1168:2005

Precast concrete products — Hollow core slabs

The European Standard EN 1168:2005 has the status of a British Standard

 $ICS\ 91.060.30;\ 91.100.30$

National foreword

This British Standard is the official English language version of EN 1168:2005.

EN1168 is a candidate "harmonized" European standard and fully takes into account the requirements of the European Commission mandate M/100, Precast concrete products, given under the EU Construction Products Directive (89/106/EEC), and is intended to lead to CE marking. The date of applicability of EN 1168 as a harmonized European Standard, i.e. the date after which this standard may be used for CE marking purposes, is subject to an announcement in the Official Journal of the European Communities.

The Commission in consultation with Member States has agreed a transition period for the co-existence of harmonized European Standards and their corresponding national standard(s). It is intended that this period will comprise a period, usually nine months, after the date of availability of the European Standard, during which any required changes to national regulations are to be made, followed by a further period, usually of 12 months, for the implementation of CE marking. At the end of this co-existence period, the national standard(s) will be withdrawn. In the UK, there are no corresponding national standards.

The UK participation in its preparation was entrusted to Technical Committee B/524, Precast Concrete Products, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 59 and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 9 August 2005

 $\ensuremath{\mathbb{C}}$ BSI 9 August 2005

ISBN 0 580 46082 7

Amendments issued since publication

Amd. No.	Date	Comments
	aiemi	cicolation

EUROPEAN STANDARD

EN 1168

NORME EUROPÉENNE

EUROPÄISCHE NORM

May 2005

ICS 91.060.30; 91.100.30

English version

Precast concrete products - Hollow core slabs

Produits préfabriqués en béton - Dalles alvéolées

Vorgefertigte Betonerzeugnisse - Hohlplatten

This European Standard was approved by CEN on 1 July 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents

The numbering of clauses is strictly related to EN 13369: Common rules for precast concrete products, at least for the first three digits. When a clause of EN 13369 is not relevant or included in a more general reference of this standard, its number is omitted and this may result in a gap on numbering.

Forewo	ord	3
Introdu	ction	5
1	Scope	6
2	Normative references	6
3	Terms and definitions	7
4	Requirements	8
5	Test methods	.18
6	Evaluation of conformity	.19
7	Marking	.19
8	Technical documentation	.19
Annex	A (normative) Inspection schemes	.20
Annex	B (informative) Typical shapes of joints	.22
Annex	C (informative) Transverse load distribution	.24
Annex	D (informative) Diaphragm action	.32
Annex	E (informative) Unintended restraining effects and negative moments	.33
Annex	F (informative) Mechanical resistance in case of verification by calculation: shear capacity c composite members	
Annex	G (informative) Resistance to fire	.39
Annex	H (informative) Design of connections	.42
Annex	J (normative) Full scale test	.44
Annex	Y (informative) Choice of CE marking method	.47
Annex	ZA (informative) Clauses of this European Standard addressing essential requirements or other provisions of EU Directives	.48
Bibliog	raphy	.59

Foreword

This document (EN 1168:2005) has been prepared by Technical Committee CEN/TC 229 "Precast concrete products", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by November 2005, and conflicting national standards shall be withdrawn at the latest by May 2007.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of Construction Products Directives (89/106/EEC) of the European Union (EU).

For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document.

This standard is one of a series of product standards for precast concrete products.

For common aspects reference is made to EN 13369: Common rules for precast products, from which also the relevant requirements of the EN 206-1: Concrete - Part 1: Specification, performances, production and conformity are taken.

The references to EN 13369 by CEN/TC 229 product standards are intended to make them homogeneous and to avoid repetitions of similar requirements.

Eurocodes are taken as a common reference for design aspects. The installation of some structural precast concrete products is dealt with by ENV 13670-1: *Execution of concrete structures – Part1: Common rules*, which has at the moment the status of an European Prestandard. In all countries it can be accompanied by alternatives for national application and it shall not be treated as a European standard.

The programme of standards for structural precast concrete products comprises the following standards, in some cases consisting of several parts:

- EN 1168, Precast concrete products Hollow core slabs
- EN 12794, Precast concrete products Foundation piles
- EN 12843, Precast concrete products Masts and poles
- EN 13224, Precast concrete products Ribbed floor elements
- EN 13225, Precast concrete products Linear structural elements
- EN 13693, Precast concrete products Special roof elements
- prEN 13747, Precast concrete products Floor plates for floor systems
- prEN 13978, Precast concrete products Precast concrete garages
- prEN 14843, Precast concrete products Stairs
- prEN 14844, Precast concrete products Box culverts
- prEN 14991, Precast concrete products Soundatione en ation

EN 1168:2005 (E)

- prEN 14992, Precast concrete products Wall elements: Production properties and performances
- prEN 15258, Precast concrete products Retaining wall elements
- prEN 15050, Precast concrete products Bridge elements

This standard defines in Annex ZA the application methods of CE marking to products designed using the relevant EN Eurocodes (EN 1992-1-1 and EN 1992-1-2). Where, in default of applicability conditions of EN Eurocodes to the works of destination, design Provisions other than EN Eurocodes are used for mechanical strength and/or fire resistance, the conditions to affix CE marking to the product are described in ZA.3.4.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Introduction

The evaluation of conformity given in this standard refers to the completed precast elements which are supplied to the market and covers all the production operations carried out in the factory.

For design rules reference is made to EN 1992-1-1. Additional complementary rules are provided where necessary.

The verification of the mechanical resistance of hollow core slabs is, at this stage of standardisation, only fully accepted by calculation; in Annex J (Normative) a test method is given for confirmation of design model for shear resistance.

Special rules for structures with hollow core elements are presented in annexes about load distribution (Annex C), diaphragm action (Annex D), negative moments (Annex E), shear capacity of composite members (Annex F) and design of connections (Annex H).

Because of some specialities of the product, e.g. the absence of transverse reinforcement, some complementary design rules to EN 1992-1-1 are necessary. Furthermore, research on hollow core slabs has resulted in special, widely used, design rules which are not incorporated in the design rules of EN 1992-1-1. According to subclause 1.2 of EN 1992-1-1:2004 the complementary rules, given in informative annexes in this standard, comply with the relevant principles given in EN 1992-1-1.

Because of the fact that the experimental evidence is mainly based on elements with limited depth and width, this standard is applicable to elements with these limited dimensions. This limitation is not intended to prohibit the application of elements with larger sizes, but the experience is not yet wide enough to draw up standardised design rules.

1 Scope

This European Standard deals with the requirements and the basic performance criteria and specifies minimum values where appropriate for precast hollow core slabs made of prestressed or reinforced normal weight concrete according to EN 1992-1-1:2004.

This European Standard covers terminology, performance criteria, tolerances, relevant physical properties, special test methods, and special aspects of transport and erection.

Hollow core elements are used in floors, roofs, walls and similar applications. In this European Standard the material properties and other requirements for floors and roofs are dealt with; for special use in walls and other applications, see the relevant product standards for possible additional requirements.

The elements have lateral edges provided with a longitudinal profile in order to make a shear key for transfer of vertical shear through joints between contiguous elements. For diaphragm action the joints have to function as horizontal shear joints.

The elements are manufactured in factories by extrusion, slipforming or mouldcasting.

The application of the standard is limited for prestressed elements to a maximum depth of 450 mm and a maximum width of 1 200 mm. For reinforced elements the maximum depth is limited to 300 mm and the maximum width without transverse reinforcement to 1 200 mm and with transverse reinforcement to 2 400 mm.

The elements may be used in composite action with an in situ structural topping cast on site.

The applications considered are floors and roofs of buildings, including areas for vehicles in the category F and G of EN 1991-2 which are not subjected to fatigue loading. For building in seismic zones additional provisions are given in EN 1998-1.

This European Standard does not deal with complementary matters. E.g. the slabs should not be used in roofs without additional protection against water penetration.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 206-1:2000, Concrete – Part 1: Specification, performance, production and conformity.

EN 1992-1-1:2004, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings.

EN 1992-1-2:2004, Eurocode 2: Design of concrete structures – Part 1-2: General rules – Structural fire design.

EN 12390-2, Testing hardened concrete – Part 2: Making and curing specimens for strength tests.

EN 12390-3, Testing hardened concrete – Part 3: Compressive strength of test specimens.

EN 12390-4:2000, Testing hardened concrete – Part 4: Compressive strength – Specification for testing machines.

EN 12390-6, Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.

EN 12504-1, Testing concrete in structures – Part 1: Cored specimens – Testing, examining and testing in compression.

EN 13369:2004, Common rules for precast concrete products.

prEN 13791:2003, Assessment of compressive strengtoin structures on structural elements.

Terms and definitions

For the purposes of this European Standard, the following terms and definitions apply. For general terms EN 13369:2004 shall apply.

Definitions 3.1

3.1.1

hollow core slab

monolithic prestressed or reinforced element with a constant overall depth divided into an upper and a lower flange, linked by vertical webs, so constituting cores as longitudinal voids the cross section of which is constant and presents one vertical symmetrical axis (see Figure 1)

Key

- Core
- Web

Figure 1 — Example of hollow core slab

3.1.2

longitudinal void produced by specific industrial manufacturing techniques, located with a regular pattern and the shape of which is such that the vertical loading applied on the slab is transmitted to the webs

3.1.3

web

vertical concrete part between two adjacent cores (intermediate webs) or on the lateral edges of the slab (outermost webs)

3.1.4

lateral joint

lateral profile on the longitudinal edges of a hollow core slab shaped so to allow grouting between two adjacent slabs

3.1.5

topping

cast in situ concrete on the hollow core slab floor intended to increase its bearing capacity and so constituting a composite hollow core slab floor

3.1.6

screed

cast in situ concrete or mortar layer used to level the upper face of the finished floor

3.1.7

hollow core slab floor Seismiciso ation floor made of hollow core slabs after the grouting of the joints

EN 1168:2005 (E)

3.1.8

composite hollow core slab floor

hollow core slab floor complemented by a cast-in-situ topping

4 Requirements

4.1 Material requirements

Complementary to 4.1 of EN 13369:2004 the following subclauses shall apply. In particular the ultimate tensile and tensile yield strength of steel shall be considered.

