UNIVERSITÄT SALZBURG

Proseminar

Lineare Algebra f. Informatik

SoSe 2020

Übungszettel 4

Hinweis: Wie in der Abänderung der Richtlinien beschrieben werden vorläufig keine Proseminar-Tests abgehalten, insbesondere findet anders als ursprünglich geplant am Do 02.04.2020 kein Test statt.

17. Die drei Punkte $A = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ und $C = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ sind die Eckpunkte eines Dreiecks im \mathbb{R}^2 . Zeichnen Sie dieses Dreieck und berechnen Sie seinen Flächeninhalt.

Die lineare Abbildung f_S mit der Abbildungsmatrix $S = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ ist ein Beispiel einer sogenannten horizontalen Scherung.

Wenden Sie diese Abbildung auf die drei Punkte A, B und C an, zeichnen Sie das dadurch entstehende neue Dreieck und berechnen Sie seinen Flächeninhalt.

Schreiben Sie f_S als Abbildung, die einem Vektor direkt einen Vektor zuordnet (also ohne explizites Matrix-Vektor-Produkt).

18. Gegeben sei die Matrix

$$A = \begin{pmatrix} \frac{5}{7} & \frac{6}{7} \\ \frac{4}{7} & -\frac{5}{7} \end{pmatrix}$$

Bestimmen Sie alle $x \in \mathbb{R}^2$ mit $f_A(x) = x$.

Zeigen Sie, dass für alle $x \in \mathbb{R}^2$ gilt: $f_A(f_A(x)) = x$.

Schreiben Sie f_A als Abbildung, die einem Vektor direkt einen Vektor zuordnet (also ohne explizites Matrix-Vektor-Produkt).

19. Für ein bestimmtes $\varphi \in \mathbb{R}$ sei

$$r_{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \cdot \cos \varphi - y \cdot \sin \varphi \\ x \cdot \sin \varphi + y \cdot \cos \varphi \end{pmatrix}.$$

Zeigen Sie, dass r_{φ} eine lineare Abbildung ist.

Sei $r_{\frac{\pi}{2}}$ die Abbildung r_{φ} für $\varphi = \frac{\pi}{2}$ (Radiant, also 90°) und dementsprechend r_{π} die Abbildung r_{φ} für $\varphi = \pi$. Zeichnen Sie den Vektor $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und berechnen und zeichnen Sie $r_{\frac{\pi}{2}}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $r_{\pi}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und $r_{\psi}\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ für ein selbstgewähltes ψ . Welchen Effekt hat die Abbildung r_{φ} ?

20. Sei r_{ω} die in Beispiel 19 definierte lineare Abbildung.

Berechnen Sie die Matrix der Abbildung r_{φ} .

Sei r_{α} die Abbildung r_{φ} für $\varphi = \alpha$, und r_{β} die Abbildung r_{φ} für $\varphi = \beta$. Berechnen Sie die Matrix von $r_{\beta} \circ r_{\alpha}$, der Komposition von r_{α} und r_{β} .

Schlagen Sie die Additionstheoreme für trigonometrische Funktionen in einer Formelsammlung oder im Internet nach und interpretieren Sie die das Ergebnis aus dem vorigen Schritt.