Titanic Survival Analysis – Exploratory Data Analysis (EDA)

In this notebook, we explore the Titanic dataset to uncover patterns that influenced passenger survival. We'll clean the data, visualize key features, and derive actionable insights.

1. Data Loading and Initial Exploration

```
In [10]: import pandas as pd

df = pd.read_csv(r"C:\Users\LENOVO\Downloads\train (2).csv")
    df.head()
```

Out[10]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4						-				

```
In [11]: # Overview of dataset
df.info()

# Statistical summary of numeric columns
df.describe()

# Value counts for categorical columns
```

```
print("Survived:\n", df['Survived'].value_counts())
 print("\nPclass:\n", df['Pclass'].value_counts())
 print("\nSex:\n", df['Sex'].value_counts())
 print("\nEmbarked:\n", df['Embarked'].value_counts())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column
               Non-Null Count Dtype
--- -----
                -----
    PassengerId 891 non-null int64
0
   Survived 891 non-null int64
1
 2
   Pclass
             891 non-null int64
              891 non-null object
891 non-null object
 3
   Name
   Sex
4
 5 Age
               714 non-null float64
   SibSp
              891 non-null int64
 6
7 Parch
              891 non-null int64
             891 non-null object
8 Ticket
9 Fare
              891 non-null float64
10 Cabin
              204 non-null object
11 Embarked
               889 non-null
                              object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
Survived:
Survived
    549
    342
Name: count, dtype: int64
Pclass:
Pclass
3 491
    216
1
2
    184
Name: count, dtype: int64
Sex:
Sex
male
        577
female
        314
Name: count, dtype: int64
Embarked:
Embarked
    644
S
    168
C
     77
Name: count, dtype: int64
```

2. Data Cleaning

```
In [12]: # Fill missing Age with median
df.loc[:, 'Age'] = df['Age'].fillna(df['Age'].median())
```

```
# Fill missing Embarked with mode
df.loc[:, 'Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
# Drop Cabin due to high missing values
df.drop(columns=['Cabin'], inplace=True)
```

3. Univariate Analysis

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="whitegrid")

plt.figure(figsize=(8, 5))
sns.histplot(df['Age'], kde=True)
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
```


Age Distribution

- Most passengers are between 20–40 years old.
- Distribution is right-skewed, showing more younger passengers on board.
- A few children and elderly passengers were also present.

```
In [16]: plt.figure(figsize=(8, 5))
sns.boxplot(x=df['Fare'])
```


Fare Distribution

Fare Distribution

- Fare distribution is heavily skewed with many outliers.
- Most fares are below 100, but some exceed 500.
- The spread shows a wide range of socioeconomic backgrounds among passengers.

4. Bivariate and Multivariate Analysis

```
In [17]: plt.figure(figsize=(8, 5))
    sns.countplot(x='Survived', hue='Sex', data=df)
    plt.title("Survival by Gender")
    plt.show()
```


Survival by Gender

- Female passengers had a much higher survival rate than males.
- This aligns with the "women and children first" policy followed during the evacuation.
- Male survival was significantly lower, regardless of class.

```
In [18]: plt.figure(figsize=(8, 5))
    sns.countplot(x='Survived', hue='Pclass', data=df)
    plt.title("Survival by Passenger Class")
    plt.show()
```


Survival by passenger Class

- 1st class passengers had the highest survival rate.
- 3rd class passengers had the lowest survival rate.
- Strong indication that socioeconomic status influenced survival priority.

```
In [19]: plt.figure(figsize=(8, 5))
    sns.pairplot(df[['Survived', 'Age', 'Fare', 'Pclass']].dropna(), hue='Survived')
    plt.suptitle("Pairplot of Survived vs Age, Fare, Pclass", y=1.02)
    plt.show()
```

<Figure size 800x500 with 0 Axes>

Observation - Pairplot of Survived vs Age, Fare, Pclass

- Fare vs Pclass: As expected, 1st class passengers paid higher fares, and many of them survived (orange dots in top fare range).
- Age Distribution: Most passengers were between 20–40 years old, with a slightly right-skewed distribution.
- Survival Trends:
 - Many survivors had mid-to-high fares and belonged to 1st class.
 - In the Age vs Fare plot, survivors cluster around moderate age and higher fare areas.
 - 3rd class passengers (Pclass=3) show high density of non-survivors (blue dots).
- General Pattern: Higher fare and lower class (Pclass=1) seem associated with survival.

```
In [20]: plt.figure(figsize=(8, 5))
    sns.scatterplot(x='Age', y='Fare', hue='Survived', data=df)
    plt.title("Age vs Fare Colored by Survival")
    plt.show()
```


Age vs Fare Colored by Survival

- Survivors (orange) are more common in higher fare regions.
- Non-survivors (blue) mostly paid lower fares and fall across all age groups.
- Age alone doesn't guarantee survival, but higher fare (i.e., class) seems positively related to survival.

5. Correlation Analysis

```
In [22]: plt.figure(figsize=(8, 5))
    sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
    plt.title("Correlation Heatmap")
    plt.show()
```


Correlation Heatmap

- Fare has the strongest positive correlation with survival (0.26).
- Pclass has the strongest negative correlation with survival (-0.34).
- Family-related columns (SibSp, Parch) are moderately correlated with each other.
- Age , Sex , and Embarked are not directly shown here (non-numeric), but Age shows weak correlation.

6. Key Observations & Takeaways

- Female and 1st class passengers had higher survival rates.
- Fare shows a positive correlation with survival.
- Most passengers were aged between 20–40.
- Many 3rd class passengers did not survive.