PERSATUAN AKTUARIS INDONESIA

UJIAN PROFESI AKTUARIS

MATA UJIAN : A20- Probabilita dan Statistika

TANGGAL : 23 April 2019

JAM : 09.00 - 12.00 WIB

LAMA UJIAN : 3 Jam

SIFAT UJIAN : Tutup Buku

PERSATUAN AKTUARIS INDONESIA Komisi Ujian dan Kurikulum

TATA TERTIB UJIAN

- 1. Setiap Kandidat diharapkan berada di ruang ujian selambat-lambatnya 15 (lima belas) menit sebelum ujian dimulai.
 - a. Tata tertib akan dibacakan 10 (sepuluh) menit sebelum ujian dimulai.
 - b. Pengisian Informasi identitas pada lembar atau buku jawaban dilakukan 5 (lima) menit sebelum ujian dimulai.
- 2. Kandidat yang datang 1 (satu) jam setelah berlangsungnya ujian dilarang memasuki ruang ujian dan mengikuti ujian.
- 3. Kandidat dilarang meninggalkan ruang ujian selama 1 (satu) jam pertama berlangsungnya ujian.
- 4. Setiap kandidat harus menempati bangku yang telah ditentukan.
- 5. Surat undangan ujian dan KTP/SIM/PASPOR/Identitas berfoto lainnya wajib diperlihatkan kepada petugas saat absen.
- 6. Barang-barang pribadi yang diperkenankan:
 - a. Di atas Meja: Alat Tulis, Kalkulator, Identitas Diri dan Surat Undangan.
 - b. Di saku : Dompet, Obat-Obatan, Tisu dan Alat Medis yang diperlukan.
 - c. Barang-barang selain yang disebutkan di atas harus dimasukkan ke dalam tas dalam keadaan tertutup dan diletakkan di tempat yang telah ditentukan.
 - d. Alat komunikasi harus dimatikan selama ujian berlangsung.
- 7. Setiap kandidat hanya berhak memperoleh satu set bahan ujian dan tidak diperkenankan untuk meminta tambahan kertas. Kerusakan lembar jawaban oleh kandidat, tidak akan diganti. Dalam memberikan jawaban, lembar jawaban harus dijaga agar tidak kotor karena coretan. Lembar jawaban pilihan ganda tidak boleh diberi komentar selain pilihan jawaban yang benar.
- 8. Setiap kandidat dilarang mengisi lembar jawaban dan membuka lembar soal sebelum waktu ujian dimulai.
- Kandidat dilarang melihat pekerjaan kandidat lain atau berkomunikasi langsung ataupun tidak langsung dengan kandidat lainnya selama ujian berlangsung termasuk meminjam atau meminjamkan alat tulis dan/atau kalkulator.
- 10. Kandidat dilarang menanyakan makna pertanyaan kepada Pengawas ujian.
- 11. Kandidat hanya diperkenankan meninggalkan ruangan ujian sementara waktu hanya untuk keperluan medis mendesak atau ke toilet.
- 12. Kandidat yang terpaksa harus meninggalkan ruang ujian untuk sementara harus meminta izin kepada Pengawas ujian dan setiap kali izin keluar diberikan hanya untuk 1 (satu) orang. Setiap Kandidat yang keluar tanpa izin dari pengawas maka lembar jawaban akan diambil oleh pengawas dan dianggap telah selesai mengerjakan ujian.
- 13. Pengawas akan mencatat semua jenis pelanggaran atas tata tertib ujian yang akan menjadi pertimbangan dalam pemberian sanksi.
- 14. Sanksi yang diberikan dapat berupa:
 - a. Diskualifikasi ujian;
 - b. Pelarangan ujian dalam kurun waktu tertentu; dan/atau

- c. Sanksi lain yang akan ditentukan oleh Komisi Kode Etik.
- 15. Kandidat yang telah selesai mengerjakan soal ujian, harus menyerahkan lembar jawaban langsung kepada Pengawas ujian dan tidak meninggalkan lembar jawaban tersebut di meja ujian.
- 16. Kandidat yang telah menyerahkan lembar jawaban harus meninggalkan ruang dan area ujian yang ditentukan.
- 17. Kandidat dapat mengajukan keberatan terhadap soal ujian yang dinilai tidak benar dengan penjelasan yang memadai kepada komisi penguji selambat-lambatnya 5 (lima) hari kalender setelah hari terakhir ujian pada periode tersebut.

KOMISI UJIAN DAN KURIKULUM PETUNJUK MENGERJAKAN SOAL

Ujian Pilihan Ganda

- 1. Setiap soal akan mempunyai 5 (lima) pilihan jawaban dan hanya terdapat 1 (satu) jawaban yang benar.
- 2. Setiap soal mempunyai bobot nilai yang sama dengan tidak ada pengurangan nilai untuk jawaban yang salah.
- 3. Kandidat diminta untuk membaca dan mengikuti petunjuk pengisian yang ada di lembar jawaban.
- 4. Kandidat wajib **mengisi informasi pada** tempat yang disediakan dan **tanda tangani lembar jawaban tersebut tanpa menuliskan nama.**

Ujian Soal Essay

- 1. Setiap soal dapat mempunyai lebih dari 1 (satu) pertanyaan, Setiap soal mempunyai bobot yang sama kecuali terdapat keterangan pada soal.
- 2. Tuliskan jawaban Kandidat pada buku jawaban soal dengan jelas, rapi dan terstruktur sehingga akan mempermudah pemeriksaan hasil ujian.
- 3. Kandidat diperbolehkan untuk mengerjakan soal secara tidak berurutan dengan menuliskan nomor soal dengan jelas.
- 4. Kandidat wajib **mengisi informasi pada** tempat yang disediakan dan **tanda tangani buku jawaban soal tersebut tanpa menuliskan nama.**

Periode April 2019

KETENTUAN DAN PROSEDUR KEBERATAN SOAL UJIAN PAI

- 1. Kandidat dapat memberikan sanggahan soal, jawaban atau keluhan kepada Komisi Ujian dan Kurikulum selambat-lambatnya 5 hari setelah akhir periode ujian.
- 2. Semua pengajuan keberatan soal dialamatkan ke sanggahan.soal@aktuaris.or.id
- 3. Pengajuan keberatan soal setelah tanggal tersebut (Poin No 1) tidak akan diterima dan ditanggapi.
- 4. Atas keberatan atau sanggahan terhadap soal tersebut, Komisi Ujian dan Kurikulum akan menelaah ulang soal tersebut dan dapat melakukan perubahan kunci jawaban, atau menganulir soal apabila dipandang perlu.

- Suatu kotak berisi 5 permen dan 5 cokelat. Sebuah uji coba dilakukan dengan mengambil 3 buah dari dalam kotak, tanpa adanya pengembalian. Berapakah peluang untuk mendapatkan 1 permen dan 2 cokelat, diketahui bahwa minimal 2 diantara uji coba tersebut adalah cokelat.
 - a. $\frac{1}{2}$
 - b. $\frac{2}{3}$
 - c. $\frac{3}{4}$
 - d. $\frac{4}{5}$
 - e. $\frac{5}{6}$
- 2. Masa hidup atau kegunaan sebuah alat pembersih debu adalah suatu variabel acak dengan fungsi densitas sebagai berikut:

$$f(x) = \begin{cases} \frac{20.000}{(x+100)^3} & untuk \ x > 0\\ 0 & lainnya \end{cases}$$

Jika terdapat 3 alat pembersih yang bekerja saling bebas, hitunglah

$$P(X_1 < 100, X_2 < 100, X_3 \ge 200)$$

- a. $\frac{1}{32}$
- b. $\frac{1}{16}$
- c. $\frac{3}{32}$
- d. $\frac{3}{16}$
- e. $\frac{7}{32}$

- 3. Sebuah mesin untuk mengisi air mineral (botol) telah di atur sedimikian sehingga jumlah dari air yang terbuang adalah variabel acak dengan rataan 200ml dan standar deviasi 15ml.

 Berapa peluang bahwa rata-rata jumlah dari air yang terbuang dari 36 botol yang dipilih secara acak adalah minimal 204ml?
 - a. 0,4452
 - b. 0,4520
 - c. 0,0548
 - d. 0,0442
 - e. 0,5480
- 4. Jika sebuah distribusi peluang gabungan dimana X dan Y diketahui :

$$f(x,y) = c(x^2 + y^2)$$
 untuk $x = -1, 0, 1, 3$; $y = -1, 2, 3$

Maka temukan nilai c.

- a. $\frac{1}{17}$
- b. $\frac{1}{31}$
- c. $\frac{1}{41}$
- d. $\frac{1}{49}$
- e. $\frac{1}{89}$

Berikut adalah soal untuk no 5 dan no 6:

Sebuah pengamatan dilakukan untuk menguji *null hypothesis* bahwa rata-rata waktu tunggu seseorang pada suatu stasiun bus adalah $\theta=10$ *menit*, sedangkan *alternative hypothesis* adalah $\theta\neq10$ *menit*. *Null hypothesis* ditolak jika dan hanya jika nilai hasil observasi adalah lebih kecil dari 8 atau lebih besar dari 12.

Fungsi Peluang Densitas :
$$f(x,0) = \frac{1}{\theta} e^{-x/\theta}$$
; $0 < x < \infty$

- 5. Hitunglah peluang dari Type 1 error
 - a. 0,852
 - b. 0,933
 - c. 0,758
 - d. 0,384
 - e. 0,486

a. 0,026 b. 0,086 c. 0,144 d. 0,134 e. 0,122 7. Jika peluang penolakan permohonan kredit pada suatu bank adalah 0,20. Tentukan peluang bahwa bank akan menolak permohonan kredit paling banyak 40 dari 225 permohonan kredit. Gunakan pendekatan distribusi normal, dengan 3 desimal. a. 0,154 b. 0,227 c. 0,295 d. 0,177 e. 0,235 8. Di Bogor, penggunaan listrik dalam sehari (dalam jutaan KW per jam) adalah suatu variabel acak yang berdistribusi gamma dengan $\alpha = 3 \, dan \, \beta = 2$. Jika, pembangkit listrik di Bogor memiliki kapasitas harian sebesar 12 juta KW per jam, berapa peluang bahwa sumber daya listrik akan tidak cukup pada suatu hari tertentu? a. 0,029 b. 0,054 c. 0,062

6. Hitunglah peluang dari **Type 2 error** ketika $\theta = 16 \ menit$

d. 0,084

e. 0,098

9. Suatu perusahaan membeli sebuah polis asuransi untuk perlindungan terhadap kecelakaan yang terjadi. Peluang terjadi nya kecelakaan sebanyak satu atau lebih pada satu bulan adalah $\frac{3}{5}$. Jumlah kecelakaan yang terjadi pada suatu bulan adalah bersifat bebas dari jumlah kecelakaan pada bulan lainnya.

Variabel $\operatorname{acak} X$ adalah jumlah bulan dimana tidak ada kecelakaan yang terjadi ketika pada bulan ke-4 terjadi kecelakaan.

