## Supplemental Material for: Static Charge Density Wave Order in the Superconducting State of $La_{2-x}Ba_xCuO_4$

V. Thampy, <sup>1,\*</sup> X. M. Chen, <sup>1,†</sup> Y. Cao, <sup>1</sup> C. Mazzoli, <sup>2</sup> A. M. Barbour, <sup>2</sup> W. Hu, <sup>2</sup> H. Miao, <sup>1</sup> G. Fabbris, <sup>1</sup> R. D. Zhong, <sup>1</sup> G. D. Gu, <sup>1</sup> J. M. Tranquada, <sup>1</sup> I. K. Robinson, <sup>1</sup> S. B. Wilkins, <sup>2,‡</sup> and M. P. M. Dean<sup>1,§</sup>

<sup>1</sup>Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA <sup>2</sup>National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA (Dated: June 6, 2017)

Here we present additional information regarding the origin of the drop in the speckle contrast factor  $\beta$  with increasing temperature seen in Fig. 5 of the main text. This decrease can in principle arise from fast CDW fluctuations, but  $\beta$  is also proportional to  $r^2(T)$ , where r(T) is the ratio of peak intensity to total (peak plus background) intensity [1]. Figure 1 shows that the changes in  $\sqrt{\beta}$  are indeed roughly proportional to r(T). The drop in  $\beta$  is therefore assigned to changes in the peak to background ratio and not to fast CDW dynamics.



FIG. 1. A scaling plot showing that the square root of the speckle contrast factor,  $\beta$ , is roughly proportional to the ratio of the peak intensity to the total (peak plus background) intensity r(T).

<sup>\*</sup> vthampy@bnl.gov; Present address: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, CA 94025, USA

<sup>&</sup>lt;sup>†</sup> Present address: Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

<sup>&</sup>lt;sup>‡</sup> swilkins@bnl.gov

 $<sup>\</sup>S$  mdean@bnl.gov

<sup>[1]</sup> X. M. Chen, V. Thampy, C. Mazzoli, A. M. Barbour, H. Miao, G. D. Gu, Y. Cao, J. M. Tranquada, M. P. M. Dean, and S. B. Wilkins, Phys. Rev. Lett. 117, 167001 (2016).