Basic Principles of Point Estimation

Statistical Theory

Guillaume Dehaene Ecole Polytechnique Fédérale de Lausanne

- 1 The Problem of Point Estimation
- 2 Bias, Variance and Mean Squared Error
- The Plug-In Principle
- 4 The Moment Principle
- The Likelihood Principle

The Problem of Point Estimation

Point Estimation for Parametric Families

- Collection of r.v.'s (a random vector) $\mathbf{X} = (X_1, ..., X_n)$
- $\mathbf{X} \sim F_{\theta} \in \mathfrak{F}$
- \mathcal{F} a parametric class with parameter $\theta \in \Theta \subseteq \mathbb{R}^d$

The Problem of Point Estimation

- **1** Assume that F_{θ} is known up to the parameter θ which is unknown
- 2 Let $(x_1,...,x_n)$ be a realization of $\mathbf{X} \sim F_{\theta}$ which is available to us
- **3** Estimate the value of θ that generated the sample given $(x_1, ..., x_n)$

So far considered aspects related to point estimation:

- Considered approximate distributions of $g(X_1,...,X_n)$ as $n \uparrow \infty$
- Studied the information carried by $g(X_1,..,X_n)$ w.r.t θ
- Examined general parametric models

Today: How do we estimate θ in general? Some general recipes?

Point Estimators

Definition (Point Estimator)

Let $\{F_{\theta}\}$ be a parametric model with parameter space $\Theta \subseteq \mathbb{R}^d$ and let $\mathbf{X} = (X_1, ..., X_n) \sim F_{\theta_0}$ for some $\theta_0 \in \Theta$. A point estimator $\hat{\theta}$ of θ_0 is a statistic $T : \mathbb{R}^n \to \Theta$, whose primary purpose is to estimate θ_0

Therefore any statistic $T: \mathbb{R}^n \to \Theta$ is a candidate estimator!

- \hookrightarrow Harder to answer what a *good* estimator is!
 - Any estimator is of course a random variable
 - ullet Hence as a general principle, good should mean: $\operatorname{dist}(\hat{ heta}) \ \operatorname{concentrated} \ \operatorname{around} \ heta$
 - \hookrightarrow An ∞ -dimensional description of quality.
 - Look at some simpler measures of quality?

Concentration around a Parameter

Bias, Variance and Mean Squared Error

Bias and Mean Squared Error

Definition (Bias)

The *bias* of an estimator $\hat{\theta}$ of $\theta \in \Theta$ is defined to be

$$\mathsf{bias}(\hat{ heta}) = \mathbb{E}_{ heta}[\hat{ heta}] - heta$$

Describes how "off" we're from the target on average when employing $\hat{\theta}.$

Definition (Unbiasedness)

An estimator $\hat{\theta}$ of $\theta \in \Theta$ is *unbiased* if $\mathbb{E}_{\theta}[\hat{\theta}] = \theta$, i.e. bias $(\hat{\theta}) = 0$.

Will see that not too much weight should be placed on unbiasedness.

Definition (Mean Squared Error)

The *mean squared error* of an estimator $\hat{\theta}$ of $\theta \in \Theta \subseteq \mathbb{R}$ is defined to be

$$MSE(\hat{\theta}) = \mathbb{E}_{\theta} \left[(\hat{\theta} - \theta)^2 \right]$$

Bias and Mean Squared Error

Bias and MSE combined provide a coarse but simple description of concentration around θ :

- Bias gives us an indication of the location of $dist(\hat{\theta})$ relative to θ (somehow assumes mean is good measure of location)
- MSE gives us a measure of spread/dispersion of dist($\hat{\theta}$) around θ
- ullet If $\hat{ heta}$ is unbiased for $heta \in \mathbb{R}$ then $\mathsf{Var}(\hat{ heta}) = \mathsf{MSE}(\hat{ heta})$
- for $\Theta \subseteq \mathbb{R}^d$ have $MSE(\hat{\theta}) := \mathbb{E} ||\hat{\theta} \hat{\theta}||^2$.

Example

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ and let $\hat{\mu} := \overline{X}$. Then

$$\mathbb{E}\hat{\mu} = \mu$$
 and $MSE(\mu) = Var(\mu) = \frac{\sigma^2}{n}$.

In this case bias and MSE give us a complete description of the concentration of $\operatorname{dist}(\hat{\mu})$ around μ , since $\hat{\mu}$ is Gaussian and so completely determined by mean and variance.