Hitunglah $P[X \ge 4]$

- a. 0,01
- b. 0,12
- c. 0,23
- d. 0,29
- e. 0,41
- 10. Jika peluang seseorang akan percaya pada suatu isu mengenai pelanggaran hukum atas politisi tertentu adalah 0,75. Hitunglah peluang bahwa orang ke-15 yang mendengarkan isu tersebut adalah orang ke-10 yang akan mempercayai isu itu.

$$b^*(x;k,\theta) = {x-1 \choose k-1} \theta^k (1-\theta)^{x-k}$$
 untuk $x = k, k+1, k+2$

- a. 0,0180
- b. 0,0538
- c. 0,0754
- d. 0,1101
- e. 0,1298
- 11. Seorang kolektor seni, yang memiliki 10 lukisan dari pelukis terkenal, sedang mempersiapkan surat wasiat nya. Ada berapa banyak cara dia dapat memberikan lukisan-lukisan tersebut terhadap 3 ahli warisnya?
 - a. 81
 - b. 243
 - c. 2.187
 - d. 19.683
 - e. 59.049

- 12. Seorang insinyur mobil menyatakan bahwa 1 dari 10 kecelakaan mobil disebabkan oleh faktor kelelahan si pengemudi. Dengan menggunakan distribusi binomial dan dengan pendekatan 4 desimal, berapa peluang bahwa setidaknya 3 dari 5 kecelakaan mobil disebabkan oleh pengemudi yang lelah?
 - a. 0,0086
 - b. 0,0075
 - c. 0,0640
 - d. 0,0538
 - e. 0,0186
- 13. Setibanya di ruang UGD suatu Rumah Sakit, pasien dikategorikan berdasarkan kondisi mereka, seperti kritis, serius, atau stabil. Dalam beberapa tahun terakhir, terdapat:
 - i. 10% pasien UGD memiliki kondisi kritis;
 - ii. 30% pasien UGD memiliki kondisi serius;
 - iii. Sisanya, adalah pasien dengan kondisi stabil;
 - iv. 40% pasien dengan kondisi kritis meninggal dunia;
 - v. 10% pasien dengan kondisi serius meninggal dunia; dan
 - vi. 1% pasien dengan kondisi stabil meninggal dunia

Diberitahukan bahwa pasien dalam kondisi hidup, berapakah peluang bahwa pasien tersebut berasal dari kategori serius pada waktu tiba di UGD? (pendekatan 2 desimal)

- a. 0,06
- b. 0,29
- c. 0,30
- d. 0,39
- e. 0,64

14. Keuntungan seorang kontraktor dalam suatu pekerjaan konstruksi dapat dilihat sebagai suatu variabel acak kontinu dengan fungsi densitas peluang sebagai berikut

$$f(x) = \begin{cases} \frac{1}{18}(x+1) & untuk - 1 < x < 5\\ 0 & untuk lainnya \end{cases}$$

Berapakah ekspektasi keuntungan kontraktor tersebut?

- a. 3
- b. 4
- c. 5
- d. 6
- e. 7
- 15. Dalam sebuah permainan poker, seorang pemain akan menerima 5 kartu yang dibagikan dari sebuah dek kartu standar yang berisi 52 kartu (tanpa joker. Dikatakan mendapatkan "full house" apabila mengandung 3 kartu dengan angka yang sama dan sepasang kartu dengan angka yang sama. (Contoh "full house" = 888 dan QQ)

Berapa peluang kartu-kartu yang diterima oleh pemain tersebut membentuk "full house"?

- a. 0,0076
- b. 0,0063
- c. 0,0042
- d. 0,0029
- e. 0,0014
- 16. Jumlah surat nikah yang diterbitkan pada suatu kota selama bulan Juni dapat dilihat sebagai sebuah variabel acak dengan $\mu=124$ dan $\sigma=7,5$.

Dengan menggunakan *Chebyshev's theorem*, hitunglah batas bawah dari peluang bahwa kita dapat menyatakan diantara 64 dan 184 surat nikah akan diterbitkan selama bulan Juni?

