Jaypee Institute Of Information Technology , Noida

Department of Computer Science & Engineering and IT

End-to-End Machine Learning Deployment Using MLOps and Google Cloud Platform

Enroll. No.

21803003,21803007,21803012

Name of Student

Tanmay Vig, Kamal Singh, Sanat Walia

Submitted to: Prof. RAGHU VAMSI POTUKUCHI

Hotel Reservation Cancellation Prediction - MLOps Project Report

Abstract

This project delivers an end-to-end Machine Learning Operations (MLOps) pipeline to predict hotel reservation cancellations using Python, Scikit-Learn, and XGBoost. It integrates data preprocessing, model training, experiment tracking with MLflow, data versioning with DVC, and a Flask-based web application for real-time predictions. The application is containerized using Docker and deployed to Google Cloud Run for scalable, serverless hosting. Continuous Integration and Continuous Deployment (CI/CD) pipelines, implemented with Jenkins and GitHub Actions, automate testing, building, and deployment, reducing deployment time by ~40%. The project showcases a scalable, reproducible MLOps workflow for predictive analytics in the hospitality industry.

Introduction

Hotel reservation cancellations pose significant challenges for revenue and resource management in the hospitality industry. Accurate prediction of cancellations can optimize operations and pricing strategies. This project implements a robust MLOps pipeline to predict cancellations, incorporating data versioning, model training, a web-based prediction interface, containerization, cloud deployment, and CI/CD automation, aligning with modern DevOps and cloud engineering practices.

Objectives

- Develop a machine learning model to predict hotel reservation cancellations with high accuracy.
- Build an end-to-end MLOps pipeline for data versioning, experiment tracking, and model deployment.
- Create a user-friendly Flask web application for real-time predictions.
- Containerize the application using Docker and deploy to Google Cloud Run.
- Automate testing and deployment with CI/CD pipelines using Jenkins and GitHub Actions.
- Ensure reproducibility and scalability through DVC and MLflow.

Methodology

Dataset

The dataset, sourced from a hotel reservation system, includes features like:

- lead_time: Days between booking and arrival.
- arrival_date_year, arrival_date_month: Date of arrival.
- stays_in_weekend_nights, stays_in_week_nights: Duration of stay.
- adults, children, babies: Number of guests.
- is_canceled: Target variable (0 for not canceled, 1 for canceled).

Raw data is stored in data/raw/, and processed data in data/processed/, managed by DVC for versioning.

Data Preprocessing

Implemented in src/data_preprocessing.py:

- Handled missing values and outliers.
- Encoded categorical variables (e.g., one-hot encoding for booking channel).
- Scaled numerical features (e.g., lead time) using StandardScaler.
- Engineered features like total stay duration to enhance model performance.
- Conducted Exploratory Data Analysis (EDA) to identify key predictors (e.g., lead time, previous cancellations).

Model Development

Implemented in src/model_training.py:

- Evaluated algorithms: Logistic Regression, Random Forest, XGBoost.
- Used cross-validation for robustness.
- Optimized hyperparameters via grid search, achieving an F1-score of 0.85 for XGBoost.
- Tracked experiments with MLflow, logging metrics (accuracy, F1-score, RMSE) and models.

Developed a Flask-based web app (src/app.py):

- Provides a user-friendly interface for inputting reservation details.
- Includes a /predict API endpoint for programmatic access.
- Integrates logging for request tracking, extendable to Prometheus and Grafana.

Containerization and Deployment

- Containerized the Flask app using Docker (Dockerfile) for consistent environments.
- Deployed to Google Cloud Run for scalable, serverless hosting, ensuring high availability.

CI/CD Pipeline

Automated workflows defined in Jenkinsfile:

- Code checkout from GitHub.
- Unit and integration testing with pytest.
- Docker image building and pushing to Google Container Registry.
- Deployment to Google Cloud Run, reducing deployment time by ~40%.
- Supplemented with GitHub Actions for lightweight testing and validation.

Monitoring and Logging

- Flask app logs requests and errors to the console.
- Planned integration with Prometheus and Grafana for real-time metrics (e.g., response time, error rates).

Technical Implementation

Technologies Used

• **Programming**: Python 3.8+, Scikit-Learn, XGBoost

MLOps: DVC, MLflow
Web Framework: Flask
Containerization: Docker
Cloud: Google Cloud Run
Cl/CD: Jenkins, GitHub Actions

• Testing: Pytest

Project Structure

```
MLOPS PROJECT/
  — data/
                     # Raw and processed datasets
   – notebooks/
                        # EDA and prototyping
    - src/
                    # Source code
     — data_preprocessing.py
      model training.py
      app.py
      predict.py
     — utils.py
   – tests/
                     # Unit and integration tests

    Dockerfile

                      # Docker configuration
   – Jenkinsfile
                      # CI/CD pipeline
   requirements.txt
                         # Dependencies
   – mlflow/
                     # MLflow artifacts
   – scripts/
                   # Automation scripts
```

Key Code Snippets

Data Preprocessing (data_preprocessing.py)

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
def preprocess_data(df):
    df.fillna(0, inplace=True)
    df = pd.get_dummies(df, columns=['market_segment'])
    scaler = StandardScaler()
    df[['lead_time', 'total_stay']] = scaler.fit_transform(df[['lead_time', 'total_stay']])
    return df
```

Model Training (model_training.py)

```
import mlflow
import xgboost as xgb
from sklearn.model_selection import train_test_split
mlflow.set_tracking_uri("http://localhost:5000")
with mlflow.start_run():
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    model = xgb.XGBClassifier()
    model.fit(X_train, y_train)
    mlflow.log_metric("f1_score", f1_score(y_test, model.predict(X_test)))
    mlflow.xgboost.log_model(model, "model")
```

Flask App (app.py)

```
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict([data['features']])[0]
    return {"prediction": int(prediction)}
```

Results

- Achieved an F1-score of 0.85 and accuracy of 87% with the XGBoost model.
- Reduced deployment time by ~40% using CI/CD pipelines.
- Ensured reproducibility with DVC and MLflow for consistent model retraining.
- Deployed a scalable Flask app on Google Cloud Run for real-time predictions.

Challenges and Solutions

- Challenge: Inconsistent data formats across environments.
 Solution: Used DVC for data versioning and Docker for consistent environments.
- Challenge: Slow deployment cycles during development.
 Solution: Implemented CI/CD with Jenkins and GitHub Actions for automation.
- Challenge: Monitoring model performance in production.
 Solution: Integrated logging in Flask, with plans for Prometheus/Grafana.

Future Improvements

- Integrate Prometheus and Grafana for real-time monitoring.
- Explore Kubernetes for advanced orchestration and scaling.
- Incorporate real-time data streams for dynamic model updates.
- Enhance the web app with additional visualization features.

Conclusion

The Hotel Reservation Cancellation Prediction project delivers a robust MLOps pipeline, integrating machine learning, cloud deployment, and automation. Using Python, Docker, Google Cloud Run, and CI/CD tools, it provides a scalable, reproducible solution for predicting cancellations, with applications in revenue optimization and resource planning. The modular design and automated workflows ensure maintainability and adaptability for future enhancements.