4.1.1 Prestressing steel

4.1.1.1 Maximum diameter of prestressing steel

The diameter of prestressing steel is limited to a maximum of 11 mm for wires and 16 mm for strands. The use of prestressing bars is not allowed.

4.2 Production requirements

Complementary to 4.2 of EN 13369:2004 the following subclauses shall apply. In particular the compressive strength of concrete shall be considered.

4.2.1 Structural reinforcement

4.2.1.1 Processing of reinforcing steel

4.2.1.1.1 Longitudinal bars

For the distribution of the longitudinal bars the following requirements shall be fulfilled:

- a) the bars shall be distributed uniformly across the width of the elements;
- b) the maximum centre to centre distance between two bars shall not exceed 300 mm;
- c) in the outermost webs there shall be at least one bar;
- d) the clear spacing between bars shall be at least:
 - horizontally : $\geq (d_g + 5 \text{ mm}), \geq 20 \text{ mm and } \geq \emptyset;$
 - vertically : $\geq d_{q}, \geq 10 \text{ mm and } \geq \emptyset$.

4.2.1.1.2 Transversal bars

Transverse reinforcement is not required in slabs up to 1 200 mm wide. Slabs having a width greater than 1 200 mm must have transverse reinforcement designed to suit the loading requirements. The minimum transverse reinforcement shall be 5 mm diameter bars at 500 mm centres.

4.2.1.2 Tensioning and prestressing

4.2.1.2.1 Common requirements for the distribution of prestressing tendons

The following requirements shall be fulfilled:

- a) the tendons shall be distributed uniformly across the width of the elements;
- b) in every width of 1,20 m at least four tendons shall be applied;
- c) in every element of a width greater than 0,60 m and less than 1,20 m, at least three tendons shall be applied;
- d) in every element with a width of 0,60 m or less at least two tendons shall be applied;
- e) the minimum clear spacing between tendons shall be:

— horizontally : $\geq (d_q + 5 \text{ mm}), \geq 20 \text{ mm and } \geq \emptyset;$

— vertically : $\geq d_{\rm g}$, \geq 10 mm and $\geq \emptyset$.

4.2.1.2.2 Transfer of prestress

Clause 8.10.2.2 of EN 1992-1-1:2004 shall apply:

NOTE "Good" bond conditions are obtained for extruded and slip-formed elements. For the description of "good" and "poor" bond conditions, see Figure 8.2 of EN 1992-1-1:2004.

4.3 Finished product requirements

4.3.1 Geometrical properties

4.3.1.1 Production tolerances

4.3.1.1.1 Dimensional tolerances related to structural safety

The maximum deviations, measured in accordance with 5.2, on the specified nominal dimensions shall satisfy the following requirements:

a) slab depth:

— $h \le 150$ mm: – 5 mm, + 10 mm;

— $h \ge 250$: ± 15 mm;

- 150 mm < h < 250 mm : linear interpolation may be applied;</p>
- b) nominal minimum web thickness:
 - individual web ($b_{\rm w}$): 10 mm;
 - —total per slab ($\Sigma b_{\rm w}$): 20 mm
- c) nominal minimum flange thickness (above and underneath cores):
 - individual flange: 10 mm, + 15 mm;

EN 1168:2005 (E)

d) vertical position of reinforcement at tensile side:

— individual bar, strand or wire: $h \le 200 \text{ mm} \pm 10 \text{ mm}$;

 $h \ge 250 : \pm 15 \text{ mm};$

200 mm < h < 250 mm: linear interpolation may be applied;

— mean value per slab: \pm 7 mm;

the requirement in this paragraph shall not conflict with subclause 4.3.1.2.3 of this standard.

4.3.1.1.1 Tolerances for construction purposes

The maximum deviations, unless declared otherwise by the manufacturer, shall satisfy the following:

a) slab length: \pm 25 mm;

b) slab width: ± 5 mm;

slab width for longitudinally sawn slabs :± 25 mm.

4.3.1.1.2 Tolerances for concrete cover

4.3.1.2 Minimum dimensions

Complementary to 4.3.1.2 of EN 13369:2004 next subclauses shall apply.

4.3.1.2.1 Thickness of webs and flanges

The nominal thickness specified on the drawings shall be at least the minimum thickness increased by the maximum deviation (minus tolerance) declared by the manufacturer.

The minimum thickness shall be:

- for any web, not less than the largest of h/10, 20 mm and $(d_g + 5 \text{ mm})$, where d_g and h are in millimetres;
- for any flange, not less than the largest value of $\sqrt{2h}$, 17 mm and $(d_g + 5 \text{ mm})$, where d_g and h are in millimetres; however for the upper flange, not less than 0,25 b_c , where b_c is the width of that part of the flange in which the greatest thickness is not greater than 1,2 times the smallest thickness (see Figure 2).

Thickness of webs and flanges shall be measured in accordance with 5.2.1.1.

4.3.1.2.2 Minimum concrete cover and axis distances of prestressing steel

For indented wires or smooth and indented strands, the minimum concrete cover c_{\min} to the nearest concrete surface and to the nearest edge of a core shall be at least:

- only with respect to the exposed face, the one determined in accordance with 4.4.1.2 of EN 1992-1-1:2004 shall apply;
- for preventing longitudinal cracking due to bursting and splitting and in the absence of specific calculations and/or tests:
 - when the nominal centre to centre distance of the strands \geq 3 \emptyset : c_{min} = 1,5 \emptyset ;
 - when the nominal centre to centre distance of the strands $< 2.5 \ \emptyset$: $c_{min} = 2.5 \ \emptyset$;
 - c_{\min} may be derived by linear interpolation between the values calculated in a) and b);

where

Ø is the strand or wire diameter, in millimetres (in the case of different diameters in a strand, the average value shall be used for Ø).

For ribbed wires, the concrete cover shall be increased with 1 \emptyset .

4.3.1.2.3 Minimum concrete cover of reinforcing steel

Clause 4.4.1.2 of EN 1992-1-1:2004 shall apply.

4.3.1.2.4 Longitudinal joint shape

The longitudinal joint width shall be:

- at least 30 mm at the top of the joint;
- greater than the larger value of 5 mm or d_g at the lower part of the joint, where d_g is the maximum aggregate size in the joint grout.

If tie bars, with a diameter of \emptyset , are to be placed and anchored in the longitudinal joint, the width of the joint at the tie bar level shall be at least equal to the larger of (\emptyset + 20 mm) or (\emptyset + 2 d_g), where d_g and \emptyset are in millimetres.

When the longitudinal joint has to resist vertical shear, the joint face shall be provided with at least one groove.

The size of the groove shall be appropriate with regard to the resistance of the grout against vertical shear.

The height of the groove shall be at least 35 mm, and its depth at least 8 mm. The distance between the top of the groove and the top of the element shall be at least 30 mm. The distance between the bottom of the groove and the bottom of the element shall be at least 30 mm.

Typical shapes of longitudinal joints are given in Annex B.

4.3.2 Surface characteristics

Requirements given in 6.2.5 of EN 1992-1-1:2004 shall apply for hollow core slabs intended to be used with an in situ topping.

4.3.3 Mechanical resistance

4.3.3.1 General

Complementary to 4.3.3 of EN 13369:2004 the following subparagraphs shall apply.

Where relevant, consideration should be given in the design to the effects of dynamic actions (e.g. impulse) during transient situations. In the absence of a more rigorous analysis this may be allowed for by multiplying the relevant static effects by an appropriate factor. For the effects of seismic actions, appropriate design methods should be used.

Special rules for structures with hollow core elements are presented in annexes about load distribution (Annex C), diaphragm action (Annex D), negative moments (Annex E), shear capacity of composite members (Annex F) and design of connections (Annex H).

For confirmation of design model for shear resistance a test method is given in Annex J.

4.3.3.2 Verification by calculation

4.3.3.2.1 Resistance to splitting for prestressed hollow core slabs

Visible horizontal splitting cracks in the webs are not allowed.

Applying one of the requirements in a) or b) hereafter prevents splitting cracks:

a) for the web in which the highest splitting stress will be generated, or, for the whole section if the strands or wires are essentially well distributed over the width of the element, the splitting stress σ_{sp} shall satisfy the following condition:

$$\sigma_{\rm sp} \leq f_{\rm ct}$$

with
$$\sigma_{sp} = \frac{P_o}{b_w e_o} \times \frac{15 \alpha_e^{2,3} + 0,07}{1 + \left(\frac{\ell_{pt1}}{e_o}\right)^{1,5} \left(1,3 \alpha_e + 0,1\right)}$$

and
$$\alpha_e = \frac{(e_o - k)}{h}$$

where

- f_{ct} is the value of the tensile strength of the concrete deduced at the time that the prestress is released on the basis of tests;
- P_o is the initial prestressing force just after release in the considered web;
- $b_{\rm w}$ is the thickness of an individual web;
- e_o is the eccentricity of the prestressing steel;
- $\ell_{\rm pt1}$ is the lower design value of the transmission length;
- k is the core radius taken equal to the ratio of the section modulus of the bottom fibre and the net area of the cross section $(W_{\rm b}/A_{\rm c})$;
- b) a fracture-mechanics design shall prove the splitting cack Siloo to velop On

4.3.3.2.2 Shear and torsion capacity

4.3.3.2.2.1 General

Sections between the edge of a support and the section at a distance 0.5h from this edge, need not to be checked. In case of flexible supports, the reducing effect of transversal shear stresses on the shear capacity shall be taken into account.

4.3.3.2.2.2 Shear capacity – Torsion capacity

If a section is subjected simultaneously to shear and torsion and if more accurate methods are not available, the shear capacity V_{Rdn} shall be calculated as follows:

$$V_{\text{Rdn}} = V_{\text{Rd.c}} - V_{\text{ETd}}$$

with
$$V_{\text{ETd}} = \frac{T_{\text{Ed}}}{2b_{\text{W}}} \times \frac{\Sigma b_{\text{W}}}{b - b_{\text{W}}}$$

where

 V_{Rdn} is the net value of the shear capacity;

 $V_{\mathrm{Rd.c}}$ is the design value of shear capacity according to 6.2.2 of EN 1992-1-1:2004;

 $V_{\rm ETd}$ is the design value of acting shear force caused by the torsional moment;

 T_{Ed} is the design value of the torsional moment in the considered section;

 $b_{\rm w}$ is the width of the outermost web at the level of the elastic gravity line (see Figure 3).

