- 1 Assessing PM_{2.5} Exposures with High Spatio-
- 2 Temporal Resolution across the Continental
- 3 United States
- 4 Qian Di $^{\dagger *}$, Itai Kloog $^{\dagger, \ddagger}$, Petros Koutrakis † , Alexei Lyapustin § , Yujie Wang § , Joel
- 5 Schwartz †
- 6 † Department of Environmental Health, Harvard T.H. Chan School of Public Heath,
- 7 Boston, MA, 02115, USA
- 8 § GEST/UMBC, NASA Goddard Space Flight Center, Baltimore, MD, USA
- 9 KEYWORDS. PM_{2.5}; Aerosol optical depth; GEOS-Chem; Absorbing aerosol index;
- 10 Land-use regression; Convolutional neural network

ABSTRACT. A number of models have been developed to estimate PM_{2.5} exposure, including satellite-based aerosol optical depth (AOD) models, land-use regression or chemical transport model simulation, all with both strengths and weaknesses. Variables like normalized difference vegetation index (NDVI), surface reflectance, absorbing aerosol index and meteoroidal fields, are also informative about PM_{2.5} concentrations. Our objective is to establish a hybrid model which incorporates multiple approaches and input variables to improve model performance. To account for complex atmospheric mechanisms, we used a neural network for its capacity to model nonlinearity and interactions. We used convolutional layers, which aggregate neighboring information, into a neural network to account for spatial and temporal autocorrelation. We trained the neural network for the continental United States from 2000 to 2012 and tested it with left out monitors. Ten-fold cross-validation revealed good model performance with total R² of 0.84 on the left out monitors. Regional R² could be even higher for the Eastern and Central United States. Model performance was still good at low PM_{2.5} concentrations. Then, we used the trained neural network to make daily prediction of PM_{2.5} at 1 km×1 km grid cells. This model allows epidemiologists to access PM_{2.5} exposure in both the short term and the long term.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1. Introduction

Fine particulate matter (PM_{2.5}) is a major concern in public health. Adverse health effect is associated with PM_{2.5} exposure in the short term^{7, 8} and the long term. PM_{2.5} is found to be associated with morbidity, mortality, cardiovascular disease, respiratory disease, myocardial infarction, an increase in hospital admission and others. Accurate exposure assessment of PM_{2.5} is a prerequisite of to investigate its adverse

Accurate exposure assessment of PM_{2.5} is a prerequisite of to investigate its adverse health effect. Early studies estimated PM_{2.5} at the nearest monitoring station.¹⁸ However, nearest monitors cannot capture all variability in PM_{2.5} concentrations and non-differential misclassification occurs.¹⁹

Various approaches have been developed to achieve better exposure assessment. Spatial interpolation, including nearest-neighbor interpolation and Kriging interpolation, was used to smooth PM_{2.5} concentration and estimate local exposure. Nonetheless, interpolation adds no additional information to the model. Local emission like highways between two monitor sites is not captured by simple interpolation. Land-use regression (LUR) uses land-use terms, such as road density, percentage of urban and others, as proxies for PM_{2.5} concentration.^{20, 21} Although LUR could achieve a high spatial resolution, it has limited temporal resolution since land-use terms are usually time-invariant.²² Recent improvements in land-use regression enable to incorporate some level of time-variant factors,^{23, 24} but land-use terms are still inadequate in modeling short-term variations and often limited by short temporal coverage.²⁵

Satellite-based aerosol optical depth (AOD) measurements have been widely used to
estimate PM _{2.5} in various models for its large spatial coverage and repeated daily
observations. ²⁶ AOD measures the light extinction due to aerosol in the whole
atmospheric column. ²⁷ To obtain ground-level PM _{2.5} concentration, vertical distribution
of aerosol is needed. Recent studies proposed different calibration methods. ^{26, 28-32} Most
studies focused on quantifying relationship between AOD and PM _{2.5} or predict long-term
average of PM _{2.5} , while epidemiological studies also need short-term PM _{2.5} assessment.
Some studies combined AOD and land-use regression and used mixed effect model to
achieve improvements on model performance.33-35 However, the drawback of AOD is
missing data, which is caused by bright surfaces or cloud contamination, especially in
winter. ³⁶ Also, AOD measurements may also have abnormally large values caused by
forest fires. ³⁷ For grid cells with missing or abnormal values, the AOD-PM _{2.5} relationship
may be problematic, especially for daily $PM_{2.5}$ assessment. The relationship between
column aerosol concentration and ground-level concentration can be influenced by
multiple factors such as meteorological fields, chemical profile of aerosol and others. ^{38, 39}
Absorbing aerosol index (AAI) provides information about aerosol type and is
informative to PM _{2.5} modeling. ^{40, 41}
Chemical transport models (CTMs), like GEOS-Chem, 42 CMAQ, 43 and CHIMERE, 44
simulate the formation, dispersion and deposition of fine particles based on emission
inventories and known atmospheric chemical reaction. CTM is another way to assess
PM _{2.5} concentration. Due to the complexity of reactions and atmospheric meteorological
1 M _{2.5} concentration. Due to the complexity of feactions and authospheric meteorological

often used after calibration. 45, 46 CTM provides aerosol vertical profile, which has been

processes, simulated concentration often deviates from the real world. CTM outputs are

75	used as scaling factor in AOD calibration. ^{29, 47} Due to the limit of computation, CTM
76	usually has coarse spatial resolution. In a previous study, we have proposed a hybrid
77	model which uses land-use regression to downscale CTM outputs. 48

Existing approaches have both strengths and weaknesses and often they complement to each other. In this paper, we incorporated multiple variables into a neural network-based hybrid model, including satellite-based AOD data, AAI, CTM outputs, land-use terms and meteorological variables. We validated the model with ten-fold cross-validation and predicted daily PM_{2.5} at 1 km×1 km resolution in the continental United States for the years 2000-2012. Prediction with such a high temporal and spatial resolution allows epidemiological studies to estimate health effect of PM_{2.5} with greater reliability.

2. Materials

2.1. Study Domain

The study domain is the continental United States, including 48 contiguous states and Washington D.C (Figure S1). The study period is from January 1st, 2000 to December 31st, 2012, in total of 4,749 days.

