MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Solutions #7

1. Determine and classify the stationary points of

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \quad (x,y) \mapsto \frac{1}{y} - \frac{1}{x} - 4x + y.$$

If f attains a local minimum or maximum at a stationary point, evaluate the function there.

Solution: We have

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{x^2} - 4$$
 and $\frac{\partial f}{\partial y}(x,y) = -\frac{1}{y^2} + 1$.

Hence, the set of stationary points of f is

$$\left\{ \left(\frac{1}{2},1\right), \left(-\frac{1}{2},1\right), \left(\frac{1}{2},-1\right), \left(-\frac{1}{2},-1\right) \right\}$$

Since

$$\frac{\partial^2 f}{\partial x^2}(x,y) = -\frac{2}{x^3}, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{2}{y^3},$$

and

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y) = 0,$$

we have

(Hess
$$f$$
) $(x,y) = \begin{bmatrix} -\frac{2}{x^3} & 0\\ 0 & \frac{2}{y^3} \end{bmatrix}$.

It follows that (Hess f)(x,y) is indefinite at $(\frac{1}{2},1)$ and $(-\frac{1}{2},-1)$ —so that f has saddles at those points—, positive definite at $(-\frac{1}{2},1)$, and negative definite at $(\frac{1}{2},-1)$. Hence, f has a local minimum at $(-\frac{1}{2},1)$, namely $f(-\frac{1}{2},1)=6$, and a local maximum at $(\frac{1}{2},-1)$, namely $f(\frac{1}{2},-1)=-6$.

2. Determine and classify the stationary points of

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto (x^2 + 2y^2)e^{-(x^2 + y^2)}.$$

If f has a local extremum at a stationary point, determine the nature of this extremum and evaluate f there.

Solution: We have

$$\frac{\partial f}{\partial x}(x,y) = 2xe^{-(x^2+y^2)} - 2x(x^2+2y^2)e^{-(x^2+y^2)} = 2x(1-x^2-2y^2)e^{-(x^2+y^2)}$$

1

and

$$\frac{\partial f}{\partial y}(x,y) = 4ye^{-(x^2+y^2)} - 2y(x^2+2y^2)e^{-(x^2+y^2)} = 2y(2-x^2-2y^2)e^{-(x^2+y^2)}.$$

Suppose that $(\nabla f)(x,y) = 0$. As $e^{-(x^2+y^2)} \neq 0$, this means that

$$2x(1 - x^2 - 2y^2) = 2y(2 - x^2 - 2y^2) = 0.$$

If x = 0, it follows that 2y = 0 or $2 - 2y^2 = 0$, i.e., y = 0 or y = -1 or y = 1. If y = 0, then 2x = 0 or $1 - x^2 = 0$, i.e., x = 0 or x = 1 or x = -1. If $x \neq 0 \neq y$, then $1 - x^2 - 2y^2 = 2 - x^2 - 2y^2 = 0$, which is impossible. Hence, (0,0), (0,1), (0,-1), (1,0), and (-1,0) are the only stationary points of f.

We have

$$\frac{\partial^2 f}{\partial x^2}(x,y) = (2 - 4y^2 - 6x^2)e^{-(x^2 + y^2)} - 2x\frac{\partial f}{\partial x}(x,y),$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = (4 - 2x^2 - 12y^2)e^{-(x^2 + y^2)} - 2y\frac{\partial f}{\partial y}(x,y),$$

and

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = -4xye^{-(x^2+y^2)} - 2y\frac{\partial f}{\partial x}(x,y).$$

It follows that

$$(\text{Hess } f)(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix},$$

$$(\text{Hess } f)(0,1) = (\text{Hess } f)(0,-1) = \begin{bmatrix} -2e^{-1} & 0 \\ 0 & -8e^{-1} \end{bmatrix},$$

and

(Hess
$$f$$
)(1,0) = (Hess f)(-1,0) = $\begin{bmatrix} -4e^{-1} & 0 \\ 0 & 2e^{-1} \end{bmatrix}$.

Hence, f has a local minimum at (0,0)—f(0,0) = 0—, local maxima at (0,1) and (0,-1)— $f(0,1) = f(0,-1) = 2e^{-1}$ —, and saddles at (1,0) and (-1,0).

3. Determine the minimum and the maximum of

$$f: D \to \mathbb{R}, \quad (x, y) \mapsto \sin x + \sin y + \sin(x + y),$$

where $D := \{(x,y) \in \mathbb{R}^2 : 0 \le x, y \le \frac{\pi}{2}\}$, and all points of D where they are attained. Solution: By the compactness of D and the continuity of f, the function attains both a minimum and a maximum on D. Note that int $D = \{(x, y) \in \mathbb{R}^2 : 0 < x, y < \frac{\pi}{2}\}$. We start with classifying the stationary points of f on int D.

First, determine the gradient of f:

$$\frac{\partial f}{\partial x}(x,y) = \cos x + \cos(x+y)$$
 and $\frac{\partial f}{\partial y}(x,y) = \cos y + \cos(x+y)$.

For $(x,y) \in \text{int } D$ to be a stationary point, it is thus necessary and sufficient that

$$\cos x + \cos(x+y) = 0 = \cos y + \cos(x+y)$$

or, equivalently, that

$$\cos x = \cos y = -\cos(x+y).$$

Since cos in injective on $(0, \frac{\pi}{2})$, this means that x = y and thus $\cos x = -\cos(2x)$. For $x \in (0, \frac{\pi}{2})$, this is possible only if $x = \frac{\pi}{3}$. Hence, $(\frac{\pi}{3}, \frac{\pi}{3})$ is the only stationary point of f.

Next, we calculate the Hessian:

$$(\text{Hess } f)(x,y) = \begin{bmatrix} -\sin x - \sin(x+y) & -\sin(x+y) \\ -\sin(x+y) & -\sin y - \sin(x+y) \end{bmatrix}.$$

Since

$$-\sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{2\pi}{3}\right) = -\sqrt{3}$$

and

$$\left(\sin\left(\frac{\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)\right)^2 - \left(\sin\left(\frac{2\pi}{3}\right)\right)^2 = 3 - \frac{3}{4} > 0$$

the Hessian matrix is negative definite at $(\frac{\pi}{3}, \frac{\pi}{3})$. Hence, f has a local maximum at $(\frac{\pi}{3}, \frac{\pi}{3})$, namely $f(\frac{\pi}{3}, \frac{\pi}{3}) = \frac{3}{2}\sqrt{3}$.

Therefore, we know that f attains a local maximum in int D, which is the only local extremum there. We thus have to check the behaviour of f on ∂D .

Let

$$f_1 \colon \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad x \mapsto f(x, 0) = 2\sin x;$$

$$f_2 \colon \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad y \mapsto f\left(\frac{\pi}{2}, y\right) = 1 + \sin y + \cos y;$$

$$f_3 \colon \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad y \mapsto f\left(x, \frac{\pi}{2}\right) = 1 + \sin x + \cos x;$$

$$f_4 \colon \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad x \mapsto f(0, y) = 2\sin y.$$

It is immediate that f_1 and f_4 attain their respective minimum—0—at 0 and their respective maximum—2—at $\frac{\pi}{2}$.

Since

$$f_2'(y) = \cos y - \sin y,$$

there is only one candidate for a local extremum of f_2 on $\left(0, \frac{\pi}{2}\right)$, namely $y = \frac{\pi}{4}$. We have

$$f_2(0) = f_3(0) = f_2\left(\frac{\pi}{4}\right) = f_3\left(\frac{\pi}{4}\right) = 2$$
 and $f_2\left(\frac{\pi}{4}\right) = f_3\left(\frac{\pi}{4}\right) = 1 + \sqrt{2}$.

Any extremal point of f which is not in int D, must lie on the boundary and hence be either one of $\{(0,0), (0,\frac{\pi}{2}), (\frac{\pi}{2},0), (\frac{\pi}{2},\frac{\pi}{2})\}$ or a local extremal point of f_1 , f_2 , f_3 , or f_4 . Comparing the values of f at those possible values, we obtain that

- f attains its minimum—0—at (0,0);
- f attains its maximum— $\frac{3}{2}\sqrt{3}$ —at $(\frac{\pi}{3}, \frac{\pi}{3})$.
- 4. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R}^N with limit x. Show that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ has content zero.

Solution: Let $\epsilon > 0$, and choose $a_1, b_1, \ldots, a_N, b_N$ with $a_j < b_j$ for $j = 1, \ldots, N$ such that

$$x \in (a_1, b_1) \times \cdots (a_N, b_N) =: J_0 \quad \text{and} \quad \prod_{j=1}^N b_j - a_j < \frac{\epsilon}{2}.$$

As $\lim_{n\to\infty} x_n = x$, and since J_0 is a neighborhood of x, there is $n_0 \in \mathbb{N}$ such that $x_n \in J_0$ for all $n \geq n_0$. Set

$$I_0 := [a_1, b_1] \times \cdots [a_N, b_N]$$

Then I_0 is a compact interval in \mathbb{R}^N with

$$\{x_n : n \ge n_0\} \cup \{x\} \subset I_0$$
 and $\mu(I_0) < \frac{\epsilon}{2}$.

