LV Analysis IIa kann unter dem folgenden Link evaluiert werden: https://www.survey.uni-oldenburg.de/index.php?r=survey/index&sid=824398&lang=de

Vorlesung 12

Nichtdiagonalisierbare Matrizen in zwei Dimensionen

Bevor wir allgemeine Systeme y' = Ay behandeln, betrachtet wir den wichtigen Fall, wenn n = 2 und $A \in M_2(\mathbb{K})$ nicht diagonalisierbar ist (dieser Fall kommt ziemlich oft vor, insbesondere in Übungsaufgaben und Klausuren): das bedeutet, dass A nur einen Eigenwert λ_0 besitzt und dass $\ker(A - \lambda_0 I)$ eindimensional ist. Wähle ein $v \in \ker(A - \lambda_0 I)$ mit $v \neq 0$, dann haben wir schon eine Lösung $y_1(t) = e^{\lambda_0 t}v$. Das charakteristische Polynom von A hat die Form $P(\lambda) = (\lambda - \lambda_0)^2$, und aus der linearen Algebra ist es bekannt, dass P(A) = 0, d.h. $(A - \lambda_0 I)(A - \lambda_0 I) = 0$.

Wir suchen jetzt nach einer weiteren Lösung $y(t) = e^{\lambda_0 t} f(t)$ mit unbekannter Vektorfunktion f. Das Einsetzen ins System ergibt

$$\underbrace{\lambda_0 e^{\lambda_0 t} f(t) + e^{\lambda_0 t} f'(t)}_{=y'(t)} = \underbrace{e^{\lambda_0 t} A f(t)}_{Ay(t)} \quad \Leftrightarrow \quad f'(t) = (A - \lambda_0 I) f(t), \tag{54}$$

und daraus folgt

$$(A - \lambda_0 I)f'(t) = \underbrace{(A - \lambda_0 I)(A - \lambda_0 I)}_{=P(A)=0} f(t) = 0, \text{ d.h. } f'(t) \in \ker(A - \lambda_0 I).$$

Da $\ker(A - \lambda_0 I)$ durch v erzeugt wird, kann man mit f'(t) = v versuchen, d.h. f(t) = vt + u, wobei die Vektorkonstante $u \in \mathbb{K}^2$ nocht zu bestimmen ist. Dafür nutzt man wieder (54):

$$v = f'(t) = (A - \lambda_0 I)f(t) = (A - \lambda_0 I)(vt + u)$$
$$= t\underbrace{(A - \lambda_0 I)v}_{=0} + (A - \lambda_0 I)u = (A - \lambda_0 I)u.$$

Satz 166. Sei $A \in M_2(\mathbb{K})$ nichtdiagonalisierbar und sei v ein Eigenvektor von A mit Eigenwert λ_0 , dann existiert ein Vektor u mit $(A - \lambda_0 I)u = v$. Die Vektorfunktionen $y_1(t) = e^{\lambda_0 t}v$ und $y_2(t) = e^{\lambda_0 t}(vt + u)$ bilden ein Fundamentalsystem für y' = Ay.

Beweis. Wie beweisen zuerst die Existenz von u. Wegen $(A - \lambda_0 I)(A - \lambda_0 I) = 0$ gilt für alle $x \in \mathbb{K}^2$: $(A - \lambda_0 I)x \in \ker(A - \lambda_0 I)$. Falls $(A - \lambda_0 I)x = 0$ für alle $x \in \mathbb{K}^2$, dann wäre $A = \lambda_0 I$ diagonalisierbar: diesen Fall haben wir vom Anfang an ausgeschlossen. Also dim $\operatorname{ran}(A - \lambda_0 I) = 1$, daher $\operatorname{ran}(A - \lambda_0 I) = \ker(A - \lambda_0 I)$, insbesondere gibt es ein u mit $(A - \lambda_0 I)u = v$. Wir haben schon oben gezeigt, dass die angegebene Vektorfunktion y_2 eine Lösung von y' = Ay ist. Die Vektoren $v = y_1(0)$ und $u = y_2(0)$ sind offenbar linear unabhängig (aus u = cv würde $(A - \lambda_0 I)u = c(A - \lambda_0 I)v = 0 \neq v$ folgen), daher sind auch die Vektorfunktionen y_1 und y_2 linear unabhängig.

