66.99 Trabajo Profesional de Ingeniería Electrónica Red de sensores ZigBee

Hector Aquino Filho, Juan P. D'Ambra, Matias Stahl

Universidad de Buenos Aires - Facultad de Ingeniería

Abril, 2012

Universidad de Buenos Aires Facultad de Ingeniería

Planteamiento del problema

Resolver el consumo energético en los Data Center

Entrevistas

Administrador de la Red de Telecomunicaciones

Administrador del Área de Telecomunicaciones

Gestión de Procesos y Operaciones DO Gerencia Regional de Tecnología y Operaciones

Entrevistas

SUPERVIELLE

BANCO

Administrador de la Red de Telecomunicaciones Administrador del Área de Telecomunicaciones

Gestión de Procesos y Operaciones DC Gerencia Regional de Tecnología y Operaciones

Entrevistas

Administrador de la Red de Telecomunicaciones Administrador del Área de Telecomunicaciones Gestión de Procesos y Operaciones DC Gerencia Regional de Tecnología y Operaciones

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura.
- No poder justificar cuando invertir en equipos de refrigeración.

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura.
- No poder justificar cuando invertir en equipos de refrigeración.

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura
- No poder justificar cuando invertir en equipos de refrigeración.

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura
- No poder justificar cuando invertir en equipos de refrigeración.

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura.
- No poder justificar cuando invertir en equipos de refrigeración.

- Disponibilidad crítica de equipos.
- Refrigeración constante.
- Alto consumo energético.
- Aumento del gasto económico.
- Desconocimiento del nivel de la temperatura.
- No poder justificar cuando invertir en equipos de refrigeración.

- Visualizar la performance de la refrigeración.
- Los requerimientos de humidificación.
- Identificar hotspots.
- Predicción preventiva de mantención.
- Cálculo del uso efectivo de la potencia en tiempo real.

- Visualizar la performance de la refrigeración.
- Los requerimientos de humidificación.
- Identificar hotspots.
- Predicción preventiva de mantención.
- Cálculo del uso efectivo de la potencia en tiempo real.

- Visualizar la performance de la refrigeración.
- Los requerimientos de humidificación.
- Identificar hotspots.
- Predicción preventiva de mantención
- Cálculo del uso efectivo de la potencia en tiempo real.

- Visualizar la performance de la refrigeración.
- Los requerimientos de humidificación.
- Identificar hotspots.
- Predicción preventiva de mantención.
- Cálculo del uso efectivo de la potencia en tiempo real.

- Visualizar la performance de la refrigeración.
- Los requerimientos de humidificación.
- Identificar hotspots.
- Predicción preventiva de mantención.
- Cálculo del uso efectivo de la potencia en tiempo real.

- 1. M Hydeman, Wireless sensors improve data center energy efficiency, SynapSense Corporation, **37** 4205-4219 (2010)
- 2. <u>Jie Liu</u>, Feng Zhao, Jeff O'Reilly, Amaya Souarez, Michael Manos, Chieh-Jan Mike Liang, and Andreas Terzis *Project genome: Wireless sensor network for data center cooling* Microsoft Research and Microsoft Global Foundation Service, (2011)
- 3. F. Pianegiani, <u>S. Sasidharan</u> and D. Macii, *A protocol performance comparison in modular wsns for data center server monitoring* Industrial Embedded Systems (SIES), International Symposium, pages 213–216 (2010)
- 4. Pedro José Marron and <u>Daniel Minder</u>, *Embedded WiSeNts Research Roadmap* PhD thesis, Universität Stuttgart (2006)

- 1. M Hydeman, Wireless sensors improve data center energy efficiency, SynapSense Corporation, **37** 4205-4219 (2010)
- Jie Liu, Feng Zhao, Jeff O'Reilly, Amaya Souarez, Michael Manos, Chieh-Jan Mike Liang, and Andreas Terzis Project genome: Wireless sensor network for data center cooling Microsoft Research and Microsoft Global Foundation Service, (2011)
- 3. F. Pianegiani, <u>S. Sasidharan</u> and D. Macii, *A protocol performance comparison in modular wsns for data center server monitoring* Industrial Embedded Systems (SIES), International Symposium, pages 213–216 (2010)
- 4. Pedro José Marron and <u>Daniel Minder</u>, *Embedded WiSeNts Research Roadmap* PhD thesis, Universität Stuttgart (2006)

- 1. M Hydeman, Wireless sensors improve data center energy efficiency, SynapSense Corporation, **37** 4205-4219 (2010)
- Jie Liu, Feng Zhao, Jeff O'Reilly, Amaya Souarez, Michael Manos, Chieh-Jan Mike Liang, and Andreas Terzis Project genome: Wireless sensor network for data center cooling Microsoft Research and Microsoft Global Foundation Service, (2011)
- 3. F. Pianegiani, <u>S. Sasidharan</u> and D. Macii, *A protocol performance comparison in modular wsns for data center server monitoring* Industrial Embedded Systems (SIES), International Symposium, pages 213–216 (2010)
- 4. Pedro José Marron and <u>Daniel Minder</u>, *Embedded WiSeNts Research Roadmap* PhD thesis, Universität Stuttgart (2006)

