Institute of Telecommunications
Warsaw University of Technology
2019

internet technologies and standards

- Piotr Gajowniczek
- Andrzej Bąk
- Michał Jarociński

MPLS – Multiprotocol Label Switching

MPLS – introduction

- RFC 303 I MPLS architecture
 - initially for improving IP packet switching by simplified lookup
- Now, a popular ISP core network technology
 - virtualization and management of network resources, network services
 - traffic engineering, QOS
 - high availability
 - consolidation of services on a single infrastructure
 - ability to support various services, applications and solutions over a converged network infrastructure

MPLS - introduction

IP routing:

- data link layer frame validation
- network-layer protocol demultiplexing
- IP packet validation
- forwarding decision longest prefix match
- data link frame construction

MPLS:

Push, Swap & Pop

MPLS – IP control plane

- FEC (Forwarding Equivalence Class)
 - IP routing FEC = IP Prefix; FEC lookup done at each hop
 - MPLS other FEC criteria possible, FEC lookup only at an iLER
- LIB (Label Information Base) and LFIB (Label Forwarding Inf. Base)

MPLS – labels and tunnels

LSR handles only transport tunnels

MPLS – tunel set-up

- MPLS tunnel set-up requires:
 - FEC (IP prefixes) reachability = OSPF
 - distribution of label mappings between routers

- label distribution protocols
 - LDP (Label Distribution Protocol) – "Downstream Unsolicited"
 - RSVP-TE (Resource Reservation Protocol) – "Downstream on Demand"

- RI Request(FEC C)
- R3 Response(FEC C, 100)
- R2 Response(FEC C, 200)

BGP free core

- you can use MPLS tunnels to carry iBGP sessions between border routers
 - □ the core routers do not need to handle IP addresses no BGP necessary

• starting MPLS (repeat on R2, R3, R4) R2 (config) #interface GEO/2 R2 (config-if) #mpls ip

R2#show mpls forwarding-table										
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop					
Label	Label	or Tunnel Id	Switched	interface						
16	17	4.4.4.4/32	0	GE0/2	10.0.23.2					
17	Pop Label	10.0.34.0/30	0	GE0/2	10.0.23.2					
18	Pop Label	3.3.3.3/32	0	GE0/2	10.0.23.2					

R3#show mpls forwarding-table								
	Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop		
	Label	Label	or Tunnel Id	Switched	interface			
	16	Pop Label	2.2.2.2/32	0	GE0/1	10.0.23.1		
	17	Pop Label	4.4.4.4/32	0	GE0/2	10.0.34.1		

LDP – Label Distribution Protocol

- LDP generates labels automatically and exchanges them between routers
 - first, the neighbor adjacency needs to be established (UDP multicast hello discovery protocol)
 - adjacency is built using TCP connection
 - routers have unique LSR IDs
 - labels are locally generated for each prefix in a routing table and added to the LIB
 - the LIB is a base for building LFIB
- the adjacent LDP neighbors exchange information stored in their LIBs
 - this distributes information on what labels should be used for different FECs

MPLS – label distribution protocols

- LDP (Label Distribution Protocol)
 - tunnels built based on IGP (fullmesh)
 - simple configuration
 - automatic creation of tunnels
 - no traffic engineering
 - convergence time depends on IGP
 - label distribution in "downstream unsolicited" approach

- RSVPTE (Resource Reservation Protocol with Traffic Engineering)
 - tunnels can be defined administratively ("outside" IGP paths)
 - additional constraints

 (administrative and TE-related)
 for advanced path calculation
 - bandwidth reservation for LSP (CAC)
 - advanced LSP protection against failures
 - label distribution in "downstream on demand" approach

MPLS – the RSVP protocol

- RFC 3209 RSVP as LDP
- RSVPTE:
 - LSP definition
 - path calculation "outside" IGP metrics ("link colors", bandwidth etc.)
 - tunel protection (Secondary Paths, Fast Reroute)
 - resource reservation (CAC)

- LSP = MPLS tunnel, can be composed of many paths (LSP-Paths).
 - one "primary" path and seven "secondary"
 - only one active at a time

- other RSVP messages:
 - PATH Tear: (downstream), RESV Tear: (upstream)
 - PATH Error, RESV Error:
 - Hello (RSVP heartbeat)
 - Summary Refresh (for less signalling)

MPLS – Traffic Engineering – path calculation

Strict LSP

- manual configuration at source router
- high signalling overhead
- APC (Advanced Path Calculation)
 - CSPF (Constrained Shortest Path First)
 - additional criteria
 - bandwidth reservation state
 - administrative criteria (link colors)
 - hop limit
 - TE metric
 - Explicit route (,,strict hops", ,,loose hops")
 - Shared Link Groups

- reservations are made in the Control Plane
 - actual bandwidth usage in the
 Data Plane is not considered
 - requires relevant QoS solutions in the Data Plane

resiliency

 allows automated creation of backup paths and detours (Fast Reroute) that are disjoint with the primary path

MPLS – TE variables

the need for additional constraints and link state data has to be reflected in routing protocol

