https://youtu.be/Kf5CRwGELQk

정보컴퓨터공학과 송경주

HANSUNG UNIVERSITY CryptoCraft LAB

- Argon2은 2015 Password Hashing Competition에서 우승한 key derivation function
- 자격 증명 저장, 키 파생 또는 기타 응용 프로그램을 위한 암호를 해시하는데 사용할 수 있음
- 가장 높은 메모리 채우기 속도와 여러 컴퓨팅 장치의 효과적인 사용을 목표로 하는 단순한 디자인을 가지고 있으면서도 트레이드오프에 대한 기능을 제공함
- Argon2는 세가지 변형: Argon2i, Argon2d and Argon2id을 제공함
  - 1. Argon2d: Argon2d는 더 빠르고 데이터에 의존하는 메모리 액세스를 사용하므로 GPU 크래킹 공격에 매우 강하고 사이드 채널 타이밍 공격(예: 암호화폐)의 위협이 없는 애플리케이션에 적합
  - 2. Argon2i: 암호 해싱 및 암호 기반 키 파생에 선호되는 데이터 독립적 메모리 액세스를 사용하지만 트레이드 오프 공격으로부터 보호하기 위해 메모리를 더 많이 통과하므로 속도가 느림
  - 3. Argon2id: Argon2i와 Argon2d의 하이브리드로, 데이터 종속 및 데이터 독립 메모리 액세스의 조합을 사용하여 사이드 채널 캐시 타이밍 공격에 대한 Argon2i의 일부 저항과 GPU 크래킹 공격에 대한 Argon2d의 대부분의 저항을 제공

- Argon2에는 기본입력과 보조 입력(매개변수)의 두가지 유형의 입력이 있음
  - Primary input:
     Massage P, Nonce S
  - Secondary input:

     Degree of parallelism p
     Tag length τ
     Memory size m
     Number of iterations t
     Version number v
     Secret value K
     Associated data X
     Type y of Argon2



#### Compression function G

- Argon2에서 사용하는 Compression function G 는 Blake2b 라운드 함수 P를 기반으로 함
- P는 8개의 16Byte 레지스터(128bit) 입력에서 동작한다.
- Compression function G(X,Y)는 두개의 1024-byte block X, Y로 동작함
- $R = (X \oplus Y)$ 연산 후 R을  $R_0 \cdots R_{63}$ 으로 정의됨
- row-wise 및 column-wise 순서로 P를 적용하여 Z를 얻음

$$(Q_0, Q_1, \dots, Q_7) \leftarrow \mathcal{P}(R_0, R_1, \dots, R_7);$$
  
 $(Q_8, Q_9, \dots, Q_{15}) \leftarrow \mathcal{P}(R_8, R_9, \dots, R_{15});$   
 $\dots$   
 $(Q_{56}, Q_{57}, \dots, Q_{63}) \leftarrow \mathcal{P}(R_{56}, R_{57}, \dots, R_{63});$   
 $(Z_0, Z_8, Z_{16}, \dots, Z_{56}) \leftarrow \mathcal{P}(Q_0, Q_8, Q_{16}, \dots, Q_{56});$   
 $(Z_1, Z_9, Z_{17}, \dots, Z_{57}) \leftarrow \mathcal{P}(Q_1, Q_9, Q_{17}, \dots, Q_{57});$   
 $\dots$   
 $(Z_7, Z_{15}, Z_{23}, \dots, Z_{63}) \leftarrow \mathcal{P}(Q_7, Q_{15}, Q_{23}, \dots, Q_{63}).$ 

| $R_0$           | $R_1$           | $R_2$           | $R_3$           | $R_4$           | $R_5$           | $R_6$           | $R_7$           |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $R_8$           | $R_9$           | $R_{10}$        | R <sub>11</sub> | $R_{12}$        | $R_{13}$        | $R_{14}$        | R <sub>15</sub> |
| R <sub>16</sub> | R <sub>17</sub> | $R_{18}$        | R <sub>19</sub> | $R_{20}$        | R <sub>21</sub> | $R_{22}$        | $R_{23}$        |
| $R_{24}$        | $R_{25}$        | $R_{26}$        | R <sub>27</sub> | $R_{28}$        | $R_{29}$        | $R_{30}$        | R <sub>31</sub> |
|                 |                 |                 |                 |                 |                 |                 |                 |
| R <sub>32</sub> | $R_{33}$        | $R_{34}$        | $R_{35}$        | $R_{36}$        | R <sub>37</sub> | $R_{38}$        | $R_{39}$        |
| $\vdash$        |                 |                 |                 | R <sub>36</sub> |                 |                 |                 |
| $R_{40}$        | R <sub>41</sub> | R <sub>42</sub> | R <sub>43</sub> |                 | $R_{45}$        | R <sub>46</sub> | R <sub>47</sub> |



