Frisbee Square Formulation

Input Data Model

Indices

- ullet I Collection of products.
- T Collection of periods $[1,2,\ldots]$.

Parameters

- d_{it} : Demand (units) of product i in period t.
- oi_i : Opening inventory (units) of product i.
- pr_i : Production rate (units/hour) of product i.
- hc_t : Holding cost (dollars/unit) in period t.
- pu_t : Production capacity (hours) at period t.
- pc_i : Production cost (dollars/unit) of product i.

Decision Variables

- x_{it} : Number of units produced of product i in period t.
- y_{it} : Number of units held in inventory of product i from period t to t+1.

Constraints

• C1) Flow balance:

$$y_{it} = oi_i + x_{it} - d_{it}, \quad orall i, t = 1$$

$$y_{it} = y_{it-1} + x_{it} - d_{it}, \quad orall i, t \geq 2$$

By defining y_{it} as non-negative, we already ensure that demand d_{it} is met for every i and t.

• C2) Production capacity:

$$\sum_i rac{x_{it}}{pr_i} \leq pu_t, \quad orall t$$

Objective

The objective is to minimize total cost, which is composed by production and holding costs:

- production\ $_{cost} := pc_i \cdot x_{it}$
- holding\ $_{cost} := hc_t \cdot y_{it}$

$$\min \quad \sum_{it} \operatorname{production} \backslash _\operatorname{cost}_{it} + \operatorname{holding} \backslash _\operatorname{cost}_{it}$$