From λ -Calculus to Cartesian Closed Categories

J. Lambek

Mathematics Department, McGill University
Montreal, P.Q. HSA 2K63 Canada.

Dedicated to Professor H. B. Curry on the occasion of his 80th Birthday ¹

Haskell Curry may be surprised to hear that he has spent a lifetime doing fundamental work in category theory. The purpose of this account is to convince categorists that Cartesian closed categories (Eilenberg and Kelly, 1966) have been anticipated by logicians (Curry, 1930) by many years and, conversely, to per suade logicians that combinatory logic may benefit from being phrased in categorical language.

I have attempted to tell this story twice before (1972, 1974), but am not entirely satisfied with these earlier accounts. The present exposition is essentially my unscheduled talk at the 1977 Durham Symposium on applications of sheaf theory to logic, algebra and analysis.

I regret that limitations of space do not permit a discus sion of illative combinatory logic (Curry and Feys, 1958) or combinatory type theory (Church, 1940) and applications thereof to the construction of free toposes.

Let me confess at once that I am not a historical scholar and that I have taken some liberties with the original material. Thus, I have taken the opportunity to present the early discoveries of combinatory logic in the language of universal algebra.

Our story begins in 1924, when Schönfinkel studied what would now be called an algebra $A = (|A|, {}^{\wr}, I, S, K)$ consisting of a set |A| equipped with a binary operation ${}^{\wr}$ and constants I, S and K. These were to satisfy the following identities:

$$(1) I^{\wr} a = a,$$

$$(2) (K^{\wr}a)^{\wr}b = a,$$

¹This is a remake of the paper From λ -Calculus to Cartesian Closed Categories originally published in R. Hindley and J. Seldin, editors, To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalisms. Academic Press, 1980. This file was created in March 2023.

$$((S^{\wr}f)^{\wr}g)^{\wr}c = (f^{\wr}c)^{\wr}(g^{\wr}c),^{2}$$

for all elements a, b, c, f and g of |A|. Actually, Schönfinkel did not employ the language of universal algebra, and he defined I in terms of K and S, but of this we shall speak later. His main result would now be stated as follows.

Proposition 1. Every polynomial $\varphi(x)$ over a Schönfinkel algebra A can be written in the form $f \ x$, where $f \in |A|$.

Polynomials are of course formed as words in an indeterminate x and are subject to the same three identities. More precisely, equality \equiv between polynomials is the smallest equivalence relation \equiv between words in x which has the substitution property

(0_X)
$$\frac{\varphi(x) \equiv \psi(x) \qquad \alpha(x) \equiv \beta(x)}{\varphi(x)^{\, ?} \alpha(x) \equiv \psi(x)^{\, ?} \beta(x)}$$

and which satisfies

$$(1_X) I^{\wr} \alpha(x) \equiv \alpha(x),$$

$$(2_X) (K^{\wr}\alpha(x))^{\wr}\beta(x) \equiv \alpha(x)$$

$$(3_X) \qquad ((S^{\wr}\varphi(x))^{\wr}\psi(x))^{\wr}\gamma(x) \equiv (\varphi(x)^{\wr}\gamma(x))^{\wr}(\psi(x)^{\wr}\gamma(x))$$

Alternatively, one may regard the polynomial $\varphi(x)$ as an element of the Schönfinkel algebra A[x], which comes equipped with an element x and with a homomorphism $h_x:A\longrightarrow A[x]$ with the usual universal property: for every algebra B every homomorphism $f:A\longrightarrow B$ and every element $b\in |B|$, there exists a unique homomorphism $f':A[x]\longrightarrow B$ such that $f'h_x=f$ and f'(x)=b. In the special case when B=A and f is the identity homomorphism $A\longrightarrow A$, f' is the substitution homomorphism which allows us to replace x in any polynomial by b. Similarly, when B=A[x] and $f=h_x$, f' allows us to replace x by a polynomial $\beta(x)$.

The proof of Proposition 1 is remarkably simple. It proceeds by induction on the length of the word $\varphi(x)$, which must be either x, or a constant or of the

²Editor's note: Lambek uses this squiggle $^{\wr}$ to denote a binary operation for function application. It appears here and in his later book about this same subject. I made a best guess about how to translate this into \LaTeX .

form $\psi(x)^{\wr}\chi(x)$ not constant, in which last case we may assume by inductional assumption that $\psi(x) \equiv g^{\wr}x$ and $\chi(x) \equiv h^{\wr}x$. In the three cases we have

respectively.

