# An Introduction to Sparse Coding and Dictionary Learning

Kai Cao January 14, 2014

#### Outline

- Introduction
- Mathematical foundation
- Sparse coding
- Dictionary learning
- Summary

## Introduction

# What is sparsity?

• Sparsity implies many zeros in a vector or a matrix



Reconstructed patch

# Sparse Representation



### Application---Denoising

#### Source





Result 30.829dB



Dictionary

Noisy image

#### Application---Compression



[O. Bryta, M. Elad, 2008]

### Mathematical foundation

#### Derivatives of vectors

First order

$$\frac{\partial a^T x}{x} = \frac{\partial x^T a}{x} = a$$

Second order

$$\frac{\partial x^T B x}{\partial x} = (B + B^T) x$$

Exercise

$$\min_{\alpha \in \mathbb{R}^m} \frac{1}{2} \| x - D\alpha \|_2^2 + \lambda \| \alpha \|_2^2, \quad x \in \mathbb{R}^n, D \in \mathbb{R}^{n \times m}$$



$$\alpha = (D^T D + \lambda I)^{-1} D^T x$$

#### Trace of a Matrix

Definition

$$Tr(A) = \sum_{i=1}^{n} a_{ii}, \quad A = (a_{ij}) \in R^{n \times n}$$

Properties

$$||A||_F^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = Tr(A^T A),$$
 $Tr(A) = Tr(A^T),$ 
 $Tr(A+B) = Tr(A+B), \quad B \in R^{n \times n}$ 
 $Tr(aA) = aTr(A), \quad a \in R$ 
 $Tr(AB) = Tr(BA), \quad B \in R^{n \times n}$ 
 $Tr(ABC) = Tr(BCA) = Tr(CAB), \quad B, C \in R^{n \times n}$ 

#### Derivatives of traces

First order

$$\frac{\partial}{\partial X} Tr(XA) = A^{T}$$

$$\frac{\partial}{\partial X} Tr(X^{T}A) = A$$

Derivatives of traces

$$\frac{\partial}{\partial X} Tr(X^T X A) = X A^T + X A$$
$$\frac{\partial}{\partial X} Tr(X^T B X) = B^T X + B X$$

Exercise

$$\min_{A \in R^{k \times m}} || X - DA ||_F^2 + \lambda || A ||_F^2, \quad X \in R^{n \times m}, D \in R^{n \times k}$$

$$A = (D^T D + \lambda I)^{-1} D^T X$$

# Sparse coding

## Sparse linear model

• Let  $x \in \mathbb{R}^n$  be a signal



• Let  $D = [d_1, d_2, ..., d_m] \in \mathbb{R}^{n \times m}$  be a set of normalized  $(d_i^T d_i = 1)$  "basis vectors" (dictionary)



• Sparse representation is to find a sparse vector  $\alpha \in R^m$  such that  $x \approx D\alpha$ , where  $\alpha$  is regarded as sparse code

# The sparse coding model

Objective function

$$\min_{\alpha \in \mathbb{R}^m} \frac{1}{2} \|x - D\alpha\|_2^2 + \lambda \varphi(\alpha)$$
Data fitting term Regularization term

- The regularization term  $\varphi$  can be
  - the  $l_2$  norm.  $\|\alpha\|_2^2 \triangleq \sum_{i=1}^m \alpha_i^2$
  - the  $l_0$  norm.  $\|\alpha\|_0 \triangleq \#\{i \mid a_i \neq 0\}$
  - the  $l_1$  norm.  $\|\alpha\|_1 \triangleq \sum_{i=1}^m |\alpha_i|$

Sparsity inducing

**—** ...

## Matching pursuit

$$\min_{\alpha \in \mathbb{R}^m} \frac{1}{2} \| x - D\alpha \|_2^2 \quad \text{s. t.} \quad \| \alpha \|_0 \le L$$

