

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: **0 578 616 A2**

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: **93810474.2**

(51) Int. Cl.⁵: **C12N 15/52, C12N 9/00**

(22) Date of filing: **05.07.93**

(30) Priority: **09.07.92 AT 1403/92
08.03.93 AT 437/93
29.04.93 CH 1310/93
04.05.93 CH 1375/93**

(43) Date of publication of application:
12.01.94 Bulletin 94/02

(84) Designated Contracting States:
**AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE**

(71) Applicant: **SANDOZ LTD.**
Lichtstrasse 35
CH-4002 Basel (CH)

(84) **BE CH DK ES FR GB GR IE IT LI LU NL PT SE**

(71) Applicant: **SANDOZ-PATENT-GMBH**
Humboldtstrasse 3
D-79539 Lörrach (DE)

(84) **DE**

(71) Applicant: **SANDOZ-ERFINDUNGEN**
Verwaltungsgesellschaft m.b.H.
Brunner Strasse 59
A-1230 Wien (AT)

(84) **AT**

(72) Inventor: **Leitner, Ernst**
Daxerfeld 5
A-6250 Kundl (AT)
Inventor: **Schneider, Elisabeth**
Canisiusweg 125 Top 34
A-6064 Rum (AT)
Inventor: **Schoergendorfer, Kurt**
A-6322 Unterlangkampfen Nr. 437 (AT)
Inventor: **Weber, Gerhard**
A-6322 Unterlangkampfen Nr. 437 (AT)

(54) **Cylosporin synthetase.**

(57) The nucleotide sequence which codes for cyclosporin synthetase and similar enzymes and recombinant vectors containing the sequence. The vectors are used in methods for the production of cyclosporin and cyclosporin derivatives.

EP 0 578 616 A2

This invention relates to nucleotide sequences which code for enzymes possessing cyclosporin synthetase-like activity and to methods for the production of cyclosporins and cyclosporin derivatives using these sequences.

The fungus *Tolypocladium niveum* (previously known as *Tolypocladium inflatum* GAMS) produces cyclosporins, a group of neutral cyclic peptides composed of eleven amino acids. Other fungi have been found which may form cyclosporins (Dreyfuss, 1986; Nakajima et al., 1989) but *Tolypocladium niveum* is the most important organism for the production of cyclosporins by fermentation. Cyclosporins exhibit remarkable biological effects: for example cyclosporin A, the main metabolite, is a potent immunosuppressant (Borel et al., 1976). An enzyme has been identified which catalyses the entire peptide biosynthesis of cyclosporin and is therefore called cyclosporin synthetase (Zocher et al., 1986; Billlich and Zocher 1987). The biosynthesis proceeds non-ribosomally by a thiotemplate process, as has also been described for other peptide synthetases (Kleinlauf and von Döhren 1990). Each amino acid is first activated in the form of an adenylate, then bound in the form of a thioester and linked with the following amino acid to the peptide. In the case of cyclosporin A, seven of the amino acids, bound as thioesters, are methylated before they are linked to the preceding amino acid in a peptide bond. This methylation function is an integral constituent of the enzyme polypeptide (Lawen and Zocher 1990). Including the cyclisation reaction, cyclosporin synthetase performs at least 40 reactions.

Cyclosporin A contains three non-proteinogenic amino acids: D-alanine in position 8, α -amino butyric acid in position 2 and, in position 1, the unusual amino acid (4R)-4-[(E)-2-butenoyl]-4-methyl-L-threonine (Brmt or C9 amino acid). All three amino acids must be each prepared by a biosynthetic pathway which is independent of the primary biosynthetic pathway. Cyclosporin synthetase does not possess an alanine-racemase function (Kleinlauf and von Döhren 1990) and thus, D-alanine cannot be produced by cyclosporin synthetase by epimerisation of enzyme-bound L-alanine, as is the case for other peptide antibiotics whose biosynthesis mechanism is known.

Although attempts have been made to isolate and characterize cyclosporin synthetase in terms of its amino acid sequence, because of the complexity and size of the enzyme this has not to date been possible. Hence it has not been possible to characterize the DNA coding for cyclosporin synthetase.

This invention provides a nucleotide sequence which codes for an enzyme possessing cyclosporin synthetase-like activity. In the present specification, an enzyme possessing cyclosporin synthetase-like activity is an enzyme which catalyses the peptide biosynthesis of cyclosporins and structurally related peptides and derivatives.

Preferably, the nucleotide sequence codes for cyclosporin synthetase or an enzyme which is at least 70% (for example, at least 80, 90 or 95%) homologous to it and which possesses cyclosporin synthetase-like activity.

Preferably, the nucleotide sequence codes for an enzyme which possesses cyclosporin synthetase-like activity and in which at least one amino acid recognition unit is different from that of cyclosporin synthetase.

Preferably, the nucleotide sequence comprises the sequence represented in Seq Id 1 or a sequence which hybridises to it under conditions of reduced stringency or, more preferably stringent conditions. Stringent conditions include hybridisation at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, and 0.1% SDS and washing three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. Reduced stringency conditions include a washing temperature of 60°C. Even more preferably the nucleotide sequence codes for an enzyme having the amino acid sequence set out in Seq Id 2. The nucleotide sequence may have a restriction map as represented in figure 1.

In another aspect, the invention provides a recombinant vector containing a nucleotide sequence as defined above. The vector may include the endogenous promoter for cyclosporin synthetase or may include some other suitable promoter. A suitable promoter region is illustrated in Seq Id 7. The recombinant vector may be in the form of a plasmid, a cosmid, a P1-vector or a YAC-vector. The invention also extends to host cells carrying the vector. Preferably the host cell is a *Tolypocladium niveum* cell.

The invention also provides a process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell as defined above and causing the host cell to produce the cyclosporin or cyclosporin derivative.

The invention also provides a method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative. Preferably the DNA sequence coding for cyclosporin synthetase is altered by changing the fragments that code for amino acid recognition units. Alterations may be made using standard techniques such as those based on PCR procedures. Point deletions, mutations and insertions, as well as larger alterations are possible.

This specification describes the isolation and characterisation of the gene for cyclosporin synthetase from

Tolypocladium niveum and the use of the gene in genetically engineering cells, including *Tolypocladium niveum* cells. While a protocol for the isolation of cyclosporin synthetase from *Tolypocladium niveum* was published in 1990 (Lawen and Zocher 1990), it is however not suitable for extracting large quantities of homogeneous enzyme in a short period of time. Also, in the publication, the synthetase was attributed an M_r of approximately 650,000 Da. It may, however, justifiably be assumed from sedimentation analyses with fluorescence-labelled protein (Lawen et al., 1992) and by extrapolation from the protein size of comparable enzymes that cyclosporin synthetase has an M_r of approximately 1,500 kDa. The enzyme occurs as a single polypeptide chain and cannot be decomposed into subunits by either denaturing or reducing agents (Lawen and Zocher 1990).

The enormous size of the enzyme means that a strategy for amino acid sequencing which differs from the customarily used route must be used. Substantially more homogeneous material is required than is generally used to perform fragmentation tests. It is for this reason that a protocol was developed for cyclosporin synthetase which may, in principle, also be applied to analogous enzymes from other microorganisms and, in the practical example of the purification of the enzyme from *Tolypocladium niveum* (example 1), gave rise to a substantial improvement in terms of yield and the amount of time required.

Purification may initially proceed according to customary processes. Cell disruption may be performed, for example, with a high pressure homogeniser or a glass bead mill; the cells being present in moist or lyophilised state. If the cells are moist, pressure disruption is conveniently performed, for example with a Maunton Gaulin apparatus. Lyophilised cells are conveniently broken up by grinding in a mortar under liquid nitrogen.

The crude extract so obtained is clarified by centrifugation. The nucleic acids are removed by precipitating them from the extract using customary reagents for this purpose; polyethyleneimine or protamine sulphate are, for example, used. The nucleic acid precipitation also removes fine suspended particles, which can disturb subsequent purification stages. Then the proteins may be precipitated out of the clarified crude extract to provide the enzyme in a more concentrated form. The protein precipitation is customarily performed with ammonium sulphate. For cyclosporin synthetase, saturation to 50% is sufficient to achieve almost complete precipitation.

After this step, the enzyme is in an enriched and highly concentrated state.

In principle, all chromatographic methods are suitable for further purification of the enzyme, such as ion-exchange chromatography and gel permeation chromatography. With very large proteins, gel permeation chromatography is particularly suitable as a very selective purification step. If the correct molecular sieve is chosen, an approximately 90% homogeneous protein preparation may be obtained in a single step. Analysis of purity is performed in SDS polyacrylamide gels (preferably gradient gels 4-15%).

The purification process used produces stable, at least 90% homogeneous, active enzyme preparations, as is necessary for characterisation of enzyme kinetics or protein chemistry. In Example 1, the protocol described in detail for *Tolypocladium niveum*, in comparison with the published method, reduces the time required from 4 days to 10 hours and increases the yield by approximately a factor of 4.

With a protein of this exceptional size, the requirement for amino acid sequences to identify the gene or gene product correctly is naturally greater than for an average-sized protein. Apart from the possibility of N-terminal blocking, it is also not possible to prepare a protein of this size in such a way that it is suitable for N-terminal sequencing. For these reasons, it is necessary to obtain a sufficient number of internal amino acid sequences.

However, when a protein of this size is fragmented, so many fragments are produced (theoretically approximately 700, assuming one cleavage every 20 amino acids) that the standard method of completely fragmenting the protein and purifying the fragments by high-pressure reversed-phase chromatography (HP-RPC) is not practicable. For this reason, fragmentation is performed under conditions which are sub-optimal for the relevant endoproteases to give substantially larger fragments.

Cyclosporin synthetase is cleaved by adjusting the pH value. In particular, cleavage into large fragments of up to 200 kDa is achieved by adjusting the pH value to approximately 7.5 in a HEPES buffer with the addition of EDTA and DTT. The fragments obtained in this manner may be isolated and enriched as is conventional, for example by using chromatography and electrophoresis, such as the combination of anion exchange chromatography on MonoQ with HP-RPC or the combination of MonoQ with SDS-polyacrylamide gel electrophoresis/electroblot.

The sub-optimal conditions are principally obtained by altering the buffer conditions, and possibly also altering the cleavage temperature (see Example 3 as a possible variant). The nonetheless numerous fragments must each be isolated or enriched by 2 purification steps, it being in principle possible to use any chromatographic and electrophoretic separation techniques. In the case of cyclosporin synthetase fragments from *Tolypocladium niveum*, the combinations of anion exchange chromatography on MonoQ with HP-RPC (Examples 4 and 5) and MonoQ with SDS-polyacrylamide gel electrophoresis/electroblot (Examples 4 and 6) prove particularly advantageous.

The non-ribosomal biosynthetic pathway implies that the sequence of the cyclic peptide is determined by

the corresponding arrangement of the amino acid activating domains. Each of these domains must perform analogous reactions, namely the activation of the amino acid by acylation and binding in the form of a thioester. Hence it may be expected that recurrent preserved moieties will be found in the protein sequence.

In fact, in previously analysed peptid synthetases, preserved regions within the sequences have been discovered, the number of which coincides with the number of amino acids to be activated: three for ACV synthetase (activates amino adipic acid, cysteine and valine; Smith *et al.*, 1990, MacCabe *et al.*, 1991, Gutierrez *et al.*, 1991); one each for gramicidine synthetase I (Kraetzschmar *et al.*, 1989) and tyrocidine synthetase I (Weckermann *et al.*, 1988); and four preserved regions in gramicidine synthetase 2, which activates the amino acids proline, valine, ornithine and leucine (Turgay *et al.*, 1992).

Maximally accurate identification and characterisation of such preserved regions of cyclosporin synthetase at both the enzymatic and genetic levels constitutes the basis for well-directed genetic engineering in terms of altering enzyme specificity for the *in vivo* production of cyclosporin variants. It is therefore useful to identify proteolytic fragments of cyclosporin synthetase which may be correlated with a partial function of the synthetase. The following correlations were made:

- 15 (1) a protein fragment with a methyl transferase function (the method on which this work is based is, in principle, applicable to all methyl transferases and is published in Yu *et al.*, 1983; a first application to cyclosporin synthetase is published in Lawen and Zocher 1990); see Example 7;
- (2) a protein fragment capable of activating L-alanine (Example 8).

The method used in Example 8 exploits the fact that when proteins are subjected to limited proteolytic cleavage, *inter alia* intact domains are cleaved which, due to their correct spatial folding, are still capable of exercising their enzyme function to a limited extent. Theoretically, therefore, each amino acid activating domain may be identified with this method. The optimal conditions (for proteolytic cleavage and its timing in relation to amino acid activation) must, however, be determined by testing in each individual case. Moreover, unambiguous identification of a domain may be achieved only if the amino acid it activates occurs only once in the product.

The gene is isolated by DNA hybridisation with oligonucleotides specific to cyclosporin synthetase (Example 10). Whether a specific DNA fragment actually belongs to the cyclosporin synthetase gene is established by Northern hybridisation, since a non-transcribed neighbouring fragment does not hybridise with the corresponding RNA (Example 15). The DNA sequence of the cloned DNA of the cyclosporin synthetase gene is determined and compared with the amino acid partial fragments of cyclosporin synthetase (Examples 13 and 14).

Hence it is possible to transform *Tolypocladium niveum* with the complete gene for cyclosporin synthetase. Among the transformants, strains may be found which contain several copies of this gene or copies with altered regulation. Those strains are selected which, in fermentation tests, display increased cyclosporin formation or can form the same quantity of cyclosporin over a shorter fermentation period.

It is also possible to select the transformed strains by the activity of the cyclosporin synthetase, independently of whether cyclosporin is formed in greater quantities or faster. The isolated cyclosporin synthetase gene can act as an analytical aid in order to determine whether a specific strain of *Tolypocladium niveum* has a high concentration of the mRNA or not (Example 15). Such strains may then be subjected to conventional mutagenesis and strain selection. Even if the initial strain used for transformation is not limited in its cyclosporin synthetase activity, a strain is provided in this way which potentially allows greater cyclosporin formation. The combination of classical genetics (mutation and strain selection) with molecular genetics (transformation with isolated genes) allows the isolation of improved strains which could not be achieved by either of the two methods alone: not by classical genetics because a double mutation is extremely rare in a single selection stage; not by molecular genetics because in some circumstances an unknown factor has a limiting effect.

A further use of the isolated gene is gene-specific mutagenesis. Instead of producing mutations in the entire genome - and therefore also altering many uninvolved genes - the isolated gene alone is mutated using suitable methods (Sambrook *et al.*, 1989) and then transformed to *Tolypocladium niveum* (Example 17). Among the transformants, the proportion of mutants in the cyclosporin synthetase gene is higher than with mutagenesis of the fungus. Mutants, which form specific cyclosporins in greater or reduced quantities, may more frequently be found than with conventional mutagenesis.

By internal sequence comparisons of the derived amino acid sequences (Example 14c) and the correlation of specific partial sequences (Example 8 and Example 9 or Example 14ab), domains of the cyclosporin synthetase for the activation of the individual amino acids may be localised (as performed above for non-ribosomal peptid synthetases). By this means, well-directed mutagenesis of cyclosporin synthetase genes may be performed, by interchanging the gene region of individual domains, by deliberately removing a corresponding region or the cyclosporin synthetase gene may also be extended by individual domains. After transformation of such mutated genes into *Tolypocladium niveum*, new cyclosporin variants may become accessible. The cloned

gene may be used to produce strains of *T. lyopolycladium niveum* which no longer have an active cyclosporin synthetase gene. Such strains may be used for the production of D-alanine or Bmt by fermentation or act as recipient strains for *in vitro* modified cyclosporin synthetase genes. To this end, an inactive version produced *in vitro* is constructed for the transformation (Example 18).

When screening for microorganisms which can synthesize cyclosporins, it is necessary that the active metabolites under test conditions are also actually formed in sufficient quantity. Such substances may moreover have slightly changed characteristics and may for this reason alone be overlooked. Example 16 describes the use of the isolated cyclosporin synthetase gene to find microorganisms which contain the cyclosporin synthetase gene in their genome. These genes do not have to be active for this purpose. On the basis of these hybridisations, the corresponding genes may be isolated in a manner analogous to Examples 10, 11 and 12 and transformed into *Tolyphocladium niveum*. A strain may be used to this end which no longer contains any active cyclosporin synthetase. This interspecific recombination cannot be achieved with other methods. As described in the preceding paragraph, such strains may be subjected to a screening programme. In this case, genetic variability is based on the introduced gene which hybridises with the cyclosporin synthetase gene.

The control sequences of the cyclosporin synthetase gene may also be used for the construction of plasmids. An example of a control sequence is that which occurs in synp4 (Example 12). The promoter may be fused with a readily detectable reporter gene, such as for example the β -glucuronidase gene (Tada et al., 1991). Strains of *Tolyphocladium niveum* which are transformed with these plasmids permit, not only the selection of regulatory mutants, but moreover make it possible to measure and optimise promoter activity independently of other functions.

The following examples and figures illustrate the invention without, however, limiting it.

Figure 1: Restriction map of cyclosporin synthetase gene from *Tolyphocladium niveum* cloned in λ SYN3. The position of some restriction cleavage points is shown in relation to a scale (2.0, 4.0, 6.0, etc. kb). Among these, several partial fragments subcloned in plasmids are represented as rectangles (S5, E3, S3, etc.). If the corresponding rectangle is filled in, this means that the corresponding DNA fragment reacts with a high molecular weight RNA in Northern hybridisation (S5, E3, S3, E1, E2). Rectangles with lengthwise lines indicate that no bands were obtained in Northern hybridisation (E4, S2). Empty rectangles indicate that the DNA was not used as a probe (S4). The following two tables give the positions of the fragments (S5, H2, etc) and enzyme restriction sites shown in figure 1 (in bp):

	Start	End	Fragment Name
	1	2500	S5
35	1300	3300	H2
	2000	5400	E3
	2500	5300	S3
40	4700	11750	H3
	5300	8400	S4
	5400	7000	E1
45	7000	9200	E2
	9200	12100	E4
	10250	13850	S2

50

55

Enzyme Restriction sites :						
5	Sall	1,	HindIII	1300,	EcoRI	2000,
	Sall	2500,	HindIII	3300,	HindIII	3800,
	HindIII	4700,	Sall	5300,	EcoRI	5400,
	EcoRI	7000,	Sall	8400,	EcoRI	9200,
	Sall	10250,	HindIII	11750,	EcoRI	12100,
	Sall	13850.				

Figure 2: Restriction map of plasmid pSIM10. The construction and structure of the plasmid is described in Example 18. The positions are stated in bp. Nucleotides 4749-6865 are DNA from *Tolypocladium niveum* containing the promoter of the cyclophilin gene. Nucleotides 1-1761 contain the hygromycin phosphotransferase gene from plasmid pCSN44 (Staben et al., 1989). Nucleotides 1761-4714 are from plasmid pGEM7zf (Promega Inc.).

Figure 3: Restriction map of plasmid pSIM11. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 8553 are the 3.6 kb XbaI restriction fragment from the cyclosporin synthetase gene. Nucleotides 8548-10489 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 4: Restriction map of plasmid pSIM12. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 5727 are the 0.8 kb XbaI restriction fragment from the cyclosporin synthetase gene. Nucleotides 5722-7663 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 5: Restriction map of cyclosporin synthetase gene from *Tolypocladium niveum* cloned in syncos13. The position of some restriction cleavage points is shown. The position of the part cloned in λ syn3 is marked with the crosshatched bar.

All the restriction maps shown in figures 1, 2, 3, 4 and 5 are only approximate reproductions of restriction cleavage points in DNA molecules. The distances as drawn are proportional to the actual distances, but the actual distances may be different. Not all restriction cleavage points are shown, it is possible for further cleavage points to be present.

Example 1: Isolation of active cyclosporin synthetase in electrophoretically homogeneous form:

The starting material used for the protein purification is *Tolypocladium niveum*, strain 7939/45 (Lawen et al., 1989). All steps are performed at a temperature between 0° and 4°C. 10 g of lyophilised mycelium is finely ground in a mortar with addition of liquid nitrogen and then suspended in buffer A (buffer A: 0.2 M HEPES pH 7.8, 0.3 M KCl, 4 mM EDTA, 40 (v/v)% glycerol, 10 mM DTT). The suspension is carefully stirred over ice for 1 hour and then centrifuged for 10 min at 10,000 g to remove cell debris.

The supernatant is collected and nucleic acids are precipitated with polyethyleneimine (final concentration 0.1%). The precipitate is removed by centrifugation for 10 min at 10,000 g.

The supernatant is again collected and proteins are precipitated using a solution of ammonium sulphate (saturated) in buffer B (0.1 M HEPES pH 7.8, 4 mM EDTA, 15 (v/v)% glycerol, 4 mM DTT) at room temperature. The solution is added dropwise to the supernatant up to a final concentration of 50% of saturation. The mixture is left to stand for a further 30 minutes to reach equilibrium. The precipitated proteins are collected by centrifugation for 30 minutes at 30,000 g. The pellet obtained is resolubilised to 10 ml in buffer B.

The resolubilised pellet is then subjected to molecular sieve chromatography. The molecular sieve is a HW65-F Fractogel obtained from Merck; the column dimensions are 2.6 cm x 93 cm, and the volume is 494 ml. The column is operated under fast performance liquid chromatography (FPLC) conditions. The flow rate is 2 ml/min, continuous under buffer B. The cyclosporin synthetase elutes under these conditions at an elution volume of 260 to 310 ml. Processing 10 g of lyophilised mycelium produces 50 mg of cyclosporin synthetase in electrophoretically homogeneous form within 10 hours.

Example 2: Detection of enzymatic activity of cyclosporin synthetase :

80 μ l of an enzyme sample in buffer B are incubated, in a total volume of 130 μ l, with 3.5 mM ATP, 8 mM MgCl₂, 10 mM DTT, 10 μ M C9 acid, 690 μ M of any other constituent amino acid and 100 μ M S-adenosyl-methionine + 2 μ Ci of adenosyl-L-methionine-S-[methyl-³H] (75 Ci/mmol) for 1 hour at 22°C. Extraction and de-

tection of the cyclosporin A formed are performed as described in Billich and Zecher 1987.

Example 3: Endoproteinase cleavages:

- 5 The following end proteinases (Boehringer Mannheim, sequencing grade) are used: trypsin from bovin pancreas (cleaves after arginine and lysine); LysC from *Lysobacter enzymogenes* (cleaves after lysine); GluC = V8 from *Staphylococcus aureus* (cleaves after glutamic acid and aspartic acid).
- 10 The cleavages are not performed under the conditions recommended by the manufacturer, but rather under 'sub-optimal' conditions. The cyclosporin synthetase is incubated in its storage buffer (0.1 M HEPES pH 7.5, 4 mM EDTA, 4 mM DTT, 15 (w/v)% glycerol) with protease in a ratio of 100 µg : 1 µg for 2 to 3 hours at 25°C. In this way, fragments of a size up to approximately 200 kDa are produced.

Example 4: MonoQ purification of fragments:

- 15 Purification is performed using a commercially available MonoQ column (HR 5/5) obtained from PHARMACIA, at 4°C. The protease digested protein sample is diluted (1:5) in buffer 1 (20 mM HEPES pH 7.5, 2 mM EDTA, 2 mM DTT, 5 w/v% glycerol) and applied to the column. The gradient elution of fragments is carried out in 20 ml of 0% to 100% buffer 2 (buffer 1 + 500 mM NaCl).

20 Example 5: HP-RPC purification of MonoQ fractions:

- Purification is performed using a commercially available Nucleosil 300A-C4-5µ column of dimensions 85 x 4.5 mm. The MonoQ fraction sample is diluted (1:5) in buffer 1 (5% acetonitrile, 0.1% TFA) and applied at a flow rate of 1 ml/min and room temperature. Gradient elution is carried out in 85 minutes from 0% to 100% buffer 2 (90% acetonitrile, 0.1% TFA).

Example 6: SDS-PAGE/Blot purification of MonoQ fractions:

- 30 SDS-PAGE is performed according to Lämmli (1970). Thioglycolic acid (2 mM) is added to the electrophoresis buffer in order to prevent the N termini being blocked by residual radicals from the polymerisation reaction. The MonoQ fractions are used after denaturation with SDS for the electrophoresis. For sequencing, the proteins are blotted out of the gel onto glass fibre membranes ("Glassybond" from Biometra) using the semi-dry method.

35 Example 7: Protein fragment with methyl transferase activity: identification and purification

- The active centre of methyl transferases may be crosslinked with its substrate S-adenosyl-methionine by UV irradiation. This may be exploited by providing a radioactive substrate and so achieving radioactive labelling of the enzyme (Yu *et al.*, 1983). This method, which is also known as "photoaffinity labelling", has been used 40 on cyclosporin synthetase (Lawen and Zocher 1990) and it is possible to show that several labelled protein fragments are produced upon subsequent protease digestion. A labelled fragment is enriched by a combination of the methods described in Examples 4 and 6 and so made accessible to sequencing (see Example 9: aa4). This fragment has a size of approximately 47,000 Dalton.

45 Example 8: Amino acid activating protein fragments: identification and purification

- Protein fragments that have the capacity to activate an amino acid are identified by loading the synthetase with radioactively labelled amino acid in the simultaneous presence of an endoproteinase. Approximately 500 µg of purified cyclosporin synthetase are incubated with 25 mM of ATP, 30 mM MgCl₂ and 5 µCi of ¹⁴C-L-alanine 50 and are simultaneously treated with, for example, endoproteinase LysC. The reaction is arrested after 3 hours by precipitation of the proteins with TCA. The fragments are resolubilised in a sample buffer for SDS-PAGE, omitting reducing agents. Half of the batch is subjected to SDS-PAGE and the labelled protein fragment is detected by autoradiography of the gel after amplification in "amplify solution" (from NEN) and drying. A fragment with a M_r of approximately 140,000 Dalton is identified and enriched by a combination of the methods described 55 in Examples 4 and 6. The amino acid sequence is given in Example 9: aa13.

Example 9: Amino acid partial sequences of cyclosporin synthetases:

The following partial sequences are obtained from cyclosporin synthetases obtained from Example 6.

- 5 aa1: amino acids 1916 to 1942 of Seq Id 2 with amino acid 1921 being S and 1942 being I
- aa2: amino acids 2906 to 2925 of Seq Id 2
- aa3: amino acids 12240 to 12261 of Seq Id 2 with amino acid 12254 being E.
- aa4: amino acids 6535 to 6550 of Seq Id 2
- aa5: amino acids 12654 to 12671 of Seq Id 2
- aa6: amino acids 1099 to 1117 of Seq Id 2 with amino acids 1116 and 1117 being V and L
- 10 aa8: amino acids 1984 to 1996 of Seq Id 2 with amino acid 1991 undeterminable.
- aa9: amino acids 13718 to 13738 of Seq Id 2 with amino acid 13731 undeterminable.
- aa10: amino acids 9611 to 9622 of Seq Id 2
- aa12: amino acids 11475 to 11484 of Seq Id 2
- aa13: amino acids 13601 to 13620 of Seq Id 2
- 15 aa14: amino acids 9549 to 9568 of Seq Id 2 with amino acid 9565 undeterminable.
- aa15: amino acids 9504 to 9521 of Seq Id 2
- aa16: amino acids 13569 to 13586 of Seq Id 2 with amino acid 13568 being G
- aa17: amino acids 1020 to 1034 of Seq Id 2
- aa19: amino acids 9070 to 9084 of Seq Id 2 with amino acids 9082 and 9083 undeterminable
- 20 aa20: amino acids 6532 to 6546 of Seq Id 2 with amino acid 6545 undeterminable

Example 10: Isolation of λ-clones which hybridise with an oligonucleotide specific to cyclosporin synthetasea) Construction of a genomic λ-gene library from *Tolypocladium niveum*.

- 25 DNA is isolated from the mycelium of a culture of *Tolypocladium niveum* grown in medium 1 [50 g/l of maltose, 10 g/l of casein peptone (digested with trypsin, Fluka), 5 g/l of KH₂PO₄ and 2.5 g/l of KCl; the pH value is adjusted to 5.6 with phosphoric acid]. 4 ml of a spore suspension of *Tolypocladium niveum* strain ATCC 34921 with 4 × 10⁸ spores per ml are added to 200 ml of medium 1 in a 1 l conical flask and are shaken for 72 hours at 25°C and 250 rpm. The mycelium is filtered off with a Büchner funnel, washed with 10 mM of tris-Cl pH 8.0, 1 mM EDTA and ground to a fine powder under liquid nitrogen. Nuclei are isolated from 40 g of moist mycelial mass and are then lysed; the DNA is purified by CsCl-EtBr centrifugation. This method is described in Jofuku and Goldberg (1988). 4.3 mg of DNA are obtained, which, in a 0.5% agarose gel, produces a band exhibiting lower mobility than λ-DNA.
- 35 40 µg of the DNA are incubated with 1.4 units of the restriction enzyme Sau3A in 10 mM of tris-Cl pH 7.5, 10 mM MgCl₂, 1 mM of DTE, 50 mM of NaCl for 60 minutes at 37°C and then 10 minutes at 65°C. The extent of cleavage is verified on an agarose gel: part of the DNA is between 10 and 20 kb in size. The DNA is then applied to two NaCl gradients, which are produced by freezing and slowly thawing at 4°C two Beckman SW28.1 ultracentrifuge microtubes with 20% NaCl in TE (10 mM tris-Cl, pH 8.0, 1 mM EDTA). The microtubes are centrifuged for 16 hours at 14,000 rpm in Beckman L8M ultracentrifuge in rotor SW28.1. The contents of the microtubes are fractionated. Fractions with DNA larger than 10 kb are combined and dialysed against TE. After concentration of the DNA to 500 µg/ml, the DNA is combined with λEMBL3-DNA (Promega Inc.), previously cleaved with EcoRI and BamHI. 1.5 µg of the DNA and 1 µg of λEMBL3-DNA (cleaved with EcoRI and BamHI) are ligated for 16 hours at 16°C in 5 µl of 30 mM tris-Cl pH 7.5, 10 mM of MgCl₂, 10 mM of DTE, and 2.5 mM ATP after the addition of 0.5 U of T4-DNA ligase (DNA concentration 500 µg/ml). The ligation mixture is packaged *in vitro* with the assistance of protein extracts ("packaging mixes", Amersham). The λ-lysates produced are titrated with *E. coli* KW251 (Promega Inc.). Approximately 4.5 × 10⁵ pfu are obtained.
- 40
- 45
- 50

b) Isolation of λ-clones

- 50 40,000 recombinant phages from the *Tolypocladium niveum* gene library are cast with *E. coli* strain KW251 onto 90 mm TB plates (TB contains 10 g/l of bacto tryptone and 5 g/l of NaCl and 0.7% of agarose, the pH is adjusted to 7.5 with NaOH). Two blots onto nitrocellulose (Stratagene) are made from each plate (Maniatis et al., 1982). From the amino acid sequence of the cyclosporin synthetase fragment aa9 (Example 9), an oligonucleotide mixture (96 different oligonucleotides, each 20 nucleotides in length) with the sequences

5' GCA TCA ATA TTA AAT TGA TC 3'
 G G G G C G
 T

5

may be produced on the basis of the genetic code. 1.5 µg of this oligonucleotide mixture are incubated in 25 µl of 50 mM tris-Cl pH 9.5, 10 mM MgCl₂, 5 mM DTE, 5% glycerol with 150 µCi γ-ATP (³²P) and 20 U of polynucleotide kinase (Boehringer) for 30 minutes at 37°C. Over 80% of the radioactivity is incorporated. Hybridisation is performed at 37°C in 400 ml 6 x SSPE (Maniatis et al., 1982), 5 x Denhardt's solution (Maniatis et al., 1982), 0.1% SDS, 100 µg/ml denatured herring sperm DNA (Maniatis et al., 1982), 0.1 mM ATP, 1.4 x 10⁶ cpm/ml ³²P-labelled oligonucleotide mixture for 16 hours. The filters are washed three times for 5 minutes and twice for 30 minutes in 6 x SSC (Maniatis et al., 1982) at 4°C. The filters are then washed for 10 minutes at 37°C in a TMAC (tetramethylammonium chloride) washing solution which is prepared according to Wood et al., 1985.

Finally, the filters are washed for 30 minutes at 57°C in the TMAC washing solution, dried and exposed for 10 days with a Kodak Xomatik AR X-ray film. Regions of the agarose layer corresponding to positive signals on the X-ray film are punched out and resuspended in SM buffer (5.8 g/l NaCl, 2 g/l MgSO₄ x 7 H₂O and 50 mM tris-Cl pH 7.5). A suitable dilution is again cast with KW251 onto a TB plate. The plaques are again transferred onto nitrocellulose. The DNA is isolated from plaques producing a positive hybridisation signal in the second hybridisation. The purified DNA from these phages is used for Southern hybridisations and restriction analyses. Figure 1 shows the restriction map of the *Tolypocladium niveum* proportion of such a λ-clone (= λSYN3). Subcloning is performed in various plasmid vectors (for example pUC18, Pharmacia).

To isolate λ-clones containing the neighbouring DNA fragments ("chromosome walking"), the plaque hybridisation method described above is repeated a number of times; the marginal restriction fragments being used in each case as ³²P-labelled probes. In order to clone the DNA adjoining the region shown schematically in figure 1 (λSYN3), fragment S5 is used (figure 1). Hybridisation is then performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 µg/ml denatured herring sperm DNA, and 100 µM ATP. Before hybridisation, the ³²P-labelled DNA is heated to 100°C for 5 minutes and cooled in ice. After 16 to 20 hours, the filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. Those areas of the agarose corresponding to positive signals are further processed as described above.

Example 11: Isolation of cosmid clones containing parts of the cyclosporin synthetase gene

35 a) Construction of a genomic cosmid gene library from *Tolypocladium niveum*

Protoplasts are produced as described in Example 17. Approximately 10⁹ protoplasts are carefully lysed in 2 ml of TE (10 mM tris-HCl, 1 mM EDTA, pH 8.0). 0.1 mg/ml of RNase A are added and incubation is continued for 20 minutes at 37°C. After the addition of 0.5% SDS and 0.1 mg/ml of proteinase K, incubation is continued for a further 40 minutes at 55°C. The batch is very carefully extracted twice with each of TE-saturated phenol, phenol/chloroform (1:1) and chloroform/isoamyl alcohol (24:1) (Maniatis et al., 1982). The aqueous, slightly viscous supernatant is combined with one tenth its volume of 3 M sodium acetate (pH 5.2) and covered with a layer of 2.5 times its volume of absolute ethanol at -20°C and the DNA, found as fine threads at the phase interface, wound up using glass rods. The DNA is dissolved in 3 ml of TE for at least 20 hours. Depending on the quality of the protoplasts, approximately 500 µg/ml of DNA are obtained. Analysis with field inversion gel electrophoresis (FIGE) (0.8% agarose, 0.5 x TBE (Maniatis et al., 1982), 6 V/cm, forwards pulse 0.2 to 3 sec, pulse ratio 3.0, running time 5 hours) gives a size greater than 150 kb. Two batches of 135 µg of DNA are cleaved with 7.5 and 15 units respectively of restriction enzyme NdeI (from Boehringer Mannheim) for 1 hour at 37°C in 1 ml of buffer (tris-acetate 33 mM, magnesium acetate 10 mM, potassium acetate 66 mM, DTT 0.5 mM, pH 7.9). Aliquots of the cleaved DNA are tested with FIGE and give a maximum size for the fragments obtained of approximately 45 and 30 kb respectively.

Using a gradient mixer, linear NaCl density gradients from 30% to 5% in 3 mM EDTA pH 8.0 are produced in ultracentrifuge microtubes and the DNA fragments applied. After centrifugation for 5 hours at 37,000 rpm and 25°C (Beckman L7-65 ultracentrifuge, rotor SW 41), the gradient is harvested in 500 µl fractions. Fractions with DNA greater than 30 kb and less than 50 kb are dialysed three times for two hours against TE (tris-HCl 10 mM, EDTA 1 mM, pH 8.0), precipitated with ethanol and each dissolved in 50 µl TE.

sCos1 (from Stratagene) is used as the cloning vector. The vector arms cleaved with BamH I and XbaI are produced and modified as stated by Evans et al., (1989). 1 µg of the cleaved vector are ligated with approxi-

mately 500 ng of the DNA fragments in 20 μ l of ligation mix (tris-HCl 66 mM, MgCl₂5 mM, DTE 1 mM, ATP 1 mM, pH 7.5) with 16 units of T4-DNA ligase (from Boehringer) for 16 hours at 12°C. 4 μ l portions of th batch are packaged int lambda phage h ads with packaging xtracts (Gigapak, from Stratagen). *E. coli* SRB (from Stratag n) is used as th host strain for the infection and the bact riophag lambda-competent cells are produced following th m thod of Sambroock *et al.*, (1989). After inf ction, th batches are plat d in aliquots onto LB medium (Maniatis *et al.*, 1982) with 75 μ g/ml of ampicillin. Recombinant clones are discernible as colonies after 20 hours at 37°C. In total, approximately 50,000 colonies are obtained, which are then suspended in 0.9% NaCl/20% glycerol and stored at -70°C. Analysis of 40 randomly selected clones by isolation and restriction of the cosmids obtained shows that all the clones contain recombinant cosmids; the average insert size is 36 kb.

b) Isolation of cosmid clones

The cosmid gene library is plated at a density of approximately 2500 colonies per 85 mm plate on LB medium with 75 μ g/ml of ampicillin (Maniatis *et al.*, 1982). Transfer of each onto two nylon membranes (Duralon UV, Stratagene) is performed as described in Sambroock *et al.*, (1989). The 1.6 kb HindIII fragment from λ syn3 (see figure 1) is labelled with alpha-³²P-dATP using "Random Primin g" (from Stratagene) and is used as a hybridisation probe. Prehybridisation is performed for 6 hours, hybridisation for 18 hours at 42°C in 5 x SSC, 40% formamide, 5 x Denhardt's (Maniatis *et al.*, 1982), 0.1% SDS, 25 mM NaH₂PO₄, pH 6.5, and 250 μ g/ml of herring sperm DNA. The filters are washed twice for 10 minutes in 2 x SSC/0.1% SDS at room temperature and twice for 40 minutes in 1 x SSC/0.1% SDS at 60°C. The membranes are exposed for 14 hours on X-ray film (Kodak Xomatic AR). Colonies having positive signals are purified, the corresponding cosmid-DNA isolated from the colonies and characterised by various restriction analyses and hybridisations with the labelled λ syn3 probes, and the vector-DNA sCos1. Figure 5 shows the restriction map of the cloned regions of such a cosmid, syncos3; the *Tolyphocladium niveum* DNA contained in it amounts to approximately 35 kb and also includes the region of λ syn3.

Example 12: Isolation of a P1 clone with the complete gene for cyclosporin synthetase

Protoplasts are produced from *Tolyphocladium niveum* as described in Example 17 and suspended at a density of 10⁹/ml in TPS. 1 ml portions of this suspension are mixed with 1 ml of 1.6% melted agarose (Incert from FMC) held at 40°C and cast into small 1.5 mm thick blocks using a casting stand (BioRad). After solidifying, the blocks are transferred into lysis buffer (0.45 M EDTA pH 8.0, 1% N-lauroyl sarcosin, 1 mg/ml proteinase K) and incubated for 16 hours at 55°C. The blocks are washed for thrice for 2 hours in 0.5 M EDTA pH 8.0 while being slowly rocked and are then stored at 4°C. Before being cleaved, the blocks are cut into small strips, transferred into Eppendorf microtubes and washed for four times for 2 hours and once for 16 hours in TE. The blocks are preincubated in four parallel batches at 4°C, each in 300 μ l BamHI buffer (from NEB), supplemented with 100 μ g/ml of bovine serum albumin (from NEB) and 80 μ M S-adenosylmethionine, for 3 hours on ice. Then, 2 units of BamHI (from NEB) and 16, 20, 24 or 28 units of BamHI methylase (from NEB) are added to each batch and incubation is continued for a further 90 minutes on ice and then for 1 hour at 37°C. The reactions are arrested by the addition of 20 mM of EDTA and 0.5 mg/ml of proteinase K and incubated at 37°C for 30 minutes.

The blocks are applied to a 1% agarose gel (Seaplaque GTG from FMC) and the DNA fragments separated by pulsed field gel electrophoresis ((Chef DR II from BioRad), 0.5 x TBE (Maniatis *et al.*, 1982), switch interval of 8-16 sec, 150 V, 16 h, 12°C).

The region of DNA fragments between 70 and 100 kb is cut out of the gel and the agarose hydrolysed with β -agarase (from NEB). The DNA solution obtained in this manner is very carefully extracted once with tris-saturated phenol and once with chloroform/isoamyl alcohol (24+1) and then concentrated to a final volume of approximately 100 μ l by extraction with 1-butanol.

pNS528tet14-Ad10-SaclIB (from DuPont-NEN) is used as the cloning vector. The vector arms are prepared as stated in Pierce *et al.*, (1992). Approximately 250 ng of the cleaved vector are ligated with approximately 500 ng of the DNA fraction for 16 hours at 16°C (performed as in Example 11, total volume 15 μ l). After heating the ligation to 70°C for 10 minutes, 4 μ l aliquots are cleaved with pacase (from DuPont-NEN) and packaged into bacteriophage P1 envelopes by addition of the "head/tail" extract, as described in Pierce and Sternberg (1991). After infection of *E. coli* NS3529, th preparation is plated onto LB medium (Maniatis *et al.*, 1982) with 25 μ g/ml kanamycin and 5% saccharose. R combiant clones becom visible aft r incubation of th plates at 37°C f r 20 h.

In total, approximately 2000 colonies are btain d, which are stored as a pool in 0.9% NaCl/20% glycero!

at -70°C as "P1 library".

The gene library (10 x 500 colonies) is screened as described in Example 11 (cosmid clones). *Inter alia*, a positive clone is obtained which contains all the fragments of the cosmid clone syncosI3, together with additionally a further approximately 30 kb of the cyclosporin synthetase gene in the 5' direction. Hybridisation with oligonucleotide mixtures derived from suitable amino acid sequences (see Example 9 and Example 10) shows that all the tested sequences are present on this P1 clone (synp4). In this way, it is ensured that the complete gene for cyclosporin synthetase is contained on this clone synp4.

