

PATENT COOPERATION TREATY

PCT

**NOTIFICATION CONCERNING
SUBMISSION OR TRANSMITTAL
OF PRIORITY DOCUMENT**

(PCT Administrative Instructions, Section 411)

From the INTERNATIONAL BUREAU

To:

WATANABE, Isamu
Gowa Nishi-shinjuku Building 4F
5-8, Nishi-shinjuku 7-chome
Shinjuku-ku
Tokyo 160-0023
JAPON

Date of mailing (day/month/year) 28 March 1999 (28.03.99)
Applicant's or agent's file reference PEB148
International application No. PCT/JP98/05740
International publication date (day/month/year) Not yet published
Applicant EBARA CORPORATION et al

IMPORTANT NOTIFICATION

1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	<u>Priority application No.</u>	<u>Country or regional Office or PCT receiving Office</u>	<u>Date of receipt of priority document</u>
18 Dece 1997 (18.12.97)	9/364616	JP	23 Marc 1999 (23.03.99)
18 Augu 1998 (18.08.98)	10/247837	JP	23 Marc 1999 (23.03.99)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer Carlos Naranjo Telephone No. (41-22) 338.83.38
--	---

INTERNATIONAL COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

To:

United States Patent and Trademark
Office
(Box PCT)
Crystal Plaza 2
Washington, DC 20231
ÉTATS-UNIS D'AMÉRIQUE

in its capacity as elected Office

Date of mailing (day/month/year) 16 July 1999 (16.07.99)	
International application No. PCT/JP98/05740	Applicant's or agent's file reference PEB148
International filing date (day/month/year) 18 December 1998 (18.12.98)	Priority date (day/month/year) 18 December 1997 (18.12.97)
Applicant MIYOSHI, Norihisa et al	

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:

16 June 1999 (16.06.99)

in a notice effecting later election filed with the International Bureau on:

2. The election was was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer Sean Taylor Telephone No.: (41-22) 338.83.38
---	---

E P U S

PCT

国際調査報告

(法8条、法施行規則第40、41条)
〔PCT18条、PCT規則43、44〕

出願人又は代理人 の書類記号 P E B 1 4 8	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220) 及び下記5を参照すること。	
国際出願番号 PCT/JP98/05740	国際出願日 (日.月.年) 18.12.98	優先日 (日.月.年) 18.12.97
出願人(氏名又は名称) 株式会社荏原製作所		

国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。
この写しは国際事務局にも送付される。

この国際調査報告は、全部で 4 ページである。 この調査報告に引用された先行技術文献の写しも添付されている。

1. 国際調査報告の基礎
 - a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。
 この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。
 - b. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際調査を行った。
 この国際出願に含まれる書面による配列表
 この国際出願と共に提出されたフレキシブルディスクによる配列表
 出願後に、この国際調査機関に提出された書面による配列表
 出願後に、この国際調査機関に提出されたフレキシブルディスクによる配列表
 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった。
 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。
2. 請求の範囲の一部の調査ができない(第I欄参照)。
3. 発明の單一性が欠如している(第II欄参照)。
4. 発明の名称は
 出願人が提出したものと承認する。
 次に示すように国際調査機関が作成した。
5. 要約は
 出願人が提出したものと承認する。
 第III欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1ヶ月以内にこの国際調査機関に意見を提出することができる。
6. 要約書とともに公表される図は、
第 13 図とする。 出願人が示したとおりである. なし
 - 出願人は図を示さなかった。
 - 本図は発明の特徴を一層よく表している。

第Ⅳ欄 要約（第1ページの5の続き）

本発明は、統合型ガス化炉に関する。

具体的には、(1)界面を有する流動床内で流動媒体をガス化するガス化室、(2)同様な界面を有する流動床内でガス化室でのガス化に伴い発生するチャーを燃焼させ流動媒体を加熱するチャー燃焼室及び(3)エネルギー回収装置を備え、(1)及び(2)は一体に構成されるとともに流動床の界面より鉛直方向上方を仕切壁で仕切られ、該仕切壁の下部には(1)、(2)間を連通する開口部が設けられており、該開口部を通じて(2)側から(1)側へ(2)で加熱された流動媒体を移動させる構成とする。

このようにすることにより、ガス化室とチャー燃焼室の間に特別な圧力バランス制御や機械的な流動媒体のハンドリング手段を必要とせず、性状の優れた生成ガスを安定して得ることができ、高効率な動力回収をもたらす燃料のガス化が可能である。また、燃料として塩素を含む可燃性の廃棄物を用いた場合でも、蒸気過熱器（管）等の腐食が少ない高効率発電を可能とする。

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/54, C10J 3/56

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/46-3/56

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 57-32728, A (国井大蔵) 22. 2月. 1982 (22. 02. 82) (ファミリーなし)	1-21

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

24. 03. 99

国際調査報告の発送日

06.04.99

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

大久保元浩

4H

8828

印

電話番号 03-3581-1101

内線 3445

C (続き) 関連すると認められる文献		関連する請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
A	JP, 57-73076, A (国井大蔵) 7.5月. 1982 (07. 05. 82) (ファミリーなし)	1-21
A	JP, 51-64505, A (ペルクウェルクスフェルバント・ゲゼルシャフト・ミト・ペシュレンクテル・ハフツング) 4.6月. 1976 (04. 06. 76) & DE, 2448354, A1 & FR, 2287497, A1 & GB, 1485319, A & US, 4274941, A & IT, 1047734, B	1-21
A	JP, 51-104473, A (工業技術院長) 16.9月. 1976 (16. 09. 76) (ファミリーなし)	1-21
A	JP, 52-91563, A (工業技術院長) 2.8月. 1977 (02. 08. 77) (ファミリーなし)	1-21
A	JP, 3-131687, A (株式会社荏原製作所) 5.6月. 1991 (05. 06. 91) (ファミリーなし)	1-21
A	JP, 57-30793, A (国井大蔵) 19.2月. 1982 (19. 02. 82) (ファミリーなし)	1-21
A	JP, 60-6786, A (パブコック日立株式会社) 14.1月. 1985 (14. 01. 85) (ファミリーなし)	1-21
A	JP, 60-1286, A (パブコック日立株式会社) 7.1月. 1985 (07. 01. 85) (ファミリーなし)	1-21

PATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

Date of mailing (day/month/year)

24 June 1999 (24.06.99)

Applicant's or agent's file reference

PEB148

IMPORTANT NOTICE

International application No.

PCT/JP98/05740

International filing date (day/month/year)

18 December 1998 (18.12.98)

Priority date (day/month/year)

18 December 1997 (18.12.97)

Applicant

EBARA CORPORATION et al

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:
AU,CN,EP,IL,JP,KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

AL,AM,AZ,BA,BB,BG,BR,BY,CA,CU,CZ,EE,GE,GH,GM,HU,ID,IN,IS,KE,KG,KZ,LC,LK,LR,LS,LT,
LV,MD,MG,MK,MN,MW,MX,NO,NZ,PL,RO,RU,SD,SG,SI,SK,SL,TJ,TM,TR,TT,UA,UG,UZ,VN,YU,ZW

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 24 June 1999 (24.06.99) under No. WO 99/31202

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a **demand for international preliminary examination** must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the **national phase**, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

From the INTERNATIONAL BUREAU

To:

WATANABE, Isamu
GOWA Nishi-Shinjuku Building
4th floor
5-8, Nishi-Shinjuku 7-chome
Shinjuku-ku
Tokyo 160-0023
JAPON

Facsimile No. (41-22) 740.14.35

Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

PATENT COOPERATION TREATY

PCT

**NOTIFICATION OF TRANSMITTAL
OF COPIES OF TRANSLATION
OF THE INTERNATIONAL PRELIMINARY
EXAMINATION REPORT**

(PCT Rule 72.2)

From the INTERNATIONAL BUREAU

To:

WATANABE, Isamu
GOWA Nishi-Shinjuku Building
4th floor
5-8, Nishi-Shinjuku 7-chome
Shinjuku-ku
Tokyo 160-0023
JAPON

Date of mailing (day/month/year) 20 March 2000 (20.03.00)	
Applicant's or agent's file reference PEB148	IMPORTANT NOTIFICATION
International application No. PCT/JP98/05740	International filing date (day/month/year) 18 December 1998 (18.12.98)
Applicant EBARA CORPORATION et al	

1. Transmittal of the translation to the applicant.

The International Bureau transmits herewith a copy of the English translation made by the International Bureau of the international preliminary examination report established by the International Preliminary Examining Authority.

2. Transmittal of the copy of the translation to the elected Offices.

The International Bureau notifies the applicant that copies of that translation have been transmitted to the following elected Offices requiring such translation:

EP,AU,BR,CA,CN,CZ,NO,NZ,PL,RO,RU,SK,US

The following elected Offices, having waived the requirement for such a transmittal at this time, will receive copies of that translation from the International Bureau only upon their request:

AL,AM,AZ,BA,BB,BG,BY,CU,EE,GE,GH,GM,HU,ID,IL,IN,IS,JP,KE,KG,KR,KZ,LC,LK,LR,LS,LT,
LV,MD,MG,MK,MN,MW,MX,SD,SG,SI,SL,TJ,TM,TR,TT,UA,UG,UZ,VN,YU,ZW

3. Reminder regarding translation into (one of) the official language(s) of the elected Office(s).

The applicant is reminded that, where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report.

It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned (Rule 74.1). See Volume II of the PCT Applicant's Guide for further details.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer Luis Hernandez Telephone No. (41-22) 338.83.38
--	---

3174174

特許協力条約

PCT

国際予備審査報告

(法第12条、法施行規則第56条)
[PCT 36条及びPCT規則70]

出願人又は代理人 の書類記号 P E B 1 4 8	今後の手続きについては、国際予備審査報告の送付通知（様式PCT/IPEA/416）を参照すること。	
国際出願番号 PCT/JP98/05740	国際出願日 (日.月.年) 18.12.98	優先日 (日.月.年) 18.12.97
国際特許分類 (IPC) Int.Cl [®] C10J 3/54, C10J 3/56		
出願人（氏名又は名称） 株式会社荏原製作所		

1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条（PCT 36条）の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 3 ページからなる。

この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関に対して訂正を含む明細書、請求の範囲及び／又は図面も添付されている。
(PCT規則70.16及びPCT実施細則第607号参照)
この附属書類は、全部で ページである。

3. この国際予備審査報告は、次の内容を含む。

I 国際予備審査報告の基礎
II 優先権
III 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
IV 発明の単一性の欠如
V PCT 35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
VI ある種の引用文献
VII 国際出願の不備
VIII 国際出願に対する意見

国際予備審査の請求書を受理した日 16.06.99	国際予備審査報告を作成した日 14.10.99
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 大久保元浩 電話番号 03-3581-1101 内線 3483
	4V 8828

I. 国際予備審査報告の基礎

1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。PCT規則70.16, 70.17)

 出願時の国際出願書類

<input type="checkbox"/> 明細書 第 _____ ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書 第 _____ ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書 第 _____ ページ、	付の書簡と共に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____ 項、	出願時に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____ 項、	PCT19条の規定に基づき補正されたもの
<input type="checkbox"/> 請求の範囲 第 _____ 項、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 請求の範囲 第 _____ 項、	付の書簡と共に提出されたもの
<input type="checkbox"/> 図面 第 _____ ページ/図、	出願時に提出されたもの
<input type="checkbox"/> 図面 第 _____ ページ/図、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 図面 第 _____ ページ/図、	付の書簡と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____ ページ、	出願時に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____ ページ、	国際予備審査の請求書と共に提出されたもの
<input type="checkbox"/> 明細書の配列表の部分 第 _____ ページ、	付の書簡と共に提出されたもの

2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。

上記の書類は、下記の言語である _____ 語である。

- 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語
- PCT規則48.3(b)にいう国際公開の言語
- 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語

3. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際予備審査報告を行った。

- この国際出願に含まれる書面による配列表
- この国際出願と共に提出されたフレキシブルディスクによる配列表
- 出願後に、この国際予備審査（または調査）機関に提出された書面による配列表
- 出願後に、この国際予備審査（または調査）機関に提出されたフレキシブルディスクによる配列表
- 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった
- 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

4. 補正により、下記の書類が削除された。

- 明細書 第 _____ ページ
- 請求の範囲 第 _____ 項
- 図面 図面の第 _____ ページ/図

5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)

V. 新規性、進歩性又は産業上の利用可能性についての法第12条（PCT35条(2)）に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)

請求の範囲 1-21 有
請求の範囲 _____ 無

進歩性 (I S)

請求の範囲 1-21 有
請求の範囲 _____ 無

産業上の利用可能性 (I A)

請求の範囲 1-21 有
請求の範囲 _____ 無

2. 文献及び説明 (PCT規則70.7)

(54) DEVICE AND METHOD FOR FLUIDIZED BED THERMAL DECOMPOSITION AND GASIFICATION CIRCULATING POWDER AND GRANULE BY USING INSIDE CYLINDER WITH PARTITION PLATE
 (11) 57-32728 (A) (43) 22.2.1982 (19) JP
 (21) Appl. No. 55-107744 (22) 7.8.1980
 (71) DAIZOU KUNII (72) DAIZOU KUNII
 (51) Int. Cl³. B01J8/18, C01B3/30, C10G9/32, C10J3/54

PURPOSE: To perform thermal decomposition and gasification and residue combustion stably and continuously by dividing fluidized beds to 4 pieces of zones and circulating a heat medium between these in a thermally decomposing and gasifying device for solid or slurrylike inflammable materials.

CONSTITUTION: A cylindrical vessel 1 is divided to 4 pieces of zones by a partition plate 2 and an inside cylinder 3. Combustible materials are fed through a feed port 8 continuously into a zone 7, where they are fluidized at high temps., and are dispersed and mixed with the heat medium circulating in the zone 7→13→15→7 and the fluidized gas through a feed port 6. They are gasified by quick thermal decomposition and the gas is removed through an exhaust port 9. The remained residues are burned by the fluidized gas through a feed port 4 in the zone 15, and while the heat thereof is being transmitted to the zone 7, the waste gas is separately exhausted. Since in this way the heat energy necessary for thermal decomposition is supplemented by the residue combustion, the gasification is accomplished stably.

(54) METHOD FOR REMOVAL OF FORMALDEHYDE IN MICROCAPSULE DISPERSION
 (11) 57-32729 (A) (43) 22.2.1982 (19) JP
 (21) Appl. No. 55-107125 (22) 6.8.1980
 (71) JIYUUJIYOU SEISHI K.K. (72) MASAHIWA SAKAMOTO(1)
 (51) Int. Cl³. B01J13/02, A61K9/64

PURPOSE: To remove residual formaldehyde without giving any adverse influence upon microcapsules by adding a compound having active methylene groups to a microcapsule dispersion using formaldehyde as a capsule wall forming material to make the same alkaline and allowing the same to react quantitatively with the residual formaldehyde.

CONSTITUTION: A compound having active methylene groups is added to a dispersion of microcapsules using formaldehyde as a capsule wall film forming material to allow the compound having active methylene groups and the residual formaldehyde not contributing to wall film formation to react in an alkaline region. Methyl acetoacetate, ethyl acetoacetate and diethyl malonate are suitable as the compound having active methylene groups. Further, if the microcapsule dispersion is controlled to an alkaline region, the reaction of the above-mentioned compound having active methylene groups and the residual formaldehyde improves and the more marked reaction is obtained under conditions of 9.0~10.5pH in particular.

(54) PRODUCTION OF AMORPHOUS FILM
 (11) 57-32730 (A) (43) 22.2.1982 (19) JP
 (21) Appl. No. 55-108033 (22) 5.8.1980
 (71) KAGAKU GIJIYUTSUCHIYOU MUKIZAISHITSU KENKYUSHO (JAPAN)
 (72) KOUICHIROU TAKAHASHI
 (51) Int. Cl³. B01J19/00

PURPOSE: To improve amorphous film quality without causing crazing by providing a pair of rollers of elastic materials mounted with free rotators around stationary shafts, grasping two sheets of heat conductive plates between said rollers, introducing melt between the same, pulling this with a puller and forcing the same to pass through the rollers.

