Colle 23 - lundi 30 mars 2015 - Colleur : Isenmann - MPSI .. - Groupe ..

Planche 1.

Question de cours. Démontrer l'inégalité de Taylor Lagrange.

Exercice 1. Est ce que

$$p: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(x,y) \quad \longmapsto \quad (x,x)$$

est un projecteur?

Exercice 2. Soit u une application linéaire d'un ev E. On dit qu'un sev F de E est stable par u si $u(x) \in F, \forall x \in F$.

Soit p un projecteur de E. Démontrer que u commute avec p si et seulement si Im(p) et ker(p) sont stables par u.

Planche 2.

Question de cours. Quels sont les liens entre continuité, continuité uniforme, lipschitzien

Exercice 1. Soit E l'espace vectoriel des suites réelles. Montrer que

$$f: E \longrightarrow E$$
 $(u_n) \longmapsto (v_n)$

où $v_{2n} = u_{2n}$ et $v_{2n+1} = -u_{2n+1}$ pour tout entier n, est une symétrie.

Exercice 2. Soit E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E. Démontrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.

Planche 3.

Question de cours. Démontrer que si f est continue sur [a,b] telle que $f \ge 0$, alors : si $\int_a^b f = 0$, alors f = 0.

Exercice 1. Quelles sont les applications linéaires qui sont à la fois des homothéties et des projecteurs ?

Exercice 2. Soit E un ev, p et q deux projecteurs de E tels que $p \neq 0, q \neq 0, p \neq q$. Démontrer que s'il existe $a, b \in \mathbb{R}$ tels que ap + bq = 0 alors a = 0 et b = 0.

Solutions - Planche 1.

Exercice 1. Calculons p^2 . Soit $(x, y) \in \mathbb{R}^2$, alors

$$p^{2}(x,y) = p \circ p(x,y) = p(p(x,y)) = p(x,x) = (x,x) = p(x,y)$$

Donc il s'agit bien d'un projecteur. Calculons de plus son noyau et son image. Soit $(x,y) \in Ker(p)$. Alors x=0. Donc $Ker(p) \subset Vect(0,1)$. Réciproquement $Vect(0,1) \subset Ker(p)$ donc Ker(p) = Vect(0,1). Soit $(x,y) \in Im(p)$, alors il existe $(a,b) \in \mathbb{R}^2$ tels que p(a,b) = (x,y). Donc (a,a) = (x,y). Donc x=y. Donc $Im(p) \subset Vect(1,1)$. Or réciproquement $Vect(1,1) \subset Im(p)$. Donc Im(p) = Vect(1,1).

Au final, p est un projecteur sur Vect(1,1) parallèlement à Vect(0,1).

Exercice 2. Supposons que u commute avec p. Soit $x \in Ker(p)$. Montrons que $u(x) \in Ker(p)$, ie p(u(x)) = 0. Or u commute à p donc p(u(x)) = u(p(x)) = u(0) = 0. Soit $y \in Im(p)$. Montrons que $u(y) \in Im(p)$. Il existe $x \in E$ tel que p(x) = y. Donc u(y) = u(p(x)) = p(u(x)). Donc $u(y) \in Im(p)$.

Remarque : on a pas utilisé le fait que p était un projecteur.

Supposons que Im(p) et Ker(p) sont stables par u. Montrons que u et p commute. Soit $x \in E$. Comme p est un projecteur alors Ker(p) et Im(p) sont supplémentaires dans E. Donc il existe $y \in Ker(p)$ et $z \in Im(p)$ tels que x = y + z. Il existe $a \in E$ tel que p(a) = z. Donc

$$u(p(x)) = u(p(y+z)) = u(p(z)) = u(z)$$

Or p(u(x)) = p(u(y) + u(z)) et Ker(p) est stable par u donc $u(y) \in Ker(p)$. Donc

$$p(u(x)) = p(u(z))$$

De même, Im(p) est stable par u donc $u(z) \in Im(p)$. Donc

$$p(u(x)) = p(u(z)) = u(z)$$

D'où

$$p(u(x)) = u(p(x))$$

Donc p et u commutent.

