FP32 Training Memory Analysis for ResNet-50 and DeiT-Base / ViT-B/16

Subhasish Bandyopadhyay

April 2024

1 Introduction

This document analyzes the FP32 training memory requirements for ResNet-50 and DeiT-Base / ViT-B/16 models at 224×224 resolution with a batch size of 64, using the AdamW optimizer. The analysis focuses on saved activations (tensors retained for backward at the end of forward) and parameter-side memory (weights, gradients, first/second moments). Transient workspaces are excluded and reported as a separate headroom band. Units are defined as FP32 = 4 bytes/element, 1 MiB = 2^{20} bytes, and 1 GiB = 2^{30} bytes.

2 ResNet-50: Saved-Activation Geometry and Totals

For a bottleneck block at spatial size $H \times W$ with inner channels P and expansion factor 4, the main-path outputs retained per block are:

$$\underbrace{(P \cdot H \cdot W)}_{1 \times 1 \text{ reduce}} + \underbrace{(P \cdot H \cdot W)}_{3 \times 3} + \underbrace{(4P \cdot H \cdot W)}_{1 \times 1 \text{ expand}} = 6 P H W$$

For the first block of each stage, the skip path includes a 1×1 projection, retaining the previous stage's output for weight gradient computation. Batch size B = 64. Element counts are per image, multiplied by B, then by 4 bytes/element.

2.1 Stage-wise Accounting

- conv1 out $(64 \times 112 \times 112)$: $64 \times 112 \times 112 \times 64 \times 4/2^{20} = 196.00$ MiB
- maxpool out $(64 \times 56 \times 56)$: $64 \times 56 \times 56 \times 64 \times 4/2^{20} = 49.00$ MiB
- Stage 1 (56 × 56, P = 64, 3 blocks): Main path = $3 \times 6 \times 64 \times 56 \times 56 \times 64 \times 4/2^{20} = 882.00$ MiB; downsample input = $64 \times 56 \times 56 \times 64 \times 4/2^{20} = 49.00$ MiB \rightarrow 931.00 MiB
- Stage 2 (28 × 28, P=128, 4 blocks): Main path = $4 \times 6 \times 128 \times 28 \times 28 \times 64 \times 4/2^{20} = 384.00$ MiB; downsample input = $256 \times 56 \times 56 \times 64 \times 4/2^{20} = 400.00$ MiB $\to 784.00$ MiB
- Stage 3 (14 × 14, P = 256, 6 blocks): Main path = $6 \times 6 \times 256 \times 14 \times 14 \times 64 \times 4/2^{20} = 301.00$ MiB; downsample input = $512 \times 28 \times 28 \times 64 \times 4/2^{20} = 238.00$ MiB $\rightarrow 539.00 MiB$ Stage 4(7 × 7, P = 512, 3 blocks): Main path = $3 \times 6 \times 512 \times 7 \times 7 \times 64 \times 4/2^{20} = 88.50$ MiB; downsample input = $1024 \times 14 \times 14 \times 64 \times 4/2^{20} = 70.75$ MiB $\rightarrow 159.25 MiB$

Total saved activations (excluding indices):

$$196.00 + 49.00 + 931.00 + 784.00 + 539.00 + 159.25 = 2658.25 \text{ MiB} = 2.596 \text{ GiB}$$

Max-pool indices (64 × 56 × 56, 32-bit): $64 \times 56 \times 56 \times 64 \times 4/2^{20} = 49.00$ MiB.

2.2 Parameter-side Memory

Parameters ≈ 25.6 M, 16 bytes/parameter (weights, gradients, first/second moments): $25.6 \times 10^6 \times 16/2^{30} = 0.381$ GiB.

2.3 ResNet-50 FP32 Training Memory (Excluding Workspace)

• Saved activations: 2.596 GiB

• Pool indices: 0.048 GiB

• Parameters + gradients + moments: 0.381 GiB

• Total: 3.03 GiB

Practical headroom (transient workspaces, allocator): $+1020\% \rightarrow 3.333.63$ GiB.

3 DeiT-Base / ViT-B/16: Saved-Activation Geometry and Totals

Patch size 16 on 224×224 yields $14 \times 14 = 196$ patch tokens. With a CLS token, sequence length S=197. Hidden size H=768, heads h=12, layers L=12, batch B=64. Define $BSH=B\cdot S\cdot H=9,682,944$.

Retained tensors per transformer layer (upper-bound for vanilla module graphs):

- Residual checkpoints and Q/K/V projections + MLP hidden: $9\,BSH$
- Attention probabilities (B, h, S, S) only for naïve MHA that materializes softmax probabilities. Modern SDPA/FlashAttention recomputes in backward, not retaining $B h S^2$.

A single BSH patch-embedding output is retained once (for initial projection/pos-embed path).