- 1. Initialization:  $\alpha = 0$ , residual r = x
- 2. while  $//\alpha//_0 < L$
- 3. Select the element with maximum correlation with the residual

$$\hat{i} = \underset{i=1,\dots,m}{\operatorname{arg\,max}} |d_i^T r|$$

4. Update the coefficients and residual

$$\alpha_{\hat{i}} = \alpha_i + d_i^T r$$

$$r = r - (d_{\hat{i}}^T r) d_i$$

End while

# An example for matching pursuit

#### Patch from latent



Correlation  $c_i = d_i^T \mathbf{x}$ 



#### Dictionary elements

$$c_2 =$$





$$c_1 = -0.039$$
  $c_2 = 0.577$   $c_3 = 0.054$   $c_4 = -0.031$   $c_5 = -0.437$ 

$$c_5 = -0.437$$









Residual r







$$c_1 = -0.035$$
  $c_2 = 0$   $c_3 = 0.037$   $c_4 = -0.046$   $c_5 = -0.289$ 

$$c_2 = 0$$

$$c_3 = 0.037$$

$$c_{4}$$
=-0.046

$$c_5 = -0.289$$

Correlation  $c_i = d_i^{\mathrm{T}} r$ 



$$d_2$$







Coefficient does not update!

Residual r









 $||x - \hat{x}||_2 = 0.763$ 

Reconstructed patch











# Orthogonal matching pursuit

$$\min_{\alpha \in \mathbb{R}^m} \frac{1}{2} \| x - D\alpha \|_2^2 \quad \text{s. t.} \quad \| \alpha \|_0 \le L$$

- 1. Initialization:  $\alpha = 0$ , residual r = x, active set  $\Omega = \emptyset$
- 2. while  $//\alpha//_0 < L$
- 3. Select the element with maximum correlation with the residual

$$\hat{i} = \underset{i=1,\dots,m}{\operatorname{arg\,max}} |d_i^T r|$$

4. Update the active set, coefficients and residual

$$\Omega = \Omega \cup \hat{i}$$

$$\alpha_{\Omega} = (d_{\Omega}^{T} d_{\Omega})^{-1} d_{\Omega}^{T} r$$

$$r = x - d_{\Omega} \alpha_{\Omega}$$

End while

# An example for orthogonal matching pursuit

Patch from latent



Dictionary elements

$$c_1$$
=-0.039  $c_2$ = 0.577  $c_3$ =0.054  $c_4$ =-0.031  $c_5$ =-0.437



$$c_3 = 0.054$$

$$c_{4}$$
=-0.031

$$c_5 = -0.437$$



Correlation  $c_i = d_i^T \mathbf{x}$ 











Residual r









$$c_1 = -0.035$$

$$c_2 = 0$$

$$c_3 = 0.037$$

$$c_4 = -0.046$$

$$c_1 = -0.035$$
  $c_2 = 0$   $c_3 = 0.037$   $c_4 = -0.046$   $c_5 = -0.289$ 











Residual r







× 0.499 - ×(-0.309)



 $||x - \hat{x}||_2 = 0.759$ 

Reconstructed patch  $\hat{x}$  =  $\times 0.499 + \times (-0.309)$ 









# Why does $l_1$ -norm induce sparsity?

• Analysis in 1D (comparison with  $l_2$ )

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (x - \alpha)^2 + \lambda |\alpha|$$

if 
$$x \ge \lambda$$
,  $\alpha = x - \lambda$   
 $\Rightarrow$  if  $x \le -\lambda$ ,  $\alpha = x + \lambda$   
else,  $\alpha = 0$ 

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (x - \alpha)^2 + \lambda \alpha^2$$

$$\Rightarrow \alpha = x/(1+2\lambda)$$





# Why does $l_1$ -norm induce sparsity?

• Analysis in 2D (comparison with  $l_2$ )

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} + \lambda \| \alpha \|_{1}$$

$$\Leftrightarrow \min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} \text{ s.t. } \| \alpha \|_{1} \leq \mu$$

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} + \lambda \| \alpha \|_{1} \qquad \min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} + \lambda \| \alpha \|_{2}^{2} 
\min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} \text{ s.t. } \| \alpha \|_{1} \le \mu \qquad \Leftrightarrow \min_{\alpha \in \mathbb{R}} \frac{1}{2} \| x - \alpha \|_{2}^{2} \text{ s.t. } \| \alpha \|_{2} \le \mu$$





