Матрицы. Определитель

ЛЕКЦИЯ 6

Операции над матрицами

Матрицу можно повернуть, поменять строки со столбцами. Мы будем говорить, что транспонировали матрицу.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

Операции над матрицами

Матрицы умножают по правилу «строка на столбец». Мы можем пользоваться им и не для квадратных матриц.

Пример

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -5 & 6 \\ 7 & -8 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \cdot (-5) + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot (-8) \\ 3 \cdot (-5) + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot (-8) \end{pmatrix} =$$

$$\begin{pmatrix} 9 & -10 \\ 13 & -14 \end{pmatrix}$$

Пример

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 & 4 & -1 \\ -5 & 9 & -2 & 6 \\ 5 & -3 & 5 & -8 \end{pmatrix} =$$

$$\begin{pmatrix} 8 & 8 & 15 & -13 \\ 17 & 23 & 36 & -22 \end{pmatrix}$$

Насколько это похоже на обычное умножение?

Не любые матрицы можно перемножить.

$$\binom{1}{2} \cdot \binom{3}{6} \quad \frac{4}{7} \quad \frac{5}{8} = ?$$

Насколько это похоже на обычное умножение?

Умножение матриц, вообще говоря, не коммутативно.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -5 & 6 \\ 7 & -8 \end{pmatrix} = \begin{pmatrix} 9 & -10 \\ 13 & -14 \end{pmatrix}$$

$$\begin{pmatrix} -5 & 6 \\ 7 & -8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 13 & 14 \\ -17 & -18 \end{pmatrix}$$

А есть аналог единицы?

При умножении на матрицу $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

матрица 3 на 3 не изменится.

M для любого n

Матрица
$$E=\begin{pmatrix}1&0&\cdots&0\\0&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\0&0&\cdots&1\end{pmatrix}$$
 называется

единичной. Умножение на неё справа или слева не меняет матрицу. Единичная матрица квадратная.

А обратная?

Для любого действительного числа не равного нулю есть обратное число. Если $a \neq 0$, то $a \cdot \frac{1}{a} = 1$.

Бывают ли обратные матрицы?

Иногда бывают!

$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

А у матрицы
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 обратной

матрицы нет! На какую матрицу 3 на 3 её не умножай, единичная матрица не получится.

Как найти обратную матрицу?

Может помочь метод Гаусса

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{pmatrix}$$

Обратная произведению матрица

Для чисел верно $\frac{1}{ab} = \frac{1}{a} \cdot \frac{1}{b}$. А для матриц?

Есть похожее, но не полностью аналогичное свойство:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Действительно, $B^{-1}A^{-1}AB =$

$$B^{-1}(A^{-1}A)B = B^{-1}EB = B^{-1}B$$

Связь умножения и транспонирования

$$(AB)^T = B^T A^T$$

Это свойство не сложно проверить, но причина его в том, что умножение матриц взялось не с потолка. Мы увидим ее позже.

Умножение заменяет другие операции

Решая системы уравнений, мы умножали строки матрицы на число, прибавляли к одной строке другую, умноженную на число, меняли строки местами. Эти операции можно заменить умножением матрицы на матрицы специального вида.

Умножение строки на число

Умножение i-той строки матрицы на число λ эквивалентно умножению матрицы на матрицу вида слева

```
\begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}
```

Умножение строки на число

Эта матрица только выглядит сложно, она очень похожа на единичную — на диагонали стоят единицы, кроме места i, там стоит число λ

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 6 & 8 \end{pmatrix}$$

Умножение столбца на число

Умножение столбца матрицы на число тоже можно заменить умножением на специальную матрицу. Это делается при помощи той же матрицы, что и умножение строки на число, но только умножением справа.

Умножение столбца на число

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 8 \end{pmatrix}$$

Поменять строки местами

Тоже можно при помощи умножение на специальную матрицу

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$

Для любого n

Нужно умножить слева на единичную матрицу, у которой поменяны местами те же строки, что нужно поменять местами в исходной матрице. Скажем, умножение слева на матрицу

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 меняет в матрице 3 на 3 вторую и третью строки.

Поменять столбцы местами

Можно, умножая на такую же матрицу справа.

Это ещё одна иллюстрация некоммутативности умножения матриц!

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

Прибавить к строке матрицы строку, умноженную на число

Тоже можно, умножая на матрицу!

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 5 & 8 \end{pmatrix}$$

Мы прибавили ко второй строке первую, умноженную на 2.

А в общем виде?

```
E_{\lambda} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}
```

А в общем виде?

