Sections and Chapters

John Paul Guzman

1 Basic Logic

1.1 (Remark) Modern Logic

- -Proof theory properties of proofs
- Model theory properties of interpretations
- Recursion theory properties of algorithms
- Set theory structureMaster

1.2 (Remark) Bootstrapping

- Informal math contains all the real ideas, while formal math contains encoded symbols
- Formal math is mere toy-replica of the informal math
- Properties of the toy can tell us about properties of the real thing
- Formal reasoning (syntax) is much safer than informal reasoning (syntax + semantics)
- The informal theory about a formal theory is called a metatheory

1.3 (Remark) Notions in the metatheory are informal

- Metamathematics exists outside and independently of our effort to build this or that formal system
- - All its constructs are available to us for use in the analysis of the behaviour of a formal system
- Properties about objects that they must satisfy can only be recognized in the metatheory
- - Formal theories are pre-built systems that are designed to run not knowing about these properties
- The formal theory is just a generator of theorems, and not a parser
- - It cannot remember what it generates nor state the properties of some given string

1.4 (Definition) Pre-requisite informal notions

- Subset $X \subseteq Y$ for sets X and Y iff for all $x \in X$, $x \in Y$
- Union $X \cup Y$ for sets X and Y iff for all $x \in X$ and $y \in Y$, $x \in X \cup Y$ and $y \in X \cup Y$
- Kleene star S^* is the set of all sequences that can be made from the elements of set S
- The string S from a set V is defined by $S \in V^*$
- String concatenation A * B for strings A and B is defined by A appended with B
- The empty string λ is defined by for all strings $S, S = \lambda * S = S * \lambda$
- String A occurs in string B iff there exists strings C and D, B = C * A * D
- Variadic notation $[a_i]_{i=1}^n$ is an abbreviation for $a_1, a_2, a_3, ..., a_n$

1.5 (Definition) Rule

- The rule Q is a metatheoretical function that takes in a sequence of strings and outputs strings
- The rule with n arguments and an output is called (n+1)-ary
- The rule has an associated function Arity which outputs the number of arguments for a given function or relation
- The function ArityR outputs the arity of given a given rule Rules must be algorithmic and can be executed within a finite number of steps The immediate predecessors of a string d on the (n+1)-ary rule Q are $[s_i]_{i=1}^n$ iff $Q([s_i]_{i=1}^n, d)$ holds

(Definition) Closed set under a rule

- TODO: use/meaning/intent - wat - The set S is closed under the (n+1)-ary rule Q iff for all d where $Q([s_i]_{i=1}^n, d)$, if $\{[s_i]_{i=1}^n\}\subseteq S$, then $d\in S$

1.7(Definition) Rule-defined set

- The rule-defined set Cl(J,R) consists of:
- - The set of base objects J
- - J can be treated like a set of rules that takes no arguments
- - The set of rules for generating inductive objects R
- Closure Cl(J,R) is the smallest set that satisfies all of the following:
- $--J \subseteq Cl(J,R)$
- -- for all $Q \in R$, closed(Cl(J,R),Q)
- Sets built via rules satisfy a smallest qualifier to remove erroneous structures and elements

(Metatheorem) Induction on a rule-defined set 1.8

- TODO: use/meaning/intent - If a property P holds for all in J, and propagates (true for input (Induction Hypothesis) - i. true for output (Inductive Step)) through for all in R, then it holds for the entire closure???? - If $J \subseteq T$ (Basis Step) and for any $Q \in R$, T is closed under Q (Inductive Step), then $Cl(J,R) \subseteq T$

1.9 (Definition) Ambiguous pair

- TODO: use/meaning/intent ???? The pair (J,R) is ambiguous if there exists $d \in Cl(J,R)$ satisfies any of the following: -- There exists $Q \in R$ where $Q([x_i]_{i=1}^{ArityR(Q)})$ and $Q([y_i]_{i=1}^{ArityR(Q)})$ and $Q([y_i]_{i=1}^{ArityR(Q)})! = \langle [y_i]_{i=1}^{ArityR(Q)} \rangle$!
- - There exists $P \in R$ and $Q \in R$ where $P([s_i]_{i=1}^n, d)$ and $Q([s_i]_{i=1}^n, d)$ and P! = Q
- - There exists $Q \in R$ where $Q([s_i]_{i=1}^n, d)$ and $d \in J$

