Presek dveh implicitno danih ploskev

Aljaž Verlič, Blažka Blatnik, Lina Lumburovska, Luka Tavčer Mentor: Damir Franetič

5. junij 2017

Opis problema

ploskev.

V \mathbb{R}^3 imamo podani dve poljubni implicitno dani ploskvi, opisanimi z enačbama $f_1(x)=C_1$ in $f_2(x)=C_2$. Naša naloga je poiskati krivuljo K, ki predstavlja presek teh dveh

Presek ploskev je množica rešitev nelinearnega sistema enačb:

$$f_1(x) = C_1$$

$$f_2(x) = C_2$$

Opis modela

Sistem lahko gledamo tudi, kot enačbe nivojnic funkcij f_1 in f_2 , krivulja K pa je presek teh nivojnic. Gradienta funkcij sta tako v vsaki točki krivulje preseka, pravokotna nanjo. To opišemo:

$$F(x) = \frac{(gradf_1(x))x(gradf_2(x))}{\|gradf_1(x))x(gradf_2(x))\|}$$

in označimo x=x(t) naravno parametrizacijo krivulje K. Ta x je rešitev avtonomnega sistema diferencialnih enačb:

$$\dot{x} = F(x)$$

Opis metod

Za reševanje sistema $\dot{x} = F(x)$ lahko uporabimo katero izmed numeričnih metod za reševanje diferencialnih enačb:

- Eulerjeva metoda
 - ▶ Bolj logična in preprosta
 - Komulativna napaka z vsakim korakom narašča
- Runge-Kutta 4. reda
 - ▶ Bolj natančna
 - Napaka precej manjša, kot pri Eulerjevi metodi

Eulerjeva metoda

- Na vsakem koraku naslednjo točko (x_{i+1}, y_{i+1}) dobimo tako, da se za h (korak) premaknemo vzdolž tangente na rešitev (x_i, y_i) .
- ▶ Točka (x_{i+1}, y_{i+1}) leži na drugi partikularni rešitvi kot (x_i, y_i) .
- ▶ Napaka na vsakem koraku je reda $O(h^2)$.

Geometrijsko:

Eulerjeva metoda brez popravljanja

Opazimo, da je Eulerjeva metoda brez popravljanja približka "blizu" pravilni rešitvi, vendar se napaka z iteracijami povečuje.

Eulerjeva metoda brez popravljanja

Napake, ki se seštevajo, so na večjem intervalu bolj opazne.

RK4 metoda

Natančnost se izboljša, če za izračun začetnih približkov uporabimo Runge-Kutta reda 4, a še vedno ne dovolj, zato moramo tudi tu za popravljanje uporabiti Newtonovo metodo.

Newtonova metoda za popravljanje približka

- Z opisanima metodama za reševanje DE enačb, dobimo na vsakem koraku le približek (Posebej razvidno iz Eulerjeve metode).
- Približek želimo popraviti tako, da bo spet ležal na krivulji preseka.

Dobljeni približek y, želimo popraviti na nek x, ki bo ležal na preseku. Če zapišemo $F(y) \cdot x = F(y) \cdot y$, nam to predstavlja enačbo ravnine, ki je zelo blizu normalni ravnini na krivuljo K. Z Newtonovo metodo z začetnim približkom y rešimo sistem enačb:

$$f_1(x) = C_1$$

$$f_2(x) = C_2$$

$$F(y) \cdot x = F(y) \cdot y$$

Eulerjeva metoda s popravljanjem z Newtonovo metodo

Ko za popravljanje napake uporabimo Newtonovo metodo, dobimo pravilno rešitev.

Potrebni pogoji in Jacobijeva matrika

Potreben pogoj za delovanje metod je, da sta funkciji f_1 in f_2 parcialno odvedljivi in da ima Jacobijeva matrika parcialnih odvodov poln rang 2. Za uspešno delovanje Newtonove metode moramo poiskati Jacobijevo matriko leve strani sistema nelinearnih enačb.

$$\mathsf{JG} = egin{bmatrix} \mathsf{grad}(f_1) \ \mathsf{grad}(f_2) \ \mathsf{grad}(ec{v} \cdot ec{x}) \end{bmatrix} \mathsf{oziroma} \ \mathsf{JG} = egin{bmatrix} \mathsf{grad}(f_1) \ \mathsf{grad}(f_2) \ \mathsf{grad}(ec{v}^\intercal) \end{bmatrix}$$

Adaptivni korak

Adaptivni korak nam omogoča bolj natančno rešitev problema. Deluje tako, da na vsakem koraku preveri čas, ki ga porabi za popravljanje napake z Newtonovo metodo in s tem podatkom ustrezno prilagodi velikost koraka.

Končna analiza parov ploskev za vsak primer + slike

Delovanje našega programa lahko preverimo s programom, ki smo ga napisali v Octave-u. Kot vhodne parametre mu podamo obe implicitno podani funkciji f_1 , f_2 , C1, C2, $grad(f_1)$, $grad(f_2)$. Določimo tudi začetni približek x_0 , začetno dolžino koraka in pa parameter, ki določa metodo delovanja (Euler/Runge-Kutta).

Začnemo z preprostim primerom sfere in ravnine, podane z enačbama:

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = 3x + 2y + z = 1$$

Tudi primer sfere in valja je relativno "lep"

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

Stvari malce otežimo s sfero in f_2

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

$$f_2(x,y,z) = y^4 + \log(x^2 + 1)z^2 - 4 = 1$$

- $f_1(x, y, z) = x^2 + \cos(y)z^2 12 = 4$
- $f_2(x, y, z) = y^4 + log(x^2 + 1)z^2 4 = 1$

- $f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$
- $f_2(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$

•
$$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$$

•
$$f_2(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

•
$$f_2(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

Analiza

Za vseh osem primerov smo naredili analizo, tako da smo izmerili povprečno število korakov Newtonove metode za obe metodi na dva načina: z adaptivnim in fiksnim korakom.

Funkcije	Euler		RK4	
	adaptivno	fiksno	adaptivno	fiksno
$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$				
$f_2(x, y, z) = x^2 + y^2 = 1$	3	5	3	3.222
$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$				
$f_2(x, y, z) = 3x + 2y + z = 1$	3	4.222	3	3.333
$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$				
$f_2(x, y, z) = y^4 + log(x^2 + 1)z^2 - 4 = 1$	3	5	3	3.222
$f_1(x, y, z) = x^2 + \cos(y)z^2 - 12 = 4$				
$f_2(x, y, z) = y^4 + log(x^2 + 1)z^2 - 4 = 1$	3	4.111	2.222	2.556
$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$				
$f_2(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$	3	4.667	2.222	2.667
$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$				
$f_2(x, y, z) = x^2 + y^2 + z^2 = 4$	3	5	3	3.222
$f_1(x, y, z) = e^{(-x^2+1)} + y^2 + z^2 = 3$				
$f_2(x, y, z) = x^2 + y^2 = 1$	3	5	3	3.333
$f_1(x, y, z) = e^{(xyz)} + y^2 + z^2 = 10$				
$f_2(x, y, z) = x^2 + y^2 = 1$	3	5	3	3.556