Week 7 – Manipulator Dynamics

Advanced Robotic Systems – MANU2453

RMIT Classification: Trusted

Lectures

Wk	Date	Lecture (NOTE: video recording)	Maths Difficulty	Hands-on Activity	Related Assessment
1	24/7	Introduction to the CourseSpatial Descriptions & Transformations			
2	31/7	Spatial Descriptions & TransformationsRobot Cell Design	•		Robot Cell Design Assignment
3	7/8	Forward KinematicsInverse Kinematics			
4	14/8	ABB Robot Programming via Teaching PendantABB RobotStudio Offline Programming		ABB RobotStudio Offline Programming	Offline Programming Assignment
5	21/8	Jacobians: Velocities and Static Forces			
6	28/8	Manipulator Dynamics			
7	11/9	Manipulator Dynamics		MATLAB Simulink Simulation	
8	18/9	Robotic Vision		MATLAB Simulation	Robotic Vision Assignment
9	25/9	Robotic Vision	•	MATLAB Simulation	
10	2/10	Trajectory Generation	•		
11	9/10	Linear & Nonlinear Control		MATLAB Simulink Simulation	
12	16/10	Introduction to I4.0Revision			Final Exam

Content

- Lagrangian Formulation
- Inclusion of Non-Rigid Body Effects
- Explicit Form

RMIT Classification: Trusted

Content

- Lagrangian Formulation
- Inclusion of Non-Rigid Body Effects
- Explicit Form

Lagrangian Formulation

- Apart from Newton-Euler's method, there are other approaches to obtain the manipulator's dynamic equation as well.
- The Lagrangian formulation is one such method.
 - It is an "energy-based" approach.
 - The dynamic equations will be derived from the kinetic energy and the potential energy of the manipulator.
- Another approach is the "Explicit Form" method.
 - The V and G vectors can be derived directly from M matrix.

Lagrangian Formulation

The kinetic energy of each link is:

$$k_i = \frac{1}{2} m_i v_{c_i}^T v_{c_i} + \frac{1}{2} \cdot \omega_i^T \cdot c_i I_i \cdot \omega_i$$

• and the total kinetic energy of the whole manipulator is:

$$k = \sum_{i=1}^{n} k_i$$

The potential energy of each link is:

$$u_i = -m_i \cdot {}^{\scriptscriptstyle 0} g^T \cdot {}^{\scriptscriptstyle 0} P_{C_i} + u_{ref_i}$$

- where ⁰g is the 3 x 1 gravity vector, ⁰P_{Ci} is the vector representing the position of the centre of the mass of the ith link, and u_{refi} is a constant so that the minimum of u_i is zero.
- The total potential energy of the manipulator is then:

$$u = \sum_{i=1}^{n} u_i$$

Lagrangian Formulation

Lagrangian is the difference between the kinetic and potential energy of a mechanical system:

$$L = k - u$$

The equation of motion for the manipulator is then:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \tau$$

Because the potential energy, u, is independent of velocity, the equation can be written as:

$$\frac{d}{dt}\frac{\partial k}{\partial \dot{q}} - \frac{\partial (k - u)}{\partial q} = \tau$$

$$\frac{d}{dt}\frac{\partial k}{\partial \dot{q}} - \frac{\partial k}{\partial q} + \frac{\partial u}{\partial q} = \tau$$

- Let's try this method for the two-link robot from week 6.
- From lecture 5, we had:

- We also need the speed of the origin of frame {3} which is at the tip of manipulator, having the same orientation of frame {2}.
- Using $\sum_{i=1}^{i+1} v_{i+1} = \sum_{i=1}^{i+1} R \cdot (i v_i + i \omega_i \times i P_{i+1})$, we get:

$${}^{3}\upsilon_{3} = \underbrace{{}^{3}_{2}R} \cdot ({}^{2}\upsilon_{2} + {}^{2}\omega_{2} \times {}^{2}P_{3}) = \begin{bmatrix} L_{1}s_{2}\dot{\theta}_{1} \\ L_{1}c_{2}\dot{\theta}_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix} \times \begin{bmatrix} L_{2} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} L_{1}s_{2}\dot{\theta}_{1} \\ L_{1}c_{2}\dot{\theta}_{1} + L_{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 \end{bmatrix}$$

- Note that the center of mass for 1st link is the origin of frame {2}, and center of mass for 2nd link is the origin of frame {3} / tip of manipulator.
- Therefore:

$${}^{2}\nu_{C_{1}} = {}^{2}\nu_{2} = \begin{bmatrix} L_{1}s_{2}\dot{\theta}_{1} \\ L_{1}c_{2}\dot{\theta}_{1} \\ 0 \end{bmatrix}$$

$${}^{2}\upsilon_{C_{1}} = {}^{2}\upsilon_{2} = \begin{bmatrix} L_{1}s_{2}\dot{\theta}_{1} \\ L_{1}c_{2}\dot{\theta}_{1} \\ 0 \end{bmatrix} \quad {}^{3}\upsilon_{C_{2}} = {}^{3}\upsilon_{3} = \begin{bmatrix} L_{1}s_{2}\dot{\theta}_{1} \\ L_{1}c_{2}\dot{\theta}_{1} + L_{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 \end{bmatrix}$$

$${}^{1}\omega_{C_{1}} = {}^{1}\omega_{1} = \begin{bmatrix} 0\\0\\\dot{\theta}_{1} \end{bmatrix}$$

$${}^{1}\omega_{C_{1}} = {}^{1}\omega_{1} = \begin{bmatrix} 0 \\ 0 \\ \dot{ heta}_{1} \end{bmatrix}$$
 ${}^{2}\omega_{C_{2}} = {}^{2}\omega_{2} = \begin{bmatrix} 0 \\ 0 \\ \dot{ heta}_{1} + \dot{ heta}_{2} \end{bmatrix}$

Looking at the kinetic equation again:

$$k_i = \frac{1}{2} m_i \upsilon_{c_i}^T \upsilon_{c_i} + \frac{1}{2} \cdot \omega_i^T \cdot c_i I_i \cdot \omega_i$$

