Intégration de Lebesgue et analyse de Fourier

Pierron Théo

ENS Ker Lann

Table des matières

1	Espaces L^p			
	1.1	Fonctions convexes		
	1.2	Espaces \mathcal{L}^p		
	1.3	Propriétés des espaces L^p		
2	L'espace L^{∞}			
	2.1	Définitions		
	2.2	Complétude, densité, dualité		
		2.2.1 Complétude		
		2.2.2 Densité		
		2.2.3 Dualité		
3	Convolution 1			
	3.1	Produit de convolution de deux fonctions		
	3.2	Identités approchées		
	3.3	Densité des fonctions continues à support compact		
	3.4	Suites régularisantes		
4	Fonctions à variations bornées 19			
	4.1	Définition		
	4.2	Exemples		
	4.3	Propriétés		
	4.4	Mesure de Stieltjes		
	4.5	Le cas absolument continu		
	4.6	Dérivabilité		
5	Analyse de Fourier 2			
	5.1	Fonctions périodiques		
	5.2	Cœfficients de Fourier		
	5.3	Convolution dans $L^p(\mathbb{T})$		
	5 4	Identités approchées novau de Féier 24		

	5.4.1	Identités approchées
	5.4.2	Noyau de Féjer
5.5	Conver	gences dans $C^0(\mathcal{T})$
5.6	Conver	gence ponctuelle de $\sigma_n = f * F_n \ldots 26$
		Théorèmes
	5.6.2	Conséquences sur la convergence des lois de Fourier 27
5.7	Ordre	de grandeur des cœfficients de Fourier
5.8	Conver	gence de la série de Fourier
5.9	Calcul	de sommes de séries
5.10	Théorie	e L^2 des séries de Fourier
	5.10.1	Application des identités de Parseval
	5.10.2	Convergence en norme

Chapitre 1

Espaces L^p

On désignera par :

- (E, A) un espace mesurable
- (E, \mathcal{A}, μ) un espace mesuré
- $\mathcal{M}(\mathcal{A})$ le \mathbb{K} -espace vectoriel des fonctions mesurables à valeurs dans \mathbb{K}
- $\mathcal{E}(\mathcal{A})$ celui des fonctions étagées
- $\mathcal{L}^1(\mu)$ l'ensemble des fonctions μ -intégrables

1.1 Fonctions convexes

<u>Définition 1.1</u> Pour toute fonction $f: I \to \mathbb{R}$ avec I =]a, b[, on appelle épigraphe de f et on note Ep(f) l'ensemble $\{(x,y) \in I \times \mathbb{R}, y \geq f(x)\}$.

On dit que f est convexe ssi pour tout $t \in [0,1]$ et $x,y \in I$, f(tx+(1-t)) $(t)y \le tf(x) + (1-t)f(y)$ ssi Ep(f) est convexe.

Lemme 1.0.1

Soit $f: I \to \mathbb{R}$.

Si f est convexe alors pour tout $x < y < z \in I$,

$$\frac{f(x) - f(y)}{x - y} \leqslant \frac{f(x) - f(z)}{x - z} \leqslant \frac{f(y) - f(z)}{y - z}$$

Réciproquement, si une de ces inégalités est vraie, alors f est convexe.

Démonstration. Soient X, Z de coordonnées (x, f(x)), (z, f(z)) et $G \in [X, Z]$ de coordonées (y, y_G) .

G est le barycentre de $\{(X,z-y),(Z,y-x)\}$ donc $(z-y)\overrightarrow{GX}+(y-x)\overrightarrow{GZ}=$

Donc $\frac{f(x)-y_G}{x-y} = \frac{f(z)-y_G}{z-y}$. Si f est convexe, $y_G \geqslant f(y)$ donc $\frac{f(x)-f(y)}{x-y} \leqslant \frac{f(z)-f(y)}{z-y}$.

Réciproquement, si on a $\frac{f(x)-f(y)}{x-y} \leqslant \frac{f(z)-f(y)}{z-y}$, $f(y) \leqslant \frac{(z-y)f(x)+(y-x)f(z)}{z-x} = y_G$.

Donc f est convexe.

Corollaire 1.1

- Si f est connexe, f admet une dérivée à gauche et à droite en tout point et la dérivée à gauche f'_g est inférieure à celle à droite f'_d .
- En particulier, f est continue.
- f est connexe ssi pour tout $\alpha \in I$,

$$\varphi_{\alpha}: \begin{cases}
I \setminus \{\alpha\} & \to & \mathbb{R} \\
x & \mapsto & \frac{f(x) - f(\alpha)}{x - \alpha}
\end{cases}$$

est croissante.

• f est convexe et dérivable ssi f' est croissante.

THÉORÈME 1.1 (INÉGALITÉ DE JENSEN) Soit (X, \mathcal{A}, μ) un espace de probabilité, $f \in \mathcal{L}^1(\mu)$ à valeurs dans |a, b| et $\varphi : |a, b| \to \mathbb{R}$ convexe.

$$\varphi\left(\int f \,\mathrm{d}\mu\right) \leqslant \int (\varphi \circ f) \,\mathrm{d}\mu$$

Remarque 1.1 Comme μ est de probabilité, $\varphi\left(\int f d\mu\right)$ est bien définie.

Démonstration. Notons $I = \int f d\mu$. Soit $x \in X$. On suppose que f(x) < I. On a, par convexité de φ , pour $y \in]f(x), I[$,

$$\frac{\varphi(f(x)) - \varphi(I)}{f(x) - I} \leqslant \frac{\varphi(y) - \varphi(I)}{y - I} \leqslant \varphi'_g(I) \leqslant \varphi'_d(I)$$

Donc $\varphi(f(x)) \geqslant \varphi'_d(I)(f(x) - I) + \varphi(I)$, ce qui est encore valable si f(x) > I, donc pour tout x.

En intégrant, on a le résultat.

COROLLAIRE 1.2 (INÉGALITÉ ARITHMÉTICO-GÉOMÉTRIQUE) Pour tout $x_1, \dots, x_n > 0$,

$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_i$$

Démonstration. Posons $y_i = \ln(x_i)$, $X = \{y_1, \dots, y_n\}$, $\mu = \frac{1}{n} \sum_{i=1}^n \delta_y$, $f = \text{Id et } \varphi = \exp$.

On a par Jensen:

$$e^{\frac{1}{n}\sum_{i=1}^{n}y_{i}} \leqslant \frac{1}{n}\sum_{i=1}^{n}e^{y_{i}}$$

D'où le résultat en repassant aux x_i .

1.2 Espaces \mathscr{L}^p

<u>Définition 1.2</u> Pour $p \in [1, +\infty[$, on pose

$$\mathscr{L}^p(\mu) = \left\{ f \in \mathcal{M}(\mathcal{A}), \int |f|^p d\mu < \infty \right\}$$

Proposition 1.1 $f_{\alpha} = x \mapsto x^{-\alpha} \in \mathcal{L}^p(\lambda)$ ssi $\alpha p < 1$.

Démonstration. YQE

<u>Définition 1.3</u> Pour $f \in \mathcal{L}^p(\mu)$, on pose $N_p(f) = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$.

Proposition 1.2 $N_p(\lambda f) = |\lambda| N_p(f)$ et $N_p(f) = 0$ ssi f = 0 μ -presque partout.

Théorème 1.2 (Convergence dominée) Soit $(f_n)_n \in \mathcal{L}^p(\mu)$.

On suppose qu'il existe $g \in \mathcal{L}^p(\mu)$ tel que pour tout $n \in \mathbb{N}$, $|f_n| \leq g$ presque partout.

On suppose que f_n cvs μ -pp. Alors $\lim_{n\to+\infty} N_p(f-f_n)=0$.

Démonstration. On a $|f - f_n|^p \leq 2^p |g|^p \in \mathcal{L}^1(\mu)$.

On applique le lemme de Fatou à $-|f-f_n|^p$:

$$\int \lim \inf(-|f - f_n|^p) \, \mathrm{d}\mu \leqslant \lim \inf \int -|f - f_n|^2 \, \mathrm{d}\mu$$

Donc
$$0 \le -\limsup \int |f - f_n|^p d\mu \text{ donc } N_p(f - f_n) \to 0.$$

<u>Définition 1.4</u> On appelle exposant conjugué de p l'entier q tel que $\frac{1}{p} + \frac{1}{q} = 1$.

Théorème 1.3 Inégalité de Hölder Soit $f \in \mathcal{L}^p(\mu)$ et q l'exposant conjugué de p.

 $Si \ g \in \mathscr{L}^q(\mu),$

$$\int |fg| \,\mathrm{d}\mu \leqslant N_p(f) N_q(g)$$

Démonstration. Si $N_p(f) = 0$, f est nulle μ -pp, donc fg aussi et $\int |fg| d\mu = 0$ donc on peut supposer $N_p(f) \neq 0$ et $N_q(g) \neq 0$.

Par concavité de ln, on a, pour tout a, b > 0,

$$\frac{\ln(a)}{p} + \frac{\ln(b)}{q} \leqslant \ln\left(\frac{a}{p} + \frac{b}{q}\right)$$

Donc $a^{\frac{1}{p}}b^{\frac{1}{q}} \leqslant \frac{a}{p} + \frac{b}{q}$. Avec $a = \frac{|f|^p}{N_p(f)^p}$ et $b = \frac{|g|^q}{N_q(g)^q}$, on a:

$$\frac{|f||g|}{N_p(f)N_q(f)} \le \frac{|f|^p}{pN_p(f)^p} + \frac{|g|^q}{qN_q(g)^q}$$

En intégrant, il vient :

$$\frac{\int |f||g| \,\mathrm{d}\mu}{N_p(f)N_q(g)} \leqslant 1$$

D'où le résultat.

Remarque 1.2 C'est aussi vrai pour $f, g \in \mathcal{M}(A)$.

THÉORÈME 1.4 (INÉGALITÉ DE MINKOWSKI) Soit $f, g \in \mathcal{L}^p(\mu)$. $f + g \in \mathcal{L}^p(\mu)$ et $N_p(f+g) \leqslant N_p(f) + N_p(g)$.

