

5주차: 데이터 가공

ChulSoo Park

School of Computer Engineering & Information Technology

Korea National University of Transportation

05 CHAPTER 데이터 가공

- 5.1 데이터 가공이란?
- 5.2 베이스 R을 이용한 데이터 가공
- 5.3 dplyr 라이브러리를 이용한 데이터 가공
- 5.4 대량의 데이터 가공
- 5.5 데이터 가공 사례 학습
- 요약

Preview

■ 잘 정제되고 다듬어진 데이터는 큰 가치가 있지만, 정리되지 않은 데이터 는 의미 추출이 어려울 뿐 아니라 잘못된 결론에 이르게 할 수도 있음

Preview

■ 데이터 사이언스 전체 Process에서 이번주 교육 위치

- base R의 데이터 가공 기법이 <u>인덱스 기반의 데이터 접근</u>에 기초하고 있다면, dplyr 라이브러리는 filter 혹은 select 같은 <u>입출력 관계의 함수</u>로 구현함으로써 사용자들이 보다 직관적으로 활용 가능
- 데이터 가공은 가공에 특화된 라이브러리를 사용하는 것이 더 효율적
- 탐색적 데이터 분석과정에서 시각화와 데이터 가공은 매우 긴밀하게 연결되어 시각화를 위한 효율적인 가공 기법도 필요

- 개요
 - dplyr은 R에서 데이터 프레임을 조작하는 패키지
 - 주로 데이터 전처리를 위해 많이 사용함
 - %>% 파이프 연산자를 이용하여 체인 형식의 코드 사용가능
- dplyr의 장단점
- 장점
 - 직관적이고 이해하기 쉬운 코드
 - 불필요한 객체 생성 없이 사용
 - 빠른 처리속도 및 메모리 소모가 적음
- 단점
 - 사용 가능한 함수 제한적
 - 코드 작성 방식에 있어 호불호 존재

■ gapminder 라이브러리

- 세계 각국의 기대 수명 1인당 국내총생산, 인구 데이터 등을 집계한 gapminder 데이터 셋의 일부를 담고 있음
- 이 데이터는 R을 배우고 통계학을 연습하는데 매우 유용한 기초 자료이고 어려 유형의 데이터가 데이터 프레임 형식으로 저장되어 있어 데이터 과학을 학습하는 우리들에게 매우 좋은 자료이다.

표 5-1 gapminder 데이터 프레임의 구성 항목

열이름(변수명)	변수형	내용		
country	142개 레벨의 범주형	국가명		
continent	5개 레벨의 범주형	국가가 속한 대륙		
year	int	1952~2007 관측 연도(5년 단위)		
lifeExp	num	기대 수명(평균 수명)		
рор	int	인구		
gdpPercap	num	1인당 국내총생산(물가 상승 반영)		

■ 기존에 데이터 가공을 data 축출 방법 위해 사용 했던 방법

```
Console C:/RSources/
> gapminder[gapminder$country=="Korea, Rep."&gapminder$year>1
970, c("lifeExp", "pop")]
# A tibble: 8 x 2
 lifeExp
              pop
    <db1> <int>
 62.6 33505000
2
 64.8 36436000
3
  67.1 39326000
 69.8 41622000
 72.2 43<u>805</u>450
6
 74.6 46173816
 77.0 47<u>969</u>150
    78.6 49044790
> apply(gapminder[gapminder$country=="Korea, Rep.",c("lifeEx
p","pop","gdpPercap")],2,mean)
    lifeExp
                     pop gdpPercap
     65.001 36499386.333 8217.318
>
```


- 샘플과 속성 추출
 - select 함수 이용 : library를 사용해 dplyr 패키지를 부착(메모리에 load해야햠)
 - 열을 지정할 때 " " 없이 열 이름을 그대로 사용할 수 있어 편리

R Documentation select {dplyr}

Subset columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-

language that makes it easy to refer to variables ba Usage selects all columns from a on the left to f on the rig predicate functions like <u>is.numeric</u> to select variable select(.data, ...)

