

Description

The VSM140N08 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 82V, I_D = 140A$ $R_{DS(ON)} < 5.2mΩ @ V_{GS} = 10V$ (Typ:4.3mΩ)

- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM140N08-TC	VSM140N08	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	82	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	140	А
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	99	Α
Pulsed Drain Current	I _{DM}	480	Α
Maximum Power Dissipation	P _D	220	W
Derating factor		1.47	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	1500	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	$R_{ heta Jc}$	0.68	°C/W	
--	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	82	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =82V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	4.3	5.2	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	65	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V,	-	7900	-	PF
Output Capacitance	C _{oss}		-	445	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	384	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, R_L =1 Ω V_{GS} =10V, R_{GEN} =2.5 Ω	-	23	-	nS
Turn-on Rise Time	t _r		-	42	-	nS
Turn-Off Delay Time	t _{d(off)}		-	75	-	nS
Turn-Off Fall Time	t _f		-	26	-	nS
Total Gate Charge	Qg	V _{DS} =40V,I _D =20A,	-	158	-	nC
Gate-Source Charge	Q _{gs}		-	32	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	51	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =140A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	140	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	50	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	110	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition: Tj=25 $^{\circ}$ C,VDD=40V,VG=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

160 (V) tuend 120 80 0 25 50 75 100 125 150 175 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Current De-rating

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance