RECURSIVITE – EXERCICES

1. UNE FONCTION MYSTERE

Analysez le code de cette fonction puis expliquez ce qu'elle calcule:

```
def fonction(a,b):
    if b==1:
        return a
    return a + fonction(a,b-1)
```

2. UNE AUTRE FONCTION MYSTÈRE

Reprenons l'analyse avec cette fonction:

```
def fonction(n):
    if n<2:
        return str(n)
    else:
        return fonction(n//2) + str(n%2)</pre>
```

3. PUISSANCE

Écrivez et testez la fonction récursive puissance (x, n) qui permet de calculer x^n .

4. RENVERSER UNE CHAINE

Ecrivez et testez la fonction récursive miroir (mot) qui permet de renverser une chaine de caractère.

Une définition récursive :

- Un mot qui ne contient aucune lettre ou une seule lettre est déjà renversé.
- Dans les autres cas, le miroir du mot est la concaténation du miroir du mot tronqué de la première lettre avec cette première lettre.

5. LA SUITE DE FIBONACCI

La suite imaginée par Léonard de Pise (Fibonacci) au XIIIe siècle est définie par :

$$F_0 = F_1 = 1$$

 $\forall n \ge 0, F_{n+2} = F_{n+1} + F_n$

Écrire la fonction récursive Fibo (n) qui permet d'afficher un terme de rang n. Affichez ensuite les termes de F_0 à F_{20} .

6. FRACTALES: LE FLOCON DE KOCH

La **courbe de Koch** est une figure qui s'obtient de manière récursive. Elle a été imaginée em 1904 par le mathématicien suédois **Niels Fabian Helge von Koch**.

Le cas de base (n = 0) est un segment de longueur 1.

Longueur 1
- Cas de base (n = 0) -

Le cas d'ordre n s'obtient en divisant le segment précédent en trois morceaux de longueur l/3, puis en dessinant un triangle équilatéral dont la base (qui ne sera pas dessinée) est le morceau du milieu.

L'ordre n est appelée **profondeur** de la courbe de Koch.

1/3 1/3 1/3

- Cas d'ordre n -

On réitère ce processus à l'ordre n-1 pour chaque segment.

On obtient pour n = 2 et n = 3, les courbes ci-contre.

Pour dessiner, rendez-vous sur TRINKET à l'adresse: https://trinket.io/python/7ca2db8f10

- a. Écrire la fonction récursive Koch (n, 1) qui dessine une courbe de Koch de profondeur n à partir d'un segment de longueur 1. Testez le dessin pour une courbe de longueur 300 différentes profondeurs.
- b. Écrivez maintenant la fonction flocon (n, 1) qui permet de dessiner le flocon de Koch de longueur 300.