Algebra 3

Hugo Trebše (hugo.trebse@gmail.com)

4. oktober 2024

Algebra is the offer made by the devil to the mathematician. The devil says: »I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine.«

Michael Atiyah

Hugo Trebše Algebra 3

Kazalo

1	Ponovitev Algebre 2			
	1.1	Razpadna polja	3	
Li	terat	ıra	4	

Hugo Trebše Algebra 3

1 Ponovitev Algebre 2

Definicija 1.1

Naj bo $\mathbb{F} \subseteq \mathbb{K}$

- $a \in \mathbb{K}$ je algebraičen nad \mathbb{F} , če je ničla nekega polinoma iz $\mathbb{F}[X]$.
- \mathbb{K} je algebraična razširitev \mathbb{F} , če so vsi elefmenti \mathbb{K} algebraični nad \mathbb{F} .
- \mathbb{K} je končna razširitev \mathbb{F} , natanko tedaj, ko je \mathbb{K} končnodimenzionalni vektorski prostor nad \mathbb{F} .

Trditev 1.2

Naj bo $\mathbb{F} \subseteq \mathbb{K}$.

• $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$. Če je $[\mathbb{L} : \mathbb{F}], [\mathbb{K} : \mathbb{L}] < \infty$, potem je $[\mathbb{K} : \mathbb{E}] < \infty$ ter velja

$$[\mathbb{K}:\mathbb{F}] = [\mathbb{K}:\mathbb{L}][\mathbb{L}:\mathbb{F}].$$

1.1 Razpadna polja

Izrek 1.3

Za vsako polje \mathbb{F} in nerazcepen polinom $p \in \mathbb{F}[X]$ obstaja razširitev \mathbb{F} \mathbb{K} , da je za nek $a \in \mathbb{K}$ p(a) = 0.

Oris dokaza. $\mathbb{K} \cong \mathbb{F}[X]/\langle p(x)\rangle$. Očitno vsebuje podpolje izomorfno \mathbb{F} , element $x+\langle p(x)\rangle$ pa je ničla p.

Definicija 1.4

 $Razpadno\ polje$ polinoma $p \in \mathbb{F}[X]$ je najmanjše polje, ki vsebuje \mathbb{F} kot podpolje, ter v njem p(x) razpade na linearne faktorje.

Definicija 1.5

Polje \mathbb{F} je algebraično zaprto, če je razpadno polje vsakega polinoma $\mathbb{F}[X]$ enako \mathbb{K} . Algebraično zaprtje polja \mathbb{F} je polje \mathbb{K} , ki je algebraično nad \mathbb{F} in je algebraično zaprto.

Izrek 1.6

Do izomorfizma natančno obstaja samo eno razpadno polje.

 $Oris\ dokaza.$

Hugo Trebše Algebra 3

Literatura

[1] prof. dr. Matej Brešar. *Predavanja Algebre 3.* 2025.