Figure 3 — Eccentric shear force

4.3.3.2.3 Shear capacity of the longitudinal joints

Load distribution from an element to the adjacent element will cause vertical shear forces in the joint and the elements at both sides of the joint.

The shear capacity in this case depends on the properties of the joint and of the elements.

This shear capacity v_{Rdj} , expressed as resisting linear load, is the smaller value of the flange resistance v'_{Rdj} or the joint resistance v_{Rdj} :

 $v'_{Rdi} = 0.25 f_{ctd} \Sigma h_f$

EN 1168:2005 (E)

and

$$v''_{Rdi} = 0.15 (f_{ctdi} h_i + f_{ctdt} h_t)$$

where

 $f_{\rm ctd}~$ is the design value of the tensile strength of the concrete in the elements;

 f_{ctdj} is the design value of the tensile strength of the concrete in the joints;

 $f_{\rm ctdt}$ is the design value of the tensile strength of the concrete of the topping;

 $\Sigma h_{\rm f}$ is the sum of the smallest thicknesses of the upper and lower flange and the scaled thickness of the topping (see Figure 4);

h_i is the net height of the joint (see Figure 4);

 h_{t} is the thickness of the topping (see Figure 4).

Figure 4 — Shear force in joints

The shear capacity $V_{\mbox{Rdj}}$ expressed as resisting concentrated load, shall be calculated as follows:

$$V_{\text{Rdj}} = v_{\text{Rdj}} (a + h_{\text{j}} + h_{\text{t}} + 2 a_{\text{s}})$$

where

 v_{Rdi} is the smaller value of v'_{Rdi} or v_{Rdi} ;

a is the length of the load parallel to the joint;

 $a_{\rm s}$ is the distance between the centre of the load and the centre of the joint.

4.3.3.2.4 Punching shear capacity

In the absence of particular justifications, the punching shear capacity of slabs without topping V_{Rd} , in newtons, expressed as resisting point load, shall be calculated as follows:

$$V_{\text{Rd}} = b_{\text{eff}} h f_{\text{ctd}} \left(1 + 0.3 \alpha \frac{\sigma_{\text{cp}}}{f_{\text{ctd}}} \right)$$
Seismicisolation

with
$$\alpha = \frac{\ell_{\rm X}}{\ell_{\rm bpd}} \le$$
 1 according to 6.2.2 of EN 1992-1-1:2004

where

 $b_{
m eff}$ is the effective width of the webs according to Figure 5;

 $\sigma_{_{\rm CP}}$ is the concrete compressive stress at the centroidal axis due to prestressing.

$$b_{\text{eff}} = b_{\text{w1}} + b_{\text{w2}} + b_{\text{w3}}$$

a) General situation

$$b_{\text{eff}} = b_{\text{w1}} + b_{\text{w2}}$$

b) Free edge of floor-bay

$$b_{\text{eff}} = b_{\text{w1}} + b_{\text{w2}} + b_{\text{w3}}$$

c) General situation with structural topping

 $b_{\text{eff}} = b_{w1} + b_{w2}$

d) Free edge of floor-bay with structural topping

Figure 5 — Effective width

For concentrated loads of which more than 50 % is acting on outermost web ($b_{\rm w2}$ in Figures 5 b) and 5 d)) of a free edge of a floor bay, the resistance resulting from the equation is applicable only if at least one strand or wire in the outermost web and a transverse reinforcement are present. If one of these or both conditions are not satisfied, the resistance shall be divided by a factor of 2.

The transverse reinforcement shall be strips or bars at the top of the element or in the structural topping, with a length of at least 1,20 m and fully anchored, and shall be designed for a tensile force equal to the total concentrated load.

If a load above a core has a smaller width than half of the width of the core, a second resistance shall be calculated with the same equation, but in which h shall be replaced by the smallest thickness of the upper flange and b_{eff} by the width of the loading pad. The lowest value of the calculated resistances shall be applied.

EN 1168:2005 (E)

If a structural topping is used, the thickness of the topping may be taken into account for calculation of punching shear capacity.

4.3.3.2.5 Capacity for concentrated loads

Concentrated loads will cause transverse bending moments. Since the elements have no transverse reinforcement the tensile stresses due to this bending moments shall be limited.

The limiting value depends on the basic design assumptions concerning load distribution.

If the elements are designed assuming no load distribution, which means that all loads acting on an element should be resisted by that element, the limiting value of the tensile stress is $f_{\rm ctk\,0,05}$ in the serviceability limit state. In this case for elements without topping, in the serviceability limit state, the capacities for concentrated loads $q_{\rm k}$ and $F_{\rm k}$ are calculated in the absence of particular justifications as follows:

- for a linear load not on an edge of a floor area: $q_k = \frac{20W_{\ell b} f_{\text{ctk0,05}}}{\ell + 2b}$
- for a linear load on an edge of a floor area: $q_k = \frac{10W_{\ell t} f_{\text{ctk0,05}}}{\ell + 2b}$
- for a point load anywhere on a floor area: $F_k = 3 W_{\ell} f_{\text{ctk } 0.05}$

where

 $W_{\ell b}$ is the minimum section modulus in transverse direction per unit length related to the bottom fibre of the elements;

 W_{lt} is the minimum section modulus in transverse direction per unit length related to the top fibre;

 W_{ℓ} is the smaller of $W_{\ell b}$ or $W_{\ell t}$.

If the elements are designed by assuming load distribution according to the elastic theory, which means that a part of the loads acting on one element are distributed to adjacent elements, the limiting value of the tensile stress is f_{ctd} in the ultimate limit state.

The capacities for concentrated loads in this case, in the ultimate limit state, may be derived from the same equation, but in which $q_{\rm k}$, $F_{\rm k}$ and $f_{\rm ctk~0.05}$ shall be replaced by $q_{\rm d}$, $F_{\rm d}$ and $f_{\rm ctd}$.

4.3.3.2.6 Load capacity of elements supported on three edges

Distributed imposed loads on an element of the floor with one supported longitudinal edge will cause torsional moments. The resulting support reaction due to this torsion shall be ignored in the design in the ultimate limit state.

The shear stresses due to these torsional moments shall be limited to $f_{\rm ctk~0.05}$ /1,5 in the serviceability limit state.

The load capacity q_k for imposed load per unit area which is the total load minus the load due to the self weight of the elements, shall be calculated, in the serviceability limit state, as follows:

$$q_{\mathbf{k}} = \frac{f_{\mathsf{ctk0,05}} W_{\mathsf{t}}}{0.06 \ell^2}$$

with
$$W_{t} = 2t (h - h_{f})(b - b_{w})$$

where

 $W_{\rm t}$ is the torsional section modulus of an element according to the elastic theory;

- is the smallest of the values of h_f and b_w ;
- h_f is the smallest value of the upper or lower thickness of the flange;
- $b_{\rm w}$ is the thickness of the outermost web.

4.3.4 Resistance and reaction to fire

4.3.4.1 Resistance to fire

Complementary to 4.3.4.1 to 4.3.4.3 of EN 13369:2004 the calculation method and tabulated data in Annex G of this standard may be used.

NOTE The topping or screed cast directly on the precast unit may be taken into account in the fire resistance of the floor for the separating function; the fire resistance given for a hollow core element is valid when installed in a floor structure with necessary tying system according to EN 1992-1-1:2004.

4.3.4.2 Reaction to fire

For reaction to fire, 4.3.4.4 of EN 13369:2004 shall apply.

4.3.5 Acoustic properties

Clause 4.3.5 of EN 13369:2004 shall apply.

NOTE The impact sound insulation of a building is influenced by the total floor structure, including floor-covering, support conditions, joint details and walls.

4.3.6 Thermal properties

Complementary to 4.3.6 of EN 13369:2004 the following rules may apply.

A rough approximation of the thermal resistance of hollow core slabs (height > 0,2 m) may be estimated as follows:

$$R_c = 0.35 (h + 0.25)$$

where

- $R_{\rm C}$ is the thermal resistance of the slabs (exclusive contact resistance), in square metres Kelvins per Watt;
- h is the total height of the elements, in metres.

4.3.7 Durability

Clause 4.3.7 of EN 13369:2004 shall apply.

4.3.8 Other requirements

Clause 4.3.8 of EN 13369:2004 shall apply.

5 Test methods

5.1 Tests on concrete

Clause 5.1 of EN 13369:2004 shall apply.

5.2 Measuring of dimensions and surface characteristics

Complementary to 5.2 of EN 13369:2004 the following subclauses shall apply.

5.2.1 Element dimensions

5.2.1.1 Procedure

For the dimensions hereafter, the indicated procedures shall be applied:

a) slab depth h:

Take six measurements at one end of the slab (three at core and three at web centre lines): two near the middle, two near each edge of the slab. The result is the mean of these six measurements. Compare the result with the permissible values according to 4.3.1.1.1 a).

For elements not wider than 0,6 m, the number of measurements may be decreased to three.

b) web thickness b_{w} :

Take measurements of the minimum thickness of each web at one end of the slab.

Sum up the measurements.

Compare each individual value $b_{\rm w}$ and the total sum $\Sigma b_{\rm w}$ with the permissible values according to 4.3.1.1.1 b).

c) flange thickness h_f :

Take six measurements at one end of the slab (three at lower flange, three at upper flange): two near the middle, two near each edge of the slab.

Calculate the mean value for lower flange and for upper flange values separately.

Compare each individual value and the two mean values with the permissible values according to 4.3.1.1.1 c).

For elements with a width smaller than 0,6 m, the number of measurements may be decreased to three.

d) slab length l:

Take two measurements: one near each edge.

Compare each individual value with the permissible values according to 4.3.1.1.2 a).

e) slab width b:

Take one measurement at one end of the slab where the cross-section is the widest.

