

โรงแยกก๊าชธรรมชาติระยอง

ส่วนควบคุมคุณภาพ ฝ่ายบริหารเทคนิคและแผนการผลิต

ภูมิใจนำเสนอกิจกรรมพัฒนาคุณภาพงาน

รอยยิ้มอยู่บนรุ้งที่มีสีสันสดใส สื่อถึง การก้าวไปข้างหน้าด้วยเส้นทางที่สดใส สวยงาม ของ ปตท.

คำขวัญกลุ่ม : รวมความคิด ร่วมพลัง ร่วมกำลัง ทำคิวชื

ทะเบียนกลุ่ม : เลขที่ 01/36

ทะเบียนกิจกรรม : เลขที่ 01/53

ระยะเวลาการทำกิจกรรม: 15 กันยายน 2552 – 17 มีนาคม 2553

กิจกรรม QC ปี 52 : การจัดทำผลการวิเคราะห์และใบรายงานผล การวิเคราะห์ในรูปอิเล็กทรอนิคไฟล์

ติดตามผลกิจกรรม QC ครั้งล่าสุด

ติดตามผล QC ปี 52 การจัดทำผลการวิเคราะห์และใบรายงานผลการวิเคราะห์ในรูปอิเล็กทรอนิคไฟล์

สรุปผลการติดตาม

พบว่าไม่มีการพิมพ์ข้อมูลกระดาษผลการวิเคราะห์และกระดาษรายงานผล - จนถึงปัจจุบัน

555 สุขุมวิท ต. มาบตาพุด อ. เมือง จ. ระยอง 21150

โครงสร้างสายบังคับบัญชา

PTT vision : "เป็นบริษัทพลังงานไทยข้ามชาติชั้นนำ"

รธก

Gas vision: "เป็นผู้นำในธุรกิจแยกก๊าซในภูมิภาคเอเชีย"

ผจ.ทผก

<u>ผยก</u>

ผจ.คพ

GSP VISION: "เป็นผู้นำในธุรกิจแยกก๊าซในภูมิภาคเอเชีย ตะวันออกเฉียงใต้"

<u>หน้าที่</u>

- 1.ทำการวิเคราะห์ ตรวจสอบ รับรองผลการวิเคราะห์ และจัดทำ certificate of analysis (COA) ให้กับลูกค้า
- 2.ทำการวิเคราะห์ตรวจสอบคุณภาพของก๊าซวัตถุดิบ ก๊าซระหว่าง กระบวนการผลิต และผลิตภัณฑ์ ตามแผนและตามที่หน่วยงานร้องขอ
- 3.ทำการวิเคราะห์ตรวจสอบคุณภาพน้ำและอากาศ เพื่อสนับสนุนงานด้าน สิ่งแวดล้อม
- 4.กำหนดหลักเกณฑ์และจัดทำระบบ QC/QA เช่น SPC, 6σ และการ ปรับปรุงพัฒนาระบบ QC/QA ให้มีประสิทธิภาพและประสิทธิผล

1.ทำการวิเคราะห์ ตรวจสอบ รับรองผลการวิเคราะห์ และจัดทำ certificate of analysis (COA) ให้กับลูกค้า

2.ทำการวิเคราะห์ตรวจสอบคุณภาพก๊าซ / สารเคมีที่ใช้ในกระบวนการผลิต

3.ทำการวิเคราะห์ตรวจสอบคุณภาพน้ำและอากาศ เพื่อสนับสนุนงานด้านสิ่งแวดล้อม

4.กำหนดหลักเกณฑ์และจัดทำระบบ QC/QA (Quality control/Quality Assurance) เช่น SPC (Statistical Process Control), 6σ และการปรับปรุงพัฒนาระบบ QC/QA ให้มีประสิทธิภาพและประสิทธิผล

- SMART Quality Monitoring System
- SMART Dash Board System

- Real Time Online Analyzer Accuracy Monitoring System (Online Analyzer Health Check)

- CPM (Control Performance Monitoring) and AM (Alarm Management) System

ith treemapping technology

perichmanic APC performance

สมาชิกกลุ่ม

ที่ปรึกษากลุ่ม

คุณสมชาย กูใหญ่ ผจ.ทผก.

หัวหน้ากลุ่ม

คุณวุฒิ ปวช. – ปริญญาโท อายุ เฉลี่ย 33 ปีอายุงานเฉลี่ย 11 ปี

จำนวนสมาชิก	ชื่อ	สกุล	ตำแหน่ง	อายุตัว	อายุงาน	ตำแหน่งงาน	การศึกษา	ปฏิบัติกิจกรรม QC/Mini QC ครั้งที่
1	นางดารา	ชนกุลบดี	หัวหน้ากลุ่ม	38	18	พ.ห้องปฏิบัติการ	ปวส.	17
2	นายวุฒิพงศ์	เดชนุช	สมาชิก	42	20	ผจ.คธ.	ป.ตรี	12
3	นางสูภางค์	ภูริยากร	สมาชิก	52	28	ผจ.คพ.	ป.ตรี	18
4	นายศิริชัย	บุรวรรนินท์	เลขานุการ	35	9	พ.ควบคุมคุณภาพ	ป.โท	11
5	นายวิรัต	คงเมือง	สมาชิก	48	26	หัวหน้าพนักงานห้องปฏิบัติการ	ปวส.	18
6	นายฉัตรชัย	ตราชู	สมาชิก	45	26	หัวหน้าพนักงานห้องปฏิบัติการ	ปวช.	18
7	นายเอกชัย	พันธ์ทอง	รองหัวหน้ากลุ่ม	25	5	พ.ห้องปฏิบัติการ	ปวส.	7
8	นางสาวศิริกมล	บัวเผื่อน	สมาชิก	25	4	พ.ห้องปฏิบัติการ	ปวส.	6
9	นายมณเฑียร	ไพพินิจ	สมาชิก	30	4	วิศวกร	ป.โท	7
10	นายรณรงค์	มาลาสาย	สมาชิก	24	2	พ.ห้องปฏิบัติการ	ปวส.	2
11	นายฐาปนนท์	เศรษฐีวรฤทธิ์	สมาชิก	25	1	พ.ควบคุมคุณภาพ	ป.โท	1 10

ผลงานของกลุ่ม

- 1. การนำน้ำทิ้งจากอุปกรณ์ผลิตน้ำแข็งและน้ำกลั่นน้ำกลับมาใช้
- 2. การใช้สารเคมื่อย่างมีประสิทธิภาพ
- 3. ลดเวลาการส่งใบรายงานผลการวิเคราะห์
- 4. ลดค่าใช้จ่ายในการวิเคราะห์หาปริมาณ OIL& GREASE
- 5. ลดเวลาในการ Check stock สารเคมี
- 6. ลดปริมาณการใช้ก๊าซในห้องปฏิบัติการ
- 7. เพิ่มค่า Dissolve Oxygen ในน้ำป่อ Equilibrium Pond
- 8. ลดค่าใช้จ่ายในการวิเคราะห์ OIL& GREASE ในน้ำทิ้ง
- 9. ลดค่าใช้จ่ายในการวิเคราะห์ Total Sulfur
- 10. ลดค่าใช้จ่ายในการวิเคราะห์ Mercury ใน NGL
- 11. ลดปริมาณปรอทในน้ำที่ปนเปื้อน
- 12. ลดเวลาในการวิเคราะห์หาปริมาณ Eliminox
- 13. ลดเวลาในการจัดทำและค้นหาใบรายงานผลของ F.002, 036 และ 037
- 14. ลดความผิดพลาดจากการลงข้อมูลในใบรายงานผล
- 15. ลดการใช้น้ำหล่อเย็นจากการเก็บตัวอย่างสารละลายเอมีน
- 16. ลดปริมาณสารVOC ที่จุดเก็บตัวอย่างNGL

17. ลดจำนวนใบรายงานผลการวิเคราะห์ที่ออกจากเครื่องพิมพ์

ประหยัด

ประหยัด

<mark>เพิ่มประสิทธิภาพ</mark>

<mark>เพิ่มประสิทธิภาพ</mark>

ประหยัด

ประหยัด

มพนบาร

ประหยัด

ประหยัด

ประหยัด

<mark>ลดผลกระทบต่อสิ่งแวดล้อ</mark>ย

<mark>เพิ่มประสิทธิภาพ</mark>

เพิ่มประสิทธิภาพ

<mark>เพิ่มประสิทธิภาพ</mark>

ประหยัด

ประหยัด

การประชุมกลุ่ม

ตารางการประชุม ห้องประชุมส่วน คพ.

