Evaluate the integral $\int_0^2 \sqrt{\sin x} \, dx$. Compare the result in both conditions [2013/Fall] for Simpson 3 and 3 rule.

Solution:

Given that:

$$I = \int_0^{\frac{\pi}{2}} \sqrt{\sin x} \, dx$$

$$a = 0, b = \frac{\pi}{2}$$

Taking n = 6,

$$h = \frac{b-a}{n} = \frac{\frac{\pi}{2}-0}{6} = \frac{\pi}{12}$$

Now, table is created at the interval of $\frac{\pi}{12}$ from 0 to $\frac{\pi}{2}$.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$
у	0	0.508	0.707	0.840	0.930	0.982
3	70	<i>y</i> ₁	y ₂	у3	y 4	y 5

Now, by Simpson's $\frac{1}{2}$ rule

$$I = \frac{h}{3} [y_0 + y_6 + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4)]$$

$$= \frac{\pi}{3 \times 12} [0 + 1 + 4(0.508 + 0.840 + 0.982) + 2(0.707 + 0.930)]$$

$$= 1.186$$

Again, by Simpson's $\frac{3}{6}$ rule

$$I = \frac{3h}{8} [y_0 + y_6 + 3(y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3\pi}{8 \times 12} [0 + 1 + 3(0.508 + 0.707 + 0.930 + 0.982) + 2(0.840)]$$

$$= 1.184$$

and, Absolute value of I

$$I_{abs} = \int_0^{\pi} \sqrt{\sin x} \, dx = 1.198$$

NOTE: Use calculator to directly obtain the absolute value in radian mode.

Numerical Differentiation and Integration 153

Error by Simpson $\frac{1}{3}$ rule = |1.186 - 1.198| = 0.012

Error by Simpson $\frac{3}{8}$ rule = |1.184 - 1.198| = 0.014

Here, the error by Simpson $\frac{1}{3}$ rule is less than Simpson $\frac{3}{8}$ rule.

Evaluate the Integral $I = \int_0^6 \frac{1}{1+x^2} dx$. Compare the absolute error in both conditions for Simpson $\frac{1}{3}$ rule and Simpson $\frac{3}{8}$ rule. [2013/Spring]

solution: Given that;

$$I = \int_0^6 \frac{1}{1+x^2} \, \mathrm{d}x$$

$$a = 0, b = 6$$

$$h = \frac{b-a}{n} = \frac{6-0}{6} = 1$$

Now, Table is created at the interval of 1 from 0 to 6

mulating the table.

TO SHAPE MEDICAL	ng cric ca	1	2	-	West desired		
X	-	1.	2 .	3	. 4	5	6
у	1	0.5	0.2	0.1	0.058	0.038	0 000
	Vo	V1	Y2	Tre		0.038	0.027
	1		,	У3	У4	y 5	y6

By Simpson's $\frac{1}{3}$ rule,

$$I = \frac{h}{3} [(y_0 + y_6) + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4)]$$

= $\frac{1}{3} [1 + 0.027 + 4 (0.5 + 0.1 + 0.038) + 2 (0.2 + 0.058)]$
= 1.365

By Simpson's $\frac{3}{9}$ rule,

$$I = \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2 (y_3)]$$

= $\frac{3}{8} [1 + 0.027 + 3 (0.5 + 0.2 + 0.058 + 0.038) + 2 (0.1)]$
= 1.355

Now, Absolute value of I,

$$I = \int_0^6 \frac{1}{1 + x^2} dx = \tan^{-1}(x) \Big|_0^6 = 1.405$$

Error by Simpson
$$\frac{1}{3}$$
 rule = $|1.405 - 1.365| = 0.04$

Error by Simpson
$$\frac{3}{8}$$
 rule = $|1.405 - 1.355| = 0.05$
Error by Simpson $\frac{3}{8}$ rule = $|3.405 - 1.355| = 0.05$

Here, the error by Simpson $\frac{1}{3}$ rule is less than Simpson $\frac{3}{8}$ rule.

Find the integral value $I = \int_0^1 \frac{dx}{1+x^2}$ correct to three decimal place by [2013/Spring, 2018/Spring] using Romberg integration. 3.

Solution:

Given that:

$$I = \int_0^1 \frac{dx}{1 + x^2}$$

Here, a = 0, b = 1Taking h = 0.5 and creating interval of 0.5 from 0 to 1.

0.8 y = f(x)V1 yo

Now, using trapezoidal rule,

$$1(0.5) = \frac{h}{z} [y_0 + y_2 + 2y_1]$$
$$= \frac{0.5}{2} [1 + 0.5 + 2 (0.8)]$$
$$= 0.775$$

Taking h = 0.25 and creating interval of 0.25 from 0 to 1.

X	0	0.25	0.5	0.75	1
y	1	0.9411	0.8	0.64	0.5
	Vo	y 1	y 2	У 3	y 4

Now, using trapezoidal rule,

$$I(0.25) = \frac{h}{2} [y_0 + y_4 + 2 (y_1 + y_2 + y_3)]$$

= $\frac{0.25}{2} [1 + 0.5 + 2 (0.9411 + 0.8 + 0.64)]$
= 0.7827

iii) Takingh - 0125

	<i>y</i> ₀	y_1	y ₂	<i>V</i> 3	V4	Ve	V6	Va	Va
y	1	0.9846	0.9411	0.8767	0.8	0.7191	0.64	0.5663	0.5
X	0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1

Numerical Differentiation and Integration 155

Now, using Trapezoidal rule.

