Introduction

Course Logistics

The (tentative) Schedule

Lecture Number	Topic(s)
1	Introduction Bayesian Inference
2	Linear Regression and Categories
3	Multiple Regression and Confounds
4	Curves, Prediction, and Overfitting
5	Markov chain Monte Carlo & Generalized Linear Models: Logistic and Binomial
6	Sensitivity Proxies Generalized Linear Models: Poisson
7	Ordered Categories
8	Bayesian Hierarchical Models
9	Bayesian Hierarchical Models (cont)
10	Network Analysis
11	Gaussian Processes
12	Missing Data
13	Clustering and Mixture Models
14	Variational Inference

- Available under Content on Brightspace
- Likely to change
- Includes:
 - Topics
 - Assigned Reading
 - Homework Due Dates

Evaluation

- Homework Assignments (60%)
 - 8 in total
 - Lowest score dropped
 - Late submission allowed (10% penalty)
 - additional 10% penalty per 24 hours
- Course Project (40%)

Pre-Lecture Reading

- McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN. United States: CRC Press.
- Reading assigned for each lecture
- Corresponding Python code on JupyterHub

Office Hours

(start Thursday, September 5th)

- Professor Reeves
 - Wednesday: 11 AM 1 PM
- Course Assistant Office Hours
 - Available on Brightspace

Our Computational Tools

Python

- Prior Python programming experience required
- Version 3.9
- Docs: https://docs.python.org/3.9/

NumPy and SciPy

- Core parts of Python's scientific computing ecosystem
- Numerical Python (NumPy) for general math/linear algreba
- Scientific Python (SciPy)
 - probability distributions
 - optimization routines
 - sparse matrix support
 - etc
- NumPy Docs: https://numpy.org/doc/1.24/
- SciPy Docs: https://docs.scipy.org/doc/scipy/

PyMC

- Open-source, probabilistic programming language (PPL)
- Bayesian data analysis
- Contains some overlapping functionality with NumPy/SciPy
- Docs: https://www.pymc.io/projects/docs/en/stable/api.html

Pandas

- Python data analysis/manipulation library
- Lots of functionality
- Docs: https://pandas.pydata.org/docs/

Matplotlib

- Low-level visualization/plotting library
- Modeled on MATLAB's visualization framework
- Huge amount of functionality
- Docs: https://matplotlib.org/stable/index.html

Seaborn

- Data visualization library
- Built on top of pandas and matplotlib
- Simplifies creating beautiful, clear visualizations
- Docs: https://seaborn.pydata.org/api.html

ArviZ

- Exploratory analysis of Bayesian models
- Diagnostics and model comparison
- Docs: https://python.arviz.org/en/latest/api/index.html

JupyterHub

- Provided by NYU High Performance Computing
- No need to install any software
 - Jupyter notebooks allow Python execution in browser
- Textbook code (Python)
- Homework assignments
- Course site: https://csgy-6053-fall.rcnyu.org/

JupyterHub

Coupyterhub Home Token Admin

Your server is starting up.

You will be redirected automatically when it's ready for you.

2024-09-02718:99:18.3736632 [Normal] Successfully assigned cagy-6063-fall-stud/upyter-dr3218 to gike-cluster-t24-user-pool-5e853cf5-wqt8

Event log

start server

access course \longrightarrow materials

