QZ. 12 (1,2) QY. 1,625 QT. 0,9 EA 869 - Turma A - 1. Semestre 2008 Prova 3 – 29/04/2008 – Prof. Léo Pini Magalhães (consulta a 1 folha A4 que não pode ser fotocópia) Nome: Erica Vieira RA: 060478 Q1. (1,0) Na resolução de um problema usando um computador você deve considerar inúmeras questões, computabilidade e complexidade certamente. Levando em consideração o tamanho da entrada, explique com clareza e de forma sucinta computabilidade e complexidade. Na resolução de um problemas levando em consideração o tamenho da entrada a computabilidade diz respeito a existência ou não de um algoritmo que resolva o problemaj e a complexidade define o desempenho, em relação ao tempo de máquina de um dado algoritmo, em função do tamanho da entrada. comprotestitated não se relevand el tamarlo de su Q2. (2,0) Considere a representação abaixo de um computador: (represente os regs e caminhos de dados necessários) de dados necessários) **CPU** Memória - acesso por palavra REM UAL UC 1 palavra Ry CO R1valor PC **RDM** (3

Represente no esquema acima e mostre na tabela abaixo (continue no verso da folha se necessário) todos os pulsos e micro-operações para o processamento da instrução:

MOVEIND #3, (R1); (R1) \leftarrow 3

FREN BUSCA

9 Continus

Vers o

(na tabela use 1 linha para cada pulso de relógio)

A melhor solução é aquela que demanda a menor qtde de pulsos.

PULSO	MICROOPERAÇÃO					
-	REM (PC)					
2	RDM A- ((REM)), PC 4- (PC)+1					
3	RI (RDM)					
4	REM (PC)					
5	RDMA- ((REM)), PCA-(PC)+1					
6	RV 4 (RDM)					

Q3. (2,5) Considere a máquina microprogramada abaixo.

RZA (end)

0111 6:60

REM & (RI); 5, 15 RDM & ((REM)); 16 M 3

Mostre o microprograma para executar a instrução:

ez 6 (RDA) 7,13

"ler a posição de memória end para R2 se ACC < 0".

Mpc 1 (0)

Esta instrução tem tamanho de 16 bits, sendo 4 bits para o CO e 12 bits para end.

a) Mostre o mapeamento (defina CO como o dígito de unidade de seu RA, se for zero some 4) na posição da micromemória indicada por "AQUI";

b) Inicie o microprograma na posição indicada "PRO". Esta é a posição de número, em hexadecimal, dE (d é o dígito decimal de seu RA).

Atenção: cada linha da tabela corresponde a 1 endereço da micromemória; a fase de busca já está preenchida.

	Endereço micromemória (hexadecimal)	Sinais de controle	Microoperações	
	0	1,15,16,19,23	REMO-(PC); ROM + ((REA)); MPC + (MPC) +	
,	1	1,5,10,18,22,23	PC - (PC)+1 : RI - (RDM); MPC - (MPC)+(RLCO)	
,				1
O,ZSAQUI	g/qX	3,5,6,7,24	MPC 4 ZE = - 3 - 5 6 7	
			25(1) (12)	; 1
O PRO	(ZE) XX	16,	REM (RI end) RDM a— ((REM)) MPC 6— (MPC)+1	
Q 0	X2 Ent	(21, 23)	MPC - (MPC) + TESTNEG	\mathcal{J}
	30		RZ 4- (R)M) MPC 5-0	
	31	CTTHILLS	MPC A-O	
	32	7	?	
	33	?		
/1				

ON VE

Q4 (2.0) A tabela a seguir fornece um trecho de um programa explicitando as formas de endereçamento utilizadas:

PC	C.O.	Operando fonte		Operando destino		Mnemônico
		modo	endereço	modo	endereço	
500	MOVE	registrador	R1	registrador	R2	MOVE R1, (R2)
		direto		indireto		
501	MOVE	absoluto	60	indexado	10	MOVE 60, RIX(10)
		direto				
502	MOVE	imediato	3	relativo	7	MOVE #3, 7(PC)
						(**)
503	MOVE	baseado	50	absoluto	510	MOVE RB(50), (510)
				indireto		
504	MOVE	autodecre-	R2	absoluto	3	MOVE -(R2), 3
		mento		direto		
505	PUSH	registrador	R2	pilha	SP	PUSH R2
		direto				

1 >

 $2 \rightarrow$

 $3 \rightarrow$

4 →

 $5 \rightarrow$

6**→**

(**) lembre-se de usar o PC já incrementado para calcular o endereço Seguindo o programa acima, mostre a seguir os valores dos elementos indicados no instante (1 a 6) assinalado.

Depois de	1	2	3	4	5	6	
Elemento	•					•	
PC=500	501	502	503	504	505	506	455
R1=50	50	50	50	50	50	50	
R2=60	60	60	60	60	(59)	59	25,0
end. 50 = 10	10	(50)	50	50	0	50	0,25
end. 60 = 20	(50)	50	50	50	50	50	15,0
RIX = 40	40	40	40	40	40	40	
end. 510 = 5	5	5	(3) 4	50 ×	50 ³	50 3	0,155
reg. base = 0	0	0	0	0	б	0	
end. 3 = 200	200	200	200	200 %	(8)	8	0+925
end. 59 = 8	8	8	8	8	8	59	15,0
SP = 59	59	59	59	59	59	60	

1,625

o,q

Q5. (1,0) Unidades de controle podem ser implementadas exclusivamente "por hardware" ou microprogramadas. Explique com clareza e de forma sucinta como se dá a implementação de cada opção e cite, em sua opinião, a (uma) principal vantagem e a (uma) principal desvantagem de cada opção.

de cada opção.

A unidade de controle pode ser implementada por hardware utilizanda uma sequência de flip-flops que implemente a fase de busca e escolha, dado o código de operação, entre sequências de flip-flops que executem a ignatrução e ao final retorne a busca. Essa implementação liga as saídas dos flip-flops da unidade de controle diretamente a UAL e outros plomentos da náquina. El ma vantagem dessa máquina é que pode ser facilmente implementada em sistemas bastante simples, porém alterer a arquitetura caso necessário e extremame trabalhoso e cuastoso.

Ao ser micro programada, a Unidade de controle utiliza de uma memória para armezenar os microcomandos antes executadas por flip-flops. Dessa maneira a máquina pode ser projetada sistematicamente, tendo como lunicas desvantagem uma perda de velocidade devido aos ciclos de acesso a sua memória de microprogramas.

Q6. (2,0) O programa abaixo é composto por um programa principal e duas rotinas.

SUBROUTINE SUB1(ref:x,y; valor:w,z) a=9b=3(1) IF y > x THEN y= x ELSE x= y c=2**(2)** (0)CALL SUB1(a,d,b*c,c) (3) (4) $x = w + y \times = 3 - 2 - 17 \times = 8 + 8 = 16$ CALL SUB2 (20, x+3) RETURN SUBROUTINE SUB2(ref:s; valor:t) IF s>10 THEN s=s/t ELSE s=t RETURN

20

a. (1,5) Preencha a tabela a seguir com os valores correspondentes das variáveis indicadas:

	a	b	С	d
imed. antes de (0)	9	3	2	?
imed. após (1)	9	3	2	8
imed. após (2)	8	3	2	8
imed. após (3)	1.8	3	2	:8
imed. após (4)	1:16	3	2	8

b. (0,5) Há algum erro nas passagens de parâmetros ? Indique, se for o caso, qual é o erro e discuta-o.

He' um erro no personan de parâmetro para a subrotina suba, onde a chamada lela insere a constante 20 honde deveria haver uma variavel à ser referenciada.