2.2. Monitoring Data

Monitoring data for PM_{2.5} were collected by EPA Air Quality System (AQS). In total, there were 1,986 monitor stations available in this period and 1,928 of them were located in the study area. Not every monitoring site has data available throughout the study period. Monitoring sites were densely distributed along coastal areas and the Eastern part,

- while there were few monitors in the Mountain Region (Figure S1). We calibrated our hybrid model to the daily average of monitored PM_{2.5}.
 - 2.3. AOD Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument aboard the Earth Observing System (EOS) satellite.^{49, 50} Several algorithms have been developed to retrieve AOD data from MODIS measurement,⁵¹ including a recent algorithm called MAIAC, which retrieves AOD with a spatial resolution of 1 km×1 km. ⁵²⁻⁵⁴ We used MAIAC AOD data from Aqua satellite from 2003 to 2012 and Terra satellite from 2001 to 2012. MAIAC algorithm arranges data at 600 km×600 km tile, which includes 360,000 1 km×1 km grid cells. In total 33 tiles and 11,880,000 grid cells were used in this study, which is also the grid cell we made predictions at. Grid cells over water bodies were excluded from the study.

AOD data has some portion of missing values, especially in the winter. Missing values are caused by bright surfaces (e.g. snow coverage) and cloud contamination.³⁶ In addition, AOD data may have abnormally large values due to extreme events like forest fires.³⁷ Usually AOD data with values above 1.5 are excluded from modeling, which also creates missing values.⁵⁵ Our previous study calibrated column aerosol mass from CTM outputs to satellite-based AOD and predicted AOD values when satellite-based AOD are missing.⁵⁶ For AOD data used in this study, we filled in the missing values using this method as pre-processing (Section 3, Supplementary Material).

2.4. Surface Reflectance

Surface characteristics and errors in AOD data products have been well documented by previous studies.⁵⁷ MAIAC algorithm was designed to retrieve AOD over various surfaces, but surface brightness can still affect data quality.⁵⁴ We used MODIS surface reflectance data (MOD09A1) to control for that.⁵⁸ MOD13A1 has a spatial resolution of 500 m×500 m and a temporal resolution of 8 days. We used surface reflectance from Band 3 and linearly interpolated values for days without measurements.

2.5. Chemical Transport Model Outputs

We used GEOS-Chem, a chemical transport model, to simulate ground-level PM_{2.5} concentration. GEOS-Chem is a global 3-dimensional chemical transport model, which uses meteorological inputs and emission inventories to simulate atmospheric components. The details of GEOS-Chem is articulated somewhere else. We performed a nested grid simulation (Version 9.0.2) for North America at 0.500°×0.667° from 2005 to 2012, with boundary conditions exported from a 2.0°×2.5° global simulation. Since meteorological inputs at 0.500°×0.667° are not available from 2000 to 2004, we used 2.0°×2.5° outputs instead. Based on previous studies and pilot testing, total PM_{2.5} was defined as the sum of nitrate, sulfate, elemental carbon, organic carbon, ammonium, sea salt aerosol, dust aerosol and others (Table S2). ⁵⁹

In additional to providing ground-level PM_{2.5} estimation, GEOS-Chem also simulates vertical distribution of aerosol, which could be used for calibrating AOD. Previous studies used GEOS-Chem to compute the percentage of ground-level aerosol in the total column aerosol. This percentage was used in AOD calibration as a scaling factor.^{29, 60}

Both studies utilized GEOS-Chem to provide both direct estimation for ground-level PM_{2.5} and a scaling factor to calibrate AOD.

2.6. Meteorological Data

Meteorological fields were obtained from NCEP North American Regional Reanalysis data, which assimilates various data sources like land-surface, ship, radiosonde, pibal, aircraft, satellite and others. Meteorological data are daily estimate at 0.3° grid cells (about 32 km). In total 16 meteorological variables were used in this study. They include air temperature, accumulated total precipitation, downward shortwave radiation flux, accumulated total evaporation, planetary boundary layer height, low cloud area fraction, precipitable water for the entire atmosphere, pressure, specific humidity at 2m, visibility, wind speed, medium cloud area fraction, high cloud area fraction, and albedo. Wind speed was computed as the vector sum of u-wind (east-west component of the wind) at 10m and v-wind (north-south component) at 10m.

2.7. Aerosol Index Data

Absorbing aerosol index (AAI) indicates the presence of absorbing aerosols in the atmosphere. Major sources of absorbing aerosol include biomass burning and desert dust; other minor sources could be volcanic ash.⁶² AAI is informative for estimating absorbing aerosols, such as organic carbon and soil dust.^{63, 64} We used AAI Level 3 data products from the Ozone Monitoring Instrument (OMI), where two algorithms are used in retrieval. One is a near-UV algorithm, which retrieves UV aerosol index (OMI data product OMAERUVd);^{62, 64} and the other one uses multi-wavelength aerosol algorithm, whose outputs include aerosol indexes at visible and UV range (OMI data product

OMAEROe).⁶⁵ Both algorithms have pros and cons, which have been discussed previously.⁶⁶ Both data products are complementary and thus we used both. OMI AAI data is available after October 2004. OMAERUVd data product has a spatial resolution of 1°; OMAEROe data product has a spatial resolution of 0.25°.

2.8. Land-use terms

Land-use terms serve as proxies for emissions and are used to capture variations at a small spatial scale, which may not modeled by GEOS-Chem. The detailed process of obtaining land-terms like elevation, road density, NEI (National Emissions Inventory) emission inventory, population density, percentage of urban, and NDVI has been reported somewhere else.⁶⁷ For vegetation coverage, we used percentage of vegetation from NCEP North American Regional Reanalysis data and MODIS MOD13A2, a NDVI data product.⁶⁸ MOD13A2 has a spatial resolution of 1 km×1 km and a temporal resolution of 16 days. We linearly interpolated NDVI values for days without measurements.

2.9. Regional and Monthly Dummy

Previous studies found the relationship between AOD and PM_{2.5} have regional and daily variation due to difference in meteorology and aerosol composition.^{38, 69} Atmospheric mechanism is complex and relationships between other variables could also differ temporally and spatially. To account for that, we put monthly and regional dummy variables. Regional dummy variable comes from major climate types in the United States (Figure S3).⁷⁰ Since AOD-PM_{2.5} relationship can change from day to day, daily dummy variables would be ideal. However, training a neural network with 365 indicator variables

in addition to the other variables would be computationally intensive, and we used monthly dummy variables as a compromise.

