DATENBLATT

JMC Servomotoren

mit integriertem Servotreiber

Übersicht

- iHSV57 NEMA23 Motorflansch bis 180 W
- iHSV60 60 mm Motorflansch 400 W
- iHSV86 NEMA34 Motorflansch bis 660 W
- Zubehör

DOLD Mechatronik GmbH Schleifmattstraße 2 – D-77716 Haslach Telefon: +49 7832 / 946980

info@dold-mechatronik.de www.dold-mechatronik.de

Inhaltsübersicht

Produktübersicht - Standardlieferprogramm im Vergleich							
JMC Servomotoren iHSV57 mit oder ohne Bremse	5						
Wichtigste Merkmale	5						
Artikel-Nummern	6						
Elektrische Spezifikation	6						
Motor Spezifikation	7						
• Umgebung	7						
Mechanische Spezifikation	7						
Schutzfunktionen	8						
Stecker und Pin-Belegung	8						
DIP Schalter Einstellungen	10						
Feintuning	11						
Typische Anschlussarten	11						
Belegung RS232 Kommunikationskabel	12						
JMC Servomotoren iHSV60	13						
Artikel-Nummern	13						
Wichtigste Merkmale	13						
Elektrische Spezifikation	14						
Motor Spezifikation	14						
• Umgebung	14						
Mechanische Spezifikation	15						
Schutzfunktionen	15						
Stecker und Pin-Belegung	16						
DIP Schalter Einstellungen	17						
Feintuning	18						
Typische Anschlussarten	18						
Belegung RS232 Kommunikationskabel	19						

Seite 2

Inhaltsübersicht

JMC Servomotoren iHSV86	20
Artikel-Nummern	20
Wichtigste Merkmale	20
Elektrische Spezifikation	21
Motor Spezifikation	21
Umgebung	21
Mechanische Spezifikation	22
Schutzfunktionen	22
Stecker und Pin-Belegung	23
DIP Schalter Einstellungen	24
Feintuning	25
Typische Anschlussarten	25
Belegung RS232 Kommunikationskabel	26
JMC Servomotoren Zubehör	27
Adapter USB auf RS232	27
RS-232 Programmierkabel	27
 Leiterplattenstecker Set für JMC Motoren IHSS / IHSV 57 & 60 	27
 Leiterplattenstecker Set für JMC Motoren IHSS / IHSV 86 	27
Leiterplattenstecker 15EDGKD-2.5-10P IHSS / IHSV	28
• Leiterplattenstecker 15EDGKD-2.5-05P IHSS / IHSV	28
Leiterplattenstecker 15EDGKM-3.81-02P IHSS / IHSV	28
Leiterplattenstecker 2EDGKM-7.62-02P IHSS / IHSV	28

Seite 3

Produktübersicht - Standardlieferprogramm im Vergleich

		iHSV57		iHSV60	iHS	V86	
	iHSV57-30-10-36-21-38	iHSV57-30-14-36-21-38	iHSV57-30-18-36-21-38(-SC) mit und ohne Bremse	iHSV60-30-40-48-5.5	iHSV86-30-44-48	iHSV86-30-66-72	Einheit
(NEMA) Motorgröße		NEMA23 57x57		60x60		1A34 k86	NEMA mm
Eingangsstrom		20 - 50 (typ. 36)		24 - 60 (typ. 36/48)	43 - 53 (typ. 48)	65 - 79 (typ. 72)	VDC
Ausgangsstrom		6		6	13,1 - 19,6		Α
Pulse pro Drehung		4 - 51.200		4 - 51.200	4 - 51.200		-
Eingangsfrequenz		200		200	20	00	kHz
Puls Spannung	3,3 (typ. 5, max. 24 mit R 3-5 kΩ)			3,3 (typ. 5, max. 24 mit R 3-5 kΩ)		5, max. 24 3-5 kΩ)	V
Steuerungssignal- strom		7 - 16 (typ. 10)		7 - 16 (typ. 10)	7 - 16 (typ. 10)	mA
Isolationswider- stand		100		100	10	00	MΩ / VDC
Nennleistung	90	140	180	400	440	660	w
Nenndrehmoment	0,29	0,44	0,57	1,27	1,4	2,1	Nm
Nenndrehzahl		3000		3000	30	00	min ⁻¹
Maximaldrehzahl	3000			4200	40	00	min ⁻¹
Nennspannung		36		36	48	72	V
Maximales Rastmoment	10,3	12,1	14,9	26	auf Anfrage	auf Anfrage	mNm
Gewicht	1,0	1,3	1,6	1,6	3,5	4,5	kg

Die iHSV57 mit oder ohne Bremse Servomotoren bestehen aus einem perfekt abgestimmtem Servotreiber integriert in einem Servomotor. Das vektorgesteuerte System mit DSP Chip erlaubt drei einstellbare Modi (position loop, speed loop und current loop) in einer Baugruppe. Das System spart Bauraum, Verkabelung zwischen Treiber, Motor und Encoder, und ist durch seinen niedrigen Anschaffungspreis rentabel.

Die iHSV57 können in verschiedenen Anwendungen eingesetzt werden, wie z. B. Laserschneidmaschinen, Lasermarkierern, hochpräzisen XY-Tischen, Etikettiermaschinen, CNC-Fräsmaschinen usw. Aufgrund der einzigartigen Eigenschaften sind die iHSV57 die ideale Wahl für Anwendungen, die sanften Motorlauf bei niedrigen Geschwindigkeiten und hohes Drehmoment auch bei höheren Drehzahlung und kleinen Einbauraum erfordern.

