电动力学 笔记

原生生物

- * 刘川老师《电动力学》笔记
- * 如无特殊说明,采用爱因斯坦求和约定与张量记号,即**重复指标代表求和**; δ_{ij} 为克罗内克记号,当且仅 当 i=j 时为 1,否则为 0; ϵ_{ijk} 为只有 1i,2j,3k 位置为 1,其余为 0 的矩阵的行列式值; ∂_j 代表 $\frac{\partial}{\partial x_j}$,更多下标时类似。
- * 积分上下限不写时默认对全空间 \mathbb{R}^n 积分。

目录

_	电磁	场与麦克斯韦方程组	3
	§1.1	真空中的麦克斯韦方程组	3
	§1.2	麦克斯韦方程组的对称性	3
	§1.3	电磁势与规范对称性	3
	§1.4	介质中的麦克斯韦方程组	4
	§1.5	电磁规律中的守恒律	6
=	静电	·····································	7
	§2.1	泊松方程与静电边值问题	7
	§2.2	导体的边界条件与导体组的能量	8
	§2.3	唯一性定理与静电镜像法	8
	§2.4	泊松方程的分离变量解法	9
	§2.5	静电边值问题的数值解法	10
	§2.6	静电多极展开	11
Ξ	静磁	· · · · · · · · · · · · · · · · · · ·	12
Ξ			1 2 12
Ξ	§3.1	环形电流的磁场与磁矩	
Ξ	§3.1 §3.2	环形电流的磁场与磁矩 磁场的能量	12
Ξ	§3.1 §3.2 §3.3	环形电流的磁场与磁矩 磁场的能量 磁多极展开	12 13
Ξ	§3.1 §3.2 §3.3 §3.4	环形电流的磁场与磁矩	12 13 14
三四	§3.1 §3.2 §3.3 §3.4 §3.5	环形电流的磁场与磁矩	12 13 14 15
	§3.1 §3.2 §3.3 §3.4 §3.5 电磁	环形电流的磁场与磁矩	12 13 14 15
	§3.1 §3.2 §3.3 §3.4 §3.5 电磁 §4.1	环形电流的磁场与磁矩	12 13 14 15 16
	§3.1 §3.2 §3.3 §3.4 §3.5 电磁 §4.1 §4.2	环形电流的磁场与磁矩 磁场的能量 磁多极展开 磁标势与等效磁荷 静磁问题的数值解法	12 13 14 15 16
	§3.1 §3.2 §3.3 §3.4 §3.5 电磁 §4.1 §4.2 §4.3	环形电流的磁场与磁矩 磁场的能量 磁多极展开 磁标势与等效磁荷 静磁问题的数值解法	12 13 14 15 16 16
	§3.1 §3.2 §3.3 §3.4 §3.5 电磁 §4.1 §4.2 §4.3 §4.4	环形电流的磁场与磁矩 磁场的能量 磁多极展开 磁标势与等效磁荷 静磁问题的数值解法	12 13 14 15 16 16 17

五	电磁波的辐射和散射	27
	§5.1 电磁势波动方程的推迟解	27
	§5.2 谐振电荷和电流分布的电磁辐射	28
	§5.3 电偶极辐射、磁偶极辐射和电四极辐射	29
	§5.4 辐射场的多极展开	31
	§5.5 电磁波的散射	32
六	· 狭义相对论	35
	§6.1 狭义相对论的基本假设及其验证	35
	§6.2 洛伦兹变换	35
	§6.3 洛伦兹标量与四矢量	36
	§6.4 洛伦兹变换的数学性质	37
七 相对论性电动力学		37
	§7.1 自由粒子的拉氏量与运动方程	37
	§7.2 电磁场中粒子的拉氏量	39
	§7.3 运动方程与规范不变性	40
	§7.4 电磁场的作用量与电动力学的协变性	40
	§7.5 运动物体中的电磁场	41
	§7.6 均匀静电磁场中带电粒子的运动	43
八	。 。运动带电粒子的辐射	44
	§8.1 李纳-谢维尔势	44
	§8.2 拉莫尔公式与汤姆孙散射	47
	§8.3 相对论性加速电荷的辐射	47
	§8.4 粒子辐射的频谱	48
	§8.5 同步辐射的频谱	50
	§8.6 切连科夫辐射	51
	§8.7 辐射阻尼	51

一 电磁场与麦克斯韦方程组

§1.1 真空中的麦克斯韦方程组

$$\begin{cases} \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\ \nabla \times \vec{B} - \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J} \\ \nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \\ \nabla \cdot \vec{B} = 0 \end{cases}$$

- * 符号含义: \vec{E} 电场强度 [电场]、 \vec{B} 磁场强度 [磁场]、 ρ 电荷密度、 \vec{J} 电流密度、 ϵ_0 真空介电常数、 μ_0 真空磁导率常数
- * 真空介电常数与真空磁导率常数满足 $c^2 = \frac{1}{\epsilon_{000}}$
- *四个方程分别反映电场高斯定律、安培环路定律与麦克斯韦位移电流、法拉第电磁感应定律、磁场高斯定律

洛伦兹力: 电磁场中电荷密度、电流密度 ρ, \vec{J} ,则单位体积受力 [力密度] $\vec{f} = \rho \vec{E} + \vec{J} \times \vec{B}$ 。

§1.2 麦克斯韦方程组的对称性

1. 线性性

方程组对 ρ , \vec{J} , \vec{E} , \vec{B} 线性,即 ρ_1 , \vec{J}_1 生成 \vec{E}_1 , \vec{B}_1 , ρ_2 , \vec{J}_2 生成 \vec{E}_2 , \vec{B}_2 , 则 $a\rho_1 + b\rho_2$, $a\vec{J}_1 + b\vec{J}_2$ 生成 $a\vec{E}_1 + b\vec{E}_2$, $a\vec{B}_1 + b\vec{B}_2$ 。

2. 洛伦兹协变性

方程组在洛伦兹变换的意义下不变,即满足狭义相对论性,将在后续章节讨论。

3. 规范对称性

通过电磁势体现,下节讨论。

4. 分立对称性

宇称变换: $\vec{x} \to -\vec{x}$, 此时 ρ 不变, $\vec{J} \to -\vec{J}$, ∇ 变号, 于是 $\vec{E} \to -\vec{E}$, $\vec{B} \to \vec{B}$ 。

* 将空间反射不变的矢量称为轴矢量, 变号的矢量称为极矢量。

时间反演变换: $t \to -t$, 此时 ρ , 不变, $\vec{J} \to -\vec{J}$, $\frac{\partial}{\partial t}$ 变号, 于是 $\vec{E} \to \vec{E}$, $\vec{B} \to -\vec{B}$ 。

§1.3 电磁势与规范对称性

由于 $\nabla \cdot \vec{B} = 0$,根据数学知识可知存在**矢势** \vec{A} 使得 $\vec{B} = \nabla \times \vec{A}$,此时计算得第三个方程可写为

$$\nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) = 0$$

于是根据数学知识可知存在**标势** Φ 使得 $\vec{E}+\frac{\partial \vec{A}}{\partial t}=-\nabla\Phi$ 。 此时剩下两个方程化为

$$\begin{cases} \nabla^2 \Phi + \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) = -\frac{\rho}{\epsilon_0} \\ \nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} - \nabla (\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t}) = -\mu_0 \vec{J} \end{cases}$$

- *这里 $\nabla^2 \vec{A}$ 指对每个分量用 Laplace 算子作用再拼成矢量。
- * 只有静电学中,即 $\frac{\partial \vec{A}}{\partial t} = 0$ 时,标势才代表电势。

对某标量场 Λ , 作变换

$$\vec{A}' = \vec{A} + \nabla \Lambda, \quad \Phi' = \Phi - \frac{\partial \Lambda}{\partial t}$$

可计算验证 \vec{E} , \vec{B} 不变,这种对称性称为规范对称性,此变换称为规范变换。

由于规范不变性,可要求 \vec{A} , Φ 满足某些特殊的条件 [规范],例如**库伦规范** $\nabla \cdot \vec{A} = 0$,或**洛伦茨规范**

$$\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0$$

* 洛伦茨规范下麦克斯韦方程组进一步化为

$$\begin{cases} \nabla^2 \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -\frac{\rho}{\epsilon_0} \\ \nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \end{cases}$$

标势和矢势满足独立的波动方程,代表电磁场存在波动形式的解,称为电磁波。

* 由方程形式电磁波波速与光速相同,成为光也是电磁波的证据。

§1.4 介质中的麦克斯韦方程组

线性各向同性均匀介质

- 介质单位体积的平均电偶极矩为**电极化强度** \vec{P} [电偶极子的电偶极距定义为带电量 q 与 -q 指向 +q 的矢量乘积],则由于其不均匀会产生**束缚电荷**,考虑封闭曲面积分可得介质内部**束缚电荷密度** $\rho_b = -\nabla \cdot \vec{P}$ 、边界 $\sigma_b = \vec{n} \cdot \vec{P}$ 。
- 束缚电荷分布随时间改变会产生束缚电流分布,由于束缚电荷守恒

$$\frac{\partial \rho_b}{\partial t} + \nabla \cdot \vec{J_b} = 0$$

可得**束缚电流密度** $\vec{J_b} = \frac{\partial \vec{P}}{\partial t}$ 。

• 由于分子内部的带电微观粒子运动,会产生**分子电流**,当介质被外加磁场磁化时,记单位体积平均磁偶极矩为**磁化强度** \vec{M} ,考虑闭合回路积分可得介质内部**分子电流密度** $\vec{J}_m = \nabla \times \vec{M}$ 、边界 $\vec{K}_m = -\vec{n} \times \vec{M}$ 。

将 ρ_b 加入 ρ , \vec{J}_b , \vec{J}_m 加入 \vec{J} ,记**电位移矢量** $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$,磁场强度 $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$,得到介质中的麦克斯韦方程组 [这里 ρ , \vec{J} 指自由电荷、自由电流的密度]

$$\begin{cases} \nabla \cdot \vec{D} = \rho \\ \nabla \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J} \\ \nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \\ \nabla \times \vec{B} = 0 \end{cases}$$

- * 利用数学上 Gauss 定理与 Stolkes 定理可对方程一、四作体积分,对方程二、三作环路积分,从而改写为积分形式。
- * 对一般介质, \vec{D} , \vec{H} 与 \vec{E} , \vec{B} 关系可能非常复杂,称为电磁介质中的**本构关系**。而上述简化情况事实上可看作某种平均场近似。如无特殊说明,均假设上述关系式满足。

电磁介质简介

1. 一般线性介质

 \vec{P}, \vec{M} 与电磁场的依赖关系可写为 [对时间非局域的,但假设对空间局域,此局域性一般成立]

$$P_i(t) = \epsilon_0 \int dt' \chi_{ij}^{(e)}(t') E_j(t - t')$$

$$M_i(t) = \int dt' \chi_{ij}^{(m)}(t') H_j(t-t')$$

考虑傅里叶变换 [无歧义时可将 $\tilde{f}(\omega)$ 也记为 $f(\omega)$]

$$\tilde{f}(\omega) = \int dt f(t) e^{-i\omega t}, f(t) = \frac{1}{2\pi} \int d\omega \tilde{f}(\omega) e^{i\omega t}$$

即可得到

$$P_i(\omega) = \epsilon_0 \chi_{ij}^{(e)}(\omega) E_j(\omega), \quad M_i(\omega) = \chi_{ij}^{(m)}(\omega) H_j(\omega)$$

这里 $\chi_{ij}^{(e)}(\omega), \chi_{ij}^{(m)}(\omega)$ 称为**电极化率张量与磁化率张量**,于是记**介电张量** $\epsilon_{ij}(\omega) = \epsilon_0(\delta_{ij} + \chi_{ij}^{(e)}(\omega))$ 、**磁导率张量** $\mu_{ij}(\omega) = \mu_0(\delta_{ij} + \chi_{ij}^{(m)}(\omega))$,则根据 \vec{D}, \vec{H} 的定义与傅里叶变换的线性性有

$$D_i(\omega) = \epsilon_{ij}(\omega)E_j(\omega), \quad B_i(\omega) = \mu_{ij}(\omega)H_j(\omega)$$

2. 各向同性线性介质

各向同性满足时 [事实上只需立方对称即可], $\epsilon_{ij}(\omega)$ 与 $\mu_{ij}(\omega)$ 必然与 δ_{ij} 正比,从而可由对角元值确定,记作 $\epsilon(\omega)$, $\mu(\omega)$,类似定义 $\chi^{(m)}(\omega)$, $\chi^{(e)}(\omega)$ 可得

$$\vec{D}(\omega) = \epsilon(\omega)\vec{E}(\omega), \quad \epsilon(\omega) = \epsilon_0(1 + \chi^{(e)}(\omega))$$

$$\vec{H}(\omega) = \frac{1}{\mu(\omega)} \vec{B}(\omega), \quad \mu(\omega) = \mu_0 (1 + \chi^{(m)}(\omega))$$

这里 $\epsilon(\omega)$ 记为介电常数或电容率, $\mu(\omega)$ 称为磁导率; $\epsilon(\omega)/\epsilon_0$ 称为相对介电常数, $\mu(\omega)/\mu_0$ 称为相对磁导率。

- *液体、气体、立方对称的晶体与大量多晶体是各向同性的,其电极化率必然为正,磁化率可能正 [顺磁]或负 [逆磁抗磁]。
- * 介电常数与磁导率一般与外场圆频率 ω 、温度等相关,介电常数对频率依赖更明显。

3. 导体

类似对于线性介质讨论,我们假设电流密度于电场有频域上的线性关系,即

$$J_i(\omega) = \sigma_{ij}(\omega)E_j(\omega)$$

 $\sigma_{ii}(\omega)$ 称为电导率张量。类似地,若各向同性满足,即有 $\vec{J}(\omega) = \sigma(\omega)\vec{E}(\omega)$,也即微观**欧姆定**律。

* 理想导体: 电导率趋于无穷, 实际例子如内部 \vec{E} . \vec{B} 均为 0 的超导体。

4. 铁电体、铁磁体

铁电体、铁磁体不属于线性电磁介质,哪怕外加电磁场为 0,也存在自发的电极化或磁化。其只在少数元素中出现,呈现高度的非线性。

* 硬铁磁体: \vec{B} 不太大时 \vec{M} 恒定的铁磁体。

交界处边界条件

考虑底面与交界面法向垂直, 高度趋于 0 的柱体, 运用电场高斯定律即得到

$$\vec{n} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma$$

这里 \vec{n} 为介质 1 指向介质 2 的单位矢量, σ 指交界面自由面电荷密度。对磁场类似得 $\vec{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0$ 。 考虑无穷小矩形回路,一对边与交界面切向垂直,运用磁场环路定律即得到

$$\vec{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K}$$

这里 \vec{K} 指交界面处自由面电流密度。对电场类似得 [由 $\frac{\partial \vec{B}}{\partial t}$ 有限,其面积分趋于 0] $\vec{n} \times (\vec{E}_2 - \vec{E}_1) = 0$ 。

§1.5 电磁规律中的守恒律

电荷守恒

连续性方程

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$$

可从麦克斯韦方程组前两方程直接计算得到。

能量守恒

利用洛伦兹力表达式,空间存在电流分布 \vec{J} 时,体积 V 内电场对电流密度做功功率为

$$W = \iiint_V \mathrm{d}^3 x \vec{J} \cdot \vec{E}$$

代入麦克斯韦方程组 \vec{J} 的表达式,再利用 $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ 即可计算得

$$W = -\iiint_V d^3x \left(\frac{\partial u}{\partial t} + \nabla \cdot \vec{S}\right), \quad u = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{B} \cdot \vec{H}), \quad \vec{S} = \vec{E} \times \vec{H}$$

其含义即体积 V 内带电粒子能量下降一部分转化为电磁场能量 u 的上升,一部分以能流密度 \vec{S} 从边界流出。

* 这里 \vec{S} 也称为坡印亭矢量。

动量守恒

利用洛伦兹力表达式,考虑 V 中全部粒子 [源] 的总动量 p^* ,则有

$$\frac{\mathrm{d}\vec{p}^{\mathrm{s}}}{\mathrm{d}t} = \int_{V} \mathrm{d}^{3}x(\rho\vec{E} + \vec{J} \times \vec{B})$$

将 \vec{J} , ρ 代入表达式, 化简后可最终将动量守恒写为

$$\frac{\mathrm{d}(p_i^s + p_i^f)}{\mathrm{d}t} = \iiint_V \mathrm{d}^3 x \partial_j T_{ij}$$

这里电磁场总动量为

$$\vec{p}^f = \iiint_V \mathrm{d}^3 x \epsilon_0 \mu_0 \vec{S}$$

麦克斯韦应力张量为

$$T_{ij} = \epsilon_0 \left(E_i E_j + c^2 B_i B_j - \frac{1}{2} (\vec{E} \cdot \vec{E} + c^2 \vec{B} \cdot \vec{B}) \delta_{ij} \right)$$

* 电磁场**动量密度** \vec{g} 定义为 $\epsilon_0(\vec{E} \times \vec{B})$,计算得其即为 $\epsilon_0\mu_0\vec{S} = \frac{\vec{S}}{c^2}$ 。

角动量守恒

类似可得到对原点的角动量密度 $M = \vec{x} \times \vec{g}$,电磁场中角动量密度与物质的角动量结合才能得到守恒性。

§2.1 泊松方程与静电边值问题

考虑均匀、各向同性的线性电介质 [介电常数 ϵ] 中的静电场,这时只涉及两方程 $\nabla \cdot \vec{D} = \rho, \nabla \times \vec{E} = 0$,之前的标势 Φ 此时即为静电势,满足 $\vec{E} = -\nabla \Phi$ 。

由 $\vec{D} = \epsilon \vec{E}$ 可得

$$\nabla^2 \Phi(\vec{x}) = -\frac{\rho(\vec{x})}{\epsilon}$$

- * 此方程形式称为 Poisson 方程,区域自由电荷密度 $\rho = 0$ 时即为 Laplace 方程 $\nabla^2 \Phi = 0$ 。
- * 由 PDE 知识,给定 ρ 与边界条件后 Φ 可以唯一确定,即称为**静电边值问题**。

无边界的无穷大空间中 Poisson 方程解为

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon} \int d^3x' \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|}$$

即可看作库伦定律的线性叠加,数学上可利用 [这里 δ^3 即三维空间的 δ 函数]

$$\nabla_{\vec{x}}^2 \frac{1}{|\vec{x} - \vec{x}'|} = -4\pi \delta^3(\vec{x} - \vec{x}')$$

直接计算证明。

- * 此式可两边对 \vec{x} 在包含 \vec{x}' 的小球内计算积分,左侧利用高斯公式即可得到 δ 函数前的系数。
- 一般情况下,考虑 V 被闭合曲面 S 包围,若已知 S 上的 Φ 则称为 **Dirichlet 边界条件**,若已知 S 上 Φ 的法向偏导则称为 **Neumann 边界条件**,由 PDE 理论可证明两者均能得到唯一解。

格林函数

不妨考虑真空情况, $\epsilon = \epsilon_0$ 。 设函数 $G(\vec{x}, \vec{x}')$ 在 V 中满足

$$\nabla^2_{\vec{x}'}G(\vec{x}, \vec{x}') = -4\pi\delta^3(\vec{x} - \vec{x}')$$

则利用格林公式

$$\int_{V} d^{3}x (\phi \nabla^{2} \psi - \psi \nabla^{2} \phi) = \oint_{S} dS \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right)$$

可计算得到

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int_V \mathrm{d}^3 x' G(\vec{x}, \vec{x}') \rho(\vec{x}') + \frac{1}{4\pi} \oint_S \mathrm{d} S' \bigg(G(\vec{x}, \vec{x}') \frac{\partial \Psi(\vec{x}')}{\partial n'} - \Phi(\vec{x}') \frac{\partial G(\vec{x}, \vec{x}')}{\partial n'} \bigg)$$

* 由上方计算 $\frac{1}{|\vec{x}-\vec{x}'|}$ 亦满足条件,但不保证边界条件,导致上式右端无法确定。不过,直接计算可知 $F(\vec{x},\vec{x}')=G(\vec{x},\vec{x}')-\frac{1}{|\vec{x}-\vec{x}'|}$ 必满足 $\nabla^2_{\vec{x}'}F(\vec{x},\vec{x}')=0$,即其**调和**。

对 Dirichlet 边值问题, 额外要求 $G_D(\vec{x}, \vec{x}') = 0, \vec{x}' \in S$, 即得解为

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0} \int_V d^3x' G_D(\vec{x}, \vec{x}') \rho(\vec{x}') - \frac{1}{4\pi} \oint_S dS' \Phi(\vec{x}') \frac{\partial G_D(\vec{x}, \vec{x}')}{\partial n'}$$

对 Neumman 边值问题,额外要求 $\frac{\partial G_N(\vec{x},\vec{x}')}{\partial n'}=-\frac{4\pi}{A_S}, \vec{x}'\in S$,这里 A_S 为 S 面积,即得解为

$$\Phi(\vec{x}) = \langle \Phi \rangle_S + \frac{1}{4\pi\epsilon_0} \int_V d^3x' G_N(\vec{x}, \vec{x}') \rho(\vec{x}') + \frac{1}{4\pi} \oint_S dS' G_N(\vec{x}, \vec{x}') \frac{\partial \Phi(\vec{x}')}{\partial n'}$$

这里 $\langle \Phi \rangle_S$ 为 Φ 在 S 上的平均值。

*一般情况下对格林函数的求解是困难的。

§2.2 导体的边界条件与导体组的能量

* 同样假设导电介质具有线性性与各向同性。

理论分析可得导体**内部电场恒零,表面等势,自由电荷只可能出现在表面**,根据高斯定律即可得到 [ϵ 指导体外部介电常数, σ 指自由面电荷密度,取 n 对应为外法向]

$$\epsilon \frac{\partial \Phi}{\partial n} = -\sigma$$

导体组静电能

考虑 N 个导体,导体间介电常数 ϵ ,每个导体表面 Φ_i ,总电荷 Q_i ,且假定空间中除了导体表面外不存在自由电荷。由此可计算总能量 (由于导体中无电场,只需对导体外部分积分):

$$U = \int d^3x \frac{1}{2} \vec{E} \cdot \vec{D} = \frac{\epsilon}{2} \int d^3x (\nabla \Phi)^2 = \frac{\epsilon}{2} \int d^3x \nabla \cdot (\Phi \nabla \Phi) = \frac{1}{2} \sum_{i=1}^N \Phi_i Q_i$$

(后三个等号分别为代入 Φ 定义、计算后由空间无自由电荷消去 $\nabla^2\Phi$ 、利用高斯定理与上方 $\frac{\partial \Phi}{\partial n}$ 等式) 由线性叠加原理,第 i 个导体表面的电荷可以写为

$$Q_i = \sum_{j=1}^{N} C_{ij} \Phi_j$$

这里 C_{ij} 为只与导体几何有关的参数。其中 C_{ii} 称为导体的**电容系数** [单个导体即为电容],非对角元称为**感应系数**,总静电能即为

$$U = \frac{1}{2} \sum_{i,j=1}^{N} C_{ij} \Phi_i \Phi_j$$

§2.3 唯一性定理与静电镜像法

静电唯一性定理:对 Dirichlet 边值问题或 Neumman 边值问题,静电场的解唯一。 证明:若有 $\Phi_1(\vec{x}), \Phi_2(\vec{x})$ 两解满足要求,记 $\Psi(\vec{x}) = \Phi_1(\vec{x}) - \Phi_2(\vec{x})$,利用高斯定理可知

$$\int_{V} d^{3}x (\nabla \Psi)^{2} = \oint_{S} \Psi(\nabla \Psi) \cdot d\vec{n} - \int_{V} d^{3}x \Psi \nabla^{2} \Psi$$

由于 $\nabla^2 \Psi = 0$,且无论何种边值条件都有右侧第一项积分为 0,可知 $\nabla \Psi$ 必须恒为 0,于是 Ψ 为常数, $\nabla \Phi_1(\vec{x}) = \nabla \Phi_2(\vec{x})$,电场唯一。

电.像法

考虑半径 a 接地导体球外, 距球心 R 处放置点电荷 Q, 求解空间电势。

由于已知导体球面上电势为 0,可假设导体内镜像电荷替代感应电荷,计算可发现球心与点电荷连线上距球心 $\frac{a^2}{R}$ 处放置 $-Q_R^a$ 电荷可保证球面电势 0,由唯一性定理可知空间 $\Phi(\vec{x})$ 即相当于点电荷与镜像电荷叠加产生。

- * 可利用 $\frac{\partial \Phi}{\partial n}$ 得到球面面电荷密度,总量即为像电荷电量 $-Q\frac{a}{B}$ 。
- *几何上为空间 \mathbf{C} 演变换,当 $a \to \infty$ 时成为无穷大导体板,像电荷即为对称位置、电量相反。
- *为满足特殊几何条件时的简单方法,但实际应用可能复杂(如像电荷不能在计算区域内、两球时需考虑无穷多像电荷等)。

§2.4 泊松方程的分离变量解法

本节介绍 $\nabla^2\Phi(\vec{x})=-\frac{\rho(\vec{x})}{\epsilon}$ 的一般分离变量求解方案。由于全空间的解 $\frac{1}{4\pi\epsilon}\int \mathrm{d}^3x'\frac{\rho(\vec{x}')}{|\vec{x}-\vec{x}'|}$ 一定满足内部要求,只是未必满足边界条件,真实解一定可以写为其加上 $\nabla^2\Phi(\vec{x})=0$ 的某个解。因此,先考虑这个 Laplace 方程的分离变量方式。

直角坐标系

分离变量为 $\Phi(\vec{x}) = X(x)Y(y)Z(z)$, 可考虑基本形式的解

$$X(x) \propto e^{k_1 x}, \quad Y(y) \propto e^{k_2 y}, \quad Z(z) \propto e^{k_3 z}$$

代入 Laplace 方程可知 $k_1^2 + k_2^2 + k_3^2 = 0$ 。

*由边界条件确定 k_i ,有限区间 k_i 一般取分立纯虚数,本征函数是三角函数,无穷区间则可能连续。

柱坐标系

分离变量为 $\Phi(\vec{x}) = Z(z)\Phi(\phi)R(r)$, 这里 (ϕ,r) 即为 xy 平面极坐标,可考虑基本形式的解

$$Z(z) \propto e^{\pm kz}, \quad \Phi(\phi) \propto e^{\pm im\phi}, \quad R(r) \propto J_m(kr), N_m(kr)$$

这里 J_m 与 N_m 指贝塞尔函数。

由静电势单值性,m 为整数,而 k 有不同选取: k 实数时,R(r) 为标准贝塞尔函数, J_m 在 0 处有限,而 N_m 发散,需要额外边界条件确定; k 纯虚数时,利用 z 方向边界条件可得到 k 可能取值,对应 R(r) 为虚宗量贝塞尔函数 $I_m(|k|r)$, $K_m(|k|r)$,同样, I_m 在 0 处有限,而 K_m 发散。

