

#2
 11/26/01
 11000 U.S. PTO
 09/994226

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re U.S. Patent Application)
)
 Applicant: Koji Matsumoto)
)
 Serial No.)
)
 Filed: November 26, 2001)
)
 For: MAGNETO-OPTICAL)
 RECORDING MEDIUM)
)
 Art Unit:)

I hereby certify that this paper is being deposited with the United States Postal Service as EXPRESS MAIL in an envelope addressed to: U.S. Patent and Trademark Office, P.O. Box 2327, Arlington, VA 22202, on November 26, 2001 Express Label No.: EL846222249US

Signature:
 EXPRESS.WCM
 Appr. February 20, 1998

CLAIM FOR PRIORITY

Assistant Commissioner for Patents
 Washington, DC 20231

Sir:

Applicant claims foreign priority benefits under 35 U.S.C. § 119 on the basis of the foreign application identified below:

Japanese Patent Application No. 2001-154309, filed May 23, 2001.

A certified copy of the priority document is enclosed.

Respectfully submitted,

GREER, BURNS & CRAIN, LTD.

By
 B. Joe Kim

November 26, 2001
 300 South Wacker Drive
 Suite 2500
 Chicago, IL 60606
 (312) 360-0080

Customer Number: 24978
 F:\DATA\WP60\1405\66007\PRIORITY

1405,66,257
(31a)360-0080

日本国特許庁
JAPAN PATENT OFFICE

1000 U.S. PRO
09/99426
11/26

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日

Date of Application:

2001年 5月23日

出願番号

Application Number:

特願2001-154309

出願人

Applicant(s):

富士通株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

2001年10月19日

特許庁長官
Commissioner,
Japan Patent Office

及川耕

出証番号 出証特2001-3090646

【書類名】 特許願
 【整理番号】 0095438
 【提出日】 平成13年 5月23日
 【あて先】 特許庁長官殿
 【国際特許分類】 G11B 11/10
 【発明の名称】 光磁気記録媒体
 【請求項の数】 9
 【発明者】
 【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通
 株式会社内
 【氏名】 松本 幸治
 【特許出願人】
 【識別番号】 000005223
 【氏名又は名称】 富士通株式会社
 【代理人】
 【識別番号】 100065248
 【弁理士】
 【氏名又は名称】 野河 信太郎
 【電話番号】 06-6365-0718
 【手数料の表示】
 【予納台帳番号】 014203
 【納付金額】 21,000円
 【提出物件の目録】
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1
 【包括委任状番号】 9705357
 【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 光磁気記録媒体

【特許請求の範囲】

【請求項 1】 放熱膜と、膜面に対して垂直方向に磁気異方性を示す磁性膜とを含む光磁気記録媒体であって、基板と前記磁性膜との間に放熱膜が形成され、前記放熱膜が、熱伝導率の異なる多層の合金膜から形成されていることを特徴とする光情報記録媒体。

【請求項 2】 放熱膜と、膜面に対して垂直方向に磁気異方性を示す磁性膜とを含む光磁気記録媒体であって、基板と前記磁性膜との間に放熱膜が形成され、前記放熱膜が、熱伝導率の異なる多層の合金膜から形成され、基板に最も近い位置に形成された合金膜が最も熱伝導率が高く、基板から最も遠い位置に形成された合金膜が最も表面粗さの細かいことを特徴とする光情報記録媒体。

【請求項 3】 前記放熱膜が2層の合金膜から形成され、基板に近い側の第1放熱膜が、基板から遠い側の第2放熱膜よりも、その熱伝導率が大きく、かつその膜厚が厚いことを特徴とする請求項2の光情報記録媒体。

【請求項 4】 前記第1放熱膜が、AlまたはAgを主成分とする合金膜であることを特徴とする請求項3の光情報記録媒体。

【請求項 5】 前記第1放熱膜が、Cr、SiまたはTiを所定量だけ添加した合金膜であることを特徴とする請求項4の光情報記録媒体。

【請求項 6】 前記第2放熱膜が、Niを主成分とする合金膜であることを特徴とする請求項3、4または5のいずれかの光情報記録媒体。

【請求項 7】 前記第2放熱膜が、PまたはAlを所定量だけ添加した合金膜であることを特徴とする請求項6の光情報記録媒体。

【請求項 8】 前記第2放熱膜は、エッティングによりその表面が平坦化された前記第1放熱膜の上に形成されてなることを特徴とする請求項3の光情報記録媒体。

【請求項 9】 基板上に、第1誘電体膜、第1放熱膜、第2放熱膜、第2誘電体膜、磁性膜、第3誘電体膜をこの順に形成した光磁気記録媒体の形成方法であって、第1放熱膜として、第2放熱膜よりも熱伝導率が大きく、かつ膜厚の厚

い合金膜を形成し、第1放熱膜の表面を所定量エッチングして平坦化した後、この第1放熱膜の上に前記第2放熱膜を形成したことを特徴とする光磁気記録媒体の形成方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

この発明は、光磁気ディスクなどの光磁気記録媒体に関し、特に、磁気光学効果を利用し、レーザ光照射と磁界印加により、情報を熱磁気的に記録及び再生を行う光磁気記録媒体に関する。

【0002】

【従来の技術及び発明が解決しようとする課題】

従来の光磁気記録媒体では、基板側からレーザビームを照射して、磁性膜に情報を記録し、磁性膜に記録された情報を再生する媒体がある。たとえば、図4に示すように、この媒体は、基板51（ポリカーボネート）の上に、誘電体膜52（SiN）、磁性膜53（TbFeCo）、誘電体膜54（SiN）、及び放熱膜55（AlCr）が、この順に形成されたものである。また、基板51の上方からレーザビーム61が対物レンズ62を通して集光され、この媒体に照射される。

【0003】

この場合、放熱膜55は単層膜からなり、基板51と磁性膜53との間には介在しないので、放熱膜55の物理構造が磁性膜53からの情報の再生に直接影響を及ぼすことはない。

【0004】

一方、従来の光磁気記録媒体として、基板と反対側からレーザビームを照射するタイプの媒体、いわゆるファーストサーフェス記録媒体がある。図5に、この従来のファーストサーフェス記録媒体の構成図を示す。

ファーストサーフェス記録媒体は、たとえば基板51（ポリカーボネート）の上に、放熱膜55（AlCr）、誘電体膜54（SiN）、磁性膜53（TbFeCo）、誘電体膜52（SiN）を、この順に形成したものである。この媒体

の放熱膜55も、単層膜が用いられ、AlCrの他、AlTiやAgCuPdなどのAg系合金が用いられていた（特開2000-109943号公報、特開2000-285517号公報）。

【0005】

このファーストサーフェス記録媒体では、基板51の上に、まず放熱膜55が形成され、その後に誘電体膜54や磁性膜53が形成されていたので、磁性膜53の磁気特性は、その下層にある放熱膜55の表面形状の凹凸によって大きく影響を受ける。一般に放熱膜55は、金属粒子を含む層であるため、その表面には磁気特性上好ましくないかなり大きな凹凸が形成される。

【0006】

したがってこの放熱膜55の上に形成される磁性膜53も凹凸が形成されることになり、磁性膜中の磁化の向きが一定とはならない。保磁力等の点で、磁化の向きはできるだけ一定で膜面に対して垂直の方向に揃っていることが好ましいが、磁化の向きが一定とはならぬような媒体は、保磁力が小さく所望の磁気特性が得られない。特に、磁性膜のさらなる高分解能化は困難である。また、放熱性を向上させるために放熱膜を単に厚くしただけでは、所望の放熱性が得られても、放熱膜の大きな凹凸形状の存在のため、磁性膜の高分解能化を実現することはできない。