Example 13: DNA partial sequence of the cyclosporin synthetase gene from *Tolypocladium niveum*

ATCC34921

- a) The DNA cloned as described in Examples 11 and 12 is sequenced and is illustrated as Seq Id 1.
- b) A polypeptide with the amino acid sequence illustrated as Seq Id 2 is to be derived from this DNA.

Example 14: Comparison of the amino acid sequences derived from the DNA with the cyclosporin synthetase amino acid partial sequences

The DNA of Seq Id 1 is translated on the basis of the genetic code into an amino acid sequence (*i.e.* position 1 of the protein sequence corresponds to position 885 of the DNA sequence) and is compared with the amino acid sequences given in Example 9:

AA-Partial sequence 3: in Seq Id 2, position 12254 is T. Otherwise all amino acids correspond.

AA-Partial sequence 4: all amino acids correspond.

AA-Partial sequence 5: all amino acids correspond.

AA-Partial sequence 9: in Seq Id 2, position 13730 is W. Otherwise all amino acids correspond. (Position 13 of the AA partial sequence aa9 could not be determined.)

AA-Partial sequence 10: all amino acids correspond.

AA-Partial sequence 12: all amino acids correspond.

AA-Partial sequence 13: all amino acids correspond.

AA-Partial sequence 14: in Seq Id 2, position 9565 is C. Otherwise all amino acids correspond.

AA-Partial sequence 15: all amino acids correspond.

AA-Partial sequence 16: Position 1 of the AA partial sequence aa16 does not correspond to the AA sequence of Seq Id 2. Otherwise all amino acids correspond.

AA-Partial sequence 19: in Seq Id 2, positions 9082 and 9083 are R and Y. Otherwise all amino acids correspond.

AA-Partial sequence 20: in Seq Id 2, position 6545 is W. Otherwise all amino acids correspond.

Further, internal comparison of the amino acids 13804-14063 of Seq Id 2 with amino acids 12304-12563 of Seq Id 2 shows that 178 out of 259 amino acids are identical (68.7%). A further 28 amino acid residues (10.8%) are functionally similar. In total, 11 partial regions similar to each other may be identified in this manner.

Example 15: Isolation of RNA from mycelium of *Tolypocladium niveum* and Northern hybridisation

A 1 l conical flask with 100 ml of medium 4 (Dreyfuss *et al.*, 1976) is inoculated with a spore suspension of *Tolypocladium niveum* ATCC34921 (1×10^7 spores/ml) and shaken for 96 hours at 250 rpm and 25°C. 1 l conical flasks with 100 ml of medium 5 (Dreyfuss *et al.*, 1976) are inoculated with 10 ml of this preculture and shaken for 7 days at 25°C and 250 rpm. The cyclosporin A concentration is determined (Dreyfuss *et al.*, 1976) to be 100 µg/ml. 8 g of moist mycelial mass is filtered, washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and ground to a fine powder in a mortar under liquid nitrogen. RNA is then isolated according to the method described by Cathala *et al.*, (1983). 4 mg of RNA are obtained, which are stored at -70°C. 10 µg of the RNA are separated on a denaturing 1.2% agarose gel containing 0.6 M formaldehyde. The electrophoresis buffer is 0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0. The RNA is dissolved in a buffer mixed together from 0.72 ml formamide, 0.16 ml of 10 x concentrated electrophoresis buffer, 0.26 ml formaldehyde, 0.18 ml water and 0.10 ml glycerol. The samples are heated to 100°C for 2 minutes and separated at 115 V, 100 mA over 2 hours. The gel is shaken three times for 20 minutes in 10 x SSC, blotted onto Hybond N-Filter and fixed by UV treatment. Hybridisation is performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 µg/ml denatured herring sperm DNA, and 100 µM ATP. The ³²P-labelled DNA (fragments of the cloned DNAs described in Examples 9 to 12) are heated to 100°C for 5 minutes and cooled in ice before hybridisation. After 16 to 20 hours, the filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. If the fragment

used as the probe is a fragment of the cyclosporin synthetase gene, a band may be detected in the X-ray film after 24 to 72 hours of autoradiography at -70°C. The band exhibits distinctly less mobility than the largest of the comparison RNA used (9500 bp; RNA-ladder, BRL). Figure 1 summarises the results of such hybridisations: in relation to the restriction map of a λ-clone, the isolation of which is described in Example 10, the positions of individual restriction fragments are given in which were used as probes in Northern hybridisations. The filled-in rectangles indicate that the bands described above may be detected (E2, E3, E1, S3, S5), while the rectangles with the transverse lines stand for those fragments which do not hybridise with such a band (E4, S2). (Fragment S4 was not used as a probe).

10 Example 16: Identification of homologous synthetase genes

100 ml of medium 1 (Dreyfuss *et al.*, 1976) are inoculated with 1×10^8 fungal spores and shaken for 72 hours at 25°C and 250 rpm. The mycelium is filtered out, washed with TE and lyophilised. 100 mg of lyophilised mycelium are added to 700 µl of lysis buffer (200 mM tris-Cl pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) and 100 mg of aluminium oxide powder (Sigma A2039) in an Eppendorf homogeniser and are homogenised. 500 µl of phenol-chloroform are then added and vigorously mixed in. After 15 minutes centrifugation, the extraction is repeated. A volume of 3M sodium acetate pH 5.2 corresponding to 0.1 time the volume of the supernatant are added to the supernatant and then a volume of i-propanol corresponding to 0.6 time the volume of the supernatant is thoroughly mixed in. After 5 minutes of centrifugation, the pellet is washed with 70% ethanol, briefly dried and dissolved in 100 µl of TE with 100 µg/ml of RNase and incubated for 15 minutes at 37°C. The phenol-chloroform extraction and ethanol precipitation are then repeated. The precipitated DNA is collected.

5 $5 \mu\text{l}$ portions of the DNA are cleaved with *Xba*I, separated on an agarose gel and blotted onto a nylon filter. This filters are hybridised with ^{32}P -labelled λSYN3 DNA as a probe. Hybridisation is performed under standard conditions, as described in Example 10 ("chromosome walking"). The hybridisations may, however, also be performed under less stringent conditions.

15 The following hybridising bands are obtained with DNA from *Tolypocladium niveum* (all data are estimates due to mobility in the gel): 3.6 kb, 3.4 kb, 3.2 kb, 3.0 kb, 2.3 kb, 1.9 kb and 0.7 kb. DNA from *Fusarium solani* ATCC 46829 also displays bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb together with a further band at approximately 2.1 kb. DNA from *Neocosmospora vasinfecta* ATCC 24402 also displays the bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb, together with two further bands at 2.9 kb and 1.8 kb. DNA from *Tolypocladium geodes*, *Acremonium* sp. S42160/F, *Paecilomyces* sp. S84-21622/F, *Verticillium* sp. 85-22022/F (Dreyfuss, 1986) each display several hybridising bands in the range 0.7 kb to 7 kb.

20 On the basis of the DNA sequence Seq Id 1, the following oligonucleotide pairs are to be synthesised:

25 Nucleotides 35073-35092 of Seq Id 1
 Nucleotides 37848-37829 of Seq Id 1 (complementary strand)
 or also
 Nucleotides 40309-40328 of Seq Id 1
 Nucleotides 42018-41999 of Seq Id 1 (complementary strand)

30 40 If 50 ng of the *Tolypocladium geodes* CBS723.70 DNA is amplified with the first of the two oligonucleotide pairs described above (Sambrook *et al.*, 1989): 30 cycles: 1 min 30 sec 94°C; 2 min 30 sec 50°C; 6 minutes 72°C, a 350 bp DNA is produced. If a part of this DNA is sequenced, the sequence given as Seq Id 3 is obtained. This DNA sequence is 75.1% homologous to the corresponding DNA sequence of Seq Id 1.

45 Also, if 50 ng of the *Neocosmospora vasinfecta* ATCC 24402 DNA is amplified with the second of the two oligonucleotide pairs described above (Sambrook *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C, a 1713 bp DNA is produced. If this DNA is sequenced, the sequence given as Seq Id 4 is obtained. This DNA sequence is 96.3% homologous to the corresponding DNA sequence of Seq Id 1.

50 Example 17: Protoplastisation and transformation of *Tolypocladium niveum*

a) Method 1:

55 200 ml of medium 1 (maltose (monohydrate) 50 g/l, casein peptone, digested with trypsin (Fluka 70169) 10 g/l, KH₂PO₄ 5 g/l, KCl 2.5 g/l pH 5.6) in a conical flask are inoculated with 10^9 spores of *Tolypocladium niveum* and are incubated at 27°C, 250 rpm for approximately 70 hours. 200 µl of (0.1%) β-mercaptoethanol are added and incubation continued for a further 16 hours. The mycelium is harvested by centrifugation (Beckman J2-21 centrifuge, rotor JA14, 8000 rpm, 20°C, 5 minutes), washed in 40 ml of TPS (NaCl 0.6 M, KH₂PO₄/NaH₂PO₄

66 mM pH 6.2) and the pellet volume measured by centrifugation in calibrated microtubules at 2000 g (in Beckman GPR centrifuge, GH3.7 rotor, 3000 rpm, 5 minutes). The mycelium is suspended in TPS (3 ml of TPS are used for each 1 ml of pellet volume) and the same volume of protoplastisation solution is added (Novozym 234 10 mg/ml from Novo Industri, batch PPM-2415), cytohelicase 5 mg/ml (from IBF), Zymolyase 20T 1 mg/ml (from Seikagaku Kogyo, batch no. 120491). The suspension is incubated at 27°C at 80 rpm for approximately 60 minutes. The protoplasts are filtered through a milk filter, centrifuged out (700 g, 10 minutes) and taken up in a total of 4 ml of TPS. Each 1 ml of this suspension is layered on to 4 ml of 35% saccharose solution and is centrifuged at 600 g, 20°C for 20 minutes. The protoplast bands at the phase interface are drawn off, each diluted to 10 ml with TPS, centrifuged out, carefully resuspended in 200 µl portions of TPS and the suspensions are combined. For each 1 ml of pellet volume of starting mycelium (see above), approximately 2×10^8 protoplasts are obtained.

The protoplast suspension is centrifuged out (700 g, 10 minutes) and suspended in 1 M sorbitol, 50 mM CaCl₂ at a density of 1×10^8 . 90 µl portions of this suspension are combined with 10 µl of the vector DNA to be transformed, which contains the amdS gene from *Aspergillus nidulans*, for example plasmid p3SR2 (Hynes et al., 1983), (1-10 µg dissolved in tris-HCl 10 mM, EDTA 1 mM, pH 8.0) and 25 µl of PEG 6000-Lsg are added (25% PEG 6000, 50 mM CaCl₂, 10 mM tris-HCl, pH 7.5, freshly prepared from the stock solutions: 60% PEG 6000 (from BDH), 250 mM tris-HCl pH 7.5, 250 mM CaCl₂). The transformation batch is placed on ice for 20 minutes and then a further 500 µl of the mixed PEG 6000 solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl₂ is added, the entire batch added to 7 ml of melted soft agar TMMAAC+N, held at 45°C, and cast onto preheated TMMAAC+N plates. Medium TMMAAC+N contains 6 g/l glucose, 3 g/l KH₂PO₄, 0.5 g/l KCl, 0.4 g/l MgSO₄ x 7 H₂O, 0.2 g/l CaCl₂ x 2 H₂O, 8 mM acrylamide, 2.1 g/l CsCl, 1 ml/l trace element solution, and 0.6 M NaCl. 15 g/l of Agar-Agar (Merck) are used for plates and 7 g/l for soft agar. The trace element solution contains 1 mg/ml of FeSO₄ x 7 H₂O, 9 mg/ml of ZnSO₄ x 7 H₂O, 0.4 mg/ml of CuSO₄ x 5 H₂O, 0.1 mg/ml of MnSO₄ x H₂O, 0.1 mg/ml of H₃BO₃ and 0.1 mg/ml of Na₂MoO₄ x 2 H₂O. Transformants are capable of using acrylamide as a source of nitrogen in the medium and may therefore be identified after approximately 3 weeks at 25°C as colonies against weak background growth.

b) Method 2:

Two portions each of 4.0 ml of the *Tolypocladium niveum* spores (ATCC 34921; 5×10^8 /ml) are introduced into a 1 l conical flask with 200 ml of medium 1 (50 g/l maltose (monohydrate), 10 g/l casein peptone, digested with trypsin, FLUKA 70169, 5 g/l KH₂PO₄, 2.5 g/l KCl, pH 5.6) and are shaken at 25°C at 250 rpm for 65 hours. The mycelium is filtered out over a sterile sintered porcelain filter with GMX nylon gauze and washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and resuspended in 40 ml of YG (5 g/l yeast extract, 20 g/l dextrose). Centrifugation is carried out at 900 g and 20°C for 5 minutes. The pellet is resuspended in YG (approximately 1 ml pellet in 5 ml) and 5 ml of protoplastisation solution are added to 5 ml of suspension. The protoplastisation solution is produced from a solution containing 1.1 M KCl and 0.1 M citric acid. The pH is adjusted to 5.8 with KOH. Driselase (Sigma D9515) is added (15 mg/ml; storage at -20°C); the suspension remains in the ice for 15 minutes and the starch carrier is removed by centrifugation for 5 minutes at 2000 rpm. Novozym (4 mg/ml) and bovine serum albumin (Sigma A7096, 20 mg/ml) are added. The solution is filtered through Millipore SLGV025LS and remains in the ice until used. The preparation is shaken at 37°C for 2.5 hours at 250 rpm. The preparation is filtered through a milk filter. The protoplasts are centrifuged out (700 g; 20°C; 5 minutes) and carefully resuspended in STC (1.2 M sorbitol, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5). 5 ml of 35% saccharose solution are carefully covered with a layer of the suspension and centrifuged (600 g; 20°C; 20 minutes). The bands are drawn off and diluted to approximately 5 ml with STC. 2×10^8 protoplasts are obtained from 200 ml of culture.

50 µl of the protoplast suspension (1×10^8 /ml) are introduced into a sterile Eppendorf tube and 5 µg of plasmid DNA in TE and 12.5 µl of PEG solution (20% PEG 4000, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5) are added. This solution is mixed from separately autoclaved stock solutions: 1 M CaCl₂, 1 M tris-HCl pH 7.5, 60% PEG 4000 (Riedel de Haen). Once the mixture has stood for 20 minutes in ice, 0.5 ml of PEG solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl₂ are carefully mixed in. The suspension is added to 10 ml of TM88 sorbitol soft agar (20 g/l malt extract, 4 g/l yeast extract, 10 g/l bacto agar, 218 g/l sorbitol, pH 5.7) (45°C) and cast onto TM88 sorbitol plates (10 ml TM88 sorbitol agar: 20 g/l malt extract, 4 g/l yeast extract, 30 g/l bacto agar, 218 g/l sorbitol, pH 5.7). After 15 to 20 hours at 25°C, 55 10 ml of TM88 sorbitol agar with 600 µg/ml of hygromycin (45°C) are poured over. Hygromycin resistant transformants may be detected after 7 days at 25°C.

Example 18: Construction of vectors pSIM10, PSIM11 and pSIM12 and transformation with these plasmidsa) Isolation of cyclophilin gene from *Tolypocladium niveum*

As described in Example 10, the *Tolypocladium niveum* gene library is screened with a radioactively labelled DNA probe. Hybridisation is performed at 42°C in 6 x SSPE, 30% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 µg/ml denatured herring sperm DNA, and 100 µM ATP. 32 P-labelled DNA (fragments of the DNA of the cyclophilin gene from *Neurospora crassa*, Tropschug *et al.*, 1988) are heated to 100°C for 5 minutes and cooled in ice before hybridisation. After 16 to 20 hours, the filters are washed three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 1 x SSC, 0.1% SDS at 45°C. The dried filters are autoradiographed. The purified DNA from λ-phages is subcloned in plasmids and characterised by restriction mapping, Southern hybridisation and DNA sequencing. The cDNA sequence of Seq Id 5 is obtained. The sequence is homologous to the cyclophilin gene of *N. crassa*. The start codon ATG is at positions 12-14 and the stop codon TAA is at positions 552-554.

b) Construction of vector pSIM10 and transformation with this plasmid

On the basis of the Seq Id 5, a first oligonucleotide is synthesised which is largely complementary to Seq Id 5 (positions 2 to 29); however, the ATG region (12 to 14) is altered in such a way that a *Cla*I cleavage point (ATCGAT) is produced. A second oligonucleotide contains a sequence of the plasmid pUC18 and a recognition sequence for *Bam*H I and is given as Seq Id 6.

A plasmid containing a 2.7 kb *Eco*RI-*Hind*III fragment from Example 18a cloned into pUC18 is linearised with *Hind*III. 1 ng of the plasmid DNA is amplified with the oligonucleotides described above (Sambrook *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C. A 2.1 kb DNA is produced. After chloroform extraction, this DNA is purified by ultrafiltration (Ultrafree MC 100 000; Millipore) and cleaved in the appropriate buffer with the enzymes *Cla*I and *Bam*H I. 50 ng of this DNA are ligated with 50 ng of *Bam*H I and *Cla*I cleaved DNA of the plasmid pGEM7zf (Promega). The newly produced plasmid is cleaved with *Cla*I and *Xba*I and ligated with a *Cla*I-*Xba*I restriction fragment 1.76 kb in size from the plasmid pCSN44 (Staben *et al.*, 1989). A restriction map of this plasmid (pSIM10) is reproduced in figure 3.

The 2157 bp *Bam*H I-*Cla*I restriction fragment of the plasmid (4714-6865 in figure 3), which contains the cyclophilin gene promoter, has the DNA sequence of Seq Id 7.

The plasmid pSIM10 may be used for the transformation of *Tolypocladium niveum*, as described in Example 17. DNA from the transformants is cleaved with *Bam*H I and, after electrophoresis, blotted on a nylon membrane. The 1.8 kb *Bgl*II fragment from pSIM10 (figure 3) is used as a radioactive probe. In this way, those of the transformants in which the plasmid pSIM10 has been incorporated once or a plurality of times into the genome may be identified.

The *Xho*I cleavage point in plasmid pSIM10 (4924) allows the construction of plasmids which contain defined parts of the cyclophilin synthetase gene with which a deliberate inactivation of the cyclophilin synthetase gene is possible:

pSIM11 contains a 3.6 kb *Xho*I restriction fragment (42285-45909 of Seq Id 1). If the plasmid linearised with *Eco*RV is used for the transformation, approximately 30% of transformants obtained no longer form cyclophilin. It is shown with Southern hybridisations with DNA from such transformants that an 8.4 kb *Xba*I fragment is no longer detectable, but instead two new restriction fragments with 10.6 kb and 8.2 kb are detected.

pSIM12 contains a 0.8 kb *Xho*I restriction fragment (39663-40461 of Seq Id 1). If the plasmid linearised with *Sall* is used for the transformation, approximately 30% of transformants obtained no longer form cyclophilin. It is shown with Southern hybridisations with DNA from such transformants than an 8.4 kb *Xba*I fragment is no longer detectable, but instead two new restriction fragments with 10.4 kb and 5.6 kb are detected.

Example 19: Cotransformation with synp4

pSIM10 (Example 18) is used as transformation vector. Together with this vector, equimolar quantities of synp4 (Example 12) are also used in the same transformation batch. These cotransformations are performed according to the method described in Example 17 and *Tolypocladium niveum* ATCC 34921 is used as the starting strain.

Genomic DNA from hygromycin resistant transformants is isolated according to a rapid method. To this end, mycelium is taken from an area of approximately 1 cm² of the corresponding colony and transferred into Eppendorf homogenisers. 1 ml lysis buffer (50 mM EDTA, 0.2% SDS) and 100 mg aluminium oxide (grad A5, from Sigma) are added and thoroughly homogenised for approximately 5 minutes. After centrifugation (5 min-

utes, 11,000 rpm) the supernatant is extracted once with each of tris-saturated phenol, phenol/chloroform (1:1) and chloroform/isoamyl alcohol (24:1) and the DNA precipitated with isopropanol using the standard procedure (Sambrook *et al.*, 1989).

The DNA is completely restricted with the restriction enzyme *Sall*, separated with gel electrophoresis and investigated in Southern hybridisations. The 0.8% agarose gel is transferred by vacuum blotting (Vacublot, from Pharmacia) onto a nylon membrane (Duralon-UV from Stratagene) and fixed with UV.

As probe for the hybridisations, the small *SpeI* restriction fragment from the bacteriophage P1 vector pNS-528tet4-Ad10-SacLIB (from DuPont-NEN) is prepared by gel electrophoresis and GeneClean II Kit (from BIO101) and radioactively labelled with alpha-³²P dATP by "random primer" synthesis (from Stratagene).

Prehybridisation is performed for approximately 8 to 16 hours at 42°C in 6 x SSC, 50% formamide, 5 x Denhardt's (Maniatis *et al.*, 1982), 0.1% SDS, 0.25 mg/ml denatured herring sperm DNA, and 25 mM NaH₂PO₄, pH 6.5 in a volume of 10 ml per 100 cm² of membrane. After addition of the labelled probe, incubation is continued for a further 16 to 20 hours at 42°C. The blot is washed twice for 10 minutes with 2 x SSC/0.1% SDS at 25°C and twice for 30 minutes with 0.5 x SSC/0.1% SDS at 60°C. After autoradiography for approximately 48 to 96 hours at -70°C with Kodak intensifying film onto X-ray film (Xomatic AR, from Kodak), bands become visible on the X-ray film.

Some of the investigated DNAs display hybridisation signals which are attributable to the integration of synp4. The number of signals, which should correlate with the number of integrated synp4 molecules, varies between 1 and 3.

A transformant strain verified in this manner is investigated for cyclosporin A formation by test fermentation in a shaking flask as described by Dreyfuss *et al.* (1976). Whilst approximately 100 µg/ml of cyclosporin A is formed in parallel tests of the untransformed starting strain *Toxopodium niveum* ATCC 34921, approximately 150 µg/ml of cyclosporin A is detected in tests with the strain in which additional copies of the cyclosporin synthetase gene are present due to the integration of synp4.

Abbreviations used:

ACV	aminoadipyl-cysteinyl-valine
amdS	acetamidase gene
ATCC	American Type Culture Collection
ATP	adenosine triphosphate
bp	base pairs
CBS	Centraalbureau voor Schimmelcultures
DTE	dithioerythritol
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
HEPES	N-2-hydroxyethyl-piperazine-N-2-propanesulphonic acid
MOPS	3-morpholinoethanesulphonic acid
PEG	polyethylene glycol
pfu	plaque forming units
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SSC	150 mM NaCl, 15 mM sodium citrate, pH 7.0
SSPE	180 mM NaCl, 10 mM sodium phosphate, 1 mM EDTA, pH 7.7
TE	10 mM tris-HCl pH 7.5, 1 mM EDTA
TFA	trifluoroacetic acid
tris	tris(hydroxymethyl)aminomethane
YAC	yeast artificial chromosome

Moreover, the customary abbreviations for the restriction endonucleases are used (*Sau3A*, *HindIII*, *EcoRI*, *HindIII*, *ClaI* etc.; Maniatis *et al.*, 1982). The nucleotide abbreviations A, T, C, G are used for DNA sequences and the amino acid abbreviations (Arg, Asn, Asp, Cys etc.; or R, N, D, C etc.) for polypeptides (Sambrook *et al.*, 1989).

Literature list:

- A. Billich and R. Zocher (1987) Enzymatic Synthesis of Cyclosporin A. *J. Biol. Chem.* **262**, 36, 17258-17259
 J. F. Borel, C. Feurer and H. U. Gubler (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. *Agents Actions* **6**: 468

- M. Dr yfuss, E. Härr, H. Hofmann, H. K bel, W. Pach and H. Tscherter (1976) Cyclosporin A and C *European J. Appl. Microbiology* 3 (1976), S. 125-133.
- M. M. Dreyfuss (1986) Neu Erkenntnisse aus in m pharmakologisch n Pilz-Screening, *Sydowia* 39 (1986), S. 22-36.
- 5 K. D. Jofuku and R. B. Goldb rg, *Analysis of plant gen structure*, in: *Plant molecular biology: a practical approach* (C. H. Shaw, Hrsg.), 1. Aufl., IRL press, Oxford 1988, S. 37- 66.
- H. Kleinkauf and H. v. Döhren (1990) Nonribosomal biosynthesis of peptide antibiotics *Eur. J. Biochem.* 192, 1-15
- J. Kraetzschmar, M. Krause and M. A. Marahiel (1989) Gramicidin S Biosynthesis Operon Containing the 10 Structural Genes grsA and grsB has an Open Reading Frame Encoding a Protein Homologous to Fatty Acid Thioesterases *J. Bacteriol.* 171, 5422-5429
- U. K. Laemmli (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 *Nature* 227, 680 - 685
- A. Lawen, R. Traber, D. Geyl, R. Zocher and H. Kleinkauf (1989) Cell-Free Biosynthesis of New Cyclosporins *J. Antibiotics* 42, 8, 1283-1289
- 15 A. Lawen, J. Dittmann, B. Schmidt, D. Riesner and H. Kleinkauf (1992) Enzymatic biosynthesis of cyclosporin A and analogues *Biochimie* 74, 511-516
- A. Lawen and R. Zocher (1990) Cyclosporin Synthetase. The Most Complex Peptide Synthesizing Multi-enzyme Polypeptide So Far Described *J. Biol. Chem.* 265, 19, 11355-11360
- 20 A. P. McCabe, H. v. Liempt, H. Palissa, M. B. R. Riach, E. Pfeifer, H. v. Döhren and J. R. Kinghorn (1991) δ-(L-α-aminoalanyl)-L-cysteinyl-D-valine synthetase from *Aspergillus nidulans*. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway *J. Biol. Chem.* 266, 12646
- T. Maniatis, E.F. Fritsch and J. Sambrook, *Molecular cloning: a laboratory manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor 1982/1.
- 25 H. Nakajima, T. Hamasaki, k. Tanaka, Y. Kimura, S. Udagawa and Y. Horie (1989) Production of Cyclosporin by fungi belonging to the genus Neocosmospora, *Agric. Biol. Chem.* 53 (1989) Nr. 8, S. 2291-2292.
- J. C. Pierce and N. Sternberg (1991), Using the bacteriophage P1 system to clone high molecular weight (HMW) genomic DNA, *Methods Enzymol.* in press
- J. C. Pierce, B. Sauer and N. Sternberg (1992), A positive selection vector for cloning high molecular weight 30 DNA by the bacteriophage P1 system: Improved cloning efficacy. *Proc. Natl. Acad. Sci. USA* 89 2056 - 2060.
- J. Sambroock, E.F. Fritsch and T. Maniatis, *Molecular Cloning: a laboratory manual* Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989/2
- D. J. Smith, A. J. Earl and G. Turner (1990) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in *Penicillium chrysogenum* is a 421.073 dalton protein similar to *Bacillus brevis* peptide antibiotic synthetases *EMBO J.* 9, 2743-2750
- C. Staben, B. Jensen, M. Singer, J. Pollock, M. Schechtman, J. Kinsey and E. Selker (1989) Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in *Neurospora crassa* transformation, *Fungal Genetics Newsletter* 36 (1989), S. 79.
- S. Tada, K. Gomi, K. Kitamoto, K. Takahashi, G. Tamura und S. Hara (1991) Construction of a Fusion Gene 40 Comprising the Taka-Amylase- A Promoter and the Escherichia-Coli beta-Glucuronidase Gene and Analysis of Its Expression in *Aspergillus-Oryzae*, *Mol Gen Genet* 229 (1991) Nr. 2, S. 301-306.
- M. Tropschug, D.W. Nicholson, F. Hartl, H. Köhler, N. Pfanner, E. Wachter and W. Neupert (1988) Cyclosporin A-binding Protein (Cyclophilin) of *Neurospora crassa*. One gene codes for both the cytosolic and mitochondrial forms. *Journal of Biological Chemistry* 263 (1988) Nr. 28, S. 14433- 14440.
- 45 K. Turgay, M. Krause, and M. A. Marahiel (1992) 4 Homologous Domains in the Primary Structure of GrsB Are Related to Domains in a Superfamily of Adenylate-Forming Enzymes *Molecular Microbiol.* 6, 4, 529-546
- R. Weckermann, R. Fuerbass and M. A. Marahiel (1988) Complete nucleotide sequence of the tycA gene encoding the tyrocidine synthetase 1 from *Bacillus brevis* *Nucleic Acids Res.* 16, 11841
- P. H. Yu (1983) Specific Photoactivated Covalent Binding of S-Adenosyl-Methionine to Phenylethanolamine-N-Methyl Transferase *Biochim. Biophys. Acta* 742, 517
- 50 R. Zocher, T. Nihira, E. Paul, N. Madry, H. Peeters, H. Kleinkauf and U. Keller (1986). Biosynthesis of Cyclosporin A: Partial Purification and Properties of a Multifunctional Enzyme from *Tolypocladium inflatum*. *Biochemistry* 25, 550-553

SEQUENCE LISTING
5

(1) GENERAL INFORMATION:

- (i) APPLICANT:
- (A) NAME: Sandoz Ltd
 - (B) STREET: Lichtstrasse 35
 - (C) CITY: Basel
 - (E) COUNTRY: Switzerland
 - (F) POSTAL CODE (ZIP): CH-4002
 - (G) TELEPHONE: 41-61-324 4395
 - (H) TELEFAX: 41-61-322 7532
- (A) NAME: Sandoz-Patent-GmbH
- (B) STREET: Humboldstr. 3
 - (C) CITY: Loerrach
 - (E) COUNTRY: Germany
 - (F) POSTAL CODE (ZIP): D-7850
- (A) NAME: Sandoz-Erfindungen Verwaltungsgesellschaft mbH
- (B) STREET: Brunnerstr 59
 - (C) CITY: Vienna
 - (E) COUNTRY: Austria
 - (F) POSTAL CODE (ZIP): A-1235
- (ii) TITLE OF INVENTION: Cyclosporin Synthetase
- (iii) NUMBER OF SEQUENCES: 7
- (iv) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 46899 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: Tolypocladium niveum
 - (B) STRAIN: ATCC 34921
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GAATTCAAGTA TCGGGCAAAT CTTCATGGTG ATGTGAATCT AGCGAGATGA ATGCAGGAGA	60
ATCGGCTGGG ATGGCCTCCA GATATACACC CTTCTAGCAT CACAAATCCC GCCGATGTAC	120
AAGCCCCACG ACGAACGTTT TTATTGGCTT AACCGCTACT AGTATTTTA TATACTAGTT	180
TATATGCGTA GGTACTCTCT TCTGTTAATG TCAGAGGATC TATTGCGATG GGCAGGCTGC	240

	AGCAATGCCT CGATCTTGAT GGAGGGATAG TTGTTTGTG ATGAGTATAG GTACTTATT	300
5	TATTAAGAAC TCTATGCTTG TTTAAGGTA CCGATACTCG TACGTCGATC GTGGGGGTG	360
	TAAGGCCACGT GGTCCACAGT CTGACGAAGT TTCGAACCCCT TCAGGGATTAA TAAACAAGGT	420
	AATAACGGAGT AAAGGAGTAG TATCATAGCT TGGAATATGT GGAAACCCCG AGGAGGCAAT	480
10	CCCCTGGCT GTCAGATTAC CTTACAAGTC TCCATCTACT GACCACGAAC TGAACCTAGT	540
	TCCTTCAGTC GCTTACTATT TACTGGAACA TCTCCTCGAA TTTGGAAAAA GAAAAAAAGCA	600
	CCAACAAAAA CTCAGGAGAT CCACTCTTA TCGGACACAA ATAGCTACTT GCTTTCTGTG	660
15	CCGTGCAACG ATACTGTCGG AAAGCTCGAC CTACGAGCCA CTTACACCTG TGGTAGCAGC	720
	ACAAAGCCGG ACTCGCCACA ACTCAGCAAC TAGCCATTG AAATCGCAAA CTACAGCAGC	780
	TACACGAAC TCACTGAGATG GATTGTACAT ACTGACTACA CTAGTTTAC TAACAGATAG	840
	ACAACCATTG CCAGATTATA GAGCCTTTG CTTCTTGGT CAACATGGGC GCCATCGGGC	900
20	AAGACATGGC ATATGATCGC CTTGCCAACCG CGTCTCGGGC GAGTTCCATC TCTTCGAACC	960
	GATACTCCGA ACCTGTCGAG CAATCCTTG CCCAGGGCAG ACTGTGGTTC CTGCACCAGC	1020
	TGAAGCTCGG TGCGAGCTGG GACATTACGC CGGCCGCGAT CCGACTTCGG GGCCATCTCG	1080
25	ACATCGATGC GCTGAACGCT GCCTCGCGCG CTCTGACGCA GCGCCACGAG ACGCTCCGAA	1140
	CGACGTTCAA GGAGCAGGAT GGCGTGGCG TACAGGTTGT GCACGCCTCG GGCCTCGAAA	1200
	GAGGGTTGAG GATTGTTGAT GCCTCGAGCC GCGATTGTC CCAAGCTCCTG GCAGAGGAAC	1260
30	AAACCATGAA GTTCGACCTA GAGTCTGAGC CAGCTTGGAG AGTTGCATTG TTGAAGGTGG	1320
	CCGAGGATCA CCATATTCTT TCCATTGTTG TACACCATAT CATCTCAGAC AGCCGGTCTC	1380
	TCGACATTAT TCAGCAGGAG CTTGGAGAAC TCTACACGGC CGCCTCGCAG GGGAAATCGA	1440
	TTTCGGCTTG TCCCTGGGT CCAATTCCA TTCAATACCG TGACTTGTACG ACTTGGCAGA	1500
35	ACCAGGACGA GCAGGTCGCT GAGCAGGAAA GGCAAGCTCGG ATACTGGATC GAGCAGCTCG	1560
	ATAACAAACAC ACCGGCCGAG CTCCCTCACAG AGCTTCCCCG GCCAGCTATC CCATCTGGCG	1620
	AAACTGGCAA GATCTCCTTC CAGATCGATG GATCGGTACA CAAAGAACTC CTGGCCTTCT	1680
40	GCCGCTCCC GCAAGTAACC GCCTACCGC TGCTGCTGGC AGCGTTTCGC GTGGCGCACT	1740
	TTCGCCCTCAC TGGAGCCGAG GATGCAACCA TCGGAGCGCC CGTTGCCAAC CGCGACCGGC	1800
	CGGAGCTGGA GAACATGGTG GCTCCCTTGG CCACTCTGCA GTGCATGCGA GTCGTGCTCG	1860
45	ACGAGGACGA CACCTTCGAG TCGGTGCTGC GGCAGATCAT GTCCGTCTG ACAGAGGCAC	1920
	ATGCCAACCG CGACGTTCCC TTTGAGCGCA TCGTGTCTGC GTTGCTGCCCG GGGTCGACAG	1980
	ACACATCACG ACACCCGCTT GTGCAGCTCA TGTTGCTTT GCATCCCCGCG CAGGATACGG	2040
	GCCGAGCCCCG GTGGGGGTTTC CTCGAGGCTG AGACTCTGCA GAGTGCAGGCC CCGACACGAT	2100
50	TCGACATGGA GATGCACCTG TTTGAGGGAG ACGACCGGTT CGATGCAAAC GTGCTGTTCT	2160
	CCACGGGCCT TTTGACGCA GAGGCCATCC GCAGCGTGGT TTCTATCTT CGGGAAGTCC	2220
	TGCGCCGTGG CATCTCGGAG CCTGCGGTGC ATGTGAAGAC GATGCCGCTC ACCGATGGGC	2280

5	TCGCCGCGAT CCGGGACATG GGCTTGCTGG ATATCGGGAC CACCGACTAC CCCCGCGAGG	2340
	CGAGCGTGGT TGATATGTTC CAAGAGCAGG TGGCCCTGAA TCCAAGCGCC ACCGCCGTGG	2400
	CCGATGCTTC GTCCAGATTG AGCTACTCTG AGTTGGATCA CAAGTCAGAT CAGCTGCCG	2460
	CGTGGCTCG CAGACGGCAG CTCAAGCCCC AGACCTTGAT TGGCGTGTG TCTCCTCCGT	2520
10	CTTGCAGAC CATGGTTTC TTCCCTGGTA TCCTCAAGGC TCATCTGGCT TATCTGCCTC	2580
	TCGATATCAA CGTTCCCTTG GCACGCATCG AATCAATCCT TTCGGCCGTG GACGGGCACA	2640
	AGCTCGCCT GCTTGGGAGC AACGTGCCCC AACCCAAGGT GGATGTACCC GATGTTGAGT	2700
15	TGCTGCGGAT CAGCGATGCC CTGAACGGGT CTCAGGTGAA TGGGCTTGCA GGGAAACAGG	2760
	CGACTGCAAA GCCCTCGGGC ACGGACCTGG CCTACGTCAT CTTCACCTCG GGATCGACTG	2820
	GCAAGCCGAA GGGTGTATG ATCGAGCATH GGGGCATCGT ACGCCTCGTG AAAGGAACAA	2880
20	ACATTATTTG GCCCGCCCAG GCAGCAGTGC CGACAGCTCA CCTGGCCAAC ATCGCTTCG	2940
	ACCTCTAAC ATGGGAGATC TATAACCCCTA TCCTTAATGG CGGCACTCTT GTCTGTATCG	3000
	AACACTCTGT CACGCTAGAT AGCAAGGCAC TAGAAGCTGT ATTCAACCAAG GAGGGCATTG	3060
	GTGTGGCCTT CCTTGCTCCT GCTCTGATCA AGCAGTGTCT CGCCGACAGA CGGGCGATCT	3120
25	TTGCGGGCCT GGATAGCCTG TACGCTATTG GCGATCGCTT CGACCGACGT GACGCCCTCC	3180
	ATGCAAAGTC CTTGGTGAAG CATGGCGTT ATAATGCCTA TGGTCCAACC GAGAATTCCG	3240
	TCGTCAGTAC CATCTACAGC GTCTCCGAGG CTTCACCGTT TGTCACGGGG GTGCCCGTG	3300
30	GCCGGGCCAT CAGCAACTCG GGCGCCTATG TAATGGATCA GGATCAGCAA TTGGTCTCTC	3360
	CCGGGGTGAT GGGGGAGCTT GTGGTTCTG GAGATGGCCT AGCTCGAGGA TATACCGATT	3420
	CGGCTCTGGA TAAGAACCGA TTTGTCGTGG TGCAGATTGA CGGCGAGTCA ATCCGGGGCT	3480
35	ATCGTACGGG AGACCGGGCC CGATACAGCC TCAAGGGTGG CCAGATTGAG TTCTTGGCC	3540
	GCATGGATCA GCAGGTCAAG ATCCGTGCC ATCGTATCGA GCCAGCCGAG GTAGAGCACG	3600
	CTTTACTCAA CAGCGACCAA GTACCGCATG CAGCAGTGGT TATCCGGAGA CAGGAGGAGG	3660
40	AAGAGCCTGC GATGATTGCC TTCGTTACGA CGCAGGGTAC GCTCCCTGAT CACCTCGTCA	3720
	ACATCAACGG CAACGGCCAC GTTCCCGACG GCAACGGCAG CAAGAACGAC CAATTGCG	3780
	TTCACGTCGA GAGCGAACTG CGCCGGCGCT TGCAGATGTT GCTGCCCTCC TACATGATGC	3840
	CGGCCCGCAT CGTGGTGCTT GACCATCTCC CTCTCAACCC CAACGGCAA GTCGACCGGA	3900
45	AGGCCTGGG TCAGTCGCC AAGACTGTGC AGAAGAGCAA GCTGGTCTCA CAGCGCGTCG	3960
	CCCCACGCAA TGAGATCGAG GCCGTGCTTT GCGAGGGAGTA CAGGAGTGTG CTTGGTGTG	4020
	AGGTTGGCAT CACCGATAAC TTCTTCGACC TGGGTGGTCA TTCCCTGACG GCCATGAAGC	4080
50	TCGCGGCACG GATCAGCCAG AGGCTCGACA TTCAAGCATH CGTAGCAACT GTCTTGAGC	4140
	AGCCGATGCT CGCTGACCTC GCCGCCACGA TCCAGCGCGG CTCGACTCTG TATAGCGTCA	4200
	TCCCTACGAC AGAATACACG GGACCGGTGG AGCAATCATT TGCCCAAGGC CGTCTGTGGT	4260

	TCCTTGAGCA GCTGAATACC GGCGCCTCAT GGTATAATGT GATGCTCACC GTACGACTAC	4320
5	GAGGCCACCT CGACGTGGAT GCGCTGGAA CGGCCCTGCT CGCCCTGGAG AAACGGCACG	4380
	AGACTCTTCG GACAACCTTT GAGGAACGGG ACGGGGTTGG CATGCAGGTA GTCCACAGCA	4440
10	GCCTCATGGG GGAGCTGGGG CTGATTGATA TATCAGAGAA ATCTGGCACT GCCGCGCATG	4500
	AGGCACTGAT GAAGGAGCAG TCAACCCGCT TCGACCTGAC TCGCGAGCCA GGTTGGAGAG	4560
15	TGGCGCTGCT GAAGTTGGCA GACCACACA TCTTCTCGAT CGTCATGCAC CACATTGTAT	4620
	CGGATGGATG GTCTCTCGAC CTCCTACGAC ACGAGCTGGG CCAACTCTAC TCGGCAGCTC	4680
	TGCGCGGCCA GGACCCATTG TCGCGCCTTG AGCCACTCCC GATCCAATAC CGCGACTTTG	4740
20	CGGTCTGGCA GAAGCAAGAC AGCCAGCAGA AAGCAGCGCA CCAGAGGCAA TTGGAGTACT	4800
	GGACCAAGCA GCTTGCAGAC AGCACGCCG CAGAGCTCTT GACAGACTTC CCGCGGCCCT	4860
	CGATTCTATC CGGAAAGGCT GGAAAGGTCC CCGTGCCAT CGAGGGGTCT CTATACGACA	4920
25	CGCTTCAAGT CTTCAGCCGC ACCCATCAAG TCACGTCGTT TGCTGTCCCTA CTCGCAGCCT	4980
	TCCGTGCAGC ACATTTCCGG CTTACGGGAT CTGATAATGC GACTATTGGT GTCCCCAGCG	5040
	CGAACCGGAA TCGACCTGAG CTTGAGAACG TGATCGGCTT CTTCGTGAAC ACACAATGTA	5100
	TACGTATCAC GATCGATGAA AACGATAACT TTGAATCGTT GGTCCGGCAG GTCCGGTCGA	5160
30	CGACTACAGC CGCACAGGAC AATCAGGATG TCCCCTCGA ACAGGTCGTT TCCAGCCTCA	5220
	TGCCGAGCAG CTCGAGAGAT GCATCCCGGA ACCCTCTGGT GCAGCTCATG TTTGCACTGC	5280
	ACGGCCAGCA GGATCTGTT AAGATCCAAC TGGAAAGGGAC CGAAGAGGAG GTGATCCAA	5340
35	CAGAAGAAGT GACGAGGTTTC GACATCGAGT TCCATCTCTA CCAAGGCGCC AGCAAGCTGA	5400
	GCGGTGATAT CATATTGCT GCCGACTTAT TCGAAGCCGA AACTATTCTGTT GGCGTGTCA	5460
	GCGTCTTCGA GGAGGTTCTG AGGCGGGAT TGCAACAGCC GCAGACCCCG ATCATGACAA	5520
40	TGCCACTCAC CGACGGCATT CCAGAGTTGG AGAGGATGGG CTTGTTGCAC ATGGTCAAGA	5580
	CCGACTACCC CCGAACATG TCTGTGGTAG ACGTATTCCA ACAACAAGTT CGTCTCAGCG	5640
	CCGAGGCTAC AGCTGTTATC GACTCATCTT CGCGGATGAG TTACGCCGAA CTGGACCAGA	5700
45	GGTCGATCA GGTGGCAGCG TGGCTTCGCC AGCGACAACT GCCAGCCGAA ACCTTTGTGG	5760
	CAGTGCTCGC ACCACGCTCG TGCGAGGCCG TCATTGCTCT CTTCCGCATC TTGAAGGCTG	5820
	GTCATGCCTA CCTACCGCTC GACGTCAATG TGCCAGCAGC GCGTCTTCGC GCCATCTGG	5880
	CCGAGGTGAA GGGCGAGAAG CTGGTTCTCC TAGGAGCAGG TGAGCCATCA CCGGAAGGCC	5940
50	AGTCGCCAGA GGTCTCGATC GTGAGGATTG CCGATGCCAC GAGCCCTGCT GGCCATGCCA	6000
	GCTTGCCTGA TGGCAAGTCC AAGCCAACCG CAGGCAGCCT CGCCTATGTC ATCTTCACTT	6060
	CCGGATCCAC TGGTAAACCC AAGGGTGTGA TGATCGAGCA CCGCGGAGTC TTGCGCCTTG	6120
55	TGAAGCAGAC CAACATTCTA TCCAGTCTAC CGCCGGCGCA GACCTTCCGA ATGGCTCACA	6180
	TGTCCAACCT TGCGTTCGAT GCATCGATAT GGGAGGTCTT CACGGCCCTT CTCAACGGAG	6240
	GCTCTCTTGT ATGCATTGAC AGGTTTACCA TCTTGGATGC TCAAGCGTTG GAGGCACTAT	6300

5	TCCTCAGGGA GCACATCAAT ATTGCACTGT TCCCACCCGC CCTGTTGAAG CAATGCCTCA	6360
	CGGATGCAGC TGCTACCAC TC AAGTCTCTTG ACCTCTATA CGTAGGAGGA GACCGGTTAG	6420
	ACACAGCGGA CGCAGCTCTG GCCAAAGCTC TGGTCAAGTC AGAGGTCTAC AATGCCTACG	6480
10	GCCCAACCGGA AAATAACGGTC ATGAGCACTT TATACTCGAT TGCTGACACA GAACGATTG	6540
	TTAATGGTGT GCCAATTGGA AGAGCCGTTA GCAACTCTGG GGCTCACGTG ATGGACCAGA	6600
	ATCAGCAGCT TGTGCCGTTG GGCGTGATGG GAGAGCTGGT AGTCACTGGA GATGGTTGG	6660
	CTCGTGGCTA CACCAACCCG GCTCTTGATT CCGACCGGTT CGTGGATGTC ATTGCTCGAG	6720
15	GCCAACTTCT CAGGGCCTAT CGCACAGGCG ACCGAGCTCG TTACCGGCCA AAGGATGCC	6780
	AGGTTGAGTT CTTTGGTCGG ATGGATCACC AGGTCAAGGT CCGAGGGCAC CGCATCGAGC	6840
	TCGCCGAAGT AGAACACGCT TTGTTAACCA GTGCCGGTGT GCACGATGCC GTTGTGTT	6900
20	CAAACATCGCA GGAAGACAAT CAGGGAGTCG AGATGGTGGC CTTCATCACC GCCCAAGACA	6960
	ACGAGACTCT CCAGGAAGCA CAGTCGAGCA ACCAAGTCCA GGAATGGGAG AGCCATTTCG	7020
	AGACCACGGC CTACGCGGAC ATCACGGCA TTGATCAAAA CACGCTCGGC CGAGACTTTA	7080
	CATCCTGGAC CTCTATGTAC GATGGAACGC TTATTGACAA GAGGGAGATG CAGGAATGGC	7140
25	TCGACGATAC TATGCGCACT TTCCCTTGACG GTCAAGCAGC TGGCCACGTG CTTGAAATCG	7200
	GTACCGGCAC CGGTATGGTT CTATTCAATC TCGGTCAAGC TGGGCTGAAG AGCTACATTG	7260
	GAECTGGAACC TTCCCAATCC GCGGTTCAAT TCGTCAACAA GGCAAGCCCAA ACGTTCCCAG	7320
30	GGCTTGAGGG AAAGGCCCAA GTACATGTCG GCACGGCGAT GGATACGGGC CGGCTCAGCG	7380
	CTTGAGCCC GGATCTGATC GTCATCAACT CCGTGGCCCA GTATTTCCCG AGCCGAGAAT	7440
	ACCTCGCCGA GGTGGTTGAG GCCCTGGTCC GGATTCAGG CGTTCGCCGT ATCTTCTTCG	7500
	GAGACATGAG AACCTATGCC ACCCACAAAG ACTTCCTTGT TGACACGGCG GTCCACACAA	7560
35	ACGGGAGCAA GGTGACGAGA TCTAAAGTGC AACAGGAGGT GGCCCGGTTA GAGGAACACTGG	7620
	AGGAGGAATT GCTTGTGAC CCTGCCTTCT TCACAAGTCT CAAGGAATCT CTATCGGAAG	7680
	AAATAGAGCA TGTTGAGATC CTGCCGAAGA ACATGAAGGT GAACAACGAG CTCAGCTCAT	7740
40	ACCGGTACGG CGGGTTCTG CACATCCGTA ACCACAAACCA GAATCAAAGC AGGTCGATTC	7800
	ACAAGATCAA TGCAGAGTCC TGGATCGACT TCGCCTCAAG CCAGATGGAT AGACAGGGTC	7860
	TTGCTAGGCT GTTGAAAGAG AACAAAGATG CCGAAAAGTAT CGCTGTGTT AACATCCCTT	7920
45	ACAGCAAGAC TATCGTGGAA CGGCACATCG CCAAGTCTT GGCGATGAC CACGACGGCG	7980
	ATGATAACACA TAGCTCAATC GATGGAGTCG CCTGGATCTC AGCCGCGCGC GAGAAGGCGA	8040
	GCCAGTGTCC ATCTCTTGAT GTGCATGACC TCGTGCAGTT GGCCGAGGAC GCTGGTTCC	8100
50	GCGTCGAGGT CAGCTGGGCC CGCCAAAGGT CCCAGAACGG CGCTCTCGAT GTTTCTTCC	8160
	ATCACTTCCA GCCTACCGAG AACGAAAGCC GCGCGCTCGT CGATTTCCCC ACCGACTACA	8220
	AGGGCCAACA AGCCAGAACG CTGACGAACC GGCCCTGCA GCGGGTTGAG AGCCGTCGAA	8280

	TCGAAGCACA GGTCCGAGAG CAGCTCCAAG TATTGCTCCC GGCATACATG ATCCCAGCCC	8340
5	GGATTGTGGT TCTCCAGAAC ATGCCGCTGA ACACGAGCGG CAAGGTAGAT CGCAAGGAGC	8400
	TCACCCCTCG AGCCAAGGTC ACCGCCGCAC GTACGCCGAG CTCCGAACTC GTGGCTCCTC	8460
	GTGATTCTAT TGAAGCCATC ATCTGCAAGG AATTCAAGGA TGTTCTCGGC GTCGAAGTGG	8520
10	GTATTACAGA CAACTCTTT AATGTCGGAG GACACTCTCT TTTGGCCACG AAGCTCCAG	8580
	CACGCCCTGAG CCGACAACTC AATGCCAGA TCGCAGTCAA AGACATCTTC GACCGGCCAG	8640
	TTATCGCCGA TCTGGCAGCC ACAATCCAGC AGGATACAC GGAGCACAAC CCTATCCTAC	8700
15	CGACTTCTTA TACGGGTCCA GTCGAACAAT CGTCGCCCA AGGCCGACTC TGTTCTCG	8760
	ATCAACTGAA TGTCGGCGCC ACATGGTATC TCATGCCCTT CGCAGTCCGG CTGCGAGGGC	8820
	CTTGGTTGT TTCTGCTCTC GCTGCCGCTC TTCTGGCCCT AGAGGAGCGC CACGAGACAC	8880
	TGCGAACAAAC CTTTATCGAA CAGGAAGGCA TCGGCATGCA GGTACATCCAT CCGTTGCC	8940
20	CTAAGGAAC T GAGGGTGATC GATGTCCTGG GCGAGGAAGA GAGCACTATC CAGAAGATA	9000
	TGGAAAAGGA ACAGACAAACA CCCTTCAATC TCGCTTCCGA GCCCGGTTTC AGACTAGCAT	9060
	TACTGAAGAC AGGAGAGGAC GAACACATT C TCTCGACAGT AATGCACCAT GCAATCTG	9120
25	ATGGCTGGTC TGTCGATATC TTCCAACAAG AAATCGGCCA ATTCTACTCG GCAATCCTCC	9180
	GCGGACACGA TCCTTGGCC CAGATCGCAC CGCTCTCGAT CCAGTATCGC GATTTCGCGA	9240
	CTTGGCAGAG GCAGATATT C CAAGTGCAG AGCACCGGCG GCAGCTTGCA TACTGGACTA	9300
30	AACAGCTTGC CGATAATAAA CCAGCCGAGC TGCTGACCGA TTTCAAGCGA CCGCTATGC	9360
	TCTCCGGCCG CGCGGGCGAG ATCCCGGTGG TCGTCGACGG CTTGATCTAT GAGAAGCTTC	9420
	AGGACTTCTG TCGAATCCGC CAGGTGACCG CCTTACCGT GTTGCTGGCT GCTTCCGCG	9480
35	CAGCGCACTA TCGTATGACC GGGACTGAGG ATGCGACGAT TGGAACACCT ATCGCGAAC	9540
	GTAACCGGCC GGAGCTTGAG GGCTTGATCG GCTTCTCGT CAACACACAG TGCATCGTA	9600
	TCACCGTCGA TGTAGAGGAT TCGTTGAAA CGTTGGTTCA CCAGGTTCGA GAAACGACGC	9660
	TGGCTGCACA TGCCAACCAG GATGTTCTT TCGAACAGAT TGTCTCAAAC ATCTTCCCG	9720
40	GATCGAGCGA CACTTCTCGG AATCCGCTGG TACAGCTCAT GTTGCTCTA CATTGCGAC	9780
	AGAACCTTGG CAAGGTCCGC CTCGAGGGTA TCGAGGAGGA GATCATCTCC ATTGCTGAGA	9840
	CCACGAGATT TGATATCGAG TTCCATCTGT ACCAAGAGGC TGAGAGGCTG AACGGTAGTA	9900
45	TCGTCTATGC AGCTGATCTC TTCGTGCCCG AGACTATACA GAGCGTCATC ACCATCTCC	9960
	AAGGCATCCT ACAGAAAGGC CTCGGCGAGC CGGATATGCC CGTCGCCCTCT ATGGCGCTTG	10020
	ATGGTGGGCT GGAGTCCCTC CGAAGCACAG GACTGCTGCA CCCTCAACAA ACTGATTATC	10080
50	CGTGCATGC TTCAGTGGTG CAGATCTCA AACAGCAGGT GGCAGTCAAC CCGGATGTCA	10140
	TCGCGGTGAG AGATGAATCA ACACGGCTGA GCTATGCCGA CTTGGATCGG AAGTCGGATC	10200
	AAGTGGCTTG CTGGCTATCT CGGCGAGGTA TCGCTCCTGA GACGTTCGTG GCGATCCTGG	10260
55	CACCA CGCTC GTGCGAGACA ATCGTGGCCA TCCTCGGTGT GTTGAAGGCC AACCTTGCAT	10320

	ATCTGCCTCT TGATGTCAAT GTTCCTGCGT CCCGGCTCGA GGCCATCCTT TCGGAGGTGT	10380
5	CGGGATCGAT GTTGGTCCTT GTGGGGCAG AGACCCCGAT TCCGGAGGGG ATGGCTGAAG	10440
	CGGAGACGAT CCGGATCACG GAGATTCTCG CCGACGCAAA GACCGACGAC ATCAACGGC	10500
	TGGCCGCGAG TCAGCCCCACT GCAGCAAGCC TTGCGTATGT GATCTTACG TCTGGATCGA	10560
10	CTGGTCGACC AAAGGGCGTC ATGGTCGAGC ATCGCGGAAT CGTTCGTCTT ACAAAAGCAGA	10620
	CCAACATCAC ATCCAAGCTG CCAGAGTCTT TCCACATGGC CCACATATCG AATCTGCCT	10680
	TCGATGCCTC CGTGTGGAA GTGTTCACGA CGCTCTCAA TGGAGGCAGC TTGGTGTGTA	10740
15	TCGACTATTT CACTCTCTTG GAGAGCACAG CGCTCGAGAA GGTCTTCTTC GACCAACGCG	10800
	TCAATGTTGC TCTGCTCCCT CCAGCCTTGC TGAAACAGTG CCTTGACAAC TCACCCGCTC	10860
	TGGTCAAAAC TCTCAGCGTT CTCTATATTG GTGGTGATAG GCTAGATGCT TCTGATGCTG	10920
20	CCAAAGCAAG GGGGCTCGTC CAGACGCAAG CTTTCAATGC GTACGGCCCA ACGGAAAACA	10980
	CAGTCATGAG CACAATCTAT CCCATTGCCG AAGACCCCTT CATCAATGGT GTGCCCATCG	11040
	GTCATGCTGT CAGTAACCTCG GGAGCTTTG TCATGGACCA GAATCAGCAA ATCACCCCCC	11100
	CTGGTGCAAT GGGAGAACTC ATCGTGACTG GAGACGGTCT TGCTCGAGGC TACACTACTT	11160
25	CCTCTCTCAA CACTGGTCGA TTATCAACG TTGATATCGA TGGCGAGCAA GTCAGGGCAT	11220
	ACCGCACAGG AGATCGAGTG CGCTACCGAC CAAAAGACCT CCAGATCGAA TTCTTCGGCC	11280
	GTATCGATCA CCAGGTCAAG ATCCGGGCC ACCGCATCGA ACCAGCTGAG GTCGAGTATG	11340
30	CTCTTCTAAG CCACGACCTG GTCACTGATG CGGCAGTCGT CACCCACTCT CAAGAAAATC	11400
	AAGACCTGGA GATGGTTGGA TTCGTGGCCG CCCGAGTCGC TGATGTTAGA GAGGATGAGT	11460
	CCAGCAACCA GGTCCAAGAA TGGCAGACTC ACTTCGACAG CATCGCATAAC GCAGATATCA	11520
35	CCACAATCGA TCAGCAAAGC CTTGGACGGG ACTTCATGTC ATGGACCTCC ATGTACGATG	11580
	GCAGCCTGAT CAAGAACAGC CAGATGCAGG AGTGGCTCGA TGACACCATG CGGTCACTCC	11640
	TGGATTCCA GCCCCCTGGT CACGTACTCG AAGTTGGTAC AGGGACTGGC ATGGTTCTGT	11700
	TCAACCTCGG CAGAGAACGG GGTCTGCAA GCTACGTTGG CCTAGAGCCA TCGCCATCCG	11760
40	CAACCGCGTT TGTCAACAAG GCCGCAAGT CATTCCCTGG GCTTGAGGAT AGGATCCGGG	11820
	TTGAAGTTGG AACAGCAACT GATATCGACC GGCTTGGAGA CGATCTGCAC GCAGGTCTTG	11880
	TCGTCGTCAA CTCGGTCGCT CAATACTTCC CGAGTCAAAGA CTATCTGCC CAGTTGGTCA	11940
45	GAGATCTTAC CAAGGTCCCT GGCGTGGAGC GTATCTTCTT TGGTGATATG AGGTGCGACG	12000
	CCATCAACAG GGATTTCCCTT GTCGCTCGCG CAGTTCATGC ACTGGGCGAT AAGGCAACAA	12060
	AGGCCGAGAT TCAACGGGAG GTTGTTCGAA TGGAAGAGTC TGAAGACGAA CTGCTCGTTG	12120
50	ATCCGGCCTT TTTCACCTCC CTGACGACGC AAGTAGAGAA TATCAAGCAGC GTGGAGATTC	12180
	TCCCCAAGAG AATGCGAGCC ACGAACGAGC TGAGCTCGTA TCGGTATGCT GCTGTTCTGC	12240
	ACGTCAATGA TCTGGCGAAA CCGGCACACA AAGTCAGTCC TGGCGCCTGG GTTGATTTG	12300

5	CCCGGACGAA GATGGATCGC GATGCCCTGA TCCGTCTGCT CAGGGGCACC AAAATTCCG	12360
10	ACCACATTGC AATGCCAAT ATTCCAACA GCAAGACAAT CGTCGAGCGA ACCATCTGCG	12420
15	AATCGGTTTA CGACCTTGGC GGAGACGCCA AAGACTCGAA CGACAGAGTC TCATGGCTT	12480
20	CGGCTGCTCG ATCGAATGCC GTGAAAGTGG CTTCCCTCTC CGCGATCGAT CTCGTTGATA	12540
25	TTGCACAAGA GGCAGGGCTTC CGGGTCGAGA TCAGCTGCGC GCGGCAGTGG TCTCAGAATG	12600
30	GCGCGTTGGA CGCCGTATTG CACCACCTTG GCCCATCAC ACAGTCGTCT CATGTGTTGA	12660
35	TTGACTTCCTT GACCGACCAC CAAGGTCGAC CAGAAGAACG CCTGACGAAC CACCCGCTGC	12720
40	ACCGAGCACA GTCTCGACGC GTCGAGAGGC AGATCCGCA GAGACTCCAG ACTCTCCTGC	12780
45	CGGCCTACAT GATCCCAGGCC CAGATCATGG TTCTTGACAA GCTACCTCTC AACGCGAATG	12840
50	GAAAGGTCGA CGGAAAGCAG TTGACGCAAC GGGCCCAGAC GGTACCCAAG GCCAAGCAAG	12900
55	TGTCTGCTCC TGTGGCCCCG CGCACAGAGA TCGAAAGGGT GCTCTGCCAG GAGTTCTCCG	12960
60	ACGTCTTAGG GGTTGATATC GGATAATGG AAAACTCTT CGATCTCGGT GGCCACTCGC	13020
65	TCATGGCAAC AAAGCTAGCC GCACGCATCA GCCGCCGACT AGAGACTCAC GTCTCCGTCA	13080
70	AGGAGATCTT TGACCATCCG CGAGTCTGCG ATCTGTTCT CATACTACAG CAGGGATCAG	13140
75	CGCCTCATGA CCCCATCGTT TCGACCAAAT ACACCGGGCC AGTGCCTCAG TCGTTGCC	13200
80	AGGGTCGTCT TTGGTTCTC GACCAGCTCA ACTTTGGCGC AACATGGTAT CTACATGCC	13260
85	TTGCCGTCCG TCTTCGCGGT GCCATGAACG TTCATGCTCT TACCGCGGCC TTGTTGCC	13320
90	TCGAGAGGCG TCACGAGCTC CTCCGCACCA CGTTCTACGA ACAAAACGGC GTCGGTATGC	13380
95	AAAAGGTCAA TCCAGTTGTC ACCGAGACCC TGAGGATCAT TGATCTCTCC AACGGCGACG	13440
100	GCGACTATCT CCCGACATTG AAGAAGGAGC AAACGTCTCC GTTCCACCTG GAAACCGAGC	13500
105	CCGGATGGCG CGTGGCTCTA CTGCGCCTCG GGCCAGGCCA CTACATCTTA TCTGTCGTCA	13560
110	TGCATCACAT CATTTCGAC GGCTGGCTG TGGATGTTCT CTTCCAAGAG CTGGGCCAGT	13620
115	TCTATTCCAC GGCTGTAAA GGCCACGATC CCCTATCGCA GACCACACCC CTCCCGATCC	13680
120	ATTATCGCGA TTTTGCTCTG TGGCAGAAGA AGCCAAACCA AGAAAGCGAA CACGAGCGTC	13740
125	AGCTGCAATA CTGGGTGAG CAACTTGAG ATAGTCCCC GGCGAGCTA CTCACGGATC	13800
130	TGCCGCGGCC TTGATCCTC TCTGGTCAGG CTGGGGAGAT GTCGGTACG ATCGAGGGAG	13860
135	CACTATACAA GAACTGGAG GAATTCTGCC GGGTCCATCG CGTACCTCC TTCGTGGTAC	13920
140	TGCTTGGCGC CCTACGCCA GCCCATTATC GCCTCACAGG TTCCGAAGAC GCAACTATAG	13980
145	GGACACCAAT CGCCAATCGT AACCGACCTG AACTTGAGCA GATAATGGC TTCTCGTCA	14040
150	ATACGCAATG TATACGCATT ACCGTCAACG AGGACGAGAC CTTTGAGTCA CTAGTGCAGC	14100
155	AGGTCCGGTC AACGGCGACA GCTGCATTG CCCATCAGGA CGTCCCGTTC GAGAAGATCG	14160
160	TCTCTACTCT TTTGCCCGGT TCTCGAGATG CATCCGAAA CCCACTTGTG CAGCTCATGT	14220
165	TTGCCGTGCA TTGCGAGAAG AACCTGGTG AGCTGAAGCT GGAAACCGCT CACAGCGAGG	14280
170	TTGTTCCAC GGAGATCACCG ACCCGGTTCG ATTTGAAATT CCACCTGTTG CAGCAAGATG	14340

5	ACAAGCTTGA GGGCTCCATC CTCTATTCAA CCGATCTCTT CGAACAGTC TCGGTCAAA	14400
	GTCTTCTTTC AGTATTCCAG GAAATTCTGC GCCGGGTTT GAACGGTCCG GACGTGCCA	14460
	TCAGCACCCCT ACCACTTCAG GATGGAATCG TCGACCTACA AAGACAGGGC CTGTTGGATG	14520
	TCCAGAAGAC GGAATATCCT CGTGATTCT CTGTGGTTGA TGTGTTCCAT GAGCAGGTCT	14580
10	CGATCAACCC CGATTCCATT GCACTGATAAC ATGGCTCGGA AAAGCTCAGC TACGCCAGC	14640
	TCGACAGGGGA ATCTGACAGG GTCGCTCGCT GGCTCCGTCA CCGTTCTTTC AGCTCCGACA	14700
	CGTTAATCGC CGTGTGGCG CCACGGCTT GCGAGACGAT CATCGCGTTC CTCGGAATCC	14760
15	TCAAGGCAAA CCTTGCCTAC 3' CTACCTCTGG ATGTCAAGGC TCCTGCTGCC CGCATTGATG	14820
	CCATTGTATC GTCGCTACCC GGGAAACAAGC TCATCTGCT GGGCGCAAAC GTTACGCCGC	14880
	CCAAGCTTCA GGAAGCGGCC ATCGATTCG TGCCCATCCG TGATACCTTC ACTACACTCA	14940
20	CTGACGGCAC ACTTCAAGAT GGGCCTACCA TCGAGCGACC CTCTGCGCAA AGCCTAGCGT	15000
	ACGCCATGTT CACGTCTGGT TCTACCGGAC GACCGAAGGG TGTTATGGTC CAGCACCGCA	15060
	ACATCGTCCG CTTGGTGAAG AACAGTAACG TCGTCGCTAA GCAGCCCGCA GCAGCTCGCA	15120
	TAGCACATAT ATCCAATTG GCGTTGACG CCTCGTCTTG GGAGATCTAT GCCCCGCTGC	15180
25	TCAACGGCGG CGCAATTGTT TGTGCCGACT ACTTCACAAC GATTGATCCA CAGGCTCTTC	15240
	AAGAAACCTT CCAGGAACAC GAGATCCGCG GTGCTATGCT GCCGCCCTCG CTCCTCAAGC	15300
	AGTGCCTGGT TCAGGCCCA GACATGATCA GCAGGCTTGA CATCTTATTT GCTGCTGGTG	15360
30	ATCGCTTCAG TAGCGTGGAT GCTCTCCAGG CCCAACGTCT CGTTGGCTCG GGCCTCTCA	15420
	ATCGCTATGG CCCTACGGAG AATACGATTC TGAGCACTAT CTATAACGTT GCTGAAAACG	15480
	ACTCCTTCGT TAACGGCGTT CCCATAGGCA GTGCTGTGAG CAACTCCGGA GCCTACATCA	15540
	TGGATAAGAA CCAGCAGCTC GTGCCAGCTG GAGTTATGGG AGAAACTGGTT GTTACTGGTG	15600
35	ACGGTCTCGC CCGCGGCTAT ATGGATCAA AGCTAGATGC AGACCGCTTT ATCCAACCTGA	15660
	CAGTCACCGG CAGCGAGCAA GTCAGGGCAT ATCGCACCGG CGACCGTGTG CGATACCGAC	15720
	CAAAGGACTT CCAGATCGAG TTCTTCGGTC GTATGGACCA GCAAATCAAG ATCCGCGGCC	15780
40	ACCGTATCGA CCCGGCCGAG GTAGAGCAGG CCTTCCTGAA TGATGGCTTC GTCGAGGACG	15840
	TTGCTATCGT TATTGGGACC CCAGAGAACC AAGAGCTGA GATGGTCGCC TTTGTTACTG	15900
	CTAAGGGCGA CAACTCCGCG AGAGAAGAAG AGGCTACAAC CCAGATCGAA GGTTGGGAGG	15960
45	CGCATTTCGA GGGTGGTGCG TACGCCAACA TCGAGGAGAT CGAAAGCGAG GCGCTTGGTT	16020
	ACGACTTTAT GGGCTGGACG TCTATGTACG ATGGCACTGA GATCGACAAG GACGAGATGA	16080
	GAGAGTGGCT GAATGACACG ATGCGCTCTC TCCTCGATGG AAAGCCGGCT GGTGAGTTC	16140
	TTGAGGTCGG TACCGGTACC GGTATGATCA TGTTAACCT TGCGAGGTCA CAAGGGCTCG	16200
50	AAAGGTATAT TGGCCTCGAA CCTGCACCGT CGGCAGCCGA GTTGTCAAC AACGCTGCAA	16260
	AGTCATTCCC GGGTCTCGCG GGCAGGGCCG AAGTTCACGT CGGCACCGCC GCAGATGTCG	16320

	GTACCCCTGCA AGGCCTGACC TCAGATATGG CCGTCATCAA CTCGGTGGCG CAGTACTTCC	16380
5	CAACGCCAGA GTACCTGGCC GAGACGATCA AATCACTTGT CCAAGTCCCCG GGCATGAAGC	16440
	GCATATAACCT CGGCATATG CGGTCCCTGG CCATGAACAG GGACTTTGCT GCCGCTCGCG	16500
	CCGCCTATTG ACTGGCCGAT AATGCCAGCA AAGACCGCGT GAGACAGAAG ATGATGGAAT	16560
10	TGGAGGAGAA GGAGGAAGAA TTACTCGTTG ACCCGGCCCTT CTTCACTGCC TTGGCGAGCC	16620
	AGCTGCAAGA CAGGATCCAA CACGTGGAGA TCCTACCCAA GCGAATGAAG GCTACAAATG	16680
	AGCTAAGCTC GTACCGATAT GCCGCCGTGC TGCACATCTC CGACGAGGCC CTTCCSTATCT	16740
15	ACAAGATTGA TCCCAGGACT TGGATCAACT TTGAGGGGTC TCGATTGACC CGAGAGGCC	16800
	TTGCACAAGT ACTCAAGGAG AATGAGAACG CCGAGAGTGT GGCCATCAGC AACATTCCCTT	16860
	ATAGCAAGAC CGTTGTAGAA CGTCACATTG TGCGGTGCGT TGACCAGGAA GACGCCAATG	16920
	CCCGTGAGGA ATCGATGGAT GGCAGCGACT GGATCTCGGC CGTGCACACA AGAGCTCAGC	16980
20	AGTGCACAC TCTCTCCGCA AGTGACCTGT TCGACATTGC AGAAGATGCT GGGTTCCGTG	17040
	TTGAGGTCAG CTGGGCCGT CAACATTGCG ACCACGGTGC CCTGGATGCC GTGTTCCACC	17100
	ACCTGAAGCC CGCTACGGAG GACAGTCGCG TTTGATCAA GTTCCCTACA GATCACCAAG	17160
25	GCCGCCGCT CAAGAGCTTG ACGAATCAAC CGCTCTGCC AGCCAGAGT CGCCGAGCCG	17220
	AGCTCTTGAT CCGCGAGGGG CTGCAAACCC TGCTGCCCTCC CTACATGATC CCCTCGAAA	17280
	TCACGCTTAT CGACCGGATG CCACTCAATG CTAACGGCAA AGTCGACCGG AGAGAACTCG	17340
30	CCCGTCGGGC CAAAATCACA CAGAAGAGCA AGCCGGTTGA GGACATCGTT CCCCTCGGA	17400
	ACACGCTCGA GGCTACGGTC TGCAAGGGCT TCACTGACGT GCTGGCGTT GAAGTTGGGA	17460
	TAACAGACAA TTTCTCAAT CTGGCGGTC ATTCACTGAT GGCAACGAAG TTGGCGGCGC	17520
	GTCTAGGCGC TCAACTCAAT ACACGTATCT CGGTGAGAGA CGTCTTCGAT CAACCAAGTCG	17580
35	TTGCTGATCT CGCCGCTGTG ATCCAACGCA ACTCGGCACC TCACGAGCCG ATCAAGCCAG	17640
	CAGACTACAC AGGGCCCGTT CCCCAGTCAT TCGCACAGGG CCGCCTTGG TTCCTCGATC	17700
	AACTTAATGT CGGGGCGACG TGGTATCTTA TGCCCCTTGG TATCCGCCTT CACGGATCTC	17760
40	TCCGGTTGA TGCCCTCGCT ACCCGCATAT CAGCCCTGGA GCAACGTCAC GAGCCTCTCC	17820
	GTACGACATT CCACGAGGAA GATGGCGTCG GTGTTCAAGT CGTGCAAGAC CACCGGCCA	17880
	AGGATCTGAG AATCATCGAC CTGTCCACTC AGCCAAAGGA CGCCTATCTT GCGTGTGTA	17940
45	AGCATGAGCA GACCACGCTC TTGACCTCG CAACCGAGCC CGGTTGGCGC GTCGCTCTGA	18000
	TCAGGCTTGG AGAAGAAGAG CATATACTTT CCATTGTTAT GCACCATATC ATATCTGACG	18060
	GCTGGTCAGT AGAGGTTCTG TTTGATGAGA TGCACCGGTT CTACTCGAGT GCGCTTAGGC	18120
	AACAGGATCC TATGGAGCAA ATCTTGCCCTC TACCGATCCA GTACCGCGAC TTTGCAGCAT	18180
50	GGCAAAAGAC TGAAGAGCAG GTTGGCCAGC ATCAGCGGCA GTTGGACTAC TGGACGGAGC	18240
	ACCTTGCCGA CAGTACCCCT GCGGAGCTGT TAACTGACCT CCCTCGACCT TCTATCTTGT	18300
	CCGGCCGCGC CAATGAGCTA CCCCTTACCA TCGAGGGGCG TCTTCATGAT AAATTGCGCG	18360

	CTTTCTGCCG AGTCACCAA GCCACGCCGT TCGTCATTCT CCTTGCGGCC CTGAGGGCAG	18420
5	CACATTACCG TCTTACAGGG GCTGAAGATG CCACGCTTGG AACGCCAATT GCTAACCGTA	18480
	ACCGACCGGA ACTTGAGAAC ATGATCGGCT TCTTTGTTAA CACGCAGTGT ATGCGTATTG	18540
	CTATTGAGGA GAATGATAAC TTCGAGTCCC TCGTCCGCCG AGTACGATCG ACTGCAACAT	18600
10	CCGCTTTCGC GAACCAAGAC GTTCCATTG AATCCATTGT CTCGTCTCTT CTGCCTGGAT	18660
	CCAGGGACGC CTCGCGCAAT CCATTAGTGC AGGTCAATTCT GGCTGTTCAC TCTCAGCAGG	18720
	ATTGGGTAA ACTCACCTA GAAGGCTCA GAGATGAAGC TGGTGAACACTG GCTATCTCAA	18780
15	CCCGCTTCGA TGTGGAGTTT CATCTTTCTG AGCACGCAGA CAGGCTCAGC GGTAGCGTGC	18840
	TTTACGCAAA GGAACTGTT AAGCTCGCA CGATCGAATC AGTGGTCTCC GTTTCTGG	18900
	AGACTCTGCG GCAGGCTCTC GACCAGCCAC TGACTCCTCT CGCTGTCTTG CCGCTGACTG	18960
20	ATGGAGTCGG GGAGATCGCA AGCAAGGGGC TCCTTGATGT GCCCAGGACA GACTATCCAC	19020
	GAGATGCAAA TATCGTTGAG GTCTTCAAC AGCACGTTG CGCTACCCCCG GACGCCATCG	19080
	CCGTCAGGA CGCTACTTCC ATACTGACGT ATGCTCAGCT AGATCAGCAG TCTGATCGAC	19140
	TTGCTATCTG GTTGAGTCGC CGGCACATGA TGCCCGAAAC GCTGGTGGGT GTCTTGCAC	19200
25	CGCGGTCAATG CGAGACCATT ATCGCAATGT TTGGCATTAT GAAGGCCAAC CTCGCCTACT	19260
	TGCCCTTGGGA TATAAACTCG CCTGCTGCTC GACTCCGCAG CATTCTCTCA GCCGTAGATG	19320
	GGAAACAAGCT TGTTTGCTC GGCACTGGTG TCACAGCCCC CGAGCAAGAG AACCCCCGAGG	19380
30	TGGAAGCTGT TGGTATTCAA GAGATCTTGG CCGGCACTGG ACTGGACAAG ACACAAGGCA	19440
	GCAACGCCCG ACCCTCGGCA ACGAGCCTTG CTTATGTTAT CTTCACCTCT GGTTCAACCG	19500
	GCAAGCCCAA GGGCGTCATG GTCGAACATC GTAGCGTTAC GAGATTGGCA AAGCCCAGCA	19560
35	ACGTTATCTC CAAGCTACCA CAAGGAGCCA GGGTGGCGCA CCTCGCCAAC ATTGCCTTCG	19620
	ATGCCCTCGAT CTGGGAAATT GCCACAACTC TTCTGAATGG AGCCACGCTT GTTTGTCTCG	19680
	ACTATCACAC CGTTCTCGAC TGCAGGACTC TCAAAGAAGT CTTCGAAAGG GAAAGCATTA	19740
40	CGGTTGTCAC ACTGATGCCT GCGCTCCTCA AGCAGTGCAGT GGCCGAAATA CCCGAGACCC	19800
	TCGCACACCT CGACCTCCTG TACACGGGTG GAGATCGAGT GGGTGGTCAC GATGCTATGC	19860
	GGGCTCGCTC GCTAGTCAAG ATCGGCATGT TCAGCGGTTA CGGCCCTACG GAGAACACCG	19920
	TCATCAGCAC CATCTACGAA GTTGATGCAG ACGAGATGTT TGTGAATGGT GTGCCTATCG	19980
45	GCAAGACTGT AAGCAACTCT GGGGCATATG TTATGGACAG GAATCAGCAG CTGGTGCCTA	20040
	GTGGCGTGGT AGGTGAGCTT GTGGTCACTG GCGATGGCCT TGCTCGCGGA TACACTGATC	20100
	CATCCCTAAA CAAGAACCGC TTCATTACA TCACTGTCAA TGGAGAGAGT ATCAGGGCAT	20160
50	ATCGGACTGG CGATCGGGTG AGGTACCGGC CTCATGATCT GCAGATTGAA TTCTTGGCC	20220
	GCATGGACCA GCAGGTCAAG ATCCGTTGCC ATCGAATCGA GCCGGGAGAG GTGGAGAGCG	20280
	CATTGCTCAG TCACAACTCG GTACAAGACG CCGCGGTCGT CATTGCGCG CCAGCAGATC	20340

5	AAGACTCAGG CGCGGAAATG GTGGCATTG TTGCCGCCG GAATACCGAA GACGAAGACA	20400
	CCCAGGAGGA AGAAGCAGTC GATCAGGTT AAGGGTGGGA GACGCCTTC GAAACGGCCG	20460
	CATATTCAAGA AGTCAAGGAC ATTGACAGT CAGAACGTCGG TAACGACTTC ATGGGCTGGA	20520
	CTTCTATGTA TGACGGCAGC GAGATCGACA AGACAGATAT GCACGAGTGG CTCAACGACA	20580
10	CCATGCGTAT GATACTCGAC GCCAGAGAGC CGGGCCACGT ACTGGAGATC GGTACCGGCA	20640
	CGGGCATGGT CATGTTCAAC CTTGCCAAGT GTCCTGGTCT GCAGGGCTAC GTGGGTTTCG	20700
	AGCCTCAAA GTCGGCAGCC CAATTGCTCA ATGATGCAGC CCAGTCATTC CGGGCTCTGA	20760
15	AGGATGGCCG GTCAAATAGTC CATGTGGGCA CGGCGACAGA CATCAACAAAG GCTGGGCGA	20820
	TTCAACCACG CCTCGTCGTT ATCAACTCAG TAGCCAGTA TTTCCCCACG CCAGAGTACC	20880
	TCTTCAGGGT TGTGGAGGCC CTTGTACAGA TCCCAAGCGT GGAACGCATC GTCTTGGTG	20940
20	ACATGAGAAC CAACGCCATC AACAGAGACT TCGTCGCAAG CCGAGCATTG CACACCCCTCG	21000
	GCGAGAAGGC AAACAAGCGC CTGGTCCGCC AGATGATCTA TGAGCTCGAA GCCAACGAAG	21060
	AGGAACCTCT GACGGACCCCT GCATTCTTA CATCTTGCG TACCGCCTTG GGTGAGAAGA	21120
	TCAAGCACGT CGAAATTCTC CCCAAGACCA TGAAGGCTAC CAACGAGCTC AGCAAGTACC	21180
25	GATATGCCGC AGTACTACAT GTGCGTGGCT CGAGAGAACAA ATCAACTATA CACCAAGTCT	21240
	CTCCCAACGC CTGGATAGAC TTTGCGCAG ACGGTCTCGA CGGGCAGACC CTCATCAACT	21300
	TGCTGAAGGA GCACAAGGAT GCCGGGACCG TCGCTATCGG TAATATCCCG TACAGCAAGA	21360
30	CCATTGTTGA GCGGTTGTC AACAAAGTCAC TGAGCGAGGA TGATATGGAG GAAGGCCAGA	21420
	ACTCACTGGA CGGATCAGCT TGGGTTGCAG CCGTCCGGAT GGCGCCTCAA AGCTGCCCAT	21480
	CACTCGATGC AATGGATGTC AAGGAGATTG CTCAGGAGGC GGGATACCAAG GTCGAAGTCA	21540
	GTTGGGCGCG TCAATGGTCC CAGAATGGTG CGCTCGATGC CATCTTCCAT CACTCGAAC	21600
35	CGCCCAAGGA GGGTGCTCGC ACACTTATTG AGTTCCCGAC GGATTACGAA GGCCGGAATG	21660
	TGAACACCTT AACGAACCGT CCCCTGAACA GCATTCAAAG CGCCGCTCTT GGGACCCAGA	21720
	TCCCGAGAA GCTGCAGACC CTCTGCCGC CTTACATGAT CCCATCGCGC ATCATGGTCC	21780
40	TTGATCAGAT GCCTGTCAAC AACAAACGGCA AGATTGACCG CAAGGAGCTT GTGCGGAGAG	21840
	CTATCGTGGC CCCGAAGCCA AGGTCAGCGG CTACTCGGGT AGCCCCCGC AATGAGATCG	21900
	AGGCTATTCT GAGAGACGAA TTCGAGGACG TGCTCGGAAC AGAAGTCAGC GTGCTGGATA	21960
45	ACTTCTTGA TCTCGGCGGG CACTCACTTA TGGCCACGAA GCTCGCCGCC CGCGTTAGCC	22020
	GCCGCCCTGA TGCCCATATT TCCATCAAAG ATGCTTGA TCAGCCGGTG CTGGCGGATC	22080
	TTGCAGGCGTC CATCCAGAGA GAATCGGCTC CTCATGAACC GATTCCGCAA AGGCCTTACA	22140
	CCGGGCCGGC TGAACAGTCA TTTGCCAAG GTGCCCTATG GTTCCTTGAC CAGCTTAACC	22200
50	TTGGCGCGAC CTGGTACCTG ATGCCTTAG CCATCCGTAT CCGTGGCCAG TTGAGGGTAG	22260
	CTGCCTTGTC TGCCGCACTC TTGCGCTTGG AGAGACGACA TGAGACCTTG AGAACCCACT	22320
	TTGAAGAAAG CGACGGCGTT GGCGTGAAA TTGTTGGAGA GGCTCGAAC TCAGACCTTC	22380

