CHAPITRE VIII

Équations récurrentes linéaires

1. Rappels sur les suites

Suite arithmétique

On dit que $(u_n)_n$ est une *suite arithmétique* de raison $r \in \mathbb{R}$ si

$$u_{n+1} = u_n + r \quad \forall n \in \mathbb{N}$$

On a alors

$$u_n = u_0 + nr \quad \forall n \in \mathbb{N}$$

Suite géométrique

On dit que $(u_n)_n$ est une suite géométrique de raison $q \in \mathbb{R}^*$ si

$$u_{n+1} = qu_n \quad \forall n \in \mathbb{N}$$

On a alors

$$u_n = u_0 q^n \qquad \forall n \in \mathbb{N}$$

2. Équations récurrentes du 1er ordre

Définition 2.1

Une équation récurrente linéaire à coefficient constant est une équation du type

$$(E) u_{n+1} = au_n + f(n) \forall n \in \mathbb{N}$$

où $(u_n)_n$ est une suite à déterminer.

Proposition 2.2

Soit l'équation homogène (ou sans second membre) associée

$$(E_0) v_{n+1} = av_n$$

a pour solution la suite géométrique de raison a :

$$v_n = a^n v_0$$

Proposition 2.3

Si $(\overline{u}_n)_n$ est une solution particulière de (E), la solution générale de (E) est alors

$$u_n = v_n + \overline{u}_n = a^n v_0 + \overline{u}_n \qquad \forall n \in \mathbb{N}$$

En faisant n = 0 dans l'expression ci-dessus, on trouve

$$u_n = a^n(u_0 - \overline{u}_0) + \overline{u}_n \quad \forall n \in \mathbb{N}$$

Recherche d'une solution particulière

Si f(n) = P(n) est un polynôme, on cherchera une solution particulière sous la forme :

- Q(n) si $a \neq 1$
- nQ(n) si a = 1

où Q(n) est un polynôme de même degré que P(n).

Si $f(n) = r^n$, on cherchera une solution particulière sous la forme

•
$$kr^n \operatorname{si} r \neq a$$

•
$$nkr^n \operatorname{si} r = a$$

3. Équations récurrentes du 2nd ordre

Définition 3.1

Une équation récurrente linéaire du second ordre est une équation du type

$$au_{n+2} + bu_{n+1} + cu_n = f(n) \quad \forall n \in \mathbb{N}$$
 (E)

L'équation caractéristique associée à (E) est l'équation du second ordre

$$ar^2 + br + c = 0 \qquad (E_c)$$

On note $\Delta = b^2 - 4ac$ le discriminant de cette équation.

Remarque

Si $\Delta > 0$, l'équation (E_c) à deux solutions réelles distinctes :

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $r_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Si $\Delta = 0$, l'équation (E_c) à une solution réelle « double » :

$$r = \frac{-b}{2a}$$

Si $\Delta < 0$, l'équation (E_c) à deux solutions complexes :

$$r = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $\bar{r} = \frac{-b - i\sqrt{-\Delta}}{2a}$

Proposition 3.2

Soit l'équation de récurrence linéaire du second ordre homogène (ou sans second membre)

$$au_{n+2} + bu_{n+1} + cu_n = 0 \qquad \forall n \in \mathbb{N}$$
 (E)

et Δ le discriminant de l'équation caractéristique.

• si $\Delta > 0$, la solution générale de (E_0) est de la forme

$$u_n = K_1 r_1^n + K_2 r_2^n$$

où r_1 et r_2 sont les racines de l'équation caractéristique.

• si $\Delta = 0$, la solution générale de (E_0) est de la forme

$$u_n = (K_1 n + K_2) r^n$$

où r est la racine double de l'équation caractéristique.

• si $\Delta < 0$, la solution générale de (E_0) est de la forme

$$u_n = \rho^n (K_1 \cos n\theta + K_2 \sin n\theta)$$

où $\rho {\rm e}^{\pm i \theta}$ sont les racines complexes conjuguées de l'équation caractéristique.

Théorème 3.3

Soit l'équation de récurrence linéaire du second ordre

$$au_{n+2} + bu_{n+1} + cu_n = f(n)$$
 (E)

Alors, toute solution de (E) est de la forme

$$u_n = v_n + \overline{u}_n$$

оù

- (\overline{u}_n) est une solution particulière de (E)
- (v_n) est la solution générale de

$$au_{n+2} + bu_{n+1} + cu_n = 0$$
 (E₀)

Recherche d'une solution particulière

Si f(n) = P(n) est un polynôme, on cherchera une solution particulière sous la forme :

- Q(n) si 1 n'est pas racine de l'équation caractéristique
- nQ(n), si 1 est une racine simple
- $n^2 Q(n)$, si 1 est racine double

où Q(n) est un polynôme de même degré que P(n).

Recherche d'une solution particulière

Si $f(n) = \lambda q^n$, on cherchera une solution particulière sous la forme :

- Kq^n , si q n'est pas solution de l'équation caractéristique (E_c)
- Knq^n , si q est solution simple de (E_c)
- Kn^2q^n , si q est solution double (E_c)

Recherche d'une solution particulière

Si $f(n) = e^{\alpha n} P(n)$, on cherchera une solution particulière sous la forme :

$$Q(n)e^{\alpha n}$$
 $nQ(n)e^{\alpha n}$ $n^2Q(n)e^{\alpha n}$

où Q(n) est un polynôme de même degré que P(n).