w, using Trapezoidal rule,

$$I(0.125) = \frac{h}{2} [y_0 + y_8 + 2 (y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7)]$$

$$= \frac{0.125}{2} [1 + 0.5 + 2 (0.9846 + 0.9411 + 0.8767 + 0.8 + 0.7191 + 0.64 + 0.5663)]$$

Now, optimizing values by Romberg integration,

$$I(0.5, 0.25) = \frac{1}{3} [4I(0.25) - I(0.5)]$$

$$= \frac{1}{3} [4 \times 0.7827 - 0.775]$$

$$= 0.7852$$

$$I(0.25, 0.125) = \frac{1}{3} [4I(0.125) - I(0.25)]$$

$$= \frac{1}{3} [4 \times 0.7847 - 0.7827]$$

$$= 0.7853$$

$$I(0.5, 0.25, 0.125) = \frac{1}{3} [4I(0.25, 0.125) - I(0.5, 0.25)]$$

$$= 0.7853$$

Hence the value of integral $\int_0^1 \frac{dx}{1+x^2} = 0.7853$

Also,
$$\int_0^1 \frac{dx}{1+x^2} = \tan^{-1}(x) \Big|_0^1 = 0.7853$$

Table of obtained values;

The following table gives the displacement, x (cms) of an object at various of time, t(seconds). Find the velocity and acceleration of the object at t = 1.6 sec. Using suitable interpolation method. [2014/Fall]

T	1.0	1.2	1.4	1.6	1.8
X	9.0	9.5	10.2	11.0	13.2

Solution:

Creating the difference table from given data

156	A Comple	Vy Vy	v'y	V'y	Viv
1.0	9.0	0.5	0.2	-0.1	
1.4	10.2	0.8	1.4	1.3	1,4
1.6	11.0	2.2	1		

of Numerical Method

Here the data of T is equispaced and t = 1.6 sec is near the end of the table. Here the data of 1 is equispaced and for numerical differentiation, so using Newton's backward formula for numerical differentiation.

Now, all = 1.0 sec From numerical differentiation, using Newton's backward formula

m numerical differentiation, which is numerical differentiation,
$$\left(\frac{dy}{dx}\right)_{1.6} = y' = \frac{1}{h} \left[\nabla y_n + \frac{\nabla^2 y_n}{2} + \frac{\nabla^3 y_n}{3} \right]$$
$$= \frac{1}{0.2} \left[0.8 + \frac{0.1}{2} + \frac{-0.1}{3} \right]$$

= 4.083 cm/s is the required velocity of an object

Now, for acceleration

$$y'' = \frac{1}{h^2} [\nabla^2 y_n + \nabla^3 y_n] = \frac{1}{0.22} [0.1 + -0.1]$$

y'' = 0 cm/s² is the required acceleration of an object.

- Evaluate the integral $\int_0^{\infty} (1 + 3\cos^2 x) dx$ by,
 - Trapezoidal rule
 - Simpson's $\frac{3}{8}$ rule, taking number of intervals (n) = 6

[2014/Spring]

Solution:

Given that;

$$I = \int_0^{\pi} (1 + 3\cos^2 x) \, \mathrm{d}x$$
$$n = 6$$

Also,

 $a = 0, b = \pi$

Then,

$$h = \frac{b-a}{n} = \frac{\pi - 0}{6} = \frac{\pi}{6}$$

Numerical Differentiation and integration 157

Now, table is created at the interval of $\frac{\pi}{6}$ from 0 to π 3.25 1.75 By trapezoidal rule,

$$I = \frac{h}{2} [y_0 + y_6 + 2 (y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$= \frac{\pi}{2 \times 6} [4 + 4 + 2 (3.25 + 1.75 + 1 + 1.75 + 3.25)]$$

1 = 7.8539By Simpson's $\frac{3}{8}$ rule,

$$I = \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3\pi}{8 \times 6} [4 + 4 + 3 (3.25 + 1.75 + 1.75 + 3.25) + 2 (1)]$$

$$= 7.8539$$

Also,

$$I_{abs} = \int_0^{\pi} (1 + 3\cos^2 x) dx = \int_0^{\pi} 1 + \frac{3}{2} (\cos 2x + 1) = 7.8539$$

Evaluate the integral $I = \int_0^2 \sin x \, dx$ for n = 6 and compare the result in both conditions for Simpson $\frac{1}{3}$ and $\frac{3}{8}$ rule.

solution:

Given that;

$$J = \int_0^{\frac{\pi}{2}} \sin x \, dx$$

$$a = 0, \quad b = \frac{\pi}{2}, \quad n = 6$$

$$a=0, b-2, n-0$$

$$h = \frac{b - a}{n} = \frac{\frac{\pi}{2} - 0}{6} = \frac{\pi}{12}$$

Now, creating table at the interval of $\frac{\pi}{12}$ from 0 to $\frac{\pi}{2}$

X	0	$\frac{\pi}{12}$	<u>π</u> 6	<u>π</u>	<u>π</u> 3	<u>5π</u> 12	$\frac{\pi}{2}$
y	0	0.258	0.5	0.707	0.866	0.965	1
	y ₀	y 1	y ₂	уз	У4	у5	y ₆

Now, By Simpson's
$$\frac{1}{3}$$
 rule
$$1 = \frac{h}{3} [y_0 + y_0 + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4)]$$

$$1 = \frac{h}{3} [y_0 + y_0 + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4)]$$

$$= \frac{\pi}{3 \times 12} [0 + 1 + 4 (0.258 + 0.707 + 0.965) + 2 (0.5 + 0.866)]$$

$$= 0.0993$$
Again, by Simpson's $\frac{3}{8}$ rule
$$1 = \frac{3h}{8} [y_0 + y_0 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3\pi}{8 \times 12} [0 + 1 + 3 (0.258 + 0.5 + 0.866 + 0.965) + 2 (0.707)]$$

$$= 0.9995$$
and, $I_{abs} = \int_0^{\pi} \sin x \cdot dx = [-\cos x]_0^{\pi/2} = -\cos \frac{\pi}{2} + \cos 0 = 1$
Now, Error by Simpson $\frac{1}{3}$ rule = $|1 - 0.9993| = 0.0007$
Error by Simpson $\frac{3}{8}$ rule = $|1 - 0.9995| = 0.0005$

Here, the error by Simpson $\frac{1}{3}$ rule is more than Simpson $\frac{3}{8}$ rule, so Simpson $\frac{3}{8}$ rule is more accurate.

