Bachelor's Thesis Project

The Design of Discrete Time Delta-Sigma Modulators

Nishant Mehrotra, 14EC10034

Advisor: Prof. Pradip Mandal

Introduction and Motivation

- 1) ADC design for analog front-end interface
- 2) Low bandwidth application
- Key components Pre-filter, sampler, quantizer, decimator

1) No overload quantizer error limited to $\pm \frac{\Delta}{2}$

$$\Delta = \frac{V_{full-scale}}{2^N - 1}$$

$$g_q$$
 Y_{FS}
 X_{FS}
 X
 X_{FS}
 X

$$q \sim U\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right)$$

$$g_q$$
 x
 y

$$E[q^2] = \frac{\Delta^2}{12}$$

(d)

2) Nyquist-rate converters

$$f_{\rm s} = 2B$$

$$DR_{dB} = 20 \log_{10} \left(\frac{V_{full-scale}}{\Delta} \right) = 20 \log_{10} \left(2^{N} - 1 \right) \approx 6.02N$$

$$SNR_{dB} = 10\log_{10}\left(\frac{\frac{1}{2}\left(\frac{V_{full-scale}}{2}\right)^{2}}{\frac{\Delta^{2}}{12}}\right) \approx 6.02N + 1.76$$

$$ENOB = \frac{SNR_{dB} - 1.76}{6.02}$$

3) Oversampled converters

3) Oversampled converters

$$f_s = 2B \cdot OSR >> 2B$$

$$SNR_{dB} = 10\log_{10} \left(\frac{\frac{1}{2} \left(\frac{V_{full-scale}}{2} \right)^{2}}{\frac{\Delta^{2}}{12 \cdot OSR}} \right) \approx 6.02N + 1.76 + 10\log_{10} (OSR)$$

 Able to achieve equivalent performance for smaller values of N compared to Nyquist-rate converters

- 4) Noise-shaping converters
- Further reduce noise floor in signal band by high-pass filtering the noise to higher frequencies near $\frac{f_s}{2}$

Delta-Sigma Modulation Theory

1) Oversampled + noise shaping converter

$$STF(z) = \frac{G(z)}{1 + G(z) \cdot H(z)}$$

$$NTF(z) = \frac{1}{1 + G(z) \cdot H(z)}$$

$$STF(z) = z^{-1}$$

$$NTF(z) = (1 - z^{-1})$$

$$G(z) = \frac{z^{-1}}{1 - z^{-1}}$$

$$H(z) = 1$$

 Thus, negative feedback with feed-forward integrator and unity gain feed-back

Delta-Sigma Modulation Theory

- 2) General Delta-Sigma converter
- B = quantizer resolution, L = integrator order

$$SQNR_{dB} = 10log_{10}(\frac{3\pi}{2}(2^B - 1)^2 \cdot (2L + 1)(\frac{OSR}{\pi})^{2L+1})$$

Delta-Sigma Modulation Theory

- 3) Discrete time (DT) and continuous time (CT) implementations
- DT discrete time integrator (switched cap.)
- CT continuous time integrator (RC, Gm-C filters), sampling done prior to quantization
- DT no mismatch, no timing issues
- CT no pre-filtering required, higher speeds
- DT chosen here as speed not critical

- 1) Requirements
- Resolution ≥ 10 bits
- Input signal bandwidth ≤ 1 kHz
- Sampling frequency = 1 MHz

$$f_{in}P = f_s m$$
 $P = 2^{15} = 32768$ $OSR = \frac{f_s}{2f_{in}} = 496.5$
 $m = 33$ $f_{in} = 993Hz$

• Full-scale range = $0.9 \pm 0.1 \text{ V}$

- 2) NTF selection
- CIFB cascaded integrator feedback
- MATLAB simulations (Delta-Sigma Toolbox)

2) NTF selection

$$NTF(z) = \frac{(1-z^{-1})^2}{0.7835z^{-2} - 1.567z^{-1} + 1}$$

- 3) Op amp design
- Fully differential 2-stage Miller compensated
- DC gain ≥ 60 dB => 92 dB
- Unity gain frequency ≥ 5 MHz => 6.135 MHz
- Output swing $\approx 0 1.8 \text{ V} => 0.1 1.7 \text{ V}$
- Phase margin $\ge 60^{\circ} = > 87.55^{\circ}$
- Chopper stabilized to reduce flicker noise

3) Op amp design

3) Op amp design

3) Op amp design

4) Switched capacitor integrator design

4) Switched capacitor integrator design

5) Capacitor sizing

$$\overline{v_n^2} = \frac{0.5 \cdot (0.05)^2}{10^{8.5}} = \frac{4kT}{C_s \cdot 496.5}$$

$$C_{s1} = 8.44 \, pF = > 15 \, pF$$

$$C_{f1} = \frac{V_{ref}}{a_1} C_{s1} = 30 \, pF$$

$$C_{s2} = 15 pF$$

$$C_{f2} = \frac{V_{ref}}{a_2} C_{s2} = c_1 = 30 \, pF$$

- 6) 1-bit quantizer design
- Regenerative comparator StrongARM latch

- 7) Complete modulator
- Cascaded integrators

7) Complete modulator

7) Complete modulator

- 7) Complete modulator
- SQNR = 96.5 dB => SNR = 77.83 dB
- SFDR = 106 dB => SFDR = 86.6 dB
- ENOB = 15.73 bits => ENOB = 12.64 bits
- Thermal noise major bottleneck

Multi-bit, Multi-stage Modulator

- 1) Dynamic element matching
- Multi-bit quantizer with multi-bit DAC
- Randomizes connections between unit elements to tackle DAC non-linearity
- 2) Leslie-Singh architecture
- Second stage contains multi-bit quantizer
- Replaces 1-bit quantizer noise with multi-bit

Summary

- 1) Successfully designed 1-bit, 2nd-order modulator with > 12 bit resolution
- 2) Extension to multi-bit, multi-stage to be performed next
- 3) Comparison of discrete time, continuous time and hybrid architectures