IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Wei-Yu'Lo et al.

Art Unit : Unknown

Serial No.:

Examiner: Unknown

Filed

: Herewith

Title

: LAC SHUTTLE VECTORS

BOX PATENT APPLICATION

Commissioner for Patents Washington, D.C. 20231

TRANSMITTAL OF PRIORITY DOCUMENT UNDER 35 USC § 119

Applicants hereby confirm their claim of priority under 35 USC § 119 from Taiwan Application No. 89110235 filed May 26, 2000.

A certified copy of the application from which priority is claimed is submitted herewith.

Please apply any charges or credits to Deposit Account No. 06-1050.

Respectfully submitted,

Date:

Fish & Richardson P.C. 225 Franklin Street

Boston, MA 02110-2804

Telephone: (617) 542-5070 Facsimile: (617) 542-8906

20197343.doc

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No	EL624273946US
-----------------------	---------------

I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington,

D.C. 20231.

Date of Deposit

Signature

Typed or Printed Name of Person Signing Certificate

ولع ولع ولع واع

ris ris ris :

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE
MINISTRY OF ECONOMIC AFFAIRS
REPUBLIC OF CHINA

茲證明所附文件,係本局存檔中原申請案的副本,正確無訛,

其申請資料如下:

This is to certify that annexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

申 請 日 : 西元 <u>2000</u> 年 <u>05</u> 月 <u>26</u> 日 Application Date

申 請 案 號: 089110235

Application No.

申 請 人: 華星生物科技股份有限公司

Applicant(s)

陳明那

發文日期: 西元 2000 年 12 月 29 日

Issue Date

Director

發文字號: 08911018589

Serial No.

申請日期:	案號:	
類別:		

(以上各欄由本局填註)

(以上谷(11)日	404		
		發明專利說明書	
_	中文	乳酸菌穿梭載體	
發明名稱	英文		
	姓 名(中文)	1. 羅瑋瑜 2. 羅敏菁 3. 廖珮如	
二 發明人	姓 名 (英文)	1.Wei-Yu Lo 2.Ming Ching Lo 3.Pei-Ru Liou	
	國籍	1. 中華民國 2. 中華民國 3. 中華民國 1. 台北市北投區東華路二段102巷1弄8號4樓 2. 台北縣汐止市樟樹一路187號13樓 3. 台北市石牌路二段318號2樓	
	姓 名 (名稱) (中文)	1. 華星生物科技股份有限公司	
	姓 名 (名稱) (英文)	1. ANAWRAHTA BIOTECH CO., LTD.	
申請人	國籍 住、居戶(事務所	1. 中華民國 1. 台北縣汐止市新台五路一段112號18樓 (1)	
-	代表人 姓 名 (中文)	1. 羅敏菁	
	代表人 姓 名 (英文)	1.	÷

四、中文發明摘要 (發明之名稱:乳酸菌穿梭載體)

本發明揭露一種乳酸菌穿梭載體,至少包括(a)一大腸桿菌質體複製起源區;(b)一真核細胞基因表現卡匣,其至少包括一真核細胞基因轉錄啟動子、多重限制酶選殖區及一轉錄終止區;(c)一乳酸菌質體序列,其至少包括一正股複製起源區及一與質體複製有關的蛋白質序列;以及(d)一非抗藥性篩選基因及其啟動子。本發明之乳酸菌穿梭載體以非抗藥性基因作為篩選標誌,因此特別適合用於食品及醫藥品之使用。

英文發明摘要 (發明之名稱:)

本案已向

國(地區)申請專利

申請日期

案號

主張優先權

無

有關微生物已寄存於 食品工業發展研究所 食品工業發展研究所 食品工業發展研究所 食品工業發展研究所 寄存日期 寄存號碼 2000/05/16 CCRC 940294 2000/05/16 CCRC 940295 2000/05/16 CCRC 910147

五、發明說明(1)