* 贝塞尔函数也具有正交、归一、完备等特性,如 [0,a] 上,记 x_{mn} 为 $J_m(x)$ 在正实轴的第 n 个零点,则基本的解形式为 $R(r)=J_m\left(\frac{x_{mn}r}{a}\right)$,有正交归一与完备条件

$$\int_0^a r J_m \left(\frac{x_{mn}r}{a}\right) J_m \left(\frac{x_{mn'}r}{a}\right) dr = \frac{a^2}{2} J_{m+1}^2(x_{mn}) \delta_{nn'}$$

$$\sum_{m=1}^{\infty} \frac{2}{a^2 J_{m+1}^2(x_{mn})} J_m \left(\frac{x_{mn} r}{a} \right) J_m \left(\frac{x_{mn} r'}{a} \right) = \frac{1}{r} \delta(r - r')$$

因此任何函数可通过基本形式进行展开。

* 无穷区间上正交归一条件为

$$\int_0^\infty r J_m(kr) J_m(k'r) dr = \frac{1}{k} \delta(k - k')$$

称为 Hankel 变换,将 r,k 对调即为完备关系,类似直角坐标系中的 Fourier 变换。

球坐标系

球坐标系下 Laplace 算符为

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\hat{L}^2}{r^2}, \quad \hat{L}^2 = -\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi}$$

球谐函数 Y_{lm} 定义为角动量平方算符的本征函数,即

$$\hat{L}^2 Y_{lm}(\theta, \phi) = l(l+1) Y_{lm}(\theta, \phi), \quad l \in \mathbb{N}, \quad m \in \mathbb{Z} \cap [-l, l]$$

其也可以显式写成

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$

这里 P_l^m 为连带勒让德函数。

* 其满足性质 $Y_{l,-m} = (-1)^m Y_{lm}^*$

将 θ , ϕ 视为与 $\vec{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ 等同,即可记为 $Y_{lm}(\vec{n})$,再记 $d\vec{n} = \sin \theta d\theta d\phi$,则其正交 归一与完备条件为

$$\int d\vec{n} Y_{lm}^*(\vec{n}) Y_{l'm'}(\vec{n}) = \delta_{ll'} \delta_{mm'}$$

$$\sum_{l}^{\infty} \sum_{l}^{\infty} Y_{lm}^*(\vec{n}') Y_{lm}(\vec{n}) = \delta(\cos \theta' - \cos \theta) \delta(\phi' - \phi)$$

由此,任意 θ,ϕ 的函数可展开为球谐函数,一般解可以写为

$$\Phi(r, \vec{n}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_{lm} r^{l} + \frac{B_{lm}}{r^{l+1}} \right) Y_{lm}(\vec{n})$$

系数 A_{lm} , B_{lm} 完全由边界条件确定。

- * 若问题有 ϕ 方向对称性,只涉及 m=0 的球谐函数,这时连带勒让德多项式即为勒让德多项式。
- * 球谐函数加法定理:

$$\frac{1}{|\vec{x} - \vec{x}'|} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} \frac{\min\{|\vec{x}|, |\vec{x}'|\}^{l}}{\max\{|\vec{x}|, |\vec{x}'|\}^{l+1}} Y_{lm}^{*}(\vec{n}') Y_{lm}(\vec{n})$$

证明:将左侧乘 $\frac{1}{4\pi}$ 视为格林函数 $G(\vec{x}, \vec{x}')$,即有

$$\nabla^2 G(\vec{x}, \vec{x}') = -\delta^3(\vec{x} - \vec{x}') = -\frac{1}{r^2} \delta(r - r') \delta(\cos \theta - \cos \theta') \delta(\phi - \phi')$$

利用完备性关系展开右侧,知可设格林函数为 $G(\vec{x}, \vec{x}') = \sum_{l,m} g_l(r, r') Y_{lm}^*(\vec{n}') Y_{lm}(\vec{n})$,再由 g_l 在 $r \to 0, \infty$ 时有限、关于 r, r' 对称,求解可得到结果。

一个例子

无穷空间中介电常数 ϵ_2 ,存在均匀强度 E_0 的 z 轴方向电场,放入一个介电常数 ϵ_1 ,半径 a 的电介质球,球心为原点,求放入后电场分布。

由于不存在自由电荷,对应 Laplace 方程,由 z 轴对称性知内外都只涉及 m=0 的球谐函数,又因内部 r=0 处不可能发散,电势一定可以写成

$$\Phi_{in}(\vec{x}) = \sum_{l} A_l r^l P_l(\cos \theta), \quad \Phi_{out}(\vec{x}) = \sum_{l} \left(B_l r^l + \frac{C_l}{r^{l+1}} \right) P_l(\cos \theta)$$

由于无穷远处 $\Phi_{out}(\vec{x}) = -E_0z = -E_0r\cos\theta$,必然只有 l=1 项,且 $B_1=-E_0$ 。此外,其产生介质极化 也必然只有 l=1 项,从而只需求解 A_1,C_1 。通过球面 θ 处场强切向连续、电位移矢量法向连续可知

$$A_1 = -E_0 + \frac{C_1}{a^3}, \quad \epsilon_1 A_1 = -\epsilon_2 \left(E_0 + \frac{2C_1}{a^3} \right)$$

解得

$$\Phi_{in}(\vec{x}) = -\left(\frac{3\epsilon_2}{\epsilon_1 + 2\epsilon_2}\right) E_0 r \cos \theta, \quad \Phi_{out}(\vec{x}) = -E_0 r \cos \theta + \left(\frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + 2\epsilon_2}\right) E_0 \frac{a^3}{r^3} \cos \theta$$

* 更复杂的情况一般都需要通过求解格林函数进行间接求解。

§2.5 静电边值问题的数值解法

*本节主要讨论对 Laplace 方程的求解。

简单网格法

将三维空间划分为网格边长 a 的网格,则有

$$abla^2 \Phi(\vec{x}) \approx \sum_{i=1}^{3} \frac{1}{a^2} (\Phi(\vec{x} + \tilde{i}) + \Phi(\vec{x} - \tilde{i}) - 2\Phi(\vec{x}))$$

这里 \tilde{i} 为i方向长度a的矢量。从而通过格点值可得到Laplace 算子的近似,再结合边界条件求解。

* 可行的求解思路是从扩散方程 $\frac{\partial \Phi(\vec{x},t)}{\partial t} = \nabla^2 \Phi(\vec{x},t)$ 出发,得到迭代

$$\frac{\Phi(\vec{x},t+\Delta t)-\Phi(\vec{x},t)}{\Delta t} = \sum_{i=1}^{3} \frac{1}{a^2} (\Phi(\vec{x}+\tilde{i})+\Phi(\vec{x}-\tilde{i})-2\Phi(\vec{x}))$$

由于 Laplace 方程为扩散方程的稳定状态,充分迭代至 $t \to \infty$ 时即可得到解,此方法称为 **Jacobi 方法**。通过计算数学知识可知,时空步长需满足 $6\Delta t \le a^2$ 才能保证迭代稳定进行。

* 例:考虑点电荷在空间中存在某接地导体时的电场,其电势减去点电荷电势得到的函数 $\Psi(\vec{x})$ 应满足 Laplace 方程,且边界条件为 $\Psi(\vec{x})$ 在导体边界的值为点电荷电势的相反数 [从而保证和为 0],由此即可求解。

有限元方法

* 思路: 利用单形进行剖分,如二维时考虑三角网格。

以二维为例,若已知三角形 $(x_i,y_i), i=1,2,3$ 顶点电势 Φ_i ,设内部电势为 a+bx+cy,求解可得

$$\Phi(x,y) = \frac{1}{D} \sum_{i=1}^{3} (p_i + q_i x + r_i y) \Phi_i, \quad D = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}, \quad p_1 = x_2 y_3 - x_3 y_2, q_1 = y_2 - y_3, r_1 = x_3 - x_2$$

其余 p_i, q_i, y_i 循环交换系数即得。

* 由此,三角形内部的电场 $-\nabla\Phi(x,y)$ 恒定, $E_x = -\frac{1}{D}\sum_i q_i\Phi_i, E_y = -\frac{1}{D}\sum_i r_i\Phi_i$ 。 节点处近似值计算:根据数学知识可知 Laplace 方程应使静电能泛函

$$\mathcal{E}[\Phi] = \frac{\epsilon}{2} \int d^2x |\nabla \Phi(\vec{x})|^2$$

取最小值,而设三角形共有 N_f 个,每个的面积 ΔS_f ,电场为 \vec{E}_f ,则上述泛函在有限元下近似为

$$\mathcal{E}[\{\Phi_i\}] = \frac{\epsilon}{2} \sum_{f=1}^{N_f} \vec{E}_f^2 \Delta S_f$$

此为关于所有 Φ_i 的正定二次型,可通过数值方法求解最小值。

* 考虑迪利克雷边界条件,这时边界节点给定,只需求解全部内部节点,确定系数矩阵后可得到方程组,从 而利用共轭梯度等方法求解。

§2.6 静电多极展开

考虑真空中某有界的电荷分布 $\rho(\vec{x})$ [即其只在有界区域 V 内非零],要求计算远离这团电荷处一点的静电势。

利用球谐函数加法定理,两侧乘 $\frac{1}{4\pi\epsilon_0}\rho(\vec{x}')$ 后在 V 内直接积分计算得到 (由要求 $r\gg r'$)

$$\Phi(\vec{x}) = \frac{1}{\epsilon_0} \sum_{l,m} \frac{1}{2l+1} \frac{Y_{lm}(\vec{n})}{r^{l+1}} q_{lm}, \quad q_{lm} = \int Y_{lm}^*(\vec{n}') (r')^l \rho(\vec{x}') d^3 x'$$

系数 q_{lm} 为与 \vec{x} 无关的常数,称为电荷分布对应的多极矩。

* 定义 $Q = \int d^3x' \rho(\vec{x}')$ 为总电荷, $\vec{p} = \int d^3x' \rho(\vec{x}')\vec{x}$ 为该电荷分布的电偶极矩,电四极矩张量 **D** 满足

$$D_{ij} = \int d^3x' (3x'_i x'_j - (r')^2 \delta_{ij}) \rho(\vec{x}')$$

* 这里 l=0 称为单极矩 (总电荷),随后随 l 增大分别称电偶极矩、电四极矩、电八极矩等,对应带电体系的多极矩张量。一般来说带电体系的多极矩依赖原点选取,但**非零最低阶**的电多极矩与原点选取无关。

电偶极子

考虑原点的一个点电偶极矩 \vec{p} ,计算可发现电势与非原点处场强为 (这里 \vec{n} 指 \vec{x} 方向单位矢量)

$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon} \frac{\vec{p} \cdot \vec{x}}{r^3}, \quad \vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0} \frac{3\vec{n}(\vec{n} \cdot \vec{p}) - \vec{p}}{r^3}$$

但此场强事实上还差一个正比于 δ 函数的项,考虑静电场在球心原点、半径 R 的球体积分,由高斯公式可得

$$\int_{r < R} \mathrm{d}^3 x \vec{E}(\vec{x}) = -\int_{r = R} R^2 \mathrm{d}\Omega_n \Phi(\vec{x}) \vec{n} = -\frac{R^2}{4\pi\epsilon_0} \int \mathrm{d}^3 x' \rho(\vec{x}') \int_{r = R} \mathrm{d}\Omega_n \frac{\vec{n}}{|\vec{x} - \vec{x}'|}$$

* 这里 n 指球面外法向量,第二个等号是将电势拆分为积分。

利用球谐函数保留 l=1 计算可得右侧积分为 $\frac{4\pi}{3}\frac{r_<}{r_>}\vec{n}'$,这里 $r_<,r_>$ 指 r' 与 R 中较小、较大的,于是原积分即为

$$-\frac{R^2}{3\epsilon_0} \int d^3x' \frac{r_{\leq}}{r_{>}^2} \vec{n}' \rho(\vec{x}')$$

若电荷分布全在球内, $r_<$ 恒为 r',可直接计算得到积分为 $-\frac{\vec{r}}{3\epsilon_0}$;若全在球外,即为 $\frac{4\pi R^2}{3}\vec{E}(0)$ 。由此,为使球内的积分成立,电场实际上是

$$\vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0} = \frac{1}{4\pi\epsilon_0} \left(\frac{3\vec{n}(\vec{n} \cdot \vec{p}) - \vec{p}}{r^3} - \frac{4\pi}{3} \vec{P} \delta^3(\vec{x}) \right)$$

静电能

静电能为 $\int \mathrm{d}^3x \rho(\vec{x}) \Phi(\vec{x})$,若 $\rho(\vec{x})$ 只在原点腹肌南非零,事实上可以对 $\Phi(\vec{x})$ 在原点附近展开,再利用分布的电偶极矩、电四极矩定义可以得到静电能 [事实上这比起直接展开增添了 $-\frac{1}{6}r^2\nabla \cdot \vec{E}(0)$,由于其为 0 无影响]

$$U \approx Q\Phi(0) - \vec{p} \cdot \vec{E}(0) - \frac{1}{6} \sum_{i,j} D_{ij} \frac{\partial E_j(0)}{\partial x_i}$$

* 直接计算可知 \vec{x}_1, \vec{x}_2 处电偶极矩 \vec{p}_1, \vec{p}_2 ,则相互作用静电能为

$$\frac{1}{4\pi\epsilon_0} \left(\frac{\vec{p}_1 \cdot \vec{p}_2 - 3(\vec{n} \cdot \vec{p}_1)(\vec{n} \cdot \vec{p}_2)}{|\vec{x}_1 - \vec{x}_2|^2} + \frac{4\pi}{3} (\vec{p}_1 \cdot \vec{p}_2) \delta^3(\vec{x}_1 - \vec{x}_2) \right)$$

这里 \vec{n} 为 $\vec{x}_2 - \vec{x}_1$ 方向的单位矢量。

三 静磁学

§3.1 环形电流的磁场与磁矩

回顾磁矢势 \vec{A} 满足 $\vec{B} = \nabla \times \vec{A}$,利用库伦规范 [静磁学中与洛伦茨规范] 可取 $\nabla \cdot \vec{A} = 0$,假定空间中充 满磁化率 $\mu = \mu_0 \mu_r$ 的线性各向同性均匀磁介质,计算即得到泊松方程 $\nabla^2 \vec{A} = -\mu \vec{J}$,于是类似电场时,无 边界空间中解即可写为

$$\vec{A}(\vec{x}) = \frac{\mu}{4\pi} \int d^3x' \frac{\vec{J}(\vec{x}')}{|\vec{x} - \vec{x}'|}$$

* 电荷守恒连续性方程要求 $\nabla \cdot \vec{J} = 0$,且 \vec{J} 可以包含广义函数 [如一维 δ 函数代表面电流密度,二维 δ 函数代表线电流密度],可以对应将 $\vec{J}(\vec{x})d^3x$ 替换为 $\vec{K}dS$ 或 $Id\vec{l}$,这里 \vec{K} 为面电流密度,I 为线电流强度。 * 若存在不同磁介质,回顾第一章得到的边界条件,即可唯一确定静磁问题解。

环形电流计算

考虑真空中电流强度为 I、半径为 a 的电流环,环心位于坐标原点,法向指向 z 方向,求空间磁矢势与磁场。

球坐标系下电流密度只有 φ 分量,为

$$J_{\phi}(r', \theta', \phi') = \frac{I}{a} \sin \theta' \delta(\cos \theta') \delta(r' - a)$$

直角坐标系下,设 \hat{x},\hat{y} 为两方向单位向量,则 $\vec{J}(\vec{x}') = -J_{\phi}\sin\phi'\hat{x} + J_{\phi}\cos\phi'\hat{y}$,由于关于 ϕ 对称,可直接 设考虑 $\phi = 0$ 的点的磁矢势,由对称性,这些点只有 A_{ϕ} 非零,直接积分即得到 [注意 $\phi = 0$ 时 $A_{\phi} = A_{y}$]

$$A_{\phi}(r,\theta) = \frac{\mu_0 I a}{4\pi} \int_0^{2\pi} \frac{\cos \phi' \, \mathrm{d} \phi'}{(a^2 + r^2 - 2ar \sin \theta \cos \phi')^{1/2}}$$

*此积分为椭圆积分,无解析解, $r\gg a$ 时刻通过分母泰勒展开至前两项 [第一项 $\frac{1}{r}$ 积分为 0] 得到近似

$$A_{\phi}(r,\theta) pprox rac{\mu_0 I \pi a^2}{4\pi} rac{\sin heta}{r^2}$$

从而磁场有近似

$$B_{\theta} = \frac{\mu_0}{4\pi} \frac{2m\cos\theta}{r^3}, \quad B_{\theta} = \frac{\mu_0}{4\pi} \frac{m\sin\theta}{r^3}, \quad m = I\pi a^2$$

这里 m 称为磁偶极矩,与电偶极子周围的电场类似。

§3.2 磁场的能量

考虑 N 个闭合稳恒电流回路 C_i ,电流强度分别为 I_i ,空间充满磁导率 μ 均匀介质。计算可得到

$$(\nabla \times \vec{A})^2 = \partial_j (A_k \partial_j A_k) - A_k (\partial_j \partial_j A_k) - \partial_j (A_k \partial_k A_j) + A_k (\partial_j \partial_k A_j)$$

而全微分在全空间积分可化为无穷远边界上,为 0,且由库伦规范最后一项为 0,只剩下第二项,再利用 泊松方程得能量为

$$U = \frac{1}{2} \int d^3x \vec{H} \cdot \vec{B} = \frac{1}{2\mu} \int d^3x (\nabla \times \vec{A})^2 = \frac{1}{2} \int d^3x \vec{A} \cdot \vec{J}$$

利用替换规则可写出此时磁矢势的表达式

$$\vec{A}(\vec{x}) = \frac{\mu}{4\pi} \sum_{i=1}^{N} \oint_{C_i} \frac{I_i d\vec{l}_i(\vec{x}_i')}{|\vec{x} - \vec{x}_i'|}$$

这里 $\vec{x_i}$ 沿 C_i 绕转, $d\vec{l_i}(\vec{x_i})$ 即为该点处 C_i 的切向量。代入原式即得

$$U = \frac{1}{2} \sum_{i,j=1}^{N} L_{ij} I_{i} I_{j}, \quad L_{ij} = \frac{\mu}{4\pi} \oint_{C_{i}} \oint_{C_{i}} \frac{d\vec{l}_{i}(\vec{x}_{i}) \cdot d\vec{l}_{j}(\vec{x}_{j})}{|\vec{x}_{i} - \vec{x}_{j}|}$$

这里对角元 L_{ii} 称为线圈的**电感或自感系数**,非对角元 L_{ij} , $i \neq j$ 称为**互感系数**。 * 无穷细导线的电感事实上发散,需要假设存在界面,可认为均匀分布估计电感。

电流圈作用力

考虑两电流圈 C_1, C_2 间作用力,为方便,用 \vec{l}_1, \vec{l}_2 简写 $\vec{l}_1(\vec{x}_1), \vec{l}_2(\vec{x}_2)$ 。

根据功能原理, $\vec{F}_{2\to 1}$ 可以写为两电流圈相互作用能对第一个电流圈坐标的**正**梯度 [由于保持电流不变而非磁矢势不变,这里的受力为正梯度而非负梯度],也即

$$\vec{F}_{2\to 1} = \nabla_{\vec{x}_1} U = -\frac{\mu I_1 I_2}{4\pi} \oint_{C_1} \oint_{C_2} \frac{(\vec{x}_1 - \vec{x}_2)(d\vec{l}_1 \cdot d\vec{l}_2)}{|\vec{x}_1 - \vec{x}_2|^3}$$

凑积分为 0 的全微分后分母可改写为 $-d\vec{l}_1 \times (d\vec{l}_2 \times (\vec{x}_1 - \vec{x}_2))$,从而有

$$\vec{F}_{2\to 1} = \oint_{C_1} I_1 d\vec{l}_1 \times \vec{B}_{2\to 1}, \quad \vec{B}_{2\to 1} = \frac{\mu}{4\pi} \oint_{C_2} \frac{I_2 d\vec{l}_2 \times (\vec{x}_1 - \vec{x}_2)}{|\vec{x}_1 - \vec{x}_2|^3}$$

左侧公式为洛伦兹力宏观形式 [安培力],右侧即为毕奥-萨伐尔定律。

§3.3 磁多极展开

考虑原点附近的电流分布与远处一点 \vec{x} , 仍假定充满磁导率 μ 均匀介质, 利用泰勒展开前两项

$$\frac{1}{|\vec{x} - \vec{x}'|} \approx \frac{1}{|\vec{x}|} + \frac{\vec{x} \cdot \vec{x}'}{|\vec{x}|^3}$$

即有

$$A_i(x) \approx \frac{\mu}{4\pi |\vec{x}|} \int d^3 x' J_i(\vec{x}') + \frac{\mu x_j}{4\pi |\vec{x}|^3} \int d^3 x' J_i(\vec{x}') x'_j$$

- * 利用高斯公式化到无穷远处可知 $\int d^3x' \partial'_j (J_j(\vec{x}')x'_i) = 0$,展开偏导并利用 $\nabla' \cdot \vec{J}(\vec{x}') = 0$ 即可得到上方第一项积分事实上为 0。
- * 类似可知 $\int d^3x' \partial'_k (J_k(\vec{x}')x'_ix'_i) = 0$,展开化简可得到

$$x_j \int \mathrm{d}^3 x' \vec{J}(\vec{x}') x_j' = -\vec{x} \times \vec{m}, \quad \vec{m} = \frac{1}{2} \int \mathrm{d}^3 x' (\vec{x}' \times \vec{J}(\vec{x}'))$$

$$\vec{A}(\vec{x}) = \frac{\mu}{4\pi} \frac{\vec{m} \times \vec{x}}{|\vec{x}|^3}, \quad \vec{B}(\vec{x}) = \frac{\mu}{4\pi} \left(\frac{3\vec{n}(\vec{n} \cdot \vec{m}) - \vec{m}}{|\vec{x}|^3} \right)$$

此处 ñ 代表 x 方向单位矢量。

* 完全类似电偶极场,考虑积分后会对磁场增添一个 δ 函数修正,成为

$$\vec{B}(\vec{x}) = \frac{\mu}{4\pi} \left(\frac{3\vec{n}(\vec{n} \cdot \vec{m}) - \vec{m}}{|\vec{x}|^3} + \frac{8\pi}{3} \vec{m} \delta^3(\vec{x}) \right)$$

磁矩

对平面电流圈,设其面积 S,电流强度 I,右手定则确定单位法向量 \vec{n}_0 ,即有 $\vec{M}=SI\vec{n}_0$,符合之前环形电流的结果。

若电流密度 $\vec{J}(\vec{x})$ 由一系列带电 q_i , 速度 \vec{v}_i 的粒子提供, 即 $\vec{J}(\vec{x}) = \sum_i q_i \vec{v}_i \delta^3(\vec{x} - \vec{x}_i)$, 计算可知

$$\vec{m} = \frac{1}{2} \sum_{i} q_i (\vec{x}_i \times \vec{v}_i) = \sum_{i} \frac{q_i}{2M_i} \vec{L}_i$$

这里 \vec{L}_i 表示粒子角动量。若所有粒子 q_i, M_i 同为 q, M,即有 $\vec{m} = \frac{q}{2M} \vec{L}$, \vec{L} 为总角动量 $\sum_i \vec{L}_i$ 。* 量子力学中除了经典角动量外还有纯量子的**自旋角动量** \vec{S} ,原子磁矩与核子磁矩分别为

$$\vec{m} = -\frac{e\hbar}{2m_e}(g_l\vec{L} + g_s\vec{S})/\hbar, \quad \vec{m}_N = \frac{e\hbar}{2m_p}(g_s\vec{S})/\hbar$$

这里右侧 $(g_l\vec{L} + g_s\vec{S})/\hbar$ 代表无量纲总角动量,左侧系数即为量子力学中的 μ 。轨道角动量的贡献与经典情形一致, $g_l = 1$,而自旋角动量系数 g_s 依赖于粒子性质。

力与力矩

根据受力公式 $\vec{F} = \int d^3x' \vec{J}(\vec{x}') \times \vec{B}(\vec{x}')$, 对 \vec{B} 作泰勒展开, 保留两项即得到

$$F_i \approx \epsilon_{ijk} \bigg(B_k(0) \int d^3 x' J_j(\vec{x}') + \int d^3 x' J_j(\vec{x}') (\vec{x}' \cdot \nabla) B_k(0) \bigg)$$

类似之前讨论可知首项为 0, 第二项利用 $\nabla \cdot \vec{B} = 0$ 可化为

$$\vec{F} = (\vec{m} \times \nabla) \times \vec{B} = \nabla(\vec{m} \times \vec{B})$$

对力矩 $\vec{N} = \int d^3x'(\vec{x}' \times (\vec{J}(\vec{x}') \times \vec{B}(\vec{x}')))$,完全类似可得到 $\vec{N} = \vec{m} \times \vec{B}$,与静电学中的 $\vec{p} \times \vec{E}$ 类似。

能量

由于力可看作势能的负梯度,势能可表达为

$$U = -\vec{m} \times \vec{B}$$

- *原子物理中电子磁矩与外加磁场相互作用能可写为此形式,因此称为**塞曼能**,由于磁矩与角动量正比, 角动量是量子化的,原子在外磁场中时因转动不变性而简并的能级将分裂,称为**塞曼效应**。
- * 原子核磁矩 \vec{m}_N 与电子磁矩的偶极-偶极相互作用产生**超精细结构**,设电子自旋磁矩 \vec{m}_e ,轨道运动磁矩 $\frac{e}{2m}\vec{L}$,相互作用能为 $[\vec{n}$ 指连线方向的单位矢量]

$$\mathcal{H} = \frac{\mu_0}{4\pi} \left(\frac{\vec{m}_N \cdot \vec{m}_e - 3(\vec{n} \cdot \vec{m}_N)(\vec{n} \cdot \vec{m}_e)}{r^3} - \frac{e}{m} \frac{\vec{m}_N \cdot \vec{L}}{r^3} - \frac{8\pi}{3} (\vec{m}_N \cdot \vec{m}_e) \delta^3(\vec{x}) \right)$$

量子力学中此能量视为某种微扰,需要在波函数中取平均。

§3.4 磁标势与等效磁荷

若空间**无自由电流分布**,根据麦克斯韦方程组有 $\nabla \times \vec{H} = 0$,于是存在**磁标势** $\Phi_M(x)$ 满足 $\vec{H}(\vec{x}) = -\nabla \Phi_M(\vec{x})$ 。

由于 $\nabla \cdot \vec{B} = 0$,利用 $\vec{B} = \mu_0 (\vec{H} + \vec{M})$ 可得

$$\nabla^2 \Phi_M(\vec{x}) = -(-\nabla \cdot \vec{M})$$

也即 $\vec{M}(\vec{x})$ 提供了类似静电学中电荷的磁荷密度 $\rho_M(\vec{x})=-\nabla\cdot\vec{M}(\vec{x})$,或在边界上的面磁荷密度 $\sigma_M(\vec{x})=\vec{n}\cdot\vec{M}(\vec{x})$ 。

多数情况下 \vec{M} 会与 $\Phi_M(x)$ 有关,因此此方程并不能简单视为泊松方程求解。此处只考虑两种简单情况:

1. 线性各向同性均匀介质 $\vec{B} = \mu \vec{H}$,从而满足 Laplace 方程 $\nabla^2 \Phi_M(\vec{x}) = 0$ 。

例:考虑真空中均匀静磁场 H_0 ,方向为 z 方向,将内外半径 a,b 的空心球壳放入,球壳介质为线性各向同性均匀介质,相对磁导率为 μ_r ,球心为坐标原点,求空间磁场。

考虑球坐标系,此问题关于 ϕ 对称,类似泊松方程分离变量解法中的例子,利用球谐函数可得到 r>b 与 a< r< b 处磁标势可以视为均匀场与偶极场叠加, r< a 处磁标势则对应均匀场,结合无穷远处条件可设

$$\Phi_{M}^{r>b} = -H_{0}r\cos\theta + \frac{A_{1}\cos\theta}{r^{2}}, \quad \Phi_{M}^{a < r < b} = -H_{1}r\cos\theta + \frac{C_{1}\cos\theta}{r^{2}}, \quad \Phi_{M}^{r < a} = -H_{2}r\cos\theta$$

结合 r=b, r=a 处的连续性条件 [可直接利用 $r\cos\theta=z$ 将 Φ_M 写在直角坐标系中计算 \vec{H} ,进而根据线性介质得到 \vec{B} ,从而可得到连续性方程]

$$-H_0 + \frac{A_1}{b^3} = -H_1 + \frac{C_1}{b^3}, \quad H_0 + \frac{2A_1}{b^3} = \mu_r \bigg(H_1 + \frac{2C_1}{b^3} \bigg), \quad -H_1 + \frac{C_1}{a^3} = -H_2, \quad \mu_r \bigg(H_1 + \frac{2C_1}{b^3} \bigg) = H_2$$

即可解出 A_1, H_1, C_1, H_2 。

* 当 $\mu_r \gg 1$ 时可发现球内部磁场约为 $\frac{9H_0}{2\mu_r(1-a^3/b^3)}$, 反比于 μ_r , 这称为**磁屏蔽**, 类似静电屏蔽。

2. **硬铁磁体**,这时 \vec{M} 几乎不依赖 \vec{H} ,可将 \vec{M} 视为已知矢量场,类似静电问题求解。

例: 磁化强度均匀为 \vec{M} 的硬铁磁体球,半径为 a,球心为坐标原点,磁化强度指向 z 方向,求空间磁场。

由于磁化强度为常矢量,体磁荷密度为 0,面磁荷密度即为 $\vec{N} \cdot \vec{M} = M_0 \cos \theta'$,这里 θ' 指原点指向球面某点的矢量与 z 轴夹角。于是,直接积分可得到

$$\Phi_M(\vec{x}) = \frac{M_0 a^2}{4\pi} \int d\Omega' \frac{\cos \theta'}{|\vec{x} - \vec{x'}|}$$

利用球谐函数加法定理,由于 $\cos\theta' \propto Y_{10}(\theta',\phi')$,根据正交性可知只需保留

$$\frac{4\pi}{3} \frac{\min(a,r)}{\max(a,r)^2} Y_{10}^*(\theta',\phi') Y_{10}(\theta,\phi)$$

一项乘 $\cos\theta'$ 的积分,从而利用 $\frac{\cos\theta'}{Y_{10}(\theta',\phi')} = \frac{\cos\theta}{Y_{10}(\theta,\phi)}$ 与正交归一性计算可得

$$\Phi_{M}(\vec{x}) = \frac{1}{3} M_{0} a^{2} \frac{\min(a, r)}{\max(a, r)^{2}} \int d\Omega' Y_{10}^{*}(\theta', \phi') Y_{10}(\theta', \phi') \cos \theta = \frac{1}{3} M_{0} a^{2} \frac{\min(a, r)}{\max(a, r)^{2}} \cos \theta$$

* 由此可得到球内为均匀磁场, $\vec{H}=-\frac{1}{3}\vec{M}$,球外为磁偶极子形式,磁偶极矩为 $\frac{4\pi a^3}{3}\vec{M}$,即磁化强度乘球体积。

§3.5 静磁问题的数值解法

* 实际铁磁体往往是多晶的,会产生不同磁畴,同一个磁畴内 \vec{M} 基本沿固定方向,从而使得铁磁体的磁畴体出现固定磁矩。

考虑简化模型,假定晶粒内部磁化强度 $\vec{M}_1(\vec{x}) = M_s \hat{z}$,晶粒间 $\vec{M}_2(\vec{x}) = M_s' \hat{z}$,这里 \hat{z} 为 z 方向单位矢量, $M_s > M_s'$ 。根据面磁荷密度的公式, \vec{M}_1, \vec{M}_2 交界处会出现等效的磁荷,它们产生的磁场称为**退磁场**。

- * 由于等效磁荷成对出现,退磁场全空间积分必然为 0,但方均根非 0,随 $\frac{M'_s}{M_s}$ 远离 1 而成线性关系增大, 当 $M'_s=0$ 时其强度在饱和磁感应强度 20% 左右。
- * 对于实际任意分布的情况,一般需要通过数值解法处理,具体做法与静电学中类似。

四 电磁波的传播

§4.1 均匀平面电磁波的基本性质

没有电荷与电流分布时,假设空间存在介电常数 ϵ 、磁导率 μ 的均匀线性介质,可以得到

$$\nabla^2 \vec{E} - \epsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0, \quad \nabla^2 \vec{B} - \epsilon \mu \frac{\partial^2 \vec{B}}{\partial t^2} = 0$$

其基本解为均匀平面电磁波,即

$$\vec{E} = \vec{E}_0 e^{i\vec{k}\cdot\vec{x} - i\omega t}, \quad \vec{B} = \vec{B}_0 e^{i\vec{k}\cdot\vec{x} - i\omega t}$$

* 这里波动部分用复指数表示,电磁场振幅 \vec{E}_0 , \vec{B}_0 也可取复矢量。约定真实测量的物理量均为对应复值的**实部**。

基本性质

代入麦克斯韦方程组可得到

$$\vec{k} \cdot \vec{E}_0 = 0$$
, $\vec{k} \cdot \vec{B}_0 = 0$, $\vec{B}_0 = \sqrt{\mu \epsilon} \vec{n} \times \vec{E}_0$, $k^2 = \mu \epsilon \omega^2$

这里 \vec{n} 为 \vec{K} 方向单位矢量,由前三式可知 \vec{k} , \vec{B}_0 , \vec{E}_0 相互垂直,可构成三维空间的标架,第四个式子可得到 [利用 $c^{-2}=\mu_0\epsilon_0$,这里 k 指 $|\vec{k}|$]

$$v = \frac{\omega}{k} = \frac{c}{n}, \quad n = \sqrt{\frac{\mu\epsilon}{\mu_0\epsilon_0}}$$

这里 v 即为相速度,n 称为介质折射率。

* 真实介质均为色散介质,也即折射率与 ω 有关,但很窄的频率范围内可假设几乎无关,从而可将均匀平面电磁波叠加得到一般解。

偏振性质

记 $\vec{e}_3 = \vec{N}$ 如上方定义,考虑垂直 \vec{N} 的平面内的两单位矢量 \vec{e}_1, \vec{e}_2 满足 $\vec{e}_1 \times \vec{e}_2 = \vec{N}$,它们就构成了三维空间的标准正交基。

由此电场强度可以展开

$$\vec{E}(\vec{x},t) = (E_1\vec{e}_1 + E_2\vec{e}_2)e^{i\vec{k}\cdot\vec{x} - i\omega t}$$

复系数 E_1, E_2 的关系不同即称为其属于不同**偏振状态**:若 $\frac{E_2}{E_1}$ 为实数,称**线偏振**;若 $\frac{E_2}{E_1}$ = ±i,称为左旋/右旋**圆偏振**;一般情况下 $\vec{E}(\vec{x},t)$ 面对传播反向看将画出椭圆,因此称为**椭圆偏振**。

* 对圆偏振,令 $\vec{e}_{\pm}=\frac{1}{\sqrt{2}}(\vec{e}_1\pm\vec{e}_2)$,它们也与 \vec{e}_3 构成三维复内积空间的一组标准正交基。

Stokes 参数: 记 $\vec{e_1} \cdot \dot{\vec{E}} = a_1 e^{i\delta_1}, \vec{e_2} \cdot \vec{E} = a_2 e^{i\delta_2}$,其中 a_1, a_2 为模长, δ_1, δ_2 为辐角,定义

$$s_0 = a_1^2 + a_2^2$$
, $s_1 = a_1^2 - a_2^2$, $s_2 = 2a_1a_2\cos(\delta_2 - \delta_1)$, $s_3 = 2a_1a_2\sin(\delta_2 - \delta_1)$

为 Stokes 参数,它们可以直接测量,从而描述偏振性质。

* 实际上 Stokes 参数有三个独立参数,满足 $s_0^2 = s_1^2 + s_2^2 + s_3^2$ 。

能流

由电磁波定义与基本性质可算出坡印亭矢量的周期平均值 [第一个等号可通过积分平均计算得到]

$$\bar{\vec{S}} = \frac{1}{2} \vec{E} \times \vec{H}^* = \frac{1}{2} \sqrt{\frac{\epsilon}{\mu}} |\vec{E}_0|^2 \vec{n}$$

类似得能量密度周期平均值为

$$\bar{u} = \frac{1}{4} \left(\epsilon \vec{E} \cdot \vec{E}^* + \frac{1}{\mu} \vec{B} \cdot \vec{B}^* \right) = \frac{\epsilon}{2} |\vec{E}_0|^2$$

于是能流密度 $\bar{\vec{S}} = \bar{u}v\vec{n}$, 这里 v 即为相速度。

* 此结论仅对单色均匀平面电磁波正确,一般电磁波能量流动速度未必为相速度。

§4.2 电磁波在介质表面的折射与反射

假设两种折射率分别为 n, n' 的介质 [对应介电常数、磁导率为 μ, ϵ 与 μ', ϵ'],一均匀平面电磁波从折射率为 n 的介质入射到交界面上。

为方便,设交界面法线的单位矢量 \vec{n} 沿 z 轴正方向,入射电磁波波矢 \vec{k} 在 xz 平面内。入射波矢与法向量张成的平面称为**入射面**,夹角 i 称**入射角**。设反射波的波矢为 \vec{k}'' ,它与负法向 $-\vec{n}$ 的夹角 r'' 称**反射角**:折射波的波矢 \vec{k}' ,其与 \vec{n} 的夹角 r 称为折射角。以下用 \hat{x} 表示向量 \vec{x} 方向的单位矢量,则入射波、折射波、反射波电磁场分别为

$$\vec{E} = \vec{E}_0 e^{i\vec{k}\cdot\vec{S} - i\omega t}, \quad \vec{B} = \sqrt{\mu\epsilon}\hat{k} \times \vec{E}$$

$$\vec{E}' = \vec{E}_0' e^{i\vec{k}' \cdot \vec{S} - i\omega t}, \quad \vec{B}' = \sqrt{\mu' \epsilon'} \hat{k}' \times \vec{E}'$$

$$\vec{E}'' = \vec{E}_0'' e^{i\vec{k}'' \cdot \vec{S} - i\omega t}, \quad \vec{B}'' = \sqrt{\mu \epsilon} \hat{k}'' \times \vec{E}''$$

由于电磁波频率不变,类似之前推导知波矢应满足 [用 x 表示 \vec{x} 的模长]

$$k = k'' = n\frac{\omega}{c}, \quad k' = n'\frac{\omega}{c}$$

考虑电磁场的边界条件,z=0 平面上应有 $\vec{k}\cdot\vec{n}=\vec{k}'\cdot\vec{n}=\vec{k}''\cdot\vec{n}$,也即三个波矢都处于**同一平面** [xz 平面]。将其除以模长即可得到角度关系

$$i = r'', \quad \frac{\sin i}{\sin r} = \frac{k'}{k} = \frac{n'}{n}$$

更具体来说,代入四个边界条件得到

$$(\epsilon(\vec{E}_0 + \vec{E}_0'') - \epsilon'\vec{E}_0') \cdot \vec{n} = 0$$

$$(\vec{k} \times \vec{E}_0 + \vec{k}'' \times \vec{E}_0'' - \vec{k}' \times \vec{E}_0') \cdot \vec{n} = 0$$

$$(\vec{E}_0 + \vec{E}_0'' - \vec{E}_0') \times \vec{n} = 0$$

$$\left(\frac{1}{\mu}(\vec{k} \times \vec{E}_0 + \vec{k}'' \times \vec{E}_0'') - \frac{1}{\mu'}\vec{k}' \times \vec{E}_0'\right) \times \vec{n} = 0$$

由于电场强度与波矢垂直,可将电场强度分解为垂直入射面 (即 y 方向) 的分量与平行入射面 (且与对应 波矢垂直) 的分量计算大小。这样分解后可直接解出 [2、4 式求解垂直分量,1、3 式求解平行分量]

$$\begin{split} \frac{(\vec{E}_0')_{\perp}}{(\vec{E}_0)_{\perp}} &= \frac{2n\cos i}{n\cos i + (\mu/\mu')n'\cos r}, \quad \frac{(\vec{E}_0'')_{\perp}}{(\vec{E}_0)_{\perp}} = \frac{n\cos i - (\mu/\mu')n'\cos r}{n\cos i + (\mu/\mu')n'\cos r} \\ \frac{(\vec{E}_0')_{\parallel}}{(\vec{E}_0)_{\parallel}} &= \frac{2n\cos i}{(\mu/\mu')n'\cos i + n\cos r}, \quad \frac{(\vec{E}_0'')_{\parallel}}{(\vec{E}_0)_{\parallel}} = \frac{(\mu/\mu')n'\cos i - n\cos r}{(\mu/\mu')n'\cos i + n\cos r} \end{split}$$

- * 这些公式统称为**菲涅尔公式**,公式除折射率外还涉及 μ/μ' ,但可见光频段可近似认为 $\mu/\mu' = 1$,从而公式只涉及折射率。
- * 当 i=0 时菲涅尔公式可以合并为

$$\vec{E}_0' = \frac{2}{\sqrt{\mu \epsilon'/(\mu' \epsilon)} + 1} \vec{E}_0, \quad \vec{E}_0'' = \frac{\sqrt{\mu \epsilon'/(\mu' \epsilon)} - 1}{\sqrt{\mu \epsilon'/(\mu' \epsilon)} + 1} \vec{E}_0$$

- * 当 $\mu/\mu' = 1$ 时,若入射角等于**布儒斯特角** $i_B = \tan^{-1} \frac{n'}{n}$,则反射波电场平行分量 $(\vec{E}''_0)_{\parallel}$ 为 0,也即反射波的偏振方向垂直于入射面。
- * 若 n>n',使得 $r=\frac{\pi}{2}$ 的角度称为全反射角,即满足 $i_0=\sin^{-1}\frac{n'}{n}$ 。入射角等于 i_0 时折射波延交界面传播,而比全反射角还大时, $\cos r$ 成为纯虚数

$$\cos r = i\sqrt{\frac{\sin^2 i}{\sin^2 i_0} - 1}$$

于是折射波相因子会出现 z 方向的指数衰减 $e^{-k'|\cos r|z|}$ [称为**隐失波**],无法进入 n' 介质,而将沿交界面传播。这时反射波与入射波模长一致,但相位可以有差别。

§4.3 电磁波在导电介质中的传播

假设导电介质均匀、各向同性、满足欧姆定律 $\vec{J} = \sigma \vec{E}$ 。

*与之前的区别在于导电介质会产生自由电流,从而出现耗散。

若所有场都简谐依赖于时间,即有相因子 $e^{-i\omega t}$,则根据麦克斯韦方程组可得

$$\frac{1}{\mu}\nabla \times \vec{B} = -i\omega \left(\epsilon_b + i\frac{\sigma}{\omega}\right)\vec{E}$$

这里 μ , ϵ _b 为导电介质中的束缚电子贡献的介电常数与磁导率,均可能为 ω 的函数。将括号内定义为

$$\epsilon(\omega) = \epsilon_b(\omega) + i \frac{\sigma(\omega)}{\omega}$$

若场具有平面波 $e^{i\vec{k}\cdot\vec{x}-i\omega t}$ 形式,则代入得 $k^2=\mu\epsilon\omega^2$,也即若介质 $\mu\epsilon_b$ 为实数,电导率 σ 非零, \vec{k} 与 ω 不可能同为实数:

- 1. 若 t = 0 时导体中已经存在某电磁场分布,其可以按三维空间分解为实波矢 \vec{k} 的叠加,则频率 ω 必 须为复数, $e^{-i\omega t}$ 的实部代表电磁场随时间**指数衰减**,这是耗散的结果。
- 2. 若外界有电磁波入射导体,导体内称为受迫振动,不随时间衰减,即 ω 为实数,这时 \vec{k} 必须为复数,设 \vec{n} 为垂直导体表面并指向内部的法向单位矢量,其应能写为 $k\vec{n}$ 。记 $k=k_1+\mathrm{i}\frac{1}{2}A$, k_1 与 A 为实数,A 称为**吸收系数**。

对不良导体, $\sigma/(\omega \epsilon_b) \ll 1$, 近似得到

$$k \approx \sqrt{\mu \epsilon_b} \omega + i \frac{1}{2} \sqrt{\frac{\mu}{\epsilon_b}} \sigma$$

吸收系数 $\sigma\sqrt{\mu/\epsilon_b}$ 几乎不依赖频率。

对良导体, $\sigma/(\omega\epsilon_b)\gg 1$, 近似得到

$$k \approx \frac{1+\mathrm{i}}{\delta}, \quad \delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

这里 δ 称为**趋肤深度**,代表电磁波进入导体的特征长度。直接代入平面电磁波可得

$$\vec{E} = \vec{E}_0 \mathrm{e}^{-\vec{n}\cdot\vec{x}/\delta} \mathrm{e}^{\mathrm{i}\vec{n}\cdot\vec{x}/\delta - \mathrm{i}\omega t}, \quad \vec{H} = \vec{H}_0 \mathrm{e}^{-\vec{n}\cdot\vec{x}/\delta} \mathrm{e}^{\mathrm{i}\vec{n}\cdot\vec{x}/\delta - \mathrm{i}\omega t}, \quad \vec{H}_0 = \frac{1}{\mu\omega} k\vec{n} \times \vec{E}_0$$

- * 由 k 为复数, \vec{H} , \vec{E} 存在相位差,而根据良导体 k 的辐角约为 $\frac{\pi}{4}$ 即知相位差约为 $\frac{\pi}{4}$ 。
- * 利用等效复介电常数 ϵ ,也可研究涉及导电介质表面的反射与透射,会有与之前几乎相同的结论,但偏振变化十分复杂。

准静态近似

当导体中传导电流远大于位移电流贡献时,位移电流可以忽略,称为准静态近似,对应良导体的情形。假设导体内 σ , μ 不依赖位置,忽略位移电流 $\frac{\partial \vec{D}}{\partial t}$,对麦克斯韦方程组第二个方程两边取旋度,利用介质中 $\nabla \cdot \vec{B} = 0$ 即得到

$$\mu \sigma \frac{\partial \vec{H}}{\partial t} = \nabla^2 \vec{H}$$

边界条件仍为 \vec{B} 法向连续, \vec{H} 切向连续。

* 此为**扩散方程**形式, \vec{E} , \vec{B} , \vec{A} , \vec{J} 事实上都满足此形式,由于其空间特征尺度平方与时间特征尺度成比例,可以给出对趋肤深度的估计。

准静态近似下,谐振电磁场会诱导导体内部涡流并耗散为热。根据电路知识,耗散功率为

$$W_J = \int d^3x \langle \vec{J} \cdot \vec{E} \rangle$$

这里尖括号表示周期内的平均, \vec{J} , \vec{E} 均指实部对应的真实值。而外部流入导体的能流功率平均即为坡印亭矢量面积分:

 $W = - \oint \langle \vec{E} \times \vec{H} \rangle \cdot d\vec{A}$

利用高斯公式与周期函数的时间导数周期内平均值为 0 [由牛顿莱布尼茨公式可知] 即可计算出 $W=W_J$,符合能量守恒。

- * 此推导事实上与第一章能量守恒的推导基本相同,只是忽略了位移电流对应的电场能量贡献。
- *已知良导体外部的谐变磁场后,利用扩散方程与边界条件即可解出导体内部的磁场,从而估算耗散功率。

§4.4 介质色散的经典模型

考虑**经典振子模型**,也即将介质的束缚电子看作经典谐振子,有各自的本征频率与阻尼系数。 在谐振电场 [如单色平面电磁波] 下,电子会产生平均电偶极矩

$$\vec{p} = \frac{e^2}{m} \frac{\vec{E}_0}{\omega_0^2 - \omega^2 - i\omega\gamma}$$

这里 ω 为外电场频率, ω_0 、 γ 为本征圆频率与阻尼系数。若原子总电子为 Z 个,本征频率 ω_i ,阻尼系数 γ_i 的有 f_i 个 [这称为**振子强度**],则有介电常数为 [此式来源为真空增添电子的电偶极矩]

$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \frac{Ne^2}{\epsilon_0 m} \sum_i \frac{f_i}{\omega_i^2 - \omega^2 - i\omega \gamma_i}$$

- * 此公式事实上对量子情形也有不错的描述。
- * 对导体而言,存在自由电子,即本征频率为 0 的电子,将其他电子归为 ϵ_b 后得到

$$\epsilon(\omega) = \epsilon_b(\omega) + i \frac{Ne^2 f_0}{m\omega(\gamma_0 - i\omega)}$$

对比上节可发现 $\sigma(\omega)=\frac{Ne^2f_0}{m(\gamma_0-i\omega)}$,称为**德鲁德公式**。频率较低时可忽略虚部,电导率为实,而固体物理中称 $\frac{1}{\gamma_0}$ 为自由电子的**弛豫时间**。

若 $\omega \gg \omega_i$, 介电常数即满足

$$\frac{\epsilon(\omega)}{\epsilon_0} \approx 1 - \frac{\omega_p^2}{\omega^2}, \quad \omega_p^2 = \frac{NZe^2}{\epsilon_0 m}$$

 ω_p 称为**等离子体频率**。此式对所有介质都成立,最极端的情况下 [如纯等离子体忽略电子阻尼],电磁波频率小于等离子体频率时,介电常数为负,电磁波波矢进入此区域的分量变为纯虚数,也即成为隐失波,指数衰减 [**紫外透明**]。

- 一般频率而言, γ_i 较小,介电常数基本为实数,于是对电磁波的吸收很小,即该介质对电磁波**透明**。但当 $\omega \approx \omega_i$ 时,对该频率的吸收即非常明显,称为**共振吸收区**。
- * 介电常数明显称为复数时,电磁波波数也是复数,回顾之前的 $k = k_1 + i\frac{1}{2}A$,A 代表能流的衰减,因此称为吸收系数。

§4.5 电磁信号在色散介质中的传播

实际电磁信号往往并不是单色均匀波,而是以**波包** [即不同频率单色波叠加] 的形式传播,以下以一维情况标量波 [忽略偏振] 为例。

波包的色散

考虑一维波包

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int A(k) e^{ikx - i\omega(k)t} dk$$

这里 $\omega(k)$ 与介质色散性质有关,A(k) 代表不同频率成分的强度,根据 Fourier 变换公式可知

$$A(k) = \frac{1}{\sqrt{2\pi}} \int u(x,0) e^{-ikx} dx$$

- * 也可由其他时刻计算出,对单色波 $u(x,0)=\mathrm{e}^{\mathrm{i}k_0x}$,对应振幅 A(k) 为 $\sqrt{2\pi}\delta(k-k_0)$,此后仍为单色波。
- * 利用傅里叶变换性质可得位置空间与频率空间的延展 [并非此处重点,省略严禁定义] 满足 $\Delta k \Delta x \geq \frac{1}{2}$,事实上是量子力学中的不确定关系。由此,位置空间波包越窄,所需频率就越宽。

由于相速度 $v_p = \frac{\omega}{k}$ 对不同频率不同,不同成分的相位差会随时间演化而变化,也即代表波包形状随时间推移发生变形,这就是**色散**。

对平面单色波,能量流动速度与相速度相同,但对波包可能非常复杂。考虑 A(k) 只在 $k=k_0$ 附近某个小范围非零的情况,泰勒展开可得

$$\omega(k) \approx \omega_0 + v_g(k - k_0), \quad \omega_0 = \omega(k_0), v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}(k_0)$$

代入可发现波包随时间的演化近似为

$$u(x,t) \approx u(x - v_o t, 0) e^{i(k_0 v_g - \omega_0)t}$$

这里 v_g 即为**群速度**。此时波包形状几乎没有改变,只是按群速度移动, v_g 比相速度 v_p 更好刻画了波包的传播与能量流动。

* 由于 $\omega(k) = \frac{ck}{n(k)}$, 计算有 [此处均省略 $k = k_0$]

$$v_g = \frac{v_p}{1 + \frac{\omega}{n} \frac{\mathrm{d}n}{\mathrm{d}\omega}}$$

当存在色散,导数项非0时,群速度与相速度即不同。

* 当 $\frac{dn}{d\omega} > 0$ 时称为**正常色散**,而小于 0 则称为**反常色散**,反常色散时 v_g 甚至可以超过光速,但这时近似无法成立,群速度已经失去了物理意义,并不代表信号传播速度。

因果性

考虑一般的情况,回顾第一章,各向同性的线性介质中,电位移矢量与电场强度关系 [本部分讨论时均为实]可写为

$$\vec{D}(\vec{x},t) = \epsilon_0 \left(\vec{E}(\vec{x},t) + \int \chi(\tau) \vec{E}(\vec{x},t-\tau) d\tau \right)$$

因果性要求 $\tau < 0$ 时 $\chi(\tau) = 0$,也即 t 时刻电位移矢量只能依赖 t 之前的电场强度,由此可将积分改为 t 到 t ②。

原积分两边傅里叶变换即得到介电常数的表达式 (与第一章 $\epsilon(\omega)=\epsilon_0(1+\chi^{(\epsilon)}(\omega))$ 相同),再利用因果性可得

$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \int_0^\infty \chi(\tau) e^{i\omega\tau} d\tau$$