- M Hydeman, Wireless sensors improve data center energy efficiency, SynapSense Corporation, **37** 4205-4219 (2010)
- Jie Liu. Feng Zhao, Jeff O'Reilly, Amaya Souarez, Michael Manos, Chieh-Jan Mike Liang, and Andreas Terzis *Project genome: Wireless* sensor network for data center cooling Microsoft Research and Microsoft Global Foundation Service, (2011)
- 3. F. Pianegiani, S. Sasidharan and D. Macii, A protocol performance comparison in modular wsns for data center server monitoring Industrial Embedded Systems (SIES), International Symposium, pages 213-216 (2010)
- 4. Pedro José Marron and Daniel Minder, Embedded WiSeNts Research Roadmap PhD thesis, Universität Stuttgart (2006)

- 1. M Hydeman, Wireless sensors improve data center energy efficiency, SynapSense Corporation, **37** 4205-4219 (2010)
- Jie Liu, Feng Zhao, Jeff O'Reilly, Amaya Souarez, Michael Manos, Chieh-Jan Mike Liang, and Andreas Terzis Project genome: Wireless sensor network for data center cooling Microsoft Research and Microsoft Global Foundation Service, (2011)
- 3. F. Pianegiani, <u>S. Sasidharan</u> and D. Macii, *A protocol performance comparison in modular wsns for data center server monitoring* Industrial Embedded Systems (SIES), International Symposium, pages 213–216 (2010)
- 4. Pedro José Marron and <u>Daniel Minder</u>, *Embedded WiSeNts Research Roadmap* PhD thesis, Universität Stuttgart (2006)

Inalámbrico.

No invasivo.

Permite el monitoreo de un área de 1500 m2. Funcionamiento automático.

Permite personalizar la medición, cambiando el tipo de sensor o agregando uno nuevo.

Inalámbrico.

No invasivo.

Permite el monitoreo de un área de 1500 m2 Funcionamiento automático.

Permite personalizar la medición, cambiando el tipo de sensor o agregando uno nuevo.

Inalámbrico.

No invasivo.

Permite el monitoreo de un área de 1500 m2.

Funcionamiento automático

Permite personalizar la medición, cambiando el tipo de sensor o agregando uno nuevo.

Inalámbrico.

No invasivo.

Permite el monitoreo de un área de 1500 m2. Funcionamiento automático.

Permite personalizar la medición, cambiando el tipo de sensor o agregando uno nuevo.

Inalámbrico.

No invasivo.

Permite el monitoreo de un área de 1500 m2. Funcionamiento automático.

Permite personalizar la medición, cambiando el tipo de sensor o agregando uno nuevo.

Esquema Básico

Tareas

- Realizar una o más mediciones de la zona
- Comunicarse con el nodo central de la zona

Esquema Básico

Tareas

- Realizar una o más mediciones de la zona.
- Comunicarse con el nodo central de la zona.

Esquema Básico

Tareas

- Realizar una o más mediciones de la zona.
- Comunicarse con el nodo central de la zona.

Casa de Calidad

						Especificacion																				
						Especificacion	ies															,				
	Dirección de la Mejora	🗓	1								U	1	2													
	ceaucrimientos del Cliente	Duración Batería	Sensor de Temperatura	Sensor de Humedad	Sensor de Intensidad Lumínica	Sersor de Humol PG/CO	Sensor de Movimiento	Protocolo de RF	Protocolo de Conexión PC	Software PC	Bits ADC	Período de Muestreo ADC	Peso relativo de los RQ del Cliente	Nuestro Producto	MicroDAC HOBO Indoor ZW	MilleniaNet MeshScape GO	Metas Planeadas	Mejora	Punto de venta	Peso Total	Peso Total %	1				
н	Gran Autonomía	9						9					5	3	3	2	3	1,0	1,5	7.5	17%	1	2	_	4	5
	Pequeño Tamaño	1	1	1	1	1	1	9		\dashv	\dashv		3	4	3	3	4	1,0	1,1	3.3	8%				•	-
	Baio Costo	3	+	1	1	1	1	3		\dashv	\dashv		4	5	3	2	4	0.8	1,1	4,2	10%			••	٧,	_
Maria	reo Confiable de Temperatura.	3	<u>'</u>	-	- '	'	'	3		\rightarrow	4		4	3	3	2	4	0,0	1,3	4,2	10%		٠,	•	-/	-
	reo Connable de Temperatura, edad, Nivel de Luz, Niveles de Gases y Movimiento		9	9	9	9	9				9	9	5	4	4	4	5	1,3	1,5	9,4	22%				M	
-	Altamente Parametrizable							9	3	9			3	5	4	5	5	1,0	1,1	3,3	8%				•	•
	Configurable por PC								3	9			3	4	5	5	5	1,3	1,4	5,3	12%				•	••
	Fácilmente Escalable							9					4	3	4	4	4	1,3	1,3	6,9	16%			0	1	
-	Conexión Simple con PC								9				2	3	4	4	4	1,3	1,3	3,5	8%			9	•	
Pes	o total Prioridades Técnicas	83	92	92	92	92	92	172	57	77	84	84	1017					Total	100%	43,3	1000					
Peso	Relativo Prioridades Técnicas	8%	9%	9%	9%	9%	9%	17%	6%	8%	8%	8%	100%					Total	100%	43,3	100%					
arking	Nuestro Producto	1año	0°C a 50°C ±2°C	20% a 90% HR±5%	10 km a 1000 km	200ppm-5000ppm LPG and propane 300ppm-5000ppm butane 5000ppm-20000ppm methane 300ppm-5000ppm H2 100ppm-2000ppm Alcohol	2 m detection range 140" detection angle	Zigbee	R5232	sı	8	Ajustable														
Benchmarking	MicroDAC HOBO Indoor ZW	12 hs	10 C a 50 C	20% a 90%	NO	NO	ND	Zigbee Pro	USB	sı	8	1min	100%													
	MilleniaNet MeshScape GO	Ohe	10 C ± 55 C	10% a 90%	NO	ND	ND	Zigbee Pro	RS-232/RS-485	sı	8	20 ms	Total													
	Metas		0 C ± 50 C	20% ± 90% HR ± 5%	10 km a 1000 km	200ppm-5000ppm LPG and propane 300ppm-5000ppm butane 5000ppm-20000ppm methane 300ppm-5000ppm H2 100ppm-2000ppm Alcohol	2m detection range 140° detection angle	Zigbee Pro	usa	sı	8	Ajustable														

