

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

This memorandum consists of 14 pages.

1.1	Range = 26 – 4 = 22	✓ maximum and minimum values ✓ answer ANSWER ONLY: Full Marks (2)
1.2	Mean	
	$= \frac{4+5+8+13+19+22+25+26+23+17+14+7}{2}$	✓ method
	12	√ 183
	$=\frac{183}{1}$	✓ answer
	12	(3)
	= 15,25	
1.3	Standard deviation = $7,6$ ($7,59522$)	✓ answer
1.11	(2 2) (2 1)	(2)
1.4.1	Increase in mean = $\frac{(3 \times 5) + (9 \times 1)}{12}$	
	12	d dan ayyan
	= 2°C per month.	✓ answer
1.4.2	The maximum value increases by 1°C and the	(2)
1.4.2	minimum value increases by 5°C. This implies that	✓ decrease in range
	the range of the range of the data will now decrease.	decrease in range
	This will result in the standard deviation getting	✓ decrease in standard deviation
	smaller. (new SD = 6.27)	(2)
		[11]

Mathematics/P2 DoE/Feb. - March 2010

QUESTION 3

3.1							
	Time (in	11 ≤ <i>t</i> < 15	15 ≤ <i>t</i> < 19	19 ≤ <i>t</i> < 23	$23 \le t < 27$	27 ≤ <i>t</i> < 30	
	minutes)		0	10	10	0	
	Frequency Cumulative	6	9	13 28	12 40	8 48	✓ cumulative
	Frequency	O	13	20	40	40	frequency totals
	1 3						(1)
3.2							
3.2						7	
	C			rve showing t	he		(((1)))
		time ta	ken to compl	ete a task			✓✓✓ plotting points at upper
	60						limits
							6 correct – 3 marks
	50				•		3 to 5 correct
	<u>\$</u> 40						- 2 marks
	ou and do						1 or 2 correct - 1 mark
	30 20 20						$0 \operatorname{correct} - 0$
	lativ						marks
	20						✓curve
	10						(4)
	10						(4)
	0			++;+++			
	0 3	8 6 9	12 15 18	21 24 27	30 33		
			Time (in min	nutes)			
3.3	Median value a	at position 24	4. Reading of	f the ogive gi	ves Median ≈	22 minutes	✓ median
	LQ value at po	sition 12. L	ower quartile	≈ 18 minutes	s (from ogive)		✓ lower
	UQ value at po	osition 36. U	pper quartile	$\approx 25.5 \text{minut}$	tes (from ogiv	e)	quartile ✓ upper
	NOTE: Allow	margin of e	rror for readin	ng off the grap	ph.		quartile
2.4							(3)
3.4		•		•			
				, , , , , , , , , , , , , , , , , , , 			✓ box
	0	10	20 3	30 40	50	60	✓ whiskers (2)
3.5	The times are s very quickly w				people finishe	ed this task	✓ skewed to the right
	very quickly w	mist officis (OOK HIOIC HIII	ю.			$\begin{array}{c c} \text{the right} \\ \hline (1) \end{array}$
							[11]

4.1	$\frac{2-0}{2} = \frac{1}{2}$	✓ substitution	
	$m_{PQ} = \frac{2 - 0}{0 - 4} = -\frac{1}{2}$		(1)
4.2	$A:\left(\frac{0+4}{2},\frac{2+0}{2}\right)$	d a goodinata	
	(- /	✓ x-coordinate ✓ y-coordinate	
	A (2; 1)	-	(2)
4.3	$m_{AB}.m_{PQ} = -1$	$\checkmark m_{AB}.m_{PQ} = -1$	
	$m_{AB} \cdot (-1/2) = -1$, $m_{AB} = 2$	$\sim m_{AB} = 2$	
	Equation of AB is $y = 2x + c$	✓ equation of AB	
	$\therefore 1 = 2(2) + c$	$\checkmark y = 2x - 3$	
	c = -3	$\checkmark c = -3$	
	Equation of AB is $y = 2x - 3$.		(5)
	OR		
	$m_{AB}.m_{PQ} = -1$		
	$m_{AB}.(-1/2) = -1$, $\therefore m_{AB} = 2$	$\checkmark m_{AB} = 2$	
	y-1=2(x-2)	✓ gradient of AB	
	y-1=2x-4	✓ substitution into formula	
	y = 2x - 3	✓ equation of AB	
		_	(5)
4.4	B is the point $(0; -3)$	✓ coordinates of B	` /
	$BQ = \sqrt{(0-4)^2 + (-3-0)^2}$	✓ substitution	
	= 5	✓ answer	(2)
4.5			(3)
7.3	$BP = \sqrt{(0-0)^2 + (-3-2)^2}$	$\checkmark BP = 5$	
	=5	✓ BP = BQ	
	BP = BQ		(2)
	∴ ∆BPQ is isosceles. OR		
	BP = 2 + 3		
	= 5	$\checkmark BP = 5$	
	BP = BQ	$\checkmark BP = BQ$	
	∴ ∆BPQ is isosceles	,	(2)
4.6	If PBQR is a rhombus then A is the midpoint of BR.	\checkmark A is the midpoint	of
	Let the coordinates of R be $(x; y)$	BR	
	x+0 $y-3$		
	$\frac{x+0}{2} = 2 \qquad \text{and} \qquad \frac{y-3}{2} = 1$		
	x = 4 y = 5	\checkmark x coordinate	
	$\therefore R(4;5)$	✓ y coordinate	(3)
	OR		
	$RQ \parallel PB \text{ so } x_R = 4$	✓ RQ PB	
1	n	$\checkmark x$ coordinate	
1	RO = PR = 5 so v = 5	1 y goordingto	
	$RQ = PB = 5$, so $y_R = 5$ $\therefore R(4; 5)$	✓ y coordinate	(3)

AB is defined as 5y - 3x - 5 = 0 which can be written as $y = \frac{3}{5}x + 1$

$$m_{AB} = \frac{3}{5}$$

Let α be the inclination of AB.

$$\tan \alpha = \frac{3}{5}$$

$$\alpha = 30.96^{\circ}.$$

Let β be the inclination of CD

$$\beta = 45^{\circ} + 30,96^{\circ}$$

= 75,96°

Gradient of CD = $\tan 75.96^{\circ} = 4$.

OR

$$\tan \beta = \tan(\alpha + 45^{\circ})$$

$$= \frac{\tan \alpha + \tan 45^{\circ}}{1 - \tan \alpha \cdot \tan 45^{\circ}}$$

$$= \frac{\frac{3}{5} + 1}{1 - \frac{3}{5} \times 1}$$

$$= 4$$

$$m_{CD} = \tan \beta$$

 $m_{CD}=4$

$$m_{AB} = \frac{3}{5}$$

$$\checkmark \tan \alpha = \frac{3}{5}$$

$$\checkmark \alpha = 30.96^{\circ}$$

$$\checkmark \beta = 75,96^{\circ}$$

✓ gradient of CD

(5)

(5)

✓ expansion

 $\checkmark \tan 45^\circ = 1$

 $\checkmark \tan \alpha = \frac{3}{5}$

✓ substitution

✓ answer

5.2	Equation of CD is $y = 4x + c$ $\therefore 4 = 4(5) + c$ $c = -16$ Equation of CD is $y = 4x - 16$.	✓ y- intercept ✓ equation of CD	
	OR		(2)
	y-4 = 4(x-5) y-4 = 4x-20	✓ substitution ✓ equation of CD	
	y = 4x - 16 $y = 4x - 16$		(2) [7]