ครั้งที่	วันที่	เวลา	ชั่วโมง	จำนวนสมาชิก	วาระการประชุม	มติที่ประชุม
1	15/9/2009	09.30-11.00	1.5	10	นำเสนอปัญหาที่พบ	ได้ปัญหา 4 หัวข้อ
2	26/10/2009	10.00-11.00	1	10	คัดเลือกหัวข้อปัญหา	คัดเลือก โดยใช้มูลค่าความสูญเสียที่สูงที่สุด
3	2/11/2009	13.30-14.30	1	9	พิจารณาสภาพข้อมูลปัจจุบัน และ	ให้รวบรวมข้อมูลของปัญหาก่อน
4	23/11/2009	10.00-11.00	1	10	วิเคราะห์สาเหตุ พิสูจน์ปัญหา	1.วิเคราะห์สภาพปัญหาก่อนว่าเกิดจากที่ใด
						2.พิสูจน์สาเหตุโคยใช้ Why Why Analysis
						3.พิสูจน์สาเหตุโดยใช้หลัก 3 จริง
5	14/12/2009	09.30-11.00	1.5	10	กำหนดแนวทางและมาตรการแก้ไขปัญหา	หาแนวทางการแก้ไขโดยใช้สิ่งที่เรามือยู่ก่อน
6	21/12/2009	10.00-11.00	1	10	แก้ไขปัญหา	พิสูจน์แนวทางการแก้ไขที่ 1
7	28/12/2010	10.00-11.00	1	10	แก้ไขปัญหา	พิสูจน์แนวทางการแก้ไขที่ 2
8	22/1/2010	10.00-11.00	1	11	ตรวจสอบผลหลังแก้ไข	ตรวจสอบผลการแก้ไข
9	22/2/2010	10.00-11.00	1	11	สรุปผลและเปรียบเทียบ	เปรียบเทียบข้อมูลแก้ไข
						สรุปผลทางตรงและทางอ้อม
10	8/3/2010	10.30-11.30	1.5	11	กำหนดมาตราฐานขั้นตอนการทำงาน	กำหนดมาตรฐานขั้นตอนการทำงาน
11	15/3/2010	10.00-11.00	1	10	วางแผนกิจกรรมและกำหนดหัวข้อ	กำหนดหัวข้อกิจกรรมครั้งต่อไป
	เฉลี่ย		1.1	10.2		

<u>หมายเหตุ</u> ผู้ที่ไม่ได้เข้าการประชุมแจ้งรายงานการประชุมทาง E-mail

ประชุมจำนวน 11 ครั้ง สมาชิกเข้าร่วมประชุมดิดเป็น 92.72 %

ก็นหาหัวข้อปัญหา

ที่มาของหัวข้อปัญหา

้จากการพิจารณาค้นหาปัญหาของกลุ่ม พบปัญหาทั้งหมด 4 ปัญหา

1. เกิดการสูญเสีย NGL ปริมาณมาก ขณะเก็บตัวอย่าง

- ☐ ต้องใช้ NGL ปริมาณมากในการ ล้างขวดเก็บตัวอย่าง
- ☐ จุดเก็บตัวอย่างไม่มี return line

2. ใช้ Ethanol ปริมาณมากในการ วิเคราะห์ CO2 content

ต้องใช้ Ethanol เป็นตัวทำละลาย amine

3. ต้องใช้เวลามากในการค้นหาสารเคมี

- □ มีสารเคมีจำนวนมาก
- ่⊔ไม่มีแผนที่แสดงที่ตั้งสารเคมี

4. ผลการวิเคราะห์ความเข้มข้น aMDEA มีค่าแตกต่างจากผู้ผลิต

- 🛘 วิธีการทดสอบผิดพลาด
- ุ ⊔ ผู้ทำการทดสอบผิดพลาด

ปัญหาที่ 1 : การสูญเสีย NGL ขณะเก็บตัวอย่างมาก

<u>์ ที่มาของข้อมูล</u> : จาก WI-3003 การเก็บตัวอย่าง GAS, LIQUID ที่มีแรงดัน และ ตัวอย่าง Hot Oil

- - 2. การวิเคราะห์ค่าความถ่วงจำเพาะของ NGL (Natural Gasoline)
 - 3. การวิเคราะห์ค่าความดันไอของ Natural gasoline(NGL)

เสนอและรวบรวมข้อมูลโดย : โดย ศิริกมล บัวเผื่อน

<u>จาก WI-3003 การเก็บตัวอย่าง GAS, LIQUID ที่มีแรงดัน และ</u> <u>ตัวอย่าง Hot Oil</u>

ทำการ Rinse ขวดเก็บตัวอย่าง ด้วยตัวอย่างที่จะเก็บ อย่างน้อย 3 ครั้ง

<u>จากการเก็บข้อมูลตั้งแต่วันที่ 20 กันยายน – 19 ตุลาคม 2552*</u>

ปริมาณการ สูญเสีย NGL	ปริมาณ (ลิตร)	มูลค่า (บาท)
ต่อเดือน	29.1	320
ต่อปี**	349.2	3,841

ขวดเก็บตัวอย่าง

3,841 บาทต่อปี

* อ้างอิงจากแผนการเก็บตัวอย่าง

** หมายเหตุ: NGL = 11 บาท/ลิตร

ปัญหาที่ 2 : ใช้ Ethanol ในการวิเคราะห์ CO₂ content ใน lean solution aMDEA มาก

ที่มาของข้อมูล : จาก WI-1211 ในการวิเคราะห์ CO2 content ใน lean solution aMDEA

เสนอและรวบรวมข้อมูลโดย : โดย รณรงค์ มาลาสาย

<u>จาก WI-1211 การวิเคราะห์ CO2 content ใน lean solution aMDEA</u>

ต้องใช้ 100ml. ของสารละลายผสม Ethanol/water 2:1

<u>จากการเก็บข้อมูลตั้งแต่วันที่ 20 กันยายน – 19 ตุลาคม 2552*</u>

ปริมาณการ สูญเสีย EtOH	ปริมาณ (ลิตร)	มูลค่า (บาท)
ต่อเดือน	2.6	749
ต่อปี**	31.2	8,985

ETHANOL(EtOH)

RCI Labscar

8,985 บาทต่อปี

ปัญหาที่ 3 : การใช้เวลามากในการค้นหาสารเคมี

้ที่มาของข้อมูล : จากการวิเคราะห์ตัวอย่างที่เกี่ยวกับระบบกระบวนการสนับสนุน น้ำเสียน้ำทิ้งในโรงงาน จำต้องใช้สารเคมีหลายชนิดเพื่อทำการ ทดสอบการหาค่าต่างๆ ตามวิธีมาตรฐาน

<u>รายการทดสอบการหาสารเคมี</u>

เสนอและรวบรวมข้อมูลโดย : โดย เอกชัย พันธ์ทอง

ข้อมูลทดลองการหาสารเคมี					
	เวลาที่ใช้ในการหาสารเคมี (นาที)				
ผู้ทดสอบ	Methyl Isobutyl	0.5M Potassium	30% Hydrogen		
	Ketone	Hydroxide	Peroxide		
นางคารา ธนกุลบดี	5.52	5.21	5.56		
นายเอกชัย พันธ์ทอง	5.28	5.28	5.26		
นางสาวศิริกมล บัวเผื่อน	6.26	5.58	5.65		
นายรณรงค์ มาลาสาย	5.25	5.45	6.02		
เฉลี่ย	5.58	5.38	5.62		

ห้องสารเคมี

<u>จากการเก็บข้อมูลวันที่ 20 กันยายน – 19 ตุลาคม 2552*</u>

์ 2,608 บาทต่อปี

ปริมาณการ สูญเสียเวลา	เวลา (นาที)	มูลค่า (บาท)
ต่อเดือน	166	217
ต่อปี	1,991	2,608

^{*} หมายเหตุ: มูลค่าเวลาการทำงาน = 1.31 บาท/นาที คิดจากการประมาณ, ทำการคันหาสารเคมีวันละ 1 ครั้ง

ปัญหาที่ 4 : ผลการวิเคราะห์ความเข้มข้น aMDEA Solution ต่ำกว่าผู้ผลิต BASF เกิน 2%wt

ที่มาของข้อมูล : จากการวิเคราะห์ความเข้มข้นของ aMDEA ด้วยวิธี titration ที่เปรียบเทียบกับผู้ผลิต BASF

เสนอและรวบรวมข้อมูลโดย : โดย เอกชัย พันธ์ทอง

การเทียบผลความเข้มข้นของ aMDEA เทียบกับบริษัทผู้ผลิต BASF

เก็บข้อมูล ปี 2008-2009

2008

14-05-2008

2009

27-08-2009

ชื่อตัวอย่าง	PTT (%wt)	BASF (%wt)	Diff. (%wt)
AGRU#1	42.80	47.11	-4.31
AGRU#2	42.90	49.21	-6.31
ETU*	ไม่มีการเติม aMDEA เข้าไปในระบบ		
ชื่อตัวอย่าง	PTT (%wt)	BASF (%wt)	Diff. (%wt)

ชื่อตัวอย่าง	PTT (%wt)	BASF (%wt)	Diff. (%wt)
AGRU#1	42.82	46.56	-3.74
AGRU#2	44.49	49.84	-5.35
ETU	40.08	43.93	-3.85

จากการเทียบผลระหว่างปตท.กับผู้ผลิต BASF พบว่าต่างกัน 3.74-6.31 %wt (acceptable criteria = 2%wt)

aMDEA = activated methyldimethanolamine *BASF* = บริษัทผู้ผลิต aMD**E**A ที่ใช้ใน GSP 5, 6

ถ้าต้องเพิ่มความ เข้มข้น	ปริมาณสารเคมี ที่ต้องเติม (ตัน)	มูลค่า (บาท)	
1%w	14.6 ^a	3,007,600 b	์ บาท/ครั้ง
ต่อครั้ง (1.74 – 4.31%w) ^c	25.40 - 62.93	5,232,400 - 12,963,580	

18

คัดเลือกหัวข้อปัญหา

จัดลำดับความสำคัญของปัญหา: มูลค่าความสูญเสีย

ปัญหา ที่	หัวข้อปัญหา	ตรงตาม นโยบายของ หน่วยงาน	สามารถทำได้ เองภายใน หน่วยงาน	มูลค่าความ สูญเสีย(บาท)
1	การสูญเสีย NGL ขณะเก็บตัวอย่างมาก	\checkmark	\checkmark	3,841
2	ใช้ Ethanol ในการวิเคราะห์ CO2 content ใน lean solution aMDEA มาก	\checkmark	\checkmark	8,985
3	การใช้เวลามากในการค้นหาสารเคมี	\checkmark	√	2,607
4	ผลการวิเคราะห์ความเข้มข้น aMDEA Solution ต่ำกว่าผู้ผลิต BASF เกิน 2% wt	\checkmark	√ >	12,963,580

พบว่า ปัญหาที่ 4 เรื่อง ผลการวิเคราะห์ความเข้มข้น aMDĚA คลาดเคลื่อนจากผู้ผลิต BASF เป็นปัญหาที่มีมูลค่าความสูญเสียมากที่สุด

หัวข้อกิจกรรม

กลุ่มกำหนดหัวข้อกิจกรรมเรื่อง

ลดความคลาดเคลื่อนของผลการวิเคราะห์ ความเข้มข้นสารละลาย aMDEA ที่ GSP#5

มูลเหตุจูงใจ

ได้ผลการ
วิเคราะห์ที่
ถูกต้องและมี
ความเชื่อมั่นใน
ผลการวิเคราะห์

Big Q = Q C D S M E E

The reproducibility of the method is within ±2 %wt

ลดปริมาณ สารเคมีที่ต้อง ใช้และลด ต้นทุนในการ ซื้อสารเคมี

ถ้าต้อง เพิ่ม ความ เข้มข้น	ปริมาณ สารเคมีที่ ต้องเติม (ตัน)	มูลค่า (บาท)
1%wt	14.6	3,007,600

เพิ่มศักยภาพในการวิเคราะห์ให้ได้ทัดเทียมกับผู้ผลิต

<u>ตั้งเป้าหมาย</u>

ผลการวิเคราะห์ความเข้มข้นสารละลาย aMDEA เมื่อเทียบกับผู้ผลิต BASF แตกต่างกันไม่เกิน 2 %wt

กำหนดระยะเวลาดำเนินการ : 6 เดือน (15 กันยายน 2552 – 17 มีนาคม 2553)

เหตุผลที่ตั้งเป้าหมาย

เพื่อลดความคลาดเคลื่อนของผลการวิเคราะห์ความเข้มข้นของ สารละลาย aMDEA และลดปริมาณ aMDEA ที่ต้องใช้ในหน่วย กำจัด CO2 GSP#5 ซึ่งจะช่วยประหยัดค่าใช้จ่ายขององค์กร

ดังนั้น ความคลาดเคลื่อนที่เกิดจากการวิเคราะห์

ต้องมีค่าไม่เกิน 2%wt

The reproducibility of the method is approx. \pm 2 %wt of the experimental*

แผนงาน

จากแผนการดำเนินงาน 6 เดือน ระยะเวลาทำกิจกรรมจริง 6 เดือน และทำการติดตามผลจนถึงปัจจุบัน เริ่มกิจกรรม 15 กันยายน 2552 ทำการประชุม 11 ครั้ง 1.1 ชั่วโมง จำนวนผู้เข้าประชุมคิดเป็น 92.72%

แผนดำเนินงาน	ปฏิบัติงานจริง	ติดตามผลการทดสอบ

	ขับตอน		กันยายน 2552-มีนาคม 2553								YW A .	, do t	2021201122																
	ขนตอน		ก.ย.			ต.ค.				พ.ย				.ค				.ค5				53			i.ค		− ผู้รับผิดชอบ −	งบประมาณที่ใช้	หมายเหตุ
		1	2	3 4	1	2	3	4	1	2	3	4	1	2	3 4	4 :	1 2	2 3	4	1	2	3	4	1	2	3 4	l .		
	1.คัดเลือกหัวข้อปัญหา																										ศิริกมล,เอกชัย,ณรงค์ฤทธิ์,		
	- คันหาหัวข้อปัญหา																										ดารา,ศิริชัย,ฉัตรชัย,วิรัต, สุภางค์,วุฒิพงศ์,มณเทียร	-	-
	- คัดเลือกปัญหา																										ल्डा १०मा, रूका १४०मा,अस्परमाञ		
z	2.สำรวจสภาพข้อมูลปัจจุบัน							Ţ																			เอกชัย,ณรงค์ฤทธิ์	_	_
PLAN	รวบรวมข้อมูลของปัญหา																												
-	3.ตั้งเป้าหมาย และแผนดำเนินกิจกรรม																												
	- กำหนดหัวข้อกิจกรรมเรื่อง																										ศิริกมล,เอกชัย,ณรงค์ฤทธิ์,	_	_
	- มูลเหตุจูงใจ																										ดารา,มณเทียร		
	- ตั้งเป้าหมาย																												
	4.วิเคราะห์หาสาเหตุ และพิสูจน์ปัญหา										I																		
	- วิเคราะห์สภาพปัญหา							+								+				+							_ วิรัต,ดารา,ศิริชัย,ฐาปนนท์, ฉัตรชัย,สุภางค์,วุฒิพงศ์,มณ	-	-
	- พิสูจน์สาเหตุ(Why Why Analysis)											_		-		+											เทียร		
	- พิสูจน์สาเหตุด้วยหลัก 3 จริง											T				T													
0	5.กำหนดแนวทาง และมาตรการแก้ไขปัญหา																										ศิริกมล,เอกชัย,ณรงค์ฤทธิ์		
8	- หาแนวทางการแก้ไข							+				+								+								-	-
	6.ลงมือปฏิบัติตามมาตราการแก้ไขปัญหา																												
	- พิสูจน์แนวทางการแก้ไขที่ 1							T								T			1								ศิริกมล,เอกชัย,ณรงค์ฤทธิ์	_	-
	- พิสูจน์แนวทางการแก้ไขที่ 2																										– ,ฐาปนนท์ 		
	- แก้ไขปัญหา																												
СНЕСК	7. ตรวจสอบและเปรียบเทียบผล																										_ ศิริกมล,เอกชัย,ณรงค์ฤทธิ์		
뿔	- ตรวจสอบผลการแก้ไข																										,ฐาปนนท์	-	-
0	- เปรียบเทียบข้อมูลแก้ไข																												
	8.กำหนดมาตรฐาน																										วิรัต,เอกชัย,ศิริชัย,ฉัตรชัย	_	_
S	- กำหนดมาตรฐานขั้นตอนการทำงาน																										สุภางค์,วุฒิพงศ์,มณเทียร		
ACTION	9.กำหนดหัวข้อกิจกรรมครั้งต่อไป																										ศีริกมล,เอกชัย,ณรงค์ฤทธิ์	-	-
ĕ	- คันหาหัวข้อกิจกรรมครั้งต่อไป																										1		
	10.ติดตามผล																										ฐาปนนท์,เอกชัย,ศิริชัย	-	-

^{*} หมายเหตุ: ติดตามผลทุก 6 เดือน (ครั้งต่อไปเดือน ก.ย. 53)

WORK FLOW ก่อนปรับปรุง

Workflow การวิเคราะห์ aMDEA ด้วยวิธี titration โดยใช้ Tasiro's indicator (วิธีการที่ BASF แนะนำ)

เทคนิคที่ใช้ในการวิเคราะห์

การไตเตรต (titration)

การหาความเข้มข้นของสารละลายตัวอย่างโดยทำปฏิกิริยากับสารที่รู้ความเข้มข้น แน่นอน และคำนวณจากจุดที่สารทั้งสองทำปฏิกิริยาพอดีกัน (จุดยุติ้)

ัตัวอย่างที่ไม่ทราบ ความเข้มข้น (titrand) + อินดิเคเตอร์

เมื่อถึงจุดที่ titrant ทำ ปฏิกิริยาพอดีกับ titrand (จุดยุติ) จะเกิดการเปลี่ยน สีของอินดิเคเตอร์

2. ติดตามค่า pH ของปฏิกิริยาด้วย pH meter

3. ติดตามค่า ความต่างศักย์ของ ปฏิกิริยาด้วย potentiometer

วิเคราะห์สภาพปัญหาปัจจุบัน

Lab ทำการวิเคราะห์เปรียบเทียบกับผู้ผลิต พบว่าวิเคราะห์ได้ค่าแตกต่างกัน

ข้อมูลวันที่ 27-08-2009

ค่าที่วิเคราะห์ได้มีค่าน้อยกว่าค่าความเข้มข้นที่แท้จริง

หนังสือแจ้งเติม aMDEA ของวผ.

ptt	MEMORANDUM
ution dan. Virila (unseu) PTT Public Company Limited	Er No. 1 to 104/2022 Erel - Date 1 7 A A 2022
winarcegis. New criticites reserves	da
dust tell in to	
days: 00:	
das (talpus) afabannens antita soo	Annua Aonu 142 core

Not.	etwernederfie aMDEA Mrough Evplus (% Mt)	ofference abstice.	Olorus MIDEA di 1d make up (dis)	diversed on rectards aMDIA Strength wise make up (Nort)
AGRUYS	42.67	#PDEA	76.64	46.16
AQKI/H2	69.26	3000	42.66	46.06

Composition	Units	AGRU#2	AGRU#1	ETU
H2O(CO2 frei)	wt-%	47.4	50.5	54.8
MDEA	wt-%	46.2	42.91	36.95
Sum of Activators	wt-%	3.64	3.65	6.98
Organic Acids(as HCOOH)	wt-%	0.08	0.08	0.1
Total amine	(5.1)	<u>49.84</u>	<u>46.56</u>	<u>43.93</u>

Company	AGRU#2	AGRU#1	ETU
PTT* (%wt)	45.21	42.97	40.08
BASF (%wt)	49.84	46.56	43.93
Diff (%wt)	-4.63	-3.59	-3.85

ทำการวิเคราะห์1ครั้ง/week

ทำการวิเคราะห์1ครั้ง/year

* หมายเหตุ: ทำซ้ำ 3 ครั้งก่อนส่งผู้ผลิต BASF (Germany) รอผล1เดือน

Unit	ค่าความเข้มข้น aMDEA Strength ปัจจุบัน (%wt)	ชนิดของ aMDEA	ปริมาณ aMDEA ที่ ใช้ make up (ดับ)	เป้าหมายค่าความเริ่มรับ aMDEA Strength หลัง make up (%wt)			
AGRU#1	42.97	aMDEA	76 ตัน	48.16			
AGRU#2	45.21	2020	42 du	48.08			

* หมายเหตุ: ราคาสารเคมี = 206,000 บาท/ตัน * aMDEA = MDEA + activator

<u>จากหนังสือออกของหน่วยงาน วผ.154/2552 เพิ่ม aMDEA</u> <u>AGRU1&2 1%wt เติม aMDEA 14.6 ตัน คิดเป็นเงิน 3,007,600 บาท <mark>26</mark></u>

ก่อนการแก้ไข

ผลการวิเคราะห์ความเข้มข้นสารละลาย aMDEA เมื่อเทียบกับผู้ผลิต BASF เกินเกณฑ์(2%wt) ความคลาดเคลื่อนที่ยอมรับได้ของวิธีการ

ผลการ

วิเคราะห์

ความ

เข้มข้น

aMDEA

ได้

แตกต่าง

ผู้ผลิต

เกิน

2%wt

วิเคราะห์สาเหตุ

การวิเคราะห์สาเหตุหลักของปัญหาโดยใช้หลัก Why-Why-Analysis

น้ำหนักของ ตัวอย่างไม่ ถูกต้อง ใช้เครื่องชั่งที่ไม่แม่นยำ

ไม่ได้ทำการ calibrate เครื่องชั่ง

ทำการ calibrate เครื่องชั่งเป็นประจำ

OK

ความเข้มข้น ของ HCl ที่ใช้ ในการ titrate ไม่ถูกต้อง

HCl มีความเข้มข้นไม่ เป็นไปตาม certificate ไม่ได้ทำการ standardize ด้วย Na₂CO₃ เพื่อหา ความเข้มข้นที่ แท้จริงของ HCl ทำการ standardize ด้วย Na₂CO₃

OK

ปริมาตรของ HCl ที่ใช้ใน การ titrate ไม่ถูกต้อง

เครื่อง Autotitration ไม่ได้ทำ PM/calibration ทา PM/calibration เครื่อง autotitration เป็นประจำ

OK

วิธีการไตเตรต ไม่เหมาะสม หาจุดยุติที่แน่นอน ของปฏิกิริยายาก การเปลี่ยนสีของ อินดิเคเตอร์ที่จุดยุติไม่ ชัดเจน

NG

Tashiro's indicator range pH = 5.2 - 4.9

20

พิสูจน์สาเหตุด้วยหลัก 3 จริง

Genba : สถานที่เกิดเหตุจริง

เครื่อง titration ยี่ห้อ Metrohm

ห้องปฏิบัติการ ส่วนควบคุมคุณภาพ

พิสูจน์สาเหตุด้วยหลัก 3 จริง

Genbutsu : ข้อเท็จจริง

การไตเตรต กรด-เบส (Acid-Base Titration)

เป็นกระบวนการวิเคราะห์หาปริมาณของกรดหรือเบส โดยให้สารละลายกรดหรือเบสทำปฏิกิริยาพอดีกับสารละลาย มาตรฐาน เบสหรือกรดซึ่งทราบความเข้มข้นที่แน่นอน และ<u>ใช้อินดิเคเตอร์เป็นสารที่บอกจุดยุติ ด้วยการสังเกตจาก</u> <u>สีที่เปลี่ยน</u>

Amine Solution เป็นเบสอ่อนเมื่อผสมกับน้ำ ไม่มีสี pH ประมาณ = 10.80

Hydrochloric acid 1 N เป็นกรดแก่ ไม่มีสี มีค่า pH ประมาณ = 1.5

Tashiro's indicator ทำให้เกิดสีเขียว จะถึงจุติที่ ค่า pH ประมาณ 4.2-5.9

<u>เมื่อทำปฏิกิริยาพอดีจะเปลี่ยนจากสีเขียวเป็นเทา</u>

พิสูจน์สาเหตุด้วยหลัก 3 จริง

Genjisu : สถานการณ์จริง

ช่วงของสีเทา

aMDEA® Process Technology Client: PTT Public Company Ltd

Project No.: 1997 - AGRU

BAS

Page 12

4.3 Solvent Strength (Titration)

This method uses the alkalinity of the solvent for determination of the solvent strength by means of titration with HCI.

4.3.1 Equipment

- Beaker, 100 ml
- Burette, 50 ml
- Laboratory balance 0 250 g, accuracy 0.1 mg
- Magnetic stirrer

4.3.2 Reagents

- 1 N aqueous HCI
- Indicator Tashiro Riedel-de-Haen No. 36083 (Supplier: Riedel-de-Haen AG, Postfach 10.

<mark>์ ช่วงของสีเทากว้าง</mark>

<mark>ส่งผลให้ได้ค่าที่จุดยุติที่ไม่แน่นอน</mark>

ped sample is CO2 from the

Weigh water

sample in the beaker and dilute the sample with 50 ml of distilled

Add

shiro indictor to the sample to obtain a green coloured solution and start by drop thereby constantly stirring the solution.

valence point the colour of the solution changes from green to grey. Stop adding note the HCI consumption.

e colour of the solution changes to pink, too much HCl has been at Hed and the titration should be repeated.

แนวทางการแก้ไขจากสาเหตุที่แท้จริง

ด้วยหลัก Tree Diagram(How How Analysis)

ประเมินหาแนวทางการแก้ไข

How	How 1	How2	How3	มาตรการที่	กระทบต่อหน่วยงานอื่น -		ภาม เดภัย	_ ค่าใช้จ่ายในการติดตั้ง	ความสะดวกในการ	ทำงาน ความรวดเร็ว
ทำอย่างไรจึงจะลด	หาวิธีการทดสอบ	alkanla addaasada		มาตร	กระทบต่อ	รังสี	สาร เคมี	ค่าให้จ่ายใ	ความสะเ	רת אונה
พายยาง เรจงจะสต ความคลาดเคลื่อน ผลการวิเคราะห์	ความคลาดเคลื่อน ค่าความเข้มข้น ให้ดีกว่า	ปรับปรุงวิธีการเก่า ให้ดีกว่าเดิม	เปลี่ยนอินดิเคเตอร์ใหม่	1	1	1	1	1	1	1
ความเข้มข้น aMDEA ที่มี สารละลาย ความถูกต้อง		ติดตามจุดยุติโดยใช้ pH meter แทน	2	1	1	1	1	1	1	
ลเทDEA ที่ตาง จากผู้ผลิต BAFS เกิน 2% wt	แม่นยำมากขึ้น	หาวิธีการใหม่ที่มี ประสิทธิภาพ มากกว่าเดิม	ความเข้มข้นสารละลาย aMDEA โดยใช้เครื่อง Gas Chromatography	3	1	1	1	x	1	1

<u>สรุปแนวทางในการประเมิน</u> พบ 2 แนวทาง

1 เปลี่ยนอินดิเคเตอร์ใหม่

2 เปลี่ยนวิธีติดตามจุดยุติโดยใช้ pH meter แทน

ซึ่งทั้งสองแนวทาง

- ไม่มีผลกระทบต่อหน่วยงานอื่น,ปลอดภัยจากสารเคมีและรังสี,ไม่มีค่าใช้จ่ายในการติดตั้ง, ความสะดวกในการทำงาน, ความรวดเร็ว

/ ไม่มีผลกระทบ

ไ มีผลกระทบ

แนวทางการแก้ไขที่ **1**

1.ปรับปรุงวิธีการเก่าให้ดีกว่าเดิม โดยเปลี่ยนอินดิเคเตอร์ใหม่

ทำการเลือกอินดิเคเตอร์ที่เปลี่ยนสีใกล้เคียงกับอินดิเคเตอร์เดิม เพื่อสังเกตการเปลี่ยนแปลงของสีได้ชัดเจนเมื่อถึงจุดยุติ

Tashiro (อินดิเคเตอร์ที่ใช้อยู่เดิม)

ช่วงการเปลี่ยนสีของ Tashiro (เขียว → เทา) กว้าง

Methyl Red

ช่วงการเปลี่ยนสีของ Methyl Red(เหลือง → ส้ม) กว้าง

Bromocresol Green

ช่วงการเปลี่ยนสีของBromocresol green(ฟ้า → เขียว) กว้าง

สรุป: การเปลี่ยนอินดิเคเตอร์ไม่ช่วยให้การวิเคราะห์มีความถูกต้องมากขึ้นเนื่องจากช่วง การเปลี่ยนสีของอินดิเคเตอร์ทุกตัวกว้าง

แนวทางการแก้ไขที่ 2

แนวทางการแก้ไขที่ 1

ติดตามการเปลี่ยนสีของ indicator ที่ เปลี่ยนสี ณ จุดยุติของปฏิกิริยานั้นๆ

แนวทางการแก้ไขที่ 2

ติดตามค่า pH ของปฏิกิริยาด้วย pH meter

Titration curve

แนวทางการแก้ไขที่ 2

2.ปรับปรุงวิธีการเก่าให้ดีกว่าเดิม โดยเปลี่ยนวิธีติดตามจุดยุติโดยใช้ pH meter แทน

ทำ titration pattern โดยติดตาม pH ของระบบด้วย pH meter แทนการสังเกตการเปลี่ยนสีของ indicator

Strong base – strong acid e.g. NaOH - HC

ดามชนิดของ กรดาเนส Strong Base Titrated With 11 व्यध्व pH > pH 7 50 volume of titrant

Strong base - weak acid e.g. NaOH-ethanoic acid

Weak base - weak acid e.g. NH3-acietic acid

GSP: titration curve between aMDEA-HCL

<u>ปัญหา</u> พบจุดยุติ 2 จุด ที่ไม่ชัดเจน

การแก้ไขปัญหาจากแนวทางที่ 2

ติดตามค่า pH ของปฏิกิริยาด้วย pH meter

Derivative Method

เป็นการสร้างกราฟอัตราส่วนของการเปลี่ยนแปลง ศักย์ไฟฟ้า (หรือ pH) ต่อการเปลี่ยนแปลงปริมาตรของไทแทรนต์ ($\Delta E/\Delta V$) กับปริมาตรเฉลี่ยของไทแทรนต์ เราจะได้กราฟที่เรียกว่า กราฟอนุพันธ์อันดับแรก (First derivative curve)

2.ปรับปรุงวิธีการเก่าให้ดีกว่าเดิม โดยเปลี่ยนวิธีติดตามจุดยุติโดยใช้ pH meter แทน

ทำ titration pattern โดยติดตาม pH ของระบบด้วย pH meter แทนการสังเกตการเปลี่ยนสีของ indicator

GSP: titration curve between aMDEA-HCL

1st Derivative

ปัญหา

<u>ปัญหา</u> พบจุดยุติ 2 จุด เกิดขึ้น

2.ปรับปรุงวิธีการเก่าให้ดีกว่าเดิม โดยเปลี่ยนวิธีติดตามจุดยุติโดยใช้ pH meter แทน

ทำ titration pattern โดยติดตาม pH ของระบบด้วย pH meter แทนการสังเกตการเปลี่ยนสีของ indicator

1st Derivative

End Point #1 ~ 7.0 คือ End point ของ Activator (Activator ถูกเติมลงไปในสารละลาย MDEA เพื่อเพิ่ม ประสิทธิภาพในการกำจัด CO2 โดย Activator จะมีความ เป็นเบสที่แรงกว่า MDEA จึงมีค่า End point ที่ใกล้ pH 7.0)

End Point #2 ~ 3.7 คือ End point ของ MDEA (สารละลาย aMDEA ประกอบด้วย Activator + MDEA หรือประกอบด้วยเบสสองชนิดซึ่ง MDEA เป็นเบสที่อ่อนกว่า Activator จึงมีค่า End point ที่ค่อนไปทางกรด: pH<7.0)

2.ปรับปรุงวิธีการเก่าให้ดีกว่าเดิม โดยเปลี่ยนวิธีติดตามจุดยุติโดยใช้ pH meter แทน

ทำ titration pattern โดยติดตาม pH ของระบบด้วย pH meter แทนการสังเกตการเปลี่ยนสีของ indicator

เกิดการเปลี่ยนสีของ indicator ที่ pH ก่อนถึงจุดยุติของ aMDEA

ปริมาณ aMDEA ที่วิเคราะห์ได้มีค่า น้อยกว่าความเป็นจริง

ต้องทำการเติม aMDEA บ่อยและ สิ้นเปลืองสารเคมี

ทำการหาค่า pH ที่แท้จริงของจุดยุติสำหรับ aMDEA ของ AGRU และ ETU

เปรียบเทียบวิธีการก่อน-หลังการแก้ไข

เปลี่ยนวิธีการไตเตรตจากการสังเกตการเปลี่ยนสีของ Tashiro Indicator มาเป็นการใช้ pH meter ในการติดตามจุดยุติของปฏิกิริยา

ตรวจสอบผลการแก้ใข

ทำการเปรียบเทียบผลการวิเคราะห์กับผู้ผลิตหลังจากการปรับปรุงแก้ไข

Gas Treatment Pr Sample Analysis	ocess Techn	ology 2:	L/01/20	10		Total Am Sum of A MDEA
Sample Information	Units	1900	-0.000	20000		Organic
Reference Number	-	192	192	192	192	Organio.
Project Number	par.	1997	1997	1997	1997	
Company Name	See .	PTT	PTT	PTT	PTT	
Plant Name	-					- 1
Country	-	THALAND	THAILAND	THAILAND	THAILAND	- 1
Application	-	Sales Gas	Salve Gas	Sales Gas	Sales Gas	- 1
Sampling Date	-	21/01/2010	21/01/2010	21/01/2010	21/01/2010	- 1
Sample Point	-	sample 1	sample 2	sample 3	sample 4	- 1
Sample Type	-	Laure	Lean	Lean	Leave	
Sample ID	-	20100121-0651	20100121-0650	20100121-0649	20100121-1037	
Visual Inspection	Units					
Color	-	Colourless.	Cotourless	Colourieus	Colourless	
Clwitty	-940	clear	ploar	clear	clear	
Composition	Units					
by Kieri Florium						
H2O (original sample)	wt-%	51.3	45	44.8	40.9	
H2O (CO2 free sample)	wt/%	51.3	45.3	44.8	41.3	
BY GC	10.00	Table 1 and 1	25/4-	- 11/40 A	anticol - s	
Total Amine	wt/%	48.64	53.25	53.82	57.87	
Sum of Activators	wt-76	4.09	4.36	3.96	9.05	
MDEA	WI-%	44.55	48.89	49.84	48.83	
Organic Acids (as HCOOH)	W1-75	0.01	0.09	0.06	0.05	
THE RESERVE OF THE PARTY OF THE	1000	100	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	adding.	OUR	
Fe	ppm:	<1	ō	12:	B	
Or .	ppm	41	H\$	13	41	- 1
nai-	ppm	<1	45	41	41	
HSS Amons						
Chloride	apm-wt	. 2	54	68	5	
Acid Loading	Units					
CO2-Loading	Nm34	0.1	0.577	0.744	2.154	
CO2-Loading	wt/%	0.01	0.11	0.15	0.42	- 1
Max. CO2-Loading @70°C	Nm3/t	29.81	30.17	31.618	43.242	
Comments						- 1
Not enough samples for k Samples are not labelled, not be possible.		ng sample tu its neapect	vis AGRU and provi	ding operational rec	ummendation will	