The total kinetic energy of the manipulator is thus:

$$\begin{split} k &= \frac{1}{2} m_{1} \upsilon_{c_{1}}^{T} \upsilon_{c_{1}} + \frac{1}{2} \cdot {}^{1} \omega_{1}^{T} \cdot \underbrace{\overset{C_{1}}{\smile}}_{0} I_{1}^{1} \cdot {}^{1} \omega_{1} + \frac{1}{2} m_{2} \upsilon_{c_{2}}^{T} \upsilon_{c_{2}} + \frac{1}{2} \cdot {}^{2} \omega_{2}^{T} \cdot \underbrace{\overset{C_{2}}{\smile}}_{1} I_{2} \cdot {}^{2} \omega_{2} \\ &= \frac{1}{2} m_{1} \begin{bmatrix} L_{1} s_{2} \dot{\theta}_{1} \\ L_{1} c_{2} \dot{\theta}_{1} \\ 0 \end{bmatrix}^{T} \begin{bmatrix} L_{1} s_{2} \dot{\theta}_{1} \\ L_{1} c_{2} \dot{\theta}_{1} \\ 0 \end{bmatrix} + \frac{1}{2} m_{2} \begin{bmatrix} L_{1} s_{2} \dot{\theta}_{1} \\ L_{1} c_{2} \dot{\theta}_{1} + L_{2} (\dot{\theta}_{1} + \dot{\theta}_{2}) \end{bmatrix}^{T} \begin{bmatrix} L_{1} s_{2} \dot{\theta}_{1} \\ L_{1} c_{2} \dot{\theta}_{1} + L_{2} (\dot{\theta}_{1} + \dot{\theta}_{2}) \end{bmatrix} \\ &= \frac{1}{2} m_{1} L_{1}^{2} s_{2}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{1} L_{1}^{2} c_{2}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} L_{1}^{2} s_{2}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} L_{1}^{2} c_{2}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} L_{2}^{2} (\dot{\theta}_{1} + \dot{\theta}_{2})^{2} + m_{2} L_{1} L_{2} c_{2} \dot{\theta}_{1} (\dot{\theta}_{1} + \dot{\theta}_{2}) \\ &= \frac{1}{2} (m_{1} + m_{2}) L_{1}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} L_{2}^{2} (\dot{\theta}_{1} + \dot{\theta}_{2})^{2} + m_{2} L_{1} L_{2} c_{2} \dot{\theta}_{1} (\dot{\theta}_{1} + \dot{\theta}_{2}) \end{split}$$

The potential energy of the manipulator is:

$$u = -m_{1} \cdot {}^{0} g^{T} \cdot {}^{0} P_{C_{1}} + u_{ref_{1}} - m_{2} \cdot {}^{0} g^{T} \cdot {}^{0} P_{C_{2}} + u_{ref_{2}}$$

$$= -m_{1} \begin{bmatrix} 0 - g & 0 \end{bmatrix} \begin{bmatrix} L_{1}c_{1} \\ L_{1}s_{1} \\ 0 \end{bmatrix} + u_{ref_{1}} - m_{2} \begin{bmatrix} 0 - g & 0 \end{bmatrix} \begin{bmatrix} L_{1}c_{1} + L_{2}c_{12} \\ L_{1}s_{1} + L_{2}s_{12} \\ 0 \end{bmatrix} + u_{ref_{2}}$$

$$= m_{1}gL_{1}s_{1} + u_{ref_{1}} + m_{2}g(L_{1}s_{1} + L_{2}s_{12}) + u_{ref_{2}}$$

- As mentioned, uref; is chosen such that the minimum of potential energy is zero.
 - For link 1, the minimum of $m_1gL_1s_1$ is $-m_1gL_1$ when $\theta_1=270$ deg. Therefore: $u_{ref.}=m_1gL_1$
 - Following the same argument, we have: $u_{ref_2} = m_2 g(L_1 + L_2)$
- Therefore: $u = m_1 g L_1 s_1 + m_1 g L_1 + m_2 g (L_1 s_1 + L_2 s_{12}) + m_2 g (L_1 + L_2)$

The kinetic and potential energies are repeated here for convenience sake:

$$k = \frac{1}{2}(m_1 + m_2)L_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2L_2^2(\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2L_1L_2c_2\dot{\theta}_1(\dot{\theta}_1 + \dot{\theta}_2)$$

$$u = m_1gL_1s_1 + m_1gL_1 + m_2g(L_1s_1 + L_2s_{12}) + m_2g(L_1 + L_2)$$

Now, apply the formula:

$$\frac{d}{dt}\frac{\partial k}{\partial \dot{\theta}} - \frac{\partial k}{\partial \theta} + \frac{\partial u}{\partial \theta} = \tau$$

$$\frac{d}{dt} \begin{bmatrix} (m_1 + m_2)L_1^2 \dot{\theta}_1 + m_2 L_2^2 (\dot{\theta}_1 + \dot{\theta}_2) + 2m_2 L_1 L_2 c_2 \dot{\theta}_1 + m_2 L_1 L_2 c_2 \dot{\theta}_2 \\ m_2 L_2^2 (\dot{\theta}_1 + \dot{\theta}_2) + m_2 L_1 L_2 c_2 \dot{\theta}_1 \end{bmatrix} - \begin{bmatrix} 0 \\ -m_2 L_1 L_2 s_2 \dot{\theta}_1 (\dot{\theta}_1 + \dot{\theta}_2) \end{bmatrix} + \begin{bmatrix} m_1 g L_1 c_1 + m_2 g L_1 c_1 + m_2 g L_2 c_{12} \\ m_2 g L_2 c_{12} \end{bmatrix} = \tau$$

(Continued)

$$\begin{bmatrix} (m_1 + m_2)L_1^2 \ddot{\theta}_1 + m_2L_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + 2m_2L_1L_2c_2\ddot{\theta}_1 - 2m_2L_1L_2s_2\dot{\theta}_1\dot{\theta}_2 + m_2L_1L_2c_2\ddot{\theta}_2 - m_2L_1L_2s_2\dot{\theta}_2^2 \\ m_2L_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + m_2L_1L_2c_2\ddot{\theta}_1 - m_2L_1L_2s_2\dot{\theta}_1\dot{\theta}_2 \end{bmatrix} - \begin{bmatrix} 0 \\ -m_2L_1L_2s_2\dot{\theta}_1(\dot{\theta}_1 + \dot{\theta}_2) \end{bmatrix} + \begin{bmatrix} m_1gL_1c_1 + m_2gL_1c_1 + m_2gL_2c_{12} \\ m_2gL_2c_{12} \end{bmatrix} = \tau$$

This gives the following dynamic equation:

$$\tau_{1} = m_{2}L_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2}) + m_{2}L_{1}L_{2}c_{2}(2\ddot{\theta}_{1} + \ddot{\theta}_{2}) + (m_{1} + m_{2})L_{1}^{2}\ddot{\theta}_{1} - m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{2}^{2}$$

$$-2m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}\dot{\theta}_{2} + (m_{1} + m_{2})gL_{1}c_{1} + m_{2}gL_{2}c_{12}$$

$$\tau_{2} = m_{2}L_{1}L_{2}c_{2}\ddot{\theta}_{1} + m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}^{2} + m_{2}gL_{2}c_{12} + m_{2}L_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2})$$

 which is exactly the same as the ones derived from Newton-Euler formulation.

