```
import pandas as pd
import numpy as np
# La groupby si utilizza quando abbiamo a che fare con una variabile
categorica e una continua.
# Ad esempio, se abbiamo una variabile categorica A A B A C B A, e una
continua 3,21,10,4,65,33,26, possiamo raggruppare
# in base ad un canone scelto per la variabile continua. Ad esempio,
se volessimo conoscere la somma della variabile continua
# rispetto alla variabile categorica, otterremo: variabile
categorica: A B C
                    variabile continua: Boh sti cavoli
# tanto il concetto è chiaro
mpg = pd.read csv("mpg.csv")
mpg
           cylinders displacement horsepower weight acceleration \
      mpg
0
     18.0
                              307.0
                                           130
                                                  3504
                   8
                                                                 12.0
1
     15.0
                   8
                              350.0
                                           165
                                                  3693
                                                                 11.5
2
                   8
     18.0
                              318.0
                                           150
                                                  3436
                                                                 11.0
3
     16.0
                   8
                              304.0
                                           150
                                                  3433
                                                                 12.0
4
     17.0
                   8
                                           140
                              302.0
                                                  3449
                                                                 10.5
     . . .
                                           . . .
                                . . .
393
     27.0
                   4
                              140.0
                                            86
                                                  2790
                                                                 15.6
    44.0
394
                   4
                              97.0
                                            52
                                                  2130
                                                                 24.6
395
                                                                 11.6
     32.0
                   4
                              135.0
                                            84
                                                  2295
                                            79
396
    28.0
                   4
                              120.0
                                                  2625
                                                                 18.6
                                            82
397
    31.0
                              119.0
                                                  2720
                                                                 19.4
     model_year
                 origin
                                               name
0
                         chevrolet chevelle malibu
             70
                      1
1
             70
                      1
                                  buick skylark 320
2
             70
                      1
                                 plymouth satellite
3
             70
                      1
                                      amc rebel sst
4
             70
                      1
                                        ford torino
            . . .
. .
                      1
                                    ford mustang ql
393
             82
                      2
394
             82
                                          vw pickup
395
             82
                      1
                                      dodge rampage
                      1
396
             82
                                        ford ranger
             82
                      1
397
                                         chevy s-10
[398 rows x 9 columns]
# Prendiamo model year come variabile categorica.
```

```
# Vediamo quindi le occorrenze di model year
mpg["model year"].value counts()
model_year
73
      40
      36
78
76
      34
82
      31
75
      30
70
      29
79
      29
80
      29
      29
81
71
      28
72
      28
77
      28
74
      27
Name: count, dtype: int64
# Quindi, nel 73 abbiamo avuto 40 auto vendute, nel 78 ne abbiamo
vendute 36, etc
# Da quanto si vede, gli anni non sono in fila. Poichè questa è una
variabile categorica, l'ordinamento
# non è importante. Comunque, dato che stiamo parlando di anni,
conviene ordinarli dal più vecchio al più recente
mpg["model_year"].value_counts().sort_index()
model_year
70
      29
71
      28
72
      28
73
      40
74
      27
75
      30
76
      34
77
      28
78
      36
79
      29
      29
80
81
      29
```

```
82
      31
Name: count, dtype: int64
# Vediamo quindi ora la funzione groupby. Essa mostrerà come le
variabili numeriche vengono raggruppate
# in base al valore di una variabile categorica.
mpg group = mpg.groupby("model year")
mpg group
<pandas.core.groupby.generic.DataFrameGroupBy object at</pre>
0x000001F491CECAD0>
mpg group.sum()
                   cylinders displacement \
              mpg
model_year
70
            513.0
                         196
                                     8161.0
71
            595.0
                         156
                                     5873.0
72
            524.0
                         163
                                     6114.5
73
            684.0
                         255
                                    10275.0
74
            613.0
                         142
                                     4637.0
75
            608.0
                         168
                                     6166.0
76
            733.5
                         192
                                     6725.0
77
            654.5
                         153
                                     5359.0
78
            866.2
                         193
                                     6401.0
79
            727.7
                         169
                                     5994.0
            977.2
80
                         120
                                     3359.0
81
            879.7
                         134
                                     3924.0
82
            983.0
                         130
                                     3995.0
                                                    horsepower
                                                                weight
model year
70
            1301651501501401982202152251901701601502259595...
                                                                 97811
71
            889095?100105100881001651751531501801701751107...
                                                                 83872
72
            9580549086165175150153150208155160190971501301...
                                                                 90656
73
            1751501451371501981501581502152251751051001008...
                                                                136761
74
            95?1001006780657510011010514015015014015083677...
                                                                 77704
75
            9510572721701451501481101051109511011012975831...
                                                                 95304
```

76	8681927983140150120152100105819052607053100781	104677
77	6880589670145110145130110105100981801701901497	83926
78	4866527060110140139105958588100901058511012014	103025
79	1158588901101301291381351551421251507165808077	88605
80	7660706590889090789075927565105654848676767?67	70663
81	848492110845864606765626863656574?757510074807	73165
82	88888885849092?7468686370887570676767110859211	76060
model_year 70 71 72 73 74 75 76 77 78 79 80 81 82	acceleration origin \ 375.5 38 424.0 40 423.5 43 572.5 55 437.5 45 481.5 44 542.0 50 432.2 44 569.0 58 458.6 37 491.1 64 472.9 57 515.8 51	
model year	name	
70 71 72 73 74 75 76	chevrolet chevelle malibubuick skylark 320plym datsun pl510chevrolet vega 2300toyota coronafo toyota corona hardtopdodge colt hardtopvolkswa buick century 350amc matadorchevrolet malibufo plymouth dusterford maverickamc hornetchevrole plymouth valiant customchevrolet novamercury m fiat 131opel 1900capri iidodge coltrenault 12t	

honda accord cvccbuick opel isuzu deluxerenaul...

volkswagen rabbit custom dieselford fiestamazd...

pontiac lemans v6mercury zephyr 6ford fairmont... vw rabbittoyota corolla tercelchevrolet chevet...

plymouth reliantbuick skylarkdodge aries wagon...

chevrolet cavalierchevrolet cavalier wagonchev...

77

78

79 80

81

82

```
# E' uscito fuori uno schifo. Questo perché abbiamo effettuato la
somma rispetto alla variabile categorica
# model year sia delle variabili numeriche sia delle variabili
categorica. Quello che ci conviene fare
# e' prendere in considerazione solo le variabili numeriche. Come si
fa? Per prima cosa vediamo qual è il tipo
# delle variabili
mpg.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
     Column
                   Non-Null Count
                                   Dtype
- - -
 0
                   398 non-null
     mpg
                                   float64
1
     cylinders
                  398 non-null
                                   int64
 2
     displacement 398 non-null
                                   float64
 3
                  398 non-null
                                   object
    horsepower
4
                   398 non-null
    weight
                                   int64
 5
     acceleration 398 non-null
                                   float64
 6
                   398 non-null
     model year
                                   int64
7
     origin
                   398 non-null
                                   int64
8
     name
                   398 non-null
                                   obiect
dtypes: float64(3), int64(4), object(2)
memory usage: 28.1+ KB
# A quanto pare non c'è bisogno di cambiare il tipo di alcune
variabili. Dobbiamo quindi prendere in
# considerazione le sole variabili numeriche. Per farlo:
mpg group = mpg.groupby('model year')
[mpg.select dtypes(include='number').columns].sum()
mpg group
              mpg cylinders displacement weight acceleration
model year
model year
70
            513.0
                         196
                                    8161.0
                                             97811
                                                           375.5
2030
                         156
71
            595.0
                                    5873.0
                                             83872
                                                           424.0
1988
                                                           423.5
72
            524.0
                         163
                                             90656
                                    6114.5
2016
                         255
73
            684.0
                                   10275.0 136761
                                                           572.5
2920
```

