例于

- ■例1.6 用等值演算证明 $p \oplus (q \land r) \rightarrow p \lor q \lor r$ 是永真式。
- ■证明: 思路:公式 A 是永真式当且仅当 $A \Leftrightarrow 1$ 。
- $p \oplus (q \land r) \rightarrow p \lor q \lor r$
- $\Leftrightarrow \neg (p \oplus (q \land r)) \lor p \lor q \lor r$
- $\Leftrightarrow \neg ((p \land \neg (q \land r)) \lor (\neg p \land (q \land r)) \lor p \lor q \lor r$
- $\Leftrightarrow ((\neg p \lor (q \land r)) \land (p \lor \neg q \lor \neg r)) \lor p \lor q \lor r$
- $\Leftrightarrow (\neg p \lor (q \land t) \lor p \lor q \lor t)$
- $\land (p \lor \neg q \lor \neg r \lor p \lor q \lor r)$
- $\Leftrightarrow 1 \land 1 \Leftrightarrow 1$
- ■所以, $p \oplus (q \wedge r) \rightarrow p \vee q \vee r$ 是永真式。

127

例子

- 01.7 用等值演算证明 $\neg (p \rightarrow q) \land q$ 是永假式
- (思路:公式A是永假式当且仅当 $A \Leftrightarrow 0$)
- 证明1: 任给真值赋值 v, 若 v(q) = 1, 则
- $v(p \to q) = 1$, $v(\neg (p \to q)) = 0$, $\# \pi \ v(A) = 0$,
- 所以 $\neg (p \rightarrow q) \land q$ 是永假式。
- 证明2: 使用等值演算:
- $\neg (p \to q) \land q$
- $\Leftrightarrow \neg(\neg p \lor q) \land q$
- $\Leftrightarrow p \land \neg q \land q$
- \Leftrightarrow 0
- 所以 $\neg(p \rightarrow q) \land q$ 是永假式。

- •例1.8 世界冰球赛在激烈地进行,看台上三位观众正在热烈地议论着比赛结果。
- 甲说: "中国第一,匈牙利第三。"
- 乙说: "奥地利第一,中国第三。"
- 丙说: "匈牙利第一,中国第二。"
- ■比赛结束后,发现这三位观众各猜对了一半,并且没有发生多个国家名次并列的情况。
- ■问:中国、奥地利、匈牙利各得第几?

请大家想一下思路

- •例1.8 世界冰球赛在激烈地进行,看台上三位观众正在热烈地议论着比赛结果。
- 甲说: "中国第一,匈牙利第三。"
- 乙说: "奥地利第一,中国第三。"
- 丙说: "匈牙利第一,中国第二。"
- ■比赛结束后,发现这三位观众各猜对了一半,并且没有发生多个国家名次并列的情况。
- ■问:中国、奥地利、匈牙利各得第几?

重点:每个人只说对一半!

- ■解: 用字母表示命题如下:
- p_1 : 中国第一 p_2 : 中国第二 p_3 : 中国第三
- *q*₁: 奥地利第一
- r₁: 匈牙利第一 r₃: 匈牙利第三

- ■甲说的两句话一对一错: $p_1 \oplus r_3 = 1$
- ■乙说的两句话一对一错: $q_1 \oplus p_3 = 1$
- ■丙说的两句话一对一错: $r_1 \oplus p_2 = 1$
- ■没有并列第一: $p_1 \wedge r_1 = p_1 \wedge q_1 = q_1 \wedge r_1 = 0$
- ■没有并列第三: $p_3 \wedge r_3 = 0$
- ■中国只能得一个名次: $p_1 \land p_2 = p_2 \land p_3 = p_1 \land p_3 = 0$
- ■匈牙利只能得一个名次: 丸∧丸=0
- ■将方程 $p_1 \oplus r_3 = 1$ 两端 $\land p_3$ 得到:
- p_3 字母p是 p_1 中的字母, p_3 下标是 p_3 的下标。
- $p_3 = p_3 \land (p_1 \oplus r_3) = (p_3 \land p_1) \oplus (p_3 \land r_3) = 0 \oplus 0 = 0$
- ■类似,也可以将方程 $p_1 \oplus r_3 = 1$ 两端 $\wedge r_1$ 。

