14.1 પ્રાસ્તાવિક

આપણને હકીકતો, આંકડાકીય માહિતી, કોષ્ટક, આલેખો વગેરે સ્વરૂપમાં રોજ પુષ્કળ માહિતી મળતી રહે છે. આ બધી માહિતી દૈનિકપત્રો, ટેલિવિઝન, સામયિકો અને સંચારના બીજાં માધ્યમો દ્વારા પૂરી પાડવામાં આવે છે. આ માહિતી ક્રિકેટની બૅટીંગ અથવા બૉલીંગની સરેરાશ, કોઈ કંપનીનો નફો, શહેરોનું તાપમાન, પંચવર્ષીય યોજનાના જુદાજુદા વિભાગોના ખર્ચા, ચૂંટણીનાં પરિણામો વગેરે સાથે સંકળાયેલી હોઈ શકે. જે આંકડાકીય કે અન્ય રીતે ચોક્કસ હેતુસર એકત્રિત કરવામાં આવે છે તે હકીકતો અથવા આંકડાઓને માહિતી (data) કહે છે. data એ લેટિન શબ્દ datum(ડેટમ્)નું બહુવચન છે. હા, એ વાત ચોક્કસ છે કે તમારા માટે માહિતી એ નવો શબ્દ નથી. તમે અગાઉના ધોરણમાં માહિતી અને માહિતીની ગોઠવણી વિશે શીખી ગયાં છો.

આપણી દુનિયા વધુમાં વધુ માહિતીલક્ષી બની રહી છે. આપણી જિંદગીમાં દરેક ક્ષેત્રમાં એક યા બીજી રીતે માહિતીનો ઉપયોગ થઈ રહ્યો છે. તેથી આપણા માટે એ જાણવું આવશ્યક છે કે આવી માહિતી પરથી અર્થપૂર્ણ તારણ કેવી રીતે કાઢી શકાય. આમ, માહિતીનું અર્થપૂર્ણ તારણ કાઢવાની ગણિતની શાખાને આંકડાશાસ્ત્ર કહે છે.

મૂળ લેટિન શબ્દ (status) નો અર્થ રાજ્ય છે. તેના પરથી અંગ્રેજી શબ્દ Statistics ઊતરી આવ્યો હોય એવું લાગે છે. મૂળરૂપમાં આંકડાશાસ્ત્ર એટલે રાજ્યને માટે ઉપયોગી એવા, લોકોના જીવનને સ્પર્શતાં વિવિધ પાસાઓની માહિતીઓનો સરળ સંગ્રહ. સમયાંતરે તેનું કાર્યક્ષેત્ર વિસ્તૃત થતું ગયું અને આંકડાશાસ્ત્રનો સંબંધ હવે ફક્ત માહિતીનું એક્ત્રીકરણ અને રજૂઆત કરવા પૂરતો જ સીમિત ન રહેતાં માહિતી પરથી અર્થઘટન અને ચિત્રોના નિષ્કર્ષ મેળવવા સુધી વિસ્તર્યો છે.

આંકડાશાસ્ત્ર એ માહિતી એકત્રિત કરવી, વ્યવસ્થિત ગોઠવવી, તેનું વિશ્લેષણ કરવું અને અર્થપૂર્ણ તારણ મેળવવા સાથે સંકળાયેલ એક વિષય છે. આંકડાશાસ્ત્ર શબ્દ જુદાજુદા સંદર્ભ માટે જુદોજુદો અર્થ ધરાવે છે. તો ચાલો આપણે નીચેનાં વાક્યો પર ધ્યાન આપીએ :

- 1. શું મને ''ભારતનું શૈક્ષણિક આંકડાશાસ્ત્ર''ની તાજેતરની પ્રત મળશે ?
- 2. મને આંકડાશાસ્ત્રનો અભ્યાસ કરવો ગમે છે, કારણ કે તે રોજિંદા જીવનમાં ઉપયોગી છે.

પહેલાં વિધાનમાં આંકડાશાસ્ત્રનો ઉપયોગ બહુવચનમાં કરેલો છે અને તે આંકડાકીય માહિતીના અર્થમાં છે. તેમાં ભારતની વિવિધ શૈક્ષણિક સંસ્થાઓના જુદાજુદા રાજ્યોના સાક્ષરતા દર વગેરે જેવી બાબતોનો સમાવેશ હોઈ શકે. બીજા વિધાનમાં આંકડાશાસ્ત્ર શબ્દનો ઉપયોગ એકવચન તરીકે છે. તેનો અર્થ જેમાં માહિતીનું એકત્રીકરણ, રજૂઆત, માહિતીનું વિશ્લેષણ કરવાની સાથેસાથે માહિતીના અર્થપૂર્ણ તારણનું ચિત્રણ કરવા ઉપયોગી થાય તેવો વિષય છે.

આ પ્રકરણમાં આપણે માહિતીને લગતાં આ બધા પાસાઓની ટૂંકમાં ચર્ચા કરીએ.

14.2 માહિતીનું એકત્રીકરણ

ચાલો આપણે નીચેની પ્રવૃત્તિ દ્વારા માહિતી એકત્રિત કરવાનો અભ્યાસ શરૂ કરીએ :

પ્રવૃત્તિ 1 : તમારા વર્ગના વિદ્યાર્થીઓને ચાર જૂથમાં વહેંચો. દરેક જૂથને નીચેનામાંથી કોઈ એક પ્રકારની માહિતી એકત્ર કરવાનું કાર્ય સોંપો :

- (i) તમારા વર્ગના 20 વિદ્યાર્થીઓની ઊંચાઈ
- (ii) એક મહિનામાં દરેક દિવસે ગેરહાજર રહેતા તમારા વર્ગના વિદ્યાર્થીઓની સંખ્યા
- (iii) તમારા સહાધ્યાયીઓના કુટુંબની સભ્ય-સંખ્યા
- (iv)તમારી શાળામાં અથવા એની આસપાસના વિસ્તારમાં 15 છોડની ઊંચાઈ

ચાલો હવે આપણે વિદ્યાર્થીઓએ એકત્રિત કરેલાં પરિણામો જોઈશું. દરેક જૂથમાં તેઓએ માહિતી કેવી રીતે મેળવી ?

- (i) શું તેમણે આ માહિતી દરેક વિદ્યાર્થી પાસેથી તેના ઘરની કે વ્યક્તિગત મુલાકાત લઈને મેળવી હતી ?
- (ii) શું તેમણે આ માહિતી શાળાના પ્રાપ્ય દફ્તરી સ્ત્રોતમાંથી મેળવી ?

પ્રથમ કિસ્સા માટે જ્યારે તપાસકર્તાએ કોઈ ચોક્કસ હેતુ ધ્યાનમાં રાખીને તેણે જાતે માહિતી મેળવી છે તે માહિતીને પ્રાથમિક માહિતી (primary data) કહે છે.

બીજા કિસ્સામાં પહેલાંથી એકત્રિત થયેલી માહિતીના સ્રોતમાંથી માહિતી મેળવી છે. આ રીતે મેળવેલી માહિતીને ગૌણ માહિતી (secondary data) કહે છે. આવી માહિતી જે બીજા દ્વારા અન્ય કોઈ વિષયના સંદર્ભમાં મેળવેલી હોય ત્યારે સ્રોતની વિશ્વસનીયતાની ખાતરી કર્યા બાદ તેનો ખૂબ જ કાળજીપૂર્વક ઉપયોગ કરવો જોઈએ.

હવે તમે સમજી ગયા હશો કે માહિતી કેવી રીતે એકત્રિત કરી શકાય છે અને પ્રાથમિક માહિતી તથા ગૌણ માહિતી વચ્ચેનો તફાવત શું છે.

સ્વાધ્યાય 14.1

- 1. તમે રોજિંદા જીવનમાંથી એકત્ર કરી શકો તેવી માહિતીનાં પાંચ ઉદાહરણ આપો.
- 2. ઉપરના પ્રશ્નની માહિતીનું પ્રાથમિક માહિતી અને ગૌણ માહિતીમાં વર્ગીકરણ કરો.

14.3 માહિતીની રજૂઆત

જેવું માહિતી એકત્રિત કરવાનું કાર્ય પૂર્ણ થાય તેવું તપાસકર્તાએ આ માહિતીની રજૂઆત જે અર્થપૂર્ણ હોય, સરળતાથી સમજી શકાય અને પહેલી નજરે તેના મુખ્ય ઉદ્દેશો જાણી શકાય એવા સ્વરૂપમાં કરવી જોઈએ.

ચાલો કેટલાંક ઉદાહરણ દ્વારા માહિતીને વિવિધ રીતે રજૂઆત કરવાનું યાદ કરીએ.

ઉદાહરણ 1 : ગણિતની એક કસોટીમાં 10 વિદ્યાર્થીઓએ મેળવેલા ગુણ નીચે પ્રમાણે આપેલા છે :

55 36 95 73 60 42 25 78 75 62

આ સ્વરૂપની માહિતીને *કાચી માહિતી (raw data) ક*હે છે.

આ સ્વરૂપમાં તમે માહિતીને જુઓ તો શું તમે સૌથી વધુ અને સૌથી ઓછા ગુજ્ઞ શોધી શકશો ? સૌથી વધુ અને સૌથી ઓછા ગુજ્ઞ શોધવામાં તમને કેટલો સમય લાગ્યો ? જો આ ગુજ્ઞને ચઢતા કે ઊતરતા ક્રમમાં ગોઠવ્યા હોત તો શું ઓછો સમય ન લાગે ? તો ચાલો આપણે ગુજ્ઞને ચઢતા ક્રમમાં ગોઠવીએ.

25 36 42 55 60 62 73 75 78 95

હવે આપણે સ્પષ્ટ જોઈ શકીએ છીએ કે સૌથી ઓછા ગુણ 25 અને સૌથી વધુ ગુણ 95 છે.

માહિતીનાં મહત્તમ અને ન્યૂનતમ મૂલ્યોના તફાવતને માહિતીનો વિસ્તાર કહે છે. તેથી આ કિસ્સામાં માહિતીનો વિસ્તાર 95 - 25 = 70 છે.

ખાસ કરીને જ્યારે પ્રયોગમાં અવલોકનોની સંખ્યા વધુ હોય ત્યારે તે માહિતીને ચઢતાં કે ઊતરતાં ક્રમમાં ગોઠવવામાં વધુ સમય માંગી લે છે. તે આપણે હવે પછીના ઉદાહરણમાં જોઈશું.

