Topology Analysis * (v1.5)

Xingyu Zhou [†] Beihang University

November 25, 2018

^{*}This package is implemented with reference to a program called Topo, which is developed by Prof. Shuxian Du from Zhengzhou University in China and has been widely used by people in BESIII collaboration. Several years ago, when I was a PhD student working on BESIII experiment, I learned the idea of topology analysis and a lot of programming techniques from the Topo program. So, I really appreciate Prof. Du's original work very much. To meet my own needs and to practice developing analysis tools with C++, ROOT and LaTex, I wrote the package from scratch. At that time, the package functioned well but was relatively simple. At the end of last year (2017), my co-supervisor, Prof. Chengping Shen reminded me that it could be a useful tool for Belle II experiment as well. So, I revised and extended it, making it more well-rounded and suitable for Belle II experiment. Here, I would like to thank Prof. Du for his original work, Prof. Shen for his suggestion and encouragement, and Wencheng Yan, Sen Jia, Yubo Li, Suxian Li, Longke Li, Guanda Gong, Junhao Yin, Xiaoping Qin, Xiqing Hao, HongPeng Wang, JiaWei Zhang for their efforts in helping me test the program.

[†]Email: zhouxy@buaa.edu.cn

List of Tables

1	Event trees and their respective initial-final states	;
2	Event initial-final states	2!
3	Signal particle final states	30

Table 1: Event trees and their respective initial-final states. $\,$

index	event tree	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
muex	(event initial-final states)	115/011	IEVIII SIS	IIEVIS	IICCEVES	HIOLEVIS	IICIIIILEVUS
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{*-}\gamma^{gFSR}, \rho^{0} \to \pi^{+}\pi^{-},$						
	$ar{D}^{*-} o \pi^- ar{D}^0, D^0 o ho^+ K^{*-}, D^{*-}_s o D^s \gamma, ar{D}^0 o \eta \eta', ho^+ o \pi^0 \pi^+,$						-
1	$K^{*-} \rightarrow \pi^- \bar{K}^0, D_s^- \rightarrow e^- \bar{\nu}_e \phi \gamma^{gFSR}, \eta \rightarrow \pi^0 \pi^0 \pi^0, \eta' \rightarrow \pi^0 \pi^0 \eta, \bar{K}^0 \rightarrow K_S, $ $\phi \rightarrow K^+ K^-, \eta \rightarrow \gamma \gamma, K_S \rightarrow \pi^0 \pi^0$	0	0	1	0	1	1
	$(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$						
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0B^0, B^0 o \pi^-K^{*+}J/\psi, B^0 o \pi^0\pi^-D^{*+}, K^{*+} o \pi^+K^0,$						
	$J/\psi \to \pi^+ K^0 K^{*-}, \pi^0 \to e^+ e^- \gamma^{gFSR}, D^{*+} \to \pi^+ D^0, K^0 \to K_S, K^0 \to K_S,$						
2	$K^{*-} \to \pi^- \bar{K}^0, D^0 \to \pi^+ \pi^- \bar{K}^*, K_S \to \pi^0 \pi^0, K_S \to \pi^+ \pi^-, \bar{K}^0 \to K_S,$	1	1	1	0	1	2
	$ar{K}^* ightarrow \pi^+ K^-, K_S ightarrow \pi^+ \pi^- \gamma^{gFSR}$						
	$\frac{(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma}\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}D^{*0}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}\eta D^{+}, K^{*+} \to \pi^{+}K^{0},}$						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3	$D^{+} \rightarrow e^{+} \nu_{e} \bar{K}^{0} \gamma^{gFSR}, K^{0} \rightarrow K_{L}, D^{-} \rightarrow K_{L} \pi^{-} \pi^{-} K^{+}, D^{0} \rightarrow \pi^{0} \eta K_{S}, \bar{K}^{0} \rightarrow K_{S},$	2	2	1	0	1	3
	$\eta o \pi^0 \pi^+ \pi^-, K_S o \pi^+ \pi^-, K_S o \pi^0 \pi^0$	_	_	_		_	9
	$(e^+e^- \to e^+\nu_e K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma^{gFSR} \gamma \gamma$						
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to D^{*-}a_1^+, B^0 \to \pi^+\pi^+\pi^-\pi^-\pi^-D^{*+}, D^{*-}\to \pi^-D^0,$						
$\begin{vmatrix} 4 \end{vmatrix}$	$a_1^+ \to \pi^0 \rho^+, D^{*+} \to \pi^+ D^0, \bar{D}^0 \to \pi^- K^+ \eta', \rho^+ \to \pi^0 \pi^+, D^0 \to e^+ \nu_e \pi^-,$	3	3	1	0	1	4
	$\eta' \to \pi^+ \pi^- \eta, \pi^0 \to e^+ e^- \gamma^{gFSR}, \eta \to \gamma \gamma$			_		_	-
	$\frac{(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to D^{-}D'_{s1}, B^{0} \to \pi^{0}\rho^{+}\omega\bar{D}^{*-}, D^{-} \to \pi^{0}\pi^{-},}$						
	$e^{+}e^{-} ightarrow 1 (4S), 1 (4S) ightarrow B^{*}B^{*}, B^{*} ightarrow D^{*}D_{s1}, B^{*} ightarrow \pi^{\rho} ho^{\omega}D^{-}, D^{-} ightarrow \pi^{\pi} \pi^{\pi}, \ D^{\prime}_{s1} ightarrow \pi^{0}D_{s}^{*} ho^{+} ightarrow \pi^{0}\pi^{+}\pi^{-}, ar{D}^{*}\Gamma^{-} ightarrow \pi^{-} ar{D}^{0}, D_{s}^{*}\Gamma^{+} ightarrow D_{s}^{*}\gamma,$						
5	$ar{D}^0_{s1}$ \rightarrow $K_L \omega, D_s^+ \rightarrow e^+ u_e \phi, \omega \rightarrow \pi^0 \gamma, \phi \rightarrow K^+ K^-$	4	4	1	0	1	5
	$(e^+e^- \to e^+ \nu_e K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$						
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$						
6	$D^+ \to e^+ \nu_e \pi^+ K^-, D_s^- \to \pi^0 \pi^- \omega, \bar{D}^0 \to \omega K_S, \omega \to \pi^0 \pi^+ \pi^-, \omega \to \pi^0 \pi^+ \pi^-,$	5	5	1	0	1	6
	$K_S o \pi^+\pi^-$			_		_	, and the second
	$\frac{(e^{+}e^{-} \to e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}K^{*}K^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},}$						
7	$K^* \to \pi^- K^+, D^+ \to \pi^0 \pi^+ \eta', \bar{D}^0 \to \mu^- \bar{\nu}_\mu K^+ \gamma^{gFSR}, \eta' \to \pi^+ \pi^- \eta, \eta \to \pi^0 \pi^0 \pi^0$	6	6	1	0	1	7
'	$(e^+e^- \to \mu^- \bar{\nu}_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^+ K^- \gamma^{gFSR} \gamma \gamma)$			_		_	·
	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^0B^0, B^0 \rightarrow \tau^+\nu_{\tau}\bar{D}^{*-}, B^0 \rightarrow \pi^0\pi^+\eta\eta D^-, \tau^+ \rightarrow e^+\nu_e\bar{\nu}_{\tau}\gamma^{gFSR}\gamma^{gFSR},$						
8	$ar{D}^{*-} ightarrow \pi^- ar{D}^0, \eta ightarrow \gamma \gamma, \eta ightarrow \gamma \gamma, D^- ightarrow \pi^0 \pi^- K^*, ar{D}^0 ightarrow \pi^0 \pi^+ \pi^- K^*,$	7	7	1	0	1	8
	$K^* \to \pi^0 K^0, K^* \to \pi^0 K^0, K^0 \to K_S, K^0 \to K_L, K_S \to \pi^+ \pi^-$	'	'	1		1	
	$(e^{+}e^{-} \to e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$						

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
9	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $D^{*+} \to \pi^{+}D^{0}, D^{-} \to \pi^{-}\omega K^{0}\gamma^{gFSR}, D^{0} \to K_{L}\omega, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	8	8	1	0	1	9
10	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{-}D^{*+}, \bar{B}^{0} \to D^{*+}D^{*-}_{s}, K^{0} \to K_{S},$ $D^{-} \to \pi^{-}\pi^{-}K^{+}, D^{*+} \to \pi^{0}D^{+}, D^{*+} \to \pi^{0}D^{+}, D^{*-}_{s} \to D^{-}_{s}\gamma, K_{S} \to \pi^{+}\pi^{-},$ $D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, D^{+} \to \pi^{+}\eta', D^{-}_{s} \to K^{*}K^{*-}, \bar{K}^{0} \to K_{L}, \eta' \to \rho^{0}\gamma,$ $K^{*} \to \pi^{-}K^{+}, K^{*-} \to \pi^{0}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	9	9	1	0	1	10
11	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}K^{0}K^{*-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, K^{0} \to K_{L}, K^{*-} \to \pi^{0}K^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, \bar{D}^{0} \to \rho^{-}K^{*+},$ $\bar{K}^{0} \to K_{L}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{+}\mu^{+}\nu_{\mu}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$	10	10	1	0	1	11
12	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}K^{+}J/\psi\gamma^{gFSR}, \bar{B}^{0} \to D^{+}D_{s}^{*-}, \rho^{-} \to \pi^{0}\pi^{-},$ $J/\psi \to e^{+}e^{-}\gamma^{gFSR}, D^{+} \to \pi^{0}\pi^{+}K_{S}, D_{s}^{*-} \to D_{s}^{-}\gamma, K_{S} \to \pi^{0}\pi^{0}, D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau},$ $\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	11	11	1	0	1	12
13	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}K^{0}D^{0}\bar{D}^{0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\rho^{-}\rho^{-}D^{+}, K^{0} \to K_{L},$ $D^{0} \to K_{S}\eta', \bar{D}^{0} \to \rho^{-}K^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0},$ $K_{L} \to \pi^{0}\pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \eta' \to \pi^{+}\pi^{-}\eta, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+},$ $\bar{K}^{0} \to K_{L}, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma$	12	12	1	0	1	13
14	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\eta\bar{D}^{*-}, \bar{B}^{0} \to K^{0}K^{*-}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0},$ $\bar{D}^{*-} \to \pi^{0}D^{-}, K^{0} \to K_{S}, K^{*-} \to \pi^{0}K^{-}, D^{*+} \to \pi^{+}D^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0},$ $K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\rho^{0}, K^{0} \to K_{L}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	13	13	1	0	1	14
15	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \pi^{-}K^{+}K^{-}D^{*+}\gamma^{gFSR}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{-} \to K_{S}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, a_{1}^{-} \to \pi^{0}\rho^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\eta\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0},$	14	14	1	0	1	15
16	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\eta\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{0}D^{+}, D^{-} \to \pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR} \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$	15	15	1	0	1	16
17	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to \pi^{0}\pi^{+}K^{*-}D^{0}\bar{D}^{*0}\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{-}K^{*-} \to \pi^{-}\bar{K}^{0}, D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, \bar{K}^{0} \to K_{S}, \bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}K_{S}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	$\bar{D}^0,$	16	1	0	1	17

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
18	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \pi^{0}\eta\bar{K}^{0}K^{-}D^{+}_{s}, K^{*} \to \pi^{0}K^{0},$ $D^{-} \to \pi^{-}\pi^{-}K^{+}, D^{*+} \to \pi^{+}D^{0}, \eta \to \gamma\gamma, \bar{K}^{0} \to K_{L}, D^{+}_{s} \to \mu^{+}\nu_{\mu}\phi,$ $K^{0} \to K_{S}, D^{0} \to \pi^{0}\pi^{+}K^{*-}, \phi \to K^{+}K^{-}, K_{S} \to \pi^{0}\pi^{0}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $\bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D^{*+}_{s}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	17	17	1	0	1	18
19	$D_s^{*+} \to D_s^+ \gamma, D^{*+} \to \pi^+ D^0, \bar{D}^0 \to \pi^0 \pi^+ \pi^- K_S, D_s^+ \to \rho^+ \eta, D^0 \to \pi^+ \eta K^- \gamma^{gFSR},$ $K_S \to \pi^+ \pi^-, \rho^+ \to \pi^0 \pi^+, \eta \to \pi^0 \pi^0 \pi^0, \eta \to \pi^0 \pi^0 \pi^0$ $(e^+ e^- \to e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- \gamma^{gFSR} \gamma \gamma)$	18	18	1	0	1	19
20	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{2}^{*-}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{*0}, D_{2}^{*-} \to \pi^{-}\bar{D}^{*0},$ $\rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \bar{D}^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-},$ $a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}$	19	19	1	0	1	20
21	$\frac{(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \pi^{0}\bar{K}^{*}K^{+}K^{-}, D^{*+} \to \pi^{+}D^{0},} \\ \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, D^{0} \to \pi^{0}K_{L}, \bar{K}^{0} \to K_{L} \\ (e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}K_{L}\pi^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	20	20	1	0	1	21
22	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\omega K^{0}K^{*-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}\gamma^{gFSR}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, K^{*-} \to \pi^{0}K^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{0}D^{+}, K_{S} \to \pi^{+}\pi^{-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, D^{+} \to K_{L}a_{1}^{+}, K_{L} \to \mu^{+}\nu_{\mu}\pi^{-}, a_{1}^{+} \to \pi^{+}f_{0}(600)\gamma^{gFSR} (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	21	21	1	0	1	22
23	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D_{s}^{*+}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{-}\eta\omega D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-}, \\ D_{s}^{*+} \to D_{s}^{+}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \\ D^{-} \to \pi^{-}K_{S}, D_{s}^{+} \to \rho^{+}\eta', D^{0} \to K^{-}a_{1}^{+}, K_{S} \to \pi^{0}\pi^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \\ \eta' \to \rho^{0}\gamma, a_{1}^{+} \to \pi^{+}\pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma$	22	22	1	0	1	23
24	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to K^{*}D^{+}\bar{D}^{*-}, B^{0} \to \pi^{+}\pi^{-}\rho^{-}\omega K^{*+}, K^{*} \to \pi^{-}K^{+},$ $D^{+} \to \pi^{0}K_{L}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*+} \to \pi^{0}K^{+},$ $\bar{D}^{0} \to K^{+}a_{1}^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	23	23	1	0	1	24
25	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{-}\rho^{+}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{+}\bar{K}^{*}\bar{D}^{*-}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}\rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to e^{+}\nu_{e}\pi^{0}K^{-}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{*+}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	24 γγγγγ)	24	1	0	1	25
26	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}\bar{D}^{0}D^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega D^{+}\gamma^{gFSR}, K^{0} \to K_{L},$ $\bar{D}^{0} \to K^{+}a_{1}^{-}, D^{*0} \to D^{0}\gamma, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \pi^{+}K^{0}\bar{K}^{*}, a_{1}^{-} \to \rho^{0}\pi^{-},$ $D^{0} \to e^{+}\nu_{e}K^{*-}, K^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	25	25	1	0	1	26

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
27	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{-} \to \pi^{0}\pi^{-}K^{*}, \bar{D}^{0} \to \pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma)$	26	26	1	0	1	27
28	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{1}^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D_{1}^{+} \to \pi^{+}\pi^{-}D^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	27	27	1	0	1	28
29	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, \bar{D}^{0} \to \pi^{-}\omega K^{+}, \bar{K}^{0} \to K_{L},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	28	28	1	0	1	29
30	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \\ D^{+} \to \pi^{0}K_{L}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}\gamma^{gFSR}, D^{+} \to K_{L}a_{1}^{+}, a_{1}^{+} \to \rho^{0}\pi^{+}, \\ \rho^{0} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	29	29	1	0	1	30
31	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \to \bar{K}_{1}^{0}\gamma, D_{1}^{-} \to \pi^{+}\pi^{-}D^{-},$ $\bar{K}_{1}^{0} \to \pi^{+}\pi^{-}\bar{K}^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \bar{K}^{0} \to K_{S}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-},$ $K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma)$	30	30	1	0	1	31
32	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta\omega D^{+}, D^{*+} \to \pi^{+}\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\pi^{+}K^{-}\gamma^{gFSR}, D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}\gamma^{gFSR}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, K_{L} \to e^{+}e^{-}\to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	$\pi^0\pi^0\pi^0$	31 $\gamma\gamma\gamma)$	1	0	1	32
33	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{+}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{+}\gamma^{gFSR}, D^{-} \to \pi^{0}\pi^{-}K_{S}$ $D_{s}^{+} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, K_{S} \to \pi^{0}\pi^{0}, \bar{K}^{0} \to K_{S},$ $K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$, 32	32	1	0	1	33
34	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, B^{0} \to \rho^{+}\eta\omega\bar{D}^{*-}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}K^{+},$ $D_{0}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, D^{-} \to K_{L}a_{1}^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	33	33	1	0	1	34
35	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{0}\Delta^{+}, \bar{B}^{0} \to \bar{K}^{*}\chi_{c1}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\bar{\Delta}^{0} \to \pi^{0}\bar{n}, \Delta^{+} \to \pi^{0}p, \bar{K}^{*} \to \pi^{+}K^{-}, \chi_{c1} \to \eta K^{+}K^{-}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{*+},$ $\eta \to \gamma\gamma, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{+}K^{-}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma)$	34	34	1	0	1	35
36	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{0}\bar{p}\Delta^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{1}^{+}\gamma^{gFSR}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+},$ $\Delta^{+} \to \pi^{+}n, D_{1}^{+} \to \pi^{+}\pi^{-}D^{+}, D^{+} \to K_{L}\pi^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma^{gFSR}\gamma\gamma)$	35	35	1	0	1	36

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
37	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}, D^{-} \to K_{L}a_{1}^{-},$ $D^{*+} \to \pi^{+}D^{0}, K_{L} \to \pi^{0}\pi^{0}\pi^{0}, a_{1}^{-} \to \pi^{0}\rho^{-}, D^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	36	36	1	0	1	37
38	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \eta D^{+}p\bar{\Delta}^{++}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{+}, \eta \to \gamma\gamma,$ $D^{+} \to \pi^{+}K_{S}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}K_{L}\pi^{+}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	37	37	1	0	1	38
39	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{-}D^{+}, \bar{B}^{0} \to \pi^{0}\pi^{0}K^{*}K^{*}-D^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}\gamma^{gFSR},$ $K^{*} \to \pi^{0}K^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{0}, \bar{K}^{*} \to \pi^{+}K^{-}, K^{0} \to K_{L},$ $\bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	38	38	1	0	1	39
40	$\begin{array}{c} e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}D^{*+}\gamma, \rho^{0} \to \pi^{+}\pi^{-}, \\ \bar{D}^{*-} \to \pi^{0}D^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, D^{-} \to \rho^{-}K^{*}, D^{0} \to \rho^{0}\pi^{+}K^{-}, \\ \rho^{-} \to \pi^{0}\pi^{-}, K^{*} \to \pi^{-}K^{+}, \rho^{0} \to \pi^{+}\pi^{-} \\ (e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \end{array}$	39	39	1	0	1	40
41	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}\pi^{0}\pi^{0}D^{*+}, D^{*+} \to \pi^{0}D^{+},$ $D^{*+} \to \pi^{+}D^{0}, D^{+} \to \pi^{+}K^{-}K^{*+}, D^{0} \to \pi^{0}\pi^{+}K^{-}\gamma^{gFSR}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	40	40	1	0	1	41
42	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	41	41	1	0	1	42
43	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{-}\eta_{c}(2S), \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}\bar{\Sigma}^{0}, \eta_{c}(2S) \to \pi^{0}\rho^{0}\pi^{+}\pi^{-}D^{+}\Sigma^{-}$	$\pi^{-}\pi^{-\frac{42}{\rho^{+}}}\eta,$	42	1	0	1	43
44	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \eta D^{-}D_{s}^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0},$ $D^{-} \to \rho^{-}K^{*}, D_{s}^{+} \to \pi^{+}\eta', D^{*+} \to \pi^{+}D^{0}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*} \to \pi^{0}K^{0},$ $\eta' \to \pi^{0}\pi^{0}\eta, D^{0} \to \pi^{0}\pi^{+}K^{-}, K^{0} \to K_{S}, \eta \to \gamma\gamma, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	43	43	1	0	1	44
45	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \omega K^{+}\bar{D}^{*-}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \pi^{-}f_{0}(980), \bar{D}^{0} \to \pi^{-}\omega K^{+}, D^{+} \to K_{S}K^{*+},$ $f_{0}(980) \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S},$ $K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	44	44	1	0	1	45
46	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \eta \bar{D}^{*-}D_{s}^{+}, B^{0} \to \pi^{0}\pi^{-}\rho^{+}\bar{K}^{0}K^{+}D^{-}, \eta \to \gamma\gamma,$ $\bar{D}^{*-} \to \pi^{0}D^{-}, D_{s}^{+} \to \mu^{+}\nu_{\mu}\eta, \rho^{+} \to \pi^{0}\pi^{+}, \bar{K}^{0} \to K_{S}, D^{-} \to K_{S}K^{*-},$ $D^{-} \to \pi^{-}\pi^{-}K^{+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $\pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma^{gFSR}\gamma$	45	45	1	0	1	46

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
47	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\eta\eta\bar{K}^{0}K^{+}D^{-}, \bar{B}^{0} \rightarrow \pi^{0}\rho^{0}\pi^{-}D^{*+}, \rho^{-} \rightarrow \pi^{0}\pi^{0}\pi^{0}, \bar{K}^{0} \rightarrow K_{L}, D^{-} \rightarrow \pi^{-}K_{S}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, D^{*+} \rightarrow \pi^{0}D^{+}, K_{S} \rightarrow \pi^{+}\pi^{-}, D^{+} \rightarrow \pi^{0}K_{L}\pi^{+}$ $(e^{+}e^{-} \rightarrow K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$		46	1	0	1	47
48	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{+}D^{-}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+},$ $\bar{K}^{*} \to \pi^{0}\bar{K}^{0}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	47	47	1	0	1	48
49	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{+} \to \pi^{0}\pi^{+}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, K^{*} \to \pi^{0}K^{0}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0},$ $K^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	48	48	1	0	1	49
50	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\eta D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\eta \to \pi^{0}\pi^{0}\pi^{0}, D^{-} \to K_{S}K^{-}, D^{*+} \to \pi^{+}D^{0}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, K_{S} \to \pi^{+}\pi^{-},$ $D^{0} \to \pi^{0}\pi^{+}\pi^{-}\bar{K}^{*}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	49	49	1	0	1	50
51	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}\gamma^{gFSR}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \eta \to \pi^{+}\pi^{-}\gamma^{gFSR}$ $D^{-} \to K_{L}a_{1}^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, a_{1}^{-} \to \pi^{-}f_{0}(600), \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{g})$, 50	50	1	0	1	51
52	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\rho^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{-} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}K^{0}, D^{+} \to \pi^{+}\pi^{+}K^{-}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	51	51	1	0	1	52
53	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \rho^{+}\rho^{-}D^{*0}, \rho^{0} \to \pi^{+}\pi^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR}, D^{-} \to \pi^{-}K_{1}^{'0}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*0} \to D^{0}\gamma,$ $K_{1}^{'0} \to \pi^{-}K^{*+}, D^{0} \to e^{+}\nu_{e}K^{*-}, K^{*+} \to \pi^{0}K^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	52	52	1	0	1	53
54	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}\bar{D}^{0}D_{s}^{+}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, \bar{D}^{0} \to \rho^{-}K^{*+},$ $D_{s}^{+} \to \rho^{+}\eta, D^{*+} \to \pi^{+}D^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+},$ $\rho^{+} \to \pi^{0}\pi^{+}, \eta \to \gamma\gamma, D^{0} \to K_{S}K^{+}K^{-}, D_{s}^{-} \to \pi^{-}\eta', K_{S} \to \pi^{0}\pi^{0},$ $\eta' \to \pi^{+}\pi^{-}\eta, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	53	53	1	0	1	54
55	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{0}\rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $a_{1}^{+} \to \pi^{+}K^{0}\bar{K}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S},$ $\bar{D}^{0} \to K^{+}a_{1}^{-}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}, a_{1}^{-} \to \rho^{0}\pi^{-},$ $K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	54	54	1	0	1	55

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
56	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\Delta^{+}\bar{\Xi}_{c}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}D^{0}D_{s}^{*-}, \Delta^{+} \to \pi^{+}n,$ $\bar{\Xi}_{c}^{*-} \to \bar{\Xi}_{c}^{-}\gamma, D^{0} \to \mu^{+}\nu_{\mu}K^{*-}, D_{s}^{*-} \to D_{s}^{-}\gamma, \bar{\Xi}_{c}^{-} \to \pi^{0}\pi^{-}\bar{\Xi}^{0}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $D_{s}^{-} \to K^{0}K^{*-}, \bar{\Xi}^{0} \to \pi^{0}\bar{\Lambda}, \bar{K}^{0} \to K_{L}, K^{0} \to K_{L}, K^{*-} \to \pi^{0}K^{-},$ $\bar{\Lambda} \to \pi^{+}\bar{p}, K_{L} \to \mu^{-}\nu_{\mu}\pi^{+}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	55	55	1	0	1	56
57	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{0}\bar{\Delta}^{+}\Sigma_{c}^{+}, \bar{D}^{*-} \rightarrow \pi^{0}D^{-},$ $\bar{\Delta}^{+} \rightarrow \pi^{-}\bar{n}, \Sigma_{c}^{+} \rightarrow \pi^{0}\Lambda_{c}^{+}, D^{-} \rightarrow \pi^{0}\pi^{-}\phi, \Lambda_{c}^{+} \rightarrow \pi^{+}\eta\Lambda, \phi \rightarrow K_{L}K_{S},$ $\eta \rightarrow \pi^{0}\pi^{+}\pi^{-}, \Lambda \rightarrow \pi^{-}p, K_{S} \rightarrow \pi^{+}\pi^{-}$ $(e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	56	56	1	0	1	57
58	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\bar{D}^{*0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}\bar{D}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{*+} \to D^{+}\gamma, \bar{D}^{0} \to \rho^{-}K^{*+}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \\ K^{*+} \to \pi^{+}K^{0}, \bar{K}^{0} \to K_{S}, K^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{0}\pi^{0} \\ (e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	57	57	1	0	1	58
59	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \rightarrow D^{+}\Delta^{0}\bar{\Delta}^{+}, \bar{B}^{0} \rightarrow \pi^{0}\rho^{0}\pi^{+}\pi^{-}\eta\eta, D^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{K}^{*}\gamma^{gFSR},$ $\Delta^{0} \rightarrow \pi^{0}n, \bar{\Delta}^{+} \rightarrow \pi^{0}\bar{p}, \rho^{0} \rightarrow \pi^{+}\pi^{-}, \eta \rightarrow \gamma\gamma, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-},$ $\bar{K}^{*} \rightarrow \pi^{+}K^{-}$ $(e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}n\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	58	58	1	0	1	59
60	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}\gamma^{gFSR}, \bar{D}^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-}, D^{0} \to \mu^{+}\nu_{\mu}\pi^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-} (e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$		59 D ⁰ ,	1	0	1	60
61	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\bar{K}^{0}D^{+}\bar{D}^{*0}\gamma^{gFSR}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \\ \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{K}^{0} \to K_{S}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{-} \to e^{-}\bar{\nu}_{e}K^{0}\gamma^{gFSR}, \\ K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR}, K^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0} \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$	60	60	1	0	1	61
62	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\bar{K}^{*}\bar{D}^{*-}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \\ \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \rho^{+}K^{*-}, \bar{D}^{0} \to K^{+}a_{1}^{-}, \bar{K}^{0} \to K_{L}, \\ \bar{D}^{0} \to \pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, a_{1}^{-} \to \pi^{-}f_{0}(600)\gamma^{gFSR}, \bar{K}^{0} \to K_{L} \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}f_{0}(600)\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	61	61	1	0	1	62
63	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{D}^{-}\Delta^{+}\Delta^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $a_{1}^{+} \to \rho^{0}\pi^{+}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, \Delta^{+} \to \pi^{0}p, \bar{\Delta}^{+} \to \pi^{0}\bar{p}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{*+},$ $\rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	62	62	1	0	1	63
64	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\pi^{-}\pi^{-}\rho^{+}\rho^{+}\omega D^{*+}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \\ \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \\ D^{0} \to e^{+}\nu_{e}\pi^{0}K^{-}\gamma^{gFSR}\gamma^{gFSR} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gY\gamma$	63	63	1	0	1	64

