

ÜBUNGEN

zur Veranstaltung ${\it Quanten computing}$ im Studiengang Angewandte Informatik

No. 6 Martin Rehberg

Präsenzaufgaben

Aufgabe 1: Bestimmen Sie ggT(4081, 2585) und stellen Sie diesen anschließend als Linearkombination von 4081 und 2585 dar.

Aufgabe 2: Wir sagen eine ganze Zahl a teilt eine ganze Zahl b (in Zeichen a|b), wenn eine ganze Zahl c mit ac = b existiert. Zeigen Sie

- (i) Aus a|b und a|c folgt a|(b+c) für ganze Zahlen a,b,c.
- (ii) Aus a|b folgt a|bc für ganze Zahlen a, b, c.

Aufgabe 3: Zeigen Sie (unter Verwendung von Aufgabe 2): Es gilt ggT(a+cb,b) = ggT(a,b) für ganze Zahlen a,b,c.

Übungsaufgaben

Aufgabe 1: Die Eulersche φ -Funktion ist definiert als $\varphi(n) = \#\{1 \le k \le n : ggT(k,n) = 1\}$. Zeigen Sie

- (i) $\varphi(p) = p 1$ gilt genau dann, wenn p eine Primzahl ist. Allgemein gilt $\varphi(n) \le n 1$ für n > 1.
- (ii) $\varphi(p^r) = p^r p^{r-1}$ für eine Primzahlpotenz p^r .
- (iii) $\varphi(n) = n \prod_{p|n} \left(1 \frac{1}{p}\right)$, wobei das Produkt über alle Primteiler von n gebildet wird. Hinweis: Verwenden Sie den Hauptsatz der Elementaren Zahlentheorie in Kombination damit, dass die φ -Funktion multiplikativ ist, d.h. $\varphi(n_1...n_k) = \varphi(n_1)...\varphi(n_k)$ für paarweise teilerfremde $n_1, ..., n_k$.

Aufgabe 2 (RSA): Gegeben p = 61, q = 97 und e = 47. Verschlüsseln Sie die Nachricht m = 348 mit dem RSA-Verfahren.