LEC-04	WEAK DIFFEREN TIABILITY
Pef:	$N \subseteq \mathbb{R}^n$, $f \in L'(\Omega)$ ($\int_{\Omega} f ^2 dx < \infty$).
	he say f is weakly differentiable of J
	ξg,,, qn } ∈ L'(ν2) s.t.
	∀ Ø ∈ C°(ι):
	$\int_{\Omega} \frac{\partial \varphi}{\partial x_i} dx = - \int_{\Omega} g_i \varphi dx$
	Dif = gi Weak - derivative of f
	$Df=\langle D_1f, \dots, D_nf \rangle = \langle g_1, g_2, \dots, g_n \rangle$
Ex:	f(x) = 1 × 1 & L'([-1,1])
	-1 +1
	$\int_{-1}^{1} f \phi' dx = \int_{-1}^{1} z \phi' dz$
	= (-x) p dx + (-x) p' dx
	IBP -1
	$ \phi \in C_c^{\infty}(\underline{\Gamma}^{-1},\underline{\Pi}) = -2\phi - \int_{-1}^{0} (-1)\phi dx + 2\phi - \int_{-1}^{1} \phi dx $
	$\varphi(-1) = \varphi(1) = 0$ = $-\int_{-1}^{0} \varphi dx - \int_{-1}^{1} \varphi dx$
	$= - \int_{-1}^{1} \rho dx$

$$g = \begin{cases} (-1), & -1 \leq x < 0 \\ x = 0 \\ 1, & 0 < x \leq 1 \end{cases}$$

$$Ex: f(x) = sqn(x) \quad \text{on } [-1,1]$$

$$find g, \forall \quad 0 \in C_{c}^{c}(E-1,1]):$$

$$f(x) = e^{x^{2}} \in L^{1}(R)$$

$$\int_{e^{x}}^{\infty} e^{x} dx = \int_{e^{x}}^{\infty} \int_{e^{x}}^{\infty} \int_{e^{x}$$

(111) 8 \$ L'(E-1,1]) (Claim) Boof: Suppose SEL'([-1,1] Take \$; & C ([-1,1]) , \$;(0) = 1,0 < 9. 51 $= \delta(x) \phi_{j}(x) ,$ "LDCT" $1 = P_{j}(0) = \begin{cases} S(x) & P_{j}(x) & dx = \int P_{j}(x) & dx = 0 \end{cases}$ Contradiction [$Sgn(x) Q(x) dx = \int_{(-1)}^{(-1)} \varphi'(x) dx + \int_{(-1)}^{1} \varphi'(x) dx$ - [\$ (0) - \$ (-1)] + [\$ (1) - \$ (0)] $= - \begin{cases} 28(x) P(x) dx & 28(x) \in L'(\Gamma, i) \end{cases}$ g = 28(x)