





















### 3.1.1 การติดตั้ง ไพทอนไอดีอี่ (ออฟไลน์)









ในปัจจุบันมีไพทอนไอดีอี ให้เลือกใช้จำนวนมาก ในที่นี้ เราจะโหลด PyCharm Edu ซึ่งเป็นไพทอนไอดีอีที่ สามารถดาวน์โหลดมาใช้เพื่อ การเรียนรู้โดยไม่มีค่าใช้จ่าย



จากเว็บไซต์ https://www.jetbrains.com/pycharm-edu/

PuCharm Edu

# (การติดตั้งไพทอนไอดีอี (ออฟไลน์))













1. คลิก Download Free

คลิก Download
 ไฟล์.exe

## (การติดตั้งไพทอนไอดีอี่ (ออฟไลน์))



3. รอดาวน์โหลดไฟล์ ลงคอมพิวเตอร์



4. เข้า Folder Download เพื่อดับเบิลคลิกไฟล์ ติดตั้งโปรแกรม











# (การติดตั้งไพทอนไอดีอี (ออฟไลน์))



5. กด Next เพื่อติดตั้งโปรแกรม



6. เลือกที่จัดเก็บไฟล์ แล้วกด Next



## (การติดตั้งไพทอนไอดีอี (ออฟไลน์)



7. เลือกสร้างปุ่มเข้าโปรแกรม ไว้หน้า Desktop



8. เลือก Version ล่าสุด แล้วกด Next











# (การติดตั้งไพทอนไอดีอี (ออฟไลน์)



9. กด Install เพื่อติดตั้งโปรแกรม



10. รอการติดตั้งจนกว่า จะเสร็จสมบูรณ์











# (การติดตั้งไพทอนไอดีอี (ออฟไลน์))



11. เมื่อติดตั้งเสร็จ เปิดโปรแกรมขึ้นมา จะพบหน้าข้อตกลง ให้เลือก I Confirm และ Continue



12. คลิก Send Anonymous Statistics





# (การติดตั้งไพทอนไอดีอี (ออฟไลน์)



13. เลือก Learner สำหรับการเรียนรู้ แล้วคลิก Start using EduTools



14. หน้าตาของโปรแกรม เขียนภาษาไพทอน แบบออฟไลน์









### ส่วนประกอบโปรแกรม ไพทอนไอดีอี (ออฟไลน์)













### โปรแกรมไพทอนออนไลน์











หากคอมพิวเตอร์ที่ใช้
งานอยู่เชื่อมต่อ สามารถเข้า
เขียนโปรแกรมภาษาไพทอน
แบบออนไลน์ได้จากเว็บไซต์
ที่ให้บริการตัวแปลภาษา
ไพทอน

จากเว็บไซต์ https://replit.com/languages/python3

### 3.1.2 เริ่มต้นเขียน โปรแกรมภาษาไพทอน









เปิดโปรแกรม
PyCharm หรือโปรแกรม
เขียนภาษาไพทอน
ออนไลน์ เพื่อทำการเขียน
คำสั่งแสดงผล



#### ตัวอย่างที่ 3.1 คำสั่งแสดงผล ในโปรแกรมภาษาไพทอน



1.คลิกเลือก Python Console









#### ตัวอย่างที่ 3.1 คำสั่งแสดงผล ในโปรแกรมภาษาไพทอน











#### ตัวอย่างที่ 3.1 คำสั่งแสดงผล ในโปรแกรมภาษาไพทอน

#### 3. ผลลัพธ์ที่ได้คือ



จากตัวอย่างที่ 3.1 อธิบายได้ว่า print() เป็นคำสั่งชนิดฟังก์ชัน (function) ทำหน้าที่แสดงสิ่งที่อยู่ภายในเครื่องหมายวงเล็บ () ออกทางจอภาพ ให้สังเกตผลลัพธ์ที่ได้ว่า ไม่มีเครื่องหมาย ""













กิจกรรม ให้นักเรียนพิมพ์คำสั่งต่อไปนี้ลงในคอลโซล แล้ว สังเกตผลลัพธ์ที่ได้ว่าเหมือนหรือแตกต่างกันอย่างไร และ เพราะเหตุใด Print ("3+5") **Print (3+5)** 

## ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า

ทดลองพิมพ์คำสั่งต่อไปนี้ในคอนโซล แล้วกดแป้น Enter











### ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า







จากตัวอย่างที่ 3.2 อธิบายได้ว่า บรรทัดแรกเป็นการ กำหนดค่าให้ตัวแปร name มีค่าเป็น "Ying" หลังจากนั้นบรรทัดที่ 2 จะแสดงค่าในตัวแปร name ออกมาทางจอภาพ ซึ่งก็คือคำว่า Ying







### ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า

ทดลองพิมพ์คำสั่งต่อไปนี้ในคอนโซล แล้วกดแป้น Enter











หมายเหตุ : ไพทอนจะใช้สัญลักษณ์ # แสดงจุดเริ่มต้นของคอมเมนต์ (comment) ในแต่ละบรรทัด

## ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า











>?\_# เครื่องหมาย >? เป็นเครื่องหมายการรอให้ผู้ใช้ป้อน

ข้อมูลของ PyCharm Edu

## ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า













### ตัวอย่างที่ 3.2 คำสั่งรับข้อมูลเข้า

จากตัวอย่างที่ 3.2 input() เป็นคำสั่งชนิดฟังก์ชัน (function) ทำหน้าที่รับข้อมูลเข้าที่ผู้ใช้ป้อนผ่านคีย์บอร์ด แล้ว ส่งคืนสิ่งที่ผู้ใช้ป้อนเข้ามาเป็นข้อมูลชนิดสตริง ให้กับตัวแปรที่ กำหนดไว้หน้าเครื่องหมาย = ในที่นี้คือตัวแปร name หลังจากนั้นบรรทัดที่ 2 จะแสดงค่าในตัวแปร name ออกมาทางจอภาพ ซึ่งก็คือคำว่า Prayut











### ตัวแปร (Variable)







ด้วยเครื่องหมาย = เช่น

C = 16

name = "somchai"

บรรทัดแรกเป็นการ กำหนดให้ตัวแปรชื่อ c ชื่ไปยัง จำนวนเต็ม 16 และบรรทัดที่ 2 ตัวแปรชื่อ name ชี้ไปยังสตริง somchai





## เกร็ดน่ารู้







ตัวเลขจำนวนเต็ม 16 และสตริง "somchai"เป็นข้อมูลคนละชนิดกัน ใน



ไพทอนตรวจสอบชนิดของข้อมูลด้วยฟังก์ชัน type() ทดลองพิมพ์คำสั่ง

ต่อไปนี้ เพื่อตรวจสอบชนิดของข้อมูลในไพทอน

Type (16)

Type ('somchai')

Type ("somchai")

Type (3+5)

Type ("3+5")





## ตัวแปร (Variable)

นอกจากนี้ชื่อตัวแปรที่ตั้งขึ้นจะต้องไม่ซา้ำกับคำหลัก (keyword) ที่ไพทอนใช้เป็นคำสั่ง โดยคำหลักมีดังต่อไปนี้

| and      | as     | assert | break  | class | continue | def    |
|----------|--------|--------|--------|-------|----------|--------|
| del      | elif   | else   | except | exec  | finally  | for    |
| from     | global | if     | import | in    | is       | lambda |
| nonlocal | not    | or     | pass   | raise | return   | try    |
| while    | with   | yield  | True   | False | None     |        |











# ตัวอย่างที่ 3.3 การเปลี่ยนค่าของตัวแปร

















print (c)

พิมพ์คำสั่งต่อไปนี้ในคอนโซล

d = c

print (d)

d = 15

print (d)





# ตัวอย่างที่ 3.3 การเปลี่ยนค่าของตัวแปร













### จะได้ผลลัพธ์ดังนี้



#### จากตัวอย่างที่ 3.3 อธิบายได้ดังนี้

- 1. c = 16 เป็นคำสั่งกำหนดให้ตัวแปร c ชี้ไปจำนวนเต็ม 16 เมื่อแสดงผลด้วยคำสั่ง print () จึงได้ผลลัพธ์เป็น
- 2. d = c เป็นคำสั่งสร้างตัวแปร d แล้วชี้ไปที่เดียวกับที่ ตัวแปร c ชื่อยู่ จึงทำให้ตัวแปร d ชี้ไปยังจำนวนเต็ม 16 เมื่อพิมพ์ด้วยคำสั่ง print (d) จึงได้ผลลัพธ์เป็น 16
- 3. d = 15 เป็นคำสั่งกำหนดให้ตัวแปร d ชี้ไปที่จำนวน เต็ม 15 เมื่อแสดงผลด้วยคำสั่ง print (d) จึงได้ ผลลัพธ์เป็นค่า 15





