Machine Learning Classifier for Detecting Email Spams

Springboard Introduction to Data Science Capstone Project

Ву

Savita Shrivastava

26 Dec 2017

Introduction

'Spamming'

 The action of sending unwanted messages in bulk quantity without obtaining explicit permission of the recipient.

Examples of Spam:

- Email spam
- Instant messaging spam
- Usenet newsgroup spamt etc.

Email Spam

- Email spam refers to sending irrelevant, inappropriate and unrequested email message to several people.
- Mostly email spam are commercial in nature

The purpose of email spam is advertising, promotion, spreading viruses,

phishing or baking fraud.

The Problem

Around 80% emails are spam.

Types of Spam Content

- Product advertisement
- Financial
- Adult
- Internet
- Pharmacy
- Health
- Scams
- Leisure
- Fraud
- Political etc.

Spam Filter

- A spam filter is a software that keep spam emails from entering the inbox
- It predicts if an email is spam or no-spam an
- Statistical and machine learning based classification system
 - Uses relevant features for classification

My Objective

- Build a model using a machine learning method which can predict the outcome if an email is spam or no-spam and based on that the spam emails can be filtered out.
- The project will try to give answet to following question
 - How can we construct a spam filter, given the data set
 - What factors alter the probability of an email being a spam-email
 - How to create an accurate model that can predict if an email is spam
 - What is the risk of model making false prediction

Data Acquisition

 The Spambase data set was acquired from UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/spambase)

Data Exploration

- Number of Instances: 4601
- Number of attributes: 58
- Number of missing data points: None
- The last column of 'spambase.data' named 'spam' denotes whether the email was considered spam (1) or not spam (0).

Attributes

Attribute Column Number	Attribute name	Attribute Type	Attribute Description
1 to 48	word_freq_WORD	continuous real [0,100]	percentage of words in the email that match WORD
49 to 54	char_freq_CHAR	continuous real [0,100]	percentage of characters in the email that match CHAR
55	capital_run_length_average	continuous real [0,100]	average length of uninterrupted sequences of capital letters
56	capital_run_length_longest	continuous integer [1,]	length of longest uninterrupted sequence of capital letters
57	capital_run_length_total	continuous integer [1,]	total number of capital letters in the email
58	spam	nominal {0,1}	denotes whether the email was considered spam (1) or not (0)

Outcome or dependent variable will be 'spam' and all other attributes from column 1 to 57 will be independent variables. Below is the summary of spam variable

Outcome variable 'spam'

Summary of outcome variable 'spam'

Spam	Frequency	Percent
0 (not spam)	2788	60%
1 (spam)	1813	39%

Data Analysis Method - Logistic Regression

- Logistic regression is a simple classification algorithm to analyze a dataset in which there are one or more independent variables that determine an outcome. In logistic regression the outcome or dependent variable is coded a 1 (TRUE) or 0 (FALSE).
- The goal of logistic regression is to find the best fitting model to describe the relationship between the dependent variable (response or outcome variable) and a set of independent (predictor or explanatory) variables.

Logistic Regression - Logit Transformation

 Logistic regression generates the coefficients (and its standard errors and significance levels) of a formula to predict a *logit transformation* of the probability of an email being spam:

$$logit(p) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + \ldots + b_k X_k$$

• where p is the probability of presence of characteristic of interest (an email being spam). The logit transformation is defined as the logged odds:

$$odds = \frac{p}{1-p} = \frac{probability \ of \ presence \ of \ characteristic}{probability \ of \ absence \ of \ characteristic}$$

• Logit transformation of probability p is:

$$logit(p) = \ln\left(\frac{p}{1-p}\right)$$

Data Cleaning

- Change the name of the below attributes which have special characters in their name as below:
 - char_freq_; to char_freq_semic
 - char_freq_(to char_freq_openp
 - char_freq_[to char_freq_openb
 - char freq ! to char freq excl
 - char_freq_\$ to char_freq_dollar
 - char_freq_# to char_freq_pound

