AI PROJECT 2주차 발표

AI 71반 이상행동 감지 및 드론 활용 인명 구조 시스템

B3 Po비와 아이들 김성은 김준규 박민제 백지연 송예인 홍해원

1

추진 배경 및 목표 2

기업 분석 전 기수

3

전 기수 분석

4

논문 분석

5

시나리오 및 주요 기능 6

향후 계획

추진 배경

해수욕장 피서객 증가

여름철 해수욕장 방문객이 증가함에 따라 해수욕장 관리와 안전 대책의 중요성이 강조

(지면) 2024. 9. 4.(수) 조간

) 2024. 9. 4.(수) 조간 배포 2024. 9. 3.(화) 06:00

2024년도해수욕장운영종료

이용객총4110만명(8317) 준전년대비약82%증가, 해운대대천광인리순으로방문

해양수산부(장관 강도형)는 올해 개장한 263개^{*}의 해수욕장이 8월 31일(목)자로 운영을 마쳤다고 밝혔다. 올해는 개장기간(6월 1일~8월31일) 동안 4,110만 명(8월 31일 기준)이 해수욕장을 방문하는 등 이용객이 작년보다 약 8.2% 증가 한 것으로 집계 되었다.

- * 총 개장 266개소 중 인천 소재 3개소(왕산, 을왕리, 하나개)는 9.8일까지 운영
- ** 이른 더위로 조기 개장한 해수욕장이 많았으며, 개장기간 내 평년보다 더운 날씨 등으로 해수욕장 이용객이 증 가한 것으로 파악

출처 : 해양수산부

원인별 물놀이 사망사고

물놀이 사고의 주요 원인으로 나타나는 '안전 부주의'와 '수영 미숙'은 갑작스러운 위급 상황을 초래하기에 모니터링 필요

출처 : 행정안전부

물놀이 골든타임의 중요성

골든타임 5분 내 심폐소생술을 실시하면 생존율이 높아지기 때문에 신속한 구조와 즉각적인 응급처치 시스템 필요

출처: American Heart Association (AHA)

프로젝트 목표

" 해안가 실시간 이상행동 감지 및 자율주행 드론 인명 구조 시스템 구축 "

CCTV 기반 이상행동 감지 시스템

CCTV를 활용하여 바다에서 비정상적인 행동 (수영을 하지 않는 사람의 의심스러운 움직임 등)을 실시간으로 감지

태블릿 연동 실시간 알림 시스템

CCTV로 감지되어 전송된 데이터를 태블릿 내 경고 알림을 통해 담당자가 위험 상황을 빠르게 파악하고 판단

드론 기반 인명 구조 지원

위험 상황으로 판단된 경우, 해당 지점으로 드론을 출동시켜 인명구조에 필요한 장비 제공하여 구조 지원

실시간 위험 감지

인명 구조의 신속성 확보

효율적인 안전 관리

기업 분석

DJI 인명구조 드론

GPS 좌표 전송

*구조대원에게 피해자의 GPS 좌표 자동으로 전송

다양한 인명 구조 작업

*드론이 밧줄/구조 용품 배달하거나 고립된 피해자 수색

해양 구조 단체와 협업

*DJI + SLSCC

→ 상어 감지, 조난자 발견, 해안선 수색,

SOOM-VI 해상인명구조 드론

구명장비 투하 장치 특허기술 드론

*국제공인구명환(3kg) 장착

고해상도 카메라 실시간 영상 전송

*4K(UHD)급 카메라 이용

*미세 진동 흡수 시스템 추가

GPS 기반 자율 비행 기능 탑재

*지정된 위치로 자동 비행 가능

다양한 해상 관련 임무에 활용

구조대 가이드 등의 작업

전 기수 분석

21-C2 밀집 인파 위험 탐지 드론

- <mark>통신</mark>: DJI MINI 2 SE 드론과 워크스테이션의 RTMP 실시간 스트리밍 방식
- Zone Counting : YOLOv8을 활용한 객체 탐지 및 밀집 구역 파악
- In & Out Counting: 이전과 현재 중심점의 방향 계산하여 선 기준으로 방향따라 counting → 인구 유동 방향 및 병목 현상 미리 파악

