KLAUSUR ALGEBRA Variante A

- 1. a) Man definiere and man finde je ein Beispiel für die folgende Begriffe: Funktion, Ordnungsrelation, Gruppe.
 - b) Seien $f: A \to B$ und $g: B \to C$ zwei Funktionen. Man zeige, dass wenn
- $g\circ f$ surjektiv ist, dann ist gauch surjektiv. c) Seien $f:G\to H$ und $g:H\to K$ zwei Gruppenhomomorphismen. Man
 - zeige, dass $g \circ f$ auch ein Gruppenhomomorphismus ist.
 - 2. Man betrachte die Funktionen $f:\mathbb{R}\to\mathbb{R}$ und $g:\mathbb{R}\to(0,\infty)$ wobei

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} 2x-1\ \text{für }x\in(-\infty,1]\\ x+1\ \text{für }x\in(2,\infty) \end{cases}\quad\text{und }g(x)=x^2+1.$$

- a) Man überprüfen ob die Funktion f injektiv und/oder surjektiv ist.
- b) Ob es existiert, man berechne die umgekehrte Funktion f^{-1}
- c) Man berechne Zusammengesetztefunktionen $f \circ g$ und/oder $g \circ f$ (ob sie
- d) Man finde ein Beispiel für eine Teilmenge $X \subseteq (0, \infty)$ so dass $g(g^{-1}(X)) \neq X$.
- 3. a) Man zeige, dass die Relation ($\mathbb{Z}, \mathbb{Z}, \equiv$) gegeben durch

$$\forall x,y \in \mathbb{Z} : x \equiv y \text{ g.d.w } 3|x+2y$$

eine Äquivalenzrelation ist.

b) Man bestimme die Faktormenge Z/\equiv , modulo die Äquivalenzrelation die bei a) definiert wird.

c) Man zeige, dass die Relation ($\mathbb{C}, \mathbb{C}, \leq$) wobei

$$\forall a,b,c,d \in \mathbb{R} : a+ib \le c+id \text{ g.d.w. } a \le c \text{ und } d \le d$$

eine Ordungsrelation ist. Existieren in C unvergleichbare Elemente bezüglich dieser Ordnungsrelation?

a) Man zeige, das

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \mid a,b,c \in \mathbb{R}, ac \neq 0 \right\}$$

- eine Untergruppe von $\text{GL}_2(R)$ ist. b) Man zeige, das
s $f:\mathbb{R}\to\mathbb{C}^*,\,f(x)=\cos(x)+i\sin(x)$ ein Gruppenhomomer-
- phismus ist. c) Man finde einen injektive Gruppenhomomorphismus (Z,+) \to (S(Z), o), wobei S(Z) die Symmetrischegruppe der Menge Z ist.

- c) Să se găsescă un homomorfism injectiv de grupuri ($\mathbb{Z},+$) \to ($S(\mathbb{Z}),\circ$), unde $S(\mathbb{Z})$ este grupul simetric al mulțimii \mathbb{Z} .

LUCRARE DE VERIFICARE ALGEBRA Varianta A

- 1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru
 - fiecare: funcție, relație de ordine, grup. b) Fie $f:A\to B$ și $g:B\to C$ doă funții. Să se arate că dacă $g\circ f$ este
 - c) Fie $f:G\to H$ și $g:H\to K$ două homomorfisme de grupuri. Să se arate că surjectivă, atunci g este de asemenea surjectivă.
 - $g \circ f$ este de asemenea un homomorfism de grupuri.
 - 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to (0, \infty)$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases}2x-1\ \mathrm{pentru}\ x\in(-\infty,1]\\x+1\ \mathrm{pentru}\ x\in(2,\infty)\end{cases}\ \ \mathrm{si}\ g(x)=x^2+1.$$

- a) Să se verifice dacă funcție f este injectivă \sin sau surjectivă.
 - b) Dacă există să se determine funția inversă f^{-1}
- c) Să se determine compunerile $f\circ g$ și/sau $g\circ f$ (dacă ele există). d) Să se găsescă un exemplu de submulțime $X\subseteq (0,\infty)$ așa încât $g(g^{-1}(X))\neq$
- 3. a) Să se arate că relația ($\mathbb{Z}, \mathbb{Z}, \equiv$) dată prin

$$\forall x, y \in \mathbb{Z} : x \equiv y \text{ ddacă } 3|x + 2y$$

este o relație de echivalență.

b) Să se determine mulțimea factor Z/\equiv , modulo relația de echivalență definită

la a). c) Să se arate că relația ($\mathbb{C}, \mathbb{C}, \leq$) unde

$$\forall a,b,c,d \in \mathbb{R}: a+ib \leq c+id$$
ddac
ă $a \leq c$ și $d \leq d$

este o relație de ordine. Există în $\mathbb C$ elemente incomparabile în raport cu această relatie?

4. a) Să se arate că

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \mid a,b,c \in \mathbb{R}, ac \neq 0 \right\}$$

este un subgrup al grupului $\operatorname{GL}_2(R)$.

