SparkSQL DataFrame

目录

- 1 背景介绍
- **2** SparkSQL主要组件
- 3 DataFrame 与 Dataset
- 4 实例应用

Spark SQL 背景介绍

为什么在大数据领域仍使用SQL

- > SQL能够跟现有系统进行很好集成
- > 跟现有的JDBC/ODBC BI系统兼容
- > 很多工程师习惯使用SQL
- ▶ 相比于MapReduce , SQL更容易表达

Spark SQL是什么

- > 从Spark 1.0开始,成为Spark生态系统一员
- > 专门处理结构化数据(比如DB, Json)的Spark组件
- > 提供了三种操作数据的方式
 - > SQL Queries
 - DataFrames API
 - Datasets API
- > Spark SQL = Schema + RDD

Spark SQL引入的主要动机

- > 更快地编写和运行Spark程序
 - > 编写更少的代码
 - > 读取更少的数据
 - > 让优化器自动优化程序,释放程序员的工作

Spark SQL: 不仅仅是 "SQL"

- > SQL能够对各种数据源进行ETL操作
 - > 解决方案: Data Source API -
- ➤ 在Spark上实现SQL引擎
 - > 通过一种具备高伸缩性的方式
 - ▶ 解决方案: DataFrame API
 - > 通过一种具备高效率的方式
 - > 解决方案: Catalyst Optimizer

Spark SQL 主要组件

Spark SQL总体架构

Spark SQL

- > 使用SQL
 - ➤ 如果你非常熟悉SQL语法,则使用SQL
- > 使用DataFrame/Dataset
 - DSL(Domain Specific Language)
 - > 采用更通用的语言(Scala, Python)表达你的查询需求
 - > 使用DataFrame更快的捕获错误

SQL DataFrame		
Syntax error example	"SELECT id FROM table"	df.select("id")
Caught at	RunDme	Compile Time

Spark SQL: DataFrame

- > RDD + Schema
 - > 以行为单位构成的分布式数据集合,按照列赋予不同的名称
- > 对select, filter,aggregation和sort等操作符的抽象
- ➤ 在Spark 1.3之前,被称为SchemaRDD

DataFrame:编写更少的代码(input & output)

> 提供了读写各种格式数据的API

Built-In

JDBC

External

and more...

DataFrame:编写更少的代码(input & output)

> 提供了读写各种格式数据的API

Spark 2.x 融入了sparkSession

```
df = spark.read \
 df = sqlContext.read \
                                                                          .format("ison") \
  .format("json") \
                                                                          .option("samplingRatio", "0.1") \
  .option("samplingRatio", "0.1")
                                                                       .load("/home/michael/data.json")
.load("/home/michael/data.json")
                                                                       df.write
df.write \
                                                              write
                                                  Read
                                                         and
                                                                         .format("parquet") \
 .format("parquet") \
                                                                         .mode("append") \
 .mode("append") \
                                                                         .partitionBy("year") \
 .partitionBy("year") \
                                                                         .saveAsTable("fasterData")
 .saveAsTable("fasterData")
```


> 提供了读写各种格式数据的API

```
df = sqlContext.read \
.format("json") \
.option("samplingRatio", "0.1") \
.load("/home/michael/data.json")
```

```
df.write \
   .format("parquet") \
   .mode("append") \
   .partitionBy("year") \
   .saveAsTable("fasterData")
```

Builder methods are used to specify:

- Format
- Partitioning
- Handling of existing data
- and more

> 提供了读写各种格式数据的API

```
df = sqlContext.read \
.format("json") \
.option("samplingRatio", "0.1") \
.load("/home/michael/data.json")

df.write \
.format("parquet") \
.mode("append") \
.partitionBy("year") \
.saveAsTable("fasterData")
```

load(...), save(...) or saveAsTable(...) functions create new builders for doing I/O

