

Test report No. : 4786002569S -B : 1 of 34 Page **Issued date** : April 5, 2013 FCC ID : YR7AERODRP3

RADIO TEST REPORT

Test Report No.: 4786002569S-B

Applicant KONICA MINOLTA, INC.

Type of Equipment AeroDR SYSTEM

Model No. **AeroDR P-31**

FCC ID YR7AERODRP3

Test regulation FCC Part15 Subpart C: 2012

Test result Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation. 3.
- 4. The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by 5. any agency of the Federal Government.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL 6. Japan has been accredited.

Date of test:	February 21 – March 7, 2013
Representative test engineer:	T. Orai
·	Tatsuya Arai Engineer of WiSE Japan, UL Verification Service
Approved by:	T. Amamura
	Toyokazu Imamura Leader of WiSE Japan,

UL Verification Service

	The t	esting	g ın	whic	h "	Non-accredit	ation"	1S C	iisplayed	i is out	side t	he a	ccredi	itation	scopes	ın	UL.	lapan
$\overline{}$						0.03.7												

There is no testing item of "Non-accreditation".

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 4786002569S -B
Page : 2 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

REVISION HISTORY

Original Test Report No.: 4786002569S-B

Revision	Test report No.	Date	Page revised	Contents
-	Test report No. 4786002569S-B	Date April 5, 2013	-	-
(Original)		1		
, ,				
	1			

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 4786002569S -B
Page: 3 of 34
Issued date: April 5, 2013
FCC ID: YR7AERODRP3

Table of Contents	Page			
1 Applicant Information	4			
2 Equipment under test (E.U.T.)	4			
3 Test specification, procedures and results				
4 System test configuration				
5 6dB bandwidth & Occupied bandwidth (99%)				
6 Maximum peak conducted output power	9			
7 Spurious emission (Antenna port conducted)				
8 Radiated emissions				
9 Peak power density				
Contents of Appendixes	12			
APPENDIX 1: Test data	13			
APPENDIX 2: Test instruments	32			
APPENDIX 3: Photographs of test setup	33			

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 4786002569S -B : 4 of 34 Page **Issued date** : April 5, 2013 : YR7AERODRP3 FCC ID

1 Applicant information

Company Name KONICA MINOLTA, INC.

Address 1 Sakura-Machi, Hino-Shi, Tokyo, 191-8511 Japan

Telephone Number +81-42-589-8429 +81-42-589-8053 Facsimile Number Contact Person Masayoshi Inoue

2 Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment AeroDR SYSTEM Model No. AeroDR P-31 Serial No. : See Section 4. Rating : DC15V Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT No modification by the test lab.

Receipt Date of Sample : February 5, 2013

2.2 **Product description**

Model: AeroDR P-31 (referred to as the EUT in this report) is a AeroDR SYSTEM.

Equipment type : Transceiver Frequency of operation : 5180-5320MHz *1 5500-5700MHz *1

5745-5825MHz

: 32.768kHz, 26MHz Clock frequency Bandwidth & channel spacing : Bandwidth : 18MHz Channel spacing: 20MHz

: 11a: OFDM

Type of modulation

Antenna type : Planar Inverted F Antenna

: Main antenna: 3.78dBi , Sub antenna: 3.78dBi Antenna gain with cable loss

: U.FL Antenna connector type ITU code : D1D, G1D Operation temperature range : +10 to +30 deg.C.

*1) Refer to 4786002569S-A, FCC part 15E (FCC15.407) report.

FCC Part15.31 (e)

This EUT provides stable voltage (DC3.3V) constantly to RF part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 4786002569S -B
Page: 5 of 34
Issued date: April 5, 2013
FCC ID: YR7AERODRP3

3 Test specification, procedures and results

3.1 Test specification

Test specification : FCC Part 15 Subpart E: 2011, final revised on December 27, 2012

and effective January 28, 2013

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits, general requirements

Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,

and 5725-5850MHz

3.2 Procedures & Results

Item	Test Procedure *1)	Specification	Remarks	Deviation	Worst Margin	Results
Conducted emission	ANSI C63.10:2009	FCC 15.207	-	N/A *1)	N/A	N/A
6dB bandwidth	ANSI C63.10:2009	FCC 15.247 (a)(2)	Conducted	N/A		Complied
Maximum peak conducted output power	ANSI C63.10:2009	FCC 15.247 (b)(3)	Conducted	N/A	* See data	Complied
Out of band emission & Restricted band edges	ANSI C63.10:2009	FCC 15.109, 15.247 (d) & 15.209	Conducted / Radiated	N/A	3.6dB Freq.: 3883.342MHz Polarization: Horizontal Detection: Average Mode: Tx 5825MHz,	Complied
Power density	ANSI C63.10:2009	FCC 15.247 (e)	Conducted	N/A	* See data	Complied