| $Q_0$    | $Q_1$    | $Q_2$    | $Q_3$    | $Q_4$    | $Q_5$    | $Q_6$    | $Q_7$    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| $Q_8$    | $Q_9$    | $Q_{10}$ | $Q_{11}$ | $Q_{12}$ | $Q_{13}$ | $Q_{14}$ | $Q_{15}$ |
| $Q_{16}$ | $Q_{17}$ | $Q_{18}$ | $Q_{19}$ | $Q_{20}$ | $Q_{21}$ | $Q_{22}$ | $Q_{23}$ |
| $Q_{24}$ | $Q_{25}$ | $Q_{26}$ | $Q_{27}$ | $Q_{28}$ | $Q_{29}$ | $Q_{30}$ | $Q_{31}$ |
| $Q_{32}$ | $Q_{33}$ | $Q_{34}$ | $Q_{35}$ | $Q_{36}$ | $Q_{37}$ | $Q_{38}$ | $Q_{39}$ |
| $Q_{40}$ | $Q_{41}$ | $Q_{42}$ | $Q_{43}$ | $Q_{44}$ | $Q_{45}$ | $Q_{46}$ | $Q_{47}$ |
| $Q_{48}$ | $Q_{49}$ | $Q_{50}$ | $Q_{51}$ | $Q_{52}$ | $Q_{53}$ | $Q_{54}$ | $Q_{55}$ |
| $Q_{56}$ | $Q_{57}$ | $Q_{58}$ | $Q_{59}$ | $Q_{60}$ | $Q_{61}$ | $Q_{62}$ | $Q_{63}$ |

| $Q_0$    | $Q_1$    | $Q_2$    | $Q_3$    | $Q_4$    | $Q_5$    | $Q_6$    | $Q_7$    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| $Q_8$    | $Q_9$    | $Q_{10}$ | $Q_{11}$ | $Q_{12}$ | $Q_{13}$ | $Q_{14}$ | $Q_{15}$ |
| $Q_{16}$ | $Q_{17}$ | $Q_{18}$ | $Q_{19}$ | $Q_{20}$ | $Q_{21}$ | $Q_{22}$ | $Q_{23}$ |
| $Q_{24}$ | $Q_{25}$ | $Q_{26}$ | $Q_{27}$ | $Q_{28}$ | $Q_{29}$ | $Q_{30}$ | $Q_{31}$ |
| $Q_{32}$ | $Q_{33}$ | $Q_{34}$ | $Q_{35}$ | $Q_{36}$ | $Q_{37}$ | $Q_{38}$ | $Q_{39}$ |
| $Q_{40}$ | $Q_{41}$ | $Q_{42}$ | $Q_{43}$ | $Q_{44}$ | $Q_{45}$ | $Q_{46}$ | $Q_{47}$ |
| $Q_{48}$ | $Q_{49}$ | $Q_{50}$ | $Q_{51}$ | $Q_{52}$ | $Q_{53}$ | $Q_{54}$ | $Q_{55}$ |
| $Q_{56}$ | $Q_{57}$ | $Q_{58}$ | $Q_{59}$ | $Q_{60}$ | $Q_{61}$ | $Q_{62}$ | $Q_{63}$ |