(Metatheorem) Definition by recursion 1.10

TOFIX - TODO: use/meaning/intent - Cl(J, R) from some unambiguous (J, R) has some nice unique mapping =======

1.11 (Remark) The state of the metatheory

- The metatheory houses assumptions or axioms about behavior of theories
- Is it necessary to prove the consistency of the metatheory?
- - No because otherwise, it would require a meta-metatheory which would require a meta-metatheory, and so on which would never end
- - The metatheory should be small and simple and close to intuition such that it would not require formalized verification of its consistency
- Is it okay to use infinite sets and induction in the metatheory?
- This is mostly political, but we should avoid using suspicious inconsistent tools such as full-blown naive set theory
- - There are ways we could simulate infinite sets using safer finite notions like using finite calculations then arbitrarily large finite can be a stand-in for infinite, but it is not worth it

First Order Languages

2.1 (Definition) Formal theory

- TODO: use/meaning/intent notionmaster The formal theory T is defined by T = (V, Wff, Thm)
- An alphabet V is defined by the set of all symbols allowed in the theory
- The set of all strings String from an alphabet V
- The set of all well-formed formulas Wff is defined by $Wff \subseteq String$

- The set of all theorems Thm is defined by $Thm \subseteq Wff$

2.2 (Definition) Formal language

- The formal language encodes the notions of a theory
- The formal language L is defined by L = (V, Term, Wff)
- Term encodes the objects of a theory
- Wff encodes the statements of a theory
- L is a (one-sorted) language with only one type of variable in V, and then predicates are used to simulate typing

2.3 (Definition) Alphabet

- TODO: use/meaning/intent writeables An alphabet V consists of elements from LS and NLS:
- - The set of all logical symbols LS consists of:
- - Elements from the set of all variables Var
- - The boolean connectives \neg , \lor
- - The existential quantifier \exists
- - The equality predicate \equiv
- - The set of all nonlogical symbols NLS consists of:
- - Elements from the set of all constants Const
- - Elements from the set of all predicates *Pred*
- - Elements from the set of all functions Func
- NLS can be extended to contain additional symbols

2.4 (Definition) Set of all terms

- TODO: use/meaning/intent talkables The set of all terms Term is defined by $Term = Cl(J_{Term}, R_{Term})$
- The set of all base terms J_{Term} consists of:
- - Variables from Var
- - Constants from Const
- The set of term generating rules R_{Term} is defined by the rules:
- -- If $f \in Func$ and $\{[t_i]_{i=1}^{Ar(f)}\}\subseteq Term$, then $f[t_i]_{i=1}^{Ar(f)}\in Term$

2.5 (Definition) Set of all wffs

- TODO: use/meaning/intent truthables The set of all wffs Wff is defined by $Wff = Cl(J_{Wff}, R_{Wff})$
- The set of all base (or atomic) wffs J_{Wff} is the set of all predicates that take only terms as arguments and it is defined by the rules:
- -- If $\{t,s\} \subseteq Term$, then $(t \equiv s) \in J_{Wff}$
- - If $p \in Pred$ and $\{[t_i]_{i=1}^{Ar(p)}\} \subseteq Term$, then $p[t_i]_{i=1}^{Ar(f)} \in J_{Wff}$
- The set of wff generating rules R_{Wff} is defined by the rules:
- -- If $A \in Wff$, then $\neg A \in Wff$
- -- If $\{A, B\} \subseteq Wff$, then $\forall AB \in Wff$
- -- If $x \in Var$ and $A \in Wff$, then $\exists_x A \in Wff$
- Allowing only variables to be quantified is what makes the language "first-order"

2.6 (Definition) Set of all thms

- TODO: use/meaning/intent truths The set of all thms Thm is defined by $Thm = Cl(J_{Thm}, R_{Thm})$
- The set of all base (or axiomatic) thms J_{Thm} is defined by $J_{Thm} \subseteq Wff$
- The set of thm generating rules (or rules of inference) R_{Thm} is defined a set of rules where each rule takes in wffs and outputs a wff

3 Constructs for Thm

3.1 (Definition) Wff abbreviations

- $(A \lor B)$ is an abbreviation for $\lor AB$
- $\forall_x A$ is an abbreviation for $\neg \exists_x \neg A$
- $(A \wedge B)$ is an abbreviation for $\neg(\neg A \vee \neg B)$
- $(A \implies B)$ is an abbreviation for $\neg A \lor B$
- $(A \equiv B)$ is an abbreviation for $((A \Longrightarrow B) \land (B \Longrightarrow A))$
- Precedence:
- $--\neg, \land, \lor, \Longrightarrow, \equiv$
- - Equal precedence invokes right associativity

