

# মেশিন টুলস অপারেশন-১

এসএসি ও দাখিল (ভোকেশনাল)

নবম-দশম শ্রেণি



জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক প্রকাশিত

বাংলাদেশ কারিগরি শিক্ষা বোর্ড কর্তৃক প্রণীত



বাংলাদেশ কারিগরি শিক্ষাবোর্ড কর্তৃক ২০১৭ শিক্ষাবর্ষ থেকে এসএসসি (ভোকেশনাল)  
ও দাখিল (ভোকেশনাল) শিক্ষাক্রমের নবম ও দশম শ্রেণির পাঠ্যপুস্তকরূপে নির্ধারিত।

---

# মেশিন টুলস অপারেশন-১

## Machine Tools Operation -1

প্রথম ও দ্বিতীয় পত্র  
নবম ও দশম শ্রেণি

লেখক

ড. প্রকৌশলী হরিপদ চন্দ্র পাল

অধ্যক্ষ

গাজীপুর টেকনিক্যাল স্কুল ও কলেজ

---

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ কর্তৃক প্রকাশিত

# জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

৬৯-৭০, মতিঝিল বাণিজ্যিক এলাকা, ঢাকা-১০০০

কর্তৃক প্রকাশিত।

[ প্রকাশক কর্তৃক সর্বস্বত্ত্ব সংরক্ষিত ]

পরীক্ষামূলক সংক্রান্ত

প্রথম প্রকাশ : নভেম্বর, ২০১৬

পুনর্মুদ্রণ : আগস্ট, ২০১৭

ডিজাইন

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক বিনামূল্যে বিতরণের জন্য

মুদ্রণে:

## প্রসঙ্গ-কথা

শিক্ষা জাতীয় জীবনের সর্বতোমুখী উন্নয়নের পূর্বশর্ত। দ্রুত পরিবর্তনশীল বিশ্বের চ্যালেঞ্জ মোকাবেলা করে বাংলাদেশকে উন্নয়ন ও সমৃদ্ধির দিকে নিয়ে যাওয়ার জন্য প্রয়োজন সুশিক্ষিত-দক্ষ মানব সম্পদ। কারিগারি ও বৃত্তিমূলক শিক্ষা দক্ষ মানব সম্পদ উন্নয়ন, দারিদ্র্য বিমোচন, কর্মসংস্থান এবং আত্মনির্ভরশীল হয়ে বেকার সমস্যা সমাধানে গুরুত্বপূর্ণ অবদান রাখছে। বাংলাদেশের মতো উন্নয়নশীল দেশে কারিগারি ও বৃত্তিমূলক শিক্ষার ব্যাপক প্রসারের কোনো বিকল্প নেই। তাই ক্রমপরিবর্তনশীল অর্থনীতির সঙ্গে দেশে ও বিদেশে কারিগারি শিক্ষায় শিক্ষিত দক্ষ জনশক্তির চাহিদা দিন দিন বৃদ্ধি পাচ্ছে। এ কারণে বাংলাদেশ কারিগারি শিক্ষা বোর্ড কর্তৃক এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) স্তরের শিক্ষাক্রম ইতোমধ্যে পরিমার্জন করে যুগোপযোগী করা হয়েছে।

শিক্ষাক্রম উন্নয়ন একটি ধারাবাহিক প্রক্রিয়া। পরিমার্জিত শিক্ষাক্রমের আলোকে প্রণীত পাঠ্যপুস্তকসমূহ পরিবর্তনশীল চাহিদার পরিপ্রেক্ষিতে এসএসসি (ভোকেশনাল) ও দাখিল (ভোকেশনাল) পর্যায়ে অধ্যয়নরত শিক্ষার্থীদের যথাযথভাবে কারিগারি শিক্ষায় দক্ষ করে গড়ে তুলতে সক্ষম হবে। অভ্যন্তরীণ ও বহির্বিশ্বে কর্মসংস্থানের সুযোগ সৃষ্টি এবং আত্মকর্মসংস্থানে উদ্যোগী হওয়াসহ উচ্চশিক্ষার পথ সুগম হবে। ফলে রূপকল্প-২০২১ অনুযায়ী জাতিকে বিজ্ঞানমনস্ক ও প্রশিক্ষিত করে ডিজিটাল বাংলাদেশ নির্মাণে আমরা উজ্জীবিত।

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার ২০০৯ শিক্ষাবর্ষ হতে সকলস্তরের পাঠ্যপুস্তক বিনামূল্যে শিক্ষার্থীদের মধ্যে বিতরণ করার যুগান্তকারী সিদ্ধান্ত গ্রহণ করেছে। কোমলমতি শিক্ষার্থীদের আরও আগ্রহী, কৌতুহলী ও মনোযোগী করার জন্য মাননীয় প্রধানমন্ত্রী শেখ হাসিনার নেতৃত্বে আওয়ামী লীগ সরকার প্রাক-প্রাথমিক, প্রাথমিক, মাধ্যমিকস্তর থেকে শুরু করে ইবতেদায়ি, দাখিল, দাখিল ভোকেশনাল ও এসএসসি ভোকেশনালস্তরের পাঠ্যপুস্তকসমূহ চার রঙে উন্নীত করে আকর্ষণীয়, টেকসই ও বিনামূল্যে বিতরণ করার মহৎ উদ্যোগ গ্রহণ করেছে; যা একটি ব্যতিক্রমী প্রয়াস। বাংলাদেশ কারিগারি শিক্ষা বোর্ড কর্তৃক রচিত ভোকেশনালস্তরের ট্রেড পাঠ্যপুস্তকসমূহ সরকারি সিদ্ধান্তের প্রেক্ষিতে জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড ২০১৭ শিক্ষাবর্ষ থেকে সংশোধন ও পরিমার্জন করে মুদ্রণের দায়িত্ব গ্রহণ করে। এ বছর উন্নতমানের কাগজ ও চার রঙের প্রচলন ব্যবহার করে অতি অল্প সময়ে পাঠ্যপুস্তকটি মুদ্রণ করে প্রকাশ করা হলো।

বানানের ক্ষেত্রে সমতা বিধানের জন্য অনুসৃত হয়েছে বাংলা একাডেমি কর্তৃক প্রণীত বানান রীতি। পাঠ্যপুস্তকটির আরও উন্নয়নের জন্য যে কোনো গঠনমূলক ও যুক্তিসংগত পরামর্শ গুরুত্বের সাথে বিবেচিত হবে। শিক্ষার্থীদের হাতে সময়মত বই পৌছে দেওয়ার জন্য মুদ্রণের কাজ দ্রুত করতে গিয়ে কিছু ত্রুটি-বিচুতি থেকে যেতে পারে। পরবর্তী সংস্করণে বইটি আরও সুন্দর, প্রাঞ্জল ও ক্রিটিমুন্ত করার চেষ্টা করা হবে। যাঁরা বইটি রচনা, সম্পাদনা, প্রকাশনার কাজে আত্মরিকভাবে মেধা ও শ্রম দিয়ে সহযোগিতা করেছেন তাঁদের জানাই আত্মরিক ধন্যবাদ। পাঠ্যপুস্তকটি শিক্ষার্থীরা আনন্দের সঙ্গে পাঠ করবে এবং তাদের মেধা ও দক্ষতা বৃদ্ধি পাবে বলে আশা করি।

প্রফেসর নারায়ণ চন্দ্র সাহা

চেয়ারম্যান

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড, বাংলাদেশ

## সুচিপত্র-

| ক্রমিক নং                       | বিবরণ                                        | পৃষ্ঠা নং | ক্রমিক নং                        | বিবরণ                                                  | পৃষ্ঠা নং |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|---------------------------------|----------------------------------------------|-----------|----------------------------------|--------------------------------------------------------|-----------|---|-------------------------------------------|---------|---|---------------------------------|---------|---|----------------------------------|---------|---|------------------------------------|---------|---|--------------------------------------|---------|---|---------------------------------------------|---------|---|-------------------------------------------|---------|---|--------------------------------------------|---------|---|-----------------------------------|---------|--|--|--|---|-----------------------------------------|---------|--|--|--|---|--------------------------------------------------------|---------|--|--|--|---|---------------------------------------------|---------|--|--|--|---|--------------------------------------|---------|--|--|--|----|--------------------------------|---------|--|--|--|----|--------------------------------------------|---------|--|--|--|----|-------------------------------------|---------|
| <b>নথ শ্রেণি, তাত্ত্বিক অংশ</b> |                                              |           |                                  |                                                        |           |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১                               | মেশিন টুলস অপারেশন ট্রেড                     | ১-৮       | ১                                | মেশিনশপে সতর্কতামূলক ব্যবস্থা                          | ১৯২-১৯৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২                               | মেশিন শপ                                     | ৫-১২      | ২                                | ওয়ার্কশপের রক্ষণাবেক্ষণ                               | ১৯৫-১৯৬   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৩                               | ওয়ার্কশপে সতর্কতামূলক ব্যবস্থা              | ১৩-১৫     | ৩                                | ভার্নিয়ার হাইট গেজ                                    | ১৯৭-১৯৯   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৪                               | মেশিনশপে ব্যবহৃত কাচামাল (ধাতু ও অধাতু)      | ১৬-২১     | ৪                                | সারফেস গেজ                                             | ২০০-২০৩   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৫                               | টুলস                                         | ২২-৩৩     | ৫                                | লেদ মেশিনের বিভিন্ন অপারেশন                            | ২০৪-২১৩   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৬                               | হস্ত চালিত যন্ত্রাদি                         | ৩৪-৩৯     | ৬                                | ডায়াল ইভিকেটর                                         | ২১৪-২১৭   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৭                               | পরিমাপন যন্ত্র বা মেজারিং টুলস               | ৪০-৪৪     | ৭                                | ইনসাইড মাইক্রোমিটার                                    | ২১৮-২২১   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৮                               | পরিষ্কণ ও পরিমাপকরণ                          | ৪৫-৪৭     | ৮                                | কথিনেশন সেট                                            | ২২২-২২৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৯                               | মৌলিক লে-আউট বা মার্কিং                      | ৪৮-৫৫     | ৯                                | ডেপথ মাইক্রোমিটার                                      | ২২৫-২২৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১০                              | ভার্নিয়ার ক্যালিপার্স                       | ৫৬-৬১     | ১০                               | ভার্নিয়ার বিভেল প্রেট্র্যাস্ট্র                       | ২২৯-২৩২   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১১                              | মাইক্রোমিটার                                 | ৬২-৭১     | ১১                               | গিয়ার টুথ ভার্নিয়ার ক্যালিপার                        | ২৩৩-২৩৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১২                              | আউটসাইড মাইক্রোমিটার                         | ৭২-৭৬     | ১২                               | গেজ                                                    | ২৩৫-২৩৯   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৩                              | ডেপথ মাইক্রোমিটার                            | ৭৭-৮০     | ১৩                               | সাইন বার                                               | ২৪০-২৪২   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৪                              | বিভেল প্রেট্র্যাস্ট্র                        | ৮১-৮৩     | ১৪                               | ফিট                                                    | ২৪৩-২৪৫   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৫                              | ফাইল                                         | ৮৪-৯৫     | ১৫                               | টলারেস                                                 | ২৪৬-২৪৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৬                              | ফাইলিং প্রক্রিয়া                            | ৯৬-১০০    | ১৬                               | সারফেস ফিলিশিং                                         | ২৪৯-২৫০   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৭                              | হ্যাক সয়ঁ                                   | ১০১-১০৬   | ১৭                               | কার্বন সিটল                                            | ২৫১-২৫৩   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৮                              | পাওয়ার সয়ঁ                                 | ১০৭-১১১   | ১৮                               | অলৌহজাত সংকর ধাতু                                      | ২৫৪-২৫৭   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১৯                              | থ্রেড                                        | ১১২-১১৫   | ১৯                               | মেশিনেবিলিটি                                           | ২৫৮-২৬১   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২০                              | ড্রিলি                                       | ১১৬-১২৫   | ২০                               | কাটিং টুলস                                             | ২৬২-২৭০   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২১                              | ড্রিল বিট                                    | ১২৬-১৩২   | ২১                               | লুব্রিক্যান্টস                                         | ২৭১-২৭৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২২                              | ট্যাপিং                                      | ১৩৩-১৪৫   | ২২                               | ধাতুর উপর তাপ প্রক্রিয়াকরণ                            | ২৭৫-২৭৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২৩                              | ডাই                                          | ১৪৬-১৫৩   | ২৩                               | হাইড্রলিক ট্রাঙ্কামিশন                                 | ২৭৯-২৮০   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| <b>নথ শ্রেণি, ব্যবহারিক অংশ</b> |                                              |           |                                  |                                                        |           |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ১                               | হ্যাকস দিয়ে ধাতু কর্তন                      | ১৫৩-১৫৮   | ২৪                               | সিএনসি মেশিন                                           | ২৮১-২৮৫   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ২                               | ক্রস ফাইলিং পদ্ধতিতে ধাতুর পৃষ্ঠাদেশ সমতলকরণ | ১৫৯-১৬৩   | <b>দশম শ্রেণি, ব্যবহারিক অংশ</b> |                                                        |           |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৩                               | ধাতুতে খোঁজ ফাইলিং                           | ১৬৪-১৬৮   | ৪                                | ধাতুতু ড্র-ফাইলিং                                      | ১৬৯-১৭২   | ১ | ভার্নিয়ার হাইট গেজ ব্যবহারে দক্ষতা অর্জন | ২৮৬-২৮৮ | ৫ | পাওয়ার হ্যাকস দ্বারা ধাতু কাটা | ১৭৩-১৭৮ | ২ | সারফেস গেজ ব্যবহারে দক্ষতা অর্জন | ২৮৯-২৯১ | ৬ | ধাতুতে ড্রিল মেশিন দ্বারা ছিদ্রকরণ | ১৭৯-১৮৩ | ৩ | ডায়াল ইভিকেটর ব্যবহারে দক্ষতা অর্জন | ২৯২-২৯৪ | ৭ | হ্যান্ড ট্যাপ দিয়ে ধাতুর ছিদ্রে প্যাচ কাটা | ১৮৪-১৮৭ | ৪ | ইনসাইড মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন | ২৯৫-২৯৭ | ৮ | হ্যান্ড ডাই দ্বারা ধাতুর বাহিরে প্যাচ কাটা | ১৮৮-১৯১ | ৫ | কথিনেশন সেট ব্যবহারে দক্ষতা অর্জন | ২৯৮-২৯৯ |  |  |  | ৬ | ডেপথ মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন | ৩০০-৩০২ |  |  |  | ৭ | ভার্নিয়ার বিভেল প্রেট্র্যাস্ট্র ব্যবহারে দক্ষতা অর্জন | ৩০৩-৩০৫ |  |  |  | ৮ | গিয়ার টুথ ভার্নিয়ার ব্যবহারে দক্ষতা অর্জন | ৩০৬-৩০৮ |  |  |  | ৯ | ওয়্যায়ার গেজ ব্যবহারে দক্ষতা অর্জন | ৩০৯-৩১১ |  |  |  | ১০ | সাইন বার ব্যবহারে দক্ষতা অর্জন | ৩১২-৩১৪ |  |  |  | ১১ | কাটিং টুল নির্বাচন ও ব্যবহারে দক্ষতা অর্জন | ৩১৫-৩১৮ |  |  |  | ১২ | লুব্রিক্যান্ট সম্পর্কে দক্ষতা অর্জন | ৩১৯-৩২০ |
| ৪                               | ধাতুতু ড্র-ফাইলিং                            | ১৬৯-১৭২   | ১                                | ভার্নিয়ার হাইট গেজ ব্যবহারে দক্ষতা অর্জন              | ২৮৬-২৮৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৫                               | পাওয়ার হ্যাকস দ্বারা ধাতু কাটা              | ১৭৩-১৭৮   | ২                                | সারফেস গেজ ব্যবহারে দক্ষতা অর্জন                       | ২৮৯-২৯১   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৬                               | ধাতুতে ড্রিল মেশিন দ্বারা ছিদ্রকরণ           | ১৭৯-১৮৩   | ৩                                | ডায়াল ইভিকেটর ব্যবহারে দক্ষতা অর্জন                   | ২৯২-২৯৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৭                               | হ্যান্ড ট্যাপ দিয়ে ধাতুর ছিদ্রে প্যাচ কাটা  | ১৮৪-১৮৭   | ৪                                | ইনসাইড মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন              | ২৯৫-২৯৭   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
| ৮                               | হ্যান্ড ডাই দ্বারা ধাতুর বাহিরে প্যাচ কাটা   | ১৮৮-১৯১   | ৫                                | কথিনেশন সেট ব্যবহারে দক্ষতা অর্জন                      | ২৯৮-২৯৯   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ৬                                | ডেপথ মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন                | ৩০০-৩০২   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ৭                                | ভার্নিয়ার বিভেল প্রেট্র্যাস্ট্র ব্যবহারে দক্ষতা অর্জন | ৩০৩-৩০৫   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ৮                                | গিয়ার টুথ ভার্নিয়ার ব্যবহারে দক্ষতা অর্জন            | ৩০৬-৩০৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ৯                                | ওয়্যায়ার গেজ ব্যবহারে দক্ষতা অর্জন                   | ৩০৯-৩১১   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ১০                               | সাইন বার ব্যবহারে দক্ষতা অর্জন                         | ৩১২-৩১৪   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ১১                               | কাটিং টুল নির্বাচন ও ব্যবহারে দক্ষতা অর্জন             | ৩১৫-৩১৮   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |
|                                 |                                              |           | ১২                               | লুব্রিক্যান্ট সম্পর্কে দক্ষতা অর্জন                    | ৩১৯-৩২০   |   |                                           |         |   |                                 |         |   |                                  |         |   |                                    |         |   |                                      |         |   |                                             |         |   |                                           |         |   |                                            |         |   |                                   |         |  |  |  |   |                                         |         |  |  |  |   |                                                        |         |  |  |  |   |                                             |         |  |  |  |   |                                      |         |  |  |  |    |                                |         |  |  |  |    |                                            |         |  |  |  |    |                                     |         |

## অধ্যায়-১

# মেশিন টুলস অপারেশন ট্রেড

### (Machine Tools Operation Trade)

#### ১.১ মেশিন টুলস অপারেশন ট্রেড পরিচিতি :

বিজ্ঞান ও প্রযুক্তির নতুন নতুন আবিষ্কার ও উন্নয়নের ধারা হাজার হাজার বছর ধরে চলমান বিধায় আমরা আজ একবিংশ শতাব্দীর এই তথ্য প্রযুক্তির যুগে দাঢ়িয়ে আছি। বর্তমান যুগ বিজ্ঞান ও প্রযুক্তির যুগ। আধুনিক যুগকে যান্ত্রিক সভ্যতার যুগও বলা হয়ে থাকে। মানুষ যেদিন হতে প্রকৃতি প্রদত্ত বিভিন্ন উপাদান থেকে ধাতু আহরণ করতে শিখেছে এবং ঐ ধাতুর মাধ্যমে প্রযোজনীয় বস্তু তৈরি করে এর সহজ ব্যবহার দ্বারা দৈনন্দিন জীবনের নানাবিধ প্রয়োজন মেটাতে শুরু করেছে, প্রকৃতপক্ষে তখন থেকেই মানুষ যান্ত্রিক যুগে পদার্পণ করেছে। বিভিন্ন ঘন্টের আবিষ্কারের ফলে বিজ্ঞান ও প্রযুক্তি এখন পৃথিবী শাসন করছে। যে দেশ বিজ্ঞান ও প্রযুক্তিতে যত বেশি উন্নত সে দেশ তত বেশি ক্ষমতাশীল এবং অর্থনৈতিক, সামাজিক ও রাজনৈতিকভাবে পৃথিবীতে আধিপত্য বিস্তার করে চলেছে। যান্ত্রিক সভ্যতার কল্যাণে একজন মানুষ এখন পূর্বের তুলনায় অনেক বেশি কাজ করতে পারে। মানুষ বিজ্ঞান ও প্রযুক্তির উপর নির্ভরশীল হয়ে পড়ছে বেশি। এসব পরিবর্তনের মূলে মেশিন টুলস এর প্রত্যক্ষ ও পরোক্ষ ব্যবহার ব্যতীত, কম্পিউটার, মহাকাশযান, ড্রোজাহাজ, টেলিফোন, বই, কাগজপত্র, কৃষি যন্ত্রপাতি তৈরি, শিল্পের উন্নয়ন, বিভিন্ন ধরনের আধুনিক বিস্ময়কর আবিষ্কার প্রভৃতি কোনো কিছুই তৈরি করা সম্ভব হতো না। দেশ, জাতি ও সভ্যতার উন্নয়নে মেশিন ও যন্ত্রপাতির ভূমিকা খুবই গুরুত্বপূর্ণ ও অপরিহার্য। বর্তমানে শিল্প ও কল কারখানার প্রধান চাহিদা হলো দক্ষ জনগোষ্ঠী, যারা হাতের কাজে ও চিন্তা চেতনায় দক্ষ হয়ে কাজের মান উন্নয়ন নিজে নিজে ঘটাতে সক্ষম। যন্ত্রপাতি ও কর্মপদ্ধতির ক্রটি বিচ্যুতি দূর করে যন্ত্রপাতি ও কর্মপদ্ধতির উন্নয়ন ঘটানোও একান্ত দরকার।

কয়েকটি যন্ত্র বা যন্ত্রাংশের সমাবেশ যখন কোন নির্দিষ্ট উৎস হতে শক্তি সঞ্চয় করে প্রযোজনীয় কার্য সম্পাদনে সক্ষম হয় তখন ঐ সমাবেশকে মেশিন বলা হয়। টুলস হলো যান্ত্রিক সুবিধা সম্বলিত এক প্রকার ডিভাইস বা মাধ্যম যা ব্যবহার করে কাঁচামালকে প্রযোজন অনুযায়ী পূর্ব নির্ধারিত আকার, আকৃতি এবং মসৃণতার পরিবর্তন করা হয়। যে ট্রেডে তান্ত্রিক ও ব্যবহারিক শিক্ষালাভ করলে মেশিন টুলস সমূহের ব্যবহার সম্পর্কে সম্যক জ্ঞান লাভ করা যায় এবং মেশিন, টুলস ও কাঁচামালের সমন্বয়ে নতুন নতুন জব, যন্ত্রাংশ ও মেশিন তৈরি করার দক্ষতা অর্জন করা যায়, তাকে মেশিন টুলস অপারেশন ট্রেড বলা হয়। একটি দ্রব্য উৎপাদন করতে অনেক ক্ষেত্রে একাধিক মেশিন ও টুলস ব্যবহার করতে হয়। আবার একটি মেশিনে একাধিক অপারেশন করারও প্রযোজন হতে পারে। যেমন- একটি লেদ মেশিনে টার্নিং, ফেসিং, নালিং, থ্রেড-কাটিং, ড্রিলিং, বোরিং ইত্যাদি অপারেশন করা যায়। মেশিন টুলস অপারেশন বলতে একটি মেশিনের দ্বারা সম্পাদিত সকল অপারেশনগুলোকে বোঝায়, আবার বিভিন্ন মেশিন টুলস-এর জন্য নির্ধারিত অপারেশনগুলোকেও বোঝায়। মেশিন টুলস অপারেশনের পরিধি অনেক বিস্তৃত। একটি নির্দিষ্ট পেশার জন্য পেশাজীবী সম্প্রদায় তৈরি করতে হলে কিছু নির্দিষ্ট মেশিন টুলস-এর অপারেশন আয়ত্ত করতে অথবা এর উপর প্রশিক্ষণ দান করতে হবে। সফলতার সাথে প্রশিক্ষণ গ্রহণ শেষে একজন প্রশিক্ষণার্থী খুব সহজেই সংশ্লিষ্ট পেশা বা বৃত্তিকে অর্থ উপার্জনের মাধ্যম হিসেবে গ্রহণ করতে পারে। মেশিন টুলস অপারেশন ট্রেডে বিভিন্ন প্রকার মেশিনের কাজকে বৃত্তি বা পেশা হিসেবে গ্রহণ করার উপযোগী করে গড়ে তোলার জন্য প্রশিক্ষণ প্রদান করা হয়।

প্রশিক্ষণ বলতে বুঝায় জ্ঞান (Knowledge), দক্ষতা (Skill) ও মনোভাব (Attitude)-এর উন্নয়ন ঘটানো। মেশিন টুলস অপারেশন ট্রেড উন্নীর্ণদের মেশিন টুল অপারেটর বলা হয়। মেশিন টুল অপারেটর হলো এমন এক শ্রেণির কারিগর যারা আত্মনির্ভরশীল হয়ে নিরাপদে সকল প্রকার মেশিন টুল চালনা ও নিয়ন্ত্রণ করে উৎপাদন কাজে বিভিন্ন প্রকার বস্তু বা যন্ত্রাংশ উৎপাদন করতে পারদর্শী হয়।

### ১.২ মেশিন টুল অপারেটরের জন্য তাত্ত্বিক জ্ঞান :

একজন মেশিন টুল অপারেটরের নিম্নোক্ত বিষয়ে তাত্ত্বিক জ্ঞান থাকা প্রয়োজন-

- (ক) মেশিন শপের কাজের জন্য প্রয়োজনীয় হিসাব নিকাশ,
- (খ) লেআউট ও মার্কিং,
- (গ) পরিমাপ ধরণ ও পরিমাপ যাচাইকরণ,
- (ঘ) মেকানিক্যাল ড্রয়িং-এর স্পষ্ট ধারণা,
- (ঙ) মেশিন শপের মৌলিক নিরাপত্তা বিধি,
- (চ) যন্ত্রপাতির রক্ষণাবেক্ষণ,
- (ছ) মেশিন টুলের অ্যাটাচমেন্ট ও অ্যাকসেসরিজ ব্যবহারে দক্ষতা,
- (জ) সঠিক ওয়ার্কহোল্ডিং ডিভাইস ব্যবহার,
- (ঝ) কাটিং টুলের গঠন, ধাতু কাটার পদ্ধতি ও ব্যবহার।
- (ঝঃ) টুলস গ্রাইভিং ও শার্পেনিং ও
- (ট) মেশিন সেটআপ, চালনা ও নিয়ন্ত্রণ।

### ১.৩ মেশিন টুল অপারেটরের জন্য ব্যবহারিক দক্ষতা :

একজন মেশিন টুলস ট্রেড বিষয়ে উন্নীর্ণ প্রশিক্ষণার্থী বা একজন মেশিন টুল অপারেটরের নিম্নোক্ত বিষয়ে ব্যবহারিক দক্ষতা থাকা প্রয়োজন-

- (ক) জবের ওপর ড্রয়িং ও হিসাব অনুযায়ী লে-আউট ও মার্কিং করার দক্ষতা।
- (খ) মাইক্রোমিটার ও ভার্নিয়ার ক্যালিপার-এর সাহায্যে জব উৎপাদন কালীন পরিমাপ যাচাইকরণের দক্ষতা।
- (গ) মেকানিক্যাল ড্রয়িং বুঝতে পারা ও নিজে ড্রয়িং করতে পারার দক্ষতা।
- (ঘ) সাধারণ মেশিন টুলের অ্যাটাচমেন্ট ও অ্যাকসেসরিজ এর ব্যবহারে দক্ষতা।
- (ঙ) ওয়ার্ক হোল্ডিং ডিভাইস সঠিক স্থানে সঠিকভাবে বাঁধতে জানা।
- (চ) মেশিন সেটআপ, চালনা ও নিয়ন্ত্রণে দক্ষতা।
- (ছ) ওয়ার্ক পিসের ধাতুর ধর্ম অনুযায়ী এবং মেশিনিং পদ্ধতি অনুসারে সঠিক কাটিং টুল নির্বাচন করার দক্ষতা ও কাটিং টুল সঠিকভাবে গ্রাইভিং করার দক্ষতা।
- (জ) কাটিং টুলকে সঠিকভাবে ও সঠিক অ্যাংগোলে টুলহোল্ডারের সাথে বাঁধা।
- (ঝ) কাটিং ফ্লাইড ব্যবহার করার দক্ষতা।
- (ঝঃ) কাটিং ডাটা নির্বাচন ও সেটিং-এ সক্ষম।
- (ট) মেশিন অপারেশন সম্পাদনে সক্ষম।
- (ঝঃ) মেশিনশপের মৌলিক নিরাপত্তা বিধি পালনের অভ্যাস।
- (ড) উন্নত হাউজ কিপিং -এর অভ্যাস অর্থাৎ মেশিন, যন্ত্রপাতি ও জিনিসপত্র সংরক্ষণে সক্ষম, ইত্যাদি।

### **১.৪ মেশিন টুল অপারেটরদের সম্ভাব্য কর্মক্ষেত্র :**

একজন মেশিন টুলস অপারেশন ট্রেড উন্নীর্ণ প্রশিক্ষণার্থী বা মেশিন টুল অপারেটর সংশ্লিষ্ট জ্ঞান ও দক্ষতাসহ মেশিন টুলস চালনা করার কৌশল আয়ত্ত করতে পারলে শিল্প কারখানায় বিভিন্ন পদে অনায়াসে নিয়োগ পাবে। তারা স্ব স্ব ক্ষেত্রে নিজ দায়িত্ব সুষ্ঠুভাবে সম্পাদন করতে সমর্থ হবে। নিম্নে মেশিন টুল অপারেটরদের কর্মক্ষেত্রের বিভিন্ন পদের নাম দেওয়া হলো-

- (১) মেশিনিস্ট,
- (২) টার্নার বা লেদম্যান,
- (৩) শেপারম্যান,
- (৪) মিলিংম্যান বা মিলার,
- (৫) গ্রাইডার বা গ্রাইডিং মেশিন অপারেটর,
- (৬) ড্রিল মেশিন অপারেটর,
- (৭) প্লেনার অপারেটর,
- (৮) জুনিয়র টেকনিসিয়ান,
- (৯) সিনিয়র টেকনিসিয়ান, ইত্যাদি।

পদোন্নতির পর মেশিন টুল অপারেটরগণ নিম্নের পদগুলোতে নিয়োগ পেতে পারেন-

- (১) মাস্টার টেকনিসিয়ান
- (২) ফোরম্যান/সুপারভাইজার।

তাছাড়া কারিগরি শিক্ষা অধিদপ্তর অথবা জনশক্তি কর্মসংস্থান ও প্রশিক্ষণ ব্যরোর অধীনে মেশিন টুল অপারেটরগণ নিম্নোক্ত পদে নিয়োগ পেতে পারেন। যথা-

- (১) টুলরূম অ্যাটেনডেন্ট,
- (২) স্টোরকিপার,
- (৩) ক্রাফট ইনস্ট্রাক্টর,
- (৪) সিনিয়র ক্রাফট ইনস্ট্রাক্টর, ইত্যাদি।

## প্রশ্নমালা-১

### অতি সংক্ষিপ্ত প্রশ্ন :

১. বৃত্তি বা পেশা কী?
২. মেশিন টুল ট্রেড উন্নীর্ণ প্রশিক্ষণার্থীদেরকে কী বলা হয়?
৩. লেদ মেশিন অপারেটরকে সংক্ষেপে কী বলা হয়?
৪. শেপিং মেশিনে যে ব্যক্তি কাজ করে তাকে কী বলা হয়?
৫. মিলিং মেশিনে যে ব্যক্তি কাজ করে তাকে কী বলা হয়?
৬. পদোন্নতির পর একজন মেশিন টুল অপারেটর কোন কোন পদে কাজ পেয়ে থাকেন?

### সংক্ষিপ্ত প্রশ্ন :

১. মেশিন টুলস অপারেশন ট্রেড বলতে কী বোঝায়?
২. প্রশিক্ষণ বলতে কী বোঝায়?
৩. মেশিন টুল অপারেটরদের সাধারণতঃ কী কী পদে চাকুরী হয়?
৪. কী কী পদে একজন মেশিন টুল অপারেটরের পদোন্নতি হয়?
৫. একজন মেশিন টুল অপাটেরের ৫টি তাত্ত্বিক জ্ঞানের বিষয় উল্লেখ কর।
৬. একজন মেশিন টুল অপাটেরের ৫টি ব্যবহারিক দক্ষতার বিষয় উল্লেখ কর।

### রচনামূলক প্রশ্ন :

১. মেশিন টুল অপারেশন ট্রেড বলতে কী বোঝায় বর্ণনা কর।
২. মেশিন টুল অপারেটরের কাজগুলি বর্ণনা কর।
৩. একজন মেশিন টুল অপাটেরের কোন কোন বিষয়ে তাত্ত্বিক জ্ঞান থাকা প্রয়োজন তা বর্ণনা কর।
৪. একজন মেশিন টুল অপাটেরের কোন কোন বিষয়ে ব্যবহারিক দক্ষতা থাকা প্রয়োজন তা বর্ণনা কর।
৫. একজন মেশিন টুল অপারেটরের সম্ভাব্য কর্মক্ষেত্রসমূহের বিভিন্ন পদের নাম লেখ।

## অধ্যায়-২

### মেশিন শপ (Machine Shop)

#### ২.১ মেশিন শপ- এর পরিচিতি (Introduction to Machine Shop) :

মেশিন শপ হলো একটি স্থান, যেখানে ধাতুকে প্রয়োজনীয় আকার, আকৃতি এবং মসৃণতায় কাটা হয় এবং মেশিন বা যন্ত্রাংশ তৈরির জন্য সেগুলোকে সংযোজন করা হয়। অন্যভাবে বলা যায়, মেশিন শপ হলো এমন একটি স্থাপনা যেখানে কার্যবস্তুর ওপর বিভিন্ন প্রক্রিয়া বা অপারেশন সম্পন্ন করার জন্য বিভিন্ন প্রকার মেশিন বিদ্যমান থাকে। যেমন- লেদ মেশিন, মিলিং মেশিন, ড্রিলিং মেশিন, শেপিং মেশিন, গ্রাইডিং মেশিন, ওয়েলডিং মেশিন ইত্যাদি। অর্থাৎ এখানে বিভিন্ন যন্ত্রাংশ তৈরি করার জন্য ধাতব বস্তুকে প্রয়োজনীয় পরিমাণে মেশিনিং করা হয়। এভাবে নির্মিত মেশিন বা যন্ত্রাংশগুলি প্রত্যক্ষ বা পরোক্ষভাবে মানুষের বেঁচে থাকার জন্য প্রয়োজনীয় পণ্য সামগ্রী তৈরিতে ব্যবহৃত হয়। মেশিন শপ হলো সকল মেকানিক্যাল উৎপাদনের মূল ভিত্তি।

কাজের ধরন এবং উৎপাদন ক্ষমতার উপর নির্ভর করে মেশিন শপকে তিন ভাগে ভাগ করা যায়-

- (ক) জব শপ (Job shop)
- (খ) সীমিত উৎপাদন শপ (Limited production shop)
- (গ) ব্যাপক উৎপাদন শপ (Mass production shop)

#### (ক) জব শপ (Job shop) :

জব শপ হলো এক ধরনের মেশিন শপ যা প্রয়োজনীয় সকল প্রকার মেশিন টুল (সাধারণত জেনারেল পারপাস মেশিন সমূহ) এবং কর্মী দ্বারা সুসজ্জিত এবং যেখানে সাধারণত বিশেষ ধরনের বিভিন্ন প্রকার সীমিত সংখ্যক (একশত পর্যন্ত) যন্ত্রাংশ বা জব মেশিনিং করা হয়। ডিজাইন ইঞ্জিনিয়ারের ডিজাইনকৃত অথবা আবিক্ষারকের উদ্ভাবিত যন্ত্রাংশ উৎপাদনে জব শপ প্রয়োজনে আসে। স্ট্যান্ডার্ড বা বিশেষ আকৃতির সীমিত পরিমাণ যন্ত্রাংশ তৈরি করতে সাধারণত জব শপ ব্যবহৃত হয়। বৃত্তিমূলক শিক্ষা প্রতিষ্ঠানের বিভিন্ন মেশিন শপসমূহকে এক প্রকার জব শপ বলা চলে।

#### (খ) সীমিত উৎপাদন শপ (Limited production shop) :

জব শপ এবং ব্যাপক উৎপাদন শপের মধ্যবর্তী উৎপাদন ক্ষমতা সম্পন্ন মেশিন শপকে সীমিত উৎপাদন শপ বলা হয়। একশত হতে কয়েক হাজার পর্যন্ত একই রকম যন্ত্রাংশ তৈরি করতে ইহাকে নির্দিষ্ট করা হয়। বহু সংখ্যক পুনরাবৃত্ত অপারেশন (Repetitive Operations) সমূহের জন্য সীমিত উৎপাদন শপের মেশিন টুল গুলিকে সহজেই এক সেটআপ থেকে অন্য সেটআপে পরিবর্তন করা যায়। বর্তমানে জব শপ ও সীমিত উৎপাদন শপগুলি অটোমেটিক ও নিউমেরিক্যাল (Numerical) কন্ট্রোল পদ্ধতিতে নিয়ন্ত্রিত মেশিন টুল ব্যবহার করছে। বাংলাদেশ ডিজেল প্ল্যান্ট, বিটাক (BITAC), প্রত্বতি সীমিত উৎপাদন শপের অন্তর্ভুক্ত।

#### (গ) ব্যাপক উৎপাদন শপ (Mass production shop) :

ব্যাপক উৎপাদন শপে অসীম সংখ্যক যন্ত্রাংশ তৈরি করা হয়। এখানে অটোমেটিক ও নিউমেরিক্যাল কন্ট্রোল পদ্ধতিতে নিয়ন্ত্রিত মেশিন টুলগুলি পূর্ণ ক্ষমতায় ব্যবহৃত হয়। মেশিন টুলগুলি নির্দিষ্ট কিছু অপারেশনের জন্য সুনির্দিষ্ট কতিপয় কাটিং টুল সহ সেটআপ করা হয়। প্রায়ই মেকানিক্যাল আর্মের সাহায্যে ওয়ার্কপিস স্থাপন ও পুনরায় স্থাপন করা হয়। কাজেই একজন অপারেটর অনেক ক্ষেত্রে কয়েকটি মেশিন পরিচালনা করতে পারে।

এই জাতীয় শপে নিজস্ব নিউমেরিক্যাল কন্ট্রোল পদ্ধতি, প্রোগ্রাম তৈরির কম্পিউটার এবং টেপ তৈরি বিভাগ থাকে। লুনা-সুইডেন, ট্রিটিশ অ্যারোস্পেস-যুক্তরাজ্য, এস.কে.এফ (বিয়ারিং তৈরির কারখানা), মিটসুবিশি-জাপান প্রভৃতি ব্যাপক উৎপাদন শপের পর্যায়ভুক্ত।

## ২.২ মেশিন শপে সচরাচর ব্যবহৃত টুলসগুলোর নামঃ

একটি মেশিন শপে বহু ধরনের আকার, আকৃতি এবং মসৃণতার কাজ সম্পাদন করতে হয়। মেশিন শপে এ কাজগুলি সম্পাদন করতে বিভিন্ন প্রকারের টুলস ব্যবহৃত হয়। অধিকতর ব্যবহার এবং কাজের গুরুত্ব বিবেচনা করে মেশিন শপে সচরাচর ব্যবহৃত টুলসগুলোর নাম নিম্নে উল্লেখ করা হলো-

### (ক) মেশিন টুলস (Machine Tools) :

মেশিন টুলস বলতে শক্তি চালিত (Power Driven) যান্ত্রিক ব্যবস্থা বা উৎপাদনকারী যন্ত্রকে বুঝায়। মেশিন টুলসের সাহায্যে কাস্টিং বা ঢালাই, পেটানো লোহা অথবা রোল্ড করা ধাতব বস্তুকে কাটা এবং তা থেকে অতিরিক্ত মেটাল বা ধাতু অপসারিত করা হয়।

### মেশিন শপে ব্যবহৃত মেশিন টুলসসমূহ হলো :

১. সেন্টার বা ইঞ্জিন লেদ (Center or Engine Lathe)
২. টারেট লেদ (Turret Lathe)
৩. ক্যাপস্টান লেদ (Capstan Lathe)
৪. সেন্সিটিভ ড্রিলিং মেশিন (Sensitive drilling machine)
৫. আপরাইট ড্রিলিং মেশিন (Upright drilling machine)
৬. রেডিয়াল ড্রিলিং মেশিন (Radial drilling machine)
৭. প্লেইন হরাইজন্টাল মিলিং মেশিন (Plain horizontal milling machine)
৮. ইউনিভারসাল হরিজন্টাল মেশিন (Universal horizontal milling machine)
৯. ভার্টিক্যাল মিলিং মেশিন মিলিং (Vertical milling machine milling)
১০. শেপিং মেশিন (শেপার)- Shaping machine (shaper)
১১. প্লেনিং মেশিন (প্লেনার)- Planing machine (Planer)
১২. সারফেস গ্রাইভিং মেশিন (Surface grinding machine)
১৩. সিলিন্ড্রিক্যাল গ্রাইভিং মেশিন (Cylindrical grinding machine)
১৪. টুল অ্যান্ড কাটার গ্রাইভার (Tool and Cutter grinder)
১৫. বোরিং মেশিন (Boring Machine)
১৬. হোনিং মেশিন (Honing machine)
১৭. বেন্ড-স (Bend saw)
১৮. পাওয়ার হ্যাক-স (Power hacksaw)
১৯. শিয়ারিং প্রেস (Shearing Press)
২০. বেঙ্গিং মেশিন বা প্রেস ব্রেক (Bending Machine or Press Brake)

### (খ) হ্যান্ড টুলস (Hand Tools) :

হস্ত চালিত যত্রকে হ্যান্ড টুলস বলে। সাধারণত হাতে চালিত বা কায়িক পরিশ্রমের দ্বারা যে সকল যন্ত্রপাতি ব্যবহার করে কাঁচামালকে নির্ধারিত আকার, আকৃতি ও মসৃণতায় আনা হয় সেগুলোকে হ্যান্ড টুলস বলা হয়।

মেশিন শপে বহুল ব্যবহৃত হ্যান্ড টুলসসমূহ হলো :

- ১) হাতুড়ি বা হ্যামার (Hammer)
- ২) স্ক্রু-ড্রাইভার (Screw-driver)
- ৩) রেঞ্চ বা স্প্যানার (Wrench or Spanner)
- ৪) প্লায়ার্স (Pliers)
- ৫) ভাইস (Vice)
- ৬) পাঞ্চ (Punch)
- ৭) অ্যানভিল (Anvil)
- ৮) সারফেস প্লেট (Surface plate)

সবচেয়ে সাধারণ এবং সবচেয়ে বেশি যে সমস্ত হ্যান্ড কাটিং টুলস মেশিন শপে ব্যবহৃত হয় উহাদের নাম নিম্নে উল্লেখ করা হলো-

- ১) ফাইল (File)
- ২) হ্যাক-স (Hack-Saw)
- ৩) চিজেল (Chisel)
- ৪) স্ক্র্যাপার (Scrapper)
- ৫) ট্যাপ (Tap)
- ৬) ডাই (Die)
- ৭) রিমার (Reamer)
- ৮) পাইপ কাটার (Pipe Cutter)

### (গ) মেজারিং টুলস (Measuring Tools) :

মেশিন শপে কোনো জিনিস তৈরি করতে উৎপাদনের বিভিন্ন পর্যায়ে উহার মাপ নেওয়ার প্রয়োজন হয়। মাপ নেওয়ার জন্য বা পরীক্ষা করার জন্য যে সকল যন্ত্রপাতি বা টুলস ব্যবহৃত হয় উহাকে মেজারিং টুলস বলে।

মেশিন শপে সচরাচর ব্যবহৃত মেজারিং টুলসসমূহের নাম হলো-

- ১) ভার্নিয়ার ক্যালিপার্স (Vernier Calipers)
- ২) মাইক্রোমিটার (Micrometer)
- ৩) ডায়াল ইন্ডিকেটর (Dial Indicator)
- ৪) বিভেল প্রোট্রাক্টর (Bevel Protractor)
- ৫) ট্রাই স্ক্যার (Tri-Square)
- ৬) টেলিস্কোপিক গেজ (Teliscopic Gauge)
- ৭) ফিলার গেজ (Feeler Gauge)
- ৮) স্ক্রু পিচ গেজ (Screw Pitch Gauge)
- ৯) ভার্নিয়ার হাইট গেজ (Vernier Height Gauge)
- ১০) কম্বিনেশন সেট (Combination Set)

## ২.৩ মেশিন শপ-এ কর্মরত বিভিন্ন ব্যক্তিদের ভূমিকা :

শিল্পকারখানায় যেখানে মেশিন শপ রয়েছে সেখানে ইলিজ যন্ত্রপাতি উৎপাদন করার লক্ষ্য এবং উদ্দেশ্য অর্জনের জন্য ব্যবস্থাপনার মাধ্যমে মেশিন শপের যাবতীয় কাজ কর্মকে বিভিন্ন পদ এবং পেশার লোকদের মধ্যে দায়িত্ব এবং কর্তব্য হিসেবে বন্টন করে দেওয়া হয়। পদ এবং দায়িত্ব ও কর্তব্যের ভিত্তিতে মেশিন শপে কর্মরত ব্যক্তিদের ভূমিকা নিম্নে উল্লেখ করা হলো-

**জেনারেল মেশিনিস্ট (General Machinist) :** জেনারেল মেশিনিস্ট হলো এক শ্রেণির দক্ষ কারিগর যারা আত্ম নির্ভরশীল হয়ে নিরাপদে সকল প্রকার জেনারেল পারপাস মেশিন (যেমন- লেদ মেশিন, ড্রিল মেশিন, শেপার মেশিন, মিলিং মেশিন, প্লেনার, গ্রাইভিং মেশিন ইত্যাদি)-গুলো নিয়ন্ত্রণ করে উৎপাদনের কাজে বিভিন্ন প্রকার বস্তু বা যন্ত্রাংশ তৈরি করতে সক্ষম বা পারদর্শী। এই প্রকার দক্ষ কারিগরগণ বিভিন্ন প্রকারের মেশিনিং অপারেশনের মেশিনে ডাটা সেট করা, কার্যবস্তু সেট করা ও প্রয়োজনীয় অ্যাকসেসরিজ-এর নিরাপদ ব্যবহার করা ইত্যাদি বিষয়ে খুবই পারদর্শিতা দেখিয়ে থাকেন। তাছাড়া উৎপাদিত দ্রব্যের গুণগত মান এবং সঠিকতা যাচাইকরণ ক্ষমতা, ব্লিন্ট পড়া, খসড়া ড্রয়িং অংকন ক্ষমতা, লেআউট করার দক্ষতা এবং সংশ্লিষ্ট হিসাব নিকাস করার জ্ঞান ও দক্ষতার অধিকারী হয়ে থাকেন।

**স্পেশালাইজড মেশিনিস্ট (Specialized Machinist) :** স্পেশালাইজড মেশিনিস্ট হলো উৎপাদনের কাজে নিয়োজিত সেসব দক্ষ কারিগর যারা নিরাপদে আত্মনির্ভরশীলতার সহিত এক বা একাধিক স্পেশ্যাল পারপাস মেশিন (যেমন- হবিং, ব্রাচিং, ল্যাপিং, হোনিং, থ্রেড মিলিং, থ্রেড গ্রাইভিং, ক্র্যাংক শ্যাফট গ্রাইভিং, কপি মিলিং, প্রোফাইল গ্রাইভিং, গিয়ার প্রাইভিং, ভালভ গ্রাইভিং ইত্যাদি) ব্যবহার করে সফলতার সাথে নির্দিষ্ট মানে বিভিন্ন প্রকার যন্ত্রাংশ তৈরি করতে সক্ষম।

**মেশিনিস্ট (Machinist) :** প্রায় সকল শিল্পকারখানায় যন্ত্রপাতি রক্ষণাবেক্ষণ কাজের জন্য স্পেয়ার পার্টস (Spare Parts) বা খুচরা যন্ত্রাংশ তৈরি করার উদ্দেশ্যে প্রয়োজনীয় সাধারণ মেশিন যেমন- লেদ, শেপার, গ্রাইভার, মিলিং মেশিন ইত্যাদি রাখা হয় এবং উল্লিখিত মেশিন টুলস ব্যবহার করে ধাতব যন্ত্রাংশ তৈরি করার জন্য মেশিনিস্ট নামক এক শ্রেণির দক্ষ কারিগর নিযুক্ত রাখা হয়। এছাড়া কতগুলি উৎপাদনশীল কারখানা আছে যেখানে সকল প্রকার মেশিন টুলস ব্যবহার করে ধাতব দ্রব্য বা যন্ত্রাংশ উৎপাদন করা হয়। উৎপাদনশীল কারখানায় সকল প্রকার মেশিন টুলস ব্যবহার করার জন্য যে শ্রেণির দক্ষ কারিগর নিযুক্ত রাখা হয় তাদেরকে বলা হয় মেশিনিস্ট। মেশিনিস্ট হলো এক শ্রেণির দক্ষ কারিগর যারা আত্মনির্ভরশীল হয়ে নিরাপদে সকল প্রকার মেশিন টুলস চালনা ও নিয়ন্ত্রণ করে এবং প্রয়োজনীয় ক্ষেত্রে রক্ষণা-বেক্ষণ ও মেরামত করা সহ সম্পর্কযুক্ত সমস্যাদি সমাধান করে বিভিন্ন প্রকার বস্তু বা যন্ত্রাংশ উৎপাদন করতে সক্ষম এবং পারদর্শী। অর্থাৎ মেশিনিস্ট হলো এক শ্রেণির দক্ষ কারিগর যারা মেশিন বা যন্ত্রাংশ তৈরিতে পারদর্শী এবং অভিজ্ঞ। আমাদের দেশের শিল্প কারখানায় মেশিনিস্টের অবস্থান হলো ফোরম্যান বা সুপারভাইজারের নিচে এবং আধা দক্ষ কারিগরের উপরে। তবে অনেক শিল্প প্রতিষ্ঠানে মেশিনিস্ট ফোরম্যানের দায়িত্ব পালন করে থাকে।

**মেশিনিস্ট হেলপার (Machinist Helper) :** মেশিনিস্ট হেলপার মেশিন শপে মেশিনিস্টের সাহায্যকারী হিসেবে কাজ সম্পাদন করে থাকে। এরা স্বতন্ত্র বা স্বাধীনভাবে মেশিন চালনা করতে পারে না কিন্তু মেশিনিস্টের অধীনে থেকে বিভিন্ন কাজ করতে পারে। অনেক ক্ষেত্রে মেশিনিস্টের স্বল্পকালীন অনুপস্থিতে এর মেশিন চালনা এবং বিভিন্ন প্রকার সেট আপ স্থাপনের প্রাথমিক কাজগুলি করতে পারে। মেশিনিস্ট হেলপারগণ কাজের সহিত সম্পর্কযুক্ত বিভিন্ন প্রকার হ্যান্ড টুলস, কাটিং টুলস, মেজারিং টুলস, গেজেস, নির্দিষ্ট মেশিনের

ওয়ার্ক হোল্ডিং ডিভাইস সমূহ, নিরাপত্তার বিষয়াদি প্রত্তির প্রয়োগ ও ব্যবহার এবং নাম সম্পর্কে জ্ঞান ও দক্ষতা সম্পন্ন হয়। এই শ্রেণির কারিগর একজন সাধারণত বেঁক ওয়ার্কের প্রাথমিক কাজগুলিও করতে পারে।

**মেশিন অপারেটর (Machine Operator) :** মেশিন অপারেটরের সাধারণ অর্থ হলো মেশিন চালক বা অপারেটর যখন কোনো একজন কারিগর কোনো একটি নির্দিষ্ট মেশিন চালায় তখন উক্ত কারিগরকে সে মেশিনের অপারেটর বলা হয়। যেমন-লেদ অপারেটর, শেপার অপারেটর, মিলিং মেশিন অপারেটর, গ্রাইডিং মেশিন অপারেটর ইত্যাদি। মেশিন অপারেটর কোন একটি নির্দিষ্ট মেশিনের গঠন, বিভিন্ন অংশের কাজ, বিভিন্ন সেটআপ এবং অ্যাটাচমেন্ট সমূহের ব্যবহার, উক্ত মেশিনের কাজের সাথে সম্পর্কযুক্ত বিভিন্ন প্রকার কাটিং টুলস, হ্যান্ড টুলস এবং মেজারিং টুলসের ব্যবহার, মেশিনের কাজের সহিত সম্পর্কযুক্ত ড্রয়িং পড়া এবং খসড়া ড্রয়িং অংকন প্রত্তির উপর সাধারণ জ্ঞান সম্পন্ন হয়। মেশিন চালনার ক্ষেত্রে উপযুক্ত দক্ষতার সাথে আত্মনির্ভরশীল হয়ে নিরাপদে উক্ত মেশিনটি চালনা ও নিয়ন্ত্রণ করে এবং প্রয়োজনীয় ক্ষেত্রে রক্ষণাবেক্ষণ ও মেরামত করাসহ সম্পর্কযুক্ত সমস্যাদি সমাধান করে বিভিন্ন প্রকার বস্তু বা যন্ত্রাংশ উৎপাদন করতে সক্ষম এবং পারদর্শী।

**মেশিন সেটআপ ম্যান (Machine Setup Man) :** মেশিন সেটআপ ম্যান হলো একজন পূর্ণজ্ঞতাবে অভিজ্ঞ মেশিনিস্ট। কিছু দক্ষ মেশিনিস্ট, জব বা প্রডাকশন শপে সেটআপ ম্যান হিসেবে কাজ করে। এদের কাজ হলো মেশিনগুলিকে উৎপাদনের জন্য সেটআপ এবং সমন্বয় করা যাতে অল্প দক্ষ কারিগরগণ সহজেই উক্ত মেশিন চালনা করে বিভিন্ন প্রকার বস্তু বা যন্ত্রাংশ উৎপাদন করতে পারে। এছাড়া মেশিন সেটআপ ম্যান কাজটি কীভাবে করতে হবে তা মেশিন অপারেটরকে দেখিয়ে দেয় এবং সংশ্লিষ্ট অন্যান্য তথ্যাদি বুঝিয়ে দেয়।

**লেআউট ম্যান (Layout Man) :** লেআউট ম্যান হলো একজন অভিজ্ঞ মেশিনিস্ট। জব বা প্রডাকশন শপে কিছু দক্ষ মেশিনিস্ট, লেআউট ম্যান হিসেবে কাজ করে। এদের কাজ হলো উৎপাদনের জন্য প্রদত্ত ড্রয়িং বা ব্লিন্ট অনুযায়ী বিভিন্ন প্রকার প্রয়োজনীয় সূক্ষ্ম মেজারিং ও মার্কিং টুলস ব্যবহার করে কার্য বস্তুর তলের উপর ঐ ড্রয়িং অংকন করে মার্কিং করে রাখা যা দেখে মেশিন অপারেটর সহজেই প্রয়োজনীয় অপারেশনগুলি সম্পাদন করতে পারবে।

**পরিদর্শক (Inspector) :** শিল্প ক্ষেত্রে উৎপাদিত দ্রব্যের বা পণ্যের গুণগত মান নিয়ন্ত্রণ এবং মাপ সঠিক আছে কীনা তা নির্কপণের জন্য কাঁচামাল থেকে আরম্ভ করে ফিনিশেড প্রডাক্ট পর্যন্ত নিয়মিত পরিদর্শন ও পরিমাপের প্রয়োজন হয়। অন্যথায় ইঙ্গিত গুণাগুণ ও সঠিক পরিমাপের শিল্প দ্রব্য উৎপাদিত না হলে, উৎপন্ন দ্রব্য নিয়ন্ত্রণ মানের হবে এবং ক্রেতা সাধারণের নিকট তা গ্রহণ যোগ্য হবে না। সে জন্য উৎপন্ন দ্রব্যের মান ও মাপের সঠিকতার জন্য পরিদর্শনের প্রয়োজন। শিল্প কারখানা বা মেশিন শপে যারা এই পরিদর্শনের কাজটি সফলতার সহিত সম্পাদন করেন তাদের বলা হয় পরিদর্শক বা ইনস্পেক্টর। একজন পরিদর্শক ব্লিন্ট রিডিং বা ওয়ার্কিং ড্রয়িং এর উপর অভিজ্ঞ হবেন এবং মেট্রোলজি বিষয়ের উপর যথেষ্ট জ্ঞান ও দক্ষতার অধিকারী হবেন। অর্থাৎ উৎপাদন ক্ষেত্রে যে সকল মাপন ও টেস্টিং যন্ত্র ব্যবহার হয় উহাদের ব্যবহার পদ্ধতি, মাপন প্রক্রিয়া, ক্রটি নির্ণয়, রক্ষণাবেক্ষণ প্রত্তি সম্পর্কে একজন পরিদর্শক খুবই অভিজ্ঞ হবেন। এছাড়া একজন পরিদর্শক ফিট এবং ফিট এর প্রয়োগ সম্পর্কে জ্ঞান ও দক্ষতা সম্পন্ন হবেন।

**মিলরাইট (Mill-Write) :** একজন মিলরাইট মেশিন শপে মেশিন ইকুইপমেন্ট সড়ানো এবং স্থাপনের কাজ করে। মিলরাইটগুলি মেশিনের পুরাতন ভিত্তি ভাঙ্গা, মেরামত এবং প্রয়োজনীয় ক্ষেত্রে চাহিদা অনুযায়ী

নতুন ভিত্তি তৈরি করতে সক্ষম এবং পারদর্শী। এছাড়া এ শ্রেণির কারিগরগণ মেশিন শপের বিভিন্ন প্রকার মেশিনের যন্ত্রাংশ খোলা এবং পুনরায় সংযোজন করা, প্রয়োজনীয় ক্ষেত্রে লুভিক্যান্ট প্রদান, রফচিন মেনটেইনেন্স কাজ, রিপেয়ার কাজ প্রভৃতিতে অভিজ্ঞ এবং পারদর্শী হয়ে থাকে। অনেক মেশিন শপে মেরামত এবং রক্ষণাবেক্ষণ কাজের জন্য ভিন্ন শাখা থাকে এবং এই শাখার অধীনে কাজ করে মিলরাইটগণ মেশিন শপের যাবতীয় মেশিন সচল এবং কার্যোপযোগী রাখেন।

**টুল অ্যান্ড ডাইমেকার (Tool and Diemaking) :** মেশিন শপে কর্মরত সকল কারিগরের মধ্যে টুল অ্যান্ড ডাই মেকারের কাজ অধিকতর সূক্ষ্ম এবং গুরুত্বপূর্ণ। টুল অ্যান্ড ডাই মেকারগণ মেশিনশপের মেশিনিং কাজে ব্যবহৃত বিভিন্ন প্রকার কাটিং টুলস, জিগ এবং ফিকচার তৈরি করে থাকেন। এছাড়াও ডাইমেকারগণ ফোর্জিং, ফর্মিং, বেঙ্কিং, ড্রয়িং (যেমন-শ্যালো ড্রয়িং, কোল্ড ড্রয়িং, টিউব ড্রয়িং, ওয়্যার ড্রয়িং ইত্যাদি), ডাই কাটিং ও প্লাস্টিক মোল্ডিং-এ ব্যবহৃত ডাই তৈরি করেন। একজন ডাই মেকার মেশিন শপের যে কোনো মেশিন প্রয়োজনীয় কাজের জন্য সেট করতে এবং কাজ সম্পাদনে পারদর্শী ও অভিজ্ঞ হয়ে থাকেন। এছাড়া একজন ডাইমেকার ব্লিন্ট পড়া, খসড়া ড্রাইং অংকন সহ বিভিন্ন প্রকার হ্যান্ড টুলস, মেজারিং টুলস, মার্কিং টুলস, লেআউট টুলস, প্রভৃতি দক্ষতার সাথে নিরাপদে ও প্রয়োজনীয় সূক্ষ্মতা মাত্রায় ব্যবহার করতে পারেন।

**বেঞ্চ মেকানিস্ক বা বেঞ্চ ফিটার (Bench Mechanics or Bench Fitter) :** একজন বেঞ্চ মেকানিস্ক এর কাজ হলো ওয়ার্ক বেঞ্চের উপর হ্যান্ড টুলস ব্যবহার করে উৎপাদিত দ্রব্য বা মেরামতকৃত দ্রব্যের ফিনিশিং দেওয়া। বেঞ্চ মেকানিস্ক বা ফিটারগণ ব্লিন্ট বা ওয়ার্কিং ড্রাইং পড়তে পারেন এবং বিভিন্ন প্রকার বেঞ্চ ওয়ার্ক যেমন-ফাইলিং, ক্রেপিং, পার্শিং, ট্যাপিং, চিপিং প্রভৃতিতে দক্ষ এবং পারদর্শী হয়ে থাকেন।

**স্টোর কিপার (Store Keeper) :** মেশিন শপের বিভিন্ন ব্যতীত সমুদয় যাবতীয় ফিটিংস, মেশিন ও যন্ত্রপাতি, কাঁচামাল, প্রভৃতি যে ব্যক্তির দায়িত্বে রেকর্ডকৃত অবস্থায় মজুত থাকে সেই দায়িত্ব পালনকারী ব্যক্তির পদের নাম স্টোর কিপার। মেশিনসমূহ সাধারণত স্থায়ীভাবে স্থাপন করা থাকে। কাঁচা মাল এবং যন্ত্রপাতি নিয়মিত ভাবে দৈনন্দিন গ্রহণ করতে হয় এবং কাজ শেষ হবার পর ফেরত বা জমা নিতে হয়। বৃত্তিমূলক শিক্ষা প্রতিষ্ঠানের মেশিন শপে স্টোর কিপার সাধারণত যন্ত্রপাতি ও কাঁচামাল সরবরাহ এবং ফেরত গ্রহণ করে থাকে। প্রশিক্ষণার্থী সংখ্যা বেশী হলে অনেক মেশিন শপে স্টোর কিপারকে সাহায্য করার জন্য সহকারী স্টোর কিপার থাকে। সহকারী স্টোর কিপার, স্টোর কিপারের অধীনে স্টোর কিপারের সাহায্যকারী হিসেবে কাজ করে মজুত মালামাল নিয়ন্ত্রণে গুরুত্বপূর্ণ ভূমিকা পালন করে। বৃত্তিমূলক শিক্ষা প্রতিষ্ঠানের মেশিন শপে বিভিন্ন বিষয়ের ব্যবহারিক অংশের ক্লাশ অনুষ্ঠিত হয়ে থাকে। শ্রেণি প্রশিক্ষকের চাহিদা অনুসারে স্টোর কিপার ব্যবহারিক বিষয়ের নির্দিষ্ট অংশের জন্য প্রয়োজনীয় যন্ত্রপাতি ও কাঁচামাল সরবরাহ করে দৈনন্দিন কাঁচামাল খরচ, যন্ত্রপাতি নষ্ট হওয়া বা হারিয়ে যাওয়া সম্পর্কিত তথ্যাদি রেকর্ড করে রাখে। মেশিন শপের ট্রেনিং কার্যক্রম সুষ্ঠু ভাবে সম্পাদনের জন্য স্টোর কিপারকে বাংসরিক, শান্তাসিক এবং প্রয়োজনীয় ক্ষেত্রে জরুরী চাহিদাপত্র তৈরি করতে হয়। ট্রেনিং এর স্বার্থে স্টোর কিপারকে অনেক সময় স্পট কোটেশনের মাধ্যমে মালামাল ক্রয়ের জন্য সংশ্লিষ্ট ব্যক্তিদের সাহায্যে করতে হয়। মালামাল ক্রয়ের ক্ষেত্রে স্টোর কিপারকে ট্রেনিং কার্যক্রমের সঙ্গে সম্পর্কযুক্ত প্রশিক্ষক, ওয়ার্কশপ সুপারিনটেন্ডেন্ট বা ওয়ার্কশপ ইনচার্জ এবং প্রতিষ্ঠান প্রধান যেমন-অধ্যক্ষ, সুপারিনটেন্ডেন্ট এর পরামর্শ এবং নির্দেশ গ্রহণ করে ক্রয়কার্য সম্পাদন করতে হয়। স্টোরে সংরক্ষিত মালামাল ও মেশিন যা রেকর্ডে সংরক্ষিত আছে উহা হারিয়ে যাওয়া, নষ্ট হওয়া, ভেঙ্গে যাওয়া, খরচ হয়ে যাওয়া প্রভৃতি সকল কাজের জন্য স্টোর কিপার ব্যক্তিগতভাবে দায়ী থাকে। এছাড়া স্টোর কিপারকে স্টোরের যাবতীয় রেকর্ডপত্র দায়িত্বপ্রাপ্ত অফিসার/ওয়ার্কশপ সুপারিনটেন্ডেন্ট বা ওয়ার্কশপ ইনচার্জ এর অনুমোদন বা অনুস্বাক্ষর করে রাখতে হয়।

**ক্রাফট ইনস্ট্রাকটর বা দক্ষ বাহক (Craft Instructor or Skill Bearer) :** বৃত্তিমূলক বা কারিগরি শিক্ষা প্রতিষ্ঠানের মেশিন শপে ব্যবহারিক ক্লাশে বিভিন্ন কাজে প্রশিক্ষণার্থীদের, শ্রেণির প্রশিক্ষককে এবং স্টোর কিপারকে সাহায্যে করা ক্রাফট ইনস্ট্রাকটর বা দক্ষ বাহকগণের কাজ। মেশিন শপের যাবতীয় মালামাল দেখাশুনা করা, মেশিন ও যন্ত্রপাতি রক্ষণা-বেঙ্গল করা, শপের যাবতীয় বৈদ্যুতিক সুইচ নিয়ন্ত্রণ করা, শপের মধ্যে উভয় হাউজ কিপিং অবস্থা বজায় রাখা একজন ক্রাফট ইনস্ট্রাক্টর বা দক্ষ বাহকের দায়িত্ব এবং কর্তব্যের অন্তর্গত।

**প্রশিক্ষক বা ট্রেইনার (Instructor or Trainer) :** বিভিন্ন বিষয়ের ব্যবহারিক অংশের উপর প্রশিক্ষণ দান করার জন্য মেশিন শপে কর্মরত যেসব ব্যক্তি দায়িত্বপ্রাপ্ত হয় তারা হলো প্রশিক্ষক বা ট্রেইনার। ব্যবহারিক কাজ সম্পর্কিত সংশ্লিষ্ট তথ্যাদি পরিবেশন, ব্যবহারিক কাজের বিভিন্ন অংশের উপর ব্যবহারিক নির্দেশনা প্রদান, কাজের অনুশীলনের সময় তদারকী করা এবং নিরাপদে নির্দিষ্ট দক্ষতা মানে ব্যবহারিক ক্লাশের কাজ সম্পাদন করা অর্থাৎ প্রশিক্ষণার্থীদের নির্দিষ্ট জ্ঞান ও দক্ষতা মানে কাজ করিতে সমর্থ করে তোলা একজন প্রশিক্ষকের প্রধান দায়িত্ব এবং কর্তব্য। প্রশিক্ষণার্থীদের গঠনমূলক ইতিবাচক মনোভাব সৃষ্টি করা, উভয় কর্ম পরিবেশ নিশ্চিত করা। দুর্ঘটনা এবং অপচয়ের হার কমানো প্রভৃতি ক্ষেত্রে প্রশিক্ষকগণ গুরুত্বপূর্ণ ভূমিকা পালন করে। মেশিন শপের জন্য চাহিদাপত্র তৈরি, মেশিন ও যন্ত্রপাতি মেরামত ও রক্ষণাবেঙ্গল, সঠিক মালামাল আপ্তি নিশ্চিত করা প্রভৃতি ক্ষেত্রে প্রশিক্ষকগণ সর্বদা স্টোর কিপারকে সাহায্য করে। প্রতিষ্ঠান ব্যবস্থাপনা কর্তৃক গৃহীত বিভিন্ন কাজ বাস্তবায়নে প্রশিক্ষকগণ বিভিন্নভাবে প্রশাসনকে সাহায্য করে থাকেন।

**ওয়ার্ক সুপারিনটেনডেন্ট/ওয়ার্কশপ ইনচার্জ (Workshop Superintendent/Workshop Incharge) :** ওয়ার্কশপ সুপারিনটেনডেন্ট বা ওয়ার্কশপ ইনচার্জ হলো ব্যবস্থাপনা বা প্রশাসন কর্তৃক নিয়োগকৃত প্রধান দায়িত্বপ্রাপ্ত কর্মকর্তা। এসব কর্মকর্তা মেশিন শপের যাবতীয় রেকর্ডে স্বাক্ষর করেন এবং স্টোর কিপারকে তার কাজের জন্য তাদের নিকট জবাবদিহি করতে হয়। ওয়ার্কশপ সুপারিনটেনডেন্ট বা ওয়ার্কশপ ইনচার্জ উর্ধ্বতন কর্তৃপক্ষের সঙ্গে সরাসরি যোগাযোগ করেন এবং প্রতিষ্ঠানের আইন কানুন ও শাস্তি শৃঙ্খলা রক্ষায় গুরুত্বপূর্ণ ভূমিকা পালন করেন। তিনি মালামাল ক্রয় ও বিক্রয়, মেশিন ও যন্ত্রপাতি অকেজো হয়ে যাওয়া, ভেঙ্গে বা হারিয়ে যাওয়া, চুরি হওয়া প্রভৃতি বিষয়গুলি সরাসরি তদারকী করেন এবং অনেক ক্ষেত্রে উর্ধ্বতন কর্তৃপক্ষের নিকট এসব বিষয়গুলির কারণে জবাবদিহি করতে হয়। তিনি প্রত্যক্ষ এবং পরোক্ষভাবে প্রশিক্ষণের গুণগত মান, কাঁচামালের মিতব্যয়ী ব্যবহার, মেশিন ও যন্ত্রপাতির সুষ্ঠু এবং নিয়মসম্মত ব্যবহার প্রভৃতি নিয়ন্ত্রণ করে থাকেন। মেশিন শপ ব্যবস্থার সফলতা ওয়ার্কশপ সুপারিনটেনডেন্ট ওয়ার্কশপ ইনচার্জের দায়িত্ব ও কর্তব্য পালনের সফলতার উপর অনেকাংশে নির্ভর করে।

**ওয়ার্কশপ পিয়ন বা খালাসী (Workshop Peon or Khalashi) :** মেশিন শপের মধ্যে স্টোরের বাহিরে খোল অবস্থায় রক্ষিত বিভিন্ন মেশিন, যন্ত্রপাতি ও কাঁচামাল প্রভৃতি হারানো বা চুরি হওয়া রোধ করা, মরিচা পড়া ও ধূলা পড়া থেকে জিনিসপত্র বাঁচানো, বিভিন্ন যত্নাংশের প্রয়োজনীয় জায়গায় তৈল দেওয়া, উভয় কর্ম পরিবেশের স্বার্থে যন্ত্র ও কাঁচামাল নির্দিষ্ট জায়গায় সংরক্ষণ করা (হাউজ কিপিং) প্রভৃতি একজন পিয়ন বা খালাসীর অন্যতম প্রধান দায়িত্ব এবং কর্তব্য। ওয়ার্কশপ পিয়ন বা খালাসী, ওয়ার্কশপ সুপারিনটেনডেন্ট ও ওয়ার্কশপ ইনচার্জ, স্টোর কিপার, ব্যবহারিক ক্লাশে প্রশিক্ষণ দান কাজে নিয়োজিত প্রশিক্ষক, প্রত্যেককে তাদের কাজ সুষ্ঠুভাবে সম্পাদনের জন্য সরাসরিভাবে সাহায্য করে। ওয়ার্কশপ সুপারিনটেনডেন্ট বা ওয়ার্কশপ ইনচার্জের সরাসরি তত্ত্বাবধানে ওয়ার্কশপ পিয়ন বা খালাসীগণ তাদের দায়িত্ব এবং কর্তব্য সম্পাদন করে থাকে।

## প্রশ্নমালা-২

### অতি সংক্ষিপ্ত প্রশ্ন :

১. মেশিন বলতে কী বোঝায়?
২. মেশিন শপকে কয়ভাগে ভাগ করা যায়?
৩. মেশিন শপকে সাধারণত কয়টি শাখায় ভাগ করা যায়?
৪. ফাইল কোন প্রেগির টুল?
৫. মেশিন টুলসকে প্রধানতঃ কয়ভাগে ভাগ করা যায়?
৬. স্টোরের দায়িত্বে যে ব্যক্তি থাকেন তাঁর পদের নাম কী?
৭. মেশিন শপের সার্বিক তত্ত্বাবধান যিনি করেন তাঁর পদের নাম কি?
৮. লেদ কোন ধরনের টুলস?
৯. মেশিন শপের গুণগত মান কোন বিভাগ দ্বারা নিশ্চিত করা হয়?
১০. হার্ডেনিং মেশিন শপের কোন শাখায় করা হয়?

### সংক্ষিপ্ত প্রশ্ন :

১. মেশিন শপ বলতে কী বোঝায়?
২. মেশিন শপের ৫টি শাখার নাম লেখ।
৩. ৫টি মেশিন টুলস এর নাম লেখ।
৪. মেশিন শপে ব্যবহৃত ৫টি মেজারিং টুলস এর নাম লেখ।
৫. জেনারেল মেশিনিস্ট কাকে বলে?
৬. মেশিন অপারেটর বলতে কী বোঝায়?
৭. টার্নার এর কাজ বর্ণনা কর।
৮. মেশিন সেটআপ ম্যানের কাজ কী?
৯. ক্রাফট ইনস্ট্রাউন্টের কাজ বর্ণনা কর।
১০. স্টোর কিপারের কাজ কী?

### রচনামূলক প্রশ্ন :

১. মেশিন শপ বলতে কী বোঝায়? মেশিন শপের যে কোন ৫টি শাখার কার্যাবলী বর্ণনা কর।
২. পরিদর্শন শাখার কার্যাবলী ও গুরুত্ব বর্ণনা কর।
৩. ফিটিং শাখার কার্যাবলী ও গুরুত্ব বর্ণনা কর।
৪. ১০টি মেশিন টুলস এর নাম লেখ।
৫. জেনারেল মেশিনিস্ট এবং স্পেশ্যালাইজড মেশিনিস্ট কাকে বলে? এদের কাজের গুরুত্ব বর্ণনা কর।
৬. মেশিন শপের কাজে দক্ষ বাহক এবং ইন্স্ট্রাউন্টের কাজের পার্থক্য বুঝিয়ে দাও।
৭. ওয়ার্কশপ সুপারিনেটেন্ডেন্টের কাজের গুরুত্ব এবং পরিধি বর্ণনা কর।

## অধ্যায়-৩

# ওয়ার্কশপে সতর্কতামূলক ব্যবস্থা

### (Safety Precautions on Workshop)

#### ৩.১ ওয়ার্কশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা ও শুরুত্ব :

একটি দুর্ঘটনা দ্বারা ব্যক্তিগত, সামাজিক ও জাতীয় পর্যায়ে প্রচুর ক্ষতিসাধন সহ বহুবিধ সমস্যার সৃষ্টি হয়। দুর্ঘটনা কবলিত ব্যক্তি আহত বা নিহত হতে পারে। আহত বা নিহত ব্যক্তির পরিবার ক্ষতিগ্রস্ত হয়। একটি ছোট দুর্ঘটনার কারণে একটি কারখানা ধ্বংসপ্রাপ্ত হয়ে যেতে পারে আবার একজন দক্ষ কর্মী আহত বা নিহত হলে দেশ, জাতি ও পরিবার ক্ষতিগ্রস্ত হয়। সুতরাং কাজ করার সময় ঐ সকল দুর্ঘটনা হতে নিজেকে রক্ষা করার জন্য প্রত্যেক কারিগরের সতর্কতা অবলম্বন করা উচিত। ওয়ার্কশপে দক্ষ কারিগর এবং যন্ত্রপাতি উভয়ই মূল্যবান সম্পদ। কারিগররা সতর্কতার সাথে এবং নিরাপদে বিভিন্ন মেশিনটুলে কাজ করে লাভজনক দ্রব্যাদি বা যন্ত্রাংশ উৎপাদন করবে এটাই কাম্য। অন্যথায় সতর্কতার অভাবে দুর্ঘটনাজনিত কারণে কারিগরদের দৈহিক ক্ষয়ক্ষতি ও মেশিনটুলের ক্ষয়ক্ষতি অলাভজনক উৎপাদনের কারণ হয়, এটা আদৌ কাম্য নয়। বিভিন্ন মেশিনটুল ওয়ার্কশপে সতর্কতার সাথে কাজ করলে দুর্ঘটনা এডানো সম্ভব হয়। সেফটি বিশেষজ্ঞগণ বলেন, শিক্ষা প্রতিষ্ঠানে লক্ষ সতর্কতা ও নিরাপত্তামূলক মনোভাব এবং আচরণ কর্মজীবনে সরাসরি প্রতিফলিত হয়। এ জন্য শিক্ষা প্রতিষ্ঠানে সতর্কতা বিধিসমূহ অনুশীলন করা উচিত। সতর্কতা দুর্ঘটনার হার কমায়। এক সমীক্ষায় দেখা যায় হ্যান্ড টুলস ব্যবহারে দুর্ঘটনার হার ৮%। দুর্ঘটনা ক্ষতি ছাড়া মঙ্গল বয়ে আনে না। এ জন্য দুর্ঘটনা রোধকল্পে সতর্কতা বিধি পালনের প্রয়োজন রয়েছে।

নিম্নে ওয়ার্কশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা উল্লেখ করা হলো-

- ওয়ার্কশপে কর্মরত টেকনিসিয়ানদের জীবনের নিরাপত্তার জন্য।
- টেকনিসিয়ানদের শরীরের বিভিন্ন অঙ্গ প্রত্যঙ্গের নিরাপত্তার জন্য।
- ওয়ার্কশপে ব্যবহৃত টুলস ও যন্ত্রপাতির নিরাপত্তার জন্য।
- ওয়ার্কশপে ব্যবহৃত কাঁচামাল ও অন্যান্য আনুষঙ্গিক জিনিসপত্র সঠিকভাবে ব্যবহার করে অপচয় করিয়ে আনা।
- সময়ের সুষ্ঠু ব্যবহার নিশ্চিত করা।
- উত্তম কর্ম পরিবেশ বজায় রেখে সুষ্ঠুভাবে কাজ পরিচালনা করার জন্য।

#### ৩.২ ওয়ার্কশপের জন্য প্রয়োজনীয় সতর্কতা বিধিসমূহ :

ওয়ার্কশপে কর্মরত অবস্থায় বিভিন্ন প্রকার যন্ত্র বা মেশিন হতে অনেক প্রকার দুর্ঘটনা ও বিপদের আশঙ্কা থাকে। বিভিন্ন প্রকার বিধি পালন করে এ সমস্ত বিপদ বা দুর্ঘটনা হতে মুক্ত থাকা সম্ভব।

নিম্নে ওয়ার্কশপে পালনীয় সতর্কতামূলক বিধিসমূহ উল্লেখ করা হলো-

- ❖ কাজের ধরন অনুসারে সঠিক যন্ত্রের ব্যবহার।
- ❖ কাজ করার সময় যন্ত্রসমূহ যথাস্থানে রেখে কাজ করা।
- ❖ কাজ শেষে যন্ত্রগুলো নির্দিষ্ট একটি বাস্তু যথাস্থানে রাখা।
- ❖ ফাইল (File), স্ক্রেপার (Scraper) ও স্ক্রু-ড্রাইভার (Screw-driver) ইত্যাদি যন্ত্রে উপযুক্ত হাতল লাগিয়ে কাজ করা।

- ◆ হাতড়ির হাতল ও কিলক ঠিকমতো আছে কী না দেখে নেওয়া।
- ◆ “শান” (Grinding) করার সময় সঠিক চশমা ব্যবহার করা।
- ◆ মাপ নেবার যন্ত্রপাতিসমূহকে সঠিক হালে রেখে কাজ করা।
- ◆ টিলা জামা কাপড়, পায়জাম, চাদর, টাই, মাফলার ইত্যাদি পরিধান করে কাজ না করে আটসাট পোশাক তথা অ্যাথ্রোন পরিধান করে কাজ করা।
- ◆ কাজ করার সময় ঘড়ি, বালা, আর্টি ইত্যাদি হাতে না পড়া।
- ◆ খালি পায়ে বা স্যান্ডেল পড়ে উয়ার্কশপে থেবেশ না করা।
- ◆ অক্ষকারে, কম আলোতে বা অভিগ্রহ আলোতে কাজ করা উচিত নয়। ঢোক বলসানো আলো বের হয় এমন কাজে সানগ্লাস ব্যবহার করতে হবে।
- ◆ উয়ার্কশপে থামোজনীর পরিমান অগ্নিনির্বাপক যন্ত্র থকাশ্য ও সুবিধামত জায়গায় সবসময় প্রস্তুত রাখা।

### ৩.৩ উয়ার্কশপে ব্যবহৃত নিরাপদ পোশাক ও সরঞ্জামাদির নাম :

উয়ার্কশপে কাজ করার সময় বে কোন দুর্ঘটনা ঘটানোর জন্য অবশ্যই নিরাপদ পোশাক ও নিরাপদ সরঞ্জামাদি পরিধান করা দরকার। নিম্নে মেশিনশপে নিরাপদ পোশাক ও সরঞ্জামাদির তালিকা দেওয়া হলো-

#### নিরাপদ পোশাক ও সরঞ্জামসমূহ :

১. মোটা কটন বা জিনসের তৈরি অ্যাথ্রোন,
২. আটসাট পোশাক,
৩. ল্যান্ডারের তৈরি হ্যান্ড-গ্লাভস,
৪. সেফটি গগলস,
৫. হ্যাড শিল্ড
৬. ল্যান্ডারের তৈরি শক্ত তলা বিলিট ছুতা,
৭. অগ্নিনির্বাপক যন্ত্র, ইত্যাদি।



(1)



(2)



(3)



(8)



(4)



(5)



(9)

চিত্র-৩.১ : নিরাপদ পোশাক ও সরঞ্জামাদি

### প্রশ্নমালা-৩

#### **অতিসংক্ষিপ্ত প্রশ্ন :**

১. দুর্ঘটনা কী ?
২. কর্মীদের মাঝে নিরাপদ কার্যাভ্যাস গড়ে তোলার দায়িত্ব কার ?
৩. দুর্ঘটনা থেকে রক্ষা পাওয়ার জন্য প্রত্যেক কারিগরের কী অবলম্বন করা উচিত ?
৪. কাজের সময় চোখ রক্ষা করার জন্য কী ব্যবহার করা উচিত ?
৫. মেশিনশপে কাজের সময় কী ধরনের জুতা পরিধান করা উচিত ?
৬. নিরাপত্তার জন্য গৃহিত কার্যক্রমকে কী বলা হয় ?

#### **সংক্ষিপ্ত প্রশ্ন :**

১. কোনো কারখানায় দুর্ঘটনা ঘটার ৫টি কারণ লেখ।
২. নিরাপত্তাবিধি বলতে কী বোঝায়? ব্যাখ্যা কর।
৩. ৫টি সতর্কতামূলক ব্যবস্থার উল্লেখ কর।
৪. মেশিনশপের জন্য বিপদজনক ৫টি অবস্থা উল্লেখ কর।
৫. মেশিনশপে সতর্কতা বিধি পালন করা কেন প্রয়োজন উল্লেখ কর।
৬. নিরাপদ পোশাক বলতে কী বোঝায়? উদাহরণসহ লেখ।
৭. মেশিনশপে নিরাপদ পোশাক এবং সরঞ্জামাদি কেনে ব্যবহার করা প্রয়োজন উল্লেখ কর।

#### **রচনামূলক প্রশ্ন :**

১. দুর্ঘটনা কী? কিভাবে দুর্ঘটনা এড়ানো যায় বর্ণনা কর।
২. মেশিনশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা উল্লেখ কর।
৩. মেশিনশপে পালনীয় ১০টি সতর্কতা বিধি লেখ।
৪. মেশিনশপের বিপদজনক অবস্থাদি বর্ণনা কর।
৫. বিপদমুক্ত কার্যাভ্যাস বলতে কী বোঝায় ? বর্ণনা কর।
৬. মেশিনশপে কী ধরনের নিরাপদ সরঞ্জামাদি পরিধান করা উচিত ? বর্ণনা কর।
৭. মেশিনশপে কাজ করার সময় কীভাবে যন্ত্রপাতি সুবিন্যস্ত করা প্রয়োজন, তা বর্ণনা কর।
৮. টুলরুমে যন্ত্রপাতি সংরক্ষণের প্রক্রিয়া বর্ণনা কর।
৯. ওয়ার্কশপের তিনটি বিপদজনক অবস্থা উল্লেখ কর এবং এ ব্যাপারে তোমার করণীয় ব্যবস্থাদি বর্ণনা কর।

## অধ্যায়-৪

### মেশিনশপে ব্যবহৃত কাচামাল (ধাতু ও অধাতু)

#### ৪.১ মেশিন শপে সচরাচর ব্যবহৃত ধাতু ও অধাতুসমূহের নাম :

মেশিনশপে সাধারণত যে সকল ধাতু ব্যবহৃত হয় উহাদেরকে দুইটি শ্রেণিতে বিভক্ত করা যায়। যেমন-

- ১) লোহজাত ধাতু (Ferrous Metals)
- ২) অলোহজাত ধাতু (Non-Ferrous Metals)

লোহজাত ধাতু (Ferrous Metals) : যে সকল ধাতুর মধ্যে লোহ বিদ্যমান থাকে সেগুলোকে লোহজাত ধাতু বলা হয়। মেশিনশপে যে সকল লোহজাত ধাতু ব্যবহৃত হয় তা হলো-

- ১) মাইল্ড স্টিল (Mild Steel)
- ২) মিডিয়াম কার্বন স্টিল (Medium Carbon Steel)
- ৩) হাই কার্বন স্টিল (High Carbon Steel)
- ৪) টুল স্টিল (Tool Steel)
- ৫) গ্রে-কাস্ট আয়রন (Gray Cast Iron)
- ৬) হোয়াইট কাস্ট আয়রন (White Cast Iron)
- ৭) চিল্ড কাস্ট আয়রন (Chilled Cast Iron)
- ৮) ম্যালিয়েবল কাস্ট আয়রন (Malleable Cast Iron)
- ৯) হাই-স্পিড স্টিল (High Speed Steel)
- ১০) রাট আয়রন (Wrought Iron)
- ১১) স্টেইনলেস স্টিল (Stainless Steel)
- ১২) স্প্রিং স্টিল (Spring Steel)
- ১৩) নিকেল স্টিল (Nickel Steel)
- ১৪) ক্রোমিয়াম স্টীল (Chromium Steel)
- ১৫) টাংস্টেন স্টিল (Tungsten Steel), প্রভৃতি।

অলোহজাত ধাতু (Non-Ferrous Metals) : যে সকল ধাতুর মধ্যে লোহ বা আয়রন থাকে না সেগুলোকে অলোহজাত ধাতু বলা হয়। মেশিনশপে যে সকল অলোহজাত ধাতু ব্যবহৃত হয় সেগুলো হলো-

- ১) ব্রাস (Brass)
- ২) ব্রোঞ্জ (Bronze)
- ৩) গান মেটাল (Gun Metal)
- ৪) অ্যালুমিনিয়াম (Aluminium)
- ৫) তামা (Copper)
- ৬) দস্তা (Zinc)
- ৭) অ্যালুমিনিয়াম ব্রোঞ্জ (Aluminium Bronze)
- ৮) ফসফর ব্রোঞ্জ (Phosphorus Bronze)

- ৯) বেল মেটাল (Bell Metal)
- ১০) সীসা (Lead)
- ১১) নিকেল (Nickel)
- ১২) টিন (Tin), প্রভৃতি।

মেশিনশপে সাধারণত যে সকল অধাতু ব্যবহৃত হয় সেগুলো হলো-

- ১) সালফার (Sulphur)
- ২) ফসফরাস (Phosphorous)
- ৩) প্লাস্টিক (Plastic)
- ৪) কাঁচ (Glass)
- ৫) ডায়মন্ড (Diamond)
- ৬) গ্র্যাফাইট (Graphite)
- ৭) কার্বন (Carbon)
- ৮) সিলিকন (Silicon)
- ৯) পলিথিলিন (Polytheline), ইত্যাদি।

#### ৪.২ ধাতু ও অধাতু সম্পর্কে ধারণা :

**ধাতু (Metals) :** যে সকল পদার্থের বিশেষ দ্যুতি আছে, আঘাত সহ্য করার ক্ষমতা বিদ্যমান, পিটিয়ে পাতলা পাত বানানো যায়, টেনে সরু ও লম্বা করা যায়, আঘাত করলে বিশেষ ধাতব শব্দ হয় এবং তাপ ও বিদ্যুত সুপরিবাহী তাদেরকে ধাতু বলে। যেমন- লোহা, তামা, দস্তা, সোনা, রূপা, ইত্যাদি।

**অধাতু (Non-Metals) :** যে সকল মৌলিক পদার্থ বা যৌগিক পদার্থ সাধারণত তাপ ও বিদ্যুত পরিবাহী নয়, কোনো দ্যুতি নেই, অপেক্ষাকৃত ভঙ্গুর এবং আঘাত করলে ধাতব শব্দ হয় না তাদেরকে অধাতু বলা হয়। যেমন- সালফার, ফসফরাস, প্লাস্টিক, কাঁচ, ডায়মন্ড, গ্র্যাফাইট, কার্বন, সিলিকন, পলিথিলিন, ইত্যাদি অধাতুর উদাহরণ।

#### ৪.৩ মেশিনশপে সচরাচর ব্যবহৃত লৌহজাত ধাতু ও অলৌহজাত ধাতু :

**লৌহজাত ধাতু (Ferrous Metals) :** যে সকল ধাতুর মধ্যে লৌহ বিদ্যমান থাকে সেগুলোকে লৌহজাত ধাতু বলা হয়। মেশিনশপে যে সকল লৌহজাত ধাতু ব্যবহৃত হয় উহারা হলো- মাইল্ড স্টিল, মিডিয়াম কার্বন স্টিল, হাই কার্বন স্টিল, টুল স্টিল, গ্রে-কাস্ট আয়রন, হোয়াইট কাস্ট আয়রন, চিল্ড কাস্ট আয়রন, ম্যালিয়েবল কাস্ট আয়রন, হাই-স্পীড স্টীল, রট আয়রন, স্টেইনলেস স্টীল, স্প্রিং স্টীল, নিকেল স্টীল, ক্রোমিয়াম স্টীল, টাংস্টেন স্টীল প্রভৃতি।

**অলৌহজাত ধাতু (Non-Ferrous Metals) :** যে সকল ধাতুর মধ্যে লৌহ বা আয়রন থাকে না সেগুলোকে অলৌহজাত ধাতু বলা হয়। মেশিনশপে যে সকল অলৌহজাত ধাতু ব্যবহৃত হয় সেগুলো হলো- ব্রোঞ্জ, গান মেটাল, অ্যালুমিনিয়াম, তামা, দস্তা, অ্যালুমিনিয়াম ব্রোঞ্জ, ফসফর ব্রোঞ্জ, বেল মেটাল, সীসা, নিকেল, টিন প্রভৃতি।

#### ৪.৪ লৌহজাত ধাতু শনাক্ত করণ :

মেশিনশপে ব্যবহৃত ধাতুসমূহকে খালি চোখে দেখে ব্যবহারের জন্য অতি সহজেই শনাক্ত করা যায়। ধাতব পদার্থের বাইরের আবরণ-এর চাকচিক্য, রং বা বর্ণ এবং যে কোনো দাগ বা চিহ্ন এই ধাতুর বাহ্যিক রূপের অঙ্গরূপ। তাই অনেক ধাতুকে বাহ্যিক রূপ দেখে অতি সহজেই চেনা যায়। সাধারণত লৌহজাত ধাতু চুম্বক আকর্ষণ করে থাকে। তাই একটি চুম্বক ব্যবহার করে অতি সহজেই অধিকাংশ লৌহজাত ধাতুকে শনাক্ত করা যায়। ধাতব পদার্থের বাহ্যিক রূপ দেখে লৌহজাত ধাতু শনাক্তকরণের জন্য নিম্নে একটি তালিকা দেওয়া হলো-

| ধাতুর নাম             | ধাতুর বাহ্যিক রূপ                                                                                                                                                                                                                                                                                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| পিগ আয়রন             | ব্লাস্ট ফার্নেসে আকরিক লৌহ গলানোর পর অন্তর্ভৰ্তীকালীন প্রভাস্ত হলো পিগ আয়রন, যার মধ্যে সিলিকা ও ৩.৫-৪.৫% কার্বন থাকে। ফলে এটি ভঙ্গুর হয়ে থাকে এবং সরাসরি কোনো মেশিনিং এর কাজে ব্যবহার করা যায় না। পিগ আয়রন ইংগট বা পিগ আকারে থাকে যা কিউপোলা ফার্নেসে গলিয়ে কাস্ট আয়রনের মোল্ড তৈরি করা হয়। |
| কাস্ট আয়রন           | এ ধাতুর আবরণ অমসৃণ, বর্ণ ধূসর এবং বালুকণাযুক্ত। প্রায়ই ঢালাই চিহ্ন থাকে। ভাঙ্গলে এর ভেতরের অংশ স্ফটিকের ন্যায় দানা বিশিষ্ট দেখায়।                                                                                                                                                               |
| রট আয়রন              | অল্প লাল আভাযুক্ত মলিন, উপরে আঁশের ন্যায় আবরণ থাকায় উপরিভাগ অমসৃণ হয়। ভেঙ্গে গেলে এর ভেতরের অংশ আঁশযুক্ত (Fibrous) বোধ হয় এবং উহা রেশমের ন্যায় দুর্যোগ যুক্ত নীলাভ বর্ণের হয়।                                                                                                                |
| মাইল্ড স্টিল          | এর আবরণ মসৃণ এবং বর্ণ মরিচাইন অবস্থায় নীলাভ কৃষ্ণবর্ণ দেখায়। মরিচা পড়লে একে লালচে বাদামী দেখায়। ভাঙ্গলে ভেতরের অংশ অল্প আঁশযুক্ত বোধ হয়।                                                                                                                                                      |
| মিডিয়াম কার্বন স্টিল | এর আবরণ মসৃণ এবং বর্ণ মরিচাইন অবস্থায় নীলাভ কৃষ্ণবর্ণ দেখায়। মরিচা পড়লে একে লালচে বাদামী দেখায়। ভাঙ্গলে ভেতরের অংশ ক্ষুদ্র দানাযুক্ত দেখায়।                                                                                                                                                   |
| হাই-কার্বন স্টিল      | এর আবরণ মসৃণ এবং বর্ণ মরিচাইন অবস্থায় গাঢ় নীলাভ কৃষ্ণবর্ণ দেখায়। মরিচা পড়লে একে লালচে বাদামী দেখায়। ভাঙ্গলে ভেতরের অংশ ক্ষুদ্র দানাযুক্ত দেখায়।                                                                                                                                              |
| কাস্ট স্টিল           | এর আবরণ খুব মসৃণ এবং উজ্জ্বল কৃষ্ণবর্ণ দেখায়। এর কোণগুলো তীক্ষ্ণ হয়। ভাঙ্গলে ভেতরের অংশ খুবই ক্ষুদ্র দানাযুক্ত দেখায়।                                                                                                                                                                           |
| হাইস্পিড-স্টিল        | কাস্ট স্টিল হতে কম মসৃণ এবং বর্ণ লালচে হয়।                                                                                                                                                                                                                                                        |

#### ৪.৫ অলৌহজাত ধাতু শনাক্তকরণ :

অলৌহজাত ধাতুসমূহকে তাদের বর্ণ দেখে অতি সহজেই চেনা যায়। তাছাড়া চুম্বক অলৌহজাত ধাতুসমূহকে আকর্ষণ করে না বলে চুম্বক দিয়েও খুব সহজে এদেরকে শনাক্ত করা যায়। ধাতব পদার্থের বাহ্যিক রূপ দেখে অলৌহজাত ধাতু শনাক্তকরণের জন্য নিম্নে একটি তালিকা দেওয়া হলো-

| ধাতুর নাম            | ধাতুর বাহ্যিক রূপ                                                                                                                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| অ্যালুমিনিয়াম       | এর আবরণ মসৃণ এবং বর্ণ উজ্জ্বল এবং অল্প নীল আভাযুক্ত সাদা। এর উপরিভাগ বাতাসের জলীয় বাঞ্চ দ্বারা আক্রান্ত হয় না বিধায় এর বর্ণ সহজে মলিন হয় না। |
| কাস্ট অ্যালুমিনিয়াম | এর আবরণ অমসৃণ এবং দেখতে নীলাভ সাদা।                                                                                                              |

|                |                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| কপার বা তামা   | এর আবরণ মসৃণ। শুষ্ক অবস্থায় এর বর্ণ লাল এবং উজ্জ্বল কিন্তু আর্দ্র বায়ুর প্রভাবে উপরিভাগে নীলাভ কালো বর্ণের অক্সাইড তৈরি হয়। ফলে উপরিভাগ মলিন দেখায়। বিশুদ্ধ অবস্থায় কপার নরম থাকে।                                           |
| কপার বা তামা   | এর আবরণ মসৃণ। শুষ্ক অবস্থায় এর বর্ণ লাল এবং উজ্জ্বল কিন্তু আর্দ্র বায়ুর প্রভাবে উপরিভাগে নীলাভ কালো বর্ণের অক্সাইড তৈরি হয়। ফলে উপরিভাগ মলিন দেখায়। বিশুদ্ধ অবস্থায় কপার নরম থাকে।                                           |
| ব্রাস বা পিতল  | এর আবরণ মসৃণ। ইহা দেখতে উজ্জ্বল এবং হরিদ্বাবর্ণ।                                                                                                                                                                                  |
| ব্রোঞ্জ        | এর আবরণ মসৃণ হয়। ব্রোঞ্জ ব্রাস অপেক্ষা শক্ত এবং দেখতে লাল আভাযুক্ত হরিদ্বাবর্ণের হয়ে থাকে।                                                                                                                                      |
| লেড বা সীসা    | এর উপরিভাগ অমসৃণ হয়। ইহা দেখতে নীল আভাযুক্ত ধূসর বর্ণ এবং উজ্জ্বল। কিন্তু আর্দ্র বায়ুর অক্সিজেনের সাথে বিক্রিয়া করে অক্সাইড উৎপন্ন করে বলে উপরিভাগ মলিন দেখায়। সীসা নরম এবং ভারী ধাতু। এর সাহায্যে কাগজের উপর রেখা টানা যায়। |
| জিঙ্ক বা দস্তা | এর আবরণ অমসৃণ হয়। বিশুদ্ধ অবস্থায় এর বর্ণ উজ্জ্বল এবং নীল আভাযুক্ত সাদা হয়। ভাঙলে এর ভিতরের অংশ দানাদার দেখা যায়।                                                                                                             |
| চিন বা রাঙ্গ   | এর বর্ণ উজ্জ্বল হরিদ্বা আভাযুক্ত সাদা। ভাঙলে এর ভেতরের অংশ দানাদার দেখায়।                                                                                                                                                        |
| নিকেল          | এর উপরিভাগ মসৃণ হয়। এর বর্ণ খুব উজ্জ্বল এবং রৌপ্যের ন্যায় সাদা। বায়ুর অক্সিজেন দ্বারা আক্রান্ত হয় না বিধায় এর উপরিভাগ সর্বদা উজ্জ্বল থাকে।                                                                                   |

#### ৪.৬ ধাতুর যান্ত্রিক গুণাবলী (Mechanical Properties of Metal) :

বাহ্যিক বল প্রয়োগের ফলে ধাতুর মধ্যে যে সমস্ত বৈশিষ্ট্য পরিলক্ষিত হয় সেগুলোকে ধাতুর যান্ত্রিক ধর্ম বলে।  
যেমন-

| ধাতুর যান্ত্রিক গুণাবলীর নাম | ধাতুর যান্ত্রিক গুণাবলীর বর্ণনা                                                                                                                                                                                                                                           |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| স্ট্রেঞ্চ (Strength)         | কোন পদার্থের উপর বল প্রয়োগ করলে সেই বল প্রতিরোধ করে নিজের আকৃতি ও গুণাবলী ঠিক রাখার ক্ষমতাকে ঐ পদার্থের স্ট্রেঞ্চ বলা হয়।                                                                                                                                               |
| স্ট্রেস (Stress)             | কোন বস্তুর উপর বাহির হতে বল প্রয়োগ করলে সেই বলকে প্রতিরোধ করার জন্য পদার্থের একক প্রস্তুচ্ছেদের ক্ষেত্রফলের উপর বিপরীতমুখী আভ্যন্তরীণ প্রতিক্রিয়া বলের পরিমাণ কে স্ট্রেস বলা হয়। $\text{স্ট্রেস} = (\text{বল } \times \text{ক্ষেত্রফল}) / \text{নিউটন}/\text{মিটার}^2$ |
| স্ট্রেইন (বাংধুরহ)           | বাহ্যিক বল প্রয়োগে বস্তুর দৈর্ঘ্য বা আয়তনের মোট পরিবর্তন ও আদি দৈর্ঘ্য বা আয়তনের অনুপাতকে স্ট্রেইন বলে।<br>$\text{স্ট্রেইন} = (\text{আদি দৈর্ঘ্য } - \text{আয়তন}) / \text{আয়তন}$                                                                                     |
| কাঠিন্যতা (Hardness)         | যে গুণের জন্য কোনো পদার্থ এর উপর অতিসূক্ষ্ম দাগাক্ষিতকরণ, ঘর্ষণ, ক্ষয় বা গর্তকরণে প্রতিরোধের সৃষ্টি করে পদার্থের গুণকে কাঠিন্যতা বলা হয়।                                                                                                                                |
| ভঙ্গুরতা (Brittleness)       | যে গুণের জন্য পদার্থের উপর আঘাত করলে সামান্যতম বিকৃত না হয়ে চূর্ণ বিচূর্ণ হয়ে যায়, পদার্থের সেই গুণকে ভঙ্গুরতা বলা হয়।                                                                                                                                                |

|                                |                                                                                                                                                                                                                                                      |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| তান্তবতা<br>(Ductility)        | যে গুণের জন্য কোনো পদার্থকে টেনে লম্বা করে তারের আকৃতি প্রদান করা যায়, পদার্থের সেই গুণকে তান্তবতা বলা হয়। স্বর্ণের তান্তবতা সবচেয়ে বেশি এবং সীসার তান্তবতা কম।                                                                                   |
| পাততা<br>(Malleability)        | যে গুণের জন্য পদার্থকে হাতুড়ি দ্বারা পিটিয়ে বা আঘাতের মাধ্যমে অতি পাতলা পাতে পরিণত করা যায়। সে গুণকে পাততা বলা হয়। পাততার নিম্ন ক্রমানুযায়ী ধাতুসমূহ হচ্ছে- সোনা, রূপা, অ্যালুমিনিয়াম, তামা, টিন, প্লাটিনাম, সীসা, দস্তা, লোহা, নিকেল ইত্যাদি। |
| ঘাতসহতা<br>(Toughness)         | কোন বস্তুর উপর বল প্রয়োগ করলে উহা স্থিতিস্থাপক সীমা অতিক্রম করার পূর্ব পর্যন্ত যে পরিমাণ শক্তি শোষণ বা গ্রহণ করতে পারে, তাকে ঘাতসহতা (Toughness) বলা হয়।                                                                                           |
| স্থিতিস্থাপকতা<br>(Elasticity) | পদার্থের যে গুণের জন্য উহার উপর বাহ্যিক বল প্রয়োগে সৃষ্টি বিকৃতিকে বল সরিয়ে নেওয়ার সঙ্গে সঙ্গে ঐ পদার্থ তার পূর্বাবস্থা ফিরে পায়, সে গুণকে স্থিতিস্থাপকতা বলে।                                                                                   |
| রেজিলিয়েন্স<br>(Resilience)   | কোন পদার্থের উপর বল প্রয়োগ করলে ঐ পদার্থ নিজের আকার আকৃতি ঠিক রেখে একক আয়তনের উপর সর্বোচ্চ পরিমাণ শক্তি গ্রহণ বা সঞ্চয় করে রাখার ক্ষমতাকে রেজিলিয়েন্স বলা হয়।                                                                                   |

## প্রশ্নমালা-৪

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ধাতু কাকে বলে ?
২. অধাতু কাকে বলে ?
৩. লৌহজাত ধাতু কাকে বলে ?
৪. অলৌহজাত ধাতু কাকে বলে ?
৫. ৫টি ধাতুর নাম লেখ ।
৬. ৫টি অধাতুর নাম লেখ ।
৭. ৫টি লৌহজাত ধাতুর নাম লেখ ।
৮. ৫টি অলৌহজাত ধাতুর নাম লেখ ।
৯. স্টেইনলেস স্টিল বলতে কী বোঝায় ?
১০. হাই-স্পিড স্টিল বলতে কী বোঝায় ?
১১. রট আয়রন কী ?
১২. কাস্ট আয়রন কী ?

### সংক্ষিপ্ত প্রশ্ন :

১. ধাতু ও অধাতুর উদাহরণসহ পার্থক্য লেখ ।
২. লৌহজাত ধাতু ও অলৌহজাত ধাতুর উদাহরণসহ পার্থক্য লেখ ।
৩. লোহার শ্রেণিবিভাগ দেখাও ।
৪. মাইল্ড স্টিলের শ্রেণিবিভাগ দেখাও ।
৫. হাই কার্বন স্টিল ও কাস্ট আয়রনের মধ্যে পার্থক্য কী ?
৬. ধাতুর যান্ত্রিক গুণাবলী বলতে কী বোঝায় ?
৭. হার্ডনেস এর সংজ্ঞা দাও ।
৮. ধাতুর তাত্ত্বিক গুণ বলতে কী বোঝায় ?
৯. ধাতুর ঘাতসহতা বলতে কী বোঝায় ?
১০. ধাতুর স্থিতিস্থাপকতা গুণ বলতে কী বোঝায় ?