利用此表达式与 \vec{D} . \vec{E} 为实可得:

- 1. 若 $\chi(\tau)$ 对所有 τ 有界, $\epsilon(\omega)$ 在复平面上半平面 $[Im(\omega) > 0]$ 解析;
- 2. 若 $\chi(\tau)$ 在 $\tau \to \infty$ 时 [记作 $\chi(\infty)$] 为 0,利用数学可证明 $\epsilon(\omega)$ 可以延拓到实轴,但实际上利用导体等效介电常数定义可知导体 $\chi(\infty) = \frac{\epsilon}{\epsilon}$,因此在 $\omega = 0$ 处有极点,可证明在实轴其他点仍可延拓;

3. 假定 χ 的连续性, 有 $\chi(0) = 0$, 从而分部积分可得 ω 很大时

$$\frac{\epsilon(\omega)}{\epsilon_0} \approx 1 - \frac{\chi'(0)}{\omega^2}$$

4. 由于 $\chi(\tau)$ 为实数,介电常数满足共轭关系 $\epsilon(-\omega) = \epsilon^*(\omega^*)$ 。

利用复变函数知识,对上半平面任何一点 z,有 [这里事实上可以包含 0 处为极点的情况]

$$\frac{\epsilon(z)}{\epsilon_0} = 1 + \frac{1}{2\pi i} \oint_C \frac{\epsilon(\omega')/\epsilon_0 - 1}{\omega' - z} d\omega'$$

这里 C 为以实轴 [-R,R] 为直径的,上半平面中的充分大半圆。将此半圆趋于无穷,由于大 ω 处其以 ω^2 衰减,半圆上的积分趋于 0,可将积分改为实轴上积分,再令 $z=\omega+i\delta$,并取 $\delta\to 0^+$,计算即得到

$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \frac{1}{\pi i} \mathcal{P} \int_{\mathbb{R}} \frac{\epsilon(\omega')/\epsilon_0 - 1}{\omega' - \omega} d\omega'$$

- * 此处 P 表示主值积分 (一种特殊的反常积分定义)。
- *将此结果实部、虚部写出就称为克拉默斯-克勒尼希关系,或称为色散关系,对介质普遍成立。

最大信号传播速度

假设一个空间 x>0 为折射率 $n(\omega)$ 介质,x<0 为真空,频谱 $A(\omega)$ 的电磁波包从真空正入射到介质,也即真空中电磁波

$$u_I(x,t) = \int A(\omega) e^{ik(\omega)x - i\omega t} d\omega$$

利用菲涅尔公式可得介质中电磁波

$$u(x,t) = \int \frac{2}{1 + n(\omega)} A(\omega) e^{ik(\omega)x - i\omega t} d\omega$$

假设波前在 t<0 时尚未到达 x=0,也即 t<0 时 $u_I(x=0^-,t)=0$,类似上一部分对因果性的讨论,这 时频谱

$$A(\omega) = \frac{1}{2\pi} \int_0^\infty u_I(x=0^-, t) e^{i\omega t} dt$$

可以成为上半平面的解析函数 [事实上是从实轴解析延拓到上半平面]。

进一步假定 $A(\omega)$ 在 ω 很大处有界,由 $\epsilon(\omega)$ 行为可知 $n(\omega)$ 在 $|\omega| \to \infty$ 时趋于 1,因此 $ik(\omega)x - i\omega t$ 趋于

$$\frac{\mathrm{i}\omega(x-ct)}{c}$$

与上一部分完全类似,对 $\frac{2}{1+n(\omega)}A(\omega)\mathrm{e}^{\mathrm{i}k(\omega)x-\mathrm{i}\omega t}$ 在半圆利用柯西积分定理,由于 $A(\omega),n(\omega)$ 在整个上半平面解析可知半圆上积分为 0,而 x>ct 时, $\exp(\mathrm{i}\omega(x-ct)/c)$ 在无穷处趋于 0,因此半圆积分的极限等于实轴上积分,从而得到 u(x,t)=0,也即说明无论折射率形式如何,波包传播速度不可能大于光速。

§4.6 波导与谐振腔

介质波导即为不导电的光介质构成的光纤,而谐振腔为金属或铁氧体围成的封闭空间。本节讨论电磁波在 其中的传播。

麦克斯韦方程组的横纵分离

不考虑边界条件时,波导管内部电磁场方程应与无限介质相同,若所有场以 $e^{-i\omega t}$ 随时间振荡,应有

$$(\nabla^2 + \mu\epsilon\omega^2) \begin{pmatrix} \vec{E} \\ \vec{B} \end{pmatrix} = 0$$

将电场纵向分量分解 $\vec{E}=E_z\vec{e}_3+\vec{E}_{\perp}$,磁场作相同分解,记 ∇_{\perp} 为 $\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},0\right)$,麦克斯韦方程组可表达为

$$\begin{split} \frac{\partial \vec{E}_{\perp}}{\partial z} + \mathrm{i}\omega \vec{e}_3 \times \vec{B}_{\perp} &= \nabla_{\perp} E_z, \quad \vec{e}_3 \cdot (\nabla_{\perp} \times \vec{E}_{\perp}) = \mathrm{i}\omega B_z \\ \frac{\partial \vec{B}_{\perp}}{\partial z} - \mathrm{i}\mu \epsilon \omega \vec{e}_3 \times \vec{E}_{\perp} &= \nabla_{\perp} B_z, \quad \vec{e}_3 \cdot (\nabla_{\perp} \times \vec{B}_{\perp}) = -\mathrm{i}\mu \epsilon \omega E_z \\ \nabla_{\perp} \cdot \vec{E}_{\perp} &= -\frac{\partial E_z}{\partial z}, \quad \nabla_{\perp} \times \vec{B}_{\perp} &= -\frac{\partial B_z}{\partial z} \end{split}$$

考虑沿 z 轴向上的波导管, 其中的电磁波利用对称性有 [此时 k 事实上是波矢的纵向分量]

$$\vec{E} = \vec{E}(x, y)e^{\pm ikz - i\omega t}, \quad \vec{B} = \vec{B}(x, y)e^{\pm ikz - i\omega t}$$

由此代入上方方程组得到 k_{\perp} 非零时 [此处 ± 与上方对应]

$$\vec{E}_{\perp} = \frac{\mathrm{i}}{k_{\perp}^2} (\pm k \nabla_{\perp} E_z - \omega \vec{e}_3 \times \nabla_{\perp} B_z)$$

$$\vec{B}_{\perp} = \frac{\mathrm{i}}{k_{\perp}^{2}} (\pm k \nabla_{\perp} B_{z} + \mu \epsilon \omega \vec{e}_{3} \times \nabla_{\perp} E_{z})$$

这里 k_{\perp} 满足 $\mu\epsilon\omega^2 = k^2 + k_{\perp}^2$ 。

- * 于是横向场由纵向分量确定。
- * 若 E_z,B_z 均为 0,且 $\vec{E}_\perp,\vec{B}_\perp$ 存在非零解,代入上方方程组即可知 k 与 ω 必须满足 $k^2=\mu\epsilon\omega^2$,从而 $k_\perp=0$ 。

注意到 $\nabla_{\perp} \cdot \vec{E}(x,y) = \nabla \cdot \vec{E}(x,y)$, 代入本部分开始的方程计算可知

$$(\nabla_{\perp}^2 + k_{\perp}^2) \begin{pmatrix} \vec{E}(x,y) \\ \vec{B}(x,y) \end{pmatrix} = 0$$

本节中,此后如无特殊说明, \vec{E} , \vec{B} 均表示**去除纵向与随时间波动项**的 $\vec{E}(x,y)$, $\vec{B}(x,y)$, 在不涉及对 z 与对时间导数时,它们满足的线性方程与 \vec{B} , \vec{E} 满足的完全相同。

- * 求解波导中传播问题即为根据边界条件利用此方程解出纵向分量,再进一步得到横向分量。
- * 定义 $E_z = 0$ 的波为横电波或 **TE** 波, $B_z = 0$ 的波为横磁波或 **TM** 波,均为 0 的波为横电磁波或 **TEM** 波,也可将波称为模式。根据上方讨论,TEM 波中必须满足 $k_{\perp} = 0$,否则只有无意义的平凡解。

金属波导

考虑理想导体,电导率无穷大,则根据之前讨论可知完全屏蔽电磁波,内部电磁场为 0,从而利用麦克斯韦方程组边界条件知 $\vec{n} \times \vec{E} = 0$,代入横纵分离的方程得到边界上

$$E_z = 0, \frac{\partial B_z}{\partial n} = 0$$

这里 \vec{N} 为边界面 S 的法向单位矢量。

用 $\psi(x,y)$ 表示 E_z 或 B_z ,由上一部分知其满足 $(\nabla_{\perp}^2 + k_{\perp}^2)\psi = 0$,结合电场的边界条件 $E_z|_S = 0$ 或磁场的边界条件 $\frac{\partial \psi}{\partial n}|_S = 0$ 即可求解方程。

* 由此也即看出电场、磁场的求解是独立的。

对 $B_z = 0$ 的 TM 波或 $E_z = 0$ 的 TE 波,验证可知都有形式

$$\vec{H}_{\perp} = \pm \frac{1}{Z} \vec{e}_3 \times \vec{E}_H$$

其中 Z 称为波导中的**波阻抗**,TM 波中为 $\frac{k}{\epsilon\omega} = \frac{k}{k_0}\sqrt{\frac{\mu}{\epsilon}}$,TE 波中为 $\frac{\mu\omega}{k} = \frac{k_0}{k}\sqrt{\frac{\mu}{\epsilon}}$,这里 k_0 为本征频率 $\sqrt{\mu\epsilon\omega}$ 。

由偏微分方程理论知对两种边值问题, $\psi(x,y)$ 的解均唯一,且相应 k_{\perp}^2 一般为正的、分立的实数。将这些 k_{\perp}^2 取值记为 $\gamma_{\lambda}^2, \lambda \in \mathbb{N}^*$,给定 ω 后波导中可传播的波数

$$k_{\lambda}^2 = \mu \epsilon \omega^2 - \gamma_{\lambda}^2$$

亦有限。对给定 γ_{λ}^2 ,存在截止频率 $\omega_{\lambda} = \gamma_{\lambda}/\sqrt{\mu\epsilon}$,频率 ω 必须大于截止频率才可保证 k_{λ} 为实,可传播。由 γ_{λ}^2 存在最小可能值,也存在**最小截止频率**,低于其的电磁波无法传播。

例:考虑理想导体构成的两边长 a > b 的矩形波导管,以截面一个顶点为原点,a, b 两边在 x, y 轴正方向。

1. 对 TE 波,利用磁场的边界条件,分离变量可设磁场写为

$$H_z = H_0 \cos \frac{m\pi x}{a} \cos \frac{n\pi y}{b}$$

其对应的

$$\gamma_{mn}^2 = \pi^2 \left(\frac{m^2}{a^2} + \frac{b^2}{n^2} \right)$$

为使电磁波存在,由 E_z 已经为 0, H_z 不能恒定,因此 m,n 不全为 0,最小的 γ_{mn} 为 γ_{10} ,由此得 到截止频率 $\omega_{10}=\gamma_{10}/\sqrt{\mu\epsilon}$ 。

2. 对 TM 波,利用电场的边界条件,分离变量可设电场写为

$$E_z = E_0 \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

对应的 γ_{mn} 表达式完全相同,但此时不恒定要求 m,n 均不为零,因此最小 $\gamma_{mn}=\gamma_{11}$,截止频率为 ω_{11} 。

* 对 TEM 波,由上一部分知 $k=k_0=\sqrt{\mu\epsilon\omega}$ 。但若在单连通区域中,考虑 $k_\perp=0$ 时的拉普拉斯方程即发现仍会导致 $\vec{E}_x, \vec{E}_y, \vec{B}_x, \vec{B}_y$ 只有常数解,于是 TEM 波**不能存在于单连通截面**的金属波导管中,须利用同轴电缆等结构。

能量流动

考虑平均能流密度 [本节中仍记为 \vec{S} 而非 $\bar{\vec{S}}$] $\vec{S}=\frac{1}{2}\vec{E}\times\vec{H}^*$,计算可得对 TM 波或 TE 波有

$$\vec{S} = \begin{cases} \frac{\omega k \epsilon}{2k_{\perp}^4} (\vec{e}_3 |\nabla_{\perp} \psi|^2 + i \frac{k_{\perp}^2}{k} \psi \nabla_{\perp} \psi^*) & \text{TM} \\ \frac{\omega k \mu}{2k_{\perp}^4} (\vec{e}_3 |\nabla_{\perp} \psi|^2 + i \frac{k_{\perp}^2}{k} \psi^* \nabla_{\perp} \psi) & \text{TE} \end{cases}$$

这里在 TM 波中 ψ 表示 E_z , TE 波中表示 H_z 。

事实上 \vec{S} 的实部为实际能流密度,理想导体时 ψ 为实,因此第二项无意义。将能流密度对波导管截面积分即可得到能量传输功率

$$P = \int_{\mathbf{A}} \vec{S} \cdot \vec{e}_3 \, \mathrm{d}x \, \mathrm{d}y$$

代入 \vec{S} 表达式,利用格林公式,无论对 TE 或 TM 波,对**理想导体**均有 $\psi \frac{\partial \psi^*}{\partial n} = 0$,设 $\gamma_{\lambda} = k_{\perp}$,记 $\omega_{\lambda} = \gamma_{\lambda}/\sqrt{\mu\epsilon}$ 即有 [利用 $k^2 = \mu\epsilon(\omega^2 - \omega_{\lambda}^2)$]

$$\begin{pmatrix} P_{TM} \\ P_{TE} \end{pmatrix} = \frac{1}{2\mu\epsilon} \frac{\omega k}{\omega_{\lambda}^2} \int_A |\psi|^2 dx dy \begin{pmatrix} \epsilon \\ \mu \end{pmatrix}$$

利用能量密度周期平均值 $\bar{u}=\frac{1}{4}\left(\epsilon\vec{E}\cdot\vec{E}^*+\frac{1}{\mu}\vec{B}\cdot\vec{B}^*\right)$,类似积分得到单位长度平均电磁场能量

$$U = \int_{A} \bar{u} dx dy, \quad \begin{pmatrix} U_{TM} \\ U_{TE} \end{pmatrix} = \frac{1}{2} \frac{\omega^{2}}{\omega_{\lambda}^{2}} \int_{A} |\psi|^{2} dx dy \begin{pmatrix} \epsilon \\ \mu \end{pmatrix}$$

* 由此 $\frac{P}{U} = \frac{k}{\omega\mu\epsilon}$,固定 γ_{λ} 时,由于 $\omega = \frac{1}{\sqrt{\mu\epsilon}}\sqrt{k^2 + \gamma_{\lambda}^2}$,计算发现恰有 $\frac{P}{U} = v_g = \omega'(k)$,也即功率与单位长度能量之比恰为**群谏度**。

对非理想导体,一般存在欧姆损耗。简单讨论方法为假定

$$\gamma_{\lambda} = k_{\perp}^{(0)} + a_{\lambda} + \mathrm{i} b_{\lambda}$$

这里 $k_{\perp}^{(0)}$ 为理想导体时的 k_{\perp} ,考虑损耗后实际的 γ_{λ} 为复,由此计算可得 $P = P_0 e^{-2b_{\lambda}z}$,于是

$$b_{\lambda} = -\frac{1}{2P} \frac{\mathrm{d}P(z)}{\mathrm{d}z}$$

* 可通过计算 \vec{S} 的实部的扰动后积分得到。

根据良导体中电磁波与趋肤深度 δ 关系的表达式,可计算截面边界 C 的线积分得到单位长度损耗

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = \frac{1}{2\sigma\delta} \oint_C |\vec{n} \times \vec{H}|^2 \, \mathrm{d}l$$

谐振腔: 波导管两端也用导体封闭即得到谐振腔,这时 z 方向传递的波成为驻波,波数必然为 $k=\frac{p\pi}{d}, p\in\mathbb{Z}$, d 为纵向长度。由此即得

$$\mu \epsilon \omega_{p,\lambda}^2 = \gamma_\lambda^2 + \frac{p^2 \pi^2}{d^2}$$

这些频率称为谐振腔的本征频率。

*事实上任何导体围成的空间都可成为谐振腔, $d \to 0$ 时最低固有频率与腔的尺寸反比。

平面介质波导

* 光纤即为介质波导重要例子,由于传输电磁波频率很高,可以忽略波动性进行**几何光学近似** [事实上就是量子力学中的半经典近似,或称 WKB 近似],从而基本机制为光信号在内部到外部的边界上发生全反射,因此需要内层折射率 n_1 大于包层折射率 n_2 。

空间中 $|x| \le a$ 部分充满折射率 n_1 介质,外部折射率 n_2 ,且 $n_1 > n_2$ 。假设其中电磁波沿 +z 传播,其即构成无穷大平面介质波导。设电磁波圆频率 ω ,定义参数

$$k_0 = \frac{\omega}{c}, \quad \Delta = \frac{n_1^2 - n_2^2}{2n_1^2}, \quad V = k_0 a \sqrt{n_1^2 - n_2^2} = n_1 k_0 a \sqrt{2\Delta}$$

* 由于 Δ 标志内外层折射率差异,称为**轮廓高度参数**,对通常光纤较小,将其看作小量的近似称为**弱波导 近似**。V 称为**光纤参数**。

对介质波导,假设 $\vec{E} = \vec{E}(x,y)e^{ikz-i\omega t}$, $\vec{B} = \vec{B}(x,y)e^{ikz-i\omega t}$, 记 $k_0 = \sqrt{\mu\epsilon\omega}$, 方程

$$(\nabla_{\perp}^2 + k_{\perp}^2) \begin{pmatrix} \vec{E}(x,y) \\ \vec{B}(x,y) \end{pmatrix} = 0$$

仍然成立,且由对称性可假设 E_z, H_z 与 y 无关,从而 z 方向方程化为

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \gamma^2\right)\psi(x) = 0, \quad |x| < a$$

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} - \beta^2\right)\psi(x) = 0, \quad |x| > a$$

这里 ψ 为 E_z 或 H_z , $\gamma^2 = n_1^2 k_0^2 - k^2$, $\beta^2 = k^2 - n_2^2 k_0^2$ 。

由一般的 $\psi'' + \alpha \psi = 0$ 的解的形式,为保持电磁波的正常传播,|x| < a 时应关于 x 简谐,从而 $\alpha > 0$; |x| > a 时应关于 x 衰减,从而 $\alpha < 0$ 且应取解形式为 $Ce^{-\sqrt{-\alpha}|x|}$,由此可知必须 $\gamma^2 > 0$, $\beta^2 > 0$,即得

$$n_2^2 k_0^2 \le k^2 < n_1^2 k_0^2$$

由于边界的对称性,可考虑奇函数解与偶函数解作为基本解,可验证偶函数解为

$$\psi(x) = \begin{cases} A\cos\gamma x & |x| \le a \\ Be^{-\beta|x|} & |x| > a \end{cases}$$

奇函数解为

$$\psi(x) = \begin{cases} A \sin \gamma x & |x| \le a \\ B \frac{x}{|x|} e^{-\beta|x|} & |x| > a \end{cases}$$

* 用横向场对 x 的奇偶性定义波的奇偶性,而由于横向场是 ψ 的微分,奇偶性相反,也即**偶函数解对应奇 TE** 波或 **TM** 波,奇函数解对应偶 **TE** 波或 **TM** 波。

利用 ψ 算出场后,代入麦克斯韦方程组在 |x|=a 处的边界条件可得

$$A\sin\gamma a = Be^{-\beta a}$$
, $\frac{A}{\gamma a}\cos(\gamma a) = \frac{B}{\beta a}e^{-\beta a}$ 偶 TE 波 $A\cos\gamma a = Be^{-\beta a}$, $\frac{A}{\gamma a}\sin(\gamma a) = -\frac{B}{\beta a}e^{-\beta a}$ 奇 TE 波 $A\sin\gamma a = Be^{-\beta a}$, $\frac{An_1^2}{\gamma a}\cos(\gamma a) = \frac{Bn_2^2}{\beta a}e^{-\beta a}$ 偶 TM 波 $A\cos\gamma a = Be^{-\beta a}$, $\frac{An_1^2}{\gamma a}\sin(\gamma a) = -\frac{Bn_2^2}{\beta a}e^{-\beta a}$ 奇 TM 波

用前后两个方程相除可以得到传播波数 β, γ 的本征方程。记 $U = \gamma a, W = \beta a$,有

$$W = U \tan U$$
 偶 TE 波
$$W = -U \cot U$$
 奇 TE 波
$$n_1^2 W = n_2^2 U \tan U$$
 偶 TM 波
$$n_1^2 W = -n_2^2 U \cot U$$
 奇 TM 波

计算发现光纤参数 $V^2 = U^2 + W^2$,因此给定光纤参数后结合上方方程可求解出 U, W。几何上,求解过程可看作函数曲线与圆的交点,由此可得到极限性质。

由于本征方程对应的函数定义域间断的,将最靠近原点的一支 [或对称的两支] 称为对应波的第一个模式,其次称为第二个模式,以此类推。圆 $V^2=U^2+W^2$ 能与第 k 个模式相交的最小 V 称为第 k 个模式的截止频率。由此作图可发现偶 TE 波或 TM 波第一个模式截止频率 0,第二个模式截止频率 π ;奇 TE 波或 TM 波第一个模式截止频率 $\frac{\pi}{9}$ 。

若将偶 TE 或 TM 波的第 k 个模式记作 TE_{2k-2} 或 TM_{2k-2},奇 TE 或 TM 波的第 k 个模式记作 TE_{2k-1} 或 TM_{2k-1},则可统一为 TM $_i$ 或 TE $_i$ 截止频率 $\frac{j\pi}{2}$, $j \in \mathbb{N}$ 。

- * 对 TE 或 TM 波,求解出的本征值 U(V) 满足 $U \leq V$,且截止频率时恰好等号成立,从而每个模式的 $U_i(V)$ 在 U-V 平面上从直线 U=V 延伸出,实际对一个 V 可存在多个 U_i 对应。
- *可发现平面介质波导方程与量子力学一维势阱类似,因为事实上此方程即对应光子的薛定谔方程, ψ 与波函数对应。

圆形介质波导

空间中 $\sqrt{x^2+y^2} \le a$ 部分充满折射率 n_1 介质,外部折射率 n_2 ,且 $n_1 > n_2$ 。仍假设其中电磁波沿 +z 传播,其即构成圆形介质波导,更符合实际模型。参数定义与之前相同,取柱坐标系 (ρ,ϕ,z) ,则可得 $\psi(\rho,\phi)$ 的方程:

$$(\nabla_{\perp}^2 + \gamma^2)\psi = 0, \quad \rho < a$$
$$(\nabla_{\perp}^2 - \beta^2)\psi = 0, \quad \rho > a$$

分离变量为 $R(\rho)\Phi(\phi)$, 类似第二章计算得到可取 $\Phi(\phi) = e^{im\phi}$, 再代入可得 $R(\rho)$ 可取

$$R(\rho) = \begin{cases} R_e J_m(\gamma \rho) & \rho < a \\ R_h K_m(\beta \rho) & \rho > a \end{cases}$$

*这里 J_m 为贝塞尔函数, K_m 为虚宗量贝塞尔函数,此选取确保内部的解有界,在外部衰减。

由于 \vec{E}_z , \vec{H}_z 应对 ϕ 有相同频率,它们的 m 相同,下面假设对 E_z 的 R_e , R_h 为 A_e , A_h ,对 H_z 的 R_e , R_h 为 B_e , B_h 。此时利用麦克斯韦方程组的边界条件会发现 E_z , H_z 产生耦合,也即**不能分别求解**。具体来说,边界条件为 [U,W 定义与上一部分相同]

$$\begin{pmatrix} J_{m}(U) & 0 & -K_{m}(W) & 0 \\ 0 & J_{m}(U) & 0 & -K_{m}(W) \\ \frac{\mathrm{i}mk}{\gamma^{2}a}J_{m}(U) & -\frac{\omega\mu_{0}}{\gamma}J'_{m}(U) & \frac{\mathrm{i}mk}{\beta^{2}a}K_{m}(W) & -\frac{\omega\mu_{0}}{\beta}K'_{m}(W) \\ \frac{\omega\epsilon_{0}n_{1}^{2}}{\gamma}J'_{m}(U) & \frac{\mathrm{i}mk}{\gamma^{2}a}J_{m}(U) & \frac{\omega\epsilon_{0}n_{2}^{2}}{\beta}K'_{m}(W) & \frac{\mathrm{i}mk}{\beta^{2}a}K_{m}(W) \end{pmatrix} \begin{pmatrix} A_{e} \\ A_{h} \\ B_{e} \\ B_{h} \end{pmatrix} = 0$$

于是,非零解要求行列式为0,这即为其本征方程,计算得可写成

$$\left(\frac{J'_m(U)}{UJ_m(U)} + \frac{n_2^2}{n_1^2} \frac{K'_m(W)}{WK_m(W)}\right) \left(\frac{J'_m(U)}{UJ_m(U)} + \frac{K'_m(W)}{WK_m(W)}\right) = \left(\frac{mk}{n_1k_0}\right)^2 \left(\frac{V}{UW}\right)^4$$

* 其在一般情况下无法解析求解。

当 m=0 时,可发现边界条件 A_e, B_e 与 A_h, B_h 不再耦合,于是分别存在非零的 $E_z=A_e=B_e=0$ 的 TE 波 [对应本征方程左侧第一个括号为 0] 与 $H_z=A_h=B_h=0$ 的 TM 波 [对应本征方程左侧第二个括号为 0]。

此时利用 $J_0' = -J_1, K_0' = -K_1$ 可进一步化简条件,截止频率对应 U = V,于是由本征方程可知 V 必须为 J_0 的非负零点,最小的为 $x_1^{(0)} \approx 2.405$,对应波记为 $\mathrm{TE}_{01}, \mathrm{TM}_{01}$ 。V 比此频率还小时,光纤中不再能传播横电或横磁波。

当 m=1 时,仍考虑截止频率发现 $J_1(V)=0$,于是 V 必须为 J_1 的非负零点,最小为 0,此时的结果称为 HE_{11} 波,可以以任何频率传播。

* 考察此后的截止频率可发现, $0 < V < x_1^{(0)}$ 时只有 HE_{11} 波可以传播,由此只要 V 充分小即可实现单模传播。

五 电磁波的辐射和散射

*本章无特殊说明时均考虑真空中。

§5.1 电磁势波动方程的推迟解

考察第一章中洛伦茨规范下的麦克斯韦方程组

$$\nabla^2 \Psi - \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} = -4\pi f(\vec{x},t)$$