 $D\acute{e}monstration.$ Par convexité de $t\mapsto t^p,$ avec $\lambda=\frac{1}{2},$ on a :

$$|f+g|^p \leqslant (|f|+|g|)^p \leqslant 2^{p-1}(|f|^p+|g|^p)$$

Pour p = 1, c'est débile.

On a de plus, via Hölder :

$$\int |f + g|^{p} d\mu = \int |f + g|^{p-1} |f + g| d\mu
\leq \int |f + g|^{p-1} |f| d\mu + \int |f + g|^{p-1} |g| d\mu
\leq \left(\int |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}} N_{p}(f) + \left(\int |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}} N_{p}(g)
\leq \left(\int |f + g|^{p} d\mu \right)^{\frac{1}{q}} N_{p}(f) + \left(\int |f + g|^{p} d\mu \right)^{\frac{1}{q}} N_{p}(g)
\leq \left(\int |f + g|^{p} d\mu \right)^{1 - \frac{1}{p}} (N_{p}(f) + N_{p}(g))$$

D'où le résultat.

Remarque 1.3 Ceci finit de prouver que N_p est une semi-norme sur $\mathcal{L}^p(\mu)$.

<u>Définition 1.5</u> On définit $L^p(\mu)$ comme le quotient de $\mathcal{L}^p(\mu)$ par la relation $f \sim g$ ssi f = g μ -pp.

Proposition 1.3 $L^p(\mu)$ est un espace vectoriel normé par la norme $\|\cdot\|_p$ induite par N_p .

<u>Définition 1.6</u> On dit qu'une suite $(f_n)_n \in L^p(\mu)$ converge en moyenne d'ordre p si $\lim_{n\to+\infty} ||f_n-f||_p = 0$.

1.3 Propriétés des espaces L^p

Théorème 1.5 (Riesz-Fischer) $(L^p(\mu), \|\cdot\|_p)$ est complet.

Démonstration. Soit $(f_n)_n$ de Cauchy.

On en extrait une suite telle que $\|f_{\varphi(n+1)} - f_{\varphi(n)}\|_{p} \leqslant \frac{1}{2^{n+1}}$.

Posons
$$g_n = |f_{\varphi(0)}| + \sum_{i=0}^n |f_{\varphi(i+1)} - f_{\varphi(i)}|.$$

Par Minkowski,

$$\|g_n\|_p = \|f_{\varphi(0)}\|_p + \sum_{i=0}^n \|f_{\varphi(i+1)} - f_{\varphi(i)}\|_p \le \|f_{\varphi(0)}\|_p + 1$$

Par convergence monotone, g_n converge pp.

Par convergence absolue, $f_{\varphi(n+1)} = f_{\varphi(0)} + \sum_{i=0}^{n} (f_{\varphi(i+1)} - f_{\varphi(i)})$ converge presque partout vers $f \in L^p$.

Par Fatou,

$$\int \liminf_{n} |f_{\varphi(n)} - f_k|^p d\mu \leqslant \liminf_{n} \int |f_{\varphi(n)} - f_k| d\mu$$

pour tout k.

En particulier, pour k assez grand, en utilisant le fait que $(f_n)_n$ est de Cauchy, on peut majorer par ε^p .

Donc
$$\int |f - f_k| d\mu = \int \liminf_n |f_{\varphi(n)} - f_k|^p d\mu \leqslant \varepsilon^p$$
.
D'où $||f - f_n||_p \to 0$.

<u>Définition 1.7</u> On note $\mathcal{E}^1(\mu) = (\mathcal{E}(\mathcal{A})/\sim) \cap L^1(\mu)$. C'est aussi $(\mathcal{E}(\mathcal{A})/\sim) \cap L^p(\mu)$.

Théorème 1.6 $\mathcal{E}^1(\mu)$ est dense dans $L^p(\mu)$.

 $D\acute{e}monstration.$ On suppose f positive.

Il existe une suite croissantes de fonctions étagées $(s_n)_n$ qui convergent vers f. $s_n \leq f$ donc $s_n \in \mathcal{E}^1(\mathcal{A})$.

De plus, par convergence dominée, $\lim_{n\to+\infty} ||s_n - f||_p = 0$

Si f n'est pas positive, on pose $f = f + -f^-$. On construit $s_n \to f^+$ et $t_n \to f^-$ étagées.

Par Minkowski, $s_n - t_n \to f$.

Dans le cas complexe, c'est pareil.

<u>Définition 1.8</u> Soit E un evn, on définit le dual topologique de E comme l'ensemble des formes linéaires continues de E. On le note E^* . Il est normé par $\|\varphi\| = \sup_{x \neq 0} \frac{|\varphi(x)|}{\|x\|}$.

Exemple:

Soit $g \in L^q(\mu)$.

$$L_g: \begin{cases} L^p(\mu) & \to & \mathbb{K} \\ f & \mapsto & \int fg \, \mathrm{d}\mu \end{cases}$$

Par Hölder, on a $||L_g|| \leq ||g||_a$.

Cas particulier de la mesure de Lebesgue :

<u>Définition 1.9</u> On définit les fonctions en escalier comme les fonctions de $\mathcal{E}(\mathcal{B}(\mathbb{R}^d))$ nulles en dehors d'un compact. On note Esc.

Proposition 1.4 Esc est dense dans L^p .

Démonstration. On voit que Esc est dense dans $\mathcal{E}^1(\mathscr{B}(\mathbb{R}^d))$.

Mais il faut montrer que l'ensemble des fonctions continues nulles en dehors d'un compact sont denses dans L^p . On verra ça plus tard.

Théorème 1.7 (Représentation de Riesz des espaces L^p) Soit p > 1 et q son exposant conjugué.

$$\Phi: \begin{cases} L^q(\mu) & \to & (L^p(\mu))^* \\ g & \mapsto & L_g \end{cases}$$

est un isomorphisme et une isométrie.

Démonstration.

• Montrons que Φ est une isométrie (donc injective). Soit $g \in L^q$ non nulle. On pose $f(x) = \frac{|g(x)|^q}{g(x)}$ si $g(x) \neq 0$ et 0 sinon. f est mesurable et $f \in L^p$. Comme $|f|^p = |g|^q$, on a :

$$||f||_p ||g||_q = \left(\int |g|^q d\mu\right)^{\frac{1}{p}} \left(\int |g|^q d\mu\right)^{\frac{1}{q}} = \int fg d\mu = L_g(f)$$

Donc $||L_g|| \ge ||g||_q$ donc $||L_g|| = ||g||_q$.

• Montrons que Φ est surjective.

On suppose μ σ -finie. Soit $\varphi \in (L^p(\mu))^*$.

▶ Si μ est finie, on définit ν par $\nu(A) = \varphi(1_A)$. ν est une mesure. On a de plus $\nu \ll \mu$ donc par Radon-Nikodym, $d\nu = f d\mu \text{ avec } f \in L^1(\mu).$

Il suffit de montrer $f \in L^q(\mu)$. On aura alors $\varphi|_{\mathcal{E}(\mathcal{A})} = L_f$. Par densité, on aura $\varphi = L_f$.

Soit $s \in \mathcal{E}(\mathcal{A})$ positive inférieure à f^q .

$$\int f s^{\frac{1}{p}} \, \mathrm{d}\mu \geqslant \int s \, \mathrm{d}\mu$$

Donc:

$$\int s \, \mathrm{d}\mu \leqslant \int_f^{s^{\frac{1}{p}}} \, \mathrm{d}\mu \leqslant \|\varphi\| \left(\int s \, \mathrm{d}\mu\right)^{\frac{1}{p}}$$

Donc
$$\|\varphi\| \geqslant \left(\int s \, \mathrm{d}\mu\right)^{\frac{1}{q}}$$
.

Or
$$\int f^q d\mu = \sup_{s} \int s d\mu$$
.

On a donc $\|f\|_q^s \leqslant \|\varphi\|$ donc $f \in L^q(\mu)$. \blacktriangleright Si μ est σ -finie.

On écrit $E = \bigcup K_n$ avec les K_i disjoints et de mesure finie.

Soit $A \subset E$ mesurable.

Par les résultats précédents, il existe $f_A \in L^q(\mu)$ nulle sur $E \setminus A$ et telle que pour tout $h \in L^p(\mu)$, $\varphi(1_A) = \int f_A h \, d\mu$.

On a nécessairement $||f_A||_q \leq ||\varphi||$.

On applique ceci avec $A_n = \bigcup_{i=0}^n K_i$. et on obtient par passage à la

limite que
$$\varphi = L_f$$
 avec $f = \sum_{i=0}^{\infty} f_{K_i} \lim_{n \to +\infty} f(A_n)$.

Remarque 1.4 L² est son propre dual. Il est complet pour la norme associée au produit scalaire usuel. C'est donc un Hilbert.

En fait, si E est un Hilbert, $E^* = E$ puisque toute forme linéaire s'écrit comme un produit scalaire avec un élément de E.

Chapitre 2

L'espace L^{∞}

2.1 Définitions

Soit (E, \mathcal{A}, μ) un espace mesuré, f mesurable.

<u>Définition 2.1</u> On dira que f est essentiellement bornée ssi il existe $\alpha > 0$ tel que f est bornée pp par α .

 α est appelé majorant essentiel de |f|.

On note $\mathcal{L}^{\infty}(\mu)$ l'ensemble de ces fonctions.

On définit aussi $N_{\infty}(f)$ comme l'inf de ses majorants essentiels. C'est une semi-norme.

2.2 Complétude, densité, dualité

2.2.1 Complétude

THÉORÈME 2.1 L^{∞} est complet.

Démonstration. Soit $(f_n)_n$ de Cauchy.

Pour tout n, il existe N tel que pour tout $p,q\geqslant N$, $\|f_p-f_q\|_{\infty}\leqslant \frac{1}{n}$.

On pose
$$A_{p,q} = \{x, \|f_p(x) - f_q(x)\| \le \frac{1}{n}\}$$
 et $A_n = \bigcap_{p,q \ge N} A_{p,q}$. Tous ces

ensembles sont de mesure pleine.

 $\bigcap_{n>1} A_n = A$ est de mesure pleine.

Pour $x \in A$, $(f_n(x))_n$ est de Cauchy dans K qui est complet donc pour tout x, $(f_n(x))_n$ converge vers f(x).