Use following table of data to estimate velocity at t = 7 sec

Use following table or Time, t(s)	5	6	7	8	9
Distance Travelled, s(t) (km)	10.0	14.5	19.5	25.5	32.0
Hint: velocity is first derivative	of s(t).			[2015	(Spring)

Solution:

Creating difference table

t=	x = y = s(t)	STREET, STREET	2 nd diff	3 rd diff	4 th diff
5	10.0	4.5	1		
6	14.5	4.5	0.5		
		5		0.5	
7	19.5	1 1	1		-1
	1 1	6		-0.5	
8	25.5		0.5		
./	1	6.5	1		
9	32.0				

Now, to estimate velocity at t = 7 sec which lies at the mid of table.

Numerical Differentiation and integration 159 [ptink] stirling's central difference formula, we have, yo = yo + $\frac{p}{1!} \left(\frac{\Delta y_0 + \Delta y_{-1}}{2} \right) + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{p(p^2 - 1^2)}{3!} = \frac{y_{-1} + \Delta^3 y_{-2}}{2} = \frac{y_{-1} + \Delta^3 y_{-2}}{2}$

NOTE: Formula is placed according to the data available in difference table i.e., Δy_0 and Δy_{-1} are present but not for other $\Delta^3 y_{-1}$, $\Delta^3 y_{-2}$ etc for t = 7.

$$s'(t) = \frac{1}{1} \left[\frac{6+5}{2} \right]$$

s'(t) = 5.5 km/s is the required velocity

Evaluate the integral $I = \int_0^1 \exp\left(\frac{-1}{1+x^2}\right) dx$, using gauss quadrature formula with n = 2 and n = 3. [2016/Fall]

solution:

Given that;

$$I = \int_0^{10} f(x) dx$$

where,
$$f(x) = \exp\left(\frac{-1}{1+x^2}\right)$$

Using gauss quadrature formula with n = 2 and n = 3 since limit a = 0 and b = 10 is not from -1 to 1, so using,

$$x = \frac{1}{2}(b-a)u + \frac{1}{2}(b+a)$$

or
$$x = \frac{1}{2}(10 - 0) u + \frac{1}{2}(10 + 0)$$

Differentiating on both sides

Then, substituting the values form (1) and (2) to I,

 $I = \int_{-1}^{1} \exp\left(\frac{-1}{1 + (5u + 5)^2}\right) 5 du$

Now,

$$I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$
 $I = \int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$

Gauss formula for
$$n = 3$$
 is,

$$I = \frac{8}{9} f(0) + \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(\sqrt{\frac{3}{5}}\right) \right]$$

$$= \frac{8}{9} \left(5 \exp\left(\frac{-1}{1 + (0 + 5)^2}\right) \right)$$

$$+ \frac{5}{9} \left[5 \exp\left(\frac{-1}{1 + \left(5\left(-\sqrt{\frac{3}{5}}\right) + 5\right)^2}\right) \right]$$

$$+ 5 \exp\left[5 \exp\left(\frac{-1}{1 + \left(5\left(\sqrt{\frac{3}{5}}\right) + 5\right)^2}\right) \right]$$

$$= 4.276 + 4.531 = 8.807$$

Evaluate the integral $\int_0^{\infty} e^{x^2} dx$, using Simpson $\frac{1}{3}$ rule and Simpson $\frac{1}{8}$ rule, dividing the interval into six parts. [2016/Spring]

Solution:

Given that:

$$I = \int_0^{0.6} e^{x^2} dx,$$

a = 0, b = 0.6 and n = 6

Then,

$$h = \frac{b-a}{n} = \frac{0.6-0}{6} = 0.1$$

Numerical Differentiation and Integration 161

table is created at the interval of 0.1 from 0 to 0.6. 0.2 0.4 1.010 1.040 0.5 1.094 0.6 1.173 **y**1 1.284 Yz 1.433 **Y**4 **Y6**

Now, by Simpson's $\frac{1}{3}$ rule,

$$\int_{0.5}^{\infty} \left[y_0 + y_6 + 4 \left(y_1 + y_3 + y_5 \right) + 2 \left(y_2 + y_4 \right) \right]$$

$$= \frac{0.1}{3} \left[1 + 1.433 + 4 \left(1.010 + 1.094 + 1.284 \right) + 2 \left(1.04 + 1.173 \right) \right]$$

$$= 0.68036$$

Again, by Simpson's $\frac{3}{8}$ rule,

$$I = \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3 \times 0.1}{8} [1 + 1.433 + 3 (1.010 + 1.040 + 1.173 + 1.284) + 2 (1.094)]$$

$$= 0.68032$$

$$= 0.68032$$

$$Also, I_{abs} = \int_{0}^{0.6} e^{x^2} dx = 0.68049$$

Estimate the following integrals by,

- Simpson's 3 method
- Simpson's $\frac{1}{3}$ method and compare the result

$$\int_{2}^{1} \frac{e^{x} dx}{x}$$
 (Assume n = 4)

[2017/Fall]

solution:

Given that;

$$I = \int_{2}^{1} \frac{e^{x}}{x} dx$$

 $a = 2, b = 1, n = 4$

$$h = \frac{b-a}{n} = \frac{1-2}{4} = -0.25$$

Now, creating table at the interval of (-0.25) from 2 to 1.

X	2	1.75	1.5	1.25	1.
у	3.694	3.288	2.987	2.792	2.718
	y 0	у1	y ₂	Уз	V4

Now, by Simpson's $\frac{1}{3}$ rule,

And he Simpson's $\frac{3}{8}$ rule.

is by simpson 8 8
$$1 = \frac{3h}{6} \left[y_0 + y_4 + 3 \left(y_1 + y_2 \right) + 2y_3 \right]$$

$$= \frac{3 - 0.25}{6} \left[3.694 + 2.718 + 3 \left(3.288 + 2.987 \right) + 2 \left(2.792 \right) \right]$$

$$= \frac{3 - 0.25}{6} \left[3.694 + 2.718 + 3 \left(3.288 + 2.987 \right) + 2 \left(2.792 \right) \right]$$

Then,
$$l_{th} = \int_{-\infty}^{\infty} \frac{e^{x}}{x} dx = -3.0591$$

Then
$$\lim_{x \to -1} \int_{-1}^{1} \frac{dx}{x} = -3.0591$$

Now. Error by Simpson $\frac{1}{3}$ rule = $|-3.0591 + 3.0588| = 0.0003$

Error by Simpson
$$\frac{3}{8}$$
 rule = $[-3.0591 + 2.8894] = 0.1697$

So, Simpson's $\frac{1}{3}$ rule is more accurate.

Apply Romberg's method to evaluate

$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin x}} dx$$

[2017/Fall]

Solution:

Given that;

$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin x}} \, \mathrm{d}x$$

$$a=0,\,b=\frac{\pi}{2}$$

Taking $h = \frac{\pi}{4}$ and creating interval of $\frac{\pi}{4}$ from 0 to $\frac{\pi}{2}$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
у	1	0.541	0
	Vo	<i>y</i> ₁	<i>y</i> ₂

Now, using trapezoidal rule

$$I\left(\frac{\pi}{4}\right) = \frac{h}{2} [y_0 + y_2 + 2y_1]$$
$$= \frac{\pi}{2 \times 4} [1 + 0 + 2 (0.541)] = 0.8175$$

Numerical Differentiation and integration 163

Taking h = $\frac{\pi}{16}$

x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	π	5π	37	7-	
-	_	0.897	0.785	0.665	4	16	8	16	7
	1	40	100	0.667	0.541	0.410	0.275	0.120	2
	yo	y ₁	. y ₂	Уз	y ₄			0.138	U
		$\left(\frac{\pi}{16}\right) =$		0.	· y2+3	3 + y ₄ +	ys + y ₆ +	y7)]	
			π					21.00	
		= 7	2 × 16 [1+0+2	(0.897	+0705			*
		= 7	$\frac{\pi}{2 \times 16}$ [1	+0+2	(0.897	+ 0.785	+ 0.667	+ 0.541	
			2 × 16 [1	l + 0 + 2 + 0.410	(0.897 + 0.275	+ 0.785	+ 0.667 B)]	+ 0.541	

Now, optimizing values by Romberg Integration

$$I\left(\frac{\pi}{4}, \frac{\pi}{8}\right) = \frac{1}{3} \left[4I\left(\frac{\pi}{8}\right) - I\left(\frac{\pi}{4}\right) \right]$$

$$= \frac{1}{3} \left[4 \times 0.8250 - 0.8175 \right] = 0.8275$$

$$I\left(\frac{\pi}{8}, \frac{\pi}{16}\right) = \frac{1}{3} \left[4I\left(\frac{\pi}{16}\right) - I\left(\frac{\pi}{8}\right) \right]$$

$$= \frac{1}{3} \left[4\left(0.8279\right) - \left(0.8250\right) \right] = 0.8279$$

$$I\left(\frac{\pi}{4}, \frac{\pi}{8}, \frac{\pi}{16}\right) = \frac{1}{3} \left[4I\left(\frac{\pi}{8}, \frac{\pi}{16}\right) - I\left(\frac{\pi}{4}, \frac{\pi}{8}\right) \right]$$

$$= \frac{1}{3} \left[4 \times 0.8272 - 0.8275 \right] = 0.8280$$

Hence the value of integral $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin x}} dx = 0.8280$

Also,
$$I_{abs} = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin x}} dx = 0.8284$$

A Complete Manual of Numerical Methods A complete moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine moves along a fixed straight rod 9 + 8 distance

A silder in a machine move of the silder in a fixed straight rod 9 + 8 distance

A silder in a machine move of the silder in a fixed straight rod 9 + 8 distance

A silder in a machine move of the silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 distance

A silder in a fixed straight rod 9 + 8 di A sider in a machine moves along the various values of latance a sider in a machine moves along the rod is given below for various values of lance (cm) along the velocity and the acceleration of the slider in a machine rod the velocity and the acceleration of the slider in a machine rod the velocity and the acceleration of the slider in a machine rod the velocity and the acceleration of the slider in a machine moves along the slider in a machine moves along the velocity and the acceleration of the slider in a machine moves along the slider in a machine moves along the slider in a machine moves along the velocity and the acceleration of the slider in a machine moves along the slider in a machine moves alon a machine it given below the acceleration of the slider when the velocity and the acceleration of the slider when [2017/sn.then]

seconds. Find the	0.2	0.3
1 0 0.1	1 20.07	33.95

table from given data

Creating diff	ference table 11 v = x	1st diff	2"diff	3rd diff
x=t	30.13	1.49	-0.24	
0.1	31.62	1.25	-0.17	0.07
0.2	32.87	1.08	-0.17	
0.3	33.95	d+=02 lies	near the end or	ftha

Here, the data of t is equispaced and t nere, use data of the ward formula for numerical differentiation.