Wichtigste Merkmale

- Hohe Positionsgenauigkeit
- Hohes Drehmoment
- Kostengünstige Servomotor-Lösung
- · Ruhiger und sehr leiser Motorlauf
- Kompakte Größe
- Version mit Bremse verfügbar
- Eingangssignal: Puls / Richtung (PUL/DIR)
- Bandbreite Current Loop: (-3dB) 2 KHz (typisch)
- Bandbreite Speed Loop: 500 Hz (typisch)
- Bandbreite Position Loop: 200 Hz (typisch)

- Parameter via RS232 zum PC übertragbar
- Einstellungen über DIP-Schalter oder Software möglich
- Schutzfunktionen:
 - Überstromschutz
 - I2T-Motorstromüberwachung
 - Über- und Unterspannungsschutz
 - Überhitzungsschutz
 - Überdrehzahlschutz

JMC Servomotoren iHSV57 mit oder ohne Bremse _

1. Integrierter Servomotor

2. Motor Rahmengröße: $57 \triangleq 57 \text{ mm}$ 3. Motordrehzahl (Einheit: \times 100 min⁻¹): $30 \triangleq 3000 \text{ min}^{-1}$

4. Ausgangsleistung (Einheit: \times 10 W): $10 \triangleq 100$ W, $14 \triangleq 140$ W, $18 \triangleq 180$ W

5. Nennspannung: $36 \triangleq 36 \text{ V}$ 6. Wellenlänge: $21 \triangleq 21 \text{ mm}$ 7. Zentrierdurchmesser: $38 \triangleq 38,1 \text{ mm}$

8. Bremse: SC = mit Bremse, fehlende Angabe = ohne Bremse

Artikel-Nummern

Artikel-Nr.	Modell
iHSV57-30-10-36-21-38	100 W Servomotor
iHSV57-30-14-36-21-38	140 W Servormotor
iHSV57-30-18-36-21-38	180 W Servormotor
iHSV57-30-18-36-21-38-SC	180 W Servormotor mit Bremse

Elektrische Spezifikation

Kenndaten	Min.	Тур.	Max.	Einheit
Eingangsstrom	20	36	50	VDC
Strom	-	6	-	Α
Pulse pro Umdrehung	4	-	51.200	-
Eingangsfrequenz	-	-	200	kHz
Puls Spannung	3,3	5	24 (mit R 3 - 5 kΩ)	V
Steuerungssignalstrom	7	10	16	mA
Isolationswiderstand	100	-	-	MΩ / VDC
		Bremse		
Eingangsstrom	-	24	-	VDC
Strom	-	0,125	-	Α

Motor Spezifikation

Modell	iHSV57-30-10-36-XX	iHSV57-30-14-36-XX	iHSV57-30-18-36-XX(-SC)	Einheit
Nennleistung	90	140	180	W
Nenndrehmoment	0,29	0,44	0,57	Nm
Nenndrehzahl	3000	3000	3000	min⁻¹
Maximaldrehzahl	3000	3000	3000	min⁻¹
Nennspannung	36	36	36	V
Maximales Rastmoment	10,3	12,1	14,9	mNm
Gewicht	1,0	1,3	1,6	kg

Umgebung

Kühlung	Natürliche oder Zwangs-Kühlung			
	Umgebung	Vermeiden Sie Staub, Ölnebel und korrosive Gase		
Betriebsumgebung	Umgebungstemperatur	0°C bis 40°C		
Detrieusunigebung	Feuchtigkeit	40 %RH bis 90 %RH		
	Betriebstemperatur	max. 70°C		
Lagertemperatur	−20°C bis 80°C			

Mechanische Spezifikation

Modell:	Motorlänge	Gesamtlänge (L)	Wellenlänge	Zentrierdurchmesser D
iHSV57-30-10-36-21-38	76 mm	110 mm	21 ±1 mm	38,1 mm
iHSV57-30-14-36-21-38	96 mm	130 mm	21 ±1 mm	38,1 mm
iHSV57-30-18-36-21-38	116 mm	150 mm	21 ±1 mm	38,1 mm
iHSV57-30-18-36-21-38-SC	116 mm	180 mm	21 ±1 mm	38,1 mm

JMC Servomotoren iHSV57 mit oder ohne Bremse .

Schutzfunktionen

LED blinkt	Beschreibung
2 mal	Überstrom
3 mal	Positionsabweichung überschreitet den gesetzten Wert
4 mal	Encoderalarm
6 mal	Spannung zu niedrig
7 mal	Überlast

Stecker und Pin-Belegung

Die iHSV57 verfügen über drei Anschlüsse:

- 1. einen für Stromanschluss,
- 2. einen für Steuerungsanschlüsse und
- 3. einen für die RS232-Kommunikationsverbindung.

Spannungsversorgung							
Pin	Name	I/O	Beschreibung				
1	DC+	I	Eingangsspannung + (Positiv) 20 - 36 V (DC) empfohlen, um Raum für Spannungsschwankungen und Rückströme (back-EMF) während der Verzögerung des Motors zu lassen.				
2	GND	GND	Eingangsspannung – (Negativ)				

JMC Servomotoren iHSV57 mit oder ohne Bremse

Div		Name I/O		Beschreibung				
Pin	Na	me	1/0		ohne Bremse	mit Bremse		
2		M- M+	0		Dieser Port kann maximal 8 mA bei 24 V, bzw. max	zschlussschutz und Positionsfehler.		
3*	PED-	BRK-	0 1		In-Position Signal: OC Ausgangssignal aktiv, wenn die aktuelle Motorposition die Ziel-Position erreicht hat. Dieser Port kann maximal 8 mA bei 24 V, bzw. max. 200 mW schalten. Der Widerstand zwischen PED- und PED+ ist im Normalbetrieb hoch und wird nach Erreichen der Endposition niedrig.	werden, um den Motor zu betreiben. Die Bremse wird nur geöffnet, wenn: 24V angeschlossen sind;		
4*	PED+	BRK+	0	I		 ausreichend Strom von 150 mA anliegt; kein Alarm aktiv ist; ENA aktiviert ist (siehe ENA-Beschreibung); kein Stromausfall des Motors vorliegt. Die Bremse fixiert den Motor, wenn: Alarm ausgelöst wurde; ENA nicht aktiviert ist; Strom- oder Spannungswert falsch sind; Stromausfall des Motors vorliegt. Es wird dringend davon abgeraten, den Motbei feststehender Bremse zu betreiben, da derhöhte Stromaufnahme zu Schäden an derhöhte Stromaufnahme zu S		
5	EN	IA-		ı	Aktivierungs-Signal: Dieses Signal wird zur Aktivier dardmäßig bedeutet hohes Niveau "Freigabe" und i			
6	EN	IA+		I	Bitte beachten Sie, dass das Signal bei Verwendu			
7	DI	R-		l	Für eine zuverlässige Reaktion sollte das DIR Signa	gen des Motors) zuständig. al mit mindestens 5 µs vor dem PUL Signal anliege		
8	DI	R+		I	Spannungen: 3,5 bis 24 V für DIR-HIGH, 0 bis 0.5 V für DIR-LOW. Die Drehrichtung des Motors kann auch mit DIP-Schalter SW6 umgeschaltet werden Bei 24 V muss ein Widerstand von 3 bis 5 kΩ in Reihe geschaltet werden! (Optional: SW5 ON Drehrichtung CW/CCW) Pulssignal: Im Puls-Richtungs-Modus ist dieser Eingang für das Eingangspulssignal zustä jeweils steigende oder fallende Flanke aktiv (über Software konfigurierbar). Für einen zuverlässigen Betrieb sollte die Impulsbreite bei 200 kHz länger als 2,5 μs se			
9	PU	IL-		l				
10	PUL+ I			I	Bei 24 V muss ein Widerstand von 3	L-HIGH, 0 bis 0,5 V, wenn PUL-LOW. bis 5 kΩ in Reihe geschaltet werden! rehrichtung CW/CCW)		

/ersion: 2023_08_07

* Pin 3 und 4 sind ausschließlich nur beim Modell iHSV57-30-18-36-21-38-SC mit Bremse mit den Pins BRK- und BRK+ belegt.

JMC Servomotoren iHSV57 mit oder ohne Bremse -

RS232	RS232-Kommunikations-Anschluss								
Pin	Name	Farben bei beigem runden Kabel	Farben bei grauen flachen Kabel	Beschreibung					
1	NC	-		Nicht belegt					
2	RX	Braun-Weiß	Gelb	RS232 Dateneingang					
3	GND	Blau	Grün	Masse					
4	TX	Blau-Weiß	Rot	RS232 Datenausgang					
5	VCC	-	-	+3,3 V Ausgang 🌗					

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

DIP Schalter Einstellungen

Pulse pro Umdrehung (SW1 - SW4)

Die Pulse pro Umdrehung können über die DIP-Schalter SW1 - SW4 oder die Software konfiguriert werden. Wenn sich alle SW1 - SW4 in der Position "ON" befinden, nimmt der Treiber die über die Software definierte Einstellung (standardmäßig 4000 Pulse bei Einstellung 1:1). In diesem Fall kann ein Benutzer über die Software auf einen beliebigen Wert zwischen 4 und 51.200 Pulsen neu konfigurieren. Wenn sich irgendein Schalter von SW1 - SW4 in der "OFF"-Position befindet, wird die Einstellung über die DIP-Schalter bestimmt. Verwenden Sie folgende Tabelle für die Einstellung:

Pulse / Umdrehung	SW1	SW2	SW3	SW4
Software abhängig	on	on	on	on
800	off	on	on	on
1.600	on	off	on	on
3.200	off	off	on	on
6.400	on	on	off	on
12.800	off	on	off	on
25.600	on	off	off	on
51.200	off	off	off	on
1.000	on	on	on	off
2.000	off	on	on	off
4.000	on	off	on	off
5.000	off	off	on	off
8.000	on	on	off	off
10.000	off	on	off	off
20.000	on	off	off	off
40.000	off	off	off	off

JMC Servomotoren iHSV57 mit oder ohne Bremse

SW5: Mit SW5 kann der Pulsmodus konfiguriert werden. "Off" steht für PUL/DIR Modus. "On" für Doppelpuls Modus; CW/CCW.

SW6: Wird für die Einstellung der Drehrichtung verwendet. "Off" bedeutet CCW, während "On" CW bedeutet.

SW7: Wird für die PUL Filtereinstellung verwendet, "Off" bedeutet max. PUL-Frequenz ist 200 kHz, "On" bedeutet max. PUL-Frequenz ist 100 kHz.

Hinweis: Wenn der P22 Parameter 0 ist, wird der Wert der Einstellung des Pulsfilters von SW7 bestimmt. Falls der Wert über 0 liegt hat SW7 keine Funktion.

SW8: Wird für die PUL Glättungseinstellung verwendet, "Off" bedeutet PUL-Glättung ausgeschaltet, "On" bedeutet

PUL-Glättung aktiv.

