Logic and Databases, COMP0009,

From a previous exam question.

Marks for each part of each question are indicated in square brackets.

Calculators are NOT permitted.

- 1. This question is about first-order tableaus.
 - a. For each of these formulas state if the formula is an α -formula, β -formula, δ -formula, γ -formula, or a literal.
 - 1. $\neg P^2(x,y)$ literal
 - 2. $\exists x (P^2(x,y) \lor P^2(y,x))$
 - 3. $\neg \exists x \forall y P'^2(x,y)$
 - 4. $\neg(\forall x P^2(x, x) \lor \neg \exists y P^2(x, y))$

[8 marks]

b. Explain how to expand a δ -formula in a tableau.

Pick a new constant c not occurring so far in the tableau. For $\exists x\phi(x)$ add a new node $\phi(c)$ at every leaf below the current node and for $\neg \forall x\phi(x)$ add new node $\neg \phi(c)$ at every leaf below the current node.

[7 marks]

c. Describe a good method of scheduling the expansion of nodes in a tableau. In particular, say which nodes should be expanded first and how you should schedule the expansion of γ nodes.

It is important that every possible expansion occurs eventually, else a tableau that could close might never close. Idea is to expand α,β and δ nodes first. Then, for all γ nodes put them in a queue and take them in turn. Make sure eventually all closed terms are used to expand a given γ node.

[8 marks]

[Question 1 cont. over page]

d. For each of these formulas construct a tableau with the formula at the root and state whether the formula is satisfiable or not.

