

Modelos Matemáticos II

Grado en Matemáticas

Prueba de clase Soluciones

31 de mayo de 2016

Ejercicio 1. Marca las que son correctas de entre las siguientes afirmaciones:

- \square La serie de Fourier de la función $f: [-\pi, \pi] \to \mathbb{R}$ definida por $f(x) := x^3$ para $x \in [-\pi, \pi]$ converge uniformemente a f en $[-\pi, \pi]$.
- ☐ Hay funciones discontinuas que tienen una derivada débil continua.
- \square Un funcional convexo $\mathcal{F} \colon \mathcal{C}^1([0,1]) \to \mathbb{R}$ siempre tiene un mínimo global.

Solución.

- 1. No es cierta. La función $f(x) = x^3$ cumple $-\pi^3 = f(-\pi) \neq f(\pi) = \pi^3$, luego no es periódica (no cumple $f(-\pi) = f(\pi)$). La serie de Fourier de una función no periódica nunca converge uniformemente a f.
- 2. Sí hay. Si dos funciones son iguales en casi todo punto entonces su derivada débil es la misma. Por ejemplo, la función constantemente 0 en (0,1) es una derivada débil de la función

$$f(x) := \begin{cases} 0 & \text{si } x \in (0,1), \ x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$$

3. No necesariamente. Por ejemplo el funcional $\mathcal{F}(y) := \exp(y(0))$ es convexo pero no tiene mínimo.

Ejercicio 2. Dados $a < b \in \mathbb{R}$ y una función $f \in \mathcal{C}^1([a,b])$ consideramos el funcional

$$F[y] := \int_{a}^{b} f(x)(1 + y'(x)^{2}) dx$$

definido en el conjunto

$$D := \{ y \in \mathcal{C}^1([a,b]) \mid y(a) = y(b) = 0 \}.$$

- 1. Determina la ecuación de Euler-Lagrange asociada a este funcional.
- 2. Demuestra que si 0 < a < b y $f(x) \ge 0$ para $x \in [a, b]$ entonces el funcional F tiene un mínimo global. Calcúlalo.

Solución. Este funcional es de la forma $\int_a^b F(x, y, y')$, donde

$$F(x, y, z) := f(x)(1 + z^2).$$

Sabemos que en este caso la ecuación de Euler-Lagrange viene dada por

$$\partial_y F(x, y(x), y'(x)) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\partial_z F(x, y(x), y'(x)) \right).$$

Calculamos esto:

$$\partial_y F(x, y, z) = 0, \qquad \partial_z F(x, y, z) = 2f(x)z,$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\partial_z F(x, y(x), y'(x)) \right) = 2(f(x)y'(x))'.$$

Por tanto la ecuación de Euler-Lagrange es

$$(fy')' = 0. (1)$$

En el caso en que $0 < a < b \ y \ f(x) \ge 0$ el funcional \mathcal{F} es convexo: para $y_1, y_2 \in \mathcal{C}^1([a, b]) \ y \ \theta \in [0, 1]$,

$$\theta \mathcal{F}[y_1] + (1 - \theta) \mathcal{F}[y_2] = \int_a^b f(x) \, dx + \int_a^b f(x) (\theta y_1'(x)^2 + (1 - \theta) y_2'(x)^2) \, dx$$

$$\geq \int_a^b f(x) \, dx + \int_a^b f(x) (\theta y_1'(x) + (1 - \theta) y_2'(x))^2 \, dx$$

$$= \mathcal{F}[\theta y_1 + (1 - \theta) y_2].$$

Para la cota anterior hemos usado que $(\theta a^2 + (1-\theta)b^2) \ge (\theta a + (1-\theta)b)^2$ para cualesquiera $a, b \in \mathbb{R}$ (esto es, la función $r \mapsto r^2$ es convexa), y que $f(x) \ge 0$ en [a, b]. (También puedes usar otras definiciones de convexidad; por ejemplo, puedes demostrar que

$$\mathcal{F}[y_2] \ge \mathcal{F}[y_1] + \delta \mathcal{F}[y_1; y_2 - y_1]$$
 para todo $y_1, y_2 \in D$

El resultado se obtiene igual.) Como \mathcal{F} es convexo, si encontramos una solución de la ecuación (1) en $\mathcal{C}^1([a,b])$, sabemos que tiene que ser un mínimo. Pero la función $y \equiv 0$ en [a,b] es siempre solución de (1), y cumple las condiciones de contorno. Por tanto, el mínimo se alcanza en la función y(x) = 0, $x \in [a,b]$. (En realidad, esto se ve directamente a partir de la expresión del funcional: claramente su menor valor se alcanza cuando y'(x) = 0 para todo x.)