### রচনামূলক প্রশ্ন :

১. ধাতু ও অধাতু বলতে কী বোঝায় ? এদের মধ্যে উদাহরণসহ পার্থক্য লেখ ।
২. ধাতুর যান্ত্রিক গুণাবলী বলতে কী বোঝায় ? ৫টি যান্ত্রিক গুণাবলীর বর্ণনা দাও ।
৩. বিভিন্ন প্রকার স্টিলের ব্যবহার ও গুণাবলীর বর্ণনা দাও ।
৪. লৌহজাত ধাতুর শ্রেণিবিভাগ বর্ণনা কর ।
৫. বিভিন্ন প্রকার কাস্ট আয়রনের ব্যবহার ও গুণাবলী বর্ণনা কর ।

## অধ্যায়-৫

# টুলস (Tools)

### ৫.১ টুলস-এর সহজা :

কোনো জব বা উদ্যোক্ষিতকে অন্তর্ভুক্ত অনুযায়ী পূর্ববর্ধিত আকার, আকৃতি এবং মসৃণতার পরিবর্তন করার জন্য যান্ত্রিক সুবিধা সমগ্রিত যে ডিজাইন সমূহ বা আধাৰ সমূহ ব্যবহার কৰা হয় তাদেরকে টুলস বলা হয়। অন্যভাবে বলা বাৰ টুলস হলো এক ধৰণৰ যন্ত্ৰ বা যন্ত্ৰাংশৰ সমষ্টি যা কোনো ধৰু বা উদ্যোক্ষিত থেকে অক্ষিণি অন্তর্ভুক্ত ধৰু কেটে বা ক্ষয় কৰে নির্দিষ্ট আকার, আকৃতি এবং মসৃণতা দেওৱার কাজে ব্যবহৃত হয়। অৰ্থাৎ টুলস হলো এক ধৰণৰ যন্ত্ৰাংশৰ যা ব্যবহাৰৰ মাধ্যমে মূল্যায় কাজ সহজসাধ্য হয় এবং হাতেৰ কাৰ্যবন্ধ সূচন এবং সঠিকভাৱে সম্পাদনে সহায়তা কৰে।

### ৫.২ টুলস-এৰ প্ৰেৰণি বিভাগ :

মেশিনশপে যে সব টুলস ব্যবহৃত হয় তাদেৱ কাজেৰ ধৰন ও বৈশিষ্ট্য অনুসৰে তাদেৱকে প্ৰথানতঃ ৫ (পাঁচ) ভাগে বিভক্ত কৰা হেতো পাৰে। যথা-

- ১) মাৰ্কিং বা সেআউট টুলস (Marking or Layout Tools)
- ২) কাটিং টুলস (Cutting Tools)
- ৩) মেজাৰিং টুলস (Measuring Tools)
- ৪) আনুষঙ্গিক ঘাত টুলস (Related Hand Tools)
- ৫) মেশিন টুলস (Machine Tools)

### ৫.৩ বিভিন্ন ধৰণৰ টুলস সমাজকৰণ :

#### মাৰ্কিং বা সেআউট টুলস (Marking or Layout Tools) :

কাজ আৰম্ভ কৰাৰ পূৰ্বে অধৰা কাজেৰ সময় ছুটিং অনুযায়ী ধৰু থকেৰ উপযোগী যে সকল টুলস বাৰা মাৰ্কিং কৰা হয় বা সাধ কেটে চিহ্ন দেওৱা হয় বা চিহ্নিত কৰাৰ কাজে সাহায্য কৰে, সেসব টুলসকে মাৰ্কিং বা সেআউট টুলস বলা হয়। ধৰনত ছুটিং অনুসৰে কাৰ্যবন্ধৰ উপযোগী ছুটিং বা সকলো আৰম্ভ কৰাকে মাৰ্কিং অধৰা সেআউট বলা হয়। কাগজেৰ উপৰ পেশিল ব্যবহাৰ কৰে যে নিয়মে মেকানিক্যাল ছুটিং কৰা হয় অনুমতি নিয়মে মাৰ্কিং অধৰা সেআউট টুলস ব্যবহাৰ কৰে কাৰ্যবন্ধ তৈৰি কৰাৰ জন্য উদ্যোক্ষিতৰ উপৰ মাৰ্কিং অধৰা সেআউট কৰা হয়। বেঁক খোক, পিট মেটোল খোক, প্ৰিলি অৱ কেন্দ্ৰে কেন্দ্ৰেৰ অবহান চিহ্নিত কৰাৰ জন্য সেআউট খোক শুবই কৰকৰ্তৃপূৰ্ণ কৃতিকা গালন কৰ্যে।

বিভিন্ন ধৰণৰ মাৰ্কিং অধৰা সেআউট টুলসজোৱা হোৱা-

#### ১) ডট পান্ক (Dot Punch) :

point angle- $60^{\circ}$



dot punch

২) সেন্টার পান্চ (Centre Punch) :



৩) ক্রিবার (Scriber) :



৪) ট্রামেল (Trammel) :



৫) হার্মফ্রোডিট ক্যালিপার (Harmafrodite Calipers) :



৬) ইনসাইড ক্যালিপার্স (Inside Calipers) :



৭) আউটসাইড ক্যালিপার্স (Outside Calipers) :



৮) ডিভাইডার (Divider) :



৯) সৈফেল মেজ (Surface Gauge) :



১০) সৈফেল পেট (Surface Plate) :



১১) অর্সিয়ার হাইট মেজ (Vernier Height Gauge) :



**১২) ট্রি-কুর্স (Tri-Square) :**



**১৩) কমিউন্যন সেট (Combination Set) :**



**১৪) স্টিল রুল (Steel Rule) :**



**১৫) প্যারালাল ক্লাম্প (Parallel Clamp) :**



**କାଟିଂ ଟୁଲସ (Cutting Tools) :** ସେ ସମ୍ପଦ ଟୁଲସ ହାତା ଥାଏଁକେ କାଟା ବା କର୍ମ କରା ବାବୁ ସେ ସମ୍ପଦ ଟୁଲସକେ କାଟିଂ ଟୁଲସ ବଳା ଦିଇ ।

ମେଘନ-

୧) କାଇଲ (File) :



୨) ଚାଷାଳୀ (Chisel) :



୩) ହ୍ୟାକ୍-ସୁ (Hack-Saw) :



୪) ଟାପ (Tap) :



**৫) ডাই ও ডাই হোল্ডার (Die and Die Holder) :**



**৬) রিমার (Reamer) :**



**৭) পাইপ কাটার (Pipe Cutter) :**



**৮) ড্রিল বিট (Drill Bit) :**



১৩) লেন্টুল বিট (Lathe Tool Bit) :



১৪) শেপার টুল বিট (Shaper Tool Bit) :



১৫) মিলিং কার্টার (Milling Cutter) :



১৬) কাউটার সিঙ্কিং ড্রিল (Counter Sinking Drill) :



### ১৩) কম্বিনেশন সেন্টার ড্রিল (Combination Centre Drill) :



### ১৪) কাউন্টার বোরিং কাটার (Counter Boring Cutter) :



**মেজারিং টুলস :** যে সকল টুলস মাপ গ্রহণ করতে, মাপ জানতে, ও মাপ পরীক্ষা করতে ব্যবহৃত হয় সে সকল টুলসকে মেজারিং টুলস বা মেজারিং ইনস্ট্রুমেন্টস বলা হয়। মেজারিং টুলস এর মধ্যে যে সকল টুলস সাধারণত মাপ পরীক্ষা করার কাজে ব্যবহার করা হয় তাদেরকে আলাদাভাবে টেস্টিং টুলস বলা হয়। যেমন- ট্রাই-ক্ষয়ার, কম্বিনেশন ক্ষয়ার, বিভেল প্রোট্র্যাক্টর, স্ট্রেইট এজ, স্টিল রুল ইত্যাদি। মেজারিং টুলস এর মধ্যে যে সকল টুলস তৈরি করা বস্তু কাজের উপযোগী কী না, ইহার মাপ গ্রহণযোগ্য সীমার মধ্যে আছে কী না ইত্যাদি বিশেষ বিশেষ ক্ষেত্রে পরীক্ষা করার কাজে ব্যবহৃত হয়, সে সকল মেজারিং টুলসকে গেজ বলা হয়। যেমন- প্লাগ গেজ, রিং গেজ, স্ল্যাপ গেজ, রেডিয়াস গেজ, ইভিকেটিং হোল গেজ, ক্লু-পিচ গেজ, ফিলার গেজ, ইত্যাদি।

**বিভিন্ন প্রকার মেজারিং টুলসগুলো হলো-**

- (১) স্টিল রুল (Steel Rule)
- (২) ইনসাইড ক্যালিপার্স (Inside calipers)
- (৩) আউট সাইড ক্যালিপার্স (Outside Calipers)
- (৪) ভার্নিয়ার ক্যালিপার্স (Vernier Calipers)
- (৫) মাইক্রোমিটার (Micrometre)
- (৬) ভার্নিয়ার বিভেল প্রোট্র্যাক্টর (Vernier Bevel Protractor)
- (৭) সাইন বার (Sine Bar)
- (৮) টেলিস্কোপিক গেজ (Teliscopic Gauge)
- (৯) স্পিরিট লেভেল (Spirit Level)

- (১০) ইভিকেটিং হোল গেজ (Indicating Hole Gauge)
- (১১) স্লিপ গেজ বা গেজ ব্লক (Slip Gauge or Gauge Block)
- (১২) থ্রেড গেজ (Thread Gauge)
- (১৩) ডায়াল ইভিকেটর (Dial Indicator)
- (১৪) ভার্নিয়ার হাইট গেজ (Vernier Height Gauge)
- (১৫) সেন্টার গেজ (Centre Gauge)
- (১৬) ওয়্যার গেজ (Wire Gauge), ইত্যাদি।

**আনুষঙ্গিক হ্যান্ড টুলস (Related Hand Tools) :** মেশিনশপে বা ফিটিং বিভাগের সাধারণ কাজে অথবা অন্য টুলস এর সহকারী যন্ত্র হিসাবে যে সকল টুলস ব্যবহৃত হয় তাদেরকে আনুষঙ্গিক টুলস বলা হয়। যেমন- হাতুড়ি, প্লায়ার, ভাইস, রেঞ্চ, স্ক্রু-ড্রাইভার, ট্যাপ রেঞ্চ, ডাই স্টক, ড্রিল চাক, চাক-কী, নাষ্পার পাঞ্চ, লেটার পাঞ্চ, স্ক্রু একস্ট্রাইটর, ট্যাপ একস্ট্রাইটর, হ্যান্ড ভাইস, পিন ভাইস, কী-ড্রিফট, প্যারালাল ক্ল্যাম্প, ইত্যাদি।

**মেশিন টুলস (Machine Tools) :** মেশিন টুলস হলো শক্তি চালিত যান্ত্রিক ব্যবস্থা যা কাটিং টুলের সাহায্যে ওয়ার্কপিস থেকে নির্ধারিত পরিমাণ ধাতু অপসারণ করে প্রয়োজনীয় আকার, আকৃতি ও মসৃণতা প্রদানে ব্যবহৃত হয়। যেমন- লেদ মেশিন, শেপার মেশিন, প্লেনার, ড্রিলিং মেশিন, মিলিং মেশিন, গ্রাইভিং মেশিন, বোরিং মেশিন, হোনিং মেশিন, পাওয়ার হ্যাক-স, বেন্ড-স ইত্যাদি।

#### ৫.৪ কাজের জন্য উপযুক্ত টুল নির্বাচন :

টুলস নির্বাচন করার সময় কাজের ধরন, কার্যবস্তুর আকৃতি, কার্যবস্তুর পদার্থের যান্ত্রিক গুণাবলী, ইত্যাদি বিবেচনা করে নিম্নলিখিত তালিকা হতে অতি সহজেই মেশিন শপের কাজের জন্য টুলস নির্বাচন করা যায়।

যথা-

- ১) ফাইল (File)
- ২) চিজেল (Chisel)
- ৩) হ্যাক-'স' (Hack-Saw)
- ৪) হাতুড়ি (Hammer)
- ৫) রেঞ্চ (Wrench)
- ৬) স্ক্রু-ড্রাইভার (Screw Driver)
- ৭) প্লায়ার্স (Pliers)
- ৮) ভাইস (Vice)
- ৯) ট্রাই স্কোয়ার (Tri-square)
- ১০) ইনসাইড ক্যালিপার্স (Inside Calipers)
- ১১) আউটসাইড ক্যালিপার্স (Outside Calipers)
- ১২) ভার্নিয়ার ক্যালিপার্স (Vernier Calipers)
- ১৩) স্টিল রুল (Steel Rule)
- ১৪) মাইক্রোমিটার (Micrometer)
- ১৫) কম্বিনেশন স্কয়ার (Combination Square)
- ১৬) বিভেল প্রোট্রাইটর (Bevel Protractor)

- ১৭) ট্যাপ (Tape)
- ১৮) ডাই (Die)
- ১৯) ড্রিল গেজ (Drill Gauge)
- ২০) সারফেস প্লেট (Surface Plate)
- ২১) অ্যাংগল প্লেট (Angle Plate)
- ২২) সারফেস গেজ (Surface Gauge)
- ২৩) মার্কিং ব্লক (Marking Block)
- ২৪) রিমার (Reamer)
- ২৫) পাঞ্চ (Punch)
- ২৬) স্কাইবার (Scriber)
- ২৭) স্ক্রেপার (Scraper)
- ২৮) ভি-ব্লক (Vee-Block)
- ২৯) ড্রিলিং মেশিন (drilling Machine)
- ৩০) গ্রাইভিং মেশিন (Grinding Machine)
- ৩১) লেদ মেশিন (Lathe Machine)

## প্রশ্নমালা-৫

### অতি সংক্ষিপ্ত প্রশ্ন :

১. টুলস কাকে বলে?
২. টুলস কে প্রধানত কয়ভাগে ভাগ করা যায়?
৩. মার্কিং টুলস কাকে বলে?
৪. মেজারিং টুলস কাকে বলে?
৫. কাটিং টুলস কাকে বলে?
৬. হ্যান্ড টুলস কাকে বলে?

### সংক্ষিপ্ত প্রশ্ন :

১. টুলস এর শ্রেণিবিভাগ উল্লেখ কর।
২. মার্কিং বা লেআউট টুলস বলতে কী বোঝায়? ৪টি মার্কিং বা লেআউট টুলস এর নাম লিখ।
৩. মেজারিং টুলস বলতে কী বোঝায়? ৪টি মেজারিং টুলস এর নাম লেখ।
৪. কাটিং টুলস বলতে কী বোঝায়? ৪টি কাটিং টুলস এর নাম লেখ।
৫. মেশিন টুলস বলতে কী বোঝায়? ৪টি মেশিন টুলস এর নাম লেখ।
৬. গেজ কাকে বলে? ৪টি গেজের নাম লেখ।

### রচনামূলক প্রশ্ন :

১. উৎপাদনের ক্ষেত্রে টুলস এর গুরুত্ব ব্যাখ্যা কর।
২. টুলস এর প্রকারভেদ উল্লেখ কর এবং প্রত্যেক প্রকারের ৪টি করে টুলস এর নাম লেখ।
৩. হ্যান্ড টুলস এবং মেশিন টুলস কাকে বলে? এদের মধ্যে পার্থক্য দেখাও।
৪. মেশিন টুলস কাকে বলে? ১০টি মেশিন টুলসের নাম লেখ।

### ଅଧ୍ୟାତ୍ମ-୫

## ହତ ଚାଲିତ ସଜ୍ଜାଦି (Hand Tools)

### ୬.୧ ହତ ଚାଲିତ ସର (Hand Tool) :

ମେଚିନିଶଲେ ବା ଉକ୍ତାର୍କଷଲେ ଯେ ସକଳ ସଜ୍ଜାଦି ମାନୁଷର ଶାରୀରିକ ଶକ୍ତିର ସାହାର୍ୟେ ପରିଚାଲିତ ହୁଏ ଉକ୍ତାର୍କଷଲେ ସାଧାରଣ କାଜ ଅଥବା ଅନ୍ୟ ସର୍ବରେ ସାହାର୍ୟକାରୀ ହିସେବେ ବ୍ୟବହର ହୁଏ ତାମେରକେ ହତ ଚାଲିତ ସର ବା ହାତ ଟୂଲସ ବଳା ହୁଏ । ଏ ସକଳ ଟୂଲସ ପରିଚାଲନା କରାତେ ସାହାର୍ୟକାରୀ ହିସେବେ ବ୍ୟବହର ହୁଏ ତାମେରକେ ହତ ଚାଲିତ ସର ବା ହାତ ଟୂଲସ ବଳା ହୁଏ । ତାବେ ଏହି ଧରନେର ଟୂଲସେର କର୍ମ ପରିପଥ ବିଭିନ୍ନ ହେଲେ ଓ କର୍ମଦର୍ଶକା ସୀମିତ । ଅତେକେ ଅଲିଙ୍ଗଦାରୀ ବା କାରିଗରକେ ହାତ ଟୂଲସେର ବ୍ୟବହାର ତାମୋତାବେ ଆରକ୍ଷ କରାତେ ହୁଏ । ସେଥାନେ ଯେ ଟୂଲ ବ୍ୟବହାର କରା ଉଚିତ ଦେଖାନେ କେବଳ ତାହି ବ୍ୟବହାର କରାତେ ହୁଏ । ତା ନା ହେଲେ ତାମୋ କାଜ ଶେଖା ବା ଉତ୍ତରତ ମାନେର ଦରକାର କାଜ କରା କର୍ବନ୍ତ ଓ ସମ୍ଭବ ନର । ହତ ଚାଲିତ ସଜ୍ଜାଦି ବିଭିନ୍ନ ଧରାର ଓ ଗଠନେର ହୁଏ । ସେମଳ- ହାତୁଡ଼ି, କାଇଲ, ହାକ-ସ, ହୁ-ଜ୍ଞାଇତାର, ରେଳ୍ ବା ସ୍ପେନାର, ଟ୍ୟାପ ରେଳ୍, ଭାଇସ୍ ସ୍ଟେକ, ଡିଲ ଚାକ, ଚାକ-ବୀ, ନାଘାର ପାଖ, ଲୋଟାର ପାଖ, ପିଲ ପାଖ, ଛିକ୍ଟ ପାଖ, ହୁ ଏକଟ୍ରୋଟିର, ଟ୍ୟାପ ଏକଟ୍ରୋଟିର, ଟିଙ୍କେଲ , ଶାଯାର, ଡାଇସ, ଇତ୍ୟାଦି ।

### ୬.୨ ସଚାରାଚର ବ୍ୟବହର ହତ ଚାଲିତ ସଜ୍ଜାଦି ଓ ତାମେର ବିଭିନ୍ନ ଆଂଶ :

**ହାତୁଡ଼ି (Hammer) :** ହାତୁଡ଼ି ଅତି ପ୍ରାଚୀନତମ ଏକଟି ହାତ ଟୂଲ । ସନ୍ତ୍ୟାତାର ଉତ୍ସାହପ୍ରଦ ଥେବେଇ ହାତୁଡ଼ିର ବ୍ୟବହାର ଚଲେ ଆସିଥେ ଏବଂ ହାତୁଡ଼ି ଲାକ କରେ ଗଠନ ବୈଚିକ ଆନନ୍ଦନେର ମାଧ୍ୟମେ ବହିଧ କାଜେ ଆଜିଓ ବ୍ୟାପକତାବେ ବ୍ୟବହର ହତେ । ମୁସତ ସେ ଟୂଲସେର ସାହାର୍ୟେ ଆଧାର କରେ ନକର୍ମାରି କାଜ ସମ୍ପାଦନ କରା ହୁଏ ତାକେ ହାତୁଡ଼ି ବା ହାମାର ବଳା ହୁଏ ।



ଚିତ୍ର-୬.୧ : ହାତୁଡ଼ି

ଗଠନ ଓ ବ୍ୟବହାର ଅନୁଯାୟୀ ହାତୁଡ଼ି ଅନେକ ଧରାର ହୁଏ । ଏକଜେତର ଯଥେ ମେଚିନିଶଲ ବା ଶିଳ୍ପ କାର୍ଯ୍ୟାଳୟ ଯେତର ହାତୁଡ଼ି ବ୍ୟବହର ହୁଏ ସେଜେତା ହୁଲୋ-

#### ୧. ଇଞ୍ଜିନିୟାର୍ସ ହାମାର (Engineer's Hammer) :

- (କ) ବଲ-ପିଲ ହାମାର (Ball-peen Hammer)
- (ଖ) ସ୍ଟ୍ରେଟ୍‌ପିଲ ହାମାର (Straight-peen Hammer)
- (ଗ) କ୍ରୋସ ପିଲ ହାମାର (Cross-peen Hammer)

#### ୨. ସରଟ ହାମାର (Soft Hammer)

#### ୩. ରିଟେଟିଂ ହାମାର (Riveting Hammer)

#### ୪. କ୍ଲେଜ ହାମାର (Sledge Hammer)

### ৫. ক্লু-হামার (Claw Hammer)

#### ৫.০ হক চালিত বজায়ির ব্যবহার :-

বল শিল হামার। এক মুখ্য সমতল এবং আধা গোলাকার বিথার এবং কাছ বল শিল হামার। মেশিনটুল বল শিল হামারের অল্পসম সহজের বেশি। সাধারণ কাজে এবং ক্লু-টি বা সমতল মুখের ব্যবহার হয় এবং রিভেট দিয়ে জোড়ার কাজে গোলাকার আধা ব্যবহার করা হয়।



চিত্র-৫.১ : বল শিল হামার

বেঞ্জেট শিল হামার : এই হামারের বিজেটের টপের আধাত কাজে বিজেটিং করার কাজে ব্যবহৃত হয়।



চিত্র-৫.২ : বেঞ্জেট শিল হামার

ক্লু শিল হামার : এক খালি সমতল এবং অগ্র ধার বেঞ্জেট শিল হামারের পক্ষে আধাত জাঁটা কিছি হাফসেব সমাজস্বাদ না থেকে সময়ের ধারে। জাঁটেল অধিক কোশাকার ধর্তের কিছি কাজ করা, বাড়ু থেকে ইকিয়ে সেওয়া, রিভেটিং করা ধর্তুতি কাজে এই হামার ব্যবহৃত হয়।



চিত্র-৫.৩ : বল শিল হামার

সক্ট হামার বা হ্যালেট : সীসা, কাঁচ, পিতল, বেঞ্জেট মেটাল, অ্যালুমিনিয়াম, কাঁটা, পত্র কীচ চাষফা, প্লাস্টিক ধর্তুতি দ্বারা তৈরি হামারিকে সক্ট হামার বা হ্যালেট বলা হয়। ব্যাংশ সহজেক্ষণ ও পিলিউভনে কাজে মূল আধাত করার জন্য, অসুব ও নরম ধার্তুকে আধাত করা, মেশিনে অকার্বিন সেট করা ধর্তুতি কাজে সক্ট হামার ব্যবহার করা হয়।



চিত্ৰ-৫.৪ : স্পট হ্যারাম বা স্টালেট

**রিজেটিং হ্যারাম :** এ হ্যারাম রিজেটিং টেলুর আধার কৰে রিজেটিং কৰাৰ কাজে ব্যবহৃত হয়।



(১) পিট মেটাল রিজেটিং হ্যারাম



(২) পিট মেটাল রিজেটিং হ্যারাম

**জেল হ্যারাম :** এই হ্যারাম বড় শাখা আৰী এবং ঘৰ্তল দেখ দো হয়। এৰ উপৰ গোলৈ সমতল থাকে। বেশিমণি, কোৰ্টিং শপ এবং মিনীগ সচেলৰ কামী কৰাজেৰ জন্য এই হ্যারুকি ব্যবহৃত হয়। সাধারণত এই হ্যারুকিৰ ঘৰ্তল ও কেজি থোকে ৫ কেজি এবং ঘৰ্তলৰ লেৰ্ণ্য ৬০ সেমি থোকে ৮০ সেমি গৰ্বত হোকে থাকে।



চিত্ৰ-৫.৫(৩) জেল হ্যারাম

**সেগ ভাইস :** কৰাজৰশীলায় ব্যবহৃত হয় বলৈ আকে কেন্ট কেন্ট গুৱাক পিষিয় আহিসও বলৈ থাকেন। এটিৰ নিচেৰ  
পিকে পুজোৱা হ্যার বে সীৰ্প অংশটি থাকে কাকে দেখ বা পা কৰা হয়। এটি হ্যারা কোসো বড় কাৰ্বনকাকে  
দৃঢ়ভাৱে আৰুচ কৰে কৰাজ কৰাৰ জন্য ব্যবহৃত কৰা হয়।



চিত্ৰ-৫.৬: সেগ ভাইস

রেঁক ১: নাট, বোল্ট বা স্টাইরে ক্ষু অংশকে আটকানো বা খোলার জন্য যে টুলস ব্যবহৃত হয় উভাবে রেঁক বলে। কখনো এটিকে স্প্যানারও বলা হয়। বোল্ট এবং সাথে নাটকে টাইট দেওয়ার জন্য রেঁক ব্যবহার করা হয়।



adjustable wrench



চিত্র-৬.৫১ রেঁক বা স্প্যানার

বেঁক ভাইস ১: এই প্রেমির ভাইসকে নাট ও বোল্টের সাথায়ে টেবিল বা বেঁকের উপর আবক্ষ করে ব্যবহার করা হয়। সাধারণত ইহা কাস্ট সিল ধারা ভৈরি হয়। এ ভাইসের 'জ' দুইটি টেস্পার করা সিলের ভৈরি থাকে এবং তিনজনের মিকে খোজ কাটা থাকে। যে সব কার্যবস্তুকে দাণ পড়া থেকে রাখা করার প্রয়োজন হয়, সেসব ক্ষেত্রে 'জ' এর উপর নরম ধাতুর ভৈরি ভাইস ক্লাম্প লাগানো হয়। বিভিন্ন কার্যবস্তুকে কাইলিং, চিপিং, হ্যামারিং, সারিং ইত্যাদি কাজের জন্য বেঁক ভাইস ব্যবহার করা হয়।



চিত্র-৬.৭৩ বেঁক ভাইস

ক্ষু প্রাইজার ১: ক্ষু প্রাইজার এক ধরনের হ্যান্ড টুলস বা সিয়ে ক্ষুকে শুরিয়ে খোলা অথবা লাগানো যায়।



চিত্র-৬.৮ : স্ক্রু-ড্রাইভার

**প্লায়ার্স :** কোনো পাতলা শিট বা তারকে ধরে কাজ করার জন্য, বৈদ্যুতিক তারের জোড়া দেওয়া ও বিদ্যুতায়িত অবস্থায় কেবল এর সাথে তারের সংযোগ দেওয়ার জন্য, তার কাটার জন্য প্রভৃতি কাজে প্লায়ার্স ব্যবহার করা হয়।



চিত্র-৬.৯ : প্লায়ার্স

#### ৬.৪ হস্ত চালিত যন্ত্রাদির রক্ষণাবেক্ষণ :

নিম্নে হস্ত চালিত যন্ত্রাদির রক্ষণাবেক্ষণ পদ্ধতি আলোচনা করা হলো-

- (১) প্রত্যেক টুলসকে উহার জন্য নির্দিষ্ট কাজে ব্যবহার করতে হবে। যেমন- স্ক্রু ড্রাইভারের সাহায্যে পাথের কাজ, রেঞ্চের সাহায্যে হাতুড়ির কাজ ইত্যাদি না করা।
- (২) টুলস এর সাহায্যে কাজ করার সময় এর উপর অতিরিক্ত জোর বা চাপ প্রয়োগ করে কাজ না করা।
- (৩) ব্যবহারের পর প্রতিটি টুলসকে ময়লা ও চিপস মুক্ত করে এর জন্য নির্ধারিত নির্দিষ্ট জায়গায় সংরক্ষণ করা।
- (৪) প্রত্যেক টুলসকে সব সময় পৃথক পৃথক ভাবে সংরক্ষণ করতে হবে।
- (৫) ফাইল দ্বারা কাজ করার পর ফাইলকে কার্ড দ্বারা সুন্দরভাবে পরিষ্কার করে তারপর আলাদাভাবে সংরক্ষণ করতে হবে।
- (৬) ভাইস, রেঞ্চ, র্যাচেট স্ক্রু-ড্রাইভার প্রভৃতি মাঝে মাঝে পরিষ্কার করে উহার চলনশীল অংশসমূহের সংযোগস্থলে তেল অথবা প্রিজ দিতে হবে।
- (৭) সুনির্দিষ্ট কাজের জন্য নির্ধারিত মাপের উপর্যুক্ত হ্যান্ড টুলস ছাড়া অন্য টুলস ব্যবহার না করা। যেমন- বড় স্ক্রু ড্রাইভারের কাজ ছোট স্ক্রু ড্রাইভারের সাহায্যে না করা। নাট বা বোল্টকে টাইট দেওয়া বা ঢিলা করার সময় সঠিক মাপের রেঞ্চ না ব্যবহার করে বড় সাইজের রেঞ্চ ব্যবহার করা থেকে বিরত থাকা।

## প্রশ্নমালা-৬

### অতি সংক্ষিপ্ত প্রশ্ন :

১. হ্যান্ড টুলস কাকে বলে ?
২. ইঞ্জিনিয়ার্স হ্যামার কয় প্রকার ও কী কী ?
৩. সফট হ্যামার বা ম্যালেট কী দিয়ে তৈরি করা হয় ?
৪. রেঞ্চ কাকে বলে ?
৫. ভাইস কাকে বলে ?

### সংক্ষিপ্ত প্রশ্ন :

১. হ্যান্ড টুলস্ বলতে কী বোঝায় ? ৫টি হ্যান্ড টুলস এর নাম লিখ।
২. হাতুড়ির শ্রেণিবিভাগ দেখাও।
৩. ৫টি হ্যান্ড টুলস এর ব্যবহার লেখ।

### রচনামূলক প্রশ্ন :

১. হাতুড়ির শ্রেণিবিভাগসহ ব্যবহার বর্ণনা কর।
২. হ্যান্ড টুলস বলতে কী বোঝায় ? ৫টি হ্যান্ড টুলস এর নাম ব্যবহার বর্ণনা কর।
৩. হস্ত চালিত যন্ত্রাদির রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।

### অধ্যায়-৭

## পরিমাপন যন্ত্র বা মেজারিং টুলস (Measuring Tools)

### ৭.১ মেজারিং টুলস :

যে সকল টুল বা হাতিয়ার দ্বারা কোনো বস্তুর, জবের বা ওয়ার্কপিসের দৈর্ঘ্য, প্রস্থ, উচ্চতা, গভীরতা, ভর, ওজন, গতি, চাপ, তাপ, ইত্যাদি মাপা যায় তাদেরকে মেজারিং টুলস বা মাপন যন্ত্র বলা হয়। ওয়ার্কশপ বা কারখানায় মাপ প্রণালী সমূহের মধ্যে মেজারিং রুল দিয়ে মাপা প্রাচীনতম। এটি একটি প্রত্যক্ষ সরল মাপক যন্ত্র। ধাতু, কাঠ বা কাপড় দিয়ে তৈরি হয় এবং অনেক প্রকার গঠন ও আকৃতি বিশিষ্ট হয়ে থাকে। মেজারিং টুলের মাপ দশমিক ভগ্নাংশে ও সাধারণ ভগ্নাংশে হয়ে থাকে। একক হিসেবে মিটার বা ফুট এবং এদের ভগ্নাংশে পাওয়া যায়।

### ৭.২ মেজারিং টুলস এর শ্রেণিবিভাগ :

মেজারিং টুলস প্রধানতঃ দুই প্রকার, যথা-

- ❖ নন-ফ্লেকসিবল মেজারিং টুলস (Non-flexible measuring tools) :
- যেমন- স্টিল রুল, উড রুল, ফিলেট রুল, কী-সেট রুল, ইত্যাদি।
- ❖ ফ্লেকসিবল মেজারিং টুলস (flexible measuring tools) :
- যেমন- স্টিল টেপ রুল, লিনেন টেপ রুল, মেজারিং টেপ, ইত্যাদি।

আবার, মেজারিং টুলের ব্যবহার ও গঠন অনুসারে সেগুলোকে একাধিক ভাগে ভাগ করা যায়। যেমন-

- ১) প্লেইন স্টিল রুল (Plain Steel Rule)
- ২) ফোল্ডিং রুল (Folding Rule)
- ৩) বক্স উড রুল (Box wood Rule)
- ৪) স্টিল টেপ রুল (Steel Tape Rule)
- ৫) এন্ড রুল (End Rule)
- ৬) হক রুল (Hook Rule)
- ৭) কী-সিট রুল (Key Seat Rule)
- ৮) ডেপথ রুল (Depth Rule)
- ৯) লিনেন টেপ রুল (Linen Tape Rule) ইত্যাদি

### ৭.৩ বিভিন্ন প্রকার মেজারিং টুলের সাহায্যে পরিমাপন পদ্ধতি ও তাদের ব্যবহারঃ

প্লেইন স্টিল রুল : মেশিন শপে জব তৈরিতে বিভিন্ন মাপ গ্রহণে সবচেয়ে সরল ও সাধারণ মাপ যন্ত্র হলো প্লেইন স্টিল রুল বা সংক্ষেপে ইহাকে স্টিল রুল বলা হয়। এটি সাধারণত ১৫ সে.মি. এবং ৩০ সে.মি. লম্বা হয়। এতে সর্বনিম্ন ০.৫ মি.মি. মাপ নেওয়া যায়। এটি স্টেইনলেস স্টিলের তৈরি হয় এবং এর সাহায্যে জবের দৈর্ঘ্য, প্রস্থ, বেধ এবং উচ্চতার মাপ সরাসরি গ্রহণ করা যায়। অনেক সময় স্টিল রুল মার্কিং বা লেআউট করার সময় লাইন টানার কাজে ব্যবহার করা হয়। ইহা ছাড়া ক্যালিপার্স, ডিভাইডার, হারমাফ্রোডাইট ক্যালিপার্স ইত্যাদি যন্ত্রের সাহায্যে মাপ গ্রহণেও ব্যবহার করা হয়।



চিত্র- ৭.১ : ফ্লেইন সিল কল

হোমিং কল। মিশ্রণ কাজে বেশি ব্যবহৃত হয়।



চিত্র- ৭.২ : হোমিং কল

বক্স টেক কল। ইহা কাঠ থানা তৈরি হয় এবং পর্যন্তে কম হয় বলে শীর্ষন্ত কাঠের কাজে এবং যে হলে সূচ মাপ সংগ্রহের অভ্যর্থন থাকে না, এই হলে ইহা ব্যবহৃত হয়। এ অকার কল সাধারণত ২ মুট দিয়া হয়।



চিত্র- ৭.৩ : বক্স টেক কল

সিল টেপ কল। এটি একটি সিল থানা তৈরি একটি কিছী কল। এর কিছী নমনীয় কিছু বৰ্তিত অবস্থার মিজেকে লবজাবে ধারণ করতে পারে। এর দৈর্ঘ্য সাধারণত ২ মিটার এবং অথ ১২ মি.মি. হয়। সিল টেপ কল একটি সিলের খাত/বাজের মধ্যে কুণ্ডলীর আকারে আবক্ষ থাকে। এর এক পার্শ সে.মি. এবং অপর পার্শ ইঞ্জিনে সাম কাটা থাকে। যে সকল মাপ সিল কলের দৈর্ঘ্যের বেশি হয়ে থাকে সেখানে সিল টেপ কল ব্যবহৃত হয়। এটিকে সংজ্ঞে সিল টেপ কলা হয়।



চিত্র- ৭.৪ : সিল টেপ কল

**এজ রুল :** যে ছোট ছোট স্টিল রুল একটি কাটিলের মধ্যে আবক্ষ করে মাপের জন্য ব্যবহার হয় তাকে এজ রুল বলে। এভ রুল কাউন্টার বোর্ড থাবা কৈবলি হিসেবে বা কোনো কাটিলের মাপ প্রস্তুত ব্যবহার করা হয়।



চিত্র- ৭.৫ : এজ রুল

**হ্রক রুল :** সাধারণ স্টিল রুলের ওপরে বাঁকান একটি পাত (Hook) ব্যবহার করলে যে আকৃতির রুল পাওয়া যাব তাকে হ্রক রুল বলে। হ্রক রুলের সাহায্যে সহজে বজ্রন খাপ হতে এবং কেতরের মাপ সঠিকভাবে নেওয়ার জন্য ব্যবহার হয়। হ্রক রুলের সাহায্যে ডিভাইডার এবং ইনসাইড ক্যালিপারের মাপ পাঠ করা সুবিধাজনক।



চিত্র- ৭.৬ : হ্রক রুল

**কী-সিট রুল :** কোম পোলারাই শ্যাকটের স্থার বন্ধন উপরিভাগে কী-গুরে কাটার জন্য পর্যাপ্ত দূরীটি সহজেরাই সরলভাবে টেনে সে-আউট করতে কী-সিট রুল ব্যবহার করা হয়। এ কাজে সাধারণ স্টিল রুলের সাথে চিআনুমারী এক জোড়া কী-সিট ফ্ল্যাম্প ব্যবহার করতে হব।



চিত্র- ৭.৭ : কী-সিট রুল

**ডেগল রুল :** একটি ধীরসূক্ষ স্টিল হেচ, যার কেতুর সিলে সরু রুল ব্যবহার করা হয় এবং এই রুল ধীরসূক্ষ কেতুর সিলে বাঁকানাত করতে পারে তাকে ডেগল রুল বলে। একে ডেগল রুল দেখও বলা হয়। ক্রলটি সার্ভিং নাউটের সাহায্যে অয়োজনীয় হালে আবক্ষ করে মাপ প্রস্তুত করা হয়। ছোট ছিল বা কোনো স্টেটের গভীরতা মাপার জন্য এই রুল ব্যবহার করা হয়।



চিত্র- ৭.৮ : ডেপথ রুল

লিনেন টেপ রুল : কাপড় দ্বারা তৈরি এক প্রকার রুল যার দৈর্ঘ্য ১৫ মিটার বা ২০ মিটার এবং প্রস্থ ১২ মি.মি. বা ১৬ মি.মি. হয়ে থাকে। সমগ্র ফিতাকে চামড়ার একটি গোল আধারের মধ্যে গুটাইয়া রাখা যায়। সাধারণত অনেক দীর্ঘ বস্তুকে পরিমাপ করতে এবং জরিপের কাজে ইহা ব্যবহৃত হয়।



চিত্র- ৭.৯ : লিনেন টেপ রুল

#### ৭.৪ মেজারিং টুলের যত্ন ও রক্ষণাবেক্ষণ :

- ১) মেজারিং টুলকে সব সময় আর্দ্রতামুক্ত আবহাওয়ায় পৃথকভাবে সুনির্দিষ্ট জায়গায় সংরক্ষণ করতে হবে।
- ২) মেজারিং টুলের উপরিভাগের তলাঙ্গলি যেন কোনো অবস্থাতেই ঘষা লেগে ক্ষতিগ্রস্ত না হয় সে দিকে যত্ন নিতে হবে।
- ৩) মেজারিং টুলকে ব্যবহারের সময় অন্যান্য টুলস এর সাথে রাখা যাবে না। বিশেষ করে কাটিং টুলের নিকট হতে সর্বদা দূরে রাখতে হবে।
- ৪) চাপ লেগে বা ওপর থেকে পড়ে যেন মেজারিং টুলের উপরিতল বাঁকা বা ভাঁজ পড়ে না যায় সে বিষয়ে খেয়াল রাখতে হবে।
- ৫) যে সব মেজারিং টুল খাপ বা বাক্সসহ পাওয়া যায় সেগুলো যেন খাপ বা বাক্সের মধ্যে দীর্ঘদিন অব্যবহৃত থেকে নষ্ট হয়ে না যায় সে জন্য মাঝে মাঝে খুলে পরিষ্কার করতে হবে।
- ৬) দীর্ঘ সময় সংরক্ষণের জন্য মেজারিং টুলকে পরিষ্কার করে মরিচারোধী তৈল লাগিয়ে তারপর সংরক্ষণ করতে হবে।

## প্রশ্নমালা -৭

### অতি সংক্ষিপ্ত প্রশ্ন :

১. মেজারিং টুল বলতে কী বোঝায়?
২. মেজারিং টুল প্রধানত কয় প্রকার ও কী কী?
৩. ফ্রেক্সিবল মেজারিং টুল কী কাজে ব্যবহৃত হয়?
৪. স্টিল রুলের সাহায্যে সর্বনিম্ন কত মিলিমিটার পর্যন্ত মাপ নেওয়া যায়?
৫. এস্ট রুল কী কাজে ব্যবহৃত হয়?
৬. ফিলেট রুল কী কাজে ব্যবহৃত হয়?
৭. ছক রুল কী কাজে ব্যবহৃত হয়?
৮. ডেপথ রুল কী কাজে ব্যবহৃত হয়?
৯. স্টিল টেপ রুলের দৈর্ঘ্য সাধারণত কত মিটার হয়?
১০. ফোল্ডিং রুল কী কাজে ব্যবহৃত হয়?

### সংক্ষিপ্ত প্রশ্নঃ

১. নন-ফ্রেক্সিবল মেজারিং রুলের ব্যবহার বর্ণনা কর।
২. ফ্রেক্সিবল মেজারিং রুলের ব্যবহার বর্ণনা কর।
৩. প্লেইন স্টিল রুলের গঠন ও ব্যবহার উল্লেখ কর।
৪. ডেপথ রুলের গঠন ও ব্যবহার বর্ণনা কর।
৫. স্টিল টেপ রুলের গঠন ও ব্যবহার উল্লেখ কর।
৬. বিভিন্ন প্রকার মেজারিং টুলের নাম লেখ।

### রচনামূলক প্রশ্নঃ

১. বিভিন্ন প্রকার মেজারিং রুলের গঠন ও বৈশিষ্ট্য বর্ণনা কর।
২. বিভিন্ন প্রকার মেজারিং রুলের ব্যবহার বর্ণনা কর।
৩. মেজারিং রুল কাকে বলে? উহা কত প্রকার ও কী কী? কমপক্ষে দুইটি মেজারিং রুলের গঠন ও ব্যবহার বর্ণনা কর।
৪. মেজারিং রুলের যত্ন ও রক্ষণাবেক্ষণ বর্ণনা কর।

## অধ্যায়-৮

# পরীক্ষণ ও পরিমাপকরণ (Inspection and Measurement)

### ৮.১ পরীক্ষণ ও পরিমাপকরণ :

**পরীক্ষা (Inspection) :** কার্যবস্তুর বাস্তব মাপকে পূর্ব নির্ধারিত মাপের সাথে তুলনা করাকে পরীক্ষণ বলে। যেমন- প্লাগ গেজের সাহায্যে কোনো ছিদ্রের ব্যাস পরীক্ষা করা। পরীক্ষণের সাহায্যে কার্যবস্তুটি গ্রহণযোগ্য সীমার মধ্যে আছে কী না তা জানা যায়।

**পরিমাপকরণ (Measurement) :** কোনো কার্যবস্তুর বা ওয়ার্কপিসের দৈর্ঘ্য, প্রস্থ, ব্যাস, উচ্চতা বা গভীরতা মেজারিং টুলের সাহায্যে সরাসরি মেপে নেওয়াকে পরিমাপকরণ বলা হয়। যেমন- ভার্নিয়ার ক্যালিপার-এর সাহায্যে একটি শ্যাফটের বাহিরের ব্যাস নির্ণয় করাকে পরিমাপকরণ বলা যায়।

### ৮.২ সচরাচর ব্যবহৃত পরীক্ষণ ও পরিমাপক যন্ত্রপাতিসমূহ :

- (১) আউটসাইড মাইক্রোমিটার (Outside Micrometer)
- (২) ইনসাইড মাইক্রোমিটার (Inside Micrometer)
- (৩) ডেপথ মাইক্রোমিটার (Depth Micrometer)
- (৪) ভার্নিয়ার ক্যালিপার্স (Vernier Calipers)
- (৫) ভার্নিয়ার হাইট গেজ (Vernier Height Gauge)
- (৬) স্টিল রুল (Steel Rule)
- (৭) ইনসাইড ক্যালিপার্স (Inside Calipers)
- (৮) আউটসাইড ক্যালিপার্স (Outside Calipers)
- (৯) টেলিস্কোপিক গেজ (Telescopic Gauge)
- (১০) ফিলার গেজ (Feeler Gauge)
- (১১) ভার্নিয়ার বিভেল প্রোট্রাক্টর (Vernier Bevel Protractor)
- (১২) ট্রাই- স্ক্যার (Tri-Square)
- (১৩) কম্বিনেশন সেট (Combination Set)
- (১৪) স্ক্যার হেড (Square Head)
- (১৫) সেন্টার হেড (Center Head)
- (১৬) প্লাগ গেজ (Plug Gauge)
- (১৭) স্লিপ গেজ (Slip Gauge)
- (১৮) স্ক্রু-পিচ গেজ (Screw-Pitch Gauge)
- (১৯) ডায়াল ইন্ডিকেটর (Dial Indicator)

### ৮.৩ পরিমাপের প্রকারভেদ:

পরিমাপের পদ্ধতি অনুসারে পরিমাপ দুই প্রকার, যথা-

১. **প্রত্যক্ষ পরিমাপ (Direct Measurement) :** কার্যবস্তুর মাপ সরাসরি পরিমাপ করার পদ্ধতিকে প্রত্যক্ষ পরিমাপ বলা হয়। যে সব মেজারিং টুলস দিয়ে প্রত্যক্ষ পরিমাপ করা যায় সেগুলো হলো- স্টিল রুল, ভার্নিয়ার ক্যালিপার্স, মাইক্রোমিটার, ইত্যাদি।

২. **পরোক্ষ পরিমাপ (Indirect Measurement) :** যে পরিমাপ পদ্ধতিতে সরাসরি মাপ গ্রহণ করা যায় না, অন্য কোনো পরোক্ষ মেজারিং টুলস দিয়ে প্রথমে মাপ নিয়ে পরে প্রত্যক্ষ মেজারিং টুলস দিয়ে সেই মাপ যাচাই করে পরিমাপ করা হয়, সেই পরিমাপ পদ্ধতিকে পরোক্ষ পরিমাপ বলা হয়। কতিপয় পরোক্ষ পরিমাপক টুলসগুলো হলো- ইনসাইড ক্যালিপার্স, আউটসাইড ক্যালিপার্স, টেলিস্কোপিক গেজ, ব্লক গেজ, ইত্যাদি।

পরিমাপের সূক্ষ্মতা অনুসারে পরিমাপকে আরও দুই ভাগে ভাগ করা যায়, যথা-

- (১) **সূক্ষ্ম পরিমাপ (Precision Measurement) :** ব্রিটিশ প্রণালিতে রৈখিক পরিমাপের ক্ষেত্রে  $0.001$  ইঞ্চিং থেকে শুরু করে এর চাইতে সকল ক্ষুদ্র পরিমাপকে সূক্ষ্ম পরিমাপ ধরা হয়।
- (২) **অসূক্ষ্ম পরিমাপ (Non-Precision Measurement) :** ব্রিটিশ প্রণালিতে রৈখিক পরিমাপের ক্ষেত্রে  $0.001$  ইঞ্চিং অপেক্ষা সকল স্তুল পরিমাপকে অসূক্ষ্ম পরিমাপ ধরা হয়।

#### ৮.৪ সূক্ষ্মতা মাত্রার ভিত্তিতে পরিমাপের শ্রেণিবিভাগ :

সরল এবং কৌণিক মাপের সূক্ষ্মতার উপর ভিত্তি করে পরিমাপের সূক্ষ্মতার মাত্রা নির্ধারিত হয় এবং সূক্ষ্মতার পরিমাপ উল্লেখসহ সূক্ষ্মতা মাত্রার ভিত্তিতে পরিমাপের শ্রেণিবিভাগ নিম্নের ছকে দেওয়া হলো-

| পরিমাপের প্রকার<br>(সূক্ষ্মতা মাত্রা<br>অনুসারে) | সরল মাপ                             |                                     | কৌণিক মাপ  |                    |
|--------------------------------------------------|-------------------------------------|-------------------------------------|------------|--------------------|
|                                                  | হইতে                                | পর্যন্ত                             | হইতে       | পর্যন্ত            |
| নন-প্রিসিশন                                      | স্তুল মাপ                           | $0.5$ মি.মি. ও<br>$1/64$ ইঞ্চিং     | স্তুল মাপ  | $1$ ডিষ্টি         |
| সেমি-প্রিসিশন                                    | $0.1$ মি.মি. ও<br>$1/64$ ইঞ্চিং     | $0.02$ মি.মি. ও<br>$1/128$ ইঞ্চিং   | $1$ ডিষ্টি | $1$ ডিষ্টি         |
| প্রিসিশন                                         | $0.01$ মি.মি. ও<br>$0.001$ ইঞ্চিং   | $0.001$ মি.মি. ও<br>$0.0001$ ইঞ্চিং | $1$ ডিষ্টি | $5$ মিনিট          |
| হাই-প্রিসিশন                                     | $0.001$ মি.মি. ও<br>$0.0001$ ইঞ্চিং | অধিকতর সূক্ষ্ম মাপ                  | $5$ মিনিট  | অধিকতর সূক্ষ্ম মাপ |

#### ৮.৫ পরীক্ষণ ও পরিমাপকরণ যন্ত্রাদির যত্ন ও রক্ষণাবেক্ষণ :

পরীক্ষণ ও পরিমাপকরণ যন্ত্রাদি ব্যবহার করার পর ভালোভাবে পরিষ্কার করে তৈল বা প্রিজ লাগিয়ে নির্দিষ্ট বাক্সে বা সেলফে বা আলমারিতে সুন্দরভাবে গুচ্ছিয়ে রাখতে হবে যাতে কাজের সময় খুঁজতে সহজ হয়। দীর্ঘ দিন ব্যবহার করা না হলেও মাঝে মাঝে পরিষ্কার করে পুনরায় তৈল বা প্রিজ দিয়ে যত্ন করে পূর্বের জায়গায় রেখে দিতে হবে। কোনক্রমেই মরিচা পড়তে দেওয়া যাবে না। মরিচা পড়লে পরীক্ষণ ও পরিমাপকরণ যন্ত্রাদির সূক্ষ্মতা নষ্ট হয়ে যায় এবং সঠিকভাবে কাজে ব্যবহার করা যায় না। তাই প্রত্যেক পরীক্ষণ ও পরিমাপকরণ যন্ত্র ব্যবহারের আগে ও পরে ওয়েস্ট কটন দিয়ে পরিষ্কার করতে হবে। ব্যবহার শেষে পরিষ্কার করে শ্রেণি ভিত্তিতে তৈল বা প্রিজ লাগিয়ে নির্দিষ্ট বাক্সে রেখে দিতে হবে। মেশিন চলন্ত অবস্থায় ঘূরন্ত কার্যবস্তুর মাপ গ্রহণ করা থেকে বিরত থাকতে হবে। পরীক্ষণ ও পরিমাপকরণ যন্ত্রাদি কাটিং টুলের সাথে ও কোনো রাফ সারফেসের সংস্পর্শে রাখা যাবে না।

## প্রশ্নাবলী-৮

### অতি সংক্ষিপ্ত প্রশ্নাবলীঃ

১. পরিমাপ কাকে বলে?
২. পরীক্ষণ কাকে বলে?
৩. প্রত্যক্ষ মাপক যন্ত্র কাকে বলে?
৪. পরোক্ষ মাপক যন্ত্র কাকে বলে?
৫. সূক্ষ্মতার মাত্রা অনুসারে পরিমাপ কর্তৃকার ও কী কী?

### সংক্ষিপ্ত প্রশ্নাবলীঃ

১. প্রত্যক্ষ মাপক যন্ত্র কাকে বলে? ৫টি প্রত্যক্ষ মাপক যন্ত্রের নাম লেখ।
২. পরীক্ষণ ও পরিমাপ করণের পার্থক্য উল্লেখ কর।
৩. সূক্ষ্ম পরীক্ষণ ও পরিমাপকরণ যন্ত্র কাকে বলে? এ প্রকার ৫টি যন্ত্রের নাম লেখ।
৪. অসূক্ষ্ম পরীক্ষণ ও পরিমাপকরণ যন্ত্র কাকে বলে? এ প্রকার ৫টি যন্ত্রের নাম লেখ।
৫. প্রত্যক্ষ ও পরোক্ষ মাপক যন্ত্রের মধ্যে পার্থক্য উল্লেখ কর।

### রচনামূলক প্রশ্নাবলীঃ

১. পরীক্ষণ ও পরিমাপকরণ বলতে কী বোঝায়? সচরাচর ব্যবহৃত পরীক্ষণ ও পরিমাপকরণ যন্ত্রপাতিসমূহের নাম লেখ।
২. পরীক্ষণ ও পরিমাপকরণ যন্ত্রাদির যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।
৩. সূক্ষ্ম ও অসূক্ষ্ম পরীক্ষণ ও পরিমাপকরণের প্রয়োগ ক্ষেত্র বর্ণনা কর।

## অধ্যায়-৯

# মৌলিক লে-আউট বা মার্কিং (Fundamental of Layout or Marking)

### ৯.১ লে-আউট বা মার্কিং :

ধাতু খণ্ডকে নির্দিষ্ট মাপ এবং আকারে পরিণত করার জন্য এর কোন স্থানকে কতটুকু ক্ষয় করতে হবে, ছিদ্র বা নালী করতে হলে তা কোন স্থানে কত গভীর এবং কী আকারের করতে হবে, ছিদ্রের মধ্যে ক্লু-থ্রেড করতে হবে কী না ইত্যাদি বিষয় কাজ আরঙ্গ করার পূর্বেই স্থির করে নেওয়া প্রয়োজন হয়। এটা না করে প্রথমেই যদি কাজে অগ্রসর হওয়া যায়, তাহলে, ধাতুখণ্ড অর্থাৎ বস্তুটি কখনও যথাযথ আকার বা মাপের হতে পারে না। এজন্য, কাজ আরঙ্গ করার আগে প্রত্যেক বস্তুর বা ধাতু খণ্ডের উপরিভাগে নক্সা অনুসারে কতকগুলো রেখা টেনে এবং চিহ্ন দেওয়ার প্রণালিকে মার্কিং অফ (Marking off) বা লেয়িং আউট (Laying Out) বলে। একে সংক্ষেপে কেবল মার্কিং বা লে-আউট করা বলা হয়ে থাকে।

### ৯.২ লে-আউট ও মার্কিং কাজে ব্যবহৃত যন্ত্রপাতিসমূহ:

মার্কিং বা লে-আউট করার জন্য যে সকল যন্ত্র ও সরঞ্জামাদি সাধারণভাবে ব্যবহৃত হয় উহাদের নাম এবং ব্যবহার নিম্নে উল্লেখ করা হলো-

- ১) সারফেস প্লেট (Surface Plate)
- ২) মার্কিং ব্লক (Marking Block)
- ৩) পাঞ্চ (Punch)
- ৪) প্রিক বা ডট পাঞ্চ (Prick or Dot Punch)
- ৫) সেন্টার পাঞ্চ (Centre Punch)
- ৬) সেন্টার হেড (Centre Head)
- ৭) স্কাইবার (Scriber)
- ৮) ডিভাইডার (Divider)
- ৯) স্কয়ার হেড (Square Head)
- ১০) ট্রাই স্কয়ার (Tri-Square)
- ১১) সারফেস গেজ (Surface Gauge)
- ১২) ভার্নিয়ার হাইট গেজ (Vernier Height Gauge)
- ১৩) ভি-ব্লক (Vee-Block)
- ১৪) অ্যাংগেল প্লেট (Angle Plate)
- ১৫) হাতুড়ি (Hammer)
- ১৬) হারমাফ্রোডাইট ক্যালিপার (Hermaphrodite Caliper)

### ৯.৩ লে-আউট ও মার্কিং কাজে প্রয়োজনীয় যন্ত্রপাতির ব্যবহারঃ

#### সারফেস প্লেট (Surface Plate) :

সারফেস প্লেটের ওপর সারফেস গেজ, মার্কিং ব্লক, ইত্যাদি যন্ত্র রেখে বস্তুর উপরিভাগের সমতলতা পরীক্ষা করা যায়। তাছাড়া ওয়ার্কিংপিসকে সাধারণত সারফেস প্লেটের ওপর রেখে মার্কিং করা হয়।



চিত্র-১.১ : সারকেস প্রেট

### পিক বা ডট পাক (Prick or Dot Punch) :

এই পাক ওয়ার্কশপসের উপর কোনো বিল্ব বা রেখাকে অঙ্গ পঞ্জীয়নভাবে চিহ্নিত করে রাখতে ব্যবহৃত হয়। এই পাকের মুখ ৬০ ডিগ্রি কোণ বিশিষ্ট হয়।



চিত্র-১.২: পিক বা ডট পাক

### সেন্টার পাক (Centre Punch) :

পিক পাকের ফলনার সেন্টার পাক আকারে বড় হয়। সাধারণত সেন্টার পাকের মুখ ৯০ ডিগ্রি কোণ বিশিষ্ট হয় এবং ইহার সাহায্যে পিক পাকের কাজ করা যায়। ড্রিলিং করার পূর্বে হিস্তের কেন্দ্রকে অধিকতর গভীর করার জন্য ৯০ ডিগ্রি কোণ বিশিষ্ট মুখের সেন্টার পাক ব্যবহৃত হয়।



চিত্র-১.৩ : সেন্টার পাক

### ক্রাইবার (Scriber) :

ওয়ার্কশপ বা অবের উপর ছাঁড়ি-এর সাথে অনুবাদী দাপ টানার জন্য ক্রাইবার ব্যবহৃত হয়। সরল ভাষায় একে আঁচড়া বলে। পেন্সিল ধারা কাগজের উপর যেভাবে রেখা টানা হয় ক্রাইবার ধারা খাঁকু খজের রং করা উপরিভাগের উপর ঈঞ্জাবে রেখা টানা হয়ে থাকে। ক্রাইবারের মুখ সর্বদা ঝীঝু ধারা প্রয়োজন। ঝীঝু না হলে এ দিয়ে যে রেখা টানা হয় তা সোঁটা হয়ে থাকে। ঝীঝু রাখার জন্য ক্রাইবারের মুখটিকে সাথে সথায় অব্যবহৃত স্টোল শাল পাথরের উপর রাখে নিতে হয়। ক্রাইবার দিয়ে স্টিল রুল বা ট্রাই-ক্রার এর ধার দিয়ে ওয়ার্কশপের উপর সরল রেখা টানতে হয়।



চিত্র-৯.৫: স্লাইবার (ব্লক সেট)

### ডিভাইডার (Divider) :

এটি দুই পা বিশিষ্ট একটি পরোক্ষ পরীক্ষণ ও মাপন হ্যান্ড টুল। এটিকে মার্কিং এর কাজে সবচেয়ে বেশি ব্যবহার করতে হয়। ডিভাইডারের পা দুইটি ক্রমশ সরু হয়ে প্রাপ্ত ভাগ সুচালো থাকে। এটির সাহায্যে স্টিল ক্লিপ থেকে যাপ তোলা, বৃত্ত বা বৃত্তচাপ অঙ্কন, দুইটি বিন্দু বা রেখার দূরত্ব নির্ণয় করা এবং রেখাকে বিভক্ত করা যায়। ব্যবহার করার সময় ডিভাইডার সাধারণত উহার দৈর্ঘ্য অপেক্ষা বেশি বিস্তৃত করা হয় না। ডিভাইডারের দৈর্ঘ্য বলতে উহার পারের সংযোগের কেন্দ্র হতে সুচালো মুখ পর্যন্ত দূরত্বকে বুঝায়।



চিত্র-৯.৬: ডিভাইডার

### সেন্টার হেড (Centre Head) :

গোলাকার বস্তুর কেন্দ্র নির্ণয় করতে সেন্টার হেড ব্যবহৃত। ইহা কম্বিনেশন সেটের একটি অংশ।



চিত্র-৯.৭: সেন্টার হেড

### ক্ষয়ার হেড (Square Head) :

টি কবিনেশন সেটের একটি অংশ। সূক্ষ্মভাবে বক্তর সমকোণ ও সমতলতা পরীক্ষা করা ছাড়াও এটি কোনো বক্তর ওপর সূক্ষ্মভাবে সমান্তরাল সরলরেখা টানতে ব্যবহৃত হয়। ক্ষয়ার হেডের সাহায্যে  $45^{\circ}$  কোণে এবং  $90^{\circ}$  কোণে সরলরেখা টানা যায়।



চিত্র-৯.৮ঃ ক্ষয়ার হেড সহ কবিনেশন সেট

### ট্রাই ক্ষয়ার (Tri-Square) :

ট্রাই ক্ষয়ার এক প্রকার প্রত্যক্ষ কোণিক যাপক যন্ত্র। এটি কোনো বক্তর সন্নিহিত দুইটি তল পরস্পরের সাথে এক সমকোণে আছে কী না অথবা কোনো তলের উপরিভাগের সমতলতা পরীক্ষা করা এবং মার্কিং করার সময় সরলরেখা টানতে ব্যবহৃত হয়।



চিত্র-৯.৯ঃ ট্রাই- ক্ষয়ার

### সারফেস গেজ (Surface Gauge) :

গ্যার্কিপিসের বা জবের অনুভূমিক (Horizontal) ও উলম (Vertical) তলের ওপর সরলরেখা টানতে সারফেস গেজ ব্যবহৃত হয়।



চিত্র-৯.১০ঃ সারফেস গেজ

### ভার্নিয়ার হাইট গেজ (Vernier Height Gauge) :

এটি একটি প্রত্যক্ষ, সূচক ও সরল উচ্চতা ও উল্লম্ব দূরত্ব মাপক যন্ত্র। মেশিনশপে ও মেটাল ওয়ার্কিংশপে জৰুৰ উপর লে-আউট ও মার্কিং কৰাৰ জন্য বিশেষভাৱে এটি ব্যবহৃত হয়। ভার্নিয়ার হাইট গেজেৰ গঠন ও কাৰ্য়প্ৰণালি ভার্নিয়ার ক্যালিপার্সেৰ মতই। তবে এটি উচ্চতা পৰিমাপ কৰা বা উচ্চতা পৰীক্ষা কৰা ছাড়াও সারফেস গেজেৰ অনুৱপ মার্কিং কৰতে ব্যবহাৰ কৰা হয়। এৱং প্ৰধান ক্ষেলোৰ দন্তটি খাড়াভাৱে বেসেৰ উপৰ শক্ত কৰে আটকানো থাকে। এ যন্ত্ৰে দুইটি ‘জ’ এৱং পৰিবৰ্তে একটি ‘জ’ থাকে। এবং ‘জ’ এৱং সাথে একটি ধাৰালো ক্লাইবাৰ ক্লু-এৱং সাহায্যে আবক্ষ কৰা থাকে। ক্লাইবাৰেৰ স্থলে রাড সংযুক্ত কৰে এৱং সাহায্যে ডেপথ গেজেৰ ন্যায় গভীৰতাও মেপে নেওয়া যাব। এ ছাড়া ক্লাইবাৰেৰ পৰিবৰ্তে ডাঙাল ইভিকেটৰ সংযুক্ত কৰে আৱণ সূচক এৱং সঠিকভাৱে পৰিমাপ কৰা সম্ভব হয়। Base-এৱং তলদেশ এৱং ক্লাইবাৰেৰ মুখেৰ নিচেৰ অংশেৰ লম্ব দূৰত্বকে ক্ষেলোৰ মাধ্যমে পৰিমাপ হিসাবে অহণ কৰা হয়। Base-এৱং তলদেশ এৱং ক্লাইবাৰেৰ নিচেৰ অংশ যৰ্থন একই সমতলে আসে তখন বিম ক্ষেলোৰ শূন্য দাগ একই সৱলৱেৰখাৰ এসে মিলিত হয়। ভার্নিয়ার হাইট গেজ দ্বাৰা মাপেৰ পাঠ নেওয়াৰ নিয়ম ভার্নিয়ার ক্যালিপার্সেৰ অনুৱপ কিন্তু ত্ৰিটিশ পজডিততে ভার্নিয়ার কলস্ট্যাট ০.০০১ ইঞ্চি এৱং মেট্ৰিক পজডিততে ভার্নিয়ার কলস্ট্যাট ০.০২ মি.মি. অৰ্থাৎ এই গেজেৰ সাহায্যে ০.০০১ ইঞ্চি এৱং ০.০২ মি.মি. পৰ্যন্ত মাপ সঠিকভাৱে নেওয়া যায়। উলম্ব তলেৰ ওপৰ সৱলৱেৰখাৰ টানতে এৱং কোনো জৰুৰি বিভিন্ন বিন্দুৰ উচ্চতা নিৰ্ণয়ে ভার্নিয়ার হাইট গেজ ব্যবহৃত হয়।



চিত্র-৯.১১: ভার্নিয়ার হাইট গেজ

### ভি-ব্লক (Vee-Block) :

গোলাকাৰ বা সিলিঙ্ক্রিক্যাল ওয়ার্কিংপিসকে আটকিয়ে মার্কিং কৰাৰ কাজে ভি-ব্লক ব্যবহৃত হয়।



চিত্র-৯.১২: ভি-ব্লক

### অঞ্চল প্লেট (Angle Plate) :

অসমতল কার্ডবন্ডকে আটকিয়ে মার্কিং করা এবং সম উপরিভাগে সরলরেখা টানতে সাহার্ত হিসেবে অঞ্চল প্লেট ব্যবহৃত হয়।



চিত্র-৯.১৩: অঞ্চল প্লেট

### হাতুড়ি (Hammer) :

মার্কিং এবং কাজে সাধারণত ১১০ শাই থেকে ২২৫ শাই ওজনের বলপিন হাতুড়ি ব্যবহৃত হয়। ইহার সাহায্যে অধিক পাকের মাঝারি আঘাত করে বিন্দু বিন্দু আকারে কোনো রেখা বা স্থানকে চিহ্নিত করা হয়।



চিত্র-৯.১৪: হাতুড়ি

### হারমাফ্রোডাইট ক্যালিপার (Hermaphrodite Caliper) :

থাতব ওয়াকিপিসের খগর বৃত্তচাপ অঙ্কন, বক্তুর কেজ নির্ণয় ও সে-আভট করার কাজে হারমাফ্রোডাইট ক্যালিপার ব্যবহৃত করা হয়।



চিত্র-৯.১৫: হারমাফ্রোডাইট ক্যালিপার

### মার্কিং ব্লক (Marking Block) :

সারফেস পেজের ফুলনার ইয়া অপেক্ষাকৃত সজ্জা এবং সরল পঠম বিশিষ্ট হওয়ার কারণামার বা মেশিনপে সারফেস পেজের পরিবর্তে মার্কিং ব্লক ব্যবহৃত আবশ্যিক ব্যবহৃত হয়। সারফেস পেজের প্রায় সব কাজই মার্কিং ব্লকের সাহায্যে করা হয়। তবে কাইবারের মুখকে সূক্ষ্মভাবে নিরীক্ষণ করার ব্যবহা না থাকার কাজের সূক্ষ্মতা কর হয় এবং ব্যবহারে সহজ বেশি শাস্তি। সেদেশ মেশিনে অব সেট করাতে খুব বেশি ব্যবহৃত হয়।



চিত্র-১.১৬১ মার্কিং ইন্স

### ১.৩ সে-আউট ও মার্কিং ইন্সের রক্ষণাবেক্ষণ :

- ১) ব্যবহারের পূর্বে প্রতিটি মার্কিং ও সে-আউট টুলকে পরিষ্কার করে নিতে হবে।
- ২) মার্কিং ও সে-আউট কার্ড সম্পাদনের পর প্রতিটি টুলকে আবার পরিষ্কার করে উহার জন্য পিণ্ডিত জীর্ণগাঁথ বা বাঁজে সংরক্ষণ করতে হবে।
- ৩) নীর্ব সময় থেরে সঞ্চয় করার জন্য মার্কিং ও সে-আউট টুলস সমূহকে মিছারোথক তৈল, মিল,
- লিঙ্গ, ইক্যান্ডি শাপানোর পরে সঞ্চয় করাকে হবে।
- ৫) মার্কিং করার ধারকীয় কাজ সাধারণত সারফেস প্রেটের উপর রেখে করা হয়। কাজ শেষ হওয়া যাবে
- সকল আনুষাঙ্গিক রক্ষণাত্মক সারফেস প্রেট থেকে সরিয়ে ফেলতে হবে।
- ৬) যে সকল মার্কিং টুলের ডীক্ষ ধোত বা ধোয়ালো ধোত আছে, সে ধোয়ালো ধাতে কঞ্চিত না হয়
- সেদিকে ধোয়াল রাখতে হবে।

## প্রশ্নমালা-৯

### অতি সংক্ষিপ্ত প্রশ্নঃ

১. মার্কিং বা লে-আউট কাকে বলে?
২. মার্কিং টুল কাকে বলে?
৩. ডট পাঞ্চ দিয়ে কী করা হয়?
৪. সেন্টার হেড দিয়ে কী করা হয়?
৫. ডিভাইডার দিয়ে কী করা হয়?
৬. ভি-ব্লক কী কাজে ব্যবহৃত হয়?
৭. মার্কিং এর কাজে হাতুড়ি কেন ব্যবহার করা হয়?
৮. সাধারণত কিসের ওপর রেখে মার্কিং করা হয়।

### সংক্ষিপ্ত প্রশ্নঃ

১. মার্কিং বা লে-আউট বলতে কী বোঝায়?
২. সারফেস প্লেটের ব্যবহার বর্ণনা কর।
৩. মার্কিং টেবিলের ব্যবহার বর্ণনা কর।
৪. মার্কিং ব্লকের ব্যবহার বর্ণনা কর।
৫. পাঞ্চ কী কাজে ও কীভাবে ব্যবহার করা হয় বর্ণনা কর।
৬. স্কাইবারের ব্যবহার উল্লেখ কর।
৭. হারমাফ্রোডাইট ক্যালিপারের চিত্র সহ ব্যবহার লেখ।
৮. ট্রাই স্কয়ার এর ব্যবহার উল্লেখ কর।
৯. মার্কিং এর কাজে হাতুড়ির ব্যবহার পদ্ধতি বর্ণনা কর।
১০. চিত্র সহ ডিভাইডারের ব্যবহার লেখ।

### রচনামূলক প্রশ্নঃ

১. মার্কিং বা লে-আউট বলতে কী বোঝায়? বিভিন্ন প্রকার মার্কিং টুলের সংক্ষিপ্ত ব্যবহার উল্লেখ কর।
২. মার্কিং এর ক্ষেত্রে সতর্কতার বিষয়াদি বর্ণনা কর।
৩. মার্কিং বা লে-আউট টুলসমূহের যত্ন ও রক্ষণাবেক্ষণ ব্যাখ্যা কর।

## অধ্যায়-১০

# ভাৰ্নিয়াৰ ক্যালিপাৰ্স (Vernier Calipers)

### ১০.১ ভাৰ্নিয়াৰ ক্যালিপাৰ :

ভাৰ্নিয়াৰ ক্যালিপাৰ হলো একটি সূজ্জ পৰিমাপক ও পৱৰীক্ষণ যন্ত্ৰ, যাৰ সাহায্যে কোন বস্তুৰ বা ওয়াকৰ্পিসেৰ ভিতৰ, বাহিৰ এবং গভীৰতাৰ মাপ সূজ্জতাৰে নেওয়া যায় বা পৱৰীক্ষা কৰা যায়। এটি একটি প্ৰত্যক্ষ সেমি প্ৰিসিশন সৱল মাপক যন্ত্ৰ। এটিৰ দুইটি আউটসাইড 'জ' এবং দুইটি ইনসাইড 'জ' থাকে। এই 'জ'-গুলো হাই কোয়ালিটি টুল স্টিল বা স্টেইনলেস স্টিলেৰ তৈরি এবং একটি বিমেৰ সাথে দৃঢ়তাৰে আৰুজ থাকে। বিমেৰ দুই ধাৰে সে.মি. এবং ইঞ্চিতে প্ৰধান ক্ষেল দাগাখৰিত থাকে। চলমান 'জ' দুইটি একটি রিটেইনাৱেৰ সাহায্যে প্ৰধান ক্ষেলেৰ উপৰ দিয়ে নড়া চড়া কৰতে পাৰে। চলমান 'জ' দুইটি এবং রিটেইনাৱটি একটি ভাৰ্নিয়াৰ ক্ষেলেৰ সাথে সংযুক্ত থাকে। প্ৰতি জোড়া 'জ' মিলিত অবস্থায় ভাৰ্নিয়াৰ ক্ষেলেৰ এক পাৰ্শ্ব বিম বা প্ৰধান ক্ষেলেৰ সাথে শূন্য দাগে অবস্থান কৰে। ভাৰ্নিয়াৰ ক্যালিপাৰ দ্বাৰা কোন প্ৰকাৰ অতিৰিক্ত হিসাব ছাড়াই এক পাৰ্শ্ব দিয়ে আউটসাইড এবং অপৰ পাৰ্শ্ব দিয়ে ইনসাইড মাপ গ্ৰহণ কৰা যায়। ভাৰ্নিয়াৰ ক্যালিপাৰে মাথাৰ দিকে ডেপথ থৰ (Depth Probe) থাকে যাৰ সাহায্যে একই ক্ষেলেৰ মাধ্যমে গভীৰতাৰ মাপও নেওয়া যায়।

### ১০.২ ভাৰ্নিয়াৰ ক্যালিপাৰেৰ বিভিন্ন অংশসমূহ :

একটি ভাৰ্নিয়াৰ ক্যালিপাৰ বিভিন্ন অংশৰ সমষ্টিয়ে গঠিত হয়। নিম্নে একটি চিত্ৰেৰ সাহায্যে একটি আদৰ্শ ভাৰ্নিয়াৰ ক্যালিপাৰেৰ বিভিন্ন অংশ দেখানো হলো-



চিত্ৰ-১০.১: ভাৰ্নিয়াৰ ক্যালিপাৰ

#### ভাৰ্নিয়াৰ ক্যালিপাৰেৰ বিভিন্ন অংশসমূহ:

1. আউটসাইড 'জ'স (Outside jaws)
2. ইনসাইড 'জ'স (Inside jaws)
3. ডেপথ থৰ (Depth probe)
4. প্ৰধান ক্ষেল (Main scale)- মেট্ৰিক পদ্ধতি
5. প্ৰধান ক্ষেল (Main scale)- ব্ৰিটিশ পদ্ধতি
6. ভাৰ্নিয়াৰ ক্ষেল (Vernier scale)- মেট্ৰিক পদ্ধতি
7. ভাৰ্নিয়াৰ ক্ষেল (Vernier scale)- ব্ৰিটিশ পদ্ধতি
8. রিটেইনাৱ (Retainer)

**আউটসাইড 'জ'স (Outside jaws) :** কার্যবস্তুর বাহিরের ব্যাস, প্রস্থ বা বেধ মাপার জন্য ব্যবহৃত হয়।

**ইনসাইড 'জ'স (Inside jaws) :** কার্যবস্তুর ভিতরের ব্যাস, অল্প ফাঁকা স্থানের প্রস্থ বা বেধ মাপার জন্য ব্যবহৃত হয়।

**ডেপথ প্রোব (Depth probe) :** কোন গর্ত বা ছিদ্রের গভীরতা মাপার জন্য ব্যবহৃত হয়।

**প্রধান স্কেল, মেট্রিক (Main scale, Metric) :** ০.০৫ সে.মি. পর্যন্ত মাপ নেওয়া যায়।

**প্রধান স্কেল, ব্রিটিশ (Main scale, British) :** সর্বনিম্ন ১/৬৪ ইঞ্চি পর্যন্ত মাপ নেওয়া যায়।

**ভার্নিয়ার স্কেল (Vernier scale) :** ১০, ২০ ও ২৫ ভাগ দাগ কাটা থাকে যেখানে প্রধান স্কেলের যথাক্রমে ৯, ১৯ ও ২৪ ঘরের সমান হয়।

**ভার্নিয়ার স্কেল (Vernier scale) :** ২৫ ভাগ দাগ কাটা থাকে যেখানে প্রধান স্কেলের ১ ইঞ্চি-তে ৪০ ঘর থাকে।

**রিটেইনার (Retainer) :** চলমান চোয়াল বা 'জ' গুলো এবং ভার্নিয়ার স্কেল দুইটিকে দৃঢ় ভাবে ধরে রেখে বিম স্কেলের উপর দিয়ে নড়া ঢ়া করতে সাহায্য করে।

### ১০.৩ ভার্নিয়ার প্রুব (Vernier Constant) নির্ণয় পদ্ধতি :

প্রধান স্কেলের আকার অনুযায়ী ভার্নিয়ার স্কেলের আকার রৈখিক বা গোলাকার হয়ে থাকে। সকল ভার্নিয়ার স্কেল একই নীতিতে তৈরি হয় না। তৈরির নীতি অনুযায়ী ভার্নিয়ার স্কেলের প্রুবক নির্ধারিত হয়ে থাকে। প্রধান স্কেলের ক্ষুদ্রতম এক ঘরের মান এবং ভার্নিয়ার স্কেলের ক্ষুদ্রতম এক ঘরের মানের মধ্যকার পার্থক্যকে ভার্নিয়ার প্রুবক বলা হয়।

ধরা যাক,

একটি ভার্নিয়ার স্কেলের মোট ভাগ সংখ্যা ২০ এবং ভার্নিয়ার স্কেলের এই ২০ ঘরের দ্রুত প্রধান স্কেলের ১৯ ঘরের সমান অর্থাৎ ১৯ মি.মি.।

সুতরাং, ভার্নিয়ার স্কেলের ২০ ভাগের দৈর্ঘ্য = ১৯ মি.মি.

$$\text{অতএব, ভার্নিয়ার স্কেলের ১ ভাগের দৈর্ঘ্য} = \frac{19}{20} \text{ মি.মি.} = 0.95 \text{ মি.মি.}$$

$\therefore$  ভার্নিয়ার প্রুবক = প্রধান স্কেলের ক্ষুদ্রতম ১ ভাগের দৈর্ঘ্য - ভার্নিয়ার স্কেলের ক্ষুদ্রতম ১ ভাগের দৈর্ঘ্য

$$= 1 \text{ মি.মি.} - 0.95 \text{ মি.মি.}$$

$$= 0.05 \text{ মি.মি.}$$

সাধারণত নিম্নে উল্লিখিত সূত্রের সাহায্যে ভার্নিয়ার প্রুবক নির্ণয় করা হয়ে থাকে। যথা-

ভার্নিয়ার কনস্ট্যান্ট = প্রধান স্কেলের এক ভাগের মান  $\div$  ভার্নিয়ার স্কেলের মোট ভাগ সংখ্যা।

**উদাহরণ-১ :** একটি ভার্নিয়ার ক্যালিপারের ভার্নিয়ার ক্ষেলের মোট ভাগ সংখ্যা ১০ যা প্রধান ক্ষেলের ৯ ভাগের দূরত্বের সমান। প্রধান ক্ষেলের ১ ভাগের মান ১ মি.মি। ভার্নিয়ার শ্রবক বাহির কর।

**সমাধান :**

আমরা জানি,

$$\begin{aligned}\text{ভার্নিয়ার কনস্ট্যান্ট} &= \text{প্রধান ক্ষেলের এক ভাগের মান} \div \text{ভার্নিয়ার ক্ষেলের মোট ভাগ সংখ্যা} \\ &= 1 \text{ মি.মি} \div 10 \\ &= 0.1 \text{ মি.মি.}\end{aligned}$$

উক্তরঃ ভার্নিয়ার কনস্ট্যান্ট হবে ০.১ মি.মি।

#### ১০.৪ ভার্নিয়ার ক্যালিপারের পরিমাপ পদ্ধতি :

##### (১) ভার্নিয়ার ক্যালিপারের পরিমাপ পদ্ধতি (মেট্রিক):

বস্তুর প্রকৃত পরিমাপ সবসময় পূর্ণ সংখ্যার হয় না। ভার্নিয়ার ক্ষেলের শূন্য দাগ যদি প্রধান ক্ষেলের যে কোন দাগের সাথে মিলে যায় তাহলে পরিমাপ তত মিমি হয়। কিন্তু ভার্নিয়ার ক্ষেলের শূন্য দাগ যদি প্রধান ক্ষেলের দুইটি দাগের মধ্যবর্তী কোন স্থানে অবস্থান করে তাহলে ভার্নিয়ার ক্ষেল থেকে মাপ পড়ার প্রয়োজন হয়। এক্ষেত্রে ভার্নিয়ার ক্ষেলের শূন্য চিহ্নিত দাগটি প্রধান ক্ষেলের যে দাগ অতিক্রম করে সে দাগ পর্যন্ত দূরত্বকে বস্তুর পূর্ণ পরিমাপ ধরা হয়। আবার ভার্নিয়ার ক্ষেলে যত সংখ্যক দাগটি প্রধান ক্ষেলের একটি মাত্র দাগের সাথে একই সরলরেখায় চলে আসে বা সবচেয়ে কাছাকাছি হয় তার সাথে ভার্নিয়ার শ্রবক গুণ করে যা পাওয়া যায় তাকে ইতিপূর্বে আঙ্গ পূর্ণমাপের সাথে যোগ করে বস্তুর প্রকৃত পরিমাপ নির্ধারণ করা হয়।



চিত্র-১০.২ঃ ভার্নিয়ার ক্যালিপারের পরিমাপ পদ্ধতি

### (২) ভার্নিয়ার ক্যালিপারের পরিমাপ পদ্ধতি (ব্রিটিশ):

প্রধান ক্ষেত্র এবং ভার্নিয়ার ক্ষেত্রের সময়ে মোট পরিমাপ নির্ধারিত হয়। এর প্রধান ক্ষেত্র ইঞ্জিনের দাগ কাটা থাকে। সাধারণত প্রতিটি ইঞ্জিন সমান ১০ ভাগে বিভক্ত করে অপেক্ষাকৃত কম লম্বা দাগ সহ ছোট আকারের সংখ্যা দ্বারা চিহ্নিত করা থাকে যার মান  $0.1$  ইঞ্জিন। এ ভাগগুলো আবার সমান ৪ (চার) ভাগে ভাগ করা থাকে যার মান  $\frac{0.1}{4} = 0.025$  ইঞ্জিন অর্থাৎ ইঞ্জিন পদ্ধতির ভার্নিয়ার ক্যালিপার্সে প্রধান ক্ষেত্রের প্রত্যেকটি স্কুদ্রতম ভাগ বা ঘরের মান  $0.025$  ইঞ্জিন। এ প্রকারের ভার্নিয়ার ক্যালিপার্সে ভার্নিয়ার ক্ষেত্রের মোট দাগ সংখ্যা থাকে ২৫। সুতরাং ভার্নিয়ার ধ্রুবক হলো  $\frac{0.025}{25} = 0.001$  ইঞ্জিন।

ব্রিটিশ পদ্ধতিতে ভার্নিয়ার ক্যালিপার দ্বারা মাপ নেওয়ার জন্য প্রথমে ভার্নিয়ার ক্ষেত্রের শূন্য চিহ্নিত রেখাটি কয়টি পূর্ণ ইঞ্জিন রেখা অতিক্রম করেছে এবং কয়টি এক ইঞ্জিন ১০ ভাগের ১ ভাগ রেখা অতিক্রম করেছে ও কত সংখ্যক ৪০ ভাগের এক ভাগ রেখা অতিক্রম করেছে সেদিকে খেয়াল রাখতে হয়। এর পর লক্ষ করা হয় যে ভার্নিয়ার ক্ষেত্রের কত নম্বর রেখাটি প্রধান ক্ষেত্রের একটি মাত্র রেখার সাথে পূর্ণভাবে সরলরেখায় মিলিত হয়েছে। ভার্নিয়ার ক্ষেত্রের শূন্য দ্বারা অতিক্রান্ত প্রত্যেকটি রেখার মাপ যোগ করে তার সাথে ভার্নিয়ার ক্ষেত্রের মিলিত দাগ সংখ্যাকে ভার্নিয়ার ধ্রুবক দ্বারা গুণ করে গুণফল পূর্বের যোগফলের সাথে যোগ করলে মোট যোগফল ভার্নিয়ার ক্যালিপারের মোট মাপ নির্দেশ করে।

### ১০.৫ ডিজিটাল ভার্নিয়ার ক্যালিপার ও ইহার ব্যবহারঃ

ডিজিটাল ভার্নিয়ার ক্যালিপার একটি সূক্ষ্ম পরিমাপক যন্ত্র যা দ্বারা কোন জব বা কার্যক্ষেত্রে ভিত্তি ও বাহিরের পরিমাপ অতি সূক্ষ্মভাবে নির্ণয় করা যায় এবং পরিমাপ একটি এলসিডি ডিসপ্লে-এর মাধ্যমে সরাসরি ভেসে উঠে। ইঞ্জিন অথবা মিলিমিটার বাটন চেপে পাঠ পছন্দমত সংগ্রহ করা যায়।

যে জব বা কার্যক্ষেত্রে পরিমাপ নিতে হবে সেটিকে ডিজিটাল ভার্নিয়ার ক্যালিপারের এক্সটেন্শনাল 'জ' এর মধ্যে স্থাপন করে আলতোভাবে স্পর্শ করানো হয়, ডিজিটাল ডিসপ্লেতে তখন পাঠ ভেসে উঠে।



চিত্র-১০.৫: ডিজিটাল ভার্নিয়ার ক্যালিপার

### ১০.৬ ভার্নিয়ার ক্যালিপারের ব্যবহারঃ

কোন মসৃণ তলের দৈর্ঘ্য, প্রস্থ বা চওড়া, বেধ বা পুরুত্ব পরিমাপ করার জন্য ভার্নিয়ার ক্যালিপার্স ব্যবহৃত হয়। তাছাড়া গোলক, সিলিন্ডার ইত্যাদির ব্যাস পরিমাপে এটি ব্যবহৃত হয়। পরীক্ষণ কাজেও ভার্নিয়ার ক্যালিপার্স ব্যবহার করা হয়। কোন পাইপ বা সিলিন্ডার এর আভ্যন্তরীণ ব্যাস পরিমাপে এটি ব্যবহৃত হয়। এছাড়া দুইটি

তলের মধ্যকার ভেতরের মাপ গ্রহণ করতেও ভার্নিয়ার ক্যালিপার্স ব্যবহৃত হয়। গর্ত বা স্লটের গভীরতা, দুইটি তলের উচ্চতার পার্থক্য বা গভীরতা পরীক্ষা করতে বা পরিমাপ গ্রহণ করতে ভার্নিয়ার ক্যালিপার্স ব্যবহৃত হয়।



চিত্র-১০.৩ : ভার্নিয়ার ক্যালিপারের ব্যবহার

#### ১০.৭ ভার্নিয়ার ক্যালিপারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি :

- ১) ভার্নিয়ার ক্যালিপার ব্যবহার করার সময় অতিরিক্ত চাপ প্রয়োগ করা উচিত নয়, এতে মাপের সঠিকতা নষ্ট হওয়ার সম্ভাবনা থাকে।
- ২) মেশিন চলন্ত অবস্থায় কার্যবস্তুর বা যন্ত্রাংশের মাপ ভার্নিয়ার ক্যালিপার দ্বারা নেওয়া নিষেধ।
- ৩) ক্যালিপার ব্যবহার করার পর পরিষ্কার করে যথাযথ স্থানে রেখে দিতে হবে।
- ৪) ভার্নিয়ার ক্যালিপারকে কাটিং টুলের সাথে রাখা নিষেধ।
- ৫) স্থির ঢোঁয়াল বা ‘জ’ -কে কার্যবস্তুর এক ধারে স্থাপন করে স্লাইডিং ‘জ’ কে ধীরে ধীরে অন্য পাশে স্থাপন করতে হয়।
- ৬) ভার্নিয়ার ক্যালিপার দ্বারা রাফ সারফেসের মাপ গ্রহণ করা যাবে না।
- ৭) ভার্নিয়ার ক্যালিপারকে কোন চুম্বকের সংস্পর্শে রাখা যাবে না।
- ৮) ভার্নিয়ার ক্যালিপারের কোন অংশ যাতে মরিচা না পড়ে এবং চলনশীল অংশ যাতে সহজেই চলাচল করতে পারে সেজন্য বিম ক্ষেলের উপরিভাগে ও ক্রু খ্রেডের বিভিন্ন স্থানে কিছু দিন পর পর মসৃণকারক তেল বা গ্রিজ প্রয়োগ করতে হবে।

## প্রশ্নামালা-১০

### অতি সংক্ষিপ্ত প্রশ্নঃ

১. ভার্নিয়ার ক্যালিপার কী ধরনের টুলস് ?
২. প্রধান ক্ষেল বলতে কী বোঝায় ?
৩. ভার্নিয়ার ক্ষেল কোথায় লাগানো থাকে ?
৪. লকিং স্ক্রু কেন ব্যবহার করা হয় ?
৫. ভার্নিয়ার ক্যালিপারে পাঞ্চ চিহ্ন কেন ব্যবহার করা হয় ?
৬. ভার্নিয়ার ক্যালিপারের সূচন্তা মাত্রা কত মিমি ?
৭. ভার্নিয়ার ক্যালিপারের সূচন্তা মাত্রা কত ইঞ্চিং ?
৮. ভার্নিয়ার ক্যালিপার কী ধাতু দিয়ে তৈরি করা হয় ?
৯. রিটেইনারের কাজ কী ?
১০. ডেপ্থ প্রবের সাহায্যে কী মাপা যায় ?

### সংক্ষিপ্ত প্রশ্নঃ

১. ভার্নিয়ার ক্যালিপারের বিভিন্ন অংশগুলোর নাম লেখ ।
২. ভার্নিয়ার ধ্রুবক বলতে কী বোঝায় ?
৩. ভার্নিয়ার ক্যালিপারের প্রধান ক্ষেলের গঠন সংক্ষেপে লেখ ।
৪. ভার্নিয়ার ক্যালিপারের ব্যবহার সংক্ষেপে উল্লেখ কর ।
৫. ভার্নিয়ার ক্যালিপারের ভার্নিয়ার ক্ষেলের গঠন সংক্ষেপে লেখ ।
৬. ভার্নিয়ার ক্ষেলের কাজ সংক্ষেপে বর্ণনা কর ।
৭. একটি ভার্নিয়ার ক্যালিপারের ভার্নিয়ার ক্ষেলের মোট ভাগ সংখ্যা ৫০ যাহার দৈর্ঘ্য প্রধান ক্ষেলের ৪৯  
ভাগের দূরত্বের সমান । প্রধান ক্ষেলের এক ভাগের মান ০.৫ মি.মি. । ভার্নিয়ার ধ্রুবক বের কর ।  
(উত্তরঃ ০.০১ মি.মি.)

### রচনামূলক প্রশ্নঃ

১. চিত্রসহ একটি ভার্নিয়ার ক্যালিপারের বিভিন্ন অংশের নাম লেখ ।
২. একটি ভার্নিয়ার ক্যালিপারের বিভিন্ন অংশের কার্যাবলী বর্ণনা কর ।
৩. মেট্রিক প্রণালিতে ভার্নিয়ার ক্যালিপারের পাঠ কীভাবে গ্রহণ করা হয় বর্ণনা কর ।
৪. ব্রিটিশ প্রণালিতে ভার্নিয়ার ক্যালিপারের পাঠ কীভাবে গ্রহণ করা হয় বর্ণনা কর ।
৫. ভার্নিয়ার ক্যালিপারের যত্ন ও রক্ষণাবেক্ষণ প্রণালি বর্ণনা কর ।

## অধ্যায়-১১

### মাইক্রোমিটার (Micrometer)

#### ১১.১ মাইক্রোমিটার :

মাইক্রোমিটার এক অকার সরাসরি বা অস্ত্রক শাপন যন্ত্র (Direct Measuring Instrument)। একে হ্র-পেজও বলা হয়। হ্র-পেজ নাটের কেজের নিয়ে হ্র-গ্রেড কাটা সঙ্গে বোল্টের যাঁত্তা আসা নীচির উপর তিনি করে মাইক্রোমিটার কৈরি বলা হয়। নাটের ন্যায় ক্লিমাশীল অল্পক হিচল এবং বোল্টের ন্যায় ক্লিমাশীল অল্পক ব্যারেল বা সর্বীভ বলা হয়।



চিত্র-১১.১। আউট সাইড মাইক্রোমিটার

ব্যারেলের উপর রৈখিক কেল দাপাহিত থাকে থাকে এখান কেল বলা হয়। বিচলের বিচেল বা ঢালু থাকে বৃক্ষকার কেল বা খিল কেল থাকে।

#### ১১.২ মাইক্রোমিটারের পরিমাপ পদ্ধতি :

মেট্রিক পদ্ধতিতে মাল সেগুন্ড অন্ত ব্যবহৃত মাইক্রোমিটারের অধান কেলে রৈখিক দাপ ও দাসের মাল উপর ও নিচে দুই দিকে থাকে। উপরের ও নিচের রৈখিক কেলের মাঝে ব্যারেলের অক ব্যাবর একটি সরলরেখা বা দাপ থাকে। উপরের রৈখিক কেলের ক্ষেত্র এক জাপের মাল ১ মি.মি.। আবার নিচের কেলে উপরের প্রতি বরের মাঝ ব্যাবর দাপ কাটা থাকে করে উপরের প্রতি অন্তের কৈর্ণের অর্ধেক দাপ সেগুন্ড আছে হয়। কালে রৈখিক কেল হতে সর্বশিল্প ০.৫ মি.মি. মাল সেগুন্ড আৰ।



চিত্র-১১.২। মাইক্রোমিটারের পরিমাপ পদ্ধতি

বৃত্তাকার কেলের বিমলকে এক পাক মূলাতে বৈধিক দাগ বরাবর  $0.5$  মি.মি. অপসর হয় বা পিছিয়ে আসে।  
সূক্ষ্মাক বৈধিক কেলের  $0.5$  মি.মি. মূলত বৃত্তাকার কেলের  $50$  ভাগের সমান।

$$\text{অতএব, বৃত্তাকার কেলের এক ভাগের মান} = (0.5 \div 50) \text{ মি.মি.}$$

$$= 0.01 \text{ মি.মি.}$$

এটিকে মাইক্রোমিটার কলস্ট্যান্ট বলা হয়। মাইক্রোমিটার দিয়ে পাঠ নেওয়ার সহজ বিধিলের পাঠ  
ব্যাখ্যে কেলের এক দাগ অভিক্ষম করেছে সেই অভিক্ষম দাগের মাপ নির্ণয় করে এর সাথে সার্কুলার কেলের  
বে দাগ ডেটাম লাইনের সাথে মিলেছে অর্থাৎ থার একই সরলরেখার এসেছে সেই দাগ সংখ্যাকে  
মাইক্রোমিটার কলস্ট্যান্ট দিয়ে গুণ করে কলস্ট্যান্টকে ঘোঙ্ক করতে হবে। সর্বমোট ঘোঙ্কাই হবে নির্ণয়ে  
পুরোপুরি।

### উদাহরণঃ ১

পার্শ্বের চিত্রে দেখানো মাইক্রোমিটার রিজিং দেখে মোট পাঠ দেখ কর।

সমাধানঃ

$$\text{পথান কেলের } 8 \text{ ভাগের মান} = 8 \times 0.1 = 0.800 \text{ ইঞ্চি}$$

$$\text{পথান কেলের ক্ষুদ্রতম } 0 \text{ ভাগ} = 0 \times 0.025 = 0.000 \text{ ইঞ্চি}$$

$$\begin{aligned} \text{বৃত্তাক কেলের } 12 \text{ ভাগের মান} &= 12 \times 0.001 = 0.012 \text{ ইঞ্চি} \\ &= 0.812 \text{ ইঞ্চি} \end{aligned}$$



$$\text{উত্তরঃ মোট পাঠ} = 0.812 \text{ ইঞ্চি}$$

### উদাহরণঃ ২

চিত্রানুবাদী ইঞ্চি ভার্সিয়ার মাইক্রোমিটারের মোট পাঠ নির্ণয় কর।

সমাধানঃ

$$\text{পথান কেলের } 2 \text{ ভাগের মান} = 2 \times 0.1 = 0.200 \text{ ইঞ্চি}$$

$$\begin{aligned} \text{পথান কেলের ক্ষুদ্রতম } 0 \text{ ভাগের মান} &= 0 \times 0.025 \\ &= 0.000 \text{ ইঞ্চি} \end{aligned}$$

$$\begin{aligned} \text{বৃত্তাক কেলের } 11 \text{ ভাগের মান} &= 11 \times 0.001 \\ &= 0.011 \text{ ইঞ্চি} \end{aligned}$$

$$\text{ভার্সিয়ার পাঠ} = 0.0002 \text{ ইঞ্চি}$$

$$\begin{aligned} \text{মোট পাঠ} &= (0.200 + 0.000 + 0.011 + 0.0002) \text{ ইঞ্চি} \\ &= 0.2862 \text{ ইঞ্চি} \end{aligned}$$



### ১১.৩ মাইক্রোমিটারের বিভিন্ন অংশের নাম :



চিত্র-১১.২ ৩ আণ্ট সাইড মাইক্রোমিটারের বিভিন্ন অংশ

একটি আণ্টসাইড মাইক্রোমিটারের বিভিন্ন অংশগুলো হলো-

- (১) ক্রম (Frame)
- (২) ব্যারেল (Barrel)
- (৩) স্পিন্ডল (Spindle)
- (৪) থিম্বল (Thimble)
- (৫) অ্যানভিল (Anvil)
- (৬) লক রিং (Lock ring)
- (৭) রাচেট নব (Ratchet Knob)
- (৮) অ্যাজুস্টিং নট (Adjusting nut)
- (৯) স্পিন্ডল নট (Spindle nut)
- (১০) মেইন স্কেল (Main scale)
- (১১) ভার্নিয়ার স্কেল (Vernier scale)

**ক্রম (Frame) :**

এই অংশটা দেখতে আনেকটা ইঞ্জিনিয়ারিং ইউ অক্সের নাম এবং এটি কাস্ট স্টিলের তৈরি। এখানে মাইক্রোমিটারের সাইড ফ্রেমের স্থানে একটি অ্যানভিল এবং অ্যাজুস্টিং নট দিয়ে ব্যারেল সহযুক্ত থাকে। ক্রম সময় বড়িকে ধরে রাখে।

### **ব্যারেল (Barrel) :**

ব্যারেল একটি টিউবের ন্যায় অংশ যা ফ্রেমের সাথে স্থায়ীভাবে যুক্ত। ব্যারেলের ভিতরে স্পিন্ডল আঁটানো থাকে। এর বাহিরের সারফেসে দৈর্ঘ্য বরাবর রেখা টেনে ইঞ্চিং বা মিলিমিটার সংক্রান্ত দাগ কাটা থাকে। এই দাগের ক্ষেত্রকে রেখিক ক্ষেত্র বলা হয়। এতে ডেটাম লাইন নামে একটি সরল রেখা থাকে যার সাথে সমন্বয় করে সার্কুলার ক্ষেত্রের মাপ নির্ণয় করা হয়। এই লাইনকে ইনডেক্স রেখাও বলা হয়।

### **স্পিন্ডল (Spindle) :**

এটা এনভিলের বিপরীত পার্শ্বে ফ্রেমের সাথে সমন্বয়কৃত একটি চলমান অংশ। এটা ব্যারেলের ভিতরে দিয়ে চলাচল করে। এর শেষ প্রান্তের কিছু অংশ প্যাঁচ কাটা থাকে। এই প্যাঁচ ইঞ্চিং মাপের মাইক্রোমিটারে প্রতি ইঞ্চিতে ৪০টি এবং মেট্রিক মাইক্রোমিটারে প্রতি সেন্টিমিটারে ২০টি অর্থাৎ পিচ ০.৫ মি.মি. থাকে। স্পিন্ডলটি থিম্বল ও র্যাচেট স্টপের সাথে সংযুক্ত থাকায় র্যাচেট স্টপ এবং থিম্বল ঘুরালে স্পিন্ডলটিও ঘুরতে থাকে। স্পিন্ডলের মুখ বা প্রান্ত টাংস্টেন কারবাইড স্টিলের তৈরি।

### **অ্যানভিল (Anvil) :**

এটি ফ্রেমের সাথে এক প্রান্তে স্থায়ীভাবে আবদ্ধ থাকে। এর মুখ সমতল এবং টাংস্টেন কারবাইড স্টিল দ্বারা তৈরি হয়। ফলে বার বার স্পিন্ডল প্রান্ত বা ওয়ার্কপিসের সাথে ঘর্ষণ লাগলেও ক্ষয়প্রাপ্ত হয় না।

### **থিম্বল (Thimble) :**

এটা ফাঁপা সিলিন্ডার আকৃতির। এর সাথে র্যাচেট স্টপ ও স্পিন্ডল সংযুক্ত থাকে। থিম্বলের পার্শ্বের কিছু অংশ বিভেদ আকৃতির হয়। মিলিমিটার মাইক্রোমিটারে এতে সমান ব্যবধানে ৫০টি দাগ কাটা থাকে এবং ইঞ্চিং মাইক্রোমিটারে ২৫ টি দাগ কাটা থাকে। একে সার্কুলার বা বৃত্তাকার ক্ষেত্র বলা হয়। ঘুরানোর সুবিধার্থে এর বাহিরের কিছু অংশ নার্লিং করা থাকে।

### **র্যাচেট নব (Ratchet knob) :**

এটা সিলিন্ডার আকৃতির এবং পৃষ্ঠ দেশের প্রান্তে নার্লিং করা থাকে। এতে ঘুরানোর সুবিধা হয়। কার্যবস্তুতে এনভিল এবং স্পিন্ডল যাতে নির্দিষ্ট চাপে মাপ নেওয়া যায় সেজন্য র্যাচেট নব ব্যবহার করে পাঠ লওয়া হয়। স্পিন্ডল এবং র্যাচেট নবের মাঝে একটি স্প্রিং বসানো থাকে যা র্যাচেটের মাধ্যমে স্পিন্ডলে অতিরিক্ত চাপ প্রয়োগে বাধা দেয়। র্যাচেট নব সংযুক্ত থাকায় সমচাপে সকল পরিমাণ গ্রহণ করা সম্ভব হয়। ফলে চাপের তারতম্য না হওয়ায় মাপের কোন পরিবর্তন হয় না। একে র্যাচেট স্ক্রুও বলা হয়ে থাকে।

### **লকিং নাট (Locking Nut) :**

কোন মাপ নেওয়ার পর গৃহীত মাপ যাতে পরিবর্তিত হয়ে না যায় সেজন্য লকিং নাট বা পিনকে ঘুরায়ে স্পিন্ডলকে ফ্রেমের সাথে সংযুক্ত বা আবদ্ধ করে রাখার জন্য লকিং নাট ব্যবহৃত হয়। অর্থাৎ মাপ গ্রহণ করার পর নাটটি আটকে দিলে মাপ নড়চড় হতে পারে না।

এটা ছাড়াও মাইক্রোমিটারের আরও কতগুলো অংশ আছে। যেমন, স্পিন্ডল নাট, স্লটের নাট, থিম্বল নাট প্রভৃতি।

### **১১.৪ মাইক্রোমিটারের শ্রেণিবিভাগ :**

কাজের ধরন এবং ব্যবহার অনুসারে মাইক্রোমিটার বিভিন্ন আকারের হয়। মাপ গ্রহণ বা পরীক্ষা গ্রহণ করার প্রকৃতি অনুযায়ী মাইক্রোমিটারকে প্রধানত তিনভাগে ভাগ করা যায়।

বেমল-

- ১) আউট সাইড মাইক্রোমিটার (Outside Micrometer)
- ২) ইনসাইড মাইক্রোমিটার (Inside Micrometer)
- ৩) ডেপথ মাইক্রোমিটার (Depth Micrometer)



চিত্র-১১.৩: আউট সাইড, ইনসাইড ও ডেপথ মাইক্রোমিটার।

#### আউট সাইড মাইক্রোমিটার :

কোন কার্যকরূর বা অব্যবহৃত পরিদৃশ্য অর্থাৎ দৈর্ঘ্য, অন্ত, উচ্চতা, ব্যাস, বেধ অঙ্গুত্তির মাপ এবং মাপ পরীক্ষাকরণের জন্য আউটসাইড মাইক্রোমিটার ব্যবহৃত হয়। আউট সাইড মাইক্রোমিটার সাধারণত শিল্পীর কাজের হয়ে থাকে। বর্ণা-

- ১) প্লেইন আউট সাইড মাইক্রোমিটার (Plain outside micrometer)
- ২) ক্র-শ্বেত মাইক্রোমিটার (Screw thread micrometer)
- ৩) ডিস্ক টাইপ মাইক্রোমিটার (Disk type micrometer)
- ৪) টিউব মাইক্রোমিটার (Tube micrometer)
- ৫) বল-এন্ড মাইক্রোমিটার (Ball-end Micrometer)
- ৬) ব্রেড টাইপ মাইক্রোমিটার (Blade type micrometer)
- ৭) বেঞ্চ মাইক্রোমিটার (Bench Micrometer)
- ৮) ইন্ডিকেটর মাইক্রোমিটার (Indicator Micrometer)

#### প্লেইন আউটসাইড মাইক্রোমিটার :

এই ধরনের মাইক্রোমিটারের অ্যানডিল এবং সিপডলের মুখ সমতল হয়। কার্যকরূর দৈর্ঘ্য, অন্ত, পুরুষ, ব্যাস অঙ্গুত্তি অতি সূচাতাবে মাপার কাজে ও মাপ পরীক্ষার কাজে ব্যবহৃত হয়।



চিত্র-১১.৪: প্লেইন আউটসাইড মাইক্রোমিটার

### ক্ল-প্রেস মাইক্রোমিটার :

ক্ল-প্রেস মাইক্রোমিটার এর আকার ও আকৃতি আৰু সাধাৰণ আউটসাইড মাইক্রোমিটারের অনুরূপ হয়ে থাকে। অতিৰ অ্যানডিল ইন্ডিকেশন 'ডি' (D) আকৃতিৰ বাজ কাটা থাকে এবং স্পিগলের অপৰ্যাপ্ত মোচাকৃতি হয়ে থাকে। এই ধরনের মাইক্রোমিটার দ্বাৰা ক্ল এৰ পিচ ব্যাস বাহিৰ কৰা হয়।



চিত্ৰ-১১.৫৩ ক্ল-প্রেস মাইক্রোমিটার

### ডিজিটাল মাইক্রোমিটার :

ডিজিটাল মাইক্রোমিটার এৰ অ্যানডিল এবং স্পিগলেৰ পাঞ্চ ডিজিট বা চালকতিৰ মতো হয়ে থাকে। এই মাইক্রোমিটার দিয়ে পাতলা শিট, কাগজৰ পুরুষ বা অনুৰূপ কাৰ্যবৃত্তৰ পুৰুষ নিৰ্ণয়ে ব্যবহাৰ কৰা হয়। এই প্ৰেমিৰ মাইক্রোমিটারকে পেশাৱণেক মাইক্রোমিটাৰও বলা হয়।



চিত্ৰ-১১.৬৪ ডিজিটাল মাইক্রোমিটার

### টিউব মাইক্রোমিটার :

টিউব মাইক্রোমিটার এৰ অ্যানডিল স্পিগলেৰ সাধে দৰভাৱে থাকে এবং সোলাকাৰ ও নিৰোট হয়ে থাকে। এ ধৰান্ডেৰ মাইক্রোমিটার কেবল মল বা অনুৰূপ ঝোপ বজুল বেধ বা পুৰুষ নিৰ্ণয়ে ব্যবহাৰ হয়। সাধাৰণ মাইক্রোমিটার দিয়ে মল বা সোলাকাৰ সেৱালতোলা কাৰ্যবৃত্তৰ মাপ নিলে কুল ঘাপ পাওৱা যাবে। টিউব বা মলেৰ সেয়ালেৰ বেধ বা বিকলেস মাপাৰ জন্য অ্যানডিলেৰ মুখে বল লাগালো মাইক্রোমিটার ব্যবহাৰ কৰা হয়।



চিত্ৰ-১১.৭৫ টিউব মাইক্রোমিটার

এতে কেবলমাত্র এক জায়গায়ই স্পিডলের মূখ এবং অ্যানডিলের বালের প্রান্ত স্পর্শ করবে এবং সঠিক মাপ পাওয়া যাবে। এই মাইক্রোমিটারের বল-এত অ্যানডিল থেকে খুবেও বাঢ়া যাব। তখন অ্যানডিলের ক্ল্যাট সারফেস বেরিয়ে পড়ে। এ প্রকারের মাইক্রোমিটার সিয়ে মাপ নিতে হলে যা মাপ পাওয়া যাবে তা থেকে বালের ডায়ামেটার বাদ দিতে হবে। আবু এক রকমের বল এত মাইক্রোমিটার আছে যার অ্যানডিল এবং স্পিডলের মুখে বল লাগানো থাকে। এভালো প্রেট, এন্ড বা পর্ট করা এবং কার্ড বা বাঁকানো সারফেসের মাপ লওয়ার জন্য ব্যবহৃত হয়। অ্যানডিল এবং স্পিডল ব্যক্তি এ মাইক্রোমিটারের অন্যান্য অংশ প্রেইন আউট সাইড মাইক্রোমিটারের অনুরূপ। এ মাইক্রোমিটারের অ্যানডিল এবং স্পিডলের প্রান্ত চাপ্টা হয়। এজন্য ধীকের গভীরতা বা অনুরূপ সকল অংশের মাপ এহণ করতে এ মাইক্রোমিটার ব্যবহার হয়।

#### বেক মাইক্রোমিটার:

এ মাইক্রোমিটারের স্পিডল এবং অ্যানডিল উভয়ই পাঁত এহশের জন্য চলাচল করতে পারে। চলাচল অ্যানডিলে ইভিকেটের সম্মুক্ত ধাকার একে কম্পারেটের যিসেবে ব্যবহার করা যায়। বেক মাইক্রোমিটারের অ্যানডিল এবং স্পিডল সম্মুক্ত ক্ষেত্রের সাথে সম্মুক্ত ধাকায় তিন তার বা দুই তার পক্ষতিতে ক্লয়ের পিচ-চাল নির্ণয়ে বিশেষভাবে উপযোগী।



চিত্র-১১.৮: বেক মাইক্রোমিটার

#### ইভিকেটের মাইক্রোমিটার:

ইভিকেটের মাইক্রোমিটার সাধারণ মাইক্রোমিটারের অনুরূপ মাপ এহশের কেল আছে। এ মাইক্রোমিটারের বিশেষ সুবিধা হলো এতে পৃথক অতিরিক্ত একটি কেল ধাকার কম্পারেটের বা ভুলনাম্পক মাপ বা নিরীক্ষা করা যায়। কোন নির্দিষ্ট মাপ নিরীক্ষা করতে অথবে এই মাপ সেট করে কার্ডবৰ্ততে মাপ এহণকালে নির্ধারিত মাপ অপেক্ষা কম কৰ্য বা বেশি আছে তা সন্তানি ইভিকেটের কেল থেকে পাঁত করা যায়। মাইক্রোমিটার অংশ হতে ০.০১ মি.মি সূক্ষ্মতায় এবং ইভিকেটের অংশ হতে ০.০০১ মি.মি সূক্ষ্মতায় মাপের সঠিকতা বাঢ়াই করা যায়।



চিত্র-১১.৯: ইভিকেটের মাইক্রোমিটার

### ইনসাইড মাইক্রোমিটার :

কোন বস্তুর মাপ অর্থাৎ দূরত্ব তলের অস্তবর্তী দূরত্ব মাপ এবং পরীক্ষা ও নিরীক্ষা করতে ইনসাইড মাইক্রোমিটার ব্যবহৃত হয়। ইনসাইড মাইক্রোমিটারের মাপ পাঁচ পক্ষতি আউট মাইক্রোমিটারের মাপ পাঁচ পক্ষতির অনুরূপ। ইনসাইড মাইক্রোমিটার প্রধানত দুই পক্ষের মাপ পাঁচ পক্ষতির অনুরূপ। ব্যথা-

#### ১) ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার :



চিত্র-১১.১০ (ক): ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার (ম্যাকানিক্যাল)



চিত্র-১১.১০ (খ): ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার (ডিজিটাল)

#### ২) রড টাইপ ইনসাইড মাইক্রোমিটার :



চিত্র-১১.১১: রড টাইপ ইনসাইড মাইক্রোমিটার

### ডেপথ মাইক্রোমিটার (Depth Micrometer) :

দুইটি তলের উচ্চতায় পার্থক্য অর্থাৎ কোন বস্তুর গভীরতার মাপ গ্রহণ ও পরীক্ষা করতে ডেপথ মাইক্রোমিটার ব্যবহৃত হয়। অন্যান্য মাইক্রোমিটারের ন্যায় ডেপথ মাইক্রোমিটারেও থিম্বল এবং ব্যারেল বা স্লিভের মাধ্যমে একই পদ্ধতিতে মাপ গ্রহণ করা হয়। স্লিভের নিচে দুইদিকের বর্ধিত ভূমির তলদেশ অর্থাৎ হেড কে ছিদ্র বা খাতের দুইদিকে সমভাবে বসিয়ে বা অবস্থান করে বাম হাতের আঙ্গুল দ্বারা হালকা চাপ প্রয়োগ করে ডান হাতে থিম্বলকে ঘূরিয়ে মাপ গ্রহণ করতে হয়। এ মাইক্রোমিটারে অ্যানিভিল থাকে না এবং হেড এর তলদেশ ও স্পিন্ডল বা রান্ডের প্রান্ত দূরত্বকেই গভীরতা হিসেবে বিবেচনা করা হয় অর্থাৎ গভীরতার মাপ নির্দেশ করে।



চিত্র-১১.১২ঃ ডেপথ মাইক্রোমিটার

### ১১.৬ মাইক্রোমিটারের যত্ন ও রক্ষণাবেক্ষণ :

- ১) মাইক্রোমিটার সর্বদা পরিষ্কার রাখা প্রয়োজন। অন্যথায় ধূলা বা ময়লা জমলে ভুল মাপ দেখাবে এবং মরিচা পরার সম্ভাবনা থাকে।
- ২) মাইক্রোমিটারের কোনো অংশে যাতে মরিচা না পরে সেজন্য মাঝে মাঝে ভেতরে ও বাহিরে মসৃন কারক তৈল দিয়ে রাখতে হয়।
- ৩) এনভিল এবং স্পিন্ডলকে কার্যবস্তুর সাথে বেশি চাপ দিয়ে ব্যবহার করা অনুচিত। র্যাচেট ব্যবহার করতে হবে এবং র্যাচেট না থাকলে কার্যবস্তুকে চাপ না দিয়ে কেবলমাত্র স্পর্শ করা অবস্থায় পরিমাপ নিতে হবে।
- ৪) মাইক্রোমিটারকে সর্বদা পরিষ্কার স্থানে যত্ন সহকারে রাখতে হবে।
- ৫) মাইক্রোমিটারের সাহায্যে চলন্ত বস্তু এবং রাফ সারফেস- এর মাপ গ্রহণ অনুচিত।
- ৬) মাইক্রোমিটারকে চুবকের নিকট রাখা যাবে না।
- ৭) মাইক্রোমিটারের উপর কেন্দ্র টুলস রাখা যাবে না।
- ৮) ব্যবহারের পর পরিষ্কার এবং ক্রটিমুক্ত অবস্থায় সংরক্ষণ করতে হবে।
- ৯) মাইক্রোমিটারকে সব সময় নির্দিষ্ট আধারে রাখা উচিত।
- ১০) মাইক্রোমিটারে ক্রটি থাকলে সুদক্ষ কারিগর দ্বারা সংশোধন করে নিতে হবে।
- ১১) মাইক্রোমিটার যাতে টেবিল হতে বা ব্যবহারকালে মেরোতে পড়ে না যায় সেদিকে সতর্ক থাকা প্রয়োজন এবং যত্ন সহকারে ব্যবহার করতে হবে।

## প্রশ্নমালা-১১

### অতি সংক্ষিপ্ত প্রশ্নঃ

১. মাইক্রোমিটার কী?
২. মাইক্রোমিটার প্রধানত কয় প্রকার ও কী কী?
৩. আউট সাইড মাইক্রোমিটারের প্রধান অংশগুলোর নাম লেখ।
৪. পিচ কাকে বলে?
৫. মাইক্রোমিটারের ত্রুটি কয় প্রকার ও কী কী?
৬. মাইক্রোমিটারের শূন্য ত্রুটি বলতে কী বুঝায়?
৭. মাইক্রোমিটার ধ্রুবক বা লিষ্ট মান কাকে বলে?
৮. মেট্রিক মাইক্রোমিটারের থিস্বলে সার্কুলার ক্ষেলের মোট ভাগের সংখ্যা কত?
৯. ইঞ্জিন মাইক্রোমিটারের থিস্বলে সার্কুলার ক্ষেলের ভাগের সংখ্যা কত?
১০. মাইক্রোমিটারের ধ্রুবক বা লিষ্ট মান ০.০১ মি.মি. বলতে কী বুঝায়?
১১. টিউব মাইক্রোমিটার কী কাজে ব্যবহৃত হয়?
১২. স্ক্রু থ্রেড মাইক্রোমিটার কী কাজে ব্যবহৃত হয়?

