Data Representation and Manipulation

Module 03

Course Notes

The MIPS Word

- 32-bit architecture
- 1 byte = 8 bits; 4 bytes = 1 word
- Bits numbered 31, 30, ..., 0
- Most significant bit (MSB) is bit 31
- Least significant bit (LSB) is bit 0
- In many examples, we will use only 4 bits to illustrate
- Sometimes, numbers written in *hexadecimal*

Basic Error detection when transmitting Data

- Parity Bit: Top most bit, very basic error detection.
- When bits, bytes(8bits), words(32 bits) are transmitted from computer to computer, parity check in case any error in transmission
- 10011011: Highest bit states if there is an even or odd number of 1's in the 7 bit number: 1 indicates there is an even number of 1s
- Could also be the 9th bit in an 8bit number: **0**00110111
- Even parity: highest order bit is true when there are even number of 1s
- Odd parity: highest order bit is true when there are an odd number of 1s

USASCII code chart

b, b6 b	5					° ° °	° 0 ,	0 1 0	0 1	100	0	10	1 1
B	b *	b 3	b •	b	Row	0	ļ	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	0	Р		P
	0	0	0	_		SOH	DC1	!	1	Α	Q	0	q
	0	0		0	2	STX	DC2	- 11	2	В	R	Ь	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	\$
	0	1	0	0	4	EOT	DC4		4	D	T	đ	t
	0	-	0	1	5_	ENQ	NAK	%	5	Ε	U	e	U
	0	1	1	0	6	ACK	SYN	8	6	F	V	f	٧
	0	-	1	1	7	BEL	ETB	•	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	н	X	h	×
		0	0		9	нТ	EM)	9	1	Y	i	у
	1	0	1	0	10	LF	SUB	*		J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	;	K	C	k	{
:	١	1	0	0	12	FF	FS	•	<	L	\	l	
	1	Ì	0	ı	13	CR	GS	-	#	М)	m m	}
	•	1	1	0	14	so	RS	•	>	N	^	n	\sim
	1	1	I		15	SI	US	1	?	0		0	DEL

Characters

- ASCII (American Standard Code for Information Interchange)
- Uses 7 bits to represent 128 different characters
- 8th bit (topmost) used as parity check (error detection)
- 4 characters fit into MIPS 32-bit word
 128 possibilities include upper and lower case Roman letters, punctuation marks, some computer control characters
- Partial table on page 106 of text
- Unicode: 16 bits per character (English isn't the only language!)

Mips: Single word 32 bits allows 4 chars

• Need many 32 bit words to represent "hello world"

Mips: Single word 32 bits allows 4 chars

- Need many 32 bit words to represent "hello world"
- How many bytes are needed to represent this
- A) 7
- B) 8
- C) 9
- D)10
- E)11

Two's Complement Representation In use today

- Idea: Let MSB represent the negative of a power of 2
- With 4 bits, bit 3 (MSB) represents -2^3
- \bullet 1110 = $-2^3 + 2^2 + 2^1 = -2$
- With 4 bits, can represent -8 (1000) to +7 (0111)
- With 32 bits, can represent -2, 147, 483, 648 to 2, 147, 483, 647
- Usefulness becomes apparent when we try arithmetic

Useful: all negative numbers will have MSB to 1

Negating a Two's Complement Number

- \bullet For a bit pattern x, let \overline{x} be the result of inverting each bit
- Example: $x = 0110, \bar{x} = 1001$
- Since $x + \overline{x} = -1, -x = \overline{x} + 1$
- To negate a number in two's complement representation, invert every bit and add 1 to the result

How is -4 represented in Two's complement

- A)1011
- B)1001
- C)0111
- D) 1111
- E) 1100

Addition of Two's complement

Addition

- To add two two's complement numbers, simply use the "elementary school algorithm", throwing away any carry out of the MSB position
- To subtract, simply negate and add
- Problem: what if answer cannot be represented? (called overflow)
- Overflow in addition cannot occur if one number is positive and the other negative
- If both addends have same sign but answer has different sign, overflow has occurred

Examples on the Board

Sign Extension

- With 4 bits, 0110 is +6. With 8 bits, what is +6?
- With 4 bits, 1010 is -6. With 8 bits, what is -6?
- To expand number of bits used, copy old MSB into new bit positions.
- This works because

$$-2^{i} + 2^{i-1} + 2^{i-2} + \dots + 2^{j+1} + 2 \cdot 2^{j} = 0$$

- For example: -4 1100 in 8 bits. Simply extend MSB:
- \rightarrow 1111 1100 = -4 in two's complement form

Building An Addition Circuit

Designing an Adder

Two bit input 1 bit result

Is this all we need?

Need to have carryIn and carryout bits

How might I design this?

AND GATE

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR GATE

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

+					
	Α	В	Cin	Cout	Result
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0

Complete the Truth Table, Implement the circuit

Course Notes Full Adder part of Arithmetic Logic Unit

Ripple-Carry Adder

• 4-bit example

- Easy to extend to 32 bits
- Can be slow; "carry-lookahead" idea improves speed

Arithmetic Logic Unit

- *Basic ALU performs 3 operations.
- *Need to incorporate subtraction:
- *Subtraction can be thought of Addition- negating one of the inputs
- *Negate second input
- Invert all the bits and add 1

A 1-Bit ALU

- Extends functionality of full adder
- Performs AND, OR, addition
- Connect 32 of these as with ripple-carry adder to perform 32-bit operations

Improving the 1-Bit ALU

- How to implement subtraction?
- To subtract b from a, invert bits of b, add to a, add 1
- Box below will do this, if added 1 is put into CarryIn at top of chain when subtraction is desired

