Cvičení 5

Pojmy nutné pro úspěšné zvládnutí následujících příkladů: algebraické struktury s jednou operací (gupoid, pologrupa, monoid, grupa, Abelova grupa) a jejich vlastnosti (Uz, As, Ko, EJ, EN, EI, Idp). Morfismy a kongruence. Algebraické struktury s dvěma operacemi (svazy, okruhy a tělesa). Vlastnosti svazů (úplnost, komplementarita, distributivnost, modularita). A ještě se vrátíme k izotonnímu (antitonnímu) zobrazení z minulého cvičení.

Příklad 1:

- Určete vlastnosti následujících algebraických struktur (uzavřenost, asociativnost, existence nulového (agresivního) prvku, existence jednotkového (neutrálního) prvku, existence inverzních prvků, komutativita, idempotentnost).
- Určete typ algebraické struktury (grupoid, pologrupa, monoid, grupa, komutativní grupa).
- Určete podalgebry dané algebry.
- Pokud existuje na dané algebraické struktuře netriviální kongruence, tak ji určete.
- Určete, zda mezi danou algebraickou strukturou (případně alg. strukturou nad faktorovou množinou) a $(\mathbb{Z}_k,+)$ nebo (\mathbb{Z}_k,\cdot) existuje nějaký morfismus a uveďte ho.

d)
$$(\mathbb{Z}_{2},+)$$
,
e) $(B, \ddot{\smile})$, kde $B = \{a, b, c, d\}$
 $\begin{array}{c|cccc} \ddot{\smile} & a & b & c & d \\ \hline a & a & b & c & d \\ \hline b & b & a & d & c \\ c & c & d & a & b \\ d & d & c & b & a \\ \end{array}$

- f) $(\mathbb{Z}_4, +)$,
- g) $(\mathbb{Z}_5 \setminus [0]_5, \cdot)$,
- h) $(\{0,1\}, \land)$,
- i) $(\{0,1\},\vee)$,
- j) $(\{a,b,c\}^*,\cdot)$, kde operace · je zřetězení slov,
- k) ($P(A \times A)$, \circ), kde operace \circ je skládání relací.

Příklad 2: Napište Cayleyho tabulku pro danou operaci na daném nosiči, určete o jakou algebraickou strukturu se jedná a nalezněte všechny podalgebry dané algebry. Pokud je daná struktura grupou, tak určete řády jednotlivých prvků.

- $\mathrm{a)}\ (\mathbb{Z}_3,+),\,(\mathbb{Z}_3,\cdot),\,(\mathbb{Z}_3\setminus\{\overline{0}\},\cdot),$
- b) $(\mathbb{Z}_4,+), (\mathbb{Z}_4,\cdot), (\mathbb{Z}_4\setminus\{\overline{0}\},\cdot),$
- c) $(\mathbb{Z}_5,+)$, (\mathbb{Z}_5,\cdot) , $(\mathbb{Z}_5\setminus\{\overline{0}\},\cdot)$,
- d) (\mathbb{Z}_9,\cdot) , $(\mathbb{Z}_9\setminus\{\overline{0}\},\cdot)$,

Příklad 3: Uvažujte matici $A = \binom{0-1}{1-1}$ v algebraické struktuře (\mathbb{R}^{2x2} , ·). Určete strukturu, kterou generují mocniny tohoto prvku.

Příklad 4: Na množině celých čísel je dána relace $R_5 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z}, (a-b) \bmod 5 = 0\}$. Ověřte, zda je daná relace R_5 ekvivalencí. Rozhodněte, zda je daná relace R_5 kongruencí na algebraických strukturách:

- a) $(\mathbb{Z},+)$
- b) $(\mathbb{Z}, -)$
- c) (\mathbb{Z},\cdot)
- d) (\mathbb{Z} ,:)

Napište Cayleyho tabulky pro operace a) – d) (pokud to je možné) na faktorové množině \mathbb{Z}_5 a určete typy algebraických struktur (\mathbb{Z}_5 , operace_x).

Příklad 5: Ověřte, zda následující ekvivalence jsou kongruencemi na dané algebře.

Pozn. \mathbb{Z}_4 je množina zbytkových tříd modulo 4. Zápisem \overline{x} pak označujeme tu jednu zbytkovou třídu modulo 4, která je reprezentována číslem x, např. $\overline{0} = \{..., -4, 0, 4, 8, ...\}$ a $\overline{1} = \{..., -3, 1, 5, 9, ...\}$.

