DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2018**

EEE/EIE PART I: MEng, BEng and ACG!

Corrected copy

INTRODUCTION TO SIGNALS AND COMMUNICATIONS

Wednesday, 30 May 10:00 am

Time allowed: 2:00 hours

There are THREE questions on this paper.

Answer ALL questions. Q1 carries 40% of the marks. Questions 2 and 3 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

K.K. Leung

Second Marker(s): J.A. Barria

Special Instructions for Invigilator: None

Information for Students:

Fourier Transforms

$$\cos \omega_o t \ll \pi [\delta(\omega - \omega_o) + \delta(\omega + \omega_o)]$$

Some useful trigonometric identities

$$\cos x \cos y = \frac{1}{2}\cos(x-y) + \frac{1}{2}\cos(x+y)$$

$$\sin(x-y) = \sin x \cos y - \sin y \cos x$$

$$a\cos x + b\sin x = c\cos(x+\theta)$$
where $c = \sqrt{a^2 + b^2}$ and $\theta = \tan^{-1}(-b/a)$

Complex exponential

$$e^{jx} = \cos x + j\sin x$$

1. This is a general question. (40%)

- a. Consider a time-domain signal f(t) = 1/a for $-a/2 \le t \le a/2$ and 0 for t < -a/2 or t > a/2, and a is a positive constant.
 - i. Derive the Fourier transform $F(\omega)$ of f(t). [3]
 - ii. Sketch the frequency spectrum of f(t). [2]
 - iii. Let $\hat{f}(t) = \lim_{a \to 0} f(t)$. What is the signal $\hat{f}(t)$? Using the definition, what is the Fourier transform $\hat{F}(\omega)$ of $\hat{f}(t)$?
 - iv. Derive $\hat{F}(\omega)$ by taking the limit of a to zero in $F(\omega)$ from part i. [2]
- b. Let a real, energy signal x(t) consist of three signal components, a(t), b(t) and c(t), as x(t) = a(t) + b(t) + c(t). Further, let E_x , E_a , E_b and E_c be the energy of x(t), a(t), b(t) and c(t), respectively.
 - i. Provide an expression for E_x in terms of a(t), b(t) and c(t). [3]
 - ii. Identify three sufficient conditions for $E_x = E_a + E_b + E_c$; that is, the energy of x(t) equals the sum of the energies of the signal components. What is the commonly used term for these conditions among a(t), b(t) and c(t)? [3]
 - iii. Assuming that the conditions identified in part ii are valid, explain whether it is always possible to express an arbitrary energy signal y(t) as $y(t) = \alpha a(t) + \beta b(t) + \gamma c(t)$ for some constants α , β and γ ? [2]
 - iv. Following part iii, if we can always express any energy signal y(t) as $y(t) = \alpha a(t) + \beta b(t) + \gamma c(t) + \lambda d(t)$ where λ is another constant, what can be said about the relationships between d(t) and the other signal components a(t), b(t) and c(t)? [2]
- c. Consider the following periodic signal s(t) with period T_0 .

Figure 1. The periodic signal s(t).

Our objective here is to make use of the signal s(t) to generate an amplitude-modulated (AM) signal $\phi(t)$ for a given modulating signal m(t) and a sinusoidal carrier $\cos(\omega_c t)$. Let $M(\omega)$ be the Fourier transform of m(t).

[2]

- i. Express s(t) as a Fourier series with coefficients a₀, a_n and b_n for integer n from 1 to ∞.
 ii. Derive the coefficients a₀, a_n and b_n for integer n from 1 to ∞.
 iii. Using results in part ii, provide an expression for s(t)m(t).
 iv. Sketch the spectrum of s(t)m(t).
 [2]
- v. From result in part iv, suggest a way to obtain the AM signal $\phi(t)$ and explain why. What is the relationship between T_0 and ω_c in your suggestion? [2]
- d. Let $\varphi(t)$ denote a phase-modulation (PM) signal where m(t) is the modulating signal, f_c is the frequency of the sinusoidal carrier, and k_P is the proportionality constant.
 - i. Give an expression for $\varphi(t)$. [3] ii. Determine the instantaneous frequency for the PM signal as a function of time. [2]
 - iii. Assume that m(t) is given by the following diagram.

Figure 2. The modulating signal m(t).