Jetzt sind wir in der Lage, Fundamentalsysteme für y' = Ay mit beliebigen 2×2 Matrizen A zu bestimmen.

Beispiel 167. Am Ende der letzten Vorlesung (Beispiel 165) konnten wir das System y' = Ay mit $A = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}$ nicht lösen, da die Matrix A nicht diagonalisierbar ist. Jetzt können wir es! Der einzige Eigenwert ist $\lambda_0 = 1$ und $\ker(A - I)$ ist eindimensional und durch $v = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ erzeugt. Wir suchen jetzt nach einem $u = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ mit (A - I)u = v: $\begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. Das System hat unendlich viele Lösungen aber wir brauchen nur eine davon: in diesem Fall passt x = 1 und y = 0, also $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Damit haben wir ein Fundamentalsystem:

$$y_1(t) = e^t \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad y_2(t) = e^t \left[\begin{pmatrix} 2 \\ -1 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] = e^t \begin{pmatrix} 2t+1 \\ -t \end{pmatrix}. \quad \Box$$

Variation der Konstanten für inhomogenene Systeme

Analog zu inhomogenen Gleichungen können Lösungen von inhomogenen Systemen y' = Ay + B mit Hilfe der Variation der Konstanten gefunden werden. Sei $y_1, \ldots y_n$ ein Fundamentalsystem von y' = Ay und betrachte die $n \times n$ Matrix Y, deren k-te Spalte y_k ist:

falls
$$y_k(t) = \begin{pmatrix} y_{1k}(t) \\ \dots \\ y_{nk(t)} \end{pmatrix}$$
, dann $Y(t) = (y_1(t), \dots, y_n(t)) = \begin{pmatrix} y_{11}(t) & \dots & y_{1n}(t) \\ \dots & \dots & \dots \\ y_{n1}(t) & \dots & y_{nn}(t) \end{pmatrix}$.

Da jede Spalte y_k Lösung von y' = Ay ist, erfüllt auch die ganze Matrix Y die matrizielle Differentialgleichung Y' = AY: die k-te Spalte von Y' ist y'_k , und die k-te Spalte von AY ist Ay_k . Darüber hinaus ist det $Y \neq 0$, da die Spalten linear unabhängig sind (da y_j ein Fundamentalsystem bilden). Umgekehrt, falls man eine $n \times n$ Matrix Y mit Y' = AY findet, die auch det $Y \neq 0$ erfüllt, dann bilden die Spalten y_k von Y ein Fundamentalsystem von y' = Ay, und die allgemeine Lösung $y = \sum_{j=1}^{n} c_j y_j$ des homogenen Systems lässt sich als

$$y(t) = Y(t)C, \quad C = \begin{pmatrix} c_1 \\ \dots \\ c_n \end{pmatrix} \in \mathbb{K}^n,$$

schreiben. Für Lösungen des inhomogenen Systems y' = Ay + B nutzen wir den Ansatz y(t) = Y(t)C(t), wobei die Vektorfunktion C zu bestimmen ist. Man setzt diesen Ansatz ins System ein: y' = Y'C + YC' (Übung!), also gilt y' = Ay + B genau dann, wenn Y'C + YC' = AYC + B. Wegen Y' = AY gilt Y'C = AYC,

also YC' = B und $C' = Y^{-1}B$. Diese Formel ist also sehr ähnlich zu dem, was wir für lineare Differentialgleichungen höherer Ordnung gesehen haben (VL 10). Das Ergebnis fassen wir wie folgt zusammen:

Satz 168 (Spezielle Lösung durch Variation der Konstanten). Sei (y_1, \ldots, y_n) ein Fundamentalsystem für y' = Ay und sei Y die $n \times n$ Matrix mit Spalten y_1, \ldots, y_n . Dann ist

 $y = Y \int Y^{-1}B$

eine Lösung des inhomogenen Systems y' = Ay + B.