- a. $\frac{9}{16}$
- b. $\frac{63}{64}$
- c. $\frac{17}{64}$
- d. $\frac{63}{184}$
- e. $\frac{17}{184}$

17. Diketahui distribusi peluang dari *X* adalah sebagai berikut:

$$f(x) = \begin{cases} \frac{1}{8} {3 \choose x} & untuk \ x = 0,1,2,3 \\ 0 & untuk \ lainnya \end{cases}$$

HItunglah μ'_2 (Momen ke-2 dari X)

- a. $\frac{3}{4}$
- b. $\frac{3}{2}$
- c. 1
- d. 2
- e. 3
- 18. Lebar dari sepotong kain pada sebuah pabrik memiliki distribusi normal dengan rataan 950mm dan standar deviasi 10mm. Berapakah nilai C sedemikian sehingga apabila dipilih sepotong kain secara acak, peluang bahwa kain tersebut memiliki lebar yang lebih kecil dari C adalah 0,8531?
 - a. 976,5
 - b. 960,5
 - c. 958,5
 - d. 950,5
 - e. 947,5
- 19. Jumlah dari giro cacat yang diperoleh sebuah bank selama 5 jam kerja adalah suatu variabel acak yang berdistribusi Poisson dengan $\mu=2$. Berapa peluang bahwa Bank tersebut tidak mendapatkan giro yang cacat selama 2 jam kerja pertama?
 - a. 0,1813
 - b. 0,2231
 - c. 0,2643
 - d. 0,4493
 - e. 0,6413

20. Untuk mengestimasi jumlah pengangguran yang terdapat di DKI Jakarta, sebuah lembaga survey memilih secara acak sebanyak 400 orang dan diperoleh sebanyak 25 orang adalah pengangguran. HItung berapa banyak orang yang sebenarnya diperlukan dalam survey tersebut sehingga tingkat eror dari pengamatan tersebut berkurang menjadi 0,02.

Petunjuk: Gunakan confidence level 95%.

- a. 355
- b. 467
- c. 488
- d. 563
- e. 650
- 21. Sebuah perusahaan asuransi kendaraan bermotor mengasuransikan semua pekerjanya disegala umur. Seorang aktuaris mengumpulkan data nya ke dalam bentuk statistik berikut :

Umur	Peluang	Besar Porsi			
Pekerja	Kecelakaan	Pekerja			
	Kerja	diasuransi			
16-20	0,06	0,08			
21-30	0,03	0,15			
31-65	0,02	0,49			
66-99	0,04	0,28			

Seorang pekerja yang dipilih secara acak pada perusahaan asuransi tersebut, mengalami kecelakaan.

Hitunglah peluang bahwa umur pekerja tersebut adalah 16-20?

- a. 0,13
- b. 0,16
- c. 0,19
- d. 0,23
- e. 0,40

Berikut adalah soal untuk no 22 sampai dengan no 23:

Jika sebuah angka keluhan yang di terima dari suatu toko binatu per hari adalah variabel acak berdistribusi Poisson dengan $\lambda = 3,3$.

- 22. Hitunglah peluang bahwa toko binatu tersebut menerima 2 keluhan di hari tertentu
 - a. 0,1420
 - b. 0,1699
 - c. 0,2008
 - d. 0,2919
 - e. 0,3192
- 23. Hitunglah peluang bahwa toko binatu tersebut menerima 5 keluhan di 2 hari tertentu
 - a. 0,1420
 - b. 0,1699
 - c. 0,2008
 - d. 0,2919
 - e. 0,3192
- 24. Diketahui sebuah variabel acak \boldsymbol{X} dengan fungsi densitas sebagai berikut:

$$f(x) = \begin{cases} 20 \ x^3 (1-x) & untuk \ 0 \le x \le 1 \\ 0 & untuk \ lainnya \end{cases}$$

Hitunglah nilai dari $P(0.4 < X \le 0.7)$

- a. 0,0870
- b. 0,2084
- c. 0,4412
- d. 0,5282
- e. 0,7370
- 25. Sebuah kotak berisi N_1 bola putih, N_2 bola hitam, dan N_3 bola merah. $N_1 + N_2 + N_3 = N$. Sebuah uji coba dilakukan, N bola diambil secara acak dari kotak tersebut (dengan pengembalian). Misal X_1, X_2, X_3 menunjukkan jumlah dari bola putih, bola hitam, dan bola merah pada percobaan yang diamati.

Carilah koefisien korelasi "correlation coefficient" untuk X_1 dan X_2

Petunjuk:

$$f(x) = \begin{cases} \frac{3}{2}x^2 & untuk - 1 \le x \le 1\\ 0 & untuk \ lainnya \end{cases}$$

$$p_i = \frac{N_i}{N}$$
, untuk $i = 1,2,3$

 $X_1, X_2, dan X_3$ memiliki *multinominal distribution* dengan fungsi peluang sebagai berikut:

$$p(x_1, x_2, x_3) = \frac{N!}{x_!! x_2! x_3!} p_1^{x_1} p_2^{x_2} p_3^{x_3} , \sum_{i=1}^{N} x_i = N$$

a.
$$NN_1(1-N_2)$$

b.
$$\frac{N_1(N-N_2)}{N}$$

c.
$$\frac{N_2(N-N_1)}{N}$$

b.
$$\frac{N_1(N-N_2)}{N}$$

c. $\frac{N_2(N-N_1)}{N}$
d. $-\frac{N_1 N_2}{N \sqrt{N_1 N_2}}$

e.
$$-\frac{N_1 N_2}{\sqrt{N_1(N-N_1) N_2(N-N_2)}}$$

26. Kerugian yang diakibatkan oleh kebakaran pada suatu gedung dapat dimodelkan dengan suatu variabel acak X yang memiliki fungsi densitas sebagai berikut:

$$f(x) = \begin{cases} \frac{1}{900} (30 - x) & untuk \ 0 < x < 30 \\ 0 & untuk \ lainnya \end{cases}$$

Diberikan bahwa kerugian akibat kebakaran adalah lebih dari 10, berapakah peluang bahwa kerugian lebih dari 20?

27. Besar klaim pada suatu bisnis diketahui mengikuti distribusi normal. Sebuah percobaan terhadap besar klaim adalah sebagai berikut:

No Klaim	Besar Klaim
1	3,3
2	5,4
3	7,1
4	8,9
5	23,5
6	29,8

Untuk hipotesis $\sigma^2 < 50$, pada rentang berapakah nilai *p-value*?

- a. $p \le 0.005$
- b. 0.005
- c. 0.010
- d. 0.025
- e. p > 0.050
- 28. DKI Jakarta baru saja menambahkan polisi wanita sebanyak 100 orang. DKI Jakarta akan memberikan dana pensiun kepada seluruh polwan tersebut selama mereka masih bekerja menjadi polwan pada waktu pensiunnya. Sebagai tambahan manfaat, setiap polwan yang sudah berstatus menikah pada saat mereka pensiun, akan mendapatkan manfaat pensiun untuk suami nya juga. Seorang konsultan aktuaris menggunakan beberapa asumsi:
 - i. Setiap polwan yang baru direkrut, memiliki peluang sebesar 0,4 bahwa mereka akan tetap menjadi polwan sampai masa pensiun
 - ii. Apabila polwan yang baru direkrut tetap menjadi polwan sampai pada usia pensiun, peluang bahwa dia tidak menikah adalah 0,25
 - iii. Jumlah pensiun yang disediakan oleh DKI Jakarta terhadap polwan yang baru direkrut adalah bersifat saling bebas dengan polwan lainnya yang baru direkrut

Hitunglah peluang bahwa DKI Jakarta akan menyediakan paling banyak 90 manfaat pensiun dari 100 polwan yang baru direkrut dan suami nya.