ઉદાહરણ 2 : એક શાળાના ધોરણ 9 ના 30 વિદ્યાર્થીઓએ મેળવેલ ગુણ (100 માંથી) નીચે મુજબ છે :

10 40 20 36 92 95 50 56 60 70 92 88 80 70 72 70 36 40 36 40 56 92 40 50 50 60 70 88 60 60

યાદ કરો કે ચોક્કસ ગુણ મેળવનાર વિદ્યાર્થીઓની સંખ્યાને તે ગુણની આવૃત્તિ કહે છે. ઉદાહરણમાં 4 વિદ્યાર્થીઓએ 70 ગુણ મેળવ્યા છે તેથી 70 ગુણની આવૃત્તિ 4 છે. માહિતીને વધુ સરળ સમજાય તે માટે તેને આપણે આગળ દર્શાવ્યા પ્રમાણે કોષ્ટકમાં લખીશું :

કોષ્ટક 14.1

ગુણ	વિદ્યાર્થીઓની સંખ્યા (એટલે કે આવૃત્તિ)
10	1
20	1
36	3
40	4
50	3
56	2
60	4
70	4
72	1
80	1
88	2
92	3
95	1
કુલ	30

કોષ્ટક 14.1 ને અવર્ગીકૃત માહિતીનું **આવૃત્તિ-વિતરણ કોષ્ટક** (frequency distribution table) કહે છે અથવા ફક્ત આવૃત્તિ-વિતરણ કોષ્ટક કહે છે.

તમે કોષ્ટક તૈયાર કરવા માટે આવૃત્તિ-ચિહ્નોનો પણ ઉપયોગ કરી શકો છો. તે હવે પછીના ઉદાહરણમાં જોઈશું.

ઉદાહરણ 3 : વન મહોત્સવ દરમિયાન 100 શાળા પૈકી પ્રત્યેક શાળામાં 100 છોડ ઉગાડવામાં આવ્યા હતા. તેમાંથી એક મહિના પછી બચી ગયેલા છોડની સંખ્યાની નોંધ આ પ્રમાણે હતી.

95	67	28	32	65	65	69	33	98	96
76	42	32	38	42	40	40	69	95	92
75	83	76	83	85	62	37	65	63	42
89	65	73	8 1	49	52	64	76	83	92
93	68	52	79	81	83	59	82	75	82
86	90	44	62	31	36	38	42	39	83
87	56	58	23	35	76	83	85	30	68
69	83	86	43	45	39	83	75	66	83
92	75	89	66	91	27	88	89	93	42
53	69	90	55	66	49	52	83	34	36

આવી મોટી સંખ્યાની માહિતી રજૂ કરવા માટે વાંચક સરળતાથી સમજી શકે તે માટે આપણે તેને 20-29, 30-39, . . ., 90-99 (આપણી માહિતી 23 થી 98 હોવાથી). જેવાં જૂથમાં ગોઠવી શકીએ. આ જૂથોને વર્ગો (classes) અથવા વર્ગ-અંતરાલ (class-intervals) અને તેની લંબાઈને વર્ગલંબાઈ (class-size) અથવા વર્ગની પહોળાઈને (class width) કહે છે. અહીં આ કિસ્સામાં તે 10 છે. દરેક વર્ગની નાનામા નાની સંખ્યાને અધઃવર્ગસીમા (lower class limit) અને મોટામાં મોટી સંખ્યાને ઊર્ધ્વવર્ગસીમા

(upper class limit) કહે છે. ઉદાહરણ તરીકે વર્ગ 20-29 માં 20 અધઃવર્ગસીમા અને 29 એ ઊર્ધ્વવર્ગસીમા છે.

ઉપરાંત યાદ રાખો કે, આવૃત્તિ-ચિહ્નોનો ઉપયોગ કરીને ઉપરની માહિતીને સંક્ષિપ્ત રૂપે કોષ્ટકમાં નીચે પ્રમાણે રજૂ કરી શકાય :

કોપ્ટક 14.2

બચી ગયેલા છોડની સંખ્યા	આવૃત્તિ ચિહન	શાળાઓની સંખ્યા (આવૃત્તિ)
20 - 29	III	3
30 - 39	IIII LKY LKY	14
40 - 49	וו עול עול	12
50 - 59	NJ III	8
60 - 69	NU NU NU III	18
70 - 79	nų nų	10
80 - 89	NU NU NU NU III	23
90 - 99	II LAT LAT	12
	કુલ	100

આ સ્વરૂપમાં માહિતીને રજૂ કરતાં માહિતી સરળ અને સંક્ષિપ્ત બને છે અને તેનાથી આપણને પહેલી નજરે તેનાં ચોક્કસ અને અગત્યનાં લક્ષણો ધ્યાનમાં આવે છે. આ પ્રકારના કોષ્ટકને **વર્ગીકૃત માહિતીનું આવૃત્તિ-વિતરણ કોષ્ટક** (grouped frequency distribution table) કહે છે. અહીં આપણે સરળતાથી જોઈ શકીએ છીએ કે 8 + 18 + 10 + 23 + 12 = 71 શાળામાં 50 % કે તેથી વધુ છોડ બચી ગયા હતા.

આપણે જોયું કે ઉપર્યુક્ત કોષ્ટકમાં વર્ગો પરસ્પર અનાચ્છાદિત(non-overlapping) છે. હવે નોંધો કે આપણે ઓછી વર્ગલંબાઈવાળા વધારે વર્ગો બનાવી શક્યા હોત અથવા વધુ વર્ગલંબાઈવાળા ઓછા વર્ગો બનાવી શક્યા હોત. ઉદાહરણ તરીકે 22-26, 27-31 વગેરે વર્ગ લઈ શકીએ. વર્ગો આચ્છાદિત(છેદતાં) ન હોવા જોઈએ એ સિવાય કોઈ સખત અને તીવ્ર નિયમ હોતો નથી.

ઉદાહરણ 4 : હવે આપણે જેમાં એક વર્ગના 38 વિદ્યાર્થીઓના વજન આપેલા હોય તેવું આવૃત્તિ-વિતરણ કોષ્ટક લઈએ.

કોષ્ટક 14.3

વજન (કિગ્રામાં)	વિદ્યાર્થીઓની સંખ્યા
31 - 35	9
36 - 40	5
41 - 45	14
46 - 50	3
51 - 55	1
56 - 60	2
61 - 65	2
66 - 70	1
71 - 75	1
કુલ	38

હવે ધારો કે 35.5 કિગ્રા અને 40.5 કિગ્રા વજનવાળા બે નવા વિદ્યાર્થીઓ વર્ગમાં દાખલ થાય તો તેમને આપણે કયા વર્ગમાં મૂકીશું? ન તો તેમને એવા વર્ગમાં મૂકીએ કે જેની ઊર્ધ્વસીમા 35 અથવા 40 હોય અને ન તો જે તેના પછીના હોય એવા વર્ગોમાં મૂકી શકીએ, કારણ કે બે ક્રમિક વર્ગોની ઊર્ધ્વસીમા અને અધઃસીમા વચ્ચે અવકાશ છે. આપણે આવી સ્થિતિમાં વર્ગને એવી રીતે વિભાજિત કરવા જોઈએ કે જેથી ક્રમિક બે વર્ગોની અનુક્રમે એકની ઊર્ધ્વસીમા અને પછીના વર્ગની અધઃસીમા સમાન થાય. તે માટે આપણે એક વર્ગની ઊર્ધ્વસીમા અને તેની પછીના વર્ગની અધઃસીમા વચ્ચેનું અંતર શોધવું પડે. આપણે આ અંતરનો અડધો ભાગ દરેક વર્ગની ઊર્ધ્વસીમામાં ઉમેરીએ અને અધઃસીમામાંથી બાદ કરીએ.

ઉદાહરણ તરીકે વર્ગ 31 - 35 અને 36 - 40 લઈએ.

36 - 40 ની અધઃસીમા 36

31 - 35 ની ઊર્ધ્વસીમા 35

અંતર 36 - 35 = 1

અડધું અંતર
$$\frac{1}{2} = 0.5$$

તેથી વર્ગ 31 - 35 થી બનતો નવો વર્ગ (31 - 0.5) - (35 + 0.5) = 30.5 - 35.5.

તેવી રીતે વર્ગ 36 - 40 થી બનતો નવો વર્ગ (36-0.5) - (40+0.5) = 35.5 - 40.5.

આ પ્રક્રિયામાં આગળ વધતા જઈએ તો નીચેના સતત વર્ગો મળશે :

30.5 - 35.5, 35.5 - 40.5, 40.5 - 45.5, 45.5 - 50.5, 50.5 - 55.5, 55.5 - 60.5, 60.5 - 65.5, 65.5 - 70.5, 70.5 - 75.5.

હવે આ વર્ગોમાં પેલા નવા વિદ્યાર્થીઓનાં વજનનો સમાવેશ કરવો આપણા માટે શકય છે. પરંતુ આવું કરવામાં બીજી એક સમસ્યા છે કે 35.5 કિગ્રા બંને વર્ગો 30.5 - 35.5 અને 35.5 - 40.5 માં આવી શકે. તમારા વિચારથી આ વજન કયા વર્ગમાં રાખવું જોઈએ ?

જો બંને વર્ગોમાં રાખવામાં આવે તો તેની બે વખત ગણતરી થાય છે. તેથી એક રૂઢિ પ્રમાણે 35.5 ને વર્ગ 35.5 - 40.5 માં સમાવેશ કરીશું, પરંતુ 30.5 - 35.5 વર્ગમાં નહિ. તેવી જ રીતે 40.5 ને 40.5 - 45.5 વર્ગમાં મૂકીશું. 35.5 - 40.5 માં નહિ.

આમ, નવા વજન 35.5 કિગ્રા અને 40.5 કિગ્રાનો અનુક્રમે 35.5 - 40.5 અને 40.5 - 45.5 માં સમાવેશ કરીશું. આ પ્રમાણે ગોઠવતાં આપણને નવું આવૃત્તિ-વિતરણ કોષ્ટક મળશે, જે નીચે દર્શાવેલું છે :

કોષ્ટક 14.4

વજન (કિગ્રા માં)	વિદ્યાર્થીઓની સંખ્યા
30.5-35.5	9
35.5-40.5	6
40.5-45.5	15
45.5-50.5	3
50.5-55.5	1
55.5-60.5	2
60.5-65.5	2
65.5-70.5	1
70.5-75.5	1
કુલ	40

હવે આપણે પ્રવૃત્તિ I માં તમારા દ્વારા એકત્રિત થયેલી માહિતી તરફ જોઈએ. હવે અમે તમને કહીશું કે તમે તેને આવૃત્તિ-વિતરણ કોષ્ટકમાં દર્શાવો.