- ■由 $p_3 = 0$ 和 $q_1 \oplus p_3 = 1$ 得出 $q_1 = 1$,
- ■由 $q_1 = 1$ 和 $p_1 \wedge q_1 = 0$ 得出 $p_1 = 0$,
- ■由 $p_1 = 0$ 和 $p_1 \oplus r_3 = 1$ 得出 $r_3 = 1$,
- ■由 $r_3 = 1$ 和 $r_1 \wedge r_3 = 0$ 得出 $r_1 = 0$,
- ■由 $r_1 = 0$ 和 $r_1 \oplus p_2 = 1$ 得出 $p_2 = 1$ 。
- ■将 $q_1 = r_3 = p_2 = 1$, $p_1 = p_3 = r_1 = 0$ 代入上述 11 个方程 , 发现它们满足这 11 个方程组成的方程组。
- ■因此,奥地利第一,中国第二,匈牙利第三。

小结

- 1、什么是"两个逻辑公式的逻辑等价 ⇔"?
- 2、逻辑公式等值: v(A) = v(B)
- 两个公式逻辑等价: $A \Leftrightarrow B$
- 逻辑公式 $A \leftrightarrow B$ 永真
- 三者是什么关系?有什么联系?什么区别?
- 3、什么是等值式模式? 有多少个常用的等值式?
- 命题逻辑公式的等值式,是逻辑等值演算规则。
- (作用类比中学代数的运算法则和代数恒等式)
- 4、本节特点:都是常用的逻辑等值演算公式!
- 要求1:熟悉、记住、用活;提高演算技巧!
- 要求2:逻辑演算要步步有依据,不要"自创"法则

小结

- 5、等值演算有以下应用:
- (1) 证明两个公式等值。
- (2) 通过证明 $A \Leftrightarrow 1$, 证明公式 A 是永真式。
- (3) 通过证明 $A \Leftrightarrow 0$, 证明公式 A 是永假式。
- (4) 用于解决某些实际逻辑问题:
- 用字母表示需要确定真值的命题,
- 由已知条件列出这些命题满足的方程组,
- 求解方程组,得出实际问题的解。

- § 1.1 命题和联结词
- §1.2 公式和真值赋值
- § 1.3 等值演算
- § 1.4 对偶定理
- § 1.5 联结词的完全集
- §1.6 范式
- §1.7 逻辑推论

问题提出:观察等值式模式特点

交换律	Q∨R⇔Q∨R	Q∧R⇔R∧Q	Q⊕R⇔R⊕Q		
结合律	$(P \lor Q) \lor R$ $\Leftrightarrow P \lor (Q \lor R)$	$(P \land Q) \land R$ $\Leftrightarrow P \land (Q \land R)$	(P⊕Q)⊕R ⇔P⊕(Q⊕R)		
分配律	$P \lor (Q \land R)$ $\Leftrightarrow (P \lor Q) \land (P \lor R)$	$P \land (Q \lor R)$ $\Leftrightarrow (P \land Q) \lor (P \land R)$	$P \land (Q \oplus R)$ $\Leftrightarrow (P \land Q) \oplus (P \land R)$		
德•摩根律	$\neg (Q \lor R) \Leftrightarrow \neg Q \land \neg R$	$\neg (Q \land R) \Leftrightarrow \neg Q \lor \neg R$			
幂等律	Q∨Q⇔Q	Q∧Q⇔Q			
同一律	Q∧1⇔Q	Q∨0⇔Q			
吸收律	$Q\lor(Q\land R)\Leftrightarrow Q$	$Q \land (Q \lor R) \Leftrightarrow Q$			
零律	Q∨1⇔1	Q∧0⇔0			
排中律	Q∨¬Q⇔1	双重否定律	¬¬Q⇔Q		
矛盾律	Q∧¬Q⇔0	假言易位	$Q \rightarrow R \Leftrightarrow \neg R \rightarrow \neg Q$		

本节深入研究等值式模式的相关问题

对偶定理

- ■定义1.10 设 A 是由 { 0, 1, ¬, ∨, ∧} 生成的公式,
- 将 A 中的 \lor 和 \land 互换, 0和 1互换得到 A^* ,
- 称 A*与 A 互为对偶式。
- ■比如: $(p \lor q) \land r \ni (p \land q) \lor r$ 互为对偶式,
- ¬(p∨0)∧1与¬(p∧1)∨0互为对偶式。

