

CHEMESTRY

Chapter 1

Organic Chemestry.

CHEMESTRY

Index

01. MotivatingStrateg

02. HelicoTheory

03. HelicoPractice

04. HelicoWorKshop 🕥

1.MOTIVATING STRATEGY

2.HELICO THEORY

¿Qué se entiende por Química orgánica?

Estudia a los compuestos de carbono naturales o sintetizados en el laboratorio

Excepto CO, CO₂, H₂CO₃, CO₃-2, CN-, CNO-

Compuestos orgánicos

- Organógenos: C, H, O, N
- Son compuestos covalentes.
- No soportan altas temperaturas (termolábiles).
- La mayoría son poco solubles en agua.
- Generalmente no conducen la electricidad.
- Son utilizados como combustibles.
- Presentan isómeros.

ANTECEDENTES

Jacob Berzelius propuso la teoría vitalista.

Creyó que solo los seres vivos producían compuestos orgánicos debido a una "fuerza vital"

Luego, en 1828, **Friedrich Wöhler** sintetizó por primera vez un compuesto orgánico (urea) a partir de uno inorgánico (cianato de amonio)

NH₄CNO → NH₂CONH₂

PRESENTACIONES DEL CARBONO

AMORFOS (IMPUROS)

NATURALES

ARTIFICIALES

ANTRACITA (95%)
HULLA (75 – 90%)
LIGNITO (69%)
TURBA (45 – 55%)

CARBÓN ANIMAL
CARBÓN VEGETAL
CARBÓN ACTIVADO
HOLLÍN (NEGRO DE HUMO)
COKE

PROPIEDADES DEL CARBONO

COVALENCIA

TETRAVALENCIA

CH₃
$$\stackrel{\sigma}{-}$$
 CH₃ CH₂ $\stackrel{\sigma}{=}$ CH₂ CH₂ CH $\stackrel{\sigma}{=}$ CH

AUTOSATURACIÓN

HIBRIDACIÓN

$$CH_3 \stackrel{sp^3}{-} CH_3 \quad CH_2 \stackrel{sp^2}{-} CH_2 \quad CH \stackrel{sp}{=} CH$$

CATEGORÍAS DEL CARBONO

HELICORESUMEN

QUIMICA ORGÁNICA

PRESENTACIONES DEL CARBONO

PROPIEDADES

CATEGORIAS

COVALENCIA

TETRAVALENCIA

AUTOSATURACIÓN

HIBRIDACIÓN

C. PRIMARIO

C.SECUNDARIO

C.TERCIARIO

C.CUATERNARIO

NATURALES
ARTIFICIALES

ALÓTROPOS

Resolución de Problemas

Problema 02

Problema 03 (

Problema 04

Problema 05

3.HELICO PRACTICE

De las proposiciones

- El carbono forma enlaces covalentes con otros átomos de carbonos.
- El carbono forma parte esencial de los compuestos orgánicos.
- En el hombre solo se presentan compuestos orgánicos.

Son correctas:

- A) I,III
- B) II,III **()** I,II

D) Solo II

E) Sólo I

RECORDEMOS

Covalencia: Propiedad por la cual el carbono se enlaza con otros elementos no metálicos mediante enlace Covalente, donde comparte electrones de valencia SUS cumpliendo con la regla del octeto.

La química orgánica es también llamada química del carbono.

Organógenos: C, H, O, N

¿Cuál de los compuestos no es estudiado por la química orgánica?.

- A) CO_2
- B) CH₄
- C) CH₃ CO NH₂
- D) C_3H_6
- E) C_2H_5OH

RECORDEMOS

Los compuestos que contienen al carbono pero no son compuestos orgánicos

Compuestos tales como el CO, CO₂, H₂CO₃, CN-, CNO-, CO₃²⁻, no son considerados orgánicos, son inorgánicos.

En la estructura

$$\begin{array}{c} \mathsf{CH_3CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \end{array}$$

- I. Existen 6 carbonos primarios.
- II. Existen 10 enlaces sigma.
- III. Todos los carbonos poseen hibridación sp³.

