Monte Carlo with QMCPy for Vector Functions of Integrals

Aleksei G. Sorokin

Illinois Institute of Technology (IIT), Department of Applied Mathematics

Monte Carlo Problem

True Mean =
$$\mu = \mathbb{E}[g(T)] = \mathbb{E}[f(X)] = \int_{[0,1]^d} f(x) \mathrm{d}x$$

- ullet T, original random variable e.g. $T \sim \mathcal{N}(0,I)$
- $g: \mathcal{T} \to \mathbb{R}$, original integrand
- $X \sim \mathcal{U}[0,1]^d$, transformed random variable, e.g. $T \sim \Phi^{-1}(X)$
- $f:[0,1]^d \to \mathbb{R}$, transformed integrand

(Quasi-)Monte Carlo Method

Sample Mean
$$=$$
 $\hat{\mu} = \frac{1}{n} \sum_{i=0}^{n-1} f(X_i)$ $X_0, \dots, X_{n-1} \sim \mathcal{U}[0,1]^d$

	Crude Monte Carlo	Quasi-Monte Carlo
X_0,\ldots,X_{n-1}	independent identically distributed (IID)	low discrepancy (LD)
	gaps and clusters	even coverage
Rate of $\hat{\mu}$ to μ	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1+\delta})$, any $\delta > 0$
Generally	slower	faster
but works for	more integrands	fewer integrands (provably)

QMCPy Software Components

Discrete Distribution generates sampling locations X_0, X_1, \dots

True Measure defines T, facilitates automatic transform from g to f so

$$\mu = \mathbb{E}[g(T)] = \mathbb{E}[f(X)]$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=0}^{n-1} f(X_i)$$

has error below user-defined tolerance ε

$$|\mu - \hat{\mu}| < \varepsilon$$

Vectorized Stopping Criteria

Quantity of interest s is now a function of multiple expectations / integrals

$$s = C(\mu_0, \mu_1, \dots)$$

Covariance of random variables Y and Z

$$\mathsf{Cov}[Y,Z] = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] = \mu_0 - \mu_1 \mu_2$$

Posterior Mean from prior $\varrho(\theta)$ and likelihood $\varrho(y|\theta)$

$$\mathbb{E}[\Theta|y] = \frac{\int \theta \varrho(y|\theta)\varrho(\theta) d\theta}{\int \varrho(y|\theta)\varrho(\theta) d\theta} = \frac{\mu_0}{\mu_1}$$

Sensitivity Indices for quantifying parameter importance Enable adaptive approximation \hat{s} of s where $|s-\hat{s}|<\varepsilon$

References

- Accompanying demo https://tinyurl.com/QMCPyPyDataChi2023
- QMCPy homepage https://qmcpy.org
- QMCPy article¹
- Accessible introduction to Monte Carlo², discusses sensitivity indices in appendix

¹Sou-Cheng T. Choi et al. "Quasi-Monte Carlo Software". In: *Monte Carlo and Quasi-Monte Carlo Methods*. Ed. by Alexander Keller. Cham: Springer International Publishing, 2022, pp. 23–47. ISBN: 978-3-030-98319-2

²Art B. Owen. Monte Carlo theory, methods and examples. 2018.