Pranav Pandey

Enrollment Number – 9919102049

Batch - E4

VLAB EXPERIMENT -7

Part 1(Thevenin's Theorem)

Aim: To study and verify the Thevenin's Theorem

Theory: Thevenin's Theorem states that "Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load".

In other words, it is possible to simplify any electrical circuit, no matter how complex, to an equivalent two-terminal circuit with just a single constant voltage source in series with a resistance connected to a load.

As far as the load resistor R_L is concerned, any complex \diamond one-port \diamond network consisting of multiple resistive circuit elements and energy sources can be replaced by one single equivalent resistance R_{Th} and one single equivalent voltage V_{Th} . R_{Th} is the source resistance value looking back into the circuit and V_{Th} is the open circuit voltage at the terminals.

The basic procedure for solving a circuit using Thevenin s Theorem is as follows:

- 1. Remove the load resistor R_L or component concerned.
- 2. Find R_{Th} by shorting all voltage sources or by open circuiting all the current sources.
- 3. Find V_{Th} by the usual circuit analysis methods.
- 4. Find the current flowing through the load resistor R_L.

Observations:

For the first set of readings

Experiment: Verification of Thevenin's Theorem

Experiment: Verification of Thevenin's Theorem

Final set of readings with observation Table:

Experiment: Verification of Thevenin's Theorem

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Thevenin Voltage(V _{Th})	Supply Voltage(V ₂)	Ammeter Reading(I)	Thevenin Resistance R _{Th} =V ₂ /I	Load current (I _{RL})=V _{Th} /(R _{Th} +R _L)
1	0.2838709	85.161290:	300	146.666661	110	0.50769231	216.666661	0.2838709
2								

2nd set of Readings:

Experiment: Verification of Thevenin's Theorem

The Final set of Readings with Observation Table:

Experiment: Verification of Thevenin's Theorem

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Thevenin Voltage(V _{Th})	Supply Voltage(V ₂)	Ammeter Reading(I)	Thevenin Resistance R _{Th} =V ₂ /I	Load current (I _{RL})=V _{Th} /(R _{Th} +R _L)
1	0.2838709	85.161290:	300	146.66666t	110	0.50769231	216.666661	0.2838709
2	0.41266119	144.43141	350	234.666661	120	0.5487804	218.666661	0.41266119

Observation Table:

Observation Table

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Thevenin Voltage(V _{Th})	Supply Voltage(V ₂)	Ammeter Reading(I)	Thevenin Resistance R _{Th} =V ₂ /I	Load current (I _{RL})=V _{Th} /(R _{Th} +R _L)
1	0.28387091	85.161290:	300	146.666666	110	0.50769231	216.666661	0.2838709
2	0.41266119	144.43141	350	234.666666	120	0.5487804	218.666661	0.41266119
3								
4								

Result: Hence, the Thevenin's Theorem is verified.

Part 2(Norton's Theorem)

Aim: To study and verify the Norton's Theorem

Theory: Nortons Theorem states that "Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor". Norton on the other hand reduces his circuit down to a single resistance in parallel with a constant current source.

As far as the load resistance, R_L is concerned this single resistance, R_{Norton} is the value of the resistance looking back into the network with all the current sources open circuited and I_{Norton} is the short circuit current at the output terminals.

The basic procedure for solving a circuit using Nortons Theorem is as follows:

- 1. Remove the load resistor R_L or component concerned.
- 2. Find R_{Norton} by shorting all voltage sources or by open circuiting all the current sources.
 - 3. Find I_{Norton} by placing a shorting link on the output terminals A and B.
 - 4. Find the current flowing through the load resistor R_{L} .

Observations:

For the 1st set of Observations:

Experiment: Verification of Norton's Theorem

The Final Set of Readings with Observation Table:

Experiment: Verification of Norton's Theorem

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Norton Cirucit current(I _{Nort})	Supply Voltage(V ₂)	Ammeter Reading(I)	Norton Resistance R _{Norton} =V ₂ /I	Load current (I _{RL})=I _{Nort} *R _{Nort} /(R _{Nort} +R _L)
1	0.2838709	85.161290:	300	0.6769230	110	0.50769231	216.666661	0.28387091

For the 2nd set of Observations:

Experiment: Verification of Norton's Theorem

Experiment: Verification of Norton's Theorem

Experiment: Verification of Norton's Theorem

Experiment: Verification of Norton's Theorem

For the Final set of Readings with Observation Table:

Experiment: Verification of Norton's Theorem

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Norton Cirucit current(I _{Nort})	Supply Voltage(V ₂)	Ammeter Reading(I)	Norton Resistance R _{Norton} =V ₂ /I	Load current (I _{RL})=I _{Nort} *R _{Nort} /(R _{Nort} +R _L)
1	0.2838709	85.161290:	300	0.6769230	110	0.50769231	216.666661	0.2838709
2	0.2882882	100.900901	350	0.66666666	160	0.6	266.666661	0.2882882

Observation Table:

Observation Table

SL No.	Actual Load Current(I _{RL})	Load Voltage(V _L)	Load Resistance (R _L)=V _{RL} /I _{RL}	Thevenin Voltage(V _{Th})	Supply Voltage(V ₂)	Ammeter Reading(I)	Thevenin Resistance R _{Th} =V ₂ /I	Load current (I _{RL})=V _{Th} /(R _{Th} +R _L)
1	0.2838709	85.161290:	300	146.66666	110	0.50769231	216.666661	0.2838709
2	0.41266119	144.43141	350	234.666666	120	0.5487804	218.666661	0.4126611{

Result: Hence, the Norton's theorem is verified.