- b) Să se arate că $f: \mathbb{R} \to \mathbb{C}^*$, $f(x) = \cos(x) + i\sin(x)$ este un homomorfism de

ALGEBRA

Variante B

- 1. a) Man definiere and man finde je ein Beispiel für die folgende Begriffe: Relation, Partition, Untergruppe.
 - b) Seien $f:A\to B$ und $g:B\to C$ zwei Funktionen. Man zeige, dass wenn
- c) Sei $f:G \to H$ ein Gruppenisomorphismus. Man zeige, dass f^{-1} auch ein $g \circ f$ injektiv ist, dann ist f auch injektiv.
 - Gruppenisomorphismus ist.
- 2. Man betrachte die Funktionen $f: \mathbb{R} \to \mathbb{R}$ und $g: (0, \infty) \to \mathbb{R}$ wobei

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} -x+1\ \mathrm{für}\ x\in(-\infty,-1]\\ -3x-1\ \mathrm{für}\ x\in(-1,\infty) \end{cases} \quad \mathrm{und}\ g(x)=x^2-4x+3.$$

- a) Man überprüfen ob die Funktion f injektiv und/oder surjektiv ist.
- b) Ob es existiert, man berechne die umgekehrte Funktion f^{-1}
- c) Man berechne Zusammengesetztefunktionen $f \circ g$ und/oder $g \circ f$ (ob sie
- d) Man finde ein Beispiel für eine Teilmenge $X \subseteq (0, \infty)$ so dass $g^{-1}(g(X)) \neq X$.
- 3. a) Man zeige, dass die Relation ($\mathbb{Z},\mathbb{Z},\equiv$) gegeben durch

$$\forall x,y \in \mathbb{Z} : x \equiv y \text{ g.d.w } 5|x+4y$$

eine Äquivalenzrelation ist.

- b) Man bestimme die Faktormenge Z/\equiv , modulo die Äquivalenzrelation die bei a) definiert wird.
 - c) Man zeige, dass die Relation ($\mathbb{R}^{\mathbb{R}}, \mathbb{R}^{\mathbb{R}}, \leq$) wobei

$$\forall f,g \in \mathbb{R}^{\mathbb{R}}: f \leq g \text{ g.d.w. } f(x) \leq g(x), \forall x \in \mathbb{R}$$

eine Ordungsrelation ist. Existieren in R^R unvergleichbare Elemente bezüglich dieser Ordnungsrelation?

4. a) Man zeige, dass

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 3b & a \end{array} \right) \mid a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$$

eine Untergruppe von $GL_2(R)$ ist.

- b) Man regge, dass $f: \mathbb{R} \to \mathbb{R}^*$, $f(x) = 2^x$ ein Gruppenhomomorphismus ist. c) Man finde einen injektive Gruppenhomomorphismus $(\mathbb{R},+) \to (S(\mathbb{R}),\circ)$, wobei $S(\mathbb{R})$ die Symmetrischegruppe der Menge \mathbb{R} ist.

LUCRARE DE VERIFICARE ALGEBRA Varianta B

- 1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru fiecare: relație, partiție, subgrup.
 - b) Fie $f:A \to B$ şi $g:B \to C$ doğ funţii. Să se arate că dacă $g \circ f$ este injectivă, atunci f este de asemenea injectivă.
- c) Fie $f:G \to H$ un izomorfism de grupuri. Să se arate că f^{-1} este de asemenea
 - un izomorfism de grupuri.
 - 2. Se consideră funcțiile $f:\mathbb{R} \to \mathbb{R}$ și $g:(0,\infty) \to \mathbb{R}$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} -x+1 \text{ pentru } x\in (-\infty,-1] \\ -3x-1 \text{ pentru } x\in (-1,\infty) \end{cases} \text{ si } g(x)=x^2-4x+3.$$

- a) Să se verifice dacă funcție f este injectivă şi/sau surjectivă.
 - b) Dacă există să se determine funția inversă f^{-1} .
- c) Să se determine compunerile $f\circ g$ și/sau $g\circ f$ (dacă ele există). d) Să se găsescă un exemplu de submulțime $X\subseteq (0,\infty)$ așa încât $g^{-1}(g(X))\neq$
- 3. a) a) Să se arate că relația ($\mathbb{Z},\mathbb{Z},\equiv$) dată prin

$$\forall x,y \in \mathbb{Z}: x \equiv y$$
ddacă $5|x+4y$

este o relație de echivalență.

b) Să se determine mulțimea factor Z/\equiv , modulo relația de echivalență definită

la a). c) Să se arate că relația ($\mathbb{R}^\mathbb{R},\mathbb{R}^\mathbb{R},\leq)$ unde

$$\forall f,g \in \mathbb{R}^{\mathbb{R}}: f \leq g \ \mathrm{ddac\bar{a}} \ f(x) \leq g(x), \forall x \in \mathbb{R}$$

este o relație de ordine. Există în $\mathbb{R}^{\mathbb{R}}$ elemente incomparabile în raport cu această relație?

4. Să se arate că

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 3b & a \end{array} \right) \mid a,b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$$

este un subgrup al grupului $GL_2(R)$.

- b) Să se arate că $f: \mathbb{R} \to \mathbb{R}^*$, $f(x) = 2^x$ este un homomorfism de grupuri.
- c) Să se găsescă un homomorfism injectiv de grupuri ($\mathbb{R},+$) \rightarrow ($S(\mathbb{R}),\circ$), unde $S(\mathbb{R})$ este grupul simetric al mulțimii \mathbb{R} .