# Comprehensive Analysis of E-Commerce Data: Business Insights through Multi-level Querying

This project involves end-to-end data analysis on e-commerce data using Python and PostgreSQL. Starting from data extraction and loading, the project progresses through complex SQL querying within Python, and presents insights through visualizations. It showcases the integration of data engineering and analytical techniques to solve business problems and derive actionable insights.

#### PostgreSQL Configuration

```
In [10]:
         import pandas as pd
         import numpy as np
         from sqlalchemy import create_engine
         import urllib.parse
         import os
         from sqlalchemy.sql import text
         import time
         import matplotlib.pyplot as plt
         import seaborn as sns
         # PostgreSQL connection details
         username = 'postgres'
         password = urllib.parse.quote_plus('enterpassword')
         host = 'localhost'
         port = '5432'
         database = 'retail db'
         # connection string
         connection string = f'postgresql://{username}:{password}@{host}:{port}/{database}'
         # SQLAlchemy engine
         engine = create_engine(connection_string)
         try:
             engine.connect()
             print("Connection to PostgreSQL DB successful!")
         except Exception as e:
             print(f"Error: {e}")
```

Connection to PostgreSQL DB successful!

In [ ]:

```
Customer and Sales Overview Insights:
```

**J** 

• These queries focus on foundational insights into customer locations, order counts, and overall sales distribution.

1. List all unique cities where customers are located.

### customer\_city **0** bom jardim de minas alto rio doce alvorada do gurgueia batatais 3 4 capao da porteira 4114 carbonita 4115 concordia do para 4116 independencia **4117** governador valadares 4118 balsa nova

4119 rows × 1 columns

2. Count the number of orders placed in 2017.

**0** 45101

3. Find the total sales per category.

```
In [13]: query_b3 = '''
```

|     | product_category          | total_sales  |
|-----|---------------------------|--------------|
| 0   | AGRO INDUSTRIA E COMERCIO | \$118730.61  |
| 1   | ART                       | \$30992.93   |
| 2   | ARTS AND CRAFTS           | \$2326.17    |
| 3   | AUDIO                     | \$60324.62   |
| 4   | AUTOMOTIVE                | \$852294.33  |
| ••• |                           |              |
| 69  | TECHNICAL BOOKS           | \$24915.44   |
| 70  | TELEPHONY                 | \$486882.05  |
| 71  | TOYS                      | \$619037.69  |
| 72  | WATCHES PRESENT           | \$1429216.68 |
| 73  | None                      | \$252801.71  |

74 rows × 2 columns

# 4. Calculate the percentage of orders that were paid in installments.

test

5. Count the number of customers from each state.



# Monthly Performance and Product Analysis:

- These queries delve into monthly trends, product performance, and revenue breakdowns, providing more detailed operational insights.
- 1. Calculate the number of orders per month in 2018.

```
df = pd.read_sql(query_m1, engine)
display(df)

plt.figure(figsize=(10, 4))
plt.xlabel('Month')
plt.ylabel('Order Count')
plt.title('Number of Orders per Month in 2018')
plt.bar(df["month"],df["counts"])
plt.xticks(rotation = 90)
plt.show()
```

|   | month     | counts |
|---|-----------|--------|
| 0 | January   | 7269   |
| 1 | February  | 6728   |
| 2 | March     | 7211   |
| 3 | April     | 6939   |
| 4 | May       | 6873   |
| 5 | June      | 6167   |
| 6 | July      | 6292   |
| 7 | August    | 6512   |
| 8 | September | 16     |
| 9 | October   | 4      |



2. Find the average number of products per order, grouped by customer city.

```
In [17]: query_m2 = '''
             with order_counts as (
                select
                     ord.order_id,
                     ord.customer_id,
                     count(oi.order_id) as count_orders
                 from orders ord
                     join order_items oi
                     on ord.order_id = oi.order_id
                group by 1,2
             )
             select
                 cus.customer_city, round(avg(oc.count_orders),2) as avg_orders
             from customers cus
                 join order_counts oc
                 on cus.customer_id = oc.customer_id
             group by 1 order by 1
         df = pd.read_sql(query_m2, engine)
         display(df)
```

|      | customer_city       | avg_orders |
|------|---------------------|------------|
| 0    | abadia dos dourados | 1.00       |
| 1    | abadiania           | 1.00       |
| 2    | abaete              | 1.00       |
| 3    | abaetetuba          | 1.27       |
| 4    | abaiara             | 1.00       |
| •••  |                     |            |
| 4105 | xinguara            | 1.11       |
| 4106 | xique-xique         | 1.00       |
| 4107 | zacarias            | 1.00       |
| 4108 | ze doca             | 1.00       |
| 4109 | zortea              | 1.00       |

4110 rows × 2 columns

3. Calculate the percentage of total revenue contributed by each product category.

#### product\_category total\_sales **0** Agro Industria e Comercio 0.74 Art 0.19 2 Arts and Crafts 0.01 3 0.38 audio 4 automotive 5.32 69 technical books 0.16 70 telephony 3.04 71 toys 3.87 72 Watches present 8.93 **73** None 1.58

74 rows × 2 columns

4. Identify the correlation between product price and the number of times a product has been purchased.

```
df = pd.read_sql(query_m4, engine)
display(df)
```

|     | product_category          | product_counts | product_price |
|-----|---------------------------|----------------|---------------|
| 0   | Agro Industria e Comercio | 212            | 342.16        |
| 1   | Art                       | 209            | 115.85        |
| 2   | Arts and Crafts           | 24             | 75.50         |
| 3   | audio                     | 364            | 139.31        |
| 4   | automotive                | 4235           | 139.97        |
| ••• |                           |                |               |
| 69  | technical books           | 267            | 71.53         |
| 70  | telephony                 | 4545           | 71.24         |
| 71  | toys                      | 4117           | 117.60        |
| 72  | Watches present           | 5991           | 201.17        |
| 73  | None                      | 1603           | 112.04        |

74 rows × 3 columns



5. Calculate the total revenue generated by each seller, and rank them by revenue.

|      | seller_id                        | total_sales | seller_rankings |
|------|----------------------------------|-------------|-----------------|
| 0    | 7c67e1448b00f6e969d365cea6b010ab | 507166.91   | 1               |
| 1    | 1025f0e2d44d7041d6cf58b6550e0bfa | 308222.04   | 2               |
| 2    | 4a3ca9315b744ce9f8e9374361493884 | 301245.27   | 3               |
| 3    | 1f50f920176fa81dab994f9023523100 | 290253.42   | 4               |
| 4    | 53243585a1d6dc2643021fd1853d8905 | 284903.08   | 5               |
| •••  |                                  |             |                 |
| 3090 | ad14615bdd492b01b0d97922e87cb87f | 19.21       | 3091            |
| 3091 | 702835e4b785b67a084280efca355756 | 18.56       | 3092            |
| 3092 | 4965a7002cca77301c82d3f91b82e1a9 | 16.36       | 3093            |
| 3093 | 77128dec4bec4878c37ab7d6169d6f26 | 15.22       | 3094            |
| 3094 | cf6f6bc4df3999b9c6440f124fb2f687 | 12.22       | 3095            |

3095 rows × 3 columns

```
In [23]: # Top 10 sellers:
    top_10_sellers = df.nlargest(10, 'total_sales')
    plt.bar(top_10_sellers['seller_id'], top_10_sellers['total_sales'])
    plt.xlabel('Seller ID')
    plt.ylabel('Total Sales')
    plt.title('Top 10 Sellers by Total Sales')
    plt.xticks(rotation=90)
    plt.show()
```



# Strategic Growth and Customer Retention Analytics

- 1. Calculate the moving average of order values for each customer over their order history.
  - These queries focus on advanced metrics like growth rates, retention, and top customer behavior, offering insights for strategic decision-making.

```
In [24]: query_a1 = '''
     WITH cte AS (
```

```
SELECT
            orders.customer_id,
            orders.order_purchase_timestamp,
            payments.payment_value
        FROM orders
        INNER JOIN payments
        USING (order_id)
    SELECT
        customer_id,
        order_purchase_timestamp,
        payment_value,
        AVG(payment_value) OVER (
            PARTITION BY customer_id
            ORDER BY order_purchase_timestamp
            ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
        ) AS moving_avg
    FROM cte
    ORDER BY customer_id desc;
1.1.1
df = pd.read_sql(query_a1, engine)
display(df)
```

