Esercizi di Programmazione ad Oggetti

Foglio VII, a.a. 2008/2009

PROF. FRANCESCO RANZATO

Esercizio 1

Il seguente programma compila ed esegue correttamente. Quali stampe produce?

```
#include<iostream>
using namespace std;
class A {
protected:
 int k;
 A(int x=1): k(x) {}
  virtual ~A() {}
public:
 virtual void m() {cout << k << " A::m() ";}</pre>
  virtual void m(int x) {k=x; cout << k << " A::m(int) ";}</pre>
} ;
class B: virtual public A {
public:
  virtual void m(double y) {cout << k << " B::m(double) ";}</pre>
  virtual void m(int x) {cout << k << " B::m(int) ";}</pre>
};
class C: virtual public A {
public:
  C(int x = 2): A(x) {}
  virtual void m(int x) {cout << "C::m(int) ";}</pre>
};
class D: public B {
public:
  D(int x=3): A(x) {}
  virtual void m(double y) {cout << "D::m(double) ";}</pre>
  virtual void m() {cout << "D::m() ";}</pre>
};
class E: public D, public C {
public:
  E(int x=4): C(x) {}
  virtual void m() {cout << "E::m() ";}</pre>
  virtual void m(int x) {cout << "E::m(int) ";}</pre>
  virtual void m(double y) {cout << "E::m(double) ";}</pre>
} ;
main() {
  A \star a[7] = \{ new B(), new C(), new D(), new E() \};
  for (int i=0; i<4; ++i) {
    a[i]->m();
   a[i]->m(i);
    a[i] \rightarrow m(3.14);
    cout << " *** " << i << endl;
}
```

Esercizio 2

```
#include<iostream>
#include<string>
#include<typeinfo>
using namespace std;

class A {
private:
```

```
int k:
public:
  A(int x=9): k(x) {cout << "A01";}
  virtual ~A() {cout << k << " ~A() ";}</pre>
  virtual void m() {cout << k << " A::m() ";}</pre>
class B: virtual public A {
private:
  string s;
public:
  ~B() {cout << "~B() ";}
 B(string _s = "pippo"): s(_s) {cout << "B01 ";}</pre>
  virtual void m(int x) {cout << s << " B::m(int) ";}</pre>
}:
class C: virtual public A {
public:
 C(int x): A(x) \{ \}
} ;
class D: public B, public C {
public:
  D(int x=8): A(x), C(x) {cout << "D01 ";}
  virtual void m() {cout << "D::m() ";}</pre>
  virtual void m(int x) {cout << "D::m(int) ";}</pre>
class E: public D {
private:
 A a;
public:
 E(): D(5) {cout << "E() ";}
  E(const A& _a): a(_a) {cout << "E(A) ";}</pre>
 virtual void m() {cout << "E::m() ";}</pre>
  virtual void m(int x) {cout << "E::m(int) ";}</pre>
} ;
main() {
  B b("zagor"); cout << "ZERO\n";</pre>
  D* pd = new D(6); cout << "UNO\n";
 b = *pd; b.m(5); cout << "DUE\n";
  E* pe = new E(); cout << "TRE\n";
  E e2(b); cout << "QUATTRO\n";</pre>
  delete pd; cout << "CINQUE\n";
  pd = pe; pd->m(); cout << "SEI\n";
  E* q = dynamic_cast<E*>(pd); q->D::m(4); cout << "SETTE\n";</pre>
  delete pe; cout << "OTTO\n";
```

Questo programma compila correttamente. Quali stampe produce la sua esecuzione?

Esercizio 3

Definire un template di funzione Fun (T1*, T2&) che ritorna un booleano con il seguente comportamento. Consideriamo una istanziazione implicita Fun (p, r) dove supponiamo che i parametri di tipo T1 e T2 siano istanziati a tipi polimorfi (cioè che contengono almeno un metodo virtuale). Allora Fun (p, r) ritorna true se e soltanto se valgono le seguenti condizioni:

- 1. i parametri di tipo T1 e T2 sono istanziati allo stesso tipo;
- 2. siano D1* il tipo dinamico di p e D2& il tipo dinamico di r. Allora (i) D1 e D2 sono lo stesso tipo e (ii) questo tipo è un sottotipo proprio della classe ios della gerarchia di classi di I/O (si ricordi che ios è la classe base astratta della gerarchia).

Ad esempio, il seguente main () deve compilare e provocare le stampe indicate:

```
#include<iostream>
#include<typeinfo>
using namespace std;

class C { public: virtual ~C() {} };

main() {
   ifstream f("pippo"); fstream g("pluto"), h("zagor"); iostream* p = &h;
   C c1,c2;
   cout << Fun(&cout,cin) << endl; // stampa: 0
   cout << Fun(&cout,cerr) << endl; // stampa: 1
   cout << Fun(p,h) << endl; // stampa: 0
   cout << Fun(&f,*p) << endl; // stampa: 0
   cout << Fun(&g,h) << endl; // stampa: 0</pre>
```

Si consideri la gerarchia di classi per l'I/O. La classe base ios ha il distruttore virtuale, il costruttore di copia privato ed un unico costruttore (a 2 parametri con valori di default) protetto. Diciamo che le classi derivate da istream ma non da ostream (ad esempio ifstream), e istream stessa, sono classi di input, le classi derivate da ostream ma non da istream (ad esempio ofstream), ed ostream stessa, sono classi di output, mentre le classi derivate sia da istream che da ostream sono classi di I/O (esempi: iostream e fstream). Quindi ogni classe di input, output o I/O è una sottoclasse di ios. Definire una funzione int F(ios& ref) che restituisce -1 se il tipo dinamico di ref è un riferimento ad una classe di input, 1 se il tipo dinamico di ref è un riferimento ad una classe di I/O, mentre in tutti gli altri casi ritorna 9.

Quindi, ad esempio, il seguente main () provoca la stampa riportata.

Esercizio 5

Ricordiamo che nella gerarchia di classi per l'I/O la classe base astratta ios ha il distruttore virtuale. Si definisca una classe C che soddisfa le seguenti specifiche.

- 1. Un oggetto della classe C è caratterizzato da un vector di puntatori a ios, cioè da un oggetto di tipo vector<ios*>, e dal numero massimo di puntatori che questo vector può contenere. Deve essere disponibile un costruttore ad un argomento intero k, con un valore di default positivo, che determina il numero massimo k di puntatori che il vector può contenere.
- 2. Deve essere disponibile un metodo insert (ios& s) che inserisce nel vector un puntatore all'oggetto s quando valgono entrambe le seguenti condizioni (altrimenti lascia inalterato il vector):
 - (a) il vector può contenere ancora elementi (rispetto al numero massimo possibile);
 - (b) se D& è il tipo dinamico di s allora il tipo D è diverso da fstream e stringstream.
- 3. Deve essere disponibile un template di metodo conta (T& t), dove T è un parametro di tipo, che ritorna il numero di puntatori del vector che hanno un tipo dinamico D* tale che il tipo D è un sottotipo di oppure uguale a T.

Ad esempio, il seguente main () deve compilare e provocare le stampe indicate:

```
main() {
   ifstream f("pippo"); ofstream g("mandrake");
   fstream h("pluto"), i("zagor");
   ostream* p = &g;
   stringstream s;
   C c(10);
   c.insert(f); c.insert(g); c.insert(h); c.insert(i); c.insert(*p); c.insert(s);
   istream& r=f;
   cout << c.conta(r); // stampa: 1 (e' il puntatore all'oggetto f)
}</pre>
```

Esercizio 6

Si assuma che A, B, C, D siano quattro classi polimorfe. Si consideri il seguente main ().

```
main() {
   A a; B b; C c; D d;
   cout << (dynamic_cast<D*>(&c) ? "0 " : "1 ");
   cout << (dynamic_cast<B*>(&c) ? "2 " : "3 ");
   cout << (! (dynamic_cast<C*>(&b)) ? "4 " : "5 ");
   cout << (dynamic_cast<B*>(&a) || dynamic_cast<C*>(&a) ? "6 " : "7 ");
   cout << (dynamic_cast<D*>(&b) ? "8 " : "9 ");
}
```

Si supponga che tale main () compili ed esegua correttamente. Disegnare i diagrammi di **tutte** le possibili gerarchie per le classi A, B, C, D tali che l'esecuzione del main () provochi la stampa: 0 3 4 6 8.

