

Dense linear algebra: QR factorization

P. Amestoy, P. Berger, M. Daydé, F.-H. Rouet (INPT-ENSEEIHT) and J.-Y. L'Excellent (INRIA/LIP-ENS Lyon)

2019-2020

QR Factorization

1/23 2/23

QR Factorization

Example

3 / 23

▶ Definition of an orthonormal set $\{x_1, \ldots, x_k\}$

- $x_i^T x_j = 0 \quad \forall i \neq j$ $x_i^T x_i = 1$

ightharpoonup Orthogonal matrix Q: columns of Q form an orthonormal set $Q^T Q = I, Q^{-1} = Q^T$

► *QR* Factorization:

A
$$=$$
 Q

- ▶ *Q*: orthogonal.
- ▶ *R*: upper trapezoidal.

4 / 23

► Factorization built by applying a succession of orthogonal transformations to the data:

$$Q = Q_1 \dots Q_n$$

with Q_i orthogonal matrices such that $Q^TA = R$

- ► Transformations:
 - Householder reflections.
 - Givens rotations.
 - ▶ Gram-Schmidt process (in this case $Q \in \mathcal{M}_{m,n}(\mathbb{K})$ and $R \in \mathcal{M}_n(\mathbb{K})$)

Exercice 1 (Orthogonal projection)

Let $Q \in \mathcal{M}_{m,n}(\mathbb{R})$, $m \geq n$ be such that $Q^T.Q = I_n \in \mathcal{M}_n$. Let X be the n-dimensional span of the orthogonal set made of the columns of Q.

Show that $P_X = Q.Q^T \in \mathcal{M}_m(\mathbb{R})$ is the orthogonal projection onto X.

5/23

QR Factorization - Preamble

Definition 1 (Householder matrix)

 $\forall \mathbf{u} \in \mathbb{R}^n, \mathbf{u} \neq 0$, the Householder matrix $\mathbf{H}_u \in M_{n,n}(\mathbb{R})$ is defined such that:

$$\mathbf{H}_{u} = \mathbf{I} - \frac{2}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}}$$
.

Proposition 1

 \mathbf{H}_u is orthogonal ($\mathbf{H}_u^{\mathrm{T}}\mathbf{H}_u = \mathbf{I}$) and symmetric.

Proof.

 \mathbf{H}_u is obviously symmetric: $\mathbf{H}_u^{\mathrm{T}} = \mathbf{H}_u$.

One has
$$\mathbf{H}_{u}^{\mathrm{T}}\mathbf{H}_{u} = \left(\mathbf{I} - \frac{2}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}}\right)^{2} = \mathbf{I} + \frac{4}{\left(\mathbf{u}^{\mathrm{T}}\mathbf{u}\right)^{2}}\mathbf{u}\mathbf{u}^{\mathrm{T}}\mathbf{u}\mathbf{u}^{\mathrm{T}} - \frac{4}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}}.$$

Therefore,
$$\mathbf{H}_{u}^{\mathrm{T}}\mathbf{H}_{u} = \mathbf{I} + \frac{4}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}} - \frac{4}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}} = \mathbf{I}$$
.

Interpretation: $\mathbf{H}_u = \mathbf{I} - \frac{2}{\mathbf{u}^T \mathbf{u}} \mathbf{u} \mathbf{u}^T$.

Proposition 2

- $ightharpoonup H_u \mathbf{u} = -\mathbf{u}$
- $\forall x \in \mathbb{R}^n$, $H_u x = x$ if x and u orthogonal.

Geometric interpetation:

 $\forall \mathbf{x} \neq 0$, $\mathbf{H}_{u}\mathbf{x}$ is the symmetric of \mathbf{x} with respect to span $(\mathbf{u})^{\perp}$ Therefore, \mathbf{H}_{u} is a reflection.

Another view on: $\mathbf{H}_u = \mathbf{I} - \frac{2}{\mathbf{u}^T \mathbf{u}} \mathbf{u} \mathbf{u}^T$.

Let \mathbf{Q}_u be such that $\mathbf{Q}_u = \frac{\mathbf{u}}{\|\mathbf{u}\|_2}$.

From Exercice 1, $\mathbf{Q}_{u}\mathbf{Q}_{u}^{T}$ is a projection onto span(\mathbf{u}): $\frac{\mathbf{u}\mathbf{u}^{T}}{\mathbf{u}^{T}\mathbf{u}}$ is the orthogonal projection onto span(\mathbf{u}).

Therefore,

 $\mathbf{H}_{u} = \mathbf{I} - 2\mathbf{Q}_{u}\mathbf{Q}_{u}^{\mathrm{T}}$ is a symmetry with respect to span(\mathbf{u}) $^{\perp}$.

$\mathbf{H}_u = \mathbf{I} - \frac{2}{\mathbf{u}^T \mathbf{u}} \mathbf{u} \mathbf{u}^T$: towards the *QR* factorization?

 $\forall \mathbf{x} \in \mathbb{R}^n \ (\mathbf{x} \neq 0)$, can we find **u** such that $\mathbf{H}_u \mathbf{x}$ and e_1 collinear?

From a given \mathbf{x} , \mathbf{u} must be easy to compute.

Defining $\mathbf{u} = \mathbf{x} + \sigma \ \mathbf{e_1}$, we look for σ such that:

$$\mathbf{H}_{u}\mathbf{x} = \begin{bmatrix} -\sigma \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

12 / 23

9/23

Computation of $\sigma / \mathbf{H}_u \mathbf{x} = -\sigma \mathbf{e}_1$

Proposition 3

Let $\mathbf{x} \in \mathbb{R}^n$ be such that $\mathbf{x} \neq 0$, $x = (x_i)_{i=1,n}$ and $\sigma = sign(x_1) \|\mathbf{x}\|$. Defining $\mathbf{u} = \mathbf{x} + \sigma \ \mathbf{e}_1$, then

 $\mathbf{H}_{u}\mathbf{x} = -\sigma\mathbf{e}_{1}$, with \mathbf{e}_{1} the first vector of the standard basis.

Proof.

With $\mathbf{u} = \mathbf{x} + \sigma \ \mathbf{e}_1 \ (u \neq 0)$ we have

 $\mathbf{H}_{u}\mathbf{x} = \mathbf{H}_{u}\mathbf{u} - \sigma\mathbf{H}_{u}\mathbf{e}_{1} = -\mathbf{u} - \sigma\left(\mathbf{e}_{1} - \frac{2}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u}\mathbf{u}^{\mathrm{T}}\mathbf{e}_{1}\right) = -\sigma\mathbf{e}_{1} + \frac{2\sigma\mathbf{u}_{1}}{\mathbf{u}^{\mathrm{T}}\mathbf{u}}\mathbf{u} - \mathbf{u}.$ Furthermore,

Since $\mathbf{x}^{\mathrm{T}}\mathbf{u} = \mathbf{x}^{\mathrm{T}}\mathbf{u} + \sigma \mathbf{e}_{1}^{\mathrm{T}}\mathbf{u} = \mathbf{x}^{\mathrm{T}}(\mathbf{x} + \sigma \mathbf{e}_{1}) + \sigma(\sigma + x_{1}) = \mathbf{x}^{\mathrm{T}}\mathbf{x} + 2\sigma x_{1} + \sigma^{2}$ $\mathbf{x}^{\mathrm{T}}\mathbf{x} = \sigma^{2} \text{ and } u_{1} = x_{1} + \sigma,$ $\mathbf{u}^{\mathrm{T}}\mathbf{u} = 2\sigma(x_{1} + \sigma) = 2\sigma u_{1}.$

Therefore $\mathbf{H}_{\mu}\mathbf{x} = -\sigma\mathbf{e}_1$.

The choice of σ in Proposition 3 is motivated by $\mathbf{u}^{\mathrm{T}}\mathbf{u}\sim0$ if $\mathbf{x}\sim\mathbf{e}_{1}$

Householder reflections: an example

 $\mathbf{H} = I - 2\mathbf{v}.\mathbf{v}^T$ with $\mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{v}\|_2 = 1$.

H is orthogonal and symmetric.

It provides a way of vanishing all the entries of a vector except for one component.

Example:

$$x = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} \quad u = x + \begin{bmatrix} \|x\|_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix} \text{ and } \mathbf{v} = \frac{u}{\|u\|_2}$$

Then,

$$\mathbf{H}_{u} = I - 2\mathbf{v} \times \mathbf{v}^{T} = \frac{1}{15} \times \begin{bmatrix} -10 & 5 & -10 \\ 5 & 14 & 2 \\ -10 & 2 & 11 \end{bmatrix}$$

Therefore,

$$\mathbf{H}_{u} \times \mathbf{x} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$$

11/23

QR Factorization with Householder reflections: existence

Householder Triangularization

Theorem 1

Let $\mathbf{A} \in M_n(\mathbb{R})$ be a full rank matrix.

Then, there are $\mathbf{Q} \in M_n(\mathbb{R})$ orthogonal and $\mathbf{R} \in M_n(\mathbb{R})$ upper triangular such that

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

Proof.

see Exercice 2.

What about rectangular matrices?

The previous theorem can easily be extended to any matrix $\mathbf{A} \in M_{m,n}(\mathbb{R})$ $m \geq n$, with a rank equal to n. It can be shown that $\exists \mathbf{R} \in \mathbf{M}_n$ upper triangular such that

$$\mathbf{A} = \mathbf{Q} \left(\begin{array}{c} \mathbf{R} \\ 0 \end{array} \right)$$

13 / 23

Householder Factorization: example

From a Householder vector: $\mathbf{u} = \mathbf{x} \pm ||x||_2 e_1$, and its normalization $\mathbf{v} = \mathbf{u}/||\mathbf{u}||_2$ we can obtain a matrix that reads:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \\ 0 & a_{42} & a_{43} \\ 0 & a_{52} & a_{53} \end{bmatrix}$$

Let **H** be such that:

$$\mathbf{H} \times \begin{bmatrix} a_{22} \\ a_{32} \\ a_{42} \\ a_{52} \end{bmatrix} = \begin{bmatrix} a'_{22} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

If
$$\mathbf{H}' = \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{H} \end{bmatrix}$$
 then $\mathbf{H}' \times A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a'_{33} \\ 0 & 0 & a'_{53} \end{bmatrix}$

Exercice 2

Let $\mathbf{A} \in M_n(\mathbb{R})$ be a full rank matrix.

- 1. Show there exists $\mathbf{H}_1 \in M_n(\mathbb{R})$ orthogonal and $\alpha_1 \in \mathbb{R}$ such that $\mathbf{H}_1 \mathbf{A}(\mathbf{e}_1) = \alpha_1 \mathbf{e}_1$
- 2. Deduce from 1. that there exists a sequence of orthogonal matrices $\mathbf{H}_i, 1 \leq i \leq n-1$ such that $\mathbf{H}_{n-1} \dots \mathbf{H}_1 \mathbf{A} = \mathbf{R}$ with $\mathbf{R} \in M_n(R)$ triangular.

Definition 2

With $\mathbf{Q}^T = \mathbf{H}_{n-1} \dots \mathbf{H}_1$, exercice 2 leads to the Householder factorization $\mathbf{A} = \mathbf{Q}\mathbf{R}$

14 / 23

▶ Triangularization of a matrix 4×3 : $Q = \mathbf{H}_3 \times \mathbf{H}_2 \times H_1$

▶ QR backward stable, with a lower backward error than LU.

Exercice 3 (Memory consumption)

Compute the memory space required to do a QR factorization.

Exercice 4 (Computational complexity)

Estimate the amount of operations that are done during the Householder factorization.

Remark: the most expensive part of the algorithm occurs, at each step, when updating the reduce matrix $\mathbf{A}_k \in M_{n-k,n-k}(\mathbb{R})$.

$$\mathbf{A}_k = \mathbf{A}_k - \beta \mathbf{u}_k (\mathbf{u}_k^{\mathrm{T}} \mathbf{A}_k)$$
 avec $\beta = \frac{2}{\mathbf{u}_k^{\mathrm{T}} \mathbf{u}_k}$ et $\mathbf{u}_k \in \mathbb{R}^{n-k}$. (1)

Memory consumption

We do not compute \mathbf{H}_i : only the vectors \mathbf{u}_i are required.

