Question Paper

SEP 2024 - UE22EC341A - ISA 1 (set- 1) SEP 2024 - UE22EC341A - ISA 1 (set- 1)

1.a: Marks (4.0)

Two point charges of $1 \, mC$ and $-2 \, mC$ are located at (3, 2, -1) and (-1, -1, 4) respectively. Determine the electric force on a $10 \, nC$ charge located at (0, 3, 1).

Expected Answer

•

$$\begin{split} \mathbf{F} &= \sum_{k=1,2} \frac{QQ_k}{4\pi\varepsilon_o R^2} \mathbf{a}_R = \sum_{k=1,2} \frac{QQ_k(\mathbf{r} - \mathbf{r}_k)}{4\pi\varepsilon_o |\mathbf{r} - \mathbf{r}_k|^3} \\ &= \frac{Q}{4\pi\varepsilon_o} \left\{ \frac{10^{-3}[(0,3,1) - (3,2,-1)]}{|(0,3,1) - (3,2,-1)|^3} - \frac{2 \cdot 10^{-3}[(0,3,1) - (-1,-1,4)]}{|(0,3,1) - (-1,-1,4)|^3} \right\} \\ &= \frac{10^{-3} \cdot 10 \cdot 10^{-9}}{4\pi \cdot \frac{10^{-9}}{36\pi}} \left[\frac{(-3,1,2)}{(9+1+4)^{3/2}} - \frac{2(1,4,-3)}{(1+16+9)^{3/2}} \right] \\ &= 9 \cdot 10^{-2} \left[\frac{(-3,1,2)}{14\sqrt{14}} + \frac{(-2,-8,6)}{26\sqrt{26}} \right] \\ \mathbf{F} &= -6.512\mathbf{a}_x - 3.713\mathbf{a}_y + 7.509\mathbf{a}_z \, \mathrm{mN} \end{split}$$

1.b: Marks (4.0)

Given that $D = z\rho \cos^2 \phi \, a_z \, C/m^2$, calculate the charge density at $(1, \pi/4, 3)$ and the total charge enclosed by the cylinder of radius 1 m with $-2 \le z \le 2$ m.

Expected Answer

_

$$\rho_{\nu} = \nabla \cdot \mathbf{D} = \frac{\partial D_z}{\partial z} = \rho \cos^2 \phi$$

At $(1, \pi/4, 3)$, $\rho_v = 1 \cdot \cos^2(\pi/4) = 0.5$ C/m³. The total charge enclosed by the cylinder can be found in two different ways.

Method 1: This method is based directly on the definition of the total volume charge.

$$Q = \int_{\nu} \rho_{\nu} d\nu = \int_{\nu} \rho \cos^{2} \phi \, \rho \, d\phi \, d\rho \, dz$$

$$= \int_{z=-2}^{2} dz \int_{\phi=0}^{2\pi} \cos^{2} \phi \, d\phi \int_{\rho=0}^{1} \rho^{2} \, d\rho = 4(\pi)(1/3)$$

$$= \frac{4\pi}{3} \, C$$

1.c: Marks (4.0)

A wire of diameter 1 mm and conductivity 5×10^7 S/m has 10^{29} free electrons per cubic meter when an electric field of 10 mV/m is applied. Determine

- (a) The charge density of free electrons
- (b) The current density

(take the electronic charge as $e = -1.6 \times 10^{-19}$ C)

Expected Answer

•

Solution:

(In this particular problem, convection and conduction currents are the same.)

(a)
$$\rho_v = ne = (10^{29})(-1.6 \times 10^{-19}) = -1.6 \times 10^{10} \text{ C/m}^3$$

(b)
$$J = \sigma E = (5 \times 10^7)(10 \times 10^{-3}) = 500 \text{ kA/m}^2$$

1.d: Marks (4.0)

•

Two extensive homogeneous isotropic dielectrics meet on plane z=0. For z>0, $\varepsilon_{r1}=4$ and for z<0, $\varepsilon_{r2}=3$. A uniform electric field $\mathbf{E}_1=5\mathbf{a}_x-2\mathbf{a}_y+3\mathbf{a}_z\,\mathrm{kV/m}$ exists for $z\geq0$. Find

(a) \mathbf{E}_2 for $z \leq 0$

Expected Answer

(a) Since \mathbf{a}_z is normal to the boundary plane, we obtain the normal components as

$$E_{1n} = \mathbf{E}_1 \cdot \mathbf{a}_n = \mathbf{E}_1 \cdot \mathbf{a}_z = 3$$

$$\mathbf{E}_{1n} = 3\mathbf{a}_z$$

$$\mathbf{E}_{2n} = (\mathbf{E}_2 \cdot \mathbf{a}_z)\mathbf{a}_z$$

Also

$$\mathbf{E} = \mathbf{E}_n + \mathbf{E}_t$$

Hence,

$$\mathbf{E}_{1t} = \mathbf{E}_1 - \mathbf{E}_{1n} = 5\mathbf{a}_x - 2\mathbf{a}_y$$

Thus

$$\mathbf{E}_{2t} = \mathbf{E}_{1t} = 5\mathbf{a}_x - 2\mathbf{a}_y$$

Similarly,

$$\mathbf{D}_{2n} = \mathbf{D}_{1n} \ \rightarrow \ \boldsymbol{\varepsilon}_{r2} \mathbf{E}_{2n} = \boldsymbol{\varepsilon}_{r1} \mathbf{E}_{1n}$$

or

$$\mathbf{E}_{2n} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}} \mathbf{E}_{1n} = \frac{4}{3} (3\mathbf{a}_z) = 4\mathbf{a}_z$$

Thus

$$\mathbf{E}_{2} = \mathbf{E}_{2t} + \mathbf{E}_{2n}$$

= $5\mathbf{a}_{x} - 2\mathbf{a}_{y} + 4\mathbf{a}_{z} \,\text{kV/m}$

5: Marks (2.0)

•

A point charge -4 nC is located at (2, -1, 3). Find the potential at (1, 0, 1).