Beispiel 169. y' = Ay + B mit $A = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}$ und $B = \begin{pmatrix} 2e^t \\ -e^t \end{pmatrix}$. Ein Fundamentalsystem (y_1, y_2) haben wir schon im Beispiel 167 gefunden, daraus entsteht die zugehörige Matrix Y:

$$y_{1}(t) = e^{t} \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad y_{2} = e^{t} \begin{pmatrix} 2t+1 \\ -t \end{pmatrix},$$

$$Y(t) = e^{t} \begin{pmatrix} 2 & 2t+1 \\ -1 & -t \end{pmatrix}, \quad Y(t)^{-1} = e^{-t} \begin{pmatrix} -t & -2t-1 \\ 1 & 2 \end{pmatrix},$$

$$C(t) = \int e^{-t} \begin{pmatrix} -t & -2t-1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2e^{t} \\ -e^{t} \end{pmatrix} dt = \int \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt = \begin{pmatrix} t \\ 0 \end{pmatrix},$$

also erhalten wir eine spezielle Lösung

$$y(t) = Y(t)C(t) = e^t \begin{pmatrix} 2 & 2t+1 \\ -1 & -t \end{pmatrix} \begin{pmatrix} t \\ 0 \end{pmatrix} = \begin{pmatrix} 2te^t \\ -te^t \end{pmatrix}. \quad \Box$$

Fundamentalmatrix

Die obige Matrix Y kann man auch zum Lösen der Anfangswertprobleme für y' = Ay nutzen. Wie schon oben erwähnt, sind alle Lösungen der Form y(t) = Y(t)C mit $C \in \mathbb{K}^n$. Falls man nach einer Lösung sucht, die die Anfangsbedingung $y(0) = y_0$ erfüllt, dann muss man $y_0 = Y(0)C$ haben, woraus $C = Y^{-1}(0)y_0$ und $y(t) = \Phi(t)y_0$ folgt, wobei $\Phi(t) = Y(t)Y(0)^{-1}$. Diese neue Matrixfunktion Φ erfüllt immer noch $\Phi' = A\Phi$ und $\Phi(0) = I$, und mit Hilfe von Φ lässt sich die Lösung des Anfangswertproblems sehr kompakt schreiben, daher hat diese Matrix Φ einen speziellen Namen:

Definition 170. Sei $A \in M_n(\mathbb{K})$. Die **Fundamentalmatrix** des Systems y' = Ay ist die Abbildung $\Phi : \mathbb{R} \to M_n(\mathbb{K})$, die die Bedingungen $\Phi' = A\Phi$ und $\Phi(0) = I$ erfüllt.

Wie haben schon oben gezeigt, dass die Fundamentalmatrix existiert, wir müssen aber noch zeigen, dass sie eindeutig bestimmt ist. Sei Ψ eine weitere Matrixfunktion mit $\Psi' = A\Psi$ und $\Psi(0) = I$, dann sind für jedes $y_0 \in \mathbb{K}^n$ die Vektorfunktionen

 $y = \Phi(t)y_0$ und $z(t) = \Psi(t)y_0$ Lösungen von y' = Ay mit $y(0) = y_0$. Da die Lösung des Anfangswertproblems eindeutig bestimmt ist, gilt $\Phi(t)y_0 = \Psi(t)y_0$ für alle $t \in \mathbb{R}$ und alle $y_0 \in \mathbb{R}^n$, woraus $\Phi(t) = \Psi(t)$ für alle t folgt.

Beispiel 171. Wir wollen die Fundamentalmatrix des Systems

$$\begin{cases} x' = 2x + y, \\ y' = 3x + 4y \end{cases} \Leftrightarrow z' = Az, z = \begin{pmatrix} x \\ y \end{pmatrix}, A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$

bestimmen.

• Das charakteristische Polynom

$$P(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ 3 & 4 - \lambda \end{vmatrix} = (2 - \lambda)(4 - \lambda) - 1 \cdot 3 = \lambda^2 - 6\lambda + 5$$

hat zwei Nullstellen $\lambda_1 = 1$ und $\lambda_2 = 5$: das sind Eigenwerte von A, und die Matrix A ist diagonalisierbar (da es zwei verschiedene Eigenwerte gibt). Um ein Fundamentalsystem zu bestimmen, brauchen wir zu jedem Eigenwert einen Eigenvektor:

- Für $\lambda_1 = 1$ haben wir das System $\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, also kann man z.B. $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ als Eigenvektor nehmen.
- Für $\lambda_1=5$ ist das System $\begin{pmatrix} -3 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ zu lösen. Nehme z.B. $v_2=\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ als Eigenvektor.