CONSTITUTION: When melt 1 is dropped or injected, a motor 11 is driven roughly simultaneously and further a cord disengager 6 and heat conductive plates 2 are pulled, by which the plates 2 sandwiching the melt 1 are lowered, and while the melt 1 is being quickly cooled by the plates 2, it is pressed in an area contact state by elastic materials 5. Next, when the bottom surface of the disengager 6 collides against a stationary plate 8, one end of a cord 7 disengages from the disengager 6 and is freed, then the cord 7 is taken up on the pulley of the motor 11.

(54) METHOD AND APPARATUS FOR GASIFICATION OF COMBUSTIBLE PARTICLE

(11) 57-30793 (A) (43) 19.2.1982 (19) JP
 (21) Appl. No. 55-105663 (22) 31.7.1980
 (71) DAIZOU KUNII (72) DAIZOU KUNII
 (51) Int. Cl³. C10J3/54

PURPOSE: To obtain combustible gas which has high safety and handleability and can be used as a substitute for petroleum oil in high efficiency even by the use of a medium- or small-sized apparatus, by gasifying combustible particles using high-temperature fluidized medium in the reactor.

CONSTITUTION: A funnel-shaped reactor 1 having a vertically extended partition wall 2 contains particulate fluidizing medium 6, which is fluidized at about 700~1,200°C by air or oxygen-containing gas introduced from the bottom part 7 to transfer the combustible particles to the first zone 3. Accompanied by the motion of the medium 6, said combustible particles move from the upper part of the first zone 3 to the second zone 4, and return to the first zone 3 around the lower end of the partition wall 2. The combustible particles are gasified during the circulation, and recovered from the upper end 12. The residual particles left after the gasification of the combustible component are recovered through the lower end 15.

(54) CONVERSION OF SOLID WASTE TO TOWN GAS

(11) 57-30794 (A) (43) 19.2.1982 (19) JP
 (21) Appl. No. 55-105093 (22) 1.8.1980
 (71) NIPPON KIHATSUYU K.K.(1) (72) KOKUSEI YAMAGUCHI(3)
 (51) Int. Cl³. C10K3/00

PURPOSE: To obtain fuel gas having calorific value and rate of combustion, and suitable as town gas, without generating toxic products and gummy substance, by thermally decomposing solid wastes under specific conditions, removing impurities from the produced gas completely, and subjecting the gas to specific modification treatment.

CONSTITUTION: Solid wastes are thermally decomposed at 700~900°C to obtain gas containing H₂, CO, CO₂, hydrocarbons such as methane, inert gas, and impurities such as chlorine compounds, sulfur compounds, etc. The gas is washed, refined by hydrotreatment, and subjected to the dehydrochlorination and desulfurization to remove the impurities almost completely. The purified gas is subjected to one or more treatments selected from low temperature steam reforming, high temperature steam reforming and CO conversion according to need, and then, steam and/or CO₂ gas are separated from the product to obtain the objective gas.

a: solid waste, b: crushing, c: heat decomposition, d: washing, e: compression, f: washing with oil, g: hydrogenation, h: HCl absorption, i: desulfurization, j: low temperature steam reforming, k: high temperature steam reforming, l, n: CO conversion, m, o: methanation, p: decarbonation, q: town gas

(54) LUBRICANT OIL COMPOSITION

(11) 57-30796 (A) (43) 19.2.1982 (19) JP
 (21) Appl. No. 55-103581 (22) 30.7.1980
 (71) TOKUYAMA SODA K.K.(1) (72) AKIO MAEDA(1)
 (51) Int. Cl³. C10M7/02

PURPOSE: To provide a novel solid lubricant composition which can be used without causing scattering, tunneling, etc., and is suitable for the metal working such as marking, cutting, grinding, etc., by impregnating specific amounts of an oiliness improver and an extreme pressure agent in an inorganic carrier having specific density and oil absorption.

CONSTITUTION: 100pts.wt. of an inorganic carrier (pref. white carbon, calcium silicate-gypsum composite, etc.) having an apparent density of $\geq 0.15\text{g/cc}$ and an oil absorption of $\geq 0.5\text{ml/g}$, is impregnated with $\geq 30\text{pts.wt.}$ of an oiliness improver and/or an extreme pressure agent to obtain the objective lubricant composition. Pref. the oiliness improver is selected from mineral oils, animal or vegetable oils, synthetic oils, and higher fatty acids, and the extreme pressure agent is selected from organic sulfonic acids, aromatic carboxylic acids, phosphorus-containing organic compounds, sulfur-containing organic compounds, and halogen-containing organic compounds.

EFFECT: Waste water treatment after use is easy.

(54) METHOD FOR CRACKING OR REFORMING PETROLEUM

(11) 3-131684 (A) (43) 5.6.1991 (19) J
(21) Appl. No. 64-269275 (22) 16.10.1989
(71) F B G K.K. (72) NOBUKO FUJIMOTO
(51) Int. Cl^s. C10G11/02,C10G35/06

PURPOSE: To homogeneously crack or reform an oil such as gasoline at the ordinary temperature to improve the fuel cost and clarify the exhaust gas by bringing the oil with contact with monazite containing tritium.

CONSTITUTION: Monazite containing 0-18% of ThO_2 (when the content of Th is little, Th^{232} is preferably added to increase the radiation strength of α -particle rays) is brought into contact with an oil such as gasoline, kerosene, gas oil or heavy oil by an immersion method, etc., to crack or reform the oil. When the monazite is e.g. added to a gasoline tank, the monazite is employed in a ratio of 1-50g, preferably 2-30g per l of the volume of the gasoline tank.

(54) FLUIDIZED BED OVEN FOR GASIFICATION

(11) 3-131687 (A) (43) 5.6.1991 (19) JP
(21) Appl. No. 64-268093 (22) 17.10.1989
(71) EBARA CORP (72) SHIGEOKI TAKASHIMA(1)
(51) Int. Cl^s. C10J3/56, C10J3/54

PURPOSE: To provide a compact and inexpensive fluidized bed oven contriving the smooth combustion of char by generating a regular circulation flow in at least one part of a fluidizing medium in the fluidizing medium-holding portion of the fluidized bed oven.

CONSTITUTION: One portion or all of a structure for holding a fluidizing medium 2 in a fluidized bed oven 1, is inclined and/or a baffle 10 is disposed in the fluidizing medium in the fluidized bed. The fluidized bed oven 1 is equipped with an organic carbon raw material-charging inlet 4 and with a char-charging inlet 9 at the upstream side, thereby permitting to generate a desired regular circulation flow in one part or all of the fluidizing medium 2.

(54) METHOD FOR DISTINGUISHING ALCOHOL-MIXED FUEL

(11) 3-131688 (A) (43) 5.6.1991 (19) JP
(21) Appl. No. 64-268805 (22) 16.10.1989
(71) SUZUKI MOTOR CORP (72) HIDEHIKO WAKUTA(1)
(51) Int. Cl^s. C10L1/02,C10L1/12

PURPOSE: To distinguish the kind of methanol or ethanol contained in a gasoline-alcohol mixture fuel by adding a hydrogen halide to the gasoline-alcohol mixture fuel.

CONSTITUTION: A tertiary alcohol employed as a compatibilizing agent only for methanol-mixed fuels is noticed and a hydrogen halide readily causing a cloud when mixed with the tertiary alcohol is added to and mixed with an alcohol-mixed fuel, thereby distinguishing whether the kind of the alcohol contained in the fuel is methanol or ethanol.

(54) COLOR CATHODE RAY TUBE

(11) 60-6784 (A) (43) 14.1.1985 (19) JP
 (21) Appl. No. 58-115509 (22) 27.6.1983
 (71) NIPPON DENKI K.K. (72) SHINICHI NAKAI
 (51) Int. Cl⁴. C09K11/72, H01J29/20

PURPOSE: To improve luminance of a color cathode ray tube without causing degradation of red color flickering property, by using a mixt. of a P27 phosphor with a $3\text{Cd}_3(\text{PO}_4)_2 \cdot \text{CdCl}_2$: Mn phosphor as red color phosphor for phosphorescent film.

CONSTITUTION: A mixt. of a P27 phosphor (red) with a $3\text{Cd}_3(\text{PO}_4)_2 \cdot \text{CdCl}_2$: Mn phosphor (orange) is used as red phosphor for phosphorescent film of a color cathode ray tube. For example, a color cathode ray tube employing a P39 phosphor for green color, a P22 phosphor for blue color and a 1:1 mixt. of P27 phosphor (red) with $3\text{Cd}_3(\text{PO}_4)_2 \cdot \text{CdCl}_2$: Mn (orange) as red phosphor shows improvement of luminance by 250% in red color, by 180% in magenta color, by 150% in yellow color and by 130% in white color as compared with a color cathode ray tube employing a P39 phosphor for green color, a P22 phosphor for blue color and a P27 phosphor for red color.

(54) REFORMING OF FUEL OIL AND EQUIPMENT FOR IT

(11) 60-6785 (A) (43) 14.1.1985 (19) JP
 (21) Appl. No. 58-114737 (22) 25.6.1983
 (71) MITSUHISA MATSUOKA (72) MITSUHISA MATSUOKA
 (51) Int. Cl⁴. C10G32/02

PURPOSE: To prepare a high quality fuel oil having a reduced viscosity and a high efficiency of combustion and producing exhaust gas with a low pollutant content, by generating a magnetic line of force in a lengthwise direction within fuel oil reforming equipment and dispersing introduced fuel oil in fine particles for excitement.

CONSTITUTION: A magnetic line of force having an intensity of about 500~1,500 Gauss is generated in a lengthwise direction of a casing 2 of fuel oil reforming equipment 1 and heavy fuel oil introduced into the casing 2 through an inlet pipe 7 is turned round by a rotor 3 revolving at a speed of 1,500~3,800rpm for high speed agitation in an undulating state. This causes cutting of the magnetic line of force by the heavy fuel oil at a high velocity and generation of electromotive force within the oil, resulting in storage of energy and excitement for easier dissociation of oil molecules. The high speed revolution of the rotor 3 produces numerous cavities in the oil and the oil is dispersed into fine particles by impact force. Energy generated by high temp. and high pressure has the same effect as an electric field in promoting the reaction. Under these synergistic effects, the fuel oil is reformed to have high combustibility and is discharged through an outlet pipe 8.

(54) REACTOR FOR CARBON

(11) 60-6786 (A) (43) 14.1.1985 (19) JP
 (21) Appl. No. 58-114682 (22) 24.6.1983
 (71) BABCOCK HITACHI K.K. (72) HIROSHI ISHIZAKA (2)
 (51) Int. Cl⁴. C10J3/56

PURPOSE: To reduce an amt. of unreacted carbon and obtain hydrogen in high concn., by providing a fluid layer zone as carbon particle circulation area between a combustion zone and a gasification zone and a combustion furnace for unreacted carbon at the bottom of a reactor.

CONSTITUTION: Carbon-contg. particles are burned in combustion zone 4 of a reactor 1 and are circulated into a gasification zone 5 for gasification. In the combustion zone 4, air for combustion is fed through a feed opening 11 of a carbon combustion furnace 10. A major portion of the particles at high temp. are fed from the combustion zone 4 into the gasification zone 5 through an overflow path 6 which forms a particle circulation area. In the gasification zone 4, the particles are fluidized for gasification by steam supplied through a feed opening 13 via a dispersing plate 14 produced gas is taken out of the system through an outlet pipe 25. Particles which have undergone reaction in a water gas producing zone 5 are returned from the bottom to the combustion zone 4 through a mobile layer zone 8.

137
Translation

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference PEB148	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/JP98/05740	International filing date (day/month/year) 18 December 1998 (18.12.1998)	Priority date (day/month/year) 18 December 1997 (18.12.1997)
International Patent Classification (IPC) or national classification and IPC C10J 3/54, 3/56		
Applicant	EBARA CORPORATION	

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of <u>3</u> sheets, including this cover sheet. <input type="checkbox"/> This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT). These annexes consist of a total of _____ sheets.
3. This report contains indications relating to the following items: <ul style="list-style-type: none">I <input checked="" type="checkbox"/> Basis of the reportII <input type="checkbox"/> PriorityIII <input type="checkbox"/> Non-establishment of opinion with regard to novelty, inventive step and industrial applicabilityIV <input type="checkbox"/> Lack of unity of inventionV <input checked="" type="checkbox"/> Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statementVI <input type="checkbox"/> Certain documents citedVII <input type="checkbox"/> Certain defects in the international applicationVIII <input type="checkbox"/> Certain observations on the international application

Date of submission of the demand 16 June 1999 (16.06.1999)	Date of completion of this report 14 October 1999 (14.10.1999)
Name and mailing address of the IPEA/JP Japanese Patent Office, 4-3 Kasumigaseki 3-chome Chiyoda-ku, Tokyo 100-8915, Japan Facsimile No.	Authorized officer Telephone No. (81-3) 3581 1101

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP98/05740

I. Basis of the report

1. With regard to the elements of the international application:*

the international application as originally filed
 the description:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the claims:

pages _____, as originally filed
 pages _____, as amended (together with any statement under Article 19)
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the drawings:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

the sequence listing part of the description:

pages _____, as originally filed
 pages _____, filed with the demand
 pages _____, filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language _____ which is:

the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).
 the language of publication of the international application (under Rule 48.3(b)).
 the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

contained in the international application in written form.
 filed together with the international application in computer readable form.
 furnished subsequently to this Authority in written form.
 furnished subsequently to this Authority in computer readable form.
 The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
 The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

the description, pages _____
 the claims, Nos. _____
 the drawings, sheets/fig _____

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP98/05740

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement**1. Statement**

Novelty (N)	Claims	1-21	YES
	Claims		NO
Inventive step (IS)	Claims	1-21	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-21	YES
	Claims		NO

2. Citations and explanations

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05740

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁵ C10J3/54, C10J3/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ C10J3/46-3/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 57-32728, A (Daizou Kunii), 22 February, 1982 (22. 02. 82) (Family: none)	1-21
A	JP, 57-73076, A (Daizou Kunii), 7 May, 1982 (07. 05. 82) (Family: none)	1-21
A	JP, 51-64505, A (Bergwerksverband GmbH.), 4 June, 1976 (04. 06. 76) & DE, 2448354, A1 & FR, 2287497, A1 & GB, 1485319, A & US, 4274941, A & IT, 1047734, B	1-21
A	JP, 51-104473, A (Director General, Agency of Industrial Science and Technology), 16 September, 1976 (16. 09. 76) (Family: none)	1-21
A	JP, 52-91563, A (Director General, Agency of Industrial Science and Technology), 2 August, 1977 (02. 08. 77) (Family: none)	1-21

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
24 March, 1999 (24. 03. 99)Date of mailing of the international search report
6 April, 1999 (06. 04. 99)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05740

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 3-131687, A (Ebara Corp.), 5 June, 1991 (05. 06. 91) (Family: none)	1-21
A	JP, 57-30793, A (Daizou Kunii), 19 February, 1982 (19. 02. 82) (Family: none)	1-21
A	JP, 60-6786, A (Babcock-Hitachi K.K.), 14 January, 1985 (14. 01. 85) (Family: none)	1-21
A	JP, 60-1286, A (Babcock-Hitachi K.K.), 7 January, 1985 (07. 01. 85) (Family: none)	1-21

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/54, C10J 3/56

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/46-3/56

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 57-32728, A (国井大蔵) 22. 2月. 1982 (22. 02. 82) (ファミリーなし)	1-21

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
「&」同一パテントファミリー文献

国際調査を完了した日

24. 03. 99

国際調査報告の発送日

06.04.99

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)
郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

大久保元浩

印

4H 8828

電話番号 03-3581-1101 内線 3445

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
A	JP, 57-73076, A (国井大蔵) 7.5月. 1982 (07. 05. 82) (ファミリーなし)	1-21
A	JP, 51-64505, A (ヘルクウェルクスフェルバント・ゲゼルシャフト・ミト・ヘルシュレンクテル・ハブツング) 4.6月. 1976 (04. 06. 76) & DE, 2448354, A1 & FR, 2287497, A1 & GB, 1485319, A & US, 4274941, A & IT, 1047734, B	1-21
A	JP, 51-104473, A (工業技術院長) 16.9月. 1976 (16. 09. 76) (ファミリーなし)	1-21
A	JP, 52-91563, A (工業技術院長) 2.8月. 1977 (02. 08. 77) (ファミリーなし)	1-21
A	JP, 3-131687, A (株式会社荏原製作所) 5.6月. 1991 (05. 06. 91) (ファミリーなし)	1-21
A	JP, 57-30793, A (国井大蔵) 19.2月. 1982 (19. 02. 82) (ファミリーなし)	1-21
A	JP, 60-6786, A (ハブコック日立株式会社) 14.1月. 1985 (14. 01. 85) (ファミリーなし)	1-21
A	JP, 60-1286, A (ハブコック日立株式会社) 7.1月. 1985 (07. 01. 85) (ファミリーなし)	1-21

(51) 国際特許分類6 C10J 3/54, 3/56	A1	(11) 国際公開番号 WO99/31202
		(43) 国際公開日 1999年6月24日(24.06.99)
(21) 国際出願番号 PCT/JP98/05740		(74) 代理人 弁理士 渡邊 勇, 外(WATANABE, Isamu et al.) 〒160-0023 東京都新宿区西新宿7丁目5番8号 GOWA西新宿4階 Tokyo, (JP)
(22) 国際出願日 1998年12月18日(18.12.98)		(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, GM, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) 優先権データ 特願平9/364616 特願平10/247837	JP	(75) 添付公開書類 国際調査報告書
(71) 出願人 (米国を除くすべての指定国について) 株式会社 菅原製作所(EBARA CORPORATION)[JP/JP] 〒144-8510 東京都大田区羽田旭町11番1号 Tokyo, (JP)		
(72) 発明者: および 三好敬久(MIYOSHI, Norihisa)[JP/JP] 豊田誠一郎(TOYODA, Seiichiro)[JP/JP] 細田修吾(HOSODA, Shugo)[JP/JP] 鹿島信孝(KASHIMA, Nobutaka)[JP/JP] 成瀬克利(NARUSE, Katsutoshi)[JP/JP] 青木克行(AOKI, Katsuyuki)[JP/JP] 関川真司(SEKIKAWA, Shinji)[JP/JP] 永東秀一(NAGATO, Shuichi)[JP/JP] 橋本裕(HASHIMOTO, Hiroshi)[JP/JP] 〒144-8510 東京都大田区羽田旭町11番1号 株式会社 菅原製作所内 Tokyo, (JP)		

(54) Title: FUEL GASIFYING SYSTEM

(54) 発明の名称 燃料のガス化システム

(57) Abstract

An integrated gasifying furnace comprising a gasifying room (1) for gasifying a fluidized medium inside an interface-carrying fluidized bed, a char combustion room (2) for burning char generated by the gasification in the gasifying room and heating the fluidized medium inside a similar-interface-carrying fluidized bed and an energy recovery device (3), wherein (1) and (2) are constructed integrally and partitioned by a partition wall at a portion vertically above the interface of the fluidized bed and an opening for communication between (1) and (2) is provided at the lower portion of the partition wall, whereby the fluidized medium heated in (2) is moved from (2) to (1) through the opening. The above arrangement eliminates the need of any special pressure balance control or mechanical fluidized medium handling means between the gasifying room and the char combustion room, ensures a stable supply of a product gas of excellent quality, and provides a fuel gasification that allows a high efficiency power recovery. Even when a combustible waste containing chlorine is used as a fuel, a high efficiency power generation with a minimum corrosion of a steam superheater (pipe) can be achieved.

本発明は、統合型ガス化炉に関する。

具体的には、(1)界面を有する流動床内で流動媒体をガス化するガス化室、(2)同様な界面を有する流動床内でガス化室でのガス化に伴い発生するチャーを燃焼させ流動媒体を加熱するチャー燃焼室及び(3)エネルギー回収装置を備え、(1)及び(2)は一体に構成されるとともに流動床の界面より鉛直方向上方を仕切壁で仕切られ、該仕切壁の下部には(1)、(2)間を連通する開口部が設けられており、該開口部を通じて(2)側から(1)側へ(2)で加熱された流動媒体を移動させる構成とする。

このようにすることにより、ガス化室とチャー燃焼室の間に特別な圧力バランス制御や機械的な流動媒体のハンドリング手段を必要とせず、性状の優れた生成ガスを安定して得ることができ、高効率な動力回収をもたらす燃料のガス化が可能である。また、燃料として塩素を含む可燃性の廃棄物を用いた場合でも、蒸気過熱器(管)等の腐食が少ない高効率発電を可能とする。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦	ES スペイン	LI リヒテンシュタイン	SG シンガポール
AL アルバニア	FI フィンランド	LK スリ・ランカ	SI スロヴェニア
AM アルメニア	FR フランス	LR リベリア	SK スロヴァキア
AT オーストリア	GA ガボン	LS レソト	SL シエラ・レオネ
AU オーストラリア	GB 英国	LT リトアニア	SN セネガル
AZ アゼルバイジャン	GD グレナダ	LU ルクセンブルグ	SZ スワジランド
BA ボスニア・ヘルツェゴビナ	GE グルジア	LV ラトヴィア	TD チャード
BB バルバドス	GH ガーナ	MC モナコ	TG トーゴー
BE ベルギー	GM ガンビア	MD モルドバ	TJ タジキスタン
BF ブルキナ・ファン	GN ギニア	MG マダガスカル	TM トルクメニスタン
BG ブルガリア	GW ギニア・ビサオ	MK マケドニア旧ユーゴスラヴィア	TR トルコ
BJ ベナン	GR ギリシャ	共和国	TT トリニダッド・トバゴ
BR ブラジル	HR クロアチア	ML マリ	UA ウクライナ
BY ベラルーシ	HU ハンガリー	MN モンゴル	UG ウガンダ
CA カナダ	ID インドネシア	MR モーリタニア	US 米国
CF 中央アフリカ	IE アイルランド	MW マラウイ	UZ ウズベキスタン
CG コンゴー	IL イスラエル	MX メキシコ	VN ヴィエトナム
CH スイス	IN インド	NE ニジェール	YU ユーゴースラビア
CI コートジボアール	IS アイスランド	NL オランダ	ZA 南アフリカ共和国
CM カメルーン	IT イタリア	NO ノルウェー	ZW ジンバブエ
CN 中国	JP 日本	NZ ニュージーランド	
CU キューバ	KE ケニア	PL ポーランド	
CY キプロス	KG キルギスタン	PT ポルトガル	
CZ チェコ	KP 北朝鮮	RO ルーマニア	
DE ドイツ	KR 韓国	RU ロシア	
DK デンマーク	KZ カザフスタン	SD スーダン	
EE エストニア	LC セントルシア	SE スウェーデン	

明細書

燃料のガス化システム

技術分野

本発明は、石炭や都市ごみ等の燃料のガス化炉及びそれを用いたガス化システムに関する。

背景技術

現在、世界各国で石炭を用いた高効率発電システムに関してさまざまな試みがなされている。発電効率の向上を図るには石炭の持つ化学エネルギーをいかに高効率で電気エネルギーに変換できるかが重要であるが、近年その開発の方向性が見直されつつある。ガス化複合発電(IGCC)は石炭をガス化し、一旦クリーンな化学エネルギーにして、その後燃料電池で直接電気に変換したり、高温のガスタービンで高効率発電を行なおうとする技術である。しかしながら、完全ガス化を指向した技術であるため、ガス化部分の反応温度を灰が溶融する温度域にまで高めなければならず、溶融スラグの排出の問題や耐火材料の耐久性等に多くの課題を抱えている。しかも熱エネルギーの一部が灰の溶融潜熱に消費されたり、折角高温で排出される生成ガスをガス精製のために、例えば450°C程度にまで下げねばならず、その際の顕熱ロスが非常に大きいこと、また安定して高温を得るために酸素または酸素富化した空気を供給する必要がある等の問題がある。このため、正味のエネルギー変換効率が高くならなければかりか、こうしてせっかく得た生成ガスを利用して、高効率で発電する技術が完成しておらず、現時点では正味の発電効率は決して高くな

いということが判明してきている。

即ち、ガス化複合発電(IGCC)においては、最終的に電気エネルギーに変換する技術の効率に上限があることが、全体としての効率向上のネックになっている。従って、近年注目を浴びている高効率発電技術は、単純にガスタービン入り口のガス温度の上限温度のガスをできるだけ大量に発生させ、ガスタービンからの発電電力出力比を高めようとするものである。その代表的なものがトッピングサイクル発電システムや改良型の加圧流動床炉による発電システムである。

改良型の加圧流動床炉による発電システムは、まず加圧ガス化炉で石炭をガス化し、発生した未燃カーボン(いわゆるチャー)を加圧チャー燃焼器で燃焼するが、このチャー燃焼器からの燃焼ガスとガス化炉からの生成ガスをそれぞれクリーニングした後、トッピング燃焼器で混合燃焼させて高温ガスを得て、ガスタービンを駆動しようとするものである。この加圧流動床炉による発電システムにおいて重要なことは、如何にガスタービンへの流入ガス流量を高められるかであるが、これを制約する条件として最も大きいものが生成ガスのクリーニングである。

生成ガスのクリーニングは還元雰囲気での脱硫反応の最適温度の関係上、通常450°C程度まで冷却する必要がある。これに対して、ガスタービンの入り口ガス温度は高いほど効率が高まるので、できるだけ高温にすべきである。現状ではガスタービン構成材料の耐熱性、耐食性の制約から、1200°C弱にまで高めるのが一般的である。即ち、ガスクリーニングの温度450°Cからガスタービン入り口温度の1200°Cまで、ガスの温度を上げられるだけの発熱量を有することが生成ガスには要求される。

従って、改良型の加圧流動床炉による発電システムにおいては、できるだけ少量で、且つ単位発熱量の高い生成ガスを得る方向でシステムの

開発が進められるべきである。何故ならば、450°Cでクリーニングすべき生成ガス量が減れば、冷却による顯熱ロスが減り、且つ生成ガスに求められる最低必要発熱量も低くて済む。更に生成ガスの発熱量がガスタービン入り口の所要のガス温度に上昇させるのに必要な発熱量以上であれば、燃焼空気比を上げてガスタービンに流入するガス量を増加させることができるので、更なる発電効率の向上を期待できるからである。

また近年、都市ごみ等を燃料として積極的に利用すべく、高効率ごみ燃焼発電技術の開発が進んでいるが、ごみ中には塩素が高濃度で含まれている場合があるため、伝熱管の腐食の問題から熱回収の際の蒸気温度を400°C以上には上げられないという問題がある。このため、この問題を克服できる技術開発が待たれている。

従来の石炭等を燃料としたガス化炉の代表的なものとして、図17に示すような2塔循環式ガス化炉がある。2塔循環式ガス化炉は、ガス化炉とチャー燃焼炉の2炉（塔）から構成され、ガス化炉とチャー燃焼炉の間で流動媒体やチャーを循環し、ガス化に必要な熱量を、チャー燃焼炉でチャーの燃焼熱によって加熱された流動媒体の顯熱でガス化炉に供給しようとするものである。ガス化炉で発生した生成ガスを燃焼させる必要が無いことから、生成ガスの発熱量を高く維持できるという特徴がある。しかしながら、2塔循環方式はガス化炉、チャー燃焼炉間の充分な粒子循環量の確保、粒子循環量制御、安定運転といった高温粒子の取扱い面の課題と、チャー燃焼炉の温度制御が他操作と独立してできないという運用面の課題から、大規模な実機建設にまでは至らなかった。

これに対して近年、図18に示すようにチャー燃焼炉の燃焼ガスを全量ガス化炉に導き、粒子の循環による顯熱供給だけでは不足しがちなガス化用熱量を補おうとする技術が提案されている。しかしながら、この

システムはチャー燃焼炉から排出される燃焼ガスを全量ガス化炉に導くために、「できるだけ少量の、且つ発熱量の高い生成ガスを得るのが良い」という改良型加圧流動床炉による発電システムの原則に反している。即ち、チャー燃焼ガスの量がガス化炉でのガス化あるいは流動化に必要な量以上になると生成ガスが余計なチャー燃焼ガスによって希釈されるので発熱量が低下するだけでなく、混合された余分のチャー燃焼ガスまでもが還元雰囲気でのガスクリーニングのために450°Cまで冷却されることになり、適正なガスタービン入り口温度にまでガス温度を上げるのに必要な熱量は増えてしまう。また逆にチャー燃焼ガス量が不足すると、ガス化炉の流動化が不十分になったり、ガス化炉の温度が低下したりするため、ガス化炉に空気を供給する必要が生じてくる。従って、このシステムを成り立たせるにはシステムに好適な限られた使用炭種を選定せざるを得ないことが予想される。この限られた炭種から少しでもずれると、余分のチャー燃焼ガスまでをも450°Cまで冷却しなければならなかつたり、ガス化炉に空気を導入することで生成ガスの発熱量が低下したりすることから、システム全体の効率を低下させてしまうことは言うまでもない。

また、このシステムにおいては、チャー燃焼炉の温度制御は層高を変化させて、層内の伝熱面積を変化させる方式であり、低負荷時には層上に露出した伝熱管によって燃焼ガスが冷却されるため、ガス化炉の温度や流動化速度等が変わるので、ガス化反応速度にも影響を与え、システムの安定操業が難しくなると言う問題がある。

このような状況に鑑み、本発明者らは一つの流動床炉の内部に、ガス化室、チャー燃焼室、低温燃焼室の3つを、それぞれ隔壁を介して設けた統合型ガス化炉を考案している。これは、更にチャー燃焼室とガス化

室、チャー燃焼室と低温燃焼室はそれぞれ隣接して設けている。この統合型ガス化炉は前述の2塔循環方式の課題を克服すべく考案したものであり、チャー燃焼室とガス化室間に大量の流動媒体循環を可能にしているので、流動媒体の顯熱だけでガス化のための熱量を充分に供給でき、改良型流動床炉を用いた発電システムの原則である「できるだけ少量の、且つ発熱量の高い生成ガスを得る」ことが最も容易に実現できる可能性のある技術である。

しかしながら、この技術はチャー燃焼ガスと生成ガスの間のシールが完全ではないため、ガス化室とチャー燃焼室の圧力バランス制御がうまく行かないと、燃焼ガスと生成ガスが混ざり、生成ガスの性状を低下させてしまうという問題がある。

また、ごみ燃焼発電システムの分野では、ごみを熱分解して、塩素成分を揮発分と共に揮散させ、塩素含有量が大幅に減少した残りのチャーの燃焼熱で蒸気過熱を行なって、高効率発電を行なおうという提案がなされている。しかしながら、通常、一般ごみの熱分解では殆どチャーは発生しないので、蒸気過熱に必要なチャー燃焼熱が得られない可能性が高い。また、熱媒体としての流動媒体とチャーはガス化室側からチャー燃焼室側に流入するようになっているが、マスバランスの点から同量の流動媒体をチャー燃焼室側からガス化室側に戻す必要があるが、従来の方法ではコンベヤ等を用いて機械的に搬送するほかなく、高温粒子のハンドリングの困難さ、顯熱ロスが多いといった課題を抱えている。

発明の開示

本発明は上述の事情に鑑みてなされたもので、ガス化室とチャー燃焼室の間に特別な圧力バランス制御や、機械的な流動媒体のハンドリング

手段を必要とせず、性状の優れた生成ガスを安定して得ることができ、高効率な動力回収が可能な燃料のガス化システムを提供することを目的とする。また、燃料として塩素を含む可燃性の廃棄物を用いた場合でも、蒸気過熱器(管)等の腐食が少なく、高効率発電が可能な、統合型ガス化炉を提供することを目的とする。

上記目的を達成するために、請求項 1 に係る発明による燃料のガス化システムは、図 1 及び図 1 3 に示すように、高温の流動媒体を内部で流動させ、界面を有するガス化室流動床を形成し、前記ガス化室流動床内で燃料をガス化するガス化室 1 と；高温の流動媒体を内部で流動させ、界面を有するチャー燃焼室流動床を形成し、ガス化室 1 でのガス化に伴い発生するチャーを前記チャー燃焼室流動床内で燃焼させ前記流動媒体を加熱するチャー燃焼室 2 と；ガス化室 1 で発生したガスを燃料として用いる第 1 のエネルギー回収装置 109 とを備え；ガス化室 1 とチャー燃焼室 2 とは一体に構成されており；ガス化室 1 とチャー燃焼室 2 とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第 1 の仕切壁 15 により仕切られ；第 1 の仕切壁 15 の下部にはガス化室 1 とチャー燃焼室 2 とを連通する第 1 の開口部 25 が設けられており、第 1 の開口部 25 を通じて、チャー燃焼室 2 側からガス化室 1 側へチャー燃焼室 2 で加熱された流動媒体を移動させるように構成されている。

このように構成すると、ガス化室とチャー燃焼室とは一体に構成されているので、ガス化室とチャー燃焼室との間での流動媒体の取扱が楽にできる。また、ガス化室とチャー燃焼室とは、界面より上方においてガスの流通がないように仕切壁により仕切られているので、ガス化室で生成したガスとチャー燃焼室での燃焼ガスの混合がほとんど起こらない。

さらにガスタービンのような動力回収装置であるエネルギー回収装置を備えるので、例えば、空気圧縮機のような流体機械を駆動したり、発電機を駆動したりという形で動力の回収、エネルギーの回収ができる。

さらに請求項 1 に記載の燃料のガス化システムでいう流動床は、鉛直方向下方にある流動媒体を濃厚に含む濃厚層と、その濃厚層の鉛直方向上方にある流動媒体と多量のガスの共存するスプラッシュゾーンとからなる。流動床の上方即ちスプラッシュゾーンの上方には流動媒体をほとんど含まずガスを主体とするフリーボード部がある。本発明でいう界面は、ある厚さをもった前記スプラッシュゾーンをいうが、またスプラッシュゾーンの上面と下面（濃厚層の上面）との中間にある仮想的な面ととらえてもよく、さらに仕切壁により仕切って濃厚層の上面より上方においてはガスの流通がないようにするのが好ましい。

また、請求項 2 に記載のように、請求項 1 に記載の、燃料のガス化システムでは、さらに、ガス化室 1 とチャー燃焼室 2 とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第 2 の仕切壁 1 1 により仕切られ；第 2 の仕切壁 1 1 の下部にはガス化室 1 とチャー燃焼室 2 とを連通する第 2 の開口部 2 1 が設けられており、第 2 の開口部 2 1 を通じて、ガス化室 1 側からチャー燃焼室 2 側へ流動媒体を移動させるように構成してもよい。

このように構成すると、第 2 の開口部 2 1 を通じて、ガス化室 1 側からチャー燃焼室 2 側へ流動媒体が移動するので、ガス化室 1 でチャーが発生するとき、そのチャーは流動媒体とともにチャー燃焼室 2 に移動し、またガス化室 1 とチャー燃焼室 2 間の流動媒体のマスバランスが保たれる。

また、請求項 3 に記載のように、以上の燃料のガス化システムでは、

ガス化室 1 及びチャー燃焼室 2 と一体に構成された熱回収室 3 を備え；ガス化室 1 と熱回収室 3 とは、直接的なガスの流通がないように仕切るか、または互いに接しないように配置してもよく、このようにすると、ガス化室で生成したガスと熱回収室中の燃焼ガスとの混合をほとんど起こさずに熱回収ができる。また、熱回収室を備えるので、燃料によっては、ガス化室で発生するチャーの量とチャー燃焼室で流動媒体の加熱に必要とされるチャーの量のバランスが崩れることがあるが、その差は、熱回収室での熱回収量を加減することにより調整することができる。

さらに請求項 4 に記載のように、請求項 1 乃至請求項 3 のいずれか 1 項に記載の燃料のガス化システムでは、第 1 のエネルギー回収装置 109 で燃料として用いた後のガスと、チャー燃焼室 2 からの燃焼ガスとを導入するボイラ 111 を備えるようにしてもよい。ここで、典型的には第 1 のエネルギー回収装置はガスタービン 109 乃至はその出力タービン部 106 であり、ここで燃料として用いた後のガスとは、そのガスタービンの燃焼器 105 で燃焼して出力タービン部 106 でエネルギーを回収した後の排ガスである。この排ガスは、熱エネルギーをまだかなり有しているので、ボイラ 111 でその熱を回収する。

また、以上のシステムでは、ガス化室 1 の流動化ガスとして、無酸素ガスを用いるようにするのが好ましい。ここで無酸素ガスとは、ほとんど酸素を含まないガスをいい、少なくとも酸素濃度がガス化室で生成した生成ガスを実質的に燃焼させる程度に達しないガスをいう。このときは、無酸素ガスを用いるので生成ガスが実質的に燃焼せず発熱量の高い生成ガスが得られる。

また、請求項 5 に記載のように、また図 14 に示すように、請求項 1 乃至請求項 3 のいずれか 1 項に記載の燃料のガス化システムでは、ガス

化室 1 及びチャー燃焼室 2 が大気圧より高い圧力に加圧されるように構成され；チャー燃焼室 2 からの燃焼ガスにより駆動される第 2 のエネルギー回収装置 141 を備え；第 1 のエネルギー回収装置 109 で燃料として用いた後のガスと、第 2 のエネルギー回収装置 141 からの燃焼ガスとを導入するボイラ 111 を備えるようにしてもよい。

このように構成すると、チャー燃焼室からの燃焼ガスが温度エネルギーの他に圧力エネルギーも有するので、第 2 のエネルギー回収装置、典型的にはガスタービンの出力タービン部と同じ構造を有するパワーリカバリータービンで、その燃焼ガスから動力の回収ができる。また、ガス化室で発生した生成ガスを、ガスタービンに付属のガス圧縮機を介さずそのままガスタービンの燃焼器 105 に導きそこで燃焼したガスをガスタービンの出力タービン部 106 に導入して動力を発生させることができる。したがって、ガスタービン付属のガス圧縮機を不要とすることができる。ただし、ガスタービンの所要圧力と発生された生成ガスの圧力に差があるときは、その差を補償する圧力を発生するガス圧縮機を設けてもよい。

前記目的を達成するために、請求項 6 に係る発明による燃料のガス化システムは、図 1 及び図 11 に示すように、高温の流動媒体を内部で流動させ、界面を有するガス化室流動床を形成し、前記ガス化室流動床内で燃料をガス化するガス化室 1 と；高温の流動媒体を内部で流動させ、界面を有するチャー燃焼室流動床を形成し、ガス化室 1 でのガス化に伴い発生するチャーを前記チャー燃焼室流動床内で燃焼させ前記流動媒体を加熱するとともに燃焼ガスを発生させるチャー燃焼室 2 と；ガス化室 1 で発生したガスを燃焼させ、チャー燃焼室 2 で発生する前記燃焼ガスを加熱する助燃室 53 と；助燃室 53 で加熱された燃焼ガスからエネル

ギーを回収するエネルギー回収装置 55とを備え；ガス化室1とチャー燃焼室2とは一体に構成され、かつ大気圧より高い圧力に加圧されるよう構成されており；ガス化室1とチャー燃焼室2とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第1の仕切壁15により仕切られ；第1の仕切壁15の下部にはガス化室1とチャー燃焼室2とを連通する第1の開口部25が設けられており、第1の開口部25を通じて、チャー燃焼室2側からガス化室1側へチャー燃焼室2で加熱された流動媒体を移動させるように構成される。

このように構成すると、ガス化室1とチャー燃焼室2とは一体に構成され、かつ大気圧より高い圧力に加圧されるよう構成されるので、チャー燃焼室内の酸素分圧を高め燃焼状態を良好に保つことができる他、チャー燃焼室からの燃焼ガスからエネルギー回収装置としての例えばパワーリカバリータービンでエネルギーの回収ができる。また助燃室を備えるので、ガス化室からの生成ガスをここで燃すことにより、チャー燃焼室からの燃焼ガスを例えば1200°Cといった高温に加熱できる。したがって、例えばパワーリカバリータービンで高効率の動力回収ができる。

また、請求項7に記載のように、請求項6に記載の燃料のガス化システムでは、さらに、ガス化室1とチャー燃焼室2とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第2の仕切壁11により仕切られ；第2の仕切壁11の下部にはガス化室1とチャー燃焼室2とを連通する第2の開口部21が設けられており、第2の開口部21を通じて、ガス化室1側から前記チャー燃焼室2側へ流動媒体を移動させるように構成してもよい。

さらに、請求項8に記載のように請求項6または請求項7に記載の燃

料のガス化システムでは、ガス化室 1 及びチャー燃焼室 2 と一体に構成された熱回収室 3 を備え；ガス化室 1 と熱回収室 3 とは、直接的なガスの流通がないように仕切るか、または互いに接しないように配置してもよい。

さらに、請求項 9 に記載のように、請求項 6 乃至請求項 8 のいずれか 1 項に記載の燃料のガス化システムでは、エネルギー回収装置 5 5 でエネルギーを回収された後のガスを導入するボイラ 5 8 を備えるようにしてもよく、このときは、エネルギー回収装置 5 5 でエネルギーを回収された後でもまだ熱エネルギーを残している排ガスからボイラにより熱回収を図ることができる。

さらに、請求項 10 に記載のように、また図 1 5 、図 1 6 に示すように、請求項 4 、請求項 5 及び請求項 9 のいずれかに記載の燃料のガス化システムでは、ボイラ 5 8 は、前記導入されるガスの他に、別燃料を燃焼させるように構成してもよく、このときは、ボイラが必要とする熱量と、チャー燃焼室等から供給される熱量とのバランスが崩れても、その差を別燃料で補うことができる。したがって、例えばボイラとして既設のボイラ 1 3 1 を使用する場合等に対応することができる。

さらに、前記目的を達成するために、請求項 11 に係る発明による既設のボイラをリパワリングする方法は、図 1 5 または図 1 6 に示すように、既設のボイラ 1 3 1 を提供する工程と；既設のボイラ 1 3 1 に燃焼ガスを供給する、請求項 1 乃至請求項 3 、請求項 6 乃至請求項 8 のいずれか 1 項に記載の、燃料のガス化システムを提供する工程とを備える。

この方法では、既設のボイラに前記のような燃料のガス化システムを燃焼ガスを供給するように接続するので、たとえば微粉炭を燃料とする多くの既設ボイラのように、効率が悪く炭酸ガスの排出量も多いボイラ

を高効率のエネルギー発生システムに改造、すなわちリパワリングすることができる。

図面の簡単な説明

図 1 は、本発明の統合型ガス化炉の基本的な概念を示す構成図である。

図 2 は、炉底の傾斜、および仕切壁にせり出しを設けた場合の図 1 の変形例を示す図である。

図 3 A 及び図 3 B は、本発明の統合型ガス化炉の圧力制御機能の説明図である。

図 4 は、本発明の統合型ガス化炉を円筒型の炉にて具体化した実施形態の構造図である。

図 5 は、図 4 の流動床部分の水平断面図である。

図 6 は、図 5 の変形例を示す図である。

図 7 は、本発明の統合型ガス化炉を矩形型の炉にて具体化した実施形態の水平断面図である。

図 8 は、図 7 の変形例を示す図である。

図 9 は、本発明の常圧型の統合型ガス化炉の実施形態の説明図である。

図 10 は、図 9 の統合型ガス化炉を用いた複合サイクル発電システムの実施形態の説明図である。

図 11 は、本発明の統合型ガス化炉を用いた複合サイクル発電システムの実施形態の説明図である。

図 12 は、図 11 の変形例を示す図である。

図 13 は、常圧型の統合型ガス化炉からの生成ガスから動力回収するシステムの一例を示す説明図である。

図 14 は、加圧型の統合型ガス化炉からの生成ガスから動力回収する

システムの一例を示す説明図である。

図15は、常圧型の統合型ガス化炉からの生成ガスから動力回収するシステムに既設のボイラを組み合わせたシステムの一例を示す説明図である。

図16は、加圧型の統合型ガス化炉からの生成ガスから動力回収するシステムに既設のボイラを組み合わせたシステムの一例を示す説明図である。

図17は、従来の2塔循環型ガス化炉の説明図である。

図18は、従来の流動床炉を用いた複合発電システムの説明図である。

発明を実施するための最良の形態

以下、本発明の実施の形態について、図1乃至図16を参照して説明する。

図1は、本発明のうちのガス化炉部分の基本的な構成を模式的に表現したものである。図1に示す実施の形態の統合型ガス化炉101は、熱分解即ちガス化、チャー燃焼、熱回収の3つの機能をそれぞれ担当するガス化室1、チャー燃焼室2、熱回収室3を備え、例えば全体が円筒形又は矩形を成した炉体内に収納されている。ガス化室1、チャー燃焼室2、熱回収室3は仕切壁11、12、13、14、15で分割されており、それぞれの底部に流動媒体を含む濃厚層である流動床が形成される。各室の流動床、即ちガス化室流動床、チャー燃焼室流動床、熱回収室流動床の流動媒体を流動させるために、各室1、2、3の底である炉底には、流動媒体中に流動化ガスを吹き込む散気装置が設けられている。散気装置は炉底部に敷かれた例えば多孔板を含んで構成され、該多孔板を広さ方向に分割して複数の部屋に分割されており、各室内の各部の空塔

速度を変えるために、散気装置の各部屋から多孔板を通して吹き出す流動化ガスの流速を変化させるように構成している。空塔速度が室の各部で相対的に異なるので各室内の流動媒体も室の各部で流動状態が異なり、そのため内部旋回流が形成される。図中、散気装置に示す白抜き矢印の大きさは、吹き出される流動化ガスの流速を示している。例えば2 bで示す箇所の太い矢印は、2 aで示す箇所の細い矢印よりも流速が大きい。

ガス化室1とチャー燃焼室2の間は仕切壁1 1で仕切られ、チャー燃焼室2と熱回収室3の間は仕切壁1 2で仕切られ、ガス化室と熱回収室の間は仕切壁1 3で仕切られている。即ち、別々の炉として構成されておらず、一つの炉として一体に構成されている。このガス化炉1 0 1では、仕切壁1 1が本発明の第2の仕切壁を構成する。更に、チャー燃焼室2のガス化室1と接する面の近傍には、流動媒体が下降するべく沈降チャー燃焼室4を設ける。即ち、チャー燃焼室2は沈降チャー燃焼室4と沈降チャー燃焼室4以外のチャー燃焼室本体部とに分かれる。このため、沈降チャー燃焼室4をチャー燃焼室の他の部分（チャー燃焼室本体部）と仕切るための仕切壁1 4が設けられている。また沈降チャー燃焼室4とガス化室1は、本発明の第1の仕切壁としての仕切壁1 5で仕切られている。

ここで、流動床と界面について説明する。流動床は、その鉛直方向下方部にある、流動化ガスにより流動状態に置かれている流動媒体（例えば珪砂）を濃厚に含む濃厚層と、その濃厚層の鉛直方向上方部にある流動媒体と多量のガスが共存し、流動媒体が勢いよくはねあがっているスプラッシュゾーンとからなる。流動床の上方即ちスプラッシュゾーンの上方には流動媒体をほとんど含まずガスを主体とするフリーボード部がある。本発明でいう界面は、ある厚さをもった前記スプラッシュゾーン

