Functional Analysis: Problem Set III

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set III.

Question 1.

3.5 Let E be a Banach space and let $K \subset E$ be a subset of E that is compact in the strong topology. Let (x_n) be a sequence in K such that $x_n \to x$ weakly $\sigma(E, E^*)$. Prove that $x_n \to x$ strongly.

[Hint: Argue by contradiction.]

Solution.

Suppose $x_n \not\to x$ strongly. Then, there exists $\epsilon > 0$ and $\{x_{n_k}\}$ such that

$$|x_{n_k} - x| > \epsilon \tag{1}$$

for all $k \geq 1$. By the compactness of K in strong topology, there exists a further subsequence $\{x_{n_{k_l}}\}$ such that

$$\lim_{l \to \infty} x_{n_{k_l}} = y$$

for some $y \in K$. From (1), $y \neq x$. Now, since convergence in strong topology implies convergence in weak topology, we have

$$x_{n_{k_l}} \to_{\text{weak}} y$$
 as $l \to \infty$.

From our assumption, however, $x_n \to_{\text{weak}} x$ as $n \to \infty$, so by Hausdroff property of weak topology $x_{n_{k_l}} \to_{\text{weak}} x$ as $l \to \infty$. This contradicts the uniquness of limit property of weak topology, which also arises from Hausdorff property of weak topology. We have a contradiction, and we are done.

Question 2.

3.9 Let E be a Banach space; let $M \subset E$ be a linear subspace, and let $f_0 \in E^*$. Prove that there exists some $g_0 \in M^{\perp}$ such that

$$\inf_{g \in M^{\perp}} \|f_0 - g\| = \|f_0 - g_0\|.$$

Two methods are suggested:

- 1. Use Theorem 1.12.
- 2. Use the weak* topology $\sigma(E^*, E)$.

Solution.

Observe that

$$\begin{array}{lcl} M^{\perp} & = & \{g \in E^* : < g, x > = 0 \, \forall x \in M \} \\ & = & \bigcap_{x \in M} \{g \in E^* : < g, x > = 0 \} = \bigcap_{x \in M} J(x)^{-1}(0) \end{array}$$

where J is the natural embedding. Hence, M^{\perp} is weak-* closed. Choose $r_0 > 0$ such that

$$A := B(f_0, r_0) \cap M^{\perp} \neq \emptyset.$$

where $B(f_0, r_0)$ denotes closed ball of radius r_0 around f_0 . Since closed balls are weak-* closed, A is bounded and weak-* closed. Therefore, by Banach-Alaoglu, A is weak-* compact. Now, consider the map $\Phi: A \to \mathbb{R}$ defined by

$$g \mapsto ||f_0 - g|| \quad (g \in A).$$

Observe that

$$\{g \in A : \Phi(g) \le \lambda\} = \{g \in A : ||f_0 - g|| \le \lambda\} = B(f_0, \lambda) \cap A$$

which is weak-* closed for all $\lambda \in \mathbb{R}$. Hence, Φ is weak-* lsc, so there exists $g_0 \in A \subset M^{\perp}$ such that

$$||f_0 - g_0|| = \inf_{g \in A} ||f_0 - g|| = \inf_{g \in M^{\perp}} ||f_0 - g||$$

where the last equality holds by the choice of A.

In general, one should remark that the weak-* compactness from Banach-Alaoglu works well with the dual norm being lsc with respect to the weak-* topology.

Question 3.

3.10 Let E and F be two Banach spaces. Let $T \in \mathcal{L}(E,F)$, so that $T^{\star} \in \mathcal{L}(F^{\star},E^{\star})$. Prove that T^{\star} is continuous from F^{\star} equipped with $\sigma(F^{\star},F)$ into E^{\star} equipped with $\sigma(E^{\star},E)$.

Solution.

The statement says that the adjoint of a bounded operator is weak-*-weak-* continuous. It is natural to use nets for the problem. By definition of adjoint,

$$< Ty_i' - Ty', x > = < y_i' - y', Tx > \to 0$$

for any $y_i' \to_{\text{weak-*}} y'$, so the continuity holds.

Question 4.

3.14 Let E be a reflexive Banach space and let I be a set of indices. Consider a collection $(f_i)_{i \in I}$ in E^* and a collection $(\alpha_i)_{i \in I}$ in \mathbb{R} . Let M > 0. Show that the following properties are equivalent:

- (A) $\begin{cases} \text{There exists some } x \in E \text{ with } ||x|| \leq M \text{ such that } \langle f_i, x \rangle = \alpha_i \\ \text{for every } i \in I. \end{cases}$
- (B) $\begin{cases} \text{One has } |\sum_{i \in J} \beta_i \alpha_i| \leq M \|\sum_{i \in J} \beta_i f_i\| \text{ for every collection } (\beta_i)_{i \in J} \\ \text{in } \mathbb{R} \text{ with } J \subset I, J \text{ finite.} \end{cases}$

Compare with Exercises 1.10, 1.11 and Lemma 3.3.

Solution.

 $(A) \Longrightarrow (B)$ is obvious. Fix J finite, and $\{\beta_i\}_{i \in J}$. Then, use definition of norm and (A), we get (B).

For a moment, we assume the result of exercise 1.10 in Brezis. Suppose (B) is true. Then, by 1.10, there exists $\phi_0 \in E^{**}$ such that

$$||f|| \le M$$
 and $\langle \phi_0, f_i \rangle = \alpha_i$

for all $i \in I$. Then, by reflexivity of E, there exists $x_0 \in E$ such that

$$||x_0|| \le M$$
 and $\langle f, x_0 \rangle = \alpha_i$

for all $i \in I$. Hence, it suffices to prove the result of 1.10. In particular, we need $(B) \implies (A)$ direction. Let G be the vector space spanned by $\{x_i\}_{i \in I}$. Define $g: G \to \mathbb{R}$ by

$$g(x) = \sum_{i \in J} \beta_i \alpha_i$$

where $x = \sum_{i \in J} \beta_i x_i$. g is well-defined and bounded by assumption (B). Now, extend g to the whole of E by corollary 1.2 of Hahn Banach, and we are done.

Question 5.

3.16 Let E be a Banach space.

- 1. Let (f_n) be a sequence in (E^*) such that for every $x \in E$, $\langle f_n, x \rangle$ converges to a limit. Prove that there exists some $f \in E^*$ such that $f_n \stackrel{\star}{\rightharpoonup} f$ in $\sigma(E^*, E)$.
- Assume here that E is reflexive. Let (x_n) be a sequence in E such that for every
 f ∈ E*, ⟨f, x_n⟩ converges to a limit. Prove that there exists some x ∈ E such
 that x_n → x in σ(E, E*).
- 3. Construct an example in a nonreflexive space E where the conclusion of 2 fails. [**Hint**: Take $E = c_0$ (see Section 11.3) and $x_n = (1, 1, \dots, 1, 0, 0, \dots)$.]

Solution.

(i) Let $f: E \to \mathbb{R}$ be defined by

$$\langle f, x \rangle = \lim_{n \to \infty} \langle f_n, x \rangle \quad (x \in E).$$

Then, f is linear, because by linearty of $\{f_n\}$,

$$< f, x + y > = \lim_{n \to \infty} < f_n, x + y > = \lim_{n \to \infty} < f_n, x > + < f_n, y >$$
 $= \lim_{n \to \infty} < f_n, x > + \lim_{n \to \infty} < f_n, y > = < f, x > + < f, y >$

for any $x, y \in E$ and

$$\langle f, \lambda x \rangle = \lim_{n \to \infty} \langle f_n, \lambda x \rangle = \lambda \lim_{n \to \infty} \langle f_N, x \rangle = \lambda \langle f, x \rangle$$

for any $\lambda \in \mathbb{R}$ and $x \in E$. Now, we prove the boundedness of f. By the pointwise convergence,

$$\sup_{n} | < f_n, x > | < \infty$$

for all $x \in E$. Therefore, by uniform boundedness principle, there exists C > 0 such that

$$|\langle f_n, x \rangle| \leq C||x||$$

and hence

$$| \langle f, x \rangle | \le | \langle f_n, x \rangle | + | \langle f_n, x \rangle - \langle f, x \rangle |$$

 $\le C||x|| + | \langle f_n, x \rangle - \langle f, x \rangle |$

for any $x \in E$ and $n \ge 1$. Now, letting $n \to \infty$ gives

$$|\langle f, x \rangle| \langle C||x||$$

for any $x \in E$. Therefore, $f \in E^*$ such that

$$\langle f_n, x \rangle \rightarrow \langle f, x \rangle$$
 as $n \rightarrow \infty$

for any $x \in E$, which implies

$$f_n \to_{\text{weak}-*} f$$
 as $n \to \infty$.