20

#### Optimality condition for $l_1$ -norm regularization

$$\min_{\alpha \in \mathbb{R}^m} J(\alpha) = \frac{1}{2} \| x - D\alpha \|_2^2 + \lambda \| \alpha \|_1$$

• Directional derivative in the direction u at  $\alpha$ 

$$\nabla J(\alpha, u) = \lim_{t \to 0^+} \frac{J(\alpha + tu) - J(\alpha)}{t}$$

• g is subgradient of J at  $\alpha$  if and only if

$$\forall t \in R^m, J(t) \ge J(\alpha) + g^T(t - \alpha)$$

- Proposition 1: g is a subgradient  $\Leftrightarrow \forall u \in R^m, g^T u \leq \nabla J(\alpha, u)$
- Proposition 2: if J is differentiable at  $\alpha$ ,  $\nabla J(\alpha, u) = \nabla J(\alpha)^T u$
- Proposition 3:  $\alpha$  is optimal if and only if for all u,  $\nabla J(\alpha, u) \ge 0$

## Subgradient for $l_1$ -norm regularization

• Example: f(x) = |x|



$$\nabla f(x,u) = \begin{cases} |u| & x = 0\\ sign(x)u & x \neq 0 \end{cases}$$

## Subgradient for $l_1$ -norm regularization

$$\min_{\alpha \in \mathbb{R}^m} J(\alpha) = \frac{1}{2} ||x - D\alpha||_2^2 + \lambda ||\alpha||_1$$



• g is a subgradient at  $\alpha$  if and only if for all i

$$|g_i - d_i^T(x - D\alpha)| \le \lambda$$
 if  $a_i = 0$   
 $g_i = d_i^T(x - D\alpha) + \lambda \operatorname{sign}(a_i)$  if  $a_i \ne 0$ 

# First order method for convex optimization

- Differentiable objective
  - Gradient descent:  $\alpha_{t+1} = \alpha_t \eta_t \nabla J(\alpha_t)$
  - With line search for a decent  $\eta_t$
  - Diminishing step size: e.g.,  $\eta_t = (t+t_0)^{-1}$
- Non differentiable objective
  - Subgradient decent:  $\alpha_{t+1} = \alpha_t \eta_t g_t$ ,  $g_t$  is a subgradient
  - With line search
  - Diminishing step size

# Reformulation as quadratic program

$$\min_{\alpha \in \mathbb{R}^m} \frac{1}{2} \| x - D\alpha \|_2^2 + \lambda \| \alpha \|_1$$



$$\min_{\alpha_{+},\alpha_{-} \in \mathbb{R}^{m}_{+}} \frac{1}{2} \| x - D\alpha_{+} + D\alpha_{-} \|_{2}^{2} + \lambda (1^{T} \alpha_{+} + 1^{T} \alpha_{-})$$

# Dictionary Learning

## Dictionary selection

- Which D to use?
- A fixed set of basis:
  - Steerable wavelet
  - Contourlet
  - DCT Basis
  - **—** .....
- Data adaptive dictionary learn from data
  - K-SVD ( $l_{o}$ -norm)
  - On-line dictionary learning ( $l_1$ -norm)

### The objective function for K-SVD







$$\min_{D,A} ||X - DA||_F^2$$

The examples are linear combinations of atoms from D

$$\min_{D,A} \|X - DA\|_F^2 \quad \forall j, s.t. \quad \|\alpha_j\|_0 \le L$$

Each example has a sparse representation with no more than L atoms

#### K-SVD - An Overview



## K-SVD: Sparse Coding Stage

$$\min_{A} || X - DA ||_F^2 \qquad \forall j, s.t. \quad || \alpha_j ||_0 \le L$$

For the j<sup>th</sup> example we solve

$$\min_{\alpha} \|\mathbf{D}\alpha - x_j\|_2^2 \quad s.t. \|\alpha\|_0 \le L$$

**Ordinary Sparse Coding!** 



### K-SVD: Dictionary Update Stage

$$\min_{D} \| X - DA \|_F^2 \quad \forall j, s.t. \quad \| \alpha_j \|_0 \le L$$

For the kth atom we solve

$$\min_{d_k} ||d_k \alpha_T^k - E_k||_F^2$$

$$E_k = \sum_{i \neq k} d_i \alpha_T^i - X$$
 (the residual)



Solve with SVD

$$E_k = U\Lambda V^T \qquad \qquad d_k = u_1$$



$$d_k = u_1$$

## K-SVD Dictionary Update Stage

We want to solve:



www.cs.technion.ac.il/~ronrubin/Talks/K-SVD.ppt

## Compare K-SVD with K-means





# dictionary learning with $l_1$ -norm regularization

• Objective function for  $l_1$ -norm regularization

$$\min_{D} \frac{1}{t} \sum_{i=1}^{t} \frac{1}{2} \| x_i - D\alpha_i \|_2^2 + \lambda \| \alpha_i \|_1$$

where

$$\alpha_{i} \triangleq \arg\min_{\alpha \in R^{m}} \frac{1}{2} \| x_{i} - D\alpha \|_{2}^{2} + \lambda \| \alpha \|_{1}$$

- Advantages of online learning:
  - Handle large and dynamic datasets,
  - Could be much faster than batch algorithms.

# dictionary learning with $l_1$ -norm regularization

$$F_{t}(D) = \frac{1}{t} \sum_{i=1}^{t} \frac{1}{2} \| x_{i} - D\alpha_{i} \|_{2}^{2} + \lambda \| \alpha_{i} \|_{1}$$

$$= \frac{1}{t} (\frac{1}{2} Tr(D^{T} DA_{t}) - Tr(D^{T} B_{t})) + \lambda \sum_{i=1}^{t} \| \alpha_{i} \|_{1}$$

where

$$A_t = \sum_{i=1}^t \alpha_i \alpha_i^T, \qquad B_t = \sum_{i=1}^t x_i \alpha_i^T$$



$$\frac{\partial F_t(D)}{\partial D} = \frac{1}{t} (DA_t - B_t)$$

For a new 
$$x_{t+1}$$
,  $A_{t+1} = A_t + \alpha_{t+1} \alpha_{t+1}^T$ ,  $B_{t+1} = B_t + x_{t+1} \alpha_{t+1}^T$ 

# On-line dictionary learning

- 1) Initialization:  $D_0 \in \mathbb{R}^{n \times m}$ ;  $A_0$ =0;  $B_0$ =0;
- 2) For t=1,...,T
- 3) Draw  $x_t$  from the training data set
- 4) Get sparse code

$$\alpha_{t} = \underset{\alpha \in R^{m}}{\operatorname{arg \, min}} \frac{1}{2} \| x_{t} - D_{t-1} \alpha \|_{2}^{2} + \lambda \| \alpha \|_{1}$$

5) Aggregate sufficient statistics

$$A_t = A_{t-1} + \alpha_t \alpha_t^T, \quad B_t = B_{t-1} + x_t \alpha_t^T,$$

6) Dictionary update

$$D_{t} = D_{t-1} - \rho \frac{\partial F_{t}(D)}{\partial D}$$

7) End for

#### Toolbox - SPAMS

- SPArse Modeling Software:
  - Sparse coding
    - $l_0$ -norm regularization
    - $l_1$ -norm regularization
    - •
  - Dictionary learning
    - K-SVD
    - Online dictionary learning
    - •
- C++ implemented with Matlab interface
- http://spams-devel.gforge.inria.fr/

# Summary

- Sparsity and sparse representation
- Sparse coding with  $l_0$  and  $l_1$ -norm regularization
  - Orthogonal matching pursuit/matching pursuit
  - Subgradient and optimal condition
- Dictionary learning with  $l_0$  and  $l_1$ -norm regularization
  - K-SVD
  - Online dictionary learning
- Try to use it!!

#### References

- T. T. Cai, Lie Wang, Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise, *IEEE Transactions on Information Theory*, 57(7): 4680-4688,2011
- Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. *Annals of statistics*, 32(2):407–499, 2004.
- M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. *IEEE Transactions on Signal Processing*, 54(11):4311-4322, November 2006.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. *In Proceedings of the International Conference on Machine Learning (ICML)*, 2009a.

# Thank you for listening