From, numerical differentiation using Newton's backward formula

$$y' = \frac{1}{h} \left[\nabla y_n + \frac{\nabla^2 y_n}{2} \right] = \frac{1}{0.1} \left[1.25 + \frac{-0.24}{2} \right]$$

y' = 11.3 cm/s is the required velocity of an object.

Now, for acceleration

$$y'' = \frac{1}{h^2} [\nabla^2 y_n] = \frac{1}{0.1^2} \times -0.24$$

$$y'' = -24 \text{ cm/s}^2$$

is the required acceleration of an object

The velocity 'v' of a particle at a distance 's' from a point on its path is given is given by the following table.

0	s(m)	0	10	20	30	40	50	60
1	v(m/s)	47	58	64	65	61	52	38

Estimate the time taken to travel 60 metres by using Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule. [2017/ Spring]

Solution:

We have,

$$v = \frac{ds}{dt}$$

$$dt = \frac{1}{v}ds = y \cdot ds$$
 $\Rightarrow y = \frac{1}{v}$

Numerical Differentiation and integration 165

on integration, $t = \int_{0}^{\infty} y \cdot ds$ a = 0, b = 60, n = 6

ing table at the interval of 10 from 0 to 60

Creating	0 10	20	30	40	50	
X=3	$\frac{1}{7}$ $\frac{1}{58}$	1 64	1 65	1 61	1 52	60
y=v 3	70 Y1	y ₂	уз	y ₄	ys	38 38

Now, by Simpson's $\frac{1}{3}$ rule,

$$I = \frac{h}{3} [y_0 + y_6 + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4)]$$

$$= \frac{10}{3} \left[\frac{1}{47} + \frac{1}{38} + 4 \left(\frac{1}{58} + \frac{1}{65} + \frac{1}{52} \right) + 2 \left(\frac{1}{64} + \frac{1}{61} \right) \right] = 1.063$$

Again, by Simpson's $\frac{3}{8}$ rule

$$I = \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3 \times 10}{8} \left[\frac{1}{47} + \frac{1}{38} + 3 \left(\frac{1}{58} + \frac{1}{64} + \frac{1}{61} + \frac{1}{52} \right) + 2 \left(\frac{1}{65} \right) \right] = 1.064 \text{ s}$$

Evaluate the integral $I = \int_0^{\frac{\pi}{2}} (1 + 3 \cos 2x) dx$. Compare the result in both conditions for Simpson $\frac{1}{3}$ and $\frac{3}{9}$ rule. [2018/Fall]

solution:

Given that:

$$I = \int_0^{\frac{\pi}{2}} (1 + 3\cos 2x) \, dx$$

$$a = 0$$
, $b = \frac{\pi}{2}$, $n = 6$

$$h = \frac{b-a}{n} = \frac{\frac{\pi}{2}-0}{6} = \frac{\pi}{12}$$

Now, table is created at the interval of $\frac{\pi}{12}$

x	0	$\frac{\pi}{12}$	<u>π</u>	$\frac{\pi}{4}$	<u>π</u> 3	<u>5π</u> 12	$\frac{\pi}{2}$
у	4	3.598	2.5	1	-0.5	-1.598	-2
	yo	y 1	у2	уз	У4	у5	y 6

Now, by Simpson's
$$\frac{1}{3}$$
 rule.

$$1 = \frac{h}{3} \left[y_0 + y_1 + 4 \left(y_1 + y_2 + y_5 \right) + 2 \left(y_2 + y_4 \right) \right]$$

$$= \frac{\pi}{3 \times 12} \left[4 \times (-2) + 4 \left(3.598 + 1 - 1.598 \right) + 2 \left(2.5 - 0.5 \right) \right]$$

$$= 1.57070$$
Again, by Simpson's $\frac{3}{6}$ rule.

$$1 = \frac{3h}{6} \left[y_0 + y_0 + 3 \left(y_1 + y_2 + y_4 + y_5 \right) + 2y_3 \right]$$

$$= \frac{3\pi}{6 + 12} \left[4 + (-2) + 3 \left(3.598 + 2.5 - 0.5 - 1.598 \right) + 2 \left(1 \right) \right]$$

$$= 3.57079$$

Also,
$$l_{\text{th}} = \int_{0}^{2} (1 + 3\cos 2x) dx = 1.57079$$

Now. Error by Simpson $\frac{1}{3}$ rule = $|1.57079 - 1.57079| = 0$
Error by Simpson $\frac{3}{8}$ rule = $|1.57079 - 1.57079| = 0$

Hence, the Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule is accurate with zero error.

From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for

X =	1.2.				
x	1.0	1.2	1.4	1.6	1.8
v	2.7183	3.3201	4.0552	4.9530	6.0496

[2018/Spring]

Solution:

Creating difference table

X	у	Δy	$\Delta^2 y$	$\Delta^3 y$	∆ ⁴ y
1.0	2.7183				
1.2	3.3201	0.6018	0.1333		I and the
1.4	4.0552	5	0.1627	0.0294	0.0067
1.6	4.9530	0.8978	0.1988	0.0361	1
.8	6.0496	1.0966			- v-4

No med Integration 167

the data of x is equispaced and x = 1.2 lies near the starting of table so the data $\frac{1.2}{1.2}$ lies near the starting Newton's forward formula for numerical differentiation.

Now, at x = 1.2.

from numerical differentiation, using Newton's forward formula

$$\frac{dy}{dx} = y' = \frac{1}{h} \left[\Delta y_n - \frac{\Delta^2 y_n}{2} + \frac{\Delta^3 y_n}{3} \right]$$

$$= \frac{1}{0.2} \left[0.7351 - \frac{0.1627}{2} + \frac{0.0361}{3} \right]$$

$$y' = 3.328$$

Again, for
$$\frac{d^2y}{dx^2}$$

$$\frac{d^2y}{dx^2} = y'' = \frac{1}{h^2} [\Delta^2 y_n - \Delta^3 y_n]$$
$$= \frac{1}{0.2^2} [0.1627 - 0.0361]$$

$$y'' = 3.165$$

The following data gives corresponding values of pressure 'p' and

000 0 E C	405	40-			
P	105	42.7	25.3	16.7	13
v	2	4	6	8	10
100					10

Find the rate of change of volume when pressure is 105 and 13.

[2018/Fall]

solution:

As the values of p are not equispaced, we use Newton's divided difference formula.

The divided difference table is

	x = p	y = v	1 st diff	2 nd diff	3 rd diff	4 th diff
Χo	105	2			grant the area	
	42.7		-0.0321	0.0040		
(1	42.7	4	04460	0.0010		
	25.0		-0.1149		-3.96×10 ⁻⁵	
2	25.3	6		0.0045		7.06×10 ⁻⁶
1			-0.2325		-6.90×10 ⁻⁴	
	16.7	8		0.0250		
	- 14	10	-0.5405		1.00	
	13	10				0.9

Now. Newton's divided formula for the 1st derivative.

ret.

$$f'(x) = \frac{dV}{dp} = \begin{bmatrix} x_0, x_1 \end{bmatrix} + (2x - x_0 - x_1) \begin{bmatrix} x_0, x_1, x_2 \end{bmatrix} + \begin{bmatrix} x_0, x_1 \end{bmatrix} + \begin{bmatrix}$$

Now, when pressure is 105

w. when pressure is 100
$$\frac{dV}{dp_{\pi t_T} = 105} = -0.0321 + (2(105) - 105 - 42.7) (0.0010)$$

$$+ [3(105)^2 - 2(105) (105 + 42.7 + 25.3) + (105 \times 42.7)$$

$$+ (42.7 \times 25.3) + (25.3 \times 105)] (-3.96 \times 10^{-5})$$

$$+ [4(105)^3 - 3(105)^2 (105 + 42.7 + 25.3 + 16.7)$$

$$+ 2(105) (105 \times 42.7 + 42.7 \times 25.3 + 25.3 \times 16.7)$$

$$+ 16.7 \times 105 + 42.7 \times 16.7 + 105 \times 25.3)$$

$$- (105 \times 42.7 \times 25.3 + 42.7 \times 25.3 \times 16.7)$$

$$+ 25.3 \times 16.7 \times 105 + 105 \times 42.7 \times 16.7)] (7.06 \times 10^{-6})$$

$$= 2.9289$$

Similarly when pressure is 13, using x = 13 in the formula, we get,

$$\frac{dV}{dp}_{a:p=13} = -0.6689$$

Evaluate $\int_{-2}^{2} \frac{x}{x+2e^{x}} dx$ by using trapezoidal, Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule [2019/Fall] with n = 6.

Solution:

Given that;

$$I = \int_{-2}^{2} \frac{x \, \mathrm{d}x}{x + 2e^x}$$

a = -2, b = 2, n = 6

$$h = \frac{b-a}{n} = \frac{2+2}{6} = \frac{2}{3}$$

Now, table is created at the interval of $\frac{2}{3}$ from -2 to 2.

(,		٥			
X	-2	$\frac{-4}{3}$	-2	0	$\frac{2}{3}$	$\frac{4}{3}$	2
y	1.156	1.653	-1.850	0	0.146	0.149	0.119
	yo	y_1	<i>y</i> ₂	уз	<i>y</i> ₄	у5	у6

Numerical Differentiation and Integration 169

Now, by trapezoidal rule,

$$\int_{1}^{NOW, 15} \frac{h}{2} [y_0 + y_6 + 2 (y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$= \frac{2}{2 \times 3} [1.156 + 0.119 + 2 (1.653 - 1.850 + 0 + 0.146 + 0.149)] = 0.490$$

$$\lim_{NOW, 15} \frac{1}{2} [y_0 + y_6 + 2 (y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$Again$$
, by Simpson's $\frac{1}{3}$ rule,

$$I = \frac{h}{3} [y_0 + y_6 + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4)]$$

$$= \frac{2}{3 \times 3} [1.56 + 0.119 + 4(1.653 + 0 + 0.149) + 2(-1.850 + 0.146)]$$

$$= 1.1277$$

And, by Simpson's $\frac{3}{8}$ rule,

$$[= \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3 \times 2}{8 \times 3} [1.156 + 0.119 + 3 (1.653 - 1.850 + 0.146 + 0.149) + 2 \times 0]$$

$$= 0.3922$$

Using three-point Gaussian Quadrature formula, evaluate,

$$\int_0^1 \frac{dx}{1+x}$$

[2019/Fall]

solution:

Given that;

$$I = \int_0^1 \frac{dx}{1+x}$$

Using gauss quadrature formula with n = 3.

