

ME414 - Estatística para Experimentalistas

Parte 18

Teste de Hipóteses

Relembrando: Teste de Hipóteses Passo-a-Passo

- · Passo 1: Suposições
- · Passo 2: Hipóteses
- · Passo 3: Estatística do Teste
- Passo 4: Valor-de-p
- Passo 5: Conclusões

Teste de Hipótese para uma proporção

Suponha que temos uma população e uma hipótese sobre a proporção p de indíviduos com certa característica

Hipóteses:

$$H_0: p=p_0 \quad ext{vs} \quad H_a: p
eq p_0 ext{ (bilateral)} \ p < p_0 ext{ (unilateral à esquerda)} \ p > p_0 ext{ (unilateral à direita)}$$

Estatística do teste: Baseada na distribuição amostral de \hat{p}

$$Z=rac{\hat{p}-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}\stackrel{H_0}{\sim}N(0,1)$$

Condição: $np_0 \geq 10$ e $n(1-p_0) \geq 10$ para aproximação normal

Teste de Hipótese para uma proporção

valor-de-p

- $\cdot \; H_a: p
 eq p_0$ (bilateral): valor-de-p= $P(|Z| \ge |z_{obs}|)$
- $\cdot \;\; H_a: p < p_0$ (unilateral à esquerda): valor-de-p= $P(Z \leq z_{obs})$
- $H_a: p>p_0$ (unilateral à direita): valor-de-p= $P(Z\geq z_{obs})$

Conclusão: Para um nível de significância lpha

- · Se valor-de-p $\leq \alpha$: rejeitamos H_0
- · Se valor-de-p > α : não rejeitamos H_0

Em sala de aula, vários alunos disseram que conseguem distinguir entre Coca-Cola normal e Coca-Cola Zero.

Fizemos então o teste para comprovar se a afirmação é verdadeira.

Um dos alunos experimentou, em ordem aleatória, 20 amostras (ao acaso era Coca normal ou zero) e anotamos a quantidade de acertos.

Cada tentativa, X_i , é uma Bernoulli(p), em que p é a probabilidade de acerto.

Veja que
$$T = \sum_{i=1}^{20} X_i \sim Bin(20,p)$$
, onde T é o número de acertos.

Dos 20 testes, o aluno acertou 19! Temos então uma proporção amostral de acertos $\hat{p}=19/20=0.95$. Isso mostra que o aluno realmente sabe a diferença?

Vamos testar o seguinte:

$$H_0: p = 0.50$$
 vs $H_a: p > 0.50$

Podemos testar essas hipóteses de duas maneiras:

- · Usando a aproximação normal para a proporção de acertos, como vimos na última aula, já que as condições $np_0 \geq 10$ e $n(1-p_0) \geq 10$ são satisfeitas.
- · Usando a distribuição exata do número total de acertos

Vamos revisar o que vimos na aula passada e também fazer o teste com a distribuição exata de ${\cal T}.$

Usando a distribuição exata do número de acertos em 20 tentativas.

Hipóteses: $H_0: p = 0.50$ vs $H_a: p > 0.50$

Hipóteses: $H_0: Acertos = 10$ vs $H_a: Acertos > 10$

Estatística do teste: $T = \sum_{i=1}^{20} X_i \overset{H_0}{\sim} Bin(20, 0.5)$

O valor observado da estatística do teste é $t_{obs}=19$, ou seja, o número total de acertos.

valor-de-p = $P(T \geq 19) = 0.00002$

Conclusão: Fixando $\alpha=0.05$, rejeitamos a hipótese de que p=0.5 e, portanto, acreditamos que a probabilidade de acertos é maior que 50%.

Quando realizamos um teste de hipóteses, podemos cometer 2 tipos de erros:

- 1- **Erro Tipo I:** Rejeitar a hipótese H_0 , quando tal hipótese é verdadeira
- 2- Erro Tipo II: Não rejeitar a hipótese H_0 , quando tal hipótese é falsa

	Но	
Decisão	Verdadeira	Falsa
Rejeitar H ₀	Erro Tipo I	OK ✓
Não Rejeitar H ₀	OK ✓	Erro Tipo II

Erro Tipo I: erro mais grave

Type I error (false positive)

Type II error (false negative)

 H_0 : você não está grávida(o)

 H_A : você está grávida(o)

Podemos calcular as probabilidades dos dois tipos de erro, chamadas de α e β :

$$\alpha = P(\text{Erro Tipo I}) = P(\text{Rejeitar } H_0 | H_0 \text{ verdadeira})$$

$$\beta = P(\text{Erro Tipo II}) = P(\text{Não Rejeitar } H_0|H_0 \text{ falsa})$$

Na situação ideal, ambas as probabilidades de erro, α e β , seriam próximas de zero. Entretanto, à medida que diminuímos α , a probabilidade β tende a aumentar.

Levando isso em conta, em teste de hipóteses tentamos controlar a probabilidade do erro do tipo I, já que esse é o erro mais grave.

A probabilidade α é chamada de **nível de significância**, que geralmente fixamos em 5%.

No experimento da Coca-Cola tivemos 19 acertos em 20 tentativas e decidimos rejeitar H_0 .

Mas e se tivéssemos observado 14 acertos? Ou 12?

Existe um valor, t_c , de maneira que se observarmos algo igual ou maior que ele decidimos rejeitar H_0 ?

Esse valor é chamado de **valor crítico** e vamos denotá-lo por t_c .

No experimento da Coca-Cola: $H_0: p=0.5 \quad {
m vs} \quad H_a: p>0.5$

Seja T o número de acertos em uma amostra de tamanho n=20. Então $T\sim Bin(20,p)$.

Vamos considerar o seguinte valor crítico: $t_c=12$.

Lembrando que T pode assumir os valores $0, 1, 2, \ldots, 20$.

O valor crítico t_c determina as probabilidades de cometer os erros tipo I e II.

Considerando $t_c=12$

$$P(ext{Erro Tipo I}) = P(ext{Rejeitar}\ H_0|H_0 ext{ verdadeira}) \ = P(T \geq t_c|p=0.5) \ = \sum_{x=12}^{20} P(T=x|p=0.5) pprox 0.25$$

$$P(ext{Erro Tipo II}) = P(ext{N\~ao Rejeitar}\ H_0|H_0 ext{ falsa}) \ = P(T < t_c|p=0.7) \ = \sum_{x=0}^{11} P(T=x|p=0.7) pprox 0.11$$

Observando a relação entre os erros tipo I e II, e t_c : $H_0: p=0.5 ext{ vs } H_a: p=0.7$

t_c	P(Erro Tipo I)	P(Erro Tipo II)
12	0.25	0.11
13	0.13	0.23
14	0.06	0.39
15	0.02	0.58

Veja que à medida que $\alpha = P(Erro Tipo I)$ diminui, $\beta = P(Erro Tipo II)$ aumenta.

Então, optamos por controlar lpha=P(Erro Tipo I), que é considerado o erro mais grave. Geralmente fixamos lpha=0.05 e rejeitamos H_0 se valor-de-p < lpha.

Teste de hipóteses para média (σ conhecido)

Teste de hipóteses: proporção ou média

Exemplo: Café

Vamos voltar no problema da máquina que enche pacotes de café. Digamos que o peso nominal do pacote de café seja de 500g. Assume-se que o desvio padrão é conhecido ($\sigma=10$).

Retiraram uma amostra de 25 pacotes e observaram um peso médio de 485g.

Isso nos traz evidência de que os pacotes têm menos de 500g?

Já calculamos o IC de 95% para esse problema:

$$IC(\mu, 0.95) = [481.08; 488.92]$$

Vamos agora testar as hipóteses:

$$H_0: \mu = 500$$
 vs $H_a: \mu \neq 500$

Exemplo: Café

Suposições: Seja X_i o peso do i-ésimo pacote de café. Sabemos que $\mathbb{E}(X_i)=\mu$ e $Var(X_i)=\sigma^2$. Coletou-se uma amostra de tamanho n=25. Pelo TCL:

$$ar{X} \sim N(\mu, \sigma^2/n)$$

Hipóteses: $H_0: \mu = \mu_0 = 500$ vs $H_a: \mu \neq \mu_0 = 500$

Estatística do teste:

$$Z = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}} \stackrel{H_0}{\sim} N(0,1)$$

Considerando a amostra obtida:

$$z_{obs} = \frac{485 - 500}{10/5} = -7.5$$

Teste de hipóteses para média (σ conhecido)

Como medir se -7.5 é evidência contra H_0 ?

O teste é bilateral, portanto o valor-de-p é calculado como:

Valor-de-p:
$$P(|Z| \geq 7.5) = 2P(Z \geq 7.5) pprox 0$$

Conclusão: Como o valor-de-p é praticamente zero, rejeitamos H_0 , ou seja, rejeitamos a hipótese de que a média é 500g.

Região Crítica (Região de Rejeição)

Outra forma de decidirmos se a evidência encontrada nos dados é forte o suficiente para rejeitar H_0 é determinando a **região crítica** ou **região de rejeição**.

