I have been compiled with...luatex

QFT - Lecture 15

14.10.2024

Contents

1	Correlation functions	4
2	Wick's Theorem 2.0.1 Summary:	4 5
3	Exponentiation and cancellation	6

1 Correlation functions

$$\langle \Omega | T\phi(x)\phi(y) | \Omega \rangle = \langle 0 | T\phi(x)\phi(y)e^{-i\int \mathrm{d}t H_I(t)} | 0 \rangle \tag{1}$$

with $\phi(x)$, $\phi(y)$ being in the Heisenberg picture on the left and in the Interaction picture on the right.

$$H_I(t) = \int \frac{\lambda}{4!} \phi^4 \mathrm{d}^3 x$$

with ϕ^4 in the interaction picture.

2 Wick's Theorem

$$T\phi_1 \cdots \phi_n = N(\phi_1 \cdots \phi_n + \text{all possible contractions})$$

For example:

$$\langle 0 | T\phi_1 \phi_2 \phi_3 \phi_4 | 0 \rangle = \phi_1 \phi_2 \phi_3 \phi_4 + \phi_1 \phi_2 \phi_3 \phi_4 + \phi_1 \phi_2 \phi_3 \phi_4$$
 (2)

Which can be represented as the Feynman Diagrams

Eq1:

lowest order: Num: $\langle 0 | T\phi(x)\phi(y) | 0 \rangle = D_F(x-y) = \text{Fig}2$ first order: Num: $\langle 0 | T\phi(x)\phi(y) | 0 \rangle (-i\lambda/4!) \int d^4z\phi(z)^4 \langle 0 |$

We now have 6 fields and must find all contractions. We can contract $\phi(x)$ and $\phi(y)$ with $\phi(z)$, which leads to $4 \cdot 3 = 12$ contractions. We can also contract $\phi(x)$ with $\phi(y)$ This leads to 3 contractions.

Which leads to

$$\frac{-i\lambda}{4!} \int d^4z 3D_F(x-y)D_F(z-z)D_F(z-z) + 12D_F(x-z)D_F(y-z)D_F(z-z)$$
 (4)

With the Feynman Propagator

$$D_F(x-y) = \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 + m^2 + i\epsilon} e^{-ip(x-y)}$$
 (5)

We can see that this integral becomes infinite for x = y, and integrating over all space again afterwards will definitely lead to infinity. We will ignore this for now, the divergences will disappear later.

For the 3 contractions we have the following Feynman Diagrams: Fig3

For the 12 contractions we have the following Feynman Diagrams: Fig4

Now considering a more complicated situation, with the third order:

$$\langle 0| T\phi(x)\phi(y)\frac{1}{3!} \left(\frac{-i\lambda}{4!}\right)^3 \int d^4z \phi^4 \int d^4w \phi^4 \int d^4u \phi(u)$$
 (6)

We will consider one particular contraction, that being With the Feynmann Diagram Fig5

How many contractions give the same expression? We get 3! from interchanging verteces, $4 \cdot 3$ from the placement of contractions in the z vertex, we then get $4 \cdot 3 \cdot 2$ placements of the w vertex, and $4 \cdot 3$ from the u vertex. We have overcounted by a factor of 2, as we can interchange the contraction between the w and u fields, so we need to divide by 2.

we ignore $\frac{1}{3!}3!$ and we ignore $\frac{1}{4!} \cdot 4 \cdot 3$, $\frac{1}{4!}4!$. We then divide by the so called symmetry factor s, in our case $s = 2 \cdot 2 \cdot 2$. The first 2 comes from the line starting and ending at the z vertex, the 2nd from the line starting and ending at the u vertex, and the last because we can interchange the wu lines.

Another possibility of getting a symmetry factor is if two vertices are equivalent. Possible symmetry factors are as following

- line starting and ending at the same vertex
- equivalent lines
- equivalent vertices

These Symmetry factors are the reason why we should divide by the symmetry factor instead of leaving $\frac{1}{3!}$ and $\frac{1}{4!}$ in the third order term.

2.0.1 Summary:

$$\langle \Omega | T \phi(x) \phi(y) | \Omega \rangle = \frac{\text{Num}}{\text{Den}}$$
 (7)

Num:
$$\sum$$
 all possible diagrams with two external points (8)

Feynman rules: Figs7

Fig8

Momentum Space Feynman Rules

Momentum Space Feynman Rules, correlation functions to Fourier space.

$$\langle \Omega | T \phi(x) \phi(y) | \Omega \rangle \mapsto \int d^4 x e^{ipx} \int d^4 y e^{ipy} \langle \Omega | T \phi(x) \phi(y) | \Omega \rangle$$
 (9)

Omit exponent factors of external points, and the associated $\int \frac{d^4p}{(2\pi)^4}$ Integrals.

$$f(x) \mapsto \hat{f}(p), \quad \hat{f}(p) \mapsto f(x), \quad f(x) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \hat{f}(p) e^{-ipx}$$
 (10)

That way we can get $\hat{f}(p)$ by itself.

3 Exponentiation and cancellation

Consider Fig9

Then we have a product of two delta functions, which is nonsense Let $V_i \in \{\text{The set of all different diagrams disconnected from external points}\}$.

$$A = (\text{Value of connected piece}) \cdot \prod_{i} \frac{1}{n_{i}!} V_{i}^{n_{i}}, \quad n_{i} = \text{number of } V_{i}.$$

Num=
$$\sum_{\text{all connected}} \text{(value connected)} \cdot \underbrace{\prod_{i} \sum_{n_{i}} \frac{1}{n_{1}!} V_{i}^{n_{i}}}_{\text{exp}(\sum_{i} V_{i})}$$

$$Den = \exp(\sum_{i} V_{i})$$

and therefore what we would like to have is

$$\frac{\text{Num}}{\text{Den}} = \sum \text{all connected}$$