

Aufgabe 1

Die Durchblick GmbH ist ein Unternehmen mit drei Mitarbeitern, die zwei verschiedene Arten von handgefertigten Fenstern herstellen: Ein Fenster mit Holzrahmen und ein Fenster mit Aluminiumrahmen. Dabei verdienen sie an jedem Fenster mit Holzrahmen 60 € und an jedem Fenster mit Aluminiumrahmen 30 €. Der erste Mitarbeiter, Dieter, produziert die Holzrahmen und schafft davon 6 Stück pro Tag. Lisa, die zweite Mitarbeiterin, stellt die Aluminiumrahmen her. Sie fertigt 4 Stück pro Tag. Der dritte Mitarbeiter, Bernd, ist für das Anpassen und Schneiden des Glases zuständig, wobei er 12 m² pro Tag bearbeiten kann. Für jedes Fenster mit Holzrahmen braucht er dabei 1.5 m² und für jedes mit Aluminiumrahmen 2 m² Glas.

Das Unternehmen möchte nun wissen, wie viele Fenster vom jeweiligen Typ hergestellt werden müssen, damit der Gewinn maximal wird.

Hinweis: Gehen Sie der Einfachheit halber davon aus, dass auch Bruchteile von Fenstern gefertigt werden können. (Da ein sich täglich wiederholendes Programm geplant werden soll, ist diese Annahme vertretbar.)

a) Stellen Sie ein lineares Optimierungsproblem für dieses Problem auf.

a) Entscheidungs vor sablen: · Xx: Anzahl Fewser mit Holzrahmen Ophimernasproblem: Lineares 30 x A 60×H Max (Λ) s.t. ХH XA =12 N.J×H 2 XA + ≥ 0 XH, KA

a) Aufstellen und Lösen des LGS (in Matrixform):

$$\begin{pmatrix} 2 & 4 & 4 & 0 \\ 3 & 3 & 5 & 0 \\ 4 & 2 & 6 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & 2 & 0 \\ 3 & 3 & 5 & 0 \\ 4 & 2 & 6 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & -3 & -1 & 0 \\ 0 & -6 & -2 & 0 \end{pmatrix}$$

$$\Leftrightarrow \left(\begin{array}{ccc|c} 1 & 2 & 2 & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \Leftrightarrow \left(\begin{array}{ccc|c} 1 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Setze z.B. $\lambda_3=1$, dann folgt $\lambda_2=-\frac{1}{3}$ und $\lambda_1=-\frac{4}{3}$. Folglich ist das LGS nicht nur trivial für $\lambda_1=\lambda_2=\lambda_3=0$ lösbar und a_1,a_2,a_3 sind linear abhängig.

 \mathbb{R}^3 hat die Dimension 3 und lässt sich durch a_1,a_2,a_3 nicht vollständig aufspannen, d.h. nicht jedes Element des \mathbb{R}^3 lässt sich als Linearkombination von a_1,a_2,a_3 schreiben. Grund: Um $jedes~x\in\mathbb{R}^3$ darstellen zu können, benötigt man drei linear unabhängige Vektoren aus dem \mathbb{R}^3 ; a_1,a_2,a_3 sind aber nicht linear unabhängig, sondern linear abhängig.

b) Aufstellen und Lösen des LGS (in Matrixform):

$$\begin{pmatrix} 3 & 2 & -6 & 0 \\ -2 & 0 & 5 & 0 \\ 4 & -7 & 3 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ -2 & 0 & 5 & 0 \\ 4 & -7 & 3 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 4 & 3 & 0 \\ 0 & -15 & 7 & 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & \frac{3}{4} & 0 \\ 0 & -15 & 7 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & \frac{3}{4} & 0 \\ 0 & 0 & \frac{73}{4} & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & \frac{3}{4} & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Das LGS ist nur trivial für $\lambda_1=\lambda_2=\lambda_3=0$ lösbar. Folglich sind b_1,b_2,b_3 linear unabhängige. Da allgemein n linear unabhängige Vektoren im \mathbb{R}^n eine Basis von \mathbb{R}^n bilden, bilden b_1,b_2,b_3 eine Basis von \mathbb{R}^3 . Dies bedeutet, dass sich $jedes\ x\in\mathbb{R}^3$ als Linearkombination von b_1,b_2,b_3 darstellen lässt. Hinweis: Die dabei benötigten Koeffizienten nennt man Koordinaten von x bzgl. der Basis b_1,b_2,b_3 .

Aufgabe 3

Beweisen Sie, dass $\max f(x) = -\min\{-f(x)\}$ gilt und veranschaulichen Sie dieses Resultat graphisch.

Aufgabe 4