Arguments

- A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See *Methods*, below, for more details.
- <tidy-select> One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x:y can be used to select a range of variables.

- 샘플과 속성 추출
 - select 함수 이용 : library를 사용해 dplyr 패키지를 부착(메모리에 load해야햠)
 - 열을 지정할 때 \$기호나 " " 없이 열 이름을 그대로 사용할 수 있어 편리

```
Console C:/RSources/
> select(gapmaider, country,year,lifeExp)
Error in select(gapmaider, country, year, lifeExp) :
  함수 "select"를 찾을 수 없습니다
                                    Console C:/RSources/
> library(dplyr)
                                   > select(gapminder, country,year,lifeExp)
                                   # A tibble: 1,704 x 3
다음의 패키지를 부착합니다: 'dplyr'
                                      country
                                                   year lifeExp
                                      <fct>
                                                   <int>
                                                           <db1>
The following objects are masked f
                                    1 Afghanistan 1952
                                                           28.8
                                    2 Afghanistan 1957
                                                            30.3
    filter, lag
                                                           32.0
                                    3 Afghanistan 1962
                                    4 Afghanistan 1967
                                                           34.0
The following objects are masked f
                                    5 Afghanistan <u>1</u>972
                                                            36.1
                                    6 Afghanistan
                                                   1977
                                                            38.4
    intersect, setdiff, setequal,
                                    7 Afghanistan
                                                   1982
                                                            39.9
                                    8 Afghanistan
                                                   1987
                                                           40.8
                                    9 Afghanistan
                                                   1992
                                                           41.7
                                   10 Afghanistan 1997
                                                            41.8
                                   # ... with 1,694 more rows
```


- 샘플과 속성 추출
 - 특정 샘플(행)을 추출할 때는 filter 함수 사용
 - 조건식 구성은 base R과 유사하나 함수 내에서 인덱싱을 위해 데이터 프레임의 이름을 매번 입력하지 않아도 되므로 명령어가 간결

```
Console C:/RSources/
> filter(gapminder,country=="Korea, Rep.")
# A tibble: 12 x 6
   country continent
                              Console C:/RSources/ △
   <fct>
              <fct>
                             > gapminder[gapminderscountry=="Korea, Rep.", c("pop")]
 1 Korea, Rep. Asia
                             # A tibble: 12 x 1
 2 Korea, Rep. Asia
                                     pop
 3 Korea, Rep. Asia
                                   <int>
 4 Korea, Rep. Asia
                              1 20947571
 5 Korea, Rep. Asia
                              2 22611552
                              3 26420307
 6 Korea, Rep. Asia
                              4 30131000
 7 Korea, Rep. Asia
                              5 33505000
 8 Korea, Rep. Asia
                              6 36436000
 9 Korea, Rep. Asia
                              7 39326000
10 Korea, Rep. Asia
                              8 41622000
11 Korea, Rep. Asia
                              9 43805450
12 Korea, Rep. Asia
                             10 46173816
                             11 47969150
>
                             12 49044790
```


- 행/열 단위의 연산
 - group_by 함수를 이용하면 데이터 프레임에 포함된 범주형 속성을 활 용해 전체 데이터를 그룹으로 분류 가능
 - 보통 summarise 함수를 연이어 사용해 그룹별 통계 지표를 한번에 산출

```
Console C:/RSources/
> summarize(gapminder, pop_avg=mean(pop))
# A tibble: 1 x 1
    pop_avg
      <db1>
1 29601212
> summarize(group_by(gapminder, continent),
                                             pop_avg=me
an(pop))
# A tibble: 5 x 2
  continent
              pop_avg
* <fct>
                 <db7>
1 Africa
             9916003.
2 Americas 24504795.
            77038722.
3 Asia
4 Europe
            17169765.
5 Oceania
             8874672.
> summarize(group_by(gapminder, continent,country),
p_avg=mean (pop))
 summarise() has grouped output by 'continent'. You c
an override using the `.groups` argument.
# A tibble: 142 x 3
# Groups:
            continent [5]
   continent country
                                          pop_avg
   <fct>
             <fct>
                                            <db1>
 1 Africa
             Algeria
                                       19875406.
 2 Africa
             Angola
                                        7309390.
 3 Africa
                                         4017497.
              Benin
 4 Africa
                                         971186.
              Botswana
             Burkina Faso
                                         7548677.
 5 Africa
 6 Africa
             Burundi
                                         4651608.
 7 Africa
                                         9816648.
             Cameroon
             Central African Republic
 8 Africa
                                        2560963
 9 Africa
                                         5329256.
             Chad
10 Africa
                                          361684.
             Comoros
# ... with 132 more rows
```