3. Methods

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

We trained a neural network with the above variables to monitored PM_{2.5} from the AOS network. The relationships between input variables and PM_{2.5} could be highly nonlinear with complex interactions. Neural networks have the potential to model any type of nonlinearity. 71, 72 The details of the neural network, such as its structure and training method were articulated in the supplementary material. All input variables covered the entire study area, but some of them were not available in early years or had higher proportions of missing values. Missing values were especially common in Terra and Aqua AOD data. To deal with the missingness problem and different temporal coverages, we adopted the following steps. We used a calibration method to fill in the missing values in Aqua AOD data from 2003 to 2012 and Terra AOD data from 2001 to 2012 based on the association of GEOS-Chem outputs and land-use terms with nonmissing AOD.⁵⁶ For the other variables with a low fraction of missing values, we interpolated at grid cells with missing values. Regarding temporal coverage, GEOS-Chem outputs, land-use terms, MODIS outputs, and meteorological variables were available throughout the study period. OMI data, Aqua AOD, and Terra AOD were unavailable in earlier years. For years with one or more unavailable variables, we fitted the model with the remaining available variables.

Most previous studies used only *in situ* variables for modeling. However, information from neighboring cell can be informative as well. For example, nearby road density,

forest coverage and other land-use variables as well as nearby PM _{2.5} measurements either
influence or correlate with local $PM_{2.5}$ measurements. They are informative for modeling
and can improve model performance. We accounted for spatial correlation by using
convolutional layers in the neural network. ⁷³ A convolutional layer is computed by
applying a convolution kernel on an input layer. Values from neighboring cells are
combined through the use of the kernel function. The kernel takes the form a function
(e.g. weighted average with Gaussian weights based on distance) that produces a scalar
estimate from the multidimensional inputs. A convolution layer aggregates nearby
information and can simulate some form of autocorrelation. We included convolutional
layers for land-use terms and nearby PM _{2.5} measurements as additional predictor
variables to account for spatial autocorrelation. Multiple convolution layers were
incorporated to allow the neural network to model even more complex autocorrelation or
possible interaction with other variables (Supplementary material). In addition to nearby
grid cells, observations from nearby days for the same grid cell can be also informative.
To incorporate this, we first fitted a neural network and obtained an initial prediction for
PM _{2.5} . We then computed temporal convolution layers and fitted the neural network
again with them (Figure S5).

To validate model results and avoid overfitting, we used ten-fold cross-validation, in which all monitoring sites were randomly divided into 10%-90% splits. The model was trained with 90% of data and predicted $PM_{2.5}$ at the remaining 10%. The same process was repeated for other splits. Assembling predicted $PM_{2.5}$ at ten 10% testing sets yielded predicted $PM_{2.5}$ for all the monitors. We computed correlation between predicted $PM_{2.5}$

- and monitored PM_{2.5}. Spatial and temporal R²s were also calculated. Details of calculating R² have been specified in the supplementary material.
- The trained neural network was then used to make daily PM_{2.5} predictions for each grid cell (1 km×1 km) for each day.
- All programming was implemented in Matlab (version 2014a, The MathWorks, Inc.).

4. Results

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

To determine input variables, we compared models with different combinations of input variables based on cross-validated total R². Model comparison indicated that (1) a hybrid model performed better than any subset models (Figure S6); (2) scaling factor was better to be incorporated as a separate input layer (Figure S7); (3) convolutional layers for land-use variables and predicted PM_{2.5} both improved model performance (Figures S6, S8). Hence, input variables for the final model were GEOS-Chem outputs, Aqua and Terra AOD, scaling factor, OMI AAIs, meteorological variables, NDVI, surface reflectance, land-use terms, convolutional layers and regional/monthly dummy variables. Table 1 presents model performance after conducting ten-fold cross-validation. Total R² between fitted and monitored PM_{2.5} ranged from 0.74 to 0.88 and spatial R² was from 0.78 to 0.88. By season, the model usually performed better in summer, followed by autumn, spring, and winter (Table S3). By region, regions in the Eastern United States had the best model performance, followed by the Central United States. The Pacific and Mountain regions had less satisfying model performance. We also found R² remained high before 2008 and dropped after 2010 for sub-regions and the whole study area (Table S4). We will discuss possible reasons later. Region name and division are from U.S.

census division (Table S1, Figure S2). In terms of spatial pattern, we found an east-west
gradient with model performing better in the Eastern and Central United States but less
satisfying in the western coast and the Mountain Region (Figure 1). Besides, some areas
in the Mountain Region (e.g. Great Basin and Colorado Plateau) with large variability in
elevation and surface type have relative low R ² all the year round. Even in the Eastern
United States, where model performance is high in general, areas along Appalachian
Mountains and around Ozark Plateau have less satisfying model performance.

Figure 2 shows the spatial distribution of total $PM_{2.5}$ in the study area. The Eastern United States generally had higher $PM_{2.5}$ levels than the Western part. Area around Illinois and Ohio, areas around New York City and Philadelphia, and parts of the Southeastern United States witnessed the heaviest $PM_{2.5}$ pollutions in the study area, especially in summer. The San Joaquin Valley, Salt Lake City and Denver stood out in the Western United States for their high $PM_{2.5}$ levels. Regarding temporal trend, the national average dropped from 9.2 $\mu g/m^3$ in 2003 to 7.5 $\mu g/m^3$ 2012 (Figure 3). By regions, the declining trend was predominantly in the Eastern United States, with largest reduction occurring in East South Central Region (5.8 $\mu g/m^3$).

One additional way to validate our exposure estimates is to see if they can reproduce the spatial autocorrelation in $PM_{2.5}$ concentrations. To do this, we calculated the correlation among all pairs of $PM_{2.5}$ monitors in the EPA network, and plotted them as a function of distance. We compared that to the same plot, but using our predicted $PM_{2.5}$ concentrations instead (Figure 4). The results show essential identical trends and substantial overlap between the correlations of actual vs modeled $PM_{2.5}$ with distance.

5. Discussion

Our hybrid model incorporated existing PM_{2.5} models as well as multiple variables and achieved high out-of-sample R², averaging 0.84 (0.74~0.88 by year) over the study period. The model performed better in some eastern regions, with an average out of sample R² of 0.86~0.89 by region. To our best knowledge, our model performance surpasses existing similar studies. Meanwhile, we predicted PM_{2.5} daily concentrations at nationwide 1 km×1 km grid cells from 2000 to 2012. As discussed below, this level of resolution and coverage is an improvement over current PM_{2.5} models and could be beneficial to epidemiological studies. Epidemiologists could identify long-term and short-term exposure of PM_{2.5} in the whole continental United States at individual level, which helps study adverse health effect of PM_{2.5} with higher accuracy.

