CS 320 - Spring 2023 Instructor: Meenakshi Syamkumar

Exam 1 — 13%

(Last)	Surname:	(First) Given name:	
NetID	(email):		_ @wisc.edu
	(, ,	the scantron form (use #2 pencil):	
	,	d FIRST NAME (given name), fill in bubble ER is your Campus ID number, fill in bubble	
3.	Under ABC of SPECIAL Country 001 - MWF 11:00am	ODES, write your lecture number, fill in bub	obles:
	002 - MWF 1:20pm		
4.		ES, write 2 and fill in bubble 2	
grade no be	e you against the co	e (or do it wrong), the system rrect answer key, and your grad e to randomly guess on each que heck it's correct!	le will be
electro neighb	nic devices during this exar ors during this exam. Pleas	e sheet. You may not use books, calculated in. You may not sit near your friends or le place your student ID face up on your des (including smart watches) now.	look at your

Use a #2 pencil to mark all answers. DO NOT USE PEN on the scantron.

When you're done, please hand in the exam and note sheet and your filled-in scantron form. The note sheet will not be returned.

(Blank Page)

1. What numbers get printed by the following code snippet?

```
def mystery():
    a = 0
    b = 1

while True:
    yield a
    temp = a + b
    a = b
    b = temp

f = mystery()
print(next(f))
print(next(f))
print(next(f))
A. 0, 1, 1 B. 0, 1, 2 C. 1, 1, 2 D. 1, 2, 3
```

2. Which complexity class is worst / slowest among the following choices?

```
A. O(\log N) B. O(N) C. O(N**2) D. O(N \log N)
```

3. Which one of the following list operations have worst case complexity? Assume that L is storing a reference to a list object instance.

```
A. L.pop(-1) B. L.pop(0) C. L.append(1) D. L[len(L) // 2]
```

4. Consider the below code snippet. How many attributes will the object instance referenced by cars have?

- 5. If a BST is constructed using the algorithm we learned in class, and the insert order is [8, 3, 1, 6], where will 6 be?
 - A. root.left.left
 - B. root.left.right
 - C. root.right.left
 - D. root.right.right
- 6. Consider the below code snippet.

```
class Polygon:
```

```
def __init__(self, sides):
    self.sides = sides
```

class Rectangle(Polygon):

```
def __init__(self):
    pass # line 7
```

r1 = Rectangle()

Which of the following lines of code can be used to invoke the Polygon class constructor to replace pass on # line 7?

- A. super.__init__(4)
- B. super().__init__(4)
- C. self.__init__(4)
- D. self().__init__(4)
- 7. Which of the following will enable us to **efficiently** implement a queue for BFS?
 - A. set B. list C. deque D. heapq E. stack

8. Suppose BSTNode class stores information about BST nodes, is the below implementation of __getitem__ method recursive?

```
class BSTNode:
    def __init__(self, name, val):
        self.key = name
        self.val = val
        self.left = None
        self.right = None

def __getitem__(self, target):
        if target < self.key and self.left != None:
            return self.left[target]
        elif target > self.key and self.right != None:
            return self.right[target]
        assert self.key == target
        return self.val
```

A. True B. False

- 9. Which of the following is the correct invocation of check_output for executing git checkout command inside a directory called some_repo? Assume that branch f1 exists.
 - A. check_output("git checkout f1", cwd="some_repo")
 - B. check_output("git checkout f1", pwd="some_repo")
 - $C.\ \mbox{check_output(["git", "checkout", "f1"], cwd="some_repo")}$
 - D. check_output(["git", "checkout", "f1"], pwd="some_repo")

10. Given the below graph, which of the following paths will **DFS** return between nodes A and D? Assume that for every node its children nodes are alphabetically ordered.

- A. None B. (A, D) C. (A, E, D) D. (A, B, C, D)
- 11. Considering the same graph as the previous question, which of the following paths will **BFS** return between nodes A and D? Again, assume that for every node its children nodes are alphabetically ordered.
 - A. None \mathbf{B} . (A, D) \mathbf{C} . (A, E, D) \mathbf{D} . (A, B, C, D)

12. Consider the below call graph. What gets printed first?

 $A. \ a \ B. \ b \ C. \ c \ D. \ d$

13. Which of the following implicitly invokes __le_ special method?

A. obj1 != obj2 B. obj1 == obj2 C. obj1 < obj2
$$\mathbf{D}$$
. obj1 <= obj2

14. What is printed?

import heapq

print(heapq.heappop(items))

A. 1 B. 3 C. 5 D. 10 E. 21

15. Consider the BST insertion algorithm we learned in class. Given the below BST, which of the following **CANNOT** be the insertion order? For every node, consider first child as left and second child as right.

- A. [11, 5, 7, 14, 9, 12, 16]
- B. [11, 7, 14, 5, 9, 12, 16]
- C. [11, 7, 5, 9, 14, 12, 16]
- D. [11, 14, 7, 12, 9, 5, 16]
- 16. Consider the below code snippet.

class TrafficLight:

tl1 = TrafficLight("green", 10) # line 6

How many arguments are passed on # line 6?

A. 0 B. 1 C. 2 **D. 3**

17. Given the below git commit graph, which of the following git commands was executed last?

- A. git tag
- B. git merge feature
- C. git commit
- D. git merge main
- 18. Consider the below code snippet.

print(len(cars)) # line 7

```
class Car:
```

Which of the following special methods must be implemented for # line 7 to produce 3 as the output?

A. len B. _repr_svg_ C. __getitem__ D. __len__ E. for

19. What can be said about the following graph?

- A. cyclic but not connected
- B. cyclic and connected
- C. acyclic but not connected
- D. acylic and connected
- 20. What is the output of the below code snippet?

```
def mystery(some_nums):
    if len(some_nums) == 0:
        return []
    else:
        return [some_nums.pop(-1)] + mystery(some_nums)

some_nums = [5, 2, 7, -1]
print(mystery(some_nums))
```

- **A.** [-1, 7, 2, 5]
- B. [5, 2, 7, -1]
- C. [-1, 2]
- D. [7, 5]
- E. RecursionError

(Blank Page)