DataFrame:编写更少的代码(writeless)


```
enal Andvl
                                                                                                              98
                                                                                        20/
val rdd = studentDF.rdd
                                                                                          20|chinese| Andv|
                                                                                                                93 |
                                                                                                math | Andv |
// rdd.take(2)
                                                                                                                88 |
                                                                                                math|Justin|
                                                                                          19|
                                                                                                                82 |
 val r = rdd.map{line =>
                                                                                         | 19|
                                                                                                enalJustinl
                                                                                                                91 |
   (line(2).toString,(line(3).toString.toInt, 1))
                                                                                         | 19|chinese|Justin|
                                                                                                                73 |
                                                                                                math| jams|
                                                                                                                88 |
 .reduceByKey((x,y) \Rightarrow (x. 1 + y. 1, x. 2 + y. 2)).map(x \Rightarrow (x. 1,x. 2. 1 / x. 2. 2))
                                                                                                ena| jams|
                                                                                         | 19|
                                                                                                                901
 r.collect foreach println
                                                                                         | 19|chinese| jams|
                                                                                                                71 |
                                                             Using DataFrame
Using SparkSQL
                                                             val resultDF = studentDF.groupBy("name")
val resultDF = sqlContext
                                                               .agg(Map("score" -> "avg"))
  .sql("select name, avg(score) from student group by name")
```

DataFrame:读取更少的数据

- > 采用更高效的数据格式保存数据
- ➤ 使用列式存储格式(比如parquet)
- > 使用分区(比如/year=2014/month=02/...)
- > 使用统计数据自动跳过数据(比如min、max)
- > 查询下推:将谓词下推到存储系统执行

- > Parquet 和 orc 都是列式存储格式,列式存储具备以下特点:
- > 1.可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量。
- > 2.压缩编码可以降低磁盘存储空间。由于同一列的数据类型是
- 一样的,可以使用更高效的压缩编码(例如Run Length Encoding 和Delta Encoding)进一步节约存储空间。
- > 3.只读取需要的列,支持向量运算,具备更好的扫描性能。

> Parquet是嵌套结构(层级,树状),先通过对每一层的查询,然后在相关叶子上进行数据查询。

- ➤ Parquet 是一个列式存储文件格式,在同一个数据文件中保存一行中的所有数据,以确保在同一个节点上处理时一行的所有列都可用。
- ▶ Parquet 设置 HDFS块大小和最大数据文件大小为 1GB , 一组行的数据会重新排列 , 以便第一行所有的值被重组为一个连续的块 , 然后是第二行的所有值。
- ➤ Parquet可以表达嵌套结构,用definition level和repetition level两个值分别表达在整个嵌套格式中,最深嵌套层数,和同一个嵌套层级中第几个值。

- > ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。
- Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset,还包括每个Column的max和min值。
- ▶ Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。 每个列进行了编码,分成多个Stream来存储。
- > Stripe Footer: 存的是各个Stream的类型,长度等信息。
- > 文件级元数据(File Footer):包括文件的描述信息PostScript、文件meta信息(包括整个文件的统计信息)、所有stripe的信息和文件schema信息。
- > stripe:一组行形成一个stripe,每次读取文件是以行组为单位的,一般为HDFS的块大小,保存了每一列的索引和数据。

Spark SQL: 更高的性能

Time to Aggregate 10 million int pairs (secs)

Spark SQL:更高的性能(join)


```
val studentDF = sqlContext.read.format("json").load(root + "student.json")
      val studentCourse = sqlContext.read.format("json").load(root + "studentCourse.json")
      val result = studentDF.alias("a").join(studentCourse.alias("b"),
        studentDF("course") === studentCourse("course"), "inner")
        .where("a.course = 'eng'").select(studentCourse.col("teacher"))
   逻辑计划
                                     物理计划
                                                                                      join
       filter
                                          join
                                                               将两次调用
                                                               优化为一次
        join
                                    StudentDF
                                                      filter
                                                                                                 Optimizd
                                                                                Optimizd
                                                                                StudentDF
StudentDF
             StudentCourseDF
                                                 StudentCourseDF
```

Spark SQL:更高的性能


```
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol="words", outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
df = sqlCtx.load("/path/to/data")
model = pipeline.fit(df)
                                 hashingTF
                                                    Ir.model
             Pipeline Model
```


Spark SQL: 核心优化器: Catalyst

> Plan OpAmizaAon & ExecuAon

Spark SQL API演化

RDD API (2011)

- > JVM对象组成的分布式数据集合
- > 不可变且具有容错能力
- > 可处理结构化与非结构化数据
- > 函数式转换

RDD API 的局限性

- > 无Schema
- > 用户自己优化程序
- > 从不同的数据源读取数据非常困难
- > 合并多个数据源中的数据也非常困难

DataFrame API (2013)