There are several advantages and innovations in our approach. First of all, our model covered the whole United States with a spatial resolution of 1 km×1 km and a temporal resolution of 1 day and achieved high R². As far as we know, if taking coverage, resolution and model performance into consideration, our model performs better than existing models. As mentioned in the introduction part, most PM_{2.5} modeling work that used AOD data focused on the AOD-PM_{2.5} relationship, instead of making predictions. For studies with similar research goal as ours, some of them have done AOD calibration at global scale, but their estimation was long-term average²⁹ or annual average, with some degree of bias (slope=0.68) and modest R² (R²=0.65).⁴⁷ A previous study calibrated AOD to daily monitored PM_{2.5} in the Northeastern United States using mixed model and achieved R² around 0.725~0.904.³¹ A similar study used the similar method for the

Southeastern United States and achieved R² around 0.63 to 0.85.³² Compared with both regional models, our hybrid nationwide model performs slightly better in the Northeastern United States and much better in the Southeastern United States (Table S6). One reason is that aerosol formation in the Southeastern United States is affected by biogenic isoprene emission from trees;⁷⁴ while isoprene emission from trees in the Northeastern United States is less of a concern. Secondary organic aerosol that results from isoprene has different absorption than other PM_{2.5} components,⁷⁵ which is not well captured by AOD. AAI provides some information about absorption profile, which helps our hybrid model perform much better in the Southeast and almost the same or a little better in the Northeast.

Second, our hybrid model integrated most variables that are known to be informative to PM_{2.5} modeling and improved model performance. This study reminds the importance of hybrid framework and also proposes a possible neural network-based approach to implement that. Atmospheric mechanism is complex and a single variable can only capture an incomplete picture. For example, AOD measures the light extinction due to aerosol in the whole atmosphere column. Different aerosols vary in terms of aerosol absorption, which can affect AOD. More complexly, even the same aerosol type could have various absorptions under different meteorological conditions and emission features.³⁹ This discovery suggests that when modeling PM_{2.5} with AOD data, AAI (proxy for aerosol type), meteorological fields and emission profiles are also necessary. There could be many unknown mechanisms intertwining with other variables. Multiple variables are not redundant but complementary, which can recover the original picture of atmospheric process and improve model performance to the best.

Third, we used convolutional layer in neural network for PM_{2.5} modeling, which is an innovation of our study. Primarily used in computer science, convolutional kernel is placed over nearby pixels to produce a convolutional layer. Similarly, we used convolutional layers in exposure assessment to aggregate variable values from nearby grid cells or monitoring sites. Previous studies incorporated nearby information by using nearby monitoring measurements, nearby road density or others, which were all prespecified. Our hybrid model takes multiple convolutional layers, which stand for various ways of aggregating nearby information, and lets learning algorithm decide their relative importance in the model. This approach is versatile and is able to model different neighboring influences, as well as potential interactions with other variables.

Last but not least, we used AOD data with missing values been filled by some calibration model. No further processing is required to deal with missing AOD data, which could have been lengthy and cumbersome in previous studies.

For the east-west gradient in model performance (Figure 1), previous studies also reported that correlation between MODIS AOD and ground-measured PM_{2.5} is better in the eastern part but poor in the western part, and they attributed poor model performance to relative low PM_{2.5} level and variability of terrain.^{31,41} This study lends support to both statements. We quantified the relationship between model performance and elevation at each monitoring site and found a negative correlation despite of much noise (Figure S10). Similarly, a positive association exists between PM_{2.5} level and model performance (Figure S10), which implies that the drop of model performance after 2010 is probably caused by substantive reduction in PM_{2.5} level after 2010. This is also the reason why the

Mountain region, with low $PM_{2.5}$ level, has poor model performance. Lower level of
PM _{2.5} means lower signal-to-noise ratio and model performance drops as model
uncertainty keeps constant. Besides, the reduction of sulfate is mainly responsible for
decreasing PM _{2.5} level. Sulfate is better modeled in GEOS-Chem than other major
components like nitrate and ammonium, 76 so dropping sulfate causes unsatisfying model
performance. For the same reason, we saw less satisfying model performance in
California despite of its high PM _{2.5} level, for the reason that California has high amount
of nitrate originated from vehicle exhaust compared with the Eastern United States. This
argument suggests that it would be informative to include sulfate in PM _{2.5} modeling work
in the future.

Our model performance is still good even at low PM_{2.5} levels. To prove that, we fitted a spline regression of prediction PM_{2.5} to measured PM_{2.5}. Linearity between measured and predicted PM_{2.5} holds when PM_{2.5} level is below 70 µg/m³ and become less obvious above 80 µg/m³ due to insufficient measurements (Figure 5). Bias at high concentration is less of our concern, since there are few days with PM_{2.5} level above 80 µg/m³ in the study area. If constraining to monitored PM_{2.5} below 35 µg/m³, the EPA daily standard for PM_{2.5}, our hybrid model performed even better. Mean R² increased to 0.85; slope is close 1; and intercept is close to 0 (Table S5). Good model performance at low PM_{2.5} concentrations enables epidemiologists to estimate the adverse effect of PM_{2.5} even below EPA daily standard.

Figure 2 visualizes the spatial distribution of annual and seasonal average of $PM_{2.5}$. There is also an east-west gradient of $PM_{2.5}$ level. The Eastern and Central United States

suffered relatively fleavy Fivi _{2.5} pollutions, except Apparachian Mountains, Florida
Peninsula, and some remote areas in the Northeast. The Southeastern United States,
especially Alabama and Georgia, witnessed high PM _{2.5} level in summer and less
noticeably in spring and autumn, which results from isoprene emission from trees.
Isoprene emission from trees increases with temperature 74,77 and peaks in hot summer. 78
The Western United States had relatively low PM _{2.5} levels, but the San Joaquin Valley,
Salt Lake City and Denver stood out for its abnormally high PM _{2.5} level, which was also
featured by clear seasonality and high $PM_{2.5}$ level in winter. This is caused by
temperature inversion in winter which prevents atmospheric convection and trapped air
pollution near surface. For temporal trend, the Eastern and Central United States
witnessed a decreasing trend in PM _{2.5} level (Figure 3), which is caused by reduction of
sulfur dioxide from power plant emission. For seasonal cycle, PM _{2.5} level peaks in
summer in the Eastern and Central United States due to long-term transported sulfate
from power plants and isoprene-related organic carbon. The winter peaks are probably
caused by increased fuel burning for heat, and local temperature inversion that prevents
pollution dispersion.

Exposure assessments are essential for epidemiological studies. Traditional method of exposure assessment relies on nearest monitors, which constraints the number of available participants and introduces measurement errors. Besides, monitoring data from some monitors are intermittent. Our PM_{2.5} predictions have temporal resolution of 1 day and spatial resolution of 1 km×1 km, which lifts the above limitations. Besides, our hybrid model performs still well at low concentrations. Linearity between predicted and monitored PM_{2.5} still holds at low concentrations, without any signal of bias (Figure 5).

