Introduction to Audio Content Analysis

Module 4.1: Classification

alexander lerch

corresponding textbook section

Section 4.1

■ lecture content

- intuitive intro to machine learning
- classifier examples

learning objectives

- describe the basic principles of data-driven machine learning approaches
- implement a kNN classifier in Python

Module 4.1: Classification 1 /

corresponding textbook section

Section 4.1

lecture content

- intuitive intro to machine learning
- classifier examples

■ learning objectives

- describe the basic principles of data-driven machine learning approaches
- implement a kNN classifier in Python

Module 4.1: Classification 1 /

remember the flow chart of a general ACA system:

- classification:
 - assign class labels to data
- regression:
 - estimate numerical labels for data
- *clustering*:
 - find grouping patterns in data

Module 4.1: Classification 2 / 8

classification introduction

remember the flow chart of a general ACA system:

- classification:
 - assign class labels to data
- regression:
 - estimate numerical labels for data
- clustering:
 - find grouping patterns in data

Module 4.1: Classification 2 / 8

remember the flow chart of a general ACA system:

- classification:
 - assign class labels to data
- regression:
 - estimate numerical labels for data
- clustering:
 - find grouping patterns in data

Module 4.1: Classification 2 / 8

classification basic example

hypothetical system:

- one feature (envelope)
- predefined threshold
 - higher than threshold
 ⇒ class 1 (onset)
 - lower than threshold
 ⇒ class 0 (no onset)

- derive classification parameters from data, e.g.,
- ⇒ learn common feature distributions per class
- \Rightarrow learn separation metrics per class

- **training**: extract reference vectors from training set (keep class labels)
- classifier data: all training vectors

Tech 🛚 Technology

- **training**: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of k nearest reference vectors
- classifier data: all training vectors

- **training**: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of k nearest reference vectors
- **classifier data**: all training vectors

classifier examples k-Nearest Neighbor (kNN)

Georgia | Center for Music Tech || Technology

- **training**: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of k nearest reference vectors
- **classifier data**: all training vectors

$$k = 3 \Rightarrow \text{gold majority}$$

classifier examples k-Nearest Neighbor (kNN)

- training: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of k nearest reference vectors
- classifier data: all training vectors

$$k = 5 \Rightarrow \text{black majority}$$

classifier examples k-Nearest Neighbor (kNN)

Georgia | Center for Music Tech || Technology

- **training**: extract reference vectors from training set (keep class labels)
- **classification**: extract test vector and set class to majority of k nearest reference vectors
- **classifier data**: all training vectors

$$k = 7 \Rightarrow \text{black majority}$$

model each class distribution as superposition of Gaussian distributions

- classification: compute output of each Gaussian and select class with highest probability
- classifier data: per class per Gaussian: μ and covariance, mixture weight

model each class distribution as superposition of Gaussian distributions

classification:

compute output of each Gaussian and select class with highest probability

classifier data: per class per Gaussian: μ and covariance, mixture weight

model each class distribution as superposition of Gaussian distributions

■ classification:

compute output of each Gaussian and select class with highest probability

classifier data:

per class per Gaussian: μ and covariance, mixture weight

classifier examples Support Vector Machine (SVM)

Georgia Center for Music Tech Tech College of Design

■ training:

map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)
- classification: apply feature transform and proceed with 'linear' classification
- classifier data: support vectors, kernel, kernel parameters

classifier examples Support Vector Machine (SVM)

Georgia de Center for Music Tech de Technology

■ training:

map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)
- classification: apply feature transform and proceed with 'linear' classification
- classifier data: support vectors, kernel, kernel parameters

• map features to high dimensional space

- find separating hyperplane through maximum distance of support vectors (data points)
- classification: apply feature transform and proceed with 'linear' classification
- classifier data: support vectors, kernel, kernel parameters

summary lecture content

data-driven approach

- 'general' system learns parameters/behavior from data
- human interaction through
 - parametrization and procedures
 - ► data selection

many classifiers with different levels of complexity

- 1 kNN
- 2 GMM
- 3 SVM
- 4 RandomForest
- 5 DNN
- 6 ...

