

Module 2

Infinite Impulse Response Filter Design, Part I

Overview

- Analog filter types
 - o Butterworth
 - Chebyshev I/II
 - o Elliptic
 - o Bessel
- Bilinear transformation
- Other transformations

General Formulation (1 of 3)

Reprinted from: 'Lecture Notes on Elliptic Filter Design' by Sophocles J. Orfanidis

General Formulation (2 of 3)

General form for magnitude-squared response

$$|H(j\Omega)|^{2} = \frac{1}{1 + \epsilon_{p}^{2} F_{N}^{2} \left(\frac{\Omega}{\Omega_{p}}\right)}$$

- N filter order
- $\Omega_{\rm p}$, $\Omega_{\rm s}$ frequencies of passband/stopband edges
- ε_p,ε_s attenuation parameters for passband/stopband
 F_N(x) function depending on response type (e.g. Butterworth, Chebyshev I/II, Elliptic)

General Formulation (3 of 3)

Given passband/stopband attenuation (in dB)

$$\epsilon_p = \sqrt{10^{A_p/10} - 1}$$
 $\epsilon_s = \sqrt{10^{A_s/10} - 1}$

The filter order N can be computed from

$$F_N(k^{-1}) = k_1^{-1}$$

with $k = \frac{\Omega_p}{\Omega_s} k_1 = \frac{\epsilon_p}{\epsilon_s}$

Butterworth Response (1 of 3)

- The magnitude response of the Butterworth filter is maximally flat at Ω=0
- Magnitude response is monotonic in both passband and stopband
- Poles lie on a circle of radius Ω_c (3dB cutoff frequency) in the s-plane
- No zeros in the finite s-plane (all at s=∞)

Butterworth Response (2 of 3)

Magnitude-squared response

$$|H(j\Omega)|^2 = \frac{1}{1 + \epsilon_p^2 \left(\frac{\Omega}{\Omega_p}\right)^{2N}}$$

N – filter order Ω_p – passband frequency

• Filter order N is computed from

$$N = \frac{\log (\epsilon_s/\epsilon_p)}{\log (\Omega_s/\Omega_p)}$$

Butterworth Response (3 of 3)

Pole locations (left half of s-plane)

$$s_k = j\Omega_c e^{j(2k-1)\frac{\pi}{2N}} \quad k = 1, \dots, N$$

$$\Omega_{c} = \epsilon_{p}^{-1/N} \Omega_{p}$$
 3dB cutoff frequency

Chebyshev Response

- Chebyshev Type I
 - Equiripple in the passband and monotonic in the stopband
- Chebyshev Type II
 - Equiripple in the stopband and monotonic in the passband

Chebyshev Type I (1 of 3)

 Magnitude-squared response for Chebyshev Type I

$$|H(j\Omega)|^{2} = \frac{1}{1 + \epsilon_{p}^{2} C_{N}^{2} \left(\frac{\Omega}{\Omega_{p}}\right)}$$

- Ω_p is the equiripple cutoff frequency
- C_N(x) is the Nth order Chebyshev polynomial

Chebyshev Type I (2 of 3)

$$C_N(x) = \begin{cases} \cos\left(N\cos^{-1}x\right), & \text{if } |x| \le 1\\ \cosh\left(N\cosh^{-1}x\right), & \text{if } |x| > 1 \end{cases}$$

 C_N(x) can be shown to obey the following recursion

$$C_{N+1}(x) = 2xC_N(x) - C_{N-1}(x)$$

with $C_0(x) = 1$, $C_1(x) = x$

Chebyshev Type I (3 of 3)

Pole locations (left half of s-plane)

$$Re\{s_k\} = -\Omega_p \left[\sinh\left(\frac{1}{N}\sinh^{-1}\left(\frac{1}{\epsilon_p}\right)\right) \sin\left((2k-1)\frac{\pi}{2N}\right) \right]$$

$$Im\{s_k\} = \Omega_p \left[\cosh\left(\frac{1}{N}\sinh^{-1}\left(\frac{1}{\epsilon_p}\right)\right) \cos\left((2k-1)\frac{\pi}{2N}\right) \right]$$

$$k = 1, \dots, N$$

• Filter order
$$N = \frac{\cosh^{-1}(\epsilon_s/\epsilon_p)}{\cosh^{-1}(\Omega_s/\Omega_p)}$$

Chebyshev Type II

 Magnitude-squared response for Chebyshev Type II

$$|H(j\Omega)|^2 = \frac{1}{1 + \left[\frac{2}{s}\right]/C_N^2 \left(\frac{\Omega_s}{\Omega}\right)}$$

- Filter order N computed using same equation as for Type I
- See 'Lecture Notes on Elliptic Filter Design' for pole/zero locations