The altitude of a right circular cone is 15 cm and is increasing at 0.2cm/s. The radius of the base is 10 cm and is decreasing at 0.3 cm/s. Find the volume changing?

Determine the first and second partial derivatives of $z=x^3+y^3-3axy$

$$\iiint_{D} dx \, dy \, dz, \text{ where } D: x^{2} + y^{2} \leq 1, 0 \leq z \leq 1$$
 Evaluate

 $\int \int_{-\infty}^{\sqrt{4y-y^2}} x^2 dx dy$ by converting to polar coordinates Evaluate the integral

Determine the directional derivative of $\varphi = x^2 - 2y^2 + 4z^2$ at (1,1,-1) in the direction of 2i + j - k.

Obtain the scalar potential φ if F = (y+z)i + (z+x)j + (x+y)k is irrotational.

Apply Lagrange's method, solve the linear partial differential equation x(y-z)p+y(z-x)q=z(x-y)

Obtain the partial differential equation from the relation

$$F(xy+z^2, x+y+z)=0$$
 by eliminating the arbitrary function.

Obtain the Taylors series expansion for the function $f(x,y) = \sin xy$ in powers of (x-1) and (y+2).

If
$$u = x^2 - 2y, v = x + y + z, w = x - 2y + 3z$$
 then compute $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

If $u = x^2 - 2y$, v = x + y + z, w = x - 2y + 3z then compute $\frac{S(x, y, z)}{\partial(x, y, z)}$.

Evaluate $\int_{E} \sqrt{x^2 + y^2} \, dx \, dy \, dz$ where E is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.

where R be the region lying between two circles

Using Greens Theorem evaluate $\int_C [(y-\sin x)dx + \cos xdy]$ where C is plane triangle enclosed by the lines y=0, and y= $(2/\pi)x$, x=0, x= $\pi/2$

$$\iint F . ndA$$

Evaluate the surface integral $\$, for F=[x^2 , 0, z^2], S surface of the box $|x| \le 1$, $|y| \le 3$ and $0 \le z \le 2$.

Apply Charpit's method, solve $z^2 = pqxy$

Using method of Separation of variables, find the solution of the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial y}$ givent $hatu(x, 0) = 8e^{-3x}$.

- a). Determine the total work done in moving a particle in a force field given by $F = 3xy \ i - 5z \ j + 10x \ k$ along the curve $x = t^2 + 1, y = 2t^2, z = t^3$ from t=1 to t=2.
- b). A string is stretched and fastened to two points | apart. Motion is started by displacing the string into the form $y=2k(lx-x^2)$ from which it is released at time t=0. Determine the displacement of any point on the string at a distance of x from one end at a time t.

Apply finite difference method to find the solution to the Laplace's equation $u_{xx} + u_{yy} = 0$ given that Fig.

Obtain the second partial derivative with respect x and t, when $z=f(x+ct)+\varphi(x-ct)$ The altitude of a right circular cone is 15 cm and is increasing at 0.2cm/s. The radius of the base is 10 cm and is decreasing at 0.3 cm/s. Determine the volume changing?

Evaluate the double integral $f(x,y) = x^2y^2$ over the region bounded by the lines x = y, x = 0, y = 0 and y = 5.

Determine the area bounded by the parabola $y = x^2$ and the line y = x + 2.

Obtain the constants a, b, c, if the vector

$$A = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k$$
 is irrotational.

Obtain the direction derivative of $\varphi = xy + yz + zx$ at A in the direction of AB where A= (1,2,-1), B=(1,2,3).

Determine the partial differential equation from the relation $z = f_1(x+t) + f_2(x+t)$ by eliminating the arbitrary functions.

Obtain the general solution of the partial differential equation $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$

$$x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2).$$

Obtain the Taylors series expansion for the function e^{xy} in the neighborhood of (1, 1).

Determine the minimum value of $x^2 + y^2 + z^2$ subject to the condition xyz = 27

Calculate $\int_{0}^{r^3} dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$.

Determine the area of the region between y = 0 and $y = \sqrt{2 - x^2}$.

Using Greens Theorem evaluate $\int_C \left[\left| x^2 - 2xy \right| dx + \left| x^2y + 3 \right| dy \right]$ where C is rectangle with vertices (0,0), (π ,0), (π ,1) and (0,1).

$$\int (yz \ dx + zx \ dy + xy \ dz),$$

By using appropritiate theorem, evaluate $^{\varsigma}$, where S is the surface of the sphere $x^2+y^2+z^2=a^2$ in the first octant.

Apply Charpit's method to solve $z = p^2x + q^2y$

A tightly stretched string with fixed end-points x=0 and x=10 cm is initially in its equilibrium position and at every point x on it is given as initial velocity $g(x)=\lambda x(10-x)$. Determine the displacement of the string at any distance x from one end at any time t.

a). Calculate this line integral by Stokes's theorem for the given $F=[z^3,x^3,y^3]$ and C is the circle x=2, $y^2+z^2=9$ b.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$$

b). Obtain the solution of the equation $\partial x^2 \partial y^2$ which satisfies the

$$u(0,y)=u(1,y)=u(x,0)=0$$
 and $u(x,a)=\sin\frac{n\pi x}{l}$ conditions

Apply finite difference method to find the solution to the Laplace's equation $u_{xx}+u_{yy}=0$ given that Fig.

Given that $u = x^2 + y^2 + z^2$, determine the partial derivative $xu_x + yu_y + zu_z$

At a given instant the major and minor axes of an ellipse are 60 cm and 40 cm respectively and they are increasing at the rate of 2 cm/s and 3 cm/s respectively. Determine the rate at which area is increasing at the instant.

R:
$$(x, y): 0 \le y \le \sqrt{1 - x^2}$$
.

Determine the area of the region R given by

Evaluate
$$\iint_{R} (x+y)^2 dA$$
, where R is the region

, where R is the region given by $0 \le x \le 2, x \le y \le 2x$.

Check whether the vector function $\vec{v} = [x - y, y - z, z - x]$ is irrotational?

Determine
$$p$$
, if $F = (x+3y)i + (y-2z)j + (x+pz)k$ is solenoid.

Determine the partial differential equation from the relation

$$F(x + y + z, x^2 + y^2 + z^2) = 0$$
 by eliminating the arbitrary function.

Apply Lagrange's method, solve the linear partial differential equation $(x^2 - y^2 - z^2)p + 2xyq = 2xz$

Obtain the Taylors series expansion for the function $e^{x} \sin y$ in powers of x and y.

Determine the maximum and minimum values of $x^3+3xy^2-3x^2-3y^2+4$.

Compute the volume of the region in \Re^3 bounded by the paraboloid $Z = x^2 + y^2$, the cylinder $X^2 + y^2 = 9$ and the plane Z = 0.

Evaluate the double integral $\prod_{R} xy \, dx \, dy$, where R is the region bounded by the x- axis, the line y = 2x and the parabola $y = x^2 / 4a$.

Using Greens Theorem evaluate $\int_C \left| \left(x^2 y \right) dx + x^2 dy \right|$ where C is the area bounded by the equations x = y, x = 1, y = 0, y = 1.

$$\int y dx + z dy + x dz,$$

By using appropriate theorem, evaluate c where C is the curve of intersection of $x^2+y^2+z^2=a^2$ and x+z=a.

Apply Charpit's method to solve $ypq + xp^2 = 1$

An insulated rod of length L has its ends A and B maintained at 0°C and 100°C, until steady state conditions prevail. If the ends A and B is suddenly reduced to 40°C and 60°C and maintained at these values, obtain the transient distribution of the rod

- $\iint \textit{F.ndA}$ a). Evaluate the surface integral $\ ^{\varsigma}$, for F=[e^x, e^y, e^z], S surface of the box $|x| \le 1$, $|y| \le 1$ and $|z| \le 1$.
- b). A homogeneous rod of conducting material of length 300cm as its ends kept at zero temperature and the temperature initially is

$$u(x,0) = \begin{cases} x & 0 \le x \le 50 \\ 200 - x & 50 \le x \le 300 \end{cases}$$
. Obtain the temperature u(x, t) at any time t.

Apply finite difference method to find the solution to the Laplace's equation $u_{xx} + u_{yy} = 0$ given that Fig.

