

planetmath.org

Math for the people, by the people.

Lehmann-Scheffé theorem

Canonical name LehmannScheffeTheorem

Date of creation 2013-03-22 16:31:59 Last modified on 2013-03-22 16:31:59

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 13

Author CWoo (3771) Entry type Theorem Classification msc 62F10

Synonym Lehmann-Scheffe theorem

Defines complete statistic

A statistic $S(\mathbf{X})$ on a random sample of data $\mathbf{X} = (X_1, \dots, X_n)$ is said to be a *complete statistic* if for any Borel measurable function g,

$$E(g(S)) = 0$$
 implies $P(g(S) = 0) = 1$.

In other words, g(S) = 0 almost everywhere whenever the expected value of g(S) is 0. If $S(\mathbf{X})$ is associated with a family $f(x \mid \theta)$ of probability density functions (or mass function in the discrete case), then completeness of S means that g(S) = 0 almost everywhere whenever $E_{\theta}(g(S)) = 0$ for every θ .

Theorem 1 (Lehmann-Scheffé). If $S(\mathbf{X})$ is a complete sufficient statistic and $h(\mathbf{X})$ is an unbiased estimator for θ , then, given

$$h_0(s) = E(h(\boldsymbol{X})|S(\boldsymbol{X}) = s),$$

 $h_0(S) = h_0(S(\mathbf{X}))$ is a uniformly minimum variance unbiased estimator of θ . Furthermore, $h_0(S)$ is unique almost everywhere for every θ .