Clase Práctica 2 - José Luna

Longitud de Arco

Sea & una curva simple, suave a trozos,

g sea $\nabla: \mathbb{I} \to \mathbb{R}^n$ una parametrización regular a trozon

de & Recordar

Le longitud de Ce esté dede por

La longitud de una curua Mo depende de la parametrización V

· Ejemplos

1)
$$\nabla(t) = (\cos t, \sin t, t)$$
, $0 \le t \le 2\pi$

1) $\nabla(t) = (\cot t, \sin t, t)$, $0 \le t \le 2\pi$ "Hélice"

Tenemos que 2π $l(\mathcal{C}) = \int_{0}^{2\pi} ||(-\sin t, \cos t, 1)|| dt$ $\left(\sin^2 t + \cos^2 t + 1\right)^{1/2} = \sqrt{2}$

Noter que es meyor a 2TT 2TT (252TT ~2.8

oliction policition policition.

"Esta diferencia nor dice cuénto se estira" el perímetro de un círculo enrollando un elásti co sobre un cilin dro.

Ej 2. Calcular long(6)

Gréfico de le, suave à trozos
La ver(0,0)

long
$$(\mathcal{C}_1) = \int_{x=-1}^{x=1} \int_{\theta=0}^{\theta=1}$$

Peractrico (

Sé que
$$x^2 = 3^3$$
 as $(x^2)^{1/3} = 5$

conosco y en funció de x
 $\Rightarrow O(t) = (t, (t^2)^{1/3})$ con -16t (1)

 $= (t, t^{2/3})$

Wejer parametrizo como:

 $V(t) = (t^3, t^2)$ con -16t (1)

Procho que efectivamente , $V(t)$ parametrizo \Rightarrow (e. La Procho dable inclusión:

 $x = 2^3 = (t^3)^2 = 5^3$
 $x^2 = 3^3 = (t^3)^3 = 5^3$
 $x^2 = 3^3 = (t^3)^3 = 5^3$

Supergamar que $x > 0 > x = (t^3)^3$

Luego

 $(x, y) = ((ty)^3, (ty)^2) = V(ty)$

• Si
$$X \leqslant 0 \Rightarrow X = -\left(\frac{1}{5}\right)^3$$

$$(x,y) = \left(\frac{1}{5}\right)^3, \left(\frac{1}{5}\right)^2 = \sqrt{-5}$$

Teniendo las parametrizaciones de le, o lez
Colculo:
$$(x>0)$$
 $(x>0)$ $(x>0)$

$$= \frac{1}{18} \cdot \int_{x=2}^{x=1} \frac{1}{3} \cdot \int_{x=2}^{3} \frac{1}{3} \cdot \int_{x=$$

$$3 \cdot 0 \cdot 0 \cdot 0 = \frac{2}{27} (13^{3/2} - 8) \approx 2,879$$

$$E_{i}3: \nabla(t):(ast, sint, t^{2})$$
 oft (1)

Introducinos Funcioner Hiperbólicer

$$sinh(x) = \underbrace{e^{x} - e^{-x}}_{2}$$
 $cosh(x) = \underbrace{e^{x} + e^{-x}}_{2}$

$$\cosh(x) = e^{x} + e^{-x}$$

Tropiedades

$$\frac{1}{2} \cos \left(x \right) - \frac{1}{2} \sin \left(x \right) = 1$$

cash
$$(2x) = 2 \cosh^2(x) - 1$$

 $\sinh(2x) = 2 \sinh(x) \cdot \cosh(x) - 1$

o arcsinh
$$(x) = \ln (x + \sqrt{x^2 + 1})$$

orccorh $(x) = \ln (x + \sqrt{x^2 + 1})$
Ly rama positiva

Propongo cembio de veriable

$$t = sinh(x)$$
 $dt = cosh(x) dx$

$$pre = 1$$

$$\Rightarrow 1 = \pi h \times 1$$

$$\Rightarrow re \sin(1) = \ln(1+\sqrt{2})$$

$$\int_{0}^{1} \sqrt{1+t^{2}} dt = \int_{0}^{1} \sqrt{1+sinh^{2}x} \cdot cosh(x) \cdot dx = \int_{0}^{1} \cosh^{2}x$$

$$= \int_{0}^{1} \cosh(x) \cdot cosh(x) dx = \int_{0}^{1} \cosh^{2}x dx$$

$$= \int \cosh(x) \cdot \cosh(x) dx = \int_0^{\infty} \cosh^2 x dx$$

$$\int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{2} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$= \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx = \int_{0}^{h} \left(\frac{e^{x} + e^{-x}}{4} \right)^{2} dx$$

$$\frac{1}{4} \cdot \frac{e^{2x}}{2} \Big|_{0}^{h(1+\sqrt{2})} = \frac{e^{\ln(1+\sqrt{2})} \cdot e^{\ln(1+\sqrt{2})}}{8} \\
= \frac{e^{\ln(1+\sqrt{2})} \cdot e^{\ln(1+\sqrt{2})}}{8} = \frac{1}{8} \cdot (1+2\sqrt{2}+2) \\
= \frac{\sqrt{2}}{4} + \frac{3}{8}$$

$$=\frac{\left(1+\sqrt{2}\right)^{2}+\ln\left(1+\sqrt{2}\right)}{4}-\left(1+\sqrt{2}\right)^{-2}$$

Cambio de variable hiporbólico en general

$$\int \int a + m \cdot t^2 dt$$

$$= \int \int 1 + t^2 dt$$

$$= \int \int \int \frac{1}{1 + t^2} dt$$

