Résumé - Traitement du Signal

22 Janvier, 2024

Louis Thevenet

Table des matières

1.	Corrélations et Spectres	. 2
	1.1. Transformée de Fourier	
	1.2. Classes de signaux déterministes et aléatoires	. 2
	1.3. Propriétés de $R_x(\tau)$ et de $s_x(f)$	2
2.	Filtrage Linéaire	. 2
3.	Traitements non linéaires	. 2
4.	Partiel	. 2

1. Corrélations et Spectres

1.1. Transformée de Fourier

1.2. Classes de signaux déterministes et aléatoires

Théorème 1.2.1: Classes de signaux 1. Déterministes à **énergie finie**

- 2. Déterministes **périodiques à puissance finie** 3. Déterministes non périodique à puissance finie
- 4. Aléatoires stationnaires

Théorème 1.2.1.1: Signaux à énergie finie

1.2.1. Déterministes à énergie finie

Définition $E = \int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df < \infty$

Fonction d'autocorrélation $R_x(\tau) = \int_{\mathbb{R}} x(t) x^*(t-\tau) \mathrm{d}t = \langle x(t), x(t-\tau) \rangle$ Fonction d'intercorrélation $R_{\{xy\}}(\tau) = \int_{\mathbb{R}} x(t) y^*(t-\tau) \mathrm{d}t = \langle x(t), y(t-\tau) \rangle$

Produit scalaire $\langle x,y \rangle = \int_{\mathbb{R}} x(t) y^*(t) \mathrm{d}t$

Définition 1.2.1.1: On définit la densité spectrale d'énergie par

Proposition 1.2.1.1:
$$s_x(f) = |X(f)|^2$$

 $s_x(f) = \operatorname{TF} R_x(\tau)$

On cherche la fonction d'autocorrélation et la densité spectrale d'énergie de x(t).

 $Exemple: x(t) = \Pi_T(t)$ avec T la largeur de la fenêtre

• Calcul de $R_x(\tau) \int_{-\frac{T}{2}}^{\frac{T}{2}} x(\tau) x(t-\tau) dt$

• Premier cas : $\tau - \frac{T}{2} > \frac{T}{2} \Leftrightarrow \tau > T \ R_x(\tau) = \int 0 \mathrm{d}t = 0$

• Deuxième cas : $\begin{cases} \tau - \frac{T}{2} < \frac{T}{2} \\ \tau + \frac{T}{2} > \frac{T}{2} \end{cases} \Leftrightarrow \tau \in]0,T[\ R_x(\tau) = \int_{-\frac{T}{2}}^{\tau - \frac{T}{2}} 1 \times 1 \mathrm{d}t = T - \tau \end{cases}$

Comme R_x est paire, il suffit de la connaître entre 0 et ∞ . Ainsi $R_x(\tau) = T\Lambda_T(\tau)$ - Calcul de s_x (f) $s_x(f) = \mathrm{TF}(R_x(\tau)) = T \times T \operatorname{sinc}^2(\pi \tau f) = T^2 \operatorname{sinc}^2(\pi \tau f)$

• Méthode 2 • Calcul de $s_x(f) = |x(f)|^2$

 $x(\tau) \stackrel{\mathrm{TF}}{\longrightarrow} X(f) = T \operatorname{sinc}(\pi \tau f)$ $\stackrel{\mid\,\mid^2}{\longrightarrow} s_{x(f)} = |X(f)|^2 = T^2 \operatorname{sinc}^2(\pi \tau f)$

 $R_x(\tau)=\mathrm{TF}^{-1}\,s_x(f)$

• Calcul de $R_r(\tau)$

$$=T^{-1}(\mathrm{sinc}(\pi\tau f))$$

$$=T\Lambda_T(\tau)$$

 1.2.2. Déterministes périodiques

Definition $P = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt < \infty$ Fonction d'autocorrélation $R_x(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) x^*(t-\tau) dt = \langle x(t), x(t-\tau) \rangle$

Définition 1.2.2.1:

Fonction d'intercorrélation $R_{xy}(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) y^*(t-\tau) \mathrm{d}t = \langle x(t), y(t-\tau) \rangle$

Produit scalaire $\langle x, y \rangle = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) y^*(t) dt$

Définition 1.2.2.2: On définit la densité spectrale de puissance par

$$s_x(f) = \sum_{k \in \mathbb{Z}} |c_k|^2 \delta(f - kf_0)$$

 $s_r(f) = \operatorname{TF} R_r(\tau)$

Exemple: $x(t) = A\cos(2\pi f_0 t)$ $R_x(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{t_0}{2}} A \cos(2\pi f_0 t) A \cos(2\pi f_0 (t-\tau)) \mathrm{d}t$

Proposition 1.2.2.1:

avec $x(t) = \sum_{k \in \mathbb{Z}} c_k \exp(j2\pi k f_0 t)$

$$= 0 + \frac{1}{T_0} \frac{A^2}{2} \left(\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \mathrm{d}t \right) \cos(2\pi f_0 \tau)$$

$$= \frac{A^2}{2} \cos(2\pi f_0 \tau)$$

$$= \cos(2\pi f_0 \tau)$$

$$= \sin(2\pi f_0 \tau)$$

$$= \frac{A^2}{4} \left(\delta(f - f_0) + \delta(f + f_0) \right)$$
Deux fréquences pures

 $R_x(\tau) = \frac{A^2}{4} \underbrace{{\rm TF}^{-1}[\delta(f-f_0)]}_{i2\pi f_0\tau} + \frac{A^2}{4} \underbrace{{\rm TF}^{-1}[\delta(f+f_0)]}_{-i2\pi f_0\tau}$

 $=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}}\frac{A^2}{2}\underbrace{\cos(4\pi f_0 t - 2\pi f_0 \tau) + \cos(2\pi f_0 \tau)}_{\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b)) + \cos(a-b)}\mathrm{d}t$

 $x(t) = A\cos(2\pi f_0 t) = \underbrace{\frac{A}{2}}_{} e^{j2\pi f_0 t} + \underbrace{\frac{A}{2}}_{} e^{-j2\pi f_0 t}$

• Méthode 2

• Méthode 1

$$Remarque: R_x(0) = \text{puissance} = \frac{A^2}{2}$$
 1.2.3. Déterministes à puissance finie
$$\begin{aligned} &\textbf{Th\'eor\`eme 1.2.3.1:} \\ &\textbf{D\'efinition} & P = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 \mathrm{d}t < \infty \\ &\textbf{Produit scalaire} & \langle x,y \rangle = \lim_{t \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y^*(t) \mathrm{d}t \end{aligned}$$

Fonction d'autocorrélation $R_x(\tau) = \langle (x(t), x(t-\tau)) \rangle$

Fonction d'intercorrélation $R_{xy}(\tau) = \langle (x(t), y(t-\tau)) \rangle$

Définition 1.2.3.1: On définit la densité spectrale de puissance par

 $s_x(f) = \operatorname{TF} R_x(\tau)$

 $=\frac{A^2}{2}\cos(2\pi f_0\tau)$

Proposition 1.2.3.1: $s_x(f) = \lim_{t \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| X_{T(f)} \right|^2 \mathrm{d}f$

1.2.4. Aléatoires stationnaires

Théorème 1.2.4.1:

avec

Moyenne
$$E[x(t)]$$
 indépendant de t
Moment d'ordre 2 $E[x(t)x^*(t-\tau)]$ indépendant de t
Produit scalaire $\langle x,y\rangle=E[x(t)y^*(t)]$

Fonction d'autocorrélation $R_x(\tau) = \langle x(t), x(t-\tau) \rangle = E[x(t)x^*(t-\tau)]$

Fonction d'intercorrélation $R_{xy}(\tau) = \langle x(t), y(t-\tau) \rangle = E[x(t)y^*(t-\tau)]$

 $X_T(f) = \int_{-T}^{\frac{T}{2}} x(t) e^{-j2\pi f t} \mathrm{d}t$

Définition 1.2.4.1: Puissance moyenne $P=R_x(0)=E\left[\left|x(t)^2\right|\right]=\int_{\mathbb{R}}s_x(f)\mathrm{d}f$ Densité spectrale de puissance $s_x(f)=\mathrm{TF}\,R_x(\tau)=\lim_{t\to\infty}\frac{1}{T}E\left[\left|X_T(f)\right|^2\right]$

Remarque: En général X(f) n'existe pas!

 $d^2[x(t), x(t-\tau)] = 2[R_x(0) - R_x](\tau)$

 $m_x(t) = E_{\theta}(x(t)) = 0$ 1.3. Propriétés de $R_x(\tau)$ et de $s_x(f)$

Distance entre x(t) et $x(t-\tau)$ Si x(t) est un signal réel :

Théorème 1.3.1: Propriétés de $R_x(\tau)$ Symétrie hermitienne $R_x(\tau) = R_x^*(-\tau)$

Valeur maximale $|R_x(\tau)| \leq R_x(0)$

Décomposition de Lebesgue on a

Exemple: $x(t) = A\cos(2\pi f_0 t + \theta)$ avec $\theta \sim \mathcal{U}([0, 2\pi])$

 $R_x(\tau) = R_1(\tau) + R_2(\tau)$ • $R_1(\tau)$ est une somme de fonctions périodiques • $R_2(\tau) \underset{\tau \to +\infty}{\longrightarrow} 0$

Donc $R_x(\tau)$ mesure le lien entre x(t) et $x(t-\tau)$

Si x(t) est un signal réel $s_x(f)$ est paire Positivité $s_x(f) \ge 0$

• $s_1(f)$ est un spectre de raies

4. Partiel

1. stationarité à l'ordre 1 2. vérifier à l'ordre 2 et démontrer que ça dépend que de τ

2. Filtrage Linéaire

3. Traitements non linéaires

• $s_2(f)$ est un spectre continu

Théorème 1.3.2: Propriétés de $s_x(f)$ **DSP** réelle $s_x(f) \in \mathbb{R}$

Décomposition $s_x(f) = s_1(f) + s_2(f)$ où

Lien entre DSP et puissance/énergie P ou $E = \int_{\mathbb{R}} s_x(f) df$

2