The Bias-Variance Decomposition of MSE

$$\mathbb{E}[\hat{\theta} - \theta]^{2} = \mathbb{E}[\hat{\theta} - \mathbb{E}\hat{\theta} + \mathbb{E}\hat{\theta} - \theta]^{2}$$

$$= \mathbb{E}\left\{(\hat{\theta} - \mathbb{E}\hat{\theta})^{2} + (\mathbb{E}\hat{\theta} - \theta)^{2} + 2(\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta)\right\}$$

$$= \mathbb{E}(\hat{\theta} - \mathbb{E}\hat{\theta})^{2} + (\mathbb{E}\hat{\theta} - \theta)^{2}$$

Bias-Variance Decomposition for $\Theta \subseteq \mathbb{R}$

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias^2(\hat{\theta})$$

- A simple yet fundamental relationship
- Requiring a small MSE does not necessarily require unbiasedeness
- Unbiasedeness is a sensible property, but sometimes biased estimators perform better than unbiased ones
- Sometimes have bias/variance tradeoff (e.g. nonparametric regression)

Bias-Variance Tradeoff

Consistency

Can also consider quality of an estimator not for given sample size, but also as sample size increases.

Consistency

A sequence of estimators $\{\hat{\theta}_n\}_{n\geq 1}$ of $\theta\in\Theta$ is said to be *consistent* if

$$\hat{\theta}_n \stackrel{P}{\to} \theta$$

- A consistent estimator becomes increasingly concentrated around the true value θ as sample size grows (usually have $\hat{\theta}_n$ being an estimator based on n iid values).
- Often considered as a "must have" property, but...
- A more detailed understanding of the "asymptotic quality" of $\hat{\theta}$ requires the study of dist $[\hat{\theta}_n]$ as $n \uparrow \infty$.

Consistency: $X_1,...,X_n \sim \mathcal{N}(0,1)$, plot \bar{X}_n for n=1,2,...

The Plug-In Principle

Plug-In Estimators

Want to find general procedures for constructing estimators.

- \hookrightarrow An idea: $\theta \mapsto F_{\theta}$ is bijection under identifiability.
 - ullet Recall that more generally, a parameter is a function $u: \mathcal{F} \to \mathcal{N}$
 - Under identifiability $\nu(F_{\theta}) = q(\theta)$, some q.

The Plug-In Principle

Let $\nu = q(\theta) = \nu(F_{\theta})$ be a parameter of interest for a parametric model $\{F_{\theta}\}_{\theta \in \Theta}$. If we can construct an estimate \hat{F} of F_{θ} on the basis of our sample \mathbf{X} , then we can use $\nu(\hat{F})$ as an estimator of $\nu(F_{\theta})$. Such an estimator is called a *plug-in estimator*.

- Essentially we are "flipping" our point of view: viewing θ as a function of F_{θ} instead of F_{θ} as a function of θ .
- Note here that $\theta = \theta(F_{\theta})$ if q is taken to be the identity.
- In practice such a principle is useful when we can explicitly describe the mapping $F_{\theta} \mapsto \nu(F_{\theta})$.

Parameters as Functionals of F

Examples of "functional parameters":

- The mean: $\mu(F) := \int_{-\infty}^{+\infty} x dF(x)$
- The variance: $\sigma^2(F) := \int_{-\infty}^{+\infty} [x \mu(F)]^2 dF(x)$
- The median: $med(F) := \inf\{x : F(x) \ge 1/2\}$
- An indirectly defined parameter $\theta(F)$ such that:

$$\int_{-\infty}^{+\infty} \psi(x - \theta(F)) dF(x) = 0$$

• The density (when it exists) at x_0 : $\theta(F) := \frac{d}{dx}F(x)\Big|_{x=x_0}$

The Empirical Distribution Function

Plug-in Principle

Converts problem of estimating θ into problem of estimating F. But how?

Consider the case when $\mathbf{X} = (X_1, ..., X_n)$ has iid coordinates. We may define the empirical version of the distribution function $F_{X_i}(\cdot)$ as

$$\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i \le y \}$$

- Places mass 1/n on each observation
- SLLN $\implies \hat{F}_n(y) \stackrel{a.s.}{\longrightarrow} F(y) \ \forall y \in \mathbb{R}$
 - \hookrightarrow since $\mathbf{1}\{X_i \leq y\}$ are iid Bernoulli(F(y)) random variables

Suggests using $\nu(\hat{F}_n)$ as estimator of $\nu(F)$

The Empirical Distribution Function

Seems that we're actually doing better than just pointwise convergence...

