MATH 3021 ALGEBRA I ASSIGNMENT 1

JOE TRAN

Question 1. Let $n \in \mathbb{N}$, and $a, b, c, d \in \mathbb{Z}$ such that

$$a \equiv b \pmod{n}$$
 $c \equiv d \pmod{n}$

(i.e. $n \mid a - b$ and $n \mid c - d$. Prove the following:

- (a) $a + c \equiv b + d \pmod{n}$,
- (b) $a \cdot c \equiv b \cdot d \pmod{n}$

Question 2. Use mathematical induction to prove that for every $n \in \mathbb{N}$, $4 \cdot 10^{n+2} + 10^n + 1$ is divisible by 3.

Question 3. Use mathematical induction to prove that for any $n \in \mathbb{N}$ and nonnegative real numbers $a_1, a_2, ..., a_n \in \mathbb{R}$,

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{1}{n} \sum_{k=1}^n a_k$$

Question 4. (a) Let p and q be prime numbers such that $p \mid q$. Prove that p = q.

(b) Let $a, b \in \mathbb{N}$ with $a, b \geq 2$ such that $a \mid b$. Prove that there exists a prime number such that $p \mid a$ and $p \mid b$.

Question 5. Let $a, b \in \mathbb{N}$ with $a, b \geq 2$. Prove that $gcd(a, b) \neq 1$ if and only if there exists a prime number such that $p \mid a$ and $p \mid b$.

Question 6. It is known that for any $k < m \in \mathbb{N}$, the binomial coefficient $\binom{m}{k} = \frac{m!}{k!(m-k)!}$ is an integer. Let p be a prime number and $1 \le k < p$

- (a) Prove that p does not divide any of the numbers k! and (p-k)!.
- (b) Prove that p divides $\binom{p}{k}$.
- (c) Use the binomial theorem to prove that for any integers x, y, we have

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$