# Big Data Project - Yelp Dataset

Data Aggregation and Recommendation System Implementation

Truc Cao
Tejinder Kaur
Amman Shareef
Kathia Teran



#### The Dataset









209.393 businesses

200,000 pictures 10 me

10 metropolitan areas

1,320,761 tips by 1,968,703 users
Over 1.4 million business attributes like hours, parking, availability, and ambience Aggregated check-ins over time for each of the 209,393 businesses

### **Problem and Motivation**

The Restaurant market in New York is worth \$17 billion dollars, with currently 31,061 businesses. Having a dataset like that of Yelp's readily available online is of much value to any business trying to enter this market. There is a myriad of ways a business can benefit from a dataset like this, since it has detailed information on what customers like and dislike (among other information) about the way in which a restaurant business operates.

Yelp dataset has a lot of data but hard to extract useful information

#### We want to:

- Get statistics on restaurants (cuisines, popularity, ...)
- Recommend restaurants to customers to increase revenue
- Recommend users to restaurants so they can target them with advertising

### Using:

- Spark (Big Data Framework) to cleanup, filter and aggregate data
- Research papers about recommendation system
- Spark ML (Machine Learning) to provide useful recommendation

## Yelp Dataset

- Yelp is a popular online crowd-sourced local business review platform.
- Sample: <a href="https://www.yelp.com/dataset">https://www.yelp.com/dataset</a>
- The dataset contains:
  - 192,609 businesses
  - 1,637,138 users
  - 6,685,900 reviews
  - 1,223,094 tips
  - 161,950 check-ins
  - o 36 states
  - 1,307 cities
  - All the data files are in JSON format.



## Samples

```
"business_id": "0W27hbZN7Z-PrkhAb0y9Eq",
"name": "B Montréal",
"address": "1207-A Rue Rachel E",
"city": "Montréal",
"state": "QC",
"postal_code": "H2J 2J8",
"latitude": 45.5266477836,
"longitude": -73.5735161233,
"stars": 4.5,
"review_count": 3.
"is_open": 1,
"attributes": {
 "RestaurantsPriceRange2": "1",
 "RestaurantsTableService": "False",
  "RestaurantsTakeOut": "True",
 "OutdoorSeating": "True",
  "RestaurantsReservations": "False",
 "Alcohol": "u'none'",
 "BikeParking": "True",
  "WheelchairAccessible": "True",
 "Caters": "True",
 "HasTV": "False",
 "GoodForMeal": "{'dessert': False, 'latenight': False, 'lunch': False, 'dinner': False, 'brunch': False, 'breakfast': False}",
 "GoodForKids": "True",
 "RestaurantsDelivery": "True",
  "WiFi": "u'free'"
"categories": "Coffee & Tea, Food, Juice Bars & Smoothies, Delis, Restaurants, Sandwiches",
"hours": {
 "Wednesday": "9:0-20:0",
 "Thursday": "9:0-20:0",
 "Friday": "9:0-20:0",
  "Saturday": "8:0-16:0"
```

### business.json

```
"business_id": "-Lw8Ve0NLbR0djHGw2fM0A",
"date": "2014-06-30 22:57:27, 2014-06-30 22:58:28, 2017-05-19 18:24:18"
}
```

### checkin.json

```
"user_id": "alseuNa_3b246ZgzcY8BXA",
"nome": "Brionen"
"revien_count": 44,
"yelping_since": '2009-10-16 23:54:29",
"useful": 40,
"useful": 40,
"useful": 40,
"coul": 2,
"elite": ",
"friends": ",
"seEscJcmgneOVIVV_vESfQ, vtNHzdtfsxCCsbc_JUK8Cw, EPyRgySYsR365gAgF2r4Ww, 3mNk60ynkQYRNJGf3YAqiA, NfU0zDaTMEQ4-X9dbQMd9A, X
"fors": 2,
"average_stars": 4.07,
"average_stars": 4.07,
"acompliment_not": 0,
"compliment_pofile": 0,
"compliment_pofile": 0,
"compliment_tist": 0,
"compliment_pofile": 0,
"compliment_pofile":
```

### user.json

```
{
  "review_id": "BTDBNxb7m6wuSTy09_Zz4A",
  "user_id": "oV4PUFp402brd3bGhu5cjg",
  "business_id": "m97jaBYRscg-hqDjMYIIWg",
  "stars": 4,
  "useful": 0,
  "cool": 0,
  "cool": 0,
  "cool: 0,
  "exet": "This is our go-to place for lunch and just a friendly atmosphere. Very consistent food. A
  "date": "2017-03-03 22:35:42"
```

