

(19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI. ⁶ C07D 211/22

a

0

(11) 공개번호 특1999-0071666 (43) 공개일자 1999년09월27일

(21) 출원번호

10-1998-0703942

(22) 출원일자

1998년05월26일

번역문제출일자

1998년05월26일

(86) 국제출원번호

PCT/JP1996/03520

(87) 국제공개번호

WO 1997/19919

(86) 국제출원출원일자

1996년12월02일

(87) 국제공개일자

1997년06월05일

(81) 지정국

AP ARIPO특허: 케냐, 레소토, 말라위, 수단, 스와질랜드, 케냐, 레소토,

EA 유라시아특허: 아르메니아, 아제르바이잔, 벨라루스, 키르기즈, 카자흐스

탄,

EP 유럽특허: 오스트리아, 벨기에, 스위스, 리히텐슈타인, 독일, 덴마크, : 페인, 프랑스, 영국, 그리스, 이탈리아, 툭셈부르크, 모나코, 네덜란드,

르투칼

국내특허: 아일랜드, 알바니아, 오스트레일리아, 보스니아-헤르체고비나, 바이도스, 불가리아, 브라질, 캐나다, 중국, 쿠바, 체크, 에스토니아, 그루아, 헝가리, 이스라엘, 아이슬란드, 일본, 대한민국, 세인트루시아, 스리팅

카, 라이베리아,

(30) 우선권주장

312407/19951995년11월30일일본(JP)

(71) 출원인

씨엔씨 신약연구소 이경하

경기도 화성군 태안읍 안녕리 146-141

(72) 발명자

하라무라 마사유키

일본국 시주오카켄 고텐바시 코마카도 1초메 135 주가이 세이야쿠 가부시키가이샤

하네이시 추요시

일본국 시주오카켄 고텐바시 코마카도 1초메 135 주가이 세이야쿠 가부시키가이샤

쿠로마루 키요노리

일본국 시주오카켄 고텐바시 코마카도 1초메 135 주가이 세이야쿠 가부시키가이샤

(74) 대리인

신용길

심사청구: 없음

(54) 술파미드 유도채

요약

[식중, R₁은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R₂는 치환기를 갖고 있어도 좋고, 또한 축합되어 있어 좋은 질소원자 함유 복소환을 나타내고, R₃는 기 A-(CH₂) $_{\rm m}$ -(여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어 좋고, 또한 축합되어 있어도 좋은 복소환 또는 치환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 0 \sim 6의 정수를 타내며, 또한 -(CH₂) $_{\rm m}$ - 부분은 1개 이상의 치환기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급! 킬기를 나타내고, R₄는 수소원자 또는 저급알킬기를 나타내고, R₅는 기 -C(=NR $_{\rm e}$)NH $_{\rm e}$, 기 -NH-C(=NR $_{\rm e}$)NH $_{\rm e}$ (여기서, R $_{\rm e}$ 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보! 기, 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타내고, n은 0 \sim 2의 정수를 나타내며, 또한-(CH $_{\rm e}$) $_{\rm e}$ -부분은 1개이상의 치환기로 치환되어 있어도 좋다)를 나타낸다]로 표시되는 술파미드 유도체 또는 그의 약제학으로 허용되는 염 또는 그의 수화물은 우수한 항트롬빈 활성을 나타내고, 항혈전 치료제 등의 의약으로서 유용하고, 더욱 경구투여가능하고 부작용이 작은 특징을 갖고 있다.

[선택도] 없음

명세서

기술분야

본 발명은 일반식(1)

[식중, R₁은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R₂는 치환기를 갖고 있어도 좋고, 또한 축합되어 있어 좋은 질소원자 함유 복소환을 나타내고, R₃는 기 A-(CH₂) $_{\rm m}$ -(여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어 좋고, 또한 축합되어 있어도 좋은 복소환 또는 치환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 0 \sim 6의 정수를 타내며, 또한 -(CH₂) $_{\rm m}$ - 부분은 1개 이상의 치환기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급입기를 나타내고, R $_{\rm h}$ 는 수소원자, 저급알킬기 또는 아미노보호기를 나타내고, R $_{\rm h}$ 는 기 -C(=NR $_{\rm h}$)NH $_{\rm h}$, 기 -NH-C(=NR $_{\rm h}$)NH $_{\rm h}$ 또는 기 -(CH₂) $_{\rm h}$ -NHR $_{\rm h}$ 6 (여기서, R $_{\rm h}$ 6는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급 작시카르보닐기, 저급알콕시카르보닐옥시기, 또는 저급히드록시압킬카르보닐옥시기를 나타내고, n은 0 \sim 2의 정수를 내내며, 또한 -(CH $_{\rm h}$) $_{\rm h}$ -부분은 1개이상의 치환기로 치환되어 있어도 좋다)를 나타낸다]로 표시되는 신규한 술파미드 유도체에 관한 것으로, 더 상세히는 항트콤빈 저해활성을 갖는 술파미드 유도체 또는 그의 약제학적으로 허용될 수 있는 염 또는 수화물 및 이들을 유효성분으로서 함유하는 것을 특징으로 하는 의약조성물에 관한 것이다.

배경기술

혈전은 응집한 혈소판과 피브린으로부터 되며, 협심증이나 심근경색 등의 허혈성 심질환, 뇌경색 등의 뇌혈관장해, 동맥 전색전증, 폐색전증 등의 정맥혈전증이나 범발성(汎發性) 혈관내 혈액응고 증후군(DIC) 등의 발생이나 질병의 악화에 관한다.

항혈전증약은 아스피린, 디피리다출, 아프로스타질 등의 항혈소판약과 와파린(warfarin), 혜파린, 아르가트로반 등의 항원고약으로 분류되며, 그 중 항혈소판약의 다수는 경구용 약이나, 그의 효과에 대하여는 의문이 많다. 한편, 항응고약쪽은 구용 약으로는 와파린뿐이며, 비타민K에 길항하는 것으로 응고인자의 생산을 저해하나, 피부괴사나 최기형성(催奇形性)용 등의 부작용이 있으며, 또한 약물 상호작용이 많다. 따라서, 와파린과는 작용기전이 다른 경구용 항응고약의 출현이 일상적으로 요망되고 있다.

트롬빈은 혈액응고의 최종 스텝의 활성인자에서 피브리노겐에 작용하여 피브린을 생성한다. 트롬빈 저해약으로 아르가트 반, 트리펩티드(D-Phe-Pro-Arg-H의 합성유도체)와 히루딘을 들 수 있으나, 모두 주사제이며, 혈전증의 치료나 예방에는 장기 투여가 가능한 경구용 약제가 바람직하다.

종래, 혈전형성에는 혈소판 응집이 중요하다고 고려되어 항혈소판약이 범용되어 왔다. 그러나, 최근에 이르러, 트롬빈이 용체를 통하여 혈소판 응집을 강력하게 유발하는 것이 명백하게 되고, 항트롬빈약은 트롬빈 수용체의 활성화를 저해하여 소판 응집도 억제하는 것으로 보고되어 있다(醫藥のあゆみ, 167, 484 (1993); Journal of Biological Chemistry, 268, 47 (1993); 동 268, 15605(1993) 등 참조).

또한, 경피적 관상동맥형성술(PTCA) 수시간후의 혈관평활근에서 트롬빈 수용체의 발현이 10배이상으로 되는 것에 대한고도 있으며, 증래 치료법이 없었던 재협착의 예방에 항트롬빈 저해약이 사용할 수 있는 가능성이 있다. 따라서, 경구가능하고, 부작용이 적은 트롬빈저해약은 그의 개발이 조급히 요망되고 있는 것이 실상이다.

발명의 상세한 설명

본 발명자들은 상기 문제를 감안하여 경구가능하고, 부작용이 적은 항트롬빈약에 대하여 예의 연구를 거듭한 결과, 특정의 술파미드 유도체가 우수한 효과를 나타냄을 발견하고, 본 발명을 완성하였다.

즉, 본 발명은 일반식(1)

[식중, R₁은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R₂는 치환기를 갖고 있어도 좋고, 또한 축합되어 있어 좋은 질소원자 함유 복소환을 나타내고, R₃는 기 A-(CH₂) $_{\rm m}$ -(여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어 좋고, 또한 축합되어 있어도 좋은 복소환 또는 치환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 0-6의 정수를 타내며, 또한 -(CH₂) $_{\rm m}$ - 부분은 1개 이상의 치환기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급! 킬기를 나타내고, R₄는 수소원자, 저급알킬기 또는 아미노보호기를 나타내고, R₅는 기 -C(=NR₆)NH₂, 기 -NH-C(=NR₆)NH₂ 또는 기 -(CH₂) $_{\rm m}$ -NHR₈ (여기서, R₆는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급 콕시카르보닐기, 저급알콕시카르보닐옥시기 또는 저급히드록시알킬카르보닐옥시기를 나타내고, n은 0-2의 정수를 나타내며, 또한 -(CH₂) $_{\rm m}$ -부분은 1개이상의 치환기로 치환되어 있어도 좋다)를 나타낸다]로 표시되는 신규한 술파미드 유도차에 관한 것으로 더 상세히는 항트롬빈 저해활성을 갖는 술파미드 유도체 또는 그의 약제학적으로 허용될 수 있는 염 또는 화물 및 이들을 유효성분으로서 함유하는 것을 특징으로 하는 의약조성물에 관한 것이다.

발명을 실시하기 위한 최량의 형태본 발명에 있어서, 특히 한정하지 않는 경우, 다음 용어는 아래의 의미를 나타낸다.

저급알킬기란 탄소수 1~6, 바람직하기로는 탄소수 1~4의 직쇄 또는 분지쇄상의 알킬기를 의미하며, 예를 들면 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, i-부틸기, s-부틸기, t-부틸기 등을 들 수 있다.

저급알콕시기란 탄소수 1~6, 바람직하기로는 탄소수 1~4의 직쇄 또는 분지쇄상의 알킬옥시기를 의미하며, 예를 들면 대통시기, 에톡시기, n-프로폭시기, i-프로폭시기, n-부록시기, i-부록시기, s-부록시기, t-부록시기, t-부록시기, 등을 둘 수 있다.

아미노보호기란 일반식(1)의 합성과정에 있어서, R_1 이 결합하는 아미노기를 보호할 수 있는 기이면 좋고, 일반적으로 사할 수 있는 아미노보호기가 이용될 수 있다. 이와 같은 아미노보호기로서는, 예를 들면 포르밀기, 아세틸기, 벤조일기, 트 플루오로아세틸기, 벤질옥시카르보닐기, 메톡시카르보닐기, 나부록시카르보닐기, 프타로일기, 벤질기, 토실기 등을 들 수 있으며, 바람직하기로는 나부록시카르보닐기를 들 수 있다.

또한, 치환되어 있어도 좋은 아미노기란 치환기로서 전술한 아미노보호기외에 히드콕시기, 치환되어 있어도 좋은 저급알 기, 치환되어 있어도 좋은 아실기, 예를 들면 치환되어 있어도 좋은 저급알콕시카르보닐기 또는 치환되어 있어도 좋은 저 알킬아미노카르보닐기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 슬포닐기, 치환되어 있어도 좋고, 또한 축합 어 있어도 좋은 복소환기, 치환되어 있어도 좋은 저급알콕시기, 치환되어 있어도 좋은 시클로알킬기, 치환되어 있어도 좋은 시클로알킬기, 치환되어 있어도 좋은 이릴옥시기, 치환되어 있어도 좋은 사람되어 있어도 좋은 부소환옥시기, 환되어 있어도 좋은 실릴기 등이 1개 이상 치환되어 있어도 좋은 아미노기를 의미하고, 예를 들면 메틸아미노기, 에틸아다노기, 아세틸아미노기, 디메틸아미노카르보닐아미노기, 페닐아미노기, p-톨루엔술포닐아미노기, 메탄술포닐아미노기, 대라의하기로 미페리디닐아미노기, 시클로핵실아미노기, 시클로펜틸아미노기, 시클로프로필아미노기 등을 들 수 있으며, 바라직하기로는 메틸아미노기, 에틸아미노기, 아세틸아미노기, 아세틸아미노기, 아세틸아미노기, 아메틸아미노기, 아메틸마미노기, 아메틸미노기, 아메틸마미노기, 아메틸미노기, 아메틸미노크리, 아메틸미노기, 아메틸미노크리스 아메틸미노크리스 아메틸미노크리스 메틸미노크리스 메틸미노크리스 메틸미노크리

치환되어 있어도 좋은 저급알킬기란, 치환기로서 함로겐원자, 히드록시기, 티올기, 치환되어 있어도 좋은 아미노기, 치환 어 있어도 좋은 아실기, 예를 들면 치환되어 있어도 좋은 저급알콕시카르보닐기 또는 치환되어 있어도 좋은 저급알킬아마카르보닐기, 니트로기, 시아노기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 술포닐기, 치환되어 있어도 좋고, 한 축합되어 있어도 좋은 복소환기, 치환되어 있어도 좋은 카르복실기, 치환되어 있어도 좋은 저급알콕시기, 치환되어 있어도 좋은 시클로알킬기, 치환되어 있어도 좋은 시클로알킬옥시기, 치환되어 있어도 좋은 아릴옥시기, 치환되어 있어도 좋은 시클로알킬리오기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환옥시기, 치환되어 있어도 좋은 시클로알킬티오기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환목시기, 치환되어 있어도 좋은 아릴티오기, 치환되어 있어도 좋은 사클로알킬티오기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환티오기, 치환되어 있어도 좋은 아릴티오기, 치환되어 있어도 좋은 슬포닐옥시기, 치환되어 있어도 좋은 실릴기 등이 1개이상 치환되어 있어도 좋은 저급알킬기를 의미하며, 예를 들면 2-(피를리딘-1-일카르보닐)에틸기, 3-페닐-2-(피를리딘-1-일카르보닐)-n-프로필기, 3,3-디페닐-n-프로필기, 2,2-디페닐에틸기, 등을 들 수 있다.

또한 치환되어 있어도 좋은 저급알콕시기란 치환기로서 전기의 저급알킬기로 나타낸 것과 같은 기가 치환된 저급알콕시기를 의미하고, 예를 들면 플루오로메톡시기, 플루오로에톡시기, 벤질옥시기 등을 들 수 있다.

아릴기란 방향족탄화수소에서 수소원자 1개를 제외한 기이며, 예를 들면 페닐기, 톨릴기, 나프틸기, 크실릴기, 비페닐기, 안트릴기, 페난트릴기 등을 들 수 있으며, 바람직하기로는 페닐기, 나프틸기 등을 들 수 있다.

치환되어 있어도 좋은 아릴기란 전기 아릴기의 임의의 수소원자가 1개이상의 치환되어 있어도 좋은 저급알킬기, 치환되다 있어도 좋은 자급알콕시기, 한로겐원자, 히드록시기, 티율기, 치환되어 있어도 좋은 아미노기, 치환되어 있어도 좋은 아실기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 아일꼭시기, 치환되어 있어도 좋은 술포닐기, 치환되어 있어도 좋은 카르복실기, 치환되어 있어도 좋은 자급알킬술포닐기, 치환되어 있어도 좋은 저급알킬술포닐이미노기, 치환되어 있어도 좋은 지급알킬술포닐지, 치환되어 있어도 좋은 지급알킬술포닐이미노기, 치환되어 있어도 좋은 목소환기, 치환되어 있어도 좋은 시클로알킬티오기, 치환되어 있어도 좋은 슬포닐옥시기, 치환되어 있어도 좋은 복소환기, 치환되어 있어도 좋은 복소환의기, 치환되어 있어도 좋은 목소환의기, 치환되어 있어도 좋은 목소환의기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 목소환의기 등으로 치환되어 있어도 좋은 기를 의미하며, 예를 들면 아메틸페닐기, m-히드록시페닐기, p-카르목실페닐기, 2-페네틸페닐기, 2-페네틸페닐기, 2-메르시페닐기, 2-메르시퍼닐기, 제목시페닐기, 2-메르시페닐기, 1-나프틸기, 3-메르시페닐기, 2-메르시페닐기, 2-메르시페닐기, 3-브로모-1-나프틸기, 6-히드록시-1-나프틸기, 1-나프틸기, 2-나프틸기 등을 들 수 있으며, 바람직하기로는 2-페네틸페닐기, 6-히드록시-1-나프틸기, 3-브로모-1-나프틸기, 2,3-디메톡시페닐기 등을 들수 있으며, 바람직하기로 보다 2-페네틸페닐기, 2-메르메틸지, 2,3-디메톡시페닐기, 2,3-디메톡시페닐기, 2,3-디메톡시페닐기, 2-나프틸기, 2,3-디메톡시퍼릴기, 2-나프틸기, 2,3-디메톡시페닐기, 2-나프틸기, 2,3-디메톡시퍼릴기, 2-나프틸기, 2-나프틸기, 2-나프틸기, 2,3-디메톡시퍼릴기, 2-나프틸기, 2,3-디메톡시퍼릴기, 2-나프틸기, 2,3-디메톡시퍼릴리

지환되어 있어도 좋은 시클로알킬기란 탄소수 3~7, 바람직하기로는 4~6의 시클로알킬기의 임의의 수소원자가 1개이싱 치환기로 치환되어 있어도 좋은 기를 나타내고, 치환기의 예로서는 전기 아릴기와 같은 기를 나타낸다. 이와 같은 예로서 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로렉실기, 1-플루오로시클로프로필기, 2-벤질시클로렉실기, 2-아미 시클로펜틸기, 2-카르복시시클로펜틸기, 2-(6-메톡시-1,4-벤조퀴논) 등율 들 수 있으며, 바람직하기로는 시클로렉실기 등을 들 수 있다.

치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 질소원자 함유 복소환이란 헤테로원자로서 1개 이상의 질소원자를 함하고, 다시 산소원자, 황원자 등의 헤테로원자를 함유하여도 좋은 3~7원환의 포화 또는 불포화 복소환을 의미하고, 또힌 3~7원환이외의 방향환, 복소환, 시클로알킬환이 1개이상 축합하여도 좋다. 환상의 탄소원자에 결합하는 임의의 수소원:는 1개이상의 치환기로 치환되어 있어도 좋고, 이와 같은 치환기의 예는 전술한 아릴기의 치환기와 같은 것을 들 수 있다 질소원자 함유 복소환의 예로서는, 예를 들면 아지리딘환, 아제티딘환, 피를환, 피롤린환, 피롤리딘환, 인돌환, 인돌린환이소인돌환, 옥타히드로인돌환, 카르바줄환, 피리딘환, 피페리딘환, 퀴놀린환, 디히드로퀴놀린환, 테트라히드로퀴놀린흰데카히드로퀴놀린환, 이소퀴놀린환, 테트라히드로리살린한, 데카이드로이소퀴놀린환, 퀴놀론환, 아크리딘한, 페난리인단환, 벤조리살한, 피라줄환, 이미다즐환, 이미다즐린환, 이미다즐리딘환, 벤조리살한, 테트라진환, 피리디진환 피라진환, 피레리진환, 밴조디아진환, 트리아질환, 베조트리아질환, 테트라질환, 테트라진환, 푸린환, 크산탄환, 테도리진환, 프테리딘환, 나프틸리딘환, 퀴놀리딘환, 퀴놀리딘환, 인돌리진환, 옥사줄환, 벤조옥사증환,

소옥사졸환, 옥사진환, 페녹사 티아졸환, 티아졸리딘환, 벤조티아즐환, 이소티아들은, 티아진환, 옥사디아졸환, 옥/디아진환, 티아디아질환, 티아디아진환, 디티아진환, 몰포린환 등을 둘 수 있으며, 이들 중, 피페리딘환, 피페라진환, 이르 퀴놀린환, 테트라히드로이소퀴놀린환 등이 바람직하다. 치환기를 갖는 것으로서는 예를 들면, N-아세틸피페라진환, N-, 톨루엔술포닐피페라진환, 4-메틸피페리딘환 등을 바람직한 예로서 들 수 있다.

또한, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환이란 헤테로원자로서 1개이상의 질소원자, 산소원자 또는 황원자를 함유하고 있는 3~7원환의 포화 또는 불포화 복소환을 의미하고, 다시 3~7원환 이외의 방향환, 복소환, 시클로 알킬환이 1개이상 축합하고 있어도 좋다. 환상의 탄소원자에 결합하는 임의의 수소원자는 1개이상의 치환기로 치환되어 어도 좋으며, 이러한 치환기의 예는 전술한 아릴기의 치환기와 같은 것을 들 수 있다. 이와 같은 복소환의 예로서는 전술된 질소원자 함유 목소환 이외에 예를 들면, 피란환, 푸란환, 테트라히드로피란환, 테트라히드로푸란환, 티오펜환, 벤조티오환, 디히드로벤조티오펜환, 벤조푸란환, 이소벤조푸란환, 크로만환, 크로멘환, 디벤조푸란환, 이소크로만환, 폐녹사틴환 크산틴환, 티안쓰렌환, 벤조디옥산환, 벤조디옥소란환, 티오란환 등을 들 수 있으며, 바람직하기로는 벤조티오펜환을 들 있다.

아실기란 카르복실산의 카르복실기의 OH를 제거한 기이며, 예를 들면 포르밀기, 아세틸기, 프로피오닐기, 부티릴기, 바리로기, 옥살릴기, 말로닐기, 숙시닐기, 벤조일기, 톨루오일기, 나프토일기, 프탈로일기, 피를리딘카르보닐기, 피리딘카르보일기 등을 들 수 있으며, 바람직하기로는 아세틸기, 벤조일기 등을 들 수 있다. 또한 치환되어 있어도 좋은 아실기란 치환로서 저급알킬기, 기타 전기 저급알킬기로 표시되는 것과 같은 기로 치환된 아실기를 의미하며, 예를 들면 치환되어 있어 좋은 저급알킬카르보닐기, 치환되어 있어도 좋은 저급알킬아미노카르보닐기, 치환되어 있어도 좋은 저급알킬옥시카르보기, 아미노카르보닐카르보닐기 등을 들 수 있다.

아실옥시기란 아실기에 산소원자가 결합한 기를 의미하며, 예를 들면 아세톡시기, 벤조일옥시기 등을 들 수 있다.

저급알콕시카르보닐기란 저급알콕시기에 카르보닐기가 결합한 기름 의미하며, 알콕시부분의 탄소수가 1∼6, 바람직하기는 1∼4의 기를 나타낸다. 예를 들면, 메록시카르보닐기, 에록시카르보닐기, n-프로폭시카르보닐기, i-프로폭시카르보닐기, i-프로폭시카르보닐기, i-부록시카르보닐기, i-부록시카르보닐기, s-부록시카르보닐기, t-부록시카르보닐기 등을 들 수 있으며, 바람직하기는 메록시카르보닐기, 에톡시카르보닐기 등을 들 수 있다.

저급알콕시카르보닐옥시기란 저급알콕시카르보닐기에 산소원자가 결합한 기이며, 알콕시부분의 탄소수가 1~6, 바람직: 기로는 1~4의 기를 나타낸다. 예를 들면, 메록시카르보닐옥시기, 에톡시카르보닐옥시기, n-프로폭시카르보닐옥시기, i-로폭시카르보닐옥시기, n-부톡시카르보닐옥시기, i-부톡시카르보닐옥시기, s-부톡시카르보닐옥시기, t-부톡시카르보닐 시기 등을 들 수 있으며, 바람직하기로는 메톡시카르보닐옥시기, 에톡시카르보닐옥시기 등을 들 수 있다.

히드록시알킬카르보닐옥시란 전기 저급알킬기에 1개이상의 히드록시기가 치환된 기에 카르보닐옥시기(COO)가 결합한 : 를 나타내며, 예를 들면, 히드록시메틸카르보닐옥시기, 2-히드록시에틸카르보닐옥시기, 2,3-디히드록시프로필카르보닐 시기 등의 알킬부분의 탄소수가 1~6, 바람직하기로는 1~4의 기를 들 수 있다.

할로겐원자로서는 불소원자, 염소원자, 브롬원자 또는 요드원자를 들 수 있다.

저급알킬술포닐기란 전기 저급알킬기에 술포닐기가 결합한 기이며, 탄소수가 1~6, 바람직하기로는 1~4의 것을 들 수 \$으며, 예를 들면 메틸술포닐기, 에틸술포닐기, n-프로필술포닐기, i-프로필술포닐기 등을 들 수 있다.

또한, 아릴술포닐기란 전기의 아릴기에 술포닐기가 결합한 기를 의미하며, 예를 들면 페닐술포닐기, 나프틸술포닐기 등0 바람직한 예로서 들 수 있다.

치환되어 있어도 좋은 저급알킬술포닐기 및 치환되어 있어도 좋은 아릴술포닐기는 전기 저급알킬술포닐기 및 아릴술포닐의 탄소원자에 결합하는 임의의 수소원자가 1개 이상의 치환기로 치환되어 있어도 좋은 기를 나타내며, 치환기의 예로서전기 아릴기의 치환기로서 기재한 것과 같은 것을 들 수 있다. 이와 같은 예로서는, 예컨대, p-톨루엔술포닐기, 트리플루로메탄술포닐기 등을 들 수 있다.

치환되어 있어도 좋은 아미노술포닐기란 전기의 치환되어 있어도 좋은 아미노기에 술포닐기가 결합한 기로, 예를 들면 메아미노술포닐, 벤질아미노술포닐기 등을 들 수 있다.

치환되어 있어도 좋은 저급알콕시술포닐기란 전기 치환되어 있어도 좋은 저급알콕시기에 술포닐기가 결합된 기를 의미하며, 예를 들면 메록시술포닐기, 벤질옥시술포닐기 등이 바람직한 예로서 들 수 있다.

치환되어 있어도 좋은 시클로알킬옥시술포닐기란 치환되어 있어도 좋은 시클로알킬기에 산소원자를 개재하여 술포닐기? 결합된 기를 의미하며, 예를 들면 시클로헥실옥시술포닐기, 시클로펜틸옥시술포닐기 등을 들 수 있다.

치환되어 있어도 좋은 시클로알킬술포닐기란 전기 치환되어 있어도 좋은 시클로알킬기에 술포닐기가 결합된 기로, 예를

치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환술포닐기란 치환되어 있어도 좋은 복소환기에 술포닐기가 결합 기를 의미하며, 예를 들면 4~퀴놀릴술포닐기, 8~테트라히드로퀴놀릴술포닐기 등을 바람직한 예로서 들 수 있다.

또한, 치환되어 있어도 좋은 술포닐기란, 치환되어 있어도 좋은 저급알킬술포닐기, 치환되어 있어도 좋은 시클로알킬술포닐기, 치환되어 있어도 좋은 시클로알킬옥시술포닐기, 치환되어 있어도 좋은아미노술포닐기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환술포닐기, 치환되어 있어도 좋은 저급알콕시술포닐기 또는 치환되어 있어도 좋은 아릴술포탈기를 나타낸다.

치환되어 있어도 좋은 카르복실기란 전기 치환되어 있어도 좋은 아실기에 옥시기가 결합된 기를 의미하며, 예를 들면 메투 카르보닐옥시기, 에틸카르보닐옥시기, 이소프로필카르보닐옥시기, 페닐카르보닐옥시기, 시클로혝실카르보닐옥시기 등들 들 수 있다.

저급알콕시알킬기란 전기 저급알콕시기에 저급알킬기가 결합된 기를 의미하며, 예를 들면 메록시메틸기, 메록시에틸기, 부록시메틸기, 1-에록시에릴기, 1-(이소프로폭시)에틸기 등을 들 수 있다. 또한 저급알콕시알킬기의 알콕시기 또는 알킬 의 부분은 전기 알킬기에서 나타낸 치환기와 같은 기로 치환되어 있어도 좋다.

저급히드록시알킬기란 전기 저급알킬기에 1개 이상의 히드록시기가 치환된 기를 의미하며, 예를 들면 히드록시메틸기, 2히드록시에틸기, 1-히드록시에틸기, 3-히드록시-n-프로필기, 2,3-디히드록시-n-부틸기 등을 들 수 있다. 또한 저급히!록시알킬기의 알킬기의 부분은 전기 알킬기로 나타낸 치환기와 같은 기로 치환되어 있어도 좋다.

저급아미노알킬기란 전기 치환되어 있어도 좋은 아미노기에 전기 저급알킬기가 결합된 기를 의미하며, 예를 들면 t-부틸·미노메틸기, 아미노메틸기, 2-아미노에틸기, 벤질아미노메틸기, 메틸아미노메틸기, 2-메틸아미노에틸기, 등을 들 수 있는 또한 저급아미노알킬기의 알킬기의 부분은 전기 알킬기에서 나타낸 치환기와 같은 기로 치환되어 있어도 좋다.

저급카르복실알킴기란 전기 치환되어 있어도 좋은 카르복실기에 전기 저급알킬기가 결합된 기로, 예를 들면, 아세틸옥시 틸기, 2-아세틸옥시에틸기, 에틸카르보닐옥시메틸기, 시클로핵실카르보닐옥시메틸기, 시클로프로필카르보닐옥시메틸기 이소프로필카르보닐옥시메틸기 등을 들 수 있다. 또한 저급카르복실알킬기의 알킬기의 부분은 전기 알킬기에서 나타낸 기환기와 같은 기로 치환되어 있어도 좋다.

저급카르보닐아미노알킬기란 전기 치환되어 있어도 좋은 아실기에 전기 저급아미노알킬기가 결합된 기를 의미하며, 예를 들면, 아세틸아미노메틸기, t-부틸옥시카르보닐아미노메틸기, 에틸카르보닐아미노메틸기, 에틸카르보닐아미노메틸기, 네틸아미노메틸기, 벤질옥시카르보닐아미노에틸기 등을 들 수 있다. 또한 저급카르보닐아미노알킬기의 아미노기 또는 일기의 부분은 전기 알킬기에서 나타낸 치환기와 같은 기로 치환되어 있어도 좋다.

치환되어 있어도 좋은 저급알킬티오기란 전기 치환되어 있어도 좋은 저급알킬기에 티오기가 결합된 기로, 예를 들면 메틸오기, 에틸티오기, 이소프로필티오기, t-부틸티오기 등을 들 수 있다.

치환되어 있어도 좋은 시클로알킬티오기란 전기의 치환되어 있어도 좋은 시클로알킬기에 티오기가 결합된 기를 의미하다 예를 들면 시클로프로필티오기, 시클로부틸티오기, 시클로펜틸티오기, 시클로헥실티오기 등을 들 수 있다.

치환되어 있어도 좋은 아릴티오기란 전기의 치환되어 있어도 좋은 아릴기에 티오기가 결합된 기로, 예를 들면 페닐티오기 1-나프틸티오기, 2-나프틸티오기 등을 들 수 있다.

치환되어 있어도 좋고, 축합되어 있어도 좋은 복소환티오기란 전기의 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 소환기에 티오기가 결합된 기로, 예를 들면 4~퀴놀릴티오기, 8~테트라히드로퀴놀릴티오기 등을 들 수 있다.

지환되어 있어도 좋은 술포닐옥시기란 전기의 치환되어 있어도 좋은 술포닐기에 옥시기가 결합된 기로, 예를 들면 p-톨릭엔술포닐옥시가, 메탄술포닐옥시기 등을 들 수 있다.

치환되어 있어도 좋은 시클로알킬옥시기란 전기의 치환되어 있어도 좋은 시클로알킬기에 옥시기가 결합된 기로, 예를 들시클로프로필옥시기, 시클로펜틸옥시기, 4-아미노시클로핵실옥시기 등을 들 수 있다.

치환되어 있어도 좋고, 축합되어 있어도 좋은 복소환옥시기란 전기의 치환되어 있어도 좋고, 축합되어 있어도 좋은 복소를 기에 옥시기가 결합된 기를 의미하며, 예를 들면 4~퀴놀릴옥시기, 8~테트라히드로퀴놀릴옥시기 등을 들 수 있다.

치환되어 있어도 좋은 실릴기란 전기 치환되어 있어도 좋은 저급알킬기 또는 치환되어 있어도 좋은 아릴기가 동일 또는 이한 1~3개 결합된 실릴기를 나타내며, 예를 들면 트리메틸실릴기, 트리에틸실릴기, t-부틸디메닐실릴기, t-부틸디페닐 릴기, 트리이소프로필실릴기 등을 들 수 있다. 또한, $-(CH_2)_m$ – 부분 및 $-(CH_2)_n$ – 부분에서 치환되어 있어도 좋은 치환기로서는 전기 아릴기의 치환기로서 기재된 것되같은 것을 들 수 있다.

본 발명 화합물은 약제학적으로 허용될 수 있는 염을 형성할 수 있으며, 이와 같은 염으로서 예를 들면 염산염, 브롬화수:산염, 요드화수소산염, 황산염, 질산염, 인산염 등의 무기산염; 숙신산염, 옥살산염, 푸말산염, 말레인산염, 젖산염, 타르르산염, 시트르산염, 아세트산염, 글리콜산염, 메탄술폰산염, 톨루엔술폰산염 등의 유기산염을 들 수 있다. 또한, 본 발명화합물 및 그의 약제학적으로 허용가능한 염은 수화물을 형성할 수 있다. 더욱이, 본 발명 화합물은 각종의 입체구조를 7수 있으며, 예를 들면 키랄(chiral) 탄소원자를 중심으로 생각할 때, 그의 절대배치는 D체, L체, DL체의 어느 것이어도 좋.이들 화합물도 본 발명에 포함된다. 특히, 일반식(1)중의 치환폐닐알라닌 잔기중의 키랄 탄소원자의 절대배치는 L체가 비직하다.

일반식(1)로 표시되는 화합물에 있어서, R_3 의 A가 치환되어 있어도 좋은 아릴기, 예를 들면 벤질기, 나프틸기 등을 나타는 화합물, 특히 R_3 가 1-나프틸메틸, 2-페네틸벤질기, 3-브로모나프틸기, 1-이소퀴놀릴기, 2,3-디메톡시벤질기 또는 6 히드록시나프틸기인 화합물은 의약으로서 특히 우수한 효과를 나타내며, 본 발명의 일부를 구성한다.

또한, 일반식(1)에 있어서, Ro가 기 (2)~(6)

[식중, $(R_7)_{sub}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 ! 어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 : 급알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드콕시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아미노기, 치환되어 있어도 좋은 하는 기, 치환되어 있어도 좋은 아미노기, 치환되어 있어도 좋은 아리얼리기, 치환되어 있어도 좋은 아리얼리기, 처합되어 있어도 좋은 자급알킬술포닐기, 처합되어 있어도 좋은 아리얼프닐기, 저급알콕시알킬기, 저급하드콕시알킬기, 저다가르보일이미노알킬기를 나타낸다. B는 탄소원자, 산소원자, 황원자 또는 NR

 $_8$ (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 아실기, 치환되어 있어도 좋은 슬포닐기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환을 나타낸다)는 나타내며, p 및 q는 동일 또는 상이한 것으로서, $0\sim5$ 의 정수를 나타내나, 다만, p+q가 1, 2, 3, 4 또는 5의 어느 하나이고, 및 s는 동일 또는 상이한 것으로서, $0\sim5$ 의 정수를 나타내나, 다만, r+s가 0, 1, 2, 3, 4 또는 5의 어느 하나이다]의 어느 하나인 화합물, 그 중에서도 R_2 가 특히 기(2)인 경우, 특히 치환되어 있어도 좋은 피폐라지닐기 또는 치환되어 있어도 좋지폐리디닐기인 화합물, 보다 바람직하기로는 R_2 가 N-아세틸피폐라지닐기, 4-메틸피페리디닐기, N-(N,N-디메틸아미노르보닐)피폐라지닐기, 메탄술포닐피폐라지닐기, 벤젠술포닐피패라지닐기, p-를루엔술포닐피페라지닐기인 화합물도 의약으로서 우수한 효과를 나타내며, 본 발명에 포함된다.

또한, 일반식(1)에 있어서, R_5 가 $-C(=NR_6)NH_2$ (여기서, R_6 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 기급알콕시기, 저급알콕시카르보닐기, 저급알콕시카르보닐옥시기 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 호합물, 특히 $-C(=NH)NH_2$ 인 화합물도 바람직한 태양으로서 들 수 있다.

더욱이 상기에서 나타낸 R_2 , R_3 및 R_5 의 바람직한 치환기를 동시에 2개 또는 3개 갖는 화합물은 특히 바람직한 화합물로 들 수 있다.

다음에 일반식(1)로 표시되는 술파미드 유도체의 제조방법에 대하여 설명한다. 본 발명 화합물은 목적으로 하는 화합물어 적합한 반응의 조합에 의해 제조할 수 있으며, 아래에 대표적인 반응 스킴을 식으로 나타내나, 이하의 방법에만 한정되는 은 아니다.

(식중, R_1 , R_3 , R_4 , R_6 , R_7 , $(R_7)_{sub}$, B, p 및 q는 전기와 동일한 의미를 나타내고, R_{2a} 는 수소원자 또는 저급알킬기를, R는 저급알킬기를, X는 할로겐원자, 히드록시기, 알칸술포닐기, 아릴술포닐기 등의 이탈기를 나타낸다).

상기 반응스킴에 있어서, 일반식(1), (11), (12), (13), (14), (15), (16), (17) 및 (18)은 문헌 미기재의 신규화합물이다. 반식(3)의 화합물은 예를 들면 일본국 특표평5-503300호 공보에 기재된 방법에 동일하게 하여 제조할 수있다.

일반식(10)의 화합물은 일반식(9)의 화합물 및 일반식(19)의 화합물을 축합반응시킴으로서 얻을 수 있다. 여기서, 사용되축합반응으로서는 예를 들면, 통상 사용되는 활성에스테르법, 산무수물법, 아지드법, 산클로라이드법, 각종 축합제 등, "티드 합성의 기초와 실제"(1985년 丸善 발행)에 나타난 방법 동을 들 수 있다. 사용되는 축합제로서는 N,N- 디시클로핵실카르보디이미드(DCC), 수용성 카르보디이미드(WSCI), 카르보닐디이미다졸(CDI), 디페닐포스포릴아지드(DPPA), Bop /

약, Pybop 시약 등, 통상 사용의 기약을 들 수 있다. 일반식(19)의 화합물은 통상 일 (19)의 화합물에 대하여 1.0~10.0 당량, 바람직하기로는 1.0~5.0당량 사용한다.

일반식(11)의 화합물은 일반식(9)의 화합물로부터, 적당한 용매중, 염기존재하 또는 부존재하에서 적당한 알코올류 및 여들면 클로로술포닐이소시아네이트 등의 이소시아네이트류를 반응시킴으로서 카르바메이트 화합물을 얻는다. 여기서 사용되는 용매로서는 테트라히드로푸란, 디옥산, 디클로로메탄, 에틸아세테이트 등을 들 수 있으며, 또한 염기로서는 트리에 아민, 피리딘 등의 유기 염기를 들 수 있다. 또한 알코올류로서는 t-부틸알코올, 벤질알코올 등이 사용되며, 또한 클로로를 포닐이소시아네이트 대신에 포스겐 등을 사용하여 반응시킬 수 있다. 이 반응은 통상 -80℃~30℃의 온도조건하, 0.1~; 시간 반응에서 수행될 수 있다. 이 반응에서, 사용되는 이소시아네이트류는 통상 일반식(9)의 화합물에 대하여 1.0~5.0년량, 바람직하기로는 1.0~1.2단량 사용되며, 알코올류는 1.0~5.0단량, 바람직하기로는 1.0~1.2단량 사용된다. 얻어진르바메이트 화합물은 탈보호함으로서 아민화합물로 유도할 수 있다.

일반식 (12)의 화합물은 상기 일반식(11)의 화합물을 얻을 때와 동일한 반응을 일반식(10)의 화합물로부터 행하든가, 또는 상기 일반식(10)의 화합물을 얻을 때와 동일한 축합반응을 일반식(11)의 화합물로부터 행함으로서 얻을 수 있다.

일반식(13)의 화합물은 일반식(11)의 화합물로부터 룡상 사용되는 알킬화, 아릴화 반용에 의해 얻어진다. 즉, 적당한 용어 중, 디에톡시아자디카르복실레이트(DEAD)—트리페닐포스핀 등에 의해 활성화한 일반식(20)으로 표시되는 알코올큐(X가 드록시인 경우)를, 또는 염기 존재 또는 부존재하에서 일반식(20)으로 표시되는 할라이드 화합물 등(X가 할로겐원자 등인 경우)를 반응시킴으로서 얻어진다. 알코올큐인 일반식(20)의 화합물로서는, 예를 들면 메탄을, 에탄올, 페놀, 벤질알코올 2,3-디메톡시벤질알코올, 1-나프탈렌메탄올, 3-브로모-1-나프탈렌메탄을, 2-페네틸벤질알코올 등, 바람직하기로는 2, 디메톡시벤질알코올, 1-나프탈렌메탄율, 2-페네틸벤질알코올 등을 들 수 있으며, 할라이드 화합물인 일반식(20)의 화합로서는, 예를 들면 벤질브로마이드, 1-나프틸메틸브로마이드 등, 바람직하기로는 벤질브로마이드 등을 들 수 있다. 이 공에서 사용되는 용매로서는 디클로로메탄, 클로로포름, 테트라히드로푸란, 벤젠 등을 들 수 있으며, 할라이드 화합물 등을 반응시키는 경우에 사용하여도 좋은 염기로서는 수산화나트륨, 탄산칼륨, 탄산수소나트륨 등을 들 수 있다. 반응온또는-80℃~100℃, 반응시간은 1~240시간의 범위에서 행할 수 있다. 또한 일반식(20)의 화합물은 통상 일반식(11)의 화합물 대하여 1.0~5.0당량의 범위에서 사용할 수 있다.

일반식(14)의 화합물은 상기 일반식(11)의 화합물로부터 일반식(13)의 화합물로 얻은 경우와 동일한 반응을 일반식(12)의 화합물에 적용함으로서, 또는 상기 일반식(9)의 화합물로부터 일반식(10)의 화합물을 얻는 경우와 동일한 축합반응을 일 식(13)에서 행함으로서 제조할 수 있다.

일반식(15)의 화합물은 적당한 용매중, 염기 존재하 또는 부존재하에서 일반식(14)의 화합물에 황화수소를 반응시킴으로 얻을 수 있다. 여기서 사용되는 용매로서는 피리딘, 메탄올, 에탄올, n-프로판을, i-프로판을 등을 들 수 있으며, 염기를 용하는 경우, 염기로서는 피리딘, 트리에틸아민, 디에틸아민 등을 들 수 있다. 반응온도는 0~100°C, 반응시간은 1~72시간의 범위에서 행할 수 있다.

일반식(16)의 화합물은 일반식(15)의 화합물로부터 적당한 용매중, 염기 존재하 또는 부존재하에서 알킬할라이드류를 반시킴으로서 제조할 수 있다. 알킬할라이드류로서는, 예를 들면 메틸아이오다이드, 에틸아이오다이드 등, 바람직하기로는 메틸아이오다이드 등을 둘 수 있다. 이 공정에서 사용될 수 있는 용매로서는 아세론, 메탄율, 아세토니트릴, 테트라히드로 푸란 등을 들 수 있으며, 염기를 사용하는 경우는 피리딘, 트리에틸아민, 디에틸아민 등의 염기를 사용할 수 있다. 반응은 0~100℃의 온도조건하, 0.1~10시간에서 행할 수 있다. 또한, 여기서 사용하는 알킬할라이드류는 일반식(9)의 화합물에 대하여 1.0~20.0당량의 범위에서 사용할 수 있다.

일반식(17)의 화합물은 일반식(14)의 화합물에 저급알코올 용매중, 강산을 가함으로서 얻을 수 있다. 여기서 사용되는 저 알코올 용매란 메탄을, 예탄을, n-프로판을, i-프로판을 등을 들 수 있다. 또한 강산으로서는 염산, 황산, 질산, 아세트산 p-톨루엔슐폰산, 메탄슐폰산 등, 또는 이들의 혼합산을 사용할 수 있다. 강산은 일반식(14)의 화합물에 대하여 1∼1000 량, 바람직하기로는 100∼300 당량으로 사용할 수 있다. 반응온도는 -30∼30℃, 반응시간은 1∼48시간의 범위에서 행출수 있다.

일반식(1)의 화합물은 적당한 용매중, 일반식(16)의 화합물에 암모늄염류 또는 알킬암모늄염류를 반응시키던가, 일반식 (17)의 화합물에 암모니아를 반응시킴으로서 얻어진다. 여기서 사용되는 암모늄염류로서는, 예를 들면 히드록시암모늄이테이트 등을 들 수 있고, 통상 일반식(16)의 화합물에 대하여 1.0~2.0 당량 사용된다. 알킬암모늄염류로서는, 예를 들면 메틸암모늄아세테이트 등을 들 수 있고, 통상 일반식(16)의 화합물에 대하여 1.0~2.0 당량의 범위에서 사용될 수 있다. 공정에서 반응온도는 0~100℃, 반응시간은 1~72시간의 범위에서 수행할 수 있다.

또한, 본 발명 화합물의 일부를 구성하는 일반식(18)의 화합물은 일반식(14)의 화합물로부터 통상 행하여지는 환원반응을 행함으로서 제조할 수 있다. 여기서 사용되는 환원반응으로서는, 예를 들면 백금, 팔라듐, 탄소-팔라듐, 탄소-백금, 라네닉켈 등의 촉매존재하에서 수소를 첨가시키는 방법 또는 염화주석, 아연, 황화나트륨, 알루미늄아말감, 염화제1크롬, 나!륨티오슬페이트, 나트륨보로하이드라이드, 리튬알루미늄할라이드 등의 통상 사용되는 환원제를 사용하여 환원시키는 방율 들 수 있다. 이 공정에서 반응온도는 -80~100℃, 반응시간은 1~72시간의 범위에서 수행할 수 있다.

이와 같이 하여 얻어지는 일반 의 화합물은 추출, 결정화, 재결정, 각종 크로마토그래피 등의 통상의 화학조작에 의히 분리 정제할 수 있다. 본 발명 화합물은 적당한 부형제, 희석제, 보조제, 습운제, 활택제, 담체 등, 기타 향료, 착색제, 감C 제, 방향제, 보존제 등과 함께 제제화할 수 있다. 예를 들면, 과립제, 세립제, 산제, 정제, 캅셀제, 시럽제, 액제, 현탁제, 제, 동결건조제 등의 경구 또는 정맥내, 근육내 또는 피하투여 등의 주사제로서 사용할 수 있다. 또한 파프제, 연고제 등으로 제형화하여 경피 흡수제로서도 사용할 수 있다. 더욱이 좌제로서도 사용할 수 있다.

고형제제를 제조할 때에 사용되는 부형제로서는, 예를 들면 락토오즈, 자당, 전분, 탈크, 셀루로오즈, 덱스트린, 카오린, 산칼슘 등을 사용될 수 있다. 경구투여를 위한 액체제제, 즉 유제, 시럽제, 현탁제, 액제 등은 일반적으로 사용되는 불활상인 희석제, 예를 들면 물 또는 식물유 등을 함유할 수 있다. 액체제제에 있어서는 젤라틴과 같은 흡수될 수 있는 물질의 [중에 함유시켜도 좋다. 비경구투여의 제제, 즉 주사제, 좌제 등의 제조에 사용되는 용제 또는 현탁제로서는 예를 들면 물, 프로필렌글리콜, 폴리에틸렌글리콜, 벤질알코올, 에틸 올레에이트, 레시틴 등을 들 수 있다. 좌제에 사용될 수 있는 기제. 서는, 예를 들면 카카오 버터, 유화카카오 버터, 라우린 버터, 위텝졸 등을 들 수 있다. 제제의 조제방법은 통상의 방법에 르면 좋다.

본 발명 화합물을 사람에 투여하는 경우는 환자의 연령, 성별, 병체, 체중, 증상, 체질 등에 따라 적당하게 선택할 필요가으나, 통상 일반식(1)의 화합물로서 1일 0.1~1800 mg, 바람직하기로는 1~600 mg의 범위를 1일 1회 또는 적당한 간결로 2~3회 나누어 투여하여도 좋으며, 간헐 투여하여도 좋다.

실시예

이하, 본 발명을 참고에 및 실시예를 들어 더욱 상세히 설명하나, 본 발명은 이들에 한정되는 것은 아니다.

참고예 1Nα-(tert-부틸옥시카르보닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성Nα-(tert-부틸옥시카르보닐)-3-아노페닐알라닌 2.45 g (8.44 mmol: 1.0 eq)를 디클로로메탄 30 ㎖ 및 에틸아세테이트 30 ㎖에 용해하고, 수용성 카르트디이미드 염산염(WSCI) 3.2 g (16.9 mmol: 2.0 eq) 및 아세틸피페라진 1.19 g (9.28 mmol: 1.1 eq)을 가하고, 그대로 2.5일간 교반하였다. 물을 가하고, 디클로로메탄으로 추출하였다. 유기상을 포화 탄산수소나트륨 수용액 및 묽은 염산으. 세척하고, 이어서 물로 세척하였다. 무수 황산나트륨으로 건조하고, 감압하에서 용매를 제거하였다. 잔류물을 칼럼크로미토그래피(和光 C-200: 이동상 디클로로메탄→디클로로메탄중 메탄을 2.5%→5%→7.5%)하여 Nα-(tert-부틸옥시카르보닐)-3-시아노페닐알라닌-4-아세틸피페라지드 2.31 g (5.78 mmol: 수율 68%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.40(9H,s) 2.09(3H,d J=4.95Hz)

2.92~3.27(2H,m) 3.33~3.72(8H,m) 4.82(1H,br) 5.39(1H,br)

7.33~7.56(4H.m)

참고예 23~시아노페닐알라닌~4~아세틸피페라지드 염산염의 합성Nα~(tert-부틸옥시카르보닐)~3~시아노페닐알라닌~4~세틸피페라지드 2.31 g (5.78 mmol: 1.0 eq)를 디클로로메탄 25 ㎖에 용해하고, 빙냉하 트리플루오로아세트산 25 ㎖을 하고, 그대로 16시간 교반하였다. 감압하 용매를 제거하고, 틀루엔으로 공비한 후, 잔류물에 4N~염산~디옥산 용액을 가 고, 감압하에서 용매를 제거하였다. 메탄올을 가하여 공비한 후, 에테르를 가하여 생성된 침전물을 여과한 후, 세척하고, 조하여 3~시아노페닐알라닌~4~아세틸피페라지드 염산염 2.2 g (5.3 mmol: 수율 92%)를 얻었다.

NMR (DMSO) : δ : 2.08(3H,s) 3.14~3.77(10H,m)

4.80(1H,br) 7,42~7,87(4H,m)

참고에 3Nα-(tert-부틸옥시카르보닐)-4-시아노페닐알라닌-4-아세틸피페라지드의 합성참고에 1과 유사한 방법으로 하(Nα-(tert-부틸옥시카르보닐)-4-시아노페닐알라닌-4-아세틸피페라지드 2.0 g (4.99 mmol: 수율 73%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.39(9H,s) 2.09(3H,d J=5.94Hz)

2.94~3.73(10H,m) 4.84(1H,br) 5.32(1H,br) 7.32(2H,d,J=8.09Hz)

7.58(2H,d,J=8.09Hz)

참고예 44-시아노페닐알라닌-4-아세틸피페라지드 염산염의 합성참고예 2와 유사한 방법으로 하여 4-시아노페닐알라닌 4-아세틸피페라지드 염산염 0.93 g (3.1 mmol: 수율 100%)를 얻었다.

실시에 1Nα-(tert-부틸옥시카를 아미노술포닐)-3~시아노페닐알라닌-4-아세틸피도 기드의 합성질소 기류하, 클로. 술포날이소시아네이트 2.02 g (14.3 mmol: 1.2 eq)을 디클로로메탄 20 ㎖에 용해하고, -40℃~-30℃로 한다. 디클로로탄 20 ㎖에 용해한 tert-부탄을 1.06 g (14.3 mmol: 1.2 eq)을 천천히 적하하고, 종료후, -40℃~-30℃에서 2.5시간 교하고, -78℃로 하였다. 디클로로메탄 100 ㎖에 용해한 3~시아노페닐알라닌-4-아세틸피페라지드 염산염 4 g (11.9 mm 1.0 eq) 및 트리에틸아민 4.33 g (4.28 mmol: 3.6 eq)를 천천히 적하하였다. 서서히 반응온도륨 올려 실온으로 하고, 그로 20시간 교반한다. 포화 탄산수소나트륨 수용액을 가하고, 디클로로메탄으로 추출하였다. 유기상을 묽은 염산으로 세계하고, 이어서 물로 세책을 2회 행하였다. 무수 황산나트륨으로 건조하고, 감압하에서 용매를 제거하였다. 잔류물을 컬럼:로마토그래피(和光 C-200: 이동상 디클로로메탄→디클로로메탄중 메탄을 2%)하여 Nα-(tert-부틸옥시카르보닐아미노술닐)-3~시아노페닐알라닌-4~아세틸피페라지드 3.38 g (7.05 mmol: 수율 59%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.46(9H,s) 2.09(3H,d J=2.97Hz)

 $2.95\sim3.70(10H,m)$ 4.88(1H,br) 6.30(1H,br) $7.31\sim7.60(4H,m)$

8.45~9.10(1H,br)

실시예 2Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노슘포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성Nα (tert-부틸옥시카르보닐아미노슐포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 200 mg (0.42 mmol: 1.0 eq)을 디클.로메탄 2 ㎡에 용해하고, 교반하면서 1-나프탈렌메탄올 66 mg (0.42 mmol: 1.0 eq) 및 트리페닐포스핀 110 mg (0.42 mmol: 1.0 eq)을 가하였다. 디클로로메탄 1 ㎡에 용해한 디에틸아조디카르복실레이트 73 mg (0.42 mmol: 1.0 eq)을 찬히 적하하고, 종료후, 실온에서 64시간 교반하였다. 감압하에서 용매書 제거하고, 잔류물을 컬럼크로마토그래피(和光 200: 이동상 디클로로메탄→디클로로메탄중 에틸아세테이트 20%→50%→75%)하여 Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노슐포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 170 mg (0.274 mmol: 수율 65%)를 얻었다.

NMR (CDC l_3): δ : 1.40(9H,s) 2.04(3H,d J=7.91Hz) 2.50~3.57(10H,m)

4.39(1H,m) 5.35(2H,m) 6.21(1H,d J=7.59Hz) 7.27~8.15(11H,m)

실시예 3Nα-(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성Nα-(tert-부틸옥시카르보(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 170 mg (0.274 mmol: 1.0 eq)을 디클로로메'1 ml 및 포화 염화수소 - 에탄올 용액 5 ml에 용해하고, 20시간 방치하였다. 감압하에서 용매를 제거하고, 얻어진 Nα-(1·나프틸메틸아미노술포닐)-3-에톡시이미노카르보닐페닐알라닌-4-아세틸피페라지드(Feb-Ms: 566(M+H))를 포화 암모'아 - 에탄올 용액 5 ml에 용해하고, 1주일간 방치하였다. 감압하에서 용매를 제거하고, 잔류물을 칼럼크로마토그래피(富: 시리시아 DM1020: 이동상 에틸아세테이트 - 메탄올 20%→50%)하여 Nα-(1-나프틸메틸아미노술포닐)-3-아미디노페'알라닌-4-아세틸피페라지드 120 mg (0.224 mmol: 수율 82%)를 얻었다.

Fab-Ms: 537 (M+H)+NMR (CDC ℓ_3): δ : 1.95(3H,brs) 2.63~3.60(10H,m) 3.83~4.02(1H,br)

4.15~4.32(1H,br) 4.35~4.57(1H,br) 6.60~8.10(13H,m)

실시예 4Nα-(디메틸아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성3-시아노페닐알라닌-4-아세틸피과라지드 염산염 200 mg (0.59 mmol: 1.0 eq)를 디클로로메탄 20 ml에 용해하고, 빙냉하 천천히 디메틸술파모일클로라(드 84.7 mg (0.59 mmol: 1.0 eq)을 적하하고, 실온으로 하면서 16시간 교반하였다. 물을 가하고, 디클로로메탄으로 추행였다. 포화 탄산수소나트륨 수용액, 묽은 염산, 물로 순차 세척하고, 무수 황산나트륨으로 건조하고, 감압하에서 용매를 제거하여 Nα-(디메틸아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 80 mg (0.2 mmol: 수율 33%)를 얻었다.

NMR (CDC ℓ_3): δ : 2.09(3H,brd, J=5.28Hz) 2.66(6H,brd, J=4.94Hz)

3.10~3.81(10H,m) 4.43(1H,dd J=16.83 7.26hz) 5.65(1H,d,J=9.57Hz)

7.28~7.68(4H,m)

실시예 5Na-(디메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법으로 수량하여 Na-(디메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 38 mg (0.09 mmol : 수율 46%)를 얻었다

NMR (DMSO) : δ : : 1.97(3H,s) 2.50(6H,t,J=1.82Hz) 2.70~3.70(10H,m)

4.40(1H,br) 6.70~7.25(1H,br) 7.32~7.34(2H,d,J=4.62Hz)

7.60~7.68(2H,m)

실시예 6Nα-(tert-부틸옥시카르노╛아미노술포닐)-4-시아노페닐알라닌-4-아세틸피페라지드의 합성실시예 1과 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐아미노술포닐)-4-시아노페닐알라닌-4-아세틸피페라지드 510 mg (1.06 mmol : 수율 71%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.46(9H,s) 2.09(3H,d J=3.96Hz)

3.05(2H,d,J=7.26Hz), 3.00~3.20(1H,br) 3.25~3.78(7H,br) 4.90(1H,br)

6.36(1H,dd,J=18.8 8.58Hz) 7.36(2H,d,J=8.09Hz) 7.60(2H,d,J=8.09Hz)

8.65~9.25(1H.br)

실시예 7Nα-(벤질(tert-부틸옥시카르보닐)아미노슐포닐)-4-시아노페닐알라닌-4-아세틸피페라지드의 합성실시예 2와 : 사한 방법으로 수행하여 Nα-(벤질(tert-부틸옥시카르보닐)아미노슐포닐)-4-시아노페닐알라닌-4-아세틸피페라지드 80 mg (0.14 mmol : 수율 40%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.44(9H,s) 2.07(3H,brs) 2.70~3.63(10H,m)

4.28~4.60(1H,br) 4.80(2H,brs) 6.23(1H,brs) 7.16~7.70(9H,m)

실시예 8Nα-(벤질(tert-부틸옥시카르보닐)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성실시예 2와 : 사한 방법으로 수행하여 Nα-(벤질(tert-부틸옥시카르보닐)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 0.6 (1.4 mmol : 수율 50%)를 얻었다.

NMR (CDC l_3): δ : 1.46(9H,s) 2.08(3H,s) 2.55~3.60(10H,m)

4.19~4.42(1H,m) 4.75~4.89(2H,m) 6.11(1H,d,J=7.26Hz)

7.25~7.71(9H,m)

실시예 9Na-(벤질아미노술포닐)-4-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법으로 수행한 여 Na-(벤질아미노술포닐)-4-아미디노페닐알라닌-4-아세틸피페라지드 52 mg (0.107 mmol : 수율 87%)를 얻었다.

NMR (DMSO) : δ : 1.97(3H,s) 2.75~3.85(12H,m) 4.38(1H,m)

7.19~7.90(12H.m)

실시예 10Nα-(벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법으로 수행 여 Να-(벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 600 mg (1.23 mmol : 수율 87%)를 얻었다.

NMR (DMSO) : δ : 1.96(3H,s) 2.75~3.60(10H,m) 3.57(1H,d,J=14.84Hz)

3.78(1H,d,J=14.85hz) 4.41(1H,m) 6.30~7.43(7H,m) 7.55~7.80(2H,m)

실시예 11Nα-(tert-부틸옥시카르보닐(2-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성실예 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(2-나프릴메틸)아미노술포닐)-3-시아노페닐알라닌-4-아/틸피페라지드 170 mg (0.27 mmol : 수율 65%)를 얻었다.

NMR (CDC ℓ_2): δ : 1.47(9H,s) 2.24~2.62(2H,m) 2.73~3.55(8H,m)

3.98~4.24(1H,m) 4.99(2H,d,J=2.93Hz) 6.28(1H,brs) 7.10~8.00(11H,m)

실시예 $12N\alpha-(2-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법로 수행하여 <math>N\alpha-(2-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 116 mg (0.21 mmol : 수율 78%) 급얻었다.$

Fab-Ms: $537(M+H)+ NMR (DMSO): \delta: 1.96(3H,s) 2.76~4.00(10H,m) 4.47(1H,m)$

7.32~7.92(11H,m)

실시예 13Nα-(tert-부틸옥시카르코닐(2-시클로혝실에틸)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합실시예 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(2-시클로혝실에틸)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 200 mg (0.34 mmol : 수율 80%)를 얻었다.

NMR (CDC ℓ_3): δ : 0.80~1.78(13H,m) 1.50(9H,s) 2.10(3H,br)

2.94~3.70(12H,m) 4.68~4.88(1H,br) 6.14~6.30(1H,br) 7.40~7.76(4H,m)

실시예 14Nα-(2-시클로핵실에틸아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 법으로 수행하여 Nα-(2-시클로핵실에틸아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 100 mg (0.197 mmol : 수율 58%)를 얻었다.

Fab-Ms: $507(M+H)+ NMR (DMSO): \delta: 0.60\sim0.76(13H,m) 1.99(3H,s) 2.28\sim3.65(12H,m)$

4.36~4.50(1H,m) 7.24~7.76(4H,m)

실시예 15Nα-(tert-부틸옥시카르보닐(3-페닐-n-프로필)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합실시예 2와 유사한 방법으로 수행하여 Να-(tert-부틸옥시카르보닐(3-페닐-n-프로필)아미노술포닐)-3-시아노페닐알라는 4-아세틸피페라지드 250 mg (0.42 mmol : 수율 99%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.47(9H,s) 1.80~2.01(2H,m) 2.07(2H,brd,J=4.87Hz)

2.54~2.70(2H,m) 2.84~3.67(12H,m) 4.46~4.82(1H,m) 5.98~6.10(1H,m)

7.10~7.76(9H,m)

실시예 16Nα-(3-페닐-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 ! 법으로 수행하여 Nα-(3-페닐-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 130 mg (0.25 mmol : 수율 60%)를 얻었다.

Fab-Ms: $515(M+H)+NMR(DMSO): \delta: 1.53\sim1.70(2H,m) 1.98(3H,s) 2.30\sim2.63(2H,m)$

2.75~3.55(12H,m) 4.38(1H,dd,J=7.26 7.26Hz) 7.10~7.72(9H,m)

실시예 17Nα-(tert-부틸옥시카르보닐(2-페닐벤질)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성실시 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(2-페닐벤질)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 250 mg (0.38 mmol : 수율 92%)를 얻었다.

NMR (CDC ℓ_3): δ : 1.36(9H,s) 2.09(3H,brd,J=5.61(Hz) 2.74~3.57(10H,m)

4.60~4.78(3H,m) 6.14(1H,brd,J=8.58Hz) 7.18~7.75(13H,m)

실시예 18Nα-(2-페닐벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법으 수행하여 Nα-(2-페닐벤질아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 90 mg (0.16 mmol : 수율 41%) 얻었다

Fab-Ms: $563(M+H)+ NMR (DMSO): \delta: 1.98(3H,s) 2.56~3.88(12H,m) 4.30~4.45(1H,m)$

7.10~7.68(13H,m)

실시예 19Nα-(tert-부틸옥시카르보닐(3-페닐옥시벤질)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성시예 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(3-페닐옥시벤질)아미노술포닐)-3-시아노페닐알라닌-4아세틸피페라지드 230 mg (0.34 mmol : 수율 82%)를 얻었다.

Fab-Ms: 662(M+H)+ NMR (CDCℓ₃): δ: 1.42(9H,s) 2.07(3H,brd,J=4.39Hz) 2.70-3.60(10H,m)

4.38~4.55(1H,m) 4.77(2H,s) 6.25(1H,brd, J=7.31Hz) 6.80~7.75(13H,m)

실시예 20Na~(3-페닐옥시벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방

Fab-Ms: 579(M+H)+ NMR (DMSO): δ : 1.96(3H,s) 2.74~3.80(12H,m) 4.30~4.50(1H,m)

6.80~7.70(15H,m)

실시예 21Nα-(tert-부틸옥시카르보닐(4-페닐벤질)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성실시 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(4-페닐벤질)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드를 얻었다.

NMR (CDC ℓ_3): δ : 1.47(9H,s) 2.04(3H,d,J=3.90Hz) 2.60~3.78(10H,m)

4.10~4.55(1H,m) 4.70~5.04(2H,m) 6.25~6.37(1H,m) 7.20~7.88(13H,m)

실시예 $22N\alpha-(4-페닐벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법으수행하여 <math>N\alpha-(4-페닐벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 90 mg (0.16 mmol : 수율 <math>38\%$) 얻었다.

Fab-Ms: $563(M+H)+ NMR (DMSO): \delta: 1.96(3H,s) 2.64 \sim 3.90(12H,m) 4.34 \sim 4.50(1H,m)$

7.12~7.80(14H.m)

실시예 23Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예 25유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르 245 mg (0.46 mmol: 수울 91%)을 얻었다.

NMR (CDC t_3): δ : 1.20(3H,t,J=7.10Hz) 1.46(9H,s) 2.80~3.02(2H,m)

3.75~3.90(1H,m) 3.92~4.18(2H,m) 5.24(1H,d,J=16.49Hz)

5.45(1H,d,J=16.50Hz) 5.95(1H,d,J=6.6Hz) 7.18~8.18(11H,m)

NMR (CDC ℓ_3): δ : 1.39(9H,s) 2.06(3H,m) 2.78~3.67(14H,m)

4.56~4.90(3H,m) 6.08(1H,d,J=8.28) 7.05~7.77(13H,m)

실시예 25Nα-(2-페네틸벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사한 방법로 수행하여 Nα-(2-페네틸벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 179 mg (0.30 mmo) : 수율72%)룹 얻었다.

Fab-Ms: $591(M+H)+ NMR (DMSO): \delta: 1.96(3H,brs) 2.70~4.00(16H,m) 4.40~4.55(1H,br)$

7.04~7.88(14H,m)

실시예 26Nα-(tert-부틸옥시카르보닐(2-페닐벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예 2와 사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(2-페닐벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르 130 mg (0.22 mmol: 수읍 44%)을 얻었다.

NMR (CDC ℓ_3) : δ : 1.18(3H,t,J=7.31Hz) 1.38(9H,s) 3.06(2H,d,J=5.85Hz)

4.02~4.13(1H,m) 4.12(2H,q,J=6.82Hz) 4.77(2H,dd,J=26.8 17.06Hz)

5.95(1H,d,J=6.82Hz) 7.16~7.60(13H,m)

실시예 27Nα-(tert-부틸옥시카르보닐(3-페닐옥시벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예

와 유사한 방법으로 수행하여 kgri-부틸옥시카르보닐(3-페닐옥시벤질)아미노술포로 3-시아노페닐알라닌 에틸에스테르 270 mg (0.46 mmol: 수율 93%)을 얻었다.

NMR (CDC l_3): δ : 1.20(3H,t,J=7.07Hz) 1.44(9H,s) 2.90~3.14(2H,m)

3.88~4.00(1H,m) 4.04~4.10(2H,q,J=7.31Hz) 4.77(2H,dd,J=43.4 15.6Hz)

5.97(1H,d,J=6.35Hz) 6.80~7.60(13H,m)

실시예 28Nα-(tert-부틸옥시카르보닐(2-페네틸벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예 25 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(2-페네틸벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르 180 mg (0.30 mmol: 수율 61%)을 얻었다.

NMR (CDC ℓ_2): δ : 1.16(3H,t,J=7.07Hz) 1.36(9H,s) 2.72~3.05(6H,m)

3.90~4.00(1H,m) 4.09(2H,q,J=7.31Hz) 4.73(2H,d,J=3.41Hz)

5.87(1H,d,J=6.82Hz) 7.00~7.53(13H,m)

실시예 29Nα-(tert-부틸옥시카르보닐(4-페닐벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예 2와 사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(4-페닐벤질)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르 230 mg (0.40 mmol: 수율 81%)을 얻었다.

NMR (CDC ℓ_3): δ : 1.15(3H,t,J=7.09Hz) 1.51(9H,s) 2.90~3.10(2H,m)

3.88(1H,dd,J=5.94 5.94Hz) 4.00~4.09(2H,m) 4.85(2H,dd,J=64.33 15.51Hz)

5.92(1H,d,J=6.6Hz) 7.28~7.70(13H,m)

NMR (CDC ℓ_3): δ : 1.15~1.35(3H,m) 1.40~1.85(4H,m)

1.49 및 1.50(9H,2×s) 2.47~2.66(1H,m) 2.70~3.00(2H,m) 3.04~3.54(6H,m)

3.30~4.54(5H,m) 6.06~6.20(1H,m) 7.10~7.68(9H,m)

실시예 31Nα-(tert-부틸옥시카르보닐(3,3-디페닐-n-프로필)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드^ς 합성실시예 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(3,3-디페닐-n-프로필)아미노술포닐)-3-시아노회 닐알라닌-4-아세릴피페라지드 68 mg (0.10 mmol: 수율 24%)을 얻었다.

Fab-Ms: 696(M+Na)+NMR (CDC ℓ_3): $\delta \div 1.51(9H,s)$ 2.00~2.13(2H,m) 2.28~2.47(2H,m)

2.80~3.62(12H,m) 3.88~4.00(1H,m) 4.64~4.80(1H,m)

6.15~6.27(1H,m) 7.14~7.80(14H,m)

실시예 32Nα-(tert-부틸옥시카르보닐(3,3-디페닐-n-프로필)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르의 합성실시예 2와 유사한 방법으로 수행하여 Nα-(tert-부틸옥시카르보닐(3,3-디페닐-n-프로필)아미노술포닐)-3-시아노페닐알리닌 에틸에스테르 219 mg (0.37 mmol: 수율 74%)을 얻었다.

Fab-Ms: $614(M+Na) + NMR (CDCl_3) : \delta : 1.15(3H,l,J=7.09Hz) 1.46(9H,s) 2.28 ~ 2.41(2H,m)$

 $3.06 \sim 3.20(2H,m)$ $3.52 \sim 3.65(z-t,m)$ 3.93(1H,t,J=7.76Hz)

4.01~4.17(2H,m) 4.24(1H,dd,J=13.2 6.27) 5.92(1H,d,J=7.26Hz)

7.15~7.56(14H,m)

실시예 33N α -(tert-부틸옥시카르보닐(2,2-디페닐에틸)아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드의 합성 N α -(tert-부틸옥시카르보닐아미노술포닐)-3-시아노페닐알라닌-4-아세틸피페라지드 200 mg (0.43 mmol: 1.0 eq)을 i 로로포름 4 째에 용해하고, 교반하면서 2.2-디페닐에탄올 256 mg (1.29 mmol: 3.0 eq) 및 트리페닐포스핀 238 mg (1.29 mmol: 3.0 eq)을 가했다. 클로로포름 1 째에 용해한 디에틸아조디카르복실레이트 225 mg (1.29 mmol: 3.0 eq)을 천천 적하하고, 종류후, 5시간 환류 교반하였다. 감압하 용매를 제거하고, 잔류물을 칼럼크로마토그래피(和光 C-200: 이동상클로로메탄: 에틸아세테이트 $=1:1 \rightarrow 2:3 \rightarrow 1:2$)하여 $N\alpha$ -(tert-부틸옥시카르보닐(2,2-디페닐에틸)아미노술포닐)-전시아노페닐알라닌-4-아세틸피페라지드 255 mg (0.38 mmol: 수율 90%)을 얻었다.

NMR (CDC ℓ_3) : δ : 1.56(9H,s) 2.03(3H,d,J=7.92Hz) 2.55~3.81(14H,m)

5.10~5.28(1H,br) 7.32~7.70(14H,m)

실시예 34Nα-(tert-부틸옥시카르보닐(2-메록시메목시벤질)아미노술포닐)-3-카르보티오아미드페닐알라닌-4-아세틸피라지드의 합성Nα-(tert-부틸옥시카르보닐(2-메록시메목시벤질)아미노슐포닐)-3-시아노페닐알라닌-4-아세틸피페라지! 390 mg (0.62 mmol)을 피리딘 3 ㎡와 트리에틸아민 6 ㎡의 혼합액에 넣고, 실온하 황화수소가스를 30분간 버블링한 후 3일간 방치하였다. 반응용액에 물 40 ㎡ 및 에틸아세테이트 40 ㎡를 가하고, 2N HCl을 가하고, 수층을 pH 4로 한 후에 분액하였다. 유기층은 1N HCl, 이어서 물로 세척한 후에 무수 황산나트륨상에서 건조후, 감압 증류하고, 얻어진 잔사를 칼리로마토그래피(富士시리시아화학 NH-DM-1020: 이동상 에틸아세테이트중 메탄을 9%)하여 Nα-(tert-부틸옥시카르보(2-메록시메목시벤질)아미노슐포닐)-3-카르보티오아미드페닐알라닌-4-아세틸피페라지드 301 mg (0.45 mmol: 수율 73%)을 얻었다.

NMR (CDC ℓ_3): δ : 1.40(9H,s) 2.08(3H,s) 2.99~3.80(10H,m)

3.48(3H,s) 4.72~4.95(3H,m) 5.18(1H,d J=7Hz)

5.21(1H,d J=7Hz) 6.16(1H,brd J=8Hz) 6.96~7.70(10H,m)

실시예 35

Nα-(tert-부틸옥시카르보닐(2-메톡시메톡시벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합:

• Nα-(tert-부틸옥시카르보닐(2-메록시메록시벤질)아미노술포닐)-3-카르보티오아미드페닐알라닌-4-아세틸피페라지드 165 mg (0.25 mmol)을 아세론 2 ㎡에 현탁하고, 메틸아이오다이드 353 mg을 가하고, 50분간 가열 환류하였다. 반응액 감압하 증류하고, 얻어진 잔사에 메탄올 2 ㎡와 암모늄아세테이트 29 mg을 가하고, 4시간 가열 환류한 후, 반응액을 감압 중류하고, 얻어진 잔사를 칼럼크로마토그래피(富士시리시아화학 NH-DM-1020 : 이동상 에틸아세테이트중 메탄올 9%후 메틸렌클로라이드중 메탄올 9%)하여 Nα-(tert-부틸옥시카르보닐(2-메록시메록시벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 101 mg (0.16 mmol: 수율 63%)을 얻었다.

NMR (DMSO): δ : 1.29(9H,s) 1.97(3H,s) 2.85~3.60(10H,m) 3.36(3H,s)

4.58(1H,m) 4.71(2H,s) 5.20(2H,s) 6.93~8.31(12H,m)

실시예 36Nα-(2-히드록시벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성Nα-(tert-부틸옥시키보닐(2-메록시메록시벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드를 메탄올 1 ㎖에 넣고, 4N HCI 이아세테이트 용액 1 ㎢을 가하고, 17시간 실온에서 교반한다. 반응액을 감압 증류하여 Nα-(2-히드록시벤질)아미노술포닐 3-아미디노페닐알라닌-4-아세틸피페라지드 염산염을 얻었다.

NMR (DMSO): δ : 1.97(3H, s), 2.80~3.80(12H, m), 4.50~4.60(1H, m),

6.71~9.48(15H, m).

이중의 17 mg (0.032 mmol)을 남기고, 나머지 부분을 칼럼크로마토그래파(富士시리시아화학 NH-DM-1020 : 이동상 미틸렌클로라이드중 메탄올 20%)하여 Na-(2-히드록시벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 (

mg (0.106 mmol: 수율 합하여

)을 얻었다.

NMR (DMSO): δ.: 1.94(3H,s) 2.50~3.60(10H,m) 3.84(2H,s)

4.45~4.47(1H,m) 5.00~6.60(6H,br) 6.69~7.72(8H,m)

실시예 37Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌 4-메탄술포닐피페라지드의 합 Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌 에틸에스테르 6.46 g (12.02 mmol)을 0 탄올 40 ㎡에 용해하고, 2N-NaOH 40 ㎡를 가하였다. 실온에서 16시간 교반하였다. 감압하 용매를 제거하고, 시트르산을 가하여 pH=3~4까지 산성화하여 고체를 생성시켰다. 상충액을 제거하고, 에틸아세테이트 : 물 : 메탄올 = 30 : 10 : 1의 합액을 가한 후, 에틸아세테이트충만을 분리하여 무수 아세트산나트륨에서 건조하였다. 감압하에서 용매를 제거하여 Nα (tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포닐)-3-시아노페닐알라닌 5.74 g (94%)을 얻었다.

1N-NMR (CDC ℓ_3): δ : 1.34(9H,s) 3.01 ~3.16(2H,m) 4.01(1H,t,J=5.4Hz)

5.34(2H,s) 7.34~7.94(11H,m)

얻어진 Να-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노슘포닐)-3-시아노페닐알라닌 1 g (1.962 mmol)을 디클로로메 50 ㎢에 용해하고, 빙냉하, 디메틸아미노피리딘 480 mg (3.924 mmol), 1-에틸-3-(3-디메틸아미노프로필)-카르보디이미드 염산염 753 mg (3.924 mmol), 1-메탄슐포닐피페라진 염산염 591 mg (2.945 mmol)을 가하고, 3시간 교반하였다물을 가하고 디클로로메탄으로 추출하고, 포화 탄산수소나트륨 수용액 및 묽은 염산으로 세척하고, 이어서 물로 세척하였다. 무수 아세트산나트륨으로 건조하고, 감압하에서 용매를 제거하였다. 잔류물을 칼럼크로마토그래피(이동상 에틸아세테이트: n-헥산 = 1:1)로 정제하여 Να-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노슐포닐)-3-시아노페닐알라닌 4-메네슐포닐피페라지드 300 mg (23%)을 얻었다.

이하, 유사하게 하여 얻었다.

1.1	1-	3	
실 시 예	구 조 식	MS	NMR(8value)
37		<u> </u>	CDCl3: 1.34(9H,s) 2.17-2.23(IH,m) 2.60(3H,s) 2.64-2.67(2H,m) 2.77-2.97 (5H,m) 3.45-3.48(2H,m) 4.32-4.34(1H,m) 5.28(2H,m) 6.08(1H,d,J=7.80Hz) 7.19-7.50(8H,m) 7.76-8.02(3H,m)
38			CDCl3: 1.40(9H,s) 2.76-3.52(10H,m) 4.50-4.53(1H,m) 5.36(2H,s) 7.38-8.07(12H,m)
39			CDCl3: 0.81-1.01(4H,m) 1.42(9H,s) 2.49-2.73(2H,m) 2.87-2.93(3H,m) 3.20-3.58(6H,m) 4.32(1H,bs) 5.37(2H,q,J=13.1Hz) 6.03(1H,d,J=7.7Hz) 7.36-8.14(11H,m)
40			CDCl3: 1.42(9H,s) 2.45-3.18(8H,m) 2.83(6H,s) 3.30-3.56(2H,m) 4.29-4.31 (1H,m) 5.27-5.43(2H,m) 6.06(1H,d,J=7.4Hz) 7.30-8.14(11H,m)
실 시 예	구 조 식	MS	NMR(δvalue)
41			CDCl3:1.41(9H,s)2.65-3.51(10H,m)3.73(3H,s)4.32(1H,q,J=13.3)5.33-5.37 (2H,m)6.02(1H,d,J=7.5Hz)7.30-8.10(11H,m)
42			CDCl3 :1.42(9H,s)1.78-1.86(1H,m)2.15-2.97(7H,m)3.14(2H,s)3.40-3.65 (2H,m)3.74(3H,s)4.28-4.34(1H,m)5.32-5.37(2H,m)6.11(1H,d,J=7.4Hz)7.32- 8.18(11H,m)
43			CDCl3 :1.42(9H,s)2.46-2.75(2H,m)2.85-2.92(3H,m)3.22-3.58(5H,m)4.27-4.31(1H,m)5.27-5.44(2H,m)6.07(1H,d,J=7.5Hz)7.27-8.15(11H,m)
44			CDCl3 :1.25-1.53(6H,m)1.43(9H,s)2.68-2.72(2H,m)2.80-2.82(1H,m)2.89- 2.92(1H,m)3.17-3.25(1H,m)3.50-3.57(1H,m)4.33-4.35(1H,m)5.26-5.38 (2H,m)6.21(1H,d,J=7.3Hz)7.30-8.11(11H,m)
실 시 예	구 조 식	мѕ	NMR(δvalue)
		ſ	

45	,		CDC 30(4.5H,s)1.40(4.5H,s)2.29-4.72(9H,m)5.20- (2H,m)6.17 (0.5H,a,J=7.4Hz)6.26(0.5H,d,J=7.4Hz)7.17-7.88(15H,m)
46			CDCl3:1.44(9H,S)1.96-2.55(4H,m)2.27(3H,d,J=10.2Hz)2.83-3.03(4H,m) 3.45-3.71(4H,m)4.24-4.36(1H,m)5.31-5.36(2H,m)7.36-8.10(11H,m)
47			CDCl3 :1.41(9H,s), 1.48(9H,s)2.65-2.70(3H,m)2.82-2.92(2H,m)3.01-3.18 (2H,m)3.32-3.44(3H,m)4.32(1H,q,J=6.9Hz)5.35(2H,q,J=13.0Hz)6.09 (IH,d,J=7.5Hz)7.30-8.10(11H,m)
48			CDCl3 :0.90(3H,t.J=6.63Hz)1.43(9H,s)2.61-2.70(3H,m)2.83-2.96(2H,m) 3.13-3.26(2H,m)3.34-3.51(3H,m)4.14-4.22(2H,m)4.31-4.38(IH,m)5.32-5.39 (2H,m)6.16(1H,d,J=7.38Hz)7.29-7.39(3H,m)7.50-7.61(5H,m)7.85-8.11 (3H,m)
실 시 예	구 조 식	MS	NMR(ôvalue)
49			CD3OD: 1.42(9H.s) 2.80-2.98(5H,m)3.30-3.33(2H,m)3.49-3.56(2H,m)3.61-3,70(1H,m)4.41-4.46(1H,m)5.29-5.40(2H,m)6.26-6.28(1H,m)6.58 (1H,d,J=8.54Hz)6.72-6.74(1H,m)7.35-7.38(3H,m)7.51-7.58(5H,m)7.84-7.91 (2H,m)8.09-8.24(2H,m)
50			CDCL3:1,44(9H,s)2.07-2.13(3H,m)2.25(3H,s)2.31-2.36(1H,m)2.64-2.70 (1H,m)2.82-2.99(3H,m)3.37-3.61(2H,m)4.36-4.39(1H,m)5.29-5.45(2H,m) 6.13-6.16(1H,m)7.32-7.41(3H,m)7.52-7.59(5H,m)7.84-7.92(2H,m)8.09- 8.13(1H,m)
51			CDCl3 :1.34(9H,s)2.28-2.31(1H,m)2.67-2.97(7H,m)3.54-3.58(2H,m)4.30-4.33(1H,m)5.20-5.37(2H,m)6.08(1H,d,J=7.48Hz)6.74-6.86(3H,m)7.19-7.27 (5H,m)7.43-7.52(5H,m)7.76-7.84(2H,m)7.99-8.04(1H,m)
52			CDCl3:1.32(9H,s)2.63-2.87(6H,m)2.98-3.22(4H,m)4.35-4.38(1H,m)5.22-5.36(2H,m)6.02(1H,d,J=7.89hz)7.20-7.34(3H,m)7.45-7.51(5H,m)7.76-8.00 (3H,m)
			(00,111)
실 시 예	구 조 식	MS	NMR(ôvalue)
시	조	MS	
시 예	조	MS	NMR(&value) CDCl3:1.32(9H,s) 1.82-1.86(1H,m)2.54-2.57(1H,m)2.69-2.73(2H,m)2.82-2.87(2H,m)2.98-3-01(2H,m)3.32-3.36(1H,m)3.62-3.65(1H,m)4.36-4.40 (1H,m)5.26-5.39(2H,m)6.12(1H,brs) 7.19-7.21(4H,m)7.51-7.70(9H,m)7.84-
시 예 53	조	MS	NMR(&value) CDCl3:1.32(9H,s) 1.82-1.86(1H,m)2.54-2.57(1H,m)2.69-2.73(2H,m)2.82-2.87(2H,m)2.98-3-01(2H,m)3.32-3.36(1H,m)3.62-3.65(1H,m)4.36-4.40 (1H,m)5.26-5.39(2H,m)6.12(1H,brs) 7.19-7.21(4H,m)7.51-7.70(9H,m)7.84-8.05(3H,m) CDCl3:1.44(9H,s) 2.41-2.45(1H,m)2.73-2.78(1H,m)2.83(6H,m) 2.87-2.99 (5H,m)3.11-3.18(2H,m)3.51-3.55(2H,m)4.38-4.41(1H,m)5.30-5.45(2H,m) 6.05(1H,d,J=7.62Hz)7.30-7.42(3H,m)7.53-7.61(5H,m)7.86-7.94(2H,m)8.09-
시 예 53 54	조		NMR(5value) CDCl3 :1.32(9H,s) 1.82–1.86(1H,m)2.54–2.57(1H,m)2.69–2.73(2H,m)2.82–2.87(2H,m)2.98–3–01(2H,m)3.32–3.36(1H,m)3.62–3.65(1H,m)4.36–4.40 (1H,m)5.26–5.39(2H,m)6.12(1H,brs) 7.19–7.21(4H,m)7.51–7.70(9H,m)7.84–8.05(3H,m) CDCl3 :1.44(9H,s) 2.41–2.45(1H,m)2.73–2.78(1H,m)2.83(6H,m) 2.87–2.99 (5H,m)3.11–3.18(2H,m)3.51–3.55(2H,m)4.38–4.41(1H,m)5.30–5.45(2H,m) 6.05(1H,d,J=7.62Hz)7.30–7.42(3H,m)7.53–7.61(5H,m)7.86–7.94(2H,m)8.09–8.12(1H,m) CDCl3 :1.33(9H,s) 1.85–1.90(1H,m)2.49(3H,s) 2.59–2.69(3H,m)2.78–2.87 (3H,m)2.91–2.96(1H,m)3.38–3.41(1H,m)3.59–3.63(1H,m)4.33–4.36(1H,m) 5.26–5.41(2H,m)5.95(1H,d,J=7.68Hz)7.19–7.26(4H,m)7.39–7.42(2H,m)7.52–
53 54	조		NMR(5value) CDCl3:1.32(9H,s) 1.82–1.86(1H,m)2.54–2.57(1H,m)2.69–2.73(2H,m)2.82–2.87(2H,m)2.98–3–01(2H,m)3.32–3.36(1H,m)3.62–3.65(1H,m)4.36–4.40 (1H,m)5.26–5.39(2H,m)6.12(1H,brs) 7.19–7.21(4H,m)7.51–7.70(9H,m)7.84–8.05(3H,m) CDCl3:1.44(9H,s) 2.41–2.45(1H,m)2.73–2.78(1H,m)2.83(6H,m) 2.87–2.99 (5H,m)3.11–3.18(2H,m)3.51–3.55(2H,m)4.38–4.41(1H,m)5.30–5.45(2H,m) 6.05(1H,d,J=7.62Hz)7.30–7.42(3H,m)7.53–7.61(5H,m)7.86–7.94(2H,m)8.09–8.12(1H,m) CDCl3:1.33(9H,s) 1.85–1.90(1H,m)2.49(3H,s) 2.59–2.69(3H,m)2.78–2.87 (3H,m)2.91–2.96(1H,m)3.38–3.41(1H,m)3.59–3.63(1H,m)4.33–4.36(1H,m) 5.26–5.41(2H,m)5.95(1H,d,J=7.68Hz)7.19–7.26(4H,m)7.39–7.42(2H,m)7.52–7.61(6H,m)7.84–7.95(2H,m)8.08–8.12(1H,m) CDCl3:1.36(3H,t,J-7.44Hz)1.44(9H,s) 2.37–2.41(1H,m)2.61–2.78(2H,m) 2.82–2.96(5H,m)3.02–3.18(2H,m)3.52–3.55(2H,m)4.34–4.37(1H,m)5.33–5.40(2H,m)6.01(1H,d,J=7.69Hz)7.30–7.42(3H,m)7.51–7.61(5H,m)7.87–7.97
시예 53 54 55 56 실시	조식 구조		NMR(δvalue) CDCl3:1.32(9H,s) 1.82–1.86(1H,m)2.54–2.57(1H,m)2.69–2.73(2H,m)2.82–2.87(2H,m)2.98–3–01(2H,m)3.32–3.36(1H,m)3.62–3.65(1H,m)4.36–4.40 (1H,m)5.26–5.39(2H,m)6.12(1H,brs) 7.19–7.21(4H,m)7.51–7.70(9H,m)7.84–8.05(3H,m) CDCl3:1.44(9H,s) 2.41–2.45(1H,m)2.73–2.78(1H,m)2.83(6H,m) 2.87–2.99 (5H,m)3.11–3.18(2H,m)3.51–3.55(2H,m)4.38–4.41(1H,m)5.30–5.45(2H,m) 6.05(1H,d,J=7.62Hz)7.30–7.42(3H,m)7.53–7.61(5H,m)7.86–7.94(2H,m)8.09–8.12(1H,m) CDCl3:1.33(9H,s) 1.85–1.90(1H,m)2.49(3H,s) 2.59–2.69(3H,m)2.78–2.87 (3H,m)2.91–2.96(1H,m)3.38–3.41(1H,m)3.59–3.63(1H,m)4.33–4.36(1H,m) 5.26–5.41(2H,m)5.95(1H,d,J=7.68Hz)7.19–7.26(4H,m)7.39–7.42(2H,m)7.52–7.61(6H,m)7.84–7.95(2H,m)8.08–8.12(1H,m) CDCl3:1.36(3H,t,J–7.44Hz)1.44(9H,s) 2.37–2.41(1H,m)2.61–2.78(2H,m) 2.82–2.96(5H,m)3.02–3.18(2H,m)3.52–3.55(2H,m)4.34–4.37(1H,m)5.33–5.40(2H,m)6.01(1H,d,J=7.69Hz)7.30–7.42(3H,m)7.51–7.61(5H,m)7.87–7.97 (2H,m)8.10–8.14(1H,m)

58 59			CDC	m)3.50-3.88(4H,m)4.10-4.32(1H,m)5.32-5.4 ,m)6.09-6.27 m)7.36-7.43(3H,m)7.50-7.59(5H,m)7.83-7.90(2H,m)8.06-8.12(1H,m) l3:0.85-0.95(3H,m)1.20-1.65(4H,m)2.25-3.00(5H,m)4.20-4.50(2H,m) -5.40(2H,m)6.10-6.30(1H,m)7.25-8.15(1H,m)					
60		CDCl3:0.89(3H,d,J=6.46)1.20-1.65(14H,m)2.75-3.15(4H,m)4.20-4.55 (2H,m)5.20-5.55(3H,m)6.15-6.35(1H,m)7.25-8.15(11H,m)							
실 시 예	구 조 식	MS	3	NMR(δvalue)					
61				CDCL3:1.40(9H,s)1.70-2.35(4H,m)2.80-3.20(4H,m)3.60-3.85(2H,m) 4.45-4.55(1H,m)5.35-5.45(2H,m)6.0(1H,d,J=7.77)7.25-8.15(11H,m)					
62				CDCl3 :1.25-1.85(14H,m)2.25-2.85(4H,m)3.65(3H,s)4.15-4.40(2H,m) 5.20-5.45(2H,m)6.05-6.15(1H,m)7.20-8.15(11H,m)					
63		Ма (ES 566 (М-	3!):	DOSM-d6:1.45(3H,t,J=6.97Hz)2.00(3H,s), 2.89(1H,bs)3.00(1H,bs) 3.10-3.90(9H,m)4.11(1H,d,J=13.9Hz)4.50-4.70(3H,m)7.36-7.62 (7H,m)7.71(1H,d,J=7.02Hz)7.83-7.94(4H,m)8.24(1H,bs), 11.40(1H,bs) 12.26(1H,bs)					
64				CDCI3 :1.36(9H,s), 1.97(3H,s)2.15-2.21(1H,m)2.43-2.47(1H,m)2.51-2.57(1H,m)2.69-3.01(4H,m)3.28-3.40(1H,m)3.66-3.70(2H,m)4.29-4.33(1H,m)5.23-5.27(2H,m)6.01-6.04(1H,m)6.28-6.46(3H,m)6.93-6.96(1H,m)7.40-7.51(4H,m)7.72-7.82(2H,m)7.97-8.01(1H,m)					
실 시 예	구 조 식	MS	NMR(δvalue)					
65			(1H,m 5.23-	3:1.36(9H,s), 1.97(3H,s)2.15-2.21(1H,m)2.43-2.47(1H,m)2.51-2.57 1)2.69-3,01(4H,m)3.28-3.40(1H,m)3.66-3.70(2H,m)4.29-4.33(1H,m) 5,27(2H,m)6,01-6.04(1H,m)6.28-6.46(3H,m)6.93-6,96(1H,m)7,40- 4H,m)7.72-7.82(2H,m)7.97-8.01(1H,m)					

실시예 66Nα-(1-나프틸메틸)아미노술포닐)-3-아미디노페닐알라닌 4-메탄술포닐피페라지드의 합성실시예 3과 유사하: 하여 Nα-(1-나프틸메틸)아미노술포닐)-3-아미디노페닐알라닌 4-메탄술포닐피페라지드 195 mg (74%)를 얻었다.

이하, 동일하게 하여 얻었다.

실시 예	구 조 식	MS	NMR (δvalue)
66			CD3OD:2.31-2.37(1H,m)2.59(3H,s)2.68-2.90(6H,m)3.03-3.11 (1H,m)3.27-3.51(3H,m)4.19-4.38(3H,m)7.29-7.99(11H,m)
67			CD3OD:1.90-1.94(2H,m)2.65-2.74(1H,m)2.81-2.89(1H,m) 3.14-3.31(6H,m)4.19-4.42(3H,m)7.30-8.01(12H,m)
68			CD3OD :0.69-0.74(4H,m)1.62-1.81(1H,m)2.73-3.03(4H,m) 3.20-3.52(6H,m)4.20-4.42(3H,m)7.20-7.95(11H,m)
69			CD3OD :2.44-3.36(10H,m)2.68(6H,s)3.76(1H,bs)4.21-4.41 (3H,m)7.19-8.02(11H,m)
실시 예	구 조 식	MS	NMR(δvalue)
70		Mass(ESI):553 (M+H)+	CD3OD :2.71-3.77(10H,m)3.57(3H,s)4.19-4.41(3H,m)7.21- 8.02(11H,m)
71		Mass(ESI):572 (M+H)+	CD3OD :1.79-2.32(4H,m)2.69-2.87(2H,m)2.78(2H,s)3.09- 3.50(4H,m)4.23-4.42(3H,m)7.23-8.03(11H,m)
72		Mass(ESI):496 (M+H)+	CD3OD :2.64-3.50(10H,m)4.20-4.41(3H,m)7.22-7.98(11H,m)

73		Mass (M+H)+	494 CD30D:1.19-1.52(6H,m)2.65-2.71(1H,m)=.63-2.90(1H,m) 3.11-3.42(4H,m)4.23-4.41(3H,m)7.27-7.99(11H,m)
실 시 예	구 조 식	MS	NMR(δvalue)
74		Mass (ESI):542 (M+H)+	CD3OD :2.19-2.95(4H,m)3.38-3.77(2H,m)4.03-4.46(5H,m)7.01-7.99(15H,m)
75		Mass (ESI):523 (M+H)+	CD3OD:1.98-3.55(12H,m)1.98(3H,d,J=12.7Hz)4.28-4.39(3H,m) 7.34-8.08(11H,m)
76		Mass (ESI):495 (M+H)+	CD3OD:1.90-121.98(2H,m)2.31-2.38(1H,m)2.45-2.57(2H,m) 2.70-2.73(1H,m)2.83-2.86(1H,m)3.01-3.37(3H,m)4.19-4.42 (3H,m)7.24-7.98 (11H,m)
77			CD3OD:1.14(3H,t,J=7.08)2.63-2.71(2H,m)2.75-2.81(1H,m)2.95-3,03(2H,m)3.09-3.30(5H,m)3.99(2H,q,J=7.10)4.20-4.40(3H,m)7.17-7.48(8H,m)7.78-7.99(3H,rn)
실 시 예	구 조 식	MS	NMR(&value)
78		·	CD3OD:2.71-2.90(3H,m)3.04-3.10(2H,m)3.19-3.43(5H,m)4.20-4.38(3H,m)6.56-6.58(2H,m)7.16-7.47(9H,m)7.68-7.75(2H,m)7.95-7.99(2H,m)
79			CD3OD:1.65-1.70(1H,m)1.99(3H,s)2.10-2.15(3H,m)2.75-2.82 (2H,m)2.97-3.06(1H,m)3.20-3.31(3H,m)4.24-4.40(3H,m)7.29-7.51(8H,m)7.71-7.82(2H,m)7.99-8.02(1H,m)
80		Mass (ESI):571 (M+H)+	CD3OD :2.28-2.32(1H,m)2.75-2.91(5H,m)3.25-3.45(4H,m)4.21-4.41(3H,m)6.72-6.77(3H,m)7.09-7.48(10H,m)7.70-7.80(2H,m)7.98-8.01(1H,m)
81		Mass (ESI):627 (M+H)+	TFA-d :2.69-2.94(2H,m)3.20-3.65(8H,m)4.49-4.61(3H,m)7.28-7.39(4H,m)7.47-7.54(4H,m)7.79-7.87(3H,m)
실 시 예	구 조 식	MS	NMR(δvalue)
82		Mass (ESI):635 (M+H)+	CD3OD :2.24-2.27(1H,m)2.66-2.82(5H,m)3.22-3.41(4H,m)4.31-4.36(3H,m)7.22-7.59(13H,m)7.79-7.97(3H,m)
83		Mass (ESI):602 (M+H)+	CD3OD :2.48-2.52(1H,m)2.66(6H,s)2.71-2.82(2H,m)2.88-2.95 (3H,m)3.21-3.36(4H,m)4.30-4.46(3H,m)7.35-7.52(8H,m)7.73-7.81 (2H,m)7.98-8.03(IH,m)
В4		Mass (ESI):649 (M+H)+	DMSO-d6:1.58-1.61(1H,m)2.18-2.22(1H,m)2.43(3H,s)2.50-2.59 (2H,m)2.80-2.87(4H,m)3.62-3.69(2H,m)3.97-4.44(3H,m)7.16-7.22 (3H,m)7.36-7.55(8H,m)7.66(1H,s)7.84-7.97(3H,m)
35		Mass (ESI):587 (M+H)+	CD3OD:1.11-1.16(3H,m)2.56-2.60(1H,m)2.75-2.80(2H,m)2.88- 2.94(4H,m)3.01-3.08(1H,m)3.22-3.30(2H,m)3.42-3.49(2H,m)4.21- 4.42(3H,m)7.26-7.37(4H,m)7.43-7.49(4H,m)7.73-7.82(2H,m)7.98- 8.02(1H,m)
실 사 계	구 조 식	MS	NMR(δvalue)
36		Mass (ESI):566 (M+H)+	CD3OD :2.66-2.70(1H,m)2.81-2.85(2H,m)2.99-3.03(1H,m)3.20-3.37(6H,m)4.21-4.41(3H,m)7.17-7.36(4H,m)7.42-7.48(4H,m)7.70-7.78(2H,m)7.99-8.02(1H,m)

ı—	_		
87		Mass (ESI):510 (M+H)+	CD3OD:1.77-1.79(1H,m)2.64-2.90(4H,m)3 3.10(3H,m)3.28-3.43(2H,m)3.52-3.70(2H,m)4.01-4.35(3H,m)7.25-7.49(8H,m)7.70-7.80(2H,m)7.94-7.98(1H,m)
88		Mass (ESI):508 (M+H)+	CD3OD :0.80-0.98(3H,m)1.10-1.55(5H,m)2.25-2.95(5H,m)3.50-3.75(1H,m)3.95-4.45(4H,m)7.05-8.05(11H,m)
89		Mass (ESI):508 (M+H)+	CD3OD:0.70-0.95(3H,m)1.15-1.60(5H,m)1.90-2.85(5H,m)3.45-3.70(1H,m)3.95-4.65(4H,m)7.05-8.05(11H,m)
실 시 예	구 조 식	MS	NMR(δvalue)
90		Mass (ESI):508 (M+H)+	CD3OD :1.15-1.45(4H,m)2.70-2.95(4H,m)3.30-3.45(1H,m)4.15- 4.80(4H,m)7.15-8.05(11H,m)
91		Mass (ESI):566 (M+H)+	CD3OD :1.15-1.65(8H,m)2.30-2.85(4H,m)3.50-3.75(1H,m)3.85- 4.40(6H,m)7.10-8.10(11H,m)
92		Mass (ESI):538 (M+H)+	CD3OD:1.20-1.70(5H,m)2.25-2.90(4H,m)3.55-3.65(1H,m)4.05-4.45(4H,m)7.20-8.15(11H,m)
93		Mass (ESI):550 (M+H)+	CD3OD:1.91(3H,d,J=13.2Hz)2.60-2.90(6H,m)2.95-3.38(7H,m)4.17 (1H,t,J=12.85Hz)4.26-4.40(2H,m)7.11(1H,m)7.23(1H,m)7.32-7.49 (6H,m)7.70-7.81(2H,m)7.97-8.04(1H,m)
실 시 예	구 조 식	мѕ	NMR(δvalue)
94		Mass(ESI):552 (M)+575 (M+Na)+	DMSO-d6:1,98(3H,bs)2.78-3.00(3H,m)3.09-3.24(2H,m)3.28-3.59(5H,m and nH2O)3.90-4.02(1H,m)4.20-4.32(1H,m)4.44 (1H,q,J=8.13Hz)5.83(2H,bs)7.45-7.63(6H,m)7.86(1H,d,J=8.1Hz)7.92-8.03(2H,m)9.64(1H,s)
95		Mass(ESI):524 (M+H)+	CD3OD :2.06(3H,d,J=8.5Hz)2.78-3.79(11H,m)4.06(2H,s)4.51- 4.60(2H,m)7.17-8.12(11H,m)
96		Mass(ESI):510 (M+H)+	CDCL3:1.98(3/2H,s), 2.04(3/2H,s)2.77-2.92(3H,m)3.03-3.26 (4H,m)3.35-3.55(3H,m)4.37-4.40(1H,m)4.57-4.60(2H,m)4.67- 4.69(1H,m)5.54-5.58(1H,m)6.40-6.52(3H,m)7.02-7.04(IH,m) 7.44-7.47(2H,m)7.55-7.61(2H,m)

실시예 97Nα-(tert-부틸옥시카르보닐(3-페닐-n-프로필)아미노술포닐)-3-아미디노페닐알라닌 (2-에록시카르보닐)피페지드의 합성실시예 2과 유사하게 하여 Nα-(tert-부틸옥시카르보닐(3-페닐-n-프로필)아미노슐포닐)-3-아미디노페닐알ῦ던 (2-에록시카르보닐)피페라지드를 얻었다.

실시 예	구 조 식	MS	NMR(δvalue)
97]		CDCl31.24-4.73(23H, m)1.48(9H, s)6.06-7.55(10H, m)
98			CDC131.19 (3H, t, J=7Hz)1.47 (9H, s)1.94 (2H, m)2.63 (2H, m)3.15 (2H, m)3.62-3.65 (2H, m)4.11 (2H, m)5.92 (1H, d, J=7Hz)7.17-7.58 (10H, m)
99			CDC131.25-4.76 (17H, m)1.48 (9H, s)5.21-5.43 (2H, m)6.11-8.11 (12H, m)
100]		CDC131.46 (9H, s)1.21-5.30 (23H, m)6.05-7.56 (10H, m)
실시	구		

예	조 식	мѕ	NMILLOV	ralue)				
101	1		CDC13	1.23-5.38 (19H, m)1.43 (9H, s)6.01-8.17 (12H, m)				
102			CDC13	1.38 (9H, s)2.04 (3H, s)2.60-3.60 (13H, m)5.10-5.25 (1H, m)5.44 7.30-9.05 (12H, m)				
103]		CDCl31	.19-1.32 (6H, m)2.02, 2.05 (3H, s each)2.60-3.80 (15H, m)				
104			CDC131 (2H, s)6 d, 3=4.2	33 (9H, s)2.10 (3H, s)2.90-3.70 (10H, m)4.75-4.95 (1H, m)5.33 6.10-6.40 (1H, br)7.30-8.00 (8H, m)8.16 (1H, d, J=8.3Hz)8.90 (1H, 2Hz)				
실시 예	구 조 식	мѕ		NMR(δvalue)				
105		FAE MSS (M+		CDCl31.95, 2.06 (3H, sach s)2.53 (3H, s)2.40-3.75 (10H, m)4.25-5.00 (3H, m)5.30-5.50 (1H, m)7.20-7.70 (8H, m)7.80-8.00 (2H, m)8.20-8.40 (IH, m)				
실시 예	구 조 식	MS	NMR (δν	alue)				
106			4,07-4.4	.20-1.26 (3H, m)1.38 (9H, s)2.89-3.07 (2H, m)3.76-3.96 (1H, m) 19 (6H, m)5.70 (1H, d, J=5.94Hz)7.19-7.53 (14H, m)				
107		,	(3H, m)6	40 (9H, s)2.09 (3H, brs)2.90-3.70 (10H, m)3.81 (3H, s)4.68-4.83 5.22-6.25 (1H, m)6.87-7.67 (8H, m)				
108			CDC 32.	07, 2.09 (3H, each s)1.37-1.41 (12H, m)2.80-3.70 (10H, m)4.12 =7.14Hz)4.75-4.98 (3H, m)6.05-6.18 (1H, m)6.82-7.71 (8H, m)				
109				47 (9H, s)2.07 (3H, s)2.63-3.49 (10H, m)3.81 (3H, s)4.22-4.28 71-4.85 (2H, m)6.05-6.08 (1H, m)6.87-7.57 (8H, m)				
실시 예	구 조 식	MS	NMR(δva	lue)				
110		į.	(3H, s)4.	43 (9H, s)2.07-2.08 (3H, m)2.76-3.70 (10H. m)3.84 (3H, s)3.87 55-4.60 (1H. m)4.87 (2H, dd, J= 16.16,34.64Hz)6.07 (1H, d, c)6.89-7.55 (7H, m)				
111		ا م	CDCl31.3 4.62-4.8	34 (9H, s)2.07, 2.09 (3H, each s)2.88-3.62 (10H, m)4.03 (2H, s) 0 (3H, m)6.06 (1H, d, J=8.25Hz)7.03-7.70 (13H, m)				
112		K	1H, m)5	CDC131.06, 1.09 (3H, each s)2.09 (3H, s)3.00-3.80 (10H, m)5.15-5.40 1H, m)5.48 (1H, d, J=18Hz)5.58 (1H, d, 3=18Hz)7.40-8.10 (10H, m)8.45-8.65 (1H, q)				
113		r	CDC131.23 (3H, t, J=7.25Hz)1.41 (9H, s)3.02-3.05 (2H, m)4.02-4.09 (3H, n)4.75 (2H, dd, J= 16.83,20.13Hz)5.90 (1H, d, J=6.95Hz)7.06-7.54 (13H, n)					
실시 예	구 조 식	MS	NMR(δν	alue)				
114			CDCl31.32 (9H, s)2.04 (23H, s)2.94-3.91 (14H, m)4.76 (1H, br)6.00 (1H, br)7.08-8.09 (10H, m)					
115			CDC131 s)3.85 (.47 (9H, s)2.10 (3H, s)2.83-4.86 (13H, m)3.84 (3H, s)3.84 (3H, 3H, 3H, s)6.02 (1H, br)6.60-7.58 (6H, m)				
116				.50, 1.51 (9H, each s)1.60-4.86 (25H, m)7.23-7.59 (10H, m)				
117				.46 (9H, s)1.98, 2.03 (3H, sach s)2.74-3.69 (16H, m)4.62 (1H, (1H, br)7.00-8.13 (10H, m)				
실시 예	구 조 ·	MS		NMR(ôvalue)				

	식			
118				CDC131.33 (9H, s)2.04 (3H, s)2.82-3.63 (12H, m)3.83-4.00 (2H, m)4.82 (1H, m)6.15 (1H, d, J=8.25Hz)7.30-8.15 (11H, m)
119				CDC131.36 (9H, s)2.03 (3H, s)2.85-3.70 (12H, m)3.80-4.05 (2H, m)4.78-4.90 (1H, m)6.15-6.28 (6H, m)7.25-7.88 (11H, m)
120		FA (M	B-MS695 +H)+	CDC131.51 (9H, s)1.50-1.80 (4H,m)2.09 (3H, s)2.44-4.03 (19H, m)4.82-4.90 (1H, m)6.20-6.35 (1H, m)7.08-7.62 (9H, m)
121	<u> </u>		,	CDC131.42 (9H, s)2.09 (3H, s)2.90-3.75 (12H, m)3.75-3.95 (2H, m)4.82 (1H, br)6.08 (1H, br)7.40-7.65 (6H, m)8.05-8.15 (2H, m)
실시 예	구 조 식	MS	NMR(δva	lue)
122			m)6.40-6	60 (9H, s)2.04, 2.05 (3H, eachs)2.72-3.65 (13H, m)4.63-4.71 (1H, 6.53 (1H, m)7.28-8.10 (10H, m)
123			(1H, m)5	32 (9H, s)1.51 (9H, s)2.09 (3H, s)2.70-3.90 (14H, m)4.85-5.00 .90-6.00 (1H, m)6.80-7.80 (9H, m)
124				8 (3H,t,d=7.10Hz)1.47 (9H, s)2.90-3.10 (2H, m)3.85-4.20 (3H, 2H, dd, J=16.66, 45.69Hz)5.90 (1H, d,J=6.60Hz)7.25-8.05 (10H,
125				39 (9H, s)1.52 (9H, s)1.65-2.00 (2H, br)2.08 (3H,s)2.80-3.95 4.85-5.00 (1H,m)5.90-6.10 (1H, br)6.90-7.85 (8H, m)
실시 예	구 조 식	MS	NMR(δva	lue)
126			CDC131. (5H, rn)	44 (9H, s)2.13 (3H, s)2.20-4.05 (22H, m)5.12 (1H, br)7.25-7.60
127				9 (9H, s)2.08 (3H, s)2.60-3.60 (10H, m)4.20-4.40 (2H, m)4.71 .97-7.58 (10H, m)
128			4.80 (2H	49 (9H, s)2.07 (3H, s)2.50-3.60 (10H, m)4.15-4.45 (5H,m)4.690- m)5.95-6-10 (1H, m)6.80-7.05 (3H, m)7.30-7.70 (4H, m)
129				44 (9H, s)2.11 (3H, s)2.95-3.80 (10H, m)4.78 (1H, br)5.07 (2H, 2H, s)6.20 (1H, br)6.96 (1H, br)7.43-7.60 (5H, m)
실시 예	구 조 식	мѕ	NMR(δvalι	, (e)
130				D-2.00 (6H, m)1.45, 1.49 (9H, each s)2.11 (3H, s)3.00-4.10 .85-5.05 (1H, m)6.00-6.40 (1H, m)7.40-7.58 (4H, m)
131				5 (9H, s)2.10 (3H, s)2.90-3.71 (10H, m)4.61-4.87 (3H, m)6.06 .39-7.88 (7H, m)
132		ļ	(IH, br)6.0	2, 1.43 (9H, s)2.00-2.15 (3H, m)2.90-4.50 (15H, m)4.80-5.00 5-6.20 (1H, m)6.86 (4H,s)7.35-7.65 (4H, m)
133 ⁻		1	(3H,s)4.30	5, 1.56 (9H, s)1.58l, 2.04 (3H, s)2.10-3.55 (10H, m)4.04, 4.07 0-4.50 (1H, m)5.00-5.25 (2H,m)6.05-6.25 (1H, m)7.15-7.65 70-7.90 (2H, m)
실시 예	구 조 식	MS	NMR(δva	lue)
134				20-1.90 (10H, m)1.48 (9H, s)2.10 (3H, s)3.00-3.80 (15H, m)4.92 .14 (1H, m)7.39-7.58 (4H, m)
135			(5H, m)6	41 (9H, s)2.10 (3H, s)2.90-3.65 (10H, m)3.48 (3H, s)4.70-5.23 .06 (1H, d)6.96-7.58 (8H, m)
136				48 (9H, s)2.09 (3H, s)2.60-3.62 (10H, m)3.89 (6H, s)4.75 (2H, 14Hz)6.04 (1H, brs)6.81-7.62 (7H, m)

137			31.47 (9H, s)2.11 (3H, s)3.00-3.70 (10H, m)4. (2H, s)5.94 (1H, br)7.44-7.57 (4H, m)
실시 예	구 조 식	MS	NMR(δvalue)
138		•	CDCl31.43 (9H, s)2.11 (3H, s)2.85-3.75 (10H, m)3.96 (3H, s)4.50-4.95 (3H, m)6.01 (1H, br)6.90-7.20 (2H, m)7.40-7.65 (4H, m)7.83 (1H, d, J=8.3Hz)
139			CDCl31.43 (9H, s)2.04 (3H, s)2.36-3.62 (10H, m)3.95 (3H, s)4.12-4.33 (1H, m)5.29 (2H, dd, J=42, 17Hz)7.12-8. 10 (10H, m)
140			CDC130.03 (6H, s)1.03 (9H, s)1.42 (9H, s)2.08 (3H, s)2.34-3.66 (10H, m) 5.13-5.43 (2H, m)5.98 (1H, brs)7.08-8.10 (10H, m)
141			CDC131.42 (9H, s)2.09 (3H, s)2.80-3.80 (10H, m)3.93 (3H, s)4.45-4.65 (1H, br)4.85 (2H, s)6.00 (1H, br)7.41-8.04 (8H, m)

실시예 142Nα-(아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드의 합성실시예 3과 유사하게 하여 Nα-(아미술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드를 얻었다.

	7,								
실시 예	구 3 식	ΣМ	1S ·		IMR(δv	alue)			
142					DMSO-d61.95 (3H, s)2.58-3.56 (10H, m)4.40-4.56 (1H, m) 6.60-7.70 (7H, m)8.31 (5H, s)				
143]			. [0	DMSO-d61.16-4.38 (23H, m)6.77-8.31 (14H, m)				
144			\B-MS4 1+H)+	D)		d61.12 (3H, t, J=7Hz)1.49 (2H, m)2.14-4.09 (9H, m) 31 (14H, m)			
145			\B-MS4 1+H)+	05 D	MSO-	d61.43-3.96 (9H, m)6.74-12.80 (15H, m)			
실시 예	구 조 식	MS	NMR(δ	value)					
146			DMSO- J=6.59	-d62.90 Hz)7.19	-4.47 (1H, c	(6H, m)4.83 (2H, dd, J=16.5,32.7Hz)6.62 (1H, d, ld, J=7.59,7.59Hz)7.20-8.25 (10H, m)			
147			DMSO-	-d62.50	-4.37	(6H, m)6.40-7.70 (14H, m)			
148			DMSO-	-d62.78	78-4.44 (8H, m)6.65-8.00 (15H, m)				
149			DMSO-	-d62.76-	-4.50	12H, m)6.72-7.96 (15H, m)			
실시예	17	조 식	MS			NMR(ôvalue)			
4.50									
150						DMSO-d62.74-4.52 (8H, m)7.03-8.00 (15H, m)			
150 151			FAB-N	MS566(N	/+H)+	DMSO-d62.74-4.52 (8H, m)7.03-8.00 (15H, m) DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m)			
			<u></u>	MS566(N MS544(N					
151			FAB-N		л+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m)			
151 152	 구	조 식	FAB-N	MS544(N	л+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d61.13-5.16 (23H, m)6.86-8.31 (14H, m)			
151 152 153		조 식	FAB-N FAB-N	MS544(N	Л+Н)+ Л+Н)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d61.13-5.16 (23H, m)6.86-8.31 (14H, m) DMSO-d61.03-5.19 (19H, m)7.01-8.31 (16H, m)			
151 152 153 실시예		조 식	FAB-N	MS544(N MS566(N	/+H)+ /+H)+ /+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d6I.13-5.16 (23H, m)6.86-8.31 (14H, m) DMSO-d61.03-5.19 (19H, m)7.01-8.31 (16H, m) NMR(&value)			
151 152 153 실시예 154		조 식 	FAB-N FAB-N FAB-N	MS544(N MS566(N MS516(N	M+H)+ M+H)+ M+H)+ M+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d61.13-5.16 (23H, m)6.86-8.31 (14H, m) DMSO-d61.03-5.19 (19H, m)7.01-8.31 (16H, m) NMR(&value) DMSO-d61.23-4.49 (18H, m)6.84-9.38 (15H, m)			
151 152 153 실시예 154 155		조 식	FAB-M FAB-M FAB-M FAB-M	MS544(N MS566(N MS516(M MS538(M	M+H)+ M+H)+ M+H)+ M+H)+ M+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d61.13-5.16 (23H, m)6.86-8.31 (14H, m) DMSO-d61.03-5.19 (19H, m)7.01-8.31 (16H, m) NMR(8value) DMSO-d61.23-4.49 (18H, m)6.84-9.38 (15H, m) DMSO-d61.23-4.61 (14H, m)7.20-12.38 (17H, m)			
151 152 153 실시예 154 155 156 157	j 	조 식 MS	FAB-M FAB-M FAB-M FAB-M	MS544(N MS566(N MS516(M MS538(M ME516(M	M+H)+ M+H)+ I+H)+ I+H)+ I+H)+	DMSO-d61.13-4.46 (19H, m)6.90-8.35 (16H, m) DMSO-d61.13-5.16 (23H, m)6.86-8.31 (14H, m) DMSO-d61.03-5.19 (19H, m)7.01-8.31 (16H, m) NMR(&value) DMSO-d61.23-4.49 (18H, m)6.84-9.38 (15H, m) DMSO-d61.23-4.61 (14H, m)7.20-12.38 (17H, m) DMSO-d61.23-4.95 (18H, m)6.92-10.20 (15H, m)			

1	I	(M+H)	8.06 (1H, d, J=7.9Hz)
159	7		DMSO-d61.38-1.80 (4H, m)2.61-4.15 (15H, m)6.93-8.30 (9H, m)
160	ij :		DMSO-d62.05-2.09 (2H, m)2.69-4.11 (9H, m)7.12-7.66 (14H, m)
161		FAB- MS453 (M+H)+	DMSO-d60.97-1.49 (6H, m)1.96 (3H, s)2.69-3.60 (15H, m)4.77-4.83 (1H, m)7.34-7.89 (4H, m)
실시 예	구 조 식	MS	NMR(δvalue)
162		FAB- MS538 (M+H)+	DMSO-d61.98 (3H, s)2.70-3.60 (10H, m)4.02 (1H, d, J=16Hz)4.23 (1H, d, J=16Hz)4.50 (1H, t, J=7.3Hz)7.25-7.85 (9H, m)7.94 (1H, d, J=8.3Hz)8.03 (1H, d, J=8.3Hz)8.31 (3H, s)8.84 (1H, d, J=4.6Hz)
163		FAB- MS551 (M+H)+	DMSO-d61.95, 1.97 (3H, each s)2.29 (3H, s)2.70-3.60 (10H, m) 4.15-4.65 (3H, m)7.25-8.25 (12H, m)
164		FAB- MS495 (M+H)+	DMSO-d61.03-1.23 (5H, m)2.72-4.09 (8H, m)7.12-7.65 (14H, m)
165		FAB- MS517 (M+H)+	DMSO-d61.96 (3H, s)2.81-3.55 (11H, m)3.69-3.85 (4H, rn)4.41-4.44 (1H, m)6.87-7.66 (8H, m)
실시 예	구 조 식	MS	NMR(δvalue)
166		FAB- MS531 (M+H)+	DMSO-d61.33 (3H, t, J=6.95Hz)1.95 (3H, s)2.82-3.60 (10H, m) 3.81 (2H, dd, J=15.5,15.2Hz)4.30 (1H, q, J=6.82Hz)4.41-4.45 (1H, m)6.86-7.65 (8H, m)
167		FAB- MS51 <i>7</i> (M+H)+	DMSO-d61.97 (3H, s)2.77-3.76 (16H, m)4.37-4.43 (1H, m)6.77-7.68 (8H, m)8.29 (5H, s)
168		FAB- MS547 (M+H)+	DMSO-d61.96 (3H, s)2.85-3.87 (18H, m)4.35-4.53 (1H, m)6.87-7.66 (7H, m)8.29 (5H, s)
169		FAB- MS577 (M+H)+	DMSO-d61.97 (3H, s)2.81-4.10 (14H, m)4.42-4.45 (1H, m)7.13-8.30 (18H, m)
실시 예	구 조 식	MS	NMR(δvalue)
170		FAB- MS538 (M+H)+	DMSO-d61.96 (3H, s)2.75-3.60 (10H, m)4.29 (1H, d, J= 15Hz)4.45- 4.60 (2H, m)7.25-7.40 (2H, m)7.40-7.90 (8H, m)7.99 (1H, d, J=7.9Hz)8.17 (1H, d. J=8.2Hz)8.31 (2H, s)8.41 (1H, d. J=5.6Hz)
171		FAB- MS495 (M+H)+	DMSO-d61.08 (3H, t, J=7.42Hz)2.81-4.29 (9H, m)6.93-7.98 (13H, m)8.30 (5H, s)
172		FAB- MS540 (M+H)+	DMSO-d61.94 (3H, s)2.78-3.60 (14H, m)4.36 (1H, d, J=7Hz)6.94- 7.66 (15H, m)
173	•	FAB- MS577 (M+H)+	DMSO-d61.96 (3H, s)2.76-3.71 (21H, m)4.38 (1H, m)6.51-7.69 (11H, m)
실시 계	구 : 식	[™] MS	NMR(δvalue)