3.2 (Definition) Free and bound variable in a wff

- TODO: use/meaning/intent ???? The variable x is free in a wff Bif it satisfies any of the following:
- - Iff B is an atomic wff and x occurs in B
- - Iff B is $\neg C$ and x is free in C
- - Iff B is $C \vee D$ and (x is free in C or x is free in D)
- -- Iff B is $\exists y C$ and x! = y and x is free in C
- The variable x is bounded in a wff B (bounded(x, B)) iff x occurs in B and x is not free in B

3.3 (Definition) Closed and open wff

- TODO: use/meaning/intent ???? The wff C is closed (closed(C)) iff it contains no free variable
- The wff C is open (open(C)) iff it contains no quantifier
- Open wffs are also closed

3.4 (Definition) Variable occurrence notation

- $A[[v_i]_{i=1}^n]$ iff the variables $[v_i]_{i=1}^n$ occur in the wff A
- $A([v_i]_{i=1}^n)$ iff the variables $[v_i]_{i=1}^n$ occur in the wff A and no other variables occur in A

\(\begin{align*}(\text{t} \text{t} \tex

3.5 (Definition) The set all prime wffs

- TODO: use/meaning/intent atom truth assignable The set of all base terms Prime consists of:
- Atomic wffs from J_{Wff}
- Inductive wffs under from the $\exists_x A$ rule in R_{Wff}

3.6 (Definition) Propositional valuation

- TODO: use/meaning/intent ????? The valuation v is a function defined by $v: Prime \to \{\bot, \top\}$ The propositional valuation p_v from the valuation v is defined by $p_v: Wff \to \{\bot, \top\}$ and p_v is an extension of v from Prime to Wff
- If wff A is a prime wff, then $p_v(A) = v(A)$
- If wff A is not a prime wff, then p_v is defined as follows:
- $p_v(\neg A) = F_{\neg}(A)$
- $---F_{\neg}(\top) = \bot$
- $--F_{\neg}(\bot) = \top$
- $- p_v(A \vee B) = F_{\vee}(A, B)$
- $---F_{\vee}(\perp,\perp)=\perp$
- $---F_{\vee}(\bot,\top)=\top$
- $---F_{\vee}(\top,\bot)=\top$
- $- F_{\vee}(\top, \top) = \top$

3.7 (Definition) Tautolog	$\mathbf{g}\mathbf{y}$
---------------------------	------------------------

- TODO: use/meaning/intent - ????? - The wff T is a tautology $(\models_{Taut} T)$ iff for any valuation v, the propositional valuation $p_v(T) = \top$

3.8 (Definition) Satisfiable wff

- TODO: use/meaning/intent ???? The wff U is wffsatisfiable iff there exists a valuation v where, $p_v(U) = \top$
- v wffsatisfies U

3.9 (Definition) Satisfiable set

- TODO: use/meaning/intent - ?????? - The set of wffs Γ is set satisfiable iff there exists a valuation v where, for any $A \in \Gamma$, $p_v(A) = \top$

- v setsatisfies Γ

3.10 (Definition) Unsatisfiable wff

- Inverted version of wffsatisfiable

3.11 (Definition) Unsatisfiable set

- Inverted version of setsatisfiable
- An set of wffs Γ is setupsatisfiable iff for any valuation v, there exists $A \in \Gamma$ where, $p_v(A) = \bot$

3.12 (Definition) Tautological implication

- TODO: use/meaning/intent ??????? The set of wffs Γ tautologically implies a wff A ($\Gamma \vDash_{Taut} A$) iff for any valuation v, if v setsatisfies Γ , then v wffsatisfies A

3.13 (Remark) Satisfiable and unsatisfiable

- """"Satisfiable" and "unsatisfiable" are terms introduced here in the propositional or Boolean sense. These terms have a more complicated meaning when we decide to "see" the object variables and quantifiers that occur in formulas.""