Consider the following RP manipulator:

Mass and dimensions are shown in the figure.

The frames are:

Remember DH parameters? Z is along axis, X is mutual perpendicular of two Z's.

To get from {1} to {2}, rotate 90deg along x1

Let its inertial tensors be:

$$C_1 I_1 =
 \begin{bmatrix}
 I_{xx_1} & 0 & 0 \\
 0 & I_{yy_1} & 0 \\
 0 & 0 & I_{zz_1}
 \end{bmatrix}$$

$$\begin{bmatrix}
 I_1 = \begin{bmatrix}
 I_{xx_1} & 0 & 0 \\
 0 & I_{yy_1} & 0 \\
 0 & 0 & I_{zz_1}
\end{bmatrix}
 \begin{bmatrix}
 C_2 I_2 = \begin{bmatrix}
 I_{xx_2} & 0 & 0 \\
 0 & I_{yy_2} & 0 \\
 0 & 0 & I_{zz_2}
\end{bmatrix}$$

We calculate the velocities propagation as shown in Lecture 5:

$$^{0}\omega_{0}=0$$

$$^{0}\nu_{0}=0$$

$${}^{1}\omega_{1} = {}^{1}_{0} R \cdot \underbrace{{}^{0}\omega_{0}}_{0} + \dot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}$$

$${}^{1}\omega_{1} = {}^{1}_{0} R \cdot \underbrace{{}^{0}\omega_{0}}_{0} + \dot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}$$

$${}^{1}\upsilon_{1} = {}^{1}_{0} R \cdot \left(\underbrace{{}^{0}\upsilon_{0}}_{0} + \underbrace{{}^{0}\omega_{0}}_{0} \times {}^{0}P_{1}\right) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 Assume we fix a frame {C₁} at center of mass of link 1. Its velocity propagated from frame {1} is then:

$$C_1 \upsilon_{C_1} = \underbrace{\frac{C_1}{1}}_{I} R \cdot (^1 \upsilon_1 + ^1 \omega_1 \times ^1 P_{C_1}) = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_1 \end{bmatrix} \times \begin{bmatrix} 0 \\ -l_1 \\ 0 \end{bmatrix} = \begin{bmatrix} l_1 \dot{\theta}_1 \\ 0 \\ 0 \end{bmatrix}$$

For link 2, we have:

$${}^{2}\omega_{2} = {}^{2}_{1} R \cdot {}^{1}\omega_{1} = {}^{1}_{2} R^{T} \cdot {}^{1}\omega_{1}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ \dot{\theta}_{1} \\ 0 \end{bmatrix}$$

Assume that the frame of link 2 is located at the center of mass of link 2.

Thus:

$$\begin{aligned}
& C_{2} \, \upsilon_{C_{2}} = {}^{2} \, \upsilon_{2} = {}^{2}_{1} \, R \cdot \left({}^{1} \upsilon_{1} + {}^{1} \, \omega_{1} \times {}^{1} \, P_{C_{2}} \right) + \dot{d}_{2} \cdot {}^{2} \, \dot{Z}_{2} \\
& = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} \times \begin{bmatrix} 0 \\ -d_{2} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{d}_{2} \end{bmatrix} = \begin{bmatrix} d_{2} \dot{\theta}_{1} \\ 0 \\ \dot{d}_{2} \end{bmatrix}
\end{aligned}$$

The total kinetic energy is therefore:

$$k = \frac{1}{2} m_{1} v_{c_{1}}^{T} v_{c_{1}} + \frac{1}{2} \cdot w_{1}^{T} \cdot v_{1}^{C_{1}} I_{1} \cdot w_{1} + \frac{1}{2} m_{2} v_{c_{2}}^{T} v_{c_{2}} + \frac{1}{2} \cdot w_{2}^{T} \cdot v_{2}^{C_{2}} I_{2} \cdot w_{2}^{T}$$

$$= \frac{1}{2} m_{1} \begin{bmatrix} l_{1} \dot{\theta}_{1} \\ 0 \\ 0 \end{bmatrix}^{T} \begin{bmatrix} l_{1} \dot{\theta}_{1} \\ 0 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}^{T} \begin{bmatrix} I_{xx_{1}} & 0 & 0 \\ 0 & I_{yy_{1}} & 0 \\ 0 & 0 & I_{zz_{1}} \end{bmatrix}^{T} \begin{bmatrix} 0 \\ \dot{\theta}_{1} \\ 0 \end{bmatrix}$$

$$+ \frac{1}{2} m_{2} \begin{bmatrix} d_{2} \dot{\theta}_{1} \\ 0 \\ \dot{d}_{2} \end{bmatrix}^{T} \begin{bmatrix} d_{2} \dot{\theta}_{1} \\ 0 \\ \dot{d}_{2} \end{bmatrix}^{T} \begin{bmatrix} I_{xx_{2}} & 0 & 0 \\ 0 & I_{yy_{2}} & 0 \\ 0 & 0 & I_{zz_{2}} \end{bmatrix}^{T} \begin{bmatrix} 0 \\ \dot{\theta}_{1} \\ 0 \end{bmatrix}$$

$$= \frac{1}{2} m_{1} l_{1}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} I_{zz_{1}} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} (d_{2}^{2} \dot{\theta}_{1}^{2} + \dot{d}_{2}^{2}) + \frac{1}{2} I_{yy_{2}} \dot{\theta}_{1}^{2}$$

As for the potential energy, we have:

$$u_1 = m_1 l_1 g \sin(\theta_1) + m_1 l_1 g$$

$$u_2 = m_2 d_2 g \sin(\theta_1) + m_2 d_{2 \max} g$$

- where d_{2max} is the maximum extension of joint 2.
- The total potential energy is thus:

$$u = m_1 l_1 g \sin(\theta_1) + m_1 l_1 g + m_2 d_2 g \sin(\theta_1) + m_2 d_{2 \max} g$$

