On Measuring Causal Contributions via do-interventions

based on: ICML-22, Jung et al.,

Yonghan Jung

Dept. of Computer Science, Purdue University

yonghanjung.me

May 2024

Importance of Interpretability

"panda"

"gibbon"

"vulture"

Adversarial Rotation

"orangutan"

"not hotdog"

Adversarial Photographer

"hotdog"

What is interpretability?

Common consensus on the definition of the interpretability are:

Interpretability is the degree to which a human can

- 1. consistently predict the model's result [Kim et al., 2016]
- 2. understand the cause of a prediction [Miller, 2019]

"Feature attribution task" + "Causality"

Feature Attribution

Feature attribution given (x, f(x))

- Input: A pair of $(\mathbf{x}, f(\mathbf{x}))$, where $f(\mathbf{x})$ is an ML output for some input $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$ (where x_i means the ith feature).
- Output: A vector $attr(f, \mathbf{x}) \equiv \{\phi_1, \dots, \phi_n\}$ where ϕ_i is interpreted as an importance of x_i .

Example: $f(x_1, x_2, x_3) = \phi_1 x_1 + \phi_2 x_2 + \phi_3 x_3$

Shapley value-based Attribution

• For any subset $\mathbf{x}_S \subseteq \{x_1, x_2, \dots, x_n\}$, let $\nu(S) := f(\mathbf{x}_S)$ denote ML results using \mathbf{x}_S .

• Shapley value: The weighted-average of the marginal contribution of ith feature

$$\phi_i \equiv \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \binom{n-1}{S}^{-1} \{v(S \cup \{i\}) - v(S)\}.$$

Marginal contribution of x_i given \mathbf{x}_S

Axiomatic characterization of feature attribution

Shapley value is the unique attribution method satisfying some desirable properties.

- . Efficiency: $\sum_{i=1}^{n} \phi_i = f(\mathbf{x}) \mathbb{E}[f(\mathbf{X})];$
 - Centralized $f(\mathbf{x})$ is perfectly explained by $attr(f, \mathbf{x})$.
- Dummy: If $v(S \cup \{i\}) v(S) = 0$ for all $S \subseteq [n] \setminus \{i\}$, then $\phi_i = 0$.

 If the marginal contribution of the player i in the team S, $v(S \cup \{i\}) v(S)$, is zero for all team S, then $\phi_i = 0$
- Symmetry: If $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq [n] \setminus \{i,j\}$, then $\phi_i = \phi_j$.

 If the marginal contribution of the player i,j in the team S are the same for all team, then $\phi_i = \phi_j$.
- Linearity: If $f=af_1+bf_2$, then $\phi_i(f)=a\phi_i(f_1)+b\phi_i(f_2)$.

 If the marginal contribution of the player i,j in the team S are the same for all team, then $\phi_i=\phi_j$.

Choice of $\nu(S)$ in Shapley

• $v(S) \equiv f(\mathbf{x}_S)$ is unclear in practice, because most ML model f is designed to take a full input \mathbf{x} . prediction result using a subset of features $\mathbf{x}_S \equiv \{x_i, i \in S\}$

• To address, [Lundberg & Lee, 2017] proposed $v_{cond}(S) \equiv \mathbb{E}[f(\mathbf{X}) \ \mathbf{x}_S]$ as a proxy of $f(\mathbf{x}_S)$. Shapley values induced by v_{cond} is "SHAP" or "Conditional Shapley"

• SHAP becomes one of the most popular feature attribution method. However, many pointed out that results of SHAP doesn't match with the human intuition [Janzing et al., 2020, Sundararajan and Najmi, 2020].

Failure on practical examples - 1

Failure on practical examples - 2

As Discount value increases, it gives less explainability for Retention

Failure on practical examples - 3

"Interpreting a normal predictive model as causal are often unrealistic."

 $\mathbb{E}[\mathsf{Rentention} \;\; \mathsf{Discount}, \mathbf{v}_S] \;\; \mathsf{models} \;\; \mathsf{an} \;\; \mathsf{association'} \;\; \mathsf{between} \;\; \mathsf{Discount} \;\; \mathsf{and} \;\; \mathsf{Retention}, \;\; \mathsf{rather} \;\; \mathsf{than} \;\; \mathsf{the} \;\; \mathsf{`causation'} \;\; \mathsf{of} \;\; \mathsf{Discount} \;\; \mathsf{to} \;\; \mathsf{Retention}.$

Outline

We develop causally interpretable feature attribution method.

1. We axiomatize a causally interpretable feature attribution method, and propose do-Shapley values.

2. We provide *identifiability* condition where the do-Shapley values can be inferred from the observational data.

3. We construct a *double/debiased machine learning (DML)* based do-Shapley estimator for practical settings.

Outline

We develop causally interpretable feature attribution method

1. We axiomatize a causally interpretable feature attribution method, and propose do-Shapley values.

2. We provide *identifiability* condition where the do-Shapley values can be inferred from the observational data.

 We construct a double/debiased machine learning (DML) based do-Shapley estimator for practical settings.

Structural Causal Model

Structural Causal Model $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathbf{F}, P(\mathbf{u}) \rangle$

- V: A set of endogenous (observable) variables.
- U: A set of exogenous (latent) variables.
- \mathbf{F} : A set of structural equations $\{f_{V_i}\}_{V_i \in \mathbf{V}}$ determining the value of $V_i \in \mathbf{V}$, where $V_i \leftarrow f_{v_i}(PA_{V_i}, U_{V_i})$ for some $PA_{V_i} \subseteq \mathbf{V}$ and $U_{V_i} \subseteq \mathbf{U}$.
- $P(\mathbf{u})$: A probability measure for \mathbf{U} .

An SCM induced a a "causal graph" $G \equiv G(\mathcal{M})$.

Causal Graphical Model

SCM

 U_Z , U_X , $U_Y \sim \text{normal}(0,1)$

$$Z \leftarrow f_Z(U_Z)$$

$$X \leftarrow f_X(Z, U_X)$$

$$Y \leftarrow f_Y(X, Z, U_Y)$$

Intervention: do-operator

SCM

$$U_Z$$
, U_X , $U_Y \sim \text{normal}(0,1)$

$$Z \leftarrow f_Z(U_Z)$$

$$X \leftarrow x = do(x)$$

$$Y \leftarrow f_Y(x, Z, U_Y)$$

Task: Application to ML Interpretation

Axiom for Causal Feature Attribution

- . Perfect assignment: $\sum_{v_i \in \mathbf{v}} \phi_{v_i} = f(\mathbf{x}) \mathbb{E}[f(\mathbf{X})].$ Centralized $f(\mathbf{x})$ is perfectly explained by $attr(f, \mathbf{x})$.
- Causal Irrelevance: If V_i is causally irrelevant to $Y = f(\mathbf{X})$, then $\phi_{v_i} = 0$. $P(y \ do(v_i)) = P(y) \ \forall y, v_i \text{ for } V_i \in \mathbf{V}$.
- Causal Symmetry: If $v_i, v_j \in \mathbf{V}$ have the same causal explanatory power to Y, then $\phi_{v_i} = \phi_{v_i}$. $P(Y \ do(v_i), do(\mathbf{w})) = P(Y \ do(v_j), do(\mathbf{w})) \text{ for } \mathbf{W} \subseteq \mathbf{V} \setminus \{V_i, V_j\}.$
- Linearity: If $f = af_1 + bf_2$, then $\phi_i(f) = a\phi_i(f_1) + b\phi_i(f_2)$.

do-Shapley as a desirable causal IML method

Thm. 1. Axiomatic characterization of do-Shapley

A following attribution method $attr(f, \mathbf{v}) = \{\phi_{v_i}\}_{v_i \in \mathbf{v}}$, named do-Shapley, is **uniquely** satisfying the Axiom.

$$\phi_{v_i} = (1/n) \sum_{S \subseteq [n] \setminus \{i\}} {n-1 \choose S}^{-1} \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)]\},$$

Comparison with previous works

- Two types of broadly used Shapley values:
 - Conditional Shapley uses $v(S) = v_{cond}(S) \equiv \mathbb{E}[f(\mathbf{V}) \ \mathbf{v}_S]$; ([Lundburg & Lee, 2017])
 - Marginal Shapley uses $v(S) = v_{mar}(S) \equiv \mathbb{E}[f(\mathbf{v}_S, \mathbf{V}_{\overline{S}})]$, ([Janzing et al., 2020, Sundararajan and Najmi, 2020, Frye et al., 2021])

- [Heskes et al., 2020] propose to use $v_{do}(S) \equiv \mathbb{E}[f(\mathbf{V}) \ do(\mathbf{v}_S)]$.
 - Assumes no latent variables.
 - Assumes that $f(\cdot)$ is accessible (i.e., can evaluate $f(\mathbf{x}')$ for any input \mathbf{x}'), which may be infeasible in practice.

vs. Conditional Shapley

Conditional Shapley can assign a non-zero importance to the causally-irrelevant variables.

