Partial Differential Equations

2dayclean

2025/09/02

Contents

1	Where PDEs come from	1
	1.1 What is PDE	1
	1.2 Homogenity and Linearity of PDE	1

1 Where PDEs come from

1.1 What is PDE

편미분방정식, PDE를 살펴보면 다음과 같은 요소가 있음을 알 수 있습니다. :(1) 하나보다 많은 독립변수들이 있습니다. (x,y,z,\cdots,t,\cdots) (2) 우리가 알고 싶어하는 함수 u가 있어서 이 독립변수들에 의해 나타납니다. 따라서, PDE란다음과 같습니다.

Definition

PDE는 독립변수들과 미지의 함수 u, 그리고 u의 편도함수 사이의 identity(혹은 equation)이다.

또한, 이러한 PDE의 order는 식에 나타나는 도함수의 가장 높은 order를 의미합니다.

Example

PDE에는 다음과 같은 예시들이 있습니다.

- 1. $u_x + u_y = 0$ (transport equation), 더 일반적으로는, $u_x + yu_y = 0$ 이나 $u_x + a(x,y)u_y = 0$ 역시 transport equation 이라고 불립니다.
- 2. $u_{xx} + u_{yy} = 0$ (Laplace equation), $\nabla^2 u = 0$ 과 같이 쓰기도 합니다.
- 3. $u_{tt} u_{xx} = 0$ (Wave equation)
- 4. $u_t u_{xx} = 0$ (Heat equation)

1.2 Homogenity and Linearity of PDE

앞으로도 거의 계속, 2-dimensional한 case에 대해서만 다룹니다.

일반적으로, PDE를 $F(x,y,u_x,u_y,u_{xx},u_{xy},u_{yy},\cdots)=g(x,y)$ 라고 쓸 수 있을 것입니다. 이를, $\mathcal{L}[u]=g$ 와 같이 표현하면 좋을 것입니다. 특히, 일반성을 잃지 않고, $\mathcal{L}[0]=0$ 이 되도록 \mathcal{L} 을 조작할 수 있습니다. 이러한 \mathcal{L} 은 다음과 같이 set of function에서 set of function으로의 mapping으로 생각할 수 있습니다.

$$\mathcal{L}: \{\text{functions}\} \to \{\text{functions}\}$$
$$v \mapsto \mathcal{L}[v] = F(x, y, v_x, v_y, \cdots)$$

특히, domain과 codomain을 $C^{\infty}(\Omega)$ 와 같이 쓰면, \mathcal{L} 은 일종의 operator가 됩니다.

Definition 1.1

Operator $\mathcal{L}: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$ 가 **linear**하다는 것은 다음을 만족하는 것입니다.

1.
$$\mathcal{L}[u+v] = \mathcal{L}[u] + \mathcal{L}[v]$$

2.
$$\mathcal{L}[cu] = c \cdot \mathcal{L}[u]$$

특히, \mathcal{L} 이 linear하다면, $\mathcal{L}[u] = 0$ 은 homogeneous linear equation이라고 하고, $\mathcal{L}[u] = g(g \not\equiv 0)$ 은 inhomogeneous linear equation이라고 합니다.

Example

다음은 전부 homogeneous linear equation입니다.

1.
$$u_x + u_y = 0$$
, of $\mathbb{H} \mathcal{L} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$

2.
$$u_{xx} + u_{yy} = 0$$
, of III $\mathcal{L} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

3.
$$u_{tt} - u_{xx} = 0$$
, of $\mathbb{H} \mathcal{L} = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$

4.
$$u_t - u_{xx} = 0$$
, \circ \square $\mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$

Example

Transport equation의 일종인 $u_x+yu_y=0$ 은 $\mathcal{L}=\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}$ 로 나타나며 linear하고 homogeneous합니다. 반면, Burger's equation이라고 불리는 $u_x+uu_y=0$ 은 linear하지 않습니다.

Example

PDE $\cos(xy^2)u_x - y^2u_y = \tan(x^2 + y^2)$ 는 $\mathcal{L} = \cos(xy^2)\frac{\partial}{\partial x} - y^2\frac{\partial}{\partial y}$ 와 같이 나타나며 linear하고 inhomogeneous 합니다.

Proposition 1.2

Superposition Principle : Linear한 \mathcal{L} 에 대해 u_1, u_2, \cdots, u_n 이 $\mathcal{L}[u] = 0$ 의 solution이라면, constants c_1, \cdots, c_n 에 대해 $\sum_{i=1}^n c_i u_i$ 또한 $\mathcal{L}[u] = 0$ 의 solution입니다.

이는 딱히 증명할 필요는 없을 것 같습니다.

Example 1.3

u = u(x, y)에 대해, $u_{xx} = 0$ 의 해를 찾아 봅시다.

Recall : u = u(x)이고 u'' = 0이라면, $u(x) = c_1 x + c_2$ 이다.

해는 따라서 다음과 같습니다.

$$(u_x)_x = \frac{\partial}{\partial x}(u_x) = 0 \Longrightarrow u_x(x,y) = f(y)$$

 $\Longrightarrow u(x,y) = f(y)x + g(y)$

3

Example 1.4

u=u(x,y)에 대해, $u_{xx}+u=0$ 의 해를 찾아봅시다.

u'' + u = 0의 해가 $u(x) = c_1 \cos x + c_2 \sin x$ 임을 recall하고 나면, $u(x,y) = f(y) \cos x + g(y) \sin x$

Example 1.5

u=u(x,y)에 대해, $u_{xy}=0$ 의 해를 찾아보면,

$$u_{xy} = 0 \implies (u_x)_y = 0$$

 $\implies u_x(x,y) = g(x)$
 $\implies u(x,y) = \int g(x)dx + F(y) = G(x) + F(y)$

즉, 해는 u(x,y) = G(x) + F(y)와 같이 나타납니다.

2dayclean