\sim Assignment 5 Computational Models Spring 2022 \sim

Saar Barak

Problem 1

Assuming $P \neq NP$

(a) Input: Sets $A_1, ..., A_n$, and a number k. Question: do there exist k mutually disjoint sets $A_{i1}, ..., A_{ik}$ not in \mathcal{P}

Proof. we can reduce IS \leq_P MDS as follow. let G(V, E) denote an instant of IS problem, for any $v_i \in V$ generate set A_i that contain all edges that have an end in v_i i.e $v_i v_j \in A_i \Leftrightarrow v_i v_j \in E$. Its immediate that there is IND-SET $v_{i1}, ..., v_{ik}$ size k in G iff there exist k mutually disjoint sets $A_{i1}, ..., A_{ik}$. The reduction f is poly-time computable function in O(|V| + |E|), since we just need travel on G and add the elements to the sets as described above. Additionally, given a sets, we can verify if they are disjoint and there are at least k of them in poly time. Hence MDS $\notin P$

(b) Input: Sets $A_1, ..., A_n$.

Question: do there exist 3 mutually disjoint sets A_i, A_j, A_k

in \mathcal{P}

claim. $3IND^1 \in \mathcal{P}$

Proof. First notice 3IND \in NP using same verifier of IS. Given G(V, E) denote |V| = n, |E| = m we can label its vertex $1 \dots n$. run STCON on $\langle G, v_i, v_j \rangle$ for any i, j now by choose any triplet from $\{1 \dots n\}^3$ and check if STCON $\langle G, v_i, v_j \rangle$ return 0 for any $i, j \in \{i, j, l\}$ in total we run $\binom{n}{2}$ times STCON save result on the tape size $\binom{n}{2}$ and check the nation for any triplet in total $\binom{n}{3}$. all the following is can be compute in poly time. hence 3-IND \in P

Hence using same reduction described in (a) its holds that $3-\text{IND} \leq_P 3-\text{MDS}$.

(c) Input: Sets $A_1, ..., A_n$, and a number k. Question: do there exist k sets such that $A_{i1}, ..., A_{ik}$ such that $A_i \cap A_j \neq \emptyset$ not in \mathcal{P}

Proof. we can reduce CLIC $\leq_P Q_{(c)}$ as follow. let G = (V, E) denote an instant of CLIC problem. using same proses as described at (a) we generate the sets $A_{vi}, ..., A_{vn}$. Hence if G have clic size k then exists $v_1 ... v_k$ s.t $(v_1 v_2)(v_2, v_3) ... (v_{k-1} v_k) \in E \Leftrightarrow$ for any $e = v_i v_j$ exists $x \in A_i, A_J \Leftrightarrow A_i \cap A_j$ for any $i \neq j$.

¹decide if given graph have independence set size 3

(d) CNF_{50v}

Input: a CNF formula ψ with at most 50 variables.

Question: does there exist an assignment that satisfies ψ

in \mathcal{P}

Proof. Let \mathcal{A} denote algorithm that get as input CNF formula ψ . If ψ contain more then 50 variables then \mathcal{A} immediately reject, otherwise its "brute force" by set any possible combination of boolean assignment for the given variables, If one of them satisfy ψ its ACCEPT, and if none of them satisfy ψ then REJECT. Since from 50 variables there are total of 2^{50} possible assignment, \mathcal{A} is polynomial algorithms that decide our problem.

(e) Input: a CNF formula ψ with at most 50 clauses.

Question: does there exist an assignment that satisfies ψ

in \mathcal{P}

Proof. Let ψ be a CNF formula with at most 50 clauses on n literals. Consider some algorithm $\mathcal{A}(\psi)$ that try all possible ways to choose one literal from each clause whenever $x_i, \neg x_i$ does **Not** appear together $\forall i$. If \mathcal{A} find such an assignment $\Rightarrow \psi$ satisfies, otherwise it is not .Since there are at most $(2n)^{50}$ ways to choose such an assignment, \mathcal{A} is polynomial algorithms that decide our problem.

(f) Input: a 3CNF formula ψ with even number of variables.