をいうが、またスプラッシュゾーンの上面と下面（濃厚層の上面）との中間にある仮想的な面ととらえててもよい。

また「流動床の界面より鉛直方向上方においてはガスの流通がないよう仕切壁により仕切られ」というとき、さらに界面より下方の濃厚層の上面より上方においてガスの流通がないようにするのが好ましい。

ガス化室1とチャー燃焼室2の間の仕切壁11は、炉の天井19から炉底（散気装置の多孔板）に向かってほぼ全面的に仕切っているが、下端は炉底に接することはなく、炉底近傍に第2の開口部21がある。但しこの開口部21の上端が、ガス化室流動床界面、チャー燃焼室流動床界面のいずれの界面よりも上部にまで達することはない。さらに好ましくは、開口部21の上端が、ガス化室流動床の濃厚層の上面、チャー燃焼室流動床の濃厚層の上面のいずれよりも上部にまで達することはないようとする。言い換えれば、開口部21は、常に濃厚層に潜っているように構成するのが好ましい。即ち、ガス化室1とチャー燃焼室2とは、少なくともフリーボード部においては、さらに言えば界面より上方においては、さらに好ましくは濃厚層の上面より上方ではガスの流通がないように仕切壁により仕切られていることになる。

またチャー燃焼室2と熱回収室3の間の仕切壁12はその上端が界面近傍、即ち濃厚層の上面よりは上方であるが、スプラッシュゾーンの上面よりは下方に位置しており、仕切壁12の下端は炉底近傍までであり、仕切壁11と同様に下端が炉底に接することはなく、炉底近傍に濃厚層の上面より上方に達することのない開口22がある。

ガス化室1と熱回収室3の間の仕切壁13は炉底から炉の天井にわって完全に仕切っている。沈降チャー燃焼室4を設けるべくチャー燃焼室2内を仕切る仕切壁14の上端は流動床の界面近傍で、下端は炉底に

接している。仕切壁 1 4 の上端と流動床との関係は、仕切壁 1 2 と流動床との関係と同様である。沈降チャー燃焼室 4 とガス化室 1 を仕切る仕切壁 1 5 は、仕切壁 1 1 と同様であり、炉の天井から炉底に向かってほぼ全面的に仕切っており、下端は炉底に接することはなく、炉底近傍に第 1 の開口部 2 5 があり、この開口の上端が濃厚層の上面より下にある。即ち、第 1 の開口部 2 5 と流動床の関係は、第 2 の開口部 2 1 と流動床の関係と同様である。

ガス化室に投入された石炭・ごみ等の燃料は流動媒体から熱を受け、熱分解、ガス化される。典型的には、燃料はガス化室では燃焼せず、いわゆる乾留される。残った乾溜チャーは流動媒体と共に仕切壁 1 1 の下部にある開口部 2 1 からチャー燃焼室 2 に流入する。このようにしてガス化室 1 から導入されたチャーはチャー燃焼室 2 で燃焼して流動媒体を加熱する。チャー燃焼室 2 でチャーの燃焼熱によって加熱された流動媒体は仕切壁 1 2 の上端を越えて熱回収室 3 に流入し、熱回収室内で界面よりも下方にあるように配設された層内伝熱管 4 1 で収熱され、冷却された後、再び第 2 仕切壁 1 2 の下部開口 2 2 を通ってチャー燃焼室 2 に流入する。

ガス化室 1 に投入された可燃物の揮発分は瞬時にガス化し、続いて固体炭素分（チャー）のガス化が比較的緩慢に起こる。したがって、ガス化室 1 内におけるチャーの滞留時間（ガス化室 1 に投入されたチャーがチャー燃焼室 2 に抜けるまでの時間）は燃料のガス化割合（炭素転換率）等を決める重要なファクターとなり得る。

珪砂等を流動媒体として用いた場合、チャーの比重が流動媒体の比重と比較して小さいため、主に層の上部に集中してチャーが蓄積される。前記のようにガス化室への流動媒体の流入及びガス化室からチャー燃焼

室への流動媒体の流出が仕切り壁下開口部より生じる炉構造とした場合、主に層上部に存在するチャーよりも、主に層下部に存在する流動媒体の方が、ガス化室からチャー燃焼室へと流出し易く、逆にチャーはガス化室からチャー燃焼室へと流出しにくい。したがって、その分だけ、ガス化室が完全混合層となっている場合よりもチャーのガス化室での平均滞留時間を長く維持することが可能になる。

その場合、沈降チャー燃焼室4よりガス化室へと流入した流動媒体は、ガス化室内で層内に広く混合されることなく、主にガス化室下部のみを通過してチャー燃焼室へと流出することになるが、その場合においても、ガス化室炉床より供給される流動化ガスと流動媒体とが熱交換を行ない、流動化ガスからチャーへと熱を伝えることによって、間接的にチャーのガス化に用いられる熱を流動媒体の顯熱から供給することは可能である。

また、ガス化室内流動化ガス速度を制御し、前記ガス化室内旋回流の様相を制御することにより、ガス化室内での流動媒体とチャーの混合状態を変化させることが可能であり、それにより、チャーのガス化室内平均滞留時間の制御が可能となる。

一方、本炉構造においては、ガス化室とチャー燃焼室との圧力差を制御することにより、ガス化室内流動層高を自由に変化させることが可能であるため、その手法を用いてもガス化室内チャー滞留時間を制御することが可能である。

ここで、熱回収室3は本発明の燃料のガス化システムに必須ではない。即ち、ガス化室1で主として揮発成分がガス化した後に残る主としてカーボンからなるチャーの量と、チャー燃焼室2で流動媒体を加熱するのに必要とされるチャーの量がほぼ等しければ、流動媒体から熱を奪うことになる熱回収室3は不要である。また前記チャーの量の差が小さけれ

ば、例えば、ガス化室 1 でのガス化温度が高目になり、ガス化室 1 で発生する CO ガスの量が増えるという形で、バランス状態が保たれる。

しかしながら図 1 に示すように熱回収室 3 を備える場合は、チャーの発生量の大きい石炭から、ほとんどチャーを発生させない都市ゴミまで、幅広く多種類の燃料に対応することができる。即ち、どのような燃料であっても、熱回収室 3 における熱回収量を加減することにより、チャー燃焼室 2 の燃焼温度を適切に調節し、流動媒体の温度を適切に保つことができる。

一方チャー燃焼室 2 で加熱された流動媒体は第 4 仕切壁 1 4 の上端を越えて沈降チャー燃焼室 4 に流入し、次いで仕切壁 1 5 の下部にある開口部 2 5 からガス化室 1 に流入する。

ここで、各室間の流動媒体の流動状態及び移動について説明する。

ガス化室 1 の内部で沈降チャー燃焼室 4 との間の仕切壁 1 5 に接する面の近傍は、沈降チャー燃焼室 4 の流動化と比べて強い流動化状態が維持される強流動化域 1 b になっている。全体としては投入された燃料と流動媒体の混合拡散が促進される様に、場所によって流動化ガスの空塔速度を変化させるのが良く、一例として図 1 に示したように強流動化域 1 b の他に弱流動化域 1 a を設けて旋回流を形成させるようとする。

チャー燃焼室 2 は中央部に弱流動化域 2 a 、周辺部に強流動化域 2 b を有し、流動媒体およびチャーが内部旋回流を形成している。ガス化室 1 、チャー燃焼室 2 内の強流動化域の流動化速度は 5 Umf 以上、弱流動化域の流動化速度は 5 Umf 以下とするのが好適であるが、弱流動化域と強流動化域に相対的な明確な差を設ければ、この範囲を超えて特に差し支えはない。チャー燃焼室 2 内の熱回収室 3 、および沈降チャー燃焼室 4 に接する部分には強流動化域 2 b を配するようとするのがよい。また必

要に応じて炉底には弱流動化域側から強流動化域側に下るような勾配を設けるのが良い（図2）。ここで、Um_fとは最低流動化速度（流動化が開始される速度）を1Um_fとした単位である。即ち、5Um_fは最低流動化速度の5倍の速度である。

このように、チャー燃焼室2と熱回収室3との仕切壁12近傍のチャー燃焼室側の流動化状態を熱回収室3側の流動化状態よりも相対的に強い流動化状態に保つことによって、流動媒体は仕切壁12の流動床の界面近傍にある上端を越えてチャー燃焼室2側から熱回収室3の側に流入し、流入した流動媒体は熱回収室3内の相対的に弱い流動化状態即ち高密度状態のために下方（炉底方向）に移動し、仕切壁12の炉底近傍にある下端（の開口22）をくぐって熱回収室3側からチャー燃焼室2の側に移動する。

同様に、チャー燃焼室2の本体部と沈降チャー燃焼室4との仕切壁14近傍のチャー燃焼室本体部側の流動化状態を沈降チャー燃焼室4側の流動化状態よりも相対的に強い流動化状態に保つことによって、流動媒体は仕切壁14の流動床の界面近傍にある上端を越えてチャー燃焼室2本体部の側から沈降チャー燃焼室4の側に移動流入する。沈降チャー燃焼室4の側に流入した流動媒体は、沈降チャー燃焼室4内の相対的に弱い流動化状態即ち高密度状態のために下方（炉底方向）に移動し、仕切壁15の炉底近傍にある下端（の開口25）をくぐって沈降チャー燃焼室4側からガス化室1側に移動する。なおここで、ガス化室1と沈降チャー燃焼室4との仕切壁15近傍のガス化室1側の流動化状態は沈降チャー燃焼室4側の流動化状態よりも相対的に強い流動化状態に保たれている。このことは流動媒体の沈降チャー燃焼室4からガス化室1への移動を誘引作用により助ける。

同様に、ガス化室1とチャー燃焼室2との間の仕切壁11近傍のチャー燃焼室2側の流動化状態はガス化室1側の流動化状態よりも相対的に強い流動化状態に保たれている。したがって、流動媒体は仕切壁11の流動床の界面より下方、好ましくは濃厚層の上面よりも下方にある（濃厚層に潜った）開口21を通してチャー燃焼室2の側に流入する。

一般的には、A、Bの2つの室間の流動媒体の移動は、A、B室が、上端が界面の高さ近傍にある仕切壁Xによって仕切られているときは、その仕切壁X近傍のA室とB室の流動化状態を比較して、例えばA室側の流動化状態がB室側の流動化状態よりも強く保たれていれば、流動媒体は仕切壁Xの上端を越えてA室側からB室側に流入移動する。また、A、B室が、下端が界面より下方、好ましくは濃厚層の上面より下方にある（濃厚層に潜った）仕切壁Yによって仕切られているとき、言い換えれば界面よりも下方に開口を、あるいは濃厚層に潜った開口を有する仕切壁Yによって仕切られているときは、その仕切壁Y近傍のA室とB室の流動化状態を比較して、例えばA室側の流動化状態がB室側の流動化状態よりも強く保たれていれば、流動媒体は仕切壁Yの下端の開口をくぐってB室側からA室側に流入移動する。これは、A室側の流動媒体の相対的に強い流動状態の誘引作用によるとも言えるし、B室側の相対的に弱い流動状態によるB室内の流動媒体の密度がA室側よりも高いことによるとも言える。また以上のような各室間の流動媒体の移動がある一つの箇所で生じたために崩れようとする各室間のマスバランスの平衡状態を保つように、他の箇所で各室間の流動媒体の移動が生じる場合もある。

また、1つの室を画成する仕切壁としての、または1つの室内の仕切壁としての仕切壁Xの上端と、同じく仕切壁Yの下端との相対的関係に

ついて言えば、上端を越えて流動媒体を移動させようとする仕切壁Xのその上端は、下端を流動媒体を潜らせて移動させようとする仕切壁のその下端よりも、鉛直方向上方に位置する。このように構成することによって、その室に流動媒体を充填して流動化させたとき、流動媒体の充填量を適切に決めれば、前記上端を流動床の界面近傍に位置させ、かつ前記下端を濃厚層に潜らせるように設定することができ、仕切壁近傍の流動化の強さを前述のように適切に設定することにより、流動媒体を仕切壁Xあるいは仕切壁Yに関して所定の方向に移動させることができる。また、仕切壁Yによって仕切られる2つの室間のガスの流通をなくすことができる。

以上のこととを図1の場合に当てはめて説明すれば、チャー燃焼室2と熱回収室3とは、上端が界面の高さ近傍にあり下端が濃厚層に潜った仕切壁12で仕切られており、仕切壁12近傍のチャー燃焼室2側の流動化状態が、仕切壁12近傍の熱回収室3側の流動化状態よりも強く保たれている。したがって、流動媒体は仕切壁12の上端を越えてチャー燃焼室2側から熱回収室3側に流入移動し、また仕切壁12の下端をくぐって熱回収室3側からチャー燃焼室2側に移動する。

また、チャー燃焼室2とガス化室1とは、下端が濃厚層に潜った第1の仕切壁15により仕切られており、仕切壁15のチャー燃焼室側には、上端が界面の高さ近傍にある仕切壁14と仕切壁15を含む仕切壁で画成された沈降チャー燃焼室4が設けられ、仕切壁14近傍のチャー燃焼室2本体部側の流動化状態が、仕切壁14近傍の沈降チャー燃焼室4側の流動化状態よりも強く保たれている。したがって、流動媒体は仕切壁14の上端を越えてチャー燃焼室2の本体部側から沈降チャー燃焼室4側に流入移動する。このように構成することにより沈降チャー燃焼室4

に流入した流動媒体は少なくともマスバランスを保つように、仕切壁 1 5 の下端をくぐって沈降チャー燃焼室 4 からガス化室 1 に移動する。このとき、仕切壁 1 5 近傍のガス化室 1 側の流動化状態が、仕切壁 1 5 近傍の沈降チャー燃焼室 4 側の流動化状態よりも強く保たれていれば、誘引作用により流動媒体の移動が促進される。

さらにガス化室 1 とチャー燃焼室 2 本体部とは、下端が濃厚層に潜った第 2 の仕切壁 1 1 で仕切られている。沈降チャー燃焼室 4 からガス化室 1 に移動してきた流動媒体は、さきのマスバランスを保つように仕切壁 1 1 の下端をくぐってチャー燃焼室 2 に移動するが、このとき、仕切壁 1 1 近傍のチャー燃焼室 2 側の流動化状態が、仕切壁 1 1 近傍のガス化室 1 側の流動化状態よりも強く保たれていれば、さきのマスバランスを保つようにだけではなく、強い流動化状態により流動媒体はチャー燃焼室 2 側に誘引され移動する。

図 1 の実施の形態では、流動媒体の沈降をチャー燃焼室 2 の一部である沈降チャー燃焼室 4 で行わせているが、同様な構成をガス化室 1 の一部に、具体的には開口 2 1 の部分に、不図示のいわば沈降ガス化室ともいうべき形で設けてもよい。即ち、沈降ガス化室の流動化状態を隣接のガス化室本体部のそれよりも相対的に弱くして、ガス化室本体部の流動媒体が沈降ガス化室に仕切壁の上端を越えて流入し、沈降した流動媒体が開口 2 1 を通してチャー燃焼室に移動する。このとき沈降チャー燃焼室 4 は、沈降ガス化室と併設してもよいし、設けなくてもよい。沈降ガス化室を設ければ、図 1 の場合と同様に、流動媒体はチャー燃焼室 2 から開口 2 5 を通してガス化室 1 へ、またガス化室 1 から開口 2 1 を通してチャー燃焼室 2 へと移動する。

