CS M151B / EE M116C

Computer Systems Architecture

Glenn Reinman 4731G Boelter Hall reinman@cs.ucla.edu

Components of a Computer

The BIG Picture

- Same components for all kinds of computer
 - Desktop, server, embedded
 - Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 3

Inside the SoC

Snapdragon 810

Chapter 1 — Computer Abstractions and Technology — 4

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Chapter 1 — Computer Abstractions and Technology — 5

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

Semiconductor Technology

- Silicon: semiconductor
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

- 300mm wafer, 280 chips, 32nm technology
- Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost

Cost per die =
$$\frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}$$

Dies per wafer $\approx \text{Wafer area/Die area}$

Yield = $\frac{1}{(1+(\text{Defects per area} \times \text{Die area/2}))^2}$

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design