Cavallaro, Jeffery Math 221b Homework #4

1). Determine the units in $(\mathbb{Z}/4\mathbb{Z})[x]$

We know that $(\mathbb{Z}/4\mathbb{Z})^{\times} = \{a+4\mathbb{Z} \mid (a,4)=1\} = \{1+4\mathbb{Z}, 3+4\mathbb{Z}\}$: Since addition and multiplication are by representatives, for convenience, we can work in arithmetic $\pmod{4}$ for the coefficients.

Assume $f(x) \in (\mathbb{Z}/4\mathbb{Z})^{\times}$. The there exists $g(x) \in (\mathbb{Z}/4\mathbb{Z})^{\times}$ such that:

$$f(x)g(x) = 1$$

Thus, $a_0 = 1$ and all other $a_k = 0$.

The only possibilities for $a_0 = 1$ are $1 \cdot 1$ and $3 \cdot 3$.

Let
$$f(x) = 1 + af_1(x)$$
 where $f_1(x) \in (\mathbb{Z}/4\mathbb{Z})[x]$ and

let
$$g(x) = 1 + bg_1(x)$$
 where $g_1(x) \in (\mathbb{Z}/4\mathbb{Z})[x]$ and

AWLOG that the coefficients of $f_1(x)$ and $g_1(x)$ are relatively prime - otherwise factor out any common factors.

$$f(x)g(x) = 1 + af_1(x) + bg_1(x) + abf_1(x)g_1(x) = 1$$

The only possibilities that allow the last term to drop out occur when:

a).
$$a = 0$$
 or $b = 0$

b).
$$a = b = 2$$

If a=0 then b must also be 0 so that the two middle terms drop out. a=b=2 works as long as $f_1(x)=g_1(x)$.

Now, let
$$f(x) = 3 + af_1(x)$$
 and $g(x) = 3 + bg_1(x)$.

$$f(x)g(x) = 1 + 3af_1(x) + 3bg_1(x) + abf_1(x)g_1(x) = 1$$

Once again, we have the same two cases and the same conditions so that all the none constant terms fall out.

$$\text{Therefore } (\mathbb{Z}/4\mathbb{Z})^{\times} = \{(1+4\mathbb{Z}) + (2+4\mathbb{Z})f(x), (3+4\mathbb{Z}) + (2+4\mathbb{Z})f(x) \mid f(x) \in (\mathbb{Z}/4\mathbb{Z})[x].$$

2). Show that (2, x) is a non-principal, prime ideal in $\mathbb{Z}[x]$.

$$(2,x) = \{xf(x) + 2g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}\$$

First, let's make sure that this is a prime ideal. Assume:

$$\alpha\beta = xf(x) + 2g(x)$$

and AWLOG that $\alpha \notin (2,x)$. Thus $\beta \mid xf(x)$ and $\beta \mid 2g(x)$. Note that if b=2 or b=x then $b \in (2,x)$, so AWLOG that $b \neq x$ and $b \neq 2$. Then $b \mid f(x)$ and $b \mid g(x)$. But then $\alpha = xh(x) + 2i(x)$ for some $h(x), i(x) \in \mathbb{Z}[x]$ and thus $\alpha \in (2,x)$, a contradiction.

Therefore, (2, x) is prime.

Now show that it is not principal. ABC that (2, x) = (h(x)) where $h(x) \in (2, x)$.

Note that (2,x) is a proper ideal in $\mathbb{Z}[x]$, since the coefficient of all constant terms in (2,x) must be even.

Since $2 \in (2, x)$, there must exist $g(x) \in \mathbb{Z}[x]$ such that h(x)g(x) = 2 and thus,

$$\deg(2) = \deg((h(x)g(x))) = \deg(g(x)) + \deg(g(x)) = 0$$
, and so, $\deg(h(x)) = \deg(g(x)) = 0$ and thus $h(x)$ is constant.

But since 2 is prime, the only candidates are $h(x) = \{\pm 1, \pm 2\}$.

But ± 1 are units and their inclusion in the ideal would make it non-proper, so only ± 2 are left.

But $x \in (2, x)$ as well, so there must exist $f(x) \in \mathbb{Z}[x]$ such that $x = \pm 2f(x)$. But this can only happen when $f(x) = \pm \frac{x}{2}$, resulting in non-integer coefficients. a contradiction.

Therefore, (2, x) is not principal.

