MAT-329

Investigación Operativa I

Contenido de la Materia

- Unidad 1: Introducción a la Investigación Operativa Objetivos de Unidad (12H)
- Unidad 2: Modelos de Programación Lineal Objetivos de Unidad (46H)
- Unidad 3: Introducción a Modelos de Transporte y Asignación Objetivos de Unidad (30H)
- Unidad 4: Árboles de Decisión y Análisis Probabilístico Objetivos de Unidad (20H)

Evaluaciones

- **❖** Evaluación 1: **30**
- ❖ Evaluación 2: 35
- Evaluación 3: 25 (Proyecto)
- Prácticos, Lectura, Asistencia y Otros: 10
- Evaluación 1 y 2- Exámenes individuales
- Evaluación 3: Proyecto Grupal
- Grupos: 3 Personas máximo
- Prácticos: Pueden trabajar en equipos

Sitio Virtual

• https://classroom.google.com/c/Njg5MzI1MTM10DAz?cjc=cp4l4p3

Cp4|4p3

Asistentes de Materia (2 Personas)

- Llevar la Asistencia y entregar un resumen (04/07/2025)
- Pasar información a los colegas.
- Recordatorio de Prácticos al profesor
- Recordatorio de los Exámenes
- Computar participaciones en clase
- Otras comunicaciones importantes

4 Puntos sobre la nota final

Bibliografía de la Materia

- ❖ Taha, H. A. (2017). Investigación de Operaciones (10ª ed.). Pearson Educación. ISBN: 978-607-32-4121-2.
- Hillier, F. S., & Lieberman, G. J. (2021). Introduction to Operations Research. McGraw-Hill
- Bronson, R. (1997). Operations Research.
- Winston, W. L. (2004). Operations Research.

Tarea 1

- Cargar los Libros en el un site compartido:
- 1. Sugiera en clase que site Podemos usar
 - Indicar integrantes del equipo
 - Indicar Fuente de descarga de libros
 - Indicar el nombre de los archivos proporcionados
 - Forma de nombrar los archivos.
 - Año_Autor_Edicion
 - Ej. 2017_Taha_10aEd

Calendario

2025

Su	Мо	Tu	We	Th	Fr	Sa
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Su	Mo	Tu	We	Th	Fr	Sa
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

MAR

Feriado		

APR	
Feriado	

Su	Мо	Tu	We	Th	Fr	Sa
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Su	Мо	Tu	We	Th	Fr	Sa
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

MAY	
Feriado	
JUN	
Feriado	

Programación

- Unidad 1: Semana y Media
- Unidad 2: Seis Semanas
- Unidad 3: Cuatro Semanas
- Unidad 4: Cuatro Semanas

Unidad 1 Introducción a la Investigación Operativa

Objetivos de la Unidad

- ☐ Comprender qué es la IO, sus objetivos y cómo ayuda a resolver problemas complejos en la toma de decisiones.
- Identificar el desarrollo histórico de la IO y explorar sus aplicaciones en diferentes sectores.
- Describir las etapas del ciclo de un estudio de IO y cómo estructurar problemas para su análisis.
- Analizar cómo la IO interactúa con Estadística, Álgebra Lineal e Informática en la resolución de problemas.

Contenido

- 1.1. Definición y Objetivos de la IO
- 1.2. Historia y Aplicaciones
- 1.3. Etapas de un estudio de IO
- 1.4. Relación con otras disciplinas
- 1.5 Bibliografía Recomendada

5. Bibliografía

- □ Taha, H. A. (2017). *Investigación de Operaciones* (10ª ed.). Pearson Educación. ISBN: 978-607-32-4121-2. Cap 1
- ☐ Hillier, F. S., & Lieberman, G. J. (2021). *Introduction to Operations Research*. McGraw-Hill, Cap. 1, pp. 1-15.
- ☐ Bronson, R. (1997). Operations Research. Cap. 1, pp. 1-10.
- ☐ Winston, W. L. (2004). Operations Research. Cap. 1, pp. 1-20.

1. Definición de la IO

• la Investigación Operativa (IO) es una disciplina científica que se enfoca en la formulación, análisis y solución de problemas complejos mediante modelos matemáticos y herramientas computacionales.

- Ciencia: Técnicas matemáticas
 - Arte: creatividad y experiencia

1. Objetivos de la IO

Su objetivo es **optimizar** (**mejor valor**) **la toma de decisiones** en sistemas que involucran **recursos limitados**, **incertidumbre** y **múltiples restricciones**.

