Байесовская дистилляция моделей на базе трансформеров

И. Н. Игнашин

Московский физико-технический институт

16 декабря 2023 г.

Слайд об исследованиях

Исследуется проблема дистилляции моделей. То есть понижения сложности аппроксимирующих моделей.

Цель исследования —

Предложить метод дистилляции модели трансформера, а также дистилляции RNN модели с Attention.

Требуется предложить

- 1) метод удаления слоя Attention в модели RNN,
- 2) метод удаления слоя Attention в модели трансформера

Решение

Предложен способ удаления аддитивного внимания в модели RNN.

Постановка задачи в случае полносвязной нейросети

Заданы

- 1) Выборка $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^m \quad x_i \in \mathbb{R}^n \quad y_i \in \mathbb{Y}$,
- 2) Модель учителя $f = \sigma \circ U_T \sigma \circ ... U_2 \sigma \circ U_1$ $u = vec([U_T, U_{T-1}, ... U_1])$
- 3) Модель ученика $f = \sigma \circ U_T \sigma \circ ... U_k \sigma \circ U_{k-2} ... U_2 \sigma \circ U_1 \quad w = vec([U_T, U_{T-1}, ... U_1])$
- 4) Апостериорные распределния параметров учителя p(u|D)

Требуется найти зависимость параметров априорного распределения модели ученика p(w|A) от апостериорного распределения параметров модели учителя $p(u|\mathcal{D})$

 $^{^1 \}mbox{\it Грабовой } A.B.$ Априорное распределение параметров в задачах выбора моделей глубокого обучения , 2022

Предложенный способ

Заданы

- 1) Апостериорное распределение модели учителя RNN : $p(u|\mathcal{D})$, по предположению нормальное.
- 2) Аддитивное внимание в модели учителя $a(h,h') = w^T th(Uh + Vh')$.

Удаление аддитивного внимания посредством зануления некоторых параметров, приводящее к обычной RNN без внимания.

Можно занулять параметры различными способами:

- 1. w = 0
- 2. U = 0 и V = 0
- 3. Оставшиеся способы с занулением w,U,V , приводящие к $a(h,h')\equiv 0$

Априорное распределение для модели учителя получается нормальным с параметрами, вычисляемыми аналитически различными способами:

$$p(U^*|\mathcal{D}) = \int_{U_1,U_2} p([U^*,U_1,U_2]|\mathcal{D}) dU_1 dU_2$$

$$p(U^*|\mathcal{D}) = p(U|\mathcal{D}, U_0, U_1, U_2 = 0)$$

$$\sim \mathcal{N}(m_* + R_{U,U'}R_{U'}^{-1}(0 - m_{U'}), R_U - R_{U,U'}R_{U'}^{-1}R_{U',U})$$

Анализ предложенного способа

Зануление параметров приводит к a(h,h')=0. Это в свою очередь приводит к $softmax(a_{t,j})=\frac{1}{T}$. Следовательно получается структура RNN без внимания.

Выводы

- 1. Предложен способ дистилляции модели RNN.
- 2. Ожидается большее качество у дистиллированной модели, чем у произвольно инициализированной, той же структуры.
- 3. В случае трансформеров происходит поиск способа дистилляции за счет удаления attention слоя.