

PRÁCTICA Nº 6

CÓDIGO SAGA

A25984-5

Calificación

CARRERA:

ASIGNATURA:

MÉTODOS NUMÉRICOS

FECHA DE ENTREGA: 30/04/2023

Apellidos y Nombres: GUTIÉRREZ CASTRO HUÁSCAR AARÓN

C.I: 9951591

CURSO: 4 -A DOCENTE: M. Sc. Ing. Ariel Villca Paye

Problema 1.

INGENIERIA DE SISTEMAS

Para cada inciso realice lo siguiente:

- 1. Calcule la primera derivada exacta.
- 2. Calcule la primera derivada aproximada con la mayor exactitud posible, decida si utilizará una derivada con diferencias finitas a la izquierda, centrada o derecha (solo una, la de mayor exactitud).
- 3. Calcule el error relativo verdadero porcentual.
- 4. Uilizando el Excel repita 2 y 3.
- 5. Utilizando MatLab repita 2 y 3.

a)
$$y = x^3 + 4x - 15$$
 en $x = 0$, $h = 0.25$
b) $y = x^2 + \cos x$ en $x = 0.4$, $h = 0.1$
c) $y = \tan (x/3)$ en $x = 3$, $h = 0.5$
d) $y = \sin (0.5\sqrt{x})/x$ en $x = 1$, $h = 0.2$
e) $y = x \cdot e^x$ en $x = -2$ $h = 0.1$

A.

Método de derivación

```
Datos
        X^3+4X-15
f(x) =
x_i
                       0
                                                              C.S.
h=
                    0.25
                       4
f'(x)_exacto
Primera derivada
                                     P.P.
                                                  P.P.f_{(xi)}
                         f_{(xi)}
               0.5000
                          -12.8750
                                        -1.000
                                                    12.8750
          1
               0.2500
                                         8.000
                                                   -111.8750
                          -13.9844
               0.0000
                         -15.0000
                                                    0.0000
              -0.2500
          -1
                          -16.0156
                                               -8 128.1250
              -0.5000
                          -17.1250
                                                1 -17.1250
                                     suma=
                                                      12.0000
                                     f'(x)=
                                                       4.0000
                                     e t
                                                        0.00%
```

```
Evaluate cell and advance (Ctrl+Mayúsculas+Introduzca)
   %DERIVADAS NUMERICAS CON 3 TT
   funcion = log(2/7*x).*exp(1/2*x.^2)
   %derivada=diff(funcion, grado de derivacion)
   der 1 x0 = subs(derivada, 1)
   x = 0 = 0;
   h=0.25;
   der 1 exacta=4.0000;
   %der 2 exacta=-2.4822;
   fprintf('\t\tMETODO DE DERIVACION TT\n')
   fprintf('Datos\n')
   fprintf('x i = %1.0f\n', x 0)
   fprintf('h = %1.4f\n',h)
   fprintf('der1 f x = %1.4f\n', der 1 exacta)
   frintf('der2 f x = %1.4f\n', der 2 exacta)
   fprintf('
```

Datos

 $x_i = 0$

h = 0.2500

 $der1_f_x = 4.0000$

La primera derivada es: 4.0000

Con un error de: 0.00%

В.

	Método de derivación							
Datos f(x) = X^2	2+COS(X)							
x_i	0.4				C.S.	4		
h=	0.1							
f'(x)_exacto	0.4106							
Primera deri	vada							
i	Xi	$f_{(xi)}$	P.P.	P.P.f _(xi)				
2	0.6000	1.1853	-1.000	-1.1853				
1	0.5000	1.1276	8.000	9.0207				
0	0.4000	1.0811	0	0.0000				
-1	0.3000	1.0453	-8	-8.3627				
-2	0.2000	1.0201	1	1.0201				
			suma=	0.4927				
			f'(x)=	0.4106				
			e_t	0.00%				

```
%der 1 x0 = subs(derivada,1)
  x 0=0.4;
  h=0.1;
  der 1 exacta=0.4106;
   %der 2 exacta=-2.4822;
   fprintf('\t\tMETODO DE DERIVACION TT\n')
   fprintf('Datos\n')
   fprintf('x_i = %1.0f\n',x_0)
   fprintf('h = %1.4f\n',h)
   fprintf('der1 f x = %1.4f\n', der 1 exacta)
   f(\text{der2 f } x = 1.4f\n', \text{der 2 exacta})
   fprintf('
   f=inline('log(2/7*x).*exp(1/2*x.^2)');
   %f=inline('X.^3+4*X-15');
   f-inling/ly A2±age/v\!\.
        METODO DE DERIVACION TT
Datos
x i = 0
h = 0.1000
der1 f x = 0.4106
La primera derivada es: 0.4106
                              0.00%
Con un error de:
```

