KON317 – Otomatik Kontrol Sistemleri 30 Haziran 2008 Dr. Murat Yeşiloğlu Kısa Sınav 2

Soru : Yukarıda verilen sistemin girişi $V_r(s)$, çıkışı $x_2(s)$ olmak üzere ayrıntılı blok diyagramını çizin. (Bunun için gerekli denklem takımlarını yazın ama çözmeyin. Dişli çarklar merkezleri etrafında sadece dönme hareketi yapıyorlar, ötelenmiyorlar. i numaralı bloğun kütlesini M_i olarak alın. Motor moment katsayısını K_t ve ters EMK katsayısını K_b olarak gösterin. Motor milinin eylemsizliğini, motor içindeki sürtünmeleri ve dişlilerin eylemsizliklerini ihmal edin.)

Çözüm:

Öncelikle verilen sistemin kütle, yay, sönümlendirici gibi elemanlardan oluşan mekanik tarafını ele alalım. 4 numaralı kütleye dişli sistemi üzerinden etkiyen kuvvet F olsun. Ayrıca, soruda gösterilen x_2 yerdeğiştirmesinde olduğu gibi, i numaralı bloğa ilişkin yerdeğiştirmeyi x_i olarak alalım ve hepsinin pozitif yönü x_2 'de gösterildiği gibi olsun. Amacımız $\frac{x_2(s)}{F(s)}$ ve $\frac{x_4(s)}{F(s)}$ transfer fonksiyonlarını hesaplamak. Bunun için Şekil 1'de gösterilen serbest cisim diyagramını inceleyelim.

Şekil 1: Serbest cisim diyagramı

Şekil 1 yardımıyla her bir kütle için kuvvet dengesini ayrı ayrı yazalım:

$$(M_1s^2 + (B_1 + B_2)s + K_1 + K_4) x_1(s) = B_2sx_2(s) + K_4x_6(s)$$

$$(M_2s^2 + (B_2 + B_3 + B_4)s + K_2 + K_3) x_2(s) = B_2sx_1(s) + (B_3s + K_2)x_3(s) + B_4sx_4(s) + K_3x_5(s)$$

$$(M_3s^2 + B_3s + K_2)x_3(s) = (B_3s + K_2)x_2(s)$$

$$(M_4s^2 + (B_4 + B_5)s) x_4(s) = B_4sx_2(s) + B_5sx_5(s) + F(s)$$

$$(M_5s^2 + (B_5 + B_6)s + K_3) x_5(s) = B_5sx_4(s) + B_6sx_6(s) + K_3x_2(s)$$

$$(M_6s^2 + (B_7 + B_6)s + K_4) x_6(s) = B_6sx_5(s) + K_4x_1(s)$$

$$(6)$$

Bu denklem takımı $x_2(s) = T_1(s)F(s)$ ve $x_4(s) = T_2(s)F(s)$ şeklinde çözülsün. Buna ilişkin blok diyagram Şekil 2'de gösterilmiştir.

Şekil 2: Mekanik kısmın blok diyagramı

Şimdi soruda verilen sistemin işlemsel kuvvetlendiricili bölümüyle ilgilenelim. Bu kısımda doğrusal potansiyometre kullanılmıştır. Buna reosta da denilir. Burada reostanın çıkış uçlarından alınan gerilimin $-x_2$ yönünde arttığına dikkat etmemiz gerekir. x_2 'nin yapabileceğini öngördüğümüz en büyük yer değiştirmesine ℓ diyelim. Bir başka değişle $x_{2_{enfazla}} - x_{2_{enaz}} = \ell$ olsun. Bu aynı zamanda reostanın boyuna eşit olsun. Bu durumda, Şekil 3'de gösterildiği gibi, işlemsel kuvvetlendiricinin çıkışı $\frac{V_s}{\ell}x_2 - V_r$ olur.

Şekil 3: İşlemsel kuvvetlendiricili kısım

Sabit uyarmalı doğru akım motorunun blok diyagramı E_a giriş gerilimi, τ_m motor milinde endüklenen moment ve θ_m motor milinin açısı (konumu) olmak üzere Şekil 4'de verilmiştir.

Şekil 4: Sabit uyarmalı doğru akım motorunun blok diyagramı

Son olarak da dişli sistemine bakalım. Motor mili birinci dişliyi döndürdüğü için $\theta_m=\theta_1$ eşitliği vardır. İkinci dişlinin birinci dişliye göre dönme açısının $\theta_2=-\frac{r_1}{r_2}\theta_1$ olduğunu biliyoruz. Öte yandan $x_4=r_2\theta_2$ olduğundan $x_4=-r_1\theta_m$ ilişkisi bulunur. Şekil 2'de gösterildiği üzere $x_4(s)=T_2(s)F(s)$ bağıntısı da kullanılırsa $\theta_m=-\frac{T_2(s)}{r_1}F(s)$ elde edilir. Benzer şekilde $\tau_2=-\frac{r_2}{r_1}\tau_m$ olduğunu biliyoruz. $F=\frac{\tau_2}{r_2}$ olduğundan $F=-\frac{1}{r_1}\tau_m$ ilişkisi bulunur. Bütün bunlar yerine konursa soruda istenen blok diyagram elde edilir.

