[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

A. LABORATORY OVERVIEW

Degree:	BE	Programme:	EC
Semester:	IV	Academic Year:	2024-25
Laboratory Title:	Microcontroller Laboratory	Laboratory Code:	BECL456A
L-T-P-S:	0-0-2-0	Duration of SEE:	2 Hrs
Total Contact Hours:	24	SEE Marks:	50
Credits:	1	CIE Marks:	50
Lab Manual Author:	Mahabaleshwara Bhat P	Sign	Dt: 25/01/25
Checked By:	Rajani Rai B	Sign	Dt: 25/01/25

^{*}The SEE will be conducted for 100 marks and proportionally reduced to 60 marks.

B. DESCRIPTION

1. PREREQUISITES:

- Basic Electronics(BBEE103)
- Digital System Design using Verilog(BEC302)

2. BASE COURSE:

• Microcontrollers-BEC405A

3. COURSE OUTCOMES:

At the end of the course, the student will be able to;

- 1. Write Assembly language programs to perform data transfer, arithmetic and logical operations and use simulation tools for programming and building a microcontroller system
- 2. Apply the concepts of timers and counter for building counters.
- 3. Develop microcontroller based system using C programming.
- 4. Interface hardware devices to 8051 and verify/control the functionality

4. RESOURSES REQUIRED:

- Software resources: Keil uVision3
- Hardware resources: Personal Computer, CRO, DC power supply, Interfacing kit, Stepper motor, connecting cables (RS 232), communication bus(JTAG)

Mun

Lojovi

& harte

Prepared by: Mahabaleshwara Bhat P Checked by: Rajani Rai B HOD

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

5. RELEVANCE OF THE COURSE:

- Embedded Systems
- Data structuire using C

6. GENERAL INSTRUCTIONS:

- Students should come prepared by learning the theory, instuctions to be used and circuit diagram (if any)
- Students should sign in the LOG REGISTER while entering and leaving the laboratory
- Students should come with observation and record note book to the laboratory
- While performing the experiments, handle the equipments with care. Any breakage should immediately be reported
- After completing the laboratory exercise, make sure to shutdown the system properly and return the lab equipments to concerned staff

	ONTENTS:		
Expt No.	Title of the Experiments	RBT	СО
	I. Assembly Language Programming		
A. I	Data Transfer Programs:		
1	Write an ALP to move a block of n bytes of data from source (20h) to destination (40h) using Internal RAM	L3	CO1
2	Write an ALP to move a block of n bytes of data from source (2000h) to destination (2050h) using External RAM	L3	CO1
3	Write an ALP To exchange the source block starting with address 20h, (Internal RAM) containing N (05) bytes of data with destination block starting with address 40h (Internal RAM).	L3	CO1
	Write an ALP to exchange the source block starting with address 10h (Internal memory), containing n (06) bytes of data with destination block starting at location 00h (External memory).	L3	CO1
	Arithmetic & Logical Operation Programs:		
5	Write an ALP to add the byte in the RAM at 34h and 35h, store the result in the register R5 (LSB) and R6 (MSB), using Indirect Addressing Mode.	L3	CO1
6	Write an ALP to subtract the bytes in Internal RAM 34h & 35h store the result in register R5 (LSB) & R6 (MSB)	L3	CO1
7	Write an ALP to multiply two 8-bit numbers stored at 30h and 31h and store 16-bit result in 32h and 33h of Internal RAM.	L3	CO1
8	Write an ALP to perform division operation on 8-bit number by 8-bit number	L3	CO1
9	Write an ALP to separate positive and negative in a given array.	L3	CO1
	Write an ALP to separate even or odd elements in a given array.	L3	CO1
11	Write an ALP to arrange the numbers in Ascending & Descending order.	L3	CO1
12	Write an ALP to find Largest & Smallest number from a given array starting from 20h & store it in Internal Memory location 40h	L3	CO1

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

IC. Counter Operation Programs:		
13 Write an ALP for Decimal UP-Counter.	L3	CO2
14 Write an ALP for Decimal DOWN-Counter	L3	C02
15 Write an ALP for Hexadecimal UP-Counter	L3	C02
16 Write an ALP for Hexadecimal DOWN-Counter.	L3	CO2
II. C Programming		
Write an 8051 C program to find the sum of first 10 Integer Numbers.	L3	CO3
18 Write an 8051 C program to find Factorial of a given number.	L3	CO3
19 Write an 8051 C program to find the Square of a number (1 to 10)	L3	CO3
using Look-Up Table.		
20 Write an 8051 C program to count the number of Ones and Zeros in	L3	CO3
two consecutive memory locations.		
III. Hardware Interfacing Programs		
21 Write an 8051 C program to Generate Sine & Square waveforms using	L3	CO4
DAC interface.		
22 Write an 8051 C Program to rotate stepper motor in Clock & Anti-	L3	CO4
Clockwise direction.		
23 Open ended experiment - 1	L3	CO4
24 Open ended experiment - 2	L3	CO3

8. REFERENCE:

Suggested Learning Resources:

 "The 8051Microcontroller: Hardware, Software and Applications", V Udayashankara and M S Mallikarjuna Swamy, McGraw Hill Education, 1st edition, 2017.

C. EVALUATION SCHEME

For CBCS 2022 scheme:

- 1. Laboratory Components: 30 Marks (Laboratory Components will be evaluated for 50 and converted to 30 Marks. Observation Writeup 10 Marks + Lab Conduction 10 Marks + Viva-Voce 10 Marks + Record Writing 20 Marks).
- 2. Laboratory IA tests: 100 Marks which will be converted to 20Marks
- 3. Continuous Internal Evaluation (CIE) = 30 + 20 = 50 Marks.
- 4. SEE: 50* Marks (*The SEE will be conducted for 100 marks and proportionally reduced to 50 marks)

D1. ARTICULATION MATRIX

Mapping of CO to PO												
						PO	Os					
COs	1	2	3	4	5	6	7	8	9	10	11	12
1. Write Assembly language programs to perform data transfer, arithmetic and logical operations and use simulation tools for programming and building a microcontroller system	2	2	2	2	2	-	-	2	1	-	2	2
2. Apply the concepts of timers and counter for building counters	2	2	2	2	ı	-	-	ı	ı	-	2	2

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

<u> </u>												
3.Develop microcontroller based system	3	3	3	3	-	-	-	-	-	-	3	3
using C programming.												
4.Interface hardware devices to 8051	3	3	3	3	2	-	-	-	2	-	3	3
and verify/control the functionality												

Note: Mappings in the Tables D1 (above) and D2 (below) are done by entering in the corresponding cell the Correllation Levels in terms of numbers. For Slight (Low): 1, Moderate (Medium): 2, Substantial (High): 3 and for no correllation: "-".