C.

Método de derivación

```
Datos
        TAN(X/3)
f(x) =
                                                                C.S.
x_i
                      3.0
h=
                      0.5
f'(x)_exacto
                  1.0925
Primera derivada
                         f_{(xi)}
                                      P.P.
                                                   P.P.f_{(xi)}
               4.0000
                            4.1317
                                         -1.000
                                                      -4.1317
               3.5000
                            2.3383
                                          8.000
                                                      18.7060
               3.0000
                            1.5574
                                                      0.0000
               2.5000
                                                -8
                                                      -8.8062
                            1.1008
               2.0000
                            0.7868
                                                      0.7868
                                      suma=
                                                         6.5549
                                                         1.0925
                                      f'(x)=
                                      e_t
                                                         0.00%
```

Datos

x i = 3

h = 0.5000

 $der1_f_x = 1.0925$

La primera derivada es: 1.0925

Con un error de: 0.00%

D.

	Método de derivación						
Datos		6.					
$f(x) = \frac{SEN(0.5 X^{(1/2)})/X}{}$							
x_i	1.0				C.S.	4	
h=	0.2						
f'(x)_exacto	-0.2591						
Primera deri	vada						
i	x _i	f _(xi)	P.P.	P.P.f _(xi)			
2	1.4000	0.3984	-1.000	-0.3984			
1	1.2000	0.4340	8.000	3.4716			
0	1.0000	0.4794	0	0.0000			
-1	0.8000	0.5406	-8	-4.3245			
-2	0.6000	0.6295	1	0.6295			
			suma=	-0.6218			
			f'(x)=	-0.2591			
			e_t	0.01%			

```
funcion = log(2/7*x).*exp(1/2*x.^2)
   %derivada=diff(funcion,grado de derivacion)
   der 1 x0 = subs(derivada, 1)
   x 0=1;
   h=0.2;
   der 1 exacta=-0.2591;
   %der 2 exacta=-2.4822;
   fprintf('\t\tMETODO DE DERIVACION TT\n')
   fprintf('Datos\n')
   fprintf('x i = %1.0f\n', x 0)
   fprintf('h = %1.4f\n',h)
   fprintf('der1 f x = %1.4f\n', der 1 exacta)
   f(\cdot der2 f x = 1.4f \cdot n', der 2 exacta)
   fprintf('
   &f-inlina/11aa/2/7*v\ *avn/1/2*v A2\1\.
        METODO DE DERIVACION TT
Datos
x i = 1
h = 0.2000
der1 f x = -0.2591
```

La primera derivada es: -0.2591 Con un error de: 0.01%

E.

Método de derivación

```
Datos
        X*e^X
f(x) =
                                                               C.S.
x_i
                    -2.0
h=
                     0.1
f'(x)_exacto
                 -0.1353
Primera derivada
                         f_{(xi)}
                                      P.P.
                                                   P.P.f_{(xi)}
              -1.8000
                           -0.2975
                                         -1.000
                                                     0.2975
              -1.9000
                           -0.2842
                                         8.000
                                                     -2.2734
             -2.0000
                           -0.2707
                                                     0.0000
                                                0
              -2.1000
                                                -8
                                                     2.0573
          -1
                           -0.2572
              -2.2000
                           -0.2438
                                                     -0.2438
                                      suma=
                                                       -0.1624
                                      f'(x)=
                                                       -0.1353
```

```
0.03%
                  e_t
x 0 = -2;
h=0.1;
der 1 exacta=-0.1353;
%der 2 exacta=-2.4822;
fprintf('\t\tMETODO DE DERIVACION TT\n')
fprintf('Datos\n')
fprintf('x i = %1.0f\n', x 0)
fprintf('h = %1.4f\n',h)
fprintf('der1 f x = %1.4f\n', der 1 exacta)
f(\text{der2 f } x = 1.4f\n', \text{der 2 exacta})
fprintf('
f=inline('log(2/7*x).*exp(1/2*x.^2)');
%f=inline('X.^3+4*X-15');
%f=inline('x.^2+cos(x)');
f=inline(tan(x./3));
f=inline('sin(0.5*x.^(1/2))./x');
```

