

Boosting DNN Cold Inference on Edge Devices

Rongjie Yi¹, Ting Cao², Ao Zhou¹, Xiao Ma¹, Shangguang Wang¹, Mengwei Xu¹

¹ State Key Laboratory of Networking and Switching Technology ²Microsoft Research

DNN is indispensable for mobile apps

Face recognition

Voice recognition

Augmented Reality

DNN is indispensable for mobile apps

DNN-embedded apps on Google Play

DNN is indispensable for mobile apps

Face recognition

Voice recognition

Augmented Reality

Deploy

wearables

1. The tightly constrained hardware resources

1. The tightly constrained hardware resources

To obtain more accurate DNN inference results on devices with limited memory

- 1. The tightly constrained hardware resources
- 2. The volatile, multi-tenant(app) runtime environment

- 1. The tightly constrained hardware resources
- 2. The volatile, multi-tenant(app) runtime environment

For devices with limited memory,

- It's inevitable to switch between multiple DNN inference.
- DNNs cannot always reside in device memory.

- 1. The tightly constrained hardware resources
- 2. The volatile, multi-tenant(app) runtime environment

For devices with limited memory,

- It's inevitable to switch between multiple DNN inference.
- DNNs cannot always reside in device memory.

DNN inference often occurs in cold inference manner

What is cold inference?

load and initialize the model weights into memory before execution.

What is cold inference?

load and initialize the model weights into memory before execution.

Cold inference

Warm inference

- I. Active Cold Inference
- Developers avoids a model residing in memory for a long time.

- I. Active Cold Inference
- Developers avoids a model residing in memory for a long time.
- Mobile apps re-launch models that are infrequently used.

- I. Active Cold Inference
- Developers avoids a model residing in memory for a long time.
- Mobile apps re-launch models that are infrequently used.

PDF Scanner

Beauty Camera

Voice Assistant

- I. Active Cold Inference
- Developers avoids a model residing in memory for a long time.
- Mobile apps re-launch models that are infrequently used.

Pack all DNNs into device memory through weights sharing

- I. Active Cold Inference
- Developers avoids a model residing in memory for a long time.
- Mobile apps re-launch models that are infrequently used.

Pack all DNNs into device memory through weights sharing

Unscalable

- I. Active Cold Inference
- II. Passive Cold Inference

- I. Active Cold Inference
- II. Passive Cold Inference
- Mobile Phone OS kills background apps to reduce memory footprint

Mobile Phone OS

- I. Active Cold Inference
- II. Passive Cold Inference
- Mobile Phone OS kills background apps to reduce memory footprint
- Mobile Browsers relaunch a model whenever web pages are opened

Mobile Browsers

- I. Active Cold Inference
- II. Passive Cold Inference
- Mobile Phone OS kills background apps to reduce memory footprint
- Mobile Browsers relaunch a model whenever web pages are opened
- DNN-based software could crash and needs to fast re-launch.

Autonomous Driving

Cold inference is poorly supported

Google Pixel 5 CPU

Jetson TX2 GPU

Huge gap between cold/warm Inference latency hurt the user experience.

Reading the model weights from device storage into memory

Converting raw weights into the proper format to facilitate the inference

The actual inference process by invoking each operator of the model

A breakdown of ResNet-50 cold inference latency on edge CPU and GPU.

Device Platform	Google Pixel 5	Jetson TX2	
Processor	CPU GPU		
Weights loading	37.86ms	46.72ms	
Weights Transformation	1135.28ms	4620.85ms	
Execution	190.12ms	802.77ms	
Total cold inference	1363.23ms 5467.48ms		
Warm inference	185.82ms	137.02ms	

How to speedup cold inference?

Optimization Knobs#1: Kernel selection

- A DNN model can be represented as a directed data graph consisting of many operators.
- Kernels represent the different implementation of an operator

Optimization Knobs#1: Kernel selection

- A DNN model can be represented as a directed data graph consisting of many operators.
- Kernels represent the different implementation of an operator

One operator, many kernels:

e.g. Convolution Operator's Kernels:

Kernels	Cold Inference Time (ms)		
	Load Weights	Weights Trans.	Execution
3x3s1-winograd-pack4	0.70	38.23	2.98
sgemm-pack4	0.70	2.21	8.14
pack4	0.70	2.22	18.63
3x3s1-winograd	0.70	65.67	3.37
3x3s1	0.70	0.00	8.01
general	0.70	0.00	87.12

Optimization Knobs#1: Kernel selection

The current kernel selection policy:

- hard-coded
- only considers the warm inference speed

Our new kernel selection policy:

- Automatic
- be optimal for cold inference

Optimization Knobs#2: Bypassed weights transformation

Optimization Knobs#2: Bypassed weights transformation

Optimization Knobs#3: Pipelined inference

Edge devices are typically equipped with multi-process architecture

e.g. Arm big.LITTLE architecture:

- " LITTLE" processors are designed for maximum power efficiency.
- "big" processors are designed to provide efficient compute performance.

Optimization Knobs#3: Pipelined inference

Edge devices are typically equipped with multi-process architecture

e.g. Arm big.LITTLE architecture:

- "LITTLE" processors are designed for maximum power efficiency.
- "big" processors are designed to provide efficient compute performance.

Multi-Thread the kernel preparation and execution

Optimization Knobs#3: Pipelined inference

Weights loading: bounded by disk I/O.

Weights Transformation: bounded by memory I/O.

Execution: bounded by computation.

Optimization Knobs#3: Pipelined inference.

Weights loading: bounded by disk I/O.

Weights Transformation: bounded by memory I/O.

Execution: bounded by computation.

Pipelined inference

NNV12: design overview

NNV12: design overview

The need for a kernel scheduler:

- Which kernel to use for each operator;
- II. Whether to load the raw weights or the cached posttransformed weights for each kernel;
- III. When and where to execute each operation.

Use term *operation* to indicate each stage of operators kernel:

- I. weights loading operation;
- II. weights transformation operation;
- III. execution operation.

e.g. operator 1 can be indicate:

- 1. Load operation 1;
- 2. Transformation operation 1;
- 3. Execution operation 1.

Kernel Scheduler Output:

Kernel Scheduler Output:

1. Generated kernel scheduling plan

Kernel Scheduler Output:

- 1. Generated kernel scheduling plan
- 2. Cached post-transformed weights and shader(GPU)

Cached weights

Conv-1:	[0.42 0.16 1.42] 0.13 3.33 0.15 5.15 0.14 8.33]	[0.84] 5.41 9.11]
!	•••	I
	[1.42 1.42 0.94] 4.43 3.33 0.15 5.15 0.14 2.18]	[0.24] [7.53] [9.11]

Cached shaders (only for GPU)

Shader-1

Conv-1: shader-1

Conv-K: shader-K

Heuristic and Assumptions

Heuristic and Assumptions

- 1. Each kernel's execution operation executed sequentially.
- Load operation i: no precursor operations
- <u>Transformation operation i</u>'s precursor operation:
 <u>Load operation i</u>
- <u>Execution operation i</u>'s precursor operation:
 <u>Transformation operation i</u> & <u>Execution operation i-1</u>

Heuristic and Assumptions

- 1. Each kernel's execution operation executed sequentially.
- 2. Each kernel's execution *operation* always occupies all big cores/GPU.

Executing <u>execution operation</u> on LITTLE cores could easily bottleneck the whole inference, leaving the big cores under-utilized.

Heuristic and Assumptions

- 1. Each kernel's execution operation executed sequentially.
- 2. Each kernel's execution *operation* always occupies all big cores/GPU.
- 3. Load and transformation *operations* of the same kernel are always bundled together.

Transformation operation i's precursor operation: Load operation i

Algorithm of kernel scheduling

Algorithm of kernel scheduling

Load operation

Transformation operation

Execution operation

Measure the latency of operation

Load operation

Transformation operation

Execution operation

Algorithm of kernel scheduling

Init the kernel scheduling plan

Algorithm of kernel scheduling

Adjusting the scheduling plan on the little CPU cores through loops

Algorithm of kernel scheduling

Adjust the scheduling plan through loops so that the total latency on the big CPU cores/GPU and small CPU cores is similar

Algorithm of kernel scheduling

Output obtained: kernel scheduling plan

Evaluation: setting

Model	Task	Parameters
AlexNet	classification	61.3M
GoogLeNet		7.1M
MobileNet		4.4M
MobileNetV2		3.7M
ResNet18		12.7M
ShuffleNet		3.6M
EfficientNetB0		5.4M
ResNet50		25.7M
SqueezeNet		1.4M
ShuffleNetV2		3.4M
MobileNetv2-YOLOv3	Object Detection	3.6M
MobileNet-YOLO		11.9M
CRNN-lite	OCR	2.4M

Evaluation: setting

Device	SoC	little cores
Meizu 16T	Snapdragon 855	4
Google Pixel 5	Snapdragon 765G	2
Redmi 9	MTK Helio G80	4
Meizu 18 Pro	Snapdragon 888	4

Device	GPU memory	little cores
Jetson TX2	8G	2
Jetson Nano	4G	2

Evaluation: setting

Device	SoC	little cores
Meizu 16T	Snapdragon 855	4
Google Pixel 5	Snapdragon 765G	2
Redmi 9	MTK Helio G80	4
Meizu 18 Pro	Snapdragon 888	4

Device	GPU memory	little cores
Jetson TX2	8G	2
Jetson Nano	4G	2

Baselines:

- ncnn
- Tensorflow/TFLite
- AsyMo^[1]

Evaluation: end-to-end performance

The cold inference latency of NNV12 and baselines on edge CPUs

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Evaluation: end-to-end performance

Reduce energy consumption by 1.6×-5.0×

Evaluation: ablation

- K: kernel selection;
- C: caching the post-transformed weights (and shaders);
- P: kernel execution pipeline

Conclusion

- ✓ NNV12: A DNN inference framework boosting DNN cold inference on devices
- ✓ Implement a prototype and evaluate its efficiency
- ✓ Open source: https://github.com/UbiquitousLearning/NNV12

Thanks!

Boosting DNN Cold Inference on Devices

Rongjie Yi¹, Ting Cao², Ao Zhou¹, Xiao Ma¹, Shangguang Wang¹, Mengwei Xu¹

¹ State Key Laboratory of Networking and Switching Technology ²Microsoft Research

Code: https://github.com/UbiquitousLearning/NNV12

yirongjie@bupt.edu.cn