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
65	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}K^{-}K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\rho^{0}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}\gamma^{gFSR}, K^{0} \to K_{S}, \bar{D}^{0} \to K_{L}\eta', \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}, \eta' \to \pi^{+}\pi^{-}\eta, K_{S} \to \pi^{+}\pi^{-}, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	64	64	1	0	1	65
66	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}p\bar{p}, D^{-} \to \pi^{+}\pi^{-}\pi^{-}K_{S},$ $D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	65	65	1	0	1	66
67	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{0}^{*-}, \bar{B}^{0} \to \tau^{-}\bar{\nu}_{\tau}D^{*+}, D_{0}^{*-} \to \pi^{-}\bar{D}^{0},$ $\tau^{-} \to \nu_{\tau}\pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{+}\pi^{-}K^{*}\gamma^{gFSR}, D^{0} \to \pi^{0}\pi^{0}\bar{K}^{*}, K^{*} \to \pi^{-}K^{+},$ $\bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\omega\omega\bar{D}^{*-}, \bar{B}^{0} \to \eta D^{+}D_{s}^{*-}, \omega \to \pi^{0}\gamma,$	66	66	1	0	1	67
68	$\omega \to \pi^0 \pi^+ \pi^-, \bar{D}^{*-} \to \pi^- \bar{D}^0, \eta \to \gamma \gamma, D^+ \to K_L \pi^+, D_s^{*-} \to D_s^- \gamma,$ $\bar{D}^0 \to \pi^- \eta K^+, D_s^- \to K^0 K^{*-}, \eta \to \pi^0 \pi^0 \pi^0, K^0 \to K_L, K^{*-} \to \pi^0 K^-$ $(e^+ e^- \to K_L K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma)$	67	67	1	0	1	68
69	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}\gamma^{gFSR}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, D^{+} \to \pi^{0}\pi^{+}K_{S},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \gamma\gamma, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-},$ $D^{0} \to \omega \bar{K}^{*}, \omega \to \pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$	68	68	1	0	1	69
70	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \rho^{-}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{-} \to \pi^{0}\pi^{-}\phi, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \phi \to K^{+}K^{-}, D^{0} \to e^{+}\nu_{e}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$	69	69	1	0	1	70
71	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{+}D^{0}\bar{D}^{0}, \bar{B}^{0} \to K^{*-}D^{+}, D^{0} \to \rho^{+}K^{*-},$ $\bar{D}^{0} \to \rho^{0}\rho^{0}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}\gamma^{gFSR}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}, \bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{g})$	70	70	1	0	1	71
72	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\pi^{+}\rho^{+}\rho^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \\ \rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}\pi^{+}K^{-}\gamma^{gFSR} \\ (e^{+}e^{-} \to e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	71	71	1	0	1	72
73	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}n\bar{\Sigma}_{c}^{*0}, \bar{B}^{0} \to \pi^{-}D^{+}\gamma^{gFSR}, K^{*} \to \pi^{-}K^{+},$ $\bar{\Sigma}_{c}^{*0} \to \pi^{+}\bar{\Lambda}_{c}^{-}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, \bar{\Lambda}_{c}^{-} \to \pi^{0}\pi^{-}K^{+}\bar{p}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}n\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	72	72	1	0	1	73
74	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{*+}\bar{n}\Delta^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D^{*+} \to \pi^{+}D^{0}, \Delta^{+} \to \pi^{0}p, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}K^{0}, D^{0} \to K^{-}a_{1}^{+}, K^{0} \to K_{L},$ $a_{1}^{+} \to \pi^{+}f_{0}(600)\gamma^{gFSR}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{n}pf_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma)$	73	73	1	0	1	74

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
75	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}D^{0}, \bar{B}^{0} \to D^{*+}D_{s0}^{*-}, K^{*+} \to \pi^{+}K^{0},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D^{*+} \to \pi^{0}D^{+}, D_{s0}^{*-} \to \pi^{0}D_{s}^{-}, K^{0} \to K_{L},$ $\bar{D}^{0} \to \rho^{-}K^{*+}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}, D_{s}^{-} \to K^{*}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+},$ $K^{*} \to \pi^{0}K^{0}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}X^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	74	74	1	0	1	75
76	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}\bar{D}^{*-}D^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*0} \to \pi^{0}D^{0}, D^{-} \to K_{L}\pi^{-}K^{+}K^{-}, D^{-} \to \pi^{0}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR},$ $D^{0} \to \pi^{0}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	75	75	1	0	1	76
77	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\rho^{+}\omega\omega D^{-}, B^{0} \to K^{-}D^{*+}D^{*0}, \rho^{+} \to \pi^{0}\pi^{+},$ $\omega \to \pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{0}K_{L}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $D^{+} \to \pi^{+}\bar{K}_{1}^{'0}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}_{1}^{'0} \to \pi^{+}K^{*-}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0},$ $K^{*-} \to \pi^{-}\bar{K}^{0}, K^{0} \to K_{L}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	76	46	1	0	1	77
78	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}\omega\bar{K}^{0}D^{*+}, D^{*+} \to \pi^{+}D^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, D^{*+} \to \pi^{+}D^{0}, D^{0} \to \pi^{0}\eta K_{S},$ $D^{0} \to \mu^{+}\nu_{\mu}K^{*-}, \eta \to \gamma\gamma, K_{S} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{S},$ $K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	77	76	1	0	1	78
79	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\eta D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}K_{1}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K_{1}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}K^{-}\gamma^{gFSR} (e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	78	77	1	0	1	79
80	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\rho^{+}\eta\eta\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \rho^{+} \to \pi^{0}\pi^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}, \\ \bar{D}^{0} \to \pi^{-}K^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-} \\ (e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	79	78	1	0	1	80
81	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}\omega K^{0}\bar{K}^{0}\bar{K}^{*}D^{*+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau},$ $D_{0}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, \bar{K}^{*} \to \pi^{+}K^{-},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{+}\pi^{-}\pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	80	79	1	0	1	81
82	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}a_{1}^{+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\omega,$ $a_{1}^{+} \to \rho^{0}\pi^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma, \omega \to \pi^{0}\pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-},$ $D_{s}^{-} \to \rho^{-}\phi, \rho^{-} \to \pi^{0}\pi^{-}, \phi \to K^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma)$	81	80	1	0	1	82
83	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\eta\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}, \rho^{+} \to \pi^{0}\pi^{+},$ $\eta \to \pi^{+}\pi^{-}\gamma^{gFSR}, \omega \to \pi^{0}\gamma, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D^{0} \to K_{S}K^{+}K^{-}, D_{s}^{-} \to \rho^{-}\phi,$ $K^{*} \to \pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \phi \to \pi^{-}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	82	81	1	0	1	83

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
84	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}D^{-}, \bar{B}^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{0} \to K_{S},$ $D^{-} \to \pi^{-}K^{+}K^{-}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{0}\pi^{0}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+},$ $K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	83	82	1	0	1	84
85	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \rightarrow e^{-}\bar{\nu}_{e}\eta D^{+}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$ $\bar{D}^{*0} \rightarrow \pi^{0}\bar{D}^{0}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-}, D^{+} \rightarrow \mu^{+}\nu_{\mu}\bar{K}^{0}, \bar{D}^{0} \rightarrow K_{S}\eta', \bar{K}^{0} \rightarrow K_{L},$ $K_{S} \rightarrow \pi^{0}\pi^{0}, \eta' \rightarrow \pi^{+}\pi^{-}\eta, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	84	83	1	0	1	85
86	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \eta' D^{+}\bar{D}^{*-}, B^{0} \rightarrow \omega \bar{D}^{*-}\bar{n}p, \eta' \rightarrow \pi^{0}\pi^{0}\eta,$ $D^{+} \rightarrow \pi^{+}\phi, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-},$ $\phi \rightarrow K^{+}K^{-}, \bar{D}^{0} \rightarrow e^{-}\bar{\nu}_{e}\rho^{+}, \bar{D}^{0} \rightarrow e^{-}\bar{\nu}_{e}K^{+}\gamma^{gFSR}\gamma^{gFSR}, \rho^{+} \rightarrow \pi^{0}\pi^{+}\gamma^{gFSR}$ $(e^{+}e^{-} \rightarrow e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\bar{n}p\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	85	84	1	0	1	86
87	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{2}^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{*}, D_{2}^{*+} \to \pi^{+}D^{0}, K^{*} \to \pi^{-}K^{+}, D^{0} \to K_{L}\omega, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma)$	86	85	1	0	1	87
88	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\eta D^{-}, \bar{B}^{0} \to \pi^{-}\rho^{+}K^{0}K^{*-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-},$ $\eta \to \gamma\gamma, D^{-} \to \pi^{-}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, K^{0} \to K_{L}, K^{*-} \to \pi^{0}K^{-},$ $D^{+} \to \rho^{0}\pi^{+}, K_{L} \to \mu^{+}\nu_{\mu}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma)$	87	86	1	0	1	88
89	$\begin{array}{c} e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}p\bar{\Sigma}_{c}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D_{0}^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \bar{\Sigma}_{c}^{*-} \to \pi^{0}\bar{\Lambda}_{c}^{-}, D_{0}^{*+} \to \pi^{+}D^{0}, \bar{\Lambda}_{c}^{-} \to K^{+}\bar{\Delta}^{++}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \\ \bar{K}^{*} \to \pi^{+}K^{-} \\ (e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma\gamma) \end{array}$	88	87	1	0	1	89
90	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}\pi^{-}D^{+}\bar{n}p\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $D^{+} \to K_{S}a_{1}^{+}, D^{-} \to \pi^{0}\pi^{0}\pi^{-}\pi^{-}K^{+}, K_{S} \to \pi^{0}\pi^{0}, a_{1}^{+} \to \pi^{+}f_{0}(600)$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\bar{n}pf_{0}(600)\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	89	88	1	0	1	90
91	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{+}D^{-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{-}K^{+}, D^{*+} \to \pi^{0}D^{+}, D^{+} \to \pi^{+}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma)$	90	89	1	0	1	91
92	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{-}K^{*+}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{+}K^{-}\eta_{c}(2S), K^{*+} \to \pi^{0}K^{+},$ $J/\psi \to e^{+}e^{-}\gamma^{gFSR}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, \eta_{c}(2S) \to \eta\Sigma^{+}\bar{\Sigma}^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \Sigma^{+} \to \pi^{+}n,$ $\bar{\Sigma}^{-} \to \pi^{0}\bar{p}$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}e^{-}\pi^{+}\pi^{+}\pi^{-}K^{+}K^{-}n\bar{p}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	91	90	1	0	1	92
93	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \bar{K}^{0}\psi', \bar{B}^{0} \to \pi^{-}\rho^{+}\rho^{-}D^{+}, \bar{K}^{0} \to K_{S},$ $\psi' \to \pi^{0}\pi^{0}J/\psi, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \bar{K}^{*}a_{1}^{+}, K_{S} \to \pi^{+}\pi^{-},$ $J/\psi \to \mu^{+}\mu^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, a_{1}^{+} \to \pi^{+}f_{0}(600)$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	92	91	1	0	1	93

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
94	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{-}K^{0}D^{+}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{+} \to \pi^{0}\pi^{+}\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K^{0} \to K_{L}, D^{+} \to K_{L}a_{1}^{+}, \bar{D}^{0} \to \pi^{-}K^{+},$ $a_{1}^{+} \to \pi^{+}f_{0}(600)$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma\gamma)$	93	92	1	0	1	94
95	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\omega D^{-}, \bar{B}^{0} \to \pi^{0}\omega K^{0}K^{-}D^{+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S},$ $D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	94	93	1	0	1	95
96	$D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to K^{+}a_{1}^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-}, a_{1}^{-} \to \pi^{-}f_{0}(600)$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma)$	95	94	1	0	1	96
97	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{-}D^{*+}\Delta^{+}\bar{\Delta}^{+}, K^{*+} \to \pi^{+}K^{0},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}, \Delta^{+} \to \pi^{+}n, \bar{\Delta}^{+} \to \pi^{0}\bar{p}, K^{0} \to K_{L},$ $\bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma\gamma\gamma\gamma)$	96	95	1	0	1	97
98	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{2}^{*-}D_{s}^{*+}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{*}, D_{2}^{*-} \to \pi^{0}\bar{D}^{*-},$ $D_{s}^{*+} \to D_{s}^{+}\gamma, D^{+} \to \pi^{+}\bar{K}_{1}^{'0}, D_{s}^{-} \to e^{-}\bar{\nu}_{e}\eta', \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{s}^{+} \to \pi^{+}\phi,$ $\bar{K}_{1}^{'0} \to \pi^{+}K^{*-}, \eta' \to \pi^{0}\pi^{0}\eta, \bar{D}^{0} \to \pi^{-}\omega K^{+}, \phi \to \pi^{-}\rho^{+}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $\eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	97	96	1	0	1	98
99	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K_{L}\eta_{c}, \bar{B}^{0} \to \pi^{-}\pi^{-}\rho^{+}D^{*+}, \eta_{c} \to \pi^{0}K^{0}\bar{K}^{0}\bar{K}^{0}K^{*},$ $\rho^{+} \to \pi^{0}\pi^{+}, D^{*+} \to \pi^{0}D^{+}, K^{0} \to K_{S}, \bar{K}^{0} \to K_{L}, \bar{K}^{0} \to K_{S},$ $K^{*} \to \pi^{-}K^{+}, D^{+} \to \pi^{0}\pi^{+}K_{S}, K_{S} \to \pi^{0}\pi^{0}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	98	97	1	0	1	99
100	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to K^{*}K^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, K^{*} \to \pi^{0}K^{0}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{-}\rho^{+}, K^{0} \to K_{S},$ $\rho^{+} \to \pi^{0}\pi^{+}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	99	98	1	0	1	100
101	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\rho^{-}\eta\bar{D}^{0}, \bar{B}^{0} \to \pi^{-}\rho^{+}\rho^{-}D^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}\gamma^{gFSR}, \rho^{+} \to \pi^{0}\pi^{+}\gamma^{gFSR}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}\gamma^{gFSR}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}, \bar{K}^{0} \to e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}$		99	1	0	1	101
102	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{0}\eta\omega\bar{D}^{0}, \bar{B}^{0} \to \pi^{+}\pi^{-}D^{+}D_{s}^{-}, \eta \to \pi^{+}\pi^{-}\gamma^{gFSR}, \\ \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}\gamma^{gFSR}, D^{+} \to \pi^{0}\pi^{+}K_{S}, D_{s}^{-} \to e^{-}\bar{\nu}_{e}\eta, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \\ \eta \to \pi^{+}\pi^{-}\gamma^{gFSR} \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$	101	100	1	0	1	102