Building the Predictive Model

- Logistic regression was used to build the predictive model using all of the independent variables (attributes 1 to 57)
- Data was divided into a training and testing set with 75/25 ratio

Performance Evaluation Parameters

- True Positive (TP): Spam emails are correctly predicted as spams
- True Negatives (TN): No-spam emails are correctly predicted as no-spam emails
- False Positive (FP): No-spam emails are incorrectly predicted as spam emails
- False Negative (FN): Spam emails are incorrectly predicted as no-spam emails
- Accuracy: (True Negatives (TN) + True Positive (TP)) / Total number of observations
- Sensitivity (True Positive Rate) = True Positive (TP) / (True Positive (TP) + False Negative (FN))
- Specificity (False Positive Rate) = True Negatives (TN) / True Negatives (TN) + False Positive (FP))
- Error rate = (False Positive (FP) + False Negative (FN)) / Total number of observations

	Predicted = 0	Predicted = 1
Actual = 0	True Negatives (TN)	False Positive (FP)
Actual = 1	False Negative (FN)	True Positive (TP)

Coefficient Output of Training Model

- Showed that the independent variables which are significantly affecting the model and outcome variable
- The negative estimate value of some of the significant variables such as 'word_freq_george', 'word_freq_hp', 'word_freq_hpl' and 'word_freq_edu' clearly showing that these are no-spam email related words
- 'word_freq_free', 'word_freq_000', 'word_freq_our', 'word_freq_remove',
 'word_freq_re' and 'char_freq_dollar' have high positive value indicating that these are spam emails.

Coefficients

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     -2.006e+00 2.112e-01 -9.499 < 2e-16 ***
                     -4.501e-01 2.887e-01 -1.559 0.119051
word freq make
word freq address -1.516e-01 8.264e-02 -1.834 0.066600 .
word freq all 6.749e-02 1.459e-01 0.462 0.643753
                      3.616e+00 2.249e+00 1.607 0.107957
word freq 3d
word freq our
            8.113e-01 1.360e-01 5.968 2.41e-09 ***
                     1.329e+00 3.193e-01 4.164 3.13e-05 ***
word freq over
word freq remove 2.998e+00 5.080e-01 5.902 3.59e-09 ***
word freq internet
                4.624e-01 1.574e-01 2.939 0.003295 **
             3.857e-01 3.787e-01 1.018 0.308453
word freq order
word freq mail
                     -2.065e-02 1.241e-01 -0.166 0.867867
word freq receive
                -2.970e-01 3.590e-01 -0.827 0.408124
word freq will
                     -1.279e-01 9.024e-02 -1.418 0.156268
```

Coefficients contd...

```
word freq people
                       -5.160e-02 3.063e-01 -0.168 0.866241
word freq report
                       5.376e-02 1.470e-01 0.366 0.714624
word freq addresses 8.097e-01 7.600e-01 1.065 0.286692
              8.309e-01 1.753e-01 4.741 2.13e-06 ***
word freq free
word freq business
                      1.083e+00 2.839e-01 3.815 0.000136 ***
word freq email
                       1.062e-01 1.606e-01 0.662 0.508269
word freq you 6.335e-02 4.493e-02 1.410 0.158555
word freq credit
                      1.335e+00 9.340e-01 1.429 0.153040
word freq your
                      1.575e-01 6.644e-02 2.370 0.017791 *
                       -5.869e-02 2.086e-01 -0.281 0.778427
word freq font
word freq 000
                       3.237e+00 7.330e-01 4.417 1.00e-05 ***
                       3.038e-01 1.343e-01 2.263 0.023664 *
word freq money
                       -2.046e+00 3.884e-01 -5.269 1.37e-07 ***
word freq hp
word freq hpl
                       -1.004e+00 5.307e-01 -1.893 0.058418 .
word freq george
                       -1.850e+01 3.980e+00 -4.647 3.37e-06 ***
word freq 650
                       6.413e-01 2.932e-01 2.187 0.028737 *
```

Coefficients contd...