### সংক্ষিপ্ত প্রশ্নঃ

১. মাইক্রোমিটার বলতে কী বুঝায় ব্যক্ত কর।
২. মাইক্রোমিটার সাইজ বলতে কী বুঝায় উল্লেখ কর।
৩. ব্যারেলের গঠন বর্ণনা কর।
৪. থিস্বলের গঠন বর্ণনা কর।
৫. র্যাচেট ব্যবহারের সুবিধা উল্লেখ কর।
৬. মাইক্রোমিটারের ত্রুটি বলতে কী বুঝায়?
৭. লক রিং কেন ব্যবহার করা হয় বুঝিয়ে লেখ।

### রচনামূলক প্রশ্নঃ

১. মাইক্রোমিটারের প্রধান অংশসমূহের নাম এবং উহাদের ব্যবহার সংক্ষেপে বর্ণনা কর।
২. মাইক্রোমিটারের মূলনীতি ব্যাখ্যা কর।
৩. মাইক্রোমিটারের ত্রুটি ব্যাখ্যা কর।
৪. মাইক্রোমিটারের ক্ষেত্রে মেট্রিক পরিমাপ গ্রহণ পদ্ধতি বর্ণনা কর।
৫. মাইক্রোমিটারের ক্ষেত্রে ইঞ্জিন পরিমাপ গ্রহণ পদ্ধতি বর্ণনা কর।
৬. মাইক্রোমিটারের সাইজ বলতে কী বুঝায় বর্ণনা কর।
৭. মাইক্রোমিটার রেঞ্জ বলতে কী বুঝায় বর্ণনা কর।
৮. মাইক্রোমিটারের প্রকারভেদ বর্ণনা কর।
৯. মাইক্রোমিটারের ধ্রুবক নির্ণয় পদ্ধতি ব্যাখ্যা কর।
১০. ডেপথ মাইক্রোমিটারের গঠন ও ব্যবহার বর্ণনা কর।
১১. মাইক্রোমিটারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।

## অংশৰ-১২

### আউটসাইড মাইক্রোমিটাৰ (Outside Micrometer)

#### ১২.১ আউটসাইড মাইক্রোমিটাৰের পৰিচয় :

পৰিমাপ ও পৰীক্ষণের কাজে আউটসাইড মাইক্রোমিটাৰ বহুল ব্যবহৃত হয়। এই মাপ যন্ত্ৰে সাধাবে বাহিৱেৰ ব্যাস, বেথ, গভীৰতা, উচ্চতা অৰ্থাৎ পৰিমাপ মাপা যায়। এটি একটি সূচৰ পৰিমাপক ও পৰীক্ষণ যন্ত্ৰ যাৰ সাধাবে ত্ৰিটিশ পঞ্চাংতে ০.০০১ ইঞ্চি সূচৰতা এবং মেট্ৰিক পঞ্চাংতে ০.০১ মি.মি. পৰ্যন্ত সূচৰতা বজাৰ রেখে পৰিমাপ ও পৰীক্ষণ কৰা যায়।



চিত্ৰ-১২.১ : আউট সাইড মাইক্রোমিটাৰ

#### ১২.২ মাইক্রোমিটাৰ প্ৰযৰ্বক (Vernier Constant) :

মাইক্রোমিটাৰে সাধাবে স্বচেৱে সৰলিম বে দৈৰ্ঘ্য পৰিমাপ কৰা যায়, তা মাইক্রোমিটাৰ প্ৰযৰ্বক নামে পৰিচিত। অকৃতপক্ষে ধিমল কেলেৰ অতি কুন্ত্ৰতম ভাগেৰ যানই হলো মাইক্রোমিটাৰ প্ৰযৰ্বক। মাইক্রোমিটাৰে ব্যবহৃত প্ৰেক্ষণ পিচকে ধিমল কেল বা সাৰ্কুলাৰ কেলেৰ মেটি ভাগ সংখ্যা বাবা ভাগ কৰলে মাইক্রোমিটাৰ প্ৰযৰ্বক পাওয়া যায়।

অৰ্থাৎ মাইক্রোমিটাৰ প্ৰযৰ্বক = ধিমলেৰ প্ৰেক্ষণ পিচ ÷ ধিমল কেলেৰ মেটি ভাগ সংখ্যা

অথবা,

মাইক্রোমিটাৰ প্ৰযৰ্বক = অধান কেলেৰ সূচৰতম এক ভাগেৰ ধান + বৃত্তাকাৰ কেলেৰ মেটি ভাগ সংখ্যা

#### ১২.৩ মাইক্রোমিটাৰ প্ৰযৰ্বক পিৰ্মল কৰাৰ পদ্ধতি :



চিত্ৰ-১২.২ মাইক্রোমিটাৰ প্ৰযৰ্বক পিৰ্মল

### মেট্রিক পদ্ধতি -

এখানে পিচ ০.৫ মি.মি. বিশিষ্ট থিম্বলকে পূর্ণ এক পাক ঘুরালে স্পিন্ডলটি মাত্র ০.৫ মি.মি. অঞ্চল হয়। থিম্বলটি ৫০টি সমান ভাগে ভাগ করা থাকে। সুতরাং প্রত্যেক ভাগের মান  $\frac{0.5}{50} = 0.01$  মি.মি. এবং এটিই হচ্ছে মাইক্রোমিটার ধ্রুবক।

অথবা, মাইক্রোমিটার ধ্রুবক = থিম্বলের থ্রেডের পিচ ÷ থিম্বল ক্ষেলের মোট ভাগ সংখ্যা

$$= \frac{0.5}{50} 0.01 \text{ মি.মি.}$$

### ব্রিটিশ পদ্ধতি -

ব্রিটিশ পদ্ধতিতে মাইক্রোমিটারের ব্যারেল ক্ষেলে এক ইঞ্চিং দূরত্বকে সাধারণত প্রধান ১০ (দশ) টি ভাগে বিভক্ত করা থাকে। সুতরাং ব্যারেল ক্ষেলের প্রতিটি প্রধান ক্ষুদ্রতর ভাগ ০.১ ইঞ্চিং মাপকে সূচিত করে। আবার এই প্রতিটি ক্ষুদ্রতর ভাগকে আবার সমান চার ভাগে বিভক্ত করা থাকে। অর্থাৎ ব্যারেল ক্ষেলের এক ইঞ্চিং দূরত্ব মোট  $4 \times 10 = 40$  ভাগে বিভক্ত হয়। কাজেই ব্যারেল ক্ষেলের ক্ষুদ্রতম এক ভাগের মান হয়  $\frac{1}{40}$  ইঞ্চিং বা ০.০২৫ ইঞ্চিং। এই ধরনের মাইক্রোমিটারের থিম্বলকে পূর্ণ এক পাক ঘুরালে স্পিন্ডলের মুখ ০.০২৫ ইঞ্চিং দূরত্ব অতিক্রম করে। থিম্বল বা বৃত্তীয় ক্ষেলে আবার সম্পূর্ণ পরিধি জুড়ে সমান ২৫ টি ভাগ করা থাকে। সুতরাং থিম্বল ক্ষেলের প্রতিটি ভাগের মান হয়  $0.025 \div 25 = 0.001$  ইঞ্চিং। এটিই হচ্ছে ব্রিটিশ পদ্ধতিতে মাইক্রোমিটারের ধ্রুবক বা মাইক্রোমিটার কনস্ট্যান্ট।

### ১২.৪ আউটসাইড মাইক্রোমিটারের কার্যনীতি :

আমরা জানি কোন একটি থ্রেড যুক্ত বোল্টের সাথে একই মাপের থ্রেড যুক্ত একটি নাটকে এক প্যাচ ঘুরালে নাটটি বোল্টের উপর এক পিচ পরিমান দৈর্ঘ্য অঞ্চল হয়। নাট ও বোল্টের এই নীতির উপর ভিত্তি করে মাইক্রোমিটার তৈরি করা হয়। মাইক্রোমিটারের স্পিন্ডলকে এক পাক ঘুরালে উহার পিচ অনুসারে থিম্বল ০.০২৫ ইঞ্চিং অথবা ০.৫ মি.মি. সরে যায়। সাধারণ আউটসাইড মাইক্রোমিটারের ব্যারেলের উপর অঙ্কিত ক্ষেলের নির্দেশক রেখার উপর এক ইঞ্চিং স্থানকে সমান ৪০ ভাগে অথবা ২৫ মি.মি. স্থানকে ৫০ ভাগে বিভক্ত করা থাকে।

ব্রিটিশ পদ্ধতিতে তৈরি আউটসাইড মাইক্রোমিটারের ব্যারেল এবং থিম্বলে প্রতি ইঞ্চিংতে ৪০টি স্ক্রু-থ্রেড থাকে।

ফলে, স্পিন্ডলকে পূর্ণ এক পাক ঘুরালে উহা  $\frac{1}{80}$  ইঞ্চিং বা ০.০২৫ ইঞ্চিং অঞ্চল হয় অথবা পশ্চাত দিকে পিছিয়ে আসে। স্পিন্ডলকে ডানদিকে পূর্ণ এক পাক ঘুরালে স্পিন্ডল এবং অ্যানভিলের মুখ দুইটির ব্যবধান ০.০২৫ ইঞ্চিং করে যায়। আবার যদি বাম দিকে ঘুরানো হয়, তবে স্পিন্ডল এবং অ্যানভিলের মুখ দুইটির দূরত্বের ব্যবধান ০.০২৫ ইঞ্চিং বেড়ে যায়। স্পিন্ডল এবং থিম্বল পরম্পর থ্রেড দ্বারা যুক্ত থাকায় থিম্বলের সঙ্গে স্পিন্ডল ঘূরতে থাকে। ব্যারেলের উপরিভাগে এক ইঞ্চিং পরিমান স্থান সমান ৪০ ভাগে ভাগ করা থাকে। সুতরাং ব্যারেলের প্রতি বিভাগের মান  $\frac{1}{80}$  ইঞ্চিং বা ০.০২৫ ইঞ্চিং। এখন থিম্বল ক্ষেলে মোট ভাগ সংখ্যা হলো ২৫। এখন থিম্বল ক্ষেলের এক ভাগ ঘুরালে উহা  $0.025 \div 25 = 0.001$  ইঞ্চিং স্থান অতিক্রম করে। মাপ নির্ণয়ের সময় লক্ষ

রাখতে হয় যে থিস্বলের প্রান্ত ব্যারেলের কোন অক্ষ চিহ্নিত রেখাটি ও কয়টি স্কুদ্র রেখা অতিক্রম করেছে ও থিস্বলের কোন রেখাটি ‘নির্দেশক রেখা’ -এর সাথে ঠিক মিলে গিয়েছে। এখন রেখাগুলোর সম্পর্কযুক্ত মাপগুলো যোগ করলেই সম্পূর্ণ মাপ পাওয়া যাবে।

আবার মিলিমিটার পদ্ধতিতে নির্মিত মাইক্রোমিটার এর কার্যনীতিও নাট ও বোল্টের অনুরূপ। ব্যারেলের অংশটি নাটের ন্যায় এবং স্পিন্ডলের অংশটি বোল্টের ন্যায় কাজ করে। ব্যারেল ও থিস্বল উভয়েরই থ্রেড  $0.5 \text{ mm/mm}$  পিচ বিশিষ্ট। থিস্বলকে পূর্ণ এক পাক ডান দিকে ঘুরালে স্পিন্ডল ও এনভিলের মুখ দুইটির ব্যবধান  $0.5 \text{ mm}$  মিমি করে যায় এবং বাম দিকে ঘুরালে ব্যবধান  $0.5 \text{ mm}$ . বেড়ে যায়। থিস্বল ও স্পিন্ডল পরস্পর যুক্ত থাকার ফলে থিস্বলকে ঘুরালে স্পিন্ডল ঘুরে ব্যারেলের উপর দিয়ে যাতায়াত করে। ব্যারেলের উপরিভাগে  $25 \text{ mm}$ . স্থান  $50$  ভাগে বিভক্ত করা থাকে। তাই ব্যারেলের প্রতিটি বিভাগ  $0.5 \text{ mm}$ . মাপ সূচিত করে। থিস্বলকে পূর্ণ এক পাক ঘুরালে ব্যারেলের  $0.5 \text{ mm}$ . বিভাগের একটি রেখা অতিক্রম করে। থিস্বল ক্ষেলে মোট ভাগ সংখ্যা হলো  $50$ । এখন থিস্বল ক্ষেলের এক ভাগ ঘুরালে উহা  $0.5 \div 50 = 0.01 \text{ mm}$ . স্থান অতিক্রম করে। মাপ নির্ণয়ের সময় লক্ষ রাখতে হয় যে থিস্বলের প্রান্ত ব্যারেলের কোনো অক্ষ চিহ্নিত রেখাটি ও কয়টি স্কুদ্র রেখা অতিক্রম করেছে ও থিস্বলের কোনো রেখাটি ‘নির্দেশক রেখা’ -এর সাথে ঠিক মিলে গিয়েছে। এখন রেখাগুলোর সম্পর্কযুক্ত মাপগুলো যোগ করলেই সম্পূর্ণ মাপ পাওয়া যাবে।

#### ১২.৫ আউটসাইড মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যবলী :



চিত্র-১২.৩৪ আউট সাইড মাইক্রোমিটারের বিভিন্ন অংশ

#### মাইক্রোমিটারের বিভিন্ন অংশসমূহঃ

- ১) ফ্রেম (Frame)
- ২) ব্যারেল (Barrel)
- ৩) স্পিন্ডল (Spindle)
- ৪) থিস্বল (Thimble)
- ৫) অ্যানভিল (Anvil)
- ৬) লক নাট (Lock Nut)
- ৭) র্যাচেট নব (Ratchet Knob)

### **ফ্রেম (Frame) :**

এই অংশটা দেখতে অনেকটা ইংরেজি ইউ (U) অক্ষরের ন্যায় এবং কাস্ট স্টিলের তৈরি। এখানে মাইক্রোমিটারের সাইজ উল্লেখ থাকে। এছাড়া ফ্রেমের সাথে একদিকে অ্যানভিল এবং অন্যদিকে ব্যারেল সংযুক্ত থাকে। ফ্রেম সমস্ত বডিকে ধরে রাখে।

### **ব্যারেল (Barrel) :**

ব্যারেল একটি টিউবের ন্যায় অংশ যা ফ্রেমের সাথে স্থায়ীভাবে যুক্ত। ব্যারেলের ভিতরে স্পিন্ডল আঁটানো থাকে। এর বাহিরের সারফেসে দৈর্ঘ্য বরাবর রেখা টেনে ইঞ্চিং বা মিলিমিটার-এ দাগ কাটা থাকে। এই দাগের ক্ষেত্রে কৈথিক ক্ষেত্র বলা হয়। এতে ডেটাম লাইন নামে একটি সরল রেখা থাকে যার সাথে সমন্বয় করে সার্কুলার ক্ষেত্রের মাপ নির্ণয় করা হয়। এই লাইনকে ইনডেক্স রেখাও বলা হয়।

### **স্পিন্ডল (Spindle) :**

এটা এনভিলের বিপরীত পার্শ্বে ফ্রেমের সাথে সমন্বয়কৃত একটি চলমান অংশ। এটা ব্যারেলের ভিতর দিয়ে চলাচল করে। এর শেষ প্রান্তের কিছু অংশ প্যাঁচ কাটা থাকে। এই প্যাঁচ ইঞ্চিং মাপের মাইক্রোমিটারে প্রতি ইঞ্চিতে ৪০টি এবং মেট্রিক মাইক্রোমিটারে প্রতি সেন্টিমিটারে ২০টি অর্থাৎ পিচ ০.৫ মি.মি. থাকে। স্পিন্ডলটি থিম্বল ও র্যাচেট স্টপের সাথে সংযুক্ত থাকায় র্যাচেট স্টপ এবং থিম্বল ঘুরালে স্পিন্ডলটিও ঘুরতে থাকে। স্পিন্ডলের মুখ বা প্রান্ত টাংস্টেন কারবাইড স্টিলের তৈরি।

### **অ্যানভিল (Anvil) :**

এটি ফ্রেমের সাথে এক প্রান্তে স্থায়ীভাবে আবদ্ধ থাকে। এর মুখ সমতল এবং টাংস্টেন কারবাইড স্টিল দ্বারা তৈরি হয়। ফলে বার বার স্পিন্ডলের প্রান্ত ওয়ার্কপিসের সাথে দৰ্শণ লাগলেও ক্ষয়প্রাপ্ত হয় না।

### **থিম্বল (Thimble) :**

এটা ফাঁপা সিলিন্ডার আকৃতির সাথে র্যাচেট স্টপ ও স্পিন্ডল সংযুক্ত থাকে। থিম্বলের পার্শ্বের কিছু অংশ বিভেদে আকৃতির হয়। মিলিমিটার মাইক্রোমিটারে এতে সমান ব্যবধানে ৫০টি দাগ কাটা থাকে এবং ইঞ্চিং মাইক্রোমিটারে ২৫টি দাগ কাটা থাকে। একে সার্কুলার বা বৃত্তাকার ক্ষেত্র বলা হয়। ঘুরানোর সুবিধার্থে এর বাহিরের কিছু অংশ নালিং করা থাকে।

### **র্যাচেট নব (Ratchet Knob) :**

এটা সিলিন্ডার আকৃতির এবং পৃষ্ঠ দেশের প্রান্তে নালিং করা থাকে। এতে ঘুরানোর সুবিধা হয়। কার্যবস্তুতে এনভিল এবং স্পিন্ডল যাতে নির্দিষ্ট চাপে মাপ নেওয়া যায় সেজন্য র্যাচেট নব ব্যবহার করে পাঠ লওয়া হয়। স্পিন্ডল এবং র্যাচেট নবের মাঝে একটি স্প্রিং বসানো থাকে যা র্যাচেটের মাধ্যমে স্পিন্ডলে অতিরিক্ত চাপ প্রয়োগে বাধা দেয়। র্যাচেট নব সংযুক্ত থাকায় সমচাপে সকল পরিমাপ গ্রহণ করা সম্ভব হয়। ফলে চাপের তারতম্য না হওয়ায় মাপের কোন পরিবর্তন হয় না। একে র্যাচেট স্ক্রুও বলা হয়ে থাকে।

**লক নাট (Lock Nut) :** কোন মাপ নেওয়ার পর গৃহীত মাপ যাতে পরিবর্তিত হয়ে না যায় সেজন্য লকিং নাট বা পিনকে ঘুরায়ে স্পিন্ডলকে ফ্রেমের সাথে সংযুক্ত বা আবদ্ধ করে রাখার জন্য লকিং নাট ব্যবহৃত হয়। অর্থাৎ মাপ গ্রহণ করার পর নাটটি আটকে দিলে মাপ নড়চড় হতে পারে না।

## প্রশ্নমালা-১২

### অতিসংক্ষিপ্ত প্রশ্ন :

১. আউটসাইড মাইক্রোমিটার কী ?
২. আউটসাইড মাইক্রোমিটার-এর কয়টি অংশ আছে ?
৩. আউটসাইড মাইক্রোমিটার-এর বিভিন্ন অংশগুলির নাম লেখ ?
৪. মাইক্রোমিটার শুবক বা লিষ্ট মান কাকে বলে ?
৫. আউটসাইড মাইক্রোমিটারের প্রকারভেদ উল্লেখ কর।
৬. মেট্রিক আউটসাইড মাইক্রোমিটারের থিস্বলে সার্কুলার ক্ষেলের ভাগ সংখ্যা কত ?

### সংক্ষিপ্ত প্রশ্ন :

১. আউটসাইড মাইক্রোমিটারের বিভিন্ন অংশগুলির নাম লেখ।
২. আউটসাইড মাইক্রোমিটার কত প্রকার ও কী কী ?
৩. আউটসাইড মাইক্রোমিটার-এর ব্যারেলের গঠন বর্ণনা কর।
৪. আউটসাইড মাইক্রোমিটার -এর থিস্বলের গঠন বর্ণনা কর।
৫. আউটসাইড মাইক্রোমিটার-এর ফ্রেমের গঠন বর্ণনা কর।
৬. আউটসাইড মাইক্রোমিটার-এর র্যাচেট নবের সুবিধা বর্ণনা কর।
৭. আউটসাইড মাইক্রোমিটার-এর লকিং নাটের কাজ বর্ণনা কর।

### রচনামূলক প্রশ্ন :

১. মাইক্রোমিটার শুবক বের করার পদ্ধতি ব্যাখ্যা কর।
২. আউট সাইড মাইক্রোমিটারের কার্যনীতি বর্ণনা কর।
৩. আউটসাইড মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যবলী বর্ণনা কর।

## অধ্যায়-১৩

### ডেপথ মাইক্রোমিটার (Depth Micrometer)

#### ১৩.১ ডেপথ মাইক্রোমিটার পরিচিতি :

যে মাইক্রোমিটার দ্বারা সূচ্ছভাবে এক হাজার ভাগের একভাগ পর্যন্ত কোন ঘনাংশের গভীরতা, ছিদ্র ও ঘাটের গভীরতা মাপা যায়, তাহাকে ডেপথ মাইক্রোমিটার বলে।



চিত্র-১৩.১: ডেপথ মাইক্রোমিটার

দুইটি তলের উচ্চতার পার্থক্য অর্থাৎ কোন বস্তুর গভীরতার মাপ গ্রহণ ও পরীক্ষা করতে ডেপথ মাইক্রোমিটার ব্যবহৃত হয়।

অন্যান্য মাইক্রোমিটারের ন্যায় ডেপথ মাইক্রোমিটারেও থিম্বল এবং ব্যারেল বা স্লিভের মাধ্যমে একই পদ্ধতিতে মাপ গ্রহণ করা হয়। স্লিভের নিচে দুইদিকের বর্ধিত বেইস বা ভূমির তলদেশ অর্থাৎ হেড (Head) কে ছিদ্র বা খাতের দুইদিকে সমভাবে বসাতে হবে। তারপর বাম হাতের আঙুল দ্বারা হালকা চাপ প্রয়োগ করে ডান হাতে থিম্বলকে স্থানিয়ে মাপ গ্রহণ করতে হবে। এ মাইক্রোমিটারে অ্যানিভিল থাকে না এবং হেড এর তলদেশ ও স্পিন্ডল বা রডের প্রান্ত দূরত্বকেই গভীরতা হিসেবে বিবেচনা করা হয় অর্থাৎ গভীরতার মাপ নির্দেশ করে।

#### ১৩.২ ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের নাম :

নিম্নের চারটি অংশ নিয়ে ডেপথ মাইক্রোমিটার গঠিত-

- ১) স্টক (Stock)
- ২) থিম্বল (Thimble)
- ৩) ব্যারেল বা স্লিভ (Barrel or Sleeve)
- ৪) এক্সটেনশন রড (Extension rod)
- ৫) র্যাচেট স্টপ (Ratchet stop)
- ৬) লক রিং (Lock ring)



চিত্র-১৩.২৪ ডেপথ মাইক্রোমিটাৰের বিভিন্ন অংশ ও পাঠ নেওয়াৰ পদ্ধতি

১৩.৩ ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যাবলী :

**স্টক (Stock) :** ইহা বস্তুর উপর স্থাপন করে ছিদ্রের বা নালীর গভীরতা মাপ করতে ব্যবহার হয়।

**থিম্বল (Thimble) :** ইহা ফাঁপা সিলিন্ডার যার এক প্রান্ত ঢালু এবং সার্কুলার ক্ষেত্র ঘুর্ণি।

**স্লিপ বা ব্যারেল (Sleeve or Barrel)** : ইহা একটা টিউবের মত যার অভ্যন্তরে ইন্টারনাল থ্রেড যুক্ত এবং বাহিরের গোলাকার তলে ক্ষেপ খচিত থাকে।

**এক্সটেনশন রড (Extension rod) :** ইহা থিম্বলের সাথে যুক্ত করে গভীরতা মাপ নিতে ব্যবহার হয়।

**র্যাচেট নব (Ratchet knob) :** এটি অ্যানিলিল বা এক্সটেনশন রড ওয়ার্কপিসের তল স্পর্শ করার সাথে সাথে স্লিপ বা ব্যারেলকে বিশেষ শব্দ করে থামিয়ে দেয়। ফলে ওয়ার্কপিসের সঠিক গভীরতার মাপ পাওয়া যায়।

#### ১৩.৪ ডেপথ মাইক্রোমিটার-এর সাহায্যে পরিমাপ গ্রহণ পদ্ধতি :

ইনসাইড মাইক্রোমিটারের মত থিস্বল ও ব্যারেল আছে। শুধু ব্যারেলের দাগের উপর যে সংখ্যা লেখা থাকে, তা অন্যান্য মাইক্রোমিটারের তুলনায় বিপরীত দিক থেকে অর্ধাং উপর হতে সংখ্যাগুলো লেখা থাকে। থিস্বলকে

যতই সামনের দিকে চুরান হয়, ততই মাপের গভীরতা বাড়তে থাকে। এই মাইক্রোমিটারে কতগুলি বর্ষিত আকারের দণ্ড ব্যবহার করা হয়। এই সব দণ্ড ডেপথ মাইক্রোমিটারের পিছনের দিকে রাখতে শুরু ক্যাপকে খুলে লাগানো হয়। এটি ব্যবহারের সময় স্টকের উপর বাম হাতের আঙুল ধারা হাতের চাপ প্রয়োগ করে ডান হাতে ঘিয়লকে চুরাতে হয়।



চিত্র-১৩.৩: ডেপথ মাইক্রোমিটার এর সাহায্যে পরিমাপ এবং পক্ষতি।

এই মাইক্রোমিটারের আকারের পাস্টা (Range) হিসাবে বিভিন্ন দৈর্ঘ্যের দণ্ড দেখান থাকে। বেমন- ০-৩ ইঞ্জিন আকারের ডেপথ মাইক্রোমিটারের তিনটি দণ্ড, ০-৬ ইঞ্জিনে ডুটি দণ্ড এবং ০-৯ ইঞ্জিনে ৩টি দণ্ড থাকে। প্রত্যেকটি দণ্ড নিচের লম্বা আকারের সাথে অধিক ইঞ্জিন লম্বা থাকে, তা কখনু ঘিয়লের ভিতরে থাকার জন্য। এই দণ্ডগুলি ক্রমে ইস্পাত দিয়ে সুপার ফিনিশ করে তৈরি করা হয়। ডেপথ মাইক্রোমিটারের সাহায্যে এক ইঞ্জিন এক হাজার ভালের এক ভাগ গর্জন সূচিতায় পরিমাপ করা যায়।



চিত্র-১৩.৪: ডেপথ মাইক্রোমিটার এর সাহায্যে বন্ধাংশের ভিতরের গভীরতা মাপার কোশল।

#### ১৩.৫ ডেপথ মাইক্রোমিটারের যন্ত্র ও রক্ষণাবেক্ষণ :

ডেপথ মাইক্রোমিটার একটি সূক্ষ্ম যন্ত্র। ইহা খুব সাবধানে ও যন্ত্র সহকারে ব্যবহার করবে। ব্যবহার করার পূর্বে ইহাকে ভালোভাবে পরিষ্কার করে নিতে হয়। ডেপথ মাইক্রোমিটারের কোন অংশে ধাতে মনিচা না পড়ে সেজন্য এটির বাহিরে এবং ভিতরের ছু-শ্রেতে এবং এক্সটেনশন রাতে কিছু দিন পর মসৃণ কারক তেল দিতে হবে। অতিবার কাজ শেষে নির্দিষ্ট স্থানে অর্থাৎ নির্ধারিত বাজে সংরক্ষণ করতে হবে।

## অনুশীলনী-১৩

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ডেপথ মাইক্রোমিটার কী ?
২. ডেপথ মাইক্রোমিটার-এর কয়টি অংশ আছে ?
৩. ডেপথ মাইক্রোমিটার -এর বিভিন্ন অংশগুলির নাম লেখ ।

### সংক্ষিপ্ত প্রশ্ন :

১. চিত্রসহ ডেপথ মাইক্রোমিটার -এর বিভিন্ন অংশগুলির নাম লেখ ।
২. ডেপথ মাইক্রোমিটার কত প্রকার ও কী কী ?
৩. ডেপথ মাইক্রোমিটার -এর ব্যারেলের গঠন বর্ণনা কর ।
৪. ডেপথ মাইক্রোমিটার -এর থিস্বলের গঠন বর্ণনা কর ।
৫. ডেপথ মাইক্রোমিটার -এর র্যাচেট স্টপের সুবিধা বর্ণনা কর ।
৬. ডেপথ মাইক্রোমিটার -এর এক্সটেনশন রডের কাজ বর্ণনা কর ।

### রচনামূলক প্রশ্ন :

১. ডেপথ মাইক্রোমিটার বলতে কী বোঝায় ? ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের নাম লেখ ।
২. ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যাবলী বর্ণনা কর ।
৩. ডেপথ মাইক্রোমিটার-এর সাহায্যে পরিমাপ গ্রহণ পদ্ধতি বর্ণনা কর ।
৪. ডেপথ মাইক্রোমিটারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর ।

## অধ্যায়-১৪

# বিভেল প্রোট্রাক্টর (Bevel Protractor)

### ১৪.১ বিভেল প্রোট্রাক্টর পরিচিতি :

এটা এক প্রকার কৌণিক মাপন যন্ত্র যার সাহায্যে  $1^{\circ}$  সূক্ষ্মতায় প্রিসিশন যন্ত্র হিসেবে যে কোণ কোণ পরিমাপ এবং নিরীক্ষা করা যায়। প্রোট্রাক্টরের হেড ক্লেভ বরাবর মুক্তভাবে স্লাইড করতে পারে এবং অর্ধ বৃত্তাকার ডিক্ষে  
 $0^{\circ}$  থেকে  $90^{\circ}$  পর্যন্ত উভয় দিকে  $1^{\circ}$  করে দাগ কাটা থাকে। প্রোট্রাক্টরের স্পিনেট লেভেলের সাহায্যে কৌণিক বা ঢালু তলের লেভেল পরীক্ষা করা যায়। প্রয়োজনে ক্লেভ অংশের সাহায্যে সাধারণ দৈর্ঘ্যের মাপও নেওয়া যায়।



### ১৪.২ বিভেল প্রোট্রাক্টর-এর বিভিন্ন অংশের নাম :

একটি বিভেল প্রোট্রাক্টরের বিভিন্ন অংশ নিম্নের চিত্রের সাহায্যে দেখানো হলো-



চিত্র-১৪.২: বিভেল প্রোট্রাক্টরের বিভিন্ন অংশ।

- ১) প্রোট্রাক্টর হেড বা স্টক (Protractor Head or Stock)
- ২) ডায়াল (Dial)
- ৩) ক্লেভ (Blade)
- ৪) ক্লেভ ক্ল্যাম্প নাট (Blade Clamp Nut)
- ৫) ডায়াল ক্ল্যাম্প নাট (Dial Clamp Nut)
- ৬) আলট্রা সেন্সিটিভ অ্যাডজাস্টমেন্ট (Ultra Sensitive Adjustment)

### **প্রোট্র্যাষ্টর হেড বা স্টক (Protractor Head or Stock) :**

এটি বিভেদ প্রোট্র্যাষ্টরের প্রধান অংশ। অন্যান্য অংশসমূহ এই অংশের উপর ভিত্তি করে গঠিত। প্রোট্র্যাষ্টরের উপর অর্ধবৃত্তাকার ডিস্কে ০° থেকে ৯০° পর্যন্ত উভয় দিকে ১০ করে দাগ কাটা থাকে। তাছাড়া এতে স্পিরিট লেভেল আছে। কাজেই এটির সাহায্যে স্পিরিট লেভেলের কাজ করা যায় এবং স্পিরিট লেভেল ব্যবহার করে শুধু প্রোট্র্যাষ্টর হেড দিয়েও কোন কোণের পরিমাপ জানা যায় বা কার্যবস্তুকে নির্দিষ্ট কোণে স্থাপন করা যায়। প্রোট্র্যাষ্টর হেড দুইটি অংশে বিভক্ত। এক অংশে ইন্ডিকেটিং লাইন আছে যা শূন্য দ্বারা চিহ্নিত করা এবং অপর অংশে ডিগ্রির ভাগে দাগাক্ষিত থাকে। এই দুই অংশের সমন্বয়ে আমরা মাপ পাই।

### **ব্লেড (Blade) :**

এটি একটি স্টিল রুলার যার উপর রৈখিক মাপ মি.মি. বা ইঞ্চিতে দাগ কাটা থাকে। ফলে এর সাহায্যে স্টিল রুলের কাজ করা যায়। তাছাড়া ব্লেডের লম্বালম্বি বরাবর একটি গ্রুব বা খাঁজ কাটা থাকে। এই খাঁজের সাহায্যে ব্লেড প্রোট্র্যাষ্টরের সাথে স্লাইডিং (Sliding) বা নড়াচড়া করতে পারে।

### **ব্লেড ক্ল্যাম্প নাট (Blade Clamp Nut) :**

ক্ল্যাম্প নাট সংযুক্ত ক্লু এর সাহায্যে ব্লেডকে প্রোট্র্যাষ্টর হেডের সাথে যুক্ত করে রাখে। নাটের মধ্যে একটি স্প্রিং থাকে যা ব্লেডকে প্রয়োজনীয় দৈর্ঘ্যে সেট করার সময় নাট, ব্লেড এবং হেডের মধ্যে সমন্বয় রক্ষা করে।

### **ডায়াল ক্ল্যাম্প নাট (Dial Clamp Nut) :**

প্রোট্র্যাষ্টর হেডের সাথে ডায়ালটি এই ক্ল্যাম্প নাট দ্বারা সংযুক্ত থাকে। এটি প্রোট্র্যাষ্টর হেডের দুইটি অংশকে সংযুক্ত করে রাখে। বিভিন্ন কোণে প্রোট্র্যাষ্টরকে সেট করতে হলে ডায়াল ক্ল্যাম্প নাটটি টিলা করা হয় এবং প্রয়োজনীয় ডিগ্রির সাথে শূন্য দাগাক্ষিত রেখাকে মিলিয়ে আবার ক্ল্যাম্প নাট-কে টাইট করে দিতে হয়। ফলে সেট করা মাপের হেরফের হয় না।

### **১৪.৩ বিভেদ প্রোট্র্যাষ্টরের পরিমাপ পদ্ধতি :**

- (১) কোন কার্যবস্তুর কোণের পরিমাণ সরাসরি জানতে হলে ক্ল্যাম্প ক্লু টিলা করে প্রোট্র্যাষ্টরকে কার্যবস্তুর উপর স্থাপন করতে হবে এবং যে দুইটি তল দ্বারা কোণ গঠিত উক্ত তল দুইটিকে প্রোট্র্যাষ্টরের তলের সাথে এমনভাবে স্থাপন করতে হবে যাতে কোন প্রকার ফাঁক বা বিচ্যুতি না থাকে। সঠিকভাবে ক্ল্যাম্পের ক্লু -কে টাইট দিতে হবে এবং ইন্ডিকেটিং লাইন সংযুক্ত দাগাক্ষিত রেখা কোণের পরিমাপ নির্দেশ করে।
- (২) কোন কার্যবস্তুর নির্দিষ্ট কোণ পরিমাপ করতে প্রোট্র্যাষ্টরের সঠিক কোণে সেট করে কার্যবস্তুতে স্থাপনের পর যদি কোন ফাঁক বা বিচ্যুতি থাকে তবে ফিলার গেজের ব্লেড কার্যবস্তু এবং প্রোট্র্যাষ্টরের মধ্যে স্থাপন করে ক্রটির পরিমাণ নিরীক্ষা করা যায়।
- (৩) ঢালু তলের কোণের পরিমাণ নির্ণয়ে প্রোট্র্যাষ্টরের সাথে ব্লেড ব্যবহারের প্রয়োজন হয় না। প্রোট্র্যাষ্টর কৌণিক বা ঢালু তলে স্থাপনের পর স্পিরিট লেভেলকে এরূপে ঘুরানো হয় যতক্ষণ না লেভেল সঠিকভাবে অনুভূমিক তলে অবস্থান করে। এমন অবস্থায় প্রোট্র্যাষ্টর ক্ষেল থেকে সরাসরি কোণের মান পাঠ করে ঢালের পরিমাণ নির্ণয় করা যায়। প্রোট্র্যাষ্টরের সাহায্যে ০° থেকে ৯০° পর্যন্ত কোণ সরাসরি মাপা যায়। কিন্তু কোণের মাপ ৯০° থেকে বেশি হলে ১৮০° হতে পাঠকৃত মান বিয়োগ করে প্রকৃত মাপ পাওয়া যায়।

#### **১৪.৪ বিভেল প্রেট্র্যাস্টের যত্ন ও রক্ষণাবেক্ষণ :**

- ১) নির্দিষ্ট বাক্স হতে নিয়ে কাজ করে পুনরায় নির্দিষ্ট বাক্সে রাখতে হবে।
- ২) ব্যবহারের পূর্বে এবং পরে ভালোভাবে পরিষ্কার করে নিবে।
- ৩) কাজ করার সময় ইহাকে খালি জায়গায় না রেখে পরিষ্কার কাপড় বা কাগজের উপর রাখতে হবে।
- ৪) খোলা অবস্থায় অন্যান্য যন্ত্রের সাথে রাখবে না।
- ৫) মরিচা যাতে না পড়ে, তার জন্য কটন ওয়েস্ট দিয়ে ভালোভাবে মুছে তৈলের পাতলা আবরণ দিয়ে রাখতে হবে।
- ৬) স্লাইডিং হেডকে নিয়মিত পরিষ্কার করে লুব্রিকেটিং ব্যবহার করতে হবে।
- ৭) প্লাঞ্জার গাইড যেন আঘাত প্রাপ্ত না হয় সেদিকে বিশেষ দৃষ্টি রাখতে হবে, যেহেতু এই গাইড ড্রেডের গ্রান্ডে সর্বদা সমন্বয় করে অন্যান্য অংশকে পরিচালিত করে।

#### **অনুশীলনী-১৪**

##### **অতিসংক্ষিপ্ত প্রশ্ন :**

১. বিভেল প্রেট্র্যাস্টের কী ?
২. বিভেল প্রেট্র্যাস্টের কী কাজে ব্যবহৃত হয় ?
৩. ক্লাম্প নাট কী কাজে ব্যবহৃত হয় ?
৪. বিভেল প্রেট্র্যাস্টের-এর সূক্ষ্মতামাত্রা কত ডিগ্রি ?
৫. বিভেল প্রেট্র্যাস্টের এর স্পিরিট লেভেল কোন কাজে ব্যবহার করা হয় ?
৬. প্লাঞ্জার গাইড কী ?
৭. বিভেল প্রেট্র্যাস্টের এর ব্যবহারের সময় বিচুতি নিরীক্ষা করার কাজে কী গেজ ব্যবহার করা হয় ?

##### **সংক্ষিপ্ত প্রশ্ন :**

১. বিভেল প্রেট্র্যাস্টের বলতে কী বোঝায় ?
২. বিভেল প্রেট্র্যাস্টের বিভিন্ন অংশের নাম লেখ।
৩. ড্রেডের কাজ বর্ণনা কর।
৪. ক্লাম্প নাটের কাজ বর্ণনা কর।
৫. ক্লাম্প স্ক্রু এর কাজ বর্ণনা কর।

##### **রচনামূলক প্রশ্ন :**

১. বিভেল প্রেট্র্যাস্টের বিভিন্ন অংশসমূহের নাম লেখ এবং উহাদের কার্যবলী সংক্ষেপে বর্ণনা কর।
২. বিভেল প্রেট্র্যাস্টের পরিমাপ পদ্ধতি বর্ণনা কর।
৩. বিভেল প্রেট্র্যাস্টের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি উল্লেখ কর।

## অধ্যাব-১৫

### ফাইল (File)

#### ১৫.১ ফাইলের পরিচয় :

ফাইল এক অকার হস্ত চালিত কাটির যন্ত্র (Hand Cutting Tool) বা কোন কার্যবস্তু বা যত্নান্বেশের তলের উপরিভাগের অভিযন্ত ধাতু কাঁচা আকারে স্ফুর করে নির্মিত আকার এবং আকৃতিতে আনাৰ কাজে ব্যবহৃত হয়। হাতের কাজের মধ্যে সবচেয়ে সরকারী এবং কর্মসূচী কাজ হলো ফাইলের কাজ। যে কোন মেকানিক বা টেকনিশিয়ানকে কর্মসূচীবলের অধ্যয়েই ফাইলিং শিখতে হয়। ফাইলের কাজে দক্ষতা অর্জন করতে হলো ধৈর্য ও অধ্যবসায়ের সাহায্যে দীর্ঘ দিন অনুশীলন করতে হয়। হাই কাৰ্বন স্টিল বা টুল স্টিল দিয়ে ফাইল তৈরি কৰা হয়। ফাইলের উপরিভাগে দোত কাটি থাকে এবং এই দোতের সাহায্যে ফাইল কোন ধাতুকে ক্ষুণ্ক করে বা ঘষে ঘষে কাটে। ফাইলের দোতগুলি উপরুক্তভাবে হার্ডেনিং এবং টেল্পার কৰা থাকে, যলে দোতগুলিৰ ধাৰ সহজে সংট হয় না। ফাইলের প্রধান অংশ মুইটি - একটিৰ সাম গ্রেড বা বাতি আৰ অন্যটোৱ সাম ট্যাং। এই ট্যাং অংলটিৰ হাতদেৱ মধ্যে ঢুকানো থাকে। ফাইলের সম্মুখ বা মাঝাৰ দিককে ফেস এবং পাশেৰ দিককে এজ বলা হয়। ট্যাং এৰ কাছাকাছি জোয়গাম নাম হিল।

#### ১৫.২ ফাইলের বিভিন্ন অংশ :



ফাইলের বিভিন্ন অংশগুলো হলো -

- ◆ ট্যাং (Tang)
- ◆ হিল (Heel)
- ◆ ফেস (Face)
- ◆ এজ (Edge)
- ◆ পয়েন্ট (Point)

#### ১৫.৩ ফাইলের প্রেমিয়ান্স :

বিভিন্ন বিষয়েৰ উপর ভিত্তি কৰে ফাইলকে প্রেমিয়ান্স কৰা হয়ে থাকে। যথা-

(ক) ফাইলের আকৃতি অনুসারে ফাইল নিম্নলিখিত একাজেৰ হয়ে থাকে :

- ১) হ্যান্ড ফাইল (Hand File)
- ২) ফ্ল্যাট ফাইল (Flat File)
- ৩) স্কয়ার ফাইল (Square File)

- ৪) রাউন্ড ফাইল (Round File)
- ৫) হাফ রাউন্ড ফাইল (Half Round File)
- ৬) ট্রাই-এঙ্গুলার ফাইল (Triangular File)
- ৭) পিলার ফাইল (Pillar File)
- ৮) মিল ফাইল (Mill File)
- ৯) ক্রোচেট বা কটার ফাইল (Crochet or Cotter File)
- ১০) ক্রসিং ফাইল (Crossing File)
- ১১) ওর্ডিং ফাইল (Warding File)
- ১২) ব্যারেট ফাইল (Barret File)
- ১৩) নাইফ ফাইল (Knife File)
- ১৪) জয়েন্ট রাউন্ড এজ ফাইল (Joint Round Edge File)
- ১৫) চেকারিং ফাইল (Checkering File)
- ১৬) পিপিন ফাইল (Pippin File)
- ১৭) স্লিটিং ফাইল (Slitting File)
- ১৮) নিক্সেল ফাইল (Needle File)
- ১৯) ভিক্সেন বা ড্রেড নট ফাইল (Vixen File or dread Naught File)
- ২০) র্যাম্প ফাইল (Ramp File)

(খ) কাইলের প্রেত অসুস্থ কাইলের প্রেসিভিউগ :

১. রাফ ফাইল (Rough File)
২. বাস্টার্ড ফাইল (Bastard File)
৩. সেকেন্ড কাট ফাইল (Second Cut File)
৪. স্মৃথ ফাইল (Smooth File)
৫. ডেড স্মৃথ ফাইল (Dead Smooth File)



চিত্র-১৫.২৩ স্মৃথ, সেকেন্ড কাট এবং বাস্টার্ড ফাইল

(গ) কাট অসুস্থ কাইলের প্রেসিভিউগ :

১. সিলেল কাট ফাইল
২. ডবল কাট ফাইল



চিত্র-১৫.৩ঃ ডবল কাট ফাইলের দাঁত

(খ) অন্তর্ভুক্তি অনুসারে ফাইলের প্রকারভেদঃ

১. ব্লান্ট ফাইল (Blunt File)
২. টেপার ফাইল (Taper File)

(ঙ) সেফ এজ ফাইল (Safe Edge File)

(চ) ডায়মন্ড ফাইল (Diamond File)

#### ১৫.৪ বিভিন্ন প্রকার ফাইলের গঠন :

(১) ফ্ল্যাট ফাইল (Flat File) :

এর অগ্রভাগ ত্রুট্য সরু (Taper) এবং পাতলা থাকে। দৈর্ঘ্যে এটা ৫০ মি.মি. ক্রমে বর্ধিত হয়ে ১৫০ মি.মি. থেকে ৪৫০ মি.মি. পর্যন্ত হয়। এটার ফেস ডবল কাট এবং এজ সিঙ্গেল কাট বিশিষ্ট হয়। এই ফাইল সকল গ্রেডের হয়ে থাকে।



চিত্র-১৫.৪ঃ ফ্ল্যাট ফাইল

(২) হ্যান্ড ফাইল (Hand File) :

এর প্রস্তুত সমান হয় এবং পুরুত্ব পয়েন্টের দিকে টেপার থাকে। এটার ফেস ডবল কাট এবং একটি পার্শ্ব দাঁত শূন্য থাকে বিধায় এটি সেফ এজ বিশিষ্ট হয়। দৈর্ঘ্যে এটা ৫০ মি.মি. ক্রমে বর্ধিত হয়ে ১৫০ মি.মি. থেকে ৪০০ মি.মি. পর্যন্ত হয়।



ଚିତ୍ର-୧୫.୫୩ ହାତ କାଇଲ

#### (୩) ମିଳ କାଇଲ (Mill File) :

ଏଟା ଗିଲେଲ କାଟ ବିଶିଷ୍ଟ ଏବଂ ସାଧାରଣତ ୧୫୦ ମି.ମି. ଥିବେ ୩୦୦ ମି.ମି. ପରିମା ଦୀର୍ଘ ହୁଏ । ଏଟା ଟେପାର ଏବଂ ଡ୍ରାଇସ ଉତ୍ତର ଦ୍ୱାରା ବିନ୍ଦୁରେ କ୍ଷୁଣ୍ଡ କାରାରି ହୁଏ ଥାଏ । ଏହା ବା ଅକ୍ଷତାଳ୍ୟର ଫ୍ଲ୍ୟାଟ ବା ପୋଲାକ୍ ହୁଏ ଥାଏ । ଏହି ବାସ୍ଟାର୍ଡ ଏବଂ ସେବେଜ କାଟ କୌଣ୍ଠ ପାଇଁ ବାରାନ୍ଦା ଦ୍ୱାରା ବିନ୍ଦୁରେ କ୍ଷୁଣ୍ଡ କାରାରି ହୁଏ ।



ଚିତ୍ର-୧୫.୬୫ ମିଳ କାଇଲ

#### (୪) ପିଲାର କାଇଲ (Pillar File) :

ଏହି କାଇଲେର ଅଛୁଟ ଅପେକ୍ଷାକୃତ କମ ଏବଂ ଶୁରୁକୁ ଅପେକ୍ଷାକୃତ ବେଳି । ଶୁରୁକୁ ବା ବେଳ କ୍ରମଶଃ ପରେଟେର ଦିକେ ଟେପାର ହୁଏ । ଏବଂ ଏକାଟ ପାର୍ଶ ବା ଉତ୍ତର ପାର୍ଶ ଦ୍ୱାରା ବିନ୍ଦୁରେ ଥାଏ । ଏହି କାଇଲ ଦୈର୍ଘ୍ୟ ସାଧାରଣତ ୨୦୦ ମି.ମି. ଥିବେ ୩୦୦ ମି.ମି. ପରିମା ହୁଏ ଥାଏ । ପିଲାର କାଇଲ ମାତ୍ର ଏବଂ ସେବେଜ କାଟ ହେବ ବିଶିଷ୍ଟ ହୁଏ ଥାଏ ।



ଚିତ୍ର-୧୫.୭୫ ପିଲାର କାଇଲ

### (৫) ক্রোচেট বা কটার ফাইল (Crochet or Cotter File) :

এই খরনের ফাইলের প্রস্থ সমান এবং বেধ বা পুরুষ্ট পয়েন্টের দিকে টেপার হয়। এটি ডবল কাট বিশিষ্ট এবং পার্শ্ব দুইটি গোলাকার হয়ে থাকে। এই ফাইল সেকেন্ড কাট এবং স্থুত প্রেড বিশিষ্ট হয়ে থাকে। এগুলো সাধারণত দৈর্ঘ্যে ১০০ মি.মি. থেকে ২০০ মি.মি. পর্যন্ত হয়ে থাকে।



চিত্র-১৫.৭: ক্রোচেট বা কটার ফাইল

### (৬) রাউন্ড ফাইল (Round File) :

গোলাকার প্রস্থচ্ছেদ বিশিষ্ট ফাইলকে রাউন্ড ফাইল বলা হয়। ফাইলের দৈর্ঘ্যের উপর ব্যাস নির্ভর করে। দৈর্ঘ্য বাড়লে ব্যাস বাড়ে এবং দৈর্ঘ্য কমলে ব্যাস কমে। যেমন- ১০০ মি.মি. দৈর্ঘ্য বিশিষ্ট রাউন্ড ফাইলের ব্যাস ২ মি.মি. হয়ে থাকে আবার ৪৫০ মি.মি. দৈর্ঘ্য বিশিষ্ট রাউন্ড ফাইলের ব্যাস ২২ মি.মি. হয়ে থাকে। এই খরনের ফাইল সিঙ্গেল কাট ও ডবল কাট উভয় প্রকারেরই হয়ে থাকে। এর উপরিভাগের দাঁতগুলো ক্লু-এর ন্যায় ঘুরানো থাকে এবং একদিক থেকে কাটা থাকে।



চিত্র-১৫.৮: রাউন্ড ফাইল

### (৭) হাফ রাউন্ড ফাইল (Half Round File) :

হাফ রাউন্ড অর্থ অর্ধ গোলাকার। নামে এটি অর্ধগোলাকার হলেও প্রকৃতগুরুতে এটির প্রস্থচ্ছেদ সম্পূর্ণ অর্ধগোলাকার নয়, গোলকের একটি অংশ মাত্র। প্রস্থচ্ছেদের ব্যাসার্ধ ফাইলের দৈর্ঘ্যের উপর নির্ভর করে। ফলে বিভিন্ন দৈর্ঘ্যের ফাইলের ব্যাসার্ধ ফাইলের দৈর্ঘ্যের উপর নির্ভর করে। ফলে বিভিন্ন দৈর্ঘ্যের ফাইলের ব্যাসার্ধ ফাইলের দৈর্ঘ্যের উপর নির্ভর করে। এই জন্য কোন গোলাকার ছিদ্রের ভিতরে ফাইলিং করার জন্য ঐ ছিদ্রের ব্যাস অনুযায়ী উপযুক্ত দৈর্ঘ্যের ফাইল নির্বাচন করতে হয়। হাফ রাউন্ড ফাইল ১০০ মি.মি. হতে ৪৫০ মি.মি. দৈর্ঘ্য বিশিষ্ট হয়ে থাকে এবং সাধারণত এর অন্তভাগ ক্রমশ সক্র হয়ে থাকে। এটি সকল প্রেডের হয়ে থাকে। সেকেন্ড কাট এবং স্থুত প্রেডের জন্য এটির গোলাকার উপরিভাগ সিঙ্গেল কাট কিন্তু সমতল উপরিভাগ ডবল কাট বিশিষ্ট থাকে।



চিত্র-১৫.৯: হাফ রাউন্ড ফাইল

#### (৮) ক্ষয়ার ফাইল (Square File) :

এই ফাইল টেপার এবং গ্লাস্ট উভয় অকারেরই হয়ে থাকে। টেপার প্রেমির ক্ষয়ার ফাইল ১০০ মি.মি. থেকে ৪২০ মি.মি. পর্যন্ত এবং গ্লাস্ট প্রেমি ২৫০ মি.মি. থেকে ৫০০ মি.মি. পর্যন্ত দীর্ঘ হয়ে থাকে। উভয় প্রেমিই ক্ষয়ার কাট বিশিষ্ট হয়ে থাকে এবং প্রযোজেন বর্গাকার হয়ে থাকে। সেফ এজ বা এক পাশ সাঁত শূন্য ক্ষয়ার ফাইলও পোশাক থাকে। ক্ষয়ার ফাইল সকল ঘোড়ের হয়ে থাকে।



চিত্র-১৫.১০: ক্ষয়ার ফাইল

#### (৯) ট্রাই-এঙ্গুলার ফাইল (Triangular File) :

এই ধরনের ফাইলের প্রযোজেন ত্রিকোণাকার এবং পয়েন্টের দিকে টেপার হয়। এটি সিলেল ও ভাবল কাট উভয় অকারেরই হয়ে থাকে। এটি ১০০ মি.মি. থেকে ৩০০ মি.মি. পর্যন্ত দীর্ঘ হয়। বাস্টার্ট এবং সেকেল কাট ইত্যি বিশিষ্ট ট্রাই-এঙ্গুলার ফাইল বেশি ব্যবহৃত।



চিত্র-১৫.১১। ট্রাই-এক্সার কাইল

#### (১০) ডিজেল বা প্রাচ মট কাইল (Vixen File or Dread Naught File) :

এই কাইলের কাইলের কেস সমতল এবং পাঁতগুলি বক্সাকার আবে কাটা থাকে। এটির সুবিধা এই যে, কাইল ঢালনা করার সময় ধাতুচূর্ণ সৌচের মধ্যে আবছ না থেকে অফি সমতলে বের হওয়া আসে। সীসা, ব্যারিট বেটাল, প্রাপ, কপার, অ্যালুমিনিয়াম ইভালি বিভিন্ন ময়র ধাতু করার কালে এবং সেদ মেশিনে গোলাকার কাষকে উচ্চমাত্রণে যন্ত্রণ করতে এই কাইল ব্যবহৃত হয়।



চিত্র-১৫.১২। ডিজেল কাইল

#### (১১) কাইক কাইল (Knife File) :

এই কাইল ডবল কাট বিশিষ্ট হয়। এর পাঁতন ছুরির ন্যায় কলে একে নাইক কাইল কলা হয়। এটির এক পার্শ্ব পাতলা এবং অপর পার্শ্ব গোচা। এই এবং প্রকৃত পার্শ্বের সিঙে অন্যদল টেপার হয়ে করতে থাকে। এটি ১৫০ মি.মি. থেকে ৩০০ মি.মি. পর্যন্ত মৌখ হয় এবং এর সূর্খ প্রেক ও সেকেত কাট ঘোড়ের কাইলই বেশি ব্যবহৃত হয়।



চিত্র-১৫.১৩। নাইক কাইল

(১২) ওয়ার্ডিং ফাইল (Warding File) : এই ধরনের ফাইল খুব পাতলা ও ঢকল কাট বিশিষ্ট হয়ে থাকে। এটির অপরাগ পর্যন্তের দিকে ক্রমশ সরু হয়ে থাকে। চাবি ভৈরিতে, খোজ কাটার কাছে ওয়ার্ডিং ফাইল ব্যবহার করা হয়।



চিত্র-১৫.১৩: ওয়ার্ডিং ফাইল

(১৩) নিচল ফাইল (Needle File) : এটি হাতলসহ ক্ষত্র এবং হালকা ফাইল। এটির অপর নাম ক্লুয়েলার্স ফাইল। সাধারণত ৩ মি.মি. হতে ১৫০ মি.মি. পর্যন্ত দীর্ঘ হয়।



চিত্র-১৫.১৪: নিচল ফাইল

(১৪) র্যাম্প ফাইল (Ramp File) : এর অপর নাম ক্যাবিনেট ফাইল। এর দাঁড়গুলি স্কোটা, খাড়া এবং প্রস্তুপ অসম্পূর্ণ। এর একটি কেস সমতল এবং অন্যটি উন্মোলিত এবং গোলাকার। এর মৈর্য্য সাধারণত ১৫০ মি.মি. থেকে ৪০০ মি.মি. পর্যন্ত হয়ে থাকে।



চিত্র-১৫.১৫ঃ র্যাম্প ফাইল

(১৫) ডায়মন্ড ফাইল (Diamond File) : এই ধরনের ফাইলে দাঁতের পরিবর্তে কৃতিম হীরার গুড়া (small particles of industrial diamonds) ফাইলের উপরিভাসে শক্তিশালী অ্যাডেসিভ ম্যাটারিয়াল দ্বারা সাগানো থাকে। ফলে যে সব শক্ত পদার্থের ওয়াকপিস যেমন পাথর, কাঁচ অথবা শক্ত মেটাল যেমন হার্ডেড স্টিল বা কার্বাইড স্টিল দিয়ে তৈরি যেখানে সাধারণ ফাইল এদের উপর কোন কাজ করতে পারে না, সে কেবল ডায়মন্ড ফাইল একান্ত কার্বকৰী।



চিত্র-১৫.১৬ঃ ডায়মন্ড ফাইল

#### ১৫.৫ বিভিন্ন ধরনের ফাইলের ব্যবহার :

- (১) ফ্ল্যাট ফাইল (Flat File) : সাধারণ ওয়াকপিসের তল থেকে স্মৃত ধাতু অপসারণ করতে এবং রাফ ফাইলিং এর কাজে ফ্ল্যাট ফাইল ব্যবহৃত হয়। ওয়াকপিসের তল সমতল করতেও ফ্ল্যাট ফাইল ব্যবহৃত হয়।
- (২) হাত ফাইল (Hand File) : সমকোণে অবস্থিত সন্নিহিত তলের একটিকে অক্ষত রেখে অপরটিকে মসৃণ করতে এই ফাইল ব্যবহৃত হয়। কিন্তু মার্ক দূরীভূত করতে এবং ওয়াকপিসের তলকে সমতল করতে বা মসৃণ করতে এই ফাইল ব্যবহৃত হয়।
- (৩) মিল ফাইল (Mill File) : সেদণ্ডার্কের তল মসৃণ করতে, ছু ফাইলিং করতে এবং ব্রাস ও ব্রোজের ওয়াকপিসের উপর ফাইলিং করতে এই ফাইল ব্যবহৃত হয়।
- (৪) পিলার ফাইল (Pillar File) : কম প্রশস্ত তল, চাবির ঘাট, গাত, ছাট ইত্যাদি ফাইলিং করতে পিলার ফাইল ব্যবহৃত হয়।

(৫) ক্রেচেট বা কটার ফাইল (Crochet or Cotter File) : সমতল এবং বাঁকানো তলের সংযোগ স্থলে ধাতু কেটে মসৃণ করার জন্য এই ফাইল ব্যবহার করা হয়। তাছাড়া গোলাকার প্রান্ত বিশিষ্ট স্লটে ফাইলিং করে মসৃণ করার কাজেও এই ফাইল ব্যবহার করা হয়।

(৬) রাউন্ড ফাইল (Round File) : এই ফাইল গোলাকার তল ফাইলিং করতে এবং গোলাকার গর্ত বড় করতে ব্যবহৃত হয়। তাছাড়া ছোট রাউন্ড ফাইল দ্বারা বিয়ারিং এর তৈল নালী তৈরি করা যায়।

(৭) হাফ রাউন্ড ফাইল (Half Round File) : গোলাকার তল বিশিষ্ট ওয়ার্কপিস ফাইলিং করতে, অঙ্গের কর্ণার তীক্ষ্ণ করতে এবং সমতল ফাইলিং করতে রাউন্ড ফাইল ব্যবহৃত হয়।



চিত্র-১৫.১৭: হাফ রাউন্ড ফাইলের ব্যবহার

(৮) ক্ষয়ার ফাইল (Square File) : বর্গাকার এবং আয়তাকার ছিদ্রের কোণা এবং তল মসৃণ করতে, বর্গাকার ও আয়তাকার ছিদ্র বড় করতে, যে সকল স্থলে হ্যান্ড ফাইল প্রবেশ করিয়ে কাজ করতে অসুবিধা হয় সেই স্থলে ফাইলিং করতে ক্ষয়ার ফাইল ব্যবহৃত হয়।

(৯) ট্রাই-এক্সুলার ফাইল (Triangular File) :  $90^{\circ}$  থেকে কম এবং  $60^{\circ}$  থেকে বেশি থ্রাকার কোণ বিশিষ্ট স্থানকে সমতল করতে এই থ্রাকার ফাইল বেশি উপযোগী। ট্যাপ, কটার, করাতের দাঁত, ভি-থ্রেড, স্ট এবং চাবির ঘাট ফাইলিং করতে এই ফাইল ব্যবহৃত হয়।

(১০) ভিক্সেন বা ড্রেড নট ফাইল (Vixen File or Dread Naught File) : সীসা, ব্যাবিট মেটাল, ব্রাস, কপার, অ্যালুমিনিয়াম ইত্যাদি বিভিন্ন নরম ধাতু ক্ষয় করার কাজে এবং লেদ মেশিনে গোলাকার বস্তুকে উত্তমরূপে মসৃণ করতে এই ফাইল ব্যবহৃত হয়।

(১১) নাইফ ফাইল (Knife File) : এ ধরনের ফাইল সরু স্লট, গিয়ারের দাঁত এবং খুব কম কোণ বিশিষ্ট পার্শ্বভাগকে ক্ষয় করতে ব্যবহৃত হয়।

(১২) ওয়ার্ডিং ফাইল (Warding File) : চাবি তৈরিতে, খাঁজ কাটার কাজে ওয়ার্ডিং ফাইল ব্যবহৃত হয়।

(১৩) নিডল ফাইল (Needle File) : জুয়েলারির কাজে স্বর্ণকারেরা এই ফাইল খুব বেশি ব্যবহার করে থাকে। ক্ষুদ্র এবং সুস্থ কার্যবস্ত ফাইলিং করতে এবং মেরামতের কাজে এই ফাইল ব্যবহৃত হয়।

(১৪) র্যাম্প ফাইল (Ramp File) : কাঠ এবং নরম ধাতু ফাইলিং করতে এই ফাইল খুবই উপযোগী।

(১৫) ডায়মন্ড ফাইল (Diamond File) : এই ধরনের ফাইলে অতি সূক্ষ্ম যন্ত্রাংশের ফিনিশিং এর কাজে ব্যবহার করা হয়। যে সব শক্ত পদার্থের ওয়ার্কপিস যেমন পাথর, কাঁচ অথবা শক্ত মেটাল যেমন হার্ডেড স্টিল

বা কার্বাইড স্টিল দিয়ে তৈরি যেখানে সাধারণ ফাইল এদের উপর কোন কাজ করতে পারে না, সেক্ষেত্রে ডায়মন্ড ফাইল একান্ত কার্যকরী।

#### ১৫.৬ ফাইলের যত্ন ও রক্ষণাবেক্ষণ :

- ১) নতুন ফাইলের দাঁতগুলি খুব তীক্ষ্ণ থাকে। এই তীক্ষ্ণ দাঁত বিশিষ্ট ফাইল দ্বারা কাস্ট আয়রন বা শক্ত স্টিলকে ক্ষয় করতে গেলে দাঁতগুলি ভেঙ্গে যায়। ফলে এ ফাইল শীত্বাই কাজের অযোগ্য হয়ে পড়ে। এ কারণে নতুন ফাইলকে প্রথমে পিতল, তামা, কাঁসা ইত্যাদি নরম ধাতুর উপর কিছুদিন ব্যবহার করার পর উহার দাঁতের তীক্ষ্ণতা যখন কিছু কমে যায়, তখন কাস্ট আয়রন বা শক্ত স্টিলের উপর ব্যবহার করা উচিত।
- ২) ফাইল খুব শক্ত ধাতুর তৈরি হলেও এর আঘাত করার ক্ষমতা খুব কম। এজন্য হঠাত হাত থেকে পড়ে গেলে বা অন্য কোন উপায়ে আঘাত লাগলে ফাইল ভেঙ্গে যেতে পারে। এজন্য ফাইল দিয়ে কখনও কিছু আঘাত করা উচিত নয়।
- ৩) ব্যবহারের সময় এবং পরে ফাইলকে এমন যত্নে রাখতে হবে যাতে এর উপরিভাগে তৈল, হিজ ইত্যাদি না লাগে। তৈলাক্ত হলে ফাইলিং এর সময় ফাইল পিছলে যাবে এবং ঠিকমত কাটবে না।
- ৪) ব্যবহারের সময় এবং পরে ফাইলকে কখনও পাশাপাশি, ঠেকাঠেকি বা একটির উপর আরেকটি রাখা যাবে না, কারণ এতে দাঁত নষ্ট হয়ে যায়। যদি রাখতে হয় তাহলে ফাইলের মাঝে মাঝে কাগজ দিয়ে একটি থেকে অন্যটিকে পৃথক করে রাখতে হবে।
- ৫) ব্যবহারের পর ফাইলের দাঁতের মধ্যে আটকে থাকা ধাতুর গুড়া ফাইল কার্ড বা তারের ব্রাশ দিয়ে পরিষ্কার করে নিতে হবে।
- ৬) ফাইলকে সংরক্ষণ করতে হলে একটি ফ্রেম বা বাক্স তৈরি করে উহাতে ফাইলকে রুলিয়ে রাখা উচিত।
- ৭) প্রয়োজনীয় কাজের জন্য উপযুক্ত বা সঠিক ফাইল নির্বাচন করা উচিত। রাফ কাজের জন্য স্মৃথ ফাইল বা স্মৃথ কাজের জন্য রাফ ফাইল ব্যবহার করা কখনও উচিত নয়।
- ৮) ফাইল সামনে চলার সময় কাটে। সুতরাং কাটার সময় পরিমাণ মত চাপ দিয়ে ফাইল চালিয়ে ধাতু কাটতে হবে এবং পিছনে টানার সময় অত্যন্ত হালকাভাবে টানতে হবে। চাপ দিয়ে পিছনে টানলে ফাইলের দাঁতের তীক্ষ্ণতা শীত্বাই নষ্ট হয়ে যায়।

## প্রশ্নমালা-১৫

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ফাইল কী ধরনের হ্যান্ড টুল ?
২. কাটভেডে ফাইল কত প্রকার ?
৩. প্রস্ত্রের গঠনভেডে ফাইল কত প্রকার ?
৪. স্তর বা গ্রেডভেডে ফাইল কত প্রকার ?
৫. কাজ করার পর ফাইল কী দিয়ে পরিষ্কার করা হয় ?
৬. একটি ফাইলের কয়টি অংশ ?
৭. র্যাম্প ফাইল কী কাজে ব্যবহার করা হয় ?
৮. ফাইল আসার সময় কাটে না যাওয়ার সময় কাটে ?
৯. ফ্ল্যাট ফাইল কী ?
১০. রাউন্ড ফাইল কী ?

### সংক্ষিপ্ত প্রশ্ন :

১. একটি ফাইলের বিভিন্ন অংশের নাম লেখ।
২. স্তর বা গ্রেডভেডে ফাইল কত প্রকার ও কী কী ?
৩. সেফ এজ ফাইল কাকে বলে ?
৪. সিঙ্গেল কাট ফাইল কাকে বলে ?
৫. সচরাচর ব্যবহৃত ৫ প্রকার ফাইলের নাম লেখ।
৬. কাটভেডে ফাইল কত প্রকার ও কী কী ?
৭. প্রস্ত্রের গঠনভেডে ফাইল কত প্রকার ও কী কী ?
৮. একটি ফাইলের কয়টি অংশ ও কী কী ?
৯. হাফ রাউন্ড ফাইলের ব্যবহার লেখ।
১০. নীডল ফাইলের ব্যবহার লেখ।
১১. ক্ষয়ার ফাইলের গঠন বর্ণনা কর।
১২. হ্যান্ড ফাইলের গঠন বর্ণনা কর।
১৩. ক্রোচেট বা কটার ফাইলের গঠন বর্ণনা কর।
১৪. ওয়ার্ডিং ফাইলের গঠন বর্ণনা কর।
১৫. ভিঞ্চেন বা ড্রেড নট ফাইলের গঠন বর্ণনা কর।

### রচনামূলক প্রশ্ন :

১. একটি ফ্ল্যাট ফাইল অঙ্কন করে উহার বিভিন্ন অংশের নাম লেখ।
২. একটি ফাইলের বিভিন্ন অংশের গঠন ও ব্যবহার বর্ণনা কর।
৩. হাফ রাউন্ড ফাইলের গঠন ও ব্যবহার বর্ণনা কর।
৪. স্তর বা গ্রেড অনুসারে ফাইল কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও
৫. ফাইলের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।

## ফাইলিং প্রক্রিয়া (Process of Filing)

### ১৬.১ ফাইলিং (Filing) :

কোন ওয়ার্কপিসের উপরিতলকে, ছদ্মকে, হলো সিলিঙ্গ্রিক্যাল জবের বোরকে, প্রস্তুতকে বা কোন সংযোগস্থলের ফিলেটকে ফাইল দ্বারা ক্ষয় করে নির্দিষ্ট ও ইঙ্গিত আকৃতি দেওয়ার পদ্ধতিকে ফাইলিং বলা হয়। ফাইল সমূখ্য দিকে যাওয়ার সময় কাটে না। ফাইল সমূখ্য দিকে যাওয়ার সময় সমূখ্য সারিয়ে দাঁতগুলি ধাতুর মধ্যে প্রবেশ করে ক্ষুদ্র ক্ষুদ্র নালী তৈরি করে চলে এবং ঠিক পশ্চাতের দাঁতগুলি অবশিষ্ট উচ্চ শিরগুলিকে আড়তভাবে কেটে ক্ষয় করে। ফলে স্থানটি সমতল হয়ে যায়। ফাইলিং প্রক্রিয়া আপাত দৃষ্টিতে সহজ মনে হলো এটি ততটা সহজ নয়। সঠিক নিরাম মেলে বহুদিন চৰ্চা করলেই কেবল ভালো ফাইলিং এর দক্ষতা অর্জন করা যায়। ফাইলিং করার সময় অপারেটরকে প্রথমে উভয় পা ফাঁক করে সামনের দিকে সামান্য ঝুঁকে দৃঢ়ভাবে দাঁড়াতে হয়। তারপর ফাইলিং করার জন্য শরীরকে ওয়ার্কবেকের সাথে  $45^{\circ}$  কোণে রেখে এবং বাম 'পা' কে ডান 'পা' থেকে প্রায় অর্ধ মিটার (প্রায় ১ হাত বা ১৮ ইঞ্চি) অগ্রসর করে দাঁড়াতে হয়। পরে একহাতে হাতলকে এবং অন্যহাতে মাধাকে ধরে ফাইলটিকে কার্যবন্তর উপর রাখতে হয়।



চিত্র-১৬.১: ফাইলিং প্রক্রিয়া।

এরপর একহাত দ্বারা চাপ এবং অন্য হাতে ফাইলকে ঠেলে সামনের দিকে চালাতে হবে। ফাইলকে সামনের দিকে চালনা করার সময় অতিবিক্ষিত চাপ দিয়ে চালনা করা উচিত নয়। পিছনে ফ্রেরত আসার সময় ফাইল ধাতু কাটে না, তাই পশ্চাতদিকে টেনে আনার সময় ফাইলের উপর চাপ দেওয়া যাবে না। ফাইলিং করার জন্য ভাইসের 'জ' কে অপারেটরের কনুই বরাবর রাখতে হবে। ওয়ার্কপিসকে ফাইলিং করার পূর্বে দৃঢ়ভাবে ভাইসের সাথে এমনভাবে বাঁধতে হবে যাতে ওয়ার্কপিসের তলাটি 'জ' এর নিকটবর্তী থাকে। অন্যথায় ওয়ার্কপিস কেঁপে শব্দ সৃষ্টি করবে এবং তলের মসৃণতা ভালো হবে না। ফিলিং ওয়ার্কপিসের উপর ফাইলিং করার জন্য ভাইসের 'জ' এর সাথে নরম 'জ' ব্যবহার করে ওয়ার্কপিসকে বাঁধতে হবে। ফাইলিং এর সময় মাঝে মাঝে ফাইল কার্ড দ্বারা ফাইল পরিষ্কার করে নিতে হবে। কার্যবন্ত অবস্থায় ফাইলিং তল খালি হাতে স্পর্শ করা যাবে না। কারণ এতে ফাইল ঠিকমত কাটবে না।

### ১৬.২ কার্হিলিং এবিসাৰ বিভিন্ন পদক্ষিণসমূহ :

সাধাৰণত কার্হিলিং এভিসাৰ সিৱলিশিক ও অক্ষয়ে হজ থাকে। দ্বা-

১. স্ট্ৰেইট কার্হিলিং (Straight Filing)
২. ডায়াগোনাল কার্হিলিং (Diagonal Filing)
৩. ক্রস কার্হিলিং (Cross Filing)
৪. ড্ৰ-কার্হিলিং (Draw-Filing)
৫. রাউন্ড কার্হিলিং (Round Filing)

### ১৬.৩ বিভিন্ন কার্হিলিং পদক্ষিণ বৰ্ণনা :

**স্ট্ৰেইট কার্হিলিং (Straight Filing) :** এই পদক্ষিণকে কার্হিলিং কৰাৰ সময় কার্হিলকে সোজাভাৱে চালাতে হজ। সবিৰ ধৰা, পুট, ধৰ্ত, নিৰাজনৰ ধৰা, কুমু বাজাইল তৈৰিকৈ স্ট্ৰেইট কার্হিলিং পদক্ষিণ সহজকাৰ সাথে ব্যবহৃত হজ।



চিত্ৰ-১৬.৩১ স্ট্ৰেইট কার্হিলিং এভিসাৰ।

### ডায়াগোনাল কার্হিলিং (Diagonal Filing) :

কার্হিলকে কার্হিলের সাথে সোপালোপিয়াৰে চালনা কৰে যে কার্হিলিং পদক্ষিণ আৰু ডায়াগোনাল কার্হিলিং কৰা হজ। কার্হিলের কাটিং এবং খৰ-কাইল চালনাৰ মিক সময়কোৱে ধৰাৰ সময়ে মূলনামূলকভাৱে আলো কাটে। মূলনামূলক কালখিলিক কৰার পদক্ষিণ কৰ্ত সেক্ষেত্ৰে অন্য ডায়াগোনাল কার্হিলিং পুঁটই উপযোগী।



চিত্ৰ-১৬.৩২ ডায়াগোনাল কার্হিলিং এভিসাৰ।

### ক্রস ফাইলিং (Cross Filing) :

ওয়ার্কপিসের এক পাশ থেকে ভায়াগোনাল ফাইলিং করে পুনরায় অন্য পাশ থেকে ভায়াগোনাল ফাইলিং করলে উভাকে ক্রস ফাইলিং বলা হয়। অর্ধাং বার বার দিক পরিবর্তন করে ভায়াগোনাল ফাইলিং করাকে ক্রস ফাইলিং বলা হব। ওয়ার্কপিসের সোঁড়ো তল পরিকার করতে, ধাতুকে শৈল কর করতে এবং তলকে সমতল করতে এস ফাইলিং প্রক্রিয়া ব্যবহৃত হয়।



চিত্র-১৬.৪১ ক্রস ফাইলিং প্রক্রিয়া।

### ড্র-ফাইলিং (Draw-Filing) :

ফাইলকে থাহার দিকে থেকে দৈর্ঘ্য বরাবর ঠেলে এবং ঠেলে ফাইলিং করাকে ড্র-ফাইলিং (Draw-Filing) বলা হয়। সাধারণ নিয়মে ফাইলিং করলে ধাতুখণ্ডের উপরিভাগে বে আঁচড়ের দাগ পড়ে সে দাগ না কেলে উভাকে একমুখী করে মসৃণ ফাইলিং প্রক্রিয়াই ড্র-ফাইলিং। কয় শুরু বিশিষ্ট উপরিভাগকে শৈল কর করতে এ প্রকার ফাইলিং করা হয়। সিঙেল কাট স্পুল ফাইলিং করতে ড্র-ফাইলিং পদ্ধতি বেশি ব্যবহৃত হয়।



চিত্র-১৬.৪২ ড্র-ফাইলিং প্রক্রিয়া।

### রাউন্ড ফাইলিং (Round Filing) :

ওয়ার্কপিসের বাহ্যিক কোণকে ফাইলিং করে গোলাকার করার পদ্ধতিকে রাউন্ড ফাইলিং বলা হয়। এই পদ্ধতিতে ফাইল চালনা করার সময় দুই হাতের চাপকে সমবর্ষ করে পয়েন্টের দিককে ফাইল সামনে চালানোর সময় আস্তে আস্তে নিচের দিকে চাপতে হয় এবং হাতলকে উপরের দিকে তুলতে হয়। ফাইল ফিরিয়ে আনার সময় বিপরীতভাবে চাপ দিয়ে ফিরিয়ে আনতে হয়।



চিত্র-১৬.৫: রাউন্ড ফাইলিং প্রক্রিয়া।

### বিভিন্ন ফাইলিং পদ্ধতির প্রয়োগক্ষেত্র :

**স্ট্রেইট ফাইলিং (Straight Filing) :** চাবির খাঁজ, স্ট্রট, গ্রস্ট, পিয়ারের দাঁত, ক্লুপ যন্ত্রাংশ তৈরিতে স্ট্রেইট ফাইলিং পদ্ধতি সফলতার সাথে ব্যবহৃত হয়।

**ডায়াগনাল ফাইলিং (Diagonal Filing) :** বৃহদাকার তলবিশিষ্ট ওয়ার্কপিসে ফিনিশিং কাট দেওয়ার জন্য ডায়াগনাল ফাইলিং খুবই উপযোগী।

**ক্রস ফাইলিং (Cross Filing) :** ওয়ার্কপিসের নোংডা তল পরিষ্কার করতে, ধাতুকে শীত্র ক্ষয় করতে এবং তলকে সমতল করতে ক্রস ফাইলিং প্রক্রিয়া ব্যবহৃত হয়।

**ড্র-ফাইলিং (Draw-Filing) :** কম প্রযুক্তি বিশিষ্ট উপরিভাগকে শীত্র ক্ষয় করতে এ প্রকার ফাইলিং করা হয়। সিঙ্গেল কাট স্মৃথ ফাইলিং করতে ড্র-ফাইলিং পদ্ধতি বেশি ব্যবহৃত হয়।

**রাউন্ড ফাইলিং (Round Filing) :** গোলাকার ছিদ্রের মসৃণতা আনন্দন ব্যাস বৃদ্ধিকরণ, ফিলেট এর উপর মসৃণ গোলাকার তল তৈরি ইভ্যান্ডি ক্ষেত্রে রাউন্ড ফাইলিং ব্যবহৃত হয়।

### ফাইলিং প্রক্রিয়ার সতর্কতা :

- ১) হাতের বিহীন কাইল বা হাতল যথাযথভাবে আটকানো না থাকলে ঐ ফাইল ব্যবহার করা উচিত নয়। কারণ এতে ফাইলের ট্যাং অংশ ফাইলিং এর সময় হাতে প্রবেশ করে হাতকে ঝর্ম করতে পারে।
- ২) ফাইলের দাঁতগুলির মধ্যে ধাতুচূর্ণ আটকে যাওয়া মাত্র একে ফাইল কার্ড দিয়ে বা ওয়্যার ত্রাশ দিয়ে পরিষ্কার করে নিতে হবে। নচেৎ ফাইল পিছলিয়ে গিয়ে হাতকে ঝর্ম করতে পারে। আবার এ কারণে জবের মসৃণতাও নষ্ট হয়।

- ৩) ফাইল দ্বারা কখনও কোন কিছুকে আঘাত করা উচিত নয়, কারণ এতে ফাইল ভেঙে গিয়ে দুর্ঘটনা ঘটতে পারে।
- ৪) নতুন ফাইলকে কাস্ট আয়রন বা শক্ত স্টিলের ধাতুখণ্ডে ঘষতে ব্যবহার করা যাবে না।
- ৫) ফাইলিং করার সময় ধাতুচূর্ণকে কখনও ফুঁ দেওয়া যাবে না, কারণ ফুঁ দিলে উড়ত ধাতুচূর্ণ চোখে পড়ে চোখের ক্ষতি হতে পারে।
- ৬) তৈল বা ত্রিজ যুক্ত ফাইল ব্যবহার করা নিষেধ।
- ৭) ফাইলিং করার সময় সর্তক থাকতে হবে যেন ফাইল ধাতুখণ্ডের পরিবর্তে ভাইসের ‘জ’ কে ঘর্ষণ না করে।
- ৮) প্রয়োজনীয় কাজের ধরন অনুযায়ী সঠিক ফাইল নির্বাচনপূর্বক সঠিক পদ্ধতিতে ফাইলিং করা উচিত।
- ৯) ফাইল খুব শক্ত ধাতুর তৈরি হলেও উহার আঘাত সহ্য করার ক্ষমতা খুব কম। ফাইল হঠাত হাত থেকে শক্ত মেঝেতে পড়ে গেলে বা অন্য উপায়ে ফাইলের মধ্যে আঘাত লাগলে ফাইল ভেঙে যেতে পারে। এজন্য কখনও ফাইল দিয়ে কিছু আঘাত করা বা ঠোকা অথবা চাঢ় দেওয়া উচিত নয়।

## প্রশ্নমালা-১৬

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ফাইলিং কী ?
২. কী দ্বারা ফাইল পরিষ্কার করা হয় ?
৩. ফাইলিং পদ্ধতি কত প্রকার ?
৪. স্ট্রেইট ফাইলিং কাকে বলে ?
৫. ডায়াগোনাল ফাইলিং কাকে বলে ?
৬. ক্রস ফাইলিং কাকে বলে ?
৭. ড্র-ফাইলিং কাকে বলে ?
৮. রাউন্ড ফাইলিং কাকে বলে ?

### সংক্ষিপ্ত প্রশ্ন :

১. ফাইলিং কী ? ফাইলিং পদ্ধতি কত প্রকার ও কী কী ?
২. স্ট্রেইট ফাইলিং কাকে বলে ? প্রয়োগক্ষেত্রসহ বর্ণনা কর।
৩. ডায়াগোনাল ফাইলিং কাকে বলে ? প্রয়োগক্ষেত্রসহ বর্ণনা কর।
৪. ক্রস ফাইলিং কাকে বলে ? প্রয়োগক্ষেত্রসহ বর্ণনা কর।
৫. ড্র-ফাইলিং কাকে বলে ? প্রয়োগক্ষেত্রসহ বর্ণনা কর।
৬. রাউন্ড ফাইলিং কাকে বলে ? প্রয়োগক্ষেত্রসহ বর্ণনা কর।

### রচনামূলক প্রশ্ন :

১. ফাইলিং কী ? ফাইলিং পদ্ধতি কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও।
২. ফাইলিং পদ্ধতি কত প্রকার ও কী কী ? প্রত্যেক প্রকারের প্রয়োগক্ষেত্র উল্লেখ কর।
৩. ফাইলিং প্রক্রিয়া চলাকালীন কী কী সতর্কতা অবলম্বন করা উচিত বর্ণনা কর।

## অধ্যায়-১৭

# হ্যাক-সেইঁ (Hack Sawing)

### ১৭.১ হ্যাক হ্যাকসেইঁ :

হ্যাক হ্যাক-'স' এক প্রকার হ্যাক কাটিং টুলসু যা কোন বস্তুকে বিদীর্ঘ অর্ধাদি বিখণ্ডিত করতে বা কাটতে ব্যবহার করা হয়। হ্যাক-'স' প্রধানত দুইটি অংশে বিভক্ত যথা-(ক) কাঠামো (Frame) (খ) ব্লেড (Blade)। কাঠামো ছাগ্নী অংশ এবং ব্লেড হলো পরিবর্তনশীল অংশ। কার্যবন্ধন গঠন, আকার, আকৃতি প্রভৃতি বিবেচনা করে ব্লেড নির্বাচন করতে হব। এবং একটি ক্ষেত্রে প্রয়োজন অনুসারে বিভিন্ন ব্লেড সেট করে কাঞ্জিত কাজ সম্পাদন করা যাব। কাজ সম্পাদনের জন্য কাঠামোটি ক্রেতিকে অঙ্গোজনীয় দিকে এবং চাপে ধারণ করে রাখে।

হ্যাক হ্যাক-'স' ধারা কোন বস্তুকে কাটা বা বিদীর্ঘ অর্ধাদি বিখণ্ডিত করার প্রধানিকে হ্যাক-সেইঁ বলা হয়। সাধারণত কম ব্যাস বিশিষ্ট অর্থ সংখ্যক বস্তু কাটতে এ প্রণালি ব্যবহৃত হয়। পাওয়ার হ্যাক-'স' এর অভাবে বড় ব্যাস বিশিষ্ট বস্তু কাটতেও এ প্রণালি ব্যবহৃত হয়। কিন্তু ইহা সময় সাপেক্ষে এবং ব্যয় বহুল।



চিত্র-১৭.১১ হ্যাক হ্যাক-'স' এর বিভিন্ন অংশ

### ১৭.২ হ্যাক হ্যাক এর অঙ্গোগ ক্ষেত্র :

অধুনা ধাতুর জন্য বিভিন্ন আধুনিক পদ্ধতি ব্যবহৃত হচ্ছে এবং ধাতু কর্তনের প্রযুক্তিতে চরম উন্নতি সাধিত হয়েছে। কিন্তু হ্যাক-'স' নামক এ কাটিং টুলটি ব্যবহারের ক্ষমতা ও অঙ্গোজনীয়তা মোটেই হ্রাস পায়নি। এমন কোন শুরার্কণাপের নাম করা কঠিন বেখানে হ্যাক হ্যাক-'স' নেই। স্বরূপিত্ব পদ্ধতিতে ধাতু কাটার সুবিধা আছে যথেষ্ট কিন্তু সীমাবদ্ধতাও আছে। যেমন- স্বরূপিত্ব মেশিন ছাপন করা হয় নির্দিষ্ট ছানে ছাগ্নীতাবে বিশেষ কাজে জন্য। তাই সব ধরনের জব অর্ধাদি কার্যবন্ধ উক্ত ছানে বা মেশিনে কর্তন করা যাব না। অন্যদিকে হ্যাক-'স' এর ব্যবহার বিকৃত। যদিও কাঞ্জিক পরিশ্রম বেশি তরুণ বিভিন্ন ধরনের জটিল কাজ বা সমস্যা সমাধান করতে এই হ্যাক কাটিং টুলটি যথেষ্ট সহায়ক ভূমিকা পালন করে। মেটাল শুরার্কিৎ এর ক্ষেত্রে ব্যবহৃত বিভিন্ন

अकार 'स' एवं अधेये हात क- 'स' सर्वाधिक व्यवहृत हरय। मेकानिकल ओप्यार्कशपे कम व्यास विशिष्ट आण असंख्यक वार मोटाल, मोटाल ग्रेट, पिंट मोटाल, पाहिल, टिउब, पिल, काटीर, विसेट, बी, बोल्ट, अंगुलपेशवार, रेल इत्यादि काटिते हात क सर्विं पक्षति व्यवहृत हरय। ए हात्ता वैद्युतिक काजे कहूइट, वाट्टन, कपार टिउब व मोटा वैद्युतिक क्याबल काटिते ए पक्षति व्यवहृत हरये थाके।



चित्र-१७.२४ हात क-'स' एवं व्यवहार

#### १७.३ हात हात क-'स' एवं वित्तन ड्रेफ एवं व्यवहार

हात हात क-'स' ड्रेफ सरासरि कार्बनकूरु सम्पर्के आसे एवं ड्रेफमेर साहाय्ये ध्रोकलीर चाप ध्रोग करे साम्मे शिह्दे सठिकजावे आला सेवडा करले सौजेव साहाय्ये कार्बनकूरुके काटे। हात हात क-'स' ड्रेफ साधारणत हाई कार्बन टिल, अलिवफेनाम आलझ टिल, टाइस्टेन आलझ टिल, अलिवफेनाम हाई श्पिड टिल व टाइस्टेन हाई श्पिड टिलेर तैव्रि हरय।



चित्र-१७.२५ हात क-'स' एवं टि.पि.अहि व्येर करा।

#### वाहू अनुवाती हात हात क-'स' ड्रेफलो व्यो-

- १) हाई कार्बन टिल ड्रेफ (High Carbon Steel Blade)
- २) हाई श्पिड टिल ड्रेफ (High Speed Steel Blade)
- ३) लो-आलज टिल ड्रेफ (Low Alloy Steel Blade)

किछु ड्रेफ सम्पूर्णजावे हार्डेनड करा हरय, किछु ड्रेफ हातेनिं एवं ट्रेसारिं दूटोहे करा थाके एवं किछु किछु ड्रेफके उथु सौजेव अणे हार्डेनड करे अवणिष्ट अणे नवय गाखी हरय।

হিট প্রিটমেন্ট বা তাপ ক্রিস্টাল অনুষারী ক্রেডের নামগুলো হলো-

- ১) অল হার্ড ক্রেড (All hard blade)
- ২) ফ্লেকসিবল ক্রেড (Flexible blade)
- ৩) সফট ব্যাক ক্রেড (Soft back blade)



চিত্র-১৭.৩১ বিভিন্ন ধরণের হ্যাক-'স' ক্রেড

#### ১৭.৪ হ্যাক হ্যাক-'স' চালনার নিয়মাবলী।

হ্যাক হ্যাক-'স' দ্বারা সঠিক ভাবে এবং নিরাপদে কাজ সম্পাদনের জন্য নিম্ন উপরিতে নিয়মাবলী মেনে কাজ করা উচিত।

- ১) জব কী ধাতুর তৈরি, কত বেধ, কেমন কিমিশিৎ দরকার প্রভৃতি বিবেচনা করে সঠিক ক্রেড নির্বাচন করে কাজ করতে হবে।
- ২) ক্রেমের সাথে হ্যাক-'স', ক্রেডকে সর্বদা সঠিক দিকে এবং প্রয়োজনীয় টানে আটকাতে হবে। প্রয়োজনে কাজের মাঝে মাঝে টান পরীক্ষা করে উহাকে সমষ্টি করতে হবে।



চিত্র-১৭.৪১ হ্যাক-'স' ক্রেড কাজানোর নিয়ম (১)

- ৩) হ্যাক হ্যাক-'স' চালনার আগে লক্ষ রাখতে হবে যে, উহা চালনার সময় জব যেন নাই। ভাইসের জবের উচ্চতা হবে কর্মীর বুক বরাবর এবং সিঙ্গ লাইন রাখতে হবে ভাইসের যাত্টা সম্ভব কাছে। ভাইসের কিনারা থেকে সিঙ্গ লাইনের দূরত্ব বেশি হলে সিঙ্গ তল ভালো হয় না, জব কাঁপে, বিরক্তিকর শব্দ হয় এবং ক্লিড ভেঙ্গে যাবার সম্ভাবনা থাকে।
- ৪) কাঞ্জ আরম্ভ করার সময় বাম "পা" কে সোজা ভাবে এবং ডান "পা" কে ৪৫০ কোণে ঝোঁকে এমনভাবে দাঁড়াতে হবে যাতে দেহের ওজন উভয় "পা" এর উপর সমানভাবে পড়ে।



চিত্র-১৭.৫ঃ হ্যাক-'স' চালনার নিয়ম (২)

- ৫) হ্যাক-স চালনার সময় লক্ষ রাখতে হবে যে, দেহ যেন না দোলে এবং পা কার্যত স্থির থাকে। কেবল হাত দুইটি অবাধে প্রয়োজন অনুসারে চালাতে হবে। বাম হাত দ্বারা ক্রমটিকে শক্তভাবে ধরে ডান হাত দ্বারা ঠেলে দুই হাতে শক্তিকে সমন্বয় করে প্রয়োজনীয় চাপে এবং গতিতে হ্যাক-সিঙ্গ করতে হবে।
- ৬) প্রথমে হ্যাক-স চালনা শুরু করার সময় কার্যবস্তুর উপর হ্যাক-স কে সম্মুখ দিকে ৩০০ কোণে নত করে সামনের দিকে ২-৪ বার চালনা করলে যখন দাঁতগুলি কার্যবস্তুর মধ্যে প্রবেশ করবে তখন উহাকে ভূমির সমান্তরালভাবে ধরে প্রয়োজনীয় চাপে এবং গতিতে চালনা করতে হবে।
- ৭) সিঙ্গ অর্থাৎ কাটার গতি হবে ধ্রুতি মিনিটে ৩০-৪৫ স্ট্রোক এবং নরম ধাতুর বেলায় সর্বোচ্চ ৫০ হওয়া বাঞ্ছনীয়।
- ৮) হ্যাক-স' ক্লিড শুধু সম্মুখ দিকে চালনা করার সময় কাটে। কাঞ্জেই সম্মুখ দিকে চালনা করার সময় চাপ দিতে হবে। পেছনে টানার সময় চাপ দিলে ক্লিডের দাঁতগুলি অবস্থা স্বর্ণিত হয়। ফলে দাঁতের তীক্ষ্ণতা নষ্ট হয়।



চিত্র-১৭.৬৪ হ্যাক-'স' চালানোর নিয়ম (৩)

- ৯) হ্যাক-'স' চালনা করার সময় সরল রেখা সূত্রে চালনা করতে হবে। আঁকাৰ্বাঁকা চালনা করলে ক্লেড ভেঁজে থেকে পারে।
- ১০) পুরানো ক্ষয়প্রাণ ক্লেড দিয়ে সয়ঁৎ আরম্ভ করার পর জবের ভেতর বেড়টি ভেঁজে গেলে, সেক্ষেত্রে নুতন ক্লেড ব্যবহার করা যায় না, কেবল নুতন ক্লেড অপেক্ষাকৃত অধিক পুরানো হয়।
- ১১) ধাতুপাত বেশি পাতলা হলে সয়ঁৎ করা যায় না। কম্বেকটি পাত একত্রে ক্ল্যাম্প করে অথবা পাশে কাঠ বা নরম ধাতুর ড্রিক বেঁধে ভাইস বা অন্য কিছুর সাহায্যে আটকিয়ে (বেন না কাঁপে) সয়ঁৎ করতে হবে।
- ১২) পাইপ জার্ডীয় পাতলা গোল বা কাঁগা বস্তুর ক্ষেত্রে ছিদ্রের মধ্যে ট্রি মাপের একটি কাঠের খঙ্কে প্রবেশ করিয়ে হ্যাক-'স' চালনা করা সুবিধাজনক।
- ১৩) হ্যাক হ্যাক-'স' দিয়ে সয়ঁৎ আরম্ভ করার সময় এবং সয়ঁৎ এর শেষ পর্যায়, এ দুই সময়ই বিশেষ সাবধানতা অবলম্বন করা উচিত। ধাতুকে বখন কাটা শেষ হয়ে আসবে তখন ক্লেডে আলু চাপ ও চালনার হার কমিয়ে দিতে হবে। নচেৎ ক্লেড ভেঁজে যাবার সম্ভাবনা থাকে।
- ১৪) হ্যাক-'স' কে চালনা করার সময় দাঁতের মুখে কোন প্রকার মসৃণকারক তৈল ব্যবহার করা যাবে না। প্রয়োজনে পানি অথবা কাটিং কম্পাউন্ড প্রয়োগ করতে হবে। ইহাতে ক্লেড বেশি উত্পন্ন হতে পারে না। যদলে দাঁতের তীক্ষ্ণতা অব্যহত থাকে। স্টিল বা অন্য কোন শক্ত ধাতু খঙ্কে গভীর করে কাটতে হলে ক্লেডের দুই পাশে দুই এক বিন্দু তৈল মাখিয়ে নিলে, ক্লেডের ঘর্ষণ বাঁধা করে। কলে ক্লেড সহজে চলাচল করতে সমর্থ হয় এবং ধাতুকে শীঘ্র কাটে।



চিত্র-১৭.৭৪ হ্যাক-'স' চালানোর সময় তৈল দেওয়া।

## প্রশ্নমালা-১৭

### অতি সংক্ষিপ্ত প্রশ্ন :

১. হ্যাক-'স' ফ্রেম কয় প্রকার?
২. হ্যান্ড হ্যাক-'স' এর প্রধান দুইটি অংশের নাম লিখ?
৩. কোর্স টিথ রেডে প্রতি ইঞ্জিতে কয়টি দাঁত থাকে?
৪. মিডিয়াম টিথ হ্যাক-'স' রেডের দাঁতের পিচ কত মিমি হয়?
৫. সাধারণ সয়িং এর ক্ষেত্রে ধাতুর উপর রেডের কয়টি দাঁত থাকা প্রয়োজন?
৬. সয়িং এর ক্ষেত্রে নরম ধাতুর বেলায় স্ট্রোক সংখ্যা কত হওয়া বাঞ্ছনীয়?
৭. ভাইসে জবের উচ্চতা কতটুকু হওয়া প্রয়োজন?
৮. হ্যান্ড হ্যাক-'স' চালনা শুরু করার সময় কত ডিগ্রি কোণে সামনের দিকে নত রাখতে হয়?

### সংক্ষিপ্ত প্রশ্ন :

১. হ্যান্ড হ্যাক-সয়িং বলতে কী বোঝায়?
২. হ্যান্ড হ্যাক-'স' কাকে বলে?
৩. হ্যান্ড হ্যাক-'স' এর বিভিন্ন অংশসমূহের নাম লিখ?
৪. হ্যান্ড হ্যাক-'স' রেড কি কি ধাতুর তৈরি হয়?
৫. অলহার্ড হ্যান্ড হ্যাক-'স' রেড কী কী ধাতুর কাটার জন্য উপযোগী?
৬. উইং নাট কী কাজে ব্যবহৃত হয়?
৭. হ্যান্ড হ্যাক-'স' রেডের ক্ষেত্রে 'সেট' বলতে কী বোঝায়?
৮. হ্যাক-'স' রেডকে 'সেট' করার উদ্দেশ্য কী?

### রচনামূলক প্রশ্ন :

১. কোন কোন বিষয় বিবেচনা করে সয়িং এর জন্য রেড নির্বাচন করা উচিত?
২. একটি হ্যান্ড হ্যাক-'স' এর বিভিন্ন অংশের নাম লেখ এবং উহাদের ব্যবহারের সংক্ষিপ্ত বিবরণ দাও।
৩. বিভিন্ন বিষয় অনুসারে হ্যান্ড হ্যাক-'স' রেডের শ্রেণিবিভাগ উল্লেখ কর।
৪. হ্যান্ড হ্যাক-'স' রেডের ব্যবহার বর্ণনা কর।
৫. হ্যান্ড হ্যাক-'স' চালনার নিয়মাবলী বর্ণনা কর।
৬. সয়িং এর সময় কী কী কারণে রেড ভেঁজে যায় বর্ণনা কর।
৭. হ্যান্ড হ্যাক-'স' এর বিবরণ প্রদানের ক্ষেত্রে বিবেচ্য বিষয়গুলি বর্ণনা কর।
৮. হ্যান্ড হ্যাক-'স' এর প্রয়োগক্ষেত্র বর্ণনা কর।
৯. হ্যান্ড হ্যাক-সয়িং এর ক্ষেত্রে সতর্কতার বিষয়াদি বর্ণনা কর।

## অধ্যায়-১৮

### পাওয়ার সারিং (Power Sawing)

#### ১৮.১ পাওয়ার হ্যাক-সারিং :

যে যান্ত্রিক করাত বিদ্যুৎ শক্তি দ্বারা পরিচালিত হয়ে থাতু কাটার কাজে ব্যবহার করা হয় তাকে পাওয়ার হ্যাক-'স' বলা হয় অর্থাৎ পাওয়ার হ্যাক-'স' হলো এক প্রকার মেশিন টুল যাহা থাতুকে কাটা বা খণ্ডিত করার কাজে ব্যবহার করা হয় ।। পাওয়ার হ্যাক-'স' দ্বারা দ্রুত এবং সঠিকভাবে ভারী, মোটা এবং অধিক সংখ্যক থাতু দণ্ড এক সাথে খণ্ডিত করা বা কাটার পদ্ধতিকে পাওয়ার হ্যাক সারিং বলা হয় । প্রত্যেক মেশিনশপ বা বড় বড় কারখানায় এ মেশিন বহুল পরিমাণে ব্যবহৃত হয়ে থাকে । পাওয়ার হ্যাক-'স' মেশিন মোটর ও বেল্টের সাহায্যে অথবা স্বতন্ত্রভাবে বৈদ্যুতিক মোটর দ্বারা চালিত হয়ে থাকে ।



চিত্র-১৮.১ঃ পাওয়ার হ্যাক-সারিং ।

পাওয়ার হ্যাক-'স' মেশিনে ব্যবহৃত ক্লেডের মাপ, দৈর্ঘ্য, প্রস্থ, বেধ, হ্যান্ড 'স' ক্লেড অপেক্ষা বেশি হয় । এ ক্লেডের দাঁতের পিচ অপেক্ষাকৃত বেশি অর্থাৎ প্রতি ইঞ্জিনে দাঁতের সংখ্যা কম হয়, ফলে দাঁত বড় হয় । পাওয়ার হ্যাক-'স' মেশিনের রায়ম ও ফ্রেম, ক্যাম ও লিভারের মাধ্যমে চালিত হয় । পাওয়ার হ্যাক-'স' ক্লেড একবারে থাতুর মধ্যে কতটুকু প্রবেশ করবে অর্থাৎ ফিড স্বয়ংক্রিয়ভাবে দেওয়ার ব্যবস্থা থাকে এবং প্রয়োজনে এ ফিড সমন্বয় করা যায় ।

পাওয়ার হ্যাক সারিং এর জন্য নির্বাচিত ক্লেডকে সঠিক দিক এবং টেনশন সহকারে ফ্রেমে আটকাতে হয় । কাটার জন্য থাতুখণ্ডকে ভাইসের মধ্যে দৃঢ়ভাবে বেঁধে দিতে হয় । ভাইস টাইট দেওয়ার জন্য হ্যান্ডলের উপর হাতের চাপই যথেষ্ট । অতিরিক্ত চাপ প্রয়োগ করলে ভাইসের ক্লুর পিনচি শিয়ার হয়ে কেটে যেতে পারে । ওয়ার্কপিসকে ভাইসে বাঁধার পর খণ্ডিত অংশের দৈর্ঘ্য প্রয়োজনীয় মাপের হতে হবে । এ ব্যাপারে নিশ্চিত হয়ে মেশিন চালিয়ে থাতু কাটার কাজ সম্পন্ন করতে হবে । প্রয়োজনে কাটার সময় কুল্যান্ট ব্যবহার করতে হবে ।

### ১৮.২ পাওয়ার হ্যাক-'স' এর পর্যাম অংশ, কন্ট্রোল এবং সেটিং :



চিত্র-১৮.২ঃ পাওয়ার হ্যাক-'স' এর বিভিন্ন অংশ

#### পাওয়ার হ্যাক-'স' মেশিনের পর্যাম অংশসমূহ হলো-

- ◆ রাম (Ram)
- ◆ ক্রেম (Frame)
- ◆ মোটর (Motor)
- ◆ ভাইস (Vise)
- ◆ বেল্ট গার্ড (Belt Guard)
- ◆ বেল্ট (Blade)
- ◆ ক্র্যাঙ্ক ডিক মেকানিজম (Crank disk mechanism)
- ◆ কুল্যান্ট সিস্টেম (Coolant system)

উক্ত অংশসমূহের ব্যবহার নিম্ন সহজেপে আলোচনা করা হলো-

#### মোটর (Motor) :

এটি মেশিনের একমাত্র শক্তি উৎপাদনকারী ও সরবরাহকারী অংশ। মোটরের সাহায্যে বৈদ্যুতিক শক্তি দ্বারিক শক্তিতে প্রসারিত হয়। সুইচ অন করলে মোটর থেরে ধৰ্ম বেল্টের মাধ্যমে ক্র্যাঙ্ক ডিক মেকানিজমকে চালায়, যার ফলে মোটরের সূর্ণ গতি ক্রমের সরল গতিতে পরিণত হয়। মোটর সম্মুখ বেল্টের মাধ্যমে কুল্যান্ট পাম্পকেও চালায়।

#### রাম (Ram) :

এ অংশটি মেশিনের সবচেয়ে উপরের অংশ। রাম ক্রেমকে ধরে রাখে এবং সরল পথে চলাচলের জন্য সাহায্য করে। তাছাড়া ধাতুখককে কাটতে একটি নিদিষ্ট চাপে ব্লেডকে সামনে বা পিছনের দিকে চালাতে হয়। রাম ক্রেমের সাহায্যে ক্রেডের উপর এ চাপ অযোগ করে। প্রসার কন্ট্রোল লিভারের সাহায্যে রাম নিয়ন্ত্রিত হয়ে ধাতুখককে কাটতে ব্লেডের উপর প্রয়োজনীয় হাইড্রোলিক চাপ অযোগ করে।

### **ফ্রেম (Frame) :**

ফ্রেম ব্লেডকে ধারণ করে রাখে এবং ত্র্যাক ডিস্ক মেকানিজম পদ্ধতি দ্বারা পরিচালিত হয়ে র্যামের সামনে ও পিছনে আসা যাওয়া করে ধাতু কাটার জন্য ব্লেডকে প্রয়োজনীয় গতি দেয়। তাছাড়া ধাতু কাটার জন্য ব্লেডকে একটি নির্দিষ্ট টেনশনে আবদ্ধ করতে হয়। ফ্রেম, ব্লেড টেনশনিং নাটের সাহায্যে প্রয়োজনীয় নির্দিষ্ট টেনশনে ব্লেডকে ধারণ করে রাখে।

### **ভাইস (Vise) :**

পাওয়ার হ্যাক সয়িং এর সময় ভাইস ধাতুখণ্ড বা কার্যবস্তুকে দৃঢ়ভাবে আবদ্ধ করে রাখে। ভাইস বেস এর উপর অবস্থান করে কার্যবস্তুকে স্থিরভাবে ধরে রাখে এবং ব্লেড সামনে ও পিছনে আসা যাওয়া করে কার্যবস্তুকে কাটে।

### **বেল্ট গার্ড (Belt Guard) :**

বেল্ট গার্ড বেল্টকে ঢেকে রাখে এবং বিভিন্ন প্রকার বিপদ থেকে সংশ্লিষ্ট সবাইকে রক্ষা করে।

### **ব্লেড (Blade) :**

ব্লেড পরিবর্তনশীল অংশ এবং পাওয়ার হ্যাক-স এর একমাত্র অংশ যা দ্বারা কোন বস্তু বা ওয়ার্কপিসকে কাটা হয়। অন্যান্য অংশগুলি কাটার কাজে শুধু ব্লেডকে সাহায্য করে।

### **ত্র্যাক ডিস্ক মেকানিজম (Crank disk mechanism) :**

এটা ডিস্ক এবং ত্র্যাকের সমন্বয়ে গঠিত। ত্র্যাক ফ্রেম এবং ডিস্কের মধ্যে সংযোগ করে। এ মেকানিজমের মাধ্যমে মোটরের ঘূর্ণন গতি ফ্রেমের অগ্র পশ্চাত গতিতে পরিণত হয়।

### **কুল্যান্ট সিস্টেম (Coolant system) :**

এটা কুল্যান্ট ট্যাঙ্ক, ভাল্ব, ডেলিভারি টিউব এবং নজেলের সমন্বয়ে গঠিত। ব্লেড এবং কার্যবস্তুর সংযোগ স্থলের উপর কুল্যান্ট সরবরাহ করতে এ সিস্টেম ব্যবহৃত হয়। এটা ব্লেড এবং কার্যবস্তুকে ঠাণ্ডা রাখে এবং চিপ দূরীভূত করে।

### **১৮.৩ পাওয়ার হ্যাক-'স' ব্লেড (Power Hack-saw Blade) :**

পাওয়ার হ্যাক-'স' ব্লেডগুলি টুল স্টিল, লো-অ্যালয় স্টিল বা হাইস্পিড স্টিলের তৈরি হয়। সঠিক ব্লেড নির্বাচনের উপর কাজের গুণগতমান অনেকাংশে নির্ভর করে। ব্লেড নির্বাচনের ক্ষেত্রে ব্লেডের (১) দৈর্ঘ্য (২) পুরুত্ব (৩) প্রস্থ (৪) দাঁতের পিচ ও (৫) কী ধাতুর তৈরি বিবেচনা করতে হয়।

ব্লেডের দৈর্ঘ্য ১২ ইঞ্চি থেকে ৪০ ইঞ্চি বা ৩০০ মি.মি. থেকে ১০০০ মি.মি. পর্যন্ত, প্রস্থ ৩২ মি.মি. থেকে ১২৬ মি.মি. পর্যন্ত এবং পুরুত্ব ১.৬ মি.মি. থেকে ৩.৫ মি.মি. পর্যন্ত হয়। প্রতি ইঞ্চিতে দাঁতের সংখ্যা ৪ থেকে ১৪ পর্যন্ত বা পিচ ১.৮ মি.মি. থেকে ৬.৩ মি.মি. পর্যন্ত হয়। বড় মাপের ব্লেডে কম সংখ্যক এবং ছোট মাপের ব্লেডে বেশি সংখ্যক দাঁত থাকে। আর এক প্রকারের ব্লেড আছে যার দাঁতের অংশ হাইস্পিড স্টিলের তৈরি এবং কম দামের স্টিলের সাথে ওয়েল্ডিং করে জোড়া দেওয়া থাকে। এ ধরনের ব্লেড ব্যবহারের সুবিধা হলো এই যে, এই ব্লেড সহজে ভাঙ্গে না এবং দ্রুত গতিতে ধাতু কাটা যায়। সাধারণ নিয়মে শক্ত ধাতু বা পাতলা যন্ত্রাংশ/শিট কাটতে কম পিচ বিশিষ্ট হ্যাক-'স' ব্লেড এবং নরম ধাতু কাটতে বেশি পিচ বিশিষ্ট ব্লেড ব্যবহৃত হয়।

### নিম্নে লেড নির্বাচনের একটি তালিকা দেওয়া হলো-

| লেডের পিচ    | লেডের টি.পি.আই | কার্যবস্তু                                            |
|--------------|----------------|-------------------------------------------------------|
| ৬-৮ মি.মি.   | ৪-৬ টি.পি.আই   | নমনীয় ধাতু (অ্যালুমিনিয়াম, তামা, নরম স্টিল ইত্যাদি) |
| ৩-২.৫ মি.মি. | ৮-১০ টি.পি.আই  | শক্ত ও ভঙ্গুর ধাতু (টুল, স্টিল, কাস্ট আয়রন ইত্যাদি)  |
| ২-১.৮ মি.মি. | ১২-১৪ টি.পি.আই | পাতলা তল বিশিষ্ট (পাইপ, টিউব ইত্যাদি)                 |

### ১৮.৪ পাওয়ার হ্যাক-'স' এর প্রয়োগক্ষেত্র :

যেখানে হান্ড হ্যাক-সয়িং সময় সাপেক্ষে এবং ব্যয়বহুল সেখানে অধিক সংখ্যক বড় প্রস্তুচ্ছেদ বিশিষ্ট বার মেটাল এবং অন্যান্য ওয়ার্কপিস দ্রুত এবং সঠিকভাবে কাটতে পাওয়ার হ্যাক সয়িং ব্যবহৃত হয়। বড় প্রস্তুচ্ছেদ বিশিষ্ট শ্যাফট, ক্ষয়ার বার, আয়তকার বার, রেইল, অ্যাঙ্গেল, চ্যানেল, পাইপ ইত্যাদি পাওয়ার হ্যাক সয়িং এর মাধ্যমে কাটা হয়। ছোট আকারের পাওয়ার হ্যাক-'স' ৭৫ মি.মি. পর্যন্ত ব্যাস বিশিষ্ট রাউণ্ড বার বা ৭৫ মি.মি. পার্শ্ব বিশিষ্ট ক্ষয়ার বার মেটাল কাটতে ব্যবহৃত হয়। পাওয়ার হ্যাক-'স' ৪০০ মি.মি. ব্যাস বিশিষ্ট রাউণ্ড বার বা ৪০০ মি.মি. পার্শ্ব বিশিষ্ট ক্ষয়ার বার মেটাল কাটতে ব্যবহৃত হয়।

### ১৮.৫ পাওয়ার হ্যাক সয়িং এর ক্ষেত্রে সতর্কতা :

১. মেশিন চালনার পূর্বে কার্যবস্তু থেকে লেডের দূরত্ব এবং অন্যান্য লিভারসমূহের অবস্থান নিরাপদ স্থানে আছে এ ব্যাপারে নিশ্চিত হয়ে মেশিনের সুইচ অন করতে হবে।
২. অপারেশন শুরু করার পূর্বে মেশিনের সকল কন্ট্রোল এবং সেটিং সঠিকভাবে আছে কী না পরীক্ষা করে দেখতে হবে।
৩. প্রেসার কন্ট্রোল লিভারের নিয়ন্ত্রণ সঠিকভাবে করতে হবে। অত্যাধিক চাপে প্রয়োগে লেড ভাঙ্গার সম্ভাবনা থাকে।
৪. সতর্কতার সাথে প্রয়োজনীয় কাজের জন্য সঠিক লেড নির্বাচন করতে হবে। সব সময় একটি লেড দিয়ে সব ধরনের সব আকারের সব ধাতু কাটা অনুচিত।
৫. সঠিকভাবে লেড নির্বাচন করে সঠিকভাবে সেট করতে হবে। নির্মাতা কর্তৃক দিক অথবা মেশিনের কাটিং স্ট্রোক কোন দিকে হয় তা দেখে লেডের দিক নির্ণয় করতে হবে।
৬. জব বা কার্যবস্তুকে ভাইসে দৃঢ়ভাবে আটকাতে হবে। অন্যথায় কাজের সময় জব বা কার্যবস্তু নড়ে গিয়ে লেড ভেঙ্গে যেতে পারে।
৭. ভাইসে জব বা কার্যবস্তুকে ভূমির সাথে সমান্তরালভাবে আটকাতে হবে। কোন এক পার্শ্ব উঁচু হলে কাটার সময় উহা নিচ দিকে নেমে গিয়ে অসুবিধার সৃষ্টি করবে। অনেক ক্ষেত্রে লেডও ভেঙ্গে যেতে পারে।
৮. কাটা শুরু করার সময় লেড যেন হঠাতে গিয়ে অধিক চাপে কার্যবস্তুর উপর না পড়ে সে ব্যাপারে সতর্ক থাকতে হবে।
৯. কার্যবস্তুকে কাটার পর বস্তুর খণ্ডাংশ যেন পড়ে গিয়ে দুর্ঘটনা ঘটতে না পারে সে ব্যাপারে সতর্ক থাকতে হবে।
১০. কাজ শেষ হয়ে গেলে র্যামকে সর্বনিম্ন অবস্থানে রেখে মোটর বন্ধ করে দিতে হবে এবং মেশিন পরিষ্কার করে রাখতে হবে।

## প্রশ্নমালা-১৮

### অতি সংক্ষিপ্ত প্রশ্নঃ

১. পাওয়ার হ্যাক-'স' কী?
২. পাওয়ার হ্যাক-সয়ঁৎ কাকে বলে?
৩. পাওয়ার হ্যাক-'স' মেটরের কাজ কী?
৪. বেল্ট গার্ড কী কাজে ব্যবহৃত হয়?
৫. লিমিট সুইচের কাজ কী?
৬. ড্রেড টেনশনিং নাট কী কাজে ব্যবহৃত হয়?
৭. ফিড কাকে বলে?
৮. পাওয়ার হ্যাক-'স' কী ধাতুর তৈরি হয়?
৯. পিচ কাকে বলে?
১০. মেশিন সুইচের কাজ কী?