D2. ARTICULATION MATRIX CO v/s PSO

Mapping of CO to PSO		
	PSC	s
COs	1	2
1. Write Assembly language programs to perform data transfer,	2	-
arithmetic and logical operations and use simulation tools for		
programming and building a microcontroller system		
2. Apply the concepts of timers and counter for building	2	-
counters.		
3. Develop microcontroller based system using C programming.	2	-
4. Interface hardware devices to 8051 and verify/control the	2	-
functionality		

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

T*C*P03
Rev 1.2
E*C*25/01/25

COURSE LABORATORY MANUAL

E. EXPERIMENTS

- 1. EXPERIMENT NO: IA
- 2. TITLE: ASSEMBLY LANGUAGE PROGRAMMING
- 3. LEARNING OBJECTIVES:
 - To manipulate data using the registers and MOV instruction
 - Assemble and run data transfer program
 - Apply different methods for data transfer and data exchange
- 4. AIM: Write an 8051 assembly level program to
- 1. Move a block of n bytes of data from source (20h) to destination (40h) using Internal RAM
- 2. Move a block of n bytes of data from source (2000h) to destination (2050h) using External RAM
- 3.Exchange the source block starting with address 20h, (Internal RAM) containing N (05) bytes of data with destination block starting with address 40h (Internal RAM)
- 4.Exchange the source block starting with address 10h (Internal memory), containing n (06) bytes of data with destination block starting at location 00h (External memory).
- 5. MATERIAL / EQUIPMENT REQUIRED:
 - Software resources: -Keil uVision3

6. THEORY / HYPOTHESIS:

- DATA TRANSFER INSTRUCTIONS: Data transfer instructions moves the content from a register/memory location to another register/memory location. It has the following format:
 8051-MOV destination, source; copy source to destination
- This instruction tells CPU to move the content from source operand to the destination operand
- After execution, the content of destination operand is replaced by source operand whereas, source operand content will remain the same

Examples:

- 1. MOV A,Rn; Moves the content from a register to accumulator
- 2. MOV A, direct; Moves the content from a memory location in RAM to accumulator
- 3. MOV A,@Ri; Moves the content from RAM location (Ri holds address) to accumulator
- 4. MOV A,#data; Moves the immediate data to accumulator
- 5. MOV Rn,A; Moves the content from accumulator to a register
- 6. MOV Rn, direct; Moves the content from a location in RAM to a register
- 7. MOV Rn,#data; Moves the immediate data to a register
- 8. MOV direct, A; Moves the content fom accumulator to a location in RAM
- 9. MOV direct, Rn; Moves the content from a register to a location in RAM
- 10. MOV direct, direct; Moves the content from a location to another in RAM
- 11. MOV direct,@Ri; Moves the content fom a RAM location to another location
- 12. MOV direct,#data; Moves the immediate data to a RAM location
- 13. MOV @Ri,A; Moves the content from accumulator to a location specified by Ri
- 14. MOV @Ri,direct; Moves a byte from a RAM location to a location specified by Ri
- 15. MOV @Ri,#data; Moves the immediate data to a location specified by Ri
- 16. MOV DPTR,#data; Moves a 16-bit data to data pointer register
- 17. MOVC A,@A+DPTR; Moves a code byte from ROM location (address=A+DPTR) to accumulator
- 18. MOVC A,@A+PC; Moves a code byte from ROM location (address=A+PC) to accumulator
- 19. MOVX A,@Ri; Moves the content from external RAM to accumulator
- 20. MOVX A,@DPTR; Moves the content from external RAM to accumulator
- 21. MOVX @Ri,A; Moves the content from accumulator to external RAM
- 22. MOVX @DPTR,A; Moves the content from accumulator to external RAM

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to Visvesvaraya Technological University

TCP03
Rev 1.2
EC
25/01/25

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

COURSE LABORATORY MANUAL

- 23. PUSH direct; Stores a byte in the stack
- 24. POP direct; Retrieves a byte frrom the stack
- 25. XCH A,Rn; Exchanges the content of a register with accumulator
- 26. XCH A, direct; Exchanges the content of RAM location with the accumulator
- 27. XCH A,@Ri; Exchanges the content of RAM with the accumulator
- 28. XCHD A,@Ri; Exchanges the lower nibble of content of register with the accumulator

7. PROGRAM:

1. TO MOVE A BLOCK OF N DATA BYTES FROM 20H TO 40H LOCATION.

Org 0000h ;Program initialization.
MOV R2, #0AH ;Initialize the counter.

MOV R0, #20H ;Initialize the source memory location.

MOV R1, #40H ;Initialize the destination memory location

BACK: MOV A, @R0 ;copy the content from source location R0 to accumulator

MOV @R1, A ;copy the content from accumulator to destination location R1

INC R0 ;Increment the source memory location address by one

INC R1 ;Increment the destination memory location address by one DJNZ R2, BACK ;Decrement the counter register R2 by one , if count ≠0 repeat

NOP No operation

END End of the pogram

2. WRITE AN ALP TO MOVE A BLOCK OF N BYTES OF DATA FROM SOURCE (2000H) TO DESTINATION (20H) USING EXTERNAL RAM .

Org 0000h ;Program initialization.

MOV DPTR, #2000H ;INITIALIZE THE SOURCE MEMORY LOCATION.

MOV R0, #20H ; Initialize the destination memory location

MOV R1, #0AH ;Initialize the counter.

BACK: MOVX A, @DPTR ;copy the content from external source location dptr to

accumulator

MOV @R0, A ;copy the content from accumulator to destination location R0

INC DPTR ;Increment the source memory location address by one

INC R0 ;Increment the destination memory location address by one

DJNZ R1, BACK ;Decrement the counter register R1 by one, if count $\neq 0$ repeat

NOP No operation

END End of the pogram

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

3.WRITE AN ALP TO EXCHANGE THE SOURCE BLOCK STARTING WITH ADDRESS 20H, (INTERNAL RAM) CONTAINING N (05) BYTES OF DATA WITH DESTINATION BLOCK STARTING WITH ADDRESS 40H (INTERNAL RAM).

Org 0000H ;Program initialization

MOV R2, #05H ;Initialize the counter.

MOV R0, #20H ;Initialize the source memory location.

MOV R1, #40H ;Initialize destination memory location.

AGAIN: MOV A, @R0

XCH A, @R1 ;Exchange the data at source accumulator.

MOV @R0, A ;Destination memory location.

INC R0 ;Increment the source memory pointer.

INC R1 ;Increment the destination memory pointer

DJNZ R2, AGAIN ;Decrement the count if count $\neq 0$, repeat.