પ્રવૃત્તિ 2 : આ જ ચાર જૂથોને લઈ તમારી માહિતી આવૃત્તિ-વિતરણ કોષ્ટકમાં ગોઠવો. માહિતીનો વિસ્તાર અને માહિતીના પ્રકારને ધ્યાનમાં રાખી યોગ્ય વર્ગલંબાઈવાળા અનુકૂળ વર્ગો લો.

સ્વાધ્યાય 14.2

1. ધોરણ 8 ના 30 વિદ્યાર્થીઓના રૂધિર-જૂથ(Blood group) ની વિગત નીચે મુજબ છે :

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O,

A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.

આ માહિતીને આવૃત્તિ-વિતરણ કોષ્ટકના સ્વરૂપમાં દર્શાવો. આ વિદ્યાર્થીઓના રૂધિર-જૂથમાં કયું રૂધિર-જૂથ સૌથી વધુ સામાન્ય છે અને કયું રૂધિર-જૂથ સૌથી વધુ અસામાન્ય છે ?

2. 40 ઈજનેરોનું ઘરથી નોકરીના સ્થાનનું અંતર(કિમીમાં) નીચે મુજબ છે :

31	12	7	13	11	25	20	10	3	5
2	16	17	32	11	18	17	12	10	19
3	18	15	12	5	3	8	7	9	7
12	6	7	15	15	6	9	2	14	12

ઉપર્યુક્ત માહિતીને 0-5 નો (જેમાં 5 આવેલો નથી) પહેલો વર્ગ લઈ,5 ની વર્ગલંબાઈ લઈ એક વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક બનાવો. આ કોષ્ટકની રજૂઆત પરથી તમે કઈ મુખ્ય બાબતો તારવશો ?

3. 30 દિવસના એક મહિનામાં એક શહેરનો સાપેક્ષ ભેજ (% માં) નીચે પ્રમાણે આપેલ છે :

- (i) બે વર્ગ 84 86, 86 88 વગેરે બને તે પ્રમાણે એક વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક બનાવો.
- (ii) તમે કલ્પી શકો છો કે આ માહિતી કયા મહિનાની અથવા કઈ ઋતુની છે ?
- (iii) આ માહિતીનો વિસ્તાર શું છે ?
- 4. 50 વિદ્યાર્થીઓની પૂર્ણાંક સેન્ટિમીટરમાં માપવામાં આવેલી ઊંચાઈ નીચે પ્રમાણે જોવા મળી :

161	150	154	165	168	161	154	162	150	151
162	164	171	165	158	154	156	172	160	170
153	159	161	170	162	165	166	168	165	164
154	152	153	156	158	162	160	161	173	166
161	159	162	167	168	159	158	153	154	159

(i) ઉપર્યુક્ત માહિતીને 160 - 165, 165 - 170 વગેરે વર્ગી લઈને વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક રૂપે રજૂ કરો.

- (ii) ઉપરના કોષ્ટક પરથી ઊંચાઈ વિશે તમે શું તારવી શકો ?
- 5. કોઈ શહેરના વાતાવરણમાં *સલ્ફર ડાયૉક્સાઈડની સાંદ્રતા ppm(parts per million)*માં શોધવા માટેનો અભ્યાસ કરવામાં આવ્યો. તેની 30 દિવસમાં મળેલી માહિતી આ પ્રમાણે છે :

0.03	0.08	0.08	0.09	0.04	0.17
0.16	0.05	0.02	0.06	0.18	0.20
0.11	0.08	0.12	0.13	0.22	0.07
0.08	0.01	0.10	0.06	0.09	0.18
0.11	0.07	0.05	0.07	0.01	0.04

- (i) માહિતીને 0.00 0.04, 0.04 0.08.... વગેરે વર્ગો લઈ વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક તૈયાર કરો.
- (ii) કેટલા દિવસ સલ્ફર ડાયૉક્સાઈડની સાંદ્રતા 0.11 ppm કરતાં વધુ રહી હશે ?
- 6. ત્રણ સિક્કાઓને વારાફરતી 30 વખત ઉછાળવામાં આવતા દરેક વખત છાપ મળે તેની સંખ્યા નીચે પ્રમાણે નોંધાયેલી હતી :

0	1	2	2	1	2	3	1	3	0
1	3	1	1	2	2	0	1	2	1
3	0	0	1	1	2	3	2	2	0

ઉપર્યુક્ત માહિતી માટેનું આવૃત્તિ-વિતરણ કોષ્ટક તૈયાર કરો.

7. π નું 50 દશાંશ-સ્થાન સુધી મૂલ્ય નીચે મુજબ છે :

3.14159265358979323846264338327950288419716939937510

- (i) દશાંશ-ચિદ્ધ પછી 0 થી 9 સુધી આવતા અંકોનું આવૃત્તિ-વિતરણ બનાવો.
- (ii) સૌથી વધુ વખત અને સૌથી ઓછી વખત કયો અંક આવે છે.
- 8. 30 બાળકોને પૂછવામાં આવ્યું કે ગયા અઠવાડિયામાં તેમણે કેટલા કલાક ટીવીના કાર્યક્રમ જોયા ? તેનાથી મળતાં પરિણામો નીચે પ્રમાણે હતાં :

- (i) આ માહિતીનું 5 વર્ગલંબાઈ લઈને અને એક વર્ગ 5 10 લઈને વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક તૈયાર કરો.
- (ii) કેટલાં બાળકો અઠવાડિયામાં 15 કલાક કે તેથી વધુ કલાક ટેલિવિઝન જોતા હતા ?

9. એક કંપની એક	િવિશિષ્ટ પ્રકારની	કાર-બેટરી	બનાવે છે.	40 બૅટરીના	આયુષ્યની	વર્ષમાં માહિતી નીચે મુજ	બ છેઃ
----------------	-------------------	-----------	-----------	------------	----------	-------------------------	-------

2.6	3.0	3.7	3.2	2.2	4.1	3.5	4.5
3.5	2.3	3.2	3.4	3.8	3.2	4.6	3.7
2.5	4.4	3.4	3.3	2.9	3.0	4.3	2.8
3.5	3.2	3.9	3.2	3.2	3.1	3.7	3.4
4.6	3.8	3.2	2.6	3.5	4.2	2.9	3.6

આ માહિતીનું 0.5 વર્ગલંબાઈ લઈ અને 2 - 2.5 વર્ગથી શરૂઆત કરીને એક વર્ગીકૃત આવૃત્તિ-વિતરણ કોષ્ટક બનાવો.

14.4 માહિતીની આલેખાત્મક રજૂઆત

માહિતીને કોષ્ટક દ્વારા દર્શાવવાની ચર્ચા આપણે કરી લીધી છે. ચાલો આપણે માહિતીની બીજી રીતે રજૂઆત એટલે કે **અલેખાત્મક રજૂઆત** (graphical representation) તરફ ધ્યાન આપીએ. તે સાચું જ કહેવાયું છે કે ''હજાર શબ્દો કરતાં એક ચિત્ર વધુ શ્રેષ્ઠ છે'' સામાન્ય રીતે વ્યક્તિગત માહિતીની તુલના આલેખ દ્વારા વધુ સારી રીતે થઈ શકે છે. વાસ્તવિક માહિતી કરતાં આ રજૂઆત સમજવામાં વધુ સરળ છે. આ વિભાગમાં આપણે નીચે દર્શાવેલ આલેખાત્મક રજૂઆતોનો અભ્યાસ કરીશું.

- (A) લંબાલેખ (Bar Graphs)
- (B) સમાન પહોળાઈ અને અસમાન પહોળાઈના સ્તંભાલેખ (histograms of uniform width and of varying widths)
- (C) આવૃત્તિ બહુકોણો (frequency polygons)

(A) લંબાલેખ : અગાઉના ધોરણમાં તમે લંબાલેખ વિશે શીખી ગયા છો અને તેની ચિત્રાત્મક રજૂઆત પણ કરી છે. અહીં, આપણે વધારે ઔપચારિક અભિગમથી તેની ચર્ચા કરીશું. યાદ કરો કે જેમાં સામાન્ય રીતે સમાન પહોળાઈવાળા લંબચોરસ દ્વારા જુદાજુદા ચલો દર્શાવી તેને એક અક્ષ પર (ધારો કે x-અક્ષ) સમાન અંતરે દોરવામાં આવે છે એવી માહિતીની ચિત્રાત્મક રજૂઆત એ લંબાલેખ છે. બીજા અક્ષ (ધારો કે y-અક્ષ) પર ચલનું મૂલ્ય દર્શાવવામાં આવે છે. લંબચોરસની ઊંચાઈ તેના ચલની કિંમત પર આધારિત છે.

ઉદાહરણ 5 : ધોરણ 9 ના એક ચોક્કસ વિભાગના 40 વિદ્યાર્થીઓને તેમના જન્મનો મહિનો જણાવવાનું કહેવામાં આવ્યું અને તેથી મળેલી માહિતીને આધારે નીચેનો આલેખ તૈયાર કરવામાં આવ્યો હતો :

220 ગ<u>ા</u>ષ્ટ્રાત : ધોરણ 9

ઉપરના લંબાલેખને ધ્યાનથી જોઈને નીચેના પ્રશ્નોના જવાબ આપો.

- (i) નવેમ્બર મહિનામાં કેટલા વિદ્યાર્થીઓ જન્મ્યા હતા ?
- (ii) કયા મહિનામાં સૌથી વધુ વિદ્યાર્થીઓ જન્મ્યા હતા ?

ઉક્રેલ : નોંધો કે 'જન્મનો મહિનો' એક ચલ છે અને 'વિદ્યાર્થીઓની સંખ્યા' એ ચલનું મૂલ્ય છે.

- (i) નવેમ્બર મહિનામાં 4 વિદ્યાર્થીઓનો જન્મ થયો હતો.
- (ii) ઑગષ્ટ મહિનામાં સૌથી વધુ વિદ્યાર્થીઓનો જન્મ થયો હતો.

ચાલો હવે નીચે દર્શાવેલ ઉદાહરણ માટે લંબાલેખ કેવી રીતે દોરી શકાય તે જોઈએ.

ઉદાહરણ 6 : ₹ 20,000 માસિક આવક ધરાવતા એક કુટુંબે જુદાજુદા શીર્ષક હેઠળ થતાં માસિક ખર્ચનું નીચે પ્રમાણે આયોજન કર્યું હતું.

કોષ્ટક 14.5

સૂચિ(બજેટ-હેડ)	ખર્ચ (હજાર રૂપિયામાં)
કરિયાણું	4
ભાડું	5
બાળકોનું શિક્ષણ	5
દવાઓ	2
બળતણ	2
મનોરંજન	1
પ્રકીર્શ	1

ઉપર્યુક્ત માહિતીના આધારે લંબાલેખ દોરો.

ઉકેલ : આપણે આ માહિતીના આધારે નીચે આપેલ સોપાન પ્રમાણે લંબાલેખ દોરીશું. આપણે નોંધીએ કે બીજી હરોળમાં એકમ 'હજાર રૂપિયામાં' છે, એટલે કે કરિયાણા સામે '4' અંક છે. તેનો અર્થ ₹ 4000 થશે.

- 1. અહીં લંબચોરસની પહોળાઈનું કોઈ મહત્ત્વ નથી. તેથી કોઈ પણ માપ પસંદ કરીને સમક્ષિતિજ અક્ષ પર ચલ 'સૂચિ' લઈશું. પરંતુ ચોકસાઈ રાખી દરેક લંબચોરસની પહોળાઈ સરખી રાખીશું અને બે લંબચોરસ વચ્ચેનું અંતર પણ સમાન રાખીશું. એક સૂચિને એક એકમ તરીકે લો.
- ખર્ચ શિરોલંબ અક્ષ પર નિર્દેશિત કરીએ છીએ. હવે વધુમાં વધુ ખર્ચ ₹ 5000 હોવાથી આપણે 1 એકમ = ₹ 1000 માપ લઈ શકીએ.

- 3. પહેલા ચલ કરિયાણાને દર્શાવવા 1 એકમની પહોળાઈ અને 4 એકમની ઊંચાઈવાળો લંબચોરસ બનાવીશું.
- આ પ્રમાણે બે ક્રમિક લંબચોરસ વચ્ચે 1 એકમનું અંતર છોડીને બીજા અન્ય ચલને દર્શાવીશું.
 લંબાલેખ આકૃતિ 14.2 માં દર્શાવેલ છે.

અહીં તમે પહેલી નજરે માહિતીને સાપેક્ષ લક્ષણો સરળતાથી જોઈ શકો છો. ઉદાહરણ તરીકે શૈક્ષણિક ખર્ચ એ દવાઓના ખર્ચના બમણાં કરતા વધારે છે. તેથી કેટલીક બાબતોમાં કોષ્ટક સ્વરૂપ કરતાં આ રીતે માહિતીને ઉત્તમ રીતે રજૂ કરી શકાય છે.

પ્રવૃત્તિ 3 : પ્રવૃત્તિ 1 નાં આ જ ચાર જૂથો દ્વારા મળેલી માહિતીને યોગ્ય લંબાલેખ દ્વારા રજૂઆત કરો. હવે ચાલો જોઈએ કે સતત વર્ગોના વર્ગીકૃત આવૃત્તિ-વિતરણની આલેખાત્મક રજૂઆત કેવી રીતે કરી શકાય તે જોઈએ.

(B) સ્તંભાલેખ

આ આલેખ એ લંબાલેખની આલેખાત્મક રજૂઆતનું જ સ્વરૂપ છે. પરંતુ તે સતત વર્ગી માટે વપરાય છે. ઉદાહરણ તરીકે આવૃત્તિ-વિતરણ કોષ્ટક 14.6 લઈએ. તેમાં એક વર્ગના 36 વિદ્યાર્થીઓનું વજન આપેલું છે.

કોષ્ટક 14.6

વજન (કિગ્રામાં)	વિદ્યાર્થીઓની સંખ્યા
30.5 - 35.5	9
35.5 - 40.5	6
40.5 - 45.5	15
45.5 - 50.5	3
50.5 - 55.5	1
55.5 - 60.5	2
કુલ	36

ચાલો આપણે ઉપર્યુક્ત માહિતીની આલેખાત્મક રજૂઆત નીચે દર્શાવ્યા પ્રમાણે કરીએ :

(i) આપણે સમક્ષિતિજ અક્ષ પર યોગ્ય માપ લઈને વજનને દર્શાવીશું. આપણે 1 સેમી = 5 કિગ્રા પસંદ કરી શકીએ. પરંતુ પહેલો વર્ગ શૂન્યને બદલે 30.5 થી શરૂ થતો હોવાથી અક્ષ પર કાપ (kink) નું ચિક્ષ બનાવીને દર્શાવીશું.

- (ii) વિદ્યાર્થીઓની સંખ્યાને (આવૃત્તિ)શિરોલંબ અક્ષ પર યોગ્ય માપ દ્વારા દર્શાવીશું. સૌથી મોટી આવૃત્તિ 15 હોવાથી 15 નો સમાવેશ થઈ શકે તેવી રીતે તેને અનુરૂપ હોય તેવું માપ લઈશું.
- (iii) હવે આપણે વર્ગલંબાઈ જેટલી પહોળાઈ અને વર્ગની સામે આપેલી આવૃત્તિને અનુરૂપ ઊંચાઈવાળો લંબચોરસ અથવા લંબચોરસ સ્તંભ દોરીશું. ઉદાહરણ તરીકે વર્ગ 30.5 - 35.5 ના લંબચોરસની પહોળાઈ 1 સેમી અને ઊંચાઈ 9 સેમી થશે.
- (iv) આ પ્રમાણે આપણને આકૃતિ 14.3 માં બતાવ્યા પ્રમાણેનો આલેખ મળશે.

જુઓ કે ક્રમિક લંબચોરસ વચ્ચે કોઈ અંતર નથી. તેથી પરિણામી આલેખ એક ઘન આકૃતિ જેવો દેખાય છે. આ આલેખને *સ્તંભાલેખ (histogram)* કહે છે. તેમાં સતત વર્ગવાળા વર્ગીકૃત આવૃત્તિ-વિતરણની એક આલેખાત્મક રજૂઆત છે. ઊપરાંત જે લંબાલેખમાં ન હતી તે લંબચોરસની પહોળાઈ પણ આ આલેખની પ્રસ્તુતિમાં મહત્વપૂર્ણ ભાગ ભજવે છે.

અહીં, ખરેખર તો ઉભા કરેલા લંબચોરસનું ક્ષેત્રફળ તેને સંગત આવૃત્તિઓના સમપ્રમાણમાં હોય છે. જો કે બધા લંબચોરસની પહોળાઈ સમાન છે, પરંતુ ઊંચાઈ આવૃત્તિના સપ્રમાણમાં છે. આ કારણથી આપણે લંબાઈઓ ઉપર (iii) માં બતાવ્યા પ્રમાણે લીધી છે.

હવે ઉપરના કિસ્સા કરતા જુદી પરિસ્થિતિ ધ્યાનમાં લઈએ.

ઉદાહરણ7: એક શિક્ષિકા ગણિતની 100 ગુણની પરીક્ષા લઈને બે વિભાગના વિદ્યાર્થીઓના દેખાવનું વિશ્લેષણ કરવા માગે છે. તેમનું કાર્ય જોઈને તેને જણાય છે કે ફક્ત થોડા જ વિદ્યાર્થીઓના ગુણ 20 થી ઓછા છે અને થોડા વિદ્યાર્થીઓના ગુણ 70 કે તેથી વધુ છે. તેથી તેમણે વિદ્યાર્થીઓને 0 - 20, 20 - 30, . . ., 60 - 70, 70 - 100 જેવા જુદીજુદી વર્ગલંબાઈવાળા વર્ગોમાં વર્ગીકૃત કરવાનો નિર્ણય લેતાં, પૃષ્ઠ 223 પર બતાવ્યા પ્રમાણેનું કોષ્ટક મળશે :

કોષ્ટક 14.7

ગુણ	વિદ્યાર્થીઓની સંખ્યા
0 - 20	7
20 - 30	10
30 - 40	10
40 - 50	20
50 - 60	20
60 - 70	15
70 - થી વધુ	8
કુલ	90

આકૃતિ 14.4 માં દર્શાવ્યા પ્રમાણે એક વિદ્યાર્થી દ્વારા આ કોષ્ટકનો સ્તંભાલેખ તૈયાર કરવામાં આવ્યો હતો.

આલેખાત્મક રજૂઆતને બરાબર ચકાસો. શું તમે વિચારી શકો છો કે માહિતીનું આ સાચું નિર્દેશન છે? ના, આ આલેખ આપણને ગેરમાર્ગે દોરે છે. અગાઉ જણાવ્યા પ્રમાણે સ્તંભાલેખમાં લંબચોરસનું ક્ષેત્રફળ આવૃત્તિના સમપ્રમાણમાં હોય છે. અગાઉના આલેખમાં આ પ્રશ્ન ઉપસ્થિત થતો ન હતો, કારણ કે બધા જ લંબચોરસની પહોળાઈ સમાન હતી. પરંતુ અહીં લંબચોરસની પહોળાઈ બદલાય છે, આથી ઉપર જે સ્તંભાલેખ છે તે સાચું ચિત્ર રજુ કરતો નથી. ઉદાહરણ તરીકે, વર્ગ 60 - 70 કરતાં વર્ગ 70 - 100 ની આવૃત્તિ વધુ હોવી જોઈએ, પરંતુ તે હકીકતમાં નથી.

તેથી લંબચોરસની લંબાઈમાં થોડું પરિવર્તન કરવાની જરૂર પડશે, જેથી કરીને ક્ષેત્રફળ એ આવૃત્તિને સપ્રમાણ થાય.

આપણે નીચે પ્રમાણેનાં સોપાન અનુસરીએ :

- 1. સૌથી નાની વર્ગલંબાઈવાળો વર્ગ લો. ઉપર્યુક્ત ઉદાહરણમાં સૌથી નાની વર્ગલંબાઈ 10 છે.
- 2. લંબચોરસની લંબાઈ એવી રીતે બદલો કે જેથી દરેક લંબચોરસની વર્ગલંબાઈ 10 ને સપ્રમાણ થાય.

ઉદાહરણ તરીકે જ્યારે વર્ગલંબાઈ 20 હોય ત્યારે લંબચોરસની લંબાઈ 7 છે, તો વર્ગલંબાઈ 10 હોય, તો લંબચોરસની લંબાઈ $\frac{7}{20}\times 10=3.5$ થાય.

આ પ્રમાણે આગળ પ્રક્રિયા કરતાં આપણને નીચે પ્રમાણે કોષ્ટક 14.8 મળશે :

કોપ્ટક 14.8

ગુણ	આવૃત્તિ	વર્ગલંબાઈ	લંબચોરસની લંબાઈ
3,		7 1.3	
0 - 20	7	20	$\frac{7}{20} \times 10 = 3.5$
20 - 30	10	10	$\frac{10}{10} \times 10 = 10$
30 - 40	10	10	$\frac{10}{10} \times 10 = 10$
40 - 50	20	10	$\frac{20}{10} \times 10 = 20$
50 - 60	20	10	$\frac{20}{10} \times 10 = 20$
60 - 70	15	10	$\frac{15}{10} \times 10 = 15$
70 - 100	8	30	$\frac{8}{30} \times 10 = 2.67$

આપણે આ દરેક વર્ગમાં વર્ગલંબાઈની ગણતરી 10 ગુણ પ્રમાણે કરેલી છે. તેથી આ લંબાઈઓને ''10 ગુણની વર્ગલંબાઈને અનુરૂપ વિદ્યાર્થીઓની સપ્રમાણ આવૃત્તિ'' (proportional frequency) કહીશું.

તેથી વિવિધ વર્ગલંબાઈવાળો સાચો સ્તંભાલેખ આકૃતિ 14.5 માં આપેલ છે.

(C) આવૃત્તિ બહુકોણ

સંખ્યાત્મક માહિતી અને તેની આવૃત્તિને રજૂ કરવાની હજુ પણ એક અન્ય પદ્ધતિ છે. તે પદ્ધતિ આવૃત્તિ બહુકોણ છે. તેનો અર્થ સમજવા માટે ચાલો આપણે આકૃતિ 14.3 માં દર્શાવેલ સ્તંભાલેખને ધ્યાનમાં લઈએ. આ સ્તંભાલેખમાં પરસ્પર જોડાયેલા લંબચોરસની ઉપરની બાજુઓનાં મધ્યબિંદુઓને રેખાખંડ વડે જોડી દઈએ. તેને આપણે અનુક્રમે B, C, D, E, F અને G કહીએ. જ્યારે રેખાખંડોને આપણે જોડીએ ત્યારે આકૃતિ BCDEFG (જુઓ આકૃતિ 14.6.) મળે છે. આ આવૃત્તિ બહુકોણ પૂર્ણ કરવા માટે આપણે 30.5 - 35.5 નો પહેલાના સૈદ્ધાંતિક વર્ગ અને 55.5 - 60.5 ના પછીના સૈદ્ધાંતિક વર્ગની આવૃત્તિ શૂન્ય માની લઈએ અને તેમના મધ્યબિંદુને અનુક્રમે A અને H લઈએ. આકૃતિ 14.3 માં બતાવ્યા મુજબ આવૃત્તિને સંગત આવૃત્તિ બહુકોણ ABCDEFGH મળશે. તે આપણે આકૃતિ 14.6 માં બતાવ્યું છે.

જો કે સૌથી નાના વર્ગ પહેલાં અને સૌથી મોટા વર્ગ પછી કોઈ વર્ગ નથી. પરંતુ શૂન્ય આવૃત્તિવાળા બંને વર્ગને ઉમેરવાથી મળતા આવૃત્તિ બહુકોણનું ક્ષેત્રફળ એ સ્તંભાલેખના ક્ષેત્રફળ જેટલું જ હોય છે. તમે તે બતાવી શકશો કે આવું કેમ બને ?

(સૂચન : એકરૂપ ત્રિકોશોની શરતોનો ઉપયોગ કરો.)

હવે એક પ્રશ્ન ઊભો થાય છે કે જ્યારે પ્રથમ વર્ગ પહેલાં કોઈ વર્ગ ન હોય તો આવૃત્તિ બહુકોણ કેવી રીતે પૂર્ણ કરીશું ? તે સમજવા માટે એક ઉદાહરણને જોઈએ.

ઉદાહરણ 8 : કોઈ એક વર્ગના 51 વિદ્યાર્થીઓના 100 ગુણની કસોટીમાં મેળવેલા ગુણ આગળ પ્રમાણે કોષ્ટક 14.9 માં આપ્યા છે :

કોષ્ટક 14.9

ગુણ	વિદ્યાર્થીઓની સંખ્યા
0 - 10	5
10 - 20	10
20 - 30	4
30 - 40	6
40 - 50	7
50 - 60	3
60 - 70	2
70 - 80	2
80 - 90	3
90 - 100	9
કુલ	51

ઉપર્યુક્ત આવૃત્તિ-વિતરણના કોષ્ટકને અનુરૂપ આવૃત્તિ બહુકોણ દોરો.

ઉકેલ: સૌપ્રથમ આ માહિતીનો ઉપયોગ કરી સ્તંભાલેખ દોરીએ અને લંબચોરસના ઉપરની બાજુઓનાં મધ્યબિંદુઓને અનુક્રમે B, C, D, E, F, G, H, I, J, K વડે દર્શાવીએ. અહીં પહેલો વર્ગ 0-10 છે. તેની આગળનો વર્ગ મેળવવા માટે સમક્ષિતિજ અક્ષને ઋણ દિશામાં લંબાવીને અને કાલ્પનિક વર્ગ (–10) - 0 નું મધ્યબિંદુ શોધો. પ્રથમ અંત્યબિંદુ એટલે કે B ને સમક્ષિતિજ અક્ષની ઋણ દિશામાં શૂન્ય આવૃત્તિવાળા વર્ગના મધ્યબિંદુ સાથે જોડવામાં આવે છે. તે શિરોલંબ અક્ષને જે બિંદુમાં છેદે તેને A વડે દર્શાવવામાં આવે છે. આ માહિતીના અંતિમ વર્ગની પછીના વર્ગનું મધ્યબિંદુ L માનીએ. આમ, આકૃતિ 4.7 માં દર્શાવ્યા મુજબ OABCDEFGHIJKL એ આવૃત્તિ બહુકોણ છે. તે આકૃતિ 14.7 માં દર્શાવાયો છે.

આવૃત્તિ બહુકોણને સ્તંભાલેખ દોર્યા સિવાય પણ સ્વતંત્ર રીતે દોરી શકાય છે. આ માટે માહિતીના દરેક વર્ગનાં મધ્યબિંદુઓની જરૂર

પડે છે. આ વર્ગોનાં મધ્યબિંદુઓને વર્ગની *મધ્યકિંમત (class-marks)* કહે છે.

વર્ગની મધ્યકિંમત શોધવા માટે વર્ગની અધઃસીમા અને ઊર્ધ્વસીમાનો સરવાળો કરી 2 વડે ભાગવામાં આવે છે.

વર્ગની મધ્યકિંમત =
$$\frac{\Im 6 4 \pi + 3 4 \pi + 3 4 \pi}{2}$$

ચાલો એક ઉદાહરણ જોઈએ.

ઉદાહરણ 9 : એક શહેરમાં જીવનનિર્વાહ-અંક (cost of living index) નો અભ્યાસ કરવા માટેનાં સાપ્તાહિક અવલોકનો નીચે કોષ્ટકમાં આપેલાં છે :

જીવન નિર્વાહ અંક સાપ્તાહિક સંખ્યા 140 - 150 5 150 - 16010 160 - 17020 9 170 - 180180 - 190 6 190 - 2002 52 કુલ

કોષ્ટક 14.10

ઉપર્યુક્ત માહિતી માટે આવૃત્તિ બહુકોણ (સ્તંભાલેખ દોર્યા વગર) તૈયાર કરો.

ઉક્રેલ : સ્તંભાલેખ દોર્યા સિવાય આપણે આવૃત્તિ બહુકોણ દોરવા માટે ઉપર્યુક્ત વર્ગો 140 - 150, 150 - 160,.... ની મધ્યકિંમતો શોધીએ.

વર્ગ 140 - 150 માટે ઊર્ધ્વસીમા = 150 અને અધ:સીમા = 140

વર્ગ મધ્યકિંમત =
$$\frac{150 + 140}{2} = \frac{290}{2} = 145$$
.

આ રીતે આપણે બીજા વર્ગોની મધ્યકિંમતો શોધીએ. આમ નીચે દર્શાવ્યા પ્રમાણે નવું કોષ્ટક મળશે :

કોષ્ટક 14.11

વર્ગ	મધ્યકિંમત	આવૃત્તિ
140 - 150	145	5
150 - 160	155	10
160 - 170	165	20
170 - 180	175	9
180 - 190	185	6
190 - 200	195	2
કુલ		52

હવે આપણે મધ્યકિંમતોને સમક્ષિતિજ અક્ષ પર અને આવૃત્તિઓને શિરોલંબ અક્ષ પર મૂકીએ અને પછી તે બિંદુઓ B(145,5), C(155,10), D(165,20), E(175,9), F(185,6) અને G(195,2) ને આલેખી તેમને રેખાખંડથી જોડીએ. વર્ગ 130-140 (જે સૌથી નાના વર્ગ 140-150 ની બરાબર આગળનો વર્ગ) ના મધ્યબિંદુને સંગત શૂન્ય આવૃત્તિ એટલે કે A(135,0) અને G(195,2) ના તરત પછી આવતાં વર્ગ માટે બિંદુ H(205,0) લેવાનું આપણે ભૂલીશું નહિ. તેના પરિણામે આવૃત્તિ બહુકોણ ABCDEFGH મળશે. (જુઓ આકૃતિ 14.8.)

જ્યારે માહિતી સતત અને ખૂબ જ મોટી હોય ત્યારે આવૃત્તિ બહુકોણનો ઉપયોગ થાય છે. એક જ લાક્ષણિકતા ધરાવતી બે જુદીજુદી માહિતીના સમૂહની સરખામણી કરવા માટે આ ખૂબ જ ઉપયોગી છે. ઉદાહરણ તરીકે એક જ વર્ગના બે જુદાજુદા વિભાગોના પ્રદર્શનની તુલના કરવા માટે આ આલેખ વધુ ઉપયોગી છે.

સ્વાધ્યાય 14.3

1. કોઈ એક સંસ્થા દ્વારા 15 થી 44 (વર્ષોમાં) વચ્ચેની વયવાળી સ્ત્રીની માંદગી અને મૃત્યુનાં કારણો શોધવા માટે કરવામાં આવેલ વિશ્વવ્યાપી સર્વેક્ષણના નીચે પ્રમાણેના આંકડા(% માં) મળ્યા હતા :

અ.નં.	કારણો	સ્ત્રી મૃત્યુદર (%)
1.	પ્રજનન સ્વાસ્થ્ય સ્થિતિ	31.8
2.	જ્ઞાનતંતુ સંગત મનોવિકાર	25.4
3.	ઈજાઓ	12.4
4.	હ્રદય અને રક્તવાહિકા તંત્રની સ્થિતિ	4.3
5.	શ્વસનતંત્રની સ્થિતિ	4.1
6.	અન્ય કારણો	22.0

- (i) ઉપર આપેલી માહિતીની આલેખાત્મક રજૂઆત કરો.
- (ii) વિશ્વમાં સ્ત્રીઓની માંદગી અને મૃત્યુ માટે કયું પરિબળ સૌથી વધુ કારણભૂત છે ?

