شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشر فته

محمدعلى خواجهئيان

استاد راهنما: زهرا شاطرزادهیزدی دانشکدهٔ علوم مهندسی / دانشگاه تهران

۲۷ اردیبهشت ۱۴۰۴

۲۷ اردیبهشت ۱۴۰۴

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشرفته

😙 ضرورت انجام پژوهش

🕥 پرسش های پژوهش

🙆 روش و فنون پژوهش

• بخش تئورى

• بخش پیاده سازی

ومانبدی پیشنهادی

🚺 پیشینه پژوهش

🔬 منابع و مراجع

تعريف مسئله

منایع و مراجع پیشینه پژوهش زمانیدی پیشنهادی روش و فنون پژوهش پرسش های پژوهش ضرورت انجام پژوهش اهداف **تعریف م** حمد ۱۳۵۵ م

تعريف مسئله

الگوریتم های کوانتومی سازگارپذیر که از ترکیب پردازش کلاسیک و کوانتومی استفاده میکنند، گزینهای مناسب برای رایانههای کوانتومی اندازهمیانی پراختلال که هستند. این پژوهش کارایی الگوریتم های کوانتومی سازگارپذیر را در شکستن رمزنگاری یکسانکلید و بهینهسازی این حملهها بررسی میکند.

۲۷ اردیبهشت ۱۴۰۴

¹Variational Quantum Algorithms

²Noisy Intermediate Scale Quantum Device

³Symmetric-Key Cryptography

اهداف

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشرفته

اهداف اصلی این پروژه به شرح زیر هستند:

منابع و مراجع پیشینه پژوهش زمانبدی پیشنهادی روش و فنون پژوهش پرسش های پژوهش ضرورت انجام پژوهش ا**هداف** تعریف س مرکزه ۱۳۸۶ میلید و مرکزه ۱۳۸۶ میلید

اهداف پژوهش

جدول ۱: حالتهای معروف برای مدل مارکوف

زمان گسسته	زمان پيوسته	حالتها
زنجيره ماركوف	فرايند ماركوف	وضعيت گسسته
زنجيره ماركوف وضعيت پيوسته	فرايند ماركوف وضعيت پيوسته	وضعيت پيوسته

ضرورت انجام پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشرفته

ضرورت انجام پژوهش

دسته بندی کارهای پیشین در زمینهٔ شبکههای اجتماعی و انتشار بیماری یا ویروس:

- ۱ انتشار بیماری
- ۷ ساختار عمومی انتشار بیماری
- 😙 تأثیر گذاری اجتماعی و نفوذ فکری
 - 😯 تغییرات آگاهی و رفتار اجتماعی
 - 🙆 گراف پویا و تغییرات یال و گره
 - 🤣 تعادل و پایداری گراف
 - ∨ کنترل شبکه و تغییر سیاست
 - 🔥 پیش بینی انتشار بیماری
 - ٩ انتشار ويروس و بد افزار رايانهاي

ضرورت انجام پژوهش

دسته بندی کارهای پیشین در زمینهٔ شبکههای اجتماعی و انتشار بیماری یا ویروس:

- ۱ انتشار بیماری
- ۱ ساختار عمومی انتشار بیماری می مادی می انتشار بیماری می از در این از در این از در این از در این این این این ا
- 😙 تأثیر گذاری اجتماعی و نفوذ فکری
 - 😗 تغییرات آگاهی و رفتار اجتماعی
 - ۵ گراف پویا و تغییرات یال و گره
 - 🕑 تعادل و پایداری گراف
 - ۷ کنترل شبکه و تغییر سیاست
 - یش بینی انتشار بیماری
 - انتشار ویروس و بد افزار رایانهای

انتشار بيماري

- ◄ بررسي مدل آشكار و نهان بر ميزان شيوع جامعه [١]
- ◄ بررسی مدل SEIR برای بیماری کووید ـ ۱۹ با توجه به ارتباطهای بین شهری و بین کشوری در اروپا
 ۲۱،۳]
 - ◄ بررسي نويز (خطا در اطلاعات ورودي) و تأثير آن بر نتيجهُ تحليل مدل SIS [۴]
 - ◄ در نظر گرفتن واکسیناسیون در مدل SIS [۵]
 - ◄ تطبیق اطلاعات بیماری کووید_۱۹ در کشور فرانسه بر روی مدل SEIR [۶]

