

Daffodil International University

Department of Computer Science and Engineering (CSE)

https://elearn.daffodilvarsity.edu.bd/course/view.php?id=18204

	Course Outline				DIUCSE
Course Code:	CSE 426				
Course Title:	Principles Of Robo	otics			
Program:	B.Sc. in CSE				
Faculty:	Faculty of Science	and Information T	echno	logy (FSIT)	
Semester:	Fall	Year:		2022	
Credit:	3.0	Contact Hou	ur:	3Hrs/Week	
Course Level:	L4 T2 Prerequisite: CSE133				
Course Category:	Core Engineering				
Instructor Name:	Mosharraf Hossaii	n Khan (MHK)			
Designation:	Senior Lecturer				
Email:	mosharraf.cse@d	iu.edu.bd			
Office Address:	Room No - 505 AB04, DIU Smart City				
Class Hours:	Section	Class Day	Cla	ass Hours	Classroom

1. Course Rationale

BLC Classroom Link:

This course will provide the basic knowledge about Robot, Types of Robots (manipulator, legged robot, wheeled robot, autonomous underwater vehicles), Use of Robots, Asimov's laws of Robotics, History of Robotics; Key components of Robot, Introduction, working principles and use of sensors (encoder, vision, force, pressure, smoke, accelerometer, gyroscope, odor, bend, touch, laser, tilt, compass, PIR, Infrared etc), working principles and use of different actuators (DC motor, servo motor, stepper motor etc); Spatial transformation and description, forward kinematics, backward kinematics etc. related to the movement of robot. Robot programming with AD conversion and interfacing of different hardware, sensors, actuators etc; Control theory of robotics, Introduction to Robot Operating System (ROS), Obstacle avoidance, object tracking and motion control etc, Advance robotic control and operations.

1.1. Course Objective

The objective of this course is to explain what robots are and what they can do. Knowledgeably discuss the ethical considerations of using robots to help solve societal challenges. Reflect on the future role and development of robotics in human society. Intuitively explain what does sensors and actuators do and how they can be used according to the specifications of the problem and nature of the environments. Design robot based on custom requirements.

1.2 Course Outcomes (CO's)

CO1	Able to identify, define and describe various robot structures, their application and selection of different components (Sensors, actuators, motor driver, controller etc) with their construction and working principles.
CO2	Able to solve the problems on spatial transformation and description, forward kinematics, backward kinematics etc. related to the movement of robot.
CO3	Able to illustrate the Workflow, Functional Control architecture for General and Industrial Robots, Communication terms and process, ROS etc.
CO4	Able to design, describe and analyze different robots based on the problem statement using the necessary hardware and software.
CO5	Able to apply robotics knowledge in design and implementation of various prototype robotic projects.

1.3 Program Outcomes (PO's)

Program Outcomes are reported in **Appendix -I**

1.4 Mapping of Course Outcomes (CO's) to Program Outcomes (PO's)

PO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO's												
CO1	Х											
CO2		Х										
CO3					Х							
CO4			Х									

1.5 Mapping of CO-PO with Corresponding Learning Taxonomy

CO No.	CO Statement	Corresponding PO No.	Domain/level of learning taxonomy	Delivery methods and activities	Assessment tools
CO1	Able to identify, define and describe various robot structures, their application and selection of different components (Sensors, actuators, motor driver, controller etc) with their construction and working principles.	PO1	L1, L2	TLA1, TLA2	Midterm/Final (Direct Method)
CO2	Able to solve the problems on spatial transformation and description, forward kinematics, backward kinematics etc. related to the movement of robot.	PO2	L3	TLA1, TLA2	Midterm/Final (Direct Method)

CO3	Able to illustrate the Workflow, Functional Control architecture for General and Industrial Robots, Communication terms and process, ROS etc.	PO5	L1, L2	TLA1, TLA2	Midterm/Final (Direct Method)
CO4	Able to design and analyze different robots based on the problem statement using the necessary hardware and software.	PO3	L4, L6	TLA1, TLA2	Midterm/Final (Direct Method)

1.6 CO Assessment Scheme

Assessment			CO's		Mark
Task	CO1	CO2	CO3	CO4	(Total=100)
Attendance					7
Class Test (CT)					15
Assignment					5
Presentation					8
Midterm Examination	13	7		5	25
Semester Final Examination	10	10	10	10	40
Total Mark	20	20	10	15	100

2. Strategies and approaches to learning

2.1 Teaching and Learning Activities (TLA)

TLA1	Lectures twice a week using Whiteboard / multimedia of different
	topics.
TLA2	Active discussion in class regarding efficient solving of the logical and mathematical problems.
TLA3	Group discussion and presentation regarding diverse problems and corresponding lectures.
TLA4	Evaluation of class performances to reach each of the students in a class for every topic.

