Лабораторная работа 5

Модель ЭПИДЕМИИ SIR

Извекова Мария Петровна

11 апрель 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Извекова Мария Петровна
- студентка 3-го курса
- Российский университет дружбы народов
- · 1132226460@pfur.ru

Цели и задачи

Построить модель SIR в xcos и OpenModelica.

- 1. Реализовать модель SIR в в хсоз;
- 2. Реализовать модель SIR с помощью блока Modelica в в хсоs;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

$$\begin{cases} \dot{s}(t) = -\beta s(t)i(t), \\ \dot{i}(t) = \beta s(t)i(t) - \nu i(t), \\ \dot{r}(t) = \nu i(t) \end{cases}$$

где β - скорость распространения, ν - скорость выздоравления

Зафиксируем начальные данные: β = 1 v = .3 s(0)=0.999, r(0)=0, i(0)=0.001 В меню Моделирование, Установить контекст зададим значения переменных β и v(рис. [-@fig:001]).

You may enter here scilab instructions to definitions using Scilab instructions.

These instructions are evaluated once confiding diagram is run.

Рис. 2: Готовая модель

араметры моделирования	
Конечное время интегрирования	3.0E01
Количество секунд в единице времени	0.0E00
Абсолютная погрешность интегрирования	1.0E-06
Относительная погрешность интегрирования	1.0E-06
Погрешность по времени	1.0E-10
жсимальный временной интервал интегрирования	1.00001E05
Вид программы решения	Sundials/CVODE - BDF - NEWTON
мальный размер шага (0 означает "без ограничения")	0.0E00

Рис. 3: Конечное время интегрирования

Рис. 4: Результат моделирования

Реализация модели с помощью блока Modelica в xcos

Рис. 5: Фиксированные переменные

Рис. 6: Функция generic

Рис. 7: Результат моделирования

Упражнение

modelica parameter Real $I_0 = 0.001$; parameter Real $R_0 = 0$; parameter Real $S_0 = 0.999$; parameter Real beta = 1; parameter Real nu = 0.3; Real s(start= S_0); Real i(start= S_0); Real r(start= S_0); equation der(s) = -beta * s * i; der(i) = beta * s * i - nu * i; der(r) = nu * i;

Общее	Интерактивное моделирование		Флаги трансляции	Флаги моде	
Интервал моделирования					
Время начала:		0			
Время завершения:		30			
• Число интервалов: 500		500			
○ Интервал:		0.002			
Интегрирование					
Метол:	dacel				

Рис. 8: Время симмуляции

Рис. 9: Результат моделирования

Задание для самостоятельного выполнения

$$\begin{cases} \dot{s}(t) = -\beta s(t)i(t) + \mu \left(N - s(t)\right), \\ \dot{i}(t) = \beta s(t)i(t) - \nu i(t) - \mu i(t), \\ \dot{r}(t) = \nu i(t) - \mu r(t) \end{cases}$$

Рис. 10: Готовая модель

隆 Установить контекст

You may enter here scilab instructions to define symbolic parar definitions using Scilab instructions.

These instructions are evaluated once confirmed (i.e. you click diagram is run.

Рис. 11: Задаем параметры

Рис. 12: Результат моделирования

Рис. 13: Модель с блоком

Рис. 14: Результат моделирования при μ=0.1

Рис. 15: Результат моделирования при µ=0.9

modelica parameter Real I_0 = 0.001; parameter Real R_0 = 0; parameter Real S_0 = 0.999; parameter Real N = 1; parameter Real beta = 1; parameter Real nu = 0.3; parameter Real mu = 0.5; Real s(start=S_0); Real i(start=I_0); Real r(start=R_0); equation der(s) = -beta * s * i + mu * i + mu * r; der(i) = beta * s * i - nu * i - mu * i; der(r) = nu * i - mu * r;

Рис. 16: Результат моделирования при μ=0.1

Рис. 17: Результат моделирования при μ =0.9

В процессе выполнения данной лабораторной работы была построена модель SIR в $x\cos u$ OpenModelica