Versuch 213	27. Oktober 2021

Kreisel

Physikalisches Anfängerpraktikum $2.1\,$

Jan A. Kesting

Betreuer/in: Marcel Fischer

Inhaltsverzeichnis

T	Ein	leitung	2
	1.1	Ziel/Motivation	2
	1.2	Aufgaben	2
	1.3	Versuchsaufbau	2
	1.4	(physikalische) Grundlagen	2
3	Aus	swertung	12
	3.1	Auswertung des Vorversuches	12
	3.2	Bestimmung der Dämpfungskonstante	13
	3.3	Präzession	14
	3.4	Trägheitsmomente	19
	3.5	Nutation	21
4	Zus	sammenfassung und Diskussion	23
			23
	42	Diskussion	24

1 Einleitung

1.1 Ziel/Motivation

Jeder kennt ihn aus seiner Kindheit: einen Kreisel. Irgendwas an seinem Verhalten hat einen schon immer fasziniert; er verhält sich nie, wie man es intuitiv erwarten würde. In diesem Versuch wird der Kreisel genauer unter die Lupe genommen und seine Eigenschaften bestimmt.

1.2 Aufgaben

- 1. Qualitative Untersuchung des Kreisels.
- 2. Bestimmung der Dämpungskonstante des Kreisels anhand Messung der Reibungsverluste.
- 3. Bestimmung des Trägheitsmomentes um die Figurenachse mittels Messung der Präzessionsfrequenz.
- 4. Ermittlung des Trägheitsmomentes senkrecht zur Figurenachse durch Messung der Größe (und Richtung) der Umlaufgeschwindigkeit der momentanen Drehachse um die Figurenachse.
- 5. Bestimmung des gleichen Trägheitsmomentes aus der Nutationfrequenz.

1.3 Versuchsaufbau

Der Versuchsaufbau des Experimentes ist im Messprotokoll in Abb. 1 zu finden.

1.4 (physikalische) Grundlagen

Ein Kreisel ist jeglicher starrer Körper, der sich um einen festen Punkt dreht. Wird er in seinem Schwerpunkt gelagert, so spricht man vom **kräftefreiem** Kreisel. D.h., dass keine äußeren Kräfte auf ihn einwirken, die ein Drehmoment \overrightarrow{M} auf ihn bewirken könnten und somit Betrag und Richtung des Drehimpulses \overrightarrow{L} zeitlich konstant bleiben würden. Im Fall, dass zwei Hauptträgheitsachsen (in diesem Fall I_z und I_x) gleich groß sind, so kann man von einem symmetrischen Kreisel sprechen.

Nun müssen erstmals drei unterschiedliche charakteristische Achsen voneinander differenziert werden; die **Figurenachse** \overrightarrow{F} ist die Symmetrieachse des Kreisels. Dazu sind noch die **Drehimpulsachse** \overrightarrow{L} und die Richtung der

Drehachse $\overrightarrow{\omega}$ relevant.

Beim Kräftefreien, symmetrischen Kreisel sind all diese Achsen identisch und zeitlich und räumlich Konstant, wenn der Kreisel in Rotation versetzt wird, während die Figurenachse fixiert bleibt. Im allgemeinen Fall allerdings ist dies meist nicht so. Versetzt man dem stabil rotierendem Kreisel einen kurzen seitlichen Schlag, so setzt eine Nutationsbewegung ein; der Drehimpuls ändert sich nicht, die anderen beiden Achsen allerdings schon. Die Figurenachse fängt an, auf einem gedachten Kegelmantel mit der Nutationsfrequenz $\overrightarrow{\omega_N}$ zu rotieren, und führt dabei selbst noch eine Eigenrotation $\overrightarrow{\omega_F}$ durch. Die sich ergebende Drehimpulsachse bleibt somit auch nicht mehr konstant. Zum besseren Vorstellungsvermögen der einzelnen Bewegungen der Bewegung des Kreisels, lohnt es sich, sich mit folgender Grafik zu beschäftigen:

Abbildung 1: Achsen und Frequenzen des kräftefreien, symmetrischen Kreisels

Man erkennt, dass die Bewegung der einzelnen Achsen der Bewegung zweier aneinander entlangrollenden Kegeln entspricht, von denen der Raumkegel zentral bleibt. Aus dieser Ansicht heraus erschließt sich einem sofort, dass gilt:

$$\overrightarrow{\omega} = \overrightarrow{\omega_N} + \overrightarrow{\omega_F} \tag{1}$$

Nach einigem Herumrechnen und trivialen Überlegungen kann man die Nutationsfrequenz $\overrightarrow{\omega_N}$ bei kleinen Nutationswinkeln folgendermaßen beschreiben:

$$\overrightarrow{\omega_N} \approx \frac{I_z}{I_x} \overrightarrow{\omega_F} \tag{2}$$

3 von 25

Als nächstes lassen sich über die Nutationsbewegung die Trägheitsmomente I_i des Kreisels bestimmen, bzw. das Trägheitsmoment der einen Achse, wenn das der anderen Achse bekannt ist. Zur Bestimmung der Winkelgeschwindigkeit Ω schaut man sich den Kreisel an und sucht sich einen festen Punkt (in der Nutationsbewegung) und kann durch anbringen einer Farbscheibe anhand der Farbwechsel während der Rotation die gesuchte Größe der Periodendauer (und somit die Winkelgeschwindigkeit) bestimmen.

$$\Omega = \frac{I_x - I_z}{I_x} \omega_F \tag{3}$$

Weiterhin nützlich wird in der Auswertung noch:

$$I_x - I_z = \frac{I_z}{\frac{\omega_F}{\Omega - 1}} = \frac{I_z(\Omega - 1)}{\omega_F} \tag{4}$$

Als nächstes muss noch berücksichtigt werden, dass an dem Kreisel des Versuches ein Stab befestigt ist, an dem Gewichte mit der Masse m angebracht werden können, aufgrund welcher eine Präzessionsbewegung des Kreisels möglich wird. Dieses Verhalten kann man auf ein Drehmoment zurückführen, welches über den Stab auf den Kreisel nach unten wirkt und somit der ansonsten räumlich feste Drehimpuls seine Ausrichtung über den Verlauf der Rotation ändert. Das liegt daran, dass der Schwerpunkt nun über dem Unterstützungspunkt liegt. Man spricht von einem **schweren Kreisel**. Zu Beobachten ist nun eine Kreisbewegung der Drehimpulsachse (zu beobachten als die Figurenachse). Diese kann man als eine seitlich ausweichende Bewegung der Drehimpulsachse bezüglich der Schwerkraft vorstellen. Diese Bewegung nennt man **Präzession**. Die Frequenz dieser Rotationsbewegung, die Präzessionsfrequenz $\overrightarrow{\omega_P}$, kann man folgendermaßen berechnen:

$$\omega_P = \frac{mgl}{I_z \omega_F} \tag{5}$$

Wobei g der bekannte Ortsfaktor der Erde ist. Wichtig zu bemerkten ist, dass die Präzessionsfrequenz von der räumlichen Orientierung unabhängig ist. Zuletzt kann man noch während der Präzession eine Nutation der Figurenachse erzwingen, was dazu führt, dass die beiden Bewegungen sich überlagern.

Letztens muss noch erwähnt werden, dass man sich bisher nur einen Reibungsfreien Kreisel angeschaut hat. Da aber Reibungseffekte unweigerlich auftreten, muss man diese miteinbeziehen. Dazu führt man eine

Dämpfungskonstante δ ein, die man über folgended Zusammenhang bestimmen kann:

$$\omega_F(t) = \omega_F \cdot e^{-\delta t} \tag{6}$$

Mit bekannter Dämpfungskonstante lässt sich dann auch die Halbwertszeit der Frequenz bestimmen:

$$T_{1/2} = \frac{\ln(2)}{\delta} \tag{7}$$

Außerdem lohnt es sich für die Auswertung noch mittels den, im Skript angegebenen, Eigenschaften der Kugel dessen Trägheitsmoment I theoretisch anhand (8) zu bestimmen, wobei die Masse des Kreisels als m und der Radius als r gegeben sind:

$$I = \frac{2}{5}mr^2\tag{8}$$

27.10.2021 Messprotoholl Versuch 213 Victoria Hahr Weisel - Stallinger mit Almanin state als broker Materialten: in einer Unthissenplanne gelagert (m = 4,164 inul. Stab, ru= 5,08cm) - Zwi Gewich (ra = 0,725, r; = 0,325, h=1,10, -= 9,85g) - Fartscleibe & Scheibe wit howentrische Rongen - Motor nit Netzgerät - Stroboshop - Stoppular - Gyroshop Versuchsantoun: Aluninumstab Mousine Ungel Lulthissen plan Drydduff cosilluss Druckluft. leiler Establish / Dis

Durch Feeling (1) tomachet want har sich external with der Ceclienway des weisels vertruit und beschaftigt sich mit Polgende Sadan: a) Die Scheibe mit Farbselitoren wird auf de Stat gestecht, and twar so, dass der breised Craftefre wire. Han Nun bringt - den weisel ins drehe und Geobachlet die Realtio de heisels and seitlides a Ontche 6) Einsteller einer Nutation Gewegung durch Versetzen em leicher saitlich Stoffes. Man bestachtet are Forticleibe. Nach betrachting docht de Fortschibe un versett den Weresel ween in Benegung und in eine Nutations. bevegung and beobachlet Mochaels. c) Aut die Forbeleibe wird die Scheibe mit Unitertische breitette gelegt. Man with die Seite dieser Sheiber classer Mittelpunkt du lucie certica verschoben ist. Ohne Nutation sich versader levere to selon. Non westet critical cia Mudad drelt - in soluble we und doct t wheel on wast. Dwel ein seitice Etop werder de Uneixelachen getrennt. Nun viederlott on des nit eine zwatz gericht. d) Man versett den voisel: , Drehmy (& 2 Drehrichtungen) undo serverent de Schrepunkt des Willes. ist to: Beabacher 6th. de outtrepen Ellense

Beobuchtungen on (1) a) Weisel "whot" sich. Bei hurren drach fallt er stirtich in die Usprungslage, bes langen walt ein a working victet er sich nen aus. b) Der in Slupt beschieben Punkt wind soft bor. Die Forbe in Rucht anders sich genaß der Drehrichtung den Lugel, (Not hurz!) Farb anording an Soleibe. Or Punlet bleibt man Whatis y suesetting be einer leonstante force while tou. out in Ring. Auf ce le solator - it can clampatrisch Ureian -14 as lace air Punted you orland un als Mitselponles ein spirale wahrgenore work dans. Fall 1: -SP unterhalb - Delang: Ulvzagevila - Predession: Auti - Uhrzeigning tal 3: Sp Oberhalb Fall 2: - Sp Untertal6 - Drehing is. Privassion: - Deling . Anti-Ulragershy - Prizes -: Ulli teigers -Muzogusing Full. -Sp Oberlub - Drelung U. Prazerion. Arti - Weigering ERIMINEN IL

(2) Darphung des Wrisels. Es werden their Erstatalicle Gewicht an & State ence montient und der weisel wind bei Sentracter Actue mobile des Motors and ca. 600-700 1 textlerigh. Uber eine Zeitran (12 min) were alle 2 -- die treiber Dochfrequent genese. Ableselehler si = 10 2:-Tabelle 1: Drehfrequenz des lereisels atts Funktion de test 7est t [min] 0 12 84 6 8 10 12 -ft 2;-1 634 536 542 500 463 428 397 (1) Prazession Man -ontiert die Fer65debe aut den Weisel und to berprotet de waltebreileit. Donach vird ein Gewilt - Abstand a= 0,2 - our lugeritt aut de Shab befestight and der weisel word and (500) In besileunight and more die Printessions. daner to (dre versal winted for Vertilaten und desser Unantreit). Tabelle 2: Pratessionsdamer des Schwere Weisels als Function des Winhels zur Vertherlen. Winhel (ca.) [°] 30 45 60 Tp [5] 67,56 73,39 71,56 Antgrand ungenanighent (Augenmas und a Realitionseit) wird ein Feller von DT = 25 an-

Als wachster wire when vier unserschiedlich Gewichtpositioner sine pressure de Propesionadane de la verschieden Foresio sdamen Frequence durchgeführt. Tabelle 3: Messing du Prazessionsdauern : Ablangighet der Drehkreques & bei vier un les diedliche Genichtshyen. Abstant des Port zessions demer [5] Frequent [1/in] Gewichles 6 89 130,89 116,64 600, 1 Gewill 15 00 4646 87,34 252 51,12 6 8 50 99,82 601 87,86 1 Gewicht 66,45 449 200-2501 36,92 184 D 66,06 603 4 58176 2 Gewichte D 448 43,82 1500 3253 24,7 698 89,02 45,07 602 2 Geviche 33,23 447 201-18,06 251 of \$10 1/min at = 1s

(4) U-	land	der w	none	tanen D	nehachs	L W	- die	Figure	مدلع	_
De	- W	after	eie	westel	ساس	where	- 1-	Rotati	0-	
Ne	rsetz	+ w	nd a	neallegen	d dur	e\ 2\	س ل	eic We		
				o- gio						
(4) I	عد	U-la	frich	tuy ist	- milt	dem	Uwze	guzinn		
	()			cliede.				0.00		
d	اند	beit	Pa-	10 U	-län fe	الم	mone	have	- D-	د۲
0	ulsa	<u> </u>	- 0	he Figu	reacts	e ge	esse.			
	Tat	oelle	41	Lessung	des U	mlante	s de	none	-	
	Dn	LLACLE	<u> </u>	- de	Figure	acts				
CS		V.11	586	537	0.00	(1)2	946	449	11012	2)
				17,72						
Dr-	=11	C 4 4	10,15	77172	18,35	15,04	L 1117	- 31	49	371
	120		ECF	essur	cast	DI 0	0,5	27	168	29,6
(5) Nu										
Der	hi	Eflere	د ا	viere (uind e	ment	durch	leich	45	
ans	cllage	4 in	Nut	atio- ue	setth.	Ansc	leepen	س ۸	en	
100 (المحد	Lpaare	hi	- W W-	N BE	ven	0-	1.		
	Tab	elle 5		essury d						
			AL	James che	10-	FERRI	Luz d	er Fig	wa	
				Langigher		7			,	داه
w 4 **	= t'	/~;~]]							,	داه
			642	615 330 34	0 877 8	150 735	274 7	23 300	,	cls
ω _N	, I^	/~:\]l	300	615 330 34 285 455 43	0 877 8	370 370	360 3	23 700		
ω _N	, I^	/~:\]l	300	615 330 34 285 455 43	0 877 8	370 370	360 3	23 700		
ω _N	, I^	/~:\]l	300	615 330 34	0 877 8	370 370	360 3	23 700		
ω _N	, I^	/~:\]l	300	615 330 34 285 455 43	0 877 8	370 370	374 7 360 3	23 700	1/-:-	

3 Auswertung

Die Berechnungen der Auswertung, und somit auch alle Ergebnisse, finden in Excel-Tabellen statt. Diese sind am Ende der Auswertungen oder Berechnungen der jeweiligen Versuchsteile eingefügt mit allen ihren Ergebnissen. Somit werden in der Auswertung nur die Rechnungen und die relevanten Endergebnisse angegeben.

