7 Febbraio 2022 - Architetture dei Sistemi di Elaborazione

c _____

Nome, MATRICOLA

Considerando il processore MIPS64 e l'architettura descritta in seguito:

- Integer ALU: 1 clock cycle
- FP arithmetic unit: pipelined 2 stages
- Data memory: 1 clock cycle
- FP divider unit: not pipelined unit that requires 6 clock cycles
- FP multiplier unit: pipelined 6 stages
- branch delay slot: 1 clock cycle, and the branch delay slot disabled
- forwarding enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.

Usando il frammento di codice riportato, si calcoli il tempo di esecuzione dell'intero programma in colpi di clock e si completi la seguente tabella.

```
; for (i = 0; i < 100; i++) {
;     v5[i] = v1[i]*v2[i];
;     v6[i] = ((v2[i]/v1[i])/(v3[i])*v4[i]);
;}</pre>
```

	.data																																					Clock cycles
V1:	.double "100 values"							\neg		т			П					\top	_		т	т		\neg			\top			\neg			Т		-	П		
V2:	.double "100 values"																																					
V3:	.double "100 values"							\neg					П					Т	Т		Т	Т					Т					Т	Т		\neg	П		
V4:	.double "100 values"																																					
V5:	.double "100 values"												П								Т						T									П		
V6:	.double "100 values"																																					
	.text												П					\neg	Т		Т			T						\neg		Т	Т		\neg	П		
main:	daddui r1,r0,0	F	D	Е	М	W																																5
	daddui r2,r0,100		F	D	Е	М	W																															1
loop:	l.d f1,v1(r1)			F	D	Е	М	W																														1
	l.d f2,v2(r1)				F	D	E	М	W																													1
	l.d f3,v3(r1)					F	D		M '	N																												1
	l.d f4,v4(r1)						F	D	Ε	ΜV	/																											1
	mul.d f5,f1,f2							F	D	*	*	*	*	*	М	W																						6
	s.d f5,v5(r1)								F) S			S			М	W																					1
	div.d f5,f2,f1									= S	S	S	S	S	D	/	/	/	/ /	/ /	1	M۱	W															6
	mul.d f6,f3,f4														F	D	*	*	* :	* *	,	* 1	M '	W														1
	div.d f7,f5,f6															F	D	/	/ /	/ /	1	/ /	/ 1	М	W													1
	s.d f7,v6(r1)																F	D		SS		S S			М													1
	daddui r1,r1,8																	F	S	SS	3 3	SS	SI	D		M	W											1
	daddi r2,r2,-1																				T						М	W	T	\Box								1
	bnez r2,loop																								F	S	D	E	М	W								2
	halt																				Τ						F	N	N	N	N							1
	Total 6+(25)*100									2506																												

7 Febbraio 2022 – Architetture dei Sistemi di Elaborazione C

Nome, MATRICOLA

Domanda 2

Considerando il programma precedente e l'architettura del processore superscalare descritto in seguito; completare la tabella relativa alle prime 2 iterazioni.

Processor architecture:

- Issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 6 stages
 - v. 1 FP divider unit, which is not pipelined: 6 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2m	3	4	5
1	l.d f2,v2(r1)	1	3m	4	5	6
1	l.d f3,v3(r1)	2	4m	5	6	7
1	l.d f4,v4(r1)	2	5m	6	7	8
1	mul.d f5,f1,f2	3	6x	-	<mark>12</mark>	13
1	s.d f5,v5(r1)	3	6m	-	-	13
1	div.d f5,f2,f1	4	6d	-	<mark>12</mark>	14
1	mul.d f6,f3,f4	4	8x	-	<mark>14</mark>	15
1	div.d f7,f5,f6	5	20d		<mark>26</mark>	27
1	s.d f7,v6(r1)	5	7m	-	-	27
1	daddui r1,r1,8	6	7i	-	8	28
1	daddi r2,r2,-1	6	8i	-	9	28
1	bnez r2,loop	7	10j	-	-	29
2	l.d f1,v1(r1)	8	9m	10	11	29
2	l.d f2,v2(r1)	8	10m	11	13	30
2	l.d f3,v3(r1)	9	11m	12	13	30
2	l.d f4,v4(r1)	9	12m	13	<mark>14</mark>	31
2	mul.d f5,f1,f2	10	13x	-	19	31
2	s.d f5,v5(r1)	10	13m	-	-	32
2	div.d f5,f2,f1	11	14d	-	20	32
2	mul.d f6,f3,f4	11	15x	-	21	33
2	div.d f7,f5,f6	12	26d	-	32	33
2	s.d f7,v6(r1)	12	14m	-	-	34
2	daddui r1,r1,8	13	14i	-	15	34
2	daddi r2,r2,-1	13	15i	-	16	35
2	bnez r2,loop	14	17j	-	-	35