1. Definición y Objetivos de la IO

- La IO combina matemáticas, estadística, informática y economía para modelar problemas y encontrar soluciones óptimas.
- Se usa ampliamente en sectores como logística, manufactura, transporte, salud, energía y tecnología.

2. Historia y Aplicaciones

• Haga un Resumen de la Historia de la IO

2. Historia y Aplicaciones de la 10

La IO ha evolucionado desde su aplicación militar hasta convertirse en una herramienta esencial en la industria y la ciencia.

Hoy en día, es clave en logística, manufactura, energía, salud, finanzas e inteligencia artificial.

Su futuro está ligado a la computación cuántica, la inteligencia artificial y la automatización avanzada.

2. Historia y Aplicaciones de la 10

	Año	Hito Importante
	1654	Pascal y Fermat desarrollan la teoría de la probabilidad.
	1733	De Moivre introduce la distribución normal.
al y el 39-	1810s	Laplace expande la probabilidad y modelos matemáticos.
Mundia 10 (19	1881	Edgeworth desarrolla el modelo de asignación.
erra Je la	1917	Erlang introduce la teoría de colas.
Segunda Guerra Mundial y el Nacimiento de la 10 (1939- 1945)	1939	Kantorovich propone la programación lineal.
Segun Nacim 1945)	1940-1945	Segunda Guerra Mundial: Nace la IO aplicada a estrategia militar.

2. Historia y Aplicaciones de la 10

• La IO nace formalmente como disciplina científica y comienza a aplicarse en el sector civil tras la guerra.

Expansión en la Industria y la Academia (1950-1979)

Computacional y Big

	Año	Hito Importante
	1947	Dantzig desarrolla el método simplex.
	1952	Creación de la ORSA (Operations Research Society of America)
	1956	Desarrollo de la simulación de Monte Carlo.
(66	1960s	Aplicación masiva de IO en negocios e industria.
-199	1970s	Expansión de la programación entera y no lineal.
(1980-1999)	1980s	Introducción de software de optimización como LINDO y CPLEX.
Data	1990s	Integración con inteligencia artificial y aprendizaje automático.

IO en la Era D

2. Historia y Aplicaciones de la 10

4.0	Año	Hito Importante
	2000s	IO aplicada a Big Data y logística inteligente.
Industria	2010s	Algoritmos avanzados y optimización heurística.
al y la	2020s	IO combinada con Quantum Computing y optimización metaheurística.
igital		

Optimización de Rutas y Asignación de Conductores- Uber y Yango

Algoritmos de IO Utilizados:

- O ptimización de Rutas: Algoritmos de mínimo costo en redes, como *Dijkstra o A (A-star) encuentran la ruta más rápida para un viaje.
- ❖Asignación de Conductores: Usa Programación Lineal Entera y Heurísticas para asignar los conductores a los pasajeros minimizando tiempos de espera.
- ❖ Predicción de Demanda: Modelos basados en Simulación de Monte Carlo y Series Temporales estiman la demanda futura de viajes
- Precios Dinámicos: Implementan Optimización No Lineal para calcular tarifas según oferta y demanda en tiempo real.

Tarea 2

Explica cómo se usa la Investigación Operativa en Bolivia.

 Competencia Asociada: Identificar y analizar aplicaciones reales de la Investigación Operativa en el contexto socioeconómico y empresarial de Bolivia.

Tarea 2

Explica cómo se usa la Investigación Operativa en Ingeniería Informática.

 Competencia Asociada: Aplicar conceptos y modelos de Investigación Operativa para optimizar procesos y resolver problemas específicos de Ingeniería Informática.

3. Etapas principales de un estudio de Investigación Operativa

Lineamientos generales

1. Definición del problema

- EDITABLE STROKE
- Identificar y comprender el problema que se quiere resolver.
- Se definen los :
 - Objetivos,

- Restricciones y
- Variables involucradas.

Claridad sobre qué se necesita optimizar (ejemplo: reducir costos, minimizar tiempos, maximizar beneficios).

2. Construcción del modelo

- Convertir el problema real en un modelo matemático.
 - Un modelo no es una réplica exacta de la realidad, sino una simplificación útil
 - La calidad de la solución depende de la exactitud del modelo que representa el sistema real
- Se identifican **ecuaciones**, **variables** y **restricciones** que representan el problema.

