AISC 360-16

B4. MEMBER PROPERTIES

1. Classification of Sections for Local Buckling

For compression, sections are classified as nonslender element or *slender-element* sections. For a nonslender element section, the width-to-thickness ratios of its compression elements shall not exceed λ_r from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

For flexure, sections are classified as *compact*, *noncompact* or slender-element sections. For a section to qualify as compact, its flanges must be continuously connected to the web or webs and the width-to-thickness ratios of its compression elements shall not exceed the limiting width-to-thickness ratios, λ_p , from Table B4.1b. If the width-to-thickness ratio of one or more compression elements exceeds λ_p , but does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-to-thickness ratio of any compression element exceeds λ_r , the section is a slender-element section.

Compressive Element (Column, Brace)

- Non-slender Section
- Slender Section

Flexural Element (Beam, Girder)

- Compact Section
- Non-Compact Section
- Slender Section

For H Shape Compressive Element,

$$\frac{b}{t}$$
 > $0.56 \cdot \sqrt{\frac{E}{F_y}}$ \Box - Non-Slender Flange \Box Chapter E.3
$$\frac{d}{t}$$
 > $1.49 \cdot \sqrt{\frac{E}{F_y}}$ \Box - Non-Slender Web \Box Chapter E.3

TABLE B4.1a Width-to-Thickness Ratios: Compression Elements Members Subject to Axial Compression

	Case	Description of Element	Width-to- Thickness Ratio	Limiting Width-to-Thickness Ratio λ, (nonslender/slender)	Examples
Unstiffened Elements	1	Flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections; outstanding legs of pairs of angles connected with continuous contact, flanges of channels, and flanges of tees	b/t	0.56√ E F _y	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	2	Flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections	b/t	$0.64\sqrt{\frac{k_c E}{F_y}}$	$ \begin{bmatrix} \underline{b}_{11} \\ h \end{bmatrix} $
'n	3	Legs of single angles, legs of double angles with separators, and all other unstiffened elements	b/t	$0.45\sqrt{\frac{E}{F_y}}$	$\frac{b}{1}t$ $\frac{b}{1}t$
	4	Stems of tees	d/t	0.75\frac{\overline{E}}{F_{y}}	<u></u> t]d
	5	Webs of doubly- symmetric I-shaped sections and channels	h/t _w	$1.49\sqrt{\frac{E}{F_y}}$	t _w ht _w h
nts	6	Walls of rectangular HSS and boxes of uniform thickness	b/t	$1.40\sqrt{\frac{E}{F_y}}$	<u></u>
Stiffened Elements	7	Flange cover plates and diaphragm plates between lines of fasteners or welds	b/t	$1.40\sqrt{\frac{E}{F_y}}$	
Stif	8	All other stiffened elements	b/t	$1.49\sqrt{\frac{E}{F_y}}$	b
	9	Round HSS	D/t	0.11 <u>E</u>	<u> </u>

AISC 360-16

E1. GENERAL PROVISIONS

The design compressive strength, $\phi_c P_n$, and the allowable compressive strength, P_n/Ω_c , are determined as follows.

The nominal compressive strength, P_n , shall be the lowest value obtained based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.

$$\phi_c = 0.90 \text{ (LRFD)} \quad \Omega_c = 1.67 \text{ (ASD)}$$

$$L_c \coloneqq k \cdot L$$
 $r \coloneqq \sqrt{\frac{I}{A_g}}$ $E \coloneqq 200000 \; MPa$
 $F_e \coloneqq \frac{\pi^2 \cdot E}{\left(\frac{L_c}{r_x}\right)^2}$
 $F_{\text{cr}} \coloneqq \text{if} \left(\frac{L_c}{r_x} > 4.71 \cdot \sqrt{\frac{E}{F_y}}, 0.877 \cdot F_e, 0.658 \right)$
 $\phi \coloneqq 0.9$
 $\phi P \coloneqq \phi \cdot F \cdot A$

E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to nonslender-element compression members, as defined in Section B4.1, for elements in axial compression.

User Note: When the torsional effective length is larger than the lateral effective length, Section E4 may control the design of wide-flange and similarly shaped columns.

The nominal compressive strength, P_n , shall be determined based on the limit state of flexural buckling:

$$P_n = F_{cr} A_g \tag{E3-1}$$

The critical stress, F_{cr} , is determined as follows:

(a) When
$$\frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} \le 2.25$)
$$F_{cr} = \left(0.658 \frac{F_z}{F_e}\right) F_y$$
 (E3-2)

(b) When
$$\frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} > 2.25$)

$$F_{cr} = 0.877 F_e$$
 (E3-3)

where

 A_g = gross cross-sectional area of member, in.² (mm²)

E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

AISC 360-10

E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to nonslender element compression members as defined in Section B4.1 for elements in uniform compression.

User Note: When the torsional *unbraced length* is larger than the lateral unbraced length, Section E4 may control the design of wide flange and similarly shaped *columns*.

The nominal compressive strength, P_n , shall be determined based on the limit state of flexural buckling.

$$P_n = F_{cr} A_g \tag{E3-1}$$

The critical stress, F_{cr} , is determined as follows:

(a) When
$$\frac{KL}{r} = 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} \le 2.25$)

$$F_{cr} = \left[0.658 \frac{F_y}{F_c}\right] F_y \tag{E3-2}$$

(b) When
$$\frac{KL}{r}$$
 4.71 $\sqrt{\frac{E}{F_y}}$ (or $\frac{F_y}{F_e} > 2.25$)

$$F_{cr} = 0.877 F_e$$
 (E3-3)

where

 F_e = elastic *buckling* stress determined according to Equation E3-4, as specified in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as applicable, ksi (MPa)

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \tag{E3-4}$$

AISC 360-16

E2. EFFECTIVE LENGTH

The effective length, L_c , for calculation of member slenderness, L_c/r , shall be determined in accordance with Chapter C or Appendix 7,

where

K = effective length factor

 $L_c = KL =$ effective length of member, in. (mm)

L = laterally unbraced length of the member, in. (mm)

r = radius of gyration, in. (mm)

User Note: For members designed on the basis of compression, the effective slenderness ratio, L_c/r , preferably should not exceed 200.

User Note: The effective length, L_c , can be determined through methods other than those using the effective length factor, K.

E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to slender-element compression members, as defined in Section B4.1 for elements in uniform compression.

The nominal compressive strength, P_n , shall be the lowest value based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.

$$P_n = F_{cr} A_g \tag{E7-1}$$

The critical stress, F_{cr} , shall be determined as follows:

(a) When
$$\frac{KL}{r} \le 4.71\sqrt{\frac{E}{QF_y}}$$
 (e) $\frac{QF_y}{F_e} \le 2.25$ (b) When $\frac{KL}{r} > 4.71\sqrt{\frac{E}{QF_y}}$ (e) $\frac{QF_y}{F_e} > 2.25$ (e) $\frac{QF_y}{F_e} > 2.25$

where

 F_e = elastic *buckling stress*, calculated using Equations E3-4 and E4-4 for doubly symmetric members, Equations E3-4 and E4-5 for singly symmetric members, and Equation E4-6 for unsymmetric members, except for single angles with $b/t \le 20$, where F_e is calculated using Equation E3-4, ksi (MPa)

- $Q \neq$ net reduction factor accounting for all slender compression elements;
 - = 1.0 for members without slender elements, as defined in Section B4.1, for elements in uniform compression
- $=Q_sQ_o$ for members with *slender-element sections*, as defined in Section B4.1, for elements in uniform compression.

$$Q \coloneqq Q_s \cdot Q_a$$

Q = 1.0 Non-Slender Section (Section E.3 Applicable)

(a) When
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} \le 2.25$)
$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$

(b) When
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 (or $\frac{F_y}{F_e} > 2.25$)