相反的赋值

- ■定义1.11 如果真值赋值 1/1 和 1/2 满足:
- 对于每个命题变元p, $v_1(p) \neq v_2(p)$,
- 则称 约和 22是相反的赋值。
- ■相反赋值的含义理解为: $v_1(p) = \neg v_2(p) = v_2(\neg p)$ 。
- 若 v₁(A) 已知, v₂(A) 是对 v₁(A) 所有命题变元取
- ■相反赋值。
- ■定理1.4 设 A 是由 {0,1,¬,∨,∧} 生成的公式,
- A*与 A 互为对偶式, v和 v 是相反的,则

原公式的 变元取相反 赋值后再取

✓ 公式里面✓ 否完✓ 外面再页

定理1.4

- 证明: 对 A 的长度进行归纳。当A长度为 1 时:
- 1、若 A 为命题变元 p,则 A* 也是 p, v(p) = ¬ v'(p)
- 2、若 A 为 0,则 A* 是 1, v(1) = 1 =¬0 = ¬ v'(0)
- 3、若 A 为 1,则 A* 是 0, v(0) = 0 = ¬1 = ¬v'(1)
- 假设:长度不超过 n 的公式B, $v(B^*) = \neg v'(B)$
- 当A长度为 n+1,
- 4、若*A*为 ¬*B*, *A** 是 ¬*B**, *B*的长度为 *n*。则有
- 根据归纳假设, v(B*) = ¬ v'(B), 因此
- $v(A^*) = v(\neg B^*) = \neg v(B^*)$
- $= \neg \neg v'(B) = \neg v'(\neg B) = \neg v'(A) \circ$

- 5、若 *A* 为 *B* ∧ *C*,则 *A** 是 *B** ∨ *C**,根据归纳假设,
- $v(B^*) = \neg v'(B), \quad v(C^*) = \neg v'(C), \quad \text{fi } \ \ \ v(A^*) = v(B^*) \lor v(C^*) = \neg v'(B) \lor \neg v'(C)$ $= v'(\neg B \lor \neg C) = \neg v'(B \land C) = \neg v'(A).$
- 6、若 A 为 B ∨ C,则 A* 是 B* ∧ C*,根据归纳假设
 ,
- $v(B^*) = \neg v'(B), \quad v(C^*) = \neg v'(C), \quad \text{fi } \ \ \ v(A^*) = v(B^*) \land v(C^*) = \neg v'(B) \land \neg v'(C)$ $= v'(\neg B \land \neg C) = \neg v'(B \lor C) = \neg v'(A).$
 - 证毕。

相反的赋值: 德摩根律

- ■定理理解: $v(A^*) = \neg v'(A)$; $v(A) = \neg v'(A^*)$

$$v(p \lor q) = \neg v'(p \land q) = \neg (v'(p) \land v'(q))$$

$$= \neg (v(\neg p) \land v(\neg q)) = \neg v(\neg p \land \neg q)$$

- $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
- 用代换原理有: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$,

相反的赋值:

- ■定理理解: $v(A^*) = \neg v'(A)$; $v(A) = \neg v'(A^*)$
- ■练习 $((A \lor B) \land C) \Leftrightarrow \neg ((\neg A \land \neg B) \lor \neg C)$
- $v((p \lor q) \land r) = \neg v' ((p \land q) \lor r)$
- $= \neg v((\neg p \land \neg q) \lor \neg r)$
- $(p \lor q) \land r \Leftrightarrow \neg((\neg p \land \neg q) \lor \neg r)$
- 用代换原理有:
- $\blacksquare \qquad ((A \lor B) \land C) \Leftrightarrow \neg ((\neg A \land \neg B) \lor \neg C)$

公式等值,其对偶式是否等值?

定理1.5 (对偶定理)

- ■设 A, B 是由 {0, 1, ¬, ∨, ∧} 生成的公式, 且
- A^* 与 A 互为对偶式, B^* 与 B 互为对偶式。
- ■如果 $A \Leftrightarrow B$, 则 $A^* \Leftrightarrow B^*$ 。
- ■证明:

等值的公式 其对偶式 也等值!