74	613.0	142	4637.0	77704	437.5
1998 75	608.0	168	6166.0	95304	481.5
2250 76	733.5	192	6725.0	104677	542.0
2584 77	654.5	153	5359.0	83926	432.2
2156					
78 2808	866.2	193	6401.0	103025	569.0
79	727.7	169	5994.0	88605	458.6
2291 80	977.2	120	3359.0	70663	491.1
2320 81	879.7	134	3924.0	73165	472.9
2349 82	983.0	130	3995.0	76060	515.8
2542	903.0	150	3993.0	70000	313.0
	origin				
model_year					
70	38				
71	40				
72 73	43 55				
73 74	45				
75 75	44				
76	50				
77	44				
78	58				
79	37				
80	64				
81	57				
82	51				

Se fossimo interessati ad una sola variabile, ad esempio acceleration:

mpg.groupby('model_year').sum(["acceleration"])

	mpg	cylinders	displacement	weight	acceleration
origin		-	•	-	
model_year					
70	513.0	196	8161.0	97811	375.5
38					
71	595.0	156	5873.0	83872	424.0

40					
72	524.0	163	6114.5	90656	423.5
43					
73	684.0	255	10275.0	136761	572.5
55 74	613.0	142	4637.0	77704	437.5
45	013.0	142	4037.0	77704	437.3
75	608.0	168	6166.0	95304	481.5
44					
76	733.5	192	6725.0	104677	542.0
50	654.5	150	5350.0	02026	422.2
77 44	654.5	153	5359.0	83926	432.2
78	866.2	193	6401.0	103025	569.0
58	00012	133	010110	103023	303.0
79	727.7	169	5994.0	88605	458.6
37					
80	977.2	120	3359.0	70663	491.1
64 81	070 7	124	2024 0	72165	472.0
57	879.7	134	3924.0	73165	472.9
82	983.0	130	3995.0	76060	515.8
51		_3*	2300.0		2 20 . 0

Se volessimo raggruppare il dataframe rispetto a acceleration e cylinders.

mpg.groupby('model_year').sum(["acceleration","cylinders"])

	mpg	cylinders	displacement	weight	acceleration
origin					
model_year					
70	513.0	196	8161.0	97811	375.5
38					
71	595.0	156	5873.0	83872	424.0
40					
72	524.0	163	6114.5	90656	423.5
43					
73	684.0	255	10275.0	136761	572.5
55					
74	613.0	142	4637.0	77704	437.5
45					
75	608.0	168	6166.0	95304	481.5
44					
76	733.5	192	6725.0	104677	542.0
50					
77	654.5	153	5359.0	83926	432.2
44					
78	866.2	193	6401.0	103025	569.0

```
58
79
            727.7
                         169
                                     5994.0
                                              88605
                                                            458.6
37
            977.2
                         120
                                                            491.1
80
                                     3359.0
                                              70663
64
81
            879.7
                         134
                                     3924.0
                                              73165
                                                            472.9
57
82
            983.0
                         130
                                     3995.0
                                              76060
                                                            515.8
51
# Per valori uguali di acceleration, avremo valori di cylinders.
# Possiamo anche raggruppare le singole variabili. Se, ad esempio,
volessimo calcolare la media
# delle cilindrate per ogni anno:
cylinders_per_year = mpg.groupby('model_year')['cylinders'].mean()
cylinders per year
model year
      6.758621
70
      5.571429
71
72
      5.821429
73
      6.375000
74
      5.259259
75
      5.600000
76
      5.647059
77
      5.464286
78
      5.361111
79
      5.827586
80
      4.137931
      4.620690
81
82
      4.193548
Name: cylinders, dtype: float64
# Possiamo considerare anche più di una variabile. Se, ad esempio,
volessimo la media di cylinders
# e weight per anno:
cylinders weight per year = mpg.groupby('model year')
[['cylinders', 'weight', 'acceleration']].mean()
cylinders weight per year
            cylinders
                            weight acceleration
model_year
70
             6.758621 3372.793103
                                        12.948276
71
             5.571429 2995.428571
                                        15.142857
```

```
72
              5.821429
                        3237.714286
                                          15.125000
73
              6.375000
                        3419.025000
                                          14.312500
74
              5.259259
                        2877.925926
                                          16.203704
75
              5,600000
                        3176,800000
                                          16.050000
76
              5.647059
                        3078.735294
                                          15.941176
77
              5,464286
                        2997.357143
                                          15.435714
78
              5.361111
                        2861.805556
                                          15.805556
79
              5.827586
                        3055.344828
                                          15.813793
80
              4.137931
                                          16.934483
                        2436.655172
81
              4.620690
                        2522.931034
                                          16.306897
82
              4.193548
                        2453.548387
                                          16.638710
# Possiamo anche raggruppare rispetto a più di una colonna.
# Supponiamo di voler calcolare la somma di cylinders e weight
rispetto a
# model year e origin. In questo caso:
a = mpg.groupby(['model year','origin'])
[['cylinders', 'weight', 'acceleration']].mean()
                                              acceleration
                    cylinders
                                     weight
model year origin
70
            1
                     7.636364
                                3716.500000
                                                 11.977273
            2
                     4.000000
                                2309,200000
                                                 16.500000
            3
                     4.000000
                                2251,000000
                                                 14.750000
            1
71
                     6,200000
                                3401,600000
                                                 14.575000
            2
                     4.000000
                                2024,000000
                                                 16.750000
            3
                                1936.000000
                     4.000000
                                                 16.375000
72
            1
                     6.888889
                                3682.666667
                                                 14.055556
            2
                     4.000000
                                2573,200000
                                                 18.700000
            3
                     3.800000
                                2300,400000
                                                 15.400000
73
            1
                     7.241379
                                3821.448276
                                                 13.620690
            2
                                2335.714286
                     4.000000
                                                 16.428571
            3
                                2397.250000
                     4.250000
                                                 15.625000
74
            1
                     6.266667
                                3503.333333
                                                 15.966667
                                                 15.333333
            2
                     4.000000
                                2139.333333
            3
                     4.000000
                                2053.000000
                                                 17.666667
75
            1
                     6.400000
                                3533.200000
                                                 16.350000
            2
                                2571,166667
                     4.000000
                                                 15.083333
            3
                                                 16.000000
                     4.000000
                                2303,250000
76
            1
                     6.363636
                                3405.409091
                                                 15.786364
            2
                     4.250000
                                2611,000000
                                                 16.050000
            3
                                                 16.575000
                     4.500000
                                2217.500000
            1
77
                     6,222222
                                3422.000000
                                                 15.238889
            2
                                2138.750000
                                                 15.000000
                     4.000000
            3
                                2295.833333
                     4.166667
                                                 16.316667
```

```
78
                    6.000000
                               3141.136364
                                                15.545455
           2
                    4.833333
                               2691.666667
                                                16.233333
           3
                    4.000000
                               2221.250000
                                                16.200000
           1
79
                    6.260870
                               3210.217391
                                                15.243478
           2
                                                18.400000
                    4.250000
                               2693.750000
           3
                    4.000000
                               1997.500000
                                                17,200000
           1
80
                               2822.428571
                                                16.800000
                    4.285714
           2
                    4.111111
                               2348,000000
                                                18.366667
           3
                               2290.307692
                    4.076923
                                                16.015385
           1
81
                    4.923077
                               2695,000000
                                                16.053846
           2
                               2725,000000
                    4.500000
                                                17.500000
           3
                    4.333333
                               2269, 166667
                                                16.183333
82
           1
                    4.300000
                               2637.750000
                                                16.670000
           2
                    4.000000
                               2055.000000
                                                19.950000
           3
                    4.000000
                               2132.777778
                                                15.833333
# Consideriamo una delle colonne numeriche: Ad esempio, consideriamo
la colonna weight.
# Per valori uguali di model year, avremo valori diversi di origin, e
per diversi valori di origin avremo
# valori diversi di weight. Questo sta a significare che tra il primo
livello di aggregazione (model year)
# ed il secondo livello (origin) c'è un AND nascosto.
# Consideriamo quindi un valore di weight, ad esempio 2309.200000.
Questo ci dice che weight è pari
# a 2309.200000 quando (where!!!) model year = 70 AND origin = 2!!.
# Se abbiamo più di un indice, avremo a che fare con un multiindex.
mpg.groupby(['model year','origin'])
[['cylinders','weight','acceleration']].mean().index
MultiIndex([(70, 1),
            (70, 2),
            (70, 3),
            (71, 1),
            (71, 2),
            (71, 3),
            (72, 1),
            (72, 2),
            (72, 3),
            (73, 1),
            (73, 2),
            (73, 3),
            (74, 1),
            (74, 2),
            (74, 3),
```

```
(75, 1),
             (75, 2),
             (75, 3),
             (76, 1),
             (76, 2),
             (76, 3),
             (77, 1),
             (77, 2),
             (77, 3),
             (78, 1),
             (78, 2),
             (78, 3),
             (79, 1),
             (79, 2),
             (79, 3),
(80, 1),
             (80, 2),
             (80, 3),
             (81, 1),
             (81, 2),
             (81, 3),
             (82, 1),
             (82, 2),
             (82, 3)],
            names=['model year', 'origin'])
# CVD
# POSSIAMO ANCHE MOSTRARE UNA SOLA COLONNA CORRISPONDENTE AI NOSTRI
INDICI. AD ESEMPIO, CONSIDERIAMO LA
# SOLITA COLONNA WEIGHT.
mpg.groupby(['model year','origin'])['weight'].mean()
model year
            origin
70
             1
                        3716.500000
             2
                        2309.200000
             3
                        2251.000000
71
             1
                        3401.600000
             2
                       2024.000000
             3
                        1936.000000
            1
72
                        3682.666667
             2
                        2573.200000
             3
                        2300.400000
             1
73
                       3821.448276
```

