Санкт-Петербургский государственный университет Прикладная математика и информатика

Учебная практика 3 (научно-исследовательская работа)

«Tensor SSA для анализа временного ряда»

Выполнил:

Хромов Никита Андреевич 20.Б04-мм

Научный руководитель:

к. ф.-м. н., д.

Голяндина Н.Э.

Оглавление

	1.	Введение	3
	2.	Построение тензора и его разложение	4
	3.	Свойства TSSA	6
		3.1. Примеры разделимости рядов в тензорном случае	8
	4.	Другие разложения	8
	Закл	почение	2
\mathbf{C}	писок	к литературы	3

1. Введение

Здесь должно быть введение.

2. Построение тензора и его разложение

Дан временной ряд f длины N

$$f=(f_1,f_2,\ldots,f_N).$$

Выбираются два натуральных параметра $I,L:I+L-1\leqslant N$, по ним высчитывается третий параметр J=N-I-L+2. С учётом этих параметров строится траекторный тензор $\mathcal X$ размерности $I\times L\times J$ следующим образом

$$\mathcal{X}_{i,l,j} = f_{i+l+j-2}$$
 $i \in \overline{1:I}, l \in \overline{1:L}, j \in \overline{1:J}.$

Слои тензора будут иметь следующий вид

$$\mathcal{X}_{,j} = \begin{pmatrix} f_{j} & f_{j+1} & \dots & f_{j+L-1} \\ f_{j+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{j+I-1} & \dots & \dots & f_{j+I+L-2} \end{pmatrix}, \\
\mathcal{X}_{,l,} = \begin{pmatrix} f_{l} & f_{l+1} & \dots & f_{l+J-1} \\ f_{l+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{l+I-1} & \dots & \dots & f_{l+I+J-2} \end{pmatrix}, \\
\mathcal{X}_{i,,} = \begin{pmatrix} f_{i} & f_{i+1} & \dots & f_{i+J-1} \\ f_{i+1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ f_{i+L-1} & \dots & \dots & f_{i+L+J-2} \end{pmatrix}.$$

К полученному тензору применяется HOSVD [1] — тензорное разложение, являющееся продолжением SVD на большие размерности. Результатом разложения является набор из одного тензора $\mathcal Z$ размерности $I \times L \times J$ и трёх ортогональных матриц $\mathbf U^{(1)}, \, \mathbf U^{(2)}, \, \mathbf U^{(3)}$ размерностей $I \times I, \, L \times L, \, J \times J$ соответственно.

Этот набор удовлетворяет равенству

$$\mathcal{X} = \mathcal{Z} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)},$$

где \times_n — произведение тензора на матрицу по n-му измерению. Оно определяется следующим образом: пусть \mathcal{A} — тензор размерности $I_1 \times I_2 \times \ldots \times I_K$, \mathbf{U} — матрица размерности

 $J_n \times I_n$, тогда $\mathcal{A} \times_n \mathbf{U}$ — тензор размерности $I_1 \times I_2 \times \ldots \times I_{n-1} \times J_n \times I_{n+1} \times \ldots \times I_K$, который считается по формуле

$$(\mathcal{A} \times_n \mathbf{U})_{i_1 i_2 \dots i_{n-1} j_n i_{n+1} \dots i_K} = \sum_{i_n=1}^{I_n} a_{i_1 i_2 \dots i_{n-1} i_n i_{n+1} \dots i_K} u_{j_n i_n}.$$

Обозначим за $\mathcal{Z}_{i_n=\alpha}$ подтензор тензора \mathcal{Z} , полученный фиксированием индекса $i_n=\alpha$. Тензор \mathcal{Z} удовлетворяет следующим свойствам:

1. подтензоры $\mathcal{Z}_{i_n=\alpha}$ и $\mathcal{Z}_{i_n=\beta}$ ортогональны для всех возможных значений $n,\,\alpha,\,\beta$: $\alpha \neq \beta$:

$$\langle \mathcal{Z}_{i_n=\alpha}, \mathcal{Z}_{i_n=\beta} \rangle = 0 \qquad \alpha \neq \beta,$$

2. подтензоры расположены в порядке убывания их евклидовой нормы:

$$\|\mathcal{Z}_{i_n=1}\| \geqslant \|\mathcal{Z}_{i_n=2}\| \geqslant \ldots \geqslant \|\mathcal{Z}_{i_n=I_n}\|$$

для всех возможных значений n.