Cross-validated R^2 indicates good fit when daily $PM_{2.5}$ level is below 35 $\mu g/m^3$ (Table
S5), which enable epidemiologists to assess the adverse effect of PM _{2.5} even below EPA
standard. In the long term, there is little discrepancy between long-term averages or
predicted and monitored PM $_{2.5}$, with difference below 1 $\mu g/m^3$ (Figure S9).
Some limitations remain. Our model requires quite a lot of variables, which limits the
application in other countries. This data-intensive approach could be difficulty in other
regions where public data is sparse. For regions with less data available, we might have
to make tradeoff between model performance and resolution. For example, instead or
daily prediction PM _{2.5} at 1 km×1 km, we may model annual average of PM _{2.5} or at coarse
spatial resolution. Besides, chemical profile of PM _{2.5} is not available in this framework
Previous epidemiological studies suggest various toxicities of PM _{2.5} chemical
components, 79, 80 which is worthy of further investigation.

Table 1. Cross-validated R² for the whole study area

Year	Total R ²	RMSE	Spatial R ²	RMSE	Temporal R ²	RMSE	Bias	Slope
2000	0.86	3.35	0.85	1.52	0.85	3.07	0.22	1.01
2001	0.84	3.58	0.86	1.40	0.83	3.35	0.22	1.01
2002	0.88	2.99	0.88	1.24	0.88	2.75	0.25	1.00
2003	0.88	2.80	0.87	1.21	0.88	2.57	0.23	1.00
2004	0.88	2.69	0.79	1.50	0.88	2.45	0.22	1.00
2005	0.88	2.94	0.84	1.45	0.89	2.66	0.27	1.00
2006	0.86	2.77	0.80	1.34	0.86	2.50	0.25	1.00
2007	0.87	2.95	0.83	1.31	0.87	2.72	0.21	1.00
2008	0.85	2.64	0.79	1.26	0.86	2.40	0.19	1.00
2009	0.82	2.73	0.81	1.09	0.82	2.54	0.21	1.00
2010	0.81	2.85	0.84	1.21	0.81	2.60	0.51	0.98
2011	0.81	2.83	0.81	1.11	0.81	2.60	0.38	0.99
2012	0.74	3.15	0.78	1.16	0.74	2.92	0.32	1.00
Mean	0.84	2.94	0.83	1.29	0.84	2.70	0.27	1.00

Figure 1. Model performance in the continental United States

We calculated total R^2 between monitored and predicted $PM_{2.5}$ for each monitoring site and interpolated R^2 to places without monitors using Kriging interpolation. Spring was defined as March to May; summer was defined as June to August; autumn was defined as September to November; winter was from December to February of the next year (same below). Red color stands for high R^2 and blue color stands for low R^2 .

Figure 2. Spatial distribution of predicted PM_{2.5}

The trained neural network predicted daily total $PM_{2.5}$ concentration at 1 km×1 km grid cell in the study area. Red color stands for high concentrations and blue color stands for low concentrations.

409

404

405

406

407

411

Figure 3. Annual means by month of year and by region

412 Annual averages were computed by averaging all predicted $PM_{2.5}$ values at 1 km×1 km

413 grid cells in that region or in that month.

416 417

Figure 4. Relationship between correlation and distance between any two monitor sites

418 For 1,928 monitoring sites in the study area, we computed the correlation of PM_{2.5} 419 420 421

measurements and distance (in degree) between any two monitoring site pairs and plotted the between-site correlation versus between-site distance (red dots). We repeated the same process for predicted PM_{2.5} and plotted the correlation of predicted PM_{2.5} and

monitored PM_{2.5} between two site pairs versus distance (blue dots). This figure is for year

423 2012.

424

422

Figure 5. Relationship between measured PM_{2.5} and predicted PM_{2.5}

- We fit a penalized spline between measured $PM_{2.5}$ and predicted $PM_{2.5}$ without
- specifying degree of freedom. This figure is for year 2009.

- Maps of the study area, details on US census division, details on GEOS-Chem, details on neural network and convolutional layers, details on calculating R², detailed results for
- 433 model comparison, cross-validated R² by region and by season, and model performance
- 434 at low concentrations.

AUTHOR INFOMRATION

436 Corresponding Author

- *(Q.D.) Phone: 814-777-8202; email: qiandi@mail.harvard.edu
- 438 Present Addresses
- [‡] Department of Geography and Environmental Development, Ben-Gurion University of
- the Negev, Beer Sheva, P.O.B. 653, Israel

441 **Author Contributions**

- The manuscript was written by Qian Di, edited and approved by all authors. All authors
- have given approval to the final version of the manuscript.
- 444 ACKNOWLEDGEMENT
- This publication was made possible by USEPA grant R01 ES024332-01A1,
- RD83479801, and NIEHS grant ES000002. Its contents are solely the responsibility of
- 447 the grantee and do not necessarily represent the official views of the USEPA. Further,
- 448 USEPA do not endorse the purchase of any commercial products or services mentioned
- in the publication.

450 REFERENCES

- 451 (1). Lim, S. S.; Vos, T.; Flaxman, A. D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.;
- 452 AlMazroa, M. A.; Amann, M.; Anderson, H. R.; Andrews, K. G. A comparative risk
- assessment of burden of disease and injury attributable to 67 risk factors and risk factor
- clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of
- 455 Disease Study 2010. *The lancet* **2013**, *380*, (9859), 2224-2260.
- 456 (2). Slama, R.; Morgenstern, V.; Cyrys, J.; Zutavern, A.; Herbarth, O.; Wichmann, H.-
- 457 E.; Heinrich, J.; Group, L. S. Traffic-related atmospheric pollutants levels during
- pregnancy and offspring's term birth weight: a study relying on a land-use regression
- 459 exposure model. *Environ. Health Persp.* **2007**, 1283-1292.
- 460 (3). Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2. 5 and all-cause
- and specific-cause mortality in 27 US communities. J. Expo. Sci. Env. Epid. 2007, 17,
- 462 (3), 279-287.
- 463 (4). Dominici, F.; Peng, R. D.; Bell, M. L.; Pham, L.; McDermott, A.; Zeger, S. L.;
- Samet, J. M. Fine particulate air pollution and hospital admission for cardiovascular and
- respiratory diseases. *Jama* **2006**, *295*, (10), 1127-1134.
- 466 (5). Gent, J. F.; Triche, E. W.; Holford, T. R.; Belanger, K.; Bracken, M. B.; Beckett,
- W. S.; Leaderer, B. P. Association of low-level ozone and fine particles with respiratory
- symptoms in children with asthma. *Jama* **2003**, *290*, (14), 1859-1867.
- 469 (6). Schwartz, J.; Dockery, D. W.; Neas, L. M. Is daily mortality associated
- specifically with fine particles? J. Air Waste Manage. (1995) 1996, 46, 927-939.
- 471 (7). Halonen, J. I.; Lanki, T.; Yli-Tuomi, T.; Kulmala, M.; Tiittanen, P.; Pekkanen, J.
- 472 Urban air pollution and asthma and COPD hospital emergency room visits. *Thorax*
- **2008**.
- 474 (8). Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution
- on mortality: a national analysis. *Environ Health Perspect* **2009**, 117, 898–903.
- 476 (9). Boldo, E.; Medina, S.; Le Tertre, A.; Hurley, F.; Mücke, H.-G.; Ballester, F.;
- Aguilera, I. Apheis: Health impact assessment of long-term exposure to PM2. 5 in 23
- 478 European cities. Eur. J. Epidemiol. **2006**, 21, (6), 449-458.