```
word freq lab -2.350e+00 1.742e+00 -1.349 0.177233
word freq labs -4.709e-01 5.470e-01 -0.861 0.389270
word freq telnet -3.886e+00 3.131e+00 -1.241 0.214524
word freq data -6.652e-01 3.640e-01 -1.827 0.067645.
word freq 85 -2.705e+00 1.022e+00 -2.647 0.008110 **
word freq technology 7.257e-01 3.831e-01 1.894 0.058172.
word freq 1999 -3.035e-01 2.522e-01 -1.203 0.228963
word freq parts -5.981e-01 5.995e-01 -0.998 0.318437
word freq pm -7.256e-01 5.117e-01 -1.418 0.156183
word freq direct -3.735e-01 4.439e-01 -0.842 0.400063
                   -5.676e+02 2.071e+04 -0.027 0.978141
word freq cs
word freq meeting -2.270e+00 8.923e-01 -2.544 0.010973 *
word freq original
              -1.474e+00 1.173e+00 -1.257 0.208771
word freq project -1.641e+00 7.555e-01 -2.172 0.029857 *
         -6.978e-01 1.627e-01 -4.290 1.79e-05 ***
word freq re
```

Coefficients contd...

```
word freq edu -1.409e+00 2.963e-01 -4.756 1.98e-06 ***
word freq table -4.017e+00 2.575e+00 -1.560 0.118749
word freq conference -6.014e+00 \quad 3.249e+00 \quad -1.851 \quad 0.064132.
char freq semic -1.085e+00 5.476e-01 -1.981 0.047570 *
char freq openp -3.150e-01 3.654e-01 -0.862 0.388588
char freq openb -2.397e+00 \quad 1.725e+00 \quad -1.390 \quad 0.164645
char freq excl 7.186e-01 1.657e-01 4.337 1.44e-05 ***
char freq dollar 5.446e+00 9.474e-01 5.748 9.01e-09 ***
char freq pound
               2.187e+00 1.645e+00 1.330 0.183522
capital run length average 2.839e-01 7.102e-02 3.997 6.42e-05 ***
capital run length longest -1.043e-03 3.413e-03 -0.306 0.759940
capital run length total 1.515e-03 3.196e-04 4.739 2.15e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 4329.5 on 3220 degrees of freedom
Residual deviance: 1159.7 on 3163 degrees of freedom
AIC: 1275.7
Number of Fisher Scoring iterations: 23
```

Selecting a Threshold for Filter Using ROC Curve

- Threshold cutoff 0.9999 was selected.
- With threshold cutoff 0.9999,
 specificity was higher and
 sensitivity is lower

Classification Matrix of Training Model using Threshold 0.99

	Predicted = 0	Predicted = 1
Actual = 0	1933	7
Actual = 1	697	584

Accuracy, Sensitivity and Specificity of Training Model using Threshold 0.99

- Accuracy: 78.14%
- Sensitivity: 45.6%
- Specificity: 99.6%

Area Under the ROC (AUROC)

- The metric for AUROC ranges from 0.50 to 1.00.
- Value above 0.80 indicate that the model does a good job in discriminating spam and no-spam emails.
- The AUROC for this training model is 0.98 which is above then 0.80.

Evaluating the Model on Testing Data Set

Classification Matrix using Testing Data Set to Evaluate the Model

	Predicted = 0	Predicted = 1
Actual = 0	803	48
Actual = 1	45	484

Accuracy, Sensitivity and Specificity using Testing Data Set to Evaluate the Model

- Accuracy : 93.26%
- Sensitivity: 91.5%
- Specificity: 94.35%
- Overall error rate: 6.7%

The model exhibit high sensitivity as well as high specificity for predicting spam and no-spam emails and exhibit that this model is a better predictor than the baseline method where accuracy was 60.8%

Conclusion

- Email spam classification has received a tremendous attention by majority of the people as it helps to identify the unwanted information and threats
- The results demonstrate that logistic regression model has 93.26 % accuracy in spam detection than baseline methods 60.8% accuracy.
- The careful selection of attributes in building model can increase the accuracy of the model.