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
103	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{+}\omega\omega D^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\rho^{0}\pi^{-}\pi^{-}\rho^{+}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+},$ $D^{*+} \to \pi^{+}D^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	102	101	1	0	1	103
104	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{*+}, \bar{B}^{0} \to \rho^{0}\pi^{-}\rho^{+}D^{0}, D^{-} \to \pi^{0}\pi^{-}K_{S},$ $D_{s}^{*+} \to D_{s}^{+}\gamma, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \rho^{+} \to \pi^{0}\pi^{+}, D^{0} \to \mu^{+}\nu_{\mu}K^{-}, K_{S} \to \pi^{+}\pi^{-},$ $D_{s}^{+} \to \pi^{0}\pi^{+}\omega, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	103	102	1	0	1	104
105	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{-}\omega D^{-}, \bar{B}^{0} \to \pi^{+}D^{*0}D_{s}^{-}\gamma^{gFSR}\gamma^{gFSR}, \rho^{0} \to \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \pi^{0}\pi^{-}K^{*}, D^{*0} \to \pi^{0}D^{0}, D_{s}^{-} \to e^{-}\bar{\nu}_{e}\eta'\gamma^{gFSR}, K^{*} \to \pi^{-}K^{+}\gamma^{gFSR}, D^{0} \to \pi^{+}\pi^{-}\bar{K}^{*}, \eta' \to \pi^{+}\pi^{-}\eta, \bar{K}^{*} \to \pi^{+}K^{-}, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$		103	1	0	1	105
106	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}K^{+}K^{-}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to K_{L}\pi^{+}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}, D^{+} \to \pi^{0}\pi^{+}K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	105	104	1	0	1	106
107	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}J/\psi, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}\gamma^{gFSR}, K^{0} \to K_{S},$ $J/\psi \to e^{+}e^{-}\gamma^{gFSR}\gamma^{gFSR}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma gY})$	106	105	1	0	1	107
108	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \pi^{0}\pi^{0}\pi^{+}\rho^{-}\bar{D}^{*0}, \bar{B}^{0} \rightarrow \rho^{-}\eta\omega\omega D^{*+}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$ $\bar{D}^{*0} \rightarrow \bar{D}^{0}\gamma, \rho^{-} \rightarrow \pi^{0}\pi^{-}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, \omega \rightarrow \pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR},$ $D^{*+} \rightarrow \pi^{0}D^{+}, \bar{D}^{0} \rightarrow \pi^{-}\omega K^{+}, \pi^{0} \rightarrow e^{+}e^{-}\gamma^{gFSR}, D^{+} \rightarrow \pi^{0}\pi^{+}\bar{K}^{*}, \omega \rightarrow \pi^{0}\gamma,$ $\bar{K}^{*} \rightarrow \pi^{0}\bar{K}^{0}, \bar{K}^{0} \rightarrow K_{L}, K_{L} \rightarrow \mu^{-}\nu_{\mu}\pi^{+}$ $(e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{-}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$	107 777)	106	1	0	1	108
109	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \pi^{+}K_{S}, \bar{D}^{0} \to \mu^{-}\bar{\nu}_{\mu}K^{+}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma)$	108	107	1	0	1	109
110	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{B}^{0} \to \bar{K}^{0}\bar{\Sigma}^{*0}\Sigma_{c}^{*0}, \rho^{0} \to \pi^{+}\pi^{-},$ $D^{*+} \to \pi^{+}D^{0}, \bar{K}^{0} \to K_{L}, \bar{\Sigma}^{*0} \to \pi^{0}\bar{\Lambda}, \Sigma_{c}^{*0} \to \pi^{-}\Lambda_{c}^{+}, D^{0} \to \pi^{0}\pi^{0}\bar{K}^{*},$ $\bar{\Lambda} \to \pi^{+}\bar{p}, \Lambda_{c}^{+} \to \pi^{+}\eta\Lambda, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}, \eta \to \pi^{0}\pi^{0}\pi^{0}, \Lambda \to \pi^{-}p$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	109	108	1	0	1	110
111	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D_{s}^{*-}, \bar{B}^{0} \to \rho^{0}\pi^{+}\bar{\Delta}^{++}\Lambda_{c}^{+}, D^{*+} \to \pi^{0}D^{+},$ $D_{s}^{*-} \to \pi^{0}D_{s}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \Lambda_{c}^{+} \to \rho^{0}\Sigma^{+}, D^{+} \to \pi^{0}K_{L}\pi^{+},$ $D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \Sigma^{+} \to \pi^{0}p, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	110	109	1	0	1	111
112	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{2}^{*-}, \bar{B}^{0} \to \rho^{-}D^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}K_{1}^{0}, D^{0} \to K^{-}a_{1}^{+}, K_{1}^{0} \to \omega K^{0},$ $a_{1}^{+} \to \pi^{0}\rho^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{0} \to K_{S}, \rho^{+} \to \pi^{0}\pi^{+}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	111	110	1	0	1	112

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
113	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}\gamma^{gFSR}\gamma^{gFSR}, \bar{B}^{0} \to D_{s}^{*+}\bar{\Delta}^{+}\Lambda, D^{-} \to \pi^{-}\pi^{-}K^{+},$ $D_{s}^{*+} \to D_{s}^{+}\gamma, \bar{\Delta}^{+} \to \pi^{-}\bar{n}, \Lambda \to \pi^{0}n, D_{s}^{+} \to \pi^{+}\eta, \eta \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma})$	112	111	1	0	1	113
114	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to K^{-}D^{*+}\bar{D}^{*0}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{-} \to K_{L}\pi^{+}\pi^{-}K^{-}\gamma^{gFSR}, D^{0} \to \pi^{-}\rho^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+} $ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	113	112	1	0	1	114
115	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D'^{+}_{s1}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}\gamma^{gFSR}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D'^{+}_{s1} \to \pi^{0}D^{*+}_{s}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{-}\eta K^{+}, D^{*+}_{s} \to D^{+}_{s}\gamma, D^{0} \to K_{L}K^{+}K^{-},$ $\eta \to \pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR}, D^{+}_{s} \to \pi^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma})$	114	113	1	0	1	115
116	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^0\bar{B}^0, \bar{B}^0 \to D^{*+}D_s^{*-}, \bar{B}^0 \to \mu^-\bar{\nu}_{\mu}D_1'^+, D^{*+} \to \pi^+D^0,$ $D_s^{*-} \to D_s^-\gamma, D_1'^+ \to \pi^0D^{*+}, D^0 \to \pi^0\pi^+K^-, D_s^- \to \rho^-\eta, D^{*+} \to \pi^+D^0,$ $\rho^- \to \pi^0\pi^-, \eta \to \pi^0\pi^+\pi^-, D^0 \to \pi^0\pi^+\pi^-K_S, K_S \to \pi^+\pi^-\gamma^{gFSR}$ $(e^+e^- \to \mu^-\bar{\nu}_{\mu}\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	115	114	1	0	1	116
117	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\eta\bar{K}^{0}K^{*}D^{-}, \bar{B}^{0} \to D^{*+}D^{*-}_{s}, \eta \to \pi^{+}\pi^{-}\gamma^{gFSR}, \\ \bar{K}^{0} \to K_{L}, K^{*} \to \pi^{-}K^{+}, D^{-} \to \pi^{0}\pi^{-}K^{*}\gamma^{gFSR}, D^{*+} \to \pi^{+}D^{0}, D^{*-}_{s} \to D^{-}_{s}\gamma, \\ K^{*} \to \pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}K^{*-}, D^{-}_{s} \to \rho^{-}\eta', K^{*-} \to \pi^{0}K^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \\ \eta' \to \pi^{+}\pi^{-}\eta, \eta \to \gamma\gamma \\ (e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	116	115	1	0	1	117
118	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{-}\eta\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \rightarrow \pi^{-}\eta D^{*+}\gamma^{gFSR}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$ $\eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, \bar{K}^{0} \rightarrow K_{S}, \bar{D}^{*0} \rightarrow \bar{D}^{0}\gamma, \eta \rightarrow \pi^{0}\pi^{0}, D^{*+} \rightarrow \pi^{+}D^{0},$ $K_{S} \rightarrow \pi^{0}\pi^{0}, \bar{D}^{0} \rightarrow \pi^{0}\pi^{-}K^{+}, D^{0} \rightarrow e^{+}\nu_{e}K^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	117	116	1	0	1	118
119	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\pi^{0}\bar{D}^{0}, B^{0} \to \pi^{0}\rho^{0}\rho^{+}\omega D^{-}, \bar{D}^{0} \to \rho^{0}\pi^{-}K^{+},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+}\gamma^{gFSR}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	118	117	1	0	1	119
120	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{0}D^{*+}\bar{D}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, K^{0} \to K_{S},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{+} \to \pi^{+}\pi^{+}K^{-},$ $\bar{D}^{0} \to \pi^{-}K_{S}K^{+}, D^{0} \to K_{L}\pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma)$	119	118	1	0	1	120
121	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D^{*+} \to \pi^{+}D^{0},$ $D^{*+} \to \pi^{+}D^{0}, D^{0} \to \pi^{0}\pi^{+}K^{-}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}\gamma^{gFSR},$ $\bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	120	119	1	0	1	121

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
122	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\omega D^{*0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*0} \to \pi^{0}D^{0}, \bar{D}^{0} \to \pi^{-}K_{S}K^{+}, D^{0} \to \mu^{+}\nu_{\mu}\pi^{-}\bar{K}^{0}, K_{S} \to \pi^{+}\pi^{-},$ $\bar{K}^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	121	120	1	0	1	122
123	$D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to e^{-}\bar{\nu}_{e}K^{+}, D^{0} \to \rho^{+}K^{*-}, \rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	122	121	1	0	1	123
124	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*-}D_{s}^{+}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{0}D^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, D_{s}^{+} \to \pi^{+}f_{0}(980), D^{-} \to e^{-}\bar{\nu}_{e}K^{0},$ $\bar{K}^{0} \to K_{L}, f_{0}(980) \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	123	122	1	0	1	124
125	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}\bar{K}^{0}K^{+}\bar{D}^{*0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}\gamma^{gFSR}, \bar{K}^{0} \to K_{L},$ $\bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{+} \to K_{L}K^{*+}, \bar{D}^{0} \to \omega K_{S}, K^{*+} \to \pi^{+}K^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-},$ $K_{S} \to \pi^{0}\pi^{0}, K^{0} \to K_{S}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\mu^{-}\bar{\nu}_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	124	123	1	0	1	125
126	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{\prime-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}\gamma^{gFSR}, D_{1}^{\prime-} \to \pi^{-}\bar{D}^{*0},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}\gamma^{gFSR}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	125	124	1	0	1	126
127	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\bar{D}^{*-}, \bar{B}^{0} \to D_{2}^{*+}D_{s}^{-}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \pi^{0}\pi^{0}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to \rho^{+}K^{*-},$ $\rho^{+} \to \pi^{0}\pi^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{L}, K_{L} \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	126	125	1	0	1	127
128	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \bar{K}^{*}D^{+}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}\gamma^{gFSR}, \bar{K}^{*} \to \pi^{+}K^{-},$ $D^{+} \to e^{+}\nu_{e}\bar{K}^{0}, D^{-} \to e^{-}\bar{\nu}_{e}K^{*}, D^{*+} \to \pi^{+}D^{0}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{0}K^{0},$ $D^{0} \to \pi^{0}\pi^{+}K^{-}\gamma^{gFSR}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{L}$ $(e^{+}e^{-} \to e^{+}e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	127	126	1	0	1	128
129	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D_{1}^{\prime-}, \bar{B}^{0} \to \pi^{+}D^{0}D_{s}^{-}, D_{1}^{\prime-} \to \pi^{-}\bar{D}^{*0}\gamma^{gFSR},$ $D^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}\gamma^{gFSR}, D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, K_{S} \to \pi^{+}\pi^{-}, \tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\gamma^{gFSR},$ $\bar{D}^{0} \to \pi^{+}\pi^{-}K_{S}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma$	128	127	1	0	1	129
130	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}a_{1}^{+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $a_{1}^{+} \to \pi^{0}\rho^{+}, D^{*+} \to \pi^{0}D^{+}, D^{-} \to \pi^{-}\pi^{-}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}, D^{+} \to e^{+}\nu_{e}\bar{K}^{0}\gamma^{gFSR},$ $\bar{K}^{0} \to K_{L}, K_{L} \to e^{-}\nu_{e}\pi^{+}$ $(e^{+}e^{-} \to e^{+}e^{-}e^{-}\nu_{e}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	129	128	1	0	1	130

index	event tree	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
maca	(event initial-final states)	12,011	ILVIII 505	III VOS	I HEELVES	111002105	II CHINELY US
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \eta \bar{K}^{0}K^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{-}\eta D^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-},$						
131	$ar{K}^0 ightarrow K_S, ar{D}^{*-} ightarrow \pi^0 D^-, ho^- ightarrow \pi^0 \pi^-, \eta ightarrow \gamma \gamma, D^+ ightarrow \pi^0 \pi^0 \pi^+,$	130	129	1	0	1	131
101	$K_S \to \pi^0 \pi^0, D^- \to K_L a_1^-, a_1^- \to \rho^0 \pi^-, \rho^0 \to \pi^+ \pi^-$	100	120	_		_	101
	$(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$						
100	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}D^{+}, \bar{B}^{0} \to \rho^{0}\pi^{-}\omega D^{+}, \rho^{-} \to \pi^{0}\pi^{-},$	101	100			_	100
132	$D^{+} \to e^{+} \nu_{e} \pi^{+} K^{-} \gamma^{gFSR}, \rho^{0} \to \pi^{+} \pi^{-}, \omega \to \pi^{0} \pi^{+} \pi^{-}, D^{+} \to \pi^{+} \pi^{+} K^{-}$	131	130	1	0	1	132
	$(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$						
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \bar{D}^{*-}D^{+}_{s}, B^{0} \to e^{+}\nu_{e}D^{*-}_{2}, \bar{D}^{*-} \to \pi^{0}D^{-},$						
133	$D_s^+ \to \mu^+ \nu_\mu \phi, D_2^{*-} \to \pi^- \bar{D}^{*0}, D^- \to e^- \bar{\nu}_e \pi^- K^+ \gamma^{gFSR}, \phi \to K^+ K^-, \bar{D}^{*0} \to \bar{D}^0 \gamma, \\ \bar{D}^0 \to K^+ a^-, a^- \to \rho^0 \pi^-, \rho^0 \to \pi^+ \pi^-$	132	131	1	0	1	133
	$(e^+e^- ightarrow e^+e^- u_ear{ u}_e\mu^+ u_\mu\pi^+\pi^-\pi^-\pi^-K^+K^+K^+K^-\gamma^{gFSR}\gamma\gamma\gamma)$						
	$e^+e^- \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^0\bar{B}^0, B^0 \rightarrow \pi^+\pi^-\rho^+\bar{D}^{*-}, \bar{B}^0 \rightarrow D_2^{*+}D_s^-, \rho^+ \rightarrow \pi^0\pi^+\gamma^{gFSR},$						
	$\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D_{2}^{*+} \to \pi^{+}D^{0}, D_{s}^{-} \to \tau^{-}\bar{\nu}_{\tau}, \bar{D}^{0} \to \pi^{0}K_{L}\pi^{+}\pi^{-}, D^{0} \to \rho^{+}K^{*-},$						
134	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	133	132	1	0	1	134
	$(e^{+}e^{-} \rightarrow \nu_{\tau}\bar{\nu}_{\tau}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{g\gamma\gamma\gamma\gamma\gamma\gamma})$						
	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\omega K^{+}D_{s}^{*-}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-},$						
4.55	$D_s^{*-} \to D_s^{-} \gamma, D^{*+} \to \pi^+ D^0, D_s^{-} \to \rho^- \eta', D^0 \to \pi^+ \pi^+ \pi^- K^-, \rho^- \to \pi^0 \pi^-,$	10.	100			_	
135	$n' \rightarrow \rho^0 \gamma_{\cdot} \rho^0 \rightarrow \pi^+ \pi^-$	134	133	1	0	1	135
	$\frac{(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D_{s}^{*+}D_{1}^{'-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D_{s}^{*+}, D_{s}^{*+} \to D_{s}^{+}\gamma,}$						
	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to D_s^{*+}D_1^{'-}, \bar{B}^0 \to \rho^0\pi^-D^{*+}, D_s^{*+} \to D_s^+\gamma,$						
136	$D_1^{\prime -} \to \pi^- D^{*0}, \rho^0 \to \pi^+ \pi^-, D^{*+} \to \pi^+ D^0, D_s^+ \to K_L \pi^+ \pi^- K^+, D^{*0} \to D^0 \gamma,$	135	134	1	0	1	136
130	$D^0 \to K^- a_1^+, \bar{D}^0 \to \pi^0 \pi^+ \pi^- K^*, a_1^+ \to \pi^+ f_0(600), K^* \to \pi^- K^+$	133	104	1	0	1	130
	$(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma)$						
137	$e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0\bar{B}^0, B^0 \to \rho^0\pi^-\rho^+\rho^+K^0D^-, \bar{B}^0 \to \pi^0\rho^0\pi^-\eta\omega D^+, \rho^0 \to \pi^+\pi^-,$	136	135	1	0	1	137
	$e^{+}e^{-} \rightarrow 1 (4S), 1 (4S) \rightarrow B^{*}B^{*}, B^{*} \rightarrow \rho \pi^{-} \rho^{+} K^{+}D^{-}, B^{*} \rightarrow \pi^{+} \rho^{+} \pi^{-} \eta \omega D^{+}, \rho^{-} \rightarrow \pi^{+} \pi^{-}, \rho^{+} \rightarrow \pi^{0} \pi^{+}, \kappa^{0} \rightarrow K_{S}, D^{-} \rightarrow K_{L} \pi^{+} \pi^{-} K^{-}, \pi^{0} \rightarrow e^{+} e^{-} \gamma^{gFSR},$	1					
	$\rho^0 \to \pi^+\pi^-, \eta \to \pi^+\pi^-, K_S, D \to K_L\pi^+\pi^-, K_S, \pi^- \to e^+e^-\gamma^-,$ $\rho^0 \to \pi^+\pi^-, \eta \to \pi^+\pi^-\gamma^{gFSR}, \omega \to \pi^0\pi^+\pi^-, D^+ \to K_L a_1^+, K_S \to \pi^+\pi^-,$						
	$ ho \rightarrow \pi \pi , \eta \rightarrow \pi \pi \gamma , \omega \rightarrow \pi \pi , D \rightarrow KLa_1 , KS \rightarrow \pi \pi , a_1^+ \rightarrow \pi^0 \rho^+ , \rho^+ \rightarrow \pi^0 \pi^+$						
	$(e^{+}e^{-} \to e^{+}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	7777)					
		1111)					
	$e^+e^- o \Upsilon(4S), \Upsilon(4S) o B^0 \bar{B}^0, B^0 o \pi^0 \pi^0 K^+ D_s^{*-}, \bar{B}^0 o D^{*0} n \bar{n}, D_s^{*-} o D_s^{*-} \gamma,$						
138	$D^{*0} \to \pi^0 D^0, D_s^- \to ho^- \eta', D^0 \to \pi^+ K^-, ho^- \to \pi^0 \pi^-, \eta' \to ho^0 \gamma, \ ho^0 \to \pi^+ \pi^-$	137	136	1	0	1	138
	$\rho \to \pi^+ \pi^- $ $(e^+e^- \to \pi^+\pi^+\pi^-\pi^- K^+ K^- n \bar{n} \circ \circ$						
	$\frac{(e^+e^- \to \pi^+\pi^+\pi^-\pi^-K^+K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)}{e^+e^- \to \Upsilon(4S), \Upsilon(4S) \to B^0B^0, B^0 \to K^+\Delta^+\bar{\Sigma}_c^{*}, B^0 \to e^+\nu_e D^-\gamma^{gFSR}, \Delta^+ \to \pi^0 p,}$						
139	$\begin{array}{c} E & \stackrel{\leftarrow}{\leftarrow} & \Gamma(4S), \Gamma(4S) \stackrel{\rightarrow}{\rightarrow} B & \stackrel{\rightarrow}{\rightarrow} B & \stackrel{\rightarrow}{\rightarrow} K & \stackrel{\rightarrow}{\Delta} Z_c & \stackrel{\rightarrow}{\rightarrow} B & \stackrel{\rightarrow}{\rightarrow} E & \stackrel{\rightarrow}{\nu_e} D & \stackrel{\rightarrow}{\gamma} & \stackrel{\rightarrow}{\rightarrow} K & \stackrel{\rightarrow}{p}, \\ & & \stackrel{\rightarrow}{\Sigma}_c^* - \stackrel{\rightarrow}{\rightarrow} \pi^- \bar{\Lambda}_c^-, D^- \stackrel{\rightarrow}{\rightarrow} K_L \pi^+ \pi^- K^-, \bar{\Lambda}_c^- \rightarrow \pi^0 \pi^- \bar{\Delta}^0, \bar{\Delta}^0 \rightarrow \pi^+ \bar{p} \end{array}$	138	137	1	0	1	139
100	$(e^+e^- \to e^+\nu_e K_L\pi^+\pi^+\pi^-\pi^-K^+K^-p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma)$	100	101			_	100
	(c c / c resign						

