

(9) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift _® DE 197 11 799 A 1

(51) Int. Cl.⁶: B 31 B 3/00 B 31 B 1/26

B 31 B 3/10 // B65D 5/04

DEUTSCHES PATENTAMT

- 197 11 799.6 (1) Aktenzeichen: 21. 3.97 ② Anmeldetag:
- 1, 10, 98 (43) Offenlegungstag:

(1) Anmelder:

Knuppertz, Heinz-Werner, 40627 Düsseldorf, DE; Heil, Michael, 41179 Mönchengladbach, DE

(74) Vertreter:

Wenzel & Kalkoff, 58452 Witten

② Erfinder:

gleich Anmelder

66 Entgegenhaltungen:

39 27 199 A1 39 24 441 A1 DE 32 02 943 A1 DE 28 50 882 A1 DE 25 12 852 A1 DE 22 35 111 DE-OS 3 75 301 ΑT

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (§) Verfahren und Vorrichtung zum Herstellen von rohrförmigen Hohlkörpern
- Bei einem Verfahren und einer Vorrichtung zum Herstellen von rohrförmigen Hohlkörpern, insbesondere für Behälter, aus Kartonmaterial oder dergleichen durch
 - Biegen eines von Längsrändern begrenzten Zuschnitts aus Kartonmaterial o. dgl. zu dem Hohlkörper mit offenen Stirnseiten und
 - Verbinden einander überlappender Verbindungsbereiche des Zuschnitts
 - wird eine Verbesserung der Wirtschaftlichkeit und damit eine Kostensenkung bei der Herstellung bekannter Verpackungen dadurch geschaffen, daß
 - der Zuschnitt oder eine Bahn aus Kartonmaterial o. dgl., von der der Zuschnitt abgeteilt wird, in eine Biegestation transportiert und dort gehalten sowie
 - mittels Biegevorrichtungen in die Form des Hohlkörpers
 - gebogen und - ein Überlappungsbereich gebildet wird, in dem die beiden zur Längsachse des Hohlkörpers parallelen Längsränder des Zuschnitts aufeinandergelegt und
 - miteinander verbunden werden sowie
 - der Hohlkörper aus der Biegestation gefördert wird.

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Herstellen von rohrförmigen Hohlkörpern, insbesondere für Behälter, aus Kartonmaterial oder dergleichen durch

- Biegen eines von Längsrändern begrenzten Zuschnitts aus Kartonmaterial o. dergl. zu dem Hohlkörper mit offenen Stirnseiten und
- Verbinden einander überlappender Verbindungsbereiche des Zuschnitts.

Verfahren und Vorrichtungen der vorstehenden Art sind besonders bei der Herstellung von Verpackungen für Flüssigkeiten bekannt. Hierbei werden rohrförmige Hohlkörper mit rechteckiger Querschnittsfläche aus einem Kartonmaterial hergestellt, anschließend an einem Ende verschlossen, befüllt und in einem abschließenden Schritt auch an dem zweiten Ende verschlossen.

Unter einem Kartonmaterial wird im Rahmen der Erfindung auch ein wenigstens einseitig, vorzugsweise jedoch beidseitig mit einer Kunststoffolie kaschierter, ebener Karton verstanden. Insbesondere handelt es sich um einen PEbeschichteten Karton. Von der Erfindung werden aber auch alle sonstigen flächigen oder folienförnigen Materialien erfaßt, insbesondere ein- oder mehrschichtige Kunststoffolien sowie faltbare Verbundmaterialien mit einer Aluminiumbeschichtung. Die Kunststoffkaschierung wird nach dem Aufeinanderlegen von Verbindungsbereichen des Zuschnitts, so daß sich diese überlappen, warm verbunden bzw. versiegelt. Bei der Verwendung eines reinen Kartonmaterials wird eine schweißbare Kunststoff-Zwischenlage in Form eines Streifens oder eine Klebung z. B. durch einen Heißkleber o.a. verwendet.

Der Bedarf an derartigen Verpackungen ist sehr groß. Die Kosten für die Verpackung machen inzwischen einen bedeutenden Anteil der Kosten des verpackten Produktes aus. Dabei verteuern gerade die vom Abfüller entfernt durchgeführten Produktionsschritte die Verpackung erheblich.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, ein Verfahren und eine Vorrichtung zur Verbesserung der Wirtschaftlichkeit und damit zur Kostensenkung bei der Herstellung bekannter Verpackungen zu schaffen, die vorwiegend für Flüssigkeiten und/oder dauerhaft haltbare Lebensmittel verwendet werden.

Erfindungsgemäß wird ein Verfahren vorgeschlagen, nach dem

- der Zuschnitt oder eine Bahn aus Kartonmaterial o. 50 dergl., von der der Zuschnitt abgeteilt wird, in eine Biegestation transportiert und dort gehalten sowie
- mittels Biegevorrichtungen in die Form des Hohlkörpers gebogen und
- ein Überlappungsbereich gebildet wird, in dem die 55 beiden zur Längsachse des Hohlkörpers parallelen Längsränder des Zuschnitts aufeinandergelegt und
- miteinander verbunden werden sowie
- der Hohlkörper aus der Biegestation gefördert wird.

Gegenstand der Erfindung ist außerdem eine für die Durchführung des erfindungsgemäßen Verfahrens bevorzugt anzuwendende Vorrichtung.

Die Erfindung erlaubt insbesondere, die Produktion rohrförmiger Hohlkörper als Vorstufe zur fertigen Verpackung zur Füllmaschine hin zu verlagern. Das Kartonmaterial wird entweder in Form von Zuschnitten oder als endlose Bahn in eine Vorrichtung eingeführt und nach dem Transport in eine

Biegestation stationär gehalten sowie mittels Biegevorrichtungen in die Form des Hohlkörpers gebogen. Es wird ein Überlappungsbereich gebildet, in dem die beiden zur Längsachse des Hohlkörpers parallelen Längsränder des Zuschnitts aufeinandergelegt und miteinander verbunden werden. Abschließend wird der nun fertige Hohlkörper aus der Biegestation herausgefördert.

Das erfindungsgeniäße Verfahren zur Herstellung eines grundsätzlich bekannten Verpackungsaufbaus, nämlich als in Rohrform bereits weitgehend fertige Verpackung, wird vorteilhafterweise dem üblichen Verfahrensablauf herkömmlicher Füllmaschinen bzw. Füllautomaten vorgeschaltet, so daß das erfindungsgemäße Verfahren ohne schwierige Anpassungsmaßnahmen in den Arbeitsablauf von bereits bestehenden Anlagen integriert werden kann bzw. derartige Anlagen entsprechend nachgerüstet werden können.

Dabei ist das erfindungsgemäße Verfahren in Einzelschritte gegliedert, denen jeweils eine bauliche Einheit zugeordnet werden kann. Vorteilhafterweise greifen diese Schritte jedoch zusammenwirkend ineinander. So wird das Kartonmaterial beim Zuführen in Form einer endlosen Bahn oder eines vorgefertigten Zuschnitts in der Anlage gleichzeitig exakt positioniert und vorzugsweise vorgebogen. Zur Beibehaltung einer vorbestimmten genauen Position wird der Zuschnitt oder die Bahn vorzugsweise bei Erreichen einer vorbestimmten Einfuhrlänge festgeklemmt, vorzugsweise unter Verwendung eines Andrückers.

Auf jeden Fall wird der in die Biegestation transporierte Zuschnitt dort stationär festgehalten und ohne Weitertransport – wie in anderen bekannten Biege- und Falteinrichtungen – an Ort und Stelle zu einem Rohr mit dem jeweils gewünschten Querschnitt gebogen bzw. gefaltet und mindestens in dieser Form fixiert. Diese Verfahrensweise gestattet eine wirtschaftliche Herstellung der rohrförmigen Hohlkörper ohne erheblichen Platzbedarf und Maschinenaufwand. Deshalb läßt sich das erfindungsgemäße Verfahren ohne weiteres nahezu allen bekannten Abfüllverfahren vorschalten.

Die Einbeziehung des erfindungsgemäßen Verfahrens in den Abfüllbetrieb erlaubt ein rasches Reagieren und Anpassen der Verpackung an unterschiedliche Anforderungen wie insbesondere wechselnde Packungsgrößen und/oder Ausstatungsvariationen. Derartige Wechsel der Art der Bahnbzw. der Zuschnitte können nahezu ohne Stillstandszeiten durchgeführt werden. Für den Abfüllbetrieb eröffnen sich durch die Herstellung der Verpackung vor Ort neue Möglichkeiten des bedarfsorientierten und wirtschaftlichen Produzierens.

In einer bevorzugten Ausführungsform wird das Biegen bereits beim Einführen in die Biegestation begonnen, in der Biegestation vollendet und der so hergestellte Hohlkörper durch Versiegeln der Hohlkörpernaht abdichtend fixiert. So greifen Einzelschritte unterstützend ineinander, und die Bearbeitungsschritte an aufeinanderfolgenden Zuschnitten überlagern sich zeitlich mindestens teilweise.

In der Ausgestaltung des erfindungsgemäßen Verfahrens sind spezifische Besonderheiten bei Verpackungen zu berücksichtigen. So ist es bei kunststoffbeschichteten Flüssigkeitsverpackungen, und insbesondere bei Verpackungen mit sehr lange haltbarem feuchtem oder flüssigem Inhalt, notwendig, mindestens eine, bei der fertigen Verpackung innenliegende Schnittkante des Zuschnitts gegen das Eindringen von Feuchtigkeit bzw. Flüssigkeit in das Kernmaterial zu schützen. Für diese besonderen Einsatzbedingungen wird an Verpackungen bevorzugt eine sogenannte umgelegte Naht, nämlich ein nach außen gefalteter zusätzlicher Längsrand im Überlappungs- bzw. Verbindungsbereich eingesetzt. Bei beidseitig mit einer Kunststoffolie beschichtetem Kar-

BNSDOCID: <DE__19711799A1_1_>

tonmaterial wird der im Überlappungsbereich der späteren Naht innenliegende Längsrand zur Packungsaußenseite hin umgefaltet und nut dem packungsaußenseitigen Längsrand üherdeckt. In der so gebildeten Dreischichtanordnung liegen stets die Kunststoffbeschichtungen der einzelnen Schichten aneinander. Diese Kunststoffschichten können vorteilhafterweise ohne Verwendung eines zusätzlichen Klebers oder weiterer Materialien miteinander abdichtend verbunden werden, beispielsweise in einem Schweißvorgang.

Nach dem Stand der Technik bekannte Verfahren zur Her- 10 stellung einer umgelegten Naht sind stets mehrschrittig aufgebaut und liefern dennoch im Ergebnis ungenaue Nahtstellen. Sehr häufig kommt es dabei vor, daß die zu verschweißenden Längsränder der umgelegten Naht gegeneinander verschoben werden, so daß die Kontinuität im Verpackungsdesign nicht gewahrt werden kann.

Nach der vorliegenden Erfindung wird dagegen eine umgelegte Naht mit exakter Lage im Kantenbereich oder in einem mittleren Bereich in rationeller und zuverlässiger Weise hergestellt. Anhand der anschließend beschriebenen 20 Ausführungsbeispiele wird ersichtlich, daß das erfindungsgemäße Verfahren auch für andere Packungs- und Naht formen sowie Nahtanordnungen einsetzbar ist.

Bei der Herstellung eines rohrförmigen Hohlkörpers mit einer umgelegten Naht wird gemäß Anspruch 11 das Mate- 25 rial beim Herstellen eines definierten Zuschnitts beim Schneidevorgang im Bereich der so entstehenden Schnittkante derart vorgefaltet, daß bereits hier ein erster Längsrand mit einem daran vorgefalteten zusätzlichen Längsrand gebildet wird.

Nach Anspruch 12 wird der zusätzliche Längsrand dadurch gebildet, daß er beim Schneidevorgang durch ein Obermesser um eine Faltkante gebogen wird. Vorteilhafterweise wird der zusätzliche Längsrand in seiner Breite und Flächenform durch die Querschnittsform des Obermessers 35 bestimmt.

Erfindungsgemäß werden die für eine räumliche Formgebung des Zuschnitts bis hin zur Herstellung der angestrebten Form des herzustellenden rohrförmigen Hohlkörpers notwendigen Fertigungsschritte in einer Biegestation zusam- 40 mengefaßt. Bei einer erfindungsgemäßen Vorrichtung besteht die Biegestation aus beweglichen und unbeweglichen Biegewerkzeugen. Eine in die Biegestation transportierte Bahn bzw. ein Zuschnitt wird bereits vor Erreichen seiner vorbestimmten Position in der Biegestation gebogen. Hierzu 45 dienen bevorzugt stationäre Führungselemente in Form von Führungsschienen. Diese Führungsschienen verlaufen vorteilhafterweise mindestens teilweise bogenförmig. Nach dem Schritt des Positionierens und Schneidens der Bahn übernehmen bewegliche Biegewerkzeuge den weiteren Pro- 50 zeß der Umformung des Zuschnitts. Vorzugsweise greifen sie dazu mindestens teilweise fingerartig durch die stationären Elemente der Biegestation hindurch und biegen dabei zugeordnete Teile des Zuschnitts.

Der bogenförmige Verlauf der stationären Führungsschie- 55 nen der Biegestation bewirkt dabei eine Vorformung des Zuschnitts und gestattet dadurch eine Reduzierung der Größe der beweglichen Biegewerkzeuge sowie der Schwenkwinkel bzw. Arbeitswege derselben. Der durch das erfindungsgemäße Verfahren ermöglichte Aufbau einer Biegestation 60 trägt damit wesentlich zu einem insgesamt kompakten Aufbau der Vorrichtung mit kurzen Prozeß-Zykluszeiten bei.

In einer wesentlichen Weiterbildung der Erfindung wird der Zuschnitt in der Biegestation um einen Formkörper, insbesondere um einen Dorn, herumgebogen und abschließend 65 um den Dorn herum auch geschlossen. Hierbei wird der Überlappungsbereich durch Aufeinanderlegen zweier Längsränder des Zuschnitts zur Vorbereitung der angestreb-

ten Naht gebildet.

Vorteilhafterweise werden sowohl der Formkörper bzw. der Dorn als auch die Biegewerkzeuge an ihren Kontaktslächen, an denen sie mit dem Zuschnitt mindestens teilweise in Kontakt kommender angestrebten Endform des herzustellenden Hohlkörpers angepaßt.

Für das erfindungsgemäße Verfahren und in der erfindungsgemäßen Vorrichtung läßt sich ohne weiteres Bahnbzw. Zuschnittsmaterial mit vorgestanzten Rillinien verwenden. Alternativ hierzu werden nach einer wesentlichen Weiterbildung unmittelbar vor dem Schneiden Rillinien auf dem Kartonmaterial eingeprägt. An den Orten dieser Rillinien wird das Material genau definien vorbereitet, so daß sich an den Rillinien bereits allein durch das Biegen der Bahn bzw. des Zuschnitts in den stationären Führungselementen der Biegestation Kanten des späteren Hohlkörpers ausbilden. Durch eine geeignete Ausformung des Dornprofiles kann dieser Vorgang noch verstärkt werden. Dementsprechend können in einem erfindungsgemäßen Verfahren nicht nur Hohlkörper mit kreisförmigem bzw. ovalem Querschnitt, sondern auch solche mit dreieckigem, quadratischem oder rechteckigem oder anderweitig mehreckigem Querschnitt rationell und genau hergestellt werden.

An der Biegestation ist eine Preßeinheit zum Einwirken auf den Überlappungsbereich des räumlich geformten Zuschnitts angeordnet. Sie hat erfindungsgemäß die Aufgabe, die im Überlappungsbereich übereinander geführten bzw. aufeinandergelegten Längsränder des Zuschnittes zusammenzupressen. Durch einen nachfolgend anhand mehrerer 30 Ausführungsbeispiele erläuterten mehrteiligen Aufbau garantiert die Preßeinheit eine sehr genaue Positionierung der Längsränder des Zuschnittes sowohl relativ zueinander als auch mit Bezug auf den Dorn. Hierdurch wird vorteilhafterweise die präzise Lage und genaue Ausformung der Naht an dem herzustellenden Hohlkörper garantiert.

Nach einer Weiterbildung ist die Preßeinheit als Kombinationswerkzeug so ausgebildet, daß sie das vorbeschriebene Positionieren und Zusammendrücken der Längsränder durchführen und eine abdichtende Versiegelung der Längsränder im Überlappungsbereich herstellen kann. Die Preßeinheit umfaßt weiterhin ein Schweißwerkzeug, vorzugsweise in Form einer Sonotrode, die gleichzeitig als Preßstempel eingesetzt wird. In einer erfindungsgemäßen Vorrichtung ist damit im Fall einer umgelegten Naht in einem Schweißvorgang eine äußere Fixierung sowie eine flüssigkeitsdichte Verbindung im Überlappungsbereich durch Verschweißen des ersten mit einem zweiten Längsrand des Zuschnitts möglich.

Beim Fixieren des fertiggeformten Hohlkörpers sowie während des gesamten Schweißvorganges umschließt der Hohlkörper den Dorn in der Biegestation derart, daß vorteilhafterweise wesentliche Biege- und Fixierelemente wieder in ihre Ausgangsstellung verfahren werden können, so daß zwischen dem Dorn und den Führungsschienen bereits ein neuer Abschnitt der Bahn bzw. ein neuer Zuschnitt in die Biegestation eingeführt werden kann. Damit wird die Zykluszeit weiter verkürzt.

In vorstehend nicht genannten Ansprüchen werden weitere Ausgestaltungen und Alternativen zu dem erfindungsgemäßen Verfahren und für die erfindungsgemäße Vorrichtung angegeben.

Der Anmelder behält sich die Aufstellung unabhängiger Ansprüche für die einzelnen Einheiten der Vorrichtung vor. Aus der vorangehenden Beschreibung ihrer jeweiligen Funktion geht hervor, daß sich die Vorteile nicht nur bei dem Zusammenwirken der Einheiten in einer erfindungsgemäßen Vorrichtung ergeben. Vielmehr können die Einheiten auch in anderen Maschinen vorteilhaft eingesetzt werden, beispielsweise im Austausch gegen bestimmte Elemente einer Anlage nach dem Stand der Technik.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Die Abhildungen zeigen:

Fig. 1 eine Seitenansicht des prinzipiellen Aufbaus einer Vorrichtung zur Herstellung rohrförmiger Verpackungen in einer ersten Ausführungsform;

Fig. 2 eine Seitenansicht der Vorrichtung von Fig. 1 mit Antrieben, teilweise in gegenüber Fig. 1 geänderter Arbeits- 10 position;

Fig. 3 eine Vorderansicht zu Fig. 1 und 2;

Fig. 4 eine Draufsicht auf einen Teil der Vorrichtung von Fig. 1 und 2;

Fig. 5 eine perspektivische Darstellung der Vorrichtung 15 von Fig. 1 und 2;

Fig. 6a-6l eine schematische Darstellung des Verfahrensablaufes der Vorrichtung von Fig. 1 in Einzelschritten;

Fig. 7 eine vereinfachte Darstellung einer Füllmaschine, deren erster Teil aus einer Vorrichtung zur Herstellung rohrförmiger Verpackungen besteht;

Fig. 8 eine schematische Darstellung einzelner Schritte der Bearbeitung von Bahnmaterial;

Fig. 9a, 9b perspektivische Darstellungen von Umkartons für Lagerung und Einsatz des Kartonmaterials;

Fig. 10 eine vereinfachte Seitenansicht einer Vorrichtung zur Erzeugung einer einfachen, nicht umgelegten Längsnaht:

Fig. 11 eine Einzelheit von Fig. 10;

Fig. 12 eine perspektivische Darstellung eines Teils eines 30 Preßwerkzeuges von Fig. 10 und

Fig. 13a-13g eine schematische Darstellung des Verfahrensablaufes in einer alternativen Vorrichtung zur Durchführung des Verfahrens.

In Fig. 1 ist eine erste Ausführungsform einer erfindungsgemäßen Vorrichtung 1 in einer Seitenansicht dargestellt. In der dargestellten Vorrichtung 1 werden Hohlkörper mit quadratischem Querschnitt hergestellt, bei denen die Naht umgelegt ist und die Nahtstelle an einer Kante des Hohlkörpers liegt, wie noch erläutert wird.

In dem dargestellten Verfahrensschritt wird eine Bahn 2 aus einem beidseitig PE-beschichtetem Kartonmaterial mit einer Fördereinheit 3 durch eine Schneideeinheit 4 hindurch in eine Biegestation 5 hineingeschoben. Die Fördereinheit 3 ist als Rollen- bzw. Walzenantrieb ausgebildet und besteht aus einer frei laufenden und federbelasteten Andrückrolle 6 oberhalb der Bahn 2 und einer angetriebenen Walze 7 unterhalb der Bahn 2.

Auf die Steuerung der Fördereinheit 3 wird nachfolgend eingegangen.

Die Bahn 2 durchläuft die aus einem Obermesser 8 und einem Untermesser 9 bestehende Schneideeinheit 4 in geöffnetem Zustand. In der in Fig. 1 dargestellten Position liegt dem Obermesser 8 etwa auf gleicher Höhe mit dem Untermesser 9 ein Faltkamm 10 gegenüber. Beim Schneidevorgang kann der Faltkamm 10 aufgrund seiner Funktion, die bei der Beschreibung der Vorgänge beim Schneiden im einzelnen beschrieben wird, als Bestandteil der Schneideeinheit 4 aufgefaßt werden.

Die Bahn 2 wird unter einer Einführhilfe 11 hindurch in die Biegestation 5 eingeschoben. Die Biegestation 5 umfaßt feststehende und bewegliche Teile. In dem dargestellen Prozeßschritt steht die Bahn 2 hinter der Einführhilfe 11 nur mit unbeweglichen Teilen in Kontakt. So wird sie mit der Unterstützung der Einführhilfe 11 auf Führungsschienen 13 zwischen einem Dorn 12 und den Führungsschienen 13 hindurch weitertransportiert und dabei durch einen bogenförmigen Abschnitt der Führungsschienen 13 nach oben gebo-

gen und so bereits teilweise vorgefaltet.

In der Bahn 2 sind zuvor nicht dargestellte Rillinien 14 eingeprägt worden. An diesen Rillinien 14 knickt die Bahn 2 in dem hogenförmigen Abschnitt der Führungsschienen 13 ein, und es entstehen bereits hier die späteren Kanten eines herzustellenden rohrförmigen Hohlkörpers 15. Ohne die Rillinien 14 ließen sich durch Anpassung der Vorrichtung 1 auch Hohlkörper 15 mit kreisförmigem oder elliptischem Querschnitt mit oder auch ohne umgelegte Naht fertigen.

Unterhalb der Führungsschienen 13 der Biegestation 5 ist ein Andrücker 21 angeordnet, der einen während und nach dem Schneiden der Bahn 2 erhaltenen Zuschnitt 22 in seiner Lage fixiert. Das Schneiden der Bahn 2 ist folglich mit dem Herstellen eines vorgefalteten zusätzlichen Längsrandes

Unterhalb der Führungsschienen 13 sind auch zwei Biegewerkzeuge 16, 17 an Achsen 18, 19 schwenkbar gelagert. Der rohrförmige Hohlkörper 15 wird nach dem Schneidevorgang durch die Biegewerkzeuge 16, 17 geschlossen und solange geschlossen gehalten, bis eine an dem oberen Ende der Führungsschienen 13 angeordnete Preßeinheit 20 den Biegevorgang abschließt und die Naht an dem Hohlkörper 15 herstellt.

Das in der Vorrichtung 1 gefertigte Endprodukt ist dann der an beiden Stirnseiten offene, rohrförmige Hohlkörper 15, der durch einen in Fig. 1 gestrichelt dargestellten Schieber 23 vom Dorn 12 ausgetragen wird.

Fig. 2 zeigt die Seitenansicht von Fig. 1 unter Berücksichtigung weiterer Elemente der Vorrichtung 1. So erkennt man in Fig. 2, daß die Bahn 2 über einen Tisch 24 mit Führungen 25 zu der Fördereinheit 3 bis zur Schneideeinheit 4 geführt wird.

Ferner sind in Fig. 2 die zum Betrieb der Vorrichtung 1 in dieser Ausführungsform notwendigen Antriebe angedeutet. Die Walze 7 wird durch einen Motor A1 angetrieben, die Schneideeinheit 4 über einen pneumatischen Antrieb A2. Ein weiterer pneumatischer Antrieb A3 treibt über eine Hebelsteuerung wesentliche Teile der Biegestation 5 an, nämlich die Einführhilfe 11 und die Biegewerkzeuge 16 und 17. Die Schneidevorrichtung 4 kann im Takt mit dem Andrükker 21 gemeinsam betrieben werden. Hier ist jedoch für den Andrücker 21 ein eigener Antrieb A4 vorgesehen. Nur angedeutet sind ein Antrieb A5 der Preßeinheit 20 und ein Antrieb A6 des Schiebers 23.

Fig. 3 stellt eine Vorderansicht der Vorrichtung 1 in der in Fig. 2 dargestellten Form dar. Aus Gründen der Übersichtlichkeit sind einige der vorstehend genannten Antriebe und Teile nicht mit dargestellt bzw. geschnitten worden. Zur mindestens teilweisen Darstellung der Hebelverbindungen ist der Tisch 24 in Fig. 3 teilweise geschnitten worden.

In der Darstellung von Fig. 3 ist die maximale Breite d der zu verarbeitenden Bahn 2 angegeben. Sie gibt indirekt die Höhe der Hohlkörper bzw. Verpackungsvorprodukte vor. Zur Anpassung z. B. an Flüssigkeitsverpackungen mit kleinerem Volumen ist die Breite des Tisches 24 durch Versetzen der seitlichen Führung 25 (hier nicht weiter dargestellt) verstellbar.

Fig. 4 stellt die Vorrichtung 1 von Fig. 2 in einer Draufsicht dar, wobei wiederum Antriebselemente aus Gründen der Übersichtlichkeit geschnitten bzw. fortgelassen worden sind. In Fig. 4 ist der Tisch 24 mit den Führungen 25 zu erkennen. An einer nicht verstellbaren seitlichen Führung 25a des Tisches 24 ist eine Meßzelle 26 angedeutet, die den Antrieb Al der Fördereinheit 3 durch optisches Abtasten von an der Bahn 2 angebrachten Lesemarken steuert.

Ferner ist anhand der Fig. 4 die Anordnung und der Verlauf einzelner Teile der Biegestation 5 zu erkennen. So ist beispielsweise die Führung der eingeschobenen Bahn 2

BNSDOCID: <DE__19711799A1_I_>

: ::

durch einzelne Führungsschienen 13 dargestellt. Ferner ist der fingeranige Aufbau des Biegewerkzeuges 17 dargestellt, wobei das Biegewerkzeug 17 in Form einzelner Hebel zwischen den Führungsschienen 13 hindurch zum Biegen der Bahn 2 durch Drehen um die Achse 19 eingesetzt werden 5 kann.

In dieser Draufsicht ist auch der Übergangsbereich vom Tisch 24 zur Fördereinheit 3 und Schneideeinheit 4 dargestellt. Von der Schneideeinheit 4 wird die Bahn 2 zwischen der Einführhilfe 11 und den benachbarten Enden der Führungsschienen 13 hindurch in die Biegestation 5 eingeführt.

Fig. 5 ist eine perspektivische Darstellung der Vorrichtung 1 aus den Fig. 2 bis 4. Am Tisch 24 ist im Bereich der festen seitlichen Führung 25a die Meßzelle 26 dargestellt. Aus dieser Darstellung geht der kompakte Aufbau der Vorrichtung 1 mit der Fördereinheit 3, der Schneideeinheit 4 mit einem Faltkamm 10, der Einführhilfe 16, der Biegestation 5 und der oberhalb der Biegestation 5 angeordneten Preßeinheit 20 hervor.

Der Dorn 12 als Teil der Biegestation 5 weist eine Führungsbahn 27 für den mit seinem Antrieb A6 dargestellten Schieber 23 einer Verschiebeeinheit 28 und andererseits einen Amboß 30 auf. Der Amboß 30 dient als Gegenstück zu dem Kombinationswerkzeug der Preßeinheit 20, die später unter Bezug auf Abbildungen mehrerer Ausführungsformen 25 noch beschrieben wird.

Nachfolgend wird anhand einer Bilderfolge auf der Basis des Aufbaus der Vorrichtung von Fig. 1 das Arbeitsverfahren und der Funktionsablauf der Vorrichtung während eines vollständigen Zyklus dargestellt. Fig. 6a zeigt die bis zu einer vorbestimmten Länge zwischen Einführhilfe 11 und Führungsschienen 13 unter dem Dorn 12 hindurch in die Biegestation 5 eingeschobene Bahn 2. In dieser Situation erkennt die (hier nicht dargestellte) Meßzelle 26 eine Lesemarke an der Unterseite der Bahn 2 und stoppt die Fördereinheit 3.