On a bien
$$f \in L^{\infty}$$
 et $\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$.

2.2.2 Densité

Cas général

THÉORÈME 2.2 $\mathcal{E}(\mathcal{A})$ est dense dans $L^{\infty}(\mu)$.

Démonstration. Soit $f \in L^{\infty}$. On peut supposer $f \geqslant 0$.

Soit x_1, \dots, x_n une subdivision de $[0, ||f||_{\infty}]$ telle que $x_{i+1} - x_i \leq \varepsilon$.

Soit
$$s = \sum_{i=1}^{n-1} x_i 1_{f^{-1}(]x_i, x_{i+1}]}$$
.
On a $||s - f|| \le \varepsilon$.

Cas de la mesure de Lebesgue

Proposition 2.1 L'ensemble des fonctions en escalier n'est pas dense dans L^{∞} .

Démonstration. f = 1. Pour tout s en escalier, $||s - f||_{\infty} \ge 1$.

Proposition 2.2 L'ensemble des applications continues bornée n'est pas dense dans L^{∞} .

 $D\acute{e}monstration.$ $f=1_{\mathbb{R}^+}.$ Soit φ continue bornée.

$$M = \max(|\varphi(0)|, |\varphi(0) - 1|) \geqslant \frac{1}{2}.$$

Si $M=|\varphi(0)|$, par continuité de φ , il existe $\varepsilon>0$ tel que pour tout $x\in[-\varepsilon,0], |\varphi(x)|\geqslant\frac{1}{3}$.

Sinon, on a aussi un ε tel que pour $x \in [0, \varepsilon], |\varphi(x) - 1| \geqslant \frac{1}{3}$.

Donc
$$||f - \varphi||_{\infty} \geqslant \frac{1}{3}$$
.

COROLLAIRE 2.1 Les fonctions continues à support compact n'est pas dense dans L^{∞} .

2.2.3 Dualité

Proposition 2.3 Pour tout $f, g \in L^1 \times L^\infty$, $fg \in L^1$ et $||fg||_1 \leq ||f||_1 ||g||_\infty$. On a donc deux morphismes:

$$\Phi_1: \begin{cases} L^{\infty} & \to & (L^1)^* \\ g & \mapsto & L_g: \begin{cases} L^1 & \to & \mathbb{R} \\ f & \mapsto & \int fg \, \mathrm{d}\mu \end{cases}$$

$$\Phi_2: \begin{cases} L^1 & \to & (L^\infty)^* \\ f & \mapsto & L_f: \begin{cases} L^\infty & \to & \mathbb{R} \\ g & \mapsto & \int fg \, \mathrm{d}\mu \end{cases}$$

Théorème 2.3 Si μ est σ -finie, alors Φ_1 est un isomorphisme isométrique.

Démonstration.

• Soit f étagée. $f = \sum_{i=0}^{n} \alpha_i 1_{A_i}$ avec A_i disjoints.

Quitte à réordonner, on peut prendre α_0 de module maximal.

On a $||f||_{\infty} = |\alpha_0|$.

Par σ -finitude, il existe $B \subset A_0$ de mesure finie.

Posons $g = 1_B$. On a $g \in L^1$ et $\int fg = ||f||_{\infty} ||g||_1$.

Donc $||L_f|| \geqslant ||f||_{\infty}$. Finalement $||L_f|| = ||f||_{\infty}$.

• Soit $f \in L^{\infty}$ quelconque.

Il existe une suite de fonctions étagées $(s_n)_n$ qui y converge en norme infinie.

$$\|\|L_f\| - \|s_n\|_{\infty} \| = \|\|L_f\| - \|L_{s_n}\|\| \le \|\|L_f - L_{s_n}\|\| = \|\|L_{f-s_n}\|\| \le \|f - s_n\|_{\infty}$$

Donc $||L_f|| = ||f||_{\infty}$.

Donc Φ_1 est une isométrie.

• Φ_1 est surjective (il suffit de recopier la démonstration pour L^p)

Théorème 2.4 Φ_2 est une isométrie non surjective en général.

Démonstration.

<u>Théorème 2.5</u> (Hahn-Banach) Sot E un espace vectoriel normé et F un sous espace.

Soit $\varphi \in F^*$.

Il existe $\psi \in E^*$ prolongement de φ de même norme.

Dans $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ avec μ la mesure de comptage.

 $L^1=l^1$ est l'ensemble des suites de valeur absolue sommable, $L^\infty=l^\infty$ est l'ensemble des suites bornées.

On pose F l'ensemble des suites convergentes. On pose $\varphi = \lim \sup F$.

Par le théorème de Hahn-Banach, il existe un prolongement ψ de φ de même norme.

Supposons qu'il existe $g \in l^1$ tel que $L_g = \psi$.

On pose $(u_n)_n$ la suite valant 0 si $n \leq p$ et 1 sinon.

$$1 = \varphi(u) = \sum_{n=0}^{+\infty} g_n u_n = \sum_{n=p+1}^{\infty} g_n \to 0$$

Contradiction.

Chapitre 3

Convolution

On se place sur $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d), \lambda)$.

3.1 Produit de convolution de deux fonctions

<u>Définition 3.1</u> Soient $f, g \in L^1$. L'application $h: (t, x) \mapsto f(t - x)g(x)$ est mesurable.

En appliquant Fubini, on trouve $h \in L^1$.

 $t\mapsto \int h(t,x)\,\mathrm{d}x$ est une fonction intégrable et définit un élément de L^1 noté f*g.

<u>Théorème 3.1</u> * est associative, commutative, linéaire et

$$\|f*g\|_1 \leqslant \|f\|_1 \, \|g\|_1$$

On peut résumer en disant que $(L^1, +, \cdot, *)$ est une algèbre de Banach.

 $\underline{\text{Th\'eor\`eme 3.2}} \quad Soit \ f \in L^p \ \ et \ g \in L^1.$

$$f * g \in L^p \ et \ ||f * g||_p \le ||f||_p \ ||g||_1.$$

 $D\acute{e}monstration.$ Soit h(x,t)=|f(t-x)g(x)|. On a :

$$I = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} h(x, t) \, \mathrm{d}x \right)^p \, \mathrm{d}t \right)^{\frac{1}{p}}$$
$$= \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(t - x)| |g(x)|^{\frac{1}{p}} |g(x)|^{\frac{1}{q}} \, \mathrm{d}x \right)^p \, \mathrm{d}t \right)^{\frac{1}{p}}$$

Or:

$$\int_{\mathbb{R}^d} |f(t-x)| |g(x)|^{\frac{1}{p}} |g(x)|^{\frac{1}{q}} dx \leqslant \left(\int_{\mathbb{R}^d} |f(t-x)|^p |g(x)| dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} |g(x)| dx \right)^{\frac{1}{q}}$$

Donc:

$$I \leqslant \left(\int_{\mathbb{R}^d} \left(\left(\int_{\mathbb{R}^d} |f(t-x)|^p |g(x)| \, \mathrm{d}x \right) \left(\int_{\mathbb{R}^d} |g(x)| \, \mathrm{d}x \right)^{\frac{p}{q}} \right) \, \mathrm{d}t \right)^{\frac{1}{p}}$$

$$= \left(\int_{\mathbb{R}^d} |g(x)| \, \mathrm{d}x \right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^d} (|f(t-x)|^p |g(x)| \, \mathrm{d}x) \, \, \mathrm{d}t \right)^{\frac{1}{p}}$$

$$\leqslant \|g\|_1^{\frac{1}{q}} \|f^p\|_1^{\frac{1}{p}} \|g\|_1^{\frac{1}{p}}$$

$$= \|g\|_1 \|f\|_p$$

Identités approchées 3.2

Théorème 3.3 Il n'y a pas d'élément neutre.

Démonstration. Supposons qu'il y en ait un noté e.

Soit $\varepsilon > 0$ et $f_{\varepsilon} = 1_{\|x\| \le \varepsilon}$. On a $(f_{\varepsilon} * e)(t) = f_{\varepsilon}(t)$ pour presque tout t.

De plus,
$$f_{\varepsilon} * e = \int_{\{\|x\| \leqslant \varepsilon\} + t} e(x) dx$$
.

Si $||t|| \leq \varepsilon$, alors :

$$1 = f_{\varepsilon}(t) \leqslant \int_{\{\|x\| \leqslant 2\varepsilon\}} |e(x)| \, \mathrm{d}x \to 0$$

Définition 3.2 On appelle identité approchée toute suite $(f_n)_n$ avec $f_n \in L^1$ positive, d'intégale 1 vérifiant :

$$\forall \delta > 0, \lim_{n \to +\infty} \int_{\|x\| \ge \delta} f_n(x) = 0$$

Théorème 3.4 Soit $g \in L^p$ et $(f_n)_n$ une identité approchée.

$$\lim_{n \to +\infty} \|g * f_n - g\|_p = 0$$

Théorème 3.5 Soit $A \in \mathcal{B}(\mathbb{R}^d)$.

$$\sup_{K \subset A \ compact} \lambda(K) = \lambda(A) = \inf_{U \supset A \ ouvert} \lambda(U)$$

COROLLAIRE 3.1 Soit $f \in L^p$.

$$\lim_{t \to 0} \int |f(x+t) - f(x)|^p \, \mathrm{d}x = 0$$

 $D\acute{e}monstration$. On commence par une indicatrice 1_B dvec B de mesure finie.

Soit $\varepsilon > 0$ il existe un compact $K \subset B$ tel que $\lambda(K) \ge \lambda(B) - \varepsilon$ et un ouvert U contenant B tel que $\lambda(U) \le \lambda(B) + \varepsilon$.

On a $K \subset U$ donc il existe $\delta > 0$ tel que pour tout $t \in \mathbb{R}^d$ de norme inférieure à δ , on ait $K_t = K + t \subset U$.

On a alors:

$$\int |f(x+t) - f(x)| \, \mathrm{d}x = \lambda \{x \in B, x+t \notin B\} + \lambda \{x \notin B, x+t \in B\} \leqslant 2\varepsilon$$
puisque
$$\lambda \{x \in B, x+t \notin B\} = \lambda \{x \in K, x+t \notin B\} + \underbrace{\lambda \{x \notin K, x+t \notin B\}}_{\leqslant \varepsilon}$$
et
$$\lambda \{x \in K, x+t \notin B\} = \lambda \{x \in K_t \setminus B\} \leqslant \lambda (U \setminus B) \leqslant \varepsilon.$$
On a alors
$$\int |f(x+t) - f(x)| \, \mathrm{d}t \leqslant 4\varepsilon.$$

On fait pareil pour les fonctions en escalier et on conclut par Beppo-Levi.

Démonstration du théorème 1. Soit $f \in L^1$ et $(f_n)_n$ une identité approchée.

$$(f * f_n - f)(t) = \int_{\mathbb{R}^d} (f(t - x)f_n(x) - f(t)f_n(x)) dx$$

$$\leq \int_{\mathbb{R}^d} |f(t - x) - f(t)|f_n(x) dx$$

On passe à la norme et on applique Fubini:

$$||f * f_n - f||_1 \leqslant \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(t - x) - f(t)| \, \mathrm{d}t \right) f_n(x) \, \mathrm{d}x$$

Soit $\varepsilon > 0$. Il existe $\delta > 0$ tel que si $||x|| \le \delta$, $\int |f(t-x) - f(t)| dt \le \varepsilon$.

$$||f * f_n - f||_1 \leqslant \int_{||x|| \leqslant \delta} \left(\int_{\mathbb{R}^d} |f(t - x) - f(t)| \, \mathrm{d}t \right) f_n(x) \, \mathrm{d}x$$

$$+ \int_{||x|| > \delta} \left(\int_{\mathbb{R}^d} |f(t - x) - f(t)| \, \mathrm{d}t \right) f_n(x) \, \mathrm{d}x$$

$$\leqslant \varepsilon + 2 ||f||_1 \int_{||x|| \ge \delta} f_n(x) \, \mathrm{d}x \to 0$$

Pour p quelconque, on écrit la même chose :

$$||f * f_n - f||_p \le \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(t - x) - f(t)| f_n(x) \, dt \right)^p \, dx \right)^{\frac{1}{p}}$$

On décompose f_n en $f_n^{\frac{1}{p}} f_n^{\frac{1}{q}}$.

On a alors:

$$||f * f_n - f||_1 \leqslant \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(t - x) - f(t)|^p dt \right) f_n(x) dx$$

et on conclut comme précédemment.

3.3 Densité des fonctions continues à support compact

On construit une identité approchée : soit f la fonction nulle sur] $-\infty$, $-1[\cup]1$, $+\infty$, valant 1+x sur [-1,0] et 1-x sur [0,1].

Enfin, on pose $f_n(x) = nf(nx)$. (On peut faire pareil avec la norme : f(x) = 1 - ||x|| sur B(0,1) et 0 ailleurs.

Lemme 3.5.1

Soit $f \in L^1$ et $g \in C^0_c(\mathbb{R}^d)$. f * g est continue et bornée.

De plus si f = 0 pp en dehors d'un compact K alors $f * g \in C_c(\mathbb{R}^d)$.

Démonstration. $t \mapsto g(t-x)f(x)$ est continue.

Pour tout $t, x, |g(t-x)f(x)| \leq M|f(x)|$ donc f*g est continue (continuité d'une intégrale à paramètre) et bornée.

Si g est nulle en dehors d'un compact, l'intégrale définissant f*g est aussi nulle en dehors de ce compact.

THÉORÈME 3.6 $C_c(\mathbb{R}^d)$ est dense dans tout L^p pour $p < \infty$.

 $D\acute{e}monstration.$ Soit f en escalier et $(f_n)_n$ une identité approchée.

On a montré que $f * f_n \to f$ et $f * f_n \in C_c(\mathbb{R}^d)$.

Par densité des fonctions en escalier, on peut conclure.

3.4 Suites régularisantes

Soit f définie sur \mathbb{R} par $e^{\frac{1}{|u|-1}}$ pour $u \in [-1,1]$ et 0 ailleurs. Soit $f_n = \frac{f(\|nx\|^2)}{\int_{\mathbb{R}^d} f(\|nx\|^2) dx}$.

Lemme 3.6.1

Si $f \in L^1$ et $g \in C_c^{\infty}(\mathbb{R}^d)$, alors f * g est C^{∞} et pour tout $\alpha \in \mathbb{R}^d$,

$$D^{\alpha}(f * g) = f * (D^{\alpha}g)$$

avec
$$D^{\alpha} = D^{(\alpha_1, \dots, \alpha_d)} = \frac{\partial^{\alpha_1 + \dots + \alpha_d}}{\partial_{x_1}^{\alpha_1} \dots \partial_{x_d}^{\alpha_d}}$$
.

3.4. SUITES RÉGULARISANTES

Démonstration. Conséquence du théorème de dérivation sous l'intégrale.

THÉORÈME 3.7 Pour tout $1 \leq p < +\infty$, $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^p(\lambda)$.

Chapitre 4

Fonctions à variations bornées (Intégrale de Stieltjes)

4.1 Définition

<u>Définition 4.1</u> Soit Π l'ensemble des subdivisions de [a, b].

Pour $\sigma \in \Pi$ et $f:[a,b] \to \mathbb{C}$, on définit la variation de f par rapport à σ le réel :

$$V_{\sigma,f} = \sum_{i=1}^{k-1} |f(x_{i+1}) - f(x_i)|$$

f est dite à variation bornée ssi $\sup_{\sigma \in \Pi} V_{\sigma,f} < \infty$. On note alors VT(f) ce réel et VB l'ensemble des fonctions à variations bornées.

4.2 Exemples

Proposition 4.1

 $\bullet\,$ Toute fonction $[a,b]\to\mathbb{R}$ monotone est à variations bornées et

$$VT(f) = |f(b) - f(a)|$$

- Si $f \in C^1([a,b],\mathbb{C})$ alors $f \in VB$ et $VT(f) \leqslant \sup_{t \in [a,b]} |f'(t)|(b-a)$ par inégalité de la moyenne.
- Si $f \in C^k$ par morceaux alors $f \in VB$.
- $VT(\lambda f) = \lambda VT(f)$.
- $VT(f+g) \leqslant VT(f) + VT(g)$.
- $f \in VB$ ssi $\Re(f) \in VB$ et $\Im(f) \in VB$.

• Si f peut s'écrire comme $\int_{-\infty}^{x} g(t) dt$ avec g intégrable alors f est dite absolument continue et $f \in VB$. Dans ce cas, $VT(f) \leqslant \int_{a}^{b} |g(x)| dx$. Remarque 4.1 $f \in VB \Rightarrow f$ bornée.

4.3 Propriétés

THÉORÈME 4.1 Soit $f:[a,b] \to \mathbb{R}$.

$$f \in VB$$
 ssi $f = f_1 - f_2$

avec f_1 et f_2 croissantes.

Démonstration.

← Clair

 \Rightarrow On pose $T = f \mapsto VT(f|_{[a,x]})$. On vérifie que $Tf(y) - TF(x) \geqslant |f(y) - f(x)|$. Donc Tf - f est croissante de même que Tf + f. Dont $f_1 = \frac{Tf + f}{2}$ et $f_2 = \frac{Tf - f}{2}$ conviennent.

COROLLAIRE 4.1 Si $f \in VB$, f est continue à gauche sur [a, b] et à droite sur [a, b].

De plus, f n'admet qu'un nombre dénombrable de points de discontinuité.

 $D\'{e}monstration$. Quitte à décomposer selon le théorème précédent, OPS f croissante. Elle vérifie alors les deux premiers points clairement.

De plus, on peut injecter l'ensemble des points de discontinuité dans \mathbb{Q} via $]f(x^-), f(x^+)[\mapsto r_x \text{ avec } r_x \text{ un rationnel de }]f(x^-), f(x^+)[$ quand il est non vide.

Remarque 4.2 Si $f \in VB$, f est Riemann-intégrable.

4.4 Mesure de Stieltjes

On suppose $f:[a,b]\to\mathbb{R}$ croissante et continue à droite.

Il existe une unique mesure μ_f sur [a,b] tel que $\mu_f([0,t]) = f(t) - f(a)$ pour $t \in [a,b]$.

Définition 4.2 Soit $\varphi:[a,b]\to\mathbb{C}$ mesurable et bornée.

L'intégrale de Stieltjes de φ par rapport à f est :

$$\int_{a}^{t} \varphi \, \mathrm{d}f = \int_{a}^{t} \varphi \, \mathrm{d}\mu_{f}$$

Exemples:

On prend $f = \mathrm{Id}_{[0,2]}$. $\mu_f = \lambda$. Si $f = \mathrm{Id}_{[0,2]} \, 1_{[1,2]}$, $\mu_f = 1_{[1,2]} \mathrm{d}\lambda + \mathrm{d}\delta_1$.

Proposition 4.2 Si f est croissante et continue à droite alors $\mu_f(\{a\}) = 0$. Pour tout φ mesurable bornée,

$$\left| \int \varphi \, \mathrm{d}f \right| \leqslant \sup_{t \in [a,b]} |\varphi(t)| VT(f)$$

Proposition 4.3 Si f est à variations bornées et continue à droite, on a $\Re(f) = f_1 - f_2$ et $\Im(f) = g_1 - g_2$:

$$\int \varphi \, \mathrm{d}f = \int \varphi \, \mathrm{d}\mu_{f_1} - \int \varphi \, \mathrm{d}\mu_{f_2} + i \int \varphi \, \mathrm{d}\mu_{g_1} - i \int \varphi \, \mathrm{d}\mu_{g_2}$$

Et ça ne dépend pas de f_1, f_2, g_1, g_2 .

Théorème 4.2 Soit $f,g:[a,b]\to\mathbb{C}$ et $f,g\in VB$ continues à droite.

$$\begin{split} f(t)g(t) - f(a)g(a) &= \int_a^t f(s^-) \, \mathrm{d}g(s) + \int_a^t g(s) \, \mathrm{d}f(s) \\ &= \int_a^t f(s) \, \mathrm{d}g(s) + \int_a^1 g(s^-) \, \mathrm{d}f(s) \\ &= \int_a^t f(s) \, \mathrm{d}g(s) + \int_a^t g(s) \, \mathrm{d}f(s) + \sum_{s \leq t} \Delta f(s) \Delta g(s) \end{split}$$

avec $\Delta f(s) = f(s^{-}) - f(s)$.

Remarque 4.3 La troisième égalité se déduit de la première.

 $D\'{e}monstration$. On suppose f et g croissantes. On a :

$$\mu_{f} \otimes \mu_{g}([a, t] \times [a, t]) = (f(t) - f(a))(g(t) - g(a))$$

$$= \int_{[a, t] \times [a, t]} d\mu_{f}(x) d\mu_{g}(y)$$

$$= \int_{y=a}^{t} \int_{x=a}^{y} d\mu_{f}(x) d\mu_{g}(y) + \int_{x=a}^{t} \int_{y=a}^{x} d\mu_{g}(y) d\mu_{f}(x)$$

$$= \int_{a}^{t} (f(y^{-}) - f(a)) dg(y) + \int_{a}^{t} (g(x) - g(a)) df(x)$$

On conclut en remarquant que:

$$\int_{a}^{t} f(a) \, dg(y) = f(a)(g(t) - g(a)) \text{ et } \int_{a}^{t} g(a) \, df(x) = g(a)(f(t) - f(a)) \blacksquare$$

4.5 Le cas absolument continu

On écrit f comme l'intégrale de $g \in L^1$ sur $]-\infty,x]$.

Remarque 4.4 $VT(f) \leq \int_a^b |g(t)| dt$. f est continue et on a $d\mu_f = g(t) dt$. Donc pour tout φ mesurable bornée,

$$\int_{A} \varphi(t) \, \mathrm{d}\mu_f(t) = \int_{A} \varphi(t) g(t) \, \mathrm{d}t$$

COROLLAIRE 4.2 $VT(f) = \int_a^b |g(t)| dt$.

Démonstration. On suppose $g \neq 0$ sur [a,b] et on pose $\varphi = \frac{\overline{g}}{|g|}$. φ est mesurable de sup 1.

On a alors:

$$\int_{a}^{b} |g| \, \mathrm{d}t = \left| \int_{a}^{b} \varphi \, \mathrm{d}f \right| \leqslant VT(f) \sup |\varphi| \leqslant \int_{a}^{b} |g| \, \mathrm{d}t$$

D'où le résultat.

<u>Théorème 4.3</u> La formule d'intégration par parties devient :

$$f_1(t)f_2(t) - f_1(a)f_2(a) = \int_a^t f_1(s)g_2(s) ds + \int_a^t g_1(s)f_2(s) ds$$

4.6 Dérivabilité

THÉORÈME 4.4 Soit $f:[a,b]\to\mathbb{C}$ dérivable avec f' intégrable sur [a,b]. Alors f est absolument continue et pour tout x,

$$f(x) = \int_{a}^{x} f'(t) dt + f(a)$$

THÉORÈME 4.5 Soit $f:[a,b] \to \mathbb{C}$. Si $f \in VB$ alors f est dérivable presque partout et f' est intégrable sur [a,b].

De plus f est absolument continue.

Chapitre 5

Analyse de Fourier

Fonctions périodiques 5.1

On parle des fonctions du cercle $\mathbb{T} \to \mathbb{R}/2\pi\mathbb{Z}$ dans \mathbb{C} .

On définit donc $L^p(\mathbb{T})$ comme on peut s'y attendre.

De plus, on a $L^p(\mathbb{T}) \subset L^{p'}(\mathbb{T})$ si $p' \leqslant p$ puisqu'on peut se placer sur des compacts.

Cœfficients de Fourier 5.2

Définition 5.1 On appelle polynôme trigonométrique toute fonction f:

$$\mathbb{T} \to \mathbb{C}$$
 de la forme $\sum_{k=-n}^{n} c_k \underbrace{e^{ikx}}_{=e_k}$.

On appelle série trigonométrique toute fonction $f: \mathbb{T} \to \mathbb{C}$ de la forme $\sum_{k=-\infty}^{\infty} c_k e_k.$

On appelle coefficient de Fourier de f d'ordre n le complexe :

$$\widehat{f}(n) = \int_{\mathbb{T}} f(x) e^{-inx} dx$$

Proposition 5.1 Si f est un polynôme trigonométrique, $\hat{f}(k) = c_k$.

Proposition 5.2

- $f \mapsto \hat{f}$ est linéaire $\hat{f}(n) = \hat{f}(-n)$ $f(t-\tau)(n) = \hat{f}(n)e^{in\tau}$ $|\hat{f}(n)| \leq ||f||_1$

COROLLAIRE 5.1 Soit $(f_n)_n$ qui converge dans L^1 vers $f \in L^1$. Alors, pour tout n, $\lim_{p \to +\infty} \widehat{f_p}(n) = \widehat{f}(n)$.

Démonstration. On a $|\widehat{f_p}(n) - \widehat{f_n}| \leq ||f_p - f||_1$. D'où le résultat.

Proposition 5.3 Soit $f \in L^1$ telle que $\widehat{f}(0) = 0$. Soit $F(x) = \int_0^x f(t) dt$. $F \in C^0(\mathbb{T})$ et $\widehat{F}(n) = \frac{\widehat{f}(n)}{in}$.

 $D\acute{e}monstration.$ F est absolument continue donc continue. De plus,

$$F(x+2\pi) = \int_0^x f(t) dt + \int_x^{x+2\pi} f(t) dt = F(x) + \int_0^{2\pi} f(t) dt = F(x)$$

Par IPP, on a:

$$\int_{\mathbb{T}} F(t) e^{-int} dt = \frac{1}{2\pi} \left[\frac{e^{-int}}{-in} F(t) \right]_0^{2\pi} + \frac{1}{in} \int_{\mathbb{T}} f(t) e^{-int} dt = \frac{\widehat{f}(n)}{in}$$

5.3 Convolution dans $L^p(\mathbb{T})$

Soit $f \in L^p$, $g \in L^1$.

On montre comme dans le cas classique que $\|f * g\|_p \le \|f\|_p \|g\|_1$ et que L^1 est une algèbre de Banach commutative.

Proposition 5.4 $\widehat{f * g} = \widehat{f}\widehat{g}$.

Lemme 5.0.1

Si $f \in L^1$, $e_n * f(t) = \widehat{f}(n)e_n(t)$.

5.4 Identités approchées, noyau de Féjer

5.4.1 Identités approchées

<u>Définition 5.2</u> On appelle identité approchée une suite de fonctions $(k_n)_n$ positives, intégrables d'intégrale 1 et telles que $\forall \delta \in]0, \pi[$,

$$\lim_{n \to +\infty} \int_{\delta}^{2\pi - \delta} k_n(t) \, \mathrm{d}t = 0$$

Proposition 5.5 Si $f \in L^p$, $\lim_{n \to +\infty} ||f * k_n - f||_p = 0$.

Noyau de Féjer 5.4.2

<u>Définition 5.3</u> Le noyau de Féjer est la suite de fonctions :

$$F_n = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) e_k$$

Théorème 5.1 $(F_n)_n$ est une identité approchée.

Démonstration. Soit $D_n = \sum_{k=-n}^n e_k$ le noyau de Dirichlet.

On a $D_n(t) = \frac{\sin((n+\frac{1}{2})t)}{\sin(\frac{t}{2})}$ et F_n est la moyenne de Cesàro des D_n .

$$\frac{1}{n+1} \frac{\sin^2\left(\left(\frac{n+1}{2}\right)t\right)}{\sin^2\left(\frac{t}{2}\right)}$$

D'où la positivité et le dernier point.

COROLLAIRE 5.2 L'ensemble des polynômes trigonométriques \mathcal{PT} est dense dans $L^p(\mathbb{T})$.

Démonstration. $(F_n * f)_n$ approche f et appartient à L^p .

Corollaire 5.3 $Si \hat{f} = \hat{g} \ alors \ f = g$

Démonstration. $F_n * f = 0$ et $F_n * f \to f$ donc f = 0.

COROLLAIRE 5.4 (RIEMANN-LEBESGUE) Soit $f \in L^1(\mathbb{T})$.

$$\lim_{|n| \to +\infty} \widehat{f}(n) = 0$$

Démonstration. Soit $\varepsilon > 0$. Il existe $P \in \mathcal{PT}$ tel que $||f - P||_1 \leqslant \varepsilon$.

Pour n assez grand, $\hat{P}(n)=0$. Comme $|\hat{f}(n)-\hat{P}(n)|\leqslant ||f-P||_1$, on a $|f(n)| \leq \varepsilon$.

<u>Définition 5.4</u> On note souvent $\sigma_n(f) = F_n * f$.

Remarque 5.1 Le noyau de Dirichlet n'est pas une identité approchée :

$$\int_{\mathbb{T}} |D_n(t)| \, \mathrm{d}t = \int_{\mathbb{T}} \left| \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)} \right| \, \mathrm{d}t$$

$$\geqslant \frac{1}{\pi} \int_0^{2\pi} t \left| \sin\left(\left(n + \frac{1}{2}\right)t\right) \right| \, \mathrm{d}t$$

$$= \frac{1}{\pi} \int_0^{2\pi(n + \frac{1}{2})} \frac{|\sin(t)|}{t} \, \mathrm{d}t \to +\infty$$

Par ailleurs,
$$D_n * f = \sum_{k=-n}^{n} \hat{f}(k)e_k$$
.

5.5 Convergences dans $C^0(\mathcal{T})$

THÉORÈME 5.2 $Si(k_n)_n$ est une identité approchée, $f*k_n \in C^0(\mathbb{T})$ converge uniformément vers f.

COROLLAIRE 5.5 En particulier, \mathcal{PT} est dense dans $C^0(\mathbb{T})$ pour $\|\cdot\|_{\infty}$.

 $D\acute{e}monstration.$ f est uniformément continue sur \mathbb{R} .

$$f * k_n(t) = \int_T f(t - x) k_n(x) dx$$

Donc $f * k_n$ est continue et on a :

$$f(t) - f * k_n(t) = \int_T \underbrace{(f(t-x) - f(t))k_n(x)}_{g_n(x,t)} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} g_n(x,t) dx$$

$$= \frac{1}{2\pi} \left(\int_0^{\delta} g_n(x,t) dx + \int_{\delta}^{2\pi-\delta} g_n(x,t) dx + \int_{2\pi-\delta}^{2\pi} g_n(x,t) dx \right)$$

Soit $\varepsilon > 0$. On choisit δ tel que pour tout $t, x, |x| \leqslant \delta \Rightarrow |f(t-x) - f(x)| \leqslant \varepsilon$.