	2	2335.714286
	3	2397.250000
74	1	3503.333333
	2	2139.333333
	3	2053.000000
75	1	3533.200000
	2	2571.166667
	3 1	2303.250000
76		3405.409091
	2	2611.000000
	3	2217.500000
77	1	3422.000000
	2	2138.750000
	3	2295.833333
78	1	3141.136364
	2	2691.666667
7.0	3	2221.250000
79	1	3210.217391
	2	2693.750000
00	3	1997.500000
80	1	2822.428571
	2 3	2348.000000
01	3 1	2290.307692
81	2	2695.000000 2725.000000
	3	2269.166667
82	1	2637.750000
02	2	2055.000000
	3	2132.777778
Name:	weight, dtype	
	,,	

CALCOLO STATISTICHE DI BASE IN SEGUITO A RAGGRUPPAMENTO

mpg.groupby('model_year').describe().transpose()

<pre>model_year \</pre>		70	71	72	73
mpg	count	29.000000	28.000000	28.000000	40.000000
	mean	17.689655	21.250000	18.714286	17.100000
	std	5.339231	6.591942	5.435529	4.700245
	min	9.000000	12.000000	11.000000	11.000000

	25%	14.000000	15.500000	13.750000	13.000000
	50%	16.000000	19.000000	18.500000	16.000000
	75%	22.000000	27.000000	23.000000	20.000000
	max	27.000000	35.000000	28.000000	29.000000
cylinders	count	29.000000	28.000000	28.000000	40.000000
	mean	6.758621	5.571429	5.821429	6.375000
	std	1.724926	1.665079	2.073708	1.807215
	min	4.000000	4.000000	3.000000	3.000000
	25%	6.000000	4.000000	4.000000	4.000000
	50%	8.000000	6.000000	4.000000	7.000000
	75%	8.000000	6.500000	8.000000	8.000000
	max	8.000000	8.000000	8.000000	8.000000
displacement	count	29.000000	28.000000	28.000000	40.000000
	mean	281.413793	209.750000	218.375000	256.875000
	std	124.421380	115.102410	123.781964	121.722085
	min	97.000000	71.000000	70.000000	68.000000
	25%	198.000000	97.750000	109.250000	121.750000
	50%	307.000000	228.500000	131.000000	276.000000
	75%	383.000000	273.000000	326.000000	350.250000
	max	455.000000	400.000000	429.000000	455.000000
weight	count	29.000000	28.000000	28.000000	40.000000
	mean	3372.793103	2995.428571	3237.714286	3419.025000
	std	852.868663	1061.830859	974.520960	974.809133
	min	1835.000000	1613.000000	2100.000000	1867.000000
	25%	2648.000000	2110.750000	2285.500000	2554.500000
	50%	3449.000000	2798.000000	2956.000000	3338.500000

	75%	4312.000000	3603.250000	4169.750000	4247.250000
	max	4732.000000	5140.000000	4633.000000	4997.000000
acceleration	count	29.000000	28.000000	28.000000	40.000000
	mean	12.948276	15.142857	15.125000	14.312500
	std	3.330982	2.666171	2.850032	2.754222
	min	8.000000	11.500000	11.000000	9.500000
	25%	10.000000	13.375000	13.375000	12.500000
	50%	12.500000	14.500000	14.500000	14.000000
	75%	15.000000	16.125000	16.625000	16.000000
	max	20.500000	20.500000	23.500000	21.000000
origin	count	29.000000	28.000000	28.000000	40.000000
	mean	1.310345	1.428571	1.535714	1.375000
	std	0.603765	0.741798	0.792658	0.667467
	min	1.000000	1.000000	1.000000	1.000000
	25%	1.000000	1.000000	1.000000	1.000000
	50%	1.000000	1.000000	1.000000	1.000000
	75%	1.000000	2.000000	2.000000	2.000000
	max	3.000000	3.000000	3.000000	3.000000
madal was n		7.4	75	76	77
<pre>model_year \</pre>		74	75	76	77
mpg	count	27.000000	30.000000	34.000000	28.000000
	mean	22.703704	20.266667	21.573529	23.375000
	std	6.420010	4.940566	5.889297	6.675862
	min	13.000000	13.000000	13.000000	15.000000
	25%	16.000000	16.000000	16.750000	17.375000
	50%	24.000000	19.500000	21.000000	21.750000
	75%	27.000000	23.000000	26.375000	30.000000

	max	32.000000	33.000000	33.000000	36.000000
cylinders	count	27.000000	30.000000	34.000000	28.000000
	mean	5.259259	5.600000	5.647059	5.464286
	std	1.583390	1.522249	1.667558	1.815206
	min	4.000000	4.000000	4.000000	3.000000
	25%	4.000000	4.000000	4.000000	4.000000
	50%	4.000000	6.000000	6.000000	4.000000
	75%	6.000000	6.000000	7.500000	8.000000
	max	8.000000	8.000000	8.000000	8.000000
displacement	count	27.000000	30.000000	34.000000	28.000000
	mean	171.740741	205.533333	197.794118	191.392857
	std	92.601127	87.669730	94.422256	107.813742
	min	71.000000	90.000000	85.000000	79.000000
	25%	90.000000	121.000000	102.500000	97.750000
	50%	122.000000	228.000000	184.000000	143.000000
	75%	250.000000	250.000000	291.000000	270.500000
	max	350.000000	400.000000	351.000000	400.000000
weight	count	27.000000	30.000000	34.000000	28.000000
	mean	2877.925926	3176.800000	3078.735294	2997.357143
	std	949.308571	765.179781	821.371481	912.825902
	min	1649.000000	1795.000000	1795.000000	1825.000000
	25%	2116.500000	2676.750000	2228.750000	2135.000000
	50%	2489.000000	3098.500000	3171.500000	2747.500000
	75%	3622.500000	3662.250000	3803.750000	3925.000000
	max	4699.000000	4668.000000	4380.000000	4335.000000
acceleration	count	27.000000	30.000000	34.000000	28.000000