Região Crítica: conjunto de valores da estatística do teste para os quais a hipótese nula é rejeitada.

Região crítica: teste bilateral

 $H_0: \mu=\mu_0$ vs $H_a: \mu\neq\mu_0$ e um nível de significância α , definimos a região crítica do teste:

Região crítica: teste unilateral à direita

 $H_0: \mu=\mu_0$ vs $H_a: \mu>\mu_0$ e um nível de significância α , definimos a região crítica do teste:

Região crítica: teste unilateral à esquerda

 $H_0: \mu=\mu_0$ vs $H_a: \mu<\mu_0$ e um nível de significância α , definimos a região crítica do teste:

Região Crítica: teste bilateral

Quando o teste for bilateral: $H_0: \mu = 500 \quad {
m vs} \quad H_a: \mu
eq 500$

A região critíca, para lpha=0.05, é a área em azul na figura abaixo:

Decisão: Rejeitamos H_0 se $z_{obs}<-1.96$ ou $z_{obs}>1.96$. No nosso exemplo, $z_{obs}=-7.5$. Portanto, rejeitamos H_0 .

Região Crítica: teste unilateral à esquerda

Quando o teste for unilateral à esquerda: $H_0: \mu = \mu_0 \quad ext{vs} \quad H_a: \mu < \mu_0$

A região critíca, para lpha=0.05, é a área em azul na figura:

Decisão: Rejeitamos H_0 se $z_{obs} < -1.645$.

Região Crítica: teste unilateral à direita

Quando o teste for unilateral à direita: $H_0: \mu = \mu_0 \quad ext{vs} \quad H_a: \mu > \mu_0$

A região critíca, para lpha=0.05, é a área em azul na figura:

Decisão: Rejeitamos H_0 se $z_{obs}>1.645$.

Teste de hipóteses para média (σ desconhecido)

Teste de hipóteses para média (σ desconhecido)

No caso de testar

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_a: \mu \neq \mu_0$$

quando σ é desconhecido e a amostra é pequena (n < 30) devemos utilizar a distribuição t.

Estatística do teste:

$$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}\stackrel{H_0}{\sim} t_{n-1}$$

valor-de-p:
$$P(|t_{n-1}| \geq |t_{obs}|) = 2P(t_{n-1} \geq |t_{obs}|)$$

Para as hipóteses unilaterais, o raciocínio é semelhante ao que foi feito anteriormente quando σ é conhecido.

Teste de hipóteses para média (σ desconhecido)

No nosso exemplo, suponha que não sabemos o valor de σ , mas o desvio padrão da amostra é 7.1g. Queremos testar

$$H_0: \mu = 500 \text{ vs } H_a: \mu \neq 500$$

Estatística do teste:

$$t_{obs} = rac{ar{x}_{obs} - \mu_0}{s/\sqrt{n}} = rac{485 - 500}{7.1/5} = -10.56$$

valor-de-p: $P(|t_{24}| \geq 10.56) = 2P(t_{24} \geq 10.56) pprox 0$

Conclusão: Rejeitamos a hipótese de que a média é 500g.

valor crítico: para nível de significância $\alpha=0.05$ e teste bilateral, t_{crit} é tal que $P(t_{24}>t_{crit})=P(t_{24}<-t_{crit})=0.025$. De maneira que $t_{crit}=2.06$. Portanto, se $|t_{obs}|>t_{crit}$, rejeita-se H_0 .

Exemplo: Dieta LowCarb

- 41 pacientes obesos, selecionados aleatoriamente, foram submetidos a uma dieta com baixa quantidade de carboidratos.
- Pesquisadores responsáveis pelo estudo acreditam que essa dieta faz com que os pacientes apresentem uma redução de peso.

Detalhes do estudo: Effect of 6-month adherence to a very low carbohydrate diet program.

Exemplo: Dieta LowCarb

Suposições: X_i é a diferença entre peso inicial e final do i-ésimo obeso.

Sabemos que
$$\mathbb{E}(X_i) = \mu$$
 e $Var(X_i) = \sigma^2$.

Coletou-se uma amostra de tamanho n=41.

Pelo TCL:
$$ar{X} \sim N(\mu, \sigma^2/n)$$

Hipóteses:
$$H_0: \mu=0$$
 vs $H_a: \mu<0$

Ou seja, estamos testando se não há diferença no peso após a dieta versus a hipótese que há redução no peso após a dieta.