ชนิดข้อมูลพื้นฐาน โปรแกรมภาษาไพทอนมีการแบ่งประเภทของ ข้อมูลออกเป็นหลายประเภท โดยมีประเภทข้อมูล ู้ พื้นฐาน คือ • ข้อมูลประเภทข้อความ (String data type) ข้อมูลประเภทจำนวน (numerical data type)

3

## ข้อมูลประเภทข้อความ (String data type)



## ตัวอย่างที่ 3.4 การกำหนดข้อมูลชนิดข้อความ

### พิมพ์คำสั่งต่อไปนี้ในคอนโซล



>>> address = "924 ถนนสุขุมวิท เขตคลองเตย กรุงเทพฯ 10110"

>>> print (organization)

>>> print (address)

>>> address = ""สสวท"

...921 ถนนสุขุมวิท

... เขตคลองเตย กรุงเทพฯ

...10110""

>>> print (address)

# บรรทัดที่ 1

ำ #บรรทัดที่ 2

#บรรทัดที่ 3

#บรรทัดที่ 3

#บรรทัดที่ 5

#บรรทัดที่ 6











#### ผลลัพธ์ที่ได้คือ



>>> address = "924 ถนนสุขุมวิท เขตคลองเตย กรุงเทพฯ 10110" #บรรทัดที่ 2

>>> print (organization) #บรรทัดที่ 3

"สสวท"

>>> print (address) #บรรทัดที่ 4

924 ถนนสุขุมวิท เขตคลองเตย กรุงเทพฯ 10110

>>> address = ""สสวท" #บรรทัดที่ 5

...921 ถนนสุขุมวิท

... เขตคลองเตย กรุงเทพฯ

...10110""

>>> print (address) #บรรทัดที่ 5

"สสวท"

921 ถนนสุขุมวิท

เขตคลองเตย กรุงเทพฯ

10110









6

#### ผลลัพธ์ที่ได้คือ

















## ตัวอย่างที่ 3.4 การกำหนดข้อมูลชนิดข้อความ



- 1. คำสั่งในบรรทัดที่ 1 เป็นการใช้เครื่องหมายอัญประกาศเดี่ยวเพื่อกำหนดตัวแปร organization เป็น "สสวท" ทำให้มีความยาว 6 ตัวอักษร (รวมเครื่องหมายอัญประกาศคู่ ด้วย)
- 2. คำสั่งในบรรทัดที่ 2 ใช้เครื่องหมายอัญประกาศคู่เพื่อกำหนดสตริงให้กับตัวแปร address
- 3. คำสั่ง Print() ในบรรทัดที่ 3 และ 4 นำค่าในตัวแปร organization และ address ออกมาแสดงผล
- 4. คำสั่งในบรรทัดที่ 5 ใช้เครื่องหมาย ' จำนวน 3 ตัว กำหนด String จำนวน 4 บรรทัด ให้กับตัวแปร αddress
- 5. คำสั่งในบรรทัดที่ 6 นำค่าที่เก็บในตัวแปร address ออกมาแสดงผล









## เกร็ดน่ารู้

ตัวดำเนินการ + และ \* กับสตริง

จะเกิดสตริงใหม่ คือ 'GoGoGo'











เมื่อใช้ตัวดำเนินการ + ระหว่างสตริง 2 ตัว จะเป็นการนำสตริง 2 ตัว มาต่อกัน เช่น 'Hello' + 'World' จะเกิดสตริงใหม่ คือ 'HelloWorld' และถ้า ใช้ตัวดำเนินการ \* ระหว่างสตริงกับค่าจำนวนเต็ม จะเป็นการนำสตริงมาต่อ กันตามจำนวนครั้งของจำนวนเต็ม หลังเครื่องหมาย \*เช่น 'Go' \* 3