發明領域

本發明係有關於一種乳酸菌穿梭載體,特別是有關於可在真核細胞中表現外源性基因,並且具有非抗藥性篩選基因的乳酸菌穿梭載體之製備方法及用途。發明背景

目前已發展的DNA疫苗大部分藉由鼠傷寒桿菌
(Salmonella typhimurium)或是產單核細胞季斯特氏菌
(Listeria monocytegenes)作為媒介以攝取至動物體內
(Dietrich G., et al, 1998, Nature Biotech.,
16:181-185; Lowrie, D. B., 1998, Nature Med.,
4:147-148),其優點為可直接媒介DNA疫苗進入免疫細胞或是可刺激免疫系統,以加強免疫反應,其效果通常會比單獨使用DNA作為疫苗者更佳,但使用這兩類減毒菌種,仍不免可能因為菌種突變,反而造成危害生物體及致病之處。

當進行基因工程操作時,質體上必須載有篩選標誌基因(selection marker),以供挑選含有此質體之菌株。一般市售質體多以抗藥性基因,例如抗胺苄青黴素基因(Ampicillin resistance gene)及抗卡那黴素基因(Kanamycin resistance gene)作為篩選標誌,由於這些質體多使用於實驗室中,因此較無安全性之考量。然而,若要將質體作為醫藥級之疫苗用質體或食品級之菌株改良用質體,則抗藥性基因在進入生物體之後,可能經由自然界的傳導作用,使得生物體內的其他菌種也含有這些

五、發明說明 (2)

抗藥性基因,進而危害到使用此質體或其衍生物之生物體的健康。

因此,構築不含抗藥性基因之載體,且利用不會對生物體造成危害的媒介宿主,以在生物體內表現外源性基因或作為健康食品,或作為DNA疫苗,以提高其安全性及免疫效果,即為本發明之目的。

為改善傳統上DNA疫苗使用滅毒之傷寒桿菌及季斯特菌作為媒介,可能產生致病性的危險,因此,本發明選用乳酸菌作為疫苗媒介,以提高DNA疫苗的免疫效果及安全性。乳酸菌(Lactobacillus sp.)是屬於非致病性之革蘭氏陽性菌種,在乳製品及食品工業中具有主要的經濟效益,同時乳酸菌亦為腸道內的正常菌叢(normal flora)(Bomba A., et al, 1994, Vet. Med. (praha),39:701-710;Nemcova R., et al, 1998, DTW Dtschtierarztl wochenscher,105:199-200),且其菌體細胞壁上的一些化學組成份可刺激人體的免疫反應(Vilma M.A., et al, 1996, Chem. Pharm. Bull.,44(12):2263-2267),若對乳酸菌進行菌種改良,使乳酸菌可攜帶DNA疫苗或外源性蛋白基因,將可增進生物體攝取後的免疫力或健康狀況,或是可藉由分子遺傳工具來進行基因重組,以獲得在食品工業中更具經濟價值之乳酸菌種。

有鑑於此,本發明的主要目的在於提供一種乳酸菌穿梭載體,其至少包括: (a)一大腸桿菌質體複製起源

發明摘述

五、發明說明 (3)

區;(b)一真核細胞基因表現卡匣,其至少包括一真核細胞基因轉錄啟動子、多重限制酶選殖區及一轉錄終止區;(c)一乳酸菌質體序列,其至少包括一正股複製起源區及一與質體複製有關的蛋白質序列;以及(d)一非抗藥性篩選基因及其啟動子。

本發明的另一目的在於提供一種表現外源性基因的乳酸菌穿梭載體及試劑組,其係將含有外源性基因之前逃乳酸菌穿梭載體,送入至適當的真核宿主細胞,而表現出外源蛋白質。

本發明之又一目的在於提供一種基因疫苗載體,其係將致病原或腫瘤之抗原基因嵌入前述之乳酸菌穿梭載體內。

為了讓本發明之上述和其他目的、特徵以及優點能更明顯易懂,下文特舉較佳實施例並配合所附圖示,做詳細說明如下:

圖示之簡單說明

第1圖顯示pCLP1及pCLP2質體之構築;