Abstracting Away ALU Details

- Book makes further improvements to support other operations that assist in branching (Appendix B.5figures B.5.9 and B.5.10 in particular)
- From now on, we use symbol below

• Same shape used for ripple-carry adder, so remember to label them

ALU operation

Abstracting Away ALU Details

- Book makes further improvements to support other operations that assist in branching (Appendix B.5figures B.5.9 and B.5.10 in particular)
- From now on, we use symbol below

• Same shape used for ripple-carry adder, so remember to label them

ALU operation

Representing Numbers That Aren't Integers

- Uses idea of scientific notation: -3.45×10^3
- Sign, significand (fraction, mantissa, exponent)
- Normalized: single digit to left of decimal point
- For computers, natural to use 2 as base
- Example: $1.01_2 \times 2^4$
- In normalized binary, leading digit of significand is always 1 (can omit it from internal representation)
- How to represent 0?

Floating-Point Representation

• MIPS uses the IEEE 754 floating-point standard format

31	30 Range 23	22 Fraction: increasing precision	0
S	exponent	significand	
1 bit	8 bits	23 bits	

- allows numbers from 2.0×10^{-38} to 2.0×10^{38} , roughly
- Double precision: uses two 32-bit words, 11 bits for exponent,
 52 bits for significand
- Exponent is stored in "biased" notation: most negative exponent is all 0's, most positive is all 1's
 This allows for quick comparisons, speeds up sorting
- Thus value represented is $(-1)^{S} \times (1 + \text{Significand}) \times 2^{(Exponent-Bias)}$, where Bias = 127 for single precision
- Special case: 00000000 exponent reserved for 0

Overflow and Underflow can occur

Bias notation: IEEE Floating Point standard

- Let 1111 1111 be the most positive exponent
- 0000 0000 be the most negative exponent.
 - Makes sorting easier
- Normalized exponent: takes positive binary number represented by exponent bits and subtracts 127 from this.
- Therefore all exponents have positive value: take the value minus the bias
- Exponent of +1: 1000 000 (128 -127)
- Exponent of -1: 0111 1110 (126-127)

- IEEE 754 Standard: floating point representation
- Also makes sorting and comparing numbers easier
 - This is why sign is most significant bit
 - Also why exponent bits are before significand bits
 - 0000 0000 and 1111 1111 are used as special cases
 - Therefore Range of Exponents: 8 bit exponent:

•

Algorithm for conversion of fractions

- Multiply fraction by 2 repeatedly.
- $0.625 \times 2 = 1.25 \text{ KEEP 1}$ as first binary digit **0.1**
- Next .25 x 2 = 0.5 : 0 as next binary digit : **0.10**
- Next .5 x 2 = 1.0 : 1 as next binary digit : **0.101**
- Done
- .625 is .101 as binary
- NOT ALL fractions can be represented in binary exactly

Algorithm for conversion of fractions

- 0.1 decimal 1/10
- $0.1 \times 2 = 0.2 \text{ KEEP } 0$ as first binary digit 0.0
- $0.2 \times 2 = 0.4 \text{ KEEP } 0 \text{ as next binary digit } 0.00$
- $0.4 \times 2 = 0.8 \text{ KEEP } 0 \text{ as next binary digit } 0.000$
- $0.8 \times 2 = 1.6 \text{ KEEP 1}$ as next binary digit **0.0001**
- $0.6 \times 2 = 1.2 \text{ KEEP 1}$ as next binary digit **0.00011**
- Repeat with 0.2 will lead to
- $0.1 \times 2 = 0.2 \text{ KEEP } 0$ as first binary digit $0.0 \dots$ repeating
- **KEEP Going** .000110001100011 . . .
- Repeating pattern
- Therefore some numbers produce infinite binary expansion.

Convert 0.375 to binary

- A) 0.11
- B)0.0101
- C) 0.01101
- D) 1.11
- E) 0.011

Convert this Fractional number to IEEE

Floating Point Representation

Start: 42.3125

$$.3125x2 = 0.625$$
 Apply the same algorithm from previous slides

$$.25x2 = 0.5$$

$$.5x2 = 1$$

$$\rightarrow$$
 42.3125 = 101010.0101 = 1.010100101x2^5 Need to Normalize : Only one leading 1

Sign bit: 0 (pos)

Exponent –
$$127 = 5 \rightarrow$$
 Exponent = $132 = 10000100$

Final 32 Bits Representation

Floating-Point Addition

- Decimal example: $9.54 \times 10^2 + 6.83 \times 10^1$ Only 1 leading digit before decimal (assume we can only store two digits to right of decimal point)
 - 1. Match exponents: $9.54 \times 10^2 + .683 \times 10^2$
 - 2. Add significands, with sign: 10.223×10^2
 - 3. Normalize: 1.0223×10^{3}
 - 4. Check for exponent overflow/underflow
 - 5. Round: 1.02×10^3
 - 6. May have to normalize again
- Same idea works for binary

A: 0 10000100 0101001010...

B: 1 10000011 0001001010...

A's exponent: 5

B's exponent: 4

A's mantissa: 1.0101001010...

B's mantissa: 1.0001001010...

Must shift B's mantissa, exponent by 1 so they become ⁵

Because we are adding two numbers of different signs, we use signed magnitude addition: subtract the smaller mantissa from the larger mantissa, and keep the sign of the larger

1.0101001010... x2^5

- 0.10001001010... x2^5 Performing Subtration

(+) 0.11001001010... x2^5

Normalize: 1.1001001010... x2^4

Sign bit = 0

Exponent -127 = $4 \rightarrow \text{exponent} = 131 = 10000011$