- (iii) તમારા શિક્ષકની મદદથી ઉપર (ii) માં દર્શાવ્યા સિવાયના અન્ય બે મુખ્ય પરિબળો શોધવાનો પ્રયત્ન કરો.
- 2. ભારતીય સમાજના વિવિધ વિભાગોમાં હજાર છોકરાઓ દીઠ છોકરીઓની સંખ્યાઓની (લગભગ 10 ના ગુષ્ડિતની નજીક) માહિતી નીચે પ્રમાણે છે :

વિભાગ	હજાર છોકરાઓ દીઠ છોકરીઓની સંખ્યા
અનુસૂચિત જાતિ (SC)	940
અનુસૂચિત જનજાતિ (ST)	970
બિન અનુસૂચિત જાતિ/અનુસૂચિત જનજાતિ	920
પછાત જિલ્લાઓ	950
બિન પછાત જિલ્લાઓ	920
ગ્રામ્ય	930
શહેર	910

- (i) ઉપર્યુક્ત માહિતીને આધારે લંબાલેખ દોરો.
- (ii) આલેખ પરથી કયા તારણ કાઢી શકાય તેની વર્ગમાં ચર્ચા કરો
- 3. એક રાજ્યની વિધાનસભાની ચૂંટણીમાં જુદાજુદા રાજકીય પક્ષોએ જીતેલી બેઠકો માટે મતદાનનું પરિણામ નીચે પ્રમાણે છે:

રાજકીય પક્ષો	A	В	С	D	Е	F
જીતેલી બેઠકો	75	55	37	29	10	37

- (i) મતદાનનાં પરિણામોને દર્શાવતો એક લંબાલેખ દોરો.
- (ii) કયો રાજકીય પક્ષ સૌથી વધુ બેઠકો જીત્યો ?
- 4. એક છોડનાં 40 પાંદડાંની લંબાઈ મિલિમીટરમાં આપવામાં આવી છે અને તેનાથી મળતી માહિતી નીચેના કોષ્ટકમાં દર્શાવી છેઃ

લંબાઈ (મિમી માં)	પાંદડાંની સંખ્યા
118 - 126	3
127 - 135	5
136 - 144	9
145 - 153	12
154 - 162	5
163 - 171	4
172 - 180	2

(i) આપેલી માહિતીનું નિરૂપણ કરતો એક સ્તંભાલેખ દોરો.

[સૂચન: સૌપ્રથમ વર્ગોને સતત બનાવો.]

- (ii) શું અન્ય રીતે આ માહિતીની આલેખાત્મક રજૂઆત થઈ શકે ?
- (iii) 153 મિલિમીટર લંબાઈના પાંદડાની સંખ્યા સૌથી વધુ છે. શું આ તારણ સાચું છે ? કેમ ?
- 5. નીચેના કોષ્ટકમાં 400 નિયોન બલ્બનું આયુષ્ય આપેલું છે :

આયુષ્ય (કલાકમાં)	બલ્બની સંખ્યા
300-400	14
400-500	56
500-600	60
600 - 700	86
700 - 800	74
800-900	62
900-1000	48

- (i) આપેલી માહિતીને સ્તંભાલેખની મદદથી દર્શાવો.
- (ii) કેટલા બલ્બનું આયુષ્ય 700 કલાકથી વધુ છે ?
- 6. નીચેના કોષ્ટકમાં વિદ્યાર્થીઓએ મેળવેલા ગુણ અનુસાર તેમને બે વિભાગમાં વહેંચવામાં આવ્યા છે :

વિભાગ 🛦		વિભાગ в	
ગુણ	આવૃત્તિ	ગુણ	આવૃત્તિ
0-10	3	0 - 10	5
10-20	9	10-20	19
20-30	17	20-30	15
30-40	12	30-40	10
40 - 50	9	40 - 50	1

બંને વિભાગોના વિદ્યાર્થીઓએ મેળવેલા ગુણ એક જ આલેખમાં જુદાજુદા આવૃત્તિ બહુકોણ દ્વારા દર્શાવો. બંને આવૃત્તિ બહુકોણનો અભ્યાસ કરી બંને વિભાગના વિદ્યાર્થીના દેખાવની તુલના કરો.

7. એક ક્રિકેટ મૅચમાં બે ટીમો A અને B દ્વારા પ્રથમ 60 બૉલમાં કરેલા રનની માહિતી નીચે નોંધવામાં આવી છે :

બૉલની સંખ્યા	ટીમ 🛦	ટીમ в
1-6	2	5
7-12	1	6
13 - 18	8	2
19-24	9	10
25-30	4	5
31-36	5	6
37-42	6	3
43 - 48	10	4
49 - 54	6	8
55-60	2	10

એક જ આલેખપત્ર પર બંને ટીમોની માહિતીને આવૃત્તિ બહુકોણની મદદથી દર્શાવો.

[સૂચન : સૌપ્રથમ વર્ગોને સતત બનાવો.]

8. એક બગીચામાં રમતાં જુદા-જુદા વય-જૂથનાં બાળકોની સંખ્યાનું યાદચ્છિક સર્વેક્ષણ કરવાથી નીચે પ્રમાણેની માહિતી પ્રાપ્ત થઈ.

ઉંમર (વર્ષમાં)	બાળકોની સંખ્યા
1-2	5
2-3	3
3-5	6
5-7	12
7-10	9
10-15	10
15-17	4

ઉપર્યુક્ત માહિતીને દર્શાવતો એક સ્તંભાલેખ દોરો.

9. એક સ્થાનિક ટેલિફોન ડિરેક્ટરીમાંથી યાદચ્છિક રીતે 100 અટક પસંદ કરવામાં આવી. તેમાંથી અંગ્રેજી મૂળાક્ષરોની સંખ્યાનું આવૃત્તિ-વિતરણ નીચે પ્રમાણે પ્રાપ્ત થયું.

મૂળાક્ષરોની સંખ્યા	અટકની સંખ્યા
1 -4	6
4 - 6	30
6 - 8	44
8 - 12	16
12 - 20	4

- (i) આપેલી માહિતીનું નિરૂપણ કરતો સ્તંભાલેખ દોરો.
- (ii) જે વર્ગમાં સૌથી વધુ સંખ્યામાં અટક છે તે વર્ગ શોધીને લખો.

14.5 મધ્યવર્તી સ્થિતિમાનનાં માપ (Measures of Central Tendency)

અત્યાર સુધીમાં આપણે આ પ્રકરણમાં આવૃત્તિ-વિતરણ કોષ્ટક, લંબાલેખ, સ્તંભાલેખ અને આવૃત્તિ બહુકોણની મદદથી માહિતીને વિવિધ સ્વરૂપે રજૂ કરી છે. હવે એ પ્રશ્ન થાય કે શું માહિતીને અર્થપૂર્ણ બનાવવા માટે આપણે હંમેશાં બધી જ માહિતીનો અભ્યાસ કરવાની જરૂરિયાત પડે છે અથવા આ માહિતીનું ચોક્કસ પ્રતિનિધિત્વ કરે તેવી કેટલીક વિશેષતા શોધી શકીએ. મધ્યવર્તી સ્થિતિમાનનાં માપ (measures of central tendency) અથવા સરેરાશની મદદથી આ શક્ય છે.

જ્યારે બે વિદ્યાર્થીઓ મેરી અને હરિને તેમની ઉત્તરવહી આપવામાં આવી. ત્યારની પરિસ્થિતિને ધ્યાનમાં લઈએ. કસોટીમાં

			_		` `	` `		0)	_		
દસ-દસ	21121-11	าบาวเ	110-11	. 4.41	નંગાગં	21(0)	SHE	-i loi	1121112	·<-11	•
0 71- 071	~1151*II	પાપ	ม∽แ	e(u.	เนารเ	નખલલા	\sim lSl	પાપ	ત્રવાદા	e(tt	•

પ્રશ્નનો ક્રમ	1	2	3	4	5
મેરીના ગુણ	10	8	9	8	7
હરિના પ્રાપ્તાંક	4	7	10	10	10

મેળવેલી કસોટીની ઉત્તરવહીમાં બંનેના સરેરાશ ગુણ આ પ્રમાણે હતા.

મેરીના સરેરાશ ગુણ =
$$\frac{42}{5}$$
 = 8.4

હરિના સરેરાશ ગુણ =
$$\frac{41}{5}$$
 = 8.2

હરિના સરેરાશ ગુણ કરતાં મેરીના સરેરાશ ગુણ વધારે હોવાથી મેરીએ દાવો કર્યો કે હરિ કરતા તેનો દેખાવ સારો છે. પરંતુ હરિ તેનાથી સહમત ન થયો. તેણે બંનેના ગુણ ચઢતાં ક્રમમાં નીચે પ્રમાણે ગોઠવ્યા અને તેનાથી મધ્યના ગુણ શોધ્યા તે નીચે પ્રમાણે છે :

મેરીના સરેરાશ ગુણ	7	8	8	9	10
હરિના સરેરાશ ગુણ	4	7	10	10	10

હરિનું કહેવું છે કે તેના બરાબર મધ્યના ગુણ 10 હતા. તે મેરીના મધ્યના ગુણ 8 કરતાં વધારે છે. તેથી કસોટીમાં તેનો દેખાવ વધુ સારો ગણાવો જોઈએ.

પરંતુ મેરી તેમાં સહમત ન હતી. મેરીને મનાવવા હરિએ બીજી યુક્તિ અપનાવી. તેણે કહૃાું કે મેરીના ગુણ સાથે સરખાવતાં તેણે 10 ગુણ વધુ વખત (ત્રણ વખત) મેળવ્યા છે. જ્યારે મેરીએ 10 ગુણ એક જ વાર મેળવ્યા છે. તેથી તેનું પ્રદર્શન વધુ સારું ગણાય છે.

હવે હરિ અને મેરીના આ વિવાદને ઉકેલવા તેમના દ્વારા વપરાયેલા ત્રણે ય માપની પદ્ધતિ જોઈએ.

પ્રથમ કિસ્સામાં મેરીએ જે સરાસરી ગુણ મેળવ્યા તેને મધ્યક (mean) કહેવાય છે. હરિએ પોતાની દલીલમાં ઉપયોગ કર્યો અને મધ્યના ગુણ શોધ્યા, તે મધ્યસ્થ (median) છે અને પોતાની બીજી દલીલમાં હરિએ વધુ વખત મેળવેલા જે ગુણની વાત કહી છે તે બહુલક (mode) છે.

હવે આપણે પહેલા મધ્યક વિશે વિસ્તારથી ચર્ચા કરીએ.