Especificaciones Funcionales y Diseño

- Gran Autonomía.
- Pequeño Tamaño.
- Bajo Costo.
- Monitoreo de Variables del Ambiente.
- Altamente Parametrizable.
- Configurable por PC.
- Fácilmente Escalable.
- Conexión Simple Con PC.

Especificaciones de Hardware

- Duración de Batería.
- Sensor de Temperatura.
- Sensor De Humedad.
- Sensor de Intensidad Lumínica.
- Sensor de Humo/LPG/CO.
- Sensor de Movimiento.
- Protocolo RF.
- Protocolo de Conexión PC.
- Software PC.
- Varios bits ADC.
- Rápido Período de Muestreo ADC.

Especificaciones de Software

- Instalación simple.
- Tener interfaz gráfica y no de consola.
- Múltiplataforma.
- Disponibilidad de idiomas.
- Graficar el estado de los sensores.
- Envío de alertas.
- Guardar estado de los sensores a un archivo.
- Permitir el cambio de unidad de la magnitud sensada.
- Utilice pocos recursos de la PC.

Alternativas de diseño

■ Elección de ZigBee.

Jin-Shyan Lee, Yu-Wei Su and Chung-Chou Shen, A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pages 46–51, (nov. 2007)

Standard	Bluetooth	UWB	ZigBee	Wi-Fi			
IEEE spec.	802.15.1	802.15.3a *	802.15.4	802.11a/b/g			
Frequency band	2.4 GHz	3.1-10.6 GHz	868/915 MHz; 2.4 GHz	2.4 GHz; 5 GHz			
Max signal rate	1 Mb/s	110 Mb/s	250 Kb/s	54 Mb/s			
Nominal range	10 m	10 m	10 - 100 m	100 m			
Nominal TX power	0 - 10 dBm	-41.3 dBm/MHz	(-25) - 0 dBm	15 - 20 dBm			
Number of RF channels	79	(1-15)	1/10; 16	14 (2.4 GHz)			
Channel bandwidth	1 MHz	500 MHz - 7.5 GHz	0.3/0.6 MHz; 2 MHz	22 MHz			
Modulation type	GFSK	BPSK, QPSK	BPSK (+ ASK), O-QPSK	BPSK, QPSK COFDM, CCK, M-QAM			
Spreading	FHSS	DS-UWB, MB-OFDM	DSSS	DSSS, CCK, OFDM			
Coexistence mechanism	Adaptive freq. hopping	Adaptive freq. hopping	Dynamic freq. selection	Dynamic freq. selection, transmit power control (802.11h)			
Basic cell	Piconet	Piconet	Star	BSS			
Extension of the basic cell	Scatternet	Peer-to-peer	Cluster tree, Mesh	ESS			
Max number of cell nodes	8	8	> 65000	2007			
Encryption	E0 stream cipher	AES block cipher (CTR, counter mode)	AES block cipher (CTR, counter mode)	RC4 stream cipher (WEP), AES block cipher			
Authentication	Shared secret	CBC-MAC (CCM)	CBC-MAC (ext. of CCM)	WPA2 (802.11i)			
Data protection	16-bit CRC	32-bit CRC	16-bit CRC	32-bit CRC			

Alternativas de diseño

■ Ventajas de ZigBee.

■ Elección del Microcontrolador.

Fabricante	Módulo	MCU	RAM	Flash	TX	RX	Interface	Opciones de Firmware	Precio
Atmel	ATZB-24-B0	8-bit ATmega 1281v	8 kB	128 kB	18 mA	19 mA	UART, USART, SPI, I²C, JTAG	ZigBee PRO, BitCloud stack, Wireless MCU Software, SerialNet, OpenMAC	35
Nivis, LLC.	VersaNode 210	32-bit ARM7	96 kB	128 kB	60 mA	21 mA	UART, SPI	Nivis ISA100.11a	90
Crossbow Technology	XM2110CA	8-bit ATmega1281	8 kB	128 kB	17 mA	16 mA	UART, SPI, I ² C	ZigBee stack, Moteworks platform	75
MeshNetics	MNZB-24-B0	8-bit ATmega 1281v	8 kB	128 kB	18 mA	19 mA	UART, USART, SPI, I ² C, JTAG	BitCloud stack, SerialNet, OpenMAC	40
Digi International Inc.	Series 2 XBee ZB	16-bit 12 MHz RISC	5 kB	128 kB	35 mA	38 mA	UART	Ember ZNet	32

