Machine Elements Report

June 16, 2020

Contents

1	Shaf	ft Design	3
	1.1	Nomenclature	3
	1.2	Choose material	3
	1.3	Determine permissible stress	4
		1.3.1 Find $[\sigma_H]$	4
		1.3.2 Find $[\sigma_F]$	4

List of Tables

- F_t tangential force, N
- v conveyor belt speed, m/s
- D pulley diameter, mm
- L service life, year
- T working torque, $N \cdot mm$
- t working time, s
- δ_u error of speed ratio, %

Chapter 1

Shaft Design

1.1 Nomenclature

1.2 Choose material

We choose material based on the following formula:

$$v_s = 4.5 \times 10^{-5} n \sqrt[3]{T} \tag{1.1}$$

With $n_{sh1} = 2930 \, (\text{rpm}), T_{sh1} \approx 37570.93 \, (\text{N} \cdot \text{mm}) \Rightarrow v_{s1} \approx 4.42 \, (\text{m/s})$

With
$$n_{sh2} = 586$$
 (rpm), $T_{sh2} \approx 178537.08$ (N·mm) $\Rightarrow v_{s2} \approx 1.48$ (m/s)

Therefore, for shaft 1, we choose worm wheel material $\delta pa \times H 10$ -4-4, which yields $\sigma_{b1} = 600$ (MPa), $\sigma_{ch1} = 200$ (MPa) according to table 7.1. Using interpolation and table 7.2, the choice of shaft material is quenched and tempered 45 steel (specifications in table 6.1), which yields $[\sigma_{H1}] \approx 191.3259$ (MPa).

For shaft 2, we choose worm wheel material cq 15-32, which yields $\sigma_{b2} = 150$ (MPa), $\sigma_{ch2} = 320$ (MPa) according to table 7.1. Also using interpolation and table 7.2, the choice of shaft material is 20X steel (specifications in table 6.1), which yields $[\sigma_{H2}] \approx 141.7534$ (MPa).

1.3 Determine permissible stress

1.3.1 Find $[\sigma_H]$

Since $v_{s1} \approx 4.42 \,(\text{m/s}) < 5 \,(\text{m/s})$ and $v_{s2} \approx 1.48 \,(\text{m/s}) < 2 \,(\text{m/s})$, table 7.2 is used to find $[\sigma_H]$. From the results above, we choose:

$$[\sigma_{H1}] \approx 191.3259 \, (\text{MPa})$$

$$[\sigma_{H2}] \approx 141.7534 \, (\text{MPa})$$

1.3.2 Find $[\sigma_F]$

For shaft 1, we use the formula:

$$[\sigma_{F1}] = [\sigma_{FO1}]K_{FL1}$$
 (1.2)

Since the steel is quenched, we can increase $[\sigma_{FO1}]$ by 25%:

$$[\sigma_{FO1}] = (0.25\sigma_{b1} + 0.08\sigma_{ch1}) \times 125\% = 207.5 \text{ (MPa)}$$

$$K_{FL1}=\sqrt[9]{10}$$