TopoHyperDrive: Accelerating Meta-Search in Hyperparameter Optimization through Topological Analysis

VLADISLAV ZHUZHEL, SKOLKOVO INSTITUTE OF SCIENCE AND TECHNOLOGY

Introduction:

Hyperparameter Optimization Challenges

- Neural networks are pivotal in various applications like text generation, image recognition, and personalized healthcare
- Increasing complexity and size of neural networks intensify the demand on computational resources
- Selecting optimal hyperparameters is crucial but traditional methods are inefficient and costly
- Traditional method mostly consider the neural network as a black box and do not incorporate the peculiarities of the neural nets

Introduction: Existing Solutions

- Traditional Methods:
 - Grid Search
 - Random Search
- Advanced Methods
 - Bayesian Optimization
 - Hyperband
 - BOHB
- Limitations:
 - High Computational Cost
 - Lack of Insight into Model Structures

Method:

Leveraging Topological Analysis for Optimization

RTD Definition:

- Measures dissimilarity between neural network embeddings
- Uses topological features in point clouds
- Why RTD?
 - Captures structural variances
 - Provides a nuanced exploration of model representations
- RTD computation:
 - Construct R-Cross-Barcode Vietoris-Rips filtered complexes of the individual and joined graphs for the point clouds
 - Compute score: $RTD(P, P') = \sum_{i} length(Bar_i)$

Method:

RTD Implication for Hyperparameter Optimization

- One-to-Random approach
 - Initialize a random model
 - Compare the embeddings of the trained model with the random one
- Allows sole-objective and multi-objective setups
 - Sole-objective for unsupervised training
 - · Multi-objective for supervised training
- Can be used with any Hyperparameter Optimization Method
 - We will consider Tree-structured Parzen Estimator (TPE) approach

Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International conference on machine learning, pp. 115–123. PMLR, 2013.

Experiments: CIFAR-100 Dataset

- Overview
 - 60,000 colour images
 - 100 classes with 600 images each
- Image Specifications
 - 32x32 pixels
 - Diverse objects and living entities
- Relevance
 - Widely used for benchmarking machine learning algorithms
 - Challenging due to variability and diversity in images

Experiments:

Search Space

- Five-block architecture inspired by VGG
- Each block contains multiple convolutional layers
- Max pooling layers between blocks
- Hyperparameters:
 - Number of layers per block: 1 to 4
 - Number of filters per layer: 4 to 256
 - Hidden size in fully connected layers: 128 to 4096

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Results

Best accuracy

- PCA One-to-Random Multi-Objective One-to-Random variant with additional dimensionality reduction to the dimension size 2 top performer
- Full embeddings RTD converge slower due to more noisy data, may outperformer on a harder dataset or with further optimization
- Sole objective One-to-Random setup leads to quality drop in the first trials, but starts to grow later, may be used in unsupervised hyperparameter optimization

Further Improvements Enhancing TopoHyperDrive

- One-to-Top Performer Divergence
 - Identify models divergent from the best-performing model thus far
 - Optimize using dual objectives to avoid oscillation
- One-to-All Divergence
 - Configure hyperparameters to diverge from all previous iterations
 - Aim to explore a broad range of representation topologies
- Additional Optimization Algorithms
 - Integrate with Hyperband and BOHB

Conclusion

- Innovation in Hyperparameter Optimization
 - Leveraged topological analysis to enhance search efficiency using Representation Topology Divergence (RTD)
- Improved Performance
 - Faster convergence and higher accuracy compared to traditional methods
 - Ability to conduct a hyperparameter search in an unsupervised setup
 - Demonstrated on CIFAR-100 dataset
- Future Directions
 - Potential integration with other optimization algorithms
 - Further refinement and broader application of RTD