The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Final Examination - Fall 07/08

Answer ALL Questions

Date: 14 December 2007 Time allowed: 3 hours

- 1. Consider on systems with failure times X_1, \dots, X_n assumed to be independent and identically distribution, $\exp(\theta)$, distributions, i.e., $f(x_i) = \frac{1}{A} e^{-x_i/\theta}$, $x_i > 0$.
 - (a) (1 mark) Find the complete and sufficient statistic for θ .
 - (b) (1 mark) Find the maximum likelihood estimate of θ .
 - (c) (1 mark) Is the m.l.e. in (b) UMVUE? Why?
 - (d) (2 marks) Find the maximum likelihood estimate of the variance of the m.l.e. in (b).
 - (e) (1 mark) Find the maximum likelihood estimate of the probability $Pr(X_1 \ge 1)$ that one system with last at least a month.
 - (f) (2 marks) Find the Cramér-Rao Lower bound for variances of unbiased estimators of the probability $Pr(X_1 \ge 1)$.
 - (g) (2 marks) Find the UMVUE of the probability $Pr(X_1 \ge 1)$.
 - (h) (2 marks) For the following sets of 10 observations from this distribution: 0.0256, 0.3051, 0.0278, 0.8971, 0.0739, 0.3191, 0.7379, 0.3671, 0.9763, 0.0102, calculate the value of the method of moments estimate for $1/\theta$.
- 2. Let $X_1,...,X_n$ be a sample from Uniform (θ_1, θ_2) where θ_1 and θ_2 are unknown. Note that

$$f_{Y_{\alpha},Y_{\beta}}(x,y) = \frac{n!}{(\alpha-1)!(\beta-\alpha-1)!(n-\beta)!} [F(x)]^{\alpha-1} [F(y)-F(x)]^{\beta-\alpha-1} [1-F(y)]^{n-\beta} f(x) f(y).$$

- (a) (1 mark) Find the MLE of θ_1 and θ_2 .
- (b) (2 marks) Find the distributions of X_{max} and X_{min} , respectively.
- (c) (2 marks) Find $E(X_{max})$ and $E(X_{min})$.
- (d) (2 marks) Find the sufficient statistics for θ_1 and θ_2 . Prove that they are complete.
- (e) (1 mark) Hence or otherwise, find the UMVUE of $\frac{\theta_1 + \theta_2}{2}$.
- 3. A sample of independent data, (X_1, Y_1) , ..., (X_n, Y_n) may be expressed as $Y_i = \alpha + \beta X_i + \varepsilon_i$, where α and β are unknown parameters, X_i is fixed and $\varepsilon_i \sim N(0, \sigma^2)$ with known σ^2
 - (a) (2 marks) Find the distribution of Y_i .
 - (b) (2 marks) Find the maximum likelihood estimators for unknown parameters, α , β .
 - (c) (4 marks) Prove that the maximum likelihood estimators for α and β are unbiased.
 - (d) (2 marks) Find the complete and sufficient statistics for α and β .
 - (e) (1 mark) Are the maximum likelihood estimators for α and β the best estimators? Explain in details.
 - (f) (3 marks) Find the variance of the maximum likelihood estimator for β . What is its distribution?
 - (g) (3 marks) Hence or otherwise, construct a 95% confidence interval of the maximum likelihood estimator for β .

- 4. Three independent random samples, X_{ij} for i = 1, 2, 3, and j = 1, ..., n, are normally distributed with mean μ_i and variance σ^2 . Let $\overline{X}_i = \sum_{j=1}^n X_{ij}/n$ and $S_i^2 = \sum_{j=1}^n (X_{ij} \overline{X}_i)^2/(n-1)$ for i = 1, 2, 3. Consider the problem of testing $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_0$ versus $H_1:$ at least two are not equal.
 - (a) (2 marks) Find the maximum likelihood estimators of μ_0 and σ^2 under Θ_0 .
 - (b) (2 marks) Find the maximum likelihood estimators of μ_1 , μ_2 , μ_3 and σ^2 under Θ .
 - (c) (3 marks) Find the likelihood ratio and then derive the approximate large sample likelihood ratio test.
 - (d) (2 marks) Find the distribution of $\sum_{i=1}^{3} \sum_{j=1}^{n} (X_{ij} \overline{X}_i)^2 / \sigma^2$. Explain in details. Marks will be reduced without detailed explanation.
 - (e) **(4 marks)** Find the distribution of $n\sum_{i=1}^{3}(\overline{X}_{i}-\overline{X})^{2}/\sigma^{2}$, where $\overline{X}=\frac{1}{3n}\sum_{i=1}^{3}\sum_{j=1}^{n}X_{ij}$. Write down the steps in details. Explain in details. Marks will be reduced without detailed explanation.
 - (f) (3 marks) Are $\sum_{i=1}^{3} \sum_{j=1}^{n} (X_{ij} \overline{X}_i)^2$ and $\sum_{i=1}^{3} (\overline{X}_i \overline{X})^2$ independent? Why? Then, find the distribution of $3n(n-1)\sum_{i=1}^{3} (\overline{X}_i \overline{X})^2 / 2\sum_{i=1}^{3} \sum_{j=1}^{n_i} (X_{ij} \overline{X}_i)^2$. Explain in details. Marks will be reduced without detailed explanation.
 - (g) (2 marks) Construct the exact likelihood ratio test.
 - (h) **(5 marks)** Three catalysts are used in a chemical process. The following are yield data from the process:

Catalyst		
1	2	3
77.5	81.5	78.1
82.0	82.3	80.2
80.6	81.4	81.5
84.9	79.5	83.0
81.0	83.0	82.1

Use the tests derived in (c) & (g) to test $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_0$ at $\alpha = 0.05$. Are the conclusions different? Write down the test statistic and critical value for each test clearly.

***** END *****