Tener una versión simplificada y estructurada del problema para analizarlo matemáticamente

3. Resolución del modelo

- Aplicar métodos matemáticos o computacionales para encontrar la mejor solución posible.
- Se usan herramientas/tecnicas como método simplex, algoritmos de optimización o simulaciones
- No existe una técnica única para todos los modelos.
- Se aplican diferentes métodos según la complejidad del problema
- como el Método Simplex para PL y heurísticas para problemas complejos.

Obtener la mejor respuesta posible basada en datos y cálculos.

4. Validación del modelo

- Comprobar si el modelo realmente representa la realidad.
- Se prueban los resultados y se comparan con datos reales o históricos.

Asegurar que la solución obtenida sea confiable y aplicable en la práctica.

4. Validación del modelo

- ¿Tiene sentido la solución?.
- ¿Los resultados son intuitivamente aceptables?.

Asegurar que la solución obtenida sea confiable y aplicable en la práctica.

5. Implementación de la solución

- Aplicar la solución en la vida real y hacer ajustes si es necesario.
- Puede implicar cambios en procesos, asignación de recursos o nuevas estrategias.

Poner en marcha la solución optimizada para mejorar la eficiencia y alcanzar los objetivos

Ejemplo Resumido 🚛 🤰

Problema: Una empresa quiere reducir los costos de transporte.

- **Definición**: Identificar los costos actuales y los puntos de entrega.
- Construcción: Crear un modelo matemático con rutas y costos.
- Resolución: Usar un algoritmo de optimización para encontrar la mejor ruta.
- Validación: Comparar la nueva solución con los datos anteriores.
- Implementación: Aplicar la nueva ruta en la empresa y medir mejoras.

Problema: Una empresa de software necesita optimizar el uso de sus servidores en la nube para reducir costos sin afectar el rendimiento.

Etapa	Explicación	Objetivo
1 Definición del problema	Se analiza el gasto actual en servidores y se identifican picos de uso y tiempos de baja demanda.	Reducir costos de infraestructura sin afectar el servicio.
2 Construcción del modelo	Se modela matemáticamente el uso de servidores con variables como costo por hora, tráfico, y demanda estimada.	Representar el problema en un modelo cuantificable.
3 Resolución del modelo	Se aplica programación lineal para encontrar la mejor combinación de instancias activas según la demanda.	Encontrar una solución óptima para minimizar costos.

Etapa	Explicación	Objetivo
4 Validación del modelo	Se <u>comparan</u> resultados con datos históricos para verificar si se cumplen los objetivos sin afectar el rendimiento	Asegurar que la solución es viable y efectiva
5 Implementación de la solución	Se <u>ajusta</u> la configuración de los servidores según el modelo optimizado y se monitorizan mejoras en costos y rendimiento.	Aplicar la solución en la infraestructura real.

Problema: Una empresa de software necesita optimizar el uso de sus servidores en la nube para reducir costos sin afectar el rendimiento.

> Resultado hipotético: La empresa logra un ahorro del 30% en costos operativos al reducir la cantidad de servidores activos en horarios de baja demanda y redistribuir cargas de manera eficiente.

E3: Optimización del **Transporte** Público para Reducir Tráfico Vehicular

• La ciudad sufre de congestión vehicular y un sistema de transporte público ineficiente, lo que genera costos elevados y tiempos de viaje largos.

Etapa	Explicación	Objetivo
1 Definición del problema	Se identifican los principales problemas: congestión vehicular, <u>rutas ineficientes</u> y <u>baja</u> ocupación de los buses.	Se identifican los principales problemas: congestión vehicular, rutas ineficientes y baja ocupación de los buses.

E3: Optimización del Transporte Público para Reducir Tráfico Vehicular

Etapa	Explicación	Objetivo
2 Construcción del modelo	Se modelan rutas, frecuencias y cantidad de pasajeros por hora con herramientas de optimización.	Crear un modelo matemático que permita distribuir eficientemente los buses.
3 Resolución del modelo	Se aplican algoritmos de optimización (como el método del transporte o simulaciones de flujo) para encontrar la mejor distribución de rutas y horarios.	Minimizar costos operativos y mejorar la cobertura de transporte público.

E3: Optimización del Transporte Público para Reducir Tráfico Vehicular

Etapa	Explicación	Objetivo
4 Validación del modelo	Se realizan pruebas piloto en rutas con alta demanda y se comparan tiempos de viaje y costos antes y después de aplicar el modelo.	Asegurar que la solución es factible y efectiva.
5 Implementación de la solución	Se reajustan las rutas de buses, priorizando vías principales y optimizando los intervalos entre unidades.	Aplicar los cambios en el sistema de transporte público para mejorar su eficiencia.

