Formal Language and Automata

行政楼电梯 DFA 模型

0000000000一某学长 0000000000一某学长

2012年11月12日

一、用自然语言描述行政楼电梯的工作方式

经过小组成员对行政楼电梯的实地考察,我们把其工作方式用自然语言描述如下:

(1) 电梯的基本硬件情况:

- 1) 行政楼一共有6层;
- 2) 为了保证运行效率,在电梯轿厢内贴有"2层停运"的标志,表示该电梯不会停在2楼;
 - 3) 电梯内部设有开门、关门和 1~6 数字键, 共 8 个按键;
- 4) 行政楼一楼只有"↑"键,六楼只有"↓"键,其余各层均设有"↑"和"↓"两个按键。

(2) 电梯的运行方式:

对于任意的 i, i, k ($1 \le i < j < k \le 6$, i, i, $k \ne 2$)

- 1)当电梯停止在第 i 层时,用户按下 j 层键和 k 层键,电梯会先停在第 j 层, 再停在第 k 层;
- 2)当电梯经过第 i 层向上运动时,用户之前已按下 k 键,此时再按下 j 键,电梯会先停在第 i 层,再停在第 k 层;
- 3)当电梯经过第 j 层向上运动时,用户之前已按下 k 键,此时再按下 i 键,电梯会停止在第 k 层,且不会再返回到第 i 层。即到达第 k 层后,在电梯的内部输入的停止在第 i 层的请求将被取消:
- 4) 电梯内部的数字键和每一层楼电梯门外部的上下键一旦被按下就不 能再由用户通过按键操作取消;
- 5) 当电梯的乘客超员时,会提示超载并停止运行,直到轿厢内重量小于额定载重为止,电梯方可继续运行。

电梯在向下运行时的方式与此方向相反,道理相同,不再赘述。

二、行政楼电梯 DFA 的模型假设

- 1、 因为行政楼的电梯在二层停运,故将行政楼简化为五层,即不考虑 2 层对电梯运行带来的影响。
- 2、 电梯在运行过程中不会突然发生意外事故影响电梯的正常运行。
- 3、 因为电梯内的开门和关门键不对电梯的上下运行造成影响,故忽略这两个按键。

三、行政楼电梯 DFA 的建模

1、 建模前提和模型概要

由于电梯的运行状态十分复杂,且输入按键共有 $13 \land (" \land "、" \lor "$ 键 $8 \land$,数字键 $5 \land$),每个时刻可能的按键输入状态就有 2^{13} 种可能,直接建模明显过于复杂。

为了达到简化电梯模型的目的,我们将电梯系统分为调度模块和运行模块。 其中调度模块的作用是读取用户输入和电梯运行状态,维护一个请求队列,同 时给出一个指令用以控制电梯的运行。运行模块的作用是读取调度模块的输出 指令,控制电梯轿厢运行到下一个位置,同时将自身的状态报告给调度模块。系统采用两个模块之间的反馈作用达到对电梯运行的正确控制,系统组成如下图所示。

图 1 电梯控制系统组成示意图

2、 调度模块

为了达到对用户请求的精确处理和响应,调度模块共分为两个子模块,分别 为用户请求队列处理子模块和控制指令生成子模块。

2.1 用户请求队列处理子模块

2.1.1 用户按键输入的处理

首先,构造一个映射表,表示本模块在读取到电梯状态和用户按键之后生成用户请求符号,作为下一步的输入。即构造如下形式的函数f(S,K) = Q,其中 S为电梯当前的状态,K为用户的按键,Q为用户请求符号。见下表。

	$\mathbf{F_1}$	\mathbf{F}_3	$\mathbf{F_4}$	\mathbf{F}_5	F ₆	U_1	U_3	U_4	U_5	\mathbf{D}_1	\mathbf{D}_3	D_4	D_5
1	1	1	1	1	1	N	N	N	N	1	1	1	1
3	3	3	3	3	3	3	N	N	N	N	3	3	3
4	4	4	4	4	4	4	4	N	N	N	N	4	4
5	5	5	5	5	5	5	5	5	N	N	N	N	5
6	6	6	6	6	6	6	6	6	6	N	N	N	N
1 †	1	1	1	1	1	N	N	N	N	1	1	1	1
3 🕇	3	3	3	3	3	3	N	N	N	N	N	N	N
3 ↓	3	3	3	3	3	N	N	N	N	N	3	3	3
4 †	4	4	4	4	4	4	4	N	N	N	N	N	N
4 ↓	4	4	4	4	4	N	N	N	N	N	N	4	4
5 🕇	5	5	5	5	5	5	5	5	N	N	N	N	N
5 ↓	5	5	5	5	5	N	N	N	N	N	N	N	5
6 ↓	6	6	6	6	6	6	6	6	6	N	N	N	N

表 1 用户请求生成表

*行表示用户按键,"3↑"表示三楼电梯外的向上的按键,"3"表示电梯内的数字键3。列表示电梯状态。生成结果为用户请求,N表示不会加入等待队列。

2.1.2 用户请求队列的处理

根据对电梯的实地考察,我们将用户的请求和电梯的响应对请求队列的影响描述如下:

- 1) S 为长度为 5 的二进制字串(由于二楼不响应故只算 5 个)(1 \leq i \leq 6,i \neq 2)用来表示待响应队列。 $S_i=1$ 表示第 i 层请求未被响应; $S_i=0$ 表示第 i 层无请求或请求已被响应;
- 2) 输入信号中 1,3,4,5,6 表示第 i 层有请求,其取值来自上一步的处理函数 f(S,K) = Q (若 Q 的值为 N 表示无请求); 而罗马数字 I,III,IV,V,VI 表示第 i 层的请求已被响应,有电梯反馈;

故构造一个 DFA R = $(Q, \Sigma, \delta, q_0, F)$ 用以刻画上面的请求队列状态的转换。 其中:

有限状态集: Q 为待响应队列 S 的状态的集合{q0,q1,…,q31}, 其中 q0 代表 "00000", q1 代表 "00001", ..., q31 代表 "11111";

输入符号集: $\Sigma = \{1, 3, 4, 5, 6, I, III, IV, V, VI\}$;

起始状态: q_0 为 00000,表示行政楼任意楼层都无请求需响应; 终结状态: F 为 00000,表示行政楼已经没有楼层需要响应;

状态转移函数: δ如下

$$\delta(q_0, 1) = 00001$$

$$\delta(00001, I) = 00000$$

即当接到某楼层的请求信号时,将 S 字串对应位置置 1; 而接到请求已响应信号时则将 S 字串中的对应位置置 0; 由于此 DFA 的状态转移图较为复杂 ($|O| = 2^5$),所以下面用表的形式给出 DFA 的状态转移函数:

	1	3	4	5	6	I	Ш	IV	V	VI
q0	q1	q2	q4	q8	q16	q0	q0	q0	q0	q0
q1	q1	q3	q5	q9	q17	q0	q1	q1	q1	q1
q2	q3	q2	q6	q10	q18	q2	q0	q2	q2	q2
q3	q3	q3	q7	q11	q19	q2	q1	q3	q3	q3
q4	q5	q6	q4	q12	q20	q4	q4	q0	q4	q4
q5	q5	q7	q5	q13	q21	q4	q5	q1	q5	q5
q6	q7	q6	q6	q14	q22	q6	q4	q2	q6	q6
q7	q7	q7	q7	q15	q23	q6	q5	q3	q7	q7
q8	q9	q10	q12	q8	q24	q8	q8	q8	q0	q8
q9	q9	q11	q13	q9	q25	q8	q9	q9	q1	q9
q10	q11	q10	q14	q10	q26	q10	q8	q10	q2	q10
q11	q11	q11	q15	q11	q27	q10	q9	q11	q3	q10
q12	q13	q14	q12	q12	q28	q12	q12	q8	q4	q12
q13	q13	q15	q13	q13	q29	q12	q13	q9	q5	q13
q14	q15	q14	q14	q14	q30	q14	q12	q10	q6	q14
q15	q15	q15	q15	q15	q31	q14	q13	q11	q7	q15
q16	q17	q18	q20	q24	q16	q16	q16	q16	q16	q0
q17	q17	q19	q21	q25	q17	q16	q17	q17	q17	q1
q18	q19	q18	q22	q26	q18	q18	q16	q18	q18	q2

q19	q19	q19	q23	q27	q19	q18	q17	q19	q19	q3
q20	q21	q22	q20	q28	q20	q20	q20	q16	q20	q4
q21	q21	q23	q21	q29	q21	q20	q21	q17	q21	q5
q22	q23	q22	q22	q30	q22	q22	q20	q18	q22	q6
q23	q23	q23	q23	q31	q23	q22	q21	q19	q23	q7
q24	q25	q26	q28	q24	q24	q24	q24	q24	q16	q8
q25	q25	q27	q29	q25	q25	q24	q25	q25	q17	q9
q26	q27	q26	q20	q26	q26	q26	q24	q26	q18	q10
q27	q27	q27	q31	q27	q27	q26	q25	q27	q19	q10
q28	q29	q30	q28	q28	q28	q28	q28	q24	q20	q12
q29	q29	q31	q29	q29	q29	q28	q29	q25	q21	q13
q30	q31	q30	q30	q30	q30	q30	q28	q26	q22	q14
q31	q31	q31	q31	q31	q31	q30	q29	q27	q23	q15

