FHL 470 Spreadsheets and data management

WWW.PHDCOMICS.COM

Robin Elahi, Hilary Hayford Friday Harbor Labs University of Washington

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas20

Data organization in spreadsheets

Karl W. Broman & Kara H. Woo

To cite this article: Karl W. Broman & Kara H. Woo (2017): Data organization in spreadsheets,

The American Statistician, DOI: 10.1080/00031305.2017.1375989

To link to this article: http://dx.doi.org/10.1080/00031305.2017.1375989

The full slide deck may be downloaded from: http://www.dataone.org/education-modules

Suggested citation:

DataONE Education Module: Data Entry and Manipulation. DataONE. Retrieved Nov12, 2012. From http://www.dataone.org/sites/all/documents/L04 DataEntryManipulation.pptx

Copyright license information:

No rights reserved; you may enhance and reuse for your own purposes. We do ask that you provide appropriate citation and attribution to DataONE.

Code of Conduct

Setup Episodes ▼

Extras -

License

Improve this page 🖍

Search...

Data Organization in Spreadsheets

Good data organization is the foundation of any research project. Most researchers have data in spreadsheets, so it's the place that many research projects start.

We organize data in spreadsheets in the ways that we as humans want to work with the data, but computers require that data be organized in particular ways. In order to use tools that make computation more efficient, such as programming languages like R or Python, we need to structure our data the way that computers need the data. Since this is where most research projects start, this is where we want to start too!

In this lesson, you will learn:

- Good data entry practices formatting data tables in spreadsheets
- How to avoid common formatting mistakes
- Approaches for handling dates in spreadsheets
- Basic quality control and data manipulation in spreadsheets
- Exporting data from spreadsheets

In this lesson, however, you will *not* learn about data analysis with spreadsheets. Much of your time as a researcher will be spent in the initial 'data wrangling' stage, where you need to organize the data to perform a proper analysis later. It's not the most fun, but it is necessary. In this lesson you will learn how to think about data organization and some practices for more effective data wrangling. With this approach you can better format current data and plan new data collection so less data wrangling is needed.

http://www.datacarpentry.org/spreadsheet-ecology-lesson/

"Spreadsheets, for all of their mundane rectangularness, have been the subject of controversy for decades"

- 1. Be consistent
- 2. Choose good names for things
- 3. Write dates as YYYY-MM-DD
- 4. No empty cells
- 5. Just one thing in a cell
- 6. Make it a rectangle
- 7. Create a data dictionary
- 8. No calculations in raw data files
- 9. Don't use font color or highlighting as data
- 10. Make backups
- 11. Use data validation to avoid data entry errors
- 12. Save the data as plain text (.txt or .csv)

Be consistent

	Α	В	С
1	Date	Assay date	Weight
2		12/9/05	54.9
3		12/9/05	45.3
4	12/6/2005	е	47
5		е	45.7
6		е	52.9
7		1/11/2006	46.1
8		1/11/2006	38.6

Choose good names for things

- Create descriptive column names without spaces or special characters
 - Soil T30 → Soil_Temp_30cm
 - Species-Code → Species_Code
 - Avoid using -,+,*,^, /, \$, @, &, %, etc. in column names)

Choose good names for things

good name	good alternative	avoid		
Max_temp_C	MaxTemp	Maximum Temp (°C)		
Precipitation_mm	Precipitation	precmm		
${\tt Mean_year_growth}$	MeanYearGrowth	Mean growth/year		
sex	sex	M/F		
weight	weight	W.		
$\mathtt{cell}_{\mathtt{type}}$	CellType	Cell type		
Observation_01	${ t first_observation}$	1st Obs.		

 $^{ au}$ FINAL.doc!

