

Implementation of a confinement dependent LITS model for concrete

Giacomo Torelli¹, Partha Mandal¹, Martin Gillie¹, Van Xuan Tran²

¹School of MACE, The University of Manchester

²EDF Energy R&D UK Centre

email: giacomo.torelli@manchester.ac.uk

Implementation of a confinement dependent LITS model for concrete

Contents

- Industrial context
- Definition of LITS
- 3. 3D confinement-dependent concrete models
- 4. Implementation in MFront
- 5. Verification studies
- 6. Validation studies
- 7. Application to a test case
- 8. Questions

1. Industrial context

1. Industrial context

Industrial context

Assessment of the AGRs' Pre-stressed Concrete Pressure Vessels (PCPVs) under severe fault conditions

Service Conditions:

 $|T_{GAS} \approx 600 \, ^{\circ}C$

 $T_{CONCRETE} \approx 50 \, ^{\circ}C$

Accidental Conditions:

 $T_{GAS} \approx 600 \, ^{\circ}C$

T_{CONCRETE} > 50 °C

(Ex: fault of the cooling pipes system)

1. Industrial context

Objectives

- Implement, verify and validate a LITS model able to capture:
 - Triaxial behaviour
 - Irrecoverability
- Apply the implemented model to a hypothetical industrial case.

2. Definition of LITS

2. Definition of LITS

Strain decomposition for ambient temperatures

Strain decomposition for high temperatures: introduction of LITS

Note

Some authors consider the ϵ_{ela} independent on the temperature and take into account the stiffness variation in the ϵ_{lits} term.

2. Definition of LITS

Definition of LITS

- Thermal load
- Stress-free specimen
- Thermal load
 - Constant compressive stress

2. Definition of LITS

Gap in the existing LITS models

 LITS is commonly modelled as a confinement independent phenomenon (actually, it significantly depends on the confinement¹)

LITS during uniaxial and biaxial and hydrostatic LTH test [1].

^[1] Petkovski M, Crouch RS (2008).

3. 3D confinement-dependent bilinear LITS model

3. 3D Confinement-dependent bilinear LITS model

General strain decomposition

3. 3D Confinement-dependent bilinear LITS model

Common approach for extending uniaxial LITS models to 3D [1-2]

CLASSIC APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Where:

- $oldsymbol{v}_{lits}$ is a material property analogous to the elastic Poisson's modulus v- LITS strain in the unloaded direction
- $\beta(T)$ is the LITS functions, i.e. a generic function of the temperature aimed at fitting the uniaxial temperature-LITS curve
- σ_{u0} the compressive strength of the material
- σ_{ij}^- is the i-th j-th component of the negative part of the stress tensor
- *T* is the temperature of the point

Gradient enhanced thermo-mechanical damage model for concrete at high temperatures including transient thermal creep. Int J Numer Anal Methods Geomech 2004

^[1] Pearce CJ, Nielsen C V., Bićanić N. 1987

3. 3D Confinement-dependent bilinear LITS model

Adopted approach for extending uniaxial LITS models to 3D

CLASSIC APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

ADOPTED APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\eta}{\sigma_{u0}} \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Where:

 η confinement coefficient – captures the triaxiality of the stress state

$$\eta = 1 + (C_m - 1)\gamma$$

$$\eta = 1 + (C_m - 1)\gamma$$

$$C_m = \frac{\sigma_1^- + \sigma_2^- + \sigma_3^-}{\sqrt{(\sigma_1^-)^2 + (\sigma_2^-)^2 + (\sigma_3^-)^2}}$$
Triaxiality index
$$\gamma \text{ Triaxiality scaling factor (recommended } \gamma = 1.5)$$

$$\uparrow C_m \uparrow \eta
\uparrow \gamma \uparrow \eta$$

3. 3D Confinement-dependent bilinear LITS model

Adopted approach for extending uniaxial LITS models to 3D

CLASSIC APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Ω

ADOPTED APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\eta}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Where:

• η confinement coefficient – captures the triaxiality of the stress state

According to the adopted modelling approach, LITS:

- 1. Develops only in compression (σ_{kk}^-)
- 2. Develops just during the first heating under compressive load does not recover on cooling or unloading (T_{MAX})
- 3. Depends on the confinement of the stress state (η)

3. 3D Confinement-dependent bilinear LITS model

Dependency on the confinement - Confinement factor η

CLASSIC APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Ω

ADOPTED APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \eta \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

Different uniaxial models, and consequently different $\beta(T)$, have been extended to 3D:

- 1. Anderberg & Thelandersson model [1]
- 2. Terro's model [2]
- 3. Bilinear model (T<250°C)

^[1] Anderberg Y, Thelandersson S.

3. 3D Confinement-dependent bilinear LITS model

Dependency on the confinement - Confinement factor η

CLASSIC APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\beta(T)}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

ADOPTED APPROACH

$$\dot{\varepsilon}_{ij}^{lits} = \frac{\eta}{\sigma_{u0}} \left(-v_{lits} \sigma_{kk}^{-} \delta_{ij} + (1 + v_{lits}) \sigma_{ij}^{-} \right) \dot{T}$$

^[1] Anderberg Y, Thelandersson S.

[2] Terro MJ.

A Constitutive Law for Concrete at Transient High Temperature Conditions. J Am Concr Institute Spec Publ 1978

4. Implementation with MFront

4. Implementation with MFront

Key passages of the .mfront script

```
@Parser Implicit;
                                                   Integration method
[...]
@Algorithm NewtonRaphson NumericalJacobian
                                                   Iterative method
[...]
@MaterialProperty stress young;
young.setGlossaryName("YoungModulus");
@MaterialProperty real nu;
nu.setGlossaryName("PoissonRatio");
@MaterialProperty real alpha;
                                                   Material properties
@MaterialProperty real beta;
@MaterialProperty real gamma;
@MaterialProperty real sigmultimate;
@MaterialProperty real nulits;
@MaterialProperty real tcrit;
```


4. Implementation with MFront

Key passages of the .mfront script

```
@StateVariable Stensor ETTC;
@StateVariable Stensor ETH;
@AuxiliaryStateVariable real tmax;
Auxiliary state variable: T<sub>MAX</sub>
Auxiliary state variable: T<sub>MAX</sub>
```


Schematic evolution of the internal variable T_{MAX} , for a given temperature history and a critical temperature T_{CRIT} .

4. Implementation with MFront

Key passages of the .mfront script

```
@Integrator{
[...]
real cm=1.;
real eta=1.;
real s den;
s den=sqrt(pow(s1n,2)+pow(s2n,2)+pow(s3n,2));
if (s_den>1.e-6*young)
       \{cm=-(s1n+s2n+s3n)/(s den);\}
        else {cm=1;}
eta=1+(cm-1)*gamma;
```

Definition of the

confinement coefficient:

$$\eta = 1 + (C_m - 1)\gamma$$

4. Implementation with MFront

Key passages of the .mfront script

```
[...]
// A) ---- LITS increment ----
  if((T+dT>tmax) &&(s1+s2+s3<0))
     incr ttc=(beta/sigmultimate) *eta*((1.+nulits))
     *(sigma n)-
     nulits*trace(sigma n)*Stensor::Id())
       *(T+dT-tmax);
  } else {
       incr ttc=0.*Stensor::Id();}
[...]
// C)---TOTAL STRAIN DECOMPOSITION---
       fETTC=dETTC-(incr ttc);
       fETH=dETH-(incr eth);
       feel=deel-(deto-dETTC-dETH);
```

LITS increment in the time step.

LITS develops:

- just on first heating
- under compressive load.

General strain decomposition: $\varepsilon^{tot} = \varepsilon^{el} + \varepsilon^{th} + \varepsilon^{lits}$

Verification test cases

Verify that:

- Convergence in reached in a reasonable time
- Numerical results are consistent with implemented equations

1) FREE THERMAL STRAIN

Stress-free specimen

2) LOAD-THEN-HEAT

Uniaxially loaded specimen

3) RESTRAINED THERMAL STRAIN

Uniaxially restrained specimen

Verification example n.1 Specimen subjected to free thermal strain (linear thermal expansion)

Constitutive equation (Anderberg and Thelandersson model)

$$\dot{\varepsilon}_{ij}^{el} = \frac{1+v}{E}\dot{\sigma}_{ij} - \frac{v}{E}\dot{\sigma}_{kk}\delta_{ij} + \frac{k_{tr}\alpha}{\sigma_{u0}}\left(-v_{lits}\sigma_{kk}\delta_{ij} + (1+v_{lits})\sigma_{ij}\right)\dot{T} + \alpha\delta_{ij}\dot{T}$$

$$\dot{\varepsilon}_{ij}^{el} \qquad \qquad \dot{\varepsilon}_{ij}^{el} \qquad \qquad \dot{\varepsilon}_{ij}^{th}$$

Stress-free specimen

Verification example n.2 Specimen subjected to Load-Then-Heat regime (bilinear LITS model)

Constitutive equation (Anderberg and Thelandersson model)

$$\dot{\varepsilon}_{ij}^{el} = \frac{1+v}{E}\dot{\sigma}_{ij} - \frac{v}{E}\dot{\sigma}_{kk}\delta_{ij} + \frac{k_{tr}\alpha}{\sigma_{u0}}\left(-v_{lits}\sigma_{kk}\delta_{ij} + (1+v_{lits})\sigma_{ij}\right)\dot{T} + \alpha\delta_{ij}\dot{T}$$

$$\dot{\varepsilon}_{ij}^{el} \qquad \dot{\varepsilon}_{ij}^{lits} \qquad \dot{\varepsilon}_{ij}^{th}$$

Uniaxially loaded specimen

The University of Manchester

Paris, 20-05-2016

Giacomo Torelli

5. Verification studies

Verification example n.2 Specimen subjected to Load-Then-Heat regime (bilinear LITS model)

rl İ

Verification example n.3 Specimen subjected to Restrained Thermal Strain (bilinear LITS model)

Constitutive equation (Anderberg and Thelandersson model)

$$\dot{\varepsilon}_{ij}^{el} = \frac{1+v}{E}\dot{\sigma}_{ij} - \frac{v}{E}\dot{\sigma}_{kk}\delta_{ij} + \frac{k_{tr}\alpha}{\sigma_{u0}}\left(-v_{lits}\sigma_{kk}\delta_{ij} + (1+v_{lits})\sigma_{ij}\right)\dot{T} + \alpha\delta_{ij}\dot{T}$$

$$\dot{\varepsilon}_{ij}^{el} \qquad \dot{\varepsilon}_{ij}^{el} \qquad \dot{\varepsilon}_{ij}^{th}$$

Note: T_{boil}=100°C

Uniaxially restrained specimen

6. Validation studies

6. Validation studies

Multiaxial loading conditions Modelling of experiments Petkovski, Crouch (2008)

1. THERMAL ANALISYS

2. MECHANICAL ANALYSIS

Uz,tot

6. Validation studies

Multiaxial loading conditions Modelling of experiments Petkovski, Crouch (2008)

Loss of prestress in Pressure Vessel subjected to HC cycle

Typical PCPV geometry

4.5

Studied representative portion

Considered design scenario

time [s]

Loss of prestress in Pressure Vessel subjected to HC cycle

Loss in pretension in cable n.8

Conclusions

- The introduced triaxiality coefficient is crucial to capture the behaviour of structures working in biaxial compression
- In case of prestressed structures subjected to HC cycles, LITS
 can produce a loss in prestress of about 15-20%. Therefore, it
 is essential to include a LITS model for assessing the stress
 redistribution in case of fault condition of nuclear PCPV.

MANCHESTER 1824

The University of Manchester

Paris, 20-05-2016

Giacomo Torelli

8. Questions

Implementation of a confinement dependent LITS model for concrete

Giacomo Torelli¹, Partha Mandal¹, Martin Gillie¹, Van Xuan Tran²

¹School of MACE, The University of Manchester

²EDF Energy R&D UK Centre

email: giacomo.torelli@manchester.ac.uk