Google Colab

Intro

- Google Colab, short for Google Colaboratory, is a cloud-based Jupyter Notebook environment provided by Google for free
- It allows users to create, edit, and share Python notebooks without the need to install any software on their local machines (runs bash and R too!)
- Colab is designed to facilitate collaboration, making it easy for multiple users to work on a project simultaneously
- It also provides access to powerful hardware, such as GPUs and TPUs, for accelerated computing.

Key Features

- Real-time collaboration: work with your peers simultaneously
- Version control: track changes and revert to previous versions
- Rich text and markdown support: create well-documented notebooks
- Integration with Google Drive: store and share notebooks easily

Getting Started

- Visit https://colab.research.google.com
- Sign in with your Google account
- Create a new Python notebook or open an existing one
- Start coding and running cells

Let's run one example in Python

Testing google colab with Python

Step 1. Import python libraries (NumPy, Pandas, and Matplotlib)

(Press the "play" button Shift + Enter to run the cell and import the libraries)

NB: This notebook is only shared in "viewer" mode. To execute the code in the cells and make changes, follow these instructions:

To execute the code cells, make a copy of the notebook on your own Google Drive by clicking "File" > "Save a copy in Drive". This creates a separate copy of the notebook, which allows you to execute code cells and make changes without affecting the original notebook.

```
[5] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Step 2. Generate sample data

0 0.496714 -0.138264 0.647689 1.523030

1 -0.234153 -0.234137 1.579213 0.767435

Step 3: Calculate summary statistics

V 00	[7]	# Calculate summary st	tatistics	for t	he dataset
US		summary = data.describ			

Display the summary statistics
summary

	A	В	С	D
count	100.000000	100.000000	100.000000	100.000000
mean	-0.009811	0.033746	0.022496	0.043764
std	0.868065	0.952234	1.044014	0.982240
min	-2.025143	-1.959670	-3.241267	-1.987569
25%	-0.716089	-0.564362	-0.616727	-0.727600
50%	-0.000248	-0.024646	0.068665	0.075219
75%	0.528231	0.547116	0.701519	0.778891
max	2.314659	3.852731	2.189803	2.720169

Step 4: Create a visualization

```
# Plot the dataset as a line plot
    data.plot(kind='line', figsize=(10, 6))

# Add title and labels
    plt.title('Sample Data Line Plot')
    plt.xlabel('Index')
    plt.ylabel('Values')

# Display the plot
    plt.show()
```


Running Bash in Colab

To execute a Bash command in a code cell, prepend the command with an exclamation mark (!) Step 1. list the files and directories in the current working directory (9) !ls sample_data Let's check what remote machine we are running [36] !uname -a Linux f27d269d05b6 5.10.147+ #1 SMP Sat Dec 10 16:00:40 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux Step 2. Generate a sample directory [10] !mkdir sample_directory Step 3. Change de current working directory [11] %cd sample_directory /content/sample_directory Note: We use %cd instead of !cd in this case because %cd changes the working directory for the entire notebook, while !cd would only change it for the specific cell.

Running Bash in Colab

Step 4. Let's check the working directory

```
 [12] !pwd
        /content/sample_directory
   Step 5. We generate an empty file
[16] !touch sample_file.txt
        lls
        sample_file.txt
   Step 6: Write content to the file
   We use the echo command along with the > operator to write content to "sample_file.txt":
[17] !echo "This is the metab course of Oslo v2023!" > sample_file.txt
   Step 7: Read the content of the file
   Use the cat command to read and display the content of "sample_file.txt":
[18] !cat sample_file.txt
        This is the metab course of Oslo v2023!
```

Running Bash in Colab

Step 8: Remove the file and directory

First, change the working directory to the parent directory:

```
√<sub>0s</sub> [19] %cd ..
```

/content

Now, use the rm command to remove the "sample_file.txt" and "sample_directory":

```
/ [21] !rm -r sample_directory
!ls
```

Uploading files from your computer into Colab

Step 1. let's import the necessary module from the google.colab package:

Saving otutab_mala16S_ss4060.tsv to otutab_mala16S_ss4060.tsv

```
Step 2: Use the upload() function to upload files

Yes a step 2: Use the upload() function to upload files

Choose files otutab_mal...S_ss4060.tsv

otutab_mala16S_ss4060.tsv(text/tab-separated-values) - 1713307 bytes, last modified: 12/09/2021 - 100% done
```

Click "Choose Files" and select one or more files from your computer to upload. The uploaded files will be saved in the current working directory

Uploading files from your computer into Colab

Step 3: Verify the uploaded files

Use the !ls command to list the files in the current working directory:

```
[29] !ls -lh

total 1.7M

-rw-r--r-- 1 root root 1.7M Apr 8 19:04 otutab_mala16S_ss4060.tsv
drwxr-xr-x 1 root root 4.0K Apr 6 13:39 sample_data
```

Lets check how the data looks like

```
[30] !head otutab_mala16S_ss4060.tsv
                                                               OTU_10002
       OTU_1 OTU_10 OTU_100 OTU_1000
                                               OTU_10001
                                                                               OTU_10003
       ST 1 MD28
       ST 2 MD40
       ST 3 MD52
                       1829
       ST 4 MD60
                       1897
       ST 7 MD98
       ST_9_MD111
                       2064
                       2428
       ST_10_MD141
       ST 12 MD196
                       1714
                       1478
       ST_13_MD202
```