Fig. 6b stellt dem nächsten Prozeßschritt dar, in dem die Schneideeinheit 4 geschlossen wird. Dabei wird ein genau bestimmtes Stück von der Bahn 2 abgetrennt und im folgenden als Zuschnitt 22 in der Biegestation 5 weiterverarbeitet.

Zum genauen Einhalten der Maße des Zuschnittes 22 wird die Bahn 2 direkt vor dem Schneidevorgang durch den Andrücker 21 fixiert, indem sie durch den Andrücker 21 zwischen den Führungsschienen 13 hindurch von unten gegen den Dorn 12 geklemmt wird.

Beim Schneidevorgang wird die Bahn zwischen einem Obermesser 8 und einem Untermesser 9 abgetrennt, wobei der so entstehende Zuschnitt 22 durch das Obermesser 8 an einer Faltkante 10 mit stets gleichen Maßen vorgefaltet wird.

In Fig. 6c wird der in seiner Lage durch den Andrücker 21 fixierte Zuschnitt 22 durch die Biegewerkzeuge 16 und 17 weiter in die Form des zu erstellenden röhrenförmigen Hohlkörpers gebracht. Dazu wird der Zuschnitt 22 um den Dorn 12 in der Biegestation 5 herumgebogen bzw. gefaltet, wobei an den Stellen der Rillinien 14 die Kanten der Seitenwände des späteren Hohlkörpers gebildet werden.

Die Einführhilfe 11 wird bei diesem Vorgang nicht gebraucht und wird deshalb in eine Ruheposition bewegt, wobei sie gleichzeitig den für die Bewegung des Biegewerkzeuges 16 benötigten Raum freigibt. Die Anlenkung 18 des Biegewerkzeuges 16 ist dabei gegenüber der Rillinie 14a, um die das hintere Teil des Zuschnittes 22 gebogen wird, derart versetzt, daß beim Anlegen des Biegewerkzeuges 16 gegen den Dorn 12 der vorgefaltete Bereich des Zuschnitts 22 mit seiner Schnittkante sicher am Faltkamm 10 anliegt – ohne überzustehen.

Fig. 6d zeigt die Vorrichtung 1 im fast vollständig ge-

==::

schlossenen Zustand. Die Biegewerkzeuge 16 und 17 sind in ihrer Endlage dargestellt. Der Zuschnitt ist bereits so weit gebogen, daß die angestrebte Form für den Hohlkörper schon fast erreicht ist. Es wird nun die Preßeinheit 20 von oben auf einen als Amboß 30 ausgebildeten Bereich des Dorns 12 abgesenkt. Dabei gilt es, den vorgefalteten Bereich des ersten Längsrandes unter dem zweiten Längsrand anzuordnen. Hierzu ist die Preßeinheit 20 zweiteilig aufgebaut. Als erster Teil wird ein Kammteil 31 auf den bereits vorgefalteten Bereich abgesenkt. Der Kammteil 31 greist hierbei in Ausnehmungen des an dem Biegewerkzeug 16 endseitig befestigten Faltkammes 10 ein, wodurch ein Einklemmen des Längsrandes bei der beschriebenen Schließbewegung verhindert wird. Der Kammteil 31 ist federnd an einem Schweißwerkzeug 32, vorteilhafterweise als Sonotrode ausgeführt, angelenkt. So können diese beiden Teile als Preßeinheit 20 gemeinsam durch den (hier nicht dargestellten) Antrich A5 bewegt werden.

Fig. 6e zeigt den Biege- und Faltvorgang mit dem Absenken der Fixierungseinheit 20 in seiner Endphase. Hier greifen Faltkamm 10 und Kammteil 31 ineinander und drücken den ersten Längsrand 33 mit der Vorfaltung nach innen, so daß durch Umbiegen des zweiten Längsrandes durch das Schweißwerkzeug 32 im Ergebnis eine umgefaltete Ecknaht zwischen dem Schweißwerkzeug 32 und dem Amboßteil 30 des Dorns 12 gebildet wird, die aus dem ersten Längsrand 33, einem zusätzlichen Längsrand 34 sowie einem zweiten Längsrand 35 aufgebaut ist.

Mit dem Übergang zur Fig. 6f ist der Biege- und Faltvorgang durch das vollständige Absenken der Preßeinheit 20 abgeschlossen. In dem dreischichtig aufgebauten Überlappungsbereich 29 wird in dem dargestellten einschrittigen Verfahren eine umgelegte Längsnaht gesiegelt. Gleichzeitig wird die Schneideeinheit 4 durch Anheben des Obermessers 8 wieder geöffnet, und der Andrücker 21 wird zur Lösung der Verklemmung am Dorn 12 abgesenkt.

In Fig. 6g wird das Siegeln der Längsnaht 36 zwischen dem Schweißwerkzeug 32 und dem Amboßteil 30 weiter fortgesetzt, während nun auch die Biegewerkzeuge 16 und 17 wieder geöffnet und die Einführhilfe 11 in die Position von Fig. 6a zurückbewegt werden.

In der Position der Fig. 6f oder 6g ist es sehr einfach möglich, eine Schlechtbogen-Selektion als alternativen Prozeßschritt in der Vorrichtung zu integrieren. Falls nämlich eine optische Eingangskontrolle einen fehlerhaften Zuschnitt 22 bzw. einen fehlerhaften Bereich der Bahn 2 entdeckt hat, so kann das Biegewerkzeug 16 in der dargestellten Position gehalten werden. Bei einer entsprechenden Ausformung der Unterkante des Biegewerkzeuges 16 wird so der in die Vorichtung eingeführte Teil der Bahn 2 bzw. der Zuschnitt 22 abgelenkt und beispielsweise unten aus der Vorrichtung 1 herausgeführt. So gelangt dieser fehlerhafte Bereich gar nicht erst in die Biegestation 5. Nach dem Schneiden steht die Vorrichtung 1 wieder wie vorstehend beschrieben zur Verfügung.

Der Öffnungsvorgang ist in Fig. 6h abgeschlossen, und die Biegewerkzeuge 16 und 17 sowie die Einführhilfe 11 haben ihre Ausgangsposition wieder erreicht. Dabei wird der Schweißvorgang an der umgelegten Längsnaht 36 weiter fortgesetzt.

Die Vorrichtung 1 ist damit zur Aufnahme eines weiteren Abschnittes der Bahn 2 vorbereitet, und so kann, wie in Fig. 6i dargestellt, über die Fördereinheit 3 ein neuer Abschnitt der Bahn 2 durch die Schneideeinheit 4 hindurch durch einen Durchlaß 37 zwischen dem immer noch im Schweißprozeß befindlichen Hohlkörper 15 und den Führungsschienen 13 eingeführt werden.

In Fig. 6k ist dargestellt, wie noch während des Ver-

schweißens bzw. des Versiegelns der Längsnaht 36 des Hohlkörpers 15 die Bahn 2 in die Biegeeinheit 5 eingeführt und dort schon vorgefaltet wird.

In dem in Fig. 61 dargestellten Prozeßschritt ist die Versiegelung der Längsnaht 36 an dem Hohlkörper 15 fertiggestellt. Zeitgleich ist auch die Positionierung und die Messung der korrekten Länge des neu eingeführten Abschnittes der Bahn 2 beendet. So wird die Preßeinheit 20 wieder angehoben, wodurch der nun fertiggestellte Hohlkörper 15 auf dem Dorn 12 frei durch den gestrichelt dargestellten Schieber 15 bewegt bzw. aus der Vorrichtung 1 gefördert werden kann. Damit ist der Zyklus beendet, und das Verfahren beginnt wiederum mit dem in Fig. 6a dargestellten Prozeßschritt.

Aus der gesamten Abfolge der Fig. 6a bis 61 wird deutlich, daß die bewegten Teile der Vorrichtung 1 kurze Wege zurückzulegen haben. Das wird vor allem dadurch erreicht, daß die Bahn 2 bereits beim Einschieben in die Biegestation 5 durch die runden Abschnitte der Führungsschienen 13 vorgebogen und damit im Vergleich zur Ebene der Längsnaht 36 niedrig gehalten und auf diese Endposition schon umgelenkt und zugeführt wird.

Fig. 7 zeigt eine vollständige Maschine zum Abfüllen und Verpacken flüssiger Medien im Betrieb. Der erste Teil der dargestellten Anlage besteht aus zwei parallel arbeitenden 25 Vorrichtungen 1, wie sie vorstehend beschrieben worden ist. Die Vorrichtungen sind in der Zeichnung vereinfacht dargestellt. In die Vorrichtungen wird jeweils aus einem Speicher 38 die Bahn 2 eingeschoben, zugeschnitten, gefaltet und versiegelt. Nach rechts hin werden die fertigen rohrförmigen 30 Hohlkörper 15 in einem Zwischenschritt Z in die eigentliche Füllanlage weitergefördert, wobei die zweibahnige Füllanlage in dieser Form handelsüblich ist und an die neue Vorrichtung 1 nur geringfügig angepaßt werden muß. Je eine Vorrichtung 1 versorgt so eine Bahn der Füllmaschine. Die 35 Vorrichtung 1 arbeitet jedoch prinzipiell wesentlich schneller als die Füllmaschine. Die Vorgänge innerhalb der Füllanlage selber sind prinzipiell bekannt, so daß hier auf eine Beschreibung verzichtet wird. Die Mehrkosten für den dargestellten Ausbau der Füllmaschine werden durch die Redu- 40 zierung der Packstoffkosten bereits nach kurzer Betriebsdauer ausgeglichen.

