Ekonomie I Seminář 04: Elasticita a aplikace; vládní politiky

anna.pavlovova@fsv.cuni.cz 01. 11. 2023

OBSAH

- 1. Úvod do derivací
- 2. Elasticita a aplikace
- 3. Vládní politiky

ÚVOD DO DERIVACÍ

ÚVOD DO DERIVACÍ

f	f'	$\mathcal{D}(f)$	$\mathcal{D}(f')$	Pozn.
const.	0	\mathbf{R}	$ullet$ (tj. jako $\mathcal{D}(f)$)	
x^n	nx^{n-1}	\mathbf{R}	•	$n \in \mathbf{N}$
x^a	ax^{a-1}	x > 0	•	$a \in \mathbf{R}$
e^x	e^x	R	•	
a^x	$a^x \ln a$	${f R}$	•	a > 0
$\ln x$	$\frac{1}{x}$	x > 0	•	
$\log_a x$	$\frac{1}{x \ln a}$	x > 0	•	$a\in (0,1)\cup (1,+\infty)$
$\sin x$	cos x	R	•	
cos x	$-\sin x$	R	•	
tg x	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + k\pi$	•	
cotg x	$-\frac{1}{\sin^2 x}$	$x \neq k\pi$	•	
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$\langle -1,1 \rangle$	(-1, 1)	v ± 1 : jen jednostranné derivace
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$\langle -1,1 \rangle$	(-1, 1)	v ± 1 : jen jednostranné derivace
arctg x	$\frac{1}{1+x^2}$	R	•	
arccotg x	$-\frac{1}{1+x^2}$	R	•	
$\sinh x$	$\cosh x$	R	•	
$\cosh x$	$\sinh x$	${f R}$	•	
$\operatorname{tgh} x$	$1 - tgh^2x$	\mathbf{R}	•	
cotgh x	$1 - \coth^2 x$	$x \neq 0$	•	
$rg \sinh x$	$\frac{1}{\sqrt{x^2+1}}$	R	•	
$arg \cosh x$	$\frac{1}{\sqrt{x^2-1}}$	x > 1	•	
arg tgh x	$\frac{1}{1-x^2}$	-1 < x < 1	•	
$\operatorname{arg}\operatorname{cotgh} x$	$\frac{1}{1-x^2}$	x > 1	•	

f'(x) > 0 ... f(x) rostoucí f'(x) < 0 ... f(x) klesající

pro hledání min./max. f(x): f'(x) = 0

- dopočteme, pro jaké x nabývá f(x) extrému(ů)
- pokud v daném bodě:f´´(x)>0 ... minf´´(x)<0 ... max

$$(af)' = a*f'$$

$$\begin{split} &[f+g]'=f'+g'\\ &[f-g]'=f'-g'\\ &[fg]'=f'g+fg' &\text{součinov\'e pravidlo}\\ &\left[\frac{f}{g}\right]'=\frac{f'g-fg'}{g^2} &\text{pod\'ilov\'e pravidlo}\\ &[g(f)]'=g'(f)\cdot f' &\text{\'ret\'izkov\'e pravidlo} \end{split}$$

ÚVOD DO DERIVACÍ

f	f'	$\mathcal{D}(f)$	$\mathcal{D}(f')$	Pozn.
const.	0	R	$ullet$ (tj. jako $\mathcal{D}(f)$)	
x^n	nx^{n-1}	R	•	$n \in \mathbf{N}$
x^a	ax^{a-1}	x > 0	•	$a \in \mathbf{R}$
e^x	e^x	R	•	
a^x	$a^x \ln a$	${f R}$	•	a > 0
$\ln x$	$\frac{1}{x}$	x > 0	•	
$\log_a x$	$\frac{1}{x \ln a}$	x > 0	•	$a\in (0,1)\cup (1,+\infty)$
$\sin x$	cos x	R	•	
cos x	$-\sin x$	R	•	
tg x	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + k\pi$	•	
cotg x	$-\frac{1}{\sin^2 x}$	$x \neq k\pi$	•	
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$\langle -1,1 \rangle$	(-1, 1)	v ± 1 : jen jednostranné derivace
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$\langle -1,1 \rangle$	(-1, 1)	v ± 1 : jen jednostranné derivace
arctg x	$\frac{1}{1+x^2}$	R	•	
arccotg x	$-\frac{1}{1+x^2}$	R	•	
$\sinh x$	$\cosh x$	R	•	
$\cosh x$	$\sinh x$	${f R}$	•	
tgh x	$1 - tgh^2x$	\mathbf{R}	•	
$\operatorname{cotgh} x$	$1 - \coth^2 x$	$x \neq 0$	•	
$arg \sinh x$	$\frac{1}{\sqrt{x^2+1}}$	R	•	
$\operatorname{arg} \cosh x$	$\frac{1}{\sqrt{x^2-1}}$	x > 1	•	
arg tgh x	$\frac{1}{1-x^2}$	-1 < x < 1	•	
$\operatorname{arg}\operatorname{cotgh} x$	$\frac{1}{1-x^2}$	x > 1	•	

