Estimation and Inference in Modern Nonparametric Statistics

William G. Underwood

Final Public Oral Examination | May 7th, 2024

Department of Operations Research and Financial Engineering Princeton University

Research overview

Some of my recent work consists of

- Inference and estimation with Mondrian random forests
- Uniform inference for dyadic kernel density estimators
- Yurinskii's coupling for martingales

Why random forests?

Why do tree-based models still outperform deep learning on tabular data?

Léo Grinsztajn Soda, Inria Saclay leo.grinsztajn@inria.fr Edouard Oyallon ISIR, CNRS, Sorbonne University Gaël Varoquaux Soda, Inria Saclay

- Ensemble methods for regression and classification, with good performance, flexibility, robustness and efficiency
- Many variants including the popular "Random Forest"
- Estimation theory has developed rapidly in recent years but applicability to statistical inference is less well understood
- In joint work with Matias D. Cattaneo and Jason M. Klusowski, I develop valid feasible inference procedures and minimax optimal estimation results for Mondrian random forests

Setup

Nonparametric regression setting

- Data (X_i, Y_i) in $[0, 1]^d \times \mathbb{R}$ i.i.d. for $1 \le i \le n$
- $Y_i = \mu(X_i) + \varepsilon_i$ with $\mathbb{E}[\varepsilon_i \mid X_i] = 0$
- \bullet Aim is to estimate and perform inference on unknown $\mu(x)$

Random forest regression estimators

- 1) Form a partition of $[0,1]^d$, usually using a tree structure
- 2) Fit constant estimates of μ on each cell in the partition
- 3) Repeat with different partitions and average the estimates

- Weather data from Australian Bureau of Meteorology
- Rainfall from 2007–2017 at 49 locations with 125 927 samples
- Predict dry or wet tomorrow with humidity and pressure today
- Random forest classification

First generate a partition of the predictor space

• Compute average response in each cell with dry = 0, wet = 1

ullet This gives a single tree estimator of $\mu(x)$

Repeat with a different partition

Average predictions across 2 partitions

Average predictions across 10 partitions

• Average across 30 partitions to get a random forest $\hat{\mu}(x)$

The Mondrian process

- Rectangular partitions sampled from a Mondrian process (Roy and Teh, 2008), write $T \sim \mathcal{MP}([0,1]^d, \lambda)$
- ullet Tree complexity is controlled by the lifetime parameter $\lambda>0$
- The expected number of cells in T is $(1 + \lambda)^d$
- Mondrian random forests popular recently (Mourtada, Gaïffas and Scornet, NeurIPS 2017, AoS 2020, JRSSSB 2021)

A typical two-dimensional Mondrian partition with $\lambda=4\,$

Composition II in Red, Blue, and Yellow, Piet Mondrian, 1930

- Fix $\lambda=2$ and set t=0. The root cell is $C_\emptyset=[0,1]^d$ with d=2
- We make recursive axis-aligned splits to generate a partition
- ullet The lifetime parameter λ determines when to stop splitting
- For any cell C, let $|C|_1 = \sum_{j=1}^d |C_j|$ be the half-perimeter

- Decide whether to split cell C_{\emptyset}
- Sample $E \sim \operatorname{Exp}(|C_{\emptyset}|_1)$, so $\mathbb{E}[E] = 1/|C_{\emptyset}|$
- Get $t + E \le \lambda$ so C_{\emptyset} is split

- Choose split axis by $\mathbb{P}(J=j)=\frac{|C_{\emptyset j}|}{|C_{\emptyset}|_1}$, get J=1
- Select split location by $S \sim \mathrm{Unif}(C_{\emptyset J})$
- Replace C_\emptyset by $C_{\mathrm{L}}=\{x\in C:x_J\leq S\}$ and $C_{\mathrm{R}}=C\setminus C_{\mathrm{L}}$

- ullet Decide whether to split cell $C_{
 m L}$
- Sample $E \sim \operatorname{Exp}(|C_L|_1)$
- Get $t + E \leq \lambda$ so $C_{\rm L}$ is split

- Choose split axis by $\mathbb{P}(J=j) = \frac{|C_{\mathrm{L}j}|}{|C_{\mathrm{L}}|}$, get J=2
- Select split location by $S \sim \mathrm{Unif}(C_{\mathrm{L}J})$
- Replace $C_{\rm L}$ by $C_{\rm LL}=\{x\in C_{\rm L}:x_J\leq S\}$ and $C_{\rm LR}=C_{\rm L}\setminus C_{\rm LL}$

- ullet Decide whether to split cell $C_{
 m R}$
- Sample $E \sim \operatorname{Exp}(|C_{\mathbf{R}}|_1)$
- ullet Get $t+E>\lambda$ so $C_{
 m R}$ is not split and becomes a leaf

• We continue this process

ullet $C_{
m LL}$ is split on axis 2

ullet $C_{
m LR}$ is not split and becomes a leaf

ullet $C_{
m LLL}$ becomes a leaf

 \bullet $C_{\rm LLR}$ becomes a leaf

- All cells are now leaves, and the sampling is complete
- ullet To increase λ we continue this process, allowing online fitting
- Australian weather data: rescaled to $[0,1]^2$ and set $\lambda=5$

Properties of the Mondrian process

Lemma (Cell shape distribution)

Let $T \sim \mathcal{MP}([0,1]^d, \lambda)$, take $x \in [0,1]^d$ and write T(x) for the cell containing x. With E_{j1} and E_{j2} independent $\mathrm{Exp}(\lambda)$,

$$T(x) = [0, 1]^d \cap \prod_{j=1}^d [x_j - E_{j1}, x_j + E_{j2}]$$

- Roy and Teh (NeurIPS 2008); Mourtada, Gaïffas and Scornet (NeurIPS 2017, AoS 2020, JRSSSB 2021)
- With d=1, have a Poisson process on [0,1] with intensity λ
- The smallest cell is much smaller than the average cell

Mondrian random forests

- Let B be the desired number of trees in the forest
- Sample $T_1, \ldots, T_B \sim \mathcal{MP}([0,1]^d, \lambda)$ independently
- For each cell in T_b , compute the average Y_i value
- Finally average across all the trees
- Writing $N_b(x) = \sum_{i=1}^n \mathbb{I}\{X_i \in T_b(x)\}$ for the number of data points in the same cell as x, and with 0/0 = 0, we have

Definition (Mondrian random forest estimator)

$$\hat{\mu}(x) = \underbrace{\frac{1}{B} \sum_{b=1}^{B}}_{\text{Forest}} \underbrace{\frac{1}{N_b(x)} \sum_{i=1}^{n} Y_i \, \mathbb{I} \big\{ X_i \in T_b(x) \big\}}_{\text{Mean of } Y_i \text{ in cell containing } x}$$

Bias-variance decomposition

With
$$\mathbf{X} = (X_1, \dots, X_n)$$
 and $\mathbf{T} = (T_1, \dots, T_B)$,
$$\hat{\mu}(x) - \mu(x) = \underbrace{\hat{\mu}(x) - \mathbb{E}[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T}]}_{\text{Variance}} + \underbrace{\mathbb{E}[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T}] - \mu(x)}_{\text{Bias}}$$

- Derive a central limit theorem for the variance term
- Approximate the bias term in probability
- Perform inference by ensuring the bias is negligible
- 4) Minimax optimal estimation with debiasing

Assumptions on data and estimator

- Recall (X_i, Y_i) in $[0, 1]^d \times \mathbb{R}$ i.i.d. with $Y_i = \mu(X_i) + \varepsilon_i$
- X_i has Lebesgue density f, bounded away from zero
- ullet A version of $\sigma^2(X_i)=\mathbb{E}\left[arepsilon_i^2\mid X_i
 ight]$ is Lipschitz
- $\mathbb{E}\left[\varepsilon_{i}^{4} \mid X_{i}\right]$ is bounded almost surely
- Both μ and f are β -Hölder continuous for some $\beta \geq 1$
- ullet $x\in (0,1)^d$ is an interior evaluation point
- $\frac{\lambda^d \log n}{n} \to 0$ and $\log \lambda \asymp \log B \asymp \log n$, so $\lambda \to \infty$ and $B \to \infty$

Definition (β -Hölder continuity)

With $\underline{\beta}$ the largest integer less than β , for all $x, x' \in [0, 1]^d$,

$$\max_{|\nu|=\beta} \left| \partial^{\nu} g(x) - \partial^{\nu} g(x') \right| \lesssim \|x - x'\|_{2}^{\beta - \beta}$$