第2圖顯示pCRII/EmrP-β-galactosidase質體之構築;

第3圖顯示pCLP3、pCLP4、pCLP5及pCLP6質體之構築;

第4圖顯示pCLP7及pCLP8質體之構築;

第5(A)-(G) 圖顯示乳酸菌穿梭載體基因pCLP7之核苷酸序列(序列辨識編號:1);

五、發明說明(4)

第6(A)-(G)圖顯示乳酸菌穿梭載體基因pCLP8之核苷酸序列(序列辨識編號:2);以及

第7圖顯示pCLP7及pCLP8質體之穩定性試驗結果,(A)是原始的質體,(B)是經100代繼代培養之後的限制酶圖譜;其中,(A)圖中:第1道為DNA標記(Gene RulerTM 1kb Ladder, MBI),第2、6道為未切之質體,第3、7道係以XbaI處理,第4、8道係以EcoRI處理,第5、9道係以HindIII處理,第10道為DNA標記(Gene RulerTM 100bp Ladder, MBI);其中第2-5道為質體pCLP7,第6-9道為質體pCLP8;(B)圖中:第1道為DNA標記(Gene RulerTM 100bp Ladder, MBI),第2道為DNA標記(Gene RulerTM 100bp Ladder, MBI),第2道為DNA標記(Gene RulerTM 1kb Ladder, MBI),第2道為DNA標記(Gene RulerTM 1kb Ladder, MBI),第3、7道為未切之質體,第4、8道係以XbaI處理,第5、9道係以EcoRI處理,第6、10道係以HindIII處理;其中第3-6道為質體pCLP7,第7-10道為質體pCLP8。

發明之詳細說明

在本發明中,名詞"穿梭載體"係指在載體上同時存在有大腸桿菌及乳酸菌之質體複製起源區(replication origin),使此載體可於大腸桿菌及乳酸菌中複製並增殖,以突破質體菌種種別的限制性。

如上所述,為了可在大腸桿菌中複製,並有利於後續基因工程之操作,因此,在本發明之乳酸菌穿梭載體中,構築在大腸桿菌中複製所需的複製起源區Col El。

此外,為了能在真核生物中表現外源性蛋白或作為

五、發明說明 (5)

DNA疫苗載體,在本發明之乳酸菌穿梭載體中,構築一真核細胞基因表現卡匣,其至少包括一真核細胞基因轉錄啟動子、多重限制酶選殖區(multiple cloning sites)以及一轉錄終止區。上述這些元素的使用均無特定的限制,並且為熟悉此技藝之人士所能了解,舉例而言,可使用的真核細胞基因轉錄啟動子包括,例如,細胞巨大病毒啟動子(CMV promoter)、SV40啟動子(Simian virus 40 early promotor)及RSV啟動子(Rous sarcoma virus)等。在本發明之較佳具體實施例中,真核細胞基因轉錄啟動子是細胞巨大病毒啟動子(此後簡稱pCMV),以及轉錄終止區是牛生長激素多腺苷酸(BGH poly(A))區,其可以終止合成並穩定信使核糖核酸(mRNA)。

目前已知有許多乳酸菌株內含有天然生成的質體,而這些質體上所帶有的乳酸菌質體複製起始區及複製所必需的蛋白基因,即可應用於本發明之穿梭載體。胚芽乳酸菌性已知含有三種大小的天然質體,分別是2.1、10.5及38.8仟鹼基(kb)(Yan T-R., et al, 1996,Chinese_Agri. Chem. Soc., 34:723-731),由於基因操作技術的方便性及質體穩定性之要求,本發明選取這三個質體中最小的一個。此質體已知大小為2.1 kb,含有質體正股複制起源區(plus origin of replication)、一開放譯讀架構(open reading frame)以及一段17個核苷酸為一組,共重複13次的複製控制區域,其中,由此開放譯讀架構可

五、發明說明 (6)