3). Show that F[x, y] is not a PID.

It was proven in class that in order for an ideal I to be a PID, then $\forall\,a,b\in I,\,a$ and b must have a non-unit GCD in I.

Consider (x,y), an ideal in F[x,y]. Note that this ideal is proper, since it does not contain any non-zero constant terms.

 $x \in (x,y)$ and $y \in (x,y)$ but both x and y are prime in F[x,y] and thus have no common divisor other than 1. So (x,y) is not principle.

Therefore F[x, y] is not a PID.

4). Prove that $R_{-2}^{\times} = \{\pm 1\}$

Assume $\alpha \in R_{-2}$

Let
$$\alpha = a + b\sqrt{-2}$$
 where $a,b \in \mathbb{Z}$

By the unit criterion, in order for α to be a unit in R_{-2} :

$$N(\alpha) = a^2 + 2b = 1$$

Note that any value of b>0 is too big, and so b=0, and so:

$$a^2 = 1$$

$$a = \pm 1$$

$$\therefore R_{-2}^{\times} = \{\pm 1\}$$

5). Let d be a squarefree integer other than 1. Show that:

$$d \equiv 2 \text{ or } 3 \pmod{4} \implies R_d = \mathbb{Z}[\sqrt{d}]$$

Assume $d \equiv 2 \text{ or } 3 \pmod{4}$

$$\implies$$
 Assume $\alpha \in R_d$

Let
$$\alpha = r + \sqrt{d}$$

By the integer criterion:

$$N(\alpha) = r^2 - ds^2 \in \mathbb{Z}$$

$$T(\alpha) = 2r \in \mathbb{Z}$$

Then:

$$-4N(\alpha) + T(\alpha)^2 = 4(ds^2 - r^2) + (2r)^2 = 4ds^2 = d(2s)^2 \in \mathbb{Z}$$

Since $s \in \mathbb{Q}$, let $2s = \frac{a}{c}$ where (a, c) = 1 and $c \neq 0$

Let
$$d\left(\frac{a}{c}\right)^2 = k \in \mathbb{Z}$$

 $da^2 = kc^2$

Now, ABC that there exists prime p such that $p \mid c$ $p^2 | c^2$

But (a,c)=1, so $p^2 \nmid a^2$, and thus $p^2 \mid d$

CONTRADICTION! Since d is squarefree

Thus,
$$c=1$$
 and $d\left(\frac{a}{c}\right)^2=d(2s)^2\in\mathbb{Z}$
And since $d\in\mathbb{Z}$, we have $2s\in\mathbb{Z}$

Now, let $a = 2s \in \mathbb{Z}$ amd $b = 2r \in \mathbb{Z}$

$$\alpha = \frac{a}{2} + \frac{b}{2}\sqrt{d}$$

$$N(\alpha) = \left(\frac{a}{2}\right)^2 - d\left(\frac{b}{2}\right)^2 = \frac{a^2 - db^2}{4}$$
$$a^2 - db^2 = 4N(\alpha) \equiv 0 \pmod{4}$$

$$a^2 - db^2 = 4N(\alpha) \equiv 0 \pmod{4}$$

and so: $a^2 \equiv db^2 \pmod{4}$

Now, consider the even/odd cases for a and b

Recall: $\forall n \in \mathbb{Z}, n \text{ is even} \iff n^2$

Assume $n \in \mathbb{Z}$:

Case 1: n even

Case 1a:
$$n \equiv 0 \pmod{4}$$

$$n^2 \equiv 0 \cdot 0 \pmod{4} \equiv 0 \pmod{4}$$

Case 1b: $n \equiv 2 \pmod{4}$

$$n^2 \equiv 2 \cdot 2 \pmod{4} \equiv 0 \pmod{4}$$

Thus, $n \text{ even} \implies n^2 \equiv 0 \pmod{4}$

Case 2: n odd

Case 2a:
$$n \equiv 1 \pmod{4}$$

$$n^2 \equiv 1 \cdot 1 \pmod{4} \equiv 1 \pmod{4}$$

Case 2b: $n \equiv 3 \pmod{4}$

$$n^2 \equiv (-1) \cdot (-1) \pmod{4} \equiv 1 \pmod{4}$$

Thus, $n \text{ odd} \implies n^2 \equiv 1 \pmod{4}$

Now, apply this information to a and b based on d:

Case 1:
$$d \equiv 2 \pmod{4}$$

$$a^2 \equiv 2b^2 \pmod{4}$$

and so $a^2, b^2 \equiv 0 \pmod 4$, and thus a and b must both be even

Thus $r = \frac{a}{2}$ and $s = \frac{b}{2}$ are both integers

$$\alpha \in \mathbb{Z}[\sqrt{d}]$$

Case 2:
$$d \equiv 3 \pmod{4}$$

$$a^2 \equiv -b^2 \pmod{4}$$

and so $a^2, b^2 \equiv 0 \pmod 4$, and thus a and b must both be even and this is the same as the previous case

$$\alpha \in \mathbb{Z}[\sqrt{d}]$$

$$\ \ \, \Longleftrightarrow \ \, \mathsf{Assume} \,\, \alpha \in \mathbb{Z}[\sqrt{d}]$$

Let $\alpha = m + n\sqrt{d}$ where $m, n \in \mathbb{Z}$

$$N(\alpha) = m^2 - dn^2 \in \mathbb{Z}$$

$$T(\alpha) = 2m \in \mathbb{Z}$$

Therefore, by the integer criterion, $\alpha \in R_d$

$$\therefore R_d = \mathbb{Z}[\sqrt{d}]$$

6). Show that R_{-13} is not a UFD.

Since
$$(-13) \equiv 3 \pmod{4}$$
, $R_{-13} = \mathbb{Z}[\sqrt{-13}]$.

Also, since
$$13 > 4$$
, $\mathbb{Z}[\sqrt{-13}]^{\times} = \{\pm 1\}$.

Consider
$$14 \in \mathbb{Z}[\sqrt{-13}]$$

$$2 \cdot 7 = 14$$
 and $(1 + \sqrt{-13})(1 - \sqrt{-13}) = 14$

$$2(1+\sqrt{-13}) \neq \pm 1$$

$$2(1-\sqrt{-13}) \neq \pm 1$$

$$7(1+\sqrt{-13}) \neq \pm 1$$

$$7(1-\sqrt{-13}) \neq \pm 1$$

Thus, none of the factors are associates.

ABC: 2 is not irreducible in $\mathbb{Z}[\sqrt{-13}]$

$$\exists\,\alpha,\beta\in\mathbb{Z}[\sqrt{-13}],\alpha\beta=2$$

$$N(2) = N(\alpha)N(\beta) = 4$$

We can discount $4 \cdot 1$ because a norm of 1 indicates a unit and thus the factorization differs only by a unit.

Thus
$$N(\alpha)=N(\beta)=2$$

But
$$x^2 + 13y^2 = 2$$
 has no integer solutions. CONTRADICTION!

Therefore 2 is irreducible in $\mathbb{Z}[\sqrt{-13}]$

ABC: 7 is not irreducible in $\mathbb{Z}[\sqrt{-13}]$

$$\exists \alpha, \beta \in \mathbb{Z}[\sqrt{-13}], \alpha\beta = 7$$

$$N(7) = N(\alpha)N(\beta) = 49$$

We can discount $49\cdot 1$ because a norm of 1 indicates a unit and thus the factorization differs only by a unit.

Thus
$$N(\alpha) = N(\beta) = 7$$

But $x^2 + 13y^2 = 7$ has no integer solutions. CONTRADICTION!

Therefore 7 is irreducible in $\mathbb{Z}[\sqrt{-13}]$

ABC: $1 \pm \sqrt{-13}$ is not irreducible in $\mathbb{Z}[\sqrt{-13}]$

$$\exists \alpha, \beta \in \mathbb{Z}[\sqrt{-13}], \alpha\beta = 1 \pm \sqrt{-13}$$

$$N(1 \pm \sqrt{-13}) = N(\alpha)N(\beta) = 14$$

We can discount $14 \cdot 1$ because a norm of 1 indicates a unit and thus the factorization differs only by a unit.

Thus, WLOG:
$$N(\alpha) = 2$$
 and $N(\beta) = 7$

But we have already proven that no such α or β exist in $\mathbb{Z}[\sqrt{-13}]$.

CONTRADICTION!

Therefore $1 \pm \sqrt{-13}$ is irreducible in $\mathbb{Z}[\sqrt{-13}]$

So, there exists two distinct factorization of 14 into irreducibles that are not associates.

Therefore R_{-13} is not a UFD.