## ข้อมูลประเภทจำนวน (numerical data type)

ภาษา python มีข้อมูลจำนวนที่สามารถนำไปคำนวณ ทางคณิตศาสตร์ได้หลายชนิด ในที่นี้จะแนะนำ 2 ชนิดคือ

- จำนวนเต็มแบบมีเครื่องหมาย (signed integer)หรือเรียกว่า จำนวนเต็ม (integer หรือ int) สามารถเก็บค่าจำนวนเต็ม บวกและจำนวนเต็มลบ
- จำนวนจริง (floating point number หรือ float) สามารถ เก็บค่าทั้งจำนวนจริงบวกและจำนวนจริงลบ ที่อยู่ในรูป ทศนิยมได้













### ตัวอย่างที่ 3.5 การกำหนดข้อมูลจำนวนและการคำนวณพื้นฐาน







#บรรทัดที่ 1 base = 10#บรรทัดที่ 2 height = 15

#บรรทัดที่ 3

area = (1/2) \* base \* height

#บรรทัดที่ 4

print ("base =" , base)

#บรรทัดที่ 5

#บรรทัดที่ 6

print ("height =" , height)

print ("area =" , area)





### ตัวอย่างที่ 3.5 การกำหนดข้อมูลจำนวนและการคำนวณพื้นฐาน













#### ผลลัพธ์ที่ได้คือ

#บรรทัดที่ 1 base = 10

#บรรทัดที่ 2 height = 15

#บรรทัดที่ 3 area = (1/2) \* base \* height

#บรรทัดที่ 4 print ("base =" , base)

base = 10

#บรรทัดที่ 5 print ("height =" , height)

height = 15

#บรรทัดที่ 6 print ("area =" , area)

area = 75.0



#### ตัวอย่างที่ 3.5 การกำหนดข้อมูลจำนวนและการคำนวณพื้นฐาน

#### จากตัวอย่างที่ 3.5 อธิบายได้ว่า

- 1. บรรทัดที่ 1 และ 2 กำหนดให้ตัวแปร bαse และ height ชี้ไปที่ 10 และ 15 ตามลำดับ
- 2. บรรทัดที่ 3 กำหนดให้ตัวแปร area ชี้ไปที่ผลจากการคำนวณ (1/2) \* base \* height ซึ่งเป็นการหาพื้นที่สามเหลี่ยมนั่นเอง (เมื่อใช้เครื่องหมาย \* และ / กับข้อมูล จำนวน จะหมายถึง การคูณ และการหาร ทางคณิตศาสตร์ตามลำดับ
- 3. บรรทัดที่ 4-6 เป็นคำสั่งแสดงผลของตัวแปรมีข้อสังเกตว่าคำสั่ง print () สามารถ รับค่าที่ต้องการให้แสดงผล ได้มากกว่า 1 ค่า โดยเขียนแต่ละค่าหรือแต่ละตัวแปรเรียง กันไป คั่นด้วยเครื่องหมายจุลภาค (,) เช่น บรรทัดที่ 4-6 สามารถเขียนรวมกันได้ดังนี้

print("base = ",base, "height = ",height, "area =", area)

4. สังเกตอีกว่า คำสั่งในบรรทัดที่ 6 ได้ผลลัพธ์ของตัวแปร αreα แสดงออกมาใน รูปแบบจำนวนจริง











## เกร็ดน่ารู้







\*\* หมายถึง ยกกำลัง ตัวอย่างคือ 4\*\*3 หมายถึง 4 ^ 3

// หมายถึง หารปัดเศษทิ้ง ตัวอย่างคือ 7//3 ได้ผลลัพธ์เป็นจำนวนเต็ม 2

% หมายถึง เศษที่ได้จากการหาร ตัวอย่างคือ 7%3 ได้ผลลัพธ์เป็นจำนวน

เต็ม 1

โดยสามารถใช้เครื่องหมาย () ล้อมรอบ นิพจน์ที่ต้องการให้ ดำเนินการก่อน เช่นเดียวกับการเขียนนิพจน์ทางคณิตศาสตร์