Esercizio 7

Il seguente programma compila. Quali stampe provoca la sua esecuzione?

```
#include<iostream>
#include<string>
using namespace std;
class B: public string {
 friend class E;
protected:
 static int i;
public:
 B() {i++; cout << i << " B() ";};
 B(string s): string(s) {i++; cout << i << " " << s << " B(string) ";};
};
int B::i=0;
class C: virtual public B {
public:
 C(int x = i) \{cout << x << " C(0-1) "; \};
};
class D: virtual public B {
public:
 D(): B("pluto") {cout << "D() ";};</pre>
};
class E {
public:
 D d;
 E() {(B::i)++; cout << "E() ";};</pre>
 E(D d) {(B::i)++; cout << "E(D) ";};
};
```

```
template < class T >
class F: public C, public D, public E {
public:
    T t;
    F(T x): E(D()), C() {cout << i << " F(0-1) ";};
};

main() {
    E e; cout << " UNO\n";
    F<B> f(e.d); cout << " DUE\n";
    F<B>& rf = f; cout << " TRE\n";
    F<string>* pf = new F<string>("paperino"); cout << " QUATTRO\n";
}</pre>
```

Definire una superclasse Studente e due sue sottoclassi StudenteIC e StudenteFC che formano una gerarchia di classi i cui oggetti rappresentano studenti di una certa Università, distinti tra studenti in corso (StudenteIC) e studenti fuori corso (StudenteFC). Ci interesserà rappresentare delle informazioni utili per il calcolo delle tasse universitarie. La gerarchia deve soddisfare le seguenti specifiche:

- Un oggetto Studente è caratterizzato dal nome, dal corso di laurea frequentato, dalla durata legale in anni del corso di laurea (quindi ≥ 3 e ≤ 6), dal numero totale di esami previsti dal corso di laurea (diciamo ≥ 15 e ≤ 60), dal numero di esami sostenuti (quindi non negativo e minore o uguale al numero totale di esami previsti), dal voto medio degli esami sostenuti. Tutte queste informazioni devono essere private. La classe non deve essere astratta, ma comunque deve essere progettata in modo tale che in ogni funzione esterna ed in ogni classe non derivata da essa, non sia possibile costruire oggetti di Studente.
- Un oggetto della sottoclasse StudenteIC è caratterizzato dall'anno di corso, che deve quindi essere compreso tra 1 e la durata legale in anni del corso di laurea, e dal reddito annuale del proprio nucleo familiare. Queste informazioni devono essere private. È definito un metodo pubblico int classeDiReddito() che ritorna la classe di reddito di uno studente in corso: classe 0 se il reddito annuale è ≤ 15000 euro e lo studente frequenta l'ultimo anno di corso, classe 1 se il reddito annuale è ≤ 15000 euro ma lo studente non frequenta l'ultimo anno di corso, classe 2 se il reddito annuale è > 15000 e ≤ 30000 euro, classe 3 se il reddito annuale è > 30000 euro.
- Un oggetto della sottoclasse StudenteFC è caratterizzato dal numero di anni di fuori corso, ovvero un intero ≥ 1. Tale informazione deve essere privata. È definito un metodo pubblico bool bonus () che determina se lo studente fuori corso ha diritto ad un bonus nella tassazione: il metodo ritorna true se e soltanto se il numero di esami ancora da sostenere è < 5.

Si chiede inoltre di definire esternamente alla gerarchia (quindi senza alcuna relazione di ereditarietà con classi della gerarchia) una classe Tasse da usarsi per determinare la tassa di iscrizione annuale per un qualsiasi studente. La classe deve rappresentare le seguenti informazioni: (1) l'importo base di tassazione annuale, (2) l'importo della penale di tassazione e (3) l'importo del bonus di tassazione. Tali informazioni non devono essere pubbliche. La classe Tasse non deve essere dichiarata friend in nessun'altra classe. La classe Tasse contiene un metodo pubblico statico int calcolaTasse (Studente& s) che calcola la tassa di iscrizione annuale dovuta dallo studente s nel seguente modo:

- se s è uno studente in corso, allora la tassa dovuta è data dall'importo base di tassazione annuale sommato con l'importo della penale di tassazione moltiplicato per la classe di reddito dello studente, e da tale somma si detrae l'importo del bonus di tassazione qualora il voto medio degli esami sostenuti è > 28.
- se s è uno studente fuori corso, allora la tassa dovuta è data dall'importo base di tassazione annuale sommato con il triplo dell'importo della penale di tassazione moltiplicato per il numero di anni di fuori corso, e da tale somma si detrae l'importo del bonus di tassazione quando lo studente ha diritto al bonus.

Definire infine un esempio di metodo main() che invoca esattamente tre volte il metodo calcolaTasse() di Tasse producendo precisamente il seguente output:

```
Lo studente fuori corso di Matematica Pippo deve pagare 2000 euro di tasse.
Lo studente in corso di Informatica Pluto deve pagare 1600 euro di tasse.
Lo studente fuori corso di Fisica Paperino deve pagare 1800 euro di tasse.
```

Si considerino i seguenti fatti concernenti la libreria di I/O standard.

- Si ricorda che ios è la classe base di tutta la gerarchia di classi della libreria di I/O, che la classe istream è derivata direttamente e virtualmente da ios e che la classe ifstream è derivata direttamente da istream.
- La classe base ios ha il distruttore virtuale. La classe ios rende disponibile un metodo costante e non virtuale bool fail() con il seguente comportamento: una invocazione s.fail() ritorna true se e solo se lo stream s è in uno stato di fallimento (cioè, il failbit di s vale 1).
- La classe istream rende disponibile un metodo non costante e non virtuale long tellg() con il seguente comportamento: una invocazione s.tellg():
 - 1. se s è in uno stato di fallimento allora ritorna -1;
 - 2. altrimenti, cioè se s non è in uno stato di fallimento, ritorna la posizione della cella corrente di input di s.
- La classe ifstream rende disponibile un metodo non costante e non virtuale bool is_open() con il seguente comportamento: una invocazione s.is_open() ritorna true se e solo se il file associato allo stream s è aperto.

Definire una funzione long Fun (const ios&) con il seguente comportamento: una invocazione Fun (s):

- (1) se s è in uno stato di fallimento lancia una eccezione di tipo Fallimento; si chiede anche di definire tale classe Fallimento;
- (2) se s non è in uno stato di fallimento allora:
 - (a) se s non è un ifstream ritorna -2;
 - (b) se s è un ifstream ed il file associato non è aperto ritorna -1;
 - (c) se s è un ifstream ed il file associato è aperto ritorna la posizione della cella corrente di input di s.

Esercizio 10

```
#include<iostream>
using namespace std;
class A {
  friend class C;
private:
  int k;
public:
  A(int x=2): k(x) {}
  void m(int x=3) \{k=x;\}
};
class C {
private:
  A* p;
  int n;
public:
  C(int k=3) {if (k>0) {p = new A[k]; n=k;}}
  A* operator->() const {return p;}
  A& operator*() const {return *p;}
  A* operator+(int i) const {return p+i;}
  void F(\text{int } k, \text{ int } x) \{ \text{if } (k < n) p[k].m(x); \}
  void stampa() const \{for(int i=0; i< n; i++) cout << p[i].k << ' ';\}
};
main() {
  C c1; c1.F(2,9);
  C c2(4); c2.F(0,8);
  *c1=*c2;
  (c2+3) -> m(7);
  c1.stampa(); cout << "UNO\n";</pre>
  c2.stampa(); cout << "DUE\n";</pre>
```

```
c1=c2;
*(c2+1)=A(3);
c1->m(1);
*(c2+2)=*c1;
c1.stampa(); cout << "TRE\n";
c2.stampa(); cout << "QUATTRO";
}</pre>
```

Questo programma compila correttamente. Quali stampe produce la sua esecuzione?