Theorem (Glivenko-Cantelli)

Let $X_1,...,X_n$ be independent random variables, distributed according to F. Then, $\hat{F}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}\{X_i \leq y\}$ converges uniformly to F with probability 1, i.e.

$$\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\xrightarrow{a.s.}0$$

Proof.

Assume first that $F(y) = y\mathbf{1}\{y \ge 0\}$. (ie: $X_i \sim U([0,1])$).

Fix a regular finite partition $0 = x_1 \le x_2 \le ... \le x_m = 1$ of [0,1] (so $x_{k+1} - x_k = (m-1)^{-1}$).

By monotonicity of F, \hat{F}_n

$$\sup_{x} |\hat{F}_n(x) - F(x)| < \max_{k} |\hat{F}_n(x_k) - F(x_{k+1})| + \max_{k} |\hat{F}_n(x_k) - F(x_{k-1})|$$

Adding and subtracting $F(x_k)$ within each term we can bound above by

$$2\max_{k}|\hat{F}_{n}(x_{k}) - F(x_{k})| + \max_{k}|F(x_{k}) - F(x_{k+1})| + \max_{k}|F(x_{k}) - F(x_{k-1})|$$

$$= \max_{k}|x_{k} - x_{k+1}| + \max_{k}|x_{k} - x_{k-1}| = \frac{2}{m-1}$$

by an application of the triangle inequality to each term. Letting $n\uparrow\infty$, the SSLN implies that the first term vanishes almost surely. Since m is arbitrary we have proven that, given any $\epsilon>0$,

$$\lim_{n\to\infty}\left[\sup_{x}|\hat{F}_n(x)-F(x)|\right]<\epsilon\quad a.s.$$

which gives the result when the cdf F is uniform.

For a general cdf F, we let $U_1, U_2, ... \stackrel{iid}{\sim} \mathcal{U}[0,1]$ and define

$$W_i := F^{-1}(U_i) = \inf\{x : F(x) \ge U_i\}.$$

Observe that

$$W_i \leq x \iff U_i \leq F(x)$$

so that $W_i \stackrel{d}{=} X_i$. By Skorokhod's representation theorem, we may thus assume that

$$W_i = X_i$$
 a.s.

Letting \hat{G}_n be the ecdf of $(U_1, ..., U_n)$ we note that

$$\hat{F}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}\{W_i \le y\} = n^{-1} \sum_{i=1}^n \mathbf{1}\{U_i \le F(y)\} = \hat{G}_n(F(y)),$$
 a.s.

in other words

$$\hat{F}_n = \hat{G}_n \circ F$$
, a.s.

Now let $A = F(\mathbb{R}) \subseteq [0,1]$ so that from the first part of the proof

$$\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|=\sup_{t\in A}|\hat{G}_n(t)-t|\leq \sup_{t\in[0,1]}|\hat{G}_n(t)-t|\stackrel{a.s.}{\to} 0$$

since obviously $A \subseteq [0, 1]$.

Example (Mean of a function)

Consider $\theta(F) = \int_{-\infty}^{+\infty} h(x) dF(x)$. A plug-in estimator based on the edf is

$$\hat{\theta} := \theta(\hat{F}_n) = \int_{-\infty}^{+\infty} h(x) d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n h(X_i)$$

Example (Variance)

Consider now $\sigma^2(F) = \int_{-\infty}^{+\infty} (x - \mu(F))^2 dF(x)$. Plugging in \hat{F}_n gives

$$\sigma^{2}(\hat{F}_{n}) = \int_{-\infty}^{+\infty} x^{2} d\hat{F}_{n}(x) - \left(\int_{-\infty}^{+\infty} x d\hat{F}_{n}(x)\right)^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}$$

Exercise

Show that $\sigma^2(\hat{F}_n)$ is a biased but consistent estimator for any F.

Example (Density Estimation)

Let $\theta(F) = f(x_0)$, where f is the density of F,

$$F(t) = \int_{-\infty}^{t} f(x) dx$$

If we tried to plug-in \hat{F}_n then our estimator would require differentiation of \hat{F}_n at x_0 . Clearly, the edf plug-in estimator does not exist since \hat{F}_n is a step function. We will need a "smoother" estimate of F to plug in, e.g.

$$\tilde{F}_n(x) := \int_{-\infty}^{\infty} G(x-y) d\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n G(x-X_i)$$

for some continuous G concentrated at 0.