| $Z_0$    | $Z_1$    | $Z_2$    | $Z_3$    | $Z_4$    | $Z_5$    | $Z_6$    | $Z_7$    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| $Z_8$    | $Z_9$    | $Z_{10}$ | $Z_{11}$ | $Z_{12}$ | $Z_{13}$ | $Z_{14}$ | $Z_{15}$ |
| $Z_{16}$ | $Z_{17}$ | $Z_{18}$ | $Z_{19}$ | $Z_{20}$ | $Z_{21}$ | $Z_{22}$ | $Z_{23}$ |
| $Z_{24}$ | $Z_{25}$ | $Z_{26}$ | $Z_{27}$ | $Z_{28}$ | $Z_{29}$ | $Z_{30}$ | $Z_{31}$ |
| $Z_{32}$ | $Z_{33}$ | $Z_{34}$ | $Z_{35}$ | $Z_{36}$ | $Z_{37}$ | $Z_{38}$ | $Z_{39}$ |
| $Z_{40}$ | $Z_{41}$ | $Z_{42}$ | $Z_{43}$ | $Z_{44}$ | $Z_{45}$ | $Z_{46}$ | $Z_{47}$ |
| $Z_{48}$ | $Z_{49}$ | $Z_{50}$ | $Z_{51}$ | $Z_{52}$ | $Z_{53}$ | $Z_{54}$ | $Z_{55}$ |
| $Z_{56}$ | $Z_{57}$ | $Z_{58}$ | $Z_{59}$ | $Z_{60}$ | $Z_{61}$ | $Z_{62}$ | $Z_{63}$ |

• Compression function *G* 



- Permutation P
- 8개의 16-byte input  $S_0, S_1 \cdots S_7$ 가 64bit 워드의  $4 \times 4 \ matrix$ 로 표현된다.

• 
$$S_i = (v_{2i+1}||v_{2i})$$

$$\begin{pmatrix} v_0 & v_1 & v_2 & v_3 \\ v_4 & v_5 & v_6 & v_7 \\ v_8 & v_9 & v_{10} & v_{11} \\ v_{12} & v_{13} & v_{14} & v_{15} \end{pmatrix} \qquad G(v_0, v_4, v_8, v_{12}) \quad G(v_1, v_5, v_9, v_{13}) \\ G(v_2, v_6, v_{10}, v_{14}) \quad G(v_3, v_7, v_{11}, v_{15}) \\ G(v_2, v_6, v_{10}, v_{14}) \quad G(v_1, v_6, v_{11}, v_{12}) \\ G(v_2, v_7, v_8, v_{13}) \quad G(v_3, v_4, v_9, v_{14}),$$

$$a \leftarrow a + b + 2 * a_L * b_L;$$

$$d \leftarrow (d \oplus a) \ggg 32;$$

$$c \leftarrow c + d + 2 * c_L * d_L;$$

$$b \leftarrow (b \oplus c) \ggg 24;$$

$$a \leftarrow a + b + 2 * a_L * b_L;$$

$$d \leftarrow (d \oplus a) \ggg 16;$$

$$c \leftarrow c + d + 2 * c_L * d_L;$$

$$b \leftarrow (b \oplus c) \ggg 63;$$



(1) Qubit-optimized Quantum circuit for G



(2) Depth-optimized Quantum circuit for G

| Operation     | Adder  | #Qubit | $\#1\mathrm{qClifford}$ | #CNOT   | #Toffoli | #Full Depth |
|---------------|--------|--------|-------------------------|---------|----------|-------------|
| G (Qubit Opt) | Ripple | 1,089  | 70,836                  | 204,864 | 72,000   | 74,713      |
| G (Qubit Opt) | Simple | 1,089  | 22                      | 172,032 | 72,576   | 220,033     |
| G (Depth Opt) | Ripple | 13,318 | 70,284                  | 204,864 | 72,000   | 23,401      |
| G (Depth Opt) | Simple | 13,318 | 12                      | 172,032 | 72,576   | 68,163      |
| $Z \oplus R$  | -      | 1,536  | -                       | 1,024   | _        | 2           |

| Function | #Qubit                                                               | #1qClifford          | #CNOT               | #Toffoli            | #Full Depth         |  |  |  |
|----------|----------------------------------------------------------------------|----------------------|---------------------|---------------------|---------------------|--|--|--|
| Initial  | 8                                                                    | (Not used.)          |                     |                     |                     |  |  |  |
| Update   | 1.000                                                                | (Not used.)          |                     |                     |                     |  |  |  |
| Final    | 1,090                                                                | $1.62 \times 2^{17}$ | $1.17\times 2^{19}$ | $1.64\times 2^{17}$ | $1.71\times 2^{17}$ |  |  |  |
| blake2b  |                                                                      | $1.51 \times 2^{22}$ | $1.1\times 2^{24}$  | $1.54\times 2^{22}$ | $1.6\times 2^{22}$  |  |  |  |
| Tot      | Total $1.51 \times 2^{22}$ $1.14 \times 2^{24}$ $1.59 \times 2^{25}$ |                      | $1.59\times 2^{22}$ | $1.65\times 2^{22}$ |                     |  |  |  |

# Q&A