- > Row对象组成的分布式数据集合
- > 不可变且具有容错能力
- > 处理结构化数据
- ▶ 自带优化器Catalyst , 可自动优化程序
- > Data source API

DataFrame API 的局限性

- > 运行时类型检查
- > 不能直接操作domain对象
- > 函数式编程风格

DataFrame API 的局限性


```
val dataframe = sqlContext.read.json("people.json")
dataframe.filter("salary > 1000").show()
Throws Runtime exception
org.apache.spark.sql.AnalysisException: cannot resolve 'salary' given input columns age,
name;
```

```
//Create RDD[Person]
val personRDD = sc.makeRDD(Seq(Person("A",10), Person("B",20)))

//Create dataframe from a RDD[Person]
val personDF = sqlContext.createDataFrame(personRDD)

personDF.rdd
//We get back RDD[Row] and not RDD[Person]

Dataset 转换回来泛型会是person
```

Dataset

- > 什么是Dataset
 - ➤ 扩展自DataFrame API, 提供了编译时类型安全, 面向对象风格的API
- > Dataset AP
 - > 类型安全:可直接作用在domain对象上 Dataset[Person]
 - > 高效:代码生成编解码器,序列化更高效//还没有提供具体实现
 - > 协作: Dataset与Dataframe可相互转换

Dataset

Dataset:编译时类型检查


```
case class Person(name: String, age: Long)
val dataframe = sqlContext.read.json("people.json")
val ds : Dataset[Person] = dataframe.as[Person]
ds.filter(p => p.age > 25)
ds.filter(p => p.salary > 12500)
//error: value salary is not a member of Person
```

Dataset: 作用在domain对象


```
//Create RDD[Person]
val personRDD = sc.makeRDD(Seq(Person("A",10), Person("B",20)))
//Create Dataset from a RDD
val personDS = sqlContext.createDataset(personRDD)
personDS.rdd
//We get back RDD[Person] and not RDD[Row] in Dataframe
```

Dataset: 面向对象编程风格


```
case class Person(name: String, age: Int)
val dataframe = sqlContext.read.json("people.json")
val ds : Dataset[Person] = dataframe.as[Person]
// Compute histogram of age by name
val hist = ds.groupBy(_.name).mapGroups({
   case (name, people) => {
    val list = people.map(_.age).toList
      (name, list)
}})
```

Dataset API: data sources

> GeneraAc Load/Save FunAons

```
val usersDF = spark.read.load("/data/users.parquet")
val peopleDF = spark.read.format("json").load("/data/people.json")
```

- > Specific Data Sources
 - > Parquet:

```
val parquetFileDF = spark.read.parquet("/data/users.parquet")
parquetFileDF.write.parquet("/data/output.parquet")
```

> Json:

```
val jsonFileDF = spark.read.json("/data/users.json")
jsonFileDF .write.mode('append').json("/data/output.json")
```

> JDBC:

```
val jdbcDF = spark.read.format("jdbc").opAons(
Map("url" ---> "jdbc:postgresql:dbserver",
"dbtable" ---> "schema.tablename")).load()
```

Dataset API: operaAons

Actions

collect

count

first

foreach

reduce

take

•••

Typed transformations

map

select

filter

flatMap

mapParAAons

join

groupByKey

interset

reparAAon

where

sort

•••

Untyped transformations

agg

col

cube

drop

groupBy

join

rollup

select

withColumn

•••

RDD/DataFrame/Dataset

Dataset will be stable in spark 2.0

Please use dataframe now until

spark 2.0 is stable!

数据集准备

- > 数据集
 - MovieLens 1M Dataset
- > 相关数据文件
 - > users.dat
 - UserID::Gender:: Age::Occupation::Zip-code
 - > movies.dat
 - MovieID:: Title::Genres
 - > ratings.dat
 - UserID::MovieID::Rating::Timestamp

SparkSQL 命令行访问

> 准备数据

```
将:: 分隔符转为","方便建立hive 表
   (1) 编写代码
   (2) shell 命令 cat ml-1m/users.dat | tr -s "::" ',' >> /tmp/data/users.dat
> ./bin/spark-sql
CREATE EXTERNAL TABLE user (
userid INT.
gender STRING,
age INT,
occupation STRING,
zipcode INT
ROW FORMAT DELIMITED FIELDS TERMINATED BY ","
STORED AS TEXTFILE
LOCATION '/tmp/data';
测试一下表
SELECT * from USER limit 10;
```