	GGGTTCATGA CGTTTCTACC GGAGACGACG GGGAGTACCT TGAGGTACTC AGGAGGGAAC	22440
5	AGACTGTGCC CTTCGACCTC TCGTCAGAGC CTGGCTGGAG GTTTGCCTG GTCAAAACGG	22500
	GCGAAGAGGA TCATGTACTA TCCATCGTCA TGCACCATAT TATTTACGAC GGCTGGTCCG	22560
	TGGACATTCT CCGCGGAGAG TTGGGTCAT TCTATTCCGC TGCCCTACGC GGCCAGGACC	22620
10	CCTTGCTGCA CGCCAACCCC CTTCTTATTC AATACCGGGA TTTCGAGCG TGGCAAAGGG	22680
	AGGCAAAACA GGTCGAAGAG CATCAACGTC AACTTGGTA CTGGTCGAAA CAGCTCGTTG	22740
	ACAGCACTCC AGCTGAGCTC TTGACGGATC TGCCCTGCC GTCTATCTTG TCCGGTCGTG	22800
	CCGGGTCGGT GGATGTCACG ATCGAAGGCT CTGTTACGG AGCCCTTCAG TCATTCTGCC	22860
15	GCACCGGTTG GGTAAACCACA TTCGTTGTGC TTCTGACTGT GTTCCGGATT GCGCATTTCC	22920
	GTCTCACTGC CGTCGATGAC GCGACTATCG GCACCCCTAT CGCAAACCGT AACCGTCTG	22980
	AGCTGGAGAC GTTGGTTGGC TGCTTGTAA ACACGCAATG TATGCGTATC AGCATAGCCG	23040
20	ACGACGATAA CTTTGAAGGT CTTGTGCGAC AGGTGCGTAA TGTTGCAACG GCAGCTTACG	23100
	CGAACCAAGA TGTTCTTTC GAACGAATCG TGTCCGCCCT AGTTCCAGGG TCGAGAAACA	23160
	CATCCCGCAA CCCCCCTGGTT CAGCTCATGT TTGCTGTCCA GTCCGTGGAA GATTATGACC	23220
25	AGGTCCGACT CGAGGGCTTG GAGAGTGTCA TGATGCCCTGG AGAAGCCTCC ACACGCTTG	23280
	ATATGGAATT CCACCTCGTC CCCGGCGATC AGAAGCTTAC GGGCAGCGTT CTTTACTCCT	23340
	CAGACCTTT TGAGCAAGGC ACTATCCAGA ACTTCGTCGA CATCTCCAA GAATGTCTTC	23400
	GCTCCGTCTT GGACCAGCCA TTGACCCCGA TCTCCGTTCT TCCCTTCAGC AACGCCATT	23460
30	CAAACCTCGA GAGCTTGGAT CTCCCTGGAGA TGCCGACCTC AGACTACCCC CGCGATCGGA	23520
	CAGTCGTTGA TCTCTCCGA GAGCAAGCGG CAATCTGCC CGACAGCATC GCCGTAAAG	23580
	ACTCATCGTC GCAAATGACA TATGCTAAC TGGATGAGCA ATCCGACCGT GTTGCCGCC	23640
35	GGCTGCACGA GCGCCACATG CCGGCGGAGT CTTTGGTCGG TGTACTGTGCG CCACGGTCTG	23700
	GCGAGACTAT CATCGCTAC TTTGGCATCA TGAAGGCAAA CCTGGCTTAC CTGCCGTTGG	23760
	ATGTTTATGC GCCAGATGCC CGTCTGGCG CTATCCTGGA TACAGTCGAA GGCGAAAGAC	23820
40	TGCTTCTGTT GGGCGCAGGT GTCCCTCAGC CCGGCATCCA GATCCCTCGC CTGTCAACAG	23880
	CATACATCGC GGAAGCACTG AGCCATGCCA CGACCGTCGA TGTCACTTCC ATCCCACAGC	23940
	CCTCGGCCAC CAGCCTTGCCTG TACGTCATTT TCACTTCGGG ATCTACTGGC AAGCCCAAGG	24000
45	GTGTCATGAT CGAGCATCGC GGCATCGTGC GCCTGGTTAG AGATACCAAC GTCAACGTGT	24060
	TCCCGGAATC GGGATCAGCT TTGCGCTGTCT CTCACCTCTC CAACCTCGCC TGGGATGCCG	24120
	CGACTTGGGA GATCTACACT GCCGTGCTCA ATGGAGGGAC CGTTGTGTGC ATTGACCGAG	24180
	ACACCATGCT GGACATAGGCC GCGTTGAACt CAACATTCCG GAAGGAGAAC GTTCGGCTG	24240
50	CCTTCTTCAC CCCTGCCCTTC CTGAAGCAAT GCCTTGCCGA GACGCCAGAG CTGGTCGCCA	24300
	ACCTAGAGAT CCTTCACACGG GCAGGGATC GTCTCGATCC TGGAGATGCC AACCTGGCTG	24360

	GAAAGACAGC CAAGGGTGGT ATCTTCAACG TCCTGGGTCA CACAGAGAAC ACTGCCTATA	24420
5	GTACCTTCTA CCCTGTGGTT GGTGAGGAGA CGTCGTCAA TGGTGTCCCC GTCGGTCGCG	24480
	GCATCAGCAA CTCCCATGCA TATATCATCG ACCGACACCA GAAGCTCGTA CCCGCAGGTG	24540
	TCATGGGAGA GCTTATTCTC ACTGGCGACG GTGTTGCGCG AGGTTACACC GACTCTGC	24600
10	TGAACAAGGA TCGATTCTT TACATCGATA TCAACGGCAA AAGCACATGG TCGTACCGCA	24660
	CAGGGCATAA GGCACGTTAT CGACCAAGGG ACGGCCAGCT GGAATTCTT GGCGCATGG	24720
	ACCAAATGGT CAAGATCCGT GGTGTCGAA TCGAACCCGG CGAAGTTGAG CTCACCTGC	24780
15	TCGACCATAA GTCCGTCTG GCCGCGACTG TGGTGGTCAG AAGACCACCC AATGGCGACC	24840
	CGGAGATGAT TGCCCTCATC ACCATCGACG CTGAAGACGA CGTGCAAACACT CACAAGGCCA	24900
	TTTACAAGCA CCTCCAGGGT ATCTTGCCTCG CGTACATGAT TCCCTCACAC CTTGTCATCC	24960
20	TTGACCAGAT GCCGGTCACC GACAACGGTA AGGTCGATCG CAAGGATCTC GCACTCAGAG	25020
	CGCAGACAGT ACAGAAACGCC AGGTCTACCG CTGCAAGGGT ACCACCTCGT GACGAGGTGG	25080
	AGGCTGTTCT TTGCGAAGAG TACAGCAACT TACTTGAAGT TGAGGTTGGC ATTACCGACG	25140
	GATTCTTCGA CCTGGGTGGA CATTGCTCC TCGCCACCAA GCTTGC	25200
25	GACAACCTCAA CACTCGCGTG TCTGTCAAGG ACGTCTTGA CCAGCCAATA CTCGCTGACC	25260
	TCGCTGATAT CATCCGCCGC GGTTCCCACATC GCCACGATCC GATTCTGCC ACTCCATACA	25320
	CGGGCCCTGT CGAACAGTCG TTGCTCAGG GCCGCGTGTG GTTCTTGGAA CAACTGAAACC	25380
30	TAGGTGCCAG CTGGTACTTG ATGCCCTCG CGATCCGGAT GCGTGGGCCCTCAGACAA	25440
	AGGCCTGGC TGTCGCACTG AACGCTTGG TGACCCGGCA CGAGGCCTTG CGGACGACTT	25500
	TCGAGGACCA CGATGGGGTT GGTGTCAGG TCATTCACC AAAGTCAAGC CAAGACCTGC	25560
35	GGATCATCGA CCTATCAGAC GCTGTAGATG ATACTGCCTA TCTCGCCGCG CTCAAGAGGG	25620
	AACAGACAAC AGCCTTCGAC CTGACCTCTG AACCAAGGGT GAGAGTGTCA CTCTTACGCC	25680
	TAGGTGACGA TGATTACATC CTTTCTATCG TTATGCACCA CATTATCTCT GATGGCTGGA	25740
40	CTGTTGATGT GCTACGACAA GAACTGGCC AGTTCTATTC AGCTGCGATC AGGGGTCAAGG	25800
	AGCCTTTATC GCAGGCCAAG TCCCTCCCTA TTCATAACCG CGACTTTGCT GTTGGCAGA	25860
	GGCAGGAGAA CCAGATCAAG GAGCAAGCGA AGCAGCTCAA GTATTGGTCA CAGCAGCTCG	25920
	CAGATAGCAC CCCCTGCGAG TTCTAACGG ACCTCCCTCG GCCCTCTATC CTGCTGGTG	25980
45	AAGCTGACGC CGTTCCATG GTGATTGATG GCACGGTGTAA TCAGCTCCCTT ACTGATTCT	26040
	GCCGGACGCA CCAAGTCACA TCGTTCTCAG TCCCTGCTCGC AGCCTCCGC ACTGCCACT	26100
	ACCGCCTTAC CGGGACACTC GACGCGACGG TTGGCACACC AATCGCTAAC CGGAACCCGC	26160
50	CAGAGTTGGA AGGTCTGATC GGTTCTTCG TTAACACGCA GTGTATGAGG ATGGCAATCA	26220
	GTGAGACTGA AACCTTGAG TCACTAGTCC AGCAGGTTCG CTTGACTACG ACAGAAGCCT	26280
	TTGCGAACCA AGATGTGCCG TTGAGCAGA TTGTGTCAAC CCTTCTTCCT GGGTCACGAG	26340
	ATACGTCAAG GAACCCGCTT GTGCAGGTCA TGTTGCCCT GCAATCACAG CAAGACCTCG	26400

	GAAGAATCCA GCTGGAAGGT ATGACGGACG AAGCTCTGGA AACGCCGCTG TCGACGAGAC	26460
5	TCGACCTTGA GGTTCACCTC TTCCAGGAGG TTGGAAAGCT GAGCGGCAGC CTCTTGACT	26520
	CCACGGACCT CTTCGAGGTC GAGACGATTG GTGGAATCGT TGATGTGTT CGGGAGATCT	26580
	TGCGCCGCGG CCTTGAGCAA CCCAAGCAGC GACTGATGGC CATGCCAATT ACCGATGGCA	26640
10	TCACAAAGCT ACGCGACCAG GGTCTCCTAA CAGTGGCGAA ACCAGCCTAC CCTCGCGAAT	26700
	CGAGTGTCA AGATCTGTT AGACAGCAGG TTGCGGCCGC ACCGGATGCC ATCGCTGTGT	26760
	GGGATTCCCTC CTCAACATTG ACCTATGCCG ACCTCGATGG GCAATCGAAC AAGCTCGCCC	26820
15	ACTGGCTGTG CCAGCGCAAT ATGGCCCCAG AGACCTTGGT AGCTGTATTG GCGCCACGCT	26880
	CATGCCCTCAC CATCGTCGCA TTCCTCGGTG TTTGAAGGC TAATCTGGCC TACCTGCCCT	26940
	TGGATGTCAA TGCGCCTGCT GCTCGTATCG AGGCTATCCT GTCAGCAGTA CCAGGCCACA	27000
	AGCTGGCCTG GGTGCAGGCT CATGGGCCG AGCTTGGCCT GACGATGGCT GATACTGAAC	27060
20	TGGTGCAGAT CGACGAGGCA CTTGCATCCA GTTCATCCGG TGACCATGAG CAGATCCATG	27120
	CGTCGGCCCC TACTGCCACA AGTCTTGCCT ACGTGATGTT TACGTCAGGG TCTACTGGGA	27180
	AACCAAAGGG TGTCAATGATC GACCACCGCA GCATCATTG ACTTGTCAAG AACAGCGATG	27240
25	TTGTTGCCAC TCTGCCCTAG CCAGTCCGGA TGGCGAATGT ATCAAACCTT GCCTTCGACA	27300
	TCTCGGTGCA AGAAATCTAC ACGGCGCTCC TAAACGGTGG CACTCTGGTC TGCTTGGACT	27360
	ATCTGACGCT ATTGGACAGC AAAATTCTTT ATAACGTTTT TGTGGAAGCA CAGGTCAACG	27420
30	CCGCATGTT CACGCCGGTT CTCCCTCAAGC AATGTCTTGG AAACATGCC GCCATCATCA	27480
	GTCGCCTGAG TGTCTCTTT AACGTTGGTG ACAGGCTGGA TGCCCACGAT GCTGTGGCTG	27540
	CATCAGGCCCT GATCCAAGAC GCCGTATAACA ACGCCTACGG TCCCACGGAG AACGGCATGC	27600
35	AGAGTACGAT GTACAAGGTC GACGTCAATG AGCCTTTCGT CAACGGCGTC CCGATCGGTC	27660
	GATCCATCAC CAACTCTGGG GTTACGTCA TGGACGGCAA TCAACAGCTC GTATCTCCTG	27720
	GTGTGATGGG AGAAATTGTC GTTACGGTG ATGGTCTTGC CCGTGGCTAT ACAGACTCAG	27780
40	CCCTAGACGA GGACCGGTTT GTTCACGTCA CGATCGATGG TGAGGAAAAT ATCAAGGCAT	27840
	ACCGAACCGG TGATCGAGTC CGCTACCGGC CCAAGGACTT TGAGATTGAA TTCTTCGGCC	27900
	GTATGGATCA ACAGGTGAAG ATTCTGGTC ACCGCATTGA GCCAGCAGAA GTGGAACATG	27960
	CACTGCTCGG CCACGACTTG GTTCACGTG CAGCTGTCGT GCTTCGAAAG CCAGCAAATC	28020
45	AAGAACCGAGA GATGATTGCT TTCATCACCA GCCAGGAAGA CGAGACTATC GAGCAGCATG	28080
	AGTCAAACAA GCAGGTCCAA GGCTGGGGAG AGCATTTCGA CGTAAGCAGG TATGCTGATA	28140
	TCAAGGATCT CGACACTTCT ACCTTGGTC ACGACTTTTT GGGATGGACA TCTATGTATG	28200
50	ACGGAGTTGA CATTCCGTGTC AACGAGATGA AAGAGTGGCT TGATGAAACT ACGGCCTCCC	28260
	TCCTAGACAA CCGCCCCACCT GGTCAATATCC TCGAGATCGG AGCCGGAACG GGCATGATTC	28320
	TATCTAACCT GGGCAAAGTC GACGGCCTAC AGAAGTATGT CGGTCTTGAC CCGGCTCCCT	28380

	CAGCCGCAAT CTTTGTCAAC GAAGCCGTCA AGTCTCTGCC AAGTCTAGCC GGTAAGGCC	28440
5	GGGTACTTGT TGGAACTGCC CTGGATATCG GTTCTCTGGA CAAGAATGAG ATCCAACCTG	28500
	AGCTTGTGGT TATCAACTCC GTGGCCCAGT ACTTCCCCAC ATCAGAGTAC TTGATCAAGG	28560
	TGGTCAAAGC TGTTGTGGAA GTGCCAGCG TCAAGCGTGT TTTCTTGCG GATATCAGAT	28620
10	CCCAGGCCCT TAACAGGGAC TTCCTGCAG CTCGTCCGT TCGTGCCTG GGTGACAATG	28680
	CTAGCAAAGA GCAGATCCGG GAAAAGATCG CAGAGCTCGA AGAGAGCGAA GAAGAACCTC	28740
	TCGTGGACCC AGCCTCTTC GTGAGCTTGA GAAGCCAGCT GCCCAACATC AAGCACGTTG	28800
	AGGTCTGCC CAAGCTGATG AAGGCCACCA ACGAGCTGAG CTCGTACAGA TATGCTGCGG	28860
15	TTCTACACAT CAGCCACAAAC GAAGAGGAGC AGCTGCTCAT ACAGGATATC GATCCCACAG	28920
	CATGGGTTGA CTTTGCAGCA ACGCAAAAGG ACTCTCAAGG TCTGAGAAC CTTCTAACAC	28980
	AAGGACGAGA TGATGTGATG ATCGCGTCTG GGAACATCCC GTACAGCAAG ACCATAGTGG	29040
20	AGCGACACAT TATGAACTCT CTTGACCAAG ATCACGTCAA CTCACTCGAC GGGACATCCT	29100
	GGATCTCAGA TGCTCGATCA GCCGCTGCAA TCTGCACTTC GTTCGACGCA CCCGCCCTCA	29160
	CGCAGTTGGC CAAGGAGGAG GGATTCCGGG TAGAGTTGAG CTGGCGCGA CAGAGATCTC	29220
25	AAAACGGCGC CCTCGATGCC GTTTCCACC GTCTGCAAC CGATGCAAAT TGCGAGCGA	29280
	GTCGTGTCCT GGTACACTTC CCTACCGACC ATCAAGGTCTG ACAACTTCGA ACCCTGACGA	29340
	ACCGGCCACT CCAGCGAGCT CAGAGCCGCC GTATCGAGTC ACAAGTCTTC GAGGCACCTGC	29400
	AGACAGCACT GCCGGCCTAC ATGATCCCCT CGCGCATTAT CGTGCTCCCG CAGATGCCGA	29460
30	CCAACGCCAA CGGCAAAGTG GACAGGAAAC AGCTCGCTCG CCCGCGCGAG GTTGTGGCCA	29520
	AGAGAAAGGC AGTGTCAAGCG CGCGTTGCGC CTCGTAATGA CACCGAGATA GTTCTTGCG	29580
	AGGAATACGC AGATATCCTA GGAACTGAAG TTGGCATCAC GGACAACCTTC TTGACATGG	29640
35	GCGGGCATTC ACTCATGGCT ACGAAGCTCG CAGCCCGACT AAGCCGGCGA CTAGATACCC	29700
	GGGTTACGGT CAAGGAGGTG TTGATAAAC CCGTCTGGC TGACCTCGCT GCTTCGATCG	29760
	AACAGGGCTC GACACCTCAT CTGCCTATTG CCTCATCGGT GTATTCCGGA CCGGTGGAGC	29820
40	AGTCGTACGC CCAAGGTCTG TTGTGGTCT TGGATCAGTT CAAACCTCAAC GCGACGTGGT	29880
	ATCACATGTC GCTGGCGATG AGGCTGCTCG GGCCGCTCAA CATGGACGCG CTGGACGTGG	29940
	CCTTACGGGC GCTGGAGCAG CGACACGAGA CGCTTCGAC AACCTTGAG GCTCAAAGG	30000
45	ACATCGGCGT CCAGGTCTGTT CATGAGGCCG GAATGAAGAG GCTCAAGGTC CTTGACCTAT	30060
	CAGACAAGAA CGAGAAGGGAG CACATGGCCG TGCTAGAGAA TGAACAGATG AGACCGTTCA	30120
	CTCTTGCTTC AGAGCCAGGC TGGAAGGGTC ATCTTGCTCG CCTTGGCCCG ACGGAGTATA	30180
	TCCCTCTCCCT CGTCATGCAT CACATGTTCT CAGACGGCTG GTCCGTTGAT ATCCTGAGAC	30240
50	AGGAGCTGG TCAATTCTAC TCAGCCGCTT TACGTGGCAG GGATCCGTTA TCTCAGGTCA	30300
	AGCCCCCTCCC AATACAATAT CGTGACTTTG CGGCTTGGCA GAAGGAAGCT GCCCAAGTTG	30360
	CCGAGCATGA GAGGCAGCTC GCGTACTGGG AGAACCAAGTT AGCTGACAGT ACTCCCGGTG	30420

5	AGCTTCTGAC CGACTTTCCC CGCCCACAGT TCCTGAGTGG GAAGGCTGGT GTCATCCGG	30480
10	TCACCATTGA GGGGCCGGTC TACGAGAACG TTCTGAAAGTT CTCCAAGGAG CGCCAGGTAA	30540
15	CTCTGTTCTC GGTGCTATTAA ACAGCGTCC GGGCCACACA CTTTCGTCTC ACTGGTGCAG	30600
20	AGGATGCTAC GATCGGTACCC CCAATTGCAA ATCGCAACCG GCCAGAACTC GAGCATATCA	30660
25	TTGGATTCTT CGTCAACACC CAATGCATGC GTCTTCTCCT CGATACCGGC AGCACATTG	30720
30	AATCCCTAGT CCAGCATGTT CGGTCCGTGG CTACAGATGC CTATTCCAAT CAGGATATTG	30780
35	CCTTCGAACG GATCGTCTCG GCACTTCTCC CTGGCTCGAG AGATGCCTCA CGAAGCCAC	30840
40	TAATCCAGCT TATGTTGCC TTGCACTCAC AGCCAGATCT CGGGAACATT ACTCTCGAAG	30900
45	GACTCGAGCA TGAGCGCCTG CCAACAAGCG TCGCAACACG TTTCGACATG GAGTTCCACC	30960
50	TGTTCCAAGA GCCTAACAAAG CTGAGTGGTT CAATACTCTT TGCCGATGAG CTCTTCCAGC	31020
55	CTGAAACAAT CAACAGCGTC GTGACTGTGT TCCAGGAGAT ACTCCGACGC GGCTCGACC	31080
60	AACCCCAAGT CTCCATTCT ACTATCCCC TGACTGATGG GTTGATTGAT CTCGAGAAC	31140
65	TGGGCTTGCT GGAAATCGAG AGCAGCAACT TCCCTCGCGA CTACTCGGTT GTCGACGTCT	31200
70	TCCGACAGCA GGTGGCTGCC AATCCAAATG CGCCCGCTGT CGTGGATTG GAGACATCCA	31260
75	TGAGCTACAC CTCGCTAGAT CAGAAGTCTG AGCAGATTGC TGCCGGTTA CACGCTCAAG	31320
80	GCCTCCGCC TGAGTCATTG ATCTCGTGA TGGGCCACG ATCTTCGAA ACGATCGTCT	31380
85	CCTTATTCTGG TATCTTGAAG GCTGGCTACG CCTACCTGCC TCTGGATGTG AATTCCCTG	31440
90	CAGCTCGAAT CCAACCGATC CTATCCGAGG TTGAAGGAAA AAGACTGGTA CTGCTAGGAT	31500
95	CAGGGATAGA CATGCCTCAA AGCGACCGAA TGGATGTTGA AACCGCTCGA ATTCAAGGACA	31560
100	TCCTAACGAA CACAAAGGTC GAGAGATCTG ATCCCCATGAG CAGGCCATCG GCAACTAGCC	31620
105	TTGCCTATGT CATCTTCACC TCCGGGTCAA CTGGCCGTCC CAAGGGCGTG ATGATCGAGC	31680
110	ATCGCAATAT TCTGCGCCTT GTCAAGCAGT CTAATGTTAC GTCTCAGCTG CCGCAGGATC	31740
115	TGCGCATGGC ACATATCTCC AACCTAGCCT TTGACGCGTC CATCTGGAG ATATTCACGG	31800
120	CAATTGGAA TGGCGGCGCC CTTATTGCA TTGATTACTT CACTTTGCTG GATAGTCAAG	31860
125	CCCTCCGGAC GACATTCGAA AAAGCCAGGG TCAATGCTAC CCTATTGCG CCGGCCTTGC	31920
130	TCAAAGAATG CCTCAATCAC GCGCCGACCT TGGTGAGGA TCTCAAAGTG CTCTATATCG	31980
135	GTGGCGACCG ACTCGATGCC ACCGACCGGG CCAAAATACA AGCCCTGTG AAGGGCACGG	32040
140	TCTACAACGC GTACGGGCCG ACAGAGAACAA CAGTCATGAG CACGATCTAC AGGCTCACAG	32100
145	ATGGAGAGTC TTATGCTAAC GGTGTGCCAA TCGGCAATGC TGTGAGCAGC TCTGGCGCTT	32160
150	ATATCATGGA CCAAAAGCAG CGCCTCGTTC CTCCCGGTGT TATGGGAGAG CTCGTTGTGA	32220
155	GCGGCATGG CCTCGCCCGT GGCTACACCA ACTCGACCCCT CAATGCTGAT CGTTTCGTG	32280
160	ATATTGTCAT CAACGATCAA AAAGCCCGCG CATAACGGAC CGGAGATCGC ACTCGTTACC	32340
165	GGCCCAAGGA TGGTAGCATTG GAGTTCTCG GCCGTATGGA TCAGCAAGTT AAAATCCGTG	32400

	GTCATCGAGT TGAGCCGGCC GAGGTCGAGC AAGCCATGCT CGGCAATAAG GCTATCCATG	32460
5	ATGCAGCAGT TGTGTTCAAG CGGGTGGATG GCCAGGAAC GGAGATGATC GGCTTTGTTT	32520
	CCATGGCCAG CGACAGATTG AGCGAAGGGG AGGAGGAGAT CACCAACCAA GTCCAGGAGT	32580
	GGGAAGACCA CTTCGAAAGC ACCGCCTACG CTGGCATTGA GGCCATCGAC CAGGCTACCC	32640
10	TGGGACGCGA TTTCACCTCA TGGACCTCGA TGTACAACGG CAACTTGATT GACAAAGCCG	32700
	AAATGGAGGA GTGGCTTGAC GATACAATGC AATCCCTCCT TGATAAGGAG GATGCCAGGC	32760
	CGTGTGCTGA GATCGGAACA GGTACCGGCA TGGTTCTATT CAATTTGCCA AAGAACGATG	32820
15	GCCTTGAGAG CTATGTCGGT ATAGAGCCTT CACGGCTGC AGCCTTGTTC GTCGACAAAG	32880
	CAGCCCCAAGA TTTCCCAGGT CTGCAAGGAA AGACGCAAAT CCTTGTCGGC ACAGCCGAGG	32940
	ACATCAAGCT GGTCAAGGAC TTCCACCCCTG ACGTGGTTGT CATTAACTCG GTAGCCCCAAT	33000
20	ATTTCGGAG CGGGAGCTAC CTTGTACAGA TAGCGAGCGA ACTGATTACAT ATGACCAGCG	33060
	TCAAGACGAT CTTCTTTGGA GATATGCGAT CCTGGGCCAC CAACAGGGAT TTCTCGTGT	33120
	CCCGAGCTCT TTACACGCTA GGTGACAAGG CTACAAAGGA TCAGATTGC CAGGAGGTTG	33180
	CCCGACTTGA GGAGAATGAA GACGAGTTGC TTGTTGACCC AGCATTCTTC ACCTCTTGA	33240
25	CCAGCCAATG GCCCCGGCAAG GTCAAGCATG TTGAGATCTT GCGGAAGCGG ATGAGGACGA	33300
	GCAATGAACG AAGCTCGTAC CGATATGCTG CGGTGCTACA CATCTGCAGG GATGGGGAGG	33360
	GTAGGAACAG ATATGGCAGG CGTGTCCACT CAGTGGAAAGA GAACGCCTGG ATCGACTTCG	33420
30	CGTCGTCTGG CATGGATCGT CACGCCCTCG TTCAGATGCT CGATGAACGT AGAGACGCCA	33480
	AGACTGTCGC CATCGGCAAC ATCCCTCACA GCAACACGAT CAACGAGCGA CACTTTACGA	33540
	CATCCCTGGA TACTGAGGGA GAAGGCATTG CCCAAGATTG ACTGGATGGA TCCGCCCTGGC	33600
35	AATCGGCTAC GAAGGCATG GCGCGCGCT GTCCCTGCCT TTCCGTCAACC GAACTGGTCG	33660
	AGATCGGCCA AGCGGCAGGA TTCAGGGTCG AGGTCAAGCTG GGCTCGTCAA CGATCCCAAC	33720
	ATGGTGCACT GGACGTCGTC TTCCATCATC TTGAAGATGA CAGAGTAGGC CGCGTCTTGA	33780
	TCAACTTCCC CACAGACTTC GAGCGTCTAC CCCCTAGCAC CGGCCTGACC AGTCGGCCGC	33840
40	TGCAGCGCAT CCAGAACCGT CGGTTCGAGT CGCAGATCCG CGAACAGCTG CAAACACTGC	33900
	TGCCACCTTA TATGGTTCCA TCACGGATCG TCGTGTGGA GCGGATGCCT CTCAACGCCA	33960
	ACAGCAAAGT CGACCGTAAA GAATTGGCAA GGAAGGCGAG GACCCTACAA ACCATCAAGC	34020
45	CTTCTGCAAC GCGCGTGGCT CCTCGCAACG ATATTGAAGC CGTCTTGTGC GACGAGTTCC	34080
	AGGCAGTTCT TGGTGTACCA GTCGGAGTC TGGATAACTT TTTCGAGTTG GGCGGACACT	34140
	CCCTGATGGC TACGAAACTG GCGGCCGTC TCAGTCGCCG CCTCGACACC CGCGTCTCG	34200
50	TGAAGGATAT CTTCAACCAA CCAATCCTTC AAGATCTCGC GGACGTGGTC CAGACTGGCT	34260
	CCGCTCCTCA TGAAGCTATT CCCTCCACGC CCTACTCTGG TCCC GTGGAG CAATCCTCT	34320
	CTCAGGGCCG TCTATGGTTC TTGGATCAGC TGAATCTCAA TGCATCGTGG TACCACATGC	34380
55	CATTAGCGAG TCGCTTGCAGA GGCCCGCTTC GGATCGAGGC GCTGCAGTCA GCCCTGGCTA	34440

	CGATTGAGGC CGGGCACGAG TCCCTGCGCA CCACATTCGA GGAGCAAGAT GGTGTTCCCG	34500
5	TTCAGATTGT ACGCGCTGCG CGCAACAAGC AGCTGAGGAT CATCGACGTG TCGGCCACCG	34560
	AGGATGCGTA TCTCGCAGCA TTGAAGCAAG AGCAAGACGC CGCATTGAT CTGACTGCTG	34620
	AGCCAGGCTG GCGAGTAGCA CTGTTGCGCT TGGGACCGGA TGATCATGTC CTGTCTATCG	34680
10	TCATGCACCA CATCATATCT GACGGATGGT CGGTTGATAT CCTGCGACAA GAACTCGGC	34740
	AGCTCTACTC GAATGCCTCA TCGCAGCCCG CTCCCTTCC GATTCAATAAC CGAGATTGCG	34800
	CCATCTGGCA GAAGCAGGAT AGTCAGATCG CTGAGCACCA AAAGCAGCTG AACTACTGGA	34860
15	AGAGACAACG GGTCAACAGC AAGCCGGCTG AGCTCCTGGC GGACTTCACT CGTCCGAAGG	34920
	CGTTATCTGG CGATGCTGAT GTCATACCGA TAGAGATTGA TGACCAGGTA TATCAGAAC	34980
	TCCGCTCGTT TTGTCGCGCT CGGCATGTCA CCAGCTTGT TGCACTCTTA GCAGCTTCC	35040
20	GGGCTGCTCA CTACCGCCTA ACTGGGGCCG AAGATGCAAC TATCGGCTCT CCAATCGCCA	35100
	ACAGAAATCG ACCTGAGCTT GAAGGCCCTA TTGGATGCTT TGTTAACACC CAGTGTCTCC	35160
	GAATTCCGTG TAAGAGCGAG GACACATTTG ACACGTTGGT TAAACAGGCA CGAGAACCGG	35220
	CGACCGAGGC CCAGGACAAAC CAAGATGTCC CGTTGAGAG GATCGTTCT TCCATGGTTG	35280
25	CTAGCTCGCG AGATAACCTCG CGAAATCCAC TCGTTCAGGT CATGTTGCT GTGCACTCTC	35340
	AGCACGACCT TGGTAACATT CGTCTCGAAG GTGTTGAGGG GAAGCCCGTT TCGATGGCAG	35400
	CGTCCACACG CTTTGACCGC GAAATGCACC TATTGAGGA CCAAGGGATG CTCGGCGGCA	35460
30	ACGTCGTCTT TTCGAAGGAT CTGTTCGAAT CCGAGACGAT CCCGAGTGTGTT GTGGCCGTG	35520
	TCCAGGAGAC CCTGAGGCGT GGCCTAGCCA ATCCTCACGC AAATCTCGCA ACACCTCCTC	35580
	TTACCGATGG ATTGCCAGT CTTCGAAGCC TGTGCTTCA AGTCAATCAG CCTGACTACC	35640
35	CCCGAGATGC CTCCGTGATC GACGTTTCA GAGAGCAGGT AGCATGATA CCCAAGTCTA	35700
	TCGCCGTAT CGATGCTTCT TCACAGCTCA CCTACACCGA GCTCGACGAG AGATCTAGCC	35760
	AGCTGCCAC GTGGCTACGC CGACAAGTCA CAGTCCCTGA GGAGCTGGTC GGCGTCTCG	35820
40	CTCCACGGTC CTGTGAGACA ATCATCGCTT TCCTCGGCAT CATCAAAGCG AATCTCGCCT	35880
	ATCTGCCACT TGACGTCAAC GCACCCGCTG GTCGGATCGA GACAATCCTG TCATCTCTAC	35940
	CAGGAAACAG GCTTATTTTA CTTGGATCAG ATACGCAGGC GGTCAAGCTT CACGCAAACA	36000
	GCGTTGATT CACCCGGATC AGCGACGCC TCGTCGAGAG CGGCAGTCCC CCTACCGAAG	36060
45	AACTTCCAC ACGGCCGACT GCACAAAGCC TTGCTATGT CATGTTCACA TCAGGCTCAA	36120
	CTGGCGTCCC GAAGGGTGTGTC ATGGTAGAGC ACCGGGGTAT CACACGTCTC GTGAAAAACA	36180
	GCAACGTGGT CGCAAAGCAA CCGGCAGCAG CTGCTATCGC TCATCTTCC AACATTGCTT	36240
50	TCGACGCCCTC TTCTGGGAG ATATACGCTC CTCTCCTTAA CGGCGGTACA GTCGTCTGCA	36300
	TTGATTACTA CACCACGATC GATATCAAAG CCCTCGAGGC GGTATTCAA CAGCACCAACA	36360
	TCCCGGGAGC AATGCTTCCA CCAGCACTTC TCAAACAGTG TCTGGTCTCT GCCCCTACTA	36420

	TGATCAGCTC TCTGGAGATA CTTTCGCCG CGGCGATCG GTTGAGCAGC CAAGATGCCA	36480
5	TCCCTGGCGCG ACGTGCCGTT GGTTCGGGCG TTTACAACGC TTACGGCCCT ACTGAGAAC	36540
	CGGTCCCTGAG TACGATACAC AACATCGGCG AGAATGAGGC ATTTTCAAT GGCCTTCCA	36600
10	TTGGAAACGC TGTCACTAAC TCCGGTGCCT TTGTCAATGGA TCAAATCAG CAGCTGGCT	36660
	CCGCCGGTGT GATCGGAGAG CTTGTTGTGA CGGAGATGG CCTTGCCCCG GGATACACAG	36720
15	ATTCTAACGCT TAGGGTGGAT CGATTCACT ATATTACCCCT TGACGGGAAC CGGGTCAGAG	36780
	CTTACCGCAC GGGCGACCCT GTCAGGCACC GGCTAAGGA TGGGCAAATT GAGTTCTCG	36840
	GGCGAATGGA TCAGCAGATC AAGATCCGTG GTCACTGCAT CGAGCCAGCA GAGGTGGAGC	36900
20	AGGCCTCGC CCGTGACCCG GCCATCAGCG ATTCCGCTGT TATCACTCAG CTCACGGATG	36960
	AAGAGGAGCC GGAACCTGGTG GCTTTCTCT CATTGAAGGG GAATGCCAAC GGCACCAACG	37020
	GTGTCAACGG TGTGAGCGAT CAAGAGAAGA TCGACGGCGA TGAGCAACAT GCTCTGCTGA	37080
25	TGGAGAACAA GATCCGTAC AACCTACAGG CGCTGCTGCC CACTTACATG ATCCCCTCGC	37140
	GGATCATCCA TGTCGATCAG CTGCCGGTCA ATGCCAACGG TAAGATTGAC CGCAATGAGC	37200
	TGGCTGTTCG AGCCCAGGCA ACGCCAAGGA CCAGTTCAGT GTCAACCTAC GTGGCCCCTC	37260
30	GCAACGATAT CGAAACCATC ATCTGTAAGG AATTGCGAGA TATCCTCAGC GTTCGAGTCG	37320
	GAATCACAGA CAACTTCTTC GACCTGGTG GACACTCACT TATAGCCACC AAGCTAGCCG	37380
	CCCGCCTTAG CCGTCGACTA GATACTCGCG TGTCTGTTAG GGACGTCTT GACACTCCCG	37440
35	TGGTAGGCCA ATTGGCGGCT TCTATCCAGC AAGGCTCGAC CCCTCATGAA GCTATTCCGG	37500
	CGTTATCACA CTCGGGACCT GTGCAACAGT CCTTGCTCA AGGCCGTCTT TGGTCTCTGG	37560
	ACCGTTCAA TCTCAACGCT GCCTGGTACA TCATGCCATT CGGGGTTCTG CTTCGGGAC	37620
	CTCTCCGAGT CGATGCACTT CAGACTGCAT TGAGGGCTCT CGAAGAACGG CACGAGTTGC	37680
40	TACGCACCAC GTTCGAAGAA CAGGATGGCG TTGGTATGCA AATCGTTCAC TCGCCCCGAA	37740
	TGAGGGACAT CTGCGTCGTA GACATCTCTG GCGCCAATGA GGATCTTGCAG AAGCTGAAGG	37800
	AGGAGCAGCA AGCTCCTTC AATCTCTCTA CTGAAAGTCGC TTGGAGGGTA GCACTCTTCA	37860
45	AGGCTGGAGA GAACCACAC ATCCCTCTCA TCGTCATGCA TCACATAATT TCAGATGGCT	37920
	GGTCAGTTGA CATCTTCCAG CAGGAGCTTG CCCAATTCTA CTCGGTAGCT GTACGAGGGC	37980
	ATGACCCCT TTCCCGAGTC AAACCGCTCC CCATTCACTA CCGCGATTTT GCTGTCTGGC	38040
50	AGAGACAAGA TAAGCAAGTT GCCGTTCACG AAAGCCAACG TCAGTACTGG ATAGAGCAGC	38100
	TCGCGGATAG CACGCCAGCC GAGATCCTAT CTGATTTAA CCGACCGGGAG GTCTGTCCG	38160
	GCGAAGCTGG TACAGTTCCC ATCGTATCG AGGACGAGGT TTATGAGAAG CTCTCCCTCT	38220
	TCTGCCGCAA TCATCAGGTC ACCAGCTTCG TCGTCCTCT GGCTGCTTTC CGCGTCGCAC	38280
55	ATTATCGCCT AACTGGGGCA GAGGATGCGA CTATCGGTAC ACCAATTGCG AACCGCAACC	38340
	GCCCCGAACT TGAGGACTTG ATCGGTTCT TTGTCAATAC ACAATGCATG AGAATCGCGC	38400
	TCGAAGAACAA CGATAATTTC CTATCAGTAG TCGCAAGAGT TCGCTCAACA CGGGCAAGCG	38460

	CCTTCGAAAA CCAGGATGTG CCATTGAGC GCCTTGTATC TGCACCTCTG CCCGGCTCTA	38520
5	GAGATGCCTC CCGGAATCCC CTCGTTAAC AC TCATGTTGT CGTCCACTCC CAGCGAAATC	38580
	TCGGTAAACT GCAACTGGAG GGCTTGAAG GCGAACCAAC CCCGTACACC GCGACGACCC	38640
	GCTTCGATGT TGAGTTCCAC CTCTTGAAC AAGACAAAGG CCTGCCGGA AATGTTGTCT	38700
10	TCGCAGCAGA CTTGTTCGAG GCTGCCACTA TCCGCAGCGT TGTTGAAGTC TTCCACGAGA	38760
	TCCCTCCGTCG TGGTCTCGAC CAGCCAGATA TCGCAATTTC CACCATGCCA CTTGTCGATG	38820
	GCCTGGCGGC GCTCAACAGC CGTAACATTAC CCGCAGTTGA AGACATCGAA CCTGACTTCG	38880
15	CCACCGAGGC CTCGGTGGTT GATGTTCTCC AGACACAAGT GGTCGCTAAC CCAGATGCC	38940
	TGGCTGTGAC CGACACATCC ACAAAAGCTTA CATATGCGGA GCTGGATCAA CAATCCGATC	39000
	ATGTCGCGGC TTGGCTGTCC AAACAGAAGC TACCAAGCAGA GAGCATCGTC GTTGTCTTG	39060
20	CGCCACGATC CTCTGAGACT ATCGTAGCAT GCATTGGCAT CCTCAAAGCG AACCTCCGAT	39120
	ATCTCCCCAT GGATTCCAAC GTCCCCGAAG CCCGTCGCCA AGCAATTCTT TCGGAGATT	39180
	CAGGGGAGAA GTTCGTTTG CTTGGAGCAG GAGTGCCTAT TCCTGACAAC AAGACAGCTG	39240
	ATGTCAGGAT GGTCTTCATC AGCGATATCG TCGCCAGCAA GACAGACAAG TCCTACTCAC	39300
25	CCGGCACTCG GCCATCTGCA TCAAGCCTTG CCTATGTTAT CTTCACATCA GGCTCGACAG	39360
	GTCGGCCAAA GGGTGTCTATG GTCGAGGCATC GGGGTGTTAT TTCTTGGTG AAGCAGAACG	39420
	CTTCAAGAAT ACCACAAAGT CTGGGGATGG CACATGTTTC CAATCTCGCA TTCTGATGCTT	39480
30	CCGTGTGGGA GATATTCAAC ACGCTGCTCA ATGGAGGAAC GCTTTCTGT ATCAGCTACT	39540
	TTACTGTCTT GGACAGCAAA GCACTTTCTG CCGCTTTCTC CGATCATCGC ATTAACATCA	39600
	CCCTGCTCCC ACCGGCCTTG CTCAAGCAAT GTCTTGCAGA CGCGCCATCT GTCCTGAGCT	39660
35	CCCTCGAGTC TCTGTACATT GGAGGGCAGC GCCTTGATGG AGCTGATGCA ACCAAGGTGA	39720
	AGGACCTCGT CAAAGGCAAG GCCTACAAATG CCTACGGTCC CACCGAGAAAT TCCGTATGA	39780
	GCACGATCTA TACCATCGAA CACGAGACTT TTGCGAATGG CGTTCCCATC GGCACATCTT	39840
40	TAGGCCCAA GTCCAAGGCC TACATTATGG ACCAGGATCA GCAGCTCGTA CCAGCAGGCC	39900
	TGATGGGAGA GCTTGTCTT GCTGGCGATG GTCTCGCAGC AGGGTATACC GATCCATCAC	39960
	TGAACACGGG CCGGTTCATC CACATCACGA TCGATGGCAA ACAAGTTCAG GCATACCGGA	40020
	CCGGCGATCG AGTCAGATAAC CGACCTAGGG ACTACCAAAT CGAGTTCTTT GGCGTTAG	40080
45	ATCAGCAGAT CAAGATTGCG GGTATCGCA TCGAGCCAGC TGAAGTGGAG CAGGCTCTTC	40140
	TCAGCGACTC ATCGATCAAC GATGCCATTG TTGTGTGGC ACAAAACAAG GAGGGACTCG	40200
	AAATGGTTGG TTACATCACG ACCCAGGCTG CACAATCCGT CGACAAGGAG GAAGCCAGCA	40260
50	ACAAGGTGCA GGAGTGGGAG GCTCATTCTG ACTCAACTGC ATATGCCAAC ATCGGGGGTA	40320
	TTGATCGCGA TGCCCTCGGA CAGGACTTCT TATCCTGGAC ATCTATGTAC GACGGCTCAT	40380
	TGATTCCCCG TGAAGAGATG CAGGAATGGC TCAACGACAC TATGCGCTCA CTCCTCGACA	40440

