mk 3/08/2023

In [147]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt

Out[148]:

	date	BEN	со	EBE	MXY	NМНС	NO_2	NOx	ОХҮ	O_3	PI
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000	ī
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	1
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	1
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19.410
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24.670

209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	1
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51.259
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	1
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	1
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47.150

209448 rows × 17 columns

In [149]: df=df.dropna()

```
In [150]: df=df.head(100)
In [151]: df.columns
Out[151]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
          3',
                  'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
                dtype='object')
In [152]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 100 entries, 11 to 1199
          Data columns (total 17 columns):
               Column
                         Non-Null Count Dtype
                -----
           _ _ _
           0
               date
                         100 non-null
                                         object
                                         float64
           1
               BEN
                         100 non-null
           2
               CO
                         100 non-null
                                         float64
           3
                                         float64
               EBE
                         100 non-null
           4
               MXY
                         100 non-null
                                         float64
           5
               NMHC
                         100 non-null
                                         float64
           6
               NO 2
                         100 non-null
                                         float64
           7
                                         float64
               NOx
                         100 non-null
           8
               OXY
                         100 non-null
                                         float64
           9
               0 3
                         100 non-null
                                         float64
           10 PM10
                         100 non-null
                                         float64
           11 PM25
                         100 non-null
                                         float64
           12 PXY
                         100 non-null
                                         float64
                                         float64
           13 SO 2
                         100 non-null
           14 TCH
                         100 non-null
                                         float64
           15 TOL
                         100 non-null
                                         float64
               station 100 non-null
                                         int64
          dtypes: float64(15), int64(1), object(1)
          memory usage: 14.1+ KB
```

Out[153]:

	BEN	TOL	PXY
11	0.78	1.99	0.81
23	0.70	2.62	0.81
35	0.58	0.84	0.81
47	0.33	1.21	0.81
59	0.38	0.49	0.79
1151	0.44	1.66	0.53
1163	0.45	0.86	0.57
1175	0.40	1.48	0.57
1187	0.45	0.91	0.56
1199	0.42	1.60	0.56

100 rows × 3 columns

In [154]: data.plot.line(subplots=True)

Out[154]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)


```
In [155]: data.plot.line()
```

Out[155]: <AxesSubplot:>

In [156]: b=data[0:50]

In [157]: b.plot.bar()

Out[157]: <AxesSubplot:>


```
In [158]: data.plot.hist()
```

Out[158]: <AxesSubplot:ylabel='Frequency'>

In [159]:
 data.plot.area()

Out[159]: <AxesSubplot:>

In [160]: data.plot.box()

Out[160]: <AxesSubplot:>

In [161]: b.plot.pie(y='BEN')

Out[161]: <AxesSubplot:ylabel='BEN'>


```
In [162]: data.plot.scatter(x='TOL' ,y='BEN')
```

Out[162]: <AxesSubplot:xlabel='TOL', ylabel='BEN'>


```
In [163]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 100 entries, 11 to 1199
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	100 non-null	object
1	BEN	100 non-null	float64
2	CO	100 non-null	float64
3	EBE	100 non-null	float64
4	MXY	100 non-null	float64
5	NMHC	100 non-null	float64
6	NO_2	100 non-null	float64
7	NOx	100 non-null	float64
8	OXY	100 non-null	float64
9	0_3	100 non-null	float64
10	PM10	100 non-null	float64
11	PM25	100 non-null	float64
12	PXY	100 non-null	float64
13	S0_2	100 non-null	float64
14	TCH	100 non-null	float64
15	TOL	100 non-null	float64
16	station	100 non-null	int64
4+,,,,	£1+	C4/15) : = + C4/1)	ab = a a + /1 \

dtypes: float64(15), int64(1), object(1)

memory usage: 14.1+ KB

```
In [164]: df.describe()
```

Out[164]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.0
mean	0.597600	0.258900	0.920100	0.842200	0.275100	29.911300	38.454500	1.(
std	0.254626	0.083217	0.352931	0.284575	0.079181	20.908565	27.822058	0.2
min	0.250000	0.150000	0.340000	0.380000	0.170000	1.290000	2.780000	0.5
25%	0.440000	0.190000	0.655000	0.610000	0.210000	16.910000	20.057500	1.(
50%	0.555000	0.240000	0.880000	0.935000	0.260000	27.100000	33.234999	1.(
75%	0.660000	0.310000	1.102500	1.000000	0.330000	40.415001	50.852500	1.(
max	1.630000	0.500000	2.180000	1.780000	0.470000	84.629997	117.300003	1.8
4				_				

In [166]: sns.pairplot(df1[0:50])

Out[166]: <seaborn.axisgrid.PairGrid at 0x1d8f8c34760>


```
In [167]: sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[167]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [168]: sns.heatmap(df1.corr())

