

Motivation

- Electric wheelchairs are becoming more common
 - People with disabilities can move independently
- But means they are not being supervised
 - Alone in case of emergency
- Need a system to get immediate assistance
 - Wheelchair immobilized, crashed, collision, fall
 - Automatically contact emergency responders/caregiver
- Only 10% of individuals requiring assistive tech have them
 - \$\$\$ & resources

Objectives

- Primary recipient of the implemented tech: ABLE Alliance @ GT
 - Can initiate change starting from our neighbors
- Research Question
 - O How can we effectively integrate efficient and reliable sensor-based, low-power smart technology into wheelchair systems to enhance the safety and overall quality of life for individuals with mobility impairments?
- ESP32 S3 = Bluetooth LE, 2.4 GHz WiFi, 512KB SRAM, 4MB, flash memory, 3 UART controllers

System Architecture

*Each subsystem within the setup can respond to distinct levels of emergency scenarios & are **complementary** to each other

*System naming conventions inspired from GT Stamps

Gold Care Team

- Core of System
- MPU6050 & LEDS
 - 6-axis acc/gyro
- Server Provisioning: emergency server dispatch
 - Desktop Notification Prompt
 - SMTP email to responders/caregiver
 - Patient details & coordinates
 - Private Database Repo: Crash Policy
 - EHR
- Midas False Positive
 - Capacitive DENY sensor

Silver Care Team

- Tilt (not caught by Gold) = still severe threat
- CMT-1285C-035 (buzzer)
 - NO Fall = Skyward posture
- LCD1602
 - Help Instructions
- False Buzzing
 - Debounce Technique to Filter

Bronze Care Team

- Threatening impact
 - Sensitive patient
 - Hard collison, crash, havoc
- 8601 NO/NC Magnetic Contact Switch
 - collision -> split
 - disengage electrical circuit
- Pulse Sensor
 - On-the-spot' pulse collection & diagnosis
- 4.3-inch e-Paper UART
 - Vitals info
 - Name, DoB, Blood Type, Condition
 - Ink-based Persistive Display

User Interface

- Custom Speaking System
 - Speech-impaired patient
 - Shocking situation
- DFPlayer + LM386
 - Plays MP3 audio
 - Internal audio amplifier
- Serial communication (TX & RX)
- 3 pre-defined speech
 - Concise & Informative

Changes to OG Plan

- False Detection Challenges
 - Added more complementary systems + sensors
- GUI Application for iPhone
 - In hindsight, NO b/c additional maintenance burden
- Faster to get help from nearby
 - Added an emergency call-out system w/ integrated speakers
 - Added a display system to convey vital patient info

Results: Feedback Analysis

- Received feedback from ABLE Alliance (& Trey):
 - our system vs manual setup
- Asked to complete tasks:
 - Calling Emergency Contact
 - Providing Personal Information
 - Calling out for help
- Our system was behind in accuracy
 - But not by much
- Our system was better in:
 - Speed, Comfort, Customizability
 - Overall Performance

Results: NASATLX

- Conduct a Nasa TLX to ensure the user's workload is low
- Low in:
 - Mental Demand
 - Physical Demand
 - Effort
 - Frustration
- High in:
 - Performance
 - Temporal Demand
 - Means the users were in rush

Reflection / Future

- Overall, system works GREAT
 - surpassed the initial benchmarks
 - Accurate, fast, and easy to use
 - Much better than manual
 - Users were gratified w/ the prototype
- Wires everywhere & Power
 - Wires discreet by proper PCB & case
 - Interconnect ESP32 S3s (WIFIClient library)
 - Solar-Power
- ML autonomous interactive speech

Club Contact on GroupMe app. Also yet to come

Can be accessed on ios, android, or computer