SparkSQL 命令行访问hive表

- > 使用SparkSQL 处理Hive Metastore 中的表
- > 将hive-site.xml拷贝到Spark安装的conf 目录下
- > 执行spark-sql

SparkSQL 程序设计

> 创建 SQLContext 对象

封装了 spark sql 执行环境信息

> 创建DataFrame或Dataset

Spark SQL 支持各种数据源

> 在 DataFrame 或 Dataset 之上进行转换和 action

Spark SQL 提供了多种转换和 action 函数

> 返回结果

保存到 HDFS 中,或直接打印出来

步骤1,创建SQLContext

- ➤ val sc: SparkContext // 已创建好的 SparkContext
- > val sqlContext = new org.apache.spark.sql.SQLContext(sc)
- > 将RDD隐式转换为 DataFrame

import sqlContext.implicits._

步骤2,创建 DataFrame 或Dataset

> 提供了读写各种格式数据的 API

Built-In

JDBC

and more...

步骤3, DataFrame 或Dataset 上进行 operation

> 提供了读写各种格式数据的 API

Untyped transformations (DF -> DF)
agg
col
cube
drop
groupBy
join
rollup
select
withColumn
•••

```
Typed transformations
                                          Actions
       (DS \rightarrow DS)
                                    collect
   map
   select
                                    count
                                    first
   filter
   flatMap
                                    foreach
   mapParKKons
                                    reduce
   ioin
                                    take
   groupByKey
                                     •••
   interset
   reparKKon
   where
   sort
```

(DF/DS -> console/output)

DataFrame数据源

> RDD

通过反射方式

通过自定义schema方式

- > json
- > parquet
- > Jdbc
- > orc

DataFrame 反射方式

- > 定义 case class,作为 RDD 的 schema
- > 直接通过 RDD.toDF 将 RDD 转换为 DataFrame

```
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
case class User(userID: Long, gender: String, age: Int, occupation: String, zipcode: Int)
val usersRdd = sc.textFile("/tmp/ml-1m/users.dat")

val userRDD = usersRdd.map(_.split("::")).map(p => User(p(0).toLong, p(1).trim, p(2).toInt, p(3), p(4).toInt))
val userDataFrame = userRDD.toDF()
userDataFrame.take(10)
userDataFrame.count()
```

RDD -> DataFrame: 显式注入 Schema

- > 定义RDD schema (由StructField/StructType构成)
- > 使用SQLContext.createDataFrame生成DF

```
import org.apache.spark.sql.{SaveMode, SQLContext, Row}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
val schemaString = "userID gender age occupation zipcode"
val schema = StructType(schemaString.split(" ").map(fieldName =>
StructField(fieldName, StringType, true)))
val userRDD2 = usersRdd.map(\_.split("::")).map(p => Row(p(0), p(1).trim, p(2).trim,
p(3).trim, p(4).trim)
val userDataFrame2 = sqlContext.createDataFrame(userRDD2, schema)
userDataFrame2.take(10)
userDataFrame2.count()
userDataFrame2.write.mode(SaveMode.Overwrite).json("/tmp/user.json")
userDataFrame2.write.mode(SaveMode.Overwrite).parquet("/tmp/user.parquet")
```

json -> DataFrame

- > sqlContext.read.format("json").load(...)
- > sqlContext.read.json(...)
- > SQL

```
import org.apache.spark.sql.{SaveMode, SQLContext, Row}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
val schemaString = "userID gender age occupation zipcode"
val schema = StructType(schemaString.split(" ").map(fieldName =>
StructField(fieldName, StringType, true)))
val userRDD2 = usersRdd.map(\_.split("::")).map(p \Rightarrow Row(p(0), p(1).trim, p(2).trim, p(3).trim)
p(3).trim, p(4).trim)
val userDataFrame2 = sqlContext.createDataFrame(userRDD2, schema)
userDataFrame2.take(10)
userDataFrame2.count()
userDataFrame2.write.mode(SaveMode.Overwrite).json("/tmp/user.json")
userDataFrame2.write.mode(SaveMode.Overwrite).parquet("/tmp/user.parquet")
```

parquet -> DataFrame

- > sqlContext.read.format("json").load(...)
- > sqlContext.read.json(...)
- > SQL

```
val userParquetDF = sqlContext.read.format("parquet").load("/tmp/user.parquet")
userParquetDF.take(10)
val userParquetDF2 = sqlContext.read.parquet("/tmp/user.parquet")
userParquetDF2.take(10)

CREATE TABLE user USING parquet
OPTIONS
(path "/tmp/user.parquet")
```

jdbc -> DataFrame

- > read.format("jdbc").options(...)
- > SQL

```
export SPARK_CLASSPATH=<mysql-connector-java-5.1.26.jar>
val jdbcDF = sqlContext.read.format("jdbc").options(
val jdbcDF = sqlContext.read.format("jdbc").options(
Map(
"url" -> "jdbc:mysql://mysql hostname:mysql port/testDB",
"dbtable" -> "testTable")).load()
CREATE TABLE user USING jdbc
OPTIONS
("idbc:mysql://mysql hostname:mysql port/testDB", "dbtable" -> "testTable")
```

jdbc -> DataFrame

- > read.format("jdbc").options(...)
- > SQL

```
export SPARK_CLASSPATH=<mysql-connector-java-5.1.26.jar>
val jdbcDF = sqlContext.read.format("jdbc").options(
val jdbcDF = sqlContext.read.format("jdbc").options(
Map(
"url" -> "jdbc:mysql://mysql_hostname:mysql_port/testDB",
"dbtable" -> "testTable")).load()
CREATE TABLE user USING jdbc
OPTIONS
("jdbc:mysql://mysql_hostname:mysql_port/testDB", "dbtable" -> "testTable")
```

csv -> DataFrame

- > Github: https://github.com/databricks/spark-csv
- > Maven: com.databricks:spark-csv_2.10:1.2.0

Avro -> DataFrame

- > Github: https://github.com/databricks/spark-avro
- > Maven: com.databricks:spark-avro_2.10:2.0.1

```
val df = sqlContext.read
.format("com.databricks.spark.avro")
.load("/tmp/user.avro")
```

Avro -> DataFrame

- > Github: https://github.com/databricks/spark-avro
- > Maven: com.databricks:spark-avro_2.10:2.0.1

```
val df = sqlContext.read
    .format("com.databricks.spark.avro")
    .load("/tmp/user.avro")
```

准备数据

> Json 数据

```
{"age":"45","gender":"M","occupation":"7","userID":"4","zipcode":"02460"} {"age":"1","gender":"F","occupation":"10","userID":"1","zipcode":"48067"}
```

> 读取Json数据

```
scala> val userDF = sqlContext.read.json("/tmp/user.json")
userDF: org.apache.spark.sql.DataFrame = [age: string, gender: string, occupation: string, userID:
string, zipcode: string]
```

> 生成Json数据

scala> userDF.limit(5).write.mode("overwrite").json("/tmp/user2.json")

准备数据

> Json 数据

```
{"age":"45","gender":"M","occupation":"7","userID":"4","zipcode":"02460"} {"age":"1","gender":"F","occupation":"10","userID":"1","zipcode":"48067"}
```

> 读取Json数据

```
scala> val userDF = sqlContext.read.json("/tmp/user.json")
userDF: org.apache.spark.sql.DataFrame = [age: string, gender: string, occupation: string, userID:
string, zipcode: string]
```

> 生成Json数据

scala> userDF.limit(5).write.mode("overwrite").json("/tmp/user2.json")

查看结果

scala> userDF.show(4)

```
scala> userDF.limit(2).toJSON.foreach(println)
{"age":"1","gender":"F","occupation":"10","userID":"1","zipcode":"48067"}
{"age":"56","gender":"M","occupation":"16","userID":"2","zipcode":"70072"}
```

```
root
|-- age: string (nullable = true)
|-- gender: string (nullable = true)
|-- occupation: string (nullable = true)
|-- userID: string (nullable = true)
|-- zipcode: string (nullable = true)
```

查看结果

scala> userDF.show(4)

```
scala> userDF.limit(2).toJSON.foreach(println)
{"age":"1","gender":"F","occupation":"10","userID":"1","zipcode":"48067"}
{"age":"56","gender":"M","occupation":"16","userID":"2","zipcode":"70072"}
```

```
root
|-- age: string (nullable = true)
|-- gender: string (nullable = true)
|-- occupation: string (nullable = true)
|-- userID: string (nullable = true)
|-- zipcode: string (nullable = true)
```