3. Course Schedule and Structure

3.1 Textbook

- 1. Introduction to Robotics Analysis, Systems, Applications by Saeed B.Niku
- 2. Robot Operating System for Absolute Beginners by Lentin Josheph

3.2 Reference Books

- 1. Industrial Robotics Technology, Programming, Applications by Mikell P Groover
- 2. Robot Building for Beginners by David Cook

3.3 Course Plan/Lesson Plan

Week/Lesson (hour)	Discussion Topic & Book Reference	Student Activities during Online and Onsite and TLA	Assessment and Mapping with CO
Week 1	Introduction to OBE Course Outline,	Students should have general ideas about	
Lesson 1	Definition of Robot, Asimov's Laws	the Introductory Robotics.	CO1
(1.5Hrs)	of Robotics, Classification of Robots (Ref. Text Book and Slides)	TLA1, TLA2	(01
Lesson 2	Types of Robots (manipulator,	Students should have general ideas about	
(1.5Hrs)	legged robot, wheeled	the Different Types of Robot with	
	robot, autonomous underwater	Advantage and disadvantage.	
	vehicles, unmanned aerial vehicles),		CO1
	Use of Robots, Advantages and	TLA1, TLA2	
	disadvantages of Robot		
	(Ref. Text Book and Slides)		
Week 2	A complete Robot structure, Key	Students should be able to explain the	
Lesson 3	Components of a Robot	Components of Robot.	CO1
(1.5Hrs)	(Ref. Text Book and Slides)	TLA1, TLA2	
	Introduction of sensors :		
Lesson 4	classification of sensor, specification	Students should be able to mention the	
(1.5Hrs)	of sensor, attributes of sensors,	characteristics of Sensors in Robot.	CO1
	detectable phenomenon, selection		
	of sensors, Type of sensors.	TLA1, TLA2	
144 - 1 0	(Ref. Text Book and Slides)		
Week 3	Working Principles of Sensors		
Lesson 5	(Sensors based on EM Spectrum,		
(1.5Hrs)	Sensor Based on Sound, Odor	Students should be able to evaluin	
	Sensor, Proprioceptive Sensors, Problems in sensor choice and	Students should be able to explain	
	placement, Temperature sensor,	working principles of Sensors in Robot.	CO1
	Accelerometer, Light Sensor,	TLA1, TLA2	
	Magnetic Field Sensor, Photogate	ILAI, ILAZ	
	Sensor, CO ₂ Gas Sensor etc.)		
	(Ref. Text Book and Slides)		
Lesson 6	Working Principles of Sensors	Students should be able to explain the	
(1.5Hrs)	(Touch Sensor, Tilt Sensor, Encoders	working principle of Sensors.	
(2.33)	sensor, Light Dependant Resistor	Working principle of censors.	CO1
	(LDR) etc)	TLA1, TLA2	001
	(Ref. Text Book and Slides)	12.12, 12.12	
Week 4	Working Principles of Sensors (Bend	Students should be able to explain the	
Lesson 7	Sensor, Smoke Sensor, Ultrasonic	working principle of Sensors.	
(1.5Hrs)	Sensor, Pyro-Electric Infra-Red (PIR)		001
, ,	sensor, Gyroscopic Sensor etc).	TLA1, TLA2	CO1
	(Ref. Text Book and Slides)	·	
Lesson 8	Rev	l view of the previous classes	
(1.5Hrs)		p	