熱回収室 3 は全体が均等に流動化され、通常は最大でも熱回収室に接

したチャー燃焼室2の流動化状態より弱い流動化状態となるように維持される。従って、熱回収室3の流動化ガスの空塔速度は0～3 Umfの間で制御され、流動媒体は緩やかに流動しながら沈降流動層を形成する。なおここで0 Umfとは、流動化ガスが止まった状態である。このような状態にすれば、熱回収室3での熱回収を最小にすることができます。すなわち、熱回収室3は流動媒体の流動化状態を変化させることによって回収熱量を最大から最小の範囲で任意に調節することができる。また、熱回収室3では、流動化を室全体で一様に発停あるいは強弱を調節してもよいが、その一部の領域の流動化を停止し他を流動化状態に置くこともできるし、その一部の領域の流動化状態の強弱を調節してもよい。

各室間の仕切壁は基本的にはすべて垂直壁であるが、必要に応じてせり出し部を設けても良い。例えば図2に示すように、仕切壁12、14のチャー燃焼室2の流動層の界面近傍に中心向きのせり出し部32を設けるようにしてもよい。これにより仕切壁近傍で流動媒体の流れ方向を矯正し、内部旋回流の形成を促進することもできる。また、燃料中に含まれる比較的大きな不燃物はガス化室1の炉底に設けた不燃物排出口33から排出する。また、各室の炉底面は水平でも良いが、図2に示すように、流動媒体の流れの滞留部を作らないようにするために、炉底近傍の流動媒体の流れに従って、炉底を傾斜させても良い。なお、不燃物排出口は、ガス化室1の炉底だけでなく、チャー燃焼室2あるいは熱回収室3の炉底に設けてもよい。

ガス化室1の流動化ガスとして最も好ましいのは生成ガスを昇圧してリサイクル使用することである。このようにすればガス化室から出るガスは純粋に燃料から発生したガスのみとなり、非常に高品質のガスを得ることができる。それが不可能な場合は水蒸気等、できるだけ酸素を含

まないガス（無酸素ガス）を用いるのが良い。ガス化の際の吸熱反応によって流動媒体の層温が低下する場合は、必要に応じて無酸素ガスに加えて、酸素もしくは酸素を含むガス、例えば空気を供給して生成ガスの一部を燃焼させるようにしても良い。チャー燃焼室2に供給する流動化ガスは、チャー燃焼に必要な酸素を含むガス、例えば空気、酸素と蒸気の混合ガスを供給する。また熱回収室3に供給する流動化ガスは、空気、水蒸気、燃焼排ガス等を用いる。

ガス化室1とチャー燃焼室2の流動床の上面（スプラッシュゾーンの上面）より上方の部分すなわちフリーボード部は完全に仕切壁で仕切られている。さらに言えば、流動床の濃厚層の上面より上方の部分すなわちスプラッシュゾーン及びフリーボード部は完全に仕切壁で仕切られているので、図3A及び図3Bに示すように、チャー燃焼室2とガス化室1のそれぞれの圧力P1, P2のバランスが多少乱れても、双方の流動層の界面の位置の差、あるいは濃厚層の上面の位置の差、即ち層高差が多少変化するだけで乱れを吸収することができる。即ち、ガス化室1とチャー燃焼室2とは、仕切壁15で仕切られているので、それぞれの室の圧力P1, P2が変動しても、この圧力差は層高差で吸収でき、どちらかの層が開口25の上端に下降するまで吸収可能である。従って、層高差で吸収できるチャー燃焼室2とガス化室1のフリーボードの圧力差（P1-P2又はP2-P1）の上限値は、互いを仕切る仕切壁15の下部の開口25の上端からの、ガス化室流動床のヘッドと、チャー燃焼室流動床のヘッドとのヘッド差にほぼ等しい。

以上説明した実施の形態の統合型ガス化炉101では、一つの流動床炉の内部に、ガス化室、チャー燃焼室、熱回収室の3つを、それぞれ隔壁を介して設け、更にチャー燃焼室とガス化室、チャー燃焼室と熱回収

室はそれぞれ隣接して設けられている。この統合型ガス化炉 101 は 2 塔循環方式の炉と違って、チャー燃焼室とガス化室間に大量の流動媒体循環を可能にしているので、流動媒体の顯熱だけでガス化のための熱量を充分に供給でき、改良型加圧流動床炉を用いた発電システムの原則である「できるだけ少量の、且つ発熱量の高い生成ガスを得る」ことが最も容易に実現できる。

さらに本発明の実施の形態では、チャー燃焼ガスと生成ガスの間のシールが完全にされるので、ガス化室とチャー燃焼室の圧力バランス制御がうまくなされ、燃焼ガスと生成ガスが混ざることがなく、生成ガスの性状を低下させることもない。

また、熱媒体としての流動媒体とチャーはガス化室 1 側からチャー燃焼室 2 側に流入するようになっており、さらに同量の流動媒体がチャー燃焼室 2 側からガス化室 1 側に戻るよう構成されているので、自然にマスバランスがとれ、流動媒体をチャー燃焼室 2 側からガス化室 1 側に戻すために、コンベヤ等を用いて機械的に搬送する必要もなく、高温粒子のハンドリングの困難さ、顯熱ロスが多いといった問題もない。

以上説明したように、本発明の実施の形態では、図 1 に示すように、1 つの流動床炉内に、燃料の熱分解・ガス化、チャー燃焼、及び層内熱回収の 3 つの機能を共存させ、チャー燃焼室内の高温流動媒体を熱分解・ガス化の熱源供給の熱媒体としてガス化室に供給する統合型ガス化炉において、前記ガス化室と熱回収室は仕切壁によって炉底から天井にわたって完全に仕切るか、もしくは互いに接しないように配置し、且つガス化室とチャー燃焼室は流動床の界面より上部においては完全に仕切壁で仕切り、該仕切壁近傍のガス化室側の流動化状態の強さとチャー燃焼室側の流動化状態の強さとの相対的な関係を所定の関係に保つことによ

って、当該仕切壁の炉底近傍に設けた開口部を通じて、チャー燃焼室側からガス化室側へ流動媒体を移動させるように構成されている。また、ガス化室側からチャー燃焼室側へチャーを含んだ流動媒体を移動させるように構成されている。

この実施の形態によれば、ガス化室とチャー燃焼室は流動床の界面より上部においては完全に仕切壁で仕切られているので、それぞれの室のガス圧力が変動しても圧力バランスが崩れて燃焼ガスと生成ガスが混ざるという問題を生じない。このため、ガス化室とチャー燃焼室の間に特別な圧力バランス制御を必要としない。そして、該仕切壁近傍のガス化室側の流動化状態とチャー燃焼室側の流動化状態の強弱を所定の状態に保つことによって、当該仕切壁の炉底近傍に設けた開口部を通じて、チャー燃焼室側からガス化室側へ安定に流動媒体を大量に移動させることが出来る。このため、チャー燃焼室側からガス化室側への流動媒体の移動に機械的な高温粒子のハンドリング手段を必要としない。

上記統合型ガス化炉では、前記チャー燃焼室内のガス化室に接した個所に設けた弱流動化域を沈降チャー燃焼室とし、炉底から流動床界面近傍まで達する仕切壁によって、他のチャー燃焼室と区分けして構成してもよく、また、前記チャー燃焼室、沈降チャー燃焼室、ガス化室内にそれぞれ強流動化域と弱流動化域を設け、各室内に流動媒体の内部旋回流を生じさせるように構成してもよい。

さらに以上の統合型ガス化炉では、前記熱回収室をチャー燃焼室の強流動化域に接するように配置し、該熱回収室とチャー燃焼室は炉底近傍に開口部を備え、且つその上端が流動床界面近傍まで達する仕切壁で仕切り、且つ仕切壁近傍のチャー燃焼室側の流動化状態を熱回収室側の流動化状態よりも相対的に強くして流動媒体の循環力を生じさせるように

してもよく、また、前記熱回収室を沈降チャー燃焼室の強流動化域に接するように配置し、該熱回収室と沈降チャー燃焼室は炉底近傍に開口部を備え、且つその上端が流動床界面近傍まで達する仕切壁で仕切り、且つ仕切壁近傍の沈降チャー燃焼室側の流動化状態を熱回収室側の流動化状態よりも相対的に強くして流動媒体の循環力を生じさせるようにしてもよい。

また、前記ガス化室の流動化ガスとしては無酸素ガスを用いるが、このいわゆる無酸素ガスとしては水蒸気等の全く酸素を含まないガスを用いるようにしてもよい。

また、前記ガス化室、チャー燃焼室、熱回収室の各室の炉底面を、炉底近傍の流動媒体の流線に沿って傾斜させてもよく、前記チャー燃焼室内のガス化炉に接した弱流動化域の流動化状態を制御することによって、該ガス化室の温度を調節するように構成してもよい。

図4は、本発明を鉛直方向に中心軸線を有する円筒型の炉に適用した場合の実施形態である。円筒形の統合型ガス化炉10の炉内には外壁と同心の円筒形の仕切壁10aが設けられており、その仕切壁10aの内側はチャー燃焼室2を形成している。その仕切壁10aの外側でチャー燃焼室を取り巻く円環形状の部分には沈降チャー燃焼室4、ガス化室1、熱回収室3がそれぞれ扇形状（2つの大小の同心円で形成される円環状領域を2つの半径で切り取った形状、いわば扇子の紙の部分の形状）に配置されている。ガス化室1、熱回収室3は、それぞれ沈降チャー燃焼室4を挟んで反対側に配置されている。このように円筒型に形成すると、後で説明する図11に示す統合型ガス化炉のように、炉を圧力容器に収容し易い。なお統合型ガス化炉10の基本的構造は、加圧されている点、また圧力容器50に収容しやすく配置されている点を除き、図1のガス

化炉 101 と同様である。

図 5 は、図 4 に示す実施形態の流動層部分の水平断面図である。中央部にチャー燃焼室 2、周辺部にガス化室 1、その反対側に熱回収室 3 が設けられ、ガス化室 1 と熱回収室 3 の間に扇形の沈降チャー燃焼室 4 が 2 個所設けられている。扇形のガス化室 1 の炉底に設けられた散気装置も複数に分割されており、扇形の両端部は空塔速度を早くした強流動化域 1 b が、中央部には空塔速度を相対的に遅くした弱流動化域 1 a が設けられ、ガス化室内の流動媒体も強流動化域で吹き上がり、弱流動化域で沈降する内部旋回流を形成している。この旋回流によってガス化室に投入された燃料 F がガス化室 1 内の全面に広く拡散し、ガス化室が効果的に利用できる。

ガス化室 1 の流動化ガスは主に生成ガスをリサイクルして用いたり、水蒸気や燃焼排ガスといった酸素を含まないガスを用いる。しかしながら、ガス化室の温度が下がりすぎるような場合には、必要に応じて酸素もしくは酸素を含んだガス、例えば空気を混入させても良い。ガス化室 1 とチャー燃焼室 2 の仕切壁 1 1 には炉底付近に開口部 2 1 が設けられており、その開口部 2 1 以外は天井にわたって完全に仕切られている。ガス化室 1 で熱分解、ガス化を終えた燃料 F がその開口部を通ってチャー燃焼室 2 側へ流出する。開口 2 1 はガス化室 1 の全面にわたって設けても良いが、弱流動化域に限って設けても良い。尚、図 5 において黒い矢印は炉底部の仕切壁開口部等を介した沈降流による流動媒体の移動経路を示し、灰色の矢印は仕切壁上端部等を乗り越えた上昇流による流動媒体の移動経路を示す。

ガス化室 1 の運転温度は燃料によって最適温度に調節することができる。石炭のように比較的ガス化率が低く、チャーの発生が多い燃料の場

合はガス化室の温度を800~900°Cに保つことによって、高いガス化率を得ることができる。また、都市ごみのように、殆どチャーを発生しない燃料の場合は層温を350~450°Cに保つことによって脱塩作用は維持しつつ、揮発分の放出速度を抑えた安定した運転を行なうことができる。

チャー燃焼室2の炉底に設けられた散気装置は中央部と周辺部とに分割されており、中央部が弱流動化域2a、周辺部が強流動化域2bとなるように散気している。強流動化域2bは流動媒体が吹き上がる上昇流動層を、弱流動化域2aは逆に流動媒体が下降する沈降流動層を形成し、全体として内部旋回流を形成している。

チャー燃焼室2はチャー燃焼を完結させ、且つガス化室1への顯熱供給を容易にするため、できるだけ高温に維持するのが良く、層温は900°C近辺に維持するのが望ましい。一般に内部で発熱反応が生じる流動層燃焼の場合、900°C近辺での運転ではアグロメ形成の危険性が高まるが、上記実施形態の場合はチャー燃焼室内の旋回流によって熱拡散、チャー拡散が促進され、アグロメ形成のない安定したチャー燃焼が可能になる。ここで、アグロメとは、流動媒体や燃料の灰分が溶融して固化したかたまりのことをいう。

沈降チャー燃焼室4は沈降流動層を形成すべく、全体として弱流動化状態とするのが望ましいが、図4に示すように、沈降チャー燃焼室4内部には熱拡散を促進するために弱流動化域4aと強流動化域4bを設け、ガス化室に接した側が沈降流動層になるように内部旋回流を形成しても良い。

この実施形態において、沈降チャー燃焼室と熱回収室との間の仕切壁16は、図4に示すように下端が炉底に接しており、上端は流動層の界面よりもかなり高い位置まであり、沈降チャー燃焼室4と熱回収室3と

の間の流動媒体の流れを防止している。何故なら、石炭のように固定炭素の多い燃料については、沈降チャー燃焼室からガス化室に流入する流動媒体はできるだけ高温であるほうが望ましく、熱回収室 3 で冷却された流動媒体が混合すること、およびガス化室 1 に流入すべき高温の流動媒体が、熱回収室 3 へ流入することは好ましくないからである。

但し、本発明をごみのガス化燃焼に供する場合は仕切壁 1 6 の上端は流動層界面の近傍までとし、炉底付近には開口を設け、沈降チャー燃焼室 4 と熱回収室 3 の間の流動媒体循環を生じさせても良い。何故ならごみのようにチャー生成割合の低い燃料の場合、ガス化室の温度を下げてガス化率を低下させないと、チャー燃焼室内の燃焼温度が不足してしまうからである。このような場合には、図 6 に示すように、熱回収室 3 の炉底の散気装置を分割し、且つ熱回収室 3 を仕切り壁 1 6 a にて仕切り、1 つはチャー燃焼室用、もう一つは沈降チャー燃焼室用にすることで、チャー燃焼室とガス化室の温度をそれぞれ独立に制御することが可能になる。この時、沈降チャー燃焼室 4 の炉底の散気装置についても熱回収室に接した部分が強流動化域 4 b を形成するように分割するのが良い。

熱回収室 3 には放射状に層内伝熱管 4 1 が配置されており、チャー燃焼室 2 から仕切壁 1 2 を越えて流入した流動媒体はそこで冷却され、仕切壁 1 2 の下部の開口部 2 2 から再びチャー燃焼室 2 に戻るが、周辺部に向かって層内管ピッチが広がっていることにより、流動媒体が層内管群を流れる際の抵抗が周辺部の方が小さい。このため、チャー燃焼室 2 から流入した流動媒体は周辺部にも均一に分散し、熱回収室 3 の容積全体を有効に利用できるので、全体としてコンパクトな構造となる。

図 7 は、本発明の矩形炉での実施形態である。本発明を常圧で実施する場合は、特にガス化炉外壁を耐圧構造にする必要はないので、このよ

うな矩形炉が製作の面からも好適である。

燃料の種類によってガス化炉の温度を下げて運転するほうが好ましい場合には、図7に示すように前述の円筒型炉と同様、熱回収室3をチャー燃焼室用と沈降チャー燃焼室用にそれぞれ仕切壁13、16で仕切り、ガス化室1に供給する流動媒体の温度をチャー燃焼室2の温度と独立して制御できるようにするのが良い。