By GC		Fresh Amine GSP#6	AGRU#1	AGRU#2	ETU
Total Amine	wt-%	48.64	53.25	53.82	57.87
Sum of Activators	wt-%	4.09	4.36	3.98	9.05
MDEA	wt-%	44.55	48.89	49.84	48.83
Organic Acids (as HCOOH)	wt-%	0.01	0.09	0.08	0.06

ชื่อตัวอย่าง	PTT * 🍐 (%wt)	BASF (%wt)	Diff. (%wt)
AGRU#1	51.88	53.25	-1.37
AGRU#2	52.23	53.82	-1.59
ETU	58.77	57.87	+0.90

^{*} หมายเหตุ: ทำซ้ำ 3 ครั้ง

ขยายผลต่อไปยัง GSP 6

ชื่อตัวอย่าง	PTT (%wt)	BASF (%wt)	Diff. (%wt)
GSP#6	47.35	48.64	-1.29

ค่าความเข้มข้นของ aMDEA ที่วิเคราะห์ได้มีค่าถูกต้องและใกล้เคียงกับผู้ผลิต BASF มา<mark>กขึ้น</mark>

เปรียบเทียบผลก่อนและหลังการแก้ไข

เปรียบเทียบข้อมูลกับเป้าหมาย

<u>เป้าหมาย</u>

ผลการวิเคราะห์ความเข้มข้นสารละลาย aMDEA เมื่อเทียบกับผู้ผลิต BASF ไม่เกิน 2 %wt

มาตรฐานงาน

ปรับปรุง <u>QSHEI-GSP-19-017-025</u> <u>การวิเคราะห์ Solvent strength ของ aMDEA(titration)</u> <u>ในระบบLotus Notes</u> และประกาศใช้งาน

ไตเตรท ด้วย 1 N.HCl จนค่าpH ของสารละลายอ่านค่าได้ 3.7 บันทึก ปริมาตรของ HCl ที่ใช้ไป ถ้าค่า pH ของสารละลายอ่านค่าได้น้อยกว่าค่า ดังกล่าว แสดงว่าใช้ปริมาณ HCl มากเกินไป จะต้องทำการไตเตรทใหม่

มาตรฐานงาน

จัดทำระบบประกันคุณภาพงานทดสอบ

1.ทำการ Verifield เครื่อง pH Meter ก่อนใช้งาน

-ใช้ BUFFER pH STANDARD ทำ Calibrate ก่อนใช้งาน

1.BUFFER pH STANDARD 4

2.BUFFER pH STANDARD 7

3.BUFFER pH STANDARD 10

4.BUFFER pH STANDARD 5 สำหรับ QC standard Check

5.BUFFER pH STANDARD 9 สำหรับ QC standard Check

2.ระหว่าง วิเคราะห์มีการทำ Blank ,Duplicate , QC sample

การควบคุมคุณภาพผลการทดสอบ

Duplicate	ทำซ้ำทุกๆ 10% ของตัวอย่างในแต่ละ batch
	เกณฑ์การยอมรับ: (ความแตกต่าง +/- 0.02 pH)
QC Standard	ใช้ pH Buffer ร ใช้ pH Buffer 9 เป็นตัวเช็ค โดยทำทุก ๆ 10% ของ ตัวอย่างในแต่ละ batch เกณฑ์การยอมรับ : (ความแตกต่าง+/- 0.05 pH)
Control Chart	ทำControl Chart ของ QC Standard

มาตรฐานงาน

ปรับปรุง แผนการดำเนินงาน

v a . v	ส่วนควบคุมคุณภาพ	
ทุกวันที่ / ทุกวัน	รายการ	
20 (+/-4)	เก็บตัวอย่าง HOT OIL GSP 2, 3, 5, Stabilizer3 (TTP) เพื่อวิเคราะห์คุณสมบัติ	
ทุกวันจันทร์	วิเคราะห์สารละลาย Benfield : K_2CO_3 , $KHCO_3$, EqK_2CO_3 , T -Fe, V^{4+} , V^{5+}	
	T-V, Foam, Fc	มีวิเคราะห์ความเข้มขันสารละลาย aMDEA เทียบกับผู้ผลิเ
	วิเคราะห์ ACT-1 ของ Benfield solution	BASF เป็นประจ <u>ำทุก 6 เดือน</u> (ไม่เสียค่าใช้จ่าย)
พุธ , ศุกร์	วิเคราะห์ค่า Foam test ของ Benfield solution	
อังคาร	วิเคราะห์ Foam Test, ความเข้มข้น สารละลาย Amine และ CO2 Laung จาก	Unit AGRU 1, 2 ETU
	หมายเหตุ เก็บตัวอยางสารละลาย Amine ตามข้อ(1) ส่ง BASF 2 ครั้ง/ปี	
ทุกวันขณะรับ	LPG from PTT-AR, LPG from BST, LPG from ARC monitor 입 CERTIFICA	

1.37%

0.0

ผลทางตรง

1.59%

0.90%

ผลทางอ้อม

้ด้านต้นทุน

- ลดการสั่งชื้อสาร aMDEA จากBASFเพื่อใช้ในการเติมเข้าระบบAGRU และETU สูงสุดถึง 13ล้านบาทต่อครั้ง (เฉพาะ GSP#5)

ด้านขวัญกำลังใจ

- ได้รับความน่าเชื่อถือจากผลการวิเคราะห์ที่ถูกต้อง และใกล้เคียงกับผู้ผลิตมากขึ้น
- เกิดความภาคภูมิใจในการลดรายจ่ายให้กับองค์กร
- เกิดการคิดคันวิธีการวิเคราะห์แบบใหม่เพื่อใช้ในการทำงาน
- พนักงานมีทักษะในการทำงานมากขึ้น

ด้านคุณภาพ

- ได้รับผลการวิเคราะห์ที่ถูกต้องแม่นยำมากขึ้น
- ่ ใช้ผลการวิเคราะห์เพื่อค้ำนวณการเติมสารได้ถูกต้องแม่ยำมากขึ้น
- สามารถขยายผลในการหาค่า Activatorsสารละลาย aMDEA โดยหาค่า

Factor ของ Activators

Unit	Factor (Activators)
AGRU1&2	0.92
ETU	1.35

$$\%Act = \frac{F_{Act.}xV_{HCL}xN_{HCL}}{M_{A\min e}}$$

อุปสรรคในการดำเนินงาน

□ ผลการวิเคราะห์จาก BASF ล่าช้า

Reference Number	Sample Information	Units				
Project Number			192	192	192	192
Company Name		-	1997			
Plant Name Country Flat Name Country		-	PTT	PTT		PTT
Appendixton Speles Class Spales Class Spale		-				
Sample Point	Country	-	THALAND	THAILAND	THAILAND	THALAND
Sample Fig. Sample Fig.	Application	-	Sales Gas	Salve Gas	Sales Gas	Sales Gas
Learn Lear	Sampling Date	-	21/01/2010	21/01/2010	21/01/2010	21/01/2010
Description		-				
Visual Inspection		-				
Cobustines		-	20100121-0651	20100121-0650	20100121-0649	20100121-1037
County Clear Clear Clear Clear Clear		Units				
Composition Units State		-				
10		-00	dear	clear	dear	clear
H2D (ICDZ bee sample)	Composition	Units				
H2D (ICDZ bee sample)						
Total Amms						
Sum of Advantage	H2O (CO2 free sample)	wt/%	51.3	45.3	44.8	41.3
Sum of Advantage						
MCEA wil-15 48.89 49.99 88.83 Organic Acide (as HCODH) wil-15 0.01 0.09 0.08 10.06 0.08	Total Amine	wt/%	48.64	53.25	53.82	57.87
Organick Acids (in HCOOH)	Sum of Activators	wt-56	4.09		3.96	9.05
Maria Fe Spm 51 6 12 8						
Metals	Organic Acids (as HCOOH)	W1-76	0.01	0.09	0.06	
Cr ppm 41 43 13 41 N ppm 41 45 45 41 N ppm 41 45 45 41 N ppm 41 45 45 45 41 N ppm 41 45 45 45 41 N ppm 41 45 45 45 45 45 45 45 45 45 45 45 45 45						
N gpm <1 v5 ct <1 Chloride ppm-est 2 54 68 5 Acid Coading Units U	Fo	ppm:				
2 54 68 5	Or .					
Chloride gpn+wl 2 54 68 5 Acid Lossifigm Urilia	hai .	ppm	<1	41	41	<1
Acid Loading Units C024-basing Nm31 0.1 0.577 0.744 2.554 C024-basing w/h 0.01 0.11 0.15 0.42 Max. C024-basing @70°C Nm31 29.81 30.77 31.918 43.242						
C034.nating 5imilat 0.1 0.577 0.744 2.154 C024.nating with 0.01 0.11 0.15 0.42 MAN C024.nating @76*G hm/at 28.81 20.17 31.618 43.24			2	56	dh	5
C02-Loading W1-% 0.01 0.11 0.15 0.42 Max. C02-Loading @70°C Nm31 29.81 30.17 31.618 43.242						
Max. CO2-Loading @70°C NWSt 29.81 30.17 31.618 43.242						
		Nm31	29.81	30.17	31.618	43.242

ปริมาตรการเดิม HCl ไม่เหมาะสมในการติดตามจุดยุติ ต้องทำการ verify หาปริมาตรที่เหมาะสมหลายครั้ง

กราฟไตเตรชันไม่ชัดเจน อ่านค่าจุดยุติได้ยาก

ติดตามผลการแก้ไข

ติดตามผลการวิเคราะห์กับผู้ผลิต BASF ในรอบ 6เดือนถัดไป (กันยายน 2553)

Sep	tember 20:	10				□ • BASF The Chemical Company
Samples Date	: PTT Thailand : September 2010					
		GSP-5 Train 1	GSP-5 Train 2	GSP-5 ETU	GSP-6 Train 1	GSP-6 Train 2
Composition	Units					
H2O (CO2 free sample) Total Amine	wt-% wt-%	47.6 54.1	46.2 51.9	42.3 58	46.5 52.8	63.1 36.3
Base Amine (MDEA)	wt-%	50	48.2	48.8	48.4	33.1

ชื่อตัวอย่าง	PTT* 6	BASF (%wt)	Diff. (%wt)
AGRU#1	52.4	54.1	+1.7
AGRU#2	50.7	51.9	+1.2
ETU	57.1	58.0	+0.9

* หมายเหตุ: ทำซ้ำ 3 ครั้ง

กิจกรรมครั้งต่อไป

ปัญหาที่	หัวข้อปัญหา	มูลค่าความสูญเสีย
		(บาท)
1	การสูญเสีย NGL ขณะเก็บตัวอย่างมาก	3,841
2	ใช้ Ethanol ในการวิเคราะห์ CO2 content ใน lean solution aMDEA มาก	8,985
3	การใช้เวลามากในการค้นหาสารเคมี	2,607

พบว่า ปัญหาที่มีความรุนแรงรองลงมา จึงพิจารณาแก้ไขต่อไป

มูลเหตุจูงใจ

ต่อสมาชิก

สมาชิกมีความภูมิใจที่ได้มีส่วนช่วยในการลดค่าใช้จ่ายภายในองค์กร

ต่อลูกค้า (ภายใน)

ู้ได้ผลการวิเคราะห์ที่ถูกต้องและมีความเชื่อมั่นในผลการวิเคราะห์

ต่อองค์กร

ลดปริมาณสารเคมีที่ต้องใช้และลดต้นทุนในการซื้อสารเคมี

คำศัพท์ที่เกี่ยวข้อง

คำเฉพาะ	คำอธิบาย				
aMDEA	ย่อมาจาก activated Methyldiethanolamine ทำหน้าที่ดูดจับตัว hydrogen sulfide (H ₂ S) and carbon dioxide (CO ₂) ในก๊าซธรรมชาติ				
หน่วย AGRU,ETU	ACID GAS REMOVAL UNIT และ ETHANE TREATMENT UNIT หน่วยกำจัดก๊าซคาร์บอนไดออกไซด์ (CO2)				
USED AMINE	AMINE ที่กำลังใช้ในหน่วยกำจัดก๊าซคาร์บอนไดออกไซด์ (CO2)				
BASF	บริษัทที่ผลิต AMINE ที่ใช้หน่วยกำจัดก๊าซคาร์บอนไดออกไซด์ (CO2)				
1 N.	นอร์มอล (Normality, N) คือ จำนวนกรัมสมมูลของสารละลาย 1 ลิตร				
Distilled water	น้ำที่ได้จากการกลั่น				
Lean Solution	คือสารละลาย amine ที่มีปริมาณ CO2 น้อย				
Rich Solution	คือสารละลาย amine ที่มีปริมาณ CO2 มาก				
Reproducibility	ค่าความแตกต่างของการวัด ที่กระทำโดยผู้ประเมินที่แตกต่างกันโดยใช้เครื่องมือวัดเครื่องเดียวกัน เมื่อทำการวัดคุณลักษณะของขึ้นงานขึ้น เดียวกัน				
Solvent Strength wt%	VHCl : ปริมาตรของ HCL ที่ใช้ไป Strangth (wt%) = VHCl.NHCl.FSOLVENT				
	NHCl : Normality ของ HCL				
arsa	m : น้ำหนักตัวอย่าง(g) เลายตัวอย่าง (titrand)				
	F.SOLVENT:Solvent factor (AGRU aMDEA SD 250,F=9.76), (ETU aMDEA SD 260,F=9.25)				
	ค่า Reproducibility ของการวิเคราะห์นี้ คือ ± 2% ของความเข้มข้น (โดยปกติค่า ความเข้มข้นจะได้ ประมาณ 50 %) 54				

ผลทางอ้อม(ต่อ)

mole กรด/ mole เบส = Factor

สูตร AGRU 1
$$\longrightarrow$$
 % $Act.(BASF) = \frac{F_{Act.}xV_{HCL}xN_{HCL}}{M_{A\min e}}$

AGRU 2
$$\%$$
 $Act.(PTT) = \frac{F_{Act.}xV_{HCL@pH6.5}xN_{HCL}}{M_{A\min e}}$

$$\% Act.(PTT) = \frac{0.92x4.70 x1}{1.0044}$$

$$\%$$
 Act.(PTT) = 4.30% w

Activators	PTT	BASF	Diff
AGRU2	4.30%w	3.98%w	+0.32

Activator; สารAmine ชนิดหนึ่ง ที่มีหน้าที่เสริมความสามารถการกำจัดCO2

ของหน่วยAGRU,ETU ให้มีประสิทธิภาพมากขึ้น

Remark ; โดยปกติชนิด Activator ผู้ผลิตจะไม่เปิดเผย เนื่องจากเป็นความลับทางการค้า

์ ซึ่งทำให้ปตท. ไม่สามารถติดตามปริมาณ Activator ที่เหมาะสมในสารละลายAmineได้อย่างต่อเนื่อง