6.1	$x^2 + y^2 + 8x + 4y - 38 = 0$	
	$x^2 + 8x + 16 + y^2 + 4y + 4 = 16 + 4 + 38$	✓ completing the
		square (both or one)
	$(x+4)^2 + (y+2)^2 = 58$	✓ factor form ✓ centre
	Centre is $(-4; -2)$ and the radius is $\sqrt{58}$	✓ radius
		(4)
6.2	Centre of second circle is (4; 6)	√centre
	Distance between centres is $\sqrt{(4+4)^2 + (6+2)} = \sqrt{128} = 11{,}31$	✓distance
(2		(2)
6.3	Sum of radii = $\sqrt{58} + \sqrt{26} = 12,71$	✓✓ sum of radii
	Distance between centres is 11,31.	Sum of faun
	sum of the radii > distance between the centres	✓ conclusion
	sum of the radii > distance between the centres	(3)
	: the circles must overlap and hence the circles must intersect.	
6.4	Equation of second circle:	
	$(x-4)^2 + (y-6)^2 = 26$	
	$x^2 - 8x + 16 + y^2 - 12y + 36 = 26$	(
	$\begin{vmatrix} x^2 - 8x + y^2 - 12y + 26 = 0 \end{vmatrix}$	\checkmark equation of circle in form = 0
	$\begin{vmatrix} x - 8x + y - 12y + 20 - 0 \end{vmatrix}$	TOTHI O
	Let $(x; y)$ be either of the two points on intersection.	
	Then (x, y) be either of the two points on intersection.	✓ statement – two
	$x^2 + y^2 + 8x + 4y - 38 = 0$	points of intersection
		✓ subtracting
	and $x^2 + y^2 - 8x - 12y + 26 = 0$	
	Subtract $16y + 16x - 64 = 0$	✓ simplification
	y = -x + 4	(4)
	Both points of intersection lie on this line.	
	y = -x + 4 is the equation of the common chord.	
	OR	

 $\begin{tabular}{lll} Mathematics/P2 & & & & 8 \\ NSC-Memorandum & & \\ \end{tabular}$

NSC – Memorandum	
Check that the line $y = -x + 4$ cuts the two circles at the same points:	
$(x-4)^2 + (-x-2)^2 = 26$ $x^2 - 8x + 16 + x^2 + 4x + 4 = 26$	✓ substitution
$2x^2 - 4x - 6 = 0$	
$x^2 - 2x - 3 = 0$	
(x-3)(x+1) = 0	✓ answer
x = 3 or x = -1	
$x^2 + y^2 + 8x + 4y - 38 = 0$	
$x^{2} + (4-x)^{2} + 8x + 4(4-x) - 38 = 0$	✓ substitution
$x^2 + 16 - 8x + x^2 + 8x + 16 - 4x - 38 = 0$	
$2x^2 - 4x - 6 = 0$	✓ answer
$x^2 - 2x - 3 = 0$	(4)
x = 3 or $x = -1$, ,
	[13]

QUESTION 7

7.1.1	P'(5;-2)	✓ answer
		(1)
7.1.2	P'(5;2)	\checkmark x coordinate
		✓ y coordinate
7.0.1		(2)
7.2.1	$K \to K'' : (14; 4) \to (2; 2)$	
	$U \to U'' : (18; 6) \to (3; 9)$	
	$H \to H'' : (16; 8) \to (4; 8)$	
	$L \to L'' : (18; 10) \to (5; 9)$	
	$E \to E'' : (14; 12) \to (6; 7)$	
	So "halve" and 'interchange" or 'interchange" and "halve".	✓ reflected
	_	✓ the line $y = x$
	Reflection across $y = x$ followed by contraction by $\frac{1}{2}$	✓ enlarged
	OR	\checkmark scale factor of $\frac{1}{2}$
	Contraction by $\frac{1}{2}$ followed by reflection across $y = x$.	(4)
7.2.2	$H' = \frac{1}{2}(16;8) = (8;4)$	✓ (8;4)
	OR $H^{/}(8;16)$	√ (8; 16)
	(-,)	(2)
7.2.3	$A_{\text{res}} \times A_{\text{res}} \times A_{$	✓ ✓ answer
	Area KUHLE : Area K"U"H"L"E" = $\left(\frac{2}{1}\right)^2 = 4 : 1$	(2)
		[11]

8.1 For anti-clockwise rotation: $x' = x\cos\theta - y\sin\theta$ $= 3\cos 120^{\circ} - 2\sin 120^{\circ}$ $= 3(-\frac{1}{2}) - 2\left(\frac{\sqrt{3}}{2}\right)$ $= \frac{-3 - 2\sqrt{3}}{2}$ $y' = x\sin\theta + y\cos\theta$ $= 3\sin 120^{\circ} + 2\cos 120^{\circ}$ $= 3\sin 60^{\circ} + 2(-\cos 60^{\circ})$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= -2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{ equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{ equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $Q(-2; 2\sqrt{3})$ (4) [101]	0.1		
$= 3\cos 120^{\circ} - 2\sin 120^{\circ} \\ = 3(-\cos 60^{\circ}) - 2\sin 60^{\circ} \\ = 3\left(-\frac{1}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right) \\ = \frac{-3 - 2\sqrt{3}}{2} \\ y' = x\sin \theta + y\cos \theta \\ = 3\sin 120^{\circ} + 2\cos 120^{\circ} \\ = 3\sin 60^{\circ} + 2(-\cos 60^{\circ}) \\ = 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right) \\ = \frac{3\sqrt{3} - 2}{2} \\ P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right) \\ = -4 = -x - \sqrt{3}y \qquad \text{ equation 1} \\ 0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right) \\ 0 = \sqrt{3}x + y \\ y = -\sqrt{3}x \qquad \text{ equation 2} \\ \text{Substitute equation 2 into equation 1} \\ -4 = -x - \sqrt{3}\left(-\sqrt{3}x\right) \\ -4 = -x + 3x \\ -4 = 2x \\ x = -2 \\ y = 2\sqrt{3} \end{aligned}$	8.1	For anti-clockwise rotation:	
$= 3\cos 20^{2} - 2\sin 60^{\circ}$ $= 3\left(-\frac{1}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right)$ $= \frac{3(-\cos 60^{\circ}) - 2\sin 60^{\circ}}{2}$ $= \frac{3}{2} - 2\sqrt{3}$ $y' = x\sin \theta + y\cos \theta$ $= 3\sin 120^{\circ} + 2\cos 120^{\circ}$ $= 3\sin 60^{\circ} + 2(-\cos 60^{\circ})$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= 2x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (4)		· · · · · · · · · · · · · · · · · · ·	√ formula
$= 3\left(-\frac{1}{2}\right) - 2\left(\frac{\sqrt{3}}{2}\right)$ $= \frac{-3 - 2\sqrt{3}}{2}$ $y' = x\sin\theta + y\cos\theta$ $= 3\sin 120^{\circ} + 2\cos 120^{\circ}$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= 2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $ \text{ answer}$ $ \checkmark \text{ simplification}$ $ \checkmark \text{ answer}$ $ \checkmark \text{ answer}$ $ \checkmark -4 = -x - \sqrt{3}y$ $ \checkmark -4 = -x - \sqrt{3}y$ $ \checkmark y = -\sqrt{3}x$ $ \checkmark x - \cos \sin at \cos $			Torritaia
$= 3\left(-\frac{1}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right)$ $= \frac{-3 - 2\sqrt{3}}{2}$ $y' = x \sin \theta + y \cos \theta$ $= 3 \sin 120^{\circ} + 2 \cos 120^{\circ}$ $= 3 \sin 60^{\circ} + 2(-\cos 60^{\circ})$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= -2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark \text{substitution}$ $\checkmark \text{answer}$		$=3(-\cos 60^\circ)-2\sin 60^\circ$	
$= \frac{-3 - 2\sqrt{3}}{2}$ $y' = x \sin \theta + y \cos \theta$ $= 3 \sin 120^{\circ} + 2 \cos 120^{\circ}$ $= 3 \sin 60^{\circ} + 2(-\cos 60^{\circ})$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= -2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{ equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{ equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark \text{ answer}$ $\checkmark \text{ simplification}$ $\checkmark = -4 - x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$		$2(1)$ $2(\sqrt{3})$	
		$=3\left(-\frac{2}{2}\right)-2\left(-\frac{2}{2}\right)$	✓ substitution
$y' = x \sin \theta + y \cos \theta$ = $3 \sin 120^{\circ} + 2 \cos 120^{\circ}$ = $3 \sin 60^{\circ} + 2(-\cos 60^{\circ})$ = $3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ = $\frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ 8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{ equation } 1$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{ equation } 2$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$ $\checkmark y = -\sqrt{3}x$		$-3-2\sqrt{3}$	✓ answer
$= 3\sin 120^{\circ} + 2\cos 120^{\circ} = 3\sin 60^{\circ} + 2(-\cos 60^{\circ}) = 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right) = \frac{3\sqrt{3} - 2}{2} P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= 2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right) - 4 = -x - \sqrt{3}y $		=	
$= 3\sin 60^{\circ} + 2(-\cos 60^{\circ})$ $= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= 2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (6) $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$ $\checkmark x - \cos x = x$ (4)		$y' = x\sin\theta + y\cos\theta$	
$= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= -2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ A answer $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$ $\checkmark x - \text{coordinate}$ $\checkmark x - \text{coordinate}$ $\checkmark y - \text{coordinate}$		$= 3\sin 120^{\circ} + 2\cos 120^{\circ}$	
$= 3\left(\frac{\sqrt{3}}{2}\right) + 2\left(-\frac{1}{2}\right)$ $= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ $= 2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (6) $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$ $\checkmark x - \cos(x)$ (4)		$=3\sin 60^\circ + 2(-\cos 60^\circ)$	()
$= \frac{3\sqrt{3} - 2}{2}$ $P'\left(\frac{-3 - 2\sqrt{3}}{2}; \frac{3\sqrt{3} - 2}{2}\right)$ 8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (6) $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$		$(\sqrt{3})$ (1)	✓ simplification
$P'\left(\frac{-3-2\sqrt{3}}{2}; \frac{3\sqrt{3}-2}{2}\right)$ 8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (6) $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$		$=3\left(\frac{\sqrt{3}}{2}\right)+2\left(-\frac{1}{2}\right)$	
$P'\left(\frac{-3-2\sqrt{3}}{2}; \frac{3\sqrt{3}-2}{2}\right)$ 8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (6) $\checkmark -4 = -x - \sqrt{3}y$ $\checkmark y = -\sqrt{3}x$ $\checkmark y = -\sqrt{3}x$		$3\sqrt{3}-2$	√ answer
8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{ equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{ equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (4)		$={2}$	answer
8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{ equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{ equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (4)		$p(-3-2\sqrt{3} + 3\sqrt{3}-2)$	
8.2 $-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$ $-4 = -x - \sqrt{3}y \qquad \dots \text{ equation 1}$ $0 = x\left(\frac{\sqrt{3}}{2}\right) + y\left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \dots \text{ equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x - \text{coordinate}$ $\checkmark y - \text{coordinate}$ $\checkmark y - \text{coordinate}$		$P\left(\frac{}{2};\frac{}{2}\right)$	(6)
$-4 = -x - \sqrt{3}y$ equation 1 $0 = x \left(\frac{\sqrt{3}}{2}\right) + y \left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x$ equation 2 Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\sqrt{x - \text{coordinate}}$ $\sqrt{y - 4} = -x - \sqrt{3}y$	8.2	(1) $(\sqrt{3})$	(0)
$-4 = -x - \sqrt{3}y$ equation 1 $0 = x \left(\frac{\sqrt{3}}{2}\right) + y \left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x$ equation 2 Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\sqrt{x - \text{coordinate}}$ $\sqrt{y - 4} = -x - \sqrt{3}y$ $\sqrt{y} = -\sqrt{3}x$ $\sqrt{x - \text{coordinate}}$		$-2 = x\left(-\frac{1}{2}\right) - y\left(\frac{\sqrt{3}}{2}\right)$	_
$0 = x \left(\frac{\sqrt{3}}{2}\right) + y \left(-\frac{1}{2}\right)$ $0 = \sqrt{3}x + y$ $y = -\sqrt{3}x \qquad \text{equation 2}$ Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}\left(-\sqrt{3}x\right)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x - \text{coordinate}$ $\checkmark y - \text{coordinate}$ $\checkmark y - \text{coordinate}$			$\checkmark -4 = -x - \sqrt{3}y$
$0 = \sqrt{3}x + y$ $y = -\sqrt{3}x$ equation 2 Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x - \text{coordinate}$ $\checkmark y - \text{coordinate}$ $\checkmark y - \text{coordinate}$			
$y = -\sqrt{3}x$ equation 2 Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ (4) $x = -\sqrt{3}x$ $x = -\sqrt{3}x$ $x = -\sqrt{3}x$ $x = -\sqrt{3}x$		$0 = x \left(\frac{\sqrt{2}}{2} \right) + y \left(-\frac{1}{2} \right)$	
Substitute equation 2 into equation 1 $-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x$ -coordinate $\checkmark y$ -coordinate $\checkmark y$ -coordinate		$0 = \sqrt{3}x + y$	
$-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x\text{-coordinate}$ $\checkmark y\text{-coordinate}$		$y = -\sqrt{3}x$ equation 2	$\checkmark y = -\sqrt{3}x$
$-4 = -x - \sqrt{3}(-\sqrt{3}x)$ $-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x\text{-coordinate}$ $\checkmark y\text{-coordinate}$		Substitute equation 2 into equation 1	
$-4 = -x + 3x$ $-4 = 2x$ $x = -2$ $y = 2\sqrt{3}$ $\checkmark x\text{-coordinate}$ $\checkmark y\text{-coordinate}$			
$x = -2$ $y = 2\sqrt{3}$ $\sqrt[4]{x-\text{coordinate}}$ $\sqrt[4]{x-\text{coordinate}}$			
$y = 2\sqrt{3}$ \(\sqrt{y-coordinate} \)		-4=2x	
$y = 2\sqrt{3}$		x = -2	
$ \begin{bmatrix} 7 & 2\sqrt{3} \\ Q & (-2; 2\sqrt{3}) \end{bmatrix} $ [10]		$v = 2\sqrt{3}$	·
		$O(-2 \cdot 2\sqrt{3})$	
		(2,2v3)	[,]

9.1.1	$\sin \theta = -\frac{3}{5}$ and $\cos \theta = -\frac{4}{5}$	✓ correct quadrant and values.
	-4 θ	$\checkmark \sin \theta = -\frac{3}{5}$
	$\sin\theta + \cos\theta = -\frac{7}{5}$	$\checkmark \cos \theta = -\frac{4}{5}$
		✓answer (4)
9.1.2	$\tan 2\theta = \frac{\sin 2\theta}{2\theta} = \frac{2\sin \theta \cos \theta}{2\theta + \frac{1}{2}\theta}$	$\sqrt{\sin 2\theta}$
	$\frac{\tan 2\theta - \cos 2\theta - \cos^2 \theta - \sin^2 \theta}{\cos^2 (3)(4)}$	$\cos 2\theta$ $\checkmark \sin 2\theta = 2\sin\theta.\cos\theta$
	$=\frac{2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)}{}$	$\checkmark \cos 2\theta = \cos^2 \theta - \sin^2 \theta$
	$-\frac{16}{25} - \frac{9}{25}$	✓ substitution
	$=\frac{24}{7}$	✓ answer
	7	(5)
	OR	
	$\tan 2\theta$	
	$=\frac{2\tan\theta}{1-\tan^2\theta}$	✓✓ expansion
	$1-\tan \theta$	✓✓ substitution
	$=\frac{2(4)}{4}$	Substitution
	$=\frac{1-\left(\frac{3}{4}\right)^2}{1-\left(\frac{3}{4}\right)^2}$	
	$=\frac{24}{2}$	✓ answer
9.2.1	7	(5)
9.2.1	$\frac{\cos(360^{\circ} - x) \cdot \tan^{2} x}{\sin(x - 180^{\circ}) \cdot \cos(90^{\circ} + x)}$	$\checkmark \cos x$
		$\checkmark -\sin x$ $\checkmark -\sin x$
	$=\frac{(\cos x)(\tan^2 x)}{(-\sin x)(-\sin x)}$	
	$= (\cos x) \left(\frac{\sin^2 x}{\cos^2 x} \right) \left(\frac{1}{\sin^2 x} \right)$	$\checkmark \frac{\sin^2 x}{\cos^2 x}$
	$=\frac{1}{1}$	✓ answer
	$\cos x$	(5)
9.2.2	$x = 30^{\circ}$	$\checkmark x = 30^{\circ}$
	$\frac{1}{\cos 30^{\circ}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$	✓ answer
	$\frac{\sqrt{2}}{2}$	(2) [16]