On a alors

$$\int_0^\delta g_n(x,t) \, \mathrm{d}x \leqslant \varepsilon \, \text{et} \, \int_{2\pi-\delta}^{2\pi} g_n(x,t) \, \mathrm{d}x \leqslant \varepsilon$$

De plus,

$$\int_{\delta}^{2\pi - \delta} g_n(x, t) \, \mathrm{d}x \leqslant \frac{\|f\|_{\infty}}{\pi} \int_{\delta}^{2\pi - \delta} k_n(x) \, \mathrm{d}x \leqslant \varepsilon$$

pour n assez grand.

D'où le résultat.

5.6 Convergence ponctuelle de $\sigma_n = f * F_n$

5.6.1 Théorèmes

<u>Théorème 5.3</u> $\sigma_n f$ converge presque partout vers f.

 $\frac{\text{Th\'eor\`eme }5.4}{On \ suppose \ que \ \check{f}(t_0) = \lim_{h \to 0} \frac{f(t_0 + h) + f(t_0 - h)}{2} \ existe.}$

- 1. $\sigma_n(f)$ converge presque partout vers \check{f} . En particulier, si f est continue en t_0 , on a une convergence simple en t_0 .
- 2. De plus, la convergence est uniforme sur tout intervalle fermé sur lequel f est continue.
- 3. Si f est minorée par m, alors $\sigma_n(f) \geqslant m$. Idem avec une majoration.

Démonstration. On utilise que F_n est paire et positive, et que pour tout $\delta \in]0,\pi[,$

$$\lim_{n \to +\infty} \sup_{t \in [\delta, 2\pi - \delta]} |F_n(t)| = 0$$

On a $\sigma_n(f) - m = \int_T (f(t-x) - m) F_n(x) dx \ge 0$ d'où le troisième point. Pour tout t_0 , $\check{f}(t_0)$ existe et si $\delta \in]0, \pi[$,

$$\sigma_n(f)(t_0) - \check{f}(t_0) = \frac{1}{2\pi} \int_{-\delta}^{2\pi - \delta} (f(t - x) - \check{f}(t_0)) F_n(x) dx$$

$$= \frac{1}{2\pi} \int_{-\delta}^{\delta} (f(t - x) - \check{f}(t_0)) F_n(x) dx$$

$$+ \frac{1}{2\pi} \int_{\delta}^{2\pi - \delta} (f(t - x) - \check{f}(t_0)) F_n(x) dx$$

Le deuxième intégrale est dominée par $2 \|f - \check{f}(t_0)\|_{1} \sup_{t \in [\delta, 2\pi - \delta]} F_n(t) \to 0$ quand $n \to +\infty$.

De plus, la première vaut :

$$\frac{1}{\pi} \int_0^{\delta} \left(\frac{f(t-x) + f(t+x)}{2} - \check{f}(t_0) \right) F_n(x) dx$$

et si δ est suffisamment petit et n suffisamment grand, les deux intégrales sont dominées par ε .

D'où le résultat.

5.6.2 Conséquences sur la convergence des lois de Fourier

On suppose que $S(f) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e_n$ converge en $t_0 \in \mathbb{T}$. On note $S(f)(t_0)$ la limite.

Alors $\sigma(f)(t_0) = \lim_{n \to +\infty} \sigma_n(f)(t_0)$ existe est coïncide avec $S(f)(t_0)$.

Par conséquent, si S(f) converge en t_0 où f est continue, alors $S(f)(t_0) = f(t_0)$.

Si S(f) converge sur un ensemble E mesurable, alors pour presque tout $x \in E, Sf(x) = x.$

En particulier, si S(f) converge en dehors d'un ensemble de mesure nulle alors S(f) = 0.

5.7 Ordre de grandeur des cœfficients de Fourier

THÉORÈME 5.5 Soit $f \in L^1(\mathbb{T})$. On suppose que pour tout n, $\widehat{f}(|n|) = -\widehat{f}(-|n|) \ge 0$.

Alors
$$\sum_{n=1}^{\infty} \frac{\widehat{f}(n)}{n}$$
 est convergente.

Remarque 5.2 Par conséquent, il n'existe pas de $f \in L^1$ telle que $\widehat{f}(n) = \frac{\mathrm{Sgn}(n)}{\ln(|n|)}$.

Théorème 5.6 de l'application ouverte $Si \varphi$ est linéaire, surjective et continue entre deux Banach, alors φ est ouverte.

THÉORÈME 5.7 Si $(a_n)_{n\in\mathbb{Z}}$ sont des réels positifs avec $a_{-n}=a_n$, $\lim_{n\to+\infty}a_n=0$ et $a_{n-1}+a_{n+1}-2a_n\geqslant 0$, alors il existe $f\in L^1(\mathbb{T})$ telle que $\widehat{f}(n)=a_n$.

5.8 Convergence de la série de Fourier

Lemme 5.7.1

Soit
$$f \in L^1$$
. On pose $S(f) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)e_n$ et $S_n(f) = \sum_{k=-n}^n \widehat{f}(k)e_k$.

On a
$$S_n(f) = f * D_n$$
.

Si $\sum_{n\in\mathbb{Z}} \widehat{f}(n)$ converge absolument, alors $S_n(f)(t)$ converge pour tout t vers g continue égale à f presque partout.

Démonstration. $|\widehat{f}(n)e_n| \leq |\widehat{f}(n)|$.

On a donc la convergence normale de S(f), d'où la convergence uniforme. Puisque $||S_n(f) - g||_{\infty} \ge ||S_n(f) - g||_1$, on a la convergence de $S_n(f)$ vers g dans L^1 .

Comme
$$\widehat{g}(l) = \lim_{n \to +\infty} \widehat{S_n(f)}(l) = \widehat{f}(l)$$
, on a $g = f$ dans L^1 .

Proposition 5.6 Soit $f \in L^1(\mathbb{T})$.

- Si f est absolument continue (en restriction à tout compact) alors $|\hat{f}(n)| = o(\frac{1}{|n|})$.
- Si f est k fois dérivable avec $f^{(k)} \in L^1$, alors $|\widehat{f}(n)| = o(\frac{1}{|n^k|})$.
- En particulier, si $k \ge 2$, $S_n(f)$ converge uniformément vers f.

Démonstration. Si f est absolument continue, $f(x) = \int_0^x g(t) dt + f(0)$ avec $g \in L^1$.

On a $|\widehat{f}(n)| \leq |\frac{\widehat{g}(n)}{n}|$ et $\widehat{g}(n) \to 0$.

Donc on a le résultat.

Pour avoir le deuxième point, on applique le premier à $f^{(k-1)}$.

Théorème 5.8 (Convergence ponctuelle de la série de Fourier) Soit $f \in L^1$.

On suppose que $|\widehat{f}(n)| = O(\frac{1}{|n|})$.

Dans ce cas, $S_n(f)(t)$ et $\sigma_n(f)(t)$ convergent pour les même valeurs de t vers la même limite.

Démonstration. Soit $\varepsilon > 0$, $\lambda > 1$.

On a

$$\sum_{n < |j| \leqslant \lambda n} |\hat{f}(j)| \leqslant (2\lambda - 1)n \sup_{n < |j| \leqslant \lambda n} |\hat{f}(j)| \leqslant 2(\lambda - 1)c$$

Par ailleurs, $\sup_{j\in\mathbb{Z}}|j\widehat{f}(j)|<+\infty$, si λ est assez proche de de 1, on a :

$$\sum_{n < |j| \le \lambda n} |\widehat{f}(j)| \le \varepsilon$$

On introduit

$$A = \frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda_n \rfloor - n} \sigma_{\lfloor \lambda n \rfloor}(f)$$

et

$$B = \frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n(f)$$

On a:

$$A - B = \sum_{k = -\lfloor \lambda n \rfloor}^{\lfloor \lambda n \rfloor} \frac{\lfloor \lambda n \rfloor + 1 - |k|}{\lfloor \lambda n \rfloor - n} \widehat{f}(k) e_k - \sum_{k = -n}^{n} \frac{n + 1 - |k|}{\lfloor \lambda n \rfloor - n} \widehat{f}(k) e_k$$

De plus,

$$\frac{\lfloor \lambda n \rfloor + 1 - |k|}{\lfloor \lambda n \rfloor - n} - \frac{n + 1 - |k|}{\lfloor \lambda n \rfloor - n} = 1$$

Donc

$$A - B = S_n(f) + \sum_{n < |k| \le \lfloor \lambda n \rfloor} \frac{\lfloor \lambda n \rfloor + 1 - |k|}{\lfloor \lambda n \rfloor - n} \widehat{f}(k) e_k$$

On suppose que $\sigma_n(f)(t)$ converge en t vers $\sigma(f)(t)$. On a donc

$$\lim_{n \to +\infty} A = \frac{\lambda}{\lambda - 1} \sigma(f)(t) \lim_{n \to +\infty} B = \frac{1}{\lambda - 1} \sigma(f)(t)$$

Si *n* est suffisamment grand, $A - B - \sigma(f)(t) \leq \varepsilon$. Par ailleurs,

$$\left| \sum_{n < |k| \le \lfloor \lambda n \rfloor} \frac{\lfloor \lambda n \rfloor + 1 - |k|}{\lfloor \lambda n \rfloor - n} \widehat{f}(k) e_k \right| \le \sum_{n < |k| \le \lfloor \lambda n \rfloor} |\widehat{f}(k)| \le \varepsilon$$

Donc $|S_n(f)(t) - \sigma(f)(t)| \leq 2\varepsilon$ pour *n* assez grand.

Remarque 5.3 On pourrait montrer que $S_n(f)$ converge uniformément sur toute partie $A \subset \mathbb{R}$ où σ_n converge uniformément.

<u>Définition 5.5</u> On dit que f est à valuation bornée ssi f est à valuation bornée sur tout segment.