また図7に示すように矩形炉に適用した場合、チャー燃焼室2の弱流動化域と熱回収室3とが接した部分の流動媒体は双方が共に弱流動化状態であるため、明確な移動方向が定まらず、熱媒体として有効に機能しない場合がある。このような場合は図8に示すように、その部分を炉外に開放し、例えばリサイクルチャーの供給口を設けるなど、有効に利用しても良い。

図9は、常圧の流動床炉に本発明を適用した実施形態である。

この実施形態においては燃料中に塩素を含んでいても、前述同様、熱回収室3に配された層内伝熱管41やチャー燃焼室フリーボード部の伝熱管42は殆ど塩素と接触することができないため、蒸気温度を従来のごみ焼却炉の最高蒸気温度である350°C以上はもちろん、500°C以上にまで高めることができる。またチャー燃焼室2からガス化室1側に燃焼ガスが吹き込む場所は、燃焼ガス中の残酸素が可燃ガスと反応して高温になるので、チャーの燃焼、石灰石の脱炭酸化が促進され、燃焼効率、脱硫効率を向上させることができる。この時、チャー燃焼室2からガス化室1へ吹き込む際の圧力損失分は、約200~400mmAq程度となるが、仕切壁15の下端から流動床の界面までの流動層のヘッドは通常1500~2000mmAq以上であることから、図3A及び図3Bに示すようにガス化室の層高がチャー燃焼室の層高より若干層高が低くなるだけで自然に圧力差を維持

することができ、特別な制御は不要である。

図10は、本発明の統合型ガス化炉から発生したガスを用いて灰を溶融する場合のプロセスフローである。この実施形態においては、常圧の炉体10内にガス化室1、チャー燃焼室2、熱回収室3、沈降チャー燃焼室4等を備え、流動媒体を大量にこれらの各室を循環させることで、安定な運転を可能ならしめることは、上述の各実施形態と同様である。この実施形態においては、ガス化室1の熱分解ガスの一部は高温溶融炉54に導入され、灰の溶融熱処理に利用される。残りの熱分解ガスは、チャー燃焼ガスと共に、排熱ボイラで熱を取り、バグフィルタで除塵した後、排気される。

図11は、本発明の統合ガス化炉を複合サイクル発電システムに利用した場合の実施形態を示す。

本発明の統合型ガス化炉10が圧力容器50の中に配され、加圧下で運転される。ガス化炉10の外壁が圧力容器を兼ねた一体構造であっても良い。ガス化室1で発生した可燃ガスの一部は常圧の高温溶融炉54に供給され、灰の溶融熱として利用される。残りの可燃ガスはチャー燃焼ガスと共に高温集塵機51で脱塵された後、本発明の助燃室としてのトッピングコンバスタ53に導かれ、本発明のエネルギー回収装置としてのガスタービン部55に供給するための高温ガスを生成する。ガスタービン部55は、通常のガスタービンの出力タービン部と同様の装置であり、パワーリカバリータービンとも呼ばれるものである。

チャー燃焼室2の上部には必要に応じて伝熱管42を設置しても良い。燃料中に塩素が含まれている場合でも、塩素はガス化室1で発生する生成ガス側にほとんど含まれてしまうので、本実施形態におけるチャー燃焼ガスは殆ど塩素を含まない。したがって、伝熱管42は蒸気過熱器と

して 500°C 以上の蒸気過熱に用いることができる。熱回収室 3 内に配置された層内伝熱管 41 は伝熱管 42 よりもさらに腐食環境ではないので、蒸気過熱器としては伝熱管 42 よりも高温にまで対応できる。燃料中の塩素濃度が比較的高い場合は、可燃ガス側の塩素濃度も高くなるので、可燃ガスの全量を高温溶融炉 54 側に導き、トッピングコンバスター 53、ガスタービン部 55 の腐食を防止する。

図 11 に示す、加圧流動床炉による発電システムは、まず加圧ガス化炉で石炭をガス化し、発生した未燃カーボン（いわゆるチャー）を加圧チャー燃焼室 2 で燃焼するが、このチャー燃焼室 2 からの燃焼ガスとガス化室 1 からの生成ガスをそれぞれ高温集塵機 51、52 でクリーニングした後、トッピングコンバスター 53 で混合燃焼させて高温ガスを得て、ガスタービン部 55 を駆動する。高温集塵機 51、52 としては、セラミックフィルター、耐熱合金を用いた金属フィルターあるいはサイクロンセパレーター等が用いられる。

この加圧流動床炉による発電システムにおいて重要なことは、如何にガスタービン部 55 への流入ガスの温度をガスタービン側で決まる許容最高温度まで高められるかであるが、これを制約する条件として最も大きいものが生成ガスのクリーニングである。ここでクリーニングとは、例えば脱硫である。脱硫は例えばガスタービン部のタービン翼の保護のために必要である。

生成ガスのクリーニングは還元雰囲気での脱硫反応の最適温度の関係上、通常 450°C 程度まで冷却する必要がある。これに対して、ガスタービンの入り口ガス温度は高いほど効率が高まるので、できるだけ高温にすべきである。現状ではガスタービン構成材料の耐熱性、耐食性の制約から、1200°C 弱にまで高めるのが一般的である。即ち、ガスクリ

ーニングの温度 450°C からガスタービン入り口温度の 1200°C まで、ガスの温度を上げられるだけの発熱量を有することが生成ガスには要求される。なお、図 1 1 には不図示であるが、ガス化室 1 と高温集塵器 5 2 との間のガス経路には、生成ガスクーラが設けられガスを例えば 450°C 程度まで冷却し、さらに典型的には脱硫装置も設けられる。これはガスタービンの翼の保護のために行われる。なお、チャー燃焼室からのガス経路にはガスクーラや脱硫装置は通常は不要である。それは、炉内には石灰石が投入されまた石灰石は流動媒体と共に循環しており、チャー燃焼室 2 はまた酸素の存在する酸化雰囲気にあるので、硫黄分は CaSO_4 として除去されるからである。

従って、改良型の加圧流動床炉による発電システムにおいては、できるだけ少量で、且つ単位発熱量の高い生成ガスを得る方向でシステムの開発が進められるべきである。何故ならば、450°C でクリーニングすべき生成ガス量が減れば、冷却による顯熱ロスが減り、且つ生成ガスに求められる最低必要発熱量も低くて済む。更に生成ガスの発熱量がガスタービン入り口の所要のガス温度に上昇させるのに必要な発熱量以上であれば、燃焼空気比を上げてガスタービンに流入するガス量を増加させることができるので、更なる発電効率の向上を期待できるからである。

図 1 1 のシステムでは、チャー燃焼室 2 からの燃焼ガスはセラミックフィルター等の高温集塵器 5 1 で集塵、脱塵された後、タービン部 5 5 に導かれ動力が回収される。このとき、燃焼ガスは直接タービン部 5 5 に導いてもよいが、この燃焼ガスの温度はあまり高くないので、動力回収の効率は必ずしも高くはない。そこで、集塵器 5 1 からの燃焼ガスはトッピングコンバスター 5 3 に導く。一方、ガス化室 1 から導き出された生成ガス（可燃ガス）は、セラミックフィルター等の集塵器 5 2 で集塵、

脱塵された後、トッピングコンバスター 5 3 に導かれ、ここで燃焼される。さきに述べたチャー燃焼室からの燃焼ガスにとって助燃ということになる。この燃焼熱により、チャー燃焼室からの燃焼ガス（及び助燃に用いられた生成ガスの燃焼ガス）は 1200°C （出力タービン部の耐熱温度によっては 1300°C も可能）程度の高温ガスとなる。この高温ガスを出力タービン部（動力回収装置）5 5 に供給する。このような装置においては、チャー燃焼室 2 とトッピングコンバスター 5 3 を合わせたものが、通常のガスタービンの燃焼器に相当する。

そして出力タービン部の回転軸に減速機を介して、あるいは直接連結された発電機 5 7 を駆動し、電力を発生する。なお、図 1 1 の実施の形態では、出力タービン部 5 5 の回転軸には圧縮機（典型的には軸流空気圧縮機）5 6 が直結されており、圧縮空気を発生する。この圧縮空気は、主としてチャー燃焼室 2 の燃焼空気としてチャー燃焼室 2 に供給される。また一部はトッピングコンバスター 5 3 に供給される。もっともトッピングコンバスター 5 3 では、通常は、チャー燃焼室 2 からの排ガス中に残る酸素で生成ガスを燃焼させることができる。なお、この実施の形態では、圧力容器 5 0 内は $5 \sim 10 \text{ kg/cm}^2$ 程度に加圧される。圧力容器 5 0 内は、出力タービン部 5 5 の仕様に合わせて、例えば 30 kg/cm^2 程度にまで加圧してもよい。

図 1 1 の実施の形態では、出力ガスタービン部 5 5 には、チャー燃焼室 2 からの燃焼ガスとガス化室 1 からの生成ガスとを導くため、これらを一度混合する予混合室としてもトッピングコンバスター 5 3 が必要であるが、出力ガスタービン部 5 5 に、ガス化室 1 からの生成ガスだけを導くばあいには、後で説明する図 1 4 のガスタービン 1 0 9 に付属する燃焼器 1 0 5 に直接生成ガスを導入してもよい。ガス化室 1 からの生成ガ

スだけを導くばあいは、熱量の高いガスを燃料としてガスタービン 5 5 を運転することができる。

また、出力タービン部 5 5 から排出された排気ガスは経路 1 2 5 を通って廃熱ボイラ 5 8 に導かれ、その後排気ガス経路 1 2 8 を通って不図示の脱硫、脱硝装置等を介して、不図示の煙突から放出される。

一方、廃熱ボイラ 5 8 では排気ガスの熱を回収して、水蒸気を発生する。この水蒸気は水蒸気配管 1 2 7 を通って、蒸気タービン 1 1 2 に供給され、蒸気タービン 1 1 2 の回転軸に減速機を介して、あるいは直接連結された発電機 1 1 3 を駆動し、電力を発生する。蒸気タービン 1 1 2 に供給される水蒸気には、伝熱管 4 1 、 4 2 からの水蒸気を含めてもよい。

図 1 2 は、本発明の統合型ガス化炉を複合サイクル発電システムに利用した場合の他の実施形態を示す。

石炭のように比較的発熱量の高い燃料の場合、高温溶融炉を完全燃焼状態としなくとも溶融に充分な温度にまで上げることができるので、このような場合には高温溶融炉 5 4 の代わりに高温ガス化炉 6 0 を配置し、ガスを生成するのが効果的である。高温ガス化炉としてはガスもスラグも下方に流下させ、ガスの熱でスラグを過熱し、スラグの冷却による流動不良を防止しながらガスを一度水にくぐらせて急冷するタイプのガス化炉が好適である。何故なら、このようにして得られた生成ガスは塩素を殆ど含まず、化学原料にはもちろんのこと、ガスタービン燃料としても利用することが可能だからである。図 1 1 の場合と同様に、図 1 2 の実施の形態においても、トッピングコンバスタ 5 3 には、出力ガスタービン部 5 5 が接続されており、さらに空気圧縮機 5 6 、廃熱ボイラ 5 8 が設置されている。さらに図 1 1 の場合と同様に、蒸気タービン 1 1 2

と発電機 113 により動力回収が図られている。

図 13 を参照して、本発明の常圧型の統合型ガス化炉（常圧 ICF G）に動力回収装置を備えた場合の一実施の形態を説明する。これはいわゆる ICF G 複合発電システムと呼ばれるシステムである。例えば図 1 で説明した統合型ガス化炉 101 のガス化室 1 に接続した、生成ガスを導き出す生成ガス経路 121、経路 121 に沿って配置された生成ガスクーラ 102、チャーコレクタ 103 がこの順番で配置されている。チャーコレクタ 103 の下部には収集されたチャーをチャー燃焼室 2 に戻す導管 122 が接続されている。またチャーコレクタ 103 にはチャーを分離されクリーンになった生成ガスをガスタービンの燃焼室 105 に導く導管 123 が接続されている。導管 123 の途中には生成ガス圧縮機 104 が設けられている。圧縮機 104 は、ほぼ大気圧である常圧でガス化炉から発生されたガスを、出力タービン部 106 が要求する圧力まで昇圧するためのものである。圧縮機 104 は、ガスの流量及び吐出圧力に応じて、往復動型の圧縮機であってもよいし、遠心式圧縮機としてもよい。圧縮するガスはガス化室で発生した生成ガス、即ち比較的小量で高い熱量の燃料であるので、圧縮機 104 の動力をいたずらに大きくすることはない。

このようにこの実施の形態では、第 1 のエネルギー回収装置としてのガスタービン 109 では、チャー燃焼室 2 からの燃焼ガスから独立して、ガス化室 1 で発生した熱量の高い生成ガスのみを燃料として用いる。即ち、チャー燃焼室 2 からの燃焼ガスと混合することなく、またその燃焼ガスを加熱するのに用いるようなこともなく、その燃焼ガスから独立して、燃料として第 1 のエネルギー回収装置に導かれ用いられる。

出力タービン部 106 の回転軸には、空気圧縮機 107 が直結されて

おり、空気圧縮機 107 により供給される空気と圧縮機 104 で圧縮された生成ガスとが、燃焼器 105 中で燃焼し、1200°C 程度の高温の燃焼ガスとなり、出力ガスタービン部 106 に供給され動力を発生する。また出力タービン部 106 の回転軸には、減速機を介してあるいは直接に発電機 108 の回転軸が連結されており、電力という形で動力が回収できるように構成されている。出力タービン部 106 からの燃焼ガス（排ガス）は経路 125 を通して排出される。

一方チャー燃焼室 2 及び熱回収室 3 からの燃焼ガス（排ガス）は、熱回収すべき顯熱は有するが、燃料としての発熱量は含んでおらず、動力回収すべき圧力も有さない。このガスは、経路 124 を通して排出される。経路 124 と経路 125 とは、合流して経路 126 となり、廃熱ボイラ 111 に導かれる。ここで排ガスからの熱により水蒸気が発生され、その水蒸気は水蒸気配管 127 を通して蒸気タービン 112 に導かれる。蒸気タービン 112 の回転軸には、減速機を介してあるいは直接的に発電機 113 の回転軸が連結されており、電力という形で動力回収がされる。

廃熱ボイラ 111 で熱を回収され、温度の下がった燃焼ガス（排ガス）は経路 128 を通って、必要に応じて、脱硫装置、脱硝装置、脱塵装置のうち 1 以上の装置を経由してクリーンになった後、煙突 115 から放出される。

なお、図 15 に示すように、本発明の実施の形態の統合型ガス化炉 10 または 101 は、新設の排ガス（廃熱）ボイラ 111 に限らず、既設のボイラ 131 に接続して設けてもよい。このときは、既設ボイラの必要とする燃料の量と統合型ガス化炉 101 の供給する生成ガス及び燃焼ガスとの差分は、例えば微粉炭等の別燃料を、燃料供給路 132 を通し

て供給することで補ってもよい。このようにして、費用をかけずに生成ガスから高効率で動力を回収し、且つ排ガスに残されたエネルギーを回収する装置を構成することができる。このように構成すれば、発生する電力等のエネルギーに対して相対的に CO_2 ガス排出量の多い既設のボイラを、高効率のシステムに改造することができる。すなわちリパワリングである。

以上の実施の形態では、エネルギー回収装置である動力回収装置としてはガスタービンの出力タービン部 106 を用いたが、燃料としての生成ガスの発生量によってはガス燃料式のディーゼルエンジンを用いてもよい。

図 14 を参照して、本発明の加圧型の統合型ガス化炉に動力回収装置を備えた場合の一実施の形態を説明する。これは、図 13 のほぼ大気圧で運転される常圧型に対して、統合型ガス化炉 10 が圧力容器 50 の中に配され、大気圧より高い圧力に加圧された加圧下で運転される。その点は図 11 で説明したのと同様である。ガス化室 1 が加圧下にあるので、生成ガスをガスタービン 109 に供給するにあたって、図 13 の形態と異なり、ガス圧縮機 104 を要しない。したがって、経路 123 にガス圧縮機 104 が設けられていない。ただし、特にガスタービンとして標準のガスタービンを用い、その運転圧力が加圧型の統合型ガス化炉の圧力よりも高い場合には、その圧力差を補償する分だけ昇圧するガス圧縮機を設ける。このようなガス圧縮機の圧縮比は通常より小さくて済む。

また、チャー燃焼室 2 からの燃焼ガスは、大気圧より高い圧力を有しているので、これを経路 124 を通してセラミックフィルター等の集塵器 110 に導き、クリーンにした後、第 2 のエネルギー回収装置としてのパワーリカバリータービン 141 に供給する。パワーリカバリー

ビン 1 4 1 の構造は、通常のガスタービンの出力タービン部と同様である。パワーリカバリータービン 1 4 1 の回転軸には、空気圧縮機（典型的には軸流圧縮機） 1 4 2 が通常は直結されており、圧縮機 1 4 2 で作られた圧縮空気は、チャー燃焼室 2 や熱回収室 3 の炉内流動空気として利用される。また、パワーリカバリータービン 1 4 1 の回転軸には、発電機 1 4 3 が減速機を介して、あるいは直接連結されており、電気エネルギーを発生する。

パワーリカバリータービン 1 4 1 で圧力エネルギーを回収された後の排ガスは、経路 1 3 1 を通って排出され、出力タービン部 1 0 6 からの排ガス経路 1 2 5 と合流して、廃熱ボイラ 1 1 1 に導かれる。その他は、図 1 3 の実施の形態と同様であるので、重複した説明は省略する。

なお、図 1 6 に示すように、図 1 4 の場合の廃熱ボイラ 1 1 1 を、既設の微粉炭を燃料とするようなボイラとしてもよい。これは、図 1 3 の実施の形態に対する図 1 5 の実施の形態の関係と同様である。

以上のように本発明によれば、ガス化室ではチャー燃焼室から流入する高温の流動媒体で形成される流動床内で燃料がガス化されるため、ガス化室から出るガスは純粋に燃料から発生したガスか、もしくは燃料から発生したガスとガス化室の流動化に最低限必要な流動化ガスとの混合ガスがほとんどであり、発熱量が高い。しかもチャー燃焼ガスと生成ガスとが混ざることがないので、発熱量の高いガスを得ることができ、そのような生成ガスからエネルギー回収装置を用いて高効率で動力等のエネルギーを回収することができる。

チャー燃焼ガスと混合してガスタービン等、動力回収装置に代表されるエネルギー回収装置に導く高温ガスを容易に得ることができ、発電等エネルギー回収効率の向上が可能になる。また、燃料が揮発分割合の大

きく異なる多様な燃料であっても、チャー燃焼室やガス化室の温度の制御が自在にできるので、設備の改造を行なうことなく対応できる。

また、塩素を含む都市ごみのような燃料を利用する場合でも、燃料中の塩素の殆どはガス化室でガス側に放出され、チャー燃焼室に流入するチャー中には殆ど残留しない。このため、チャー燃焼室、熱回収室のガス中の塩素濃度は著しく低いレベルに維持され、熱回収室に配置した層内管を過熱器管として高温の蒸気回収を行なっても、高温腐食の危険性は殆どなく、動力回収装置と相まって高効率のエネルギー回収が可能になる。

産業上の利用の可能性

本発明は、石炭や都市ごみ等の燃料をガス化して燃焼し、且つそのエネルギーを回収するシステムに有用である。

請求の範囲

1. 高温の流動媒体を内部で流動させ、界面を有するガス化室流動床を形成し、前記ガス化室流動床内で燃料をガス化するガス化室と；
高温の流動媒体を内部で流動させ、界面を有するチャー燃焼室流動床を形成し、前記ガス化室でのガス化に伴い発生するチャーを前記チャー燃焼室流動床内で燃焼させ前記流動媒体を加熱するチャー燃焼室と；
前記ガス化室で発生したガスを燃料として用いる第1のエネルギー回収装置とを備え；
前記ガス化室と前記チャー燃焼室とは一体に構成されており；
前記ガス化室と前記チャー燃焼室とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第1の仕切壁により仕切られ；
前記第1の仕切壁の下部には前記ガス化室と前記チャー燃焼室とを連通する第1の開口部が設けられており、前記第1の開口部を通じて、前記チャー燃焼室側から前記ガス化室側へ前記チャー燃焼室で加熱された流動媒体を移動させるように構成された；
燃料のガス化システム。

2. さらに、前記ガス化室と前記チャー燃焼室とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第2の仕切壁により仕切られ；
前記第2の仕切壁の下部には前記ガス化室と前記チャー燃焼室とを連通する第2の開口部が設けられており、前記第2の開口部を通じて、前記ガス化室側から前記チャー燃焼室側へ流動媒体を移動させるように構

成された；

請求項 1 に記載の、燃料のガス化システム。

3. 前記ガス化室及び前記チャー燃焼室と一体に構成された熱回収室を備え；

前記ガス化室と前記熱回収室とは、直接的なガスの流通がないように仕切るか、または互いに接しないように配置した、請求項 1 または請求項 2 に記載の、燃料のガス化システム。

4. 前記第 1 のエネルギー回収装置で燃料として用いた後のガスと、前記チャー燃焼室からの燃焼ガスとを導入するボイラを備えることを特徴とする；

請求項 1 乃至請求項 3 のいずれか 1 項に記載の、燃料のガス化システム。

5. 前記ガス化室及びチャー燃焼室が大気圧より高い圧力に加圧されるように構成され；

前記チャー燃焼室からの燃焼ガスにより駆動される第 2 のエネルギー回収装置を備え；

前記第 1 のエネルギー回収装置で燃料として用いた後のガスと、前記第 2 のエネルギー回収装置からの燃焼ガスとを導入するボイラを備えることを特徴とする；

請求項 1 乃至請求項 3 のいずれか 1 項に記載の、燃料のガス化システム。

6. 高温の流動媒体を内部で流動させ、界面を有するガス化室流動床を形成し、前記ガス化室流動床内で燃料をガス化するガス化室と；

高温の流動媒体を内部で流動させ、界面を有するチャー燃焼室流動床を形成し、前記ガス化室でのガス化に伴い発生するチャーを前記チャー燃焼室流動床内で燃焼させ前記流動媒体を加熱するとともに燃焼ガスを発生させるチャー燃焼室と；

前記ガス化室で発生したガスを燃焼させ、前記チャー燃焼室で発生する前記燃焼ガスを加熱する助燃室と；

前記助燃室で加熱された燃焼ガスからエネルギーを回収するエネルギー回収装置とを備え；

前記ガス化室と前記チャー燃焼室とは一体に構成され、かつ大気圧より高い圧力に加圧されるように構成されており；

前記ガス化室と前記チャー燃焼室とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第1の仕切壁により仕切られ；

前記第1の仕切壁の下部には前記ガス化室と前記チャー燃焼室とを連通する第1の開口部が設けられており、前記第1の開口部を通じて、前記チャー燃焼室側から前記ガス化室側へ前記チャー燃焼室で加熱された流動媒体を移動させるように構成された；

燃料のガス化システム。

7. さらに、前記ガス化室と前記チャー燃焼室とは、前記それぞれの流動床の界面より鉛直方向上方においてはガスの流通がないように第2の仕切壁により仕切られ；

前記第2の仕切壁の下部には前記ガス化室と前記チャー燃焼室とを連

通する第2の開口部が設けられており、前記第2の開口部を通じて、前記ガス化室側から前記チャー燃焼室側へ流動媒体を移動させるように構成された；

請求項6に記載の、燃料のガス化システム。

8. 前記ガス化室及び前記チャー燃焼室と一体に構成された熱回収室を備え；

前記ガス化室と前記熱回収室とは、直接的なガスの流通がないように仕切るか、または互いに接しないように配置した、請求項6または請求項7に記載の、燃料のガス化システム。

9. 前記エネルギー回収装置でエネルギーを回収された後のガスを導入するボイラを備えることを特徴とする；

請求項6乃至請求項8のいずれか1項に記載の、燃料のガス化システム。

10. 前記ボイラは、前記導入されるガスの他に、別燃料を燃焼させるように構成することを特徴とする、請求項4、請求項5及び請求項9のいずれかに記載の、燃料のガス化システム。

11. 既設のボイラを提供する工程と；

前記既設のボイラに燃焼ガスを供給する、請求項1乃至請求項3、請求項6乃至請求項8のいずれか1項に記載の、燃料のガス化システムを提供する工程とを備える；

既設のボイラをリパワリングする方法。

12. 1つの流動床炉内に、燃料の熱分解・ガス化を行なうガス化室と、チャー燃焼を行なうチャー燃焼室と、及び層内熱回収を行なう熱回収室とを備え、チャー燃焼室内の高温流動媒体を熱分解・ガス化の熱源供給の熱媒体としてガス化室に供給する統合型ガス化炉において、；

前記ガス化室と熱回収室は仕切壁によって炉底から天井にわたって完全に仕切るか、もしくは互いに接しないように配置し、；

ガス化室とチャー燃焼室は流動床の界面より上部においては完全に仕切壁で仕切り、当該仕切壁の炉底近傍に開口部を設け、；

該開口部を通じて、チャー燃焼室側からガス化室側へ流動媒体を移動させることを特徴とする統合型ガス化炉。

13. 前記仕切壁に接したチャー燃焼室側に沈降チャー燃焼室を設け、該沈降チャー燃焼室を弱流動化域とし、；

前記仕切壁に接したガス化室側を強流動化域とし、；

これによりチャー燃焼室側からガス化室側へ流動媒体を移動させることを特徴とする請求項12に記載の統合型ガス化炉。

14. ガス化室とチャー燃焼室間の前記仕切壁の炉底近傍部に、前記開口部とは異なる第2の開口部を設け、該第2の開口部を通じて、ガス化室側からチャー燃焼室側へ流動媒体及びチャーを移動させることを特徴とする請求項12又は13に記載の統合型ガス化炉。

15. 前記チャー燃焼室、沈降チャー燃焼室、ガス化室内にそれぞれ強流動化域と弱流動化域を設け、各室内に流動媒体の内部旋回流を生じさ

せるようにしたことを特徴とする請求項 1 2 又は 1 3 に記載の統合型ガス化炉。

1 6. 前記熱回収室をチャー燃焼室の強流動化域に接するように配置し、該熱回収室とチャー燃焼室は炉底近傍に開口部を備え、且つその上端が流動床界面近傍まで達する仕切壁で仕切り、且つ仕切壁近傍のチャー燃焼室側の流動化状態を熱回収室側の流動化状態よりも相対的に強くして流動媒体の循環力を生じさせるようにしたことを特徴とする請求項 1 2 乃至 1 5 のいずれかに記載の統合型ガス化炉。

1 7. 前記熱回収室を沈降チャー燃焼室の強流動化域に接するように配置し、該熱回収室と沈降チャー燃焼室は炉底近傍に開口部を備え、且つその上端が流動床界面近傍まで達する仕切壁で仕切り、且つ仕切壁近傍の沈降チャー燃焼室側の流動化状態を熱回収室側の流動化状態よりも相対的に強くして流動媒体の循環力を生じさせるようにしたことを特徴とする請求項 1 2 乃至 1 6 のいずれかに記載の統合型ガス化炉。

1 8. 前記ガス化室の流動化ガスとして、水蒸気等の全く酸素を含まないガスを用いることを特徴とする請求項 1 2 乃至 1 7 のいずれかに記載の統合型ガス化炉。

1 9. 前記ガス化室、チャー燃焼室、熱回収室の各室の炉底面を、炉底近傍の流動媒体の流線に沿って傾斜させたことを特徴とする請求項 1 2 乃至 1 8 のいずれかに記載の統合型ガス化炉。

20. 前記チャー燃焼室内のガス化室に接した弱流動化域の流動化状態を制御することによって、該ガス化室の温度を調節することを特徴とする請求項12乃至19のいずれかに記載の統合型ガス化炉。

21. 前記ガス化室内の弱流動化域の流動化状態を制御することによって、該ガス化室の温度を調節することを特徴とする請求項12乃至20のいずれかに記載の統合型ガス化炉。

FIG. 1

2/17

FIG. 2

3/17

FIG. 3B

 $P_1 < P_2$

FIG. 3A

 $P_1 > P_2$

FIG. 4

5/17

FIG. 5

FIG. 6

7/17

FIG. 8

8/17

FIG. 9

9/17

FIG. 10

10/17

FIG. 11

11/17

FIG. 12

12/17

FIG. 13

13/17

14/17

FIG. 15

15/17

FIG. 16

16/17

FIG. 17

17/17

FIG. 18

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05740

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ C10J3/54, C10J3/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁶ C10J3/46-3/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 57-32728, A (Daizou Kunii), 22 February, 1982 (22. 02. 82) (Family: none)	1-21
A	JP, 57-73076, A (Daizou Kunii), 7 May, 1982 (07. 05. 82) (Family: none)	1-21
A	JP, 51-64505, A (Bergwerksverband GmbH.), 4 June, 1976 (04. 06. 76) & DE, 2448354, A1 & FR, 2287497, A1 & GB, 1485319, A & US, 4274941, A & IT, 1047734, B	1-21
A	JP, 51-104473, A (Director General, Agency of Industrial Science and Technology), 16 September, 1976 (16. 09. 76) (Family: none)	1-21
A	JP, 52-91563, A (Director General, Agency of Industrial Science and Technology), 2 August, 1977 (02. 08. 77) (Family: none)	1-21

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 24 March, 1999 (24. 03. 99)	Date of mailing of the international search report 6 April, 1999 (06. 04. 99)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/05740

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 3-131687, A (Ebara Corp.), 5 June, 1991 (05. 06. 91) (Family: none)	1-21
A	JP, 57-30793, A (Daizou Kunii), 19 February, 1982 (19. 02. 82) (Family: none)	1-21
A	JP, 60-6786, A (Babcock-Hitachi K.K.), 14 January, 1985 (14. 01. 85) (Family: none)	1-21
A	JP, 60-1286, A (Babcock-Hitachi K.K.), 7 January, 1985 (07. 01. 85) (Family: none)	1-21

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/54, C10J 3/56

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int.Cl⁶ C10J 3/46-3/56

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリ ⁷ *	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 57-32728, A (国井大蔵) 22.2月.1982 (22.02.82) (ファミリーなし)	1-21

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

24. 03. 99

国際調査報告の発送日

06.04.99

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

大久保元浩

印

4H 8828

電話番号 03-3581-1101 内線 3445

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
A	JP, 57-73076, A (国井大蔵) 7.5月. 1982 (07. 05. 82) (ファミリーなし)	1-21
A	JP, 51-64505, A (ヘルクウェルクスフェルバント・ゲゼルシヤフト・ミト・ヘルシユレンクテル・ハフツング) 4.6月. 1976 (04. 06. 76) & DE, 2448354, A1 & FR, 2287497, A1 & GB, 1485319, A & US, 4274941, A & IT, 1047734, B	1-21
A	JP, 51-104473, A (工業技術院長) 16.9月. 1976 (16. 09. 76) (ファミリーなし)	1-21
A	JP, 52-91563, A (工業技術院長) 2.8月. 1977 (02. 08. 77) (ファミリーなし)	1-21
A	JP, 3-131687, A (株式会社荏原製作所) 5.6月. 1991 (05. 06. 91) (ファミリーなし)	1-21
A	JP, 57-30793, A (国井大蔵) 19.2月. 1982 (19. 02. 82) (ファミリーなし)	1-21
A	JP, 60-6786, A (ハブコック日立株式会社) 14.1月. 1985 (14. 01. 85) (ファミリーなし)	1-21
A	JP, 60-1286, A (ハブコック日立株式会社) 7.1月. 1985 (07. 01. 85) (ファミリーなし)	1-21