Forecasting the spatio-temporal uncoupling of bumblebee-flower interaction networks

```
Michael D. Catchen <sup>1,2</sup> Paul CaraDonna <sup>3,4</sup> Jane E. Ogilvie <sup>3</sup> Francis Banville <sup>5,6,2</sup>

Dominique Caron <sup>1,2</sup> Philippe Desjardins-Proulx <sup>5,2</sup> Norma R. Forero-Muñoz <sup>5,2</sup> Andrew Gonzalez <sup>1,2</sup>

Dominique Gravel <sup>6,2</sup> Laura Pollock <sup>1,2</sup> Timothée Poisot <sup>5,2</sup> Tanya Strydom <sup>5,2</sup> Julian Resasco <sup>7</sup>
```

Correspondance to:

Michael D. Catchen — michael.catchen@mail.mcgill.ca

This work is released by its authors under a CC-BY 4.0 license

Last revision: May 6, 2022

 $^{^1\,\}mathrm{McGill}$ University 2 Québec Centre for Biodiversity Sciences $^{-3}$ Rocky Mountain Biological Laboratory

⁴ Chicago Bontanic Garden ⁵ Université de Montréal ⁶ Université de Sherbrooke ⁷ University of Colorado Boulder

Purpose: This template provides a series of scripts to render a markdown document into an interactive website and a series of PDFs.

Motivation: It makes collaborating on text with GitHub easier, and means that we never need to think about the output.

Internals: GitHub actions and a series of python scritpts. The markdown is handled with pandoc.

1 Abstract

- 2 Using a data set of [DESCRIBE EACH DATASET IN A NICE WAY], we predict a spatiotemporally explicit
- metaweb of interactions between bumblebees (Bombus) and wildflowers (within find clade). We integrate
- 4 this data with crowdsourced occurrence data and climate data to [best paint the picture of the Colorado
- 5 bumblebee-plant metaweb]. Using temporal climate data, we forecast how the spatiotemporal overlap of
- 6 interacting species will change under proposed climate scenarios. We use this to estimate what
- 7 interactions between bees and plants need the most attention to prevent the spatiotemporal decoupling of
- an interactions from threatening ecosystem functioning or the persistence of a species.

9 Introduction

- 50 Species interactions are important. It is ultimately interactions between individuals of different species
- that drive the structure, dynamics, and persistence of ecosystems, and the abundance and diversity of the
- species within them. Plant-pollinator interactions specifically drive the function and persistence of
- "architecture of biodiversity" (Bascompte & Jordano 2007). However, we are far from a robust
- understanding of plant-pollinator networks is.
- 15 In this paper, we combine several datasets, each spanning several years, to produce spatially and
- temporally explicit predictions of *Bombus* plant-pollinator interactions across the state of Colorado.
- We do this in two parts: (1) metaweb prediction and (2) conditioning our metaweb prediction on
- 18 co-occurrence probability.
- 19 First, we build a model to predict the metaweb—the network of all interactions, aggregated across all
- 20 times and spatial locations—of Bombus and wildflower species across Colorado. (Why do this? The
- 21 metaweb is more predictable than local interactions.) We do this using network embedding (cite?).
- Network embedding takes each node in the network (either a bumblebee or a wildflower) and represents
- 23 it in a latent n dimensional space. Combination of running models on Temporal niche (T), Phylogenetic
- niche (P), Environmental niche (E), and relative abundance in community (RA).
- ²⁵ Second, we then use this metaweb to predict the structure of networks at specific locations and times of
- 26 year (Gravel et al. 2019).

- 27 Finally we suggest a map of sampling priority, which suggests the locations to sample that will best
- improve our understanding of the Colorado *Bombus* pollination metaweb.

29 Data

We use three separate datasets to estimate the Colorado *Bombus* metaweb.

31 Methods

32 Concept Fig

33 Metaweb Model

- 34 Phylogeny Construction
- 35 Feature Embedding
- 36 Relative Abundance
- 37 Phylogenetic features
- 38 Environmental niche features
- 39 Temporal niche features
- 40 Metaweb Model Fitting and Validation

41 Figure 2: Model Fit Figure

ROC-AUC										PR-AUC						
T+P+E+R	0.75	0.72	0.84	0.85	0.86	0.87	0.87	T+P+E+R	0.55	0.47	0.67	0.58	0.70	0.73	0.71	
T+E+R	0.76	0.78	0.84	0.83	0.85	0.87	0.86	T+E+R	0.52	0.53	0.67	0.57	0.68	0.71	0.69	
P+E+R	0.75	0.71	0.85	0.84	0.85	0.88	0.87	P+E+R	0.53	0.46	0.69	0.57	0.68	0.74	0.70	
T+P+E	0.73	0.70	0.82	0.84	0.80	0.86	0.86	T+P+E	0.51	0.44	0.65	0.67	0.61	0.71	0.68	
T+P+R	0.75	0.71	0.84	0.83	0.86	0.86	0.87	T+P+R	0.53	0.42	0.68	0.58	0.70	0.72	0.70	
E+R	0.75	0.77	0.85	0.82	0.85	0.87	0.86	E+R	0.49	0.53	0.67	0.59	0.65	0.70	0.68	
P+R	0.75	0.71	0.85	0.84	0.86	0.88	0.87	P+R	0.52	0.46	0.69	0.61	0.69	0.73	0.70	
T+R	0.75	0.77	0.84	0.81	0.85	0.85	0.85	T+R	0.49	0.52	0.68	0.53	0.68	0.69	0.68	
T+P	0.70	0.71	0.81	0.83	0.81	0.85	0.85	T+P	0.47	0.46	0.63	0.64	0.59	0.68	0.66	
T+E	0.65	0.60	0.82	0.83	0.81	0.84	0.84	T+E	0.41	0.32	0.64	0.64	0.63	0.66	0.67	
P+E	0.71	0.70	0.82	0.85	0.79	0.87	0.86	P+E	0.50	0.44	0.62	0.68	0.54	0.70	0.66	
R	0.77	0.77	0.85	0.80	0.84	0.82	0.84	R	0.52	0.52	0.68	0.47	0.67	0.64	0.65	
Е	0.64	0.52	0.79	0.81	0.80	0.81	0.82	Е	0.35	0.23	0.56	0.57	0.56	0.59	0.59	
Р	0.69	0.71	0.80	0.82	0.77	0.84	0.84	Р	0.44	0.44	0.57	0.59	0.52	0.63	0.61	
Т	0.57	0.57	0.80	0.80	0.80	0.82	0.82	Т	0.31	0.31	0.59	0.57	0.61	0.62	0.63 of 6	

43 Spatiotemporally Explicit Networks

- Now that we have a metaweb....
- 45 Figure 3: Maps over time figure and Prob(Connectance) vs. Month figure

46 Sampling Prioiritization

47 Figure 4: Uncertainty and sampling priority map

48 Discussion

- Bascompte, J. & Jordano, P. (2007). Plant-Animal Mutualistic Networks: The Architecture of Biodiversity.
- 50 Annual Review of Ecology, Evolution, and Systematics, 38, 567–593.
- ⁵¹ Gravel, D., Baiser, B., Dunne, J.A., Kopelke, J.-P., Martinez, N.D., Nyman, T., et al. (2019). Bringing Elton
- and Grinnell together: A quantitative framework to represent the biogeography of ecological
- interaction networks. *Ecography*, 42, 401–415.