Week/Lesson (hour)	Discussion Topic & Book Reference	Student Activities during Online and Onsite and TLA	Assessment and Mapping with CO	
Week 5	Robot as a System, Functional Unit	Students should be able to explain the		
Lesson 9	of Robot, Force Sensors, Distance	working principle of Sensors.	CO1	
(1.5Hrs)	Sensor, Vision Sensor etc.			
	(Ref. Text Book and Slides)	TLA1, TLA2		
Lesson 10	Introduction to Simulator for	Students should be able to learn robotic		
(1.5Hrs)	Prototype Robotic Project	project simulation.		
	(TinkerCad, Proteus etc)	TLA1, TLA2		
	Embedded Systems Project vs	TEAT, TEAE	CO4	
	Robotic Projects.		201	
	Formation of project groups.			
	(Ref. Text Book, Slides, Online			
	Recourses)			
Week 6	Review of Transformation to			
Lesson 11	Kinematics, Vector Operation, 2D			
(1.5Hrs)	Coordinate Vector Transformation,			
	Review of Notation, Homogenous	Students should be able to recap 2D and		
	transformation, Describe a frame,	3D transformation.		
	3D Position Vector, Rotation matrix,		CO2	
	Coordinate Transformation, Review	TLA1, TLA2		
	of Matrix Transpose, Kinematics: Forward Kinematic, Coordinate			
	frames)			
	(Ref. Text Book and Slides)			
Lesson 12	Spatial Description and	Students should be able to robotic spatial		
(1.5Hrs)	Transformation (Rotation around	transformation.	603	
, ,	axis, Vector in Space, Examples		CO2	
	(Ref. Text Book and Slides)	TLA1, TLA2		
Week 7	Frame relative to a fixed reference			
Lesson 13	frame, Rigid body, Pure translation,	Students should be able to robotic spatial		
(1.5Hrs)	Pure Rotation, Combined	transformation.	CO2	
	Transformation, Inverse of	TIA4 TIA2		
	Transformation Matrices) (Ref. Text Book and Slides)	TLA1, TLA2		
Lesson 14	Spatial Description and	Students should be able to solve problems		
(1.5Hrs)	Transformation (Problem and	related to robotic spatial transformation.		
(2.33)	solution)	related to robotic spatial transformation.	CO2	
	(Ref. Text Book and Slides)	TLA1, TLA2		
	CI	ass Test 2		
Week 8	Robot Design (General Robot Design	Students should be able to explain the		
Lesson 15	Process, Limbed Systems, Humanoid	design procedure a prototype robot.		
(1.5Hrs)	Robot)		CO4	
<u>, </u>	(Ref. Text Book and Slides)	TLA1, TLA2		
		Assignment		
Lesson 16 (1.5Hrs)	Re	view and Problem Solving		
Exam Weeks				
(1/2/3)		Midterm Exam		
(1/2/3)		materii Endii		

Week/Lesson (hour)	Discussion Topic & Book Reference	Student Activities during Online and Onsite and TLA	Assessment and Mapping with CO
Week 9	Working with actuators (Robot Join,		
Lesson 17	Actuators, Actuators Control, Types	Students should be able to explain the	
(1.hHrs)	of actuators, Electric Actuators,	working principle of actuator.	CO1
	Components of Motor and working	Francisco er detaden	301
	principles, Motor Application, DC	TLA1, TLA2	
	Motor, DC-motor Control	·	
Lesson 18	(Ref. Text Book and Slides)	Students should be able to explain the	
(1.hHrs)	Stepper Motor operation, Advantage/Disadvantage, Control	working principle of actuator.	CO1
(1.111113)	Sequence	working principle of actuator.	COI
	(Ref. Text Book and Slides)	TLA1, TLA2	
Week 10	Servo Motor, Analog Sensors,	Students should be able to explain the	
Lesson 19	Resistive Sensors, Resistive Position	working principle of analog sensors and	004
(1.5Hrs)	Sensor, Bend Sensor Application,	AD Converter.	CO1
	A/D Converter		
	(Ref. Text Book and Slides)	TLA1, TLA2	
Lesson 20	Finalization of Project Topics and	Students should be able to learn robotic	
(1.5Hrs)	groups.	projects.	CO4
	(Ref. Text Book, Slides, Online		
	Recourses)	TLA1, TLA2	
Week 11	Forward Kinematics (Roll, Pitch and	Students should be able to explain the	
Lesson 21	Yaw Angles, Denavit-Hartenberg Notations, Link and Joint	Forward Kinematics of Robot.	CO2
(1.5Hrs)	Parameters, DH parameters)	TLA1, TLA2	
	(Ref. Text Book, Slides)	TEAT, TEAE	
Lesson 22	Forward Kinematics (DH techniques,	Students should be able to explain the	
(1.5Hrs)	Example and Problem Solving)	Forward Kinematics of Robot.	CO2
, ,	(Ref. Text Book, Slides)	TLA1, TLA2	
Week 12	Robot Programming and Control	Students should be able to understand the	
Lesson 23	(Introduction, Basic Workflow,	Work flow of Robot Programming.	
(1.5Hrs)	Simple behaviour, Complex		
	behaviour, Flowcharts, Robot	TLA1, TLA2	CO3
	Research software, Functional		
	Control Architecture, Levels for		
	Reference Model)		
Lesson 24	(Ref. Text Book and Slides) Industrial Robot:	Students should be able to understand the	
(1.5Hrs)	Functional Architecture,	Work flow of Robot Programming.	
(1.51113)	Interactions: Modules, ROS, ROS	Work how or hobot i logi all lilling.	
	Components, Nodes, Topics,	TLA1, TLA2	CO3
	Services, Messages, ROS Master,	,	
	Mobile Robot, ROS Tools		
	(Ref. Text Book, Slides)		
Week 13	Rev	view of the previous classes	
Lesson 25			
(1.5Hrs)			
	Cl	ass Test 3	