ตัวอย่างที่ 3.6 ทอนเท่าไหร่ แนวคิดการแก้ปัญหา 1. คำนวณจำนวนเงินทอน 2. คำนวณจำนวนธนบัตรยี่สิบบาทที่ได้รับ จากจำนวนเงินทอน หาร ด้วย 20 โดยปัดเศษทิ้ง 3. คำนวณจำนวนเหรียญบาทที่ได้รับ จากจำนวนเงินทอน หารด้วย 20 โดยนำมาเฉพาะเศษที่ได้จากการหาร













## การแปลงชนิดข้อมูล









ไม่ได้ เพราะ หากพิมพ์คำสั่งในคอนโซลจะมีข้อผิดพลาดจากการ ทำงาน ในคำสั่ง area = width \* length เพราะตัวแปร width และ length จะเก็บข้อมูลสตริง แม้ว่าผู้ใช้จะป้อนข้อมูลเป็นตัวเลขก็ตาม ดังนั้นหากต้องการนำค่าที่ได้รับจากฟังก์ชัน input() ไปใช้ใน การคำนวณทางคณิตศาสตร์ จะต้องแปลงให้เป็นข้อมูลชนิดจำนวน ก่อน โดยใช้ฟังก์ชัน int() เพื่อแปลงสตริงเป็นจำนวนเต็มหรือฟังก์ชัน float() เพื่อแปลงสตริงเป็นจำนวนจริง





### ตัวอย่างที่ 3.7 ภารแปลงข้อมูลสตริงให้เป็นข้อมูลชนิดจำนวน



val = input("ป้อนค่าจำนวนเต็มค่าหนึ่ง") #บรรทัดที่ 1

ป้อนค่าจำนวนเต็มต่าหนึ่ง >? 4

type(val) #บรรทัดที่ 2

str

intVal = int(val) #บรรทัดที่ 3

type(intVal) #บรรทัดที่ 4

int









ตัวอย่างที่ 3.7 ภารแปลงข้อมูลสตริงให้เป็นข้อมูลชนิดจำนวน จากตัวอย่างที่ 3.7 อธิบายได้ดังนี้ 1. หลังจากไพทอนรันคำสั่งในบรรทัดที่ 1 และผู้ใช้ป้อนตัวอักขระ "4" แล้วตัวแปร val จะเก็บข้อมูลสตริง ของอักขระ "4" ซึ่งตรวจสอบได้ จากคำสั่ง type(val) ในบรรทัดที่ 2 2. บรรทัดที่ 3 ใช้ฟังก์ชั่น int() ในการแปลงค่าสตริงของตัวแปรให้ เป็นจำนวนเต็ม แล้วกำหนดค่าให้กับตัวแปร intVal ซึ่งตรวจสอบชนิด ได้จากคำสั่งในบรรทัดที่ 4

#### ตัวอย่างที่ 3.8 ร่วมด้วยช่วยแชร์

และตกลงกันว่าจะจ่ายค่าอาหารคนละเท่าๆกัน นักเรียนแต่ละคนจะต้อง

จ่ายค่าอาหารคนละเท่าใด ให้ใช้คำสั่งไพทอนแสดงวิธีการหาคำตอบที่

ถ้านักเรียนไปรับประทานอาหารฉลองวันปิดเทอมกับเพื่อนๆ









แนวคิดการแก้ปัญหา

ละลำดับ

- 2. number 🛨 รับจำนวนผู้รับประทานอาหาร
- 3. avg ← ค่าอาหารทั้งหมด/จำนวนผู้รับประทานอาหาร
- 4. แสดงผล αvg



# ตัวอย่างที่ 3.7 ภารแปลงข้อมูลสตริงให้เป็นข้อมูลชนิดจำนวน



#บรรทัดที่ totalPrice = int (input ('ค่าอาหารทั้งหมด'))

ราคาอาหารทั้งหมด >? <u>1289</u>

number = int (input ('จำนวนผู้รับประทานอาหาร')) #บรรทัดที่ 2

จำนวนผู้รับประทานอาหาร >? <u>15</u>

avg = totalPrice / number

print("จ่ายค่าอาหารคนละ", αvg, 'บาท')

จ่ายค่าอาหารคนละ 85.93333333333334 บาท



#บรรทัดที่ 4