Petunjuk: Gunakan Central Limit Theorem

- a. 0,60
- b. 0,67
- c. 0,75
- d. 0,93
- e. 0,99

29. Sebuah tim sepak bola "ABC" telah dijadwalkan untuk melakukan permainan perdana pada tanggal 1 Februari.

Jika terjadi hujan pada tanggal 1 Februari, maka permainan akan ditunda dan baru akan bermain di hari berikutnya yang tidak hujan. Tim "ABC" membeli sebuah polis asuransi untuk perlindungan terhadap cuaca hujan ini. Polis asuransi akan membayar 1.000 untuk setiap hari nya, sampai 2 hari jika permainan ditunda.

Perusahaan asuransi menetapkan bahwa banyak hari di mana hujan akan turun secara berturut-turut terhitung dari 1 Februari adalah variabel acak berdistribusi Poisson dengan rataan 0,6.

Berapa standar deviasi dari jumlah yang harus dibayarkan oleh perusahaan asuransi tersebut?

- a. 376
- b. 566
- c. 699
- d. 775
- e. 817
- 30. Tomas membaca sebuah berita yang menyatakan bahwa $\frac{1}{4}$ dari seluruh mobil berasal dari impor dan sisanya berasal dari domestik. Tomas memutuskan untuk menguji berita ini dengan mengamati mobil yang melewati rumahnya. Tomas berasumsi setiap mobil yang lewat secara berturut-turut memilki peluang $\frac{1}{4}$ mobil impor dan $\frac{3}{4}$ mobil domestik. Jika asumsi Tomas benar, carilah peluang bahwa Tomas akan melihat sedikitnya 2 mobil impor yang melewati rumahnya sebelum mobil domestik yang ketiga melewati rumahnya?
 - 256

 - 64 67

Tabel 1: Standard Normal Distribution

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

Tabel 2: T Distribution, critical Value

	Tail probability p											
df	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	1.000	1.376	1.963	3.078	6.314	12.710	15.890	31.820	63.660	127.3	318.310	636.620
2	0.816	1.061	1.386	1.886	2.920	4.303	4.489	6.965	9.925	14.090	22.327	31.599
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.215	12.924
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.174	0.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.894	0.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.209	0.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.786	0.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.502	0.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	0.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.610	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2,457	2.750	3.030	3.385	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.109	2.403	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.081	2.364	2.871	3.174	3.390
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.056	2.330	2.813	3.098	3.300
Z	0.674	0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.090	3.291
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.50%	99.80%	99.90%
						Confidence	e level C					

Tabel 3: Chi-Square

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

Tabel 4: Poisson probabilities

The table below gives the probability of that a Poisson random variable X with mean = λ is less than or equal to x. That is, the table gives

