

# Annual Progress Report on Person Detection, Tracking and Retrieval

Zhang, Shanshan (张姗姗) Nanjing University of Science and Technology









# Annual Progress Report on Person Detection, Tracking and Retrieval

Zhang, Shanshan (张姗姗) Nanjing University of Science and Technology









### Person detection: CNNs

• CNN + Boosting trees [Zhang et al. CVPR'16, Zhang et al. ECCV'16]



• Multi-scale handling [Li et al. arXiv'16, Cai et al. ECCV'16]



• Semantics [Costea et al. CVPR'16, Du et al. arXiv'16, Zhang et al. CVPR'17]





18.5% MR

CVPR'15

**ECCV'16** 9.6% MR



## Person detection: Analysis

Error sources





#### Solutions

- Better aligned training annotations
- CNNs re-scoring

| Detector aspect                   | $MR_{-2}^O$    | $MR_{-2}^N$    |  |  |
|-----------------------------------|----------------|----------------|--|--|
| RotatedFilters                    | 19.20          | 17.22          |  |  |
| + New annotations<br>+ RCNN (VGG) | 16.77<br>14.16 | 12.96<br>10.00 |  |  |



# Person detection: CityPersons dataset





#### More diverse than previous datasets

|                 | Caltech   KITTI   CityPerso |      |       |  |
|-----------------|-----------------------------|------|-------|--|
| # country       | 1                           | 1    | 3     |  |
| # city          | 1                           | 1    | 18    |  |
| # season        | 1                           | 1    | 3     |  |
| # person/image  | 1.4                         | 0.8  | 7.0   |  |
| # unique person | 1273                        | 6336 | 19654 |  |

#### Generalizes better than previous datasets

| Train<br>Test | Caltech | KITTI | CityPersons |
|---------------|---------|-------|-------------|
| Caltech       | 10.27   | 46.86 | 21.18       |
| KITTI         | 10.50   | 8.37  | 8.67        |
| CityPersons   | 46.91   | 51.21 | 12.81       |
| INRIA         | 11.47   | 27.53 | 10.44       |
| ETH           | 57.85   | 49.00 | 35.64       |
| Tud-Brussels  | 42.89   | 45.28 | 36.98       |
| mean MR       | 29.98   | 38.04 | 20.95       |

#### **Detection**







#### Retrieval





# Multi-person tracking: tracking-by-detection

- Multi-cut model is dominating!
  - LMP [Tang et al. CVPR'17]
  - NLLMPa [Levinkov et al. CVPR'17]
  - MCjoint [Keuper et al. arXiv'16]







#### MOT16 Results

Click on a measure to sort the table accordingly. See below for a more detailed description.

**Detections:** Public ▼

#### Showing only entries that use public detections!

| Tracker         | Avg Rank                                                                                                                                                                                                             | <b>↑</b> MOTA     | MOTP | FAF | MT    | ML    | FP    | FN     | ID Sw.     | Frag         | Hz      | Detector   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-----|-------|-------|-------|--------|------------|--------------|---------|------------|
| нсс             | 7.3                                                                                                                                                                                                                  | <b>49.3</b> ±10.2 | 79.0 | 0.9 | 17.8% | 39.9% | 5,333 | 86,795 | 391 (7.5)  | 535 (10.2)   | 0.8     | Public     |
| 1. 🛭            | Anonymous submission                                                                                                                                                                                                 |                   |      |     |       |       |       |        |            |              |         |            |
| LMP             | 10.2                                                                                                                                                                                                                 | 48.8 ±9.8         | 79.0 | 1.1 | 18.2% | 40.1% | 6,654 | 86,245 | 481 (9.1)  | 595 (11.3)   | 0.5     | Public     |
| 2. 🛭            |                                                                                                                                                                                                                      |                   |      |     |       |       |       |        |            | An           | onymous | submission |
| MLMRF_DL61      | 13.9                                                                                                                                                                                                                 | 48.4 ±9.4         | 74.3 | 1.3 | 18.2% | 39.5% | 7,849 | 85,719 | 491 (9.3)  | 873 (16.5)   | 3.0     | Public     |
| 3. 🔘 🗸          | Anonymous submission                                                                                                                                                                                                 |                   |      |     |       |       |       |        |            |              |         |            |
| NLLMPa<br>4. ☑  | 9.9                                                                                                                                                                                                                  | 47.6 ±10.6        | 78.5 | 1.0 | 17.0% | 40.4% | 5,844 | 89,093 | 629 (12.3) | 768 (15.0)   | 8.3     | Public     |
|                 | E. Levinkov, J. Uhrig, S. Tang, M. Omran, E. Insafutdinov, A. Kirillov, C. Rother, T. Brox, B. Schiele, B. Andres, Joint Graph Decomposition and Node<br>Labeling: Problem, Algorithms, Applications, In CVPR, 2017. |                   |      |     |       |       |       |        |            |              |         |            |
| MDPNN16         | 14.2                                                                                                                                                                                                                 | 47.2 ±7.7         | 75.8 | 0.5 | 14.0% | 41.6% | 2,681 | 92,856 | 774 (15.8) | 1,675 (34.1) | 1.0     | Public     |
| 5. 🔘 🗸          | A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In arXiv preprint arXiv:1701.01909, 2017.                                                |                   |      |     |       |       |       |        |            |              |         |            |
| MCjoint<br>6. ☑ | 12.8                                                                                                                                                                                                                 | 47.1 ±10.8        | 76.3 | 1.1 | 20.4% | 46.9% | 6,703 | 89,368 | 370 (7.3)  | 598 (11.7)   | 0.6     | Public     |
|                 |                                                                                                                                                                                                                      |                   |      |     |       |       |       |        |            | An           | onymous | submission |

#### **Detection**







#### Retrieval





# Person retrieval (re-ID)

Image based



Video based





# Person retrieval (re-ID)

• Metric learning [Yang et al. AAAI'16, Zhu et al. IJCAI'16, You et al. CVPR'16]

$$d(x_i, x_j) = (x_i - x_j)^{\mathrm{T}} \mathbf{M} (x_i - x_j)$$

- Deep learning
  - Image based: Siamese model + X [Varior et al. CVPR'16, Cheng et al. CVPR'16, Su et al. ECCV'16]



• Video based: pooling over frames [McLaughlin et al. CVPR'16, Yan et al. ECCV'16]







# Person retrieval (re-ID): MARS dataset





# Summary

- We care much about people in image/video data.
- What is pushing the performance?
  - Deep learning
  - Large-scale data
- We are family: detection, tracking and retrieval.

# Tracking







# Thank you for your attention!