Damit haben wir ein Fundamentalsystem konstruiert: $y_1(t) = e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} e^t \\ -e^t \end{pmatrix}$ und $y_2(t) = e^{5t} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} e^{5t} \\ 3e^{5t} \end{pmatrix}$. Die entsprechende Matrix Y ist $Y(t) = \begin{pmatrix} e^t & e^{5t} \\ -e^t & 3e^{5t} \end{pmatrix}$ mit $Y(0)^{-1} = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$, und die gesuchte Fundamentalmatrix ist

$$\Phi(t) = Y(t)Y(0)^{-1} = \frac{1}{4} \begin{pmatrix} e^t & e^{5t} \\ -e^t & 3e^{5t} \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3e^t + e^{5t} & -e^t + e^{5t} \\ -3e^t + 3e^{5t} & e^t + 3e^{5t} \end{pmatrix}.$$

Damit kann man Anfangswerteprobleme direkt lösen. Z.B. erhält man für die Anfangsbedingung $z(0)=\binom{3}{4}$ die Lösung

$$z(t) = \Phi(t) \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3e^t + e^{5t} & -e^t + e^{5t} \\ -3e^t + 3e^{5t} & e^t + 3e^{5t} \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 5e^t + 7e^{5t} \\ -5e^t + 21e^{5t} \end{pmatrix}. \quad \Box$$

Jetzt werden wir versuchen, die Fundamentalmatrix für y' = Ay für beliebiege Matrizen A zu bestimmen, indem wir das Anfangswertproblem

$$y' = Ay, \quad y(0) = y_0,$$

mit Hilfe des iterativen Verfahrens aus dem Satz von Picard-Lindelöf approximieren. Wir betrachten die Folge der Vektorfunktionen

$$y_n(t) = y_0 + \int_0^t Ay_{n-1}(s) ds$$

wobei $y_0(t) \equiv y_0$ konstant ist. Man erhält:

$$y_1(t) = y_0 + \int_0^t Ay_0 \, ds = y_0 + tAy_0,$$

$$y_2(t) = y_0 + \int_0^t (A + sA^2) y_0 \, ds = y_0 + tAy_0 + \frac{t^2}{2} A^2 y_0,$$

. . .

$$y_n(t) = \Phi_n(t)y_0, \quad \Phi_n(t) = \sum_{k=0}^n \frac{(tA)^k}{k!}, \quad (tA)^0 := I.$$

Wir haben im Satz von Picard-Lindelöf gesehen, dass die Folge y_n mindestens auf einem kleinen Interval um 0 gleichmässig konvergiert, und man kann den Grenzwert formal als

$$y(t) = \Phi(t)y_0 \text{ mit } \Phi(t) = \sum_{k=0}^{\infty} \frac{(tA)^k}{k}$$

schreiben. Dann wäre $\Phi(t)$ (falls sie überhaupt auf \mathbb{R} definiert ist) die gesuchte Fundamentalmatrix. Diesen Zugang werden wir jetzt begründen.

Satz 172. Für jede Matrix $B \in M_n(\mathbb{K})$ konvergiert die Reihe $\sum_{j=0}^{\infty} \frac{B^j}{j!}$ in $M_n(\mathbb{K})$.

Beweis. Für $n \in \mathbb{N}$ betrachte $C_n := \sum_{j=0}^n \frac{B^j}{j!}$. Wir müssen zeigen, dass die Folge (C_n) konvergiert.

