신체활동 중진 및 지속적 사용을 유도하는 게임 요소 및 보상 요인의 탐색: 행동주의 이론을 중심으로

정경미	이서이	안서연	김희원	이창석	장민철
연세대학교	연세대학교	연세대학교	연세대학교	연세대학교	연세대학교
Yonsei University					
kmchung@yonsei.	seoilatte.v.v@gma	sy.ahn1228@yons	heewon4535@yo	ckdckd145@yons	wac73039@gmail
ac.kr	il.com	ei.ac.kr	nsei.ac.kr	ei.ac.kr	.com

요약문

본 연구는 신체활동 증진을 위한 설득적 인터랙션 플랫폼 개발에 앞서, 행동주의 이론에 기반하여 사용자의 신체활동 증진 및 지속적 사용을 유도하는 게임 요소 및 보상 요인을 탐색하였으며, 이를 통합하여 설득적 인터랙션 플랫폼 디자인에 대한 지침을 제안하였다.

주제어

설득적 기술, 행동주의, 학습이론, gamification

1. 서론

설득적 기술이란 사용자의 신념 또는 행동을 변화시키는 시스템 기술을 뜻한다[1]. 최근 이러한 설득적 기술 기반 교육 및 훈련 프로그램 등 개입 프로그램 및 관련 디바이스 개발이 활발히 진행 중이다[2, 3]. 그중에서도 신체활동은 객관적이고 정량화된 데이터 수집이 상대적으로 용이하다는 점에서 설득적 인터랙션을 적용하기에 적절한 분야라고 할 수 있다[4]. 그러나 이와 같은 시스템을 통한 개입은 사용자의 신체활동 증진 효과가 일시적일 뿐만 아니라, 이론적 기반이 부족한 경험적 접근 위주로 개발되었으며, 효과성을 검증한 연구 또한 부족하다는 한계가 있다[5]. 따라서 기기 사용의 지속성을 높이며, 효과적인 신체활동 변화를 이끌 수 있는 요소에 대한 체계적 탐색 및 분석이 필요한 상황이다.

이에 본 연구에서는 사람의 행동 변화에 대한 체계적인 이론인 행동심리학을 적용하여 모바일 시장 내 순위에 따른 다양한 종류의 게임을 분석함으로써 사용자의 지속적 사용을 유도하는 게임 요소 및 보상 요인을 탐색하고자 하였다. 또한, 사용자의 신체활동을 증진시킬 수 있는 새로운 요소 탐색을 위하여 기 개발되어 사용되고 있는 신체활동 프로그램의 효과성을 검증하는 실험 연구를 진행하였다. 본 연구의 결과를 바탕으로 사용자의 신체활동 증진 및 지속적 사용을 유도할 수 있는 설득적 인터랙션 디자인 지침을 제안하고자 한다.

2. 연구 1. 행동주의 이론에 기반한 게임 요소 부석

연구 1 은 행동주의 이론에 기반하여 사용자의 지속적 사용을 유도하는 게임적 요소를 파악하기 위해 실시되었다. 문헌 조사 및 현직 게임 기획/개발자를 대상으로 한 심층 인터뷰 결과를 바탕으로, 자연강화(10 문항), 보상 시스템(13 문항), 디자인 및 구성 (23 문항)을 측정하는 46 문항의 Questionnaire for Identifying Game Component(QIGC)를 개발하였다. 문항 간의 내적 일치도인 Cronbach's α는 .79 로 나타났으며, 요인 분석 결과, 자연강화에서 2 개 (내재적, 외재적), 보상 시스템에서 3 개 (예측 가능 보상, 예측 불가능 보상, 처벌), 디자인 및 구성에서 3 개(게임 관리, 게임 내 영향력 행사 가능성, 디자인)의 하위 요인이 추출되었다.

다음으로, 성인남녀 400 명을 대상으로 QIGC 를 활용하여 모바일 게임 시장 순위 상위권과 하위권 게임을 비교하였다. 2 개의 자연강화 요소, 8 개의 보상 시스템 요소와 7 개의 디자인 및 구성요소가 상위권 게임에서 유의미하게 높게 나타났으며, 상위권과 하위권 게임에 대한 이항 로지스틱 회귀분석 결과, 보상 시스템만이 유의미한 예측 변인으로 나타났다.