### সংক্ষিপ্ত প্রশ্নঃ

১. পাওয়ার হ্যাক-'স' মেশিনের প্রয়োগক্ষেত্র উল্লেখ কর।
২. পাওয়ার হ্যাক-'স' মেশিনের প্রধান অংশগুলির নাম লেখ।
৩. পাওয়ার হ্যাক-'স' মেশিনের কন্ট্রোল ও সেটিংগুলির নাম লেখ।
৪. ড্রেড নির্বাচনের ক্ষেত্রে কী কী বিষয় বিবেচনা করতে হয়?
৫. ফিড বলতে কী বুবায়? উহা কিসের উপর নির্ভরশীল?
৬. নাম্বার অফ স্ট্রোক বলতে কী বুবায় উল্লেখ কর।
৭. পাওয়ার হ্যাক-সয়ঁৎ এর সময় ড্রেড ভেঙ্গে যাবার তিনটি সম্ভাব্য কারণ উল্লেখ কর।
৮. পাওয়ার হ্যাক-'স' ব্যবহারের সুবিধাগুলি উল্লেখ কর।
৯. কোন কোন কাজে পাওয়ার হ্যাক-'স' মেশিন ব্যবহৃত হয়?
১০. ম্যাটেরিয়াল স্ট্যাক এর ব্যবহার ব্যাখ্যা কর।

### রচনামূলক প্রশ্নঃ

১. পাওয়ার হ্যাক-'স' মেশিনের প্রধান অংশগুলির কাজ বর্ণনা কর।
২. পাওয়ার হ্যাক-'স' মেশিনের কন্ট্রোল সমূহের কাজ বর্ণনা কর।
৩. পাওয়ার হ্যাক-'স' মেশিনের কার্যনীতি বর্ণনা কর।
৪. পাওয়ার হ্যাক-'স' মেশিনের সেটিংগুলির কাজ বর্ণনা কর।
৫. বিভিন্ন প্রকার পাওয়ার হ্যাক-'স' ড্রেডের ব্যবহার বর্ণনা কর।
৬. কর্তনের গতি বলতে কী বুবায়? বিভিন্ন ধাতুভেদে প্রযোজ্য স্ট্রোক সংখ্যা ছক আকারে লিপিবদ্ধ কর।
৭. পাওয়ার হ্যাক সয়ঁৎ এর ক্ষেত্রে সর্তর্কতার বিষয়াদি ব্যাখ্যা কর।
৮. পাওয়ার হ্যাক সয়ঁৎ এর সুবিধা এবং অসুবিধাগুলি বর্ণনা কর।
৯. পাওয়ার হ্যাক-সয়ঁৎ এর ক্ষেত্রে কর্তনের গতি এবং কর্তনের চাপ বলতে কী বোবায় ব্যাখ্যা কর।
১০. পাওয়ার হ্যাক-'স' মেশিনের শক্তি স্থানান্তর প্রক্রিয়া বর্ণনা কর।

## অধ্যায়-১৯

# থ্রেড (Thread)

### ১৯.১ থ্রেড :

একটি বেলনাকৃতি অথবা শঙ্খ অর্থাৎ মোচাকৃতি বহুর উপর বা জেতর পৃষ্ঠে একই রূক্ষ আকৃতি বিশিষ্ট শিরা বাদি একগুচ্ছাবে অঙ্গানো থাকে বে, উহা দৈর্ঘ্য বরাবর একই হারে গণিরে দায়, তাহলে একে কু বলে এবং অঙ্গানো লিঙাকে থ্রেড বা প্র্যাচ বলে। একে প্র্যাচ, কুমা বা ছাড়িও বলে। থ্রেড তিনি বা বাইরের তলে রহতে পারে। লোকের বাইরে এবং নাটের তিনিরে থ্রেড থাকে। থ্রেডের প্রাচানো উহু মাধ্যম আকৃতি সমস্ত দৈর্ঘ্য বরাবর একই রূক্ষ হয়। ট্যাপ ও ভাই এর সাহায্যে অথবা মেশিনে থ্রেড কাটা যাব।

### ১৯.২ থ্রেডের প্রেসিভিভাসঃ

- ক) আরেবিকান স্ট্যান্ডার্ড থ্রেড
- খ) ইন্টারন্যাশনাল স্ট্যান্ডার্ড থ্রেড
- গ) মেট্রিক থ্রেড
- ঘ) প্রিটিশ স্ট্যান্ডার্ড ইইটওয়ার্থ থ্রেড
- ঝ) প্রিটিশ স্ট্যান্ডার্ড ফাইল থ্রেড
- চ) কয়ার থ্রেড
- ছ) অ্যাকশি থ্রেড
- জ) বাটেস থ্রেড
- ব) সাকল থ্রেড

### ১৯.৩ থ্রেডের বিভিন্ন অংশঃ



চিত্র-১৯.১ : থ্রেডের বিভিন্ন অংশ

### পিচ (Pitch) :

ক্লুর অক্ষের সমান্তরালে একটি থ্রেডের উপর একটি বিন্দু থেকে ঠিক পরবর্তী থ্রেডের উপর অনুরূপ বিন্দুর দূরত্বকে পিচ বলে। অর্থাৎ থ্রেডের একটি নির্দিষ্ট বিন্দু হতে পরবর্তী থ্রেডের অনুরূপ বিন্দু পর্যন্ত অক্ষের সমান্তরাল দূরত্বকে পিচ বলা হয়।

$$\text{পিচ, } P = \frac{1}{\text{প্রতি ইঞ্জিতে থ্রেডের সংখ্যা}} \quad (\text{বৃটিশ পদ্ধতি})$$

$$\text{পিচ, } P = \frac{1}{\text{প্রতি মিলিমিটারে থ্রেডের সংখ্যা}} \quad (\text{মেট্রিক পদ্ধতি})$$

মেট্রিক পদ্ধতিতে পিচ মিলিমিটারে প্রকাশ করা হয়। যেমন- পিচ ১.২৫ মি.মি., ১.৭৫ মি.মি. ইত্যাদি। বৃটিশ পদ্ধতিতে টি.পি.আই হিসেবে প্রকাশ করা হয়। যেমন- ৪ টি.পি.আই, ৮ টি.পি.আই ১২ টি.পি.আই ইত্যাদি।

### থ্রেডের অক্ষ (Axis of Thread) :

ক্লু থ্রেডের কেন্দ্র দিয়ে অক্ষিত কান্ডানিক লসালমি রেখাকে থ্রেডের অক্ষ বলে। একে নিরপেক্ষ অক্ষ (Neutral Axis) বলে।

### মেজর ডায়ামেটার (Major Diameter) :

ক্লু থ্রেডের বাহিরের সর্বোচ্চ ব্যাসকে মেজর ডায়ামেটার বা আউট সাইড ডায়ামেটার অথবা বাইরের ব্যাস বলে।

### মাইনর ডায়ামেটার (Minor Diameter) :

ক্লু থ্রেডের পঁয়াচের সর্বনিম্ন ব্যাসকে মাইনর ডায়ামেটার, রুট ডায়ামেটার বা কোর ডায়ামেটার বা ভেতরের ব্যাস বলে। ইহা মেজর ডায়ামেটার থেকে দুই দিকের গভীরতার মাপ অর্থাৎ ডেপ্থ এর দ্বিগুণ বাদ দিলে পাওয়া যায়। মাইনর ডায়ামেটার = মেজর ডায়ামেটার -  $2 \times$  ডেপ্থ অব থ্রেড।

### পিচ ডায়ামেটার (Pitch Diameter) :

থ্রেডের খাঁজ বা গ্রন্তের এক পার্শ্বের গভীরতার মধ্যবিন্দু হতে অপর পার্শ্বের মধ্য বিন্দু পর্যন্ত কান্ডানিক ব্যাসকে পিচ ব্যাস বা পিচ ডায়ামেটার বলে। থ্রেডের আউটসাইড বা মেজর ডায়ামেটার থেকে থ্রেডের এক দিকের গভীরতা বাদ দিলে পিচ ডায়ামেটার বা পিচ ব্যাস পাওয়া যায়।

**ফ্ল্যাংক (Flank) :** থ্রেডের দুই পার্শ্বের সন্নিহিত ঢালু অংশকে ফ্ল্যাংক বলে।

**রুট (Root) :** পাশাপাশি অবস্থিত দুইটি থ্রেডের পার্শ্ব ভাগ (Flank)-এর নিচের মিলিত স্থানকে রুট বলে।

**ক্রেস্ট (Crest) :** ক্রেস্ট মানে থ্রেডের শীর্ষ বা চূড়া। থ্রেডের দুই পার্শ্বের ফ্ল্যাংক উপরের দিকে যে স্থানে মিলিত হয় তাকে ক্রেস্ট বলে।

**গভীরতা (Depth of Thread) :** থ্রেডের রুট এবং ক্রেস্টের মধ্যবর্তী লম্ব দূরত্বকে থ্রেডের গভীরতা বলে।

**থ্রেড অ্যাংগল (Thread Angle) :** একটি থ্রেডের দুইটি ফ্ল্যাংকের মধ্যবর্তী কোণকে থ্রেড অ্যাংগেল বলে।

থ্রেড অ্যাংগেল থ্রেডের আকৃতির উপর নির্ভরশীল সচারাচর ৫৫০ অথবা ৬০০ কোণের প্রচলন বেশি।

### ১৯.৪ থ্রেডের বিভিন্ন স্ট্যাভার্জ :

একটি বোল্ট বা নাটের জায়গায় যেন অন্য একটি নাট বা বোল্ট ব্যবহার করা যায় এ উদ্দেশ্যে প্রত্যেক শ্রেণির থ্রেডের অন্তবর্তী কোণ, গভীরতা, ক্রেস্ট ও রুটের আকার ও আকৃতি প্রভৃতি নির্দিষ্ট মান এবং অনুপাতে তৈরি

করা হয়ে থাকে। এ নির্দিষ্ট মান এবং অনুপাত আন্তর্জাতিকভাবে এবং নিজস্ব দেশের জাতীয় সংশ্লিষ্ট সংস্থা কর্তৃক স্বীকৃত এবং গৃহীত হয়। এ নির্দিষ্ট মান বিশিষ্ট থ্রেডকে স্ট্যান্ডার্ড থ্রেড বলে।

ভি-থ্রেড সাধারণত নিম্নলিখিত কয়েকটি স্ট্যান্ডার্ডের হয়। যেমন-

- (১) **ব্রিটিশ স্ট্যান্ডার্ড (British standard)** থ্রেড : এই থ্রেড কয়েক প্রকার, যেমন-
  - ক) ব্রিটিশ স্ট্যান্ডার্ড ছুইটওয়ার্থ থ্রেড (British Standard Whitworth thread), সংক্ষেপে B.S.W
  - খ) ব্রিটিশ স্ট্যান্ডার্ড ফাইন থ্রেড (British Standrad fine thread) সংক্ষেপে B.S.F
  - গ) ব্রিটিশ এসোসিয়েশন স্ট্যান্ডার্ড থ্রেড (British Association Standrad thread) সংক্ষেপে B.A
  - ঘ) ব্রিটিশ স্ট্যান্ডার্ড পাইপ থ্রেড (British Standrad pipe thread) সংক্ষেপে B.S.P

(২) **আমেরিকান স্ট্যান্ডার্ড (American Standard)** থ্রেড :

এই স্ট্যান্ডার্ড থ্রেডের নাম হলো আমেরিকান ন্যাশনাল ভি থ্রেড (Americnal National standard 'V' thread) আমেরিকান স্ট্যান্ডার্ড থ্রেড নিম্নলিখিত দুই প্রকার হয় যেমন-

- ক) আমেরিকান ন্যাশনাল ফাইন (A.N.F) থ্রেড- একে সংক্ষেপে NF থ্রেড বলে। B.S.F থ্রেডের বিকল্প হিসেবে এ থ্রেড ব্যবহৃত হয়।
- খ) আমেরিকান ন্যাশনাল কোর্স (A.N.C) থ্রেড- একে সংক্ষেপে N.C থ্রেড বলে। B.S.W থ্রেডের বিকল্প হিসেবে এ থ্রেড ব্যবহৃত হয়।

(৩) **ইন্টারন্যাশনাল স্ট্যান্ডার্ড (International Standard)** থ্রেড : এ স্ট্যান্ডার্ড থ্রেডের নাম হলো ইন্টারন্যাশনাল স্ট্যান্ডার্ড থ্রেড। এ থ্রেড নিম্নলিখিত কয়েক প্রকার হয়। যেমন-

- ক) ইউনিফাইড থ্রেড : এ থ্রেড দুই প্রকার যথা-
  - ১) ইউনিফাইড কোর্স থ্রেড (সংক্ষেপে UNC)
  - ২) ইউনিফাইড ফাইন থ্রেড (সংক্ষেপে UNF)

#### ১৯.৫ থ্রেডের ব্যবহার ক্ষেত্র:

| থ্রেডের নাম                               | ব্যবহার ক্ষেত্র                                                                                                       |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| ব্রিটিশ স্ট্যান্ডার্ড ছুইটওয়ার্থ (B.S.W) | সচরাচর সমস্ত কাজে এ থ্রেডের ব্যবহার হয়।                                                                              |
| ব্রিটিশ স্ট্যান্ডার্ড ফাইন (B.S.F)        | যখন ধার্কা ও কম্পন সহ্য করার দরকার হয় এমন জায়গায় ব্যবহৃত হয়। মোটরগাড়ি ও এরোপ্লেনের বিভিন্ন অংশে এর ব্যবহার বেশি। |
| ব্রিটিশ এসোসিয়েশন থ্রেড (B.A)            | ১/৪ ইঞ্জির কম ডায়মিটারের ক্রুতে এই থ্রেড ব্যবহৃত হয়। সূচৰ যন্ত্রপাতি ফিটিং এর কাজে এর ব্যবহার বেশি।                 |
| ব্রিটিশ স্ট্যান্ডার্ড পাইপ থ্রেড (B.S.P)  | পানির পাইপ, স্টিম পাইপে এ থ্রেডের ব্যবহার হয়।                                                                        |
| আমেরিকান ন্যাশনাল ফাইন (A.N.F)            | আমেরিকান ইঞ্জিনিয়ার সচরাচর এ থ্রেড ব্যবহার করেন।                                                                     |
| ইউনিফায়েড থ্রেড (U.N.C)                  | পাতলা চাদরের টিউব, নাট এবং কাপলিং এর ক্ষেত্রে এ থ্রেড ব্যবহৃত হয়।                                                    |
| ক্ষয়ার থ্রেড                             | মেকানিক্যাল শক্তিকে সরবরাহ করতে ভাইস ক্ল্যাম্প ও ক্লু জ্যাকে এ থ্রেড ব্যবহৃত হয়।                                     |
| অ্যাকমি থ্রেড                             | লেদ মেশিনের লিড ক্লু ও হাফনাটে একমি থ্রেড থাকে।                                                                       |
| নাকল থ্রেড                                | রেল ইঞ্জিনের দুইটি বগি জোড়া দেওয়ার জন্য কাপলিং ক্লু তে নাকল থ্রেড ব্যবহৃত হয়।                                      |
| মেট্রিক থ্রেড                             | প্রয়োজনীয় সকল কাজে সাধারণভাবে এ থ্রেড ব্যবহৃত হয়।                                                                  |

## প্রশ্নমালা-১৯

### অতিসংক্ষিপ্ত প্রশ্নঃ

১. থ্রেড কাকে বলে?
২. পিচ কাকে বলে?
৩. টি.পি. আই কাকে বলে?
৪. বি.এস.এফ বলতে কীবোঝায়?
৫. ইউ.এস.সি বলতে কীবোঝায়?
৬. মেট্রিক থ্রেডের গভীরতার সূত্র লেখ।
৭. নাকল থ্রেডের অপর নাম কী?
৮. কোন থ্রেডের শীর্ষ ও রংটের প্রস্থ সমান হয়?
৯. কোন প্রকারের থ্রেডের কোন  $290^{\circ}$  হয়?
১০. আমেরিকান ন্যাশনাল স্ট্যান্ডার্ড থ্রেডের কোন কত ডিপ্রি হয়?
১১. টি.পি.আই নির্ণয়ের সবচেয়ে সহজ উপায় কী?
১২. থ্রেডের ক্ষেত্রে ক্রেস্ট কাকে বলে?
১৩. আই.এস.ও বলতে কী বোঝায়?

### সংক্ষিপ্ত প্রশ্নঃ

১. থ্রেড বলতে কী বুঝায় উল্লেখ কর।
২. পিচ বলতে কী বুঝায় উল্লেখ কর।
৩. মাইনর ডায়ামেটার বলতে কী বুঝায় উল্লেখ কর।
৪. থ্রেডের বিভিন্ন অংশের নাম লেখ।
৫. বিভিন্ন স্ট্যান্ডার্ড ভি থ্রেডসমূহের নাম লেখ।
৬. ক্ষয়ার থ্রেডের গঠন বুঝিয় লেখ।
৭. ইউনিফারেড থ্রেড সিস্টেম বুঝিয় লেখ।
৮. মেট্রিক থ্রেড সম্পর্কিত সূত্রগুলি উল্লেখ কর।
৯. M ১২ × ১.৭৫ বলতে কী বুঝায় উল্লেখ কর।
১০. অ্যাকমি থ্রেডের সূত্রাবলী লেখ।
১১. অ্যাকমি থ্রেড ও ট্রাপিজিয়ড থ্রেডের পার্থক্যগুলি উল্লেখ কর।

### রচনামূলক প্রশ্নঃ

১. থ্রেড বলতে কী বুঝায়?
২. পিচ কাকে বলে?
৩. একটি ভি থ্রেড বিশিষ্ট ক্রু অঙ্কন করে এর বিভিন্ন অংশ চিহ্নিত কর।
৪. ক্রু থ্রেডের বিভিন্ন অংশের নাম লেখ এবং উহাদের গঠন সংক্ষেপে বর্ণনা কর।
৫. বিভিন্ন স্ট্যান্ডার্ড থ্রেডগুলির নাম লেখ এবং উহাদের সংক্ষিপ্ত নাম ও কোণের পরিমাণ উল্লেখ কর।
৬. বিভিন্ন থ্রেডের ব্যবহারিক ক্ষেত্রগুলির নাম লেখ।
৭. আমেরিকান স্ট্যান্ডার্ড থ্রেডের গঠন বৈশিষ্ট্য বর্ণনা কর।
৮. ইন্টারন্যাশনাল স্ট্যান্ডার্ড থ্রেডের গঠন ও বৈশিষ্ট্য ব্যাখ্যা কর।

## অধ্যায়-২০

# ড্রিলিং (Drilling)

### ২০.১ ড্রিলিং :

ড্রিলিং মানে হোল বা গর্ত করা। ড্রিলিং বলতে ড্রিল বিটের সাহায্যে কোন বস্তুকে গোল ছিদ্র বা ড্রিল করার প্রণালি বুঝায়। ড্রিল বিটকে স্পিন্ডলের ছিদ্রে স্থাপন করে স্পিন্ডলকে ঘূর্ণিত অবস্থায় উপর হতে চাপ দিলে ড্রিল এগিয়ে জবকে ছিদ্র করে। ড্রিল করতে যে মেশিন ব্যবহৃত হয় তাকে ড্রিলিং মেশিন বা ড্রিল মেশিন অথবা ড্রিল প্রেস বলা হয়। ড্রিলিং করার সময় বিভিন্ন বস্তুর উপর বিভিন্ন ঘূর্ণন হার (R.P.M) প্রয়োগ করতে হয় এবং ড্রিলিং কার্য সম্পন্ন করতে ফিড হাইলকে আন্তে আন্তে নিচের দিকে নামাতে হয়। ফলে অল্প অল্প করে ধাতু কেটে ড্রিল বিট ড্রিলিং কার্য সম্পন্ন করে। ড্রিলিং প্রক্রিয়ায় ধাতুর মধ্যে গর্ত বা ছিদ্র তৈরি হয়। ড্রিলিং এর সময় ড্রিলকে ঠাণ্ডা রাখতে কুল্যান্ট ব্যবহারের প্রয়োজন হয়।



Copyright © 2007 CustomPartNet

চিত্র-২০.১: ড্রিলিং প্রক্রিয়া

### ২০.২ ড্রিলিং মেশিনের বিভিন্ন অপারেশনসমূহের জন্য কাটিং স্পিড ও ফিড :

ড্রিলিং মেশিনের অপারেশন অর্থাৎ কাউন্টার বোরিং, কাউন্টার সিকিং, রিমিৎ, ট্যাপিং ইত্যাদির জন্য সর্বাধিক কাটিং স্পিড ড্রিলিং এর অনুরূপ অনেকগুলি বিষয়ের উপর নির্ভর করে। তবে অভিজ্ঞ ব্যক্তিদের সাধারণ নির্দেশনা হিসেবে ড্রিলিং এর সহিত তুলনামূলক কাটিং স্পিডের হার উল্লেখ করেছেন। তুলনামূলক কাটিং স্পিডের তালিকা নিম্নে প্রদান করা হলো-

| ড্রিলিং মেশিনের অপারেশন | ড্রিলিং কাটিং স্পিডের তুলনায় হার |
|-------------------------|-----------------------------------|
| কাউন্টার বোরিং          | ৫০%                               |
| কাউন্টার সিকিং          | ৬০%-৮০%                           |
| স্পট ফেসিং              | ৫০%                               |
| সেন্টার ড্রিলিং         | ঘর্ঘেষ্ট দ্রুত স্পিড              |
| রিমিৎ                   | ৫০%                               |
| ট্যাপিং                 | ৩০%-৮০%                           |
| বোরিং                   | ৫০%                               |

**ফিড (Feed) :** ড্রিলিং এর সময় প্রতি পাকের জন্য ড্রিল বিটকে যে পরিমাণ দূরত্বে অগ্রসর করানো হয় তাকে ড্রিলিং এ ফিড বলা হয়।

ড্রিলিং এর সময় কী পরিমাণ ফিড দেওয়া হবে তা কয়েকটি বিষয়ের উপর নির্ভর করে। যেমন-

- ১) ড্রিলের শক্তি অর্থাৎ ড্রিল বিট কী ধাতুর তৈরি।
- ২) ড্রিল বিটের ধার।
- ৩) ওয়ার্কপিস ম্যাট্রিয়ালের শক্ততা অর্থাৎ কী ধাতুর তৈরি।
- ৪) কুল্যান্টের প্রয়োগ।
- ৫) ছিদ্রটি কী ধরনের এবং কত গভীর।
- ৬) ওয়ার্কপিস আটকানোর ধরন।

ড্রিলের ফিড = ধাতুখণ্ডের মধ্যে বিটকে প্রতি মিনিটে প্রবেশের দৈর্ঘ্য ÷ ড্রিল বিটের প্রতি মিনিটে ঘূর্ণন সংখ্যা।

সাধারণ কাজের জন্য হাই স্পিড স্টিলের তৈরি ড্রিল বিটের ক্ষেত্রে নিম্নলিখিত হারে ফিড প্রয়োগ করা হয়ে থাকে-

| ড্রিল বিটের ব্যাস     | ফিড (ড্রিল বিটের প্রতি ঘূর্ণন) |
|-----------------------|--------------------------------|
| ৩ মি.মি. এর নিচে      | ০.০২৫ থেকে ০.০৫ মি.মি.         |
| ৩ থেকে ৬ মি.মি.       | ০.০৫ থেকে ০.১০ মি.মি.          |
| ৬ থেকে ১২ মি.মি.      | ০.১০ থেকে ০.১৮ মি.মি.          |
| ১২ থেকে ২৫ মি.মি.     | ০.১৮ থেকে ০.৩৮ মি.মি.          |
| ২৫ মি.মি. হতে উর্ধ্বে | ০.৩৮ থেকে ০.৬০ মি.মি.          |

ফিড প্রয়োজন অপেক্ষা বেশি হলে, ড্রিল কেন্দ্রচ্যুত হয়ে ঘোরে এবং ড্রিল বিটের মুখের তাঁক্ষতা নষ্ট হওয়ার আশঙ্কা থাকে। ফিড যদি অনেক বেশি হয় তা হলে 'কাটিং এজ' খণ্ড হয়ে ভেঙ্গে যেতে পারে।

### উদাহরণঃ ১

একটি ড্রিল প্রতি মিনিটে ২২৫ বার ঘোরে এবং ছিদ্র করার সময় উহা কার্যবস্তুর মধ্যে প্রতি মিনিটে ৪২ মি.মি. প্রবেশ করে। ড্রিলের ফিড নির্ণয় কর।

### সমাধানঃ

ফিড = কার্যবস্তুর মধ্যে ড্রিলের প্রতি মিনিটে প্রবেশের দৈর্ঘ্য × ড্রিলের প্রতি মিনিটে ঘূর্ণন সংখ্যা  
 $= 42 \text{ মি.মি.} \times 225 = 0.18666 \text{ মি.মি.} = 0.187 \text{ মি.মি.}$

উত্তরঃ নির্ণেয় ফিড হবে ০.১৮৭ মি.মি।

### ২০.৩ কাটিং স্পিড (Cutting Speed) :

ড্রিলিং এর কাটিং স্পিড বলতে ড্রিলের পরিধির সরল গতিকে বুবায় যা ম্যাট্রিয়াল সারফেস অতিক্রম করে। অর্থাৎ ঘূরন্ত ড্রিলের পরিধির উপর একটি বিন্দু সরল রেখায় যে দূরত্ব অতিক্রম করে তাকে ড্রিলের কাটিং স্পিড বলা হয়। ড্রিল কী ধাতুর তৈরি এবং যে ধাতুকে ছিদ্র করতে হবে, তা কি প্রকার শক্ত এবং গুণ বিশিষ্ট এ সব বিষয়ে বিবেচনা করে আন্তর্জাতিক সংস্থা বা রাষ্ট্রীয়ভাবে স্বীকৃত সংস্থা কর্তৃক কাটিং স্পিড নির্ধারণ করা হয়ে

থাকে। অপারেটর নিজের খোল খুশিমত কাটিং স্পিড নির্বাচন করতে পারেন না। অপারেটরকে কাটিং স্পিড এর ভিত্তিতে প্রতি মিনিটে ঘূর্ণন সংখ্যা অর্ধাং আর, পি, এম নির্বাচন পূর্বক মেশিন স্টেট করে ড্রিলিং কার্য সম্পন্ন করতে হয়। ড্রিলিং এর কাটিং স্পিড নিম্নের সূত্র ব্যবহার করে ড্রিলিং এর জন্য কাটিং স্পিড নির্ধারণ করা যায়।

ধৈর্য-

$$CS = \frac{\pi DN}{1000} \text{ মিটার/ মিনিট।}$$

যখন,  $CS$  = কাটিং স্পিড, মিটার / মিনিট

$D$  = ড্রিলের ব্যাস, মিমি

$N$  = প্রতি মিনিটে ড্রিলের ঘূর্ণন সংখ্যা।

$$N = \frac{1000 \times CS}{\pi D}$$

#### ২০.৪ টুইস্ট ড্রিল বিটের বিভিন্ন অংশের নাম :



চিত্র-২০.২ঃ টুইস্ট ড্রিল বিটের বিভিন্ন অংশ

একটি টুইস্ট ড্রিল বিটের বিভিন্ন অংশগুলো হলো-

- ১) ট্যাঙ, ২) টেপার শ্যাঙ্ক, ৩) নেক, ৪) ফ্লাট, ৫) হেলিক্স/রেক অ্যাংগুল, ৬) মার্জিন, ৭) ফ্লাট লেছ,
- ৮) বড় লেছ, ৯) ওভার অল লেছ, ১০) ল্যান্ড, ১১) শ্যাঙ্ক, ১২) অক্ষ, ১৩) ওয়েব, ১৪) ডেড সেন্টার।

#### ২০.৫ ড্রিলিং মেশিনের বিভিন্ন অপারেশনসমূহ :

ড্রিলিং মেশিনে ড্রিলিং ছাড়াও অন্যান্য কতকগুলি কাজ করা যায়। থাকে ড্রিলিং মেশিনের ক্ষেত্রে বিশেষ অপারেশন হিসেবে বিবেচনা করা হয়। বিশেষ বিশেষ ড্রিলিং অপারেশনগুলো নিম্নরূপ-

### ১) কাউন্টার বোরিং (Counter Boring) :

ড্রিল বিট দিয়ে পূর্বে ছিদ্র করা প্রান্তে কাউন্টার বোরের সাহায্যে সমকোণী শোভার বিশিষ্ট সমকেন্দ্রিক বৃহত্তর ছিদ্র করার জন্য মেশিনিং অপারেশনকে কাউন্টার বোরিং বলা হয়।



Copyright © 2007 CustomPartNet

চিত্র-২০.৩: কাউন্টার বোরিং প্রক্রিয়া

ব্যবহারঃ ফিলিস্টার হেড ক্লু বা এই ধরনের আকৃতির অন্যান্য যন্ত্রাংশের হেডের জন্য ফাঁকা জায়গার ব্যবস্থা করতে কাউন্টার বোরিং এর প্রয়োজন হয়।

### ২) কাউন্টার সিঙ্কিং (Counter Sinking) :

ছিদ্রের প্রান্তকে কাউন্টার সিঙ্কের সাহায্যে কৌণিকভাবে প্রসারিত করার জন্য মেশিনিং অপারেশনকে কাউন্টার সিঙ্কিং বলা হয়।



Copyright © 2007 CustomPartNet

চিত্র-২০.৪: কাউন্টার সিঙ্কিং প্রক্রিয়া

ব্যবহারঃ ফ্ল্যাট হেড ক্লু বা এই ধরনের আকৃতির অন্যান্য যন্ত্রাংশের হেডের জন্য সিটের ব্যবস্থা করতে কাউন্টার সিঙ্কিং করার প্রয়োজন হয়।

### ৭) স্পট ফেসিং (Spot Facing) :

হিস্ট্রির উপরিকাপে চতুর্পার্শের পৃষ্ঠাকে স্পট মেশিং টুল দ্বারা সমকোণী এবং সম্পূর্ণ করার মেশিনিং অপারেশনকে স্পট ফেসিং বলা হয়।



চিত্র-২০.৫: স্পট ফেসিং পদ্ধতি

ব্যবহারযোগ্য বোর্ট হেফ্ট, স্লট বা উন্নাশারের জন্য সিটের ব্যবহা করতে স্পট ফেসিং করার অভ্যর্জন হয়।  
সাধারণত চালাইকৃত যন্ত্রাংশের জন্য ইহা বেশি প্রযোজ্য।

### ৮) বোরিং ( Boring) :

পূর্বৰূপ হিস্ট্রির ব্যাস বক করতে বা হিস্ট্রির গভীরতা আরও বাঢ়াতে বোরিং টুলের সাহায্যে যে মেশিনিং অপারেশন করা হয় উকাকে বোরিং বলে।



চিত্র-২০.৬৪ বোরিং প্রক্রিয়া

ব্যবহারযোগ্য ছিদ্রের মাপ সূচনাবে নিয়ন্ত্রণ করতে এবং উভয় মসৃণতা পাওয়ার জন্য বোরিং করার প্রয়োজন হয়। তাছাড়া প্রয়োজনীয় নির্দিষ্ট মাপের ডিল বিট না থাকলে সে ক্ষেত্রে কাছাকাছি মাপের ডিল বিট দ্বারা ছেট ছিদ্র করে পরবর্তীতে বোরিং অপারেশনের মাধ্যমে ছিদ্রকে বড় করে প্রয়োজনীয় মাপ প্রাপ্তি নিশ্চিত করা হয়।

#### (৫) সেন্টার ড্রিলিং (Center Drilling) :

সেন্টার ড্রিলের সাহায্যে এক সঙ্গে সংযুক্তভাবে একটি ধাটো ড্রিলিংকৃত ছিদ্র ও একটি কার্টুন্টার সিঙ্কিংকৃত ছিদ্র করার জন্য মেশিনিং অপারেশনকে সেন্টার ড্রিলিং বলা হয়। কার্টুন্টার সিঙ্কিং কোণের পরিমাণ সাধারণত ৬০ ডিগ্রি হয়। তবে ভারী কাজের ক্ষেত্রে কখনও কখনও ৭৫ ডিগ্রি বা ৯০ ডিগ্রি হয়ে থাকে।



চিত্র-২০.৭৪ সেন্টার ড্রিলিং প্রক্রিয়া

### ব্যবহার :

প্রধানত সেদ মেশিনে ওয়ার্কপিসকে সেটারে বেঁধে টার্নিং করার ফলে ওয়ার্কপিসে সেটার হোল ছিলিং এর জন্য এবং ছিলিং মেশিনে সঠিক অবস্থানে ছিল ছিলিং করার ফলে সেটার হোল ছিলিং করে কাজ অঙ্ক করার জন্য সেটার ছিলিং প্রয়োজন হয়।

### ৬) রিমিং (Reaming) :

ছিলিং বা বোরিকৃত ছিলকে বিমারের সাহার্যে প্রয়োজনীয় মসৃণতা, সমাকৃতালতা, গোলত্ব ও সঠিক আকারসহ ফিলিশিং করার জন্য মেশিনিং অপারেশনকে রিমিং বলা হয়।



চিত্র-২০.৮৩ রিমিং প্রক্রিয়া

ব্যবহার : ছিলিং বা বোরিকৃত ছিলকে বিনিশিং অর্থাৎ প্রয়োজনীয় মসৃণতা, সমাকৃতালতা, গোলত্ব ও সঠিক আকারে আনার জন্য রিমিং এর প্রয়োজন হয়।

### ৭) ট্যাপিং (Tapping) :

হিস্টের মধ্যে ট্যাপ করা অভ্যন্তরীণ শ্রেড কাটার মেশিনিং অপারেশনকে ট্যাপিং বলে।

ব্যবহার : সাধারণত সমান ব্যাসের বক্স থ্রেক ছিলে অভ্যন্তরীণ শ্রেড কাটিতে ট্যাপিং এর প্রয়োজন হয়।

### ২০.৯ বিভিন্ন ধরার ছিল বিটের প্রয়োগ ক্ষেত্র :

(ক) ফ্ল্যাট ছিল বিট (Flat Drill Bit) : হাতি এবং ইনক্রিমেন্ট তেরিয় যত সূক্ষ্ম কাজে ফ্ল্যাট ছিল ব্যবহৃত হয়। তাছাড়া এ্যালুমিনিয়াম, ম্যাণলেসিয়াম এবং এন্ডের অ্যালিয় এবং উপর ছিল করতে এই ছিল খুবই উপযোগী।

(খ) স্ট্রেইট শান্ক ও টেপার শান্ক ছিল বিট (Straight Shank or Taper Shank Drill Bit) : আর সকল ধরারের ছিল বিটই এ দুই ধরারের হয়ে থাকে। বড়ির গঠনের উপরই কাজের ধরার এবং ব্যবহার নির্ভরশীল। উভয় ধরার ছিল বিটই সাধারণ ছিল বা ছিল করতে ব্যবহৃত হয়।

(গ) ত্রি ও চারের ফ্লটেড ছিল বিট (Three or Four Fluted Drill Bit) : এ ধরার ছিলকে কোর ছিল বলা হয়। বিস্যামান হিস্টের ব্যাস বৃক্ষি করার জন্য কোর ছিল ব্যবহৃত হয়।

(୯) କୁଇକ ହେଲିକ୍ ଡ୍ରିଲ ବିଟ (Quick Helix Drill Bit) : ଏୟୁମିନିଆମ, ମ୍ୟାଗନେସିଆମ, ତାମା ଓ ଅନ୍ୟାନ୍ୟ ନରମ ଥାକୁ ଡ୍ରିଲ କରାର ଜନ୍ୟ କୁଇକ ହେଲିକ୍ ଡ୍ରିଲ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।

(୧୦) ହେଲିକ୍ ଡ୍ରିଲ ବିଟ (Helix Drill Bit) : ପିତଳ, ବ୍ରୋଜ, ଗାନ ମେଟାଲ ଏବଂ ବେକେଲାଇଟ, ଏବୋନାଇଟ ଇତ୍ୟାଦି ଧାର୍ମିକ୍‌ସ୍ଟେଟିଂ ପ୍ଲାନ୍ଟିକ୍ ଡ୍ରିଲ କରାତେ ଏ ଡ୍ରିଲ ବିଟ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।

(୧୧) ଡିପ ହୋଲ୍ ଡ୍ରିଲ ବିଟ (Deep Hole Drill Bit) : ଗଣୀର ଛିଲ୍ ଡ୍ରିଲିଂ କରାର ଜନ୍ୟ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।

(୧୨) କ୍ରାଙ୍କ ଶାଫ୍ଟ ଡ୍ରିଲ ବିଟ (Crank Shaft Drill Bit) : କ୍ରାନ୍କ ଶାଫ୍ଟ ବିଶିଷ୍ଟ ଗଣୀର ଛିଲ୍ କରାର ଜନ୍ୟ ଏହି ଡ୍ରିଲ ବିଟ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।

(୧୩) ଅଲେଲ ହୋଲ୍ ଡ୍ରିଲ ବିଟ (Oil Hole Drill Bit) : ଅସ୍ତ୍ରବିଧୀନକ ହାଲେ ଗଣୀର ଛିଲ୍ ଡ୍ରିଲିଂ କରାତେ ଅଲେଲ ହୋଲ୍ ଡ୍ରିଲ ବିଟ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।

(୧୪) ସ୍ଟୁବ ଡ୍ରିଲ ବିଟ (Stub Drill Bit) : ପୋର୍ଟବଳ ଡ୍ରିଲିଂ ମେପିନ୍, ଟାରୋଟ ଲେଦ ଓ ଆଟୋ ଲେଦ ଡ୍ରିଲିଂ କରାତେ ବ୍ୟବହର୍ତ୍ତ ହୁଏ ।



ଚିତ୍ର-୨୦.୯: ବିଭିନ୍ନ ଧରାର ଡ୍ରିଲବିଟ୍

### ২০.৭ রেডিয়াল ড্রিলিং মেশিন (Radial Drilling Machine) :

বড় এবং অরী কাজে বিভিন্ন জাহাজ অনেকগুলো ড্রিল করার জন্য রেডিয়াল ড্রিলিং মেশিন আবশ্যিক। এ মেশিনে কাজ করা সহজ এবং কাজও তাড়াতাড়ি হয়। অর্থাৎ এ মেশিনে বেশি অভিজ্ঞতা করা সহজ হয়। রেডিয়াল ড্রিলিং মেশিনের গঠন খুব সজ্জুত ও সূচক হয়। এ মেশিনের আর্দ্ধকে কলামের চারিসিকে চুম্বামো বাই এবং যে কোন স্থানে দৃঢ়ভাবে আটকানো যাব। রেডিয়াল ড্রিলিং মেশিনে ড্রিল বিটকে হাতে বা কর্ণাক্ষিকারে ফিল্ড দেওয়া যাব।



চিত্ৰ-২০.১০১ রেডিয়াল ড্রিলিং মেশিন

মেশিনের ড্রিলিং হেডকে আর্দ্ধ-এর যে কোন জাহাজীর অংশের স্থানে আটকানো যাব। কলে ওভারকিপিসের উপর যে কোন স্থানে ড্রিল বিটকে তাড়াতাড়ি বসানো সহজ হয়। আর্দ্ধটাকে স্পিন্ডল হেড সহকারে কলামের উপর স্থাইত করে উপরে উঠানো এবং সিঁড়ে যে কোনো জাহাজীর নামানো যাব। এই মেশিনের বেস সুস্থানকার, ভারী ও সজ্জুত। এ কারণে এ মেশিনের বেসের উপর সুস্থানকার ও ভারী ওভারকিপিসকে স্থাপন করে ড্রিল করা যাব। বড় মাপের ড্রিলিং ও ট্যাপিসেছ রেডিয়াল ড্রিলিং মেশিন সূচক উৎপাদন কাজে ব্যবহৃত হয়। এ মেশিনে সর্বোচ্চ ড্রিল বিট ধারণ ক্ষমতা হলো ৫০ মি.মি. ব্যাস পর্যন্ত। আর্দ্ধের লম্বা মাপ অবৈধ সর্বোচ্চ কল মাপের ড্রিল করা যাবে এই সুষ্ঠো উল্লেখ করে রেডিয়াল ড্রিলিং মেশিনের সাইজ বোঝাতে হয়।

## প্রশ্নমালা-২০

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ড্রিলিং বলতে কী বোঝায় ?
২. ড্রিল মেশিন কাকে বলে ?
৩. ড্রিলিং এর ক্ষেত্রে কাটিং স্পিড কাকে বলে ?
৪. ড্রিলিং এর ক্ষেত্রে কাটিং ফিড কাকে বলে ?
৫. ট্যাপিং কাকে বলে ?
৬. কাউন্টার সিঙ্কিং কাকে বলে ?
৭. বোরিং কাকে বলে ?

### সংক্ষিপ্ত প্রশ্ন :

১. রেডিয়াল ড্রিল মেশিনের গঠন উল্লেখ কর।
২. রেডিয়াল ড্রিল মেশিনের ব্যবহার বর্ণনা কর।
৩. ড্রিলিং এর প্রয়োগ ক্ষেত্র উল্লেখ কর।
৪. পাঁচ প্রকার ড্রিলিং মেশিনের নাম লেখ।

### রচনামূলক প্রশ্ন :

১. ড্রিলিং বলতে কী বোঝায় ? ড্রিলিং এর প্রয়োগক্ষেত্র বর্ণনা কর।
২. রেডিয়াল ড্রিলিং মেশিনের গঠন ও ব্যবহার বর্ণনা কর।
৩. ড্রিলিং মেশিনের ৫ (পাঁচ)টি অপারেশনের বর্ণনা কর।
৪. কাটিং স্পিড বলতে কী বোঝায় ? বিভিন্ন ধাতুর জন্য প্রযোজ্য কাটিং স্পিড ছক আকারে দেখাও।
৫. ফিড কী কী বিষয়ের উপর নির্ভর করে ? বিভিন্ন মাপের ড্রিল বিটের জন্য ফিডের পরিমাণ উল্লেখ কর।

## অধ্যায়-২১

# ড্রিল বিট (Drill Bits)

### ২১.১ ড্রিল বিট :

বাংলায় একে ভূমির বলে। এটা এক প্রকার কাটিং টুল যাকে ড্রিল মেশিনের সাহায্যে সুরিয়ে কোন বস্তুকে ছিপ করতে কিংবা ছিপ্পকৃত বস্তুর ছিদ্রের ব্যাস বড় করতে ব্যবহৃত হয়। এটা হাই স্পিড স্টিল অথবা হাই কার্বন স্টিল থার্ম তৈরি করা হয়। ড্রিল বিটের শ্যাখকে HS অথবা HSS অক্ষরগুলি চিহ্নিত থাকলে বুবাতে হবে উক্ত ড্রিল বিট হাই স্পিড স্টিলের তৈরি এবং কোন চিহ্ন না থাকলে বুবাতে হবে উহা হাই কার্বন স্টিলের তৈরি। কার্বাইড টিপড ড্রিলে হাই স্পিড স্টিলের বড়তে কার্বাইড টিপ ব্রেজিং করা থাকে। আধুনিক ড্রিল বিট নির্মাণাগণ বড় আকারের ড্রিল বিটগুলি মূল্য কমানোর জন্য দুই ধাতুর সংযোজন ঘটিয়ে থাকেন। এ ক্ষেত্রে হাই স্পিড স্টিলের তৈরি বড়তে নিম্নমানের স্টিলের শ্যাখক ওয়েভিং এর মাধ্যমে সংযোগ করে ড্রিল বিট তৈরি করা হয়।



চিত্র-২১.১: ড্রিল বিট

### ২১.২ ড্রিল বিটের বিভিন্ন অংশ :



চিত্র-২১.২: ড্রিল বিটের বিভিন্ন অংশ

একটি ড্রিল বিটের অংশগুলি হলো-

১. শ্যাখক (Shank)
২. ট্যাঙ (Tang)
৩. ফ্লট (Flute)
৪. মার্জিন (Margin)
৫. লিপ বা কাটিং এজ (Lip or Cutting Edge)
৬. ডেড সেন্টার (Dead Center)
৭. ওয়েব (Web)
৮. বড়ি ক্লিয়ারেন্স (Body Clearance)

### ১) শ্যাংক (Shank) :

ড্রিল চাক বা মেশিন স্পিন্ডলে আটকানোর জন্য ব্যবহৃত অংশকে শ্যাংক বলা হয়। ড্রিল বিটের শ্যাংক সাধারণত দুই প্রকারের হয়। যেমন-

**স্ট্রেইট বা প্যারালাল শ্যাংক (Straight or Parallel Shank)** : অর্থাৎ যার শ্যাংক অংশ সমান মাপের গোল থাকে। সাধারণত ছোট আকারের ড্রিল বিট সাধারণ (১২ মি.মি. পর্যন্ত) স্ট্রেইট শ্যাংক বিশিষ্ট হয়।

**টেপার শ্যাংক (Taper Shank)** : অর্থাৎ যার মাথার অংশ গোলাকার এবং ক্রমশ সরু। ৩ মি.মি. থেকে বেশি ব্যাস বিশিষ্ট ড্রিল বিট সাধারণ টেপার শ্যাংক বিশিষ্ট হয়।

### ২) ট্যাং (Tang) :

টেপার শ্যাংক ড্রিল বিটে টেপারের শেষে খানিকটা জায়গা চ্যাপ্টা করে কাটা থাকে। এই চ্যাপ্টা অংশের নাম ট্যাং। ড্রিল বিটের ট্যাং অংশটা সকেটের মধ্যে অথবা স্পিন্ডলের মধ্যে যেখানে স্লট কাটা থাকে, সেখানে ফিট করা হয়। ড্রিল বিট ঘুরে গিয়ে বা স্লিপ করে যাতে খুলে না যায় তার জন্য এই অংশ কাজ করে। ট্যাং কোন ক্ষতি ব্যতিরেকে সকেট বা স্পিন্ডল থেকে ড্রিফট এর সাহায্যে ড্রিল বিটকে বের করতে সাহায্য করে।

### ৩) ফ্লুট (Flute) :

ড্রিল বিটের বড়তে যে গ্রুভ কাটা থাকে তাকে ফ্লুট বলে। এটা টুইস্ট ড্রিল বিটে মোচড়ানো থাকে। সাধারণত ড্রিল বিটে দুইটি ফ্লুট থাকে। ফ্লুট এর গভীরতা সকল স্থানে সমান থাকে না। ফ্লুট কাটিং এজ থেকে শ্যাংক এর দিকে যতই অংসর হতে থাকে ততই ইহার গভীরতা কমতে থাকে এবং প্রশস্ততা বাড়তে থাকে। ফ্লুটের এই প্রকার গঠনের কারণে কর্তিত ধাতু খণ্ডগুলি ছিদ্রের মধ্য হতে বাহির হয়ে আসার সময় ড্রিলের গাত্র হতে ক্রমশঃ সরে আসতে সহায়তা লাভ করে। ফ্লুট থাকার ফলে যে সমস্ত সুবিধা পাওয়া যায় সেগুলো হলো-

- ❖ ফ্লুট কাটিং এজ গঠনে সহায়তা করে।
- ❖ ইহা কর্তিত খণ্ডগুলিকে কুণ্ডিত করে।
- ❖ ইহা কর্তিত খণ্ডগুলিকে ছিদ্রের মধ্যে হতে বাহির হয়ে আসার পথ করে দেয়।
- ❖ ইহা পানি বা কাটিং কম্পাউন্ডকে কাটিং এজ এর সন্নিহিত স্থানে পৌছাতে সাহায্য করে।

### ৪) মার্জিন (Margin) :

ফ্লুটের পার্শ্ব বরাবর সরু এবং উঁচু অংশকে মার্জিন বলে অর্থাৎ ড্রিল বিটের উপরিভাগে যে স্থানটুকু অব্যাহত রেখে অবশিষ্ট স্থানকে ক্ষয় করা হয়ে থাকে বা বডি ক্লিয়ারেন্স যা ছাড় দেওয়া থাকে তাই হলো মার্জিন। মার্জিনসহ ড্রিল বিটের যে ব্যাস তাকে পূর্ণ ব্যাস বলা হয়। মার্জিনের অপর নাম ল্যান্ড (Land)। মার্জিন সাধারণত ১.৫ মি.মি. থেকে ৩ মি.মি. পর্যন্ত হয়ে থাকে। মার্জিন ড্রিল বিটের সমস্ত উপরিভাগকে ঘৰ্ষণের হাত থেকে রক্ষা করে।

### ৫) কাটিং এজ (Cutting Edge) :

ছিদ্র করার সময় ড্রিল বিট যে তীক্ষ্ণ অংশ দ্বারা ধাতুকে কাটে তাকে ড্রিল বিটের কাটিং এজ বলা হয়। প্রতিটি ফ্লুট দ্বারা এক একটি কাটিং এজ গঠিত হয়। কাটিং এজের দৈর্ঘ্য সর্বদা সমান থাকা প্রয়োজন। ড্রিল বিটকে সাধারণত ডানদিকে ঘুরানো হয় বলে কাটিং এজ ও অনুরূপভাবে ডানদিকে কাটার উপযোগী করে তৈরি করা হয়। কাটিং এজের দুইপাশের দৈর্ঘ্য সমান না হলে ছিদ্র ওভার সাইজ বা বড় হয়ে থাকে।

#### ৬) ডেড সেন্টার (Dead Center) বা ড্রিল পয়েন্ট (Drill Point) :

চলিভতাবে এটাকে ড্রিলের মুখ বলা হয়। ট্যাং এর বিপরীতে সর্বশেষ পাত্রে ড্রিল অক্ষ বরাবর তীক্ষ্ণ এজকে ডেড সেন্টার বলা হয়। নামে এটি পয়েন্ট বা সেন্টার হলোও অক্ষপক্ষে এটা একটি বিদ্যুতে থাকে না, এটার একটি নির্দিষ্ট দৈর্ঘ্য থাকে। সর্ব ড্রিলের বেলায় এই ডেড সেন্টার বিদ্যুত মত দেখালেও বড় ড্রিল বিটের বেলায় এই দৈর্ঘ্য ও মিমি পর্যন্ত হয়ে থাকে।

৭) ওয়েব (Web) : ড্রিল বিটের ফ্লট বাদ দিলে মাঝখানে যে সিলিঙ্ক্রিক্যাল সারফেস থাকে তার নাম ওয়েব। অর্থাৎ ড্রিল বিটের সমস্ত দৈর্ঘ্য ব্যাপী উভয় ফ্লটের মধ্যবর্তী স্থানকে ওয়েব বলা হয়। এটি ড্রিল বিটের ধাতব জন্ম বা ড্রিল বিটকে শক্তিশালী করে। পয়েন্টের দিক থেকে ওয়েব শ্যাখকের দিকে ত্রুটি মোটা হয়।

#### ৮) বডি ক্লিয়ারেন্স (Body Clearance) :

ড্রিল বিটের মার্জিনের ব্যাস থেকে বডির ব্যাস কিছুটা কম রাখা হয়। উভয় প্রকার মাপের পার্শ্বক্যাকেই বডি ক্লিয়ারেন্স বলা হয়। বডি ক্লিয়ারেন্স থাকার কারণে ড্রিল বিটের সারফেসের সাথে ছিদ্রের সারফেসে ঘর্ষণ লাগে না। ফলে ড্রিল বিট ও ওয়ার্কপিস কম গরম হয়।

#### ২১.৩ ড্রিল বিটের শ্রেণিবিভাগ ১-

##### ড্রিল বিটের পঠন অনুসারে :

ড্রিল বিটকে বডির পঠন অনুযায়ী প্রধানত দুইটি শ্রেণিতে বিভক্ত করা যায়। যেমন-

##### ১) ফ্ল্যাট ড্রিল বিট (Flat Drill Bit) :

এই প্রকার ড্রিল বিটের মুখের সন্নিহিত স্থান সমতল হয়। সাধারণত কামারশালায় পিটিয়ে এটি তৈরি করা হয়। এটি অতি সহজে, কম খরচে ও অঙ্গ সময়ে তৈরি করা যায়।



চিত্র-২১.৩ : ফ্ল্যাট ড্রিল বিট

২) টুইস্ট ড্রিল বিট (Twist Drill Bit) : এই প্রকার ড্রিল বিটের উপরিভাগে মোচড়ানো বা প্যাচানো রকমের মালী বা ফ্লট কাটানো থাকে। এটা আধুনিক যেশিল ধারা তৈরি করা হয়। টুইস্ট ড্রিল বিটকে প্রধানত দুইভাগে ভাগ করা হয়। যেমন-

**ક) સ્ટ્રાઇટ ટ્રાફ્ટ ડ્રિલ બિટ :**

- સ્ટ્રાઇટ શાક ડ્રિલ બિટ (Straight Shank Drill Bit)



ચિત્ર-૨૧.૪ : સ્ટ્રાઇટ શાક ડ્રિલ બિટ

- ટેપાર શાક ડ્રિલ બિટ (Taper Shank Drill Bit)



ચિત્ર-૨૧.૫ : ટેપાર શાક ડ્રિલ બિટ

**દ) વિશેવ ધરનેની ટ્રાફ્ટ ડ્રિલ બિટ :**

૧. ત્રી ઓ કોર ફ્લુટેડ ડ્રિલ બિટ (Three or Four Fluted Drill Bit)



ચિત્ર-૨૧.૬ : કોર ફ્લુટેડ ડ્રિલ બિટ

૨. ક્રૂઇક હેલિક્સ ડ્રિલ બિટ (Quick Helix Drill Bit)
૩. સ્લો હેલિક્સ ડ્રિલ બિટ (Slow Helix Drill Bit)
૪. ડિપ હોલ ડ્રિલ બિટ (Deep Hole Drill Bit)
૫. ક્રાંક શાકટ ડ્રિલ બિટ (Crank Shaft Drill Bit)
૬. ઓલેલ હોલ ડ્રિલ બિટ (Oil Hole Drill Bit)
૭. સ્ટાબ ડ્રિલ બિટ (Stub Drill Bit)
૮. સ્ટેપ ડ્રિલ બિટ (Step Drill Bit)

### ড্রিল বিটের মাপ অনুসারে :

ড্রিল বিটকে মাপের প্রকাশ অনুসারে চারভাগে ভাগ করা যায়। যেমন-

#### ১) মিলিমিটার সাইজ ড্রিল বিট :

ড্রিল বিট সমূহের স্ট্যান্ডার্ড আকার মেট্রিক পদ্ধতিতে মিলিটারে প্রকাশ করা হয়। মিলিমিটার ড্রিল বিট সাধারণত ০.২৫ মিমি থেকে ৮০ মিমি পর্যন্ত ব্যাস বিশিষ্ট হয়ে থাকে। এদের প্রচলিত ধাপসমূহ নিম্নরূপ-

০.২৫ মি.মি. থেকে ১০ মি.মি., প্রতি ধাপে বৃদ্ধি = ০.০৫ মি.মি.।

১০ মি.মি. এর উর্ধ্বে, প্রতি ধাপে বৃদ্ধি = ০.৫ মি.মি.।

বিশেষ ক্ষেত্রে ০.২৫ মিমি ব্যাসের নিচেও মিলিমিটার ড্রিল বিট পাওয়া যায় এবং এক্ষেত্রে প্রতি ধাপে বৃদ্ধি হলো ০.০১ মি.মি.।

#### ২) লেটার সাইজ ড্রিল বিট :

ইংরেজি A হতে Z অক্ষর দ্বারা ড্রিল বিটের মাপ প্রকাশ করা হয়। A থেকে সর্ব নিম্ন আকারের শুরু এবং এর মান ০.২৩৪ ইঞ্চি বা ৫.৯৪ মি.মি. আর Z হলো সর্বোচ্চ আকার এবং এর মান ০.৪১৩ ইঞ্চি বা ১০.৪৯ মি.মি.।

#### ৩) নম্বর সাইজ ড্রিল বিট :

১ থেকে ৮০ পর্যন্ত সংখ্যা বা নাম্বার দ্বারা মাপ প্রকাশ করা হয়। ৮০ নাম্বার থেকে সর্বনিম্ন আকার শুরু হয় এবং এর মান ০.১৩৫ ইঞ্চি বা ০.৩৪৫ মি.মি. আর, ১ হলো সর্বোচ্চ আকার এবং এর মান ০.২২ ইঞ্চি বা ৫.৭৯ মি.মি.।

#### ৪) ইঞ্চির ভগ্নাংশ (Fraction) সাইজ ড্রিল বিট :

$\frac{1}{64}$ ,  $\frac{1}{32}$ ,  $\frac{1}{16}$ ,  $1\frac{1}{8}$ ,  $2\frac{1}{16}$  ইঞ্চি ইত্যাদি।

### ২১.৪ ওয়ার্কিংপিসের বিভিন্ন ধাতুর ক্ষেত্রে ড্রিল বিটের কাটিং ও ক্লিয়ারেন্স এঙ্গেল নির্ধারণ :

#### কাটিং এঙ্গেল নির্ধারণ :

ড্রিল বিটের কাটিং এঙ্গেলের অপর নাম লিপ এঙ্গেল। ড্রিল বিটের কাটিং এজ এর অক্ষের সাথে যে কোণ উৎপন্ন করে তাকে কাটিং এঙ্গেল বলা হয়। সাধারণ কাজে এই কোণ ৫৯° রাখা হয়। ফলে দুইটি কাটিং এজের অন্তবর্তী কোণ ১১৮° (৫৯° এর দ্বিগুণ) হয়। দুইটি কাটিং এঙ্গেলের সমষ্টিকে পয়েন্ট এঙ্গেল বলা হয়। অর্থাৎ কাটিং এঙ্গেল পয়েন্ট এঙ্গেলের অর্ধেক হয়। বিভিন্ন বস্তুভোজে কাজ করার জন্য ড্রিলিং এর ক্ষেত্রে পয়েন্ট এঙ্গেল এর পরিমাণ বিভিন্ন হয়। নিম্নের ছকে উহা উল্লেখ করা হলো-

| ওয়ার্কপিস ম্যাটারিয়াল                                      | পয়েন্ট এঙ্গেল |
|--------------------------------------------------------------|----------------|
| স্টিল, কাস্ট আয়রন, অ্যালয়েড ও ননঅ্যালয়েড কাস্টিংস         | ১১৮            |
| ব্রাস, ব্রোঞ্জ, নিকেল, জিঙ্ক অ্যালয় ও হোয়াইট মেটাল         | ১১৮            |
| হিটট্রিটেড স্টিল, অ্যালয় স্টিল                              | ১২৫ - ১৩৫      |
| স্টেইনলেস স্টিল                                              | ১৪০            |
| হোয়াইট কাস্ট আয়রন, স্টীল রেইল                              | ১৫০            |
| কপার, অ্যালুমিনিয়াম, প্লাস্টিক, শক্ত রাবার, নরম কাস্ট আয়রন | ৮০ - ১০০       |
| কাঠ                                                          | ৬০             |

### ক্লিয়ারেন্স এঙ্গেল নির্ধারণ :

পয়েন্ট কাটিং এজের ঠিক পিছনের অংশে যা গ্রাইভিং করে কমানো হয় অর্থাৎ কাটিং এজের পশ্চাত দিকে যে কোণে ঢালু করা থাকে তাকে ক্লিয়ারেন্স এঙ্গেল বলা হয়। ধাতু ভেদে এই কোণের পরিমাণ বিভিন্ন রকম হয়। নিম্নে উহা উল্লেখ করা হলো-

| ওয়ার্কপিস ম্যাটারিয়াল                  | ক্লিয়ারেন্স এঙ্গেল |
|------------------------------------------|---------------------|
| নরম এবং সাধারণ স্টিল, সাধারণ কাস্ট আয়রন | ১২ - ১৫             |
| শক্ত স্টিল                               | ৮ - ১২              |
| ব্রাস, ব্রোঞ্জ, কপার ও অ্যালুমিনিয়াম    | ১২ - ১৫             |
| প্লাস্টিক, শক্ত রাবার                    | ১৫ - ২০             |

### ২১.৫ কার্যোপযোগী ড্রিল বিটের ব্যবহার :

নিম্নে কার্যোপযোগী ড্রিল বিট চিনে ব্যবহার করার জন্য নিম্নে কিছু কার্যোপযোগী ড্রিল বিটের গুণাবলী দেওয়া হলো-

- ১) যে ড্রিল বিটের শ্যাঙ্ক, ট্যাং, এবং বডি সম্পূর্ণ সোজা থাকে এবং উপরিভাগে কোন আঘাতের চিহ্ন বা অতিরিক্ত ধাতু থাকে না।
- ২) যে ড্রিল বিটের ফ্লটে কোন ফাটল থাকে না।
- ৩) যে ড্রিল বিটের কাটিং এজের দৈর্ঘ্য পরস্পর সমান থাকে এবং উহা ড্রিলের অক্ষের সাথে প্রত্যেক দিকে সমান কোণে গঠিত।
- ৪) যে ড্রিল বিটের ক্লিয়ারেন্স এঙ্গেল উভয় দিকে সমান এবং ওয়ার্কপিসের ধাতু অনুসারে সঠিক আছে।
- ৫) যে ড্রিল বিটের কাটিং এজ ধারালো এবং কোথাও ভাঙ্গা নেই।
- ৬) যে ড্রিল বিটের মার্জিন অংশ মসৃণ এবং সম্পূর্ণ আঘাত চিহ্ন মুক্ত।
- ৭) যে ড্রিল বিটের ডেড সেন্টার বা পয়েন্ট অক্ষের ঠিক মাঝাখানে অবস্থিত।
- ৮) যে ড্রিল বিটের কাটিং অ্যাংগেল ধাতু অনুসারে সঠিক আছে।

## প্রশ্নমালা-২১

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ড্রিল বিট বলতে কী বোঝায় ?
২. ড্রিল বিটের মাপ বলতে কী বোঝায় ?
৩. থ্রি ও ফোর ফ্লুটেড ড্রিল বিট কী কাজে ব্যবহৃত হয় ?
৪. স্লো হেলিক্স ড্রিল বিট কী কাজে ব্যবহৃত হয় ?
৫. সাধারণ কাজে ড্রিল বিটের পয়েন্ট এঙ্গেল কত ডিগ্রি হয় ?
৬. লেটার সাইজ ড্রিল বিটের সর্বোচ্চ এবং সর্বনিম্ন মাপ কত মি.মি. ?
৭. নম্বর সাইজ ড্রিল বিটের সর্বোচ্চ এবং সর্বনিম্ন মাপ কত মি.মি. ?
৮. কাউন্টার সিঙ্কিং কাকে বলে ?
৯. বোরিং কাকে বলে ?
১০. ড্রিল বিট কী কী ধাতু দ্বারা তৈরি হয় ?

### সংক্ষিপ্ত প্রশ্ন :

১. ড্রিল বিটের বিভিন্ন অংশের নাম লেখ ।
২. ড্রিল বিটের মার্জিন অংশের প্রয়োজনীয়তা উল্লেখ কর ।
৩. বিভিন্ন প্রকার টুইস্ট ড্রিল বিটের নাম লেখ ।
৪. মাপ অনুসারে ড্রিল বিটের শ্রেণিবিভাগ উল্লেখ কর ।
৫. বিভিন্ন ধাতুর জন্য প্রযোজ্য পয়েন্ট এঙ্গেলের পরিমাণ উল্লেখ কর ।
৬. বিভিন্ন ধাতুর জন্য প্রযোজ্য ক্লিয়ারেন্স এঙ্গেলের পরিমাণ উল্লেখ কর ।
৭. ড্রিলিং মেশিনের প্রধান অংশগুলির কাজ সংক্ষেপে বর্ণনা কর ।
৮. ড্রিল বিটে ফ্লট থাকার সুবিধাগুলি উল্লেখ কর ।

### রচনামূলক প্রশ্ন :

১. চিত্রসহ ড্রিল বিটের বিভিন্ন অংশগুলির গঠন ও ব্যবহার বর্ণনা কর ।
২. ড্রিল বিটের শ্রেণিবিভাগ ব্যাখ্যা কর ।
৩. বিভিন্ন প্রকার ড্রিল বিটের ব্যবহার বর্ণনা কর ।
৪. কার্যোপযোগী ড্রিল বিট নির্বাচনের ক্ষেত্রে যাচাই এর জন্য লক্ষণীয় বিষয়গুলি উল্লেখ কর ।

অধ্যায়-২২

## ট্যাপিং (Taping)

### ২২.১ ট্যাপিং :

ট্যাপ নামক এক ধরনের মেটাল কাটিং টুল দ্বারা গোলাকার হিস্তের ভিতরে অভ্যন্তরীণ ছু-শ্রেড বা পাঁচ (Internal Thread) উৎপন্ন করার পদ্ধতিকে ট্যাপিং বলা হয়। ট্যাপ হাই কার্বন স্টিল বা হাইস্পিড স্টিল দ্বারা তৈরি হয় এবং ছু-শ্রেড কাটি অংশটি টেম্পার দেখায় থাকে। টেম্পার দেখায় করার পথে ট্যাপ কিছুটা ভরুজ থাকে, তাই সতর্কতার সাথে ট্যাপিং করতে হয়। ট্যাপিং করার পূর্বে অরাকিলিসের নিমিট জারণায় অথবে ইটোরনাল শ্রেডের ব্যাস অনুসারী ছিপিং করে ছিপ করে নিতে হয়। উদ্দেশ্য যে, ইটোরনাল শ্রেডের সাইনের ভারামেটারের সমান ভারামেটারের ছিপ করতে হয়। একটি ট্যাপ রেখের সাহায্যে ট্যাপ এর শ্যাখককে দৃঢ়ভাবে আঠকিংবৰ কার্যগুরু দৃঢ়ভাবে ভাইসে বাঁধা অরাকিলিসের হিস্তের মধ্যে আজো আজো সুস্থিতে ট্যাপকে অবেশ করাতে হয়। যাকে যাকে বিচার দিয়ে সুস্থিতে ওয়েল সিটে হয়। ট্যাপিং এর অন্য হাত ট্যাপ, ট্যাপ রেখ, কার্ববন্ট, ওয়েল ক্যান এবং ট্রাই-ক্যাম প্রয়োজন হয়।



চিত্র-২২.১ : বিভিন্ন ধরনের ট্যাপ এবং ট্যাপ রেখ

### ট্যাপিং এবং প্রয়োগ করা হলো-

- মেরামত ও রফ্ফালোবেকশনের কাজ।
- নির্মাণ কাজ।
- মেশিন ইনস্টলেশনের কাজ।
- অঙ্গীয় জোড়ার কাজ।
- সাধারণ পিটিং এর কাজ।
- প্লাবিং এর কাজ।
- নাট তৈরিতে।



চিত্র-২২.২ : ট্যাপিং এর মাধ্যমে তৈরি করা নাটের ইটোরনাল শ্রেড

### ট্যাপিং এ তৈলাক্ত করার প্রয়োজনীয়তা :

ট্যাপিং এর সময় হিস্তের মধ্যে বিভিন্ন ধোক অনুসারে তৈল প্রয়োগ করতে হয়। এই তৈল প্রয়োগ করাকে তৈলাক্তকরণ বা লুব্রিকেশন (Lubrication) বলা হয়। ট্যাপিং এর সময় তৈল প্রয়োগের সুবিধা নিম্নে উল্লেখ করা হলো-

- কার্যবস্ত ও কাটিং টুলের মধ্যে ঘৰণ কমিয়ে দেয়।
- থ্রেড মসৃণ করে।
- থ্রেড কাটা সহজ হয়।
- চিপ বের হয়ে আসতে পারে।
- ট্যাপ এর কার্যক্ষমতা স্থায়ীভূ বেড়ে যায়।

#### ট্যাপিং এ ব্যবহৃত ধাতু অনুসারে মসৃণকারক তৈলের তালিকা :

| ওয়াকিপিস ম্যাটারিয়াল | মসৃণকারক তৈল          |
|------------------------|-----------------------|
| কাস্ট আয়রন (সাধারণ)   | আবশ্যিক হয় না        |
| কাস্ট আয়রন (খুব শক্ত) | তারপিন তৈল            |
| মাইল্ড স্টিল           | কাটিং অয়েল           |
| শক্ত স্টিল             | কাটিং অয়েল           |
| ব্রাস, ব্রোঞ্জ         | আবশ্যিক হয় না        |
| অ্যালুমিনিয়াম         | কেরোসিন বা তারপিন তৈল |

#### ২২.২ বিভিন্ন স্ট্যান্ডার্ড ট্যাপ :

সহজে শনাক্ত করণের জন্য ট্যাপের শ্যাঙ্কের উপর সাইজ এবং স্ট্যান্ডার্ড লেখা থাকে। বিভিন্ন স্ট্যান্ডার্ডের ট্যাপ এর নাম নিচে দেওয়া হলো-

- ১) আমেরিকান ন্যাশনাল কোর্স (American National Course-ANC) স্ট্যান্ডার্ড ট্যাপ।
- ২) আমেরিকান ন্যাশনাল ফাইন (American National Fine-ANF) স্ট্যান্ডার্ড ট্যাপ।
- ৩) ইউনিফাইড ন্যাশনাল কোর্স (Unified National Course-UNC) স্ট্যান্ডার্ড ট্যাপ।
- ৪) ইউনিফাইড ন্যাশনাল ফাইন (Unified National Fine-UNF) স্ট্যান্ডার্ড ট্যাপ।
- ৫) ব্রিটিশ স্ট্যান্ডার্ড ছুটওয়ার্থ (British Standard Whitworth-BSW) স্ট্যান্ডার্ড ট্যাপ।
- ৬) ব্রিটিশ স্ট্যান্ডার্ড ফাইন (British Standard Fine -BSF) স্ট্যান্ডার্ড ট্যাপ।
- ৭) ব্রিটিশ অ্যাসোসিয়েশন (British Association-BA) স্ট্যান্ডার্ড ট্যাপ।
- ৮) মেট্রিক স্ট্যান্ডার্ড (Metric Standard-MS) ট্যাপ।

#### ২২.৩ ট্যাপ ড্রিল সাইজ ( Tap Drill Size ) :

ট্যাপিং অপারেশনের পূর্বে থ্রেডের জন্য প্রয়োজনীয় ধাতু রেখে ধাতুর মধ্যে ড্রিলের সাহায্যে হোল বা গর্ত করতে হয়। এ গর্ত বা ছিদ্রকে ট্যাপ সাইজ হোল বা ট্যাপ সাইজ ড্রিল বলা হয়। ট্যাপ সাইজ ড্রিল করার জন্য যে সাইজের ড্রিল বিট ব্যবহার করতে হবে সেই সাইজকে ট্যাপ ড্রিল সাইজ বলা হয়। উল্লেখ্য যে, ট্যাপ দ্বারা থ্রেডের পূর্ণ গভীরতার মাত্র ৭৫% থেকে ৮৮% পর্যন্ত কাটা যায়। কাজেই ট্যাপ ড্রিল সাইজ থ্রেডের মাইনর বা কোর ডায়ামেটার থেকে বড় হয়। ট্যাপ ড্রিল সাইজ নির্বাচন অভ্যন্ত গুরুত্বপূর্ণ কাজ এবং সতর্কতার সাথে তা করতে হয়। কারণ ট্যাপ ড্রিল সাইজ ছোট হলে ছিদ্রের মধ্যে ট্যাপ আটকে যাবে এবং অতিরিক্ত চাপে ট্যাপ ভেঙ্গে যাবে। আবার ট্যাপ ড্রিল সাইজ বড় হলে থ্রেডের গভীরতা কম হবে, ফলে থ্রেডের মধ্যে বোল্টের সংযোগ ঢিলা থাকে এবং দীর্ঘস্থায়ী হয় না। ট্যাপের বাহিরের মাপ থেকে উভয় দিকের গভীরতার মাপ বিয়োগ করলে থ্রেডের কোর ডায়ামেটার পাওয়া যায় এবং এ মাপের ড্রিল বিট দিয়ে ধাতুখণ্ডের মধ্যে ছিদ্র করতে হয়।

## Tap Drill Size

Hole drilled to correct tap drill size

- Leave proper amount of material for tap to cut thread (75%)

$$TDS = D - \frac{1}{N}$$

**Find tap drill size for a  $\frac{7}{8}$  in. -9NC tap**

$$TDS = \frac{7}{8} - \frac{1}{9}$$

$$= .875 - .111 = .764 \text{ in.}$$



TDS = tap drill size  
D = major diameter of tap  
N = number of threads per inch

**ଚିତ୍ର-୨୨.୩ : ଟ୍ୟାପ ଡ୍ରିଲ ସାଇଜ**

### ୨୨.୪ ଟ୍ୟାପ ଡ୍ରିଲ ସାଇଜ ନିର୍ଧାରଣ ପକ୍ଷତି :

বি. এস. ড্রিল খণ্ডের জন্য ট୍ୟାପ ଡ୍ରିଲ ସାଇଜ = ଆଉটସାଇଡ ଡାଯ়ାମେଟାର -  $\frac{1.2806}{T.P.I}$

এই সূত্র অনুসারে ট୍ୟାପ ସାଇଜ ଡିଲ করলে, খণ্ডের ফর্ম বা আকৃতি পুরোপুরি পাওয়া যায়। কিন্তু সাধারণ কাজের জন্য সম্পূর্ণ খণ্ড ফর্ম বা 100% পূর্ণ খণ্ড দরকার হয় না। খণ্ডের শীর্ষ বা ক্রমে সঠিক ফর্মের না হওয়ে যদি সামান্য চ্যাপ্টো হয় অর্থাৎ সম্পূর্ণ খণ্ড যদি না উৎপন্ন হয় তাহলেও সাধারণ কাজের বেশাম তেমন অসুবিধা হবে না। এই জন্য সাধারণ কাজের বেশাম ট୍ୟାପ ସାଇଜ ଡିଲের মাপ নিচের সূত্রানুসারে নির্ণয় করা প্রয়োজন।

সাধারণ কাজের ক্ষেত্রে,

$$\text{ট୍ୟାପ ଡ୍ରିଲ ସାଇଜ} = \text{ଆଉটସାଇଡ ଡାଯାମେଟାର} - \frac{0.88 \times 1.2806}{T.P.I} = \text{ଆଉটସାଇଡ ଡାଯାମେଟାର} - \frac{1.13}{T.P.I}$$

ট୍ୟାପ ଡ୍ରିଲ ସାଇଜ ନির্ণয় করতে সাধারণত নিচের সূত্রাবলী ব্যবহার করা হয়-

$$T.D.S = D - P \text{ (ଆমেରিকান ন্যাশনাল খণ্ড)}$$

$$T.D.S = D - P \text{ (মেট্রিক খণ্ড)}$$

$$T.D.S = D - 1.13 P \text{ (ব্রিটিশ স্ট্যান্ডার্ড - B.S.W, B.S.F)}$$

$$T.D.S = D - \frac{1.13}{T.P.I} \text{ (কারণ, } P = \frac{1}{T.P.I} \text{ )}$$

এখানে,

$$T.D.S = \text{ট୍ୟାପ ଡ୍ରିଲ ସାଇଜ}$$

D = খণ্ডের বাহিরের ব্যাস বা ট୍ୟାপের সାଇଜ

P = খণ্ডের পিচ

T.P.I = প্রতি ইঞ্চিতে থ্রেড সংখ্যা (Thread Per Inch)

তাছাড়া ট্যাপ ড্রিল সাইজ নির্ণয়ের জন্য নিম্নের ছক ব্যবহার করা হয়। যথা-

### Tap drill bit size table:

Imperial Tap & drill bit size table

| Tap                                      | Fractional Drill Bit | Number Drill Bit | Letter Drill Bit |
|------------------------------------------|----------------------|------------------|------------------|
| 0-80                                     | 3/64                 | -                | -                |
| 1-64                                     | -                    | 53               | -                |
| 2-56                                     | -                    | 50               | -                |
| 3-48                                     | -                    | 47               | -                |
| 4-40                                     | 3/32                 | 43               | -                |
| 5-40                                     | -                    | 38               | -                |
| 6-32                                     | 7/64                 | 36               | -                |
| 8-32                                     | -                    | 29               | -                |
| 10-24                                    | 5/32                 | 25               | -                |
| 10-32                                    | 5/32                 | 21               | -                |
| 12-24                                    | 11/64                | 16               | -                |
| 1/4-20                                   | 13/64                | 7                | -                |
| 1/4-28                                   | 7/32                 | 3                | -                |
| 5/16-18                                  | 17/64                | -                | F                |
| 5/16-24                                  | -                    | -                | I                |
| 3/8-16                                   | 5/16                 | -                | -                |
| 3/8-24                                   | 21/64                | -                | Q                |
| 7/16-14                                  | 23/64                | -                | U                |
| 7/16-20                                  | 25/64                | -                | -                |
| 1/2-13                                   | 27/64                | -                | -                |
| 1/2-20                                   | 29/64                | -                | -                |
| 9/16-12                                  | 31/64                | -                | -                |
| 9/16-18                                  | 33/64                | -                | -                |
| 5/8-11                                   | 17/32                | -                | -                |
| 5/8-18                                   | 37/64                | -                | -                |
| 3/4-10                                   | 21/32                | -                | -                |
| 3/4-16                                   | 11/16                | -                | -                |
| Drill sizes are for 75% depth of thread. |                      |                  |                  |

Metric Tap & drill bit size table

| Tap                                      | Metric Drill | Imperial Drill |
|------------------------------------------|--------------|----------------|
| 3 mm x 0.5                               | 2.5 mm       | -              |
| 4 mm x 0.7                               | 3.4 mm       | -              |
| 5 mm x 0.8                               | 4.3 mm       | -              |
| 6 mm x 1.0                               | 5.2 mm       | -              |
| 7 mm x 1.0                               | 6.1 mm       | 15/64          |
| 8 mm x 1.25                              | 6.9 mm       | 17/64          |
| 8 mm x 1.0                               | 7.1 mm       | -              |
| 10 mm x 1.5                              | 8.7 mm       | -              |
| 10 mm x 1.25                             | 8.8 mm       | 11/32          |
| 10 mm x 1.0                              | 9.1 mm       | -              |
| 12 mm x 1.75                             | 10.5 mm      | -              |
| 12 mm x 1.5                              | 10.7 mm      | 27/64          |
| 14 mm x 2.0                              | 12.2 mm      | -              |
| 14 mm x 1.5                              | 12.7 mm      | 1/2            |
| 16 mm x 2.0                              | 14.2 mm      | 35/64          |
| 16 mm x 1.5                              | 14.7 mm      | -              |
| Drill sizes are for 75% depth of thread. |              |                |

| BRITISH STD CYCLE (CEI) |     |       |
|-------------------------|-----|-------|
| BSCy (60°)              |     |       |
| Sizes                   | TPI | Drill |
| 1/8"                    | 40  | 2.65  |
| 5/32"                   | 32  | 3.3   |
| 3/16"                   | 32  | 4.1   |
| 1/4"                    | 26  | 5.6   |
| 5/16"                   | 26  | 7.2   |
| 3/8"                    | 26  | 8.7   |
| 7/16"                   | 26  | 10.3  |
| 1/2"                    | 26  | 11.9  |
| 9/16"                   | 20  | 13.1  |
| 9/16"                   | 26  | 13.5  |
| 5/8"                    | 20  | 14.5  |
| 5/8"                    | 26  | 15.0  |
| 3/4"                    | 20  | 17.8  |
| 3/4"                    | 26  | 18.2  |

| MODEL ENGINEER THREADS<br>(BA + ME + BSB) |              |       |       |       |       |          |       |           |       |
|-------------------------------------------|--------------|-------|-------|-------|-------|----------|-------|-----------|-------|
| DIA                                       | BA (47.1/2°) |       |       |       | DIA   | ME (55°) |       | BSB (55°) |       |
| Sizes                                     | Dia          | Pitch | TPI   | Drill | Sizes | TPI      | Drill | TPI       | Drill |
| 0                                         | 6.0          | 1.0   | 25.4  | 5.1   | 1/8"  | 40       | 2.55  |           |       |
| 1                                         | 5.3          | 0.9   | 28.2  | 4.5   | 5/32" | 32       | 3.2   |           |       |
| 2                                         | 4.7          | 0.81  | 31.4  | 4.0   | 5/32" | 40       | 3.3   |           |       |
| 3                                         | 4.1          | 0.73  | 34.8  | 3.4   | 3/16" | 32       | 4.0   |           |       |
| 4                                         | 3.6          | 0.66  | 38.5  | 3.0   | 3/16" | 40       | 4.0   |           |       |
| 5                                         | 3.2          | 0.59  | 43.0  | 2.65  | 7/32" | 32       |       |           |       |
| 6                                         | 2.8          | 0.53  | 47.9  | 2.3   | 7/32" | 40       | 4.8   |           |       |
| 7                                         | 2.5          | 0.48  | 52.9  | 2.05  | 1/4"  | 32       | 5.5   | 26        | 5.3   |
| 8                                         | 2.2          | 0.43  | 59.1  | 1.8   | 1/4"  | 40       | 5.5   |           |       |
| 9                                         | 1.9          | 0.39  | 65.1  | 1.55  | 9/32" | 32       | 6.1   | 26        | 6.1   |
| 10                                        | 1.7          | 0.35  | 72.6  | 1.4   | 9/32" | 40       |       |           |       |
| 11                                        | 1.5          | 0.31  | 81.9  | 1.2   | 5/16" | 32       | 7.0   | 26        | 5.8   |
| 12                                        | 1.3          | 0.28  | 90.9  | 1.05  | 5/16" | 40       | 7.3   |           |       |
| 13                                        | 1.2          | 0.25  | 102.0 | 0.98  | 3/8"  | 32       | 8.6   | 26        | 8.4   |
| 14                                        | 1.0          | 0.23  | 109.9 | 0.80  | 3/8"  | 40       | 8.9   |           |       |
| 15                                        | 0.9          | 0.21  | 120.5 | 0.70  | 7/16" | 32       | 10.3  | 26        | 10    |
| 16                                        | 0.79         | 0.19  | 133.3 | 0.60  | 7/16" | 40       | 10.5  |           |       |
|                                           |              |       |       |       | 1/2"  | 32       | 11.9  | 26        | 11.5  |
|                                           |              |       |       |       | 9/16" |          |       | 26        | 13.1  |
|                                           |              |       |       |       | 5/8"  |          |       | 26        | 14.7  |
|                                           |              |       |       |       | 3/4"  |          |       | 26        | 17.8  |

| AMERICAN NATIONAL FORM THREADS (60° angle) |     |       |     |       |           |       |         |            |         | UNC |       | UNF |       |
|--------------------------------------------|-----|-------|-----|-------|-----------|-------|---------|------------|---------|-----|-------|-----|-------|
| DIA.                                       | UNC |       | UNF |       | NPT & NPS |       | UNS     |            | DIA     | UNC |       | UNF |       |
| Sizes                                      | TPI | Drill | TPI | Drill | TPI       | Drill | TPI     | Drill      | Size No | TPI | Drill | TPI | Drill |
| 1/16"                                      |     |       |     |       | 27        | 6.3   | 64      | 1.2        | 0       |     |       | 80  | 1.25  |
| 3/32"                                      |     |       |     |       |           |       | 48      | 1.85       | 1       | 64  | 1.55  | 72  | 1.55  |
| 1/8"                                       |     |       |     |       | 27        | 8.7   | 40      | 2.6        | 2       | 56  | 1.85  | 64  | 1.9   |
| 5/32"                                      |     |       |     |       |           |       | 32 & 40 | 3.2 & 3.3  | 3       | 48  | 2.1   | 56  | 2.15  |
| 3/16"                                      |     |       |     |       |           |       | 32 & 40 | 4.0 & 4.0  | 4       | 40  | 2.35  | 48  | 2.4   |
| 7/32"                                      |     |       |     |       |           |       | 24 & 32 | 4.5 & 4.8  | 5       | 40  | 2.65  | 44  | 2.7   |
| 1/4"                                       | 20  | 5.1   | 28  | 5.5   | 18        | 11.1  | 24 & 32 | 5.30 & 5.6 | 6       | 32  | 2.85  | 40  | 2.95  |
| 5/16"                                      | 18  | 6.6   | 24  | 6.9   |           |       | 20 & 32 | 6.7 & 7.2  | 8       | 32  | 3.5   | 36  | 3.5   |
| 3/8"                                       | 16  | 8.0   | 24  | 8.5   | 18        | 14.5  | 20      | 8.30       | 10      | 24  | 3.9   | 32  | 4.1   |
| 7/16"                                      | 14  | 9.4   | 20  | 9.9   |           |       | 24      | 10.0       | 12      | 24  | 4.5   | 28  | 4.70  |

## AMERICAN NATIONAL FORM THREADS (60° angle)

| DIA.   | UNC |       | UNF |       | NPT & NPS |       | UNS     |             | DIA     | UNC |       | UNF |       |
|--------|-----|-------|-----|-------|-----------|-------|---------|-------------|---------|-----|-------|-----|-------|
| Sizes  | TPI | Drill | TPI | Drill | TPI       | Drill | TPI     | Drill       | Size No | TPI | Drill | TPI | Drill |
| 1/2"   | 13  | 10.8  | 20  | 11.5  | 14        | 18.0  | 12 & 24 | 10.5 & 11.5 |         |     |       |     |       |
| 9/16"  | 12  | 12.2  | 18  | 12.9  |           |       |         |             |         |     |       |     |       |
| 5/8"   | 11  | 13.5  | 18  | 14.5  |           |       | 12      | 13.9        |         |     |       |     |       |
| 11/16" |     |       |     |       |           |       | 11 & 16 | 15.0 & 15.9 |         |     |       |     |       |
| 3/4"   | 10  | 16.5  | 16  | 17.5  | 14        | 23.25 | 12      | 16.7        |         |     |       |     |       |
| 7/8"   | 9   | 19.5  | 14  | 20.4  |           |       | 12      | 20.2        |         |     |       |     |       |
| 1"     | 8   | 22.25 | 12  | 23.25 | 11.5      | 29.0  | 14      | 23.5        |         |     |       |     |       |
| 1.1/8" | 7   | 25.0  | 12  | 26.5  |           |       |         |             |         |     |       |     |       |
| 1.1/4" | 7   | 28.0  | 12  | 29.5  | 11.5      | 38.0  |         |             |         |     |       |     |       |
| 1.3/8" | 6   | 30.75 | 12  | 32.75 |           |       |         |             |         |     |       |     |       |
| 1.1/2" | 6   | 34.0  | 12  | 36.0  |           |       |         |             |         |     |       |     |       |
| 1.3/4" | 5   | 39.5  |     |       |           |       |         |             |         |     |       |     |       |

## METRIC FORM THREADS (60° angle)

| MM    | Coarse |       | Fine-special |                |
|-------|--------|-------|--------------|----------------|
| Sizes | Pitch  | Drill | Pitch        | Drill          |
| 0.8   | .19    | 0.6   | (=16BA)      | 0.6            |
| 0.9   | .21    | 0.7   | (=15BA)      | 0.7            |
| 1     | .25    | 0.8   | (=14BA)      | 0.8            |
| 1.2   | .25    | 1.0   |              |                |
| 1.3   | .28    | 1.05  | (=12BA)      | 1.05           |
| 1.4   | .3     | 1.1   |              |                |
| 1.5   | .3     | 1.2   | (=11BA)      | 1.2            |
| 1.6   | .35    | 1.25  |              |                |
| 1.7   | .35    | 1.35  | (=10BA)      | 1.4            |
| 1.8   | .35    | 1.45  |              |                |
| 1.9   | .39    | 1.55  | (=9BA)       | 1.55           |
| 2     | .4     | 1.60  | .45          | 1.55           |
| 2.2   |        |       | .45          | 1.75           |
| 2.3   |        |       | .4           | 1.9            |
| 2.5   | .45    | 2.05  | .35, .4      | 2.15, 2.1      |
| 2.6   |        |       | .45          | 2.15           |
| 3     | .5     | 2.5   | .35, .45     | 2.65, 2.55     |
| 3.5   | .6     | 2.9   | .35, .6      | 3.15, 2.9      |
| 4     | .7     | 3.3   | .5, .75      | 3.5, 3.25      |
| 4.5   | .75    | 3.7   | .5           | 4.0            |
| 5     | .8     | 4.2   | .5, .75, .9  | 4.5, 4.25, 4.1 |
| 6     | 1      | 5.0   | .5, .75      | 5.5, 5.25      |
| 7     | 1      | 6.0   | .75          | 6.25           |

METRIC FORM THREADS  
(60° angle)

| MM    | Coarse |       | Fine-special |            |
|-------|--------|-------|--------------|------------|
| Sizes | Pitch  | Drill | Pitch        | Drill      |
| 20    | 2.5    | 17.5  | 1, 1.5       | 19.0, 18.5 |
| 22    | 2.5    | 19.5  | 1.5, 2       | 20.5, 20.0 |
| 24    | 3      | 21.0  | 1.5, 2       | 22.5, 22.0 |
| 25    |        |       | 1.5, 2       | 23.5, 23.0 |
| 27    | 3      | 24.0  | 2            | 25.0       |
| 30    | 3.5    | 26.5  | 1.5, 2       | 28.5, 28.0 |
| 32    | 3.5    | 30.5  | 1.5          | 30.5       |
| 33    | 3.5    | 29.5  | 1.5, 2       | 31.5, 31.0 |
| 36    | 4      | 32.0  | 1.5          | 34.5       |
| 39    | 4      | 35.0  | 1.5          | 37.5       |
| 40    |        |       | 1.5          | 38.5       |
| 42    | 4.5    | 37.5  | 1.5          | 40.5       |
| 45    | 4.5    | 40.5  | 1.5          | 43.5       |
| 48    | 5      | 43.0  | 1.5          | 46.5       |

| METRIC FORM THREADS (60° angle) |        |       |              |                 |  |
|---------------------------------|--------|-------|--------------|-----------------|--|
| MM                              | Coarse |       | Fine-special |                 |  |
| Sizes                           | Pitch  | Drill | Pitch        | Drill           |  |
| 8                               | 1.25   | 6.8   | .75, 1       | 7.2, 7.0        |  |
| 9                               | 1.25   | 7.75  | 1            | 8.0             |  |
| 10                              | 1.5    | 8.5   | 1, 1.25      | 9, 8.75         |  |
| 11                              | 1.5    | 9.5   | 1            | 10.0            |  |
| 12                              | 1.75   | 10.2  | 1, 1.25, 1.5 | 11, 10.75, 10.5 |  |
| 14                              | 2      | 12.0  | 1, 1.25, 1.5 | 13, 12.75, 12.5 |  |
| 16                              | 2      | 14.0  | 1, 1.5       | 15.0, 14.5      |  |
| 18                              | 2.5    | 15.5  | 1.0, 1.5     | 17.0, 16.5      |  |

| METRIC FORM THREADS (60° angle)                          |        |       |              |       |
|----------------------------------------------------------|--------|-------|--------------|-------|
| MM                                                       | Coarse |       | Fine-special |       |
| Sizes                                                    | Pitch  | Drill | Pitch        | Drill |
| 50                                                       |        |       | 1.5          | 48.5  |
| 52                                                       | 5      | 47.0  | 1.5          | 50.5  |
| 56                                                       | 5.5    | 50.5  |              |       |
| 60                                                       | 5.5    | 45.5  |              |       |
| Spark plug taps = 10x1, 12x1.25,<br>14x1.25, 18x1.5      |        |       |              |       |
| Conduit taps = 16x1.5, 20x1.5,<br>25x1.5, 32x1.5, 50x1.5 |        |       |              |       |

| BRITISH STANDARD WHITWORTH FORM THREADS (55° angle) |       |       |     |       |     |       |            |          |                |                      |                 |
|-----------------------------------------------------|-------|-------|-----|-------|-----|-------|------------|----------|----------------|----------------------|-----------------|
| DIA.                                                | BSW   |       | BSF |       | BSB |       | BSP & BSPT |          | ME/WHITFORM    |                      | BSCon           |
| Sizes                                               | TPI   | Drill | TPI | Drill | TPI | Drill | TPI        | Drill    | TPI            | Drill                | Drill WIDTH=36> |
| 3.7                                                 | 32    | 4.0   |     |       |     |       | 32, 40     | 4.0, 4.0 |                |                      |                 |
| 7/32"                                               | 24    | 4.5   | 28  | 4.6   |     |       |            |          | 40             | 4.8                  |                 |
| 1/4"                                                | 20    | 5.1   | 26  | 5.3   | 26  | 5.3   | 19         | 11.8     | 24, 28, 32, 40 | 5.3, 5.4, 5.5, 5.5   |                 |
| 9/32"                                               | 20    | 5.8   | 26  | 6.0   | 26  | 5.8   |            |          | 32             | 6.1                  |                 |
| 5/16"                                               | 18    | 6.5   | 22  | 6.8   | 26  | 5.8   |            |          | 24, 32, 40     | 6.75, 7.0, 7.3       |                 |
| 3/8"                                                | 16    | 7.9   | 20  | 8.3   | 26  | 8.4   | 19         | 15.25    | 24, 32, 40     | 8.4, 8.6, 8.9        |                 |
| 7/16"                                               | 14    | 9.3   | 18  | 9.7   | 26  | 10.0  |            |          | 20, 24, 32, 40 | 9.8, 10, 10.3, 10.5  |                 |
| 1/2"                                                | 12    | 10.5  | 16  | 11.1  | 26  | 11.5  | 14         | 19.0     | 20, 24, 32, 40 | 11.5, 11.9, 11.9, 12 | 18              |
| 9/16"                                               | 12    | 12.1  | 16  | 12.7  | 26  | 13.1  |            |          | 20             | 13.1                 |                 |
| 5/8"                                                | 11    | 13.5  | 14  | 14    | 26  | 14.7  | 14         | 21.0     | 20             | 14.5                 | 18              |
| 11/16"                                              | 11    | 15.1  | 14  | 15.5  | 26  | 16.5  |            |          | 20             | 16.2                 |                 |
| 3/4"                                                | 10    | 16.25 | 12  | 16.75 | 26  | 17.8  | 14         | 24.5     | 14, 20         | 17.1, 17.8           | 16              |
| 7/8"                                                | 9     | 19.25 | 11  | 19.75 | 26  | 21.0  | 14         | 28.25    | 14, 16, 20     | 20.2, 20.6, 21.0     | 16              |
| 15/16"                                              | 9     | 20.6  | 11  | 21.5  |     |       |            |          |                |                      |                 |
| 1"                                                  | 8     | 22.0  | 10  | 22.75 | 26  | 24.2  | 11         | 30.75    | 12, 20         | 23.0, 24.0           | 16              |
| 1.1/8"                                              | 7     | 24.75 | 9   | 25.5  | 26  | 27.5  |            |          |                |                      |                 |
| 1.1/4"                                              | 7     | 28.0  | 9   | 28.5  | 26  | 30.5  | 11         | 39.5     |                |                      | 16              |
| 1.3/8"                                              | 6     | 30.1  | 8   | 31.5  | 26  | 33.7  |            |          |                |                      |                 |
| 1.1/2"                                              | 6     | 33.5  | 8   | 34.5  | 26  | 36.9  | 11         | 45.00    |                |                      | 14              |
| 1.5/8"                                              | 5     | 35.7  | 8   | 37.7  | 26  | 40.0  |            |          |                |                      |                 |
| 1.3/4"                                              | 5     | 39    | 7   | 41.0  | 26  | 43.5  | 11         | 51.0     |                |                      |                 |
| 1.7/8"                                              | 4.1/2 | 41.3  | 7   | 43.7  | 26  | 46.5  |            |          |                |                      |                 |
| 2"                                                  | 4.1/2 | 44.5  | 7   | 47.0  | 26  | 49.6  | 11         | 57.0     |                |                      |                 |

### উদাহরণ-১ :

০.৫ ইঞ্চি ব্যাসের বি.এস.ড্রিউ থ্রেডের জন্য সঠিক ট্যাপ ড্রিল সাইজ নির্ণয় কর।

সমাধান :

$$\text{আমরা জানি, বি. এস. ড্রিউ থ্রেডের জন্য ট্যাপ ড্রিল সাইজ} = \text{আউটসাইড ডায়ামেটার} - \frac{1.2806}{T.P.I}$$

$$0.5 \text{ ইঞ্চি} \text{ ব্যাসের বি.এস.ড্রিউ থ্রেডের জন্য } T.P.I = 12$$

$$\text{সূতরাং ট্যাপ ড্রিল সাইজ} = 0.5 - \frac{1.2806}{12} = 0.5000 - 0.1067 = 0.3933 \text{ ইঞ্চি।}$$

সঠিকভাবে ০.৩৯৩৩ ইঞ্চি মাপের ড্রিল বিট পাওয়া যায় না। এ জন্য এই মাপের কাছাকাছি মাপের ড্রিল বিট সাইজ বেছে নিতে হয়।

$$\frac{25}{64} = 0.3906 \text{ অর্থাৎ } \frac{25}{64} \text{ ইঞ্চি মাপের ড্রিল বিট দ্বারা ছিদ্র করলে ১০০ ভাগ পূর্ণ থ্রেড পাওয়া যাবে।$$

উত্তর :  $\frac{25}{64}$  ইঞ্চি।

### উদাহরণ-২ :

ইঞ্চি বি.এস.ড্রিউ থ্রেডের জন্য সাধারণ কাজের ক্ষেত্রে ট্যাপ ড্রিল সাইজ নির্ণয় কর।

সমাধান :

$$\text{সাধারণ কাজের ক্ষেত্রে, ট্যাপ ড্রিল সাইজ} = \text{আউটসাইড ডায়ামেটার} - \frac{1.13}{T.P.I}$$

$$\frac{1}{2} \text{ ইঞ্চি} \text{ ব্যাসের বি.এস.ড্রিউ থ্রেডের জন্য } T.P.I = 12$$

$$\text{সূতরাং ট্যাপ ড্রিল সাইজ} = \frac{1}{2} - \frac{1.13}{12} = 0.500 - 0.09166666666666667 = 0.4083333333333333 = \frac{13}{32} \text{ ইঞ্চি।}$$

উত্তর :  $\frac{13}{32}$  ইঞ্চি।

### উদাহরণ-৩ :

$M \times 1.75$  ইন্টারন্যাশনাল মেট্রিক থ্রেডের নাটের জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর

সমাধান :

আমরা জানি, ইন্টারন্যাশনাল মেট্রিক থ্রেডের গভীরতা =  $0.6495 \times$  পিচ

এবং ১২ মিমি ডায়ামেটার থ্রেডের পিচ = ১.৭৫ মি.মি।

অতএব থ্রেডের গভীরতা হবে =  $0.6495 \times 1.75$  মি.মি. = ১.১৩৬৬২৫ মি.মি.

$$\therefore \text{কোর ডায়ামেটার} = (12 - 2 \times 1.136625) \text{ মি.মি.}$$

$$= (12 - 2.27325) \text{ মি.মি.} = 9.093 \text{ মি.মি.।}$$

থ্রেডের সম্পূর্ণ গভীরতার ৭৫% - ৮৮% গভীরতায় ট্যাপের সাহায্যে থ্রেড উৎপন্ন করা হয়। অর্থাৎ ট্যাপ ড্রিল সাইজ ৭৫% - ৮৮% গভীরতায় থ্রেড উৎপন্ন করে। যদি ৭৫% গভীরতায় হিসাব করা হয়, তবে-

$$\text{ট্যাপ ড্রিল সাইজ} = \text{বাহিরের ব্যাস} - \left( \frac{75}{100} \times \text{ট্যাপিং} \times 2 \right)$$

$$= (0.75 \times 0.6495 \times 1.75 \times 2) = 12 - 1.2705 = 10.295 \text{ মি.মি.}$$

যদি ৮৮% গভীরতায় হিসাব করা হয়, তবে-

$$\begin{aligned} \text{ট্যাপ ড্রিল সাইজ} &= \text{বাহিরের ব্যাস} - \left( \frac{88}{100} \times \text{থ্রেডের গভীরতা} \times 2 \right) = (0.88 \times 0.6495 \times 1.75 \times 2) \\ &= (12 - 2.000086) \text{ মি.মি.} = 10 \text{ মি.মি.} \end{aligned}$$

আবার, পূর্বে উল্লিখিত সূত্র ব্যবহার করে পাই,  $T.D.S = D - P$  (মেট্রিক থ্রেড)

$$= (12 - 1.75) \text{ মি.মি.}$$

$$= 10.25 \text{ মি.মি.}$$

**উত্তর ৪** ট্যাপ ড্রিল সাইজ 10.25 মি.মি.।

#### ২২.৫ ট্যাপিং পদ্ধতি:

ট্যাপের সাহায্যে থ্রেড কাটা কোন সহজ কাজ নয়। তবে এতে ধৈর্য এবং সাবধানতার সাথে কাজ করার প্রয়োজন হয়। প্রথমে ট্যাপের মাপ অনুযায়ী উপযুক্ত মাপের একটি ট্যাপ সাইজ ড্রিল বিট দিয়ে কার্যবস্তুর মধ্যে ছিদ্র করে নিতে হবে। পরে ট্যাপ সেটের টেপার ট্যাপটির ক্ষেত্রে থ্রেড করা অংশকে তৈলাক্ত করে এটিকে ঐ ছিদ্রের মধ্যে লম্বভাবে স্থাপন করতে হবে। কাজের সূচনার জন্য ট্যাপকে অবশ্যই ট্রাই স্ক্যারের সাহায্যে কার্যবস্তুর সঙ্গে লম্বভাবে স্থাপন করতে হবে।



চিত্র-২২.৪ ৪ ট্যাপিং পদ্ধতি

এরপর ট্যাপ থেকে রেঞ্চকে ট্যাপের সাথে সমকোণে অর্থাৎ কার্যবস্তুর উপরকার সারফেসের সঙ্গে প্যারালাল বা সমান্তরাল করে, ট্যাপের শ্যাঙ্কের স্ক্যার অংশটায় পরাতে হবে। ট্যাপ রেঞ্চের অ্যাডজাস্টেবল হ্যান্ডেলকে ঘূরিয়ে নিয়ন্ত্রণশীল 'জ' এর মাধ্যমে অথবা সেট ক্লুকে টাইট দিয়ে ট্যাপের শ্যাঙ্ক অংশকে শক্তভাবে রেঞ্চের মধ্যে আটকিয়ে নিতে হবে। রেঞ্চ পরাবার পর নিচের দিকে আন্তে আন্তে সামান্য চাপ দিয়ে ধীরে ধীরে ট্যাপকে ঘোরাতে হবে। খালিকটা ক্লুক-ওয়াইজ বা ডানদিকে ঘোরাবার পর ট্যাপকে উল্টা দিকে আধ পাকের মতো ঘোরাতে হবে। এতে ট্যাপের কাটিং এজে চিপস আটকাবে না। ট্যাপটি লম্বভাবে কার্যবস্তুর ছিদ্রের মধ্যে প্রবেশ করেছে কীনা উহা মাঝে মাঝে ট্রাই স্ক্যারের সাহায্যে পরীক্ষা করতে হবে। ট্যাপটি যাতে ধাতুচূর্ণ দ্বারা ছিদ্রের মধ্যে বন্ধ হয়ে না যায়, এইজন্য রেঞ্চটিকে দুই এক বার ডানদিকে ঘোরাবার পর আবার ইহাকে বামদিকে ঘোরাতে হবে এবং ছিদ্রের মধ্যে মসৃণকারক তৈল দিতে হবে। প্রথম ট্যাপটি অর্থাৎ টেপার ট্যাপকে ছিদ্রের

তেকর সম্পূর্ণ করানোর পর উল্টোদিকে শুরিয়ে ট্যাপটিকে খুলে নিতে হবে। এরপর হিন্দুর মধ্যছিদ্দি থার্মচুর্ভিলিকে পরিকার করে 'ট্যাপ সেট' এর বিভিন্ন ট্যাপটিকে পূর্বের স্থান হিন্দুর মধ্যে প্রবেশ করিয়ে দ্বোরাতে হবে। এই সবজোগ ট্যাপটি সবজনে প্রবেশ করাছে কীনা তা প্রাই করারের সাহায্যে কাজের উপরে এবং আবে আবে পর্যাক্ষা করে দেখতে হবে। কার্ববালর এক ধোত থেকে অপর ধোত পর্যন্ত যে জিলা (Thorough hole) এর বেলায় ট্যাপটিক সৈর্পেটিক অধিকাংশই হিন্দুর অপর ধোতকে অতিক্রম করলে, তখন এটিকে বিপরীত দিকে শুরিয়ে বাহিয়ে করে আনতে হবে। যদিও এক্ষতপক্ষে একেই ট্যাপিং এর কাজ শেষ হয়ে যাব এবং হিন্দুর সকল হানে ক্ষেত্রের গভীরতা আবশ্যিক মাপের হয়, তথাপি ক্ষেত্রের ক্ষেত্রের অংশকে পরিকার এবং ট্যাপিং সুসম্পন্ন করার জন্য আবার তৃতীয় ট্যাপ বা বটমিং ট্যাপটিকে পূর্বের মধ্যে হিন্দুর মধ্যে চালনা করতে হবে। উৎপন্ন ক্ল-প্রেত আবশ্যিক পরিমাণ গভীর হয়েছে কীনা তা ক্ল-পিচ গেজ দ্বারা অথবা ট্যাপের একই মাপ বিশিষ্ট একটি বোল্ট দ্বারা পরীক্ষা করে দেখতে হবে।

যে হিন্দুর একধোত বক (Blind hole) উহার মধ্যে ক্ল-প্রেত তৈরি করার জন্য 'ট্যাপ সেট' এর ধোতেকটি ট্যাপকে ক্রমানুসারে উপরে উল্টোর্ভিত নিয়মে হিন্দুর মধ্যে প্রবেশ করানোর প্রয়োজন হব। এই ক্ষেত্রে স্মরণ রাখা প্রয়োজন যে, বকক্ষণ পর্যন্ত না তৃতীয় বা বটমিং ট্যাপটি হিন্দুর মধ্যে শেষ পর্যন্ত চালিত না হয়, ততক্ষণ পর্যন্ত ক্ল-প্রেত হিন্দুর মধ্যে সকল হানে সমপরিমাণ গভীর হয় না।

## ২২.৬ ট্যাপ সেটের বিভিন্ন ট্যাপের ব্যবহার :

### ট্যাপ সেট (Tap Set) :

নিচের তিনটি ট্যাপের সমগ্রে হ্যান্ড ট্যাপ সেট গঠিত হয় -

- ১) প্রথম টেপার ট্যাপ (First Taper Tap)
- ২) বিভিন্ন বা সেকেন্ড বা ইন্টারমিডিয়েট বা প্লাগ ট্যাপ (Second Tap or Intermediate Tap or Plug Tap)
- ৩) তৃতীয় বা বটমিং ট্যাপ (Third or Bottoming Tap)



চিত্র-২২.৫ : ট্যাপ সেট

টেপার ট্যাপের প্রান্তথেকে পশ্চাতের দিকে কমপক্ষে ছয়টি থ্রেড টেপার করা থাকে। প্লাগ ট্যাপের প্রান্ত থেকে পশ্চাতের দিকে তিনটি অথবা চারটি থ্রেড টেপার করা থাকে। বটমিং ট্যাপের প্রান্তে মাত্র একটি থ্রেড টেপার করা থাকে। ট্যাপ সেটের সকল ট্যাপই একই পরিমাপের হয়। কোন কোন ট্যাপ সেটে টেপার ট্যাপ বুবানোর জন্য একটি দাগ, প্লাগ ট্যাপ বুবানোর জন্য দুইটি দাগ এবং বটমিং ট্যাপ বুবানোর জন্য তিনটি দাগ কাটা থাকে বা কোন কোন ক্ষেত্রে বটমিং ট্যাপ দাগবিহীন থাকে।

### বিভিন্ন ট্যাপের ব্যবহার :

#### ১) প্রথম টেপ ট্যাপ (First Taper Tap) :

এর থ্রেড কাটা অংশ সরু থাকে এবং এর ব্যাস কোর ডায়ামেটার অপেক্ষা কম থাকে বিধায় এটি অতিসহজে ছিদ্রের মধ্যে প্রবেশ করাতে এবং লম্বভাবে রাখতে খুব সুবিধা হয়। ইন্টারনাল স্ক্রু-থ্রেড উৎপন্ন করার জন্য প্রথমে যে ছিদ্র করা হয় তার ব্যাস থ্রেডের কোর ডায়ামেটারের সমান বা তার থেকে বড় থাকে। সূতরাং ট্যাপিং শুরু করতে টেপার ট্যাপ অবশ্যই ব্যবহার করা উচিত। সম্পূর্ণ ছিদ্রযুক্ত (Thorough Hole) ওয়ার্কিংপিসের মধ্যে থ্রেড কাটতে শুধু টেপার ট্যাপ ব্যবহার করলেই নির্দিষ্ট মাপের থ্রেড উৎপন্ন হয়।

#### ২) সেকেন্ড বা ইন্টারমিডিয়েট বা প্লাগ ট্যাপ (Second or Intermediate or Plug Tap) :

টেপার শ্রেণির ট্যাপ সেটে যে দ্বিতীয় ট্যাপটি ব্যবহার করা হয় তার নাম সেকেন্ড ট্যাপ বা প্লাগ ট্যাপ। যে ছিদ্রের একটি প্রান্ত বন্ধ অর্থাৎ ব্লাইন্ড হোল (Blind Hole), সেক্ষেত্রে নিয়ম হলো- প্রথমে টেপার ট্যাপ ব্যবহার করা, তারপর প্লাগ ট্যাপ ব্যবহার করা। থ্রেডের তলা পর্যন্ত স্ক্রু-থ্রেড তৈরি করার জন্য বটমিং ট্যাপ ব্যবহার করতে হয়। ট্যাপ ব্যবহারের ধারাবাহিকতা বজায় না রাখলে শেষ প্রান্তে থ্রেড উৎপন্ন করতে বটমিং ট্যাপ ব্যবহার করার ঝুঁকিপূর্ণ হয়ে দাঁড়ায়। তাই ট্যাপ ব্যবহারের এই ধারাবাহিকতা বজায় রাখতে এবং টেপার ট্যাপ ব্যবহার করার পর যে কোন থ্রেড সম্পূর্ণ পরিষ্কার করতে প্লাগ ট্যাপ ব্যবহার করা হয়।

#### ৩) বটমিং ট্যাপ (Bottoming Tap) : ব্লাইন্ড হোলের তলদেশ পর্যন্ত স্ক্রু-থ্রেড উৎপন্ন করতে বটমিং ট্যাপ ব্যবহৃত হয়।

#### ২২.৭ কাউন্টার ট্যাপ (Counter Tap) :

সেই ট্যাপকে কাউন্টার ট্যাপ বলে যার প্যাচ সাধারণ প্যাচ ওয়ালা ট্যাপের বিপরীত দিকে হয়। এই ধরনের ট্যাপের সাহায্যে ভাঙা বা ফেঁসে যাওয়া কোন বোল্ট বা স্টাডকে খোলা সম্ভব হয়। ভাঙা বোল্ট বা স্টাডের মাথায় ড্রিল করে সেই ড্রিলের ভেতর কাউন্টার ট্যাপ চালানো হলে ভাঙা বা ফেঁসে যাওয়া বোল্ট বা স্টাড সহজে খুলে আসে।

#### ২২.৮ ট্যাপ ভেঙ্গে যাবার কারণঃ

ট্যাপিং প্রণালি ঠিকমত প্র্যাকটিস বা অভ্যাস না করলে এবং যে সব নিয়ম মেনে চলা প্রয়োজন, সেগুলো না মানলে অনেক ক্ষেত্রে প্রায়ই ট্যাপ ভেঙ্গে যায়। নিম্নে ট্যাপ ভেঙ্গে যাবার কারণগুলি উল্লেখ করা হলো-

- কিছুক্ষণ অন্তর অন্তর ট্যাপকে উল্টা দিকে না ঘোরালে এবং প্রয়োজনীয় ক্ষেত্রে তৈল না দেওয়ার কারণে ছিদ্রের মধ্যে ট্যাপ আবদ্ধ হয়ে গেলে যদি ট্যাপ জোরপূর্বক চালানোর চেষ্টা করা হয় তবে ট্যাপ ভেঙ্গে যেতে পারে।
- ‘ট্যাপ সেট’ এর ট্যাপ তিনিটিকে ক্রমানুসারে ছিদ্রের মধ্যে প্রবেশ না করিয়ে প্রথমেই দ্বিতীয় বা তৃতীয় ট্যাপটিকে বলপূর্বক প্রবেশ করানোর চেষ্টা করলে।

- ট্যাপ ব্যবহার করার পূর্বে উহার জন্য যে ব্যাসের ছিদ্র করা প্রয়োজন উহা অপেক্ষা কম ব্যাসের ছিদ্র করে উহার মধ্যে বলপূর্বক ট্যাপকে ঘুরিয়ে থ্রেড কাটার চেষ্টা করলে ।
- ট্যাপের ‘কাটিং এজ’ এর তীক্ষ্ণতা নষ্ট হয়ে যাওয়া সত্ত্বেও উহা দ্বারা বলপূর্বক স্ক্রু-থ্রেড উৎপন্ন করার চেষ্টা করলে ।
- রেঞ্চ দিয়ে ট্যাপ ঘুরানোর সময় ট্যাপ-রেঞ্চকে ভূমির সাথে বা কার্যবস্তুর তলের সাথে সমান্তরালভাবে না রেখে কাত করে চালালে ট্যাপ ভেঙ্গে যেতে পারে ।

#### ২২.৯ ট্যাপিং এর সতর্কতা ও রক্ষণাবেক্ষণঃ

- ট্যাপিং করা ছিদ্রের অক্ষ এবং ট্যাপ এর অক্ষ একই লাইনে রেখে চালাতে হবে ।
- সঠিক মাপের ট্যাপ ড্রিল সাইজ থেকে কম মাপের ছিদ্রতে ট্যাপ চালনা করা উচিত নয় । এতে ট্যাপ ভেঙ্গে যেতে পারে এবং অনেক সময় ভাঙ্গা ট্যাপ ওয়ার্কপিস বা কার্যবস্তু থেকে বের করাও সময় সাপেক্ষ ও কষ্টসাধ্য ।
- ট্যাপ রেঞ্চ ট্যাপের পরিমাপের উপযুক্ত হতে হবে । বড় ট্যাপ রেঞ্চ দিয়ে ছেট ট্যাপকে ঘুরালে অত্যাধিক মোচড় শক্তি প্রয়োগের কারণে অনেক সময় ট্যাপ ভেঙ্গে যায় ।
- ট্যাপ রেঞ্চ উভয় হাতে ধরে সম শক্তি দিয়ে ঘুরাতে হবে । এক হাতে ঘুরানো অনুচিত ।
- ট্যাপিং এর সময় প্রয়োজনে অবশ্যই লুট্রিক্যান্ট ব্যবহার করা উচিত ।
- ট্যাপ সেটের ট্যাপ তিনিটিকে ক্রমানুসারে পরপর ব্যবহার করতে হবে ।
- ট্যাপ এর কাটিং এজ নষ্ট হয়ে গেলে উহা ব্যবহার করা উচিত নয় ।
- ট্যাপ ঘুরাবার সময় ট্যাপ-রেঞ্চকে ভূমির সমান্তরালভাবে রাখতে হবে অথবা ছিদ্রের অক্ষের সাথে সমকেণ্ঠে রেখে ঘুরাতে হবে । বাম বা ডানদিকে নত থাকলে ট্যাপ ভেঙ্গে যাবার সম্ভাবনা থাকে ।

## প্রশ্নমালা-২২

### **সংক্ষিপ্ত প্রশ্ন :**

১. ট্যাপ কাকে বলে ?
২. ট্যাপ কী কাজে ব্যবহৃত হয় ?
৩. ট্যাপ সেট কাকে বলে ?
৪. ট্যাপ রেখণ কী কাজে ব্যবহৃত হয় ?
৫. ট্যাপ ড্রিল সাইজ কাকে বলে ?
৬. ট্যাপ কী ধাতুর তৈরি হয় ?
৭. ট্যাপিং কাকে বলে ?
৮. ট্যাপে সাধারণত কয়টি ফ্লুট থাকে ?
৯. ট্যাপ সেটের ট্যাপগুলোর নাম লেখ ?
১০. মেট্রিক থ্রেডের ক্ষেত্রে ট্যাপ ড্রিল সাইজ নির্ণয়ের সূত্র লেখ ?
১১. সাধারণ কাজের ক্ষেত্রে পূর্ণ গভীরতায় শতকরা কতভাগ থ্রেড গভীরতা পাওয়া যায় ?
১২. T.D.S দ্বারা কী বোঝানো হয় ?
১৩. U.N.C বলতে কী বোঝায় ?
১৪. B.S.W বলতে কী বোঝায় ?
১৫. মেট্রিক থ্রেড কী চিহ্ন দ্বারা প্রকাশ করা হয় ?