The kinetic energy and potential energy are repeated here:

$$k = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}I_{zz_1}\dot{\theta}_1^2 + \frac{1}{2}m_2(d_2^2\dot{\theta}_1^2 + \dot{d}_2^2) + \frac{1}{2}I_{yy_2}\dot{\theta}_1^2$$

$$u = m_1 l_1 g \sin(\theta_1) + m_1 l_1 g + m_2 d_2 g \sin(\theta_1) + m_2 d_{2 \max} g$$

Applying the Lagrangian formula:

$$\frac{d}{dt}\frac{\partial k}{\partial \dot{q}} - \frac{\partial k}{\partial q} + \frac{\partial u}{\partial q} = \tau$$

$$\frac{d}{dt} \begin{bmatrix} \frac{\partial k}{\partial \dot{q}_1} \\ \frac{\partial k}{\partial \dot{q}_2} \end{bmatrix} - \begin{bmatrix} \frac{\partial k}{\partial q_1} \\ \frac{\partial k}{\partial q_2} \end{bmatrix} + \begin{bmatrix} \frac{\partial u}{\partial q_1} \\ \frac{\partial u}{\partial q_2} \end{bmatrix} = \tau$$

with

$$\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} \theta_1 \\ d_2 \end{bmatrix}$$

gives (next page)

$$\frac{d}{dt} \begin{bmatrix} m_1 l_1^2 \dot{\theta}_1 + I_{zz_1} \dot{\theta}_1 + m_2 d_2^2 \dot{\theta}_1 + I_{yy_2} \dot{\theta}_1 \\ m_2 \dot{d}_2 \end{bmatrix} - \begin{bmatrix} 0 \\ m_2 d_2 \dot{\theta}_1^2 \end{bmatrix} + \begin{bmatrix} m_1 l_1 g c_1 + m_2 d_2 g c_1 \\ m_2 g s_1 \end{bmatrix} = \tau$$

$$\begin{bmatrix} m_1 l_1^2 \ddot{\theta}_1 + I_{zz_1} \ddot{\theta}_1 + m_2 d_2^2 \ddot{\theta}_1 + 2m_2 d_2 \dot{d}_2 \dot{\theta}_1 + I_{yy_2} \ddot{\theta}_1 \\ m_2 \ddot{d}_2 \end{bmatrix} - \begin{bmatrix} 0 \\ m_2 d_2 \dot{\theta}_1^2 \end{bmatrix} + \begin{bmatrix} m_1 l_1 g c_1 + m_2 d_2 g c_1 \\ m_2 g s_1 \end{bmatrix} = \tau$$

This gives the structure:

$$\underbrace{ \begin{bmatrix} m_1 l_1^2 + I_{zz_1} + m_2 d_2^2 + I_{yy_2} & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{d}_2 \end{bmatrix}}_{M(q)} + \underbrace{ \begin{bmatrix} 2m_2 d_2 \dot{d}_2 \dot{\theta}_1 \\ -m_2 d_2 \dot{\theta}_1^2 \end{bmatrix}}_{V(q,\dot{q})} + \underbrace{ \begin{bmatrix} m_1 l_1 g c_1 + m_2 d_2 g c_1 \\ m_2 g s_1 \end{bmatrix}}_{G(q)} = \tau$$

Content

- Lagrangian Formulation
- Inclusion of Non-Rigid Body Effects
- Explicit Form

Friction

- All mechanisms are affected by friction.
- The manipulator's joint motors need to provide torque to overcome the friction, in addition to all other forces we have seen just now.
- The effect of friction to the manipulator's dynamic can be included in the dynamic equation:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau - \tau_{friction}$$

- But how do we model frictional forces?
- One simple model is the viscous friction:

$$\tau_{friction} = k\dot{q}$$

k is the viscous-friction constant.

Friction

Another simple model is the Coulomb-friction:

$$\tau_{friction} = c \operatorname{sgn}(\dot{q})$$

where c is the Coulomb-friction constant.

A better model would be combination of both viscous and Coulomb friction:

$$\tau_{friction} = c \operatorname{sgn}(\dot{q}) + k \dot{q}$$

 There are even more accurate models, for e.g. including Stribeck effect or jointposition-dependent friction.

Resonance Modes

There are also bending effects and resonance in actual robots.

 However, these are very difficult to model and thus will be ignored in this course.

RMIT Classification: Trusted

Content

- Lagrangian Formulation
- Inclusion of Non-Rigid Body Effects
- Explicit Form

Explicit Form

- Using Lagrangian formulation, we derived the dynamic equations by differentiating the kinetic and potential energy.
- It turns out that we can even skip calculating the energies!
 - We can write out the dynamic equations just by looking at the structure of the manipulator!
 - → Explicit form.
- Recap: The Lagrangian formulation is given by:

$$\frac{d}{dt}\frac{\partial k}{\partial \dot{q}} - \frac{\partial k}{\partial q} + \frac{\partial u}{\partial q} = \tau$$

Recap: The structure of manipulator's dynamic equations is:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

We will try to find some explicit relationship between the two equations.

 The total kinetic energy of the manipulator, in terms of joint velocities, is:

$$k = \frac{1}{2} \dot{q}^T M(q) \dot{q}$$

Differentiating this in accordance to the Lagrangian formulation gives:

$$\frac{\partial k}{\partial \dot{q}} = \frac{\partial}{\partial \dot{q}} \left(\frac{1}{2} \dot{q}^{T} M(q) \dot{q} \right) = M(q) \dot{q}$$

$$\downarrow$$

$$\frac{d}{dt} \left(\frac{\partial k}{\partial \dot{q}} \right) = \frac{d}{dt} (M(q) \dot{q}) = M(q) \ddot{q} + \dot{M}(q) \dot{q}$$

$$\frac{\partial k}{\partial q} = \frac{\partial}{\partial q} \left(\frac{1}{2} \dot{q}^{T} M(q) \dot{q} \right) = \frac{1}{2} \begin{bmatrix} \dot{q}^{T} \frac{\partial M(q)}{\partial q_{1}} \dot{q} \\ \vdots \\ \dot{q}^{T} \frac{\partial M(q)}{\partial q_{n}} \dot{q} \end{bmatrix}$$

Therefore:

$$\frac{d}{dt} \left(\frac{\partial k}{\partial \dot{q}} \right) - \frac{\partial k}{\partial q} = M(q) \ddot{q} + \dot{M}(q) \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \frac{\partial M(q)}{\partial q_1} \dot{q} \\ \vdots \\ \dot{q}^T \frac{\partial M(q)}{\partial q_n} \dot{q} \end{bmatrix}$$
Centrifugal & Coriolis

