What are we trying to classify?

Suz =
$$\begin{cases} \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in GL_2(G) \mid T^*T = T, det T = 1 \end{cases}$$

The standard form $\begin{cases} a & b \\ c & d \end{cases} = \begin{cases} T : C^2 - C^2 \mid preme \text{ hermitian form} \end{cases}$

Let $T = 1 \iff \text{collector metric = involument in form} \end{cases}$

The standard $\begin{cases} a & b \\ c & d \end{cases} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

The standard $\begin{cases} a & b \\ -c & a \end{cases} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

The standard $\begin{cases} a & b \\ -b & a \end{cases} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

Suz = $\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL_2(G) \mid aa + bb = 1 \end{cases}$

$$\begin{cases} (a,b) \in \mathbb{C}^{2} & | a^{2}+a^{2}+b^{2}+b^{2}=1 \end{cases}$$

$$R^{3} \cup \{0\} = S^{3} = \{ (a,a_{1},b_{0},b_{1}) \in \mathbb{R}^{4} | a,b \in \mathbb{C}^{2} \}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a,b \in \mathbb{C}^{2} \end{cases}$$

$$H = \begin{cases} (a,a_{1},b_{0},b_{1}) \in \mathbb{R}^{4} & | a,b \in \mathbb{C}^{2} \end{cases}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a,b \in \mathbb{C}^{2} \end{cases}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a^{2}+a^{2}+b^{2}+b^{2}+b^{2}=1 \end{cases}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a^{2}+a^{2}+b^{2}+b^{2}+b^{2}=1 \end{cases}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a^{2}+a^{2}+b^{2}+b^{2}+b^{2}+b^{2}=1 \end{cases}$$

$$H = \begin{cases} (a,b) \in \mathbb{C}^{2} & | a^{2}+a^{2}+b$$

as like, if v = xit yj + 3k $v \mapsto qvq^{7}$ is a rotation, all rotations in SO3

can be desirted in this vay. $D^{x} = \{qp \text{ order with of nonzero state}\}$

recall:
$$\bar{g} = a - bi - cj \cdot dk$$

and $g\bar{g} = a^2 + b^2 + c^2 + d^2 = |g|^2$

and $g^{-1} = \frac{1}{18^2}$: \bar{g}

Suz is majorism of gogs!. HX

giventation of g and g are g are g and g are g and g are g are g are g and g are g are g are g and g are g are g and g are g are g are g are g and g are g are g are g and g are g are g are g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g and g are g are g and g are g and g are g and g are g are g and g are g and g are g and g are g are g and g are g and g are g are g and g are g and g are g are g and g are g are g and g are g are g are g are g and g are g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g and g are g are g are g and g are g are g are g and g are g a

 $|(a,b,c,d)|^{2}$ $|(a,b,c,d)|^{2}$