On définit :

$$f(t^{-}) = \lim_{t' \to t^{-}} f(t')f(t^{+}) = \lim_{t' \to t^{+}} f(t')\check{f}(t) = \frac{f(t^{-}) + f(t^{+})}{2}$$

COROLLAIRE 5.6 Soit $f \in VB(\mathbb{T})$.

Pour tout t, S(f) est convergente en t et $S(f)(t) = \check{f}(t)$.

De plus, la convergence est uniforme sur tout segment inclus dans le domaine de continuité de f.

Démonstration. Ceci découle de la proposition suivante.

Proposition 5.7 Si
$$f \in VB(\mathbb{T})$$
, alors $|\widehat{f}(n)| = O(\frac{1}{|n|})$.

Démonstration. Il est loisible de supposer f continue à droite (quitte à la remplacer par $f(t^+)$).

On a
$$\widehat{f}(n) = \int_{\mathbb{T}} f(t) e^{-int} dt = -\frac{1}{in} \int_{\mathbb{T}} e^{-int} df(t)$$
.
Donc $|\widehat{f}(n)| \leqslant \frac{VTf|_{[0,2\pi]}}{2\pi|n|} = O(\frac{1}{|n|})$.

COROLLAIRE 5.7 Si $f \in C^1(\mathbb{T})$, alors $S_n(f)$ converge uniformément vers f.

Remarque 5.4 Il existe des fonctions continues dont la série de Fourier diverge en un point.

5.9 Calcul de sommes de séries

Soit f le prolongement par 2-périodicité de $1_{]0,1[}$ sur [-1,1[.

 $g(x)=f(\frac{x}{\pi})$ est 2π -périodique, C^1 par morceaux donc appartient à $VB(\mathbb{T}).$

On a
$$\hat{g}(0) = \frac{1}{2\pi} \int_0^{\pi} dt = \frac{1}{2}$$
.
Si $n \neq 0$, $\hat{g}(n) = \frac{1}{2\pi} \int_0^{\pi} e^{-int} dt = \frac{1}{2in\pi} (1 - (-1)^n)$.

On a
$$S(f)(t) = S(g)(\pi t) = \sum_{n=-\infty}^{+\infty} \widehat{g}(n) e^{i\pi nt}$$
.

 $S(f)(t) = \check{f}(t) = f(t)$ si $t \not\equiv 0 \mod 1$ et $\frac{1}{2}$ sinon.

La convergence est uniforme sur $[a,b]\subset]-1,0[$ et $[c,d]\subset]0,1[$, et leurs translatés par $2k,\,k\in\mathbb{Z}.$

On a donc Sf(t) = 1 pour $t = \frac{1}{2}$.

Ceci s'écrit :

$$\frac{1}{2} + \frac{1}{2i\pi} \sum_{n \neq 1} \frac{1 - (-1)^n}{n} e^{in\frac{\pi}{2}} = 1$$

Pour n = 2p + 1,

$$\frac{1}{2} + \frac{1}{2\pi} \sum_{p=-\infty}^{+\infty} \frac{2}{2p+1} (-1)^p = 1$$

Donc

$$\frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^p}{2p+1} = 1$$

On en déduit :

$$\sum_{p=0}^{\infty} \frac{(-1)^p}{2p+1} = \frac{\pi}{4}$$

5.10 Théorie L^2 des séries de Fourier

THÉORÈME 5.9 $(t \mapsto e^{-int})_n$ est une base hilbertienne.

Démonstration. Clairement orthonormée.

Si
$$f \in \text{Vect}\{(e_n)_n\}^{\perp}$$
, alors pour tout n , $\widehat{f}(n) = 0$ donc $f = 0$.

COROLLAIRE 5.8 Si $f, g \in L^2(\mathbb{T})$, la série $\sum_{n \in \mathbb{Z}} \widehat{f}(n)\overline{\widehat{g}(n)}$ converge absolument et on a :

$$\langle f|g\rangle = \sum_{n=-\infty}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)}$$

En particulier, si
$$g = f$$
 alors $||f||_2^2 = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2$.

De plus, $S_n(f) \to f$ dans L^2 .

Proposition 5.8 Soit H un Hilbert $(e_{\alpha})_{\alpha}$ un système orthonormé. Il y a équivalence entre :

- (i) Vect $\{(e_{\alpha})_{\alpha}\}$ est dense dans H
- (ii) $(e_{\alpha})_{\alpha}$ est complet
- (iii) Pour tout $f \in H$, $||f||^2 = \sum_{\alpha \in A} |\langle f, e_{\alpha} \rangle|^2$.
- (iv) Pour $f, g \in H$, $\langle f, g \rangle = \sum_{\alpha \in A} \langle f, e_{\alpha} \rangle \overline{\langle g, e_{\alpha} \rangle}$.
- (v) Pour tout $f \in H$, $f = \sum_{\alpha \in A} \langle f, e_{\alpha} \rangle e_{\alpha}$.

THÉORÈME 5.10 $\mathscr{F}: f \mapsto (\widehat{f}(n))_n$ est une isométrie bijective. Donc $L^2(\mathbb{T})$ s'identifie à $l^2(\mathbb{Z})$

Démonstration.

- \bullet ${\mathscr F}$ unitaire : identité de Parseval
- $\|\mathscr{F}(f)\|_2 = \|f\|_2$ et \mathscr{F} est donc injectif
- soit $a = (a_n)_{n \in \mathbb{Z}}, a \in l^2(\mathbb{Z}).$

Soit $l \in \mathbb{N}^*$. On pose $A_l = \{n \in \mathbb{Z}/|a_n| \geqslant \frac{1}{l}\}$. A_l est de cardinal fini

Soit
$$P_l = \sum_{n=1}^{\infty} a_n e_n$$

Soit
$$P_l = \sum_{n \in A_l} a_n e_n$$
.
On a $\widehat{P}_l = (\widehat{P}_l(n))_{n \in \mathbb{Z}} = a 1_{A_l}$.

De plus,
$$\sum_{n \in A_l} |a_n|^2 \leqslant \sum_{n = -\infty}^{+\infty} |a_n|^2 < +\infty.$$

On applique le théorème de convergence dominée (dans $l^2(\mathbb{Z})$) et on a $\mathscr{F}(P_l) \xrightarrow[l \to \infty]{} a \text{ dans } l^2(\mathbb{Z})$

En particulier, $\mathscr{F}(P_l)_{l\in\mathbb{N}}$ est de Cauchy donc $(P_l)_{n\in\mathbb{N}^*}$ est de Cauchy dans $L^2(I)$ car \mathscr{F} est unitaire $(\|P_l - P_{l'}\|_2 = \|\mathscr{F}(P_l) - \mathscr{F}(P_{l'})\|_2)$. Par conséquent, $\lim_{l \to \infty} P_l = f$ (dans $L^2(T)$). De plus, $\|\mathscr{F}(f) - \mathscr{F}(P_l)\|_2 = \|f - P_l\|_2$, donc $\mathscr{F}(f) = a$.

De plus
$$\|\mathscr{F}(f) - \mathscr{F}(P_0)\|_{\infty} = \|f - P_0\|_{\infty}$$
 donc $\mathscr{F}(f) = a$

Application des identités de Parseval 5.10.1

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Soit $f: \mathbb{R} \to \mathbb{R}$ 2-périodique définie par :

$$f = \begin{cases} 0 & \text{sur } [-1, 0] \\ 1 & \text{sur }]0, 1[\end{cases}$$

et $g(x) = f(\frac{x}{\pi}), g \in L^2(T)$. $g \text{ est } 2\pi \text{ périodique et on a}:$

$$\widehat{g}(n) = \frac{1}{2i\pi n} (1 - (-1)^n)$$

$$= \begin{cases} \sin n \neq 0 \\ = \frac{1}{i\pi n} \sin n = 2p, p \neq 1 \\ = \frac{1}{i\pi n} \sin n = 2p + 1 \end{cases}$$

$$\sin n = 2p + 1$$

On applique Parseval:

$$\frac{1}{4} + \frac{2}{p} \sum_{p=0}^{\infty} \frac{1}{(2p+1)^2} = \int_T |g(t)|^2 dt = \frac{1}{2}.$$

$$\operatorname{donc} \sum_{p=0}^{\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}.$$

Comme
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} + \sum_{p=1}^{+\infty} \frac{1}{(2p+1)^2}$$
, on a :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} (1 - \frac{1}{4}) = \frac{\pi^2}{8}$$

D'où
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

5.10.2 Convergence en norme

Soit B un sev de $L^1(T)$ muni d'une norme $\|\cdot\|_B$ tel que $(B, \|\cdot\|_B)$ soit complet.

Dans la suite, $(B,\|\cdot\|_B)$ désignera $(L^1(T),\|\cdot\|_1)$ ou $(C^0(T),\|\cdot\|_\infty$ ou bien $(L^p(T),\|\cdot\|_p)$, avec $1\leqslant p<+\infty$.

Proposition 5.9 \mathcal{PT} est un sous-espace dense de B

Démonstration. Par Hölder, dans $L^2(T)$, $\|\cdot\|_B \geqslant \|\cdot\|_1$.

Soit
$$f \in B$$
. On pose $S_n(f) = \sum_{k=-n}^n \widehat{f}(k)e_k$.

 $S_n: B \to B$ est une application linéaire continue. Il suffit de montrer que :

$$\forall K \in \mathbb{Z}, f_k : \begin{cases} B & \to & B \\ f & \mapsto & \widehat{f}(k)e_k \end{cases}$$
 est continue

$$\|\varphi_k(f)\|_B = \|\widehat{f}(k)e_k\|_B$$

$$= |\widehat{f}(k)| \|e_k\|_B$$

$$= |\widehat{f}(k)|$$

$$\leq \|f\|_1$$

$$\leq \|f\|_B$$

<u>Définition 5.6</u> On dira que $(B, \|\cdot\|_B)$ admet une convergence en norme ssi $\forall f \in B, \lim_{n \to \infty} \|S_n(f) - f\|_B = 0$

Exemple : c'est vrai si $B = L^2(\mathbb{T})$

THÉORÈME 5.11 $(B, \|\cdot\|_B)$ converge en norme ssi $\exists K > 0, \forall n \in \mathbb{N}, \|S_n\|^3 \leq K$.

Démonstration. La preuve utilise le théorème de Banach-Steinhaus :

THÉORÈME 5.12 BANACH-STEINHAUS $Soit (E, \|\cdot\|_E), (F, \|\cdot\|_F)$ evn tels que $(E, \|\cdot\|_E)$ est un Banach.

Soit $\varphi: E \to F$, $\alpha \in A$ une famille d'applications linéaires continues telle que $\sup_{\alpha \in A} \|\varphi_{\alpha}\| = +\infty$.

Alors il existe $x \in E$ tel que $\sup_{\alpha \in A} \|\varphi_{\alpha}(x)\|_F = +\infty$.

Conséquence : Si $\varphi_n : E \to F, n \in \mathbb{N}$ est une suite d'applications continues telle que $\forall x \in E, \lim_{n \to \infty} \varphi_n(x) = \varphi(x)$ existe, alors $\sup_{n \in \mathbb{N}} \|\varphi_n\| < +\infty$.

En particulier, φ est continue.

Application : soit $(a_n)_{n\in\mathbb{N}}$ telle que $\forall b=(b_n)_{n\in\mathbb{N}}$ dans $l^2(\mathbb{N}), \sum_{n\in\mathbb{N}} a_n b_n$ converge. Alors $(a_n)\in l^2(\mathbb{N})$.

Démonstration. On considère la suite d'opérations

$$\varphi_n: \begin{cases} \varphi^2(\mathbb{N}) & \to & \mathbb{C} \\ (b_n)_{n\in\mathbb{N}} & \mapsto & \sum_{k=0}^n a_k b_k \end{cases}$$

Les φ_n sont continues donc $\forall (b_k) \in l^2(\mathbb{N}), \lim_{n \to \infty} \varphi_n((b_k))$ existe et vaut $\sum_{k=0}^{\infty} a_k b_k = \varphi((b_k)).$

 φ est une forme linéaire continue, $\varphi \in l^2(\mathbb{N})^* = l^2(\mathbb{N})$ donc $(a_n) \in l^2(\mathbb{N})$.

Si B admet une convergence en norme, alors les $||S_n||^B$ sont uniformément bornées. On suppose réciproquement que sup $||S_n||_B = K < +\infty$.

On sait que \mathcal{PT} est dense dans B.

Soit $f \in B, \varepsilon > 0$. Il existe $P \in \mathcal{PT}$ tel que $||f - P||_B \leqslant \varepsilon$.

En particulier, $||S_n(P) - S_n(f)||_B = ||S_n(f - P)||_B \leqslant ||S_n||_B ||f - P||_B \leqslant k\varepsilon$.

Si $n \ge 0$, $S_n(P) = P$, d'où $\forall n \ge n_0$, $||S_n(f) - f||_B \le ||S_n(f) - S_n(P)||_B + ||P - f||_B \le (k+1)\varepsilon$.

Il y a bien convergence en norme.

COROLLAIRE 5.9 $(L^1(T), \|\cdot\|_1)$ n'admet pas de convergence en norme.

 $D\acute{e}monstration$. Soit $(F_N)_{N\in\mathbb{N}}$ le noyau de Féjer.

On a $||F_n||_1 = 1$.

On a $S_n(\overline{F_n}) = D_n * F_n = F_n * D_n = \sigma_n(D_n) \xrightarrow[N \to \infty]{} D_n \text{ dans } (L^1(T), \|\cdot\|_1).$

D'autre part, $||S_n(F_n)|| \le ||S_n||_B$ (car $||F_n|| = 1$).

Par suite, $||S_n||_B \ge ||D_n||_1 \xrightarrow[n\to\infty]{} +\infty$ ce qui montre que $||S_n||_B$ n'est pas uniformément bornée et donc que $(L^1(T), ||\cdot||_1)$ n'admet pas de convergence en norme.

Remarque 5.5 $\forall f, ||S_n(f)||_1 = ||D_n * f||_1 \le ||D_n||_1 ||f||_1$.

D'où $||S_n||_B \leqslant ||D_n||_1$.

Finalement, $||S_n||_B = ||D_n||_1$.

Corollaire 5.10 $(C^0(T), \|\cdot\|_{\infty})$ n'admet pas de convergence en norme.

Démonstration. $\overline{D_n} = \sum_{k=-n}^n e_k$.

 $D_n: \mathbb{R} \to \mathbb{R}$.

Soit $f_n \in L^1(T)$ définie comme :

$$f_n(x) = \begin{cases} 1 & \text{si } D_n > 0 \\ -1 & \text{si } D_n \leqslant 0 \end{cases}$$

Soit
$$S_n(f_n) = D_n * f_n = \int_T D_n(t-x) f_n(x) dx$$
. On a

$$S_n(f_n)(0) = \int_T D_n(-x) f_n(x) dx = \int_T D_n(x) f_n(x) dx = \int_T |D_n(x)| dt ||D_n||_1$$

De plus, $||S_n(f_n)||_{\infty} \le ||D_n||_1 = ||D_n||_1 ||f||_{\infty}$.

Si f_n était continue, on pourrait conclure. On essaie donc d'approcher f_n par une fonction continue. On considère la suite $(\varphi_l^*)_{l\in\mathbb{N}}, \varphi_l^n = F_l * f_n$.

On remarque que $\varphi_l \in \mathcal{PT}$ car $||f_n||_{\infty} = 1$.

Donc $\|\varphi_l\|_{\infty} \leqslant 1$ et $\int_{-l}^{F} |=1$.

De plus $\lim_{n\to\infty} \varphi_l^n = f_n$ dans $L^1(T)$.

En particulier, $S_n(\varphi_l^n)(0) \xrightarrow[l \to \infty]{} S_n(f_n)(0) = ||D_n||_1$. Soit $\varepsilon > 0$, il existe donc une suite $(\varphi_{l_n}^n)$ telle que $|S_n(\varphi_{l_n}^n)(0)| \ge ||D_n||_1 - \varepsilon$. Soit $g_n = \varphi_n^{l_n}$.

On a donc $||S_n(g_n)||_{\infty} \ge ||D_n||_1 - \varepsilon$ et on conclut puisque $||g_n||_{\infty} \le 1$ $(||S_n||^2 \ge ||D_n||_1 - \varepsilon)$.

COROLLAIRE 5.11 Il existe $f \in C^0(T)$ telle que S(f) diverge en un point.

Démonstration. D'après la preuve du corolaire précédent, il existe une suite $(g_n)_{n\in\mathbb{N}}, g_n\in C^0(T)$ telle que $\|g_n\|_{\infty}\leqslant 1$ et tel que $\lim_{n\to\infty}|S_n(g_n)(0)|=+\infty$.

On considère la suite de formes linéaires continues

$$\alpha_n: \begin{cases} C^0(T) & \to & \mathbb{C} \\ f & \mapsto & S_n(f)(0) \end{cases}$$

On a donc $\sup_{n\in\mathbb{N}} \|\alpha_n\| = +\infty$

D'après le théorème de Banach-Steinhaus, $\exists g \in C^0(T)$ telle que $|S_n(g)(0)|$ ne soit pas uniformément bornée, donc en particulier diverge.

Remarque 5.6 Voir Katznelson pour une preuve constructive

Remarque 5.7 Si $f \in C^0(A)$, alors on peut montrer que S(f)(t) converge vers f(t) pour presque tout t.

THÉORÈME 5.13 CARLSON, 1966 Si $f \in L^2(T)$, S(f)(t) converge vers f(t)pour presque tout t.

Généralisé par Hunt (1968) à $L^p(T), 1$

A contrario, il existe $f \in L^1(T)$ dont la série de Fourier est partout divergente (Kolmogorov).

<u>Définition 5.7</u> Soit $S = \sum_{n \in \mathbb{Z}} a_n e_n$ une série trigonométrique. On définit la série conjuguée :

$$\widetilde{S} = \sum_{n \in \mathbb{Z}} \operatorname{Sgn}(n) a_n e_n$$

Si $\widetilde{S} = S(\widetilde{f})$, on dit que \widetilde{f} est la fonction conjuguée de f.

Proposition 5.10 Pour tout $f, \widetilde{\widetilde{f}} = f$.

<u>Définition 5.8</u> On dit que B est stable par conjugaison ssi pour tout $f \in B$, \widetilde{f} existe et appartient à B.

Théorème 5.14 B admet une convergence en norme ssi B est stable par conjugaison.

Démonstration. On considère :

$$S^{\flat}: \begin{cases} B & \to & B \\ f & \mapsto & \sum_{k=0}^{2n} \widehat{f}(k)e_k \end{cases}$$

Remarque 5.8 On a $\|S_n^{\flat}\|_B = \|S_n\|_B$. En effet, $S_n^{\flat}(f) = e_n S_n(e_{-n}f)$.

 \Rightarrow Si B admet une convergence en norme, il existe k > 0 tel que pour tout n, $||S_n||_B \leq k$.

Donc $||S_n^{\flat}||_B \leqslant k$.

Soit $f \in B$ et $\varepsilon > 0$, il existe $P \in \mathcal{PT}$ tel que $||f - P||_B \le \varepsilon$.

Donc, pour tout n, $\|S_n^{\flat}(f) - S_n^{\flat}(P)\|_{B} \leqslant k\varepsilon$.

Si $n \ge n_0$, $S_n^{\flat}(P)$ est indépendant de n. On a donc

$$\left\|S_p^{\flat}(f) - S_q^{\flat}(f)\right\|_B \leqslant 2k\varepsilon$$

 $(S_n^{\flat}(f))_n$ est de Cauchy donc converge vers F.

De même, il existe $G \in B$ avec $G = \sum_{k=-\infty}^{-1} \hat{f}(k)e_k$.

 $\tilde{f} = F + G$ convient alors.

 \Leftarrow On considère l'opérateur linéaire $T:f\mapsto \tilde{f}.$

On a $T = \lim_{n \to +\infty} T_n$ avec :

$$T_n: \begin{cases} B & \to & B \\ f & \mapsto & \sum_{k=-n}^n \widehat{f}(k)e_k \end{cases}$$

Les T_n sont continues donc T aussi par Banach-Steinhaus.