TODO

3.14 (Definition) Substitution of a term for a variable in term

- TODO: use/meaning/intent nifty rule dependency The substitution $(s[x \leftarrow t])$ of the variable x by the term t in the term s is defined as following rule:
- - If s is x, then the substitution outputs t
- - If s is a constant or a variable that is not x, then the substitution outpust s
- -- If s is a function f applied to the terms $[t_i]_{i=1}^n$, then the substitution outputs $f[t_i[x \leftarrow t]]_{i=1}^{Arity(f)}$

3.15 (Metatheorem) Substituted terms are terms

- By induction, this is true for B.S. terms and joining terms I.H. implies joined is also a term I.S.

3.16 (Definition) Substitution of a term for a variable in wff

- TODO: use/meaning/intent nifty rule The substitution $(A[x \leftarrow t])$ of the variable x by the term t in the wff A is defined as following rule:
- - If A is $s \equiv r$ on the terms s and r, then the substitution outputs $s[x \leftarrow t] \equiv r[x \leftarrow t]$
- - If A is a predicate p applied to the terms $[t_i]_{i=1}^{Arity(p)}$, then the substitution outputs $p[t_i[x \leftarrow t]]_{i=1}^{Arity(p)}$
- - If A is $\neg B$ on the wff B, then the substitution outputs $\neg B[x \leftarrow t]$
- - If A is $(B \vee C)$ on the wffs B and C, then the substitution outputs $(B[x \leftarrow t] \vee C[x \leftarrow t])$
- -- If A is $\exists xB$ on the wff B, then the substitution outputs A
- - If A is $\exists yB$ on the variable y and the wff B and y is not x and y does not occur in t, then the substitution outputs $\exists yB[x \leftarrow t]$
- If x is not quantified over, then all variables in the term t must not be quantified over to allow the wff to preserve its intended meaning
- The substitution is defined iff it satisfies a defined condition in the rule
- - Using the substitution notation immediately implies that the substitution output is defined
- The symbols [,], \leftarrow are symbols in the metatheory and they have the higher precedence compared to formal symbols

3.17 (Metatheorem) Substituted wffs are wffs

- By induction, this true for B.S (terms) and joining wffs I.H. implies joined is also a wff I.S.

3.18 (Definition) Simultaneous substitution

- The simultaneous substitution $A[[y_i]_{i=1}^n \leftarrow [t_i]_{i=1}^n]$ of the variables $[y_i]_{i=1}^n$ by the terms $[t_i]_{i=1}^n$ in the wff A is an abbreviation for $A[[y_i \leftarrow t_i]]_{i=1}^n$

3.19 (Definition) Schemata

- The schemata is a rule written down as a metaformula that consists of metasymbols
- These metasymbols can be replaced by formal symbols to output a wff called an instance of the schema
- It is a rule that takes in formal symbols, and substitutes them in place of metavariables, then outputs the instance wff

3.20 (Definition) The set of all axioms

- TODO: use/meaning/intent assumptions The set of all axioms J_{Thm} consists of:
- - Elements from the set of logical axioms Λ
- - Elements from the set of nonlogical axioms Γ

3.21 (Definition) The set of all logical axioms

- TODO: use/meaning/intent assumed logic behavior The set of all logical axioms Λ is defined by $\Lambda = Cl(J_{\Lambda}, R_{\Lambda})$
- The set of all base logical axioms J_{Λ} is the set of all tautological wffs
- The set of logical axiom generating rules R_{Λ} is defined by the rules:
- - Substitution Axiom: If $A \in \Lambda$, then for any term t and variable x substitutable for t, $(A[x \leftarrow t] \implies \exists_x (A)) \in \Lambda$
- - Self-equivalence Axiom: For any variable x, $(x \equiv x) \in \Lambda$
- - Leibniz Axiom: For any (countable) wff A, variable x, terms t and s, $(t \equiv s \implies (A[x \leftarrow t] \equiv A[x \leftarrow s])) \in \Lambda$
- The rules / axioms are what endow the symbols with the intended behavior

3.22 (Definition) The set of all nonlogical axioms

3.23 (Definition) Rules of inference

- TODO: use/meaning/intent truth preserving The rules of inference R_{Thm} is defined by thes rules:
- - Primary rules of inference:
- - Modus Ponens Rule: Given $A, A \implies B$, the output is B
- - E-Introduction Rule: Given $A \Longrightarrow B$ and x is not free in B, the output is $\exists_x (A) \Longrightarrow B$
- - Derived rules of inference:
- - Rules of inference derived from the proofs made by other rules of inference
- - The validity of these rules are only provable within the metatheory