- V_1 is causally irrelevant to Y (i.e., $P(y \ do(v_1)) = P(y)$).
- $\phi_{V_1}(\nu_{do}) = 0$, because $\nu_{do}(\{1\}) \nu_{do}(\{\}) = \nu_{do}(\{1,2\}) \nu_{do}(\{2\}) = 0$,
- However, it's possible that $\phi_{V_1}(\nu_{cond}) \neq 0$ [Janzing et al., 2020].
- Causal Irrelevance axiom does not hold in Conditional Shapley.

vs. Marginal Shapley

Marginal Shapley always assigns zero contributions to indirect variables even if they may be root-causes of the predictions.

- It's possible that v_1 and v_2 are equally important (i.e., $\mathbb{E}[Y \ do(v_1)] = \mathbb{E}[Y \ do(v_2)]$), which leads $\phi_{V_1}(\nu_{do}) = \phi_{V_2}(\nu_{do})$, but $\phi_{V_i}(\nu_{do}) \neq 0$.
- Since $\nu_{mar}(\{1\}) \nu_{mar}(\{\}) = \nu_{mar}(\{1,2\}) \nu_{mar}(\{2\}) = 0, \phi_{V_1}(\nu_{mar}) = 0.$
- Causal Symmetry axiom does not hold in Marginal Shapley.

Outline

We develop causally interpretable feature attribution method.

1. We axiomatize a causally interpretable feature attribution method, and propose do-Shapley values.

2. We provide *identifiability* condition where the do-Shapley values can be inferred from the observational data.

 We construct a double/debiased machine learning (DML) based do-Shapley estimator for practical settings.

Identifiability of do-Shapley

"Causal effect identifiability" — Determining if $\mathbb{E}[Y \ do(\mathbf{v}_S)]$ can be represented as a function of $P(\mathbf{v})$; If so, $\mathbb{E}[Y \ do(\mathbf{v}_S)]$ can be computed using data $\mathscr{D} \sim P(\mathbf{v})$, the observational distribution.

• The r.h.s. is a function of P, so that it's computable using data $\mathscr{D} \sim P(\mathbf{v})$.

do-Shapley Identifiability - Challenge

$$\phi_{v_i} := \frac{1}{n} \sum_{S \subseteq [n]} {n-1 \choose S}^{-1} \left\{ \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)] \right\}$$

- We have to determine the identifiably of $\mathbb{E}[Y \ do(\mathbf{v}_S)]$ for all $\mathbf{V}_S \subseteq \mathbf{V}$.
- This might take exponential computational time.

do-Shapley Identifiability

When the unmeasured confounders exist

do-Shapley is identifiable if and only if there are no $V_i \in \mathbf{V}$ that is connected to $Ch(V_i)$ by bidirected paths.

do-Shapley Identifiability

When the unmeasured confounders doesn't exist

If there are no unmeasured confounders (i.e., DAG), then

$$\mathbb{E}[Y \ do(\mathbf{v}_S)] = \sum_{\mathbf{v}_{\overline{S}}} \mathbb{E}[Y \ \mathbf{v}_S, \mathbf{v}_{\overline{S}}] \prod_{V_i \in \mathbf{V}_{\overline{S}}} P(v_i \ pre(v_i)),$$

where $pre(V_i)$ is a predecessor of V_i given topological order on G.

Outline

We develop causally interpretable feature attribution method.

1. We axiomatize a causally interpretable feature attribution method, and propose do-Shapley values.

 We provide identifiability condition where the do-Shapley values can be inferred from the observational data.

3. We construct a *double/debiased machine learning (DML)* based do-Shapley estimator for practical settings.

Two components in do-Shapley estimation

$$\phi_{v_i} = (1/n) \sum_{S \subseteq [n] \setminus \{i\}} {n-1 \choose S}^{-1} \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)]\},$$

Computing the Shapley value requires

1. Exploring all possible subsets in $[n]\setminus\{i\}$; Ta

Takes exponential computational time!