FINAL_rev.2.doc

FINAL_rev.6.COMMENTS.doc

FINAL_rev.8.comments5. CORRECTIONS.doc

FINAL_rev.22.comments49. corrections.10.#@\$%WHYDID ICOMETOGRADSCHOOL????.doc

Write dates as YYYY-MM-DD

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

02/27/2013 02/27/13 27/02/2013 27/02/13 20130227 2013.02.27 27.02.13 27-02-13 27.2.13 2013. II. 27. $\frac{27}{2}$ -13 2013.158904109 MMXIII-II-XXVII MMXIII $\frac{LVII}{CCLXV}$ 1330300800 ((3+3)×(111+1)-1)×3/3-1/3³ $\frac{201}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{$

https://xkcd.com/1179/

We often prefer to use a plain text format for columns in an Excel worksheet that are going to contain dates, so that it doesn't do anything to them. To do this:

- Select the column
- In the menu bar, select Format \rightarrow Cells
- Choose "Text" on the left

No empty cells

	А	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102		95.3
4	103	2015-06-18	97.5
5	104		117.0
6	105		108.0
7	106	2015-06-20	149.0
8	107		169.4

No empty cells

Enter complete lines of data

Just one thing in a cell

Υ	Z	AA	AB	AC	AD	AE
size1	size1.detail	size2	size2.detail	size3	size3.detail	metric
58	length_mm	NA	NA	NA	NA	max_size
74	length_mm	NA	NA	NA	NA	max_size
52	length_mm	NA	NA	NA	NA	max_size
80	length_mm	NA	NA	NA	NA	max_size
150	length_mm	NA	NA	NA	NA	max_size
124	length_mm	NA	NA	NA	NA	max_size
134	length_mm	NA	NA	NA	NA	max_size
50	length_mm	NA	NA	NA	NA	max_size
273	radius_mm	1222	wet weight_g	NA	NA	max_size
128	radius_mm	167.3	wet weight_g	NA	NA	mean_size

Make it a rectangle

Organize the data as a single rectangle, or set of rectangles

Not a rectangle

	А	В	С	D	E	F	G
1							
2	Date	11/3/14					
3	Days on diet	126					
4	Mouse #	43					
5	sex	f					
6	experiment		values			mean	SD
7	control		0.186	0.191	1.081	0.49	0.52
8	treatment A		7.414	1.468	2.254	3.71	3.23
9	treatment B		9.811	9.259	11.296	10.12	1.05
10							
11	fold change		values			mean	SD
12	treatment A		15.26	3.02	4.64	7.64	6.65
13	treatment B		20.19	19.05	23.24	20.83	2.17

Organize the data as a single rectangle, or set of rectangles

'Tidy', or long, format

- subjects as rows
- variables as columns
- single header row

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy

Tidy datasets are all alike; every messy dataset is messy in its own way

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Messy

	А	В	С	D	E	F	G	Н	I	J	К
1			week 4			week 6			week 8		
2	Mouse ID	SEX	date	weight	glucose	date	weight	glucose	date	weight	glucose
3	3005	М	3/30/2007	19.3	635	4/11/2007	31	460.7	4/27/2007	39.6	530.2
4	3017	М	10/6/2006	25.9	202.4	10/19/2006	45.1	384.7	11/3/2006	57.2	458.7
5	3434	F	11/22/2006	26.6	238.9	12/6/2006	45.9	378	12/22/2006	56.2	409.8
6	3449	М	1/5/2007	27.5	121	1/19/2007	42.9	191.3	2/2/2007	56.7	182.5
7	3499	F	1/5/2007	19.8	220.2	1/19/2007	36.6	556.9	2/2/2007	43.6	446

Tidy

	А	В	С	D	Е	F
1	mouse_id	sex	week	date	glucose	weight
2	3005	М	4	3/30/2007	19.3	635
3	3005	М	6	4/11/2007	31	460.7
4	3005	М	8	4/27/2007	39.6	530.2
5	3017	М	4	10/6/2006	25.9	202.4
6	3017	М	6	10/19/2006	45.1	384.7
7	3017	М	8	11/3/2006	57.2	458.7
8	3434	F	4	11/22/2006	26.6	238.9
9	3434	F	6	12/6/2006	45.9	378
10	3434	F	8	12/22/2006	56.2	409.8
11	3449	М	4	1/5/2007	27.5	121
12	3449	М	6	1/19/2007	42.9	191.3
13	3449	М	8	2/2/2007	56.7	182.5
14	3499	F	4	1/5/2007	19.8	220.2
15	3499	F	6	1/19/2007	36.6	556.9
16	3499	F	8	2/2/2007	43.6	446