### **সংক্ষিপ্ত প্রশ্ন :**

১. ট্যাপ দ্বারা তৈরি করা যায় একপ স্ট্যাভার্ড থ্রেডগুলোর নাম লেখ ?
২. ট্যাপিং এর ক্ষেত্রে তৈল ব্যবহারের সুবিধাগুলো উল্লেখ কর ?
৩. ট্যাপ ড্রিল সাইজ বলতে কী বোঝায় ?
৪. ট্যাপিং এর প্রয়োগক্ষেত্র উল্লেখ কর ?
৫. ট্যাপ ড্রিল সাইজ নির্ণয়ের সূত্রগুলো উল্লেখ কর ?
৬. ইঞ্জি B.S.W থ্রেড তৈরির জন্য ট্যাপ ড্রিল সাইজ নির্ণয় কর ?
৭. M 10 x 1.5 ট্যাপ চালানোর জন্য ট্যাপ ড্রিল সাইজ কত হবে ?
৮. টেপার ট্যাপ-এর ব্যবহার উল্লেখ কর ?
৯. প্লাগ ট্যাপ-এর ব্যবহার উল্লেখ কর ?
১০. থ্রেড কাটার জন্য ধাতুভোজে ব্যবহৃত লুব্রিকেন্টসমূহের নাম লেখ ?

### **রচনামূলক প্রশ্ন :**

১. ট্যাপ সেট বলতে কী বোঝায় ? ট্যাপ সেটের বিভিন্ন ট্যাপগুলোর ব্যবহার বর্ণনা কর ?
২. ট্যাপ দ্বারা থ্রেড কাটার সময় তৈল প্রদানের প্রয়োজনীয়তা বর্ণনা কর ?
৩. ট্যাপ দ্বারা থ্রেড কাটার পদ্ধতি ব্যাখ্যা কর ?

## অধ্যায়-২৩

### ডাই (Die)

#### ২৩.১ ডাই :

ডাই এক প্রকার মেটাল কাটিং টুল যা সিলিন্ড্রিক্যাল জব, পাইপ, গোলাকার রড এর উপরিভাগে স্ক্রু-থ্রেড বা পঁয়াচ উৎপন্ন করতে ব্যবহৃত হয়। এটা হাই কার্বন স্টিল বা হাই স্পিড স্টীল দ্বারা তৈরি হয়। এর থ্রেড অংশ শক্ত এবং টেম্পার করা থাকে। ডাই ট্যাপ এর মত বিভিন্ন স্ট্যাভার্ড মাপের স্ক্রু-থ্রেড তৈরি করতে বিভিন্ন মাপ বিশিষ্ট হয়ে থাকে। ডাই দ্বারা থ্রেড কাটার পর একে সমান মাপের ট্যাপিং করা থ্রেড বিশিষ্ট ছিদ্রের মধ্যে প্রবেশ করানো যায়। অবশ্য বোল্টকে নাটের মধ্যে ঢোকাতে গেলে নাট অথবা বোল্ট যেকোন একটাকে ক্রমাগত ঘোরাতে হবে। ডাই চ্যাম্ফ হয় এবং এর মধ্যে থেডের সংখ্যা কম থাকে। ডাই-এর ভিতরে থ্রেড কাটা থাকে। থ্রেড কাটা শুরু করার সুবিধার্থে ডাই-এর এক পার্শ্ব চ্যাম্ফার Chamfer করা থাকে এবং এই পার্শ্বেই ডাই-এর স্পেসিফিকেশন লেখা থাকে। ডাই-এর স্পেসিফিকেশন দেখে থ্রেড স্ট্যাভার্ড, আউটসাইড ডায়ামেটার ও থেডের পিচ জানা যায়। ডাই-কে ডাইস্টক-এর মধ্যে শক্তভাবে আটকিয়ে ওয়ার্কপিসের উপর ঘুরিয়ে থ্রেড উৎপন্ন করতে হয়। ট্যাপ দ্বারা যেসব স্ট্যাভার্ড থ্রেড তৈরি করা যায় ডাই দ্বারাও সেসব স্ট্যাভার্ড থ্রেড তৈরি করা যায়।



চিত্র-২৩.১ : ডাই ও ডাইস্টক

#### ২৩.২ বিভিন্ন প্রকার স্ট্যাভার্ড ডাই :

গঠন এবং ব্যবহারের ভিত্তিতে ডাই নিম্নলিখিত কয়েক প্রকারের হয়-

##### ১) সলিড ডাই (Solid Die)

###### (ক) ক্ষয়ার ডাই (Square Die)



চিত্র-২৩.২ : ক্ষয়ার ডাই

## (খ) ডাই নাট (Die Nut)



চিত্র-২৩.৩ : ডাই নাট

## (গ) স্ক্রু-প্লেট (Screw Plate) ডাই



চিত্র-২৩.৪ : স্ক্রু-প্লেট ডাই

## (২) অ্যাজুস্টেবল ডাই (Adjustable Die)

## (ক) রাউড স্পিলি ডাই (Round Split Die)



চিত্র-২৩.৫ : রাউড স্পিলি ডাই

## (খ) স্টক ডাই (Stock Die)



চিত্র-২৩.৬ : স্টক ডাই

## ২৩.৩ ডাই দ্বারা শ্রেড কাটার পদ্ধতি :

প্রথমে যে বোল্ট, জব বা উয়ার্কপিসের উপর শ্রেড কাটতে হবে উহার মাপ অনুযায়ী ডাই ও ডাই স্টক বাছাই করে নিতে হবে। কার্যবস্তুকে ডাইসে শক্ত করে এবং লম্বভাবে বাঁধতে হবে। পরে কার্যবস্তুর মুখটিকে ফাইল দ্বারা ঘষে সামান্য ক্রমশ সরু করে নিতে হবে। ডাইকে বোল্ট বা কার্যবস্তুর উপর এমনভাবে স্থাপন করতে হবে যাতে ডাই স্টকটি বোল্ট বা কার্যবস্তুর উপর ভূমির সমাপ্তরাশভাবে অবস্থান করে। এরপর ডাই এর উপর চাপ প্রয়োগ করে ধীরে ধীরে ডাইটিকে ডান দিকে ঝুরাতে হবে। করেকটি শ্রেড উৎপন্ন হয়ে ডাই শ্রেডের মাধ্যমে কার্যবস্তুর সহিত মিলিত হলে এতে অর্থাৎ ডাই ও কার্যবস্তুর সংযোগস্থলে প্রয়োজনীয় ক্ষেত্রে মসৃণকারক তৈল প্রদান করতে হবে। পরবর্তীতে খেড কাটা শুরু করতে এবং কিছুক্ষণ পরপর ডাই স্টকটিকে বায়দিকে ঝুরিয়ে ধাতু চূর্ণগুলিকে পরিকার করে নিতে হবে। শ্রেড কাটার সময় মাঝে মাঝে তৈল দিতে হবে। পর্যায়ক্রমে ট্যাপিং এর ক্ষেত্রে ট্যাপের ন্যায় ডাইকেও বায় দিক ও ডায়দিক ঝুরিয়ে শ্রেড কাটা সম্পন্ন করতে হবে।

বোল্ট বা কার্যবস্তুর যতটুকু স্থানে শ্রেড কাটা প্রয়োজন “ডাই” এই পরিমাণ স্থান অতিক্রম করলে স্টকটিকে বায় দিক ঝুরিয়ে উপরের দিক আরম্ভ করার স্থানে ফিরিয়ে আনতে হবে। সলিড ডাই এর ক্ষেত্রে সতর্কতার সহিত ডাইসহ ডাই স্টক খুলে রাখতে হবে। কিন্তু এ্যাডজাস্টেবল ডাই এর ক্ষেত্রে যতক্ষণ পর্যন্ত শ্রেড আবশ্যিক পরিমাণ গভীর না হয় ততক্ষণ পর্যন্ত পর্যায়ক্রমে সেট ক্লুব সাহায্য ডাইটিকে চাপ প্রয়োগে ছেট করতে হবে এবং পর্যায়ক্রমে সেট করা ও শ্রেড কাটার মাধ্যমে প্রয়োজনীয় গভীরতায় শ্রেড কাটার কাজ সম্পন্ন করতে হবে। শ্রেড নির্দিষ্ট মাপ পর্যন্ত গভীর হয়েছে কীনা তা একটি ক্লু পিচ গেজ অথবা স্ট্যাভার্ড নাট দ্বারা পরীক্ষা করে দেখতে হবে।

## উৎপন্ন ক্লু শ্রেডে দোষ স্টার কারণ :

- ১) ক্লু শ্রেড তৈরি করার প্রথমে বা শ্রেড তৈরি করার সময় কিছুক্ষণ অন্তর ডাই এর মধ্যে এবং বোল্টের উপরিভাগে মসৃণকারক তৈল প্রয়োগ না করলে।
- ২) এ্যাডজাস্টেবল ডাই এর ক্ষেত্রে ধীরে ধীরে গভীর না করে একবারে বেশি করে গভীর করার চেষ্টা করলে।
- ৩) আরম্ভ স্থান ভিন্ন অন্য স্থানে ডাই ধাকার সময় একে নিয়ন্ত্রণ করলে।

- ৪) ডাই স্টকে ঘুরাবার সময় একে ভূমির সমান্তরালভাবে না রেখে কোনোভাবে রাখলে ।
- ৫) যে ভোল্টের উপরিভাগে ক্রু থ্রেড তৈরি করতে হবে তা বাঁকাভাবে ভাইসে আটকানো থাকলে ।
- ৬) যে ডাই এর তীক্ষ্ণতা নাই উহা দ্বারা বলপূর্বক থ্রেড কাটার চেষ্টা করলে ।
- ৭) যে মাপের ক্রু থ্রেড তৈরি করা প্রয়োজন বোল্টের ব্যাস উহা অপেক্ষা সরু বা মোটা হলে ।
- ৮) ডাই এর মাপ বোল্টের ব্যাসের সমান হলে ।
- ৯) বোল্টের উপরিভাগ উহার অক্ষ থেকে সমান দূরত্বের গোলাকার না হলে ।

### ২৩.৪ ডাই চালানোর সময় তৈল প্রদানের প্রয়োজনীয়তা :

নিম্নলিখিত কারণে ডাই দ্বারা প্যাচ কাটার সময় তৈল প্রদানের প্রয়োজনীয়তা রয়েছে ।

- ওয়ার্কপিসের থ্রেডের তল এবং কাটিং টুলের মধ্যে ঘর্ষণ কমানোর জন্য ।
- এটা কাজকে সহজ এবং সুন্দর করতে সাহায্য করে ।
- চিপ বের হয়ে আসতে সাহায্য করার জন্য ।
- ডাই দ্বারা থ্রেড কাটার ক্ষমতা দীর্ঘস্থায়ী করার জন্য ।
- ডাই দ্বারা থ্রেড কাটার সময় উৎপন্ন তাপকে নিয়ন্ত্রণ করার জন্য যেন ডাই এর দাঁতের টেম্পার ঠিক থাকে ।

ডাই ব্যবহার করার সময় কার্যবস্তুর উপর বিভিন্ন ধাতু অনুসারে যে যে মসৃণকারক তৈল বা লুব্রিকেন্ট প্রয়োগ করার প্রয়োজন হয়, নিচে তার একটি তালিকা দেওয়া হলো-

| ধাতু                   | মসৃণকারক তৈল             |
|------------------------|--------------------------|
| কাস্ট আয়রন (সাধারণ)   | আবশ্যিক হয় না           |
| কাস্ট আয়রন (খুব শক্ত) | তারপিন তৈল ও কাটিং অয়েল |
| মাইল্ড সিটল            | কাটিং অয়েল              |
| শক্ত সিটল              | কাটিং অয়েল              |
| ত্রাস কিংবা ব্রোঞ্জ    | আবশ্যিক হয় না           |
| অ্যালুমিনিয়াম         | কেরোসিন কিংবা তারপিন তৈল |

### ২৩.৫ বিভিন্ন প্রকার ডাই-এর ব্যবহার :

#### ক) সলিড বা ছিঁড়ি ডাই (Solid Die) :

এ প্রকার ডাই এর মাপকে নিয়ন্ত্রণ করা যায় না । যে কোন একটি মাত্র মাপে এটি তৈরি হয় । এ প্রকারের ডাই সাধারণত ছোট মাপের ক্রু তৈরিতে বেশি ব্যবহৃত হয় । এ সব ডাই দ্বারা থ্রেডের আকৃতি বা ফার্ম একসাথে পাওয়া যায় । ১২ মিলিমিটারের অধিক মাপের সলিড ডাই ব্যবহার করা অসুবিধাজনক । সলিড ডাই তিন প্রকারের হয় । যেমন-

#### (১) ক্ষয়ার ডাই (Square Die) :

এ প্রকার ডাই-এ থ্রেড কাটার দাঁত বিশিষ্ট চেজার গুলি দৃঢ় বা সলিডভাবে বর্গাকৃতি কর্তৃপক্ষের চ্যাপ্টা স্টকে তৈরি করা হয় । এটাকে বর্গাকার নির্দিষ্ট আকারের ডাই স্টকে আবদ্ধ করে ব্যবহার করতে হয় । পুরাতন

এবং ক্ষয়প্রাপ্ত খ্রেডকে নতুনের ন্যায় করতে এটা উপযোগী হয়। ডাই এর মাপ ট্যাপের ন্যায় ডাই এর উপর লেখা থাকে। যেমন- গ ১২ X ১.৭৫। এখানে গ দ্বারা মেট্রিক খ্রেড, ১২ দ্বারা বোল্টের বাইরের ব্যাস এবং ১.৭৫ দ্বারা পিচ বুকানো হয়েছে।

#### (২) ডাই-নাট (Die-Nut) :

এটা দেখতে নাটের মতো। পুরাতন এবং নষ্ট হয়ে যাওয়া খ্রেডকে পরিষ্কার করে নতুনের মতো করতে ব্যবহৃত হয়।

#### (৩) রাউন্ড ডাই (Round Die) :

এর বাইরের আকৃতি গোলাকার এবং পুরাতন খ্রেডকে পরিষ্কার করে নতুনের ন্যায় করতে ব্যবহৃত হয়।

#### (৪) স্ক্রু প্লেট (Screw Plate Die) :

প্রকৃত পক্ষে এ ডাই এক প্রকার স্টিলের পাতলা খণ্ড, যাতে অনেকগুলি বিভিন্ন মাপের ছিদ্রের মধ্যে স্ট্যান্ডার্ড রকমের স্ক্রু খ্রেড করা থাকে। এ ডাই এর মাপ লম্বায় প্রায় ৩০০ মি.মি. এবং চওড়ায় ১০০ মি.মি. থেকে ১২৫ মি.মি. হয় এবং একদিকে দৃঢ়ভাবে ধরার জন্য হাতল বানানো থাকে। যে সকল বস্তুর ব্যাস খুব সরু অর্থাৎ যাদের ডায়ামেটার কম সে ক্ষেত্রে স্ক্রু খ্রেড তৈরিতে এ ডাই খুব উপযোগী হয়। স্ক্রু প্লেট ডাই দ্বারা খ্রেড তৈরি করার সময় একে কীভাবে ধরতে হয় নিম্নে তা দেখানো হলো।



চিত্র-২৩.৭৪ স্ক্রু-প্লেট ডাই- এর ব্যবহার

#### ৬) অ্যাডিজাস্টেবল বা নিয়ন্ত্রণশীল ডাই (Adjustable Die) :

এ প্রকার ডাই এর মাপকে কমানো বা বাড়ান যায়। এ ডাইগুলি বড় ব্যাসের ওয়ার্কপিসের উপর খ্রেড কাটতে ব্যবহৃত হয়। এ শ্রেণির ডাই দুই প্রকার হয়ে থাকে। যেমন-

#### (১) রাউন্ড স্প্লিট ডাই (Round Split Die) :

এটা আকারে গোল এবং একটি পার্শ্ব খণ্ডিত করা থাকে। ডাই-কে ডাই স্টক বা হাতলের মধ্যে রেখে এর গায়ের উপর স্কুকে টাইট দিলে এটা সংকুচিত হয়ে মাপে ছোট হয়। এ অবস্থায় পুরাতন স্ক্রু খ্রেড পরিষ্কার করতে খুব সুবিধা হয়। আবার খাঁজের উপর স্কুকে রেখে টাইট দিলে এটার মাপ বাড়ে এবং এ অবস্থায় প্রথম কাট দিতে খুব সুবিধা হয়। এ খাঁজের আকার ১.৫ মি.মি. থেকে ৫ মি.মি. পর্যন্ত হয়। ডাই স্টকের স্কুকে প্রয়োজন অনুসারে সমন্বয় করে চালনা করলে সহজে এবং ভালোভাবে স্ক্রু খ্রেড তৈরি করা যায়।

#### (২) স্টক ডাই (Stock Die) :

এ ডাই দুইটি অংশে বিভক্ত থাকে অর্থাৎ স্ক্রু খ্রেড কাটার চেজারগুলি দুইভাগে খণ্ডিত থাকে। এর গঠন আয়ত-

কার হয় যাতে ডাই স্টকে সহজে বসে এবং চালানোর সময় না ঘোরে। চেজারের গঠন অনুপাতে খাঁজ কাটা থাকে এবং ডাই স্টকের মধ্যে চেজারগুলি রেখে স্ক্রু-এর মাপ হিসেবে দুইদিকে দেওয়া স্ক্রু দ্বয়ের সাহায্যে চেজার গুলিকে প্রয়োজনীয় অবস্থানে এনে তারপর ব্যবহার করা হয়। এ প্রকার ডাই দ্বারা সহজে বড় মাপের বোল্টের উপর অল্প অল্প গভীরতা দিয়ে পূর্ণ থ্রেডের গঠন বা ফর্ম উৎপন্ন করা যায়।

### ২৩.৬ ডাই চালানোর ক্ষেত্রে সতর্কতা :

সতর্কতা যে কোন কাজ সুষ্ঠুভাবে নিরাপদে সম্পাদন করতে সাহায্য করে। ডাই চালানোর কাজ নির্বিশে সম্পাদন করার জন্য বিভিন্ন প্রকার সতর্কতা গ্রহণের প্রয়োজন হয়। সতর্কতার বিষয়গুলি নিম্নে উল্লেখ করা হলো-

- ডাই দ্বারা থ্রেড কাটার জন্য গোলাকার রডের কোন ব্যাস কোন অবস্থায় ডাই এর মাপের বেশি রাখা যাবে না।
- প্রয়োজনীয় গঠন এবং আকৃতির ডাই স্টক ব্যবহার করতে হবে এবং ডাই স্টকের মধ্যে ডাইকে আটকানোর ব্যাপারে নিশ্চিত হয়ে থ্রেড কাটা শুরু করতে হবে।
- থ্রেড কাটার সময় প্রয়োজনীয় স্থলে অবশ্যই কুল্যান্ট ব্যবহার করতে হবে।
- থ্রেড কাটার সময় কিছুক্ষণ পর পর ডাইকে বামদিকে ঘুরাতে হবে যাতে চিপ বের হয়ে আসে।
- ডাই এর কাটিং এজ নষ্ট হয়ে গেলে এটা ব্যবহার করা অনুচিত।
- ডাইকে ঘুরানোর সময় ডাই স্টককে ভূমির সমান্তরাল ভাবে রাখতে হবে অথবা কার্যবস্তুর অক্ষের সহিত সমকোণে রেখে ঘুরাতে হবে। বাম বা ডান দিকে নত থাকলে ডাই ভেঙ্গে যাবার সম্ভাবনা থাকে।
- ডাই স্টককে উভয় হাতে ধরে সমন্বয় শক্তি দিয়ে ঘুরাতে হবে, এক হাতে ঘুরানো অনুচিত।
- অ্যাডজাস্টেবল ডাই চালানোর সময় পর্যায়ক্রমে সেট স্ক্রু টাইট দিয়ে কয়েকবার ডাই চালিয়ে থ্রেড কাটার কাজ সম্পাদন করতে হবে। একবারে বেশি করে সেট স্ক্রু টাইট দিয়ে তাড়াতাড়ি থ্রেড কাটার চেষ্টা করলে ডাই ভেঙ্গে যেতে পারে।
- কাজ শেষে ডাই খোলার সময় উপরের দিকে কাজ আরম্ভ করার কাছাকাছি স্থানে এসে ডাইকে আল্টে আল্টে ঘুরিয়ে সাবধানতার সহিত খুলতে হবে যেন নিচে পরে ডাই বা ডাই স্টক ক্ষতিগ্রস্ত না হয়।
- ডাইকে বলপূর্বক ঘুরিয়ে থ্রেড কাটার চেষ্টা করা অনুচিত।
- ভাঙ্গা বা খারাপ ডাই স্টক ব্যবহার করা উচিত নয়।

## প্রশ্নমালা-২৩

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ডাই বলতে কী বোঝায়?
২. ডাই কী কাজে ব্যবহৃত হয়?
৩. ডাই আটকানোর জন্য যে যন্ত্র ব্যবহৃত হয় তার নাম কী?
৪. সলিড ডাই কাকে বলে?
৫. এড্জাস্টেবল ডাই কাকে বলে?
৬. কী গেজ দ্বারা ক্রু থ্রেডের সঠিকতা পরীক্ষা করা হয়?
৭. সলিড ডাই কয় প্রকার ও কী কী?
৮. এ্যাডজাস্টেবল ডাই কয় প্রকার ও কী কী?
৯. ডাই কোন প্রকারের টুল?
১০. ১৪ মিলিমিটারের ব্যাসের ডাই চালানোর জন্য বোল্টের ব্যাস কত মিলিমিটার হওয়া প্রয়োজন?
১১. ডাই এর উপর গ ১২x১.৭৫ লেখা থাকলে সে ক্ষেত্রে গ ১২ দ্বারা কী বোঝানো হয়?
১২. অ্যালুমিনিয়ামের তৈরি বস্তুতে ডাই দ্বারা থ্রেড কাটতে লুব্রিকেন্ট হিসেবে কী ব্যবহার করা প্রয়োজন?
১৩. ডাই নাট কী কাজে ব্যবহৃত হয়?
১৪. ডাই কী ধাতুর তৈরি হয়?

### সংক্ষিপ্ত প্রশ্ন :

১. ডাই এর প্রকারভেদ উল্লেখ কর।
২. ডাই কাজ কী বুঝিয়ে লেখ।
৩. সলিড ডাই ব্যবহারের সুবিধা কী?
৪. এ্যাডজাস্টেবল ডাই ব্যবহারের সুবিধা কী?
৫. এ্যাডজাস্টেবল ডাই এর ব্যবহার উল্লেখ কর।
৬. ডাই দ্বারা থ্রেড কাটার ক্ষেত্রে কেন তৈল প্রদান করা হয়?
৭. থ্রেড কাটার সময় ডাই ভেঙ্গে যাবার কারণ উল্লেখ কর।
৮. ডাই এবং ট্যাপের মধ্যে পার্থক্য কী?
৯. ডাই দ্বারা কী কী স্ট্যান্ডার্ডের থ্রেড কাটা হয়?
১০. সচরাচর ব্যবহৃত ধাতু ভেদে থ্রেড কাটার জন্য ব্যবহৃত লুব্রিকেন্টসমূহের নাম লেখ।

### রচনামূলক প্রশ্ন :

১. ডাই বলতে কী বুঝায় ? ডাই এর প্রকারভেদ বর্ণনা কর।
২. ডাই দ্বারা থ্রেড কাটার সময় তৈল প্রদানের প্রয়োজনীয়তা বর্ণনা কর।
৩. ডাই ভেঙ্গে যাবার সাধারণ কারণগুলি ব্যাখ্যা কর।
৪. ডাই চালনার ক্ষেত্রে সতর্কতার বিষয়গুলি ব্যাখ্যা কর।
৫. ডাই দ্বারা থ্রেড কাটার পদ্ধতি ব্যাখ্যা কর।
৬. ডাই দ্বারা থ্রেড কাটার সময় উৎপন্ন ক্রু থ্রেডে দোষ সংঘটিত হওয়ার কারণগুলি ব্যাখ্যা কর।
৭. ডাই এর শ্রেনি বিভাগ বর্ণনা কর।

## মেশিন টুলস্ অপারেশন-১

### প্রথম পত্র (ব্যবহারিক)

#### অধ্যায়-১

## হ্যাক'স দিয়ে ধাতু কর্তন (Metal cutting by Hacksaw)

### ১.১ যন্ত্রপাতি নির্বাচন :

এ কাজে প্রয়োজনীয় যন্ত্রপাতির তালিকা নিচে লিপিবদ্ধ করা হলো-

- ১) হ্যাক্স ফ্রেম - দৈর্ঘ্য ৩০০ মি.মি. বা ১২ ইঞ্চি।
- ২) হ্যাক্স রেডঃ দৈর্ঘ্য = ৩০০ মি.মি., প্রস্থ = ১২ মি.মি., টি.পি.আই = ১৮, হাই কার্বন স্টিলের তৈরি।
- ৩) মার্কিং বা স্ক্রাইবিং কালার।
- ৪) ট্রাইক্সয়ার।
- ৫) স্ক্রাইবার-দুই প্রান্ত বিশিষ্ট।
- ৬) প্রিক পাঞ্চ- ১০০ মি.মি. দৈর্ঘ্য।
- ৭) বল পিন হ্যামার- ১২০ গ্রাম।
- ৮) ফিটার্স বেঞ্চ ভাইস- ১৫০ মি.মি., ওয়ার্কিং টেবিলের উপর স্থাপিত।
- ৯) ভার্নিয়ার ক্যালিপার-১৫০ মি.মি., সূক্ষ্মতা-০.১ মি.মি.।
- ১০) দ্রাবক তেল (Solvent Oil) বা সাধারণ পানি।
- ১১) হ্যাক ব্রাশ।
- ১২) কাপড়ের টুকরা।
- ১৩) অয়েল ক্যান।
- ১৪) সারফেস প্লেট।
- ১৫) ওয়ার্কিং টেবিল।
- ১৬) অ্যানভিল।
- ১৭) স্টিল রুল-৩০০ মি.মি.।
- ১৮) স্ক্রাইবিং ব্লক।
- ১৯) গগলস।

### ১.২ ওয়ার্কিংসে লে-আউট ও মার্কিং করা :

ওয়ার্কিংসে লে-আউট ও মার্কিং করার পূর্বে জব বা কার্যবস্তুর ফিনিশ চিত্র এবং মূল্যায়নের জন্য বিবেচ্য বিষয়গুলি প্রশিক্ষণার্থীদের খেয়াল রাখতে হবে। এক্ষেত্রে কার্যবস্তুকে দ্বি-খণ্ডিত করার পর প্রাপ্ত টুকরার প্রস্থ ড্রয়িং অনুযায়ী হতে হবে। মূল্যায়নের জন্য কার্যবস্তুকে কাটার পর প্রাপ্ত দুইটি তলেরই মসৃণতা, সমতলতা

(Flatness) এবং উপরিতলের সত্ত্বত সমকোণ হয়েছে কিনা তা বিবেচনা করতে হবে।



চিত্র-১.১৪ ক্লাইবার দিয়ে ওয়ার্কপিসের উপর অনুভূমিক লাইন টানা

ওয়ার্কপিসে লেআউট বা মার্কিং করার সময় ধারাবাহিকভাবে নিম্নলিখিত কাজগুলো করতে হবে-

- ১) যত্নপাতি এবং ওয়ার্কপিস পরিষ্কার করা।
- ২) মার্কিং করার জন্য তল পরিষ্কার ও মোটামুটি মসৃণ করা।
- ৩) মার্কিং-কালার অথবা চক পেন্সিল দ্বারা নির্দিষ্ট জায়গায় প্রলেপ দেওয়া।



চিত্র-১.২৪ স্টিল রুল ও ট্রাই স্কয়ার দিয়ে মার্কিং করা।

৪) ট্রাইক্সয়ার ও ক্লাইবারের সাহায্যে ওয়ার্কপিসের তলে সোজা কিনারার সাথে সমকোণে এবং প্রান্ত থেকে ৮ মি.মি. দূরত্বে দাগ দেওয়া। ৮ মি.মি. দূরত্ব সঠিক করার জন্য স্টিল রুল ব্যবহার করা ক্লাইবার দ্বারা দাগ কাটা স্থানে পাঞ্চিং করে চিহ্নিত করা। এ ক্ষেত্রে রেখার উপর পাশাপাশি ছোট ছোট গর্ত করার জন্য হাতুড়ি দিয়ে পাঞ্চের মাথায় আন্তে আন্তে আঘাত করতে হবে।



চিত্র-১.৩ঃ পার্কিং করে মার্কিং করা লাইন দৃশ্যমান করা।

#### ১.৩ ওয়ার্কপিসকে নিরাপদে ভাইসে আটকানো :

- ১) ভাইসের হাতল ঘূরিয়ে “জ” (Jaw) দুইটিকে প্রয়োজন মত ফাঁকা কর।
- ২) ভাইসের “জ” এর ফাঁকা স্থানে কার্যবস্তুকে ভূমির সমান্তরাল ভাবে এবং মার্কিং রেখাকে ভূমির সাথে লম্বভাবে রেখে কার্যবস্তুকে পূর্ণভাবে টাইট দাও। এ ক্ষেত্রে খেয়াল রাখতে হবে যে, মার্কিং রেখা যেন ভাইসের “জ” এর বাম পার্শ্বে থাকে।
- ৩) ওয়ার্কপিস নিচের দিকে নেমে যাবার সম্ভাবনা থাকলে সে ক্ষেত্রে ওয়ার্কপিসের নিচে একটি কাঠের ব্লক বসাও।



চিত্র-১.৪ঃ ওয়ার্কপিস ভাইসে আটকানো।

#### ১.৪ ফ্রেমের মধ্যে সঠিক ভাবে ড্রেড আটকানো :

- ১) হ্যাক'স ফ্রেমের উইং নাট টিলা কর। কাজের উপযোগী ড্রেড ফ্রেমের নির্দিষ্ট স্থানে বসাও। ড্রেড বসানোর সময় উহার দাঁত সম্মুখ দিকে অর্ধাং হাতলের বিপরীতে রেখে সঠিকভাবে বসাও।

২) উইং নাট ঘড়ির কাটার দিকে সুরাও এবং ব্লেডটিকে শক্ত করে আটকাও।



চিত্র-১.৫: হ্যাক'স ফ্রেমের সাথে ব্লেড সঠিকভাবে আটকানো।

- ৩) কার্যভোগে ব্লেডকে ফ্রেমের সাথে একই তলে অথবা সমকোণে আটকানো যায়। উইং নাটের সাহায্যে ব্লেড-এর উপর অর্পিত টান কমানো বা বাড়ানো যায়।
- ৪) ওয়ার্কপিসের শুরুত্ব বিবেচনা করে ব্লেডকে এমনভাবে বাছাই করতে হবে যেন ব্লেডের কম পক্ষে ৩টি দাঁত ওয়ার্কপিসের কাটার তল স্পর্শ করে।

#### ১.৫ হ্যাক সংযোগ কাজ সম্পন্ন করণ ॥

- ১) ওয়ার্ক টেবিলের সামনে দুই পা ফাঁক করে দাঁড়াও। এক হাত দিয়ে হ্যাক'স ফ্রেমের হাতল ও অন্য হাত দিয়ে ফ্রেমের সামনের অংশ শক্ত করে ধর।
- ২) ওয়ার্ক পিসের মার্ক করা জায়গায় হ্যাকস বসাও। এক হাতে ওয়ার্কপিস ধরে বুঢ়ো আঙুলের সাহায্যে হ্যাক'স ব্লেডের ৩টি দাঁত বসানো নিশ্চিত কর। ১০০ -৩০০ কোণে সামনের দিকে নত করে অন্য হাত দিয়ে হ্যাক'সকে সামনের দিকে ঠেলে দাও।



চিত্র-১.৬: হ্যাক'স সঠিকভাবে চালানো।

৩) হ্যাক'স নিচের দিকে অল্প চাপ প্রয়োগ করে সামনে পিছনে চলাচল করাও।



চিত্র-১.৭: হ্যাক'স চালানোর সময় চাপ সামনে যাওয়ার সময় বেশি আসার সময় কম প্রয়োগ করার নিয়ম।

৪) ধাতু ক্ষয় করার পথ তৈরি হলে ব্লেড আনুভূমিক ভাবে স্থাপন করে হ্যাক'স চালাও। নরম ধাতু কাটার সময় প্রতি মিনিটে ৫০-৬০ বার এবং শক্ত ধাতু কাটার সময় প্রতি মিনিটে ৩০-৪০ বার হ্যাক'স চালাও।

৫) কিছুক্ষণ পর পর হ্যাক'স ব্লেড ও কার্যবস্তুর কাটার স্থানে সলুবল অয়েল বা পানি প্রয়োগ কর (চিত্র-১.৮)।

৬) হ্যাক'স ব্লেড কে কার্যবস্তুর নির্ধারিত দাগের বাহির পার্শ্ব বরাবর চালনা করতে হবে যাতে কাটার পর উহার মাপ ৮ মিলিমিটার হয়।



চিত্র-১.৮: হ্যাক সম্বিং-এ কাটিং অয়েল প্রয়োগ।

- ৭) ব্লেডকে সম্পূর্ণ দৈর্ঘ্য বরাবর চালনা করাতে হবে, যেন প্রত্যেকটি দাঁত ধাতু কাটার কাজে ব্যবহৃত হয়।
- ৮) কার্যবস্তুর মার্কিং লাইন অনুযায়ী ধাতু কাটা হচ্ছে কীনা তা দেখ এবং ধাতু কাটা সম্পন্ন কর।

#### ১.৬ হ্যাক'স চালানোর সময় পরীক্ষা :

- ১) কার্যবস্তু মার্কিং অনুযায়ী কাটা হচ্ছে কীনা দেখ।
- ২) হ্যাক'স ব্লেড কাটার উপযোগী টাইট আছে কীনা দেখ। প্রয়োজন উইং নাটকে ঘুরিয়ে চাপ (Pressure) সমন্বয় করতে হবে।
- ৩) কার্যবস্তু সঠিকভাবে নিরাপদে আটকানো আছে কীনা দেখ।
- ৪) ব্লেডের সমস্ত দাঁত ধাতু কাটার কাজে ব্যবহৃত হচ্ছে কীনা দেখ।



চিত্র-১.৯: হ্যাক সয়ঁ-এ সঠিকতা পরীক্ষা।

#### ১.৭ হ্যাক সয়ঁ-এর সময় সর্তকতার বিষয় :

- ১) কার্যবস্তুকে সঠিকভাবে এবং নিরাপদে ভাইসে আটকানো।
- ২) হ্যাক'স ফ্রেমে নির্দিষ্ট দিকে এবং প্রয়োজনীয় চাপে ব্লেড সেট করা।
- ৩) কার্যবস্তুর ধাতু এবং উহার আকার, আকৃতি বিবেচনা করে ব্লেড নির্বাচন করা।
- ৪) প্রয়োজনীয় চাপে এবং স্ট্রোক সংখ্যায় হ্যাক'স চালনা করা।
- ৫) প্রয়োজনীয় ক্ষেত্রে কুল্যান্ট ব্যবহার করা।
- ৬) শিক্ষানবিশ অবস্থায় প্রথমে নমনীয় (Flexible) এবং পরে অনমনীয় (All Hard) ব্লেড ব্যবহার করা।
- ৭) সকল ক্ষেত্রে সঠিক পদ্ধতি অবলম্বন করা।

## অধ্যায়-২

### ত্রিস কাইলিং পদ্ধতিতে ধাতুর পৃষ্ঠদেশ সমতলকরণ (Surface Finishing by Cross Filing Process)

#### ২.১ ওয়ার্কশিপে লে-আউট ও মার্কিং করণ :

১) জবের উপর চক পেলিল বা মার্কিং কালার এর প্রলেপ দাগ।



চিত্র-২.১ঁ জবের উপর মার্কিং কালারের প্রলেপ দেওয়া।

২) ট্রাই ক্রায়ার ও ক্লাইবারের সাহায্যে ওয়ার্কশিপের তলের সোজা কিনারার সাথে সমকোণে প্রয়োজনীয় দাগ দাগ।



চিত্র-২.২ঁ জবের উপর ট্রাই-ক্রায়ার ও ক্লাইবার দিয়ে মার্কিং করণ।

৩) দাগ বরাবর ডট পাঞ্চের সাহায্যে কিছু দূর পর পর পাঞ্চিং করে চিহ্নিত কর।



চিত্র-২.৩ঁ জবের উপর পাঞ্চ দিয়ে মার্কিং করণ।

## ২.২ সঠিক ফাইল নির্বাচন :

- ১) প্রয়োজনীয় মসৃণতা এবং ধাতু অপসারণের পরিমাণ বিবেচনা করে ফাইল নির্বাচন করতে হয়।
- ২) গ্রাফ সারফেস এবং অধিক ধাতু অপসারণের জন্য বাস্টার্ড (Bastard), ডবল কাট, ১২" বা ৩০০ মি.মি. টেপার ফ্ল্যাট ফাইল নির্বাচন করা যায়।
- ৩) মসৃণ সারফেস এবং অল্প পরিমাণ ধাতু অপসারণের জন্য স্মৃথ (Smooth), সিংগল কাট, ১০" বা ২৫০ মি.মি. টেপার ফ্ল্যাট ফাইল নির্বাচন করা যায়।



চিত্র-২.৪: সঠিক ফাইল ও ভাইস নির্বাচন।

## ২.৩ আনুষাঙ্গিক যন্ত্রণাতি :

- ১) ফাইল (২) কিটার্স বেঝ ভাইস (৩) ট্রাই কমার (৪) ফাইবার (৫) ডট পাখ (৬) হ্যামার (৭) ওয়্যার ব্রাশ (৮) ফাইল কার্ড (৯) স্টিল রুল।

## ২.৪ ওয়ার্কপিস সঠিকভাবে বেঝ ভাইসে আটকানো :

- ১) ফাইলিং করার সময় ভাইসের “জ” পয়ত্ত উচ্চতা অপারেটরের কনুই বরাবর হওয়া উচিত, এতে ফাইলিং কাজ সহজতর হয়।
- ২) ফাইলিং করার তলাটিকে ভাইসের “জ” এর সমান্তরালভাবে গ্রেখে ভাইসের দুই “জ” এর মধ্যে দৃঢ়ভাবে আটকাতে হবে।



চিত্র-২.৫: ওয়ার্কপিস ভাইসে আটকানো ও ফাইল সেট করার কৌশল

- ৩) ফাইলিং করার তলাটিকে যথাসম্ভব ভাইসের ‘জ’ এর নিকটবর্তী রাখতে হবে। নচেৎ কার্যবস্তু কেঁপে শব্দের সৃষ্টি করবে।
- ৪) ফাইলিং করার সময় কার্যবস্তু যেন নিচে নেমে না যাব সে অন্য উহার নিচে কাঠের বা অনুরূপ অন্য কাঠ ব্যবহার করতে হবে, (অবশ্যই প্রয়োজনীয় ক্ষেত্রে)।

৫) ফিনিশিং কার্যবস্তুর উপর ফাইলিং করার জন্য ভাইসের ‘জ’ এর সহিত নরম ‘জ’ ব্যবহার করতে হবে, এতে কার্যবস্তুর তলের মসৃণতা নষ্ট হয় না।

#### ২.৫ ওয়ার্কপিসে সঠিক ভাবে ফাইলিং করা :



চিত্র-২.৬ঃ ছোট ফাইল ধরার কৌশল।



চিত্র-২.৭ঃ বড় ফাইল ধরার কৌশল।

ফাইলিং করার জন্য বড় ফাইল ধরা (চিত্র- ২.৭) এবং ছোট ফাইল ধরার (চিত্র- ২.৬) নিয়ম আলাদা। বড় ফাইলের হ্যান্ডেল ডান হাতে এবং উহার পয়েন্ট প্রান্ত বাম হাতে ধরে ফাইলিং আরম্ভ করতে হয়। ছোট ফাইলের ক্ষেত্রে ফাইলের হ্যান্ডেল ডান হতে এবং উহার পয়েন্ট বাম হাতের তর্জনী ও বৃদ্ধাংশগুলি দিয়ে ধরে কাজ আরম্ভ করতে হয়। ওয়ার্কপিসের তলের উপর নির্দিষ্ট জায়গায় ফাইলিং করার প্রয়োজন হলে ফাইলের হ্যান্ডেল ডান হতে, বাম হাতের বৃদ্ধাংশগুলি হাতলের দিকে এবং তর্জনী ও মধ্যমা আঙুল দুইটি ফাইলের উপর পয়েন্টের দিকে রেখে ফাইলিং করতে হবে। ফাইলিং করতে অপারেটরকে উভয় পা ফাঁক করে সামনের দিকে ঝুঁকে দৃঢ়ভাবে দাঁড়াতে হয়। এতে ফাইলিং সুবিধাজনক ও মাপের সঠিকতা বজায় থাকে।

#### ২.৬ সঠিক স্ট্রোক এবং গতিতে ফাইল চালনা :

ফাইলিং করার সময় ফাইলের উপর সমহারে চাপ প্রয়োগ করা উচিত। ওয়ার্কপিসের উপর প্রয়োজনীয় চাপ সব সময় বজায় রেখে ফাইলকে সামনের দিকে ঠেলতে হয় এবং বিনা চাপে পিছনে টানতে হয়। ফাইলের বিভিন্ন অবস্থানে দুই হাতে প্রয়োগকৃত চাপের পরিমাণ সমন্বয় করতে হয়। চাপের পরিমাণ এই রকম হওয়া উচিত যাতে ফাইল কার্যবস্তুর উপর পিছলিয়ে না যায় বা আটকিয়ে না থাকে। স্ট্রোকের সংখ্যার পরিমাণ না বাড়িয়ে প্রত্যেক স্ট্রোকেই যেন ফাইল কার্যবস্তুকে কাটে সে দিকে খেয়াল রাখতে হবে। ধাতু যত শক্ত হবে স্ট্রোকের সংখ্যা তত কমাতে হবে। দ্রুত গতিতে ফাইল চালনা করা উচিত নয়। প্রশিক্ষণার্থীদের ক্ষেত্রে ফাইলিং এর প্রথম অবস্থায় এক নাগাড়ে যাতে বেশিক্ষণ ফাইলিং করতে পারে সে জন্য স্ট্রোকের সংখ্যা নিয়ন্ত্রণ করে প্রত্যেক স্ট্রোকে ধাতু কাটার বিষয়টি নিশ্চিত হতে হবে।



চিত্র-২.৮ঃ ক্রস ফাইলিং করার কৌশল।

প্রথমে এক কোণ থেকে ‘ডায়গোনাল’ (Diagonal) ফাইলিং করে পুনরায় অন্য কোণ থেকে ‘ডায়গোনাল’ ফাইলিং করলে তাকে ক্রস ফাইলিং (Cross Filling) বলে। ক্রস ফাইলিং একটি সাধারণ ফাইলিং পদ্ধতি। এই পদ্ধতিতে দিক পরিবর্তন করে ‘ডায়গোনাল’ ফাইলিং করা হয়। কার্যবস্তুর নোংড়া তল পরিষ্কার করতে, কার্যবস্তুর তল থেকে দ্রুত ধাতুকে অপসারিত করতে এবং তল সমতল করতে ক্রস ফাইলিং ব্যবহৃত হয়।



चित्र-२.९४ फाइले चाप देखाव कोशल ।

#### २.७ फाइले एवं समय एवं शर्ते समतलता परीक्षण करणे :

समतलता परीक्षा करावा कम्प लिंग फाइल तल अवधा ट्राई फ्राम द्यावहार कराते हवे । कार्बनियर तलाव उपर लिंग तलाव गार्ड अवधा ट्राई फ्रामवे द्यावेके छापाव कर्ये देहाव पिण्डाव आलो हेवे अवलोकन कराते हवे । यादि आलो अपर्याहार निये देखा तो वार तावे तुकाते हवे तराटी सवाळ आहे (चित्र-२.१०) ।



चित्र-२.१०१ फाइले एवं शर्ते समतलता परीक्षा ।

#### २.८ फाइल कार्ड दारा स्ट्रिक पकडाते काइल परिक्षाव करणे :

फाइल करावा समय अव्याहाराज्ञीर धातुखाल फाइले दोकेव काके अटिकिंदा थाके । तले परवर्कीते धातु काटिते असुविधा हवे । फाइल कार्ड दारा साठेव दारावे फाइल परिक्षाव कराले फाइले दोक सहजेई धातुके काटिते गाजे ।



चित्र-२.११४ फाइल कार्ड दारा फाइल स्ट्रिकावे परिक्षाव करणे ।

## ২.৯ ফাইলিং করার সময় সর্তকতার বিষয়াদি অনুশীলন :

- ১) কাজের পূর্বে সেফটি ড্রেস পরিধান করা।
- ২) সঠিকভাবে ও নিরাপদে কার্যবস্তুকে ভাইসে আটকানো।
- ৩) ফাইলিং এর সময় কার্যবস্তুর তল এবং ফাইলের ময়লা কখনো হাত দিয়ে পরিষ্কার না করা।
- ৪) মাঝে মাঝে কার্যবস্তুর তল পরীক্ষা করা।
- ৫) কাজের সময় বা পরে একটা ফাইলের উপর অন্য ফাইল না রাখা।
- ৬) মনযোগ সহকারে কাজ করা। কাজের সময় অথবা বাক্যালাপ পরিহার করা।
- ৭) সঠিক পদ্ধতিতে কাজ করা।
- ৮) সঠিক ফাইল নির্বাচন ও ব্যবহার করা।

## অধ্যায়-৩

### ধাতুতে খাঁজ কাইলিং

#### (Corrogated/Profile Filing of Metals)

##### ৩.১ ওয়ার্কপিসে লে- আউট ও মার্কিং করণ :

- ১) হোয়াইট স্পিগ্নিট দিয়ে সারফেস প্রেট পরিষ্কার কর .
- ২) ডাস্টার ক্লথ দিয়ে যত্নপাতি ও ওয়ার্কপিস পরিষ্কার কর .
- ৩) মার্কিং কালার (বং) দিয়ে ওয়ার্কপিসের তলে প্রলেপ দাও .



চিত্র-৩.১: জবের উপর মার্কিং কালারের প্রলেপ দেওয়া।

- ৪) ট্রাই-কয়ার ও ক্লাইবারের সাহায্যে ওয়ার্কপিসের তলে সোজা কিনারার সাথে সমকোণে প্রয়োজনীয় দাগ দাও।



চিত্র-৩.২: জবের উপর ট্রাই-কয়ার ও ক্লাইবার দিয়ে মার্কিংকরণ।

- ৫) পাঞ্চ খাড়ভাবে দাগের উপর ধর ও হাতুড়ি দিয়ে মাথায় আঘাত করে মার্কিং করা লাইন বরাবরে পাঞ্চিং কর।



চিত্র-৩.৩: পাঞ্চ বসানোর নিয়ম



চিত্র-৩.৪ঃ পাঞ্চ দিয়ে লাইন বরাবর মার্কিং করা।

### ৩.২ সঠিক ফাইল নির্বাচন :

খাঁজ ফাইলিং করার জন্য ফাইল নির্বাচনের ক্ষেত্রে খাঁজের আকার এবং আকৃতি প্রধানত বিবেচনা করতে হবে। খাঁজে আকারের উপর নির্ভর করে ফাইলের আকার এবং আকৃতির উপর ভিত্তি করে ফাইলের আকৃতি নির্ধারণ করতে হবে। তবে ফাইলের আকার এবং আকৃতি অবশ্যই খাঁজের আকার এবং আকৃতি নির্ধারণ করতে হবে। তবে ফাইলের আকার এবং আকৃতি অবশ্যই খাঁজের আকার এবং আকৃতি তুলনায় ছোট হবে। এই কাজে (১) রাউভ ফাইল (২) হাফ রাউভ ফাইল (৩) ট্র্যাঙ্গুলার ফাইল (৪) ক্ষয়ার ফাইল (৫) ফ্ল্যাট ফাইল ইত্যাদি কাজের ডিজাইন ভেদে নির্বাচন করা যায়।



চিত্র-৩.৫ঃ সঠিক ফাইল ও ভাইস নির্বাচন।

### ৩.৩ আনুষঙ্গিক যত্নগাতি নির্বাচন :

- ১) ফাইল- রাফ মসৃণতার জন্য বাস্টার্ড বা সেকেন্ড কাট ফাইল, চূড়ান্ত মসৃণতার জন্য স্মৃথ বা ডেড স্মৃথ ফাইল।
- ২) কিটার্স বেঝ ভাইস।
- ৩) সারফেস প্রেট
- ৪) অ্যানভিল
- ৫) প্রিক পাঞ্চ

- ৬) হ্যামার (হালকা ওজন বিশিষ্ট)
- ৭) কাইবার
- ৮) সলিড ট্রাইকল্যার
- ৯) ত্রাশ
- ১০) ফাইল কার্ড
- ১১) প্রয়োজনীয় পেজ
- ১২) ভার্নিয়ার ক্যালিপার
- ১৩) মার্কিং কালার, ফুলি ইত্যাদি।
- ১৪) ইনসাইড ভার্নিয়ার ক্যালিপার্স।

#### ৩.৪ ওপারকপিস সঠিকভাবে বেঁক ভাইসে আটকানো :

- ১) ফাইলিং করার সময় ভাইসের "জ" পর্যন্ত উচ্চতা অপারেটরের কনুই ব্রাবর হওয়া উচিত, এতে ফাইলিং কাঞ্জ সহজতর হয়।
- ২) ফাইলিং করার তলাটিকে ভাইসের "জ" এর সমান্তরাল ভাবে রেখে ভাইসের দুই "জ" এর মধ্যে দৃঢ়ভাবে আটকাতে হবে।



চিত্র-৩.৬৪ ওপারকপিস ভাইসে সঠিকভাবে আটকানো

- ৩) ফাইলিং করার তলাটিকে যথাসম্ভব ভাইসের 'জ' এর নিকটবর্তী রাখতে হবে। নচেৎ কার্যবন্ধ কেঁপে শব্দের সৃষ্টি করবে।
- ৪) ফাইলিং করার সময় কার্যবন্ধ ঘেন নিচে নেমে না থাক সে জন্য উহার নিচে কাঠের বা অলুকণ অল্য কেক ব্যবহার করতে হবে, (অবশ্যই প্রয়োজনীয় ক্ষেত্রে)।
- ৫) কিনিশিৎ কার্যবন্ধের উপর ফাইলিং করার জন্য ভাইসের 'জ' এর সদিত নরম 'জ' ব্যবহার করতে হবে, এতে কার্যবন্ধের তলের অসুস্থিতা নষ্ট হয় না।

### ৩.৫ সঠিকভাবে ফাইল ধরা :

- খাঁজ ফাইলিং করার পূর্বে খাঁজে আকৃতি বিবেচনা করা। খাঁজের আকার এবং আকৃতির ভিত্তিতে সঠিক ফাইল নির্বাচন কর।



চিত্র- ৩.৭ঃ ছোট ফাইল ধরার কৌশল।



চিত্র- ৩.৮ঃ বড় ফাইল ধরার কৌশল।

- ফাইলের হ্যান্ডেল ডান হাতে ধর এবং বৃঞ্জাঙ্গুলি উপরে রেখে অন্যান্য আঙ্গুল নিচে রাখ। বাম হাতে পয়েন্ট ধর। ধাতু অপসারণ এবং মসৃণতা বিবেচনা করে ফাইলের উপর চাপ প্রয়োগ কর এবং প্রয়োজনীয় চাপ বিবেচনা করে ফাইলকে ধরে ফাইলিং করতে শুরু কর।



চিত্র- ৩.৯ঃ খাঁজ ফাইলিং করার কৌশল।

### ৩.৬ সঠিক স্ট্রোক এবং গতিতে ফাইলিং সম্পন্ন করণঃ

- ভাইলের একটু পার্শ্বে দাঢ়াও। ডান পা পিছনে ও বাম পা সামনে ফাঁক করে দাঢ়াও।



চিত্র- ৩.১০ঃ খাঁজ ফাইলিং এর সময় দাঢ়ানোর কৌশল।

২) গোকুল কাইলি এবং সুমনের লিঙে কিছুটা ঝুকে দাঁড়াও।



চিত্র-৪.১১১: শীর কাইলি এবং কাইল চালানোর কৌশল।

- ৩) মুক ধাক্কা অপসারণ এবং জন্ম ও ফল সম্বল করার জন্যে কাইলি এবং মিক পরিষর্কন কর।
- ৪) অমাবশিলের কল টিক্স হাতে ১৫ টিরি কোণে সম্পূর্ণ কাইল সাময়ে ও পেছনে চালানো কর। সাময়ে দেখার সময় চাপ বজাল কর। ইহতে ধাক্কা করিবে। শীর গতিকে বেঞ্চাক লিঙে রাখে। ইহতে অঙ্গে কল পাওয়া যাব। এভাবে কাইলি কাইল সম্পন্ন কর।

৪.৭ কাইলি এবং সময় বন্ধ পরে শীর পরীক্ষাকরণ :

- ১) কাইলি করবার সময় যাবে যাবে শীরের আপ পরীক্ষা কর।
- ২) কাইলের সময় অঙ্গে কাল রাখ রাখ বাতে দার্কিং এবং বাস্তিকে দ্বা বাব।
- ৩) কাইলি কাইল সম্পন্ন হবার পর যাপন বন্ধের সাহায্যে উহার যাপ পরীক্ষা কর।



চিত্র-৪.১২২: কাইলি এবং সময় বন্ধ পরে শীরের যাপ পরীক্ষাকরণ।

## অধ্যায়-৪

### ধাতুতে ড্র ফাইলিং (Draw Filing on Metals)

#### ৪.১ ওয়ার্কপিসে লে-আউট ও মার্কিং :

ড্র-ফাইলিং সাধারণত কম ধাতু কেটে অধিকতর মসৃণতা প্রদান, উভল সারফেসের মাঝখানের ধাতু অপসারণ করে উহাকে সমতল করা, কম প্রস্থ বিশিষ্ট সারফেসকে শীঘ্র ক্ষয় করার জন্য বিশেষ উপযোগী। জব বা কার্যবস্তু নির্বাচনের ক্ষেত্রে সমতল পার্শ্বের সহিত সমকোণে সমতল সারফেস অর্ধাং তল ফাইলিং করে তৈরি করার মাধ্যমে ড্র ফাইলিং এ দক্ষতা অর্জন করার বিষয়টি বিবেচনা করা হয়েছে। নিম্নলিখিত ভাবে লে-আউট ও মার্কিং কাজ সমাধা কর-

- ১) ওয়ার্কপিসের উপর মার্কিং কালার (রং) দিয়ে প্রলেপ দাও।



চিত্র-৪.১: জবের উপর মার্কিং কালারের প্রলেপ দেওয়া।

- ২) ট্রাই-ক্ষয়ার ও ক্রাইবারের সাহায্যে ওয়ার্কপিসের তলে সোজা কিনারার সাথে সমকোণে দাগ দাও।



চিত্র-৪.২: জবের উপর ট্রাই-ক্ষয়ার ও ক্রাইবার দিয়ে মার্কিংকরণ।

- ৩) দাগের উপর পাঞ্চ খাড়াভাবে ধরা এবং হাতুড়ি দিয়ে ইহার ধান্তে আঘাত কর। এভাবে সম্পূর্ণ দাগ বরাবর পাঞ্চ দিয়ে মার্কিং কর।



চিত্র-৪.৩: পাঞ্চ দিয়ে শাইন বরাবর মার্কিং করা।

### ৪.২ সাঠিক ফাইল নির্বাচন :

কাজের ধরন ও উদ্দার্কণ্ডের আকার, আকৃতির উপর ভিত্তি করে ফাইল নির্বাচন করতে হয়। এ ক্ষেত্রে গাঁথ কিনিশিং এবং বেশি খাতু কঠোর অস্য বাস্টোর্ড বা সেকেভ কাট, সিলেল কাট, ১২ ইঞ্জি ফ্ল্যাট ফাইল নির্বাচন করা যেতে পারে। স্মৃথ বিনিশিং এবং অন্য খাতু কঠোর অস্য স্মৃথ বা তেজ স্মৃথ, সিলেল কাট, ১০ ইঞ্জি ফ্ল্যাট ফাইল নির্বাচন করা যায়।



চিত্র-৪.৪: সাঠিক ফাইল ও ভাইস নির্বাচন।

### ৪.৩ আনুষঙ্গিক ব্যবহার :

- ওডার্ক সারফেস হিসেবে সারফেস প্রেট ব্যবহার করা। সারফেস প্রেটের কাছে ঘেঁজেগ দিতে মার্কিং কালার ব্যবহার করা।
- কাজের সময় অব আটকানোর জন্যে ফাইল ব্যবহার করা।
- ওডার্কণ্ডের সমতল ও বর্ণাকার পরীক্ষা করার জন্যে ট্রাই-করার ব্যবহার করা।
- মার্কিং করার জন্য ফাইবার, প্রিক পাক, ছেট বল পিল হাতার ব্যবহার করা।

### ৪.৪ সাঠিক পদ্ধতিতে ফ্ল ফাইলিং :

ফাইলকে ধরে দিকে ধরে দৈর্ঘ্য বরাবর ক্রমাগত টেলে এবং টেলে ফাইলিং করাকে ফ্ল ফাইলিং বলে। ফ্ল ফাইলিং এর অস্য সাঠিক কাজে ফাইল ধরার সকল অর্জন করা খুবই কম্পক্ষপূর্ণ।



চিত্র-৪.৫: সাঠিক পদ্ধতিতে ফ্ল-ফাইলিং।

- ১) ডান হাতের তালু ও আচুল দিয়ে ফাইলের হ্যাঙেলের দিকে ধরতে হবে। বাম হাতের তালু ও আচুল দিয়ে ফাইলের পরেন্টের দিকে ধরতে হবে।
- ২) উভয় মসৃণ ও কম খাতু কঠোর অস্য উভয় হাত ওডার্কণ্ডের সিকটিবজ্জি রেখে ছেট করে ফাইল ধরতে হবে।



চিত্র-৪.৬: সঠিক পদ্ধতিতে ছু-ফাইলিং (কম ধাতু মসৃণভাবে কাটা)।

- ৩) ওয়াকপিসের পার্শ্বভিত্তিখে ফাইল চালনা করতে হবে।
- ৪) কম মসৃণ এবং বেশি ধাতু কাটার জন্য উভয় হাত ওয়াকপিস থেকে দূরে রেখে বড় দূরত্ব নিয়ে ফাইল ধরতে হবে।
- ৫) ফাইলের দুই প্রান্তে দুই হাত দ্বারা সমভাবে চাপ প্রয়োগ করা।



চিত্র-৪.৭: ছু-ফাইলিং এ সমান চাপে ফাইল চালানোর নিয়ম।

- ৬) ফাইলিং এর সময় মাঝে মাঝে ফাইল কার্ড দ্বারা ফাইল পরিষ্কার করা।



চিত্র-৪.৮: ফাইল কার্ড দ্বারা ফাইল পরিষ্কার করণ।

#### ৪.৫ ফাইলিং এর সময় এবং পরে তল পরীক্ষা করণ :

- ১) মার্কিং কালার (রং) দিয়ে সারফেস বা তলে প্রলেপ দেওয়া।
- ২) ওয়াকপিসের উচু অংশগুলো রঙিন হয়েছে কীনা পরীক্ষা করা।

৩) সম্পূর্ণ তলে রং লাগলে বুঝতে হবে সমতল হয়েছে।



(১)



(২)



(৩)

চিত্র-৪.৯: সারফেস প্লেটের সাহায্যে সমতলতা পরীক্ষা।

- ৪) ওয়ার্কপিসের তল সমতল ও মসৃণ না হওয়া পর্যন্ত বারবার ড্র ফাইলিং করা।
- ৫) স্টিল বা ট্রাই-স্ফ্যার দ্বারা সমতলতা পরীক্ষা করা যায়।
- ৬) ট্রাই-স্ফ্যারের সাহায্যে সমকোণ এবং বর্গাকার বা আয়তকার পরীক্ষা করা।
- ৭) ওয়ার্কপিসের উপর ট্রাই-স্ফ্যার বা স্টিল রুলকে তীর্থকভাবে সেট করে সমতলতা পরীক্ষা করা।

#### ৪.৬ ড্র ফাইলিং এর সময় সতর্কতার বিষয়াদি :

- ক) নিরাপদ ড্রেস পরিধান করা।
- খ) সঠিকভাবে নিরাপদে কার্যবস্তুকে আটকানো।
- গ) সঠিকভাবে ফাইলকে ধরা এবং যেদিক বা জায়গা উঁচু সেখানে তুলনামূলক বেশি চাপ প্রয়োগ করা।
- ঘ) মাঝে মাঝে কার্যবস্তুর তল পরীক্ষা করা।
- ঙ) সঠিক ফাইল নির্বাচন ও ব্যবহার করা।
- চ) কাজের ধারাবাহিকতা বজায় রাখা।

## অধ্যায়-৫

### পৌরোহীর হ্যাক'স দ্বারা ধাতু কাটা (Metal Cutting by Power Hacksaw)

৫.১ ব্যবহারি নির্বাচন :

ক) ধাতু কাটিবাব জন্য পৌরোহীর হ্যাক'স মেশিন ব্যবহাই কৰ।



চিত্ৰ-৫.১। পৌরোহীর হ্যাক'স মেশিন

গ) পৌরোহীর হ্যাক'স মেশিন পরিকার কৰাব অন্য মেশিন দ্বাৰা এবং কাপড়ের টুকুৰা সংও।



চিত্ৰ-৫.২। মেশিন দ্বাৰা কারেস্ট কৰন

ঘ) পৌরোহীর হ্যাক'স কে তেল দেওৱাৰ অন্য অৱেল কালি এবং অৱেল গাল সংও।



চিত্ৰ-৫.৩। অৱেল কালি ও অৱেল গাল

ঘ) বাঁর মেটাল সাপোর্ট দেওয়ার জন্য ম্যাটারিয়াল স্ট্যান্ড লাও।



চিত্র-৫.৪১ ম্যাটারিয়াল স্ট্যান্ড

ঙ) ভরাকপিসের দৈর্ঘ্য মাপার জন্য সিল ট্যাগ বা সিল রুল লাও।



চিত্র-৫.৪২ সিল রুল



চিত্র-৫.৪৩ সিল ট্যাগ

চ) সূবিধাজনক অ্যাক্ষেসিবল স্টপ লাও।



চিত্র-৫.৭১ অ্যাক্ষেসিবল স্টপস

ঘ) সার্কিল রেখা লেট লাও।



চিত্র-৫.৭৪ অ্যাক্ষেসিবল রেখা ও স্প্রিন্টার

### ৫.২ ওয়ার্কপিস লে-আউট ও মার্কিং :

- ক) সূক্ষ্ম মাপের জন্য চক দিয়ে কাটবার স্থান রেজিত কর।
- খ) সূক্ষ্ম মাপের জন্য হ্যাক'স দিয়ে কাটবার স্থান অল্প পরিমাণ কেটে চিহ্নিত কর।



চিত্র-৫.৮: ওয়ার্কপিস লে-আউট ও মার্কিং

- গ) ভাইসের মধ্যে ওয়ার্কপিস স্থাপন কর।



চিত্র-৫.৯: ওয়ার্কপিস ভাইসে স্থাপন

### ৫.৩ সার্টিকভাবে ওয়ার্কপিস আটকানো :

- ক) পাওয়ার হ্যাক'স চালু কর।
- খ) প্রয়োজনীয় উচ্চতায় ড্রেড উঁচু কর।
- গ) ভাইসের মধ্যে ওয়ার্কপিস স্থাপন কর।
- ঘ) মার্ক অনুসারে জব রেখে হ্যান্ডলের সাহায্যে ভাইস পূর্ণ টাইট দিয়ে নাও।



চিত্র-৫.১০: ওয়ার্কপিস ভাইসে টাইট করে বাঁধা

ঙ) একাধিক ওয়ার্কপিস কাটবার জন্য অ্যাডজাস্টেবল স্টপ সেট কর।



চিত্র-৫.১১: অ্যাডজাস্টেবল স্টপ সেট করা

চ) বার মেটালের মুক্ত প্রান্তে সাপোর্ট দেয়ার জন্য ম্যাটেরিয়াল স্ট্যাভ স্থাপন কর। প্রয়োজনে একাধিক ম্যাটেরিয়াল স্ট্যাভ ব্যবহার কর।  
ছ) যখন খাট ওয়ার্কপিসের দৈর্ঘ্য ভাইসের 'জ' এর দৈর্ঘ্যকে অতিক্রম করে না তখন ভাইসের মধ্যে ওয়ার্কপিসের অপর প্রান্তে একই মাপের একটি প্যাকিং মেটাল ব্যবহার কর।

#### ৫.৪ প্রয়োজনীয় পাওয়ার হ্যাকস ব্লেড নির্বাচন :

ক) পাওয়ার হ্যাকস মেশিনের ফ্রেমের ধারণ ক্ষমতার উপর ভিত্তি করে ব্লেডের দৈর্ঘ্য নির্বাচন কর।  
খ) ওয়ার্কপিসের আকার, আকৃতি ও ধাতুর উপর ভিত্তি করে ব্লেডের পুরুত্ব, প্রস্থ, দাঁতের পিচ বা টি.পি.আই এবং ব্লেড তৈরির ধাতু নির্বাচন কর।  
গ) বেশি প্রস্থচ্ছেদ বিশিষ্ট নমনীয় ধাতুর জন্যে ৪-৬ টি.পি.আই ব্লেড ব্যবহার কর।  
ঘ) শক্ত ও ভঙ্গুর ধাতুর জন্যে ৮-১০ টি.পি.আই ব্লেড ব্যবহার কর।  
ঙ) পাতলা প্রস্থচ্ছেদ বিশিষ্ট ধাতুর জন্যে ১৪ টি.পি.আই ব্লেড ব্যবহার কর।

#### ৫.৫ মেশিন ব্লেড সেটকরণ :

ক) ফ্রেমে ব্লেড পরানোর জন্যে দাঁতের গতির দিক সম্পর্কে নিশ্চিত হওয়া।

খ) সাধারণত পাওয়ার হ্যাক-'স' এর টানা স্ট্রোকই হলো কাটিং স্ট্রোক। কাটিং স্ট্রোকে ব্রেড নিম্নচাপ সহকারে অবস্থা হয়। তাই কাটিং স্ট্রোকের দিকে ব্রেডের দাঁতের সম্মুখ দিক রেখে ব্রেড স্থাপন কর।



চিত্র-৫.১২৩ হ্যাক-'স' ব্রেড মেশিনে স্থাপন করা

ঘ) ক্ষেত্রের গায়ে ব্রেড পরাবার জন্যে দিক নির্দেশনা ধাকতে পারে। উক্ত নির্দেশনা পরীক্ষা কর।

#### ঙ) ব্রেড সেটিং এর জন্যে-

- ◆ ক্ল্যাম্পিং ক্লুবয় খোল।
- ◆ সঠিক সাইজের রেঞ্চ ব্যবহার কর।
- ◆ ব্রেড টেনশনিং নাট ডিলা কর।
- ◆ দাঁতের সঠিক দিক ঠিক রেখে ক্লু এর সাহায্যে ব্রেড সেট কর।
- ◆ চূড়ান্তভাবে ক্ল্যাম্পিং ক্লুবয় টাইট দাও।

#### ৫.৬ মেশিনের গতি ও ফিল্ড নির্বাচন :

মেশিনের গতি ও ফিল্ড নির্বাচনে নিম্নের বিষয়গুলো বিবেচনা কর-

- ◆ ধাতুর ধৰ্মতা
- ◆ ধাতুর শক্ততা
- ◆ ধাতুর অস্থচেদ
- ◆ ধাতুর গুণাগুণ ইত্যাদির উপর বিবেচনা করে মেশিনের চার্ট থেকে গতি ও ফিল্ড নির্বাচন কর এবং সেই অনুসারে মেশিনে সেট কর।
- ◆ ফিল্ড পাওয়ার জন্য ব্রেডের উপর চাপ প্রয়োগের প্রয়োজন হয়। এটাকে ফিল্ড প্রেসার বা কর্তৃপক্ষের চাপ বলা হয়। নির্দিষ্ট ফিল্ড পাওয়ার জন্য পুরাতন ব্রেডের ক্ষেত্রে নতুন ব্রেডের তুলনায় বেশি প্রেসার লাগে। তাই ফিল্ড বা প্রেসার কঠোল লিভারের সাহায্যে ফিল্ড প্রেসার নিয়ন্ত্রণ কর।

#### ৫.৭ সঠিকভাবে ধাতু কাটা সম্পর্কস্থাপন :

- > পাওয়ার হ্যাক-'স' চালু কর।
- > ওয়ার্কপিসকে স্পর্শ করবার জন্যে ব্রেডকে ধীরে ধীরে নিচে নামাও।
- > প্রতি মিনিটে স্ট্রোকের সংখ্যা নির্ধারণ কর।

- প্রেসার কন্ট্রোল লিভারের সাহায্যে ব্লেডের উপর চাপ নিয়ন্ত্রণ কর।
- কুল্যান্ট সরবরাহ ব্যবস্থা চালু কর।
- আন্তে আন্তে ধাতু কাটা সম্পন্ন কর।

#### ধাতু কাটার সময় ও পরে পরীক্ষা :

- ধাতু কাটার সময় মাঝে মাঝে মেশিন থেকে মাপ অনুযায়ী কাটা হচ্ছে কীনা তা দেখে নাও।
- পাওয়ার ‘স’ চলার সময় উহার গতি, চাপ ইত্যাদি ঠিক আছে কীনা তা দেখে নাও।
- ধাতু কাটা হলে উহার সব মাপ পরীক্ষা কর।

#### ৫.৯ পাওয়ার হ্যাক সংস্কার এর ক্ষেত্রে সতর্কতার বিষয়াদি :

- ক) ওয়ার্কপিস ভাইসে ঠিকভাবে বেঁধে নেওয়া। চিলা হলে জব নড়ে গিয়ে ব্লেড ভাঙ্গার সম্ভাবনা থাকে।
- খ) ব্লেড সঠিক দিকে বাঁধা।
- গ) ব্লেড ভালোভাবে টাইট দেওয়া।
- ঘ) জব অনুসারে গতি ও স্ট্রোক নির্ধারণ করা।
- ঙ) ব্লেড নামানোর সময় সাবধানতার সাথে নামানো।
- চ) মনোযোগের সাথে মেশিন চালনা করা।
- ছ) সঠিক পদ্ধতিতে কাজ করা।
- জ) সঠিক নিয়মে কাটিং ফ্লাইড ব্যবহার করা।

## অধ্যায়-৬

# ধাতুতে ড্রিল মেশিন দ্বারা ছিদ্রকরণ (Drilling in Metals by Drill Machine)

### যন্ত্রপাতি নির্বাচন :

ক) ড্রিলিং মেশিন (বেঞ্চ ড্রিল)  
খ) ওয়ার্কপিস ক্ল্যাস্পিং ভাইস  
গ) টুইস্ট ড্রিল বিট (ব্যাস ১২ মি.মি. অপেক্ষা কম)  
ঘ) ড্রিল চাক  
ঙ) চাক কী  
চ) সেন্টার পাঞ্চ  
ছ) হ্যামার  
জ) অ্যানভিল  
ঝ) মেশিন ব্রাশ  
এও) ভার্নিয়ার ক্যালিপার (১৫০ মি.মি., সূক্ষ্মতা ০.১ মি.মি., আউট সাইড ও ইনসাইড 'জ' এবং ডেপথ রড  
বিশিষ্ট)  
ট) প্যারালাল বার  
ঠ) স্প্রিং জয়েন্ট ডিভাইডার  
ড) মার্কিং কালার অথবা চক  
ঢ) ট্রাইক্সয়ার (১৫০ মি.মি.)  
ণ) সিল রঞ্জ (১৫০ মি.মি.)  
ত) ক্রাইবার  
থ) সারফেস প্লেট

### ওয়ার্কপিসে লে-আউট ও মার্কিং :

ওয়ার্কপিস লে-আউট ও মার্কিং নির্ভর করে জব ডিজাইনের উপর। এক্ষেত্রে একটি ধাতুখণ্ডের উপর যে কোন জায়গায় যে কোন ব্যাসের একটি ছিদ্র করানো যায় আবার নির্দিষ্ট ব্যাসের ছিদ্র কোন একটি সুনির্দিষ্ট জায়গায় করানো যায়। যে কোন জায়গায় ছিদ্র করার ক্ষেত্রে কার্যবস্তুকে অ্যানভিলের উপর রেখে সেন্টার পাঞ্চকে খাড়াভাবে ধরে মাথায় হাতুড়ির আঘাত দিয়ে গভীর ছিদ্র করতে হবে যেখানে পরবর্তীতে ড্রিল বিটের পয়েন্ট বসিয়ে ছিদ্র করতে হবে। সুনির্দিষ্ট জায়গায় নির্দিষ্ট ব্যাসের ছিদ্র করার ক্ষেত্রে বর্গাকার বা আয়তাকার বিশিষ্ট একটি ঘন বস্তু বিবেচনা করে উহার ঠিক মধ্যস্থানে ১০ মি.মি. ব্যাসের ছিদ্র করতে হবে।

### ঠিকভাবে মার্কিং করতে হলে নিম্নোক্ত পদক্ষেপগুলো নিতে হবে :

- ❖ বর্গাকার বা আয়তাকার তলে মার্কিং কালার অথবা চকের গুড়া পানিতে মিশিয়ে একটি প্রলেপ দেওয়া।
- ❖ সিল রঞ্জ বা ভার্নিয়ার ক্যালিপারের সাহায্যে এক পার্শ্বের মধ্যলাইন নির্দিষ্ট করে উহাতে ট্রাইক্সয়ার সেট করে ক্রাইবারের সাহায্যে রেখা টানা।
- ❖ একইভাবে পরবর্তী পার্শ্বের মধ্যস্থানে ট্রাইক্সয়ার সেট করে ক্রাইবারের সাহায্যে রেখা টানা।

- ❖ দুইটি রেখার মিলিত বিন্দু হলো উক্ত তলের মধ্যবিন্দু এবং ঐ বিন্দুতে সেন্টার পাঞ্জের সাহায্যে সেন্টার ছোট গর্ত করা।
- ❖ অ্যানভিলের উপর কার্যবস্তুকে রেখে পাখিং করা।
- ❖ ডিভাইডারের পয়েন্টকে ৫ মি.মি. দূরত্বে সেট করে মধ্যবিন্দুকে কেন্দ্র করে ১০ মি.মি. ব্যাসের একটি বৃত্ত অঙ্কন করা।
- ❖ মার্কিং এর সময় সারফেস প্লেট ব্যবহার করা।

### ৬.৩ ওয়ার্কপিস সঠিকভাবে আটকানো :

#### ভাইস ক্ল্যাম্প করা :

ড্রিলিং এর জন্য যথাযথভাবে ভাইস ক্ল্যাম্পিং না হলে ভাইস নড়াচড়া করবে এবং এতে সঠিক স্থানে ড্রিলিং শুরু হবে না। ফলে ব্যাসের চাইতে ছিদ্রের ব্যাস বড় হয়ে যাবে। এছাড়া ক্ল্যাম্পিং ছাড়া ভাইস বড় সাইজের ঘূরন্ত ড্রিলের সাথে ঘূরে ও ছুটে যেয়ে দুর্ঘটনা ঘটাতে পারে। কাজেই ড্রিলিং এর জন্য ভাইসকে যথাযথ ক্ল্যাম্পিং করা অত্যাবশ্যিক।

ওয়ার্কপিস ভাইসে ক্ল্যাম্প করার সময় নিম্নলিখিত বিষয়গুলো অনুসরণ করতে হয়-

- ❖ সঠিক মাপের ক্ল্যাম্পিং নাট ও বোল্ট নির্বাচন করতে হয়।
- ❖ টেবিলের স্লট, টপ ও ভাইসের তলা চিপস মুক্ত করতে হয়।
- ❖ তারপর মজবুত ভাবে ভাইস ক্ল্যাম্পিং সম্পন্ন করতে হয়।

#### ওয়ার্কপিস ক্ল্যাম্প করা :

ক) ক্ল্যাম্পিং এর সময় পরিচ্ছন্নতা বজায় রাখ।

খ) ওয়ার্কপিসকে মোটাযুটি নিরাপদ ও সঠিক অবস্থানে স্থাপন কর।

গ) মার্কিং করা তলকে ভূমির অর্থাৎ মেশিন টেবিলের সমান্তরাল রাখ।

ঘ) ওয়ার্কপিসকে পর্যাপ্ত চাপ প্রয়োগে টাইট করে ভাইসে আটকাও।

ঙ) ক্ল্যাম্পিং সরঞ্জাম বা টেবিলকে ড্রিলিং এ ক্ষতিগ্রস্ত হওয়া থেকে রক্ষা করার জন্য কাঠের ব্লক বা প্যারালাল বার স্থাপন কর।

### ৬.৪ ড্রিল বিট সঠিক ভাবে ড্রিল চাকে বাঁধা :

- ❖ ড্রিল চাকের ‘জ’ ও শ্যাঙ্ক এবং মেশিন স্পিন্ডল বোর চিপমুক্ত কর।
- ❖ ছোট সাইজের স্টেইট শ্যাঙ্ক ড্রিল বিটকে সরাসরি ড্রিল চাকে সেট কর।
- ❖ ছোট সাইজের টেপার শ্যাঙ্ক ড্রিল হলে একাধিক স্লিপ ব্যবহার কর।
- ❖ বড় সাইজের টেপার শ্যাঙ্ক ড্রিল হলে সরাসরি মেশিন স্পিন্ডলে সেট কর।
- ❖ ড্রিল বিট অপসারণের জন্য ড্রিল ড্রিফট ব্যবহার কর।
- ❖ মেশিন চালিয়ে ড্রিল বিটের কেন্দ্র ঠিক আছে কীনা পরীক্ষা কর।



চিত্র-৬.১: চাক, চাক-কী ও ড্রিল বিট

### ৬.৫ ড্রিল বিটের ব্যাস অনুযায়ী ঘূর্ণনগতি সেটিং :

কার্যবস্তুর ধাতু এবং ড্রিল বিটের ব্যাসের উপর ভিত্তি করে ড্রিলিং মেশিনের ঘূর্ণন গতি নির্ধারণ করতে হয়। ঘূর্ণন গতি নির্ধারনের জন্য সর্বপ্রথম ড্রিল বিটের ধাতু এবং কার্যবস্তুর ধাতু এই দুইটি বিষয় বিবেচনা করে কাটিং স্পিড নির্ধারণ (তাত্ত্বিক অংশে প্রদত্ত চার্ট এর মাধ্যমে) করতে হয়। তারপর নিম্নের সূত্রের মাধ্যমে আর.পি.এম (R.P.M) বের করতে হয়।

#### কাটিং স্পিড বা ঘূর্ণনগতি বের করার সূত্র :

মনে কর,

$$CS = \text{কাটিং স্পিড}$$

$$D = \text{কাটারের ব্যাস, মিলিমিটার}$$

$$N = \text{ড্রিল বিটের আর.পি.এম}$$

$$CS = \frac{\pi DN}{1000} \text{ মিটার/মিনিট}$$

$$\text{সূতরাং, } N = \frac{CS \times 1000}{\pi D}$$



চিত্র-৬.২ঃ ড্রিলিং প্রক্রিয়ায় বিটের রোটেশন ও ফিডের দিক

প্রাপ্ত আর.পি.এম সব সময় মেশিনে প্রদত্ত আর.পি.এম এর সাথে মিলে না। এক্ষেত্রে নিকটতম আর.পি.এম ব্যবহার করতে হয়। তারপর নিম্নোক্ত ধাপসমূহ অনুসরণ কর-

- ❖ মেশিনে প্রদত্ত আর.পি.এম চার্ট বুঝে নাও।
- ❖ চার্ট এ প্রদত্ত চিত্র দেখে লিভারের অবস্থান নির্ণয় কর।
- ❖ মেশিন বন্ধ অবস্থায় নির্দিষ্ট আর.পি.এম এর জন্য লিভার সেট কর।
- ❖ লিভার সরানো না গেলে স্পিন্ডলকে হাতে ঘূরিয়ে লিভারের অবস্থান সমন্বয় করে সেট কর।

### ৬.৬ সঠিক পদ্ধতিতে ড্রিলিং :

- ১) ড্রিলিং মেশিনের টেবিল উচ্চতায় স্থাপন কর।
- ২) ড্রিল যাতে ওয়ার্কপিসের উপরে অবাধে ঘূরতে পারে তা নিশ্চিত কর।
- ৩) ড্রিল যাতে সঠিক গভীরতায় প্রবেশ করতে পারে সে ব্যাপারে নিশ্চিত হও।
- ৪) প্যারালাল ব্লকের কোন স্থানে ড্রিল বিট যাতে স্পর্শ না করে তা নিশ্চিত হও।
- ৫) ড্রিল স্টপকে এমন ভাবে সেট কর যাতে ড্রিলটি টেবিল বা ভাইসের তলা না কাটে।
- ৬) ওয়ার্কপিস ড্রিল পয়েন্টের নিচে স্থাপন কর।
- ৭) ড্রিল সেন্টার পাথর মার্ক অভিযুক্ত নামিয়ে এবং স্পিন্ডলকে হাতে ঘূরায়ে পরীক্ষা কর।
- ৮) ওয়ার্কপিসটি সামনে পেছনে বা ডানে বামে নাড়িয়ে ছিদ্রের কেন্দ্র ও ড্রিল পয়েন্ট একই সরল রেখায় আন।

- ৯) ওয়াকপিস পূর্ণ টাইটে ছালালিং কর।
- ১০) যোশিন চালু কর।
- ১১) ড্রিল পরেন্টেকে আধিক্যভাবে নিয়মুণ্ঠী কিড দাও।
- ১২) যোশিন বন্ধ কর।
- ১৩) হিন্দুর অবস্থান পরীক্ষা কর।
- ১৪) প্রোজেনে ওয়াকপিস সঠিকভাবে স্থাপন কর।
- ১৫) সেন্টারিং এর পরে ওয়াকপিসকে পূর্ণ টাইট দিতে স্কুল করো না।
- ১৬) বে সকল ওয়াকপিস হাতে ধরে আটকিরে রাখা বাবে উহাতে গ্রো-হোল ছিলিং করার সময় ড্রিল যোশিনের টেবিল হাতাখ ছিলিং হতে রক্ষার জন্যে একটি ব্লক ব্যবহার কর।
- ১৭) হাতে কিড দিয়ে ছিলিং কর কর।
- ১৮) কুল্যান্ট ব্যবহার কর।
- ১৯) গভীর হিন্দুর কেন্দ্রে যাবো যাবো ড্রিল বিট উত্তিরে চিপস অপসারণ কর।



চিত্র-৬.৩: ছিলিং এর আরম্ভিক অবস্থা (ক) ও শেষ অবস্থা (খ)।

#### ৬.৭ ছিলিং এর সময় এবং পরে পরীক্ষাকরণ

- ১) ওয়াকপিসের মার্কিং পরীক্ষা করা।
- ২) ওয়াকপিসের পাখিং পরীক্ষা করা।
- ৩) যোশিন সেট পরীক্ষা করা।
- ৪) ওয়াকপিসের ও ছিলের অবস্থান পরীক্ষা করা।
- ৫) ওয়াকপিস হোল্ডিং পরীক্ষা করা।
- ৬) ড্রিল বিট ঠিকভাবে ধাতুকে কাটছে কীনা পরীক্ষা করা।
- ৭) ফিডের পরিমাণ ঠিক হচ্ছে কীনা পরীক্ষা করা।
- ৮) ছিলিং এর পর ছিপ ছালিং অনুসারে হরেহে কিনা পরীক্ষা করা।
- ৯) ভার্নিয়ার ক্যালিপারের সাহায্যে হিন্দুর ব্যাস পরীক্ষা করা।
- ১০) হিন্দুর কিনারা থেকে পার্শ্বে দূরত্ব পরীক্ষা করা।

### ড্রিলিং এর ক্ষেত্রে সতর্কতা :

- ১) হ্যান্ড গ্লাভসহ নিরাপদ পোশাক পরিধান করা।
- ২) সেফটি গগলস পরিধান করা।
- ৩) ক্ল্যাম্পিং ও মেশিন সেট হয়েছে কীনা দেখা।
- ৪) কাজের স্থান পরিষ্কার রাখা।
- ৫) মেশিন সঠিক ভাবে পরিষ্কার ও তৈলাক্ত করা।
- ৬) মনযোগের সাথে কাজ করা।
- ৭) মেশিন টেবিল যাতে ছিদ্র না হয় সেদিকে খেয়াল রাখা।
- ৮) মেশিনের অসুবিধা দেখলে সঙ্গে সঙ্গে বন্ধ করা।
- ৯) বুবতে অসুবিধা হলে ইনস্ট্রাকটরের নিকট বুঝে নেওয়া।

## অধ্যায়-৭

### হ্যান্ড ট্যাপ দিয়ে ধাতুর ছিদ্রে পাঁচ কাটা (Tapping in Metal)

#### ৭.১ ব্যবহারি নির্বাচন :

- পাঁচ কাটার জন্য নির্ধারিত ড্রিল (ট্যাপ সাইজ ড্রিল) করা ওয়াকপিস।



চিত্র-৭.১: ট্যাপ সাইজ ড্রিল করা ওয়াকপিস

- ওয়াকপিসে ড্রিল করা ছিদ্রের সাথে সংগতিপূর্ণ ট্যাপ সেট (টেপার, প্লাগ ও বটমি)।



চিত্র-৭.২: ট্যাপ সেট (টেপার, প্লাগ ও বটমি)

- সঠিক সাইজের ট্যাপ হ্যান্ডেল বা ট্যাপ রেফ (সাধারণত ট্যাপ হ্যান্ডেলে ট্যাপ সাইজে রেফ উল্লেখ থাকে)।
- ভাইস সহ ওয়ার্কিং টেবিল।
- ড্রাইকয়ার।
- কাটিং অয়েল পূর্ণ আয়েল ক্যান।



চিত্র-৭.৩: ট্যাপ রেফ

### ୭.୨ ଓଡ଼ାକପିସ ସଠିକଭାବେ ଆଟକାନୋ :

- ◆ ଭାଇସେର 'ଜ' ଏର ମାବଧାନେ ଓଡ଼ାକପିସକେ ଆନୁଭୂତିକ ଅବହ୍ୟ ଥରେ ଭାଇସେର ହାତଳ ସ୍ତୁରିଯେ ଦୁଇ 'ଜ'
- ଏର ମାବଧାନେ ଓଡ଼ାକପିସକେ ଦୃଢ଼ଭାବେ ବାଁଧା ।
- ◆ ଓଡ଼ାକପିସେର ଉପର ତଳ ଭୂମିର ସମାନତାଳ ଏବଂ ଛିନ୍ଦେର ଅକ୍ଷ ଭୂମିର ସାଥେ ଉଲ୍ଲବ୍ଧଭାବେ ରାଖା । ଛିନ୍ଦେର  
    ଅକ୍ଷ ହେଲାନୋ ଥାକଲେ ଫ୍ରେଡ ବାଁକା ହତେ ପାରେ ।
- ◆ ଓଡ଼ାକପିସ ନିଚେର ଦିକେ ଲେମେ ସାବାର ସଞ୍ଚାବନା ଥାକଲେ ଉହାର ନିଚେ ଏକଟି କାଠେର ବ୍ଲକ ହାପନ କରା ।



ଚିତ୍ର-୭.୪: ଓଡ଼ାକପିସ ଭାଇସେ ଆଟକାନୋ ।

### ୭.୩ ଟ୍ୟାପ ରେଖେ ସଠିକଭାବେ ଟ୍ୟାପ ଆଟକାନୋ :

- ◆ ଟ୍ୟାପ ରେଖେ ହାତଳ ସ୍ତୁରିଯେ 'ଜ' ଦୁଇଟିକେ ପ୍ରୋଜନ ମତ ଫାଁକା କରା ।
- ◆ ଟ୍ୟାପେର ଚତୁର୍ଭୁଗ୍ର ଅଂଶଟି 'ଜ' ଏର ଭିନ୍ନଭେବ ସାଥେ ମିଲିଯେ 'ଜ' ଏର ଫାଁକ ସମସ୍ତୟ କରା ।
- ◆ ଟ୍ୟାପ ରେଖେର ହାତଳ ସ୍ତୁରିଯେ ପର୍ଯ୍ୟନ୍ତ ଚାପେ ଟ୍ୟାପ ଆଟକାନୋ । ଟ୍ୟାପ ଆଟକାନୋର ସମୟ ଖେଳାଳ ରାଖିବେ  
    ହବେ ସେଇ ଟ୍ୟାପେର ଏକାଇନମେଟ ଠିକ ଥାକେ ।

### ୭.୪ ଟ୍ୟାପ ସେଟେର ଅତ୍ୟେକଟି ଟ୍ୟାପ ସଠିକ ପର୍ଯ୍ୟନ୍ତ ଚାଲାନୋ :

- (୧) ସର୍ବପ୍ରଥମ ଟେପାର ଟ୍ୟାପ ଚାଲାତେ ହବେ । ଏ ଟ୍ୟାପେର ସମ୍ମୁଦ୍ର ଅଂଶ ଛିନ୍ଦେର ମଧ୍ୟେ ଥିବେ । ଟ୍ୟାପକେ  
    ଛିନ୍ଦେର ଅକ୍ଷର ସାଥେ ଏକଇ ସରଳ ରେଖା ରେଖେ ନିମ୍ନମୁଖୀ ଚାପ ପ୍ରୟୋଗ ସହକାରେ ଟ୍ୟାପ ହାତେଲେର ସାହାଯ୍ୟେ  
    ଟ୍ୟାପକେ ସୁରାତେ ହବେ ।



ଚିତ୍ର-୭.୫: ଟ୍ୟାପ ରେଖେ ସେଟ କରା ।

- (୨) ଟ୍ୟାପଟି ପାଣ୍ଡିତ୍ୟ କେଟେ କାର୍ଯ୍ୟକର୍ତ୍ତର ସାଥେ ଆଟକାନୋର ପର ଟ୍ୟାଇକ୍ସ୍‌ଯାର ଭାରା ଉହାର ଉଲ୍ଲବ୍ଧ ଅବହ୍ୟାନ ପରୀକ୍ଷା କର ।
- (୩) ସାମାନ୍ୟ ଚାପ ପ୍ରୟୋଗ ଥିଲେ ଥିଲେ ଅକ୍ଷର କାଟା ସୁରାତ ଦିକେ ଟ୍ୟାପ ରେଖେ ସାହାଯ୍ୟେ ଟ୍ୟାପକେ ସୁରାତ ଏବଂ  
    ମାବେ ମାବେ ତୈଳ ଦାଓ ।

(৪) একটি পূর্ণ আবর্তন সুরানোর পর চাপমুক্ত অবস্থায় উহাকে আনুমানিক অর্ধেক আবর্তন পরিমাণ উচ্চে দিকে ঘূরাতে হবে। এ পদ্ধতিতে ট্যাপটিকে ছিদ্রের সম্পূর্ণ গভীরতার বেশি অংশ (খো হোলের ক্ষেত্রে) প্রবেশ করতে হবে। ইলাইভ হোলের ক্ষেত্রে শুধু অসম্পূর্ণ গভীরতায় প্রবেশ করাতে হবে। এভাবে পর্যাম্বক্রমে সেটের প্লাগ এবং বটমিং ট্যাপ চালিয়ে প্যাচ কাটা সম্পন্ন কর।



চিত্র-৭.৬: টেপ রেঞ্জে ট্যাপ লাগানো।

(৫) হস্ত চালিত যন্ত্রাদি দ্বারা ধাতুর ভিতরে প্যাচ কাটার সময় তৈল ব্যবহার করতে হয়। তৈল ব্যবহারের ফলে খ্রেডের তল এবং কাটিং টুলের মধ্যে স্বর্ণ কমিয়ে দেয়। ট্যাপ এর প্যাচ কাটার ক্ষমতা দীর্ঘস্থায়ী করে। প্যাচ মসৃণ করে এবং প্যাচ কাটা সহজ হয়।

#### ৭.৫ সঠিক পদ্ধতিতে প্যাচ কাটা সম্পন্নকরণঃ

ক) কিঞ্চিত চাপ প্রয়োগ করে ধীরে ধীরে ঘড়ির কাটার সূর্ণন দিকে হাতলসহ ট্যাপ রেঞ্জেটি ঘূরাতে হবে। আনুমানিক একটি পূর্ণ আবর্তনের পর চাপমুক্ত অবস্থায় উহাকে আনুমানিক অর্ধেক আবর্তন পরিমাণ উচ্চাদিকে ঘূরাতে হবে। একই পদ্ধতিতে ট্যাপটি ঘূরিয়ে সম্পূর্ণ ট্যাপ ছিদ্র পথে প্রবেশ করাতে হবে।



চিত্র-৭.৭: টেপ দিয়ে ছিদ্র প্যাচ কাটা।

খ) প্যাচ কাটার শুরুতে এবং পরবর্তীতে প্যাচ কাটার সম্পন্ন করা পর্যন্ত সব সময় ছিদ্রের অক্ষ এবং ট্যাপের অক্ষকে একই সরল রেখা রাখতে হবে।  
 গ) ওয়ার্কপিসের ধাতুর উপর ভিত্তি করে প্রয়োজনীয় ক্ষেত্রে সঠিক তৈল দ্বারা সব সময় কর্মসূল অর্থাৎ ছিদ্র এবং ট্যাপের মিলিত স্থান তৈলাক্ত রাখতে হবে।  
 ঘ) টেপার ট্যাপ চালানো শেষ হলে উহা খুলে পর্যাম্বক্রমে প্লাগ ও বটমিং ট্যাপ দুইটি রেঞ্জে সেট করে প্যাচ সম্পন্ন করতে হবে।



চিত্র-৭.৮ঃ টেপ দিয়ে ছিদ্রে প্যাচ কাটার সময় তেল দেওয়া।

#### কাউন্টার ট্যাপ ব্যবহার করে ভাঙা স্টাড/বোল্ট বের করা :

অনেক সময় দেখা যায় যে, কোন ছিদ্রের ভেতরের স্টাড বা বোল্ট ভেজে ভিতরে আটকে যায়। বাহির থেকে ঘূরিয়ে তখন বোল্ট বা স্টাডকে বের করা যায় না। এমতাবস্থায় ভাঙা স্টাড বা বোল্ট বের করার জন্য কাউন্টার ট্যাপ ব্যবহার করা হয়। প্রথমে ভাঙা স্টাড বা বোল্টের অক্ষ বরাবর কম ব্যাসের (কাউন্টার ট্যাপ সাইজ) ড্রিল করা হয়। এই ড্রিল করা ছিদ্রের মধ্যে কাউন্টার ট্যাপ দিয়ে পূর্বের ছিদ্রের প্যাচের উল্টোদিকে অর্ধাং বামহাতি প্যাচ থাকলে ডানহাতি প্যাচ আর ডানহাতি প্যাচ থাকলে বামহাতি প্যাচ কাটা হয়। এমতাবস্থায় দেখা যায় যে উল্টো প্যাচ কাটার কারণে ভাঙা স্টাড বা বোল্ট এক সময় টিলে হয়ে খুলে যায়।

#### ট্যাপিং এর সময় এবং পরে পরীক্ষা :

প্রথম ট্যাপ ২ পাক ঘূরিয়ে প্যাচ কাটার পর পরীক্ষা কর প্যাচ ঠিক আছে কীনা। ট্যাপ চালনার সময় বেশি শক্তি প্রয়োগের দরকার হলে ট্যাপটি খুলে উভার কারণ নির্গত কর। এক্ষেত্রে ট্যাপের তীক্ষ্ণতা, ট্যাপ হ্যান্ডেরের সাইজ এবং ছিদ্রের ব্যাস পরীক্ষা কর। আভ্যন্তরীণ প্যাচ কাটার সময় প্যাচ ঠিকমত কাটা হচ্ছে কীনা দেখা উচিত। আভ্যন্তরীণ প্যাচ সঠিকভাবে সম্পূর্ণ হয়েছে কীনা উহা পরিমাপের জন্য একটি বোল্ট আভ্যন্তরীণ প্যাচের ভিতর চালনা করে পরীক্ষা করা যেতে পারে। এছাড়া থ্রেড প্লাগগেজ আভ্যন্তরীণ প্যাচের ভিতর সহজভাবে যাওয়া আসা করে কীনা তাও পরীক্ষা করা যেতে পারে। থ্রেড গেজ ব্যবহার করেও পরীক্ষা করা যেতে পারে।

#### ট্যাপিং এর ক্ষেত্রে সতর্কতার বিষয়াদি :

- ১) নির্দিষ্ট ছিদ্রের (ট্যাপ সাইজ ড্রিল) জন্য নির্দিষ্ট মাপের ট্যাপ সেট ব্যবহার করা।
- ২) ট্যাপ সেটের জন্য প্রয়োজনীয় ছিদ্রের (ট্যাপ সাইজ ড্রিল) তুলনায় কার্যবস্তুর ছিদ্র ছোট হলে ট্যাপ ভেজে যাবে আবার ছিদ্র বড় হলে প্যাচের গভীরতা কম হবে।
- ৩) ট্যাপিং এর শর্করে ট্যাপকে খাড়াভাবে অর্ধাং ছিদ্রের অক্ষ ও ট্যাপের অক্ষ একই সরল রেখায় রাখতে হবে। অন্যথায় প্যাচ বাঁকা হবে এবং ট্যাপ ভাঙার সম্ভাবনা থাকবে।
- ৪) বেশি চাপ সহকারে ট্যাপ চালালে বা কাটিং অয়েল ছাড়া ট্যাপ চালালে ট্যাপ ভাঙার সম্ভাবনা থাকে।
- ৫) ওয়ার্কপিসের ধাতুর উপর ভিত্তি করে কাটিং অয়েল নির্বাচন করা এবং প্রযোজ্য ক্ষেত্রে কাটিং অয়েল ব্যবহার না করা।
- ৬) প্রথমে টেপার ট্যাপ এবং পরবর্তীতে পর্যায়ক্রমে প্লাগ ও বটমিং ট্যাপ চালাতে হবে।
- ৭) মনোযোগ সহকারে ট্যাপ চালানো এবং কাজের সঠিক পদ্ধতি অবলম্বন করা।

## অধ্যায়-৮

### ক্ষাত ভাই দ্বারা ধাতুর বাহিরে পেঁচাচ কাটা

#### ৮.১ অসমিক নির্দিষ্ট :

(১) নির্দিষ্ট পরিসরের (১২ মি.মি. বাস বিশিষ্ট) আকশিস বা ধাতব মুক জপ।



চিত্র-৮.১- ধাতুকশিস

(২) উপরুক্ত ভাই সজ্ঞহ কর। এ ক্ষেত্রে ১২ মি.মি. ধাতব মুকের অন্য ১২ মি.মি. সাপের ভাই সজ্ঞহ কর।



চিত্র-৮.২- ভাই

(৩) নির্দিষ্ট ভাইকে আটকানোর অন্য উপরুক্ত ভাই-স্টক সজ্ঞহ কর।



(৪) একটি কাইলসহ একটি আর্মি টেবিল জপ।  
(৫) ছু-পিচ জোড় জপ।  
(৬) কাটিং অজ্ঞেল পূর্ণ অজ্ঞেল ক্যাল জপ।  
(৭) একটি প্রীতি ক্যাল জপ।

### ৮.২ ওয়ার্কপিস সঠিকভাবে আটকানো :

- (১) ভাইসের ছু তৈলাক্ত করে 'জ' ভলি প্রয়োজন অনুবায়ী টিলা কর।
- (২) ভাইসের 'জ' এর চাপে ওয়ার্কপিসের পামে যাতে দাগ না পড়ে সেজন্য 'জ' কলির ডিকে দুইটি ধাতুর পাত বসাও।



চিত্র-৮.৪- ওয়ার্কপিস ভাইসে আটকানো

- (৩) ভাইসের মধ্যে ওয়ার্কপিসকে আনুভূমিক অবস্থায় ধর এবং হাতল ঘুরিয়ে 'জ' পূর্ণভাবে টাইট দাও।
- (৪) কাজের সময় যাতে ওয়ার্কপিস নিচের দিকে নেমে না থায় সেজন্য ওয়ার্কপিসের নিচে একটি কাঠের ঝুক স্থাপন কর।
- (৫) গোলাকার ওয়ার্কপিস যাহাতে ভাইসে হির থাকে সেজন্য ভাইসের 'জ' এর অভ্যন্তরে নরম ধাতুর দুইটি 'V' ঝুক ধরান্তের যোগান স্থাপন কর। উদ্বেশ্য যে, কোন কোন ভাইসে গোলাকার ওয়ার্কপিস উলঘাতাবে আটকানোর জন্য বিশেষ ব্যবহাৰ থাকে।



চিত্র-৮.৫- ডাই-সেটক ধরার নিয়ম

- (৬) ওয়ার্কপিসটিকে যোগানের সাহায্যে ড্রাই-ক্লয়ার ধরে ভাইসে সম্পূর্ণ উলঘাত অবস্থানে আটকাও।

### ডাই-সেটকে সঠিকভাবে ডাই সেট করা :

- (১) ডাই-সেটকের অ্যাডজাস্টিং ছু টিলা কর যাতে ডাই স্থাপন করা যায়।
- (২) ডাই এর উপরে ছোট ছোট গৰ্তফলিকে ডাই-সেটকের ছু এর সাথে মিল করে ডাইকে উহার স্টকের মধ্যে স্থাপন কর।



চিত্র-৮.৬- ডাই-সেটকে ডাই সেট করা

(৩) অ্যাডজাস্টের কু এর সাহায্যে পর্যাপ্ত পরিমাণ টাইট দিয়ে ভাইকে আটকাও।

৮.৪ সঠিক পদ্ধতিতে প্যাচ কাটা সম্পন্ন করণ :

- (১) সাবধানতার সাথে ভাই-স্টকটিকে প্রয়োকশিসের উপর ছাপন কর। ভাই-স্টকের হাতল সম্পূর্ণ অনুভূতিক অবস্থায় থাকবে। কাটিৎ অঙ্গেল ব্যবহার কর।



চিত্র-৮.৭- ভাই চালিয়ে প্যাচ কাটা পদ্ধত করা

- (২) প্রাথমিক তাবে কিন্তিত চাপ অয়োগ করে হাতলটি ঘড়ির কাঁটার দিকে থীরে থীরে সুযোগ।
- (৩) একটি সম্পূর্ণ আবর্তনের পর ভাই-স্টকের হাতলকে ঘড়ির কাঁটার উল্টোদিকে অর্ধেক আবর্তনের পরিমাণ সুযোগ। প্যাচ কাটা আনন্দ হয়ে গেলে নিম্নমূলী চাপ দেওয়ার প্রয়োজন নাই।



চিত্র-৮.৮- ভাই চালিয়ে প্যাচ কাটা সম্পন্ন করণ

- (৪) ভাই দ্বারা প্যাচ কাটা শেষ হয়ে গেলে ভাই-নাটের সাহায্যে প্যাচ মসৃণ করণ।



চিত্র-৮.৯- ভাই-নাট দিয়ে প্যাচ মসৃণ করণ

#### ৮.৫ প্যাচ কাটার সময় এবং পরে পরীক্ষা করণ :

- ১) ডাই বারা প্যাচ কাটার সময় কিছুক্ষণ পর ঠিকমত প্যাচ কাটা হচ্ছে কীনা দেখে নাও।
- ২) মাঝে মাঝে অয়েল ক্যান দিয়ে ডাই-এর ভিতর জেল দাও।
- ৩) প্যাচ কাটার পর প্যাচ কাটা অংশের বাহ্যিক রেখা সোজা আছে কীনা ডাই-ক্যান স্টিল রুল দ্বারা মিলিয়ে পরীক্ষা কর।
- ৪) প্যাচের মসৃণতা পরীক্ষা করার জন্য ডাই-নাট ব্যবহার কর।
- ৫) শ্রেড বা প্যাচ কাটা সম্পন্ন হলে ক্ল-পিচ গেজের সাহায্যে শ্রেডের পিচ সঠিক আছে কীনা দেখে নাও।



চিত্র-৮.১০- প্যাচ কাটার সময় এবং পরে পরীক্ষা করণ

#### ৮.৬ ডাই বারা প্যাচ কাটার ক্ষেত্রে সতর্কতার বিষয়ানি :

- (১) নির্দিষ্ট মাপের বোল্ট বা স্টোডের জন্য ঐ মাপের ডাই নির্বাচন করতে হবে।
- (২) ডাই-স্টকে ডাই-সেট করে ক্লু ভালোভাবে টাইট দিতে হবে।
- (৩) ওয়াকপিসের উপর ডাই-স্টককে সাবধানে স্থাপন করতে হাতে হাতল ভূমির সমান্তরাল থাকে এবং ওয়াকপিসের অঙ্কের সাথে সমকোণে থাকে।
- (৪) ওয়াকপিসকে ভূমির সাথে উল্লম্বভাবে স্থাপন করতে হবে।
- (৫) প্যাচ কাটার সময় বেশি চাপ সহকারে ডাই-স্টক স্মৃতানো ঠিক নয়, কারণ এতে চিপস জমা হয়ে ডাই ও ওয়াকপিসের শ্রেডের ক্ষতি হতে পারে।
- (৬) মাঝে মাঝে ডাই উল্টোদিকে ঘুরিয়ে চিপস অপসারণ করতে হবে।
- (৭) প্রয়োজনীয় ক্ষেত্রে ডাই চালানোর সময় কাটিং অয়েল ব্যবহার করতে হবে।
- (৮) কাজের সময় ও পরে ক্ল-পিচ গেজের সাহায্যে শ্রেডের সঠিকতা পরীক্ষা করতে হবে।
- (৯) মনোযোগ ও সাবধানতার সাথে কাজ করতে হবে।

# মেশিন টুলস্ অপারেশন-১

দ্বিতীয় পত্র (দশম শ্রেণি)

অধ্যায় - ১

## মেশিনশপে সতর্কতামূলক ব্যবস্থা

(Safety Management in Machine Shop)

### ১.১ মেশিনশপে সতর্কতা বিধি গালনের প্রয়োজনীয়তা :

মেশিনশপের যন্ত্রপাতিসমূহ অকেজো হওয়ার পূর্বেই কার্যোপযোগী রাখতে যে সমস্ত ব্যবস্থাদি গ্রহণ করা হয়, তাকে রক্ষণাবেক্ষণ বুঝায়। সঠিকভাবে রক্ষণাবেক্ষণ না করলে যন্ত্রপাতিসমূহ বার বার নষ্ট হয়ে এক সময় অকেজো হয়ে যেতে পারে। রক্ষণাবেক্ষণ সঠিকভাবে করলে যন্ত্রপাতি সমূহের আয়ু বৃদ্ধি পায়। যখনই যন্ত্রপাতির সামান্য ক্রটি দেখা যায়, তা দ্রুত মেরামত না করলে বিরাট ক্ষতি হতে পারে। তাতে উৎপাদন বক্ষ হয়ে ব্যাপক আর্থিক ক্ষতি সাধিত হয়। রক্ষণাবেক্ষণে ক্রটি দেখা দিলে উৎপাদন ব্যাহত হয় এবং সময়মতো চাহিদা অনুযায়ী উৎপাদিত পণ্য সরবরাহে বিঘ্ন ঘটে। ফলে প্রতিষ্ঠানের বাজার ও সুনাম দুইই নষ্ট হয়।

### ১.২ মেশিনশপের জন্য প্রয়োজনীয় সতর্কতা বিধিসমূহ :

- ❖ কাজের ধরন অনুসারে সঠিক যন্ত্রের ব্যবহার।
- ❖ কাজ করার সময় যন্ত্রসমূহ যথাস্থানে রেখে কাজ করা।
- ❖ কাজ শেষে যন্ত্রগুলো নির্দিষ্ট একটি বাস্তু যথাস্থানে রাখা।
- ❖ ফাইল (File), ক্রেপার (Scraper) ও স্ক্রু-ড্রাইভার (Screw-driver) ইত্যাদি যন্ত্রে উপযুক্ত হাতল লাগিয়ে কাজ করা।
- ❖ হাতুড়ির হাতল ও কীলক ঠিকমত আছে কীনা দেখে নেওয়া।
- ❖ “শান” (Grinding) করার সময় সঠিক চশমা ব্যবহার করা।
- ❖ মাপ নেবার যন্ত্রপাতিসমূহকে সঠিক স্থানে রেখে কাজ করা।

### ১.৩ বিপদ্যুক্ত কার্যান্ব্যাস আয়ত্ত করার কৌশল/দুর্বিটনা প্রতিরোধের উপায় :

- (১) মেশিন সম্বন্ধে ভালো জ্ঞান অর্জন করে তারপর চালানো উচিত।
- (২) মেশিন চালানোর পূর্বে উহা কীভাবে এবং কত সহজে বন্ধ করা যায় তা জানা প্রয়োজন।
- (৩) গার্ড খোলা অবস্থায় মেশিন চালানো উচিত নয়।
- (৪) শিক্ষকের অনুমতি ছাড়া মেশিন চালানো উচিত নয়।
- (৫) একাধিক ছাত্র একটি মেশিন চালানো উচিত নয়।
- (৬) চালু মেশিনে টেঁস দিয়ে দাঁড়াতে নেই।
- (৭) ওয়ার্কশপে অথবা দৌড়াদৌড়ি করা উচিত নয়।
- (৮) মেশিন চালানোর সময় অমনোযোগী হওয়া ও কথাবার্তা বলা উচিত নয়।
- (৯) চালু অবস্থায় কোন মেশিনে তৈল, প্রিজ ইত্যাদি দেওয়া; মেরামত করা; পরিষ্কার করা উচিত নয়।

- (১০) বিদ্যুৎ সরবরাহ বন্ধ হলে সঙ্গে সঙ্গে মেশিনের সুইচ বন্ধ করতে হবে।
- (১১) মেশিনে অস্বাভাবিক শব্দ হলে তৎক্ষণাত্মে উহা বন্ধ করে দিতে হবে।
- (১২) কোন কারণে মেশিন খারাপ হলে “Under Repair” কথাটি একটি বোর্ডে লিখে ঐ মেশিনের গায়ে ঝুলিয়ে রাখতে হবে।

#### **১.৪ মেশিনশপে নিরাপদ পোশাক ও সরঞ্জামাদি ব্যবহারের প্রয়োজনীয়তা :**

মেশিনশপে কাজ করার সময় যে কোন দুর্ঘটনা এড়ানোর জন্য অবশ্যই নিরাপদ পোশাক ও নিরাপদ সরঞ্জামাদি যেমন- এগ্রোন, গগলস, দস্তানা, চামড়ার জুতা পরিধান করা দরকার। নিম্নে মেশিনশপে নিরাপদ পোশাক ও সরঞ্জামাদি ব্যবহারের প্রয়োজনীয়তা উল্লেখ করা হলো-

- (১) মেশিনশপে কাজ করার সময় সর্বদা আটসাট পোশাক পরিধান করা উচিত।
- (২) মেশিনশপে কাজ করার সময় আংটি, ঘড়ি ও অন্যান্য অলঙ্কার পরিধান করা উচিত নয়।
- (৩) মেশিনশপে খালি পায়ে চলাফেরা একেবারেই নিষিদ্ধ।
- (৪) শক্ত তলা যুক্ত চামড়ার জুতা পরিধান করা উচিত।
- (৫) মেশিনশপে কাজ করার সময় নেকটাই, মাফলার ও চাদর পরিধান করা উচিত নয়।
- (৬) কাঁচামাল, ক্র্যাপ ও চিপস-এ হাত লাগাতে চামড়ার দস্তানা পরিধান করতে হবে।
- (৭) মেশিনশপে কাজ করার সময় সেফটি গগলস পরিধান করতে হবে।

#### **১.৫ মেশিনশপে যন্ত্রপাতি সুবিন্যস্ত করার প্রক্রিয়া :**

- (১) মেশিনের জন্য দরকারী যন্ত্রপাতি ও টুলসসমূহ যথাসম্ভব কাছাকাছি একটি বাস্ত্রে অথবা তাকে সাজিয়ে রাখতে হবে।
- (২) ধাতু কাটার যন্ত্র যেমন- পাওয়ার “স” (Power Saw) সব সময় দরজার কাছাকাছি রাখতে হবে।
- (৩) পরিমাপ করার যন্ত্রপাতিগুলো আলাদা বাস্ত্রে রাখতে হবে।
- (৪) ট্রেনিং-এ ব্যবহৃত মেশিনশপে একই জাতীয় মেশিনগুলো একই সারিতে রাখতে হবে।
- (৫) জব প্রত্বাকশনের কাজে জবের উপর অপারেশন-এর ধারাবাহিকতা যাতে বজায় থাকে সেই ভাবে মেশিন সাজানো ভালো।

## প্রশ্নমালা-১

### অতি সংক্ষিপ্ত প্রশ্ন :

১. দুর্ঘটনা কী?
২. কর্মীদের মধ্যে নিরাপদ কার্যাভ্যাস গড়ে তোলার দায়িত্ব কার?
৩. মেশিনশপে কাজের সময় দুর্ঘটনা থেকে চোখকে রক্ষা করার জন্য কী পড়া উচিত?
৪. মেশিনশপে কাজের সময় কী ধরনের জুতা পরিধান করা উচিত?
৫. মেশিনশপে কাজের সময় কী ধরনের পোশাক পড়া উচিত?

