Beyond Expected Goals: A Probabilistic Framework for Shot Occurrences in Soccer

Jonathan Pipping, Tianshu Feng, and Paul Sabin

University of Pennsylvania

August 7, 2025

What Does It Mean to "Deserve" a Win?

- Match Analysis: After a match, commentators often remark that a team "didn't deserve the result." But what is this judgment based on?
- Traditional Measure: Expected Goals (xG), which estimates the quality of shots taken. But is that the right metric?
- Our Question: Which is more notable getting a shot off, or making it?
 - https://youtu.be/s1aQb1bgPdQ?si=aZEeb5Mbl3tmkruG&t=64
 - https://youtu.be/s1aQb1bgPdQ?si=aZEeb5Mbl3tmkruG&t=164

What Are Expected Goals (xG)?

- Expected Goals (xG): a metric that estimates the probability that a shot is scored
 - Depends on factors like distance from goal, angle to goal, shot type, and player positions
 - Estimated by XGBoost models trained on historical shot data
- Applications:
 - Estimating the quality of a shot
 - Measuring of team performance over a match or season
 - Residualizing provides a measure of shooter skill

Limitations of xG

- Selection Bias: Models are only trained on observed shots
 - Skilled attackers take more shots and are more successful on them
 - Any chance without a recorded shot isn't in the training data
- **Aggregation Issues:** An incomplete measure of team performance
 - Threatening attacks with no recorded shots are omitted
 - Rebounded chances are double-counted

Example 1: No Recorded Shot

- Match: Manchester City v Real Madrid (Feb 19, 2025)
- Question: Which one had a higher chance of being a goal?
 - https://youtu.be/s1aQb1bgPdQ?si=aZEeb5Mb13tmkruG&t=295 -0.03 xG with outside shot
 - https://youtu.be/s1aQb1bgPdQ?si=aZEeb5Mbl3tmkruG&t=310 -0.00 xG because no shot occurred

Example 2: > 1 xG on a Possession

- Match: Orlando City vs. Philadelphia Union (February 22, 2025)
- Video Link:

https://youtu.be/vZODSAzF83w?si=ghu2hurGbVjmbd_7&t=363

Sequence: Multiple shots in one possession totaling 1.63 xG

Time	Player	Shot Outcome (xG)
78:01	Brekalo	Shot Blocked (0.05)
78:02	Muriel	Shot Post (0.52)
78:04	Pasalic	Shot Post (0.68)
78:05	Pasalic	Shot Goal (0.38)

Table: Sequence of shots leading to a goal, totaling 1.63 xG.

Our Target Metric: xG+

- A more complete picture of goal expectancy
 - Accounts for high-threat attacks with no shots
 - Avoids double-counting rebounded chances
- At each frame t, let $\times G+$ be the probability of a goal:

$$\mathsf{xG+}_t = \mathbb{P}_t(\mathsf{goal\ scored})$$

$$= \mathbb{P}_t(\mathsf{goal\ scored} \mid \mathsf{shot\ taken}) \cdot \mathbb{P}_t(\mathsf{shot\ taken})$$

$$= \mathsf{xG}_t \cdot \mathsf{xShot}_t$$

• Then define xG+ over a possession with n frames:

$$\mathsf{xG+_{poss}} = 1 - \prod_{t=1}^{n} \left(1 - \mathbb{P}_t \left(\mathsf{goal} \; \mathsf{scored}\right)\right)$$

Estimating this value requires fitting two models: xG and xShot

Data Overview

- **Source:** Gradient Sports (formerly PFF FC) video tracking and event data from the 2022-2025 English Premier League
- Key Features:
 - Player positions (x, y) at 30 frames per second
 - Ball position (x, y, z) at 30 frames per second
 - Shot events and outcomes
 - Team possession indicators
 - Player and team identifiers

Data Cleaning

- **Filtering:** Keep frames where the ball is in play and a team has clear possession
- Smooth Ball Tracking: Linearly interpolate ball positions to fill in missing frames
- Define Attacking Sequences:
 - Start: team gains possession in their attacking third
 - End: defending team regains possession or ball exits attacking third
- \bullet Field Standardization: Flip right-to-left attacks 180° to make all attacks go left-to-right

Feature Engineering

Ball Features:

- Distance from goal (r_{ball})
- Angle to goal (θ_{ball})
- Ball height (z_{ball})
- Ball speed (v_{ball})

• Player Features:

- ullet Position of 5 closest offensive teammates relative to the ball $(r_{off}, heta_{off})$
- ullet Position of 5 closest non-GK defenders relative to the ball $(r_{def}, heta_{def})$
- Position of goalkeeper relative to the goal (r_{gk}, θ_{gk})

Goal Openness:

- Model defenders as circles with diameter 0.75m
- Draw tangent lines from the ball to defenders and find where they meet the goal line
- Call the percentage of the goal that's unobstructed openGoal

Modeling

- Training Data: All data from the 2022-2025 Premier League seasons
- Features: Ball features, player features, and goal openness
- Models:
 - xG: 5-fold cross-validated XGBoost model estimating the probability that a shot is scored
 - **xShot:** 5-fold cross-validated XGBoost model estimating the probability that a shot occurs *in the next second*
- Evaluation Metric: Log loss

