UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y **ELÉCTRICA**

FORMULARIO DE FÍSICA IV

Dra. Norma Esthela Flores Moreno M.E.C. Jorge Enrique Figueroa Martínez

$V_1 = V_2 + V$

$$V_1 = \frac{V_2 + V}{1 + \frac{V_2 V}{C^2}} \qquad V_2 = \frac{V_1 - V}{1 - \frac{V_1 V}{C^2}}$$

$$V_2 = \frac{V_1 - V}{1 - \frac{V_1 V}{C^2}}$$

$$V_1 = \sqrt{V_{1x}^2 + V_{1y}^2}$$

$$V_1 = \sqrt{V_{1x}^2 + V_{1y}^2} \qquad V_2 = \sqrt{V_{2x}^2 + V_{2y}^2}$$

$$V_{1x} = \frac{V_{2x} + V}{1 + \frac{V_{2x}V}{C^2}} \qquad V_{2x} = \frac{V_{1x} - V}{1 - \frac{V_{1x}V}{C^2}}$$

$$V_{2x} = \frac{V_{1x} - V}{1 - \frac{V_{1x}V}{C^2}}$$

$$V_{1y} = \frac{V_{2y}\sqrt{1 - \frac{V^2}{c^2}}}{1 + \frac{V_{2x}V}{c^2}}$$

$$V_{1y} = \frac{V_{2y}\sqrt{1 - \frac{V^2}{C^2}}}{1 + \frac{V_{2x}V}{C^2}} \qquad V_{2y} = \frac{V_{1y}\sqrt{1 - \frac{V^2}{C^2}}}{1 - \frac{V_{1x}V}{C^2}}$$

$$\tan \theta_1 = \frac{V_{1y}}{V_{1x}} \qquad \tan \theta_2 = \frac{V_{2y}}{V_{2x}}$$

$$\tan \theta_2 = \frac{V_{2y}}{V_{2x}}$$

CONSTANTES

$$C = 3 \times 10^8 \, m/s$$

$$C = 3 \times 10^8 \, \text{m/s}$$
 $m_e = 9.1 \times 10^{-31} kg$

$$1A^0 = 1 \times 10^{-10} m$$
 $r_0 = 1.3 \times 10^{-15} m$

$$r_0 = 1.3 \times 10^{-15} m$$

$$R = 1.097 \times 10^7 m^{-1}$$

$$R = 1.097 \times 10^7 m^{-1}$$
 $h = 6.625 \times 10^{-34} J \cdot s$

$$q_e = 1.6 \times 10^{-19} Coulomb$$
 $\frac{h}{m_0 C} = 0.024 A^0$

$$\frac{h}{m_0 C} = 0.024A^0$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \, C^2/Nm^2$$

$$1UMA = 931.48 Mev, 1eV = 1.6 \times 10^{-19} Joules$$

Sustancia	Índice de refracción (línea sodio D)
Azúcar	1.56
Diámetro	2.417
Mica	1.56 – 1.60
Benceno	1.504
Glicerina	1.47
Agua	1.333
Alcohol etílico	1.362
Aceite de oliva	1.46

$$f = 2RC \frac{1}{n^3} \qquad \frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

Serie	n_f	n_i	Formula	Zona (Region spectral)
Lyman	1	2; 3; 4	$\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n_i^2}\right)$	Ultravioleta
Belmer	2	3; 4; 5	$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n_i^2}\right)$	Ultravioleta Y 4 lineas en la visible
Peschen	3	4; 5; 6	$\frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{n_i^2}\right)$	Infrarrojo
Brackett	4	5; 6; 7	$\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{n_i^2}\right)$	infrarrojo
Pfund	5	6; 7; 8	$\frac{1}{\lambda} = R\left(\frac{1}{5^2} - \frac{1}{n_i^2}\right)$	Infrarrojo

$$E = h\gamma = \frac{hc}{\lambda} = E_{n_i} - E_{n_f} = RZ^2hc\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$

$$K = h\gamma - h\gamma_o$$
 $K = eV_o$ $K = \frac{1}{2}mV^2$

$$\gamma = \frac{c}{\lambda} \qquad \qquad \gamma_o = \frac{c}{\lambda_o} \qquad \qquad \varphi = h\gamma_o$$

La energía del fotón es igual a:	El trabajo de extracción (función trabajo) mas	La energía cinética máxima del fotoelectrón
E	arphi	K _{max}
hγ	$h\gamma_o$	$^{1}/_{2}mV^{2}$
<u>hc</u> λ	$\frac{hc}{\lambda_o}$	$\frac{p^2}{2m}$
λ	Λ_{O}	eV_o

Dra. Norma Esthela Flores Moreno. M.E.C. Jorge Enrique Figueroa Martínez.

$$R = r_0 A^{1/3}$$

$$Be = Zm_H + Nm_N - M_\alpha$$

Nombre	Símbolo	Abreviación
Protón	1 ₁ H	ho,p
Deuterón	² ₁ H	δ , d
Tritio	³ ₁ H	τ, t
Partícula Alfa	⁴ 2Не	α
Neutrón	$^1_0\eta$	η,n

$$Q = (mx + MX) - (my + MY)$$

Dra. Norma Esthela Flores Moreno. M.E.C. Jorge Enrique Figueroa Martínez.

$$L_1 = L_2 \sqrt{1 - \frac{V^2}{C^2}} \qquad T_1 = \frac{T_2}{\sqrt{1 - \frac{V^2}{C^2}}}$$

$$m_1 = \frac{m_2}{\sqrt{1 - \frac{V^2}{C^2}}} \qquad \qquad n = \frac{C}{V}$$

$$\sin \theta_c = \frac{n_2}{n_1} \qquad \qquad \sin \theta_c = \frac{v_1}{v_2}$$

$$n = \frac{\lambda_o}{\lambda_n} \qquad \frac{\sin \theta_i}{\sin \theta_r} = \frac{n_2}{n_1}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$E_{0} = \frac{hc}{\lambda_{0}} \qquad E_{f} = \frac{hc}{\lambda_{f}} \qquad P_{0} = \frac{h}{\lambda_{0}}$$

$$P_{f} = \frac{h}{\lambda_{f}} \qquad P_{e} = mV \qquad K = \frac{1}{2}mV^{2}$$

$$K = (P_{0} - P_{f})C \qquad K = E_{0} - E_{f} \qquad V = 2\pi rf$$

$$\frac{h}{m_{0}C}(1 - \cos\theta) = \lambda_{f} - \lambda_{0}$$

$$r = 0.53A^{0}n^{2} \qquad K = \frac{e^{2}}{8\pi\varepsilon_{0}r} \qquad F = \frac{e^{2}}{4\pi\varepsilon_{0}r^{2}}$$

$$\tan \varphi = \frac{\lambda_0 \sin \theta}{\lambda_f - \lambda_0 \cos \theta} \qquad E_n = -\frac{13.6 eV Z^2}{n^2}$$

$$E_{TOT} = -\frac{e^2}{8\pi \varepsilon_0 r} \quad E_{TOT} = K + U \quad U = -\frac{e^2}{4\pi \varepsilon_0 r}$$

$$E_e = \frac{13.6 eVZ^2}{n^2}$$
 $E_E = 13.6 eVZ^2 \left(1 - \frac{1}{n^2}\right)$