Esercizio 11

Si consideri la seguente realtà concernente i biglietti del treno. Come ben noto, un biglietto per un viaggio in treno può essere di prima o seconda classe.

- 1. Definire una classe Biglietto i cui oggetti rappresentano un biglietto per un viaggio in treno. Ogni Biglietto è caratterizzato dalla distanza chilometrica del viaggio. La classe Biglietto dichiara un metodo virtuale puro double prezzo() che prevede il seguente contratto: una invocazione b.prezzo() ritorna il prezzo del biglietto b. Per tutti i biglietti, il prezzo base al km è fissato in 0.1 €.
- 2. Definire una classe BigliettoPrimaClasse derivata da Biglietto i cui oggetti rappresentano un biglietto per un viaggio di prima classe. Il prezzo di un biglietto di prima classe con distanza inferiore a 100 km è dato dal prezzo base (prezzo base al km moltiplicato per la distanza chilometrica) aumentato del 30%, altrimenti l'aumento del prezzo base è del 20%. BigliettoPrimaClasse implementa quindi prezzo () ritornando il prezzo di un dato biglietto di prima classe.
- 3. Definire una classe BigliettoSecondaClasse derivata da Biglietto i cui oggetti rappresentano un biglietto per un viaggio di seconda classe. Un biglietto di seconda classe può essere con prenotazione oppure senza (la prenotazione garantisce il posto a sedere). Per tutti i biglietti di seconda classe, il costo della prenotazione è fissato in 5 €. Il prezzo di un biglietto di seconda classe è dato dal prezzo base (prezzo base al km moltiplicato per la distanza chilometrica) più l'eventuale costo della prenotazione.
- 4. Definire una classe BigliettoSmart i cui oggetti rappresentano dei puntatori smart a Biglietto. La classe BigliettoSmart dovrà essere dotata dell'interfaccia pubblica necessaria per lo sviluppo della successiva classe Treno.
- 5. Definire una classe TrenoPieno i cui oggetti rappresentano delle eccezioni che segnalano che non vi sono posti disponibili in un dato treno. Una eccezione di TrenoPieno è caratterizzata dalla classe (l^ o 2) in cui non vi sono più posti disponibili.
- 6. Definire una classe Treno i cui oggetti rappresentano un certo viaggio in treno (la semplificazione prevede che non vi siano fermate intermedie). Ogni oggetto Treno è quindi caratterizzato dall'insieme dei biglietti venduti per quel viaggio in treno, e tale insieme deve essere rappresentato mediante un vector venduti di puntatori smart BigliettoSmart. Un oggetto Treno è inoltre caratterizzato dal numero massimo di posti disponibili per biglietti di prima classe e dal numero massimo di posti disponibili per biglietti di seconda classe con prenotazione.

Devono essere disponibili nella classe Treno le seguenti funzionalità:

- Un metodo int* bigliettiVenduti() con il seguente comportamento: una invocazione t.bigliettiVenduti() ritorna un array ar di 3 interi tale che:
 - ar [0] memorizza il numero di biglietti venduti di prima classe per il treno t;
 - ar [1] memorizza il numero di biglietti venduti di seconda classe con prenotazione per il treno t;
 - ar [2] memorizza il numero di biglietti venduti di seconda classe senza prenotazione per il treno t.
- Un metodo void vendiBiglietto(const Biglietto&) con il seguente comportamento: una chiamata t.vendiBiglietto(b) aggiunge b tra i biglietti venduti per il treno t quando possibile, altrimenti solleva una opportuna eccezione di TrenoPieno. Più dettagliatamente:
 - Se b è un biglietto di prima classe e vi sono ancora posti di prima classe disponibili in t allora viene aggiunto al vector venduti un puntatore smart a b; se invece non vi sono posti di prima classe disponibili viene sollevata una eccezione TrenoPieno in prima classe.
 - Se b è un biglietto di seconda classe con prenotazione e vi sono ancora posti di seconda classe con prenotazione disponibili in t allora viene aggiunto al vector venduti un puntatore smart a b; se invece non vi sono posti di seconda classe con prenotazione disponibili viene sollevata una eccezione TrenoPieno in seconda classe.

- Se b è un biglietto di seconda classe senza prenotazione allora viene sempre aggiunto al vector venduti un puntatore smart a b.
- Un metodo double incasso() con il seguente comportamento: una chiamata t.incasso() ritorna l'incasso totale per tutti i biglietti sinora venduti per il treno t.

Siano A, B, C e D distinte classi polimorfe. Si considerino le seguenti definizioni.

```
template<class X>
X& fun(X& ref) { return ref; };

main() {
    B b;
    fun<A>(b);
    B* p = new D();
    C c;
    try{
        dynamic_cast<B&>(fun<A>(c));
        cout << "topolino";
    }
    catch(bad_cast) { cout << "pippo "; }
    if( !(dynamic_cast<D*>(new B())) ) cout << "pluto ";
}</pre>
```

Si supponga che:

- 1. il main () compili correttamente ed esegua senza provocare errori a run-time;
- 2. l'esecuzione del main () provochi in output su cout la stampa pippo pluto.

In tali ipotesi, per ognuna delle relazioni di sottotipo X≤Y nelle seguenti tabelle segnare con una croce l'entrata

- (a) "Vero" per indicare che x sicuramente è sottotipo di Y;
- (b) "Falso" per indicare che x sicuramente non è sottotipo di Y;
- (c) "Possibile" **altrimenti**, ovvero se non valgono nè (a) nè (b).

	Vero	Falso	Possibile
A≤B			
A≤C			
A≤D			
B≤A			
B≤C			
B≤D			

	Vero	Falso	Possibile
C≤A			
С≤В			
C≤D			
D≤A			
D≤B			
D≤C			

Esercizio 13

Si considerino le seguenti dichiarazioni di classi di qualche libreria grafica, dove gli oggetti delle classi Container, Component, Button e MenuItem sono chiamati, rispettivamente, contenitori, componenti, pulsanti ed entrate di menu.

```
class Component;

class Container {
  public:
    virtual ~Container();
    vector<Component*> getComponents() const;
};

class Component: public Container {};

class Button: public Component {
  public:
    vector<Container*> getContainers() const;
};
```

```
class MenuItem: public Button {
public:
   void setEnabled(bool b = true);
};
class NoButton {};
```

Assumiamo i seguenti fatti.

- 1. Il comportamento del metodo getComponents () della classe Container è il seguente: c.getComponents () ritorna un vector di puntatori a tutte le componenti inserite nel contenitore c; se c non ha alcuna componente allora ritorna un vector vuoto.
- 2. Il comportamento del metodo getContainers () della classe Button è il seguente: b.getContainers () ritorna un vector di puntatori a tutti i contenitori che contengono il pulsante b; se b non appartiene ad alcun contenitore allora ritorna un vector vuoto.
- 3. Il comportamento del metodo setEnabled() della classe MenuItem è il seguente: mi.setEnabled(b) abilita (con b==true) o disabilita (con b==false) l'entrata di menu mi.

Definire una funzione Button** Fun (const Container&) con il seguente comportamento: in ogni invocazione Fun (c)

1. Se c contiene almeno una componente Button allora

ritorna un puntatore alla prima cella di un array dinamico di puntatori a pulsanti contenente tutti e soli i puntatori ai pulsanti che sono componenti del contenitore \circ ed in cui tutte le componenti che sono una entrata di menu e sono contenute in almeno 2 contenitori vengono disabilitate.

2. Se invece c non contiene nessuna componente Button allora solleva una eccezione di tipo NoButton.