E3: Optimización del Transporte Público para Reducir Tráfico Vehicular

 La ciudad sufre de congestión vehicular y un sistema de transporte público ineficiente, lo que genera costos elevados y tiempos de viaje largos.

Resultado Esperado: Se reduce en 25% el tráfico vehicular, aumenta en 40% la cantidad de pasajeros transportados, y disminuyen los costos operativos del sistema de transporte al eliminar rutas ineficientes y mejorar la frecuencia de los buses en las zonas más críticas.

¿Cuáles son las etapas principales de un estudio de Investigación Operativa?

 Competencia Asociada: Comprender la metodología en la aplicación de IO

¿Qué sucede si un modelo no pasa la etapa de validación?

• Competencia Asociada: Lógica y comprensión de la metodología usada en un estudio de investigación Operativa

Relación con otras Disciplinas

La Investigación Operativa se relaciona con múltiples disciplinas para resolver problemas complejos:

❖Usa Estadística para manejar incertidumbre.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

❖Usa Álgebra Lineal para modelar restricciones y soluciones.

❖Usa Informática para resolver problemas de optimización a gran

escala.

Se **aplica** en Finanzas, Manufactura, Administración, Gestión Empresarial, Ingeniería, Salud y muchas más áreas.

Técnicas de 10

Las técnicas de IO incluyen:

- Programación Lineal: la FO y las restricciones son lineales
- Programación Entera: las variables asumen valores enteros
- Programación Dinámica : el modelo original puede descomponerse en subproblemas más pequeños y manejables
- Programación de Red :el problema puede modelarse como una red
- Programación No Lineal : las funciones del modelo son no lineales

Técnicas de 10

Programación Lineal

Programación Entera

Programación Dinámica

Programación de Red

Programación No Lineal Cada iteración aproxima la solución óptima

> Debido a la complejidad y volumen de cálculos, es común implementar estos algoritmos en sistemas computacionales

 modelos complejos usan alternativas Heurísticas y Metaheurísticas

- •Algoritmos genéticos.
- Recocido simulado.
- Optimización por colonia de hormigas.
- Búsqueda tabú.

Técnicas de 10

Programación Lineal

Programación Entera

Programación Dinámica

Programación de Red

Programación No Lineal

- M. Gráfico (para 2 variables),
- M. Simplex,
- Algoritmos de Punto Interior.
 - Branch and Bound
 - Branch and Cut
 - Programación Entera Mixta (MILP)

Métodos de Solución

- Backward Induction
- Bellman's Equation

Algoritmo de Dijkstra (para la ruta más corta).

Algoritmo de Flujo Máximo (para tráfico y redes eléctricas).

- Método de Lagrange
- Métodos de Punto Interior

Tarea Final

- 1. ¿Qué es la Investigación Operativa y cuál es su objetivo principal?
- 2. Enumere tres problemas que pueden resolverse con Investigación Operativa.
- 3. ¿Cuál es la diferencia entre maximización y minimización en Investigación Operativa?
- 4. Describa un caso práctico en el que la Investigación Operativa pueda aplicarse en logística.
- 5. ¿Qué rol jugó la Investigación Operativa en la Segunda Guerra Mundial?
- 6. Explique cómo se usa la Investigación Operativa en Ingeniería Informática.

Tarea Final

- 7. ¿Cuáles son las etapas principales de un estudio de Investigación Operativa?
- 8. ¿Cómo se relaciona la Estadística con la Investigación Operativa?
- 9. En que sectores se emplea La Investigación Operativa (IO) en Bolivia
- 10. Haga una pregunta con su respectiva respuesta, de un punto que le haya parecido relevante de este tema

- Definición y objetivos de la IO
 - ¿Qué es la Investigación Operativa?
 - Importancia en la optimización de procesos.
- Historia y aplicaciones
 - Origen de la IO en la Segunda Guerra Mundial.
 - Aplicaciones en sectores clave como industria, salud y transporte.

• Etapas de un estudio de IO

- Definición del problema.
- Construcción y resolución de modelos.
- Validación e implementación.
- Relación con otras disciplinas
 - Uso de Estadística: Modelos probabilísticos en decisiones.
 - Uso de Álgebra Lineal: Modelos de programación lineal.
 - Uso de Informática: Algoritmos y herramientas computacionales.