- OSPF-TE (OSPF Traffic Engineering)
 - RFC 2370:The OSPFOpaque LSA Option
 - Opaque LSAs –
 deneric mechanism
 for OSPF extensions

OSPFTE

- routers create additional database TED (Traffic Engineering Database) for storing additional link attributes distributed by Opaque LSAs (Type 10)
- Opaque LSA Flooding activated when:
 - link state (up/down), link configuration of bandwidth reservation state changes
 - periodically (as in IGP)
- Opaque LSA Type 10 contains Link TLV object, used to advertise information about links handled by RSVP-enabled routers:
 - link type, link ID
 - IP addresses of interfaces on both sides of the link
 - TE metrics
 - maximum bandwidth
 - maximum reservable bandwidth (per LSP priority)
 - unreserved bandwidth (100 = 100%, overbooking possible)
 - administrative group
 - Shared Risk Link Group (SRLG)

MPLS – CSPF algorithm

- Signalling
 - information about the route is conveyed in the RSVP PATH message in an ERO (Explicit Route Object)
 - ERO is updated in each intermediate router

Bandwidth reservation

- CSPF algorithm calculates a path with the required amount of unreserved bandwidth using data from TED database at source router
- downstream:
 - reservation request is signaled in RSVP PATH message
 - each router checks bandwidth availability on outgoing link (CAC)
- upstream:
 - bandwidth is reserved in each router on path (RSVP RESV message)
 - Unreserved Bandwidth updated and advertised

Least-Fill Bandwidth Reservation rule

- if CSPF has found multiple paths with the same metric
- relevant QOS policies in the Data Plane are required

MPLS – priorities and preemption

- LSP Soft Preemption
 - higher priority LSPs can preempt lower priority paths
 - priorities work in conjunction with knowledge of the Unreserved Bandwidth parameter – current values are advertised by OSPFTE for each priority level
- Setup and Hold priorities (0 to 7, lower value = higher priority)
 - LSP A can preempt LSP B if Setup Priority(A) < Hold Priority(B)
 - LSP priorities are signaled in RSVP PATH message, in SESSION_ATTRIBUTE object

- RSVP Preemption-Timer & LSP Retry-Timer
 - preemption by MBB (Make Before Break)
 - CSPF tries to find another route for preempted LSP
 - periodically (Retry-Timer)
 - preemption (status = down)
 after time defined in Preemption Timer (unless a new route was
 found earlier)

MPLS – DiffServ Aware Traffic Engineering

Class Type	FC#	FC		
High Priority	7	NC (Network Control)	Signaling	
	6	H1 (High-1)	Signaling or RT traffic	
	5	EF (Expedited Forwarding)		
	4	H2 (High-2)	RT services	
Assured	3	L1 (Low-1)	Low loss traffic, network management	
	2	AF (Assured Forwarding)	Low loss traffic	
Best Effort	1	L2 (Low-2)	"Best effort" data	
	0	BE (Best Effort)	transfer	

- DiffServ-TE (RFC 3564)
 provides bandwidth
 reservations for traffic classes
 - provides interworking between FC (Forwarding Class) QOS and MPLS TE
 - allows forwarding packets from different service classes to specific LSPs based on traffic class

- LSP may be assigned a traffic class (depending on service type)
- Using RSVP-TE the bandwidth can be reserved based on the TE-Class — a combination of traffic class and LSP priority

CT

MPLS – failure resiliency

factors influencing quality of protection

- failure detection speed
 - OSPF Hello (30 s)
 - RSVP Hello (9 s)
 - Bidirectional Forwarding Detection (<1s)
 - » "IP level heartbeat"
- speed of failure advertising
- service restoration time (switchover speed)

Fast Reroute

- local switchover (<50 ms)
- PATH ERR conveys only the information about failure
- detour paths are calculated automatically (CSPF)
- protects against node and link failures
- protection types:
 - One-to-One Backup (Detour)
 - Facility Backup (Backup Tunnel)

Secondary LSP

- switchover at source router
- switchover time depends on PATH ERR message delivery to source router
- max. 7 standby (Secondary) paths
 - Hot Standby
 - Non-Standby

MPLS – Point-to-Multipoint LSPs

- Point-to-Multipoint LSPs
 - MPLS LSP with multiple endpoints
 - PEI receives IP video stream and encapsulates it into an unidirectional P2MP LSP
 - P routers are responsible for stream replication
- Advanced MPLS features can be used
 - QOS/TE aware routing
 - RSVP CAC and bandwidth reservation
 - path resiliency
 - control over stream receivers
- Additional protection level possible – two copies of the stream over disjoint LSP P2MP paths
 - in video transport, target Head-End may perform "stream conditioning"

MPLS – P2MP LSP – RSVP signalling

- P2MP LSP a set of P2P LSPs (sub-LSPs)
 - each sub-LSP is set up using separate PATH and RESV (ERO objects included in PATH messages targeted to different endpoints are different)
 - PATH and RESV contain new object: Session Object
 - routers have to know the binding between sub-LSPs and P2MP path
 - required for proper replication in the data plane
- LSP tree can be calculated by the source router or offline
 - can be any tree (built under any criteria)
 - flexible solution