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
140	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\rho^{+}\rho^{-}\eta\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\bar{K}^{0}K^{*}K^{+}K^{*-}, \rho^{+} \to \rho^{+} \to \pi^{0}\pi^{+}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{-}K^{+}, K^{*-} \to \pi^{-}\bar{K}^{0}, D^{-} \to e^{-}\bar{\nu}_{e}K^{*}, K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, K^{*} \to \pi^{-}K^{+}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR} (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$		138	1	0	1	140
141	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}\bar{D}^{*-}\gamma^{gFSR}\gamma^{gFSR}, \bar{B}^{0} \rightarrow \pi^{0}\rho^{0}\pi^{-}D^{+}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$ $\rho^{0} \rightarrow \pi^{+}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}, D^{+} \rightarrow \pi^{0}\pi^{+}\bar{K}^{*}, \bar{D}^{0} \rightarrow e^{-}\bar{\nu}_{e}K^{+}\gamma^{gFSR}, \bar{K}^{*} \rightarrow \pi^{0}\bar{K}^{0}, \bar{K}^{0} \rightarrow K_{S},$ $K_{S} \rightarrow \pi^{+}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR$	140	139	1	0	1	141
142	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to D^{-}D_{s}^{*+}\gamma, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, D^{-} \to \pi^{0}\pi^{-}K^{+}K^{-},$ $D_{s}^{*+} \to D_{s}^{+}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, D_{s}^{+} \to \bar{K}^{*}K^{*+}, \bar{K}^{*} \to \pi^{+}K^{-},$ $\bar{K}^{*} \to \pi^{+}K^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}Y^{\gamma}\gamma\gamma\gamma\gamma\gamma)$	141	140	1	0	1	142
143	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}n\bar{\Sigma}_{c}^{-}, \bar{B}^{0} \to D^{*+}D_{s1}^{'-}, \rho^{+} \to \pi^{0}\pi^{+},$ $\bar{\Sigma}_{c}^{-} \to \pi^{0}\bar{\Lambda}_{c}^{-}, D^{*+} \to \pi^{+}D^{0}, D_{s1}^{'-} \to \pi^{0}D_{s}^{*-}, \bar{\Lambda}_{c}^{-} \to \bar{K}^{*}\bar{\Sigma}^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-},$ $D_{s}^{*-} \to D_{s}^{-}\gamma, \bar{K}^{*} \to \pi^{+}K^{-}, \bar{\Sigma}^{-} \to \pi^{-}\bar{n}, D_{s}^{-} \to K^{*}K^{-}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	142	141	1	0	1	143
144	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \bar{K}^{*}K^{-}D^{*+}\gamma^{gFSR}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{+}\gamma^{gFSR}\gamma^{gFSR}, \bar{K}^{*} \to \pi^{+}D^{*+} \to \pi^{0}D^{+}, D^{+} \to K_{S}K^{*+}, D^{+} \to \pi^{0}\pi^{0}\pi^{+}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	K^{-143} ,	142	1	0	1	144
145	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\omega\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}\pi^{0}, \bar{D}^{0} \to \pi^{0}, \bar{D}^{$	144	143	1	0	1	145
146	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}K^{0}\bar{K}^{*}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}K^{-}D^{-}D^{*+}, K^{0} \to K_{L},$ $\bar{K}^{*} \to \pi^{+}K^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{-} \to K_{S}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to K_{S}\eta',$ $K_{S} \to \pi^{+}\pi^{-}, a_{1}^{-} \to \rho^{0}\pi^{-}, D^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR}, K_{S} \to \pi^{+}\pi^{-}, \eta' \to \rho^{0}\gamma,$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	145	144	1	0	1	146
147	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}D_{2}^{*+}, \bar{B}^{0} \to \rho^{0}\pi^{+}K^{*-}\eta_{c}, \rho^{-} \to \pi^{0}\pi^{-},$ $D_{2}^{*+} \to \pi^{+}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}, K^{*-} \to \pi^{-}\bar{K}^{0}, \eta_{c} \to \pi^{0}\pi^{+}\pi^{-}\omega, D^{0} \to \pi^{+}\omega K^{-},$ $\bar{K}^{0} \to K_{L}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	146	145	1	0	1	147
148	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\pi^{+}\rho^{-}D^{-}, \bar{B}^{0} \to D_{s}^{*-}D_{1}^{+}, \rho^{0} \to \pi^{+}\pi^{-},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, D_{s}^{*-} \to D_{s}^{-}\gamma, D_{1}^{+} \to \pi^{+}D^{*0}, K^{0} \to K_{S},$ $D_{s}^{-} \to \pi^{+}\pi^{-}K_{S}K^{-}, D^{*0} \to D^{0}\gamma, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{+}\omega K^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}$	147	146	1	0	1	148
	$(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$						

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
149	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}D^{-}, \bar{B}^{0} \to \pi^{+}\pi^{-}\pi^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-},$ $D^{-} \to \pi^{-}K_{1}^{'0}, D^{+} \to K_{S}a_{1}^{+}, K_{1}^{'0} \to \pi^{-}K^{*+}, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \pi^{0}\rho^{+},$ $K^{*+} \to \pi^{0}K^{+}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	148	147	1	0	1	149
150	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}D_{0}^{*-}, \bar{B}^{0} \to \pi^{0}\omega K^{*}K^{-}D^{+}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau},$ $D_{0}^{*-} \to \pi^{-}\bar{D}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K^{*} \to \pi^{0}K^{0}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}\gamma^{gFSR},$ $K^{0} \to K_{L}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	149	148	1	0	1	150
151	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to e^{+}\nu_{e}\pi^{+}\pi^{-}D^{*-}, B^{0} \to e^{-}\bar{\nu}_{e}D^{*+}\gamma^{gFSR}, D^{*-} \to \pi^{-}D^{0},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{-}K^{+}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma)$	150	149	1	0	1	151
152	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{0}\bar{D}^{*-}\bar{\Sigma}^{0}\Sigma^{+}, \bar{B}^{0} \rightarrow \eta \bar{K}^{0}J/\psi, \rho^{0} \rightarrow \pi^{+}\pi^{-},$ $\bar{D}^{*-} \rightarrow \pi^{0}D^{-}, \bar{\Sigma}^{0} \rightarrow \bar{\Lambda}\gamma, \Sigma^{+} \rightarrow \pi^{+}n, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, \bar{K}^{0} \rightarrow K_{L},$ $J/\psi \rightarrow \pi^{-}\eta K_{S}K^{+}, D^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}K^{0}, \bar{\Lambda} \rightarrow \pi^{+}\bar{p}, K_{L} \rightarrow e^{-}\nu_{e}\pi^{+}\gamma^{gFSR}, \eta \rightarrow \pi^{0}\pi^{+}\pi^{-},$ $K_{S} \rightarrow \pi^{+}\pi^{-}, K^{0} \rightarrow K_{S}, K_{S} \rightarrow \pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{-}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma^{gFSR}\gamma$	151	150	1	0	1	152
153	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\rho^{0}\rho^{0}\rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \rho^{0} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to D^{+}\gamma, \\ \bar{D}^{0} \to \rho^{-}K^{*+}, D^{+} \to K_{S}K^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+}, K_{S} \to \pi^{+}\pi^{-}, \\ K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{L}, K_{L} \to \mu^{-}\nu_{\mu}\pi^{+} \\ (e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma) \\ e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}D^{-}, \bar{B}^{0} \to \pi^{+}K^{-}\chi_{c1}, K^{*+} \to \pi^{0}K^{+},$	152	151	1	0	1	153
154	$D^{-} \to \pi^{-} K_{1}^{'0} \gamma^{gFSR}, \chi_{c1} \to \pi^{-} \eta \eta \bar{K}^{0} K^{+}, K_{1}^{'0} \to \pi^{-} K^{*+}, \eta \to \gamma \gamma, \eta \to \pi^{0} \pi^{0} \pi^{0}, \\ \bar{K}^{0} \to K_{S}, K^{*+} \to \pi^{0} K^{+}, K_{S} \to \pi^{+} \pi^{-} \\ (e^{+}e^{-} \to \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} K^{+} K^{+} K^{+} K^{-} \gamma^{gFSR} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	153	152	1	0	1	154
155	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*+}D^{-}D^{0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D_{2}^{*+}\gamma^{gFSR}, K^{*+} \to \pi^{0}K^{+},$ $D^{-} \to \pi^{0}\pi^{-}K_{S}, D^{0} \to \pi^{0}\pi^{0}\pi^{+}\pi^{-}, D_{2}^{*+} \to \pi^{+}D^{0}, K_{S} \to \pi^{+}\pi^{-}, D^{0} \to \pi^{0}\pi^{+}K^{*-},$ $K^{*-} \to \pi^{0}K^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}D^{-}, \bar{B}^{0} \to \pi^{-}\pi^{-}\rho^{+}D^{*+}\gamma^{gFSR}, \rho^{+} \to \pi^{0}\pi^{+},$	154	153	1	0	1	155
156	$D^{-} \to \rho^{-}K^{*}, \rho^{+} \to \pi^{0}\pi^{+}, D^{*+} \to \pi^{+}D^{0}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*} \to \pi^{-}K^{+},$ $D^{0} \to \pi^{0}\pi^{0}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	155	154	1	0	1	156
157	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\rho^{0}\rho^{-}\bar{D}^{*+}\gamma, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}\rho^{-}\gamma^{gFSR}\gamma^{gFSR},$ $\rho^{-} \to \pi^{0}\pi^{-}$ $(e^{+}e^{-} \to e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	156	155	1	0	1	157

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
158	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{+}\bar{D}^{*-}, B^{0} \to \pi^{0}\rho^{0}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\eta\omega D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{-}K^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	157	156	1	0	1	158
159	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{0}D^{+}\bar{D}^{*0}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{+}, K^{0} \to K_{S},$ $D^{+} \to K_{S}a_{1}^{+}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-},$ $a_{1}^{+} \to \pi^{+}f_{0}(600), \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}\gamma^{gFSR}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, \bar{K}^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR},$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma})$	158	157	1	0	1	159
160	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, D_{1}^{-} \to \pi^{-}\bar{D}^{*0},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{+} \to e^{+}\nu_{e}\pi^{0}, \bar{D}^{0} \to \pi^{0}K_{S}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	159	158	1	0	1	160
161	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{K}^{0}K^{+}D^{-}, \bar{B}^{0} \to \rho^{0}\pi^{-}D^{*+}, \bar{K}^{0} \to K_{L},$ $D^{-} \to K^{*}a_{1}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K^{*} \to \pi^{-}K^{+}, a_{1}^{-} \to \pi^{-}f_{0}(600),$ $D^{0} \to \pi^{+}\omega K^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}f_{0}(600)\gamma\gamma)$	160	159	1	0	1	161
162	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{-}\omega D^{+}, D^{*+} \to \pi^{+}D^{0},$ $D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta, \omega \to \pi^{+}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{*}, D^{0} \to \pi^{0}\pi^{+}K^{-}, \eta \to \pi^{0}\pi^{0}\pi^{0},$ $\bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	161	160	1	0	1	162
163	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{*+}D_{s}^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \\ \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{*+} \to \pi^{0}D^{+}, D_{s}^{-} \to \mu^{-}\bar{\nu}_{\mu}\eta', \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S}, D^{+} \to \pi^{+}\pi^{+}K^{-}, \\ \eta' \to \rho^{0}\gamma, K_{S} \to \pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$	162	161	1	0	1	163
164	$(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	163	162	1	0	1	164
165	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\eta\omega\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\rho^{-}\omega D^{*+}, \rho^{0} \to \pi^{+}\pi^{-}, $ $\eta \to \pi^{0}\pi^{+}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, $ $D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D^{0} \to e^{+}\nu_{e}K^{*-}\gamma^{gFSR}\gamma^{gFSR}, K^{*-} \to \pi^{-}\bar{K}^{0}, \bar{K}^{0} \to K_{S}, $ $K_{S} \to \pi^{+}\pi^{-} $ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma$	164	163	1	0	1	165
166	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}\bar{\Delta}^{-}\Delta^{0}, \bar{B}^{0} \to \rho^{-}D^{+}, \bar{D}^{*-} \to \pi^{0}D^{-}, \\ \bar{\Delta}^{-} \to \pi^{+}\bar{n}, \Delta^{0} \to \pi^{0}n, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, \\ K^{0} \to K_{L} \\ (e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma)$	165	164	1	0	1	166