- Thus we see that if we have the mass matrix M(q), we can immediately
 obtain the inertial forces, centrifugal forces and the Coriolis forces.
- But what is this M(q) matrix?
- We know that the kinetic energy of each link is:

$$k_i = \frac{1}{2} m_i v_{c_i}^T v_{c_i} + \frac{1}{2} \cdot \omega_i^T \cdot^{C_i} I_i \cdot \omega_i$$

And the total kinetic energy of the manipulator is:

$$k = \sum_{i=1}^{n} k_i$$

- The kinetic energy of the manipulator, based on the joint velocities (previous slide), and based on the sum of each link (above), must be the same.
- Thus: $k = \frac{1}{2} \dot{q}^{T} M(q) \dot{q} = \frac{1}{2} \sum_{i=1}^{n} \left(m_{i} \upsilon_{c_{i}}^{T} \upsilon_{c_{i}} + \omega_{i}^{T} \cdot^{C_{i}} I_{i} \cdot^{i} \omega_{i} \right)$

Now, the link velocities and the joint velocities are related as:

$$\upsilon_{C_i} = J_{V_i} \dot{q}$$

$${}^{i} \omega_{C_i} = {}^{i} J_{\omega_i} \dot{q}$$

• where:

$$J_{V_i} = \begin{bmatrix} \frac{\partial P_{C_i}}{\partial q_1} & \cdots & \frac{\partial P_{C_i}}{\partial q_i} & 0 & \cdots & 0 \end{bmatrix}$$

$${}^{i}J_{\omega_i} = \begin{bmatrix} \overline{\varepsilon}_1{}^{i}Z_1 & \cdots & \overline{\varepsilon}_i{}^{i}Z_i & 0 & \cdots & 0 \end{bmatrix}$$

- (Why do we stop at i and have zeros thereafter?)
- (Because the center of mass of link i is affected by joints 1 to i only!)

• Therefore:
$$\frac{1}{2}\dot{q}^{T}M(q)\dot{q} = \frac{1}{2}\sum_{i=1}^{n} \left(m_{i}\upsilon_{c_{i}}^{T}\upsilon_{c_{i}} + {}^{i}\omega_{i}^{T}\cdot{}^{C_{i}}I_{i}\cdot{}^{i}\omega_{i}\right)$$

$$= \frac{1}{2}\sum_{i=1}^{n} \left(m_{i}\dot{q}_{i}^{T}J_{V_{i}}^{T}J_{V_{i}}\dot{q}_{i} + \dot{q}_{i}\cdot{}^{i}J_{\omega_{i}}^{T}\cdot{}^{C_{i}}I_{i}\cdot{}^{i}J_{\omega_{i}}\dot{q}_{i}\right)$$

$$= \frac{1}{2}\dot{q}^{T}\left(\sum_{i=1}^{n} \left(m_{i}J_{V_{i}}^{T}J_{V_{i}} + {}^{i}J_{\omega_{i}}^{T}\cdot{}^{C_{i}}I_{i}\cdot{}^{i}J_{\omega_{i}}\right)\right)\dot{q}$$

$$M(q)$$

- Summary:
 - Calculate M(q) using Jacobians, mass and inertia tensor of each link:

$$M(q) = \sum_{i=1}^{n} \left(m_i J_{V_i}^T J_{V_i} + ^i J_{\omega_i}^T \cdot ^{C_i} I_i \cdot ^i J_{\omega_i} \right)$$

• The inertial, centrifugal and Coriolis forces can directly be calculated as:

$$\frac{d}{dt} \left(\frac{\partial k}{\partial \dot{q}} \right) - \frac{\partial k}{\partial q} = M(q) \ddot{q} + \dot{M}(q) \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \frac{\partial M(q)}{\partial q_1} \dot{q} \\ \vdots \\ \dot{q}^T \frac{\partial M(q)}{\partial q_n} \dot{q} \end{bmatrix}$$

Side Notes – M(q) Matrix

- Let's try to understand the M(q) matrix more.
- M(q) is an n x n matrix:

$$M(q) = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix}$$
Joint 1

- m_{11} = "perceived inertia" at joint 1, when all other joints are locked. It is a function of q_2 to q_n .
- m_{22} = "perceived inertia" at joint 2, when all other joints are locked. It is a function of q_3 to q_n .
-
- $m(_{n-1)(n-1)}$ = "perceived inertia" at joint n-1, when all other joints are locked. It is a function of q_n .
- m_{nn} = "perceived inertia" at joint n, when all other joints are locked. It is a constant!

Side Notes – M(q) Matrix

- M(q) is positive definite:
 - Kinetic energy, $k = \frac{1}{2}\dot{q}^T M(q)\dot{q}$ is always greater or equal to zero.
 - Equals to zero only when velocity is zero.
 - · Object cannot have zero mass.
- M(q) is symmetrical.
 - $m_{12} = m_{21}$, and so on.
 - The off-diagonal terms represent couplings between links.

Centrifugal & Coriolis

We already know:

- Let's look at the Centrifugal and Coriolis forces closer.
- For simplicity, we consider a two-link robot first, and make generalization later.
- M(q) is therefore 2 x 2:

$$M(q) = \begin{bmatrix} m_{11}(q) & m_{12}(q) \\ m_{12}(q) & m_{22}(q) \end{bmatrix}$$

Centrifugal & Coriolis

• Hence:

$$\begin{aligned} & : V(q, \dot{q}) = \dot{M}(q) \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \frac{\partial M(q)}{\partial q_1} \dot{q} \\ \dot{q}^T \frac{\partial M(q)}{\partial q_2} \dot{q} \end{bmatrix} \\ & = \begin{bmatrix} \dot{m}_{11}(q) & \dot{m}_{12}(q) \\ \dot{m}_{12}(q) & \dot{m}_{22}(q) \end{bmatrix} \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \end{bmatrix} \dot{q} \\ \dot{q}^T \begin{bmatrix} m_{112} & m_{122} \\ m_{122} & m_{222} \end{bmatrix} \dot{q} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} \frac{\partial m_{11}}{\partial q_1} \dot{q}_1 + \frac{\partial m_{11}}{\partial q_2} \dot{q}_2 & \frac{\partial m_{12}}{\partial q_1} \dot{q}_1 + \frac{\partial m_{12}}{\partial q_2} \dot{q}_2 \\ \frac{\partial m_{12}}{\partial q_1} \dot{q}_1 + \frac{\partial m_{12}}{\partial q_2} \dot{q}_2 & \frac{\partial m_{22}}{\partial q_1} \dot{q}_1 + \frac{\partial m_{22}}{\partial q_2} \dot{q}_2 \end{bmatrix} \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \\ \dot{q}^T \begin{bmatrix} m_{112} & m_{122} \\ m_{122} & m_{222} \end{bmatrix} \dot{q} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} m_{111} \dot{q}_1 + m_{112} \dot{q}_2 & m_{121} \dot{q}_1 + m_{122} \dot{q}_2 \\ m_{121} \dot{q}_1 + m_{122} \dot{q}_2 & m_{221} \dot{q}_1 + m_{222} \dot{q}_2 \end{bmatrix} \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \\ m_{121} & m_{221} \end{bmatrix} \dot{q} \\ \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \end{bmatrix} \dot{q} \\ \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \end{bmatrix} \dot{q} \\ \dot{q}^T \begin{bmatrix} m_{112} & m_{221} \\ m_{122} & m_{222} \end{bmatrix} \dot{q} \end{bmatrix}$$