Compare the value with the permissible value according to 4.3.1.1.2 b).

f) position of prestressing steel or reinforcing bars at tensile side:

Measure the vertical distance the axis of each strand, wire or bar to the bottom of the slab or to the mould.

Compare each individual value and the mean value for the centre of gravity of the prestressing steel with the permissible values according to 4.3.1.2.2 and 4.3.1.2.3.

g) concrete cover c:

Measure the concrete cover of each strand, wire or bar at one end of the slab from the bottom of the slab and from the nearest core surface.

Compare each individual value with the permissible values according to 4.3.1.1.3.

5.3 Weight of the products

Clause 5.3 of EN 13369:2004 shall apply.

6 Evaluation of conformity

Clause 6 of EN 13369:2004 shall apply.

For inspection tests, specific rules are given in Annex A.

For assessment compliance by a third party, Annex E of EN 13369:2004 may be used.

7 Marking

Complementary to 7 of EN 13369:2004 the following subclause shall apply.

7.1 General

Every individual delivered slab shall be definitely identifiable and traceable until erection with regard to its production site and data. For this purpose the manufacturer shall mark the products or the delivery documents so the relation to the corresponding quality records required in this standard can be secured. The manufacturer shall keep these records for the required period of archiving and make them available when required.

NOTE For CE marking refer to Annex ZA.

8 Technical documentation

The detailing of the element, with respect to geometrical data and complementary properties of materials and inserts, shall be given in technical documentation, which includes the construction data, such as the dimensions, the tolerances, the layout of reinforcement, the concrete cover, the expected transient and final support conditions and lifting conditions.

The composition of technical documentation is given in clause 8 of EN 13369:2004.

Annex A (normative)

Inspection schemes

The relevant subjects of Annex D of EN 13369:2004 shall apply. Complementary to these subjects following schemes shall also apply.

A.1 Equipment inspection

Table A.1 is complementary to D.1.2 of Table D.1 of EN 13369:2004.

Table A.1 — Equipment inspection

	Subject	Method	Purpose	Frequency			
Stora	Storage and production requirement						
9	Casting machine/equipment	Manufacturer inspection instructions	Correct compacting of concrete Correct core geometry	Manufacturer inspection instructions			

A.2 Process inspection

Table A.2 is complementary to D.3.1 and. D.3.2 of Table D.3 of EN 13369:20004.

Table A.2 — Process inspection

	Subject	Method	Purpose ^a	Frequency*	
Cond	Concrete and other process subjects				
19	Concrete mix	Visual inspection (see Table 18 of EN 206-1)	Consistency	Every batch	
20	Compressive strength of concrete	Strength test on moulded concrete specimens or maturity measurement or with rebound hammer or sound velocity meter after calibration by laboratory tests (see 6.3.8 of EN 13369:2004)	Detensioning strength	One specimen every day per casting bed	
21	Accelerated hardening	Verification of relevant conditions	Conformity with intended factory procedures	Weekly	
		Measuring temperatures		Depending on process	
22	Cross section	Visual inspection of deviations and imperfections	Accuracy	Every casting bed	

from the product or process.

A.3 Finished product inspection

Table A.3 is complementary to items 3 to 5 of D.4.1 of Table D.4 of EN 13369:2004.

Table A.3 — Finished product inspection

	Subject	Method	Purpose ^a	Frequencya
Proc	duct Testing	<u> </u>	·	. ,
1	Full scale test	As described in Annex J	Confirmation of design model for shear resistance and/or proper functioning of casting equipment	3 elements ^b after setting up a new product design or a new production facility or if there is a major change in design, type of material, or method of manufacture
2	Initial slippage of strands	Measuring of slippage for non sawn elements	Conformity with maximum value according to 4.2.3.2.4 of EN 13369:2004	Three strands per bed per production day
		Visual inspection of sawn elements and measuring	Conformity with maximum value according to 4.2.3.2.4 of EN 13369:2004	Visual inspection of all elements and if there is no doubt measuring three strands per production day. In case of doubt measuring of all concerning strands
6	Cross section and length	Measuring according to 5.2	Dimensions	One element of every concrete cross section, including at least one element per machine every two production weeks
7	Ends of element	Visual inspection	Splitting cracks	Each sawn end
		Measuring at ends according to 5.2.1.1.g	Concrete cover	As for cross section
8	Upper surface characteristics of rough or indented interface in case of use with an in situ topping	Visual inspection	Roughness for shear resistance	As for cross section
9	Drainage holes where specified	Visual inspection	Accurate drilling	Daily
10	Concrete strength	On drilled cores from the product according to EN 12504-1 and EN 12390-3 and assessment according to prEN 13791:2003 or on cubes or cylinders according to EN 12390-2 and EN 12390-3	Compressive strength	At start of production or introduction of a new element type: three per full scale test
		or	or	
		On drilled cores from product according to EN 12390-6 and EN 12504-1	tensile splitting strength ^c	At start of production or introduction of a new element type: three per full scale test

^a The indicated tests and frequencies may be adapted or even deleted when equivalent information is obtained directly or indirectly from the product or process.

b Previous full scale tests performed before the date of this standard may be considered if they comply with the requirements of this standard.

Following the production process the producer can choose for one of the mentioned methods.

Annex B (informative)

Typical shapes of joints

Examples of typical shapes of longitudinal joints are shown in Figure B.1.

Dimensions in millimetres

- a) Joint with a tie bar
- b) Trapezial groove
- c) Semicircular groove

Key

 $d_{\rm g}$ = Largest nominal maximum aggregate size of the mortar of the joint.

Figure B.1 — Typical shapes of longitudinal joints

Dimensions in millimetres

EN 1168:2005 (E)

Figure B.2 — Example of indented joint profile of reinforced slabs

Annex C (informative)

Transverse load distribution

C.1 Calculation method

The following two methods can be distinguished:

1) load distribution according to the theory of elasticity.

The elements should be regarded as isotropic or anisotropic slabs and the longitudinal joints as hinges.

The percentage of the load on the directly loaded element as obtained by the calculation, should in ultimate limit state be multiplied with 1,25; the total percentage share carried by the indirectly loaded elements may be decreased by the same amount according to the ratio of their loading percentages.

Instead of a calculation the load distribution may be determined by means of graphs based on the theory of elasticity. In C.4 and C.5 such graphs are given for elements with a width b = 1,20 m. For any other width such graphs may be elaborated.

The requirements of 4.3.3.2.5 shall be met.

2) No load distribution.

Every element should be designed with all loads acting directly on that element and assuming zero shear forces in the transverse joints. In this case, the transverse load distribution and the allied torsional moments may be ignored in ultimate limit state. In serviceability limit state, however, the requirements according to 4.3.3.2.5 and 4.3.3.2.6 should be met. The effective width shall be limited according to C.2.

The first method is only allowed if lateral displacements will be limited according to C.3 and, in absence of a structural topping, the joints are provided with longitudinal grooves according to Figure B.1.

If these conditions are not met, the load distribution should be ignored and the design should be based on the second method.

Line loads parallel to the span of the elements and not greater than 5 kN/m may be replaced by a uniformly distributed load over a width equal to a quarter of the span at both sides of the load. If the available width next to the load is smaller than a quarter of the span, the load should then be distributed over a width equal to the available width at one side plus a width equal to one quarter of the span at the other side.

C.2 Limitation of effective width

If the design analysis in ultimate limit state is based on the second method of C.1 for point loads, and for line loads with a characteristic value greater than 5 kN/m, the maximum effective width should be limited to the width of the load enlarged by:

- in the case of loads within the floorfield, twice the distance between the centre of the load and the support, but not greater than the width of the loaded element;
- in the case of loads on free longitudinal edges, once the distance between the centre of the load and the support, but not greater than half the width of the loaded element.

C.3 Lateral displacements

If the design is based on method 1 of C.1, lateral displacements of the units should be prevented by any of the following:

- a) the surrounding parts of the structure;
- b) the friction at the supports;
- c) the reinforcement in the transverse joints;
- d) the peripheral ties;
- e) a reinforced topping.

Relying on friction at the supports is only allowed in non-seismic situations, if it can be proven that sufficient friction can be developed. Calculating the resistant friction forces, the actual bearing method should be taken in consideration.

The required resistance should be at least equal to the total vertical shear forces which have to be transmitted across the longitudinal joints.

C.4 Load distribution factors for centre and edge loads

Load distribution factors for centre and edge loads are the following:

- in Figures C.1, C.2 and C.3, the loading percentages for a centre and an edge load have been given. A load may be considered as a centre load if the distance from the load to the edge of the floor area is at least 3 m (2,5 b). For loads between edge and centre the loading percentages may be derived from linear interpolation;
- b) in Figures C.2 and C.3, the distribution factors for point loads at midspan (ℓ/x = 2) have been given. For loads near to the support, ℓ/x ≥ 20, the loading percentages of the actual loaded slab should be taken 100 % and of the non-loaded slabs 0 %. For ℓ/x values between 2 and 20, the loading percentages may be derived from linear interpolation;
- determining the loading percentages, linear loads with a length greater than half of the span should be considered as linear loads. Linear loads with a length smaller than half of the span should be considered as linear loads if the centre of the load is at midspan, and as point loads in the centre of the load if the centre is not at midspan;
- in floors without a topping, the percentages of the loading, determined by the graphs, should in ultimate limit state be modified as follows:
 - the percentage of the load on the directly loaded element should be multiplied by 1,25;
 - the total percentages of the not directly loaded elements may be decreased by the same amount according to the ratio of their loading percentages;
- the shear forces in the joints should be calculated from the loading percentages and should be considered as being linearly distributed:
 - for point loads not at midspan and linear loads which, according to c), have to be considered as point loads, the effective length of the joint transmitting the shear force should be chosen equal to two times the distance from the centre of the load to the nearest support (see Figure C.4);
- f) from the loading percentages, given in the graphs, the longitudinal shear forces in every joint and from that values the torsional moments in every element can be derived.

If lateral displacements are limited according 60.3 the loss one moments may be divided by a factor 2.

