20.2. Exercises

- (1) Suppose that A is a 3×3 matrix such that $\langle A\mathbf{x}, \mathbf{x} \rangle = x_1^2 + 5x_2^2 3x_3^2 + 6x_1x_2 4x_1x_3 + 6x_1x_2 6x_1x_3 6$ $8x_2x_3$ for all $\mathbf{x} \in \mathbb{R}^3$. Then $A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ where $a = \underline{\qquad}, b = \underline{\qquad}, c = \underline{\qquad}, d = \underline{\qquad},$ $e = _{--}$, and $f = _{--}$.
- (2) A curve C is given by the equation $2x^2 72xy + 23y^2 = 50$. What kind of curve is C? Answer: It is a(n)
- (3) The equation $5x^2 + 8xy + 5y^2 = 1$ describes an ellipse. The principal axes of the ellipse lie along the lines $y = \underline{\hspace{1cm}}$ and $y = \underline{\hspace{1cm}}$.
- (4) The graph of the equation $13x^2 8xy + 7y^2 = 45$ is an ellipse. The length of its semimajor axis is ____ and the length of its semiminor axis is ____ .
- (5) Consider the equation $2x^2 + 2y^2 z^2 2xy + 4xz + 4yz = 3$.

134

- (a) The graph of the equation is what type of quadric surface? Answer:
- (b) In standard form the equation for this surface is $u^2 + v^2 + w^2 = \dots$
- (c) Find three orthonormal vectors with the property that in the coordinate system they generate, the equation of the surface is in standard form.

Answer:
$$\frac{1}{\sqrt{6}}(1, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}), \frac{1}{\sqrt{2}}(\underline{\hspace{1cm}}, \underline{\hspace{1cm}}, 0)$$
, and $\frac{1}{\sqrt{3}}(1, \underline{\hspace{1cm}}, \underline{\hspace{1cm}})$.

- (6) Determine for each of the following matrices whether it is positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite.
 - (a) The matrix $\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ is ______. (b) The matrix $\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix}$ is ______.
- (7) Determine for each of the following matrices whether it is positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite.
 - (a) The matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}$ is ______.
 - (b) The matrix $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}$ is ______.
 - (c) The matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}^2$ is ______.
- (8) Let $B = \begin{bmatrix} 2 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7 \end{bmatrix}$. For what range of values of b is B positive definite?

Answer:

(9) Let $A = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}$. For what range of values of a is A positive definite?

Answer: _____