

Une école de l'IMT

Lecture 2 - From text to feature vectors

SD-TSIA214 Chloé Clavel

Reminder

NLP tasks

2 kind of tasks:

Classify documents by themes, opinions etc...

- Supervised learning
 - Ex: SVM (support vector machines), Naive Bayes
- Unsupervised learning
 - Ex: Clustering

Detect particular expressions

Ex: Named Entities

0

[Localité d'Ukraine] menace les livraisons de gaz à l' UE . affaire Madoff contient encore de nombreuses zones d de l' UE sous l'il de Paris [Communes de France] . La tionnisme de Nicolas Sarkozy [Chef d'État] . Avec l' ement culturel . La Russie [Pays] a cessé de fournir ent] n' a pas à craindre pour ses approvisionnements . le de l' occupation américaine en Irak [Pays] . Le ourées entre jeunes et policiers . Des engins incendiaires

From http://www.tal.univ-paris3.fr/plurital/travaux-2009-2010/bao-2009-2010/MarjorieSeizou-AxelCourt/webservices.html

Classification

Phase 1 – learning

- Training corpus = set of documents annotated with opinions
 - Annotation : each document is assigned to a class :
 - Ex. Movie reviews: the score attributed by a user (1 to 5)
- Goal: Learn from this corpus the specific features of each class

Phase 2 – classification

 Using the learned features, the system is able to assign a class to a new document

Phase 1 – learning

Learning the classes

Phase 2 – classification

Predict the class of a new documents

Objective of the lecture 2

Focus on

text to vector transformation

Get familiar with:

- Classical transformations : TF-IDF
- Embedded representations : word2vec

Levels of representations

- PART 1 : representation at the document level
 - One document = one vector
- PART 2 : representation at the word level
 - One word = one vector

PART 1 Document-based representation

Bags of words (BOW) representation

- 1 document = 1 vector (a1,, aN)
 - $-a_i$ = number of occurrences of the word w_i in document d

Bags of words

• Tokenize • Remove stop words • Lemmatize • Compute weights

From Miha Grcar "Text mining and Text stream mining tutorial"

Bags Of Words representation

- ALGO
 - From a set of M documents :
 - loop over the M documents and build a vocabulary (w1, ..., wN)
 - N = vocabulary size
 - Remember that you can reduce the size of the vocabulary (see Lecture 1 on preprocessing)
 - Count the number occurrences of the word w_i in document d

Bags of words

• Tokenize • Remove stop words • Lemmatize • Compute weights

From Miha Grcar "Text mining and Text stream mining tutorial"

- Document set -> term-document matrix
 - Size: N x M

		ı	ı	I	1		I	ı
	call	time	date	conference	release	meeting	corporation	earnings
document 1	2	1	3	2	1	1	1	
document 2	1		2	1	2	1	1	1
document 5		1	2		2	1	1	1
document 6	1	2	1	1	3	1	1	1
document 7	1						1	
document 8			1		1		1	1
document 9	2		1	3	1	1	1	1
document 10	2	1		1	1		1	1
document 13					1			2
document 14							3	
document 15	1			2			1	2

From http://theses.ulaval.ca/archimede/fichiers/24972/ch05.html

TF-IDF-based representation

- 1 document = 1 vector (a1,, aN)
 - $-a_i = TF-IDF$ of the word w_i in document d
 - TF-IDF (Term Frequency Inverse Document Frequency)
 - statistical measure used to evaluate the representativeness of a word for a particular document in a collection of documents

TF-IDF-based representation

$$TFIDF(w,d) = TF_{w,d} \cdot IDF_{w,d}$$
$$= TF_{w,d} \cdot \left(\left(\log_2 \frac{M}{DF_w} \right) \right)$$

M: number of documents

TF: Term Frequency

Number of occurrences of w in d.