- %>% 연산자를 이용한 연속 처리
 - %>% 연산자를 사용해 일련의 가공 작업을 연결

```
Console C:/RSources/
> summarize(group_by(gapminder, continent,country), pop_a
vg=mean(pop))
summarise()` has grouped output by 'continent'. You can
override using the `.groups` argument.
# A tibble: 142 x 3
# Groups:
            continent [5]
                                                   Console C:/RSources/
   continent country
                                          pop_avg
                                                  > gapminder %>%group_by(continent,country) %>%summarise(p
   <fct>
             <fct>
                                            <db1>
                                                  op_avg=mean(pop))
 1 Africa
             Algeria
                                       19875406.
                                                   summarise() has grouped output by 'continent'. You can
 2 Africa
             Angola
                                         7309390.
                                                   override using the `.groups` argument.
 3 Africa
             Benin
                                         4017497.
                                                  # A tibble: 142 x 3
 4 Africa
                                         971186.
             Botswana
                                                  # Groups:
                                                             continent [5]
             Burkina Faso
 5 Africa
                                        7548677.
                                                     continent country
                                                                                            pop_avg
             Burundi
 6 Africa
                                        4651608.
                                                     <fct>
                                                                <fct>
                                                                                              <db7>
 7 Africa
                                        9816648.
             Cameroon
                                                   1 Africa
                                                                Algeria
                                                                                          19875406.
 8 Africa
             Central African Republic
                                        2560963
                                                   2 Africa
                                                                Angola
                                                                                           7309390.
 9 Africa
             Chad
                                         5329256.
                                                   3 Africa
                                                                                           4017497.
                                                                Benin
10 Africa
                                          361684.
             Comoros
                                                                                            971186.
                                                   4 Africa
                                                                Botswana
# ... with 132 more rows
                                                   5 Africa
                                                                Burkina Faso
                                                                                           7548677.
                                                   6 Africa
                                                                Burundi
                                                                                           4651608.
                                                   7 Africa
                                                                                           9816648.
                                                                Cameroon
                                                                                           2560963
                                                   8 Africa
                                                                Central African Republic
                                                   9 Africa
                                                                Chad
                                                                                           5329256.
                                                  10 Africa
                                                                                            361684.
                                                                Comoros
                                                    ... with 132 more rows
```

- %>% 연산자를 이용한 연속 처리
 - %>% 연산자를 사용해 일련의 가공 작업을 연결

```
Console C:/RSources/
 tmp1=filter(gapminder,country=="Korea, Rep.")
 tmp2=select(tmp1, country, year, lifeExp)
 tmp3=apply(tmp2[, c("lifeExp")],2,mean)
 tmp3
lifeExp
65.001
> gapminder %>% filter(country=="Korea, Rep.")%>%select(c
ountry, year, lifeExp)%>% summarise(lifeExp_avg=mean(lifeEx
p))
# A tibble: 1 x 1
  lifeExp_avg
        \langle db 7 \rangle
         65.0
```


- Kaggle에 있는 avocado 데이터 활용
 - https://www.kaggle.com/neuromusic/avocado-prices
 - 캐글(Kaggle) 전 세계 과학자들이 특정 문제의 해결법을 놓고 경쟁을 벌이는 온라 인 플랫폼이다. 데이터 과학자들이 기계 학습과 통계학을 기본으로 다양한 전략과 알고리즘을 구사하여 경쟁 모델을 통해 문제 해결 방법을 찾아 가도록 하였다.

