PM SHRI KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 **PRACTICE PAPER 09 (2024-25)**

CHAPTER 08 INTRODUCTION TO TRIGONOMETRY (ANSWERS)

SUBJECT: MATHEMATICS MAX. MARKS: 40 CLASS: X DURATION: 1½ hrs

General Instructions:

- **All** questions are compulsory.
- This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCOs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

SECTION – A

Questions 1 to 10 carry 1 mark each.

1. $(\sec^2\theta - 1)(\cos^2\theta - 1)$	$(c^2\theta - 1)$ is equal to:		
(a) -1	(b) 1	(c) 0	(d) 2
Ans. (b) 1			
$(\sec^2\theta - 1)$ (cose	$(c^2\theta - 1)$		
$= \tan^2\theta \times \cot^2\theta$			
$= \tan^2\theta \times 1/\tan^2\theta$	$\theta = 1$		

- - (a) $\frac{7}{25}$

- (c) $\frac{7}{24}$ (d) $\frac{24}{7}$

Ans: (a) $\frac{7}{25}$

- 3. If 5 tan $\theta = 4$, then the value of $\frac{5\sin\theta 3\cos\theta}{5\sin\theta + 2\cos\theta}$ is
 - (a) 1/6

- (b) 1/7
- (c) 1/4
- (d) 1/5

Ans: (a) 1/6

- **4.** If cosec A = 13/12, then the value of $\frac{2\sin A 3\cos A}{4\sin A 9\cos A}$
 - (a) 4

- (d) 3

Ans: (d) 3

Given cosec A = 13/12,

$$\sin A = \frac{12}{13}, \cos A = \frac{5}{13}$$

Now,
$$\frac{2\sin A - 3\cos A}{4\sin A - 9\cos A} = \frac{2\left(\frac{12}{13}\right) - 3\left(\frac{5}{13}\right)}{4\left(\frac{12}{13}\right) - 9\left(\frac{5}{13}\right)} = \frac{24 - 15}{48 - 45} = \frac{9}{3} = 3$$

- **5.** Given that $\sin \alpha = 1/2$ and $\cos \beta = 1/2$, then the value of $(\beta \alpha)$ is
 - (a) 0°
- (b) 30°
- (c) 60°
- (d) 90°

Ans: (b) 30°

- **6.** If $\tan \theta = 1$, then the value of $\sec \theta + \csc \theta$ is:
 - (a) $3\sqrt{2}$
- (b) $4\sqrt{2}$
- (d) $\sqrt{2}$

Ans: (c) $2\sqrt{2}$

Given, $\tan \theta = 1$, we have $\theta = 45^{\circ}$

So, sec θ + cosec $\theta = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$.

- 7. If $\sin 2A = \frac{1}{2} \tan^2 45^\circ$ where A is an acute angle, then the value of A is
 - (a) 60°
- (b) 45°
- (d) 15°

Ans: (d) 15°

$$\sin 2A = \frac{1}{2} \tan^2 45^0 = \frac{1}{2} \times 1^2 = \frac{1}{2} = \sin 30^0 \implies 2A = 30^0 \implies A = 15^0$$

- **8.** If U is an acute angle and $\tan U + \cot U = 2$, then the value of $\sin^3 U + \cos^3 U$ is
 - (a) 1

- (b) $\frac{1}{2}$ (c) $\frac{\sqrt{2}}{2}$

Ans: (c) $\frac{\sqrt{2}}{2}$

$$\tan \theta + \cot \theta = 2 \Rightarrow \tan \theta + \frac{1}{\tan \theta} = 2 \Rightarrow \tan^2 \theta - 2 \tan \theta + 1 = 0$$

$$\Rightarrow (\tan \theta - 1)^2 = 0 \Rightarrow \tan \theta = 1 = \tan 45^0 \Rightarrow \theta = 45^0$$

Now,
$$\sin^3 \theta + \cos^3 \theta = \sin^3 45^0 + \cos^3 45^0 = \left(\frac{1}{\sqrt{2}}\right)^3 + \left(\frac{1}{\sqrt{2}}\right)^3 = \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

In the following questions 9 and 10, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **9.** Assertion (A): In a right $\triangle ABC$, right angled at B, if tan A = 1, then 2 sin A. cos A = 1.

