Foam Label Tool

Prerequisites

- Python 3.8
 - o earlier versions might work, too
- pip3
- virtualenvwrapper (recommended)
 - I used "# Step 3" of this guide
- put the code of this repo in ~/gitprojects/foam_label_tool
- put the dataset in ~/gitprojects/datasets/foam/

Installation

- then navigate to this folder with cd ~/gitprojects/foam_label_tool
- create a virtual environment with python3.8
 - mkvirtualenv foam_label_tool -p python3.8
- install the requirements
 - pip install -r requirements.txt

Dataset

Your dataset is expected to look like this

Your folders should follow the following naming convention: PPI<#>_<Reti/Unreti>_<#batch>

Your images should be named either image_<X>_<Y>_<side>_orig_eightBit.png or if they were gamma adjusted image_<X>_<Y>_<side>_orig_eightBit_gamma2_0.png

Start the script

You can either use the tool to label data or to export the labels you have created to a .csv file

- make sure you are working in the virtualenv with work foam_label_tool
- navigate to the project folder cd ~/gitprojects/foam_label_tool
- to label:
 - run the script with python foam_label_tool.py -d '/home/<username>/gitprojects/datasets/foam/' -g True
 - make sure to replace <username> with your actual username

- · to export:
 - run the script with python foam_label_tool.py -d
 '/home/<username>/gitprojects/datasets/foam/' -e True

The parameters work the following:

- e: marks the export
- g: wether you the pictures gamma adjusted
- d:path to your dataset

Labeling

• first select a batch that you want to label

```
jonaszagatta@pop-os:~/gitprojects/foam_label_tool

jonaszagatta@pop-os:~/gitprojects/foam_label_tool$ workon foam_label_tool
(foam_label_tool) jonaszagatta@pop-os:~/gitprojects/foam_label_tool$ python foam_label_tool.py

select the foam you want to label

PPI25_Reti_20-19011789-76

PPI10_Unreti_20-1802247-3

PPI40_Reti_20-1901870-14

PPI20_Unreti_201901837-41

PPI20_Reti_20-190264-4

PPI10_Reti_20-190264-4

PPI10_Reti_20-1901837-41

PPI25_Unreti_20-1901870-14

PPI25_Unreti_20-1901870-14
```

• then select the cube to label

• When a the first picture of the selected cube is shown

- you can see the information about the cube and the side that you are currently labeling in the top bar
- you can **zoom** with the mouse wheel
- you can **move** by drag-and-dropping with the mouse (like on a map)
- Select a strand you want to label
- Press "K", for knots
 - now you can mark two knots with 3 **double-clicks** each
 - first select the first 3 strands of one knot

• then repeat it for the second knot

- only after finishing all 3 click, a triangle appears
- a connecting line representing the strand is shown after marking two knots
- Press "M", for measurement

• now vectors will be shown and you can adjust their length by the moving the mouse

- a thin blue line will appear, showing the length of your measurement
- you have to do 6 measurements by **double-clicking** at the when you are satisfied with the length of the blue line
 - 3 above the green line
 - 3 below the green line
- where to measure is selected automatically
- Only once you've completed all measurements, continue
- Press "S", for Saving
 - the measurements will be saved to a .json file

• they will also be shown in the image

- Now you can label another strand
- to continue to the next picture, either **Press "N"** or **Press "Esc"*

JSON results

- The resulting JSON will be saved to the same folder as the origin picture
- The JSON will be named image_<X>_<Y>_<side>. json according to the picture's name, that was labeled
- The content of the JSON will follow the following style:

```
"measurement90_2": "[(2291, 623), (2318, 618)]",
    "px10": "45.0",
    "px50": "34.0",
    "px90": "65.0",
    "calculated_thickness": "44.5"
},
    ...
]
```

- · it contains:
 - the three points that specified each knot as knot1 and knot2
 - the calculated center points of the know, that mark the strand, as bridge1 and bridge2
 - the start and ending point off all measurements as measurement < X%>_<#>
 - the calculated length of every measurement in pixels px<#>
 - the final claculated measurement for the strand thickness of this strand in pixels as calculated_thickness
- every strand is an element of measurements

CSV results, averaged

- · You have to export every Batch by itself
 - o all jsons will be evaluated and exported to the csv file
- run the command python foam_label_tool.py -d
 '/home/<username>/gitprojects/datasets/foam/' -e True
 - select batch
- a .csv file will be created in the folder of this batch (where also the pictures and .json are)
- the naming is dd-mm-yyyy_hh:mm:ss_result.csv, e.g. 30-07-2020_18:42:33_result.csv
 - this is, so you can just keep odler results if you decide to label more
- the result of the csv will look like this:

batch	Х	У	reticulated	thickness_1	thickness_2	thickness_3	thickness_4	thickness
20-1901870-14	1	2	False	13.458333333333333	11.75	10.5	13.9	12.452380952380953
20-1901870-14	1	9	False	12.35	13.7	14.2	13.0	13.3125
20-1901870-14	2	2	False	9.458333333333334	13.1	13.15	12.35	11.892857142857142
20-1901870-14	2	9	False	12.45	14.0	11.5	13.65	12.9
20-1901870-14	3	2	False	12.458333333333333	10.6	10.85	11.2	11.333333333333333
20-1901870-14	3	9	False	11.5	14.2	11.2	12.35	12.3125
20-1901870-14	4	2	False	11.541666666666666	11.45	10.85	10.85	11.19047619047619

- first 4 colums identify which cubes were labeled (good if you copy all your csv somewhere else or want to batch-import them later)
- thickness_<#> is the average strand thickness calculated by side
- thickness is then the average strand thickness of all sides