【0007】

ところで、今日記録媒体に要求されている記録及び再生のより高密度化を達成するためには、磁性膜の高分解能化が必要となる。高分解能化を図るために記録及び再生時のS/N比（あるいはCNR）を大きくする必要があるが、S/N比は、放熱膜の放熱性と関係しており、S/N比の向上のためには放熱性を高くすること、すなわち熱伝導性を高くすることが必要である。

【0008】

しかし、図5に示したような従来のファーストサーフェス記録媒体では、放熱膜は単層膜で形成されているので、放熱性の維持あるいは向上と、記録及び再生の高分解能化の両方を達成することが困難であった。

そこで、この発明は以上のような事情を考慮してなされたものであり、放熱膜

を多層化することにより、十分な所望の放熱性を保ったままで磁性膜の高分解能化を実現することのできる光磁気記録媒体を提供することを課題とする。

【0009】

【課題を解決するための手段】

この発明は、放熱膜と、膜面に対して垂直方向に磁気異方性を示す磁性膜とを含む光磁気記録媒体であって、基板と前記磁性膜との間に放熱膜が形成され、前記放熱膜が、熱伝導率の異なる多層の合金膜から形成されていることを特徴とする光情報記録媒体を提供するものである。

また、この発明において、基板に最も近い位置に形成された合金膜が最も熱伝導率が高く、基板から最も遠い位置に形成された合金膜が最も表面粗さが細かくなるようにしてもよい。

これによれば、所望の放熱性を維持したままで、記録及び再生の高分解能化が可能である。

【0010】

ここで、前記放熱膜が2層の合金膜から形成される場合、基板に近い側の第1放熱膜が、基板から遠い側の第2放熱膜よりも、その熱伝導率が大きく、かつその膜厚が厚くなるように形成してもよい。

また、前記第1放熱膜は、AlまたはAgを主成分とする合金膜を用いることができる。特に、第1放熱膜には、たとえばCr、SiまたはTiを所定量だけ添加してもよい。このような材料を添加するのは、主成分金属の粒径拡大を抑制できる点で好ましいからである。

また、前記第2放熱膜は、Niを主成分とする合金膜を用いることができる。ここで、前記第2放熱膜には、非磁性という性質を持つ材料、たとえば、PまたはAlを所定量だけ添加してもよい。

【0011】

さらに、記録及び再生の高分解能化等の観点から、前記第2放熱膜は、エッチングによりその表面が平坦化された前記第1放熱膜の上に形成されてなるようにしてもよい。

【0012】

また、この発明は、基板上に、第1誘電体膜、第1放熱膜、第2放熱膜、第2誘電体膜、磁性膜、第3誘電体膜をこの順に形成した光磁気記録媒体の形成方法であって、第1放熱膜として、第2放熱膜よりも熱伝導率が大きく、かつ膜厚の厚い合金膜を形成し、第1放熱膜の表面を所定量エッチングして平坦化した後、この第1放熱膜の上に前記第2放熱膜を形成したことを特徴とする光磁気記録媒体の形成方法を提供するものである。

【0013】

【発明の実施の形態】

以下、図面に示す実施の形態に基づいてこの発明を詳述する。なお、これによってこの発明が限定されるものではない。

図1に、この発明の光磁気記録媒体の一実施例の断面構成図を示す。

この実施例の媒体は、基板1の上に、第1誘電体膜2、第1放熱膜31、第2放熱膜32、第2誘電体膜4、磁性膜5、第3誘電体膜6を、この順に形成したものである。

【0014】

また、この媒体は、レーザ光を、基板1と反対側の第3誘電体膜6側から照射するファーストサーフェス記録媒体とする。ただし、この発明のような2つの層からなる放熱膜を備えた層構成を、基板側からレーザ光を照射する媒体にも適用することもできる。

ここで、基板1はポリカーボネートを用い、その厚さを1～2mm程度とする。第1、第2及び第3誘電体膜2、4、6は、いずれもSiNを用い、それぞれ膜厚を5nm、7nm、40nm程度とする。