Random Permutation based approximation

2. Estimating $\nu_{do}(S)$ from finite samples \mathcal{D} .

A robust estimator to the finite sample bias is desirable!

Double/Debiased Machine Learning (DML) [Chernozhukov, 2018]

Two components in do-Shapley estimation

$$\phi_{v_i} = (1/n) \sum_{S \subseteq [n] \setminus \{i\}} {n-1 \choose S}^{-1} \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)]\},$$

Computing the Shapley value requires

1. Exploring all possible subsets in $[n]\setminus\{i\}$;

Takes exponential computational time!

Random Permutation based approximation

2. Estimating $\nu_{do}(S)$ from finite samples \mathcal{D} .

A robust estimator to the finite sample bias is desirable!

Double/Debiased Machine Learning (DML) [Chernozhukov, 2018

Monte-Carlo approximation for do-Shapley (1)

$$\phi_i \equiv \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \binom{n-1}{S}^{-1} \{ v(S \cup \{i\}) - v(S) \}.$$

$$= \frac{1}{n!} \sum_{\pi(\mathbf{V}) \in \mathsf{perm}(\mathbf{V})} \{ \nu(v_i, \mathsf{pre}_{\pi}(v_i)) - \nu(\mathsf{pre}_{\pi}(v_i)) \} \quad \text{[Strumbelj and Kononenko, 2014]}$$
Predecessor of V_i given the fixed

all possible permutation of $\mathbf{V} = \{V_i\}_{i=1}^n$ permutation $\pi(\mathbf{V})$.

$$= \mathbb{E}_{\pi(\mathbf{V})} \left[\nu(v_i, \mathsf{pre}_{\pi}(v_i)) - \nu(\mathsf{pre}_{\pi}(v_i)) \right]$$

The expectation is over the probability for each permutation order $\pi(V)$, where $P(\pi) = \frac{1}{n!}$.

Monte-Carlo approximation for do-Shapley (2)

$$\phi_i = \mathbb{E}_{\pi(\mathbf{V})} \left[\nu(v_i, \mathsf{pre}_{\pi}(v_i)) - \nu(\mathsf{pre}_{\pi}(v_i)) \right].$$

$$\tilde{\phi}_{i} = \frac{1}{M} \sum_{m=1}^{M} \left\{ \nu(v_{i}, \text{pre}_{\pi_{(m)}}(v_{i})) - \nu(\text{pre}_{\pi_{(m)}}(v_{i})) \right\}$$

- For M number of randomly generated permutations of ${\bf V}$ (where each permutations are denoted $\pi_{(m)}$),
- Compute $\nu(v_i, \text{pre}_{\pi_{(m)}}(v_i)) \nu(\text{pre}_{\pi_{(m)}}(v_i))$ and take an average.
- The computation time is $O(N \times V)$

Random permutation-based algorithm

- 1. Initiate $\phi_{V_i} = 0$ for all $V_i \in \mathbf{V}$.
- 2. Generate M randomly generated permutations of V. The permuted variables are $V_{\pi} = \{V_{\pi,1}, \cdots, V_{\pi,n}\}$, where $V_{\pi,i}$ is the ith variable in the permutation π .

3. For each $i=1,2,\cdots,n$, compute $\phi_{V_i} \leftarrow \phi_{V_i} + \left\{ \mathbb{E}[Y \mid \text{do}(v_{\pi,i}, pre_{\pi}(v_{\pi,i}))] - \mathbb{E}[Y \mid \text{do}(pre_{\pi}(v_{\pi,i}))] \right\}$

4. For each $i = 1, 2, \dots, n, \phi_{V_i} \leftarrow (1/M) \cdot \phi_{V_i}$.

Two components in do-Shapley estimation

$$\phi_{v_i} = (1/n) \sum_{S \subseteq [n] \setminus \{i\}} {n-1 \choose S}^{-1} \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)]\},$$

Computing the Shapley value requires

1. Exploring all possible subsets in $[n]\setminus\{i\}$;

Takes exponential computational time!

Random Permutation based approximation

2. Estimating $\nu_{do}(S)$ from finite samples \mathcal{D} .

A robust estimator to the finite sample bias is desirable!

