29-06-2022 Shift-2

EE24BTECH11004 - ANKIT JAINAR

- 1) The probability that a relation R from $\{x, y\}$ to $\{x, y\}$ is both symmetric and transitive, is equal to
 - a)
 - b)

 - b) $\frac{3}{16}$ c) $\frac{11}{16}$ d) $\frac{13}{16}$
- 2) The number of values of $a \in \mathbb{N}$ such that the variance of 3, 7, 12, a, 43 a is a natural number is
 - a) 0
 - b) 2
 - c) 5
 - d) infinite
- 3) From the base of a pole of height 20 meters, the angle of elevation of the top of a tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is
 - a) $15\sqrt{3}$
 - b) $20\sqrt{3}$
 - c) $20 + 10\sqrt{3}$
 - d) 30
- 4) Negation of the Boolean statement $(p \lor q) \Rightarrow ((\neg r) \lor p)$ is equivalent to
 - a) $p \wedge (\neg q) \wedge r$
 - b) $(\neg p) \land (\neg q) \land r$
 - c) $(\neg p) \land q \land r$
 - d) $p \wedge q \wedge (\neg r)$
- 5) Let $n \ge 5$ be an integer. If $9^n 8n 1 = 64\alpha$ and $6^n 5n 1 = 25\beta$, then $\alpha \beta$ is equal to
 - a) $1 + {}^{n}C_{2}(8-5) + {}^{n}C_{3}(8^{2}-5^{2}) + \dots + {}^{n}C_{n}(8^{n-1}-5^{n-1})$
 - b) $1 + {}^{n}C_{3}(8-5) + {}^{n}C_{4}(8^{2}-5^{2}) + \ldots + {}^{n}C_{n}(8^{n-2}-5^{n-2})$
 - c) ${}^{n}C_{3}(8-5) + {}^{n}C_{4}(8^{2}-5^{2}) + ... + {}^{n}C_{n}(8^{n-2}-5^{n-2})$
 - d) ${}^{n}C_{4}(8-5) + {}^{n}C_{5}(8^{2}-5^{2}) + ... + {}^{n}C_{n}(8^{n-3}-5^{n-3})$
- 6) Let $\mathbf{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\mathbf{b} = \hat{i} + \hat{j} + \hat{k}$, and \mathbf{c} be a vector such that $\mathbf{a} + (\mathbf{b} \times \mathbf{c}) = 0$ and $\mathbf{b} \cdot \mathbf{c} = 5$. Then, the value of $3(\mathbf{c} \cdot \mathbf{a})$ is
 - a) 10
 - b) 15
 - c) 20
 - d) 25
- 7) Let y = y(x), x > 1, be the solution of the differential equation $(x 1)\frac{dy}{dx} + 2xy = frac 1x 1$ with $y(2) = \frac{1+e^4}{2e^4}$. If $y(3) = \frac{e^{\alpha}+1}{\beta e^{\alpha}}$, then the value of $\alpha + \beta$ is equal to 8) Let 3, 6, 9, 12, ... up to 78 terms and 5, 9, 13, 17, ... up to 59 terms be two series. The sum of the
- terms common to both series is
 - a) 378
 - b) 405
 - c) 450
 - d) 495

- 9) The number of solutions of the equation $\sin x = \cos^2 x$ in the interval (0, 10) is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 10) The total number of four-digit numbers such that each of the first three digits is divisible by the last digit, is equal to
- 11) For real numbers a, b (a > b > 0), let Area $\{(x, y) : x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1\} = 30\pi$ and Area $\{(x, y) : x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1\} = 30\pi$ and Area $\{(x, y) : x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1\}$
- 12) Let f and g be twice differentiable even functions on (-2,2) such that $f\left(\frac{1}{4}\right) = 0$, $f\left(\frac{1}{2}\right) = 0$, f(1) = 1, and $g\left(\frac{3}{4}\right) = 0$, g(1) = 2. Then, the minimum number of solutions of f(x)g''(x) + f'(x)g'(x) = 0 in (-2,2) is equal to
- 13) Let $M = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \end{bmatrix}$, where α is a non-zero real number, and $N = \sum_{k=1}^{49} M^{2k}$. If $(I M^2)N = -2I$, then the positive integral value of α is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 14) Let the coefficients of x^{-1} and x^{-3} in the expansion of $\left(2x^5 \frac{1}{x^5}\right)^{15}$, x > 0, be m and n respectively. If r is a positive integer such that $mn^2 = {}^{15}C_r, 2^r$, then the value of r is equal to
- 15) Let f(x) and g(x) be two real polynomials of degree 2 and 1, respectively. If $f(g(x)) = 8x^2 2x$, and $g(f(x)) = 4x^2 + 6x + 1$, then the value of f(2) + g(2) is