EN 1168:2005 (E)

- 1 Loading percentage (%)
- 2 Span (*l*) in m
- 3 Linear loads
- 4 Edge
- 5 Centre

Figure C.1 — Load distribution factors for linear loads

- 1 Loading percentage (%)
- 2 Span (1) in m
- 3 Point load

Figure C.2 — Load distribution factors for point loads in centre

EN 1168:2005 (E)

- 1 Loading percentage (%)
- 2 Span (1) in m
- 3 Point load

Figure C.3 — Load distribution factor for point loads at edge

- a) Point load in centre
- b) Point load between centre and support
- c) Linear load in centre
- d) Linear load not in centre

Figure C.4 — Assumed shape of vertical shear forces in joints

C.5 Load distribution factors for three or four supported edges

Load distribution factors for three or four supported edges are the following:

a) for linear loads and point loads, the reaction forces may be based on Figures C.5 and C.6.

Load distribution factors for three or four supported edges are the following.

If the number of elements (n) is larger than 5, the reaction force should be multiplied by the factor (see Figures C.5 and C.6):

$$1 - \left(\frac{n-5}{50} \times \frac{s}{b}\right)$$

where

- s is the distance of the load from the support, in millimetres;
- b is the width of the slab in millimetres.

In the case of four supported edges, the reaction force of the support nearest to the force should be multiplied by the factor:

$$\frac{nb-s}{nb}$$

- b) If the distance between the load and the longitudinal support is greater than 4,5 b, the reaction force may be taken as zero.
- c) When determining the caption forces, linear loads with a length greater than half the span should be considered as linear loads. Linear loads with a length smaller than half the span should be considered as linear loads if the centre of the load is at midspan, and as point loads if the centre of the load is not at midspan.

EN 1168:2005 (E)

The reaction force of Figure C.5, may be multiplied by the ratio of the length of the load to the length of the span.

d) For point loads at midspan, $\ell/x = 2$, the reaction forces can be taken from Figure C.6.

For loads near to the support, $\ell/x \ge 20$, the reaction force should be taken zero; for values of ℓ/x between 2 and 20 the reaction force should be calculated by linear interpolation.

The length of the reaction force should be chosen equal to two times the distance between the centre of the load and the nearest support.

The magnitude of the force is the value from Figure C.6 multiplied by $2x/\ell$.

 The transverse distribution due to the reaction force should be calculated according to C.4 by considering the reaction force as a (negative) edge load.

- 1 Reaction force/linear load
- 2 Span (1) in m
- 3 Linear load
- 4 Reaction force

Figure C.5 — Reaction force at longitudinal support due to linear load

- 1 Reaction force x span/point load
- 2 Span (l) in m
- 3 Point load
- 4 Reaction force

Figure C.6 — Reaction force at longitudinal support due to a point load at midspan

Annex D (informative)

Diaphragm action

Hollow core floors can act as diaphragms for the transfer of lateral forces to the bracing vertical structures if the following requirements are satisfied:

- a) the shear forces should be resisted either by the joints parallel to the load or by special shear members along perpendicular joints or edges;
- the calculation of the horizontal shear forces in longitudinal joints should be based on the theory of deep beams;
- the model for a deep beam is usually a strut and tie model. The inner lever arm used for the determination of the force in the tensile tie should therefore be taken from code provisions pertaining to deep beams.

The resistance of the longitudinal joints to in-plane shear forces should be derived from 6.2.5 of EN 1992-1-1:2004.

If the design shear force exceeds this joint capacity, the capacity can be increased by:

- taking account of shear capacity of edge beams;
- application of special shear connectors.

If the diaphragm action is small, like in the case of low-rise housing, the tying system in non-seismic situations may be based on friction. Calculating the resistant friction forces, the actual bearing method should be taken into consideration.

In seismic zones, the design should be carried out considering the diaphragm behaviour of the hollow core floor with the longitudinal shear stress given in 10.9.3 (12) of EN 1992-1-1:2004, if one of the following requirements is satisfied:

- with a cast-in-situ topping of at least 40 mm for which shear at the interface is verified according to 6.2.5 of EN 1992-1-1:2004;
- in the absence of a cast-in-situ topping and all the hollow core slabs are provided with adapted indented lateral edges, as described in 6.2.5 of EN 1992-1-1:2004 (Figure 6.9);
- a system of horizontal appropriately designed ties is provided.

Annex E

(informative)

Unintended restraining effects and negative moments

E.1 General

Unintended restraining effects and negative moments at the supports should be considered in the design of the elements and detailing of the connections at the supports to prevent possible restraint cracks which can initiate shear failure near the support.

There are three methods to deal with negative or unintended fixing moments:

- detailing the connection in such a way that these moments will not occur;
- designing and detailing in such a way that cracks will not initiate unsafe situations;
- design by calculation.

E.2 Design by calculation

The following design by calculation may be adopted:

a) at end supports, which have been assumed as free supports, unless through the nature of the support no fixing moment can develop, the smaller of the two values calculated with E1 or E2 of $M_{\rm Edf}$ should be taken into account :

$$M_{\mathsf{Edf}} = \frac{M_{\mathsf{Eds}}}{3}$$
 ... (E.1)

where

$$M_{\text{Eds}} = \gamma_{\text{G}} (M_{\text{gs}} - M_{\text{ws}}) + \gamma_{\text{Q}} M_{\text{gs}};$$

 $M_{
m qs}$ is the maximum characteristic value of span moment due to permanent actions;

 M_{os} is the maximum characteristic value of span moment due to variable actions;

 M_{tue} is the maximum characteristic value of span moment due to the self weight of the elements;

 γ_{G} , γ_{Q} = partial safety factors for permanent and variable actions;

$$M_{\mathsf{Edf}} = \frac{2}{3} N_{\mathsf{Sdt}} a + \Delta + \Delta M \tag{E.2}$$

with ΔM taken equal to the largest value of:

$$\Delta M = f_{ctd}W$$

and

EN 1168:2005 (E)

If the joints between the ends of the element are smaller than 50 mm or if the joints are not filled, then ΔM is taken equal to the smallest value of:

$$\Delta M = \mu_b N_{\text{Edt}} h$$

and

$$\Delta M = \mu_0 N_{\mathsf{Fdb}} h$$

where (see also Figure E.1):

- a is the support length as shown on Figure E.1;
- $A_{
 m V}$ is the cross-section of possible connection reinforcement;
- d is the distance from the lower fibre of slab to the position of connection reinforcement;
- f_{vd} is the design yield strength of steel;
- $N_{\rm Edt}$ is the design value of the total normal force in the structure above the floor;
- N_{Edb} is the design value of the total normal force in the structure beneath the floor;
- W is the section modulus of the in situ concrete between the ends of the elements;
- μ_0 is the coefficient of friction at the underside of the slab;
- $\mu_{\rm b}$ is the coefficient of friction at the upperside of the slab;
- μ_0 and μ_b being taken equal to 0,8 for concrete on concrete;
- 0.6 for concrete on mortar;
- 0,25 for concrete on rubber or neoprene;
- 0,15 for concrete on hair felt;
- b) reinforcement for the unintended fixing moments may be omitted if:

$$M_{\text{Edf}} \le 0.5 (1.6 - h) f_{\text{ctd}} W_{\text{t}}$$

where

- h is the height of the slab in m;
- $W_{\rm t}$ is the section modulus related to the top fibre;
- c) if, according to b), reinforcement for unintended fixing moments is required, or in case of negative design moments, then three possibilities may be considered:
 - applying top strands;
 - 2) applying reinforcing bars in the longitudinal joints or in the cores;
 - 3) applying a reinforced topping.

In all three cases, besides the check of shear in the elements related to positive moments and the corresponding positive reinforcement, a second check according 4.3.8 2.2 related to the negative moments and corresponding negative reinforcement should be carried out.

@Seismicisolation

EN 1168:2005 (E)

Figure E.1 — Unintended fixing moments

If reinforcing bars or a reinforced topping is used the second check should be carried out according to 6.2.2 of EN 1992-1-1:2004.

BS.

Annex F

(informative)

Mechanical resistance in case of verification by calculation: shear capacity of composite members

F.1 General

The shear resistance of precast hollow core slabs can be increased by applying an in-situ topping and/or filling a number of cores. The length of the filling should be at least the larger of the following two values:

- the transmission length for the prestressing force;
- the length necessary for the shear capacity plus the total depth of the cross section.

In general two loading conditions have to be considered:

Loading condition I, which refers to the self weight of the slab and of the in-situ topping. This load is carried by the precast element.

Loading condition II, which refers to the additional load on the composite structure. This load is carried by the composite structure.

F.2 Shear tension capacity of a hollow core slab with a topping

F.2.1 Failure types

Failure can principally occur in two ways:

- type a: the webs of the slab fail in shear;
- type b: the interface shear strength is exceeded and the topping shears off.

A check of failure type a should be carried out according to F.2.2 and a check of failure type b according to F.2.3.

F.2.2 Failure types a

The check of the shear tension capacity according to EN 1992-1-1:2004 should be replaced by the following requirement:

$$\tau_{\mathsf{Ed}} \leq \tau_{\mathsf{Rd}}$$

$$\text{with } \tau_{\text{Sd}} = \frac{V_{\text{Edg}}S}{\varSigma b_{\text{W}}I} + \frac{V_{\text{Edq}}S_o}{\varSigma b_{\text{W}}I_o}$$

and
$$\tau_{\rm Rd} = \sqrt{{f_{\rm ctd}}^2 + \alpha \sigma_{\rm cpm} f_{\rm ctd}}$$

@Seismicisolation

where

 $V_{\rm Edg}$ is the design shear force due to dead load (element + topping);

 $V_{\mbox{Eda}}$ is the design shear force due to additional loads;

 $S_{i}S_{0}$ is the first moment of area of element, respectively of (element + topping);

 $I_{i}I_{i}I_{i}$ is the second moment of area of element, respectively of (element + topping);

 f_{ctd} is the design tensile strength of the concrete of the elements;

is the distance from the end of the element to the considered action;

 ℓ_{pt2} is the upper bound of the transmission length equal to 1,2 the transmission length ℓ_{pt} according to EN 1992-1-1:2004 equation (8.18);

 $\sigma_{\rm cp}$ is the average concrete stress due to the fully developed effective prestressing force (lower value).