- 캐글(Kaggle)은 2010년 설립된 빅데이터 솔루션 대회 플랫폼 회사이다. 21 세기의 가장 섹시한 직업으로 데이터 사이언티스트가 꼽힐 만큼[하버드 비즈니스 리뷰] 빅 데이터(Big Data)가 사회 및 기업 환경에서 큰 화두로 떠오르면서 캐글의 규모도 같이 성장하게 되었고, 지난 2017년 3월, 구글은 캐글을 인수하기에 이르렀다.
- 기업 및 단체에서 경품과 상을 걸고 데이터와 해결 과제를 등록하면, 데이터 사이언티스트들이 이를 해결하기 위해 모델을 개발하고 경쟁하게 되는 시스템이다
- 사이트에 들어가 보면, 엄청나게 많은 도전 과제들이 기다리고 있는 것을 확인 할 수 있다. 누구나 이 중 관심있는 과제를 골라서 경쟁에 참여할 수 있다. 다만, 큰 상금이 걸린 과제들은 대부분 난이도가 매우 높다

출처: 데이터 사이언스 개론, p27

https://www.kaggle.com/neuromusic/avocado-prices 에서 avocado.csv 다운로드

■ 메모장으로 data 확인

🧻 avocado.csv - Windows 메모장

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

,Date,AveragePrice,Total Volume,4046,4225,4770,Total Bags,Small Bags,Large Bags,XLarge Bags,type,year,region 0,2015-12-27,1.33,64236.62,1036.74,54454.85,48.16,8696.87,8603.62,93.25,0.0,conventional,2015,Albany 1,2015-12-20,1.35,54876.98,674.28,44638.81,58.33,9505.56,9408.07,97.49,0.0,conventional,2015,Albany 2,2015-12-13,0.93,118220.22,794.7,109149.67,130.5,8145.35,8042.21,103.14,0.0,conventional,2015,Albany 3,2015-12-06,1.08,78992.15,1132.0,71976.41,72.58,5811.16,5677.4,133.76,0.0,conventional,2015,Albany 4,2015-11-29,1.28,51039.6,941.48,43838.39,75.78,6183.95,5986.26,197.69,0.0,conventional,2015,Albany 5,2015-11-22,1.26,55979.78,1184.27,48067.99,43.61,6683.91,6556.47,127.44,0.0,conventional,2015,Albany 6,2015-11-15,0.99,83453.76,1368.92,73672.72,93.26,8318.86,8196.81,122.05,0.0,conventional,2015,Albany 7,2015-11-08,0.98,109428.33,703.75,101815.36,80.0,6829.22,6266.85,562.37,0.0,conventional,2015.Albany 8,2015-11-01,1.02,99811.42,1022.15,87315.57,85.34,11388.36,11104.53,283.83,0.0,conventional,2015,Albany 9,2015-10-25,1.07,74338.76,842.4,64757.44,113.0,8625.92,8061.47,564.45,0.0,conventional,2015,Albany 10,2015-10-18,1.12,84843.44,924.86,75595.85,117.07,8205.66,7877.86,327.8,0.0,conventional,2015,Albany 11,2015-10-11,1.28,64489.17,1582.03,52677.92,105.32,10123.9,9866.27,257.63,0.0,conventional,2015,Albany 12,2015-10-04,1.31,61007.1,2268.32,49880.67,101.36,8756.75,8379.98,376.77,0.0,conventional,2015,Albany 13,2015-09-27,0.99,106803.39,1204.88,99409.21,154.84,6034.46,5888.87,145.59,0.0,conventional,2015,Albany 14,2015-09-20,1.33,69759.01,1028.03,59313.12,150.5,9267.36,8489.1,778.26,0.0,conventional,2015,Albany 15,2015-09-13,1.28,76111.27,985.73,65696.86,142.0,9286.68,8665.19,621.49,0.0,conventional,2015,Albany 16,2015-09-06,1.11,99172.96,879.45,90062.62,240.79,7990.1,7762.87,227.23,0.0,conventional,2015,Albany 17,2015-08-30,1.07,105693.84,689.01,94362.67,335.43,10306.73,10218.93,87.8,0.0,conventional,2015,Albany 18,2015-08-23,1.34,79992.09,733.16,67933.79,444.78,10880.36,10745.79,134.57,0.0,conventional,2015,Albanv

■ 다운로드 data R에서 read 및 데이터 프레임 구성 확인(str)

```
Console C:/RSources/
> avocado <- read.csv("c:/rdata/avocado.csv", header=TRU</pre>
E, sep=",")
> str(avocado)
'data.frame':
               18249 obs. of 14 variables:
                : int 0 1 2 3 4 5 6 7 8 9 ...
 $ X
                : chr "2015-12-27" "2015-12-20" "2015-12-
 $ Date
13" "2015-12-06" ...
 $ AveragePrice: num 1.33 1.35 0.93 1.08 1.28 1.26 0.99
 0.98 1.02 1.07 ...
 $ Total.Volume: num 64237 54877 118220 78992 51040 ...
 $ x4046
                : num 1037 674 795 1132 941 ...
 $ x4225
               : num 54455 44639 109150 71976 43838 ...
 $ x4770
               : num 48.2 58.3 130.5 72.6 75.8 ...
 $ Total.Bags : num 8697 9506 8145 5811 6184 ...
 $ Small.Bags : num 8604 9408 8042 5677 5986 ...
 $ Large.Bags : num 93.2 97.5 103.1 133.8 197.7 ...
 $ XLarge.Bags : num 0 0 0 0 0 0 0 0 0 ...
                : chr "conventional" "conventional" "conv
 $ type
entional" "conventional" ...
                : int 2015 2015 2015 2015 2015 2015 2015
 $ year
 2015 2015 2015 ...
 $ region : chr "Albany" "Albany" "Albany" "Albany"
■ avocado.csv - Windows 메모장
Date, Average Price, Total Volume, 4046, 4225, 4770, Total Bags, Small Bags, Large Bags, XLarge Bags, type, year, region,
```

0,2015-12-27,1.33,64236.62,1036.74,54454.85,48.16,8696.87,8603.62,93.25,0.0,conventional,2015,Albany 1,2015-12-20,1.35,54876.98,674.28,44638.81,58.33,9505.56,9408.07,97.49,0.0,conventional,2015,Albany 2,2015-12-13,0.93,118220.22,794.7,109149.67,130.5,8145.35,8042.21,103.14,0.0,conventional,2015,Albany

■ Avocado 데이터 구조 파악

- 그룹 단위 통계(1)
 - 경향 도출을 위해 총 판매량과 평균 가격 속성을 지역에 따라 구분하여 각각 요약
 - dplyr 라이브러리의 group_by와 summarize 함수 사용

```
Console C:/RSources/
> avg_data <- avocado %>% group_by(region) %>% summarise
(v_avg=mean(Total.Volume),p_avg=mean(AveragePrice))
> avg_data
# A tibble: 54 \times 3
   region
                           v_avg p_avg
 * <chr>
                            <db1> <db1>
 1 Albany
                          47538.
                                   1.56
 2 Atlanta
                         262145.
                                   1.34
   BaltimoreWashington
                         398562.
                                   1.53
   Boise
                          42643.
                                   1.35
   Boston
                         287793.
                                   1.53
  BuffaloRochester
                                   1.52
                          67936.
 7 California
                        3044324.
                                   1.40
   Charlotte
                         105194.
                                   1.61
   Chicago
                          395569.
                                   1.56
10 CincinnatiDayton
                         131722.
                                   1.21
  ... with 44 more rows
>
```


■ 그룹 단위 통계(2) : 지역별 data를 시계열 형식의 연도별 세분화

```
Console C:/RSources/
> (avg_data = avocado %>% group_by(region,year) %>% summa
rise(v_avg=mean(Total.Volume),p_avg=mean(AveragePrice)))
`summarise()` has grouped output by 'region'. You can ove
rride using the `.groups` argument.
# A tibble: 216 x 4
# Groups: region [54]
   region
                        year v_avg p_avg
   <chr>
                       <int> <db1> <db1>
 1 Albany
                       2015 38749. 1.54
 2 Albany
                        2016 50619. 1.53
 3 Albany
                        2017 49355. 1.64
 4 Albany
                        2018 64249. 1.44
 5 Atlanta
                        2015 223382.
                                     1.38
 6 Atlanta
                        2016 272374. 1.21
 7 Atlanta
                        2017 271841. 1.43
                        2018 342976. 1.29
 8 Atlanta
9 BaltimoreWashington <u>2</u>015 <u>390</u>823. 1.37
10 BaltimoreWashington <u>2</u>016 <u>393</u>210. 1.59
 ... with 206 more rows
```