Central limit theorem for Mondrian random forests

Theorem (Central limit theorem for Mondrian random forests)

$$\sqrt{\frac{n}{\lambda^d}} \Big(\hat{\mu}(x) - \mathbb{E} \big[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T} \big] \Big) \rightsquigarrow \mathcal{N} \Big(0, \Sigma(x) \Big)$$
$$\Sigma(x) = \frac{\sigma^2(x)}{f(x)} \left(\frac{4 - 4\log 2}{3} \right)^d$$

where

$$\hat{\mu}(x) - \mathbb{E}[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T}] = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N_b(x)} \sum_{i=1}^{n} \varepsilon_i \mathbb{I}\{X_i \in T_b(x)\}$$

- Essential that $B \to \infty$, or randomness persists in the limit
- No conditional independence as $N_b(x)$ depends on all X_i
- Replacing $N_b(x)$ by $nf(x)|T_b(x)|$ fails as $\mathbb{E}\left[\frac{1}{|T_b(x)|^2}\right]=\infty$
- Central limit theorems based on $2 + \delta$ moments inadequate

Central limit theorem for Mondrian random forests

$$\hat{\mu}(x) - \mathbb{E}[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T}] = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N_b(x)} \sum_{i=1}^{n} \varepsilon_i \mathbb{I}\{X_i \in T_b(x)\}$$

- Use a martingale central limit theorem (Hall and Heyde, 1980)
- Take the filtration $\mathcal{F}_{ni} = \sigma\left(\mathbf{X}, \mathbf{T}, \varepsilon_1, \dots, \varepsilon_i\right)$ and consider $\sum_{i=1}^n M_{ni}(x)$ with the martingale differences

$$M_{ni}(x) = \sqrt{\frac{n}{\lambda^d}} \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N_b(x)} \varepsilon_i \mathbb{I}\{X_i \in T_b(x)\}$$

- Verify $\mathbb{E}\left[\max_{1\leq i\leq n}M_{ni}(x)^2\right]\lesssim 1$ and $\sum_{i=1}^nM_{ni}(x)^2\to_{\mathbb{P}}\Sigma(x)$
- Nonlinear structure handled by the Efron–Stein inequality

Bias of Mondrian random forests

Theorem (Bias of Mondrian random forests)

There exist $B_r(x)$ depending only on f and μ such that

$$\left| \mathbb{E} \left[\hat{\mu}(x) \mid \mathbf{X}, \mathbf{T} \right] - \mu(x) - \sum_{r=1}^{\lfloor \beta/2 \rfloor} \frac{B_r(x)}{\lambda^{2r}} \right| \lesssim_{\mathbb{P}} \frac{1}{\lambda^{\beta}} + \frac{1}{\lambda \sqrt{B}} + \frac{\log n}{\lambda} \sqrt{\frac{\lambda^d}{n}}$$

- We approximate the bias with a Taylor polynomial in $1/\lambda^2$
- If B does not diverge there is a first-order bias of size $1/\lambda$
- In large forests and with $\beta \geq 2$, leading bias is of size $1/\lambda^2$
- Setting $\lambda \asymp n^{\frac{1}{d+4}}$ and $B \gg n^{\frac{2}{d+4}}$ gives for $\beta \geq 2$

$$\left|\hat{\mu}(x) - \mu(x)\right| \lesssim_{\mathbb{P}} \underbrace{\sqrt{\frac{\lambda^d}{n}}}_{\text{Variance}} + \underbrace{\frac{1}{\lambda^2} + \frac{1}{\lambda\sqrt{B}}}_{\text{Bias}} \lesssim n^{-\frac{2}{d+4}}$$

Inference with Mondrian random forests

- Combine central limit theorem and bias bound for inference
- Bias is negligible if $\beta \geq 2$ and $\frac{1}{\lambda^2} + \frac{1}{\lambda\sqrt{B}} \ll \sqrt{\frac{\lambda^d}{n}}$
- We construct a variance estimator $\hat{\Sigma}(x) \to_{\mathbb{P}} \Sigma(x)$
- ullet Let q_lpha be the $1-rac{lpha}{2}$ quantile of $\mathcal{N}(0,1)$

Theorem (Feasible confidence intervals)