这里 Ψ 为 Φ 或 $\vec{A_i}$,而 f 为对应的右端电荷分布或电流分布。为了从分布得到标势、矢势,我们必须求解此方程。

考虑 Fourier 变换

$$\mathcal{F}[\varphi](\vec{x},\omega) = \frac{1}{2\pi} \int \varphi(\vec{x},t) e^{i\omega t} dt, \quad \mathcal{F}^{-1}[\varphi](\vec{x},t) = \int \varphi(\vec{x},\omega) e^{-i\omega t} d\omega$$

记 $\tilde{\Psi} = \mathcal{F}[\Psi], \tilde{f} = \mathcal{F}[f]$ 可算得

$$(\nabla^2 + k^2)\tilde{\Psi}(\vec{x}, \omega) = -4\pi \tilde{f}(\vec{x}, \omega)$$

这里 $k=\frac{\omega^2}{c^2}$,只需对固定 ω 求解此方程即可。 先求解格林函数

$$(\nabla^2 + k^2)G_k(\vec{x}, \vec{x}') = -4\pi\delta^3(\vec{x} - \vec{x}')$$

记 $R = |\vec{x} - \vec{x}'|$, 利用对称性将 G_k 化为球坐标, 即可解得

$$G_k^{\pm}(R) = \frac{\mathrm{e}^{\pm \mathrm{i}kR}}{R}$$

*上标 + 称为推迟格林函数,而上标 - 称为超前格林函数。由于原方程含时格林函数须满足

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) G(\vec{x}, t; \vec{x}', t') = -4\pi \delta^3(\vec{x} - \vec{x}') \delta(t - t')$$

记 $\tau = t - t'$ 考虑两边同作 Fourier 变换,再将解作逆变换即得 [利用 δ 函数 Fourier 变换为常数]

$$G^{\pm}(R,\tau) = \frac{1}{2\pi} \int \frac{\mathrm{e}^{\pm \mathrm{i}kR}}{R} \mathrm{e}^{-\mathrm{i}\omega\tau} \,\mathrm{d}\omega$$

由于 $k = \omega/c$, 此积分即得到 δ 函数

$$G^{\pm}(R,\tau) = \frac{\delta(\tau \mp R/c)}{R} = \frac{1}{R}\delta(t - (t' \pm R/c))$$

于是推迟代表 t > t',超前代表 t < t',由于观测时间 t 必然大于源时间 t',只有推迟格林函数符合因果律,由此可解得原方程

$$\psi(\vec{x},t) = \int d^3x' dt' G^+(R,\tau) f(\vec{x}',t') = \int d^3x' \frac{f(\vec{x}',t-|\vec{x}-\vec{x}'|/c)}{|\vec{x}-\vec{x}'|}$$

* 对磁矢势即为将 f 替换为 $\frac{\omega}{4\pi}$ \vec{J} ,此关系是讨论振荡电流电磁波的基本出发点。

§5.2 谐振电荷和电流分布的电磁辐射

电磁与电流分布谐振, 即假设

$$\rho(\vec{x},t) = \rho(\vec{x})e^{-i\omega t}, \quad \vec{J}(\vec{x},t) = \vec{J}(\vec{x})e^{-i\omega t}$$

利用连续性方程知有条件 $i\omega\rho(\vec{x}) = \nabla \cdot \vec{J}(\vec{x})$ 。

* 以下如无特殊说明,对任何电磁场相关的函数 f, $f(\vec{x})$ 即代表 $f(\vec{x},t) = f(\vec{x})e^{-i\omega t}$, 省略谐振项。

由于已经取定了洛伦茨规范,只需求解 \vec{A} 即可得到 $\frac{\partial \phi}{\partial t}$,而根据谐振即可知 $\frac{\partial \phi(\vec{x},t)}{\partial t} = -\mathrm{i}\omega\phi(\vec{x},t)$,从而得到 ϕ 。对 \vec{A} ,由上节可知

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int d^3x' \vec{J}(\vec{x}') \frac{e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|}$$

假设辐射源集中在原点附近,其尺度 d 对应 $|\vec{x}'|$ 的尺度,接收电磁波的点 $r=|\vec{x}|\gg d$,电磁波波长 $\lambda=\frac{2\pi}{k}$,分为三个区域考虑:

- 1. 近场区 [静态区],满足 $d \ll r \ll \lambda$;
- 2. 中间区 [感应区],满足 $d \ll r \sim \lambda$;
- 3. 远场区 [辐射区],满足 $d \ll \lambda \ll r$ 。

对中间区或远场区,可将分母的 $|\vec{x}-\vec{x}'|$ 近似为 r,而指数上利用对 \vec{x}' 泰勒展开到一阶 $|\vec{x}-\vec{x}'|\approx r-\vec{n}\cdot\vec{x}'$,这里 \vec{n} 为 \vec{x} 方向单位矢量,即得到近似

$$\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikr}}{4\pi r} \int d^3x' \vec{J}(\vec{x}') e^{-ik\vec{n}\cdot\vec{x}'}$$

由于积分只与方向有关,此近似下即为**球面波** [但一般具有各向异性]。此时根据定义与麦克斯韦方程组第二个方程可得 [由于假定 $d \ll r$,可得远处 $\vec{J} = 0$]

$$\vec{H} = \frac{1}{\mu_0} \nabla \times \vec{A}, \quad \vec{E} = -\frac{\mathrm{i} Z_0}{k} \nabla \times \vec{H}, \quad Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}$$

更一般地, 只要 $\gamma \gg d, r \gg d$, 可作展开

$$\frac{\mathrm{e}^{\mathrm{i}k|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|} = \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left(1 + \frac{\vec{n}\cdot\vec{x}'}{r} + \cdots\right) (1 - \mathrm{i}k\vec{n}\cdot\vec{x}' + \cdots)$$

这里第一个括号来自分母的泰勒展开,第二个括号来自分子的泰勒展开,称为**长波近似**。将展开式不同项代入 $\vec{A}(\vec{x})$ 的表达式,即得到不同的辐射类型,将在下节讨论。

§5.3 电偶极辐射、磁偶极辐射和电四极辐射

电偶极辐射

只保留长波近似的首项得到

$$\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikr}}{4\pi r} \int d^3 x' \vec{J}(\vec{x}')$$

与第三章磁多极展开的讨论完全类似可得

$$\int \mathrm{d}^3x' \vec{J}(\vec{x}') = -\int \mathrm{d}^3x' \vec{x} (\nabla' \cdot \vec{J}) = -\mathrm{i} \omega \int \mathrm{d}^3x' \vec{x}' \rho(\vec{x}')$$

记积分中为**电偶极矩** $\vec{p}(\vec{x})$, 代入可得

$$\vec{A}(\vec{x}) = -\frac{i\mu_0\omega}{4\pi} \frac{e^{ikr}}{r} \vec{p}(\vec{x})$$

在球坐标下计算 ∇ 算子可知

$$\vec{H} = \frac{ck^2}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left(1 - \frac{1}{\mathrm{i}kr} \right) \vec{n} \times \vec{p}$$

而利用 \vec{A} 与洛伦茨规范解出 ϕ 后计算得

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(k^2 \frac{\mathrm{e}^{\mathrm{i}kr}}{r} (\vec{n} \times \vec{p}) \times \vec{n} + \left(\frac{1}{r^3} - \frac{\mathrm{i}k}{r^2} \right) \mathrm{e}^{\mathrm{i}kr} (3(\vec{n} \cdot \vec{p})\vec{n} - \vec{p}) \right)$$

* 近场区由 $r \ll \lambda$ 可知 $kr \ll 1$, 这时只保留 r 的高次项, 且 $e^{ikr} \to 1$, 即为电偶极子场的形式:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} (3(\vec{n} \cdot \vec{p})\vec{n} - \vec{p})$$

* 远场区 $kr \gg 1$, 只保留低次项, 即有

$$\vec{H} = \frac{ck^2}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \vec{n} \times \vec{p}, \quad \vec{E} = Z_0 \vec{H} \times \vec{n}$$

辐射功率的角度分布: 在方向 ㎡ 处立体角的辐射功率通过坡印亭矢量周期平均 [且应取实部] 定义

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \lim_{r \to \infty} \frac{1}{2} \mathrm{Re} \left(r^2 \vec{n} \cdot (\vec{E} \times \vec{H}^*) \right)$$

对电偶极辐射计算可得 [这里 θ 为 \vec{n} , \vec{p} 夹角,可不妨将 \vec{p} 取为 z 轴,即有 $d\Omega = \sin\theta d\theta d\phi$]

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \frac{c^2 Z_0 k^4}{32\pi^2} |\vec{p}|^2 \sin^2 \theta, \quad P = \int \frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} \mathrm{d}\Omega = \frac{c^2 Z_0 k^4}{12\pi} |\vec{p}|^2$$

磁偶极辐射

长波近似里电场、磁场分别的次级项对矢势的贡献为 [即除首项和交叉项后代入 \vec{A} 表达式]

$$\frac{\mu_0 \mathrm{e}^{\mathrm{i}kr}}{4\pi r} \left(\frac{1}{r} - \mathrm{i}k \right) \int \mathrm{d}^3 x' (\vec{n} \cdot \vec{x}') \vec{J}(\vec{x}')$$

计算可得

$$(\vec{n}\cdot\vec{x}')\vec{J} = \frac{1}{2}\vec{x}'\times\vec{J} + \frac{1}{2}(\vec{n}\cdot\vec{x}')\vec{J} + (\vec{n}\cdot\vec{J})\vec{x}'$$

回顾第三章中磁矩定义为 $\vec{m} = \frac{1}{2} \int (\vec{x}' \times \vec{J}) d^3 x'$, 于是只保留上式左侧的贡献时得到

$$\vec{A}(\vec{x}) = \frac{\mathrm{i}k\mu_0}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left(1 - \frac{1}{\mathrm{i}kr}\right) \vec{n} \times \vec{m}$$

此时的 \vec{A} 形式类似电偶极辐射的 \vec{H} ,因此由对称性可知 \vec{H} 将类似电偶极辐射的 \vec{E} ,计算可得

$$\vec{E} = -\frac{Z_0 k^2}{4\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left(1 - \frac{1}{\mathrm{i}kr} \right) \vec{n} \times \vec{m}$$

$$\vec{H} = \frac{1}{4\pi} \left(k^2 \frac{\mathrm{e}^{\mathrm{i}kr}}{r} (\vec{n} \times \vec{m}) \times \vec{n} + \left(\frac{1}{r^3} - \frac{\mathrm{i}k}{r^2} \right) \mathrm{e}^{\mathrm{i}kr} (3(\vec{n} \cdot \vec{m})\vec{n} - \vec{m}) \right)$$

*与电偶极辐射类似,近场区磁场趋于偶极场,无穷远处振幅为球面波,类似计算可知

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \frac{Z_0 k^4}{32\pi^2} |\vec{m}|^2 \sin^2 \theta, \quad P = \frac{Z_0 k^4}{12\pi} |\vec{m}|^2$$

电四极辐射

考虑右侧 $\frac{1}{2}(\vec{n}\cdot\vec{x}')\vec{J}+(\vec{n}\cdot\vec{J})\vec{x}'$ 的贡献, 仍类似第三章可知

$$\frac{1}{2}\int\mathrm{d}^3x' \big((\vec{n}\cdot\vec{x}')\vec{J} + (\vec{n}\cdot\vec{J})\vec{x}'\big) = -\frac{\mathrm{i}\omega}{2}\int(\vec{n}\cdot\vec{x}')\rho(\vec{x}')\vec{x}'\mathrm{d}^3x'$$

于是贡献为

$$\vec{A}(\vec{x}) = -\frac{\mu_0 c k^2}{8\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left(1 - \frac{1}{\mathrm{i}kr} \right) \int (\vec{n} \cdot \vec{x}') \rho(\vec{x}') \vec{x}' \, \mathrm{d}^3 x'$$

具体电磁场解的形式较复杂, 远场区近似满足

$$\vec{B} = ik\vec{n} \times \vec{A}, \quad \vec{E} = \frac{ikZ_0}{\mu_0}(\vec{n} \times \vec{A}) \times \vec{n}$$

这样的辐射场即称为电四极辐射场,回顾第二章对电四极矩张量 D 的定义,计算得磁场可表达成

$$\vec{H} = -\frac{\mathrm{i}ck^3}{24\pi} \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \vec{n} \times (\mathbf{D}\vec{n})$$

于是类似计算可知 [这里上标 + 为矩阵的共轭转置]

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \frac{c^2 Z_0 k^6}{1152\pi^2} \big| (\vec{n} \times (\mathbf{D}\vec{n})) \times \vec{n} \big|^2, \quad P = \frac{c^2 Z_0 k^6}{1440\pi} \mathrm{tr}(\mathbf{D}^\dagger \mathbf{D})$$

- * 电偶极、磁偶极辐射功率均与 k^4 正比,电四极辐射与 k^6 正比。
- * 对宏观体系而言, 远场区电偶极辐射贡献最大, 磁偶极辐射与电四极辐射强度大致相当。

§5.4 辐射场的多极展开

球谐函数展开

*上一节中,我们利用长波近似对 $\frac{e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|}$ 进行了泰勒展开并进行了一定讨论,但事实上其对高阶修正并不精准。仿照静电学中的加法定理,也应对利用球谐函数展开。

类似第二章加法定理的证明,由于

$$(\nabla^2 + k^2) \frac{e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|} = -4\pi\delta^3(\vec{x} - \vec{x}')$$

两侧球谐函数展开,对比系数可得到

$$\frac{\mathrm{e}^{\mathrm{i}k|\vec{x}-\vec{x}'|}}{4\pi|\vec{x}-\vec{x}'|} = \mathrm{i}k \sum_{l,m} j_l(kr_<) h_l^{(1)}(kr_>) Y_{lm}^*(\vec{n}') Y_{lm}(\vec{n})$$

这里 $j_l, h_l^{(1)}$ 为球贝塞尔函数, $Y_{lm}(\vec{n})$ 为球谐函数, $r_>, r_<$ 表示 $|\vec{x}|, |\vec{x}'|$ 中较大/较小的一个。此公式称为球面波的加法定理。

定义**轨道角动量**算符 $\hat{L} = -i\vec{x} \times \nabla$ [事实上与量子力学形式一致,相差 \hbar],回顾第二章提到的角动量平方算符 \hat{L}^2 ,即为 $\hat{L} \cdot \hat{L}$,拉普拉斯算符可写为

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r} r - \frac{\hat{L}^2}{r^2}$$

多极场

若电磁场对时间均以 e-iwt 谐振,空间中无电荷、电流,代入麦克斯韦方程组可知

$$(\nabla^2 + k^2)\vec{H} = 0, \quad \nabla \cdot \vec{H} = 0, \quad (\nabla^2 + k^2)\vec{E} = 0, \quad \nabla \cdot \vec{E} = 0$$

$$\vec{E} = \frac{iZ_0}{k} \nabla \times \vec{H}, \quad \vec{H} = -\frac{i}{Z_0 k} \nabla \times \vec{E}$$

同时可进一步计算验证

$$(\nabla^2 + k^2)(\vec{x} \cdot \vec{E}) = 0, \quad (\nabla^2 + k^2)(\vec{x} \cdot \vec{H}) = 0$$

计算得 $\nabla \cdot \vec{E} = 0, \nabla \cdot \vec{H} = 0$ 可以转化为上式,从而形成相同形式的方程。

根据数学知识,球坐标系中可取完备集 $h_l^{(1)}(kr)Y_{lm}(\vec{n}), h_l^{(2)}(kr)Y_{lm}(\vec{n})$ 展开任何函数,这里 $h_l^{(1)}, h_l^{(2)}$ 为球**汉克尔函数**,上一部分的 $j_l=(h_l^{(1)}+h_l^{(2)})/2$ 。由此有 [此处 Ψ 为电磁场的任何一个分量]

$$\Psi(\vec{x}) = \sum_{l,m} \left(A_{lm} h_l^{(1)}(kr) + B_{lm} h_l^{(2)}(kr) \right) Y_{lm}(\vec{n})$$

现在我们试着对此式作分解。从 $\vec{x} \cdot \vec{H}$ 出发,定义 (l,m) 阶磁多极场

$$\vec{x} \cdot \vec{H}_{lm}^{(M)}(\vec{x}) = \frac{l(l+1)}{k} g_{lm}(kr) Y_{lm}(\vec{n}), \quad \vec{x} \cdot \vec{E}_{lm}^{(M)}(\vec{x}) = 0$$

这里 g_{lm} 为球汉克尔函数 $h_l^{(1)}, h_l^{(2)}$ 的某线性组合,利用电场只有横向分量即可解得

$$\vec{E}_{lm}^{(M)}(\vec{x}) = Z_0 g_{lm}(kr) \hat{L} Y_{lm}(\vec{n}), \quad \vec{H}_{lm}^{M}(\vec{x}) = -\frac{\mathrm{i}}{Z_0 k} \nabla \times \vec{E}_{lm}^{(M)}$$

完全类似得到电多极场,下方 f_l 亦为球汉克尔函数的某线性组合:

$$\vec{H}_{lm}^{(E)}(\vec{x}) = f_{lm}(kr)\hat{L}Y_{lm}(\vec{n}), \quad \vec{E}_{lm}^{E}(\vec{x}) = \frac{iZ_0}{k}\nabla \times \vec{H}_{lm}^{(E)}$$

由于线性组合的表示,任何辐射场可用电多极场与磁多极场展开,称为多极场展开。

记 $\vec{\chi}_{lm}(\vec{n}) = \frac{1}{\sqrt{l(l+1)}} \hat{L} Y_{lm}(\vec{n})$,展开式可以写成

$$\vec{H} = \sum_{l,m} \left(a_E(l,m) f_{lm}(kr) \vec{\chi}_{lm}(\vec{n}) - \frac{\mathrm{i}}{k} a_M(l,m) \nabla \times g_{lm}(kr) \vec{\chi}_{lm}(\vec{n}) \right)$$

$$\vec{E} = Z_0 \sum_{l,m} \left(\frac{\mathrm{i}}{k} a_E(l,m) \nabla \times f_{lm}(kr) \vec{\chi}_{lm}(\vec{n}) + a_M(l,m) g_{lm}(kr) \vec{\chi}_{lm}(\vec{n}) \right)$$

系数 a_E, a_M 称为电/磁多极场系数,表示成分多少,利用 $\vec{\chi}_{lm}$ 满足的正交归一关系

$$\int \vec{\chi}_{l'm'}(\vec{n}) \cdot \vec{\chi}_{lm}(\vec{n}) d\Omega_{\vec{n}} = \delta_{ll'} \delta_{mm'}, \quad \int \vec{\chi}_{l'm'}^*(\vec{n}) \cdot (\vec{x} \times \vec{\chi}_{lm}(\vec{n})) d\Omega_{\vec{n}} = 0$$

可得到计算方式

$$a_M(l,m)g_{lm}(kr) = \frac{k}{\sqrt{l(l+1)}} \int Y_{lm}^*(\vec{x} \cdot \vec{H}) d\Omega, \quad Z_0 a_E(l,m) f_{lm}(kr) = -\frac{k}{\sqrt{l(l+1)}} \int Y_{lm}^*(\vec{x} \cdot \vec{E}) d\Omega$$

多极辐射功率

考虑远场区 $kr\gg 1$ 时的近似,由于系数 $a_M(l,m)g_{lm}(kr)$ 乘积一定,可假设 g_{lm},f_{lm} 都是归一化的,远场时即可近似为 $\frac{e^{ikr}}{kr}$,于是上方的多极场展开化为

$$\vec{H} = \frac{e^{ikr}}{kr} \sum_{l,m} (-1)^{l+1} (a_E(l,m) \vec{\chi}_{lm}(\vec{n}) + a_M(l,m) \vec{n} \times \vec{\chi}_{lm}(\vec{n}))$$

$$\vec{E} = Z_0 \vec{H} \times \vec{N}$$

从而计算可得辐射功率角分布

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \frac{Z_0}{2k^2} \left| \sum_{l,m} (-1)^{l+1} \left(a_E(l,m) \vec{\chi}_{lm}(\vec{n}) \times \vec{n} + a_M(l,m) \vec{\chi}_{lm}(\vec{n}) \right) \right|^2$$

* 只有某个电或磁的多极场时,求和即为 $|a(l,m)|^2|ec{\chi}_{lm}(ec{n})|^2$,事实上利用定义可算出 [省略参数 $ec{n}$]

$$|\vec{\chi}_{lm}|^2 = \frac{1}{l(l+1)} \left(\frac{(l-m)(l+m+1)}{2} |Y_{l,m+1}|^2 + \frac{(l+m)(l-m+1)}{2} |Y_{l,m-1}|^2 + m^2 |Y_{lm}|^2 \right)$$

利用 7 的正交归一性可知总辐射功率恰为

$$P = \frac{Z_0}{2k^2} \sum_{l,m} (|a_E(l,m)|^2 + |a_M(l,m)|^2)$$

§5.5 电磁波的散射

电磁波传播区域的微小粒子称为**散射体**,若尺度远大于波长,可采用几何光学近似处理,但尺度与波长相 当或更小时就会体现波动性。

一般描述

考虑尺度远小于波长的情况,电磁波可堪称原电磁波与散射部分的叠加,仍省略 $e^{-i\omega t}$ 项,假设入射电磁波为平面波 [将电场偏振单位矢量 \vec{e}_0 与大小 E_0 分开,实际传播方向为 \vec{n}_0]

$$\vec{E}_c = E_0 \vec{e}_0 \mathrm{e}^{\mathrm{i} k \vec{n}_0 \cdot \vec{x}}, \quad \vec{H}_c = \frac{1}{Z_0} \vec{n}_0 \times \vec{E}_{inc}$$

这里 $k = \omega/c$ 为入射波数。

再假设散射波对应 \vec{E}_s, \vec{H}_s , 真实电磁场即为二者求和。

* 对原点附近散射体,远离散射体的空间应有球面波形式。

微分散射截面定义为

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vec{n}, \vec{e}; \vec{n}_0, \vec{e}_0) = \lim_{r \to \infty} \frac{r^2 |\vec{e}^* \cdot \vec{E}_s(r\vec{n})|^2}{|\vec{e}_0^* \cdot \vec{E}_s(r\vec{n})|^2}$$

这里上标星号为共轭, \vec{n} , \vec{e} 为指定方向的立体角与指定的偏振态方向,将其对立体角 \vec{n} 积分即可得到总散射截面。

* 将分子分母同除以 $2Z_0$,分母即成为入射波的能流密度 \vec{S}_c 模长,而分子即为散射波在给定方向与立体角后的功率。

偶极散射

考虑真空中空间半径为 a, 介电常数 ϵ , 磁导率 μ [相对介电常数、相对磁导率记为 ϵ_r , μ_r] 的介质小球,并假设 $ka \ll 1$,即波长远大于小球半径。根据二三两章中求解的结果,可知电偶极矩、磁偶极矩分别为

$$\vec{p} = 4\pi a^3 \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \vec{E}_c, \quad \vec{m} = 4\pi a^3 \frac{\mu - \mu_0}{\mu + 2\mu_0} \vec{H}_c$$

由近似条件,更高阶辐射可以忽略,因此远离散射体处,散射波电磁场能看成电偶极场与磁偶极场叠加,即

$$\vec{E}_s = \frac{1}{4\pi\epsilon_0} k^2 \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \left((\vec{n} \times \vec{p}) \times \vec{n} - \frac{1}{c} \vec{n} \times \vec{m} \right), \quad \vec{H}_s = \frac{1}{Z_0} \vec{n} \times \vec{E}_s$$

由此计算可知

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vec{n}, \vec{e}; \vec{n}_0, \vec{e}_0) = \frac{k^4}{(4\pi\epsilon_0 E_0)^2} \left| \vec{e}^* \cdot \vec{p} + \frac{1}{c} (\vec{n} \times \vec{e}^*) \cdot \vec{m} \right|^2 = k^4 a^6 \left| \frac{\epsilon_r - 1}{\epsilon_r + 2} \vec{e}^* \cdot \vec{e}_0 + \frac{\mu_r - 1}{\mu_r + 2} (\vec{n} \times \vec{e}^*) \cdot (\vec{n}_0 \times \vec{e}_0) \right|$$

* 其具有长波散射、偶极散射特性,即正比于频率四次方。

假设 \vec{n}_0 与 \vec{n} 夹角 $\theta \neq 0$,其张成的平面称为**散射平面**,由于散射波 \vec{E}_s 必然垂直于 \vec{n} ,可将其分解为散射平面上与垂直于散射平面的方向。假设两方向单位矢量为 \vec{e}_{\parallel} , \vec{e}_{\perp} ,则定义 [由偏振方向要求,这里积分是对与 \vec{n}_0 垂直平面上的单位矢量]

$$\frac{\mathrm{d}\sigma_{\parallel}}{\mathrm{d}\Omega} = \frac{1}{2\pi} \int \mathrm{d}\theta_{\vec{e}_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (\vec{n}, \vec{e}_{\parallel}; \vec{n}_0, \vec{e}_0), \quad \frac{\mathrm{d}\sigma_{\perp}}{\mathrm{d}\Omega} = \frac{1}{2\pi} \int \mathrm{d}\theta_{\vec{e}_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} (\vec{n}, \vec{e}_{\perp}; \vec{n}_0, \vec{e}_0)$$

也即代表两种极化情况的散射波对入射波偏振平均后的散射截面,利用各向同性可知其只与 θ 有关,进一步定义散射波**偏振度**

$$\Pi(\theta) = \frac{\frac{\mathrm{d}\sigma_{\perp}}{\mathrm{d}\Omega} - \frac{\mathrm{d}\sigma_{\parallel}}{\mathrm{d}\Omega}}{\frac{\mathrm{d}\sigma_{\perp}}{\mathrm{d}\Omega} + \frac{\mathrm{d}\sigma_{\parallel}}{\mathrm{d}\Omega}}$$

由此即可刻画散射波的极化程度 [其为 1 代表完全极化,只有垂直方向,其为 0 则代表完全非极化,只有平行方向]。

*长波散射又称为**瑞利散射**,由正比频率四次方可知高频电磁波更容易被散射,因此相对高频的蓝色成为 天空的颜色 [而低频直接穿透到达地面]。

多极场展开

类似球面波加法定理的讨论,利用球贝塞尔函数 j_i 可作展开

$$e^{i\vec{k}\cdot\vec{x}} = 4\pi \sum_{l,m} i^l j_l(kr) Y_{lm}^*(\hat{n}) Y_{lm}(\hat{k})$$

 \hat{n}, \hat{k} 表示 \vec{x}, \vec{k} 方向的单位矢量。

若入射波为标量波,此展开即可表示,但存在偏振时会更加复杂,考虑波矢为 z 轴方向的左右旋圆偏振平面波

$$\vec{E}_c(\vec{x}) = (\vec{e}_1 \pm \vec{e}_2)e^{ikz}, \quad c\vec{B}_c(\vec{x}) = \vec{e}_3 \times \vec{E} = \mp i\vec{E}$$

