Cyclstic case study

Amol khaire

2023-01-21

Scenario

You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company's future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

Problems

- 1. How do annual members and casual riders use Cyclistic bikes differently?
 - 2. Why would casual riders buy Cyclistic annual memberships?
- 3. How can Cyclistic use digital media to influence casual riders to become members?

Importing and grouping data

```
install.packages("readr")
library(readr)
ak1 <- read.csv("202201-divvy-tripdata.csv")
ak2 <- read.csv("202202-divvy-tripdata.csv")
ak3 <- read.csv("202203-divvy-tripdata.csv")
ak4 <- read.csv("202204-divvy-tripdata.csv")
ak5 <- read.csv("202205-divvy-tripdata.csv")
ak6 <- read.csv("202206-divvy-tripdata.csv")
ak7 <- read.csv("202206-divvy-tripdata.csv")
ak8 <- read.csv("202208-divvy-tripdata.csv")
ak9 <- read.csv("202208-divvy-publictripdata.csv")</pre>
```

```
ak10 <- read.csv("202210-divvy-tripdata.csv")
ak11 <- read.csv("202211-divvy-tripdata.csv")
ak12 <- read.csv("202212-divvy-tripdata.csv")
bike rides <- rbind(ak1,ak2,ak3,ak4,ak5,ak6,ak7,ak8,ak9,ak10,ak11,ak12)</pre>
```

Cleaning and transforming data

- In spreadsheet create a column called "ride_length." Calculate the length of each ride by subtracting the column "started_at" from the column "ended_at" (for example, =D2-C2) and format as HH:MM:SS using Format > Cells > Time > 37:30:55.
- Create a column called "day_of_week," and calculate the day of the week that each ride started using the "WEEKDAY" command (for example, =WEEKDAY(C2,1)) in each file. Format as General or as a number with no decimals, noting that 7 = Sunday and 1 = Monday.
- Removing empty Columns and Rows bike_rides <janitor::remove_empty(bike_rides,which = c("cols")) bike_rides <janitor::remove_empty(bike_rides,which = c("rows"))</pre>
- Change Date and Time format bike_rides\$started_at <lubridate::dmy_hm(bike_rides\$started_at) bike_rides\$ended_at <lubridate::dmy hm(bike rides\$ended at)
- Creating column containing hour bike_rides\$start_hour <lubridate::hour(bike_rides\$started_at) bike_rides\$end_hour <lubridate::hour(bike_rides\$ended_at)
- Creating column containing month bike_rides\$start_month <lubridate::month(bike_rides\$started_at)

Creating separate table name member and casual Riders

```
member_riders <- filter(bike_rides, member_casual == "member")
casual_riders <- filter(bike_rides, member_casual == "casual")</pre>
```

Plotting data

bike_rides %>% count(start_hour, sort = T) %>% ggplot() +
geom_line(aes(x=start_hour,y=n)) + labs(title = "Total No of rides by hour",
subtitle = "This data is of year 2022")

Total No of rides by hour

This data is of year 2022

bike_rides %>% count(start_month, sort = T) %>% ggplot() +
geom_line(aes(x=start_month,y=n)) + labs(title = "Total No of rides by
month", subtitle = "This data is of year 2022")

Total No of rides by month

This data is of year 2022

Finding Which days has highest no. of member and casual Riders

member_riders %>% count(day_of_week, sort = T) %>% ggplot() +
geom_line(aes(x=day_of_week, y=n)) + labs(title = "Total No of rides by day
by members", subtitle = "(This data is of year 2022)", caption
="(mon=1,tue=2,...,sun=7)")

Total No of rides by day by member

This data is of year 2022

From this it is clear that mostly riders who use cycle at workdays are members.

casual_riders %>% count(day_of_week, sort = T) %>% ggplot() +
geom_line(aes(x=day_of_week, y=n)) + labs(title = "Total No of rides by day
by casual riders", subtitle = "(This data is of year

Total No of rides by day by casual

This data is of year 2022

From this it is clear that mostly casual riders ride cycle at weekend.

Count riders according to their choice of cycle type

member_riders %>% count(rideable_type, sort = T)

n

rideable_type

classic_bike	1709755
electric_bike	1635930

casual_riders %>% count(rideable_type, sort = T)

rideable_type	n
electric_bike	253099
classic_bike	891459
docked bike	177474

Conclusion

- 1. Most people ride during May to Octomber, This is may be due to huge no. of tourist in Chicago during this period.
- 2. Most people usually rides during 1pm to 7pm and it peaks at 5pm.
- 3. Riders who are members more preferred classic bike and casual riders more preferred electric bike, also there is sufficient no. of casual riders who preferred docked bike.