બધાં જ અવલોકનોની કિંમતના સરવાળાને અવલોકનોની કુલ સંખ્યા વડે ભાગતાં જે કિંમત મળે તેને અવલોકનોનો \mathbf{u} મધ્યક (mean) અથવા **સરેરાશ** કહે છે અને તેને સંકેતમાં \overline{x} વડે દર્શાવાય છે અને તે 'x બાર' એમ વંચાય છે.

ચાલો આપણે એક ઉદાહરણ લઈએ.

ઉદાહરણ 10 : 5 વ્યક્તિઓને પૂછવામાં આવ્યું કે તેમના સમાજમાં સામાજિક કાર્ય કરવા માટે એક અઠવાડિયામાં કેટલો સમય તેમણે ફાળવ્યો હતો. તેમણે કહ્યું અનુક્રમે 10, 7, 13, 20 અને 15 કલાક. તો એક અઠવાડિયામાં તેમના દ્વારા સામાજિક કાર્યમાં ફાળવેલા સમયનો મધ્યક શોધો.

ઉકેલ : આપણે અગાઉના ધોરણમાં અભ્યાસ કરી ગયા કે,

મધ્યક શોધવા માટેની પદ્ધતિ સરળ કરવા માટે ચાલો આપણે એક ચલ x_i લઈએ. અહીં, i એ અવલોકનનો ક્રમ છે. અહીં i=1 થી 5 માંથી કોઈ પણ એક એટલે કે આપણું પહેલું અવલોકન x_1 બીજું અવલોકન x_2 અને તે રીતે પાંચમું અવલોકન x_5 થશે.

ઉપરાંત $x_1=10$ નો અર્થ એ થાય છે કે પહેલા અવલોકનનું મૂલ્ય 10 છે અને તેને x_1 વડે દર્શાવવામાં આવે છે. તેવી જ રીતે $x_2=7, x_3=13, x_4=20$ અને $x_5=15$ દર્શાવેલ છે.

મધ્યક
$$\overline{x}=\frac{\text{બધાં અવલોકનોનો સરવાળો}}{\text{અવલોકનોની કુલ સંખ્યા}}$$

$$=\frac{x_1+x_2+x_3+x_4+x_5}{5}$$

$$=\frac{10+7+13+20+15}{5}=\frac{65}{5}=13$$

આથી 5 વ્યક્તિઓ દ્વારા સામાજિક કાર્ય કરવા માટે એક અઠવાડિયામાં ફાળવેલ સમયનો મધ્યક 13 કલાકનો હતો.

હવે 30 વ્યક્તિઓ દ્વારા સામાજિક કાર્યમાં ફાળવેલ સમયનો મધ્યક શોધવો છે તો આપણે $x_1+x_2+x_3+\ldots+x_{30}$ લખવું પડે. આ તો કઠિન કાર્ય છે. તેથી તે સરવાળાને સંક્ષિપ્તમાં દર્શાવવા ગ્રીક સંકેત Σ (સરવાળાનો સંકેત સીગ્મા) નો ઉપયોગ કરીએ છીએ. તેથી $x_1+x_2+x_3+\ldots+x_{30}$ ને બદલે આપણે $\sum_{i=1}^{30}x_i$ લખીએ છીએ, જ્યાં i ની કિંમત 1 થી 30 સુધી વિસ્તરી છે, તેવો x_i નો સરવાળો છે એમ વાંચવામાં આવે છે.

તેથી,
$$\overline{x} = \frac{\sum_{i=1}^{30} x_i}{30}$$
 આ પ્રમાણે n અવલોકનો માટે
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

ઉદાહરણ 11 : એક શાળાના ધોરણ 9 ના 30 વિદ્યાર્થીઓએ ઉદાહરણ 2 માં આપેલા ગુણ પ્રમાણે મેળવેલા ગુણનો મધ્યક શોધો.

શું આ પ્રક્રિયા વધુ સમય નથી માંગી લેતી ? શું આ પ્રક્રિયાને સહેલી બનાવી શકાય ? નોંધો કે આપણી પાસે માહિતીનું આવૃત્તિ-વિતરણ કોષ્ટક છે. (જુઓ કોષ્ટક 14.1.)

આ કોષ્ટક દર્શાવે છે કે 1 વિદ્યાર્થીએ 10 ગુણ પ્રાપ્ત કર્યા હતા. 1 વિદ્યાર્થીએ 20 ગુણ પ્રાપ્ત કર્યા હતા. 3 વિદ્યાર્થીઓએ 36 ગુણ પ્રાપ્ત કર્યા હતા. 4 વિદ્યાર્થીઓએ 40 ગુણ પ્રાપ્ત કર્યા હતા. 3 વિદ્યાર્થીઓએ 50 ગુણ પ્રાપ્ત કર્યા હતા. 2 વિદ્યાર્થીઓએ 56 ગુણ પ્રાપ્ત કર્યા હતા. 4 વિદ્યાર્થીઓએ 60 ગુણ પ્રાપ્ત કર્યા હતા. 4 વિદ્યાર્થીઓએ 70 ગુણ પ્રાપ્ત કર્યા હતા. 1 વિદ્યાર્થીએ 72 ગુણ પ્રાપ્ત કર્યા હતા. 1 વિદ્યાર્થીએ 80 ગુણ પ્રાપ્ત કર્યા હતા. 2 વિદ્યાર્થીઓએ 88 ગુણ પ્રાપ્ત કર્યા હતા. 3 વિદ્યાર્થીઓએ 92 ગુણ પ્રાપ્ત કર્યા હતા. 1 વિદ્યાર્થીએ 95 ગુણ પ્રાપ્ત કર્યા હતા.

 $=f_1x_1+\ldots+f_{13}x_{13}$, અહીં f_i એ કોપ્ટક 14.1 માં અવલોકનોની આવૃત્તિ છે.

ટૂંકમાં તેને $\sum_{i=1}^{13} f_i x_i$ રીતે લખી શકાય છે.

તેથી મેળવેલા કુલ ગુણ
$$=\sum_{i=1}^{13}f_ix_i$$

$$=10+20+108+160+150+112+240+280+72+80+176+276+95$$

$$=1779$$
 અવલોકનોની કુલ સંખ્યા $=\sum_{i=1}^{13}f_i$
$$=f_1+f_2+\ldots+f_{13}$$

$$=1+1+3+4+3+2+4+4+1+1+2+3+1$$

તેથી ,
$$\begin{aligned} & \text{મધ્યક } \overline{x} = \frac{\text{બધાં અવલોકનોનો સરવાળો}}{\text{અવલોકનોની કુલ સંખ્યા}} \\ & = \left(\frac{\sum\limits_{i=1}^{13} f_i x_i}{\sum\limits_{i=1}^{13} f_i}\right) \end{aligned}$$

= 30

$$=\frac{1779}{30}=59.3$$

આ પ્રક્રિયા નીચે બતાવેલા કોષ્ટકની રીતે દર્શાવી શકાય છે. તે કોષ્ટક 14.1 નું સુધારેલું સ્વરૂપ છે.

_					
2	12	۷	1	11	1

ગુણ	વિદ્યાર્થીઓની સંખ્યા	$f_i x_i$		
(x_i)	(f_i)			
10	1	10		
20	1	20		
36	3	108		
40	4	160		
50	3	150		
56	2	112		
60	4	240		
70	4	280		
72	1	72		
80	1	80		
88	2	176		
92	3	276		
95	1	95		
$\sum_{i=1}^{13} f_i = 30$ $\sum_{i=1}^{13} f_i x_i = 1$				

આમ અવર્ગીકૃત આવૃત્તિ-વિતરણમાં તમે મધ્યક શોધવા માટે નીચે આપેલા સૂત્રનો ઉપયોગ કરી શકો :

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

ચાલો હવે આપણે હરિ અને મેરીની વચ્ચે થયેલી દલીલ પર પાછા ફરીએ અને બીજી સ્થિતિ પર વિચાર કરીએ. તેમાં હરિએ મધ્યનું મૂલ્ય વધુ મેળવી તેનો શ્રેષ્ઠ દેખાવ બતાવવાનો પ્રયત્ન કર્યો હતો. અગાઉ કહેવામાં આવ્યું છે કે મધ્યવર્તી સ્થિતિમાનના આ માપને **મધ્યસ્થ** કહેવામાં આવે છે.

જે આપેલ અવલોકનોનું બરાબર બે સમાન ભાગોમાં વિભાજન કરે તેવા અવલોકનનું મૂલ્ય મધ્યસ્થ છે. તેથી જ્યારે માહિતીને ચઢતા કે ઊતરતાં ક્રમમાં લખવામાં આવે ત્યારે અવર્ગીકૃત માહિતીના મધ્યસ્થની ગણતરી નીચે પ્રમાણે કરી શકાય છે:

(i) જયારે અવલોકનોની સંખ્યા (n) અયુગ્મ હોય છે ત્યારે મધ્યસ્થ એ $\left(\frac{n+1}{2}\right)$ માં અવલોકનનું મૂલ્ય છે. ઉદાહરણ તરીકે, $\text{જો } n = 13 \text{ હોય, } \text{તો મધ્યસ્થ મૂલ્ય } \left(\frac{13+1}{2}\right)$ થાય એટલે કે, 7 મું અવલોકન મધ્યસ્થ થશે. [જુઓ આકૃતિ 14.9 (i).]

(ii) જયારે અવલોકનોની સંખ્યા (n) યુગ્મ હોય છે ત્યારે મધ્યસ્થ એ $\left(\frac{n}{2}\right)$ માં અને $\left(\frac{n}{2}+1\right)$ માં અવલોકનોનાં મૂલ્યની સરેરાશ છે. ઉદાહરણ તરીકે, જો n=16 હોય, તો મધ્યસ્થ $\left(\frac{16}{2}\right)$ માં અને $\left(\frac{16}{2}+1\right)$ માં અવલોકનોના મૂલ્યની સરેરાશ થાય છે. એટલે કે 8 માં અને 9 માં અવલોકનનાં મૂલ્યની સરેરાશ એ મધ્યસ્થ થશે.[જુઓ આકૃતિ 14.9 (ii).]

ચાલો હવે આપણે કેટલાંક ઉદાહરણની મદદથી તેને સમજીએ.

ઉદાહરણ 12 : એક વર્ગના 9 વિદ્યાર્થીઓની ઊંચાઈ (સેમીમાં) આ પ્રમાણે છે :

155 160 145 149 150 147 152 144 148 આ માહિતીનો મધ્યસ્થ શોધો.