Out[168]: <AxesSubplot:>


```
In [170]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [171]: from sklearn.linear_model import LinearRegression
    lr=LinearRegression()
    lr.fit(x_train,y_train)

Out[171]: LinearRegression()

In [172]: lr.intercept_
Out[172]: 28079197.48878474

In [173]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
    coeff
Out[173]:
```

	Co-efficient
BEN	-65.477903
СО	562.027959
EBE	27.200743
MXY	-10.248607
NMHC	-111.487476
NO_2	-0.741432
NOx	-0.447744
OXY	16.357217
O_3	-0.235314
PM10	0.116936
PXY	-3.133652
SO_2	- 3.087070
тсн	-106.991085
TOL	2.717068

```
In [174]: prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[174]: <matplotlib.collections.PathCollection at 0x1d886e84640>


```
In [175]: lr.score(x_test,y_test)
Out[175]: 0.8896517498224122
In [176]: lr.score(x_train,y_train)
Out[176]: 0.949306857592614
```

In [177]: from sklearn.linear_model import Ridge,Lasso

In [178]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[178]: Ridge(alpha=10)

In [179]: rr.score(x_test,y_test)

Out[179]: 0.4697103996800025

In [180]: rr.score(x_train,y_train)

Out[180]: 0.6520503785699647

In [181]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[181]: Lasso(alpha=10)

```
In [182]: la.score(x_train,y_train)
Out[182]: 0.4692794984392259
In [183]: |la.score(x_test,y_test)
Out[183]: 0.36782468523872713
In [184]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[184]: ElasticNet()
In [185]: en.coef
Out[185]: array([-1.92676588, 0.
                                          , 1.79373525, 3.68565428, -2.03130748,
                 -3.14780078, 2.35863109, -0.
                                                       , -0.35659703, -1.21336016,
                 -0.39958075, 2.97652582, -1.38750317, 6.95817564])
In [186]: en.intercept
Out[186]: 28079057.24657358
In [187]: | prediction=en.predict(x test)
In [188]: |en.score(x_test,y_test)
Out[188]: 0.3895631825806143
In [189]: | from sklearn import metrics
          print(metrics.mean_absolute_error(y_test,prediction))
          print(metrics.mean squared error(y test,prediction))
          print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
          25.601336059346796
          843.1658540605265
          29.037318300086294
In [190]: from sklearn.linear model import LogisticRegression
In [191]: | feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O
           'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
          target vector=df[ 'station']
```

```
In [192]: | feature_matrix.shape
Out[192]: (100, 14)
In [193]: | target_vector.shape
Out[193]: (100,)
In [194]: from sklearn.preprocessing import StandardScaler
In [195]: | fs=StandardScaler().fit_transform(feature_matrix)
In [196]:
          logr=LogisticRegression(max iter=10000)
          logr.fit(fs,target_vector)
Out[196]: LogisticRegression(max_iter=10000)
In [197]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
          prediction=logr.predict(observation)
In [198]:
          print(prediction)
          [28079024]
In [199]: logr.score(fs,target vector)
Out[199]: 1.0
In [200]:
          logr.predict proba(observation)[0][0]
Out[200]: 0.9993168651234103
In [201]: logr.predict proba(observation)
Out[201]: array([[9.99316865e-01, 6.83134877e-04]])
In [202]: | from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
In [203]:
          rfc.fit(x_train,y_train)
Out[203]: RandomForestClassifier()
```

```
In [204]:
                                         parameters={'max_depth':[1,2,3,4,5],
                                              'min_samples_leaf':[5,10,15,20,25],
                                              'n_estimators':[10,20,30,40,50]}
In [205]:
                                        from sklearn.model_selection import GridSearchCV
                                         grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="acc
                                         grid search.fit(x train,y train)
Out[205]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                            param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                                            'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                                            'n_estimators': [10, 20, 30, 40, 50]},
                                                                                            scoring='accuracy')
In [206]: grid_search.best_score_
Out[206]: 1.0
In [207]: rfc best=grid search.best estimator
 In [208]: from sklearn.tree import plot tree
                                         plt.figure(figsize=(50,5))
                                         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['a','b'
Out[208]: [Text(1395.0, 203.85000000000000, 'TCH <= 1.525\ngini = 0.474\nsamples = 44\n</pre>
                                         value = [43, 27]\nclass = a'),
                                             Text(697.5, 67.9499999999999, 'gini = 0.0 \times 14 = 14 \times 14 = 0.0 \times 14 = 14 \times
                                         lass = b'),
                                             Text(2092.5, 67.9499999999999, 'gini = 0.215\nsamples = 30\nvalue = [43, 6]
                                          \nclass = a')]
```

Conclusion

Linear Regression = 0.949306857592614

Ridge Regression = 0.6520503785699647

Lasso Regression = 0.4692794984392259

ElasticNet Regression = 0.3895631825806143

Logistic Regression = 0.9993168651234103

Randomforest = 1.0

Randomforest is suitable for this dataset

In []: