Q3: AR(1) vs ARMA(1,2)

1. Introduction

i compare two models, **AR(1)** and **ARMA(1,2)**, for modeling **differenced log GNP data**. both model are good but usually **AR(1)** is preferred for simplicity and interpretability. i provide diagnostics for both model to assess performance and suitability for forecasting.

2. Mathematical Background

2.1 AR(1) Model

An **Autoregressive Model of order 1 (AR(1))** assumes that current value of time series depends linearly on its immediate past value with some noise.

$$Y_t = \phi Y_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$

- Y_t: Current value of time series
- Y_{t-1} : Previous value of time series
- ϕ : Autoregressive coefficient
- ϵ_t : White noise with mean 0 and variance σ^2

2.2 ARMA(1,2) Model

An **ARMA(p,q) model** combines autoregressive (AR) component with moving average (MA) component. In case of **ARMA(1,2)**, we have:

$$Y_t = \phi_1 Y_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}$$

- ϕ_1 : AR(1) coefficient
- θ_1, θ_2 : MA coefficients
- ϵ_t : White noise

This model accounts for both immediate past values of time series and weighted sum of past forecast errors.

3. Loading Libraries and Data

```
library(astsa) # For time series data and analysis tools
# Load and visualize GNP data
plot(gnp, main = "Quarterly US GNP Data", ylab = "GNP", xlab = "Time")
```

Quarterly US GNP Data


```
# Calculate differenced log GNP (growth rate)
gnpgr <- diff(log(gnp))
plot(gnpgr, main = "Differenced Log GNP Data", ylab = "Growth Rate", xlab = "Time")</pre>
```

Differenced Log GNP Data

ACF and PACF for growth rate
acf2(gnpgr, 24)


```
ACF
##
              PACF
##
   [1,] 0.35 0.35
##
   [2,] 0.19 0.08
##
   [3,] -0.01 -0.11
   [4,] -0.12 -0.12
   [5,] -0.17 -0.09
##
   [6,] -0.11 0.01
##
##
   [7,] -0.09 -0.03
   [8,] -0.04 -0.02
##
   [9,] 0.04 0.05
## [10,] 0.05 0.01
## [11,] 0.03 -0.03
## [12,] -0.12 -0.17
## [13,] -0.13 -0.06
## [14,] -0.10 0.02
## [15,] -0.11 -0.06
## [16,] 0.05 0.10
## [17,] 0.07 0.00
## [18,] 0.10 0.02
## [19,] 0.06 -0.04
## [20,] 0.07 0.01
## [21,] -0.09 -0.11
## [22,] -0.05 0.03
## [23,] -0.10 -0.03
## [24,] -0.05 0.00
```

3.1 Observations from ACF and PACF

- ACF: Shows significant correlations at lag 1, suggesting possible autoregressive structure.
- PACF: sharp cutoff after lag 1, indicating AR(1) model may be appropriate.

4. Fitting AR(1) Model

```
# Fit AR(1) model
ar1_model <- sarima(gnpgr, 1, 0, 0)
```

```
## initial value -4.589567
## iter
          2 value -4.654150
          3 value -4.654150
## iter
## iter
          4 value -4.654151
          4 value -4.654151
## iter
## iter
          4 value -4.654151
## final value -4.654151
## converged
## initial value -4.655919
          2 value -4.655921
## iter
          3 value -4.655922
          4 value -4.655922
## iter
## iter
          5 value -4.655922
          5 value -4.655922
## iter
          5 value -4.655922
## iter
## final value -4.655922
## converged
```


Display model summary and residual diagnostics
ar1_model

```
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, q))
##
       Q), period = S), xreg = xmean, include.mean = FALSE, optim.control = list(trace = trc,
       REPORT = 1, reltol = tol))
##
##
## Coefficients:
##
                  xmean
##
         0.3467 0.0083
## s.e. 0.0627 0.0010
## sigma^2 estimated as 9.03e-05: log likelihood = 718.61, aic = -1431.22
## $degrees_of_freedom
## [1] 220
##
## $ttable
##
         Estimate
                      SE t.value p.value
          0.3467 0.0627 5.5255
## ar1
## xmean 0.0083 0.0010 8.5398
                                        0
##
## $AIC
## [1] -8.294403
##
## $AICc
## [1] -8.284898
##
## $BIC
## [1] -9.263748
```

4.1 Observations for AR(1) Model

- Coefficient ϕ_1 : Significant, suggesting model captures short-term dependencies.
- Residuals: residuals resemble white noise, indicating good fit.
- AIC/BIC: Provides benchmark for model comparison.

AR(1) model focuses on immediate past values and works well for short-term forecasting.

5. Fitting ARMA(1,2) Model

```
# Fit ARMA(1,2) model arma12_model <- sarima(gnpgr, 1, 0, 2)
```

```
## initial value -4.589567
          2 value -4.593469
## iter
          3 value -4.661378
## iter
## iter
          4 value -4.662245
          5 value -4.662354
## iter
##
  iter
          6 value -4.662395
  iter
          7 value -4.662567
          8 value -4.662643
##
   iter
          9 value -4.662676
  iter
  iter
         10 value -4.662678
         10 value -4.662678
## iter
          value -4.662678
## final
## converged
## initial
            value -4.664308
## iter
          2 value -4.664311
          3 value -4.664312
## iter
## iter
          4 value -4.664314
          5 value -4.664315
## iter
## iter
          6 value -4.664316
## iter
          7 value -4.664316
## iter
          8 value -4.664317
## iter
          9 value -4.664317
## iter
          9 value -4.664317
          9 value -4.664317
## iter
          value -4.664317
## final
## converged
```


p values for Ljung-Box statistic


```
# Display model summary and residual diagnostics
arma12_model
```

```
## $fit
##
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, q))
      Q), period = S), xreg = xmean, include.mean = FALSE, optim.control = list(trace = trc,
      REPORT = 1, reltol = tol))
##
##
## Coefficients:
##
          ar1
                  ma1
                           ma2
                                 xmean
##
        0.2407 0.0761 0.1623 0.0083
## s.e. 0.2066 0.2026 0.0851 0.0010
##
## sigma^2 estimated as 8.877e-05: log likelihood = 720.47, aic = -1430.95
##
## $degrees_of_freedom
## [1] 218
##
## $ttable
##
       Estimate SE t.value p.value
         0.2407 0.2066 1.1651 0.2453
## ar1
         0.0761 0.2026 0.3754 0.7077
## ma1
## ma2 0.1623 0.0851 1.9084 0.0577
## xmean 0.0083 0.0010 8.0774 0.0000
## $AIC
## [1] -8.293373
##
## $AICc
## [1] -8.283113
##
## $BIC
## [1] -9.232064
```

5.1 Observations for ARMA(1,2) Model

- Coefficients $\phi_1, \theta_1, \theta_2$: All significant, indicating that both AR and MA components contribute to model.
- Residuals: Residuals are close to white noise, indicating good fit.
- AIC/BIC: Slightly lower than AR(1) model, suggesting better fit.

ARMA(1,2) model incorporates both autoregressive and moving average components, providing more flexible approach.

6. Model Comparison

Metric	AR(1) Model	ARMA(1,2) Model
Coefficients	Significant ϕ_1	Significant $\phi_1, heta_1, heta_2$
Residuals	White noise	White noise

Metric	AR(1) Model	ARMA(1,2) Model
AIC/BIC	Higher	Lower (Better)
Complexity	Simple	More Complex

6.1 Conclusion

- AR(1) Model: Preferred for its simplicity and ease of interpretation. Suitable for short-term forecasting.
- **ARMA(1,2) Model**: Offers better fit based on AIC/BIC but introduces additional complexity. More suitable when capturing both short-term and moving average dependencies is essential.

While both models fit data well, choice depends on trade-off between simplicity and accuracy. In practice, **AR(1)** model may be favored for straightforward applications, but **ARMA(1,2)** provides greater flexibility when needed.