Unit 7 Non-Linear Optimization

EL-GY 6143/CS-GY 6923: INTRODUCTION TO MACHINE LEARNING

PROF. PEI LIU

Learning Objectives

- □ Identify the objective function, parameters and constraints in an optimization problem
- □ Compute the gradient of a loss function for scalar, vector and matrix parameters
- ☐ Efficiently compute a gradient in python.
- ☐Write the gradient descent update
- ☐ Describe the effect of the learning rate on convergence
- Determine if a loss function is convex

Outline

- Motivating example: Build an optimizer for logistic regression
 - ☐ Gradients of multi-variable functions
 - ☐ Gradient descent
 - ☐ Adaptive step size
 - **□**Convexity

Recap: Breast Cancer Example

- ■Problem from Unit 6: Determine if sample indicates cancer
- □Classification problem:
 - Input: x = 10 features of sample (size, cell mitosis, etc..)
 - Output: Is the sample benign or malignant? $\hat{y} = \begin{cases} 1 & \text{malignant (cancer)} \\ 0 & \text{benign (no cancer)} \end{cases}$
- \Box Training data (x_i, y_i) , i = 1, ..., N
 - \circ Data from N = 569 patients
- \square Learn a classification rule from x to y

Grades of carcinoma cells http://breast-cancer.ca/5a-types/

Logistic Regression Maximum Likelihood

□ Logistic model for the likelihood function:

$$P(y = 1|x, w) = \frac{1}{1 + e^{-z}}, \qquad z = w_{1:p}^T x + w_0$$

- ∘ **w** = unknown weights or parameters
- ■ML estimation : Minimize the negative log likelihood:

$$\widehat{w} = \arg\min_{w} f(w), \quad f(w) \coloneqq -\sum_{i=1}^{N} \ln P(y_i|x_i, w)$$

- f(w) = loss function = measure of goodness of fit of parameters
- \square Loss function: binary cross entropy (number of classes K=2)

$$f(\mathbf{w}) \coloneqq \sum_{i=1}^{N} \{ \ln[1 + e^{z_i}] - y_i z_i \}, \qquad z_i = \mathbf{w}_{1:p}^T \mathbf{x}_i + w_0$$

Minimizing the Loss Function

- No analytic solution to minimize loss
- ☐ Used sklearn LogisticRegression.fit method
 - Used built-in optimizer to minimize loss function
 - Very fast and achieves good results
- □ Questions for today:
 - How does this optimizer work?
 - How would we build one from scratch

```
# Fit on the scaled trained data
reg = linear_model.LogisticRegression(C=1e5)
reg.fit(Xtr1, ytr)
```

Accuracy on test data = 0.960976

Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- Gradients of multi-variable functions
- ☐ Gradient descent
- ☐ Adaptive step size
- **□**Convexity

Gradients and Optimization

- \square In machine learning, we often want to minimize a loss function J(w)
- \square Gradient $\nabla J(w)$: Key function
- ☐ Gradient has several important properties for optimization
 - Provides a simple linear approximation of a function
 - When at a local minima, $\nabla J(w) = 0$
 - \circ At other points, $-\nabla J(w)$ provides a direction of maximum decrease

Gradient Defined

- \square Consider scalar-valued function f(w)
- \square Vector input w. Then gradient is:

$$\nabla_{w} f(\mathbf{w}) = \begin{bmatrix} \partial f(\mathbf{w}) / \partial w_{1} \\ \vdots \\ \partial f(\mathbf{w}) / \partial w_{N} \end{bmatrix}$$

 \square Matrix input W, size $M \times N$. Then gradient is:

$$\nabla_{W} f(\mathbf{W}) = \begin{bmatrix} \partial f(\mathbf{W})/\partial W_{11} & \cdots & \partial f(\mathbf{W})/\partial W_{1N} \\ \vdots & \vdots & \vdots \\ \partial f(\mathbf{W})/\partial W_{M1} & \cdots & \partial f(\mathbf{W})/\partial W_{MN} \end{bmatrix}$$

☐ Gradient is same size as the argument!

Example 1

- $\Box f(w_1, w_2) = w_1^2 + 2w_1w_2^3$
- ☐ Partial derivatives:

$$\circ \ \partial f/\partial w_1 = 2w_1 + 2w_2^3$$

$$\theta = \partial f / \partial w_2 = 6w_1w_2^2$$

$$\Box \text{Gradient: } \nabla f = \begin{bmatrix} 2w_1 + 2w_2^3 \\ 6w_1w_2^2 \end{bmatrix}$$

- ■Example to right:
 - Computes gradient at w = (2,4)
 - Gradient is a numpy vector

```
def feval(w):
    # Function
    f = w[0]**2 + 2*w[0]*(w[1]**3)

# Gradient
    df0 = 2*w[0]+2*(w[1]**3)
    df1 = 6*w[0]*(w[1]**2)
    fgrad = np.array([df0, df1])

return f, fgrad

# Point to evaluate
w = np.array([2,4])
f, fgrad = feval(w)
```

```
f = 260.000000
fgrad = [132 192]
```


Example 2: An Exponential Model

□ Data fitting task:

- Exponential model: $\hat{y}_i = ae^{-bx_i}$
- Parameters w = (a, b)
- MSE loss $J(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- \square Problem: Compute gradient ∇J

■ Solution:

$$\frac{\partial J}{\partial a} = \frac{1}{2} \sum_{i=1}^{N} \frac{\partial (y_i - \hat{y}_i)^2}{\partial a} \qquad \text{[Linearity]} \\
= \sum_{i=1}^{N} (\hat{y}_i - y_i) \frac{\partial \hat{y}_i}{\partial a} \qquad \text{[Chain rule]} \\
= \sum_{i=1}^{N} (\hat{y}_i - y_i) e^{-bx_i} \\
\circ \frac{\partial J}{\partial b} = \sum_{i=1}^{N} (\hat{y}_i - y_i) (-ax_i e^{-bx_i})$$

```
def Jeval(w):
    # Unpack vector
    a = w[0]
    b = w[1]
    # Compute the loss function
    yerr = y-a*np.exp(-b*x)
    J = 0.5*np.sum(yerr**2)

# Compute the gradient
    dJ_da = -np.sum( yerr*np.exp(-b*x))
    dJ_db = np.sum( yerr*a*x*np.exp(-b*x))
    Jgrad = np.array([dJ_da, dJ_db])
    return J, Jgrad
```

Chain Rule

■We all know chain rule for scalar functions

 \boldsymbol{Z}

 χ

- \square We have a composite function: y = f(g(x))
- \square This is the same as y = f(z), z = g(x)
- ☐ Chain rule says:

$$\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = f'(z)g'(x) = f'(g(x))g'(x)$$

- □ Example: $y = \ln(z)$, $z = \cos x$
 - Then $\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = \frac{1}{z} (-\sin x)$
 - We can leave it like this or substitute $z = \cos x \Rightarrow \frac{dy}{dx} = \frac{1}{\cos x} (-\sin x) = -\tan x$
- ☐ Excellent review at Khan Academy

y

Multi-Variable Chain Rule

■We have a multi-variable composite function:

$$\circ \ J = f(z_1, \dots, z_n)$$

$$\circ z_i = g_i(w_1, \dots, w_p)$$

- ☐You can visualize the dependencies with a graph
- Multi-variable chain rule:

$$\frac{\partial J}{\partial w_j} = \sum_{i=1}^n \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial w_j}$$

Example 3: Log-Linear Model

□Given:

- Data $(x_i, y_i), i = 1, ..., N$
- \circ Model $\hat{y}_i = \log(z_i)$, $\ z_i = w_0 + \sum_{j=1}^d X_{ij} w_j$
- MSE loss function: $J = \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- \square Problem: Find gradient component $\frac{\partial J}{\partial w_j}$

■ Solution:

- Define $A = [1 \ X]$, matrix with ones on the first column
- \circ Then, $z_i = w_0 + \sum_{j=1}^d X_{ij} w_j = \sum_{j=0}^d A_{ij} w_j$
- Use multi-variable chain rule:

$$\frac{\partial J}{\partial w_j} = \sum_{i=1}^{N} \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial w_j} = \sum_{i=1}^{N} \frac{\partial J}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i} \frac{\partial z_i}{\partial w_j} = \sum_{i=1}^{N} 2(\hat{y}_i - y_i) \frac{1}{z_i} A_{ij}$$

Example 3: Matrix Version

☐ From previous slide:

$$z_{i} = w_{0} + \sum_{j=1}^{d} X_{ij} w_{j} = \sum_{j=0}^{d} A_{ij} w_{j}$$

$$y_{i} = \log(z_{i})$$

$$\frac{\partial J}{\partial w_j} = 2 \sum_{i=1}^{N} (\hat{y}_i - y_i) \frac{1}{z_i} A_{ij}$$

☐ Can implement these with matrix operations:

- Useful for efficient implementation in python
- $\circ z = Aw$
- $\circ \ \widehat{y} = \log(z)$
- $\frac{dJ}{dz} = 2(\hat{y} y)\frac{1}{z}$ [elementwise division]

$$\circ \frac{\partial J}{\partial w} = A^T \frac{dJ}{dz}$$

```
def Jeval(w,X,y):
    # Create matrix A=[1 X]
    n = X.shape[0]
    A = np.column_stack((np.ones(n), X))

# Compute function
    z = A.dot(w)
    yhat = np.log(z)
    J = np.sum((y-yhat)**2)

# Compute gradient
    dJ_dz = 2*(yhat-y)/z
    Jgrad = A.T.dot(dJ_dz)

return J, Jgrad
```

First-Order Approximations Scalar-Input Functions

- \square Consider function f(x) with scalar input x
- ☐ First-order approximation for a scalar input function

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

- \square Approximates f(x) by a linear function
 - Derivative = $f'(x_0)$ = slope
- ■What is the equivalent for vector-input functions?

First-Order Approximations Vector Input Functions

- $\Box \text{Fix a point } x_0 = (x_{01}, \dots, x_{0p})$
- ☐ Then for any other point $x \approx x_0$, gradients can be used for first order approximation

$$f(\mathbf{x}) \approx f(\mathbf{x_0}) + \sum_{j=1}^{p} \frac{\partial f}{\partial x_j} \left(x_j - x_{0j} \right) = f(\mathbf{x_0}) + \nabla f(\mathbf{x_0})^T (\mathbf{x} - \mathbf{x_0})$$

- \Box Linear function in x
- \Box Change in f(x) given by inner product:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \approx \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$$

Checking Gradients

- □Always check gradients before using
 - Even good developers make mistakes!
- ■Simple check:
 - \circ Take some point w_0
 - Evaluate $J(w_0)$ and $\nabla J(w_0)$
 - \circ Take a second point w_1 close to w_0
 - Evaluate $J(w_1)$
 - verify that:

```
J(w_1) - J(w_0) \approx \nabla J(w_0)^T (w_1 - w_0)
```

```
1 # Generate random positive data
   X = np.random.uniform(0,1,(n,d))
      = np.random.uniform(0,1,(d+1,))
   y = np.random.uniform(0,2,(n,))
 8 # Compute function and gradient at point w0
   J0, Jgrad0 = Jeval(w0,X,y)
11 # Take a small perturbation
12 step = 1e-4
13 w1 = w0 + step*np.random.normal(0,1,(d+1,))
15 # Evaluate the function at perturbed point
16 J1, Jgrad1 = Jeval(w1,X,y)
17
18 dJ = J1-J0
19 dJ est = Jgrad0.dot(w1-w0)
20 print('Actual difference:
                                 %12.4e' % dJ)
21 print('Estimated difference: %12.4e' % dJ est)
```

Actual difference: -1.1895e-03 Estimated difference: -1.1896e-03

Gradients and Stationary Points

- \square Stationary point: Any w where $\nabla f(w) = 0$
- ■Occurs at any local maxima or minima
- □Also, any saddle point
- ☐ In linear regression:
 - f(w) = RSS loss function
 - Solved for w where $\nabla f(w) = 0$
- \square But, often cannot explicitly solve for $\nabla f(\mathbf{w}) = 0$

Direction of Maximum Increase

- ☐ Gradient indicates direction of maximum increase:
- \square Take a starting point x_0
- \Box Change in f(x) direction u

$$f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) \approx \langle \nabla f(\mathbf{x}_0), \mathbf{u} \rangle = ||\nabla f(\mathbf{x}_0)|| ||\mathbf{u}|| \cos \theta$$

- \circ Maximum increase when $oldsymbol{u} = lpha \;
 abla f(oldsymbol{x}_0)$
- \circ Maximum decrease when $oldsymbol{u} = -lpha \;
 abla f(oldsymbol{x}_0)$

In-Class Exercise

In-Class Exercise: An Exponential Model

Consider a model,

```
yhat = w[0]*exp(-w[1]*(x-w[2])**2/2)
```

where the parameter w[2] > 0 is positive.

Now, suppose that, given data x and y, we want to minimize the MSE loss function,

```
J = mean( (y[i] - yhat[i])**2 )
```

Complete the following function to compute $\, \, \mathfrak{I} \,$ and its gradient for parameters $\, \, \mathfrak{w} \,$ and data ($\, x,y \,$).

```
def Jeval(w,X,y):
    # TODO
    return J, Jgrad
```


Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- Gradient descent
 - ☐ Adaptive step size
 - **□**Convexity

Unconstrained Optimization

 \square Problem: Given f(w) find the minimum:

$$w^* = \arg\min_{w} f(w)$$

- $\circ f(w)$ is called the objective function
- $\mathbf{w} = (w_1, \dots, w_M)$ is a vector of decision variables or parameters
- \square Called unconstrained since there are no constraints on w
- ■Will discuss constrained optimization briefly later

Numerical Optimization

- ■We saw that we can find minima by setting $\nabla f(w) = 0$
 - ∘ *M* equations and *M* unknowns.
 - May not have closed-form solution
- Numerical methods: Finds a sequence of estimates w^k that converges to the true solution $w^k \to w^*$
 - Or converges to some other "good" minima
 - Run on a computer program, like python

Gradient Descent

- ☐ Most simple method for unconstrained optimization
- \square Key property of gradient, $\nabla_{\!\! w} f(w)$
 - \circ $-\nabla_{\!\! w} f(w)$ = Points in the direction of steepest decrease
- ☐ Gradient descent algorithm:
 - Start with initial w^0
 - $\circ \ w^{k+1} = w^k \alpha_k \nabla f(w^k)$
 - Repeat until some stopping criteria
- $\square \alpha_k$ is called the step size
 - In machine learning, this is called the learning rate

Gradient Descent Illustrated

 $\square M = 1$

• M = 2

Gradient Descent Analysis

☐ Using gradient update rule

$$f(w^{k+1}) = f(w^{k}) + \nabla f(w^{k}) \cdot (w^{k+1} - w^{k}) + O||w^{k+1} - w^{k}||^{2}$$

= $f(w^{k}) - \alpha \nabla f(w^{k}) \cdot \nabla f(w^{k}) + O(\alpha^{2})$
= $f(w^{k}) - \alpha ||\nabla f(w^{k})||^{2} + O(\alpha^{2})$

- lacktriangle Consequence: If step size lpha is small, then $f(w^k)$ decreases
- ☐Theorem:

If f''(w) is bounded above, f(w) is bounded below, and α is chosen sufficiently small, Then gradient descent converges to local minima

Local vs. Global Minima

□ Definitions:

- w^* is a global minima if $f(w) \ge f(w^*)$ for all w
- w^* is a local minima if $f(w) \ge f(w^*)$ for all w in some open neighborhood of w^*
- Most numerical methods:
 - Generally only guarantee convergence to local minima
- □Convex functions: Have only global minima (more later)

Gradients for Logistic Regression

☐ Logistic regression

- Linear function: $z_i = w_0 + \sum_{j=1}^d X_{ij} w_j$
- Output probability: $P(y = 1|x) = \frac{1}{1+e^{-z_i}}$
- Binary cross-entropy loss: $J(\mathbf{w}) = \sum_{i=1}^{n} \{ \ln[1 + e^{z_i}] y_i z_i \}$

□ Compute gradients:

- Define $A = \begin{bmatrix} 1 & X \end{bmatrix}$, matrix with ones on the first column
- Then, $z_i = w_0 + \sum_{j=1}^{d} X_{ij} w_j = \sum_{j=0}^{d} A_{ij} w_j$
- $\circ \text{ Let } p_i = \frac{1}{1 + e^{-z_i}}$
- Observe $\frac{\partial J}{\partial z_i} = \frac{e^{z_i}}{1 + e^{z_i}} y_i = p_i y_i$
- Use multi-variable chain rule:

$$\frac{\partial J}{\partial w_j} = \sum_{i=1}^{N} \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial w_j} = \sum_{i=1}^{N} (p_i - y_i) A_{ij}$$

Matrix Form

☐ Logistic regression

- Linear function: $z_i = \sum_{j=0}^d A_{ij} w_j$
- Output probability: $P(y = 1|x) = \frac{1}{1+e^{-z_i}}$
- BCE: $J = \sum_{i=1}^{n} \{ \ln[1 + e^{z_i}] y_i z_i \}$
- $\frac{\partial J}{\partial w_i} = \sum_{i=1}^N \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial w_i} = \sum_{i=1}^N (p_i y_i) A_{ij}$

■ Matrix form:

- $\circ z = Aw$
- $\circ \ \operatorname{Let} p = \frac{1}{1 + e^{-z}}$
- $\circ \ \frac{\partial J}{\partial z} = p y$
- $\circ \ \frac{\partial J}{\partial w} = A^T \frac{\partial J}{\partial z}$

```
def feval(w,X,y):
    """
    Compute the loss and gradient given w,X,y
    """

# Construct transform matrix
    n = X.shape[0]
    A = np.column_stack((np.ones(n,), X))

# The loss is the binary cross entropy
    z = A.dot(w)
    py = 1/(1+np.exp(-z))
    f = np.sum((1-y)*z - np.log(py))

# Gradient
    df_dz = py-y
    fgrad = A.T.dot(df_dz)
    return f, fgrad
```

Implementation in Python

- □Optimizer requires a python method to compute:
 - Objective function f(w), and
 - Gradient $\nabla f(\mathbf{w})$
- ☐ For logistic loss:

$$f(\mathbf{w}) \coloneqq \sum_{i=1}^{N} -y_i z_i + \ln[1 + e^{z_i}], \qquad z = A\mathbf{w}$$

- \square Thus, f(w) and $\nabla f(w)$ depends on training data (x_i, y_i)
 - How do we pass these?
- ☐ Two methods to pass data to the function:
 - Method 1: Use a class
 - Method 2: Use lambda calculus

def feval(w(X,y): Compute the loss and gradient given w,X,y # Construct transform matrix n = X.shape[0] A = np.column_stack((np.ones(n,), X)) # The loss is the binary cross entropy z = A.dot(w) py = 1/(1+np.exp(-z)) f = np.sum((1-y)*z - np.log(py))

Gradient

 $df_dz = py-y$

return f, fgrad

fgrad = A.T.dot(df_dz)

Training data

Method 1: Create a Class

- ☐ Create a class for the objective function
- \square Pass data (x_i, y_i) in constructor
 - Also perform any pre-computations
- ☐ Pass argument w to method feval
 - Evaluates function and gradient
 - Can access the data as class members
 - Note forward-backward method
- ☐ Instantiate the class with data

```
log_fun = LogisticFun(Xtr,ytr)
```

```
class LogisticFun(object):
    def __init__(self,X,y):
        Class for computes the loss and gradient for a logistic regression problem.
        The constructor takes the data matrix `X` and response vector y for training.
        self.X = X
        self.v = v
        n = X.shape[0]
        self.A = np.column stack((np.ones(n,), X))
    def feval(self,w):
        Compute the loss and gradient for a given weight vector
        # The Loss is the binary cross entropy
        z = self.A.dot(w)
        py = 1/(1+np.exp(-z))
        f = np.sum((1-self.y)*z - np.log(py))
        # Gradient
        df_dz = py-self.y
        fgrad = self.A.T.dot(df_dz)
        return f, fgrad
```

Testing the Gradient

- □Always test your implementation!
- \square Pick two points w_0 , w_1 that are close
- \square Make sure: $f(\mathbf{w}_1) f(\mathbf{w}_0) \approx \nabla f(\mathbf{w}_0)^T (\mathbf{w}_1 \mathbf{w}_0)$

Actual f1-f0

Predicted f1-f0 = 3.3279e-04

```
# Take a random initial point
p = X.shape[1]+1
w0 = np.random.randn(p)

# Perturb the point
step = 1e-6
w1 = w0 + step*np.random.randn(p)

# Measure the function and gradient at w0 and w1
f0, fgrad0 = log_fun.feval(w0)
f1, fgrad1 = log_fun.feval(w1)

# Predict the amount the function should have changed based on the gradient
df_est = fgrad0.dot(w1-w0)

# Print the two values to see if they are close
print("Actual f1-f0 = %12.4e" % (f1-f0))
print("Predicted f1-f0 = %12.4e" % df_est)
```


39 NYU WIRELES

Method 2: Lambda Calculus

- \square Create a function that take w, X, y
- \square Use lambda function to fix X, y

```
# Create a function with all the parameters
def feval_param(w,X,y):
    Compute the loss and gradient given w,X,y
    # Construct transform matrix
    n = X.shape[0]
    A = np.column_stack((np.ones(n,), X))
   # The loss is the binary cross entropy
    z = A.dot(w)
    py = 1/(1+np.exp(-z))
    f = np.sum((1-y)*z - np.log(py))
    # Gradient
    df_dz = py-y
    fgrad = A.T.dot(df dz)
    return f, fgrad
# Create a function with X, y fixed
feval = lambda w: feval_param(w,Xtr,ytr)
# You can now pass a parameter like w0
f0, fgrad0 = feval(w0)
```

Gradient Descent

☐ Input parameters:

- Function to return objective and gradient
- Initial value w^0
- \circ Learning rate α
- Number of iterations

□Code returns:

- Final estimate w^k
- Final function value $f(w^k)$
- History (for debugging)

```
def grad_opt_simp(feval, winit, lr=1e-3,nit=1000):
    Simple gradient descent optimization
    feval: A function that returns f, fgrad, the objective
            function and its gradient
    winit: Initial estimate
    lr:
            learning rate
    nit:
            Number of iterations
    # Initialize
    w0 = winit
    # Create history dictionary for tracking progress per iteration.
    # This isn't necessary if you just want the final answer, but it
    # is useful for debugging
hist = {'w': [], 'f': []}
    # Loop over iterations
    for it in range(nit):
        # Evaluate the function and gradient
        f0, fgrad0 = feval(w0)
        # Take a gradient step
        w0 = w0 - lr*fgrad0
        # Save history
        hist['f'].append(f0)
        hist['w'] append(w0)
    # Convert to numpy arrays
    for elem in ('f', 'w'):
        hist[elem] = np.array(hist[elem])
    return w0, f0, hist
```

Gradient Descent on Logistic Regression

- ☐ Random initial condition
- □1000 iterations
- □Convergence is slow.
- ☐ Final accuracy poor
 - estimate has not converged


```
# Initial condition
winit = np.random.randn(p)

# Parameters
feval = log_fun.feval
nit = 1000
lr = 1e-4

# Run the gradient descent
w, f0, hist = grad_opt_simp(feval, winit, lr=lr, nit=nit)

# Plot the training loss
t = np.arange(nit)
plt.semilogx(t, hist['f'])
plt.grid()
```

```
def predict(X,w):
    z = X.dot(w[1:]) + w[0]
    yhat = (z > 0)
    return yhat

yhat = predict(Xts,w)
acc = np.mean(yhat == yts)
print("Test accuracy = %f" % acc)
```

Test accuracy = 0.971731

Different Step Sizes

- ☐ Faster learning rate => Faster convergence
- ☐But, may be unstable

```
lr= 1.00e-05 Test accuracy = 0.681979
lr= 1.00e-04 Test accuracy = 0.964664
lr= 1.00e-03 Test accuracy = 0.989399
```


Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- ☐ Gradient descent
- Adaptive step size
 - **□**Convexity

Adaptive Step Size Selection

☐ Most practical algorithms change step size adaptively

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k)$$

- □Tradeoff: Selecting large $α_k$:
 - Larger steps, faster convergence
 - But, may overshoot

Armijo Rule

 \square Recall that we know if $w^{k+1} = w^k - \alpha \nabla f(w^k)$

$$f(w^{k+1}) = f(w^k) - \alpha \|\nabla f(w^k)\|^2 + O(\alpha^2)$$

☐Armijo Rule:

- ∘ Select some $c \in (0,1)$. Usually c = 1/2
- \circ Select α such that

$$f(w^{k+1}) \le f(w^k) - c\alpha \left\| \nabla f(w^k) \right\|^2$$

• Decreases by at least at fraction c predicted by linear approx.

■Simple update:

- $\circ~$ If Armijo rule passes: Accept point and increase step size: $\alpha^{k+1}=\beta\alpha^k$, $~\beta>1$
- \circ If Armijo rule fails: Reject point and decrease step size: $lpha^{k+1}=eta^{-1}lpha^k$
- ☐ Can also use a line search

Armijo Rule Illustrated

Adaptive Gradient Descent in Python

☐ Simple modification of fixed step size case


```
for it in range(nit):
    # Take a gradient step
    w1 = w0 - lr*fgrad0
    # Evaluate the test point by computing the objective function, f1,
    # at the test point and the predicted decrease, df est
    f1, fgrad1 = feval(w1)
    df est = fgrad0.dot(w1-w0)
    # Check if test point passes the Armijo rule
    alpha = 0.5
    if (f1-f0 < alpha*df_est) and (f1 < f0):
        # If descent is sufficient, accept the point and increase the
        # Learning rate
        lr = lr*2
        f0 = f1
        fgrad0 = fgrad1
        w\theta = w1
    else:
        # Otherwise, decrease the learning rate
        lr = lr/2
```

What is β here?

In-Class Exercise

□Complete Jupyter notebook

In-Class Exercise ¶

Try to a build a simple optimizer to minimize:

$$f(w) = a[0] + a[1]*w + a[2]*w^2 + ... + a[d]*w^d$$

for the coefficients a = [0,0.5,-2,0,1].

- · Plot the function f(w)
- · Can you see where the minima is?
- · Write a function that outputs f(w) and its gradient.
- · Run the optimizer on the function to see if it finds the minima.
- · Print the funciton value and number of iterations.
- Bonus: Instead of writing the function for a specific coefficient vector a, create a class that works for an arbitrary vector a.

You may wish to use the poly.polyval(w,a) method to evaluate the polynomial.

import numpy.polynomial.polynomial as poly

Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- ☐ Gradient descent
- ☐ Adaptive step size

Convexity

Convex Sets

□ Definition: A set X is convex if for any $x, y \in X$,

$$tx + (1-t)y \in X$$
 for all $t \in [0,1]$

- ☐ Any line between two points remains in the set.
- ■Examples:
 - Square, circle, ellipse
 - $\{x \mid Ax \leq b\}$ for any matrix A and vector b

Convex Set Visualized

Convex Functions

- \square A real-valued function f(x) is convex if:
 - Its domain is a convex set, and
 - For all x, y and $t \in [0,1]$:

$$\dot{f}(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Convex Function Examples

- \Box Linear function of a scalar f(x) = ax + b
- $\Box \text{Linear function of a vector } f(x) = a^T x + b$
- \square If f''(x) exists everywhere, f(x) is convex iff $f''(x) \ge 0$.
 - When x is a vector $f''(x) \ge 0$ means the Hessian must be positive semidefinite
- $\Box f(x) = e^x$
- \square If f(x) is convex, so is f(Ax + b)
- □Logistic loss is convex!

Global Minima and Convex Function

- Theorem: If f(w) is convex and w is a local minima, then w is a global minima
- ☐ Implication for optimization:
 - Gradient descent only converges to local minima
 - In general, cannot guarantee optimality
 - Depends on initial condition
 - But, for convex functions can always obtain optimal

Other Topics We Did Not Cover

- □Our optimizer is OK, but not nearly as fast as sklearn method
- ☐ Many techniques we did not cover
 - Newton's method
 - Quasi-Newton's method
 - Non-smooth optimization
 - Constrained optimization
- ☐ Take an optimization class and learn more.

What you should know

- □ Identify the objective function, parameters and constraints in an optimization problem
- □ Compute the gradient of a loss function for scalar, vector parameters
 - Matrix parameters are advanced (graduate students only)
- ☐ Efficiently compute a gradient in python.
- ☐ Write the gradient descent update
- ☐ Describe the effect of the learning rate on convergence
- □ Determine if a loss function is convex