174	.	FAE (M+H)+	70	DMSO-d61.96 (3H, s)1.40-4.00 (26H, m)42 (1H, m)6.65-
175		FAB-MS5 (M+H)+	54	DMSO-d61.67 (2H, m)1.96 (3H, s)2.50-3.50 (15H, m)4.38 (1H, br)6.92-8.30 (14H, m)
176		FAB-MS5 (M+H)+	51	DMSO-d61.96 (3H, s)2.75-3.55 (14H, m)4.40 (IH, m)7.23-8.10 (11H, m)
177		FAB-MS5 (M+H)+	51	DMSO-d61.95 (3H, s)2.80-3.55 (14H, m)4.30-4.45(1H, m) 7.00-7.90 (11H, m)
실시 예	구 조 식	MS		NMR(ôvalue)
178		FAB-MS612 (M+H)+		DMSO-d61.40-1.77 (14H, m)1.97 1.99(3H, eachs)2.40-3.60 (19H, m)4.30-4.45 (1H, m)7.03-7.85 (9H, m)
179		FAB-MS546 (M+H)+		DMSO-d61.97 (3H, s)2.60-3.60 (14H, m)4.30-4.45 (1H, m) 6.90-7.40 (4H, m)7.50-7.70 (4H, m)8.00-8.15 (2H, m)
180		FAB-MS615 (M+H)+	,617	DMSO-d62.00(3H, s)2.85-4.60 (13H, m)7.30-8.20 (10H, m)
181		FAB-MS516 (M+H)+		DMSO-d61.97 (3H, s)2.40-3.60 (15H, m)4.39 (1H, brs)4.95 (1H, brs)6.15-6.45 (3H, m)6.90 (1H, t, J=7.6Hz)7.15-7.75 (6H, m)
실시 예	구 조 식	MS		NMR(δvalue)
182		FAB- MS533,535 (M+H)+		DMSO-d61.17 (3H, t, J=7.2lHz)2.80-3.25 (3H, m)3.95-4.48 (4H, m)4.86 (2H, dd, J=16.3335.13Hz)7.20-9.35 (15H, m)
183		FAB-MS542 (M+H)+	4	DMSO-d61.50-1.90 (2H, m)1.97 (3H, s)2.40-3.60 (15H, m) 4.30-4.55 (1H, br)6.35-6.50 (2H, m)6.75-6.85 (2H, m)7.20- 3.10 (6H, m)
184		FAB-MS510 (M+H)+		DMSO-d61.97 (3H, s)2.20-3.70 (22H, m)4.40 (1H, rn)7.00- 3.30 (9H, m)
185		FAB-MS531 (M+H)+	(DMSO-d61.97 (3H, s)2.70-3.80 (12H, m)4.39 (1H, m)5.97 (2H, s)6.60-8.30 (12H, m)
실시 예	구 조 식	мѕ	NN	IR(δvalue)
186		FAB-MS545 (M+H)+	38	/ISO-d61.96 (3H, s)2.70-3.80 (12H, m)4.19 (4H, s)4.39 (1H, J=7.6Hz)6.50-8.00 (8H, m)
187		FAB-MS576 (M+H)+		/SO-d61.96 (3H, s)2.70-3.80 (10H, m)4.08 (2H, s)4.43 (IH, t, 7Hz)6.23 (2H, s)5.75-7.65 (11H, m)
188		FAB-MS495 (M+H)+		1SO-d60.90-1.80 (6H, m)1.97 (3H, s)2.40-3.60 (14H, m)3.82 H, d, J=IIHz)4.39 (1H, t, J=7Hz)5.75-7.65 (9H, m)
실시 예	구 조 식	MS NMR(R(δvalue)
189		FAB-MS567 (M+H)+		O-d61.97 (3H, s)2.70-3.93 (13H, m)4.41 (1H, t, J=7Hz)7.25- (7H, m)
190		FAB-MS545 (M+H)+		O-d61.97 (3H, s)2.60-3.70 (12H, m)3.80-3.95 (1H, m)4.05- (2H, m)4.43 (1H, t, J=7.3Hz)6.70-6.95 (4H, br)7.20-7.90 m)
191				O-d61.35 (3H, t, J=7Hz)l.96 (3H, s)2.70-3.60 (10H, m)3.90- (4H, m)4.46 (1H, t, J=7.4Hz)7.10-8.00 (10H, m)
			DMS	O-d61.10-1.80 (10H, m)1.97 (3H, s)2.50-3.45 (15H, m)4.40

192				(1H, t, J=7.5Hz)6.90-7.70 (9H, m)		
실시 [*] 예	구 조 식	구 호 MS NMR(δvalue) 식				
193				1.94 (3H, s)2.50-3.60 (10H, m)3.84 (2H, s)4.45-4.47 (1H, m) 0 (6H, br)6.69-7.72 (8H, m)		
194				1.96 (3H, s)2.76-3.60 (13H, m)3.71 (3H, s)3.73 (3H, s)4.38 (1H, 7.78 (7H, m)		
195				1.97 (3H, s)2.80-3.80 (10H, m)3.80 (1H, d, J=15Hz)3.89 (1H, d, .40 (IH, br)6.00-7.20 (5H, br)7.31-7.66 (4H, m)		
196				1.97 (3H, s)2.70-3.90 (12H, m)3.92 (3H, s)4.40 (1H, t, J=7.6Hz) d, J=8.3Hz)6.80-7.10 (2H, br)7.16 (1H, s)7.25-7.40 (2H, m)7.83 8.3Hz)		
실시 예	구 조 식	MS	MS NMR(6value)			
197	DMSO-d61.96 (3H, s)2.87-3.70 (11H, m)3.80-3.95 (4H, m)4.17 (1H, d, J=14Hz)4.44 1H, t, J=7Hz)7.13-7.93 (10H, m)					
198				61.97 (3H, s)2.75-3.80 (11H, m)3.90 (1H, d, J= 15Hz)4.20 (1H, z)4.45 (1H, t, J=7Hz)7.00-7.95 (10H, m)		
199	DMSO-d6 7.92 (13H			61.96 (3H, s)2.75-3.79 (12H, m)3.84 (3H, s)4.40 (1H, m)5.75- H, m)		
200	DMSO-d61.96 (3H, s)2.81-3.51 (10H, m)3.90-4.26 (2H, m)4.46 (1H, m) 7.53-8.31 (16H, m)					
실시 예	구 조 식 MS			NMR(δvalue)		
201		ı	3-MS591 H)+	DMSO-d61.96 (3H, s)2.00-3.50 (2H, m)2.75-3.50 (13H, m) 3.87-3.95 (1H, m)4.46-4.42 (1H, m)7.10-7.70 (14H, m)		
202	FAB-MS577 (M+H)+			DMSO-d61.97 (3H, s)2.70-3.55 (13H, m)3.98-4.03 (1H, m) 4.35-4.41 (1H, m)7.05-8.00 (14H, m)		

실시예 203Nα-(2,3-디메톡시벤질)-3-아미디노페닐알라닌 4-히드록시카르보닐메틸피페라지드의 합성실시예 36과 유사하게 하여 Nα-(2,3-디메록시벤질)-3-아미디노페닐알라닌 4-히드록시카르보닐메틸피페라지드를 얻었다.

실시 예	구 조 식	MS ·	NMR (δvalue)
203		FAB-MS562 (M+H)+	DMSO-d60.30-4.50 (16H, m)3.72 (3H, s)3.78 (3H, s)6.90-9.10 (12H, m)12.00-12.40 (1H, br)
204			CDCl31.25 (3H, t, J=7.1Hz)2.04-3.52 (12H, m)3.85 (6H, d, J=2.31 Hz)4.01-4.19 (4H, m)4.44 (1H, t, J=7.26Hz)6.82-7.43 (7H, m)
205		FAB-MS563 (M+H)+	DMSO-d62.70-4.80 (21H, m)6.82-8.05 (10H, m)
실시 예	구 조 식	MS	NMR(δvalue)
	П.	MS FAB-MS610 (M+H)+	
예	П.	MS FAB-MS610	CDCl31.19-1.35 (3H, m)2.99-3.18 (3H, m)3.64 - 4.70 (12H,
예 206	П.	MS FAB-MS610	CDCl31.19-1.35 (3H, m)2.99-3.18 (3H, m)3.64 - 4.70 (12H, m)5.46-5.54 (1H, m)6.62 - 7.64 (11H, rn)

·		(M+				
실시 예	구 조 식	MS		NMR(δvalue)		
210	⊣-			L		
211	1					
212	7	FAB-	MS534	DMSO-d60.4	10-4.60 (16H,	m)3.68, 3.69, 3.70, 3.78(6H, each s)
	4	(M+H)	+	6.50-8.31 (1	3H, m)	
213		FAB-N (M+H)	MS520 +	DMSO-d61.1 4.44 (IH,t,J= (2H,m)	5-1.40 (2H,br 7Hz)6.80-7.15)1.45–1.65 (2H,br)2.70–3.90 (15H,m) i(5H,m)7.20–7.40(2H,m)7.50–7.70
실시	예		구 조	식	MS	NMR(δvalue)
214		-				
215						
216						
217						
실시	예		구 조	. 식	MS	NMR(δvalue)
218					•	
219						
220						
221						
실시	예		_ 구 조	식	MS	NMR(δvalue)
222			4			
223			4			
224			4			
실시	Al		_ 구 조	AI.	Vero	
226	~1 ·		- T	4	MS	NMR(δvalue)
27			╡			
28			=			
29			4			
	구	T				
실시 #	조 식	MS	^	MR(δvalue)		<u> </u>
30		FAB-M (M+H)+	337,1	MSO-d61.96 1H,d,J=8.6Hz 2H,m)	5 (3H,s)2.70–3 2)6.93 (1H,d,J=	.90 (21H,m)4.42 (1H,t,J=7Hz)6.76 =8.6HZ)7.25–7.40 (2H,m)7.55–7.75
31				, , , , , , , , , , , , , , , , , , ,		
32		FAB-M: (M+H)+				3.50 (10H, m)3.72 (3H, s)3.76 (3H, s) 5 (1H, m)6.70-7.95 (7H, m)
33			D		-4.44 (18H, m	1)1.16 (3H, t, J=7Hz)3.70 (3H, s)3.78
시	1		구 조	식	MS	NMR(ôvalue)
34				-		
35]			
36]			
37]			

			4						
실시	예			구조	식		MS	NMR(δvalue)	
238									
239									
240									
241							`		
실시	예			구조	식		MS	NMR(δvalue)	
242		-							
243									
244									
245		===					V		
실시	예			구조	식		MS	NMR(δvalue)	
246 247	· · · · · · · · · · · · · · · · · · ·								
248									
249									
실시	7	조.			T				
예	식		MS		N	MR(δvalue)			
250									
251	_				_			•	
252		FAB-M: (M+H)+							
253			FAB-M (M+H)+					, m)2.20-3.80 (4H, m)4.05-5.10 m)	
실시 예	구식	[™] MS			NMR(δvalue)				
254		- 1	FAB-MS (M+H)+	5552	DMSO-d60.80-1.90 (6H, m)3.00-3.60 (7H, m)4.20-4.80 (4H, m)5.20-5.32 (1H, m)7.15-8.00 (11H, m)				
255	1	Ľ			<u> </u>				
256]								
257			FAB-MS (M+H)+	519	DMS 6.47	O-d61.95 (-6.65 (3H,	3H, s)2.60 m)7.31-7.3	-4.60 (13H, m)4.65-8.30 (7H, br) 70 (4H, m)	
실시 예	구 조 식	™ MS NM		NMR(NMR(δvalue)				
258				DMSO-d61.94 (3H, rn)2.50-3.91 (12H, m)3.78 (3H, s)4.00-8.31 (6H, br)4.47 (1H, m)6.64-6.85 (3H, m)7.23-7.80 (4H, m)					
259			DMSO-d61.98 (3H, s)2.50-4.90 (13H, m)7.05-8.06 (13H, m)9.20- 10.00 (1H, br)						
260	, ·	FAB- MS517 (M+H)+		DMSO-d61.99 (3H, s)2.80-4.60 (15H, m)7.13-9.38 (14H, m)					
261	549(M+H) 3.1			3.14-	MSO-d61.82-2.20 (2H, m)2.30 (4H, t, J=5.94Hz)2.76-3.00 (2H, m) 14-3.42 (2H, m)3.45 (4H, t, J=5.94Hz)3.71(3H,s), 3.79(3H,s)3.79 H, dd,J=14.7,36.8Hz)4.38 -4.50 (1H, m)6.87-7.70 (7H, m)				

실시예 262

Nα-(tert-부틸옥시카르보닐(1-나프틸메틸)아미노술포틸)-3-시아노-L-페닐알라닌 -4-아세틸피페라지드의 합성

_	-		_	
실시 예	구 조 식		MS -	NMR(δvalue)
262				CDCl31.41 (9H, s)2.03, 2.07 (3H, each s)2.50-3.60 (10H, m)4.33 (1H, m) 5.36 (2H, m)6.01 (1H, d, J=8 Hz)7.29-8.13 (11H, m)
263				CDC131.43 (9H, s)1.37-1.80 (6H, m)2.73-3.00 (4H, m)3.69 (3H, s)4.10-4.30 (2H,m)5.05-5.40 (3H, m)6.36 (1H, d, J=6.93Hz)7.24-8.20 (11H, m)
264				CDCl31.43 (9H, s)2.08, 2.09 (3H, each s)2.88-3.67 (10H, m)3.75(3H,s) 3.77(3H,s)4.65-4.90 (3H, m)6.20 (1H, d, J=7.59Hz)6.73-6.88(3H,m)7.40- 7.75 (4H, m)
실시 예	구 조 식		MS	NMR(δvalue)
265				CDCl30.20-4.93 (16H, m)1.28 (3H, t, J=7Hz)1.44, 1.45 (9H, each s)3.84 (3H, s)3.86 (3H, s)4.14 (2H, q, J=7Hz)6.14 (1H, m)6.85-7.56 (7H, m)
266				CDC130.65-4.87 (28H, m)3.83, 3.84, 3.86(6H, each s)6.10-6.19 (1H, m) 6.84-7.56 (7H, m)
267				CDCl31.39 (9H, s)2.08, 2.10 (3H, each s)2.93-5.19 (17H, m)3.49 (3H, s) 3.55 (3H, s)6.15 (1H, d, J=8Hz)6.90-7.58 (7H, m)
268				CDC131.40 (9H, s)2.09 (3H, s)2.90-5.11 (15H, m)3.55 (3H, s)3.85 (3H, s) 6.03 (1H, m)6.86-7.58 (7H, m)
실시 예	구 조 식		MS	NMR(ôvalue)
269				CDC131.46 (9H, s)2.09 (3H, s)2.12 (3H, s)2.80-3.65 (10H, m)4.35-4.55 (12H, br)4.79 (2H, m)5.11 (2H, s)5.99 (1H, br)7.33-7.58 (4H, m)
270				CDC131.31 (3H,t,J=7.lHz)1.44-3.58 (21H, m)3.86 (6H,d,J=4.6Hz)4.15- 4.97 (5H, m)6.11 (1H,d,J=7.2Hz)6.88-7.56 (7H, m)
271				CDC131.24-2.18 (19H, m)2.50-3.04 (6H, m)3.41-3.86 (8H, m)4.14-4.99 (8H, m)6.09-6.18 (2H, m)6.85-7.65 (7H, m)
272				CDC131.21-1.47 (12H, m)2.99-3.20 (3H, m)3.66-5.15 (13H, m)6.80-7.60 (11H, m)
I(2011 II	구 조 식	M	SN	MR(δvalue)
273			3.	DC131.42 (9H, s)2.08, 2.09 (3H, each s)2.95-3.70 (10H, m)3.86 (3H, s) .88 (3H, s)3.90 (3H, s)4.65-4.95 (3H, m)6.11 (1H, bs)6.64 (1H, d,J=8.4Hz) .94 (1H,t,J=7.3Hz)7.35-7.65 (4H, m)
274			C t,	DC131.20-1.95 (13H, m)2.80-4.00 (16H,m)4.55-5.00 (3H, m)6.14 (1H, J=8Hz)6.80-6.95 (2H, m)7.04 (1H, t,J=7.9Hz)7.35-7.55 (4H, m)
275			(1	DCl30.04 (6H, s)0.88, 0.90 (9H, each s)1.00-1.75(13H, m)2.95-4.00 3H,m)4.55-5.00 (3H, m)6.15 (1H, d,J=7.3Hz)6.80-7.15 (3H, m)7.30-7.60 H, m)
276			3.	DC131.44 (9H, s)2.07 (3H, s)2.30-2.52(4H,m)2.75(2H,t,J=5.9Hz)2.90- 00(2H,m)3.20-3.70(4H,m)3.86(3H,s),3.84 (3H,s)4.10-4.23(2H, m)4.50- 70(1H,m)4.80-5.00 (2H, m)6.10-6.20 (1H, m)6.87-7.60 (7H, m)
실시	구 조	MS	SNI	MR(δvalue)

에 식 CDC130.83-1.07 (3H,m)1.22-1.38 (3H,m)1.45,1.41(9H, eachs)1.67-2.00 (5H, m)2.80-3.13(2H,m)3.43-3.60(2H,m)3.83(3H,s),3.85 (3H,s)4.10-4.30 (2H, m)4.50-5.00(4H,m)6.00-6.10 (1H, m)6.85-7.63 (7H, m)

시험에 1트롬빈 및 트립신 저해의 IC₅₀의 측정측정은 마이크로타이터 플레이트상에서, 실온에서 실시했다. 50% 메탄율C 용해한 각농도의 화합물 20 #6를 160 #1의 0.05M 트리스염산염 완충액/0.125M NaCl (pH 8.0, 0.25mM의 발색성 기질 N-벤조일 - Phe - Val - Arg - p-니트로아닐리드를 함유한다)와 혼화했다. 이어서, 20 #1의 인간 트롬빈 또는 소 트립신 (각각 최종농도 0.5 NIH 단위/ml, 1 단위/ml)를 첨가하고, 효소반응을 개시시켰다. 30분간의 인큐베이션후, 마이크로타이 플레이트 리더로 405 nm에서 흡광도를 측정하고, 효소에 의한 기질의 분해를 흡광도의 증대로서 잡았다. 저해제가 없는 우의 효소활성을 100%로 하고, 효소활성의 50%저해를 일으키는 저해제 농도를 IC

50으로 했다. 결과를 표 1에 나타냈다.

[班1]

실시예	IC50(M)	
	트콤빈	트립신
3	4.9×10-9	3.0×10-7
10	1.9×10-7	2.7×10-6
12	2.1×10-8	2.2×10-7
14	2.8×10-8	2.3×10-7
16	3.9×10 - 8	7.7×10-7
18	3.6×10-8	2.3×10-6
20	3.3×10-8	1.4×10-6
22	5.6×10-8	3.4×10-6
25	6.5×10-9	4.8×10-7
200	4.6×10-9	1.3×10-7
169	6.9×10-9	1.5×10-7
201	7.2×10-9	2.4×10-7
180	7.3×10-9	1.1×10-7
197	1.0×10-8	2.0×10-7
170	1.6×10-8	1.1×10-7
176	1.8×10-8	4.5×10-7
168	2.3×10-8	4.9×10-7

시험예 2숫컷 스프라그 - 도레이 (Sprague - Dawley) 랫트 (190~280 g, 7~8주령, 일본 찰스 리버사)를 1주간 이상 순한 후, 실험전일 1일 단식시켰다. 물은 자유 섭취하도록 했다. 방은 실은 24±2℃, 습도 55±5%, 조명시간 5:00~19:00년 했다.