Fig. 8 zeigt in schematischer Darstellung den Ablauf des Verfahrens innerhalb der Vorrichtung 1 bis hin zur Übergabe der fertigen Hohlkörper in die bekannte Abfülleinrichtung. 45 Hier wird die Bahn 2, wie bereits in Fig. 7 dargestellt, aus einem Speicher 38 entnommen. Bei dem Speicher 38 handelt es sich hier um einen Umkarton 39, in dem die Bahn 2 als Stapel 40 mit einer Leporello-artigen Faltung angeordnet ist. Die Bahn 2 wird durch einen Packmittelhersteller herge- 50 stellt und mit dieser Faltung in dem Umkarton 39 abgelegt. Dabei dient der Umkarton 39 gleichzeitig als Transport- und Lagerbehälter. Neben dem fertigen Bedrucken und Beschichten der Bahn 2 können auch die Rillinien 14 bereits durch den Packmittelhersteller auf die Bahn 2 geprägt wer- 55 den. Falls die Bahnen jedoch in diesem Sinne unbearbeitet zum Betreiber der Vorrichtung 1 sowie der angeschlossenen Füllmaschine gelangen, so können die Rillinien 14 sowie weitere Applikationen, beispielsweise s.g. Pulltabs, an der mit B in Fig. 8 gekennzeichneten Stelle auf der Bahn 2 an- 60 gebracht werden.

Die Bahn 2 läuft über die Fördereinheit 3 zu der Schneideeinheit 4. Als Zuschnitte 22 werden sie schrittweise zu rohrförmigen Hohlkörpern 15 gefaltet und versiegelt und über einen Zwischen- und Transport schritt Z in die Füllmaschine transportiert.

In der dargestellten Art ist eine problemlose Langzeitbeschickung der Vorrichtung 1 möglich. Das senkt im Betrieb

zusätzlich die Personalkosten. Zudem ist ein schneller und einfacher Wechsel von Design und auch Formaten durchführbar. Bei gestoppter Vorrichtung 1 wird die Bahn 2 aus der Fördereinheit 3 herausgenommen und eine neue Bahn 2 eingeführt. Die Positionierung der neuen Bahn 2 erfolgt über die mit der Meßzelle 26 gekoppelte Fördereinheit 3 automatisch, so daß durch die exakte Einhaltung der Zuschnittmaße ab dem ersten Zuschnitt kein systembedingter Ausschuß erzeugt wird.

Die Fig. 9a und 9b stellen in perspektivischer Ansicht mögliche Transport- und Lagerformen von Umkartons 39 für Leporelloartig gefaltete Bahnen 2 bei unterschiedlicher Packungsgröße vor. Unter Anpassung an in Europa bzw. weltweit gängige Maße im Transportwesen sind in einem Umkarton 39 in zwei parallel nebeneinander angeordneten Stapeln 40 jeweils ca. 2,500 Zuschnitte gespeichert. Die Art der Speicherung der Bahn erhöht gegenüber bisher bekannten Speicherverfahren für rohrförmige Hohlkörper 15 die Raumausnutzung erheblich. Nach einem bisher gängigen Verfahren können in einem Umkarton nur ca. 600 Hohlkörper 15 gespeichert werden. In den bekannten Systemen ist einerseits die Volumenausnutzung in den Umkartons wesentlich schlechter, andererseits wird zum Bestücken der Füllmaschinen Bedienungspersonal benötigt, so daß das Gewicht der Umkartons insgesamt durch Arbeitsschutzbestimmungen auf unter 10 kg begrenzt ist. Da bei dem beschriebenen Verfahren keine schwere körperliche Arbeit durch Bedienungspersonal zum Nachführen einzelner Hohlkörper 15 oder der Zuschnitte 22 bzw. hier bevorzugt der Bahnen 2 notwendig ist, hat die aus Arbeitsschutzgründen erlassene Gewichtsbeschränkung für die Umkartons 39 keine Bedeutung. Damit können die Gebindegrößen der Umkartons 39 den üblichen Standardmaßen der Transporttechnik frei angepaßt werden. Daraus ergibt sich insgesamt eine problemlosere Lagerung sowie ein wirtschaftlicherer Transport.

Ein weiterer Vorteil der dargestellten Leporello-Faltung besteht darin, daß jeweils nur bedruckte Außenflächen oder zur Seite des späteren Produktes gerichtete Innenflächen in Kontakt zueinander stehen. So können Verunreinigungen an den Innenflächen ausgeschlossen werden.

Weiter zeigt Fig. 9a vier auf einer Palette 41 angeordnete Umkartons 39, so daß allein auf dieser Palette 41 Bahnen 2 für ca. 20.000 Hohlkörper gelagert, transportiert und vor bzw. unter einer Vorrichtung 1 positioniert werden können. In diesem Beispiel haben die zu erzeugenden Hohlkörper ein Fassungsvermögen von 1 Liter Flüssigkeit.

Fig. 9b zeigt analog zu Fig. 9a Bahnen 2 in Leporello-artig gefalteten Stapeln 40 für Hohlkörper, die 0,5 Liter Füllvolumen in einer Füllmaschine haben. In einem der dargestellten Umkartons 39 sind zwei Stapel 40 mit zusammen 5.000 Zuschnitten parallel angeordnet und gleichzeitig entnehmbar, so daß auf der Palette 41 insgesamt 30.000 Zuschnitte in Form von Bahnen 2 zur Verfügung stehen.

Das beschriebene Verfahren ist in weiten Bereichen varierbar und an unterschiedliche Fertigungsbedingungen und Hohlkörper-Querschnittsformen anpaßbar. Hohlkörper 15 mit rundem oder ovalem Querschnitt können so durch Anpassung des Dorns 12 sowie der Biegewerkzeuge 16 und 17 in analoger Weise hergestellt werden, ohne daß an der Bahn 2 bzw. den Zuschnitten 22 Rillinien 14 vorgeprägt sein müssen. Durch geringfügige Änderungen anhand der in Fig. 6a bis 61 dargestellten Vorrichtung können auch Hohlkörper 15 mit rechteckigem Querschnitt hergestellt werden.

Vorstehend ist eine Ausführungsform des erfindungsgemäßen Verfahrens unter dem Gesichtspunkt der zu bevorzugenden und fertigungstechnisch eher aufwendigen umgelegten Ecknaht beschrieben worden. Aus Gründen der Kontinuität des Verpackungsdesigns wird die umgelegte Ecknaht heute bevorzugt. Durch das Umlegen der Naht im Aufbau durch Einführen eines zusätzlichen Längsrandes 34 an dem ersten Längsrand 33 sowie der überlappenden Überdeckung durch den zweiten Längsrand 35 wird eine dauerfeste und vom Innenraum her flüssigkeitsresistente Naht geschaffen. 5 die insbesondere bei Lebensmitteln mit langer Haltbarkeitsdauer eingesetzt wird. Hier ist das Packmaterial der Bahn 2 beidseitig mit einer PE-Folie beschichtet und weist zudem eine geschlossene Aluminiumkaschierung auf, um jedes Eindringen von Licht und Sauerstoff in das Innere der Verpackung zu verhindern.

Im Bereich verpackter Lebensmittel mit verhältnismißig kurzer Haltbarkeitsdauer kommen weniger aufwendige Kartonmaterialien mit einfacheren Siegelnähten zum Einsatz. In Fig. 10 ist eine Ausführungsform der Vorrichtung 1 zur Herstellung einer nicht umgelegten Ecknaht bei der Herstellung rohrförmiger Hohlkörper 15 dargestellt. Im Unterschied hierzu umfaßt die Vorrichtung 1a der Fig. 10 eine vereinfachte Ausführung einer Schneideeinheit 4a, da beim Schneiden der Bahn 2 zu einem Zuschnitt 22a kein Vorfalten 20 eines zusätzlichen Längsrandes 34 notwendig ist.

Der in Fig. 10 dargestellte Prozeßschritt entspricht dem der Fig. 6e der ersten Ausführungsform. Durch das Fehlen eines zusätzlichen Längsrandes 34 in Fig. 10 muß der Aufbau des Faltkammes 10a in der dargestellten Art verändert werden, um den ersten Längsrand 33 im Bereich des um den Amboß 30c des Dorns 12 herumzufalten.

Fig. 11 stellt eine Einzelheit aus Fig. 10 dar. Hier ist der Bereich um den Amboß 20 und das Ende des Schweißwerkzeuges 32 mit dazwischen geführten bzw. gehaltenen Längsrändern 33 und 35 vergrößert dargestellt. Man erkennt, daß beim Schließen des Biegewerkzeuges 16 und Andrücken des hinteren Endes des Zuschnittes 22a am Amboßbereich 30 des Dorns 12 der erste Längsrand 33 um eine Rillinie 14 durch eine zusätzliche Kante 10b an dem modifizierten Faltkamm 10a um den Amboßbereich 30 herumgebogen wird. Damit liegt der erste Längsrand 33 vor dem endgültigen Absenken der Preßeinheit 20 unter dem zweiten Längsrand 35, und es können innere und äußere Kunststoffbeschichtungen 42 und 43 durch das Schweißwerkzeug 32 auf dem Amboß 40 30 aufeinandergedrückt und versiegelt werden.

Fig. 12 zeigt die Position von Fig. 11 in einer dreidimensionalen Darstellung. Das Biegewerkzeug 16 ist bereits vollständig geschlossen, so daß die Faltkante 10a an dem Dorn 30 anliegt und der erste Längsrand 33 durch die Kante 10b um den Dorn 30 herumgebogen wird. Ferner ist hieran erkennbar, wie der Kammteil 31 der Preßeinheit 20 in die Nuten bzw. Kammstruktur des Faltkammes 10a eingreift. Durch die Kammstruktur wird vorzugsweise in jeder Ausführungsform der Erfindung sichergestellt, daß weder der erste Längsrand 33 noch der zweite Längsrand 35 oder der (in dem Ausführungsbeispiel der Fig. 10 bis 12 nicht vorhandene) zusätzliche Längsrand 34 beim Absenken der Preßeinheit 20 zwischen dem Faltkamm 10 bzw. 10a und der Preßeinheit 20 verklemmt und damit zerstört werden 55 kann.

Fig. 13a zeigt eine weitere Ausführungsform einer Vorrichtung 1c. Hier wird eine umgelegte Naht in einem mittleren Bereich eines rohrförmigen Hohlkörpers 15 aus von einer Bahn 2 abgetrennten Zuschnitten 22c hergestellt. Dazu sind alternative Ausführungsformen einer Schneideeinheit 4c, der Biegewerkzeuge 16c, 17c und der Preßeinheit 20c wie in Fig. 13a dargestellt ausgebildet.

In der Figurenfolge 13a bis 13g wird der Verfahrensablauf in Analogie zu den Fig. 6a bis 61 im folgenden dargestellt. Fig. 13a entspricht vom Prozeßschritt her Fig. 6a. Hier wird die Bahn 2 durch die Fördereinheit 3 in eine Biegestation 5c eingeschoben und vorgefaltet. An dem vorde-

ren Ende der Bahn 2a ist hier jedoch, im Unterschied zu der ersten Ausführungsform von Fig. 6a. schon ein zusätzlicher Längsrand 34c vorgebogen worden.

Fig. 13h ist eine Momentaufnahme des Schneidevorganges, in dem der soweit in der Biegevorrichtung 5c positionierte und durch den Andrücker 21 am Dorn 12c festgeklemmte Zuschnitt 22c von der Bahn 2 durch die Schneideeinheit 4c getrennt wird.

Fig. 13c zeigt die Fördereinheit 3 zusammen mit der Schneideeinheit 4c in einer vergrößerten Darstellung. Hieraus ist zu erkennen, daß die Schneideeinheit gegenüber der ersten Ausführungsform derart abgewandelt worden ist, daß eine Faltkante 10c jeweils an dem erstem Längsrand eines Zuschnitts angeordnet ist. Für den Transport der zusätzlichen Längsrandes 34c über das Untermesser 9 hinweg ist es möglich, entweder den Längsrand 34c anzuheben, oder das Untermesser 9 zu bewegen.

Die Darstellung von Fig. 13d entspricht der von Fig. 6e bei der ersten Ausführungsform und stellt die nahezu vollständig geschlossene Biegestation 5c mit einem darin enthaltenen rohrförmigen Hohlkörper 15c dar, der aus dem Zuschnitt 22c gebildet wird.

In einer vergrößerten Darstellung der Preßeinheit 20c von Fig. 13d ist in Fig. 13e der Ablauf von Biegen und Falten unmittelbar vor dem Schließen der Preßeinheit 20c verdeutlicht. Der zusätzliche Längsrand 34c wird in vorgefalteter Form durch die Führungsschienen 13 unter einem Kammteil 31c der Preßeinheit 20c derart durchgeführt, daß er vorgefaltet unter dem zweiten Längsrand 35 positioniert wird. Der Kammteil 31c übernimmt diese Funktion dadurch, daß er im Bereich der Enden der Führungsschienen 13 sofort führend mit dem zusätzlichen Längsrand 34c im Eingriff steht. Der Kammteil 31c wird so von dem Schweißwerkzeug der Preßeinheit 20c entkoppelt an einem Halter 44 nach unten absenkbar angeordnet.

Beim Schließen der Biegevorrichtung 5c stößt der zweite Längsrand 35 mit seiner Schnittkante an den Kammteil 31c und wird durch das Schweißwerkzeug 32 nach unten geführt. Dabei wird der zweite Längsrand 35 exakt positioniert.

Die Kraft zum Andrücken des Kammteils 31c wird dadurch von dem Schweißwerkzeug 32 auf den Kammteil 31c übertragen, daß es beim Absenken auf ein Teil 45 des Kammteils 31c gegen eine Rückstellfeder 46 drückt und so den Kammteil 31c auf den Zuschnitt 14c niederdrückt.

In Fig. 13f ist die Vorrichtung 1c mit vollständig geschlossener Biegevorrichtung 5c sowie abgesenkter Preßeinheit 20c dargestellt. Der Hohlkörper 15c mit umgelegter Mittelnaht ist um den Dorn 12c geschlossen, und die Längsnaht 36c kann in dem dargestellten Prozeßschritt geschweißt werden.

Fig. 13g zeigt einen Ausschnitt aus Fig. 13f mit dem Bereich um die im Mittelbereich angeordnete Längsnaht 36c. Hier wird deutlich, wie der vor dem Schweißwerkzeug 32 abgesenkte Kammteil 31c als Anschlag für den zweiten Längsrand dient und diesen so in eine exakt vorbestimmte Position führt. Zudem hält der Kammteil 31c den vorderen Teil des Zuschnittes 14c auf dem Dorn 12c niedergedrückt, so daß durch Absenken des Schweißwerkzeuges 32 der erste Längsrand 33c mit dem umgefalteten zusätzlichen Längsrand 34c unter den zweiten Längsrand 35 gelegt wird und dieser Aufbau nach dem Zusammendrücken verschweißt werden kann.

Mit der beschriebenen Vorrichtung 1c kann bei Auswechseln der Schneideeinheit 4c durch die Schneideeinheit 4a von Fig. 10 und das Ankoppeln des Kammteils 31c an das Schweißwerkzeug 32 analog zu der in Fig. 1 dargestellten Weise auch ein Hohlkörper gesertigt werden, der in seinem

10

15

20

25

30

35

40

45

50

55

60

65

mittleren Bereich eine einfache, nicht umgelegte Naht auf-

weist.

Bezugszeichenliste 1 Vorrichtung 2 Bahn 3 Fördereinheit 4 Schneideeinheit 4a Schneideeinheit 4c Schneideeinheit 5 Biegestation 5c Biegestation 6 Andrückrolle 7 angetriebene Walze 8 Obermesser 9 Untermesser 10 Faltkamm 10a Faltkamm 10b Kante 10c Kante 11 Einführhilfe 12 Dorn 12c Dom 13 Führungsschiene 14 Rillinie 14c Rillinie 15 rohrförmiger Hohlkörper 15c rohrförmiger Hohlkörper 16 (vorderes) Biegewerkzeug 16c Biegewerkzeug 17 (hinteres) Biegewerkzeug 18 Achse 19 Achse 20 Preßeinheit 20c Preßeinheit 21 Andrücker 22 Zuschnitt 22a Zuschnitt 22c Zuschnitt 23 Schieber 24 Tisch 25 Führung 25a feste Führung 26 Meßzelle

45 Teil/Anschlag 46 Rückstellfeder A1-A6 Antriche B Rill-Schritt 5 Z Zwischenschritt d max. Breite

Patentansprüche

1. Verfahren zum Herstellen von rohrförmigen Hohlkörpern, insbesondere für Behälter, aus Kartonmaterial oder dergleichen durch

- Biegen eines von Längsrändern begrenzten Zuschnitts aus Kartonmaterial o. dergl. zu dem Hohlkörper mit offenen Stirnseiten und

- Verbinden einander überlappender Verbindungsbereiche des Zuschnitts,

dadurch gekennzeichnet, daß

- der Zuschnitt (22) oder eine Bahn (2) aus Kartonmaterial o. dergl., von der der Zuschnitt (22) abgeteilt wird, in eine Biegestation (5) transportiert und dort gehalten sowie

- mittels Biegevorrichtungen in die Form des

Hohlkörpers (15) gebogen und

- ein Überlappungsbereich (29) gebildet wird, in dem die beiden zur Längsachse des Hohlkörpers (15) parallelen Längsränder (33, 35) des Zuschnitts (22) aufeinandergelegt und

- miteinander verbunden werden sowie

- der Hohlkörper (15) aus der Biegestation (5) gefördert wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) durch eine Einführhilfe (11) in die Biegestation (5) eingeschoben wird.

3. Verfahren nach einem oder beiden der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) in der Biegestation (5) durch als Biegevorrichtung wirkende Führungsele-

mente gebogen wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) während des Transports in die Biegestation (5) mit feststehenden, einen Bogenabschnitt aufweisenden Führungselementen in Eingriff gebracht und im Bogenabschnitt entsprechend verformt wird.

5. Verfahren nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) während des Transports in die Biegestation (5) mindestens teilweise um einen Dorn (12) gebogen

wird.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) während des Transports in die Biegestation (5) zwischen den Führungselementen der Biegestation (5) und dem Dorn (12) geführt wird.

7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) bei Erreichen einer vorbestimmten Einführlänge festgeklemmt wird, vor-

zugsweise durch einen Andrücker (21).

8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zuschnitt (22) bei Erreichen einer vorbestimmten Einführlänge der Bahn (2) von dieser abgetrennt wird.

9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zuschnitt (22) durch Biegewerkzeuge (16, 17) an den

41 Palette 42 Kunststoffbeschichtung 43 Kunststoffbeschichtung

44 Halter

27 Führungsbahn (Schieber)

30 Amboßbereich des Dorns

28 Verschiebeeinheit 29 Überlappungsbereich

33 erster Längsrand

33c erster Längsrand

35 zweiter Längsrand

34 zusätzlicher Längsrand

34c zusätzlicher Längsrand

37 Durchlaß Dorn/Schiene

39 Umkarton (Leporello)

40 Stapel (Leporello)

30c Amboß

31 Kammteil

31c Kammteil 32 Schweißwerkzeug

36 Längsnaht

38 Speicher

36c Längsnaht

BNSDOCID: <DE__19711799A1_I_>

15

Dorn (12) angelegt wird.

- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß an dem Dorn (12) die Überlappung der Längsränder (33, 35) des Zuschnitts (22) zum Herstellen des Verbindungsbereiches hergestellt wird.
- 11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bahn (2) im vorbestimmter Position gehalten wird, vorzugsweise durch einen Andrücker (21) im Bereich der Biegestation (5) und beim Schneidevorgang im Bereich der Schnittkante vorgefaltet wird, vorzugsweise parallel zu der Schnittkante und insbesondere in einem festgelegten Abstand zu der Schnittkante.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß
 - die Bahn (2) zwischen einem Obermesser (8) und einem Untermesser (9) abgetrennt und
 - die Vorfaltung durch ein Zusammenwirken des Obermessers (8)
 - mit einer Faltkante (10) hergestellt wird, die 20 dem Obermesser (8) gegenüberliegt.
- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Länge der Zuschnitte (22) einstellbar ist.
- Verfahren nach Anspruch 11-13, dadurch gekenn zeichnet, daß die Bahn (2) vor dem Schneidevorgang
 im Bereich der Schnittkante für die Vorfaltung gerillt wird.
- 15. Verfahren nach Anspruch 11–14, dadurch gekennzeichnet, daß die Bahn (2) parallel zu den Kanten der ³⁰ späteren Seitenwände des Hohlkörpers (15) geschnitten wird.
- 16. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
 - der Zuschnitt (22) nach dem anfänglichen Biegen der Bahn (2) oder des Zuschnitts (22) beim Transport in die Biegestation (5) durch die Führungselemente
 - stationär gehalten und
 - anschließend mittels solcher Biegewerkzeuge 40 (16, 17), die bewegt werden, zum Verbinden der Längsränder (33, 35) fertig gebogen wird.
- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Biegewerkzeuge (16, 17) bewegt werden, insbesondere um eine jeweils eigene Anlen- 45 kung (18, 19) gedreht werden.
- 18. Verfahren nach einem der Ansprüche 16 und 17, dadurch gekennzeichnet, daß
 - sich beim Schließen der Biegewerkzeuge (16,
 17) die beiden parallel zur Längsachse des Hohlkörpers (15) liegenden Längsränder (33, 35) aufeinanderlegen und
 - durch eine Preßeinheit (20) aufeinandergedrückt werden.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß ein erster Längsrand (33) durch ein in Form eines Kammes (31) aufgebautes Teil der Preßeinheit (20) um den Dorn (12) gefaltet wird.
- 20. Verfahren nach einem der Ansprüche 18-19, dadurch gekennzeichnet, daß ein zweiter Längsrand (35) durch Absenken der Preßeinheit (20) derart umgebogen wird, daß der zweite Längsrand (35) den ersten Längsrand (33) übergreift.
- 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die beiden mit ihren Längsrändern (33, 65 35) den Überlappungsbereich (29) bildenden Wandabschnitte durch die Preßeinheit (20) aufeinandergedrückt werden.

- 22. Verfahren nach einem der Ansprüche 16–21, dadurch gekennzeichnet, daß ein z. B. nach Anspruch 11 vorgefahreter zusätzlicher Längsrand (34) zwischen dem ersten und dem zweiten Längsrand (33, 35) gemeinsam mit diesen zu einem dreischichtigen Aufbau zusammengedrückt wird.
- 23. Verfahren nach einem der Ansprüche 16–22, dadurch gekennzeichnet, daß der zweite Längsrand (35) den ersten Längsrand (33) deran überdeckt, daß der zweite Längsrand (35) den zusätzlichen Längsrand (34) in dem dreischichtigen Aufbau überragt und mit dem überragenden Teil mit dem ersten Längsrand (33) verbunden wird.
- 24. Versahren nach einem der Ansprüche 16–23, dadurch gekennzeichnet, daß die Überlappung der Längsränder (33, 35), die zwischen einem Amboßteil (30) des Dorns (12) und dem Preßeinheit (20) gehalten werden, zur Herstellung des Überlappungsbereiches (29) fixiert wird, vorzugsweise durch eine mindestens punktweise Verschweißung.
- 25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Überlappungsbereich (29) abdichtend versiegelt wird, insbesondere durch Verschweißen mindestens einer im Überlappungsbereich (29) vorhandenen Kunststoffschicht bzw. Kunststoffbeschichtung (42, 43).
- 26. Verfahren nach Anspruch 24 oder 25, dadurch gekennzeichnet, daß
 - während des Fixierens, gegebenenfalls des Versiegelns, des Überlappungsbereiches (29)
 - die Biegewerkzeuge (16, 17) wieder geöffnet,
 ein weiterer Abschnitt der Bahn (2) oder ein
 Zuschnitt (22) in die Biegestation (5) eingeführt
 - Zuschnitt (22) in die Biegestation (5) eingerung und
 - unter dem vorhergehenden Zuschnitt (22) positioniert wird.
- 27. Verfahren nach einem oder mehreren der Ansprüche 24-26, dadurch gekennzeichnet, daß
 - während des Fixierens, gegebenenfalls des Versiegelns, des Überlappungsbereiches (29)
 - mit dem Öffnen der Biegewerkzeuge (16, 17)
 - der Andrücker (21) wieder geöffnet und
 - die Einführhilfe (11), wenn sie für den Biegevorgang in eine andere Position verbracht wurde, in die Bereitschaftsposition vor die Biegestation (5) zurückbewegt wird.
- 28. Verfahren nach einem der Ansprüche 22-27, dadurch gekennzeichnet, daß der durch das Fixieren des Überlappungsbereiches (29) in seiner Form festgelegte Hohlkörper (15) zum Versiegeln in eine andere Position verschoben wird.
- 29. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der fertig versiegelte Hohlkörper (15) durch einen Schieber (23) abgestreift wird.
- 30. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein mit mindestens einer Rillinine (14) versehener Zuschnitt (22) oder eine hiermit versehene Bahn (2) in die Biegestation (5) transportiert wird.
- 31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß
 - Rillinien (14)
 - parallel zur Längsachse der herzustellenden Hohlkörpers sowie in Abständen voneinander verlaufend auf bzw. an einem Zuschnitt (22) bzw. an der Bahn (2)

- 7 L
- zum Vorprägen der Faltkanten der Seitenwände des Hohlkörpers (15) angebracht werden,
- gegebenenfalls in Verbindung mit Rillinien (14) für das spätere Verschließen der offenen Stirnseiten des Hohlkörpers (15).
- 32. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß durch Biegen des Zuschnitts (22) um die Rillinien (14) Ecken bzw. Faltkanten an dem Hohlkörper (15) hergestellt werden.
- 33. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Rillinien (14) vor dem Eintritt der Bahn (2) oder des Zuschnitts (22) in die Biegestation (5) hergestellt werden.
- 34. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
 - zur Herstellung einer Hohlkörpers ohne weitere Faltkanten, z. B. mit kreisrunder Querschnittsfläche
 - von dem ersten L\u00e4ngsrand (33) des Zuschnitts
 (22) in der Biegestation (5) ein zus\u00e4tzlicher 20
 L\u00e4ngsrand (35)
 - entlang einer Rillinie (14)
 - zur Außenseite des Hohlkörpers (15) hin umgebogen und
 - in einem Bereich durch den zweiten Längsrand 25
 (35) überlappt wird.
- 35. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zuschnitt (22) oder die Bahn (2) aus Kartonmaterial senkrecht zu den Rillinien (14) der Seitenwände in die 30 Biegestation (5) eingeführt wird.
- 36. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bahn (2) von einem Speicher (38), zu dessen Herstellung sie ziehharmonikaförmig gefaltet wird, z. B. aus einem Umkarton (39) heraus zum Schneiden geführt wird.
- 37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß die Faltung der Bahn (2) in Teilen auseinandergezogen wird, die jeweils der Länge eines Zuschnitts (22) oder eines Vielfachen dieser Länge entsprechen.
- 38. Verfahren nach Anspruch 36 oder 37, dadurch gekennzeichnet, daß in dem Speicher bzw. dem Umkarton (39) mehrere Bahnen (2) nebeneinander angeordnet sind und insbesondere gleichzeitig parallel entnommen 45 werden.
- 39. Verfahren nach einem oder mehreren der Ansprüche 1-33, dadurch gekennzeichnet, daß die Bahn (2) von einer Rolle zum Schneiden und Herstellen von Zuschnitten (22) zugeführt wird.
- 40. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bahn (2) jeweils in der Länge eines Zuschnitts (22) positioniert der Biegestation (5) zugeführt wird, vorzugsweise über Lesemarken auf der Bahn (2) optisch gesteuert.
- 41. Vorrichtung zum Herstellen von rohrförmigen Hohlkörpern, insbesondere für Behälter, aus Kartonmaterial oder dergleichen, bestehend aus
 - einer Fördereinheit (3) für den Transport und die Positionierung einer Bahn (2) oder eines Zuschnitts (22)
 - einer Schneideeinheit (4) zum Abteilen definierter Zuschnitte (22) von der Bahn (2) im Falle der Zuführung des Materials in Bahnform,
 - cincr Biegestation (5) zum Biegen eines Zuschnitts (22) zu dem rohrförmigen Hohlkörper (15) mit offenen Stirnseiten,
 - einer Preßeinheit (20) zum Verbinden in einem

- Überlappungsbereich (29) des Zuschnitts (22) mit gleichzeitigem oder örtlich versetztem Versiegeln und
- einer Verschiebeeinheit (28) zum Weitertransportieren des fertig geformten Hohlkörpers (15).
- 42. Vorrichtung nach Anspruch 41, dadurch gekennzeichnet, daß die Fördereinheit (3) für den Transport der Bahn (2) oder des Zuschnitts (22) einen Rollenbzw. Walzenantrieb umfaßt, insbesondere als Kombination aus einer federbelasteten Andrückrolle (6) und einer angetriebenen Walze (7), zwischen denen die Bahn (2) oder der Zuschnitt (22) verläuft.
- 43. Vorrichtung nach Anspruch 41 oder 40, dadurch gekennzeichnet, daß die Fördereinheit (3) seitliche Führungen (25) aufweist, die der Breite der Bahn (2) entsprechend eingestellt sind.
- 44. Vorrichtung nach einem der Ansprüche 41-43, dadurch gekennzeichnet, daß die Positionierung der Bahn (2) zur Biegestation (5) für den Zuschnitt durch die Fördervorrichtung (3) über Meßzellen (26) mit einer Steuerung erfolgt, die vorzugsweise optische Lesemarken auf der Bahn (2) oder den Zuschnitten (22) auswertel
- 45. Vorrichtung nach einem der Ansprüche 41–44, dadurch gekennzeichnet, daß die Lesemarken in einem der Randbereiche der Bahn (2) oder der entsprechenden Randbereiche des Zuschnitts (22) angeordnet sind. 46. Vorrichtung nach einem der Ansprüche 41–45, dadurch gekennzeichnet, daß an der Einschubstelle der Biegestation (5) eine Einführhilfe (11) angeordnet ist. 47. Vorrichtung nach einem der Ansprüche 41–46, dadurch gekennzeichnet, daß die Einführhilfe (11) zwischen einer Bereitschaftsstellung und einer Stellung außerhalb der Einschubstelle beweglich ist, insbesondere auf einer Kreisbahn zwischen diesen Stellungen schwenkbar ist.
- 48. Vorrichtung nach einem der Ansprüche 41–47, dadurch gekennzeichnet, daß die Biegestation (5) als Biegevorrichtung wirkende feststehende Führungselemente umfaßt.
- 49. Vorrichtung nach einem der Ansprüche 41–48, dadurch gekennzeichnet, daß die Führungselemente mindestens einen Bogenabschnitt aufweisen.
- 50. Vorrichtung nach einem der Ansprüche 41-49, dadurch gekennzeichnet, daß die Führungselemente als parallel im Abstand zueinander angeordnetet Führungsschienen (13) ausgeführt sind.
- 51. Vorrichtung nach einem der Ansprüche 41–50, dadurch gekennzeichnet, daß in der Biegestation (5) ein Formkörper bzw. ein Dorn (12) angeordnet ist, an den der Zuschnitt (22) durch Biegen und Falten mindestens abschnittsweise mittels Biegewerkzeugen (16, 17) bis zum Erreichen der Hohlkörperform angelegt wird.
- 52. Vorrichtung nach Anspruch 51, dadurch gekennzeichnet, daß das Querschnittsprofil des Dorns (12) innerhalb des Querschnitts des zu erzeugenden Hohlkörpers (15) liegt und sich die Mantellinien der Querschnitte an den Stellen berühren, wo der Zuschnitt (22) an den Dorn (12) angelegt wird.
- 53. Vorrichtung nach Anspruch 52, dadurch gekennzeichnet, daß die Druckflächen der Biegewerkzeuge (16, 17) der Wandung des zu erzeugenden Hohlkörpers (15) angepaßt sind.
- 54. Vorrichtung nach einem der Ansprüche 41-53, dadurch gekennzeichnet, daß die Biegestation (5) mindestens ein bewegliches erstes Biegewerkzeug (17) umfaßt, das das Biegen des vorderen Abschnitts des Zuschnitts (22) übernimmt und eine erste Seite des Zuschnitts

schnitts (22) faltet und in eine vorbestimmte Position gegenüber dem Dorn (12) bringt, gegebenenfalls die erste Seite an den Dorn (12) anlegt.

55. Vorrichtung nach einem der Ansprüche 41–54, dadurch gekennzeichnet, daß das Biegewerkzeug (17) fingerartig ausgebildet ist.

56. Vorrichtung nach einem der Ansprüche 41-55. dadurch gekennzeichnet, daß eine Anzahl von Biegewerkzeugen (17) zum Biegen und Falten in die Zwischenräume zwischen benachbarten Führungsschienen 10 (13) greift.

57. Vorrichtung nach einem der Ansprüche 41–56, dadurch gekennzeichnet, daß die Biegestation (5) mindestens ein zweites, dem ersten Werkzeug gegenüberliegendes bewegliches Biegewerkzeug (16) umfaßt, das 15 eine der ersten Seite gegenüberliegende zweite Seite des Zuschnitts (22) in vorbestimmter Weise biegt.

58. Vorrichtung nach einem der Ansprüche 41–57, dadurch gekennzeichnet, daß an einer zwischen dem ersten und dem zweiten Biegewerkzeug (16, 17) gelegenen Stelle des Doms (12), ein Andrücker (21) derart angeordnet ist, daß der Zuschnitt (22) angehoben und gegebenenfalls mit einer dritten Seite an den Dorn (12) angedrückt wird, so daß sich unterhalb des Dorns (12) ein Durchlaß (37) für den nächsten Zuschnitt (22) bildet.

59. Vorrichtung nach einem der Ansprüche 41-58, dadurch gekennzeichnet, daß

- die Schneideeinheit (4) aus einem feststehenden Untermesser (9) und einem bewegbaren 30. Obermesser (8) besteht,

wobei dem Obermesser (8) zum Herstellen eines zusätzlichen Längsrandes (34)

ein Vorrichtungsteil mit einer Faltkante (10) gegenüberliegt und

- das Untermesser (9) und die Faltkante (10) das Obermesser (8) am Ende des Schneidevorganges zwischen sich aufnehmen.

60. Vorrichtung nach Anspruch 59, dadurch gekennzeichnet, daß

- die Breite des vorgefalteten zusätzlichen Längsrandes (34)

 im wesentlichen der Breite einer senkrecht zur Schnittrichtung sowie oberhalb der Schneidefläche liegenden Querschnittsfläche des Obermessers (8) entspricht.

61. Vorrichtung nach einem der Ansprüche 59-60, dadurch gekennzeichnet, daß die Faltkante (10) an dem zweiten Biegewerkzeug (16) angeordnet ist, das zwischen der Stellung an der Schneideeinheit (4) und dem 50 Biege- bzw. Faltstellungen bewegt wird.

62. Vorrichtung nach einem der Ansprüche 57 bis 61, dadurch gekennzeichnet, daß das zweite Biegewerkzeug (16) eine schräge Faltfläche (10c) zum Vorfalten des ersten Längsrandes (33) am Dorn (12) aufweist.
63. Vorrichtung nach einem oder mehreren der Ansprüche 57 bis 62, dadurch gekennzeichnet, daß dem zweiten Biegewerkzeug (16) ein Faltelement zugeordnet ist, das in unmittelbarer Nähe der Dornkante den ersten Längsrand (33) an den Dorn (12) anlegt.

64. Vorrichtung nach Anspruch 63, dadurch gekennzeichnet, daß das Faltelement Bestandteil der Preßeinheit (20) ist.

65. Vorrichtung nach Anspruch 63 oder 64, dadurch gekennzeichnet, daß das Faltelement als Faltkamm 65 (10) ausgebildet ist und beim Anlegen des ersten Längsrandes (31) an den Dorn (12) in entsprechende Nuten des zweiten Biegewerkzeuges (16) geführt ist.

66. Vorrichtung nach einem oder mehreren der Ansprüche 51 bis 65, dadurch gekennzeichnet, daß die Preßeinheit (20) einen Preßstempel umfaßt, der zum Anlegen des ersten Längsrandes (33) an den Dom (12) auf diesen abgesenkt wird.

67. Vorrichtung nach Anspruch 65 oder 66, dadurch gekennzeichnet, daß der Faltkamm (10, 10a) derart relativ bewegbar an der Preßeinheit (20) gelagert ist, daß er vor dem Preßstempel auf dem ersten Längsrand (33) aufsetzt.

68. Vorrichtung nach Anspruch 66 oder 67, dadurch gekennzeichnet, daß

der Preßstempel als Schweißwerkzeug (32) und
 ein Teil des Dorns (12) als Amboß (30) ausgebildet ist.

69. Vorrichtung nach Anspruch 68, dadurch gekennzeichnet, daß am Ende des Biege- und Faltvorgangs der Überlappungsbereich (29) durch die Preßeinheit (20) auf dem Amboß (30) gepreßt und durch das Schweißwerkzeug (32) entweder bereichsweise oder bereits abdichtend verschweißt wird.

70. Vorrichtung nach einem der Ansprüche 51 bis 69, dadurch gekennzeichnet, daß ein Teil des Dorns (12) als Führung für einen Auswerfer ausgebildet ist.

71. Vorrichtung nach Anspruch 70, dadurch gekennzeichnet, daß der Auswerfer als Schieber (23) ausgebildet ist

72. Vorrichtung nach einem oder mehreren der Ansprüche 41 bis 71, dadurch gekennzeichnet, daß der Überlappungsbereich (29) in einem mittleren Bereich gebildet und zwischen einer mehrteiligen Preßeinheit (20c) und einem Dorn (12c) verpreßt und mindestens bereichsweise verschweißt wird.

Hierzu 20 Seite(n) Zeichnungen

- Leerseite -

Fig. 6b

Fig. 6a

802 040/123

Fig. 6d

Fig. 6c

FIG. 66

802 040/123

Fig. 6h

-ig. 6c

802 040/123

DE 197 11 799 A1 B 31 B 3/00 1. Oktober 1998

Fig. 6

802 040/123

:::=

DE 197 11 799 A1 B 31 B 3/00 1. Oktober 1998

DE 197 11 799 A1 8 31 B 3/00 1. Oktober 1998

Ē

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.