Double/Debiased Machine Learning (DML) [Chernozhukov, 2018]

Estimation of Causal Coalition

• To estimate do-Shapley, we have to estimate $\nu_{do}(S) \equiv \mathbb{E}[Y \ do(\mathbf{v}_S)]$ from finite samples.

$$\mathbb{E}[Y \ do(\mathbf{v}_S)] = \sum_{\mathbf{v}_{\overline{S}}} \mathbb{E}[Y \ \mathbf{v}_S, \mathbf{v}_{\overline{S}}] \prod_{V_i \in \mathbf{V}_{\overline{S}}} P(v_i \ pre(v_i)).$$

- Which estimator should we choose?
- In the presentation, we will focus on the canonical working example:

$$\mathbb{E}[Y \ do(v_2)] = \sum_{v_1} \mathbb{E}[Y \ v_1, v_2] P(v_1)$$

Estimation of Causal Coalition — Plug-in

"Plug-in estimator" — estimates the functions composing the estimand ("nuisance") and then plug nuisances into the functional.

$$\widehat{\mathbb{E}}[Y \ do(v_2)] = \sum_{v_1} \widehat{\mathbb{E}}[Y \ v_1, v_2] \widehat{P}(v_1)$$

- Easy; If nuisances are correct, then achieves smallest variance asymptotically.
- Summation takes exponential computation time.
- If nuisances are misspecified or converging slow, then the estimator is so.

Estimation of Causal Coalition — IPW

$$V_1 \longrightarrow Y \qquad \mathbb{E}[Y \ do(v_2)] = \mathbb{E}_P \left[\frac{I_{v_2}(V_2) \cdot Y}{P(V_2 \ V_1)} \right]$$

"IPW (Inverse Probability Weighting) estimator"

$$\widehat{\mathbb{E}}\left[Y \ do(v_2)\right] = \mathbb{E}_{\mathscr{D}} \left[\frac{I_{v_2}(V_2) \cdot Y}{\widehat{P}\left(V_2 \ V_1\right)} \right]_{\text{Nuisances}}$$
 Empirical average over samples \mathscr{D}

- Can be evaluated in polynomial time.
- If $\widehat{P}(V_2 \mid V_1)$ is misspecified or converging slowly, then the IPW estimator is so.

Estimation of Causal Coalition — DML

$$\mathbb{E}[Y \ do(v_2)] = \mathbb{E}_P\left[g(\mathbf{V};\eta)\right] \text{ where } \eta \equiv \{P(V_2 \ V_1), \mathbb{E}[Y \ V_1, V_2]\}$$

$$\mathbb{E}[Y \ do(v_2)] = \mathbb{E}_P\left[g(\mathbf{V};\eta)\right] \text{ where } \eta \equiv \{P(V_2 \ V_1), \mathbb{E}[Y \ V_1, V_2]\}$$

$$g(\mathbf{V};\eta) = \frac{I_{v_2}(V_2)}{P(V_2 \ V_1)} \left\{Y - \mathbb{E}_P[Y \ V_1, V_2]\right\} + \mathbb{E}_P[Y \ v_1, V_2]$$

- "DML (Double/Debiased Machine Learning, [Chernozhukov, 2018]) estimator" T
 - **1.** Randomly split the dataset $\mathscr{D} = \{\mathscr{D}_a, \mathscr{D}_b\}$,
 - **2a.** Train the estimator for η using \mathcal{D}_a . Denote the trained estimator as $\widehat{\eta}^a$.
 - **3a.** Evaluate $g(\mathbf{V}; \widehat{\eta}^a)$ using \mathcal{D}_b as a test dataset; i.e., $T_a \equiv \mathbb{E}_{\mathcal{D}_b} \left[g(\mathbf{V}; \widehat{\eta}^a) \right]$.
 - **2b, 3b.** Repeat (2a, 3a) with switching $\{\mathcal{D}_a, \mathcal{D}_b\}$ and $\{\hat{\eta}^a, \hat{\eta}^b\}$

Return
$$T \equiv (T_a + T_b)/2$$

Doubly Robustness

If $P(V_2 \mid V_1)$ is misspecified so that $\tilde{P}(V_2 \mid V_1)$ is used, we can check

$$\mathbb{E}[Y \ do(v_2)] = \mathbb{E}_P \left[\frac{I_{v_2}(V_2)}{\tilde{P}(V_2 \ V_1)} \left\{ Y - \mathbb{E}_P[Y \ V_1, V_2] \right\} + \mathbb{E}_P[Y \ v_1, V_2] \right]$$