表 2 用户请求状态队列 DFA

2.2 控制指令生成子模块

本模块的输入为待响应队列和电梯状态,输出为要响应的请求;每次待响应 队列改变就要获取电梯状态来决定下一时刻电梯应该响应的请求。

本模块的输出即作为调度模块的输出传递给运行模块,用以控制电梯的实际运行。

	$\mathbf{F_1}$	\mathbf{F}_3	$\mathbf{F_4}$	\mathbf{F}_5	$\mathbf{F_6}$	U_1	U_3	U_4	U_5	$\mathbf{D_1}$	\mathbf{D}_3	$\mathbf{D_4}$	D_5
00000	N	N	N	N	N	N	N	N	N	N	N	N	N
00001	1	1	1	1	1	N	N	N	N	1	1	1	1
00010	3	3	3	3	3	3	N	N	N	N	3	3	3
00011	1	3	3	3	3	3	N	N	N	1	3	3	3
00100	4	4	4	4	4	4	4	N	N	N	4	4	4
00101	1	4	4	4	4	4	4	N	N	1	1	4	4
00110	3	3	4	4	4	3	4	N	N	N	3	4	4
00111	1	3	4	4	4	3	4	N	N	1	3	4	4
01000	5	5	5	5	5	5	5	5	N	N	N	N	5
01001	1	1	5	5	5	5	5	5	N	1	1	1	5
01010	3	3	3	5	5	3	5	5	N	N	3	3	5
01011	1	3	3	5	5	3	5	5	N	1	3	3	5
01100	4	4	5	5	5	4	4	5	N	N	N	4	5
01101	1	4	4	5	5	4	4	5	N	1	1	4	5
01110	3	3	4	5	5	3	4	5	N	N	3	4	5
01111	1	3	4	5	5	3	4	5	N	1	3	4	5
10000	6	6	6	6	6	6	6	6	6	N	N	N	N
10001	1	1	6	6	6	6	6	6	6	1	1	1	1
10010	3	3	3	6	6	3	6	6	6	N	3	3	3
10011	1	3	3	6	6	3	6	6	6	1	3	3	3
10100	4	4	4	4	6	4	4	6	6	N	N	4	4

10101	1	4	4	4	6	4	4	6	6	1	N	4	4
10110	3	3	4	4	6	3	4	6	6	N	3	4	4
10111	1	3	4	4	6	3	4	6	6	1	3	4	4
11000	5	5	5	5	6	5	5	5	6	N	N	N	5
11001	1	1	5	5	6	5	5	5	6	1	1	1	5
11010	3	3	3	5	6	3	5	6	6	N	3	3	5
11011	1	3	3	5	6	3	5	6	6	1	3	3	5
11100	4	4	4	5	6	4	4	5	6	N	N	4	5
11101	1	4	4	5	6	4	4	5	6	1	1	4	5
11110	3	3	4	5	6	3	4	5	6	N	3	4	5
11111	1	3	4	5	6	3	4	5	6	1	3	4	5

表 3 控制指令生成表

*行表示待响应队列,列表示电梯状态,生成结果为控制指令。N表示无需响应,即无输出。

3、 运行模块

本模块为整个电梯运行的实际模块,构建 DFA A = $(Q, \Sigma, \delta, q_0, F)$

3.1 状态集 O

从电梯实际的运行情况不难归纳出电梯的状态共分以下三类:①静止在第 i 层,表示为 S_{i} ;②在第 i 层与第 i+1 层之间运行,方向向上,表示为 U_{i} ;③在第 i 层与第 i+1 层之间运行,方向向下,表示为 D_{i} 。列表表示如下:

_	川地	A 17,刀凹凹下,农小为 $D_{ m i}$ 。列农农小知下
		状态集 Q
	S1	静止在第1层
	S3	静止在第3层
	S4	静止在第4层
	S5	静止在第5层
	S6	静止在第6层
	U1	在第1层与第3层之间运行,方向向上
	U3	在第3层与第4层之间运行,方向向上
	U4	在第4层与第5层之间运行,方向向上
	U5	在第5层与第6层之间运行,方向向上
	D1	在第1层与第3层之间运行,方向向下
	D3	在第3层与第4层之间运行,方向向下
	D4	在第4层与第5层之间运行,方向向下
	D 5	在第5层与第6层之间运行,方向向下
		丰 4 二二世县 PEA 比大佬

表 4 运行模块 DFA 状态集

3.2 输入字符集Σ

电梯运行模块的输入来自调度模块的输出, 故

 $\Sigma = \{1, 3, 4, 5, 6, w\}$

其中1,3,4.5.6 均来自调度模块输出的控制指令,w为超重信号输入。

3.3 转移函数δ

见后图。

3.4 开始状态 q_0

本模型假定电梯停在 1 层为开始状态,故 $q_0 = S_1$

3.5 接受状态集 F

电梯在某楼层静止即为接受状态,故 $F = \{S_1, S_3, S_4, S_5, S_6\}$ 。

图 2 行政楼电梯运行模块 DFA 状态转移图

四、小组成员分工情况

某人: 电梯的实地考察, DFA 的设计, DFA 的图形绘制, 课程报告的撰写。某人: 电梯的实地考察, DFA 的设计, DFA 的图形审查, 课程报告的撰写。