- 479 (10). Schwartz, J. Harvesting and long term exposure effects in the relation
- between air pollution and mortality. Am. J. Epidemiol. 2000, 151, 440-448.
- Lippmann, M.; Ito, K.; Nadas, A.; Burnett, R. Association of particulate
- matter components with daily mortality and morbidity in urban populations. Res. Rep.
- 483 *HEI* **2000**, (95), 5-72, discussion 73-82.
- 484 (12). Sarnat, J. A.; Marmur, A.; Klein, M.; Kim, E.; Russell, A. G.; Sarnat, S.
- 485 E.; Mulholland, J. A.; Hopke, P. K.; Tolbert, P. E. Fine particle sources and
- 486 cardiorespiratory morbidity: an application of chemical mass balance and factor
- analytical source-apportionment methods. *Environ. Health Persp.* **2008**, *116*, (4), 459.
- 488 (13). Peng, R. D.; Bell, M. L.; Geyh, A. S.; McDermott, A.; Zeger, S. L.;
- Samet, J. M.; Dominici, F. Emergency Admissions for Cardiovascular and Respiratory
- Diseases and the Chemical Composition of Fine Particle Air Pollution. *Environ. Health*
- 491 *Persp.* **2009,** *117*, 957-963.
- 492 (14). Peters, A.; Dockery, D. W.; Muller, J. E.; Mittleman, M. A. Increased
- 493 Particulate Air Pollution and the Triggering of Myocardial Infarction. *Circulation* **2001**,
- 494 *103*, 2810-2815.
- 495 (15). Schwartz, J. Air pollution and hospital admissions for cardiovascular
- 496 disease in Tucson. *Epidemiology* **1997**, 371-377.
- 497 (16). Schwartz, J.; Morris, R. Air pollution and hospital admissions for
- cardiovascular disease in Detroit, Michigan. Am. J. Epidemiol. 1995, 142, (1), 23-35.
- 499 (17). Pope, C. A.; Dockery, D. W. Health Effects of Fine Particulate Air
- Pollution: Lines that Connect. J. Air Waste Manage. 2006, 56, 709-742.
- 501 (18). Laden, F.; Schwartz, J.; Speizer, F. E.; Dockery, D. W. Reduction in fine
- particulate air pollution and mortality: extended follow-up of the Harvard Six Cities
- 503 study. Am. J. Resp. Crit. Care. **2006**, 173, 667–672.
- 504 (19). Pinto, J. P.; Lefohn, A. S.; Shadwick, D. S. Spatial variability of PM2. 5 in
- urban areas in the United States. *J. Air Waste Manage.* **2004,** *54*, (4), 440-449.
- 506 (20). Beckerman, B. S.; Jerrett, M.; Martin, R. V.; van Donkelaar, A.; Ross, Z.;
- Burnett, R. T. Application of the deletion/substitution/addition algorithm to selecting
- land use regression models for interpolating air pollution measurements in California.
- 509 Atmos. Environ. **2013**, 77, 172-177.

- 510 (21). Vienneau, D.; De Hoogh, K.; Beelen, R.; Fischer, P.; Hoek, G.; Briggs, D.
- Comparison of land-use regression models between Great Britain and the Netherlands.
- 512 Atmos. Environ. **2010**, 44, (5), 688-696.
- 513 (22). Aguilera, I.; Sunyer, J.; Fernández-Patier, R.; Hoek, G.; Aguirre-Alfaro,
- A.; Meliefste, K.; Bomboi-Mingarro, M. T.; Nieuwenhuijsen, M. J.; Herce-Garraleta,
- D.; Brunekreef, B. Estimation of Outdoor NO_x, NO₂, and BTEX Exposure in a Cohort
- of Pregnant Women Using Land Use Regression Modeling. Environ. Sci. Technol. 2008,
- *42*, 815-821.
- 518 (23). Ghassoun, Y.; Ruths, M.; Löwner, M.-O.; Weber, S., Intra-urban variation
- of ultrafine particles as evaluated by process related land use and pollutant driven
- regression modelling. *Science of the Total Environment* **2015**, *536*, 150-160.
- 521 (24). Patton, A. P.; Zamore, W.; Naumova, E. N.; Levy, J. I.; Brugge, D.;
- Durant, J. L., Transferability and generalizability of regression models of ultrafine
- 523 particles in urban neighborhoods in the Boston area. Environmental science &
- *technology* **2015,** *49*, (10), 6051-6060.
- 525 (25). Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer,
- P.; Briggs, D., A review of land-use regression models to assess spatial variation of
- outdoor air pollution. *Atmospheric Environment* **2008**, *42*, 7561-7578.
- 528 (26). Streets, D. G.; Canty, T.; Carmichael, G. R.; de Foy, B.; Dickerson, R. R.;
- Duncan, B. N.; Edwards, D. P.; Haynes, J. A.; Henze, D. K.; Houyoux, M. R. Emissions
- estimation from satellite retrievals: A review of current capability. *Atmos. Environ.*
- **2013,** *77*, 1011-1042.
- 532 (27). Morain, S. A.; Budge, A. M. Environmental Tracking for Public Health
- 533 Surveillance. CRC Press: 2012.
- 534 (28). Chu, D. A.; Kaufman, Y.; Zibordi, G.; Chern, J.; Mao, J.; Li, C.; Holben,
- B. Global monitoring of air pollution over land from the Earth Observing System-Terra
- Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atoms.
- 537 (1984–2012) **2003,** 108, (D21).
- 538 (29). van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.;
- Verduzco, C.; Villeneuve, P. J. Global Estimates of Ambient Fine Particulate Matter

- 540 Concentrations from Satellite-Based Aerosol Optical Depth: Development and
- 541 Application. *Environ. Health Persp.* **2010,** *118*, 847-855.
- 542 (30). Van Donkelaar, A.; Martin, R. V.; Park, R. J. Estimating ground-level
- PM2. 5 using aerosol optical depth determined from satellite remote sensing. J.
- 544 Geophys. Res. Atoms. (1984–2012) **2006,** 111, (D21).
- 545 (31). Engel-Cox, J. A.; Holloman, C. H.; Coutant, B. W.; Hoff, R. M.
- Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and
- 547 urban scale air quality. *Atmos. Environ.* **2004,** *38*, (16), 2495-2509.
- 548 (32). Wang, J.; Christopher, S. A. Intercomparison between satellite-derived
- aerosol optical thickness and PM2. 5 mass: implications for air quality studies. *Geophys*.
- 550 Res. Lett. **2003**, 30, (21).
- 551 (33). Kloog, I.; Chudnovsky, A. A.; Just, A. C.; Nordio, F.; Koutrakis, P.;
- Coull, B. A.; Lyapustin, A.; Wang, Y.; Schwartz, J. A new hybrid spatio-temporal
- model for estimating daily multi-year PM_{2.5} concentrations across northeastern USA
- using high resolution aerosol optical depth data. Atmos. Environ. 2014, 95, 581-590.
- 555 (34). Kloog, I.; Koutrakis, P.; Coull, B. A.; Lee, H. J.; Schwartz, J. Assessing
- temporally and spatially resolved PM_{2.5} exposures for epidemiological studies using
- satellite aerosol optical depth measurements. *Atmos. Environ.* **2011**, *45*, 6267-6275.
- 558 (35). Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.;
- Coull, B.; Koutrakis, P.; Schwartz, J. Spatiotemporal prediction of fine particulate
- matter using high-resolution satellite images in the Southeastern US 2003–2011. J.
- 561 Expo. Sci. Env. Epid. 2015.
- 562 (36). Liu, Y.; Paciorek, C. J.; Koutrakis, P. Estimating Regional Spatial and
- Temporal Variability of PM_{2.5} Concentrations Using Satellite Data, Meteorology, and
- Land Use Information. *Environ. Health Persp.* **2009**, *117*, 886-892.
- 565 (37). Li, F.; Ramanathan, V. Winter to summer monsoon variation of aerosol
- optical depth over the tropical Indian Ocean. J. Geophys. Res. Atoms. (1984–2012)
- 567 **2002,** 107, (D16), AAC 2-1-AAC 2-13.
- 568 (38). Schaap, M.; Apituley, A.; Timmermans, R.; Koelemeijer, R.; Leeuw, G. d.
- Exploring the relation between aerosol optical depth and PM_{2.5} at Cabauw, the
- 570 Netherlands. Atmos. Chem. Phys. **2009**, *9*, (3), 909-925.

- 571 (39). Dubovik, O.; Holben, B.; Eck, T. F.; Smirnov, A.; Kaufman, Y. J.; King,
- M. D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key
- aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, (3), 590-608.
- 574 (40). Hu, R.-M.; Sokhi, R.; Fisher, B. New algorithms and their application for
- satellite remote sensing of surface PM2. 5 and aerosol absorption. J. Aerosol Sci. 2009,
- 576 40, (5), 394-402.
- 577 (41). Al-Saadi, J.; Szykman, J.; Pierce, R. B.; Kittaka, C.; Neil, D.; Chu, D. A.;
- Remer, L.; Gumley, L.; Prins, E.; Weinstock, L. Improving national air quality forecasts
- with satellite aerosol observations. B. Am. Meteorol. Soc. 2005, 86, (9), 1249-1261.
- Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A.
- M.; Li, Q.; Liu, H. Y.; Mickley, L. J.; Schultz, M. G. Global modeling of tropospheric
- chemistry with assimilated meteorology: Model description and evaluation. J. Geophys.
- 583 *Res.* **2001,** *106*, 23073.
- 584 (43). Byun, D. W.; Ching, J. Science algorithms of the EPA Models-3
- 585 community multiscale air quality (CMAQ) modeling system. United States
- Environmental Protection Agency: Washington, DC, 1999.
- 587 (44). Bessagnet, B.; Hodzic, A.; Vautard, R.; Beekmann, M.; Cheinet, S.;
- Honoré, C.; Liousse, C.; Rouil, L. Aerosol modeling with CHIMERE—preliminary
- evaluation at the continental scale. *Atmos. Environ.* **2004,** *38*, 2803-2817.
- 590 (45). Jun, M.; Stein, M. L. Statistical comparison of observed and CMAQ
- modeled daily sulfate levels. *Atmos. Environ.* **2004**, *38*, 4427-4436.
- 592 (46). Cordero, L.; Malakar, N.; Wu, Y.; Gross, B.; Moshary, F.; Ku, M.
- Assessing satellite based PM_{2.5} estimates against CMAQ model forecasts, SPIE Remote
- 594 Sensing. Int. Soc. Opt. & Polym., **2013**, 8890 (Oct 17th),
- 595 (47). van Donkelaar, A.; Martin, R. V.; Brauer, M.; Boys, B. L. Use of satellite
- observations for long-term exposure assessment of global concentrations of fine
- particulate matter. *Environ. Health Persp.***2015**, *123*, (2), 135.
- 598 (48). Di, Q.; Koutrakis, P.; Schwartz, J. A Hybrid Prediction Model for PM_{2.5}
- Mass and Components Using a Chemical Transport Model and Land Use Regression.
- 600 Atmos. Environ. **2016**, 131, 390-399.

- King, M. D.; Kaufman, Y. J.; Menzel, W. P.; Tanre, D. Remote sensing of
- 602 cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging
- 603 Spectrometer (MODIS). *IEEE T. Geosci. Remote* **1992**, *30*, (1), 2-27.
- 604 (50). Salomonson, V. V.; Barnes, W.; Maymon, P. W.; Montgomery, H. E.;
- Ostrow, H. MODIS: Advanced facility instrument for studies of the Earth as a system.
- 606 *IEEE T. Geosci. Remote* **1989,** 27, (2), 145-153.
- 607 (51). Remer, L. A.; Kaufman, Y. J.; Tanré, D.; Mattoo, S.; Chu, D. A.; Martins,
- J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.; et al. The MODIS Aerosol
- Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947-973.
- 610 (52). Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Schwartz, J.; Koutrakis, P.
- Analyses of high resolution aerosol data from MODIS satellite: a MAIAC retrieval,
- 612 southern New England, US. First International Conference on Remote Sensing and
- 613 Geoinformation of the Environment **2013**, 8795 (Aug 5th).
- 614 (53). Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle
- 615 implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and
- look-up tables. J. Geophys. Res. Atoms. (1984–2012) **2011,** 116, (D3).
- 617 (54). Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.;
- Levy, R.; Reid, J. Multiangle implementation of atmospheric correction (MAIAC): 2.
- 619 Aerosol algorithm. J. Geophys. Res. Atoms. (1984–2012) **2011,** 116, (D3).
- 620 (55). van Donkelaar, A.; Martin, R. V.; Park, R. J. Estimating ground-level
- PM_{2.5} using aerosol optical depth determined from satellite remote sensing. *J. Geophys.*
- 622 Res. **2006,** 111.
- 623 (56). Di, Q.; Schwartz, J. Using Chemical Transport Model to Fill in the
- Missingness of Satellite-Based AOD. *Atmos. Environ.* (In review).
- 625 (57). Drury, E.; Jacob, D. J.; Wang, J.; Spurr, R. J.; Chance, K. Improved
- algorithm for MODIS satellite retrievals of aerosol optical depths over western North
- 627 America. J. Geophys. Res. Atoms. (1984–2012) 2008, 113, (D16).
- 628 (58). Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3
- 629 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2015.
- 630 (59). Isakov, V.; Touma, J.; Touma, J.; Khlystov, A.; Sattler, M.; Devanathan,
- S.; Devanathan, S.; Engel-Cox, J.; Weber, S.; McFarland, M.; et al. Estimating Fine

- Particulate Matter Component Concentrations and Size Distributions Using Satellite-
- Retrieved Fractional Aerosol Optical Depth: Part 2—A Case Study. J. Air Waste
- 634 *Manage.* **2007,** *57,* 1360-1369.
- 635 (60). Liu, Y. Mapping annual mean ground-level PM_{2.5} concentrations using
- Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous
- 637 United States. *J. Geophys. Res.* **2004,** *109*.
- 638 (61). Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin,
- 639 L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year
- 640 Reanalysis Project. B. Am. Meteorol. Soc. **1996**, 77, 437-471.
- 641 (62). Herman, J.; Bhartia, P.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global
- distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res
- **1997,** *102*, (16), 911-16.
- 644 (63). Tegen, I.; Werner, M.; Harrison, S.; Kohfeld, K. Relative importance of
- climate and land use in determining present and future global soil dust emission.
- 646 Geophys. Res. Lett. **2004**, 31, (5).
- 647 (64). Torres, O.; Bhartia, P.; Herman, J.; Ahmad, Z.; Gleason, J. Derivation of
- aerosol properties from satellite measurements of backscattered ultraviolet radiation:
- 649 Theoretical basis. J. Geophys. Res. Atoms. (1984–2012) 1998, 103, (D14), 17099-
- 650 17110.
- 651 (65). Stein-Zweers, D.; Veefkind, P. OMI/Aura Multi-wavelength Aerosol
- Optical Depth and Single Scattering Albedo Daily L3 Global 0.25x0.25 deg Lat/Lon
- 653 Grid, version 003. NASA Goddard Space Flight Center 2012.
- 654 (66). Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia,
- P. K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone
- Monitoring Instrument observations: An overview. J. Geophys. Res. Atoms. (1984–
- 657 *2012*) **2007**, *112*, (D24).
- 658 (67). Kloog, I.; Nordio, F.; Coull, B. A.; Schwartz, J. Incorporating Local Land
- Use Regression And Satellite Aerosol Optical Depth In A Hybrid Model Of
- Spatiotemporal PM_{2.5} Exposures In The Mid-Atlantic States. *Environ. Sci. Technol.*
- **2012,** *46*, 11913-11921.

- 662 (68). Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global
- 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC 2015.
- 664 (69). Lee, H.; Liu, Y.; Coull, B.; Schwartz, J.; Koutrakis, P. A novel calibration
- approach of MODIS AOD data to predict PM2. 5 concentrations. Atmos. Chem. Phys
- **2011,** *11*, (15), 7991-8002.
- 667 (70). Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the
- Köppen-Geiger climate classification updated. *Meteorol. Z.* **2006,** *15*, (3), 259-263.
- 669 (71). Bishop, C. M. Neural networks for pattern recognition. Oxford university
- 670 press: **1995**.
- 671 (72). Haykin, S.; Network, N. A comprehensive foundation. *Neural Networks*
- **2004,** *2*, (2004).
- 673 (73). LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and
- time series. The handbook of brain theory and neural networks **1995**, 3361, (10).
- 675 (74). Sharkey, T. D.; Wiberley, A. E.; Donohue, A. R. Isoprene emission from
- 676 plants: why and how. Ann. Bot. **2008**, 101, (1), 5-18.
- 677 (75). Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska,
- V.; Cafmeyer, J.; Guyon, P.; Andreae, M. O.; Artaxo, P. Formation of secondary
- organic aerosols through photooxidation of isoprene. Science 2004, 303, (5661), 1173-
- 680 1176.
- 681 (76). Park, R. J.; Jacob, D. J.; Field, B. D.; Yantosca, R. M.; Chin, M. Natural
- and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the
- United States: Implications for policy. J. Geophys. Res. Atoms. (1984–2012) 2004, 109.
- 684 (D15).
- 685 (77). Sharkey, T. D.; Singsaas, E. L.; Vanderveer, P. J.; Geron, C. Field
- measurements of isoprene emission from trees in response to temperature and light. *Tree*
- 687 *Physiol.***1996,** 16, (7), 649-654.
- 688 (78). Geron, C.; Harley, P.; Guenther, A. Isoprene emission capacity for US tree
- 689 species. Atmos. Environ. 2001, 35, (19), 3341-3352.
- 690 (79). Franklin, M.; Koutrakis, P.; Schwartz, P. The role of particle composition
- on the association between PM_{2.5} and mortality. *Epidemiology* **2008**, *19*, (5), 680-9.

692	(80).	Dai, L.; Zanobetti, A.; Koutrakis, P.; Schwartz, J. D. Associations of fine
693	particulate	matter species with mortality in the United States: a multicity time-series
694	analysis. E	Environ. Health Persp. 2014, 122, 837.