Expand and simplify gives:

$$\begin{split} V(q,\dot{q}) &= \begin{bmatrix} m_{111}\dot{q}_1 + m_{112}\dot{q}_2 & m_{121}\dot{q}_1 + m_{122}\dot{q}_2 \\ m_{121}\dot{q}_1 + m_{122}\dot{q}_2 & m_{221}\dot{q}_1 + m_{222}\dot{q}_2 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \begin{bmatrix} m_{111} & m_{121} \\ m_{121} & m_{221} \end{bmatrix} \dot{q} \\ \dot{q}^T \begin{bmatrix} m_{112} & m_{221} \\ m_{122} & m_{222} \end{bmatrix} \dot{q} \end{bmatrix} \\ &= \begin{bmatrix} m_{111}\dot{q}_1^2 + m_{112}\dot{q}_1\dot{q}_2 + m_{121}\dot{q}_1\dot{q}_2 + m_{122}\dot{q}_2^2 \\ m_{121}\dot{q}_1^2 + m_{122}\dot{q}_1\dot{q}_2 + m_{221}\dot{q}_1\dot{q}_2 + m_{222}\dot{q}_2^2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} m_{111}\dot{q}_1^2 + m_{121}\dot{q}_1\dot{q}_2 + m_{121}\dot{q}_1\dot{q}_2 + m_{222}\dot{q}_2^2 \\ m_{112}\dot{q}_1^2 + m_{122}\dot{q}_1\dot{q}_2 + m_{122}\dot{q}_1\dot{q}_2 + m_{222}\dot{q}_2^2 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} m_{111}\dot{q}_1^2 + (2m_{122} - m_{221})\dot{q}_2^2 \\ (2m_{121} - m_{112})\dot{q}_1^2 + m_{222}\dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} m_{112}\dot{q}_1\dot{q}_2 \\ m_{221}\dot{q}_1\dot{q}_2 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} m_{111} & 2m_{122} - m_{221} \\ 2m_{121} - m_{112} & m_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} m_{112}\dot{q}_1\dot{q}_2 \\ m_{221}\dot{q}_1\dot{q}_2 \end{bmatrix} \end{split}$$

The equation can be written in a special form:

$$V(q,\dot{q}) = \frac{1}{2} \begin{bmatrix} m_{111} & 2m_{122} - m_{221} \\ 2m_{121} - m_{112} & m_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} m_{112}\dot{q}_1\dot{q}_2 \\ m_{221}\dot{q}_1\dot{q}_2 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} m_{111} + m_{111} - m_{111} & m_{122} + m_{122} - m_{221} \\ m_{121} + m_{121} - m_{112} & m_{222} + m_{222} - m_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} m_{112} + m_{121} - m_{121} \\ m_{212} + m_{221} - m_{122} \end{bmatrix} \dot{q}_1\dot{q}_2$$

This will cancel off because $m_{12} = m_{21}$

Introducing the "Christoffel Symbols":

$$b_{ijk} = \frac{1}{2} \left(m_{ijk} + m_{ikj} - m_{jki} \right)$$

Using the Christoffel Symbols, the V matrix can now be written as:

$$V(q,\dot{q}) = \frac{1}{2} \begin{bmatrix} m_{111} + m_{111} - m_{111} & m_{122} + m_{122} - m_{221} \\ m_{121} + m_{121} - m_{112} & m_{222} + m_{222} - m_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} m_{112} + m_{121} - m_{121} \\ m_{212} + m_{221} - m_{122} \end{bmatrix} \dot{q}_1 \dot{q}_2$$

$$= \begin{bmatrix} b_{111} & b_{122} \\ b_{121} & b_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_1^2 \\ \dot{q}_2^2 \end{bmatrix} + \begin{bmatrix} 2b_{112} \\ 2b_{212} \end{bmatrix} \dot{q}_1 \dot{q}_2$$

$$C, Centrifugal B, Coriolis$$

We can finally generalize the results to:

$$\underline{C(q)}(\dot{q}^{2}) = \begin{bmatrix} b_{1,11} & b_{1,22} & \cdots & b_{1,nn} \\ b_{2,11} & b_{2,22} & \cdots & b_{2,nn} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,11} & b_{n,22} & \cdots & b_{n,nn} \end{bmatrix} \begin{bmatrix} \dot{q}_{1}^{2} \\ \dot{q}_{2}^{2} \\ \vdots \\ \dot{q}_{n}^{2} \end{bmatrix}$$

$$\underbrace{B(q)}_{n \times \frac{(n-1)n}{2} \frac{(\dot{q}\dot{q})}{2}} = \begin{bmatrix} 2b_{1,12} & 2b_{1,13} & \cdots & 2b_{1,(n-1)n} \\ 2b_{2,12} & 2b_{2,13} & \cdots & 2b_{2,(n-1)n} \\ \vdots & \vdots & \ddots & \vdots \\ 2b_{n,12} & 2b_{n,13} & \cdots & 2b_{n,(n-1)n} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \dot{q}_2 \\ \dot{q}_1 \dot{q}_3 \\ \vdots \\ \dot{q}_{n-1} \dot{q}_n \end{bmatrix}$$

- Another summary:
 - Calculate M(q) using Jacobians, mass and inertia tensor of each link:

$$M(q) = \sum_{i=1}^{n} \left(m_i J_{V_i}^T J_{V_i} + ^i J_{\omega_i}^T \cdot ^{C_i} I_i \cdot ^i J_{\omega_i} \right)$$

• The inertial, centrifugal and Coriolis forces can directly be calculated as:

$$\frac{d}{dt} \left(\frac{\partial k}{\partial \dot{q}} \right) - \frac{\partial k}{\partial q} = M(q) \ddot{q} + \dot{M}(q) \dot{q} - \frac{1}{2} \begin{bmatrix} \dot{q}^T \frac{\partial M(q)}{\partial q_1} \dot{q} \\ \vdots \\ \dot{q}^T \frac{\partial M(q)}{\partial q_n} \dot{q} \end{bmatrix}$$
essions for B and C on previous slide to get the

 Use the expressions for B and C on previous slide to get the last two terms.