Create a data dictionary

	Α
1	name
2	mouse
3	sex
4	sac_date
5	partial_inflation
6	coat_color
7	crumblers
8	diet_days

Create a data dictionary

	А	В	С	D
1	name	plot_name	group	description
2	mouse	Mouse	demographic	Animal identifier
3	sex	Sex	demographic	Male (M) or Female (F)
4	sac_date	Date of sac	demographic	Date mouse was sacrificed
5	partial_inflation	Partial inflation	clinical	Indicates if mouse showed partial pancreatic inflation
6	coat_color	Coat color	demographic	Coat color, by visual inspection
7	crumblers	Crumblers	clinical	Indicates if mouse stored food in their bedding
8	diet_days	Days on diet	clinical	Number of days on high-fat diet

No calculations

Don't use font color or highlighting as data

	А	В	С	
1	id	date	glucose	
2	101	2015-06-14	149.3	
3	102	2015-06-14	95.3	
4	103	2015-06-18	97.5	
5	104	2015-06-18	1.1	
6	105	2015-06-18	108.0	
7	106	2015-06-20	149.0	
8	107	2015-06-20	169.4	

Don't use font color or highlighting as data

	А	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102	2015-06-14	95.3
4	103	2015-06-18	97.5
5	104	2015-06-18	1.1
6	105	2015-06-18	108.0
7	106	2015-06-20	149.0
8	107	2015-06-20	169.4

	Α	В	С	D
1	id	date	glucose	outlier
2	101	2015-06-14	149.3	FALSE
3	102	2015-06-14	95.3	FALSE
4	103	2015-06-18	97.5	FALSE
5	104	2015-06-18	1.1	TRUE
6	105	2015-06-18	108.0	FALSE
7	106	2015-06-20	149.0	FALSE
8	107	2015-06-20	169.4	FALSE

Make backups

THE FOUR STAGES OF DATA LOSS DEALING WITH ACCIDENTAL DELETION OF MONTHS OF HARD-EARNED DATA

www.phdcomics.com

Use data validation to avoid data entry errors

Use data validation to avoid data entry errors

Save the data in plain text files

	А	В	С	D	E
1	id	sex	glucose	insulin	triglyc
2	101	Male	134.1	0.60	273.4
3	102	Female	120.0	1.18	243.6
4	103	Male	124.8	1.23	297.6
5	104	Male	83.1	1.16	142.4
6	105	Male	105.2	0.73	215.7

id, sex, glucose, insulin, triglyc 101, Male, 134.1, 0.60, 273.4 102, Female, 120.0, 1.18, 243.6 103, Male, 124.8, 1.23, 297.6 104, Male, 83.1, 1.16, 142.4 105, Male, 105.2, 0.73, 215.7

Example: Poor Data Entry

Example: Poor Data Entry

Best Practices

- Consistent Names, Codes, Formats (date) used in each column
- Data are all in one table, which is much easier for a statistical program to work with than multiple small tables which each require human intervention

Class exercise

You should have 3 (fictional) data files: pond2010.xlsx, zoop-temp-main.xlsx; zoop-temp.xlsx.

These 3 files were all intended to be part of the same study – the investigators wanted to examine the day-night distribution of 2 species of zooplankton across multiple years. The type of zooplankton they studied is called rotifers generally, and specifically the genus *Conochilus*, in which groups of individual rotifers stick together in colonies (see http://eol.org/pages/43393/overview). The investigators plan to repeat this study for several more years.

Activity 1

As individuals or in small groups, open the 3 files and inspect them. Based on what you have learned so far about data management, what are some problems in the way the data are currently organized?

Activity 2

Suggest a new system for organization. Create a new spreadsheet that can be used as a template for later years of data collection.