LECTURE 1

Author

Tom Jeong

January 8, 2025

Contents

1	D-integral domains	2
2	Characteristic of a Ring	2
3	vector Space	3
4	Euclidian Domain	5

1 D-integral domains

Q(D)-fields of faction, smalliest field containing Define

universa, property theta: D -; Q theta injective, k- field (draw down i: D to Q(D)) sending a to (a,1)

and draw phi D(D) to K and say theta = phi composite i

- $i: D \to Q(D)$ sends $a \mapsto (a,1)$
- θ is injective
- K is a field
- $\theta = \phi \circ i$

2 Characteristic of a Ring

Let R be a unital commutative ring. The characteristic of R, denoted char(R), is defined as follows:

Definition 2.1. The characteristic of a ring R is the smallest positive integer n such that

$$n \cdot 1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{n \text{ times}} = 0_R$$

If no such positive integer exists, we say char(R) = 0.

Proposition 2.1. For a unital commutative ring R, exactly one of the following holds:

- 1. char(R) = 0: In this case, the additive subgroup generated by 1_R is infinite.
- 2. $\operatorname{char}(R) = n > 0$: In this case, n is the smallest positive integer such that $n \cdot 1_R = 0_R$.

If $k \cdot 1_R = m \cdot 1_R$ for some integers k, m, then:

$$(k-m)\cdot 1_R = 0_R$$

This means that if char(R) = n > 0, then n divides k - m. example:

- 1. $\operatorname{char}(\mathbb{Z}) = 0$
- 2. $\operatorname{char}(\mathbb{Q}) = 0$

- 3. $\operatorname{char}(\mathbb{F}_p) = p$ for any prime field
- 4. For any field K, char(K) is either 0 or a prime number

Proposition 2.2. If R is a domain (i.e., has no zero divisors), then char(R) is either 0 or prime.

Proof.

$$\begin{aligned} \mathbf{s} &= \mathrm{char}(\mathbf{k}) \text{ and } s = ab \text{ where } a, b < s \\ (a \cdot 1)(b \cdot 1) &= (a \cdot b) \cdot 1 = 0 \to a \cdot 1 = 0 \text{ or } b \cdot 1 = 0 \text{ but } a, b < s \end{aligned} \qquad \Box$$
 k-field:: $char(K) = 0 \to \mathbb{Q} \subseteq K$ $char(K) = p \to \mathbb{Z}_p \text{ or } \mathbb{F}_{\scriptscriptstyle \perp} \subseteq K$ $\mathbb{Q} \text{ or } \mathbb{Z}_p \text{ are called prime subfields of K.}$

3 vector Space

Proposition 3.1. Lets say a field is inside another field, $F \subseteq K$ then K is an F-vector space

So vector space over F (F field) if

1.
$$s_1 s_2 \in S \to s_1 + s_2 \in S$$

$$2. \ c \cdot s_1 \in S, c \in F$$

3.
$$c(s_1 + s_2) = cs_1 + cs_2$$

 $\mathbb{R}\subseteq\mathbb{C}$

a + bi

1, i is a basis of \mathbb{C} over \mathbb{R}

 $\mathbb{C} \cong \mathbb{R}^2$ but then

 $\mathbb{Q}\subseteq\mathbb{R}$.. \mathbb{R} is an infinite-dimensional vector space over \mathbb{Q}

K is a field extension of F

Proposition 3.2 (freshmans dream). if
$$char(K) = p, K$$
 field then, $(x+y)^p = x^p + y^p$

Proof. binomial expansion of

$$(x+y)^{p} = x^{p} + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y^{2} + \dots + \binom{p}{p-1}xy^{p-1} + y^{p}$$

$$= x^{p} + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y^{2} + \dots + \binom{p}{p-1}xy^{p-1} + y^{p}$$

$$= x^{p} + y^{p}$$

In characteristic p, all binomial coefficients $\binom{p}{k}$ for $1 \le k \le p-1$ are divisible by p, hence equal to zero in the field.

Let K be a field of characteristic p>0. The Frobenius homomorphism $\phi:K\to K$ is defined as:

$$\phi: K \to K$$
$$x \mapsto x^p$$

Proposition 3.3 (Properties of Frobenius). The map ϕ is a ring homomorphism:

- 1. $\phi(x+y) = (x+y)^p = x^p + y^p = \phi(x) + \phi(y)$ (using the binomial expansion in char p)
- 2. $\phi(xy) = (xy)^p = x^p y^p = \phi(x)\phi(y)$
- 3. $\phi(1) = 1^p = 1$

Example 3.4. In \mathbb{F}_p , the Frobenius map is the identity map since:

$$a^p = a$$
 for all $a \in \mathbb{F}_p$

This is known as Fermat's Little Theorem.

Goal Theorem:

Theorem 3.5.

K-field, K(x) - polynomial rings.

1. For any polynomials $f,g\in K[x]$, there exists a greatest common divisor $d\in K[x]$ such that:

$$d = af + bg$$
 for some $a, b \in K[x]$

This is known as Bézout's identity in K[x].

- 2. K[x] is a Principal Ideal Domain (PID).
- 3. K[x] is a Unique Factorization Domain (UFD).
- 4. For any polynomial $f(x) \in K[x]$, the following are equivalent:
 - (a) f(x) is irreducible in K[x]
 - (b) The quotient ring $K[x]/\langle f(x)\rangle$ is a field

Proof. $K \subseteq K[x]/\langle f(x) \rangle$

4 Euclidian Domain

A integral domain D is a Euclidian Domain (ED) if there exists a function

$$\delta:R\to\mathbb{Z}_{\geq 0}$$
st

$$\delta(0) = 0$$

and for all $a \in D, b \in D^* = D \setminus \{0\}$, there exists $g, r \in D$ such that a = qb = rAND $\delta(r) \leq \delta(b)$

This allows us t define division with remainder.

$$\delta^{-1}(0) = 0$$

$$\delta(b) = 0, b \neq 0$$

$$a = qb + r \rightarrow \delta(r) < \delta(b) \rightarrow \leftarrow$$

example: $\mathbb{Z}, \delta(r) = |r|$

Definition 4.1 (PID). D-integral domain is a PID, if all ideals in D are principal, generated by one element

Proposition 4.1. every euclidian domain is a PID

Proof.

 $\{0\}$ principal $\langle 0 \rangle$

$$D = \langle 1 \rangle$$

I - proper ideal of D: wts a single element that generates all of I. let $b \in I$ be the element with the smallest positive δ

then we would like to claim that $I = \langle b \rangle$

suppose that $a \in I$. Then a = qb + r wgere $\delta(r) < \delta(b)$ r = a - qb a, qb in Ideal, thus r is in ideal. $\delta(r)$ must be 0 (r = 0) since b is the smallest element. $\therefore a \in \langle b \rangle$

In PID there is a well-defined gcd(a,b) where $a,b \in D$. And: $d = gcd(a,b) \rightarrow d = af + bg$ where $f,g \in D$

Proof.

$$a,b\in D$$

$$\langle a,b\rangle=\langle d\rangle$$

$$d=\gcd(a,b)$$

$$\gcd(a,b) \text{ is only depende oup to units. since d in ideal of a b}$$

example: $\mathbb Z$ and 8, 12