SESSION 2018 MPMA102

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 1

Lundi 30 avril : 14 h - 18 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il

a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé d'un problème avec quatre parties.

ESTIMATIONS NUMÉRIQUES D'INTÉGRALES

Objectifs

Le fil conducteur de ce sujet est le calcul approché d'intégrales.

La partie I est indépendante des autres parties. À travers l'exemple de l'intégrale de Gauss, on utilise des suites de fonctions et on « permute limite et intégrale ».

Les parties II et III peuvent être traitées de manière indépendante. La partie IV utilise des résultats des parties II et III.

Les parties II, III et IV traitent de l'utilisation des polynômes interpolateurs pour le calcul approché d'intégrales : on présente le principe des méthodes de quadrature, dites de Newton-Cotes, ainsi qu'un raffinement avec la méthode de quadrature de Gauss.

Le sujet comporte aussi quelques questions notées *Informatique* portant sur le programme «informatique pour tous». Les algorithmes demandés doivent être écrits en langage Python.

Notations

— Si f est une fonction réelle bornée sur [a, b] avec a < b, on pose :

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

— On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n. On pourra confondre les expressions « polynômes » et « fonctions polynomiales ».

Partie I - « Permutation limite-intégrale » et intégrale de Gauss

On considère l'intégrale de Gauss :

$$I = \int_0^1 \mathrm{e}^{-x^2} \, \mathrm{d}x.$$

I.1 - Utilisation d'une série entière

Q1. Démontrer à l'aide d'une série entière que :

$$I = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)n!}.$$

On pose pour $n \in \mathbb{N}$:

$$s_n = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)k!}.$$

Q2. Justifier que pour tout $n \in \mathbb{N}$, on a :

$$|I - s_n| \le \frac{1}{(2n+3)(n+1)!}.$$

- **Q3.** *Informatique* : écrire une fonction récursive factorielle qui prend en argument un entier naturel *n* et renvoie l'entier *n*!.
- **Q4.** Informatique: en déduire un script, qui détermine un entier N, tel que $|I s_N| \le 10^{-6}$.

I.2 - Utilisation d'une autre suite de fonctions

Pour tout $n \in \mathbb{N}^*$, on définit sur $[0, +\infty[$ la fonction f_n par :

$$f_n(x) = \left(1 - \frac{x^2}{n}\right)^n.$$

- **Q5.** Déterminer, en détaillant, la limite simple de la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$.
- **Q6.** Soit $n \in \mathbb{N}^*$. Démontrer que $\forall x \in [0, 1], |f_n(x)| \leq e^{-x^2}$. En déduire que :

$$I = \lim_{n \to +\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{n^k (2k+1)}.$$

Partie II - Notion de polynôme interpolateur

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. On se donne n + 1 points x_0, x_1, \dots, x_n dans [a, b], deux à deux distincts.

On appelle polynôme interpolateur de f aux points x_i , un polynôme $P \in \mathbb{R}_n[X]$ qui coïncide avec f aux points x_i , c'est-à-dire tel que pour tout $i \in [0, n]$, $P(x_i) = f(x_i)$.

II.1 - Existence du polynôme interpolateur

Pour tout entier i de [0, n], on définit le polynôme l_i de $\mathbb{R}_n[X]$ par :

$$l_i(X) = \prod_{\substack{k=0\\k\neq i}}^n \frac{X - x_k}{x_i - x_k}.$$

On pose:

$$L_n(f) = \sum_{i=0}^n f(x_i)l_i(X).$$

Q7. Démontrer que $L_n(f)$ est un polynôme interpolateur de f aux points x_i , puis démontrer l'unicité d'un tel polynôme.

Un tel polynôme est appelé polynôme interpolateur de Lagrange.

II.2 - Calcul effectif du polynôme interpolateur de Lagrange

Q8. Informatique : si y_0, \ldots, y_n sont des réels, le polynôme $P = \sum_{i=0}^n y_i l_i(X)$ est l'unique polynôme

de $\mathbb{R}_n[X]$ vérifiant $P(x_i) = y_i$ pour tout i. Écrire en langage Python une fonction lagrange qui prend en arguments x une liste de points d'interpolations x_i , y une liste d'ordonnées y_i de même longueur que x, a un réel, et qui renvoie la valeur de P en a.

Par exemple, si x = [-1, 0, 1] et y = [4, 0, 4], on montre que $P = 4X^2$ et donc P(3) = 36. Ainsi, lagrange(x, y, 3) renverra 36.

Q9. Informatique: chercher le polynôme interpolateur $P = a_0 + a_1X + \cdots + a_nX^n$ de f aux points x_i revient aussi à résoudre le système linéaire suivant d'inconnues a_0, \ldots, a_n :

$$\begin{cases} P(x_0) &= f(x_0) \\ \vdots & \longleftrightarrow V \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ \vdots \\ f(x_n) \end{pmatrix}$$

où V est une matrice carrée de taille n + 1.

Déterminer la matrice V et indiquer la complexité du calcul en fonction de n, lorsque l'on résout ce système linéaire par la méthode du pivot de Gauss.

II.3 - Expression de l'erreur d'interpolation

On suppose, en plus dans cette partie, que f est de classe C^{n+1} sur [a,b]. On rappelle que $L_n(f)$ est son unique polynôme interpolateur aux points x_i .

On note $\sigma = \{x_0, \dots, x_n\}$ l'ensemble des points d'interpolations et π_{σ} le polynôme de $\mathbb{R}_{n+1}[X]$ défini par :

$$\pi_{\sigma} = \prod_{i=0}^{n} (X - x_i).$$

On veut démontrer pour tout réel $x \in [a, b]$, la propriété suivante notée \mathcal{P}_x :

$$\exists c_x \in]a, b[, \quad f(x) - L_n(f)(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} \pi_{\sigma}(x).$$

- **Q10.** Résultat préliminaire : soit $p \in \mathbb{N}^*$. Démontrer que si $\phi : [a,b] \to \mathbb{R}$ est une fonction p-fois dérivable qui s'annule p+1 fois, alors il existe $c \in]a,b[$ tel que $\phi^{(p)}(c)=0$.
- **Q11.** Justifier que pour tout $x \in \sigma$, la propriété \mathcal{P}_x est vraie.

On fixe x un réel de [a,b] qui n'est pas dans σ . Soit λ un réel. On définit sur [a,b] une application F par :

$$F(t) = f(t) - L_n(f)(t) - \lambda \pi_{\sigma}(t).$$

- **Q12.** Déterminer un réel λ de sorte que F(x) = 0. On choisira alors λ de cette façon.
- **Q13.** Démontrer que F s'annule n + 2 fois et en déduire que \mathcal{P}_x est vraie.

Q14. Justifier que la fonction $f^{(n+1)}$ est bornée sur [a,b] et en déduire un réel positif K indépendant de n tel que :

$$||f - L_n(f)||_{\infty} \le \frac{K^{n+1}}{(n+1)!} ||f^{(n+1)}||_{\infty}.$$

- **Q15.** En déduire que si f est la fonction sinus, la suite $(L_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur $[0, 2\pi]$.
- **Q16.** On définit f sur [-1, 1] par $f(x) = \frac{1}{1 + x^2}$. Démontrer à l'aide d'une série entière que :

$$\forall k \in \mathbb{N}, \left\|f^{(2k)}\right\|_{\infty} \geq (2k)!.$$

Cette dernière inégalité montre que la quantité $\|f^{(n+1)}\|_{\infty}$ peut être grande et cela peut empêcher parfois la convergence de la suite de polynômes interpolateurs. Ceci est appelé le phénomène de Runge.

Partie III - Famille de polynômes orthogonaux

On munit $\mathbb{R}[X]$ l'espace des polynômes à coefficients réels du produit scalaire $\langle \cdot, \cdot \rangle$ défini par : pour tout polynôme P et Q de $\mathbb{R}[X]$:

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt.$$

On applique le procédé d'orthonormalisation de Gram-Schmidt à la base canonique $(1, X, X^2, ...)$ de $\mathbb{R}[X]$. On obtient donc une famille orthonormée de polynômes $(P_0, P_1, P_2, ...)$ vérifiant :

$$\forall k \in \mathbb{N}, \quad \text{Vect}\{1, X, \dots, X^k\} = \text{Vect}\{P_0, P_1, \dots, P_k\}.$$

Le polynôme P_n s'appelle le polynôme de Legendre d'indice n.

- **Q17.** Calculer P_0 et P_1 .
- **Q18.** Justifier que pour $n \ge 1$, le polynôme P_n est orthogonal à $\mathbb{R}_{n-1}[X]$. Démontrer que le polynôme P_n est de degré n.

On prend $n \ge 1$. On veut démontrer que P_n admet n racines simples dans [-1, 1].

Q19. Justifier que $\int_{-1}^{1} P_n(t) dt = 0$ et en déduire que P_n admet au moins une racine dans [-1, 1].

Supposons par l'absurde que P_n admet strictement moins de n racines simples. Si P_n admet des racines t_1, \ldots, t_p de multiplicité impaire avec p < n, on pose $Q = (X - t_1) \ldots (X - t_p)$; sinon, on pose Q = 1. On considère enfin le polynôme $H = QP_n$.

Q20. Justifier que $\int_{-1}^{1} H(t) dt = 0$, puis conclure (on pourra remarquer que H est de signe constant sur [-1, 1]).

Partie IV - Méthodes de quadrature

Dans cette partie, nous allons voir comment les polynômes interpolateurs de Lagrange peuvent être utilisés pour estimer $\int_a^b f(x) dx$ pour $f : [a, b] \to \mathbb{R}$ une fonction continue.

Pour cela, on choisit d'abord une subdivision $a = x_0 < x_1 < ... < x_N = b$ de l'intervalle [a, b]. À cause du phénomène de Runge, si N est grand, le polynôme interpolateur de f aux points x_i n'est pas forcément une bonne approximation de f. Approximer $\int_a^b f(x) \, \mathrm{d}x$ par $\int_a^b L_N(f)(x) \, \mathrm{d}x$ n'est donc pas forcément pertinent...

Nous allons en fait approximer f par un polynôme d'interpolation sur chaque petit intervalle $[x_k, x_{k+1}]$. D'après la relation de Chasles, on a :

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} f(x) dx.$$

Q21. Justifier que:

$$\int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x = \frac{x_{k+1} - x_k}{2} \int_{-1}^{1} g(t) \, \mathrm{d}t \text{ avec } g(t) = f\left(x_k + (t+1)\frac{x_{k+1} - x_k}{2}\right).$$

On est donc ramené à estimer $\int_{-1}^{1} g(t) dt$ où $g: [-1, 1] \to \mathbb{R}$ est une fonction continue.

On se donne n + 1 points t_0, t_1, \dots, t_n dans [-1, 1], deux à deux distincts.

On rappelle que $L_n(g) = \sum_{i=0}^n g(t_i)l_i(X)$ est le polynôme interpolateur de g aux points t_i et on pose :

$$J(g) = \int_{-1}^{1} L_n(g)(t) dt = \sum_{i=0}^{n} \alpha_i g(t_i) \text{ avec } \alpha_i = \int_{-1}^{1} l_i(t) dt.$$

Lorsqu'on approxime $\int_{-1}^{1} g(t) dt$ par J(g), c'est-à-dire :

$$\int_{-1}^{1} g(t) dt \approx \sum_{i=0}^{n} \alpha_{i} g(t_{i}),$$

on dit que J est une méthode de quadrature associée aux points t_0, \ldots, t_n et aux poids $\alpha_0, \ldots, \alpha_n$.

Q22. Justifier que pour tout polynôme $P \in \mathbb{R}_n[X]$, on a $J(P) = \int_{-1}^1 P(t) dt$.

On dit que la méthode de quadrature J est d'ordre au moins n car la formule approchée est exacte pour les polynômes de degré inférieur ou égal à n.

Q23. Exemple : on prend n = 1, $t_0 = -1$ et $t_1 = 1$. Déterminer α_0 et α_1 . Expliquer à l'aide d'un graphique en prenant g positive pourquoi, dans ce cas, la méthode J s'appelle la « méthode des trapèzes ».

Quadrature de Gauss

Dans les deux questions suivantes, on prend pour points d'interpolation t_0, t_1, \dots, t_n les (n + 1) racines du polynôme de Legendre P_{n+1} introduit dans la partie III.

Nous allons démontrer que, dans ce cas, la formule de quadrature J est d'ordre au moins 2n + 1.

Soit $P \in \mathbb{R}_{2n+1}[X]$. On fait la division euclidienne de P par P_{n+1} , on note respectivement Q le quotient et R le reste de cette division :

$$P = QP_{n+1} + R.$$

- **Q24.** Démontrer que $J(QP_{n+1}) = \int_{-1}^{1} Q(t)P_{n+1}(t) dt$, puis conclure que $J(P) = \int_{-1}^{1} P(t) dt$.
- **Q25.** Démontrer que les poids $\alpha_0, \ldots, \alpha_n$ associés à la quadrature de Gauss sont strictement positifs et calculer leur somme.

FIN