- > 1. 分析篮球运动员数据
- > 数据集为NBA 1970 ~ 2016年球员的相关技术参数

Player	Pos	Age	Tm	G	GS	MP	FG	FGA	FG%
Kareem Abdul-Jabbar*	С	32	LAL	82		38.3	10.2	16.9	0.604
Tom Abernethy	PF	25	GSW	67		18.2	2.3	4.7	0.481
Alvan Adams	С	25	PHO	75		28.9	6.2	11.7	0.531
Tiny Archibald*	PG	31	BOS	80	80	35.8	4.8	9.9	0.482
Dennis Awtrey	С	31	CHI	26		21.5	1	2.3	0.45
Gus Bailey	SG	28	WSB	20		9	0.8	1.8	0.457
James Bailey	PF	22	SEA	67		10.8	1.8	4	0.45
Greg Ballard	SF	25	WSB	82		29.7	6.6	13.4	0.495
Mike Bantom	SF	28	IND	77		30.3	5	9.9	0.505
Marvin Barnes	PF	27	SDC	20		14.4	1.2	3	0.4
Rick Barry*	SF	35	HOU	72		25.2	4.5	10.7	0.422
Tim Bassett	PF	28	TOT	12		13.7	1	2.8	0.353
Billy Ray Bates	SG	23	POR	16		14.7	4.5	9.1	0.493
Ron Behagen	PF	29	WSB	6		10.7	1.5	3.8	0.391
Kent Benson	С	25	TOT	73		25.9	4.1	8.5	0.484
Del Beshore	PG	23	CHI	68		12.8	1.3	3.7	0.352
Henry Bibby	PG	30	PHI	82		24.8	3.1	7.6	0.401

> 1. 分析篮球运动员数据

篮球数据缩写说明										
GP	出场次数		GS	首发次数		ORB	前场篮板	ORPG	场均前板	
MP	总上场的	寸间	MPG ±		场均上场时间		后场篮板	DRPG	场均后板	
FG	投篮命中	FGA	投篮出手	FG%	投篮命中率	TRB	篮板球	RPG	场均篮板	
3P	三分命中	3PA	三分出手	3P%	三分命中率	AST	助攻	APG	场均助攻	
2P	两分命中	2PA	两分出手	2P%	两分命中率	STL	抢断	SPG	场均抢断	
FT	罚球命中	FTA	罚球出手	FT%	罚球命中率	BLK	盖帽	BPG	场均盖帽	
TOV	失误	PF	犯规	粗体	最高纪录	PTS	得分	PPG	场均得分	

> 评价球员水平的指标

✓ Z-score

$$statZ_{(i,j)} = \frac{(stat_{(i,j)} - \mu_i)}{\sigma_i}$$

✓μ表示平均值,σ表示stat数据的标准差

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

✓ 比如John Doe 在某年的每场比赛篮板球平均数目为7.1,而 当年所有球员μ=4.5,σ=1.3,则该球员z-score得分为:

$$statZ_{(TRB, John\ Doe)} = \frac{(stat_{(TRB, John\ Doe)} - \mu)}{\sigma} = \frac{(7.1 - 4.5)}{1.3} = \frac{2.6}{1.3} = 2$$

- 》 用来分析的指标①FG%: 投篮命中率, ② FT%: 罚球命中率 ③ 3P: 三分球命中率
- > 4 TRB: 篮板球 ⑤ age: 年龄

- > (1) 分析2016年 ①②③④ 属性 z-score 排名
- > (2) 分析自1980年以来每个年龄段参赛的数目

```
+---+
|age|count|
+---+
| 18| 12|
19 93
20| 238|
|21| 450|
| 22 | 1137 |
|23| 1623|
| 24 | 1626 |
| 25| 1455|
| 26 | 1356 |
|27| 1236|
| 28| 1077|
|29| 980|
|30| 883|
|31| 745|
|32| 619|
|33| 487|
|34| 362|
|35| 251|
|36| 166|
|37| 111|
|38| 73|
|39| 40|
|40| 15|
|41| 4|
|42| 3|
|43| 1|
|44| 1|
```


缔造新型 介值

地址: 沈阳市和平区三好街84-8号易购大厦319A

电话: 024-88507865

邮箱: horizon@syhc.com.cn

公司网站: http://www.syhc.com.cn

THANKS