	mean	16.203704	16.050000	15.941176	15.435714
	std	1.688532	2.471737	2.801419	2.273391
	min	13.500000	11.500000	12.000000	11.100000
	25%	15.250000	14.125000	13.925000	14.000000
	50%	16.000000	16.000000	15.500000	15.650000
	75%	17.000000	17.375000	17.550000	16.925000
	max	21.000000	21.000000	22.200000	19.000000
origin	count	27.000000	30.000000	34.000000	28.000000
	mean	1.666667	1.466667	1.470588	1.571429
	std	0.832050	0.730297	0.706476	0.835711
	min	1.000000	1.000000	1.000000	1.000000
	25%	1.000000	1.000000	1.000000	1.000000
	50%	1.000000	1.000000	1.000000	1.000000
	75%	2.000000	2.000000	2.000000	2.000000
	max	3.000000	3.000000	3.000000	3.000000
model week		70	70	00	01
<pre>model_year \</pre>		78	79	80	81
mpg	count	36.000000	29.000000	29.000000	29.000000
	mean	24.061111	25.093103	33.696552	30.334483
	std	6.898044	6.794217	7.037983	5.591465
	min	16.200000	15.500000	19.100000	17.600000
	25%	19.350000	19.200000	29.800000	26.600000
	50%	20.700000	23.900000	32.700000	31.600000
	75%	28.000000	31.800000	38.100000	34.400000
	max	43.100000	37.300000	46.600000	39.100000
cylinders	count	36.000000	29.000000	29.000000	29.000000

	mean	5.361111	5.827586	4.137931	4.620690
	std	1.495761	1.774199	0.580895	1.082781
	min	4.000000	4.000000	3.000000	4.000000
	25%	4.000000	4.000000	4.000000	4.000000
	50%	5.500000	6.000000	4.000000	4.000000
	75%	6.000000	8.000000	4.000000	6.000000
	max	8.000000	8.000000	6.000000	8.000000
displacement	count	36.000000	29.000000	29.000000	29.000000
	mean	177.805556	206.689655	115.827586	135.310345
	std	76.012713	96.307581	33.744914	58.387929
	min	78.000000	85.000000	70.000000	79.000000
	25%	115.500000	121.000000	90.000000	98.000000
	50%	159.500000	183.000000	107.000000	119.000000
	75%	231.000000	302.000000	140.000000	151.000000
	max	318.000000	360.000000	225.000000	350.000000
weight	count	36.000000	29.000000	29.000000	29.000000
	mean	2861.805556	3055.344828	2436.655172	2522.931034
	std	626.023907	747.881497	432.235491	533.600501
	min	1800.000000	1915.000000	1835.000000	1755.000000
	25%	2282.500000	2556.000000	2110.000000	2065.000000
	50%	2910.000000	3190.000000	2335.000000	2385.000000
	75%	3410.000000	3725.000000	2800.000000	2900.000000
	max	4080.000000	4360.000000	3381.000000	3725.000000
acceleration	count	36.000000	29.000000	29.000000	29.000000
	mean	15.805556	15.813793	16.934483	16.306897
	std	2.129915	2.952931	2.826694	2.192509

	min	11.200000	11.300000	11.400000	12.600000
	25%	14.475000	14.000000	15.100000	14.800000
	50%	15.750000	15.000000	16.500000	16.200000
	75%	16.825000	17.300000	18.700000	17.300000
	max	21.500000	24.800000	23.700000	20.700000
origin	count	36.000000	29.000000	29.000000	29.000000
	mean	1.611111	1.275862	2.206897	1.965517
	std	0.837608	0.591400	0.818505	0.944259
	min	1.000000	1.000000	1.000000	1.000000
	25%	1.000000	1.000000	2.000000	1.000000
	50%	1.000000	1.000000	2.000000	2.000000
	75%	2.000000	1.000000	3.000000	3.000000
	max	3.000000	3.000000	3.000000	3.000000
model_year mpg cylinders displacement	std min 25% 50%	82 31.000000 31.709677 5.392548 22.000000 27.000000 32.000000 36.000000 4.000000 4.193548 0.601074 4.000000 4.000000 4.000000 4.000000 31.000000 128.870968 39.352037 91.000000 105.000000 119.000000 142.000000			

```
262.000000
             max
weight
                       31.000000
             count
             mean
                     2453.548387
             std
                      354.276713
             min
                     1965.000000
                     2127.500000
             25%
                     2525.000000
             50%
             75%
                     2727.500000
                     3035.000000
             max
acceleration count
                       31.000000
                       16.638710
             mean
             std
                        2.484844
             min
                       11.600000
             25%
                       14.850000
             50%
                       16.400000
             75%
                       18.000000
             max
                       24.600000
origin
                       31.000000
             count
                        1.645161
             mean
             std
                        0.914636
                        1.000000
             min
             25%
                        1.000000
             50%
                        1.000000
                        3,000000
             75%
                        3.000000
             max
# Questa tabella è super leggibile!!!
```

RIPARTIAMO DAL NOSTRO Df CON RAGGRUPPAMENTO:

```
a = mpg.groupby(['model_year','origin'])
[['cylinders','weight', 'acceleration']].mean()
```

	cylinders	weight	acceleration
origin	-	_	
1	7.636364	3716.500000	11.977273
2	4.000000	2309.200000	16.500000
3	4.000000	2251.000000	14.750000
1	6.200000	3401.600000	14.575000
2	4.000000	2024.000000	16.750000
3	4.000000	1936.000000	16.375000
1	6.888889	3682.666667	14.055556
2	4.000000	2573.200000	18.700000
3	3.800000	2300.400000	15.400000
1	7.241379	3821.448276	13.620690
2	4.000000	2335.714286	16.428571
3	4.250000	2397.250000	15.625000
	1 2 3 1 2 3 1 2 3 1 2 3 1 2	origin 1	origin 1

```
74
                     6.266667
                                3503.333333
                                                  15.966667
            2
                     4.000000
                                2139.333333
                                                 15.333333
            3
                     4.000000
                                2053.000000
                                                 17.666667
            1
75
                     6.400000
                                3533,200000
                                                  16.350000
            2
                     4.000000
                                2571,166667
                                                 15.083333
            3
                     4.000000
                                2303,250000
                                                 16.000000
            1
76
                                3405.409091
                     6.363636
                                                 15.786364
            2
                     4.250000
                                2611,000000
                                                 16.050000
            3
                                2217.500000
                     4.500000
                                                 16.575000
            1
77
                     6.222222
                                3422.000000
                                                 15.238889
            2
                                2138.750000
                     4.000000
                                                 15.000000
            3
                     4.166667
                                2295.833333
                                                 16.316667
78
            1
                                3141.136364
                                                 15.545455
                     6.000000
            2
                     4.833333
                                2691.666667
                                                 16.233333
            3
                     4.000000
                                2221.250000
                                                 16.200000
79
            1
                                3210.217391
                     6.260870
                                                 15.243478
            2
                     4.250000
                                2693.750000
                                                 18.400000
            3
                                1997.500000
                     4.000000
                                                  17.200000
            1
80
                     4.285714
                                2822.428571
                                                 16.800000
            2
                     4.111111
                                2348,000000
                                                 18.366667
            3
                                2290.307692
                     4.076923
                                                 16.015385
                                2695.000000
81
            1
                     4.923077
                                                 16.053846
            2
                     4.500000
                                2725,000000
                                                 17.500000
            3
                     4.333333
                                2269, 166667
                                                 16.183333
82
            1
                     4.300000
                                2637.750000
                                                 16.670000
            2
                     4.000000
                                2055.000000
                                                 19.950000
            3
                     4.000000
                                2132.777778
                                                 15.833333
```