ઉકેલ: સૌપ્રથમ આપણે માહિતીને ચઢતા ક્રમમાં આ પ્રમાણે ગોઠવીએ :

144 145 147 148 149 150 152 155 160

વિદ્યાર્થીઓની સંખ્યા 9 છે એટલે કે અયુગ્મ સંખ્યા છે. તેથી ઊંચાઈનો મધ્યસ્થ $\left(\frac{n+1}{2}\right)$ મું અવલોકન

$$=\left(\frac{9+1}{2}\right)$$
મું અવલોકન

= 5 મું અવલોકન

= 149 સેમી

તેથી ઊંચાઈનો મધ્યસ્થ 149 સેમી છે.

ઉદાહરણ 13 : કબડ્ડીની એક ટીમ દ્વારા મૅચની શૃંખલામાં મળેલા અંક આ પ્રમાણે છે :

17, 2, 7, 27, 15, 5, 14, 8, 10, 24, 48, 10, 8, 7, 18, 28

આ ટીમ દ્વારા મેળવેલા અંકોનો મધ્યસ્થ શોધો.

ઉકેલ: ટીમ દ્વારા મેળવેલા અંકોને ચઢતાં ક્રમમાં ગોઠવવાથી આ પ્રમાણે મળશે :

અહીં અવલોકનોની સંખ્યા 16 છે. તેથી બે મધ્યમ પદ છે. તે $\frac{16}{2}$ મું પદ અને $\left(\frac{16}{2}+1\right)$ મું પદ એટલે કે, 8 મું પદ અને 9 મું પદ છે.

હવે 8 માં પદ અને 9 માં પદની સરેરાશ જ મધ્યસ્થ થશે.

મધ્યસ્થ =
$$\frac{10 + 14}{2}$$
 = 12

આમ કબડ્ડીની ટીમ દ્વારા મેળવેલા અંકોનો મધ્યસ્થ 12 થશે.

હવે ફરીથી હરિ અને મેરીની વચ્ચેના વણઉકલ્યા પ્રશ્ન પર પાછા જઈએ. સરાસરી મેળવવા હરિએ લીધેલું ત્રીજું મૂલ્ય **બહુલક** (mode) હતું.

મહત્તમ વખત પુનરાવર્તિત થતાં અવલોકનોનું મૂલ્ય એ બહુલક છે એટલે કે સૌથી વધુ આવૃત્તિ ધરાવતાં અવલોકનોને બહુલક કહે છે.

તૈયાર વસ્ત્રોના ઉદ્યોગ અને પગરખા ઉદ્યોગ આ મધ્યવર્તી સ્થિતિમાનના માપનો ખૂબ જ ઉપયોગ કરે છે. બહુલક વિશેના જ્ઞાનની મદદથી ઉદ્યોગો નિર્ણય લઈ શકે છે કે કયાં માપનું ઉત્પાદન વધુ સંખ્યામાં કરવું જોઈએ.

તો ચાલો આપણે બહુલકને એક ઉદાહરણ દ્વારા સમજીએ.

ઉદાહરણ14 : 20 વિદ્યાર્થીઓએ 10 માંથી મેળવેલા ગુણ નીચે પ્રમાણે છે. તો બહુલક શોધો :

ઉકેલ: આપણે માહિતીને નીચે પ્રમાણે ગોઠવીએ :

અહીં 9 સૌથી વધુ વખત એટલે કે 4 વખત પુનરાવર્તન પામે છે તેથી બહુલક 9 છે.

ઉદાહરણ 15 : એક કારખાનાનાં એક એકમમાં 1 સુપરવાઈઝર અને 4 મજૂરો એમ 5 વ્યક્તિ કામ કરે છે. દરેક મજૂરને માસિક પગાર ₹ 5000, સુપરવાઈઝરનો માસિક પગાર ₹ 15,000 મળે છે, તો કારખાનાના આ એકમના પગારનો મધ્યક, મધ્યસ્થ અને બહુલક શોધો.

ઉકેલ : મધ્યક =
$$\frac{5000 + 5000 + 5000 + 5000 + 15000}{5} = \frac{35000}{5} = 7000$$

તેથી પગારનો મધ્યક ₹ 7000 પ્રતિમાસ થશે.

મધ્યસ્થ શોધવા માટે પગારને આપણ ચઢતા ક્રમમાં ગોઠવતા :

કારખાનાના એકમમાં કામ કરતા સભ્યો 5 છે.

મધ્યસ્થ =
$$\left(\frac{5+1}{2}\right)$$
મું અવલોકન
= $\frac{6}{2}$ મું અવલોકન
= 3 જું અવલોકન
= ₹ 5000 પ્રતિમાસ

તેથી પગારનો મધ્યસ્થ ₹ 5000 પ્રતિમાસ થાય. પગારનો બહુલક શોધવા એટલે કે બહુલકીય પગાર શોધવા આપણે જોઈએ છીએ કે આપેલી માહિતી 5000, 5000, 5000, 5000, 15000 માં સૌથી વધુ વખત 5000 પુનરાવર્તન થાય છે. તેથી બહુલકીય પગાર ₹ 5000 પ્રતિમાસ છે.

હવે ઉપર્યુક્ત ઉદાહરણમાં માહિતીના શોધેલા મધ્યવર્તી સ્થિતિમાનનાં ત્રણ મૂલ્યોની તુલના કરો. તો તમે જોઈ શકો છો કે મધ્યક ₹ 7000 એ પગારનો કોઈ યોગ્ય અંદાજ દર્શાવતો નથી. જ્યારે મધ્યસ્થ અને બહુલક ₹ 5000 એ માહિતીનું વધુ અસરકારક રીતે નિરૂપણ કરે છે.

માહિતીના સૌથી મોટા તથા નાના અવલોકનની અસર મધ્યક પર ખૂબ જ પ્રબળ હોય છે. તેથી જો માહિતીમાં કેટલાંક અવલોકનો વચ્ચેનું અંતર વધારે હોય (જેમ કે 1,7,8,9,9) તો આ સ્થિતિમાં માહિતીનો મધ્યક તે સારી રજૂઆત નથી. જયારે સૌથી મોટા તથા નાના અવલોકનની મધ્યસ્થ અને બહુલક પર અસર થતી નથી. તેથી આ પરિસ્થિતિમાં તે માહિતીની મધ્યવર્તી સ્થિતીનો વધુ સારો અંદાજ આપી શકે છે.

ચાલો ફરીથી હરિ અને મેરીનાં ઉદાહરણો લઈએ અને મધ્યવર્તી સ્થિતિમાનનાં માપની તુલના કરીએ.

મધ્યવર્તી સ્થિતિમાનનાં માપ	હરિ	મેરી
મધ્યક	8.2	8.4
મધ્યસ્થ	10	8
બહુલક	10	8

આ સરખામણી દર્શાવે છે કે, મધ્યવર્તી સ્થિતિમાનનાં આ ત્રણ માપ દ્વારા કયો વિદ્યાર્થી વધુ સારો છે તે દર્શાવવા માટે પૂરતા નથી. તારણ કાઢવા માટે આપણે કેટલીક વધુ જાણકારી મેળવવી જરૂરી છે. તેનો અભ્યાસ તમે ઉપલા ધોરણમાં કરશો.

स्वाध्याय 14.4

1. એક ટીમે એક શ્રેણીની 10 મૅચમાં કરેલા ગોલની સંખ્યા નીચે મુજબ છે :

તો ગોલનો મધ્યક, મધ્યસ્થ અને બહુલક શોધો.

2. ગણિતની કસોટીમાં 15 વિદ્યાર્થીઓએ 100 માંથી મેળવેલા ગુણ નીચે પ્રમાણે નોંધાયેલા છે :

આ માહિતીનો મધ્યક, મધ્યસ્થ અને બહુલક શોધો.

3. નીચેનાં અવલોકનો ચઢતા ક્રમમાં ગોઠવેલા છે. જો માહિતીનો મધ્યસ્થ 63 હોય, તો x નું મૂલ્ય શોધો.

29, 32, 48, 50,
$$x$$
, $x+2$, 72, 78, 84, 95

- 4. માહિતી 14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18 નો બહુલક શોધો.
- 5. નીચેના કોષ્ટકમાંથી એક ફેક્ટરીમાં કામ કરતા 60 કર્મીઓના પગારનો મધ્યક શોધો.

પગાર (₹ માં)	કર્મીઓની સંખ્યા
3000	16
4000	12
5000	10
6000	8
7000	6
8000	4
9000	3
10000	1
કુલ	60

- 6. નીચે આપેલી માહિતી આધારિત એક ઉદાહરણ આપો :
 - (i) મધ્યક જ મધ્યવર્તી સ્થિતિમાનનું યોગ્ય માપ છે.
 - (ii) મધ્યક એ મધ્યવર્તા સ્થિતિમાનનું યોગ્ય માપ નથી. પરંતુ મધ્યસ્થ જ એક યોગ્ય માપ છે.

14.6 સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દા શીખ્યા :

- 1. જો કોઈ ચોક્કસ હેતુ માટે હકીકતો અથવા આંકડાઓ એકત્ર કરવામાં આવે તો તેને માહિતી કહે છે.
- 2. આંકડાશાસ્ત્ર એ માહિતીની રજૂઆત, વિશ્લેષણ અને તેના અર્થઘટન સાથે સંકળાયેલા અભ્યાસનું ક્ષેત્ર છે.
- 3. માહિતીની લંબાલેખ, સ્તંભાલેખ કે આવૃત્તિ બહુકોણના સ્વરૂપમાં આલેખાત્મક રજૂઆત કેવી રીતે થાય.
- 4. અવર્ગીકૃત માહિતી માટે મધ્યવર્તી સ્થિતિમાનનાં ત્રણ માપ છે :
 - (i) મધ્યક : બધાં જ અવલોકનોની કિંમતના સરવાળાને અવલોકનોની કુલ સંખ્યા વડે ભાગતાં મળે તે સંખ્યાને \bar{x} વડે દર્શાવવામાં આવે છે.

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}.$$

અવર્ગીકૃત માહિતી માટે

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}.$$

(ii) મધ્યસ્થ : તે બરાબર મધ્યમાં આવતાં અવલોકનનું મૂલ્ય છે.

જો n અયુગ્મ સંખ્યા હોય, તો મધ્યસ્થ = $\left(\frac{n+1}{2}\right)$ માં અવલોકનનું મૂલ્ય.

જો n યુગ્મ સંખ્યા હોય તો મધ્યસ્થ = $\left(\frac{n}{2}\right)$ માં અને $\left(\frac{n}{2}+1\right)$ માં અવલોકનોની કિંમતની સરેરાશ

(iii) બહુલક : સૌથી વધુ વખત પુનરાવર્તન પામતું અવલોકન માહિતીનો બહુલક છે.