Since limit a = 0 and b = 1 is not from -1 to 1 so using.

$$x = \frac{1}{2}(b-a)u + \frac{1}{2}(b+a)$$

or,
$$x = \frac{1}{2}(1-0)u + \frac{1}{2}(1+0)$$

$$x = \frac{u}{2} + \frac{1}{2}$$

.... (1)

Differentiating on both sides

$$x = \frac{du}{2}$$

Now, substituting the values from (1) and (2) to I,

$$I = \int_{-1}^{1} \frac{\frac{du}{2}}{1 + \left(\frac{u}{2} + \frac{1}{2}\right)} = \int_{-1}^{1} \frac{du}{3 + u}$$

Now. Gauss formula for
$$n = 3$$
 is
$$I = \frac{8}{6}f(0) + \frac{5}{6}\left[f\left(-\sqrt{\frac{5}{3}}\right) + f\left(\sqrt{\frac{3}{5}}\right)\right]$$

$$= \frac{8}{6} \times \frac{1}{3} + \frac{5}{6}\left[\frac{1}{3} - \sqrt{\frac{3}{5}} + \frac{1}{3} + \sqrt{\frac{3}{5}}\right]$$

The following table gives the velocity of a velocity at various points

of time.	11	2	4	5	
Time, t(seconds)	1	1.	2.2	4	1
Valacity v(m/s)	0.25	1		1	_

Find the acceleration of the vehicle at t = 1.1 second and t = 2.5 second using any suitable differential formula. [2019/Spring]

As the values of time are not equispaced, we use Newton's divided difference

The divided difference table is

111	$\int x = t$	y = v	1 st diff	2 nd diff	3 rd diff
xe	1	0.25	0.75		
	, .	1	0.73	-0.05	
X1	- 1	1	0.6	-	0.1125
X2	4	2.2	1.8	0.4	
X3	5	4	1.0		u spoc

From Newton's divided formula for the 1st derivative, we get,

$$f(x) = [x_0, x_1] + (2x - x_0 - x_1) [x_0, x_1, x_2] + [3x^2 - 2x (x_0 + x_1 + x_2) + x_0 x_1 + x_1 x_2 + x_2 x_0] [x_0, x_1, x_2, x_3]$$

Now, when t = 1.1

$$f(x)_{1.1} = 0.75 + [2 (1.1) - 1 - 2] (-0.05)$$

$$+[3(1.1)^{2} - 2(1.1)(1 + 2 + 4) + (1)(2) + (2)(4) + (1)(4) (0.1125)$$

$$= 0.75 + 0.04 + 0.2508$$

 $f(x)_{1.1} = 1.0408$ is the required acceleration in m/s²

Again, when t = 2.5

$$f(x)_{25} = 0.75 + 2(2.5) - 1 - 2) (-0.05)$$

$$+ [3(2.5)^{2} - 2 (2.5)(1 + 2 + 4) + (1)(2) + (2)(4) + (1)(4)] (0.1125)$$

$$= 0.75 - 0.1 - 0.2531$$

$$= 0.3969 \text{ m/s}^{2} \text{ is the required acceleration.}$$

Numerical Differentiation and Integration 171

du by using trapezoidal, Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule with n = 6.

solution:

$$\int_0^{\frac{\pi}{2}} \frac{\sin u}{u} du$$

$$a = 0$$
, $b = \frac{\pi}{2}$, $n = 6$

$$h = \frac{b-a}{n} = \frac{\frac{\pi}{2} - 0}{6} = \frac{\pi}{12}$$

Now, table is created at the interval of $\frac{\pi}{12}$ from 0 to $\frac{\pi}{2}$

x = U	0	$\frac{\pi}{12}$	<u>π</u> 6	$\frac{\pi}{4}$	$\frac{\pi}{3}$	5π	π
	1	0.988	0.954	0.9	0.826	12	2
y	V0	y1	у2	У3	y ₄	0.737	0.636

At x = u = 0, $\frac{\sin u}{u} = \frac{0}{0}$, so we use L-Hopital's rule for 0. Rest of the values are normally calculated.

Now, by trapezoidal rule,

$$I = \frac{h}{2} [y_0 + y_6 + 2 (y_1 + y_2 + y_3 + y_4 + y_5)]$$

$$= \frac{\pi}{24} [1 + 0.636 + 2 (0.988 + 0.954 + 0.9 + 0.826 + 0.737)]$$

$$= 1.367$$

Again, by Simpson's $\frac{1}{3}$ rule,

$$I = \frac{h}{3} [y_0 + y_6 + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4)]$$

$$= \frac{\pi}{36} [1 + 0.636 + 4 (0.988 + 0.9 + 0.737) + 2 (0.954 + 0.826)]$$

$$= 1.369$$

And, by Simpson's $\frac{3}{8}$ rule,

$$I = \frac{3h}{8} [y_0 + y_6 + 3 (y_1 + y_2 + y_4 + y_5) + 2y_3]$$

$$= \frac{3\pi}{96} [1 + 0.636 + 3 (0.988 + 0.954 + 0.826 + 0.737) + 2 (0.9)]$$

$$= 1.369$$

.... (2)

Solution:

Given that;

$$1 = \int_{0.5}^{1.5} e^{x^2} dx$$

Since limit a = 0.5 and b = 1.5 is not from -1 to 1

Since limit
$$a = 0.5$$
 and $a = 0.5$ and a

so
$$x = \frac{1}{2}(0.5 - 0.5) u + \frac{1}{2}(1.5 + 0.5)$$

or. $x = \frac{1}{2}(1.5 - 0.5) u + \frac{1}{2}(1.5 + 0.5)$

or,
$$x = \frac{u}{2} + 1$$

Differentiating on both sides

$$dx = \frac{du}{2}$$

Then, substituting the values from (1) and (2) to I,

$$I = \int_{-1}^{1} \frac{e^{\left(\frac{u}{2} + 1\right)^2}}{2} du$$

Now,

Gauss formula for n = 2 is

$$I = \int_{-1}^{1} f(x) dx = f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$
$$= \frac{e^{\left(-\frac{1}{2\sqrt{3}} + 1\right)^{2}}}{2} + \frac{e^{\left(\frac{1}{2\sqrt{3}} + 1\right)^{2}}}{2}$$
$$= 0.829 + 2.631$$

Gauss formula for n = 3 is

$$I = \frac{8}{9}f(0) + \frac{5}{9}\left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(\sqrt{\frac{3}{5}}\right)\right]$$

$$= \frac{8}{9}\left(\frac{e^{(0+1)^2}}{2}\right) + \frac{5}{9}\left[\frac{e^{\left(-\frac{1}{2}\sqrt{3/5} + 1\right)^2}}{2} + \frac{e^{\left(\frac{1}{2}\sqrt{3/5} + 1\right)^2}}{2}\right]$$

$$= 1.208 + 2.307$$

$$I = 3.515$$

Obtain divided difference table for the given data set

e	-1	2	5	7
у	-8	3	1	12

1.

[2019/Fall]

Numerical Differentiation and Integration 173

goto	ting the	divided differen	2 nd diff	
×	-8	$\frac{3+8}{2+1} = 3.667$		3 rd diff
-1			$\frac{-0.667 - 3.667}{5 + 1} = -0.722$	
2	3	$\frac{1-3}{5-2} = -0.667$		$\frac{1.233 + 0.722}{7 + 1} = 0.24$
	1 .	3-2	$\frac{5.5 + 0.667}{7 - 2} = 1.233$	7+1 = 0.24
5		$\frac{12-1}{7-5} = 5.5$		The second
.	12	17.77		

Integrate the given integral using Romberg integration,

 $\int_{1}^{2} \frac{1}{1+x^3} dx$

[2020/Fall]

solution:

$$I = \int_{1}^{2} \frac{1}{1 + x^{3}} dx$$

Takir	1	1.5	2
v	0.5	0.228	0.111
	Vo	y 1	. y ₂

Now using Trapezoidal rule

$$I(0.5) = \frac{h}{2} [y_0 + y_2 + 2y_1]$$
$$= \frac{0.5}{2} [0.5 + 0.111 + 2(0.228)] = 0.266$$

X	1	1.25	1.5	1.75	2
v	0.5	0.338	0.228	0.157	0.111

Now, using Trapezoidal rule

$$I(0.25) = \frac{h}{2} [y_0 + y_4 + 2 (y_1 + y_2 + y_3)]$$

= $\frac{0.25}{2} [0.5 + 0.111 + 2 (0.338 + 0.228 + 0.157)] = 0.257$

Now, using Trapezoidal rule

$$I(0.125) = \frac{h}{2} [y_0 + y_0 + 2 (y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7)]$$

$$= \frac{0.125}{2} [0.5 + 0.111 + 2 (0.412 + 0.338 + 0.277 + 0.228 + 0.118 + 0.157 + 0.131)]$$

$$= 0.254$$

Now, optimizing values by Romberg Integration

$$I(0.5, 0.25) = \frac{1}{3} [4 I(0.25) - I(0.5)]$$

$$= \frac{1}{3} [4(0.257) - 0.266]$$

$$= 0.254$$

$$I(0.25, 0.125) = \frac{1}{3} [4I (0.125) - I(0.25)]$$

$$= \frac{1}{3} [4(0.254) - 0.257]$$

$$= 0.253$$

$$I(0.5, 0.25, 0.125) = \frac{1}{3} [4I(0.25, 0.125) - I(0.5, 0.25)]$$

$$= \frac{1}{3} [4(0.253) - 0.254]$$

$$= 0.252$$

Hence the value of integral $\int_{1}^{2} \frac{1}{1+x^3} dx = 0.252$

Also,
$$I_{abs} = \int_{1}^{2} \frac{1}{1+x^{3}} dx = 0.2543$$

24. Compute the integral using Gaussian 3-point formula.

$$\int_2^3 \frac{e^x + \sin x}{1 + x^2} dx$$

[2020/Fall]

Solution:

Given that;

$$I = \int_2^5 \frac{e^x + \sin x}{1 + x^2} dx$$

ince limit a = 2 and b = 5 is not from -1 to 1,

numerical Differentiation and Integration 175 $x = \frac{1}{2}(5-2)u + \frac{1}{2}(5+2)$ of afferentiating on both sides, we get, $dx = \frac{3}{2} du$ the $\frac{3u+7}{1}$ $\frac{3u+7}{1}$ Now, using Gaussian 3-point formula, $\int_{1}^{8} \frac{8}{9} f(0) + \frac{5}{9} \left[f\left(-\sqrt{\frac{3}{5}}\right) + f\left(\sqrt{\frac{3}{5}}\right) \right]$ $= \frac{8}{9} \left[\frac{e^{(7/2)} + \sin^{(7/2)}}{1 + \left(\frac{7}{2}\right)^2} \cdot \frac{3}{2} \right] + \frac{5}{9} \left[\frac{3}{2} \cdot \frac{\frac{-3\sqrt{3/5} + 7}{2} + \sin^{\left(\frac{-3\sqrt{3/5} + 7}{2}\right)}}{1 + \left(\frac{-3\sqrt{3/5} + 7}{2}\right)^2} \right]$ = 3.297 + 5.271 1 = 8.568

of collection and most (ACID) environment

100 1 1838 D 1878 D 1838 D

Write short notes on Romberg integration.

[2013/Fall, 2015/Fall, 2015/Spring]

solution: See the topic 3.6.