Слайд 1

Почему в четырехпроводных сетях с глухим заземлением нейтрали применяют зануление, а не защитное заземление

Слайд 2

Сеть с глухим заземлением нейтрали (СГЗН) – сеть, в которой нейтраль обмотки трансформатора или генератора присоединена к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформатор тока).

Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитное заземление - преднамеренное электрическое соединение с землей или с её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

<mark>Слайд 3</mark>

В сети с глухозаземленной нейтралью защитное заземление не эффективно, так как не обеспечивает снижения напряжения на корпусе до безопасного уровня, даже если его сделать хорошо и по всем правилам.

<mark>Слайд 4</mark>

Разберемся почему.

При замыкании фазы на заземленный корпус возникают два контура протекания тока замыкания.

"фаза – корпус – сопротивление защитного заземления – сопротивления изоляции неповрежденных фаз – фазы" I_{3am2}

"фаза — корпус — сопротивление защитного заземления — сопротивление заземления нейтрали — нейтраль источника" $I_{\text{зам}l}$

 $I_{3aм2}$ пренебрежимо мала по сравнению с составляющей $I_{3aм1}$, протекающей по контуру, имеющему как минимум в сотни раз меньшее сопротивление.

Слайд 5

В контуре протекания тока замыкания через сопротивление заземления нейтрали фазное напряжение распределяется на примерно равных сопротивлениях R_{3a3} и R_0 , то есть напряжение между корпусом неисправного приемника и землей может уменьшиться всего примерно в два раза относительно фазного:

$$\dot{U}_{A3} \approx U_{\oplus} \, \frac{R_{3a3}}{R_{3a3} + R_0}.$$

Защитное заземление корпуса, на который произошло замыкание фазы, хоть и позволяет уменьшить напряжение корпуса относительно земли, но в недостаточной степени для обеспечения электробезопасности, то есть действует неэффективно.

Поэтому применяют зануление, сейчас об этом подробнее.

Слайд 6.

Зануление

Слайд 7.

При замыкании фазы на корпус занулѐнного электроприѐмника формируется контур тока короткого замыкания "фаза – корпус – зануляющий проводник – нулевой провод – нейтраль обмотки трансформатора". Под действием тока короткого замыкания срабатывают приборы максимальной токовой защиты (автоматический выключатель, плавкий предохранитель) и отключают неисправный приѐмник от питающей сети, в результате чего напряжение прикосновения к корпусу неисправного электроприѐмника становится равным нулю. Защитный эффект зануления заключается в уменьшении длительности протекания тока замыкания, и, следовательно, тока через тело человека.

Расчèт зануления проводится с целью определения условий, при которых оно надèжно выполняет возложенную на него задачу — быстро отключить повреждèнное электрооборудование от сети. При замыкании фазы на занулèнный корпус она автоматически отключится, если сила тока однофазного замыкания между фазным и нулевым защитным проводниками I_{κ_3} удовлетворяет условию $I_{\kappa_3} > kI_{\text{ном}}$, где k — коэффициент кратности номинального тока $I_{\text{ном}}$ плавкой вставки предохранителя или уставки тока срабатывания автоматического выключателя.

Ток уставки представляет собой максимальное значение электрического тока, при котором происходит срабатывание защитного аппарата, осуществляющего токовую отсечку.

Значение коэффициента k принимается в зависимости от типа защиты электроустановки.

Слайд 8

Ток короткого замыкания, который должен обеспечить отключение неисправного потребителя от сети, и напряжение на корпусе до момента этого отключения рассчитываются по формулам:

$$I_{\text{3aM}} = \frac{U_{\Phi}}{z_{\text{TD}} + z_A + R_{\text{nep}} + z_N}, \ \dot{U}_{\text{KOP}} = I_{\text{3aM}} z_N,$$

$$\dot{z}_{\mathrm{TD}}, \dot{z}_{A}, \dot{z}_{N}, R_{\mathrm{nep}}$$

То что в знаменателе - собственные сопротивления обмотки трансформатора, фазного и нулевого проводов и переходное сопротивление (дополнительное сопротивление в месте замыкания на корпус).

Этот ток сравнивается с током уставки автоматического выключателя или плавкого предохранителя Іуст, каждый из которых имеет определенную характеристику срабатывания и время отключения.

На нижней картинке вид токовременных характеристик плавкого предохранителя (FU) и автоматического выключателя (SA).

Сопротивления фазного и нулевого проводов определяются суммой сопротивлений

$$\dot{z}_{\mathrm{Tp}} = r + jx,$$

$$r = \rho l/S$$

собственное активное и

$$x = \omega L$$

индуктивное сопротивления.

Изменяя материал и сечение проводов, можно подобрать значение расчетного тока короткого замыкания, достаточное для обеспечения необходимой скорости срабатывания устройств максимальной токовой защиты.

Слайд 9

Зануление применяется в электроустановках переменного тока с глухозаземленной нейтралью и постоянного тока с заземленной средней точкой:

- во всех электроустановках при напряжении переменного тока 380 В и выше и при напряжении постоянного тока 440 В и выше;
- в электроустановках в помещениях с повышенной опасностью поражения током, особоопасных и в наружных пространствах, если рабочее напряжение выше 50 (42) В переменного и 120 (110) В постоянного токов;
- во взрывоопасных зонах независимо от значения рабочего напряжения электрооборудования.

(ПУЭ – Правила устройства электроустановок)

ПУЭ требуют занулять те же металлоконструкции, что и заземлять:

- корпуса электрических машин, трансформаторов, аппаратов, светильников и других приемников электроэнергии;
- каркасы распределительных щитов, щитов управления и их съемные и открывающиеся части;
- металлические оболочки кабелей и конструкции для их прокладки (трубы, кожухи, короба и т. п.).