ESTRAIAMO QUINDI IL NOME DELLE COLONNE INDICE:

a.index.names

FrozenList(['model year', 'origin'])

POSSIAMO ANCHE ESTRARRE I VALORI CHE GLI INDICI POSSONO ASSUMERE:

a.index.levels

FrozenList([[70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], [1, 2, 3]])

La prima lista indica i valori che la variabile categorica più esterna assume. La seconda riguarda la variabile categorica pi interna.

RICORDA: SIA LA VARIABILE PIU ESTERNA SIA QUELLA PIU INTERNA DEVONO ESSERE CATEGORICHE!!! # A partire dalla variabile più esterna assunta come indice, possiamo estrarre l'indice più interno ed i valori corrispondenti tramite la funzione loc

a.loc[70]

	cylinders	weight	acceleration
origin	_		
1	7.636364	3716.5	11.977273
2	4.000000	2309.2	16.500000
3	4.000000	2251.0	14.750000

Possiamo anche ragionare con più anni

a.loc[[70,75,81]]

		cylinders	weight	acceleration
model_year	origin			
70	1	7.636364	3716.500000	11.977273
	2	4.000000	2309.200000	16.500000
	3	4.000000	2251.000000	14.750000
75	1	6.400000	3533.200000	16.350000
	2	4.000000	2571.166667	15.083333
	3	4.000000	2303.250000	16.000000
81	1	4.923077	2695.000000	16.053846
	2	4.500000	2725.000000	17.500000
	3	4.333333	2269.166667	16.183333

Possiamo anche passare una tupla contenente il valore dell'indice più esterno e di quello più interno. In questo modo # otterremo una Series contenente i valori corrispondenti. Ripartendo da a:

а

		cylinders	weight	acceleration
model_year	origin			
70	1	7.636364	3716.500000	11.977273
	2	4.000000	2309.200000	16.500000
	3	4.000000	2251.000000	14.750000
71	1	6.200000	3401.600000	14.575000
	2	4.000000	2024.000000	16.750000
	3	4.000000	1936.000000	16.375000
72	1	6.888889	3682.666667	14.055556

```
2
                      4.000000
                                 2573.200000
                                                  18.700000
            3
                      3.800000
                                 2300.400000
                                                  15.400000
73
            1
                      7.241379
                                 3821.448276
                                                  13.620690
            2
                                 2335,714286
                      4,000000
                                                  16.428571
            3
                      4.250000
                                 2397.250000
                                                  15.625000
            1
74
                      6.266667
                                 3503.333333
                                                  15.966667
            2
                      4.000000
                                 2139.333333
                                                  15.333333
            3
                      4.000000
                                 2053.000000
                                                  17,666667
75
            1
                                                  16.350000
                      6.400000
                                 3533.200000
            2
                      4.000000
                                 2571.166667
                                                  15.083333
            3
                                 2303.250000
                      4.000000
                                                  16.000000
            1
76
                      6.363636
                                 3405.409091
                                                  15.786364
            2
                      4.250000
                                 2611.000000
                                                  16.050000
            3
                      4.500000
                                 2217.500000
                                                  16.575000
77
            1
                      6.22222
                                 3422.000000
                                                  15.238889
            2
                      4.000000
                                 2138.750000
                                                  15.000000
            3
                      4.166667
                                 2295.833333
                                                  16.316667
78
            1
                      6.000000
                                 3141.136364
                                                  15.545455
            2
                      4.833333
                                 2691.666667
                                                  16.233333
            3
                                 2221.250000
                      4.000000
                                                  16.200000
            1
79
                      6.260870
                                 3210.217391
                                                  15.243478
            2
                      4.250000
                                 2693.750000
                                                  18.400000
            3
                      4.000000
                                 1997.500000
                                                  17.200000
            1
80
                      4.285714
                                 2822,428571
                                                  16.800000
            2
                      4.111111
                                 2348.000000
                                                  18.366667
            3
                      4.076923
                                 2290.307692
                                                  16.015385
81
            1
                      4.923077
                                 2695.000000
                                                  16.053846
            2
                      4.500000
                                 2725.000000
                                                  17.500000
            3
                      4.333333
                                 2269.166667
                                                  16.183333
            1
                                 2637.750000
82
                      4.300000
                                                  16.670000
            2
                                 2055.000000
                      4.000000
                                                  19.950000
            3
                      4.000000
                                 2132.777778
                                                  15.833333
```

a.loc[(79,3)]

cylinders 4.0 weight 1997.5 acceleration 17.2

Name: (79, 3), dtype: float64

CVD

```
# Supponiamo ora di voler estrarre solo l'indice più interno
desiderato. Ad esempio, supponiamo di voler avere
# i dati relativi ai valori di origin 1,2,3 relativi al model_year
pari sa 80. Per farlo, si utilizza
# la funzione xs (Cross Section):
```

a.xs(key=80, level = "model_year")

	cylinders	weight	acceleration
origin			
1	4.285714	2822.428571	16.800000
2	4.111111	2348.000000	18.366667
3	4.076923	2290.307692	16.015385

CVD

Supponeamo di ovler estrarre più di un level. Supponiamo, ad es, di voler estrarre i level 89,81,82 e i dati relativi. # In questo caso non possiamo utilizzare xs, ma loc:

a.loc[[80,81,82]]

		cylinders	weight	acceleration
model_year	origin			
80	1	4.285714	2822.428571	16.800000
	2	4.111111	2348.000000	18.366667
	3	4.076923	2290.307692	16.015385
81	1	4.923077	2695.000000	16.053846
	2	4.500000	2725.000000	17.500000
	3	4.333333	2269.166667	16.183333
82	1	4.300000	2637.750000	16.670000
	2	4.000000	2055.000000	19.950000
	3	4.000000	2132.777778	15.833333

Torniamo alla nostra tabella raggruppata:

а

		cylinders	weight	acceleration
model_year	origin			
70	1	7.636364	3716.500000	11.977273
	2	4.000000	2309.200000	16.500000
	3	4.000000	2251.000000	14.750000
71	1	6.200000	3401.600000	14.575000
	2	4.000000	2024.000000	16.750000
	3	4.000000	1936.000000	16.375000
72	1	6.888889	3682.666667	14.055556

```
4.000000
                                 2573.200000
                                                  18.700000
            2
            3
                      3.800000
                                 2300.400000
                                                  15.400000
73
            1
                      7.241379
                                 3821.448276
                                                  13.620690
            2
                                 2335.714286
                      4.000000
                                                  16.428571
            3
                      4.250000
                                 2397,250000
                                                  15.625000
            1
74
                      6.266667
                                 3503.333333
                                                  15.966667
            2
                      4.000000
                                 2139.333333
                                                  15.333333
            3
                      4.000000
                                 2053.000000
                                                  17.666667
75
            1
                                                  16.350000
                      6.400000
                                 3533.200000
            2
                      4.000000
                                 2571.166667
                                                  15.083333
            3
                                 2303.250000
                      4.000000
                                                  16.000000
            1
                      6.363636
76
                                 3405.409091
                                                  15.786364
            2
                      4.250000
                                 2611.000000
                                                  16.050000
            3
                      4.500000
                                 2217.500000
                                                  16.575000
77
            1
                      6.222222
                                 3422.000000
                                                  15.238889
            2
                      4.000000
                                 2138.750000
                                                  15.000000
            3
                      4.166667
                                 2295.833333
                                                  16.316667
78
            1
                                 3141.136364
                      6.000000
                                                  15.545455
            2
                      4.833333
                                 2691.666667
                                                  16.233333
            3
                      4.000000
                                 2221.250000
                                                  16.200000
79
            1
                      6.260870
                                 3210.217391
                                                  15.243478
            2
                      4.250000
                                 2693.750000
                                                  18.400000
            3
                      4.000000
                                 1997.500000
                                                  17.200000
            1
80
                      4.285714
                                2822.428571
                                                  16.800000
            2
                      4.111111
                                 2348.000000
                                                  18.366667
            3
                      4.076923
                                 2290.307692
                                                  16.015385
81
            1
                      4.923077
                                 2695.000000
                                                  16.053846
            2
                      4.500000
                                 2725.000000
                                                  17.500000
            3
                      4.333333
                                 2269.166667
                                                  16.183333
            1
                                 2637.750000
82
                      4.300000
                                                  16.670000
            2
                                 2055.000000
                      4.000000
                                                  19.950000
            3
                      4.000000
                                 2132,777778
                                                  15.833333
```

Supponiamo di voler estrarre i valori 3 relativi a origin PER TUTTI GLI ANNI.

Per farlo, possiamo utilizzare sempre la funzione xs,
ma il parametro level deve essere valorizzato con origin

a.xs(key=3, level="origin")

	cylinders	weight	acceleration
model_year			
70	4.000000	2251.000000	14.750000
71	4.000000	1936.000000	16.375000
72	3.800000	2300.400000	15.400000
73	4.250000	2397.250000	15.625000
74	4.000000	2053.000000	17.666667

```
75
             4.000000 2303.250000
                                        16.000000
76
             4.500000
                       2217.500000
                                        16.575000
77
             4.166667
                       2295.833333
                                        16.316667
             4.000000
                       2221.250000
                                        16.200000
78
                      1997.500000
                                        17.200000
79
             4.000000
80
             4.076923
                      2290.307692
                                        16.015385
             4.333333 2269.166667
81
                                        16.183333
82
             4.000000 2132.777778
                                        15.833333
```

Ovviamente la colonna origin è stata eliminata

а

		cylinders	weight	acceleration
model_year				
70	1	7.636364	3716.500000	11.977273
	2	4.000000	2309.200000	16.500000
	3	4.000000	2251.000000	14.750000
71	1	6.200000	3401.600000	14.575000
	2	4.000000	2024.000000	16.750000
	3 1 2 3 1 2 3 1	4.000000	1936.000000	16.375000
72	1	6.888889	3682.666667	14.055556
	2	4.000000	2573.200000	18.700000
	3	3.800000	2300.400000	15.400000
73	1	7.241379	3821.448276	13.620690
	2	4.000000	2335.714286	16.428571
	3	4.250000	2397.250000	15.625000
74	1	6.266667	3503.333333	15.966667
	2	4.000000	2139.333333	15.333333
	2 3 1 2 3 1	4.000000	2053.000000	17.666667
75	1	6.400000	3533.200000	16.350000
	2	4.000000	2571.166667	15.083333
	3	4.000000	2303.250000	16.000000
76	3 1 2 3 1 2 3 1	6.363636	3405.409091	15.786364
	2	4.250000	2611.000000	16.050000
	3	4.500000	2217.500000	16.575000
77	1	6.222222	3422.000000	15.238889
	2	4.000000	2138.750000	15.000000
	3	4.166667	2295.833333	16.316667
78	1	6.000000	3141.136364	15.545455
		4.833333	2691.666667	16.233333
	3	4.000000	2221.250000	16.200000
79	1	6.260870	3210.217391	15.243478
	2	4.250000	2693.750000	18.400000
	3	4.000000	1997.500000	17.200000
80	2 3 1 2 3 1	4.285714	2822.428571	16.800000
	2	4.111111	2348.000000	18.366667
	_			10.00007

```
3
                    4.076923 2290.307692
                                              16.015385
81
           1
                    4.923077 2695.000000
                                              16.053846
           2
                    4.500000 2725.000000
                                              17.500000
           3
                    4.333333 2269.166667
                                              16.183333
           1
82
                    4.300000 2637.750000
                                              16,670000
           2
                    4.000000 2055.000000
                                              19.950000
           3
                    4.000000 2132.777778
                                              15.833333
```

E se volessimo estrarre più di un valore di origin PER TUTTI GLI ANNI?

Supponiamo, ad esempio, di voler estrarre i dati relativi ai valori # 2 e 3 della colonna origin. Non conviene utilizzare xs.

Per prima cosa torniamo al dataframe di partenza:

mpg

	mpg	cylinders	displacement	horsepower	weight	acceleration	\
0	18.0	8	307.0	130	3504	12.0	
1	15.0	8	350.0	165	3693	11.5	
2	18.0	8	318.0	150	3436	11.0	
3	16.0	8	304.0	150	3433	12.0	
4	17.0	8	302.0	140	3449	10.5	
393	27.0	4	140.0	86	2790	15.6	
394	44.0	4	97.0	52	2130	24.6	
395	32.0	4	135.0	84	2295	11.6	
396	28.0	4	120.0	79	2625	18.6	
397	31.0	4	119.0	82	2720	19.4	

	model_year	origin	name
0	70	1	chevrolet chevelle malibu
1	70	1	buick skylark 320
2	70	1	plymouth satellite
3	70	1	amc rebel sst
4	70	1	ford torino
393	82	1	ford mustang gl
394	82	2	vw pickup
395	82	1	dodge rampage
396	82	1	ford ranger
397	82	1	chevy s-10

[398 rows x 9 columns]