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
167	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{-}p\bar{\Sigma}_{c}^{0}, \bar{B}^{0} \rightarrow \tau^{-}\bar{\nu}_{\tau}D^{*+}, \rho^{-} \rightarrow \pi^{0}\pi^{-},$ $\bar{\Sigma}_{c}^{0} \rightarrow \pi^{+}\bar{\Lambda}_{c}^{-}, \tau^{-} \rightarrow \nu_{\tau}\pi^{0}\pi^{-}\gamma^{gFSR}, D^{*+} \rightarrow \pi^{+}D^{0}, \bar{\Lambda}_{c}^{-} \rightarrow \pi^{-}\eta\bar{\Lambda}, D^{0} \rightarrow K_{S}\phi,$ $\eta \rightarrow e^{+}e^{-}\gamma^{gFSR}\gamma^{gFSR}, \bar{\Lambda} \rightarrow \pi^{0}\bar{n}, K_{S} \rightarrow \pi^{+}\pi^{-}, \phi \rightarrow K^{+}K^{-}$ $(e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma})$	166	165	1	0	1	167
168	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{+}K^{*-}J/\psi, \bar{B}^{0} \to \bar{K}^{0}D^{*0}\bar{D}^{*0}, K^{*-} \to \pi^{-}\bar{K}^{0},$ $J/\psi \to K^{*}\bar{K}^{*}\gamma, \bar{K}^{0} \to K_{L}, D^{*0} \to D^{0}\gamma, \bar{D}^{*0} \to \bar{D}^{0}\gamma, \bar{K}^{0} \to K_{L},$ $K^{*} \to \pi^{-}K^{+}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{0} \to \pi^{0}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K^{*}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	167	166	1	0	1	168
169	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{-}K^{*+}D^{0}\bar{D}^{*0}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\pi^{-}D^{*+}, K^{*+} \to \pi^{+}K^{0},$ $D^{0} \to K^{-}a_{1}^{+}, \bar{D}^{*0} \to \pi^{0}\bar{D}^{0}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{S}, a_{1}^{+} \to \pi^{+}\pi^{+}\pi^{-},$ $\bar{D}^{0} \to \rho^{-}K^{*+}, D^{0} \to \pi^{+}K^{-}\gamma^{gFSR}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma})$	168	167	1	0	1	169
170	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}D^{-}, B^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\eta K^{+}K^{+}D_{s}^{*-}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}$ $\eta \to \pi^{0}\pi^{+}\pi^{-}, D_{s}^{*-} \to D_{s}^{-}\gamma, K^{0} \to K_{L}, D_{s}^{-} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma)$	$K^{0},$	168	1	0	1	170
171	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \pi^{0}\bar{K}^{0}D^{-}\Delta^{0}\bar{\Sigma}^{+}, B^{0} \to \pi^{0}\pi^{+}\pi^{+}\pi^{-}\rho^{-}\bar{D}^{0}, \bar{K}^{0} \to K_{L},$ $D^{-} \to \pi^{0}\pi^{-}K_{S}, \Delta^{0} \to \pi^{0}n, \bar{\Sigma}^{+} \to \pi^{+}\bar{n}, \rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to \pi^{-}\rho^{+},$ $K_{S} \to \pi^{0}\pi^{0}, \rho^{+} \to \pi^{0}\pi^{+}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	170	169	1	0	1	171
172	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{+}\rho^{-}\rho^{-}\omega D^{*+}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $\rho^{-} \to \pi^{0}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{*+} \to \pi^{0}D^{+}, \bar{D}^{0} \to \pi^{0}\pi^{+}\pi^{-}K_{S},$ $D^{+} \to K_{S}K^{*+}, K_{S} \to \pi^{+}\pi^{-}, K_{S} \to \pi^{0}\pi^{0}, K^{*+} \to \pi^{0}K^{+}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	171	170	1	0	1	172
173	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D'_{s1}^{+}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{+}K^{-}D^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$ $D'_{s1}^{+} \to \pi^{0}D_{s}^{*+}, D^{-} \to K_{S}K^{*-}, \bar{D}^{0} \to \omega K_{S}, D_{s}^{*+} \to D_{s}^{+}\gamma, K_{S} \to \pi^{0}\pi^{0},$ $K^{*-} \to \pi^{-}\bar{K}^{0}, \omega \to \pi^{0}\pi^{+}\pi^{-}, K_{S} \to \pi^{+}\pi^{-}, D_{s}^{+} \to \rho^{+}\phi, \bar{K}^{0} \to K_{S},$ $\rho^{+} \to \pi^{0}\pi^{+}, \phi \to K^{+}K^{-}, K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	172	171	1	0	1	173
174	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to K^{*}D^{-}D^{*+}, \bar{B}^{0} \to \rho^{0}\rho^{-}\eta D^{*+}, K^{*} \to \pi^{-}K^{+}\gamma^{gFSR},$ $D^{-} \to \mu^{-}\bar{\nu}_{\mu}K^{0}, D^{*+} \to \pi^{+}D^{0}, \rho^{0} \to \pi^{+}\pi^{-}\gamma^{gFSR}, \rho^{-} \to \pi^{0}\pi^{-}, \eta \to \pi^{0}\pi^{+}\pi^{-},$ $D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{S}, D^{0} \to K^{-}a_{1}^{+}, D^{0} \to \pi^{0}\rho^{+}K^{-}, K_{S} \to \pi^{+}\pi^{-},$ $a_{1}^{+} \to \pi^{0}\rho^{+}, \rho^{+} \to \pi^{0}\pi^{+}, \rho^{+} \to \pi^{0}\pi^{+},$ $(e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	173	172	1	0	1	174
175	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \rho^{-}\omega D^{+}\gamma, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{+}K^{0}K^{0}K^{-}K^{-}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-}, \\ \omega \to \pi^{0}\pi^{+}\pi^{-}, D^{+} \to \pi^{0}\pi^{+}\bar{K}^{*}, K^{0} \to K_{L}, K^{0} \to K_{L}, D^{*+} \to \pi^{+}D^{0}, \\ \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}, D^{0} \to \pi^{+}\pi^{+}\pi^{-}\pi^{-} \\ (e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	174	173	1	0	1	175

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
176	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \tau^{+}\nu_{\tau}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\bar{n}\Sigma_{c}^{0}, \tau^{+} \to \bar{\nu}_{\tau}\pi^{0}\pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \Sigma_{c}^{0} \to \pi^{-}\Lambda_{c}^{+}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \Lambda_{c}^{+} \to \pi^{0}\pi^{+}K^{-}p$ $(e^{+}e^{-} \to \nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	175	174	1	0	1	176
177	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{-}D^{-}\bar{\Delta}^{0}\Delta^{++}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}, \rho^{-} \to \pi^{0}\pi^{-},$ $D^{-} \to K_{L}K_{L}K^{-}, \bar{\Delta}^{0} \to \pi^{0}\bar{n}, \Delta^{++} \to \pi^{+}p, D^{*+} \to \pi^{0}D^{+}, D^{+} \to K_{L}\pi^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{-}\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma)$	176	175	1	0	1	177
178	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}D^{-}\bar{n}p, \bar{B}^{0} \to \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}K^{*-}\bar{D}^{*0}, D^{-} \to K_{L}a_{1}^{-},$ $K^{*-} \to \pi^{0}K^{-}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, a_{1}^{-} \to \pi^{0}\rho^{-}, \bar{D}^{0} \to K_{L}K^{+}K^{-}, \rho^{-} \to \pi^{0}\pi^{-},$ $K_{L} \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to K_{L}\pi^{+}\pi^{-}K^{+}K^{-}K^{-}\bar{n}p\gamma)$	177	176	1	0	1	178
179	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \bar{B}^{0} \to D^{+}\Delta^{-}\bar{n}, D^{*+} \to \pi^{0}D^{+},$ $D^{+} \to \pi^{+}\pi^{+}K^{-}, \Delta^{-} \to \pi^{-}n, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, \bar{K}^{*} \to \pi^{+}K^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}n\bar{n}\gamma\gamma)$	178	177	1	0	1	179
180	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\bar{D}^{0}\bar{D}_{s}^{*-}, \bar{D}^{*-} \to \pi^{0}\bar{D}^{-},$ $D^{0} \to e^{+}\nu_{e}K^{*-}, D_{s}^{*-} \to D_{s}^{-}\gamma, D^{-} \to \pi^{0}\pi^{-}K_{S}, K^{*-} \to \pi^{-}\bar{K}^{0}, D_{s}^{-} \to \pi^{-}\eta,$ $K_{S} \to \pi^{+}\pi^{-}, \bar{K}^{0} \to K_{S}, \eta \to \gamma\gamma, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	179	178	1	0	1	180
181	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}X_{u}^{-}, \bar{B}^{0} \to K^{*}\Lambda \Xi_{c}^{*0}, X_{u}^{-} \to \pi^{0}\rho^{-},$ $\bar{K}^{*} \to \pi^{+}K^{-}, \bar{\Lambda} \to \pi^{+}\bar{p}, \Xi_{c}^{*0} \to \Xi_{c}^{0}\gamma, \rho^{-} \to \pi^{0}\pi^{-}, \Xi_{c}^{0} \to \pi^{+}K^{*-}\Sigma^{0},$ $K^{*-} \to \pi^{-}\bar{K}^{0}, \Sigma^{0} \to \Lambda\gamma, \bar{K}^{0} \to K_{S}, \Lambda \to \pi^{-}p, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma)$	180	179	1	0	1	181
182	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, \bar{B}^{0} \to \pi^{0}\rho^{0}\pi^{+}\omega\bar{D}^{*-}\gamma^{gFSR}, \bar{B}^{0} \to \pi^{+}\pi^{-}\rho^{-}D^{+}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{-} \to \pi^{0}\pi^{-}, D^{+} \to \mu^{+}\nu_{\mu}\pi^{+}K^{-}, \bar{D}^{0} \to \pi^{-}\omega K^{+}, \\ \omega \to \pi^{0}\pi^{+}\pi^{-}\gamma^{gFSR} \\ (e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	181	180	1	0	1	182
183	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to \bar{B}^{0}\bar{B}^{0}, \bar{B}^{0} \to D^{*+}D'_{s1}, \bar{B}^{0} \to \pi^{-}\eta D^{*+}, D^{*+} \to \pi^{0}D^{+},$ $D'_{s1}^{-} \to \pi^{0}D^{*-}_{s}, \eta \to \pi^{0}\pi^{0}\pi^{0}, D^{*+} \to \pi^{+}D^{0}, D^{+} \to e^{+}\nu_{e}\bar{K}^{*}, D^{*-}_{s} \to D^{-}_{s}\gamma,$ $D^{0} \to K_{L}\pi^{+}\pi^{-}, \bar{K}^{*} \to \pi^{+}K^{-}, D^{-}_{s} \to K^{*}K^{-}, K^{*} \to \pi^{0}K^{0}, K^{0} \to K_{S},$ $K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	182	181	1	0	1	183
184	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{1}^{\prime-}, \bar{B}^{0} \to \pi^{0}\pi^{+}\pi^{-}\rho^{-}D^{*+}, D_{1}^{\prime-} \to \pi^{0}\bar{D}^{*-},$ $\rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K_{S}\eta', \bar{D}^{0} \to \pi^{-}K^{+},$ $K_{S} \to \pi^{0}\pi^{0}, \eta' \to \pi^{0}\pi^{0}\eta, \eta \to \gamma\gamma$ $(e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	183	182	1	0	1	184
185	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow \mu^{+}\nu_{\mu}\bar{D}^{*-}, B^{0} \rightarrow \pi^{0}\omega D^{-}\Delta^{-}\Delta^{0}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0},$ $\omega \rightarrow \pi^{0}\pi^{+}\pi^{-}, D^{-} \rightarrow e^{-}\bar{\nu}_{e}K^{0}, \bar{\Delta}^{-} \rightarrow \pi^{+}\bar{n}, \Delta^{0} \rightarrow \pi^{0}n, \bar{D}^{0} \rightarrow \pi^{0}K_{S},$ $K^{0} \rightarrow K_{S}, K_{S} \rightarrow \pi^{0}\pi^{0}, K_{S} \rightarrow \pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	184	183	1	0	1	185

