Table 1 Sufficient Conditions for Nondegenerate[‡] Solution

c(m): Model	Conditions	Comments or
Reference		or Logic
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$RIC \Rightarrow v(m) < \infty$; $FHWC \Rightarrow 0 < v(m) $
$\underline{\mathbf{c}}(m) = \underline{\kappa}m$: PF $h = 0$		PF model with no human wealth
Section 2.4.2		RIC prevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section 2.4.2		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (??)		$ \text{PF-FVAC+FHWC} \Rightarrow \text{RIC}$
Eq (??)		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	GIC, RIC	FHWC holds $(\Gamma < \mathbf{p} < R \Rightarrow \Gamma < R)$
Section 2.4.3		$\dot{c}(m) = \bar{c}(m) \text{ for } m > m_{\#} < 1$
		(RHC would yield $m_{\#} = 0$ so $\grave{\mathbf{c}}(m) = 0$)
Appendix A	GIC,RIC	$\lim_{m\to\infty} \grave{c}(m) = \bar{c}(m), \lim_{m\to\infty} \grave{\kappa}(m) = \underline{\kappa}$
		kinks at pts where horizon to $b = 0$ changes*
Appendix A	GIC,RIC	$\lim_{m\to\infty} \dot{\boldsymbol{k}}(m) = 0$
		kinks at pts where horizon to $b = 0$ changes*
$\mathring{\mathrm{c}}(m)$: Friedman/Muth	Section 3.1,	$\underline{c}(m) < \dot{c}(m) < \overline{c}(m)$
	Section 3.2	$ \underline{\mathbf{v}}(m) < \mathring{\mathbf{v}}(m) < \bar{\mathbf{v}}(m)$
Section 2.9	FVAC, WRIC	Sufficient for Contraction
Section ??		WRIC is weaker than RIC
Figure 3		FVAC is stronger than PF-FVAC
Section ??		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty}\mathring{\mathbf{k}}(m) = \underline{\kappa}$
Section ??		RHC \Rightarrow EHWC, $\lim_{m\to\infty}\mathring{\mathbf{\kappa}}(m) = 0$
Section 3.3		"Buffer Stock Saving" Conditions
Section ??		$GIC \Rightarrow \exists 0 < \hat{m} < \infty : Steady-State$
Section ??		GIC-Nrm $\Rightarrow \exists 0 < \check{m} < \infty : Target$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$. °RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc. **In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy