CS 4342: Class 2

Jacob Whitehill

How old are these people?

Guess how old each person is based on their face image.

https://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf

Ensemble of estimators

What if we compute the average of the different predictions?

$$\overline{\mathbf{y}} = \frac{1}{m} \sum_{j=1}^{m} \hat{\mathbf{y}}^{(j)}$$

What is the MSE of the average predictor?

$$f_{\mathrm{MSE}}(\overline{\mathbf{y}})$$

Ensemble of estimators

What if we compute the average of the different predictions?

$$\overline{\mathbf{y}} = \frac{1}{m} \sum_{j=1}^{m} \hat{\mathbf{y}}^{(j)}$$

What is the MSE of the average predictor?

$$f_{\mathrm{MSE}}(\overline{\mathbf{y}})$$

 How does this compare with the average MSE of all the predictors?

$$\frac{1}{m} \sum_{j=1}^{m} f_{\text{MSE}}(\hat{\mathbf{y}}^{(j)})$$

Age estimation accuracy

• Show wisdom.py

Age estimation accuracy

- Show wisdom.py
- The MSE of the average predictor tends to be lower (better) than the average MSE over all predictors.
- This is an instance of the "wisdom of the crowd".
- Averaging together multiple predictor is sometimes called an ensemble.

Who is smiling?

Which of these people are smiling?

Who is smiling?

Which of these people are smiling?

Defining ground-truth

- A fundamental question in every machine learning problem is how to define what ground-truth means.
- In our example, we might define it as:
 - Does the person look like they're smiling?
 - Does the person her/himself report that they're smiling?
 - Is the person's lip-corner-puller muscle activated?

Quantifying uncertainty

- Sometimes the ground-truth value is unclear.
- To express a "soft" belief about the ground-truth, we can use probabilities.
- There are a couple of ways we could do this...

Quantifying uncertainty

- Frequentist probabilities:
 - Ask a large group of randomly selected people to label the face as smiling or not.
 - Count the number of labels for "smile" and divide by the total number of labels.
 - The ratio is the probability of "smile" for that face image.

Quantifying uncertainty

- Bayesian probabilities ("beliefs"):
 - Ask one person how much she/he believes the image is smiling, quantified as a number between 0 and 1.
 - The "belief" score is the probability of "smile" for that face image.

Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":

Automatic smile detection

- Suppose we want to build an automatic smile detector that analyzes a grayscale face image (24x24 pixels) and reports whether the face is smiling.
- We can represent the detector as a function g that takes an image \mathbf{x} as an input and produces a guess \hat{y} as output, where $\mathbf{x} \in \mathbb{R}^{24 \times 24}, \hat{y} \in \{0, 1\}$.
- Abstractly, g can be considered a "machine":

Smile classifier

- In Python, we can represent a face image as a 24x24 numpy array called face.
 - We can access the pixel at location (r,c) as face[r,c].
- Suppose we have a dataset of several thousand face images { x⁽ⁱ⁾ } along with their associated labels { y⁽ⁱ⁾ }.

Smile classifier

 How might we write a Python function called classifySmile that takes a face and returns whether the face is smiling (True) or not (False)?

• Example:

```
def classifySmile (face):
    return ... (some function of face)
```


• What accuracy (f_{PC}) does our function achieve?

Accuracy measurement

- Let's try this by hand in smile.py
- What accuracy can we achieve?
- Is this "good"?

- In addition to defining an accuracy function, it's important to choose a "baseline" to which to compare your machine.
- The baseline is often the "leading brand" the best machine that anyone has ever created before for the same problem.
- For a new ML problem, we might just compare to (1)
 or (2)

- In addition to defining an accuracy function, it's important to choose a "baseline" to which to compare your machine.
- The baseline is often the "leading brand" the best machine that anyone has ever created before for the same problem.
- For a new ML problem, we might just compare to (1) random guessing or (2) selecting the most probable class based on the statistics of the dataset.

- What fraction of faces in \mathcal{D}^{test} are smiling faces? 54.6%
- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?

- What fraction of faces in \mathcal{D}^{test} are smiling faces? 54.6%
- How accurate (f_{PC}) would a predictor be that just always output 1 no matter what the image looked like?
 - 54.6%
- Note that there are other accuracy functions (e.g., f_{AUC}) that are invariant to the proportion of each class aka the **prior probabilities** of each class in the test set.

Automatic smile detection

 Suppose we build g so that its output depends on only a single pair of pixels within the input face:

$$g(\mathbf{x}) = \mathbb{I}[\mathbf{x}_{r_1,c_1} > \mathbf{x}_{r_2,c_2}]$$

- Which pair (r_1, c_1) , (r_2, c_2) would you choose?
- How good is it?

- Determining smile/non-smile based on a single comparison is very weak.
- What if we combined multiple pairs and took the majorityvote (choose non-smile if tied) across all m comparisons?

$$g^{(j)}(\mathbf{x}) = \mathbb{I}\left[\mathbf{x}_{r_1^{(j)}, c_1^{(j)}} > \mathbf{x}_{r_2^{(j)}, c_2^{(j)}}\right]$$
$$\hat{y} = g(\mathbf{x}) = \mathbb{I}\left[\left(\frac{1}{m} \sum_{j=1}^{m} g^{(j)}(\mathbf{x})\right) > 0.5\right]$$

- The accuracy of the "ensemble" can vary hugely depending on how the m "weak" predictors were selected.
- What would be a bad way of choosing the members of an ensemble?

- The accuracy of the "ensemble" can vary hugely depending on how the m "weak" predictors were selected.
- If the m weak predictors tend to give the same answer for the same inputs — i.e., they are correlated — then the ensemble predictor may not be much better than any of the weak predictors.
- It is important to choose the *m* weak predictors to work well in *cooperation*.

Let's change notation slightly:

$$g^{(j)}\mathbf{x} = \mathbb{I}[\phi^{(j)}(\mathbf{x}) > 0]$$
$$\phi^{(j)}(\mathbf{x}) = \mathbf{x}_{r_1^{(j)}, c_1^{(j)}} - \mathbf{x}_{r_2^{(j)}, c_2^{(j)}}$$

- Each $\phi^{(j)}$ is called a **feature** of the input **x**.
- In machine learning, the features serve as the basis of the machine's predictions.

- Since each $g^{(j)}$ examines only a single feature, choosing a predictor $g^{(j)}$ is equivalent to choosing a feature $\phi^{(j)}$.
- Let the set of all possible features be called \mathcal{F} .
- Note that each prediction \hat{y} implicitly depends on $\phi^{(1)}$, ..., $\phi^{(m)}$.

$$\hat{y} = g(\mathbf{x}) = \mathbb{I}\left[\left(\frac{1}{m}\sum_{j=1}^{m}g^{(j)}(\mathbf{x})\right) > 0.5\right]$$

 Our goal is to find the **best** combination of *m* features, i.e., the one whose accuracy is:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}})$$

Theme of the course

- Machine learning is about creating intelligent machines by solving an optimization problem:
 - The objective function is a loss/cost/accuracy function (that we either minimize or maximize) based on a set of training data.
 - The optimization parameters define how our machine makes its predictions/decisions/estimations.

Theme of the course

- Many classical Al methods (e.g., A*) are often based on discrete optimization.
- In contrast, most modern ML methods (e.g., neural networks, support vector machines) are based on continuous optimization.

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704
- 4. 255024

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952
- 2. 331200
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952 = (24*23)*(24*24)
- 2. 331200
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

- 1. 317952 = (24*23)*(24*24)
- 2. 331200 = (24*24)*(24*24-1)
- 3. 304704 = (24*23)*(24*23)
- 4. 255024 = 24*23*22*21

The size of the feature set is rather large:

$$\mathcal{F} = \{(r_1, c_1, r_2, c_2) \in \{0, \dots, 23\}^4 : (r_1, c_1) \neq (r_2, c_2)\}$$

• It contains (24*24)*(24*24-1)=331200 elements.

- If $|\mathcal{F}| = 331200$, then even for m=5, we have
 - $|\mathcal{F}^5| = 3985213938015928320000000000$
- It is computationally intractable to enumerate over all of these combinations of features!
- Overcoming the exponential computational costs of brute-force ("try everything") optimization is one fo the chief goals of ML research.

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$
 We sometimes write the parameters that a function depends on after the ;

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\mathrm{PC}}(\mathbf{y}, \mathbf{\hat{y}}; \phi^{(1)})$$
 Find the single best feature.

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$
Given we have already committed to the first feature, which single next feature is best in combination?

- Step-wise regression/classification is a greedy algorithm for selecting features/predictors myopically, i.e., based on "what looks best right now".
- Instead of optimizing jointly to find:

$$\max_{(\phi^{(1)},\dots,\phi^{(m)})\in\mathcal{F}^m} f_{\mathrm{PC}}(\mathbf{y},\hat{\mathbf{y}};\phi^{(1)},\dots,\phi^{(m)})$$

...we optimize iteratively:

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$

$$\max_{\phi^{(3)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)})$$
Repeat.

...

- Instead of $|\mathcal{F}|^m$ possible choices, we only have $m \times |\mathcal{F}|$.
- This is doable!
- We have reduced the exponential growth into linear growth big difference!
- Note, however, that there is no guarantee that the solution is optimal. Step-wise classification is an approximate solution to selecting the m best features/predictors.

$$\max_{\phi^{(1)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)})$$

$$\max_{\phi^{(2)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)})$$

$$\max_{\phi^{(3)} \in \mathcal{F}} f_{\text{PC}}(\mathbf{y}, \hat{\mathbf{y}}; \phi^{(1)}, \phi^{(2)}, \phi^{(3)})$$

...

Pseudocode:

```
predictors = [] # Empty list
For j = 1, ..., m:
   1. Find next best predictor given what's already in predictors
   2. Add it to predictors
```

Run smile_demo.py and optimize on 10 images.