- ullet Saw that plug-in estimates are usually easy to obtain via \hat{F}_n
- But such estimates are not necessarily as "innocent" as they seem.

4日 4日 4日 4日 4日 900

The Moment Principle

The Method of Moments

Panaretos: "Perhaps the oldest estimation method (K. Pearson)"

Method of Moments

Let $X_1,...,X_n$ be an iid sample from F_θ , $\theta \in \mathbb{R}^p$. The method of moments estimator $\hat{\theta}$ of θ is the solution w.r.t θ to the p random equations

$$\int_{-\infty}^{+\infty} x^{k_j} d\hat{F}_n(x) = \int_{-\infty}^{+\infty} x^{k_j} dF_{\theta}(x), \quad \{k_j\}_{j=1}^p \subset \mathbb{N}.$$

- In some sense this is a plug-in estimator we estimate the theoretical moments by the sample moments in order to then estimate θ .
- Useful when exact functional form of $\theta(F)$ unavailable
- While the method was introduced by equating moments, it may be generalized to equating p theoretical functionals to their empirical analogues.

Motivational Diversion: The Moment Problem

Theorem

Suppose that F is a distribution determined by its moments. Let $\{F_n\}$ be a sequence of distributions such that $\int x^k dF_n(x) < \infty$ for all n and k. Then,

$$\lim_{n\to\infty}\int x^k dF_n(x) = \int x^k dF(x), \quad \forall \ k\geq 1 \implies F_n \stackrel{w}{\to} F.$$

BUT: Not all distributions are determined by their moments!

Lemma

The distribution of X is determined by its moments, provided that there exists an open neighbourhood A containing zero such that

$$M_X(u) = \mathbb{E}\left[e^{-\langle u, X\rangle}\right] < \infty, \quad \forall \ u \in A.$$

Example (Exponential Distribution)

Suppose $X_1,...,X_n \stackrel{iid}{\sim} Exp(\lambda)$. Then, $\mathbb{E}[X_i^r] = \lambda^{-r}\Gamma(r+1)$. Hence, we may define a class of estimators of λ depending on r,

$$\hat{\lambda} = \left[\frac{1}{n\Gamma(r+1)} \sum_{i=1}^{n} X_i^r \right]^{-\frac{1}{r}}.$$

Tune value of r so as to get a "best estimator" (will see later...)

Example (Gamma Distribution)

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha,\lambda)$. The first two moment equations are:

$$\frac{\alpha}{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$
 and $\frac{\alpha}{\lambda^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$

yielding estimates $\hat{\alpha} = \bar{X}^2/\hat{\sigma}^2$ and $\hat{\lambda} = \bar{X}/\hat{\sigma^2}$.

Example (Discrete Uniform Distribution)

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathcal{U}\{1,2,...,\theta\}$, for $\theta \in \mathbb{N}$. Using the first moment of the distribution we obtain the equation

$$\bar{X} = \frac{1}{2}(\theta + 1)$$

yielding the MoM estimator $\hat{\theta} = 2\bar{X} - 1$.

A nice feature of MoM estimators is that they generalize to non-iid data.

 \rightarrow if $\mathbf{X} = (X_1, ..., X_n)$ has distribution depending on $\theta \in \mathbb{R}^p$, one can choose statistics $T_1, ..., T_p$ whose expectations depend on θ :

$$\mathbb{E}_{\theta} T_k = g_k(\theta)$$

and then equate

$$T_k(\mathbf{X}) = g_k(\theta), \quad k = 1, ..., p.$$

ightarrow Important here that \mathcal{T}_k is a reasonable estimator of $\mathbb{E}\mathcal{T}_k$. (motivation)

Comments on Plug-In and MoM Estimators

- Usually easy to compute and can be valuable as preliminary estimates for algorithms that attempt to compute more efficient (but not easily computable) estimates.
- Can give a starting point to search for better estimators in situations where simple intuitive estimators are not available.
- Often these estimators are consistent, so they are likely to be close to the true parameter value for large sample size.

 - → Estimating equation theory for MoM's
- Can lead to biased estimators, or even completely ridiculous estimators (will see later)

Comments on Plug-In and MoM Estimators

- The estimate provided by an MoM estimator may ∉ Θ! (exercise: show that this can happen with the binomial distribution, both n and p unknown).
- Will later discuss optimality in estimation, and appropriateness (or inappropriateness) will become clearer.
- Observation: many of these estimators do not depend solely on sufficient statistics
 - → Sufficiency seems to play an important role in optimality and it does (more later)
- Will now see a method where estimator depends *only* on a sufficient statistic, when such a statistic exists.

The Likelihood Principle

The Likelihood Function

A central theme in statistics. Introduced by Ronald Fisher.

Definition (The Likelihood Function)

Let $\mathbf{X} = (X_1, ..., X_n)$ be random variables with joint density (or frequency function) $f(\mathbf{x}; \theta)$, $\theta \in \Theta \subseteq \mathbb{R}^p$. The likelihood function $L(\theta)$ is the random function

$$L(\theta) = f(\mathbf{X}; \theta)$$

 \hookrightarrow Notice that we consider L as a function of θ NOT of \mathbf{X} .

Interpretation: Most easily interpreted in the discrete case \rightarrow How likely does the value θ make what we observed?

(can extend interpretation to continuous case by thinking of $L(\theta)$ as how likely θ makes something in a small neighbourhood of what we observed)

When **X** has iid coordinates with density $f(\cdot; \theta)$, then likelihood is:

$$L(\theta) = \prod_{i=1}^n f(X_i; \theta)$$

Maximum Likelihood Estimators

Definition (Maximum Likelihood Estimators)

Let $\mathbf{X} = (X_1, ..., X_n)$ be a random sample from F_{θ} , and suppose that $\hat{\theta}$ is such that

$$L(\hat{\theta}) \geq L(\theta), \quad \forall \ \theta \in \Theta.$$

Then $\hat{\theta}$ is called a maximum likelihood estimator of θ .

We call $\hat{\theta}$ *the* maximum likelihood estimator, when it is the unique maximum of $L(\theta)$,

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg\max} L(\theta).$$

Intuitively, a maximum likelihood estimator chooses that value of θ that is most compatible with our observation in the sense that *it makes what we observed most probable*. In not-so-mathematical terms, $\hat{\theta}$ is the value of θ that is most likely to have produced the data.

Comments on MLE's

Saw that MoMs and Plug-Ins often do not depend only on sufficient statistics.

- \hookrightarrow i.e. they also use "irrelevant" information
 - \bullet If T is a sufficient statistic for θ then the Factorization theorem implies that

$$L(\theta) = g(T(\mathbf{X}); \theta) h(\mathbf{X}) \propto g(T(\mathbf{X}); \theta)$$

i.e. any MLE depends on data ONLY through the sufficient statistic

• MLE's are also invariant. If $g:\Theta\to\Theta'$ is a bijection, and if $\hat{\theta}$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $g(\theta)$.

Comments on MLE's

- When the support of a distribution depends on a parameter, maximization is usually carried out by direct inspection.
- ullet For a very broad class of statistical models, the likelihood can be maximized via differential calculus. If Θ is open, the support of the distribution does not depend on θ and the likelihood is differentiable, then the MLE satisfies the log-likelihood equations:

$$\nabla_{\theta} \log L(\theta) = 0$$

- Notice that maximizing $\log L(\theta)$ is equivalent to maximizing $L(\theta)$
- When Θ is not open, likelihood equations can be used, provided that we verify that the maximum does not occur on the boundary of Θ .

Example (Uniform Distribution)

Let $X_1,...,X_n \stackrel{iid}{\sim} \mathcal{U}[0,\theta]$. The likelihood is

$$L(\theta) = \theta^{-n} \prod_{i=1}^{n} \mathbf{1}\{0 \leq X_i \leq \theta\} = \theta^{-n} \mathbf{1}\{\theta \geq X_{(n)}\}.$$

Hence if $\theta \leq X_{(n)}$ the likelihood is zero. In the domain $[X_{(n)}, \infty)$, the likelihood is a decreasing function of θ . Hence $\hat{\theta} = X_{(n)}$.

Example (Poisson Distribution)

Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Then

$$L(\lambda) = \prod_{i=1}^{n} \left\{ \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right\} \implies \log L(\lambda) = -n\lambda + \log \lambda \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \log(x_i!)$$

Setting $\nabla_{\lambda} \log L(\lambda) = -n + \lambda^{-1} \sum x_i = 0$ we obtain $\hat{\lambda} = \bar{x}$ since

$$abla_{\lambda}^2 \log L(\lambda) = -\lambda^{-2} \sum x_i < 0.$$
Statistical Theory (Week 5) Point Estimation