

Our core focus is on the implementation of academic research within buy-side asset management. We are first and foremost a research group which productionalizes tools in the form of libraries.

Case Studies

- Enhancing Trading Strategy and Execution with Machine Learning: Man AHL.
- Generating Signals for Quant Models with Machine Learning: New York Life Investments.
- 3. Refining Equity Trading **Volume Prediction** with Deep Learning: State Street Corporation.
- 4. Leveraging Al/Alternative **Data Analysis in Sell-Side** Research: Goldman Sachs
- 5. Dissecting **Earnings Conference Calls** with Al and Big Data: American Century.
- 6. Al and Big Data Assist in **Debt Portfolio Management**: China Life Asset Management and China Securities Credit Investment.
- 7. Applying AI and Big Data Technologies in the Filing and Processing of Insurance Claims and Assessing Corporate Risk: Ping An.
- 8. Sentiment Analysis: Bloomberg.
- 9. Building the Data Science Team: Schroders.
- 10. Special Focus: **Enhancing the MPT** Efficient Frontier with Machine Learning.
- 11. Special Focus: Using **Intelligent Searches** to Collect and Process Information.

Advances in Financial Machine Learning

www.quantresearch.org

THE JOURNAL OF PORTFOLIO MANAGEMENT
QUANT OF THE YEAR 2019

Journal of Financial Data Science

Academic Journal:

- 1. A Backtesting Protocol in the Era of Machine Learning
- 2. Neural Networks in Finance: Design and Performance
- 3. Enhancing Time-Series Momentum Strategies Using Deep Neural Networks
- 4. Time-Series Momentum: A Monte Carlo Approach
- Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools
- 6. Industry Return Predictability: A Machine Learning Approach
- 7. A Machine Learning Approach to Risk Factors: A Case Study Using the Fama–French–Carhart Model
- 8. Big Data in Portfolio Allocation: *A New Approach to Successful Portfolio Optimization*
- 9. A Practical Approach to Advanced Text Mining in Finance
- 10. Dynamic Replication and Hedging: A Reinforcement Learning Approach

Table of Contents

Overview

Toy Example: MNIST

Position sizing: Meta Labeling

Problem of Non-Stationarity

Strategy Framework

Next Steps

Solution 1: Online Machine Learning

Trading Example

Conclusion

Solution 2: Meta Labeling

Position sizing: Kelly Criterion

Overview

Often we have the side of the position but are left asking how large should the size of our bet be, or if we should bet at all.

Meta-Labeling helps us to address situations where the primary model is likely to fail and thus reduce our position size, however in an event with a high probability of success it up weights position sizes. In this way it helps to both filter out false positives and size positions.

Problem: non-stationarity

Probability distribution shifts in time, consequently parameters such as mean, variance, and covariance also change over time.

The underlying data generating process f(x) is changing through time.

Most ML models assume that the data is generated by an independent and identically distributed (IID) processes.

Stuart Reid, Dynamic Systems, IndabaX, 2018

Problem: non-stationarity

Fundamentals change:

- Open outcry -> electronic
- A single exchange -> multiple across various locations.
- Introduction of HFT

Regimes:

- Trending
- Mean reverting
- Volatility clustering
- Random walk
- Recession

Problem: Structural Break / Regime Shift

Solution 1: Online Machine Learning

Fixed window size

- Pessimistic data sampling
- + Adapts to change quickly
- Less data to train on
- + Faster (less data)
- Inefficient data usage

Increasing window size

- Optimistic data sampling
- Adapts to change slowly
- + More data to learn from
- Slower (more data)
- Most data is irrelevant ~
 poor model performance

Stuart Reid, Dynamic Systems, IndabaX, 2018

Solution 2: Meta Labeling

To trade or not to trade!

- Meta-Labels: Takes the side from the primary model [-1, 1] and labels it as correct or incorrect.
- Train a secondary model to determine if we should trade the signal or not.
- Features:
 - Primary model features (Market state)
 - Features indicative of false positives
 - Additional market information
- Primary model can be, discretionary trader, technical rules, classic quant, ml model.
- Trade off between recall and precision. (Want more correct trades).

