Lo gueno se ve en un Robot siguelíneas

Rubén Espino San José

Introducción

• Motivación de la charla/hackaton:

- Dudas y preguntas frecuentes acerca de la programación de los siguelíneas
- Actividad para fomentar la resolución de problemas

Objetivos:

- Propuesta de soluciones teóricas para los retos que plantea la competición de velocistas (no se va a desarrollar código)
- Las propuestas serán recopiladas en la wiki de Cyclops-Project para que sirvan de guía a posibles competidores

CARACTERÍSTICAS DE LA PRUEBA

- Se ha elegido la prueba de velocistas
 - Objetivo: ser el robot más rápido recorriendo el circuito
 - Dos robots compiten en modo persecución hasta que uno alcanza al otro
- Pistas con doble carril
- Curvas amplias (al menos 40 cm de radio) y rectas largas
- Posibilidad de cambiar de carril durante la competición

PLATAFORMA DE PARTIDA

- Robot velocista open source <u>Cyclops-</u> <u>Project</u>
 - Morro alargado con varios sensores para leer la línea
 - Dos ruedas a dos motores independientes
 - Tracción diferencial
 - Encoders en el eje de los motores
- Firmware básico:
 - Calibración inicial de sensores
 - PID de seguimiento de línea
 - Ajuste de parámetros de PID y velocidad en tiempo real por bluetooth

inde de retos

- 1. Seguimiento de líneas
- 2. Reconocimiento del circuito
 - Elección de sistemas de medición de distancia y velocidades
 - Configuración de encoders
- 3. Cuándo acelerar/frenar
- 4. Perfiles de aceleración
- 5. Medición de tiempos

RETO 1: SEGUINIENTO DE LÍNEOS

- ¿Cómo se puede seguir la línea?
- Referencia: <u>charla Malakabot</u> 2017 sobre control PID

RETO E: RECONOCIMENTO DEL CIRCUITO

- ¿Cómo se puede reconocer el circuito?
 - Elección de sistemas de medición de distancia y velocidades
 - Configuración de encoders

RETO 3: CUÁNDO OCELERAR/FRENAR

• ¿En qué momentos tiene que acelerar y frenar el robot para optimizar los tiempos por vuelta?

RETO 4. PERFILES DE OCELERACIÓN

- ¿Cuáles son las aceleraciones máxima y mínima óptimas para el robot?
- Referencia: <u>charla de Javier</u>

 Baliñas en Granabot 2018 sobre elección de motores

RETO SI MEDICIÓN DE TIEMPOS

- ¿Cómo se pueden medir los tiempos por vuelta y parciales para su optimización?
 - Sistemas del propio robot
 - Sistemas externos
 - Nuevo proyecto <u>time2time</u>

REFERENCIAS

- Referencias de GitHub
 - Rubén Espino: Resaj
 - Cyclops-Project
 - <u>Circuit-maker</u>

- Facebook
 - <a>@pumaprideteam
- Twitter
 - Rubén Espino: oRugidoDePuma
 - Javier Baliñas: <a>@supernudo
 - Javier Isabel: @JavierIH
 - Alejandra Guardo: <a>@AlejandraSaku

GRACIAS POR VUESTRA PARTICIPACIÓN ©