磁性膜5は、膜面に対して垂直方向に磁気異方性を示す膜であるが、たとえばTbFeCoを用い、その膜厚を15nm程度とする。

【0015】

また、基板1に近い側の第1放熱膜31には熱伝導率の大きな合金膜を用い、基板1から遠い側の第2放熱膜32には熱伝導率の小さな合金膜を用いる。

熱伝導率の大きな合金膜には、たとえばAlまたはAgを主成分とする合金膜、具体的にはAlCrやAlTiなどを用いることができるが、これに限るもの

ではない。

熱伝導率の小さな合金膜には、たとえばNiを主成分とする合金膜、具体的にはNiPやNiAlなどを用いることができるが、これに限るものではない。また、第2放熱膜32は、熱伝導率が小さくても、その表面に形成される凹凸が小さい合金膜を用いる方が好ましい。

【0016】

第1放熱膜31としてAlCrを用いる場合は、その膜厚は50nm程度とする。第2放熱膜32としてNiPを用いる場合は、その膜厚は10nm程度とする。

ここで、基板に近い方の第1放熱膜31に熱伝導率の大きな合金膜を用いるのは、できるだけ大きな放熱効果を得ようとするためである。

【0017】

また、第1放熱膜31の上に、熱伝導率の小さな合金膜からなる第2放熱膜32を形成するのは、これらの膜の上に形成される磁性膜5の高分解能化を図るためにある。熱伝導率の小さな合金膜は、前記したようにNiを主成分とした材料で作ることができるが、一般に、このNiを主成分とする合金膜は、その表面にできる凹凸が、Al等を主成分として形成された熱伝導率の大きな合金膜よりも小さいので、この第2放熱膜32の上方に形成される磁性膜5の磁化方向を一定方向に揃えることが可能となり、磁性膜5の高分解能化が可能となる。

【0018】

また、熱伝導率の大きな合金膜31の膜厚を、熱伝導率の小さな合金膜32の膜厚よりも厚くするのは、放熱膜全体としては大きな熱伝導性を保ったままで、磁性膜の高分解能化を図ろうとするためである。

ここで、熱伝導率の大きな合金膜31の膜厚は厚いほど放熱性がよくなるが、その膜厚の最大値は媒体の厚みの設計仕様により制限される。

また、熱伝導率の大きな合金膜31の膜厚は、熱伝導率の小さな合金膜32の膜厚よりも厚ければ、磁性膜の高分解能化を達成できるが、熱伝導率の大きな合金膜31の膜厚をW1とし、熱伝導率の小さな合金膜32の膜厚をW2とすると、 $W1 \geq W2 > 0$ となるようにW1及びW2の大きさを選択することが好ましい

この実施例では、放熱膜は、2層からなるものを示したが、これに限るものではなく、3層以上の多層構造としてもよい。

【0019】

また、この図1に示した媒体に用いた各層の熱伝導率を、以下に示す。

基板1: 2×10^4 erg/sec · cm · deg

誘電体膜2,4,6: 1.5×10^5 erg/sec · cm · deg

磁性膜5: 1×10^6 erg/sec · cm · deg

第1放熱膜31: 2.4×10^7 erg/sec · cm · deg

第2放熱膜32: 1.2×10^7 erg/sec · cm · deg

【0020】

これによれば、第2放熱膜31の熱伝導率は、第1放熱膜32の熱伝導率は半分である。

また、第1放熱膜31としてAgを主成分とする合金膜AgCuを用いた場合、その熱伝導率は、 3.1×10^7 erg/sec · cm · deg程度となり、より熱伝導率を高くすることができる。

【0021】

図2に、この発明の光磁気記録媒体の断面形状の概略説明図を示す。

図2(a)は、基板1上に誘電体膜(SiN)2を形成し、その上に第1放熱膜(A1Cr)31を形成した場合の断面図である。

このA1Cr膜31は、表面にかなり大きな周期を持つ凹凸が存在しており、この凹凸のために、媒体の記録分解能が低下する。

【0022】

たとえば、A1Cr膜31がない場合、SiN膜2の表面は平均粗さRa = 0.3 nm程度であるが、A1Cr膜31を50 nm程度形成した場合は、Ra = 1.1 nmで凹凸の周期は40 nm程度となる。さらにA1Cr膜31を100 nm程度形成すると、Ra = 1.5 nmで凹凸の周期は50 nm程度の大きさとなり、このA1Cr膜31の上に磁性膜等を形成した場合には、要求される記録分解能が得られない場合もある。

【0023】

図2 (b) は、図2 (a) の第1放熱膜 (AlCr) 31の上に、第2放熱膜 NiP32を形成した場合の断面図である。このNiP膜32は、熱伝導率が小さいが、その表面形状は比較的周期の短い凹凸が形成されるので、磁性膜の記録分解能に与える影響を小さくすることができる。

たとえば、AlCr膜31の上にNiP膜32を10nm程度形成した場合には、形成しない場合と比べて、凹凸の周期は80%程度小さくすることができる。

【0024】

したがって、放熱膜を、放熱効果の比較的高い第1放熱膜と表面形状に凹凸周期が比較的小さい第2放熱膜とからなる多層膜によって形成し、磁性膜に近い方に第2放熱膜を形成することにより、高い放熱性を維持したまま、記録分解能の高い光磁気記録媒体を提供することができる。

【0025】

また、図2 (c) は、第1放熱膜31の一部分をエッチングして平坦化した場合を示している。図2 (c) に示すように、第1放熱膜31を形成した後、第2放熱膜32を形成する前に、第1放熱膜31をエッチングすることにより、第1放熱膜31の表面形状を平坦化し、この平坦化した表面上に、第2放熱膜32を形成するようにしてもよい。

これによれば、図2 (b) の媒体よりも、より凹凸の少ない表面形状となるので、高分解能を持つ媒体を形成することができ、さらにこの凹凸形状に起因して発生していたノイズを低減させることができとなる。

以下に、この発明の光磁気記録媒体の具体例について説明する。

【0026】

実施例1

実施例1の媒体として、次のような層構成の媒体Aを作製した。層構成は図1に示したものと同じである。

基板1：3.5インチ1.2mm厚のポリカーボネートを材料とするランドグループ基板、ランド及びグループの幅=0.4μm、溝の深さ=35nm

第1誘電体膜2：膜厚10nmのSiN膜

第1放熱膜31：膜厚90nmのAlCr膜

第2放熱膜32：膜厚10nmのNiP膜

第2誘電体膜4：膜厚10nmのSiN膜

磁性膜5：膜厚20nmのTbFeCo膜

第3誘電体膜6：40nmのSiN膜

【0027】

記録再生用のレーザ波長を400nm、対物レンズのNAを0.6とし、レーザ光は基板1とは反対側の第3誘電体膜6側から照射するものとする。したがってこの媒体はいわゆるファーストサーフェス記録媒体である。

基板1の上への各層の製膜は、DCマグネットロンスパッタ装置を用いた。磁性膜5のスパッタにはArガス、誘電体膜2、4、6のスパッタにはAr+N₂ガスを用いた。

【0028】

また、各層のターゲット及び製膜条件として以下のものを用いた。

誘電体膜2、4、6について、BドープSiを用い、投入電力を0.8kW、スパッタガス圧を0.3Paとした。

第1放熱膜AlCr31について、Al98Cr2（数字はatomic%、以下同じ）を用い、投入電力を0.8kW、スパッタガス圧を0.5Paとした。

第2放熱膜NiP32について、Ni75P25（数字はatomic%、以下同じ）を用い、投入電力を0.8kW、スパッタガス圧を0.5Paとした。

磁性膜5について、Tb21Fe65Co14（数字はatomic%、以下同じ）を用い、Hc=12kOe、Ms=50emu/ccとした。

【0029】

以上のようなこの発明の媒体Aに対して、比較のために従来のように放熱膜が単層膜からなる媒体Bも作成した。

従来の媒体Bは、放熱膜3を、膜厚100nmのAlCr膜として形成し、その他の層2、4、5、6については、この発明の実施例1の媒体Aと同じ構成とした。

【0030】

これらの媒体A、Bに対して、マーク長 $0.2\mu\text{m}$ 、周期 $0.4\mu\text{m}$ のマークを記録し、レーザ光を照射して再生し、再生時のCNR（搬送波対雑音比）を測定した。

記録再生における媒体の線速度を 4 m/s とし、記録パワーを 5.4 mW 、再生パワーを 2.3 mW とした。

【0031】

このとき、従来の媒体BのCNRが 43 dB であるのに対し、この発明の実施例1の媒体AのCNRは 45 dB であり、この発明の実施例1の方が、記録分解能が向上した。

また、さらに短いマーク長 $0.15\mu\text{m}$ 、周期 $0.3\mu\text{m}$ のマークを記録した場合、従来の媒体BのCNRは 40 dB であるのに対し、この発明の実施例1の媒体AのCNRは 43 dB であり、同様に記録分解能を向上することができた。

以上のように、この実施例1によれば、放熱膜を前記したような2つの性質の異なる多層膜によって形成しているので、放熱特性は維持したままで、磁性膜の高分解能化を実現することができる。

【0032】

実施例2

次に、図2(c)に示したように、第1放熱膜(A1Cr)31を形成した後に、この第1放熱膜31をエッティングした場合の媒体について説明する。

この実施例2では、実施例1に示したのと同じ条件で第1放熱膜(A1Cr)31を 110 nm の厚さに形成、第1放熱膜31のエッティング、実施例1に示したのと同じ第2放熱膜(NiP)32の形成という工程を経て、2層構造の放熱膜を形成する。この実施例2の媒体を媒体Cとする。

【0033】

ここで、第1放熱膜31のエッティングは、たとえばRFエッティングにより行うことができ、エッティングガスとしてArを用い、投入電力 500 W 、エッティングガス圧 1.0 Pa 、エッティング時間 15 分 として、エッティング後の第1放熱膜の膜厚が 90 nm 程度となるまで行った。

【0034】

したがって、媒体としての膜構成は図1及び実施例1に示したものと同じであるが、エッティングにより第1放熱膜31の表面が平坦化され、放熱膜自体の表面形状がよりなめらかとなっている点が実施例1と異なる。

AFM(原子間力顕微鏡)を用いて、表面形状を観察すると、実施例1の媒体Aの第2放熱膜32形成後の表面では、 $R_a = 1.4 \text{ nm}$, 凹凸形状の周期=45nmであった。

一方、実施例2の媒体Cにおいて、第1放熱膜(A1Cr)31を形成しエッティングした後の表面では、 $R_a = 0.3 \text{ nm}$, 凹凸形状の周期=120nmであるが、第2放熱膜(NiP)32を形成した後の表面では、 $R_a = 0.6 \text{ nm}$, 凹凸形状の周期=23nmとなり、実施例1に比べて、凹凸の周期が小さいなめらかな表面形状となった。

【0035】

また、実施例2の媒体Cについて、実施例1と同様の条件でCNRの測定をしたところ、マーク長が0.2μmの場合のCNRが46dB, マーク長が0.15μmの場合のCNRが44.5dBであった。

実施例1の場合では、マーク長が0.2μm, 0.15μmに対してそれぞれCNR=45dB, 43dBであったので、どちらのマーク長の場合も、実施例2の方が記録分解能が向上していることがわかる。

【0036】

実施例2の媒体Cでは、放熱膜の表面形状をよりなめらかなものとしたので、凹凸形状を反映したノイズを低減させることができたことにより、CNRが改善されたと考えられる。

以上より、この発明の実施例2によれば、第1放熱膜をエッティングしたことにより放熱膜の表面形状をよりなめらかにしたので、ノイズの低減によるCNRの改善を計ることができ、したがって磁性膜の高分解能化が実現できる。

【0037】

実施例3

ここでは、第1放熱膜31として、A1Crの代わりに、他の熱伝導率の大き

い材料を用いた場合について説明する。

媒体の層構成は図1及び実施例1と同じものとし、第1放熱膜31に、Al98Ti2（数字はatomic%、以下同じ）を用いたもの（媒体D）と、Ag98Cu1Pd1%を用いたもの（媒体E）を作成した。どちらも実施例1と同様の方法によって、膜厚90nm程度形成した。

【0038】

ここで、Al98Ti2（数字はatomic%、以下同じ）の熱伝導率は $2.4\text{ erg/sec}\cdot\text{cm}\cdot\text{deg}$ であり、Ag98Cu1Pd1%の熱伝導率は $3.1\text{ erg/sec}\cdot\text{cm}\cdot\text{deg}$ である。

【0039】

この2つの媒体について、前記実施例と同様にCNRを測定すると次のような結果が得られた。

媒体Dについて、マーク長が $0.2\mu\text{m}$ の場合、 $\text{CNR}=44.8\text{ dB}$ 、マーク長が $0.15\mu\text{m}$ の場合、 $\text{CNR}=43.1\text{ dB}$ であった。

媒体Eについて、マーク長が $0.2\mu\text{m}$ の場合、 $\text{CNR}=45.3\text{ dB}$ 、マーク長が $0.15\mu\text{m}$ の場合、 $\text{CNR}=43.2\text{ dB}$ であった。

【0040】

実施例3によれば、第1放熱膜31として、Alを主成分とする合金膜にTiを添加した場合、Agを主成分とする合金膜にCu及びPdを添加した場合のいずれについても、実施例1の媒体Aと同様に良好なCNRを得ることができるので、高い放熱性を維持したまま、記録分解能の高い光磁気記録媒体を提供することができる。

【0041】

実施例4

熱伝導率の小さい第2放熱膜32として、実施例1などではNi75P25を用いたが、ここではNi80P20を用いた場合（媒体F）と、Ni75Al25を用いた場合（媒体G）について説明する。

媒体の層構成及び製膜方法は図1及び実施例1と同じものとした。

【0042】

以下に、第1放熱膜31として、AlTiを用いた場合と、AgCuPdを用いた場合についてのCNRを示す。

第1放熱膜31がAlTiで、第2放熱膜32がNi80P20を用いた場合、マーク長が0.2μmのとき、CNR=44.9dB、マーク長が0.15μmのとき、CNR=43.0dBとなり、第2放熱膜32がNi75Al25を用いた場合、マーク長が0.2μmのとき、CNR=45.1dB、マーク長が0.15μmのとき、CNR=42.8dBとなった。

【0043】

また、第1放熱膜31がAgCuPdで、第2放熱膜32がNi80P20を用いた場合、マーク長が0.2μmのとき、CNR=45.4dB、マーク長が0.15μmのとき、CNR=43.3dBとなり、第2放熱膜32がNi75Al25を用いた場合、マーク長が0.2μmのとき、CNR=45.2dB、マーク長が0.15μmのとき、CNR=43.4dBとなった。

【0044】

以上より、実施例1と組成成分が異なる第2放熱膜を持つ実施例3の媒体F, Gにおいても実施例1と同様に、マーク長が0.2μmについてCNRが45dB以上、マーク長が0.15μmについてCNRが43dB以上となっており、従来のものより高分解能化が達成できたことがわかる。

【0045】

実施例5

ここでは、第1放熱膜31と第2放熱膜32の膜厚を変化させた場合のCNRの数値変化について説明する。

第1放熱膜31としてAl98Cr2を用い、第2放熱膜32としてNi75P25を用い、放熱膜全体の膜厚を100nmとなるようにして、両放熱膜の膜厚を変化させた5種類の媒体H, I, J, K, Lを作成した。