- Elección de los Sensores.
 - Sensor de Temperatura
 - Sensor de Humedad
 - Sensor de Gas

Model	Range	Accuracy	Linearity	Cost
LM35	-55 °C to +150 °C	± 0.5 °C	± 0.02 %	6
HEL-776	-200 °C to +260 °C	± 0.8 °C	± 0.1 %	18
DTH11	0 °C to +50 °C	±2°C	± 0.8 %	0.65

- Elección de los Sensores.
 - Sensor de Temperatura
 - Sensor de Humedad
 - Sensor de Gas

Model	Range	Accuracy	Response Time	Stability	Cost
HIH-4000A	0 to 100%	± 3.5%	15 s	± 0.2% in 1 Year	7.5
HCT01	0 to 100%	± 2%	≤6s	± 0.1% in 1 Year	15
DTH11	20% to 90%	± 4%	10 S	±1 in 1 year	0.65

- Elección de los Sensores.
 - Sensor de Temperatura
 - Sensor de Humedad
 - Sensor de Gas

Model	Sensor resistance	Change Ratio of	Optimal detection	Power	Cost	
Model	SCHSOI TESISTANCE	Sensor Resistance	concentration	consumption	-	
TGS-203	1kΩ - 15kΩ	1.50 - 0.73	50 ppm - 1000 ppm	750 mW	15	
MQ-2	3ΚΩ - 30ΚΩ	≤ 0.6	200 ppm - 5000 ppm	less than 800mw	2.5	
TGS-813	5kΩ - 15kΩ	0.60 ± 0.05	500 ppm - 3000 ppm	835mW (typical)	18	

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- 1. Definir las metas generales.
- 2. Trazar un plan de tareas.
- 3. Desarrollar en detalle los alcances.
- 4. Asignar objetivos para cada actividad.
- 5. Relacionar las actividades mediante una red lógica.
- 6. Establecer la duración y demoras de cada actividad.
- 7. Verificar la consistencia de la red.
- 8. Determinar la necesidad de recursos para cada actividad.

- Estudio de mercado.
- Análisis de la necesidad.
- 3. Búsqueda de clientes potenciales.
- 4. Búsqueda productos similares.
- 5. Búsqueda de patentes.
- 6. Análisis del producto propuesto.
- 7. Búsqueda de de requerimientos del usuario.

20 / 60

- 8. Búsqueda de de requerimientos técnicos.
- 9. Armado de casa de calidad.
- 10. Selección de componentes.
- 11. Estudio de costos.
- 12. Pedido de componentes.
- 13. Diseño de hardware.
- 14. Diseño mecánica Presentación.
- 15. Diseño de Software.

21 / 60

- 16. Construcción del PCB.
- 17. Ensamble final.
- 18. Verificación con especificaciones técnicas.
- 19. Certificación.
- 20. Validación por el cliente.
- 21. Realización de cambios necesarios.
- 22. Realización del manual.
- 23. Prueba final.
- 24. Salida al mercado.

El siguiente paso corresponde a estimar los tiempos y secuencia de todas las tarea:

- Tiempo optimista: t_O
- \blacksquare Tiempo pesimista: t_P
- lacksquare Tiempo más probable t_M
- ullet μ : Valor medio de la distribución de probabilidad del tiempo de tarea.
- ullet σ : Varianza de la distribución de probabilidad del tiempo de tarea.

$$\mu = \frac{t_O + 4t_M + t_P}{6}$$

$$\sigma = \frac{t_P - t_O}{6}$$

	Task Name	Duration	Optimistic Dur.	Expected Dur.	Pessimistic Dur.
1	☐ Estudio de Mercado	3,67 days	2 days	4 days	4 days
2	Análisis de Necesidad	1,83 days	1 day	2 days	2 days
3	Búsqueda de Clientes Potenciales	1,83 days	1 day	2 days	2 days
4	Búsqueda de Productos Similares	1,17 days	1 day	1 day	2 days
5	Búsqueda de Patentes	1,17 days	1 day	1 day	2 days
6	☐ Estudio de la Solución	7,33 days	4 days	7 days	12 days
7	Análisis del Producto Propuesto	2 days	1 day	2 days	3 days
8	Búsqueda de Requerimientos del Usuario	2 days	1 day	2 days	3 days
9	Búsqueda de Requerimientos Técnicos	2,17 days	1 day	2 days	4 days
10	Armado de Casa de Calidad	1,17 days	1 day	1 day	2 days
11	☐ Selección de Componentes	3 days	1 day	3 days	5 days
12	Sensores	3 days	1 day	3 days	5 days
13	Conversor Serie-USB	3 days	1 day	3 days	5 days
14	Módulo Zigbee	3 days	1 day	3 days	5 days
15	Pedido de Componentes	32,5 days	15 days	30 days	60 days
16	Estudio de Costos	4,83 days	2 days	5 days	7 days

17	☐ Diseño de Dispositivo	58 days	28 days	56 days	96 days
18	□ Diseño de Hardware	11,67 days	5 days	12 days	17 days
19	Diseño de Conexión PC-Módulo	5 days	3 days	5 days	7 days
20	Diseño de Conexión Sensores-Módulo	6,83 days	3 days	7 days	10 days
21	Armado de Esquemático Final	4,83 days	2 days	5 days	7 days
22	☐ Diseño de Mecánica - Presentación	6 days	5 days	6 days	7 days
23	Análisis Regulaciones	5 days	3 days	5 days	7 days
24	Diseño 3D de la carcasa	6 days	5 days	6 days	7 days
25	☐ Arquitectura de Software	42,5 days	20 days	40 days	75 days
26	Diseño de Algoritmo Principal	2 days	1 day	2 days	3 days
27	Interfaz de Usuario	14,5 days	7 days	15 days	20 days
28	Diseño de Graficadores	20 days	10 days	20 days	30 days
29	Diseño de Persistencia	3,17 days	2 days	3 days	5 days
30	Algoritmos para Análisis de Medicione	3,17 days	1 day	3 days	6 days
31	Comunicación PC-Módulo	5 days	3 days	5 days	7 days

32	☐ Realización de Prototipo	38 days	26 days	37 days	54 days
33	Construcción del PCB	30,83 days	20 days	30 days	45 days
34	Contruccción Mecánica	30,83 days	20 days	30 days	45 days
35	Ensamble Final	1,17 days	1 day	1 day	2 days
36	Verificación Con Especificaciones Técnicas	7,17 days	5 days	7 days	10 days
37	Certificación	21,67 days	20 days	20 days	30 days
38	Validación por el Cliente	10 days	5 days	10 days	15 days
39	Realizar Cambios de Ser Necesario	15 days	10 days	15 days	20 days
40	Realización del Manual	3,17 days	2 days	3 days	5 days
41	Prueba Final	9,5 days	5 days	10 days	12 days
42	Salida al Mercado - Primera Producción	1 day	1 day	1 day	1 day

Se realizaron 50000 simulaciones diferentes de las duraciones de cada tarea viendo en cada caso cuál resultaba ser el crítico.

Los caminos con más ocurrencias son el 100, 103 y 106 respectivamente.

- 2 3 7 8 9 10 12 15 16 20 21 24 34 35 36 37 39 41 42
- 2 3 7 8 9 10 13 15 16 20 21 24 34 35 36 37 39 41 42
- 2 3 7 8 9 10 14 15 16 20 21 24 34 35 36 37 39 41 42

La media del camino crítico 106 es 155,37 días y su desvío 9,21 días.

■ El tiempo de duración del proyecto será menor o igual a 173,79 días con una confianza del 95%, según análisis de Monte Carlo.

La media del camino crítico 106 es 155,37 días y su desvío 9,21 días.

■ El tiempo de duración del proyecto será menor o igual a 173,79 días con una confianza del 95%, según análisis de Monte Carlo.

Gantt

- Estudio Privado Price and Cooke
- Estudio OnWorld
- Enfoque en Buenos Aires

- Estudio Privado Price and Cooke
- Estudio OnWorld
- Enfoque en Buenos Aires

Cuentan con Data Centers

- 52% Empresas medianas
- 42% Empreses 50-100 empleados

- Estudio Privado Price and Cooke
- Estudio OnWorld

- 29% Utilizan WSN solutions - 40% consideran fuertemente utilizarlas

Cuentan con Data Centers

- 52% Empresas medianas
- 42% Empreses 50-100 empleados

170.000

Empresas en total

- Estudio Privado Price and Cooke
- Estudio OnWorld
- Enfoque en Buenos Aires

- 29% Utilizan WSN solutions
- 40% consideran fuertemente utilizarlas

Cuentan con Data Centers

- 52% Empresas medianas
- 42% Empreses 50-100 empleados

- Según el observatorio PyMe de la UIA hay inscriptas formalmente en AFIP, unas 559.000 empresas
 - De ellas solo 5.300 son grandes y el resto, unas 554.000, son PyMes.
 - En la provincia de Buenos Aires existen unas 170.000 empresas o emprendimientos económicos
 - Representan el 30,28% del total nacional.
 - 158.000 empresas con menos de 20 empleados.
 - 9.500 empresas con entre 20 y 90 empleados.
 - 2.500 empresas tienen entre 90 y 1.000 empleados.
 - 80 empresas tienen más de 1.000 empleados

- Según el observatorio PyMe de la UIA hay inscriptas formalmente en AFIP, unas 559.000 empresas
 - De ellas solo 5.300 son grandes y el resto, unas 554.000, son PyMes.
 - En la provincia de Buenos Aires existen unas 170.000 empresas o emprendimientos económicos
 - Representan el 30,28% del total nacional.
 - 158.000 empresas con menos de 20 empleados.
 - 9.500 empresas con entre 20 y 90 empleados.
 - 2.500 empresas tienen entre 90 y 1.000 empleados.
 - 80 empresas tienen más de 1.000 empleados

- Según el observatorio PyMe de la UIA hay inscriptas formalmente en AFIP, unas 559.000 empresas
 - De ellas solo 5.300 son grandes y el resto, unas 554.000, son PyMes.
 - En la provincia de Buenos Aires existen unas 170.000 empresas o emprendimientos económicos
 - Representan el 30,28% del total nacional.
 - 158.000 empresas con menos de 20 empleados.
 - 9.500 empresas con entre 20 y 90 empleados.
 - 2.500 empresas tienen entre 90 y 1.000 empleados.
 - 80 empresas tienen más de 1.000 empleados

- Según el observatorio PyMe de la UIA hay inscriptas formalmente en AFIP, unas 559.000 empresas
 - De ellas solo 5.300 son grandes y el resto, unas 554.000, son PyMes.
 - En la provincia de Buenos Aires existen unas 170.000 empresas o emprendimientos económicos
 - Representan el 30,28% del total nacional.
 - 158.000 empresas con menos de 20 empleados.
 - 9.500 empresas con entre 20 y 90 empleados.
 - 2.500 empresas tienen entre 90 y 1.000 empleados.
 - 80 empresas tienen más de 1.000 empleados.