Expected Answer

•

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\varepsilon_o|\mathbf{r} - \mathbf{r}_1|}$$

$$|\mathbf{r} - \mathbf{r}_1| = |(1, 0, 1) - (2, -1, 3)| = |(-1, 1, -2)| = \sqrt{6}$$

Hence potential, $V = -14.697 \ kV$

6: Marks (2.0)

•

Two point charges $-1 \, nC$ and $4 \, nC$ are located at (0, 0, 0) and (0, 0, 1). Find the electrostatic energy in the system.

Expected Answer

$$\begin{split} W &= W_1 + W_2 \\ &= 0 + Q_2 V_{21} \end{split}$$

$$= Q_2 \cdot \frac{Q_1}{4\pi\varepsilon_o |(0,0,1) - (0,0,0)|}$$

$$= \frac{1}{4\pi \cdot \frac{10^{-9}}{36\pi}} \left(-4 \cdot \frac{10^{-9}}{36\pi} \right) = -36 \text{ nJ}$$

7: Marks (2.0)

•

In a dielectric material, $E_x = 5 \text{ V/m}$ and $\mathbf{P} = \frac{1}{10\pi} (3\mathbf{a}_x - \mathbf{a}_y + 4\mathbf{a}_z) \text{ nC/m}^2$.

Calculate:

Susceptibility of the material

Expected Answer

$$\vec{P} = \chi_e \vec{E}$$

Since P_x and E_x are known, $\chi_e = 2.16$

8: Marks (2.0)

•

A spherical capacitor with inner conductor radius of 1mm and outer conductor radius of 3mm has a dielectric with $\varepsilon_r=6$ in between the conductors. Determine the capacitance of the spherical capacitor.

Expected Answer

$$C = \frac{Q}{V} = \frac{4\pi\varepsilon}{\frac{1}{a} - \frac{1}{b}}$$

Hence C = 1 pF.

9: Marks (1.0)

	_
The electric field at a distance $_r$ from a point charge is proportional to:	
rpected Answer	
	[
by definition	
) : Marks (1.0)	
	[·
The electric field at a distance $_{\it r}$ from an infinite sheet with uniform surface charge density is:	
kpected Answer	

by definition	
I : Marks (1.0)	
	[
The electric flux density in a medium with permittivity $_{\pmb{\varepsilon}}$ is:	
kpected Answer	
	[
by definition	
2 : Marks (1.0)	

The electric field \overline{E} at a point is expressed in terms of potential V as:	
L	
cpected Answer	
by definition	
3 : Marks (1.0)	
The line integral of a static electric field around a closed path is:	
cpected Answer	
•	

	A
by definition	
4 : Marks (1.0)	
	_
The magnitude of moment of an electric dipole is	
xpected Answer	
•	
	_
by definition	

15 : Marks (1.0)	
	<u> </u>
The potential at a distance r from an electric dipole is:	
cpected Answer	
by definition	
5 : Marks (1.0)	
	[
The electrostatic energy density is:	
xpected Answer	

	<u> </u>
by definition	
17 : Marks (1.0)	
	A
The susceptibility of a material with a dielectric constant 4 is equal to:	
Expected Answer	
	A
by definition	

	[
The relaxation time for a perfect dielectric material is:	
pected Answer	
by definition	
: Marks (1.0)	
The tangential component of electric field at the boundary between a perfect conductor and free space is:	

		A
by definition		

20: Marks (1.0)

A surface charge of density $0.2 \, nC / sq.m$ resides at the boundary between a perfect conductor and free space. The magnitude of the electric field at the boundary in the free space is equal to

Expected Answer

 $E = \frac{\rho_s}{\varepsilon_0}$

•

21: Marks (1.0)

•

In a one dimensional system, where the potential V varies only along x axis, if the initial conditions are: V = 0 at x = 0, and V = 6 at x = 3, the expression for the potential is given by:

Expected Answer

•

$$\partial^2 V / \partial x^2 = 0$$
, $\partial V / \partial x = c_1$, $V = c_1 x + c_2$

At
$$x = 0$$
, $V = 0$, hence $c_2 = 0$.

At
$$x = 3$$
, $V = 6$, hence $c_1 = 2$.

So,
$$V = 2x$$

22: Marks (1.0)

A

A metal wire of diameter $\, 2 \, \text{mm} \,$ and length $\, 3 \,$ meters has a conductivity of $\, 10^6 \,$ S/m. The resistance of the wire is:

Expected Answer

 $R = \frac{L}{\sigma A} = 0.955$ ohms

23: Marks (1.0)

The capacitance of a parallel plate capacitor with free space between the plates is measured as 3 pF, and when the same capacitor is filled with a dielectric material, the capacitance measured is 7.5 pF. The dielectric constant of the matrial is:

Expected Answer

 $\varepsilon_r = C/C_0 = 2.5$

24: Marks (1.0)

An electrostatic system in free space has an energy density of 1 nJ/cubic m. The magnitude of electric field in the system is:

Expected Answer

 $w = \frac{\varepsilon_0 E^2}{2} = 1 \text{ nJ}, \text{ hence } E = 15.04 \text{ V/m}.$