Week 10 Lecture Notes: Beam Deflections Using Double Integration

Mechanics of Materials

Instructor: Viggo Hansen

March 19, 2025

Outline

Overview

Introduction

Theoretical Background

Steps of the Method

Examples

Simply Supported Beam with Central Load Cantilever Beam with End Load Simply Supported Beam with Uniform Load

Practical Tips

Resources

Conclusion

Week 10 Overview: Beam Deflections

- Topic: Analyzing beam deflections with the double integration method.
- ► Goals:
 - Understand elastic curve, slope, and displacement.
 - ▶ Solve common beam problems step-by-step.
- Why it matters: Ensures safe design of structures like bridges and buildings.

Introduction

- Double integration: Key method to find how beams bend under loads.
- Outputs: Elastic curve (shape), slope (angle), displacement (movement).
- ► **Sign Convention**: Positive *y* is upward; downward deflections are negative.

Theoretical Background

Euler-Bernoulli beam theory:

$$EI\frac{d^2y}{dx^2}=M(x)$$

- \triangleright y: deflection, x: position, M(x): bending moment.
- E: modulus of elasticity, I: moment of inertia (second moment of area).
- Double integration:
 - 1. $\frac{dy}{dx}$ (slope) from first integral.
 - 2. y(x) (deflection) from second integral.

Steps of Double Integration

- 1. Define M(x) (watch for piecewise regions!).
- 2. Integrate: $EI\frac{dy}{dx} = \int M(x) dx + C_1$.
- 3. Integrate again: $Ely = \iint M(x) dx + C_1 x + C_2$.
- 4. Apply boundary conditions:
 - Pinned/Roller: y = 0, slope $\frac{dy}{dx} \neq 0$.
 - Fixed: y = 0, $\frac{dy}{dx} = 0$.
- 5. Constants C_1 , C_2 depend on supports!

Example 1: Simply Supported Beam with Central Load

- ▶ Setup: Length *L*, load *P* at x = L/2.
- ► Piecewise Moment:

$$M(x) = \begin{cases} \frac{Px}{2}, & 0 \le x \le \frac{L}{2} \\ \frac{P(L-x)}{2}, & \frac{L}{2} < x \le L \end{cases}$$

► Equation: $EI\frac{d^2y}{dx^2} = M(x)$.

Figure: Elastic curve (Source: thestructuralengineer.info)

Example 1: Solution

- ▶ For $0 \le x \le L/2$:
- ▶ First integration: $EI\frac{dy}{dx} = \frac{Px^2}{4} + C_1$.
- ▶ Second integration: $Ely = \frac{Px^3}{12} + C_1x + C_2$.
- ▶ Boundaries: y(0) = 0 (pin), y(L) = 0 (roller).
- Solve: $C_2 = 0$, $C_1 = -\frac{PL^2}{16}$ (using symmetry or full span).
- Max deflection: $\delta_{\text{max}} = -\frac{PL^3}{48EI}$ at x = L/2.

See video: youtube.com/watch?v=EWhL-mixfal

Example 2: Cantilever Beam with End Load

- ▶ Setup: Length *L*, load *P* at free end (x = L).
- ▶ Moment: M(x) = P(L x) (single region).
- Equation: $EI\frac{d^2y}{dx^2} = P(L-x)$.

Figure: Cantilever deflection (Source: thestructuralengineer.info)

Example 2: Solution

- First integration: $EI\frac{dy}{dx} = P(Lx \frac{x^2}{2}) + C_1$.
- ► Second integration: $Ely = P(\frac{Lx^2}{2} \frac{x^3}{6}) + C_1x + C_2$.
- ▶ Boundaries: y(0) = 0, $\frac{dy}{dx}(0) = 0$ (fixed end).
- ► Solve: $C_1 = 0$, $C_2 = 0$.
- ▶ Deflection at end: $y(L) = -\frac{PL^3}{3FL}$ (downward).

See video: youtube.com/watch?v=MJxIjG-32JA

Example 3: Simply Supported Beam with Uniform Load

- ► Setup: Length *L*, uniform load *w*.
- ► Moment: $M(x) = \frac{wx}{2}(L x)$ (single region).
- ► Equation: $EI\frac{d^2y}{dx^2} = \frac{wx}{2}(L-x)$.

Figure: Uniform load deflection (Source: thestructuralengineer.info)

Example 3: Solution

- ► First integration: $EI\frac{dy}{dx} = \frac{w}{2}(\frac{Lx^2}{2} \frac{x^3}{3}) + C_1$.
- ► Second integration: $Ely = \frac{w}{2}(\frac{Lx^3}{6} \frac{x^4}{12}) + C_1x + C_2$.
- ▶ Boundaries: y(0) = 0 (pin), y(L) = 0 (roller).
- ► Solve: $C_2 = 0$, $C_1 = -\frac{wL^3}{24}$.
- Max deflection: $\delta_{\text{max}} = -\frac{5wL^4}{384EI}$ at x = L/2.

See video: youtube.com/watch?v=6l5pjdlAtlc

Practical Tips for Solving Problems

- Sketch beam, loads, supports—label everything!
- ▶ Check M(x) with equilibrium (forces/moments balance).
- Boundary Conditions:
 - Pinned/Roller: y = 0, slope can vary.
 - Fixed: y = 0, $\frac{dy}{dx} = 0$.
- ▶ Watch piecewise M(x)—define regions clearly.
- Units: E (Pa), I (m⁴), M (N⋅m).

Resources for Week 10

- ► Textbook: Beam deflection chapter.
- ► Figures: https://www.thestructuralengineer.info/ education/professional-examinations-preparation/ calculation-examples/ calculation-example-calculate-the-equation-of-the-elas
- Videos:
 - Ex 1: youtube.com/watch?v=EWhL-mixfal.
 - Ex 2: youtube.com/watch?v=MJxIjG-32JA.
 - Ex 3: youtube.com/watch?v=6l5pjdlAtlc.
- Office hours: Bring questions!

Conclusion

- ▶ Double integration: Step-by-step tool for beam deflections.
- Classic examples: Simply supported (point/uniform load), cantilever.
- Key for safe structural design.
- Next week: Macaulay's method for complex loads.