Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 20

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is
$$\left\{ \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix} \right\}.$$

Standard S4. $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}, \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}, \begin{bmatrix} & 1 & & \\ & 2 & & \\ & 0 & & \\ & 1 & & \\ & & & \\ & & & \\ \end{bmatrix}, \begin{bmatrix} & 1 & & \\ & 2 & & \\ & 0 & & \\ & 1 & & \\ \end{bmatrix} \right).$ Compute the dimension of W.

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.

Standard A1. $^{\mathrm{Mark}:}$

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Solution:

 $\begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$

Standard A2.

Mark:

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ \sqrt{x}+\sqrt{y} \end{bmatrix}$. Determine if T is a linear transformation.

Solution:

$$T\left(\begin{bmatrix}0\\4\end{bmatrix}\right) = \begin{bmatrix}4\\2\end{bmatrix} \neq \begin{bmatrix}4\\4\end{bmatrix} = 4T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

So T is not a linear transformation.

Additional Notes/Marks