This proof also yields an algorithm for converting every polynomial into the form $f^{\wr}x$. For example, one easily calculates

$$x^{\,\wr} x \equiv ((S^{\,\wr} I)^{\,\wr} I)^{\,\wr} x.$$

In 1930, Schönfinkel's result was rediscovered by Curry. However, Curry was interested in imposing an additional requirement:

(4) If
$$f \, {}^{\flat}x = g \, {}^{\flat}x$$
 in $A[x]$ then $f = g$ in A .

For example, from

$$((S^{\wr}K)^{\wr}I)^{\wr}x \equiv (K^{\wr}x)^{\wr}(I^{\wr}x) \equiv x \equiv I^{\wr}x$$

one could use (4) to obtain $(S^{\wr}K)^{\wr}I = I$, which equation cannot be derived from (1) to (3) alone. In the same way, one could deduce that $(S^{\wr}K)^{\wr}K = I$. In fact, Schönfinkel originally defined I by this equation. For reasons that will become clear later, we shall not follow him in this application of Occam's razor.

While (4) does not have the form of an identity, by which I mean an equation prefixed by universal quantifiers, Curry discovered that it could be replaced by a finite number of equations. These were later simplified, and Rosenbloom lists four, one of which reads:

$$(S^{\,\wr}((S^{\,\wr}(K^{\,\wr}S))^{\,\wr}K))^{\,\wr}(K^{\,\wr}I)=I.$$

The reader will forgive us for not copying out the other three!

By a *Curry algebra* we shall mean a Schönfinkel algebra subject to certain additional equations or identities whose conjunction is equivalent to (4). Curry's result may then be formulated thus:

Proposition 2. Over a Curry algebra A every polynomial $\varphi(x)$ may be uniquely written in the form $f \ x$ with $f \in |A|$.

This property of Curry algebras is called *functional completeness*. It is an immediate consequence of the equivalence of (4) with the conjunction of the above mentioned four equations. For a proof we could refer the reader to the book by Rosenbloom. However, we prefer to give another proof, in the course of which we shall discover five equations whose conjunction is equivalent to (4).

Proof. Let $\lambda_x \varphi(x)$ be defined by induction on the length of the word $\varphi(x)$ thus:

- (i) $\lambda_x x = I$,
- (ii) $\lambda_x a = K^{\wr} a$, when a is a constant;
- (iii) $\lambda_x(\psi(x))^{\dagger}\chi(x) = (S^{\dagger}\lambda_x\psi(x))^{\dagger}\lambda_x\chi(x)$ when $\psi(x)$ and $\chi(x)$ are not both constant.

We shall prove below that the restriction on (iii) is not necessary. In view of the above proof of Proposition 1, we have

$$\varphi(x) = \lambda_x \varphi(x)^{\,\prime} x$$

so the existence of f with $\varphi(x) \equiv f^{\ell}x$ is assured. It remains to prove its uniqueness. First, we claim that

(*)
$$\varphi(x) = \psi(x) \text{ implies } \lambda_x \varphi(x) = \lambda_x \psi(x),$$

so that $\lambda_x \varphi(x)$ depends not just on the word $\varphi(x)$ but on the polynomial $\varphi(x)$, that is, the word modulo the equivalence relation =

To prove (*), we write $\varphi(x) \equiv \psi(x)$ for $\lambda_x \varphi(x) = \lambda_x \psi(x)$. It is easily seen that \equiv is an equivalence relation between words which satisfies (0_X) , that is, a congruence relation. If we make sure that \equiv also satisfies (1_X) to (3_X) it will follow that \equiv contains \equiv , and this is what (*) asserts.

To say that = satisfies (1_X) means that

$$\lambda_x(I^{\wr}\alpha(x)) = \lambda_x\alpha(x).$$

Writing a for $\lambda_x \alpha(x) X$ we may rewrite this, in view of the unrestricted (iii), as

$$(S^{\wr}(K^{\wr}I))^{\wr}a = a,$$

an easy consequence of

$$(4.1) S^{\wr}(K^{\wr}I) = I,$$

which itself has already been derived from (4).

