Relational Database Design by ER- and EER-to-Relational Mapping

Chapter Outline

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

Mapping EER Model Constructs to Relations

- Step 8: Options for Mapping Specialization or Generalization.
- Step 9: Mapping of Union Types (Categories).

■ Step 1: Mapping of Regular Entity Types

- For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
- Choose one of the *key attributes* of E as the primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- **Example:** We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
 - SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

FIGURE 7.1

The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2

Result of mapping the COMPANY ER schema into a relational schema.

■ Step 2: Mapping of Weak Entity Types

- For each weak entity type W in the ER schema with owner entity type E, *create* a relation R & include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- Also, include as foreign key attributes of R the *primary key* attribute(s) of the relation(s) that correspond to the *owner entity* type(s).
- The primary key of R is the *combination of the primary key(s) of the owner(s) and the* partial key of the weak entity type W, if any.
- **Example:** Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 - The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

■ Step 3: Mapping of Binary 1:1 Relation Types

- For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- There are three possible approaches:
 - Foreign Key approach: Choose one of the relations-S, say-and include as a foreign key in S the *primary key* of T. It is better to choose an entity type with *total* participation in R in the role of S.
 - Example: 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.
 - *Merged relation option*: An alternate mapping is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are *total*.
 - *Cross-reference or relationship relation option*: The third alternative is to set up a third relation R for the purpose of cross-referencing the *primary keys* of the two relations S and T representing the entity types.

■ Step 4: Mapping of Binary 1:N Relationship Types

- For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the *N-side* of the relationship type.
- Include as *foreign key* in S the *primary key* of the relation T.
- Include any simple attributes of the 1:N relation type as attributes of S.
- An alternative is use cross-reference like Step 3.
 - lacktriangle Create a new relationship R whose attributes are the keys of S and T, and whose primary key is the same as the key of S.
- **Example:** 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure.
 - For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.

- Step 5: Mapping of Binary M:N Relationship Types
 - For each regular binary M:N relationship type R, *create a new relation* S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; *their combination will form the primary key* of S.
 - Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- **Example:** The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema.
 - The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

■ Step 6: Mapping of Multivalued Attributes

- For each multivalued attribute A, create a new relation R.
- This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
- The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.
- **Example:** The relation DEPT_LOCATIONS is created.
 - The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-represents the primary key of the DEPARTMENT relation.
 - The primary key of R is the combination of {DNUMBER, DLOCATION}.

■ Step 7: Mapping of N-ary Relationship Types

- For each n-ary relationship type R, where n>2, *create a new relationship* S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
 - The primary key of S is usually a combination of all the foreign keys.
- Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- **Example:** The relationship type SUPPY in the ER on the next slide
 - This can be mapped to the relation SUPPLY shown in the relational schema, whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

FIGURE 4.11

Ternary relationship types. (a) The SUPPLY relationship.

FIGURE 7.3

Mapping the *n*-ary relationship type SUPPLY from Figure 4.11a.

SUPPLIER SNAME PROJECT PROJNAME PART PARTNO PARTNO

SUPPLY

SNAME	PROJNAME	PARTNO	QUANTITY
les les			

Summary of Mapping Constructs and Constraints

Table 7.1 Correspondence between ER and Relational Models

ER Model Relational Model

Entity type "Entity" relation

1:1 or 1:N relationship type Foreign key (or "relationship" relation)

M:N relationship type "Relationship" relation and two foreign keys

n-ary relationship type "Relationship" relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Mapping Exercise

Exercise 7.4.