ساختار عمومي انتشار بيماري

- ▼ ساختار عمومی انتشار بیماری برای مدلهای رایج (مثل SIS, SAIS) [۷]
 - ◄ بررسی ساختارهای متداول بیماری بر روی شبکههای چند لایه [۸]

تأثیر گذاری اجتماعی و نفوذ فکری

- ◄ تحليل انتشار شايعه در شبكههاي اجتماعي برخط با در نظر گرفتن مدل نظريهٔ بازي [٩]
- ◄ ارائهٔ یک مدل شبیه سازی برای بررسی شرایط و نتیجه رسیدن به اجماع در یک شبکهٔ برخط با دو گروه فکری مخالف با در نظر گرفتن کیفیت ارتباطها [۱۱،۱۰]
 - ◄ بررسي تأثير اخبار انتشار بيماري كوويد ـ ١٩ در شبكه هاي اجتماعي برخط [١٦]

۲۷ اردیبهشت ۱۴۰۴

تغییرات آگاهی و رفتار اجتماعی

◄ بررسي مدل بيماري SEIV براي يک شبکه و تأثير هوشياري افراد بر تعداد ارتباطهاي فعال با ديگران و زمان رسیدن به حالت پایدار بدون بیماری [۱۴،۱۳]

شکستن یروتکل های رمزنگاری با استفاده از حملات کوانتومی سازگاریذیر پیشرفته

◄ تأثير آگاهي و ميزان شيوع بيماري در ارتباط بين افراد در يک شبکه دو لايه (يک لايه ثابت و يک لايهٔ متغیر)[۱۵]

⁴Susceptible-Exposed-Infected-Vigilant

پرسش های پژوهش

فرايند كلي حل مسئله

شىيەسازى:

- ١ تصادفي (محاسبهٔ وضعیت و شرایط جدید هر گره و به روز کردن همه گرهها در یک لحظه)
- 🕥 آماری (محاسبهٔ امید ریاضی و میانگین وضعیت و شرایط انتقال برای کل شبکه در مدل مارکوف)

مدلسازي:

- 🕦 تعریف متغیرهای فازی و توابع عضویت (فضای پیوسته)
- تعریف جدول قواعد فازی (ارتباط بین ورودی و خروجیهای مسئله)
 - 😙 تعریف روابط ریاضی تجمیع سازی برای هر گره
 - 😗 تعریف مدل مارکوف معادل
 - (مبتنی بر نظریهٔ میدان متوسط) عریف روابط آماری و کلی (مبتنی بر نظریهٔ میدان متوسط)
 - 🥱 تعریف الگوی بیماری
 - سبيهسازي

۲۷ اردیبهشت ۱۴۰۴

منابع و مراجع پیشینه پژوهش زمانبدی پیشنهادی روش و فنون پژوهش **پرسش های پژوهش** ضرورت انجام پژوهش اهداف تعریف مس ممرکزی میشینه پژوهش اهداف تعریف مس ممرکزی

فرايند كلي حل مسئله

شبيەسازى:

- 🕦 تصادفي (محاسبهٔ وضعيت و شرايط جديد هر گره و به روز كردن همه گرهها در يک لحظه)
- آماری (محاسبهٔ امید ریاضی و میانگین وضعیت و شرایط انتقال برای کل شبکه در مدل مارکوف) مدلسازی:
 - 🕦 تعریف متغیرهای فازی و توابع عضویت (فضای پیوسته)
 - 🕥 تعریف جدول قواعد فازی (ارتباط بین ورودی و خروجیهای مسئله)
 - 😙 تعریف روابط ریاضی تجمیع سازی برای هر گره
 - 😙 تعریف مدل مارکوف معادل
 - ۵ تعریف روابط آماری و کلی (مبتنی بر نظریهٔ میدان متوسط)
 - 🕑 تعریف الگوی بیماری
 - سبيهسازي 🗸

