários aspectos:
 - Nível de Endereçamento
 - Escopo do Endereçamento
 - identificadores de Conexão
 - Modos de Endereçamento

Nível de Endereçamento

- Refere-se ao nível da arquitetura no qual a entidade é nomeada;
- Um endereço único é associado a cada sistema final (workstation, servidor) e a cada sistema intermediário (roteador)
 - Network level address
 - IP ou internet address (TCP/IP)
 - Network Service Access Point ou NSAP (OSI)
- Denominação de um processo no sistema
 - Port number (TCP/IP)
 - Service Access Point ou SAP (OSI)

Escopo de Endereçamento

- Global Não-Ambíguo
 - Endereço global identifica um único sistema;
 - Existe somente um sistema com endereço X
- Aplicabilidade Global
 - É possível, em qualquer sistema (com endereço qualquer) identificar qualquer outro sistema, ligado a qualquer rede, pelo seu endereço global.
 - O endereço X identifica aquele sistema de qualquer lugar da rede.
- Outro nível: endereço de cada dispositivo de interface dentro da rede Network Attachment point address.
 - e.g. MAC address em redes locais IEEE 802.

Identificadores de Conexão

- Transferências Orientadas a Conexão
 circuitos virtuais
- Define um identificador da conexão (numérico) durante a fase de transferência de dados
 - Reduz overhead ⇒ identificadores de conexão são menores que endereços globais;
 - Roteamento

 no estabelecimento da conexão, definise uma rota fixa, identificada pelo identificador da conexão;
 - Multiplexing ⇒ entidades podem querer estabelecer múltiplas conexões simultaneamente;
 - Informação de Status
 ⇒ durante a transferência mantém-se informações relacionadas à conexão (ex. controle de fluxo e erro).

Modo de Endereçamento

- Usualmente, um endereço refere-se a um único sistema ou porta SAP
 - ⇒ Endereçamento Unicast
- Pode-se endereçar TODOS as entidades e/ou portas
 - ⇒ Endereçamento Broadcast
- Pode-se endereçar um subconjunto de entidades e/ou portas.
 - ⇒ Endereçamento Multicast

Modos de Endereçamento

Destination	Network Address	System Address	Port/SAP Address
Unicust	Individual	Individual	Individual
Multicast	Individual	Individual	Group
	Individual	All	Group
	All	All	Group
Broadcust	Individual	Individual	A]]
	Individual	All	IIA
	All	All	All

Funcionalidade dos Protocolos

- ✓ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Multiplexação

- Várias formas de multiplexação:
 - Múltiplas conexões em um único sistema (X.25);
 - Mapeamento de múltiplas conexões em um nível em uma única conexão em outro nível.

- √ Encapsulamento
- √ Segmentação e Re-agrupamento
- ✓ Controle de Conexão
- ✓ Entrega ordenada de dados
- ✓ Controle de Fluxo
- ✓ Controle de Erro
- ✓ Endereçamento
- ✓ Multiplexação
- √ Serviços de Transmissão

Serviços de Transmissão

- · Serviços adicionais de um protocolo:
- ✓ Prioridade
 - mensagens de controle, por exemplo, podem necessitar de chegar ao destinatário com o mínimo atraso;
- √ Qualidade do Serviço
 - Máximo atraso aceitável;
 - Mínimo throughput aceitável.
- ✓ Segurança
 - Mecanismos de segurança para acesso restrito.

PROTOCOLOS

- > Características dos Protocolos
- > Funcionalidade dos Protocolos
- > Protocolos OSI
- >Protocolos TCP/IP

O Modelo OSI

- Modelo em 7 camadas (1984)
- Objetivo: fornecer uma estrutura ("framework") para padronização de protocolos.
- Cada camada executa um subconjunto das funções necessárias para a comunicação de computadores
- Cada camada supõe que a camada imediatamente inferior executa funções mais primitivas
- Cada camada fornece serviços para a camada imediatamente acima.
- Mudanças em uma camada NÃO deve requerer mudanças em outras camadas

Primitivas e Parâmetros dos Serviços

4 tipos de primitivas são definidas nos padrões:

Primitivas e Parâmetros dos Serviços

4 passos para a transferência de dados de uma entidade nível (N) para uma outra entidade (N):

- ① A entidade (N) invoca sua entidade (N-1) com uma primitiva **request**, com os parâmetros necessários (endereço destino, dado);
- ② A entidade (N-1) fonte prepara um (N-1)PDU para ser enviado à respectiva entidade (N-1) remota;
- ③ A entidade (N-1) destinatária entrega o dado à entidade (N) através de uma primitiva *indication*, incluindo o dado e endereço fonte como parâmetros;
- ⑤ A entidade (N-1) transporta o acknowledgement em (N-1)PDU;
- ©O acknowledgement é entregue à entidade (N) como uma primitiva confirm.

Uso de Nó de Comutação

PROTOCOLOS

- > Características dos Protocolos
- > Funcionalidade dos Protocolos
- > Protocolos OSI
- **≻Protocolos TCP/IP**

TCP/IP Protocol Suite

Arquitetura de protocolo dominante comercialmente.

- TCP/IP foi especificado e extensamente utilizado antes do modelo OSI:
- TCP/IP foi desenvolvido pelo DOD, maior consumidor de software no mundo;
- A internet foi construída usando o TCP/IP Protocol Suite.

