THE STABILITY OF THE INVERTED PENDULUM

Vicki Springmann Edward Montiel

Acknowledgements

Advisor: Matt Pennybacker

Dr. Ildar Gabitov

Larry Hoffman, Department of Physics

Outline

- Introduction
 - Two Models
 - Applications
- Simple Model Theory
 - Lagrangian
 - Stability
- Experimental Data
 - Parameters
 - Stroboscope
- Computer Modeling
 - Runge-Kutta
 - Simple Model Results
- Error Analysis

April 6, 2010

Two systems

Moving Cart

Oscillating Base

Inverted Pendulum in the Real World

- Segway (moving cart)
- Early Seismometers (moving cart)
- Neck and Spine in biomechanics (oscillating)

Simple Theoretical Model

- Oscillating Base
- Treated as a point mass at its center of mass.

- The Lagrangian summarizes the dynamics of the system.
 - Must determine the kinetic and potential energy

Simple Model Kinetic Energy (1)

The x and y coordinates of the mass are $x = l \sin \varphi$ $y = l \cos \varphi + a \cos \omega t$

Differentiating with respect to time, $v_x = l\dot{\phi}\cos{\phi}$ $v_y = -l\dot{\phi}\sin{\phi} - a\omega\sin{\omega t}$

Kinetic Energy is

$$T=rac{mv^2}{2}$$

Simple Model Kinetic Energy (2)

$$T = \frac{m}{2} \left[v_x^2 + v_y^2 \right]$$

Substituting in the velocity,

$$T = \frac{m}{2} [l^2 \dot{\varphi}^2 \cos^2 \varphi + l^2 \dot{\varphi}^2 \sin^2 \varphi + 2la\omega \dot{\varphi} \sin \varphi \sin \omega t + a^2 \omega^2 \sin^2 \omega t]$$

 \blacksquare But $\sin^2 \varphi + \cos^2 \varphi$, so

$$T = \frac{m}{2} [l^2 \dot{\varphi}^2 + 2la\omega \dot{\varphi} \sin \varphi \sin \omega t + a^2 \omega^2 \sin^2 \omega t]$$

April 6, 2010

Simple Model Kinetic Energy (3)

However,

$$2la\omega\dot{\varphi}\sin\varphi\sin\omega t = 2la\omega^2\cos\omega t\cos\varphi - 2la\omega(\sin\omega t\cos\varphi)$$

So

$$T = \frac{ml^2}{2}\dot{\varphi}^2 + la\omega^2 m\cos\omega t\cos\varphi$$

+ (complete derivative) + (function of only t)

April 6, 2010

Simple Model Potential Energy

On Earth, the potential gravitational energy is

$$U = -mgh$$

- So the potential energy of the pendulum is
 - $U = -mg(l\cos\varphi + a\cos\omega t)$
- Or, $U = -mgl\cos\varphi + (function of only t)$

Simple Model Lagrangian

The Lagrangian is

$$\mathcal{K} = T - U$$

• Or,

$$\mathcal{L} = \frac{ml^2}{2}\dot{\varphi}^2 + la\omega^2 m\cos\omega t\cos\varphi + mgl\cos\varphi$$

+ (complete derivative) + (function of only t)

Simple Model Equation of Motion

The equation of motion is obtained by

$$\frac{\partial \mathcal{L}}{\partial \varphi} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = 0$$

$$\ddot{\varphi} + \left(\frac{g}{l} + \frac{a\omega^2}{l}\cos\omega t\right)\sin\varphi = 0$$

Simple Model Stability

Can be separated into two oscillations:

large small (amplitude)
$$\varphi = \varphi(t) + \psi(t)$$
slow fast (frequency)

 The interaction between these oscillations causes the vertical position to become stable.

Simple Model Interaction of Scales (1)

□ **Ÿ** may be written as

$$\ddot{\boldsymbol{\varphi}} = -\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{\varphi}} + f$$

where

$$u = -\frac{g}{l}\cos\varphi$$
 $f = -\frac{a\Omega^2}{l}\cos\Omega t\sin\varphi$

therefore

$$\ddot{\phi} = \ddot{\phi} + \ddot{\psi} \cong -\frac{du}{d\phi} - \psi \frac{d^2u}{d\phi^2} + f(\phi, t) + \psi \frac{df}{d\phi}$$

April 6, 2010

Simple Model Interaction of Scales (2)

- lacksquare ψ is small, but $\ddot{\psi}$ is large.
- \bullet is large, but it is slow.
- Balancing, we have that

$$\ddot{\psi} = f(\phi, t)$$

 $lue{}$ And because ϕ can be treated as a constant,

$$\psi = -rac{f}{\Omega^2}$$

Simple Model Interaction of Scales (3)

We also have

$$\ddot{\phi} = -\frac{du}{d\phi} - \psi \frac{d^2u}{d\phi^2} + \psi \frac{df}{d\phi}$$

Averaging this, we get

$$\ddot{\phi} = -\frac{du}{d\phi} + \langle \psi \frac{df}{d\phi} \rangle = -\frac{du}{d\phi} - \frac{1}{\Omega^2} \langle f \frac{df}{dt} \rangle$$

$$\ddot{\phi} = -rac{du_{eff}}{d\phi}$$
 $u_{eff} = u + rac{1}{2\Omega^2} \langle f^2 \rangle$

April 6, 2010

Simple Model Interaction of Scales (4)

$$\langle f^2 \rangle = \frac{a^2 \Omega^4}{l^2} \frac{1}{T} \sin^2 \phi \int_t^{t+T} \cos^2 \Omega \tau \, d\tau$$

$$\langle f^2 \rangle = \frac{a^2 \Omega^2}{4l^2} \sin^2 \varphi$$

So we have an equation for the effective potential

$$u_{eff} = \frac{g}{l} \left(-\cos \varphi + \frac{a^2 \Omega^2}{4gl} \sin^2 \varphi \right)$$

Simple Model Stability Condition

lacksquare The derivative of u_{eff} with respect to φ is

$$\frac{du_{eff}}{d\varphi} = \frac{g}{l}\sin\varphi\left(1 + \frac{a^2\Omega^2}{2gl}\cos\varphi\right)$$

- From this, we see that $\varphi = 0$ and $\varphi = \pi$ are stable.
- lacksquare The stability condition for $oldsymbol{arphi}=\pi$ is

$$\frac{a\Omega}{\sqrt{2gl}} > 1$$

April 6, 2010

Simple Model Stability Region

- The potential has two maxima and two minima for $0 \le φ < 2π$ if the stability condition is met
 - lacksquare Minimum at $oldsymbol{arphi}=oldsymbol{0}$ and $oldsymbol{arphi}=\pi$
 - Maxima are between 0 and π , and π and 2π
 - Their precise location depends on the parameters.
 - Find by taking the derivative and setting it equal to 0.

The potential vs. angle graph is shown after the parameters have been determined.

Parameters

$$g = -9.8 \text{ m/s}^2$$

$$a = 0.009 \pm 0.0005 \text{ m}$$

Pendulum is a trapezoidal prism length = 28cm

top: 0.9cm x 0.9cm

bottom: 0.9cm x 0.4cm

1 = 0.12m (from center of mass)

Stroboscope (1)

- An instrument used to make a cyclically moving object appear slow-moving or stationary.
- The lamp emits brief and rapid flashes of light.
- The frequency of the flash is adjusted until it is equal to the object's frequency.
 - This makes it appear stationary.
- Example with cpu fan: http://www.youtube.com/watch?v=_eoDVpC67Rc&feature=related

Stroboscope (2)

- Used to measure the frequency of fast oscillations.
 - When the pendulum did not appear to move vertically, frequency can be read off device.
 - Measurements were in units of min⁻¹
- Minimum stable frequency measured as 1970 ± 49 min⁻¹
 - $-206 \pm 5.1 \, \text{rad/s}$
- Stability range measurements at 2097 min⁻¹
 - **220.0** rad/s

Simple Model System of 1st Order Equations

 Necessary for inputting equation of motion into MatLab.

$$\dot{y} = \dot{\varphi}$$

$$\dot{y} = -\left(\frac{g}{l} + \frac{a\omega^2}{l}\cos(\omega t)\right)\sin\varphi$$

Runge-Kutta

Family of iterative methods to solve first order ODEs

Fourth order Runge-Kutta is the standard method

Error per step: O(h⁵); Total Error: O(h⁴)

Fourth Order Runge-Kutta

Given an initial value problem

$$y' = f(t, y) \qquad y(t_0) = y_0$$

- The slope is the weighted average of the slopes:
 - At the beginning of the interval $k_1 = f(t_n, y_n)$
 - At the midpoint of the interval $k_2 = f\left(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1\right)$ $k_3 = f\left(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2\right)$

• At the end of the interval $k_4 = f(t_n + h, y_n + hk_3)$

Fourth Order Runge-Kutta

$$slope = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$y_{n+1} = y_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

$$t_{n+1} = t_n + h$$

Simple Model Time vs. Angle

Minimum Frequency of Stability

Theoretically, the pendulum is stable when

$$\Omega > \frac{\sqrt{2gl}}{a}$$
 $\Omega > 164.62 \text{ rad/s}$

 Experimentally, minimum frequency of stability is 206 ± 5.1 rad/s

Stability Graph

Range of Stability

Stability

- The vertical position is stable between $\varphi = 2.226$ and $\varphi = 4.057$ according to theory.
- $lue{}$ Stability range is 0.915 radians, or 52.4° from π
- Experimentally, the pendulum is stable at
- \odot 0.553 ± 0.0088 rad, or 31.7° ± 0.5° from π

Error Analysis

- Stroboscope
 - Difficult to fine tune
 - Resonance problem
- Pendulum set up
 - Interference from guide
 - Pendulum loosely attached to base (wobbling)
 - Tape used to hold constant frequency loosens from the vibrations.

Problems with Simple Model and Future Work

- The pendulum was treated as though it were a point mass at its center of mass.
- This is more appropriate for a sphere at the end of a thin, rigid rod.
- The distributed mass of our pendulum needs to be taken into account.
 - This will be the focus of our future work.

References

Landau L. D. & Lifshitz E. M., *Mechanics*, (Pergamon, NY, 1960) pp 93-95. Motion in a rapidly oscillating field

Smith H.J.T. & Blackburn J.A., Am J Phys **60**, 909 (1992). Experimental study of an inverted pendulum