 $f'(x) > 0 \dots f(x)$ rostoucí $f'(x) < 0 \dots f(x)$ klesající

pro hledání min./max. f(x): f'(x) = 0

- dopočteme, pro jaké x nabývá f(x) extrému(ů)
- pokud v daném bodě:f´´(x)>0 ... minf´´(x)<0 ... max

$$(af)' = a*f'$$

$$[f+g]' = f' + g'$$

 $[f-g]' = f' - g'$

$$[fg]' = f'g + fg'$$
 součinové pravidlo $\left[\frac{f}{g}\right]' = \frac{f'g - fg'}{g^2}$ podílové pravidlo $[g(f)]' = g'(f) \cdot f'$ řetízkové pravidlo

OPAKOVÁNÍ: ELASTICITY:

cenová elasticita =
$$\frac{\%\Delta Q}{\%\Delta P} = \frac{\%\Delta \text{ poptávaného/nabízeného množství}}{\%\Delta \text{ ceny}}$$

důchodová elasticita poptávky =
$$\frac{\%\Delta Q}{\%\Delta Y}$$
 = $\frac{\%\Delta}{\%\Delta}$ poptávaného množství $\frac{\%\Delta}{\%\Delta}$ příjmu

křížová elasticita poptávky =
$$\frac{\%\Delta Q_1}{\%\Delta P_2}$$
 = $\frac{\%\Delta$ poptávaného množství $\%\Delta$ ceny druhého statku

м

ELASTICITA A APLIKACE CENOVÁ ELASTICITA POPTÁVKY:

< 0: běžný statek

> 0: Giffinův statek

|cenová elasticita| < 1: neelastická - cena ↑⇒ výdaje ↑ |cenová elasticita| > 1: elastická - cena ↑⇒ výdaje ↓

|cenová elasticita| = 1: jednotková - cena ↑⇒ výdaje konstantní

dokonale elastická poptávka

dokonale neelastická poptávka

.

ELASTICITA A APLIKACE

DŮCHODOVÁ ELASTICITA **POPTÁVKY**:

- < 0: podřadný statek (inferiorní): příjem ↑⇒ poptávané množství ↓
- > 0: normální statek: příjem ↑⇒ poptávané množství ↑
 - (0,1): luxusní statek
 - >1 : nezbytný statek

KŘÍŽOVÁ ELASTICITA POPTÁVKY:

- < 0: komplementy: cena jednoho ↑⇒ množství druhého ↓
- > 0: substituty: cena jednoho ↑⇒ poptávané množství ↑
- = 0: nesouvisející komodity

1.1. Cenová elasticita po hodinkách je 0,5. Nechť se cena hodinek zvýší o 20 %. Vypočítejte procentní změnu v poptávaném množství a odhadněte vliv zvýšení ceny na příjem prodejců.

1.1. Cenová elasticita po hodinkách je 0,5. Nechť se cena hodinek zvýší o 20 %. Vypočítejte procentní změnu v poptávaném množství a odhadněte vliv zvýšení ceny na příjem prodejců.

ŘEŠENÍ:

Poptávané množství klesne o 10 %.

Z rovnice na začátku prezentace:

$$%\Delta Q = E * %\Delta P 0,5*0,2 = 0,1$$

Jelikož je poptávka neelastická, s růstem ceny celkový příjem prodejců poroste (prodané množství klesne "méně" než stoupne cena).

1.2. Cenová elasticita po hodinkách je 1,5. Nechť se cena hodinek zvýší o 20 %. Vypočítejte procentní změnu v poptávaném množství a odhadněte vliv zvýšení ceny na příjem prodejců.

1.2. Cenová elasticita po hodinkách je 1,5. Nechť se cena hodinek zvýší o 20 %. Vypočítejte procentní změnu v poptávaném množství a odhadněte vliv zvýšení ceny na příjem prodejců.

ŘEŠENÍ:

Počet poptávaného zboží klesne o 30 % $\%\Delta Q = E * \%\Delta P = 0,5*0,2 = 0,3.$

Jelikož je poptávka elastická, zvýšení ceny povede ke snížení celkového příjmu prodejců (s vyšší cenou se "hodně" sníží prodané množství).

