

# Ordonnancement d'applications de type stencil sur cluster hybrides CPU/GPU

Université de Bordeaux - LaBRI - INRIA Bordeaux Sud-Ouest - Équipe STORM

Loris Lucido

26 septembre 2016

#### **Domaine du Calcul Haute Performance**

- · Résoudre un problème
  - de plus en plus rapidement
  - de taille de plus en plus grande
- Application de simulation en :
  - climatologie
  - aérospatiale
  - dynamique moléculaire



## Présentation de l'équipe STORM

STatic Optimizations Runtime Methods, trois axes de recherche :

- Langage de haut niveau spécifique à un domaine (e.g. QIRAL)
- Outils d'analyse de performance et d'aide à l'optimisation (e.g. MAQAO)
- Support d'exécution pour des calculateurs hétérogènes (StarPU)



 Des dizaines de cœurs par processeurs





- Des dizaines de cœurs par processeurs
- Plusieurs processeurs par machine





- Des dizaines de cœurs par processeurs
- Plusieurs processeurs par machine
- Plusieurs cartes graphiques dédiées au calcul :
  - parallélisme massif







Figure: Topologie mémoire d'une machine avec deux cartes graphiques.

Carte graphique dédiée au calcul :





Figure: Topologie mémoire d'une machine avec deux cartes graphiques.

#### Carte graphique dédiée au calcul:

Mémoire dédiée en quantité limitée





Figure: Topologie mémoire d'une machine avec deux cartes graphiques.

#### Carte graphique dédiée au calcul :

- Mémoire dédiée en quantité limitée
- Pas d'accès direct à la mémoire principale



# Le support d'exécution (ou Runtime) StarPU

- Entre le système d'exploitation et l'application
- Exploite une architecture :
  - portable et générique
  - paradigme de programmation parallèle en tâches
- Stratégies d'ordonnancement (ordonnanceur)



## Programmation parallèle en tâches

- Découpage du problème en sous-ensembles : tâches
- Exécution parallèle des tâches sur différentes unités de calcul
- Dépendances de données entre les tâches



Figure: Graphe de dépendances de tâches.

# Ordonnancement des tâches par le support d'exécution

- Ordonnancement du graphe de tâches sur les différents unités de calcul ou ouvriers :
  - cœurs CPU (processeur)
  - GPU (carte graphique)
- Choisir le «meilleur ouvrier» pour une tâche donnée
- Transférer les résultats des calculs



Qu'est-ce qu'une application stencil?

 Stencil: motif ou pochoir que l'on applique par répétition sur l'ensemble du domaine étudié



Figure: Exemples de stencil 5-points en 2D et 1D.



Qu'est-ce qu'une application stencil?

 Stencil: motif ou pochoir que l'on applique par répétition sur l'ensemble du domaine étudié



Figure: Exemples de stencil 5-points en 2D et 1D.

 Mise à jour d'une cellule en fonction du voisinage, schéma appliqué «simultanément» sur un ensemble de cellules





Figure: Exemple d'application de stencil.





Figure: Exemple d'application de stencil.





Figure: Exemple d'application de stencil.



Figure: Exemple d'application de stencil.





Figure: Exemple d'application de stencil.



Figure: Exemple d'application de stencil.





Figure: Exemple d'application de stencil.





Figure: Exemple d'application de stencil.

- Ratio nombre d'accès mémoires par mise à jour très élevé
- Dimension temporelle construite avec des itérations



# Objectifs généraux du stage

• Travail sur le recouvrement des transferts mémoires par du calcul



# Objectifs généraux du stage

- Travail sur le recouvrement des transferts mémoires par du calcul
- Travail sur la localité (spatiale et temporelle) des données



## Objectifs généraux du stage

- Travail sur le recouvrement des transferts mémoires par du calcul
- Travail sur la localité (spatiale et temporelle) des données
- Problématique du stage :
   Est-ce que les stratégies d'ordonnancement génériques du support d'exécution StarPU sont adaptées à des applications stencil, où la localité des données est cruciale ?



#### Environnement de test : exécution simulée

- · reproductible
- · total contrôle sur les paramètres :
  - durée d'une tâche
  - temps de transfert
  - architecture de la machine



• Outil de visualisation pour observer la localité des données



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil
- Évaluation des ordonnanceurs de StarPU pour des applications stencils :



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil
- Évaluation des ordonnanceurs de StarPU pour des applications stencils :
  - temps de calcul d'une tâche = 2 x temps de transfert



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil
- Évaluation des ordonnanceurs de StarPU pour des applications stencils :
  - temps de calcul d'une tâche = 2 x temps de transfert
  - taille de problème > mémoire des cartes graphiques



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil
- Évaluation des ordonnanceurs de StarPU pour des applications stencils :
  - temps de calcul d'une tâche = 2 x temps de transfert
  - taille de problème > mémoire des cartes graphiques
  - problème de déséquilibre de charge



- Outil de visualisation pour observer la localité des données
- Méthode de référence : construction d'un ordre de soumission de tâches optimisé pour stencil
- Évaluation des ordonnanceurs de StarPU pour des applications stencils :
  - temps de calcul d'une tâche = 2 x temps de transfert
  - taille de problème > mémoire des cartes graphiques
  - problème de déséquilibre de charge
- Assemblage d'un ordonnanceur qui exploite l'information de localité des données



#### Le cas à éviter : aucune localité des données



Figure: Diagramme en temps d'une exécution avec soumission de tâches naïve sur un GPU.



