امتحان الفصل الأُول مادة الرياضيات

المدة: ساعتان 🖑

الشعبة: سنة ثالثة تسيير واقتصاد

التمرين الأول: (6 نقاط)

 $U_{n+1} = \frac{1}{4}U_n + 3$: فإن $u_n = 0$ و من أجل كل عدد طبيعي $u_n = 0$ فإن $u_n = 0$ المتتالية العددية u_n معرفة كما يلي:

، U_3 و U_2 , U_1 أحسب (1

2ن

1ن

- $U_n \geq 4: n$ ا أثبت بالتراجع أنه من أجل كل عدد طبيعي (2
- ب بيّن أنّ المتتالية (U_n) متناقصة (U_n) متفاربة؟ (U_n) متفاربة (U_n)
- $V_n=U_n-4$: العددية المعرفة من أجل كل عدد طبيعي العددية المعرفة من أجل (V_n)
- ا) بيّن أن المتتالية (V_n) متتالية هندسية أساسها $q=rac{1}{4}$ وحدها الأول V_0 ، ثم أكتب عبارة حدها العام.
 - $\cdot \lim_{n o +\infty} U_n$ بيّن أنّه من أجل كل عدد طبيعي n لدينا $u_n = 2\left(rac{1}{4}
 ight)^n + 4$ بيّن أنّه من أجل كل عدد طبيعي
 - $S_n = U_0 + U_1 + U_2 + \ldots + U_n$: حيث $S_n = U_0 + U_1 + U_2 + \ldots + U_n$ أحسب بدلالة $S_n = U_0 + U_1 + U_2 + \ldots + U_n$

التمرين الثاني: (7 نقاط)

الجدول التالي يعطي مسافة التوقف بالأمتار عند الضغط على المكبح لسيارة ما حسب السرعة المستعملة و المقدرة بـ : Km/h.

x_i السرعة							
y_i المسأفة	18.6	26.5	35.7	46	57.5	70.7	85.4

1) عين احداثيا النقطة المتوسطة G ، ثم مثلها في نفس المعلم G

 $\overline{20}$ بيّن أنّ معامل توجيه مستقيم الانحدار بالمربعات الدنيا هو a=1.11 ، انشئ هذا المستقيم.

(3

ا) كم ستكون مسافة التوقف عند استعمال السرعة 160 Km/h?

ب) أوقفت المصالح المختصة أحد السائقين و بعد تسببه في حادث مرور و بعد حساب المسافة وجدوها 230 m

- باستعمال التعديل السابق أوجد السرعة التي كان يسوق بها السائق + تدور القيم إلى + + 10 +

(7) نقاط) التـــمريـن الثالث: (7) نقاط) التكن الدالة (7) المعرفة على (7) بالعبارة:

$$f(x) = \frac{-x^2 + 4x - 1}{x - 1}$$

. $(O; \vec{i}; \vec{j})$ متعامد و متجانس في مستوي منسوب الى معلم متعامد و متجانس (C_f) مثيلها البياني في مستوي

- مين نهايتي الدالة f عند أطراف مجال تعريفها .
- $[1,+\infty]$ عين الاعداد الحقيقية [a,b] و [a,b] عين الاعداد الحقيقية [a,b]

$$f(x) = ax + b + \frac{c}{x - 1}$$

 $:]1, +\infty[$ بين أنه من أجل كل x من]3

$$f'(x) = \frac{-x^2 + 2x - 3}{(x - 1)^2}$$

- $+ \frac{1}{2}$ أعط حدول تغيرات الدالة
- $0+\infty$ مستقيم مقارب لمنحني الدالة y=-x+3 مستقيم مقارب لمنحني الدالة و y=0
 - ، (D) أدرس الوضع النسبي للمنحنى (C_f) و المستقيم (6
 - .[3.5; 4] بين أن المعادلة : f(x) = 0 تقبل حلاً وحيدًا α في المجال f(x) = 0
 - (C_f) أرسم المستقيم (D) و المنحنى (C_f