|        | customer_id                      | order_purchase_timestamp | payment_value | moving_avg |
|--------|----------------------------------|--------------------------|---------------|------------|
| 0      | ffffe8b65bbe3087b653a978c870db99 | 2017-09-29 14:07:03      | 18.37         | 18.37      |
| 1      | ffffa3172527f765de70084a7e53aae8 | 2017-09-02 11:53:32      | 45.50         | 45.50      |
| 2      | ffff42319e9b2d713724ae527742af25 | 2018-06-13 16:57:05      | 214.13        | 214.13     |
| 3      | fffeda5b6d849fbd39689bb92087f431 | 2018-05-22 13:36:02      | 63.13         | 63.13      |
| 4      | fffecc9f79fd8c764f843e9951b11341 | 2018-03-29 16:59:26      | 0.64          | 0.64       |
| •••    |                                  |                          |               |            |
| 103881 | 000379cdec625522490c315e70c7a9fb | 2018-04-02 13:42:17      | 107.01        | 107.01     |
| 103882 | 0002414f95344307404f0ace7a26f1d5 | 2017-08-16 13:09:20      | 179.35        | 179.35     |
| 103883 | 0001fd6190edaaf884bcaf3d49edf079 | 2017-02-28 11:06:43      | 195.42        | 195.42     |
| 103884 | 000161a058600d5901f007fab4c27140 | 2017-07-16 09:40:32      | 67.41         | 67.41      |
| 103885 | 00012a2ce6f8dcda20d059ce98491703 | 2017-11-14 16:08:26      | 114.74        | 114.74     |

103886 rows × 4 columns

### 2. Calculate the cumulative sales per month for each year.

```
DATE_PART('YEAR', orders.order_purchase_timestamp::TIMESTAMP) as YEAR,
            DATE_PART('month', orders.order_purchase_timestamp::TIMESTAMP) as MONTH,
            ROUND(SUM(CAST(payment_value AS NUMERIC)),2) as total_sales
        FROM orders
        INNER JOIN payments
        USING (order_id)
        GROUP BY YEAR , MONTH
   SELECT
       YEAR::varchar,
       MONTH,
       total_Sales,
       SUM(total_sales) OVER (
            PARTITION BY YEAR
           ORDER BY YEAR, MONTH
       ) AS cumulative_sales
   FROM cte
   ORDER BY YEAR , MONTH ;
1.1.1
df = pd.read_sql(query_a2, engine)
display(df)
print(df.columns)
```

|    | year | month | total_sales | cumulative_sales |
|----|------|-------|-------------|------------------|
| 0  | 2016 | 9.0   | 252.24      | 252.24           |
| 1  | 2016 | 10.0  | 59090.48    | 59342.72         |
| 2  | 2016 | 12.0  | 19.62       | 59362.34         |
| 3  | 2017 | 1.0   | 138488.04   | 138488.04        |
| 4  | 2017 | 2.0   | 291908.01   | 430396.05        |
| 5  | 2017 | 3.0   | 449863.60   | 880259.65        |
| 6  | 2017 | 4.0   | 417788.03   | 1298047.68       |
| 7  | 2017 | 5.0   | 592918.82   | 1890966.50       |
| 8  | 2017 | 6.0   | 511276.38   | 2402242.88       |
| 9  | 2017 | 7.0   | 592382.92   | 2994625.80       |
| 10 | 2017 | 8.0   | 674396.32   | 3669022.12       |
| 11 | 2017 | 9.0   | 727762.45   | 4396784.57       |
| 12 | 2017 | 10.0  | 779677.88   | 5176462.45       |
| 13 | 2017 | 11.0  | 1194882.80  | 6371345.25       |
| 14 | 2017 | 12.0  | 878401.48   | 7249746.73       |
| 15 | 2018 | 1.0   | 1115004.18  | 1115004.18       |
| 16 | 2018 | 2.0   | 992463.34   | 2107467.52       |
| 17 | 2018 | 3.0   | 1159652.12  | 3267119.64       |
| 18 | 2018 | 4.0   | 1160785.48  | 4427905.12       |
| 19 | 2018 | 5.0   | 1153982.15  | 5581887.27       |
| 20 | 2018 | 6.0   | 1023880.50  | 6605767.77       |
| 21 | 2018 | 7.0   | 1066540.75  | 7672308.52       |
| 22 | 2018 | 8.0   | 1022425.32  | 8694733.84       |
| 23 | 2018 | 9.0   | 4439.54     | 8699173.38       |
| 24 | 2018 | 10.0  | 589.67      | 8699763.05       |

