Problem 4.4 (The Division Algorithm). Let $a, b \in \mathbb{Z}, b \neq 0$. Then there exist unique integers q and r, with $0 \leq r < |b|$ such that a = qb + r.

Hint: Try using proof by cases.

Case 1: $a = 0, b \neq 0$.

Case 2: a, b > 0.

Case 3: a > 0, b < 0.

Case 4: a < 0, b > 0.

Case 5: a < 0, b < 0.

It is worth noting that some books label Lemma 4.1 as the Division Algorithm. In the Division Algorithm q is the quotient and r is the remainder when a is divided by b.

Example 4.5. Find integers q and r, with $0 \le r < 20$ such that 2,345 = -20q + r.