### সংক্ষিপ্ত প্রশ্ন :

১. মেশিনশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা উল্লেখ কর।
২. মেশিনশপের জন্য ৩ (তিনি) টি বিপজ্জনক অবস্থা উল্লেখ কর।
৩. মেশিনশপে নিরাপদে কাজ করার জন্য প্রয়োজনীয় ৩ (তিনি) টি সতর্কতা বিধি উল্লেখ কর।
৪. মেশিনে কাজ করার সময় টুলসংগৃহীকে কীভাবে সাজাতে হবে?
৫. মেশিনে কাজ করার সময় নিরাপদ পোশাক পরিধানের প্রয়োজনীয়তা উল্লেখ কর।

### রচনামূলক প্রশ্ন :

১. মেশিনশপে সতর্কতা বিধি পালনের প্রয়োজনীয়তা বর্ণনা কর।
২. মেশিনশপের জন্য প্রয়োজনীয় সতর্কতা বিধিসমূহ বর্ণনা কর।
৩. বিপদমুক্ত কার্যাভ্যাস আয়ত্ত করার কৌশল বর্ণনা কর।
৪. মেশিনশপে নিরাপদ পোশাক ও সরঞ্জামাদির ব্যবহার বর্ণনা কর।
৫. যত্রপাতি সুবিন্যস্ত করার প্রক্রিয়া বর্ণনা কর।

## অধ্যায়-২

### ওয়ার্কশপের রক্ষণাবেক্ষণ (Workshop Maintenance)

#### ২.১ ওয়ার্কশপের রক্ষণাবেক্ষণ :

ওয়ার্কশপে কোন মেশিন বা যন্ত্রপাতি নুতন ভাবে বসানোর পর ব্যবহারের কারণে উহার বিভিন্ন যন্ত্রাংশ ক্ষয়প্রাপ্ত হয় বা অকেজো হয়ে পড়ে। তাছাড়া ময়লা, ধূলাবালি ইত্যাদি পড়ে মেশিনপত্র নষ্ট বা ব্যবহারের অযোগ্য হয়ে যেতে পারে। তাই পর্যায়ক্রমে ওয়ার্কশপের যন্ত্রপাতিসমূহকে ক্ষয়প্রাপ্ত হওয়া বা অকেজো হওয়া থেকে রক্ষা করার জন্য নিয়মিত বা পর্যায়ক্রমে যে ব্যবস্থা গ্রহণ করা হয় তাহাকে ওয়ার্কশপের রক্ষণাবেক্ষণ বলা হয়।

#### ২.২ ওয়ার্কশপ রক্ষণাবেক্ষণের প্রকারভেদ সাধারণত

কোন ওয়ার্কশপ নিম্নের ৪ উপায়ে রক্ষণাবেক্ষণ করা হয়ে থাকে, যথা-

- (১) পরিকল্পিত রক্ষণাবেক্ষণ (Planned Maintenance).
- (২) তালিকা মাফিক রক্ষণাবেক্ষণ (Scheduled Maintenance).
- (৩) ব্রেক-ডাউন রক্ষণাবেক্ষণ (Brake-down Maintenance).
- (৪) মূলধন প্রতিস্থাপন রক্ষণাবেক্ষণ (Capital Replacement Maintenance).

#### ২.৩ ওয়ার্কশপ রক্ষণাবেক্ষণ পদ্ধতিসমূহের বর্ণনা :

##### (১) পরিকল্পিত রক্ষণাবেক্ষণ :

অপ্রত্যাশিতভাবে কোন ওয়ার্কশপের যন্ত্রপাতি হঠাত বন্ধ হয়ে যাওয়া থেকে রক্ষা করার জন্য পরিকল্পিত রক্ষণাবেক্ষণ খুবই কার্যকরী ভূমিকা পালন করে থাকে। পরিকল্পিত রক্ষণাবেক্ষণ দুই প্রকার। যেমন- (ক) প্রতিরোধী রক্ষণাবেক্ষণ, (খ) দীর্ঘ মেয়াদী রক্ষণাবেক্ষণ।

প্রতিরোধী রক্ষণাবেক্ষণঃ ক্ষয়প্রাপ্ত বা ভাঙা যন্ত্রাংশসমূহ মেরামত, তেল বদলানো, গিয়ার ওয়েল, প্রিজ দেওয়া ইত্যাদি কার্যক্রম প্রতিরোধী রক্ষণাবেক্ষণ।

দীর্ঘ মেয়াদী রক্ষণাবেক্ষণঃ মেশিন নির্মাণ প্রতিষ্ঠান বা সরবরাহকারী প্রতিষ্ঠান কর্তৃক মেশিনের সাথে সরবরাহকৃত ম্যানুয়াল বা নির্দেশিকা অনুযায়ী দীর্ঘদিন পর ঐ মেশিনের কোন অংশের মেরামত জনিত কাজই দীর্ঘ মেয়াদী রক্ষণাবেক্ষণ।

##### (২) তালিকা মাফিক রক্ষণাবেক্ষণঃ

কোন শিল্প প্রতিষ্ঠানে একটা পূর্ব নির্ধারিত সময়ে মেশিন পরিদর্শন, লুব্রিকেশন, সার্ভিসিং, ওভারহালিং, ইত্যাদি কার্যক্রম পরিচালনাকে তালিকা মাফিক রক্ষণাবেক্ষণ বলা হয়।

##### (৩) ব্রেক-ডাউন রক্ষণাবেক্ষণঃ

কোন যন্ত্রপাতি বা মেশিন হঠাত নষ্ট হলে উৎপাদন কার্যক্রম সম্পূর্ণ বন্ধ রেখে মেশিন বা যন্ত্রপাতি সম্পূর্ণ মেরামত করে কার্যোগ্যোগী করাই ব্রেক-ডাউন রক্ষণাবেক্ষণ।

##### (৪) মূলধন প্রতিস্থাপন রক্ষণাবেক্ষণঃ

বিনষ্টকৃত যন্ত্রপাতি বা মেশিন মেরামত বা খুচরা যন্ত্রাংশ পরিবর্তন করে সম্পূর্ণ জনক ভাবে চালানো যায়; কিন্তু ব্যয় খুব বেশি হয়। এ ক্ষেত্রে দেখা যায় যে, মেরামত খরচ প্রায় নুতন মেশিন বা যন্ত্রপাতি ক্রয় করে বসানোর

খরচের কাছাকাছি হয়। এমতাবস্থায় বিনষ্টকৃত যন্ত্রপাতি বা মেশিন মেরামত না করে পুনরায় মূলধন খাটিয়ে নতুন মেশিন প্রতিস্থাপন করা হয় তাকে মূলধন প্রতিস্থাপন রক্ষণাবেক্ষণ বলা হয়।

#### ২.৪ রক্ষণাবেক্ষণের প্রয়োজনীয়তা :

ওয়ার্কশপের যন্ত্রপাতিসমূহ অকেজো হওয়ার পূর্বেই কার্যোপযোগী রাখতে যে সমস্ত ব্যবস্থাদি গ্রহণ করা হয় তাহাই এ ওয়ার্কশপের রক্ষণাবেক্ষণ। নিম্নে রক্ষণাবেক্ষণের প্রয়োজনীয়তা আলোচনা করা হলো-

- ১) সঠিক ভাবে রক্ষণাবেক্ষণ না করলে যন্ত্রপাতিসমূহ বার বার নষ্ট হয়ে এক সময় অকেজো হয়ে যেতে পারে। রক্ষণাবেক্ষণ সঠিক ভাবে করলে যন্ত্রপাতি সমূহের আয়ু বৃদ্ধি পায়।
- ২) যখনই যন্ত্রপাতির সামান্য ত্রুটি দেখা যায়, তা যদি দ্রুত মেরামত না করা হয় তবে বিরাট ক্ষতি হতে পারে। এমনকি উৎপাদন বন্ধ হয়ে গিয়ে ব্যাপক আর্থিক ক্ষতির সম্ভাবনা থাকে।
- ৩) সঠিক সময়ে রক্ষণাবেক্ষণ না করলে উৎপাদন ব্যাহত হয়, এবং চাহিদা মোতাবেক উৎপাদিত পণ্য সরবরাহ করা সম্ভব হয় না। ফলে পণ্য বিক্রয়ের বাজার ও সুনাম দুইই নষ্ট হয়।
- ৪) রক্ষণাবেক্ষণ সঠিক সময়ে ও সঠিক নিয়মে করলে যন্ত্রপাতির আয়ু (Longibility) বেড়ে যায় বা টেকসই হয়। তাই কোন ইন্ডাস্ট্রি বা প্ল্যান্টের অপচয় কর্ম হয় বলে উৎপাদন খরচ কর হয়।
- ৫) সঠিকভাবে যন্ত্রপাতির রক্ষণাবেক্ষণ করলে যন্ত্রপাতির দক্ষতা (Efficiency) বৃদ্ধি পায়।

### প্রশ্নমালা-২

#### অতিসংক্ষিপ্ত প্রশ্নঃ

১. রক্ষণাবেক্ষণ কর প্রকার ?
২. ব্রেকডাউন রক্ষণাবেক্ষণ কী ?
৩. পরিকল্পিত রক্ষণাবেক্ষণ কী ?
৪. সিডিউল রক্ষণাবেক্ষণ কী ?
৫. মূলধন রক্ষণাবেক্ষণ কী ?

#### সংক্ষিপ্ত প্রশ্নঃ

১. ওয়ার্কশপ রক্ষণাবেক্ষণ বলতে কী বোঝায়?
২. ওয়ার্কশপ রক্ষণাবেক্ষণের প্রকারভেদ উল্লেখ কর।
৩. ওয়ার্কশপ রক্ষণাবেক্ষণ পদ্ধতি সমূহের মৌলিক ধারণা বলতে কী বোঝায় ?
৪. ওয়ার্কশপ রক্ষণাবেক্ষণের প্রয়োজনীয়তা উল্লেখ কর।

#### রচনামূলক প্রশ্নঃ

১. ওয়ার্কশপ রক্ষণাবেক্ষণ বলতে কী বুঝায় বর্ণনা কর।
২. ওয়ার্কশপ রক্ষণাবেক্ষণ কর প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও।
৩. ওয়ার্কশপ রক্ষণাবেক্ষণ পদ্ধতি সমূহের মৌলিক ধারণা বর্ণনা কর।
৪. ওয়ার্কশপ রক্ষণাবেক্ষণের প্রয়োজনীয়তা বর্ণনা কর।

### অধ্যায়-৩

## ভার্নিয়ার হাইট গেজ (Vernier Height Gauge)

### ৩.০ হাইট গেজ :

কোন বস্তুর বা যত্নাংশের বা জবের উচ্চতা বা কোন দূরত্ব অবস্থানের দূরত্ব মাপার জন্য হাইট গেজ ব্যবহার করা হয়। আগেকার দিনে হাইট গেজ দিয়ে টিকিংসকেরা রোগীর উচ্চতা পরিমাপ করতেন। বর্তমানে মেশিনশপে, মেটাল ওয়ার্কশপে, মেট্রোলজিতে হাইট গেজ বেশি ব্যবহৃত হয়। হাইট গেজ দুইরকমের হয়ে থাকে। যথা- (১) ভার্নিয়ার হাইট গেজ ও (২) ইলেক্ট্রনিক হাইট গেজ।



চি-১ (ক): ভার্নিয়ার হাইট গেজ

চি-১ (খ): ইলেক্ট্রনিক হাইট গেজ

### ৩.১ ভার্নিয়ার হাইট গেজ :

এটি একটি প্রত্যক্ষ, সূক্ষ্ম, সরল উচ্চতা এবং উল্লম্ব দূরত্ব মাপক যন্ত্র। মেশিনশপে ও মেটাল ওয়ার্কশপে জবের উপর লে-আউট ও মার্কিং করার জন্য বিশেষভাবে এটি ব্যবহৃত হয়। ভার্নিয়ার হাইট গেজের গঠন ও কার্যপ্রণালী ভার্নিয়ার ক্যালিপার্সের মতই। তবে এটি উচ্চতা পরিমাপ করা বা উচ্চতা পরীক্ষা করা ছাড়াও সারফেস গেজের অনুরূপ মার্কিং করতে ব্যবহার করা হয়। এর প্রধান ক্ষেলের দণ্ডটি খাড়াভাবে বেসের উপর শক্ত করে আটকানো থাকে। এ যন্ত্রে দুইটি 'জ' এর পরিবর্তে একটি 'জ' থাকে। এবং 'জ' এর সাথে একটি ধারালো স্ক্রাইবার স্ক্র-এর সাহায্যে আবদ্ধ করা থাকে। স্ক্রাইবারের স্থলে রড সংযুক্ত করে এর সাহায্যে ডেপথ গেজের ন্যায় গভীরতাও মেপে নেওয়া যায়। এ ছাড়া স্ক্রাইবারের পরিবর্তে ডায়াল ইভিকেটর সংযুক্ত করে আরও সূক্ষ্ম এবং সঠিকভাবে পরিমাপ করা সম্ভব হয়। Base-এর তলদেশ এবং স্ক্রাইবারের মুখের নিচের অংশের লম্ব দূরত্বকে ক্ষেলের মাধ্যমে পরিমাপ হিসেবে গৃহণ করা হয়। Base-এর তলদেশ এবং স্ক্রাইবারের নিচের অংশ যখন একই সমতলে আসে তখন বিম ক্ষেলের শূন্য দাগ একই সরলরেখায় এসে মিলিত হয়। ভার্নিয়ার হাইট গেজ দ্বারা মাপের পাঠ নেওয়ার নিয়ম ভার্নিয়ার ক্যালিপার্সের অনুরূপ কিন্তু ত্রিতীয় পদ্ধতিতে ভার্নিয়ার কনস্ট্যান্ট ০.০০১ ইঞ্চি এবং মেট্রিক পদ্ধতিতে ভার্নিয়ার কনস্ট্যান্ট ০.০২ মি.মি. অর্থাৎ এই গেজের সাহায্যে ০.০০১ ইঞ্চি এবং ০.০২ মি.মি. পর্যন্ত মাপ সঠিকভাবে নেওয়া যায়।

### ৩.২ ভার্নিয়ার হাইট গেজের বিভিন্ন অংশ :

- A- বিম ক্লেল
- B- ভার্নিয়ার ক্লেল
- C- বেস
- D- স্লাইডিং হেড
- E- স্লাইবার বা পয়েন্টার
- F- সেট ক্লু
- G- শকিং ক্লু
- H- শকিং নাট
- I- ফাইন এডজাস্টমেন্ট ক্লু



চিত্র-২৪: ভার্নিয়ার হাইট গেজের বিভিন্ন অংশ

### ৩.৩ ভার্নিয়ার হাইট গেজের প্রয়োগ ক্ষেত্র :

ভার্নিয়ার হাইট গেজের প্রয়োগক্ষেত্র নিম্নে উল্লেখ করা হলো-

- (১) এটি সাধারণত কোন যন্ত্র বা এর অংশবিশেষের উচ্চতা মাপার কাজে ব্যবহৃত হয়।
- (২) এটির সাহায্যে কোন বস্তুর বিভিন্ন তলের মধ্যে উচ্চতার তফাও মাপা যায়।
- (৩) স্লাইবারের স্থলে রাড বা দণ্ড ব্যবহার করে এর সাহায্যে জবের ছিদ্রের বা খাঁজের গভীরতা মাপা যায় অর্থাৎ এটিকে ডেপথ গেজ হিসাবে ব্যবহার করা যায়।
- (৪) স্লাইবারের স্থলে ডায়াল ইডিকেটর ব্যবহার করে এটির সাহায্যে সূক্ষ্ম পরীক্ষণের কাজ করা যায়।
- (৫) মেশিনশপ, জেনারেল মেকানিঞ্চ শপ, উৎপাদনমূর্ধী শিল্পকারখানা, মেইনটেনেন্স শপ, মেকানিক্যাল কর্মকাণ্ড সংস্থাট ওয়ার্কশপ প্রত্তি জায়গাম সূক্ষ্ম ও আধুনিক মার্কিং টুল হিসেবে ভার্নিয়ার হাইট গেজ ব্যাপকভাবে ব্যবহৃত হয়।
- (৬) পর্যবেক্ষণ শাখায় সূক্ষ্ম পর্যবেক্ষণ কাজে এটি ব্যবহৃত হয় এবং বেশি সূক্ষ্মতা পাওয়ার ক্ষেত্রে স্লাইবারের স্থলে ডায়াল ইডিকেটর সংযুক্ত করা যায়।

### ৩.৪ ভার্নিয়ার হাইট গেজের যত্ন ও ব্রহ্মণাবেক্ষণ :

- (১) ভার্নিয়ার হাইট গেজকে সবসময় উভার জন্য নির্দিষ্ট বাত্রে সংরক্ষণ করতে হবে।
- (২) ব্যবহারের পূর্বে এবং পরে কাপড় বা ওয়েস্ট কটন দিয়ে মুছে পরিষ্কার করে রাখতে হবে।
- (৩) দীর্ঘ সময় সংরক্ষণ করতে হলো সে ক্ষেত্রে পরিষ্কার করার পর ত্রিজ অথবা মরিচা রোধক তেল লাগিয়ে তাৱপৱ সংরক্ষণ করতে হবে।
- (৪) ভার্নিয়ার হাইট গেজের যে অংশগুলি নড়াচড়া বা চলাচল যোগ্য (Moveable Parts), সেগুলো যাতে সহজে চলাচল করতে পারে ও মরিচা না পরে সেইজন্য যাবে মাবে এই সব জায়গাম ঘবিল বা মরিচারোধী তেল দিতে হবে।

- (৫) ব্যবহারের স্থানটি যেন পরিষ্কার পরিচ্ছন্ন, সমতল ও মসৃণ হয় সেদিকে খেয়াল রাখতে হবে।
- (৬) অন্য কোন যত্ন, ধাতব বস্তু কাটিং টুল প্রভৃতির আঘাত থেকে ভার্নিয়ার হাইট গেজকে সব সময় রক্ষা করে ব্যবহার করতে হবে। খেয়াল রাখতে হবে যেন ঘর্ষণ বা আঘাত লেগে এর উপরিতল মসৃণতা না হারায়।
- (৭) ভার্নিয়ার হাইট গেজকে কোন ম্যাগনেট বা চুম্বকের নিকট রাখা উচিত নয়। এতে গেজের বিভিন্ন অংশ চুম্বকত্ত্ব লাভ করে লৌহ কণাকে আকৃষ্ট করে, ফলে ত্রুটিপূর্ণ পরিমাপের আশঙ্কা থাকে। হাইড্রিং মেশিনের নিকটেও এই গেজ ব্যবহার করা উচিত নয়।

### প্রশ্নমালা-৩

#### অতি সংক্ষিপ্ত প্রশ্ন :

১. ভার্নিয়ার হাইট গেজ কী ধরনের যত্ন?
২. ভার্নিয়ার হাইট গেজের ভার্নিয়ার কনস্ট্যান্ট ইঞ্জিন ও মিলিমিটারে কত?
৩. ভার্নিয়ার হাইট গেজ সর্বনিম্ন কত সূক্ষ্ম মাপ ইঞ্জিন ও মিলিমিটারে নিতে পারে?
৪. ফাইন এডজাস্টমেন্ট স্ক্রু-এর কাজ কী?
৫. স্ক্রাইবারের স্থলে রড বা দণ্ড ব্যবহার করলে ভার্নিয়ার হাইট গেজ দিয়ে কী ধরনের মাপ নেওয়া যায়?
৬. ভার্নিয়ার হাইট গেজকে চুম্বকের নিকট রাখতে কী অসুবিধা হয়।

#### সংক্ষিপ্ত প্রশ্ন :

১. ভার্নিয়ার হাইট গেজ বলতে কী বোঝায়?
২. ভার্নিয়ার হাইট গেজের বিভিন্ন অংশের নাম লেখ।
৩. ভার্নিয়ার হাইট গেজের প্রয়োগ ক্ষেত্র উল্লেখ কর।
৪. ভার্নিয়ার হাইট গেজের যত্ন বা রক্ষণাবেক্ষণ কোশলগুলি লেখ।
৫. ভার্নিয়ার হাইট গেজের ব্যবহার উল্লেখ কর।

#### রচনামূলক প্রশ্ন :

১. চিত্রসহ ভার্নিয়ার হাইট গেজের বিভিন্ন অংশের নাম এবং উহাদের ব্যবহার লেখ।
২. ভার্নিয়ার হাইট গেজের যত্ন ও রক্ষণাবেক্ষণ প্রক্রিয়া বর্ণনা কর।
৩. ভার্নিয়ার হাইট গেজের ব্যবহার পদ্ধতি বর্ণনা কর।
৪. ভার্নিয়ার হাইট গেজের প্রয়োগ ক্ষেত্র বর্ণনা কর।

## অধ্যায়-৪

### সারফেস গেজ (Surface Gauge)

#### সারফেস গেজ পরিচিতি :

সারফেস গেজ হলো সূক্ষ্মভাবে নিয়ন্ত্রিত এক প্রকার লে-আউট বা মার্কিং টুলস। প্রকৃতপক্ষে গঠনের দিক থেকে এটি একটি স্ট্রাইবারকে বিভিন্ন প্রকারে সূক্ষ্মভাবে নিয়ন্ত্রণ করার ব্যবস্থা মাত্র। ভার্টিক্যাল সারফেসের ওপর হরাইজন্টাল বা ভূমির সঙ্গে সমান্তরাল লাইন টানার জন্য এবং কোন তলের উপরিভাগের উচ্চতা বা উহার বৈষম্য পরীক্ষা করার জন্য প্রধানত সারফেস গেজ ব্যবহৃত হয়। এ ছাড়া কোন জবের সমতল পৃষ্ঠ যথার্থ সমান ও সমতল আছে কীনা এবং গোলাকার পৃষ্ঠ বিশিষ্ট বস্তু (যেমন-শ্যাফট, পুলি, বিয়ারিং, বিয়ারিং ক্যাব, ইত্যাদি)-এর গোলাকার পৃষ্ঠ যথার্থ গোলাকার কী না তাহা পরীক্ষা করতেও সারফেস গেজ ব্যবহৃত হয়। এর ভারী ভিত (Base)- এর ওপর একটি খাড়া দণ্ড বা স্পিন্ডল থাকে এবং দণ্ডের সাথে একটি স্ট্রাইবার লাগানো থাকে যা ক্ল্যাম্প ও ক্লু-এর সাহায্যে বিভিন্ন কোণে সেট করা যায়। ভিত (Base)- এর সাথে সংযুক্ত এডজাস্টিং ক্লুকে স্ট্রাইবারের মুখকে সূক্ষ্মভাবে নিয়ন্ত্রণ করা যায়। প্রকৃতপক্ষে দুই তল বা সারফেসের মধ্যে তুলনা বা উহাদের সম্পর্ককে কাজে লাগিয়ে এই গেজ ব্যবহৃত হয় বিধায় এই গেজের নাম হলো সারফেস গেজ।



চিত্র-৪.১: সারফেস গেজ

#### ৪.২ সারফেস গেজের বিভিন্ন অংশসমূহ :

একটি বহুল ব্যবহৃত সারফেস গেজের বিভিন্ন অংশসমূহ নিম্নোক্ত চিত্রে দেখানো হলো-



চিত্র-৪.২: সারফেস গেজের বিভিন্ন অংশ

### সারফেস গেজের বিভিন্ন অংশ :

১. ভিত (Base)
২. স্পিন্ডল (Spindle)
৩. ক্ল্যাম্প (Clamp)
৪. ক্ল্যাম্প নাট বা স্ক্রাইবার নাট (Clamp Nut)
৫. স্ক্রাইবার (Scriber)
৬. ভি-স্লট (V-Slot)
৭. গেজ পিন (Gauge Pin)
৮. এডজাস্টিং স্ক্রু (Adjusting Screw)
৯. সুইভেল নাট (Swivel Nut)
১০. রকার (Rocker)
১১. স্পিন্ডল রকার ব্রেকেট (Spindle Rocker Bracket)

**ভিত (Base) :** সারফেস গেজের ভিত উহার অন্যান্য অংশের তুলনায় ভারী, চ্যাপ্টা এবং অন্যান্য সকল অংশের নিচে অবস্থান করে উহাদের ভার বহন করে। ভিতের তলদেশ খুবই শক্তভাবে মসৃণ করে তৈরি করা হয় কারণ সমতল ও মসৃণ তলের উপর রেখে সারফেজ গেজকে ব্যবহার করতে হয়।

**স্পিন্ডল (Spindle) :** এই অংশটি সিলিন্ড্রিক্যাল দণ্ডের ন্যায় এবং এটির নিচের অংশকে স্টেম বলা হয় যাহা সুইভেল বোল্টের সাহায্যে বেসের সঙ্গে আটকানো থাকে। অপর প্রান্ত মুক্ত অবস্থায় থাকে এবং এর সাথে স্ক্রাইবার লাগানো থাকে। ক্ল্যাম্প নাটকে ঢিলা করে স্ক্রাইবারকে যে কোন উচ্চতায় স্পিন্ডলের ওপর স্থাপন করা যায় এবং ক্ল্যাম্প নাটকে টাইট করে স্ক্রাইবারকে আটকিয়ে তারপর ব্যবহার করতে হয়।

**ক্ল্যাম্প নাট (Clamp Nut) :** স্ক্রাইবারকে বিভিন্ন উচ্চতায় বিভিন্ন দিকে ঘুরিয়ে স্পিন্ডলের সাথে বাঁধার জন্য ক্ল্যাম্প নাট ব্যবহার করা হয়।

**স্ক্রাইবার (Scriber) :** এর একটি মুখ সোজা এবং অপরটি  $90^{\circ}$  তে বাঁকানো থাকে। বাঁকানো মুখ উচ্চতা পরীক্ষা করার জন্য এবং সোজা মুখ সরলরেখা টানতে ব্যবহার করা হয়।

**ভি-স্লট (V-Slot) :** সারফেস গেজকে গোলাকার উপরিভাগের ওপর স্থাপন করে ব্যবহার করতে সুবিধা হয়।

**গেজ পিন (Gauge Pin) :** চাপ দিলে গেজ পিন বেস অংশের তলদেশকে অতিক্রম করে বের হয়ে আসে। এই অবস্থায় সারফেস প্লেটের প্রান্তরেখার সমান্তরালে সারফেস গেজকে সরান এবং কোন লম্ব উপরিভাগের সাথে সারফেস গেজের তলদেশকে মিল করান সম্ভবপর হয়।

**অ্যাডজাস্টিং স্ক্রু (Adjusting Screw) :** একে ঘুরালে রকারের সাহায্যে স্পিন্ডল সূক্ষ্মভাবে নিয়ন্ত্রিত হয়। যেহেতু স্ক্রাইবারটি স্পিন্ডলের সাথে ক্ল্যাম্প নাট দ্বারা আবদ্ধ করা, সুতরাং এই নিয়ন্ত্রণের সাহায্যে কার্যত স্ক্রাইবারের মুখই নিয়ন্ত্রিত হয়ে যায়।

**সুইভেল নাট (Swivel Nut) :** একে ঢিলা করে স্পিন্ডলকে যে কোণে ঘুরানো যায় এবং প্রয়োজনীয় কোণে সুইভেল নাটকে টাইট দিয়ে আবদ্ধ করে রাখা যায়।

**রকার (Rocker) :** সারফেস গেজের স্পিন্ডল সহ অন্যান্য অংশ ভিত (Base)-এর সাথে রকারের মাধ্যমে সংযুক্ত থাকে এডজেস্টিং ক্লু এবং সুইচেল নট সরাসরি রকারের সহিত বৃত্ত থেকে ছাইবারের পরেন্টকে উঠানামা করতে সাহায্য করে।

**স্পিন্ডল রকার ব্র্যাকেট (Spindle Rocker Bracket) :** এই ব্র্যাকেটের সাহায্যে রকারকে বেস এর সাথে ধরে রাখে ও ঘোরাতে সাহায্য করে।

**ক্ল্যাম্প (Clamp) :** ক্ল্যাম্প ছাইবারকে স্পিন্ডলের সাথে ধরে রাখে।

#### ৪.৩ সারফেস গেজের ব্যবহার :

- ১) মেশিন শপ, জেলারেল মেকানিক্স শপ, উৎপাদনযুক্তি শিল্পকারখানা, মেইনটেনেন্স শপার্কশপ, মেকানিক্যাল কর্মকাণ্ড শপার্কশপ প্রভৃতি জারগায় কাজের সূচিতা বজায় রাখার জন্য মার্কিং টুল হিসেবে সারফেস গেজ ব্যাপকভাবে ব্যবহৃত হয়।
- ২) সারফেস গেজ সাধারণত বিভিন্ন উভয় ও অনুভূমিক তলের উপর সরলরেখা টানার জন্য ব্যবহার করা হয়।
- ৩) ক্ষয়ার হেড থেকে মাপের পাঠ নেওয়ার জন্য সারফেজ গেজ ব্যবহার করা হয়।
- ৪) একটি আয়তাকার বস্তুর একাধিক লম্ব উপরিভাগের শুপর সমান উচ্চতায় সরলরেখা টানা যায়।
- ৫) একটি বস্তুর লম্ব তল (Vertical Surface) থেকে নির্দিষ্ট দূরত্বে উহারই একটি আনুভূমিক তল (Horizontal Surface)-এর শুপর সরলরেখা টানা যায়।
- ৬) সিলিঙ্ক্রিক্যাল জবের বাঁকা (Curved Surface) তলের উপর উহার কেন্দ্র বরাবর লাইন টানার জন্য সারফেজ গেজ ব্যবহার করা হয়।
- ৭) সিলিঙ্ক্রিক্যাল বস্তুর ক্ষেত্রে উহার একটি বাঁকা (Curved Surface) তল, অন্য একটি বাঁকা (Curved Surface) তল থেকে সমান উচ্চতায় আছে কীনা তা পরীক্ষা করা যায়।
- ৮) একটি বস্তুর সমতল বিশিষ্ট উপরিভাগ অন্য একটি বস্তুর সমতল বিশিষ্ট উপরিভাগ থেকে সমান উচ্চতায় আছে কীনা তা পরীক্ষা করা যায়।
- ৯) বস্তুর সমতলতা (Flatness) পরীক্ষা করা যায়।
- ১০) সারফেস গেজ দ্বারা সমান্তরাল সরলরেখা টানা যায়।



চিত্র-৪.৩: সারফেস গেজের বিভিন্ন ব্যবহার

#### **৪.৪ সারফেস গেজ দ্বারা কোন তলের এলাইনমেন্ট পরীক্ষা করার পদ্ধতি :**

প্রথমে সারফেস গেজের ভিতকে একটি সমতল প্লেটের উপর রেখে স্পিন্ডলের সাথে স্ক্রাইবারের পয়েন্টারটিকে পরীক্ষণীয় তলের সাথে সমান্তরাল করে ক্ল্যাম্প নাটটিকে টাইট দিয়ে স্ক্রাইবারটিকে দৃঢ়ভাবে স্পিন্ডলের সাথে আটকাতে হবে। তারপর সারফেস গেজের বেস বা ভিতকে আন্তে আন্তে সমতল প্লেটের উপর আনুভূমিকভাবে ঠেলে নাড়াতে হবে। এমতাবস্থায় পরীক্ষণীয় তলটির সাথে স্ক্রাইবারের পয়েন্টার যদি সর্বদা একই দূরত্ব বজায় রাখে তবে বুঝা যাবে যে পরীক্ষণীয় তলটি সমতল। এভাবেই সারফেস গেজ দ্বারা কোন তলের এলাইনমেন্ট পরীক্ষা করা হয়।

### **প্রশ্নমালা-৪**

#### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. সারফেস গেজ কাকে বলে ?
২. সারফেস গেজ কী ধরনের টুল ?
৩. সারফেস গেজের কোন অংশ দ্বারা দাগ কাটা হয় ?
৪. সারফেস গেজের স্ক্রাইবারকে কোন অংশ দ্বারা নিয়ন্ত্রণ করা হয় ?
৫. সারফেস গেজের সবচেয়ে ভারী অংশ কোনটি ?
৬. ক্ল্যাম্প নাট কী কাজে ব্যবহার করা হয় ?
৭. ভি-স্লট থাকার সুবিধা কী ?
৮. সারফেস গেজকে সাধারণত কিসের ওপর রেখে ব্যবহার করা হয় ?

#### **সংক্ষিপ্ত প্রশ্ন :**

১. সারফেস গেজের বিভিন্ন অংশের নাম লেখ।
২. সারফেস গেজের প্রয়োগ ক্ষেত্র উল্লেখ কর।
৩. সারফেস গেজের ব্যবহার সংক্ষেপে উল্লেখ কর।
৪. সারফেস গেজের রক্ষণাবেক্ষণ সংক্ষেপে উল্লেখ কর।

#### **রচনামূলক প্রশ্ন :**

১. সারফেস গেজ বলতে কী বোঝায় ? এর প্রয়োগক্ষেত্র বর্ণনা কর।
২. সারফেস গেজের বিভিন্ন অংশের নাম এবং কার্যকারিতা লেখ।
৩. সারফেস গেজের ব্যবহার বর্ণনা কর।
৪. সারফেস গেজের যত্ন ও রক্ষণাবেক্ষণকৌশল বর্ণনা কর।

## অধ্যায়-৫

# লেদ মেশিনের বিভিন্ন অপারেশন (Various Operations of Lathe Machine)

## ৫.১ স্ট্রেইট টার্নিং, ফেসিং, পার্টিং ও টেপার টার্নিং :

### স্ট্রেইট টার্নিং (Straight Turning) :

এটা হলো লেদ মেশিনের সাধারণ অপারেশন। এর সাহায্যে বেলনাকৃতি অর্থাৎ সিলিন্ড্রিক্যাল ওয়ার্কিংপিস তৈরি করা যায়। নির্দিষ্ট ডেপথ অব কাটসহ মূর্ণায়মান ওয়ার্কিংপিসের সারফেস বরাবর নির্দিষ্ট হারে কাটিং টুলকে এগিয়ে স্ট্রেইট টার্নিং অপারেশন সমাধা করা হয়। চাকে সেন্টারের মাঝে বাঁধা অবস্থায় বা স্টেডি রেস্টের সাপোর্ট দেওয়া অবস্থায় স্ট্রেইট টার্নিং করা হয়।



চিত্র-৫.১: স্ট্রেইট টার্নিং

ওয়ার্কিংপিস বা জবের লম্বা দৈর্ঘ্যে যদি স্ট্রেইট টার্নিং করতে হয় এবং চাকে বাঁধা অংশ যদি খাটো হয় তবে ওয়ার্কিংপিস এক দিকে সরে যেতে পারে। এ ধরনের সরে যাওয়া এড়াতে হলে ওয়ার্কিংপিসকে ডেড সেন্টার দিয়ে সাপোর্ট দিতে হবে। এ ক্ষেত্রে লাইভ সেন্টার ও ডেড সেন্টার উভয়দিকের জবের এলাইনমেন্ট সারফেস গোজ দ্বারা পরীক্ষা করে ঠিক করে নিতে হবে। যদি ডেড সেন্টার অক্ষ সেন্টার হয়ে থাকে তবে ওয়ার্কিংপিস টেপার হবে। স্ট্রেইট টার্নিংকে দুইভাগে ভাগ করা যায়। যেমন- রাফ টার্নিং ও ফিনিস টার্নিং। টার্নিং করে নির্দিষ্ট মাপের ব্যাসের জব তৈরি করার সময় প্রথমে অধিক পরিমাণ ধাতু অপসারণ করার জন্য রাফ টার্নিং করা হয়। এ ক্ষেত্রে টার্নিং এর জন্য সারফেস ফিনিস ও সূক্ষ্মতা গুরুত্বপূর্ণ নয়। এতে সর্বাধিক ডেপথ অব কাট দেওয়া যায়।

### রাফ টার্নিং এর বিবেচ্য বিষয়গুলো হলো-

- ওয়ার্কিংপিসকে দৃঢ়ভাবে বাঁধতে হবে।
- সঠিক ফিড ( $0.5 \text{ মি.মি}-0.7 \text{ মি.মি}$ ) ব্যবহার করতে হবে।
- ওয়ার্কিংপিসের ব্যাস মাঝে মাঝে পরীক্ষা করতে হবে।
- ডেপথ অনুযায়ী কাটের সংখ্যা নির্বাচন করতে হবে।
- কাটিং ফ্লাইড ব্যবহার করতে হবে।

### ফিলিং টার্নিং এর বিবেচ্য বিষয়গুলো হলো-

- ওয়াকপিসকে দৃঢ়ভাবে বাঁধতে হবে।
- সঠিক ফিড ( $0.1$  মি.মি.- $0.3$  মি.মি.) ব্যবহার করতে হবে।
- ডেপথ অব কাট  $0.1$  মি.মি. হইতে  $0.25$  মি.মি. রাখতে হবে।
- কাটিং টুল সঠিকভাবে আইডি করে সঠিক কোণে টুল হোল্ডারে বাঁধতে হবে।
- কাটিং ফ্লাইড ব্যবহার করতে হবে।

### কেসিং বা ফেস টার্নিং (Facing or Face Turning) :

কার্যবন্ধন যে কোন প্রান্ত বা ধারকে কেন্দ্রের বা অক্ষের সাথে  $90^{\circ}$  কোণে সমতল সারফেস তৈরি করার মেশিনিং পদ্ধতি হলো ফেসিং বা ফেস টার্নিং।



চিত্র-৫.২৪ ফেস টার্নিং বা ফেসিং

### কেসিং বা ফেস টার্নিং করার সমন্বিত বিষয়গুলো বিবেচনা করা উচিত। যথা-

- ক) লেদ অপারেটরের ডান হাতের দিকে ফেসিং অপারেশন করতে ডানহাতি ফেসিং টুল নির্বাচন করা এবং বাম দিকে ফেসিং করতে বামহাতি ফেসিং টুল নির্বাচন করতে হবে।
- খ) ফেসিং টুল  $30$  থেকে  $50$  পর্যন্ত এন্টারিং এজেন্সে সেট করতে হবে।
- গ) সঠিক সেন্টার হাইটে ফেসিং টুল পয়েন্ট সেট করতে হবে।
- ঘ) ওয়াকপিসের ম্যাটারিয়ালের বৈশিষ্ট্য অনুযায়ী কাটিং টুল নির্বাচন করতে হবে এবং সে অনুযায়ী মেশিনের স্পিড ও ফিড নির্ধারণ করতে হবে।
- ঙ) স্পিন্ডল স্পিড = প্রেইন টার্নিং এর জন্য যে স্পিড নির্বাচন করা হয় তার দ্বিগুণ।
- চ) ফিড =  $0.3$  থেকে  $0.7$  মি.মি. (রাফ ফেসিং)
 
$$= 0.1 \text{ থেকে } 0.3 \text{ মি.মি. (ফিলিং ফেসিং)}$$
- ছ) ডেপথ অব কাট =  $2$  থেকে  $5$  মি.মি. (রাফ ফেসিং)
 
$$= 0.7 \text{ থেকে } 1 \text{ মি.মি. (ফিলিং ফেসিং)}$$
- জ) মেশিনের গায়ে সংযুক্ত চার্ট অনুযায়ী আর.পি.এম ও কিডের জন্য লিভার সেট করতে হবে।

### পার্টিং অফ (Parting off) :

মেশিনিং অপারেশন করার পর কোন নির্দিষ্ট স্থানে ওয়ার্কপিস কেটে ফেলাকে পার্টিং অফ বলা হয় অর্থাৎ লেদে বাঁধা ঘুরন্ত ওয়ার্কপিসকে পার্টিং টুলের সাহায্যে বিখণ্ডিত করাকে পার্টিং অফ বলা হয়।



চিত্র-৫.৩৮ পার্টিং অফ

### পার্টিং এর বিবেচ্য বিষয়গুলো হলো-

- পার্টিং করার স্থানটি যথাসম্ভব চাকের নিকটবর্তী হওয়া উচিত।
- টার্নিং এর কাটিং স্পিড এর তুলনায় পার্টিং এর কাটিং স্পিড প্রায় অর্ধেক হওয়া উচিত।
- পার্টিং এ র্যাক এঙ্গেল বিশিষ্ট কাটিং টুল ব্যবহার করা উচিত।
- পার্টিং টুলের কাটিং পয়েন্ট অবশ্যই সেন্টার হাইটে হওয়া উচিত।
- ওয়ার্কপিসের অক্ষের সাথে  $90^{\circ}$  কোণে কাটিং টুল বাঁধা উচিত।

### টেপার টার্নিং (Taper Turning) :

যদি কোন কার্যবস্তুর প্রস্থ বা ব্যাস অথবা পরিমাপ সমহারে কমে বা বাঢ়ে তখন তাকে টেপার বলে। লেদ মেশিনের সাহায্যে মেশিনিং করে কার্যবস্তুর ব্যাস বা প্রস্থ সমহারে কেটে কমানোর পদ্ধতিকে টেপার টার্নিং বলা হয়। একটি সিলিন্ড্রিক্যাল কার্যবস্তুকে টার্নিং করে এক প্রান্ত থেকে অন্য প্রান্তের দিকে এর ব্যাস ক্রমান্বয়ে ও সমভাবে পরিবর্তন করাই টেপার টার্নিং। লেদে টেপার কাটতে হলে কাটিং টুলের এজ কার্যবস্তুর অক্ষের সহিত ঠিকমত স্থাপন করতে হয়। অন্যথায় নির্ভুলভাবে টেপার পাওয়া যায় না।



Taper turning by form tool method

চিত্র-৫.৪৮ টেপার টার্নিং

লেদ মেশিনে নিম্নলিখিত পদ্ধতিসমূহ অনুসরণ করে টেপার টার্নিং করা যায়। যথা-

- ফর্ম টুলের সাহায্যে (By a Form Tool)
- টেইলস্টক সরাইয়া (By Setting off the Tailstock Center)
- কম্পাউন্ড রেস্টকে ঘুরাইয়া (By Swiveling the Compound Rest)
- টেপার অ্যাটাচমেন্টের সাহায্যে (By Taper Attachment)

#### টেপার টার্নিং পদ্ধতি নির্বাচন :

- ❖ অতিশয় সীমিত দৈর্ঘ্যের উপর টেপার কাটতে ফর্ম টুল পদ্ধতি নির্বাচন করা হয়।
- ❖ সীমিত দৈর্ঘ্যের উপর (এক্সটার্নাল ও ইন্টার্নাল) শার্প (Sharp) টেপার টার্নিং করতে কম্পাউন্ড রেস্ট সেটিং পদ্ধতি নির্বাচন করা হয়।
- ❖ কম টেপার অ্যাঙ্গেল বিশিষ্ট স্লো (Slow) টেপার (এক্সটার্নাল) টার্নিং করতে টেইল স্টক অফসেটিং পদ্ধতি নির্বাচন করা হয়।
- ❖ কম টেপার অ্যাঙ্গেল বিশিষ্ট স্লো টেপার সূক্ষ্মভাবে টার্নিং করতে টেপার টার্নিং অ্যাটাচমেন্ট পদ্ধতি নির্বাচন করা হয়।

#### ফর্ম টুল পদ্ধতি :

একটি চওড়া কাটিং টুলকে প্রয়োজনীয় সঠিক কোণে বেঁধে টেপার কাটা যায়। ঠিকমত টেপার কাটতে হলে কাটিং টুলের মুখ (Cutting Edge) সোজা হওয়া একান্ত বাঞ্ছনীয় তবে কাটিং টুলকে এমনভাবে স্থাপন করতে হবে যেন উহা কার্যবস্তুর অক্ষের সহিত অর্ধ টেপার কোণ  $\alpha$  উৎপন্ন করে। অর্ধ টেপার কোণ অর্থাৎ  $\alpha$  কোণে কাটিং টুল স্থাপন করার সময়  $90^{\circ}$  থেকে সাইড কাটিং এজ কোণ বাদ দিতে হবে। এ ছাড়া কাটিং টুলকে একটি নির্দিষ্ট কোণে গ্রাইডিং করে কার্যবস্তুর অক্ষের সহিত  $90^{\circ}$  কোণে অর্থাৎ লম্বভাবে উহাকে অগ্রসর করিয়ে টার্নিং করলে উহা কার্যবস্তুতে সংলিপ্ত টেপার কোণের সৃষ্টি করে। এ ক্ষেত্রে কার্যবস্তুর অক্ষের সহিত সূষ্ট কোণের পরিমাণ  $90^{\circ}$  থেকে কাটিং টুলের কোণের অর্ধেক বিয়োগ করলে পাওয়া যায়। এই পদ্ধতিতে শুধু অল্প দৈর্ঘ্যের টেপার কাটা সম্ভব কারণ এই পদ্ধতিতে লম্বা দৈর্ঘ্যের টেপার কাটলে কার্যবস্তুটি কাঁপতে থাকবে এবং উহা অমসৃণভাবে টেপার কাটা হবে।

#### কম্পাউন্ড রেস্ট সেটিং পদ্ধতিতে টেপার কাটিং :

এই পদ্ধতিতে যত ডিগ্রিতে টেপার কাটতে হবে টুল স্লাইডকে ঠিক তত ডিগ্রি কোণে বেঁধে টুল স্লাইডের সাহায্যে কাটিং টুলকে পরিচালিত করে টেপার কাটতে হয়। এই পদ্ধতিতে বাইরের সারফেসের টেপার ও ছিদ্রের মধ্যে টেপার উভই কাটা যায়। এই পদ্ধতিতে বেশি লম্বা কোণ টেপার কাটা যায় না অথচ বৃহৎ টেপার কোণ কাটার পক্ষে বিশেষ উপযোগী। টুল স্লাইড যতটা পথ যাতায়াত করতে পারে সর্বাধিক ততটা দৈর্ঘ্যের টেপারই এই পদ্ধতিতে কাটা সম্ভব। এছাড়া এই পদ্ধতির আর একটি অসুবিধা হলো টুল স্লাইডিং হাতে চালাতে হয় বিধায় টেপার উৎপাদনের গতি অত্যন্ত মন্ত্র হয় এবং তলের মসৃণতা (Surface Finish) ভালো হয় না। ইহা ছাড়াও মেশিন চালকের হাত শীষু ক্লান্ত হয়ে যায়। কম্পাউন্ড রেস্টের ওপর চিহ্নিত ক্ষেল থেকে পড়ে নির্দিষ্ট কোণে উহাকে সেট করতে হয়।

যদি ড্রয়িং এর মধ্যে অর্ধ টেপার কোণের পরিমাণ না দেওয়া থাকে তবে-

নিম্নের সূত্র ব্যবহার করে অর্ধ টেপার কোণ  $\alpha$  বের করা হয় :

$$\tan \alpha = \frac{D - d}{2L} \text{ এর সাহায্যে টেপার কোণ নির্ণয় করা হয়।}$$

এখানে,

$D$  = টেপার জবের বৃহত্তর ব্যাস

$d$  = টেপার জবের ক্ষুদ্রতর ব্যাস

$L$  = অক্ষ বরাবর টেপার অংশের দৈর্ঘ্য

$\alpha$  = অর্ধ টেপার অ্যাঙ্গেল (কম্পাউন্ড রেস্ট সেটিং অ্যাঙ্গেল)

টেইলস্টক অফসেট করার সূত্র :



$$OFFSET = \frac{OL}{TL} \times \frac{(D-d)}{2} = \frac{tpf \times OL}{24}$$

OL = overall length

TL = taper length

D = the large taper diameter

d = the small taper diameter

tpf = taper per foot (in.)

OFFSET = the distance to move the tailstock from the zero setting

## ৫.২ সেন্টার লেদ মেশিনে থ্রেড কাটিং :

একটি সিলিন্ড্রিক্যাল বা বেলনাকৃতি, কোণাকৃতি বা মোচাকৃতি বক্তুর উপর একই রকম আকৃতি বিশিষ্ট শিরা যদি এরপভাবে জড়াণ থাকে যে, উহা দৈর্ঘ্য বরাবর একই হারে এগিয়ে যায়, তাহলে উহাকে স্ক্রু বলে এবং জড়ানো শিরাকে থ্রেড বা প্যাচ বলে। সেন্টার লেদ মেশিনের সাহায্যে এরূপ প্যাচ বা থ্রেড কাটার পদ্ধতিকে বাহ্যিক থ্রেড কাটিং বা থ্রেড টার্নিং বলা হয়। মূলত প্যাচ বা থ্রেড টার্নিং হলো হেলিক্স আকারের নির্দিষ্ট আকৃতি বিশিষ্ট গ্রান্ড কাটার পদ্ধতি। লেদ মেশিনের সাহায্যে থ্রেড কাটার জন্য থ্রেড কাটার নীতি এবং কার্যপ্রণালী সম্পর্কে সম্যক জ্ঞান থাকা প্রয়োজন। থ্রেড কাটার জন্য লেদ স্পিন্ডল এবং লিড স্ক্রুর ঘূর্ণনের মধ্যে অবশ্যই একটি সম্পর্ক তৈরি করতে হবে। স্পিন্ডলের প্রত্যেক ঘূর্ণনের জন্য কাটিং টুলসহ ক্যারেজটি সমভাবে এবং সমহারে কার্যবক্তুর উপরের তলে প্রয়োজনীয় থ্রেডের লিডের সমান দূরত্ব অবশ্যই অতিক্রম করবে। এই জন্য স্পিন্ডলকে গিয়ার ট্রেন দ্বারা লিড স্ক্রুর সাথে সংযুক্ত করা হয়।



চিত্র-৫.১: শ্রেণি টার্নিং।

### ৫.৩ সেন্স টুলবিট প্রাইভিউ

সেন্স টুল প্রাইভিউ করার অন্য একটি পদ্ধতি টুলবিটের ধাতু অনুবাদী নিম্নোর হক হতে বিভিন্ন আয়তন নির্ধারণ করে নিকে হবে। কারপুর একটি কেক প্রাইভিউয়ে প্রাইভিউ টুলকে জ্বেলিং করে নিবে, প্রাইভিউ গার্ড ও পিণ্ড শাখিয়ে টুলবিট প্রাইভিউ করতে হবে।



| Material                   | Side Relief | Front Relief | Side Rake | Back Rake |
|----------------------------|-------------|--------------|-----------|-----------|
| Aluminum                   | 12          | 8            | 16        | 35        |
| Brass                      | 10          | 8            | 5 to -4   | 0         |
| Bronze                     | 10          | 8            | 5 to -4   | 0         |
| Cast Iron                  | 10          | 8            | 12        | 5         |
| Copper                     | 12          | 10           | 20        | 16        |
| Machine Steel              | 10 to 12    | 8            | 12 to 18  | 8 to 15   |
| Tool Steel<br>(unhardened) | 10          | 8            | 12        | 8         |
| Stainless Steel            | 10          | 8            | 15 to 20  | 8         |



### লেদ যেশিলে আইডি করা :

আইডি বলতে সাধারণ অর্থে বুকার আভাসিক যাটোরিমাল নিরে ঘৰে খাতু কর করা, পূর্ণের মাধ্যমে খাতু কর করা বা টুলস বা ব্রাপাতি কর করে থার সেশন। অর্থাৎ পূর্ণরূপান আইডি ইলেক্ট্রিক সাহায্যে খাতু কর করাকে আইডি বলা হয়। লেদ যেশিলে আইডি করতে হলো দুই ধরনের আইডি আটোচেমেন্ট লালে। যথা-

#### (১) ইটোরনাল আইডি আটোচেমেন্ট

হার্ডেনড ছিল জিগ বুশি, এবং অন্যান্য আভাসিক আইডি করার জন্য একটি উচ্চ গতি সম্পন্ন ইটোরনাল আইডি আটোচেমেন্ট সেটোর লেদে ব্যবহার করা হয়। পাশের চিত্রে একটি কম্পাউন্ড V-কেন্দ্র ছাইত মুক ইটোরনাল আইডি আটোচেমেন্ট সেখানো হলো থার পিপলস স্পিড ৩০,০০০ r.p.m.



চিত্ৰ ৫.৬৫ ইটোরনাল আইডি আটোচেমেন্ট

### (২) এক্সটারনাল আইভিং অ্যাটাচমেন্ট :

পাশের চিত্রে একটি উচ্চ গতি সম্পন্ন এক্সটারনাল আইভিং অ্যাটাচমেন্ট দেখানো হলো যার সাহায্যে লেদ মেশিনে রিমার, মিলিং কাটার ইত্যাদিকে ধার দেওয়া (Sharpening) করা যায়। তাছাড়া হার্ডেনড বুশিং এবং শ্যাফট আইভিং করা যায়। এই অ্যাটাচমেন্ট ব্যবহার করে লেদ মেশিনে অন্যান্য সাধারণ আইভিং কাজ ও করা যায়। এক্সটারনাল আইভিং এর জন্য কমপক্ষে ৪ (চার) ইঞ্জিং ব্যাসের আইভিং হাইল ব্যবহার করতে হয়। আইভিং হাইল সরাসরি লেদ মেশিনের কম্পাউন্ড রেস্টের সাথে স্থাপন করতে হয়। এই এক্সটারনাল আইভিং অ্যাটাচমেন্টে একটি বৈদ্যুতিক মোটর বেল্ট দ্বারা আইভিং হাইলের সাথে সংযুক্ত থাকে।



চিত্র-৫.৭: এক্সটারনাল আইভিং অ্যাটাচমেন্ট



চিত্র-৫.৮: অ্যাক্সেলার কাটার ও স্টেইট রিমার লেদে আইভিং করা।

### ৫.৪ কাটিং স্পিড, আর.পি.এম, ফিড ও ডেপথ অব কাট :

**কাটিং স্পিড (Cutting Speed) :** ঘূর্ণত্ব কার্যবস্তুর পরিধির উপর একটি নির্দিষ্ট বিন্দু প্রতি মিনিটে সরলরেখায় যে দূরত্ব অতিক্রম করে, তাকে কাটিং স্পিড বলা হয়। অর্থাৎ বস্তুটি এক মিনিটে যত পাক ঘূরে সেই কয়েক পাক যদি একটি সমতল ভূমির উপর গড়ায়, তাহলে বস্তুটির উপরের একটি বিন্দু একটি সরলরেখায় যত মিটার দূরত্ব এগিয়ে যায়, তাকে কাটিং স্পিড বলে। মূলত টার্নিং এর জন্য কাটিং স্পিড হলো কার্যবস্তুর সারফেস স্পিড যা প্রতি মিনিটে কাটিং টুলকে অতিক্রম করে। কাটিং স্পিড মেট্রিক পদ্ধতিতে মিটার/মিনিট এবং ব্রিটিশ পদ্ধতিতে ফুট/মিনিট এ প্রকাশ করা হয়।

### কাটিং স্পিড নির্ণয়ের সূত্র :

$$CS = \frac{\pi DN}{1000} \text{ মিটার/ মিনিট।}$$

যেখানে, CS = কাটিং স্পিড, মিটার / মিনিট

D = কার্যবস্তুর ব্যাস (মিমি)

N = প্রতি মিনিটে ঘূর্ণন সংখ্যা (r.p.m.)।

$$\therefore N = \frac{CS \times 1000}{\pi D}$$

**ফিড (Feed) :** ওয়ার্কিংপিসের সারফেস বরাবর উহার প্রতি ঘূর্ণনের ফলে কাটিং টুলের এগিয়ে যাওয়ার হারকে ফিড বলা হয়। ফিডের একক মি.মি./রিভলুশন বা ইঞ্চি/রিভলুশন।

**ডেপথ অব কাট (Depth of Cut) :** টার্নিং এর ক্ষেত্রে ডেপথ অব কাট বলতে প্রতি কাটে কাটিং টুল যত গভীরতায় কাটে তাকে বোঝায়। ডেপথ অব কাটকে কোপের গভীরতা বলা হয়। রাফ টার্নিং এর জন্য কোপের গভীরতা বেশি এবং ফিনিশিং টার্নিং এর জন্য কোপের গভীরতা কম হয়।

## প্রশ্নমালা-৫

### অতিসংক্ষিপ্ত প্রশ্ন :

১. স্টেইট টার্নিং কাকে বলে ?
২. ফেসিং কাকে বলে ?
৩. টেপার টার্নিং কাকে বলে ?
৪. ড্রিলিং কাকে বলে ?
৫. বোরিং কাকে বলে ?
৬. থ্রেড টার্নিং কাকে বলে ?
৭. কাটিং স্পিড কাকে বলে ?
৮. ফিড বলতে কী বোঝায় ?
৯. ডেপথ অব কাট কাকে বলে ?
১০. কাটিং স্পিডের একক কী ?

### সংক্ষিপ্ত প্রশ্ন :

১. কাটিং স্পিড নির্গয়ের সূত্রটি বুঝিয়ে লেখ।
২. লেদ মেশিনের কাটিং স্পিড ও ফিড কী কী বিষয়ের উপর নির্ভর করে উল্লেখ কর।
৩. কাটিং স্পিড বলতে কী বোঝায় বর্ণনা কর।
৪. বিভিন্ন প্রকার লেদ অপারেশনগুলোর নাম লেখ।
৫. গ্রাইভিং কাকে বলে ?
৬. লেদের সাহায্যে গ্রাইভিং করার অ্যাটাচমেন্টগুলো কী কী ?
৭. পার্টিং কাকে বলে বুঝিয়ে দাও।
৮. টেপার টার্নিং এর বিভিন্ন পদ্ধতিগুলির নাম লেখ।

### রচনামূলক প্রশ্ন :

১. বিভিন্ন প্রকার লেদ অপারেশনগুলোর সংজ্ঞা লেখ।
২. স্টেইট টার্নিং পদ্ধতি বর্ণনা কর।
৩. ফেসিং পদ্ধতি বর্ণনা কর।
৪. পার্টিং পদ্ধতি বর্ণনা কর।
৫. কম্পাউন্ড রেস্ট পদ্ধতিতে টেপার টার্নিং পদ্ধতি বর্ণনা কর।
৬. ফর্ম পদ্ধতিতে টেপার টার্নিং পদ্ধতি বর্ণনা কর।
৭. গ্রাইভিং কাকে বলে ? ইন্টারনাল গ্রাইভিং অ্যাটাচমেন্ট পদ্ধতিতে লেদের সাহায্যে গ্রাইভিং পদ্ধতি বর্ণনা কর।
৮. গ্রাইভিং কাকে বলে ? এক্সটারনাল গ্রাইভিং অ্যাটাচমেন্ট পদ্ধতিতে লেদের সাহায্যে গ্রাইভিং পদ্ধতি বর্ণনা কর।
৯. থ্রেড টার্নিং পদ্ধতি বর্ণনা কর।
১০. কাটিং স্পিড, ফিড ও ডেপথ অব কাট বর্ণনা কর।

## অধ্যায়-৬

### ডায়াল ইভিকেটর (Dial Indicator)

#### ৬.১ ডায়াল ইভিকেটরের পরিচিতি :

ওয়ার্কশপে ডায়াল ইভিকেটর একটি অতি প্রয়োজনীয় ডিভাইস হিসাবে ব্যবহৃত হয়ে থাকে। এটি দ্বারা কোনো যন্ত্রাংশের সমতলতা (Flatness), মসৃণতা (Smoothness) নিম্নলভাবে পরীক্ষা করা যায়, কোন জবকে মেশিনে নিখুঁত ভাবে টাল ভেঙ্গে আবক্ষ করা যায়, গোলাকার জবের এককেন্দ্রিকতা (Eccentricity) নির্ণয় করা যায়, অতি সূচ্ছ ও সঠিকভাবে জবকে কেন্দ্রীভূত করে বাধা যায়। ডায়াল ইভিকেটরের পরিধিতে একটি ক্ষেল থাকে। স্টাইলাসে চাপ পড়লে ঘড়ির কাটাৰ মত একটি বড় কাটা সৃজ্জতে থাকে। এই কাটা বা পঞ্জেটারের অবস্থান দেখে ক্ষেল থেকে পাঠ নেওয়া হয়।

ডায়াল ইভিকেটর ইঞ্জিনিয়ারিং ও মিলিমিটার উভয় প্রকারের হয়ে থাকে। ইঞ্জিনিয়ারিং এক হাজার ভাগের এক ভাগ অর্থাৎ  $0.001$  ইঞ্জিনিয়ারিং এমনকি কোন কোন ইঞ্জিনিয়াল ডায়াল ইভিকেটর দ্বারা দশ হাজার ভাগের এক ভাগ অর্থাৎ  $0.0001$  ইঞ্জিনিয়ারিং এবং মিলিমিটার ডায়াল ইভিকেটরের সাহায্যে এক মিলিমিটারের একশত ভাগের এক ভাগ অর্থাৎ  $0.001$  মিলিমিটার মাপের তারতম্য জানা যায়।



চিত্র-৬.১: ডায়াল ইভিকেটর

### ৬.২ ডায়াল ইন্ডিকেটরের বিভিন্ন অংশ :



চিত্র-৬.২৪ ডায়াল ইন্ডিকেটরের বিভিন্ন অংশ

নিম্নে ডায়াল ইভিকেটরের বিভিন্ন অংশের নাম উল্লেখ করা হলো-

- ১) টুল পোস্ট (Tool Post)
- ২) টুল মাউন্টিং হোল্ডার (Tool Mounting Holder)
- ৩) ম্যাগনেটিক টুল হোল্ডার (Magnetic Tool Holder)
- ৪) স্পিন্ডল (Spindle)
- ৫) ডায়াল (Dial)
- ৬) বেজেল (Bezel)
- ৭) ইভিকেটর পয়েন্টারস (Indicator Pointers)
  - (ক) বড় পয়েন্টার (Long Hand)
  - (খ) ছোট পয়েন্টার (Short Hand)
- ৮) কন্টাক্ট পয়েন্ট/সেন্সর বাটন (Contact Point/Sensor Button)
- ৯) গেজ হেড (Gauge Head)
- ১০) স্টেম (Stem)
- ১১) স্কেল মার্ক প্লেট (Scale Mark Plate)
- ১২) আউটার ফ্রেম (Outer Frame)
- ১৩) লিমিটার (Limiter)
- ১৪) ক্যাপ (Cap)

#### ৬.৩ ডায়াল ইভিকেটর দিয়ে পরিমাপ গ্রহণ পদ্ধতি :

ডায়াল ইভিকেটরের ডায়ালের উপর ‘০’ (শূন্য) চিহ্নিত রেখাটি মধ্যস্থানে হতে ডান ও বাম দিকে সমান ২৫টি ভাগ থাকে। বাম দিকের ভাগগুলি কন্টাক্ট পয়েন্ট নিচে নামার উচ্চতা নির্দেশ করে এবং ডানদিকের ভাগগুলি কন্টাক্ট পয়েন্ট উপরে উঠার অর্থাৎ বেশি মাপকে বোঝানোর জন্য ব্যবহৃত হয়। সেই জন্য ডায়ালের বামদিকে বিয়োগ (-) চিহ্ন এবং ডানদিকে যোগ (+) চিহ্ন থাকে।

#### ৬.৪ ডায়াল ইভিকেটরের ব্যবহারিক ক্ষেত্র :

ডায়াল ইভিকেটরকে সাধারণত নিম্ন লিখিত কাজে ব্যবহার করা হয়। যথা-

- ১) কোন বস্তুর সমতলতা পরীক্ষা করার জন্য ব্যবহার করা হয়।
- ২) সমতল বস্তু আনুভূমিক অবস্থায় আছে কীনা তা পরীক্ষা করা যায়।
- ৩) লেদ মেশিনের হেড স্টক এবং টেইল স্টক একই অক্ষে আছে কীনা তা পরীক্ষা করা যায়।
- ৪) বুশ, বিয়ারিং বা অন্য কোন যত্রাংশের বাহিরের তলের বিকেন্দ্রিকতা পরীক্ষা করা যায়।
- ৫) শ্যাফটের বিকেন্দ্রিকতা পরীক্ষা করার জন্য ব্যবহার হয়।
- ৬) ফোর-‘জ’ বিশিষ্ট লেদ চাকে জবকে বিকেন্দ্রিকতা দূর করে বাঁধার জন্য ব্যবহার করা হয়।

#### ৬.৫ ডায়াল ইভিকেটরের যত্ন ও রক্ষণাবেক্ষণ :

- ১) ডায়াল ইভিকেটর অতিসূক্ষ্ম পরীক্ষণ যত্ন বিধায় সকল প্রকার আঘাত হতে মুক্ত রাখতে হবে।
- ২) স্পিন্ডল বা স্টাইলাসটিকে ব্যবহারের আগে ও পরে চাপমুক্ত অবস্থায় রাখতে হবে।
- ৩) খোলা জায়গায় বা ময়লাযুক্ত স্থানে ডায়াল ইভিকেটর রাখা নিষেধ।
- ৪) ব্যবহারের পূর্বে ডায়াল ইভিকেটরের চৌম্বক ভিত (Magnetic Base)-এর তল পরিষ্কার কাপড় দিয়ে ভালো করে মুছে নিতে হবে।

৫) কাজ শেষে পরিষ্কার করে আবার নির্দিষ্ট আধার বা বাস্তুর মধ্যে রেখে দিতে হবে।

#### **৬.৬ ডায়াল ইভিকেটরের সাহায্যে সারফেস রাফনেস নির্ণয় করার পদ্ধতি :**

প্রথমে যে ওয়ার্কপিস বা বস্তুর তলের মসৃণতা বা সারফেস রাফনেস পরীক্ষা করা হবে সেটিকে একটি সমতল ওয়ার্কবেসের উপর রক্ষিত সারফেস প্লেটের উপর স্থাপন করতে হবে। তারপর একটি ডায়াল ইভিকেটরকে ভালোভাবে পরিষ্কার করে স্ট্যান্ডের সাথে ক্লাম্পের সাহায্যে আটকাতে হবে। ডায়াল ইভিকেটরের স্ট্যান্ডসহ ম্যাগনেটিক বেইসকে সারফেস প্লেটের উপর স্থাপন করতে হবে। এখন ডায়াল ইভিকেটরের কনট্রুল পয়েন্টিকে স্পর্শ করে কিছুটা চাপ প্রয়োগ করতে হবে যাতে করে ডায়ালের পয়েন্টার ‘০’ দাগ বরাবর থাকে এবং এমন অবস্থায় ক্লাম্প-কে টাইট দিয়ে নিতে হবে। এখন ডায়াল ইভিকেটরের বেইসটিকে আন্তে আন্তে সারফেস প্লেটের উপর এমনভাবে নাড়াতে হবে যাতে ওয়ার্কপিসের উপরিতলের সবদিকে কন্ট্রুল পয়েন্টিকে চলাচল করে। ওয়ার্কপিসের তলের উপর দিয়ে ডায়াল ইভিকেটরের নড়াচড়ার সময় যদি ডায়ালের পয়েন্টার একই অবস্থানে থাকে তবে বুঝতে হবে যে ওয়ার্কপিসের তলাটি যথাযথ সমতল। কিন্তু যদি ডায়ালের পয়েন্টার পজিটিভ বা নিগেটিভের দিকে সরে আসে তবে বুঝতে হবে যে, ওয়ার্কপিসের উপরিতল উঁচু নিচু আছে।

## **প্রশ্নমালা-৬**

### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. ডায়াল ইভিকেটর কী ধরনের যন্ত্র?
২. ডায়াল ইভিকেটরের প্রধান কয়টি অংশ আছে।
৩. ডায়াল ইভিকেটরের বেইসটি চৌম্বকীয় করা থাকে কেন ?
৪. ডায়াল ইভিকেটরের কাটা ‘০’ দাগ থেকে বাম দিকে ঘুরে গেলে মাপ পজিটিভ না নেগেটিভ হয় ?

### **সংক্ষিপ্ত প্রশ্নঃ**

১. ডায়াল ইভিকেটর বলতে কী বোঝায় ?
২. ডায়াল ইভিকেটরের ব্যবহারিক ক্ষেত্র উল্লেখ কর।
৩. ডায়াল ইভিকেটরের বিভিন্ন অংশের বর্ণনা দাও।

### **রচনামূলক প্রশ্নঃ**

১. ডায়াল ইভিকেটর বলতে কী বোঝায় ? এর ব্যবহারিক ক্ষেত্র বর্ণনা কর।
২. ডায়াল ইভিকেটরের বিভিন্ন অংশের বর্ণনাসহ পরিমাপ গ্রহণ পদ্ধতি বর্ণনা কর।
৩. ডায়াল ইভিকেটরের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি ব্যাখ্যা কর।

## অধ্যায়-৭

### ইনসাইড মাইক্রোমিটার (Inside Micrometer)

#### ৭.১ ইনসাইড মাইক্রোমিটারের পরিচিতি :

যে মাইক্রোমিটার দ্বারা কোন কার্যবস্তু বা ওয়ার্কপিসের কোন ছিদ্রের গভীরতা, কোন ফল্ডের গভীরতা ও পুরুত্ব, ফাঁপা সিলিন্ডারের আভ্যন্তরীণ ব্যাস ও গভীরতা সূচিভাবে পরিমাপ করতে পারে তাকে ইনসাইড মাইক্রোমিটার বলে।



চিত্র-৭.১৪ ইনসাইড মাইক্রোমিটার

#### ৭.২ ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের নাম :



চিত্র-৭.২৪ একটি রড টাইপ ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশ

### নিম্ন ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের নাম দেওয়া হলো-

১. থিম্বল (Thimble)
২. ব্যারেল (Barrel/Sleeve)
৩. স্পিং লক (Spindle Lock Screw)
৪. এক্সটেনশন রড/স্পিন্ডল (Extension Rods/Spindles)
৫. ইনসাইড 'জ'স (Inside Jaws)
৬. ব্যারেল স্কেল (Barrel Scale)
৭. থিম্বল স্কেল (Thimble Scale)
৮. র্যাচেট নব (Ratchet Knob)

### ৭.৩ ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যবলী :

ইনসাইড মাইক্রোমিটারের গঠন সীতি আউট সাইড মাইক্রোমিটারে চেমে একটু ভিন্ন ধরনের হয়ে থাকে। সাধারণত ইনসাইড মাইক্রোমিটারের একটি মূল বিভিন্ন কতকগুলো বর্ধিত দণ্ড দ্বারা একটি সেট আকারে থাকে। এটি ক্ষেত্রে ইস্পাত দ্বারা তৈরি হয়ে থাকে। আউটসাইড মাইক্রোমিটারের মত থিম্বল স্কেল ও ব্যারেল স্কেল আছে। <sup>১</sup> ইঞ্জি হেডের স্লিপের উপর ২০ টি দাগ ও এক ইঞ্জি মাথার ব্যারেলের উপর ৪০ টি দাগ কাটা থাকে। <sup>২</sup> আভ্যন্তরীণ মাপ নেওয়ার জন্য এটির মাথার দুইটি অ্যানিলিড লাগানো থাকে। কোনো বন্ধের মাপ অর্ধেৎ দুইটি তলের অন্তর্ভুক্ত দূরত্ব মাপ শৃঙ্খল ও পরীক্ষা ও নিরীক্ষা করতে ইনসাইড মাইক্রোমিটার ব্যবহৃত হয়। ইনসাইড মাইক্রোমিটারের পরিমাপ পদ্ধতি আউট মাইক্রোমিটারের পরিমাপ পদ্ধতির অনুরূপ।

### ৭.৪ ইনসাইড মাইক্রোমিটারের প্রকারভেদ :

সাধারণত ইনসাইড মাইক্রোমিটার তিনি ধর্কারের হয়ে থাকে। যথ-

- (১) ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার।
- (২) সিঙ্গেল পয়েন্ট রড টাইপ ইনসাইড মাইক্রোমিটার।
- (৩) ড্রি-পয়েন্ট রড টাইপ ইনসাইড মাইক্রোমিটার।



চিত্র-৭.৩৪ ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার (মেকানিক্যাল ও ডিজিটাল)



চিত্র-৭.৪ঃ সিঙ্গেল পয়েন্ট রড টাইপ ইনসাইড মাইক্রোমিটার



চিত্র-৭.৫ঃ ত্রি পয়েন্ট রড টাইপ ইনসাইড মাইক্রোমিটার

#### ৭.৫ ইনসাইড মাইক্রোমিটারের সাহায্যে পরিমাপ শৃঙ্খল পদ্ধতি :

ইনসাইড মাইক্রোমিটারের গঠন আউটসাইড মাইক্রোমিটারের তুলনায় একটু ডিন্ব ক্রমের হয়ে থাকে। ব্যারেল ক্ষেপের এবং থিম্বল ক্ষেপের প্রাঞ্চিত দুইটি মুখের দ্বয়ত্ব দ্বারা ছিদ্রের আভ্যন্তরীণ ব্যাস, একের প্রশংসিতা ইত্যাদি মাপ লওয়া যায়। এটির ব্যারেলের প্রতিটি বিভাগ ইঞ্জিতে  $0.025$  ইঞ্চি ক্রমে মি.মি. ক্ষেপে  $0.5$  মি.মি. ক্রমে দাগ কাটা থাকে। থিম্বলকে সুরাগে ব্যারেলের সর্বাধিক  $1/2$  ইঞ্চি স্থান বা  $13$  মি.মি. স্থান সরে থাকে। ইনসাইড মাইক্রোমিটারের থিম্বল “ $0$ ” চিহ্নিত রেখাটি শব্দন ব্যারেলের “ $0$ ” চিহ্নিত রেখাটির সাথে মিলে যায়, তখন ব্যারেল ও থিম্বলের প্রাঞ্চিত দুইটি মুখের দ্বয়ত্ব মাপ ইঞ্চি ক্রমে  $2$  ইঞ্চি এবং মিলিমিটার ক্রমে  $50$  মি.মি. হয়। ফলে ইনসাইড মাইক্রোমিটার দ্বারা  $2$  ইঞ্চি বা  $50$  মি.মি. এর কম ছিন্দ বা নালীর মাপ পাওয়া সম্ভব নয়। অতএব, এর দ্বারা  $2\frac{1}{2}$  ইঞ্চি এবং মিলিমিটারে  $50$  মি.মি. হইতে  $63$  মি.মি. পর্যন্ত মাপ পাওয়া যায়। এর বেশি মাপ সহিত কয়েকটি অশ্ব প্রয়োজন মত যোগ করে মাপ নেওয়া যায়। এছাড়া “এক্সটেনশন রড” শব্দ প্রয়োজন মত যোগ করে আরও বড় মাপ নেওয়া যায়।



চিত্র-৭.৬৪ ইনসাইড মাইক্রোমিটারের পাঠ অঙ্ক।

#### ৭.৬ ইনসাইড মাইক্রোমিটারের বক্তু ও রূক্ষপাবেক্ষণ্য

ইনসাইড মাইক্রোমিটার অতি সূক্ষ্ম যাপ যন্ত্র। ইহা ব্যবহার করার সময় যথেষ্ট সতর্কতা এবং যন্ত্র নেওয়া প্রয়োজন। ইনসাইড মাইক্রোমিটার টি পরিকার করে ঠিক আছে কীনা তা সেখে নেওয়া দরকার। ব্যবহারের সময় বেল কোন আবাত থাকে না হয় এবং ব্যবহারের পর পরিকার করে নিশ্চিহ্ন হালে রেখে দিতে হয়। ক্যালিপার টাইপ ইনসাইড মাইক্রোমিটার এর 'জ' গুলোতে যাতে কোন আবাত না দাপে সেদিকে খেয়াল রাখতে হবে। রড টাইপ ইনসাইড মাইক্রোমিটার এর রড-সেটের প্রতিটি রডকে কাছ শেবে পরিকার করে রাখতে হবে। রডগুলোকে একটি প্যাকেটের মধ্যে ভালোভাবে রাখতে হবে যেন কোন আবাত দেশে পরিমাপের সূক্ষ্মতা নষ্ট হয় না।

#### প্রশ্নাবলী-৭

##### অতি সংক্ষিপ্ত উত্তৰ :

১. ইনসাইড মাইক্রোমিটার বলতে কী বোঝায় ?
২. ইনসাইড মাইক্রোমিটার কত ধর্কার ?
৩. ইনসাইড মাইক্রোমিটার কী কাজে ব্যবহার করা হয় ?

##### সংক্ষিপ্ত উত্তৰ :

১. ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের নাম দেখ।
২. ইনসাইড মাইক্রোমিটারের বক্তু ও রূক্ষপাবেক্ষণ্য পক্ষতি বর্ণনা কর।
৩. ইনসাইড মাইক্রোমিটার কত ধর্কার ও কী কী ?

##### আচলানুলক উত্তৰ :

১. ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যাবলী বর্ণনা কর।
২. ইনসাইড মাইক্রোমিটারের সাহায্যে পরিমাপ পদ্ধতি বর্ণনা কর।

## अध्याय-८

### कमिलेशन सेट (Combination Set)

#### ८.१ कमिलेशन सेट :

ज्ञानरूपे एटा अड्युक्ट अंगोलीय व सूबिदाळक बहुवृती अवलं यजा। एर मध्ये पोऱ्टी अधाल असू आहे। अंगोलम योवे उक्त वा मूऱ्टी अंथके संयोग करू वारा यावा।



फिरा-८.११ कमिलेशन सेट

#### ८.२ कमिलेशन सेटचे विचित्र अंगांचे नाव :

मिळू कमिलेशन सेट-एव विचित्र अंगांचे नाव  
देखावा यातो-

- १) कराव हेड (Square head)
- २) प्रोट्रॉक्टर हेड (Protractor head)
- ३) सेंटर हेड (Centre head)
- ४) रूल वा ब्लेड (Rule or Blade)
- ५) क्राइवर (Scriber)



फिरा-८.२१ कमिलेशन सेटचे विचित्र अंग

#### ८.३ कमिलेशन सेटचे विचित्र अंगांची कार्यीकली :

कराव हेड- ईद्याके कलेचे जाखे संयोग करू ये कोन अवश्याच फैक्याव छ व नाटेचे जाहाजे आवज करू व्यावहार करा यावा। एर घारा संपर्कोर्च, व्हारास्पेर बर्गीकार, टोकोर्पाकार व संवक्तुपा पर्याका करा यावा।

प्रोट्रॉक्टर हेड- ईद्य स्टिक तावे ये कोण आकाजेव कोण विर्ग वरा यावा। टोपार कठ तिऱि आहे, ता सराजे देव करा यावा।

**সেন্টার হেড-** ইহার সাহায্যে অতি সহজে গোলাকার সমতলের উপর কেন্দ্র নির্ণয় করা যায়।

**রুল বা ক্লেড-** ইহা উচ্চমানের ইস্পাত দ্বারা তৈরি। ইহা লম্বায় ১২ ইঞ্চি। উভয় পার্শ্বে ইঞ্জিতে ও মেট্রিক পদ্ধতিতে মাপার জন্য দাগ কাটা থাকে। এর দ্বারা যন্ত্রাংশের আকার মাপা যায়। ইহার পৃষ্ঠে মাঝামাঝি লম্বালম্বি খাঁজ কাটা থাকে যার মধ্য দিয়ে সেন্টের অন্যান্য অংশগুলি আবন্দ করে কাজ করা যায়।

**ঙ্কাইবার-** এর সাহায্যে রেখা অঙ্কন করা যায়। লম্বায় ২ হইতে ২ ১/২ ইঞ্চি হয়। ইহা ক্ষয়ার হেডের ছিদ্রের মধ্যে আটকে রাখা হয়।



#### চিত্র-৮.৩৪ কমিনেশন সেন্টের বিভিন্ন ব্যবহার

#### ৮.৪ কমিনেশন সেন্টের যত্ন ও রক্ষণাবেক্ষণ :

- ১) ব্যবহারের সময় অপরিক্ষার ও অপরিচ্ছন্ন স্থানে রেখে কাজ করা যাবে না।
- ২) ব্যবহারের সময় পরিক্ষার নরম কাপড় দিয়ে ভালোভাবে পরিক্ষার করে নিবে।
- ৩) কাজ করার সময় অন্যান্য যন্ত্রের সঙ্গে না রেখে আলাদা ভাবে বিশেষ যত্ন সহকারে রাখবে।
- ৪) ব্যবহারের পর যাতে কোন অংশে মরিচা না পড়ে বা চলনশীল অংশে যাতে সহজে ময়লা না পড়ে, তাই বিভিন্ন অংশে মস্ত কারক তৈল দিয়ে রাখতে হবে।
- ৫) ব্যবহারের পর উহাকে নির্দিষ্ট বাস্তু নিরাপদে রাখতে হবে।

## প্রশ্নমালা-৮

### **অতিসংক্ষিপ্ত প্রশ্ন :**

১. কম্বিনেশন সেট বলতে কী বোঝা?
২. কম্বিনেশন সেট-এর বিভিন্ন অংশের নাম উল্লেখ কর।
৩. কম্বিনেশন সেট-এ ক্ষয়ার হেড এর কাজ কী ?
৪. কম্বিনেশন সেট-এ প্রোট্র্যাক্টর হেড এর কাজ কী ?
৫. কম্বিনেশন সেট-এ সেন্টার হেড এর কাজ কী ?
৬. কম্বিনেশন সেট-এ ব্লেড বা রুলের কাজ কী ?

### **সংক্ষিপ্ত প্রশ্ন :**

১. কম্বিনেশন সেট বলতে কী বোঝায় ?
২. কম্বিনেশন সেট-এর বিভিন্ন অংশের ব্যবহার লেখ।
৩. কম্বিনেশন সেটের কয়টি অংশ ও কী কী ?

### **রচনামূলক প্রশ্ন :**

১. কম্বিনেশন সেট বলতে কী বোঝায় ? কম্বিনেশন সেটের কয়টি অংশ ও কী কী ? প্রতিটি অংশের বর্ণনা দাও
২. কম্বিনেশন সেটের কয়টি অংশ ও কী কী ? প্রতিটি অংশের কার্যাবলী সংক্ষেপে বর্ণনা কর।
৩. কম্বিনেশন সেট- এর যত্ন ও রক্ষণাবেক্ষণ বিষয়াদি বর্ণনা কর।

## অধ্যায়-৯

# ডেপথ মাইক্রোমিটার (Depth Micrometer)

### ৯.১ ডেপথ মাইক্রোমিটার পরিচিতি :

যে মাইক্রোমিটার দ্বারা সূক্ষ্মভাবে এক হাজার ভাগের একভাগ পর্যন্ত কোন ঘন্টাংশের গভীরতা, ছিদ্র ও ঘাটের গভীরতা মাপা যায়, তাহাকে ডেপথ মাইক্রোমিটার বলে।



চিত্র-৯.১: ডেপথ মাইক্রোমিটার

### ৯.২ ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের নাম :



চিত্র-৯.২: ডেপথ মাইক্রোমিটারের বিভিন্ন অংশ ও পার্ট গ্রহণ পদ্ধতি।

ডেপথ মাইক্রোমিটারের বিভিন্ন অংশসমূহের নাম নিম্নে দেওয়া হলো-

- ১) বেইস বা স্টক (Base or Stock)
- ২) থিম্বল (Thimble)
- ৩) ব্যারেল (Barrel)
- ৪) এক্সটেনশন রড (Extension rod)
- ৫) র্যাচেট স্টপ (Ratchet stop)

#### ৯.৩ ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যবলি :

**বেইস (Base) :** ইহা বক্তুর উপর স্থাপন করে ছিদ্রের বা নালীর গভীরতা মাপ করতে ব্যবহার হয়।

**থিম্বল (Thimble) :** ইহা ফাঁপা সিলিন্ডার যার এক প্রান্ত ঢালু এবং সার্কুলার ক্ষেত্র যুক্ত।

**ব্যারেল (Barrel) :** ইহা একটা টিউবের মত যার অভ্যন্তরে ইন্টারনাল থ্রেড যুক্ত এবং বাহিরের গোলাকার তলে ক্ষেত্র খচিত থাকে।

**এক্সটেনশন রড (Extension rod) :** ইহা থিম্বলের সঙ্গে যুক্ত করে গভীরতা মাপ নিতে ব্যবহার করা হয়।

#### ৯.৪ ডেপথ মাইক্রোমিটার-এর সাহায্যে পরিমাপ গ্রহণ পদ্ধতি :

ইনসাইড মাইক্রোমিটারের মত থিম্বল ও ব্যারেল আছে। শুধু ব্যারেলের দাগের উপর যে সংখ্যা লেখা থাকে, তা অন্যান্য মাইক্রোমিটারের তুলনায় বিপরীত দিক থেকে অর্ধাং উপর হতে সংখ্যাগুলি লেখা থাকে। কারণ থিম্বলকে যতই সামনের দিকে স্থান হয়, ততই মাপের গভীরতা বাড়তে থাকে এবং গণনা থেকে করা হয়। এই মাইক্রোমিটারে কতগুলি বর্ধিত আকারের দণ্ড ব্যবহার করা হয়। এই সব দণ্ড ডেপথ মাইক্রোমিটারের পিছনের দিকে র্যাচেট যুক্ত ক্যাপকে খুলিয়া লাগান হয়। ইহা ব্যবহারের সময় বেসের উপর বাম হাতের আঙুল দ্বারা হাঙ্কা চাপ প্রয়োগ করিয়া ডান হাতে থিম্বলকে স্থুরাতে হয়।



চিত্র-৯.৩: ডেপথ মাইক্রোমিটারের সাহায্যে পরিমাপ গ্রহণ পদ্ধতি (১)

এই মাইক্রোমিটারের আকারের পার্সা (Range) হিসেবে বিভিন্ন লব্ধ দণ্ড দেওয়া থাকে। যেমন- ০-৩ আকারের চেপথ মাইক্রোমিটারের তিনটি রড, ০-৬ ইকিতে রডটি রড এবং ০-৯ ইকিতে রডটি দণ্ড থাকে। অত্যুক্তি দণ্ড নিজস্ব লব্ধ আকারের সাথে অধিক ২ ইকি লব্ধ থাকে, তা কখনু বিবরের ক্ষেত্রে ধোকার জন্য। এই দণ্ডগুলি ক্রোম ইল্পাত সুগার ফিলিশিং করিয়া কৈরি করা হয়। চেপথ মাইক্রোমিটারের সাহায্যে এক ইকিতে এক হাজার তাপের এক তাপ মাপা যাব।



চিত্ৰ-৯.৪: চেপথ মাইক্রোমিটারের সাহায্যে পরিমাণ এক্ষণ গজতি (১)।

#### ৯.৫ চেপথ মাইক্রোমিটারের যত্ন ও রক্ষণাবেক্ষণ :

চেপথ মাইক্রোমিটার একটি সূক্ষ্ম যত্ন। ইহা খুব সাধারণে ও যত্ন সহকারে ব্যবহার করা হবে। ব্যবহার করার পূর্বে ইহাকে অলোভাবে পরিকার করে নিবে। চেপথ মাইক্রোমিটারের কোন অংশে যাতে অগ্রিচা না পড়ে তাৰ জন্য ক্ষিতি কু প্রেত এবং একটেনশন রড কিছু দিন পৰ পৰ অসৃষ্ট কাৰক তৈল দিতে হবে। কাজ শেষে নিশ্চিহ্ন হালে অর্ধেৎ তাৰ জন্য নিৰ্ধাৰিত বারে রাখতে হবে।

## প্রশ্নমালা-৯

### অতিসংক্ষিপ্ত প্রশ্ন :

১. ডেপথ মাইক্রোমিটার বলতে কী বোঝায় ?
২. ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের নাম লেখ ।
৩. ডেপথ মাইক্রোমিটার-এর বিবরণ উল্লেখ কর ।
৪. ডেপথ মাইক্রোমিটার-এ বেইস এর কাজ কী ?
৫. ডেপথ মাইক্রোমিটার-এ থিস্মল এর কাজ কী ?
৬. ডেপথ মাইক্রোমিটার-এ ব্যারেল এর কাজ কী ?
৭. ডেপথ মাইক্রোমিটার-এ এক্সটেনশন রড এর কাজ কী ?

### সংক্ষিপ্ত প্রশ্ন :

১. ডেপথ মাইক্রোমিটার বলতে কী বোঝায় ? ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের নাম লেখ ।
২. ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের বর্ণনা দাও ।
৩. ডেপথ মাইক্রোমিটার-এ বেইস ও ব্যারেল এর কাজ কী ?
৪. ডেপথ মাইক্রোমিটার-এ থিস্মল ও এক্সটেনশন রড এর কাজ কী ?
৫. ডেপথ মাইক্রোমিটার কেন ব্যবহার করা হয় সংক্ষেপে লেখ ।

### রচনামূলক প্রশ্ন :

১. ডেপথ মাইক্রোমিটার বলতে কী বোঝায় ? ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের বর্ণনা দাও ।
২. ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের গঠন ও কার্যাবলী বর্ণনা কর ।
৩. ডেপথ মাইক্রোমিটার-এর সাহায্যে পরিমাপ গ্রহণ পদ্ধতি বর্ণনা কর ।
৪. ডেপথ মাইক্রোমিটারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর ।

## অধ্যায়-১০

### ভার্নিয়ার বিভেল প্রোট্রাক্টর (Vernier Bevel Protractor)

#### ১০.১ ভার্নিয়ার বিভেল প্রোট্রাক্টর-এর পরিচিতি :

সাধারণ বিভেল প্রোট্রাক্টরের-এর সাহায্যে এক ডিগ্রির চেয়ে কম কোণ কোণ পরিমাপ করা যায় না। কিন্তু ভার্নিয়ার বিভেল প্রোট্রাক্টর-এর সাহায্যে সাধারণত এক ডিগ্রির  $1/12$  অংশ বা  $5$  মিনিট কোণ পর্যন্ত পরিমাপ করা যায়। ইহাকে ইউনিভার্সেল বিভেল প্রোট্রাক্টরও বলা হয়। কৌণিক পরিমাপক যন্ত্রের মধ্যে এটি সূচক কোণ পরিমাপক যন্ত্র। ইহা অত্যন্ত মূল্যবান ও থ্রয়োজনীয় যন্ত্র।

#### ১০.২ ভার্নিয়ার বিভেল প্রোট্রাক্টর-এর বিভিন্ন অংশের নাম :

নিম্নে ভার্নিয়ার বিভেল প্রোট্রাক্টরের বিভিন্ন অংশের নাম দেওয়া হলো-

- ১) স্টক (Stock)
- ২) ডায়াল (Dial)
- ৩) ভার্নিয়ার ক্লেল (Vernier Scale)
- ৪) ব্লেড (Blade)
- ৫) ডিস্ক (Disk)
- ৬) ক্ল্যাম্প নাট (Clamp Nut)
- ৭) ক্ল্যাম্প স্ক্রু (Clamp Screw)



চিত্র-১০.১ : ভার্নিয়ার বিভেল প্রোট্রাক্টরের বিভিন্ন অংশ

#### ১০.৩ ভার্নিয়ার বিভেল প্রোট্রাক্টরের ভার্নিয়ার ধ্রুবক নির্ণয় :

ভার্নিয়ার বিভেল প্রোট্রাক্টরের ধৰ্মান ক্লেলের দুই ঘরের মান এবং ভার্নিয়ার ক্লেলের এক ঘরের মানের পার্থক্যকে ভার্নিয়ার বিভেল প্রোট্রাক্টরের ভার্নিয়ার ধ্রুবক বা ভার্নিয়ার কনস্ট্যান্ট বলে।

অর্দিয়ার বিজ্ঞেল প্রোট্রিউজেন গঠন অনুযায়ী ভাসালের অধার কেলের যে ভিত্তির বিভাগগুলো থাকে, তার ২৫টি বিভাগ ভার্নিয়ার কেলের পরিধিকে ১২টি বিজ্ঞেল হাল সংরক্ষ করে থাকে। অর্দিয় অধার কেলের ২০ ঘর অর্দিয়ার কেলের ১২ ঘরের সমান।

অর্দিয়ার ঘেলের ১২ ঘর = অধার কেলের ২০ ঘর,

সুতৰাঙ্গ ভার্নিয়ার কেলের ১ ঘর = অধার কেলের  $20/12$  ঘর

তাই ভার্নিয়ার কেলের ১ অংশ =  $(20/12) \times 50$  মিনিট = ১১৫ মিনিট

অর্দিয়ার বিজ্ঞেল প্রোট্রিউজেন অধার কেলের সুই ঘরের মাপ ২ মিনিট বা  $(2 \times 50)$  মিনিট = ১০০ মিনিট

সুতৰাঙ্গ ভার্নিয়ার কেলের প্রদর্শক =  $(120 - 115)$  মিনিট = ৫ মিনিট।



চিত্র-১০.৩ ভার্নিয়ার বিজ্ঞেল প্রোট্রিউজেন প্রদর্শক নির্ণয়।

#### ১০.৪ ভার্নিয়ার বিজ্ঞেল প্রোট্রিউজেন পরিষ্কার পার্ট এবং পদ্ধতি :

কোনো কোণের মাপ নিতে হলে, অথবা উভয়ের মাপ অনুযায়ী করে ক্ল্যাম্প মাটকে তিলা করে গ্রেডটি ভাসা বা বাম দিকে (কোণ ১০°-এর বেশি হলে বামদিকে এবং ১০°-এর কম হলে বাম দিকে) এমন কাবে সুরাবে থাকে এই কোণ গ্রেডের তল এবং স্টেকের বাম পার্শ এই সুই-এর অভিযন্তী হালে মোটায়োটি ঝট্টে থাকে। অর্দিয়ার '০' চিহ্নিত গ্রেডটি ভাসালের ১০° বেখাতির বাম দিকে অথবা ভাসাদিকে কক স্ল্যাটক ডিমি বিভাগ অক্ষিক্ষম করেছে। তার পর সকল করা সরকার, অর্দিয়ারের কক স্ল্যাটক গ্রেডের সাথে ভাসালের বিভাগ করা তিনহেন সাথে মিলেছে, এমন এই স্ল্যাটক বিভাগকে ৫ দারা তল করলে যে তথকত বাহির হয়, তাই 'ভার্নিয়ার বিজ্ঞেল প্রোট্রিউজেন' নির্ণয় যাপ। সর্বলাল মধ্যে কাছে '০' চিহ্নিত গ্রেডটি ভাসালের ১০° চিহ্নিত গ্রেডের যে সিকের গ্রেডেক অক্ষিক্ষম করে ভার্নিয়ারের এই সিকের গ্রেড থাকা মিনিট মাপ সূচিক করে।



চিত্র-১০.৪ : ভার্নিয়ার বিসেল প্রেট্রাইটেরের সাহায্যে পাঠ গ্রহণ।

#### ১০.৫ ভার্নিয়ার বিসেল প্রেট্রাইটেরের ব্যবহার :

প্রেট্রাইটেরের সাথে বর্ধিত অংশ ডিক্স নিয়ন্ত্রণশীল ভায়াল, যার পরিধির উপর দাগাক্ষন করা থাকে। খাঁজ কাটা একটি ক্লেড সংযোজন করা থাকে। ইহার দৈর্ঘ্য ৭ ও ১২ ইঞ্চি হয়ে থাকে। সাধারণত প্রেট্রাইটেরের এক পিঠ সমতল ও চ্যাপ্টো থাকে যার লে-আউট করিতে সুবিধা হয়। ভায়াল এবং ক্লেড কে আলাদা ভাবে নিয়ন্ত্রণ করা যায় এবং নার্সিং করা থাব-নাট দ্বারা লকিং করা হয়। মাঝে মাঝে ডিকের বর্ধিত অংশকে ভার্নিয়ার হাইট গেজে সংযোজন করে কাজের সুবিধা মত ব্যবহার করা যায়। সূক্ষ্ম কোণ মাপার জন্য অপর একটি সংযোগ ক্লেড দেওয়া থাকে। ইহার সাহায্যে সূক্ষ্ম ও স্থূল কোণ বিশিষ্ট বস্তুর সূক্ষ্ম ও সঠিক ভাবে মাপা যায়।

#### ১০.৬ ভার্নিয়ার বিসেল প্রেট্রাইটেরের যত্ন ও রক্ষণাবেক্ষণ :

- ১) নির্দিষ্ট বাজ্জ হতে নিয়ে কাজ করে পুনরায় নির্দিষ্ট বাজ্জে রাখতে হবে।
- ২) ব্যবহারের পূর্বে এবং পরে ভালোভাবে পরিষ্কার করে নিবে।
- ৩) কাজ করার সময় ইহাকে খালি জায়গায় না রেখে পরিষ্কার কাপড় বা কাগজের উপর রাখতে হবে।
- ৪) খোলা অবস্থায় অন্যান্য যন্ত্রের সাথে রাখবে না।
- ৫) মরিচা থাকে না পড়ে, তার জন্য কটন ওয়েস্ট দিয়ে ভালোভাবে মুছে তৈলের পাতলা আবরণ দিয়ে রাখতে হবে।

## প্রশ্নমালা-১০

### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের বলতে কী বোঝা?
২. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের বিভিন্ন অংশের নাম লেখ।
৩. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের ধূৰ্ব কত ?