1.3. Spotřebitel vynakládá celý svůj příjem na nákup dvou statků - potravin a oblečení. Jaké je cenová elasticita poptávky po oblečení, pokud se při zvýšení ceny oblečení nezmění objem výdajů na potraviny?

1.3. Spotřebitel vynakládá celý svůj příjem na nákup dvou statků - potravin a oblečení. Jaké je cenová elasticita poptávky po oblečení, pokud se při zvýšení ceny oblečení nezmění objem výdajů na potraviny?

ŘEŠENÍ:

Protože nedojde ke změně celkových příjmů ani ke změně objemu výdajů na potraviny, nedojde ani ke změně objemu výdajů na oblečení.

Jedná se tedy o jednotkovou elasticitu - při změně ceny nedojde ke změně výdajů (P*Q), jelikož cena a množství se % změní 1:1.

- 1.4. Předpokládejme, že celkový dolarový výnos amerických farmářů z prodeje pšenice vzrostl o 20 %. V tom samém roce však množství prodané pšenice kleslo o 20 %.
- a) Co se z těchto údajů dá říci o cenové elasticitě poptávky po pšenici?

- 1.4. Předpokládejme, že celkový dolarový výnos amerických farmářů z prodeje pšenice vzrostl o 20 %. V tom samém roce však množství prodané pšenice kleslo o 20 %.
- a) Co se z těchto údajů dá říci o cenové elasticitě poptávky po pšenici?

ŘEŠENÍ:

Celkový výnos prodejců vzrostl o 20 % při poklesu prodaného množství o 20 %. To znamená, že cena musela vzrůst o více jak 20 %. Poptávka po pšenice je tedy neelastická.

TR = P * Q (
$$\downarrow$$
 0,2)
(\uparrow 0,2) = ___* (\downarrow 0,2) \Rightarrow P \uparrow o více jak 0,2

- 1.4. Předpokládejme, že celkový dolarový výnos amerických farmářů z prodeje pšenice vzrostl o 20 %. V tom samém roce však množství prodané pšenice kleslo o 20 %.
- b) Objasněte pomocí cenové elasticity toto tvrzeni: "Rekordní sklizeň přinese farmářům snížení příjmu."

- 1.4. Předpokládejme, že celkový dolarový výnos amerických farmářů z prodeje pšenice vzrostl o 20 %. V tom samém roce však množství prodané pšenice kleslo o 20 %.
- b) Objasněte pomocí cenové elasticity toto tvrzeni: "Rekordní sklizeň přinese farmářům snížení příjmu."

ŘEŠENÍ:

Je to z důvodu neelasticity poptávky. Rekordní sklizeň sníží cenu proporčně % více, než se zvýší množství prodané na trhu. Celkový příjem tedy klesne.

1.5. Předpokládejme, že poptávková křivka po nových domech má směrnici -1 při všech možných cenách. Průměrná cena domu je 5 milionů. Při této ceně se ročně prodá 5 000 domů. Vypočtěte hodnotu cenové elasticity poptávky po domech založenou na průměrné ceně domu.

1.5. Předpokládejme, že poptávková křivka po nových domech má směrnici -1 při všech možných cenách. Průměrná cena domu je 5 milionů. Při této ceně se ročně prodá 5 000 domů. Vypočtěte hodnotu cenové elasticity poptávky po domech založenou na průměrné ceně domu.

ŘEŠENÍ:

$$E_{PD} = \frac{\Delta Q}{\Delta P} * \frac{\bar{P}}{\bar{Q}} = \frac{1}{-1} * \frac{50000000}{5000} = -1000$$

V abs. hodnotě je cenová elasticita domů 1 000.

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- a) Jak velké jsou celkové výdaje spotřebitelů při koupi 300 ks pizzy?

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- a) Jak velké jsou celkové výdaje spotřebitelů při koupi 300 ks pizzy?

ŘEŠENÍ:

```
Q = 1800 - 15*P
300 = 1800 - 15*P
P = 1500/15 = 100
```

```
Celkové výdaje (TR) :
TR = Q*P = 300 * 100 = 30 000 CZK
```

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- b) Jaké je cenová elasticita poptávky po pizze na úrovni 300 ks?

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- b) Jaké je cenová elasticita poptávky po pizze na úrovni 300 ks?

ŘEŠENÍ:

 $E = |(\Delta Q/\Delta P)^*(P/Q)| = |(-15)^*(100/300)| = |-5| = 5$

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- c) Jak může prodejce pizzy zvýšit své příjmy? Doporučujete snížení nebo zvýšení ceny a proč?