Определение 2.1. Обозначим $\sigma_i^{(n)} = \|\mathcal{Z}_{i_n=i}\|$ и будем называть $\sigma_i^{(n)}$ *i-м* сингулярным числом тензора \mathcal{X} по измерению n.

Определение 2.2. Векторы $\mathbf{U}_i^{(n)}$ будем называть i-м сингулярным вектором тензора \mathcal{X} по измерению n.

Замечание 1. Вычисление HOSVD тензора \mathcal{A} с N размерностями сводится κ вычислению SVD на N матрицах $\mathbf{A}_{(n)}$, которые вычисляются развёрткой тензора по n-му измерению [1].

Другими словами, если \mathcal{A} — тензор размерности $I_1 \times I_2 \times \ldots \times I_N$, то его развёртка по n-му измерению — это матрица $\mathbf{A}_{(n)}$ размерности $I_n \times I_{n+1}I_{n+2}\ldots I_NI_1I_2\ldots I_{n-1}$, в которой элемент $a_{i_1i_2\ldots i_N}$ тензора содержится в строке i_n и столбце с номером равным

$$(i_{n+1}-1)I_{n+2}I_{n+3}\dots I_NI_1I_2\dots I_{n-1} + (i_{n+2}-1)I_{n+3}I_{n+4}\dots I_NI_1I_2\dots I_{n-1} + \dots + (i_N-1)I_1I_2\dots I_{n-1} + (i_1-1)I_2I_3\dots I_{n-1} + (i_2-1)I_3I_4\dots I_{n-1} + \dots + i_{n-1}.$$

K каждой из полученных матриц применяется SVD, в результате чего получаются N матриц $\mathbf{U}^{(n)}$, составленных из левых сингулярных векторов соответствующих развёрток. Затем находится тензор сингулярных чисел

$$\mathcal{Z} = \mathcal{A} \times_1 \mathbf{U}^{(1)^H} \times_2 \mathbf{U}^{(2)^H} \dots \times_N \mathbf{U}^{(N)^H}$$

В результате получается искомое разложение

$$\mathcal{A} = \mathcal{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \dots \times_N \mathbf{U}^{(N)}.$$

Рис. 1. Развёртка тензора \mathcal{A} размерности $I_1 \times I_2 \times I_3$ в матрицы $\mathbf{A}_{(1)}, \, \mathbf{A}_{(2)}, \, \mathbf{A}_{(3)}$ размерностей $I_1 \times (I_2I_3), \, I_2 \times (I_3I_1), \, I_3 \times (I_1I_2)$ соответственно

3. Свойства TSSA

В силу аналогичности свойств SVD и HOSVD, многие определения и свойства из теории SSA можно перенести на тензорный случай.

Утверждение 3.1. $\tilde{F}=(\tilde{f}_1,\ldots,\tilde{f}_N),\ \hat{F}=(\hat{f}_1,\ldots,\hat{f}_N)$ – временные ряды длины N. Пусть ряд F является суммой этих рядов. Траекторные тензоры рядов равны соответственно: $\tilde{X},\ \hat{X},\ X$. Тогда существует сингулярное разложение тензора X с параметрами I,L, которое можно представить в виде суммы сингулярных разложений тензоров \tilde{X} и \hat{X} с теми же параметрами в том и только том случае, когда взаимно ортогональны все подряды рядов \tilde{F} и \hat{F} длины I,L,J=N-I-L+2, то есть

1.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+I-1} \hat{f}_{m+I-1} = 0 \quad \forall k, m \in \overline{1:N-I+1},$$

2.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+L-1} \hat{f}_{m+L-1} = 0$$
 $\forall k, m \in \overline{1:N-L+1},$

3.
$$\tilde{f}_k \hat{f}_m + \ldots + \tilde{f}_{k+J-1} \hat{f}_{m+J-1} = 0 \quad \forall k, m \in \overline{1:N-J+1}.$$

Доказательство. Сингулярные разложения тензоров $\mathcal{X}, \tilde{\mathcal{X}}, \hat{\mathcal{X}}$ могут быть представлены в виде следующих сумм:

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \mathcal{Z}_{i,l,j} \mathbf{U}_{i}^{(1)} \circ \mathbf{U}_{l}^{(2)} \circ \mathbf{U}_{j}^{(3)},$$

$$\tilde{\mathcal{X}} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \tilde{\mathcal{Z}}_{i,l,j} \tilde{\mathbf{U}}_{i}^{(1)} \circ \tilde{\mathbf{U}}_{l}^{(2)} \circ \tilde{\mathbf{U}}_{j}^{(3)},$$

$$\hat{\mathcal{X}} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \hat{\mathcal{Z}}_{i,l,j} \hat{\mathbf{U}}_{i}^{(1)} \circ \hat{\mathbf{U}}_{l}^{(2)} \circ \hat{\mathbf{U}}_{j}^{(3)}.$$

Сумма $\mathcal{X} = \sum_{i} \sum_{l} \sum_{j} \tilde{\mathcal{Z}}_{i,l,j} \tilde{\mathbf{U}}_{i}^{(1)} \circ \tilde{\mathbf{U}}_{l}^{(2)} \circ \tilde{\mathbf{U}}_{j}^{(3)} + \sum_{i} \sum_{l} \sum_{j} \hat{\mathcal{Z}}_{i,l,j} \hat{\mathbf{U}}_{i}^{(1)} \circ \hat{\mathbf{U}}_{l}^{(2)} \circ \hat{\mathbf{U}}_{j}^{(3)}$ является сингулярным разложением \mathcal{X} в том и только том случае, когда пары векторов $\tilde{\mathbf{U}}_{k}^{(\sigma)}$, $\hat{\mathbf{U}}_{m}^{(\sigma)}$ взаимно ортогональны при всех возможных значениях σ, k, m . Это равносильно ортогональности линейных пространств $\mathcal{L}_{1}^{(\sigma)}$, $\mathcal{L}_{2}^{(\sigma)}$, построенных на векторах $\tilde{\mathbf{U}}_{k}^{(\sigma)}$ и $\hat{\mathbf{U}}_{m}^{(\sigma)}$ соответственно.

Рассмотрим пространства $\mathcal{L}_{1}^{(1)}$, $\mathcal{L}_{2}^{(1)}$: это пространства первых измерений тензоров $\tilde{\mathcal{X}}$ и $\hat{\mathcal{X}}$, то есть пространства построенные на векторах вида $\tilde{\mathcal{X}}_{,l,j}$ и $\hat{\mathcal{X}}_{,l,j}$ соответственно. Вспоминая вид тензоров $\tilde{\mathcal{X}}$ и $\hat{\mathcal{X}}$ получаем, что условие ортогональности этих линейных пространств равносильно первому условию из формулировки утверждения.

Оставшиеся два условия получаются аналогично из условий ортогональности оставшихся двух пар линейных пространств. \Box

Из утверждения 3.1 следует, что понятие слабой разделимости ряда из теории SSA [2] применимо и к тензорному случаю.

Следствие 1. Если временные ряды \tilde{F} и \hat{F} длины N слабо I- и L-разделимы в смысле теории SSA, то существует такое HOSVD траекторного тензора \mathcal{X} ряда $F = \tilde{F} + \hat{F}$, что его можно разбить на две части, являющиеся HOSVD траекторных тензоров, составленных по рядам \tilde{F} и \hat{F} .

Замечание 2. Понятие сильной разделимости можно перенести со стандартного случая на тензорный непосредственно, с поправкой на определение 2.1 сингулярных чисел для тензора.

3.1. Примеры разделимости рядов в тензорном случае

Рассмотрим условия разделимости рядов $\tilde{F}=(\tilde{f}_1,\,\tilde{f}_2,\ldots,\,\tilde{f}_N),\,\hat{F}=(\hat{f}_1,\,\hat{f}_2,\ldots,\,\hat{f}_N)$ в некоторых частных случаях.

• Отделимость от константного ряда

Пусть $\tilde{f}_n = c \neq 0$ для $n \in \overline{1:N}$. Тогда необходимые и достаточные условия отделимости от него ряда \hat{F} в смысле TSSA следующие:

- 1. Ряд \hat{F} имеет целый период T, и I/T, L/T, J/T целые;
- $2. \ \hat{f}_1 + \hat{f}_2 + \ldots + \hat{f}_T = 0.$
- Отделимость от экспоненциального ряда

Пусть $\tilde{f}_n = e^{\alpha n}$ для $n \in \overline{1:N}$. Тогда необходимые и достаточные условия отделимости от него ряда \hat{F} в смысле TSSA следующие:

- 1. Ряд $(\tilde{f}_1\hat{f}_1,\,\tilde{f}_2\hat{f}_2,\dots,\,\tilde{f}_N\hat{f}_N$ имеет целый период T, и $I/T,\,L/T,\,J/T-$ целые;
- 2. $\tilde{f}_1 \hat{f}_1 + \tilde{f}_2 \hat{f}_2 + \ldots + \tilde{f}_N \hat{f}_T = 0.$
- Отделимость от гармонического ряда

Пусть $\tilde{f}_n = \cos(2\pi\omega n + \varphi)$, где $0 < \omega < 1/2$, и I, L, J > 2. Положим $\hat{f}_n = \cos(2\pi\omega' n + \varphi')$, тогда ряд \tilde{F} отделим от ряда \hat{F} в смысле TSSA тогда и только тогда, когда $\omega \neq \omega'$ и $I\omega$, $I\omega'$, $L\omega$, $L\omega'$, $J\omega$, $J\omega'$ —целые числа.

4. Другие разложения

Помимо HOSVD, существует ещё одно разложение тензора в сумму тензоров 1 ранга: CANDECOMP-PARAFAC (CP) [3, 4]. Это разложение нам не подходит, так как количество компонент в этом разложении равно тензорному рангу, который в общем случае не удовлетворяет одному из основных свойств SSA: ранг траекторного тензора, построенного по сумме двух рядов может оказаться больше, чем сумма рангов траекторных тензоров, построенных на каждом из этих рядов.

Кроме того можно рассмотреть следующий случай. В терминах СР ряды $f_1^{(i)}=3,\ f_2^{(i)}=\sin{(2\pi i/3)}$ имеют тензорные ранги 1 и 3 соответственно, а у ряда $f^{(i)}=f_1^{(i)}+f_2^{(i)}$ ранг равен 3. Притом ни один из элементов разложения не даёт константный ряд, то

есть разделения константного ряда от синуса не произошло, хотя в теории SSA эти ряды являются сильно разделимыми при условии делимости всех измерений на период синуса.

```
s <- rep(3, 132)
p < -tssa3(s, rank = 1, I = 42, L = 45)
print(p$cp$conv)
## [1] TRUE
rec <- t3.reconstruct(p, list(1))</pre>
mse(rec[[1]], s)
## [1] 5.438359e-30
s \leftarrow \sin(2 * pi * 0:132 / 3)
p <- tssa3(s, 2, 45, 45)
print(p$cp$conv)
## [1] FALSE
rec <- t3.reconstruct(p, list(1:2))</pre>
mse(rec[[1]], s)
## [1] 0.03323903
s \leftarrow \sin(2 * pi * 0:132 / 3)
p < - tssa3(s, 3, 45, 45)
print(p$cp$conv)
## [1] TRUE
```

```
rec <- t3.reconstruct(p, list(1:3))</pre>
mse(rec[[1]], s)
## [1] 1.446833e-16
s.const <- 3
s.sin < -sin(2 * pi * 0:132 / 3)
s <- s.const + s.sin
p <- tssa3(s, 3, 45, 45)
print(p$cp$conv)
## [1] TRUE
print(p$modes)
## $I
## [1] 45
## $L
## [1] 45
## $J
## [1] 45
rec <- t3.reconstruct(p, list(1, 2, 3))</pre>
mse(rec[[1]], s.const)
## [1] 9.043692
mse(rec[[2]], s.const)
## [1] 1.32778
```

mse(rec[[3]], s.const)

[1] 3.431616

Другим недостатком СР разложения является то, что это итерационный метод, причём процесс итерации начинается с генерации случайной матрицы, в связи с чем на одних и тех же данных он может выдавать разные результаты, в том числе может как сойтись, так и нет. Возможно можно добиться лучших результатов, используя СР, если строить тензор по ряду другим образом, подбирать другие параметры разложения и использовать другие методы вычисления СР, однако изучение этого вопроса выходит за рамки этой работы.

Заключение

Здесь должно быть заключение.

Список литературы

- 1. De Lathauwer Lieven, De Moor Bart, Vandewalle Joos. A Multilinear Singular Value Decomposition // SIAM Journal on Matrix Analysis and Applications. 2000. Vol. 21, no. 4. P. 1253–1278. Access mode: https://doi.org/10.1137/S0895479896305696.
- 2. Golyandina Nina, Nekrutkin Vladimir, Zhigljavsky Anatoly. Analysis of time series structure: SSA and related techiques. Chapman & Hall/CRC, 2001.
- 3. Harshman Richard A. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis. 1970. Vol. 16. P. 1–84.
- 4. Carroll J. Douglas, Chang Jih Jie. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition // Psychometrika. 1970. Vol. 35. P. 283–319.