### review.json

```
{
  "user_id": "ky3DB9i9lDJ70AZdkZyv7g",
  "business_id": "m9ybLDUrbqgso1IT06bBLA",
  "text": "Excellent price on tires here!",
  "date": "2016-01-07 18:01:31",
  "compliment_count": 0
}
```

### tip.json

### **Dataset: Distribution**



#### Number of Businesses by Category



- Out of 36 states (US/Canada), 11 has more than 1,000 businesses
- Out of 1,307 cities, 28 has more than 1000 businesses
- Restaurant is by far the most represented category

## Preparing the data

- Use Jupyter notebook and Spark SQL
- Jupyter notebook:
  - Interactive notebook in the browser
  - Can share easily with other people
- SparkSQL:
  - SQL queries are easier to write (and to read) than dataframe operations
  - Take advantage of Spark to scale to multiple machines to speed up the process



## Preparing the data

### Steps:

- Only keep restaurants: "Restaurants"
- Break down categories (one row per category):
  - "Ramen, Sushi" becomes 2 rows for each
- Recategorize using 32 kind of cuisines (American, Korean):
  - Use manually created mapping (114 mappings)
  - In case of multiple cuisine we choose one arbitrarily restaurant\_categories\_df = spark.sql("""
- Only keep restaurants with a cuisine
- Only keep cities that have over 200 restaurants
- Only keep reviews and users associated to them

|     | cuisine  | category               |
|-----|----------|------------------------|
| 0   | American | American (Traditional) |
| 1   | American | American (New)         |
| 2   | American | Steakhouses            |
| 3   | American | Bagels                 |
| 4   | American | Cajun/Creole           |
|     |          |                        |
| 109 | Asian    | Cambodian              |
| 110 | Korean   | Korean                 |
| 111 | Asian    | Laotian                |
| 112 | Asian    | BurmesePizza           |
| 113 | Thai     | Thai                   |

cuisine.csv (Cuisine mapping)

#### Initialization

15480 Bayview

Avenue, unit D0110

```
businesses = spark.read.json("yelp academic dataset business.json")
businesses.registerTempTable("businesses")
                  address
                                                               business id
                                                                                       categories
                                                                                                                                           latitude longitude
                                                                                                              (11:30-14:30, 11:30-
                            (None, None, 'none', None,
                                                                           Ethnic Food, Food Trucks,
                                                   pQeaRpvuhoEqudo3uvmHIQ
            404 E Green St
                                                                                                              14:30, None, None,
                                                                                                                                        40.110446 -88.233073 Empanadas
                                                                              Specialty Food, Impo...
                                                                                                                       11:30-1...
                  4508 E
                            (None, None, None, None,
                                                                                 Food, Restaurants.
                                                                                                                                                              Middle East
                                                  CsLQLiRoafpJPJSkNX2h5Q
                                                                                                                                     0 35.194894 -80.767442
         Independence Blvd
                                                                             Grocery, Middle Eastern
                             None, None, None, Non.,
```

Restaurants

Poutineries

Cheesesteaks

(11:0-22:0, 11:0-22:0

11:0-22:0, 11:0-21:0,

1 44.010962 -79.448677

Phillys

spark = SparkSession.builder.appName("yelp").config("spark.driver.memory", "10g").getOrCreate()

eBEfgOPG7pvFhb2wcG9I7w

#### Break down categories:

(None, None, u'none', None,

None, None, None, ...

```
restaurant_categories_df = spark.sql("""

SELECT

business_id,
explode(split(categories, ', ')) as category
FROM businesses
where categories like '%Restaurants%'

""")
restaurant_categories_df.registerTempTable('restaurant_categories')

business_id category

0 AtD6B83S4Mbmq0t7iDnUVA Sushi Bars
1 AtD6B83S4Mbmq0t7iDnUVA Dim Sum
2 AtD6B83S4Mbmq0t7iDnUVA Ramen
```

#### Map to cuisines:



## Final dataset

- 192,609 businesses
- 1,637,138 users
- 6,685,900 reviews
- 1,223,094 tips
- 161,950 check-ins
- 36 states
- 1,307 cities

- 41,029 restaurants (-78%)
- 1,006,767 users (-39%)
- 3,447,322 reviews (-48%)
- 668,619 tips (-45%)
- 39,896 check-ins (-75%)
- 10 states -72%()
- 30 cities (-98%)