10.1.1	$\sin 48^{\circ} = \sin(36^{\circ} + 12^{\circ})$ $= \sin 36^{\circ} \cos 12^{\circ} + \cos 36^{\circ} \sin 12^{\circ}$ $= p + q$ $\sin 24^{\circ} = \sin(36^{\circ} - 12^{\circ})$ $= \sin 36^{\circ} \cos 12^{\circ} - \cos 36^{\circ} \sin 12^{\circ}$	✓ writing 48° in terms of 36° and 12° ✓ expansion ✓ answer (3) ✓ writing 24° in terms of 36° and 12° ✓ expansion
	$= p - q$ OR $\sin 24^\circ = \sin(36^\circ - 12^\circ)$	✓ $\sin 24^\circ = p - q$ (3) ✓ writing 24° in terms of 36° and 12°
	$= \sin 36^{\circ} \cos 12^{\circ} - \cos 36^{\circ} \sin 12^{\circ}$ $= p - q$	✓ expansion ✓ sin 24° = p - q (3)
10.1.3	$\sin 48^\circ = 2\sin 24^\circ \cos 24^\circ$ $\therefore p + q = 2(p - q)\cos 24^\circ$ $\therefore \cos 24^\circ = \frac{p + q}{2(p - q)}$	$\checkmark \cos 48^\circ = 2\cos^2 24^\circ - 1$ $\checkmark \sin 48^\circ = p + q$ $\checkmark \text{ answer}$ (3)
	OR $\cos 48^{\circ} = 2\cos^{2} 24^{\circ} - 1$ $\therefore \cos 24^{\circ} = \sqrt{\frac{1 + \cos 48^{\circ}}{2}} = \sqrt{\frac{1}{2} \left(1 + \sqrt{1 - \sin^{2} 48^{\circ}}\right)}$ $= \sqrt{\frac{1}{2} \left(1 + \sqrt{1 - (p + q)^{2}}\right)}$	$\checkmark \cos 48^\circ = 2\cos^2 24^\circ - 1$ $\checkmark \sin 24^\circ = p - q$ $\checkmark \text{ answer}$ (3)
	OR $\cos^{2} 24^{\circ} = 1 - \sin^{2} 24^{\circ}$ $\cos^{2} 24^{\circ} = 1 - (p - q)^{2}$ $\cos 24^{\circ} = \sqrt{1 - (p - q)^{2}}$	$\checkmark \cos^2 24^\circ = 1 - \sin^2 24^\circ$ $\checkmark \sin 24^\circ = p - q$ $\checkmark \text{ answer}$ (3)