24-A2 혼잡한 상황 속 심장마비 조기 대처를 위한 감지 드론

- Grab Detection : YOLOv8 Pose Model로
 관절 위치 추출하여 심장 부근 손 위치 확인
- Head Detection : 코, 귀, 눈 좌표 확인 후
 숙인 것으로 판단
- Pain Detection : deep face 모델 표정 감지
- <mark>의심 환자 Tracking</mark>: Frame 상 감지된 사람 Bbox 넓이 계산하여 중심 좌표 찾고 상황 알림

26-A1 안전한 UAM 운용을 위한 자율비행 및 자동 착륙 시스템

- 자율 비행 : 하방 카메라 원본 이미지에
 'Morphological' 기법 사용하여 이미지 강조
 → 라인 인식 및 중점 찾아 직진 또는 회전 이동
- Object Detection : 하방 카메라로 찍은 사진 YOLOv5 모델 학습하여 자동 착륙
 → 전방 및 하방 모두 인식 가능
- <mark>드론 제어</mark> : PID로 민감도 제어하여 속도 조절

논문 분석

수색 및 구조 작업을 위한 드론 이미지에서 YOLO를 사용한 인명 탐지

• 실시간 감지

- : YOLO는 전체 이미지를 한 번에 처리하는 방식으로, 구조 작업에서 실시간으로 인명 탐지를 가능
- → 해안에서 실시간으로 사람의 익사 등 이상 행동 탐지하는 데 적합

• 다양한 환경에서의 높은 정확도

: YOLO는 드론에서 촬영한 이미지에서도 높은 정확도로 탐지할 수 있고, 바다처럼 복잡한 환경에서도 정확하게 작동

컴퓨터 비전과 GPS를 이용한 드론 자율 비행 알고리즘

GPS 기반 경로 계획

: GPS를 이용해 드론은 목표 좌표를 설정하고 경로를 자동으로 계획하여 이동 → 경로 중 현재 위치와 사전 설정된 목적지 위치를 지속적으로 비교하여 최적의 경로를 유지

• 컴퓨터 비전을 통한 장애물 회피

: 드론은 카메라 등의 센서를 사용해 주변 환경을 실시간으로 스캔하고, 컴퓨터 비전을 통해 장애물을 탐지하여 회피하면서 안전하게 비행

출처: Human Detection in Drone Images Using YOLO for Search-and-Rescue Operations

출처: Autonomous-flight Drone Algorithm use Computer vision and GPS

시나리오 및 주요기능

STEP 1) 해안가 감시 및 위험 상황 탐지

웹캠

YOLO

해안가를 실시간으로 감시하고 물에 빠진 사람을 자동으로 탐지

STEP 2) 경고 알림 및 모니터링 시스템

HTML

Django

django

객체 탐지 알고리즘이 사람을 물에 빠진 상태로 감지하면, 웹 기반 모니터링 시스템에 경고 메시지가 뜨며 안전요원에게 위험 상황 전송

STEP 4) 드론의 자율비행 및 구명환 투하

GPS

PID MICH

드론이 GPS를 통해 위급 상황이 발생한 위치까지 비행 후, 해당 지점에 구명환을 투하하여 구조 작업 지원

STEP 3) 위험 상황 확인 및 드론 이동 설정

Socket 통민

Wi-Fi 통낀

모니터에서 위험 상황으로 확인되면, 드론이 해당 위치로 이동되도록 설정

향후 계획

SUN	MON	TUE	WED	THU	FRI	SAT
1	2	3	4	5	6	7
아이디어 선정 및 기획, 부품 주문						SW 설계
8	9	10	11	12	13	14
SW 설계 (이미지 인식 및 웹 구현)						
	HW 설계					
15	16	17	18	19	20	21
					테스트 및 보완	
HW 설계 (자율 비행 알고리즘, 드론 설계 및 통신 구축)						
22	23	24	25	26	27	28
	PPT, 시연영상 제작 및 발표 준비 발표 당일					
29	30					

B3 Po비와 친구들

Thank you

감사합니다:)