Explicit Form – Gravity Terms

- So far, we already have the explicit forms for the terms related to kinetic energy.
- What can we say about the potential energy?
- Potential energy of each link was: $u_i = -m_i \cdot {}^0 g^T \cdot {}^0 P_{C_i} + u_{ref_i}$
- The gravity terms in the Lagrangian formulation is obtained by: $\frac{\partial u}{\partial q}$
- Hence for each link, the gravity term is:

$$G_{j} = \frac{\partial u}{\partial q_{j}} = -\sum_{i=1}^{n} \left(m_{i} \cdot {}^{0} g^{T} \cdot \frac{\partial^{0} P_{C_{i}}}{\partial q_{j}} \right)$$

$$J_{V}$$

Thus we have:

Consider the same RP manipulator:

• Mass and dimensions are shown in the figure.

First, we need to obtain the mass matrix M(q) from:

$$M(q) = \sum_{i=1}^{n} \left(m_i J_{V_i}^T J_{V_i} +^{i} J_{\omega_i}^T \cdot^{C_i} I_i \cdot^{i} J_{\omega_i} \right)$$

- To do this, we need the Jacobians.
- The positions of the centres of mass are:

$${}^{0}P_{C_{1}} = \begin{bmatrix} l_{1}c_{1} \\ l_{1}s_{1} \\ 0 \end{bmatrix}$$

$${}^{0}P_{C_{1}} = \begin{bmatrix} l_{1}c_{1} \\ l_{1}s_{1} \\ 0 \end{bmatrix} \qquad {}^{0}P_{C_{2}} = \begin{bmatrix} d_{2}c_{1} \\ d_{2}s_{1} \\ 0 \end{bmatrix}$$

Therefore:

$${}^{0}J_{V_{1}} = \begin{bmatrix} -l_{1}s_{1} & 0 \\ l_{1}c_{1} & 0 \\ 0 & 0 \end{bmatrix}$$

$${}^{0}J_{V_{1}} = \begin{bmatrix} -l_{1}s_{1} & 0 \\ l_{1}c_{1} & 0 \\ 0 & 0 \end{bmatrix} \qquad {}^{0}J_{V_{2}} = \begin{bmatrix} -d_{2}s_{1} & c_{1} \\ d_{2}c_{1} & s_{1} \\ 0 & 0 \end{bmatrix} \qquad \text{(Frame doesn't matter for linear kinetic energy)}$$

Up to i=1 Add zero column

This yields:

$$m_{1}J_{V_{1}}^{T}J_{V_{1}} = \begin{bmatrix} m_{1}l_{1}^{2} & 0\\ 0 & 0 \end{bmatrix}$$

$$m_{2}J_{V_{2}}^{T}J_{V_{2}} = \begin{bmatrix} m_{2}d_{2}^{2} & 0\\ 0 & m_{2} \end{bmatrix}$$

 Z_1 in {2} = y-axis of $\{2\}$

As for the rotational terms, we have:

$$^{1}J_{\omega_{1}} = \left[\overline{\varepsilon}_{1}^{1}Z_{1}\right] \quad 0$$

$${}^{2}J_{\omega_{2}} = \begin{bmatrix} \overline{\varepsilon_{1}}^{2}Z_{1} & \overline{\varepsilon_{2}}^{2}Z_{2} \end{bmatrix}$$

For joint 1, the Jacobian is:

$$^{1}J_{\omega_{1}}=egin{bmatrix}0&0\0&0\1&0\end{bmatrix}$$
 sin

$${}^{1}J_{\omega_{1}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ since } {}^{1}\omega_{1} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{d}_{2} \end{bmatrix}$$

For joint 2, the Jacobian is:

$$^2J_{\omega_2} = egin{bmatrix} 0 & 0 \ 1 & 0 \ 0 & 0 \end{bmatrix}$$
 si

$${}^{2}J_{\omega_{2}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{since} \quad {}^{2}\omega_{2} = \begin{bmatrix} 0 \\ \dot{\theta}_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{d}_{2} \end{bmatrix}$$

Therefore:

$${}^{1}\boldsymbol{J}_{\omega_{1}}^{T} \cdot {}^{C_{1}}\boldsymbol{I}_{1} \cdot {}^{1}\boldsymbol{J}_{\omega_{1}} = \begin{bmatrix} \boldsymbol{I}_{zz_{1}} & 0 \\ 0 & 0 \end{bmatrix}$$

$${}^{2}\boldsymbol{J}_{\omega_{2}}^{T} \cdot {}^{C_{2}}\boldsymbol{I}_{2} \cdot {}^{2}\boldsymbol{J}_{\omega_{2}} = \begin{bmatrix} \boldsymbol{I}_{yy_{2}} & 0 \\ 0 & 0 \end{bmatrix}$$

Finally, the mass matrix is:

$$M(q) = \sum_{i=1}^{n} \left(m_{i} J_{V_{i}}^{T} J_{V_{i}} + {}^{i} J_{\omega_{i}}^{T} \cdot {}^{C_{i}} I_{i} \cdot {}^{i} J_{\omega_{i}} \right)$$

$$= \begin{bmatrix} m_{1} l_{1}^{2} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} m_{2} d_{2}^{2} & 0 \\ 0 & m_{2} \end{bmatrix} + \begin{bmatrix} I_{zz_{1}} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} I_{yy_{2}} & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} m_{1} l_{1}^{2} + I_{zz_{1}} + m_{2} d_{2}^{2} + I_{yy_{2}} & 0 \\ 0 & 0 & m_{2} \end{bmatrix}$$