	ACCAACCACC CGGAAAAGTG CTCGAGATCG GAACTGGTAC CGGTATGGTG CTGTTCAATC	40500
5	TCGGCAAGGT TGAGGGACTA CAGAGCTATG CCGGTCTTGA GCCCTCGCGC TCCGTACCG	40560
	CCTGGGTTAA CAAGGCAATC GAAACTTCC CAAGCCTGGC AGGAAGCGCC CGAGTCCACG	40620
	TTGGAACCGC CGAGGATATC AGCTCCATTG ATGGACTTCG TTCCGATCTC GTTGTGATCA	40680
10	ACTCAGTCGC CCAAATCTTC CCAAGTCGAG AATATCTCGC TGAGCTGACG GCCAACTTGA	40740
	TTCGACTGCC CGGCCTTAAG CGTATTTCT TCGGTGACAT GAGAACGTAT GCTACCAATA	40800
	AGGACTTCTT GGTGGCACGA GCAGTCCATA CCCTAGGGTC CAATGCATCG AAGGCCATGG	40860
	TTCGACAACA AGTGGCCAAG CTTGAAGATG ACGAGGAAGA GTTGCTTGTT GACCCTGCCT	40920
15	TCTTCACCAG CCTGAGCGAC CAGTTCCCTG ACGAAATCAA GCATGTCGAA ATTCTGCCAA	40980
	AGAGGATGGC CGCGACCAAC GAACTCAGCT CTTACAGATA TGCTGCTGTC ATTCTATGTGG	41040
	GAGGCCACCA GATGCCGAAT GGGGAGGATG AGGATAAGCA ATGGGCTGTC AAGGATATCA	41100
20	ATCCGAAGGC CTGGGTGGAC TTTGCTGGCA CGAGGATGGA CCGTCAGGCT CTCTTGCA	41160
	TCCTTCAGGA CCGCCAACGT GGCGATGACG TTGTTGCCGT CAGTAACATC CCATACAGCA	41220
	AGACCATCAT GGAGCGCCAT CTGTCTCAGT CACTTGATGA TGACGAGGAC GGCACCTCAG	41280
25	CGGTAGACGG AACGGCTGG ATATCGCGTA CGCAATCAGC GGCGAAGGAA TGCCCTGCTC	41340
	TCTCAGTGGC CGACCTGATT GAGATTGGTA AGGGGATCGG CTTCGAAGTT GAGGCCAGCT	41400
	GGGCTCGACA ACACTCCCAG CGCGGCGGAC TCGATGCTGT TTTCCACCGA TTCGAACCAC	41460
30	CAAGACACTC AGGTCAATGTC ATGTTCAAGGT TCCCGACTGA ACACAAGGGC CGGTCTCGA	41520
	GCAGTCTCAC GAATCGCCCG CTACACCTGC TTCAGAGCCG CCGACTGGAG GCAAAGGTCC	41580
	GCGAGCGGCT GCAATCACTG CTTCCACCGT ACATGATTCC GTCTCGGATC ACGTTGCTCG	41640
	ATCAGATGCC TCTCACGTCC AACGGCAAGG TGGATCGCAA GAAGCTTGCT CGACAAGCCC	41700
35	GGGTCAATCCC AAGAAGTGC GCAAGCACGT TGGACTTTGT GGCGCCACGC ACGGAATCG	41760
	AAGTCGTCCCT CTGCGAAGAA TTTACCGATC TACTAGGCCT CAAGGTTGGC ATCACAGACA	41820
	ACTTCTTCGA GTTGGGCGGC CATTGCGTGC TGGCCACGAA ACTGAGCGCA CGTCTAAGTC	41880
40	GCAGACTGGA CGCCGGTATC ACTGTGAAGC AGGTCTTGA CCAGCCAGTA CTTGCTGATC	41940
	TTGCTGCTTC TATTCTTCAA GGCTCGTCTC GTCACAGGTC TATCCCGTCT TTACCCCTACG	42000
	AAGGACCCGT GGAGCAGTCC TTTGCCAGG GGCGCTGTG GTTCCTCGAC CAGTTCAACA	42060
45	TCGATGCCCTT GTGGTACCTT ATTCCATTG CACTCCGCAT GGCGGGGCCG CTGCAAGTTG	42120
	ACGCCCTCGC TGCTGCCCTG GTGGCACTTG AAGAGCGTCA TGAATCTCTG CGCACAAACGT	42180
	TTGAGGAACG AGACGGAGTC GGCATCCAAG TGGTGCACCC CCTCCGCACG ACCAAGGATA	42240
50	TCCGGATCAT CGACGTGTCA GGCATGCGAG ACGACGACGC CTACCTCGAG CCATTGCAGA	42300
	AAGAACAGCA GACTCCTTTC GACCTTGCTT CAGAGCCTGG CTGGAGGGTA GCACTGCTGA	42360
	AGCTTGGAAA GGATGACCAC ATCCTCTCTA TTGTCATGCA CCACATCATC TCTGACGGGT	42420
	GGTCTACTGA AGTCTTGCAA AGGGAACCTCG GTCAATTCTA CTTGGCAGCG AAATCCGGGA	42480

	AAGCCCCCTT ATCGCAGGTT GCCCCGCTTC CTATTCAGTA TCGCGATTTC GCTGTTGGC	42540
5	AGAGACAAGA GGAACAGGTC GCTGAGAGTC AAAGGCAGCT CGACTACTGG AAGAACAGC	42600
	TTGCGGACAG TAGCCCGGCT GAGCTCTGG CTGACTACAC CAGGCCGAAC GTACTGTCTG	42660
	GAGAGGCAGG CAGCGTGTCT TTCTGATCA ACGATTCCGGT TTACAAGAGC CTCGTCTCCT	42720
10	TCTGCCGGTC TCGCCAAGTA ACCACCTTA CGACTTTACT GGCAGCGTT CGCGCCGCTC	42780
	ACTATCGAAT GACCAGGTC GACGACGCAA CTATTGGCAC GCCAATTGCC AATCGCAACA	42840
	GGCCTGAGCT TGAAAACCTTG ATCGGCTGCT TCGTCAATAC CCAGTGCATG CGTATCACTA	42900
15	TCGGCGACGA TGAGACGTT GAATCACTGG TACAACAGGT ACGGTCTACC ACCGCGACAG	42960
	CCTTCGAGAA TCAAGACGTT CCGTTGAAC GAATCGTTTC CACCCCTCAGT GCCGGGTCCA	43020
	GGGATACGTC CCGAAACCCC CTAGTACAGC TTCTCTTGC GGTTCATCT CAACAAGGCC	43080
	TGGGCAGGAT CCAGCTCGAC GGTGTCGTG ATGAGCCGGT TCTGTCGACC GTTTCGACTC	43140
20	GGTTCGATCT CGAATTCCAC GCCTTCCAAG AGGCCGACCG GCTCAATGGA AGTGTATGT	43200
	TTGCCACGGA CCTGTTCCAG CCCGAGACCA TCCAAGGTTT CGTTGCGGTT GTCGAAGAGG	43260
	TTCTACAGCG TGGCCTGGAG CAGCCGAGA GTCCCATCGC AACCATGCCG CTGGCCGAAG	43320
25	GCATCGCTCA GCTCCGAGAT GCGGGCGCG TGCAAGATGCC AAAGTCTGAT TACCCCTCGCA	43380
	ACCGCGTCCCT CGTCGATGTC TTCCAGCAGC AGGCTATGGC CAGCCCGTCA ACTGTCCCG	43440
	TCACTGACTC GACCTCCAAG CTGACGTATG CCGAGCTGGA TCGACTCTCC GATCAAGCTG	43500
30	CTTCCTATCT GCGTCGGCAG CAACTCCCGG CGGAGACAAT GGTGGCCGTT CTCGCACCGC	43560
	GCTCTTGTGA GACCATCATC GCGTCCCTAG CTATTCTCAA AGCAAATCTT GCCTACATGC	43620
	CTCTCGACGT CAAACACGCCA TCTGCTCGCA TGGAAAGCCAT CATATCGTCC GTCCCAGGGC	43680
	GTAGGCTCAT CTTGGTTGGC TCGGGCGTCC GCCATGCTGA TATCAACGTA CCGAACGCAA	43740
35	AGACGATGCT GATCAGCGAC ACGGTTACCG GGACTGATGC TATTGGCACT CCCGAACCTC	43800
	TGGTTGTCCG ACCCAGTGCT ACAAGTCTCG CATATGTCAT CTTCACTTCA GGGTCAACGG	43860
	GCAAGCCAAA GGGTGTATG GTGGAGCACC GTGCTATCAT GCGCCTTGTG AAGGACAGTA	43920
40	ACGTCGTGAC TCACATGCCA CCAGCGACAC GGATGGCCCA CGTCACGAAT ATCGCATTG	43980
	ACGTTTCACT GTTCGAGATG TGCGCAACGC TCCTCAACGG CGGAACCTTA GTCTGCATTG	44040
	ACTACCTGAC CCTTCTTGAC AGCACCATGC TCCGGGAGAC GTTTGAGCGT GAGCAGGTT	44100
45	GCGCAGCCAT CTTCCCGCCA GCACTCCTGC GACAGTGCCTT GGTCAACATG CCCGATGCGA	44160
	TCGGCATGTT AGAGGCTGTT TACGTTGCCG GTGATGCTT CCACTCCCGC GACGCCCGCG	44220
	CAACCCAGGC ACTGGCCGGG CCTCGTGTG ACAACGCGTA TGGCCAACT GAGAACGCAA	44280
	TCCTTAGCAC GATATATAAC ATCGATAAGC ACGATCCGTA TGTGAACGGT GTTCCATCG	44340
50	GTAGCGCTGT CAGCAATTCA GGGGCCTATG TCATGGATCG GAACCAGCAG CTTCTCCCTC	44400
	CCGGTGTGAT GGGAGAGCTG GTTGTACAG GAGAGGGTGT AGCTCGCGGC TATACCGACG	44460

	CAAGTCTCGA TACGGACCGC TTCGTCACCG TCACGATCGA TGGCCAGCGC CAGAGGGCGT	44520
5	ACCGCACGGG TGACCGGGTG CGATATCGAC CAAAGGGATT CCAGATAGAG TTCTTCGGCC	44580
	GCCTGGACCA GCAGGCCAAG ATTCGCGGCC ACCGTGTTGA ACTGGGCGAG GTCGAACATG	44640
	CTCTGCTCAG CGAGAATTCA GTCACGGATG CGGCTGTCGT ACTCCGCACC ATGGAAGAGG	44700
10	AGGACCCGCA ACTGGTTGCC TTTGTGACTA CTGATCACGA ATATCGCTCG GGTTCGAGCA	44760
	ACGAAGAGGA GGATCCGTAC GCCACACAGG CAGCAGCGA TATGCGCAAG CGACTCCGGT	44820
	CGCTTCTGCC ATACTACATG GTCCCGTCCC GGGTCACAAT ACTCAGGCAA ATGCCTCTCA	44880
15	ACGCCAACGG CAAGGTGGAC CGAAAAGACC TCGCTGGCG GCCCCAGATG ACTCCGACAG	44940
	CAAGCAGCTC GGGCCCCGTG CATGTGGCTC CTCGCAACGA GACTGAGGCA GCAATTGCG	45000
	ACGAGTTCGA GACTATACTC GGAGTCAAGG TGGGAATCAC AGACAACCTTC TTGAACTAG	45060
	GCGGGCACTC ACTCCTGGCC ACCAAACTCG CTGCTCGGCT CAGCCGCCGG ATGGGCCTTC	45120
20	GCATATCCGT CAAGGATCTG TTGACGATC CTGTTCTGT TTCTCTCGCC GGCAAGCTGG	45180
	AACAACAGCA GGGTTCTCG GGAGAAGATG AAAGCTCGAC AGTTGGTATT GTCCCCTTCC	45240
	AACTCCTCCC CGCGGAAATG TCGAGAGAGA TCATCCAGCG CGATGTTGTA CCTCAGATTG	45300
25	AGAACGGTCA CAGCACACCC CTGGACATGT ATCCAGCCAC GCAGACCGCAG ATCTTCTTCC	45360
	TGCACGACAA AGCGACGGGC CACCCAGCCA CGCCGCCACT GTTCTCCTTG GACTTCCCCG	45420
	AGACCGCCGA CTGCCGTCGT CTGGCAAGCG CCTGCGCCGC TCTCGTCCAG CACTTTGACA	45480
30	TATTCAAGAAC CGTGTTCGTG TCAAGAGCGG GCCGCTTCTA CCAAGTTGTT CTTGCTCATC	45540
	TCGATGTACC TGTCGAGGTC ATCGAGACCG AGCAAGAGTT GGATGAGGTT GCTCTCGCC	45600
	TGCATGAAGC AGACAAGCAG CAGCCCTAC GTCTGGACG TCGATGCTG CGGATGCCA	45660
	TCCTCAAGAG ACCGGGAGCC AAGATGCCAC TTGTTCTCCG AATGTCTCAT TCCCTGTACG	45720
35	ACGGCTTGAG TCTTGAACAC ATCGTCAACG CTCTACATGC CTTGTACAGT GATAAGCACC	45780
	TTGCGCAAGC ACCCAAGTTT GGTCTCTACA TGCATCACAT GGCTAGCCGA CGTGCAGAGG	45840
	GCTACAATTT CTGGCGATCT ATTCTTCAGG GCTCTTCAT GACATCCCTG AAGCGCTCTG	45900
40	TCGGGCCCT CGAGGCCATG ACGCCGTCGT CGGGTACATG GCAGACGTCA AAGTCCATCA	45960
	GGATCCCTCC TGCGGCACTC AAGAACGGCA TTACGCAGGC GACCCCTCTTC ACCGCCGCCG	46020
	TCTCTCTCTT GCTCGCCAAG CATAACCAAGT CGACAGACGT CGTCTCGGC CGCGTCGTAT	46080
45	CTGGACGACA GGATCTCTCC ATAAACTGCC AAGACATCGT GGGACCTTGC ATCAACGAGG	46140
	TGCCTGTGCG CGTTCGGATC GACGAGGGCG ACGACATGGG TGGTCTGCTG CGGCCATTG	46200
	AAGACCAGTA CACCAAGCAGC TTCCGGCACG AGACCTGGG CTTGCAAGAA GTGAAGGAGA	46260
	ACTGCACGGA CTGGACTGAT GCGACCAAGG AGTCAGTTG CTGCATTGCC TTCCAGAAC	46320
50	TCAACCTGCA TCCTGAGGCC GAGATTGAAG GGCAGCAGAT TCGCCTGGAG GGTTTGCCAG	46380
	CAAAGGATCA AGCACGCCAG GCCAATGGTC ATGCCAAAA TGGCACGAAC GGCACGAATG	46440
	GCACGAATGG CACGAATGGC GCGAACGGCA CGAACGGCAC GAATGGCACG AATGGTACCC	46500

5 ATGCCAACCGG TATCAATGGT AGCAACGGTG TCAATGGCCG CGATAGCAAC GTGGTTTCAG 46560
 CCGCTGGCGA TCAAGCTCCT GTTCACGATC TGGACATTGT TGGGATTCCG GAGCCCGACG 46620
 GCAGCGTCAA GATTGGCATT GGTGCGAGCC GGCAGATCCT TGGAGAGAAAG GTCGTGGCA 46680
 GCATGCTCAA TGAACCTTGC GAGACCATGC TCGCTTGAG CAGAACATAG CAGCTTTCC 46740
 10 AGGGAGATTG GTTGGATGGA CAAGATTCTC TTCAATTATG GAGGTTGGCA TGAGGCAACA 46800
 GGAGGACTAC TGACTTTCA TGTTTTTGG GGTTTTTGG GGTTTCTTT TTCCTTCAT 46860
 CTTTACTTGA TGCGCGATGT CTGCTTCCT CTAGAATTC 46899

15 (2) INFORMATION FOR SEQ ID NO: 2:
 20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15281 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
 25 (ii) MOLECULE TYPE: protein
 (iii) HYPOTHETICAL: NO
 (iii) ANTI-SENSE: NO
 30 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Tolypocladium niveum*
 (B) STRAIN: ATCC 34921

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
 Met Gly Ala Ile Gly Gln Asp Met Ala Tyr Asp Arg Leu Ala Asn Pro
 1 5 15
 Ser Arg Ala Ser Ser Ile Ser Ser Asn Arg Tyr Ser Glu Pro Val Glu
 20 25 30
 Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe Leu His Gln Leu Lys Leu
 35 40 45
 Gly Ala Ser Trp Asp Ile Thr Pro Ala Ala Ile Arg Leu Arg Gly His
 50 55 60
 Leu Asp Ile Asp Ala Leu Asn Ala Ala Ser Arg Ala Leu Thr Gln Arg
 65 70 80
 His Glu Thr Leu Arg Thr Thr Phe Lys Glu Gln Asp Gly Val Gly Val
 85 90 95
 Gln Val Val His Ala Ser Gly Leu Glu Arg Gly Leu Arg Ile Val Asp
 100 105 110
 Ala Ser Ser Arg Asp Leu Ala Gln Leu Leu Ala Glu Glu Gln Thr Met
 115 120 125
 Lys Phe Asp Leu Glu Ser Glu Pro Ala Trp Arg Val Ala Leu Leu Lys
 130 135 140
 50 Val Ala Glu Asp His His Ile Leu Ser Ile Val Val His His Ile Ile
 145 150 155 160
 Ser Asp Ser Arg Ser Leu Asp Ile Ile Gln Gln Glu Leu Gly Glu Leu

	165	170	175
	Tyr Thr Ala Ala Ser Gln Gly Lys Ser Ile Ser Ala Cys Pro Leu Gly		
5	180	185	190
	Pro Ile Pro Ile Gln Tyr Arg Asp Leu Thr Thr Trp Gln Asn Gln Asp		
	195	200	205
	Glu Gln Val Ala Glu Gln Glu Arg Gln Leu Gly Tyr Trp Ile Glu Gln		
10	210	215	220
	Leu Asp Asn Asn Thr Pro Ala Glu Leu Leu Thr Glu Leu Pro Arg Pro		
	225	230	235
	240		
	Ala Ile Pro Ser Gly Glu Thr Gly Lys Ile Ser Phe Gln Ile Asp Gly		
	245	250	255
15	Ser Val His Lys Glu Leu Leu Ala Phe Cys Arg Ser Gln Gln Val Thr		
	260	265	270
	Ala Tyr Ala Val Leu Leu Ala Ala Phe Arg Val Ala His Phe Arg Leu		
	275	280	285
20	Thr Gly Ala Glu Asp Ala Thr Ile Gly Ala Pro Val Ala Asn Arg Asp		
	290	295	300
	Arg Pro Glu Leu Glu Asn Met Val Ala Pro Leu Ala Thr Leu Gln Cys		
	305	310	315
	320		
25	Met Arg Val Val Leu Asp Glu Asp Asp Thr Phe Glu Ser Val Leu Arg		
	325	330	335
	Gln Ile Met Ser Val Met Thr Glu Ala His Ala Asn Arg Asp Val Pro		
	340	345	350
30	Phe Glu Arg Ile Val Ser Ala Leu Leu Pro Gly Ser Thr Asp Thr Ser		
	355	360	365
	Arg His Pro Leu Val Gln Leu Met Phe Ala Leu His Pro Ala Gln Asp		
	370	375	380
	Thr Gly Arg Ala Arg Trp Gly Phe Leu Glu Ala Glu Thr Leu Gln Ser		
35	385	390	395
	400		
	Ala Ala Pro Thr Arg Phe Asp Met Glu Met His Leu Phe Glu Gly Asp		
	405	410	415
40	Asp Arg Phe Asp Ala Asn Val Leu Phe Ser Thr Gly Leu Phe Asp Ala		
	420	425	430
	Glu Ala Ile Arg Ser Val Val Ser Ile Phe Arg Glu Val Leu Arg Arg		
	435	440	445
45	Gly Ile Ser Glu Pro Ala Val His Val Lys Thr Met Pro Leu Thr Asp		
	450	455	460
	Gly Leu Ala Ala Ile Arg Asp Met Gly Leu Leu Asp Ile Gly Thr Thr		
	465	470	475
	480		
50	Asp Tyr Pro Arg Glu Ala Ser Val Val Asp Met Phe Gln Glu Gln Val		
	485	490	495
	Ala Leu Asn Pro Ser Ala Thr Ala Val Ala Asp Ala Ser Ser Arg Leu		
	500	505	510
	Ser Tyr Ser Glu Leu Asp His Lys Ser Asp Gln Leu Ala Ala Trp Leu		
	515	520	525

	Arg Arg Arg Gln Leu Lys Pro Glu Thr Leu Ile Gly Val Leu Ser Pro			
	530	535	540	
5	Pro Ser Cys Glu Thr Met Val Ser Phe Leu Gly Ile Leu Lys Ala His			
	545	550	555	560
	Leu Ala Tyr Leu Pro Leu Asp Ile Asn Val Pro Leu Ala Arg Ile Glu			
	565	570	575	
10	Ser Ile Leu Ser Ala Val Asp Gly His Lys Leu Val Leu Leu Gly Ser			
	580	585	590	
	Asn Val Pro Gln Pro Lys Val Asp Val Pro Asp Val Glu Leu Leu Arg			
	595	600	605	
15	Ile Ser Asp Ala Leu Asn Gly Ser Gln Val Asn Gly Leu Ala Gly Lys			
	610	615	620	
	Gln Ala Thr Ala Lys Pro Ser Ala Thr Asp Leu Ala Tyr Val Ile Phe			
	625	630	635	640
20	Thr Ser Gly Ser Thr Gly Lys Pro Lys Gly Val Met Ile Glu His Arg			
	645	650	655	
	Gly Ile Val Arg Leu Val Lys Gly Thr Asn Ile Ile Ser Pro Ala Gln			
	660	665	670	
25	Ala Ala Val Pro Thr Ala His Leu Ala Asn Ile Ala Phe Asp Leu Ser			
	675	680	685	
	Thr Trp Glu Ile Tyr Thr Pro Ile Leu Asn Gly Gly Thr Leu Val Cys			
	690	695	700	
30	Ile Glu His Ser Val Thr Leu Asp Ser Lys Ala Leu Glu Ala Val Phe			
	705	710	715	720
	Thr Lys Glu Gly Ile Arg Val Ala Phe Leu Ala Pro Ala Leu Ile Lys			
	725	730	735	
35	Gln Cys Leu Ala Asp Arg Pro Ala Ile Phe Ala Gly Leu Asp Ser Leu			
	740	745	750	
	Tyr Ala Ile Gly Asp Arg Phe Asp Arg Arg Asp Ala Leu His Ala Lys			
	755	760	765	
40	Ser Leu Val Lys His Gly Val Tyr Asn Ala Tyr Gly Pro Thr Glu Asn			
	770	775	780	
	Ser Val Val Ser Thr Ile Tyr Ser Val Ser Glu Ala Ser Pro Phe Val			
	785	790	795	800
45	Thr Gly Val Pro Val Gly Arg Ala Ile Ser Asn Ser Gly Ala Tyr Val			
	805	810	815	
	Met Asp Gln Asp Gln Gln Leu Val Ser Pro Gly Val Met Gly Glu Leu			
	820	825	830	
50	Val Val Ser Gly Asp Gly Leu Ala Arg Gly Tyr Thr Asp Ser Ala Leu			
	835	840	845	
	Asp Lys Asn Arg Phe Val Val Gln Ile Asp Gly Glu Ser Ile Arg			
	850	855	860	
55	Gly Tyr Arg Thr Gly Asp Arg Ala Arg Tyr Ser Leu Lys Gly Gly Gln			
	865	870	875	880

Ile Glu Phe Phe Gly Arg Met Asp Gln Gln Val Lys Ile Arg Gly His
 885 890 895
 Arg Ile Glu Pro Ala Glu Val Glu His Ala Leu Leu Asn Ser Asp Gln
 900 905 910
 5 Val Arg Asp Ala Ala Val Val Ile Arg Arg Gln Glu Glu Glu Pro
 915 920 925
 Ala Met Ile Ala Phe Val Thr Thr Gln Gly Thr Leu Pro Asp His Leu
 930 935 940
 10 Val Asn Ile Asn Gly Asn Gly His Val Pro Asp Gly Asn Gly Ser Lys
 945 950 955 960
 Asn Asp Gln Phe Ala Val His Val Glu Ser Glu Leu Arg Arg Arg Leu
 965 970 975
 15 Gln Met Leu Leu Pro Ser Tyr Met Met Pro Ala Arg Ile Val Val Leu
 980 985 990
 Asp His Leu Pro Leu Asn Pro Asn Gly Lys Val Asp Arg Lys Ala Leu
 995 1000 1005
 20 Gly Gln Ser Ala Lys Thr Val Gln Lys Ser Lys Leu Val Ser Gln Arg
 1010 1015 1020
 Val Ala Pro Arg Asn Glu Ile Glu Ala Val Leu Cys Glu Glu Tyr Arg
 1025 1030 1035 1040
 25 Ser Val Leu Gly Val Glu Val Gly Ile Thr Asp Asn Phe Phe Asp Leu
 1045 1050 1055
 Gly Gly His Ser Leu Thr Ala Met Lys Leu Ala Ala Arg Ile Ser Gln
 1060 1065 1070
 30 Arg Leu Asp Ile Gln Ala Ser Val Ala Thr Val Phe Glu Gln Pro Met
 1075 1080 1085
 Leu Ala Asp Leu Ala Ala Thr Ile Gln Arg Gly Ser Thr Leu Tyr Ser
 1090 1095 1100
 35 Val Ile Pro Thr Thr Glu Tyr Thr Gly Pro Val Glu Gln Ser Phe Ala
 1105 1110 1115 1120
 Gln Gly Arg Leu Trp Phe Leu Glu Gln Leu Asn Thr Gly Ala Ser Trp
 1125 1130 1135
 40 Tyr Asn Val Met Leu Thr Val Arg Leu Arg Gly His Leu Asp Val Asp
 1140 1145 1150
 Ala Leu Gly Thr Ala Leu Leu Ala Leu Glu Lys Arg His Glu Thr Leu
 1155 1160 1165
 45 Arg Thr Thr Phe Glu Glu Arg Asp Gly Val Gly Met Gln Val Val His
 1170 1175 1180
 Ser Ser Leu Met Gly Glu Leu Arg Leu Ile Asp Ile Ser Glu Lys Ser
 1185 1190 1195 1200
 50 Gly Thr Ala Ala His Glu Ala Leu Met Lys Glu Gln Ser Thr Arg Phe
 1205 1210 1215
 Asp Leu Thr Arg Glu Pro Gly Trp Arg Val Ala Leu Leu Lys Leu Ala
 1220 1225 1230
 55 Asp His His Ile Phe Ser Ile Val Met His His Ile Val Ser Asp Gly

	1235	1240	1245
	Trp Ser Leu Asp Leu Leu Arg His Glu Leu Gly Gln Leu Tyr Ser Ala		
	1250 1255 1260		
5	Ala Leu Arg Gly Gln Asp Pro Leu Ser Arg Leu Glu Pro Leu Pro Ile		
	1265 1270 1275 1280		
	Gln Tyr Arg Asp Phe Ala Val Trp Gln Lys Gln Asp Ser Gln Gln Lys		
	1285 1290 1295		
10	Ala Ala His Gln Arg Gln Leu Glu Tyr Trp Thr Lys Gln Leu Ala Asp		
	1300 1305 1310		
	Ser Thr Pro Ala Glu Leu Leu Thr Asp Phe Pro Arg Pro Ser Ile Leu		
	1315 1320 1325		
15	Ser Gly Lys Ala Gly Lys Val Pro Val Ala Ile Glu Gly Ser Leu Tyr		
	1330 1335 1340		
	Asp Thr Leu Gln Val Phe Ser Arg Thr His Gln Val Thr Ser Phe Ala		
	1345 1350 1355 1360		
20	Val Leu Leu Ala Ala Phe Arg Ala Ala His Phe Arg Leu Thr Gly Ser		
	1365 1370 1375		
	Asp Asn Ala Thr Ile Gly Val Pro Ser Ala Asn Arg Asn Arg Pro Glu		
	1380 1385 1390		
25	Leu Glu Asn Val Ile Gly Phe Phe Val Asn Thr Gln Cys Ile Arg Ile		
	1395 1400 1405		
	Thr Ile Asp Glu Asn Asp Asn Phe Glu Ser Leu Val Arg Gln Val Arg		
	1410 1415 1420		
30	Ser Thr Thr Thr Ala Ala Gln Asp Asn Gln Asp Val Pro Phe Glu Gln		
	1425 1430 1435 1440		
	Val Val Ser Ser Leu Met Pro Ser Ser Arg Asp Ala Ser Arg Asn		
	1445 1450 1455		
35	Pro Leu Val Gln Leu Met Phe Ala Leu His Gly Gln Gln Asp Leu Phe		
	1460 1465 1470		
	Lys Ile Gln Leu Glu Gly Thr Glu Glu Val Ile Pro Thr Glu Glu		
	1475 1480 1485		
40	Val Thr Arg Phe Asp Ile Glu Phe His Leu Tyr Gln Gly Ala Ser Lys		
	1490 1495 1500		
	Leu Ser Gly Asp Ile Ile Phe Ala Ala Asp Leu Phe Glu Ala Glu Thr		
	1505 1510 1515 1520		
45	Ile Arg Gly Val Val Ser Val Phe Gln Glu Val Leu Arg Arg Gly Leu		
	1525 1530 1535		
	Gln Gln Pro Gln Thr Pro Ile Met Thr Met Pro Leu Thr Asp Gly Ile		
	1540 1545 1550		
50	Pro Glu Leu Glu Arg Met Gly Leu Leu His Met Val Lys Thr Asp Tyr		
	1555 1560 1565		
	Pro Arg Asn Met Ser Val Val Asp Val Phe Gln Gln Val Arg Leu		
	1570 1575 1580		
55	Ser Ala Glu Ala Thr Ala Val Ile Asp Ser Ser Ser Arg Met Ser Tyr		
	1585 1590 1595 1600		

Ala Glu Leu Asp Gln Arg Ser Asp Gln Val Ala Ala Trp Leu Arg Gln
 1605 1610 1615
 5 Arg Gln Leu Pro Ala Glu Thr Phe Val Ala Val Leu Ala Pro Arg Ser
 1620 1625 1630
 Cys Glu Ala Val Ile Ala Leu Phe Gly Ile Leu Lys Ala Gly His Ala
 1635 1640 1645
 10 Tyr Leu Pro Leu Asp Val Asn Val Pro Ala Ala Arg Leu Arg Ala Ile
 1650 1655 1660
 Leu Ala Glu Val Lys Gly Glu Lys Leu Val Leu Leu Gly Ala Gly Glu
 1665 1670 1675 1680
 15 Pro Ser Pro Glu Gly Gln Ser Pro Glu Val Ser Ile Val Arg Ile Ala
 1685 1690 1695
 Asp Ala Thr Ser Pro Ala Gly His Ala Ser Leu Arg Asp Gly Lys Ser
 1700 1705 1710
 20 Lys Pro Thr Ala Gly Ser Leu Ala Tyr Val Ile Phe Thr Ser Gly Ser
 1715 1720 1725
 Thr Gly Lys Pro Lys Gly Val Met Ile Glu His Arg Gly Val Leu Arg
 1730 1735 1740
 25 Leu Val Lys Gln Thr Asn Ile Leu Ser Ser Leu Pro Pro Ala Gln Thr
 1745 1750 1755 1760
 Phe Arg Met Ala His Met Ser Asn Leu Ala Phe Asp Ala Ser Ile Trp
 1765 1770 1775
 30 Glu Val Phe Thr Ala Leu Leu Asn Gly Gly Ser Leu Val Cys Ile Asp
 1780 1785 1790
 Arg Phe Thr Ile Leu Asp Ala Gln Ala Leu Glu Ala Leu Phe Leu Arg
 1795 1800 1805
 35 Glu His Ile Asn Ile Ala Leu Phe Pro Pro Ala Leu Leu Lys Gln Cys
 1810 1815 1820
 Leu Thr Asp Ala Ala Ala Thr Ile Lys Ser Leu Asp Leu Leu Tyr Val
 1825 1830 1835 1840
 40 Gly Gly Asp Arg Leu Asp Thr Ala Asp Ala Ala Leu Ala Lys Ala Leu
 1845 1850 1855
 Val Lys Ser Glu Val Tyr Asn Ala Tyr Gly Pro Thr Glu Asn Thr Val
 1860 1865 1870
 45 Met Ser Thr Leu Tyr Ser Ile Ala Asp Thr Glu Arg Phe Val Asn Gly
 1875 1880 1885
 Val Pro Ile Gly Arg Ala Val Ser Asn Ser Gly Val Tyr Val Met Asp
 1890 1895 1900
 50 Gln Asn Gln Gln Leu Val Pro Leu Gly Val Met Gly Glu Leu Val Val
 1905 1910 1915 1920
 Thr Gly Asp Gly Leu Ala Arg Gly Tyr Thr Asn Pro Ala Leu Asp Ser
 1925 1930 1935
 55 Asp Arg Phe Val Asp Val Ile Ala Arg Gly Gln Leu Leu Arg Ala Tyr
 1940 1945 1950

Arg Thr Gly Asp Arg Ala Arg Tyr Arg Pro Lys Asp Gly Gln Val Glu
 1955 1960 1965
 5 Phe Phe Gly Arg Met Asp His Gln Val Lys Val Arg Gly His Arg Ile
 1970 1975 1980
 Glu Leu Ala Glu Val Glu His Ala Leu Leu Ser Ser Ala Gly Val His
 1985 1990 1995 2000
 10 Asp Ala Val Val Val Ser Asn Ser Gln Glu Asp Asn Gln Gly Val Glu
 2005 2010 2015
 Met Val Ala Phe Ile Thr Ala Gln Asp Asn Glu Thr Leu Gln Glu Ala
 2020 2025 2030
 15 Gln Ser Ser Asn Gln Val Gln Glu Trp Glu Ser His Phe Glu Thr Thr
 2035 2040 2045
 Ala Tyr Ala Asp Ile Thr Ala Ile Asp Gln Asn Thr Leu Gly Arg Asp
 2050 2055 2060
 20 Phe Thr Ser Trp Thr Ser Met Tyr Asp Gly Thr Leu Ile Asp Lys Arg
 2065 2070 2075 2080
 Glu Met Gln Glu Trp Leu Asp Asp Thr Met Arg Thr Phe Leu Asp Gly
 2085 2090 2095
 Gln Ala Ala Gly His Val Leu Glu Ile Gly Thr Gly Thr Gly Met Val
 2100 2105 2110
 25 Leu Phe Asn Leu Gly Gln Ala Gly Leu Lys Ser Tyr Ile Gly Leu Glu
 2115 2120 2125
 Pro Ser Gln Ser Ala Val Gln Phe Val Asn Lys Ala Ala Gln Thr Phe
 2130 2135 2140
 30 Pro Gly Leu Glu Gly Lys Ala Gln Val His Val Gly Thr Ala Met Asp
 2145 2150 2155 2160
 Thr Gly Arg Leu Ser Ala Leu Ser Pro Asp Leu Ile Val Ile Asn Ser
 2165 2170 2175
 35 Val Ala Gln Tyr Phe Pro Ser Arg Glu Tyr Leu Ala Glu Val Val Glu
 2180 2185 2190
 Ala Leu Val Arg Ile Pro Gly Val Arg Arg Ile Phe Phe Gly Asp Met
 2195 2200 2205
 40 Arg Thr Tyr Ala Thr His Lys Asp Phe Leu Val Ala Arg Ala Val His
 2210 2215 2220
 Thr Asn Gly Ser Lys Val Thr Arg Ser Lys Val Gln Gln Glu Val Ala
 2225 2230 2235 2240
 45 Arg Leu Glu Glu Leu Glu Glu Leu Leu Val Asp Pro Ala Phe Phe
 2245 2250 2255
 Thr Ser Leu Lys Glu Ser Leu Ser Glu Glu Ile Glu His Val Glu Ile
 2260 2265 2270
 50 Leu Pro Lys Asn Met Lys Val Asn Asn Glu Leu Ser Ser Tyr Arg Tyr
 2275 2280 2285
 Gly Ala Val Leu His Ile Arg Asn His Asn Gln Asn Gln Ser Arg Ser
 2290 2295 2300
 55 Ile His Lys Ile Asn Ala Glu Ser Trp Ile Asp Ph Ala Ser Ser Gln

	2305	2310	2315	2320
	Met Asp Arg Gln Gly Leu Ala Arg Leu Leu Lys Glu Asn Lys Asp Ala			
	2325	2330	2335	
5	Glu Ser Ile Ala Val Phe Asn Ile Pro Tyr Ser Lys Thr Ile Val Glu			
	2340	2345	2350	
	Arg His Ile Ala Lys Ser Leu Ala Asp Asp His Asp Gly Asp Asp Thr			
	2355	2360	2365	
10	His Ser Ser Ile Asp Gly Val Ala Trp Ile Ser Ala Ala Arg Glu Lys			
	2370	2375	2380	
	Ala Ser Gln Cys Pro Ser Leu Asp Val His Asp Leu Val Gln Leu Ala			
	2385	2390	2395	2400
15	Glu Asp Ala Gly Phe Arg Val Glu Val Ser Trp Ala Arg Gln Arg Ser			
	2405	2410	2415	
	Gln Asn Gly Ala Leu Asp Val Phe Phe His His Phe Gln Pro Thr Glu			
	2420	2425	2430	
20	Asn Glu Ser Arg Ala Leu Val Asp Phe Pro Thr Asp Tyr Lys Gly Gln			
	2435	2440	2445	
	Gln Ala Arg Ser Leu Thr Asn Arg Pro Leu Gln Arg Val Glu Ser Arg			
	2450	2455	2460	
25	Arg Ile Glu Ala Gln Val Arg Glu Gln Leu Gln Val Leu Leu Pro Ala			
	2465	2470	2475	2480
	Tyr Met Ile Pro Ala Arg Ile Val Val Leu Gln Asn Met Pro Leu Asn			
	2485	2490	2495	
30	Thr Ser Gly Lys Val Asp Arg Lys Glu Leu Thr Leu Arg Ala Lys Val			
	2500	2505	2510	
	Thr Ala Ala Arg Thr Pro Ser Ser Glu Leu Val Ala Pro Arg Asp Ser			
	2515	2520	2525	
35	Ile Glu Ala Ile Ile Cys Lys Glu Phe Lys Asp Val Leu Gly Val Glu			
	2530	2535	2540	
	Val Gly Ile Thr Asp Asn Phe Phe Asn Val Gly Gly His Ser Leu Leu			
	2545	2550	2555	2560
40	Ala Thr Lys Leu Ala Ala Arg Leu Ser Arg Gln Leu Asn Ala Gln Ile			
	2565	2570	2575	
	Ala Val Lys Asp Ile Phe Asp Arg Pro Val Ile Ala Asp Leu Ala Ala			
	2580	2585	2590	
45	Thr Ile Gln Gln Asp Thr Thr Glu His Asn Pro Ile Leu Pro Thr Ser			
	2595	2600	2605	
	Tyr Thr Gly Pro Val Glu Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe			
	2610	2615	2620	
50	Leu Asp Gln Leu Asn Val Gly Ala Thr Trp Tyr Leu Met Pro Phe Ala			
	2625	2630	2635	2640
	Val Arg Leu Arg Gly Pro Leu Val Val Ser Ala Leu Ala Ala Leu			
	2645	2650	2655	
55	Leu Ala Leu Glu Glu Arg His Glu Thr Leu Arg Thr Thr Phe Ile Glu			
	2660	2665	2670	