F.2.3 Failure type b

It should be shown that the shear stress in the interface joint due to the additional loads meets the requirement of 6.2.5 of EN 1992-1-1:2004.

F.3 Shear tension capacity of a hollow core slab with a number of filled cores

When the shear tension capacity of hollow core slab without filling is equal to $V_{Rd,c}$ according to EN 1992-1-1:2004 equation (6.4), the shear tension capacity of a slab with n cores filled is:

$$V_{\text{Rdt}} = \frac{2}{3} n b_{\text{c}} df_{\text{ctd}}$$

where

 $f_{\rm ctd}$ is the design tensile strength of the filling concrete;

n is the number of filled cores;

 $b_{\rm c}$ is the width of the cores (see Figure F.1).

Figure F.1 — Slab with filled cores

F.3.1 Shear tension capacity of a hollow core slab with a topping and a number of filled cores

The shear tension capacity may be derived from the sum of the shear tension capacity according to F.2 and the shear tension capacity of the filled cores according to F.3.

BSI

EN 1168:2005 (E)

F.4 Flexural shear capacity of a hollow core slab with a topping

For a slab with a topping, in the equation for the flexural shear capacity according to EN 1992-1-1:2004 equation (6.2 a + b), d may be replaced by d' and ρ_l by ρ'_l :

with $d' = d + h_t$

and
$$\rho_1' = \frac{A_p}{b_w d'}$$

where

 h_{t} is the thickness of the topping;

 A_{s} is the area of the tensile reinforcing steel;

 $A_{\rm p}$ is the area of the prestressing steel.

In presence of filled cores a check must be carried out taking into account the characteristics of the composite section for the loading conditions I and II (see F.1).

Annex G (informative)

Resistance to fire

G.1 Calculation method for load bearing conditions

Fire resistance (R) may be calculated according to 4.2 or 4.3 of EN 1992-1-2:2004 with the following additional information.

Temperature profiles given in Figure A.2. in EN 1992-1-2:2004 may be used (see Figure G.1), where a is the average axis distance of the steel from the soffit of the slab. The steel strength for the simplified calculation method is determined according to Figures 4.2 a), 4.2 b) or 4.3 of EN 1992-1-2:2004, and for the advanced calculation methods according to section 3 of EN 1992-1-2:2004.

The average axis distance may be decreased with 10 % in the case of concrete with calcareous aggregates.

Reduction of concrete strength and cross-section may be determined according to section 3 of EN 1992-1-2:2004.

When alternatively a simplified method is used to determine the fire resistance, it may be the one presented in Annex B, Annex D or Annex E of EN 1992-1-2:2004.

When topping or screed are cast directly on the precast unit, these ones may be taken into account, under particular conditions, in the fire resistance of the floor.

Key

- Temperature θ (°C)
- Distance from the exposed surface (mm)
- 3 Minutes

Figure G.1 — Temperatures within hollow core elements during fire for siliceous aggregate concrete

EN 1168:2005 (E)

G.2 Tabulated data

When alternatively tabulated data are used, the fire resistance may be satisfied by the use of Table G.1 and the rules given in section 5 of EN 1992-1-2:2004, and for joints in separating structures the rules in 4.6 of EN 1992-1-2:2004. The table gives the thickness (h) of the slab, and values of axis distance (a) of reinforcing steel, to the soffit of simply supported slabs for normal weight concrete made with siliceous aggregates, which has to be met at least. If calcareous aggregates are used, the requirements of 5.1 of EN 1992-1-2:2004 apply.

Table G.1 — Nominal distance and slab thickness (see Figure G.2)

Dimensions in millimetres

	Required fire resistance class REI							
	REI 15	REI 20	REI 30	REI 45	REI 60	REI 90	REI 120	REI 180
Axis distance (a) reinforcing steel ^b	10 ^a	10 ^a	10 [*]	15	20	30	40	55
Slab thickness (h)	100	100	100	100	120	140	160	200

a Normally the cover required by EN 1992-1-1 will govern.

When reinforcement is arranged in several layers similar to Figure G.2, the average axis distance should not be less than the distance given in the table (see equation (5.5) of EN 1992-1-2:2004). The axis distance for individual bars should not be less than 10 mm.

The slab thickness in Table G.1 corresponds with the minimum floor thickness given in Table 5.8 of EN 1992-1-2:2004 for solid slabs, and has been calculated according to the following conversion equation for hollow core slabs:

$$t_{e} = h \sqrt{A_{c}/(b \times h)}$$

where

- $t_{\rm e}$ is the effective thickness;
- *h* is the actual slab thickness;
- $A_{\rm c}$ is concrete area of the concrete section;
- b is the width of the slab.

The minimum slab thickness given in Table G.1 is based upon a minimum concrete area of 55 %.

Where a concrete area in excess of this figure is provided, the overall depth may be decreased accordingly.

Where a concrete topping or a screed is used, the thickness of the non combustible layer may be taken into account in the fire resistance of the floor for the separating function.

b For prestressed slabs the axis distance shall be increased according to 5.2(5) of EN 1992-1-2:2004.

Key

- 1 Topping and/or screed
- 2 Hollow-core precast unit

Figure G.2 — Definition of (a) and (h)

Annex H (informative)

Design of connections

H.1 Connection at the supports

H.1.1 Design considerations

Connections should be designed:

- a) to connect the hollow core units to the supporting structures;
- b) to transfer tensile forces to the stabilising systems;
- c) to establish sufficient shear capacity (shear friction effect) at longitudinal and transverse joint interfaces;
- d) to balance the splitting effect from tie bars anchored in the joints;
- e) to balance the effects of creep, shrinkage, temperature changes and differential settlements;
- to prevent horizontal relative displacements of the hollow core units both in the longitudinal and the transverse directions and to prevent possible joint cracks from uncontrolled opening;
- g) to balance the reaction on the support in case the reinforcement is protruding from the end of the element;
- h) to minimise consequences on thermal or acoustical insulation, when necessary.

H.1.2 Tie arrangements

In order to limit the damage due to accidental actions and to prevent progressive collapse, the tie arrangements according to 9.10 of EN 1992-1-1:2004, should be adopted.

H.2 Connections at joints

H.2.1 Transverse reinforcement

The required reinforcement should be designed according to C.3 and Annex E.

Transverse reinforcement can be omitted in cases as indicated in these annexes.

The transverse reinforcement can be concentrated in transverse tie beams at the edges of the floor and in the transverse joints.

H.2.2 Connections at side joints

The connections between the floor and the stabilising structures should be designed to transfer the stabilising forces by horizontal shear along the joint interfaces.

If necessary,, (see C.3 and Annex E) the connections should be provided with transverse tie bars or stirrups, which should be distributed along the interface with the spacing not exceeding 4,8 m.

Tie arrangements in the form of the stirms source prace green by if the cuts in the elements; the cut-outs should be as small as possible (Figure H.1).

@Seismicisolation

Figure H.1 — Principles of connection of floor to bracing element at side joints

H.2.3 Joint grout

If shear forces have to be transmitted by the joints the following requirements should be met:

- a) the grade of the grout should be at least C12/15 according to 3.1.2 of EN 1992-1-1:2004;
- the consistency of the fresh grout should be such that the joint gap will be filled completely and leakage and possible resulting settlements or cavities will be prevented;
- c) the grout should be designed to prevent settlements and cracks due to shrinkage;
- d) the aggregate diameter should be in balance with the average joint width;
- the joints should be properly cleaned and the joints surfaces should not be too dry before grouting;
- f) the joints should be filled to the entire height in one operation;

in cold weather, precautions should be taken in order to avoid snow and ice in the joints and freezing of the fresh grout.

Annex J (normative)

Full scale test

J.1 General

The full scale test described in this Annex is intended to confirm the design model for shear resistance and/or proper functioning of casting equipment.

If relevant, experienced test personnel shall be consulted to help set up the test procedures.

J.2 Apparatus

The testing machine shall preferably be a class 3 machine according to 4.2 of EN 12390-4:2000.

J.3 Preparation of test piece and preservation of test samples

The test piece shall be produced on the same production line and with the same concrete family (concrete class) as scheduled for the current production.

The test shall be performed at a temperature of 0 °C to 40 °C. This temperature shall be recorded.

In order to get reference values of the strength of the concrete, cylindrical cores shall be drilled out of the element. To obtain these cores, a slab specimen of $50 \text{ mm} \pm 5 \text{ mm}$ by $200 \text{ mm} \pm 5 \text{ mm}$ shall be sawn out from the casting bed, directly adjacent to the actual specimen. This specimen shall be conserved under a humid condition. Immediately before testing, three cores shall be drilled out of the slab specimen (see also Table A.3).

Instead of drilled cores, cubes or cylinders may be used for the reference value of the strength, but only under the condition that it can be proved that the compaction of these specimens is in compliance with the compaction of the actual slab, by comparison of the density (see also Table A.3).

The test piece shall be a full-width slab element with a span of 4 m or 15 x h, whichever is bigger.

The support which is the nearest to the load application point shall be a roller bearing, so that no axial forces are generated by a rotation of the element at the support. Between the element and the support beam, a load distributing material such as 10 mm masonite or neoprene or a bed of mortar or gypsum shall be applied. This material has to compensate for the unevenness of the element surface and an eventual curvature of the element in the transverse direction.

The load shall be applied at the distance from the roller support of 2.5 h, where h is the full depth of the cross-section. The support conditions shall be such that the load is equally distributed over the width of the member.

The load shall be introduced by a stiff transverse beam. The stiffness of this beam shall be sufficient to prevent an unequal distribution of the load over the width of the beam.

The depth of the steel beam shall be at least 150 mm, but when using one jack, preferably 250 mm.

a) One line loading

Dimensions in millimetres

b) Two lines loading

Dimensions in millimetres

c) Detail of support in a) and b)

Figure J.1 — Testing arrangement

BS.

EN 1168:2005 (E)

J.4 Loading procedure

The load shall be applied as repeated loading in 10 cycles. The magnitude of the loading of the first 9 cycles shall be equal to $70\% \pm 2\%$ of the ultimate load calculated according to 6.2.208 of EN 1992-1-1:2004 using the characteristic values of the prestressing force and the actual concrete strength determined according to J.3 at the time of test instead of design value. In the last cycle the load shall be increased to failure.