- Según el observatorio PyMe de la UIA hay inscriptas formalmente en AFIP, unas 559.000 empresas
 - De ellas solo 5.300 son grandes y el resto, unas 554.000, son PyMes.
 - En la provincia de Buenos Aires existen unas 170.000 empresas o emprendimientos económicos
 - Representan el 30,28% del total nacional.
 - 158.000 empresas con menos de 20 empleados.
 - 9.500 empresas con entre 20 y 90 empleados.
 - 2.500 empresas tienen entre 90 y 1.000 empleados.
 - 80 empresas tienen más de 1.000 empleados.

Marco Internacional

- Estudio de la consultora OnWorld llamado "Wireless Sensor Networks: Growing Markets, Accelerating Demand"
 - Encuesta a 147 empresas.
 - Predicciones sobre producción e ingresos en cinco mercados de redes de sensores sin cable
 - Concluye que existe en la actualidad una demanda "abrumadora" de soluciones ofrecidas por redes de sensores sin cable por parte de empresas

Competencia

- Competencia Internacional
 - Millennial Ner
 - MicroDAQ
 - Ember
 - Crossbow
- Competencia Nacional
 - Open Automation: Representación Local de Crossbown

Competencia

- Competencia Internacional
 - Millennial Net
 - MicroDAQ
 - Ember
 - Crossbow
- Competencia Nacional
 - Open Automation: Representación Local de Crossbowwa

Competencia

- Competencia Internacional
 - Millennial Net
 - MicroDAQ
 - Ember
 - Crossbow
- Competencia Nacional
 - Open Automation: Representación Local de Crossbow

Competencia

- Competencia Internacional
 - Millennial Net
 - MicroDAQ
 - Ember
 - Crossbow
- Competencia Nacional
 - Open Automation: Representación Local de Crossbow

Competencia

- Competencia Internacional
 - Millennial Net
 - MicroDAQ
 - Ember
 - Crossbow
- Competencia Nacional
 - Open Automation: Representación Local de Crossbow

- Equipo de Trabajo Sueldos
 - Ingeniero / hora = \$7020 / 160 hs = \$ 43.9 / hs
 - \blacksquare Programador / hora = \$6000 / 160 hs = \$37.5 / hs
 - Técnico / hora = 3520 / 160 hs = 22 / hs

Costo Primario

Tipo de Gasto		Especificación	Monto
	Material Directo	Módulo Zigbee	\$ 170
		Sensores	\$ 100
		Conversor Serie-USB	\$ 24
		Componentes Varios	\$50
		Carcasa	\$50
Costo Primario		MAX3232	\$ 15
Costo Primario		Sub Total	\$ 409
	Trabajo Directo - Salarios Durante 6 meses		\$ 165,400
	Mantenimiento		\$ 2,000
	Suministros		\$5,000
	Servicios(Luz, agua, etc)		\$5,000
	Sub Total		\$ 177,400
Total - Costo Primario			\$ 177,809

■ Tenemos un costo primario total de \$ 177.809

Costo Primario

Tipo de Gasto		Especificación	Monto
	Material Directo	Módulo Zigbee	\$170
		Sensores	\$ 100
		Conversor Serie-USB	\$ 24
		Componentes Varios	\$50
		Carcasa	\$50
Costo Primario		MAX3232	\$ 15
Costo Primario		Sub Total	\$ 409
[Trabajo Directo - Salarios Durante 6 meses		\$ 165,400
	Mantenimiento		\$ 2,000
	Suministros		\$5,000
	Servicios(Luz, agua, etc)		\$5,000
	Sub Total		\$ 177,400
Total - Costo Primario			\$ 177,809

■ Tenemos un costo primario total de \$ 177.809

Costo de Fábrica

Tipo de Gasto		Especificación	Monto
Costo De Fábrica	Costo de Producción Indirectos	Impuestos	\$ 15,000
		Seguros	\$ 10,000
		Sub Total	\$ 25,000
	Costo Primario		\$ 177,809
Total - Costo de Fábrica			\$ 202,809

■ Tenemos un costo de fábrica total de \$ 202.809

Costo de Fábrica

Tipo de Gasto		Especificación	Monto
Costo De Fábrica	Costo de Producción Indirectos	Impuestos	\$ 15,000
		Seguros	\$ 10,000
		Sub Total	\$ 25,000
	Costo Primario		\$ 177,809
Total - Costo de Fábrica			\$ 202,809

■ Tenemos un costo de fábrica total de \$ 202.809

Venta a través de Internet.

Estrategias de Marketing. Reunión sala del cliente. Producción afuera.

Venta a través de Internet. Estrategias de Marketing.

Reunión sala del cliente. Producción afuera.

Venta a través de Internet. Estrategias de Marketing. Reunión sala del cliente.

Factibilidad Factibilidad Económica 37 / 60

Venta a través de Internet. Estrategias de Marketing. Reunión sala del cliente. Producción afuera.

