Ch 5.1.3-4: *k*-Fold Cross-Validation

Lecture 11 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, Oct 5, 2022

Announcements

Last time:

•

LOOCV

Validation Set

•

Announcements:

Covered in this lecture

- k-fold CV
- CV for classification

Dr. Munch (MSU-CMSE)

Section 1

Last time

Validation set approach

- Divide randomly into two parts:
 - Training set
 - Validation/Hold-out/Testing set
- Fit model on training set
- Use fitted model to predict response for observations in the test set
- Evaluate quality (e.g. MSE)

Dr. Munch (MSU-CMSE) Wed, Oct 5, 2022

Problems

Ex. Predict mpg using horsepower

- Highly variable results, no consensus about the error
- Tends to overestimate test error rate

Leave One Out CV (LOOCV)

- Remove (x_1, y_1) for testing.
- Train the model on n-1 points: $\{(x_2, y_2), \dots, (x_n, y_n)\}$
- Calculate $MSE_1 = (y_1 \hat{y}_1)^2$
- Remove (x_2, y_2) for testing.
- Train the model on n-1 points: $\{(x_1, y_1), (x_3, y_3), \dots, (x_n, y_n)\}$
- Calculate $MSE_2 = (y_2 \hat{y}_2)^2$
- Rinse and repeat

Return the score:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Dr. Munch (MSU-CMSE) Wed, Oct 5, 2022

Pros and Cons

- No variance
- Higher computation cost

8 / 23

Munch (MSU-CMSE) Wed, Oct 5, 2022

Speeding up LOOCV

Warning: This only works for least squares linear or polynomial regression.

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2} \qquad \qquad \frac{1}{n} \sum_{i=1}^n MSE_i = CV_{(n)} = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

Dr. Munch (MSU-CMSE) Wed, Oct 5, 2022

Section 2

k-Fold CV

Dr. Munch (MSU-CMSE)

The idea

r. Munch (MSU-CMSE) Wed, Oct 5, 2022

Mathy version

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(x_i, y_i) \in U_i} (y_j \hat{y}_j)^2$

Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Coding - Building k-fold CV

Dr. Munch (MSU-CMSE)

Pros and Cons

Pros: Cons:

Comparison

15 / 23

. Munch (MSU-CMSE) Wed, Oct 5, 2022

Comparison with simulated data: Ex 3

Comparison with simulated data: Ex 1

Comparison with simulated data: Ex 2

Takeaways from the examples

r. Munch (MSU-CMSE) Wed, Oct 5, 2022

Bias-Variance Tradeoff: Bias

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Bias-Variance Tradeoff: Variance

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

r. Munch (MSU-CMSE) Wed, Oct 5, 2022

Do the remainder of the coding

Dr. Munch (MSU-CMSE)

Next time

			· · · · · · · · · · · · · · · · · · ·		
14	M	Oct 3	Leave one out CV	5.1.1, 5.1.2	
15	W	Oct 5	k-fold CV	5.1.3	
16	F	Oct 7	More k-fold CV	5.1.4	
17	М	Oct 10	CV for classification	5.1.5	HW #4 Due
18	W	Oct 12	Resampling methods: Bootstrap	5.2	
19	F	Oct 14	Subset selection	6.1	
20	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
21	W	Oct 19	Shrinkage: Lasso	6.2.2	
22	F	Oct 21	Dimension Reduction	6.3	
	М	Oct 24	No class - Fall break		
21	W	Oct 26	More dimension reduction; High dimensions	6.4	
22	F	Oct 28	Polynomial & Step Functions.	7.1,7.2	HW #6 Due
23	М	Oct 31	Review		
24	W	Nov 2	Midterm #2		

Dr. Munch (MSU-CMSE) Wed, Oct 5, 2022