Note: UL Japan's EMI Work Procedures No.13-EM-W0420 and 13-EM-W0422.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*)} These tests were also referred to KDB 558074 (FCC), "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

^{*1)} This equipment cannot operate WLAN card when it is connected to the control box at the interface cable. In that case, it can only use wire communication mode. This mode is tested by customer based on IEC 60601-1-2 for the compliance of Part 15 subpart B.

Test report No. : 4786002569S -B
Page : 6 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Worst Margin	Results	
Bandwidth	ANSI C63.10:2009, RSS-Gen 4.6.1	-	Conducted	-	-	
Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422						

^{*} Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Item	Frequency range	No.1 SAC*1/SR*2 (±)	No.2 SAC/SR (±)	No.3 SAC/SR (±)
Radiated emission	9kHz-30MHz	3.7 dB	3.7 dB	3.6 dB
(Measurement distance: 3m)	30MHz-300MHz	4.9 dB	5.1 dB	4.9 dB
	300MHz-1GHz	5.0 dB	5.2 dB	4.9 dB
	1GHz-15GHz	4.8 dB	4.8 dB	4.9 dB
Radiated emission	15GHz-18GHz	5.6 dB	5.6 dB	5.6 dB
(Measurement distance: 1m)	18GHz-40GHz	4.6 dB	4.3 dB	4.4 dB

^{*1:} SAC=Semi-Anechoic Chamber

Radiated Emission Test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Antenna port conducted test

Power Measurement uncertainty above 1GHz for this test was: (±) 1.5dB

Conducted emissions, Power Density Measurement (below 1GHz) uncertainty for this test was: (±) 1.7dB Conducted emissions, Power Density Measurement (1G-3GHz) uncertainty for this test was: (±) 2.3dB

Conducted emissions, Power Density Measurement (3G-18GHz) uncertainty for this test was: (±) 3.0dB

Conducted emissions Measurement (18G-26.5GHz) uncertainty for this test was: (±) 2.9dB

Bandwidth Measurement uncertainty for this test was: (±) 5.4%

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2:} SR= Shielded Room is applied besides radiated emission

^{*3:} Value of Antenna Terminal Voltage measurement is also applies to the No.5 and No.6 Shielded Room.

Test report No.: 4786002569S -B
Page: 7 of 34
Issued date: April 5, 2013
FCC ID: YR7AERODRP3

3.5 Test location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

 $No.1/\ No.2/\ No.3\ anechoic\ chamber\ has\ been\ fully\ described\ in\ a\ report\ submitted\ to\ FCC\ office,\ and\ accepted\ on\ accepted\$

April 17, 2009 (Registration No.: 697847).

IC Registration No. : 2973D-1 (No1 anechoic chamber)

2973D-2 (No2 anechoic chamber) 2973D-3 (No3 anechoic chamber)

Test room	Width x Depth x Height (m)	Test room	Width x Depth x Height (m)
No.1 Semi-anechoic chamber	20.6 x 11.3 x 7.65 Maximum measurement distance: 10m	No.1 Shielded room	6.8 x 4.1 x 2.7
No.2 Semi-anechoic chamber	20.6 x 11.3 x 7.65 Maximum measurement distance: 10m	No.2 Shielded room	6.8 x 4.1 x 2.7
No.3 Semi-anechoic chamber	12.7 x 7.7 x 5.35 Maximum measurement distance: 5m	No.3 Shielded room	6.3 x 4.7 x 2.7
No.4 Semi-anechoic chamber	8.1 x 5.1 x 3.55	No.4 Shielded room	4.4 x 4.7 x 2.7
		No.5 Shielded room	7.8 x 6.4 x 2.7
		No.6 Shielded room	7.8 x 6.4 x 2.7

3.6 Test setup, Data of EMI & Test instruments

Refer to Appendix 1 to 3.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 4786002569S -B
Page : 8 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

4 System test configuration

4.1 Justification

The system was configured in typical fashion (as a customer would normally use it) for testing.

Test Item	Mode	Tested frequency	Worst data mode *1)
Radiated emission (below 1GHz) *2)	Transmitting IEEE 802.11a	5785MHz	6Mbps
Other items	Transmitting IEEE 802.11a	5745MHz 5785MHz 5825MHz	6Mbps

^{*1)} The worst condition was determined based on the test result of Maximum peak conduced output power.

Power settings: 14

Software: Console application Version 1.1.2.0

4.2 Configuration and peripherals

A

Description of EUT and support equipment

DUSC	rescription of Ec 1 and support equipment						
No.	Item	Model number	Serial number	Manufacturer	FCC ID		
					(Remark)		
Α	AeroDR SYSTEM	AeroDR P-31			YR7AERODRP3		
				INC.	(EUT)		

^{*1)} Antenna terminal conducted tests: C1-35, Radiated emission tests: C1-24

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing- Managing Complex Regulatory Approvals - "of TCB Council Workshop October 2009.

^{*}EUT has the power settings by the software as follows;

Test report No.: 4786002569S -B
Page: 9 of 34
Issued date: April 5, 2013
FCC ID: YR7AERODRP3

5 6dB bandwidth & Occupied bandwidth (99%)

Test procedure

The bandwidth was measured with a spectrum analyzer connected to the antenna port.

The test was measured based on Method 7.1 Option 1 and 7.2 Option 2 of "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Summary of the test results: Pass

Refer to APPENDIX

6 Maximum peak conducted output power

Test procedure

The Maximum Peak Output Power was measured with a power meter connected to the antenna port.

The test was measured based on Method 8.1.3 Option 3 of "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Detection type: Peak / Average *1)

Summary of the test results: Pass

Refer to APPENDIX 1

7 Spurious emission (Antenna port conducted)

Test procedure

The Out of Band Emissions was measured with a spectrum analyzer connected to the antenna port.

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement. In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=10kHz)

Summary of the test results: Pass

Refer to APPENDIX

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Average detector was used only for Reference data of SAR testing.

Test report No. : 4786002569S -B
Page : 10 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

8 Radiated emissions

8.1 Operating environment

The test was carried out in No.3 anechoic chamber.

8.2 Test configuration

EUT was placed on a platform of nominal size, 0.5m by 0.5m, raised 80cm above the conducting ground plane. The table is made of Styrofoam and covered with polyvinyl chloride. That has very low permittivity. Photographs of the set up are shown in Appendix 1.

8.3 Test conditions

Frequency range : 30MHz - 40GHz

8.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on a semi-anechoic chamber with a ground plane and at a distance of 3m (below 15GHz) / 1m (above 15GHz) (Refer to Figure 1). Measurements were performed with quasi-peak, peak and average detector. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detection.

Frequency	30-1000MHz	1-40GHz		20dBc
Detection type	Quasi-Peak	Peak	Average *1)	Peak
IF Bandwidth	120kHz	RBW: 1MHz	RBW: 1MHz	RBW: 100kHz
		VBW: 3MHz	VBW: 3MHz	VBW: 300kHz
			Detector: RMS	

^{*1)} Average Power Measurement was measured based on 10.2.3.3 and 8.2.1 of "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Combinations of the worst case

Model	Worst position			
	Below 1GHz	Above 1GHz		
EUT	Horizontal: X, Vertical: Z	Carrier: Horizontal: X, Vertical: Z Spurious: Horizontal: X, Vertical: Z		

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 4786002569S -B
Page : 11 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

Figure 1. Antenna angle

8.5 Band edge

Band edge level at 5725MHz and 5850MHz are less than 20dB of peak point of the carrier. Refer to the data of Radiated emission.

8.6 Results

Summary of the test results: Pass

Refer to APPENDIX

9 Peak power density

Test procedure

The peak power density was measured with a spectrum analyzer connected to the antenna port.