10.3.1	$\sin^4 x + \sin^2 x \cos^2 x$	
	$\frac{1+\cos x}{}$	✓ factorisation
	$=\frac{\sin^2 x(\sin^2 x + \cos^2 x)}{\sin^2 x + \cos^2 x}$	· iactorisation
	$1+\cos x$	$\checkmark \sin^2 x + \cos^2 x = 1$
	$=\frac{\sin^2 x}{1-x}$	
	$1 + \cos x$	✓identity
	$=\frac{1-\cos^2 x}{1+\cos x}$	
	$= \frac{(1-\cos x)(1+\cos x)}{(1-\cos x)(1+\cos x)}$	✓ factorisation
	$=\frac{(1+\cos x)}{(1+\cos x)}$	(4)
	$=1-\cos x$	
10.3.2	$1 + \cos x = 0$	$\checkmark 1 + \cos x = 0$
	$\cos x = -1$	✓180° + k.360°
	$x = 180^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	(2)
	Undefined for $x = 180^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$.	[22]

11.1	$1 + \sin x = \cos 2x$	
	$1 + \sin x = 1 - 2\sin^2 x$	✓ expansion
	$\sin x + 2\sin^2 x = 0$	
	$\sin x(1+2\sin x)=0$	✓ factorisation
	$\sin x = 0 \qquad \text{or} \qquad \sin x = -\frac{1}{2}$	✓ equations
	$x = k.180$ or $x = -30^{\circ} + k.360$ $k \in \mathbb{Z}$	$\checkmark x = k.180$
	$x = k.180$ or $x = -30^{\circ} + k.360$ $k \in \mathbb{Z}$ $x = 210^{\circ} + k.360$	✓ solution for
	$x \in \{180^{\circ}; 210; 330^{\circ}; 360^{\circ}\}$	$\sin x = -\frac{1}{2}$
	O.D.	✓✓answers
	OR	(7)
	$1 + \sin x = \cos 2x$	
	$1 + \sin x = \cos^2 x - \sin^2 x$	✓ expansion
	$1 + \sin x = 1 - \sin^2 x - \sin^2 x$	
	$\sin x + 2\sin^2 x = 0$	✓ factorisation
	$\sin x(1+2\sin x)=0$	
	$\sin x = 0 \qquad \text{or} \qquad \sin x = -\frac{1}{2}$	✓ equations
	$x = k.180$ or $x = -30^{\circ} + k.360$ $k \in \mathbb{Z}$	$\checkmark x = k.180$
	$x = 210^{\circ} + k.360$	✓ solution for
	$x \in \{180^\circ; 210; 330^\circ; 360^\circ\}$	$\sin x = -\frac{1}{2}$
		✓✓answers
		(7)

NSC – Memorandum

QUESTION 12

12.1	$\frac{b}{\sin[180^\circ - (\alpha + \beta)]} = \frac{BC}{\sin\alpha}$	✓ sine rule
	$BC\sin(\alpha + \beta) = b\sin\alpha$	$\hat{ABC} = 180^{\circ} - (\alpha + \beta)$
	$BC = \frac{b\sin\alpha}{\sin(\alpha + \beta)}$	✓ BC =
	but BC = DF	✓ BC = DF
	$\therefore DF = \frac{b\sin\alpha}{\sin(\alpha + \beta)}$	✓ manipulation
	$\cos \theta = \frac{DF}{DE}$ $\therefore DE = \frac{DF}{\cos \theta}$ $\therefore DE = \frac{b \sin \alpha}{\sin(\alpha + \beta) \cos \theta}$	✓ DE = (6)
12.2	$DE = \frac{2000 \sin 43^{\circ}}{\sin 79^{\circ}.\cos 27^{\circ}}$ = 1559,50 m	✓ substitution numerator ✓ substitution denominator
		✓ answer (3) [9]

TOTAL: 150