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- c) Jak může prodejce pizzy zvýšit své příjmy? Doporučujete snížení nebo zvýšení ceny a proč?

ŘEŠENÍ:

Jelikož je poptávka elastická (elasticita 5), prodejce může zvýšit své příjmy snížením ceny. Prodané množství proporcionálně stoupne více, než se sníží cena, a celkové příjmy (P*Q) prodejce tak porostou.

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- d) Při jaké jednotkové ceně pizzy budou příjmy prodejce nejvyšší?

- 1.6. Předpokládejme, že poptávka po pizze může být popsána rovnicí Q=1800-15P, kdy Q vyjadřuje množství pizzy v kusech a P cenu za kus.
- d) Při jaké jednotkové ceně pizzy budou příjmy prodejce nejvyšší?

ŘEŠENÍ:

Pomocí první derivace funkce celkových příjmů (Q*P), kterou položíme rovnou nule, zjistíme cenu maximalizující tuto funkci dle výpočtu níže. Druhá derivace je záporná a jedná se tedy a maximum.

$$TR = Q*P = (1800 - 15*P)*P = 1800*P-15*P^2$$

$$TR' = 1800 - 30*P = 0$$

P = 60 ... cena maximalizující příjmy prodejce

1.7. Při jaké ceně jsou výdaje na statek X maximální, pokud je poptávková křivka dána rovnicí Q=27-P?

1.7. Při jaké ceně jsou výdaje na statek X maximální, pokud je poptávková křivka dána rovnicí Q=27-P?

ŘEŠENÍ:

Postup jako v předchozím příkladu:

1.8. Nakreslete tvar poptávkové křivky po vepřovém mase v závislosti na ceně kuřat. Předpokládejte, že tyto dvě komodity jsou navzájem nahraditelné. Jak souvisí směrnice této křivky s křížovou elasticitou?

1.8. Nakreslete tvar poptávkové křivky po vepřovém mase v závislosti na ceně kuřat. Předpokládejte, že tyto dvě komodity jsou navzájem nahraditelné. Jak souvisí směrnice této křivky s křížovou elasticitou?

ŘEŠENÍ:

```
Jelikož se jedná o substity, je daná křivka rostoucí. 
Křížová elasticita = (\Delta Q_x/Q_x):((\Delta P_y/P_y) = (\Delta Q_x/\Delta P_y) * (P_y/Q_x) (\Delta Q_x/\Delta P_y) - převrácená hodnota směrnice křivky poptávky po statku x v závislosti na ceně statu y; poměr (P_y/Q_x) pak udává souřadnice příslušného bodu (bodová křížová elasticita)
```

- 1.9. Prohlédněte si následující tabulku ilustrující odhady křížové elasticity poptávky vybraných dvojic výrobků.
- a) Proč je hodnota koeficientu křížové elasticity někdy kladná a někdy záporná?

Komodita X (změna Q)	Komodity Y (změna P)	Hodnota křížové elasticity
Obilniny	Ryby	- 0,87
Zábava	Jídlo	- 0,72
Hovězí	Vepřové	+ 0,28
Margarín	Máslo	+ 0,68
Máslo	Margarín	+ 0,81

- 1.9. Prohlédněte si následující tabulku ilustrující odhady křížové elasticity poptávky vybraných dvojic výrobků.
- a) Proč je hodnota koeficientu křížové elasticity někdy kladná a někdy záporná?

Komodita X (změna Q)	Komodity Y (změna P)	Hodnota křížové elasticity
Obilniny	Ryby	- 0,87
Zábava	Jídlo	- 0,72
Hovězí	Vepřové	+ 0,28
Margarín	Máslo	+ 0,68
Máslo	Margarín	+ 0,81

ŘEŠENÍ:

Záleží na tom, zda jsou statky substituty (+) nebo komplementy (-) (tj. zda poptávané množství jednoho statku roste či klesá v důsledku zvýšení ceny statku druhého).

- 1.9. Prohlédněte si následující tabulku ilustrující odhady křížové elasticity poptávky vybraných dvojic výrobků.
- b) Jaká je směrnice křivky poptávky po obilninách v závislosti na ceně ryb?

Komodita X (změna Q)	Komodity Y (změna P)	Hodnota křížové elasticity
Obilniny	Ryby	- 0,87
Zábava	Jídlo	- 0,72
Hovězí	Vepřové	+ 0,28
Margarín	Máslo	+ 0,68
Máslo	Margarín	+ 0,81

- 1.9. Prohlédněte si následující tabulku ilustrující odhady křížové elasticity poptávky vybraných dvojic výrobků.
- b) Jaká je směrnice křivky poptávky po obilninách v závislosti na ceně ryb?

