

Natural Computation Methods in Machine Learning (NCML)

Lecture 4: Multilayer Perceptrons and Backpropagation

From previous lecture

Linear (in)separability

 The Perceptron Convergence Procedure converges to an optimal discriminant in a finite number of steps, if such a discriminant exists

Problem: It seldom does! Few interesting classification problems are separable by one linear discriminant (a hyperplane)

Simple example: XOR

From previous lecture

From previous lecture

Multilayer perceptrons (MLP)

Problem: How to find the weight values automatically (i.e. how to train the network)

The credit assignment problem

Structural. We will discuss a temporal one later

MLP

To decide how much to blame an individual weight

for the result

- We now have 'hidden layers'
 - No target (desired output) information
 - What is the error of a hidden node?
- The step function (f_h) is an obstacle
 - Can't decide, analytically from the outputs, how close to the flipping point (S=0) the weighted sum was
 - Removing f_h (y=S) does not help (us. It helped B. Widrow)
 - Linear nodes → The MLP can be reduced to one (output) layer
 - Back to where we started
- \therefore The activation function, f(S), must be <u>non-linear</u> and <u>differentiable</u>

Sigmoid functions

- Sigmoid = any S-shaped function
- Often confused with the logistic function, which is actually just an example, though a very common one:

- λ (≥ 0) decides slope. In the extremes:
 - $\lambda = 0 \rightarrow y = 0.5$ (flat line)
 - $\lambda \to \infty \Rightarrow y = f_h(S)$ (step function)
- Simple derivative: $y' = f'(S) = \lambda y(1 y)$
- Another commonly used sigmoid function: tanh(S)
 - \approx logistic, but in the range]-1,1[instead of]0,1[

How to make a learning rule

A (very) general recipe

1. State what is to be minimized as a *loss function*(*)

For example:
$$E = \frac{1}{2}(d - y)^2$$
 $d = desired output$ $y = actual output$

2. How much did weight w_i , contribute to this loss?

$$\frac{\partial E}{\partial w_i}$$

3. Make an update rule which moves the weight in proportion to its contribution, but in the other direction:

$$w_i \leftarrow w_i + \Delta w_i \qquad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

4. Can often be expressed as $\Delta w_i = \eta \delta x_i$ where x_i is the input corresponding to weight w_i

 $^{(*)}loss\ function = error\ function = cost\ function \approx objective\ function$

Deriving the delta rule

following the recipe

 Consider a single neuron with a differentiable activation function:

$$y = f(S)$$

$$S = \sum_{i=0}^{n} w_i x_i, \text{ where } \begin{cases} x_0 = -1 \\ w_0 = \theta \end{cases}$$

- Step 1: State what is to be minimized
 - Let's assume that the loss function is the squared error

$$E = \frac{1}{2}(d-y)^2$$
 (hidden assumption here – 'Gaussian prior'. We assume that data comes from a normal distribution)

• Step 2: Use the chain rule to break down $\frac{\partial E}{\partial w_i}$

Deriving the delta rule

Use the chain rule to break down $\partial E/\partial w_i$

e loss (E) $\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial y} \frac{\partial S}{\partial w_i}$ $\frac{\partial E}{\partial y} = \frac{\partial \frac{1}{2}(d-y)^2}{\partial y} = 2\frac{1}{2}(d-y)(-1) = -(d-y)$ The loss (E) depends on the output (y), which depends

$$\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial S} \frac{\partial S}{\partial w_i}$$

$$\frac{\partial E}{\partial y} = \frac{\partial \frac{1}{2} (d - y)^2}{\partial y} = 2\frac{1}{2} (d - y)(-1) = -(d - y)$$

$$\frac{\partial y}{\partial S} = \frac{\partial f(S)}{\partial S} = f'(S)$$

$$\frac{\partial S}{\partial w_i} = \frac{\partial \sum_{j=0}^n w_j x_j}{\partial w_i} = \frac{\partial (w_i x_i)}{\partial w_i} = x_i$$

$$\therefore \frac{\partial E}{\partial w_i} = -(d - y)f'(S)x_i$$

The delta rule

Express Δw

• Step 3:
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
 $\frac{\partial E}{\partial w_i} = -(d-y)f'(S)x_i$

$$\frac{\partial E}{\partial w_i} = -(d - y)f'(S)x_i$$

$$\Delta w_i = \eta (d - y) f'(S) x_i$$

• Or, in the general form:

$$\Delta w_i = \eta \delta x_i$$

$$\Delta w_i = \eta \delta x_i$$
 where $\delta = f'(S)(d - y)$

If we assume that the activation function is logistic:

$$\delta = \lambda y (1 - y)(d - y)$$

- This is the **delta rule**, a.k.a. LMS (least-mean-squares) (Widrow & Hoff, 1960)
 - Compare to the Perceptron Convergence Procedure (PCP)!
 - Same. but without f'(S), since the step function used in a binary perceptron is not differentiable

Backpropagation

The generalized delta rule

- We can extend the delta rule to cover a whole network of neurons (as long as everything is differentiable)
 - Same idea, the chain of partial derivatives just gets longer
- But, we now have several nodes. Therefore:
 - We must index the nodes, δ -values, and desired outputs d
 - Weights need a second index. Let w_{ji} denote the weight from node i to node j
 - $-x_i$ in the equations is the input to the <u>node</u>, i.e. it may be the value of a hidden node, not necessarily an input to the network.