The speed of the loading of the element shall not exceed 10 % of the calculated ultimate load per minute.

J.5 Interpretation of results

The results of the test shall be checked against the calculated values. The results of the test shall be checked against the value calculated with the actual concrete strength of the test piece, measured at the test time as specified in J.3.

J.6 Test report

The test report shall include:

- a) the identification of the test piece;
- b) the date of manufacture or any other code;
- c) the date and place of testing;
- d) the laboratory and the person in charge of testing;
- e) all the characteristics of materials required for testing;
- f) the test method;
- g) the measuring equipment used;
- h) the temperature at the location of testing;
- i) the failure load value;
- j) the type of failure;
- k) any observations regarding the test and any disorders noted (cracks, etc.);
- a declaration that the test has been carried out in compliance with this standard, plus details of any amendment made.

Annex Y (informative)

Choice of CE marking method

The producer should choose to apply, for CE marking, one of the methods described in ZA.3, on the basis of the following conditions.

Y.1 Method 1

The declaration of geometrical data and material properties as specified in ZA.3.2 may be applied when the following condition occurs:

off the shelf and catalogue products.

Y.2 Method 2

The declaration of product properties determined following this standard and EN Eurocodes, as specified in ZA.3.3, should be applied when the following condition occurs:

precast product with product properties declared by the producer.

Y.3 Method 3

The declaration of compliance with a given specification as specified in ZA.3.4 may be applied when the following condition occurs:

all other cases than Y.1 and Y.2.

BS.

Annex ZA

(informative)

Clauses of this European Standard addressing essential requirements or other provisions of EU Directives

ZA.1 Scope and relevant characteristics

This European standard has been prepared under the mandate M/100 "Precast Concrete Products" given to CEN by the European Commission and the European Free Trade Association.

The clauses of this European standard shown in this Annex meet the requirements of the mandate given under the EU Construction Products Directive (89/106/EEC).

Compliance with these clauses confers a presumption of fitness of the hollow core slabs covered by this annex for the intended uses indicated herein; reference shall be made to the information accompanying the CE marking.

WARNING Other requirements and other EU Directives, not affecting the fitness for intended uses, may be applicable to the hollow core slabs falling within the scope of this standard.

NOTE In addition to any specific clauses relating to dangerous substances contained in this Standard, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

NOTE An informative database of European and national provisions on dangerous substances is available at the Construction web site on EUROPA (accessed through http://europa.eu.int/comm/enterprise/construction/internal/dangsub/dangmain.htm).

This Annex establishes the conditions for CE marking of hollow core slabs made of reinforced or prestressed concrete, used for the construction of the structures of buildings and other civil engineering works, except bridges and shows the relevant clauses applicable.

This Annex has the same scope as Clause 1 of this standard and is defined by Table ZA.1.

Table ZA.1 — Relevant clauses

Essential characteristics		Requ	irement clauses in this standard	Levels and/or class(es)	Notes and Unit
Compressive strength	All methods	4.2 Pro	oduction requirements	None	N/mm²
(of concrete)					
Ultimate tensile and tensile	All methods	4.1.3 Reinforcing steel and			
yield strength (of steel)	All methods	4.1.4 EN133	Prestressing steel of 69:2004	None	N/mm ²
Mechanical strength (by calculation)	Method 1	Information listed in ZA.3.2		None	Geometry and materials
	Method 2	4.3.3	Mechanical resistance	None	kNm, kN, kN/m
	Method 3	Design specification		None	
Resistance to fire (for load bearing capacity)	Method 1	Information listed in ZA.3.2		R	Geometry and materials
	Method 2	4.3.4	Resistance to fire	R	min
	Method 3	Design specification		R	
Airborne sound insulation and impact noise transmission	All methods	4.3.5	Acoustic properties	None	dB
Detailing	All methods	4.3.1 Geometrical properties			mm
		8 Te	chnical documentation	None	1
Durability	All methods	4.3.7	Durability	None	Ambient conditions

Method 1 = declaration of geometrical data and material properties (see ZA.3.2).

Method 2 = declaration of the value of the product properties (see ZA.3.3).

Method 3 = declaration of compliance with given design specification (see ZA.3.4).

The producer shall select when he applies each method in accordance with Annex Y.

The requirement on a certain characteristic is not applicable in those Member States (MSs) where there are no regulatory requirements for that characteristic for the intended use of the product. In this case, manufacturers placing their products on the market of these MSs are not obliged to determine nor to declare the performance of their products with regard to this characteristic and the option "No performance determined" (NPD) in the information accompanying the CE marking (see Clause ZA.3) may be used. The NPD option may not be used, however, where the characteristic is subject to a threshold level.

ZA.2 Procedure for attestation of conformity of hollow core slabs

ZA.2.1 System of attestation of conformity

The system of attestation of conformity of hollow core slabs, for the essential characteristics indicated in Table ZA.1, in accordance with the decision of the Commission 1999/94/EC of 25 January 1999 as given in Annex III of the Mandate M/100 "Precast concrete products", is shown in Table ZA.2, for the indicated intended use and relevant levels or classes:

Table ZA.2 — System of attestation of conformity

Product(s)	Product(s) Intended use(s)		Attestation of conformity system(s)	
Hollow core slabs for floors	Structural	-	2+	

System 2+: see Directive 89/106 (CPD) Annex III-2 (ii) First possibility, including certification of the factory production control by an approved body on the basis of initial inspection of factory and of factory production control as well as of continuous surveillance, assessment and approval of factory production control.

The attestation of conformity of hollow core slabs, for the essential characteristics indicated in Table ZA.1, shall be based on the evaluation of conformity procedure indicated in Table ZA.3, resulting from the application of the clauses of this or other European Standards indicated therein.

Table ZA.3 — Assignment of evaluation of conformity tasks for hollow core slabs under system 2+

Tasks for the manufacturer Further testing of samples taken at the factory Initial inspection of factory and of factory production control Tasks for the notified body Certification of factory production control Centinuous surveillance, Tasks for the notified body Factory production control Further testing of samples taken at the factory - all characteristics of Table ZA.1; - compressive strength (of concrete); - ultimate tensile and tensile in tensile and tensile viole determent in the passile viole determined to all characteristics of Table ZA.1 Item 1 of Table 6.2.3 of EN 13369:20 6.1.3.2 a) and 6 6.1.3.2 a)	Tasks			Content of the tasks	Evaluation of conformity clauses to apply	
Tasks for the manufacturer Factory production control Characteristics of Table ZA.1 Further testing of samples taken at the factory Further testing of samples taken at the factory Initial inspection of factory and of factory production control Certification of factory the notified body Continuous surveillance, Factory production control Characteristics of Table ZA.1 - mechanical strength; - all characteristics of Table ZA.1; - compressive strength (of concrete); - ultimate tensile and tensile yield strength; - detailing; - detailing; - detailing; - resistance to fire R (in case of verification by testing); - compressive strength (of concrete); - ultimate tensile and tensile and tensile and tensile vield strength; - ultimate tensile vield v	Tasks for the manufacturer		Initial type testing		6.2 of EN 13369:2004	
Tasks for the notified body Certification of factory the notified body Control Continuous surveillance, Continuous surveillance, Compressive strength (of concrete); - all characteristics of Table ZA.1; - compressive strength (of concrete); - ultimate tensile and tensile yield strength; - detailing; - detailing; - resistance to fire R (in case of verification by testing); - compressive strength (of concrete); - ultimate tensile and te			Factory production control	characteristics of	6.3 of EN 13369:2004 and Annex A	
Initial inspection of factory and of factory production control Certification of factory production the notified body Continuous surveillance, Continuous surveillance, Initial inspection of factory and of factory production control Certification of factory production control Certification of factory production control on the basis of : Continuous surveillance, (of concrete); - ultimate tensile and tensile tensile and tensile and tensile vield attendate in the server of the problem will determate in the server of the problem will be applied attendated in the server of the problem will be a server of the problem.				- all characteristics of	Item 1 of Table A.3 6.2.3 of EN 13369:2004	
the basis of : Continuous surveillance, Continuous surveillance, Continuous surveillance, Continuous surveillance,	Tasks for the notified body of factory production control on	and of factory production	 (of concrete); ultimate tensile and tensile yield strength; detailing; durability; resistance to fire R (in case of verification by 	6.1.3.2 a) and 6.3 of EN 13369:2004		
			assessments and approval of factory production	 (of concrete); ultimate tensile and tensile yield strength; detailing; durability; resistance to fire R (in case of verification by 	6.1.3.2 b) and 6.3 of EN 13369:2004	

ZA.2.2 EC Certificate and Declaration of conformity

When compliance with the conditions of this Annex is achieved, and once the notified body has drawn up the certificate mentioned below, the manufacturer or his agent established in the EEA shall prepare and retain a declaration of conformity, which entitles the manufacturer to affix the CE marking. This declaration shall include:

- name and address of the manufacturer, or his authorised representative established in the EEA, and the place of production;
- description of the product (type, identification, use, etc.), and a copy of the information accompanying the CE marking;
- provisions to which the product conforms (e.g. Annex ZA of this EN);
- particular conditions applicable to the use of the product (e.g. provisions for use under certain conditions, etc.);
- the number of the accompanying factory production control certificate;
- name of, and position held by, the person empowered to sign the declaration on behalf of the manufacturer or his authorised representative.

The declaration shall be accompanied by a factory production control certificate, drawn up by the notified body, which shall contain, in addition to the information above, the following:

- name and address of the notified body:
- the number of the factory production control certificate;
- conditions and period of validity of the certificate, where applicable;
- name of, and position held by, the person empowered to sign the certificate.

The above mentioned declaration and the certificate shall be presented in the official language or languages of the Member State in which the product is to be used.

ZA.3 CE marking and labelling

ZA.3.1 General

The manufacturer or his authorised representative established within the EEA is responsible for the affixing of the CE marking. The CE marking symbol to affix shall be in accordance with Directive 93/68/EC and shall be shown on the product (or when not possible it may be on the accompanying label, the packaging or on the accompanied commercial documents e.g. a delivery note).

