

Why Python?

- Python is a modern programming language developed by Guido van Rossum in the 1990s
- What Python does well
 - Python is easy to use
 - Python is expressive
 - Python is readable
 - Python is complete—"batteries included"
 - Python is cross-platform
 - Python is free
- What Python doesn't do as well
 - Python isn't the fastest language
 - Python doesn't have the most libraries
 - Python doesn't check variable types at compile time
 - Python doesn't have much mobile support
 - Python doesn't use multiple processors well

Introduction to PyTorch

Notepad++: https://notepad-plus-plus.org/downloads/

Introduction to PyTorch

What is Machine Learning?

- Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead.
- https://en.wikipedia.org/wiki/Machine_learning

-

Comparison between traditional programming (A) and machine learning (B)

Introduction to PyTorch

8

Regression vs Classification

Introduction to Pytorch

Neural Networks in brief PyTorch package: Deep Learning Tools Pytorch Linear Regression

Introduction to PvTorch

1943 – The first mathematical model of a

neural network

ANNs began with Warren McCulloch and Walter Pitts [1] who drew an analogy between biological neurons and simple logic gates with binary outputs.

1943 – The first mathematical model of a

neural network

ANNs began with Warren McCulloch and Walter Pitts [1] who drew an analogy between biological neurons and simple logic gates with binary outputs.

x_1	x_2	Out
0	0	0
0	1	0
1	0	0
1	1	1

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Introduction to PvTorch Introduction to PvTorch

Neural Networks Mathematical Model

Introduction to PvTorch

13

Neural Networks Mathematical Model

Linear Algebra inside NNs model

• Output $\hat{y} := \sigma(z)$ where $z = x^T w + b$, $w \in \mathbb{R}^{m \times 1}$

• For 1 example : $x \in \mathbb{R}^{m \times 1}$,

•
$$z = x^T \mathbf{w} + b$$

•
$$\hat{y} = \sigma(z)$$

• For n examples : $X \in \mathbb{R}^{n \times m}$

•
$$X\mathbf{w} + b = \begin{bmatrix} (x^{[1]})^T \mathbf{w} + b \\ \vdots \\ (x^{[n]})^T \mathbf{w} + b \end{bmatrix} = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = \mathbf{z} \in \mathbb{R}^{n \times n}$$

• $\hat{y} = \begin{bmatrix} \sigma(z_1) \\ \vdots \\ \sigma(z_n) \end{bmatrix} = \sigma(\mathbf{z})$

Artificial Neural Networks

Introduction to PyTorch 15 Introduction to PyTorch

How the networks learn THE "NEURON"

Introduction to PyTorch

- torch.tensor
- · torch.autograd
- torch.nn
- torch.optim

torch.tensor

- A torch.tensor is a multi-dimensional matrix containing elements of a single data type.
- Tensors are similar to NumPy's ndattarys, with the addition being that Tensors can also be used on a GPU to accelerate computing.

torch.autograd

Introduction to PyTorch 23 Introduction to PyTorch 24

Traditional computer vision workflow vs Deep learning workflow

Machines try to see a dog as...