Ejercicio 3. Sea $\Omega := B_1(0)$ la bola unidad abierta centrada en 0 en \mathbb{R}^d , y $F : \overline{\Omega} \to \mathbb{R}^d$ una función de clase C^1 . Consideramos el funcional $F : H_0^1(\Omega) \to \mathbb{R}$ dado por

$$\mathcal{F}[u] := \int_{\Omega} |\nabla u(x) + F(x)|^2 dx$$

Usando el Teorema de Lax-Milgram, demuestra que este funcional tiene un mínimo global.

Solución. Escribimos \mathcal{F} como

$$\mathcal{F}[u] = \int_{\Omega} |\nabla u|^2 + 2 \int_{\Omega} F \nabla u + \int_{\Omega} |F|^2.$$

Encontrar un mínimo de este funcional es lo mismo que encontrar un mínimo de

$$\widetilde{\mathcal{F}}[u] := \int_{\Omega} |\nabla u|^2 + 2 \int_{\Omega} F \nabla u,$$

ya que sólo se diferencian en una constante. Para aplicar el teorema de Lax-Milgram definimos

$$a(u,v) := 2 \int_{\Omega} \nabla u \nabla v, \quad \ell(v) := -2 \int_{\Omega} F \nabla v.$$

Se comprueba que a es bilineal en $H^1_0 \times H^1_0$, que ℓ es lineal en H^1_0 , y además las dos son continuas porque

$$|a(u,v)| \leq 2\|u\|_{H^1_0(\Omega)}\|v\|_{H^1_0(\Omega)}, \qquad |\ell(v)| \leq 2\|F\|_{L^2(\Omega)}\|v\|_{H^1_0(\Omega)}$$

para todo $u,v\in H^1_0(\Omega)$. La función a es además coerciva, como puede verse usando la desigualdad de Poincaré. Como consecuencia, el teorema de Lax-Milgram asegura que $\widetilde{\mathcal{F}}$ tiene un único punto crítico en $H^1_0(\Omega)$, que es además un mínimo.

Ejercicio 4. Sea L > 0 un número dado y sea $\Omega := (0, L) \times (0, L) \subseteq \mathbb{R}^2$. Buscando una solución en variables separadas, encuentra $\lambda \in \mathbb{R}$ tal que la siguiente ecuación en derivadas parciales tenga una solución no negativa y no trivial (y encuentra dicha solución):

$$\Delta u + \lambda u = 0 \quad \text{en } \Omega,
 u = 0 \quad \text{en } \partial \Omega.$$

Solución. Buscamos una solución de la forma

$$u(x,y) = \phi(x)\psi(y), \qquad (x,y) \in \overline{\Omega},$$

para funciones ϕ , ψ apropiadas, definidas en [0, L]. Usando la ecuación vemos que ϕ , ψ deben cumplir

$$\phi''(x)\psi(y) + \phi(x)\psi''(y) + \lambda\phi(x)\psi(y) = 0 \quad \text{en } \Omega,$$
 (2)

y para satisfacer la condición de contorno es suficiente que

$$\phi(0) = \phi(L) = \psi(0) = \psi(L) = 0. \tag{3}$$

De (2) deducimos que (al menos en los puntos donde ϕ , ψ no se anulan)

$$-\frac{\phi''(x)}{\phi(x)} = \frac{\psi''(y)}{\psi(y)} + \lambda \quad \text{en } \Omega$$

Como los dos miembros dependen de variables distintas es razonable imponer que sean igual a cierta constante $\alpha \in \mathbb{R}$:

$$\phi''(x) = -\alpha\phi(x),$$

$$\psi''(y) = (\alpha - \lambda)\psi(y).$$

Estas ecuaciones tienen solución no trivial que cumple la condición de contorno (3) sólo cuando

$$\alpha = \left(\frac{n\pi}{L}\right)^2, \qquad \lambda - \alpha = \left(\frac{m\pi}{L}\right)^2$$

para ciertos $n, m \ge 1$ enteros. En ese caso las soluciones no triviales son

$$\phi(x) = A \sin\left(\frac{\pi nx}{L}\right), \qquad \psi(x) = B \sin\left(\frac{\pi mx}{L}\right), \qquad (x \in [0, L])$$

para $A, B \neq 0$ reales. Elegimos, por ejemplo, A = B = 1. (Para el ejercicio no necesitamos saber que éstas son las *únicas* soluciones no triviales, basta con saber que son soluciones.) El único valor de n, m que hace que ϕ , ψ sean no negativas en [0, L] es n = m = 1, así que si queremos una solución no negativa debemos tomar

$$\alpha = \lambda - \alpha = \left(\frac{\pi}{L}\right)^2$$
, es decir: $\alpha = \left(\frac{\pi}{L}\right)^2$, $\lambda = 2\left(\frac{\pi}{L}\right)^2$.

Se puede comprobar que efectivamente la función

$$u(x,y) = \sin\left(\frac{\pi x}{L}\right)\sin\left(\frac{\pi y}{L}\right), \qquad (x,y) \in [0,L] \times [0,L]$$

es la solución no negativa que buscamos, correspondiente a $\lambda = 2(\frac{\pi}{L})^2$.