■ 그룹 단위 통계(3) : 지역별 ,년도별 및 유기농 여부를 기준으로 세분화

```
Console C:/RSources/
> avg_data = avocado %>% group_by(region,year, type) %>%
 summarise(v_avg=mean(Total.Volume),p_avg=mean(AveragePri
ce))
summarise()` has grouped output by 'region', 'year'. You
 can override using the `.groups` argument.
> avg_data
# A tibble: 432 x 5
# Groups: region, year [216]
   region year type v_avg p_avg 
<chr> <int> <chr> <db1> <db1>
 1 Albany <u>2</u>015 conventional <u>76</u>209. 1.17
 2 Albany <u>2</u>015 organic <u>1</u>289. 1.91
 3 Albany <u>2</u>016 conventional <u>99</u>453. 1.35
 4 Albany <u>2</u>016 organic
                            <u>1</u>784. 1.72
 5 Albany 2017 conventional <u>95</u>779. 1.53
 6 Albany <u>2</u>017 organic <u>2</u>931. 1.75
 7 Albany <u>2</u>018 conventional <u>124</u>161.
                                           1.34
 8 Albany 2018 organic 4338.
                                           1.53
 9 Atlanta <u>2</u>015 conventional <u>440</u>346. 1.05
10 Atlanta <u>2</u>015 organic
                                   <u>6</u>417. 1.71
# ... with 422 more rows
>
```


- 그룹 단위 통계(4)
 - 방대한 샘플 데이터로부터 지역, 연도, 유기농 재배 여부를 기준으로 총 판매량과 평
 균 가격의 요약된 통계를 얻음
 - 일반적으로 데이터 가공에 통계적 분석으로 기본적인 데이터의 특성을 파악한다.
 - 다음으로 진행하는 것이 시각화이다.
 - 이번 장에서는 시각화의 결과만 확인하고 제6장에서 시각화 방법을 학습한 예정임

■ 시각화

■ 시각화

Console C:/RSources/	4	
<pre>> avg_data <- avocado %>% group_by(region) % (v_avg=mean(Total.Volume),p_avg=mean(Average)</pre>		ırise
<pre>> write.table(avg_data, file="c:/rdata/avoca a.txt",quote = F)</pre>	do_regio	n_dat

NO	region	v_avg	p_avg
1	Albany	47,537.87	1.56
2	Atlanta	262,145.32	1.34
3	Baltimore Washington	398,561.89	1.53
4	Boise	42,642.57	1.35
5	Boston	287,792.85	1.53
6	BuffaloRochester	67,936.30	1.52
20	Indianapolis	89,536.66	1.31
21	Jacksonville	85,177.53	1.51
22	LasVegas	160,878.42	1.38
47	Southeast	1,820,231.98	1.40
48	Spokane	46,051.11	1.45
49	StLouis	94,890.04	1.43
50	Syracuse	32,374.76	1.52
51	Tampa	195,279.70	1.41
52	TotalUS	17,351,302.31	1.32
53	West	3,215,322.95	1.27
54	WestTexNewMexico	431,408.48	1.26

■ 시각화

```
Console C:/RSources/ > avg_data = avocado %>% group_by(region, year, type) %>% summarise
(v_avg=mean(Total.Volume), p_avg=mean(AveragePrice))
`summarise()` has grouped output by 'region', 'year'. You can overr
ide using the `.groups` argument.
> avg_data %>% filter(region != "TotalUS") %>% ggplot(aes(year, v_a
vg, col=type)) + geom_line()+facet_wrap(~region)
```