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
186	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}\bar{D}^{*-}, \bar{B}^{0} \to \omega\bar{K}^{0}K^{*}\bar{K}^{*}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{K}^{0} \to K_{L}, K^{*} \to \pi^{-}K^{+}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, D^{-} \to \pi^{0}\pi^{-}K^{*},$ $\bar{K}^{0} \to K_{L}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	185	184	1	0	1	186
187	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \mu^{+}\nu_{\mu}D_{2}^{*-}\gamma^{gFSR}\gamma^{gFSR}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, D_{2}^{*-} \to \pi^{-}\bar{D}^{*0},$ $D^{*+} \to \pi^{0}D^{+}, \bar{D}^{*0} \to \bar{D}^{0}\gamma, D^{+} \to \mu^{+}\nu_{\mu}\bar{K}^{0}, \bar{D}^{0} \to \rho^{-}K^{*+}, \bar{K}^{0} \to K_{L},$ $\rho^{-} \to \pi^{0}\pi^{-}, K^{*+} \to \pi^{+}K^{0}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}\gamma^{gFSR},$ $(e^{+}e^{-} \to \mu^{+}\mu^{+}\mu^{-}\nu_{\mu}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma}\gamma\gamma)$	186	185	1	0	1	187
188	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{-}\rho^{+}\rho^{-}\bar{D}^{0}, \bar{B}^{0} \to \mu^{-}\bar{\nu}_{\mu}D^{*+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\rho^{-} \to \pi^{0}\pi^{-}, \bar{D}^{0} \to K^{+}a_{1}^{-}, D^{*+} \to \pi^{+}D^{0}, a_{1}^{-} \to \rho^{0}\pi^{-}, D^{0} \to e^{+}\nu_{e}\pi^{0}K^{-}\gamma^{gFSR},$ $\rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \bar{D}^{*-}D'_{s1}^{*+}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}D^{*+}_{2}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0},$	187	186	1	0	1	188
189	$D_{s1}^{\prime+} \to \pi^{0} D_{s}^{*+}, D_{2}^{*+} \to \pi^{+} D^{*0}, \bar{D}^{0} \to \pi^{0} \pi^{-} K^{+}, D_{s}^{*+} \to D_{s}^{+} \gamma, D^{*0} \to \pi^{0} D^{0},$ $D_{s}^{+} \to \bar{K}^{*} K^{*+}, D^{0} \to K_{L} \eta', \bar{K}^{*} \to \pi^{+} K^{-}, K^{*+} \to \pi^{+} K^{0}, \eta' \to \pi^{+} \pi^{-} \eta,$ $K^{0} \to K_{L}, \eta \to \gamma \gamma$ $(e^{+} e^{-} \to e^{-} \bar{\nu}_{e} K_{L} K_{L} \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} K^{+} K^{-} \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	188	187	1	0	1	189
190	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow \rho^{+}\eta\eta\bar{D}^{*-}, \bar{B}^{0} \rightarrow \pi^{0}\pi^{+}\eta K^{*-}, \rho^{+} \rightarrow \pi^{0}\pi^{+},$ $\eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, \eta \rightarrow \pi^{0}\pi^{0}, \bar{D}^{*-} \rightarrow \pi^{-}\bar{D}^{0}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}, K^{*-} \rightarrow \pi^{0}K^{-},$ $\bar{D}^{0} \rightarrow \pi^{+}\pi^{-}K^{*}, K^{*} \rightarrow \pi^{0}K^{0}, K^{0} \rightarrow K_{L}$ $(e^{+}e^{-} \rightarrow K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma$	189	188	1	0	1	190
191	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\Delta^{+}\bar{\Sigma}_{c}^{*-}, \bar{B}^{0} \to \rho^{0}\pi^{-}\pi^{-}\rho^{+}\bar{K}^{*}D^{*+}, \Delta^{+} \to \pi^{0}p,$ $\bar{\Sigma}_{c}^{*} \to \pi^{-}\bar{\Lambda}_{c}^{-}, \rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \bar{K}^{*} \to \pi^{0}\bar{K}^{0}, D^{*+} \to \pi^{+}D^{0},$ $\bar{\Lambda}_{c}^{-} \to K^{+}\bar{\Delta}^{++}, \bar{K}^{0} \to K_{L}, D^{0} \to e^{+}\nu_{e}\pi^{-}\bar{K}^{0}\gamma^{gFSR}, \bar{\Delta}^{++} \to \pi^{-}\bar{p}, \bar{K}^{0} \to K_{S},$ $K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$	190	189	1	0	1	191
192	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}, \bar{B}^{0} \to \rho^{0}\rho^{-}D^{*+}, D^{-} \to e^{-}\bar{\nu}_{e}K^{0},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{-} \to \pi^{0}\pi^{-}, D^{*+} \to \pi^{+}D^{0}, K^{0} \to K_{L}, D^{0} \to \pi^{+}\eta K^{-},$ $\eta \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	191	190	1	0	1	192
193	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{+}\bar{D}^{*-}, \bar{B}^{0} \to \rho^{0}\pi^{-}K^{0}\bar{K}^{*}D^{+}, \rho^{+} \to \pi^{0}\pi^{+},$ $\bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, \rho^{0} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, \bar{K}^{*} \to \pi^{+}K^{-}\gamma^{gFSR}, D^{+} \to K_{L}a_{1}^{+},$ $\bar{D}^{0} \to \pi^{0}K_{L}\eta, K_{S} \to \pi^{+}\pi^{-}, a_{1}^{+} \to \rho^{0}\pi^{+}, \eta \to \pi^{0}\pi^{+}\pi^{-}, \rho^{0} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma)$	192	191	1	0	1	193
194	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to e^{+}\nu_{e}D^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}, \bar{B}^{0} \to K^{*-}D^{*+}K^{*-} \to \pi^{-}\bar{K}^{0}, D^{*+} \to \pi^{+}D^{0}, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, K^{*} \to \pi^{-}K^{+}, \bar{K}^{0} \to K_{L}, D^{0} \to \pi^{+}\pi^{-}, K_{L} \to \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR$		192 K*K ⁻ ,	1	0	1	194

index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
195	$e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}\bar{B}^{0}, B^{0} \rightarrow J/\psi K_{1}^{0}, \bar{B}^{0} \rightarrow \pi^{0}D^{+}D_{s}^{*-}, J/\psi \rightarrow \pi^{0}\eta\eta,$ $K_{1}^{0} \rightarrow \pi^{+}\pi^{-}K^{0}, D^{+} \rightarrow e^{+}\nu_{e}\bar{K}^{0}\gamma^{gFSR}, D_{s}^{*-} \rightarrow D_{s}^{-}\gamma, \eta \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma,$ $K^{0} \rightarrow K_{S}, \bar{K}^{0} \rightarrow K_{S}, D_{s}^{-} \rightarrow \rho^{-}\eta, K_{S} \rightarrow \pi^{0}\pi^{0}, K_{S} \rightarrow \pi^{+}\pi^{-},$ $\rho^{-} \rightarrow \pi^{0}\pi^{-}, \eta \rightarrow \pi^{0}\pi^{0}\pi^{0}$ $(e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$ $e^{+}e^{-} \rightarrow \Upsilon(4S), \Upsilon(4S) \rightarrow B^{0}B^{0}, B^{0} \rightarrow K^{*}D^{+}D^{-}, B^{0} \rightarrow \bar{D}^{*-}\bar{\Delta}^{-}\Delta^{0}, K^{*} \rightarrow \pi^{0}K^{0},$	194	193	1	0	1	195
196	$D^{+} \to \pi^{+} \bar{K}_{1}^{'0}, D^{-} \to e^{-} \bar{\nu}_{e} K_{2}^{*0}, \bar{D}^{*-} \to \pi^{-} \bar{D}^{0}, \bar{\Delta}^{-} \to \pi^{+} \bar{n}, \Delta^{0} \to \pi^{0} n,$ $K^{0} \to K_{L}, \bar{K}_{1}^{'0} \to \pi^{+} K^{*-}, K_{2}^{*0} \to \pi^{0} K^{0}, \bar{D}^{0} \to e^{-} \bar{\nu}_{e} \pi^{+} K^{0} \gamma^{gFSR}, K^{*-} \to \pi^{0} K^{-},$ $K^{0} \to K_{S}, K^{0} \to K_{L}, K_{S} \to \pi^{+} \pi^{-}$ $(e^{+}e^{-} \to e^{-} e^{-} \bar{\nu}_{e} \bar{\nu}_{e} K_{L} K_{L} \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} K^{-} n \bar{n} \gamma^{gFSR} \gamma \gamma \gamma \gamma \gamma \gamma \gamma)$	195	194	1	0	1	196
197	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{0}\pi^{-}\eta\bar{D}^{*0}D_{s}^{*+}, \bar{B}^{0} \to D^{*0}\Delta^{0}\bar{\Delta}^{0}, \eta \to \gamma\gamma,$ $\bar{D}^{*0} \to \bar{D}^{0}\gamma, D_{s}^{*+} \to D_{s}^{+}\gamma, D^{*0} \to \pi^{0}D^{0}, \Delta^{0} \to \pi^{0}n, \bar{\Delta}^{0} \to \pi^{0}\bar{n},$ $\bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, D_{s}^{+} \to \mu^{+}\nu_{\mu}, D^{0} \to e^{+}\nu_{e}\pi^{-}\bar{K}^{0}\gamma^{gFSR}, \pi^{0} \to e^{+}e^{-}\gamma^{gFSR}, \bar{K}^{0} \to K_{S},$ $K_{S} \to \pi^{0}\pi^{0}$ $(e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	196	195	1	0	1	197
198	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \rho^{0}\pi^{+}\omega\bar{D}^{*-}, \bar{B}^{0} \to D^{0}n\bar{n}, \rho^{0} \to \pi^{+}\pi^{-}, \\ \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{-}\bar{D}^{0}, D^{0} \to K_{L}\eta, \bar{D}^{0} \to \pi^{0}\pi^{-}K^{+}, \eta \to \gamma\gamma \\ (e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma)$	197	196	1	0	1	198
199	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}B^{0}, B^{0} \to \mu^{+}\nu_{\mu}\bar{D}^{*-}, B^{0} \to \rho^{0}\pi^{+}\pi^{-}\rho^{+}\omega\bar{D}^{*-}, \bar{D}^{*-} \to \pi^{0}D^{-},$ $\rho^{0} \to \pi^{+}\pi^{-}, \rho^{+} \to \pi^{0}\pi^{+}, \omega \to \pi^{0}\pi^{+}\pi^{-}, \bar{D}^{*-} \to \pi^{0}D^{-}, D^{-} \to e^{-}\bar{\nu}_{e}\pi^{-}K^{+},$ $D^{-} \to \pi^{0}\pi^{-}K^{*}, K^{*} \to \pi^{-}K^{+}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma)$	198	197	1	0	1	199
200	$e^{+}e^{-} \to \Upsilon(4S), \Upsilon(4S) \to B^{0}\bar{B}^{0}, B^{0} \to \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}D^{-}, \bar{B}^{0} \to e^{-}\bar{\nu}_{e}\pi^{+}D^{0}, D^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{1}^{0},$ $D^{0} \to \pi^{+}\pi^{-}K_{S}, K_{1}^{0} \to \pi^{+}\pi^{-}K^{0}, K_{S} \to \pi^{+}\pi^{-}, K^{0} \to K_{S}, K_{S} \to \pi^{+}\pi^{-}$ $(e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})$	199	198	1	0	1	200

Table 2: Event initial-final states.

index	event initial-final states	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
1	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	46	1	1	2	2
2	$e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	1	1	0	1	3
3	$e^+e^- \to e^+\nu_e K_L K_L \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma$	2	1	0	1	4
4	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	3	1	0	1	5
5	$e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^-\pi^- \pi^- K^+ K^- \gamma \gamma$	4	1	0	1	6
6	$e^+e^- \rightarrow e^+e^+\nu_e\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma$	5	1	0	1	7
7	$e^+e^- \to \mu^- \bar{\nu}_\mu \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^+ K^- \gamma^{gFSR} \gamma \gamma$	6	1	0	1	8
8	$e^+e^- o e^+ u_e u_ auar u_ au K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma^{gFSR}\gamma$	7	1	0	1	9
9	$e^+e^- o \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \gamma^{gFSR} \gamma^{gFSR} \gamma \gamma$	8	1	0	1	10
10	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	9	1	0	1	11
11	$e^+e^- \to \mu^+\mu^+\nu_\mu\nu_\mu K_L K_L \pi^+\pi^-\pi^-\pi^- K^+K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	10	1	0	1	12
12	$e^+e^- \to e^+e^-\mu^-\bar{\nu}_\mu\nu_\tau\bar{\nu}_\tau\pi^+\pi^-K^+\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	11	1	0	1	13
13	$e^+e^- \to \mu^+\nu_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma$	12	1	0	1	14
14	$e^+e^- ightarrow \mu^-ar{ u}_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	13	1	0	1	15
15	$e^+e^- ightarrow\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-K^-\gamma^{gFSR}\gamma$	14	1	0	1	16
16	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	15	1	0	1	17
17	$e^+e^- \to e^+\nu_e\mu^-\bar{\nu}_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma^{gFSR}\gamma$	16	1	0	1	18
18	$e^+e^- \to \mu^+\nu_\mu K_L K_L \pi^+\pi^+\pi^-\pi^-\pi^- K^+ K^+ K^- K^- \gamma \gamma$	17	1	0	1	19
19	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma$	18	1	0	1	20
20	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma$	19	1	0	1	21
21	$e^+e^- \to \mu^- \bar{\nu}_\mu K_L K_L \pi^+ K^+ K^- \gamma \gamma \gamma \gamma \gamma \gamma$	20	1	0	1	22
22	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma$	21	1	0	1	23
23	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^-\gamma$	22	1	0	1	24
24	$e^+e^- o K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	23	1	0	1	25
25	$e^+e^- o$	24	1	0	1	26
	$e^{+}e^{+}e^{-}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$					
26	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	25	1	0	1	27
27	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma$	26	1	0	1	28
28	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	27	1	0	1	29
29	$e^+e^- \to e^+\nu_e\nu_\tau\bar{\nu}_\tau K_L\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma$	28	1	0	1	30
30	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma^{gFSR} \gamma \gamma$	29	1		1	31
31	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\gamma\gamma\gamma\gamma\gamma$	30	1		1	32
32	$e^+e^- ightarrow$	31	1	0	1	33
	$e^+e^+e^-\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$					
33	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma$	32	1	0	1	34
34	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma$	33	1	0	1	35
35	$e^+e^- o \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^- K^+ K^- K^- \bar{n} p \gamma \gamma \gamma \gamma \gamma$	34	1	0	1	36
36	$e^+e^- \rightarrow e^-\bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ n\bar{p}\gamma^{gFSR}\gamma\gamma$	35	1	0	1	37
37	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$	36	1	0	1	38
38	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	37	1		1	39
39	$e^+e^- o e^+ u_e\mu^+ u_\mu K_L\pi^+\pi^-\pi^-K^-\gamma^{gFSR}\gamma$	38	1	0	1	40
40	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	39	1	_	1	41