Gln Glu Gly Ile Gly Met Gln Val Ile His Pro Phe Ala Pro Lys Glu
 2675 2680 2685
 5 Leu Arg Val Ile Asp Val Ser Gly Glu Glu Ser Thr Ile Gln Lys
 2690 2695 2700
 Ile Leu Glu Lys Glu Gln Thr Thr Pro Phe Asn Leu Ala Ser Glu Pro
 2705 2710 2715 2720
 10 Gly Phe Arg Leu Ala Leu Leu Lys Thr Gly Glu Asp Glu His Ile Leu
 2725 2730 2735
 Ser Thr Val Met His His Ala Ile Ser Asp Gly Trp Ser Val Asp Ile
 2740 2745 2750
 15 Phe Gln Gln Glu Ile Gly Gln Phe Tyr Ser Ala Ile Leu Arg Gly His
 2755 2760 2765
 Asp Pro Leu Ala Gln Ile Ala Pro Leu Ser Ile Gln Tyr Arg Asp Phe
 2770 2775 2780
 20 Ala Thr Trp Gln Arg Gln Ile Phe Gln Val Ala Glu His Arg Arg Gln
 2785 2790 2795 2800
 Leu Ala Tyr Trp Thr Lys Gln Leu Ala Asp Asn Lys Pro Ala Glu Leu
 2805 2810 2815
 25 Leu Thr Asp Phe Lys Arg Pro Pro Met Leu Ser Gly Arg Ala Gly Glu
 2820 2825 2830
 Ile Pro Val Val Val Asp Gly Leu Ile Tyr Glu Lys Leu Gln Asp Phe
 2835 2840 2845
 30 Cys Arg Ile Arg Gln Val Thr Ala Phe Thr Val Leu Leu Ala Ala Phe
 2850 2855 2860
 Arg Ala Ala His Tyr Arg Met Thr Gly Thr Glu Asp Ala Thr Ile Gly
 2865 2870 2875 2880
 35 Thr Pro Ile Ala Asn Arg Asn Arg Pro Glu Leu Glu Gly Leu Ile Gly
 2885 2890 2895
 Phe Phe Val Asn Thr Gln Cys Met Arg Ile Thr Val Asp Val Glu Asp
 2900 2905 2910
 40 Ser Phe Glu Thr Leu Val His Gln Val Arg Glu Thr Thr Leu Ala Ala
 2915 2920 2925
 His Ala Asn Gln Asp Val Pro Phe Glu Gln Ile Val Ser Asn Ile Leu
 2930 2935 2940
 45 Pro Gly Ser Ser Asp Thr Ser Arg Asn Pro Leu Val Gln Leu Met Phe
 2945 2950 2955 2960
 Ala Leu His Ser Gln Gln Asn Leu Gly Lys Val Arg Leu Glu Gly Ile
 2965 2970 2975
 50 Glu Glu Glu Ile Ile Ser Ile Ala Glu Thr Thr Arg Phe Asp Ile Glu
 2980 2985 2990
 Phe His Leu Tyr Gln Glu Ala Glu Arg Leu Asn Gly Ser Ile Val Tyr
 2995 3000 3005
 55 Ala Ala Asp Leu Phe Val Pro Glu Thr Ile Gln Ser Val Ile Thr Ile
 3010 3015 3020

Phe Gln Gly Ile Leu Gln Lys Gly Leu Gly Glu Pro Asp Met Pro Val
 3025 3030 3035 3040
 5 Ala Ser Met Ala Leu Asp Gly Gly Leu Glu Ser Leu Arg Ser Thr Gly
 3045 3050 3055
 Leu Leu His Pro Gln Gln Thr Asp Tyr Pro Cys Asp Ala Ser Val Val
 3060 3065 3070
 10 Gln Ile Phe Lys Gln Gln Val Ala Val Asn Pro Asp Val Ile Ala Val
 3075 3080 3085
 Arg Asp Glu Ser Thr Arg Leu Ser Tyr Ala Asp Leu Asp Arg Lys Ser
 3090 3095 3100
 15 Asp Gln Val Ala Cys Trp Leu Ser Arg Arg Gly Ile Ala Pro Glu Thr
 3105 3110 3115 3120
 Phe Val Ala Ile Leu Ala Pro Arg Ser Cys Glu Thr Ile Val Ala Ile
 3125 3130 3135
 20 Leu Gly Val Leu Lys Ala Asn Leu Ala Tyr Leu Pro Leu Asp Val Asn
 3140 3145 3150
 Val Pro Ala Ser Arg Leu Glu Ala Ile Leu Ser Glu Val Ser Gly Ser
 3155 3160 3165
 25 Met Leu Val Leu Val Gly Ala Glu Thr Pro Ile Pro Glu Gly Met Ala
 3170 3175 3180
 Glu Ala Glu Thr Ile Arg Ile Thr Glu Ile Leu Ala Asp Ala Lys Thr
 3185 3190 3195 3200
 30 Asp Asp Ile Asn Gly Leu Ala Ala Ser Gln Pro Thr Ala Ala Ser Leu
 3205 3210 3215
 Ala Tyr Val Ile Phe Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val
 3220 3225 3230
 35 Met Val Glu His Arg Gly Ile Val Arg Leu Thr Lys Gln Thr Asn Ile
 3235 3240 3245
 Thr Ser Lys Leu Pro Glu Ser Phe His Met Ala His Ile Ser Asn Leu
 3250 3255 3260
 40 Ala Phe Asp Ala Ser Val Trp Glu Val Phe Thr Thr Leu Leu Asn Gly
 3265 3270 3275 3280
 Gly Thr Leu Val Cys Ile Asp Tyr Phe Thr Leu Leu Glu Ser Thr Ala
 3285 3290 3295
 45 Leu Glu Lys Val Phe Phe Asp Gln Arg Val Asn Val Ala Leu Leu Pro
 3300 3305 3310
 Pro Ala Leu Leu Lys Gln Cys Leu Asp Asn Ser Pro Ala Leu Val Lys
 3315 3320 3325
 50 Thr Leu Ser Val Leu Tyr Ile Gly Gly Asp Arg Leu Asp Ala Ser Asp
 3330 3335 3340
 Ala Ala Lys Ala Arg Gly Leu Val Gln Thr Gln Ala Phe Asn Ala Tyr
 3345 3350 3355 3360
 Gly Pro Thr Glu Asn Thr Val Met Ser Thr Ile Tyr Pro Ile Ala Glu
 3365 3370 3375
 55 Asp Pro Phe Ile Asn Gly Val Pro Ile Gly His Ala Val Ser Asn Ser

EP 0 578 616 A2

	3380	3385	3390
5	Gly Ala Phe Val Met Asp Gln Asn Gln Gln Ile Thr Pro Pro Gly Ala 3395 3400 3405		
10	Met Gly Glu Leu Ile Val Thr Gly Asp Gly Leu Ala Arg Gly Tyr Thr 3410 3415 3420		
15	Thr Ser Ser Leu Asn Thr Gly Arg Phe Ile Asn Val Asp Ile Asp Gly 3425 3430 3435 3440		
20	Glu Gln Val Arg Ala Tyr Arg Thr Gly Asp Arg Val Arg Tyr Arg Pro 3445 3450 3455		
25	Lys Asp Leu Gln Ile Glu Phe Phe Gly Arg Ile Asp His Gln Val Lys 3460 3465 3470		
30	Ile Arg Gly His Arg Ile Glu Pro Ala Glu Val Glu Tyr Ala Leu Leu 3475 3480 3485		
35	Ser His Asp Leu Val Thr Asp Ala Ala Val Val Thr His Ser Gln Glu 3490 3495 3500		
40	Asn Gln Asp Leu Glu Met Val Gly Phe Val Ala Ala Arg Val Ala Asp 3505 3510 3515 3520		
45	Val Arg Glu Asp Glu Ser Ser Asn Gln Val Gln Glu Trp Gln Thr His 3525 3530 3535		
50	Phe Asp Ser Ile Ala Tyr Ala Asp Ile Thr Thr Ile Asp Gln Gln Ser 3540 3545 3550		
55	Leu Gly Arg Asp Phe Met Ser Trp Thr Ser Met Tyr Asp Gly Ser Leu 3555 3560 3565		
60	Ile Lys Lys Ser Gln Met Gln Glu Trp Leu Asp Asp Thr Met Arg Ser 3570 3575 3580		
65	Leu Leu Asp Ser Gln Pro Pro Gly His Val Leu Glu Val Gly Thr Gly 3585 3590 3595 3600		
70	Thr Gly Met Val Leu Phe Asn Leu Gly Arg Glu Gly Gly Leu Gln Ser 3605 3610 3615		
75	Tyr Val Gly Leu Glu Pro Ser Pro Ser Ala Thr Ala Phe Val Asn Lys 3620 3625 3630		
80	Ala Ala Lys Ser Phe Pro Gly Leu Glu Asp Arg Ile Arg Val Glu Val 3635 3640 3645		
85	Gly Thr Ala Thr Asp Ile Asp Arg Leu Gly Asp Asp Leu His Ala Gly 3650 3655 3660		
90	Leu Val Val Val Asn Ser Val Ala Gln Tyr Phe Pro Ser Gln Asp Tyr 3665 3670 3675 3680		
95	Leu Ala Gln Leu Val Arg Asp Leu Thr Lys Val Pro Gly Val Glu Arg 3685 3690 3695		
100	Ile Phe Phe Gly Asp Met Arg Ser His Ala Ile Asn Arg Asp Phe Leu 3700 3705 3710		
105	Val Ala Arg Ala Val His Ala Leu Gly Asp Lys Ala Thr Lys Ala Glu 3715 3720 3725		
110	Ile Gln Arg Glu Val Val Arg Met Glu Glu Ser Glu Asp Glu Leu Leu 3730 3735 3740		

	Val Asp Pro Ala Phe Phe Thr Ser Leu Thr Thr Gln Val Glu Asn Ile	
	3745 3750 3755 3760	
5	Lys His Val Glu Ile Leu Pro Lys Arg Met Arg Ala Thr Asn Glu Leu	
	3765 3770 3775	
	Ser Ser Tyr Arg Tyr Ala Ala Val Leu His Val Asn Asp Leu Ala Lys	
	3780 3785 3790	
10	Pro Ala His Lys Val Ser Pro Gly Ala Trp Val Asp Phe Ala Ala Thr	
	3795 3800 3805	
	Lys Met Asp Arg Asp Ala Leu Ile Arg Leu Leu Arg Gly Thr Lys Ile	
	3810 3815 3820	
15	Ser Asp His Ile Ala Ile Ala Asn Ile Pro Asn Ser Lys Thr Ile Val	
	3825 3830 3835 3840	
	Glu Arg Thr Ile Cys Glu Ser Val Tyr Asp Leu Gly Gly Asp Ala Lys	
	3845 3850 3855	
20	Asp Ser Asn Asp Arg Val Ser Trp Leu Ser Ala Ala Arg Ser Asn Ala	
	3860 3865 3870	
	Val Lys Val Ala Ser Leu Ser Ala Ile Asp Leu Val Asp Ile Ala Gln	
	3875 3880 3885	
25	Glu Ala Gly Phe Arg Val Glu Ile Ser Cys Ala Arg Gln Trp Ser Gln	
	3890 3895 3900	
	Asn Gly Ala Leu Asp Ala Val Phe His His Leu Gly Pro Ser Pro Gln	
	3905 3910 3915 3920	
30	Ser Ser His Val Leu Ile Asp Phe Leu Thr Asp His Gln Gly Arg Pro	
	3925 3930 3935	
	Glu Glu Ala Leu Thr Asn His Pro Leu His Arg Ala Gln Ser Arg Arg	
	3940 3945 3950	
35	Val Glu Arg Gln Ile Arg Glu Arg Leu Gln Thr Leu Leu Pro Ala Tyr	
	3955 3960 3965	
	Met Ile Pro Ala Gln Ile Met Val Leu Asp Lys Leu Pro Leu Asn Ala	
	3970 3975 3980	
40	Asn Gly Lys Val Asp Arg Lys Gln Leu Thr Gln Arg Ala Gln Thr Val	
	3985 3990 3995 4000	
	Pro Lys Ala Lys Gln Val Ser Ala Pro Val Ala Pro Arg Thr Glu Ile	
	4005 4010 4015	
45	Glu Arg Val Leu Cys Gln Glu Phe Ser Asp Val Leu Gly Val Asp Ile	
	4020 4025 4030	
	Gly Ile Met Glu Asn Phe Phe Asp Leu Gly Gly His Ser Leu Met Ala	
	4035 4040 4045	
	Thr Lys Leu Ala Ala Arg Ile Ser Arg Arg Leu Glu Thr His Val Ser	
50	4050 4055 4060	
	Val Lys Glu Ile Phe Asp His Pro Arg Val Cys Asp Leu Val Leu Ile	
	4065 4070 4075 4080	
55	Val Gln Gln Gly Ser Ala Pro His Asp Pro Ile Val Ser Thr Lys Tyr	
	4085 4090 4095	

Thr Gly Pro Val Pro Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe Leu
 4100 4105 4110
 Asp Gln Leu Asn Phe Gly Ala Thr Trp Tyr Leu Met Pro Leu Ala Val
 5 4115 4120 4125
 Arg Leu Arg Gly Ala Met Asn Val His Ala Leu Thr Ala Ala Leu Leu
 4130 4135 4140
 Ala Leu Glu Arg Arg His Glu Leu Leu Arg Thr Thr Phe Tyr Glu Gln
 10 4145 4150 4155 4160
 Asn Gly Val Gly Met Gln Lys Val Asn Pro Val Val Thr Glu Thr Leu
 4165 4170 4175
 Arg Ile Ile Asp Leu Ser Asn Gly Asp Gly Asp Tyr Leu Pro Thr Leu
 15 4180 4185 4190
 Lys Lys Glu Gln Thr Ala Pro Phe His Leu Glu Thr Glu Pro Gly Trp
 4195 4200 4205
 Arg Val Ala Leu Leu Arg Leu Gly Pro Gly Asp Tyr Ile Leu Ser Val
 20 4210 4215 4220
 Val Met His His Ile Ile Ser Asp Gly Trp Ser Val Asp Val Leu Phe
 4225 4230 4235 4240
 Gln Glu Leu Gly Gln Phe Tyr Ser Thr Ala Val Lys Gly His Asp Pro
 25 4245 4250 4255
 Leu Ser Gln Thr Thr Pro Leu Pro Ile His Tyr Arg Asp Phe Ala Leu
 4260 4265 4270
 Trp Gln Lys Lys Pro Thr Gln Glu Ser Glu His Glu Arg Gln Leu Gln
 30 4275 4280 4285
 Tyr Trp Val Glu Gln Leu Val Asp Ser Ala Pro Ala Glu Leu Leu Thr
 4290 4295 4300
 Asp Leu Pro Arg Pro Ser Ile Leu Ser Gly Gln Ala Gly Glu Met Ser
 35 4305 4310 4315 4320
 Val Thr Ile Glu Gly Ala Leu Tyr Lys Asn Leu Glu Glu Phe Cys Arg
 4325 4330 4335
 Val His Arg Val Thr Ser Phe Val Val Leu Leu Ala Ala Leu Arg Ala
 40 4340 4345 4350
 Ala His Tyr Arg Leu Thr Gly Ser Glu Asp Ala Thr Ile Gly Thr Pro
 4355 4360 4365
 Ile Ala Asn Arg Asn Arg Pro Glu Leu Glu Gln Ile Ile Gly Phe Phe
 4370 4375 4380
 45 Val Asn Thr Gln Cys Ile Arg Ile Thr Val Asn Glu Asp Glu Thr Phe
 4385 4390 4395 4400
 Glu Ser Leu Val Gln Gln Val Arg Ser Thr Ala Thr Ala Ala Phe Ala
 4405 4410 4415
 His Gln Asp Val Pro Phe Glu Lys Ile Val Ser Thr Leu Leu Pro Gly
 50 4420 4425 4430
 Ser Arg Asp Ala Ser Arg Asn Pro Leu Val Gln Leu Met Phe Ala Val
 4435 4440 4445
 His Ser Gln Lys Asn Leu Gly Glu Leu Lys Leu Glu Asn Ala His Ser

	4450	4455	4460
	Glu Val Val Pro Thr Glu Ile Thr Thr Arg Phe Asp Leu Glu Phe His		
5	4465 4470 4475 4480		
	Leu Phe Gln Gln Asp Asp Lys Leu Glu Gly Ser Ile Leu Tyr Ser Thr		
	4485 4490 4495		
	Asp Leu Phe Glu Ala Val Ser Val Gln Ser Leu Leu Ser Val Phe Gln		
10	4500 4505 4510		
	Glu Ile Leu Arg Arg Gly Leu Asn Gly Pro Asp Val Pro Ile Ser Thr		
	4515 4520 4525		
	Leu Pro Leu Gln Asp Gly Ile Val Asp Leu Gln Arg Gln Gly Leu Leu		
15	4530 4535 4540		
	Asp Val Gln Lys Thr Glu Tyr Pro Arg Asp Ser Ser Val Val Asp Val		
	4545 4550 4555 4560		
	Phe His Glu Gln Val Ser Ile Asn Pro Asp Ser Ile Ala Leu Ile His		
	4565 4570 4575		
20	Gly Ser Glu Lys Leu Ser Tyr Ala Gln Leu Asp Arg Glu Ser Asp Arg		
	4580 4585 4590		
	Val Ala Arg Trp Leu Arg His Arg Ser Phe Ser Ser Asp Thr Leu Ile		
	4595 4600 4605		
25	Ala Val Leu Ala Pro Arg Ser Cys Glu Thr Ile Ile Ala Phe Leu Gly		
	4610 4615 4620		
	Ile Leu Lys Ala Asn Leu Ala Tyr Leu Pro Leu Asp Val Lys Ala Pro		
	4625 4630 4640		
30	Ala Ala Arg Ile Asp Ala Ile Val Ser Ser Leu Pro Gly Asn Lys Leu		
	4645 4650 4655		
	Ile Leu Leu Gly Ala Asn Val Thr Pro Pro Lys Leu Gln Glu Ala Ala		
	4660 4665 4670		
35	Ile Asp Phe Val Pro Ile Arg Asp Thr Phe Thr Thr Leu Thr Asp Gly		
	4675 4680 4685		
	Thr Leu Gln Asp Gly Pro Thr Ile Glu Arg Pro Ser Ala Gln Ser Leu		
	4690 4695 4700		
40	Ala Tyr Ala Met Phe Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val		
	4705 4710 4715 4720		
	Met Val Gln His Arg Asn Ile Val Arg Leu Val Lys Asn Ser Asn Val		
	4725 4730 4735		
45	Val Ala Lys Gln Pro Ala Ala Ala Arg Ile Ala His Ile Ser Asn Leu		
	4740 4745 4750		
	Ala Phe Asp Ala Ser Ser Trp Glu Ile Tyr Ala Pro Leu Leu Asn Gly		
	4755 4760 4765		
50	Gly Ala Ile Val Cys Ala Asp Tyr Phe Thr Thr Ile Asp Pro Gln Ala		
	4770 4775 4780		
	Leu Gln Glu Thr Phe Gln Glu His Glu Ile Arg Gly Ala Met Leu Pro		
	4785 4790 4795 4800		
55	Pro Ser Leu Leu Lys Gln Cys Leu Val Gln Ala Pro Asp Met Ile Ser		
	4805 4810 4815		

Arg Leu Asp Ile Leu Phe Ala Ala Gly Asp Arg Phe Ser Ser Val Asp
 4820 4825 4830
 5 Ala Leu Gln Ala Gln Arg Leu Val Gly Ser Gly Val Phe Asn Ala Tyr
 4835 4840 4845
 Gly Pro Thr Glu Asn Thr Ile Leu Ser Thr Ile Tyr Asn Val Ala Glu
 4850 4855 4860
 10 Asn Asp Ser Phe Val Asn Gly Val Pro Ile Gly Ser Ala Val Ser Asn
 4865 4870 4875 4880
 Ser Gly Ala Tyr Ile Met Asp Lys Asn Gln Gln Leu Val Pro Ala Gly
 4885 4890 4895
 15 Val Met Gly Glu Leu Val Val Thr Gly Asp Gly Leu Ala Arg Gly Tyr
 4900 4905 4910
 Met Asp Pro Lys Leu Asp Ala Asp Arg Phe Ile Gln Leu Thr Val Asn
 4915 4920 4925
 20 Gly Ser Glu Gln Val Arg Ala Tyr Arg Thr Gly Asp Arg Val Arg Tyr
 4930 4935 4940
 Arg Pro Lys Asp Phe Gln Ile Glu Phe Phe Gly Arg Met Asp Gln Gln
 4945 4950 4955 4960
 25 Ile Lys Ile Arg Gly His Arg Ile Glu Pro Ala Glu Val Glu Gln Ala
 4965 4970 4975
 Phe Leu Asn Asp Gly Phe Val Glu Asp Val Ala Ile Val Ile Arg Thr
 4980 4985 4990
 30 Pro Glu Asn Gln Glu Pro Glu Met Val Ala Phe Val Thr Ala Lys Gly
 4995 5000 5005
 Asp Asn Ser Ala Arg Glu Glu Ala Thr Thr Gln Ile Glu Gly Trp
 5010 5015 5020
 35 Glu Ala His Phe Glu Gly Gly Ala Tyr Ala Asn Ile Glu Glu Ile Glu
 5025 5030 5035 5040
 Ser Glu Ala Leu Gly Tyr Asp Phe Met Gly Trp Thr Ser Met Tyr Asp
 5045 5050 5055
 40 Gly Thr Glu Ile Asp Lys Asp Glu Met Arg Glu Trp Leu Asn Asp Thr
 5060 5065 5070
 Met Arg Ser Leu Leu Asp Gly Lys Pro Ala Gly Arg Val Leu Glu Val
 5075 5080 5085
 45 Gly Thr Gly Thr Gly Met Ile Met Phe Asn Leu Gly Arg Ser Gln Gly
 5090 5095 5100
 Leu Glu Arg Tyr Ile Gly Leu Glu Pro Ala Pro Ser Ala Ala Glu Phe
 5105 5110 5115 5120
 50 Val Asn Asn Ala Ala Lys Ser Phe Pro Gly Leu Ala Gly Arg Ala Glu
 5125 5130 5135
 Val His Val Gly Thr Ala Ala Asp Val Gly Thr Leu Gln Gly Leu Thr
 5140 5145 5150
 55 Ser Asp Met Ala Val Ile Asn Ser Val Ala Gln Tyr Phe Pro Thr Pro
 5155 5160 5165

Glu Tyr Leu Ala Glu Thr Ile Lys Ser Leu Val Gln Val Pro Gly Met
 5170 5175 5180
 5 Lys Arg Ile Tyr Leu Gly Asp Met Arg Ser Trp Ala Met Asn Arg Asp
 5185 5190 5195 5200
 Phe Ala Ala Ala Arg Ala Ala Tyr Ser Leu Ala Asp Asn Ala Ser Lys
 5205 5210 5215
 10 Asp Arg Val Arg Gln Lys Met Met Glu Leu Glu Glu Lys Glu Glu
 5220 5225 5230
 Leu Leu Val Asp Pro Ala Phe Phe Thr Ala Leu Ala Ser Gln Leu Gln
 5235 5240 5245
 15 Asp Arg Ile Gln His Val Glu Ile Leu Pro Lys Arg Met Lys Ala Thr
 5250 5255 5260
 Asn Glu Leu Ser Ser Tyr Arg Tyr Ala Ala Val Leu His Ile Ser Asp
 5265 5270 5275 5280
 20 Glu Pro Leu Pro Ile Tyr Lys Ile Asp Pro Glu Ala Trp Ile Asn Phe
 5285 5290 5295
 Glu Gly Ser Arg Leu Thr Arg Glu Ala Leu Ala Gln Val Leu Lys Glu
 5300 5305 5310
 25 Asn Glu Asn Ala Glu Ser Val Ala Ile Ser Asn Ile Pro Tyr Ser Lys
 5315 5320 5325
 Thr Val Val Glu Arg His Ile Val Arg Ser Leu Asp Gln Glu Asp Ala
 5330 5335 5340
 30 Asn Ala Pro Glu Glu Ser Met Asp Gly Ser Asp Trp Ile Ser Ala Val
 5345 5350 5355 5360
 Arg Thr Arg Ala Gln Gln Cys His Thr Leu Ser Ala Ser Asp Leu Phe
 5365 5370 5375
 35 Asp Ile Ala Glu Asp Ala Gly Phe Arg Val Glu Val Ser Trp Ala Arg
 5380 5385 5390
 Gln His Ser Gln His Gly Ala Leu Asp Ala Val Phe His His Leu Lys
 5395 5400 5405
 40 Pro Ala Thr Glu Asp Ser Arg Val Leu Ile Lys Phe Pro Thr Asp His
 5410 5415 5420
 Gln Gly Arg Pro Leu Lys Ser Leu Thr Asn Gln Pro Leu Leu Pro Ala
 5425 5430 5435 5440
 Gln Ser Arg Arg Ala Glu Leu Leu Ile Arg Glu Gly Leu Gln Thr Leu
 5445 5450 5455
 45 Leu Pro Pro Tyr Met Ile Pro Ser Gln Ile Thr Leu Ile Asp Arg Met
 5460 5465 5470
 Pro Leu Asn Ala Asn Gly Lys Val Asp Arg Arg Glu Leu Ala Arg Arg
 5475 5480 5485
 50 Ala Lys Ile Thr Gln Lys Ser Lys Pro Val Glu Asp Ile Val Pro Pro
 5490 5495 5500
 Arg Asn Ser Val Glu Ala Thr Val Cys Lys Gly Phe Thr Asp Val Leu
 5505 5510 5515 5520
 55 Gly Val Glu Val Gly Ile Thr Asp Asn Phe Phe Asn Leu Gly Gly His

	5525	5530	5535
	Ser Leu Met Ala Thr Lys Leu Ala Ala Arg Leu Gly Arg Gln Leu Asn 5540	5545	5550
5	Thr Arg Ile Ser Val Arg Asp Val Phe Asp Gln Pro Val Val Ala Asp 5555	5560	5565
	Leu Ala Ala Val Ile Gln Arg Asn Ser Ala Pro His Glu Pro Ile Lys 5570	5575	5580
10	Pro Ala Asp Tyr Thr Gly Pro Val Pro Gln Ser Phe Ala Gln Gly Arg 5585	5590	5595
	Leu Trp Phe Leu Asp Gln Leu Asn Val Gly Ala Thr Trp Tyr Leu Met 5605	5610	5615
15	Pro Leu Gly Ile Arg Leu His Gly Ser Leu Arg Val Asp Ala Leu Ala 5620	5625	5630
	Thr Ala Ile Ser Ala Leu Glu Gln Arg His Glu Pro Leu Arg Thr Thr 5635	5640	5645
20	Phe His Glu Glu Asp Gly Val Gly Val Gln Val Val Gln Asp His Arg 5650	5655	5660
	Pro Lys Asp Leu Arg Ile Ile Asp Leu Ser Thr Gln Pro Lys Asp Ala 5665	5670	5675
25	Tyr Leu Ala Val Leu Lys His Glu Gln Thr Thr Leu Phe Asp Leu Ala 5685	5690	5695
	Thr Glu Pro Gly Trp Arg Val Ala Leu Ile Arg Leu Gly Glu Glu Glu 5700	5705	5710
30	His Ile Leu Ser Ile Val Met His His Ile Ile Ser Asp Gly Trp Ser 5715	5720	5725
	Val Glu Val Leu Phe Asp Glu Met His Arg Phe Tyr Ser Ser Ala Leu 5730	5735	5740
35	Arg Gln Gln Asp Pro Met Glu Gln Ile Leu Pro Leu Pro Ile Gln Tyr 5745	5750	5755
	Arg Asp Phe Ala Ala Trp Gln Lys Thr Glu Glu Gln Val Ala Glu His 5765	5770	5775
40	Gln Arg Gln Leu Asp Tyr Trp Thr Glu His Leu Ala Asp Ser Thr Pro 5780	5785	5790
	Ala Glu Leu Leu Thr Asp Leu Pro Arg Pro Ser Ile Leu Ser Gly Arg 5795	5800	5805
45	Ala Asn Glu Leu Pro Leu Thr Ile Glu Gly Arg Leu His Asp Lys Leu 5810	5815	5820
	Arg Ala Phe Cys Arg Val His Gln Ala Thr Pro Phe Val Ile Leu Leu 5825	5830	5835
50	Ala Ala Leu Arg Ala Ala His Tyr Arg Leu Thr Gly Ala Glu Asp Ala 5845	5850	5855
	Thr Leu Gly Thr Pro Ile Ala Asn Arg Asn Arg Pro Glu Leu Glu Asn 5860	5865	5870
55	Met Ile Gly Phe Phe Val Asn Thr Gln Cys Met Arg Ile Ala Ile Glu 5875	5880	5885

Glu Asn Asp Asn Phe Glu Ser Leu Val Arg Arg Val Arg Ser Thr Ala
 5890 5895 5900
 5
 Thr Ser Ala Phe Ala Asn Gln Asp Val Pro Phe Glu Ser Ile Val Ser
 5905 5910 5915 5920
 Ser Leu Leu Pro Gly Ser Arg Asp Ala Ser Arg Asn Pro Leu Val Gln
 5925 5930 5935
 10 Val Ile Leu Ala Val His Ser Gln Gln Asp Leu Gly Lys Leu Thr Leu
 5940 5945 5950
 Glu Gly Leu Arg Asp Glu Ala Val Asp Ser Ala Ile Ser Thr Arg Phe
 5955 5960 5965
 15 Asp Val Glu Phe His Leu Phe Glu His Ala Asp Arg Leu Ser Gly Ser
 5970 5975 5980
 Val Leu Tyr Ala Lys Glu Leu Phe Lys Leu Arg Thr Ile Glu Ser Val
 5985 5990 5995 6000
 20 Val Ser Val Phe Leu Glu Thr Leu Arg Arg Ala Leu Asp Gln Pro Leu
 6005 6010 6015
 Thr Pro Leu Ala Val Leu Pro Leu Thr Asp Gly Val Gly Glu Ile Ala
 6020 6025 6030
 25 Ser Lys Gly Leu Leu Asp Val Pro Arg Thr Asp Tyr Pro Arg Asp Ala
 6035 6040 6045
 Asn Ile Val Glu Val Phe Gln Gln His Val Arg Ala Thr Pro Asp Ala
 6050 6055 6060
 30 Ile Ala Val Lys Asp Ala Thr Ser Ile Leu Thr Tyr Ala Gln Leu Asp
 6065 6070 6075 6080
 Gln Gln Ser Asp Arg Leu Ala Ile Trp Leu Ser Arg Arg His Met Met
 6085 6090 6095
 35 Pro Glu Thr Leu Val Gly Val Leu Ala Pro Arg Ser Cys Glu Thr Ile
 6100 6105 6110
 Ile Ala Met Phe Gly Ile Met Lys Ala Asn Leu Ala Tyr Leu Pro Leu
 6115 6120 6125
 40 Asp Ile Asn Ser Pro Ala Ala Arg Leu Arg Ser Ile Leu Ser Ala Val
 6130 6135 6140
 Asp Gly Asn Lys Leu Val Leu Leu Gly Ser Gly Val Thr Ala Pro Glu
 6145 6150 6155 6160
 45 Gln Glu Asn Pro Glu Val Glu Ala Val Gly Ile Gln Glu Ile Leu Ala
 6165 6170 6175
 Gly Thr Gly Leu Asp Lys Thr Gln Gly Ser Asn Ala Arg Pro Ser Ala
 6180 6185 6190
 50 Thr Ser Leu Ala Tyr Val Ile Phe Thr Ser Gly Ser Thr Gly Lys Pro
 6195 6200 6205
 Lys Gly Val Met Val Glu His Arg Ser Val Thr Arg Leu Ala Lys Pro
 6210 6215 6220
 55 Ser Asn Val Ile Ser Lys Leu Pro Gln Gly Ala Arg Val Ala His Leu
 6225 6230 6235 6240

Ala Asn Ile Ala Phe Asp Ala Ser Ile Trp Glu Ile Ala Thr Thr Leu
 6245 6250 6255
 5 Leu Asn Gly Ala Thr Leu Val Cys Leu Asp Tyr His Thr Val Leu Asp
 6260 6265 6270
 Cys Arg Thr Leu Lys Glu Val Phe Glu Arg Glu Ser Ile Thr Val Val
 6275 6280 6285
 10 Thr Leu Met Pro Ala Leu Leu Lys Gln Cys Val Ala Glu Ile Pro Glu
 6290 6295 6300
 Thr Leu Ala His Leu Asp Leu Leu Tyr Thr Gly Gly Asp Arg Val Gly
 6305 6310 6315 6320
 15 Gly His Asp Ala Met Arg Ala Arg Ser Leu Val Lys Ile Gly Met Phe
 6325 6330 6335
 Ser Gly Tyr Gly Pro Thr Glu Asn Thr Val Ile Ser Thr Ile Tyr Glu
 6340 6345 6350
 20 Val Asp Ala Asp Glu Met Phe Val Asn Gly Val Pro Ile Gly Lys Thr
 6355 6360 6365
 Val Ser Asn Ser Gly Ala Tyr Val Met Asp Arg Asn Gln Gln Leu Val
 6370 6375 6380
 25 Pro Ser Gly Val Val Gly Glu Leu Val Val Thr Gly Asp Gly Leu Ala
 6385 6390 6395 6400
 Arg Gly Tyr Thr Asp Pro Ser Leu Asn Lys Asn Arg Phe Ile Tyr Ile
 6405 6410 6415
 30 Thr Val Asn Gly Glu Ser Ile Arg Ala Tyr Arg Thr Gly Asp Arg Val
 6420 6425 6430
 Arg Tyr Arg Pro His Asp Leu Gln Ile Glu Phe Phe Gly Arg Met Asp
 6435 6440 6445
 35 Gln Gln Val Lys Ile Arg Gly His Arg Ile Glu Pro Gly Glu Val Glu
 6450 6455 6460
 Ser Ala Leu Leu Ser His Asn Ser Val Gln Asp Ala Ala Val Val Ile
 6465 6470 6475 6480
 Cys Ala Pro Ala Asp Gln Asp Ser Gly Ala Glu Met Val Ala Phe Val
 6485 6490 6495
 40 Ala Ala Arg Asn Thr Glu Asp Glu Asp Thr Gln Glu Glu Ala Val
 6500 6505 6510
 Asp Gln Val Gln Gly Trp Glu Thr His Phe Glu Thr Ala Ala Tyr Ser
 6515 6520 6525
 45 Glu Val Lys Asp Ile Arg Gln Ser Glu Val Gly Asn Asp Phe Met Gly
 6530 6535 6540
 Trp Thr Ser Met Tyr Asp Gly Ser Glu Ile Asp Lys Thr Asp Met His
 6545 6550 6555 6560
 50 Glu Trp Leu Asn Asp Thr Met Arg Met Ile Leu Asp Ala Arg Glu Pro
 6565 6570 6575
 Gly His Val Leu Glu Ile Gly Thr Gly Met Val Met Phe Asn
 6580 6585 6590
 55 Leu Ala Lys Cys Pro Gly Leu Gln Gly Tyr Val Gly Phe Glu Pro Ser

EP 0 578 616 A2

	6595	6600	6605
5	Lys Ser Ala Ala Gln Phe Val Asn Asp Ala Ala Gln Ser Phe Pro Ala 6610 6615 6620		
10	Leu Lys Asp Gly Arg Ser Ile Val His Val Gly Thr Ala Thr Asp Ile 6625 6630 6635 6640		
15	Asn Lys Ala Gly Pro Ile Gln Pro Arg Leu Val Val Ile Asn Ser Val 6645 6650 6655		
20	Ala Gln Tyr Phe Pro Thr Pro Glu Tyr Leu Phe Arg Val Val Glu Ala 6660 6665 6670		
25	Leu Val Gln Ile Pro Ser Val Glu Arg Ile Val Phe Gly Asp Met Arg 6675 6680 6685		
30	Thr Asn Ala Ile Asn Arg Asp Phe Val Ala Ser Arg Ala Leu His Thr 6690 6695 6700		
35	Leu Gly Glu Lys Ala Asn Lys Arg Leu Val Arg Gln Met Ile Tyr Glu 6705 6710 6715 6720		
40	Leu Glu Ala Asn Glu Glu Glu Leu Leu Thr Asp Pro Ala Phe Phe Thr 6725 6730 6735		
45	Ser Leu Arg Thr Arg Leu Gly Glu Lys Ile Lys His Val Glu Ile Leu 6740 6745 6750		
50	Pro Lys Thr Met Lys Ala Thr Asn Glu Leu Ser Lys Tyr Arg Tyr Ala 6755 6760 6765		
55	Ala Val Leu His Val Arg Gly Ser Arg Glu Gln Ser Thr Ile His Gln 6770 6775 6780		
60	Val Ser Pro Asn Ala Trp Ile Asp Phe Ala Ala Asp Gly Leu Asp Arg 6785 6790 6795 6800		
65	Gln Thr Leu Ile Asn Leu Leu Lys Glu His Lys Asp Ala Gly Thr Val 6805 6810 6815		
70	Ala Ile Gly Asn Ile Pro Tyr Ser Lys Thr Ile Val Glu Arg Phe Val 6820 6825 6830		
75	Asn Lys Ser Leu Ser Glu Asp Asp Met Glu Glu Gly Gln Asn Ser Leu 6835 6840 6845		
80	Asp Gly Ser Ala Trp Val Ala Ala Val Arg Met Ala Ala Gln Ser Cys 6850 6855 6860		
85	Pro Ser Leu Asp Ala Met Asp Val Lys Glu Ile Ala Gln Glu Ala Gly 6865 6870 6875 6880		
90	Tyr Gln Val Glu Val Ser Trp Ala Arg Gln Trp Ser Gln Asn Gly Ala 6885 6890 6895		
95	Leu Asp Ala Ile Phe His His Phe Glu Pro Pro Lys Glu Gly Ala Arg 6900 6905 6910		
100	Thr Leu Ile Glu Phe Pro Thr Asp Tyr Glu Gly Arg Asn Val Asn Thr 6915 6920 6925		
105	Leu Thr Asn Arg Pro Leu Asn Ser Ile Gln Ser Arg Arg Leu Gly Thr 6930 6935 6940		
110	Gln Ile Arg Glu Lys Leu Gln Thr Leu Leu Pro Pro Tyr Met Ile Pro 6945 6950 6955 6960		

Ser Arg Ile Met Val Leu Asp Gln Met Pro Val Asn Asn Asn Gly Lys
 6965 6970 6975
 5 Ile Asp Arg Lys Glu Leu Val Arg Arg Ala Ile Val Ala Pro Lys Pro
 6980 6985 6990
 Arg Ser Ala Ala Thr Arg Val Ala Pro Arg Asn Glu Ile Glu Ala Ile
 6995 7000 7005
 10 Leu Arg Asp Glu Phe Glu Asp Val Leu Gly Thr Glu Val Ser Val Leu
 7010 7015 7020
 Asp Asn Phe Phe Asp Leu Gly Gly His Ser Leu Met Ala Thr Lys Leu
 7025 7030 7035 7040
 15 Ala Ala Arg Val Ser Arg Arg Leu Asp Ala His Ile Ser Ile Lys Asp
 7045 7050 7055
 Val Phe Asp Gln Pro Val Leu Ala Asp Leu Ala Ala Ser Ile Gln Arg
 7060 7065 7070
 20 Glu Ser Ala Pro His Glu Pro Ile Pro Gln Arg Pro Tyr Thr Gly Pro
 7075 7080 7085
 Ala Glu Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe Leu Asp Gln Leu
 7090 7095 7100
 25 Asn Leu Gly Ala Thr Trp Tyr Leu Met Pro Leu Ala Ile Arg Ile Arg
 7105 7110 7115 7120
 Gly Gln Leu Arg Val Ala Ala Leu Ser Ala Ala Leu Phe Ala Leu Glu
 7125 7130 7135
 30 Arg Arg His Glu Thr Leu Arg Thr Thr Phe Glu Glu Ser Asp Gly Val
 7140 7145 7150
 Gly Val Gln Ile Val Gly Glu Ala Arg Asn Ser Asp Leu Arg Val His
 7155 7160 7165
 35 Asp Val Ser Thr Gly Asp Asp Gly Glu Tyr Leu Glu Val Leu Arg Arg
 7170 7175 7180
 Glu Gln Thr Val Pro Phe Asp Leu Ser Ser Glu Pro Gly Trp Arg Val
 7185 7190 7195 7200
 40 Cys Leu Val Lys Thr Gly Glu Glu Asp His Val Leu Ser Ile Val Met
 7205 7210 7215
 His His Ile Ile Tyr Asp Gly Trp Ser Val Asp Ile Leu Arg Gly Glu
 7220 7225 7230
 Leu Gly Gln Phe Tyr Ser Ala Ala Leu Arg Gly Gln Asp Pro Leu Leu
 7235 7240 7245
 45 His Ala Asn Pro Leu Pro Ile Gln Tyr Arg Asp Phe Ala Ala Trp Gln
 7250 7255 7260
 Arg Glu Ala Lys Gln Val Glu Glu His Gln Arg Gln Leu Gly Tyr Trp
 7265 7270 7275 7280
 50 Ser Lys Gln Leu Val Asp Ser Thr Pro Ala Glu Leu Leu Thr Asp Leu
 7285 7290 7295
 Pro Arg Pro Ser Ile Leu Ser Gly Arg Ala Gly Ser Val Asp Val Thr
 7300 7305 7310

