CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 12 SETTEMBRE 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Sia (S, \leq) un insieme ordinato. Dire quando, per definizione, (S, \leq) è un reticolo. Di ciascuna delle seguenti affermazioni dire se è vera o falsa:

- (i) Ogni reticolo (non vuoto) ha massimo.
- (ii) Per ogni reticolo L, ogni parte non vuota di L ha estremo superiore in L.
- (iii) In ogni reticolo, gli elementi sono a due a due confrontabili.

Esercizio 2. Per ogni intero positivo n, rappresentato n in forma decimale (scritto quindi n come stringa di cifre ' $c_t c_{t-1} \dots c_1 c_0$ ', dove $t \in \mathbb{N}$, ciascuno dei c_i è un intero compreso tra $0 \in 9$, $c_t \neq 0 \in n = \sum_{i=0}^t 10^i c_i$), si ponga $s_n = \sum_{i=0}^t c_i$ (la somma delle cifre di n) e $p_n = \prod_{i=0}^t c_i$ (il prodotto delle cifre di n). Si consideri l'applicazione

$$f: n \in \mathbb{N}^* \longmapsto (s_n, p_n) \in \mathbb{N}^* \times \mathbb{N}$$

ed il suo nucleo di equivalenza σ .

- (i) Si calcolino l'immagine $\vec{f}(\{10,11\})$ e l'antiimmagine $\overleftarrow{f}(\{(1,0)\})$.
- (ii) f è iniettiva? f è suriettiva?
- (iii) L'insieme quoziente \mathbb{N}^*/σ è finito o infinito? [40] $_{\sigma}$ è finita o infinita?
- (iv) Sia $S = \{1, 6, 15, 8, 30, 102, 51, 2001, 2411\}$. Descrivere in modo esplicito S/σ ed i suoi elementi, elencando gli elementi di ogni classe di equivalenza e specificando $|S/\sigma|$.

Sia ora ρ la relazione d'ordine definita da:

$$(\forall a, b \in \mathbb{N}^*) (a \rho b \iff (a = b) \lor (s_a < s_b \land p_a < p_b))$$

- (v) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (\mathbb{N}^*, ρ) . Stabilire se (\mathbb{N}^*, ρ) è un reticolo.
- (vi) Determinare in (\mathbb{N}^*, ρ) , se esiste, sup $\{6, 15\}$.
- (vii) Posto $X = \{3, 14, 20, 111, 121, 1111\}$, disegnare il diagramma di Hasse di (X, ρ) e stabilire se (X, ρ) è un reticolo. Nel caso lo sia, è distributivo?, è complementato?

Esercizio 3. Sia $S = \mathbb{Z}_{40} \times \mathbb{Z} \times \{1, -1\}$, e sia * l'operazione binaria in S definita da:

$$\big(\forall (a,b,c),(u,v,w)\in S\big)\big((a,b,c)*(u,v,w)=(au,b+cv,cw)\big).$$

- (i) * è associativa? È commutativa? Ha elementi neutro a destra, a sinistra, elemento neutro in S? Che tipo di struttura algebrica è (S, *)?
- (ii) Se la domanda ha senso, $(\overline{17}, 17, -1)$ è invertibile in (S, *)? E, nel caso, qual è il suo inverso?
- (iii) Sempre se la domanda ha senso, determinare gli elementi invertibili in (S, *) e descrivere l'inverso di un generico elemento invertibile (a, b, c) di S.
- (iv) Si dica se $A := \mathbb{Z}_{40} \times \mathbb{N} \times \{1, -1\}$ è o non è una parte chiusa in (S, *) e, se lo è, che tipo di struttura algebrica è (A, *).

Esercizio 4. Sia $A = \{ f \in \mathbb{Z}_7[x] \mid (\forall a \in \mathbb{Z}_7)(f(a) = \bar{0} \iff (a = \bar{2} \lor a = \bar{3})) \}$, l'insieme dei polinomi in $\mathbb{Z}_7[x]$ che abbiano come radici in \mathbb{Z}_7 le classi $\bar{2}$ e $\bar{3}$, e nessun'altra.

- (i) Quali e quanti sono i polinomi di secondo grado in A? Quanti tra questi sono monici?
- (ii) Quali e quanti sono i polinomi di terzo grado in A? Quanti tra questi sono monici?
- (iii) Stabilire se il polinomio $g := (x^2 + \bar{2}x \bar{1})(x^4 \bar{2}x) \in \mathbb{Z}_7[x]$ appartiene ad A e, poi, scrivere g come prodotto di polinomi monici irriducibili in $\mathbb{Z}_7[x]$.