3.24 (Definition) The set of all Gamma-Theorems

- TODO: use/meaning/intent Provable wffs The set of all Gamma-Theorems Thm_{Γ} is defined by $Thm_{\Gamma} = Cl(J_{Thm}, R_{Thm})$
- The wff A is a Gamma-theorem or $\Gamma \vdash A$ is an abbreviation for $A \in Thm_{\Gamma}$
- $\Gamma \vdash \Lambda$ is an abbreviation for for all $L \in \Lambda$, $L \in Thm_{\Gamma}$

3.25 (Definition) Abstract formal theory

- The formal theory T is the set of wffs that are considered to be correct within a theory
- The formal theory T is defined by $T = Cl(J_{Thm}, R_{Thm})$
- The formal theory T is inconsistent if T = Wff
- We often like to find the smallest set of set of axioms Γ for axiomatizing T such that $T = Thm_{\Gamma}$
- The set of axioms Γ is recognizable if there exists an algorithmic process to decide if $A \in \Gamma$
- The theory T is recursively axiomatized if Γ is recognizable

4 Constructs and Metatheorems for Provability

4.1 (Definition) Derivation and stage

- The (J, R)-derivation is the finite sequence of wffs from the construction of Cl(J, R)
- The stage X_i is some collection of all wffs from the (J, R)-derivation until step i

4.2 (Metatheorem) Equivalent ways of generating closures

- $Cl(J,R) = x : xoccursina(J,R) derivation = \bigcup X_i$

4.3 (Definition) Gamma-proof

4.4 (Metatheorem) Transitivity of vdash

- If $\Gamma \vdash \Delta$ and $\Delta \vdash B$, then $\Gamma \vdash B$
- The existing Gamma-proofs can be concatinated to form the Gamma-proof for B

4.5 (Metatheorem) Hypothesis strengthening

- If $\Gamma \subseteq \Delta$ and $\Gamma \vdash A$, then $\Delta \vdash A$
- The Gamma-proof for A is also a valid Delta-proof for A since it contains all the required wffs

4.6 (Metatheorem) Post's Tautology Theorem

- If $\{[A_i]_{i=1}^n\} \vDash_{Taut} B$, then $\{[A_i]_{i=1}^n\} \vdash B$
- $\models_{Taut} [A_i \Longrightarrow]_{i=1}^n B_i(1)$ from Hypothesis 1 and truth table);
- ⊢ $[A_i \Longrightarrow]_{i=1}^n B_i(2)$ from tautology 1 in J_{Thm} ;
- $\{[A_i]_{i=1}^n\} \vdash [A_i \implies]_{i=1}^n B_i(3)$ from Hypothesis strengthening on (2);

4.7 (Definition) Provably equivalent wffs in a theory

4.8 (Metatheorem) Theorems are provably equivalent

- If $\Gamma \vdash \{A, B\}$, then $\Gamma \vdash (A \equiv B)$
- -- $\Gamma \vdash A$ (1) from Hypothesis 1;
- $--A \vDash_{Taut} B \implies A$ j(2) from tautological implication;
- $--A \vdash B \implies A$;(3) from Post's Tautology Theorem on (2);
- $--\Gamma \vdash B \implies A_{i}(4)$ from Transitivity of vdash on $(1, 3)_{i}$.
- -- $\Gamma \vdash A \implies B$ j(5) Ditto of (1-4) but utilizing Hypothesis 2;
- $--\Gamma \vdash \{B \implies A, A \implies B\}$ i(6) Collection of established theorems on (4, 5);
- -- $\{A \implies B, B \implies A\} \vDash_{Taut} A \equiv B$ j(7) from tautological implication;
- $--\{A \implies B, B \implies A\} \vdash A \equiv B$ j(8) from Post's Tautology Theorem on (7);
- -- $\Gamma \vdash A \equiv B$ (9) Transitivity of vdash on (6, 8);