In the same manner we may obtain consequences (4.2) and (4.3) of (4) which imply (2_X) and (3_X) respectively. We shall not bother to spell them out.

We now turn to the uniqueness of f in Proposition 2. Suppose also $g^{\wr}x \equiv \varphi(x)$, we claim that $g = \lambda_x \varphi(x)$. Now, by (*) $\lambda_x(g^{\wr}x) = \lambda_x \varphi(x)$, so it suffices to prove that $\lambda_x(g^{\wr}x) = g$.

Now a small calculation shows that $\lambda_x(g^{\,i}x) = (S^{\,i}(K^{\,i}g))^{\,i}I$, so we require the identity

$$(S^{\wr}(K^{\wr}g))^{\wr}I=g$$

for all g, which is an easy consequence of (4).

This identity must remain valid if we adjoin an indeterminate y to the algebra, so we have

$$(S^{\wr}(K^{\wr}y))^{\wr}I \equiv y.$$

We may therefore replace the required identity by the equation

$$(4.4) \lambda_{\nu}(S^{\,\prime}(K^{\,\prime}y))^{\,\prime}I = y.$$

Of course the A may be eliminated from this using (i) to (iii).

It remains to show the validity of (iii) when $\psi(x)^{\wr}\chi(x)$ is constant, say $b^{\wr}c$. So we want to show that

$$\lambda_x(b^{\,\prime}c) = (S^{\,\prime}(K^{\,\prime}b))^{\,\prime}(K^{\,\prime}c).$$

But, by (ii), $\lambda_x(b^{\,\prime}c) = K^{\,\prime}(b^{\,\prime}c)$, so we are led to stipulate the identity

$$(S^{\wr}(K^{\wr}b))^{\wr}(K^{\wr}c) = K^{\wr}(b^{\wr}c)$$

for all b and c. gain, this is an easy consequence of (4). By the same argument as above, we may replace the stipulated identity by the equation

$$(4.5) \lambda_x \lambda_y ((S^{\wr}(K^{\wr}x))^{\wr}(K^{\wr}y)) = \lambda_x \lambda_y (K^{\wr}(x^{\wr}y)).$$

The proof of Proposition 2 is now complete, provided we adopt (4.1) to (4.5) as the five equations which a Curry algebra must satisfy in addition to the identities (1) to (3).

From now on we shall write $\lambda_x \varphi(x)$ for the unique f corresponding to $\varphi(x)$ by Proposition 2, as we did in the proof. The properties of the new symbol λ_x are embodied in the λ -calculus of Church (1932). The equivalence of the systems of Curry and Church (λK -calculus, 1941) are summed up as follows.

Proposition 3. The identities and equations of Curry algebras imply and are implied by the following:

- (1) $I = \lambda_x x$,
- (2) $K = \lambda_x \lambda_y x$,
- $(3) S = \lambda_u \lambda_v \lambda_z((u^{\wr}z)^{\wr}(v^{\wr}z)),$

(4)
$$\lambda_x(f^{\wr}x) = f$$
,

(5)
$$(\lambda_x \varphi(x))^{\wr} a = \varphi(a)$$
.

The proof is almost straightforward. We shall only explain why (5) holds for Curry algebras. By Proposition 2, we have $f^{\ell}x = \varphi(x)$ and we want to deduce from this that $f^{\ell}a = \varphi(a)$. by the universal property of A[x], there exists a unique homomorphism $h': A[x] \longrightarrow A$ such that $h' = h_x$ and h'(x) = a. This is of course the substitution homomorphism which replaces x by a, hence yields the required equation from $f^{\ell}x = \varphi(x)$.

To recapture the traditional terminology, let us mention that the theory of Curry algebras is called *combinatory logic*. Proposition 2 may then be compressed into the slogan:

combinatory logic = λ -calculus.

Incidentally, *combinators* are the canonical elements of Curry (or Schonfinkel) algebras, that is, the elements of the free Curry algebra generated by the empty set.

Both Schönfinkel and Curry had intended to use combinatory logic for the foundations of mathematics. An obstacle arose in the following result.

References