Last name(s)	Name	ID

Midterm EDA Length: 2h30m 23/3/2015

- The exam has 4 sheets, 8 sides and 4 problems.
- Write your full name and ID on every sheet.
- Write your answers within the reserved space.
- *All your answers must be justified.*

Problem 1: Cost analysis

(2 points)

The sieve of Eratostenes (276–194 BC) is a method to generate all prime numbers smaller or equal than a given n. The method goes as follows: traversing the sequence of numbers 2, 3, 4, ..., n, look for the next number x that is not yet marked, mark all its multiples 2x, 3x, 4x, ... up to n, and repeat with the next x. When it finishes, those $x \ge 2$ that are not marked are the prime numbers. In C++:

```
vector < bool > M(n + 1, false);
for (int x = 2; x \le n; ++x) {
    if (not M[x]) {
        for (int y = 2*x; y \le n; y += x) M[y] = true;
    }
}
```

For the first three questions below we ask for an exact (non-asymptotic) expression as a function of n. If needed, use the notation $\lfloor z \rfloor$ that rounds z to the maximum integer smaller or equal than z; for example, $\lfloor \pi \rfloor = \lfloor 3.14 \ldots \rfloor = 3$.

(a) (0.33 points) How many times is $M[y] = $ true executed when x is 2?
Answer: Exactly many times.
(b) (0.34 points) How many times is $M[y] = $ true executed when x is 15%
Answer: Exactly many times.
(c) (0.33 points) How many times is $M[y] = $ true executed when x is 17?
Answer: Exactly many times.

Note: More questions on the back.

(ď) (0.5	points`) It is	known	that
١	u,	٠,	0.0	Ponito	, 11 10	KILOWIL	uiui

$$\sum_{\substack{p=2\\ p \text{ prime}}}^{n} \frac{1}{p} = \Theta(\log\log n).$$

$\sum_{\substack{p=2\\ p \text{ prime}}} \frac{1}{p} = \Theta(\log \log n).$
Use this, in conjunction with the answers to the previous questions, to determine the cost of the algorithm as a function of n , in asymptotic notation. Answer:
$\Theta($ \bigcirc
Justification:
(e) (0.5 points) An improvement consists in replacing the condition $x \le n$ in the external loop by $x*x \le n$. Would this improve the asymptotic cost? Answer and justification:

Last name(s)	Name	ID
Problem 2: Strassen & company		(2 points)
The school algorithm to multiply two $n > 1$ rations. In 1969 Strassen found an algorithm rations. Twenty one years later, Coppers that makes $\Theta(n^{2.38})$ operations.	ithm that makes	$\Theta(n^{2.81})$ arithmetic ope-
Assuming (for simplicity) that the implicit 100, respectively, and that they apply to e and $100n^{2.38}$, respectively, for every $n \ge$ these algorithms makes less operations the	very $n \ge 1$ (that in 1), compute the	s, the costs are n^3 , $10n^{2.81}$
(a) (1 point) For $n \ge $	nssen improves tl	ne school method.
(b) (1 punt) For $n \ge $	persmith-Winog	rad improves Strassen.
Justifications:		

This side would be left blank intentionally if it were not for this note.

Last name(s)	Name	ID
Problem 3: Algorithm design		(3 points)
Given a sequence of n non-empty into their union in time $O(n \log n)$. The o intervals sorted by their left boundat were $[17,19] [-3,7] [4,9] [18,21] [-be [-4,15] [17,21].$	utput is represented ry. For example, if	by a sequence of disjoint the intervals in the input
(a) (1 point) Describe an algorithm rithm in words, without writing cocan be implemented. Assume that the (b_1, \ldots, b_n) , with $a_i \leq b_i$ for every $i = a_i$	de, but clearly enou e input is given by th	igh so that the algorithm

	ous section,				<u> </u>
				indad hvi a em	
ndent of n , s		ould you sti	ll use the sar	ne algorithm?	all constant inc If not, which o e its cost explici
ndent of n , s	say $m \leq 5$, w	ould you sti	ll use the sar	ne algorithm?	If not, which o
ndent of n , s	say $m \leq 5$, w	ould you sti	ll use the sar	ne algorithm?	If not, which o
ndent of n , s	say $m \leq 5$, w	ould you sti	ll use the sar	ne algorithm?	If not, which o
ndent of n , s	say $m \leq 5$, w	ould you sti	ll use the sar	ne algorithm?	If not, which
ent of n , s	say $m \leq 5$, w	ould you sti	ll use the sar	ne algorithm?	If not, which o

Last name(s)	Name	ID
Problem 4: Quickies		(3 points
• (0,5 points) Determine if t	they are equal (=) or differen	ent (\neq), and prove it:
6	$\Theta(3^{\log_2(n)}) \ \overline{\bigcirc} \ \Theta(3^{\log_4(n)}).$	
		,
• (0.5 points) Compute 21	$2^2 \cdot 2^3 \cdot \dots \cdot 2^{99} \cdot 2^{100}$ mod	I 0. This problem is no
meant to be solved with the	he help of a calculator.	1 9. This problem is no

 (1 point) Consider the following three alternatives for solving A: divide an instance of size <i>n</i> into five instances of size instance recursively, and combine the solutions in time (B: given an intance of size <i>n</i>, solve two instances of size <i>n</i> and combine the solutions in constant time. C: divide an instance of size <i>n</i> into nine instances of size instance recursively, and combine the solutions in time (Write down and solve the corresponding recurrences. Which the most efficient? 	1/2, solve eac 0(n). – 1 recursivel
 instance recursively, and combine the solutions in time (B: given an intance of size n, solve two instances of size n and combine the solutions in constant time. C: divide an instance of size n into nine instances of size instance recursively, and combine the solutions in time (Write down and solve the corresponding recurrences. Which 	O(n). – 1 recursivel
 and combine the solutions in constant time. C: divide an instance of size n into nine instances of size instance recursively, and combine the solutions in time 0 Write down and solve the corresponding recurrences. Which 	
instance recursively, and combine the solutions in time (Write down and solve the corresponding recurrences. Which	1/3 solve eac
· •	_
	n alternative