

Project Initialization and Planning Phase

Date	20 June 2025
Name	Sakshi Santosh Patil
Project Title	Human-nail-image-processing-using-deep-learning
Maximum Marks	3 Marks

Project Proposal (Proposed Solution):

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview		
Objective	To develop a deep learning-based image classification system capable of accurately identifying nail disease based on visual attributes.	
Scope	This project focuses on image-based classification of Nail Disease using deep learning models. It covers the acquisition of image datasets, preprocessing, model training using transfer learning, and evaluation of classification accuracy. The final system will be able to classify images into one of the target disease. The project is multiple categories and assumes images are of reasonable quality.	
Problem Statement		
Description	Nail Disease identification is challenging and typically requires expert knowledge. Mistakes can be dangerous, particularly when foraging. A reliable classification tool would benefit researchers, foragers, and hobbyists.	
Impact	Precise Nail Disease classification aids ecological research, education, and safe foraging. An image-based system makes species recognition more accessible to all.	

Proposed Solution	
Approach	The project will employ CNN-based deep learning, using transfer learning from models like VGG16,ResNet or EfficientNet. The Nail Disease image dataset will be cleaned, augmented, then used for training and fine-tuning.
Key Features	The system uses transfer learning to train efficiently with limited data, classifying Nail Image into key disease. Data augmentation enhances model performance, with potential for a web-based interface.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	1 x NVIDIA RTX 3060 GPUs		
Memory	RAM specifications	16 GB RAM		
Storage	Disk space for data, models, and logs	500 GB SSD		
Software				
Frameworks	Python frameworks	Python		
Libraries	Additional libraries	tensorflow		
Development Environment	IDE, version control	Jupyter Notebook, Git		
Data				
Data	Source, size, format	Kaggle, JPEG/PNG format, 10,000 images		