Instrument used : Spectrum Analyzer RBW / VBW : 3kHz / 9.1kHz

The test was measured based on Method 9.1 Option 1 of "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Summary of the test results: Pass

Refer to APPENDIX

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 4786002569S -B
Page : 12 of 34
Issued date : April 5, 2013
FCC ID : YR7AERODRP3

APPENDIX 1: Test data

6dB bandwidth
Maximum peak conducted output power
Radiated emission
Spurious emission (Antenna port conducted)
Peak power densiy
Occupied bandwidth

APPENDIX 2: Test instruments

Test instruments

APPENDIX 3: Photographs of test setup

Radiated emission Pre-check of the worst position

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

APPENDIX 1: Data of Radio tests

-6dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date March 7, 2013
Temperature / Humidity 24deg.C , 50% RH
Engineer Tatsuya Arai

Mode Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

Freq.	-6dB Bandwidth	Limit
[MHz]	[MHz]	[MHz]
5745.0000	16.595	> 0.500
5785.0000	16.568	> 0.500
5825.0000	16.561	> 0.500

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Peak Conducted Output Power (Option 3)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date February 21, 2013 Temperature / Humidity 22 deg.C , 47 %RH

Engineer Tatsuya Arai

Mode Tx, IEEE802.11a, PN9, 6 Mbps worst antenna: Sub worst data mode:

(* P/M: Power Meter with power sensor)

Ch	Freq.	P/M (Peak)	Cable	Atten.	Res	sult	Liı	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	5745.0	4.54	2.68	10.02	17.24	52.97	30.00	1000	12.76
Mid	5785.0	5.63	2.69	10.02	18.34	68.23	30.00	1000	11.66
High	5825.0	5.39	2.65	10.02	18.06	63.97	30.00	1000	11.94

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. \ Loss$

[Pre check] Antenna Main

	Data rate	Freq.	P/M (Peak)	Cable	Atten.	Re	sult	Li	mit	Margin
			Reading	Loss	Loss					
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Main	6	5785.0	5.13	2.69	10.02	17.84	60.81	30.00	1000	12.16
Main	9	5785.0	5.02	2.69	10.02	17.73	59.29	30.00	1000	12.27
Main	12	5785.0	5.04	2.69	10.02	17.75	59.57	30.00	1000	12.25
Main	18	5785.0	4.96	2.69	10.02	17.67	58.48	30.00	1000	12.33
Main	24	5785.0	4.79	2.69	10.02	17.50	56.23	30.00	1000	12.50
Main	36	5785.0	5.11	2.69	10.02	17.82	60.53	30.00	1000	12.18
Main	48	5785.0	4.98	2.69	10.02	17.69	58.75	30.00	1000	12.31
Main	54	5785.0	4.99	2.69	10.02	17.70	58.88	30.00	1000	12.30

	Antenna S	Sub									
	Data rate	Freq.	P/M (Peak)	Cable	Atten.	Re	sult	Li	mit	Margin	
			Reading	Loss	Loss						
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
Sub	6	5785.0	5.63	2.69	10.02	18.34	68.23	30.00	1000	11.66	Worst
Sub	9	5785.0	5.50	2.69	10.02	18.21	66.22	30.00	1000	11.79	
Sub	12	5785.0	5.43	2.69	10.02	18.14	65.16	30.00	1000	11.86	
Sub	18	5785.0	5.53	2.69	10.02	18.24	66.68	30.00	1000	11.76	
Sub	24	5785.0	5.54	2.69	10.02	18.25	66.83	30.00	1000	11.75	
Sub	36	5785.0	5.60	2.69	10.02	18.31	67.76	30.00	1000	11.69	
Sub	48	5785.0	5.58	2.69	10.02	18.29	67.45	30.00	1000	11.71	
Sub	54	5785.0	5.51	2.69	10.02	18.22	66.37	30.00	1000	11.78	

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power (Reference data)

(Option 3)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

 $\begin{array}{ll} \text{Date} & \text{February 21, 2013} \\ \text{Temperature / Humidity} & 22 \text{ deg.C} & ,47 \text{ \%RH} \\ \end{array}$

Engineer Tatsuya Arai

Mode Tx, IEEE802.11a, PN9, worst antenna: Main worst data mode: 6 Mbps

(* P/M: Power Meter with power sensor, AV: Average)

			(-,	The second second pro-	wer semson, in	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	Ch	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Li	mit	Margin
			Reading	Loss	Loss	Factor					
		[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
L	ow	5745.0	-3.51	2.68	10.02	0.00	9.19	8.30	30.00	1000	20.81
N	1id	5785.0	-3.21	2.69	10.02	0.00	9.50	8.91	30.00	1000	20.50
H	igh	5825.0	-3.02	2.65	10.02	0.00	9.65	9.23	30.00	1000	20.35

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Atten. \ Loss + Duty \ Factor$

E.I.R.P = Result + Antenna Gain

[Pre check] Antenna Main

	Data rate	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Li	mit	Margin	
			Reading	Loss	Loss	Factor						
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
Main	6	5785.0	-3.21	2.69	10.02	0.00	9.50	8.91	30.00	1000	20.50	Worst
Main	9	5785.0	-3.22	2.69	10.02	0.00	9.49	8.89	30.00	1000	20.51	
Main	12	5785.0	-3.34	2.69	10.02	0.00	9.37	8.65	30.00	1000	20.63	
Main	18	5785.0	-3.45	2.69	10.02	0.00	9.26	8.43	30.00	1000	20.74	
Main	24	5785.0	-3.32	2.69	10.02	0.00	9.39	8.69	30.00	1000	20.61	
Main	36	5785.0	-3.25	2.69	10.02	0.00	9.46	8.83	30.00	1000	20.54	
Main	48	5785.0	-3.36	2.69	10.02	0.00	9.35	8.61	30.00	1000	20.65]
Main	54	5785.0	-3.26	2.69	10.02	0.00	9.45	8.81	30.00	1000	20.55	

Antenna Sub

	Antenna b										
	Data rate	Freq.	P/M (AV)	Cable	Atten.	Duty	Re	sult	Li	mit	Margin
			Reading	Loss	Loss	Factor					
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Sub	6	5785.0	-3.57	2.69	10.02	0.00	9.14	8.20	30.00	1000	20.86
Sub	9	5785.0	-3.59	2.69	10.02	0.00	9.12	8.17	30.00	1000	20.88
Sub	12	5785.0	-5.60	2.69	10.02	0.00	7.11	5.14	30.00	1000	22.89
Sub	18	5785.0	-3.59	2.69	10.02	0.00	9.12	8.17	30.00	1000	20.88
Sub	24	5785.0	-3.59	2.69	10.02	0.00	9.12	8.17	30.00	1000	20.88
Sub	36	5785.0	-3.60	2.69	10.02	0.00	9.11	8.15	30.00	1000	20.89
Sub	48	5785.0	-3.72	2.69	10.02	0.00	8.99	7.93	30.00	1000	21.01
Sub	54	5785.0	-3.68	2.69	10.02	0.00	9.03	8.00	30.00	1000	20.97

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss + Duty\ Factor$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Duty Factor Caliculation chart for Maximum Conducted Output Power

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Duty Factor Caliculation chart for Maximum Conducted Output Power

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.3 Semi Anechoic Chamber

 Date
 March 6, 2013
 March 7, 2013

 Temperature / Humidity
 24 deg.C, 29 %RH
 22 deg.C, 33 %RH

Engineer Shinichi Takano Mode Tx, 5745 MHz Tx, IEEE802.11a

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	3829.967	PK	50.9	29.6	15.3	41.8	54.0	73.9	19.9	100	328	
Hori.	11490.000	PK	44.4	40.1	9.8	39.5	54.8	73.9	19.1	100	0	
Hori.	17235.000	PK	44.9	42.5	2.6	39.5	50.5	73.9	23.4	100	0	
Hori.	3829.967	AV	45.2	29.6	15.3	41.8	48.3	53.9	5.6	100	328	
Hori.	11490.000	AV	33.9	40.1	9.8	39.5	44.3	53.9	9.6	100	0	
Hori.	17235.000	AV	36.3	42.5	2.6	39.5	41.9	53.9	12.0	100	0	
Vert.	3829.967	PK	50.2	29.6	15.3	41.8	53.3	73.9	20.6	100	222	
Vert.	11490.000	PK	44.1	40.1	9.8	39.5	54.5	73.9	19.4	100	0	
Vert.	17235.000	PK	45.0	42.5	2.6	39.5	50.6	73.9	23.3	100	0	
Vert.	3829.967	AV	44.9	29.6	15.3	41.8	48.0	53.9	5.9	100	222	
Vert.	11490.000	AV	34.7	40.1	9.8	39.5	45.1	53.9	8.8	100	0	
Vert.	17235.000	AV	36.5	42.5	2.6	39.5	42.1	53.9	11.8	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5745.000	PK	82.4	32.7	16.7	40.2	91.6	-	-	Carrier
Hori.	5725.000	PK	38.5	32.6	16.7	40.2	47.6	71.6	24.0	
Vert.	5745.000	PK	81.2	32.7	16.7	40.2	90.4	-	-	Carrier
Vert.	5725.000	PK	38.8	32.6	16.7	40.2	47.9	70.4	22.5	

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.3 Semi Anechoic Chamber

 Date
 March 5, 2013
 March 6, 2013
 March 7, 2013

 Temperature / Humidity
 24 deg.C, 33 %RH
 24 deg.C, 29 %RH
 22 deg.C, 33 %RH

Engineer Shinichi Takano Mode Tx, 5785 MHz Tx, IEEE802.11a

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	30.276	QP	24.6	17.9	6.5	32.2	16.8	40.0	23.2	300	346	
Hori.	664.993	QP	34.2	19.8	10.0	32.0	32.0	46.0	14.0	140	120	
Hori.	909.177	QP	23.8	22.3	10.7	31.0	25.8	46.0	20.2	150	20	
Hori.	3856.538	PK	51.0	29.6	15.3	41.8	54.1	73.9	19.8	100	0	
Hori.	11570.000	PK	44.7	40.0	9.8	39.5	55.0	73.9	18.9	100	0	
Hori.	17355.000	PK	44.8	43.2	2.6	39.5	51.1	73.9	22.8	100	0	
Hori.	3856.538	AV	45.9	29.6	15.3	41.8	49.0	53.9	4.9	100	0	
Hori.	11570.000	AV	37.1	40.0	9.8	39.5	47.4	53.9	6.5	100	0	
Hori.	17355.000	AV	36.6	43.2	2.6	39.5	42.9	53.9	11.0	100	0	
Vert.	78.343	QP	28.9	6.4	7.3	32.2	10.4	40.0	29.6	100	359	
Vert.	89.427	QP	28.8	8.1	7.5	32.2	12.2	43.5	31.3	100	1	
Vert.	664.993	QP	31.8	19.8	10.0	32.0	29.6	46.0	16.4	100	294	
Vert.	3856.538	PK	50.6	29.6	15.3	41.8	53.7	73.9	20.2	100	210	
Vert.	11570.000	PK	43.7	40.0	9.8	39.5	54.0	73.9	19.9	100	0	
Vert.	17355.000	PK	44.9	43.2	2.6	39.5	51.2	73.9	22.7	100	0	
Vert.	3856.538	AV	43.7	29.6	15.3	41.8	46.8	53.9	7.1	100	210	
Vert.	11570.000	AV	33.7	40.0	9.8	39.5	44.0	53.9	9.9	100	0	
Vert.	17355.000	AV	36.8	43.2	2.6	39.5	43.1	53.9	10.8	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

Test place No.3 Semi Anechoic Chamber

 Date
 March 6, 2013
 March 7, 2013

 Temperature / Humidity
 24 deg.C, 29 %RH
 22 deg.C, 33 %RH

Engineer Shinichi Takano Mode Tx, 5825 MHz Tx, IEEE802.11a

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	3883.342	PK	51.6	29.6	15.3	41.8	54.7	73.9	19.2	100	2	
Hori.	11650.000	PK	44.2	39.9	9.8	39.5	54.4	73.9	19.5	100	0	
Hori.	17475.000	PK	45.7	43.9	2.6	39.5	52.7	73.9	21.2	100	0	
Hori.	3883.342	AV	47.2	29.6	15.3	41.8	50.3	53.9	3.6	100	2	
Hori.	11650.000	AV	35.3	39.9	9.8	39.5	45.5	53.9	8.4	100	0	
Hori.	17475.000	AV	36.0	43.9	2.6	39.5	43.0	53.9	10.9	100	0	
Vert.	3883.342	PK	51.5	29.6	15.3	41.8	54.6	73.9	19.3	100	232	
Vert.	11650.000	PK	44.2	39.9	9.8	39.5	54.4	73.9	19.5	100	0	
Vert.	17475.000	PK	45.8	43.9	2.6	39.5	52.8	73.9	21.1	100	0	
Vert.	3883.342	AV	46.1	29.6	15.3	41.8	49.2	53.9	4.7	100	232	
Vert.	11650.000	AV	34.5	39.9	9.8	39.5	44.7	53.9	9.2	100	0	
Vert.	17475.000	AV	36.1	43.9	2.6	39.5	43.1	53.9	10.8	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	5825.000	PK	83.0	32.9	16.8	40.3	92.4	-	-	Carrier
Hori.	5850.000	PK	37.9	33.0	16.8	40.3	47.4	72.4	25.0	
Vert.	5825.000	PK	82.6	32.9	16.8	40.3	92.0	-	-	Carrier
Vert.	5850.000	PK	38.4	33.0	16.8	40.3	47.9	72.0	24.1	

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

 $^{{}^{*}}$ Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Burst rate confirmation

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

(Reference chart) Spurious emission (Conducted)

Band Edge compliance

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Power Spectral Density

(Option 1)

Test place UL Japan, Inc. Shonan EMC Lab. No.5 Shielded Room

Date March 7, 2013
Temperature / Humidity 24deg.C , 50% RH
Engineer Tatsuya Arai

Mode Tx, IEEE802.11a, PN9, worst antenna port Sub, worst data mode 6Mbps

Ch. Freq.	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
	Reading		Loss				
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5745.0000	5745.35	-29.82	3.18	9.98	-16.66	8.00	24.66
5785.0000	5785.35	-27.99	3.22	9.99	-14.78	8.00	22.78
5825.0000	5820.38	-28.42	3.19	9.99	-15.24	8.00	23.24

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

APPENDIX 2 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SPM-06	Power Meter	Anritsu	ML2495A	0850009	AT	2012/04/19 * 12
SPSS-03	Power sensor	Anritsu	MA2411B	0917063	AT	2012/04/19 * 12
SCC-G11	Coaxial Cable	Suhner	SUCOFLEX 102	31595/2	AT	2012/03/12 * 12
SAT10-11	Attenuator	Weinschel Corp.	54A-10	37588	AT	2012/04/06 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2012/03/26 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY46180525	AT	2013/03/04 * 12
SAT10-10	Attenuator	Weinschel Corp.	54A-10	37584	AT	2012/04/06 * 12
SCC-G29	Coaxial Cable	Junkosha	MWX241-01000KM SKMS	SEP-20-12-003	AT	2012/09/26 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2013/02/12 * 12
SAT6-03	Attenuator	JFW	50HF-006N	[-	RE	2013/02/12 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2012/10/08 * 12
SCC-C1/C2/C 3/C4/C5/C10/ SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/Suhn er/TOYO	8D2W/12DSFA/14 1PE/141PE/141PE /141PE/NS4906	-/0901-271(RF Selector)	RE	2012/04/10 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0901	RE	2012/10/08 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2013/02/27 * 12
STR-06	Test Receiver	Rohde & Schwarz	ESCI	101259	RE	2013/03/27 * 12
SJM-11	Measure	PROMART	SEN1935	-	RE	-
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2012/09/21 * 12
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE, RFI,MF)	-	RE	-
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2012/07/18 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2012/04/10 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2012/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2012/08/17 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY48250152	RE	2013/01/08 * 12
SAT10-06	Attenuator	Agilent	8493C-010	74865	RE	2012/12/18 * 12
SFL-03	Highpass Filter	MICRO-TRONICS	HPM50112	028	RE	2012/12/18 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM3640	RE	2012/03/30 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2012/03/12 * 12
SHA-06	Horn Antenna	ETS LINDGREN	3160-10	LM3459	RE	2012/03/30 * 12
SAF-10	Pre Amplifier	TOYO Corporation	HAP26-40W	00000010	RE	2012/03/12 * 12
SCC-G17	Coaxial Cable	Suhner	SUCOFLEX 104A	46291/4A	RE	2012/03/12 * 12
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2012/03/12 * 12

The expiration date of the calibration is the end of the expired month .

As for some calibrations performed after the tested dates , those test equipment have been controlled by means of an unbroken chains of calibrations .

All equipment is calibrated with valid calibrations . Each measurement data is traceable to the national or international standards .

Test Item:

CE: Conducted Emission

RE: Out of Band Emission (Radiated) AT: Antenna terminal conducted test

UL Japan, Inc. Page :