$$P(X \le x) = \sum_{r=0}^{x} \lambda^r \frac{e^{-\lambda}}{r!}$$

λ=		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8
x=	0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679	0.3012	0.2466	0.2019	0.1653
	1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725	0.7358	0.6626	0.5918	0.5249	0.4628
	2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371	0.9197	0.8795	0.8335	0.7834	0.7306
	3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865	0.9810	0.9662	0.9463	0.9212	0.8913
	4	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977	0.9963	0.9923	0.9857	0.9763	0.9636
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9985	0.9968	0.9940	0.9896
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9994	0.9987	0.9974
	7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9994
	8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
λ=		2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.5	5.0	5.5
x=	0	0.1353	0.1108	0.0907	0.0743	0.0608	0.0498	0.0408	0.0334	0.0273	0.0224	0.0183	0.0111	0.0067	0.0041
	1	0.4060	0.3546	0.3084	0.2674	0.2311	0.1991	0.1712	0.1468	0.1257	0.1074	0.0916	0.0611	0.0404	0.0266
	2	0.6767	0.6227	0.5697	0.5184	0.4695	0.4232	0.3799	0.3397	0.3027	0.2689	0.2381	0.1736	0.1247	0.0884
	3	0.8571	0.8194	0.7787	0.7360	0.6919	0.6472	0.6025	0.5584	0.5152	0.4735	0.4335	0.3423	0.2650	0.2017
	4	0.9473	0.9275	0.9041	0.8774	0.8477	0.8153	0.7806	0.7442	0.7064	0.6678	0.6288	0.5321	0.4405	0.3575
	5	0.9834	0.9751	0.9643	0.9510	0.9349	0.9161	0.8946	0.8705	0.8441	0.8156	0.7851	0.7029	0.6160	0.5289
	6	0.9955	0.9925	0.9884	0.9828	0.9756	0.9665	0.9554	0.9421	0.9267	0.9091	0.8893	0.8311	0.7622	0.6860
	7	0.9989	0.9980	0.9967	0.9947	0.9919	0.9881	0.9832	0.9769	0.9692	0.9599	0.9489	0.9134	0.8666	0.8095
	8	0.9998	0.9995	0.9991	0.9985	0.9976	0.9962	0.9943	0.9917	0.9883	0.9840	0.9786	0.9597	0.9319	0.8944
	9	1.0000	0.9999	0.9998	0.9996	0.9993	0.9989	0.9982	0.9973	0.9960	0.9942	0.9919	0.9829	0.9682	0.9462
	10	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9995	0.9992	0.9987	0.9981	0.9972	0.9933	0.9863	0.9747
	11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9996	0.9994	0.9991	0.9976	0.9945	0.9890
	12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9992	0.9980	0.9955
	13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9983
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
	16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

λ=	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	11.0	10.0	12.0	14.0	15.0
x= 0	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008	0.0005	0.0002	0.0005	0.0001	0.0000	0.0000
2	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042	0.0028	0.0012	0.0028	0.0005	0.0001	0.0000
3	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149	0.0103	0.0049	0.0103	0.0023	0.0005	0.0002
4	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403	0.0293	0.0151	0.0293	0.0076	0.0018	0.0009
5	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885	0.0671	0.0375	0.0671	0.0203	0.0055	0.0028
6	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649	0.1301	0.0786	0.1301	0.0458	0.0142	0.0076
7	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687	0.2202	0.1432	0.2202	0.0895	0.0316	0.0180
8	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918	0.3328	0.2320	0.3328	0.1550	0.0621	0.0374
9	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218	0.4579	0.3405	0.4579	0.2424	0.1094	0.0699
10	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453	0.5830	0.4599	0.5830	0.3472	0.1757	0.1185
11	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520	0.6968	0.5793	0.6968	0.4616	0.2600	0.1848
12	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364	0.7916	0.6887	0.7916	0.5760	0.3585	0.2676
13	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981	0.8645	0.7813	0.8645	0.6815	0.4644	0.3632
14	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400	0.9165	0.8540	0.9165	0.7720	0.5704	0.4657
15	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665	0.9513	0.9074	0.9513	0.8444	0.6694	0.5681
16	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823	0.9730	0.9441	0.9730	0.8987	0.7559	0.6641
17	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911	0.9857	0.9678	0.9857	0.9370	0.8272	0.7489
18	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957	0.9928	0.9823	0.9928	0.9626	0.8826	0.8195
19	1.0000	1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980	0.9965	0.9907	0.9965	0.9787	0.9235	0.8752
20	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9984	0.9953	0.9984	0.9884	0.9521	0.9170
21	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993	0.9977	0.9993	0.9939	0.9712	0.9469
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9990	0.9997	0.9970	0.9833	0.9673
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9995	0.9999	0.9985	0.9907	0.9805
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	1.0000	0.9993	0.9950	0.9888
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	1.0000	0.9997	0.9974	0.9938
26	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9987	0.9967
27	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9983
28	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9991
29	1.0000	1.0000	1.0000	1.0000			1.0000			1.0000	1.0000	1.0000	0.9999	0.9996
30 31	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
31	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
32	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

KERTAS KOSONG UNTUK CORETAN

KERTAS KOSONG UNTUK CORETAN

KERTAS KOSONG UNTUK CORETAN