Strategy Framework

Important Classification Metrics

False Negatives (FN)

Toy Example: MNIST

	precision	recall	f1-score	support
False	0.95	0.94	0.94	892
True	0.94	0.96	0.95	1010
micro avg	0.95	0.95	0.95	1902
macro avg	0.95	0.95	0.95	1902
veighted avg	0.95	0.95	0.95	1902
onfusion Matr	ix			
[700 192] [11 999]]				
ccuracy: 0.8	933			
Meta Label Met	rics:			
	precision	recall	f1-score	support
False	0.95	0.96	0.95	892
True	0.96	0.95	0.96	1010
True				
micro avg	0.96	0.96	0.96	1902
1,1,55	0.96 0.96	0.96 0.96	0.96 0.96	
micro avg			107.00.000	1902 1902 1902
micro avg macro avg	0.96 0.96	0.96	0.96	1902

Meta Labeling: Trading Example

	precision		recall	f1-score	support	
	Θ	0.00	0.00	0.00	749	
	1	0.17	1.00	0.29	151	
micro	avg	0.17	0.17	0.17	988	
macro	avg	0.08	0.50	0.14	900	
weighted	avg	0.03	0.17	0.05	900	
Confusion		ix				

Table 1: Out-of-sample (2018-01-04: 2019-01-28)

	Primary Model	Meta Mode
Annual return		
Cumulative returns	19.7%	39.6%
Annual volatility	95.0%	56.7%
Sharpe ratio	0.65	0.82
Calmar ratio	0.29	0.96
Max drawdown	-61.9%	-36.8%
Daily value at risk	-11.7%	-7.0%

Meta Model Output

For instance, a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approximately 80% actually belong to the positive class.

Probability Calibration

Position Sizing: Kelly Criterion

$$f^*=rac{eta p-q}{eta}$$

$$f^* = p - q$$
 $f^* = 2p - 1$

Where:

- f* = optimal bet size
- Beta = odds (win amount / lose amount)
- p = probability of success
- q = probability of failure (1-p)

Additional papers:

- A New Interpretation of Information Rate
- <u>Understanding the Kelly Capital Growth</u> <u>Investment Strategy</u>
- How Does the Fortune's Formula Kelly Capital Growth Model Perform?
- A Response to Professor Paul A. Samuelson's Objections to Kelly Capital Growth Investing
- Good and bad properties of the Kelly criterion

The Investment Opportunities

Win Probability	Odds	Prob. of Selection in Simulation	nulation Kelly Bets	
0.570	1-1	0.1	0.140	
0.380	2-1	0.3	0.070	
0.285	3-1	0.3	0.047	
0.228	4-1	0.2	0.035	
0.190	5-1	0.1	0.028	

Final Wealth Statistics by Kelly Fraction: Ziemba-Hausch [1986] Model

Kelly Fraction						
Statistic	1.0k	0.75k	0.50k	0.25k	0.125k	
Max	318854673	4370619	1117424	27067	6330	
Mean	524195	70991	19005	4339	2072	
Min	4	56	111	513	587	
St. Dev.	8033178	242313	41289	2951	650	
Skewness	35	11	13	2	1	
Kurtosis	1299	155	278	9	2	
$> 5 \times 10$	1981	2000	2000	2000	2000	
10^{2}	1965	1996	2000	2000	2000	
$> 5 \times 102$	1854	1936	1985	2000	2000	
$> 10^3$	1752	1855	1930	1957	1978	
$> 10^4$	1175	1185	912	104	0	
> 105	479	284	50	0	0	
$> 10^6$	111	17	1	0	0	

How Does the Fortune's Formula Kelly Capital Growth Model Perform?

Position Sizing with Meta Labeling

Transform meta-model outputs.

Transformed outputs assumed to be normally distributed.

$$z = \frac{p[x=1] - \frac{1}{2}}{\sqrt{p[x=1](1 - p[x=1])}}$$

Where:

- p[x] = probability that label x takes place.
- z = test statistic
- x is element of {-1, 1}
- Z is standard normal distribution

Position Sizing with Meta Labeling

2

Compute the CDF of Z:

Z[.] is the CDF of Z

3

Compute Bet Size:

Next Steps

- The concepts of position sizing and meta-labeling are both addressed in the textbook Advances in Financial Machine Learning.
- A great additional resource is the Journal of Financial Data Science and the Journal of Portfolio Management.
- If these concepts interest you, there is room available in our research group. You will get to work with high quality tick data and contribute to open-source.

Conclusion

- Meta-Labeling helps to address the problem of non-stationarity and structural breaks by down
 weighting position sizes in strategies that have a low probability of success in a given market
 state.
- The Kelly Criterion can be used to determine optimal position sizes.