(ii) Set $\Phi: E^* \to \mathbb{R}$ by

$$\Phi(f) = \lim_{n \to \infty} \langle f, x_n \rangle.$$

With uniform boundedness, and explicitly computing the limits as from above, $\Phi \in E^{**}$. Since the space is reflexive, there exists $x \in E$ such that $J(x) = \Phi$. Then, by choice,

$$\langle f, x_n \rangle \rightarrow \langle f, x \rangle$$
 as $n \rightarrow \infty$.

therefore, $x_n \to_{\text{weak}} x$ as $n \to \infty$.

(iii) Let $E=C_0\subset l^\infty$. Then, ${C_0}^*=l^1$, and ${C_0}^{**}=l^\infty\neq C_0$. Consider $\{x_n\}$ as in the hint. Let $u\in l^1$. Then,

$$\langle u, x_n \rangle = \sum_{k=1}^n u_k$$

for all $n \ge 1$, and hence

$$\lim_{n \to \infty} \langle u, x_n \rangle = \sum_{k=1}^{\infty} u_k$$

which converges as $u \in l^1$. Hence, the hypothesis of (ii) is satisfied, except for the fact that E is not reflexive. Note that the i-th projections $\{p_i\}$ are all trivially continuous. For x_n to converge weakly to x, it is necessary that

$$\lim_{n \to \infty} \langle p_i, x_n \rangle = x^i$$

and hence

$$x^i = 1$$

for all $i \geq 1$. As $x = (1, 1, 1, ...) \notin C_0$, there cannot exist $x \in E$ such that $x_n \to_{\text{weakly}} \to x$. \square

Question 6.

3.21 Let E be a separable Banach space and let (f_n) be a bounded sequence in E^* . Prove directly—without using the metrizability of E^* —that there exists a subsequence (f_{n_k}) that converges in $\sigma(E^*, E)$.

[Hint: Use a diagonal process.]

Solution.

By 3.16-1, it suffices to obtain a subsequence of $\{f_n\}$ such that $\{f_n\}$ converge pointwise everywhere. As E is separable, there exists $\{a_i\}$, a dense countable subset of E. Since $\{f_n\}$ are bounded in E^* , $\{\langle f_n, a_1 \rangle\}$ is bounded in \mathbb{R} . Hence, we can choose a subsequence $\{n_k\}$, with relabeling $\{(1,k)\}$ such that

$$\lim_{k \to \infty} \langle f_{1,k}, a_1 \rangle \quad \text{exists.}$$

Now, with the fact that $\{\langle f_n, a_2 \rangle\}$ is bounded in \mathbb{R} , choose a further subsequence $\{n_{k_l}\}$ from $\{n_k\}$, with relabeling $\{(2,k)\}$ such that

$$\lim_{k \to \infty} \langle f_{2,k}, a_2 \rangle \quad \text{exists.}$$

Repeat this process inductively, so that we have chosen $f_{l,k}$ for all $l, k \in \mathbb{N}$. Then, consider $\{g_l\} = \{f_{l,l}\}$, which is the standard diagonal sequence. Then, by choice

$$\lim_{l \to \infty} < g_l, a_i > \text{ exists}$$

for any $i \in \mathbb{N}$. Now, let $a \in E$, and $\epsilon > 0$. Choose a_i such that $||a_i - a|| < \epsilon$. Then,

$$|\langle g_{n}, a \rangle - \langle g_{m}, a \rangle| \leq |\langle g_{n}, a \rangle - \langle g_{n}, a_{i} \rangle| + |\langle g_{m}, a_{i} \rangle - \langle g_{m}, a \rangle| + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle| \leq |\langle g_{n}, a - a_{i} \rangle| + |\langle g_{m}, a_{i} - a \rangle| + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle| \leq 2C\epsilon + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle|$$
(3)

for all $n, m \ge 1$, where (2) holds by linearity, and (3) holds by the choice of a_i and C being the bound on the $\{f_n\}$ in the dual norm. Therefore,

$$|\langle g_n, a \rangle - \langle g_m, a \rangle| \le (2C+1)\epsilon$$

for all n, m large enough, and hence, we have shown that

$$< g_l, a >$$
 converges to a limit as $l \to \infty$

for any $a \in E$. Hence, we are done.