### **সংক্ষিপ্ত প্রশ্ন :**

১. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের বলতে কী বোঝায় ?
২. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের ধূৰ্ব নির্ণয় কর।
৩. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের পরিমাপ পাঠ গ্রহণ পদ্ধতি সংক্ষেপে লেখ।
৪. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের ব্যবহার লেখ।
৫. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের বিবরণ উল্লেখ কর।

### **রচনামূলক প্রশ্ন :**

১. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের বলতে কী বোঝায় ? ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের ধূৰ্বক নির্ণয় করার পদ্ধতি বর্ণনা কর।
২. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।
৩. ভার্নিয়ার বিভেদ প্রোট্র্যাষ্টের পরিমাপ পাঠ গ্রহণ পদ্ধতি বর্ণনা কর।

## অধ্যায়-১১

### গিয়ার টুথ ভার্নিয়ার ক্যালিপার (Gear Tooth Vernier Caliper)

#### ১১.১ গিয়ার টুথ ভার্নিয়ার ক্যালিপার :

এর দ্বারা গিয়ারের দাঁতের পিচ-ডায়ামেটার বরাবর চওড়া বা কর্ডাল থিকনেস এবং দাঁতের উপর থেকে কর্ডাল থিকনেস পর্যন্ত গভীরতা অথবা এডেনডাম মাপা হয়। এটা ব্যতীত হব, ফর্মিং টুল এবং শ্রেড কাটিং টুল মাপার জন্য ব্যবহার হয়। ইহা অত্যন্ত মূল্যবান ও সূক্ষ্ম যন্ত্র। এটা অত্যন্ত যত্নের সাথে ব্যবহার করা হয়।

#### ১১.২ গিয়ার টুথ ভার্নিয়ারের বিভিন্ন অংশের নামঃ



চিত্র-১১.১: গিয়ার টুথ ভার্নিয়ার ক্যালিপারের বিভিন্ন অংশ।

১. ট্যাং (Tang)
২. ভার্টিকেল স্কেল (Vertical Scale)
৩. হাইজন্টাল স্কেল (Horizontal Scale)
৪. ভার্নিয়ার স্কেল (Vernier Scale)
৫. লকিং স্ক্রু (Locking Screw)
৬. অ্যাডজাস্টিং স্ক্রু (Adjusting Screw)

### ১১.৩ গিয়ার টুথ ভার্নিয়ারের কার্যনীতি :

এর দ্বারা গিয়ারের দাঁতের বিভিন্ন অংশকে সূক্ষ্মভাবে মাপ নিতে ব্যবহার হয় বলে এর নাম ‘গিয়ার টুথ ভার্নিয়া’র ক্যালিপার। গঠনের দিক হতে ইহা ক্যালিপারের অন্তর্ভুক্ত। এতে সাধারণ ভার্নিয়ারের ন্যায় বিভাগ করা দুইটি মূলক্ষেল এক সমাকোণে একই ধাতুর দ্বারা তৈরি হয় এবং উভয় মূলক্ষেলেই ভার্নিয়ার ক্ষেল যুক্ত থেকে যাতায়াত করে। ইহা ছাড়া, সাধারণ ভার্নিয়ার ক্যালিপার্সে যে রূপ মাপ নেওয়া যায় ইহাকেও ঠিক একই ভাবে মাপ নেওয়া যায়। ইহার একদিকে মূল ক্ষেলের সাথে দুইটি ‘জ’ থেকে গিয়ারের দাঁতের বাহিরের মাপ নিতে ব্যবহার হয় ও অন্য মূলক্ষেলের স্লাইডিং ‘জ’ এর পরিবর্তে একটি পাতলা ধাতু খণ্ড ‘জ’ রূপে ব্যবহার হয়ে গিয়ারের দাঁতের উচ্চতা মাপা যায়।

### ১১.৪ গিয়ার টুথ ভার্নিয়ারের যত্ন ও রক্ষণাবেক্ষণ :

গিয়ার টুথ ভার্নিয়ার অতিসূক্ষ্ম পরিমাপক যন্ত্র। যথেষ্ট যত্ন ও সর্তকতার সাথে উক্ত যন্ত্রের অর্থাৎ মেজারিং টুলস-এর ব্যবহার করতে হয়। ধুলাবালি বা অপরিচ্ছন্ন স্থানে এই যন্ত্রকে রাখা উচিত নয়। ব্যবহারের পূর্বে পরিষ্কার মস্ত কাপড়ের টুকরা দিয়ে ভালো ভাবে পরিষ্কার করে, ঠিক আছে কীনা দেখে নিতে হবে। কাজের সময় সাবধানতা অবলম্বন করবে যেন কোন অবস্থাতে গিয়ার টুথ ভার্নিয়ারে কোন প্রকার আঘাত প্রাপ্ত না হয় এবং ব্যবহারের পর ভালোভাবে পরিষ্কার করে পুনরায় তৈল লাগিয়ে নির্দিষ্ট স্থানে যত্ন সহকারে রেখে দিবে।

## প্রশ্নমালা-১১

### অতিসংক্ষিপ্ত প্রশ্ন :

১. গিয়ার টুথ ভার্নিয়ার বলতে কী বোঝা?
২. গিয়ার টুথ ভার্নিয়ারের কয়টি অংশ ?
৩. ট্যাং এর কাজ কী ?
৪. লকিং স্ক্লু এর কাজ কী ?
৫. হরাইজন্টাল ক্ষেলের কাজ কী ?
৬. ভার্টিকাল ক্ষেলের কাজ কী ?

### সংক্ষিপ্ত প্রশ্ন :

১. গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর ব্যবহার লেখ।
২. গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর কার্যনীতি বর্ণনা কর।
৩. গিয়ার টুথ ভার্নিয়ারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি উল্লেখ কর।
৪. গিয়ার টুথ ভার্নিয়ারের বিভিন্ন অংশের নাম লেখ।

### রচনামূলক প্রশ্ন :

১. গিয়ার টুথ ভার্নিয়ার ক্যালিপার বলতে কী বোঝায়? গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর ব্যবহার বর্ণনা কর।
২. গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।
৩. গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর কার্যনীতি বর্ণনা কর।
৪. গিয়ার টুথ ভার্নিয়ার ক্যালিপার এর বিভিন্ন অংশের বর্ণনা কর।

## অধ্যায়-১২

### গেজ (Gauges)

#### ১২.১ গেজ এর সংক্ষা :

গেজ এক প্রকার পরীক্ষণ যন্ত্র বা দ্বারা সাধারণত কোন তৈরি করা বস্তুৎপাদন ছবিঃ এ নির্দেশিত মাপ অনুযায়ী হোলে কীনা বা কাজের উপরোক্ত কীনা বা উহা নির্দিষ্ট মানবিশিষ্ট কীনা বা পরীক্ষা করার জন্য ব্যবহার করা হয়।

#### ১২.২ সচরাচর ব্যবহৃত গেজ সমূহ :

- ১) ফিলার গেজ (Feeler Gauge)
- ২) রেডিয়াস এন্ড ফিলেট গেজ (Radius and Fillet Gauge)
- ৩) স্ক্র-পিচ গেজ (Screw-pitch Gauge)
- ৪) ওয়্যার গেজ (Wire Gauge)
- ৫) টেপার গেজ (Taper Gauge)
- ৬) সেন্টার গেজ (Centre Gauge)
- ৭) টেলিকোপিক গেজ (Telescopic Gauge)
- ৮) ব্লক গেজ (Block Gauge)



১) ফিলার গেজ



২) রেডিয়াস এন্ড ফিলেট গেজ



৩) স্ক্র-পিচ গেজ



৪) টেলিকোপিক গেজ



৫) ওয়্যার গেজ



৬) টেপার গেজ



৭) সেন্টার গেজ



৮) ব্লক গেজ

চিত্র-১২.১ : সচরাচর ব্যবহৃত গেজসমূহ

### ১২.৪ রেফিল সেজের সংক্ষিপ্ত বর্ণনা :

রেফিল ও ফিলেট সেজ সাধারণত পোলারের, উভল ও অবকল সারফেস, একটি পিলিমিট্রিক সারফেস ইচ্ছান্তির উপরিভাগের অর্থ ব্যাসার্থ এবং মাল নির্বার করতে ব্যবহৃত করা হয়। এই সরবের মেঝেসমূহ কার্ডবলো পাতলা পাত বা জোক এর সম্মত গঠিত এবং একটি পিলোটেক হেল্পারের সুই আওত অবহিত থাকে। এক ধোজের রেফিল উভল (Convex) মাপের অন্য ও অপর ধোজের রেফিল অবকল (Concave) মাপের অন্য ব্যবহৃত হয়। এভদ্বা পিলিমিট্রি ও ইলিং উভয় এককে পাঞ্জা যায়।



চিত্র-১২.২.১ রেফিল সেজ

### ১২.৫ রেফিল সেজের ব্যবহার :

এই সেজ অতি সহজে, স্বচ্ছ, ও সার্টিফাইড লে-আউট, মেশিনিং করা কার্যবিত্ত ইলপেক্সিন এবং বনুনা তৈরি কাজে ব্যবহৃত করা হয়। প্রিচিন পরিকল্পনাতে রেফিল সেজের পার্কারলোর রেফিল ইলিং পর পর ইলিং থেকে  $\frac{1}{2}$  ইলিং পর্যন্ত হাজ থাকে। সৌন্দর্য পরিকল্পনাকে রেফিল সেজের পার্কারলোর আকার ০.৭২ মি.মি থেকে ০.২৫ মি.মি. পর পর ৫ মি.মি. পর্যন্ত হাজ থাকে। সেন কোন রেফিল সেজের একই পার্কারে উভল ও অবকল আকারের মাল পর্যন্ত করার ব্যবহার থাকে।

### ১২.৬ ছু-পিচ সেজ (Screw-pitch Gauge) :

বেন বকের বাহিনীর বা তিফেনের কলা 'V' আকারের ছু-প্রোভ করা থাকলে উভয় পিচ কর অথবা উভয়কে এক ইলিংকে করাটি ছু-প্রোভ ব্যর্থার থাকে, তাই আপনার অন্য ছু-পিচ সেজ ব্যবহৃত হয়। এই সেজ করা ইলিং ও পিলিমিট্রির সরবের উভয় ধরনের রেফিলেই মাল নির্বার করা যায়। ইহার রেফিলগুলি একটি হেল্পার এবং দুই প্রান্তে অবহিত থাকে এবং একই মান বিশিষ্ট প্রোভ-ধরণ বিশিষ্ট 'পিচ'-এর সীমাত থাকে। এই পিচ বা প্রোভ সংখ্যা রেফিল উপরিভাগে লেখা থাকে। স্বেচ্ছ সেজ বি.এস.জি.ও (BSW), বি.পি. (N.C), বি.এ (B.A) ও সৌন্দর্য ইত্যাদি স্ট্যার্ট-এ হাজ থাকে। পিলিমিট্রি মাপের স্ট্যার্টার্ট প্রোভ বা প্রোভ পিলিমিট্রি আবৃত্তি হয়।



চিত্র-১২.৩ ছু-পিচ সেজ

### କ୍ଲୁ-ପିଚ ପୋଜେର ସ୍ୟବହାର :

ବୋଟ ଓ ନାଟେର ପ୍ରେଡେର ପିଚ ନିର୍ମିତ କରାଯାଇଥାର ଅନ୍ୟ କ୍ଲୁ-ପିଚ ପୋଜେ ସ୍ୟବହାର କରା ହେଁ । ବାହିରେ ବା ଡିଫରେ ପ୍ରେଡେର ବେଳୋର ବର୍ଜଟିର ଉପର ଏମନଙ୍ଗାବେ ରୀଖିତ ହବେ ବେଳ ପ୍ରେଡେର ସାଥେ ସମାନତାରେ ଥାକେ । ବାଦି ପ୍ରେଡେର ଦୌନ୍ତ ପ୍ରେଡେର ସାଥେ ଭାଲୋଭାବେ ନା ଥିଲେ ଥାରୁ, ତା ହଲେ ବୁଝିତେ ହବେ ବେ ପ୍ରେଡେର ନିର୍ବାଚନ ଠିକ ହେଁ ନାହିଁ । ଏମତାବହାର ଆବାର ଏକଟି କାହାକାହି ସାଇଜେର ପ୍ରେଡ ବିଶିଷ୍ଟ ପ୍ରେଡ଼କେ ପୂର୍ବେର ନ୍ୟାର ପ୍ରେଡେର ଉପର ରୋଥେ ପରୀକ୍ଷା କରିବାକୁ ଆବଶ୍ୟକ ହବେ । ଏକାବେ ଦୁଇ, ତିନବାବ ପ୍ରେଡ ପରିବର୍ତ୍ତନ କରିଲେହି ଏମନ ଏକଟି ପ୍ରେଡ ଶାଖା ଥାବେ ବାର ଦୌନ୍ତ ପ୍ରେଡେର ସାଥେ ସମ୍ପୂର୍ଣ୍ଣ ଭାବେ ଥିଲାବେ । ତା ହଲେ, ଯେ ଡ୍ରେଜଟିର ଦୌନ୍ତ ଥିଲେ ଥାବେ ଉତ୍ତାର ଉପରେର ଲୋଖା ହଜି ଥିଲେ ଏତି ଇହିକିମେ ପ୍ରେଡେର ସଂଖ୍ୟା (T.P.I) ବା ପିଚ (Pitch) ଶୋଭା ଥାବେ ।

### ବ୍ଲକ୍ ଗେଜ (Block Gauge) :

ଏହି ଗେଜ କର୍ତ୍ତତଥି ଆବଶ୍ୟକାବ୍ଳୀ ହାବେକର ସମ୍ଭାବି । ଏହି ବ୍ଲକ୍ ଗେଜି ଅଞ୍ଚଳ ସୂଚନା ଓ ସଠିକ ଭାବେ ତୈରି କରା ହେଁ, ବାର ସୂଚନା (Accuracy) 0.000008 ଇହି, 0.000008 ଇହି ଓ 0.000002 ଇହି ଆକାରେ ଜୀମାବକ୍ଷ ଥାକେ । ଏହି ବ୍ଲକ୍ ଗେଜି କରୋଳନ ପ୍ରକାର ବା ବ୍ୟାକୋରୀଧି ମୋହ କାର୍ଯ୍ୟାବିହିତ ଅଳାପନ ସିଲେର ତୈରି ଥାବେ ଅନ୍ୟ ସ୍ୟବହାରେ ଏଦେର ତଳାଗୁଲୋର କୋଳ କରି ହେଁ ନା । ଏହି ବ୍ଲକ୍ ଗେଜି ଏମନଙ୍ଗାବେ ହିଟ ପ୍ରିଟ୍‌ମେଟ୍ କରା, ଥାତେ କୋଳ ପ୍ରକାରେ ମୋଟକ୍ରିଯେ ନା ଥାରୁ ବା ବୀକା ହରେ ନା ଥାରୁ । ଏଦେର ପୃଷ୍ଠାଗୁଲୋ ସୁନ୍ଦର ଫିଲିଶିଂ ଏଇଭିଂ ମେଶିନେ ଏଇଭିଂ କରାର ପର ଲୋପ ମେଶିନେ ବାର ବାର ଲୋପିଥିବାର ଅନ୍ୟ କୋଳ ବାତାଳ ଥାକେ ନା ଏବଂ ତାହିଁ ବାହିରେ ବାତାଳେର ଟାପେ ବ୍ଲକ୍ ଦୂର୍ଦୋଷ ପରମ୍ପରା ଦୂର୍ଚାଳାବେ ଲୋଗେ ଥାକେ । ଏହିକାବେ ଦୁଇ ବା ତତ୍ତ୍ଵବିକ ବ୍ଲକ୍ ଏକସାଥେ ପରିପରା ରୋଥେ ଯେ କୋଳ ଆକାରେର ପରିମାପେ ପରୀକ୍ଷା କରା ଥାରୁ ।



ଚିତ୍ର-୧୨.୩ : ବ୍ଲକ୍ ଗେଜ

### ବ୍ଲକ୍ ଗେଜେର ସ୍ୟବହାର :

ଏହି ବ୍ଲକ୍ ଗେଜ ଏକାବେର ମାପିଯାଉ ଦେଇଲ ଶାଇକ୍‌ରୋମିଟାର, ଅର୍ନିଯାର କ୍ୟାଲିଶାର ଇତ୍ୟାଦି ପରିମାପ ସର୍ବର ସଠିକତା ଯାଚାଇ କରା ଥାରୁ । ବ୍ଲକ୍ ଗେଜ ଥାରୁ ଏକ ଇହିକି ଦଳ ହାଜାର ଭାଗେର ଏକଙ୍କାଶ ବା ଏକ ମିଲିମିଟାରେର ଏକଶତ ଭାଗେର ଏକ ଭାଗ ପରିଷତ୍ତ ସୂଚନା ଲେଖ୍ୟା ଥାରୁ । ଯେ କୋଳ ଆକାରେର ମାପ ଲେଖ୍ୟାର ଅନ୍ୟ କୋଳ କୋଳ ବ୍ଲକ୍ ଛୁଟେ ଏହି ମାପ ପୋଷନ୍ତା ଥାବେ ତା ଅର୍ଥାତେ କାଣିଜେ ଲିଖେ ନିତେ ହବେ । ତାର ପର ଏକ ଏକ କରେ ବ୍ଲକ୍ ଗେଜି ଏମନଙ୍ଗାବେ ବାହାକାହି କରିବାକୁ ଆବଶ୍ୟକ ହବେ ଯେବେ କାଣିଜେ କାଣିତ ମାପେର ମାପନ ହେଁ । ଟାନାହରଶ୍ଵରପ ଧରା ଥାକ ବ୍ଲକ୍ ଗେଜ ଦିଲେ ୨.୬୭୫୬ ଇହି ପରିମାପ ହୁଲାକେ ହବେ । ଏକେବେଳେ ନିମ୍ନର ଧାପମୟୁହ ଅନୁସରଣ କରେ ବ୍ଲକ୍ ନିର୍ବାଚନ କରିବାକୁ ଆବଶ୍ୟକ ହବେ ।

যথা-

|                          |                  |
|--------------------------|------------------|
| সর্বমোট পরিমাপ =         | ২.৬৭৫৬ ইঞ্চি     |
| প্রথম ব্লক নিতে হবে =    | (-) ০.১০০৬ ইঞ্চি |
| বাকি থাকলো =             | ২.৫৭৫ ইঞ্চি      |
| দ্বিতীয় ব্লক নিতে হবে = | (-) ০.১০৫ ইঞ্চি  |
| বাকি থাকলো =             | ২.৪৭০ ইঞ্চি      |
| তৃতীয় ব্লক নিতে হবে =   | (-) ০.১২০ ইঞ্চি  |
| বাকি থাকলো =             | ২.৩৫০ ইঞ্চি      |
| চতুর্থ ব্লক নিতে হবে =   | (-) ০.৩৫০ ইঞ্চি  |
| বাকি থাকলো =             | ২.০০০ ইঞ্চি      |
| পঞ্চম ব্লক নিতে হবে =    | (-) ২.০০০ ইঞ্চি  |

## ১২.৭ গেজসমূহের যত্ন ও রক্ষণাবেক্ষণ :

### ফিলার গেজ :

ফিলার গেজের ড্রেডগুলো অতি সূক্ষ্ম মাপের বলে এদের উপর কোন প্রকার আঘাত দেওয়া বা চাপ দেওয়া উচিত নয়। মাপ পরীক্ষা করার সময় এই গেজের ড্রেডগুলোকে ফাঁকের মধ্যে প্রবেশ করানোর সময় সাবধানতা অবলম্বন করতে হবে, যাতে এগুলো বেঁকে গিয়ে ভাঁজ হয়ে ফাঁকের ভিতরে আটকে না যায়।

### ওয়্যার গেজ :

ওয়্যার গেজের প্লেটের চাকতিকে সাবধানে ব্যবহার করতে হবে। ব্যবহারের পর পরিষ্কার নরম ও পাতলা কাপড় দিয়ে ভালোভাবে পরিষ্কার করে উত্তমরূপে তেল বা পাতলা করে ছিঁজ লাগিয়ে যথাস্থানে রাখতে হবে।

### টেপার গেজ :

টেপার গেজকেও ফিলার গেজের মত সাবধানে ব্যবহার করে ভালোভাবে পরিষ্কার করে তেল বা ছিঁজ লাগিয়ে রাখতে হবে।

### সেন্টার গেজ :

এটি ফিলার গেজ ও টেপার গেজের চেয়ে অপেক্ষাকৃত মোটা প্লেটের তৈরি। তাই সেন্টার গেজের রক্ষণাবেক্ষণ একটু সহজ। ব্যবহারের পর পরিষ্কার করে তেল বা ছিঁজ লাগিয়ে যথাস্থানে রেখে দিতে হবে।

### টেলিস্কোপিক গেজ :

এটির ছয়টি গেজ নিয়ে একটি সেট হয়। এদেরকে খুব সাবধানে সতর্কতার সাথে ব্যবহার করতে হয়। ব্যবহারের পর নরম জাতীয় কাপড় দিয়ে ভালোভাবে পরিষ্কার করে পাতলা তেলের আবরণ দিয়ে নির্দিষ্ট আঁধারে রেখে দিতে হয়।

## প্রশ্নমালা-১২

### অতি সংক্ষিপ্ত প্রশ্ন :

১. গেজ বলতে কী বোঝ?
২. সচরাচর ব্যবহৃত গেজসমূহের নাম লেখ।
৩. ফিলার গেজ (Feeler Gauge) বলতে কী বোঝ?
৪. রেডিয়াস এন্ড ফিলেট গেজ (Radius and Fillet Gauge) বলতে কী বোঝ?
৫. স্ক্রু-পিচ গেজ (Screw-pitch Gauge) বলতে কী বোঝ?
৬. ওয়্যার গেজ (Wire Gauge) বলতে কী বোঝ?
৭. টেপার গেজ (Taper Gauge) বলতে কী বোঝ?
৮. সেন্টার গেজ (Centre Gauge) বলতে কী বোঝ?
৯. টেলিস্কোপিক গেজ (Telescopic Gauge) বলতে কী বোঝ?
১০. ব্লক গেজ (Block Gauge) বলতে কী বোঝ?

### সংক্ষিপ্ত প্রশ্ন :

১. গেজ বলতে কী বোঝায় ? সচরাচর ব্যবহৃত গেজসমূহের নাম লেখ।
২. ফিলার গেজ (Feeler Gauge) এর বর্ণনা দাও।
৩. রেডিয়াস এন্ড ফিলেট গেজ (Radius and Fillet Gauge) এর বর্ণনা দাও।
৪. স্ক্রু-পিচ গেজ (Screw-pitch Gauge) এর বর্ণনা দাও।
৫. ওয়্যার গেজ (Wire Gauge) এর বর্ণনা দাও।
৬. টেপার গেজ (Taper Gauge) এর বর্ণনা দাও।
৭. সেন্টার গেজ (Centre Gauge) এর বর্ণনা দাও।
৮. টেলিস্কোপিক গেজ (Telescopic Gauge) এর বর্ণনা দাও।
৯. ব্লক গেজ (Block Gauge) এর বর্ণনা দাও।
১০. ফিলার গেজ (Feeler Gauge) এর ব্যবহার লেখ।
১১. রেডিয়াস এন্ড ফিলেট গেজ (Radius and Fillet Gauge) এর ব্যবহার লেখ।
১২. স্ক্রু-পিচ গেজ (Screw-pitch Gauge) এর ব্যবহার লেখ।
১৩. ওয়্যার গেজ (Wire Gauge) এর ব্যবহার লেখ।
১৪. টেপার গেজ (Taper Gauge) এর ব্যবহার লেখ।
১৫. সেন্টার গেজ (Centre Gauge) এর ব্যবহার লেখ।
১৬. টেলিস্কোপিক গেজ (Telescopic Gauge) এর ব্যবহার লেখ।
১৭. ব্লক গেজ (Block Gauge) এর ব্যবহার লেখ।

### রচনামূলক প্রশ্ন :

১. গেজ বলতে কী বোঝায় ? সচরাচর ব্যবহৃত গেজসমূহের সংক্ষেপে বর্ণনা দাও।
২. গেজ বলতে কী বোঝায় ? সচরাচর ব্যবহৃত গেজসমূহের সংক্ষেপে ব্যবহার লেখ।
৩. গেজসমূহের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি বর্ণনা কর।

## অধ্যায়-১৩

### সাইন বার (Sine Bar)

#### ১৩.১ সাইন বার :

সাইন বার হলো মজবুত এবং অধিক মাত্রায় ফিনিশ ক্রোমিয়াম স্টিলের তৈরি একটি বার (Bar), যা উভয় প্রান্তে দুইটি সিলিন্ড্রিক্যাল রোলারের উপর ভর করে থাকে। রোলারদ্বয়ের কেন্দ্র দূরত্ব ত্রিটিশ পদ্ধতিতে ৫ ইঞ্চি বা ১০ ইঞ্চি হয়ে থাকে এবং মেট্রিক পদ্ধতিতে ইহা ১০০ মি.মি. বা ২৫০ মি.মি. হয়ে থাকে। রোলারদ্বয়ের কেন্দ্র দূরত্বই হলো সাইন বারের মাপ। সাইন বারের তল রোলারের বটমের সাথে সমান্তরাল, এবং ইহার তলের সূক্ষ্মতা ১ ইঞ্চিল মিলিয়ন ভাগের ৫০ ভাগ। ইহা খুব সূক্ষ্ম, সঠিকতা ও যথার্থতার সাথে অ্যাঙ্গেল, বিভেল ও টেপার মাপতে এবং চিহ্নিত করতে ব্যবহৃত হয়। সাইনবার ব্যবহার নির্ভর করে ত্রিকোণোমিতির সাইনের মানের উপর।



চিত্র-১৩.১ : সাইন বার

#### ১৩.২ সাইন বার ব্যবহারের প্রয়োজনীয় যন্ত্রপাতি :

নিম্নোক্ত যন্ত্রপাতি সাইন বার ব্যবহারে ব্যবহৃত হয়-

১. সারফেস প্লেট (Surface plate)
২. স্লিপ গেজ (Slip gauge)
৩. ক্ল্যাম্প (Clamp)
৪. ডায়াল ইনডিকেটর (Dial Indicator)
৫. অ্যাঙ্গেল প্লেট (Angle plate)
৬. সাইন সেন্টার (Sine Centre)

#### ১৩.৩ সাইন বারের প্রযোগ ক্ষেত্র :

সাধারণত প্রেট্র্যাস্টের বা ভার্নিয়ার বিভেল প্রেট্র্যাস্টের-এর সাহায্যে যে সকল বস্তু বা যন্ত্রাংশের কোণের পরিমাপ সূক্ষ্মভাবে নেওয়া সম্ভব নয়, সেখানে সাইনবার ব্যবহৃত হয়। কোন তৈরি করা ওয়ার্কপিসের টেপার, কোণ, বিভেল ইত্যাদির পরিমাপ অতি সূক্ষ্মতার সাথে যাচাই করার জন্য সাইন বার ব্যবহার করা হয়। মেশিনশপে লেদ, মিলিং, শেপার ইত্যাদি মেশিনে ওয়ার্কপিসকে সঠিক কোণে বাঁধার জন্য সাইন বার ব্যবহার করা হয়।



$I$  = distance between centres of ground cylinders (typically 5" or 10")

$h$  = height of the gauge blocks

$a$  = the angle of the plate

$$a = \arcsin\left(\frac{h}{I}\right)$$

চিত্র-১৩.২ : সাইন বার এর ব্যবহার কৌশল।

নিম্নোক্ত প্রয়োজনে সাইন বার ব্যবহার করা হয় -

- ১। প্রয়োজনীয় অ্যাঙ্গেলে ওয়ার্কপিস সেট করতে।
- ২। টেপার কোণ নির্ণয় করতে।
- ৩। ঢালু ওয়ার্কপিসের ঢাল নির্ণয় করতে।
- ৪। অ্যাঙ্গেলের পরিমাণ নির্ণয় করতে।
- ৫। বেঙ্গল গিয়ার পরীক্ষা করতে।
- ৬। অ্যাঙ্গেল ব্লক পরীক্ষা করতে।
- ৭। টেপার কী পরীক্ষা করতে।
- ৮। টেপার প্লাগ গেজ পরীক্ষা করতে।

### ১৩.৪ সাইন বারের যত্ন ও রক্ষণাবেক্ষণ :

সাইন বারের যত্ন ও রক্ষণাবেক্ষণ নিম্নে আলোচনা করা হলো-

- ১) দীর্ঘ দিন ব্যবহারের প্রয়োজন না হলে সাইন বারের প্রতিটি অংশে ভালো করে তৈলের পাতলা আবরণ দিয়ে যথাস্থানে রাখতে হবে।

- ২) সাইন বারকে ব্যবহারের পূর্বে ও পরে খালি হাতে না ধরে লেদার প্লাভস বা টিস্যু পেপার দিয়ে ধরতে হবে।
- ৩) সাইন বারে ব্যবহৃত গ্লিপ গেজের উপর যাতে ধুলাবালি, ময়লা ইত্যাদি না পড়ে এবং যাতে কোন আঘাত না লাগে সেদিকে খেয়াল রাখতে হবে।
- ৪) ব্যবহারের পর প্রত্যেকবার ভালোভাবে পরিষ্কার করে সাইন বার ও তার অ্যাকসেসরিজগুলোকে যথাস্থানে সাজিয়ে রাখতে হবে।
- ৫) সাইন বার গ্লিপ গেজগুলি অতিসূক্ষ্ম পরিমাপক যন্ত্র বিধায়, তাদের যত্নের সাথে ব্যবহার ও সংরক্ষণ করতে হবে।

### প্রশ্নমালা-১৩

#### অতিসংক্ষিপ্ত প্রশ্ন :

১. সাইন বার বলতে কী বোঝায় ?
২. সাইন বার ব্যবহারের সময় অন্যান্য সাহায্যকারী যন্ত্রপাতির নাম লেখ ?
৩. সাইন বার দ্বারা কী কী পরিমাপ বা পর্যবেক্ষণ করা যায় ?
৪. সাইন বার দ্বারা পরিমাপের সময় গ্লিপ গেজ কেন ব্যবহার করা হয় ?
৫. সাইন বার দ্বারা পরিমাপের সময় ডায়াল ইন্ডিকেটর কেন ব্যবহার করা হয় ?

#### সংক্ষিপ্ত প্রশ্ন :

১. সাইন বার কী কী কাজে ব্যবহার করা হয় সংক্ষেপে বর্ণনা কর।
২. সাইন বারের প্রয়োগ ক্ষেত্র উল্লেখ কর।
৩. সাইন বারের বিবরণ ব্যক্ত কর।
৪. সাইন বারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি উল্লেখ কর।
৫. সাইন বার ব্যবহারের প্রয়োজনীয়তা বর্ণনা কর।

#### রচনামূলক প্রশ্ন :

১. সাইন বার বলতে কী বোঝায় ? সাইন বার ব্যবহারের সময় অন্যান্য সাহায্যকারী যন্ত্রপাতির বর্ণনা দাও।
২. সাইন বার বলতে কী বোঝায় ? সাইন বারের যত্ন ও রক্ষণাবেক্ষণ পদ্ধতি উল্লেখ কর।
৩. সাইন বার বলতে কী বোঝায় ? সাইন বারের প্রয়োগ ক্ষেত্র উল্লেখ কর।

## অধ্যায়-১৪

### ফিট (Fit)

#### ১৪.১ ফিট :

প্রয়োজন অনুসারে যখন একটি যন্ত্রাংশকে অপর একটি যন্ত্রাংশের সহিত সংযোগ করা হয়, তখন উহাদের পরম্পর মিলন অবস্থাকে ফিট বলে। অর্থাৎ দুইটি মিলিত যন্ত্রাংশের সংযোজনের অবস্থাকে (আঁটসাট/চিলা) ফিট বলা হয়।

#### ১৪.২ ফিটের প্রকারভেদ :

নিম্নে ফিটের প্রকার ভেদ উল্লেখ করা হলো-

- ❖ রানিং ফিট (Running Fit)
- ❖ পুশ ফিট (Push Fit)
- ❖ ড্রাইভিং ফিট (Driving Fit)
- ❖ ফোর্স পিট (Force Fit)
- ❖ শৃঙ্খ ফিট (Shrink Fit)

#### ১৪.৩ বিভিন্ন প্রকার ফিটের প্রয়োজনীয়তা :

- ১) রানিং ফিট-ইহা এমন ফিট যা দুইটি অংশকে এমন ভাবে পরম্পর মিলন ঘটানো হয় যার একটি অংশ অপর অংশের মধ্যে প্রবেশ করে সহজ ভাবে ঘুরতে সক্ষম হয়।
- ২) পুশ ফিট-গুধু হাতের চাপের সাহায্যে একটি অংশকে অপর একটি অংশের মধ্যে প্রবেশ করে মিলন ঘটানোকে ‘পুশফিট’ বলে। ইহাকে কখনও কখনও ‘প্রেসফিট’ নামে উল্লেখ করা হয়।
- ৩) ড্রাইভিং ফিট-দুইটি অংশকে যখন হাতড়ির সাহায্যে আঘাত করে জোর পূর্বক অপর অংশের সাথে মিল ঘটানো হয়, তাকে ড্রাইভিং ফিট বলে।
- ৪) ফোর্স পিট- একটি অংশকে যখন অপর অংশের সাথে মিলন ঘটানোর জন্য প্রাচুর শক্তি কিংবা চাপের সাহায্য প্রয়োজন হয়, তখন উহাকে ‘ফোর্স ফিট’ বলে।
- ৫) শৃঙ্খ ফিট-যে কোন ধাতুকে উত্তপ্ত করলে উহার আয়তন বৃদ্ধি পায় এবং ঠাণ্ডা হলে সংকুচিত হয়। এ প্রক্রিয়ায় দুইটি অংশকে মিলন ঘটানোকে শৃঙ্খ ফিট বলে।

#### ১৪.৪ অ্যালাউপ, ক্লিয়ারেন্স ও ইন্টারফিয়ারেন্স :

##### অ্যালাউপ :

পরম্পর মিলনযোগ্য দুইটি যন্ত্রাংশের মধ্যে যে কোন প্রকার ফিট বা সংযোগ সম্পন্ন করার জন্য মিলনযোগ্য অংশব্যয়ের মধ্যে যে পরিমাণ মাপ পার্থক্য রাখার প্রয়োজন হয়, উহাকে ‘অ্যালাউপ’ বলে। ইহা শাফট ও ছিদ্রের ক্ষেত্রে শাফটের উর্ধ্ব সীমা থেকে নিম্ন সীমাকে বিয়োগ করলে পাওয়া যায়।

##### ক্লিয়ারেন্স :

ছিদ্রের মধ্যে শ্যাফট একই অক্ষরেখা বরাবর অবস্থান করলে এর চারদিকে যে সম্পরিমাণ ফাঁক থাকে তাকে ক্লিয়ারেন্স বলে।

**ক্লিয়ারেন্স = A - B**



চিত্র-১৪.১৫ ক্লিয়ারেন্স

#### ইন্টারফিয়ারেন্স :

একটি অংশকে অপর অংশের সাথে হাতুড়ির আঘাতে বা প্রচুর চাপ প্রয়োগ করে ফিট করাকে ইন্টারফিয়ারেন্স ফিট বলে।

**ইন্টারফিয়ারেন্স = B - A**



চিত্র-১৪.২৩ ইন্টারফিয়ারেন্স

#### ১৪.৫ বিভিন্ন শক্তির ফিট এবং প্রয়োজনের :

১. রানিং ফিট- শাফট ও বিয়ারিং-এর ক্ষেত্রে ব্যবহৃত হয়।
২. পুশ ফিট- পিস্তার ও পিনিয়নের শাফটের ক্ষেত্রে ব্যবহৃত হয়।
৩. ড্রাইভিং ফিট- সেই সব ক্ষেত্রে ব্যবহৃত হয় যেখানে শাফটকে ছিদ্রের ডায়ামেটার অপেক্ষা সামান্য বড় রাখার প্রয়োজন হয়।
৪. শূল ফিট- এই প্রতিযায় বিয়ারিং এর ডিজনের ও বাহিরের চাকাকে মুক্ত করা হয়।
৫. ক্লিয়ারেন্স ফিট- ইহা সম্ভাব্য বৃহত্তম শাফট এবং স্কুলত্তম ছিদ্রের ক্ষেত্রে ‘পজিটিভ অ্যালাইনেন্স’ মাধ্যমে ব্যবহৃত হয়।
৬. ইন্টারফিয়ারেন্স ফিট- ইহা সম্ভাব্য স্কুলত্তম শাফট ও বৃহত্তম ছিদ্রের মাধ্যমে ‘নেগেটিভ অ্যালাইনেন্স’ ব্যবহৃত হয়।
৭. ট্রানজিশন ফিট- ইহা সম্ভাব্য ‘পজিটিভ ও নেগেটিভ’-এর মধ্যবর্তী অবস্থার ব্যবহৃত হয়।

## প্রশ্নমালা-১৪

অতি সংক্ষিপ্ত প্রশ্ন :

১. ফিট বলতে কী বোঝ?
২. অ্যালাউস কাকে বলে ?
৩. ক্লিয়ারেন্স কাকে বলে ?
৪. ইন্টারফিয়ারেন্স কাকে বলে ?
৫. রানিং ফিট কাকে বলে ?
৬. পুশ ফিট কাকে বলে ?
৭. ড্রাইভিং ফিট কাকে বলে ?
৮. শৃঙ্খ ফিট কাকে বলে ?
৯. রানিং ফিট কাকে বলে ?
১০. ক্লিয়ারেন্স ফিট কাকে বলে ?
১১. ইন্টারফিয়ারেন্স ফিট কাকে বলে ?
১২. ট্রানজিশন ফিট কাকে বলে ?

সংক্ষিপ্ত প্রশ্ন :

১. ফিট-এর প্রকার ভেদ উল্লেখ কর।
২. বিভিন্ন প্রকার ফিটের প্রয়োজনীয়তা উল্লেখ কর।
৩. ফিট কাকে বলে? ফিট কত প্রকার ও কী কী?

রচনামূলক প্রশ্ন :

১. অ্যালাউস, ক্লিয়ারেন্স, ইন্টারফিয়ারেন্স বলতে কী বুঝায় তা উল্লেখ কর।
২. বিভিন্ন প্রকার ফিট-এর প্রয়োগক্ষেত্র ব্যক্ত কর।

## অধ্যায়-১৫

### টলারেন্স (Tolerance)

#### ১৫.১ টলারেন্স :

কোন যন্ত্রাংশের বা বস্তুর নমিন্যাল সাইজ বা প্রকৃত মাপ হতে গ্রহণযোগ্য ব্যতিক্রমের সীমাকে (Permissible Range of Variation) টলারেন্স বলে।

ধরা যাক, একটি শ্যাফটের নমিন্যাল সাইজ  $85$  মি.মি। এরপ দুইটি শ্যাফট টার্নিং করে তৈরি করার পর মাপ পরীক্ষা করে দেখা গেল যে, একটি শ্যাফটের মাপ  $85.02$  মি.মি। এবং অন্যটির মাপ  $88.99$  মি.মি। হয়েছে। যদি শ্যাফট দুইটিকে বাতিল না করে গ্রহণ করা হয় তাহলে সর্বোচ্চ গ্রহণযোগ্য মাপ হবে  $85.02$  মি.মি। এবং সর্বনিম্ন গ্রহণযোগ্য মাপ হবে  $88.99$  মি.মি। প্রকৃতপক্ষে, সর্বোচ্চ গ্রহণযোগ্য মাপ ও সর্বনিম্ন গ্রহণযোগ্য মাপের বিয়োগফলই হলো টলারেন্স।

$$\begin{aligned}\text{এখানে উদাহরণ অনুযায়ী টলারেন্স} &= (85.02 - 88.99) \text{ মি.মি.} \\ &= 0.03 \text{ মি.মি.}\end{aligned}$$

#### টলারেন্সের প্রকারভেদ :

টলারেন্স দুই প্রকার :

- ইউনিল্যাটারাল বা একমুখী টলারেন্স (Unilateral tolerance)
- বাইল্যাটারাল বা দ্বিমুখী টলারেন্স (Bilateral tolerance)

ইউনিল্যাটারাল বা একমুখী টলারেন্স (Unilateral tolerance) - এর অর্থ হলো নমিন্যাল সাইজ হতে মাপের ব্যতিক্রম কেবলমাত্র একদিকে করা হয়।

যেমন-

•  $85^{+0.02}$

•  $85_{-0.01}$

বাইল্যাটারাল বা দ্বিমুখী টলারেন্স (Bilateral tolerance)- বাইল্যাটারাল টলারেন্সের অর্থ হলো নমিন্যাল সাইজ হতে মাপের ব্যতিক্রম উর্ধ্বে বা নিম্নে উভয় দিকে করা হয়।

যেমন-

•  $85^{+0.02}$

•  $85_{-0.01}$

### ১৫.২ টলারেল প্রকাশের পদ্ধতি :

টলারেল দুই প্রকারে প্রকাশ করা হয়। যথা-

১. ছিদ্রের ভিত্তিতে এবং
২. শ্যাফটের ভিত্তিতে।

### ছিদ্রের ভিত্তিতে টলারেল প্রকাশ :

ছিদ্রের ভিত্তিতে টলারেল প্রকাশের ক্ষেত্রে ছিদ্রের মাপকে স্থির রেখে বিভিন্ন প্রকার ফিট অনুযায়ী শ্যাফটের ডায়ামেটারকে প্রয়োজনীয় মাপে টার্নিং করা হয়। এই পদ্ধতি সুবিধাজনক, কারণ ছিদ্র তৈরি করতে স্ট্যাভার্ড সাইজের ড্রিল বিট ব্যবহার করা যায়।

### শ্যাফটের ভিত্তিতে টলারেল প্রকাশ :

শ্যাফটের ভিত্তিতে টলারেল প্রকাশের ক্ষেত্রে শ্যাফটের মাপকে স্থির রেখে বিভিন্ন প্রকার ফিট অনুযায়ী ছিদ্রের ব্যাস বা হোল ডায়ামেটারকে প্রয়োজনীয় মাপে বোরিং করা হয়। এই পদ্ধতি বেশি সুবিধাজনক নয়, কারণ ছিদ্র তৈরি করতে স্ট্যাভার্ড সাইজের ড্রিল বিট ব্যবহার করার পর বার বার বোরিং করে উন্দিষ্ট মাপের ছিদ্র তৈরি করতে হয়।

### ১৫.৩ টলারেল রাখার প্রয়োজনীয়তা :

- ❖ টলারেল রাখলে যন্ত্রাংশের উৎপাদনশীলতা বেড়ে যায়।
- ❖ যন্ত্রপাতির ক্রটিজনিত মাপের ব্যতিক্রম গ্রহণযোগ্য মাত্রায় রাখা যায়।
- ❖ উৎপাদনে যন্ত্রাংশের বাতিল হওয়ার হার কমে যায়।

যেহেতু বিভিন্ন মেশিনিস্ট-এর কাজের সূক্ষ্মতা ভিন্ন হয় সেহেতু তাদের উৎপাদিত জবের মাপের তারতম্য ভিন্ন হওয়াও স্বাভাবিক। তবে টলারেল এই মাপের ভিন্নতা একটি নির্দিষ্ট সীমার মধ্যে রাখতে সাহায্য করে।

### ১৫.৪ লিমিট (Limit) :

একজন মেশিনিস্ট যতই দক্ষ হোক না কেন তা পক্ষে একই মাপ বিশিষ্ট বহু সংখ্যক যন্ত্রাংশ বা জব মেশিনিং করা সম্ভব হয় না। মেশিনের ক্রটি এবং তাহার নিজের ক্রটির জন্য কিছু সংখ্যক মাপ প্রয়োজনীয় মাপের চেয়ে বৃহত্তর বা ক্ষুদ্রতর হতে পারে। মাপের পরিবর্তন যদি গ্রহণ যোগ্য সীমার মধ্যে থাকে তাহলে যন্ত্রাংশগুলি বা জবগুলি বাতিল হয় না বরং গ্রহণযোগ্য হয়। জবের গ্রহণযোগ্য সর্বোচ্চ বা সর্বনিম্ন মাপের সীমাকে লিমিট বলে।

### ১৫.৫ হাই লিমিট ও লো লিমিট (High limit and low limit) :

**হাই লিমিট (High limit) :** বস্তুর বা ওয়ার্কপিসের সর্বোচ্চ গ্রহণযোগ্য মাপকে হাই লিমিট বা উর্ধ্ব সীমা বলে। হাই লিমিট নমিন্যাল সাইজের সাথে পজিটিভ টলারেল যোগ করে পাওয়া যায়।

যেমন-  $85^{+0.02}_{-0.01}$  এখানে মাপের হাই লিমিট =  $85 + 0.02 = 85.02$  মি.মি।

**লো লিমিট (low limit) :** বস্তুর বা ওয়ার্কপিসের সর্বনিম্ন গ্রহণযোগ্য মাপকে লো লিমিট বা নিম্ন সীমা বলে। লো লিমিট নমিন্যাল সাইজ থেকে নেগেটিভ টলারেল বিয়োগ করে পাওয়া যায়।

যেমন-  $85^{+0.02}_{-0.01}$  এখানে মাপের লো লিমিট =  $85 - 0.01 = 84.99$  মি.মি।

## প্রশ্নমালা-১৫

### অতি সংক্ষিপ্ত প্রশ্ন :

১. টলারেস বলতে কী বোঝায় ?
২. টলারেস কত প্রকার ?
৩. বিভিন্ন প্রকার টলারেস এর নাম লেখ ।
৪. লিমিট বলতে কী বোঝায় ?
৫. লিমিট কত প্রকার ?
৬. বিভিন্ন প্রকার লিমিটের নাম লেখ ।
৭. টলারেস প্রকাশের পদ্ধতি কয়টি ?
৮. লো লিমিট কী ?
৯. হাই লিমিট কী ?
১০. ইউনিল্যাটারাল টলারেস কাকে বলে ?
১১. বাইল্যাটারাল টলারেস কাকে বলে ?

### সংক্ষিপ্ত প্রশ্ন :

১. টলারেসের সংজ্ঞা দাও ।
২. টলারেস রাখার প্রয়োজনীয়তা কী ?
৩. শ্যাফটের ভিত্তিতে টলারেস কীভাবে প্রকাশ করা হয় ?
৪. ছিদ্রের ভিত্তিতে টলারেস কীভাবে প্রকাশ করা হয় ?
৫. হাই লিমিট ও লো লিমিট কাকে বলে ? বুঝিয়ে দাও ।
৬. একটি শ্যাফটের মাপ  $35^{+0.03}_{-0.01}$  মি.মি. প্রকাশ করা হলো । শ্যাফটির হাই লিমিট ও লো লিমিট কত ?

### রচনামূলক প্রশ্ন :

১. টলারেস বলতে কী বোঝায় ? টলারেস কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও ।
২. লিমিট বলতে কী বোঝায় ? লিমিট কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও ।
৩. টলারেস প্রকাশের পদ্ধতি কয়টি ও কি কি ? প্রত্যেক প্রকারের বর্ণনা দাও ।

## অধ্যায়-১৬

### সারফেস ফিনিশিং (Surface Finishing)

#### ১৬.১ সারফেস ফিনিশিং :

তলের মসৃণতাকে সারফেস ফিনিশিং বলে। তলের বিভিন্ন জায়গায় বিভিন্ন রকম মসৃণতা দরকার। কোথায় কম বা কোথায় বেশি মসৃণতা দরকার তা প্রতীক চিহ্নের মাধ্যমে নির্দেশ করে। প্রতীক চিহ্ন বুঝে সারফেসের ফিনিশিং করতে হয়।

#### ১৬.২ সারফেস ফিনিশিং-এর প্রতীক ব্যবহারের প্রয়োজনীয়তা :

প্রতীকসমূহ সাধারণত ওয়ার্কিংপিসের ফিনিশিং-এর অবস্থা বিশেষ ভাবে বুঝতে ব্যবহৃত হয়।

- ❖ যেখানে সারফেসের ম্যাট্রিয়াল অপসারণ গ্রহণ যোগ্য নয়।
- ❖ অতিরিক্ত ম্যাট্রিয়াল রাখতে হয় প্রয়োজনীয় সারফেস ফিনিশিং-এর জন্য।
- ❖ সারফেস ফিনিশিং-এর ধরন বুঝার জন্য।
- ❖ প্রয়োজনীয় মেশিনিং রিমিং, ল্যাপিং, গ্রাইভিং, হোনিং ও মিলিং ইত্যাদির প্রতীক বোঝানোর জন্য।

#### ১৬.৩ বিভিন্ন প্রকার স্ট্যান্ডার্ডের ফিনিশিং-এ ব্যবহৃত প্রতীকসমূহ:

টেকনিক্যাল ড্রয়িং এ ISO প্রতীকগুলি সারফেসের অবস্থা বিশেষভাবে উল্লেখ করতে ব্যবহৃত হয়। রাফ মেশিনিং এ সৃষ্টি সারফেসের অবস্থা বোঝানোর জন্য এক ত্রিভুজ প্রতীক ব্যবহৃত হয়। এই সারফেসে টুলের দ্বারা তৈরি গ্রুভ স্পর্শ দ্বারা ধরা পড়ে এবং পরিষ্কারভাবে খালি চোখে দেখা যায়।



চিত্র-১৬.১: রাফ ফিনিশিং-এর জন্য এমন প্রতীক

মিডিয়াম ফিনিশিং মেশিনিং এ সৃষ্টি সারফেসের অবস্থা ইঙ্গিত করতে দুই ত্রিভুজ প্রতীক ব্যবহৃত হয়। এই সারফেসে খালিচোখে গ্রুভ দেখা যেতেও পারে।



চিত্র-১৬.২: মেডিয়াম ফিনিশিং-এর জন্য এমন প্রতীক

ফাইন ফিনিশিং অপারেশনে সৃষ্টি সারফেসের অবস্থা ইঙ্গিত করতে তিনি ত্রিভুজ প্রতীক ব্যবহৃত হয়। এই সারফেসে খালি চোখে গ্রুভ দেখা যায় না।



চিত্র-১৬.৩: ফাইন ফিনিশিং-এর জন্য এমন প্রতীক

সুপার ফিনিশিং অপারেশন (হোনিং/ল্যাপিং)-এ সৃষ্টি সারফেসের অবস্থা বোঝাতে চার ত্রিভুজ প্রতীক ব্যবহার করা হয়।



চিত্র-১৬.৪ঁ: সুপার ফিনিশিং-এর জন্য এমন প্রতীক

রোলিং, ফোর্জিং এবং কাস্টিং এ তৈরি সারফেসের অবস্থা বোঝানোর জন্য ওয়েভ লাইন প্রতীক ব্যবহার করা হয়।



চিত্র-১৬.৫ঁ: রোলিং, ফোর্জিং এবং কাস্টিং এ তৈরি সারফেসের প্রতীক

## অনুশীলনী-১৬

**অতি সংক্ষিপ্ত প্রশ্ন :**

১. সারফেস ফিনিশিং কী ?
২. মিডিয়াম ফিনিশিং কী ?
৩. ফাইন ফিনিশিং কী ?
৪. সুপার ফিনিশিং কী ?

**সংক্ষিপ্ত প্রশ্ন :**

১. সারফেস ফিনিশিং বলতে কী বোঝায় ?
২. মিডিয়াম ফিনিশিং কী ? প্রতীক এঁকে দেখাও।
৩. ফাইন ফিনিশিং কী ? প্রতীক এঁকে দেখাও।
৪. সুপার ফিনিশিং কী ? প্রতীক এঁকে দেখাও।
৫. রোলিং, ফোর্জিং এবং কাস্টিং এ তৈরি সারফেসের অবস্থা বোঝানোর জন্য প্রতীক এঁকে দেখাও।
৬. সারফেস ফিনিশিং-এর প্রতীক ব্যবহারের প্রয়োজনীয়তা ব্যক্ত কর।

**রচনামূলক প্রশ্ন :**

১. সারফেস ফিনিশিং কী? সারফেস ফিনিশিং-এর প্রতীক ব্যবহারের প্রয়োজনীয়তা ব্যক্ত কর।
২. বিভিন্ন প্রকার ফিনিশিং-এ ব্যবহৃত স্ট্যান্ডার্ড প্রতীকসমূহ লিপিবদ্ধ কর।

## অধ্যায়-১৭

# কার্বন স্টিল (Carbon Steel)

### ১৭.১ কার্বন স্টিল :

বিশুদ্ধ লোহাকে পেটা লোহা বা Wrought Iron বলা হয়। পেটা লোহা দ্বারা যন্ত্রপাতি বা ব্যবহার্য সরঞ্জাম প্রস্তুত করা যায় না কারণ ইহা খুবই নরম। বাস্তব জীবনে বিভিন্ন যন্ত্রপাতির অংশ বা ব্যবহার্য বস্তু তৈরির কাজে লোহাকে ব্যবহার উপযোগী করার জন্য উহার সাথে কিছু পরিমাণ কার্বন মিশ্রিত করে শক্ত ও ব্যবহার উপযোগী করা হয়। এই কার্বন মিশ্রিত লোহাকে কার্বন স্টিল বলা হয়। সাধারণত কার্বন স্টিলে  $0.035\%$  থেকে  $1.5\%$  কার্বন মিশ্রিত থাকে। পেটা লোহার সাথে কার্বন যোগ করে অথবা ঢালাই লোহা (Cast Iron) থেকে কার্বন অপসারণ করে কার্বন স্টিল তৈরি করা হয়।

### ১৭.২ কার্বন স্টিলের প্রকারভেদ :

কার্বনের পরিমাণ অনুসারে ইহা তিনি ভাগে বিভক্ত হয়-

- ❖ লো-কার্বন স্টিল
- ❖ মিডিয়াম কার্বন স্টিল
- ❖ হাই কার্বন স্টিল

### ১৭.৩ বিভিন্ন প্রকার কার্বন স্টিলের উপাদান :

লো-কার্বন স্টিল : ইহা খুব নরম স্টিল এবং কার্বনের হার প্রায়  $0.05$  ভাগ হতে  $0.25$  ভাগ পর্যন্ত মিশ্রিত অবস্থায় থাকে।

মিডিয়াম কার্বন স্টিল : ইহা মাইক্রো স্টিল অপেক্ষা শক্ত হয় এবং কার্বনের হার শতকরা  $0.25$  ভাগ হতে  $0.70$  ভাগ পর্যন্ত মিশ্রিত অবস্থায় থাকে।

হাই কার্বন স্টিল : ইহা অন্য দুটি প্রকার স্টিল অপেক্ষা শক্ত ধাতু। কার্বনের পরিমাণ  $0.7$  ভাগ হতে  $1.5$  ভাগ পর্যন্ত মিশ্রিত অবস্থায় থাকে।

### ১৭.৪ বিভিন্ন প্রকার কার্বন স্টিলের গুণাঙ্গণ :

#### লো-কার্বন স্টিল :

- ১) নমনীয় এবং বাঁকানো যায়।
- ২) হাতুড়ির আঘাত সহ্য করতে পারে।
- ৩) সহজেই ফাইলিং এবং গায়ে আচড় টানা যায়।
- ৪) ভালোভাবে মেশিনিং করা যায়।
- ৫) টেম্পারিং ও কেইস-হার্ডেনিং করা যায়।
- ৬) সহজেই ওয়েল্ডিং এবং ফোর্জিং করা যায়।
- ৭) গলনাঙ্ক  $1370$  ডিগ্রি সে.গ্রে।
- ৮) পীড়ন  $8$  থেকে  $5$  টন প্রতি বর্গ সেন্টিমিটার।
- ৯) ব্রিনেল হার্ডনেস নং  $126-150$ ।

### **মিডিয়াম কার্বন স্টিল :**

- ১) না ভেঙ্গে হাতুড়ির আধাত সহ্য করতে পারে।
- ২) কষ্ট হলেও ফাইল দ্বারা ঘষা যায়।
- ৩) সহজেই মেশিনিং করা যায়।
- ৪) টেম্পারিং ও হার্ডেনিং করা যায়।
- ৫) সহজেই ওয়েল্ডিং এবং ফোজিং করা যায়।
- ৬) গলনাঙ্ক  $1400^{\circ}$  সেন্টিগ্রেড
- ৭) পীড়ন ৫-৭ টন/বর্গ সেন্টিমিটার।
- ৮) ব্রিনেল হার্ডনেস নং ১৫০-১৮০।

### **হাই-কার্বন স্টিল :**

- ১) হাতুড়ির আধাতে ভেঙ্গে যায়।
- ২) অত্যন্ত শক্ত ও ভঙ্গুর।
- ৩) গায়ে আঁচড় টানা যায় না।
- ৪) সাধারণ কাটিং টুলের সাহায্যে মেশিনিং করা কষ্টকর।
- ৫) হিট ট্রিটমেন্ট করা যায়।
- ৬) ওয়েল্ডিং ও ফোজিং করা যায়।
- ৭) গলনাঙ্ক  $1400^{\circ}$  সেন্টিগ্রেড
- ৮) পীড়ন ৯-১০ টন/বর্গ সেন্টিমিটার
- ৯) ব্রিনেল হার্ডনেস নং-৭৫০

### **১৭.৫ বিভিন্ন প্রকার কার্বন স্টিলের ব্যবহার :**

- ১) লো-কার্বন স্টিল-বিভিন্ন নির্মাণ কাজে, নাট-বোল্ট, পাত, রড ইত্যাদি তৈরি করতে ব্যবহার হয়।
- ২) মিডিয়াম কার্বন স্টিল-ইহা দ্বারা রেইল, এক্সেল, হাত যন্ত্র, ওয়্যার রোপ প্রভৃতি তৈরিতে ব্যবহার হয়।
- ৩) হাই কার্বন স্টিল-ইহা দ্বারা মেশিনের কাটিং টুলস, ড্রিল, ট্যাপ, ডাই, ফাইল, স্প্রিং, গেজ প্রভৃতি যন্ত্র তৈরি করা হয়।

## প্রশ্নমালা-১৭

### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. কার্বন স্টিল কাকে বলে ?
২. কার্বনের পরিমাণ অনুসারে কার্বন স্টিল কত প্রকার ও কী কী ?
৩. লো কার্বন স্টিল কাকে বলে ?
৪. মেডিয়াম কার্বন স্টিল কাকে বলে ?
৫. হাই কার্বন স্টিল কাকে বলে ?

### **সংক্ষিপ্ত প্রশ্ন :**

১. লো কার্বন স্টিলের গুণাগুণ বর্ণনা কর।
২. মেডিয়াম কার্বন স্টিলের গুণাগুণ বর্ণনা কর।
৩. হাই কার্বন স্টিলের গুণাগুণ বর্ণনা কর।
৪. কার্বন স্টিলের ব্যবহার বর্ণনা কর।
৫. বিভিন্ন প্রকার কার্বন স্টিলের উপাদানগুলোর নাম লিখ।

### **রচনামূলক প্রশ্ন :**

১. কার্বন স্টিল বলতে কী বোঝায় তা ব্যক্ত কর। কার্বন স্টিলের ব্যবহার বর্ণনা কর।
২. কার্বন স্টিল কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও।
৩. বিভিন্ন প্রকার কার্বন স্টিলের গুণাগুণ বর্ণনা কর।

## অধ্যায়-১৮

# অলৌহজাত সংকর ধাতু (Non Ferrous Alloy)

### ১৮.১ সংকর ধাতু :

দুই বা ততোধিক ধাতব পদার্থের সংমিশ্রণে তাপ ও চাপের সাহায্যে যে নতুন ভৌতধর্ম বিশিষ্ট পদার্থ তৈরি করা হয় তাকে সংকর ধাতু বা অ্যালয় বলা হয়। শুধু অলৌহজাত ধাতুর ব্যবহার সীমিত। তাই বিশেষ গুণ বা শক্তি (Strength) পাওয়ার উদ্দেশ্যে দুই বা ততোধিক ধাতুকে সংমিশ্রণ করে যে মিশ্র ধাতু উৎপন্ন করা হয়, তাকে অ্যালয় বা সংকর ধাতু বলে। যেমন- পিতল, বিয়ারিং মেটাল, স্টেইনলেস স্টিল, ডুরালুমিন ইত্যাদি সংকর ধাতুর উদাহরণ।

### ১৮.২ মেশিনশপে বহুল ব্যবহৃত অলৌহজাত সংকর ধাতু :

নিম্নে কতকগুলো অলৌহজাত সংকর ধাতুর নাম দেওয়া হলো-

- ১) আলফা ব্রাস ( $\alpha$  Brass)
- ২) আলফা-বিটা ব্রাস ( $\alpha$ - $\beta$  Brass)
- ৩) কার্টিজ ব্রাস (Cartridge Brass)
- ৪) হলুদ ব্রাস/মুনজ মেটাল (Yellow Metal/Montz Metal)
- ৫) ফসফার ব্রোঞ্জ (Phosphor Bronze)
- ৬) গান মেটাল (Gun Metal)
- ৭) বেল মেটাল (Bell Metal)
- ৮) জার্মান সিলভার (German Silver)
- ৯) হোয়াইট মেটাল (White Metal)
- ১০) ডুরালুমিন (Duralumin)
- ১১) গিলডিং মেটাল (Gilding Metal)
- ১২) ওয়াই অ্যালয় (Y-alloys)

### ১৮.৩ মেশিনশপে বহুল ব্যবহৃত অলৌহজাত সংকর ধাতুগুলোর উপাদান :

নিম্নে অলৌহজাত সংকর ধাতুর উপাদানসমূহ দেওয়া হলো-

| অলৌহজাত<br>সংকর ধাতুর নাম | উপাদান                                          | অলৌহজাত<br>সংকর ধাতুর নাম | উপাদান                                |
|---------------------------|-------------------------------------------------|---------------------------|---------------------------------------|
| আলফা ব্রাস                | তামা - ৬১% - ৯৫%<br>দস্তা - ৩৯% - ৫%            | গান মেটাল                 | কপার - ৮৮%<br>চিন - ১০%<br>দস্তা - ২% |
| আলফা-বিটা ব্রাস           | তামা - ৫৩.৮% -<br>৬১%<br>দস্তা - ৪৬.৬% -<br>৩৯% | বেল মেটাল                 | কপার - ৮০%<br>চিন - ২০%               |

| অলৌহজাত<br>সংকর ধাতুর নাম | উপাদান                                                                  | অলৌহজাত<br>সংকর ধাতুর নাম | উপাদান                                                                                                              |
|---------------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| কার্টিজ ব্রাস             | তামা - ৭০%<br>দস্তা - ৩০%                                               | জার্মান সিলভার            | কপার - ৬০%<br>জিঙ্ক - ২২%<br>নিকেল - ১৮%                                                                            |
| হলুদ ব্রাস/মুনজ<br>মেটাল  | তামা - ৬০%<br>দস্তা - ৪০%                                               | হোয়াইট<br>মেটাল/ব্যারিট  | টিন - ৮৯%<br>এন্টিমনি - ৭.৮%<br>কপার - ৩.৬%                                                                         |
| লাল ব্রাস                 | তামা - ৬৯% - ৮৬%<br>দস্তা - ২০% - ৫%<br>সীসা - ৬% - ৫%<br>টিন - ৫% - ৮% | ডুরালুমিন                 | কপার - ৩.৫% - ৮.৫%<br>ম্যাঙ্গানিজ - ০.৮% - ০.৭%<br>টিন - ০.৮%<br>ম্যাগনেসিয়াম - ০.৮% - ০.৭%<br>আয়রন - ০.৫ এর নীচে |
| ফসফার ব্রোঞ্জ             | টিন - ৫% - ২০%<br>ফসফরাস - ০.১% -<br>১.৫%<br>কপার - অবশিষ্ট             | গিলডিং মেটাল              | কপার - ৯০% - ৯৫%<br>জিঙ্ক - ১০% - ৫%                                                                                |

#### ১৮.৪ সচরাচর ব্যবহৃত অলৌহজাত সংকর ধাতুসমূহের গুণাগুণ :

নিম্নে অলৌহজাত সংকর ধাতুসমূহের গুণাগুণ উল্লেখ করা হলো-

##### ব্রাস :

- ❖ এর বর্ণ উজ্জ্বল ও হরিদ্বা বর্ণের হয়।
- ❖ উৎকৃষ্টমানের ঢালাই হয়।
- ❖ ভালোভাবে কাটিং করা যায়।
- ❖ আবহাওয়া কর্তৃক আক্রান্ত হয় না বলে উজ্জ্বল থাকে।
- ❖ ঠাণ্ডা অবস্থায় তামার চেয়ে শক্ত।
- ❖ সাধারণত ৯৩০০ সেঃ প্রেঃ তাপমাত্রায় গলে যায়।

##### ব্রোঞ্জ :

- ❖ উজ্জ্বল ও সোনালি বর্ণের হয়।
- ❖ ব্রোঞ্জ, ব্রাস অপেক্ষা শক্ত এবং দেখতে লাল আভাযুক্ত হরিদ্বা বর্ণের হয়।
- ❖ তরল হয় বলে ঢালাই করা সহজ।
- ❖ উত্তম রূপে কাটিং করা যায়।
- ❖ হঠাতে কম্পন সহ্য করতে পারে।
- ❖ ড্রয়িং করা যায়।
- ❖ ইহা প্রায় ১০৭৫০ সেঃ প্রেঃ তাপমাত্রায় গলে যায়।

### গান মেটাল :

- ❖ ইহা সমুদ্রের লবণাক্ত পানিতে আক্রান্ত হয় না।
- ❖ ইহা শক্ত ও দীর্ঘস্থায়ী অলৌহজাত ধাতু।
- ❖ প্রায় ৬২০ সেঃ গ্রেঃ তাপমাত্রায় তাপ প্রয়োগ করে তাতে ফোর্জিং করা যায়।
- ❖ ইহা সামুদ্রিক নৌযানের বিভিন্ন ফিটিংস তৈরিতে ব্যবহৃত হয়।
- ❖ প্রায় ৭০০০ সেঃ গ্রেঃ তাপ মাত্রায় গলে যায়।

### বেল মেটাল :

- ❖ ইহা কাঁসা নামে পরিচিত এবং শক্ত ও ভঙ্গুর।
- ❖ আঘাত করিলে প্রতিধ্বনির সৃষ্টি হয়।

### জার্মান সিলভার :

- ❖ প্রকৃত পক্ষে এর সিলভারের সঙ্গে কোন সম্পর্ক নাই।
- ❖ নিকেল যুক্ত থাকে বলে মাঝে মাঝে নিকেল সিলভারও বলা হয়।
- ❖ ইহা প্রায় ৬২৫০ সেঃ গ্রেঃ তাপমাত্রায় গলে যায়।

### হোয়াইট মেটাল :

- ❖ ইহাকে আবার ব্যাবিট মেটাল ও বলে।
- ❖ সহজেই ইহা ঢালাই হয়।
- ❖ ব্রাস ও গান মেটালের তুলনায় ইহা ঘর্ষণরোধ করতে সক্ষম।
- ❖ ইহা প্রায় ১২০০ সেঃ গ্রেঃ তাপমাত্রায় গলে যায়।

### ১৮.৫ মেশিনশপে বহুল ব্যবহৃত অলৌহজাত সংকর ধাতুসমূহের ব্যবহার :

ব্রাস এর ব্যবহার : ইহা কজা, গৃহস্থালীর বাসন পত্র, বয়লারের টিউব, তার, পাত, ছোট মেশিনের বুশ, বেয়ারিং এবং ক্ষুদ্র ক্ষুদ্র বস্তু ঢালাই ইত্যাদিতে ব্রাস যথেষ্ট পরিমাণে ব্যবহৃত হয়।

ত্রোঞ্জ এর ব্যবহার : স্প্রিং, বিয়ারিং, বেল্ট, স্ক্রু, চেইন, ওয়েল্ডিং রড, কঙ্ডেনসার টিউব, বাসন পত্র, উপহার সামগ্রী, সৌখিন ও কৃত্রিম গহনাদি তৈরিতে ত্রোঞ্জ বহুল পরিমাণে ব্যবহৃত হয়।

গান মেটাল এর ব্যবহার : কামান, বন্দুক, জাহাজের বিভিন্ন অংশ তৈরিতে, বয়লারের সরঞ্জামাদি, বুশ, বেয়ারিং, ভালভ, ভালভ সিট, ইত্যাদি তৈরিতে গান মেটাল ব্যবহৃত হয়।

বেল মেটাল এর ব্যবহার : গৃহস্থালীর বাসন পত্র, ঘন্টা ইত্যাদি তৈরিতে উক্ত ধাতু ব্যবহৃত হয়। তাছাড়া বুশিং, বীৰ কক, স্টপ কক ইত্যাদি তৈরিতেও বেল মেটাল ব্যবহার করা হয়।

জার্মান সিলভার : বৈদ্যুতিক রেজিস্টাস তার, ঘড়ির আধার, চামচ এবং গৃহস্থালীর অনেক ক্ষুদ্র ক্ষুদ্র বস্তু তৈরি করা হয়।

হোয়াইট মেটাল এর ব্যবহার : ব্রাস এবং গান মেটালের তুলনায় ইহা উক্তম রূপে বেয়ারিং এর ঘর্ষণ রোধ করতে সক্ষম হয় বলে বিয়ারিং এর উপরিভাগে পাতলা প্রলেপ দেওয়ার কাজে ইহার ব্যবহার বেশি। তাছাড়া স্টোরেজ ব্যাটারির প্লেট, গাড়ির জ্বালানী ট্যাংক, ছাপার অক্ষর তৈরি, বৈদ্যুতিক ফিউজ, বয়লার প্লাগ ইত্যাদি ব্যবহৃত হয়।

## প্রশ্নমালা-১৮

### অতি সংক্ষিপ্ত প্রশ্ন :

১. সংকর ধাতু বলতে কী বোঝ?
২. মেশিন শপে বহুল ব্যবহৃত ৫টি অলৌহজাত সংকর ধাতুর নাম লেখ।
৩. আলফা ব্রাস এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৪. আলফা-বিটা ব্রাস এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৫. কার্টিজ ব্রাস এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৬. হলুদ ব্রাস (Montz Metal) এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৭. লাল ব্রাস (Red Brass) এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৮. গান মেটাল এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
৯. জার্মান সিলভার এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
১০. বেল মেটাল এর উপাদানগুলির শতকরা হারসহ নাম লেখ।
১১. হোয়াইট মেটাল এর উপাদানগুলির শতকরা হারসহ নাম লেখ।

### সংক্ষিপ্ত প্রশ্ন :

১. ব্রাসের ব্যবহার বর্ণনা কর।
২. ব্রোঞ্জের ব্যবহার বর্ণনা কর।
৩. গান মেটালের ব্যবহার বর্ণনা কর।
৪. বেল মেটালের ব্যবহার বর্ণনা কর।
৫. হোয়াইট মেটালের ব্যবহার বর্ণনা কর।
৬. গান মেটালের ব্যবহার বর্ণনা কর।
৭. জার্মান সিলভারের ব্যবহার বর্ণনা কর।

### রচনামূলক প্রশ্ন :

১. ব্রাসের গুণাগুণ বর্ণনা কর।
২. ব্রোঞ্জের গুণাগুণ বর্ণনা কর।
৩. গান মেটালের গুণাগুণ বর্ণনা কর।
৪. বেল মেটালের গুণাগুণ বর্ণনা কর।
৫. হোয়াইট মেটালের গুণাগুণ বর্ণনা কর।
৬. গান মেটালের গুণাগুণ বর্ণনা কর।
৭. জার্মান সিলভারের গুণাগুণ বর্ণনা কর।
৮. অলৌহজাত সংকর ধাতুসমূহের গুণাগুণ বর্ণনা কর।
৯. অলৌহজাত সংকর ধাতুসমূহের ব্যবহার বর্ণনা কর।

## অধ্যায়-১৯

# মেশিনেবিলিটি (Machinability)

### ১৯.১ মেশিনেবিলিটি :

কোন কোন ম্যাটারিয়ালকে সন্তোষজনক তলমসৃণতা সহকারে সহজেই মেশিনিং করা যায়। যেমন খুব ভালো তলমসৃণতা সহকারে অ্যালুমিনিয়ামকে সহজেই মেশিনিং করা যায়। আবার কোন কোন ম্যাটারিয়ালকে সন্তোষজনক তলমসৃণতা সহকারে মেশিনিং করা খুবই কঠিন। যেমন কার্বন স্টিল মেশিনিং। অতএব, ন্যূনতম খরচে সন্তোষজনক তলমসৃণতা সহকারে কোন ম্যাটারিয়ালকে নির্বিশ্লেষে মেশিনিং করার যোগ্যতাকে ঐ ম্যাটারিয়ালের মেশিনেবিলিটি বলে।

### ১৯.২ মেশিনেবিলিটির জন্য প্রভাব বিস্তারকারী উপাদান :

নিম্নোক্ত বিষয়াদি মেশিনেবিলিটিকে প্রভাবিত করে। যেমনঃ

- ১) কাটিং টুলের আকৃতি
- ২) কাটিং টুলের তীক্ষ্ণতা
- ৩) টানিং টুলের ম্যাটারিয়ালের ধরন
- ৪) কাটিং স্পিড
- ৫) ডেপথ অব কাট ও ফিড
- ৬) ওয়ার্কিংপিস বাঁধার ধরন
- ৭) ওয়ার্কিংপিস ম্যাটারিয়ালের শক্ততা ও উপাদান
- ৮) ওয়ার্কিংপিস ম্যাটারিয়ালের আভ্যন্তরীণ গঠন ও টানা শক্তি।

### ১৯.৩ বিভিন্ন প্রকার চিপস :

#### ১. ডিস কন্টিনিউয়াস চিপস (Dis continious chips) :



#### ২. কন্টিনিউয়াস চিপস (Continious chips) :



৩. হেভি ডিউটি চিপস (Heavy duty chips) :



৪. চ্যাটার চিপস (Chatter chips) :



৫. ফিগার নাইন চিপস (Figure nine chips) :



**৬. হেলিক্স চিপস (Helix chips) :**



**৭. স্ন্যারল চিপস (Snarl chips) :**



**৮. ওভাৰ ব্ৰোকেন চিপস (Over broken chips) :**



**১৯.৪ চিপস উৎপাদনকাৰী ও চিপস বিহীন মেশিনসমূহঃ**  
নিম্নে চিপস উৎপাদনকাৰী মেশিনসমূহৰ নাম দেওয়া হলো-

- ১) লেদ মেশিন (Lathe Machine)
- ২) মিলিং মেশিন (Milling Machine)
- ৩) শেপাৰ মেশিন (Shaper Machine)
- ৪) প্লেনাৰ মেশিন (Planer Machine)
- ৫) ড্ৰিলিং মেশিন (Drilling Machine)
- ৬) রীমিং মেশিন (Reaming Machine)
- ৭) হবিং মেশিন (Hobing Machine)
- ৮) গ্ৰাইডিং মেশিন (Grinding Machine)
- ৯) বোরিং মেশিন (Boring Machine)
- ১০) ৱুটিং মেশিন (Routing Machine)
- ১১) পাওয়াৰ হ্যাক্স-স মেশিন (Power Hacksaw Machine)

**চিপস বিহীন মেশিনসমূহ :**

- ১) শিৱাৰ মেশিন (Shear Machine)
- ২) ফৰমিং মেশিন (Forming Machine)

- ৩) রোলিং মেশিন (Rolling Machine)
- ৪) ফোর্জিং মেশিন (Forging Machine)

#### ১৯.৪ কাটিং টুলস থেকে চিপস রিমুভ করার উপায় :

হাই স্পিড মেশিনিং অপারেশন চলার সময় চিপস নিয়ন্ত্রণ করা অপারেটর এবং টুল উভয়ের জন্য গুরুত্বপূর্ণ। চিপসের গঠন নিয়ন্ত্রণ করতে চিপ ব্রেকার ব্যবহৃত হয়। চিপ ব্রেকার চিপকে বক্রাকার করে এবং চিপের উপর চাপ প্রয়োগ করে, ফলে চিপ ক্ষুদ্র ক্ষুদ্র দৈর্ঘ্যে ভেঙ্গে যায়। তখন মেশিন হতে চিপস অপসারণ করা সহজ হয়।

নিম্নে বিভিন্ন মেশিনিং অপারেশনে কাটিং টুলস হতে চিপস রিমুভ করার উপায় উল্লেখ করা হলো-

- ১) গ্রাইডিং ছাইলের চিপস রিমুভ করার জন্য ছাইল ড্রেসার ব্যবহার করতে হবে।
- ২) লেদ মেশিনের লেদ কাটিং টুলস এর চিপস রিমুভ করার জন্য চিপ-ব্রেকার ব্যবহার করতে হবে।  
সাথে সাথে কাটিং ফ্লাইডও ব্যবহার করতে হবে।
- ৩) মিলিং কাটারের চিপস রিমুভ করার জন্য কাটিং ফ্লাইড ব্যবহার করতে হবে।
- ৪) শেপার কাটারের চিপস রিমুভ করার জন্য চিপস ব্রেকার ও কাটিং ফ্লাইড ব্যবহার করতে হবে।
- ৫) ড্রিল বিটের চিপস রিমুভ করার জন্য কাটিং ফ্লাইড ব্যবহার করতে হবে।

### অনুশীলনী-১৯

#### অতি সংক্ষিপ্ত প্রশ্ন :

১. মেশিনেবিলিটি বলতে কী বোঝায় ?
২. চিপস কত প্রকার ?
৩. ৪টি চিপস উৎপাদনকারী মেশিনের নাম লেখ।
৪. ৪টি চিপস বিহীন মেশিনের নাম লেখ।

#### সংক্ষিপ্ত প্রশ্ন :

১. চিপস কত প্রকার ও কী কী ?
২. চিপস উৎপাদনকারী ও চিপস বিহীন মেশিনের নাম লেখ।
৩. মেশিনেবিলিটির জন্য প্রভাব বিস্তারকারী উপাদানসমূহ লিপিবদ্ধ কর।

#### রচনামূলক প্রশ্ন :

১. মেশিনেবিলিটি বলতে কী বোঝায় ? মেশিনেবিলিটির জন্য প্রভাব বিস্তারকারী উপাদানসমূহ লিপিবদ্ধ কর।
২. কাটিং টুলস হতে চিপস রিমুভ করার উপায় বর্ণনা কর।

## অধ্যায়-২০

### কাটিং টুলস (Cutting Tools)

#### ২০.১ সিঙ্গেল পয়েন্ট লেদ টুলের পরিচিতি :

ধাতু বা মেটালকে সঠিক ভাবে, সূক্ষ্মতার সাথে ও দক্ষতার সাথে মেশিনিং করার জন্য সঠিক কোণে গ্রাইডিং করা, দৃঢ়ভাবে বাধা কাটিং এজ বিশিষ্টি লেদ টুলের একান্ত দরকার যা এ ধাতু কাটার উপযোগী ও উহা সঠিক উচ্চতায় ধাতু কাটার জন্য সেট করা আছে। লেদ মেশিনের ক্ষেত্রে মোটর থেকে উৎপাদিত যান্ত্রিক শক্তিকে প্রধানত দুইটি কাজে ব্যবহার করা হয়। প্রথমত কার্যবস্তুকে ঘূর্ণন গতি প্রদান এবং দ্বিতীয়ত ছির কাটিং টুলকে ক্যারেজের মাধ্যমে বিভিন্ন দিকে ও গতিতে চালনা করা। মূলত কাটিং টুলই কার্যবস্তুকে কেটে বা ক্ষয় করে বিভিন্ন আকার ও আকৃতি প্রদান করে। যে যন্ত্রের তীক্ষ্ণ ধার দ্বারা লেদ মেশিনে বিভিন্ন কার্যবস্তু থেকে অতিরিক্ত ও অপ্রয়োজনীয় ধাতু কেটে বা ক্ষয় করে কার্যসূচিত আকার, আকৃতি ও মসৃণতা প্রদান করা হয়, তাকে লেদ কাটিং টুল বলা হয়। কেবলমাত্র ভালো লেদ মেশিন হলেই ভালো কাজ পাওয়া যায় না। লেদের উৎপাদনের পরিমাণ এবং নির্ভুলতা (Accuracy) কাটিং টুলের কাটার দক্ষতার উপর অনেকাংশে নির্ভর করে।

#### কাটিং টুলের দক্ষতা নিম্নলিখিত বিষয়গুলির উপর নির্ভর করে :

- ❖ কাটিং টুলের উপাদান
- ❖ কাটিং টুলের ডিজাইন
- ❖ কার্যবস্তুর উপাদান
- ❖ কাটিং স্পিড
- ❖ কাটিং ফিড ও ডেপথ অব কাট
- ❖ কাটিং ফ্লাইডের ব্যবহার

#### কাটিং টুল প্রধানত দুই প্রকার। যথা-

- ❖ সিঙ্গেল পয়েন্ট কাটিং টুল
- ❖ মাল্টি পয়েন্ট কাটিং টুল।

#### সিঙ্গেল পয়েন্ট কাটিং টুল :

যে সকল কাটিং টুলে একটি মাত্র কাটিং পয়েন্ট বা কাটিং এজ থাকে, তাকে সিঙ্গেল পয়েন্ট কাটিং টুল বলে।



চিত্র-২০.১: সিঙ্গেল পয়েন্ট কাটিং টুল (টুল হোল্ডার সহ)

### সিলেল পরেন্ট সেদ কাটিং টুলের পক্ষারভেদ :



চিত্র-২০.২(ক)ঃ বিভিন্ন পক্ষার সিলেল পরেন্ট কাটিং টুল

বিভিন্ন আকৃতির সিলেল পরেন্ট সেদ কাটিং টুলের নাম নিম্নে উল্লেখ করা হলো-

১. বাম হাতি ফেসিং টুল (Left hand facing tool)
২. ডান হাতি ফেসিং টুল (Right hand facing tool)
৩. বাম হাতি রাফ টার্নিং টুল (Left hand rough turning tool)
৪. ডান হাতি রাফ টার্নিং টুল (Right hand rough turning tool)
৫. বাম হাতি ফিনিশ টার্নিং টুল (Left hand finish turning tool)
৬. ডান হাতি ফিনিশ টার্নিং টুল (Right hand finish turning tool)
৭. রাউন্ড নোজ টুল (Round nose tool)
৮. স্ট্রেইট পার্টিং টুল (Straight parting tool)
৯. রেডিয়াস পার্টিং টুল (Radius parting tool)
১০. রেডিয়াস গ্রুভিং টুল (Radius grooving tool)
১১. অ্যাঙ্গুলার পার্টিং টুল (Angular parting tool)
১২. বেন্ট টাইপ পার্টিং টুল (Bent type parting tool)
১৩. ভি-শ্রেড কাটিং টুল (V-thread cutting tool)
১৪. ক্ষয়ার শ্রেড কাটিং টুল (Square thread cutting tool)
১৫. একমি শ্রেড কাটিং টুল (Acme thread cutting tool)
১৬. বাটেরেস শ্রেড কাটিং টুল (Buttress thread cutting tool)
১৭. কনকেইভ ফর্ম টুল (Concave form tool)
১৮. কনভেক্স ফর্ম টুল (Convex form tool)

### ১৯. বোরিং টুল (Boring tool)



বোরিং টুল

কাটিং অফ টুল

চিত্র-২০.২(খ): বিভিন্ন ধরণের সিমেল পর্যন্ত কাটিং টুল

### ২০.২ সিমেল পর্যন্ত কাটিং টুলের গঠন :



চিত্র-২০.৩: সিমেল পর্যন্ত কাটিং টুলের গঠন



চিত্র-২০.৪১ মিলেন পদ্ধতি সেল টুল-এর মিলিন কার্য

মিলেন পদ্ধতি সেল কার্টিং টুলের মিলিন কার্যের বর্ণনা ।

**শান্ক (Shank)** : শান্ক হলো টুল মিলেন কার্টিং মিলেন কার্য কার্টিং টুলকে টুল পোস্ট অথবা টুল মেঘাকে কার্টিকারে ব্যবহৃত হয়। শান্কের মিলেন সম্পর্ককে বেইল বা খূলি করা হয়।

**ফেস (Face)** : এটি মিলেন পদ্ধতি কার্টিং টুলের একটি ভাজা বা কার্টিং সূচি করে এবং এটির উপর লিঙ্গ উৎপন্ন থাকুন হিসেবে উপরের লিঙ্গে ঝুঁটি করা হয়।

**ফ্লাইক (Flank)** : কার্টিং টুলের বে অংশ কার্বনেল স্লুখোয়ার্পি থাকে ভাজক ঝুঁটাক বাজে। অর্ধাং কার্টিং খাতের পার্শ্ব অবস্থিত কলক ঝুঁটাক বাজে। এটি এক ঝুঁটাক এবং সাইড ঝুঁটাক এই দুই ধোকারের হাজে থাকে। ঝুঁটাকের সামুক্ষে কার্টিং এবং সূচি করা হয়।

**নোজ রেডিয়াস (Nose Radius)** : সাইড কার্টিং এবং এক এবং অন্য কার্টিং একের সংযোগ স্থানক সোজ বাজা হয় এবং সীরিজ টুল সাইক এবং অন্য কলক পোস্টের অন্য সোজে প্রায় ১.৫ মি.মি. এর মত মেজিয়াস রূপে হয়, তখন এই অংশকে সোজ মেজিয়াস করে।

**কার্টিং এজ (Cutting Edge)** : বেইল এবং ফ্লাইক প্রত্যন্তর বে অধ্যার মিলিন হয় কার্টিং এজ বাজে। কার্টিং এজের সামুক্ষে কার্বনেলকে কাটা হয়।

## শিল্প পজেন্ট কাটিং টুলের বিভিন্ন আণুবোলির বর্ণনা :

### Tool Bit Geometry



চিত্র-২০.৫। শিল্প পজেন্ট সেদ টুল-জিওমেট্রি

#### ব্যাক রেক আণুবোল (Back rake angle) :

ব্যাক রেক আণুবোল জব হতে চিপ প্রয়াহের দিক নিরুৎস্থ করে। সাধারণত নরম খাতুর জন্য অধিক পরিমাণ ব্যাক রেক আণুবোল ব্যবহৃত হয়। ব্যাক রেক আণুবোল পজিটিভ, নিউট্রাল অথবা নেগেটিভ হতে পারে। টুল কেইস যখন কাটিং এজ হতে খাতুকের দিকে ঢালু হয় তখন খাতুক ব্যাক রেক আণুবোল পাওয়া যায়। হালকা কাজের জন্য এ ধরনের আণুবোল উপযোগী এবং এ আণুবোল চিপসকে মেশিন সারকেস হতে দূরে নিয়ে যাও। আবার টুল কেইস যখন শ্যাক হতে কাটিং এজের দিকে ঢালু হয় তখন খাতুক ব্যাক রেক আণুবোল পাওয়া যায়।

#### সাইড রেক আণুবোল (Side rake angle) :

টুল কেইস যদি সাইড কাটিং এজের দিকে উর্ধমুখী হয়ে ঢালু হয় তবে খাতুক সাইড রেক আণুবোল তৈরি হয়। এ আণুবোল ধাইড্রি করার ফলে সাইড কাটিং এজ ধারালো হয় এবং খাতুক কাটিতে সক্ষম হয়। সাধারণত সাইড টুলে সাইড রেক আণুবোল ধাইড্রি করা হয়। সাইড রেক আণুবোল জব হতে চিপ প্রয়াহের দিক নিরুৎস্থ করে। সাধারণত  $6^{\circ}$ - $15^{\circ}$  পরিমাণ সাইড রেক আণুবোল ধাইড্রি করা হয়।

#### সাইড রিলিফ আণুবোল/সাইড ট্রিমারেল আণুবোল :

সূর্যন্দৰ ওয়াকশিলের পার্শ্বকে কেস করে তিতেরে টুকে যৌগ্যার জন্য সাইড রিলিফ আণুবোল কাটিং টুলকে সাহায্য করে। কিন্তু স্বর্গ ব্যাটিলেকে কাটিং টুল খাতুক কাটিতে সমর্প হয়। সাধারণত  $6^{\circ}$ - $8^{\circ}$  সাইড রিলিফ

অ্যাক্ষেল প্রাইভিং করা হয়। সাইড রিলিফ অ্যাক্ষেল খুব কম হলে টুলকে কিছি দিতে অসুবিধা হয়, টুল জবের মধ্যে সহজে পুরু না, জবের সাথে টুলের ঘর্ষণ হয়, টুল অধিক পরিষ্কারে উৎপন্ন হয়, টুল আঁকাতাড়ি তোতা হয়ে বার এবং জবের তলের মসৃণতা বিনষ্ট হয়।

#### এক রিলিফ বা ক্লিপ ক্লিয়ারেল অ্যাক্ষেল :

এক রিলিফ অ্যাক্ষেল জব ও টুলের মধ্যে ঘর্ষণ ব্রোথ করে। সাধারণত  $8^{\circ}$ - $15^{\circ}$  এক রিলিফ অ্যাক্ষেল প্রাইভিং করা হয়। এক রিলিফ অ্যাক্ষেল খুব কম হলে জবের সাথে টুল ক্ল্যাষ্টের ঘর্ষণ আগবে, টুল খাতু কম কঠিবে এবং জবের তলের মসৃণতা নষ্ট হবে। আবার এক রিলিফ অ্যাক্ষেল খুব বেশি হলে টুল পর্যন্ত ও কাটিং এজ দূর্বল হয়ে ভেঙে যাবে।

#### সাইড কাটিং এজ অ্যাক্ষেল :

সাইড কাটিং এজ এবং কাটিং টুলের বৈধিক অঙ্গের মধ্যে যে কোণ তাকে সাইড কাটিং এজ অ্যাক্ষেল বলা হয়। ইহা বিস্ট-আপ এজ ব্রোথ করে টিপ প্রবাহের দিক নিয়মিত করে এবং সমস্ত কাটিং এজের মধ্যে কাটিং বল ও তাপ বিচৃত করে দেয়। এ অ্যাক্ষেল কম হলে জবের সাথে টুলের ঘর্ষণ হয় বলে খাতু কঠা বিচ্ছিন্ন হয়। সাইড কাটিং এজ অ্যাক্ষেল  $15^{\circ}$  হলো আদর্শ কোণ। এর খুব বেশি সাইড কাটিং এজ অ্যাক্ষেল মাখলে কাটিং টুল দূর্বল হয়।

#### কাটিং এজ বা ক্লিপ কাটিং এজ অ্যাক্ষেল

টুল কেইস টুল শ্যালকের পার্থক্যের দ্বা বেধার সাথে যে কোণ সৃষ্টি করে তাকে এক কাটিং এজ অ্যাক্ষেল বলে। খজাকলিস এবং টুলের কিনারার সাথে ঘর্ষণ পরিহার করার জন্য এ অ্যাক্ষেল বাধা হয়। সাধারণত এক কাটিং এজ অ্যাক্ষেল  $5^{\circ}$  হতে  $15^{\circ}$  এর মধ্যে সীমাবদ্ধ রাখা হয়।

#### ২০.৩ লেকট হ্যাত ও রাইট হ্যাত সেব কাটিং টুল শনাক্ত করণ :

কিছি দেওয়ার দিক অনুসারে কাটিং টুলকে দুই ভাগে ভাগ করা যায়। বধা-

- ক) লেকট হ্যাত কাটিং টুল বা বাম হ্যাতি কাটিং টুল,
- খ) রাইট হ্যাত কাটিং টুল বা ডান হ্যাতি কাটিং টুল।

ডান হ্যাতি কাটিং টুলকে ডান দিক থেকে বাম দিকে কিছি  
দেওয়া হয় অর্থাৎ লেকটের টেইল স্টকের দিক থেকে হেচ  
স্টকের দিকে। সূত্রাং ডান হ্যাতি কাটিং টুলের কাটিং  
এজ থাকে বাম দিকে।



বাম হ্যাতি      ডান হ্যাতি  
চিত্র-২০.৬: টুল শনাক্ত করণ

অগ্রগতকে বাম হ্যাতি কাটিং টুলে বামদিক থেকে ডানদিকে কিছি দেওয়া হয় অর্থাৎ লেকটের হেচস্টক থেকে টেইলস্টকের দিকে কিছি দেওয়া হয়। সূত্রাং এর অধান কাটিং এজ ডান দিকে থাকে। কোন কাটিং টুল ভাসহ্যাতি না বাম হ্যাতি ভাস শনাক্ত করার জন্য অধুনে কাটিং টুলকে, কাটিং এজ খপর দিক রাখা অবহ্যান টেবিলে গ্রেপ্তে টুলের উপর হ্যাত এমনভাবে হাপন করতে হবে বেল হ্যাতের আঙুলগুলো কাটিং টুলের মুখের দিকে নির্দিষ্ট হয় (চিত্র-২০.৬)। বাম হ্যাতের বৃক্ষালু যদি কাটিং টুলের অধান কাটিং এজ নির্দেশ করে তবে উহা বাম হ্যাতি সেব টুল ব্রুক্টে হবে। অগ্রগতকে চিআনুয়াঝী ডান হ্যাত কাটিং টুলের খপর হাপন করলে যদি

বৃক্ষাঙ্গুষ্ঠ কাটিং টুলের প্রধান কাটিং এজ নির্দেশ করে তবে উহা ডান হাতি লেদ কাটিং টুল বুঝতে হবে। ডান হাতি কাটিং টুলের মাধ্যমে টেইল স্টকের দিকে এবং বাম হাতি কাটিং টুলের মাধ্যমে হেডস্টকের দিকে তল উৎপন্ন হয়।



বাম হাতি লেদ কাটিং টুল



ডান হাতি লেদ কাটিং টুল

চিত্র-২০.৭ ডান হাতি ও বাম হাতি কাটিং টুল (টুল হোল্ডার সহ)

#### ২০.৪ লেদ কাটিং টুল পদাৰ্থসমূহ (Lathe cutting tool materials) :

কাটিং টুলের ধাতু সৰ্বাংগে শক্ত হওয়া প্রয়োজন কারণ কাটিং টুলকে অপর ধাতুকে ছেদ করে কর্তন করার ক্ষমতা থাকতে হবে। এ ছাড়াও কাটিং টুল যাতে ধাক্কা সহ্য করতে পারে তার জন্য দুচ্ছেদ্য (Tough) হওয়া প্রয়োজন এবং ক্ষয়রোধ ক্ষমতা (Wear resistance) বিশিষ্ট হতে হয়। সাধারণত লেদ কাটিং টুল তৈরি করতে নিম্নলিখিত পদাৰ্থগুলি ব্যাপকভাৱে ব্যবহৃত হয়-

- ◻ হাই কাৰ্বন স্টিল (High Carbon Steel)
- ◻ হাই স্পিড স্টিল (High Speed Steel)
- ◻ কাস্ট নন-ফেৰাস অ্যালয় (Cast Non-Ferrous Alloy)
- ◻ সিমেটেড কাৰ্বাইড (Cemented Carbide)
- ◻ সিৱামিক বা সিন্টারড অক্সাইড (Ceramic or Sintered Oxide)
- ◻ ডায়মন্ড (Diamond)

#### ২০.৫ মাল্টি পয়েন্ট লেদ কাটিং টুল :

যে সকল কাটিং টুলে দুই বা ততোধিক কাটিং পয়েন্ট বা কাটিং এজ থাকে, তাকে মাল্টি পয়েন্ট কাটিং টুল বলা হয়। যথা-

- ◆ নার্লিং টুল (Knurling Tool)
- ◆ সেন্ট্রাল ড্ৰিল বিট (Centre Drill Bit)
- ◆ টুইস্ট ড্ৰিল বিট (Twist Drill Bit)
- ◆ রিমার (Reamer)



চিত্র-২০.৮: নার্লিং টুল



চিত্র-২০.৯ : সেন্টার ড্ৰিল

- ❖ ট্যাপ (Tap)
- ❖ থ্রেড চেসার (Thread Chaser)/থ্রেডিং টুল
- ❖ ডাই (Die)



চিত্র-২০.১০ঃ টুইস্ট ড্রিল বিট



চিত্র-২০.১১ঃ রিমার



চিত্র-২০.১২ঃ ট্যাপ



চিত্র-২০.১৩ঃ থ্রেডিং টুল/থ্রেড চেসার



চিত্র-২০.১৪ঃ ডাই

## প্রশ্নমালা-২০

### অতি সংক্ষিপ্ত প্রশ্ন :

১. কাটিং টুল কাকে বলে ?
২. কাটিং টুল প্রধানত কত প্রকার ও কী কী ?
৩. সিঙ্গেল পয়েন্ট কাটিং টুল কাকে বলে ?
৪. মাল্টি পয়েন্ট কাটিং টুল কাকে বলে ?
৫. কাটিং টুলের শ্যাঙ্ক কাকে বলে ?
৬. কাটিং টুলের ফ্ল্যাঙ্ক কাকে বলে ?
৭. কাটিং এজ কাকে বলে ?
৮. সিঙ্গেল পয়েন্ট কাটিং টুলের সর্বনিম্ন অংশের নাম লেখ।
৯. এন্ড রিলিফ অ্যাংগেলের পরিমাণ সাধারণত কত ডিগ্রি হয় ?
১০. সাইড রেক অ্যাংগেলের পরিমাণ সাধারণত কত ডিগ্রি হয় ?
১১. লেফট হ্যান্ড লেদ টুল কাকে বলে ?
১২. রাইট হ্যান্ড লেদ টুল কাকে বলে ?
১৩. সবচেয়ে শক্ত কাটিং টুল কোন পদার্থ দিয়ে তৈরি করা হয় ?
১৪. সিঙ্গেল পয়েন্ট কাটিং টুলের বিভিন্ন অংশের নাম লেখ।
১৫. মুটি মাল্টি পয়েন্ট কাটিং টুলের নাম লেখ।

### সংক্ষিপ্ত প্রশ্ন :

১. কাটিং টুল বলতে কী বোঝায় উল্লেখ কর।
২. কাটিং টুলের ধাতু কাটার দক্ষতা কী কী বিষয়ের উপর নির্ভর করে।
৩. সিঙ্গেল পয়েন্ট ও মাল্টি পয়েন্ট কাটিং টুল বলতে কী বোঝায় ?
৪. বিভিন্ন প্রকার মাল্টি পয়েন্ট কাটিং টুলের নাম লেখ।
৫. সিঙ্গেল পয়েন্ট কাটিং টুলের চিত্র অঙ্কন করে বিভিন্ন অংশ দেখাও।
৬. সিঙ্গেল পয়েন্ট কাটিং টুলের বিভিন্ন কোণ গুলোর নাম লেখ।
৭. ডান হাতি এবং বাম হাতি কাটিং টুল কাকে বলে ?
৮. কী কী পদার্থ দ্বারা লেদ কাটিং টুল তৈরি হয় ?
৯. বিভিন্ন প্রকার সিঙ্গেল পয়েন্ট কাটিং টুলের নাম লেখ।

### রচনামূলক প্রশ্ন :

১. লেদ কাটিং টুল বলতে কী বোঝায় চিত্রসহ বর্ণনা কর।
২. লেদ কাটিং টুলের বৈশিষ্ট্য ব্যাখ্যা কর।
৩. লেদ মেশিনে ব্যবহৃত সিঙ্গেল পয়েন্ট ও মাল্টি পয়েন্ট কাটিং টুলগুলোর নাম লিখে বর্ণনা কর।
৪. সিঙ্গেল পয়েন্ট কাটিং টুলের টুল জিওমেট্রি বর্ণনা কর।
৫. সিঙ্গেল পয়েন্ট কাটিং টুলের বিভিন্ন অংশগুলোর বর্ণনা কর।
৬. সিঙ্গেল পয়েন্ট কাটিং টুলের বিভিন্ন অ্যাংগেলগুলোর বর্ণনা কর।
৭. লেফট হ্যান্ড ও রাইট হ্যান্ড লেদ টুলের কাজ ও শনাক্তকরণ প্রক্রিয়া বর্ণনা কর।
৮. লেদ কাটিং টুল পদার্থগুলোর গুণাবলী বর্ণনা কর।

## অধ্যায়-২১

# লুব্রিকেন্টস (Lubricants)

### ২১.১ লুব্রিকেন্ট এর পরিচিতি :

ইহা এক প্রকার চটচটে প্রাকৃতিক পিচিলকারক পদার্থ যাহা প্রধানত মেশিনের জীবনীশক্তি রূপে মেশিন ও উহার চলমান বিভিন্ন অংশকে দৰ্শণজনিত ক্ষয়ক্ষতির হাত হতে যথাযথভাবে রক্ষা করে ইহাদের কার্য ক্ষমতাকে অঙ্গুল রাখতে এবং দৰ্শণ জনিত কারনে উৎপন্ন তাপকে কমিয়ে মসৃণ ভাবে চালনা করতে ব্যবহার করা হয়।

### ২১.২ লুব্রিকেন্টের প্রয়োগ ক্ষেত্র :

লুব্রিকেন্ট সাধারণত নিম্ন লিখিত ক্ষেত্রে ব্যবহৃত হয়ে থাকে। যেমন-

- ক) মিলিত অংশ দুইটির মধ্যে দৰ্শণ হেতু যে ক্ষয়ক্ষতি হয়, তাকে কমাতে সাহায্য করে।
- খ) দুইটি চালিত অংশ সমূহের মধ্যে দৰ্শণ জনিত উৎপন্ন তাপকে প্রতিরোধ করিতে সাহায্য করে।
- গ) একটি অংশ অপর অংশের উপর মসৃণ ভাবে চলতে সাহায্য করে।
- ঘ) একটি অংশ অপর অংশের উপর মসৃণ ভাবে ঘূরতে বা চলাচল করতে সাহায্য করে।
- ঙ) মেশিনকে উহার অংশগুলিকে মরিচা বা ক্ষারজনিত ক্ষয় রোধ করতে সাহায্য করে।

### ২১.৩ লুব্রিকেন্টের প্রকারভেদ :

প্রয়োগ বিধি অনুযায়ী লুব্রিকেন্টকে প্রধানত তিন শ্রেণিতে ভাগ করা যায়। যেমন-

- লিকুইড লুব্রিকেন্টস (Liquid Lubricants)
- ◆ সেমি লিকুইড লুব্রিকেন্টস (Semi-liquid Lubricants)
- ◆ সলিড লুব্রিকেন্টস (Solid Lubricants)

বিভিন্ন প্রকার লিকুইড লুব্রিকেন্টস আবার নিম্নলিখিত নামে বাজারে পাওয়া যায়। যথা-

- স্ট্রেইট মিনারেল অয়েল (Straight Mineral Oil)
- ▶ স্পিন্ডেল অয়েল (Spindle Oil)
- ▶ হাইড্রুলিক অয়েল (Hydraulic Oil)
- ▶ স্লাইডওয়ে অয়েল (Slideway Oil)
- ▶ গিয়ার অয়েল (Gear Oil)

### স্ট্রেইট মিনারেল অয়েল (Straight Mineral Oil) :

এটি এক প্রকার খনিজ তেল যার সাথে মরিচা ও ক্ষয়রোধী রাসায়নিক পদার্থ মিশ্রিত থাকে। বিয়ারিং, গিয়ার, স্লাইডওয়ে এবং লিড-স্ক্রু যা অল্প চাপে বলে ঘূরতে থাকে তাকে তৈলাক্ত করতে স্ট্রেইট মিনারেল অয়েল ব্যবহৃত হয়।

### স্পিন্ডেল অয়েল (Spindle Oil) :

এটি অল্প আঠালো এক প্রকার খনিজ তেল। এটির মধ্যে যন্ত্রপাতির ব্যবহারজনিত ও আবহাওয়াজনিত ক্ষয়রোধী ক্ষমতা আছে। সকল প্রকার স্পিন্ডেল এবং বিয়ারিং তৈলাক্ত করতে স্পিন্ডেল অয়েল ব্যবহৃত হয়।

### **হাইড্রলিক অয়েল (Hydraulic Oil) :**

এটি উত্তমরূপে শোধন করা এক প্রকার খনিজ তেল। এটির ব্যবহার এবং আবহাওয়াজনিত কারণে ক্ষয়রোধ গুণ আছে। হাইড্রলিক অয়েল প্রধানত হাইড্রলিক পদ্ধতি চালনা করার জন্য ব্যবহৃত হয়। তবে এটিকে স্পিন্ডেল, স্লাইডওয়ে এবং গিয়ার তৈলাক্ত করতেও ব্যবহার করা হয়ে থাকে।

### **স্লাইডওয়ে অয়েল (Slideway Oil) :**

এটি উত্তমরূপে বিশুদ্ধকৃত এক প্রকার খনিজ তেল। এটি যন্ত্রাংশের গায়ে উত্তমরূপে পিছিলকারী এবং ঘর্ষণজনিত কারণে ক্ষয়রোধী গুণসম্পন্ন।

### **গীয়ার ওয়েল (Gear Oil) :**

এটিও উত্তমরূপে বিশুদ্ধকৃত এক প্রকার লুব্রিকেটিং অয়েল যা অপেক্ষাকৃত ঘন। এর সাথে মরিচা এবং ক্ষয়রোধকারী রাসায়নিক পদার্থ মিশ্রিত থাকে। অধিক ভারসহ কার্যরত গিয়ারকে প্রেসার বা বাথ লুব্রিকেশন পদ্ধতিতে তৈলাক্ত করতে গিয়ার অয়েল ব্যবহৃত হয়।

### **২১.৪ সচরাচর ব্যবহৃত লুব্রিকেন্টের বাণিজ্যিক নাম :**

নিম্নে বিভিন্ন প্রকার লুব্রিকেন্টের বাণিজ্যিক নাম দেওয়া হলো :

- ◆ গালফ গালফওয়ে-৫২ (Gulf Gulfway-52)
- ◆ গালফ হারমনি-৫৩ (Gulf Harmony-53)
- ◆ গালফ হারমনি-৪৩ এডিউ (Gulf Harmony-43 AW)
- ❖ ক্যালটেক্স ওয়েলুব্রিকেন্ট (Caltex Waylubricant)
- ❖ ক্যালটেক্স অয়েল এইচডিএ (Caltex Oil HDA)
- ❖ ক্যালটেক্স র্যান্ডো অয়েল এইচডিসি (Caltex Rando Oil HDC)
- ❖ ক্যালটেক্স রিগ্যাল অয়েল এ আর এন্ড ও (Caltex Regal Oil A R & O)
- ❖ শেল টেলাস অয়েল-২৭ (Shell Tellus-27)
- ❖ শেল টেলাস অয়েল-২৯ (Shell Tellus-29)
- ❖ শেল টোনা অয়েল-৩৩ (Shell Tonna Oil-33)
- ❖ ক্যাস্ট্রল মেঘনা বিডি (Castrol Meghna BD)
- ❖ ক্যাস্ট্রল হিসপিন-৮০ (Castrol Hyspin-80)
- ❖ ক্যাস্ট্রল হিসপিন-১০০ (Castrol Hyspin-100)
- ❖ মবিল ভ্যাকট্রা অয়েল-২ (Mobil Vactra Oil-2)
- ❖ মবিল ভ্যাকট্রা অয়েল হেভি মিডিয়াম (Mobil Vactra Oil Heavy Medium)
- ❖ মবিল ডিটিই-২৫ (Mobil DTE-25)
- ❖ বিডি ইনারগল এইচপি ২০সি (BD Energol HP 20C)
- ❖ বিডি ইনারগল এইচএলপি ৮০ (BD Energol HLP 80)
- ❖ বিডি ইনারগল এইচএলপি ১০০ (BD Energol HLP 100)

- এসো ফেবিস কে-৫৩ (Esso Febis K-53)
- এসো নুটো এইচ-৫৪ (Esso Nuto H-54)
- এসো ইউনিভিস জে-৫৮ (Esso Univis J-58)
- টেকসাকো ওয়েলুব্রিকেন্ট ডি (Texaco Waylubricant D)
- টেকসাকো রিগ্যাল অয়েল পিসি আর-৮০ (Texaco Regal Oil PC R-80)
- টেকসাকো রিগ্যাল অয়েল এ আর ৮০ (Texaco Regal Oil A R-80)
- টেকসাকো র্যান্ডো অয়েল এইচডিসি (Texaco Rando Oil HDC)
- টেকসাকো র্যান্ডো অয়েল এইচডিএ (Texaco Rando Oil HDA)
- ◆ নাইনাস টিডি-৩৩ ওএ (Nynus TD-33 OA)
- ◆ নাইনাস টিডি-২৭ ইএক্স (Nynus TD-27 EX)

#### **তাছাড়া নিম্নলিখিত বিভিন্ন প্রেডের প্রিজ ব্যবহার হয় :**

- ১) শেল অ্যাভলেনিয়া প্রিজ-৩ (Shell Avlania Grease-3)
- ২) মবিল পেন্সন্স ৪৮ (Mobil Plex No 48)
- ৩) বিডি ইনারপ্রিজ (BD Energrease)
- ৪) ক্যালটেক্স রিগ্যাল স্টারফাক প্রিমিয়াম (Caltex Regal Starfak Premium)
- ৫) নাইনাস এফএল৩-৪২ (Nynus FL3-42)
- ৬) এসো অ্যানডক এম২৭৫ (Asso Andok M275)
- ৭) গালফ ইউনিভারসেল প্রিজ ইপি-টাইপ (Gulf Universal Grease EP-Type)
- ৮) ক্যাস্ট্রল স্ফিরাল এপি-৩ (Castrol Spheeral AP3)

## প্রশ্নমালা-২১

### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. লুব্রিকেন্ট বলতে কী বোঝা?
২. প্রধানত লুব্রিকেন্ট কত প্রকার ও কী কী ?
৩. লিকুইড লুব্রিকেন্টস কী কী নামে বাজারে পাওয়া যায় ?
৪. স্ট্রেইট মিনারেল অয়েল (Straight Mineral Oil) এর ব্যবহার লেখ।
৫. স্পিন্ডেল অয়েল (Spindle Oil) এর ব্যবহার লেখ।
৬. হাইড্রুলিক অয়েল (Hydraulic Oil) এর ব্যবহার লেখ।
৭. স্লাইডওয়ে অয়েল (Slideway Oil) এর ব্যবহার লেখ।
৮. গিয়ার অয়েল (Gear Oil) এর ব্যবহার লেখ।

### **সংক্ষিপ্ত প্রশ্ন :**

১. লুব্রিকেন্টের প্রয়োগক্ষেত্র উল্লেখ কর।
২. সচরাচর ব্যবহৃত ৫টি লুব্রিকেন্টের বাণিজ্যিক নাম শুলি উল্লেখ কর।
৩. সচরাচর ব্যবহৃত পাঁচ প্রকার শ্রীজের নাম লিখ।

### **রচনামূলক প্রশ্ন :**

১. লুব্রিকেন্ট বলতে কি বোঝায় ? লুব্রিকেন্ট কত প্রকার ও কী কী ? বর্ণনা দাও।
২. লুব্রিকেন্ট কাকে বলে ? লুব্রিকেন্টের প্রয়োগক্ষেত্র বর্ণনা কর।
৩. সচরাচর ব্যবহৃত ১০টি লুব্রিকেন্টের বাণিজ্যিক নাম উল্লেখ কর।

## অধ্যায়-২২

# ধাতুর উপর তাপ প্রক্রিয়াকরণ (Heat Treatment of Metals)

### ২২.১ ধাতুর উপর তাপ প্রক্রিয়াকরণ :

ধাতু বা সংকর ধাতুকে কঠিন অবস্থায় এর ভৌত গুণাবলী যেমন- দানার গঠন, কাঠিন্য, ভঙ্গুরতা, ক্ষয়রোধী ক্ষমতা ইত্যাদি ইঙ্গিত মাত্রায় পরিবর্তন করতে ধাতু বা সংকর ধাতুকে সঠিক উপায়ে উত্তপ্ত ও ঠাণ্ডা করার কাজকে তাপ প্রক্রিয়াকরণ বা হিট ট্রিটমেন্ট অব মেটাল বলা হয়। তাপ প্রক্রিয়াকরণের ফলে ইস্পাতে কাটিং অ্যাকশন ও ক্ষয়রোধী ক্ষমতা বৃদ্ধি পায় আবার সহজে মেশিনিং কার্য সমাধানের জন্য নরমও করা যায়। ধাতু বা সংকর ধাতুর উপর সঠিক তাপ প্রক্রিয়াকরণের ফলে আভ্যন্তরীণ পীড়ন দূর হয়, দানার আকৃতি ছোট হয় এবং দুর্দেহ্যতা (Toughness) বৃদ্ধি পায়। তাপ প্রক্রিয়াকরণের ফলে পদার্থের পৃষ্ঠাতের অভ্যন্তরভাগ তাপবতা গুণসম্পন্ন হয়। ইস্পাতের উপাদানসমূহের ধর্ম তাপ প্রক্রিয়াকরণের পূর্বে জানা আবশ্যিক।

### তাপ প্রক্রিয়াকরণ পদ্ধতিগুলি হলো-

১. অ্যানিলিং (Annealing)
২. টেম্পারিং (Tempering)
৩. নরমালাইজিং (Normalizing)
৪. হার্ডেনিং (Hardening)
৫. কোয়েঞ্চিং (Quenching)
৬. কার্বোরাইজিং (Carburizing)
৭. সায়ানাইডিং (Cyaniding)
৮. নাইট্রাইডিং (Nitriding)
৯. কেইস হার্ডেনিং (Case Hardening)

### তাপ প্রক্রিয়াকরণের প্রয়োজনীয়তা :

সাধারণভাবে তৈরি ধাতু বা সংকর ধাতু প্রয়োজনীয় ভৌত বা যান্ত্রিক গুণাবলীর অভাবে সব সময় ব্যবহার করা সম্ভব হয় না। ধাতু বা ধাতু সংকরের অভ্যন্তরস্থ খাদ (Impurities) এবং গ্যাস ইত্যাদি ধাতুর মধ্যে বিভিন্ন প্রকার ত্রুটি সৃষ্টি করে। ধাতুকে ত্রুটিমুক্ত করতে হলে হিট ট্রিটমেন্ট বা তাপ প্রক্রিয়াকরণের প্রয়োজন হয়। তাপ প্রক্রিয়াকরণের প্রয়োজনীয়তা নিম্নে উল্লেখ করা হলো-

১. সিটল বা সংকর ধাতুকে প্রয়োজনীয় মাত্রায় নরম করতে।
২. সিটল বা সংকর ধাতুর কাঠিন্যতা (Hardness) বৃদ্ধি করতে।
৩. সিটলের নমনীয়তা বা তাপবতা (Ductility) বৃদ্ধি করতে।
৪. অতিরিক্ত শক্ত হওয়ার দর্শন ভঙ্গুরতা (Brittleness) দূর করতে বা কমাতে।
৫. সিটলের ধাতু কাটার যোগ্যতা বৃদ্ধি করতে।
৬. সিটল বা সংকর ধাতুর শক্তি (Strength) বৃদ্ধি করতে।
৭. সিটল বা সংকর ধাতুর আভ্যন্তরীণ দানা (Crystal) সূক্ষ্ম ও স্বাভাবিক করতে।
৮. সিটল বা সংকর ধাতুর বহিরাবরণ শক্ত ও ক্ষয়রোধী (Wear Resistant) করতে।
৯. সিটল বা সংকর ধাতুর ঘাত সহ্তা (Toughness) বৃদ্ধি করতে।
১০. সিটল বা সংকর ধাতুর মেশিনেবিলিটি (Machinability) বৃদ্ধি করতে।

## ২২.২ অ্যানিলিং প্রক্রিয়া (Annealing Process) :

ধাতু বা ধাতু সংকরকে আকাঙ্ক্ষিত মাত্রায় কঠিন অবস্থায় নরম করার প্রক্রিয়াকেই অ্যানিলিং বলে। ধাতুর গাঠনিক পরিবর্তন সীমা অর্থাৎ উর্ধ্ব ক্রিটিক্যাল তাপমাত্রা হতে  $50^{\circ}\text{C}$  সেঃ উর্ধ্ব পর্যন্ত ধাতুকে উত্পন্ন করে ধীরে ধীরে চুল্লির ভিতরে রেখে ঠাণ্ডা করার প্রক্রিয়াকে অ্যানিলিং বলা হয়। ঠাণ্ডা অবস্থায় রোল করা, কাটা, পেটা বা অন্য যে কোন অপারেশনের ফলে ধাতু কিছুটা শক্ত হতে পারে। ধাতুর এ কাঠিন্যতা দূর করতে হলে অ্যানিলিং করতে হয়। অ্যানিলিং করার সময় ধাতুর সকল স্থানে সমান তাপ প্রয়োগ করতে হয় এবং একই তাপমাত্রায় নির্দিষ্ট সময় পর্যন্ত রেখে ধীরে ধীরে ঠাণ্ডা করতে হয়। এই রকম ভাবে ধাতুকে একই তাপমাত্রায় কিছুক্ষণ রাখাকে সোকিং (Soaking) বলা হয়। ধাতুকে কাজের উপযোগী নরম, আভ্যন্তরীণ পীড়ন অপসারণ, তাত্ত্বিক, বৈদ্যুতিক, চুম্বকীয়, ও যান্ত্রিক গুণাগুণের পরিবর্তন, দানার সূক্ষ্মতা বৃদ্ধি, নির্দিষ্ট মাইক্রোস্ট্রাকচারযুক্ত স্টিলকে পরবর্তী প্রক্রিয়ার জন্য প্রস্তুত করতে অ্যানিলিং করা হয়।

### অ্যানিলিং প্রধানত তিনি প্রকার-

১. প্রসেস অ্যানিলিং (Process Annealing)
২. পেটেন্টিং অ্যানিলিং (Patenting Annealing)
৩. ফুল অ্যানিলিং (Full Annealing)

### অ্যানিলিং এর উদ্দেশ্য :

১. মেশিনিং ও ফর্মিং করার জন্য স্টিল, ধাতু ও ধাতু সংকর নরম করতে অ্যানিলিং করা হয়।
২. স্টিল, ধাতু ও ধাতু সংকর এর দানার গঠন সূক্ষ্ম বা মিহি করতে অ্যানিলিং করা হয়।
৩. স্টিল, ধাতু ও ধাতু সংকর এর আভ্যন্তরীণ পীড়ন মুক্ত করতে অ্যানিলিং করা হয়।

### অ্যানিলিং তাপমাত্রা :

১. স্টিল ( $0.12\%$  পর্যন্ত কার্বন) =  $850\text{ }^{\circ}\text{C} - 900\text{ }^{\circ}\text{C}$
২. স্টিল ( $0.13\%$  হতে  $0.29\%$  পর্যন্ত কার্বন) =  $840\text{ }^{\circ}\text{C} - 870\text{ }^{\circ}\text{C}$
৩. স্টিল ( $0.30\%$  হতে  $0.89\%$  পর্যন্ত কার্বন) =  $820\text{ }^{\circ}\text{C} - 840\text{ }^{\circ}\text{C}$
৪. স্টিল ( $0.50\%$  হতে  $1.00\%$  পর্যন্ত কার্বন) =  $790\text{ }^{\circ}\text{C} - 820\text{ }^{\circ}\text{C}$
৫. হাই স্পিড স্টিল =  $900\text{ }^{\circ}\text{C}$

### ২২.৩ নরমালাইজিং প্রক্রিয়া :

স্টিলকে উর্ধ্ব ক্রিটিক্যাল তাপমাত্রার উপরে  $50\text{ }^{\circ}\text{C}$  থেকে  $100\text{ }^{\circ}\text{C}$  পর্যন্ত তাপমাত্রায় উত্পন্ন করে কিছু সময় পর চুল্লি থেকে বের করে চুল্লির বাইরে মুক্ত অবস্থায় শীতল করাকে নরমালাইজিং বলে। নরমালাইজিং এর অর্থ হলো ধাতুকে সাধারণ এবং সুষম অবস্থায় আনা। স্টিলকে হার্ডেনিং এর আগে নরমালাইজিং করে নিতে হয়। নরমালাইজিং এর তাপমাত্রা স্টিলের মধ্যে কার্বনের পরিমাণের উপর নির্ভর করে। নরমালাইজিং করার ফলে রোলিং, স্ট্যাম্পিং প্রভৃতি অপারেশন করার পর স্টিলে যে বড় দানাসমূহ (Crystal) সৃষ্টি হয় তা অনেকাংশে ক্ষুদ্রতর হয়ে সুষম আকার ধারণ করে। মিডিয়াম কার্বন স্টিলের শক্তি বৃদ্ধি হয়, লো-কার্বন স্টিলের মেশিনেবিলিটি বাঢ়ে, ওয়েল্ডিং করা বস্তুর গাঠনিক পরিবর্তন ও আভ্যন্তরীণ পীড়ন হ্রাস পায়।

### ২২.৪ কোয়েন্চিং প্রক্রিয়া (Quenching Process) :

উর্ধ্ব ক্রিটিক্যাল তাপমাত্রা থেকে কিছু উপরের তাপমাত্রায় স্টিলকে উত্পন্ন করে লবণাক্ত পানি বা তৈল প্রভৃতির

সাহায্যে অতি দ্রুত শীতল করাকে কুয়েশ্বিং বলে। উন্ডণ স্টিলকে পানিতে ডুবিয়ে ঠাণ্ডা করলে খুব অল্প সময়ে ঠাণ্ডা হয় এবং বাতাসে ঠাণ্ডা করলে দেরিতে ঠাণ্ডা হয়। কোয়েশ্বিং মিডিয়াম হিসাবে পানি ছাড়াও ব্রাইন, কস্টক সোডার দ্রবণ, তেল প্রভৃতি ব্যবহার করা হয়। ধাতুকে কতটুকু শক্ত করতে হবে তার উপর কোয়েশ্বিং মিডিয়াম এর ব্যবহার নির্ভর করে। সময় ও তাপমাত্রার উপর গাঠনিক পরিবর্তন নির্ভরশীল। অতি দ্রুত শীতল করলে স্টিলের শক্ততা বৃদ্ধি পায়।

#### **২২.৫ টেম্পারিং প্রক্রিয়া (Tempering Process) :**

দ্রুত কোয়েশ্বিং করে স্টিলকে শক্ত করা হলে উহা ভঙ্গ ও কাজের অনুপযুক্ত হয়। টেম্পারিং হলো অন্যতম তাপ প্রক্রিয়াকরণ পদ্ধতি যা স্টিলের কাঠিন্য ও ভঙ্গুরতা প্রয়োজনীয় মাত্রায় কমাতে এবং উহাকে কার্যোপযোগী করতে ব্যবহৃত হয়। টেম্পারিং স্টিলের টানা শক্তি কমায় কিন্তু নমনীয়তা ও শক্ততা বৃদ্ধি করে। কোয়েশ্বিং করার ফলে স্টিলের অসম গাঠনিক পরিবর্তন হয়, ভঙ্গুরতা বৃদ্ধি পায় এবং সমানভাবে সকল অংশ শক্ত হয় না। এই অসুবিধা দূর করার জন্য সাধারণ ইস্পাতকে কার্বনের হার অনুযায়ী  $220^{\circ}$  সেঃ থেকে  $500^{\circ}$  সেঃ পর্যন্ত তাপমাত্রায় পুন উন্ডণ করে লবণাক্ত পানি বা তৈলের মধ্যে ডুবিয়ে শীতল করা হয়। টেম্পারিং করার ফলে স্টিলের টাফনেস বাঢ়ে এবং ভঙ্গুরতা কমে। শিল্প ক্ষেত্রে ব্যবহারের জন্য স্টিলের তৈরি নানা প্রকার জিনিসপত্র ও যন্ত্রপাতি টেম্পারিং করা হয়। সাধারণভাবে ব্যবহৃত টেম্পারিং করা দ্রব্যগুলো হলো- ডিভাইডার, পাঞ্চ, ট্যাপ, ডাই, রিমার, ফাইল, ভাইসের ‘জ’, হ্যামারের মুখ, লেদ কাটিং টুল, শেপার কাটিং টুল, মিলিং কাটার, ড্রিল বিট, হ্যাক’স লেড, শিয়ারিং লেড, বাটালি, পাঞ্চ ইত্যাদি।

#### **২২.৬ হার্ডেনিং প্রক্রিয়া (Hardening Process) :**

হার্ডেনিং হলো অন্যতম তাপ প্রক্রিয়াকরণ প্রক্রিয়া যা স্টিলকে কার্বনের পরিমাণ বৃদ্ধি করে ইলিত মাত্রায় শক্ত করে। এই প্রক্রিয়ায় স্টিলকে ক্রিটিক্যাল তাপমাত্রা সীমার অনেক উর্ধ্ব তাপমাত্রায় উন্ডণ করা হয় তারপর দ্রুত পানি, বা তৈলে ঠাণ্ডা করা হয়।

#### **হার্ডেনিং এর প্রকারভেদ :**

হার্ডেনিং প্রক্রিয়াকে নিম্নলিখিত কয়েক ভাগে ভাগ করা যায়। যেমন-

১. কার্বোরাইজিং
২. কেস হার্ডেনিং
৩. সায়ানাইডিং
৪. নাইট্রাইডিং
৫. ফ্রেইম হার্ডেনিং
৬. ইনডাকশন হার্ডেনিং

## প্রশ্নমালা-২২

### **অতি সংক্ষিপ্ত প্রশ্ন :**

১. হিট ট্রিটমেন্ট কী ?
২. ফেটি তাপ প্রক্রিয়াকরণ পদ্ধতির নাম লেখ ।
৩. অ্যানিলিং কী ?
৪. অ্যানিলিং প্রধানত কয় প্রকার ও কী কী ?
৫. নরমালাইজিং কী ?
৬. কোয়েফিং কী ?
৭. টেম্পারিং কী ?
৮. হার্ডেনিং কী ?

