Departamento de Estatística e Investigación Operativa

TÉCNICAS DE INVESTIGACIÓN SOCIAL. CURSO 2019-2020

BOLETÍN: TEMA 5

1. Un grupo de 100 coellos é utilizado nun estudo de nutrición. Noutro estudo previo rexistrouse o peso de cada coello e obtívose que o promedio destos pesos é 3.1 kg. Despois de dous meses o experimentador quere obter unha aproximación do peso promedio dos coellos. Escóllese ó azar 10 coellos. Os pesos orixinais e actuais móstrase na seguinte táboa:

Peso orixinal	3.2	3.0	2.9	2.8	2.8	3.1	3.0	3.2	2.9	2.8
Peso actual	4.1	4.0	4.1	3.9	3.7	4.1	4.2	4.1	3.9	3.8

Estima o peso promedio actual e o erro de estimación, utilizando un estimador da razón e un estimador da regresión. Obtén o tamaño da mostra necesario para estimar a razón, R, con un erro non superior a 0.1 e un nivel de confianza do $99\,\%$.

2. Fíxose un examen de coñecementos matemáticos a 486 estudantes. Tomouse unha mostra de 10 estudantes e observáronse os seus progresos en Cálculo, X. Después anotáronse as calificacións finais, Y, obtendo a seguinte táboa:

	39									
Y	65	78	52	82	92	89	73	98	56	75

Sábese que a puntuación media do exame de Cálculo é de 52 para os 486 estudantes. Estima a calificación media final mediante un estimador da regresión e o erro de estimación.

3. Un particular está interesado en estimar o volume total das 250 árbores que pretende vender. Para esto rexistra o volume de cada árbol dunha mostra aleatoria simple de 12 árboles e, á vez, mide o diámetro da base de cada un destos árbores. Os resultados da mostra foron os seguintes:

Diámetro base (m)	0.3	0.5	0.4	0.9	0.7	0.2	0.6	0.5	0.8	0.4	0.8	0.6
Volume (m3)	6	9	7	19	15	5	12	9	20	9	18	13

Estima o volume total que representan as 250 árbores destinadas á venta e o erro de estimación, mediante o estimador da razón, tendo en conta que o diámetro total das 250 árbores é de 75 m. Obtén o tamaño da mostra necesario para estimar a media ó 95% de nivel de confianza cun erro non superior a 0.5.

4. Un investigador ten unha colonia de 763 ratas que foron sometidas a un fármaco estándar. O tempo promedio para atravesar correctamente un labirinto baixo a influencia do fármaco tipo foi de 17.2 seg. Ó investigador gustaríalle someter ós efectos dun novo fármaco a unha mostra aleatoria de 11 ratas. Estima, polo método da razón e o da regresión, o tempo promedio requerido para atravesar o labirinto baixo a influencia do fármaco nuevo e o erro de mostraxe cun nivel de confianza do 95 %.

Fármaco estándar x_i	14.3	15.7	17.8	17.5	13.2	18.8	17.6	14.3	14.9	17.9	19.2
Fármaco nuevo y_i	15.2	16.1	18.1	17.6	14.5	19.4	17.5	14.1	15.2	18.1	19.5

5. Un director de recursos forestais está interesado en estimar o número de abetos mortos por unha forte plaga nunha área de 300 hectáreas. Usando unha fotografía aérea, o director divide a área en 200 parcelas de 1,5 hectáreas. Sexa x a cantidade de abetos mortos, calculada con base na fotografía, e y a cantidade real no terreo para unha mostra aleatoria simple de 100 parcelas. O número total de abetos mortos, obtido segundo a cantidade en fotografía, é de 4200. Usa os datos da mostra da táboa adxunta para estimar o número total de abetos mortos na área de 300 hectáreas. Obtén o erro de estimación.

Cantidad en fotografía x_i	12	30	24	24	18	30	12	6	36	42
Cantidad en el terreno y_i	18	42	24	36	24	30	12	6	36	42

6. Para un estudo para estimar o contido de azúcar dunha carga de 4000 laranzas, pesouse unha mostra de 10 laranxas e extrouxose o seu xugo para pesar o contido de azúcar. Obtivéronse os seguintes resultados:

Peso laranxa x_i	0.40	0.48	0.43	0.42	0.50	0.46	0.39	0.41	0.42	0.44
Cont. en azúcar y_i	0.021	0.030	0.025	0.022	0.033	0.027	0.019	0.021	0.023	0.025

Sabendo que o peso de tódalas laranzas é 1800, estima o contido total de azúcar das laranxas e o seu erro de mostraxe polo método da razón.

7. Consideramos unha poboación de 500 persoas nas que está definida a característica bidimensional (x_i, y_i) que mide as ganancias mensuais en miles de euros dos homes (x) e das mulleres (y) con título universitario superior. Unha mostraxe aleatoria simple de tamaño n = 80 proporciona os seguintes datos:

$$\sum_{i=1}^{n} x_i = 420, \ \sum_{i=1}^{n} y_i = 190, \ \sum_{i=1}^{n} x_i^2 = 2284, \ \sum_{i=1}^{n} y_i^2 = 512 \ \text{e} \ \sum_{i=1}^{n} x_i y_i = 1045.$$

Estima a razón das ganancias mensuais das mulleres con respecto ás dos homes e o erro de mostraxe.

8. Unha corporación está interesada en estimar as ganancias medias polas ventas de frigoríficos ó longo dun período de tres meses. Téñense as cifras do total de ganancias de tódolos distritos para o período de tres meses correspondentes ó ano anterior (X) e o ano actual (Y). Obtivéronse os datos dunha mostra aleatoria simple de 13 oficinas seleccionadas das 123 oficinas da corporación. Estima as ganancias medias actuais mediante un estimador da razón e o erro da estimación.

$$\sum_{i=1}^{n} x_i = 13547, \ \sum_{i=1}^{n} y_i = 15422, \ \sum_{i=1}^{n} x_i^2 = 15963525, \ \sum_{i=1}^{n} y_i^2 = 21073754 \ \text{e} \ \sum_{i=1}^{n} x_i y_i = 18273841.$$