

Universidad Nacional Autónoma de México Posgrado de Ingeniería Laboratorio de Biorobótica

Robot Móvil "Azcatl"

Servicio Social

Diagrama eléctrico

A cargo de:

Dr. Savage Carmona Jesús

Realiza:

Silva Guzmán Alejandro

20 de abril de 2020

Diagrama eléctrico

1. Niveles

La estructura del robot permite la división del circuito eléctrico en dos niveles: superior e inferior.

Diagrama general

- 1.1.El nivel inferior almacena el bloque de alimentación de todo el robot:
 - Pila de 7.4[V] (Pila negra) o 12.1[V] (Pila azul).
 - Regulador de voltaje a 5[V]
 - Controlador para los motores.
- 1.2. El bloque superior contiene los elementos de control, recepción y procesamiento de datos:
 - RaspberryPi 3
 - Arduino Mega
 - Hokuyo
 - Torre de Fotoresistencias

2. Descripción por bloques

2.1.Alimentación

La alimentación del robot viene de una batería de LiPo de 2 celdas con capacidad de 5200[mA] y voltaje de de 3.7[V] cada una, las cuales conectadas en serie nos entregan 7.4[V] (Pila negra) o 12.1[V] (Pila azul).

2.2.El robot cuenta con un switch para el encendido/apagado del robot. Una vez presionado, la RaspberryPi 3, el Hub USB, el Arduino Mega y el láser Hokuyo se encenderán inmediatamente.

2.3.Regulador de voltaje

Se utilizó un regulador de voltaje "Pololu D15V70F5S3"

Documentación: https://www.pololu.com/product/2111

Este puede recibir una alimentación desde 4.5[V] y hasta 24[V], y la reduce hasta un voltaje seleccionado por el usuario de 3.3[V] o 5[V].

Para este robot la configuración de salida será de 5[V] para la correcta alimentación de los elementos de procesamiento de datos a RaspberryPi 3 y Arduino Mega. Si se desease utilizar la configuración de 3.3[V] únicamente se debe de alimentar el pin "3V3 SELECT" del regulador.

2.4. Alimentación de elementos de procesamiento de datos: RaspberryPi 3 y Arduino Mega. Ambas tarjetas requieren de una alimentación de 5[V] para su correcto funcionamiento. Este voltaje es entregado por el regulador hasta una miniProtoboard que se encuentra a un costado de la RasperryPi 3, desde la cual se alimentarán las dos tarjetas. La conexión se muestra a continuación:

En un principio el Arduino era alimentado únicamente mediante su conexión USB 2.0 Type-B, pero en ocasiones se lanzaba un error de sincronización.

Al parecer, la alimentación necesaria para el Arduino, los motores, el Hokuyo y las resistencias, no era suficiente desde la RaspberryPi 3, ocasionando que se apagara la tarjeta o se congelara el proceso. Para solucionar esto, se conectó la alimentación del Arduino directo a la Protoboard que entrega los 5[V].

2.5. Conexión de los motores:

- "100:1 Metal Gearmotor 37Dx73L mm 12V with 64 CPR Encoder"
- Documentación: https://www.pololu.com/product/4755

Con:

- "Pololu Dual VNH5019 Motor Driver Shield para Arduino"
- Documentación: https://www.pololu.com/product/2502

Y hasta el Arduino Mega. Las conexiones se muestran a continuación:

Los motores Pololu reciben una alimentación de 12.1[V] o 7.4[V], dependiendo de la batería conectada. La alimentación que se les puede administrar inicia desde los 6[V], pero están pensado para trabajar con 12[V].

La diferencia en rendimiento se describe en la tabla de a continuación:

General specifications

Gear ratio:	102.08:1
No-load speed @ 12V:	100 rpm
No-load current @ 12V:	0.2 A
Stall current @ 12V:	5.5 A ³
Stall torque @ 12V:	34 kg·cm <u>³</u>
Max output power @ 12V:	8 W 4
No-load speed @ 6V:	49 rpm ⁵
No-load current @ 6V:	0.15 A ⁵
Stall current @ 6V:	3.0 A ⁵
Stall torque @ 6V:	21 kg·cm <u>⁵</u>
Motor type:	12V

Tabla obtenida desde el sitio web de Pololu.

Estos cuentan con un encoder de cuadratura de 64[CPR], mismo que se comunica directamente al Arduino.

La información de los cables que vienen desde los motores es la siguiente:

Color	Function
Red	motor power (connects to one motor terminal)
Black	motor power (connects to the other motor terminal)
Green	encoder GND
Blue	encoder Vcc (3.5 – 20 V)
Yellow	encoder A output
White	encoder B output

Las conexiones de los encoders van directo al Arduino, y vienen dadas por la siguiente tabla:

Pin Arduino	Pin Motor
2	Encoder A — Motor 1
4	Encoder B — Motor 1
3	Encoder A — Motor 2
5	Encoder B — Motor 2
18	Encoder A — Motor 3
17	Encoder B — Motor 3
19	Encoder A — Motor 4
22	Encoder B — Motor 4
20	Encoder A — Motor 5
23	Encoder B — Motor 5
21	Encoder A — Motor 6
24	Encoder B — Motor 6

Las conexiones hacia el Pololu Dual VNH5019 Motor Driver Shield hasta el Arduino vienen dadas por la siguiente tabla:

Pin Arduino	Pin Motor Driver Shield
6	PWM 1 — Lado Derecho
7	PWM 2 — Lado Izquierdo
48	2-IN-A — Lado Izquierdo
49	2-IN-B — Lado Izquierdo
50	2-IN-A — Lado Derecho
51	2-IN-B — Lado Derecho

2.6. Conexión de las Fotoresistencias:

El robot cuenta con un arreglo de 8 fotoresistencias conectadas a las entradas con lectura analógicas del Arduino. Estar permiten leer un voltaje de hasta 5[V] desde las resistencias. La conexión es la siguiente:

Y en la tabla:

Pin Arduino	Torre de resistencias
A0	Fotoresistenca 1
A1	Fotoresistenca 2
A2	Fotoresistenca 3
A3	Fotoresistenca 4
A4	Fotoresistenca 5
A5	Fotoresistenca 6
A6	Fotoresistenca 7
A7	Fotoresistenca 8

Anexado al diseño anterior, se colocaron dos luces Led color verde, que permite visualizar el estado de (Encendido o Apagado) del Arduino. Estas únicamente se alimentan desde el pin de 5[V].