In der letzten Vorlesung haben wir schon die Norm $||A|| = \sqrt{\sum_{j,k=1}^{n} |a_{j,k}|^2}$ auf $M_n(\mathbb{K})$ erwähnt. Betrachte die bijektive Abbildung $F: M_n(\mathbb{K}) \to \mathbb{K}^{n^2}$,

falls
$$A = (a_{j,k}), F(A) = (a_{11}, \dots, a_{1n}, a_{21}, \dots, a_{2n}, \dots, a_{n1}, \dots, a_{nn}),$$

dann gilt $||A|| = \underbrace{||F(A)||}_{\text{eukl. Norm in }\mathbb{K}^n}$, also sind die Räume $M_n(\mathbb{K})$ und \mathbb{K}^{n^2} isometrisch

(Blatt 7, PA 3), und aus der Vollständigkeit von \mathbb{K}^{n^2} folgt die Vollständigkeit von $M_n(\mathbb{K})$. Im Blatt 11, PA 4, wurde es bewiesen, dass für beliebige $A, B \in M_n(\mathbb{K})$ die Ungleichung $||AB|| \le ||A|| \, ||B||$ gilt. Durch die Induktion folgt $||B^j|| \le ||B||^j$,

$$||C_{n+k} - C_n|| = \left\| \sum_{j=n+1}^{n+k} \frac{B^j}{j!} \right\| \le \sum_{j=n+1}^{n+k} \frac{||B||^j}{j!} \le \sum_{j=n+1}^{\infty} \frac{||B||^j}{j!}.$$

Da die Reihe $\sum_{j=0}^{\infty} \frac{\|B\|^j}{j!}$ konvergiert, kann mann zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ finden mit $\sum_{j=n+1}^{\infty} \frac{\|B\|^j}{j!} < \varepsilon$ für alle $n \geq N$, und dann hat man für alle $n \geq N$ und $k \in \mathbb{N}$ die Ungleichung $\|C_{n+k} - C_k\| < \varepsilon$. Also ist C_k eine Cauchy-Folge, und sie konvergiert, da $M_n(\mathbb{K})$ vollständig ist.

Damit haben wir die folgende Definition begründet:

Definition 173 (Exponential einer Matrix). Für jede Matrix $B \in M_n(\mathbb{K})$ ist die Matrix $e^B \in M_n(\mathbb{K})$ durch

$$e^B = \sum_{j=0}^{\infty} \frac{B^j}{j!}$$

definiert. Man schreibt auch $\exp(B)$ statt e^B .

Satz 174. Die Fundamentalmatrix von y' = Ay ist durch $\Phi(t) = e^{tA}$ gegeben.

Beweis. Die Gleichheit $e^{0\cdot A} = I$ ist klar. Wir zeigen jetzt, dass $t \mapsto e^{tA}$ stetig ist. Definiere $\Phi_n(t) = \sum_{j=0}^n \frac{(tA)^j}{j!}$ und nehme ein T > 0, dann gilt für alle $t \in [-T, T]$:

$$||e^{tA} - \Phi_n(t)|| = ||\sum_{j=n+1}^{\infty} \frac{(tA)^j}{j!}|| \le \sum_{j=n+1}^{\infty} \frac{||tA^j||}{j!} \le \sum_{j=n+1}^{\infty} \frac{(T||A||)^j}{j!}.$$

Da die Reihe $\sum_{j=1}^{\infty} \frac{(T\|A\|)^j}{j!}$ konvergiert, folgt es, dass man zu jedem $\varepsilon > 0$ ein N finden kann mit $\sum_{j=n+1}^{\infty} \frac{(T\|A\|)^j}{j!} < \varepsilon$ für alle $n \geq N$, und dann $\|e^{tA} - \Phi_n(t)\| < \varepsilon$ für alle $n \geq N$ und alle $t \in [-T, T]$. Also konvergiert Φ_n gegen e^{tA} gleichmässig auf [-T, T], d.h. jeder Eintrag von Φ_n konvergiert gleichmässig gegen den entsprechenden Eintrag von e^{tA} . Da alle Φ_n stetig sind (Polynome von t!), ist auch $t \mapsto e^{At}$ stetig.

Dann konvergiert auch $A\Phi_n$ gleichmässig gegen Ae^{tA} , die Funktion $t\mapsto Ae^{tA}$ ist stetig, und für $|t|\leq T$ gilt

$$\int_0^t Ae^{sA} ds = \lim_{n \to +\infty} \int_0^t A\Phi_n(s) ds = \lim_{n \to \infty} \int_0^t \sum_{j=0}^n \frac{s^j}{j!} A^{j+1} ds$$
$$= \lim_{n \to \infty} \sum_{j=0}^n \frac{t^{j+1}}{(j+1)!} A^{j+1} = \lim_{n \to \infty} \sum_{j=1}^{n+1} \frac{t^j}{j!} A^j = \sum_{j=1}^\infty \frac{t^j}{j!} A^j = e^{tA} - I.$$

Also $e^{tA} = I + \int_0^t Ae^{sA} ds$, und es folgt mit Hilfe des Hauptsatzes der Differentialund Integralrechnung (den man auf jeden Eintrag von e^{tA} und Ae^{tA} anwendet), dass $(e^{tA})' = Ae^{tA}$ für alle |t| < T. Da T beliebig ist, folgt die Behauptung.

Berechnung der Exponentialen der Matrizen

Da die Spalten der Fundamentalmatrix ein Fundamentalsystem bilden, kann man für Systeme y' = Ay mit beliebigen Matrizen A Fundamentalsysteme konstruieren, falls man es schafft, e^{tA} auszurechnen.

(a) Falls L eine Diagonalmatrix ist, dann lässt sich e^L ganz einfach ausrechnen:

- (b) Falls zwei Matrizen A und B kommutieren, d.h. falls AB = BA, dann gilt $e^{A+B} = e^A e^B$ (Übung).
- (c) Falls eine Matrix N die Bedingung $N^m = 0$ für ein $m \in \mathbb{N}$ erfüllt (solche Matrizen heissen nilpotent), so wird aus der Reihe eine endliche Summe,

$$e^N = \sum_{j=0}^{m-1} \frac{N^j}{j!}$$

(d) Falls U eine invertierbare Matrix ist und $A = U^{-1}BU$, so gilt $e^A = U^{-1}e^BU$: man merkt, dass $A^2 = A \cdot A = U^{-1}BUU^{-1}BU = U^{-1}B^2U$, und durch Induktion $A^j = U^{-1}B^jU$ für alle $j \in \mathbb{N}$, also

$$e^{A} = \sum_{j=0}^{\infty} \frac{U^{-1}B^{j}U}{j!} = U^{-1}\sum_{j=0}^{\infty} \frac{B^{j}}{j!}U = U^{-1}e^{B}U.$$

- (e) Mit Hilfe von (a)+(d) ergibt sich eine Methode, e^A für diagonalisierbare A zu bestimmen: nach der Definition gibt es eine invertierbare Matrix U und eine Diagonalmatrix L mit $A = U^{-1}LU$, dann gilt $e^A = U^{-1}e^LU$, und e^L kann man wie in (a) berechnen. Eigentlich haben wir dieses Verfahren implizit in der Berechnung der Fundamentalmatrix von y' = Ay mit diagonalisierbaren A genutzt.
- (f) Falls A nicht diagonalisierbar ist, dann nutzt man eines der wichtigsten Ergebnisse der linearen Algebra: die Jordansche Normalform. Es ist bekannt, dass man A = D + N darstellen kann, wobei die Matrix D diagonalisierbar ist, die Matrix N nilpotent ist, und D und N kommutieren. Dann gilt $e^A = e^D e^N$: man berechet e^D wie in (e) und e^N wie in (d). Insbesondere $e^{tA} = e^D e^N$ und

$$e^{tN} = 1 + tN + \dots + \frac{t^m N^{m-1}}{(m-1)!}$$

also ist jeder Eintrag von e^{tN} ein Polynom, wobei die Einträge von e^{tD} lineare Kombinationen von $e^{\lambda t}$ sind. Dadurch erhält man in den Lösungen lineare Kombinationen von $t^k e^{\lambda t}$ (das haben wir am Anfang der Vorlesung für 2×2 Matrizen gesehen).

(g) Man kann sogar einen Schritt weiter gehen: es existiert eine invertierbare Matrix U, sodass UAU^{-1} eine Blockdiagonalmatrix mit Jordanblöcken B der Form

$$B = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

ist. Man kann e^B für solche B explizit ausrechnen (Übung), dann ist $Z=e^{UAU^{-1}}$ eine Blockdiagonalmatrix mit Blöcken e^B und $A=U^{-1}ZU$. Solche Rechnungen für grosse Matrizen werden aber meist mit numerischen Software durchgeführt.

Die letzte Vorlesung (VL 13) wird am 14.07.2020 am Abend erscheinen.