Exercise 1, Ledvie slides p.19
(Neumann et el, 2003)
Set of nodes
$$V = \{0,1,2,3,4,5,6\}$$

Processing times $p = (0,6,4,2,4,2,0)$
Task 1:

Timelogs:
$$\frac{5}{601} = \frac{5}{6013} = 0$$

$$\frac{\delta}{\delta} = 8$$

$$S_{1,2} = 1$$
, $S_{1,2} = 3$

$$\int_{314}^{+5} = \int_{35}^{+5} = 0$$

 $\int_{314}^{+5} = 2$

•
$$S_{i,6}^{fS} = 0$$
 $\forall i \in \{2,4,5\}$ (townal activities,)

AON-graph (task 1) (the loss are dost-to-start if not 0 denoted otherwise) S=0 S=0 S=0 S=0 S=0\$=0 Ps=2 8F5=0 Px=4 \$=0 \$\overline{5}=0 \overline{5}=0 Timelags (minimum, stast-to-start): $\frac{8}{901} = \frac{5}{9013} = 0$ $- S_{1,2} = 1$, $S_{1,2} = 3 \rightarrow S_{2,1} = -3$

• $\delta_{4,5}^{FS} = 1 \implies \delta_{5,4} = -(\delta_{45}^{FS} + \rho_4) = -5$ • $\delta_{0,3} = 1 \implies \delta_{3,0} = -1$ • $\delta_{1,6}^{FS} = 0 \implies \delta_{1,6} = 0 \implies \delta$ AoN-graph (task2)

Docision variables:

Objective Function:

Min S₆

(makespan)

subject to (constraints) $S_{3}-S_{0} \geq 0 \quad \forall j \in \S 1,3\S$ $S_{5}-S_{0} \geq 8$ $S_{1}-S_{1} \geq 1$ $S_{2}-S_{1} \leq 3$ $S_{3}-S_{3} \geq P_{3} \quad \forall j \in \S 1,5\S$ $S_{4}-S_{3} \leq 2$ $S_{5}-S_{3} \leq 1$ $S_{3}-S_{0} \leq 1$ $S_{3}-S_{0} \leq 1$ $S_{3}\geq 0 \quad \forall i \in \S 0,1,2,3,4,5,6\S$

Task 4