3. 연구 2. 행동주의 이론을 적용한 신체활동 중지 보상 요인 탐색

연구 2 는 행동주의 이론에 기반하여 사용자의 신체활동 증진에 기여하는 보상 요인을 탐색하기 위한 목적으로 진행되었다. 먼저, 기개발된 신체활동 프로그램 중 현재 가장 많이 사용되는 프로그램의 효과성을 비교하기 위해 대학생 48 명을 신체활동 프로그램 사용집단(캐시워크, 피트머니, 워커)과 비사용집단으로 무선 할당하여, 9 주간 신체활동 변화 정도를 살펴보았다. 분석 결과 신체활동 어플리케이션 사용 여부 및 사용 전/후에 따른 집단 간 신체활동의 유의미한 차이가 나타나지 않았다(F(3, 44) = .77, p = .52). 또한 붓스트랩(bootstrap) 기법의 백분위 방식[6]을 통해 각 집단 내 신체활동이

변화한 참가자의 비율을 확인한 결과, 신체활동 프로그램 사용집단의 증가한 참가자 비율(14.72%)과 비사용집단의 증가한 참가자 비율(10%)에 유의미한 차이가 없었다. 이렇듯 효과성에 대한 실험적 검증이 부재함과 동시에 개입에 대한 이론적 근거가 부족하다는 것이 현재 개발된 신체활동 프로그램의 주된 문제점 중 하나라고 할 수 있다. 이에 행동 및 학습이론에 기반한 강화 스케줄을 적용하여 신체활동 증진에 가장 효과적인 보상 요인을 탐색하고자 하였다. 현재 90 명의 참가자가 보상을 받기 위해 필요한 목표행동수준(고정비율 대 변동비율)과 목표달성에 대한 보상 제공량(고정보상 증가보상)에 따른 2x2 피험자간 설계에 참여 중이며, 개입 전/후 신체활동 수준에 집단 간 차이가 유의미한지 살펴보고자 한다. 현재 4 조건의 경우 개입 전에 비해 각각 평균 1,814 걸음, 1,442 걸음, 1,928 걸음, 1,846 걸음이 증가하였으며, 실험 종료 후 본 결과에 대해 분석할 예정이다.

4. 결론

본 연구의 목적은 신체활동 증진을 위한 설득적인터랙션 플랫폼 개발에 앞서, 행동주의 이론에기반하여 사용자의 신체활동 증진 및 지속적 사용을유도하는 게임 요소 및 보상 요인을 탐색하는 것이다.일련의 설문 및 실험 연구 결과를 종합하여, 설득적인터랙션 플랫폼의 디자인에 대한 지침을 다음과같이 제안하였다(표 1 참조).

먼저 디자인 측면에서 사용자의 지속적 사용을 유도하기 위해서는 사회적 상호작용의 기회 및 사용자 자유도 증대, 소프트웨어 및 기술의 지속적 관리, 콘텐츠 개발, 사용자 Visibility 이 고려될 필요가 있다. 또한 사용자의 지속적 사용에 기여하는 게임 및 보상 요인으로 고정간격, 변동간격, 변동비율 강화스케줄과 부적 강화, 차별 강화적 요소가 필요함을 확인하였다. 마지막으로 보상의 형태 및 종류의 다양성을 확보하고, 사용자의 목표 달성과는 무관하게 제공되는 비수반적 보상 시스템이 사용자로 하여금 서비스를 지속적으로 사용하게 하는 요인인 것으로 나타났다.

표 1. 설득적 인터랙션 플랫폼 디자인 지침

	사용자	커스터마이징
티카이 피	자유도	영향력/지배력
디자인 및 · 기술적	사회적	플레이어 선택 가능성
기물식 컴포넌트 -	상호작용	공동체 구성 및 공동 미션
右エゼニ ・	SW 및 기술	시스템 결함 해결
	관리	콘텐츠 업데이트

	사용자 피드백 반영			
·	크리크 케바	문제 해결형 미션		
	콘텐츠 개발	유저 밸런스		
	3.77 11 11.	그래픽의 조화성		
	Visibility	단순ㆍ직관적 인터페이스		
	강화스케줄	고정간격, 변동간격 , 변동비율		
보상	강화	부적 강화, 차별적 강화		
포 % 컴포넌트	처벌	정적 처벌, 부적 처벌		
つエゼニ	H 사 리아네	보상 형태 · 종류의 다양화		
	보상 다양성	비수반적 강화		

사사의 글

이 논문은 2017 년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 차세대 정보 컴퓨팅 기술개발사업의 지원을 받아 수행된 연구임(No. NRF-2017M3C4A7083529).

참고 문헌

- 1. Fogg, B.J. Persuasive technology: using computers to change what we think and do. Ubiquity 5, (2002), 89–120.
- 2. Thompson, D., Baranowski, T., Buday R., Baranowski, J., Thompson, V., Jago, R. and Griffith, M.J. Serious video games for health: How behavioral science guided the development of a serious video game. Simulation & Gaming 41, 4 (2010), 587–606.
- 3. Mair, F.S., May, C., O'Donnell, C., Finch, T., Sullivan, F. and Murray, E. Factors that promote or inhibit the implementation of ehealth systems: an explanatory systematic review. Bulletin of the World Health Organization 90, (2012), 357–364.
- 4. Calvo, R.A. and Peters, D. Positive computing: technology for wellbeing and human potential. MIT Press, (2014).
- 5. Fanning, J., Mullen, S.P. and McAuley, E. Increasing physical activity with mobile devices: a meta-analysis. Journal of Medical Internet Research 14, (2012), e161.
- 6. Efron, B. and Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, (1986), 54–75.