- a) $(\mathbb{Z}_4, +_4)$ a ekvivalence α , která indukuje následující třídy rozkladu: $[0]_{\alpha} = \overline{0} \cup \overline{2}$, $[1]_{\alpha} = \overline{1} \cup \overline{3}$,
- b) ($\mathbb{Z}_4, +_4$) a ekvivalence β , která indukuje následující třídy rozkladu: $[0]_{\beta} = \overline{0} \cup \overline{1}$, $[2]_{\beta} = \overline{2} \cup \overline{3}$,
- c) (\mathbb{Z}_4 , $+_4$) a ekvivalence γ , která indukuje následující třídy rozkladu: $[0]_{\gamma} = \overline{0}$, $[1]_{\gamma} = \overline{1}$, $[2]_{\gamma} = \overline{2}$, $[3]_{\gamma} = \overline{3}$,
- d) (\mathbb{Z}_4 , $+_4$) a ekvivalence δ , která indukuje následující třídu rozkladu: $[0]_{\delta} = \{x; x \in \mathbb{Z}\}.$

Příklad 6: Zjistěte, zda dané zobrazení f je morfismem mezi následujícími algebraickými strukturami a určete typ morfismus.

- a) $(\mathbb{Z}, +)$ a $(\mathbb{Z}_4, +)$ a $f(x)=2x \mod 4$,
- b) $(\mathbb{Z}, +)$ a $(\mathbb{Z}_4, +)$ a $f(x) = (2x \mod 4) + 1$,
- c) $(\mathbb{Z}_6, +)$ a $(\mathbb{Z}_6, +)$ a f(x)=2x,
- d) (\mathbb{R}^+,\cdot) a $(\mathbb{R},+)$ a $f(x) = \log(x)$,
- e) $(\mathbb{R},+)$ a (\mathbb{R},\cdot) a $f(x)=e^x$ (co musíte změnit, aby se jednalo o izomorfismus?),
- f) $(\mathbb{R}, +)$ a $(\mathbb{R}, +)$ a $f(x) = k \cdot x$.

Příklad 7: Rozhodněte a zdůvodněte, zda je zadaná relační struktura svazem.

- a) (A,α) , kde $A = \{a,b,c,d,e\}$, $\tau = \{(a,c),(a,f),(b,c),(b,d),(c,e),(f,e),(d,e)\}$, $\alpha = RE(TR(\tau))$
- b) (B,β) , kde $B = \{x \in \mathbb{N}, 36 \mod x = 0\}$ a $(x,y) \in \beta \Leftrightarrow y \mod x = 0$
- c) $(P(\{1,2,3\}),\subseteq)$
- d) (E, ϵ), kde E = N {0} a (x,y) $\in \epsilon \Leftrightarrow x|y$

- e) (F, ϕ) , kde $F = \{a, b, c, d, e, f, g\}$ a $\theta = \{(a, b), (a, c), (a, e), (b, d), (e, d), (e, f), (c, d), (d, g), (f, g)\}$ a $\phi = id(F) \cup Tr(\theta)$
- $\text{f)} \ \ (G,\gamma), \ \mathrm{kde} \ \ G = \{a,b,c,e,f,g\}, \ \rho = \{(a,b),(a,e),(b,g),(e,f),(g,f)\} \ \mathrm{a} \ \gamma = id(G) \cup Tr(\rho)$
- g) (H,χ) , kde H = N, $\chi = \{(0,1)\} \cup \{(0,x), \text{ kde } x \in \{2,3,4,\ldots\}\} \cup \{(x,1), \text{kde } x \in \{2,3,4,\ldots\}\}$ a $\gamma = id(H) \cup \chi$
- h) (Z,ω) , kde $Z = \{a,b,c,d,e,f\}$, $\rho = \{(a,b),(a,c),(b,d),(b,e),(c,d),(c,e),(e,f),(d,f)\}$, $\omega = RE(TR(\rho))$

Příklad 8: Pro svazy z příkladu 7 ověřte, zda splňují distributivní zákony ($a \land (b \lor c) = (a \land b) \lor (a \land c)$ a $a \lor (b \land c) = (a \lor b) \land (a \lor c)$) či zákony modularity (pro $a \ge c$: $a \land (b \lor c) = (a \land b) \lor c$ a pro $a \le c : a \lor (b \land c) = (a \lor b) \land c$). Určete, které z nalezených svazů jsou distributivní a které modulární. Ověřte, zda jsou tyto svazy komplementárními (tj. existuje svazová 0, 1 a každý prvek má alespoň jeden komplement, kde pro komplement platí: $a \land a' = 0$ a $a \lor a' = 1$) a případně jsou dokonce booleovskými.

Příklad 9: Rozhodněte, které z následujících algebraických struktur jsou okruh, unitární okruh, obor, obor integrity, těleso či pole.

- a) $(\mathbb{Z}, +, \cdot),$
- b) $(\{0,1\}, \vee, \wedge),$
- c) $(\mathbb{Z}_{42}, +, \cdot),$
- d) ($\mathbb{Z}_{p}, +, \cdot$), kde p je prvočíslo,
- $e) (\mathbb{Q}, +, \cdot),$
- f) $(\mathbb{R}, +, \cdot)$,
- g) $(\mathbb{R}^+,+,\cdot),$
- h) $(\mathbb{R}^{n\times n}, +, \cdot)$.