Fábrica en China.

- 200 placas con componentes 7 días.
- 80 dólares en total.
- Fábrica en el país.
 - 200 placas sin componentes 3 semanas.
 - Casi 170 dólares.

- Fábrica en China.
 - 200 placas con componentes 7 días.
 - 80 dólares en total.
- Fábrica en el país.
 - 200 placas sin componentes 3 semanas.
 - Casi 170 dólares.

- Fábrica en China.
 - 200 placas con componentes 7 días.
 - 80 dólares en total.
- Fábrica en el país.
 - 200 placas sin componentes 3 semanas.
 - Casi 170 dólares

- Fábrica en China.
 - 200 placas con componentes 7 días.
 - 80 dólares en total.
- Fábrica en el país.
 - 200 placas sin componentes 3 semanas.
 - Casi 170 dólares.

Costo de Producción

Tipo de Gasto		Especificación	Monto
	Gastos Generales Fijos	Investigación y Desarrollo	\$ 6,000
		Contaduría y Auditoría	\$4,000
		Asesoramiento Legal	\$ 6,000
Costo De Producción		Relaciones Públicas(tipo RRHH)	\$ 6,000
		Costo de Dirección y Administración	\$4,000
		Alquileres	\$ 35,000
		Costos de Ventas y Distribución	\$ 9,000
		Sub Total	\$ 107,628
	Costo De Fábrica		\$ 202,809
Total - Costo de Producción			\$ 310,437

■ Tenemos un costo de producción total de \$ 310.437

Costo de Producción

Tipo de Gasto		Especificación	Monto
	Gastos Generales Fijos	Investigación y Desarrollo	\$ 6,000
		Contaduría y Auditoría	\$4,000
		Asesoramiento Legal	\$ 6,000
		Relaciones Públicas(tipo RRHH)	\$ 6,000
Costo De		Costo de Dirección y Administración	\$4,000
Producción		Alquileres	\$ 35,000
		Costos de Ventas y Distribución	\$ 9,000
		Sub Total	\$ 107,628
	Costo De Fábrica		\$ 202,809
Total - Costo de Producción			\$ 310,437

■ Tenemos un costo de producción total de \$ 310.437

■ Precio de venta Kit Básico (1 coordinador y 2 nodos): \$1480

■ Flujo de Caja

Descripción	Año 0	Año 1	Año 2	Año 3	Año 4
Estado Inicial	\$-310,028.00	\$ 0.00	\$1,036,990.21	\$1,973,488.58	\$ 2,366,903.42
Productos Vendidos	580	1260	1166	658	436
Entrada por Ventas de Productos	\$ 857,276	\$1,862,358	\$1,723,420	\$ 972,565	\$ 644,435
Gastos Fijos	\$-310,028	\$-310,028	\$-310,028	\$-310,028	\$-310,028
Gastos Variables	\$-237,220	\$-515,340	\$ -476,894	\$-269,122	\$-178,324
Impuestos	\$-6,201	\$ -463,535	\$-418,615	\$-175,856	\$-69,769
Ganancia Real - Sin Beneficio	\$-6,200.56	\$567,255.02	\$1,304,805.60	\$ 796,708.41	\$ 574,665.93
Total	\$0	\$1,036,990	\$1,973,489	\$ 2,366,903	\$ 2,522,986

Flujo de Caja

Punto de Cobertura

Para recuperar la inversión hay que vender 580 unidades.

Punto de Cobertura

Para recuperar la inversión hay que vender 580 unidades.

■ VAN y TIR

$$VAN = \sum_{t=1}^{n} \frac{V_f t}{(1+k)^t} - I_0$$

VAN = 498.596.61

TIR = 69%

■ VAN y TIR

$$VAN = \sum_{t=1}^{n} \frac{V_f t}{(1+k)^t} - I_0$$

$$VAN = 498.596, 61$$

$$TIR = 69\%$$

■ VAN y TIR

$$VAN = \sum_{t=1}^{n} \frac{V_f t}{(1+k)^t} - I_0$$

$$VAN = 498.596, 61$$

$$TIR = 69\%$$

Otras Inversiones

- Dólar
 - Rentabilidad 42 %

Otras Inversiones

Euro

Rentabilidad 43 %

Hardware

- Diagrama en Bloques
 - Coordinador
 - Nodo

Ingeniería de Detalle 47 / 60

Hardware

- Diagrama en Bloques
 - Coordinado
 - Nodo

Ingeniería de Detalle 47 / 60

Firmware

Shared, low-level services

- Aplicación del usuario.
- Código específico del micro.
- Stack ZigBee.

Ingeniería de Detalle 48 / 60

Firmware

Shared, low-level services

- Aplicación del usuario.
- Código específico del micro.
- Stack ZigBee.

Ingeniería de Detalle 48 / 60

Firmware

Shared, low-level services

- Aplicación del usuario.
- Código específico del micro.
- Stack ZigBee.