Exemplo: Dieta LowCarb

Estatística do teste: Como n=41, podemos usar a aproximação normal

$$z_{obs} = \frac{\bar{x}_{obs} - \mu_0}{s/\sqrt{n}} = \frac{-9.7 - 0}{3.4/\sqrt{41}} = -18.3$$

Valor-de-p: Como o teste é unilateral à esquerda

valor-de-p =
$$P(Z < -18.3) \approx 0$$

Conclusão: Como o valor-de-p é bem pequeno (<0.05) rejeitamos H_0 , ou seja, rejeitamos a hipótese de que a dieta não produz diferença no peso.

Exemplo: Acidentes de trabalho

A associação dos proprietários de indústrias metalúrgicas está muito preocupada com o tempo perdido com acidentes de trabalho, cuja média, nos últimos tempos, tem sido da ordem de 60 horas/ homem por ano e desvio padrão de 20 horas/homem.

Tentou-se um programa de prevenção de acidentes, após o qual foi tomada uma amostra de nove indústrias e medido o número de horas/homens perdidos por acidentes, que foi de 50 horas.

Você diria, a um nível de significância de 5%, que há evidência de melhoria?

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág. 334.

Exemplo: Acidentes de trabalho

Queremos testar a hipótese que μ , o número médio de horas perdidas com acidentes de trabalho, tenha permanecido o mesmo. Ou seja,

$$H_0: \mu = 60 \text{ vs } H_a: \mu < 60$$

Estatística do teste:

$$z_{obs} = rac{ar{x}_{obs} - \mu_0}{\sigma / \sqrt{n}} = rac{50 - 60}{20 / 3} = -1.5$$

valor-de-p: $P(Z \leq -1.5) = 0.067$

Conclusão: Como o valor-de-p é maior que 0.05, não rejeitamos a hipótese de que a média é 60. Ou seja, não há evidência contra da hipótese de que o número médio de horas perdidas tenha se mantido o mesmo.

Exemplo: Acidentes de trabalho

Podemos também determinar a região crítica.

Como temos um teste unilateral à esquerda, para um nível de significância de 5%, rejeitamos H_0 se $z_{obs}<-z_{0.05}=-1.645$.

Como $z_{obs}=-1.5>-1.645$, então não rejeitamos H_0 .

Resumo: Teste de hipóteses para média

σ conhecido

H₀:
$$\mu = \mu_0$$
 vs
H_a: $\mu \neq \mu_0$ ou $\mu < \mu_0$

Estatística do teste:

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$$

valor-de-p=

$$\begin{array}{lll} P(|Z| \geq |z_{obs}|) & \text{se } H_a \colon \mu \neq \mu_0 & P(|t_{n-1}| \geq |t_{obs}|) & \text{se } H_a \colon \mu \neq \mu_0 \\ P(Z \geq z_{obs}) & \text{se } H_a \colon \mu > \mu_0 & P(t_{n-1} \geq t_{obs}) & \text{se } H_a \colon \mu > \mu_0 \\ P(Z \leq z_{obs}) & \text{se } H_a \colon \mu < \mu_0 & P(t_{n-1} \leq t_{obs}) & \text{se } H_a \colon \mu < \mu_0 \end{array}$$

σ desconhecido

H₀:
$$\mu = \mu_0$$
 vs
H_a: $\mu \neq \mu_0$ ou $\mu < \mu_0$

Estatística do teste:

$$t = rac{\overline{X} - \mu_0}{S/\sqrt{n}} \stackrel{H_0}{\sim} t_{n-1}$$

valor-de-p=

$$\begin{array}{lll} P(|Z| \geq |z_{obs}|) & \text{se } H_a \colon \mu \neq \mu_0 \\ P(Z \geq z_{obs}) & \text{se } H_a \colon \mu > \mu_0 \\ P(Z \leq z_{obs}) & \text{se } H_a \colon \mu > \mu_0 \\ P(Z \leq z_{obs}) & \text{se } H_a \colon \mu < \mu_0 \\ \end{array} \quad \begin{array}{ll} P(|t_{n-1}| \geq |t_{obs}|) & \text{se } H_a \colon \mu \neq \mu_0 \\ P(t_{n-1} \leq t_{obs}) & \text{se } H_a \colon \mu < \mu_0 \\ \end{array}$$

Leituras

- · Ross: capítulo 9.
- · OpenIntro: seção 5.1.
- · Magalhães: capítulo 8.

Slides produzidos pelos professores:

- Samara Kiihl
- · Tatiana Benaglia
- Larissa Matos
- · Benilton Carvalho