index	event initial-final states	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
41	$e^+e^- \to \mu^-\mu^-\bar{\nu}_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+K^+K^-K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	40	1	0	1	42
42	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	41	1	0	1	43
43	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-K^-n\bar{p}\gamma^{gFSR}\gamma$	42	1	0	1	44
44	$e^+e^- \to e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma$	43	1	0	1	45
45	$e^{+}e^{-} \to \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	44	1	0	1	46
46	$e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma^{gFSR}\gamma$	45	1	0	1	47
47	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma^{gFSR} \gamma^{gFSR} \gamma \gamma$	0	1	0	1	48
48	$e^{+}e^{-} \to \mu^{-}\mu^{-}\bar{\nu}_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma$	47	1	0	1	49
49	$e^+e^- \to e^+ \nu_e \mu^- \mu^- \bar{\nu}_\mu \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^- \gamma \gamma$	48	1	0	1	50
50	$e^+e^- \to e^+e^-\mu^-\bar{\nu}_\mu K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-\gamma^{gFSR}\gamma$	49	1	0	1	51
51	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma}$	50	1	0	1	52
52	$e^+e^- \rightarrow e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma \gamma \gamma \gamma \gamma$	51	1	0	1	53
53	$e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma$	52	1	0	1	54
54	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma$	53	1	0	1	55
55	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	54	1	0	1	56
56	$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\nu_{\mu}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}n\bar{p}\gamma$	55	1	0	1	57
57	$e^+e^- \rightarrow e^+\nu_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	56	1	0	1	58
58	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$	57	1	_	1	59
59	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^-n\bar{p}\gamma^{gFSR}\gamma$	58	1	0	1	60
60	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	59	1	0	1	61
61	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma$	60	1	0	1	62
62	$e^{+}e^{-} \to e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}f_{0}(600)\gamma^{gFSR}\gamma\gamma\gamma\gamma$	61	1	0	1	63
63	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	62	1	0	1	64
64	$e^+e^- \rightarrow e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma^{gFSR}\gamma$	63	1	0	1	65
65	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	64	1	0	1	66
66	$e^+e^- \rightarrow e^+\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-p\bar{p}\gamma$	65	1	0	1	67
67	$e^+e^- \to \mu^+\nu_\mu\nu_\tau\bar{\nu}_\tau\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	66	1	0	1	68
68	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	67	1		1	69
69	$e^+e^- \to e^-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	68	1	0	1	70
70	$e^+e^- \rightarrow e^+\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	69	1	0	1	71
71	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFS}\gamma^{g$	70	1	0	1	72
72	$e^+e^- \rightarrow e^-e^-\bar{\nu}_e\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma$	71	1	0	1	73
73	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-n\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	72	1	0	1	74
74	$e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}\bar{n}pf_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma$	73	1	0	1	75
75	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma$	74	1	0	1	76
76	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma$	75	1	0	1	77
77	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K_{S}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	76	1	0	1	78
78	$e^{+}e^{-} \to e^{+}e^{+}e^{-}\nu_{e}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	77	1	0	1	79
79	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma$	78	1	0	1	80
80	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	79	1	0	1	81

index	event initial-final states	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
81	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma\gamma\gamma\gamma\gamma$	80	1	0	1	82
82	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^+K^-\gamma^{gFSR}\gamma$	81	1	0	1	83
83	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	82	1	0	1	84
84	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$	83	1	0	1	85
85	$e^{+}e^{-} \rightarrow e^{-}e^{-}\bar{\nu}_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\bar{n}p\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma$	84	1	0	1	86
86	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma$	85	1	0	1	87
87	$e^{+}e^{-} \to \mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma$	86	1	0	1	88
88	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}p\bar{p}\gamma\gamma$	87	1	0	1	89
89	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^-\pi^-\pi^-\pi^-K^+\bar{n}pf_0(600)\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	88	1	0	1	90
90	$e^+e^- \to \mu^-\mu^-\bar{\nu}_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma$	89	1	0	1	91
91	$e^+e^- \rightarrow e^+e^+e^-e^-\pi^+\pi^+\pi^-K^+K^-n\bar{p}\gamma^{gFSR}\gamma^{gFSR}\gamma$	90	1	0	1	92
92	$e^{+}e^{-} \to \mu^{+}\mu^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	91	1	0	1	93
93	$e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma\gamma$	92	1	0	1	94
94	$e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	93	1	0	1	95
95	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{+}K^{-}f_{0}(600)\gamma\gamma$	94	1		1	96
96	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma$	95	1	0	1	97
97	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	96	1	0	1	98
98	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma^{gFSR} \gamma \gamma$	97	1	0	1	99
99	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma$	98	1	0	1	100
100	$e^+e^- \rightarrow$	99	1	0	1	101
	$e^+e^+e^-\nu_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gY}\gamma$					
101	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- K^+ \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{\gamma$	100	1	0	1	102
102	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma$	101	1		1	103
103	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma^{gFSR}\gamma$	102	1	0	1	104
104	$e^+e^- ightarrow$	103	1	0	1	105
	$e^{-\bar{\nu}_e\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma$					
105	$e^+e^- \to e^- \bar{\nu}_e K_L \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma^{gFSR} \gamma^{gFSR} \gamma \gamma$	104	1	0	1	106
106	$e^+e^- \rightarrow e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma}$	105	1		1	107
107	$e^+e^- \rightarrow$	106	1	0	1	108
	$e^+e^-\mu^-\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma^{gFSR}\gamma$					
108	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma$	107	1	0	1	109
109	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}p\bar{p}\gamma^{gFSR}\gamma$	108	1	0	1	110
110	$e^+e^- \to \mu^-\bar{\nu}_\mu K_L \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^- p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	109	1	0	1	111
111	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma$	110	1	0	1	112
112	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma}\gamma$	111	1	0	1	113
113	$e^{+}e^{-} \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^- K^- \gamma^{gFSR} \gamma^{gFSR} \gamma^{\gamma$	112	1	0	1	114
114	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	113	1	0	1	115
115	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma^{gFSR}\gamma$	114	1	0	1	116
116	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	115	1	0	1	117
117	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	116	1	0	1	118
118	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^+ \gamma^{gFSR} \gamma \gamma$	117	1	0	1	119
119	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}\gamma\gamma$	118	1	0	1	120
120	$e^+e^- \rightarrow e^- \bar{\nu}_e \mu^- \bar{\nu}_\mu K_L \pi^+ \pi^+ \pi^+ \pi^- K^- \gamma^{gFSR} \gamma \gamma \gamma 27$	119	1	0	1	121

index	event initial-final states	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
121	$e^+e^- o \mu^+ u_\mu K_L\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma$	120	1	0	1	122
122	$e^+e^- \rightarrow e^-e^- \bar{\nu}_e \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^- K^+ K^- \gamma^{gFSR} \gamma \gamma \gamma \gamma$	121	1	0	1	123
123	$e^+e^- \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \gamma \gamma$	122	1	0	1	124
124	$e^+e^- \to e^+e^-\mu^-\bar{\nu}_{\mu}K_LK_L\pi^+\pi^+\pi^-\pi^-K^+\gamma^{gFSR}\gamma^{gFSR}\gamma$	123	1	0	1	125
125	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	124	1	0	1	126
126	$e^+e^- o e^+e^-\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	125	1	0	1	127
127	$e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-}\nu_{e}\bar{\nu}_{e}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	126	1	0	1	128
128	$e^+e^- \rightarrow e^+e^- \nu_e \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{\gamma qFSR} \gamma^{\gamma $	127	1		1	129
129	$e^+e^- \to e^+e^-e^-\nu_e\nu_e\bar{\nu}_e\pi^+\pi^+\pi^-\pi^-K^+\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	128	1	0	1	130
130	$e^+e^- \to K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ \gamma \gamma$	129	1	0	1	131
131	$e^{+}e^{-} \to e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma$	130	1	0	1	132
132	$e^{+}e^{-} \rightarrow e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma$	131	1	0	1	133
133	$e^{+}e^{-} \rightarrow \nu_{\tau}\bar{\nu}_{\tau}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma$	132	1		1	134
134	$e^+e^- ightarrow \mu^-ar{ u}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	133	1	0	1	135
135	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{-}f_{0}(600)\gamma\gamma\gamma\gamma\gamma$	134	1	0	1	136
136	$e^+e^- o$	135	1	0	1	137
	$e^{+}e^{-}K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$					
137	$e^+e^- \to \pi^+\pi^+\pi^-\pi^-K^+K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	136	1		1	138
138	$e^+e^- \to e^+\nu_e K_L \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- p\bar{p}\gamma^{gFSR} \gamma\gamma\gamma\gamma$	137	1	0	1	139
139	$e^+e^- \rightarrow e^- \bar{\nu}_e \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$	138	1	0	1	140
140	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}$	139	1	0	1	141
141	$e^+e^- \rightarrow \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^+K^-K^-K^-\gamma$	140	1	0	1	142
142	$e^+e^- \to \pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^+K^-K^-K^-n\bar{n}\gamma$	141	1	0	1	143
143	$e^{+}e^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}K^{-}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma}$	142	1	0	1	144
144	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	143	1	0	1	145
145	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	144	1	0	1	146
146	$e^{+}e^{-} \to K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	145	1	0	1	147
147	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	146	1	0	1	148
148	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma$	147	1	0	1	149
149	$e^{+}e^{-} \rightarrow \mu^{+}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	148	1	0	1	150
150	$e^{+}e^{-} \to e^{+}e^{-}\nu_{e}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma$	149	1	0	1	151
151	$e^+e^- \rightarrow e^-\nu_e\mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+n\bar{p}\gamma^{gFSR}\gamma$	150	1	0	1	152
152	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{-}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	151	1	0	1	153
153	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}K^{+}K^{-}\gamma^{gFSR}\gamma$	152	1	0	1	154
154	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma$	153	1	0	1	155
155	$e^{+}e^{-} \rightarrow \pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma^{gFSR}\gamma$	154	1		1	156
156	$e^{+}e^{-} \rightarrow e^{+}e^{+}\nu_{e}\nu_{e}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}\gamma^{gFSR}\gamma^{gFSR}\gamma$	155	1	0	1	157
157	$e^{+}e^{-} \to \mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	156	1	0	1	158
158	$e^{+}e^{-} \to e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}f_{0}(600)\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	157	1	0	1	159
159	$e^+e^- \to e^+e^-\nu_e\bar{\nu}_e\mu^+\nu_\mu\pi^+\pi^-\pi^-\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	158	1	0	1	160
160	$e^+e^- \to K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- f_0(600) \gamma \gamma$	159	1	0	1	161

	event initial-final states	iEvtIFSts	nEvts	nCcEvts	nTotEvts	nCmltEvts
161	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-K^-K^-\gamma$	160	1	0	1	162
162	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-\gamma$	161	1	0	1	163
163	$e^+e^- o \mu^+ u_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	162	1	0	1	164
164	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	163	1	0	1	165
165	$e^+e^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-K^-n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma$	164	1	0	1	166
166	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{-}K^{-}n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma$ $e^{+}e^{-} \to e^{+}e^{-}\nu_{\tau}\bar{\nu}_{\tau}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\bar{n}p\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	165	1	0	1	167
167	$e^+e^- \rightarrow K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- K^- \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	166	1	_	1	168
168	$e^+e^- \rightarrow \pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma}$	167	1	0	1	169
169	$e^{+}e^{-} \to \mu^{+}\mu^{-}\nu_{\mu}\bar{\nu}_{\mu}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma\gamma\gamma\gamma\gamma$	168	1	0	1	170
170	$e^+e^- o K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- n \bar{n} \gamma \gamma$	169	1	_	1	171
171	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+\gamma$	170	1	0	1	172
172	$e^+e^- o\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma$	171	1	0	1	173
173	$e^+e^- \to \mu^-\bar{\nu}_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-K^-\gamma^{gFSR}\gamma^{gFSR}\gamma$	172	1	0	1	174
174	$e^+e^- \to K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^- K^- K^- \gamma^{gFSR} \gamma \gamma$	173	1	0	1	175
175	$e^+e^- \to \nu_{\tau}\bar{\nu}_{\tau}\pi^+\pi^+\pi^-\pi^-\pi^-K^+K^-\bar{n}p\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	174	1	0	1	176
176	$e^+e^- \rightarrow e^- \bar{\nu}_e K_L K_L K_L \pi^+ \pi^+ \pi^- K^- \bar{n} p \gamma \gamma \gamma \gamma \gamma$	175	1	0	1	177
177	$e^+e^- \to K_L \pi^+ \pi^- K^+ K^- K^- \bar{n} p \gamma $	176	1	0	1	178
178	$e^{+}e^{-} \to e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}K^{-}K^{-}n\bar{n}\gamma\gamma$	177	1	0	1	179
179	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\gamma$	178	1	0	1	180
180	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^-p\bar{p}\gamma\gamma\gamma\gamma\gamma\gamma$	179	1	0	1	181
181	$e^+e^- \rightarrow \mu^+\nu_\mu\pi^+\pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+K^-\gamma^{gFSR}\gamma^{gFSR}\gamma$	180	1	0	1	182
182	$e^+e^- \to e^+\nu_e K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^- K^- \gamma \gamma$	181	1	0	1	183
183	$e^+e^- \to \mu^+\nu_\mu\pi^+\pi^+\pi^-\pi^-\pi^-K^+\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	182	1	0	1	184
184	$e^+e^- o e^- \bar{\nu}_e \mu^+ \nu_\mu \pi^+ \pi^+ \pi^- \pi^- n \bar{n} \gamma \gamma$	183	1	0	1	185
185	$e^+e^- o e^+ u_e K_L K_L \pi^+ \pi^- \pi^- \pi^- K^+ K^+ \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	184	1	0	1	186
186	$e^+e^- \to \mu^+\mu^+\mu^-\nu_\mu\nu_\mu\bar{\nu}_\mu K_L\pi^+\pi^+\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma^{gFSR}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	185	1	0	1	187
187	$e^{+}e^{-} \rightarrow e^{+}\nu_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	186	1	0	1	188
188	$e^+e^- \to e^-\bar{\nu}_e K_L K_L \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+ K^- \gamma \gamma$	187	1	0	1	189
189	$e^+e^- o K_L \pi^+ \pi^+ \pi^- \pi^- K^- \gamma \gamma$	188	1	0	1	190
190	$e^+e^- \to e^+\nu_e K_L \pi^+\pi^+\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-K^+p\bar{p}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	189	1	0	1	191
191	$e^+e^- \rightarrow e^+e^-\nu_e\bar{\nu}_e K_L\pi^+\pi^+\pi^+\pi^-\pi^-K^-\gamma\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	190	1	0	1	192
192	$e^{+}e^{-} \to K_{L}K_{L}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{-}\gamma^{gFSR}\gamma\gamma\gamma\gamma\gamma\gamma$	191	1	0	1	193
193	$e^+e^- o e^+ \nu_e \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- K^+ K^+ K^- \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{gFSR} \gamma^{\gamma gFSR} \gamma^{\gamma \gamma $	192	1	0	1	194
194	$e^+e^- \to e^+\nu_e\pi^+\pi^+\pi^-\pi^-\pi^-\gamma^{gFSR}\gamma$	193	1	0	1	195
195	$e^+e^- \rightarrow e^-e^- \bar{\nu}_e \bar{\nu}_e K_L K_L \pi^+ \pi^+ \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- n \bar{n} \gamma^{gFSR} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	194	1	0	1	196
196	$e^{+}e^{-} \rightarrow e^{+}e^{+}e^{-}\nu_{e}\mu^{+}\nu_{\mu}\pi^{-}\pi^{-}\pi^{-}K^{+}n\bar{n}\gamma^{gFSR}\gamma^{gFSR}\gamma$	195	1	0	1	197
197	$e^+e^- \rightarrow K_L\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-K^+n\bar{n}\gamma\gamma\gamma\gamma\gamma\gamma$	196	1	0	1	198
198	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{+}\nu_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}K^{+}K^{+}\gamma$	197	1	0	1	199
199	$e^{+}e^{-} \rightarrow e^{-}\bar{\nu}_{e}\mu^{-}\bar{\nu}_{\mu}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	198	1	0	1	200

Table 3: Signal particle final states.

index	signal particle final states	iSigPFSts	nEtrs	nCcEtrs	nTotEtrs	nCmltEtrs
1	$D^0 o \pi^0 \pi^+ K^-$	0	13	20	33	33
2	$D^0 \to \pi^+ K^-$	1	2	6	8	41