#### Le cas à éviter : aucune localité des données



Figure: Diagramme en temps d'une exécution avec soumission de tâches naïve sur un GPU.



# Algorithme cache oublieux (oblivious)

 Matteo FRIGO et Volker STRUMPEN : « Cache Oblivious Stencil Computations »



## Algorithme cache oublieux (oblivious)

- Matteo FRIGO et Volker STRUMPEN : « Cache Oblivious Stencil Computations »
- Limite les chargements mémoires hors cache (cache misses)



### Algorithme cache oublieux (oblivious)

- Matteo FRIGO et Volker STRUMPEN : « Cache Oblivious Stencil Computations »
- Limite les chargements mémoires hors cache (cache misses)
- Favorise la réutilisation des données



## Algorithme cache oublieux (oblivious)

- Matteo FRIGO et Volker STRUMPEN : « Cache Oblivious Stencil Computations »
- Limite les chargements mémoires hors cache (cache misses)
- Favorise la réutilisation des données
- Découple l'optimisation du paramètre «taille du cache»



#### Soumission de tâches cache oublieux

Une soumission cache oublieuse de tâches au support d'exécution permet de :



Figure: Diagramme en temps d'une exécution avec soumission de tâches cache oublieux sur un GPU.





#### Soumission de tâches cache oublieux

Une soumission cache oublieuse de tâches au support d'exécution permet de :

Favoriser la localité des données



Figure: Diagramme en temps d'une exécution avec soumission de tâches cache oublieux sur un GPU.





#### Soumission de tâches cache oublieux

Une soumission cache oublieuse de tâches au support d'exécution permet de :

- Favoriser la localité des données
- Limiter les transferts mémoires entre cartes graphiques et mémoire principale



Figure: Diagramme en temps d'une exécution avec soumission de tâches cache oublieux sur un GPU.





## Version parallèle - respect des dépendances



Figure: Diagramme en temps d'une exécution avec soumission parallèle de tâches cache oublieux sur deux GPU.





## Version parallèle - respect des dépendances



Figure: Diagramme en temps d'une exécution avec soumission parallèle de tâches cache oublieux sur deux GPU.





## Ordonnancement d'une tâche pour l'ordonnanceur dmdar



- Modèle de performance (temps de calcul des tâches)
- Temps de transfert
- Tri des tâches par données prêtes

## Ordonnancement d'une tâche pour l'ordonnanceur dmda



- Modèle de performance (temps de calcul des tâches)
- · Temps de transfert



# Choix du meilleur ouvrier pour une tâche



(a) État initial des files de tâches.



(c) Temps de transfert.



(b) Temps de calcul.



(d) Choix de l'ouvrier idéal.

Figure: Recherche d'une date de terminaison minimale.





Figure: Évolution du temps d'exécution en fonction de la taille du problème - 2 GPU, limite mémoire fixée à 200MB par GPU.





Figure: Évolution du temps d'exécution en fonction de la taille du problème - 2 GPU, limite mémoire fixée à 200MB par GPU.

Souligne l'importance du recouvrement des transferts mémoires





Figure: Évolution du temps d'exécution en fonction de la taille du problème - 2 GPU, limite mémoire fixée à 200MB par GPU.

- Souligne l'importance du recouvrement des transferts mémoires
- dmdar ne casse pas les situations favorables





Figure: Évolution du temps d'exécution en fonction de la taille du problème - 2 GPU, limite mémoire fixée à 200MB par GPU.

- Souligne l'importance du recouvrement des transferts mémoires
- dmdar ne casse pas les situations favorables
- Performances encore trop éloigné de l'idéal (1.5x plus lent)





#### Objectif : limiter la quantité de frontières



Figure: Diagramme en itérations d'une exécution de dmdax. 2 GPU, taille du problème 1800MB, limite mémoire fixée à 200MB par GPU.





Figure: Diagramme en temps - Échantillon d'exécution de dmdar. 2 GPU, taille du problème 1800MB, limite mémoire fixée à 200MB par GPU.



### Résumé des points importants

- · Stencil:
  - Ratio accès mémoire par mises à jour élevé
  - Observer la localité des données : outil adapté
- Évaluer les ordonnanceurs :
  - Méthode de référence : algorithme cache oublieux pour stencil
  - Est-ce que les ordonnanceurs (génériques) de StarPU sont adaptés à des stencils ?



#### Conclusion

#### Bilan:

- Le support d'exécution StarPU, performances satisfaisantes :
  - encore trop éloignées de l'idéal
  - générique et portable

#### Améliorations :

- Ordonnanceur : améliorer l'amorce
- Visualisation pour stencils à dimension arbitraire (2D, 3D, etc.)
- Test d'un vrai stencil (e.g. application de simulation nucléaire)



### **Perspectives**

- Out of core : plus de place en mémoire principale
  - Rapatriement en mémoire du disque dur

• Programmation distribuée en réseau (Message Passing Interface)

