Kha's Mock Ciphering Questions

Calculus AB Set 2 LaMA⊖ State Convention Thursday to Saturday March 26 - 28, 2020

Rules

- Two minutes are allotted for each question.
- All answers must be in exact, simplified form unless otherwise requested.
- Four points are awarded for answering the question correctly within one minute.
- Two points are awarded for answering correctly within two minutes.
- Good luck and have fun!

1. Find $\frac{dy}{dx}$ given $y = 3^{x \ln x}$

2. Evaluate
$$\int \theta e^{\theta} dx$$

3. Find $\frac{dy}{dx}$ given $y = (x^2 + x^3)^4$

4. Find f' in terms of g' if $f(x) = g(\ln x)$

5. Find the area bound by the given curves: $y=x^2, \quad y=4x-x^2$

$$y = x^2, \quad y = 4x - x^2$$

6. Find the volume created by rotating the region bounded by y = 2x and $y = x^2$ about the x-axis.

7. Solve the following differential equation by finding y: $\frac{dy}{dt} = 1 - t + y - ty$

$$\frac{dy}{dt} = 1 - t + y - ty$$

8. Evaluate $\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$

9. Evaluate
$$\int \frac{1-x^2}{1-x} dx$$

10. Suppose there is a number A = 100999897...4321, which is composed by concatenating numbers 100 to 1 in descending order. What is the Ath derivative of $-\cos(x)$?

Answers

- 1. $3^{x \ln x} (\ln 3) (1 + \ln x)$
- 2. $\theta e^{\theta} x + C$
- 3. $4(x^2+x^3)^3(2x+3x^2)$
- **4.** $g'(\ln x) \cdot \frac{1}{x}$
- 5. $\frac{8}{3}$
- 6. $\frac{64\pi}{15}$
- 7. $y = Ce^{t \frac{t^2}{2}} 1$
- 8. $\frac{2}{3}$
- **9.** $x + \frac{x^2}{2} + C$
- **10.** $\sin(x)$

Hints

- **1.** Rewrite $3^{x \ln x}$ as $e^{\ln 3 \cdot x \ln x}$.
- 2. Since you're integrating with respect to x, you can treat θ as a constant.
- 3. Chain rule.
- 4. Chain rule.
- **5.** Find the bounds by setting the two equations equal. Then subtract the area of the bottom curve from the top curve.
- **6.** Same as above, but instead subtract volume of the bottom curve from the top curve.
- **7.** Rewrite $\frac{dy}{dx} = 1 t + y(1 t) = (1 t)(1 + y)$.
- 8. L'Hôpital's rule.
- **9.** Rewrite $\int \frac{(1-x)(1+x)}{1-x} dx = \int (1+x) dx$.
- **10.** $A \mod 4 = 1$, therefore the Ath derivative of $-\cos(x)$ is equivalent to the 1st derivative of $-\cos(x)$, which is $\sin(x)$.