Komodita X (změna Q)	Komodity Y (změna P)	Hodnota křížové elasticity
Obilniny	Ryby	- 0,87
Zábava	Jídlo	- 0,72
Hovězí	Vepřové	+ 0,28
Margarín	Máslo	+ 0,68
Máslo	Margarín	+ 0,81

ŘEŠENÍ:

Křivka je klesající, má zápornou směrnici a koeficient křížové elasticity je tedy menší než nula - jedná se o komplementy.

- 1.10. Prohlédněte si následující tabulku.
- a) Zkuste vysvětlit, proč jídlo v restauraci vykazuje vyšší hodnotu důchodové elasticity než cigarety nebo káva.

Infariaraí statlau

- 1.10. Prohlédněte si následující tabulku.
- a) Zkuste vysvětlit, proč jídlo v restauraci vykazuje vyšší hodnotu důchodové elasticity než cigarety nebo káva.

Inferiorní statky:	
Mléko	- 0,5
Vepřové produkty	- 0,2
Výrobky z mouky	- 0,2
Normální statky, nezbytné:	
Káva	0,00
Drůbež	0,30
Vejce	0,37
Sýry	0,40
Hovězí	0,50
Cigarety	0,80
Normální statky, luxusní	
Benzín	1,1
Smetana (dovoz z Anglie)	1,7
Víno (kanadské)	1,8
Statky dlouhodobé spotřeby	1,8
Drůbež (dovoz Srí-Lanka)	2,0
Jídlo v restauracích	2,4
Automobily	2,5

ŘEŠENÍ:

Lze předpokládat, že jídlo v restauracích je pro většinu luxusnějším statkem než cigarety nebo káva. Spotřeba těchto luxusních statků ve srovnání s důchodem rychle roste. Naopak při poklesu příjmu jsou konzumenti méně ochotni vzdávat se kávy nebo cigaret, nejspíše kvůli návykovosti, než jídla v restauracích.

- 1.10. Prohlédněte si následující tabulku.
- b) Proč je poptávka po kanadském vínu elastičtější než poptávka po hovězím mase?

Inferiorní statky:	
Mléko	- 0,5
Vepřové produkty	- 0,2
Výrobky z mouky	- 0,2
Normální statky, nezbytné:	
Káva	0,00
Drůbež	0,30
Vejce	0,37
Sýry	0,40
Hovězí	0,50
Cigarety	0,80
Normální statky, luxusní	
Benzín	1,1
Smetana (dovoz z Anglie)	1,7
Víno (kanadské)	1,8
Statky dlouhodobé spotřeby	1,8
Drůbež (dovoz Srí-Lanka)	2,0
Jídlo v restauracích	2,4
Automobily	2,5

- 1.10. Prohlédněte si následující tabulku.
- b) Proč je poptávka po kanadském vínu elastičtější než poptávka po hovězím mase?

Inferiorní statky:	
Mléko	- 0,5
Vepřové produkty	- 0,2
Výrobky z mouky	- 0,2
Normální statky, nezbytné:	
Káva	0,00
Drůbež	0,30
Vejce	0,37
Sýry	0,40
Hovězí	0,50
Cigarety	0,80
Normální statky, luxusní	
Benzín	1,1
Smetana (dovoz z Anglie)	1,7
Víno (kanadské)	1,8
Statky dlouhodobé spotřeby	1,8
Drůbež (dovoz Srí-Lanka)	2,0
Jídlo v restauracích	2,4
Automobily	2,5

ŘEŠENÍ:

Kanadské víno se jeví jako relativně luxusnější statek oproti hovězímu masu.

2.1. Poptávku po bytech lze vyjádřit funkcí $Q_D = 960 - 7*P_D$, nabídku funkcí $Q_S = 160 + 3*P_S$. Vláda stanovila maximální výši nájemného na 35 korun denně. K čemu opatření povede?

2.1. Poptávku po bytech lze vyjádřit funkcí $Q_D = 960 - 7*P_D$, nabídku funkcí $Q_S = 160 + 3*P_S$. Vláda stanovila maximální výši nájemného na 35 korun denně. K čemu opatření povede?

ŘEŠENÍ:

Rovnovážná cena (P*) na volném trhu by byla:

$$Q_{S} = Q_{D} = Q^{*}; \ P_{S} = P_{D} = P^{*}$$

$$960 - 7^{*}P^{*} = 160 + 3^{*}P^{*}$$

$$800 = 10^{*}P^{*}$$

$$P^{*} = 80 \ , \ Q^{*} = 400$$

$$P^{*}i \ cenov^{\'}em \ stropu: \ Q_{D} = 960 - 7^{*}35 = 715.$$

$$Q_{S} = 160 + 3 \ ^{*}35 = 265.$$

Rozdíl mezi nabídkou a poptávkou je 450 bytů, které na trhu chybí. Opatření tedy povede k nedostatku dostupných bytů na trhu.

2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 - Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. a) Vypočítejte rovnovážnou cenu a množství před zdaněním.

- 2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele.
- a) Vypočítejte rovnovážnou cenu a množství před zdaněním.

ŘEŠENÍ:

```
Q_D = Q_S = Q^*, P_D = P_S = P^*

160 - Q^* = 40 + 2^*Q^*

Q^* = 40

P^* = 120
```

- 2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. b) Vypočítejte rovnovážné množství a cenu, kterou obdrží prodejce,
- a cenu, kterou zaplatí kupující, po zavedení daně.

- 2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele.
- b) Vypočítejte rovnovážné množství a cenu, kterou obdrží prodejce, a cenu, kterou zaplatí kupující, po zavedení daně.

ŘEŠENÍ:

Daň na spotřebitele:

→Dojde k posunu poptávkové křivky:

$$P_D^{DAN} = (160 - Q_D) - 30 = 130 - Q_D$$

Nový průsečík s nabídkou:

$$130 - Q^{DAN} = 40 + 2* Q^{DAN}$$

 $Q^{DAN} = 30$

$$P_S = 40 + 2*Q^{DA\check{N}} = 40 + 20*30 = 100 \dots$$
 obdrží prodejce $P_D = 160 - Q^{DA\check{N}} = 160 - 30 = 130 \dots$ zaplatí kupující

2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 - Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. c) Vypočítejte daňové příjmy vlády.

2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 - Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. c) Vypočítejte daňové příjmy vlády.

ŘEŠENÍ:

Daňový příjem vlády = $(P_S^{DAŇ} - P_D^{DAŇ}) * Q^{DAŇ} = 30*30 = 900$, pro toto zadání se $(P_S^{DAŇ} - P_D^{DAŇ})$ rovná dani.

2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 - Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. d) Vypočítejte umrtvenou ztrátu vzniklou v důsledku uvalení daně.

2.2. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 160 - Q_D$ nabídku $P_S = 40 + 2*Q_S$. Vláda uvalí daň ve výši 30 korun na jednotku statku na spotřebitele. d) Vypočítejte umrtvenou ztrátu vzniklou v důsledku uvalení daně.

ŘEŠENÍ:

```
umrtvená ztráta = ((Q^*-Q^{DAN}) * (P_S^{DAN} - P_D^{DAN}))/2
= ((40-30)*30)/2=150
```

- počítáme přes obdélník: (změna v množství * daň) a vydělíme 2

- 2.3. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 50 2^* Q_D$, nabídku funkcí $P_S = 10$. Vláda uvalí daň 30 CZK na jednotku pro spotřebitele.
- Vypočítejte: rovnovážnou cenu a množství před zavedením daně; rovnovážné množství a cenu, kterou obdrží prodejci, a cenu, kterou zaplatí kupující, po uvalení daně;
 - daňové příjmy vlády;
 - umrtvenou ztrátu vzniklou v důsledku uvalení daně.

2.3. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 50$ -2* Q_D , nabídku funkcí $P_S = 10$. Vláda uvalí daň 30 CZK na jednotku pro spotřebitele.

Vypočítejte: rovnovážnou cenu a množství před zavedením daně; rovnovážné množství a cenu, kterou obdrží prodejci, a cenu, kterou zaplatí kupující, po uvalení daně;

daňové příjmy vlády;

umrtvenou ztrátu vzniklou v důsledku uvalení daně.

```
ŘEŠENÍ:
```

```
P* = 10 ; Q* = 20 posun v poptávce o 30: P_D^{DA\check{N}} = 20 - 2*Q_D: nové P* a Q* po uvalení daně: 20 - 2Q^{DA\check{N}} = 10 Q^{DA\check{N}} = 5 P_Q^{DA\check{N}} = 10; P_D^{DA\check{N}} = 50 - 2*Q^{DA\check{N}} = 50 - 2*5 = 40 daňový příjem = daň * (Q^{DA\check{N}}) = 30*5 = 150 umrtvená ztráta = 0.5 (změna v množství * daň) = 0.5*15*30 = 225
```

M

VLÁDNÍ POLITIKY

2.4. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 50 - 2^* Q_D$, nabídku funkcí $P_S = 10$. Vláda uvalí daň 10 CZK na jednotku pro výrobce.

