Data re-uploading for a universal quantum classifier

A. Perez-Salinas et al

weekly meeting May 30, 2023

Klassische Klassifikation

- **Problem:** Anhand von wenigen Trainingsbeispielen soll ein Algorithmus durch beliebige Eingabe von Merkmalen (\vec{x}) eine eindeutige Zuordnung in eine Menge aus möglichen Klassen $(\{y_k\}_{k=0}^K)$ treffen
- Beispiele: Spam, Tumorerkennung, Schweinsemotionen
- Vorgehen: Modellierung der Klassen über eine nichtlineare Funktion, z.B. logistische Funktion

$$h_{ec{ heta}}^{(k)}(ec{x}) = rac{1}{1 + \mathrm{e}^{-ec{ heta} \cdot ec{x}}}$$
 oder neuronale Netze

und Bewertung der Qualität über eine Kostenfunktion, meist

$$C(\vec{\theta}) = -\frac{1}{M} \sum_{m=0}^{M} \sum_{k=0}^{K} \left[y_k^{(m)} \log \left(h_{\vec{\theta}}^{(k)}(\vec{x}^{(m)}) \right) + (1 - y_k^{(m)}) \log \left(1 - h_{\vec{\theta}}^{(k)}(\vec{x}^{(m)}) \right) \right]$$

Quanten-Klassifikation

- Nachteile: Daten können nur schwer ausgelesen (QPEA) und nicht gespeichert werden (No-Cloning Theorem)
- Vorteile: Daten können sehr effizient dargestellt werden (superdense coding) und bereits wenige Qubits können hohe Komplexität erzeugen
- Idee: Nutze Qubits für Repräsentation und klassischen Computer zur Optimierung eines neuronalen Netzes

Umsetzung

- sogenannte layer gates $U(\vec{\phi}_i, \vec{x})$ encodieren zum einen Informationen über den Zustand $(\vec{x} \cong \text{Eingangsneuronen})$ und zum anderen eine nichtlineare Transformation $(\vec{\phi} \cong \text{hidden-layer})$
- Messung legt vom Schaltkreis vorhergesagte Klasse entsprechend der Eingaben fest
- ullet Anpassen der Parameter $ec{\phi}$, um Kostenfunktion

$$C(\phi) = \frac{1}{2M} \sum_{m=1}^{M} \left(\sum_{k=0}^{K} \left(|\langle \Psi_k | \Psi(\vec{\phi}) \rangle|^2 - y_c(\vec{x}_{\mu}) \right)^2 \right)$$

zu minimieren.

 zusätzliche Qubits (und deren Verschränkung) helfen die Anzahl der nötigen layer gates zu reduzieren

Resultate

- Quanten-Klassifikatoren sind qualitativ mit (vermutlich sehr einfachen) klassischen ML-Methoden vergleichbar
- wenige Qubits reichen aus, um sehr gute Ergebnisse zu erreichen
- (ein weiteres erfolgreiches quanten-klassisches Hybridverfahren)

Problem	Classical classifiers		Quantum classifier	
	NN	SVC	χ_f^2	χ^2_{wf}
Circle	0.96	0.97	0.96	0.97
3 circles	0.88	0.66	0.91	0.91
Hypersphere	0.98	0.95	0.91	0.98
Annulus	0.96	0.77	0.93	0.97
Non-Convex	0.99	0.77	0.96	0.98
Binary annulus	0.94	0.79	0.95	0.97
Sphere	0.97	0.95	0.93	0.96
Squares	0.98	0.96	0.99	0.95
Wavy Lines	0.95	0.82	0.93	0.94

Das andere Blabla

- ein einzelnes Qubit kann (vermutlich) wie ein neuronales Netz jede Funktion beschreiben (interessiert keinen)
- L-BFGS-B-Verfahren liefert bessere Ergebnisse als Gradienten-Verfahren (wundert keinen, macht für komplexe Probleme aber auch keinen Sinn, weil Approximationsverfahren für die Fisher-Metrik auch akzeptabel sind)
- Quantenalgorithmen sind gut bei krummlinigen Klassengrenzen; klassische ML Algorithmen können das nicht (Na ja...)

Implikationen für uns

- man kann auch mit wenigen Qubits sehr gute Resultate erzielen
- Quantum Brilliance behauptet diesen Algorithmus bereits sehr erfolgreich umgesetzt (ähnliche Ergebnisse wie Simulator!)
- Quanten Machine Learning erscheint als fruchtvolles Gebiet für erste Anwendungen von limitierter Hardware
- QPT oder Basiswechsel (nur $\pi/2^n$ -Pulse) zum Auslesen des Überlapps?
- entangling mit CZ-gate!!!
- Klassifizierung von Bildern: wie genau können Pulse generiert werden und Zustände ausgelesen werden?