Feintuning

Bereits ab Werk sind Standard-Parameter gesetzt. Diese Standardparameterwerte sind optimiert und für die meisten industriellen Anwendungen passend. In den meisten Fällen ist es nicht notwendig sie zu ändern. Wenn Sie jedoch die Leistung für Ihren Einsatz optimieren möchten, kann die Software verwendet werden, mit der diese Parameter justiert werden können.

Typische Anschlussarten

Anschluss unter Verwendung der NPN Logik

Anschluss unter Verwendung der PNP Logik

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 k Ω , da die OC Ports max. 200 mW schalten.

Für den Motortyp mit Bremse entfällt das PED-Signal.

JMC Servomotoren iHSV57 mit oder ohne Bremse

Anschluss unter Verwendung eines Differenzial-Ausgleichssignals

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 k Ω , da die OC Ports max. 200 mW schalten.

Für den Motortyp mit Bremse entfällt das PED-Signal.

Belegung RS232 Kommunikationskabel

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

Definition			Remark
RX		D	Receive Data
GND		Þ	Power Ground
TX		D	Transmit Data
		OR	
NC		D	Reserved
RX	$\bigcirc \blacksquare$	Þ	Receive Data
GND		Þ	Power Ground
TX	$\bigcirc \blacksquare$	D	Transmit Data
vcc	$\bigcirc \blacksquare$	D	Power Supply to HISU

Die iHSV60 Servomotoren bestehen aus einem perfekt abgestimmtem Servotreiber integriert in einem Servomotor. Das vektorgesteuerte System mit DSP Chip erlaubt drei einstellbare Modi (position loop, speed loop und current loop) in einer Baugruppe. Das System spart Bauraum, Verkabelung zwischen Treiber, Motor und Encoder, und ist durch seinen niedrigen Anschaffungspreis rentabel.

Die iHSV60 können in verschiedenen Anwendungen eingesetzt werden, wie z. B. Laserschneidmaschinen, Lasermarkierern, hochpräzisen XY-Tischen, Etikettiermaschinen, CNC-Fräsmaschinen usw. Aufgrund der einzigartigen Eigenschaften sind die iHSV60 die ideale Wahl für Anwendungen, die sanften Motorlauf bei niedrigen Geschwindigkeiten und hohes Drehmoment auch bei höheren Drehzahlung und kleinen Einbauraum erfordern.

Wichtigste Merkmale

- Hohe Positionsgenauigkeit
- Hohes Drehmoment
- Kostengünstige Servomotor-Lösung
- · Ruhiger und sehr leiser Motorlauf
- Kompakte Größe
- Eingangssignal: Puls / Richtung (PUL/DIR)
- Bandbreite Current Loop: (–3dB) 2 KHz (typisch)
- Bandbreite Speed Loop: 500 Hz (typisch)
- Bandbreite Position Loop: 200 Hz (typisch)

- Parameter via RS232 zum PC übertragbar
- Einstellungen über DIP-Schalter oder Software möglich
- Schutzfunktionen:
 - Überstromschutz
 - I²T-Motorstromüberwachung
 - Über- und Unterspannungsschutz
 - Überhitzungsschutz
 - Überdrehzahlschutz

Artikel-Nummern

Artikel-Nr.	Modell	Bemerkung
iHSV60-30-40-48	iHSV60-30-40-48-5.5	Standard

1. Integrierter Servomotor

2.Motor Rahmengröße: $60 \triangleq 60 \text{ mm}$ 3.Motordrehzahl (Einheit: × 100 min $^{-1}$): $30 \triangleq 3000 \text{ min}^{-1}$ 4.Ausgangsleistung (Einheit: × 10 W): $40 \triangleq 400 \text{ W}$ 5.Nennspannung: $48 \triangleq 48 \text{ V}$ 6.Sonderbohrung: $5.5 \triangleq 5,5 \text{ mm}$

Elektrische Spezifikation

Kenndaten	Min.	Тур.	Max.	Einheit
Eingangsstrom	24	36/48	60	VDC
Strom	-	6	-	Α
Pulse pro Umdrehung	4	-	51.200	-
Eingangsfrequenz	-	-	200	kHz
Puls Spannung	3,3	5	24 (mit R 3 - 5 kΩ)	V
Steuerungssignalstrom	7	10	16	mA
Isolationswiderstand	100	-	-	MΩ / VDC

Motor Spezifikation

Modell	iHSV60-30-40-48-XX	iHSV60-30-20-36-XX	Einheit
Nennleistung	400	200	W
Nenndrehmoment	1,27	0,65	Nm
Nenndrehzahl	3000	3000	min ⁻¹
Maximaldrehzahl	4200	4200	min⁻¹
Nennspannung	48	36	V
Maximales Rastmoment	28	26	mNm
Gewicht	1,6	1,2	kg

Umgebung

Kühlung	Natürliche oder Zwangs-Kühlung			
	Umgebung	Vermeiden Sie Staub, Ölnebel und korrosive Gase		
Potriohoumgohung	Umgebungstemperatur	0°C bis 40°C		
Betriebsumgebung	Feuchtigkeit	40 %RH bis 90 %RH		
	Betriebstemperatur	max. 70°C		
Lagertemperatur	−20°C bis 80°C			

Mechanische Spezifikation

Modell:	Motorlänge	Länge Motor + Treiber L	Wellenlänge	Zentrier-Ø	Bohr-Ø (D)
iHSV60-30-40-48-5.5	108 mm	140 mm	30 ±1 mm	50 mm	5,5 mm

Schutzfunktionen

LED blinkt	Beschreibung
2 mal	Überstrom
3 mal	Positionsabweichung überschreitet den gesetzten Wert
4 mal	Encoderalarm
6 mal	Spannung zu niedrig
7 mal	Überlast

Bermerkung: Fehlercode kann über die Software ausgelesen werden, falls LED-Signal unklar.