Ile Glu Gly Ser Val Tyr Gly Ala Leu Gln Ser Phe Cys Arg Thr Arg
 7315 7320 7325
 5 Ser Val Thr Thr Phe Val Val Leu Leu Thr Val Phe Arg Ile Ala His
 7330 7335 7340
 Phe Arg Leu Thr Ala Val Asp Asp Ala Thr Ile Gly Thr Pro Ile Ala
 7345 7350 7355 7360
 10 Asn Arg Asn Arg Pro Glu Leu Glu Thr Leu Val Gly Cys Phe Val Asn
 7365 7370 7375
 Thr Gln Cys Met Arg Ile Ser Ile Ala Asp Asp Asp Asn Phe Glu Gly
 7380 7385 7390
 15 Leu Val Arg Gln Val Arg Asn Val Ala Thr Ala Ala Tyr Ala Asn Gln
 7395 7400 7405
 Asp Val Pro Phe Glu Arg Ile Val Ser Ala Leu Val Pro Gly Ser Arg
 7410 7415 7420
 20 Asn Thr Ser Arg Asn Pro Leu Val Gln Leu Met Phe Ala Val Gln Ser
 7425 7430 7435 7440
 Val Glu Asp Tyr Asp Gln Val Arg Leu Glu Gly Leu Glu Ser Val Met
 7445 7450 7455
 25 Met Pro Gly Glu Ala Ser Thr Arg Phe Asp Met Glu Phe His Leu Val
 7460 7465 7470
 Pro Gly Asp Gln Lys Leu Thr Gly Ser Val Leu Tyr Ser Ser Asp Leu
 7475 7480 7485
 30 Phe Glu Gln Gly Thr Ile Gln Asn Phe Val Asp Ile Phe Gln Glu Cys
 7490 7495 7500
 Leu Arg Ser Val Leu Asp Gln Pro Leu Thr Pro Ile Ser Val Leu Pro
 35 7505 7510 7515 7520
 Phe Ser Asn Ala Ile Ser Asn Leu Glu Ser Leu Asp Leu Leu Glu Met
 7525 7530 7535
 Pro Thr Ser Asp Tyr Pro Arg Asp Arg Thr Val Val Asp Leu Phe Arg
 7540 7545 7550
 40 Glu Gln Ala Ala Ile Cys Pro Asp Ser Ile Ala Val Lys Asp Ser Ser
 7555 7560 7565
 Ser Gln Leu Thr Tyr Ala Gln Leu Asp Glu Gln Ser Asp Arg Val Ala
 7570 7575 7580
 Ala Trp Leu His Glu Arg His Met Pro Ala Glu Ser Leu Val Gly Val
 45 7585 7590 7595 7600
 Leu Ser Pro Arg Ser Cys Glu Thr Ile Ile Ala Tyr Phe Gly Ile Met
 7605 7610 7615
 Lys Ala Asn Leu Ala Tyr Leu Pro Leu Asp Val Tyr Ala Pro Asp Ala
 50 7620 7625 7630
 Arg Leu Ala Ala Ile Leu Asp Thr Val Glu Gly Glu Arg Leu Leu Leu
 7635 7640 7645
 Leu Gly Ala Gly Val Pro Gln Pro Gly Ile Gln Ile Pro Arg Leu Ser
 55 7650 7655 7660
 Thr Ala Tyr Ile Ala Glu Ala Leu Ser His Ala Thr Thr Val Asp Val

	7665	7670	7675	7680
	Thr Ser Ile Pro Gln Pro Ser Ala Thr Ser Leu Ala Tyr Val Ile Phe			
5	7685	7690	7695	
	Thr Ser Gly Ser Thr Gly Lys Pro Lys Gly Val Met Ile Glu His Arg			
	7700	7705	7710	
	Gly Ile Val Arg Leu Val Arg Asp Thr Asn Val Asn Val Phe Pro Glu			
10	7715	7720	7725	
	Ser Gly Ser Ala Leu Pro Val Ser His Phe Ser Asn Leu Ala Trp Asp			
	7730	7735	7740	
	Ala Ala Thr Trp Glu Ile Tyr Thr Ala Val Leu Asn Gly Gly Thr Val			
15	7745	7750	7755	7760
	Val Cys Ile Asp Arg Asp Thr Met Leu Asp Ile Ala Ala Leu Asn Ser			
	7765	7770	7775	
	Thr Phe Arg Lys Glu Asn Val Arg Ala Ala Phe Phe Thr Pro Ala Phe			
	7780	7785	7790	
20	Leu Lys Gln Cys Leu Ala Glu Thr Pro Glu Leu Val Ala Asn Leu Glu			
	7795	7800	7805	
	Ile Leu His Thr Ala Gly Asp Arg Leu Asp Pro Gly Asp Ala Asn Leu			
25	7810	7815	7820	
	Ala Gly Lys Thr Ala Lys Gly Gly Ile Phe Asn Val Leu Gly His Thr			
	7825	7830	7835	7840
	Glu Asn Thr Ala Tyr Ser Thr Phe Tyr Pro Val Val Gly Glu Glu Thr			
	7845	7850	7855	
30	Phe Val Asn Gly Val Pro Val Gly Arg Gly Ile Ser Asn Ser His Ala			
	7860	7865	7870	
	Tyr Ile Ile Asp Arg His Gln Lys Leu Val Pro Ala Gly Val Met Gly			
	7875	7880	7885	
35	Glu Leu Ile Leu Thr Gly Asp Gly Val Ala Arg Gly Tyr Thr Asp Ser			
	7890	7895	7900	
	Ala Leu Asn Lys Asp Arg Phe Val Tyr Ile Asp Ile Asn Gly Lys Ser			
	7905	7910	7915	7920
40	Thr Trp Ser Tyr Arg Thr Gly Asp Lys Ala Arg Tyr Arg Pro Arg Asp			
	7925	7930	7935	
	Gly Gln Leu Glu Phe Phe Gly Arg Met Asp Gln Met Val Lys Ile Arg			
	7940	7945	7950	
45	Gly Val Arg Ile Glu Pro Gly Glu Val Glu Leu Thr Leu Leu Asp His			
	7955	7960	7965	
	Lys Ser Val Leu Ala Ala Thr Val Val Val Arg Arg Pro Pro Asn Gly			
	7970	7975	7980	
50	Asp Pro Glu Met Ile Ala Phe Ile Thr Ile Asp Ala Glu Asp Asp Val			
	7985	7990	7995	8000
	Gln Thr His Lys Ala Ile Tyr Lys His Leu Gln Gly Ile Leu Pro Ala			
	8005	8010	8015	
55	Tyr Met Ile Pro Ser His Leu Val Ile Leu Asp Gln Met Pro Val Thr			
	8020	8025	8030	

Asp Asn Gly Lys Val Asp Arg Lys Asp Leu Ala Leu Arg Ala Gln Thr
 8035 8040 8045
 5 Val Gln Lys Arg Arg Ser Thr Ala Ala Arg Val Pro Pro Arg Asp Glu
 8050 8055 8060
 Val Glu Ala Val Leu Cys Glu Glu Tyr Ser Asn Leu Leu Glu Val Glu
 8065 8070 8075 8080
 10 Val Gly Ile Thr Asp Gly Phe Phe Asp Leu Gly Gly His Ser Leu Leu
 8085 8090 8095
 Ala Thr Lys Leu Ala Ala Arg Leu Ser Arg Gln Leu Asn Thr Arg Val
 8100 8105 8110
 15 Ser Val Lys Asp Val Phe Asp Gln Pro Ile Leu Ala Asp Leu Ala Asp
 8115 8120 8125
 Ile Ile Arg Arg Gly Ser His Arg His Asp Pro Ile Pro Ala Thr Pro
 8130 8135 8140
 20 Tyr Thr Gly Pro Val Glu Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe
 8145 8150 8155 8160
 Leu Glu Gln Leu Asn Leu Gly Ala Ser Trp Tyr Leu Met Pro Phe Ala
 8165 8170 8175
 25 Ile Arg Met Arg Gly Pro Leu Gln Thr Lys Ala Leu Ala Val Ala Leu
 8180 8185 8190
 Asn Ala Leu Val His Arg His Glu Ala Leu Arg Thr Thr Phe Glu Asp
 8195 8200 8205
 30 His Asp Gly Val Gly Val Gln Val Ile Gln Pro Lys Ser Ser Gln Asp
 8210 8215 8220
 Leu Arg Ile Ile Asp Leu Ser Asp Ala Val Asp Asp Thr Ala Tyr Leu
 8225 8230 8235 8240
 35 Ala Ala Leu Lys Arg Glu Gln Thr Thr Ala Phe Asp Leu Thr Ser Glu
 8245 8250 8255
 Pro Gly Trp Arg Val Ser Leu Leu Arg Leu Gly Asp Asp Asp Tyr Ile
 8260 8265 8270
 40 Leu Ser Ile Val Met His His Ile Ile Ser Asp Gly Trp Thr Val Asp
 8275 8280 8285
 Val Leu Arg Gln Glu Leu Gly Gln Phe Tyr Ser Ala Ala Ile Arg Gly
 8290 8295 8300
 45 Gln Glu Pro Leu Ser Gln Ala Lys Ser Leu Pro Ile Gln Tyr Arg Asp
 8305 8310 8315 8320
 Phe Ala Val Trp Gln Arg Gln Glu Asn Gln Ile Lys Glu Gln Ala Lys
 8325 8330 8335
 50 Gln Leu Lys Tyr Trp Ser Gln Gln Leu Ala Asp Ser Thr Pro Cys Glu
 8340 8345 8350
 Phe Leu Thr Asp Leu Pro Arg Pro Ser Ile Leu Ser Gly Glu Ala Asp
 8355 8360 8365
 55 Ala Val Pro Met Val Ile Asp Gly Thr Val Tyr Gln Leu Leu Thr Asp
 8370 8375 8380

Phe Cys Arg Thr His Gln Val Thr Ser Phe Ser Val Leu Leu Ala Ala
 8385 8390 8395 8400
 5 Phe Arg Thr Ala His Tyr Arg Leu Thr Gly Thr Leu Asp Ala Thr Val
 8405 8410 8415
 Gly Thr Pro Ile Ala Asn Arg Asn Arg Pro Glu Leu Glu Gly Leu Ile
 8420 8425 8430
 10 Gly Phe Phe Val Asn Thr Gln Cys Met Arg Met Ala Ile Ser Glu Thr
 8435 8440 8445
 Glu Thr Phe Glu Ser Leu Val Gln Gln Val Arg Leu Thr Thr Thr Glu
 8450 8455 8460
 15 Ala Phe Ala Asn Gln Asp Val Pro Phe Glu Gln Ile Val Ser Thr Leu
 8465 8470 8475 8480
 Leu Pro Gly Ser Arg Asp Thr Ser Arg Asn Pro Leu Val Gln Val Met
 8485 8490 8495
 20 Phe Ala Leu Gln Ser Gln Gln Asp Leu Gly Arg Ile Gln Leu Glu Gly
 8500 8505 8510
 Met Thr Asp Glu Ala Leu Glu Thr Pro Leu Ser Thr Arg Leu Asp Leu
 8515 8520 8525
 25 Glu Val His Leu Phe Gln Glu Val Gly Lys Leu Ser Gly Ser Leu Leu
 8530 8535 8540
 Tyr Ser Thr Asp Leu Phe Glu Val Glu Thr Ile Arg Gly Ile Val Asp
 8545 8550 8555 8560
 30 Val Phe Leu Glu Ile Leu Arg Arg Gly Leu Glu Gln Pro Lys Gln Arg
 8565 8570 8575
 Leu Met Ala Met Pro Ile Thr Asp Gly Ile Thr Lys Leu Arg Asp Gln
 8580 8585 8590
 35 Gly Leu Leu Thr Val Ala Lys Pro Ala Tyr Pro Arg Glu Ser Ser Val
 8595 8600 8605
 Ile Asp Leu Phe Arg Gln Gln Val Ala Ala Ala Pro Asp Ala Ile Ala
 8610 8615 8620
 40 Val Trp Asp Ser Ser Ser Thr Leu Thr Tyr Ala Asp Leu Asp Gly Gln
 8625 8630 8635 8640
 Ser Asn Lys Leu Ala His Trp Leu Cys Gln Arg Asn Met Ala Pro Glu
 8645 8650 8655
 45 Thr Leu Val Ala Val Phe Ala Pro Arg Ser Cys Leu Thr Ile Val Ala
 8660 8665 8670
 Phe Leu Gly Val Leu Lys Ala Asn Leu Ala Tyr Leu Pro Leu Asp Val
 8675 8680 8685
 50 Asn Ala Pro Ala Ala Arg Ile Glu Ala Ile Leu Ser Ala Val Pro Gly
 8690 8695 8700
 His Lys Leu Val Leu Val Gln Ala His Gly Pro Glu Leu Gly Leu Thr
 8705 8710 8715 8720
 Met Ala Asp Thr Glu Leu Val Gln Ile Asp Glu Ala Leu Ala Ser Ser
 8725 8730 8735
 55 Ser Ser Gly Asp His Glu Gln Ile His Ala Ser Gly Pro Thr Ala Thr

	8740	8745	8750
	Ser Leu Ala Tyr Val Met Phe Thr Ser Gly Ser Thr Gly Lys Pro Lys		
	8755	8760	8765
5	Gly Val Met Ile Asp His Arg Ser Ile Ile Arg Leu Val Lys Asn Ser		
	8770	8775	8780
	Asp Val Val Ala Thr Leu Pro Thr Pro Val Arg Met Ala Asn Val Ser		
	8785	8790	8795
10	Asn Leu Ala Phe Asp Ile Ser Val Gln Glu Ile Tyr Thr Ala Leu Leu		
	8805	8810	8815
	Asn Gly Gly Thr Leu Val Cys Leu Asp Tyr Leu Thr Leu Leu Asp Ser		
	8820	8825	8830
15	Lys Ile Leu Tyr Asn Val Phe Val Glu Ala Gln Val Asn Ala Ala Met		
	8835	8840	8845
	Phe Thr Pro Val Leu Leu Lys Gln Cys Leu Gly Asn Met Pro Ala Ile		
	8850	8855	8860
20	Ile Ser Arg Leu Ser Val Leu Phe Asn Val Gly Asp Arg Leu Asp Ala		
	8865	8870	8875
	His Asp Ala Val Ala Ala Ser Gly Leu Ile Gln Asp Ala Val Tyr Asn		
	8885	8890	8895
25	Ala Tyr Gly Pro Thr Glu Asn Gly Met Gln Ser Thr Met Tyr Lys Val		
	8900	8905	8910
	Asp Val Asn Glu Pro Phe Val Asn Gly Val Pro Ile Gly Arg Ser Ile		
	8915	8920	8925
30	Thr Asn Ser Gly Ala Tyr Val Met Asp Gly Asn Gln Gln Leu Val Ser		
	8930	8935	8940
	Pro Gly Val Met Gly Glu Ile Val Val Thr Gly Asp Gly Leu Ala Arg		
	8945	8950	8955
35	Gly Tyr Thr Asp Ser Ala Leu Asp Glu Asp Arg Phe Val His Val Thr		
	8965	8970	8975
	Ile Asp Gly Glu Glu Asn Ile Lys Ala Tyr Arg Thr Gly Asp Arg Val		
	8980	8985	8990
40	Arg Tyr Arg Pro Lys Asp Phe Glu Ile Glu Phe Phe Gly Arg Met Asp		
	8995	9000	9005
	Gln Gln Val Lys Ile Arg Gly His Arg Ile Glu Pro Ala Glu Val Glu		
	9010	9015	9020
45	His Ala Leu Leu Gly His Asp Leu Val His Asp Ala Ala Val Val Leu		
	9025	9030	9035
	Arg Lys Pro Ala Asn Gln Glu Pro Glu Met Ile Ala Phe Ile Thr Ser		
	9045	9050	9055
50	Gln Glu Asp Glu Thr Ile Glu Gln His Glu Ser Asn Lys Gln Val Gln		
	9060	9065	9070
	Gly Trp Gly Glu His Phe Asp Val Ser Arg Tyr Ala Asp Ile Lys Asp		
	9075	9080	9085
55	Leu Asp Thr Ser Thr Phe Gly His Asp Phe Leu Gly Trp Thr Ser Met		
	9090	9095	9100

Tyr Asp Gly Val Asp Ile Pro Val Asn Glu Met Lys Glu Trp Leu Asp
 9105 9110 9115 9120
 5 Glu Thr Thr Ala Ser Leu Leu Asp Asn Arg Pro Pro Gly His Ile Leu
 9125 9130 9135
 Glu Ile Gly Ala Gly Thr Gly Met Ile Leu Ser Asn Leu Gly Lys Val
 9140 9145 9150
 10 Asp Gly Leu Gln Lys Tyr Val Gly Leu Asp Pro Ala Pro Ser Ala Ala
 9155 9160 9165
 Ile Phe Val Asn Glu Ala Val Lys Ser Leu Pro Ser Leu Ala Gly Lys
 9170 9175 9180
 15 Ala Arg Val Leu Val Gly Thr Ala Leu Asp Ile Gly Ser Leu Asp Lys
 9185 9190 9195 9200
 Asn Glu Ile Gln Pro Glu Leu Val Val Ile Asn Ser Val Ala Gln Tyr
 9205 9210 9215
 20 Phe Pro Thr Ser Glu Tyr Leu Ile Lys Val Val Lys Ala Val Val Glu
 9220 9225 9230
 Val Pro Ser Val Lys Arg Val Phe Phe Gly Asp Ile Arg Ser Gln Ala
 9235 9240 9245
 25 Leu Asn Arg Asp Phe Leu Ala Ala Arg Ala Val Arg Ala Leu Gly Asp
 9250 9255 9260
 Asn Ala Ser Lys Glu Gln Ile Arg Glu Lys Ile Ala Glu Leu Glu Glu
 9265 9270 9275 9280
 30 Ser Glu Glu Glu Leu Leu Val Asp Pro Ala Phe Phe Val Ser Leu Arg
 9285 9290 9295
 Ser Gln Leu Pro Asn Ile Lys His Val Glu Val Leu Pro Lys Leu Met
 9300 9305 9310
 35 Lys Ala Thr Asn Glu Leu Ser Ser Tyr Arg Tyr Ala Ala Val Leu His
 9315 9320 9325
 Ile Ser His Asn Glu Glu Glu Gln Leu Leu Ile Gln Asp Ile Asp Pro
 9330 9335 9340
 40 Thr Ala Trp Val Asp Phe Ala Ala Thr Gln Lys Asp Ser Gln Gly Leu
 9345 9350 9355 9360
 Arg Asn Leu Leu Gln Gln Gly Arg Asp Asp Val Met Ile Ala Val Gly
 9365 9370 9375
 45 Asn Ile Pro Tyr Ser Lys Thr Ile Val Glu Arg His Ile Met Asn Ser
 9380 9385 9390
 Leu Asp Gln Asp His Val Asn Ser Leu Asp Gly Thr Ser Trp Ile Ser
 9395 9400 9405
 50 Asp Ala Arg Ser Ala Ala Ile Cys Thr Ser Phe Asp Ala Pro Ala
 9410 9415 9420
 Leu Thr Gln Leu Ala Lys Glu Glu Gly Phe Arg Val Glu Leu Ser Trp
 9425 9430 9435 9440
 55 Ala Arg Gln Arg Ser Gln Asn Gly Ala Leu Asp Ala Val Phe His Arg
 9445 9450 9455

Leu Ala Thr Asp Ala Asn Cys Glu Arg Ser Arg Val Leu Val His Phe
 9460 9465 9470
 Pro Thr Asp His Gln Gly Arg Gln Leu Arg Thr Leu Thr Asn Arg Pro
 5 9475 9480 9485
 Leu Gln Arg Ala Gln Ser Arg Arg Ile Glu Ser Gln Val Phe Glu Ala
 9490 9495 9500
 Leu Gln Thr Ala Leu Pro Ala Tyr Met Ile Pro Ser Arg Ile Ile Val
 10 9505 9510 9515 9520
 Leu Pro Gln Met Pro Thr Asn Ala Asn Gly Lys Val Asp Arg Lys Gln
 9525 9530 9535
 Leu Ala Arg Arg Ala Gln Val Val Ala Lys Arg Lys Ala Val Ser Ala
 15 9540 9545 9550
 Arg Val Ala Pro Arg Asn Asp Thr Glu Ile Val Leu Cys Glu Glu Tyr
 9555 9560 9565
 Ala Asp Ile Leu Gly Thr Glu Val Gly Ile Thr Asp Asn Phe Phe Asp
 20 9570 9575 9580
 Met Gly Gly His Ser Leu Met Ala Thr Lys Leu Ala Ala Arg Leu Ser
 9585 9590 9595 9600
 Arg Arg Leu Asp Thr Arg Val Thr Val Lys Glu Val Phe Asp Lys Pro
 25 9605 9610 9615
 Val Leu Ala Asp Leu Ala Ala Ser Ile Glu Gln Gly Ser Thr Pro His
 9620 9625 9630
 Leu Pro Ile Ala Ser Ser Val Tyr Ser Gly Pro Val Glu Gln Ser Tyr
 30 9635 9640 9645
 Ala Gln Gly Arg Leu Trp Phe Leu Asp Gln Phe Asn Leu Asn Ala Thr
 9650 9655 9660
 Trp Tyr His Met Ser Leu Ala Met Arg Leu Leu Gly Pro Leu Asn Met
 35 9665 9670 9675 9680
 Asp Ala Leu Asp Val Ala Leu Arg Ala Leu Glu Gln Arg His Glu Thr
 9685 9690 9695
 Leu Arg Thr Thr Phe Glu Ala Gln Lys Asp Ile Gly Val Gln Val Val
 40 9700 9705 9710
 His Glu Ala Gly Met Lys Arg Leu Lys Val Leu Asp Leu Ser Asp Lys
 9715 9720 9725
 Asn Glu Lys Glu His Met Ala Val Leu Glu Asn Glu Gln Met Arg Pro
 45 9730 9735 9740
 Phe Thr Leu Ala Ser Glu Pro Gly Trp Lys Gly His Leu Ala Arg Leu
 9745 9750 9755 9760
 Gly Pro Thr Glu Tyr Ile Leu Ser Leu Val Met His His Met Phe Ser
 9765 9770 9775
 Asp Gly Trp Ser Val Asp Ile Leu Arg Gln Glu Leu Gly Gln Phe Tyr
 50 9780 9785 9790
 Ser Ala Ala Leu Arg Gly Arg Asp Pro Leu Ser Gln Val Lys Pro Leu
 9795 9800 9805
 Pro Ile Gln Tyr Arg Asp Phe Ala Ala Trp Gln Lys Glu Ala Ala Gln

	9810	9815	9820
	Val Ala Glu His Glu Arg Gln Leu Ala Tyr Trp Glu Asn Gln Leu Ala		
5	9825	9830	9840
	Asp Ser Thr Pro Gly Glu Leu Leu Thr Asp Phe Pro Arg Pro Gln Phe		
	9845	9850	9855
	Leu Ser Gly Lys Ala Gly Val Ile Pro Val Thr Ile Glu Gly Pro Val		
	9860	9865	9870
10	Tyr Glu Lys Leu Leu Lys Phe Ser Lys Glu Arg Gln Val Thr Leu Phe		
	9875	9880	9885
	Ser Val Leu Leu Thr Ala Phe Arg Ala Thr His Phe Arg Leu Thr Gly		
	9890	9895	9900
15	Ala Glu Asp Ala Thr Ile Gly Thr Pro Ile Ala Asn Arg Asn Arg Pro		
	9905	9910	9915
	Glu Leu Glu His Ile Ile Gly Phe Phe Val Asn Thr Gln Cys Met Arg		
	9925	9930	9935
20	Leu Leu Leu Asp Thr Gly Ser Thr Phe Glu Ser Leu Val Gln His Val		
	9940	9945	9950
	Arg Ser Val Ala Thr Asp Ala Tyr Ser Asn Gln Asp Ile Pro Phe Glu		
	9955	9960	9965
25	Arg Ile Val Ser Ala Leu Leu Pro Gly Ser Arg Asp Ala Ser Arg Ser		
	9970	9975	9980
	Pro Leu Ile Gln Leu Met Phe Ala Leu His Ser Gln Pro Asp Leu Gly		
	9985	9990	9995
30	Asn Ile Thr Leu Glu Gly Leu Glu His Glu Arg Leu Pro Thr Ser Val		
	10005	10010	10015
	Ala Thr Arg Phe Asp Met Glu Phe His Leu Phe Gln Glu Pro Asn Lys		
	10020	10025	10030
35	Leu Ser Gly Ser Ile Leu Phe Ala Asp Glu Leu Phe Gln Pro Glu Thr		
	10035	10040	10045
	Ile Asn Ser Val Val Thr Val Phe Gln Glu Ile Leu Arg Arg Gly Leu		
	10050	10055	10060
40	Asp Gln Pro Gln Val Ser Ile Ser Thr Met Pro Leu Thr Asp Gly Leu		
	10065	10070	10075
	Ile Asp Leu Glu Lys Leu Gly Leu Leu Glu Ile Glu Ser Ser Asn Phe		
	10085	10090	10095
45	Pro Arg Asp Tyr Ser Val Val Asp Val Phe Arg Gln Gln Val Ala Ala		
	10100	10105	10110
	Asn Pro Asn Ala Pro Ala Val Val Asp Ser Glu Thr Ser Met Ser Tyr		
	10115	10120	10125
50	Thr Ser Leu Asp Gln Lys Ser Glu Gln Ile Ala Ala Trp Leu His Ala		
	10130	10135	10140
	Gln Gly Leu Arg Pro Glu Ser Leu Ile Cys Val Met Ala Pro Arg Ser		
	10145	10150	10155
55	Phe Glu Thr Ile Val Ser Leu Phe Gly Ile Leu Lys Ala Gly Tyr Ala		
	10165	10170	10175

Tyr Leu Pro Leu Asp Val Asn Ser Pro Ala Ala Arg Ile Gln Pro Ile
 10180 10185 10190
 5 Leu Ser Glu Val Glu Gly Lys Arg Leu Val Leu Leu Gly Ser Gly Ile
 10195 10200 10205
 Asp Met Pro Gln Ser Asp Arg Met Asp Val Glu Thr Ala Arg Ile Gln
 10210 10215 10220
 10 Asp Ile Leu Thr Asn Thr Lys Val Glu Arg Ser Asp Pro Met Ser Arg
 10225 10230 10235 10240
 Pro Ser Ala Thr Ser Leu Ala Tyr Val Ile Phe Thr Ser Gly Ser Thr
 10245 10250 10255
 15 Gly Arg Pro Lys Gly Val Met Ile Glu His Arg Asn Ile Leu Arg Leu
 10260 10265 10270
 Val Lys Gln Ser Asn Val Thr Ser Gln Leu Pro Gln Asp Leu Arg Met
 10275 10280 10285
 20 Ala His Ile Ser Asn Leu Ala Phe Asp Ala Ser Ile Trp Glu Ile Phe
 10290 10295 10300
 Thr Ala Ile Leu Asn Gly Gly Ala Leu Ile Cys Ile Asp Tyr Phe Thr
 10305 10310 10315 10320
 25 Leu Leu Asp Ser Gln Ala Leu Arg Thr Thr Phe Glu Lys Ala Arg Val
 10325 10330 10335
 Asn Ala Thr Leu Phe Ala Pro Ala Leu Leu Lys Glu Cys Leu Asn His
 10340 10345 10350
 30 Ala Pro Thr Leu Phe Glu Asp Leu Lys Val Leu Tyr Ile Gly Gly Asp
 10355 10360 10365
 Arg Leu Asp Ala Thr Asp Ala Ala Lys Ile Gln Ala Leu Val Lys Gly
 10370 10375 10380
 35 Thr Val Tyr Asn Ala Tyr Gly Pro Thr Glu Asn Thr Val Met Ser Thr
 10385 10390 10395 10400
 Ile Tyr Arg Leu Thr Asp Gly Glu Ser Tyr Ala Asn Gly Val Pro Ile
 10405 10410 10415
 40 Gly Asn Ala Val Ser Ser Ser Gly Ala Tyr Ile Met Asp Gln Lys Gln
 10420 10425 10430
 Arg Leu Val Pro Pro Gly Val Met Gly Glu Leu Val Val Ser Gly Asp
 10435 10440 10445
 45 Gly Leu Ala Arg Gly Tyr Thr Asn Ser Thr Leu Asn Ala Asp Arg Phe
 10450 10455 10460
 Val Asp Ile Val Ile Asn Asp Gln Lys Ala Arg Ala Tyr Arg Thr Gly
 10465 10470 10475 10480
 50 Asp Arg Thr Arg Tyr Arg Pro Lys Asp Gly Ser Ile Glu Phe Phe Gly
 10485 10490 10495
 Arg Met Asp Gln Gln Val Lys Ile Arg Gly His Arg Val Glu Pro Ala
 10500 10505 10510
 55 Glu Val Glu Gln Ala Met Leu Gly Asn Lys Ala Ile His Asp Ala Ala
 10515 10520 10525

Val Val Val Gln Ala Val Asp Gly Gln Glu Thr Glu Met Ile Gly Phe
 10530 10535 10540
 Val Ser Met Ala Ser Asp Arg Phe Ser Glu Gly Glu Glu Glu Ile Thr
 10545 10550 10555 10560
 5 Asn Gln Val Gln Glu Trp Glu Asp His Phe Glu Ser Thr Ala Tyr Ala
 10565 10570 10575
 Gly Ile Glu Ala Ile Asp Gln Ala Thr Leu Gly Arg Asp Phe Thr Ser
 10580 10585 10590
 10 Trp Thr Ser Met Tyr Asn Gly Asn Leu Ile Asp Lys Ala Glu Met Glu
 10595 10600 10605
 Glu Trp Leu Asp Asp Thr Met Gln Ser Leu Leu Asp Lys Glu Asp Ala
 10610 10615 10620
 15 Arg Pro Cys Ala Glu Ile Gly Thr Gly Thr Gly Met Val Leu Phe Asn
 10625 10630 10635 10640
 Leu Pro Lys Asn Asp Gly Leu Glu Ser Tyr Val Gly Ile Glu Pro Ser
 10645 10650 10655
 20 Arg Ser Ala Ala Leu Phe Val Asp Lys Ala Ala Gln Asp Phe Pro Gly
 10660 10665 10670
 Leu Gln Gly Lys Thr Gln Ile Leu Val Gly Thr Ala Glu Asp Ile Lys
 10675 10680 10685
 25 Leu Val Lys Asp Phe His Pro Asp Val Val Val Ile Asn Ser Val Ala
 10690 10695 10700
 Gln Tyr Phe Pro Ser Arg Ser Tyr Leu Val Gln Ile Ala Ser Glu Leu
 10705 10710 10715 10720
 30 Ile His Met Thr Ser Val Lys Thr Ile Phe Phe Gly Asp Met Arg Ser
 10725 10730 10735
 Trp Ala Thr Asn Arg Asp Phe Leu Val Ser Arg Ala Leu Tyr Thr Leu
 10740 10745 10750
 35 Gly Asp Lys Ala Thr Lys Asp Gln Ile Arg Gln Glu Val Ala Arg Leu
 10755 10760 10765
 Glu Glu Asn Glu Asp Glu Leu Leu Val Asp Pro Ala Phe Phe Thr Ser
 10770 10775 10780
 40 Leu Thr Ser Gln Trp Pro Gly Lys Val Lys His Val Glu Ile Leu Pro
 10785 10790 10795 10800
 Lys Arg Met Arg Thr Ser Asn Glu Leu Ser Ser Tyr Arg Tyr Ala Ala
 10805 10810 10815
 45 Val Leu His Ile Cys Arg Asp Gly Glu Gly Arg Asn Arg Tyr Gly Arg
 10820 10825 10830
 Arg Val His Ser Val Glu Glu Asn Ala Trp Ile Asp Phe Ala Ser Ser
 10835 10840 10845
 50 Gly Met Asp Arg His Ala Leu Val Gln Met Leu Asp Glu Arg Arg Asp
 10850 10855 10860
 Ala Lys Thr Val Ala Ile Gly Asn Ile Pro His Ser Asn Thr Ile Asn
 10865 10870 10875 10880
 55 Glu Arg His Phe Thr Thr Ser Leu Asp Thr Glu Gly Glu Gly Ile Ala

	10885	10890	10895
5	Gln Asp Ser Leu Asp Gly Ser Ala Trp Gln Ser Ala Thr Lys Ala Met 10900 10905 10910		
	Ala Ala Arg Cys Pro Cys Leu Ser Val Thr Glu Leu Val Glu Ile Gly 10915 10920 10925		
10	Gln Ala Ala Gly Phe Arg Val Glu Val Ser Trp Ala Arg Gln Arg Ser 10930 10935 10940		
	Gln His Gly Ala Leu Asp Val Val Phe His His Leu Glu Asp Asp Arg 10945 10950 10955 10960		
15	Val Gly Arg Val Leu Ile Asn Phe Pro Thr Asp Phe Glu Arg Leu Pro 10965 10970 10975		
	Pro Ser Thr Gly Leu Thr Ser Arg Pro Leu Gln Arg Ile Gln Asn Arg 10980 10985 10990		
20	Arg Phe Glu Ser Gln Ile Arg Glu Gln Leu Gln Thr Leu Leu Pro Pro 10995 11000 11005		
	Tyr Met Val Pro Ser Arg Ile Val Val Leu Glu Arg Met Pro Leu Asn 11010 11015 11020		
25	Ala Asn Ser Lys Val Asp Arg Lys Glu Leu Ala Arg Lys Ala Arg Thr 11025 11030 11035 11040		
	Leu Gln Thr Ile Lys Pro Ser Ala Thr Arg Val Ala Pro Arg Asn Asp 11045 11050 11055		
	Ile Glu Ala Val Leu Cys Asp Glu Phe Gln Ala Val Leu Gly Val Thr 11060 11065 11070		
30	Val Gly Val Met Asp Asn Phe Phe Glu Leu Gly Gly His Ser Leu Met 11075 11080 11085		
	Ala Thr Lys Leu Ala Ala Arg Leu Ser Arg Arg Leu Asp Thr Arg Val 11090 11095 11100		
35	Ser Val Lys Asp Ile Phe Asn Gln Pro Ile Leu Gln Asp Leu Ala Asp 11105 11110 11115 11120		
	Val Val Gln Thr Gly Ser Ala Pro His Glu Ala Ile Pro Ser Thr Pro 11125 11130 11135		
40	Tyr Ser Gly Pro Val Glu Gln Ser Phe Ser Gln Gly Arg Leu Trp Phe 11140 11145 11150		
	Leu Asp Gln Leu Asn Leu Asn Ala Ser Trp Tyr His Met Pro Leu Ala 11155 11160 11165		
45	Ser Arg Leu Arg Gly Pro Leu Arg Ile Glu Ala Leu Gln Ser Ala Leu 11170 11175 11180		
	Ala Thr Ile Glu Ala Arg His Glu Ser Leu Arg Thr Thr Phe Glu Glu 11185 11190 11195 11200		
50	Gln Asp Gly Val Pro Val Gln Ile Val Arg Ala Ala Arg Asn Lys Gln 11205 11210 11215		
	Leu Arg Ile Ile Asp Val Ser Gly Thr Glu Asp Ala Tyr Leu Ala Ala 11220 11225 11230		
55	Leu Lys Gln Glu Gln Asp Ala Ala Phe Asp Leu Thr Ala Glu Pro Gly 11235 11240 11245		

Trp Arg Val Ala Leu Leu Arg Leu Gly Pro Asp Asp His Val Leu Ser
 11250 11255 11260
 5 Ile Val Met His His Ile Ile Ser Asp Gly Trp Ser Val Asp Ile Leu
 11265 11270 11275 11280
 Arg Gln Glu Leu Gln Leu Tyr Ser Asn Ala Ser Ser Gln Pro Ala
 11285 11290 11295
 10 Pro Leu Pro Ile Gln Tyr Arg Asp Phe Ala Ile Trp Gln Lys Gln Asp
 11300 11305 11310
 Ser Gln Ile Ala Glu His Gln Lys Gln Leu Asn Tyr Trp Lys Arg Gln
 11315 11320 11325
 15 Leu Val Asn Ser Lys Pro Ala Glu Leu Leu Ala Asp Phe Thr Arg Pro
 11330 11335 11340
 Lys Ala Leu Ser Gly Asp Ala Asp Val Ile Pro Ile Glu Ile Asp Asp
 11345 11350 11355 11360
 20 Gln Val Tyr Gln Asn Leu Arg Ser Phe Cys Arg Ala Arg His Val Thr
 11365 11370 11375
 Ser Phe Val Ala Leu Leu Ala Ala Phe Arg Ala Ala His Tyr Arg Leu
 11380 11385 11390
 25 Thr Gly Ala Glu Asp Ala Thr Ile Gly Ser Pro Ile Ala Asn Arg Asn
 11395 11400 11405
 Arg Pro Glu Leu Glu Gly Leu Ile Gly Cys Phe Val Asn Thr Gln Cys
 11410 11415 11420
 30 Leu Arg Ile Pro Val Lys Ser Glu Asp Thr Phe Asp Thr Leu Val Lys
 11425 11430 11435 11440
 Gln Ala Arg Glu Thr Ala Thr Glu Ala Gln Asp Asn Gln Asp Val Pro
 11445 11450 11455
 35 Phe Glu Arg Ile Val Ser Ser Met Val Ala Ser Ser Arg Asp Thr Ser
 11460 11465 11470
 Arg Asn Pro Leu Val Gln Val Met Phe Ala Val His Ser Gln His Asp
 11475 11480 11485
 40 Leu Gly Asn Ile Arg Leu Glu Gly Val Glu Gly Lys Pro Val Ser Met
 11490 11495 11500
 Ala Ala Ser Thr Arg Phe Asp Ala Glu Met His Leu Phe Glu Asp Gln
 11505 11510 11515 11520
 45 Gly Met Leu Gly Gly Asn Val Val Phe Ser Lys Asp Leu Phe Glu Ser
 11525 11530 11535
 Glu Thr Ile Arg Ser Val Val Ala Val Phe Gln Glu Thr Leu Arg Arg
 11540 11545 11550
 50 Gly Leu Ala Asn Pro His Ala Asn Leu Ala Thr Leu Pro Leu Thr Asp
 11555 11560 11565
 Gly Leu Pro Ser Leu Arg Ser Leu Cys Leu Gln Val Asn Gln Pro Asp
 11570 11575 11580
 55 Tyr Pro Arg Asp Ala Ser Val Ile Asp Val Phe Arg Glu Gln Val Ala
 11585 11590 11595 11600

Ser Ile Pro Lys Ser Ile Ala Val Ile Asp Ala Ser Ser Gln Leu Thr
 11605 11610 11615
 Tyr Thr Glu Leu Asp Glu Arg Ser Ser Gln Leu Ala Thr Trp Leu Arg
 5 11620 11625 11630
 Arg Gln Val Thr Val Pro Glu Glu Leu Val Gly Val Leu Ala Pro Arg
 11635 11640 11645
 Ser Cys Glu Thr Ile Ile Ala Phe Leu Gly Ile Ile Lys Ala Asn Leu
 10 11650 11655 11660
 Ala Tyr Leu Pro Leu Asp Val Asn Ala Pro Ala Gly Arg Ile Glu Thr
 11665 11670 11675 11680
 Ile Leu Ser Ser Leu Pro Gly Asn Arg Leu Ile Leu Leu Gly Ser Asp
 15 11685 11690 11695
 Thr Gln Ala Val Lys Leu His Ala Asn Ser Val Arg Phe Thr Arg Ile
 11700 11705 11710
 Ser Asp Ala Leu Val Glu Ser Gly Ser Pro Pro Thr Glu Glu Leu Ser
 20 11715 11720 11725
 Thr Arg Pro Thr Ala Gln Ser Leu Ala Tyr Val Met Phe Thr Ser Gly
 11730 11735 11740
 Ser Thr Gly Val Pro Lys Gly Val Met Val Glu His Arg Gly Ile Thr
 25 11745 11750 11755 11760
 Arg Leu Val Lys Asn Ser Asn Val Val Ala Lys Gln Pro Ala Ala Ala
 11765 11770 11775
 Ala Ile Ala His Leu Ser Asn Ile Ala Phe Asp Ala Ser Ser Trp Glu
 30 11780 11785 11790
 Ile Tyr Ala Pro Leu Leu Asn Gly Gly Thr Val Val Cys Ile Asp Tyr
 11795 11800 11805
 Tyr Thr Thr Ile Asp Ile Lys Ala Leu Glu Ala Val Phe Lys Gln His
 35 11810 11815 11820
 His Ile Arg Gly Ala Met Leu Pro Pro Ala Leu Leu Lys Gln Cys Leu
 11825 11830 11835 11840
 Val Ser Ala Pro Thr Met Ile Ser Ser Leu Glu Ile Leu Phe Ala Ala
 40 11845 11850 11855
 Gly Asp Arg Leu Ser Ser Gln Asp Ala Ile Leu Ala Arg Arg Ala Val
 11860 11865 11870
 Gly Ser Gly Val Tyr Asn Ala Tyr Gly Pro Thr Glu Asn Thr Val Leu
 45 11875 11880 11885
 Ser Thr Ile His Asn Ile Gly Glu Asn Glu Ala Phe Ser Asn Gly Val
 11890 11895 11900
 Pro Ile Gly Asn Ala Val Ser Asn Ser Gly Ala Phe Val Met Asp Gln
 50 11905 11910 11915 11920
 Asn Gln Gln Leu Val Ser Ala Gly Val Ile Gly Glu Leu Val Val Thr
 11925 11930 11935
 Gly Asp Gly Leu Ala Arg Gly Tyr Thr Asp Ser Lys Leu Arg Val Asp
 55 11940 11945 11950
 Arg Phe Ile Tyr Ile Thr Leu Asp Gly Asn Arg Val Arg Ala Tyr Arg