## Computing different aggregations of the data

- Number of restaurants that are still active/closed for each dimension
- Number of restaurants /ratings / city
- Most popular restaurant and influencer for dimension (rating, cuisine, ...)
- Do all the aggregations using Spark SQL



## Timeseries data

### Number or checkins / cuisine / city over time

#### Map tables from file

```
restaurants_df = spark.read.json("final_restaurants_all.json")
restaurants_df.registerTempTable('restaurants')

checkins_raw_df = spark.read.csv("final_restaurant_checkin_all.json")
checkins_raw_df.registerTempTable('checkins_raw')
```

#### Master aggregation by city/state, cuisine, month

#### Pivot table for number of checkins for each cuisine in Toronto over time

checkins cuisine toronto df.toPandas()

|   | date    | American | Bars | Chinese | Coffee & Tea | Fast Food | French | Indian | Italian | Japanese | Korean | Mediterranean | Mexican | Pizza | Thai | Vietnamese |
|---|---------|----------|------|---------|--------------|-----------|--------|--------|---------|----------|--------|---------------|---------|-------|------|------------|
| 0 | 2010-01 | 86       | 37   | 8       | 22           | 3         | 4      | 6      | 19      | 8        | 2      | 4             | 14      | 5     | 9    | 4          |
| 1 | 2010-02 | 132      | 50   | 27      | 41           | 4         | 8      | 19     | 32      | 35       | 6      | 5             | 18      | 6     | 17   | 10         |
| 2 | 2010-03 | 212      | 88   | 32      | 81           | 21        | 10     | 14     | 39      | 45       | 10     | 6             | 40      | 3     | 25   | 18         |
| 3 | 2010-04 | 215      | 144  | 35      | 80           | 8         | 20     | 16     | 45      | 47       | 11     | 9             | 36      | 7     | 22   | 13         |
| 4 | 2010-05 | 245      | 113  | 30      | 79           | 18        | 17     | 16     | 60      | 37       | 9      | 12            | 35      | 13    | 27   | 10         |



Number of checkins by cuisine over time in Toronto

## Influencers: how top reviewers rate businesses

•Influencers being those users with the highest amount of: friends, fans, useful rating, elite status, and oldest accounts ('yelping since').

## Most Popular Influencers

- BASED ON CITY (considering Las Vegas as the most yelped city for restaurants)
- · Restaurant and city with the highest review count:

| business_id                                                                  | name               | city                                  | review_count |
|------------------------------------------------------------------------------|--------------------|---------------------------------------|--------------|
| 4JNXUYY8wbaaDmk3BPzlWw<br> f4x1YBxkLrZg652xt2KR5g<br> cYwJA2A6I12KNkm2rtXd5g | Hash House A Go Go | Las Vegas<br> Las Vegas<br> Las Vegas | 5763         |

#### TOP

'Useful' influencer in Las Vegas (review count is from the business)

| İ  | user_id             | business_id            | name         | city      | review_count | nameluseful   |
|----|---------------------|------------------------|--------------|-----------|--------------|---------------|
| 12 | vR0DIsmQ6WfcSzKWigw | IB8zLlGra0g9LU7qQVLPyg | Fashion Show | Las Vegas | 739          | Harald 154202 |

· 'Oldest (yelping since)' influencer in Las Vegas (business review count)

| luser_id               | business_id            | name   | city      | review_count | Lname  | yelping_since.      |
|------------------------|------------------------|--------|-----------|--------------|--------|---------------------|
| nkN_do3fJ9xekchVC-v68A | ubz4CaZXagQuGv2N9gFAdw | Botero | Las Vegas | 434          | Jeremy | 2004-10-12 08:46:43 |

. Influencer with the most 'Fans' in Las Vegas (business review count)

| user_id                | business_id            | name                 | city      | review_count | namelfans |
|------------------------|------------------------|----------------------|-----------|--------------|-----------|
| 37cpUoM8hlkSQfReIEBd-Q | 0qet57CmMA5qUm6gPFUTpg | Di <u>Fara</u> Pizza | Las Vegas | 150          | Mike 9538 |

. Influencer with the most 'review counts' in Las Vegas

| l user_id              | business_id            |                                      | name | city      | name   | review_count |
|------------------------|------------------------|--------------------------------------|------|-----------|--------|--------------|
| 8k3a0-mPeyhbR5HUucA5aA | 6Q7-wkCPc1KF75jZL0TcMw | Circus Circus Las Vegas Hotel and Ca | sino | Las Vegas | Victor | 13278        |