If $\mathbb{E}[Y \ V_1, V_2]$ is misspecified so that $\mathbb{E}[Y \ V_1, V_2]$ is used, we can check

$$\mathbb{E}[Y \ do(v_2)] = \mathbb{E}_P \left[\frac{I_{v_2}(V_2)}{P(V_2 \ V_1)} \left\{ Y - \tilde{\mathbb{E}}_P[Y \ V_1, V_2] \right\} + \tilde{\mathbb{E}}_P[Y \ v_1, V_2] \right]$$

Debiasedness

One can show that the error b/w DML estimator T vs. $\nu_{do}(\{2\}) = \mathbb{E}[Y \ do(v_2)]$ is

$$T - \mathbb{E}[Y \ do(v_2)] = O_P(N^{-1/2}) + \|P(V_2 \ V_1) - \widehat{P}(V_2 \ V_1)\| \cdot \|\mathbb{E}[Y \ V_1, V_2] - \widehat{\mathbb{E}}[Y \ V_1, V_2]\|$$

Even if $\widehat{P}(V_2 \ V_1)$ and $\widehat{\mathbb{E}}[Y \ V_1, V_2]$ converges slowly (say $O_P(N^{-1/4})$), DML estimator converges *doubly* faster at a rate $O_P(N^{-1/2})$.

do-DML-Shapley

$$\phi_{v_i} = (1/n) \sum_{S \subseteq [n] \setminus \{i\}} {n-1 \choose S}^{-1} \mathbb{E}[Y \ do(\mathbf{v}_S, v_i)] - \mathbb{E}[Y \ do(\mathbf{v}_S)]\},$$

$$\tilde{\phi}_i = \frac{1}{M} \sum_{m=1}^{M} \left\{ \nu(v_i, \text{pre}_{\pi_{(m)}}(v_i)) - \nu(\text{pre}_{\pi_{(m)}}(v_i)) \right\}$$

do-DML-Shapley

$$\widehat{\phi}_{V_i}(T) = \frac{1}{M} \sum_{m=1}^{M} \left\{ T(v_i, \operatorname{pre}_{\pi_{(m)}}(v_i)) - T(\operatorname{pre}_{\pi_{(m)}}(v_i)) \right\}$$

Property for do-DML-Shapley

do-DML-Shapley

$$\widehat{\phi}_{V_i}(T) = \frac{1}{M} \sum_{m=1}^{M} \left\{ T(v_i, \text{pre}_{\pi_{(m)}}(v_i)) - T(\text{pre}_{\pi_{(m)}}(v_i)) \right\}$$

Robustness of do-DML-Shapley

do-DML-Shapley $\widehat{\phi}_{V_i}(T)$ achieves Doubly Robustness (DR) and Debiasedness (DB) with respect to nuisance functionals $\widehat{\mathbb{E}}[Y|\mathbf{v}_S,\mathbf{v}_{\overline{S}}]$ and $\{\widehat{P}(V_k|pa(V_k))\}_{V_k\in\mathbf{V}}$.

Simulation: Robustness

We compare the do-DML-Shapley with do-IPW-Shapley, estimates for do-Shapely where causal coalition $\nu_{do}(S)$ is estimated using the IPW.

For 100 random samples $(\mathbf{x}, f(\mathbf{x}))$ from \mathcal{D} ,

For each features,

compute do-DML (or IPW)-Shapley values;

compute the gap with the do-True-Shapley;

Take an average of this gap over features.

do-DML-Shapely provides accurate & robust estimates!

Simulation: Better Interpretability

Top 3 = {Needs, Usage, Calls}

Top 3 = {Ad, Needs, Interaction}

Top 3 = {Needs, Usage, Ad}

Top 3 = {Upgrade, Needs, Calls}

Conclusion

We develop causally interpretable feature attribution method.

1. We axiomatize a causally interpretable feature attribution method, and propose do-Shapley values.

2. We provide *identifiability* condition where the do-Shapley values can be inferred from the observational data.

3. We construct a *double/debiased machine learning (DML)* based do-Shapley estimator for practical settings.

Thank you

Time for Questions