Question: does there exist an assignment that satisfies ψ and gives True for exactly one half of the variables?

not in \mathcal{P}

Proof. we can reduce $3SAT \leq_P 3CNF_{half}$ as follow. Given 3SAT formula ψ that have n variable $x_1 \ldots x_n$, now construct new n variable $y_1 \ldots y_n$ such that each y_i correspond to the opposite value of x_i , its can done by adding to ψ 2-CNF clauses i.e

$$(x_1 \vee y_1)(\overline{x_1} \vee \overline{y_1}) \dots (x_n \vee y_n)(\overline{x_n} \vee \overline{y_n})$$

Any solutions to the formula will have half the variables with true values and half false. the following can done in poly-time with computable function just duplicate ψ variables and add the 2-CNF clauses.

(g) Input: undirected graph G, a number k.

Question: does there exist in G a clique of size at least k or an independent set of size at least k?

not in \mathcal{P}

Proof. we can reduce IS \leq_P CLICVIS as follow. let G=(V,E) instant of IS problem, we can construct new graph G' by adding set of additional |V'|=|V| isolated vertexes. now define

$$f(\langle G=(V,E),k\rangle)=\langle G'=(V+V',E),k+|V|\rangle$$

f is polynomial. Since k + |V| > |V| then G' don't have CLIC size k + |V| for sure. and exist IS size k in $G \Leftrightarrow$ exist IS size k + |V| in G'. Hence CLIC \vee IS \notin P

Problem 2

(a) For every nontrivial
$$L_1, L_2 \in P, L_1 \leq L_2$$
TRUE

Let $L_1, L_2 \in P$ W.L.O.G we can generate arbitrary f that yield $L_1 \leq_P L_2$

Algorithm 1 f on input w.

Decide $w \in L_1$

If $w \in L_1$ Return any $w' \in L_2$

If $w \notin L_1$ Return any $w'' \notin L_2$

First line can done in poly-time since $L_1 \in P$, 2^{nd} holds because $L_2 \neq \emptyset$ and 3^{nd} since $L_2 \neq \Sigma^*$. All the following can done in poly-time hence f poly-time computable reduction function from $L_1 \leq_P L_2$

(b) For every nontrivial $L_1, L_2 \in NP, L_1 \leq_P L_2$ Equivalent to an Open Problem

claim. $P = NP \Leftrightarrow claim \ 2(b)$ is True

Proof. \Rightarrow if P = NP any $L_1, L_2 \in NP \Rightarrow L_1, L_2 \in P \Rightarrow$ Using 2(a) any non-trivial $L_1, L_2 \leq P$ can reduce to any other $\Rightarrow L_1 \leq_p L_2$ claim 2(b) Is true.

 \Leftarrow Consider some non trivial $L_2 \in P$, and assume that exist non trivial $L_1 \in NP/P$. Since $P \subseteq NP$ then $L_2 \in NP \Rightarrow \text{claim } 2(b)$ yield that exists reduction s.t $L_1 \leq_P L_2$ then $L_1 \in P$ but $L_1 \in NP/P$ and we get an contradiction \Rightarrow there is no exist such $L_1 \Rightarrow NP/P = \emptyset \Rightarrow NP \subseteq P \Rightarrow P = NP$

(c) $L = \{0^n 1^n | n \in N\} \text{ is NPC}$ FALSE

claim. $L \in \mathcal{LOGSPACE}$

Proof. L can decided by $O(\log(n))$ -space TM \mathcal{M} on input w, that work as follow:

- Check that 1 is ever followed by a 0
- Count the number of 0's and 1's.
- Compare the two counters.

First step requires no working space, just moving the head for the second we can set 2 binary counters each size $\log(n)$, and third no need extra space.

Hence $L \in \mathcal{LOGSPACE} \Rightarrow L \notin NPC$

(d) There exists a language in \mathcal{RE} that is complete w.r.t polynomial-time reductions. **TRUE**.

claim. A_{TM} is complete w.r.t polynomial-time reductions.