Außerdem werden in dieser Auswertung alle Frequenzen mit dem Formelzeichen f angegeben, nur die Kreisfrequenzen mit dem Formelzeichen ω .

3.1 Auswertung des Vorversuches

3.1.1 Vorversuch a)

Bei seitlichem Drücken gegen die Figurenachse beim Kräftefreien, symmetrischen Kreisel, wirkt man eine Kraft gegen die ansonsten Räumlich feste Drehimpulsachse. Da letztere in dem Fall eig Konstant ist, braucht eine Veränderung dieser erstaulich viel Kraft, und da jede Aktion eine Reaktion hat, lässt sich somit erklären, warum es schwer ist, die Achse zu bewegen.

Bei kurzer Belastung, springt dementsprechend der Kreisel auch wieder in seine ursprüngliche Rotationsbewegung zurück, verändert nur bei länger einwirkender Kraft die Drehimpulsachse.

3.1.2 Vorversuch b)

Was man beobachtet, ist die Stelle in Abb. 1, durch welche die Achse ω geht. Hier durchwandert die angebrachte Farbscheibe bzw. der beobachtete Punkt mit quasi inverser Winkelgeschwindigkeit den Punkt um den sich die Figurenachse dreht, wodurch sich die Farbe hier nur relativ langsam ändert; undzwar gemäß der Farbverteilung auf der Farbscheibe.

Den gleichen Effekt sieht man auch bei den Farbringen, nur, dass hier sichtbar wird, dass der Punkt relativ zur Figurenachse konstant bleibt, und nicht, dass im Punkt eine Art "Verlangsamung" der Bewegung auftritt.

3.1.3 Vorversuch c)

Der Mittelpunkt der verwaschenen Kreise beschreibt deshalb die Drehimpulsachse, weil ja immernoch die Gesamtrotation des Kreisels; also Rotation um die Figurenachse und die Nutationsrotation beide um die Drehimpulsachse verlaufen und diese somit immernoch der Mittelpunkt der Bewegung darstellt. Da die konzentrischen Ringe auf der Scheibe angebracht sind, müssen

diese somit verwaschen, da das Zentrum dieser Kreise ja die Figurenachse darstellt, welche um die Drehimpulsachse kreist; ohne Nutation würde man allerdings nur noch scharfe Kreise sehen, denn dann entspricht die Figurenachse der Drehimpulsachse.

Findet nun zusätzlich ein Präzessionsbewegung statt, so ist diese daran noch erkennbar, dass das Zentrum der verwaschenen Kreise herumwandert; auch wieder auf einer Kreisbahn.

3.1.4 Vorversuch d)

Man erkennt, dass wenn der Schwerpunkt unterhalb des Lagerungspunktes ist, so ist die Präzessionsbewegung immer gegen die Richtung der Eigenrotation gerichtet. Dies ist die im Skript beschriebene "Ausweichsbewegung" des Kreisels. Wenn aber nun noch ein größeres Gewicht im Spiel ist, wodurch der sich Schwerpunkt auf einmal über dem Lagerungspunkt befindet, so verläuft die Präzession in dieselbe Richtung, wie die Eigenrotation des Kreisels. Dies lässt sich vermutlich darauf schieben, dass nun das Drehmoment, welches oberhalb des Schwerpunktes des Kreisels ansetzen kann, groß genug ist, sodass die Präzession mit dem Kreisel mit rotieren muss.

3.2 Bestimmung der Dämpfungskonstante

Trägt man nun die Gemessenen Werte der Tabelle 1 in ein Diagramm ein und bestimmt die Funktion des sich ergebenen Graphens, erhält man:

Diagramm 1: Frequenz des Kreisels als Funktion der Zeit

Der Fehler der Dämpfungskonstante $\Delta\delta$ berechnet sich nach bekanntem Sche-

ma anhand der Messwerte (Fehler der t-Achse sind vernachlässigbar gering):

$$\Delta \delta = \frac{\ln(f_1 + \Delta f_1) - \ln(f_7 - \Delta f_7)}{t_7 - t_1} - \delta \tag{9}$$

Durch einsetzen der passenden Werte und durch die Bestimmung der Steigung des Graphens durch Excel erhält man folgende Dämpungskonstante δ :

$$\frac{\delta = (7 \pm 0, 07) \cdot 10^{-4} \frac{1}{s}}{100}$$

Zur Bestimmung der Halbwertszeit setzt man in (7) ein und erhält:

$$T_{1/2} = \frac{\ln(2)}{\delta} \qquad \qquad \Delta T_{1/2} = T_{1/2} \cdot \frac{\Delta \delta}{\delta} \tag{11}$$

$$\Rightarrow T_{1/2} = (990 \pm 10) s$$
 (12)

Dämpfungskonstante [1/s]:	0,0007
Delta [1/s]:	7,32505E-06
Halbwertszeit t_0,5 [s]	990,2102579
Delta t_0,5 [s]	10,36190804

Tabelle 6: Exceltabelle zur Berechnung der Dämpfungskonstante und die Halbwertszeit der Kreiselfrequenz

3.3 Präzession

Zuerst widmet man sich den Beobachtungen in Tabelle 2. Es fällt auf, dass die gemessenen Präzessionsdauern alle ähnlich groß sind und die Vermutung liegt nahe, dass der Winkel der Drehimpulsachse keinen Einfluss auf die Prräzessionszeit T_P nimmt. Damit kann man die in der Einleitung genannte Unabhängigkeit der Präzessionsdauer von der räumlichen Position der Drehimpulsachse bestätigen.

