SPLIT DEEP Q-LEARNING FOR ROBUST OBJECT SINGULATION

Iason Sarantopoulos, Marios Kiatos, Zoe Doulgeri and Sotiris Malassiotis

2020 International Conference on Robotics and Automation, May 31 - June 4, 2020. Paris, France

Introduction

OVERVIEW

Task:

- Extracting a target object from a pile of other objects in a cluttered environment.
- Prehensile grasping is impossible due to clutter

Task:

- Extracting a target object from a pile of other objects in a cluttered environment.
- Prehensile grasping is impossible due to clutter

Policy:

- Pushing policy for singulating the target object.
- A novel Split Q-learning algorithm is proposed

Environment:

- A target object with known pose {O} and bounding box, placed on a support surface.
- Poses, dimensions and the number of obstacles are random and unknown.

Environment:

- A target object with known pose {O} and bounding box, placed on a support surface.
- Poses, dimensions and the number of obstacles are random and unknown.

Assumptions:

- · Availability of:
 - Robotic finger for pushes
 - RGB information for pose estimation of target
 - Depth information for state representation
- Collisions between the fingertip and an object can be detected.
- Pushing actions result in 2D motion of the target. No flipping is expected.

Singulation

Singulation means that the target object is separated from the closest obstacle by a minimum distance d_{sing} .

Singulation

Singulation means that the target object is separated from the closest obstacle by a minimum distance d_{sing} .

Objective

Singulate the target object from its surrounding obstacles by:

- · using the minimum number of pushes and
- $\boldsymbol{\cdot}$ avoiding to throw the target off the support surface's limits.

MDP FORMULATION

MDP: Actions

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

Figure 1: Push target

Figure 2: Push obstacle

- A pushing action: $\mathcal{P} = (\mathbf{p}_0, d, \theta)$
- · Push target object

Figure 1: Push target

Figure 2: Push obstacle

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target

Figure 1: Push target

Figure 2: Push obstacle

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle

Figure 1: Push target

Figure 2: Push obstacle

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle
- Push obstacle

Figure 1: Push target

Figure 2: Push obstacle

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle
- Push obstacle
 - Placing the finger above the target for pushing obstacles

Figure 1: Push target

Figure 2: Push obstacle

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle
- Push obstacle
 - Placing the finger above the target for pushing obstacles
 - · Risk of empty push

Figure 1: Push target

Figure 2: Push obstacle

MDP: Actions

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle
- Push obstacle
 - Placing the finger above the target for pushing obstacles
 - Risk of empty push
- d predetermined and θ discretized in w pushing directions

Figure 1: Push target

Figure 2: Push obstacle

MDP: Actions

$$\mathcal{P} = (\mathbf{p}_0, d, \theta)$$

- Push target object
 - Placing the finger beside the target
 - Risk of undesired collision with an obstacle
- Push obstacle
 - Placing the finger above the target for pushing obstacles
 - · Risk of empty push
- d predetermined and θ discretized in w pushing directions
- · 2w total discrete actions.

Figure 1: Push target

Figure 2: Push obstacle

MDP: STATE

- Transform the point cloud w.r.t. {O}
- · Generate heightmap.
- · Rotate heightmap w times.
- · For each rotation:
 - Define a 16x16 region and average the values of the heightmaps

$$z_{ij} = \frac{1}{c_x \cdot c_y} \sum_{x=x_1}^{x_2} \sum_{y=y_1}^{y_2} h_i(x,y)$$

• Add the bounding box, the rotation angle and the distances of the target from the table limits s_d .

MDP: REWARDS AND TERMINAL STATES

Sparse reward function for each timestep:

- Singulation r = +10 (successful terminal state)
- Falling off the table r = -10 (failed terminal state)
- Undesired collision r = -10 (failed terminal state)
- Empty pushes r = -5
- Otherwise: r = -1

 One fully connected network for each primitive.

Figure 3: Split DQN

- One fully connected network for each primitive.
- Policy: argmax_{action} Q(state, action)

```
\max Q = \max \left(\max Q_1(f_i), \max Q_2(f_i)\right)
```


Figure 3: Split DQN

- One fully connected network for each primitive.
- Policy: $\operatorname{argmax}_{action} Q(\operatorname{state}, action)$ $\max Q = \max \left(\max Q_1(f_i), \max Q_2(f_i) \right)$
- · Advantages:

Figure 3: Split DQN

- One fully connected network for each primitive.
- Policy: argmax_{action} Q(state, action)

$$\max Q = \max \left(\max Q_1(f_i), \max Q_2(f_i)\right)$$

- · Advantages:
 - The rotation invariant features simplifies learning

Figure 3: Split DQN

- One fully connected network for each primitive.
- Policy: $argmax_{action} Q(state, action)$

$$\max Q = \max \left(\max Q_1(f_i), \max Q_2(f_i)\right)$$

- · Advantages:
 - The rotation invariant features simplifies learning
 - Training on data that comes from the same distribution (same primitive) results to faster learning

Figure 3: Split DQN

- One fully connected network for each primitive.
- Policy: $argmax_{action} Q(state, action)$

$$\max Q = \max \left(\max Q_1(f_i), \max Q_2(f_i)\right)$$

- · Advantages:
 - The rotation invariant features simplifies learning
 - Training on data that comes from the same distribution (same primitive) results to faster learning
 - Inherent modularity for adding new primitives.

Figure 3: Split DQN

EXPERIMENTS

EXPERIMENTS

Video

RESULTS: PERFORMANCE EVALUATION

Policy	Success	Mean	Std	Mean	Std
	rate	actions	actions	reward	reward
Human	95.0%	2.46	0.88	7.51	4.36
SplitDQN	88.6%	2.95	1.43	3.42	18.56
DQN	77.1%	4.02	2.12	-1.924	23.01
Random	22.1%	5.79	3.24	-10.17	8.79
SplitDQN (Real)	75.0%	2.71	1.18	-1.37	5.60

RESULTS: TRAINING

EXTRA PRIMITIVE

Video

EXTRA PRIMITIVE: PERFORMANCE EVALUATION

Policy	Success	Mean	Std	Mean	Std
	rate	actions	actions	reward	reward
SplitDQN-3	83.4%	3.19	1.43	-2.64	20.92
SplitDQN-2	59.6%	4.42	1.77	-20.35	40.95

EXTRA PRIMITIVE: TRAINING

Conclusions

CONCLUSION

- Splitting Q network to use one network per primitive results to faster convergence and increased success rate.
- The inherent modularity of the algorithm allows the addition of extra primitives.
- Effective training in a complex environment.
- Demonstrating that the policy can effectively transferred to a real world setup.