Index(['year', 'month', 'total\_sales', 'cumulative\_sales'], dtype='object')

```
In [26]: df.columns = [col.strip().upper() for col in df.columns]

# pivot table for plotting.
pivot_df = df.pivot(index='MONTH', columns='YEAR', values='CUMULATIVE_SALES')

# line plot.
```

```
plt.figure(figsize=(12, 6))
sns.lineplot(data=pivot_df, markers=True)

plt.title('Cumulative Monthly Sales per Year')
plt.xlabel('Month')
plt.ylabel('Cumulative Sales')
plt.xticks(ticks=range(1, 13))
plt.legend(title='Year')
plt.grid(True)

plt.show()
```



## 3. Calculate the year-over-year growth rate of total sales.

```
In [27]: query_a3 = '''
             WITH cte AS (
                 SELECT
                      DATE_PART('YEAR', orders.order_purchase_timestamp::TIMESTAMP) as YEAR,
                     ROUND(SUM(CAST(payment_value AS NUMERIC)),2) as total_sales
                 FROM orders
                 INNER JOIN payments
                 USING (order_id)
                 GROUP BY YEAR
             )
             select
                 year::varchar,
                 total_sales,
                 ROUND((((total_sales - LAG(total_sales,1) over (order by year ))/LAG(total_sales,1)
             from cte;
         df = pd.read_sql(query_a3, engine)
         display(df)
```

|   | year | total_sales | y_o_y_growthreate |
|---|------|-------------|-------------------|
| 0 | 2016 | 59362.34    | NaN               |
| 1 | 2017 | 7249746.73  | 12112.7           |
| 2 | 2018 | 8699763.05  | 20.0              |

4. Calculate the retention rate of customers, defined as the percentage of customers who make another purchase within 6 months of their first purchase.

```
In [28]: query_a4 = '''
             WITH customer_purchases AS (
                 SELECT
                     customer_id,
                     MIN(order_purchase_timestamp::date) AS first_purchase_date,
                     MAX(order purchase timestamp::date) AS last purchase date
                 FROM orders
                 GROUP BY customer_id
             ),
             retained_customers AS (
                 SELECT
                     customer_id
                 FROM customer_purchases
                 WHERE last_purchase_date <= (first_purchase_date + INTERVAL '6 months')</pre>
                 AND first_purchase_date < last_purchase_date
             )
             SELECT
                 COUNT(*) AS retained_customer_count,
                 ROUND((COUNT(*) * 100.0 / (SELECT COUNT(DISTINCT customer_id) FROM orders)),2) AS
             FROM retained_customers;
         df = pd.read_sql(query_a4, engine)
         display(df)
```

retained\_customer\_count retention\_rate\_percentage
0 0.0

0

5. Identify the top 3 customers who spent the most money in each year.

```
GROUP BY DATE_PART('YEAR', orders.order_purchase_timestamp::TIMESTAMP), orders.cu
    ),
    ranked_payments as (
       SELECT
            year,
            customer_id,
            total_payment,
            DENSE_RANK() OVER (PARTITION BY year ORDER BY total_payment DESC) AS rank
        FROM yearly_customer_spending
    )
    select
       year::varchar,
        customer_id,
        total_payment
   from ranked_payments
   WHERE rank <= 3
   ORDER BY year, rank;
df = pd.read_sql(query_a5, engine)
display(df)
```

|   | year | customer_id                      | total_payment |
|---|------|----------------------------------|---------------|
| 0 | 2016 | a9dc96b027d1252bbac0a9b72d837fc6 | 1423.55       |
| 1 | 2016 | 1d34ed25963d5aae4cf3d7f3a4cda173 | 1400.74       |
| 2 | 2016 | 4a06381959b6670756de02e07b83815f | 1227.78       |
| 3 | 2017 | 1617b1357756262bfa56ab541c47bc16 | 13664.08      |
| 4 | 2017 | c6e2731c5b391845f6800c97401a43a9 | 6929.31       |
| 5 | 2017 | 3fd6777bbce08a352fddd04e4a7cc8f6 | 6726.66       |
| 6 | 2018 | ec5b2ba62e574342386871631fafd3fc | 7274.88       |
| 7 | 2018 | f48d464a0baaea338cb25f816991ab1f | 6922.21       |
| 8 | 2018 | e0a2412720e9ea4f26c1ac985f6a7358 | 4809.44       |

```
In [30]: plt.figure(figsize=(9, 6))
sns.barplot(data=df, x='year', y='total_payment', hue='customer_id', palette='viridis')

plt.title('Top 3 Customers by Total Spending in Each Year')
plt.xlabel('year')
plt.ylabel('Total Payment')
plt.legend(title='Customer ID')
# plt.xticks([])

plt.show()
```

Top 3 Customers by Total Spending in Each Year

