TEORIA KATEGORII

SERIA 1: KATEGORIE I FUNKTORY

Problem 1. Niech A będzie zbiorem. Pokazać, że przyporządkowania $\mathsf{Set} \to \mathsf{Set}$ zdefiniowane na obiektach i morfizmach jak poniżej są funktorami:

- $X \mapsto A \times X \text{ oraz } (f: X \to Y) \mapsto ((id \times f): A \times X \to A \times Y; (a, x) \mapsto (a, f(x))),$
- $X \mapsto A + X$ oraz

$$(f:X\to Y)\mapsto (id+f):A+X\to A+Y; x\mapsto \left\{\begin{array}{cc} f(x) & \text{ jeśli } x\in X,\\ x & \text{ jeśli } x\in A.\end{array}\right.$$

• $X \mapsto X^A$ oraz

$$f: X \to Y \quad \mapsto \quad f^A: X^A \to Y^A; \phi \mapsto f \circ \phi.$$

• $X \mapsto \mathcal{P}X \stackrel{def}{=} \{A \subseteq X\}$ oraz

$$(f: X \to Y) \mapsto \mathcal{P}(f): \mathcal{P}(X) \to \mathcal{P}(Y); A \mapsto f(A).$$

Problem 2. Niech \mathbb{P} i \mathbb{Q} będą kategoriami zadanymi przez posety (P,\leqslant) i (Q,\leqslant) . Podać charakteryzację fuktorów $\mathbb{P}\to\mathbb{Q}$ wyrażoną w języku przekształceń $P\to Q$ między wyżej wymienonymi posetami.

Problem 3. Podać przykłady funktorów $\mathsf{Set} \to \mathsf{Par} \; \mathsf{i} \; \mathsf{Par} \to \mathsf{Set}.$

Problem 4. Pokazać, że funktor $(-)^* : \mathsf{Set} \to \mathsf{Set}$ spełnia:

$$X^* \cong \{\varepsilon\} + X \times X^*,$$

gdzie \cong oznacza relację bijekcji między zbiorami. Dodatkowo pokazać, że dla $f:X\to Y\in\mathsf{Set}$ przekształcenie $f^*:X^*\to Y^*$ spełnia:

$$f^*(\varepsilon) = \varepsilon \& f^*(x :: xs) = f(x) :: f^*(xs).$$

W powyższej definicji, operacja (::) : $X \times X^* \to X^*$ zdefiniowana jest dla x::xs przez dopisanie elementu x do ciągu xs na pierwszej pozycji.

Problem 5. Znaleźć przykład funktora $F:\mathsf{Set}\to\mathsf{Set},$ który spełnia:

$$FX \cong \{Nil\} + FX \times X \times FX.$$

Problem 6. Pokazać, że Rel jest izomorficzna z Rel^{op}.

Problem 7. Pokazać, że kategoria Set nie jest izomorficzna z kategorią Set^{op}.

Problem 8. Pokazać, że w kategorii Set strzałka $f:A\to B$ jest izomorfizmem wtedy i tylko wtedy, gdy jest bijekcją.

Problem 9. Pokazać, że każdy izomorfizm jest mono i epi.

Problem 10. Pokazać, że w Set przekształcenie $f: X \to Y$ jest "na" wtedy i tylko wtedy, gdy jest epimorfizmem.

1

Problem 11. Niech $f:X\to Y,\,g:Y\to Z$ oraz $h:X\to Z$ spełniają $h=g\circ f.$ Pokazać, że

- jeśli f, g sa izo to h też jest izo,
- jeśli h jest mono, to f jest mono,
- \bullet jeśli h jest mono to g nie musi być mono.

13 października 2020