Felix Juefei Xu

Pattern Recognition Theory

Recitation 4: PCA- Recap

Topics To Be Covered

- PCA Basics
 - Motivation
- PCA Derivation
 - Eigen-decomposition on XX^T
 - Singular value decomposition (SVD) on X
- Application and Caveat
- Further Reading
 - More component analysis (CA) methods

The PCA Basics

- PCA is a linear projection operation that maps a variable of interest to a new coordinate system where the axes represent maximal variability.
- Input data matrix X (D by N), D is the dimension, and N is the number of samples. Usually D >> N
- Output Y (D' by N), D' <= D
- $Y = P^TX$
 - Where P is the projection matrix (D by D') of which each column is a principal component (PC)

Motivation

Remove redundancy

 If some dimensions are highly correlated (or perfectly correlated, a line), we could discard some dimensions while still capturing the full

 Most commonly used technique is to apply eigendecomposition on the covariance matrix as shown in class.

• Covariance matrix of **X** is:
$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \mu)(\mathbf{x}_n - \mu)^T$$

Optimization framework:

$$\mathbf{p}_1 \leftarrow \max F = \mathbf{p}_1^T \mathbf{C} \mathbf{p}_1 + \lambda_1 (1 - \mathbf{p}_1^T \mathbf{p}_1)$$

- The unit norm constraint ensures that the projection is purely rotational without any scaling.
- Eigen-decomposition: $Cp_1 = \lambda_1 p_1$

- **P**₂,...., **P**_D, can be found by repeating the aforementioned process.
- A good exercise, manually eigen-decompose a simple 2-by-2 matrix.
- MATLAB: eigs(C,D') / eig(C)
- Full projection matrix P (D'=D)
 - Covariance matrix is diagonalized as follows:

$$C = P\Lambda P^T$$

 The i-th eigenvalue indicates the variance explained by projecting the data onto the i-th PC

Detour - SVD

 Singular value decomposition of an m x n real or complex matrix M is a factorization of the form:

$$\mathbf{M} = \mathbf{U} \Sigma \mathbf{V}^*$$

- U is a <u>m x m</u> real or complex unitary matrix.
- Σ is a $\underline{m \times n}$ rectangular diagonal matrix with nonnegative real numbers on the diagonal.
- \mathbf{V}^* is the conjugate transpose of \mathbf{V} , which is an $\underline{n \times n}$ real or complex unitary matrix.
- The left-singular vectors of M are eigenvectors of MM*.
- The right-singular vectors of M are eigenvectors of M*M.

Detour – Truncated SVD

• Approximating \mathbf{M} using $\hat{\mathbf{M}}$ by considering only t largest singular values. The rest of the matrix is discarded.

$$\mathbf{M} = \mathbf{U}\Sigma\mathbf{V}^* \ \hat{\mathbf{M}} = \mathbf{U}_t\Sigma_t\mathbf{V}_t^*$$

- Only the t column vectors of U and t row vectors of V* corresponding to the t largest singular values Σ_t .
- Of course, the truncated SVD is no longer an exact decomposition of the original matrix \mathbf{M} , $\hat{\mathbf{M}}$ is a low rank approximation.
- \mathbf{U}_t is thus $\underline{m \times t}$, Σ_t is $\underline{t \times t}$, and \mathbf{V}_t^* is $\underline{t \times n}$

- Second most commonly used technique is to apply singular value decomposition (SVD) on data matrix X.
- SVD of **X** is: $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
 - Where U and V are orthogonal bases for the column and row spaces
 of X, and ∑ is a diagonal matrix of the singular values.
 - Singular values are "stretch factors" that help to match u's with v's

$$\sigma_i \mathbf{u}_i = \mathbf{X} \mathbf{v}_i \ (i = 1, ..., D)$$

Now let's derive the covariance matrix of X (magic begins!)

$$\mathbf{XX}^{T} = \mathbf{U}\Sigma\mathbf{V}^{T}(\mathbf{U}\Sigma\mathbf{V}^{T})^{T}$$
$$= \mathbf{U}\Sigma\mathbf{V}^{T}\mathbf{V}\Sigma\mathbf{U}^{T}$$
$$= \mathbf{U}\Sigma^{2}\mathbf{U}^{T}$$

Covariance matrix of X now becomes:

$$\mathbf{XX}^{T} = \mathbf{U}\Sigma\mathbf{V}^{T}(\mathbf{U}\Sigma\mathbf{V}^{T})^{T}$$
$$= \mathbf{U}\Sigma\mathbf{V}^{T}\mathbf{V}\Sigma\mathbf{U}^{T}$$
$$= \mathbf{U}\Sigma^{2}\mathbf{U}^{T}$$

- This is identical to: $C = P\Lambda P^T$
 - Only that (singular value)² = eigenvalue
- In other words, performing SVD on X is equivalent to performing eigen-decomposition on XX^T

Application and Caveat

- PCA is very useful if one has limited amount of data
 - e.g., face image (128x128=16384, huge dimension)
- After dimensionality reduction, the dataset becomes more applicable. (easier to handle in regression, classification, etc)
- Eigenface
- The truncated covariance matrix $\mathbf{C}' = \mathbf{P} \mathbf{\Lambda}' \mathbf{P}^T$ is a low-rank approximation of \mathbf{C} .

Application and Caveat

Maximal variability does not imply maximal discriminability

Further Reading

- More component analysis (CA) methods
 - Linear discriminant analysis (LDA)
 - Canonical correlation analysis (CCA)
 - Laplacian eigenmaps (LE)
 - Spectral clustering (SC)
 - Independent component analysis (ICA)

References

- Jonathon Shlens, "A Tutorial on Principal Component Analysis," http://www.snl.salk.edu/~shlens/pca.pdf
- Chris Bishop, "Pattern Recognition and Machine Learning", Chapter 12.1