【0046】

これらの5つの媒体について、CNRを測定した結果を、図3に示す。

図3によれば、第1放熱膜(AlCr)31が薄く、かつ第2放熱膜(NiP)32が厚い方が、CNRが低くなっていることがわかる。

熱伝導率の高い第1放熱膜31の膜が薄くなると、媒体としての熱伝導性すなわち放熱性が悪くなり、記録時の熱が溜まりやすくなるので、CNRが低下したと考えられる。特に、第2放熱膜32の膜厚が第1放熱膜31よりも厚い媒体Lでは前記した従来の媒体BよりもCNRが悪い。

【0047】

したがって、従来のように単層膜からなる放熱膜を用いた媒体よりもCNRを向上させるためには、少なくとも、第1放熱膜31の膜厚を第2放熱膜32の膜厚よりも厚くすることが好ましい。

【0048】

なお、上記実施例では、2層からなる放熱膜の場合について示したが、放熱膜が3層以上からなる場合、たとえば、放熱膜としてAlSiCr, AgCuPd, NiPを基板の上にこの順に形成したものでも、同様に高分解能化が達成できる。この場合、基板に最も近い位置に形成された放熱膜には熱伝導率の最も高いものを用いることが好ましい。また、基板から最も遠い位置に形成された放熱膜には、表面粗さが最も細かいものを用いることが好ましい。

【0049】

【発明の効果】

この発明によれば、放熱膜を熱伝導率の異なる多層の合金膜から構成しているので、高い放熱性を維持したまま、磁性膜の記録分解能を高めた光磁気記録媒体を提供することができる。

【図面の簡単な説明】

【図1】

この発明の光磁気記録媒体の一実施例の断面構成図である。

【図2】

この発明の光磁気記録媒体の断面形状の概略説明図である。

【図3】

この発明の光磁気記録媒体の実施例5において各媒体のCNR値を示した図である。

【図4】

従来の光磁気記録媒体の断面構成図である。

【図5】

従来の光磁気記録媒体の断面構成図である。

【符号の説明】

- 1 基板
- 2 第1誘電体膜
- 4 第2誘電体膜
- 5 磁性膜
- 6 第3誘電体膜
- 3 1 第1放熱膜
- 3 2 第2放熱膜

【書類名】 図面

【図1】

この発明の光磁気記録媒体の一実施例の構成図

【図2】

この発明の光磁気記録媒体の一実施例の
断面形状の概略説明図

【図3】

媒体	第1放熱層 AlCr	第2放熱層 NiP	CNR	
			マーク長=0.2μm	マーク長=0.15μm
H	100nm	0nm	43.0dB	40.0dB
I	90nm	10nm	45.0dB	43.0dB
J	80nm	20nm	44.6dB	42.8dB
K	60nm	40nm	43.8dB	41.9dB
L	40nm	60nm	42.3dB	39.1dB

【図4】

従来の光磁気記録媒体の断面構成図

【図5】

従来の光磁気記録媒体の断面構成図

【書類名】 要約書

【要約】

【課題】 この発明は、光磁気記録媒体に関し、放熱膜を多層化することにより、高記録分解能化が可能な光磁気記録媒体を提供することを課題とする。

【解決手段】 放熱膜と、膜面に対して垂直方向に磁気異方性を示す磁性膜とを含む光磁気記録媒体であって、基板と前記磁性膜との間に放熱膜が形成され、前記放熱膜が、熱伝導率の異なる多層の合金膜から形成されていることを特徴とする。

【選択図】 図1

特2001-154309

出願人履歴情報

識別番号 [000005223]

1. 変更年月日 1996年 3月26日

[変更理由] 住所変更

住 所 神奈川県川崎市中原区上小田中4丁目1番1号

氏 名 富士通株式会社