

Quantum Impact Collective: Optimization of Food Resources

In the U.S., fast food restaurants produce 22 to 33 billion pounds of food waste by annually.

Goal: To optimize vehicle routing from shelters to collect food resources in Boston.

Process

- 1. Find Homeless Shelters in Boston
- 2. Determine fast food locations in Boston
- 3. Correlate locations between shelters and fast food locations
 - a. Identify proximity based on longitude and latitude
 - For simplicity purposes, we chose the closest 3 restaurants to each shelter
- 4. Establish a situation

Shelter	Latitude	Longitude
Family-Aid Boston	42.2981	-71.1166
Bridge Over Troubled Waters	42.35535	-71.063
Boston Rescue Mission	42.35375	-71.0595
Boston Night Center	42.36262	-71.06067
Pine Street Inn	42.3458	-71.06463
	Family-Aid Boston Bridge Over Troubled Waters Boston Rescue Mission Boston Night Center	Family-Aid Boston 42.2981 Bridge Over Troubled Waters 42.35535 Boston Rescue Mission 42.35375 Boston Night Center 42.36262

businessname	latitude	longitude
APPLEBEE'S NEIGHBORHOOD GRILL & BAR	42.32608686677121	-71.06361196234216
Auntie Anne's Pretzels/ Carvel	42.35195868500647	-71.05502724058353
Buffalo Wild Wings Go/Sp. AS2-A18	42.364539333151285	-71.02181778282163
Burger King	34.244386753001244	-73.6513909034731
Burger King	42.309265153704665	-71.05775317571394
Burger King	42.35631361369498	-71.06192094875507
Burger King	42.36883243461128	-71.03932826829823
Burger King	42.35301796551194	-71.13497876705965
Burger King	42.33921949208055	-71.05095898205067
Burger King	42.26820347573987	-71.09577982327994
Burger King	42.262078075396296	-71.1085691449198
Burger King	42.3861663166383	-71.00953086689843
Burger King # 3483	42.26588887601696	-71.16795211651815
Burger King # 3531	42.27597672024672	-71.13916232653567
California Pizza Kitchen	42.34715955305909	-71.08251052626302
Cava	42.35312267843186	-71.05742343463301

Establish a Situation

Consider the following situation for simplicity:

Suppose we have 3 **shelters** (Depos)

→ Each shelter has an **X** set demand

Based on distance, we have 3 <u>restaurants</u> for each shelter (Clients)

- → Each restaurant has a Y set supply
- → Restaurants are located at varying distances from each restaurant, but are the closest in terms of Euclidean distance.

How can be create an optimal route that not only takes the **shortest distance**, but also **completes the X demand** needed for the shelter?

Capacitated Vehicle Routing

Definition: An optimization that involves finding the best routes for a fleet of vehicles to deliver items to customers.

Characteristics:

- → Each vehicles has a maximum capacity
- → Each vehicles starts and ends at the depot (shelter)
- → Each client can only be served by 1 vehicles (restaurant)

Modifications to fit our problem:

- 1. Clients have supplies, depots have demand
- 2. Constraints include fulfilling demand (factor for optimization)

We attempted using a nonlinear model, a **quadratic model**, using the LeadHybridNSampler

Process of Application

- 1. Consider how to apply constraints to Quadratic Model → ConstrainedQuadraticModel
 - a. PROBLEM: CVR uses a DiscreteQuadraticModel (DQM) different methods
- 2. Enforce constraints on model using penalties → BinaryQuadraticModel
 - a. PROBLEM: penalties added too much constraint
- 3. Utilize CVRP, but create separate depo + demand variables \rightarrow 3 Arrays instead of 2
 - a. PROBLEM: CVRP is defined in an interesting way
 - The demand object MUST be an array, where the first element represents the demand of the depo which MUST be 0
 - ii. The client array MUST have the first index represent the depo
- * Using the current model of capacitated_vehicles_routing, we CANNOT define our situation.
- ** HOWEVER, we can present an alternative case, if we had editing access to CVR

Alternate Method

We attempted to treat the depo as its own variables and the depo's demand as an integer value.

Rather than populating an array to be [200, 0, 0, 0], which is invalid according to the current CVR model, we can simply:

→ Take a route and track distance traveled and whether demand was met

→ After all routes are exhausted, compare values are run the optimization algorithm to determine the least costly route in terms of both distance and demand met.

```
from dwave.optimization.generators import capacitated vehicle routing
from dwave.system import LeapHybridNLSampler
depot demand = 200 # Depot has demand
restaurants = [(15, 38, 50), (23, -19, 100), (44, 62, 100)]
locations_x = [x for x, y, s in restaurants]
locations v = [v for x, v, s in restaurants]
supply = [s for x, y, s in restaurants]
demand = [depot demand] + [0] * len(supply) # Depot has demand, restaurants have no demand
locations x = [depot[0]] + locations x # Add depot coordinates to the list
locations y = [depot[1]] + locations y # Add depot coordinates to the list
model = capacitated vehicle routing(
    demand=demand, # Demand list where depot has non-zero demand, others are zero
   number_of_vehicles=3, # Updated to 3 vehicles
    vehicle capacity=200,
                                                        num_samples = model.states.size() # This is important to determine how many samples were returned
    locations x=locations x.
                                                        for i in range(min(3, num samples)):
    locations y=locations y,
                                                            print(f"Objective value {int(model.objective.state(i))} for")
    depot_x_y=depot # Explicitly provide depot
                                                            demand met = False
                                                            remaining demand = depot demand # Track remaining depot demand dynamically
                                                            for j, r in enumerate(routes):
                                                                print(f"\t Route {j + 1}: {r.state(i)}")
                                                                for restaurant_idx, supply_value in enumerate(supply):
                                                                    if restaurant idx == r.state(i):
                                                                        remaining_demand -= supply_value
                                                                if remaining_demand <= 0:
                                                                    demand met = True
                                                                    break # Stop processing if demand is met
                                                                print(f"Demand successfully met after route {i + 1}.\n")
```

 $print(f"Demand not fully met after route {i + 1}.\n")$

Food Deserts

Food Deserts are defined as regions that don't have access to "healthy" food. These areas often show signs of severe health issues, such as asthma and high obesity. We can provide options by involving grocery stores with healthy food. We can apply this optimization problem by creating the following situation:

Grocery Stores → Depos Communities/Regions → Clients

Results

```
snetters.append((row[1],row[2]))
route: < cython 3 0 11 generator object at 0x16c86a8c0>
Objective value 331 for
        Route 1: [3. 1. 2.] Route 2: [0. 4.]
        Feasible: True
Objective value 331 for
        Route 1: [3. 1. 2.] Route 2: [4. 0.]
        Feasible: True
Objective value 331 for
        Route 1: [2. 1. 3.] Route 2: [4. 0.]
        Feasible: True
(.venv) (base) druhibhargava@Druhis-MacBook-Pro quantum hack %
```

Further Steps

- → Quadratic Assignment Problem (QAP)
 - → Distribution of other resources
 - → Mobile Food Markets
 - → University food waste

QAP

Considering the previous problem, where: Shelters → Depos

Restaurants → Clients

In a more realistic situation, we have trucks with larger capacities than the shelters; thus, they gain an excess of food. If that is the case, excess food at shelters is still considered "waste". Thus, following the defined QAP protocol, we can transport this "waste" from shelter to shelter at certain times during the month. We can then consider additional costs of moving from shelter to shelter.