Week/Lesson (hour)	Discussion Topic & Book Reference	Student Activities during Online and Onsite and TLA	Assessment and Mapping with CO	
Lesson 26 (1.5Hrs)	Introduction ROS (ROS Characteristics, Software Framework, ROS Add Ons, rqt, RVIZ, Gazebo Simulator, ROS- enabled Operating Systems, Philosophy of ROS, ROS Terms) (Ref. Text Book, Slides)	Students should be able to explain the ROS characteristics and Philosophy. TLA1, TLA2	CO3	
Week 14 Lesson 27 (1.5Hrs)	Introduction ROS (Message Communication Steps, ROS Message Diagram, ROS Shell Commands) (Ref. Text Book, Slides)	Students should be able to explain the ROS message communication systems. TLA1, TLA2	CO3	
Lesson 28 (1.5Hrs)	Review of the p	previous classes and projects discussion		
Week 15 Lesson 29 (1.5Hrs)	Project PRESENTATION by the students	Group Works Demonstration of projects and Project Reports presentation TLA3, TLA4	CO4 CO5	
Lesson 30 (1.5Hrs)	Project PRESENTATION by the students	Group Works Demonstration of projects and Project Reports presentation TLA3, TLA4	CO4 CO5	
Week 16 Lesson 31 & 32 (3Hrs)	Re	view and Problem Solving		
Exam Weeks (1/2/3/4)	Final Exam			

4. Assessment Methods

4.1 Grading System

Numerical Grade	Letter Grade	Grade Point
80-100	A+	4.00
75-79	А	3.75
70-74	A-	3.50
65-69	B+	3.25
60-64	В	3.00
55-59	B-	2.75
50-54	C+	2.50
45-49	С	2.25
40-44	D	2.00
Less than 40	F	0.00

5. Additional Support for Students

• Student Portal:

http://studentportal.diu.edu.bd/

• Academic Guidelines

https://daffodilvarsity.edu.bd/article/academic-guidelines

• Rules and Regulations of DIU

https://daffodilvarsity.edu.bd/article/rules-and-regulation

• Career Development Center:

https://cdc.daffodilvarsity.edu.bd/

• For general queries:

http://daffodilvarsity.edu.bd/

Appendix -I Program Outcomes and Assessment

POs	Category	Program Outcomes and Assessment Program Outcomes
PO1	Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals
		and an engineering specialization to the solution of complex engineering
		problems.
PO2	Problem Analysis	Identify, formulate, research the literature and analyze complex engineering
	,,,,,,	problems and reach substantiated conclusions using first principles of
		mathematics, the natural sciences and the engineering sciences.
PO3	Design/Development of	Design solutions for complex engineering problems and design system
	Solutions	components or processes that meet the specified needs with appropriate
		consideration for public health and safety as well as cultural, societal and
		environmental concerns.
PO4	Investigations	Conduct investigations of complex problems, considering design of
		experiments, analysis and interpretation of data and synthesis of
		information to provide valid conclusions.
PO5	Modern tool usage	Create, select and apply appropriate techniques, resources and modern
		engineering and IT tools including prediction and modelling to complex
		engineering activities with an understanding of the limitations.
PO6	The engineer and society	Apply reasoning informed by contextual knowledge to assess societal,
		health, safety, legal and cultural issues and the consequent responsibilities
		relevant to professional engineering practice.
PO7	Environment and	Understand the impact of professional engineering solutions in societal and
	sustainability	environmental contexts and demonstrate the knowledge of, and need for
		sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics, responsibilities
		and the norms of the engineering practice
PO9	Individual work and	Function effectively as an individual and as a member or leader of diverse
	teamwork	teams as well as in multidisciplinary settings.
PO10	Communication	Communicate effectively about complex engineering activities with the
		engineering community and with society at large. Be able to comprehend
		and write effective reports, design documentation, make effective
		presentations and give and receive clear instructions.
PO11	Project management	Demonstrate knowledge and understanding of the engineering and
	and finance	management principles and apply these to one's own work as a member or a
		leader of a team to manage projects in multidisciplinary environments.
PO12	Life Long Learning	Recognize the need for and have the preparation and ability to engage in
		independent, life-long learning in the broadest context of technological
		change.