4.9 (Metatheorem) A-Introduction

- If the variable x is not free in the wff $\neg A$, then $A \implies B \vdash A \implies \forall_x(B)$
- $--A \implies B \vDash_{Taut} \neg B \implies \neg A$ j(1) from tautological implication;
- $--A \implies B \vdash \neg B \implies \neg A$ i(2) from Post's Tautology Theorem on (1);
- $--\neg B \implies \neg A \vdash \exists_x(\neg B) \implies \neg A$; (3) from E-Introduction WITH Hypothesis 1;
- $-\exists_x(\neg B) \implies \neg A \vDash_{Taut} A \implies \neg(\exists_x(\neg B))$ $\exists_x(\neg B)$ $\exists_x(\neg B) \implies \neg A \vdash A \implies \neg(\exists_x(\neg B))$ $\exists_x(\neg B)$ $\exists_x(\neg B)$
- $--A \implies \neg(\exists_x(\neg B)) \vdash A \implies \forall_x(B)$ j(6) from abbreviation of forall on (5)j.
- $--A \implies B \vdash A \implies \forall_x(B)$ i(8) from Transitivity of vdash on (2, 3, 5, 6);

4.10 (Metatheorem) Specialization

- The succeeding proofs will be less based less on metatheory and based more on derivation
- For any wff A and term $t, \vdash \forall_x(A) \implies A[x \leftarrow t]$
- $--(\neg A)[x \leftarrow t] \implies \exists_x(\neg A)$ i(1) from Substitution Axiom;
- $- \neg \exists_x (\neg A) \implies A[x \leftarrow t]$; (2) from tautological implication and Post's Tautology Theorem on (1);
- $--\forall_x(A) \implies A[x \leftarrow t]$ i(3) from abbreviation of forall on (2);

4.11 (Metatheorem) Specialization corollary

- For any wff $A, \vdash \forall_x(A) \implies A$
- - $\forall_x(A)$ \implies $A[x \leftarrow x]$ $\mathfrak{z}(1)$ from Specialization; - $\forall_x(A)$ \implies A $\mathfrak{z}(2)$ from definition of substitution on (1);

4.12 (Metatheorem) Generalization

- For any wff $A, \vdash A \implies \forall_x(A)$ - $A \implies A$ i(1) from tautological implication and Post's Tautology Theorem;
- $--A \implies \forall_x(A)$ i(2) A-Introduction on (1) WITH x is not free in A;

4.13 (Metatheorem) Generalization corollary

- For any wff $A, \vdash A \equiv \forall_x(A)$
- $--\vdash A \implies \forall_x(A)$ i(1) from Generalization.
- $--\vdash \forall_x(A) \Longrightarrow \vdash A$ j(2) from Specialization corollary.
- $--\vdash A \equiv \forall_x(A)$ i(3) from tautological implication on (1, 2) and Post's Tautology Theorem;

4.14 (Metatheorem) CorollaryMaster

- For any wff $A, A \vdash \forall_x(A)$ and $\forall_x(A) \vdash A$
- -- $A \vdash \forall_x(A)$; (1) from Modus Ponens Rule on $(A \vdash A, \text{Generalization corollary})$;
- - $\forall_x(A) \vdash A$ (2) from Modus Ponens Rule on $(\forall_x(A) \vdash \forall_x(A), \text{ Generalization corollary})_{i,j}$
- - $\vdash A \equiv \forall_x(A)$ i(3) from tautological implication on (1, 2) and Post's Tautology Theorem;

4.15 (Definition) Universal Closure

- The universal closure of a wff A with free variables $[y_i]_{i=1}^n$ is defined to be $[\forall_{y_i}]_{i=1}^n(A)$
- Any formula deduces and is deduced by its universal closure ifrom Corollary Master;

4.16 (Metatheorem) Substitution of Terms

4.17 (Metatheorem) Renaming

- For any wff A and variable z, if z does not occur in A, then $\vdash (\exists_x(A)) \equiv (\exists_z(A[x \leftarrow z])) - - \vdash A[x \leftarrow z] \implies \exists_x(A)$ i(1) from Substitution Axiom WITH Hypothesis 1; $- - \vdash \exists_z(A[x \leftarrow z]) \implies \exists_x(A)$ i(2) from E-Introduction WITH Hypothesis 1; $- - \vdash \exists_z(A[x \leftarrow z]) \implies \exists_x(A)$ i(2) from E-Introduction WITH Hypothesis 1; $- - \vdash \exists_z(A[x \leftarrow z]) \implies \exists_x(A)$ i(2) from E-Introduction WITH Hypothesis 1; $- - \vdash \exists_z(A[x \leftarrow z]) \implies \exists_x(A[x \leftarrow z]) \implies \exists_x(A[x$