Son correctas:

- A) I, II y III
- B) Solo III
- C) II y III

RECORDEMOS

Son propiedades del carbono: tetravalencia, covalencia, autosaturación, concatenación, hibridación

10 enlaces σ C-C + 24 enlaces σ C-H (el enlace C-H es simple) = 34 enlaces σ

Por ser un alcano (solo enlaces simples) ,todos los carbonos poseen hibridación sp³

Existen muchos compuestos orgánicos, donde los átomos se unen por enlace covalente. Considerando el número de electrones compartidos, pueden ser enlaces covalentes simples o covalentes múltiples, a la vez pueden ser enlaces covalentes sigma o enlaces covalentes pi. En la siguiente estructura, determine cantidad de enlaces sigma (σ) y enlaces pi (σ) respectivamente

$$CH_3 - CH - CH = C = CH - CH_2 - CH - CH_3$$
 $CH_3 - CH_3 - CH_2 - CH_3$
 $CH_2 - CH_3$

- A) 10 y 3
- B) 10 y 2
- C) 20 y 2
- **Q** 30 y 2
- E) 10 y 4

RECORDEMOS

Enlace simple E-E σ Enlace doble E=E $\sigma \pi$ Enlace triple E=E σ , 2π

$$CH_{3} \stackrel{\sigma}{\overset{\sigma}{\overset{C}{\circ}}} CH \stackrel{\sigma}{\overset{\sigma}{\overset{C}{\circ}}} CH \stackrel{\sigma}{\overset{\sigma}{\overset{C}{\circ}}} CH \stackrel{\sigma}{\overset{\sigma}{\overset{C}{\circ}}} CH \stackrel{\sigma}{\overset{\sigma}{\overset{C}{\circ}}} CH_{3}$$

$$CH_{3} \qquad CH_{2} \stackrel{\sigma}{\overset{C}{\overset{C}{\circ}}} CH_{3}$$

10 enlaces σ C-C + 20 enlaces σ C-H (ellenlace C-H es simple) = 30 enlaces σ

Hay dos enlaces π

RECORDEMOS

Resolución

Los compuestos orgánicos, por su origen, pueden ser naturales o sintetizados; y por el número de elementos pueden ser binarios, ternarios, cuaternarios, etc. En cada una de las moléculas participan 1 o más átomos de carbono, tal como en la siguiente estructura.

¿Cuántos carbonos primarios, secundarios, terciarios y cuaternarios hay en la siguiente estructura respectivamente?

- A) 8, 3, 2, 2
- **B**) 6, 4, 2, 2
 - 8, 2, 2, 2
- D) 6, 2, 4, 2
- E) 6, 2, 2, 4

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

4.HELICO WORSKHOP

 \bigcirc

¿Cuáles son las propiedades del carbono?

- A)Tetravalencia
- B) Autosaturación
- C) Destilación
- D) Divalencia
- E) A y B

Indique la cantidad de enlaces π y σ

$$CH_{2} - CH_{3}$$
 I
 $CH_{3} - CH - CH_{2} - CH - CH_{2} - CH_{2} - CH_{3}$
 I
 $CH_{2} - CH_{2} - CH_{3}$

- A) 1 y 26
- B) 1 y 25
- C) 3 y 10
- D) 1 y 27
- E) 2 y 8

En la siguiente fórmula, indique la cantidad de carbonos primarios, secundarios y terciarios.

- A) 1, 2, 3
- B) 2, 5, 6
- C) 3, 4, 8
- D) 4, 1, 2
- E) 3, 1, 2

En química orgánica, un compuesto saturado aquel que tiene una cadena de átomos de carbono unidos entre sí, solo por enlaces simples. La cadena de átomos de carbono puede ser lineal o ramificada. Señale lo que no corresponde.

I. CH₃ –CH₂ –CH=CH–CH₂ –CH₃: Cadena lineal e insaturada

II. CH3 –CH2 –CH2 –CH2–CH–CH3

СНз

Cadena ramificada y saturada
III. CH2 = CH − CH2− CH2 − CH3
Cadena lineal e insaturada
IV.CH3 −CH2 −CH=CH−CH2−C≡CH:
Cadena lineal y saturada.

- A) Solo I B) Solo IV C) Solo III
- D) Solo II E) II y IV

Un átomo de carbono es capaz de combinar dos o más orbitales atómicos de su última capa; con ello se explica los diferentes enlaces químicos (simple y múltiple) que forma el carbono. Marque lo incorrecto.

a)
$$-CH_2 - CH_3$$

Existe hibridación sp³

b)
$$= C =$$

Existe hibridación sp

c)
$$C H_2 = CH_2$$

Existe hibridación sp

d)
$$-C = C -$$

Existe hibridación sp

e)
$$CH_2 = CH_2$$

Existe hibridación sp²

GRACIAS