Das nächste Ziel ist die Bestimmung des Trägheitsmomentes I_z . Dazu werden zunächst aus den gemessenen Anfangsfrequenzen f_A , der gemessenen

Präzessionsdauern T_P und der soeben bestimmten Dämpfungskonstante δ mittels (6) die Endfrequenzen f_E der Messungen berechnet. Aufgrund der hohen Halbwertszeit des Kreisels nimmt man eine lineare Abnahme der Frequenzen über die - relativ - kleinen Präzessionsdauenr an. Somit kann man dann die Durchschnittsfrequenzen berechnen, mit der dann später I_z bestimmt wird.

$$f_E = f_A \cdot e^{-\delta T_P} \qquad und \tag{13}$$

$$f_E = f_A \cdot e^{-\delta T_P} \qquad und$$

$$\Delta f_E = f_E \sqrt{\left(\frac{\Delta f_A}{f_A}\right)^2 + \left(\frac{\Delta T_P}{T_P}\right)^2 + \left(\frac{\Delta \delta}{\delta}\right)^2}$$
(13)

Rechnet man nun die Frequenzen der einzelnen Messungen in Kreisfrequenzen um anhand der Beziehung

$$\omega = 2\pi f \tag{15}$$

lässt sich dann die durchschnittliche Kreisfrequenz $\bar{\omega_F}$ berechnen:

$$\bar{\omega_F} = \frac{\omega_A + \omega_E}{2} \qquad \qquad \Delta \bar{\omega_F} = \sqrt{\left(\frac{\Delta \omega_A}{2}\right)^2 + \left(\frac{\Delta \omega_E}{2}\right)^2} \qquad (16)$$

Messung	f_A [1/min]	Delta f_A [1/min]	f_E [1/min]	Delta f_E [1/min]	Präzessionsdauer T_P [s]	Delta T_P [s]
1	689	10	628,6774148	9,154961351	130,89	1
0,15 m	600	10	552,9577821	9,236178918	116,64	1
1 Gewicht	446	10	419,5492631	9,415344243	87,34	1
	252	10	243,1333571	9,650080398	51,17	1
2	685	10	638,7702466	9,347503011	99,82	1
0,2 m	601	10	565,1509901	9,418853856	87,86	1
1 Gewichte	449	10	428,5930588	9,55249427	66,45	1
	250	10	243,6217744	9,746585736	36,92	1
3	681	10	650,2262025	9,564128133	66,06	1
0,15 m	603	10	578,6195594	9,607475895	58,96	1
2 Gewichte	448	10	434,4666698	9,703686424	43,82	1
	253	10	248,6632294	9,830230316	24,7	1
4	698	10	673,5303802	9,664217053	50,98	1
0,2 m	602	10	583,3039732	9,699945847	45,07	1
2 Gewichte	447	10	436,7223308	9,775434125	33,23	1
	251	10	247,8468312	9,875954188	18,06	1
Messung	omega_A [1/s]	Delta omega_A [1/s]	omega_E [1/s]	Delta omega_E [1/s]	omega quer [1/s]	Delta omega quer [1/s]
1	72,15191128	-	65,83494492	0,958705311	68,9934281	0,709883544
0,15 m	62,83185307	1,047197551	57,90560353		60,3687283	0,712761997
1 Gewicht	46,70501078	-	43,9350961	0,985972544	45,32005344	0,719160025
	26,38937829		25,46086562	1,010554056	25,92512195	0,727640401
2	71,73303226		66,8918638		69,31244803	0,716729676
0,2 m	62,93657283	-	59,18247329		61,05952306	0,719286008
1 Gewichte	47,01917005	-	44,88216016	-	45,9506651	0,724101606
	26,17993878		25,51201256		25,84597567	0,731158275
3	71,31415324	-	68,09152869		69,70284097	0,724522504
0,15 m	63,14601234	-	60,59289857	-	61,86945545	0,72609312
2 Gewichte	46,91445029	,	45,49724327	1,016167666	46,20584678	0,729592255
	26,49409805	1,047197551	26,03995249	-	26,26702527	0,734221838
4	73,09438907	-	70,53193648	-	71,81316278	
0,2 m	63,04129258		61,08344923		62,06237091	0,729455876
2 Gewichte	46,80973054	1,047197551	45,73345554	1,023681068	46,27159304	0,732213364
	26,28465854	1,047197551	25,95445947	1,034207504	26,119559	0,735902146

Tabelle 7: Exceltabelle zur bestimmung von $\omega_E,$ dessen Fehler, $\bar{\omega}$ und dessen Fehler

Als nächstes trägt man die Durchschnittskreisfrequenzen $\bar{\omega}$ der einzelnen Messungen gegen die vergangenen Präzessionsdauern auf, und lässt die Steigung der sich ergebenen Ausgleichsgerade, welche durch den Ursprung geht, errechnen. Es ergibt sich folgendes Diagramm:

Diagramm 2: Präzessionszeiten der einzelnen Messungen als Funktionen der jeweiligen Kreisfrequenzen

Die Fehler der Steigungen berechnen sich trivialerweise als (Fehler der ω -Achse sind diesmal nicht zu vernachlässigen):

$$\Delta s_i = \frac{T_{P4_i} - \Delta T_{P4_i}}{\omega_{4_i} + \Delta \omega_{4_i}} - s_i \tag{17}$$

Als nächstes rechnet man für jede der 4 Messungen das sich ergebende Trägheitsmoment nach (5) aus und bildet daraus den Mittelwert; dieser stellt das Trägheitsmoment I_z des Kreisels dar.

$$\omega_P = \frac{mgl}{I_z \omega_F} \qquad \Rightarrow I_z = \frac{mgl}{\omega_P \bar{\omega_F}} \tag{18}$$

Mit der Erkenntnis, dass

$$s = \frac{T_P}{\bar{\omega_F}} \qquad \text{und} \qquad \omega_P = \frac{2\pi}{T_P} \qquad (19)$$

folgt daraus, dass gilt:

$$\Rightarrow I_{z_i} = \frac{mgls_i}{2\pi} \qquad \Rightarrow \Delta I_{z_i} = I_{z_i} \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta s_i}{s_i}\right)^2} \qquad (20)$$

Nun bestimmt man aus den vier Werten den Mittelwert und dessen Fehler. Somit erhält man das gesuchte Trägheitsmoment I_z :

$$I_z = \frac{1}{4} \sum_{i=1}^{4} I_{z_i} \qquad \Delta I_z = \frac{1}{4} \sqrt{\sum_{i=1}^{4} \Delta I_{z_i}^2}$$
 (21)

Durch einsetzen erhält man folgendes Trägheitsmoment:

$$I_z = (4, 41 \pm 0, 05) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$$
 (22)

Will man das gefundene Trägheitsmoment I_z mit einem Literaturwert vergleichen, so setzt man die bekannten Größen des Kreisels in (8) ein und erhält:

$$\underline{I_{z_{lit}}} = 4,298 \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2 \tag{23}$$

Vergleicht man nun diese Werte, so sieht man:

$$\sigma = \frac{|I_{z_{lit}} - I_z|}{\Delta I_z} = \underline{\underline{2,2}} \tag{24}$$

s_i [s^2]	Delta s_i [s^2]	l_i [m]	Delta l_i [m]
1,9188	0,012704887	0,15	0,002
1,4402	0,029571036	0,2	0,002
0,9492	0,022989544	0,15	0,002
0,7156	0,015637167	0,2	0,002

Masse Gewichte m_G [kg]	Ortsfaktor Erde g [m/s^2]	I_z_i [kgm^2]	Delta I_z_i [kgm^2]
0,00985	9,81	0,004426356	6,58946E-05
0,00985	9,81	0,004429739	0,000101168
0,0197	9,81	0,004379297	0,000121076
0,0197	9,81	0,004402057	0,000105787

I_z quer [kgm^2]:	0,004409362
Delta I_z quer [kgm^2]:	5,02664E-05
Radius Kugel r_m [m]:	0,0508
Masse Kugel m_k [kg]	4,164
I_literatur [kgm^2]:	0,004298314
Sigma_l_z	2,20919506

Tabelle 8: Exceltabelle zur Bestimmung und Vergleich von ${\cal I}_z$

3.4 Trägheitsmomente

Als nächstes widmet man sich der Bestimmung des Trägheitsmomentes I_x . Dazu wird erstmals eine vermutung über die Größe dieses Werts anhand den Beobachtungen in Tabelle 4 gemacht. Man nimmt sich (4) zuhilfe und merkt, dass die Trägheitsmomente gleich sind, wenn gilt, dass $\Omega=1$, da sich dann die Differenz I_x-I_z zu null ergibt.

Ist nun $\Omega>1$, so wird der Bruch negativ und somit ist I_x zwangsmäßig kleiner als I_z . Im Falle $\Omega<1$ ist es genau andersherum.

Trägt man nun Tabelle 4 in ein Dieagramm auf (die Einheiten werden vorher passend umgerechnet in Tabelle 9) entsteht folgender Graph mit passender Tabelle:

Frequenz f [1/min]	586	537	496	477	444	419	402	375	344	321
Delta f [1/min]	10	10	10	10	10	10	10	10	10	10
10*Omega [s]	16,15	17,72	18,95	19,84	21,17	22,26	23,67	25,59	27,68	29,64
Delta 10*Omega [s]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
F	0.7000000	0.05	0.000007	7.05	7.4	c 000000	6.7	5.05	F 700000	F 05
Frequenz f [1/s]	9,766666667		8,266667	7,95		6,983333	6,7		5,733333	5,35
Delta f [1/s]	0,166666667	0,166667	0,166667	0,166667	0,166667	0,166667	0,166667	0,166667	0,166667	0,166667
omega_f [1/s]	61,3657765	56,23451	51,941	49,95132	46,49557	43,87758	42,09734	39,26991	36,0236	33,61504
Delta omega_f [1/s]	1,047197551	1,047198	1,047198	1,047198	1,047198	1,047198	1,047198	1,047198	1,047198	1,047198
Omega [s]	1,615	1,772	1,895	1,984	2,117	2,226	2,367	2,559	2,768	2,964
Delta Omega [s]	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
omega_Omega [1/s]	3,890517218	3,545816	3,315665	3,166928	2,967967	2,822635	2,654493	2,455328	2,269937	2,119833
Delta omega_Omega [1/s]	0,120449449	0,100051	0,087485	0,079812	0,070098	0,063402	0,056073	0,047974	0,041003	0,03576

Tabelle 9: Exceltabelle zur Umrechnung der gemessenen Größen

Diagramm 3: Winkelgeschwindigkeit ω_Ω als Funktion der Figurenwinkelgeschwindigkeit ω_f

Der Fehler berechnet sich wieder nach altbekanntem Muster (Fehler der ω_f -Achse sind nicht zu vernachlässigen):

$$\Delta q = \frac{(\omega_{\Omega_{10}} + \Delta\omega_{\Omega_1}) - (\omega_{\Omega_1} - \Delta\omega_{\Omega_{10}})}{(\omega_{f1}0 - \Delta\omega_{f1}0) - (\omega_{f1} + \Delta\omega_{f1}0)} - q \tag{25}$$

Berechnet man nun I_x mittels (4), dem soeben bestimmten Trägheitsmoment I_z und der ermittelten Steigung q des Graphens aus Diagramm 3:

$$\Rightarrow I_x = \frac{I_z(\Omega - 1)}{\omega_F} + I_z = -\frac{I_z}{q - 1} \tag{26}$$

$$\Delta I_x = \sqrt{\left(\frac{\Delta I_z}{q-1}\right)^2 + \left(\frac{\Delta q I_z}{(q-1)^2}\right)^2} \tag{27}$$

Einsetzen liefert dann:

$$I_x = (4,71 \pm 0,08) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$$
 (28)

Der Vergleich mit dem vorherig bestimmten Wert für I_z liefert einem:

$$\sigma = \frac{|I_x - I_z|}{\sqrt{(\Delta I_x)^2 + (\Delta I_z)^2}} = \underline{3, 26}$$
 (29)

Dies ist schon eine signifikante Abweichung; hierzu mehr in der Diskussion.

3.5 Nutation

Zuletzt widmet man sich der Bestimmung des gleichen Trägheitsmomentes I_x wie eben, nur anhand der Nutationsfrequenz f_N . Die gemessenen Frequenzen werden nun gegeneinander aufgetragen und anhand der Steigung über (2) zu I_x verrechnet. Dazu ist der Wert I_z natürlich essentiell.

Diagramm 4: Nutationfrequenz f_N als Funktion der Eigenfrequenz f

Der Fehler Δq berechnet sich wiedermal als:

$$\Delta q = \frac{(f_{N_{max}} + \Delta f_{N_{max}}) - (f_{N_{min}} - \Delta f_{N_{min}})}{(f_{max} - \Delta f_{max}) - (f_{max} + \Delta f_{max})} - q \tag{30}$$

Somit hat man jetzt alle nötigen Werte bzw. Größen zur Bestimmung von I_x . Aus (2) folgt bei ausreichend geringen Nutationswinkeln:

$$f_N = \frac{I_z}{I_x} f_F$$
 $\Rightarrow I_x = \frac{f_N}{f} I_z$ (31)

Mit $q = \frac{f_N}{f}$ gilt also:

$$I_x = \frac{I_z}{q} \qquad \Delta I_x = I_x \sqrt{\left(\frac{\Delta I_z}{I_z}\right)^2 + \left(\frac{\Delta q}{q}\right)^2}$$
 (32)

Einsetzen mit den passenden Werten liefert folgendes, offensichtlich 2-fach zu großes Ergebnis:

$$I_x = (9, 9 \pm 2, 1) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$$
 (33)

Woran dies liegt wird in der Diskussion aufgegriffen; Fakt ist, dass die Steigung verdoppelt werden muss bzw. das Ergebnis aus (32) halbiert werden muss. Also folgt für I_x :

$$\underline{I_x = (5, 0 \pm 1, 0) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2}$$
 (34)

Vergleicht man diesen Wert nun mit dem aus der Präzession bestimmten Wert, so erhält man:

$$\sigma = \frac{|I_{x_P} - I_{x_N}|}{\sqrt{(I_{x_P})^2 + (I_{x_N})^2}} = 0,25$$
(35)

q	0,4435
delta q	0,0917113
I_z	0,0044094
delta I_z	0,0001239
I_x	0,0099422
Delta I_x	0,0020748
I_x halbiert	0,0049711
Delta I_x halbiert	0,0010374
sigma I_x	0,2484783