A questo punto filtriamo il Df per i valori 1 e 3 della colonna origin:

```
mask = (mpg["origin"] == 1) | (mpg["origin"] == 3) # Oppure
mpg["origin"].isin([1,3])
mpg = mpg[mask]
mpg
           cylinders displacement horsepower weight acceleration \
      mpg
0
     18.0
                               307.0
                                            130
                                                    3504
                                                                   12.0
1
     15.0
                    8
                               350.0
                                            165
                                                    3693
                                                                   11.5
2
     18.0
                    8
                               318.0
                                            150
                                                    3436
                                                                   11.0
3
     16.0
                               304.0
                    8
                                            150
                                                    3433
                                                                   12.0
4
     17.0
                    8
                               302.0
                                            140
                                                    3449
                                                                   10.5
     . . .
                                                                    . . .
                                . . .
                                             . . .
392
                                             90
     27.0
                               151.0
                                                    2950
                                                                   17.3
                    4
393
     27.0
                    4
                               140.0
                                             86
                                                    2790
                                                                   15.6
                    4
395
     32.0
                               135.0
                                              84
                                                    2295
                                                                   11.6
396
     28.0
                    4
                               120.0
                                             79
                                                    2625
                                                                   18.6
397
     31.0
                    4
                               119.0
                                             82
                                                    2720
                                                                   19.4
     model year
                  origin
                                                 name
0
             70
                       1
                          chevrolet chevelle malibu
1
             70
                       1
                                   buick skylark 320
2
             70
                       1
                                  plymouth satellite
3
                       1
             70
                                       amc rebel sst
4
             70
                       1
                                         ford torino
             . . .
392
             82
                       1
                                    chevrolet camaro
393
             82
                       1
                                     ford mustang gl
                       1
395
             82
                                       dodge rampage
             82
                       1
396
                                         ford ranger
397
             82
                                          chevy s-10
[328 rows x 9 columns]
mpg["origin"].value_counts()
origin
1
     249
      79
Name: count, dtype: int64
# CVD.
# A questo punto possiamo fare la group by relativa a model_year ed a
origin
```

```
mpq grouped = mpg.groupby(["model_year","origin"])
[mpg.select dtypes(include='number').columns].sum()
mpg grouped
                      mpg
                           cylinders displacement weight
acceleration \
model_year origin
70
                                  168
                                              7412.0
                                                        81763
            1
                    336.0
263.5
                                    8
            3
                     51.0
                                               210.0
                                                         4502
29.5
71
            1
                    362.0
                                  124
                                              5140.0
                                                        68032
291.5
                                   16
            3
                    118.0
                                               353.0
                                                         7744
65.5
72
            1
                    293.0
                                  124
                                              5062.5
                                                        66288
253.0
            3
                    121.0
                                   19
                                               497.0
                                                        11502
77.0
73
            1
                    436.0
                                  210
                                              9109.0
                                                       110822
395.0
            3
                                   17
                     80.0
                                               431.0
                                                         9589
62.5
74
            1
                    275.0
                                   94
                                              3541.0
                                                        52550
239.5
            3
                    176.0
                                   24
                                               537.0
                                                        12318
106.0
                                  128
75
            1
                    351.0
                                              5068.0
                                                        70664
327.0
            3
                                   16
                                               441.0
                    110.0
                                                         9213
64.0
76
            1
                    427.5
                                  140
                                              5367.0
                                                        74919
347.3
            3
                    112.0
                                   18
                                               429.0
                                                         8870
66.3
77
            1
                    373.0
                                  112
                                              4362.0
                                                        61596
274.3
            3
                    164.5
                                   25
                                               603.0
                                                        13775
97.9
78
            1
                    479.0
                                  132
                                              4786.0
                                                        69105
342.0
            3
                    237.5
                                   32
                                               858.0
                                                        17770
129.6
79
            1
                    540.0
                                  144
                                              5319.0
                                                        73835
350.6
            3
                                    8
                                                         3995
                     65.9
                                               171.0
34.4
                                   30
80
            1
                    181.4
                                              1061.0
                                                        19757
117.6
```

208.2	3	460.2		53	1360.0	29774
81 208.7	1	357.9		64	2143.0	35035
	3	395.5		52	1290.0	27230
194.2 82	1	589.0		86	2859.0	52755
333.4	3	314.0		36	934.0	19195
142.5						
model_year	origin	model_y	ear or	igin		
70	1		540	22		
71	3	14	140 420	6 20		
72	3 1	12	284 296	12 18		
73	3 1		360 117	15 29		
74	3 1		292 110	12 15		
7. 75	3	4	444 500	18 20		
	3		300	12		
76	1 3		672 304	22 12		
77	1 3		386 462	18 18		
78	1	1	716 624	22 24		
79	1	18	817	23		
80	3 1	!	158 560	6 7		
81	3 1		040 053	39 13		
82	3 1		972 640	36 20		
	3		738	27		

[#] Ed ecco he i valori relativi ad origin sono 1 e 3, CVD

[#] Possiamo anche invertire i nostri level. Possiamo qundi invertire
model_year e origin tramite swaplevel

mpg_grouped.swaplevel()

mpg_grouped.swaptevet()									
	ration \ model_year	mpg	cylinders	displacement	weight				
1 263.5	70	336.0	168	7412.0	81763				
3	70	51.0	8	210.0	4502				
29.5 1	71	362.0	124	5140.0	68032				
291.5 3	71	118.0	16	353.0	7744				
65.5	72	293.0	124	5062.5	66288				
253.0 3	72	121.0	19	497.0	11502				
77.0 1	73	436.0	210	9109.0	110822				
395.0 3	73	80.0	17	431.0	9589				
62.5 1	74	275.0	94	3541.0	52550				
239.5	74	176.0	24	537.0	12318				
106.0 1	75	351.0	128	5068.0	70664				
327.0 3	75	110.0	16	441.0	9213				
64.0	76	427.5	140	5367.0	74919				
347.3 3	76	112.0	18	429.0	8870				
66.3	77	373.0	112	4362.0	61596				
274.3	77	164.5	25	603.0	13775				
97.9 1	78	479.0	132	4786.0	69105				
342.0 3	78	237.5	32	858.0	17770				
129.6 1	79	540.0	144	5319.0	73835				
350.6 3	79	65.9	8	171.0	3995				
34.4 1 117.6	80	181.4	30	1061.0	19757				

3	80	460.2	Ţ	53	1360.0	29774
208.2	81	357.9	(64	2143.0	35035
208.7 3	81	395.5	1	52	1290.0	27230
194.2 1	82	589.0	8	36	2859.0	52755
333.4 3	82	314.0	3	36	934.0	19195
142.5						
oriain	model_year	model_y	ear or:	igin		
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	70 70 71 71 72 72 73 73 74 74 75 75 76 76 77 77 78 78 78 79 79 80 80 81 81 81 82 82	1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	540 140 420 284 296 360 117 292 110 444 500 300 672 304 386 462 716 624 817 158 560 040 053 972 640 738	22 6 20 12 18 15 29 12 15 18 20 12 22 12 18 18 22 24 23 6 7 39 13 36 20 27		
mpg_gro	ouped					
accele	ration \ year origin	mpg	cylinde	rs displa	acement	weight
70 263.5	1	336.0	16	58	7412.0	81763

	3	51.0	8	210.0	4502
29.5 71	1	362.0	124	5140.0	68032
291.5	3	118.0	16	353.0	7744
65.5					
72 253.0	1	293.0	124	5062.5	66288
77.0	3	121.0	19	497.0	11502
73	1	436.0	210	9109.0	110822
395.0	3	80.0	17	431.0	9589
62.5 74	1	275.0	94	3541.0	52550
239.5	3	176.0	24	537.0	12318
106.0					
75 327.0	1	351.0	128	5068.0	70664
64.0	3	110.0	16	441.0	9213
76 347.3	1	427.5	140	5367.0	74919
	3	112.0	18	429.0	8870
66.3 77	1	373.0	112	4362.0	61596
274.3	3	164.5	25	603.0	13775
97.9 78	1	479.0	132	4786.0	69105
342.0					
129.6	3	237.5	32	858.0	17770
79 350.6	1	540.0	144	5319.0	73835
34.4	3	65.9	8	171.0	3995
80	1	181.4	30	1061.0	19757
117.6	3	460.2	53	1360.0	29774
208.2 81	1	357.9	64	2143.0	35035
208.7	3		52	1290.0	27230
194.2		395.5			
82 333.4	1	589.0	86	2859.0	52755
	3	314.0	36	934.0	19195

		model year	oriain			
model_year	oriain	mode t_year	OTIGIN			
70	1	1540	22			
70	3	140	6			
71	1	1420	20			
, _	3	284	12			
72	1	1296	18			
	3	360	15			
73	ī	2117	29			
	3	292	12			
74	1	1110	15			
	3 1	444	18			
75		1500	20			
	3	300	12			
76	1	1672	22			
	3	304	12			
77	1	1386	18			
	3	462	18			
78	1	1716	22			
70	3	624	24			
79	1	1817	23			
00	3	158	6 7			
80	1 3	560 1040	39			
81	1	1053	13			
01	3	972	36			
82	1	1640	20			
02	3	738	27			
	_	, 50	_,			

Possiamo anche ordinare i valori di model_year in ordine decrescente

		6 9	0, 1	u	
accelerati model_year					
82 142.5	3	314.0	36	934.0	19195
333.4	1	589.0	86	2859.0	52755
81	3	395.5	52	1290.0	27230
194.2	1	357.9	64	2143.0	35035
208.7		-			

80	3	460.2	53	1360.0	29774
208.2					
117.6	1	181.4	30	1061.0	19757
79	3	65.9	8	171.0	3995
34.4	1	540.0	144	5319.0	73835
350.6 78	3	237.5	32	858.0	17770
129.6					
342.0	1	479.0	132	4786.0	69105
77	3	164.5	25	603.0	13775
97.9	1	373.0	112	4362.0	61596
274.3					
76 66.3	3	112.0	18	429.0	8870
347.3	1	427.5	140	5367.0	74919
75	3	110.0	16	441.0	9213
64.0	1	351.0	128	5068.0	70664
327.0					
74 106.0	3	176.0	24	537.0	12318
239.5	1	275.0	94	3541.0	52550
73	3	80.0	17	431.0	9589
62.5	1	436.0	210	9109.0	110822
395.0					
72 77.0	3	121.0	19	497.0	11502
253.0	1	293.0	124	5062.5	66288
71	3	118.0	16	353.0	7744
65.5	1	362.0	124	5140.0	68032
291.5					
70 29.5	3	51.0	8	210.0	4502
263.5	1	336.0	168	7412.0	81763
203.3					
model ve	ear origi	model_year n	r origin		
82	3	738			
	1	1640	20		

81	3	972	36
0_	1	1053	13
80	3	1040	39
00	1	560	7
79	3		6
79		158	
70	1	1817	23
78	3	624	24
	1	1716	22
77	3	462	18
	1	1386	18
76	3	304	12
	1	1672	22
75	3	300	12
	1	1500	20
74	3	444	18
, .	1	1110	15
73	3	292	12
, 3	1	2117	29
70			
72	3	360	15
	1	1296	18
71	3	284	12
	1	1420	20
70	3	140	6
	1	1540	22
	_		

Se invece effettuassimo l'ordinamento per origin, otterremo dei duplicati nella colonna model_year

mpg_grouped.sort_index(level = "origin", ascending = False)

		mpg	cylinders	displacement	weight
accelerat model_yea	-				
82	3	314.0	36	934.0	19195
142.5					
81	3	395.5	52	1290.0	27230
194.2					
80	3	460.2	53	1360.0	29774
208.2					
79	3	65.9	8	171.0	3995
34.4					
78	3	237.5	32	858.0	17770
129.6					
77	3	164.5	25	603.0	13775
97.9					
76	3	112.0	18	429.0	8870

66.0					
66.3 75	3	110.0	16	441.0	9213
64.0	5	110.0	10	441.0	9213
74	3	176.0	24	537.0	12318
106.0					
73	3	80.0	17	431.0	9589
62.5 72	3	121.0	19	497.0	11502
77.0	3	121.0	19	497.0	11302
71	3	118.0	16	353.0	7744
65.5					
70	3	51.0	8	210.0	4502
29.5	1	E00 0	06	2050 0	E2755
82 333.4	1	589.0	86	2859.0	52755
81	1	357.9	64	2143.0	35035
208.7					
80	1	181.4	30	1061.0	19757
117.6	1	F 40 0	144	F210 0	72025
79 350.6	1	540.0	144	5319.0	73835
78	1	479.0	132	4786.0	69105
342.0					
77	1	373.0	112	4362.0	61596
274.3	1	407 F	1.40	F267 0	74010
76 347.3	1	427.5	140	5367.0	74919
75	1	351.0	128	5068.0	70664
327.0	_	352.5		5000.0	
74	1	275.0	94	3541.0	52550
239.5	1	426 0	210	0100 0	110022
73 395.0	1	436.0	210	9109.0	110822
72	1	293.0	124	5062.5	66288
253.0					
71	1	362.0	124	5140.0	68032
291.5 70	1	336.0	168	7412.0	81763
263.5	1	330.0	100	7412.0	01/03
203.3					
		model_year	origin		
model_year	_	720	27		
82 81	3 3 3 3 3	738 972	27 36		
80	3	1040	39		
79	3	158	6		
78	3	624	24		
77 76	3	462 304	18 12		
70	5	304	12		

75	3	300	12
74	3	444	18
73	3	292	12
72	3	360	15
71	3	284	12
70	3	140	6
82	1	1640	20
81	1	1053	13
80	1	560	7
79	1	1817	23
78	1	1716	22
77	1	1386	18
76	1	1672	22
75	1	1500	20
74	1	1110	15
73	1	2117	29
72	1	1296	18
71	1	1420	20
70	1	1540	22

CVD

Torniamo al nostro df iniziale

mpg.head()

	mpg	cylinders	displacement	horsepower	weight	acceleration
mod	del_ye	ar \	•	·	_	
0	18.0	8	307.0	130	3504	12.0
70						
1	15.0	8	350.0	165	3693	11.5
70						
2	18.0	8	318.0	150	3436	11.0
70						
3	16.0	8	304.0	150	3433	12.0
70						
4	17.0	8	302.0	140	3449	10.5
70						

	origin	name
0	1	chevrolet chevelle malibu
1	1	buick skylark 320
2	1	plymouth satellite
3	1	amc rebel sst
4	1	ford toring

Statistiche di base, metodo ARG-

Finora abbiamo calcolato le statistiche di base per singola colonna. # Possiamo calcolare più velocemente le statistiche di base tramite la funzione AGG.

Per prima cosa, però, dobbiamo estrarre dal nostro Df SOLO le colonne numeriche

df_numeriche = mpg.select_dtypes(include=['number'])
df numeriche

	mpg	cylinders	displacement	weight	acceleration	model_year
origin						
0	18.0	8	307.0	3504	12.0	70
1						
1	15.0	8	350.0	3693	11.5	70
1						
2	18.0	8	318.0	3436	11.0	70
1						
3	16.0	8	304.0	3433	12.0	70
1						
4	17.0	8	302.0	3449	10.5	70
1						
392	27.0	4	151.0	2950	17.3	82
1						
393	27.0	4	140.0	2790	15.6	82
1						
395	32.0	4	135.0	2295	11.6	82
1						
396	28.0	4	120.0	2625	18.6	82
1						
397	31.0	4	119.0	2720	19.4	82
1						

[328 rows x 7 columns]

df_numeriche.agg(["std","mean"]).transpose()

	std	mean
mpg	7.723398	22.580488
cylinders	1.738563	5.731707
displacement	106.050898	211.413110
weight	861.527429	3087.189024
acceleration	2.624770	15.307927

```
3.748239 76.051829
0.856510 1.481707
model year
origin
# Ovviamente ha poco senso effettuare media e ev std per alcune di
queste colonne. Il tutto è solo a titolo di esempio.
# Se volessimo selezionare solo alcune colonne, tipo weight e
acceleration, possiamo filtrare il Df
# precedente per queste due variabili
df numeriche.agg(["std","mean"])
[["weight", "acceleration"]].transpose()
                     std
                                 mean
weight
             861.527429 3087.189024
acceleration 2.624770 15.307927
# Oppure, possiamo passare un dizionario nella nostra funzione agg
df numeriche.agg({"weight":["std","mean"],"acceleration":
["std", "mean"]}).transpose()
                     std
                                 mean
weight
              861.527429 3087.189024
acceleration 2.624770 15.307927
```