- 데이터 정렬과 검색(2)
 - 정렬과 검색을 통해 데이터를 자세히 관찰 가능
 - arrange 함수: arrange() orders the rows of a data frame by the values of selected columns.
 - arrange 함수를 사용해 데이터를 총 판매량의 평균 가격을 기준으로 정렬하면, 판매량 순위는 물론 최대치를 기록한 연도와 지역을 알아낼 수 있음

```
Console C:/RSources/
> arrange(avg_data, desc(v_avg))
# A tibble: 432 x 5
# Groups: region, year [216]
   region
               year type
                                     v_avg p_avg
   <chr>
                                       <db1> <db1>
                <int> <chr>
 1 TotalUS 2018 conventional 42125533. 1.06
              <u>2</u>016 conventional 34<u>043</u>450. 1.05
2 TotalUS
 3 TotalUS
           <u>2</u>017 conventional 33<u>995</u>658. 1.22
4 Totalus
            2015 conventional 31224729. 1.01
5 SouthCentral 2018 conventional
                                    7465557. 0.806
 6 West
                                    7451445. 0.981
                2018 conventional
 7 California 2018 conventional
                                    6786962. 1.08
               <u>2</u>016 conventional
                                    6404892. 0.916
8 West
 9 West 2017 conventional
                                    6279482. 1.10
10 California <u>2</u>016 conventional
                                    6<u>105</u>539. 1.05
# ... with 422 more rows
>
```


- 데이터 정렬과 검색(2)
 - 데이터 셋에 중간 통계 값이 포함된 경우도 있으므로 주의가 필요
 - 최댓값의 검색은 max 함수를 사용할 수도 있지만 속성값을 확인할 수 있는 arrange 함수를 사용하는 것이 더 안전

- 데이터 정렬과 검색(2)
 - 활용 사례

Thilsung Executive Information System

- 데이터 정렬과 검색(2)
 - 활용 사례

일자	2018년 실적	2019년		계획 및 동기대비	
		사업계획	실 적	계획비	전년비
01월	7,355	7,477	7,429	99.4%	101.0%
02%	7,213	7,354	6,997	95.1%	97.0%
03월	8,140	8,174	7,683	94.0%	94.4%
4월수량	9,034	8,578	9,467	110.4%	104.8%
4월금액	10,635	12,967	13,692	105.6%	128.7%
05월	8,504	8,494			
06월	8,691	8,705			
07월	8,559	8,526			
08월	8,011	8,328			
09%	8,226	8,220			
10월	8,233	8,644			
11월	8,270	8,221			
12월	8,168	7,978			
04월 수량	7,643	7,904	7,471	94.5%	97.7%
누계 급액	255,490		260,316	0.0%	101.9%
총계	8,176	8,230	7,471	90.8%	91.4%

- Date형 데이터의 활용(1)
 - Date형 속성은 1개월은 31일, 1년은 12개월로 구성되어 일반 숫자형처럼 처리할 경우 데이터 간의 간격이 일정하지 않아 시각화나 모델링 단계에서 잘못 적용될 수 있으므로 특별 처리 필요
 - 속성 하나에 세 가지 속성(연-월-일) 정보를 포함하는 것이므로 적절히 가공하면 활용하면 데이터를 좀 더 세밀하게 분석할 수 있음

```
Console C:/RSources/
                                                                > head(avocado,6)
          Date AveragePrice Total.Volume
                                                       x4225
                                            x4046
   2015-12-27
                                 64236.62 1036.74
                                                   54454.85
                       1.33
    2015-12-20
                       1.35
                                 54876.98 674.28
                                                   44638.81
                                118220.22 794.70 109149.67
    2015-12-13
                       0.93
                       1.08
   2015-12-06
                                78992.15 1132.00
                                                   71976.41
    2015-11-29
                       1.28
                                 51039.60 941.48
                                                   43838.39
   2015-11-22
                       1.26
                                 55979.78 1184.27
                                                   48067.99
   X4770 Total.Bags Small.Bags Large.Bags XLarge.Bags
  48.16
            8696.87
                       8603.62
                                     93.25
2 58.33
            9505.56
                       9408.07
                                     97.49
                                                     0
3 130.50
            8145.35
                       8042.21
                                    103.14
4 72.58
            5811.16
                       5677.40
                                    133.76
5 75.78
            6183.95
                       5986.26
                                    197.69
6 43.61
            6683.91
                       6556.47
                                    127.44
          type year region
1 conventional 2015 Albany
2 conventional 2015 Albany
3 conventional 2015 Albany
4 conventional 2015 Albany
5 conventional 2015 Albany
6 conventional 2015 Albany
```