- 任取真值赋值 v,
- 令 v 是与 v 相反的真值赋值。
- 因为 $A \Leftrightarrow B$, 所以 v'(A) = v'(B)。因此,

■ 因而, $A^* \Leftrightarrow B^*$ 。

定理1.5 (对偶定理)

- 例1.9 证明以下等值式:
- $(1) (p \land q) \lor (\neg p \lor (\neg p \lor q)) \Leftrightarrow \neg p \lor q$
- $(2) (p \lor q) \land (\neg p \land (\neg p \land q)) \Leftrightarrow \neg p \land q$
- 证明:
- $(1) \quad (p \land q) \lor (\neg p \lor (\neg p \lor q))$
- $\Leftrightarrow (p \land q) \lor \neg p \lor q$

吸收律

 $\Leftrightarrow \neg p \lor ((p \land q) \lor q)$

交换律+结合律

 $\Leftrightarrow \neg p \lor q$

吸收律

- (2) 是(1)的对偶式,由对偶定理得出,
- $(p \lor q) \land (\neg p \land (\neg p \land q)) \Leftrightarrow \neg p \land q$

定理1.5 (对偶定理)

■根据对偶定理,由∧满足交换律、结合律,可得出∨满足交换律、结合律。

^的交换律: p∧q⇔q∧p

V的交换律: p∨q⇔q∨p

∧的结合律: (p∧q)∧r⇔p∧(q∧r)

v的结合律: (p∨q)∨r⇔p∨(q∨r)

■根据对偶定理,若一个德摩根律成立,则另一个德摩根律也成立。

■ \vee 的摩根律: $\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$

∧的摩根律: ¬(p∧q)⇔¬p∨¬q

■对偶定理是把德摩根律推广到更一般的形式。

- § 1.1 命题和联结词
- §1.2 公式和真值赋值
- § 1.3 等值演算
- § 1.4 对偶定理
- § 1.5 联结词的完全集
- §1.6 范式
- §1.7 逻辑推论

问题提出

■ 例:

- $p \rightarrow q \Leftrightarrow \neg p \lor q$
- $\mathbf{p} \leftrightarrow \mathbf{q} \Leftrightarrow (\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{p})$ $\Leftrightarrow (\neg \mathbf{p} \lor \mathbf{q}) \land (\mathbf{p} \lor \neg \mathbf{q})$
- $\mathbf{p} \oplus \mathbf{q} \Leftrightarrow \neg(\mathbf{p} \leftrightarrow \mathbf{q})$ $\Leftrightarrow \neg((\neg \mathbf{p} \lor \mathbf{q}) \land (\mathbf{p} \lor \neg \mathbf{q}))$ $\Leftrightarrow (\mathbf{p} \land \neg \mathbf{q}) \lor (\neg \mathbf{p} \land \mathbf{q})$

最少联结词是?

相关定义

■ 定义1.12: 设F是n元联结词, $p_1, p_2, ..., p_n$ 是不同的命题变元。如果公式A中不出现除 $p_1, p_2, ..., p_n$ 之外的命题变元,并且 $Fp_1, p_2, ..., p_n \Leftrightarrow A$,则称A定义F。

例:

- $p \rightarrow q \Leftrightarrow \neg p \lor q$
- $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ $\Leftrightarrow (\neg p \lor q) \land (p \lor \neg q)$
- $p \oplus q \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$

相关定义

■ 定义1.12: 设F是n元联结词, $p_1, p_2, ..., p_n$ 是不同的命题变元。如果公式A中不出现除 $p_1, p_2, ..., p_n$ 之外的命题变元,并且 $Fp_1, p_2, ..., p_n \Leftrightarrow A$,则称A定义F。

即,A中变元集合是F中出现的变元集合的子集,

二者并不一定是完全相同的。

拓展定义

■ 如果存在由联结词集合S生成的公式来定义F, 则称F可由S定义。

例:

- $p \rightarrow q \Leftrightarrow \neg p \lor q$
- $p \leftrightarrow q \Leftrightarrow (\neg p \lor q) \land (p \lor \neg q)$
- $p \oplus q \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$

若令 $S = \{\neg, \land, \lor\}$,则上述三个联结词可由S定义。

真值表的启示

p	q	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- $\mathbf{F_4} \mathbf{p} \mathbf{q}$?
- F₄为真 当且仅当 p为假且q为假 或 p为假且q为真 (¬p∧¬q)∨(¬p∧q)
- $\mathbf{F}_4 \mathbf{p} \mathbf{q} \Leftrightarrow (\neg \mathbf{p} \land \neg \mathbf{q}) \lor (\neg \mathbf{p} \land \mathbf{q})$?