Next, we will use the Christoffel Symbols to calculate the centrifugal and Coriolis forces:

$$M(q) = \begin{bmatrix} m_1 l_1^2 + I_{zz_1} + m_2 d_2^2 + I_{yy_2} & 0 \\ 0 & m_2 \end{bmatrix} \qquad b_{ijk} = \frac{1}{2} (m_{ijk} + m_{ikj} - m_{jki})$$

$$b_{ijk} = \frac{1}{2} \left(m_{ijk} + m_{ikj} - m_{jki} \right)$$

$$\underline{C(q)}(\dot{q}^{2}) = \begin{bmatrix} b_{1,11} & b_{1,22} & \cdots & b_{1,nn} \\ b_{2,11} & b_{2,22} & \cdots & b_{2,nn} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,11} & b_{n,22} & \cdots & b_{n,nn} \end{bmatrix} \begin{bmatrix} \dot{q}_{1}^{2} \\ \dot{q}_{2}^{2} \\ \vdots \\ \dot{q}_{n}^{2} \end{bmatrix}$$

$$\underbrace{B(q)}_{n \times \frac{(n-1)n}{2} \frac{(\dot{q}\dot{q})}{2}} = \begin{bmatrix} 2b_{1,12} & 2b_{1,13} & \cdots & 2b_{1,(n-1)n} \\ 2b_{2,12} & 2b_{2,13} & \cdots & 2b_{2,(n-1)n} \\ \vdots & \vdots & \ddots & \vdots \\ 2b_{n,12} & 2b_{n,13} & \cdots & 2b_{n,(n-1)n} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \dot{q}_2 \\ \dot{q}_1 \dot{q}_3 \\ \vdots \\ \dot{q}_{n-1} \dot{q}_n \end{bmatrix}$$

This gives:

$$\underbrace{C(q)}_{n \times n} \underbrace{\dot{q}^{2}}_{n \times 1} = \begin{bmatrix} b_{1,11} & b_{1,22} & \cdots & b_{1,nn} \\ b_{2,11} & b_{2,22} & \cdots & b_{2,nn} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,11} & b_{n,22} & \cdots & b_{n,nn} \end{bmatrix} \begin{bmatrix} \dot{q}_{1}^{2} \\ \dot{q}_{2}^{2} \\ \vdots \\ \dot{q}_{n}^{2} \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} m_{111} + m_{111} - m_{111} & m_{122} + m_{122} - m_{221} \\ m_{211} + m_{211} - m_{112} & m_{222} + m_{222} - m_{222} \end{bmatrix} \begin{bmatrix} \dot{q}_{1}^{2} \\ \dot{q}_{2}^{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -m_{2}d_{2} & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_{1}^{2} \\ \dot{q}_{2}^{2} \end{bmatrix}$$

$$\underbrace{\underbrace{B(q)}_{n \times \underbrace{(\dot{q}\dot{q})}}_{2} = \begin{bmatrix} 2b_{1,12} & 2b_{1,13} & \cdots & 2b_{1,(n-1)n} \\ 2b_{2,12} & 2b_{2,13} & \cdots & 2b_{2,(n-1)n} \\ \vdots & \vdots & \ddots & \vdots \\ 2b_{n,12} & 2b_{n,13} & \cdots & 2b_{n,(n-1)n} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \dot{q}_2 \\ \dot{q}_1 \dot{q}_3 \\ \vdots \\ \dot{q}_{n-1} \dot{q}_n \end{bmatrix}}_{q_1 \dot{q}_2} = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2 = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2} = \underbrace{\begin{bmatrix} 2m_2 d_2 \\ 0 \end{bmatrix}}_{q_1 \dot{q}_2} \dot{q}_1 \dot{q}_2} \dot{q}_1 \dot{q}_1 \dot{q}_$$

- Finally, we shall derive the gravity term.
- We use the formula:

$$G = -\begin{bmatrix} J_{V1}^T & J_{V2}^T & \cdots & J_{Vn}^T \end{bmatrix} \begin{bmatrix} m_1 g \\ m_2 g \\ \vdots \\ m_n g \end{bmatrix} = -J_{V1}^T m_1 g - J_{V2}^T m_2 g$$

In frame {0}. the gravity vector is:

$$^{0}g = \begin{bmatrix} 0 & -g & 0 \end{bmatrix}^{T}$$

Therefore:

$$G = -J_{V1}^{T} m_{1} g - J_{V2}^{T} m_{2} g$$

$$= -m_{1} \begin{bmatrix} -l_{1} s_{1} & l_{1} c_{1} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix} - m_{2} \begin{bmatrix} -d_{2} s_{1} & d_{2} c_{1} & 0 \\ c_{1} & s_{1} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} m_{1} g l_{1} c_{1} + m_{2} g d_{2} c_{1} \\ m_{1} g s_{1} \end{bmatrix}$$

Combining all the results (for M, C, B and G), we arrive at:

$$\underbrace{ \begin{bmatrix} m_1 l_1^2 + I_{zz_1} + m_2 d_2^2 + I_{yy_2} & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{d}_2 \end{bmatrix}}_{M(q)} + \underbrace{ \begin{bmatrix} 0 \\ -m_2 d_2 \dot{\theta}_1^2 \end{bmatrix} }_{C(q)\dot{q}^2} + \underbrace{ \begin{bmatrix} 2m_2 d_2 \dot{d}_2 \dot{\theta}_1 \\ 0 \end{bmatrix} }_{B(q)(\dot{q}\dot{q})} + \underbrace{ \begin{bmatrix} m_1 l_1 g c_1 + m_2 d_2 g c_1 \\ m_2 g s_1 \end{bmatrix} }_{G(q)} = \tau$$

which is exactly the same as what we had from differentiation of Lagrangian:

$$\begin{bmatrix}
m_1 l_1^2 + I_{zz_1} + m_2 d_2^2 + I_{yy_2} & 0 \\
0 & m_2
\end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{d}_2 \end{bmatrix} + \begin{bmatrix} 2m_2 d_2 \dot{d}_2 \dot{\theta}_1 \\
-m_2 d_2 \dot{\theta}_1^2 \end{bmatrix} + \begin{bmatrix} m_1 l_1 g c_1 + m_2 d_2 g c_1 \\
m_2 g s_1
\end{bmatrix} = \tau$$

Tutorial Assignments

Question 1:

- The following two-link robot has each link as a rectangular solid of homogenous density.
- Each link has dimension I_i, w_i, h_i, and a total mass of m_i.

Derive the dynamic equations using Lagrangian method.

Tutorial Assignments

Question 2:

- For the same robot in Question 1:
- (a) Write the dynamic equation, when each joint is subject to viscous and coulomb friction.
- (b) Calculate the dynamic model in Cartesian space.

Tutorial Assignments

- Question 3:
 - For the same robot in Question 1:
 - Derive the dynamic equation using the Explicit method.

Thank you!

Have a good evening.

