IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Lecture 10: Scheduling II

Agenda

- Recap
- Scheduling II
 - Scheduling Algorithms (cont')

- Scheduling Concept
 - Process scheduling
 - When to run a different process?
 - New process is created
 - Process terminates
 - A process blocks on I/O etc.
 - interrupt occurs
 - Which one to run?
 - Depends on system characteristics/requirements
 - Various scheduling algorithms

- Scheduling Concept
 - Process behavior
 - CPU-bound (compute-bound)
 - I/O-bound
 - Non-preemptive V.S. preemptive scheduling
 - Non-preemptive
 - Preemptive
 - General goals of scheduling
 - Fairness
 - Policy enforcement
 - Balance
 - Specific goals for batch, interactive, real-time systems

- Scheduling Algorithms
 - First-Come, First-Served (FCFS)
 - based on the arrival order of processes

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

- Assume the processes arrive in the order: P₁, P₂, P₃
- The Gantt Chart for the schedule is:

$$\begin{array}{|c|c|c|c|c|}\hline & & & & & P_2 & P_3 \\ \hline & & & & P_2 & P_3 \\ \hline & & & & 24 & 27 & 30 \\ \hline \end{array}$$

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

- Scheduling Algorithms
 - Shortest-Job-First (SJF)
 - based on (predicted) CPU burst time

Process	Burst Time
P_1	6
P_2	8
P_3	7
P_4	3

- Assume all processes are ready at time 0
- Gantt Chart:

- Average waiting time = (3 + 16 + 9 + 0) / 4 = 7
- Turnaround time: P1 = 9; P2 = 24; P3 = 16; P4 = 3

Agenda

- Recap
- Scheduling II
 - Scheduling Algorithms (cont')

- Shortest Remaining Time Next
 - Preemptive; varying arrival time

<u>Process</u>	Arrival Time	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Gantt Chart:

- Shortest Remaining Time Next
 - Preemptive; varying arrival time

<u>Process</u>	Arrival Time	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Gantt Chart:

Average waiting time = ?

- Shortest Remaining Time Next
 - Preemptive; varying arrival time

<u>Process</u>	Arrival Time	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Gantt Chart:

Average waiting time = 6.5

- Round Robin (RR)
 - Each process is assigned a time interval (quantum) during which it is allowed to run

- Left: The list of runnable processes.
- Right: The list of runnable processes after B uses up its quantum

- Round Robin (RR)
 - Each process is assigned a time interval (quantum) during which it is allowed to run

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

Assume quantum q = 4. The Gantt chart is:

- q should be large compared to context switch time
 - E.g., q usually 10ms to 100ms, context switch < 10 usec

- Priority Scheduling
 - A priority number is associated with each process
 - schedule the process with the highest priority
 - Preemptive
 - Non-preemptive
 - SJF is priority scheduling where priority is based on the predicted next CPU burst time

Priority Scheduling

• E.g.,	<u>Process</u>	Burst Time	Priority
	P_1	10	3
	P_2	1	1
	P_3	2	4
	P_4	1	5
	P_5	5	2

- Assume non-preemptive, all processes are ready at time 0
- Gantt Chart:

Priority Scheduling

• E.g.,	<u>Process</u>	Burst Time	<u>Priority</u>
	P_1	10	3
	P_2	1	1
	P_3	2	4
	P_4	1	5
	P_5	5	2

- Assume non-preemptive, all processes are ready at time 0
- Gantt Chart:

Average waiting time = ?

Priority Scheduling

• E.g.,	<u>Process</u>	Burst Time	Priority
	P_1	10	3
	P_2	1	1
	P_3	2	4
	P_4	1	5
	P_5	5	2

- Assume non-preemptive, all processes are ready at time 0
- Gantt Chart:

• Average waiting time = (1+6+16+18)/5 = 8.2

- Priority Scheduling
 - E.g., four priority classes
 - Always schedule process from high priority class
 - Round-Robin within each class

- Summary
 - First-Come, First-Served (FCFS)
 - Shortest-Job-First (SJF)
 - Shortest Remaining Time Next
 - Round Robin (RR)
 - Priority Scheduling

- Algorithm Comparison
 - Consider 5 processes arriving in the order of P1-P5; all are ready at time 0
 - Draw Gantt Chart for each algorithm and calculate average waiting time
 - FCFS:

•	SJF	(Non-preemptive)):
---	-----	------------------	----

• RR (quantum = 10):

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_{5}	12

- Algorithm Comparison
 - Consider 5 processes arriving in the order of P1-P5; all are ready at time 0
 - Draw Gantt Chart for each algorithm and calculate average waiting time
 - FCFS: 28

• SJF (Non-preemptive): 13

• RR (quantum = 10): 23

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_5	12

Agenda

_—

Recap

Scheduling II

Scheduling Algorithms (cont')

Questions?

^{*}acknowledgement: slides include content from "Modern Operating Systems" by A. Tanenbaum, "Operating Systems Concepts" by A. Silberschatz etc., "Operating Systems: Three Easy Pieces" by R. Arpaci-Dusseau etc., and anonymous pictures from internet.