Vypočítejte: rovnovážnou cenu a množství před zavedením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu vzniklou v důsledku uvalení daně.

2.4. Předpokládejme dokonale konkurenční trh. Poptávku lze vyjádřit funkcí $P_D = 50 - 2^* Q_D$, nabídku funkcí $P_S = 10$. Vláda uvalí daň 10 CZK na jednotku pro výrobce.

Vypočítejte: rovnovážnou cenu a množství před zavedením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu vzniklou v důsledku uvalení daně.

```
ŘEŠENÍ: P^* = 10 \; ; \; Q^* = 20 posun v nabídce o 10: P_S^{DAŇ} = 20 : \\ 50 - 2Q^{DAŇ} = 20 \\ Q^{DAŇ} = 15 ; \; \text{kupující zaplatí 20, prodávající obdrží 10} daňový příjem = daň * Q^{DAŇ} = 15*10 = 150 břímě kupující: 150 břímě prodávající: 0 umrtvená ztráta = 0.5 * (\text{změna v množství * daň}) = 0.5*5*10 = 25
```

2.5. Předpokládejme, že funkce poptávky po obilí je vyjádřena rovnicí $Q_D = 200 - P_D$, funkce nabídky $Q_S = 50 + 0.5 * P_S$. Vláda stanovila nákupní cenu obilí ve výši 150 korun za metrický cent a zavázala se vykupovat veškeré přebytky obilí vzniklé při této ceně. Jaké náklady budou spojeny s touto vládní aktivitou?

2.5. Předpokládejme, že funkce poptávky po obilí je vyjádřena rovnicí $Q_D = 200 - P_D$, funkce nabídky $Q_S = 50 + 0.5 * P_S$. Vláda stanovila nákupní cenu obilí ve výši 150 korun za metrický cent a zavázala se vykupovat veškeré přebytky obilí vzniklé při této ceně. Jaké náklady budou spojeny s touto vládní aktivitou? ŘEŠENÍ:

Na volném trhu:
$$Q_S = Q_D = Q^*$$
, $P_S = P_D = P^*$
 $50 + 0.5^*P^* = 200 - P^*$
 $1.5 P^* = 150$
 $P^* = 100$
 $Q^* = 100$

Při ceně 150 CZK:

$$Q_D = 200 - P_D = 200 - 150 = 50$$

 $Q_S = 50 + 0.5 * 150 = 50 + 75 = 125$

Vznikne přebytek obilí 75 (125-50). Náklad pro stát tady činí 75 *150 CZK = 11 250 CZK

2.6. Poptávková křivka země X po určitém výrobku je dána rovnicí: $P_D = 300 - Q_D$. Nabídková křivka pak rovnicí $P_S = 60 + 2*Q_S$. Uvažujeme pouze domácí výrobce. Země zruší zákaz dovozu tohoto zboží.

Dovozní křivka nabídky je popsána rovnicí $P_{l} = 80 + 4* Q_{l}$. Určete změnu rovnovážné ceny a změnu rovnovážného množství po uvolnění dovozu, a jak se celková rovnovážná nabídka rozdělí mezi domácí a zahraniční výrobce.

2.6. Poptávková křivka země X po určitém výrobku je dána rovnicí: $P_D = 300 - Q_D$. Nabídková křivka pak rovnicí $P_S = 60 + 2*Q_S$. Uvažujeme pouze domácí výrobce. Země zruší zákaz dovozu tohoto zboží.

Dovozní křivka nabídky je popsána rovnicí $P_{l} = 80 + 4* Q_{l}$. Určete změnu rovnovážné ceny a změnu rovnovážného množství po uvolnění dovozu, a jak se celková rovnovážná nabídka rozdělí mezi domácí a zahraniční výrobce.

ŘEŠENÍ I:

Původní rovnováha:

$$Q_S = Q_D = Q^*$$

 $P_S = P_D = P^*$

Nová nabídka = domácí + dovoz:

$$Q_{S}' = Q_{S} + Q_{I}(POZOR množství ne ceny!)$$

 $Q_{S}' = (P-60)/2 + (P-80)/4 = 0,75*P - 50$

- ⇒ změna rovnovážné ceny z 220 na 200
- ⇒ změna rovnovážného množ. z 80 na 100

2.6. Poptávková křivka země X po určitém výrobku je dána rovnicí: $P_D = 300 - Q_D$. Nabídková křivka pak rovnicí $P_S = 60 + 2*Q_S$. Uvažujeme pouze domácí výrobce. Země zruší zákaz dovozu tohoto zboží.

