DNA can be expressed as a sequence of letters from the alphabet (A, C, G, T) ("adenine", "cytosine", "guanine", and "thymine"), e.g.

GATTACAA CAGTTAAG AATAAACC GCATTCAG

3) Suppose that all DNA sequences of the form * CA * TT * AG *, where * is an arbitrarily long (passibly empty) sequence, are responsible for some bodily function:

GATTACAA

CAGITAAG < positive

AATAAACC

GCATTCAG - positive

(3) We can imagine building a CNN with three convolution Kernels: one to detect "CA", one to detect "TT", and one to detect "AG".

Dire first thing to notice is that X has one fewer column than X. This disparity will end up being rather annoying.

5) We can remedy this by simply "padding" the end of the DNA sequence with a fifth letter, which we'll call "O".

6) If we run this convolution layer on offer positive sequences:

TTCATTAG VVVVVV [00100000] 10001000 0000010] Tobserve that the next layer of the CNN is still faced with a relatively downting task, If $\dot{x} = \begin{bmatrix} \dot{x}_{11} & \ddots & \dot{x}_{18} \\ \dot{x}_{21} & \ddots & \dot{x}_{28} \\ \dot{x}_{31} & \ddots & \dot{x}_{38} \end{bmatrix}$, then we want to predict

a positive response in each of the following cases: $- \times_{11} = 1$ and $x_{23} = 1$ and $x_{35} = 1$ - X, = | and X13 = 1 and X36 = 1 = ×₁₁ = 1 and x23=1 and x37 = 1 e.g., read this line $=\dot{\chi}_{11}=1$ and $\dot{x}_{24} = 1$ and x36=1 95: "CA" Starts oct - x₁₁ = 1 position 1, "TT" and x24 = 1 and $\chi_{37} = 1$ Starts at positin3 - ×₁₁ = | and "AG" starts at and $\chi_{25} = 1$ and $x_{36} = 1$ position 7 - X₁₂ = | and x24 = 1 and x30 = 1 - X12 = | and x24=1 and x37=1 - X12 = 1 and \$25=1 and $\dot{\chi}_{37} = 1$ $-\chi_{13} = |$ and x25 = 1 and $\chi_{37} = 1$

There's no way for it to generalize between these cases, so the training data would need to contain several instances of each case.

PADDING	AND	POOLING

(8) This only gets worse as the length of the DNA sequence grows. If its length is N, then the number of different cases to consider is cubic in N:

"TT" starts

here

(CA" starts

"AG" starts

9 One way to tackle this issue is by creating a layer that summarizes the results of the detectors over subregions:

CAGTTAAG CATTCAGC $\vee\vee\vee\vee\vee\vee\vee\vee$ \vee 10000000 110001000 00010000 00100000 [00000010 [00000100] \vee \vee \vee e.g. "CA" 10 /F. 0/-starts at position 5 or position 6 "._." AG" starts at position 7 or 8

10 This technique:

is called max-pooling.

1) Notice that max-pooling greatly simplifies the next layer of the CNN, IF $\ddot{X} = \begin{bmatrix} \ddot{x}_{11} & \ddot{x}_{12} & \ddot{x}_{13} & \ddot{x}_{14} \\ \ddot{x}_{21} & \ddot{x}_{22} & \ddot{x}_{23} & \ddot{x}_{24} \\ \ddot{x}_{31} & \ddot{x}_{31} & \ddot{x}_{32} & \ddot{x}_{33} & \ddot{x}_{34} \end{bmatrix}$

We want to predict a positive response in these cases:

$$-\ddot{x}_{11}=1$$
 and $\ddot{x}_{22}=1$ and $\ddot{x}_{33}=1$

$$-\ddot{x}_{11} = 1$$
 and $\ddot{x}_{22} = 1$ and $\ddot{x}_{34} = 1$

$$-\ddot{x}_{11} = 1$$
 and $\ddot{x}_{23} = 1$ and $\ddot{x}_{34} = 1$

$$-\ddot{x}_{12} = 1$$
 and $\ddot{x}_{23} = 1$ and $\ddot{x}_{34} = 1$

(13) How does one backpropagate through a maxpool layer? Consider the following simple example:

where x = max (x, xz), and suppose we need to Compute Dx. Assume x, x are scalars.

14) From le Chain Rule:

$$\frac{\partial m}{\partial \dot{x}} = \frac{\partial x'}{\partial \dot{x}} \frac{\partial m}{\partial x'} + \frac{\partial x'}{\partial \dot{x}} \frac{\partial m}{\partial x'}$$

We know:

$$\dot{x} = \begin{cases} x_1 & \text{if } x_1 > x_2 \\ x_2 & \text{if } x_2 > x_1 \end{cases}$$

$$\frac{\partial \dot{x}}{\partial x_{1}} = \begin{cases} 1 & \text{if } x_{1} > x_{2} \\ 0 & \text{if } x_{2} < x_{1} \end{cases}$$

$$\frac{\partial \dot{x}}{\partial x_{2}} = \begin{cases} 1 & \text{if } x_{2} > x_{1} \\ 0 & \text{if } x_{1} > x_{2} \end{cases}$$

$$\begin{cases} 0 & \text{if } x_{1} > x_{2} \\ \text{undefined if } x_{1} = x_{2} \end{cases}$$

$$\begin{cases} 0 & \text{ordefined if } x_{1} = x_{2} \end{cases}$$

$$\frac{\partial x}{\partial x_2} = \begin{cases} 1 & \text{if } x_2 > x_1 \\ 0 & \text{if } x_1 > x_2 \end{cases}$$
Undefined if $x_1 = x_2$

The functions are piecewise differentiable, much like

$$\frac{da(z)}{dz} = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z < 0 \end{cases}$$

$$\frac{da(z)}{dz} = \begin{cases} 1 & \text{if } z > 0 \\ \text{undefined if } z = 0 \end{cases}$$

15) As with ReLU, we just need to hope that we don't reach a place in our weight space (during gradient descent) where $x_1 = x_2$. Since they're both real numbers, chances are law.

(6) It could be asked:

The answer lies in the fact that softmax is really a misnomer for softargmax.

well, softmax is really a misnomer for softairgmax...

17) Recall that softmax takes a vector of reals and produces a skewed distribution of the same dimension:

$$\begin{bmatrix} 1.6 \\ -0.2 \end{bmatrix} \longrightarrow \begin{bmatrix} .86 \\ .14 \end{bmatrix}$$

This is an approximation of an argmax function that produces a one-hot vector:

$$\begin{bmatrix} 1.6 \\ -0.2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

It is not an approximation of the max function:

$$\begin{bmatrix} 1.6 \\ -0.2 \end{bmatrix} \longrightarrow 1.6$$

(18) Let's try implementing this argmax function:

$$\begin{array}{c} & & & \\ & &$$

where: $\dot{x}_1 = \begin{cases} 1 & \text{if } x_1 > x_2 \\ 0 & \text{if } x_2 > x_1 \end{cases}$ $\dot{x}_2 = \begin{cases} 1 & \text{if } x_2 > x_1 \\ 0 & \text{if } x_1 > x_2 \end{cases}$

(9) That means:

$$\frac{3x'}{9x'} = 0 \qquad \frac{3x^7}{9x'} = 0$$

$$\frac{\partial \dot{x}_2}{\partial x_1} = 0 \qquad \frac{\partial \dot{x}_2}{\partial x_2} = 0$$

All le derivatives are degenerate and useless.