Чтобы прибавить к строке с номером i строку с номером j, умноженную на число λ , надо матрицу умножить слева на единичную матрицу, в которой на пересечении строки i и столбца j число 0 заменено на число λ .

Прибавить к столбцу матрицы столбец, умноженный на число

```
E_{\lambda}^{T} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & \cdots & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}
```

Почти так же

Чтобы прибавить к столбцу с номером i столбец с номером j, умноженный на число λ , надо матрицу умножить справа на единичную матрицу, в которой на пересечении столбца i и строки j число 0 заменено на число λ . Это, кстати, следует из равенства

$$(E_{\lambda}A^T)^T = AE_{\lambda}^T$$

Определитель

$$\det(a) = a$$

$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}a_{22}a_{33} +$$

$$a_{21}a_{32}a_{13} + a_{31}a_{12}a_{33} - a_{21}a_{12}a_{33} -$$

$$a_{11}a_{32}a_{23} - a_{31}a_{22}a_{13}$$

Схема для вычисления определителя

$$\det\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

А можно сделать так

Определитель можно «раскрыть» по столбцу или строке.

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot 4 - 2 \cdot 3$$

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} \frac{1}{3} & \frac{2}{4} \end{pmatrix} - 2 \cdot \det\begin{pmatrix} \frac{1}{3} & \frac{2}{4} \end{pmatrix}$$

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot \det\begin{pmatrix} \frac{1}{3} & \frac{2}{4} \end{pmatrix} - 3 \cdot \det\begin{pmatrix} \frac{1}{3} & \frac{2}{4} \end{pmatrix}$$

А можно сделать так

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 1 \cdot 5 \cdot 9 - 1 \cdot 8 \cdot 6 + 2 \cdot$$

По любой строке

«Раскрывать» определитель можно по любой строке. Удобно выбирать строку, где больше всего нулей. Важно только следить за знаками. Знак каждого слагаемого равен $(-1)^{i+j}$, где i — номер строки элемента, j — номер столбца.

По любому столбцу

«Раскрывать» определитель можно по любому столбцу. Удобно выбирать столбец, где больше всего нулей. Важно только следить за знаками. Знак каждого слагаемого равен $(-1)^{i+j}$, где i — номер строки элемента, j — номер столбца.

Пример

 $\det E = 1$

$$\det\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = 1 \cdot 1 \cdot \dots \cdot 1 = 1$$

Пример

$$\det \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} =$$

$$= a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}$$

Такая матрица называется диагональной

Теорема

$$\det(A \cdot B) = \det A \cdot \det B$$

Примеры

$$\det(2 \cdot 3) = 2 \cdot 3$$

$$\det\begin{pmatrix}\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix} \cdot \begin{pmatrix}-5 & 6 \\ 7 & -8\end{pmatrix}\end{pmatrix} =$$

$$\det\begin{pmatrix}9 & -10 \\ 13 & -14\end{pmatrix} = -126 + 130 = 4$$

$$\det\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix} = 4 - 6 = -2$$

$$\det\begin{pmatrix}-5 & 6 \\ 7 & -8\end{pmatrix} = 40 - 42 = -2$$

$$\det\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix} \cdot \det\begin{pmatrix}-5 & 6 \\ 7 & -8\end{pmatrix} = 4$$

Кое-что про обратную матрицу

Если $\det A = 0$, то $\det AB = 0$, какую матрицу B не взять. Это значит, что если $\det A = 0$, то у неё не может быть обратной матрицы.

Оказывается, если $\det A \neq 0$, то обратная матрица обязательно есть.

В чём смысл определителя?

Чтобы понять, в чём смысл определителя матрицы, нужно вспомнить, откуда взялись матрицы. При переходе от одного базиса к другому мы записываем матрицу перехода — матрицу из векторов столбцов одного базиса, записанных в координатах в другом базисе.

В чём смысл определителя?

Если матрица — это набор из n векторстолбцов, то определитель – это почти n —мерный объём параллелепипеда, построенного на этих векторах. Разница только в том, что определитель задает ориентированный объём, т.е. объём со знаком. Ориентированный объём зависит от порядка векторов и может быть отрицательным.

Пример

Пример

$$\det \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} = 7$$

$$S = 15 - 2 - 4 - 2 = 7$$

Учитывая это определение, легко увидеть многие свойства определителя

$$\det A = \det A^T$$

При умножении столбца или строки на число определитель умножается на это число

Если в матрице есть совпадающие столбцы или совпадающие строки, то определитель равен нулю.

Если добавить к строке другую строку, умноженную на число, то определитель не изменится.

Это следует из того, что $\det E_{\lambda} = 1$.

Если добавить к столбцу другой столбец, умноженный на число, то определитель не изменится.

Это следует из того, что $\det E_{\lambda}^{T}=1.$

Ещё один способ считать определитель

Можно привести матрицу к единичной (или вырожденной) методом Гаусса, следя за тем, как менялся определитель.

Пример

$$\det \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} = -\det \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix} =$$

$$= -\det \begin{pmatrix} 1 & 4 \\ 0 & -7 \end{pmatrix} = -(1 \cdot (-7)) = 7$$

Замечание: при перестановке любых двух строк (или столбцов) матрицы местами, определитель умножается на -1.

Если определитель равен нулю, то столбцы матрицы линейно зависимы. Если определитель равен нулю, то строки матрицы линейно зависимы. Если записать n векторов в n-мерном пространстве как столбцы матрицы, они будут линейно зависимы тогда и только тогда, когда определитель матрицы равен нулю.

Метод Крамера

Определители очень помогают решать системы линейных уравнений из n уравнений от n неизвестных. Смотрите про метод Крамера в материалах к лекциям.

Определители помогают также находить обратную матрицу, не пользуясь методом Гаусса. Делается это так.

1. Найдём определитель матрицы A. Если $\det A = 0$, то обратной матрицы не существует.

2. Преобразуем матрицу по следующему правилу. Элемент стоящий в i-той строке и j-том столбце заменим на определитель матрицы, полученной вычеркиванием этой строки и этого столбца, умноженный на $(-1)^{i+j}$

- 3. Транспонируем преобразованную матрицу.
- 4. Поделим каждый её элемент на $\det A$ Получили обратную матрицу!

Пример

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$

1.
$$\det A = 5 - 6 = -1$$

$$2. A \rightarrow \begin{pmatrix} 5 & -3 \\ -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

Ещё о решении линейных систем

Систему, где количество неизвестных совпадает с количеством уравнений, можно записать в виде:

Ax = b, где A — квадратная матрица, b — вектор из правых частей уравнений, x — вектор из неизвестных.

Тогда $x = A^{-1}b$, т.е. нахождение обратной матрицы решает систему уравнений.

Пример

$$\begin{cases} x + 2y = 3 \\ 3x + 5y = 8 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

$$\binom{x}{y} = \begin{pmatrix} -5 & 2\\ 3 & -1 \end{pmatrix} \binom{3}{8} = \binom{1}{1}$$

Комплексные числа

Комплексное число z=a+ib, где a и b- действительные числа, i- мнимая единица, $i^2=-1$.

Тогда
$$a + ib + c + id = (a + c) + i(b + d)$$

 $(a + ib)(c + id) = ac + iad + ibc +$
 $i^2bd = (ac - bd) + i(ad + bc)$

Это что-то существенно другое

Комплексные числа нельзя упорядочить, сказать, какое больше, какое меньше. Значит, их бессмысленно располагать на прямой, как мы привыкли располагать вещественные числа. Их обычно располагают на плоскости.

Комплексная плоскость

Эту плоскость математики называют комплексной прямой. Но мы так делать не будем!

Сложение на комплексной плоскости

Комплексное число a+ib на комплексной плоскости представляется радиус-вектором, проведённым к точке с координатами (a,b).

Эти векторы складываются по правилу параллелограмма.

Другое представление комплексного числа

Вектор (a, b) можно также задать модулем и углом между положительным направлением оси OX.

$$a + ib = r(\cos\phi + i\sin\phi)$$

T.e.

$$a = r \cos \phi$$

$$b = rsin\phi$$

Другое представление комплексного числа

Что происходит при умножении комплексных числе?

```
a + ib = r_1(\cos\phi_1 + i\sin\phi_1)
c + id = r_2(\cos\phi_2 + i\sin\phi_2)
(a+ib)\cdot(c+id) =
r_1(\cos\phi_1 + i\sin\phi_1)r_2(\cos\phi_2 + i\sin\phi_2)
= r_1 r_2 (\cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 +
+i(\sin\phi_1\cos\phi_2+\cos\phi_1\sin\phi_2))=
= r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))
```

Не боимся отрицательных дискриминантов!

$$x^{2} + 2x + 10 = 0$$

$$D = 4 - 4 \cdot 10 = -36$$

$$\begin{bmatrix} x_{1} = \frac{-2 + 6i}{2} \\ x_{2} = \frac{-2 - 6i}{2} \end{bmatrix} \begin{bmatrix} x_{1} = -1 + 3i \\ x_{2} = -1 - 3i \end{bmatrix}$$