Attention Is All You Need

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., et al.

Presentador: Matías Marambio Jiménez

Transduction, Sequence modelling

- Modelamiento de Lenguaje.
- Traducción Automática (Machine Translation).

Transduction, Sequence modelling ¿cómo se hace? (2017)

- Arquitecturas codificador-decodificador.
- Self-attention
- Modelos de lenguaje recurrentes.

$$h_t(h_{t-1})$$

¿Qué pasa con las secuencias largas?

Nuevo método: Transformer

- Arquitectura codificador-decodificador. √
- Sólo utiliza self-attention. √

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

- 1. Baja complejidad por capa.
- Cantidad de computación que puede ser paralelizada.
- Caminos cortos entre dependencias largas de la secuencia

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

Resultados

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 8	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	$2.3 \cdot 10^{19}$	

Conclusiones

Transformer

Basado en self-attention

Nuevo estado del arte

WMT2014 EN-DE WMT2014 EN-FR

Entrenan rápido

Comparado con recurrente y convolucional

Trabajo futuro

Inputs que no sean texto

Neural Information Processing Systems https://papers.neurips.cc>paper>7181-attentio...

Attention is All you Need

by A Vaswani · Cited by 86548 — **We** propose a new simple network architecture, the Transformer, based solely on **attention** mechanisms, dispensing with recurrence and... 11 pages

You visited this page on 8/26/2023.

Gracias

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar*
Google Research
nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com