Data Description Zomato Restaurant Dataset

Divya Ramanujam

This dataset is all about restaurants listed on Zomato in India. \geq Each row represents a restaurant, and we get to see its location, cost, delivery options, user ratings, and more. Our goal? To figure out what makes a restaurant successful — based on the ratings it receives!

Mhat's in the Dataset?

There are thousands of restaurants across different Indian cities, and for each one, we have:

Feature	What it Means
Longitude	East-west GPS coordinate of the restaurant
Latitude	North-south GPS coordinate of the restaurant
Average Cost for two	Average meal price for two people
Has Table booking	Whether it accepts table bookings (Yes/No $ ightarrow$ 1/0)
Has Online delivery	Whether it offers online food delivery (Yes/No \rightarrow 1/0)
Price range	Pricing tier assigned by Zomato (1 = low, 4 = high)

Aggregate Average user rating of the restaurant (0.0 to 5.0)

rating

Votes Number of user votes submitted on Zomato

Successful Target variable -1 if rating > 4.0, else 0 (indicates

popularity/success)

alcohol Alcohol percentage

quality A score from 0 to 10 given to each wine (this is what

we want to predict!)

Filtered to Indian Restaurants:

We only kept rows where Country Code == 1, so we're looking at Indian data.

Dropped Unnecessary Columns:

Removed IDs, verbose addresses, and features not useful for modeling.

Handled Missing Data:

Dropped rows where the rating (Aggregate rating) was missing.

Encoded Categorical Variables:

Converted "Yes"/"No" columns like Has Table booking and Has Online delivery into 1s and Os.

Outlier Treatment:

For numeric features like cost and votes, we used IQR (interquartile range) to remove extreme outliers.

Fixed Skewed Data:

We applied log transformation to highly skewed features — this makes models work better.

6 What Are We Trying to Predict?

We introduced a new column: Successful

- 1 \rightarrow The restaurant is successful (rating > 4.0)
- $0 \rightarrow Otherwise$

This turns our task into a classification problem — predicting which restaurants are likely to be successful on Zomato.

What Did We Learn from the Data?

- Restaurants with more votes and higher price ranges often have better ratings
- Online delivery and table booking aren't always linked with higher success
- Some locations (by Latitude/Longitude) show clusters of higher ratings
- We used a heatmap to visualize how all features relate to each other