Tabelle 10: Exceltabelle zur Berechnung und zum Vergleich von ${\cal I}_{x_N}$

4 Zusammenfassung und Diskussion

4.1 Zusammenfassung

In diesem Versuch haben wir mit einem Kreisel experimentiert und sind seinem Verhalten auf den Grund gegangen. Dabei haben wir besonders das Dämpfungsverhalten, das Präzessionsverhalten und die Nutation untersucht. Zuerst haben wir uns mit dem Kreisel ganz allgemein auseinandergesetzt und

sind mit ihm vertraut geworden, damit wir im Anschluss die Experimente möglichst Reibungsfrei durchführen können. In der Auswertung ist man dann nach Analyse des Dämpfungsverhalten des Kreisels auf das Präzessionsverhalten gekommen und hat dadurch dann das Trägheitsmoment I_z des Kreisels bestimmt. Die weiteren beiden Berechnungen waren der Ermittlung von I_x gewidmet. Dieses Trägheitsmoment sollte I_z entsprechen (leicht größer wegen dem Stab), da in unserem Fall der Kreisel eine Kugel war. Aus dieser Erkenntnis kann man dann sogar einen Literaturwert zum Vergleich von I_z ziehen.

4.2 Diskussion

Über die ersten Teile des Versuches ist nicht viel zu sagen, außer, dass die Ergebisse ziemlich plausibel wirken bzw. mit den gemachten Erfahrungen übereinstimmen könnten; man hat keinen Vergleichswert.

Eine ziemlich große Abweichung ist in Tabelle 2 zu erkennen. Zwar liegen die Werte relativ dicht bei einander, aber sind doch etwas zu weit voneinander entfernt um wirklich aussagekräftig sein zu können. Dieser generelle Fehler der gemessenen Präzessionsdauer könnte daran liegen, dass man keinen festen Beobachtungspunkt wählen konnte, von dem man eine volle Umrundung gut wahrnehmen konnte, denn eine leichte Bewegung des Beobachters führt zu unterschiedlich gemessenen Zeiten, nur wegen des Aufbaus des Experimentes.

Beim nächsten Teil, bei dem man das Trägheitsmoment über die Präzessionszeit bestimmt hat, haben wir eine nicht signifikante Abweichung von $\sigma = 2, 2$. Dennoch ist diese etwas ärgerlich. Woran könnte sie liegen?

Zum Einen wäre eine Möglichkeit, dass die Eigenfrequenz eigentlich geringer war, als der angegebene Messwert, denn nach der Messung verging noch eine geringe Zeit bis zur Einstellung des Präzessionswinkels. Außerdem kann es hierbei sein, dass wir beim Ausrichten des Stabes diesen direkt berührt haben (anstatt des Kugellagers bzw. nur teilweise) und somit durch Reibungseffekte unabsichtlich eine noch kleinere Frequenz als gemessen eingestellt haben. Hinzu kommt noch die vorherig angesprochene mögliche Fehlerquelle der Fehlmessung der Präzessionszeit.

Als nächstes widmet man sich der signifikanten Abweichung $\sigma=3,26$ bei der Berechnung des Trägheitsmomentes I_x . Der erste Fehler ist überhaupt der Vergleich mit dem Trägheitsmoment I_z , weil sich diese intrinsisch voneinander unterscheiden, da wir beim Experiment eine Kugel mit Stab haben, und

somit nicht alle Trägheitsachsen gleich sein können. Ansonsten könnte wieder eine Abweichung der gemessenen Frequenzen, aufgrund ähnlicher Effekte wie eben besprochen, teilweise verantwortlich zu machen, da zum Einstellen einer Nutationsbewegung der Stab direkt berührt werden musste.

Das aber letztere Sache einen eher geringeren Faktor darstellt, lässt sich am Vergleich der beiden Trägheitsmomente I_x festmachen, denn diese beiden jeweiligen Ergebnisse liegen dicht aneinander und haben eine sigma-Abweichung von nur $\sigma = 0, 25$.

Allerdings ist uns bei der Messung des letzten Falls ein großer, aber leicht zu korrigierender Fehler unterlaufen: Die Nutationsfrequenz wurde halb so groß gemessen, wie sie eigentlich war. Bei dem Stroboskop ist es bei hohen Frequenzen nur schwer zu erkennen, ob man eine Umdrehung aussetzt oder nicht. Sprich: man kann nur jede zweite Umdrehung beleuchten, es aber aufgrund der hohen Nutationsfrequenz mit bloßen Auge aber nicht erkennen. Fängt man also bei einer zu geringen Blitzfrequenz an, so wird nur ein vielfache Umdrehung gemessen, wodurch somit immer eine deutlich geringere Frequenz vermessen wird.

Mit der Erkenntnis, dass unsere einzige signifikante σ -Abweichung vermutlich einem Fehlvergleich zugrunde liegt, lässt sich sagen, dass uns der Versuch gut gelungen ist; alle zu zeigenden Effekte und Phänomene wurden erfolgreich demonstriert.