Stecker und Pin-Belegung

Die iHSV60 verfügen über drei Anschlüsse:

- 1. einen für Stromanschluss,
- 2. einen für Steuerungsanschlüsse und
- 3. einen für die RS232-Kommunikationsverbindung.

Spani	Spannungsversorgung						
Pin	Name	1/0	Beschreibung				
1	DC+	ı	Eingangsspannung + (Positiv) 20 - 36 V (DC) empfohlen, um Raum für Spannungsschwankungen und Rückströme (back-EMF) während der Verzögerung des Motors zu lassen.				
2	GND	GND	Eingangsspannung – (Negativ)				

Steue	Steuerungssignal-Anschluss					
Pin	Name	I/O	Beschreibung			
1	ALM-	0	<u>Alarmsignal:</u> OC Ausgangssignal aktiv, wenn eine der folgenden Fehlermeldungen aktiviert ist: Überspannungs-, Überstrom-, Kurzschlussschutz und Positionsfehler.			
2	ALM+	0	Dieser Port kann maximal 8 mA bei 24 V, bzw. max. 200 mW schalten. Der Widerstand zwischen ALM- und ALM+ ist im Normalbetrieb hoch und wird bei Fehlermeldung niedrig.			
3	PED-	O	In-Position Signal: OC Ausgangssignal aktiv, wenn die aktuelle Motorposition die Ziel-Position erreicht hat. Dieser Port kann maximal 8 mA bei 24 V, bzw. max. 200 mW schalten. Der Widerstand zwischen			
4	PED+	0	PED- und PED+ ist im Normalbetrieb hoch und wird nach Erreichen der Endposition niedrig.			
5	ENA-	I	Aktivierungs-Signal: Dieses Signal wird zur Aktivierung / Deaktivierung der Steuerung verwendet. Si dardmäßig bedeutet hohes Niveau "Freigabe" und niedriges Niveau "Deaktivierung" der Steuerung (Verwendung von NPN-Logik). Normalerweise nicht angeschlossen (≙ aktivierte Steuerung).			
6	ENA+	ı	Bitte beachten Sie, dass das Signal bei Verwendung von PNP-Logik und Differenz-Ausgangs- signal gegensätzlich arbeitet, nämlich niedriger Pegel für "aktiviert".			
7	DIR-	ı	Richtungs-Signal (Direction): Im Puls-Richtungs-Modus ist dieser Eingang für die low / high Spannur ebenen (die zwei Richtungen des Motors) zuständig. Für eine zuverlässige Reaktion sollte das DIR Signal mit mindestens 5 µs vor dem PUL Signal anlie			
8	DIR+	ı	Spannungen: 3,5 bis 24 V für DIR-HIGH, 0 bis 0.5 V für DIR-LOW. Die Drehrichtung des Motors kann auch mit DIP-Schalter SW6 umgeschaltet werden. Bei 24 V muss ein Widerstand von 3 bis 5 kΩ in Reihe geschaltet werden! (Optional: SW5 ON Drehrichtung CW/CCW)			
9	PUL-	I	Pulssignal: Im Puls-Richtungs-Modus ist dieser Eingang für das Eingangspulssignal zuständig; jeweils steigende oder fallende Flanke aktiv (über Software konfigurierbar).			
10	PUL+	ı	Für einen zuverlässigen Betrieb sollte die Impulsbreite bei 200 kHz länger als 2,5 μs sein. Spannungen: 4,5 bis 24 V, wenn PUL-HIGH, 0 bis 0,5 V, wenn PUL-LOW. Bei 24 V muss ein Widerstand von 3 bis 5 kΩ in Reihe geschaltet werden! (Optional: SW5 ON Drehrichtung CW/CCW)			

RS232	RS232-Kommunikations-Anschluss								
Pin	Name	Farben bei beigem runden Kabel	Farben bei grauen flachen Kabel	Beschreibung					
1	NC	-	-	Nicht belegt					
2	RX	Braun-Weiß	Gelb	RS232 Dateneingang					
3	GND	Blau	Grün	Masse					
4	TX	Blau-Weiß	Rot	RS232 Datenausgang					
5	VCC	-	-	+3,3 V Ausgang 🕕					

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

DIP Schalter Einstellungen

Pulse pro Umdrehung (SW1 - SW4)

Die Pulse pro Umdrehung können über die DIP-Schalter SW1 - SW4 oder die Software konfiguriert werden. Wenn sich alle SW1 - SW4 in der Position "ON" befinden, nimmt der Treiber die über die Software definierte Einstellung (standardmäßig 4000 Pulse bei Einstellung 1:1). In diesem Fall kann ein Benutzer über die Software auf einen beliebigen Wert zwischen 4 und 51.200 Pulsen neu konfigurieren. Wenn sich irgendein Schalter von SW1 - SW4 in der "OFF"-Position befindet, wird die Einstellung über die DIP-Schalter bestimmt. Verwenden Sie folgende Tabelle für die Einstellung:

Pulse / Umdrehung	SW1	SW2	SW3	SW4
Software abhängig	on	on	on	on
800	off	on	on	on
1.600	on	off	on	on
3.200	off	off	on	on
6.400	on	on	off	on
12.800	off	on	off	on
25.600	on	off	off	on
51.200	off	off	off	on
1.000	on	on	on	off
2.000	off	on	on	off
4.000	on	off	on	off
5.000	off	off	on	off
8.000	on	on	off	off
10.000	off	on	off	off
20.000	on	off	off	off
40.000	off	off	off	off

SW5: Mit SW5 kann die steigende oder abfallende Flanke des Eingangssignals eingestellt werden. "Off" heißt

steigend. "On" abfallend.

SW6: Wird für die Einstellung der Drehrichtung verwendet. "Off" bedeutet CCW, während "On" CW bedeutet.

Feintuning

Bereits ab Werk sind Standard-Parameter gesetzt. Diese Standardparameterwerte sind optimiert und für die meisten industriellen Anwendungen passend. In den meisten Fällen ist es nicht notwendig sie zu ändern. Wenn Sie jedoch die Leistung für Ihren Einsatz optimieren möchten, kann die Software verwendet werden, mit der diese Parameter justiert werden können.

Typische Anschlussarten

Anschluss unter Verwendung der NPN Logik

Anschluss unter Verwendung der PNP Logik

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 kΩ, da die OC Ports max. 200 mW schalten.

Anschluss unter Verwendung eines Differenzial-Ausgleichssignals

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 k Ω , da die OC Ports max. 200 mW schalten.

Belegung RS232 Kommunikationskabel

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

Definition		Remark
RX	D	Receive Data
GND	Þ	Power Ground
TX	D	Transmit Data
	OR	
NC	D	Reserved
RX	Þ	Receive Data
GND	D	Power Ground
TX	D	Transmit Data
vcc	D	Power Supply to HISU

Die iHSV86 Servomotoren bestehen aus einem perfekt abgestimmtem Servotreiber integriert in einem Servomotor. Das vektorgesteuerte System mit DSP Chip erlaubt drei einstellbare Modi (position loop, speed loop und current loop) in einer Baugruppe. Das System spart Bauraum, Verkabelung zwischen Treiber, Motor und Encoder, und ist durch seinen niedrigen Anschaffungspreis rentabel.

Die iHSV86 können in verschiedenen Anwendungen eingesetzt werden, wie z. B. Laserschneidmaschinen, Lasermarkierern, hochpräzisen XY-Tischen, Etikettiermaschinen, CNC-Fräsmaschinen usw. Aufgrund der einzigartigen Eigenschaften sind die iHSV86 die ideale Wahl für Anwendungen, die sanften Motorlauf bei niedrigen Geschwindigkeiten und hohes Drehmoment auch bei höheren Drehzahlung und kleinen Einbauraum erfordern.

Wichtigste Merkmale

- Hohe Positionsgenauigkeit
- Hohes Drehmoment
- Kostengünstige Servomotor-Lösung
- · Ruhiger und sehr leiser Motorlauf
- Kompakte Größe
- Eingangssignal: Puls / Richtung (PUL/DIR)
- Bandbreite Current Loop: (-3dB) 2 KHz (typisch)
- Bandbreite Speed Loop: 500 Hz (typisch)
- Bandbreite Position Loop: 200 Hz (typisch)

- Parameter via RS232 zum PC übertragbar
- Einstellungen über DIP-Schalter oder Software möglich
- Schutzfunktionen:
 - Überstromschutz
 - I²T-Motorstromüberwachung
 - Über- und Unterspannungsschutz
 - Überhitzungsschutz
 - Überdrehzahlschutz

Artikel-Nummern

Modell / Artikel-Nr.	Bemerkung
iHSV86-30-44-48	Standard
iHSV86-30-66-72	Standard

1. Integrierter Servomotor

2. Motor Rahmengröße: $86 \triangleq 86 \text{ mm}$ 3. Motordrehzahl (Einheit: \times 100 min⁻¹): $30 \triangleq 3000 \text{ min}^{-1}$

4. Ausgangsleistung (Einheit: \times 10 W): $44 \triangleq 440$ W, $66 \triangleq 660$ W5. Nennspannung: $48 \triangleq 48$ V, $72 \triangleq 72$ V6. Wellenlänge:keine Zahl \triangleq 30 mm

7. Zentrierdurchmesser: keine Zahl ≜ 73 mm

Elektrische Spezifikation

	Min.		Тур.		Max.		
Kenndaten	iHSV86-30- 44-48	iHSV86-30- 66-72	iHSV86-30- 44-48	iHSV86-30- 66-72	iHSV86-30- 44-48	iHSV86-30- 66-72	Einheit
Eingangsstrom	43	65	48	72	53	79	VDC
Strom	-		13,1		19,6		А
Pulse pro Umdrehung	4		-		51.200		-
Eingangsfrequenz	-		-		20	00	kHz
Puls Spannung	3,3		5		24 (mit R 3 - 5 kΩ)		V
Steuerungssignalstrom	7		10		16		mA
Isolationswiderstand	10	00	-		-		MΩ / VDC

Motor Spezifikation

Modell	iHSV60-30-40-48-XX	iHSV60-30-20-36-XX	Einheit
Nennleistung	440	660	W
Nenndrehmoment	1,4	2,1	Nm
Nenndrehzahl	3000	3000	min⁻¹
Maximaldrehzahl	4000	4000	min⁻¹
Nennspannung	48	72	V
Gewicht	3,5	4,5	kg

Umgebung

Kühlung	Natürliche oder Zwangs-Kühlung			
	Umgebung	Vermeiden Sie Staub, Ölnebel und korrosive Gase		
Datrichaumachuna	Umgebungstemperatur	0°C bis 40°C		
Betriebsumgebung	Feuchtigkeit	40 %RH bis 90 %RH		
	Betriebstemperatur	max. 70°C		
Lagertemperatur	−20°C bis 80°C			

Mechanische Spezifikation

Modell:	Lochabstand	Länge Motor + Treiber L	Wellenlänge	Zentrierdurchmesser
iHSV86-30-44-48	69,58 mm	158 ±1 mm	38 ±1 mm	73 mm
iHSV86-30-66-72	69,58 mm	185 ±1 mm	38 ±1 mm	73 mm

Schutzfunktionen

LED BIINKT	Beschreibung
2 mal	Überstrom
3 mal	Positionsabweichung überschreitet den gesetzten Wert
4 mal	Encoderalarm
6 mal	Spannung zu niedrig
7 mal	Überlast

Stecker und Pin-Belegung

Die iHSV86 verfügen über drei Anschlüsse:

- 1. einen für Stromanschluss,
- 2. einen für Steuerungsanschlüsse und
- 3. einen für die RS232-Kommunikationsverbindung.

Spani	Spannungsversorgung					
Pin	Name	I/O	Beschreibung			
1	DC+	Γ	Eingangsspannung + (Positiv) 20 - 36 V (DC) empfohlen, um Raum für Spannungsschwankungen und Rückströme (back-EMF) während der Verzögerung des Motors zu lassen.			
2	GND	GND	Eingangsspannung – (Negativ)			

Steuerungssignal-Anschluss					
Pin	Name	I/O	Beschreibung		
1	ALM-	0	<u>Alarmsignal:</u> OC Ausgangssignal aktiv, wenn eine der folgenden Fehlermeldungen aktiviert ist: Überspannungs-, Überstrom-, Kurzschlussschutz und Positionsfehler.		
2	ALM+	0	Dieser Port kann maximal 8 mA bei 24 V, bzw. max. 200 mW schalten. Der Widerstand zwischen ALM- und ALM+ ist im Normalbetrieb hoch und wird bei Fehlermeldung niedrig.		
3	PED-	O	In-Position Signal: OC Ausgangssignal aktiv, wenn die aktuelle Motorposition die Ziel-Position erreicht hat. Dieser Port kann maximal 8 mA bei 24 V, bzw. max. 200 mW schalten. Der Widerstand zwischen		
4	PED+	0	PED- und PED+ ist im Normalbetrieb hoch und wird nach Erreichen der Endposition niedrig.		
5	ENA-	I	Aktivierungs-Signal: Dieses Signal wird zur Aktivierung / Deaktivierung der Steuerung verwendet. Sta dardmäßig bedeutet hohes Niveau "Freigabe" und niedriges Niveau "Deaktivierung" der Steuerung (b Verwendung von NPN-Logik). Normalerweise nicht angeschlossen (≙ aktivierte Steuerung).		
6	ENA+	ı	Bitte beachten Sie, dass das Signal bei Verwendung von PNP-Logik und Differenz-Ausgangs- signal gegensätzlich arbeitet, nämlich niedriger Pegel für "aktiviert".		
7	DIR-	ı	Richtungs-Signal (Direction): Im Puls-Richtungs-Modus ist dieser Eingang für die low / high Spannungs- ebenen (die zwei Richtungen des Motors) zuständig. Für eine zuverlässige Reaktion sollte das DIR Signal mit mindestens 5 µs vor dem PUL Signal anliegen,		
8	DIR+	ı	Spannungen: 3,5 bis 24 V für DIR-HIGH, 0 bis 0.5 V für DIR-LOW. Die Drehrichtung des Motors kann auch mit DIP-Schalter SW6 umgeschaltet werden. Bei 24 V muss ein Widerstand von 3 bis 5 kΩ in Reihe geschaltet werden! (Optional: SW5 ON Drehrichtung CW/CCW)		
9	PUL-	I	Pulssignal: Im Puls-Richtungs-Modus ist dieser Eingang für das Eingangspulssignal zuständig: jeweils steigende oder fallende Flanke aktiv (über Software konfigurierbar). Für einen zuverlässigen Betrieb sollte die Impulsbreite bei 200 kHz länger als 2,5 µs sein.		
10	PUL+	ı	Spannungen: 4,5 bis 24 V, wenn PUL-HIGH, 0 bis 0,5 V, wenn PUL-LOW. Bei 24 V muss ein Widerstand von 3 bis 5 kΩ in Reihe geschaltet werden! (Optional: SW5 ON Drehrichtung CW/CCW)		

RS232	RS232-Kommunikations-Anschluss							
Pin	Name	Farben bei beigem runden Kabel	Farben bei grauen flachen Kabel	Beschreibung				
1	NC	-	-	Nicht belegt				
2	RX	Braun-Weiß	Gelb	RS232 Dateneingang				
3	GND	Blau	Grün	Masse				
4	TX	Blau-Weiß	Rot	RS232 Datenausgang				
5	VCC	-	-	+3,3 V Ausgang 🌗				

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

DIP Schalter Einstellungen

Pulse pro Umdrehung (SW1 - SW4)

Die Pulse pro Umdrehung können über die DIP-Schalter SW1 - SW4 oder die Software konfiguriert werden. Wenn sich alle SW1 - SW4 in der Position "ON" befinden, nimmt der Treiber die über die Software definierte Einstellung (standardmäßig 4000 Pulse bei Einstellung 1:1). In diesem Fall kann ein Benutzer über die Software auf einen beliebigen Wert zwischen 4 und 51.200 Pulsen neu konfigurieren. Wenn sich irgendein Schalter von SW1 - SW4 in der "OFF"-Position befindet, wird die Einstellung über die DIP-Schalter bestimmt. Verwenden Sie folgende Tabelle für die Einstellung:

Pulse / Umdrehung	SW1	SW2	SW3	SW4
Software abhängig	on	on	on	on
800	off	on	on	on
1.600	on	off	on	on
3.200	off	off	on	on
6.400	on	on	off	on
12.800	off	on	off	on
25.600	on	off	off	on
51.200	off	off	off	on
1.000	on	on	on	off
2.000	off	on	on	off
4.000	on	off	on	off
5.000	off	off	on	off
8.000	on	on	off	off
10.000	off	on	off	off
20.000	on	off	off	off
40.000	off	off	off	off

SW5: Mit SW5 kann der Pulsmodus konfiguriert werden. "Off" steht für PUL/DIR Modus. "On" für Doppelpuls Modus; CW/CCW.

SW6: Wird für die Einstellung der Drehrichtung verwendet. "Off" bedeutet CCW, während "On" CW bedeutet.

SW7: Wird für die PUL Filtereinstellung verwendet, "Off" bedeutet max. PUL-Frequenz ist 200 kHz, "On" bedeutet max. PUL-Frequenz ist 100 kHz.

Hinweis: Wenn der P22 Parameter 0 ist, wird der Wert der Einstellung des Pulsfilters von SW7 bestimmt. Falls der Wert über 0 liegt hat SW7 keine Funktion.

SW8: Wird für die PUL Glättungseinstellung verwendet, "Off" bedeutet PUL-Glättung ausgeschaltet, "On" bedeutet PUL-Glättung aktiv.

Feintuning

Bereits ab Werk sind Standard-Parameter gesetzt. Diese Standardparameterwerte sind optimiert und für die meisten industriellen Anwendungen passend. In den meisten Fällen ist es nicht notwendig sie zu ändern. Wenn Sie jedoch die Leistung für Ihren Einsatz optimieren möchten, kann die Software verwendet werden, mit der diese Parameter justiert werden können.

Typische Anschlussarten

Anschluss unter Verwendung der NPN Logik

Anschluss unter Verwendung der PNP Logik

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 k Ω , da die OC Ports max. 200 mW schalten.

Anschluss unter Verwendung eines Differenzial-Ausgleichssignals

R1: abhängig von VCC zu wählen; Empfehlung zwischen 3 - 5 k Ω , da die OC Ports max. 200 mW schalten.

Belegung RS232 Kommunikationskabel

Der RS232-Kommunikationsanschluss ist nicht isoliert. Bitte verwenden Sie ein galvanisch getrenntes Netzteil, wenn der serielle Port des PCs nicht isoliert ist.

Stecken oder ziehen Sie den Stecker nicht bei eingeschaltetem Gerät.

Definition			Remark		
RX		D	Receive Data		
GND		Þ	Power Ground		
TX		D	Transmit Data		
OR					
NC		D	Reserved		
RX	$\bigcirc \blacksquare$	Þ	Receive Data		
GND		Þ	Power Ground		
TX	$\bigcirc \blacksquare$	D	Transmit Data		
vcc		D	Power Supply to HISU		

Adapter USB auf RS232

Artikelnummer: HL-340

Belegung des passenden Anschlusskabels:

Pin 2 - weiß-blau - TX Pin 3 - weiß-braun - RX Pin 5 - blau - GND

RS-232 Programmierkabel

Artikelnummer: RS232iSV

Belegung des passenden Anschlusskabels:

Pin 2 - weiß-blau - TX Pin 3 - weiß-braun - RX Pin 5 - blau - GND

Leiterplattenstecker Set für JMC Motoren IHSS / IHSV 57 & 60

Artikelnummer: 0071-Set-381

Lieferumfang:

1x Leiterplattenstecker 15EDGKD-2.5-10P IHSS / IHSV 1x Leiterplattenstecker 15EDGKD-2.5-05P IHSS / IHSV 1x Leiterplattenstecker 15EDGKM-3.81-02P IHSS / IHSV

Leiterplattenstecker Set für JMC Motoren IHSS / IHSV 86

Artikelnummer: 0071-Set-762

Lieferumfang:

1x Leiterplattenstecker 15EDGKD-2.5-10P IHSS / IHSV 1x Leiterplattenstecker 15EDGKD-2.5-05P IHSS / IHSV 1x Leiterplattenstecker 2EDGKM-7.62-02P IHSS / IHSV

Leiterplattenstecker 15EDGKD-2.5-10P IHSS / IHSV

Artikelnummer: 0071-250-1101

Leiterplattenstecker 15EDGKD-2.5-10P-14-00AH, RM 2.5, 10 polig, grün, IHSS / IHSV

Leiterplattenstecker 15EDGKD-2.5-05P IHSS / IHSV

Artikelnummer: 0071-250-1051

Leiterplattenstecker 15EDGKD-2.5-05P-14-00AH, RM 2.5, 5 polig, grün, IHSS/ IHSV

Leiterplattenstecker 15EDGKM-3.81-02P IHSS / IHSV

Artikelnummer: 0071-381-1021

Leiterplattenstecker 15EDGKM-3.81-02P-14-12AH, RM 3.81, 2 polig, grün, IHSS/ IHSV

Leiterplattenstecker 2EDGKM-7.62-02P IHSS / IHSV

Artikelnummer: 0071-762-1021

Leiterplattenstecker 2EDGKM-7.62-02P-14-00AH, RM 7.62, 2 polig, grün, IHSS/ IHSV

Version: 2023_08_07