2. 部分群

問題 2.1. G を群, H,K を G の部分群とするとき, $H\cap K$ も G の部分群になることを示せ.

問題 2.2. G を群, H,K を G の部分群とし, $HK = \{hk \mid h \in H, k \in K\}$ とおく. 次を示せ.

- (1) $H \cup K$ が G の部分群 $\Leftrightarrow H \subset K$ または $K \subset H$.
- (2) HK が G の部分群 \Leftrightarrow HK = KH.

問題 2.3. 実数全体 $\mathbb R$ は加法 + に関して群となる. この群 $(\mathbb R,+)$ について、次の問題に答えよ.

- (1) ℝ には {0} 以外の有限部分群が存在しないことを証明せよ.
- (2) H を $\mathbb R$ の部分群とする. もし $H \neq \mathbb R$ ならば, H はいかなる開区間も含まないことを示せ.

3. 生成系・元の位数・巡回群

G を群, X を G の部分集合とするとき, X を含む G の部分群のうち最小のものを $\langle X \rangle$ と書き, X の生成する G の部分群という (時間があれば, このような部分群の存在性・一意性について講義内演習を行う予定です). とくに $G = \langle X \rangle$ のとき, G は X により生成される, または, X は G の (-つの) 生成系である, という.

問題 3.1. 群 G の 1 つの元 $x \in G$ をとるとき, $\langle \{x\} \rangle = \{x^n \mid n \in \mathbb{Z}\}$ となることを示せ. (この部分群 $\langle \{x\} \rangle$ は $\langle x \rangle$ と書くことが多い.)

群 G の元の個数を |G| と書き (#G や o(G) などと書くこともある), G の位数という. 位数が有限の群を有限群と呼び, そうでない群を無限群と呼ぶ. また, 元 $x \in G$ に対し, x の生成する部分群 $\langle x \rangle$ の位数を x の位数という. x の位数が有限ならば, これは x^m が単位元となるような自然数 m (≥ 1) のうち最小のものと一致する. もし, ある $x \in G$ が存在して $G = \langle x \rangle$ となるなら, G を巡回群と呼ぶ. 例えば $\mathbb Z$ は加法 + により群となるが, $\mathbb Z = \langle 1 \rangle$ となり, $\mathbb Z$ は巡回群である.

問題 3.2. G を群とし、S を G の空でない部分集合とする.

- (1) G の元の位数がすべて有限であるとする. このとき, もし $a,b \in S \Rightarrow ab \in S$ が成り立つならば, S は G の部分群になることを示せ.
- (2) G に無限位数の元が存在する場合は, $a,b \in S \Rightarrow ab \in S$ が成り立っても S が G の部分群にならないこともある. そのような例を挙げよ.

 $^{{}^1\}pi-\Delta ^\bullet-\mathcal{Y} \text{ http://www.math.tsukuba.ac.jp/$\tilde{}^amano/lec2009-2/e-algebra-ex/index.html}$

問題 3.3. 位数 18 の巡回群 Z/18Z の部分群をすべて求めよ.

問題 3.4. 正 6 角形の二面体群 $D_{12}=\langle r,s\mid r^6=s^2=e,\;sr=r^{-1}s\rangle$ の部分群をすべて求めよ.

以下の問題の中には、後で学ぶ整数についての知識を必要とするものもあります。

問題 3.5. (1) 巡回群の部分群は必ず巡回群になることを示せ.

- (2) G を有限巡回群, $G = \langle x \rangle$ とする. 自然数 n について, $G = \langle x^n \rangle$ となることと n と |G| が互いに素であることが同値になることを示せ.
- (3) G を有限巡回群とする. 自然数 m が |G| の約数であるとき, 位数 m の G の部分群が唯一つだけ存在することを示せ.

問題 3.6. $C = \{\cos \theta + i \sin \theta \in \mathbb{C} \mid \theta \in \mathbb{R}\}\ ($ ただし $i = \sqrt{-1})$ とおく.

- (1) C は複素数の積に関して群になることを示せ.
- (2) C の有限部分群はすべて巡回群であることを示せ.

問題 3.7. S_n を n 次の対称群とするとき, S_n は (1,i) $(i=1,\ldots,n)$ の形の互換で生成されること (言い換えれば $S_n = \langle (1), (1,2),\ldots, (1,n) \rangle$ となること) を証明せよ.

問題 3.8. G を群, $a,b \in G$ とする. ab の位数が有限ならば, ba の位数も有限であり, ab と ba の位数は一致することを示せ.

問題 3.9. G を有限アーベル群, e をその単位元とする.

- (1) $a \in G$ とし, a の位数を m とする. 自然数 n が $a^n = e$ をみたすとき, n は m の倍数であることを示せ. (これは G がアーベル群でなくても成立する.)
- (2) $a,b \in G$ とし, a の位数を m,b の位数を n とする. もし m と n が互いに素ならば, ab の位数は mn であることを示せ.
- (3) G の元の位数のうち最大のものを l とすると, G の任意の元の位数は l の約数であることを示せ.