MAGIC008: Lie Groups and Lie algebras

Problem Sheet 6: Linear representations of Lie groups and Lie algebras

- 1. For $SL(2,\mathbb{R})$ consider three linear representations:
 - adjoint representation Ad: $Ad_X A = XAX^{-1}$;
 - the representation on the space of symmetric 2×2 matrices defined by:

$$\Psi_X B = X B X^{\top};$$

• the representation of the space V of homogeneous polynomials p(x,y) of two variables x and y of degree k defined by:

$$\Phi_X(p(x,y)) = p(\alpha x + \gamma y, \beta x + \delta y), \text{ where } X = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

Prove that the above formulae indeed define linear representations.

What is the dimension of each representation?

Describe the induced representations ad, ϕ and ψ of the Lie algebra sl(2,R).

Describe ad, ψ and ϕ for k=2,3 in matrix form.

- 2. Consider 3-dimensional Lie algebras defined by the following commutator relations:
 - \mathfrak{g}_1 : $[e_1, e_2] = e_3$, $[e_2, e_3] = e_1$, $[e_3, e_1] = e_2$;
 - ullet ${\mathfrak g}_2$: $[e_1,e_2]=2e_2$, $[e_1,e_3]=-2e_3$, $[e_2,e_3]=e_1$;
 - \mathfrak{g}_3 : $[e_1, e_2] = e_3$;
 - \mathfrak{g}_4 : $[e_1, e_3] = e_3$, $[e_2, e_3] = -e_3$.

For each of them, describe explicitly the adjoint representation. Namely, for each element $\xi = ae_1 + be_2 + ce_3$ find the matrix of the operator ad_{ξ} .

Prove that \mathfrak{g}_1 is isomorphic to so(3) and \mathfrak{g}_2 is isomorphic to $sl(2,\mathbb{R})$.

Is the adjoint representation for \mathfrak{g}_i faithful?

What is the center of \mathfrak{g}_i ?

Find a faithful representation for $\mathfrak{g}_3,$ and for $\mathfrak{g}_4.$

Prove that these Lie algebras are not isomorphic to each other.

- 3. Let G be a matrix Lie group, i.e. $G \subset GL(n,\mathbb{R})$. Let V be a vector space of $n \times n$ square matrices. Consider the following linear representations of G on V:
 - Φ_1 : $(\Phi_1)_X A = X A$,
 - Φ_2 : $(\Phi_2)_X A = (X^\top)^{-1} A$,
 - Φ_3 : $(\Phi_3)_X A = X A X^\top$,
 - Φ_4 : $(\Phi_4)_X A = (X^\top)^{-1} A X^\top$,

where $X \in G$ and $A \in V$.

Verify that Φ_i is indeed a linear representation and describe the corresponding induced representation $\phi_i=d\Phi_i$ of the corresponding Lie algebra \mathfrak{g} .

Show that Φ_1 , Φ_2 , Φ_3 are reducible, i.e. admit non-trivial invariant subspaces in V. For $G=SL(n,\mathbb{R})$, describe the invariants of Φ_1 .