Title & Overview

Title:

Al Assignment 2: Search and Optimization

Subtitle:

Implementation and Performance Analysis of Search & Optimization Algorithms

Presented by:

Aman Kumar(CS24M114)

Shashi Mani(CS24M116)

Overview:

- •Objectives:
- ✓ Compare search algorithms on the Frozen Lake environment and optimization algorithms on the Travelling Salesman Problem (TSP).
- ✓ Record performance metrics: reward (solution cost/tour length), convergence (iterations), and execution time.
- •Algorithms Implemented:
- ✓ Search: Branch and Bound (BnB) and Iterative Deepening A* (IDA*).
- ✓ Optimization: Hill Climbing (HC) and Simulated Annealing (SA).
- •Visual Elements:
- ✓ Include relevant icons or images that symbolize grid search and TSP optimization..

Problem Statement & Environments

Problem Statement:

• Frozen Lake (Search Problem):

Find the optimal path from the start to the goal in a grid-based environment while avoiding holes.

• TSP (Optimization Problem):

Determine the shortest tour that visits each city exactly once and returns to the starting city.

Environments:

- ☐ Frozen Lake:
- Grid Details:
- 2: Start, 3: Goal, 0: Safe cells, 1: Holes.
- Performance Data:
- ✓ Reward (path cost) = 6 (optimal).
- ✓ Convergence: ~10 iterations (BnB) and ~9 iterations (IDA*).
- ✓ Execution Time: Ranges from ~0.00016 s to ~0.00055 s.TSP Instance:
- ☐ TSP Instance:
- Cities: Randomly generated points.
- Performance Data:
- ✓ Hill Climbing: Tour lengths vary (approx. 460–516), convergence in 13–16 iterations, execution time ~0.008–0.013 s.
- ✓ Simulated Annealing: Tour lengths vary (approx. 367–511) with a fixed convergence iteration count (2757, representing extensive exploration) and execution time ~0.019–0.021 s.

Algorithm Descriptions

Search Algorithms (Frozen Lake):

- Branch and Bound (BnB):
- •Method: Systematic exploration with pruning using cost plus heuristic.
- •Performance:
- ✓ Reward: Always finds optimal cost = 6.
- ✓ Convergence: ~10 iterations.
- ✓ Time: ~0.00025-0.00055 s.
- ☐ Iterative Deepening A (IDA):**
- Method: Depth-first search with iterative threshold increases, guided by heuristic.
- · Performance:
- ✓ Reward: Also finds optimal cost = 6.
- ✓ Convergence: ~9 iterations.
- √ Time: ~0.00010-0.00023 s.
- ☐ Heuristic Function (Frozen Lake):
- Manhattan Distance:

$$h(x,y) = |x_{
m current} - x_{
m goal}| + |y_{
m current} - y_{
m goal}|$$

Optimization Algorithms (TSP):

☐Hill Climbing (HC):

- Method: Iteratively improves a random tour by swapping cities.
- · Performance:
- ✓ Reward: Tour lengths ranging approximately 460-516.
- ✓ Convergence: Achieved in 13–16 iterations.
- √Time: ~0.009-0.013 s.

☐Simulated Annealing (SA):

- · Method: Uses probabilistic acceptance of worse moves to escape local optima.
- · Performance:
- ✓ Reward: Tour lengths between ~367 and ~511.
- √Convergence: Recorded as 2757 iterations (reflecting extensive exploration).
- √Time: ~0.019-0.021 s.

Evaluation Metric (TSP):

Total Tour Length: Sum of Euclidean distances between consecutive cities (and back to the start).

Experimental Setup

Methodology:

- •Trials: 5 runs for each algorithm.
- •Timeout: Each run is terminated if it exceeds 10 minutes.
- •Metrics Recorded:
- Reward/Cost:
- √ Frozen Lake: Final path cost (optimal = 6).
- ✓ TSP: Total tour length (lower is better).
- Convergence Point:
- ✓ Number of iterations until the solution is stable.
- Execution Time:
- ✓ Recorded in seconds.

Tools and Environment:

- •Programming: Python 3 with NumPy and Matplotlib.
- •Development: GitHub repository for code versioning.
- •Data Output: Results are saved to data/results.csv and visualized with bar charts.
- •Experiment Script:
- \checkmark The utils.py script runs all algorithms, consolidates results, and saves them to data/results.csv.
- •Data Visualization:
- ✓ Bar charts and other graphs are generated from the CSV data.

Results & Visualizations

Summary of Experimental Results:

	Frozen Lake (Search Algorithms):
•BnB:	
✓	Reward = 6; Convergence: 10 iterations; Average Time ≈ 0.00029 s.
•	IDA:*
✓	Reward = 6; Convergence: 9 iterations; Average Time \approx 0.00011 s.
	TSP (Optimization Algorithms):
•	Hill Climbing:
✓	Tour lengths ~460–516; Convergence: 13–16 iterations; Average Time $\approx 0.010-0.013$ s.
•Simulated Annealing:	
✓	Tour lengths ~367–511; Convergence: 2757 iterations; Average Time ≈ 0.020 s.
Visualizations:	
•Bar Chart:	
Compare average execution times across algorithms.	
•Animated GIFs:	
>	Frozen Lake GIF:
	Demonstrates the algorithm's progression through the grid and the final optimal path.
>	TSP GIF:
	Shows the evolving tour as the algorithm iterates, capturing convergence and solution improvement.

Conclusions & Future Work

Conclusions:

- •Search Algorithms:
- ✓ Both Branch and Bound and IDA* reliably found the optimal path (cost = 6) with very low execution times.
- ✓ IDA* showed slightly faster convergence (9 iterations vs. 10) due to effective thresholding.
- •Optimization Algorithms:
- ✓ Hill Climbing is quick but may get trapped in local optima
- ✓ Simulated Annealing, with its extensive exploration (2757 iterations), is more robust at escaping local optima, achieving lower tour lengths in some runs.

Insights:

- · The Manhattan distance heuristic is effective in guiding the search in grid environments.
- In TSP, there's a trade-off between speed and solution quality: HC converges quickly while SA, though slower in convergence, often finds better tours.
- Recorded metrics (reward, iterations, time) provide a clear basis for comparing algorithm efficiency.

Future Work:

- •Investigate alternative heuristics or hybrid approaches to improve performance.
- •Experiment with parameter tuning, especially for SA (e.g., cooling rate).
- •Scale experiments to larger grids and more cities for TSP to evaluate algorithm robustness in complex scenarios.

Final Remarks:

- •Summarize the overall performance trade-offs and the impact of heuristic choices.
- •Invite questions and discuss potential extensions of your work.