- Date형 데이터의 활용(2)
 - avocado 판매 정보를 이번에는 연도별 평균 대신 월별 평균으로 요약
 - Date형 속성인 Date에서 month를 추출하려면 lubridate 라이브러리에서 제공하는 month 함수 사용

```
Console C:/RSources/
> library(lubridate)
> avg_data = avocado %>% group_by(region,year, month(Date),type) %
>% summarise(v_avg=mean(Total.Volume),p_avg=mean(AveragePrice))
`summarise()` has grouped output by 'region', 'year', 'month(Dat
e)'. You can override using the `.groups` argument.
> head(avg_data,10)
# A tibble: 10 x 6
# Groups: region, year, month(Date) [5]
   region vear
                 month(Date)` type
                                          v_avg p_avg
   <chr> <int>
                        <db1> <chr>
                                             <db1> <db1>
                              conventional 42932.
 1 Albany 2015
                                                   1.17
 2 Albany 2015
                            1 organic
                                            1198. 1.84
 3 Albany 2015
                            2 conventional 52343.
                                                   1.03
 4 Albany 2015
                                                   1.76
                            2 organic
                                            1334.
                            3 conventional <u>50</u>659.
 5 Albany 2015
                                                   1.06
 6 Albany 2015
                                            1444. 1.83
                            3 organic
 7 Albany
          <u>2</u>015
                            4 conventional <u>48</u>594. 1.17
                                            1402. 1.89
 8 Albany
          2015
                            4 organic
                            5 conventional 97216. 1.26
 9 Albany
          2015
                            5 organic
10 Albany 2015
                                            1836.
                                                    1.94
>
```


- Date형 데이터의 활용(3)
 - avocado 판매 정보를 이번에는 연도별, 월별 평균 대신 일별 평균으로 요약
 - Date형 속성인 Date에서 day 를 추출하려면 lubridate 라이브러리에서 제공하는 day 함수

```
Console C:/RSources/
> avg_data = avocado %>% group_by(region, year, month(Date), day(Dat
e), type) %>% summarise(v_avg=mean(Total.Volume),p_avg=mean(Average
Price))
`summarise()` has grouped output by 'region', 'year', 'month(Dat
e)', 'day(Date)'. You can override using the `.groups` argument.
> head(avg_data,10)
# A tibble: 10 x 7
# Groups: region, year, month(Date), day(Date) [5]
   region year `month(Date)`
                              day(Date) type v_avg p_avg
   <chr> <int>
                        <db7>
                                     <int> <chr> <db1> <db1>
 1 Albany 2015
                                         4 convent~ 40873.
                                                            1.22
                             1
 2 Albany <u>2</u>015
                                         4 organic <u>1</u>374.
                                                            1.79
 3 Albany <u>2</u>015
                                        11 convent~ 41195.
                                                            1.24
 4 Albany 2015
                                                            1.77
                                        11 organic <u>1</u>183.
 5 Albany 2015
                                                            1.17
                                        18 convent~ 44511.
                             1
 6 Albany 2015
                                        18 organic 1118.
                                                            1.93
                             1
 7 Albany 2015
                                        25 convent~ 45148.
                                                            1.06
                             1
 8 Albany 2015
                                        25 organic
                                                   1116.
                                                            1.89
                             2
                                                            0.99
 9 Albany 2015
                                         1 convent~ 70874.
                             2
10 Albany 2015
                                                     <u>1</u>229.
                                                             1.83
                                         1 organic
>
```


Thank you

