Assignment 2 Andy Lee – 500163559

1a) Simplify
$$(a + b + c') \cdot (a'b' + c)$$

= $aa'b' + ac + ba'b' + bc + c'a'b' + c'c$
= $0 + ac + 0 + bc + a'b'c' + 0$
= $ac + bc + (a + b + c)'$

1b) Simplify
$$x'y'z' + w'x'yz' + wx'yz'$$

= $x'z'(y' + w'y + wy)$
= $x'z'(y' + y(w' + w))$
= $x'z'(y' + y(1))$
= $x'z'(y' + y)$
= $x'z'(1) = x'z'$

2a) Find complement of
$$F = (a + c)(a + b')(a' + b + c')$$

$$F' = ((a+c) \cdot (a+b') \cdot (a'+b+c'))'$$

$$F' = (a+c)' + (a+b')' + (a'+b+c')'$$

$$F' = a' \cdot c' + a' \cdot b + a \cdot b' \cdot c$$

а	a'	b	b'	С	c'	X = a + c	Y = a + b'	Z = a' + b + c'	$F = X \cdot Y \cdot Z$	F'
1	0	1	0	1	0	1	1	1	1	0
1	0	1	0	0	1	1	1	1	1	0
1	0	0	1	1	0	1	1	0	0	1
1	0	0	1	0	1	1	1	1	1	0
0	1	1	0	1	0	1	0	1	0	1
0	1	1	0	0	1	0	0	1	0	1
0	1	0	1	1	0	1	1	1	1	0
0	1	0	1	0	1	0	1	1	0	1

а	a'	b	b'	С	c'	$X = a' \cdot c'$	$Y = a' \cdot b$	$Z = a \cdot b' \cdot c$	F' = X + Y + Z
1	0	1	0	1	0	0	0	0	0
1	0	1	0	0	1	0	0	0	0
1	0	0	1	1	0	0	0	1	1
1	0	0	1	0	1	0	0	0	0
0	1	1	0	1	0	0	1	0	1
0	1	1	0	0	1	1	1	0	1
0	1	0	1	1	0	0	0	0	0
0	1	0	1	0	1	1	0	0	1

2*b*) Using duality find complement of F = xy'z' + w'x + yz' + wx'yz'

Duality of $F: (x + y' + z') \cdot (w' + x) \cdot (y + z') \cdot (w + x' + y + z')$ Complement each literal: $F' = (x' + y + z) \cdot (w + x') \cdot (y' + z) \cdot (w + x + y' + z)$

a) Find truth table and draw circuit for F = x'y'z' + x'yz + x'yz'

x	x'	у	<i>y</i> ′	Z	z'	$A = x' \cdot y' \cdot z'$	$B = x' \cdot y \cdot z$	$C = x' \cdot y \cdot z'$	F = A + B + C
1	0	1	0	1	0	0	0	0	0
1	0	1	0	0	1	0	0	0	0
1	0	0	1	1	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0
0	1	1	0	1	0	0	1	0	1
0	1	1	0	0	1	0	0	1	1
0	1	0	1	1	0	0	0	0	0
0	1	0	1	0	1	1	0	0	1

3b) Find truth table and draw circuit for F = ac'b + c' + d'b'

а	a'	b	b'	С	c'	d	d'	$X = a \cdot c' \cdot b$	$Y = d' \cdot b'$	F = X + c' + Y
1	0	1	0	1	0	1	0	0	0	0
1	0	1	0	1	0	0	1	0	0	0
1	0	1	0	0	1	1	0	1	0	1
1	0	1	0	0	1	0	1	1	0	1
1	0	0	1	1	0	1	0	0	0	0
1	0	0	1	1	0	0	1	0	1	1
1	0	0	1	0	1	1	0	0	0	1
1	0	0	1	0	1	0	1	0	1	1
0	1	1	0	1	0	1	0	0	0	0
0	1	1	0	1	0	0	1	0	0	0
0	1	1	0	0	1	1	0	0	0	1
0	1	1	0	0	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	0	0
0	1	0	1	1	0	0	1	0	1	1
0	1	0	1	0	1	1	0	0	0	1
0	1	0	1	0	1	0	1	0	1	1

4) Produce function expression as SoP, simplify and draw circuit

$$f(xyz) = x'yz' + xyz' + xyz$$

$$= yz'(x' + x) + xyz$$

$$= yz'(1) + xyz$$

$$= yz' + xyz$$

$$= y(z' + xz)$$

$$= y(z' + xz)$$

$$= yz' + yx$$

X	y	Z	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

5) Draw and fill K-map, produce minterms, simplify function via K-map, draw circuit

$$5a) F(x, y, z, w) = wxy + yz + xy'z + wz'$$

 $F(x,y,z,w) = \sum (m_3,m_5,m_7,m_8,m_{10},m_{11},m_{12},m_{13},m_{14},m_{15})$

F(x, y, z, w) = zx + yz + wz'

5b)
$$F(A,B,C) = A'B'C' + A'B + ABC' + AC$$

 $F(A,B,C) = \sum (m_0, m_2, m_3, m_5, m_7)$