혈장 트롬빈 시간(TT)은 자동혈액응고측정장치 KC-10A(Amelung사)를 사용하여 측정했다. 혈액을 시트르산나트륨 수용 (3.2%, 혈액 9용량에 대하여 1용량)과 혼화하고, 빙상 보존, 원심분리하여 혈장을 얻었다. 혈장은 TT측정까지 -20℃로! 존했다. 혈장을 오우렌(Owren) 완충액(베링거 만하임사)으로 5배 희석하고, 그의 100 ៨를 2분간, 37℃에서 인큐베이트고, 인간 트롬빈 (100 ៨, 20 NIH 단위/៧ 트리스완충액, 시그마사)와 혼화하였다. 최대 300초륨 한도로서, 37℃에서 응. 시간을 측정하였다. 동일 검체를 2중측정하고, 평균치를 구하였다.

피험화합물을 염산산성 1%카르복시셀루로오즈 나트륨 수용액에 용해하고, 50 mg/㎡제로 하였다. 랫트에 피험화합물 10 mg/kg 용량을 경구무여로 단회투여하였다. 투여전 및 투여 0.5, 1, 2, 4시간후에 혈액표본 (0.45 ㎡)을 좌심실에서 시트산 채취하고, 혈장 TT를 측정하였다. 측정된 TT치에서 피험화합물 투여전후에서의 TT치의 비(TT ratio)를 산출하였다. 결률 표 2에 나타낸다.

[丑2]

	TT ratio
	0.5 1 2 4(시간)
실시예 3의 화합물	4.3 6.7 1.9 1.2

산업상이용가능성

(57)청구의 범위

청구항1

다음 일반식 (1)

[식중, R₁은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R₂는 치환기를 갖고 있어도 좋고, 또한 축합되어 있어 좋은 질소원자 함유 복소환을 나타내고, R₃는 기 A-(CH₂) $_{\rm m}$ - (여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어 좋고, 또한 축합되어 있어도 좋은 복소환 또는 치환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 0 \sim 6의 정수를 타내며, 또한 -(CH₂) $_{\rm m}$ - 부분은 1개 이상의 치환기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급(킬기를 나타내고, R₄는 수소원자 또는 저급알킬기를 나타내고, R₅는 기 -C(=NR $_{\rm 6}$)NH $_{\rm 2}$, 기 -NH-C(=NR $_{\rm 6}$)NH $_{\rm 2}$ 또는 기 -C(H₂) $_{\rm n}$ -NHR $_{\rm 6}$ (여기서, R $_{\rm 6}$ 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보이, 저급알콕시키, 또는 저급히드록시알킬카르보일옥시기를 나타내고, n은 0 \sim 2의 정수를 나타내며, 또한-(CH $_{\rm 2}$) $_{\rm n}$ -부분은 1개이상의 치환기로 치환되어 있어도 좋다)를 나타낸다]로 표시되는 술파미드 유도체 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항2

제 1항에 있어서, R_3 중의 A가 치환되어 있어도 좋은 아릴기인 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수1물.

청구항3

제 1항에 있어서, R_3 중의 A가 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환인 화합물 또는 그의 약제학적으를 허용되는 염 또는 그의 수화물.

청구항4

제 1항에 있어서, R₂가 하기의 기 (2)~(6)

$$(CH_{2})P_{2}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2$$

[식중, $(R_7)_{\text{sub}}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 ! 어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 라 급알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드콕시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아실옥시기, 할로겐원자, : 환되어 있어도 좋은 어니는기, 치환되어 있어도 좋은 아일술포닐기, 저급하드콕시알킬기, 저급하드콕시알킬기, 저급하드콕시알킬기, 저급하드콕시알킬기, 저다라보알킬기, 저급하드콕시알킬기, 저급하드콕시알킬기, 저다라보알킬기, 저급카르복실알킬기, 저급카르보닐아미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR_8 (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 나타낸다)을 나내며, R_8 은 수소원자, 친소원을 나타낸다)을 나타내다, 다른 등일 또는 상이한 것으로서, R_8 은 나타내나, 다만, R_8 은 수상가 1, 2, 3, 4 또는 5의 어느 하나이고, 및 S는 동일 또는 상이한 것으로서, R_8 은 나타내나, 다만, R_8 은 수상물 또는 5의 어느 하나이다)의 어노 나로 표시되는 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항5

제 1항에 있어서, R_5 가 기 -C(= NR_6) NH_2 (여기서, R_6 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알시기, 저급알콕시카르보닐지, 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 화합물는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항6

제 1항, 제 2항 또는 제 4항에 있어서, R_3 중의 A가 치환되어 있어도 좋은 아릴기이며, 또한 R_2 가 기 (2) \sim (6)

$$(CH_{2})P_{2}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2$$

[식중, $(R_7)_{sub}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 ! 어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 다급알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드록시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아일옥시기, 함로겐원자, : 환되어 있어도 좋은 아이노기, 치환되어 있어도 좋은 카르복실기, 치환되어 있어도 좋은 아실옥시기, 함로겐원자, : 환되어 있어도 좋은 저급알킬술포닐기, 치환되어 있어도 좋은 아릴술포닐기, 저급알콕시알킬기, 저급히드록시알킬기, 저아미노알킬기, 저급카르복실알킬기, 저급카르보닐아미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR_8

(여기서, R₈은 수소원자, 치환 나이도 좋은 저급알킬기, 아미노보호기, 치환되어 모든 좋은 아릴기, 치환되어 있어 좋은 아실기, 치환되어 있어도 좋은 아실기, 치환되어 있어도 좋은 복소환을 나타낸다)을 나타내며, p 및 q는 동일 또는 상이한 것으로서, 0~5의 정수를 나타내나, 다만, p+q가 1, 2, 3, 4 또는 5의 어느 하나이고, 및 s는 동일 또는 상이한 것으로서, 0~5의 정수를 나타내나, 다만, r+s가 0, 1, 2, 3, 4 또는 5의 어느 하나이다)의 어느 나로 표시되는 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물

청구항7

제 1항, 제 3항 또는 제 4항에 있어서, R_3 중의 A가 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환이며, 또한 F가 기 $(2)\sim(6)$

$$(CH_{2})p_{r}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})s$$

[식중, $(R_7)_{\text{sub}}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 있어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 다리알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드콕시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아니노기, 치환되어 있어도 좋은 아일속시기, 할로겐원자, 환되어 있어도 좋은 어리알킬술포닐기, 치환되어 있어도 좋은 아릴술포닐기, 저급항콕시알킬기, 저급하드콕시알킬기, 저다마노알킬기, 저급하르콕시알킬기, 저다마노알킬기, 저급카르복실알킬기, 저급카르보닐아미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR_8 (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 이릴기, 치환되어 있어 좋은 아실기, 치환되어 있어도 좋은 술포닐기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환을 나타낸다)을 나내며, P 및 P 이는 등일 또는 상이한 것으로서, P 이는 하나이고, 및 P 이는 등일 또는 상이한 것으로서, P 이는 하나이다, P 이는 P 이는 사이한 것으로서, P 이는 이는 아니라 이는 나로 표시되는 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항8

제 1항, 제 2항 또는 제 5항에 있어서, R_3 중의 A가 치환되어 있어도 좋은 아릴기이며, 또한 R_5 가 $-C(=NR_6)NH_2$ (여기서, R_6 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보닐기, 저급알콕시카르보닐지, 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 화합물 또는 그의 약제화적으로 허용되는 염 또는 그의 수물.

청구항9

제 1항, 제 3항 또는 제 5항에 있어서, R_3 중의 A가 치환되어 있어도 좋고, 또한 축합되어도 좋은 복소환이며, 또한 R_5 가· $(=NR_6)NH_2$ (여기서, R_6 는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보닐기 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항10

제 1항, 제 4항 또는 제 5항에 있어서, R₂가 기 (2)~(6)

$$(CH_{2})p_{X}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})r$$

[식중, $(R_7)_{\text{sub}}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 '어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 이리가, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드룍시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아이노기, 지한되어 있어도 좋은 아이노기, 지한되어 있어도 좋은 아이노기, 지급하드록시알킬기, 저급하드록시알킬기, 저다가르보일이미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR8 (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 아일기, 치환되어 있어 좋은 아일기, 치환되어 있어도 좋은 성고일기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 아일기, 치환되어 있어도 좋은 살모일기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환을 나타낸다)을 나내며, R_8 은 무료의 또는 상이한 것으로서, R_8 는 사라내나, 다만, R_8 는 사라내나, 다만, R_8 는 상이한 것으로서, R_8 는 사라내나, 다만, R_8 는 사라내나, 아일이, 아일이, 아일이, 자급알콕시기, 지급알콕시키, 자급알콕시키, 자급알콕시키는 역기서, R_8 는 수소원자, 지급알킬기, 히드록시기, 아일기, 아일익시기, 지급알콕시키는 약제학적으로 허용되는 염 또는 그의 수화물.

청구항11

제 1항, 제 2항, 제 4항, 제 5항, 제 6항, 제 8항 또는 제 10항에 있어서, R_3 중의 A가 치환되어 있어도 좋은 아릴기이며, 또한 R_2 가 기 (2) \sim (6)

$$(CH_{2})_{P} \stackrel{(R_{7}) \text{sub}}{\otimes} \qquad (CH_{2})_{r} \stackrel{(CH_{2})_{r}}{\otimes} \qquad (CH_{2})_{s} \qquad (CH_{2})_$$

[식중, $(R_7)_{\text{Sub}}$ 는 기 $(2)\sim(6)$ 중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 ! 어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 : 급알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드록시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아미노기, 치환되어 있어도 좋은 하기, 치환되어 있어도 좋은 아미노기, 치환되어 있어도 좋은 아리속시기, 한로겐원자, : 환되어 있어도 좋은 저급알킬술포닐기, 치환되어 있어도 좋은 아리슬로 그기, 저급알콕시알킬기, 저급하드록시알킬기, 저아미노알킬기, 저급카르복실알킬기, 저급카르보닐아미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR_8 (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 아릴기, 치환되어 있어

좋은 아실기, 치환되어 있어도 물모닐기. 치환되어 있어도 좋고, 또한 축합되어 있는 좋은 복소환을 나타낸다)을 타내며, p 및 q는 동일 또는 상이한 것으로서, 0~5의 정수를 나타내나, 다만, p+q가 1, 2, 3, 4 또는 5의 어느 하나이고, 및 s는 동일 또는 상이한 것으로서, 0~5의 정수를 나타내나, 다만, r+s가 0, 1, 2, 3, 4 또는 5의 어느 하나이다)의 어느 나이고, 또한 R₅가 -C(=NR₆)NH₂ (여기서, R₆는 수소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보닐기, 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 화합을 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항12

제 1항, 제 3항, 제 4항, 제 5항, 제 7항, 제 9항 또는 제 10항에 있어서, R_3 중의 A가 치환되어 있어도 좋고, 또한 축합되(있어도 좋은 복소환이며, 또한 R_2 가 기 $(2)\sim(6)$

$$(CH_{2})P_{2}(R_{7})sub \qquad (CH_{2})r \qquad g \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})r$$

[식중, $(R_7)_{sub}$ 는 기 (2)~(6)중의 탄소원자에 결합하는 1개 이상의 임의의 수소원자가 동일 또는 상이한 R_7 로 치환되어 ! 어도 좋은 것을 의미하고, R_7 는 치환되어 있어도 좋은 저급알킬기, 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋은 : 급알콕시기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환, 산소원자, 히드록시기, 치환되어 있어도 좋은 아기, 치환되어 있어도 좋은 아일옥시기, 함보되어 있어도 좋은 아일옥시기, 함보되어 있어도 좋은 아일옥시기, 함보되어 있어도 좋은 아일옥시기, 함보되어 있어도 좋은 저급알킬술포닐기, 지합되어 있어도 좋은 아일술포닐기, 저급하므콕시알킬기, 저급하므콕시알킬기, 저다가르보일아미노알킬기를 나타내고, B는 탄소원자, 산소원자, 황원자 또는 NR_8 (여기서, R_8 은 수소원자, 치환되어 있어도 좋은 저급알킬기, 아미노보호기, 치환되어 있어도 좋은 아릴기, 치환되어 있어 좋은 아일기, 치환되어 있어도 좋은 술포닐기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환을 나타낸다)을 나내며, P 및 P 이는 동일 또는 상이한 것으로서, P 이는 하나이고, 및 P 이는 당이한 것으로서, P 이는 하나이고, 및 P 이는 상이한 것으로서, P 이는 사이고, 또한 P 이는 사이한 것으로서, P 이는 사이고, 또한 P 이는 사이한 것으로서, P 이는 수소원자, 지급알킬기, 히드록시기, 아일기, 아일옥시기, 지급알콕시키르보닐옥시기, 지급알콕시카르보닐옥시기, 저급알콕시카르보닐옥시기, 또는 저급히드록시알킬카르보닐옥시기를 나타낸다)인 화합물 또는 : 의 약제확적으로 허용되는 염 또는 그의 수화물.

청구항13

 R_3 가 나프틸메틸기인 제 1항, 제 2항, 제 6항, 제 8항, 또는 제 11항 기재의 화합물 또는 그의 약제학적으로 허용되는 염는 그의 수화물.

청구항14

 R_2 가 치환되어 있어도 좋은 피페라지닐기 또는 치환되어 있어도 좋은 피페리디닐기인 제 1항, 제 4항, 제 6항, 제 7항, 저 10항, 제 11항 또는 제 12항 기재의 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구함15

R₂가 N-아세틸피페라지닐기인 제 1항, 제 4항, 제 6항, 제 7항, 제 10항, 제 11항, 제 12항 또는 제 14항 기재의 화합물는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구함16

 R_5 가 -C(=NH)NH $_2$ 인 제 1항, 제 5항, 제 8항, 제 9항, 제 10항, 제 11항 또는 제 12항 기재의 화합물 또는 그의 약제학적로 허용되는 염 또는 그의 수화물.

청구항17

Nɑ-(1-나프틸메틸아미노술포널)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항18

 $N\alpha$ -(벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수물.

청구항19

Nɑ-(2-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제화적으로 허용되는 염 또는 그의 수화물.

청구항20

 $N\alpha$ -(2-시클로헥실에틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 열 또는 그의 수화물.

청구항21

Nα-(3-페닐-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물

청구항22

 $N\alpha$ -(2-페닐벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 의 수화물.

청구항23

N α -(3-페닐옥시벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 ε 는 그의 수화물.

청구항24

N α -(4-페닐벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 의 수화물.

청구항25

Nα-(2-페네틸벤질)아미노술포닐-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항26

 $N\alpha$ -(2,3-디메룍시벤질아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항27

Nα-(6-히드록시-1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허는되는 염 또는 그의 수화물.

청구항28

Nα~(1-나프틸메틸(메틸)아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 또는 그의 수화물.

청구항29

 $N\alpha$ -(3-인독릴-3-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되면 또는 그의 수화물.

청구항30

Nɑ-(2,2-디페틸에틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 드는 그의 수화물.

청구항31

Nα-(N-벤질피룔리딘-2-일-메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 ੈ 용되는 염 또는 그의 수화뮵.

청구항32

 $N\alpha$ -(3-메록시벤질아미노술포닐)-3~아미디노페닐알라닌-4~아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항33

Nα-(3-페닐-2-(1-피룔리디닐카르보닐)-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의약제학적으로 허용되는 염 또는 그의 수화물

청구항34

 $N\alpha$ -(3-에복시-2-벤즈티오페닐메틸아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항35

 $N\alpha-(2-나프틸-2-에틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.$

청구항36

 $N\alpha$ -(2-메록시벤질아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구함37

 $N\alpha-(4-\Gamma)$ 히드로퀴놀릴메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되염 또는 그의 수화물.

청구항38

 $N\alpha$ -(2-에록시벤질아미노술포닐)-3~아미디노페닐알라닌-4~아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항39

 $N\alpha$ -(2-시클로핵실옥시에틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되염 또는 그의 수화물.

청구항40 ...

Na-(2-벤질(벤질)아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항41

 $N\alpha$ -(3,3-디페닐-n-프로필아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항42

청구항43

 $N\alpha$ -(3-브로모-1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용된는 염 또는 그의 수화물.

청구항44

Nɑ-(6-메톡시-1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항45

Nɑ-(4-이소퀴놀릴메틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 열 또는 그의 수화물.

청구항46

 $N\alpha$ -(1-나프틸에틸아미노술포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항47

 $N\alpha-(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-메틸피페리디드 또는 그의 약제학적으로 허용되는 염 또는 의 수화물.$

청구항48

 $N\alpha-(1-나프틸메틸아미노슐포닐)-3-아미디노페닐알라닌-4-아세틸피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.$

청구항49

 $N\alpha$ -(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-포르밀피페라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항50

청구항51

 $N\alpha$ -(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-메틸술포닐피페라지드 또는 그의 약제학적으로 허용되는 열 또는 그의 수화물.

청구항52

Nɑ-(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-페닐슐포닐피페라지드 또는 그의 약제학적으로 허용되는 열 또는 그의 수화뮴.

청구항53

 $N\alpha-(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-(p-톨루엔술포닐)피패라지드 또는 그의 약제학적으로 허용는 염 또는 그의 수화물.$

청구항54

Nα-(1-나프틸메틸아미노술포닐)-3-아미디노페닐알라닌-4-(2-테트라히드로이소퀴노릴)피폐라지드 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구함56

일반식 (7)

[식중, R_1 은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R_{2a} 는 수소원자 또는 저급알킬기를 나타내며, R_3 는 7 A-(CH $_2$) $_m$ - (여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환 또는 환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 $0\sim6$ 의 정수를 나타내며, 또한 -(CH $_2$) $_m$ - 부분은 1개 이상의 치기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급알킬기를 나타내고, R_4 는 수소원자 또는 저급알킬 또는 아미노보호기를 나타내고, R_5 는 기-C(= NR_6) NH_2 , 기-NH+C(= NR_6) NH_2 또는 기-(CH $_2$) $_n$ $-NHR_6$ (여기서, R_6 는 4소원자, 저급알킬기, 히드록시기, 아실기, 아실옥시기, 저급알콕시기, 저급알콕시카르보닐기, 저급알콕시카르보닐옥시기 또는 저급히드록시알킬카르보닐옥시기를 나타내고, 10은 11은 지급하드록시알킬카르보닐옥시기를 나타내고, 11은 12이 약제학적으로 허용되는 염 또는 그의 수화물.

청구항57

일반식 (8)

[식중, R₁은 수소원자, 저급알킬기 또는 아미노보호기를 나타내며, R $_{2a}$ 는 수소원자 또는 저급알킬기를 나타내며, R $_{3}$ 는 7 A-(CH $_{2}$) $_{m}-$ (여기서, A는 치환되어 있어도 좋은 아릴기, 치환되어 있어도 좋고, 또한 축합되어 있어도 좋은 복소환 또는 환되어 있어도 좋은 저급시클로알킬기를 나타내고, m은 0 \sim 6의 정수를 나타내며, 또한-(CH $_{2}$) $_{m}-$ 부분은 1개 이상의 치기로 치환되어 있어도 좋다), 수소원자 또는 치환되어 있어도 좋은 저급알킬기를 나타내고, R $_{4}$ 는 수소원자 또는 저급알킬 또는 아미노보호기를 나타낸다]로 표시되는 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물.

청구항58

제 1항 내지 제 55항의 어느 하나에 기재된 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수화물을 유효성분으를 함유하는 것을 특징으로 하는 의약 조성물.

청구항59

제 1항 내지 제 55항의 어느 하나에 기재된 화합물 또는 그의 약제학적으로 허용되는 염 또는 그의 수회물을 유효성분으를 함유하는 것을 특징으로 하는 항트롬빈저해제.

청구항60

제 1항 내지 제 55항의 어느 기재된 화합물 또는 그의 약제학적으로 허용되는 함유하는 것을 특징으로 하는 응발전 치료제.

는 그의 수화물을 유효성분요!