Solutions - Planche 2.

Exercice 1. Soit $u = (u_n)$ une suite réelle. Alors f(f(u)) = u car si on note $(v_n) = f(f(u))$ alors pour les termes d'indice pair, $v_{2n} = u_{2n}$, et pour les indice impair, $v_{2n+1} = -(-u_{2n+1}) = u_{2n+1}$. Donc $f^2 = id$ donc il s'agit d'une symétrie. Calculons maintenant par rapport à quoi.

Soit $u \in ker(f - id)$. Alors f(u) = u, donc cela dit que $u_{2n} = u_{2n}$ et que $u_{2n+1} = -u_{2n+1}$. Donc que $u_{2n+1} = 0 \forall n \geq 0$. Réciproquement ces suites conviennent (les suites nulles aux termes d'indice impair). Donc

$$Ker(f - id) = \{u \in E, u_{2n+1} = 0 \forall n \ge \}$$

De même on montre que

$$Ker(f+id) = \{u \in E, u_{2n} = 0 \forall n \ge \}$$

Donc f est la symétrie par rapport aux suites à termes d'indice impair nul parallèlement aux suites à termes d'indice pair nul.

Exercice 2. Supposons que $p \circ q = q \circ p = 0$. On veut montrer que $(p+q)^2 = p+q$. Or

$$(p+q)^2 = (p+q) \circ (p+q) = p^2 + p \circ q + q \circ p + q^2 = p^2 + q^2 = p + q$$

Donc p + q est un projecteur.

Réciproquement, supposons que p+q soit un projecteur. On a alors :

$$p + q = (p + q)^2 = p^2 + p \circ q + q \circ p + q^2 = p + p \circ q + q \circ p + q$$

D'où

$$p \circ q + q \circ p = 0$$

On composa par p à gauche et à droite et on obtient :

$$\begin{cases} p \circ q + p \circ q \circ p = 0 \\ p \circ q \circ p + q \circ p = 0 \end{cases}$$

D'où en soustrayant on obtient $p \circ q - q \circ p = 0$. Or $p \circ q + q \circ p = 0$. D'où on obtient $p \circ q = q \circ p = 0$.

Solutions - Planche 3.

Exercice 1. Soit E un espace vectoriel. Soit $f \in L(E)$ qui est à la foi un projecteur et une homothétie. Comme c'est une homothétie, alors il existe $\lambda \in \mathbb{R}$ tel que $f = \lambda id$. De plus comme f est un projecteur, alors $f^2 = id$. Donc

$$f^2 = f = \lambda id = f \circ \lambda id = \lambda^2 id$$

D'où $\lambda = \lambda^2$. Donc $\lambda = 1$ ou -1. Donc f = id ou f = 0. Réciproquement, ces deux applications conviennent.

Exercice 2. Supposons qu'il existe a, b des réels tels que $(a, b) \neq (0, 0)$ et

$$ap + bq = 0$$

Si a=0 alors bq=0. Or $q\neq 0$ donc b=0. Si b=0 alors ap=0. Or $p\neq 0$ donc a=0. Donc on peut supposer que $a\neq 0$ et $b\neq 0$.

Soit $x \in Ker(p)$ alors bq(x) = 0. Donc q(x) = 0 donc $Ker(p) \subset Ker(q)$. Réciproquement on a aussi $Ker(q) \subset Ker(p)$. Donc Ker(p) = Ker(q).

Soit $x \in Im(p)$ non nul. Alors p(x) = x. Donc ax + bq(x). Donc q(x) = -ax/b. Or comme $Ker(p) \bigoplus Im(p) = E$ et $Ker(q) \bigoplus Im(q) = E$. Alors $x \in Im(q)$ car sinon $x \in Ker(q) = Ker(p)$ ce qui est exclu car x = p(x) est non nul. Donc x = -ax/b. Donc a = -b. Donc p = q.