利用复杂的数学计算可以得到类似辐射场多极展开的关系,这里 \vec{v} 定义与辐射场时相同,省略参数 \vec{n} :

$$\vec{E}_c(\vec{x}) = \sum_{l=0}^{\infty} i^l \sqrt{4\pi(2l+1)} \left(j_l(kr) \vec{\chi}_{l,\pm 1} \pm \frac{1}{k} \nabla \times j_l(kr) \vec{\chi}_{l,\pm 1} \right)$$

$$c\vec{B}_c(\vec{x}) = \sum_{l=0}^{\infty} i^l \sqrt{4\pi(2l+1)} \left(\frac{1}{ik} \nabla \times j_l(kr) \vec{\chi}_{l,\pm 1} \mp i j_l(kr) \vec{\chi}_{l,\pm 1} \right)$$

由此,对散射波可以作类似展开,但把 j_l 换为 $h_l^{(1)}$,并添加系数 $\alpha_\pm(l),\beta_\pm(l)$:

$$\vec{E}_s(\vec{x}) = \sum_{l=0}^{\infty} i^l \sqrt{4\pi(2l+1)} \left(\alpha_{\pm}(l) h_l^{(1)}(kr) \vec{\chi}_{l,\pm 1} \pm \frac{\beta_{\pm}(l)}{k} \nabla \times h_l^{(1)}(kr) \vec{\chi}_{l,\pm 1} \right)$$

$$c\vec{B}_{s}(\vec{x}) = \sum_{l=0}^{\infty} i^{l} \sqrt{4\pi(2l+1)} \left(\frac{\alpha_{\pm}(l)}{ik} \nabla \times h_{l}^{(1)}(kr) \vec{\chi}_{l,\pm 1} \mp \beta_{\pm}(l) i h_{l}^{(1)}(kr) \vec{\chi}_{l,\pm 1} \right)$$

假定散射体为半径 a 的小球,可以计算总散射功率与总吸收功率 [注意 \vec{E}, \vec{B} 为入射与散射之和,代表所有向内的波所贡献的功率]

$$P_s = -\frac{a^2}{2\mu_0} \int \vec{E}_s \cdot (\vec{n} \times \vec{B}_s^*) d\Omega_{\vec{n}}, \quad P_a = \frac{a^2}{2\mu_0} \int \vec{E} \cdot (\vec{n} \times \vec{B}^*) d\Omega_{\vec{n}}$$

也可得到微分散射截面

$$\frac{\mathrm{d}\sigma_s}{\mathrm{d}\Omega} = \frac{\pi}{2k^2} \left| \sum_{l} \sqrt{2l+1} \left(\alpha_{\pm}(l) \vec{\chi}_{l,\pm 1} \pm \mathrm{i}\beta_{\pm}(l) \vec{n} \times \vec{\chi}_{l,\pm 1} \right) \right|^2$$

利用归一化性质可计算积分得[省略下标 ±]

$$\sigma_s = \frac{\pi}{2k^2} \sum_{l} (2l+1) (|\alpha(l)|^2 + |\beta(l)|^2)$$

而对吸收的截面,利用 j_l 与 $h_l^{(1)}$ 的关系类似可得

$$\sigma_a = \frac{\pi}{2k^2} \sum_{l} (2l+1) \left(2 - |\alpha(l) + 1|^2 - |\beta(l) + 1|^2 \right)$$

* 此公式与量子力学中散射问题的分波法完全一致。

小球散射

仍考虑之前的小球散射问题,但不进行长波近似。由于需要确定系数,边界条件必须给定,我们假定 r=a 处满足

$$\vec{E}_t = \frac{Z_s}{\mu_0} \vec{n} \times \vec{B}$$

这里 \vec{E}_t 表示电场切向分量, \vec{n} 即为球面法向量,参数 Z_s 称为**表面阻抗**,由此代入多极场展开可以解得 [省略所有参数 ka]

$$a_{\pm}(l) = -1 - \frac{h_l^{(2)} - i\frac{Z_s}{Z_0}\frac{1}{x}\frac{d(xh_k^{(2)})}{dx}}{h_l^{(1)} - i\frac{Z_s}{Z_0}\frac{1}{z}\frac{d(xh_l^{(1)})}{dx}}, \quad b_{\pm}(l) = -1 - \frac{h_l^{(2)} - i\frac{Z_0}{Z_s}\frac{1}{x}\frac{d(xh_k^{(2)})}{dx}}{h_l^{(1)} - i\frac{Z_0}{Z_0}\frac{1}{z}\frac{d(xh_l^{(1)})}{dx}}$$

当 Z_s 为 0 或无穷时,根据球贝塞尔函数的性质可知必能写成

$$\alpha_{\pm}(l) = e^{2i\delta_l} - 1, \quad \beta_{\pm}(l) = e^{2i\delta'_l} - 1$$

角度 δ_l 称为**散射相移**,对理想导体球 $Z_s=0$ 时,可显式写出 [仍省略 ka, j_l,n_l 为球贝塞尔函数]

$$\tan \delta_l = \frac{j_l}{n_l}, \quad \tan \delta_l' = \frac{\frac{\mathrm{d}(xj_l)}{\mathrm{d}x}}{\frac{\mathrm{d}(xn_l)}{\mathrm{d}x}}$$

计算可知,长波极限 $ka \ll 1$ 下,对散射截面最重要的为 l=1 项, l 每增加 1,相应的项会增加因子 $(ka)^2$ 。

六 狭义相对论 35

六 狭义相对论

§6.1 狭义相对论的基本假设及其验证

基本假设:不同惯性系中物理规律相同 [**相对性原理**]、所有惯性系中信号可能的最大传播速度为光速 [**光 速不变原理**]。

*由于位移电流,麦克斯韦方程组在伽利略变换下会改变,两者不相容。

早期实验验证:迈克尔逊-莫雷实验,但早期光速测量存在光学灭绝问题,即电磁波进入介质时介质极化产生的电磁场抵消原电磁波,并产生新的电磁波,使得测量到的介质中真实传播速度为介质中光速。

由于灭绝需要距离,在灭绝距离到达前进行测量即可规避此问题,后续实验进一步验证了狭义相对论。

§6.2 洛伦兹变换

考虑惯性系 K 中两个时空点 $(t_1,\vec{x}_1),(t_2,\vec{x}_2)$,定义其**不变间隔** Δs^2 为

$$\Delta s^2 = c^2 (t_2 - t_1)^2 - |\vec{x}_2 - \vec{x}_1|^2$$

若第一个时空点发射光信号,第二个时空点收到 [这称为**光信号联系**的事件],根据光速不变原理可知不变间隔为 0。

对另一惯性系 K',若相对 K 的运动速度为 v',其中的时空点 $(t'_1, \vec{x}'_1), (t'_2, \vec{x}'_2)$,则必有 $\Delta s'^2 = 0$ 。 若对任何两时空点,不变间隔平方的变换关系为 [可如此假设是由于时空均匀性,变换系数只能与 v 大小有关]

$$\Delta s^2 = A(|\vec{v}'|)\Delta s'^2$$

另一方面,对惯性系 K'来说,惯性系 K 以速度 $-\vec{v}'$ 相对惯性系 K 运动,于是又有

$$\Delta s'^2 = A(|-\vec{v}'|)\Delta s^2$$

由于 $-\vec{v}$ 模长与 \vec{v} 相同,可得 $A(|\vec{v}'|)$ 平方必然为 1,于是可能为 ± 1 ,又由 $\vec{v}=0$ 时必然为 1,结合连续性可知只能恒为 1,即

$$\Delta s'^2 = \Delta s^2$$

- *不变间隔在惯性系变换下不变,满足此性质的时空称为**闵可夫斯基时空**[闵氏空间]。
- * 注意到 Δs^2 未必为正,为正时称两个时空点**类时**,为负时称**类空**,为 0 时称**类光**。
- * 粒子的演化轨迹在四维时空中称为**世界线**,对光子,世界线为类光点构成的**光锥**面,对速度小于光速的 粒子,世界线必然落在类时区域内。

不同惯性系间不变间隔得到保持的线性坐标变换称为**洛伦兹变换**,考虑惯性系 K 与以匀速 \vec{v} 相对 K 沿 x 轴正方向运动的惯性系 K',t=0 时刻的时空原点重合,且由于对称性必然有 y'=y,z'=z。这时,考虑与时空原点 [其在线性变换下必然保持不变] 的时空间隔可知须保持 $c^2t^2-x^2=c^2t'^2-x'^2$,这样的线性变换必然能写成

$$x' = x \cosh \psi + ct \sinh \psi, \quad ct' = x \sinh \psi + ct \cosh \psi$$

但是,在 K 系中考察 K' 系坐标原点的运动,根据定义可知 $0 = vt \cosh \psi + ct \sinh \psi$,于是进一步解得

$$x' = \gamma(x - \beta ct), y' = y, z' = z, ct' = \gamma(ct - \beta x), \quad \beta = \frac{v}{c}, \gamma = \cosh \psi = \frac{1}{\sqrt{1 - v^2/c^2}}$$

* 对一般的运动速度 \vec{v} , 记 $\vec{\beta} = \vec{v}/c$, γ 表达式不变,考虑分量分解可知洛伦兹变换应能写成

$$ct' = \gamma(ct - \vec{\beta} \cdot \vec{x}), \quad \vec{x}' = \vec{x} + \frac{\gamma - 1}{\vec{\beta}^2} (\vec{\beta} \cdot \vec{x}) \vec{\beta} - \gamma \vec{\beta} ct$$

六 狭义相对论 36

* 利用数学知识,一般的洛伦兹变换可分解为 xy, yz, xz, xt, yt, zt 六个部分,前三个部分由保持 $x^2 + y^2 + z^2$ 不变即为旋转与反射,对应参考系坐标轴方向的选取,后三个部分称为**推促**,只涉及推促时的表达式如上。

- * 从洛伦兹变换中时空耦合可以看出,同时具有相对性。
- * 因果性:两个事件的不变间隔必须类时才能得到因果关系。

§6.3 洛伦兹标量与四矢量

- * 洛伦兹变换下不变的量称为洛伦兹标量,例如不变间隔即为洛伦兹标量。
- * 回顾爱因斯坦求和约定下相同指标代表求和。

记坐标 $x^{\mu} = (x^0, x^1, x^2, x^3) = (ct, x, y, z)$,其事实上用张量语言表达为一个**逆变四矢量**,对应的**协变四矢** 量定义为 $x_{\mu} = (x^0, -\vec{x})$,则它们可以通过**闵可夫斯基度规张量**互相转化,即有

$$x_{\mu} = \eta_{\mu\nu} x^{\nu}, \quad x^{\mu} = \eta^{\mu\nu} x_{\nu}$$

这里 $\eta^{\nu\mu}$ 为 $\eta_{\mu\nu}$ 的逆,而根据逆变四矢量、谐变四矢量的定义,可直接得到

$$\eta^{\nu\mu} = \eta_{\nu\mu} = \delta_{\nu\mu} (2\delta_{\nu0} - 1)$$

- * 也即看作矩阵为 diag(1,-1,-1,-1), 其逆仍为自身。
- 一般的洛伦兹变换可以写成

$$x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

这里 Λ_{μ}^{ν} 事实上亦为矩阵,具体分量可由上一部分得到。

- * 可验证其行列式为 1,因此**四维体积元** d^4x 也是洛伦兹标量,即 $d^4x = d^4x'$ 。
- * 对不变间隔,其考虑无限接近的点可写为微分形式 $ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu$,亦可验证为洛伦兹标量。

若时空变换下,物理量 A^{μ} 与 x^{μ} 有相同的变换形式,则称为逆变四矢量,也即

$$A'^{\mu} = \Lambda^{\mu}_{\nu} A^{\nu}$$

可定义对应的协变四矢量为

$$A_{\mu} = \eta_{\mu\nu} A^{\nu}$$

某两四矢量 A, B 可以定义内积 [由于协变、逆变一一对应,可视为整体进行考虑],记为

$$A \cdot B = A^{\mu} B_{\mu} = A_{\mu} B^{\mu}$$

*此定义下可验证四矢量内积均为洛伦兹标量。特别地,不变间隔可看作 $dx \cdot dx$ 。

电动力学中,考虑平面波,由 $c^2k^2=\omega^2$ 计算可发现相位 $\phi=\omega t-\vec{k}\cdot\vec{x}$ 在不同参考系不变,其也为洛伦兹标量,或定义**四波矢** $k=(\omega/c,\vec{k})$ 后写成 $\phi=k\cdot x$ 的形式。可验证四波矢构成逆变四矢量,于是计算洛伦兹变换可得

$$\omega' = \gamma \omega (1 - \beta \cos \theta)$$

这里 θ 为 $\vec{\beta}$ 与 \vec{k} 的夹角,由此即得到相对论多普勒效应。

* 纵向、横向分别对应 $\theta=0$ 与 $\frac{\pi}{2}$ 的情况,横向多普勒效应只有考虑相对论时才会出现。。

对时空坐标四矢量的函数 f(x),定义梯度算符 ∂_{μ} 为求导后再拼接为四矢量,利用链式法则可证明 f 为洛伦兹标量时 $\partial_u f(x)$ 为协变四矢量。可类似定义上标的梯度算符 $\partial^{\nu} = \eta^{\mu\nu}\partial_{\mu}$,则**达朗贝尔算符**即可写为

$$\Box = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = -\partial^\mu \partial_\mu$$

此算符即出现在电磁波动方程中。

*由于狭义相对论对应的参考系变换为洛伦兹变换,满足其的物理理论必然在洛伦兹变换下不变,也即可以用[符合洛伦兹变换形式定义下的]张量写出。若一个方程能如此写出,即称其为协变的,而若物理理论中所有方程均协变,即称它是协变的,下一章中将讨论麦克斯韦方程组的协变性,从而经典电动力学是协变的。

§6.4 洛伦兹变换的数学性质

单位变换: $\Lambda_{t}^{\mu} = \delta_{t}^{\mu}$, 时空均不变。

从数学上可以推出,变换为洛伦兹变换当且仅当其不改变任何四矢量内积,考虑一组基可将此条件写成

$$\eta_{\mu\nu}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}=\eta_{\alpha}\beta$$

* 用矩阵写出并计算可发现行列式平方为 1, 于是存在行列式为 ±1 的两支。

数学上,所有洛伦兹变换在复合下构成一个群,其事实上可以通过分解得到六个参数来刻画,类似六对独立平面中的转动角度。其每个元素解析地依赖于六个参数,因此此群为一个**李群**。数学上可证明,行列式为 1 的洛伦兹变换的矩阵形式写为 [这里矩阵的 exp 由幂级数定义]

$$\Lambda = \exp\left(\sum_{i=1}^{3} (\mathrm{i}\theta_i S_i - \omega_i K_i)\right)$$

其中 θ_i , ω_i 为 xy, yz, zx, xt, yt, zt 六个平面内的转动角度,对应的 S_i , K_i 为相应的生成元,记 E_{ij} 为第 i 行第 i 列为 1,其他为 0 的矩阵,则有

 $\mathrm{i} S_1 = E_{43} - E_{34}, \mathrm{i} S_2 = E_{24} - E_{42}, \mathrm{i} S_3 = E_{32} - E_{23}, \quad K_1 = E_{12} + E_{21}, K_2 = E_{13} + E_{31}, K_3 = E_{14} + E_{41}$ 它们满足对易关系 [这里 [A,B] = AB - BA,类似量子力学中定义]

$$[S_i, S_j] = i\epsilon_{ijk}S_k, \quad [S_i, K_j] = i\epsilon_{ijk}K_k, \quad [K_i, K_j] = i\epsilon_{ijk}S_k$$

这些对易关系完全刻画了行列式为 1 的洛伦兹变换构成的群 [这也是一个李群] 的性质,称为它的**李代数**。从之前分量分解的洛伦兹变换形式可得到,仅涉及推促的洛伦兹变换矩阵为 $[eta_i$ 为 \vec{eta} 的分量]

$$\Lambda(\vec{\beta}) = \begin{pmatrix}
\gamma & -\gamma\beta_1 & -\gamma\beta_2 & -\gamma\beta_3 \\
-\gamma\beta_1 & 1 + (\gamma - 1)\frac{\beta_1^2}{\beta^2} & (\gamma - 1)\frac{\beta_1\beta_2}{\beta^2} & (\gamma - 1)\frac{\beta_1\beta_3}{\beta^2} \\
-\gamma\beta_2 & (\gamma - 1)\frac{\beta_1\beta_2}{\beta^2} & 1 + (\gamma - 1)\frac{\beta_2^2}{\beta^2} & (\gamma - 1)\frac{\beta_2\beta_3}{\beta^2} \\
-\gamma\beta_3 & (\gamma - 1)\frac{\beta_1\beta_3}{\beta^2} & (\gamma - 1)\frac{\beta_2\beta_3}{\beta^2} & 1 + (\gamma - 1)\frac{\beta_3^2}{\beta^2}
\end{pmatrix}$$

七 相对论性电动力学

§7.1 自由粒子的拉氏量与运动方程

采用拉格朗日力学的观点,对闵氏空间中的自由粒子,作用量仍然应为洛伦兹标量 [这样才能保证最小作用量原理是协变的],而闵氏空间中可以写出的洛伦兹标量 S 为

$$S = \int L \, \mathrm{d}t = -mc \int \, \mathrm{d}s$$

这里 L dt 为某参考系中的表达,积分实质上是沿着世界线进行,ds 为不变间隔,某种意义上是世界线的弧长微元。

* 注意 $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$,而传统意义的弧长微元平方为 $\delta_{\mu\nu} dx^{\mu} dx^{\nu}$,于是 $\eta_{\mu\nu}$ 刻画了闵氏空间中长度 [对类空点,其距离 (不变间隔) 甚至可能是虚数] 与通常四维空间的差别,因此其称为**度规**。

假设粒子的**固有时**为 τ ,也即对于粒子静止的参照系中时间间隔为 τ ,则粒子时间线 x^{μ} 可以看作 τ 为参数的曲线,即 $x^{\mu}(\tau)$,于是有 [第二个等号可直接由逆变、协变四矢量定义计算得到]

$$S = -mc \int \sqrt{\eta_{\mu\nu} \, \mathrm{d}x^{\mu} \, \mathrm{d}x^{\nu}} = -mc \int \sqrt{\mathrm{d}x^{\mu} \, \mathrm{d}x_{\mu}} = -mc \int \sqrt{\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}} \, \mathrm{d}\tau$$

* 计算可发现,以另一个参数 $\tilde{\tau}$ 对世界线作参数化,作参数变换 $\tilde{\tau} = \tilde{\tau}(\tau)$ 后,作用量仍然满足此形式,因此作用量具有**重参数化不变性**。由于 ds 与参数无关,这是自然的。

某参考系中,若自由粒子速度 \vec{v} ,其蕴含 $\frac{d\vec{x}}{dt} = \vec{v}$,因此可得此参考系下 $[v = |\vec{v}|]$

$$ds = c\sqrt{1 - \frac{v}{c^2}}dt, \quad L = -mc^2\sqrt{1 - \frac{v}{c^2}}$$

* 注意到此时与粒子一起运动的参考系即相对原参考系速度 \vec{v} ,因此利用洛伦兹变换可知此参考系中时间 $d\tau$ 即为 $\frac{ds}{c}$,因此固有时事实上满足 $ds=cd\tau$,这也蕴含着以固有时作为参数时,作用量对应公式的根号下事实上是 c^2 。

由此,利用拉格朗日力学的公式,可知正则动量 \vec{p} 与能量 [即哈密顿量] E 为

$$\vec{p} = \nabla_{\vec{v}} L = \frac{m\vec{v}}{\sqrt{1 - v^2/c^2}}, \quad E = \vec{p} \cdot \vec{v} - L = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$$

- * 能量动量关系还可写为 $E^2 = c^2 \vec{p}^2 + m^2 c^4$ 。
- *上述推导要求m为一个洛伦兹标量,称为粒子的**静止质量**,可以证明与牛顿力学中定义类似。

运动方程

考虑作用量的变分 [第二个等号可将根号中写为 $dx_0^2 - dx_1^2 - dx_2^2 - dx_3^2$ 再由全变分计算,注意对变分,微分 dx 可看作普通变量]

$$\delta S = -mc \int \delta \sqrt{\mathrm{d}x^{\mu} \mathrm{d}x_{\mu}} = -mc \int \mathrm{d}[s] x_{\mu} \delta \mathrm{d}x^{\mu}$$

记协变四矢量 $u_{\mu} = \frac{\mathrm{d}x_{\mu}}{\mathrm{d}s}$,称为**四速度** [这里定义方式为无量纲,也可乘 c 作为对 τ 的求导,即有量纲],利用变分微分可交换并分部积分得到

$$\delta S = -mc \int u_{\mu} d(\delta x^{\mu}) = -mc u_{\mu} \delta x^{\mu} \Big|_{\tau_{\min}}^{\tau_{\max}} + mc \int \frac{du_{\mu}}{ds} \delta x^{\mu} ds$$

考虑端点固定的世界线, δx^{μ} 在两端为 0,于是 $\delta S = 0$ 即得到自由粒子运动方程

$$\frac{\mathrm{d}u_{\mu}}{\mathrm{d}s} = 0$$

与 x^{\mu} 共轭的粒子四动量定义为

$$p^{\mu} = mcu^{\mu} = \left(\frac{E}{c}, \vec{p}\right)$$

- * 当粒子速度为 \vec{v} 时,利用 ds 定义可直接计算出四速度对应的逆变四矢量为 $u^\mu=(\gamma,\gamma\vec{\beta})$, $\gamma,\vec{\beta}$ 定义同前一章。
- * 四动量、四速度 [须写为逆变形式] 变换规则与时空坐标相同,因此是四矢量。
- * 根据之前推导,速度 0 的粒子也具有静止能量 $E = mc^2$,称为**爱因斯坦质能关系**,若 $v \ll c$,即可近似得到粒子能量为静止能量加经典动能。
- * 由于四速度守恒即可知自由粒子四动量守恒。

零质量粒子

对零质量粒子,之前的作用量定义不再适用,需要引入辅助的世界线上的函数 $e(\tau)$,称为**单元基**,满足 $e(\tau)>0$,考虑更一般的作用量

$$S = -\frac{1}{2} \int d\tau \left(\frac{1}{e(\tau)} \frac{dx_{\mu}}{d\tau} \frac{dx^{\mu}}{d\tau} + e(\tau) m^2 c^2 \right)$$

将作用量对 $e(\tau)$ 取变分可得到

$$\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} - \mathrm{e}(\tau)^2 m^2 c^2 = 0$$

若 $m \neq 0$,此即能解出 $e(\tau)$,代入发现作用量形式与之前完全等价,于是对 x^{μ} 变分可得到相同的运动方程。

* 通过对 τ 重参数化,可取到合适的 $e(\tau)$ 形式,其可作为某种规范,如可选取 $e(\tau)=1$ 。

对零质量粒子,约束方程即为

$$\frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} = 0$$

对应的 $e(\tau)$ 可以任取。

* 将此作用量量子化得到的理论对应 Klein-Gordan 理论,但其并不自洽,实际上不可取,需要考虑其他形式。

§7.2 电磁场中粒子的拉氏量

高斯单位制

设下标 g 代表高斯单位制中的值,考虑真空中的麦克斯韦方程组,高斯单位制的变换为 [下方分别为电场强度、磁感应强度、电荷密度、电流密度]

$$\vec{E} = \frac{\vec{E}_g}{\sqrt{4\pi\epsilon_0}}, \quad \vec{B} = \sqrt{\frac{\mu_0}{4\pi}}\vec{B}_g, \quad \rho = \sqrt{4\pi\epsilon_0}\rho_g, \quad \vec{J} = \sqrt{4\pi\epsilon}\vec{J}_g$$

而对规范势, 高斯单位制的变换为

$$\vec{A} = \sqrt{\frac{\mu_0}{4\pi}} \vec{A}_g, \quad \Phi = \frac{\Phi_g}{\sqrt{4\pi\epsilon_0}}$$

考虑介质时,磁化强度、极化强度满足

$$\vec{M} = \sqrt{\frac{4\pi}{\mu_0}} \vec{M}_g, \quad \vec{P} = \vec{P}_g \sqrt{4\pi\epsilon_0}$$

力学相关物理量,如 \vec{x}, \vec{p}, t 等单位无变化,其他物理量则可从上方基本物理量确定。下面的讨论**采用高斯单位制**,省略下标 g。

考虑带电的微观粒子,带电量 e 也应为洛伦兹标量,根据量子理论可知其必然为电子电量整数倍 [排除夸克]。若其在某外电磁场中,电动力学假定其具有某四矢量势 $A_{\mu}(x)$,作用量可写成

$$S = -mc \int ds - \frac{e}{c} \int A_{\mu}(x) dx^{\mu}$$

高斯单位制下, $\Phi(x)$, $\vec{A}(x)$ 具有相同量纲,四矢量可写为 $A^{\mu}(x) = (\Phi(x), \vec{A}(x))$,将作用量写为对某参考系下 dt 的积分后即可知

$$L = -mc^2\sqrt{1 - \frac{v^2}{c^2}} + \frac{e}{c}\vec{v} \cdot \vec{A} - e\Phi$$

由此,同前定义 $\vec{p} = m\vec{v}/\sqrt{1-v^2/c^2}$,则有正则动量与哈密顿量为

$$\vec{P} = \vec{p} + \frac{e}{c}\vec{A}, \quad H = \vec{v} \cdot \vec{P} - L = \sqrt{m^2c^2 + c^2\left(\vec{P} - \frac{e}{c}\vec{A}\right)^2} + e\Phi$$

§7.3 运动方程与规范不变性

高斯单位制下电场强度、磁感应强度满足

$$\vec{E} = -\nabla \Phi - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \quad \vec{B} = \nabla \times \vec{A}$$

由此列出拉格朗日方程组,可化为

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = e\vec{E} + \frac{e}{c}\vec{v} \times \vec{B}$$

再结合相对论能量、动量关系即得

$$\frac{\mathrm{d}E}{\mathrm{d}t} = e\vec{v} \cdot \vec{E}$$

* 为算出下式,对能量、动量关系两边求导可得 [第二个等号是代入了包含 v 的形式]

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{c^2 \vec{p}}{E} \cdot \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{v} \cdot \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

再代入即可。

- * 注意到拉格朗日方程组不显含矢势与标势,电磁势作规范变换不改变运动方程,于是运动方程具有规范对称性。
- *事实上运动方程形式与洛伦兹力直接得到的形式完全相同,也即考虑相对论不改变其形式。