真值表的启示

p	q	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- 证 \mathbf{F}_4 \mathbf{p} \mathbf{q} \Leftrightarrow $(\neg \mathbf{p} \land \neg \mathbf{q}) \lor (\neg \mathbf{p} \land \mathbf{q})$
 - (p/0,q/0), (p/0,q/1)
 - (p/1,q/0),(p/1,q/1)

代入得证

真值表的启示: 其它联结词推广

p	q	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

• $\mathbf{F_1} \mathbf{p} \mathbf{q}$?

• $\mathbf{F_1} \mathbf{p} \mathbf{q} \Leftrightarrow \mathbf{0}$

 $\Leftrightarrow \neg p \land p$

 $\Leftrightarrow \neg q \land q$

真值表的启示

- 任意二元联结词都可由{¬,^,∨}定义。
 - 永假用其任意一个变元的矛盾式定义
 - 其它任意二元联结词,看真值表中有多少组结果为 真则其定义公式A中就有多少个公式B的析取构成, 其中每个B是关于变元p、q的合取,变元取假,则用 其否定式;为真,取其肯定式。

推广到n元联结词

p1	•••	pn	F1	F2	•••	Fi	•••	Fj	•••	Fn
0	• • •	0	0	0	• • •	0	•••	1	• • •	1
0	• • •	1	0	1	• • •	1	•••	0	• • •	•••
• • •	• • •	• • •	0	0	•••	• • •	•••	• •	• • •	•••
1	• • •	1	0	0	•••	0	•••	1	•••	1

n(n≥1)元联结词共有 N= 2²ⁿ个

• Fi $p_1 ... p_n \Leftrightarrow ? A$

公式A的一般形式

- · 公式A可如下构造:
 - 若Fp₁p₂...p_n是永假式,取A为p₁∧¬p₁。
 - 若Fp₁p₂...p_n是可满足式,设满足Fp₁p₂...p_n=1的真值赋值有m组,分别为: (p₁/a₁¹,...,p_n/a_nⁿ),..., (p₁/a_n^m,...,p_n/a_n^m),
 则取A为: (p₁¹ \lambda ... \lambda p_n¹) \lambda ... \lambda p_n^m)
 其中

$$\widetilde{p_j^i} = \begin{cases} p_j & \textit{若}a_j^i = 1 \\ \neg p_j & \textit{若}a_j^i = 0 \end{cases}$$
 $i=1,...,m; j=1,...,n$

往证F p₁ ...p_n ⇔A

任取真值赋值v, v(A)=1

- 当且仅当有1 \leq i \leq m,使 $\nu(\widetilde{p_1^i}\land...\land\widetilde{p_n^i})$ =1
- 当且仅当有1 \leq i \leq m,使 $v(\widetilde{p_1^i})$ =...= $v(\widetilde{p_n^i})$ =1
- 当且仅当有1 \leq i \leq m,使 ν =(p_1/a_1^i ,..., p_n/a_n^i)

因此, $\mathbf{F} \mathbf{p}_1 \dots \mathbf{p}_n \Leftrightarrow \mathbf{A}$

结论

- 任意n元联结词都可由{¬,^,∨}定义。
 - 永假则用其任意一个变元的矛盾式定义
 - 其它任意n元联结词,真值表中有多少组为真,则 其定义公式A是由多少个公式B的析取构成。每个公 式B均是n个项的合取组成,每项对应每个变元,变 元取假,则用其否定式;为真,取其肯定式。

应用*

- 是后续数理逻辑的基础,也是计算机硬件设计基础,可用 于设计各种逻辑功能的组合逻辑电路。(《数字逻辑》)
 - 在电路中,电路开关相当于真值表中的真假值,当开关闭合时,电路通电,电灯亮,值为1。开关打开时,电路断电,电灯灭,值为0.
 - 在计算机硬件中,与门、或门、非门是是数字逻辑电路中的基本元件,各种复杂功能的逻辑电路可由上述三种基本元件组成。组成的过程即可用前述方法来构造。

■ 例:如下表,电路输出为S,求S的设计函数。

	输入		输出
A	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

S: $(\neg A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C)$