3.1 Baseline A Naïve MHA (Stores $B h S^2$)

Per layer: $9BSH + BhS^2$.

- Per-layer saved activations: $(9 \times 9.682,944 + 64 \times 12 \times 197^2) \times 4/2^{20} = 446.14 \text{ MiB}$
- Patch-embed saved once: $9.682.944 \times 4/2^{20} = 36.94 \text{ MiB}$
- 12-layer saved activations: $(12 \times 446.14 + 36.94)/1024 = 5.264$ GiB

3.2 Baseline B SDPA / FlashAttention (No $B h S^2$)

Per layer: 9BSH.

- Per-layer saved activations: $9 \times 9{,}682{,}944 \times 4/2^{20} = 332.44$ MiB
- Patch-embed saved once: 36.94 MiB
- 12-layer saved activations: $(12 \times 332.44 + 36.94)/1024 = 3.932$ GiB

3.3 Parameter-side Memory

Parameters $\approx 86.57 \text{ M}$, 16 bytes/parameter: $86.57 \times 10^6 \times 16/2^{30} = 1.290 \text{ GiB}$.

3.4 ViT-B/16 FP32 Training Memory (Excluding Workspace)

- Naïve MHA: Saved activations 5.264 GiB + params 1.290 GiB \rightarrow 6.55 GiB
- SDPA/Flash: Saved activations 3.932 GiB + params 1.290 GiB \rightarrow 5.22 GiB

Practical headroom: +1020%:

Naïve MHA: 7.217.86 GiBSDPA/Flash: 5.746.27 GiB

Minor additions: LayerNorm statistics are O(BS) (kB-scale); dropout masks (if uint8) add ≈ 910 MiB per BSH tensor using dropout. Both are sub-5% at S=197.

4 Side-by-Side Totals (FP32, AdamW, Excluding Workspace)

Model	Saved Activations	Indices / Masks	Params + Grads + Moments	Total
ResNet-50	2.596 GiB	0.048 GiB	0.381 GiB	3.03 GiB
ViT-B/16 Naïve MHA	5.264 GiB	\sim small	1.290 GiB	6.55 GiB
ViT-B/16 SDPA/Flash	3.932 GiB	\sim small	1.290 GiB	5.22 GiB

Table 1: FP32 training memory comparison

Ratios (ViT : ResNet, totals):

• Naïve MHA: $6.55/3.03 \approx 2.17 \times$ • SDPA/Flash: $5.22/3.03 \approx 1.73 \times$

5 Implementation Notes

- 1. Gradient checkpointing reduces saved-activation residency by $\approx 3050\%$ with added compute; applies to both CNN and transformer blocks.
- 2. Attention kernel choice governs whether $B\,h\,S^2$ appears in the live set. SDPA/FlashAttention removes this term; naïve MHA retains it.
- 3. Operator fusion/compilation can reduce peak live activations but may increase transient workspaces; report both max allocated (live set) and max reserved (allocator cache) when profiling.
- 4. Optimizer memory depends on choice: SGD+momentum uses 12 bytes/parameter vs AdamWs 16; parameter-side savings are larger for ResNet-50 due to its smaller parameter count.

6 Verification Recipe (PyTorch)

Measure live vs reserved memory on a single forward+backward to validate environment-specific peaks:

```
import torch
def measure(model, x):
    model.train()
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    out = model(x).sum()
    out.backward()
    alloc = torch.cuda.max_memory_allocated() / (1024**3)
    reserv = torch.cuda.max_memory_reserved() / (1024**3)
    return alloc, reserv
# Example shapes:
# ResNet-50: x = torch.randn(64, 3, 224, 224, device='cuda')
# ViT-B/16: x = torch.randn(64, 3, 224, 224, device='cuda')
```

Report max_memory_allocated (peak live set). max_memory_reserved includes the allocator cache and can exceed true usage.

7 Summary

- ResNet-50 (FP32, AdamW, 224×224, B=64): ~ 3.03 GiB ex-workspace; $\sim 3.333.63$ GiB with headroom.
- DeiT-Base / ViT-B/16:
 - Naïve MHA: ~ 6.55 GiB ex-workspace; $\sim 7.217.86$ GiB with headroom.
 - SDPA/Flash: ~ 5.22 GiB ex-workspace; $\sim 5.746.27$ GiB with headroom.
- The transformers higher memory arises from larger parameter count and higher O(BSH) activation volume per layer; the quadratic $O(B\,h\,S^2)$ component is implementation-dependent and avoidable with modern attention kernels.

8 Appendix: Constants and Conversions

- FP32: 4 bytes/element
- 1 MiB = 1,048,576 bytes, 1 GiB = 1,073,741,824 bytes
- Batch = 64; Image = 224×224 ; ViT sequence S=197; ViT hidden H=768; Heads h=12; Layers L=12.