Results - xG Model

Results - xG Model

Results - xS Model

Results - xS Model

Cross-Validation Study

- **Objective:** Evaluate xG+ performance using cross-validated Poisson models
- Dataset: 3 seasons of match data (114 folds total)
- Method: Train on all matchdays except one, predict goals on held-out data
- Goal: Determine how well adjusted xG+ explains actual goals scored

Cross-Validation Setup

- **Setup:** Each matchday treated as a fold: 38 matchdays \times 3 = 114 folds
- For each fold:
 - Train on all matchdays except one to acquire adjusted metrics
 - Poisson regression on team goals using training data
 - Predict goals scored on held-out matchday test data

Metrics and Aggregation Methods

Metrics:

- xS: Probability a player takes a shot in the next second
- xG: Probability that a shot is scored
- $xG+: xS \times xG$, the probability of scoring in the next second

Aggregation Methods:

- Max-per-possession: Take maximum 1-second prediction in each possession
- **4 At-least-one-per-possession:** $1 \prod (1 p)$ across possession
- **Sum-of-shots:** Traditional xG summed over actual shots

Mixed Effects Modeling

Fitted on training data for each fold:

$$\texttt{metric} \sim (1|\texttt{season}) + (1|\texttt{season}.\texttt{team}) + (1|\texttt{season}.\texttt{opp}) + \texttt{home}$$

Extracted Effects:

- Team attack (per season)
- Opponent defense (per season)
- Season effect
- Home field advantage

Secondary Poisson Model

Train Poisson regression on adjusted metrics:

$${\tt goals} \sim {\tt home} + {\tt season} + {\tt team_off} + {\tt opp_def}$$

Purpose: Assess predictive utility of each adjusted metric on actual goals

Cross-Validation Results

Table: Mean Squared Error (MSE) by Metric and Aggregation Method

Aggregation Method	xG+	xS	хG
At-least-one-per-possession Max-per-possession Sum-of-shots		2.90 2.87	2.94 2.91 2.90

Cross-Validation Results

Table: Mean Absolute Error (MAE) by Metric and Aggregation Method

Aggregation Method	xG+	xS	хG
At-least-one-per-possession Max-per-possession Sum-of-shots		1.87 1.86	1.89 1.89 1.87

Player Ability

- Question: Does this framework provide insight into individual player skills?
- Methodology:
 - Aggregate chances for the closest player to the ball within a possession
 - Sum up per game & season for each of xG, xS, and xG+
 - Compare actual shots & goals to expected metrics
 - Analyze year-over-year performance consistency
- Key Finding: Players do not consistently over-perform their expected goals (xG)

Player Ability

- **Key Finding:** Players *do* consistently over-perform as shot takers!
- **Implication:** Generally, elite goal scorers are the ones converting chances into shots, not converting shots into goals!

Table: Year to Year Correlation (Stability) vs. Expected (Per Game)

xG	xS	xG+
0.12	0.63	0.35

Player Ability

- **Example:** Haaland's record breaking season (36 goals)
- Key Insight: Required both higher shots and goals than expected

Shots & Goals vs Expected (xSoe vs xGoe) English Premier League (2022-2025). Min. 5 Shots Erling Haaland (2022-23) xGoe 40 20 xSoe

Top Over-Expectation Performers (Per Game)

xG+ Over Expected

Season	Player	xG+ OE	Goals	Games	Chances
2022-23	Erling Haaland	0.52	36	35	444
2023-24	Erling Haaland	0.44	30	31	513
2024-25	Omar Marmoush	0.41	10	16	293
2024-25	Yoane Wissa	0.35	22	35	429
2024-25	Mohamed Salah	0.33	27	38	1042
2024-25	Chris Wood	0.31	23	36	330
2023-24	Cole Palmer	0.30	19	34	693
2024-25	Alexander Isak	0.30	25	34	558
2023-24	Alexander Isak	0.30	19	28	351
2022-23	Harry Kane	0.29	25	38	589

xG Over Expected

Season	Player	xG OE	Goals	Games	Chances
2024–25	Omar Marmoush	0.41	10	16	293
2024-25	Chris Wood	0.31	23	36	330
2024-25	Michael Keane	0.21	3	10	19
2022-23	Erling Haaland	0.52	36	35	444
2022-23	Roberto Firmino	0.25	10	21	253
2022-23	Martin Ödegaard	0.22	15	37	942
2023-24	Heung-min Son	0.28	20	35	751
2022-23	Matias Viña	0.26	3	10	66
2022-23	Alexander Isak	0.24	11	22	346
2023-24	Taiwo Awoniyi	0.26	7	19	125

Note: Minimum 10 Games with a Chance

Conclusions

- Best Metric for Team Prediction: xG+
- Best Aggregation Method: At-least-one-per-possession
- Player Evaluation: Shots over expected is more predictive of future player performance than goals over xG
- Future Work: An instantaneous or time-weighted xShot model
- Questions and Discussion

Acknowledgements

- Special thanks to our data providers at Gradient Sports (formerly PFF FC)
- All work supported by the Wharton Sports Analytics & Business Initiative (WSABI)