As a finite set, $\{x_1, \ldots, x_{n_0-1}\}$ has content zero, i.e., there are compact intervals $I_1, \ldots, I_m \subset \mathbb{R}^N$ such that

$$\{x_1,\ldots,x_{n_0-1}\}\subset \bigcup_{j=1}^m I_j$$
 and $\sum_{j=1}^m \mu(I_j)<\frac{\epsilon}{2}$.

It follows that

$$\{x_n : n \in \mathbb{N}\} \cup \{x\} \subset \bigcup_{j=0}^m I_j \quad \text{and} \quad \sum_{j=0}^m \mu(I_j) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

As $\epsilon > 0$ is arbitrary, we conclude that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ has content zero.

5. Let $I \subset \mathbb{R}^N$ be a compact interval. Show that ∂I has content zero.

Solution: Let

$$I = [a_1, b_1] \times \cdots \times [a_N, b_N].$$

For j = 1, ..., N and $x \in \mathbb{R}^N$, set

$$S_{j,x} := [a_1, b_1] \times \cdots \times [a_{j-1}, b_{j-1}] \times \{x\} \times [a_{j+1}, b_{j+1}] \times \cdots \times [a_N, b_N]$$

In Problem 6* on Assignment #3, you showed that

$$\partial I = \bigcup_{j=1}^{N} S_{j,a_j} \cup S_{j,b_j}$$

It is therefore sufficient to show that, $\mu(S_{j,x}) = 0$ for any j = 1, ..., N and $x \in \mathbb{R}$. Let $\epsilon > 0$, and let

$$J := [a_1, b_1] \times \cdots \times [a_{j-1}, b_{j-1}] \times [x - \delta, x + \delta] \times [a_{j+1}, b_{j+1}] \times \cdots \times [a_N, b_N],$$

where

$$\delta < \frac{1}{2} \prod_{\substack{k=1\\k\neq j}}^{N} \frac{\epsilon}{b_k - a_k}.$$

We then have

$$S_{j,x} \subset J$$
 and $\mu(J) = 2\delta \prod_{\substack{k=1\\k \neq j}}^{N} (b_k - a_k) < \epsilon$,

so that $\mu(S_{i,x}) = 0$.

6*. Let $I_1, \ldots, I_n \subset \mathbb{R}$ be compact intervals such that $\mathbb{Q} \cap [0,1] \subset I_1 \cup \cdots \cup I_n$. Show that $\sum_{i=1}^n \mu(I_i) \geq 1$.

Solution: Let $\epsilon > 0$. For $j = 1, \ldots, n$ and $I_j = [a_j, b_j]$ with $0 \le a_j$ and $b_j \le 1$, set $J_j := (a_j - \epsilon, b_j + \epsilon)$. We claim that $[0, 1] \subset J_1 \cup \cdots \cup J_n$. To see this, let $x \in [0, 1]$. Then there is $q \in \mathbb{Q} \cap [0, 1]$ such that $|x - q| < \epsilon$, i.e., $q - \epsilon < x < q + \epsilon$. Let $j_q \in \{1, \ldots, n\}$ be such that $q \in I_{j_q}$, i.e., $a_{j_q} \le q \le b_{j_q}$. It follows that

$$a_{j_q} - \epsilon \le q - \epsilon < x < q + \epsilon \le b_{j_q} + \epsilon,$$

i.e., $x \in J_{j_q}$.

Let $0 = t_0 < t_1 < \dots < t_m = 1$ such that $\{t_0, t_1, \dots, t_m\}$ consists precisely of 0 and 1 and those boundary points of J_1, \dots, J_n that lie in [0, 1]. Then we obtain that

$$1 = \sum_{k=1}^{m} t_k - t_{k-1} \le \sum_{j=1}^{n} \sum_{(t_{k-1}, t_k) \subset J_j} t_k - t_{k-1}$$

$$\le \sum_{k=1}^{n} (b_n + \epsilon) - (a_n - \epsilon) = 2n\epsilon + \sum_{k=1}^{n} b_k - a_k = 2n\epsilon + \sum_{k=1}^{n} \mu(I_k).$$

As $\epsilon>0$ is arbitrary, this yields the claim.