Ingeniería de Detalle 48 / 60

Diagrama de Estados

Coordinador

Node

Ingeniería de Detalle 49 / 60

Diagrama de Estados

- Coordinador
- Nodo

Ingeniería de Detalle 49 / 60

Comunicación con la PC

- Comunicación Nodo-PC
- Comunicación Nodo-PC (fail)

Ingeniería de Detalle 50 / 60

Comunicación con la PC

- Comunicación Nodo-PC
- Comunicación PC-Nodo
- Comunicación Nodo-PC (fail)

Ingeniería de Detalle 50 / 60

Comunicación con la PC

- Comunicación Nodo-PC
- Comunicación PC-Nodo
- Comunicación Nodo-PC (fail)

Ingeniería de Detalle 50 / 60

Software PC

- Diagrama General
- Parseo de Datos
- Comunicación USB

Ingeniería de Detalle 51 / 60

Software PC

- Diagrama General
- Parseo de Datos
- Comunicación USB

Ingeniería de Detalle 51 / 60

Software PC

- Diagrama General
- Parseo de Datos
- Comunicación USB

Ingeniería de Detalle 51 / 60

Screenshots

⊗⊜ Visc	or de Red de	Sensores			
Mediciones	Opciones	Graficos			
Nodos:			Datos:	5	
2			Tempera	atura:	
3				24	°C
5			Humeda	ıd:	
				59	% RH
			Movimie	ento:	
				0	
			Luz:	0.163636	Lux
			CO:	0.0343	ppm
			Humo:	0.0910103	ppm
				0.0310091	ppm
				Actualizar Noc	los

🚫 🖨 Visor de Re	d de Sensores		
Mediciones Opcion	nes Graficos		
Idioma:	estellano 🛊		
Tiempo de Actualiza	ecion de Datos:	0 s	\$
Alarmas			
Temperatura:			
Humedad:			
Luz:		A	nfigurar Jarmas
Gases:			
Movimiento:			

Ingeniería de Detalle 52 / 60

- Esquemático Coordinador
- Esquemático Nodo

- Esquemático Coordinador
- Esquemático Nodo

Sensores

- Sensor Temperatura y Humedao
- Sensor de Luz

- Sensores
 - Sensor Temperatura y Humedad
 - Sensor de Luz

- Sensores
 - Sensor Temperatura y Humedad
 - Sensor de Luz

Diseño de los Circuitos Impresos

- PCB Coordinador
- PCB Nodo

Diseño de los Circuitos Impresos

- PCB Coordinador
- PCB Nodo

TMEF

Tiempo medio entre fallas

$$\mathsf{TMEF} \ = \frac{1}{\lambda_o}$$

- Fallas son de tipos accidentales $\lambda(t) = \lambda_o$

- $R(t) = R_1(t) \times ... \times R_N(t) = e^{-\lambda_1 t} \times ... \times e^{-\lambda_N t} = e^{-\lambda_{Total} t}$

Confiabilidad 56 / 60

TMEF

Tiempo medio entre fallas

TMEF
$$=\frac{1}{\lambda_o}$$

- Fallas son de tipos accidentales $\lambda(t) = \lambda_o$
- $\lambda_{Total} = \sum_{i} \lambda_{i}$
- λ_0 Tasa de fallas totales.
- $R(t) = R_1(t) \times ... \times R_N(t) = e^{-\lambda_1 t} \times ... \times e^{-\lambda_N t} = e^{-\lambda_{Total} t}$

Confiabilidad 56 / 60

TMEF

Tiempo medio entre fallas

$$\mathsf{TMEF} \ = \frac{1}{\lambda_o}$$

- Fallas son de tipos accidentales $\lambda(t) = \lambda_o$
- $\lambda_{Total} = \sum_{i} \lambda_{i}$
- λ_0 Tasa de fallas totales.
- $R(t) = R_1(t) \times ... \times R_N(t) = e^{-\lambda_1 t} \times ... \times e^{-\lambda_N t} = e^{-\lambda_{Total} t}$

Confiabilidad 56 / 60

Garantía

Si se considera que la tasa de fallas es constante $\lambda(t)=\lambda_o$

$$\lambda_{Total} = \sum_{i} \lambda_{i} \;\; ext{resulta que TMEF} \; = rac{1}{\lambda_{Total}}$$

TMEF = 510113 horas = 58, 2 años

$$R(T_G) = e^{\frac{T_G}{TMEF}}$$

$$0,9 = e^{\frac{T_G}{14,2}}$$

Tiempo de Garantía otorgado $T_G=4$ años

Confiabilidad 57 / 60

Mantenibilidad

- Política de reemplazo por unidad defectuosa
- Reparación y venta en condiciones de "refurbished"

Menor Garantía: 6 meses - 1 año

Confiabilidad 58 / 60

Conclusiones

- Excelencias y objetivos alcanzados
 - El stack de ZigBee permite resolver de manera sencilla el acceso al medio y comunicaciones.
 - Al utilizar componentes SMD y estar en un ambiente poco hostil obtuvimos un TMEF muy alto.
 - La interfaz de PC compatible entre los distintos sistemas operativos y multi-idiomas.
 - La modificación a topología de malla es muy sencilla.
 - La comunicación es robusta, no se ve afectada por interferencias ni degradaciones.
 - La red se puede expandir aumentando la cantidad de módulos.
 - Se asentaron las bases de documentación y código para lograr modificar la aplicación a otras necesidades.
 - Los objetivos de consumo, potencia y radio de alcance fueron alcanzados.
 - Permite ser ejecutado en teléfonos celulares con Symbian (R).
 - Cuenta con la capacidad de ejecutarse en máquinas remotas.

Conclusiones 59 / 60

¿Preguntas?

Preguntas 60 / 60