	11955	11960	11965
	Thr Gly Asp Arg Val Arg His Arg Pro Lys Asp Gly Gln Ile Glu Phe 11970	11975	11980
5	Phe Gly Arg Met Asp Gln Gln Ile Lys Ile Arg Gly His Arg Ile Glu 11985	11990	11995
	12000		
	Pro Ala Glu Val Glu Gln Ala Leu Ala Arg Asp Pro Ala Ile Ser Asp 12005	12010	12015
10	Ser Ala Val Ile Thr Gln Leu Thr Asp Glu Glu Glu Pro Glu Leu Val 12020	12025	12030
	Ala Phe Phe Ser Leu Lys Gly Asn Ala Asn Gly Thr Asn Gly Val Asn 12035	12040	12045
15	Gly Val Ser Asp Gln Glu Lys Ile Asp Gly Asp Glu Gln His Ala Leu 12050	12055	12060
	Leu Met Glu Asn Lys Ile Arg His Asn Leu Gln Ala Leu Leu Pro Thr 12065	12070	12075
	12080		
20	Tyr Met Ile Pro Ser Arg Ile Ile His Val Asp Gln Leu Pro Val Asn 12085	12090	12095
	Ala Asn Gly Lys Ile Asp Arg Asn Glu Leu Ala Val Arg Ala Gln Ala 12100	12105	12110
25	Thr Pro Arg Thr Ser Ser Val Ser Thr Tyr Val Ala Pro Arg Asn Asp 12115	12120	12125
	Ile Glu Thr Ile Ile Cys Lys Glu Phe Ala Asp Ile Leu Ser Val Arg 12130	12135	12140
30	Val Gly Ile Thr Asp Asn Phe Phe Asp Leu Gly Gly His Ser Leu Ile 12145	12150	12155
	12160		
	Ala Thr Lys Leu Ala Ala Arg Leu Ser Arg Arg Leu Asp Thr Arg Val 12165	12170	12175
35	Ser Val Arg Asp Val Phe Asp Thr Pro Val Val Gly Gln Leu Ala Ala 12180	12185	12190
	Ser Ile Gln Gln Gly Ser Thr Pro His Glu Ala Ile Pro Ala Leu Ser 12195	12200	12205
40	His Ser Gly Pro Val Gln Gln Ser Phe Ala Gln Gly Arg Leu Trp Phe 12210	12215	12220
	Leu Asp Arg Phe Asn Leu Asn Ala Ala Trp Tyr Ile Met Pro Phe Gly 12225	12230	12235
	12240		
45	Val Arg Leu Arg Gly Pro Leu Arg Val Asp Ala Leu Gln Thr Ala Leu 12245	12250	12255
	Arg Ala Leu Glu Glu Arg His Glu Leu Leu Arg Thr Thr Phe Glu Glu 12260	12265	12270
50	Gln Asp Gly Val Gly Met Gln Ile Val His Ser Pro Arg Met Arg Asp 12275	12280	12285
	Ile Cys Val Val Asp Ile Ser Gly Ala Asn Glu Asp Leu Ala Lys Leu 12290	12295	12300
55	Lys Glu Glu Gln Gln Ala Pro Phe Asn Leu Ser Thr Glu Val Ala Trp 12305	12310	12315
	12320		

Arg Val Ala Leu Phe Lys Ala Gly Glu Asn His His Ile Leu Ser Ile
 12325 12330 12335
 5 Val Met His His Ile Ile Ser Asp Gly Trp Ser Val Asp Ile Phe Gln
 12340 12345 12350
 Gln Glu Leu Ala Gln Phe Tyr Ser Val Ala Val Arg Gly His Asp Pro
 12355 12360 12365
 10 Leu Ser Gln Val Lys Pro Leu Pro Ile His Tyr Arg Asp Phe Ala Val
 12370 12375 12380
 Trp Gln Arg Gln Asp Lys Gln Val Ala Val His Glu Ser Gln Leu Gln
 12385 12390 12395 12400
 15 Tyr Trp Ile Glu Gln Leu Ala Asp Ser Thr Pro Ala Glu Ile Leu Ser
 12405 12410 12415
 Asp Phe Asn Arg Pro Glu Val Leu Ser Gly Glu Ala Gly Thr Val Pro
 12420 12425 12430
 20 Ile Val Ile Glu Asp Glu Val Tyr Glu Lys Leu Ser Leu Phe Cys Arg
 12435 12440 12445
 Asn His Gln Val Thr Ser Phe Val Val Leu Leu Ala Ala Phe Arg Val
 12450 12455 12460
 25 Ala His Tyr Arg Leu Thr Gly Ala Glu Asp Ala Thr Ile Gly Thr Pro
 12465 12470 12475 12480
 Ile Ala Asn Arg Asn Arg Pro Glu Leu Glu Asp Leu Ile Gly Phe Phe
 12485 12490 12495
 30 Val Asn Thr Gln Cys Met Arg Ile Ala Leu Glu Glu His Asp Asn Phe
 12500 12505 12510
 Leu Ser Val Val Arg Arg Val Arg Ser Thr Ala Ala Ser Ala Phe Glu
 12515 12520 12525
 35 Asn Gln Asp Val Pro Phe Glu Arg Leu Val Ser Ala Leu Leu Pro Gly
 12530 12535 12540
 Ser Arg Asp Ala Ser Arg Asn Pro Leu Val Gln Leu Met Phe Val Val
 12545 12550 12555 12560
 40 His Ser Gln Arg Asn Leu Gly Lys Leu Gln Leu Glu Gly Leu Glu Gly
 12565 12570 12575
 Glu Pro Thr Pro Tyr Thr Ala Thr Thr Arg Phe Asp Val Glu Phe His
 12580 12585 12590
 45 Leu Phe Glu Gln Asp Lys Gly Leu Ala Gly Asn Val Val Phe Ala Ala
 12595 12600 12605
 Asp Leu Phe Glu Ala Ala Thr Ile Arg Ser Val Val Glu Val Phe His
 12610 12615 12620
 50 Glu Ile Leu Arg Arg Gly Leu Asp Gln Pro Asp Ile Ala Ile Ser Thr
 12625 12630 12635 12640
 Met Pro Leu Val Asp Gly Leu Ala Ala Leu Asn Ser Arg Asn Leu Pro
 12645 12650 12655
 Ala Val Glu Asp Ile Glu Pro Asp Phe Ala Thr Glu Ala Ser Val Val
 12660 12665 12670
 55

Asp Val Phe Gln Thr Gln Val Val Ala Asn Pro Asp Ala Leu Ala Val
 12675 12680 12685
 5 Thr Asp Thr Ser Thr Lys Leu Thr Tyr Ala Glu Leu Asp Gln Gln Ser
 12690 12695 12700
 Asp His Val Ala Ala Trp Leu Ser Lys Gln Lys Leu Pro Ala Glu Ser
 12705 12710 12715 12720
 Ile Val Val Val Leu Ala Pro Arg Ser Ser Glu Thr Ile Val Ala Cys
 10 12725 12730 12735
 Ile Gly Ile Leu Lys Ala Asn Leu Ala Tyr Leu Pro Met Asp Ser Asn
 12740 12745 12750
 Val Pro Glu Ala Arg Arg Gln Ala Ile Leu Ser Glu Ile Pro Gly Glu
 15 12755 12760 12765
 Lys Phe Val Leu Leu Gly Ala Gly Val Pro Ile Pro Asp Asn Lys Thr
 12770 12775 12780
 Ala Asp Val Arg Met Val Phe Ile Ser Asp Ile Val Ala Ser Lys Thr
 20 12785 12790 12795 12800
 Asp Lys Ser Tyr Ser Pro Gly Thr Arg Pro Ser Ala Ser Ser Leu Ala
 12805 12810 12815
 Tyr Val Ile Phe Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Met
 25 12820 12825 12830
 Val Glu His Arg Gly Val Ile Ser Leu Val Lys Gln Asn Ala Ser Arg
 12835 12840 12845
 Ile Pro Gln Ser Leu Arg Met Ala His Val Ser Asn Leu Ala Phe Asp
 30 12850 12855 12860
 Ala Ser Val Trp Glu Ile Phe Thr Thr Leu Leu Asn Gly Gly Thr Leu
 12865 12870 12875 12880
 Phe Cys Ile Ser Tyr Phe Thr Val Leu Asp Ser Lys Ala Leu Ser Ala
 35 12885 12890 12895
 Ala Phe Ser Asp His Arg Ile Asn Ile Thr Leu Leu Pro Pro Ala Leu
 12900 12905 12910
 Leu Lys Gln Cys Leu Ala Asp Ala Pro Ser Val Leu Ser Ser Leu Glu
 40 12915 12920 12925
 Ser Leu Tyr Ile Gly Gly Asp Arg Leu Asp Gly Ala Asp Ala Thr Lys
 12930 12935 12940
 Val Lys Asp Leu Val Lys Gly Lys Ala Tyr Asn Ala Tyr Gly Pro Thr
 45 12945 12950 12955 12960
 Glu Asn Ser Val Met Ser Thr Ile Tyr Thr Ile Glu His Glu Thr Phe
 12965 12970 12975
 Ala Asn Gly Val Pro Ile Gly Thr Ser Leu Gly Pro Lys Ser Lys Ala
 50 12980 12985 12990
 Tyr Ile Met Asp Gln Asp Gln Gln Leu Val Pro Ala Gly Val Met Gly
 12995 13000 13005
 Glu Leu Val Val Ala Gly Asp Gly Leu Ala Arg Gly Tyr Thr Asp Pro
 55 13010 13015 13020
 Ser Leu Asn Thr Gly Arg Phe Ile His Ile Thr Ile Asp Gly Lys Gln

13025	13030	13035	13040
Val Gln Ala Tyr Arg Thr Gly Asp Arg Val Arg Tyr Arg Pro Arg Asp			
13045	13050	13055	
5 Tyr Gln Ile Glu Phe Phe Gly Arg Leu Asp Gln Gln Ile Lys Ile Arg			
13060	13065	13070	
Gly His Arg Ile Glu Pro Ala Glu Val Glu Gln Ala Leu Leu Ser Asp			
13075	13080	13085	
10 Ser Ser Ile Asn Asp Ala Val Val Val Ser Ala Gln Asn Lys Glu Gly			
13090	13095	13100	
Leu Glu Met Val Gly Tyr Ile Thr Thr Gln Ala Ala Gln Ser Val Asp			
13105	13110	13115	13120
15 Lys Glu Glu Ala Ser Asn Lys Val Gln Glu Trp Glu Ala His Phe Asp			
13125	13130	13135	
Ser Thr Ala Tyr Ala Asn Ile Gly Gly Ile Asp Arg Asp Ala Leu Gly			
13140	13145	13150	
20 Gln Asp Phe Leu Ser Trp Thr Ser Met Tyr Asp Gly Ser Leu Ile Pro			
13155	13160	13165	
Arg Glu Glu Met Gln Glu Trp Leu Asn Asp Thr Met Arg Ser Leu Leu			
13170	13175	13180	
25 Asp Asn Gln Pro Pro Gly Lys Val Leu Glu Ile Gly Thr Gly Thr Gly			
13185	13190	13195	13200
Met Val Leu Phe Asn Leu Gly Lys Val Glu Gly Leu Gln Ser Tyr Ala			
13205	13210	13215	
30 Gly Leu Glu Pro Ser Arg Ser Val Thr Ala Trp Val Asn Lys Ala Ile			
13220	13225	13230	
Glu Thr Phe Pro Ser Leu Ala Gly Ser Ala Arg Val His Val Gly Thr			
13235	13240	13245	
35 Ala Glu Asp Ile Ser Ser Ile Asp Gly Leu Arg Ser Asp Leu Val Val			
13250	13255	13260	
Ile Asn Ser Val Ala Gln Tyr Phe Pro Ser Arg Glu Tyr Leu Ala Glu			
13265	13270	13275	13280
40 Leu Thr Ala Asn Leu Ile Arg Leu Pro Gly Val Lys Arg Ile Phe Phe			
13285	13290	13295	
Gly Asp Met Arg Thr Tyr Ala Thr Asn Lys Asp Phe Leu Val Ala Arg			
13300	13305	13310	
45 Ala Val His Thr Leu Gly Ser Asn Ala Ser Lys Ala Met Val Arg Gln			
13315	13320	13325	
Gln Val Ala Lys Leu Glu Asp Asp Glu Glu Glu Leu Leu Val Asp Pro			
13330	13335	13340	
50 Ala Phe Phe Thr Ser Leu Ser Asp Gln Phe Pro Asp Glu Ile Lys His			
13345	13350	13355	13360
Val Glu Ile Leu Pro Lys Arg Met Ala Ala Thr Asn Glu Leu Ser Ser			
13365	13370	13375	
55 Tyr Arg Tyr Ala Ala Val Ile His Val Gly Gly His Gln Met Pro Asn			
13380	13385	13390	

Gly Glu Asp Glu Asp Lys Gln Trp Ala Val Lys Asp Ile Asn Pro Lys
 13395 13400 13405
 Ala Trp Val Asp Phe Ala Gly Thr Arg Met Asp Arg Gln Ala Leu Leu
 5 13410 13415 13420
 Gln Leu Leu Gln Asp Arg Gln Arg Gly Asp Asp Val Val Ala Val Ser
 13425 13430 13435 13440
 Asn Ile Pro Tyr Ser Lys Thr Ile Met Glu Arg His Leu Ser Gln Ser
 10 13445 13450 13455
 Leu Asp Asp Asp Glu Asp Gly Thr Ser Ala Val Asp Gly Thr Ala Trp
 13460 13465 13470
 Ile Ser Arg Thr Gln Ser Arg Ala Lys Glu Cys Pro Ala Leu Ser Val
 15 13475 13480 13485
 Ala Asp Leu Ile Glu Ile Gly Lys Gly Ile Gly Phe Glu Val Glu Ala
 13490 13495 13500
 Ser Trp Ala Arg Gln His Ser Gln Arg Gly Gly Leu Asp Ala Val Phe
 20 13505 13510 13515 13520
 His Arg Phe Glu Pro Pro Arg His Ser Gly His Val Met Phe Arg Phe
 13525 13530 13535
 Pro Thr Glu His Lys Gly Arg Ser Ser Ser Ser Leu Thr Asn Arg Pro
 25 13540 13545 13550
 Leu His Leu Leu Gln Ser Arg Arg Leu Glu Ala Lys Val Arg Glu Arg
 13555 13560 13565
 Leu Gln Ser Leu Leu Pro Pro Tyr Met Ile Pro Ser Arg Ile Thr Leu
 30 13570 13575 13580
 Leu Asp Gln Met Pro Leu Thr Ser Asn Gly Lys Val Asp Arg Lys Lys
 13585 13590 13595 13600
 Leu Ala Arg Gln Ala Arg Val Ile Pro Arg Ser Ala Ala Ser Thr Leu
 35 13605 13610 13615
 Asp Phe Val Ala Pro Arg Thr Glu Ile Glu Val Val Leu Cys Glu Glu
 13620 13625 13630
 Phe Thr Asp Leu Leu Gly Val Lys Val Gly Ile Thr Asp Asn Phe Phe
 40 13635 13640 13645
 Glu Leu Gly Gly His Ser Leu Leu Ala Thr Lys Leu Ser Ala Arg Leu
 13650 13655 13660
 Ser Arg Arg Leu Asp Ala Gly Ile Thr Val Lys Gln Val Phe Asp Gln
 45 13665 13670 13675 13680
 Pro Val Leu Ala Asp Leu Ala Ala Ser Ile Leu Gln Gly Ser Ser Arg
 13685 13690 13695
 His Arg Ser Ile Pro Ser Leu Pro Tyr Glu Gly Pro Val Glu Gln Ser
 50 13700 13705 13710
 Phe Ala Gln Gly Arg Leu Trp Phe Leu Asp Gln Phe Asn Ile Asp Ala
 13715 13720 13725
 Leu Trp Tyr Leu Ile Pro Phe Ala Leu Arg Met Arg Gly Pro Leu Gln
 55 13730 13735 13740

EP 0 578 616 A2

Val Asp Ala Leu Ala Ala Ala Leu Val Ala Leu Glu Glu Arg His Glu
 13745 13750 13755 13760
 Ser Leu Arg Thr Thr Phe Glu Glu Arg Asp Gly Val Gly Ile Gln Val
 5 13765 13770 13775
 Val Gln Pro Leu Arg Thr Thr Lys Asp Ile Arg Ile Ile Asp Val Ser
 13780 13785 13790
 Gly Met Arg Asp Asp Asp Ala Tyr Leu Glu Pro Leu Gln Lys Glu Gln
 10 13795 13800 13805
 Gln Thr Pro Phe Asp Leu Ala Ser Glu Pro Gly Trp Arg Val Ala Leu
 13810 13815 13820
 Leu Lys Leu Gly Lys Asp Asp His Ile Leu Ser Ile Val Met His His
 15 13825 13830 13835 13840
 Ile Ile Ser Asp Gly Trp Ser Thr Glu Val Leu Gln Arg Glu Leu Gly
 13845 13850 13855
 Gln Phe Tyr Leu Ala Ala Lys Ser Gly Lys Ala Pro Leu Ser Gln Val
 20 13860 13865 13870
 Ala Pro Leu Pro Ile Gln Tyr Arg Asp Phe Ala Val Trp Gln Arg Gln
 13875 13880 13885
 Glu Glu Gln Val Ala Glu Ser Gln Arg Gln Leu Asp Tyr Trp Lys Lys
 25 13890 13895 13900
 Gln Leu Ala Asp Ser Ser Pro Ala Glu Leu Leu Ala Asp Tyr Thr Arg
 13905 13910 13915 13920
 Pro Asn Val Leu Ser Gly Glu Ala Gly Ser Val Ser Phe Val Ile Asn
 30 13925 13930 13935
 Asp Ser Val Tyr Lys Ser Leu Val Ser Phe Cys Arg Ser Arg Gln Val
 13940 13945 13950
 Thr Thr Phe Thr Thr Leu Leu Ala Ala Phe Arg Ala Ala His Tyr Arg
 35 13955 13960 13965
 Met Thr Gly Ser Asp Asp Ala Thr Ile Gly Thr Pro Ile Ala Asn Arg
 13970 13975 13980
 Asn Arg Pro Glu Leu Glu Asn Leu Ile Gly Cys Phe Val Asn Thr Gln
 40 13985 13990 13995 14000
 Cys Met Arg Ile Thr Ile Gly Asp Asp Glu Thr Phe Glu Ser Leu Val
 14005 14010 14015
 Gln Gln Val Arg Ser Thr Thr Ala Thr Ala Phe Glu Asn Gln Asp Val
 45 14020 14025 14030
 Pro Phe Glu Arg Ile Val Ser Thr Leu Ser Ala Gly Ser Arg Asp Thr
 14035 14040 14045
 Ser Arg Asn Pro Leu Val Gln Leu Leu Phe Ala Val His Ser Gln Gln
 50 14050 14055 14060
 Gly Leu Gly Arg Ile Gln Leu Asp Gly Val Val Asp Glu Pro Val Leu
 14065 14070 14075 14080
 Ser Thr Val Ser Thr Arg Phe Asp Leu Glu Phe His Ala Phe Gln Glu
 55 14085 14090 14095
 Ala Asp Arg Leu Asn Gly Ser Val Met Phe Ala Thr Asp Leu Phe Gln

	14100	14105	14110
	Pro Glu Thr Ile Gln Gly Phe Val Ala Val Val Glu Val Leu Gln		
5	14115	14120	14125
	Arg Gly Leu Glu Gln Pro Gln Ser Pro Ile Ala Thr Met Pro Leu Ala		
	14130	14135	14140
	Glu Gly Ile Ala Gln Leu Arg Asp Ala Gly Ala Leu Gln Met Pro Lys		
	14145	14150	14155
10	14160		
	Ser Asp Tyr Pro Arg Asn Ala Ser Leu Val Asp Val Phe Gln Gln		
	14165	14170	14175
	Ala Met Ala Ser Pro Ser Thr Val Ala Val Thr Asp Ser Thr Ser Lys		
	14180	14185	14190
15	Leu Thr Tyr Ala Glu Leu Asp Arg Leu Ser Asp Gln Ala Ala Ser Tyr		
	14195	14200	14205
	Leu Arg Arg Gln Gln Leu Pro Ala Glu Thr Met Val Ala Val Leu Ala		
	14210	14215	14220
20	Pro Arg Ser Cys Glu Thr Ile Ile Ala Phe Leu Ala Ile Leu Lys Ala		
	14225	14230	14235
	Asn Leu Ala Tyr Met Pro Leu Asp Val Asn Thr Pro Ser Ala Arg Met		
	14245	14250	14255
25	Glu Ala Ile Ile Ser Ser Val Pro Gly Arg Arg Leu Ile Leu Val Gly		
	14260	14265	14270
	Ser Gly Val Arg His Ala Asp Ile Asn Val Pro Asn Ala Lys Thr Met		
	14275	14280	14285
30	Leu Ile Ser Asp Thr Val Thr Gly Thr Asp Ala Ile Gly Thr Pro Glu		
	14290	14295	14300
	Pro Leu Val Val Arg Pro Ser Ala Thr Ser Leu Ala Tyr Val Ile Phe		
	14305	14310	14315
35	14320		
	Thr Ser Gly Ser Thr Gly Lys Pro Lys Gly Val Met Val Glu His Arg		
	14325	14330	14335
	Ala Ile Met Arg Leu Val Lys Asp Ser Asn Val Val Thr His Met Pro		
	14340	14345	14350
40	Pro Ala Thr Arg Met Ala His Val Thr Asn Ile Ala Phe Asp Val Ser		
	14355	14360	14365
	Leu Phe Glu Met Cys Ala Thr Leu Leu Asn Gly Gly Thr Leu Val Cys		
	14370	14375	14380
45	Ile Asp Tyr Leu Thr Leu Leu Asp Ser Thr Met Leu Arg Glu Thr Phe		
	14385	14390	14395
	14400		
	Glu Arg Glu Gln Val Arg Ala Ala Ile Phe Pro Pro Ala Leu Leu Arg		
	14405	14410	14415
50	Gln Cys Leu Val Asn Met Pro Asp Ala Ile Gly Met Leu Glu Ala Val		
	14420	14425	14430
	Tyr Val Ala Gly Asp Arg Phe His Ser Arg Asp Ala Arg Ala Thr Gln		
	14435	14440	14445
55	Ala Leu Ala Gly Pro Arg Val Tyr Asn Ala Tyr Gly Pro Thr Glu Asn		
	14450	14455	14460

Ala Ile Leu Ser Thr Ile Tyr Asn Ile Asp Lys His Asp Pro Tyr Val
 14465 14470 14475 14480
 5 Asn Gly Val Pro Ile Gly Ser Ala Val Ser Asn Ser Gly Ala Tyr Val
 14485 14490 14495
 Met Asp Arg Asn Gln Gln Leu Leu Pro Pro Gly Val Met Gly Glu Leu
 14500 14505 14510
 10 Val Val Thr Gly Glu Gly Val Ala Arg Gly Tyr Thr Asp Ala Ser Leu
 14515 14520 14525
 Asp Thr Asp Arg Phe Val Thr Val Thr Ile Asp Gly Gln Arg Gln Arg
 14530 14535 14540
 15 Ala Tyr Arg Thr Gly Asp Arg Val Arg Tyr Arg Pro Lys Gly Phe Gln
 14545 14550 14555 14560
 Ile Glu Phe Phe Gly Arg Leu Asp Gln Gln Ala Lys Ile Arg Gly His
 14565 14570 14575
 20 Arg Val Glu Leu Gly Glu Val Glu His Ala Leu Leu Ser Glu Asn Ser
 14580 14585 14590
 Val Thr Asp Ala Ala Val Val Leu Arg Thr Met Glu Glu Glu Asp Pro
 14595 14600 14605
 25 Gln Leu Val Ala Phe Val Thr Thr Asp His Glu Tyr Arg Ser Gly Ser
 14610 14615 14620
 Ser Asn Glu Glu Glu Asp Pro Tyr Ala Thr Gln Ala Ala Gly Asp Met
 14625 14630 14635 14640
 30 Arg Lys Arg Leu Arg Ser Leu Leu Pro Tyr Tyr Met Val Pro Ser Arg
 14645 14650 14655
 Val Thr Ile Leu Arg Gln Met Pro Leu Asn Ala Asn Gly Lys Val Asp
 14660 14665 14670
 35 Arg Lys Asp Leu Ala Arg Arg Ala Gln Met Thr Pro Thr Ala Ser Ser
 14675 14680 14685
 Ser Gly Pro Val His Val Ala Pro Arg Asn Glu Thr Glu Ala Ala Ile
 14690 14695 14700
 40 Cys Asp Glu Phe Glu Thr Ile Leu Gly Val Lys Val Gly Ile Thr Asp
 14705 14710 14715 14720
 Asn Phe Phe Glu Leu Gly Gly His Ser Leu Leu Ala Thr Lys Leu Ala
 14725 14730 14735
 45 Ala Arg Leu Ser Arg Arg Met Gly Leu Arg Ile Ser Val Lys Asp Leu
 14740 14745 14750
 Phe Asp Asp Pro Val Pro Val Ser Leu Ala Gly Lys Leu Glu Gln Gln
 14755 14760 14765
 50 Gln Gly Phe Ser Gly Glu Asp Glu Ser Ser Thr Val Gly Ile Val Pro
 14770 14775 14780
 Phe Gln Leu Leu Pro Ala Glu Met Ser Arg Glu Ile Ile Gln Arg Asp
 14785 14790 14795 14800
 55 Val Val Pro Gln Ile Glu Asn Gly His Ser Thr Pro Leu Asp Met Tyr
 14805 14810 14815

Pro Ala Thr Gln Thr Gln Ile Phe Phe Leu His Asp Lys Ala Thr Gly
 14820 14825 14830
 5 His Pro Ala Thr Pro Pro Leu Phe Ser Leu Asp Phe Pro Glu Thr Ala
 14835 14840 14845
 Asp Cys Arg Arg Leu Ala Ser Ala Cys Ala Ala Leu Val Gln His Phe
 14850 14855 14860
 10 Asp Ile Phe Arg Thr Val Phe Val Ser Arg Gly Gly Arg Phe Tyr Gln
 14865 14870 14875 14880
 Val Val Leu Ala His Leu Asp Val Pro Val Glu Val Ile Glu Thr Glu
 14885 14890 14895
 15 Gln Glu Leu Asp Glu Val Ala Leu Ala Leu His Glu Ala Asp Lys Gln
 14900 14905 14910
 Gln Pro Leu Arg Leu Gly Arg Ala Met Leu Arg Ile Ala Ile Leu Lys
 14915 14920 14925
 20 Arg Pro Gly Ala Lys Met Arg Leu Val Leu Arg Met Ser His Ser Leu
 14930 14935 14940
 Tyr Asp Gly Leu Ser Leu Glu His Ile Val Asn Ala Leu His Ala Leu
 14945 14950 14955 14960
 25 Tyr Ser Asp Lys His Leu Ala Gln Ala Pro Lys Phe Gly Leu Tyr Met
 14965 14970 14975
 His His Met Ala Ser Arg Arg Ala Glu Gly Tyr Asn Phe Trp Arg Ser
 14980 14985 14990
 30 Ile Leu Gln Gly Ser Ser Met Thr Ser Leu Lys Arg Ser Val Gly Ala
 14995 15000 15005
 Leu Glu Ala Met Thr Pro Ser Ala Gly Thr Trp Gln Thr Ser Lys Ser
 15010 15015 15020
 35 Ile Arg Ile Pro Pro Ala Ala Leu Lys Asn Gly Ile Thr Gln Ala Thr
 15025 15030 15035 15040
 Leu Phe Thr Ala Ala Val Ser Leu Leu Ala Lys His Thr Lys Ser
 15045 15050 15055
 40 Thr Asp Val Val Phe Gly Arg Val Val Ser Gly Arg Gln Asp Leu Ser
 15060 15065 15070
 Ile Asn Cys Gln Asp Ile Val Gly Pro Cys Ile Asn Glu Val Pro Val
 15075 15080 15085
 Arg Val Arg Ile Asp Glu Gly Asp Asp Met Gly Gly Leu Leu Arg Ala
 15090 15095 15100
 45 Ile Gln Asp Gln Tyr Thr Ser Ser Phe Arg His Glu Thr Leu Gly Leu
 15105 15110 15115 15120
 Gln Glu Val Lys Glu Asn Cys Thr Asp Trp Thr Asp Ala Thr Lys Glu
 15125 15130 15135
 50 Phe Ser Cys Cys Ile Ala Phe Gln Asn Leu Asn Leu His Pro Glu Ala
 15140 15145 15150
 Glu Ile Glu Gly Gln Gln Ile Arg Leu Glu Gly Leu Pro Ala Lys Asp
 15155 15160 15165
 55 Gln Ala Arg Gln Ala Asn Gly His Ala Pro Asn Gly Thr Asn Gly Thr

5 15170 15175 15180
 Asn Gly Thr Asn Gly Thr Asn Gly Ala Asn Gly Thr Asn Gly Thr Asn
 15185 15190 15195 15200
 Gly Thr Asn Gly Thr His Ala Asn Gly Ile Asn Gly Ser Asn Gly Val
 15205 15210 15215
 10 15220 15225 15230
 Asn Gly Arg Asp Ser Asn Val Val Ser Ala Ala Gly Asp Gln Ala Pro
 15235 15240 15245
 Val His Asp Leu Asp Ile Val Gly Ile Pro Glu Pro Asp Gly Ser Val
 15250 15255 15260
 15 15265 15270 15275 15280
 Lys Ile Gly Ile Gly Ala Ser Arg Gln Ile Leu Gly Glu Lys Val Val
 Gly Ser Met Leu Asn Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg
 20 15295 15300 15305 15310
 Thr

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 178 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (v) ORIGINAL SOURCE:
 - (A) ORGANISM: Tolypocladium geodes

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATGCAACTAT CGGCTCTCCA ATTGCGAACAA GAAATCGAGC AGAGCTTGAG GGCCTTATTG	60
GCTGTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA	120
ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT	178

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1713 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (v) ORIGINAL SOURCE:
 - (A) ORGANISM: Neocosmospora vasinfecta

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5	ACATCGGGGG TATTGATCGC GATGCCCTCG GACAGGGACTT CTTATCCTGG ACATCCATGT	60
	ACGACGGCTC ATTGATTCCC CGGGAAGAGA TGCAGGAATG GCTCAGCGAC ACTATGCACT	120
	CACTCCTCGA CAACCAGCCA CCCGGAAAGAG TGCTCGAGAT CGGAACTGGT ACCGGTATGG	180
10	TGCTTTCAA TCTCGGCAAG GTTGAGGGAC TACAGAGCTA TGCCGGTCTT GAGCCCTCGC	240
	GCTCCGTAC TGCCCTGGTT AACAAAGCAA TCGAAACTTT CCCAAGCCTG GCAGGAAGCG	300
	CCCGAGTCCA CCTTGGAACCC GCCGAGGATG TCAGCTCCAT CAATGGACTG CGTGCCGATC	360
15	TCGTTGTGAT CAACTCGGTC GCCCAATACT TCCCAAGTCG AGAATATCTC GCTGAGCTGA	420
	CGGCCAACTT GATTCGACTG CCCGGCGTCA AGCGTATTTT CTTCGGCGAC ATGAGAACCT	480
	ATGCCACCAA TAAGGACTTC TTGGTGGCAC GAGCAGTCCA TACCTAGGG TCCAATGCAT	540
20	CTAAAGGCCAT GGTCGACAA CAGGTGGCCA AGCTTGAAGA TGACGAGGAA GAGTTGCTTG	600
	TTGACCCCTGC CTTCTTCACC AGCCTGAGCG ACCAGTTCCC TGACGAAATC AAGCACGTCG	660
	AGATTCTGCC AAAGAGGATG GCCGCGACCA ACGAACTCAG CTCTTACCGA TATGCTGCTG	720
	TTATTCATGT GGGAGGCCAC GAGATGCCGA ATGGGGAGGA TGAGGATAAG CAATGGGCTG	780
25	TCAAGGATAT CGATCCGAAG GCCTGGGTGG ACTTCGCCGG CACGAGGATG GACCGTCAGG	840
	CTCTCTTGCA GCTCCTCCAG GACCGCCAAC GTGGCGATGA CGTTGTTGCC GTCAGTAACA	900
	TCCCATACAG CAAGACCATC ATGGAGCGCC ATCTGTCTCA GTCACTTGAC GATGACGAGG	960
30	ACGGCACTTC AGATGCAGAC GGAACGGCCT GGATATCGGC CACTCAATCA CGGGCGAAGG	1020
	AATGCCCTGC TCTCTCAGTG GCCGACCTGA TTGAGATTGG TAAGGGGATC GGCTTCCAAG	1080
	TTGAGACCAAG CTGGGCTCGA CAACACTCCC AGCGCGGCCG ACTCGATGCT GTTTCCACC	1140
35	GATTGAAAA ACCAACGACAC TCGGGTCATG TCATGTTCA GTTCCCAACT GAACACAAGG	1200
	GGCCGGTCTT CGAGCAGTCT CACGAATCGC CCGCTACACC TGGTTCAGAG CGGCCGGCTG	1260
	GAGGCAAAGG TCCGCGAGCG GCTGCAATCG CTGCTTCCAT CGTACATGAT TCCCTCTCGG	1320
	ATCATGTTGC TCGATCAGAT GCCTCTCACG TCCAACGGCA AGGTGGATCG CAAGAACGCTC	1380
40	GCTCGACAAG CCCGGGTCACT CCCAACAAATT GCCGCAAGCA CGTTGGACTT TGTGGCGCGC	1440
	ACGCACGGAA ATCGAGGTCCG GTTCTCTGCC AAGAATTAC CGATCTACTA GGCAGTCAAGG	1500
	TCGGCATTAC AGACAACCTTC TTCGAGTTGG CGGGCCATTC GCTGCTGGCC ACGAAACTGA	1560
45	GCGCACGTCT AAGTCGCAGA CTGGACGCCG GTGTCACTGT GAAGCAGATC TTTGACCAGC	1620
	CAGTACTTGC TGATCTTGCT GCTTCTATTG GTCAAGGCTC GTCCCGTCAC AGGTCTATCC	1680
	CGTCTTACCTACGAAGGA CCCGTGGAGC AGT	1713

(2) INFORMATION FOR SEQ ID NO: 5:

- 50 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 655 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA
 5 (iii) HYPOTHETICAL: NO
 (iii) ANTI-SENSE: NO
 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Tolypocladium niveum*
 10 (B) STRAIN: ATCC 34921

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CATCAGCAAT CATGGGCAAC AAAGTCTTCT TCGACATTGA GTGGGAGGGC CCCGTATGC	60
15 AGGGTTGCAA GCCTACCTCT ACCGTAAAG AGCAGTCTGG TCGCATCAAC TTCAAGCTGT	120
ACGATGACGT CGTCCCCAAG ACCGCCGAGA ACTTCCGCGC TCTCTGCACC GGCGAGAAGG	180
GCTTCGGCTA CGAGGGCTCG TCCTTCCACC GTATCATCCC CGAGTTCATG CTCCAGGGCG	240
20 GCGACTTCAC CCGCGGTAAAC GGCACGGCG GCAAGTCCAT CTACGGCGAG AAGTTTGCCG	300
ATGAGAACCTT CCAGCTGAAG CACGACCGCC CCGGTCTGCT GTCCATGGCT AACGCTGGCC	360
CCAACACCAA CGGCTCCCAG TTCTTCGTCA CCACCGTCGT CACCTCGTGG CTCAACGGCC	420
ACCACGTCGT CTTCGGCGAG GTCGCTGACC AGGAGTCCCT GGACGTCGTC AAGGCCCTTG	480
25 AGGCCACTGG CTCTGGTAGC GGCCTGTCA AGTACAACAA GCGCGCCACC ATTGTCAAGT	540
CTGGCGAGCT GTAAGCTATG GCATCTGTGT ATCTGCGAT TTCTGCACC CAATTGGAC	600
GGACAAAAGA GGCCTGCC ACAGCAAGGA CCTTTGGTTC ACGGGACGGC TTGAA	655

30 (2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 33 base pairs
 (B) TYPE: nucleic acid
 35 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
 (ii) MOLECULE TYPE: cDNA
 (iii) HYPOTHETICAL: NO
 40 (iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GGGATATCGT GAATTGTAAT ACGACTCACT ATA	33
--------------------------------------	----

45 (2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2157 base pairs
 (B) TYPE: nucleic acid
 50 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown
 (ii) MOLECULE TYPE: cDNA
 (iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

	GGATCCGTGA ATTGTAATAAC GACTCACTAT AGGGCGAATT CGCTCGACGT CACCTAGGAG	60
10	ATCAGCCAGC TCCTTGGCCC TGTTCCGCAC GTTGATGCC C TGGTCTTGC CGTTTGGATC	120
	GATGAAGTGG AACTGGCGCA GCATCTTCAA AAGTGTGATG TGTCCCCGAG CGTCATCAAT	180
	CACACGCTCA GAGCCATGCT TGACGAGGAA CTCGAGCAGT TGCAGAGCCT TGTAGATCTG	240
15	GCGCCACTCC TCGGCCGACT TCTCCGTGAA CCGTCGATAT ATCATCGGCA TGATCTCGTT	300
	GAGGGTTTGG CTGGTTCTGT TAGCTGAAGC CGGGCTGTT AGTCGTCGAA CCGCGTACTA	360
	GTTGAAGGTG CCATTGGCAA TCTCCTGCAT AATACTGGAC GATGCTCCCC ATGGCTCGTT	420
20	GTTCGTTGCC TCTCGGACCT AGTACACGGA GTTAGCCACC GTGTTAACAA ACCGTCGCGG	480
	CCCGAGACTA ACCTTGGACT CCATCTCGGT ATAGTTCATA ACAGCTACAT GCCAGGTACAG	540
	CATTGGACGC GCCAGGGCTG AGGTCAAGGCC TGGTACCAATT TTGCGCCCTT CGGAACCCAG	600
	CCTTGAGGTC GTACAAGGTC AGGTTGGAGA CTGTGTTCTT GATGTCGTT AAGTCCATT	660
25	TGGCAGATTC GACTTAGCGA GACCGGCCGG GAGCGGCAGA GGAGTTGTCG ATTCAAGCACG	720
	AGTCGCTGAT GAGCGATGGT TGTGGTGCAA GTCGATGGTC CGAGGGCGGG TGGTAGAGGT	780
	GCTTGTGCG ATGGACAGCT GGACTTTCGG GCCGCCAGCG ACACCTACCC GGCCTTGATG	840
30	GGTCAGAGGG ATGATCACGT GATATGGGTC GGAGTCGCAT CGTACTTCGT ACCAGCATCA	900
	TCTCCAAGCC AGAGGCAGCA GAGATTATAT GACTGCAAAT GTGAAACGAA ATAAACCGTC	960
	AATATGGTAT TTATGTTGGC AATTGCATGA TGCACTCCGG TGGATTGAA CTAGAACGTC	1020
	GAGGGCTTGC ATACCAGAGG CTGCGGGTGC ATCGTGGCA GCGGTACCTG AGACTTCAGG	1080
35	CCAGAACGAC TGCTAATAAG CCGCGACCGA GCCAAAACCT TTCCCTTTC CAGAGGCTCT	1140
	CAGCTTCGA CTCAGCCATT TGAACTTGCG ACTCAAGCCC GTTCATAACA CTTCATCTCT	1200
	TGTACTTCTA CCGCATTACCC TCCTGTACGA ATTGTAAATCC CAGGTATGTC TATTTTCTG	1260
40	TTGTTCTCGT CACATGCCCT CCCCAGCATG CGCAATGTC TTGGACAACG CAGCTCCTCT	1320
	CGACACATCA CAAAGGCTTC ACCCAGCAGA GCACCGAGA GCCTGCGCGC GACAGCCTGC	1380
	GAGCGACATG CAGCGCTTCC CTGGAAAGCCA ACTGCACCAAG CCTGGAAAGT TGCGCAGTTT	1440
45	GCCAGGGGGC CTCCGTCCCC CAGAATGGAT GGCACCTCTC GGCTTGACCT GGAGCGCTGC	1500
	TCCCGATCAA GCCAGAGCCC GCGGGCGATG GGGACTGGCC GCGCCAGCCT CTGCACATGA	1560
	GTGTGCTGGT TGGCTGGAGG TGGGTGGCCT TTGGCCTCCC AACCAAGTCCC CACCATTG	1620
50	TGGAAGCTGC TGCAGCTGGT CGGAACGAC CCAAGCCGTT GAGCTCAGCG CTCTGTCGGG	1680
	TCGAGCGCCC ATTGGGGTTC CCGCGAAGGT CCTTTGACTG GGCGGGGGCC ACTCGTCTTG	1740
	CCGGCCAGAG CTGAGCTCGC TGGTCTGGCA GCGACAGCAG CGGGGAGCTC CGTTGTCTAG	1800

55

	GCGATGAGCG CAGCGGCCAG AGCTCCGGGC CGGATCGGTG ACCTCACAGC CGTGGAAAGCT	1860
5	CCTGGGCCCC CGAATCAAGG ACCGCAATTG CACGTGACTG GCCGGTTGCT CCCCTTCCGG	1920
	CATTGCCCGC CCCGCTATTA CACCCCTTG CGCGCCCTGG TTGGTTCAAA GTCCCACCCG	1980
	TAACCTTTAA CCCCTCCAGC AGCCTTCAGA ATGAAGTCAA CGCTCCTTCG ACCCCTCCTA	2040
10	CCCCGCTATA AGCTCTGCTC CCCCGGGTCA AGATCTTCC CTCTTCCACA ACTTGCATCA	2100
	GCTTCCAACA CATTCCGAGC TGCTCGATTC TTCTCCGCAA CATCAGCAAT CATCGAT	2157

15 **Claims**

1. An isolated DNA sequence which codes for an enzyme having cyclosporin synthetase-like activity.
2. A DNA sequence according to claim 1 which codes for cyclosporin synthetase or an enzyme that is at least 70% homologous thereto and that has cyclosporin synthetase-like activity.
3. A DNA sequence according to claim 1 or claim 2 which codes for an enzyme that has cyclosporin synthetase-like activity and in which at least one amino-acid recognition unit is different from that of cyclosporin synthetase.
- 25 4. A DNA sequence according to any of claims 1 to 3 which includes the 2890 bp Sall restriction fragment containing sequences 40239 to 43129 of Seq Id 1, or a sequence which hybridizes thereto.
5. A DNA sequence according to any of claims 1 to 3 which includes the 2482 bp Sall restriction fragment containing sequences 37781 to 40244 of Seq Id 1, or a sequence which hybridizes thereto.
- 30 6. A DNA sequence according to claim 1 which includes the sequence of Seq Id 1, or a sequence that hybridizes thereto.
7. A DNA sequence according to claim 1 which codes for an enzyme having an amino acid sequence as given in Seq Id 2.
- 35 8. A recombinant vector containing a DNA sequence as defined in any one of claims 1 to 7.
9. A recombinant vector according to claim 8 which has a restriction map as set out in any one of figures 2 to 5.
- 40 10. A host cell carrying a vector according to claim 8 or claim 9.
11. A process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell according to claim 10 and causing the host cell to produce the cyclosporin or cyclosporin derivative.
- 45 12. A method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative.
- 50 13. A method according to claim 11 in which the DNA sequence coding for cyclosporin synthetase is altered by changing the fragments that code for amino acid recognition units.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