With $\beta \geq 2$, if $\lambda \gg n^{\frac{1}{d+4}}$ and $B \gg n^{\frac{2}{d+4}}$ then

$$\mathbb{P}\left(\mu(x) \in \left[\hat{\mu}(x) \pm \sqrt{\frac{\lambda^d}{n}} \hat{\Sigma}(x)^{1/2} q_{\alpha}\right]\right) \to 1 - \alpha$$

Debiased Mondrian random forests

• Bias approximation with $\beta>2$ for lifetimes λ and 2λ gives

$$\mathbb{E}\big[\hat{\mu}(x;\lambda) \mid \mathbf{X}, \mathbf{T}\big] \approx \mu(x) + \frac{B_1(x)}{\lambda^2} \tag{1}$$

$$\mathbb{E}\left[\hat{\mu}(x; \frac{2\lambda}{\lambda}) \mid \mathbf{X}, \mathbf{T}\right] \approx \mu(x) + \frac{B_1(x)}{4\lambda^2}$$
 (2)

Take a linear combination to annihilate the leading bias

$$\mathbb{E}\left[-\frac{1}{3}\hat{\mu}(x;\lambda) + \frac{4}{3}\hat{\mu}(x;2\lambda) \mid \mathbf{X}, \mathbf{T}\right] \approx \mu(x) + 0$$

• Cancel all $J=\lfloor \underline{\beta}/2 \rfloor$ bias terms to get the debiased estimator

$$\hat{\mu}_{\rm d}(x) = \sum_{s=0}^{J} \omega_s \hat{\mu}(x; \mathbf{a}_s \lambda)$$

• Here a_s are fixed, and ω_s solve the linear equations $\sum_{s=0}^J \omega_s = 1$ and $\sum_{s=0}^J \omega_s a_s^{-2r} = 0$ for $1 \le r \le J$

Results for debiased Mondrian random forests

Theorem (Improved bias bound)

$$\left| \mathbb{E} \left[\hat{\mu}_{\mathrm{d}}(x) \mid \mathbf{X}, \mathbf{T} \right] - \mu(x) \right| \lesssim_{\mathbb{P}} \frac{1}{\lambda^{\beta}} + \frac{1}{\lambda \sqrt{B}} + \frac{\log n}{\lambda} \sqrt{\frac{\lambda^d}{n}}$$

Theorem (Central limit theorem with debiasing)

$$\sqrt{\frac{n}{\lambda^d}} \Big(\hat{\mu}_{\mathrm{d}}(x) - \mathbb{E} \big[\hat{\mu}_{\mathrm{d}}(x) \mid \mathbf{X}, \mathbf{T} \big] \Big) \rightsquigarrow \mathcal{N} \big(0, \underline{\Sigma}_{\mathrm{d}}(x) \big)$$

Theorem (Feasible confidence intervals with debiasing)

If $\lambda\gg n^{\frac{1}{d+2\beta}}$ and $B\gg n^{\frac{2\beta-2}{d+2\beta}}$, with $\hat{\Sigma}_{\mathrm{d}}(x)$ a variance estimator,

$$\mathbb{P}\left(\mu(x) \in \left[\hat{\mu}_{\mathrm{d}}(x) \pm \sqrt{\frac{\lambda^d}{n}} \hat{\Sigma}_{\mathrm{d}}(x)^{1/2} q_{\alpha}\right]\right) \to 1 - \alpha$$

Minimax optimality

Theorem (Minimaxity of debiased Mondrian random forests)

If
$$\lambda \asymp n^{\frac{1}{d+2\beta}}$$
 and $B \gtrsim n^{\frac{2\beta-2}{d+2\beta}}$, then

$$\mathbb{E}\left[\left(\hat{\mu}_{\mathrm{d}}(x) - \mu(x)\right)^2\right]^{1/2} \lesssim \underbrace{\sqrt{\frac{\lambda^d}{n}}}_{\text{Variance}} + \underbrace{\frac{1}{\lambda^\beta} + \frac{1}{\lambda\sqrt{B}}}_{\text{Bias}} \lesssim n^{-\frac{\beta}{d+2\beta}}$$

Estimator	Minimax condition
Mondrian tree*	$\beta \in (0,1]$
Mondrian random forest*	$\beta \in (0,2]$
Debiased Mondrian random forest	$\beta \in (0, \infty)$

