Lecture Notes to Locally Symmetric Spaces Winter 2020, Weizmann Institute

Lectures by Prof. Tsachik Gelander Typed by Elad Tzorani

October 29, 2020

Contents

1 Preliminaries			ries	Ę
	1.1	Definit	tions	Ę
		1.1.1	Symmetric Spaces	Ę
		1.1.2	The Hyperbolic Space	6
		1.1.3	Back to Symmetric Spaces	6
			roups & Symmetric Spaces	
		1.2.1	Lie Groups Correspond to Symmetric Spaces	7
		1.2.2	The Symmetric Spaces of $\mathrm{PSL}_n\left(\mathbb{R}\right)$ and $\mathrm{SL}_n\left(\mathbb{R}\right)$	8
		1.2.3	Ranks of Lie Groups & Symmetric Spaces	ĺ

4 CONTENTS

Chapter 1

Preliminaries

1.1 Definitions

1.1.1 Symmetric Spaces

Definition 1.1.1 (Symmetric Space). A symmetric space is a connected and simply connected Riemannian manifold X such that for every $p \in X$ there's an isometry i_p such that

- 1. $_{p}(p) = p$.
- 2. $(di_p)_p = -id$.

Examples.

- 1. \mathbb{R}^n is a symmetric space. At 0 there's a reflection $x \mapsto -x$, and at any other point there's a translation of this reflection. The curvature of this is 0.
- 2. S^n , for n > 1, is a symmetric space, similarly. The curvature of this is 1. If n = 1, S^n isn't simply connected.
- 3. \mathbb{H}^n is a symmetric space. The curvature of this is -1.
- 4. $\mathbb{R}^2 \times \mathbb{H}^3 \times S^5$, or any other product of symmetric spaces.

Proposition 1.1.2 (De-Rham Decomposition). Any symmetric space decomposes uniquely as a direct product of irreducible factors.

Definition 1.1.3 (Symmetric Spaces of Non-Compact Type). A symmetric space is said to be *of non-compact type* if it has neither Euclidean nor compact factors.

Example 1.1.4. In our previous examples, the only symmetric spaces of noncompact type are \mathbb{H}^n .

Assumption 1.1.5. We will consider only symmetric spaces of non-compact type.

1.1.2 The Hyperbolic Space

We give a short review of the hyperbolic spaces \mathbb{H}^n .

Definition 1.1.6 (Hyperbolic Space). The *n*-dimensional hyperbolic space \mathbb{H}^n is the unique simply connected *n*-dimensional Riemannian manifold with constant sectional curvature -1.

There are several models for the hyperbolic space.

Definition 1.1.7 (Upper Half-Space Model for \mathbb{H}^n **).** We define \mathbb{H}^n as the upper half-space in \mathbb{R}^n with distance defined by

$$\mathrm{d}s^2 = \frac{\sum_{i \in [n]} \mathrm{d}x_i^2}{x_i^2}.$$

Proposition 1.1.8. 1. Geodesics in \mathbb{H}^2 are either lines perpendicular to \mathbb{R} or half-circles with center on \mathbb{R} .

- 2. Circles in \mathbb{H}^2 are Euclidean circles (with different centres and radii; the Euclidean centre is always higher).
- 3. The area of a triangle in \mathbb{H}^2 is always less than π .
- 4. The distance between a point on one side of a triangle to the union of the 2 other sides is always at most 2.
- 5. Given a line ℓ and a point p outside of ℓ , there are infinitely many lines through p which do not intersect ℓ .
- 6. The isometries of \mathbb{H}^2 are Möbius transformations.
- 7. $\operatorname{PSL}_2(\mathbb{R})$ is a connected component of $\operatorname{Isom}\mathbb{H}^2$. The other component is non-orientation-preserving transformations.

Example 1.1.9. $\mathbb{H}^2 \times \mathbb{H}^2$ is a symmetric space.

1.1.3 Back to Symmetric Spaces

Proposition 1.1.10. Let X be a symmetric space. Isom (X) acts transitively on X.

Proof. Let $x,y\in X$. Take a geodesic γ between x,y and find a mid-point z. Then reflect through z via i_z .

Proposition 1.1.11. Let X be a symmetric space. $PSL_2(\mathbb{R})$ acts transitively on X.

Proof. Take
$$i_z \circ i_x$$
.

Notation 1.1.12. Denote Isom $(X)^{\circ} := \operatorname{PSL}_2(\mathbb{R})$.

Fact 1.1.13. Isom $(X) = F \ltimes \text{Isom } (X)^{\circ}$.

Proposition 1.1.14. Isom $(X)^{\circ}$ is a connected centre-free semisimple Lie group.

Fact 1.1.15. A symmetric space of non-compact type has non-positive sectional curvature.

Proposition 1.1.16. Non-positive curvature is equivalent to convexity of the metric (in the sense of calculus).

Given a triangle abc in X, take a triangle a'b'c' in \mathbb{R}^2 such that the distances are equal. The CAT (0) inequality gives, for a point on bc, that $d(a,x) \leq d(a',x')$. The difference between d(a',x') - d(a',x') is some way to measure the convexity of a space. It's bigger for spaces with more negative curvature.

Theorem 1.1.17. If X is a symmetric space of non-compact type, then $\operatorname{Isom}(X)^{\circ}$ is a connected centre-free semisimple Lie group.

1.2 Lie Groups & Symmetric Spaces

1.2.1 Lie Groups Correspond to Symmetric Spaces

Definition 1.2.1 (Lie Group). A *Lie group* is a group object in the category of analytic manifolds.

Definition 1.2.2 (Semisimple Lie Group). A Lie group is called *semisim-ple* if it has no solvable normal subgroups of positive dimension.

Example 1.2.3. Let $X = \mathbb{R}^n$. Then $\text{Isom}(X)^{\circ} = \text{SO}(n) \ltimes \mathbb{R}^n$, where \mathbb{R}^n is solvable and normal. Hence $\text{Isom}(X)^{\circ}$ is not semisimple.

Proposition 1.2.4. A centre-free semisimple Lie group is a product of simple Lie groups.

Fact 1.2.5. There is a complete list of all simple Lie groups.

Some Lie groups we'll consider are the following.

Examples.

- 1. $SL_n(\mathbb{R})$.
- 2. $\operatorname{PSL}_2(\mathbb{R})$.
- 3. SO $(n, 1) = \text{Isom } (\mathbb{H}^n)$.
- 4. SO $(2,1) \cong SL_2(\mathbb{R})$.
- 5. SO $(3,1) \cong SL_2(\mathbb{C})$.

Theorem 1.2.6. For any simple non-compact Lie group G, there is a symmetric space X such that $G \cong \mathrm{Isom}(X)^{\circ}$.

Proof. G admits a maximal compact subgroup K. One takes X = G/K with a natural metric coming for the Killing form.

Corollary 1.2.7. There is a 1-1 correspondence between semisimple Lie groups without compact factors and symmetric spaces of non-compact type. Simple Lie groups correspond to irreducible symmetric spaces.

The correspondence sends a symmetric space X to $\mathrm{Isom}(X)^{\circ}$, and a Lie group G to G/K with K a maximal compact subgroup of G.

1.2.2 The Symmetric Spaces of $\mathrm{PSL}_n(\mathbb{R})$ and $\mathrm{SL}_n(\mathbb{R})$

Let $G := \mathrm{SL}_n(\mathbb{R})$ and $K := \mathrm{SO}(n)$. We have the corresponding Lie algebras $\mathfrak{sl}_n(\mathbb{R})$ of matrices with trace 0, and $\mathfrak{so}(n)$ of anti-symmetric matrices. Inside $\mathfrak{sl}_n(\mathbb{R})$ we have S, the symmetric matrices of trace 0.

One can write $\mathfrak{sl}_n(\mathbb{R}) = \mathfrak{so}(n) + S$. The corresponding symmetric space $P_n(\mathbb{R}) = G/K$ to $\mathfrak{sl}_n(\mathbb{R})$ has a model P, being the positive-definite unimodular (i.e. with det = 1) $n \times n$ matrices.

G acts on P by similarity,

$$g \cdot P = gPg^t$$
.

This is transitive because any two quadratic forms are similar. We describe the metric at the identity. We have

$$T_I(P) = S.$$

Then

$$\langle X, Y \rangle = \operatorname{tr}(XY)$$

and

$$\exp \colon S \to P$$

$$X \mapsto e^X = \sum_{n \geq 0} \frac{X^n}{n!}.$$

Fact 1.2.8. The symmetric space of $SL_3(\mathbb{R})$ is 5-dimensional.

Theorem 1.2.9 (Mostow). Every centre-free semisimple Lie group can be embedded in $SL_n(\mathbb{R})$ for some $n \in \mathbb{N}$, such that the image is transpose-invariant.

Corollary 1.2.10. Any symmetric space of non-compact type can be embedded in $P_n(\mathbb{R})$ in a totally-geodesic way (i.e. in a way where the geodesic between any two points of a subspace stay in the subspace).

1.2.3 Ranks of Lie Groups & Symmetric Spaces

Definition 1.2.11 (The Rank of a Symmetric Space). Let X be a symmetric space. The rank of a symmetric space is the dimension of a maximal totally-geodesic Euclidean subspace of X.

Example 1.2.12. rank $(\mathbb{H}^n) = 1$. We can embed a line in \mathbb{H}^n , in a totally geodesic way. However, we cannot embed a plane in such a way, because the curvature of \mathbb{H}^n is 1.

Consider for example \mathbb{H}^3 with axes x,y,z and consider the subset $D \coloneqq \{(x,y,z) \mid z=1\}$. The Riemannian metric is $\mathrm{d}s^2 = \frac{\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2}{z^2}$. The intrinsic metric inside D is $\mathrm{d}x^2 + \mathrm{d}y^2$ which is flat. However, this isn't totally geodesic. If the Euclidean distance between points p,q is ℓ , the geodesic inside \mathbb{H}^2 , which passes through the complement of D, is actually of length $\log{(\ell)}$.

Example 1.2.13. Let $X := P_3(\mathbb{R}) = \operatorname{SL}_3(\mathbb{R}) / \operatorname{SO}(5)$. This is 5-dimensional and of rank 2.

Inside this is
$$\left\{ A = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid \det A = 1 \right\}$$
 which is a flat plane.

Fact 1.2.14. Let X be a symmetric space of rank r. Then $G := \text{Isom}(X)^{\circ}$ acts transitively on pairs (F, p) where F is a flat (i.e. totally geodesic) r-plane, and $p \in F$.

Fact 1.2.15. In rank 2, G does not act transitively on geodesics.

Example 1.2.16. Examine $X = P_3(\mathbb{R})$. Consider matrices of the forms

$$c_{1}(t) := \exp\left(t \begin{pmatrix} 1 & 0 & \\ & 0 & \\ & -1 \end{pmatrix}\right) = \begin{pmatrix} \mu & 0 & \\ & \mu^{-1} \end{pmatrix}$$
$$c_{2}(t) := \exp\left(t \cdot \begin{pmatrix} 1 & \\ & 1 & \\ & & -2 \end{pmatrix}\right) = \begin{pmatrix} \lambda & \\ & \lambda & \\ & & \lambda^{-2} \end{pmatrix}.$$

Every geodesic is contained in a plane. A regular geodesic is contained in a unique (flat) plane, and a singular geodesic is contained in many (flat) planes.

Definition 1.2.17 (The Rank of a Simple Lie Group). The rank of a simple Lie group G is the maximal dimension of a torus, where by torus we mean a subgroup which is diagonalisable over \mathbb{C} .

Example 1.2.18. If $G := \operatorname{SL}_n(\mathbb{R})$, we have rank (G) = n - 1.