The following information shall be added to the CE marking symbol:

- identification number of the certification body;
- name or identifying mark and registered address of the producer;
- the last two digits of the year in which the marking is affixed;
- number of the EC factory production control certificate;
- reference to this European Standard;
- description of the product: generic name and intended use;
 Seismiciso ation

EN 1168:2005 (E)

- information on those relevant essential characteristics taken from Table ZA.1 which are listed in the relevant clause ZA.3.2, ZA.3.3 or ZA.3.4;
- "No performance determined" for characteristics where this is relevant.

The "No performance determined" (NPD) option may not be used where the characteristic is subject to a threshold level. Otherwise, the NPD option may be used when and where the characteristic, for a given intended use, is not subject to regulatory requirements in the Member State of destination.

In the following subclauses the conditions are given for the application of CE marking. Figure ZA.1 gives the simplified label to affix to the product, containing the minimum set of information and the link to the accompanying document where the other required information are given. For what concerns the information on essential characteristics, some of them may be given by an unambiguous reference to:

- technical information (product catalogue) (see ZA.3.2);
- technical documentation (ZA.3.3);
- design specification (ZA.3.4).

The minimum set of information to be put directly in the affixed label or in the companying document is given in Figures ZA.2, ZA.3 and ZA.4.

ZA.3.1.1 Simplified label

In the case of simplified label the following information shall be added to the CE marking symbol:

- name or identifying mark and registered address of the producer;
- identification number of the unit (to ensure traceability);
- the last two digits of the year in which the marking is affixed;
- number of the CE factory production control certificate;
- reference to this European Standard.

The same identification number shall mark, in the accompanying documents, the information related to the unit.

Figure ZA.1 gives a model for the simplified label for CE marking.

@Seismicisolation

Figure ZA.1 — Example of simplified label

For small elements or for product stamping reasons, the size can be reduced by removing reference to EN and/or to FPC certificate.

ZA.3.2 Declaration of geometrical data and material properties

(Method 1 to determine properties relating to essential requirements "mechanical resistance and stability" and "resistance to fire".)

Figure ZA.2 gives, for a type of hollow core slab, the model CE marking inclusive of the information needed to determine, according to design regulation valid in the place of use, the properties related to mechanical resistance and stability and resistance to fire, including aspects of durability and serviceability.

Referring to Table ZA.1 and to the information quoted in the list of ZA.3.1, the following properties shall be declared:

- compressive strength of concrete;
- ultimate tensile strength of reinforcing steel;
- tensile yield strength of reinforcing steel;
- ultimate tensile strength of prestressing steel;
- tensile 0,1 proof stress of prestressing steel;
- geometrical data (only critical dimensions);
- conditions for durability;
- possible reference to technical information (product catalogue) for detailing, durability and geometrical data.

@Seismicisolation

EN 1168:2005 (E)

0123

AnyCo Ltd, PO Bx 21, B-1050

02

0123-CPD-0456

EN
1168

Hollow core slabs for floors

600

PRESTRESSED HOLLOW CORE SLAB (for floors)

Concrete:

Compressive strength $f_{ck} = 60 \text{ N/mm}^2$

Prestressing steel:

Ultimate tensile strength $f_{pk} = 1 860 \text{ N/mm}^2$

Tensile 0,1 % proof-stress $f_{p0,1k} = 1580 \text{ N/mm}^2$

Dimensions in millimetres

length L = 4 800 \pm mm

strands 8 x 3 (3W Φ 5,2 - Fe 1 860)

low relaxation $\zeta_{1\ 000}$ = 2,5 %

initia res $r_{pi} = 1 420 \text{ N/mm}^2$

end protrusion of strands I = 0 mm

For detail and durability so Technical Information

Technical Information:

Product Catalogue ABC : 2002 – clause ii

CE conformity marking consisting of the CE symbol given in directive 93/68/EEC

Identification of the notified body

Name or identifying mark and registered address of the producer

Last two digits of the year in which the marking was affixed

Number of the FPC certificate

Number and title of European standard concerned

Generic name and intended use

Information on product geometry and material characteristics including detailing (to be adapted to the specific product by the producer)

NOTE Numerical values are only as example.

NOTE The sketch may be omitted if equivalent information are available in clearly identified technical information (product catalogue) referred to.

Figure ZA.2 — Example of CE marking with Method 1

125

ZA.3.3 Declaration of product properties

(Method 2 to determine properties relating to essential requirements "mechanical resistance and stability" and "resistance to fire").

For all design data, including models and parameters used in calculation, reference may be made to the technical (design) documentation.

Referring to Table ZA.1 and to the information quoted in the list of ZA.3.1, the following properties shall be declared:

- compressive strength of concrete;
- ultimate tensile strength of reinforcing steel;
- tensile yield strength of reinforcing steel;
- ultimate tensile strength of prestressing steel;
- tensile 0,1 proof stress of prestressing steel;
- mechanical ultimate strength of the element (design values for non-seismic situations) with axial compression capacity for some eccentricities or with bending moment capacity and shear capacity of critical sections;
- safety factors for concrete and steel used in calculation;
- resistance to fire R class;
- other Nationally Determined Parameters NDPs used in calculation;
- acoustic insulation parameters (Airborne sound insulation and impact noise transmission);
- conditions for durability;
- possible reference to Technical Documentation for geometrical data, detailing, durability, other NDPs and acoustic insulation parameters.

Figure ZA.3 gives, for prestressed or reinforced hollow core slabs, the model CE marking in the case in which the properties related to mechanical resistance and stability and resistance to fire are determined by means of EN Eurocodes.

The design values of the mechanical ultimate strength of the element and the resistance to fire class shall be computed using, for the Nationally Determined Parameters, either the values recommended in EN 1992-1-1:2004 and EN 1992-1-2:2004 or the values given in the National Annex of the Eurocodes applicable to the works.

 $C \in$

AnyCo Ltd, PO Bx 21, B-1050

02

0123-CPD-0456

EN 1168

Hollow core slabs for floors

PRESTRESSED/REINFORCED

HOLLOW CORE SLAB (for floors)

Concrete:

Compressive strength

 $f_{ck} = xx N/mm^2$

Reinforcing steel:

Ultimate tensile strength f_{tk} = yyy N/mm²

 $f_{\rm vk}$ = zzz N/mm² Tensile yield strength

Prestressing steel:

Ultimate tensile strength $f_{\rm pk}$ = uuu N/mm²

Tensile 0.1 % proof-stress $f_{p0.1k}$ = www N/mm²

Mechanical resistance (design values):

Bending moment capacity

(of the middle section) mmm kNm

Shear capacity (of the end sections) vvv kN

Material safety factors applied in strength calculation:

For concrete $\gamma_c = z.zz$

For steel $\gamma_s = x.xx$

Resistance to fire RXX for η_{fi} = 0.xx

RYY for $\eta_{fi} = 0.yy$

For geometrical data, detailing, durability, acoustic insulation parameters, possible complementary information on fire resistance and other NDPs see the Technical documentation

Technical Documentation:

Position Number xxxxxx

CE conformity marking consisting of the CE symbol given in directive 93/68/EEC

Name or identifying mark and registered address of the producer

Last two digits of the year in which the marking was affixed

Number of the FPC certificate

Number and title of European standard concerned

Generic name and intended use

product Information on characteristics including detailing (to be adapted to the specific product by the producer)

NOTE Mechanical resistance parameters refer to the precast element without any additional cast-in-situ part.

The values of Resistance to fire may be replaced by a reference to the pertinent part of the Technical documentation.

Figure ZA.3 — Example of CE marking with Method 2

ZA.3.4 Declaration of compliance with a given design specification

(Method 3 to determine properties relating to essential requirements "mechanical resistance and stability" and "resistance to fire").

Figure ZA.4 gives, for prestressed or reinforced hollow core slabs, the model CE marking in the case the product is produced according to a design specification in which the properties related to mechanical resistance and stability and resistance to fire are determined by means of design provisions applicable to the works.

Referring to Table ZA.1 and to the information quoted in the list of ZA.3.1, the following properties shall be declared:

- compressive strength of concrete;
- ultimate tensile strength of reinforcing steel;
- tensile yield strength of reinforcing steel;
- ultimate tensile strength of prestressing steel;
- tensile 0,1 proof stress of prestressing steel;
- resistance to fire class.

This method applies also in case of a design made with means other than EN Eurocodes.

@ Seismicisolation

 ϵ

AnyCo Ltd, PO Bx 21, B-1050

02

0123-CPD-0456

EN 1168

Hollow core slabs for floors

PRESTRESSED/REINFORCED

HOLLOW CORE SLAB (for floors)

Concrete:

Compressive strength $f_{ck} = xx N/mm^2$

Reinforcing steel:

Ultimate tensile strength f_{tk} = yyy N/mm²

Tensile yield strength $f_{vk} = zzz N/mm^2$

Prestressing steel:

Ultimate tensile strength f_{pk} = uuu N/mm²

Tensile 0.1% proof-stress $f_{p0.1k}$ = www N/mm²

For geometrical data, detailing, mechanical strength, fire resistance, acoustic insulation parameters and durability see the design specifications

Design Specification:

Order Code xxxxxx

CE conformity marking consisting of the CE symbol given in directive 93/68/EEC

Name or identifying mark and registered address of the producer

Last two digits of the year in which the marking was affixed

Number of the FPC certificate

Number and title of European standard concerned

Generic name and intended use

Information on product mandated characteristics including detailing (to be adapted to the specific product by the producer).

Figure ZA.4 — Example of CE marking with Method 3

In addition to any specific information relating to dangerous substances, the product should be also accompanied, when and where required and in the appropriate form, by documentation listing any other legislation on dangerous substances for which compliance is claimed, together with any information required by that legislation.

NOTE European legislation without national derogations need not be mentioned.

Bibliography

- [1] EN ISO 9001:2000, Quality management systems Requirements (ISO 9001:2000)
- [2] ENV 13670-1:2000, Execution of concrete structures Part 1: Common.
- [3] ISO 1803:1997, Building construction Tolerances Expression of dimensional accuracy Principles and terminology.

@ Seismicisolation

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com.

BSI 389 Chiswick High Road London W4 4AL