Or boolean: tf(w,d) = 1 if w in d, 0 otherwise

DF: Document Frequency

Number of documents with the word w

This value grows proportionally to the occurrences of the word in the document (TF) but its effect is countered by the occurrences of the word in every other document (IDF)

Bags of words

• Tokenize • Remove stop words • Lemmatize • Compute weights

Computing weights

$$TFIDF = TF \times IDF$$

$$IDF = \log_{e} \frac{|\mathbf{D}|}{DF}$$

$$|\mathbf{D}| = 2$$

PRACTICE 1 : calculate the TF-IDF of the word "director" for the document d :

TF-IDF(« director », d) = ?

- The database contains 1000 documents
- The document d contains 3 times the word "director"
- 70 texts contain the word "director"
- « director » occurs 134 times in the database

$$TFIDF(w,d) = TF_{w,d}.IDF_{w,d}$$
$$= TF_{w,d}.\left(\left(\log_2 \frac{M}{DF_w}\right)\right)$$

M: number of documents

TF: Term Frequency

Number of occurrences of w in d.

Or boolean: tf(w,d) = 1 if w in d, 0 otherwise

DF: Document Frequency

Number of documents with the word w

PRACTICE 1 : calculate the TF-IDF of the word "director" for the document d :

- The database contains 1000 documents
- The document d contains 3 times the word "director"
- 70 texts contain the word "director"
- « director » occurs 134 times in the database

$$3.\left(\log_2 \frac{1000}{70}\right) = 11,5$$

PRACTICE 2 : calculate the TF-IDF of the word "director" for the document d :

TF-IDF(« director », d) = ?

- The database contains 1000 documents
- The document d contains 3 times the word "director"
- 900 documents contain the word "director"
- « director » occurs 1014 times in the database

$$TFIDF(w,d) = TF_{w,d}.IDF_{w,d}$$
$$= TF_{w,d}.\left(\left(\log_2 \frac{M}{DF_w}\right)\right)$$

M: number of documents

TF: Term Frequency

Number of occurrences of w in d.

Or boolean: tf(w,d) = 1 if w in d, 0 otherwise

DF : Document Frequency

Number of documents with the word w

PRACTICE 2 : calculate the TF-IDF of the word "director" for the document d :

- The database contains 1000 documents
- The document d contains 3 times the word "director"
- 900 documents contain the word "director"
- « director » occurs 1014 times in the database

$$3\left(\log_2 \frac{1000}{900}\right) = 0.45$$

Document-based representation

- In the vector space
 - A set of documents corresponds to a set of vectors in the vector space
 - Vector space: 1 axis per vocabulary term

▶ Figure 6.10 Cosine similarity illustrated. $sim(d_1, d_2) = cos \theta$.

Drawbacks of Bags of words representations

- The term-document matrix scale for big database
 - loop over the document set

		ı	ı	I	1	1	ı	ı
	call	time	date	conference	release	meeting	corporation	earnings
document 1	2	1	3	2	1	1	1	
document 2	1		2	1	2	1	1	1_
document 5		1	2		2	1	1	1
document 6	1	2	1	1	3	1	1	1
document 7	1						1	
document 8			1		1		1	1
document 9	2		1	3	1	1	1	1
document 10	2	1		1	1		1	1
document 13					1			2
document 14							3	
document 15	1			2			1	2

- Drawbacks of Bags of words representations
 - No capture of the order of the terms in the document

Ex: These two sentences are represented by the same vector "Mary is quicker than John"

"John is quicker than Mary"

Measuring the similarity btw. two documents

Cosine similarity

 Similarity between 2 vectors of doc d1 and d2 according to the cosine of the angle

$$sim(d_1, d_2) = \frac{\vec{V}(d_1) \cdot \vec{V}(d_2)}{|\vec{V}(d_1)||\vec{V}(d_2)|},$$

▶ Figure 6.10 Cosine similarity illustrated. $sim(d_1, d_2) = cos \theta$.

Word-based representation

References

- https://nlp.stanford.edu/IR-book
- From Miha Grear "Text mining and Text stream mining tutorial"