与之前类似,可直接对 S 变分进行推导,仍然固定世界线的起点终点,类似利用分部积分得到

$$\delta S = mc \int \frac{\mathrm{d}u_{\mu}}{\mathrm{d}s} \delta x^{\mu} \, \mathrm{d}s - \frac{e}{c} \int (\partial_{\nu} A_{\mu} \delta x^{\nu} \, \mathrm{d}x^{\mu} - \partial_{\nu} A_{\mu} \, \mathrm{d}x^{\nu} \delta x^{\mu})$$

因此,记 $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$,其成为电磁场的**场强张量**,运动方程即为

$$mc\frac{\mathrm{d}u_{\mu}}{\mathrm{d}s} = \frac{e}{c}F_{\mu\nu}u^{\nu}$$

根据场强张量的定义, 其可以写为矩阵

$$F_{\mu\nu} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B_3 & B_2 \\ -E_2 & B_3 & 0 & -B_1 \\ -E_3 & -B_2 & B_1 & 0 \end{pmatrix}$$

- *由此,场强张量也满足规范不变性,于是方程仍然在规范变换下不变。(事实上,考虑量子力学时此结论并不成立。)
- *根据 $\eta^{\mu\nu}$ 的定义与二阶协变、逆变张量的要求,记 [任何二阶张量上下标改变都满足此关系式]

$$F^{\alpha\beta} = \eta^{\alpha\mu} F_{\mu\nu} \eta^{\nu\beta}$$

其矩阵表示即为电场部分取负号,磁场部分不变。

*利用电磁场场强张量,可看出狭义相对论下事实上电磁场是统一的。

§7.4 电磁场的作用量与电动力学的协变性

* 注意介质影响麦克斯韦方程组本质是影响了 ρ 与 \vec{J} ,因此只要验证真空中麦克斯韦方程组成立即可。由逆变四矢量要求,对应二阶逆变张量可得洛伦兹变换下 [也可利用电场四矢量直接计算]

$$F^{\prime\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} F^{\alpha\beta}$$

若洛伦兹变换仅含有推促, 利用矩阵乘法直接计算出

$$\vec{E}' = \gamma(\vec{E} + \vec{\beta} \times \vec{B}) - \frac{\gamma^2}{1 + \gamma} (\vec{\beta} \cdot \vec{E}) \vec{\beta}$$

$$\vec{E}' = \gamma (\vec{B} - \vec{\beta} \times \vec{E}) - \frac{\gamma^2}{1 + \gamma} (\vec{\beta} \cdot \vec{B}) \vec{\beta}$$

* 这代表不同参考系下 \vec{E} , \vec{B} 会相互转化。

由 $F_{\mu\nu}$ 的定义,可知

$$\partial_{\mu}F_{\nu\alpha} + \partial_{\nu}F_{\alpha\mu} + \partial_{\alpha}F_{\mu\nu} = 0$$

用矩阵表达式写出发现,此即为麦克斯韦方程组不涉及 ρ , \vec{J} 的后两个方程,它们通过场强张量的反对称性自然得出,称为**比安基恒等式**。

* 另一构造方法为定义对偶张量 $\tilde{F}_{\mu\nu}=\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}F^{\alpha\beta}$,这里 ϵ 即为完全反对称张量,类似之前的 ϵ_{ijk} ,计算可发现 $\tilde{F}_{\mu\nu}$ 即为将 $F^{\mu\nu}$ 电磁场位置互换,用它写出比安基恒等式即为 $\partial_{\mu}\tilde{F}^{\mu\nu}=0$ 。

为了得到麦克斯韦方程组剩下两个方程,我们需要电磁场自身的作用量,这样才能推导出其运动方程。由于作用量需要洛伦兹不变,从场强张量出发事实上可得到两个作用量,分别是正比于 $\vec{E} \cdot \vec{B}$ 的 $\epsilon_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$,但由于后者在空间反射 [宇称变换] 下符号改变,不符合实际,因此作用量最终写成

$$S_{em} = -\frac{1}{16\pi c} \int d^4x F_{\mu\nu} F^{\mu\nu}$$

* 系数事实上与单位制有关,这里对应高斯单位制的情况。

考虑到空间存在电荷,作用量还需要增加一项,对应带电粒子与磁场的相互作用,回顾带电粒子作用量,在某参考系下,作用量写为带电粒子作用量第二部分对 ρ 的积分,计算可得

$$S_{int} = -\iiint \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \frac{\rho}{c} \int A_{\mu} \,\mathrm{d}x^{\mu} = -\frac{1}{c^2} \int A_{\mu} \rho \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \,\mathrm{d}^4x$$

记 $J^{\mu}=\rho\frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}$,可发现其恰为 $(c\rho,\vec{J})$,而电荷守恒方程即可写为 $\partial_{\mu}J^{\mu}=0$ 。记作用量为 $S=S_{em}+S_{int}$,根据最小作用量原理计算可知运动方程

 $\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}J^{\nu}$

这恰为麦克斯韦方程组的前两个方程。

由此,我们验证了电动力学的协变性,即对不同惯性系一致。

§7.5 运动物体中的电磁场

*由于宏观物体的运动速度远低于光速,一般考虑相对论效应引起的一阶修正即可。

运动电介质

利用 \vec{D} 与 \vec{H} 的定义,将 \vec{D} 与 \vec{H} 替换真空情况的 \vec{E} 与 \vec{B} ,可得到二阶反称张量 $H_{\mu\nu}$,若电介质中无自由电流与电荷,对应的麦克斯韦方程组后两个方程即为

$$\partial_{\mu}F^{\mu\nu} = 0$$

考虑以速度 \vec{v} 运动的电介质,对应有 $\vec{\beta}$ 与 γ ,由于对介质静止的参考系中本构关系为 $\vec{D}=\epsilon\vec{E}, \vec{H}=\vec{B}/\mu$,利用四速度的定义,洛伦兹变换后本构关系化为

$$H^{\mu\nu}u_{\nu} = \epsilon F^{\mu\nu}u_{\nu}, \quad F_{(\mu\nu}u_{\lambda)} = \mu H_{(\mu\nu}u_{\lambda)}$$

这里三个指标上的小括号表示轮换求和,类似 $F_{\mu\nu}$ 表示的比安基恒等式的形式,写成三维矢量的形式即

$$\vec{D} + \vec{\beta} \times \vec{H} = \epsilon (\vec{E} + \vec{\beta} \times \vec{B}), \quad \vec{B} - \vec{\beta} \times \vec{E} = \mu (\vec{H} - \vec{\beta} \times \vec{D})$$

作一次近似,将第二式 \vec{B} 代入第一式,忽略 $\vec{\beta}$ 的高阶项即得

$$\vec{D} \approx \epsilon \vec{E} + (\epsilon \mu - 1) \vec{\beta} \times \vec{H}$$

类似得

$$\vec{B} \approx \mu \vec{H} - (\epsilon \mu - 1) \vec{\beta} \times \vec{E}$$

对边界条件,由于介质中无自有电荷,因此对法向[n 指垂直界面的单位矢量]仍有

$$\vec{n} \cdot (\vec{D}_2 - \vec{D}_1) = 0, \quad \vec{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0$$

对切向, 仍利用静止情况作洛伦兹变换发现一阶近似下

$$\vec{n} \times (\vec{E}_2 - \vec{E}_1) = \beta_n(\mu_2 - \mu_1)\vec{H}_t, \quad \vec{n} \times (\vec{H}_2 - \vec{H}_1) = -\beta_n(\epsilon_2 - \epsilon_1)\vec{E}_t$$

这里 $\beta_n = \vec{\beta} \cdot \vec{N}$ 为法向速度, $\vec{H}_t = \vec{n} \times \vec{H}, \vec{E}_t = \vec{n} \times \vec{E}$ 表示切向的电磁场。

* 这里切向的电磁场无需考虑是哪个介质中,因为边界面切向电磁场相差为一阶小量,其差别代入右侧成为二阶小量。

例:考虑真空匀强磁场 \vec{B} 内半径 a,角速度 \vec{a} 的匀速**旋转介质球**,介电常数 ϵ 、磁导率 μ ,考虑其生成的电场。

由于此为相对论效应,磁场分布的修正为小量,可假设其与静止时一致,由第三章对球壳的计算,取内半径为0,外半径为a,可知高斯单位制下内部 $\vec{H}_{in} = \frac{3}{u+2}\vec{B}$ 。

但对电场,由于静止时并无电场,因此首项即为一阶小量,需要考虑。引入静电势 Φ ,电场 $\vec{E} = -\nabla \Phi$,球外方程即 $\nabla^2 \Phi_{r>a}(\vec{x}) = 0$,球内由 $\nabla \cdot \vec{D} = 0$,代入一阶修正的 \vec{D} ,再代入 $\vec{\beta} = \frac{1}{c} \vec{\omega} \times \vec{x}$ 即得

$$\nabla^2 \Phi_{r < a}(\vec{x}) = \frac{2(\epsilon \mu - 1)}{c\epsilon} \vec{\omega} \cdot \vec{H}_{in}$$

由此,球内等效有一个常电荷密度,而球外电荷密度为 0,考虑近似到电四极矩张量 D_{ij} [回顾第二章静电 多极展开],利用边界条件可解出

$$\Phi_{r>a}(\vec{x}) = \frac{1}{6} D_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \frac{1}{r}$$

$$\Phi_{r

$$D_{ij} = -\frac{3a^5 (\epsilon \mu - 1)}{(3 + 2\epsilon)(2 + \mu) \left(B_i \omega_j + B_j \omega_i - \frac{2}{3} \delta_{ij} \vec{\omega} \cdot \vec{B} \right)}$$$$

运动导体

考虑以速度 \vec{v} 运动的电介质,对应有 $\vec{\beta}$ 与 γ ,根据上节 \vec{E}, \vec{B} 相对论变换的表达,一阶近似下导体感受到的电场为

$$\vec{E}_e = \vec{E} + \vec{\beta} \times \vec{B}$$

于是利用欧姆定律得电流密度为

$$\vec{J} = \sigma(\vec{E} + \vec{\beta} \times \vec{B})$$

假设磁场为准静态,即忽略位移电流,此时 μ 为常数, $\vec{B} = \mu \vec{H}$,于是利用麦克斯韦方程组可得磁场满足

$$\frac{\partial \vec{H}}{\partial t} - \nabla \times (\vec{v} \times \vec{H}) = \frac{c^2}{4\pi\sigma\mu} \nabla^2 \vec{H}$$

例:考虑真空匀强磁场 $B\vec{e}_3$ 内半径 a,角速度 $\omega\vec{e}_3$ 的匀速**旋转导体球**,电导率 σ 、磁导率 1,考虑其生成的电磁场。

稳态时**导体参考系**下导体中电场必然为 0,不然会产生耗散,利用上方公式也即 $\vec{E} + \vec{\beta} \times \vec{B} = 0$ 。与上个例子类似,磁场 \vec{B} 可不用考虑相对论效应,全空间为 $B\vec{e}_3$,从而球坐标系下计算可知

$$\vec{E}_{r < a} = -\frac{\omega Br}{c} \sin \theta (\vec{e}_r \sin \theta + \vec{e}_\theta \cos \theta)$$

根据高斯单位制下麦克斯韦方程组,事实上体电荷密度为常值

$$\rho = \frac{1}{4\pi} \nabla \cdot \vec{E} = -\frac{\omega B_0}{2\pi c}$$

*可计算得到总体电荷,为使导体球保持电中性,球上必然还有面电荷分布,它们与体电荷共同产生全空间电场。面电荷分布也是导体内电场并不球对称的原因。

为计算球外的电场,引入静电势 Φ ,由 ϕ 方向对称性与无穷远处边界条件可知静电势能球外展开成

$$\Phi_{r>a}(r,\theta) = \sum_{l=0}^{\infty} \frac{A_l}{r^{l+1}} P_l(\cos\theta)$$

* 即为球谐函数展开,利用了 m=0 时退化为勒让德函数。由于球内 \vec{E} 已经写出,可知 [常数 ϕ_0 待定]

$$\Phi_{r < a}(r, \theta) = \phi_0 + \frac{\omega B_0 r^2}{3c} (1 - P_2(\cos \theta))$$

由于介质极化,内外包含的 l 应相同,于是外部也仅包含 l=0,2,结合边界条件即得

$$\Phi_{r>a}(r,\theta) = \left(\phi_0 + \frac{\omega B_0 a^2}{3c}\right) \frac{a}{r} - \frac{\omega B_0 a^5}{3cr^3} P_2(\cos\theta)$$

考虑此电势计算出的 \vec{E} ,法向 \vec{E}_n 存在跃变,于是面电荷密度为

$$\Sigma(\theta) = \frac{1}{4\pi} \left(E_r(a^+) - E_r(a_-) \right) = \frac{\phi_0}{4\pi a^2} + \frac{\omega B_0 a}{12\pi c} (3 - 5P_2(\cos \theta))$$

将其对表面积分得到总面电荷 $\phi_0 a + \omega B_0 a^3/c$, 其与总体电荷和为 0 即解出

$$\phi_0 = -\frac{\omega B_0 a^2}{3c}$$

* 事实上由于外部 l=0 的项对应内部总电荷,不应存在,由此可以直接得到 ϕ_0 的表达式,于是最终有

$$\Phi_{r < a}(r, \theta) = -\frac{\omega B_0 a^2}{3c} + \frac{\omega B_0 r^2}{3c} (1 - P_2(\cos \theta)), \quad \Phi_{r > a}(r, \theta) = -\frac{\omega B_0 a^5}{3cr^3} P_2(\cos \theta)$$

§7.6 均匀静电磁场中带电粒子的运动

考虑静止质量为m,所带电荷为e的粒子,运用三维形式运动方程计算。

均匀静电场

设场强 \vec{E}_0 , 此时代入运动方程可知

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = e\vec{E}_0, \quad \frac{\mathrm{d}E}{\mathrm{d}t} = e\vec{v} \cdot \vec{E}_0$$

于是 \vec{p} 匀速增加,足够长时间后 \vec{p} [可忽略 \vec{p} (0)时 \vec{p} 与时间正比,也即能量增加速度大致随时间正比。

* 为考虑到相对论效应时加速器基本原理。

均匀静磁场

44

设场强 \vec{B}_0 ,这时能量不随时间变化,从而速度大小不随时间变化,因此 γ 不随时间变化,速度与动量比例恒定,可将动量方程写为

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{v} \times \vec{\omega}_{\vec{B}}, \quad \vec{\omega}_{\vec{B}} = \frac{e\vec{B}}{\gamma mc} = \frac{ec\vec{B}}{E}$$

这里 🗓 務为回旋频率。

设 $\vec{B} = B\vec{e_3}$,回旋频率大小 ω_B ,给定初始速度,可发现平行磁场方向分量与垂直磁场方向分量的大小均恒定不变,记作 v_{\parallel} 与 v_{\perp} ,并记对应的 $p_{\perp} = \gamma m v_{\perp}$,可直接写出解

$$\vec{v}(t) = v_{\parallel} \vec{e}_3 + \omega_B a (\vec{e}_1 - i\vec{e}_2) e^{-i(\omega_B t - \phi)}, \quad a = \frac{cp_{\perp}}{eR}$$

这里 ϕ 为相位参数,由初始速度确定,a 称为**回旋半径**,再对 t 积分即可得到轨迹为螺线,与经典结果完全相同。

*与之前相同,此处复物理量取实部表示真实值。

均匀正交电磁场

对 $\vec{E} \cdot \vec{B} = 0$ 的情况,回顾之前 $\vec{E} \cdot \vec{B}$ 与 $\vec{E}^2 - \vec{B}^2$ 为洛伦兹不变量,因此可期望将其洛伦兹变换为静电场或静磁场。

假设原本在 K 系中。 $|\vec{B}| > |\vec{E}|$ 时取参考系 K' 的速度

$$\vec{u} = c \frac{\vec{E} \times \vec{B}}{|\vec{B}|^2}$$

计算即得磁场 $\vec{B}' = \vec{B}/\gamma$, 静电场为 0; $|\vec{B}| < |\vec{E}|$ 时取参考系 K' 的速度

$$\vec{u} = c \frac{\vec{E} \times \vec{B}}{|\vec{E}|^2}$$

计算即得磁场 $\vec{E}' = \vec{E}/\gamma$,静磁场为 0。 这样就化为了之前讨论过的情况。

一般均匀经典磁场

这时更简单的形式可利用四速度形式的运动方程。回顾其为

$$mc\frac{\mathrm{d}u_{\mu}}{\mathrm{d}s} = \frac{e}{c}F_{\mu\nu}u^{\nu}$$

记 $F^{\alpha}_{\nu}=\eta^{\alpha\mu}F_{\mu\nu}$,对应矩阵为 **F**,四速度 u^{μ} 看作四维矢量 u,上式两边左侧同乘 $\eta^{\alpha\mu}$ 后对 μ 求和即可得

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \frac{e}{mc}\mathbf{F}u$$

由于此为线性方程组,可直接得

$$u(\tau) = \exp\left(\frac{e\tau}{mc}\mathbf{F}\right)u(0)$$

矩阵的 exp 由幂级数定义,由此即得世界线的参数方程。

* 严格来说, F^{α}_{ν} 应为 F^{α}_{ν} ,与 $F^{\alpha}_{\mu} = F_{\mu\nu}\eta^{\nu\alpha}$ 区分。

八 运动带电粒子的辐射

§8.1 李纳-谢维尔势

回到四维协变形式的麦克斯韦方程

$$\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}J^{\nu}$$

采用洛伦茨规范,有 $\partial_{\mu}A^{\mu}=0$,代入计算可知即为

$$\partial_{\mu}\partial^{\mu}A^{\nu} = \frac{4\pi}{c}J^{\nu}$$

为对其求解,直接考虑其对应的四维格林函数

$$\partial_{\mu}\partial^{\mu}D(x,x') = \delta^{4}(x-x')$$

其可利用傅里叶变换展开为

$$D(x, x') = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \tilde{D}(k) \mathrm{e}^{-\mathrm{i}k \cdot (x - x')}$$

这里 k 为四矢量。

* 注意四矢量内积定义为 $\eta^{ij}k_ix_j$,与通常不同。对傅里叶变换而言,这只相当于改变了 k 对应分量的符号,并不影响变换成立,因此仍可如此书写,下方计算同理,但注意左侧求导的 ∂ 符号也需要对应调整,具体数学细节较复杂。

利用 δ 函数傅里叶变换可得 $\tilde{D}(k) = -\frac{1}{k^2}$, 这里 $k^2 = k \cdot k$, 从而可写出积分

$$D(x, x') = -\int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{\mathrm{e}^{-\mathrm{i}k \cdot (x - x')}}{k^2}$$

记 $k = (k_0, \vec{k})$,由于分母 $k_0^2 - \vec{k}^2$ 可能为 0,事实上最终对 k_0 的积分需要采取对复平面某围道积分的定义 [假设对 \vec{k} 分量的积分可直接进行,只通过 k_0 在复平面处理奇点]。考虑在上半平面绕过奇点 $\pm |\vec{k}|$ 的积分,利用柯西积分定理可以发现,这与

$$D^{+}(x,x') = -\int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \frac{\mathrm{e}^{-\mathrm{i}k \cdot (x-x')}}{(k_{0} + \mathrm{i}\epsilon)^{2} - \vec{k}^{2}}, \quad \epsilon > 0$$

完全相等,这里 D^+ 即为推迟格林函数。

* 推迟体现在当时间 $x_0 < x_0'$ 时,计算可得到 $D^+(x,x') = 0$ 。若在下半平面进行积分,会得到 ϵ 变为 $-\epsilon$ 的 D^- ,但其为超前格林函数,不符合物理。

对推迟格林函数进一步计算可得到显式表达

$$D^{+}(x,x') = \frac{\delta(x_0 - x'_0 - R)}{4\pi R} = \frac{\theta(x_0 - x'_0)}{2\pi} \delta((x - x')^2)$$

这里 R 为 (x_1, x_2, x_3) 的模长, θ 表示大于 0 时为 1,小于 0 时为 0 的函数,在后一个形式中用于舍弃 $x_0 = x_0' - R$ 的解。

* 对比可发现此形式与第五章的推迟格林函数完全一致。

由此即可得到洛伦茨规范下电磁势的解为

$$A^{\mu}(x) = \frac{4\pi}{c} \int d^4x' D^+(x - x') J^{\mu}(x')$$

对运动的带电粒子,设其世界线为 $r^{\mu}(\tau)$,设带电量 e,则利用 $J^{\mu}=(c\rho,\vec{J})$ 可得到

$$J^{\mu}(x') = ec^2 \int d\tau u^{\mu}(\tau) \delta^4(x' - r(\tau))$$

在 A^{μ} 中代入格林函数与 J^{μ} 的表达式,由于总共进行了五次积分,其中恰有五次 δ 函数,最终的 A^{μ} 必 然为某个点的值的贡献,分析可得

$$A^{\mu}(x) = \frac{eu^{\mu}(\tau_0)}{u(\tau_0) \cdot (x - r(\tau_0))}$$

这里 τ_0 为满足 $r_0(\tau_0) = x_0 - R$ 的点。

* 从几何上来看,满足 $r_0 - \sqrt{r_1^2 + r_2^2 + r_3^2} = x_0 - R$ 的点构成 x 出发的下半个光锥 [这里将 x_0 看作纵轴],而 $\sqrt{r_1^2 + r_2^2 + r_3^2} - r_0 = x_0 - R$ 的点构成上半个光锥,两者结合即成为所有满足不变间隔 $(r - x)^2 = 0$ 的

x 的类光点。由于粒子的运动轨迹 $r(\tau)$ 一定为 t 的某个函数 [假设不考虑产生湮灭,对任何 t 存在唯一 \vec{x} 对应],其必然会与分割 x_0 的下半光锥、上半光锥各有一个交点,与下半光锥的交点即为符合因果律的解 $r(\tau_0)$,存在唯一。

代入回四速度与四矢量势三维分量形式, 可得到

$$\Phi(\vec{x},t) = \frac{e}{(1 - \vec{\beta} \cdot \vec{n})R} \bigg|_{ret}, \quad \vec{A}(\vec{x},t) = \frac{e\vec{\beta}}{(1 - \vec{\beta} \cdot \vec{n})} \bigg|_{ret}$$

下标 ret 表示在 $r(\tau_0) = (ct_0, \vec{r})$ 的时空点计算,而 \vec{n} 即为 $\vec{x} - \vec{r}$ 的方向单位矢量。这就称为**李纳-维谢尔 势**。

申.磁场计算

由于推迟效应,很难对 Φ, \vec{A} 直接微分计算电磁场,因此需要考虑其他方式。由前得到显式积分形式的四矢量势 [这里将 θ 函数改写为积分限]

$$A^{\mu}(x) = 2ec \int_{x^0 > r^0(\tau)} u^{\mu}(\tau) \delta((x - r(\tau))^2) d\tau$$

其对 x^{μ} 的梯度 ∂^{μ} 计算涉及 δ 函数的导数,我们先利用复合函数求导公式作替换

$$\partial^{\mu} \delta((x - r(\tau))^{2}) = -\frac{(x - r)^{\mu}}{u \cdot (x - r)} \frac{\mathrm{d}}{\mathrm{d}\tau} \delta((x - r(\tau))^{2})$$

再利用分部积分即可计算得值,进一步计算有

$$F^{\mu\nu}(x) = \frac{ec}{u \cdot (x-r)} \frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{(x-r)^{\mu} u^{\nu} - (x-r)^{\nu} u^{\mu}}{u \cdot (x-r)} \right) \Big|_{ret}$$

写为三维形式可得

$$\vec{E} = \left(\frac{e(\vec{n} - \vec{\beta})}{\gamma^2 (1 - \vec{\beta} \cdot \vec{n})^3 R^2} + \frac{e}{c} \frac{\vec{n} \times ((\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \vec{\beta} \cdot \vec{n})^3 R} \right) \Big|_{ret}, \quad \vec{B} = (\vec{n} \times \vec{E}) \Big|_{ret}$$

- * 关于 δ 函数与其导数的严谨定义需要泛函分析,可证明这里利用分部积分能够正确计算。
- * 这里 $\dot{\beta}$ 为其对时间导数,也即为 $\frac{1}{6}\ddot{v}$,对应粒子加速度。

洛伦兹变换思路

考虑匀速运动的的电荷 q,假设观测点坐标为 (0,b,0),观测到其运动方程为 (x,y,z)=(vt,0,0)。 设与带电粒子一同运动的参考系为 K',取时间 t' 与 t 零点相同,则由于 K' 系中观测点以速度 v' 反向运动,可知

$$\vec{E}' = \left(-\frac{qvt'}{r'^3}, \frac{qb}{r'^3}, 0\right), \quad \vec{B}' = (0, 0, 0)$$

这里 $r' = \sqrt{b^2 + (vt')^2}$, 此方程即静止电荷产生的电场 (高斯单位制下)。

利用两个系中观测时空点坐标的关系知只需代换 t' 为 γt [这是由于观测点坐标的 x=0],再洛伦兹变换 K' 到 K,即得到 K 系中

$$E_1 = -\frac{q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}, \quad E_2 = \frac{q\gamma b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}, \quad B_3 = \beta E_2, \quad E_3 = B_1 = B_2 = 0$$

- *此计算方法用于推导李纳-谢维尔势是错误的,因为无法处理加速度项。
- * 若用之前得到的公式,需要处理推迟点的具体位置,这里粒子固有时即为 t',由此直接利用洛伦兹变换公式可解出 t'_0 ,最终得到的形式与上方相同。

§8.2 拉莫尔公式与汤姆孙散射

拉莫尔公式

考虑非相对论情形,之前的电磁场表达式中 $\vec{\beta}$ 近似为 0, γ 近似为 1,去除 $\frac{e\vec{n}}{R^2}$ 这项点电荷产生的电场,辐射电场即为

$$\vec{E} = \left(\frac{e}{c} \frac{\vec{n} \times (\vec{n} \times \dot{\vec{\beta}})}{R}\right)\Big|_{ret}$$

由于 $\vec{B} = (\vec{n} \times \vec{E})|_{ret}$ 仍满足,由定义,点电荷在 \vec{n} 方向辐射的功率为 [由于考虑的是某时刻辐射出的功率,取 $R \to 0$ 可知无需下标 ret,注意为高斯单位制]

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega_{\vec{n}}} = \frac{cR^2}{4\pi}\vec{n}\cdot(\vec{E}\times\vec{H}) = \frac{e^2}{4\pi c^3}|\dot{\vec{v}}|^2\sin^2\theta$$

这里 θ 为 \vec{v} 与 \vec{n} 夹角,积分可得到总功率为

$$P = \frac{2}{3} \frac{e^2}{c^3} |\dot{\vec{v}}|^2$$

这就称为拉莫尔公式。

为进行相对论推广,注意到 $\dot{\vec{v}} = \frac{1}{m} \frac{d\vec{v}}{dt}$,其对应洛伦兹不变的推广应为

$$P = -\frac{2}{3} \frac{e^2}{m^2 c^3} \frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}p_{\mu}}{\mathrm{d}\tau} = \frac{2}{3} \frac{e^2}{c} \gamma^6 \left((\dot{\vec{\beta}})^2 - (\vec{\beta} \times \dot{\vec{\beta}})^2 \right)$$

第二个等号利用洛伦兹变换得到的 $\mathrm{d}t=\gamma\mathrm{d}\tau$ 与 $\vec{\beta},\gamma$ 的定义直接计算即得 [注意上标的点表示对观测所在 参考系中的 t 求导],此公式称为**李纳公式**。

汤姆孙散射

考虑频率 ω 的电磁波入射到自由电子,入射波电场为

$$\vec{E} = \vec{e}_0 E_0 e^{i\vec{k}_0 \cdot \vec{x} - i\omega t}$$

于是自由电子获得的加速度即为 $\frac{e}{m}\vec{E}$,利用第五章微分散射截面的公式计算可得到

$$\frac{d\sigma}{d\Omega}(\vec{n}, \vec{e}; \vec{n}_0, \vec{e}_0) = \frac{e^4}{m^2 c^4} |\vec{e}^* \cdot \vec{e}_0|^2$$

进一步地,考虑 $\frac{d\sigma_{\parallel}}{d\Omega}$ 与 $\frac{d\sigma_{\perp}}{d\Omega}$,两者之和称为**非极化**的微分散射截面,计算得为 [这里 θ 仍表示 \vec{n}_0 与 \vec{n} 夹 角]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta) = \frac{e^4}{m^2c^4} \frac{1+\cos\theta}{2}$$

于是积分可得电子对电磁波的总非极化散射截面

$$\sigma = \frac{8\pi}{3} \frac{e^4}{m^2 c^4}$$

* 此公式仅对低频电磁波成立,高频时必须考虑量子效应,例如著名的**康普顿散射**实验。

§8.3 相对论性加速电荷的辐射

考虑相对论效应,与之前类似, \vec{E} 表达式第二项看作辐射,可知

$$\left. \left(\vec{S} \cdot \vec{n} \right) \right|_{ret} = \frac{c}{4\pi} (\vec{E} \times \vec{H}) \cdot \vec{n} \bigg|_{ret} = \frac{e^2}{4\pi c R^2} \bigg| \frac{\vec{n} \times ((\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \vec{\beta} \cdot \vec{n})^3} \bigg|^2 \bigg|_{ret}$$

由此,考虑粒子在 T_1 到 T_2 时间辐射的总能量,代入 ret 表达式 t = t' + R(t')/c 可知

$$E = \int_{T_1 + R(T_1)/c}^{T_2 + R(T_2)/c} (\vec{S} \cdot \vec{n}) \big|_{ret} dt = \int_{T_1}^{T_2} (\vec{S} \cdot \vec{n}) \frac{dt}{dt'} dt'$$

考虑到粒子运动轨迹可知 $\frac{\mathrm{d}R(t')}{\mathrm{d}t'}=\vec{n}\cdot\vec{v}$,于是对 t=t'+R(t')/c 两边微分可知 $\mathrm{d}t=\mathrm{d}t'(1-\vec{\beta}\cdot\vec{n})$,于是代入即可知单位立体角内辐射功率为

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = R^2(\vec{S}\cdot\vec{n})\frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{e^2}{4\pi c}\frac{\left|\vec{n}\times((\vec{n}-\vec{\beta})\times\dot{\vec{\beta}})\right|^2}{(1-\vec{\beta}\cdot\vec{n})^5}$$

应用例

1. 直线加速

这时 $\vec{\beta} \times \dot{\vec{\beta}} = 0$, 不妨设在 z 轴运动,假设观测点与其夹角 θ , 计算可知

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{e^2\dot{v}^2}{4\pi c^3} \frac{\sin^2\theta}{(1-\beta\cos\theta)^5}$$

 $\beta \approx 0$ 时情况即回到拉莫尔公式,但相对论时计算发现功率达到即极大的 θ_{max} 满足

$$\cos\theta_{\rm max} = \frac{\sqrt{1 + 15\beta^2} - 1}{3\beta}$$

也即 v 越大,辐射越集中于向前的方向。

*对角度积分可得李纳公式。

2. 圆周运动

这时 $\vec{\beta} \cdot \dot{\vec{\beta}} = 0$, 设 $\vec{\beta}$ 沿 z, $\dot{\vec{\beta}}$ 沿 x, 考虑球坐标系下则有

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{e^2\dot{v}^2}{4\pi c^3} \frac{1}{(1-\beta\cos\theta)^3} \left(1 - \frac{\sin^2\theta\cos^2\phi}{\gamma^2(1-\beta\cos\theta)^2}\right)$$

* 高速时仍有向前辐射的特性。

利用李纳公式,类似上方讨论,对粒子加速器,直线加速时粒子辐射功率为

$$P = \frac{2}{3} \frac{e^2}{m^2 c^3} \left(\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}\right)^2$$

而圆周运动时功率为

$$P = \frac{2}{3} \frac{e^2}{m^2 c^3} \gamma^2 \left(\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}\right)^2$$

都与受力平方正比,但圆周辐射会有额外因子 γ^2 ,意味着加到相同速度会需要更多外场能量。

§8.4 粒子辐射的频谱

利用上节讨论,在 t 时刻观测到的粒子辐射功率角分布为

$$\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega} = \frac{e^2}{4\pi c} \left| \frac{\vec{n} \times ((\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \vec{\beta} \cdot \vec{n})^3} \right|^2 \Big|_{ret}$$

记右侧为 $|\vec{A}(t)|^2$,注意这里使用探测者的时间,因为频谱按探测者时间度量。单位立体角中总能量应为

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega} = \int |\vec{A}(t)|^2 \,\mathrm{d}t$$

记对应傅里叶变换与逆变换为

$$\vec{A}(\omega) = \frac{1}{\sqrt{2\pi}} \int \vec{A}(t) e^{i\omega t} dt, \quad \vec{A}(t) = \frac{1}{\sqrt{2\pi}} \int \vec{A}(\omega) e^{-i\omega t} d\omega$$

利用帕塞瓦尔等式, $\int |\vec{A}(t)|^2 dt = \int |\vec{A}(\omega)|^2 d\omega$,又因 $\vec{A}(t)$ 为实数由定义可知 $\vec{A}(-\omega) = \vec{A}(\omega)^*$,其模长相等,因此有

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega} = \int_0^\infty \frac{\mathrm{d}^2 I}{\mathrm{d}\omega \, \mathrm{d}\Omega} \mathrm{d}\omega, \quad \frac{\mathrm{d}^2 I}{\mathrm{d}\omega \, \mathrm{d}\Omega} = 2|\vec{A}(\omega)|^2$$

* 此处 $\frac{d^2I}{dvd\Omega}$ 即为**频谱角分布**。

将 $\vec{A}(t)$ 的表达式代入,并利用 t 与 t' 的关系,即知

$$\vec{A}(\omega) = \sqrt{\frac{e^2}{8\pi^2 c}} \int e^{i\omega(t' + R(t')/c)} \frac{\vec{n} \times ((\vec{n} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \vec{\beta} \cdot \vec{n})^2} dt'$$

下面假设辐射粒子的运动在坐标原点附近,而观测点非常遥远,这时 \vec{n} 近似为常矢量,回顾之前近似 $R(t') \approx |\vec{x}| - \vec{n} \cdot \vec{r}(t')$,其中 \vec{r} 代表粒子的轨迹,由此,由只和模长有关忽略常数相因子 $e^{i\omega|\vec{x}|/c}$,可得到 [将积分变量 t' 重新记为 t]

$$\vec{A}(\omega) = \sqrt{\frac{e^2}{8\pi^2 c}} \int e^{i\omega(t - \vec{n} \cdot \vec{r}(t)/c)} \frac{\vec{n} \times ((\vec{n} - \vec{\beta}(t)) \times \dot{\vec{\beta}}(t))}{(1 - \vec{\beta}(t) \cdot \vec{n})^2} dt$$

* 由此,只要轨迹方程已知即可通过 $\vec{A}(\omega)$ 计算出频谱角分布。 利用

$$\frac{\vec{n} \times ((\vec{n} - \vec{\beta}(t)) \times \dot{\vec{\beta}}(t))}{(1 - \vec{\beta}(t) \cdot \vec{n})^2} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\vec{n} \times (\vec{n} \times \vec{\beta}(t))}{1 - \vec{\beta}(t) \cdot \vec{n}}$$

并分部积分可得到化简的表达式

$$\frac{\mathrm{d}^2 I}{\mathrm{d}\omega\,\mathrm{d}\Omega} = \frac{e^2\omega^2}{4\pi^2c} \Bigg| \int (\vec{n}\times(\vec{n}\times\vec{\beta}(t))) \mathrm{e}^{\mathrm{i}\omega(t-\vec{n}\cdot\vec{r}(t)/c)}\,\mathrm{d}t \Bigg|^2$$

周期情况

若粒子运动完全周期,设其角频率 [**基频**] 为 ω_0 ,则辐射电磁波频率应为基频整数倍。此时由傅里叶级数作展开

$$\vec{A}(t) = \sum_{n=-\infty}^{\infty} \vec{A}_n e^{-in\omega_0 t}, \quad \vec{A}_n = \frac{1}{T} \int_{-T/2}^{T/2} \vec{A}(t) e^{in\omega_0 t} dt$$

这里 T 即为周期 $2\pi/\omega_0$, 这时平均功率可写为

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{1}{T} \int_{-T/2}^{T/2} |\vec{A}(t)|^2 \, \mathrm{d}t = |\vec{A}_0|^2 + 2 \sum_{n=1}^{\infty} |\vec{A}_n|^2$$

利用傅里叶级数的帕塞瓦尔等式,且仍由定义 $\vec{A}_{-n} = \vec{A}_n^*$,可知第二个等号成立。与之前完全类似算出记第 n 个倍频的平均功率角分布

$$\frac{\mathrm{d}P_n}{\mathrm{d}\Omega} = 2|\vec{A}_n|^2 = \frac{e^2 n^2 \omega_0^2}{2\pi c T^2} \left| \int_{-T/2}^{T/2} (\vec{n} \times (\vec{n} \times \vec{\beta}(t))) e^{\mathrm{i}n\omega_0(t - \vec{n} \cdot \vec{r}(t)/c)} \right|^2$$

* 考虑半径 a 速度 v,**匀速圆周运动**,可从频谱角分布的公式取 $\omega = n\omega_0$,积分限定在一个周期,并乘相 邻频率间隔 $\omega_0 = v/a$ 与周期的倒数 $v/(2\pi a)$,即可得到立体角功率

$$\frac{\mathrm{d}P_n}{\mathrm{d}\Omega} = \frac{v^2}{2\pi a^2} \frac{\mathrm{d}^2 I}{\mathrm{d}\omega \,\mathrm{d}\Omega} \bigg|_{\omega = n\omega_0}$$

这与之前的结果一致。

§8.5 同步辐射的频谱

相对论性带电粒子作周期性圆周运动 [设半径为 a] 的辐射称为同步辐射。

定性分析

回到公式

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{e^2\dot{v}^2}{4\pi c^3} \frac{1}{(1-\beta\cos\theta)^3} \left(1 - \frac{\sin^2\theta\cos^2\phi}{\gamma^2(1-\beta\cos\theta)^2}\right)$$

定性分析可知 $\beta\to 1$ 时粒子在 $\theta\approx 0$ 周围很小的角度,估计可得集中区域 $\Delta\theta\sim\gamma^{-1}$ 。由于辐射方向性,能够被探测辐射的时间内,粒子只在圆周上行进了很短距离 $d=a\Delta\theta$,时间间隔 $\Delta t=d/v$,这段时间波前的行进距离为 $D=c\Delta t$,因此波前泊位在空间的间隔

$$L = D - d \sim \frac{a}{\gamma} \left(\frac{1}{\beta} - 1 \right) \sim a \gamma^{-3}$$

对观测者而言,其观测到的电磁脉冲持续时间约为 $L/c\sim(a/c)\gamma^{-3}$,也即电磁脉冲时间为周期的 γ^{-3} 倍量级。利用傅里叶变换的性质,周期性脉冲频谱的展宽除以基本频率为此因子的倒数,也即

$$\omega_c \sim \omega_0 \gamma^3$$

这里 ω_c 为临界频率, ω_0 为粒子回旋频率。

定量分析

利用

$$\frac{\mathrm{d}P_n}{\mathrm{d}\Omega} = 2|\vec{A}_n|^2 = \frac{e^2 n^2 \omega_0^2}{2\pi c T^2} \left| \int_{-T/2}^{T/2} (\vec{n} \times (\vec{n} \times \vec{\beta}(t))) e^{\mathrm{i}n\omega_0(t - \vec{n} \cdot \vec{r}(t)/c)} \right|^2$$

考虑轨迹为 $\vec{r}(t) = a(\cos \omega_0 t, \sin \omega_0 t, 0)$,这时可知归一化速率 $\beta = v/c = \omega_0 a/c$,由对称性可不妨设观测点在 xz 平面内, $\vec{n} = (\sin \theta, 0, \cos \theta)$,记 $\phi = \omega_0 t$,这时可利用贝塞尔函数的性质

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{in(\phi - z\cos\phi)} \sin\phi d\phi = -\frac{1}{z} J_n(nz), \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{in(\phi - z\cos\phi)} \cos\phi d\phi = iJ'_n(nz)$$

算出

$$\frac{\mathrm{d}P_n}{\mathrm{d}\Omega}(\theta) = \frac{e^2 n^2 \omega_0^2}{2\pi c} \left(\cot^2\theta J_n^2(n\beta\sin\theta) + \beta^2 {J_n'}^2(n\beta\sin\theta)\right)$$

* 由此可计算得到 $\Delta \theta \sim \gamma^{-1}$ 的结论。

这称为 Schott 公式。对其积分,经过较复杂的数学计算可知

$$P_{n} = \frac{2e^{2}\omega_{0}^{2}}{v} \left(n\beta^{2} J_{2n}'(2n\beta) - \frac{n^{2}}{\gamma^{2}} \int_{0}^{\beta} J_{2n}(xn\xi) d\xi \right)$$

对 $\beta \to 1$ 的极端相对论情况,这时 $n \gg 1$ 的项起主要作用,利用贝塞尔函数在 $n \gg 1$ 时的展开式

$$J_{2n}(2n\xi) \approx \frac{1}{\sqrt{\pi}n^{1/3}} \Phi(n^{1/3}(1-\xi^2)), \quad \Phi(t) = \frac{1}{\sqrt{\pi}} \int_0^\infty d\xi \cos(\xi^3/3 - \xi t)$$

可将辐射功率写为

$$P_n = -\frac{2e^2\omega_0^2 n^{1/3}}{\sqrt{\pi}c} \left(\Phi'(u) + \frac{u}{2} \int_u^\infty \Phi(u) du\right)$$

这里 $u = n^{2/3} \gamma^{-2}$, Φ 称为 **Airy** 函数。

对 $1 \ll n \ll \gamma$, 令 $u \to 0$ 得到

$$P_n \approx 0.52 \frac{e^2 \omega_0^2}{c} n^{1/3}$$

对 $n \gg \gamma$, 令 $u \to \infty$, 利用 Airy 函数的渐近展开得到

$$P_n \approx \frac{e^2 \omega_0^2}{2\sqrt{\pi}c} \sqrt{\frac{n}{\gamma}} \exp\left(-\frac{2}{3}n\gamma^{-3}\right)$$

* 频谱随 $n^{1/3}$ 增大,在 $n \sim \gamma^3$ 左右达到极大,再随 n 指数减小。对极端相对论粒子 γ 很大,因此频谱非常宽,与定性结果一致。

§8.6 切连科夫辐射

之前的讨论都在真空中,考虑介质中运动 [假设 $\mu = \mu_0$], 标势矢势满足的波动方程 (高斯单位制) 为

$$\nabla^2\Phi - \frac{\epsilon}{c^2}\frac{\partial^2\Phi}{\partial t^2} = -\frac{4\pi}{\epsilon}\rho, \quad \nabla^2\vec{A} - \frac{\epsilon}{c^2}\frac{\partial^2\vec{A}}{\partial t^2} = -\frac{4\pi}{c}\vec{J}$$

考虑看作四矢量的傅里叶变换 [这里内积为四矢量内积,对其他量类似]

$$\Phi(\vec{x},t) = \int \frac{\mathrm{d}^3 k \, \mathrm{d}\omega}{(2\pi)^4} \Phi(\vec{k},\omega) \mathrm{e}^{-\mathrm{i}k \cdot x}$$

对介质匀速运动的粒子, 电荷密度、电流密度为

$$\rho(\vec{x},t) = e\delta^3(\vec{x} - \vec{v}t), \quad \vec{J}(\vec{x},t) = \vec{v}\rho(\vec{x},t)$$

利用 δ 函数的傅里叶变换可知

$$\vec{J}(\vec{k},\omega) = 2\pi e \vec{v} \delta(\omega - \vec{k} \cdot \vec{v})$$

由此得到 [这里 $\epsilon(\omega)$ 为原本 $\epsilon(t)$ 的傅里叶变换结果,类似第一章]

$$\vec{A}(\vec{k},\omega) = \frac{8e\pi\vec{\beta}}{\vec{k}^2 - \omega^2\epsilon(\omega)/c^2}\delta(\omega - \vec{k}\cdot\vec{v})$$

由此作傅里叶逆变换,写回三维形式,假设 $\vec{v}=v\vec{e}_3$, $\vec{x}_\perp=(x_1,x_2,0)$, $\vec{k}_\perp=(k_1,k_2,0)$,得到

$$\vec{A}(\vec{x},t) = 4\pi e \vec{\beta} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\mathrm{e}^{\mathrm{i}k_3(x_3 - vt)} \mathrm{e}^{\mathrm{i}\vec{k}_\perp \cdot \vec{x}_\perp}}{k_3^2 (1 - \beta^2 \epsilon(k_3 v)) + \vec{k}_\perp^2}$$

* 若 $\beta^2 \varepsilon > 1$,积分存在奇点,与本章开头讨论完全类似,此积分存在奇点,需要在满足推迟条件的围道上积分,再趋于实轴。

以 z 轴为轴构造锥体,顶点为粒子位置 (0,0,vt),假定**粒子运动速度高于介质中光速** $c/\sqrt{\epsilon}$,电磁波波前的运动方向与粒子运动方向间的夹角即为

$$\theta_C = \cos^{-1} \frac{c}{v\sqrt{\epsilon}}$$

以此角作为顶角,就得到切连科夫辐射对应的切连科夫锥。

* 对切连科夫锥外部的所有点,电磁势为 0,事实上对应力学中的**马赫锥**,即类似超声速时产生的激波。 对内部的点,假设 ϵ 为常数,考虑合适围道后积分可得到

$$\vec{A}(\vec{x},t) = \frac{2e\vec{\beta}}{\sqrt{(x_3-vt)^2-(\beta^2\epsilon-1)\vec{x}_\perp^2}}$$

- * 此公式只是近似公式,算出的磁场在锥面发散,这是由于未考虑 ϵ 的频率依赖。
- *利用此锥的形式可制造探测器,通过角度进行速度选择。

§8.7 辐射阻尼

辐射阻尼即带电粒子辐射对自身运动的影响,事实上不考虑量子时无法完美解决此问题。

亚伯拉罕-洛伦兹方程

考虑非相对论粒子,对应辐射功率为拉莫尔公式,在某时间尺度 τ ,由其加速运动,这个时间尺度内获得动能 [假设速度为小量] $\Delta E_k \sim m(a\tau)^2$,这里 a 为加速度。若获得动能与辐射能量相当,就需要考虑辐射阻尼,这时利用拉莫尔公式得到

$$m(a\tau)^2 = \frac{2e^2a^2}{3c^3}\tau$$

于是可知特征时间尺度为

$$\tau = \frac{2}{3} \frac{e^2}{mc^3}$$

若考虑的时间尺度 $T \gg t$, 可忽略辐射阻尼的效应, 否则必须考虑。

* 此特征时间约为 10^{-24} s 量级。

将辐射阻尼等效为力 \vec{F}_{rad} ,则其应满足一段时间内做功等于能量耗散,即

$$\int_{t_1}^{t_2} \vec{F}_{rad} \cdot \vec{v} dt = -\int_{t_1}^{t_2} \frac{2}{3} \frac{e^2}{c^3} \dot{\vec{v}} \cdot \dot{\vec{v}} dt$$

利用对右侧分部积分 [这里假设产生的 t_1 、 t_2 差值项为 0] 可知可以取

$$\vec{F}_{rad} = \frac{2}{3} \frac{e^2}{c^3} \ddot{\vec{v}} = m \tau \ddot{\vec{v}}$$

由此运动方程为

$$m(\dot{\vec{v}} - \tau \ddot{\vec{v}}) = \vec{F}_{ext}$$

这里右侧为电磁场作用力,此方程即为亚伯拉罕-洛伦兹方程,其即使对无外力的情形也存在发散解 [随时间指数增加],这里假设辐射阻尼充分小,且不考虑非物理的发散解。

辐射阻尼下受迫振动

考虑质量 m、电荷 e,固有频率 ω_0 的带电振子,在频率 ω 的电磁波中,且具有阻尼系数 Γ' ,并需要考虑辐射阻尼,这时方程可写为

$$\ddot{\vec{x}} + \Gamma' \dot{\vec{x}} - \tau \, \ddot{\vec{x}} + \omega_0^2 \vec{x} = \frac{e}{m} \vec{e}_0 E_0 e^{-i\omega t}$$

* 由于右侧对 t 导数为 $i\omega$ 倍,可将左侧再进行一次处理得到四次常系数线性微分方程,从而通过本征值算得通解,再结合不允许发散与原方程得到此方程的全部解,此处简化考虑,取出一个特解

$$\vec{x} = \frac{e}{m} \frac{E_0 e^{i\omega t}}{\omega^2 - \omega^2 - i\omega \Gamma_t(\omega)} \vec{e}_0, \quad \Gamma_t(\omega) = \Gamma' + \frac{\omega^2}{\omega_0^2} \Gamma, \quad \Gamma = \omega^2 \tau$$

与汤姆孙散射完全类似可以得到

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{e^4}{m^2 c^4} |\vec{e}^* \cdot \vec{e}_0|^2 \frac{\omega^4}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma_t^2}$$

- *最后一项前即为汤姆孙散射表达式,而最后一项在 ω 相比 ω_0 很小时正比于 ω^4 ,接近偶极散射的行为。
- * 若总振子宽度 $\Gamma_t(\omega)$ 很小, ω 接近 ω_0 时会出现强烈的共振,趋于 0 时频谱几乎都在 ω_0 处。

电子自能

亚伯拉罕与洛伦兹假设带电粒子的动量本质是电磁的,也即其动量实际上为其产生电磁场的动量。考虑带电粒子在外电磁场运动,称为**亚伯拉罕-洛伦兹模型**。

由于总动量守恒[即洛伦兹力密度体积分为0]

$$\int d^3x \left(\rho \vec{E} + \frac{1}{c} \vec{J} \times \vec{B}\right) = 0$$

这里 $\vec{E} = \vec{E}_e + \vec{E}_s$, $\vec{B} = \vec{B}_e + \vec{B}_s$,下标 e 表示外加,下标 s 表示粒子产生的电磁场,要求带电粒子的运动方程符合牛顿力学 $\stackrel{\mathcal{L}}{=} = \vec{F}_e$ 的形式,再由洛伦兹力公式可得

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = -\int \mathrm{d}^3x \left(\rho \vec{E}_s + \frac{1}{c}\vec{J} \times \vec{B}_s\right)$$

假定电荷分布存在尺度 a 内,且球对称;其具有刚性,于是 $\vec{J} = \rho \vec{v}$ 。选择某带电粒子在其中瞬间静止, $\vec{J} = 0$ 的参考系,考虑粒子产生电场 \vec{E}_s, \vec{B}_s 对应的电磁势 $A^{\mu} = (\Phi, \vec{A})$ 可得

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \int \mathrm{d}^3x \rho(\vec{x}, t) \left(\nabla \phi(\vec{x}, t) + \frac{1}{c} \frac{\partial \vec{A}(\vec{x}, t)}{\partial t} \right)$$

回顾本章开头 A^{μ} 用 D^{+} 表示的解,利用推迟的写法可得

$$A^{\mu}(\vec{x},t) = \frac{1}{c} \int d^3x' \frac{J^{\mu}(\vec{x}',t')\big|_{ret}}{R}$$

* 注意这里 J^{μ} 对不同 \vec{x}' 的推迟时间 t' 不同。

但是,由于假设电荷分布尺度 a 较小,推迟时间很小,且 $R=|\vec{x}-\vec{x}'|$ 可视为常数,在 t 将其泰勒展开 [利用 t'=t-R/c]

$$J^{\mu}(\vec{x},t')\big|_{ret} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{R^n}{c^n} \frac{\partial^n}{\partial t^n} J^{\mu}(\vec{x},t)$$

将此表达式代入 A^{μ} ,再代入 $\frac{G}{dt}$ 表达式,通过刚性条件、球对称性、电荷守恒、分部积分等复杂的计算可以得到

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum_{n=0}^{\infty} \frac{(-1)^n}{c^{n+2}} \frac{2}{3n!} \frac{\partial^{n+2}\vec{v}}{\partial t^{n+1}} \int \mathrm{d}^3x \, \mathrm{d}^3x' \ \rho(\vec{x},t) \rho(\vec{x}',t) R^{n-1}$$

注意到 n=0 的项为 [上标 em 表示电磁场]

$$\frac{4U_s^{em}}{3c^2}\dot{\vec{v}}, \quad U_s^{em} = \frac{1}{2} \int d^3x d^3x' \frac{\rho(\vec{x}, t)\rho(\vec{x}', t)}{R}$$

此即为自身静电能的贡献,由刚性可知 U_s 与时间无关,由此可以定义带电粒子的**电磁质量** $m^{em}=U_s^{em}/c^2$ 。 对 n=1 的项,计算可发现其恰为辐射阻尼的表达式

$$-\frac{2e^2}{3c^3}\ddot{\vec{v}}$$

高阶项在 $a \to 0$ 时为小量,因此仅考虑前两项贡献即得

$$\frac{4}{3}m^{em}\dot{\vec{v}} - \frac{2e^2}{3c^3}\ddot{v} = \vec{F}_e$$

这与之前的亚伯拉罕-洛伦兹方程形式一致,但质量被替换成了电磁质量。

- * 这里的讨论均为非相对论,利用相对论性可精确确定系数 $\frac{4}{3}$ 应为 1。
- * 虽然 $a \to 0$ 为小量的近似是自然的,但这时 $U_s^{em} \sim e^2/a$ 会发散,经典电动力学无法解决,这事实上需要在量子电动力学中利用**重整化**解决。