### **সংক্ষিপ্ত প্রশ্ন :**

১. তাপ প্রক্রিয়াকরণ বা হিট ট্রিটমেন্ট বলতে কী বোঝায় ?
২. তাপ প্রক্রিয়াকরণ পদ্ধতিগুলির নাম লেখ ।
৩. তাপ প্রক্রিয়াকরণ এর প্রয়োজনীয়তা সংক্ষেপে বর্ণনা কর ।
৪. অ্যানিলিং বলতে কী বোঝায় ?
৫. নরমালাইজিং বলতে কী বোঝায় ?
৬. কোয়েফিং বলতে কী বোঝায় ?
৭. টেম্পারিং বলতে কী বোঝায় ?
৮. হার্ডেনিং বলতে কী বোঝায় ?
৯. অ্যানিলিং এর উদ্দেশ্য বর্ণনা কর ।
১০. হার্ডেনিং এর উদ্দেশ্য বর্ণনা কর ।
১১. বিভিন্ন স্টীলের ক্ষেত্রে অ্যানিলিং তাপমাত্রাগুলি লিখ ।
১২. হার্ডেনিং কত প্রকার ও কী কী ?

### **রচনামূলক প্রশ্ন :**

১. তাপ প্রক্রিয়াকরণ বলতে কী বোঝায় ? তাপ প্রক্রিয়াকরণ এর প্রয়োজনীয়তা বর্ণনা কর ।
২. তাপ প্রক্রিয়াকরণ কত প্রকার ও কী কী ? প্রত্যেক প্রকারের বর্ণনা দাও ।
৩. হার্ডেনিং কাকে বলে ? ইহা কত প্রকার ও কী কী ? হার্ডেনিং এর উদ্দেশ্য বর্ণনা কর ।
৪. অ্যানিলিং কাকে বলে ? ইহা কত প্রকার ও কী কী ? অ্যানিলিং এর উদ্দেশ্য বর্ণনা কর ।
৫. টেম্পারিং পদ্ধতির বর্ণনা দাও ।

## অধ্যায়-২৩

# হাইড্রলিক ট্রান্সমিশন (Hydraulic Transmission)

### ২৩.১ হাইড্রলিক ট্রান্সমিশন :

কোন মেশিন পরিচালনা করার জন্য হাইড্রলিক অয়েল দ্বারা পাওয়ার ট্রান্সমিশন করার ব্যবস্থাকে হাইড্রলিক ট্রান্সমিশন বলে। বর্তমানে অটোমেটিক মেশিনসমূহ হাইড্রলিক পাওয়ার ট্রান্সমিশন পদ্ধতিতে পরিচালিত হয়। কন্ট্রোল ভালব দ্বারা ফুটড পরিচালিত করে জব বা টুলকে চালানো হয় আবার কোথাও কোথাও প্রেসারের সাহায্যে টক সঞ্চালন করা হয়। মেশিন টুলের উন্নয়নের মুখ্য উদ্দেশ্য সার্ভিজনক মেশিনিং অপারেশন।



চিত্র-২৩.১: হাইড্রলিক ট্রান্সমিশনের একটি যত্নে।

### ২৩.২ হাইড্রলিক ট্রান্সমিশন পরিচালিত মেশিন সমূহ :

- ১) লেদ মেশিন (Lathe Machine)
- ২) শেপার মেশিন (Shaper Machine)
- ৩) মিলিং মেশিন (Milling Machine)
- ৪) ড্রিলিং মেশিন (Drilling Machine)
- ৫) গ্রাইভিং মেশিন (Grinding Machine)
- ৬) সারফেস গ্রাইভিং মেশিন (Surface Grinding Machine)
- ৭) বোরিং ও হোনিং মেশিন (Boring & Honning Machine)

### ২৩.৩ হাইড্রলিক ট্রান্সমিশনের সুবিধা :

- ◆ কাটিং ডাটা নির্বাচন ও সেটিং এর সময় কমাতে।
- ◆ টুল পরিশোধনের সময় কমাতে।
- ◆ ট্রান্সফরমার মেশিনিং।

এটা জব সেটিং-এ আটকানো এবং খোলা অটোমেটিক ভাবে করার ফলে উৎপাদন খরচ অনেক কম হয়। বিভিন্ন অসুবিধাসমূহ অতিক্রম করে অনেক বেশি জাটিল কাজ একজন অপারেটর খুব সহজেই করতে পারে বলেই ট্রান্সমিশনের গুরুত্ব অনেক বেশি।

## প্রশ্নমালা-২৬

### অতি সংক্ষিপ্ত প্রশ্ন :

১. হাইড্রলিক ট্রান্সমিশন বলতে কী বুবা?
২. হাইড্রলিক ট্রান্সমিশন পরিচালিত ৫টি মেশিনের নাম লেখ।

### সংক্ষিপ্ত প্রশ্ন :

১. হাইড্রলিক ট্রান্সমিশন বলতে কী বোবায়? সংক্ষেপে লেখ।
২. হাইড্রলিক ট্রান্সমিশন ব্যবহারের সুবিধা সংক্ষেপে বর্ণনা কর।

### রচনামূলক প্রশ্ন :

১. হাইড্রলিক ট্রান্সমিশন বলতে কী বোবায়? হাইড্রলিক ট্রান্সমিশন পরিচালিত মেশিনসমূহের নাম লেখ।

## অধ্যায়-২৪

### সিএনসি মেশিন

#### ২৪.১ সিএনসি (CNC):

যখন কোন মেশিন বা মেশিনসমূহ পার্শ্ব করা টেপ বা কার্ডে রেকর্ডকৃত সংখ্যা সংক্রান্ত তথ্য বা নিউমেরিক্যাল ডাটা (Numerical Data) বা তথ্য দ্বারা নিয়ন্ত্রিত হয়, তখন উক্ত মেশিন বা মেশিনসমূহকে নিউমেরিক্যাল কন্ট্রোল মেশিন টুলস (Numerical Control Machine Tools) বা এনসি (NC) মেশিন টুলস বলা হয়। এই এনসি মেশিন যখন কম্পিউটার দ্বারা নিয়ন্ত্রিত হয়, তখন তাকে সিএনসি বা কম্পিউটার নিউমেরিক্যাল কন্ট্রোল (Computer Numerical Control) মেশিন বলা হয়।



চিত্র-২৪.১: সিএনসি মেশিন

প্রকৃতপক্ষে, এই পদ্ধতিতে সংরক্ষিত নিউমেরিক্যাল ডাটা বা তথ্যাদি স্বয়ংক্রিয়ভাবে পঠিত হয় এবং উহা বৈদ্যুতিক সংকেতে রূপান্তরিত হয়ে সার্ভো পদ্ধতিকে চালনা করে। এই সার্ভো পদ্ধতিই মেশিন স্লাইডকে পরিচালনার দ্বারা প্রয়োজনীয় মেশিনিং অপারেশন সম্পাদনে সচেষ্ট হয়।

#### ২৪.২ সিএনসি মেশিনের সুবিধাসমূহঃ

- সিএনসি মেশিন দৈনিক ২৪ ঘণ্টা বছরে ৩৬৫ দিনই নিরবচ্ছিন্ন ভাবে কাজ করতে পারে। খুব কদাচিং মেইনট্যানেন্স কাজের জন্য মেশিন বন্ধ করতে হয়।
- সিএনসি মেশিনে প্রোগ্রাম এমনভাবে ডিজান করা হয় যাতে একই মাপের হাজার হাজার প্রতিটি নিখুঁতভাবে প্রস্তুত করা যায়।
- অপেক্ষাকৃত কম দক্ষ টেকনিসিয়ান দ্বারা সিএনসি মেশিন চালনা করা যায়।
- সিএনসি মেশিনের সফটওয়্যার অতি সহজেই আপডেট করা যায়।
- একজন টেকনিসিয়ান একাধিক সিএনসি মেশিন পরিচালনা করতে পারে, ফলে মেশিন পরিচালনা খরচ কমে যায়।

#### ২৪.৩ মেশিনশপে ব্যবহৃত সিএনসি মেশিনসমূহঃ

- ১) সিএনসি লেদ মেশিন
- ২) সিএনসি মিলিং মেশিন
- ৩) সিএনসি রাউটার
- ৪) সিএনসি প্লাজমা কাটার
- ৫) সিএনসি লেজার কাটার

#### ২৪.৪ সিএনসি লেদ মেশিনের বিভিন্ন অংশসমূহঃ



চিত্র-২৪.২: সিএনসি লেদ মেশিনের বিভিন্ন অংশসমূহ

#### CNC Lathe Main Parts:

- 1 – Headstock
- 2 – CNC Lathe Bed
- 3 – Chuck
- 4 – Tailstock
- 5 – Tailstock Quill
- 6 – Foot Switch or Foot Pedals
- 7 – CNC Control Panel
- 8 – Tool Turret

## ২৪.৫ সিএনসি লেদ মেশিনের প্রোগ্রামিং কোডসমূহঃ

### Common G-Codes for CNC Lathes

|                                         |                                                  |
|-----------------------------------------|--------------------------------------------------|
| G00 - Rapid Positioning                 | G61 - Exact Stop Check Mode                      |
| G01 - Linear Interpolation              | G62 - Automatic Corner Override                  |
| G02 - Circular Interpolation CW         | G63 - Tapping Mode                               |
| G03 - Circular Interpolation CCW        | G64 - Cutting Mode                               |
| G04 - Dwell                             | G65 - User Simple Macro Call                     |
| G07 - Feedrate Sine Curve Control       | G66 - User Modal Macro Call                      |
| G10 - Data Setting                      | G67 - User Modal Macro Call Cancel               |
| G11 - Data Setting Cancel               | G70 - Finishing Cycle                            |
| G17 - XY Plane Selection                | G71 - Turning Cycle                              |
| G18 - XZ Plane Selection                | G72 - Facing Cycle                               |
| G19 - YZ Plane Selection                | G73 - Pattern Repeating Cycle                    |
| G20 - Input in Inches                   | G74 - Drilling Cycle                             |
| G21 - Input in Metric                   | G75 - Grooving Cycle                             |
| G22 - Stored Stroke Check ON            | G76 - Threading Cycle                            |
| G23 - Stored Stroke Check OFF           | G80 - Canned Cycle Cancel                        |
| G27 - Reference Point Return Check      | G83 - Face Drilling Cycle                        |
| G28 - Automatic Zero Return             | G84 - Face Tapping Cycle                         |
| G29 - Return from Zero Position         | G85 - Face Boring Cycle                          |
| G30 - 2nd Reference Point Return        | G87 - Side Drilling Cycle                        |
| G31 - Skip Function                     | G88 - Side Tapping Cycle                         |
| G32 - Thread Cutting                    | G89 - Side Boring Cycle                          |
| G36 - Automatic Tool Compensation       | G90 - Absolute Positioning                       |
| G40 - Tool Compensation Cancel          | G91 - Incremental Positioning                    |
| G41 - Tool Compensation Left            | G92 - Threading Cycle                            |
| G42 - Tool Compensation Right           | G94 - Face Turning Cycle                         |
| G46 - Automatic Tool Compensation       | G96 - Constant Surface Speed Control On          |
| G50 - Coordinate System Setting         | G97 - Constant Surface Speed Control Off         |
| G52 - Local Coordinate System Setting   | G98 - Feedrate Per Time                          |
| G53 - Machine Coordinate System Setting | G99 - Feedrate Per Revolution                    |
| G54 - Workpiece Coordinate Setting 1    | G107 - Cylindrical Interpolation                 |
| G55 - Workpiece Coordinate Setting 2    | G112 - Polar Coordinate Interpolation<br>Mode On |

**G56 - Workpiece Coordinate Setting 3**

**G57 - Workpiece Coordinate Setting 4**

**G58 - Workpiece Coordinate Setting 5**

**G59 - Workpiece Coordinate Setting 6**

**G113 - Polar Coordinate Interpolation Mode Off**

**G250 - Polygonal Turning Mode Cancel**

**G251 - Polygonal Turning Mode**

### Common M-Codes for CNC Lathes

**M00 - Program Stop**

**M07 - Coolant 1 On**

**M01 - Optional Program Stop**

**M08 - Coolant 2 On**

**M02 - Program End**

**M09 - Coolant Off**

**M03 - Spindle Clockwise**

**M30 - End Program, Return to Start**

**M04 - Spindle Counter Clockwise**

**M98 - Call Subprogram**

**M05 - Spindle Stop**

**M99 - Cancel Subprogram**

### ২৪.৬ সিএনসি মেশিনের প্রোগ্রামিং এর অরোজনীয়তা:

সিএনসি মেশিন টুলসকে কার্য অনুষ্ঠানী পরিচালনার জন্য যখন বিভিন্ন ডাটা কম্পিউটারের ভাষা অনুষ্ঠানী প্রোগ্রাম করা হয়, তখন কার্যনির্মাণে ধ্রুতিকৃত ডাটাকে প্রোগ্রামিং বলে। কার্যবন্ধন ধ্রুবী বা নজর অনুষ্ঠানী একজন প্রোগ্রাম অসেম শিট ধ্রুতি করে। প্রোগ্রামকে জনবে আকৃতি, ধাতু, মেশিনটুলের যৌগিক ধ্রুতি বিবেচনা করে প্রোগ্রাম শিট তৈরি করতে হব। প্রোগ্রাম শিটটি অপারেশনের লোকেশন নং, অপারেশনের রূপ, অরোজনীয় টুলস, স্পিডস স্পিড, বিফ, কুল্যান্ট কন্ট্রোল ইত্যাদি অরোজনীয় তথ্য উল্লেখ করে।

### ২৪.৭ মেশিন জিও রিটার্ন (MZR) :

জিও রিটার্ন হলো এক ধরন পদ্ধতি যার সাহায্যে সিএনসি মেশিনের শুরাক চেবিল ও শুভারহেড ক্যারেজকে ভাদের জিও পজিশনে বা হোম পজিশনে সেট করা হয়। জিও পজিশন হতে সর্বদা প্রোগ্রাম করা হয়ে থাকে এবং প্রতি প্রোগ্রাম সাইকেলের অন্ততে জিও পজিশন সেট করতে হয়। সিএনসি মেশিন স্টার্ট করার পর X, Y and Z অক্ষকে জিও পজিশনে সেট করতে হয়।

### ২৪.৮ অটোটেক টুল চেজার (ATC) :

অটোমেটিক টুল চেজার সিএনসি মেশিনের টুল ক্যারিয়ে ক্যাপাসিটি ও এজাকশন বৃক্ষি করার জন্য ব্যবহার করা হয়ে থাকে। অটো টুল চেজার খুব মূল্য বিভিন্ন টুলসকে পরিবর্তন করতে পারে, কলে নন এভারিটি টাইপ করে যাব। এটি ভেঙে যাওয়া বা বাতিলকৃত টুলসকে পরিবর্তন করতেও ব্যবহৃত হয়ে থাকে।



চিত্র: অটোমেটিক টুল চেজার

#### ২৪.৯ সিএনসি লেদ মেশিনের যত্ন ও রক্ষণাবেক্ষণঃ

- মেশিন চালনা কালে সঠিক পোশাক পরিধান করতে হবে।
- মেশিনের চলন্ত বা ঘূরন্ত অংশ পরিষ্কার করা যাবে না।
- ওয়ার্কপিস বা জবকে সর্বদা মেশিন ভাইস, ফিঙ্গচার বা টেবিলে শক্তভাবে বাঁধতে হবে।
- চলন্ত অংশের লুব্রিকেশন প্রতিদিন যাচাই করতে হবে।
- বৈদ্যুতিক প্রবাহের কেবল সঠিকভাবে আছে কীনা তা নিশ্চিত হতে হবে।
- স্পিন্ডলের জন্য সঠিক লুব্রিক্যান্ট ব্যবহার করতে হবে।
- কুল্যান্টকে অতিরিক্ত উত্পন্ন করা যাবে না।
- মেশিন অনেকদিন অব্যবহৃত থাকলে মেশিন স্পিন্ডলকে মাঝে মাঝে হাত দিয়ে ঘুরিয়ে দিতে হবে।

## বিভীষণ পত্র (ব্যবহারিক)

### অধ্যায়-১

## ভার্নিয়ার হাইট গেজ ব্যবহারে দক্ষতা অর্জন (Develope Skill to use Vernier Height Gauge)

উদ্দেশ্য :

- (১) ভার্নিয়ার হাইট গেজের বিভিন্ন অংশের সাথে পরিচিত হওয়া।
- (২) ভার্নিয়ার হাইট গেজের বিভিন্ন অংশের ব্যবহার কৌশল জানা।
- (৩) ভার্নিয়ার হাইট গেজের যান্ত্রিক কৃতি নিরূপণ।
- (৪) ভার্নিয়ার ফ্র্যুবক নির্ণয় করণ।
- (৫) ভার্নিয়ার হাইট গেজের সাহায্যে একটি জবের উচ্চতা নির্ণয় করণ।

যত্নপাতি নির্বাচন :

১) একটি ভার্নিয়ার হাইট গেজ (মেট্রিক) : ভার্নিয়ার হাইট গেজ একটি প্রত্যক্ষ, সূক্ষ্ম ও সরল মাপক, লে-আউট ও মার্কিং যন্ত্র। কোন ধাতব কার্যবস্তুর মধ্যে সুষ্ঠুভাবে মার্কিং এর কাজ সম্পাদন করতে বিশেষভাবে ব্যবহৃত হয়। এ মাপক যন্ত্রে একটি বিম ক্ষেল বা ড্রেড থাকে যা একটি বিশেষ আকৃতির স্থায়ী বেস (Fixed Base) এর সাথে সংযুক্ত থাকে এবং প্রয়োজনীয় মাপ গ্রহণের সুবিধাসহ একটি ভার্নিয়ার ক্ষেল সংযুক্ত মাইডিং হেড থাকে। কোন কার্য বস্তু বা উহার অংশের উচ্চতার মাপ গ্রহণে এবং মার্কিং এর কাজে ভার্নিয়ার হাইট গেজ ব্যবহার করা হয়।



চিত্র-১.১: ভার্নিয়ার হাইট গেজ

২) একটি সারফেস প্লেট :



চিত্র-১.২ :

৩) একটি মাইল্ড স্টিল এর আয়তাকার ঘন (Solid Cuboid) কার্যবন্ত যার উচ্চতা মাপতে হবে :



১.১ ভার্নিয়ার হাইট গেজ দ্বারা নিখুঁতভাবে বস্তুর উচ্চতা পরিমাপ করা :



চিত্র-১.৩ : ভার্নিয়ার হাইট গেজের সাহায্যে উচ্চতা নির্ণয় ও মার্কিং করণ।

- ◆ প্রথমে ভার্নিয়ার হাইট গেজটিকে সংরক্ষিত বাল্ব হতে বের করে পরিষ্কার কাপড় দিয়ে গায়ে লাগানো তেল, ধূলা ময়লা, মরিচা ইত্যাদি ভালোভাবে পরিষ্কার করে নাও।
- ◆ তারপর একটি পরিষ্কার সারফেস প্লেটের উপর স্থাপন করে পরীক্ষা করে দেখ যে গেজের সকল অংশ সঠিকভাবে কাজ করছে কীনা।
- ◆ ক্লাইবিং নাইফ এজকে স্লাইডিং হেডের সাথে সঠিকভাবে সংযুক্ত করে সেট ক্লু-এর সাহায্যে শক্তভাবে ঝ্যাম্প কর।

- ❖ বেসের নিচের সমতল এবং স্ক্রাইবিং নাইফ এজের সমতল অংশদ্বয়কে একই সমতলে এনে বিম ক্ষেলের শূন্য দাগ এবং ভার্নিয়ার ক্ষেলের শূন্য দাগ এবং ভার্নিয়ার ক্ষেলের শূন্য দাগ দুইটি পর্যবেক্ষণ করে দেখ যে যান্ত্রিক ত্রুটি আছে কী না। যান্ত্রিক ত্রুটি থাকলে তা বের করে পুনরায় স্লিপ গেজ ব্যবহার করে তার শুন্দতা পরীক্ষা কর।
- ❖ এখন কার্যবস্তুটিকে বেসের উপর রেখে স্লাইডিং 'জ' কে আন্তে আন্তে নিচের দিকে নামাতে হবে যেন কার্যবস্তুটিকে স্পর্শ করে। এমন অবস্থায় লকিং নাট টাইট দিয়ে ফাইন অ্যাডজাস্টমেন্ট স্ক্রু দিয়ে ফাইন অ্যাডজাস্ট করতে হবে।
- ❖ এ অবস্থায় প্রধান ক্ষেল ও ভার্নিয়ার ক্ষেল পাঠ গ্রহণ কর।

### গাণিতিক হিসাব :

কার্যবস্তু বা জবের উচ্চতা = (প্রধান ক্ষেল পাঠ + ভার্নিয়ার ক্ষেল পাঠ × ভার্নিয়ার ধ্রুবক) × যান্ত্রিক ত্রুটি।

### ১.২ ভার্নিয়ার হাইট গেজের যান্ত্রিক ত্রুটি নিরূপণ :

- কে প্রথমে ভার্নিয়ার হাইট গেজটিকে একটি পরিষ্কার ওয়ার্কবেথের উপর রাখিত সারফেস প্লেটের উপর রাখ।
- কে তারপর বেসের নিচের সমতল এবং স্ক্রাইবিং নাইফ-এজ এর নিচের দিকের সমতল অংশদ্বয়কে একই সমতলে এনে বিম ক্ষেলের শূন্য দাগ এবং ভার্নিয়ার ক্ষেলের শূন্য দাগ দুইটি পর্যবেক্ষণ কর।
- কে যদি শূন্য দাগ দুইটি একই সরলরেখায় এসে মিলে যায় তবে গেজটির যান্ত্রিক ত্রুটি নাই বুঝতে হবে। যদি ভার্নিয়ার ক্ষেলের শূন্য দাগ প্রধান ক্ষেলের শূন্য দাগ হতে নিচে থাকে তবে যান্ত্রিক ত্রুটি ঝণাত্বক হবে। আবার যদি ভার্নিয়ার ক্ষেলের শূন্য দাগ প্রধান ক্ষেলের শূন্য দাগ হতে উপরে থাকে তবে যান্ত্রিক ত্রুটি ধনাত্বক হবে।

### ১.৩ ভার্নিয়ার হাইট গেজের ভার্নিয়ার ধ্রুবক নির্ণয় :

ভার্নিয়ার ক্ষেলের ৫০ ভাগের দৈর্ঘ্য = প্রধান বা বিম ক্ষেলের ৪৯ ভাগের সমান

$$= 49 \text{ মি.মি.}$$

$$\therefore \text{ভার্নিয়ার ক্ষেলের } 1 \text{ ভাগের দৈর্ঘ্য} = (49 \div 50) \text{ মি.মি.}$$

$$= 0.98 \text{ মি.মি.}$$

$$\therefore \text{ভার্নিয়ার ধ্রুবক} = (\text{প্রধান ক্ষেলের ক্ষুদ্র } 1 \text{ ভাগের দৈর্ঘ্য} - \text{ভার্নিয়ার ক্ষেলের ক্ষুদ্র } 1 \text{ ভাগের দৈর্ঘ্য})$$

$$= (1 - 0.98) \text{ মি.মি.}$$

$$= 0.02 \text{ মি.মি.}$$

অতএব, নির্ণয় ভার্নিয়ার ধ্রুবক = 0.02 মি.মি.।

## অধ্যায়-২

### সারফেস গেজ ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Surface Gauge)

#### উদ্দেশ্য :

- ক) সারফেস গেজের বিভিন্ন অংশের সাথে পরিচিত হওয়া।
- খ) সারফেস প্লেট সম্পর্কে জ্ঞান ও তার ব্যবহার শেখা।
- গ) সারফেস গেজ দিয়ে একটি যন্ত্রাংশের অ্যালাইনমেন্ট পরীক্ষা করা।

#### ব্যবস্থাপাত্তি নির্বাচন :

- ক) সারফেস প্লেট
- খ) সারফেস গেজ
- গ) কার্ডবস্ট বা যন্ত্রাংশ বার অ্যালাইনমেন্ট পরীক্ষা করতে হবে।

#### ২.১ সারফেস প্লেট (Surface Plate) এর সাথে পরিচিত হওয়া :

সারফেস প্লেটের ওপর সারফেস গেজ, মার্কিং লিঙ্ক, ইত্যাদি যন্ত্র রেখে বস্তুর উপরিভাগের সমতলতা পরীক্ষা করা যায়। তাছাড়া ওয়ার্কপিসকে সাথারণত সারফেস প্লেটের ওপর রেখে মার্কিং করা হয়। কোন বস্তুকে ক্লেপিং করার সময় ও পরে উহার ওপরের সমতলতা পরীক্ষা করার জন্য, কোন যন্ত্রাংশের অ্যালাইনমেন্ট পরীক্ষা করার জন্য সারফেস প্লেট ব্যবহার করা হয়।



চিত্র-২.১ : সারফেস প্লেট

#### সারফেস গেজ-এর পরিচিতি :

সারফেস গেজ হলো সূচকভাবে নিয়ন্ত্রিত এক প্রকার লে-আউট বা মার্কিং টুলস। প্রকৃতপক্ষে গঠনের দিক থেকে এটি একটি ক্লাইবারকে বিভিন্ন প্রকারে সূচকভাবে নিয়ন্ত্রণ করার ব্যবস্থা মাত্র। ভার্টিক্যাল সারফেসের ওপর হরাইজন্টাল বা স্তুরির সঙ্গে সমান্তরাল লাইন টানার জন্য এবং কোন তলের উপরিভাগের উচ্চতা বা উহার বৈষম্য পরীক্ষা করার জন্য প্রধানত সারফেস গেজ ব্যবহৃত হয়। এ ছাড়া কোন জ্বরের সমতল পৃষ্ঠ ব্যার্থ সমান ও সমতল আছে কীনা এবং গোলাকার পৃষ্ঠ বিশিষ্ট বস্তু (যেমন-শ্যাফট, পুলি, বিয়ারিং, বিয়ারিং ক্যাব, ইত্যাদি)-এর গোলাকার পৃষ্ঠ ব্যার্থ গোলাকার কীনা তাহা পরীক্ষা করতেও সারফেস গেজ ব্যবহৃত হয়। ইহার

**ভারী ভিত (Base)-** এর ওপর একটি খাড়া দণ্ড বা স্পিন্ডল থাকে এবং দণ্ডের সাথে একটি ক্রাইবার লাগানো থাকে যা ক্ল্যাম্প ও ছু-এর সাহায্যে বিভিন্ন কোণে সেট করা যায়। **ভিত (Base)-** এর সাথে সংযুক্ত এডজাস্টিং ক্লুকে স্বুরিয়ে ক্রাইবারের মুখকে সূক্ষ্মভাবে নিয়ন্ত্রণ করা যায়। অকৃতপক্ষে দুই তল বা সারফেসের মধ্যে তুলনা বা উহাদের সম্পর্ককে কাজে লাগিয়ে এই গেজ ব্যবহৃত হয় বিধায় এই গেজের নাম হলো সারফেস গেজ।



চিত্র-২.২ : সারফেস গেজ

## ২.২ সারফেস গেজ দিয়ে যন্ত্রাংশের অ্যালাইনমেন্ট পরীক্ষাকরণ :

(ক) আরতাকার ওয়াকপিলের অ্যালাইনমেন্ট পরীক্ষা করা-

- ১) প্রথমে একটি পরিষ্কার ওয়াকবেঞ্জের ওপর একটি সারফেস প্লেট রাখ।
- ২) সারফেস প্লেটটি পরিষ্কার নরম কাপড় দিয়ে পরিষ্কার করে নাও।
- ৩) সারফেস গেজটির তলা ঐ একই কাপড় দিয়ে পরিষ্কার করে সারফেস প্লেটের ওপর রাখ।



চিত্র-২.৩: সারফেস গেজ দিয়ে কার্যবস্তুর মাপ গ্রহণ

- ৪) কার্ববন্ট বা বল্ডাইটিকে সারফেস প্লেটের ওপর রাখ।
- ৫) কার্ববন্টের উপরিভাগের মধ্যে স্পর্শ করা অবস্থায় সারফেস গেজের ক্লাইবারের পরেন্টটি স্থাপন করে ক্ল্যাম্প নাট টাইট দাও।
- ৬) এখন সারফেস গেজের বেসটিকে ঠিলে এমনভাবে সরাও যেন কার্ববন্টের ওপরদিয়ে ক্লাইবারের পরেন্টটির সঙ্গে ঘাস। যদি ক্লাইবারের পরেন্টটির এর সাথে কার্ববন্টের তলের দূরত্ব কম বেশি না হয় তবে বুঝতে হবে যে কার্ববন্টটি সঠিক অ্যালাইনমেন্ট আছে।

(৭) সিলিন্ড্রিক্যাল কার্ববন্টের অ্যালাইনমেন্ট পরীক্ষা করণ :

- ১) কার্ববন্টিকে সেদ চাকে চিজানুবারী বাঁধ।
- ২) সারফেস গেজের বেস-এর ডি-গ্রান্ডের সাথে সিলিন্ড্রিক্যাল কার্ববন্টের থাল্জ স্থাপন কর।
- ৩) কার্ববন্টিকে উপর চক বা মার্কিং কালারের প্রলেপ দাও।
- ৪) ক্লাইবারের পরেন্টটির কার্ববন্টের পরিধির উপর স্পর্শ করা অবস্থায় ক্লাইবার নাট টাইট দাও।
- ৫) এখন হাত দিয়ে সেদ চাকটিকে আঁকড়ে আঁকড়ে দুরাও।
- ৬) সক্ষ কর বে, কার্ববন্টের পরিধির উপর সুব্রহ্মণ্যাবে দাগ পড়েছে কীনা।
- ৭) যদি সমানভাবে পরিধির সম্পূর্ণ অংশ দাগাক্ষিত হয়ে থাকে তবে বুঝতে হবে যে, কার্ববন্টের অ্যালাইনমেন্ট সঠিক হয়েছে।



চিত্র-২৩৪ সারফেস গেজ দিয়ে কার্ববন্টের অ্যালাইনমেন্ট পরীক্ষাকরণ।

## অধ্যায়-৩

### ডায়াল ইন্ডিকেটর ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Dial Indicator)

#### কাজের উদ্দেশ্য :

- ক) ডায়াল ইন্ডিকেটরের বিভিন্ন অংশের সাথে পরিচিত হওয়া।
- খ) ডায়াল ইন্ডিকেটরের সাহায্যে পরিমাপ এহণে দক্ষতা অর্জন।
- গ) ডায়াল ইন্ডিকেটরের সাহায্যে সারফেস রাফনেস পরীক্ষা করার দক্ষতা অর্জন।

#### ব্যবহার নির্বাচন :

- ক) ডায়াল ইন্ডিকেটর
- খ) ডায়াল ইন্ডিকেটর স্ট্যান্ড
- গ) কার্যবস্তু বা যন্ত্রাংশ যার সারফেস রাফনেস পরীক্ষা করতে হবে।

#### ৩.১ ডায়াল ইন্ডিকেটরের সাহায্যে পরিমাপ শৃঙ্খল :

ডায়াল ইন্ডিকেটরের ডায়ালের উপর '0' (শূন্য) চিহ্নিত রেখাটি মধ্যস্থান হতে ডান ও বাম দিকে সমান ২৫টি ভাগ থাকে। প্রতিটি ভাগ আবার ২টি উপভাগে বিভক্ত থাকে। তাই প্রকৃতপক্ষে ইন্ডিকেটরের ডায়াল সমান ১০০ ভাগে বিভক্ত থাকে। বাম দিকের ভাগগুলি কনট্রু পয়েন্টের নিচে নামার উচ্চতা নির্দেশ করে এবং ডানদিকের ভাগগুলি কনট্রু পয়েন্টের উপরে উঠার অর্থাৎ বেশি মাপকে বোঝালোর জন্য ব্যবহৃত হয়। সেই জন্য ডায়ালের বামদিকে বিয়োগ (-) চিহ্ন এবং ডানদিকে যোগ (+) চিহ্ন থাকে। ডায়াল ইন্ডিকেটরের প্রধান অংশগুলো হলো—  
প্লাঞ্জার, ডায়াল, বেজেল, বেজেল ক্ল্যাম্প এবং প্লাঞ্জার স্টপ বা সেনসর বাটন।



চিত্র-৩.১: ডায়াল ইন্ডিকেটরের বিভিন্ন অংশ

ব্রিটিশ পদ্ধতিতে ডায়াল ইভিকেটরের ডায়ালের প্রতিটি ভাগ প্লাঞ্চারের  $0.001$  ইঞ্জিং চলাচল প্রকাশ করে। মেট্রিক পদ্ধতিতে ডায়ালের প্রত্যেকটি ভাগ প্লাঞ্চারের  $0.01$  মি.মি. চলাচল প্রকাশ করে। ইভিকেটরের ডায়াল ব্যালেল টাইপ (১) অথবা কন্টিনিউয়াস টাইপ (২) হয়ে থাকে।



চিত্র-৩.২৩ ব্যালেল টাইপ ডায়াল



চিত্র-৩.৩৪ কন্টিনিউয়াস টাইপ ডায়াল

ব্যালেল টাইপ ডায়ালে শূন্যের বাম অথবা ডান উভয় দিকে পরিমাপ পাঠ করা হয়। প্লাঞ্চারের ধান্তে চাপ পড়লে এটি বড়ির মধ্যে চুকে যাব এবং চাপ কমে গেলে বড়ি হতে বের হয়ে আসে।

প্লাঞ্চার বড়ির মধ্যে প্রবেশ করলে বড় পয়েন্টার (কঁটা) ডান পাকে ধোরে এবং প্লাঞ্চার বড়ি হতে বাইরে এলে বড় পয়েন্টার বাম পাকে ধোরে। ডায়ালের উপর প্রত্যেকটি বিভাগ ছারা নির্দেশিত মান ডায়াল ফেসে উল্লেখ করা থাকে ( $0.001$  ইঞ্জিং বা  $0.01$  মি.মি.)। সাধারণত ইভিকেটর পয়েন্টারের রেঞ্জ পাক হয়ে থাকে। বড় পয়েন্টার পূর্ণ একপাক স্থুরলে ছেট পয়েন্টারে তা নির্দেশিত হয়।

#### ডায়াল ইভিকেটর দ্বারা পরিমাপ পাঠকরণ :

- ১) সারফেস প্লেটের উপর শুয়ার্কপিস এবং ডায়াল ইভিকেটর স্ট্যাভসহ বসাও।
- ২) ডায়াল ইভিকেটরের প্লাঞ্চার সারফেস প্লেট স্পর্শ করা অবস্থায় পয়েন্টার '০' তে সেট কর।
- ৩) এখন ডায়াল ইভিকেটর স্ট্যাভের ক্ল্যাম্প টিলা করে উপরে আস্তে আস্তে এমনভাবে উঠাও যেন প্লাঞ্চার কার্যবস্তুর উপরের তলকে স্পর্শ করে।
- ৪) ছেট পয়েন্টার দ্বারা নির্দেশিত পরিমাপ জেনে নাও।
- ৫) বড় পয়েন্টার দ্বারা নির্দেশিত পরিমাপ জেনে নাও।
- ৬) দুই পয়েন্টারের পরিমাপ যোগ করে কার্যবস্তুর উচ্চতা বের কর।



চিত্র-৩.৪৫ ডায়াল ইভিকেটরের সাহায্যে পরিমাপ পদ্ধতি

### ৩.২ ডায়াল ইভিকেটরের সাহায্যে সারফেস রাফনেস নির্ণয় করার পদ্ধতি :

- ১) প্রথমে যে ওয়ার্কপিস বা বক্তুর তলের মসৃণতা বা সারফেস রাফনেস পরীক্ষা করা হবে সেটিকে একটি সমতল ওয়ার্কবেক্সের উপর রাখিত সারফেস প্লেটের উপর চিআনুয়ায়ী লম্বভাবে ক্লাম্প দিয়ে স্থাপন কর।
- ২) তারপর একটি ডায়াল ইভিকেটরকে ভালোভাবে পরিষ্কার করে স্ট্যান্ডের সাথে ক্লাম্পের সাহায্যে আটকাও।
- ৩) ডায়াল ইভিকেটরের স্ট্যান্ডসহ ম্যাগনেটিক বেইসকে সারফেস প্লেটের উপর স্থাপন কর।
- ৪) এখন ডায়াল ইভিকেটরের কন্ট্রাষ্ট পয়েন্টটিকে স্পর্শ করে কিছুটা চাপ প্রয়োগ কর যাতে করে ডায়ালের পয়েন্টের ‘০’ দাগ বরাবর থাকে এবং এমন অবস্থায় ক্লাম্প-কে টাইট দিয়ে নাও।
- ৫) এখন ডায়াল ইভিকেটরের বেইসটিকে আন্তে আন্তে সারফেস প্লেটের উপর এমনভাবে সরাতে থাক যাতে ওয়ার্কপিসের উপরিতলের সবদিকে কন্ট্রাষ্ট পয়েন্টটি চলাচল করে।
- ৬) ওয়ার্কপিসের তলের উপর দিয়ে ডায়াল ইভিকেটরের নড়াচড়ার সময় যদি ডায়ালের পয়েন্টটির একই অবস্থানে থাকে তবে বুঝতে হবে যে ওয়ার্কপিসের তলটি যথাযথ সমতল। কিন্তু যদি ডায়ালের পয়েন্টটির পজিশন বা নিগেটিভের দিকে সরে আসে তবে বুঝতে হবে যে, ওয়ার্কপিসের উপরিতল উচু নিচু আছে।



চিত্র-৩.৫: ডায়াল ইভিকেটরের সারফেস রাফনেস পরীক্ষাকরণ।

## অধ্যায়-৪

### ইনসাইড মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Inside Micrometer)

#### কাজের উদ্দেশ্য :

- (ক) ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশের ব্যবহার জানা।
- (খ) ইনসাইড মাইক্রোমিটারের যান্ত্রিক ক্রটি নিরূপণ।
- (গ) ইনসাইড মাইক্রোমিটারের ক্রুক নির্ণয়।
- (ঘ) ইনসাইড মাইক্রোমিটারের সাহায্যে কোন ছিদ্রের আভ্যন্তরীণ ব্যাস নির্ণয়।

#### ইনসাইড মাইক্রোমিটার :

যে মাইক্রোমিটার দ্বারা কোন কার্যবস্তু বা ওয়ার্কপিসের কোন ছিদ্রের গভীরতা, কোন ছিদ্রের গভীরতা ও পুরুত্ব, ফাঁপা সিলিন্ডারের আভ্যন্তরীণ ব্যাস ও গভীরতা সূচনাবে পরিমাপ করতে পারে তাকে ইনসাইড মাইক্রোমিটার বলে।



চিত্র-৪.১: ইনসাইড মাইক্রোমিটারের বিভিন্ন অংশ

#### ৪.১ ইনসাইড মাইক্রোমিটারের যান্ত্রিক ক্রটি নিরূপণ :

যান্ত্রিক ক্রটি নিরূপণের জন্য ব্যারেল ক্ষেলের শূন্য দাগ স্পিন্ডল ক্ষেলের শূন্য দাগের সাথে মিলানো অবস্থায় যদি ব্যারেল ও থিম্বলের প্রান্তস্থিত দুইটি মুখের দূরত্ব ২ ইঞ্চি বা ৫০ মি.মি. হয় তবে বুঝতে হবে এটির কোন

যান্ত্রিক ত্রুটি নাই। যদি ব্যারেল ও থিস্বলের প্রান্তের দূরত্ব ২ ইঞ্চিং বা ৫০ মিমি রাখার পর ব্যারেলের শূন্য দাগ যদি স্পিনডলের শূন্য দাগ হতে এগিয়ে থাকে তবে যান্ত্রিক ত্রুটি ঝণাত্বক হয় আবার ব্যারেলের শূন্য দাগ যদি স্পিনডলের শূন্য দাগ হতে পিছিয়ে থাকে তবে যান্ত্রিক ত্রুটি ধনাত্বক হয়।

ইনসাইড মাইক্রোমিটারের পাঠ = এক্সটেনশন রডের দৈর্ঘ্য + ব্যারেল ক্ষেলের পাঠ  $\times$  ব্যারেল ক্ষেলের অনুভূমিক রেখার সাথে মিলে যাওয়া থিস্বল ক্ষেলের দাগসংখ্যা  $\pm$  যান্ত্রিক ত্রুটি

#### ৪.২ ইনসাইড মাইক্রোমিটারের ভার্নিয়ার ধ্রুবক নির্ণয় :

মেট্রিক পদ্ধতিতে মাপ নেওয়ার জন্য ব্যবহৃত ইনসাইড মাইক্রোমিটারের প্রধান ক্ষেলে রেখিক দাগ ও দাগের মান উপর ও নিচে দুই দিকে থাকে। উপরের ও নিচের রেখিক ক্ষেলের মাঝে ব্যারেলের অক্ষ বরাবর একটি সরলরেখা বা দাগ থাকে। উপরের রেখিক ক্ষেলের ক্ষুদ্র এক ভাগের মান ১ মি.মি.। আবার নিচের ক্ষেলে উপরের প্রতি ঘরের মাঝে বরাবর দাগ কাটা থাকে যাতে করে উপরের প্রতি ঘরের দৈর্ঘ্যের অর্ধেক মাপ নেওয়া সহজ হয়।

ফলে রেখিক ক্ষেল হতে সর্বনিম্ন  $0.5$  মি.মি. মাপ নেওয়া যায়। বৃত্তাকার ক্ষেলের থিস্বলকে এক পাক ঘুরালে রেখিক দাগ বরাবর  $0.5$  মি.মি. অহসর হয় বা পিছিয়ে আসে। সুতরাং রেখিক ক্ষেলের  $0.5$  মি.মি. দূরত্ব বৃত্তাকার ক্ষেলের  $50$  ভাগের সমান।

$$\text{অতএব, বৃত্তাকার ক্ষেলের এক ভাগের মান} = \frac{0.5}{50} \text{ মি.মি.} \\ = 0.01 \text{ মি.মি.}$$

$$\therefore \text{ ইনসাইড মাইক্রোমিটার কনষ্ট্যান্ট } = 0.01 \text{ মি.মি.}$$

এখন লক্ষ কর যে,

$$\text{ভার্নিয়ার ক্ষেলের } 10 \text{ ভাগ} = \text{থিস্বল ক্ষেলের } 9 \text{ ভাগের সমান} = 9 \times 0.01 \text{ মি.মি.} = 0.09 \text{ মি.মি.}$$

$$\therefore \text{ ভার্নিয়ার ক্ষেলের } 1 \text{ ভাগ} = \text{ মি.মি.} = 0.009 \text{ মি.মি.}$$

$$\begin{aligned} \text{∴ ভার্নিয়ার ধ্রুবক} &= \text{থিস্বল ক্ষেলের } 1 \text{ ভাগ} - \text{ভার্নিয়ার ক্ষেলের } 1 \text{ ভাগ} \\ &= (0.01 - 0.009) \text{ মি.মি.} \\ &= 0.001 \text{ মি.মি.} \end{aligned}$$

$$\therefore \text{ ইনসাইড মাইক্রোমিটারের ভার্নিয়ার ধ্রুবক} = 0.001 \text{ মি.মি.}$$

#### ৪.৩ ইনসাইড মাইক্রোমিটার দ্বারা ছিদ্রের আভ্যন্তরীণ ব্যাস নির্ণয় :

ইনসাইড মাইক্রোমিটারের গঠন রীতি আউট সাইড মাইক্রোমিটারে চেয়ে একটু ভিন্ন ধরনের হয়ে থাকে। সাধারণত ইনসাইড মাইক্রোমিটারের একটি মূল বিডিসহ কতকগুলো বর্ধিত দণ্ড দ্বারা একটি সেট আকারে থাকে। এটি ক্রোম ইস্পাত দ্বারা তৈরি হয়ে থাকে। আউটসাইড মাইক্রোমিটারের মত থিস্বল ক্ষেল ও ব্যারেল ক্ষেল আছে।  $\frac{1}{2}$  ইঞ্চিং হেচের স্লিভের উপর  $20$  টি দাগ ও এক ইঞ্চিং মাথার ব্যারেলের উপর  $80$  টি দাগ কাটা থাকে। আভ্যন্তরীণ মাপ নেওয়ার জন্য এটির মাথায় দুইটি অ্যানভিল লাগানো থাকে। কোন বক্তুর মাপ অর্থাৎ দুইটি তলের অন্তবর্তী দূরত্ব মাপ গ্রহণ, পরীক্ষা ও নিরীক্ষা করতে ইনসাইড মাইক্রোমিটার ব্যবহৃত হয়।

পার্শ্বের চিত্রে দেখানো পদ্ধতিতে ইনসাইড মাইক্রোমিটার  
রিডিং দেখে মোট পাঠ বের কর।

ফলাফল :

$$\text{এক্সটেনশন রডের দৈর্ঘ্য} = 25.00 \text{ মি.মি.}$$

$$\text{প্রধান ক্ষেলের } 5 \text{ ভাগের মান} = 5 \times 1 = 5.00 \text{ মি.মি.}$$

$$\text{প্রধান ক্ষেলের ক্ষুদ্রতম } 3 \text{ ভাগ} = 3 \times 0.5 = 1.50 \text{ মি.মি.}$$

$$\text{বৃত্তীয় ক্ষেলের } 9 \text{ ভাগের মান} = 6 \times 0.01 = 0.06 \text{ মি.মি.}$$

$$\text{মোট পাঠ} = 31.56 \text{ মি.মি.}$$

$\therefore$  বিয়ারিং এর আভ্যন্তরীণ ব্যাস =  $31.56 \pm$  যান্ত্রিক ত্রুটি

ইনসাইড ভার্নিয়ার মাইক্রোমিটার দিয়ে পাঠ নেওয়ার সময় থিম্বলের বিভেদ প্রাপ্ত ব্যারেল ক্ষেলের কত দাগ  
অতিক্রম করেছে। অতিক্রম দাগের মাপ নির্ণয় করে এর সাথে সার্কুলার ক্ষেলের যে দাগ ডেটাম লাইনের সাথে  
মিলেছে অর্থাৎ প্রায় একই সরলরেখায় এসেছে সেই দাগ সংখ্যাকে মাইক্রোমিটার কনস্ট্যান্ট দিয়ে গুণ করে  
গুণফলকে যোগ করতে হবে। তারপর ভার্নিয়ার ক্ষেলের যে লাইনটি থিম্বলের একটি লাইনের সাথে মিলে  
গিয়েছে সেটি লিখে রাখ। এবং এই দাগ সংখ্যাকে  $0.001$  দিয়ে গুণ করে গুণফলকে পূর্বের যোগফলের সাথে  
যোগ কর। সর্বমোট যোগফলই হবে নির্ণয় পরিমাপ।



### অধ্যায়-৫

## কমিনেশন সেট ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Combination Set)

### উদ্দেশ্য :

- (১) কমিনেশন সেটের বিভিন্ন অংশের ব্যবহার শেখা।
- (২) কার্যবস্তুর উপর লে-আউট করণ।
- (৩) কমিনেশন সেটের সাহায্যে সিলিন্ড্রিক্যাল বস্তুর কেন্দ্র নির্ণয় করা।

### যত্নপাতি নির্বাচন :

- (১) সারফেস প্রেট
- (২) ক্লাইবার
- (৩) ডট পাঞ্জ
- (৪) মেশিনিস্ট হ্যামার
- (৫) কমিনেশন সেট

### ৫.১ কমিনেশন সেট এর সাহায্যে কার্যবস্তুর উপর লে-আউট করণ :

- ১) ওয়ার্কপিসের উপর চক পেলিল বা মার্কিং কালার এর প্রলেপ দাও।



চিত্র-৫.১ঃ জবের উপর মার্কিং কালারের প্রলেপ দেওয়া।

- ২) চিঠানুযায়ী সারফেস প্রেটের উপর কমিনেশন কয়ার ও সারফেস গেজ বসিয়ে কার্যবস্তুর মাপ অনুযায়ী সারফেস গেজের ক্লাইবার সেট কর।



চিত্র-৫.২ঃ কমিনেশন সেট দিয়ে ক্লাইবার নির্দিষ্ট মাপে সেট করণ।

৩) কথিনেশন সেট এর ছাইবারের সাহায্যে ওয়ার্কিংপিসের ভলের সোজা কিনারার সাথে সমকোণে  
প্রয়োজনীয় দাগ দাও।



চিত্র-৫.৩: জবের উপর ছাইবার দিয়ে মার্কিং করণ।

৪) দাগ বরাবর ডট পাখের সাহায্যে কিছু দূর পর পর পাখিং করে চিহ্নিত কর।



চিত্র-৫.৪: জবের উপর সেন্টার পাখ দিয়ে মার্কিং করণ।

## ৫.২ কথিনেশন সেটের সাহায্যে সিলিঙ্ক্রিক্যাল বন্তর কেন্দ্র নির্ণয় :

- (১) একটি শ্যাফট লও।
- (২) শ্যাফটি লেদে কেসিং কর।
- (৩) মেসিং করা শ্যাফটের মুখে চক দিয়ে প্রলেপ দাও বা মার্কিং কালারের প্রলেপ দাও।
- (৪) কথিনেশন সেটের ক্ষয়ার হেডটিকে চিত্রানুযায়ী দৃঢ় ভাবে ধর এবং ব্যাস বরাবর দাগ দাও।



চিত্র-৫.৫: কথিনেশন সেটের সাহায্যে সিলিঙ্ক্রিক্যাল বন্তর কেন্দ্র নির্ণয়।

- (৫) আবার একই পদ্ধতিতে পূর্বের দাগের সমকোণে শ্যাফটের প্রস্তুতে বরাবর আরও একটি  
দাগ দাও।
- (৬) সমকোণে অঙ্কিত দাগ দুইটির প্রস্তুত ছেদ করা বিস্তৃতি নির্ণয় কেন্দ্র।

### অধ্যায়-৬

## ডেপথ মাইক্রোমিটার ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Depth Micrometer)

### উদ্দেশ্য :

- (১) ডেপথ মাইক্রোমিটারের বিভিন্ন অংশের ব্যবহার শেখা।
- (২) কার্যবস্তুর উপর লে-আউট করণ।
- (৩) ডেপথ মাইক্রোমিটারের সাহায্যে কোন ঘনাংশের বা জবের ছিদ্রের গভীরতা নির্ণয় করা।

### যত্নপাতি নির্বাচন :

- (১) ওয়ার্কিং টেবিল
- (২) সারফেস প্লেট
- (৩) ওয়ার্কপিস বা জব
- (৪) ডেপথ মাইক্রোমিটার
- (৫) ওয়েস্ট কটন



চিত্র-৬.১: ডেপথ মাইক্রোমিটার

### ৬.১ ডেপথ মাইক্রোমিটারের যান্ত্রিক ক্রটি নিরূপণ :

- (১) প্রথমে প্রয়োজনীয় যত্নপাতিসমূহ সংগ্রহ করে একটি পরিষ্কার ওয়ার্কিং টেবিলের ওপর রাখ।
- (২) ডেপথ মাইক্রোমিটারটিকে ওয়েস্ট কটন দ্বারা পরিষ্কার কর।
- (৩) সারফেস প্লেটের উপর ডেপথ মাইক্রোমিটার এমনভাবে স্থাপন কর যেন স্টক এবং স্পিন্ডল ফেস একই সমতলে থেকে সারফেস প্লেটকে স্পর্শ করে।
- (৪) এমতাবস্থায় থিম্বল ক্ষেলের শূন্য দাগ ও প্রধান (স্লিভ/ব্যারেল) ক্ষেলের শূন্য দাগ যদি মিলে যায়, তবে বুঝতে হবে যে কোন যান্ত্রিক ক্রটি নাই।
- (৫) যদি থিম্বল ক্ষেলের শূন্য দাগ ও প্রধান (স্লিভ/ব্যারেল) ক্ষেলের শূন্য দাগের চেয়ে এগিয়ে থাকে তবে যান্ত্রিক ক্রটি +ve (পজিটিভ) হবে। এ ক্ষেত্রে নির্ভুল পরিমাপ পেতে হলে ডেপথ মাইক্রোমিটারের পাঠ হতে ঐ ভুল পরিমাপ বিয়োগ করে নাও।

(৬) অন্দি বিল কেলের শূন্ত সাথ ও অধান (চিপ) কেলের শূন্ত সাথ থেকে পিহিয়ে থাকে তবে  
যান্ত্রিক জটি -৭৮ (নেগেটিভ) হবে। একেরে নির্মূল পরিমাপ পেতে হলে অহিজোমিটারের  
যাপের সাথে এই তুল পরিমাপ বেল করে সাধ।

(৭) সূক্ষ্মাং কেপথ অহিজোমিটারের অনুভূত পাঠ হবে = আপাত পাঠ ± যান্ত্রিক জটি

#### ৬.২ কেপথ অহিজোমিটারের অর্নিয়ার ক্রমক নির্ণয়।

অধান কেলের বা ব্যাকেল কেলের ক্ষুদ্রতম ১ ভাগের মান = ০.৫ মি.মি.

বিল কেলের মৌট ভাল সংখ্যা = ৫০

বিল এক পাক সূচালো ব্যাকেল অর্নিয়ার হর = ০.৯ মি.মি.

অর্নিয়ার পিচ = ০.৫ মি.মি.

অতএব, অহিজোমিটার কলনট্যাক্ট = প্রেরণ পিচ ÷ বিল কেলের মৌট ভাল সংখ্যা

$$= \frac{0.5}{50} = 0.01 \text{ মি.মি.}$$

অর্নিয়ার কেলের ১০ অংশ = বিল কেলের ১ ভাগ

অর্নিয়ার কেলের ১ ভাগ = বিল কেলের অংশ = ০.৯ অংশ = ০.৯ × ০.০১ = ০.০০৯ মি.মি.

অর্নিয়ার ক্রমক = বিল কেলের ১ ভাগের মাল - অর্নিয়ার কেলের ১ ভাগের মাল

$$= (0.01 - 0.009) \text{ মি.মি.}$$

$$= 0.001 \text{ মি.মি.}$$

#### ৬.৩ কেপথ অহিজোমিটার দ্বারা হিন্দুর পজীবজ পরিমাপ করণ :

- ১) অজার্বিসিস্টিক সারকেস প্রেটের উপর সাত।
- ২) পার্শ্বের চিঙের যত করে কেপথ অহিজোমিটারের  
পিপডল ও স্টক প্রয়াকপিসের মধ্যে ছাপন কর।
- ৩) অধন ব্যাকেল কেলের পাঠ সাত।
- ৪) বিল কেলের পাঠ সাত।
- ৫) অর্নিয়ার কেলের পাঠ সাত।



চিত্র-৬.২। কেপথ অহিজোমিটার অজার্বিসিসের মধ্যে ছাপন কৌশল



চিত্র-৬.৩ঃ ডেপথ মাইক্রোমিটার দিয়ে জবের গভীরতার মাপ নেওয়ার কৌশল



চিত্র-৬.৪ঃ ডেপথ মাইক্রোমিটার দিয়ে পাঠ গ্রহণ প্রক্রিয়া

ফলাফল : ওয়ার্কপিসের প্রকৃত গভীরতা = ব্যারেল স্কেল পাঠ + থিম্বল স্কেল পাঠ  $\times$  মাইক্রোমিটার ধ্রুবক +  
থিম্বল স্কেলের যে কোন দাগের সবচেয়ে কাছাকাছি ভার্নিয়ার স্কেলের দাগ সংখ্যা  $\times$  ভার্নিয়ার ধ্রুবক  $\pm$  যান্ত্রিক ত্রুটি

### অধ্যায়-৭

## ভার্নিয়ার বিভেল প্রেট্র্যাস্টের ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Vernier Bevel Protractor)

### উদ্দেশ্য :

- (১) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের বিভিন্ন অংশের ব্যবহার শেখা।
- (২) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের কনস্ট্যান্ট বা প্রমুক নির্ণয় করা।
- (৩) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের সাহায্যে টেপার বক্তুর টেপার নির্ণয় করা।
- (৪) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের সাহায্যে ঢালু তলের ঢাল নির্ণয় করা।
- (৫) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের সাহায্যে নির্দিষ্ট কোণ পরিমাপ করতে পারা।

### বন্ধগাতি নির্বাচন :

- (১) ওয়ার্কিং টেবিল
- (২) সারফেস প্লেট
- (৩) টেপার করা ওয়ার্কপিস বা জব
- (৪) ঢালু ওয়ার্কপিস বা জব
- (৫) ভার্নিয়ার বিভেল প্রেট্র্যাস্টের
- (৬) ওয়েস্ট কটন

### ভার্নিয়ার বিভেল প্রেট্র্যাস্টের বিভিন্ন অংশগুলো হলো :

A = বেস/স্টক (Base/stock)  
B = ডায়াল (Dial)  
C = ডিস্ক (Disk)  
D = ভার্নিয়ার স্কেল (Vernier scale)  
E = ব্লেড (Blade)  
F = ক্লাম্পিং নাট (Clamping nut)  
G = ক্লাম্পিং স্ক্রু (Clamping screw)



চিত্র-১৩.১: ভার্নিয়ার বিভেল প্রেট্র্যাস্টের বিভিন্ন অংশ

### ভার্নিয়ার বিভেল প্রেট্র্যাস্টের প্রমুক নির্ণয় :

- ক) ভার্নিয়ার বিভেল প্রেট্র্যাস্টেরটি ওয়েস্ট কটন দিয়ে ভালোভাবে পরিষ্কার কর।
- খ) লক কর যে প্রেট্র্যাস্টেরটির সমস্ত ফেস ডিগ্রিতে দাগাক্ষিত।
- গ) ডায়ালটি ১৮০ ডিগ্রির দুইটি চাপে বিভক্ত যা শূন্য লাইনের বাম ও ডানে উভয় দিকে  $90^{\circ}$  করে দাগাক্ষিত। অতি ক্ষুদ্রতম ১ ভাগ  $1^{\circ}$  এর সমান।

ঘ) ভার্নিয়ার ক্ষেলের শূন্য লাইনের উভয়দিকে ১২ ভাগে বিভক্ত।  
 ঙ) ভার্নিয়ার ক্ষেলের ১২ ভাগ প্রধান ক্ষেলের ২৩টি ক্ষুদ্র ভাগের স্থান দখল করে।  
 চ) ভার্নিয়ার ক্ষেলের প্রত্যেক ভাগ =  $\frac{23 \times 60}{12} = 115'$  (মিনিট)  
 ছ) প্রধান ক্ষেলের  $2^{\circ} = 120'$  (মিনিট)  
 জ) প্রধান ক্ষেলের প্রত্যেক  $2^{\circ}$  এবং ভার্নিয়ার ক্ষেলের ১ ভাগের মধ্যে পার্থক্য হলো  $= 120' - 115' = 5'$  (মিনিট)। এটিই হলো ভার্নিয়ার বিভেদ প্রেট্র্যাক্টরের কনস্ট্যান্ট বা ধ্রুবক।

### ৭.১ ভার্নিয়ার বিভেদ প্রেট্র্যাক্টরের সাহায্যে টেপার বক্তুর টেপার নির্ণয় :

ক) টেপার বক্তুটি ভার্নিয়ার বিভেদ প্রেট্র্যাক্টরের বেসের সাথে সেট কর।  
 খ) প্রধান ক্ষেলের পাঠ লও। যদি ভার্নিয়ার ক্ষেলের শূন্য প্রধান ক্ষেলের শূন্যের বামদিকে অগ্রসর হয় তবে উভয় ক্ষেলের শূন্যের বামদিকের পরিমাপের পাঠ লও।  
 গ) যদি ভার্নিয়ার ক্ষেলের শূন্য প্রধান ক্ষেলের শূন্যের ডানদিকে অগ্রসর হয় তবে উভয় ক্ষেলের শূন্যের ডানদিকের পরিমাপের পাঠ লও।  
 ঘ) ভার্নিয়ার ক্ষেলের পাঠ লও। ভার্নিয়ার ক্ষেলের উপর একটি লাইন লক্ষ কর যাতে প্রধান ক্ষেলের একটি লাইনের সাথে মিলিত হয় এবং এই মিলিত দাগ সংখ্যাকে ৫' (মিনিট) দ্বারা গুণ কর।  
 ঙ) পরিশেষে সকল পাঠ যোগ কর।

### ৭.২ ভার্নিয়ার বিভেদ প্রেট্র্যাক্টরের সাহায্যে ঢালু তলের ঢাল নির্ণয় :

ক) ঢালু বক্তুটি ভার্নিয়ার বিভেদ প্রেট্র্যাক্টরের বেসের সাথে সেট কর।  
 খ) প্রধান ক্ষেলের পাঠ লও। যদি ভার্নিয়ার ক্ষেলের শূন্য প্রধান ক্ষেলের শূন্যের বামদিকে অগ্রসর হয় তবে উভয় ক্ষেলের শূন্যের বামদিকের পরিমাপের পাঠ লও।  
 গ) যদি ভার্নিয়ার ক্ষেলের শূন্য প্রধান ক্ষেলের শূন্যের ডানদিকে অগ্রসর হয় তবে উভয় ক্ষেলের শূন্যের ডানদিকের পরিমাপের পাঠ লও।  
 ঘ) ভার্নিয়ার ক্ষেলের পাঠ লও। ভার্নিয়ার ক্ষেলের উপর একটি লাইন লক্ষ কর যাতে প্রধান ক্ষেলের একটি লাইনের সাথে মিলিত হয় এবং এই মিলিত দাগ সংখ্যাকে ৫' (মিনিট) দ্বারা গুণ কর।  
 ঙ) পরিশেষে সকল পাঠ যোগ কর।



চিত্র-১৩.২ঃ প্রেট্র্যাক্টরের পাঠ



চিত্র-১৩.৩ঃ প্রেট্র্যাক্টরের পাঠ

### ৭.৩ ভার্নিয়ার বিভেল প্রেট্র্যাস্টেরের সাহায্যে কোণ পরিমাপ করণ :

- যে বক্তুর কোণ মাপতে হবে সেটিকে প্রথমে ভার্নিয়ার বিভেল প্রেট্র্যাস্টেরের সাথে ক্ল্যাম্প নাটকে টিলা করে ডানদিকে বা বামদিকে ঘুরিয়ে এমনভাবে স্থাপন কর ।
- লক্ষ কর যে, ভার্নিয়ারের '০' চিহ্নিত রেখাটি ডায়ালের  $90^{\circ}$  রেখাটির বামদিকে অথবা ডানদিকে কত সংখ্যক পূর্ণ ডিগ্রির দাগ অতিক্রম করেছে ।
- তারপর লক্ষ কর যে, ভার্নিয়ারের কত সংখ্যক রেখার সাথে ডায়ালের প্রধান ক্ষেত্রের যে কোণ দাগ মিলে গিয়েছে বা সবচেয়ে কাছাকাছি আছে ।
- এই মিলিত দাগ সংখ্যাকে  $5'$  (মিনিট) দ্বারা গুণ কর ।
- পরিশেষে সকল পাঠ যোগ কর ।



চিত্র-১৩.৪: ভার্নিয়ার বিভেল প্রেট্র্যাস্টেরের পাঠ

## অধ্যায়-৮

### গিয়ার টুথ ভার্নিয়ার ব্যবহারে দক্ষতা অর্জন (Develope Skill to use Gear Tooth Vernier)

৮.১ গিয়ার টুথ ভার্নিয়ারের সাহায্যে বিভিন্ন নথেনক্লেচার পরিমাপকরণ :

**উদ্দেশ্য (Aim) :**

গিয়ার টুথ ভার্নিয়ার ক্যালিপার ব্যবহার করে গিয়ার টুথের কর্ডাল থিকনেস (Chordal Thickness) পরিমাপ করণ।

**তত্ত্ব (Theory) :**

ইহা ছারা গিয়ারের দাঁতের বিভিন্ন অংশকে সূক্ষ্মভাবে মাপ নিতে সহায়তা করে বলে এর নাম ‘গিয়ার টুথ ভার্নিয়ার ক্যালিপার’। এতে সাধারণ ভার্নিয়ারের ন্যায় বিভাগ করা দুইটি মূলক্লেশ এক সমাকোণে একই ধাতুর ছারা তৈরি হয় এবং উভয় মূলক্লেশেই ভার্নিয়ার ক্ষেল যুক্ত থেকে যাতায়াত করে। ইহা ছাড়া, সাধারণ ভার্নিয়ার ক্যালিপারে যে রূপ মাপ নেওয়া যায় ইহাকেও ঠিক একইভাবে মাপ নেওয়া যায়। ইহার একদিকে মূল ক্লেশের সাথে দুইটি ‘জ’ খেকে গীয়ারের দাঁতের বাহিরের মাপ নিতে ব্যবহার হয় ও অন্য মূলক্লেশের স্লাইডিং ‘জ’ এর পরিবর্তে একটি পাতলা ধাতু খণ্ড ‘জ’ ক্লেশে ব্যবহৃত হয়ে গিয়ারের দাঁতের উচ্চতা নির্ণয় করে।



চিত্র-৮.১: গিয়ার টুথ ভার্নিয়ার ক্যালিপারের সাহায্যে স্পার গিয়ারের কর্ডাল থিকনেস পরিমাপ-এর জ্যামিতিক বর্ণনা।

যদি ‘ $m$ ’ গিয়ারের মডিউল প্রকাশ করে,

তবে, Addendum = One module =  $m$

অতএব,  $m = \text{Pitch circle diameter}/T = 2.(OB/T)$

$$OB = m.(T/2)$$

যেখানে,  $m$  = module

$$T = \text{No. of tooth.}$$

$$\begin{aligned}
 \text{Addendum radius (OC)} &= OB + \text{Addendum} \\
 &= OB + \text{One module} \\
 &= m \cdot T/2 + m \\
 &= m \cdot (T/2 + 1)
 \end{aligned}$$

ଯଡ଼ିଓଲେର ଯାନ ଥି.ଥି. ଏ ସ୍ଟାର୍‌ଫାର୍ମ ସିଲିଙ୍ଗ (୦.୫,୧,୧.୨୫,୧.୫,୨.୫,୩,୩.୫,୪.୫) ଥେବେ ଯିଣିଯେ କାହାକାହିଁ ଯଡ଼ିଓଲ ନିର୍ଧାରଣ କରା ହୁଏ ।

গিয়ারের কেন্দ্রে অর্ধেক দাঁত ঘৰা উৎপন্ন কোণ,  $\angle AOB = 360/4T = 90/T$

সতর্কাৎ W এম্ব ভাস্তিক মান = 2AB

$$= 2OB \sin\angle AOB$$

$$= 2' 1/2 \cdot m \cdot T \cdot \sin(90^\circ/T)$$

$$= m \cdot T \cdot \sin 90^\circ / T \quad \dots \dots \dots \quad (1)$$

টাঙ সেটিং (Tongue setting),  $h = OC - OA$

$$= (m \cdot T/2 + m) - \frac{1}{2} \cdot m \cdot T \cdot \cos(90/T) \\ = m[1 + T/2 \{1 - \cos(90/T)\}] \quad \dots \dots \dots (2)$$

## यद्यपाति निर्वाचन ३

- (১) ওয়ার্কিং টেবিল
- (২) সারফেস প্লেট
- (৩) স্পার গিয়ার (ওয়ার্কপিস)
- (৪) গিয়ার টুথ ভার্নিয়ার ক্যালিপার
- (৫) ওয়েস্ট কটন



চিত্র-৮.২৪ শিয়ার টেখ ভার্নিয়ার ক্যালিপারের সাহায্যে স্পার শিয়ারের কর্ডল থিকনেস পরিমাপ করুণ।

## **कार्जेर धारावाहिक विवरण (Procedure) :**

১. সমীকরণ (২) হতে টাঁ<sup>ৰ</sup> সেটিং (য) হিসাব করে বের কর।
২. গিয়ার টুথ ভার্নিয়ারের টাঁ<sup>ৰ</sup> (tongue) টি সমীকরণ (২) হতে থাণ্ড টাঁ<sup>ৰ</sup> সেটিং (য) অনুযায়ী সেট কর।

৩. গিয়ার টুথের শীর্ষে টাং (tongue) টি স্থাপন কর।
৪. গিয়ার টুথ ভার্নিয়ার ক্যালিপার ব্যবহার করে অধান ক্ষেলের পাঠ দেখে কর্ডাল থিকনেস (W) এর পাঠ লও।
৫. একই ভাবে কমপক্ষে আরও দুইটি পাঠ লও।
৬. উপরের সমীকরণ (১) ব্যবহার করে তাত্ত্বিক কর্ডাল থিকনেস (W)th বের কর।
৭. নিম্নের ছকটি পুরণ কর।

### পর্যবেক্ষণ (OBSERVATION) :

| পাঠসংখ্যা<br>(Readings) | গিয়ারের ব্যাস<br>(Dia of gear) | W     |       | (W)max | (W)min | (W)mean |
|-------------------------|---------------------------------|-------|-------|--------|--------|---------|
|                         |                                 | (W)th | (W)pr |        |        |         |
| ১                       |                                 |       |       |        |        |         |
| ২                       |                                 |       |       |        |        |         |
| ৩                       |                                 |       |       |        |        |         |

উপরের ছক হতে স্পার গিয়ারটির গড় কর্ডাল থিকনেস (W)mean পাওয়া যাবে।

## অধ্যায়-৯

# ওয়্যার গেজ ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Wire Gauge)

### উদ্দেশ্য :

- (১) ওয়্যার গেজ এর সাহায্যে তারের ব্যাসার্ধ পরিমাপ করা।
- (২) ওয়্যার গেজ এর সাহায্যে পাতের পুরুত্ব পরিমাপ করা।
- (৩) ওয়্যার গেজ এর সাহায্যে ক্লিয়ারেন্স পরিমাপ করা।

### যত্নপাতি নির্বাচন :

- (১) ওয়ার্কিং টেবিল
- (২) সারফেস প্লেট
- (৩) ওয়্যার গেজ
- (৪) তারের স্পেসিমেন বা পরীক্ষণীয় তার
- (৫) পাতলা শিটের স্পেসিমেন বা পরীক্ষণীয় শিট
- (৬) ক্লিয়ারেন্স পরিমাপযোগ্য মেইল ও ফিমেইল ওয়াকপিস
- (৭) ভি-ব্লক
- (৮) ওয়েস্ট কটন।



চিত্র-৯.১: ওয়্যার গেজ



চিত্র-৯.২: ওয়্যার স্পেসিমেন

### ৯.১ ওয়্যার গেজের সাহায্যে তারের ব্যাসার্ধ পরিমাপকরণ :

- (১) ওয়ার্কিং টেবিল, সারফেস প্লেট ও ওয়্যার গেজ ওয়েস্ট কটন দিয়ে পরিষ্কার কর।
- (২) পরীক্ষণীয় তার ভালোভাবে পরিষ্কার কর।
- (৩) পরীক্ষণীয় তার সোজা করে ধরে ওয়্যার গেজের সম্মত সাইজের ছিদ্রের মধ্যে প্রবেশ করাও।

(৪) অধিক (৩) এর কাজটি কমপক্ষে তিনবার বিভিন্ন ছিদ্রের মধ্যে প্রবেশ করিয়ে দেখ বে কোন ছিদ্রটি দিয়ে খুব টাইট ও না আবার খুব চিল্লা ও না এমন অবস্থার আসা যাওয়া করতে পারে।



চিআ-৯.৩৩ খয়ার গেজ-এর ছিদ্রের মধ্যে সঠিকভাবে তার প্রবেশ করানো।

(৫) উপরের চিত্রের ঠিক চিহ্নিত ছিদ্রের নম্বর দেখে স্ট্যান্ডার্ড খয়ার গেজ চার্ট থেকে সংশ্লিষ্ট গেজ নম্বর এবং জন্য ব্যাল পাওয়া যাবে।  
 (৬) উক্ত ব্যাসের অর্দেকই পরীক্ষীয় তারের ব্যাসার্ধ।

#### ৯.২ খয়ার গেজের সাহায্যে পাতলা শিটের পুরুষ পরিমাপকরণ :

(১) ওয়ার্কিং টেবিল, সারফেস প্লেট ও খয়ার গেজ উয়েস্ট কটন দিয়ে পরিষ্কার কর।  
 (২) পরীক্ষীয় শিট ভালোভাবে পরিষ্কার কর।  
 (৩) পরীক্ষীয় শিট সোজা করে থেরে খয়ার গেজের সঙ্গাব্য সাইজের ছিদ্রের মধ্যে প্রবেশ করাও।



চিআ-৯.৪১ খয়ার গেজ-এর ছিদ্রের মধ্যে সঠিকভাবে পাতলা শিট প্রবেশ করানো।

(৪) অধিক (৩) এর কাজটি কমপক্ষে তিনবার বিভিন্ন ছিদ্রের মধ্যে প্রবেশ করিয়ে দেখ বে কোন ছিদ্রটি দিয়ে খুব টাইট ও না আবার খুব চিল্লা ও না এমন অবস্থার আসা যাওয়া করতে পারে।  
 (৫) ছিদ্রটির পাশের সেখা দেখে শিটের গেজ নম্বর পাওয়া যাবে।  
 (৬) উক্ত গেজ নম্বর অনুসারী শিটের পুরুষ স্ট্যান্ডার্ড গেজ টেবিল থেকে নির্ধারণ কর।

### ୧.୩ ଓଦ୍ୟାର ପୋଜେର ଶାହୁଦେହ କ୍ରିମାର୍ଗ ପରିମାଣକରଣ :

- (୧) ଉତ୍ତାରିଂ ଟେବିଲ, ସାରଫେଲ ପ୍ଲେଟ ଓ ଓଦ୍ୟାର ପେଜ ପ୍ରେସ୍ କଟନ ଦିରେ ପରିଷାର କର ।
- (୨) ପ୍ରୀକ୍ଷଣୀୟ ମେଇଲ ଓ କିମେଇଲ ପାର୍ଟରର ଭାଲୋଭାବେ ପରିଷାର କର ।
- (୩) ଟି-ବ୍ରକେର ଟୁପର ଅଧିମେ କିମେଇଲ ପାର୍ଟ ଛାପନ କର ।
- (୪) କିମେଇଲ ପାର୍ଟର ଡିଜର ମେଇଲ ପାର୍ଟ ସେଟ କର ।
- (୫) କିମେଇଲ ପାର୍ଟ ଓ ମେଇଲ ପାର୍ଟର ମାଝେ ଯେ କୌକା ଛାନ ରହେଇ ଦେଖାନେ ଏକଟି ଓଦ୍ୟାର ଅବେଳ କରାଓ ଯାକେ ଓଦ୍ୟାରଟି ଖୁବ ଟାଇଟ୍‌ଏ ମା ଆବାର ଖୁବ କ୍ରିମାଓ ମା ହୁଏ ।
- (୬) ଉଚ୍ଚ ଓଦ୍ୟାରଟି ଆବାର ଓଦ୍ୟାର ପୋଜେର ଶାହୁଦେହ କ୍ରିମାର୍ଗ ମଧ୍ୟେ ଅବେଳ କରାଓ ।
- (୭) ସତିକ ଓଦ୍ୟାର ପୋଜ ସାଇଜ ମିର୍ଦ୍ଦାରି କର ।
- (୮) ସ୍ଟେଙ୍କାର୍ଡ ଓଦ୍ୟାର ପେଜ ଟେବିଲ ହତେ ପୋଜ ମଧ୍ୟ ଅନୁଵାଦୀ ବ୍ୟାସ ମିର୍ଦ୍ଦାରି କର ।
- (୯) ଉଚ୍ଚ ବ୍ୟାସରେ ଅକ୍ଷାଂଖୀରେ ଅନୁବାଦ କର ।
- (୧୦) ଅକ୍ଷାଂଖୀରେ ଏଇ ଅର୍ଥକ ଛାନେଇ ନିର୍ଣ୍ଣୟ କ୍ରିମାର୍ଗ ।



ଚିୟ-୧.୩: କ୍ରିମାର୍ଗ ନିର୍ଣ୍ଣୟ ।

$$\text{କ୍ରିମାର୍ଗ} = \text{ଅକ୍ଷାଂଖୀରେ} \div 2$$

## অধ্যায়-১০

### সাইন বার ব্যবহারে দক্ষতা অর্জন (Develop Skill to use Sine Bar)

উদ্দেশ্য :

- (১) সাইন বার ব্যবহার করে টেপার কোণ নির্ণয় করা।
- (২) সাইন বার ব্যবহার করে ঢালু তলের ঢাল নির্ণয় করা।

**সাইন বার (Sine Bar)** - সাইন বার হলো মজবুত এবং অধিক মাঝায় ফিলিপ ক্রেমিয়াম স্টিলের তৈরি একটি বার বা দণ্ড, যা উভয় পাত্রে দুইটি সিলিন্ড্রিক্যাল রোলারের উপর ভর করে থাকে। রোলারসহের কেন্দ্র দূরত্ব প্রিচ্ছিপ পদ্ধতিতে ৫" বা ১০" হয়ে থাকে এবং মেট্রিক পদ্ধতিতে উহা ১০০ মি.মি. বা ২৫০ মি.মি. হয়ে থাকে। রোলারসহের কেন্দ্র দূরত্ব দ্বারা সাইন বারের সাইজ প্রকাশ করা হয়। সাইন বারের তল রোলারের তলের সাথে সমান্তরাল এবং এর তলের সূচকতা ১ ইঞ্চির মিলিয়ন ভাগের ৫০ ভাগ।



চিত্র-১০.১: সাইন বার

**স্লিপ গেজ (Slip Gauge) শনাক্তকরণ :**

স্লিপ গেজের অপর নাম প্রিসিশন গেজ ব্লক বা গেজ ব্লক। নির্মাতা কোম্পানীর নামানুসারেও এদের নামকরণ করা হয়। বেমন- ওয়েবার ব্লক বা জোহানশন ব্লক। গেজ ব্লক টুল স্টিলের তৈরি এবং এদের সূচকতা ১ ইঞ্চির মিলিয়ন ভাগের ২ ভাগ।



চিত্র-১০.২: গেজ ব্লক

**বন্ধগাতি নির্বাচন :**

- (১) ওয়ার্কিং টেবিল।
- (২) সারফেস প্লেট।
- (৩) টেপার কোণ পরিমাপের জন্য কার্যবস্তু

- (৪) ঢালু তলের ঢাল পরীক্ষণের জন্য ঢালু তল বিশিষ্ট কার্যবস্তু।
- (৫) সাইন বার।
- (৬) প্রিপ গেজ।
- (৭) ওয়েস্ট কটন।
- (৮) ডায়াল ইডিকেটর।
- (৯) অ্যালেল প্লেট।

#### ১০.১ সাইন বার ব্যবহার করে টেপার কোথ নির্ণয় :

- ক) উপরে উচ্চারিত সকল ব্যাপাতি ওয়েস্ট কটন দিয়ে আলোভাবে পরিষ্কার কর।
- খ) সারফেস প্রেটের উপর সাইন বার রাখ।
- গ) সাইন বারের উপর টেপার ব্যুটি ক্ল্যাম্প দিয়ে আটকাও।
- ঘ) চিয়ানুবায়ী সাইনবারের ডানদিকের রোলারের নিচে প্রোজেক্ট সংখ্যক প্রিপ গেজ বসাও যাতে টেপার ব্যুটির উপরিভাল সারফেস প্রেটের সমান্তরাল হয়।
- ঙ) টেপার ব্যুটির উপরিভালের সমান্তরালতা পরীক্ষা করার জন্য চিয়ানুবায়ী ডায়াল ইডিকেটর ব্যবহার কর।



চিত্র-১০.৩৪ সাইন বারের সাহায্যে টেপার কোথ নির্ণয়।

#### ১০.২ সাইন বার ব্যবহার করে ঢালু তলের ঢাল নির্ণয় :

- ক) উপরে উচ্চারিত সকল ব্যাপাতি ওয়েস্ট কটন দিয়ে আলোভাবে পরিষ্কার কর।
- খ) সারফেস প্রেটের উপর সাইন বার রাখ।
- গ) সাইন বারের উপর ঢালু ব্যুটি ক্ল্যাম্প দিয়ে আটকাও।
- ঘ) চিয়ানুবায়ী সাইনবারের ডানদিকের রোলারের নিচে প্রোজেক্ট সংখ্যক প্রিপ গেজ বসাও যাতে ঢালু ব্যুটির উপরিভাল সারফেস প্রেটের সমান্তরাল হয়।

৬) ঢালু বস্তুটির উপরিতলের সমানতালতা পরীক্ষা করার জন্য চিঙ্গানুযায়ী ডালাল ইভিকেটের ব্যবহার কর।



চিত্র-১০.৪: সাইন বারের সাহায্যে ঢাল নির্ণয়।

#### গাণিতিক হিসাব :



$I$  = distance between centres of ground cylinders (typically  $5''$  or  $10''$ )  
 $h$  = height of the gauge blocks  
 $\theta$  = the angle of the plate

$$\theta = \sin^{-1} \left( \frac{h}{I} \right)$$

স্লিপ গেজের হাইট  $h$  ও সাইন বারের দৈর্ঘ্য  $I$  জানার পর উপরোক্ত সূত্রের সাহায্যে টেপার কোণ ও ঢাল বের কর।

## অধ্যায়-১১

# কাটিং টুল নির্বাচন ও ব্যবহারে দক্ষতা অর্জন (Develop Skill to select and use Cutting Tools)

উদ্দেশ্য :

- (১) বিভিন্ন ধাতুর জন্য উপযুক্ত কাটিং টুল নির্বাচন করতে পারা।
- (২) মিলিং মেশিনে কাটার ফিট করতে পারা।
- (৩) পাওয়ার 'স' মেশিনে ব্লেড ফিট করতে পারা।
- (৪) থ্রেড কাটার জন্য ভি-আকৃতির টুল গ্রাইভিং করতে পারা।

যন্ত্রপাতি নির্বাচন :

- (১) বিভিন্ন ধরনের কাটিং টুল সেট।
- (২) মিলিং মেশিন।
- (৩) পাওয়ার 'স' মেশিন।
- (৪) টুল গ্রাইভার।
- (৫) মিলিং কাটার।
- (৬) পাওয়ার 'স' ব্লেড।
- (৭) কাটিং টুল বার।
- (৮) বিভিন্ন সাইজের সকেট রেঞ্চ।
- (৯) অ্যাডজাস্টেবল রেঞ্চ।
- (১০) গগলস।
- (১১) হেড শিল্ড।

### ১১.১ বিভিন্ন ধাতুর জন্য উপযুক্ত কাটিং টুল নির্বাচন করা :

- (১) প্রথমে কার্যবস্তুটি পরীক্ষা করে দেখ যে এটি কোন ম্যাটারিয়ালের তৈরি।

Cutting speeds for various materials (Based on a plain High Speed Steel cutter) :

| Material type      | Cutting Speed  |              |
|--------------------|----------------|--------------|
|                    | meters per min | feet per min |
| Steel (tough)      | 15 - 18        | 50 - 60      |
| Mild steel         | 30-38          | 100-125      |
| Cast iron (medium) | 18-24          | 60-80        |
| Bronzes            | 24-45          | 80-150       |
| Brass (soft)       | 45-60          | 150-200      |
| Aluminium          | 75-105         | 250-350      |

- (২) উপরের চার্ট দেখে বোঝা যায় যে, হাইস্পিড সিটলের কাটার দিয়ে সিটল, মাইল্ড সিটল, কাস্ট আয়রন (মেডিয়াম), ব্রোঞ্জ, সফট ব্রাশ, অ্যালুমিনিয়াম মেশিনিং করা যাবে। তবে তালিকা অনুযায়ী কাটিং স্পিড নির্ধারণ করতে হবে।

তাহাড়া নিম্নলিখিত কাটিং টুলগুলি বিশেষ বিশেষ ম্যাটারিয়াল বিশেষ বিশেষ সূচ্ছতাম মেশিনিং করার জন্য নির্বাচন করা হয়ে থাকে-

| মেশিনিং ম্যাটারিয়ালস                                                                                                                                                 | নির্ধারিত কাটিং টুল            | মন্তব্য                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| হার্ড স্টিল, কাস্ট আয়রন, ব্রোঞ্জ, ইত্যাদি                                                                                                                            | স্টেলাইট কাটার বিট             | হাইস্পিড স্টিল বিটের চেয়ে অনেক বেশি গতিতে কাজ করা যায় এমনকি রেড হট অবস্থায়ও বিকৃত হয় না।                                                      |
| কাস্ট আয়রন, অ্যালয়েড কাস্ট আয়রন, কপার, ব্রাশ, ব্রোঞ্জ, অ্যালুমিনিয়াম, ব্যাবিট মেটাল, অ্যাক্রাসিড নন-মেটালিক ম্যাটারিয়াল ঘেমন- ফাইবার, হার্ড রাবার এবং প্লাস্টিক। | টাংস্টেন কার্বাইড কাটিং টুল    | অতি উচ্চ গতিতে মেশিনিং করার জন্য ব্যবহার করা হয়। এই ধরনের কাটিং টুল বিশেষভাবে তৈরি সূচ্ছ প্রাইভার ভ্রেট বিশিষ্ট প্রাইভারে গ্রাউণ্ড করে নিতে হবে। |
| প্রায় সব ধরনের স্টিল                                                                                                                                                 | টেন্টালাম কার্বাইড কাটিং টুল   | ঐ                                                                                                                                                 |
| প্রায় সব ধরনের স্টিল                                                                                                                                                 | টাইটেনিয়াম কার্বাইড কাটিং টুল | ঐ                                                                                                                                                 |

TABLE Milling Machine Cutting Speeds for High-Speed Steel Milling Cutters.

| MATERIAL                             | CUTTING SPEED (sfpm) <sup>1,2</sup> |              |                     |              |
|--------------------------------------|-------------------------------------|--------------|---------------------|--------------|
|                                      | PLAIN MILLING CUTTERS               |              | END MILLING CUTTERS |              |
|                                      | Roughing                            | Finishing    | Roughing            | Finishing    |
| Aluminum.....                        | 400 to 1,000                        | 400 to 1,000 | 400 to 1,000        | 400 to 1,000 |
| Brass, composition.....              | 125 to 200                          | 90 to 200    | 90 to 150           | 90 to 150    |
| Brass, yellow.....                   | 150 to 200                          | 100 to 250   | 100 to 200          | 100 to 200   |
| Bronze, phosphor and manganese ..... | 30 to 80                            | 25 to 100    | 30 to 80            | 30 to 80     |
| Cast Iron (hard).....                | 25 to 40                            | 10 to 30     | 25 to 40            | 20 to 45     |
| Cast iron (soft and medium) .....    | 40 to 75                            | 25 to 80     | 35 to 65            | 30 to 80     |
| Monel metal .....                    | 50 to 75                            | 50 to 75     | 40 to 60            | 40 to 60     |
| Steel, hard.....                     | 25 to 50                            | 25 to 70     | 25 to 50            | 25 to 70     |
| Steel, soft.....                     | 60 to 120                           | 45 to 110    | 50 to 85            | 45 to 100    |

1 For carbon steel cutters, decrease values by 50 percent

2 For carbide-tipped Cutters, Increase values by 100 percent

### ১১.২ মিলিং মেশিনে কাটার ফিট করার কৌশল :

- (১) মিলিং কাটার মাউন্টিং ডিভাইস যেমন-স্ট্রেইট কাটার আরবার, ফেইস মিলিং কাটার আরবার, শেল এন্ড মিলিং কাটার অ্যাডাপ্টার, ফাই কাটার আরবার, কাটার অ্যাডাপ্টার, ইত্যাদি শনাক্ত কর।
- (২) কাটারকে নির্ধারিত আরবারের সাথে দৃঢ়ভাবে বাঁধ।
- (৩) আরবারকে মেশিনের সাথে দৃঢ়ভাবে সেট কর।



চিত্র-১১.১৪: মিলিং মেশিনে কাটার সেট করা।

### পাওয়ার 'স' মেশিনে ব্লেড ফিট করার কৌশল :

- (১) পাওয়ার 'স' ফ্রেমে ব্লেড ফিট করার জন্য প্রথমে ব্লেডের দাঁতের গতির দিক নিশ্চিত হও। সাধারণত পাওয়ার হ্যাক 'স' এর টানা স্ট্রাকই হলো কাটিং স্ট্রাক। কাটিং স্ট্রাকে ব্লেড নিম্নচাপ সহকারে অঙ্গসর হয়।
- (২) ফ্রেমের গায়ে ব্লেড সেট করার দিক নির্দেশনা থাকতে পারে। উক্ত নির্দেশনা পরীক্ষা করে অনুসরণ কর।



চিত্র-১১.২৪: পাওয়ার হ্যাক 'স' মেশিনে ব্লেড সেট করা।

### (৩) ব্লেড সেটিং এর জন্য -

- (ক) ব্লেড ক্ল্যাম্পিং স্ক্রু-ব্যয় (২) খোল।
- (খ) সঠিক সাইজের বেঞ্চ ব্যবহার কর।
- (গ) ব্লেড টেনশনিং নাট (১) ছিলা কর।
- (ঘ) দাঁতের সঠিক দিক বিবেচনা করে ব্লেড সেট কর এবং স্ক্রু-ব্যয় টাইট দাও।
- (ঙ) ব্লেড টেনশনিং নাট পূর্ণভাবে টাইট দাও।

### শ্রেড কাটার জন্য ডি-আকৃতির শ্রেড কাটিং টুল প্রাইভিং করার কৌশল :

- (১) পেডেস্টাল প্রাইভার পরিষ্কার কর।
- (২) সেফটি গগলস পরিধান কর।
- (৩) হ্যান্ড প্লাভস পরিধান কর।
- (৪) হেড শিল্ড পরিধান কর।



চিত্র-১১.৩৪: হ্যান্ড প্লাভস, গগলস ও হেডশিল্ড পরিধান করা।

(৫) গ্রাইডার চালু কর।  
 (৬) গ্রাইডিং হাইলের ঘূর্ণনের দিক যেন নিচের দিকে হয় সেটি খেয়াল কর।



চিত্র-১১.৪ঃ গ্রাইডিং হাইলের ঘূর্ণনের সঠিক দিক।

(৭) প্রথম ধাপে বামপার্শ গ্রাইডিং করার জন্য টুলবিটকে দৃঢ়ভাবে গ্রাইডিং হাইলে ধর।



চিত্র-১১.৫ঃ ভি থ্রেডিং টুলের বামপার্শ গ্রাইডিং করা।

(৮) গ্রাইডিং হাইল সম্পর্কে যত্নবান হও। গ্রাইডিং হাইলের পূর্ণ চওড়া বরাবর টুলবিট চলাচল করাও।  
 (৯) হাইলের পূর্ণ চওড়া ব্যবহৃত না হলে চিত্রে প্রদর্শিতভাবে গ্রাইডিং হাইল ক্ষয় হবে।  
 (১০) দ্বিতীয় ধাপে ডান সাইড ক্লিয়ারেন্স অ্যাঙ্গেল গ্রাইডিং করার জন্য টুলবিটকে দৃঢ়ভাবে গ্রাইডিং হাইলে ধর।



চিত্র-১১.৬ঃ ভি থ্রেডিং টুলের ডানপার্শ গ্রাইডিং করা।

(১১) তৃতীয় ধাপে চিত্রে প্রদর্শিত উপায়ে ফ্রন্ট ক্লিয়ারেন্স অ্যাঙ্গেল গ্রাইডিং করার জন্য টুলবিটকে দৃঢ়ভাবে গ্রাইডিং হাইলে ধর।



চিত্র-১১.৭ঃ ভি থ্রেডিং টুলের ফ্রন্ট ক্লিয়ারেন্স অ্যাঙ্গেল গ্রাইডিং করা।

## অধ্যায়-১২

### লুব্রিকেন্ট সম্পর্কে দক্ষতা অর্জন (Develope Skill about Lubricant)

#### উদ্দেশ্য :

- (১) বিভিন্ন প্রকার লুব্রিকেন্টস সম্পর্কে জানা।
- (২) মেশিন এবং কাজের ধরন অনুযায়ী লুব্রিকেন্টস নির্বাচন করতে পারা।
- (৩) মেশিনের চলমান অংশগুলোতে লুব্রিকেন্টস প্রয়োগে দক্ষতা অর্জন করা।

#### প্রয়োজনীয় লুব্রিকেন্টসমূহ:

- ১) গালফ গালফওয়ে-৫২ (Gulf Gulfway-52)
- ২) গালফ হারমনি-৫৩ (Gulf Harmony-53)
- ৩) গালফ হারমনি-৪৩ এডলিউট (Gulf Harmony-43 AW)
- ৪) ক্যালটেক্স ওয়েলুব্রিকেন্ট (Caltex Waylubricant)
- ৫) ক্যালটেক্স অয়েল এইচডিএ (Caltex Oil HDA)
- ৬) ক্যালটেক্স র্যান্ডো অয়েল এইচডিসি (Caltex Rando Oil HDC)
- ৭) ক্যালটেক্স রিগ্যাল অয়েল এ আর এন্ড ও (Caltex Regal Oil A R & O)
- ৮) শেল টেলাস অয়েল-২৭ (Shell Tellus-27)
- ৯) শেল টেলাস অয়েল-২৯ (Shell Tellus-29)
- ১০) শেল টোনা অয়েল-৩৩ (Shell Tonna Oil-33)
- ১১) ক্যাস্ট্রল মেঘনা বিডি (Castrol Meghna BD)
- ১২) ক্যাস্ট্রল হিস্পিন-৮০ (Castrol Hyspin-80)
- ১৩) ক্যাস্ট্রল হিস্পিন-১০০ (Castrol Hyspin-100)
- ১৪) মবিল ভ্যাকট্রা অয়েল-২ (Mobil Vactra Oil-2)
- ১৫) মবিল ভ্যাকট্রা অয়েল হেভি মিডিয়াম (Mobil Vactra Oil Heavy Medium)
- ১৬) মবিল ডিটিই-২৫ (Mobil DTE-25)
- ১৭) বিডি ইনারগল এইচপি ২০সি (BD Energol HP 20C)
- ১৮) বিডি ইনারগল এইচএলপি ৮০ (BD Energol HLP 80)
- ১৯) বিডি ইনারগল এইচএলপি ১০০ (BD Energol HLP 100)
- ২০) এসো ফেবিস কে-৫৩ (Esso Febis K-53)
- ২১) এসো নুটো এইচ-৫৪ (Esso Nuto H-54)
- ২২) এসো ইউনিভিস জে-৫৮ (Esso Univis J-58)
- ২৩) টেকসাকো ওয়েলুব্রিকেন্ট ডি (Texaco Waylubricant D)
- ২৪) টেকসাকো রিগ্যাল অয়েল পিসি আর-৮০ (Texaco Regal Oil PC R-80)
- ২৫) টেকসাকো রিগ্যাল অয়েল এ আর ৮০ (Texaco Regal Oil A R-80)
- ২৬) টেকসাকো র্যান্ডো অয়েল এইচডিসি (Texaco Rando Oil HDC)

- ২৭) টেকসাকো র্যান্ডো অয়েল এইচডি এ (Texaco Rando Oil HDA)
- ২৮) নাইনাস টিডি-৩৩ ওএ (Nynus TD-33 OA)
- ২৯) নাইনাস টিডি-২৭ ইএক্স (Nynus TD-27 EX)

**বিভিন্ন প্রেডের গ্রিজ -**

- ১) শেল আভলেনিয়া গ্রিজ-৩ (Shell Avlania Grease-3)
- ২) মবিল প্লেক্স নং ৪৮ (Mobil Plex No 48)
- ৩) বিডি ইনারগ্রিজ (BD Energrease)
- ৪) ক্যালটেক্স রিগ্যাল স্টারফাক প্রিমিয়াম (Caltex Regal Starfak Premium)
- ৫) নাইনাস এফএল৩-৪২ (Nynus FL3-42)
- ৬) এসো অ্যানডক এম২৭৫ (Esso Andok M275)
- ৭) গালফ ইউনিভারসেল গ্রিজ ইপি-টাইপ (Gulf Universal Grease EP-Type)
- ৮) ক্যাস্ট্রল স্ফিরাল এপি-৩ (Castrol Spheeral AP3)

**১২.১ মেশিনের চলমান অংশ চিহ্নিত করে লুব্রিকেটিং করা :**

- (১) মেশিন শপের যন্ত্রপাতিসমূহের সকল চলমান অংশ চিহ্নিত কর।
- (২) প্রত্যেক মেশিনের লুব্রিকেটিং চার্ট তৈরি করে মেশিনের সামনে ঝুলিয়ে রাখ।
- (৩) লুব্রিকেটিং চার্টে যন্ত্রের লুব্রিকেটিং পয়েন্টসমূহ উল্লেখ কর।
- (৪) লুব্রিকেটিং চার্ট অনুযায়ী সঠিক প্রকারের লুব্রিকেন্টস সংগ্রহ কর।
- (৫) লুব্রিকেটিং চার্ট অনুযায়ী নির্ধারিত লুব্রিকেন্ট প্রয়োগ কর।

-----o-----

# ২০১৮ শিক্ষাবর্ষ

## মেশিন টুলস অপারেশন-১

শিক্ষা নিয়ে গড়ব দেশ  
শেখ হাসিনার বাংলাদেশ

কারিগরি শিক্ষা আত্মনির্ভরশীলতার চাবিকাঠি

নারী ও শিশু নির্যাতনের ঘটনা ঘটলে প্রতিকার ও প্রতিরোধের জন্য ন্যাশনাল হেল্পলাইন সেন্টারে  
১০৯ নম্বর-এ (টোল ফ্রি, ২৪ ঘণ্টা সার্ভিস) ফোন করুন

২০১০ শিক্ষাবর্ষ থেকে গণপ্রজাতন্ত্রী বাংলাদেশ সরকার কর্তৃক  
বিনামূল্যে বিতরণের জন্য