Foundation of Cryptography (0368-4162-01), Lecture 3 Hardcore Predicates for Any One-way Function

Iftach Haitner, Tel Aviv University

November 15, 2011

Definition 1 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT P.

Definition 1 (hardcore predicates)

An efficiently computable function $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr[P(f(U_n)) = b(U_n)] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT P.

Theorem 2

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a OWF, and define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = f(x), r. Then $b(x,r) = \langle x,r \rangle_2$, is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.

Section 1

The Information Theoretic Case

Definition 3 (min-entropy)

The min entropy of a random variable X, is defined

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\Pr_X[y]}.$$

Definition 3 (min-entropy)

The min entropy of a random variable X, is defined

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\text{Pr}_X[y]}.$$

Examples

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 5 (leftover hash lemma)

Let X be a random variable over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$ and let \mathcal{H} be a family of pairwise independent hash functions from $\{0,1\}^n$ to $\{0,1\}^m$, then

$$SD((h, h(x))_{h \leftarrow \mathcal{H}, x \leftarrow X}, (h, y)_{h \leftarrow \mathcal{H}, y \leftarrow \{0,1\}^m}) \le 2^{(m-k-2))/2}.$$

Pairwise independent hashing

Definition 4 (pairwise independent hash functions)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 5 (leftover hash lemma)

Let X be a random variable over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$ and let \mathcal{H} be a family of pairwise independent hash functions from $\{0,1\}^n$ to $\{0,1\}^m$, then

$$SD((h, h(x))_{h \leftarrow \mathcal{H}, x \leftarrow X}, (h, y)_{h \leftarrow \mathcal{H}, y \leftarrow \{0,1\}^m}) \le 2^{(m-k-2))/2}.$$

* We typically simply write $SD((H, H(X)), (H, U_m))$, where H is uniformly distributed over \mathcal{H} .

efficient function families

Definition 6 (efficient function family)

An ensemble of function families $\mathcal{F}=\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ is efficient, if the following hold:

- **Samplable.** \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .
 - **Efficient.** There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Lemma 7

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n \text{ as }$$

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

Lemma 7

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to the computational case?

Lemma 7

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g: \{0,1\}'' \times \mathcal{H}_n \mapsto \{0,1\}'' \times \mathcal{H}_n \text{ as }$$

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to the computational case? Proof: We prove the claim by showing that

Claim 8

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \text{neg}(n)$, where the rv H = H(n) is uniformly distributed over \mathcal{H}_n .

Lemma 7

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent hash functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to the computational case? Proof: We prove the claim by showing that

Claim 8

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \text{neg}(n)$, where the rv H = H(n) is uniformly distributed over \mathcal{H}_n .

Does this conclude the proof?

hardcore predicate for regular functions

Proving Claim 8

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$\leq \max_{y \in f(\{0,1\}^n)} SD((y, H, H(X_y)), (y, H, U_1))$$

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((f(U_n), H, H(U_n) \mid f(U_n) = y))$$

$$, (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$\leq \max_{y \in f(\{0,1\}^n)} SD((y, H, H(X_y)), (y, H, U_1))$$

$$\leq \max_{y \in f(\{0,1\}^n)} SD((H, H(X_y)), (H, U_1))$$

Proving Claim 8 cont.

Since
$$H_{\infty}(X_y) = \log(d(n))$$
 for any $y \in \{f(x) : x \in \{0, 1\}^n\}$,

Proving Claim 8 cont.

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in \{f(x) : x \in \{0, 1\}^n\}$, The leftover hash lemma yields that

$$SD((y, H, H(X_y)), (y, H, U_1)) \le 2^{(1-H_{\infty}(X_y)-2))/2}$$

$$= 2^{-(\log d(n)+1)/2} = \text{neg}(n). \quad \Box$$

hardcore predicate for regular functions

Further remarks

Remark 9

- We can output $\Theta(\log d(n))$ bits,
- g and b are not defined over all input length.