The triangular part of \mathbf{A} is used to store these vectors (plus a vector of size n for the diagonal terms).

Therefore, the factorization can be done using the memory space allocated for the initial matrix (and a vector of size n).

Remark 1: **Q**-matrix product

Matrix product with **Q**: sequence of Householder transformations.

Remark 2: Computational complexity

We need to specify the **QR** algorithm.

17 / 23

18 / 23

Householder **QR** factorization algorithm

Function: $[\mathbf{v}, \beta] = house(x)$

Compute ${\bf v}$ and β such that ${\bf H}={\bf I}-\beta{\bf v}.{\bf v}^T$ is orthogonal, v(1)=1 and ${\bf H}{\bf x}=\|{\bf x}\|_2e_1$

v(1) is not stored (known value). We need a vector of size n for β .

Algorithm

Let $\mathbf{A} \in M_{m,n}(\mathbb{R})$ $m \ge n$, be a rectangular matrix. The step computing the Householder matrices reads

```
for k = 1, n do [\mathbf{v}, \beta] = house(\mathbf{A}(k:m,k)) \mathbf{A}(k:m,k+1:n) = (\mathbf{I}_{m-k+1} - \beta \mathbf{v}.\mathbf{v}^T)\mathbf{A}(k:m;k+1:n) \mathbf{A}(k,k) = -sign(\mathbf{A}(k,k))\|\mathbf{A}(k:m,k)\| if k \leq m then \mathbf{A}(k+1:m,k) = \mathbf{v}(2:m-k+1) end if end for
```

Computational complexity of the **QR** factorization

Step factorizing $\mathbf{A} = \mathbf{Q}\mathbf{R}$ with $\mathbf{A} \in M_{m,n}(\mathbf{R})$

for k = 1, n do

(1) Compute β (inner product)

for j = 1, n - k do

/* Let Col_j be the jth column of \mathbf{A}_k (size m-k)*/

 $(2) tmp = \mathbf{v}_k^{\mathrm{T}} \times Col_j \ (\mathbf{v}_k \in M_{m-k}(\mathbf{R}))$

(3) $tmp = \beta \times tmp$

(4) $Col_j = Col_j - tmp \times \mathbf{v}_k$

end for end for

2(m-k) flops for step (2) and (4), so 4(m-k)(n-k) flops per step k. It results in

$$4\sum_{k=1}^{n}(m-k)(n-k)\simeq 4\left(n^{3}/3+(m-n)n(n-1)/2\right)$$

It leads to a computational complexity of $\frac{4}{3}n^3$ for square matrices of size n

 \triangleright 2 × 2 rotation:

$$G(heta) = \left[egin{array}{cc} c & s \ -s & c \end{array}
ight]$$
 orthogonal

with $c = cos(\theta)$ and $s = sin(\theta)$.

▶ Application: $x = \{x_1, x_2\}$

$$c = \frac{x_1}{(x_1^2 + x_2^2)^{\frac{1}{2}}}$$
 et $s = \frac{-x_2}{(x_1^2 + x_2^2)^{\frac{1}{2}}}$

$$y = (y_1, y_2) = G^T x$$
 then $y_2 = 0$

▶ Specify the entries of a matrix that will vanish.

► Example: *QR* factorization

$$A = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \\ v_1 & v_2 & v_3 \end{bmatrix}$$

 \blacktriangleright We find (c, s) such that :

$$\left[\begin{array}{cc}c&s\\-s&c\end{array}\right]^T\times\left[\begin{array}{c}r_{11}\\v_1\end{array}\right]=\left[\begin{array}{c}r'_{11}\\0\end{array}\right]$$

21 / 23

Givens rotations

▶ Rotation in the (1,4) plane:

$$G(1,4) = \left[egin{array}{cccc} c & 0 & 0 & s \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ -s & 0 & 0 & c \end{array}
ight]$$

$$G(1,4)^T imes A = \left[egin{array}{ccc} r'_{11} & r'_{12} & r'_{13} \ 0 & r_{22} & r_{23} \ 0 & 0 & r_{33} \ 0 & v'_2 & v'_3 \end{array}
ight]$$

► Computational complexity: $2n^3$ flops for the triangularization of the matrix.

22 / 23