^{*}Established by Mourtada et al. (2020)

Example: weather forecasting in Australia

Point	Humidity	Pressure	Chance of rain	95% confidence interval
1	20%	$1020\mathrm{mbar}$	4.3%	4.1% - 4.6%
2	70%	$1000\mathrm{mbar}$	53.0%	52.0% – $54.0%$
3	80%	990 mbar	77.5%	74.4% - 80.6%

Conclusion and ongoing work

Contributions to studying the Mondrian random forest estimator

- Provided a novel central limit theorem allowing fully feasible statistical inference via variance estimation
- Presented a new debiasing procedure allowing for inference under milder conditions
- Demonstrated minimax optimality for arbitrary dimension and smoothness, the first result for any forest estimator

Ongoing and future work

- Heterogeneous and data-dependent lifetimes $\hat{\lambda}_j$ or $\hat{\lambda}(x)$
- Improved estimation with additive models or local regression
- Uniform inference via strong approximation

Uniform Inference for Kernel Density Estimators with Dyadic Data

With Matias D. Cattaneo and Yingjie Feng

Dyadic data

Example of dyadic data

- A_i is GDP of country i
- W_{ij} is value of trade $i \leftrightarrow j$

- ullet W_{ij} random variables associated with edges of a network
- Write $W_{ij} = W(A_i, A_j, V_{ij})$ by Aldous-Hoover with A_i latent node variables and V_{ij} latent idiosyncratic shocks
- ullet Unknown Lebesgue density f(w) estimated by $\hat{f}(w)$ on ${\mathcal W}$
- ullet We provide the minimax-optimal estimation rate for $\hat{f}(w)$
- Uniform inference on f(w) by strong approximation

Dyadic kernel density estimation

Dyadic kernel density estimator

$$\hat{f}(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{h} K\left(\frac{W_{ij} - w}{h}\right)$$

- Bandwidth h controls bias-variance tradeoff
- Higher-order boundary kernels K improve bias properties
- We analyze the U-statistic Hoeffding-type decomposition

$$\hat{f}(w) - f(w) = \underbrace{B(w)}_{\text{smoothing bias}} + \underbrace{L(w)}_{\text{i.i.d. average}} + \underbrace{E(w)}_{\text{conditional i.n.i.d. average}} + \underbrace{Q(w)}_{\text{U-statistic}}$$

• L(w), E(w) and Q(w) are mean-zero and orthogonal

Minimax-optimal uniform dyadic estimation

ullet Using an order p boundary kernel, if f is eta-Hölder then

$$\sup_{w \in \mathcal{W}} \left| B(w) \right| \lesssim h^{p \wedge \beta} \qquad \mathbb{E} \left[\sup_{w \in \mathcal{W}} |L(w)| \right] \lesssim \frac{D}{\sqrt{n}}$$

$$\mathbb{E} \left[\sup_{w \in \mathcal{W}} |E(w)| \right] \lesssim \sqrt{\frac{\log n}{n^2 h}} \qquad \mathbb{E} \left[\sup_{w \in \mathcal{W}} |Q(w)| \right] \lesssim \frac{1}{n}$$

- Optimize the bound with $p \geq \beta$ and $h \asymp \left(\frac{\log n}{n^2}\right)^{\frac{1}{2\beta+1}}$
- Then we attain the minimax dyadic estimation rate

Theorem (Minimax-optimal uniform dyadic estimation)

$$\sup_{w \in \mathcal{W}} \left| \hat{f}(w) - f(w) \right| \lesssim_{\mathbb{P}} \underbrace{h^{p \wedge \beta}}_{B(w)} + \underbrace{\frac{D}{\sqrt{n}}}_{L(w)} + \underbrace{\sqrt{\frac{\log n}{n^2 h}}}_{E(w)} \lesssim \frac{D}{\sqrt{n}} + \left(\frac{\log n}{n^2}\right)^{\frac{\beta}{2\beta + 1}}$$

Dyadic strong approximation construction

- \bullet Need distributional approximations for both L(w) and E(w)
- ullet No uniform central limit theorem as E(w) is not tight
- ullet For the i.i.d. sum L(w), use KMT coupling (Komlós et al., 1975)

$$\sup_{w \in \mathcal{W}} \left| \sqrt{n} L(w) - Z_L(w) \right| \lesssim_{\mathbb{P}} \frac{D \log n}{\sqrt{n}}$$

