# Методы оптимизации. Семинар 4. Сопряжённые множества. Лемма Фаркаша.

### Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

26 сентября 2016 г.

## Напоминание

- Внутренность и относительная внутренность выпуклого множества
- Проекция точки на множство
- Отделимость выпуклых множеств
- Опорная гиперплоскость

## Сопряжённое множество

### Сопряжённое множество

Сопряжённым (двойственным) к множеству  $X \subseteq \mathbb{R}^n$  называют такое множество  $X^*$ , что

$$X^* = \{ \mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in X \}.$$

### Сопряжённый конус

Если  $X\subseteq \mathbb{R}^n$  — конус, тогда  $X^*=\{\mathbf{p}\in \mathbb{R}^n|\langle \mathbf{p},\mathbf{x}\rangle\geq 0,\; orall \mathbf{x}\in X\}.$ 

### Сопряжённое подпространство

Если X — линейное подпространство в  $\mathbb{R}^n$ , тогда  $X^* = \{\mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle = 0, \ \forall \mathbf{x} \in X\}.$ 



## Факты о сопряжённых множествах

#### $\mathsf{Theorem}$

Пусть X — произвольное множество в  $\mathbb{R}^n$ . Тогда  $X^{**} = \overline{conv(X \cup \{0\})}$ .

#### $\mathsf{Theorem}$

Пусть X — замкнутое выпуклое множество, включающее 0. Тогда  $X^{**} = X$ .

#### Theorem

Пусть  $X_1 \subset X_2$ , тогда  $X_2^* \subset X_1^*$ .

## Примеры

### Найти сопряжённые к следующим множествам:

- ullet Неотрицательный октант:  $\mathbb{R}^n_+$
- Конус положительных полуопределённых матриц:  ${\sf S}^n_+$
- $\{(x_1, x_2)||x_1| \leq x_2\}$
- $\bullet \ \{(\mathbf{x},t) \in \mathbb{R}^{n+1} | \|\mathbf{x}\| \le t\}$

## Лемма Фаркаша

#### Lemma (Фаркаш)

Пусть  $\mathbf{A} \in \mathbb{R}^{m \times n}$  и  $\mathbf{b} \in \mathbb{R}^m$ . Тогда имеет решение одна и только одна из следующих двух систем:

1) 
$$Ax = b, x \ge 0$$

2) 
$$\mathbf{pA} \ge 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0$$

#### Важное следствие

Пусть  $\mathbf{A} \in \mathbb{R}^{m \times n}$  и  $\mathbf{b} \in \mathbb{R}^m$ . Тогда имеет решение одна и только одна из следующих двух систем:

1) 
$$Ax \leq b$$

2) 
$$pA = 0, \langle p, b \rangle < 0, p \ge 0$$

#### Применение

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.

## Геометрическая интерпретация

### Геометрия леммы Фаркаша

 $\mathbf{A}\mathbf{x} = \mathbf{b}$  при  $\mathbf{x} \geq 0$  означает, что  $\mathbf{b}$  лежит в конусе, натянутым на столбцы матрицы  $\mathbf{A}$   $\mathbf{p}\mathbf{A} \geq 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0$  означает, что существует разделяющая гиперплоскость между вектором  $\mathbf{b}$  и конусом из столбцов матрицы  $\mathbf{A}$ .

## Резюме

- Сопряжённые множества
- Свойства сопряжённых множеств
- Лемма Фаркаша