Proof. consider $f(w) = \langle \mathcal{M}, w \rangle$ for any $L \in \mathcal{RE}$ and TM \mathcal{M} that accept L. f computable, and able to write the encode of \mathcal{M}, w in poly time. Since $w \in L \Leftrightarrow \langle \mathcal{M}, w \rangle \in A_{TM}$, f define poly-time reduction for any arbitrary $L \in \mathcal{RE}$. A_{TM} is complete w.r.t polynomial-time reductions

(e) If there exists a deterministic TM that decides SAT in time $n^{O(\log n)}$ Then every $L \in NP$ is decidable by a deterministic TM in time $n^{O(\log n)}$. **TRUE**.

Proof. Let $L \in \mathcal{NP}$ and \mathcal{M}_{SAT} denote D-TM that decide SAT. Since $SAT \in \mathcal{NPC}$ then exist some poly-time reduction f s.t $L \leq_P SAT$ decide SAT. Let look at d-TM \mathcal{M}' .

Algorithm 2 \mathcal{M}' on input w.

Computes f(w)

Simulate $\mathcal{M}_{SAT}(f(w))$ and Answer like \mathcal{M}_{SAT}

 $w \in L \Leftrightarrow \mathcal{M}_{SAT}$ accept $f(w) \Leftrightarrow f(w) \in SAT$. Since $f \in \mathcal{O}(n) \Rightarrow |f(w)| = n^k$ and $\mathcal{M}_{SAT} \in \mathcal{O}(n^{O(\log n)})$ its following that

$$\mathcal{M}'(w) = \mathcal{M}_{SAT}(f(w)) \in {}^2\mathcal{O}(\mathcal{M}_{SAT}(n^k)) = \mathcal{O}(n^k)^{O(\log n^k)} = \mathcal{O}(n^{O(\log n)})$$

²Not realy sure if its the proper way to write it.

Problem 3

claim. if P = NP, there exists a polynomial-time TM, that given a 3CNF formula ψ , outputs a satisfying assignment for ψ or indicates one does not exists.

Proof. first notice that if P = NP then $NP \subseteq P$, since $3CNF \in NP$ then $3CNF \in P$. Its following that exist polynomial-time TM \mathcal{M}_{3CNF} that decide 3CNF. Now let us define TM \mathcal{M}' that given a formula $\psi = \alpha(x_1, x_2 \dots x_N)$ work such that:

```
Algorithm 3 \mathcal{M}' on input \psi.
   check if \psi is valid 3CNF formula, otherwise Reject
   Simulate \mathcal{M}_{3CNF}\langle\psi\rangle and Reject if \mathcal{M}_{3CNF}\langle\psi\rangle Reject
   \alpha(x_1, x_2 \dots x_N) \leftarrow \psi
                                                                                    \triangleright \alpha represent the logic relation w.r.t \psi
   y_i \leftarrow 0
                 1 \le j \le N
   i \leftarrow 1
   while i \leq N do
         Simulate \mathcal{M}_{3CNF}\langle \alpha(y_1, y_2 \dots y_{i-1}, T, x_{i+1} \dots x_N) \rangle
         if \mathcal{M}_{3CNF} Accept then
              y_i \leftarrow T
        else
                                                                                                                        \triangleright \mathcal{M}_{3CNF} reject
              y_i \leftarrow F
        end if
         \alpha(x_i) \leftarrow y_i
   end while
   output y_i \dots y_N
```

If ψ does not have an boolean satisfy assignment then \mathcal{M}' indicate that at step 2. The correctness of \mathcal{M}' following from the "greedy" posses, i.e before any iteration α can be satisfied. Hence by assign each time one of the veritable to T, we check if \mathcal{M}_{3CNF} accept. if its accept the assignment its satisfied, and if its reject then the value F is the valid assignment. \mathcal{M}' run $N+1\times\mathcal{M}_{3CNF}$ that is poly-time TM that output a satisfying assignment for ψ or indicates one does not exists.