• E(w) is a sum of $\binom{n}{2}$ conditionally independent but not i.i.d. terms so use a version of Yurinskii's coupling (Yurinskii, 1978)

$$\sup_{w \in \mathcal{W}} \left| \sqrt{n^2 h} E(w) - Z_E(w) \right| \lesssim_{\mathbb{P}} \frac{(\log n)^{3/8}}{n^{1/4} h^{3/8}}$$

• Combine these with the uniform bounds on B(w) and Q(w)

Dyadic uniform inference via strong approximation

Theorem (Strong approximation and uniform confidence bands)

$$\sup_{w \in \mathcal{W}} \left| \frac{\hat{f}(w) - f(w)}{\sqrt{\operatorname{Var}[\hat{f}(w)]}} - Z(w) \right| \to_{\mathbb{P}} 0, \qquad Z(w) \text{ Gaussian process}$$

$$\mathbb{P}\left(f(w) \in \left[\hat{f}(w) \pm \hat{q}_{1-\alpha}\sqrt{\widehat{\operatorname{Var}}[\hat{f}(w)]}\right] \; \forall w \in \mathcal{W}\right) \to 1-\alpha$$

(a) Synthetic data with degeneracy

(b) Counterfactual trade analysis

Questions

Cattaneo, M. D., Klusowski, J. M., and Underwood, W. G. (2023) Inference with Mondrian random forests

arXiv:2310.09702

github.com/wgunderwood/MondrianForests.jl

Cattaneo, M. D., Feng, Y., and Underwood, W. G. (2024).
Uniform inference for kernel density estimators with dyadic data
arXiv: 2201.05967

arxiv:2201.0596/

github.com/wgunderwood/DyadicKDE.jl

References I

- Breiman, L. (2001). Random forests. *Machine learning*, 45:5–32.
- Breiman, L. (2004). Consistency for a simple model of random forests. *University* of California at Berkeley. Technical Report, 670.
- Bureau of Meteorology, Australian Government (2017). Daily weather observations. http://www.bom.gov.au/climate/data/.
- Cattaneo, M. D., Feng, Y., and Underwood, W. G. (2024). Uniform inference for kernel density estimators with dyadic data. *Journal of the American Statistical Association*, forthcoming.
- Cattaneo, M. D., Klusowski, J. M., and Underwood, W. G. (2023). Inference with Mondrian random forests. *Preprint*. arXiv:2310.09702.
- Cattaneo, M. D., Masini, R. P., and Underwood, W. G. (2022). Yurinskii's coupling for martingales. *Preprint.* arXiv:2210.00362.
- Cutler, A. and Zhao, G. (2001). PERT: perfect random tree ensembles. *Computing Science and Statistics*, 33(4):90–4.

References II

- Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine learning*, 63:3–42.
- Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application. Academic Press, New York, NY.
- Komlós, J., Major, P., and Tusnády, G. (1975). An approximation of partial sums of independent RVs, and the sample DF. I. *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete*, 32(1-2):111–131.
- Lakshminarayanan, B., Roy, D. M., and Teh, Y. W. (2014). Mondrian forests: Efficient online random forests. *Advances in Neural Information Processing Systems*, 27.
- Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U., and Hamprecht, F. A. (2011). On oblique random forests. In *Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Proceedings, Part II 22*, pages 453–469. Springer.

References III

- Mourtada, J., Gaïffas, S., and Scornet, E. (2017). Universal consistency and minimax rates for online Mondrian forests. *Advances in Neural Information Processing Systems*, 30.
- Mourtada, J., Gaïffas, S., and Scornet, E. (2020). Minimax optimal rates for Mondrian trees and forests. *Annals of Statistics*, 48(4):2253–2276.
- Mourtada, J., Gaïffas, S., and Scornet, E. (2021). AMF: Aggregated Mondrian forests for online learning. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 83(3):505–533.
- Roy, D. M. and Teh, Y. W. (2008). The Mondrian process. In *Neural Information Processing Systems*, volume 21.
- Yurinskii, V. V. (1978). On the error of the Gaussian approximation for convolutions. *Theory of Probability & its Applications*, 22(2):236–247.