Итерационные циклические вычислительные процессы с управлением по функции.

Цель работы: научиться использовать ИЦВП с управлением по функции.

Оборудование: компьютер, PascalABC, Creately.

Задание 1

Постановка задачи: С клавиатуры вводится трехзначное число, считается сумма его цифр. Если сумма цифр числа больше 10, то вводится следующее трехзначное число, если сумма меньше либо равна 10 – программа завершается.

Математическая модель:

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл
n	integer	Число, вводимое с
		клавиатуры
S	integer	Сумма цифр числа n

Код программы на PascalABC.NET:

```
program zd_1;
var n,s: integer;
begin
  repeat
    read(n);
    s:=n div 100;
    s:=s+(n div 10) mod 10;
    s:=s+n mod 10;
until s<=10;
end.</pre>
```

Результат программы:

```
program zd_1;
var n,s: integer;
begin
  repeat
    read(n);
    s:=n div 100;
    s:=s+(n div 10) mod 10;
    s:=s+n mod 10;
  until s<=10;
end.</pre>
```

Окно вывода

560

123

Анализ:

Программа работает корректно, реализована с помощью пост-проверки, так как с предпроверкой реализовать программу не получится.

Задание 2_1

Постановка задачи: Решить нелинейное уравнение методом Ньютона.

Математическая модель:

$$f(x) := x^3 - \cos(x) + 1$$
 на отрезке от -10 до 10 с точностью 10^{-6}

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл
X1	real	Аргумент
X2	real	Следующий аргумент
razn	real	Разница аргументов
k	integer	счётчик
d	Real	Переменная в функции
Z	Real	Переменная в функции
F	real	Функция уравнения от х
Fn	real	Производная от
		уравнения

Код программы на PascalABC.NET:

```
program zd 2;
var x1,x2,razn: real;
var k: integer;
function F(d:real): real;
begin
  F:=power(d, 3) - cos(d) + 1;
end;
function Fn (z:real): real;
begin
  Fn:=3*z*z+sin(z);
end;
begin
  x1:=-10;
  repeat
    x2 := x1 - F(x1) / Fn(x1);
    razn:=x2-x1;
    k := k+1;
    x1:=x2;
  until razn<=power(10,-6);</pre>
  writeln(x2:8:7);
  writeln(k);
end.
```

Результат программы:

```
function F(d:real): real;
 begin
   F:=power(d,3)-cos(d)+1;
 function Fn (z:real): real;
 begin
   Fn:=3*z*z+sin(z);
 end;
 begin
   x1:=-10;
   repeat
     x2:=x1-F(x1)/Fn(x1);
     razn:=x2-x1;
     k:=k+1;
     x1:=x2;
   until razn<=power(10,-6);
   writeln(x2:8:7);
   writeln(k):
<
```

Окно вывода

0.1648390 0.0880121 0.0315818 0.0042826 0.0000762 0.0000000 -0.4900726

Анализ:

Программа нашла корень уравнения спустя 13 повторений цикла

Задание 2 2

Постановка задачи: Решить нелинейное уравнение методом Ньютона.

Математическая модель:

$$f(x) := x^3 - \cos(x) + 1$$
 на отрезке от 10 до -10 с точностью 10^{-6}

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл
X1	real	Аргумент
X2	real	Следующий аргумент
razn	real	Разница аргументов
k	integer	счётчик
d	Real	Переменная в функции
Z	Real	Переменная в функции
F	real	Функция уравнения от х
Fn	real	Производная от
		уравнения

Код программы на PascalABC.NET:

```
function F(d:real): real;
begin
  F := power(d, 3) - cos(d) + 1;
end;
function Fn (z:real): real;
begin
  Fn:=3*z*z+sin(z);
end;
begin
  x1:=10;
  repeat
    x2 := x1 - F(x1) / Fn(x1);
    razn:=x1-x2;
    k := k+1;
    x1:=x2;
  until razn<=power(10,-6);</pre>
  writeln(x2:8:7);
  writeln(k);
end.
```

Результат программы:

```
function F(d:real): real;
begin
  F:=power(d,3)-cos(d)+1;
end;
function Fn (z:real): real;
begin
  Fn:=3*z*z+sin(z);
end;
begin
 x1:=10;
 repeat
    x2:=x1-F(x1)/Fn(x1);
   razn:=x1-x2;
   k:=k+1;
    x1:=x2;
 until razn<=power(10,-6);
 writeln(x2:8:7);
 writeln(k):
```

Окно вывода

0.000008

27

Анализ:

Программа нашла второй корень уравнения за 27 повторений цикла

Общий вывод:

Я научился использовать ИЦВП с управлением по функции.