Problem 4

We say that a polynomial reduction f is a shrinking reduction if there exists n_0 such that for every $x \in \Sigma^*$ such that $n_0 \leq x, |f(x)| \leq |x| - 1$. Assuming $P \neq NP$

(a) For every two nontrivial languages $A, B \in P$ there exists a *shrinking reduction* from A to B. **Prove**

Proof. using Q2(a) between any non trivial $A, B \in P$ exists mapping reduction. Since both non trivial, then exists some $b \in B, \bar{b} \notin B$. Consider f s.t

$$f(w) = \begin{cases} b & \text{if } w \in A \\ \overline{b} & \text{if } w \notin A \end{cases}$$

Its immediate that $f(w) \in B \Leftrightarrow f(w) = b \Leftrightarrow w \in A$. and f define valid polyreduction. Let us define $n_0 = \max\{|\bar{b}|, |b|\} + 1$, we can notice that f define shrinking reduction from A to B since

$$x \in \Sigma^* \text{ s.t } n_0 \le |x| \qquad |f(x)| \le \max\{|\overline{b}|, |b|\} \le n_0 - 1 \le |x| - 1$$

For every two nontrivial languages $A, B \in NPC$ there exists a shrinking reduction (b) from A to B.

Disprove

Proof. let A be any non trivial language s.t $A \in NPC$. By consider the following claim is true, W.L.O.G we can choose A = B. then exist shrinking-reduction f with some n_0 such that $A \leq_P A$. First notice that there is only finite many w s.t $|w| < n_0$. We can encode them all correct answers to an algorithm \mathcal{A} . For given $x \in \Sigma^*$ if $|x| < n_0$ then its encoded already to \mathcal{A} . Since f(x) < |x|, when $|x| \geq n_0$ we can apply finite time of ff...(x) until we achieve some $|w| < n_0$. All can done in poly-time since f is poly-reduction. Hence \mathcal{A} decide any non trivial $A \in NPC$ in polynomial time, its following that P = NP, Contradiction.

Problem 5

The following languages are NPC:

(a)

 $EXACT3SAT = \{ \varphi \in 3SAT : \text{ every clause of } \varphi \text{ has exactly 3 distinct variables} \}$

The verifier for SAT is valid poly-time verifier for EX-3SAT $\in NP$. We can reduce 3SAT \leq_P EX-3SAT. Given instant of SAT $\psi = C_1 \wedge C_2 \dots C_n$ for any clause C_i , define f work as follows

• If $C = \emptyset$ i.e ψ have empty clause then it is unsatisfiable. then f return any possible combination that can generate using 3 distinct variables i.e 2^3 clauses of 3EX-SAT

$$f(\emptyset) = (x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z) \land (\neg x \lor \neg y \lor \neg z)$$

$$\emptyset \equiv f(\emptyset)$$

• C = (x) when C have just one literal. Let us define f such that

$$f((x)) = (x \lor y \lor z) \land (x \lor \neg y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor \neg z)$$

$$(x) \equiv f(x)$$

• $C = (x \lor y)$ when C have just 2 literal. Let us define f such that

$$f((x \lor y)) = (x \lor y \lor z) \land (x \lor y \lor \neg z)$$

$$(x \lor y) \equiv f((x \lor y))$$

• $C = (x \lor y \lor z)$ then f(C) = C

Hence let $f'(\psi) = f'(C_1 \wedge C_2 \dots C_n) = f(C_1) \wedge f(C_2) \dots f(C_n)$ define poly-time reduction from 3SAT to EX-3SAT. Following that EX-3SAT $\in NPC$

(b)

 $L_2 = \{\langle M, 1^n \rangle : M \text{ is a TM and there exists a string that M accepts in n steps} \}$

Proof. First consider some $w = \langle M, 1^n \rangle$ we can verify that $w \in L_2$, by simulate M on any input size n that is³ $n^{|\Sigma^*|} \in \mathcal{O}(n)$, and in total $\mathcal{O}(n^{|\Sigma^*|}|M|^3n\log n) \Rightarrow L_2 \in NP$ Let L be any $L \in NP$, and V_L denote its polynomial verifier, and assume its runtime is p(|x|). Any such L can reduce $L \leq_P L_2$ as follows

$$x \in L \Leftrightarrow \exists c \quad \text{s.t.} (x,c) \in V_L \Leftrightarrow f(x) = \langle V_L, 1^{p(|x|)} \rangle \in L_2$$

The correctness followed by the verifier definition, and f define computable polyreduction from any $L \in NP$, Hence $L_2 \in NPC$

³I assumed a finite alphabet