The Riemann Zeta Function Part 1: meromorphic extension onto $\mathbb C$

Throughout this note, we use the following definition for the complex log and power functions: For $z = re^{i\theta}$ with r > 0 and $0 \le \theta < 2\pi$, define

$$\log z = \ln r + i\theta, \qquad z^s = e^{s \log z} \ (s \in \mathbb{C}).$$

Here, ln is the real natural logarithmic function.

Definition of $\zeta(s)$ **for** Re s > 1:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (\operatorname{Re} s > 1).$$

Now we try to extend $\zeta(s)$ onto a meromorphic function on the whole complex plane.

First Observation: Identity $\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$ (Re s > 1).

Proof:

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = n^s \int_0^\infty x^{s-1} e^{-nx} dx. \qquad (\text{we have substituted } t = nx)$$

$$\Gamma(s)\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \Gamma(s) = \sum_{n=1}^{\infty} \int_0^{\infty} x^{s-1} e^{-nx} dx = \int_0^{\infty} \sum_{n=1}^{\infty} x^{s-1} e^{-nx} dx = \int_0^{\infty} \frac{x^{s-1}}{e^x - 1} dx. \quad \blacksquare$$

If we can show that the right hand side $\int_0^\infty \frac{x^{s-1}}{e^x-1} dx$ is a meromorphic function of s for all $s \in \mathbb{C}$, then

$$\zeta(s) = \frac{1}{\Gamma(s)}$$
 (the right hand side)

can be used as a definition of $\zeta(s)$ on the whole plane. Unfortunately, in the present form this improper integral is divergent for Re $s \leq 1$, since the integrand behaves bad at the point x = 0:

$$\left| \frac{x^{s-1}}{e^x - 1} \right| \sim x^{\operatorname{Re} s - 2} \qquad (x \sim 0).$$

So this idea does not work directly. Riemann overcame this difficulty by the following trick: Replace the integration path $(0, \infty)$ by the following contour avoiding the singular point x = 0:

$$C(\delta,\epsilon)$$
 $\downarrow z = \delta$
 $C(\delta,\epsilon)$
 $C(\delta,\epsilon)$

where $0 < \varepsilon < \delta < 2\pi$ are fixed (small) numbers.

Definition: For $s \in \mathbb{C}$,

$$G(s) = \int_{C(\delta,\varepsilon)} \frac{z^{s-1}}{e^z - 1} dz.$$

This integral behaves well and defines an entire fcuntion.

FACT 1: G(s) is an entire function of $s \in \mathbb{C}$.

FACT 2: G(s) is independent of the choices of δ and ε .

FACT 3: Fix any $0 < \delta < 2\pi$. For $s \in \mathbb{C}$,

$$G(s) = \int_{C(\delta)} \frac{z^{s-1}}{e^z - 1} dz = \int_{|z| = \delta} \frac{z^{s-1}}{e^z - 1} dz + (e^{i2\pi s} - 1) \int_{\delta}^{\infty} \frac{x^{s-1}}{e^x - 1} dx,$$

where the integration contour $C(\delta)$ is:

$$C(\delta) \qquad \underbrace{\delta} \qquad \underbrace{\text{Im } z=0+}$$

$$|z|=\delta \qquad \qquad \text{Im } z=0-$$

FACT 4: For $\operatorname{Re} s > 1$,

$$G(s) = (e^{i2\pi s} - 1) \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx = (e^{i2\pi s} - 1)\Gamma(s)\zeta(s).$$

Now we can give a definition of $\zeta(s)$ on the whole plane.

DEFINITION OF
$$\zeta(s)$$
 FOR $s \in \mathbb{C}$: $\zeta(s) = \frac{G(s)}{(e^{i2\pi s} - 1)\Gamma(s)}$.

Fact 4 shows that this definition is consistent with the original (infinite series) definition of $\zeta(s)$ in the region Re s > 1.

By the new definition, we immediately see that

$$\zeta(s)$$
 is meromorphic on \mathbb{C} .

In the next note, we'll study some special values of $\zeta(s)$; in particular, we'll be interested in its pole and zeros.

The proofs of the above Facts 1-4 are collected below.

Proof of Fact 1: Cutting off the tail on the right side, we can approximate the infinite path $C(\delta, \epsilon)$ by a family of paths C_n with finite length; the limit of C_n as $n \to \infty$ is $C(\delta, \epsilon)$.

The integrand $g(s,z) = \frac{z^{s-1}}{e^z - 1}$ is a continuous function of $(s,z) \in \mathbb{C} \times (\mathbb{C} \setminus [0,\infty))$. For each fixed $z \in \mathbb{C} \setminus [0,\infty)$, g(s,z) is an entire function of s. Hence, for each n, $\int_{C_n} g(s,z) dz$ is an entire function of s.

We have

$$\int_{C_n} g(s,z)dz \to \int_{C(\delta,\epsilon)} g(s,z)dz.$$

Since the limit of holomorphic functions is also holomorphic, this shows that G(s) is an entire function of s.

Proof of Fact 2: Let $0<\varepsilon_1<\delta_1<2\pi$ and $0<\varepsilon_2<\delta_2<2\pi$ be fixed. Denote by $g(s,z)=z^{s-1}/(e^z-1)$. We try to show

$$\int_{C(\delta_1,\varepsilon_1)} g(s,z)dz = \int_{C(\delta_2,\varepsilon_2)} g(s,z)dz.$$

Take a large T > 0. Consider a closed contour $\gamma(T)$ as in the following figure:

which consists of black, red and green parts.

Since the closed contour $\gamma(T)$ is in the simply connected region $z \in \mathbb{C} \setminus [0, \infty)$ where g(s, z) is holomorphic in z, we have

$$\int_{\gamma(T)} g(s, z) dz = 0.$$

Now pass to the limit as $T \to \infty$:

$$\int_{\text{black}} g(s,z)dz \to \int_{C(\delta_1,\varepsilon_1)} g(s,z)dz, \quad \int_{\text{red}} g(s,z)dz \to -\int_{C(\delta_2,\varepsilon_2)} g(s,z)dz,$$

and

$$\int_{\text{green}} g(s, z) dz \to 0.$$

Proof of Fact 3: Take the limit as $\varepsilon \downarrow 0$. Notice that for x > 0, we have the following limits as $\varepsilon \downarrow 0$:

$$(x+i\varepsilon)^{s-1} \to x^{s-1}, \quad (x-i\varepsilon)^{s-1} \to x^{s-1}e^{i2\pi(s-1)} = x^{s-1}e^{i2\pi s}$$

Thus, as $\varepsilon \downarrow 0$,

$$\int_{C(\delta,\varepsilon)} \frac{z^{s-1}}{e^z - 1} dz \to \int_{\infty}^{\delta} \frac{x^{s-1}}{e^x - 1} dx + \int_{|z| = \delta} \frac{z^{s-1}}{e^z - 1} dz + \int_{\delta}^{\infty} \frac{x^{s-1} e^{i2\pi s}}{e^x - 1} dx$$
$$= \int_{|z| = \delta} \frac{z^{s-1}}{e^z - 1} dz + \int_{\delta}^{\infty} \frac{x^{s-1} (e^{i2\pi s} - 1)}{e^x - 1} dx. \quad \blacksquare$$

Proof of Fact 4: Use Fact 3 and take the limit as $\delta \downarrow 0$. We only need to show

$$\int_{|z|=\delta} \frac{z^{s-1}}{e^z - 1} dz \to 0.$$

Estimate:

$$\left| \int_{|z|=\delta} \frac{z^{s-1}}{e^z - 1} dz \right| \le \int_{|z|=\delta} \frac{|z^{s-1}|}{|\exp(z) - 1|} |dz|$$

$$= \int_0^{2\pi} \delta^{\operatorname{Re} s - 1} e^{-\theta \operatorname{Im} s} \left| \exp(\delta e^{i\theta}) - 1 \right|^{-1} \delta d\theta$$

$$= \delta^{\operatorname{Re} s - 1} \int_0^{2\pi} e^{-\theta \operatorname{Im} s} \left| \frac{\exp(\delta e^{i\theta}) - 1}{\delta} \right|^{-1} d\theta$$

Now, as $\delta \downarrow 0$ we have

$$\frac{\exp(\delta e^{i\theta}) - 1}{\delta} \to e^{i\theta}$$

and hence

$$\int_0^{2\pi} e^{-\theta \operatorname{Im} s} \left| \frac{\exp(\delta e^{i\theta}) - 1}{\delta} \right|^{-1} d\theta \to \int_0^{2\pi} e^{-\theta \operatorname{Im} s} d\theta < \infty.$$

This shows that as $\delta \downarrow 0$, $\int_{|z|=\delta} \frac{z^{s-1}}{e^z-1} dz$ is of order $O(\delta^{\operatorname{Re} s-1})$ and thus decays to 0 if $\operatorname{Re} s > 1$.

EXERCISES

- 1. Complete the proof of Fact 2, by verifying $\int_{green} g(s,z)dz \to 0$.
- 2. Riemann's technique summarized above can be used to deal with other functions as well. For instance, use the definition $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$ for Re s > 0. By considering

$$H(s) = \int_{C(\delta,\varepsilon)} z^{s-1} e^{-z} dz,$$

we can extend $\Gamma(s)$ to a meromorphic function on the whole plane.

- (a) The integral defining H(s) converges for any $0 < \varepsilon < \delta < \infty$ and any $s \in \mathbb{C}$.
- (b) H(s) is an entire function of s.
- (c) H(s) is independent of δ and ε .
- (d) Fix $\delta > 0$. For any $s \in \mathbb{C}$,

$$H(s) = \int_{C(\delta)} z^{s-1} e^{-z} dz = \int_{|z|=\delta} z^{s-1} e^{-z} dz + (e^{i2\pi s} - 1) \int_{\delta}^{\infty} x^{s-1} e^{-x} dx.$$

(e) For Re s > 0, $H(s) = (e^{i2\pi s} - 1)\Gamma(s)$.

Remark: In view of (b) and (e), we can use $\Gamma(s) = H(s)/(e^{i2\pi s}-1)$ as the global definition of $\Gamma(s)$ on \mathbb{C} . This provides an alternative treatment of $\Gamma(s)$. Can you find the poles of $\Gamma(s)$ and evaluate residues using this method?