Reason (R): $\tan 45^{\circ} = 1$ and $\sin 45^{\circ} = \cos 45^{\circ} = 1/\sqrt{2}$

Ans. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

10. Assertion (A): $\sin (A + B) = \sin A + \sin B$

Reason (R): For any value of θ , $1 + \tan^2\theta = \sec^2\theta$

Ans. (d) Assertion (A) is false but reason (R) is true.

 $\frac{\underline{SECTION} - B}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. In the given figure, ABCD is a rectangle with AD = 8 cm and CD = 12 cm. Line segment CE is drawn, making an angle of 60° with AB, intersecting AB at E. Find the length of CE and BE.

Ans: In \triangle CBE, we have $\tan 60^{\circ} = \frac{CB}{RE}$

$$\Rightarrow \sqrt{3} = \frac{8}{BE} \Rightarrow BE = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3} cm$$

and
$$\sin 60^{\circ} = \frac{CB}{CE} \Rightarrow \frac{\sqrt{3}}{2} = \frac{8}{CE} \Rightarrow CE = \frac{16}{\sqrt{3}} = \frac{16\sqrt{3}}{3} cm$$

12. If $\sin (A + B) = \sqrt{3}/2$ and $\sin (A - B) = \frac{1}{2}$, $0 \le A + B \le 90^{\circ}$ and A > B, then find A and B.

Ans:
$$\sin(A + B) = \sqrt{3/2} = \sin 60^{\circ}$$

$$\Rightarrow$$
 A + B = 60°(i)

$$\sin (A - B) = 1/2 = \sin 30^{\circ}$$

$$\Rightarrow$$
 A - B = 30°(ii)

Solving eq. (i) and (ii), $A = 45^{\circ}$ and $B = 15^{\circ}$

13. Evaluate: $3 \cos^2 60^\circ \sec^2 30^\circ - 2 \sin^2 30^\circ \tan^2 60^\circ$.

Ans: $3\cos^2 60^\circ \sec^2 30^\circ - 2\sin^2 30^\circ \tan^2 60^\circ$

$$= 3\left(\frac{1}{2}\right)^2 \left(\frac{2}{\sqrt{3}}\right)^2 - 2\left(\frac{1}{2}\right)^2 \left(\sqrt{3}\right)^2 = \frac{3}{4} \times \frac{4}{3} - 2 \times \frac{1}{4} \times 3 = 1 - \frac{3}{2} = -\frac{1}{2}$$

14. Simplify: $\frac{\tan^2 \theta}{1 + \tan^2 \theta} + \frac{\cot^2 \theta}{1 + \cot^2 \theta}$

Ans:
$$\frac{\tan^2 \theta}{1 + \tan^2 \theta} + \frac{\cot^2 \theta}{1 + \cot^2 \theta} = \frac{\tan^2 \theta}{\sec^2 \theta} + \frac{\cot^2 \theta}{\cos ec^2 \theta}$$
$$= \frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{\cos^2 \theta}{1} + \frac{\cos^2 \theta}{\sin^2 \theta} \times \frac{\sin^2 \theta}{1} = \sin^2 \theta + \cos^2 \theta = 1$$

If $7 \sin^2 A + 3 \cos^2 A = 4$, then find tan A

Ans: Given,
$$7\sin^2 A + 3\cos^2 A = 4$$

Dividing both sides by
$$\cos^2 A$$
, we get

$$7 \tan 2A + 3 = 4 \sec^2 A \left[\because \sec^2 \theta = 1 + \tan^2 \theta \right]$$

$$\Rightarrow 7 \tan^2 A + 3 = 4(1 + \tan^2 A)$$

$$\Rightarrow 7 \tan^2 A + 3 = 4 + 4 \tan^2 A$$

$$\Rightarrow$$
 $3\tan^2 A = 1 \Rightarrow \tan^2 A = 1/3 \Rightarrow \tan A = 1/\sqrt{3}$

 $\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. If $\csc\theta + \cot\theta = p$, then prove that $\cos\theta = \frac{p^2 - 1}{p^2 + 1}$

Ans: Given
$$\csc\theta + \cot\theta = p$$
 (1)

$$\Rightarrow (cosec\theta - \cot\theta)(cosec\theta + \cot\theta) = 1 \Rightarrow (cosec\theta - \cot\theta) p = 1$$

$$\Rightarrow \cos ec\theta - \cot \theta = \frac{1}{p}$$
(2)

Adding (1) and (2), we get

$$cosec\theta = \frac{p + \frac{1}{p}}{2} = \frac{p^2 + 1}{2p}; \cot\theta = \frac{p - \frac{1}{p}}{2} = \frac{p^2 - 1}{2p}$$

Now,
$$\cos \theta = \frac{\cot \theta}{\cos ec\theta} = \frac{\frac{p^2 - 1}{2p}}{\frac{p^2 + 1}{2p}} = \frac{p^2 - 1}{p^2 + 1}$$

16. Prove that
$$\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \sec \theta + \tan \theta$$

$$\tan \theta - 1 + \sec \theta$$

Ans: LHS = $\tan \theta + 1 - \sec \theta$ (Dividing numerator and denominator by $\cos \Box$)

$$= \frac{\tan \theta + \sec \theta - 1}{\tan \theta + 1 - \sec \theta}$$

$$= \frac{\tan \theta + \sec \theta - (\sec^2 \theta - \tan^2 \theta)}{\tan \theta + 1 - \sec \theta}$$

$$= \frac{(\sec \theta + \tan \theta)(1 - \sec \theta + \tan \theta)}{\tan \theta + 1 - \sec \theta} = \sec \theta + \tan \theta = RHS$$

If $\sin \theta + \cos \theta = \sqrt{3}$, then prove that $\tan \theta + \cot \theta = 1$.

Ans: $\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3$

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = 3$$

$$\Rightarrow$$
 1+2 sin θ cos θ = 3 \Rightarrow 2 sin θ cos θ = 2

$$\Rightarrow \sin\theta\cos\theta = 1 = \sin^2\theta + \cos^2\theta$$

$$\Rightarrow 1 = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \tan \theta + \cot \theta \Rightarrow \tan \theta + \cot \theta = 1$$

17. Prove that:
$$\frac{\cos^2 \theta}{1 - \tan \theta} + \frac{\sin^2 \theta}{1 - \cot \theta} = 1 + \sin \theta \cos \theta$$

Ans:
$$LHS = \frac{\cos^2 \theta}{1 - \tan \theta} + \frac{\sin^2 \theta}{1 - \cot \theta}$$

$$=\frac{\cos^3\theta}{\cos\theta-\sin\theta}-\frac{\sin^3\theta}{\cos\theta-\sin\theta}$$

$$=\frac{\cos^3\theta - \sin^3\theta}{\cos\theta - \sin\theta} = \frac{(\cos\theta - \sin\theta)(\cos^2\theta + \sin^2\theta + \cos\theta\sin\theta)}{\cos\theta - \sin\theta}$$

$$=\cos^2\theta + \sin^2\theta + \cos\theta\sin\theta = 1 + \sin\theta\cos\theta = RHS$$

If $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$, show that $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$.

Ans: Given, $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$

Squaring both sides, we get

$$(\cos \theta + \sin \theta)^2 = (\sqrt{2} \cos \theta)^2$$

$$\Rightarrow \cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta$$

$$\Rightarrow 2\sin\theta\cos\theta = \cos^2\theta - \sin^2\theta$$

$$\Rightarrow$$
 2sin θ cos θ = (cos θ – sin θ)(cos θ + sin θ)

$$\Rightarrow 2\sin\theta\cos\theta = (\cos\theta - \sin\theta)(\sqrt{2}\cos\theta)$$

$$\Rightarrow \sqrt{2} \sin \theta = \cos \theta - \sin \theta \Rightarrow \cos \theta - \sin \theta = \sqrt{2} \sin \theta$$

 $\frac{\underline{SECTION} - \underline{D}}{\text{Questions 18 carry 5 marks.}}$

18. (a) Prove that
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$
 [3]

(b) If
$$x\sin^3\theta + y\cos^3\theta = \sin\theta\cos\theta$$
 and $x\sin\theta = y\sin\theta$ then find $x^2 + y^2$. [2] Ans: (a) L.H.S = $(\sin A + \csc A)^2 + (\cos A + \sec A)^2$
 $=\sin^2 A + \csc^2 A + 2\sin A \csc A + \csc^2 A + \sec^2 A + 2\cos A \sec A$
 $=\sin^2 A + \cos^2 A + \csc^2 A + \sec^2 A + 2\sin A \times 1/\sin A + 2\cos A \times 1/\cos A$
Since, $(\sin^2 A + \cos^2 A = 1)$
 $(\sec^2 A = 1 + \tan^2 A, \csc^2 A = 1 + \cot^2 A)$
 $= 1 + 1 + \cot^2 A + 1 + \tan^2 A + 2 + 2$
 $= 7 + \tan^2 A + \cot^2 A = RHS$
(b)
We have, $x\sin^3\theta + y\cos^3\theta = \sin\theta\cos\theta$
 $(x\sin\theta)\sin^2\theta + (y\cos\theta)\cos^2\theta = \sin\theta\cos\theta$
 $\Rightarrow x\sin\theta(\sin^2\theta) + (x\sin\theta)\cos^2\theta = \sin\theta\cos\theta$
 $\Rightarrow x\sin\theta(\sin^2\theta + \cos^2\theta) = \sin\theta\cos\theta$
 $\Rightarrow x\sin\theta\sin^2\theta + \cos^2\theta + \sin^2\theta = 1$

SECTION - E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. A sailing boat with triangular masts is shown below. Two right triangles can be observed. Triangles ABC and ABD, both right-angled at B. The distance BC = 1 m and BD = 2 m and height AB = 4 m.

Based on the given in formation, answer the following questions:

- (a) Find the value of sec D. [1]
- (b) Find the value of cosec C. [1]
- (c) Find the value of $\tan D + \cot C$. [1]
- (d) Find the value of $\sin^2 C + \cos^2 D$ [1]

Ans. (a) In $\triangle ABD$, sec D = AD/BD

by using Pythagoras theorem in right triangle ABD.

$$AD^2 = BD^2 + AB^2 = 2^2 + 4^2 = 20$$

$$\Rightarrow$$
 AD = $\sqrt{20}$ = $2\sqrt{5}$ m

$$\therefore$$
 sec D = AD/BD = $2\sqrt{5}/2 = \sqrt{5}$

(b) In
$$\triangle ABC$$
, cosec $C = AC/AB$

by using Pythagoras theorem in right triangle ABC.

$$AC^2 = AB^2 + BC^2 = 4^2 + 1^2 = 17$$

$$\Rightarrow$$
 AC = $\sqrt{17}$ m

```
∴ cosec C = AC/AB = \sqrt{17}/4

(c) In \triangleABD, tanD = AB/BD = 4/2 = 2

In \triangleABC, cotC = BC/AB = 1/4

∴ tanD + cotC = 2 + 1/4 = 9/4

(d) In \triangleABC, sinC = AB/AC = 4/\sqrt{17}

In \triangleABD, cosD = BD/AD = 1/\sqrt{5}

∴ sin<sup>2</sup>C + cos<sup>2</sup>D = 16/17 + 1/5 = 97/85
```

20. Varanasi is a city of temples, including the gold-plated Vishwanath temple of Lord Shiva; the Bharat Mata, or Mother India, temple that boasts a huge three dimensional relief map of the Indian subcontinent carved out of marble; and the hundreds of small temples that dot the waterways and alleys. It is a city of scholars, home to one of Asia's largest universities. It is also a city of legends. The figure below shows one such temple along the banks of the sacred river "Ganges" or "Ganga". A person sitting at point marked A looks at the top of a nearby temple and imagines that a right angled triangle ABC can be drawn as shown in the figure below.

Based on the above information, answer the following questions. (Take $\sqrt{3}$ =1.732)

- (a) Find the value of sin A. [1]
- (b) Find the value of sin C. [1]
- (c) Find the value of $\tan A \cot C$. [1]
- (d) Find the value of cosec²C. [1]

Ans. (a) In $\triangle ABC$, $\sin A = BC/AC$

by using Pythagoras theorem in right triangle ABC.

$$AC^2 = AB^2 + BC^2 = 12^2 + 5^2 = 144 + 25 = 169$$

- \Rightarrow AD = 13 m
- \therefore sinA = BC/AC = 5/13
- (b) In $\triangle ABC$, $\sin C = AB/AC$
- \Rightarrow sinC = AB/AC = 12/13
- (c) In \triangle ABC, tanA = BC/AB = 5/12
- \Rightarrow cotC = BC/AB = 5/12

Therefore, $\tan A - \cot C = 0$

(d) In $\triangle ABC$, $\sin C = AB/AC = 12/13$

cosecC = 1/sinC = 13/12

Therefore, $\csc^2 C = 169/144$