

Introduction to GenAl and Simple LLM Inference on CPU and finetuning of LLM Model to create a Custom Chatbot

Vannela Harshavardhan Reddy Manipal Institute of Technology

Introduction to Finetuning

Finetuning in machine learning involves further training a pretrained model on a new dataset to adapt its parameters for a specific task or domain:

- The pretrained model, initially trained on a general dataset like ImageNet or Wikipedia, learns relevant features.
- During finetuning, the model's weights adjust using the new dataset, which usually has fewer labeled examples.
- This process leverages the pretrained model's knowledge and tailors it to the new data's nuances.
- Initialization with pretrained weights and subsequent updates via backpropagation minimize task-specific loss.
- Finetuning is efficient, requiring less data and computation than training from scratch, and enhances model accuracy and efficiency in specialized tasks like computer vision and natural language processing.

Low Rank Adaptation of LLM's (LoRA)

- LoRA (Low Rank Adaptation of LLM's)** is an advanced technique in machine learning.
- It specifically targets pretrained language models (LLMs) by incorporating low-rank approximations.
- The primary aim is to enhance the efficiency and effectiveness of these models, especially in natural language processing (NLP) tasks.
- By applying low-rank adaptations, LoRA optimizes model performance while potentially reducing computational complexity.
- This approach is particularly valuable in environments where computational resources are limited or where efficiency in model inference is crucial.

Project Overview

- Objective: The objective of this project is to develop a Generative AI model capable of generating colour codes based on textual descriptions of colours. This project leverages the TinyLLama framework and utilizes LoRA (Low Rank Adaptation) for finetuning a pretrained model. The model aims to accurately predict RGB colour codes from natural language inputs describing colours.
- This will be a low-resource dependent application as TinyLlama does not require huge compute power and can be run locally on end devices as well.

Tech Used

HUGGING FACE

GOOGLE COLAB

Conclusion

- In conclusion, this project successfully developed a Generative AI model using TinyLLama and LoRA finetuning to generate color codes from textual descriptions.
- By leveraging advanced natural language processing techniques and optimization strategies, the model accurately predicts color codes, enhancing applications in digital design and creative industries.
- Moving forward, further refinements could focus on expanding the dataset diversity and exploring additional color code formats, ensuring broader applicability and precision in color generation tasks.