#### BASED ON CATEGORY:

. Influencer with the most 'Fans'

| user_id                | business_id            | name                 | city      | categories           | nameLtans |
|------------------------|------------------------|----------------------|-----------|----------------------|-----------|
| 37cpUoM8hlkSQfReIEBd-Q | lYCeqldIiOggsbByH3RRhw | Di <u>Fara</u> Pizza | Las Vegas | Restaurants, Italian | Mike 9538 |

· 'Oldest (yelping since)' influencer

| user_id                | business_id            | name             | city      | categories         | name   | velping_since       |
|------------------------|------------------------|------------------|-----------|--------------------|--------|---------------------|
| c6HT44PKCaXqzN_BdgKPCw | u8C8pRvaHXg3PgDrsUHJHQ | Papa Del's Pizza | Champaign | Food Delivery Ser. | Russel | 2004-10-12 08:40:43 |

Influencer with the most 'review counts'

| user_id                                             | business_id | name | city |                                               | categories | name | review_count   |
|-----------------------------------------------------|-------------|------|------|-----------------------------------------------|------------|------|----------------|
| 8k3a0-mPeyhbR5HUucA5aA  <br> RtGqdDBvvBCjcu5dUqwfzA |             |      |      | Arts & Entertainment,<br>Desserts, Juice Bars |            |      | 13278<br>12390 |

· Most 'Useful' influencer in Las Vegas

| user_id              | business_id            | name            | city      | categories        | nameluseful   |
|----------------------|------------------------|-----------------|-----------|-------------------|---------------|
| 2vR0DIsmQ6WfcSzKWigw | uanCi40Gc1mHLGl_AT4JhQ | Treasure Island | Las Vegas | Hair Salons, Arts | Harald 154202 |

#### III. Cities reviewed by the strongest influencers

· Las Vegas on top:

| luser_id | business_id                                          | Iname                                                     | city | name review coun                 | ıti |
|----------|------------------------------------------------------|-----------------------------------------------------------|------|----------------------------------|-----|
|          | aA 6Q7-wkCPc1KF75jZLOTcM<br>zA oUX2bYbqjqST-urKbOHG6 | / Circus Circus Las Vegas Hotel and Casi<br>/ Loftti Cafe |      | s Victor 13278<br>s Shila  12390 | İ   |

## Most Popular Influencers

. Las Vegas has the Influencer with the most 'Useful' reviews (business review count)

| user_id              | business_id                                                                    | name                                               | city      | review_count | nameluseful                                           |
|----------------------|--------------------------------------------------------------------------------|----------------------------------------------------|-----------|--------------|-------------------------------------------------------|
| 2vR0DIsmQ6WfcSzKWigw | IB8zLlGraOg9LU7qQVLPyg  <br>uanCi4OGc1mHLGl_AT4JhQ  <br>7dHYudt6OOIjiaxkSvv3lQ | Fashion Show<br>Treasure Island<br>In-N-Out Burger | Las Vegas | 2487         | Harald   154202<br>Harald   154202<br>Harald   154202 |

· Champaign has the 'oldest (yelping since)' influencer (business review count)

| +       |                         |                           |             |           |           | +-         |            | +        |
|---------|-------------------------|---------------------------|-------------|-----------|-----------|------------|------------|----------|
| 1       | user_idl                | business_idl              | name        | citylrex  | iew_count | name       | yelni      | og_since |
| +       |                         |                           |             | +         |           | +-         |            | +        |
| c6HT44P | PKCaXqzN_BdgKPCw   u8C8 | pRvaHXg3PgDrsUHJHQ   Papa | Del's Pizza | Champaign | 402       | Russel   2 | 2004-10-12 | 08:40:43 |

· Las Vegas has the influencer with the most 'fans' (business review count)

| user_id                | business_id            | name                 | city      | review_count | namelfans |
|------------------------|------------------------|----------------------|-----------|--------------|-----------|
| 37cpUoM8hlkSQfReIEBd-Q | 0qet57CmMA5qUm6gPFUTpg | Di <u>Fara</u> Pizza | Las Vegas | 150          | Mike 9538 |

#### V. Top influencers:

· The most 'Useful'

| luser_id               | name    | useful   |
|------------------------|---------|----------|
| 2vR0DIsmQ6WfcSzKWigw   | Harald  | 154202   |
| JjXuiru1_ONzDkYVrHN0aw | Richard | 199162 j |
| W7DHyQlY_kXls2iXt2Ag   | Maggie  | 89792    |
| Hi10sGSZNxQH3NLyWSZ1oA | Fox     | 89418    |
| ax7SnX0TIpatbsmqHLqVow | Rohlin  | 81003    |
|                        | 0.0     | 52 52    |

The most 'review counts'

| luser_id               | name   | review_count | laverage stars | j |
|------------------------|--------|--------------|----------------|---|
| 8k3a0-mPeyhbR5HUucA5aA | Victor | 13278        | 3.28           | 1 |

· The most 'fans'

| user_id                | name      | fans |
|------------------------|-----------|------|
| 37cpUoM8hlkSQfReIEBd-Q | Mike      | 9538 |
| hizGc5W1tBHPqhM5YKCAtq | Katie     | 2964 |
| eKUGKQRE-Ywi5dY55_zChg | Cherylynn | 2434 |
| iLjMdZi0Tm7DQxX1C1_2dg | Ruggy     | 2383 |
| j14WgRoU2ZE1aw1dXrJg   | Daniel    | 2132 |

· The oldest 'yelping since'

| luser_id               | name    | yelping_since |          |
|------------------------|---------|---------------|----------|
| c6HT44PKCaXqzN_BdgKPCw | Russel  | 2004-10-12    | 08:40:43 |
| nkN_do3fJ9xekchVC-v68A | Jeremy  | 2004-10-12    | 08:46:43 |
| wqoXYLWmpkEH0YvTmHBsJQ | Michael | 2004-10-12    | 08:51:07 |
| sE3ge33huDcNJGW3V4obww | Ken     | 2004-10-12    | 09:16:01 |
| 5iOHz6pHmXi9SoB5qomRWQ | Nader   | 2004-10-12    | 17:42:24 |

· Most recent Elite influencer

| luser_id            | business id            | name                   | city    | name   | elite  |
|---------------------|------------------------|------------------------|---------|--------|--------|
| 3Fmj7MfGfsUUK1kTWCS | GL_g D5oLn4j7eezCAo0su | Yr8jA ND Sushi & Grill | Toronto | Matthe | w 2018 |
| +                   | +                      | +                      | +       | -+     | -++    |

## Recommendation system

### We want to recommend restaurants to users

- 2 main type of recommenders:
  - Content-based recommendations (good to recommend when user has no history)
  - Collaborative filtering (good when user has a history)
- Yelp Dataset:
  - Restaurant data contains very limited information
  - Very few reviews compared to the number of restaurants and user(sparse matrix)
- Chosen approach:
  - we use collaborative filtering through matrix factorization to predict user ratings based on past ratings
  - Use ALS in SparkML

### ALS algorithm:

- Factorize a ratings matrix R into two latent factor matrices which when multiplied back, will give a approximation of the original ratings matrix. In the approximation matrix, all the cells will be filled by an estimated rating.
- if we want to predict how user K might rate product J we just multiply those two vector together
- Cost function:

$$\min_{x_{\star},y_{\star}} \sum_{r_{u,i} \text{ is known}} (r_{ui} - x_{u}^{T}y_{i})^{2} + \lambda(\|x_{u}\|^{2} + \|y_{i}\|^{2})$$

- It's alternating because the process that generates those matrices U and P is done first by fixing U optimizing for P and then fixing P and optimizing for U and we repeat that process alternately.→ effective performance
- Using ASL-WR to avoid overfitting

## Cleaning up the data even more

Reduce data to reduce memory consumption and speed up the process:

- Consider Toronto since it has the most number of restaurants
- Only keep restaurants with over 100 reviews
- Only keep users with over 10 reviews
- 6900 restaurant ---> 895 restaurants
- 80000 users ---> 5458 users





## Tuning the recommender



ALS relies on 3 hyperparameters:

- Number of latent features
- Number of iterations
- Lambda of regularization

The best values of the hyperameters are the one which minimize the RSE cost function. We run 420 experiments with different hyperparameters in 5 hours.

The best set of parameter is ....[show map]

## Experiment result

Running in.... Mins

RMSE = ....

Sample of recommendation

### Demo

### • Front-end:

React Framework: Popular Javascript Framework

Styling: Materialize

Map Library: Leaflet

Chart Library: VIS

### Backend:

Flask: Popular Python Framework for Web Services



## Contribution

Amaan: preprocessing data using Spark SQL

TJ: aggregation data using Spark SQL

Kathia: aggregation data using Spark Core (low level API)

Truc: Recommendation with Spark ML

All: Web application

## **Future works**

- Try with larger data using a large cluster of machines
- Show recommendation to real users and evaluate performance using A/B testing
- Try other models: hybrid, neural network
- Use database as backend

## Questions?

