Geometry Note

Ran Xie May 19, 2024

1 Definitions

Space of linear function L(V,W) vector space of linear functions from V to W.

Dual Space $V^* = L(V, R)$. For each basis $\{e_i\}$ of V, there exists unique $\{e^i\}$ of V^* such that $e^i(e_j) = \delta^i_j$

tilinear functions on

$$\underbrace{V^* \times \ldots \times V^*}_{\text{r times}} \times \underbrace{V \times \ldots \times V}_{\text{s times}}$$

Tensor Product between A of (r, s) and B of (t, u), is

$$A \otimes B(\tau^1, \dots, \tau^{r+t}, v_1, \dots, v_{s+u})$$

$$= A(\tau^1, \dots, \tau^r, v_1, \dots, v_s)$$

$$B(\tau^{r+1}, \dots, \tau^{r+t}, v_{s+1}, \dots, v_{s+u})$$

Vector Field X on coordinate neighborhood U of a manifold M, with coordinate x^i . For each point $p, X = X^i \partial_i$. $X[f] = X^i \partial_i f$

Change of Coordinates If Y has coordinate neighborhood V of y^i , then $Y^i = X^j \frac{\partial y^i}{\partial x^j}$

Map Differential(Pushforward) F_* is induced map F_* : $TM \to TN$ of C^∞ map $F: M \to N$. $F_*(v_p) = (F_*v)_{F(p)}$. With coordinate, $F_* = [\partial_j(y^i \circ F)]$, the Jacobian of F. Note that $y^i \circ F = F^i(x^1, \ldots, x^m)$

Tensor Bundle $T_s^r M$ of type (r, s) is the union of all tensor spaces $M_s^r(p)$ at each point $p \in M$.

Tangent Bundle $TM = T_0^1 M$,

Scalar Bundle $T_0^0 M = M \times \Re$,

Cotangent Bundle/ Differentials / Phase space T_1^0M

Tensor Field T of type (r, s), $T(p) \in T_s^r M(p)$ for each p. (1,0) is vector field, (0,0) gives real-valued function. (0,1) gives differential.

Tensor Coordinate of T^r_s wrt coordinate x^i are d^{r+s} real-valued functions

$$T_{j_1\dots j_s}^{i_1\dots i_r} = T(dx^{i_1},\dots dx^{i_r},\partial_{j_1},\dots,\partial_{j_s})$$

Tensor Product

Exterior Product

Differential forms p-form is C^{∞} skew-symmetric covariant tensor field of degree p (type (0,p)). Local basis has $\binom{d}{p}$ p-forms $dx^{i_1} \cdots dx^{i_p}$ where (i_1, \ldots, i_p) is increasing.

2 Case Study 1: Surface of a sphere

The surface of sphere of radius 1 is a manifold

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

We can define a chart (U, ψ) for S^2 where $U \subseteq M$ with spherical coordinate. Let

$$U = \{(\theta, \phi) \in [0, 2\pi] \times [0, \pi]\}$$

and

$$\psi(x,y,z): \begin{cases} \theta = \arccos(z) \\ \phi = \operatorname{sng}(y) \arccos \frac{x}{\sqrt{x^2 + y^2}} \end{cases}, \psi^{-1}(\theta,\phi): \begin{cases} x = \sin \theta \cos \phi \\ y = \sin \theta \sin \phi \\ z = \cos \theta \end{cases}$$

Then $\psi(U) \subseteq \mathbb{R}^2$ is a homeomorphism from U to $\psi(U)$. ψ is called a **Locale coordinate map**. And the component functions (θ, ϕ) defined by $\psi(p) = (\theta(p), \phi(p))$ for $p \in S^2$ are called **local coordinates** on U.

One can think of this as giving a temporary identification between U and $\psi(U)$. When we work in this chart, we can think of U as an open subsets of the manifold and as an open subset of \mathbb{R}^2 . Thus, we can represent a point $p \in U \subseteq S^2$ by its coordinate $(\theta, \phi) = \psi(p)$ and think of it as being the point p. We say (θ, ϕ) is the local coordinate for p or $p = (\theta, \phi)$ in local coordinates. (See Lee's Smooth Manifold Local Coordinate Representations section)

Given the same chart, the coordinate vectors ∂_{θ} , ∂_{ϕ} form a basis for T_pS^2 . If $v \in T_pS^2$, then

$$v = v^1 \frac{\partial}{\partial \theta} \bigg|_{p} + v^2 \frac{\partial}{\partial \phi} \bigg|_{p} = v^1 \partial_{\theta} + v^2 \partial_{\phi} = v^i \partial_{i}$$