Simplexe, cas général

Pour l'instant nous ne nous sommes intéressés qu'aux cas particuliers où le PL était sous forme standard, qu'en est-il maintenant du problème suivant :

Min $Z = 2x_1 + x_2$ sous contraintes :

$$3 x_1 + x_2 \ge 9$$

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

Transformons tout d'abord le problème de minimisation en un problème de maximisation :

Min
$$Z = 2x_1 + x_2 \iff \text{Max } Z' = -2x_1 - x_2$$

Puis ajoutons des variables artificielles pour transformer les inégalités en égalités :

= 9

$$3 x_1 + x_2 - x_3 = 9$$

$$x_1 + x_2 \qquad -x_4 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0$$

On remarque que $x_1 = 0$ et $x_2 = 0$ n'est pas solution du PL car cela impliquerai entre autre $x_3 = -9$ incompatible avec $x_3 \ge 0$. Le PL n'est pas réalisable en l'état.

Pour pallier ce problème, nous introduisons deux nouvelles variables artificielles A_1 et A_2 dans le système :

$$3 x_1 + x_2 - x_3 + A_1$$

$$x_1 + x_2 - x_4 + A_2 = 6$$

$$x_1, x_2, x_3, x_4, A_1, A_2 \ge 0$$

Première phase

Cherchons maintenant à maximiser $W = -A_1 - A_2$

Selon les contraintes :

$$3 x_1 + x_2 - x_3 + A_1 = 9$$

 $x_1 + x_2 - x_4 + A_2 = 6$

$$x_1, x_2, x_3, x_4, A_1, A_2 \ge 0$$

Ainsi une solution de base réalisable est : $x_1 = x_2 = x_3 = x_4 = 0$, $A_1 = 9$ et $A_2 = 6 \Rightarrow W = -15$

W peut être réécrit :
$$W = -9 + 3x_1 + x_2 - x_3 - 6 + x_1 + x_2 - x_4 = -15 + 4x_1 + 2x_2 - x_3 - x_4$$

Notre premier tableau peut donc être écrit :

(X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur
	A_1	3	1	-1	0	1	0	0	0	9
	A ₂	1	1	0	-1	0	1	0	0	6
	Z '	2	1	0	0	0	0	1	0	0
(W	-4	-2	1	1	0	0	0	1	-15

Première phase, suite :

On choisit x1 pour entrer dans la base et A1 pour en sortir

		$\boldsymbol{x_1}$	X ₂	X ₃	X ₄	A ₁	A_2	Z '	W	valeur	
	A_1	3	1	-1	0	1	0	0	0	9	9/3
	A ₂	1	1	0	-1	0	1	0	0	6	6/1
	Z '	2	1	0	0	0	0	1	0	0	
(W	-4	-2	1	1	0	0	0	1	-15	

	X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z'	W	valeur	
A ₁	3	1	-1	0	1	0	0	0	9	x1/3
A ₂	1	1	0	-1	0	1	0	0	6	
Z '	2	1	0	0	0	0	1	0	0	
W	-4	-2	1	1	0	0	0	1	-15	

	X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
<i>X</i> ₁	1	1/3	-1/3	0	1/3	0	0	0	3	
A ₂	1	1	0	-1	0	1	0	0	6	-LX ₁
Z '	2	1	0	0	0	0	1	0	0	-2 Lx ₁
W	-4	-2	1	1	0	0	0	1	-15	+4 LX ₁

		<i>X</i> ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
Ī	<i>X</i> ₁	1	1/3	-1 / 3	0	1/3	0	0	0	3	
Ī	A ₂	0	2/3	1/3	-1	-1/3	1	0	0	3	
Ī	Z '	0	1/3	2/3	0	-2/3	0	1	0	-6	
	W	0	-2/3	-1/3	1	4/3	0	0	1	-3	

Première phase, suite :

On choisit x3 pour entrer dans la base et A2 pour en sortir

ſ		<i>X</i> ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
ſ	<i>X</i> ₁	1	1/3	-1 / 3	0	1/3	0	0	0	3	9
	A_2	0	2/3	1/3	-1	-1/3	1	0	0	3	9/2
	Ζ'	0	1/3	2/3	0	-2/3	0	1	0	-6	
Γ	M	0	-2/3	-1/3	1	4/3	0	0	1	-3	

	X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
X ₁	1	1/3	-1 / 3	0	1/3	0	0	0	3	
A_2	0	2/3	1/3	-1	-1 / 3	1	0	0	3	x3/2
Ζ'	0	1/3	2/3	0	-2/3	0	1	0	-6	
W	0	-2/3	-1 / 3	1	4/3	0	0	1	-3	

([X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
	X 1	1	1/3	-1/3	0	1/3	0	0	0	3	$-\frac{1}{3}LX_2$
	X 2	0	1	1/2	-3 / 2	-1/2	3/2	0	0	9/2	
[z '	0	1/3	2/3	0	-2/3	0	1	0	-6	$-\frac{1}{3}LX_2$
	W	0	-2/3	-1/3	1	4/3	0	0	1	-3	$+\frac{2}{3}LX_2$

	X ₁	X ₂	X ₃	X ₄	A ₁	A ₂	Z '	W	valeur	
X ₁	1	0	-1/2	1/2	1/2	-1/2	0	0	3/2	
<i>X</i> ₂	0	1	1/2	-3 / 2	-1 / 2	3 / 2	0	0	9 / 2	
Ζ'	0	0	1/2	1/2	-1/2	-1/2	1	0	-15 / 2	
W	0	0	0	0	1	1	0	1	0	

On remarque ainsi que $x_1 = 3/2$, $x_2 = 9/2$ et $x_3 = x_4 = A_1 = A_2 = 0$ est une solution réalisable pour le système avec W = 0

Deuxième phase :

On écrit ainsi le tableau suivant (on a conservé les lignes précédentes, supprimé les colonnes A1 et A2 ainsi que la ligne W):

1		<i>X</i> ₁	X ₂	X ₃	X ₄	Z '	valeur	
	X ₁	1	0	-1 / 2	1/2	0	3 / 2	
	<i>X</i> ₂	0	1	1/2	-3 / 2	0	9 / 2	
	Z '	0	0	1/2	1/2	1	- 1 5 / 2	

Or on remarque ici que les coeficients de x₃ et x₄ sont tous positifs ⇒ nous sommes déjà en présence de la solution optimale, pas besoin de procéder à des itérations successives.

La solution optimale est donc $x_1 = 3/2$, $x_2 = 9/2$, $Z' = -15/2 \Rightarrow Z = 15/2$

Vérification de notre solution :

Min $Z = 2x_1 + x_2$ sous contraintes :

 $3 x_1 + x_2 \ge 9$

 $x_1 + x_2 \ge 6$

 $x_1,\,x_2\geq 0$

Exemple méthode en deux phases

```
Max Z = 4x_1 + 12x_2
sous contraintes:
x_1 \leq 1000
x_2 \leq 500
3 x_1 + 6 x_2 \le 4200
x_1 + x_2 \ge 1000
x_1 + 2 \, x_2 \ge 1200
avec x_1, x_2 \ge 0
          {600., 400.}
```

Solution de l'exemple précédent : Z = 7200