Dovozní křivka nabídky je popsána rovnicí $P_1 = 80 + 4* Q_1$. Určete změnu rovnovážné ceny a změnu rovnovážného množství po uvolnění dovozu, a jak se celková rovnovážná nabídka rozdělí mezi domácí a zahraniční výrobce.

ŘEŠENÍ II:

Rozložení mezi domácí a zahraniční výrobce:

$$P' = 200$$

 $Q_S = (P' - 60)/2 = (200 - 60)/2 = 70$
 $Q_I = (P' - 80)/4 = (200 - 80)/4 = 30$

2.7. Uvažujme dokonale konkureční trh, na němž je poptávka dána rovnicí $P_D = 100 - Q_D$ a nabídka rovnicí $P_S = 4 + Q_S$. Vláda uvalila na spotřebitele daň ve výši 2 CZK na jednotku zboží. Vypočtěte rovnovážnou cenu a množství před uvalením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu způsobenou uvalením daně.

2.7. Uvažujme dokonale konkureční trh, na němž je poptávka dána rovnicí $P_D = 100 - Q_D$ a nabídka rovnicí $P_S = 4 + Q_S$. Vláda uvalila na spotřebitele daň ve výši 2 CZK na jednotku zboží. Vypočtěte rovnovážnou cenu a množství před uvalením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu způsobenou uvalením daně.

ŘEŠENÍ:

```
před daní: 100 - Q* = 4+Q* \Rightarrow Q* = 48, P* = 52
po dani: 98 - Q<sup>DAŇ</sup> = 4 + Q<sup>DAŇ</sup> \Rightarrow Q* = 47, P<sub>D</sub> DAŇ = 100 - 47 = 53,
P<sub>S</sub> DAŇ = 4 + 47 = 51
```

```
daňové příjmy vlády: Q^{DA\check{N}} * daň= 47 * 2 = 94 břímě prodejce: Q^{DA\check{N}} *(P^* - P_S^{DA\check{N}}) = 47^*(52-51) = 47 břímě kupující: Q^{DA\check{N}} *(P_D^{DA\check{N}} - P^*) = 47^*(53-52) = 47 umrtvená ztráta:((Q^* - Q^{DA\check{N}})*(P_D^{DA\check{N}} - P_S^{DA\check{N}}))/2 = ((48-47)*2)/2 = 1
```

2.8. Uvažujme dokonale konkureční trh, na němž je poptávka dána rovnicí $P_D = 100 - Q_D$ a nabídka rovnicí $P_S = 4 + Q_S$. Vláda uvalila na spotřebitele daň ve výši 20 % ceny zboží (20 % ze zaplacené ceny jsou následně povinni odvést vládě). Vypočtěte rovnovážnou cenu a množství před uvalením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu způsobenou uvalením daně.

2.8. Uvažujme dokonale konkureční trh, na němž je poptávka dána rovnicí $P_D = 100 - Q_D$ a nabídka rovnicí $P_S = 4 + Q_S$. Vláda uvalila na spotřebitele daň ve výši 20 % ceny zboží (20 % ze zaplacené ceny jsou následně povinni odvést vládě). Vypočtěte rovnovážnou cenu a množství před uvalením daně, daňové příjmy vlády, daňové břímě kupujících a prodávajících a umrtvenou ztrátu způsobenou uvalením daně.

```
<code>ŘEŠENÍ:</code> před daní: Q* = 48, P* = 52 po uvalení daně: změna v poptávce: P_{D}^{DAŇ} = 0,8 * (P_{D}) = 0,8 * (100 - Q_{D}) = 80 - 0,8 * Q_{D} \\ 80 - 0,8 * Q ^{DAŇ} = 4 + Q ^{DAŇ} \\ 76 = 1,8 Q^{DAŇ} \\ Q^{DAŇ} = 42,23 \\ kupující platí: 57,77 (100 - Q^{DAŇ}), prodávající dostane: 46,23 (4+Q^{DAŇ}) daňové příjmy vlády: daň *cena kupující* Q^{DAŇ} = 0,2*57,77*42,23 = 488 břímě kupující: (57,77 - 52) * 42,23 = 243,67 břímě prodávající: (52 - 46,23) * 42,23 = 243,67 umrtvená ztráta: (Q* - Q^{DAŇ})* (P_{D}^{DAŇ} - P_{S}^{DAŇ})*0,5 = 5,77 *11,54 * 0,5 = 33,3
```

Děkuji za pozornost a spolupráci.

??? OTÁZKY ???