STOP: SJMP STOP

END

4.WRITE AN ALP TO EXCHANGE THE SOURCE BLOCK STARTING WITH ADDRESS 10H (INTERNAL MEMORY), CONTAINING N (06) BYTES OF DATA WITH DESTINATION BLOCK STARTING AT LOCATION 00H (EXTERNAL MEMORY).

Org 0000H ;Program initialization

MOV R2, #06H ;Initialize the counter.

MOV R0, #10H ;Initialize the source memory location.

MOV DPTR, #00H ;Initialize destination memory location.

AGAIN: MOVX A, @DPTR ;Move the data from external memory location to accumlator

MOV B, @RO ; Move the data from internal memory location to B register

XCH A,B ;Exchange the contents of A and B register

MOV X @DPTR,A ;Move the contents of accumulator to external memory

MOV @R0,B ;Move the contents of B register to internal memory

INC R0 ;Increment the source memory pointer.

INC DPTR ;Increment the destination memory pointer

DJNZ R2, AGAIN ;Decrement the count if count $\neq 0$, repeat.

STOP: SJMP STOP

END

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

		<u>COU</u>	RSE LABO	RATORY N	MANUAL		
8. OUTPU	JTS:						
1.Before ex	xecution:						
Address	20H	21H	22H	23H	24H	25H	30H
Data	56	33	21	99	66	21	99
Address	40H	41H	42H	43H	44H	45H	46H
Data	0	0	0	0	0	0	0
After exec	ution						
Address	20H	21H	22H	23H	24H	25H	30H
Data	56	33	21	99	66	21	99
Address	40H	41H	42H	43H	44H	45H	46H
Data	56	33	21	99	66	21	99
2.Before ex	2000Н	2001H	2002H	2003H	2004H	2005H	2006Н
Data	56	33	21	99	66	21	99
Address	20H	21H	22H	23H	24H	25H	30H
Data	0	0	0	0	0	0	0
After Exec	ution						
Address	2000H	2001H	2002H	2003H	2004H	2005H	2006Н
Data	56	33	21	99	66	21	99
Address	20H	21H	22H	23H	24H	25H	30H
Data	56	33	21	99	66	21	99
				1			
3.Before E		2111	2211	2211	2411	2511	2011
Address	20H	21H	22H	23H	24H	25H	30H
Data	56	33	21	99	66	21	99
Address	40H	41H	42H	43H	44H	45H	46H
Data	60	70	80	90	A0	В0	C0

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

After Exec	ution		<u> </u>				
Address	20H	21H	22H	23H	24H	25H	30H
Data	60	70	80	90	A0	В0	C0
Address	40H	41H	42H	43H	44H	45H	46H
Data	56	33	21	99	66	21	99
4.Before E	xecution						
Address	10H	11H	12H	13H	14H	15H	16H
Data	56	33	21	99	66	21	99
Address	00H	01H	02H	03H	04H	05H	06H
Data	60	70	80	90	A0	В0	C0
After Exec	ution						
Address	10H	11H	12H	13H	14H	15H	16H
Data	60	70	80	90	A0	В0	C0
				1		1	
Address	00H	01H	02H	03H	04H	05H	06H
Data	56	33	21	99	66	21	99

8. RESULTS & CONCLUSIONS:

• Programs on data transfer, data exchange are executed and outputs are verified

9. LEARNING OUTCOMES:

• The data transfer instructions, exchange instructions ,conditional/unconditional jump instructions and its application for the various programs involving data transfer between memories(internal and external) and verified

9. APPLICATION AREAS:

• Search Engines(computer algorithms)

10. REMARKS:

•

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

1.	EXPER	IMENT	'NO:	ΙB
			1,0.	11

2. TITLE: ARITHMETIC & LOGICAL OPERATION PROGRAMS

3. LEARNING OBJECTIVES:

• To understanad the various arithmetic and logical operations in 8051Microcontroller using assembly language programs.

4. AIM: Write a program to:

a. Add two numbers.

c. Multiply two numbers.

e. sort even and odd numbers

g.sort in ascending and descending order

b. Subtract two numbers.

d. Divide two numbers.

f.sort positive and negative numbers g.find largest and smallest number

5. MATERIAL / EQUIPMENT REQUIRED:

• Software tool: Keil uVision3

6. THEORY / HYPOTHESIS:

ARITHMETIC INSTRUCTIONS: Arithmetic instructions perform several basic operations such as addition, subtraction, division, multiplication etc.

LOGICAL OPERATIONS:The 8051 supports a number of logical operations. There is separate Boolean processor integrated within the 8051 microcontroller. It has its own instruction set, accumulator and bit addressable RAM. Carry flag serves as the accumulator. The instructions that allow bit manipulation perform operation like complement bit, set bit, clear bit. Logical bitwise AND ,OR operations are also supported. The results of these bit-wise logical operations are stored into the carry bit, which works as an accumulator.

It has the following format:

ADD A,Rn	Adds the content of register and accumulator
ADD A,direct	Adds the content of RAM and accumulator
ADD A,@Ri	Adds the content of RAM and accumulator
ADD A,#data	Adds the immediate data to the accumulator
ADDC A,Rn	Adds the content of register and accumulator with a carry flag
ADDC A,direct	Adds the content of RAM and accumulator with a carry flag
ADDC A,@Ri	Adds the indirect RAM to the accumulator with a carry flag
ADDC A,#data	Adds the immediate data to the accumulator with a carry flag
SUBB A,Rn	Subtracts the register contents and carry flag(CF) from the accumulator
SUBB A,direct	Subtracts RAM contents and CF from accumulator
INC A	Increments the content of accumulator by 1
INC Rn	Increments the register content by 1
INC Rx	Increments the direct byte by 1
DEC A	Decrements the accumulator by 1
DEC Rn	Decrements the contents of register by 1
INC DPTR	Increments the Data Pointer by 1
MUL AB	Multiplies A and B
DIV AB	Divides A by B

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

DA A	Decimal adjustment of the accumulator according to BCD code				
		E RAM AT 34H AND 35H, STORE THE 6 (MSB), USING INDIRECT ADDRESSING			
Org 0000h					
MOV A,34H		;Data in address 34H is moved to Accumulator			
ADD A,35H		;perform addition			
MOV R5H,A		;store the result in R5H			
JNC LAST		;Check if carry is generated			
INC R6					
LAST: NOP					
END					
6. WRITE AN ALP TO S THE RESULT IN REGIS		ES IN INTERNAL RAM 34H & 35H STORE MSB)			
Org 0000h					
MOV A,34H		;Data in address 34H is moved to Accumulator			
SUBB A,35H		;perform subtraction			
MOV R5H,A		;store the result in R5H			
JNC LAST					
DEC R6					
LAST: NOP					
END					
7.WRITE AN ALP TO M STORE16- BIT RESULT		NUMBERS STORED AT 30H AND 31H AND INTERNAL RAM.			
Org 0000h					
MOV A,30H		;Store the number in Reg A.			
MOV B,31H		;Save the number in Reg B.			
MUL AB		;Perform multiplication			
MOV 32H,A		;Store the lower byte of result in 32h			
MOV 33H,B		;Store the higher byte of result in 33h			
NOP					
END					
8.WRITE AN ALP TO P NUMBER	PERFORM DIVISION C	PERATION ON 8-BIT NUMBER BY 8-BIT			
Org 0000h		;Program initialization			
MOV A,30H		; Store the dividend in Reg A.			

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Recognised by Govt of Karnataka

COURSE LABORATORY MANUAL

TCP03 Rev 1.2 EC 25/01/25

COURSE LABOR	RATORY MANUAL
DIV AB	; Perform division
MOV 32H,A	; Store the quotient in 32h
MOV 33H,B	; Store the remainder in 33.;
NOP	
END	
9.WRITE AN ALP TO SEPARATE POSITIVE	AND NEGATIVE IN A GIVEN ARRAY
ORG 0000H	;Program initialisation
MOV DPTR,#1000H	;load DPTR with 1000H in external memory.This holds the input array
MOV R0,#20H	;R0 points to address 20H where positive numbers are stored
MOV R1,#30H	;R1 points to address 30H where negative numbers are stored
MOV R2,#08H	;Load counter value
UP: MOVX A,@DPTR	;Fetch the data from external memory to accumulator
MOV B,A	;Store A value in B for future use
RLC A	;Rotate left the bits by one bit position to the left
JC NEG	;If carry is generated number is negative
MOV @R0,B	;Store the positive number
INC R0	;Increment R0 by one to store the next positive byte
JMP LAST	
NEG:MOV @R1,B	;Store the negative byte
INC R1	;Increment R1 by one to store the next negative byte
LAST: INC DPTR	;Fetch the next byte
DJNZ R2,UP	;Decrement the counter by ONE
NOP	
END	
10.WRITE AN ALP TO SEPARATE EVEN A	ND ODD NUMBERS IN A GIVEN ARRAY
ORG 0000H	;Program initialisation
MOV DPTR,#1000H	load DPTR with 1000H in external memory. This holds the input array
MOV R0,#20H	;R0 points to address 20H where EVEN numbers are stored
MOV R1,#30H	;R1 points to address 30H where ODD numbers are stored

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LAE	BORATORY MANUAL
MOV R2,#08H	;Load counter value
UP: MOVX A,@DPTR	;Fetch the data from external memory to accumulator
MOV B,A	;Store A value in B for future use
RRC A	;Rotate left the bits by one bit position to the right
JC ODD	;If carry is generated number is odd
MOV @R0,B	;Store the even number
INC R0	;Increment R0 by one to store the next even byte
JMP LAST	
ODD:MOV @R1,B	;Store the odd byte
INC R1	;Increment R1 by one to store the next odd byte
LAST: INC DPTR	;Fetch the next byte
DJNZ R2,UP	;Decrement the counter by one
NOP	
END	
11A.WRITE AN ALP TO ARRANGE THE	NUMBERS IN ASCENDING ORDER.
ORG 0000H	;Program initialization
MOV R3,#06H	;Initialize the COUNT for external loop.
EXTERNALLOOP: MOV R0,#20H	;initialize the array.
MOV R1,#21H	;initialize the array.
MOV R2,#06H	;nitialize the COUNT for Internal loop.
INNERLOOP: MOV A,@R0	;Fetch the first byte
MOV B,@R1	;Fetch the second byte
CJNE A,B,CONTINUE	;Check if the two bytes are same
CONTINUE: JC ORDER	;If there is carry go to the specified label. This indicates that bytes are in required order
MOV @R1,A	;If there is no carry,it indicates that bytes are not in proper order hence exchange the contents
MOV @R0,B	
ORDER: INC R0	;increment R0 register
INC R1	;increment R1 register
DJNZ R2,INNERLOOP	;decrement the count in the internal loop by 1 and check if it is 0.If 0 then execute the next instruction
DJNZ R3,EXTERNALLOOP	;decrement the count in the external loop by 1

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABO	RATORY MANUAL
	and check if it is 0.If it is not 0 then goto the label external loop
NOP	;No operation .used for delay
END	;END of the program
11B WRITE AN ALP TO ARRANGE THE NU	UMBERS IN DESCENDING ORDER.
ORG 0000H	;Program initialization
MOV R3,#06H	;Initialize the COUNT for external loop.
EXTERNALLOOP: MOV R0,#20H	;initialize the array.
MOV R1,#21H	;initialize the array.
MOV R2,#06H	;nitialize the COUNT for Internal loop.
INNERLOOP: MOV A,@R0	;Fetch the first byte
MOV B,@R1	;Fetch the second byte
CJNE A,B,CONTINUE	;Check if the two bytes are same
CONTINUE: JNC ORDER	;If there is no carry go to the specified label. This indicates that bytes are in required order
MOV @R1,A	;If there is no carry,it indicates that bytes are not in proper order hence exchange the contents
MOV @R0,B	
ORDER: INC R0	;increment R0 register
INC R1	;increment R1 register
DJNZ R2,INNERLOOP	;decrement the count in the internal loop by 1 and check if it is 0.If 0 then execute the next instruction
DJNZ R3,EXTERNALLOOP	;decrement the count in the external loop by 1 and check if it is 0.If it is not 0 then goto the label external loop
NOP	;No operation .used for delay
END	;END of the program
12A WRITE AN ALP TO FIND THE LAI STARTING FROM 20H & STORE IT IN INT	
ORG 0000H	;Program initialization
MOV R2,#05H	;Initialize the counter.
MOV R0,#20H	;Initialize the array.
MOV A,@R0	;Get a byte of data from the array.
UP:INC R0	;Increment R0
MOV B,@R0	;Get the next number.
•	•

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE	E LABORATORY MANUAL
CJNE A,B,CONT	;Compare A with B
CONT: JNC LARGEST	;If carry=1;A holds the smallest number.Goto the label
MOV A,B	;Store the smallest number in A register
LARGEST:DJNZ R2,UP	;If count $\neq 0$ repeat.
MOV 40H,A	;Store the result in 40H memory location
NOP	
END	END of the program
12B Write an ALP to find the Smallest Internal Memory location 40h	t number from a given array starting from 20h & store it in
ORG 0000H	;Program initialization
MOV R2,#05H	;Initialize the counter.
MOV R0,#20H	;Initialize the array.
MOV A,@R0	;Get a byte of data from the array.
UP:INC R0	;Increment R0
MOV B,@R0	;Get the next number.
CJNE A,B,CONT	;Compare A with B
CONT: JC SMALLEST	;If carry=0;A holds the smallest number.Goto the label
MOV A,B	;Store the smallest number in A register
SMALLEST:DJNZ R2,UP	;If count $\neq 0$ repeat.
MOV 40H,A	;Store the result in 40H memory location
NOP	
END	

Vivekananda College of Engineering & Technology [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to Visvesvaraya Technological University
Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

8. OUTPUTS:

5.Addition:

Before E	xecution	After Execution			
Memory	Data	Memory	Data		
34H	AA	20H	AA		
35H	75	21H	75		
R5H	0	22H	1F		
R6	0	R6	01		

6. Subtraction:

Before Exc	ecution	After Execution			
Memory	Data	Memory	Data		
34H	AA	20H	AA		
35H	75	21H	75		
R5H	0	22H	35		
R6	0	R6	0		

7. Multiplication:

Before E	xecution	After Execution			
Memory	Data	Register	Data		
34H	AA	34H	AA		
35H	75	35H	75		
R5H	0	R5H	B2		
R6	0	R6	4D		

8. Division:

Before E	xecution	After Execution			
Memory	Data	Register	Data		
34H	25	34H	25		
35H	5	35H	5		
R5H	0	R5H	7		
R6	0	R6	2		

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Recognised by Govt of Karnataka

COURSE LABORATORY MANUAL

TCP03 Rev 1.2 EC 25/01/25

					<u>RSE LA</u>	<u>BUK/</u>	AIC	<u>Ж</u>	<u>T ITIA</u>	NUAL					
9.Seperate	e Positi	ve and	nega	tive nui	mbers										
Before Ex	xecutio ₁	1													
Address	1000		1h 1	002H	1003H	1004	4H	10	005H	1006H	100	7H	100)8H	1009H
Data	0xD3	0x0	C8 0	x22	0xF7	0x21	D	0х	k17	0x4C	0x5	С	0x2	46	0xA7
A d d	20.11	21 11	22.1	1 2211	2411				30 H	21 11	22.11	21	3 H	34H	
Address	20 H	21 H	22 1								32 H				
Data	00	00	00	00	00				00	00	00	00)	00	
After Exe	cution:														
Address	1000H	1 100	1h 1	002H	1003H	1004	4H	10)05H	1006H	100	7H	100)8H	1009H
Data	0xD3	0xC	8 0	x22	0xF7	0x2l	D	0х	κ 17	0x4C	0x5	С	0x2	46	0xA7
Address	20 H	21 H	22 1	H 23H					30 H	31 H	32 H		3 H	34H	
Data	0x22	0x2D	0x1	$7 \mid 0x4$	$C \mid 0x5C$				0xD3	0xC8	0xF7	02	KA6	0xA'	7
10.Sepera	ite even	and o	dd nu	mhers											
то.осрега	ite even	una o	aa na	moers											
Before Ex			.					I							
Address	1000H			002H	1003H	1004)05H	1006H	100)8H	1009H
Data	0X97	0X4.	3 0	0X43 0XAA 0X82 0X23 0X3F 0X53 0X42 0X58 0					X3F	0X16					
Address	20 H	21 Н	22 H	2311	24H	25H			30 H	21 H	32 H	33	2 11	2/II	25Н
Address	20 H		22 H	23H	24H	25H			30 H		32 H	_	3 H	34H	35H
Address Data		21 H 00	22 H	23H 00	24H 00	25H 00			30 H 00	31 H 00	32 H	33		34H 00	35H 00
Data	00											_			
	00 ecution	00	00				4H	10			00	00)		
Data After Exe	00 ecution	00	00 h 1	00	00	00			00	00	00	7H)	00 08H	00
Data After Exe Address Data	00 ecution 1000H 0X17	00 1 1001 0X43	00 h 1 3 0	00 002H X5A	00 1003H 0X62	00 1004 0X2	3		00 005H X3F	00 1006H 0X53	00 100 0X ²	7H	100 0X	00 08H 58	00 1009H 0X16
Data After Exe Address	00 ceution 1000H 0X17	00 1001 0X4.	00 h 1 3 0	00 002H X5A H 23H	00 1003H 0X62	00 100 ² 0X2 25H	3		00 005H X3F 30 H	00 1006H 0X53	00 100 0X ² 32 H	7H 12	100 0X 3 H	00 08H 58	00 1009H 0X16
Data After Exe Address Data	00 ceution 1000H 0X17	00 1 1001 0X43	00 h 1 3 0	00 002H X5A H 23H	00 1003H 0X62	00 100 ² 0X2 25H	3		00 005H X3F	00 1006H 0X53	00 100 0X ² 32 H	7H 12	100 0X 3 H	00 08H 58	00 1009H 0X16
After Exe Address Data Address Data	00 cution 1000H 0X17 20 H 0X5A	00 1 1001 0X4: 21 H 0X62	00 h 1 3 00 22 H 0X4	00 002H X5A H 23H	00 1003H 0X62	00 100 ² 0X2 25H	3		00 005H X3F 30 H	00 1006H 0X53	00 100 0X ² 32 H	7H 12	100 0X 3 H	00 08H 58	00 1009H 0X16
After Exe Address Data Address Data	oo ecution 1000H 0X17 20 H 0X5A	00 1001 0X4. 21 H 0X62	00 h 1 3 00 22 H 0X4	00 002H X5A H 23H	00 1003H 0X62	00 100 ² 0X2 25H	3		00 005H X3F 30 H	00 1006H 0X53	00 100 0X ² 32 H	7H 12	100 0X 3 H	00 08H 58	00 1009H 0X16
After Exe Address Data Address Data	00 cution 1000H 0X17 20 H 0X5A in asce	00 1001 0X4: 21 H 0X62 nding on	00 h 1 3 0 22 H 0X4	002H X5A H 23H 2 0X5	00 1003H 0X62 24H 8 0X16	00 100 ² 0X2 25H	3 I	02	00 005H X3F 30 H 0X1	00 1006H 0X53 1 31 H 7 0X43	00 100 0X ² 32 H 0X2	7H 112 1 33 3 02	100 0X 3 H	00 08H 58 34H 0X5	1009H 0X16 1 35H 53 00
After Exe Address Data Address Data 11A.Sort Before Ex	00 cution 1000H 0X17 20 H 0X5A in asce cecution 20H	00 1001 0X4: 21 H 0X62 nding on	00 h 1 3 0 22 H 0X4 order 21H	002H X5A H 23H 2 0X5	00 1003H 0X62 24H 8 0X16	00 100 ² 0X2 25H	3 I 23H	02	00 005H X3F 30 H 0X1'	00 1006H 0X53 1 31 H 7 0X43	00 100 0X ² 32 H 0X2	7H 112 1 33 3 02	100 0X 3 H	00 08H 58 34H 0X5	1009H 0X16 1 35H 53 00
After Exe Address Data Address Data	00 cution 1000H 0X17 20 H 0X5A in asce	00 1001 0X4: 21 H 0X62 nding on	00 h 1 3 0 22 H 0X4	002H X5A H 23H 2 0X5	00 1003H 0X62 24H 8 0X16	00 100 ² 0X2 25H	3 I	02	00 005H X3F 30 H 0X1'	00 1006H 0X53 1 31 H 7 0X43	00 100 0X ² 32 H 0X2	7H 112 1 33 3 02	100 0X 3 H	00 08H 58 34H 0X5	1009H 0X16 1 35H 53 00
After Exe Address Data Address Data 11A.Sort Before Ex Address	20 H 0X5A in asce secution 20H 56	00 1001 0X4: 21 H 0X62 nding on H	00 h 1 3 0 22 H 0X4 order 21H	002H X5A H 23H 2 0X5	00 1003H 0X62 24H 8 0X16 22H 21	00 100 ² 0X2 25H	23H	1 1	00 005H X3F 30 H 0X1'	00 1006H 0X53 1 31 H 7 0X43	00 100 0X ² 32 H 0X2	7H 12 1 33 33 02 5H 2	100 0X 3 H	00 08H 58 34H 0X5	00 1009H 0X16 1 35H 33 00
After Exe Address Data Address Data 11A.Sort Before Ex	00 ccution 1000H 0X17 20 H 0X5A in ascercection 20H 56	00 1001 0X4: 21 H 0X62 nding on H	00 h 1 3 0 22 H 0X4 order 21H	00 002H X5A H 23H 2 0X5	00 1003H 0X62 24H 8 0X16	00 100 ² 0X2 25H	3 I 23H	1 1	00 005H X3F 30 H 0X1'	00 1006H 0X53 1 31 H 7 0X43	00 100 0X ² 32 H 0X2	7H 112 1 33 3 02	100 0X 3 H	00 08H 58 34H 0X5	00 1009H 0X16 1 35H 33 00

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

		<u> </u>	KOL LAD	<u>UKATUKT</u>	MANUAL		
11B.Sort i	n Descending	g order					
Before Ex	ecution						
Address	20H	21H	22H	23H	24H	25H	26H
Data	56	33	21	99	66	22	5
After Exec	cution						'
Address	20H	21H	22H	23H	24H	25H	26H
Data	99	66	56	33	22	21	5
12A:Find t Before Exc	the largest nuecution:	ımber in a aı			1	T	
Address	20H	21H	22H	23H	24H	25H	40H
Data	56	33	21	99	66	21	00
After Exec	cution:						
Address	20H	21H	22H	23H	24H	25H	40H
Data	56	33	21	99	66	21	99
Before Ex				2211	2411	2511	4011
Address	20H	21H	22H	23H	24H	25H	40H
Data	56	33	21	99	66	21	00
After Exec	cution:						
Address	20H	21H	22H	23H	24H	25H	40H

9. LEARNING OUTCOMES:

 Output for various arithmetic instruction like addition, subtraction, division and multiplication and finding smallest and largest in a array. Sorting: even and odd, positive and negative, ascending and descending order are observed.

10. APPLICATION AREAS:

- To find the sum of array
- To find GCD and LCM
- To find the average of given N numbers

11. REMARKS:

- •
- _

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

- 1. EXPERIMENT NO: IC
- 2. TITLE: COUNTERS

3. LEARNING OBJECTIVES:

- To study the fundamentals of basic sequential logic concepts.
- To program the 8051 counters in assembly level language
- 4. AIM:Write a program to:
 - a) Design hexadecimal up counter
 - b) Design hexadecimal down counter
 - c) Design decimal up counter
 - d) Design decimal down counter

5. MATERIAL / EQUIPMENT REQUIRED:

• Software Required-Keil uVision3

6. THEORY / HYPOTHESIS:

- Counting is frequently required in digital computers and other digital systems to record the number of events occurring in a specified interval of time. Normally an electronic counter is used for counting the number of pulses coming at the input line in a specified time period.
- The counter must possess memory since it has to remember its past states.

7. PROGRAM

13) HEADECIMAL UP COUNTER

ORG 0000H

MOV A,#00H

BACK:MOV P0,A

INC A

CALL DELAY

JMP BACK

DELAY:NOP

MOV R0,#0AAH

UP3:MOV R1,#0FFH

UP2:MOV R2,#0FFH

UP1:DJNZ R2,UP1

DJNZ R1,UP2

DJNZ R0,UP3

RET

END

14)HEXADECIMAL DOWN COUNTER

ORG 0000H

MOV A,#0FFH

BACK:MOV PO,A

DEC A

CALL DELAY

JMP BACK

DELAY:NOP

MOV R0,#0AAH

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to Visvesvaraya Technological University

Puttur ®] Rev 1.2

niversity EC

25/01/25

TCP03

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

COURSE LABORATORY MANUAL

```
UP3:MOV R1,#0FFH
     UP2:MOV R2,#0FFH
 UP1:DJNZ R2,UP1
     DJNZ R1,UP2
     DJNZ R0,UP3
     RET
     END
15) DECIMAL UP COUTER
      ORG 0000H
       BEGIN:MOV A,#00H
       BACK:MOV P0,A
            INC A
            CALL DELAY
            CJNE A,#0AH ,BACK
            JMP BEGIN
            DELAY:NOP
            MOV R0,#0AAH
            UP3:MOV R1,#0FFH
            UP2:MOV R2,#0FFH
       UP1:DJNZ R2,UP1
            DJNZ R1.UP2
            DJNZ R0,UP3
            RET
            END
16) DECIMAL UP COUTER
       ORG 0000H
 BEGIN:MOV A,#09H
 BACK:MOV P0,A
       CALL DELAY
       DEC A
      CJNE A,#0FFH,BACK
      JMP BEGIN
      DELAY:NOP
      MOV R0,#0AAH
  UP3:MOV R1,#0FFH
  UP2:MOV R2,#0FFH
 UP1:DJNZ R2,UP1
       DJNZ R1,UP2
       DJNZ R0,UP3
       RET
      END
```

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

[
8. GRAPHS / OU	JTPUTS:	
7a)After Execution	on	
Port0		
Data	00,01,02AAFF	
7b)After Executi	on	
Port0		
Data	FF,FE,02AA00	
7c)After Execution	on	
Port0		
Data	00,01,0209	
7d)After Executi	on	
Port0		
Data	09,08,0700	
-	CONCLUSIONS: rams for hexadecimal/decimal UP	and DOWN counter is executed and output is
9. LEARNING O	OUTCOMES :	
		nter program is analyzed and implemented.
10. APPLICATION	ON AREAS:	
	nters are used in consumer applian	ces
D' '4 1 1	1 1 .	

Digital clocks design

11. REMARKS:

•

1. EXPERIMENT NO: II

2. TITLE: WRITE A 8051 C PROGRAM TO FIND THE SUM OF FIRST 10 INTEGER NUMBERS.

3. LEARNING OBJECTIVES:

- Understand the software tool required for programming in 8051 C.
- 4.AIM: To write a 8051 c program to find the sum of first 10 integer numbers.

To write a C program to find Factorial of a given number.

To write a C program to find the Square of a number (1 to 10) using Look-Up Table

To write a C program to count the number of Ones and Zeros in two consecutive memory locations.

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03

Rev 1.2

EC

25/01/25

COURSE LABORATORY MANUAL

5. MATERIAL / EQUIPMENT REQUIRED:

• Software Resources: Keil uVision-3

6. THEORY / HYPOTHESIS:

Unlike assembly, C has advantage of processor- independence and is not specific to any particular microprocessor/ microcontroller or any system. This makes it convenient for a user to develop programs that can run on most of the systems.

7. PROGRAM: 17.SUM OF FIRST 10 INTEGER NUMBERS. #INCLUDE <REG51.H> VOID MAIN() int i, sum; sum = 0; for $(i = 1; i \le 10; i++)$ sum += i;P0=SUM;// the result is stored in the sum variable 18. C PROGRAM TO FIND FACTORIAL OF A GIVEN NUMBER #include <reg51.h> UNSIGNED INT FACTORIAL(UNSIGNED INT N) UNSIGNED INT I, RESULT = 1; FOR $(I = 1; I \le N; I++)$ RESULT = RESULT * I;RETURN RESULT; VOID MAIN() UNSIGNED INT N = 5; // PUT THE NUMBER WHOSE FACTORIAL YOU WANT TO FIND HERE UNSIGNED INT RESULT = FACTORIAL(N);// result now contains the factorial of n p0=result; 19.WRITE AN 8051 C PROGRAM TO FIND THE SQUARE OF A NUMBER (1 TO 10) USING LOOK-UP TABLE. #include<reg51.h> unsigned int square lookup table $[] = \{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100\};$ void main()

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

```
unsigned char n = 5; // put the number whose square you want to find here unsigned int square =
square lookup table[n];// square now contains the square of n
P0=square;
20.WRITE AN 8051 C PROGRAM TO COUNT THE NUMBER OF ONES AND ZEROS IN
TWO CONSECUTIVE MEMORY LOCATIONS.
#INCLUDE <REG51.H> // INCLUDE 8051 REGISTER DEFINITIONS VOID ()
UNSIGNED CHAR NUM1, NUM2, I, COUNT ONES = 0, COUNT ZEROS = 0;
// initialize the two numbers with some value
num1 = 0x23;
num2 = 0x23;
// loop through each bit of num1 and num2
                                         for(i = 0; i < 8; i++)
   // count the number of ones and zeros in the current bit position
                                                                 if((num1 & (1 << i))!= 0)
count ones++;
else
count zeros++;
if((num2 & (1 << i)) != 0)
count ones++;
} else
count zeros++;
// infinite loop
while(1)
8. OUTPUTS:
Sum of Natutal numbers numbers:
0,1,1,2,3,5,8,D,15,22
Factorial of a number
Input-5!,Output-78
Square of a number:
Input-3,Output=9
Count of 1's and 0'S
Input-15H;Output:
```

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

ones=3.Zeros=5

9. RESULTS & CONCLUSIONS:

• The result of Sum of natural numbers, factorial, Square of a number, Count of 1's and Zeros are verified

10. LEARNING OUTCOMES:

• Understand the instruction set of Keil uVision3, and the software tool required for programming in C 8051.

11. APPLICATION AREAS:

• Design of Calculator, Error detection and correction, data compression

12. REMARKS:

_

1. EXPERIMENT NO: 21

2. TITLE: WRITE AN 8051 C PROGRAM TO GENERATE SINE & SQUARE WAVEFORMS USING DAC INTERFACE.

3. LEARNING OBJECTIVES:

- To study and analyze DAC interface
- To generate sine, triangular and square waveform using DAC interface

4. AIM:

- a) Assembly program to generate sine wave
- b) Assembly program to generate square wave

5. MATERIAL / EQUIPMENT REQUIRED:

- Software resource: Keil Micro Vision-3
- DAC Interfacing kit
- CRO

6. THEORY / HYPOTHESIS:

DAC(Digital to Analog Convertor) is used widely to convert digital pulses into analog pulses. DAC contains binary weighted and R/2R ladder. The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used in this section, use the R/2R method since it can achieve a much higher degree of precision. The first criterion for judging a DAC is its resolution, which is a function of the number of binary inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the resolution of the DAC since the number of analog output levels is equal to 2ⁿ, where n is the number of data bit inputs. Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete voltage (or current) levels of output. Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are also 16-bit DACs, but they are more expensive.

To generate a sine wave, we first need a table whose values represent the magnitude of the sine of angles between 0 and 360 degrees. The values for the sine function vary from -1.0 to +1.0 for 0-to 360-degree angles. Therefore, the table values are integer numbers representing the voltage magnitude for the sine of theta. This method ensures that only integer numbers are output to the DAC by the 8051 micro-controller.

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

7. PROGRAM:	
a) Program to generate sine	waveform using DAC
org 0000h	
ljmp main	
main:mov count, #00h	
mov dptr, #table	;dptr points to location of the table
mov a, count	
mov dptr, #table	
bk:movc a,@a+dptr	;((a)+dptr)=(a)
inc count	
mov p2,a	
mov a,count	
cjne a,#34h,bk	;(a)!=34h then jump bk
sjmp main	
table:	
db	
80h,90h,0a1h,0b1h,0c0h,0cc	lh,0dah,0e5h,0eeh,0f6h,0fbh,0feh,0ffh,0ffh,0feh,0fbh,0f6h,0eeh,0e5h,0
	oh,80h,80h,70h,5fh,4fh,40h,33h,26h,1bh,12h,0ah,05h,02h,00h,00h,02h,
05h,0ah,12h,1bh,26h,33h,40	h,4fh,5fh,70h,80h
b) Program to generate squar	re waveform using DAC
org 0000h	9
ljmp main	
main: mov a,#00h	
up: mov p2,a	
acall delay	
cpl a	;complimenting (a) to generate alt high and low
sjmp up	
delay: mov r0,#0ah	
loop: mov r1,#0ffh	
up1: djnz r1,up1	
djnz r0,loop	

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03	
Rev 1.2	
EC	
25/01/25	

ret
sjmp main
8. GRAPHS / OUTPUTS:
Sine
Square
9. RESULTS & CONCLUSIONS:
a) Sine Wave Amplitude =Sec Frequency =Hz b) Square Wave Amplitude =Sec
Frequency =Hz
10.LEARNING OUTCOMES:
Different waveforms are observed using DAC interface
11. APPLICATION AREAS:
Audio amplifier
Video Encoder
• Calibration
Motor Control
Digital Potentiometer
15. REMARKS:
• -
• -

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

1. EXPERIMENT NO: 22

2. TITLE: WRITE AN 8051 C PROGRAM TO ROTATE STEPPER MOTOR IN CLOCK & ANTI-CLOCKWISE DIRECTION.

3. LEARNING OBJECTIVES:

- To know the basic operation of stepper motor
- Code 8051C program to control and operate a stepper motor

4. AIM:

• Drive a stepper motor interface to rotate the motor in specified direction

5. MATERIAL / EQUIPMENT REQUIRED:

- Stepper motor interfacing kit
- Stepper motor
- DC power supply
- Keil uVision 3

6. THEORY / HYPOTHESIS:

• A stepper motor is widely used device that translates electrical pulses into mechanical movements. Each pulse moves the shaft through a fixed angle. Stepper motors effectively have multiple "toothed" electromagnets arranged around a central gear-shaped piece of iron. The electromagnets are energized by an external control circuit, such as a microcontroller. To make the motor shaft turn, the first electromagnet is given power, which magnetically attracts the gear's teeth. When the gear's teeth are aligned to the first electromagnet, they are slightly offset from the next electromagnet. This means that when the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next one. From there the process is repeated. Each of those rotations is called a "step", with an integer number of steps making a full rotation. In that way, the motor can be turned by a precise angle.

7. PROCEDURE / PROGRAMME / ACTIVITY:

#include "c:\ride\inc\51\reg51.h"

#define phasea 0x07

#define phaseb 0x0b

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

```
#define phasec 0x0d
#define phased 0x0e
void clockwise(void);
void delay(void);
int i;
void main ()
while(1)
clockwise();
void clockwise(void)
P2 = phase;
                       //different speeds are loaded in P2
delay();
delay();
P2 = phaseb;
delay();
delay();
P2 = phasec;
delay();
delay();
P2 = phased;
delay();
delay();
void delay(void)
```

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03
Rev 1.2
EC
25/01/25

COURSE LABORATORY MANUAL

```
{
unsigned int i;
//delay_ms(250);
for(i=0;i<=40000;i++);
}
```

8. RESULTS & CONCLUSIONS:

Stepper motor rotates continuously in clockwise direction.

9. LEARNING OUTCOMES:

• The program can be implemented to drive a stepper motor interface that rotate the motor in specified direction (clockwise or counter-clockwise) by N steps.

10. APPLICATION AREAS:

Programing the stepper motor which is present in:

- Disk drives
- Printers
- Robotics

11. REMARKS:

1. EXPERIMENT NO: Open Ended Experiment 1

2. TITLE: INTERFACE A SIMPLE TOGGLE SWITCH TO 8051 AND WRITE AN ALP TO GENERATE AN INTERRUPT WHICH SWITCHES ON AN LED

3. LEARNING OBJECTIVES:

• To Interface 8051 with LED and control the ON and OFF using Interrupts

4. AIM:

• To interface a toggle switch with an LED and control its switching

5. MATERIAL / EOUIPMENT REOUIRED:

- Microcontroller Kit
- Keil microvision3 software

6. THEORY / HYPOTHESIS:

• Switches and LED's are the basic example of input and output devices. The switch is a basic input device, use to control the operation of any output device. It basically breaks the electrical circuit and interrupts the flow of current. Light-emitting diode(LED) is a semiconductor ligh source that emits light when current flows through it. LED's have two leads one is the cathode and another one is the anode.

7. PROGRAM:

ORG 0000H SETB P0.0 UP: MOV A,P0 RRC A JC ON CLR P1.0

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL

JMP UP ON: SETB P1.0 JMP UP END

8. RESULTS & CONCLUSIONS:

• Whenver the switch is in ON state, the LED turn ON else it will be in OFF state

9. LEARNING OUTCOMES:

• LED interface with 8051 is analysed and implemented

10. APPLICATION AREAS:

• Display system, Automotive Lighting; Dimming of lights.

11. REMARKS:

- .
- _
- _

1. EXPERIMENT NO: open ended experiment 2

2. TITLE: Write a C program to (i) transmit and (ii) to receive a set of characters serially by interfacing 8051 to a terminal.

3. LEARNING OBJECTIVES:

- To explain the basic operation of transmitting and receiving set of characters serially.
- To interface transmitting and receiving set of characters serially with 8051 using C programing

4. AIM:

• Transmit and receive set of characters serially by interfacing 8051 to a terminal.

5. MATERIAL / EQUIPMENT REQUIRED:

• Microcontroller Kit, Keil microvision3 software

6. THEORY / HYPOTHESIS:

• To allow data transfer between the PC and an 8051 system without any error, we must make sure that the baud rate of the 8051 system matches the baud rate of the PC's COM port. The 8051 transfers and receives data serially at many different baud rates. The baud rate in the 8051 is programmable.

7. PROGRAM:

TR1=1; while (1)

C program to transmit the message "YES" serially at 9600 baud, 8-bit data, 1 stop bit. Do this continuously.

```
#include<reg51.h>
void SerTx(unsigned char);
void main(void)
{
TMOD=0x20;
TH1=0xFD;
SCON=0x50;
```

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL
{
SerTx('Y');
SerTx('E');
SerTx('S');
}
}
void SerTx(unsigned char x)
{
SBUF=x;
while(TI==0);
TI=0;
}
C program to receive bytes of data serially and put them in P1. Set baud rate at 4800, 8-bit data and 1 stop bit.
#include <reg51.h></reg51.h>
void main(void)
{
unsigned char mybyte;
TMOD=0x20;
TH1=0xFA;
SCON=0x50;
TR1=1;
WHILE(RI==0); mybyte=SBUF;
P1=mybyte;
RI=0;
}
}
8. RESULTS & CONCLUSIONS:
• Interfacing of transmitting and receiving set of characters serially with 8051 using C

programing studied.

9. LEARNING OUTCOMES:

Interfacing of transmitting and receiving set of characters serially with 8051 using C programing studied

10. APPLICATION AREAS:

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to Visvesvaraya Technological University

Approved by AICTE New Delhi & Recognised by Govt of Karnataka

TCP03 Rev 1.2 EC 25/01/25

COURSE LABORATORY MANUAL	
Serial transmission is often used in 10G connectivity or data transfer with great distances.	
11. REMARKS:	
• -	
• -	
• -	