Zadanie 1. Zgodnie z 3-letnim planem działalności Towarzystwo Ubezpieczeniowe Pewność S. A. Osiągnie następujące wyniki (w mln ECU):

	1999	2000	2001
Składka przypisana	2.0	8.0	13.0
Odszkodowania wypłacone	0.5	4.0	9.0
Rezerwa składki na koniec roku	0.5	1.0	2.0
Rezerwa szkodowa na koniec roku	0.5	3.0	6.0
Środki własne	0.5	1.2	2.0

T.U. Pewność S.A. zamierza prowadzić działalność ubezpieczeniową w grupach 1-7 działu II. T.U. Pewność S.A. chce zawrzeć umowę reasekuracyjną typu *quota share* (bez prowizji reasekuracyjnej, a także bez udziału w zyskach reasekuratora), której warunki będą obowiązywały przez 3 lata. Najmniejszy udział reasekuratora taki, który zapewni pokrycie środkami własnymi marginesu wypłacalności na koniec każdego z trzech lat działalności, wynosi:

- (A) 15.5%
- (B) 17.0%
- (C) 18.5%
- (D) 20.0%
- (E) 21.5%

Zadanie 2. Majątek pewnej firmy stanowią trzy samochody, każdy o wartości równej jeden. Funkcja użyteczności wartości majątku dla tej firmy to:

$$u(x) = -x^2 + 6 \cdot x$$
, gdzie $x \in [0, 3]$

Prawdopodobieństwo kradzieży auta w ciągu roku wynosi 0.1. Kradzieże poszczególnych samochodów to zdarzenia niezależne. Ile (co najwyżej) firma jest gotowa zapłacić za ubezpieczenie od kradzieży samochodów, jeżeli ubezpieczyciel pokryje jedynie wartość pierwszego skradzionego samochodu?

- (A) 0.289
- (B) 0.333
- (C) 0.427
- (D) 0.545
- (E) 0.603

Zadanie 3. Pewien ubezpieczyciel prowadzący działalność ubezpieczeniową w grupie 8 działu II w ciągu pierwszych sześciu lat działalności osiągnął następujące wyniki (w mln zł):

Lata działalności:	1	2	3	4	5	6
Składki brutto	20	40	70	110	130	150
Udział reasekuratorów	5	10	20	30	35	40
Odszkodowania brutto	11	20	25	60	110	90
Udział reasekuratorów	3	6	10	20	50	50
Rezerwa składki	5	8	20	40	45	45
Rezerwa szkodowa	5	10	30	40	45	60

Na koniec piątego roku działalności ubezpieczyciel nie tworzył rezerwy na wyrównanie szkodowości. Rezerwa ta na koniec szóstego roku działalności powinna wynieść (w mln zł):

- (A) 0
- (B) 3.3
- (C) 5.5
- (D) 12.0
- (E) 15.9

Zadanie 4. Szkoda Y może przyjmować wartości ze zbioru $\{y_1, y_2, \ldots, y_n\}$ takiego, że $5 < y_1 < y_2 < \ldots < y_n$. Ilość szkód o wartości y_i w portfelu jest zmienną losową o rozkładzie Poissona z wartością oczekiwaną λ_i . Dla łącznej wartości szkód S z portfela:

$$E(S) = 1000$$

$$VAR(S) = 100\ 000$$

$$\lambda = \sum_{i=1}^{n} \lambda_i = 100$$

Jeżeli do każdej szkody zastosujemy udział własny ubezpieczonego w wysokości 5, to wariancja łącznej wartości szkód na udziale ubezpieczyciela wyniesie:

- (A) 64 000
- (B) 72 200
- (C) 81 000
- (D) 88 400
- (E) 92 500

Zadanie 5. Proces nadwyżki ubezpieczyciela opisany jest przez klasyczny model, w którym składka narasta liniowo w tempie $(1+\theta)\cdot\lambda\cdot E(Y)$ na jednostkę czasu, gdzie:

- λ jest parametrem intensywności procesu ilości szkód (poissonowskiego),
- θ jest stosunkowym narzutem bezpieczeństwa, $\theta = 0.5$
- wartości poszczególnych szkód Y_i są zmiennymi losowymi niezależnymi nawzajem i od procesu ilości szkód, o identycznym rozkładzie:
- takim, że $\ln(Y_i)$ ma rozkład normalny o parametrach $(\mu, \sigma^2) = (1, 2)$.

Wartość oczekiwana maksymalnej łącznej straty w tym modelu wynosi:

- (A) $0.5 \cdot e^3$
- (B) e^3
- (C) $0.5 \cdot e^4$
- (D) e^{i}
- (E) $0.5 \cdot e^5$

Zadanie 6. Ilość szkód w ciągu roku dla danego klienta ma rozkład Poissona z wartością oczekiwaną λ . Wartość parametru λ dla losowo wybranego klienta z pewnej populacji jest realizacją zmiennej losowej Λ o rozkładzie Bernoulliego z parametrami (n, q) = (10, 0.75). Dla pewnego klienta zaobserwowano w kolejnych trzech latach następujące ilości szkód: (7, 2, 3).

Wartość oczekiwana ilości szkód w ciągu roku (z rozkładu warunkowego, uwzględniającego dotychczasowe obserwacje), oszacowana jako liniowa (z wyrazem wolnym) funkcja obserwacji, wynosi:

- (A) 5,5
- (B) 6
- (C) 6.25
- (D) 6.73
- (E) 7

Zadanie 7. Wartość szkody jaką może ponieść klient jest wielokrotnością 100 zł (zawsze jest co najwyżej jedna szkoda). Składka netto za ubezpieczenie z udziałem własnym w wysokości 600 zł wynosi 400 zł. Wariancja wypłaty ubezpieczyciela wynosi 120 000 [zł²]. Wartość szkody nie przekroczy 600 zł z prawdopodobieństwem (bezwarunkowym, a więc zawierającym zdarzenie iż szkoda wyniosła zero) wynosi 0.6. Wariancja wypłaty ubezpieczyciela po podniesieniu udziału własnego do kwoty 700 zł wynosi:

- (A) $74\ 400\ [zl^2]$
- (B) $77600 [zt^2]$
- (C) 87 600 [zł²]
- (D) 94 400 [zł²]
- (E) $105\ 600\ [zt^2]$

Zadanie 8. W modelu łącznego ryzyka (*collective risk model*) ilość szkód ma rozkład Poissona z wartością oczekiwaną równą 3ln(2), zaś pojedyncza szkoda *Y* ma rozkład dany wzorem:

Pr
$$(Y = k) = \frac{1}{\ln 2} \cdot \frac{0.5^k}{k}, \qquad k = 1, 2, 3,$$

Prawdopodobieństwo, iż łączna wartość szkód wyniesie 6, równa jest:

- (A) $\frac{3}{128}$
- (B) $\frac{4}{128}$
- (C) $\frac{5}{128}$
- (D) $\frac{6}{128}$
- (E) $\frac{7}{128}$

Zadanie 9. Niech X_i oznacza wypłatę ubezpieczyciela z *i*-tego ryzyka, a $S = \sum_{i=1}^n X_i$ łączną

wartość wypłat z portfela *n* ryzyk. Dopuszczamy zależność wzajemną ryzyk w portfelu. Zakładamy jednak, że *n* jest na tyle duże, a zależności na tyle słabe (na przykład występujące jedynie dla niektórych par ryzyk), iż uprawnione jest korzystanie z aproksymacji normalnej zmiennej *S*. Składkę za *i*-te ryzyko ustalamy według formuły:

$$\Pi(X_i) = E(X_i) + \alpha \cdot COV(X_i, S)$$

Parametr α ustalamy tak, aby prawdopodobieństwo poniesienia straty na portfelu ryzyk:

$$\Pr\left(S > \sum_{i=1}^{n} \Pi(X_i)\right)$$

wyniosło 0.05. Wobec tego parametr α wyraża się wzorem:

(A)
$$\frac{1.645}{VAR(S)}$$

(B)
$$\frac{1.645}{\sqrt{VAR(S)}}$$

(C)
$$\frac{1.645 \cdot n}{\sum_{i=1}^{n} COV(X_{i}, S)}$$

(D)
$$\frac{1.645}{2 \cdot VAR(S)}$$

(E)
$$\frac{1.645 \cdot \sqrt{n}}{\sum_{i=1}^{n} COV(X_{i}, S)}$$

Wskazówka: prawdopodobieństwo, iż standaryzowana zmienna normalna przekroczy wartość 1.645 wynosi 0.05

Zadanie 10. Rozkład wartości szkody Y dany jest gęstością:

$$f_{Y}(x) = \begin{cases} \frac{5^{6}}{(5+y)^{6}} & dla \quad y > 0\\ 0 & dla \quad y \le 0 \end{cases}$$

Jeśli ilość szkód ma rozkład Poissona z wartością oczekiwaną 0.4, a ubezpieczyciel pokrywa nadwyżkę każdej szkody ponad 5, to składka netto wynosi:

- (E) $\frac{1}{128}$
- (F) $\frac{3}{256}$
- (G) $\frac{2}{128}$
- (H) $\frac{3}{128}$
- (E) $\frac{4}{128}$

Egzamin dla Aktuariuszy z 30 maja 1998 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Dasal		

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	D	
3	С	
4	Е	
5	D	
6	В	
7	A	
8	Е	
9	В	
10	Е	

 $^{^{\}ast}$ Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.