1 DeMorgan's Laws

Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Laws.

Solution:

A	В	$A \lor B$	$\neg (A \lor B)$	$\neg A \wedge \neg B$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	T
A	R	$A \wedge B$	$\neg(A \land B)$	$\neg A \lor \neg B$
A	B	$A \wedge B$	$\neg (A \land B)$	$\neg A \lor \neg B$
A T	<i>В</i> Т	$A \wedge B$ T	$\neg (A \land B)$ F	$\neg A \lor \neg B$
			,	· ·
T	T	T	F	F

2 XOR

The truth table of XOR (denoted by \oplus) is as follows.

A	В	$A \oplus B$
F	F	F
F	T	T
Т	F	T
Т	T	F

- 1. Express XOR using only (\land, \lor, \neg) and parentheses.
- 2. Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.
- 3. Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

Solution:

1. These are all correct:

CS 70, Fall 2019, DIS 1

- $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$ Notice that there are only two instances when $A \oplus B$ is true: (1) when A is true and B is false, or (2) when B is true and A is false. The clause $(A \land \neg B)$ is only true when (1) is, and the clause $(\neg A \land B)$ is only true when (2) is.
- $A \oplus B = (A \vee B) \wedge (\neg A \vee \neg B)$ Another way to think about XOR is that exactly one of A and B needs to be true. This also means exactly one of $\neg A$ and $\neg B$ needs to be true. The clause $(A \vee B)$ tells us A least one of A and B needs to be true. In order to ensure that one of A or B is also false, we need the clause $(\neg A \vee \neg B)$ to be satisfied as well.
- $A \oplus B = (A \vee B) \wedge \neg (A \wedge B)$ This is the same as the previous, with De Morgan's law applied to equate $(\neg A \vee \neg B)$ to $\neg (A \wedge B)$.
- 2. Yes. $(A \oplus B) \implies (A \land \neg B) \lor (\neg A \land B) \implies (A \lor B)$.
- 3. No. When A and B are both true, then $(A \vee B)$ is true, but $(A \oplus B)$ is false.

3 Numbers of Friends

Prove that if there are $n \ge 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.

(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where n > m, at least one container must contain more than one item. You may use this without proof.)

Solution:

We will prove this by contradiction. Suppose the contrary that everyone has a different number of friends at the party. Since the number of friends that each person can have ranges from 0 to n-1, we conclude that for every $i \in \{0, 1, \dots, n-1\}$, there is exactly one person who has exactly i friends at the party. In particular, there is one person who has n-1 friends (i.e., friends with everyone), and there is one person who has 0 friends (i.e., friends with no one), which is a contradiction.

Here, we used the pigeonhole principle because assuming for contradiction that everyone has a different number of friends gives rise to n possible containers. Each container denotes the number of friends that a person has, so the containers can be labelled 0,1,...,n-1. The objects assigned to these containers are the people at the party. However, containers 0, n-1 or both must be empty since these two containers cannot be occupied at the same time. This means that we are assigning n people to at most n-1 containers, and by the pigeonhole principle, at least one of the n-1 containers has to have two or more objects i.e. at least two people have to have the same number of friends.

CS 70, Fall 2019, DIS 1

4 Proof Practice

- (a) Prove that $\forall n \in \mathbb{N}$, if *n* is odd, then $n^2 + 1$ is even.
- (b) Prove that $\forall x, y \in \mathbb{R}$, $\min(x, y) = (x + y |x y|)/2$.
- (c) Prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- (d) Suppose $A \subseteq B$. Prove $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.

Solution:

- (a) We will use a direct proof. Assume n is odd. By the definition of odd numbers, n = 2k + 1 for some natural number k. Substituting into the expression $n^2 + 1$, we get $(2k + 1)^2 + 1$. Simplifying the expression yields $4k^2 + 4k + 2$. This can be rewritten as $2 \times (2k^2 + 2k + 1)$. Since $2k^2 + 2k + 1$ is a natural number, by the definition of even numbers, $n^2 + 1$ is even.
- (b) We will use a proof by cases. We know the following about the absolute value function for real number *z*.

$$|z| = \begin{cases} z, & z \ge 0 \\ -z, & z < 0 \end{cases}$$

Case 1: x < y. This means |x - y| = y - x. Substituting this into the formula on the right hand side, we get

$$\frac{x+y-y+x}{2} = x = \min(x,y).$$

Case 2: $x \ge y$. This means |x - y| = x - y. Substituting this into the formula on the right hand side, we get

$$\frac{x+y-x+y}{2} = y = \min(x,y).$$

(c)

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n$$

$$2\sum_{i=1}^{n} i = (1+n) + (2+(n-1)) + \dots + (n+1) = (n+1)n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

(d) Suppose $A' \in \mathcal{P}(A)$, that is, $A' \subseteq A$ (by the definition of the power set). We must prove that for any such A', we also have that $A' \in \mathcal{P}(B)$, that is, $A' \subseteq B$.

Let $x \in A'$. Then, since $A' \subseteq A$, $x \in A$. Since $A \subseteq B$, $x \in B$. We have shown $(\forall x \in A')$ $x \in B$, so $A' \subseteq B$.

Since the previous argument works for any $A' \subseteq A$, we have proven $(\forall A' \in \mathscr{P}(A)) A' \in \mathscr{P}(B)$. So, we conclude $\mathscr{P}(A) \subseteq \mathscr{P}(B)$ as desired.