Álgebra de Boole RESUMO

POSTULADOS

Complemento (NOT)	Adição (OR)	Multiplicação (AND)
$A=0 \rightarrow \bar{A}=1$	0 + 0 = 0 0 + 1 = 1	0.0 = 0 0.1 = 0
$A = 0 \rightarrow A = 1$ $A = 1 \rightarrow \bar{A} = 0$	0 + 1 = 1 1 + 0 = 1	1.0 = 0
	1 + 1 = 1	1.1 = 1

IDENTIDADES

Complemento	Adição	Multiplicação	
$ar{ar{A}}=A$	A + 0 = A A + 1 = 1 A + A = A $A + \bar{A} = 1$	$A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot A = A$ $A \cdot \bar{A} = 0$	

PROPRIEDADES

Comutativa	Associativa	Distributiva		
$A + B = B + A$ $A \cdot B = B \cdot A$	A + (B + C) = A + B + C A.(B.C) = A.B.C	A.(B+C)=A.B+A.C		

Teorema de Morgan	Identidades Auxiliares	
$ \frac{(\overline{A} \cdot \overline{B})}{(\overline{A} + \overline{B})} = \overline{A} + \overline{B} \overline{(\overline{A} + \overline{B})} = \overline{A} \cdot \overline{B} $	A + (A.B) = A $A + \bar{A}.B = A + B$ (A + B).(A + C) = A + B.C	

Name	AND form	OR form $0 + A = A$	
Identity law	1A = A		
Null law	0A = 0	1 + A = 1	
Idempotent law	AA = A	A + A = A	
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$	
Commutative law	AB = BA	A + B = B + A	
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC	
Absorption law	A(A + B) = A	A + AB = A	
De Morgan's law	aw $\overline{AB} = \overline{A} + \overline{B}$ $\overline{A+B} = \overline{A}\overline{B}$		