Furthermore, let $f_c = 100 \, \text{MHz}$ and $k_P = 10 \pi$. Determine the maximum and minimum instantaneous frequencies for $\varphi(t)$.

iv. Using results in part iii, sketch the signal $\varphi(t)$. [2]

- 2. Signals and their transforms. (30%)
 - a. Let $\delta(t)$ denote the unit impulse at t=0. Consider a linear time-invariant (LTI) system for which the unit impulse response function is $h(t)=3/4\delta(t)+1/4\delta(t-T_0/2)$ as shown in Figure 3 below, where T_0 is a fixed positive constant.

Figure 3. The unit impulse response h(t) for the LTI system.

i. Input signal x(t) of two pulses in Figure 4 with the assumption of $T_0 = T$ to the system. Determine and sketch the corresponding output signal z(t) of the system. [3]

Figure 4. Input signal x(t).

ii. Repeat part i for the following input signal y(t) in Figure 5. [3]

Figure 5. Input signal y(t).

iii. Suppose that a communication channel is represented by the above linear system. That is, when a unit impulse $\delta(t)$ is transmitted over the channel, the signal at the receiving end of the channel is h(t) as shown in Figure 3. Assume that only periodic pulses with ± 1 or ± 1 can be transmitted to represent 1's or 0's, respectively, as in Figure 5, although the pulse period of T can now be varied (and T_0 in h(t) in

- Figure 3 remains fixed). Identify the maximum number of pulses per second that can be transmitted over the channel and properly decoded by a simple receiver? Explain your result.
- [7]
- iv. Is it possible for the channel to support a pulse transmission rate higher than the maximum value identified in part iii? If so, explain how to support that.
- [3]
- b. Consider two time-domain signals f(t) and g(t) with their respective Fourier transforms $F(\omega)$ and $G(\omega)$. Let f(t) * g(t) denote the convolution of f(t) and g(t). For convenience, let us use $\Im[v(t)]$ to denote the Fourier transform of a given signal v(t).
 - i. Give an expression for the convolution f(t) * g(t). [2]
 - ii. By taking the Fourier transform of result in part i, show that $\Im[f(t)*g(t)] = F(\omega)G(\omega).$ [5]
 - iii. Give an expression for the convolution $F(\omega)^*G(\omega)$. [2]
 - iv. By taking the inverse Fourier transform of result in part iii, show that
 - $\Im[f(t)g(t)] = \frac{1}{2\pi}F(\omega)^*G(\omega).$ [5]

3. Communications techniques. (30%)

- a. A continuous-time signal g(t) with bandwidth B Hz is periodically sampled once every T_s seconds and each sample is quantized and encoded into K bits. The information bits are transmitted using the polar non-return-to-zero line coding (i.e., use ± 1 and ± 1 to represent 1 and 0 bits, respectively, without returning to zero between two consecutive bits) and the frequency shift keying (FSK) over a communication link. Assume that the link can support a data rate up to R bits per second. Let ω_c be the carrier frequency in radians/second and the amplitude of the modulated signal be denoted by A.
 - i. Give an expression for the transmitted FSK signal on the link. [3]
 - ii. Provide a block diagram and explain how to demodulate the FSK signal using noncoherent detection. [4]
 - iii. To enable correct reception, determine the maximum bandwidth of g(t) in terms of R and K. Use a spectrum diagram to explain your reasoning. [5]
- b. Design a wideband frequency modulation (WBFM) system using frequency multipliers as follows. Let m(t) be the modulating signal. A narrow-band FM (NBFM) generator is available to take m(t) as input and generates a narrow-band FM signal with a carrier frequency f_{NB} of 200 kHz and the maximum frequency deviation Δf_{NB} of 30 Hz. As for the WBFM system, the final carrier frequency f_{e} and the maximum frequency deviation Δf of the WBFM signal are 100 MHz and 61.44 kHz, respectively. Beside the oscillator at 200 kHz for the NBFM generator, a second oscillator of another frequency is available. Furthermore, only multipliers that double the carrier frequency and frequency deviation are available.
 - By using the NBFM generator, frequency multipliers and a frequency converter as building blocks, draw a block diagram for the WBFM system. Indicate the carrier frequency and the maximum frequency deviation at each step and explain your design.
 - design. [8]
 ii. What is your selected frequency of the second oscillator? [2]
 - iii. What purpose does the second oscillator serve? Provide a mathematical justification for how such use achieves its purpose. [5]
- iv. Is the design of the WBFM system unique? Can the second oscillator be of a different frequency? Explain. [3]

