Bayesian Decision theory with continuous features

- Consider more than one feature through feature victor \mathbf{x} , where \mathbf{x} is in d-dimensional Euclidean space R^d , called the feature space.
- Consider c (more than two) states of nature as in $\{w_1,..., w_c\}$.
- Consider a actions, more than merely deciding the state of nature $\{\alpha_1,...,\alpha_a\}$
- Introduce a loss function, more general than the probability of error, $\lambda(\alpha_i|w_j)$, describing the loss incurred for taking action α_i when the state of nature is w_i .

 $P(w_i|\mathbf{x}) = p(\mathbf{x}|w_i) * P(w_i) / p(\mathbf{x})$ where he evidence is now

where the evidence is now

$$p(\mathbf{x}) = \sum p(\mathbf{x} | \mathbf{w}_i) * P(\mathbf{w}_i), j = 1,...,c.$$

If we have observed a particular \mathbf{x} and we intend to take action α_i but the true state of nature is \mathbf{w}_j then we incur loss $\tilde{\lambda}(\alpha_i | \mathbf{w}_i)$.

Because $P(w_j | \mathbf{x})$ is the probability that the true state of nature is w_j , the expected loss associated with taking action α_{ijs}

$$R(\alpha_i | \mathbf{x}) = \sum \lambda(\alpha_i | \mathbf{w}_i) * P(\mathbf{w}_i | \mathbf{x}), i = 1,...,c.$$

It is called the risk and our objective is to minimize the risk. A general decision rule is a function $\alpha(\mathbf{x})$. For every \mathbf{x} , the decision function $\alpha(\mathbf{x})$ assumes one of the a values $\alpha_1,...,\alpha_a$. The overall risk is then given by

 $R = [R(\alpha(x)|x)p(x) dx.$

To minimize the overall risk, we compute the risk

 $R(\alpha_i|\mathbf{x}) = \sum \lambda(\alpha_i|\mathbf{w}_j) * P(\mathbf{w}_j|\mathbf{x})$, j = 1,...,c and select the action α_i for which $R(\alpha_i|\mathbf{x})$ is minimum. The resulting minimum overall risk is called the Bayes risk and is the best performance that can be achieved.

Special case of two-category classification problem:

Here, action α_1 corresponds to deciding that the true state of nature is w_1 and action α_2 corresponds to deciding that it is w_2 .

Simplifying, write λ_{ij} for $\lambda(\alpha_i | w_j)$, the loss incurred for deciding w_i when the true nature is w_i .

So, $R(\alpha_1|x) = \tilde{\lambda}_{11}P(w_1|x) + \tilde{\lambda}_{12}P(w_2|x)$ and

$$R(\alpha_2 | x) = \lambda_{21} P(w_1 | x) + \lambda_{22} P(w_2 | x).$$

Our rule would be to decide w_1 if $R(\alpha_1|x) < R(\alpha_2|x)$.

That is, in terms of posterior probabilities, we decide w_1 if $(\lambda_{21} - \lambda_{11}) P(w_1 | x) > (\lambda_{12} - \lambda_{22}) P(w_2 | x)$.

This can also be expressed in terms of prior probabilities, by Bayes formula, as, decide w₁ if

 $(\lambda_{21} - \lambda_{11})p(x|w_1)P(w_1) > (\lambda_{12} - \lambda_{22})p(x|w_2)P(w_2)$ else decide w_2 .