روش و فنون پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشرفته

قسمت ع

زمانبدی پیشنهادی

پیشینه پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی سازگارپذیر پیشرفته

منابع و مراجع

- Chen, Yi-Cheng, Lu, Ping-En, Chang, Cheng-Shang, and Liu, Tzu-Hsuan.
 A time-dependent sir model for covid-19 with undetectable infected persons.
 IEEE Transactions on Network Science and Engineering, 7(4):3279-3294, 2020.
- [2] Wang, Wei, Liu, Quan-Hui, Liang, Junhao, Hu, Yanqing, and Zhou, Tao. Coevolution spreading in complex networks. *Physics Reports*, 820:1–51, 2019.
- [3] Estrada, Ernesto.Covid-19 and sars-cov-2. modeling the present, looking at the future.Physics Reports, 2020.
- [4] Vizuete, Renato, Frasca, Paolo, and Garin, Federica. Graphon-based sensitivity analysis of sis epidemics. IEEE Control Systems Letters, 4(3):542-547, 2020.
- [5] Khanjanianpak, Mozhgan, Azimi-Tafreshi, Nahid, and Castellano, Claudio. Competition between vaccination and disease spreading. Physical Review E, 101(6):062306, 2020.
- [6] Efimov, Denis and Ushirobira, Rosane.
 On interval prediction of covid-19 development in france based on a seir epidemic model.
 in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3883–3888. IEEE, 2020.

- [7] Moon, Sifat Afroj, Sahneh, Faryad Darabi, and Scoglio, Caterina. Group-based general epidemic modeling for spreading processes on networks: Groupgem. IEEE Transactions on Network Science and Engineering, pp. 1–1, 2020.
- Abhishek, Vishal and Srivastava, Vaibhav.
 Sis epidemic model under mobility on multi-layer networks.
 in 2020 American Control Conference (ACC), pp. 3743-3748. IEEE, 2020.
- [9] Huang, D. W., Yang, L. X., Li, P., Yang, X., and Tang, Y. Y.
 Developing cost-effective rumor-refuting strategy through game-theoretic approach. IEEE Systems Journal, pp. 1–12, 2020.
- [10] Bolzern, P., Colaneri, P., and De Nicolao, G.
 Opinion dynamics in social networks: The effect of centralized interaction tuning on emerging behaviors.
 IEEE Transactions on Computational Social Systems, 7(2):362-372, 2020.
- [11] Nettasinghe, Buddhika, Krishnamurthy, Vikram, and Lerman, Kristina.
 Diffusion in social networks: Effects of monophilic contagion, friendship paradox, and reactive networks.
 IEEE Transactions on Network Science and Engineering, 7(3):1121–1132, 2019.
- [12] Cinelli, Matteo, Quattrociocchi, Walter, Galeazzi, Alessandro, Valensise, Carlo Michele, Brugnoli, Emanuele, Schmidt, Ana Lucia, Zola, Paola, Zollo, Fabiana, and Scala, Antonio. The covid-19 social media infodemic. Scientific Reports, 10(1):1–10, 2020.

- [13] Li, Zhixun, Hong, Jie, Kim, Jonghyuk, and Yu, Changbin. Control design and analysis of an epidemic seiv model upon adaptive network. in 2019 18th European Control Conference (ECC), pp. 2492–2497. IEEE, 2019.
- [14] Bhowmick, Sourav and Panja, Surajit. Influence of opinion dynamics to inhibit epidemic spreading over multiplex network. IEEE Control Systems Letters, 5(4):1327-1332, 2020.
- [15] Sahneh, F. D., Vajdi, A., Melander, J., and Scoglio, C. M. Contact adaption during epidemics: A multilayer network formulation approach. IEEE Transactions on Network Science and Engineering, 6(1):16–30, 2019.

نتیاج شبیهسازی آماری

(آ) یادگیری=۷.۷۵ و فراموشی=۵.۰

شكل ١: نتيجهٔ اجراي شبيهسازي آماري در دو حالت