Backpropagation

"of errors"

We can still express the update rule on the general form

$$\Delta w_{ji} = \eta \delta_j x_i$$

- but the definition of δ_j now depends on if node j is an output node or a hidden node
- For an output node, the delta rule is applicable as it is:

$$\delta_{j} = f'(S_{j})(d_{j} - y_{j}) = \lambda y_{j}(1 - y_{j})(d_{j} - y_{j})$$
(if logistic)

Backpropagation "of errors"

- Let's assume, for now, that we only have one hidden layer
- For a hidden node there is no desired output, d_i , but:
 - The hidden layer contributes to the output error through the hidden-to-output weights (through weighted sums)
 - The hidden layer should therefore be blamed for the error, in proportion to those same weights
 - The error of a hidden node is a weighted sum of the δ -values we just computed for the outputs
 - In other words, we backpropagate errors

$$\delta_j = f'(S_j) \sum_k w_{kj} \delta_k = \lambda y_j (1 - y_j) \sum_k w_{kj} \delta_k$$

where the sum is over the nodes in the <u>next</u> layer

Backpropagation Algorithm

- Initialize. Set all weights to small random values with zero mean
- 2. Present an input vector, $\overline{x} = (x_1, x_2, ..., x_n)$, and corresponding target vector, $\overline{d} = (d_1, d_2, ..., d_m)$
- 3. Feed forward phase (recall): Compute network outputs, by updating the nodes layer by layer from the first hidden layer to the outputs. The first hidden layer computes (for all nodes, y_i):

$$y_j = f\left(\sum_{i=0}^n w_{ji}x_i\right)$$
, where $x_0 = -1$

The next layer applies the same formula, substituting this layer's node values for x_i , etc.

Back propagation Algorithm

4. Back propagation phase: Compute weight changes^(*) iteratively, layer by layer, <u>from the outputs to the first hidden layer</u>:

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\delta_j = \begin{cases} \lambda y_j (1 - y_j) (d_j - y_j), & \text{if } y_j \text{ is an output node} \\ \lambda y_j (1 - y_j) \sum_k w_{kj} \delta_k, & \text{if } y_j \text{ is a hidden node} \end{cases}$$

(The sum is over all k nodes in the <u>next</u> layer i.e. the layer for which δ -values were computed in the previous iteration)

5. Repeat from step 2 with a new input-target pair

(*) Note that we only compute weight changes here. It does not say when to update the weight.

Back propagation Some notes

- λ is redundant here. It can be embedded in η .
 - $-\lambda$ is therefore often ignored (assumed to be 1)
- Weighted sums are just matrix-vector products.
 When computing the output:

$$y_j = f\left(\sum_{i=0}^n w_{ji} x_i\right) = f(W\bar{x})$$

- so if you implement this using a matrix library, you can compute the outputs of all nodes in a layer in one shot
- If so, when backpropagating δ -values, just transpose the matrix!

$$\sum_{k} w_{kj} \delta_k = W^T \bar{\delta}$$

Gradient descent

Backprop implements gradient descent (Cauchy, 1847)

- The delta rule was invented in 1960 (by Widrow & Hoff)
- Why didn't Minsky&Papert see this solution in 1969?
 - Can get stuck in closest local minimum (almost certainly will)
 - Would have been considered a <u>big</u> problem in the 1960's
 - The cost of re-starting an experiment was very high

Momentum

 Common improvement: Add a momentum term to the weight update

$$\Delta w_{ji}(t+1) = \eta \delta_j x_i + \alpha \Delta w_{ji}(t)$$

- Smoothing out weight changes over time
- Gives the 'ball' a momentum, i.e. tends to continue in the direction as before
- Similar effects if we adapt step length over time
 - next lecture

When to update the weights

Epoch learning v.s. Pattern learning

Epoch learning

- Accumulate Δw until all patterns^(*) have been presented once (= 1 epoch). Then update the weight and clear Δw
- Special case of Batch Learning (batches can be smaller than the whole training set)
- Pattern learning (stochastic)
 - Update w after each pattern presentation
 - as a new step 4.5: $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$
 - Requires random order of presentation (hence 'stochastic')
 - In this special case = stochastic gradient descent

When to update the weights

Epoch learning v.s. Pattern learning

- Epoch learning
 - This is what makes Backprop = gradient descent
 - Theorems and algorithm variants, often require this
- Pattern learning (stochastic)
 - Often better in practice (if the algorithm allows is)
 - The non-determinism reduces risk of getting stuck
 - Usually converges faster
- Common compromise: Batch learning, for smaller subsets – "mini-batches"

Backprop videos on YouTube

- There are many, of course
- One of my favourite channels: 3Blue1Brown
 - For example, watch the video "What is backpropagation really doing?" (from 3:09)
 - (https://www.youtube.com/watch?v=Ilg3gGewQ5U)

Challenges

All are possible exam questions

- The loss function could be any differentiable function, but is <u>very</u> often assumed to be the squared error
 - Which part of the update equations would change, if we replaced the objective function?
- If we use pattern learning, why don't we update the weight directly, in step 4? (instead of as a new step 4.5)
- What would happen if we initialized all weights to zero, instead of small random values?
- In a deep network (many layers) the chain of partial derivatives gets very long. A problem?

Super Challenge

As shown in the previous lecture and this one:

$$ab, \overline{ab}, a+b, \overline{a+b}$$
, are all linearly separable, $(a+b)\overline{c}$ (the three input solution to XOR) is too, but $a \oplus b = a\overline{b} + \overline{a}b = (a+b)\overline{a}b$ is not!

 Where is the limit? Under which condition(s) is a Boolean expression linearly separable, when viewed as a classification problem?

(This challenge is beyond the scope of this course, so don't worry if you can't figure this one out)