METODO DE DERIVACION TT Datos x_i = -2 h = 0.1000 der1_f_x = -0.1353 La primera derivada es: -0.1353 Con un error de: 0.03%

Problema 2.

Para los incisios a) d) y e) del problema 1 realice lo siguiente:

- a) Grafique la primera derivada exacta y la aproximada.
- b) Calcule la segunda y tercera derivada de forma manual (forma exacta), con Excel y MatLab (aproximada).

A.

Método de derivación				
Datos VA2: 4V 45				
$f(x) = X^3 + 4X - 15$				
x_i 0	C.S. 4			
h= 0.25				
f'(x)_exacto 4				
f''(x)_exacto 0				
f'''(x)_exact: 6				
Segunda derivada				

Segunda derivada				
i	x _i	$f_{(xi)}$	P.P.	$P.P.f_{(xi)}$
2	0.5000	-12.8750	-1.000	12.8750
1	0.2500	-13.9844	16.000	-223.7500
0	0.0000	-15.0000	-30.0000	450.0000
-1	-0.2500	-16.0156	16.0000	-256.2500
-2	-0.5000	-17.1250	-1.0000	17.1250
			suma=	0.0000
			f'(x)=	0.0000
			e_t	0.00%

Tercera derivada				
i	x _i	f _(xi)	P.P.	P.P.f _(xi)
2	0.5000	-12.8750	1.000	-12.8750
1	0.2500	-13.9844	-2.000	27.9688
0	0.0000	-15.0000	0.0000	0.0000
-1	-0.2500	-16.0156	2.0000	-32.0313
-2	-0.5000	-17.1250	-1.0000	17.1250
			suma=	0.1875
			f'(x)=	6.0000
			e_t	0.00%

```
clc, clear all;
%DERIVADAS NUMERICAS CON 3 TT
funcion = log(2/7*x).*exp(1/2*x.^2)
%derivada=diff(funcion, grado de derivacion)
der 1 x0 = subs(derivada, 1)
x 0=0;
h=0.25;
der 1 exacta=4;
der 2 exacta=0;
der_3_exacta=6;
fprintf('\t\tMETODO DE DERIVACION TT\n')
fprintf('Datos\n')
fprintf('x i = %1.0f\n', x 0)
fprintf('h = %1.4f\n',h)
fprintf('der1 f x = %1.4f\n', der 1 exacta)
f(\text{der2 f } x = 1.4f\n', \text{der 2 exacta})
```

Datos

$$x i = 0$$

$$h = 0.2500$$

 $der1_f_x = 4.0000$

La primera derivada es: 4.0000

Con un error de: 0.00%

La segunda derivada es: 0.0000

Con un error de: 0.00%

La segunda derivada es: 6.0000

Con un error de: 0.00%

D.

Método de derivación

Datos $f(x) = SEN(0.5 X^{(1/2)})/X$

x_i 1.0 C.S.

h= 0.2 f'(x)_exacto -0.2591

f''(x)_exacto 0.3787

f'''(x)_exact(-0.8595

Segunda derivada				
i	x _i	f _(xi)	P.P.	P.P.f _(xi)
2	1.4000	0.3984	-1.000	-0.3984
1	1.2000	0.4340	16.000	6.9433
0	1.0000	0.4794	-30.0000	-14.3828
-1	0.8000	0.5406	16.0000	8.6491
-2	0.6000	0.6295	-1.0000	-0.6295
			suma=	0.1818
			f'(x)=	0.3787
			e_t	0.01%

Tercera derivada				
i	x _i	$f_{(xi)}$	P.P.	$P.P.f_{(xi)}$
3	1.6000	0.3695	-1.0000	-0.3695
2	1.4000	0.3984	8.000	3.1868
1	1.2000	0.4340	-13.000	-5.6414
0	1.0000	0.4794	0.0000	0.0000
-1	0.8000	0.5406	13.0000	7.0274
-2	0.6000	0.6295	-8.0000	-5.0358
-3	0.4000	0.7775	1.0000	0.7775
			suma=	-0.0550
			f'(x)=	-0.8595
			e_t	0.00%

```
RIVADAS NUMERICAS CON 3 TT
ncion = log(2/7*x).*exp(1/2*x.^2)
rivada=diff(funcion, grado de derivacion)
rl x0 = subs(derivada, 1)

=1;
.2;
lexacta=-0.2591;
lexacta=-0.3787;
lexacta=-0.8595;

intf('\t\tMETODO DE DERIVACION TT\n')
intf('Datos\n')
intf('x_i = %1.0f\n', x_0)
intf('h = %1.4f\n',h)
intf('der1_f x = %1.4f\n',der_1_exacta)
rintf('der2_f x = %1.4f\n',der_2_exacta)
```

clear all;

Datos

x i = 1

h = 0.2000

 $der1_f_x = -0.2591$

La primera derivada es: -0.2591

Con un error de: 0.01%

La segunda derivada es: 0.3787

Con un error de: 0.00%

La segunda derivada es: -0.8595

Con un error de: 0.00%

E.

Método de derivación

Datos f(x) = X*e^X

x_i -2.0 C.S. 4 **h=** 0.1

f'(x)_exacto -0.1353 f''(x)_exacto 0.0000

f'''(x)_exactc 0.1353

Segunda derivada				
i	Xi	f _(xi)	P.P.	P.P.f _(xi)
2	-1.8000	-0.2975	-1.000	0.2975
1	-1.9000	-0.2842	16.000	-4.5469
0	-2.0000	-0.2707	-30.0000	8.1201
-1	-2.1000	-0.2572	16.0000	-4.1145
-2	-2.2000	-0.2438	-1.0000	0.2438
			suma=	0.0000
			f'(x)=	0.0000
			e_t	0.00%

Tercera derivada				
i	x _i	f _(xi)	P.P.	$P.P.f_{(xi)}$
3	-1.7000	-0.3106	-1.0000	0.3106
2	-1.8000	-0.2975	8.000	-2.3803
1	-1.9000	-0.2842	-13.000	3.6943
0	-2.0000	-0.2707	0.0000	0.0000
-1	-2.1000	-0.2572	13.0000	-3.3431
-2	-2.2000	-0.2438	-8.0000	1.9501
-3	-2.3000	-0.2306	1.0000	-0.2306
			suma=	0.0011
			f'(x)=	0.1353
			e_t	0.02%

```
clc, clear all;
%DERIVADAS NUMERICAS CON 3 TT
funcion = log(2/7*x).*exp(1/2*x.^2)
%derivada=diff(funcion, grado de derivacion)
der 1 x0 = subs(derivada, 1)
x 0 = -2;
h=0.1;
der 1 exacta=-0.1353;
der 2 exacta=0;
der 3 exacta=0.1353;
fprintf('\t\tMETODO DE DERIVACION TT\n')
fprintf('Datos\n')
fprintf('x i = %1.0f\n', x 0)
fprintf('h = %1.4f\n',h)
fprintf('der1 f x = %1.4f\n', der 1 exacta)
f(\text{der2 } f x = 1.4f\n', \text{der 2 exacta})
```

Datos

 $x_i = -2$

h = 0.1000

 $der1_f_x = -0.1353$

La primera derivada es: -0.1353

Con un error de: 0.03%

La segunda derivada es: -0.0000

Con un error de: 0.00%

La segunda derivada es: 0.1353

Con un error de: 0.02%