 $F_{cr} = 0.877 F_e$

Members with Slender Flange Section

1. Slender Unstiffened Elements, Q_s

The reduction factor, Q_s , for slender unstiffened elements is defined as follows:

- (a) For flanges, angles and plates projecting from rolled columns or other compression members:
- (i) When $\frac{b}{t} \le 0.56 \sqrt{\frac{E}{F_y}}$

$$Q_s = 1.0$$
 (E7-4)

(ii) When
$$0.56\sqrt{\frac{E}{F_y}} < \frac{b}{t} < 1.03\sqrt{\frac{E}{F_y}}$$

$$Q_s = 1.415 - 0.74 \left(\frac{b}{t}\right) \sqrt{\frac{F_y}{E}}$$
 (E7-5)

(iii) When
$$\frac{b}{t} \ge 1.03 \sqrt{\frac{E}{F_y}}$$

$$Q_s = \frac{0.69E}{F_y \left(\frac{b}{t}\right)^2}$$
 (E7-6)

Members with Slender Web Section

2. Slender Stiffened Elements, Q_a

The reduction factor, Q_a , for slender stiffened elements is defined as follows:

$$Q_a = \frac{A_e}{A_o} \tag{E7-16}$$

where

 A_{σ} = gross cross-sectional area of member, in.² (mm²)

 A_e = summation of the effective areas of the cross section based on the reduced effective width, b_e , in.² (mm²)

The reduced effective width, b_e , is determined as follows:

(a) For uniformly compressed slender elements, with $\frac{b}{t} \ge 1.49 \sqrt{\frac{E}{f}}$, except flanges of square and rectangular sections of uniform thickness:

$$b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.34}{(b/t)} \sqrt{\frac{E}{f}} \right] \le b$$
 (E7-17)

where

f is taken as F_{cr} with F_{cr} calculated based on Q = 1.0

(b) For flanges of square and rectangular slender-element sections of uniform thickness with $\frac{b}{t} \ge 1.40 \sqrt{\frac{E}{f}}$:

$$b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.38}{(b/t)} \sqrt{\frac{E}{f}} \right] \le b$$
 (E7-18)

where

$$f = P_n/A_e$$

User Note: In lieu of calculating $f = P_n/A_e$, which requires iteration, f may be taken equal to F_y . This will result in a slightly conservative estimate of *column* available strength.

EXAMPLE E.1A W-SHAPE COLUMN DESIGN WITH PINNED ENDS

Given:

Select a W-shape column to carry the loading as shown in Figure E.1A. The column is pinned top and bottom in both axes. Limit the column size to a nominal 14-in. shape. A column is selected for both ASTM A992 and ASTM A913 Grade 65 material.

Fig. E.1A. Column loading and bracing

Given:

Verify a W14×90 is adequate to carry the loading as shown in Figure E.1B. The column is pinned top and bottom in both axes and braced at the midpoint about the y-y axis and torsionally. The column is verified for both ASTM A992 and ASTM A913 Grade 65 material.

Fig. E.1B. Column loading and bracing.

$1.2 \cdot 140 \ kip + 1.6 \cdot 420 \ kip = 840 \ kip$

$$1.2 \cdot 140 \ kip + 1.6 \cdot 420 \ kip = (3.737 \cdot 10^3) \ kN$$

To Do List

- 압축에 대한 판 폭 두께비
 전체 부재에 대해 산정 (AISC KS BS EN)
- 1. 단일 부재에 대한 계산 과정 작성
- 2. 전체 부재에 대해 산정
- 3. Table (Python Pandas) OK/NG 작성
- 4. OK Table 작성
- 5. 중량 기준 오름차순 정렬
- 6. www.googChapter H. Design of Members for combined Forces and Torsion (Later)
- (a) When $\frac{P_r}{P_c} \ge 0.2$

$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$$
 (H1-1a)

(b) When $\frac{P_r}{P_c} < 0.2$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$$
 (H1-1b)