Análise e Transformação de Dados

Teste 3			
24 de Maio	de 2017	Du	ração: 60min.
Teste co	m consulta restrita a uma página A4 de	apontamentos.	
Não é pe	ermitido o uso de meios electrónicos (co	omputador, etc.), excepto calcula	adora básica.
Qualque	r tentativa de fraude conduzirá à anulaç	ão da prova para todos os interv	enientes.
Nome:		N°	
1. [1] Compl do sinal <i>x</i> [<i>r</i>	<u></u>) do <i>zero padding</i>
	melhora a resolução espectral do si		
	mantém a resolução espectral do sin		
	☐ piora a resolução espectral do sinal	•	
	o sinal de tempo discreto $x[n] = 1 - 2 \text{ sin}$ ada de Fourier Discreta (DFT) do sinal?		qual o período da
	N =	Di (DET) I I I I	· 1 ·/1· 1
tempo disc	lerando que a Transformada de Fourier reto com $N = 80$ resultou em $X_{DFT}[3]$ expressão da Série de Fourier trigonom	$= -X_{DFT}[-3] = 80j e X_{DFT}[7] =$	$X_{DFT}[-7] = -160,$
	$x[n] = \underline{\qquad} \cos[\underline{\qquad} n + \underline{\qquad}]$	+ cos[n +	_]
500ms, cor é o 25° valo	ndo a DFT a um sinal de tempo discret n uma frequência de amostragem f_s =100 or da DFT. or da frequência (em Hz) a que ocorre o \square 49 Hz \square 50 Hz \square 98 Hz	00Hz), verificou-se que o valor valor máximo de DFT ?	máximo de DFT
"Para elimi uma frequê	e a seguinte afirmação é Verdadeira ou nar/atenuar o ruído de alta frequência nência de corte inferior à gama de frequencia possível, com uma banda de passagem	um sinal deve aplicar-se um filt ências do ruído, com uma band	da de transição o
	☐ Verdadeira	☐ Falsa	

"A análise tempo-frequência, usando por exemplo a análise do sinal de tempo discreto que resulta da amos $x(t) = \sin(10\pi t) + 2\sin(60\pi t)(u(t) - u(t-9))$, sendo u	a STFT, é a abordagem aconselhada para a tragem do seguinte sinal de tempo contínuo: o degrau unitário, qualquer que seja <i>t</i> ."			
☐ Verdadeira	☐ Falsa			
 7. [2] Completar a seguinte afirmação: "Ao aplicar a aumentando o tamanho da janela temporal, □ a resolução temporal diminui." □ a resolução temporal mantém-se." □ as resoluções temporal e espectral aumentam." 	STFT a um dado sinal de tempo discreto, ☐ a resolução espectral aumenta." ☐ a resolução espectral mantém-se." ☐ a resolução espectral diminui."			
8. [2] Aplicando a STFT a um dado sinal de tempo discreto (obtido com uma frequência de amostragem <i>f_s</i> =1000Hz), usando uma janela de largura igual a 160ms sem sobreposição, obteve-se na 5ª janela o valor máximo de DFT = 160, na frequência de 125Hz. Qual a amplitude dessa componente espectral do sinal na janela temporal indicada? □ 0.5 □ 1 □ 2 □ 3 □ 4 □ 5 □ Nenhuma.				
9. [3] Completar o código em $Matlab$ que permite representar o espectro (magnitude) de um sinal áudio de tempo discreto, $x[n]$, obtido com uma dada frequência de amostragem fs .				
<pre>[x, fs]=audioread('sinal_audio.wav');</pre>	% Lê o sinal áudio			
	mento do sinal x[n]			
	a DFT do sinal			
	escala de frequências em Hz			
else				
f=				
end				
% repres	enta a magnitude da DFT			
10. [3] Na continuação do código do exercício anterior, reconstruir e representar o sinal aproximado de ás frequência mais relevante (correspondente ao valor r que não ocorre à frequência 0).	udio $xrec(t)$ apenas com a componente de			
<pre>X_max_abs=max(abs(X)); % valor máximo</pre>	da magnitude da DFT			
ind=	% obtém os índices na DFT			
frelev=	% frequência mais relevante			
C=	% coeficiente C da componente			
teta=	% coeficiente θ da componente			
t=	% vetor temporal			
xrec=				
<pre>plot(t,xrec);</pre>	% e representa-o			