轉譯出一個包含317個氨基酸的蛋白質,稱為Rep A蛋白質,其功能可能與此質體之複製有關 (Bouia A., et al, 1989, Plasmid, 22:185-192; Bringel F., et al, 1989, Plasmid, 22:193-202)。本發明選取適當的限制酶 (例如,Bcl I),在不會破壞上述兩個重要元素的前提下,將此質體切成線狀。以利接入本發明之穿梭載體中。

本發明選擇以乳酸菌株德爾布呂克氏乳酸 菌<u>Lactobacillus</u> <u>delbrueckii</u> (亞 種<u>bulgaricus</u>) (CCRC 14008) 之 β- 半 乳 糖 苷 酶 (β-galactosidase) 基因作為篩選標誌基因,以取代抗藥性基因。β-半乳糖 苷酶基因的產物為代謝性酵素,其主要功能是將乳糖 (lactose) 分解為葡萄糖 (glucose) 及半乳糖 (galatose) (Schmidt B. F., et al, 1989, J. Bacteriol., 171:625-635)。因此,當菌株缺乏此酵素 (例如,大腸桿菌之JM109菌株),而生長環境又以乳糖 為唯一的碳源時,此菌株必須使用質體上之β-半乳糖苷 酶基因產物代謝乳糖,以提供其生長所需之葡萄糖碳源 (Hashiba H., 1992, Biosci. Biotech. Biochem., 56: 190-194)。因此,本發明以β-半乳糖苷酶基因作為篩選 標誌基因,不但可取代抗藥性基因的篩選功能,同時也符 合醫藥及食品之安全考量。構築於此質體上之β-半乳糖 苷酶基因,亦需要一啟動子以將其表現,更佳地,此啟動 子是表現力強之基因轉錄啟動子 (Hashiba H., 1992,

五、發明說明 (7)

Biosci. Biotech. Biochem., 56:190-194),以大量生產基因產物。在本發明之較佳具體實施例中,此啟動子是抗紅黴素基因啟動子(erythromycin resistance gene promoter;此後簡稱EmrP)。

根據本發明之設計,要利用上述之 β -半乳糖苷酶基因作為篩選標誌基因,並使菌株對其產生依賴性,則須先破壞宿主菌株本身之 β -半乳糖苷酶基因之功能(亦即,無法產生正常酵素功能的 β -半乳糖苷酶)。本發明利用N-甲基-N'-硝基-N-亞硝胍

(N-methyl-N'-nitro-N-nitrosoguanidine;MNNG),對處於生長旺盛期之宿主菌株進行處理;MNNG是一種烷化劑 (alkylating agent),其容易作用於鳥糞嘌呤 (guanine) 及胸腺嘧啶(thymine)而造成DNA突變,以進一步篩選出 β -半乳糖苷酶基因缺損的菌株。

適合於本發明之乳酸菌穿梭載體的宿主菌株並無特定菌種的限制。本發明選擇乾酪乳酸菌Lactobacilluscasei (亞種casei)作為載體之宿主,其優點有三:(1)此菌種為乳酪(cheese)生產菌種之一,符合食品安全性之要求;(2)此菌種可在腸道中附著及群落化(colonization);以及(3)本發明之穿梭載體中所包含的乳酸菌質體複製起源區,已知可在此宿主菌株中穩定地複製及分離(segregation)(Leer R., et al, 1992,Mol. Gen. Genet., 234:265-274; Posno M., et al, 1991, Appl. Environmental Microbiol. 57:1822-1828

五、發明說明 (8)

)。應了解的是,乳酸菌屬於革蘭氏陽性細菌,而本發明之穿梭載體同時帶有大腸桿菌及乳酸菌之複製起源區,因此,在遺傳上性質相似的革蘭氏陽性細菌均可作為本發明之宿主,此為熟悉於此技藝者所已知。因此,將一適當的宿主菌株進行突變,以產生β-半乳糖苷酶基因缺損的菌株,即可使用於本發明之乳酸菌穿梭載體作為宿主菌株。在本發明之較佳具體實施例中,Lactobacillus casei(亞種casei)以MNNG作用劑處理後,經5-溴-4-氯-3-吲哚基-β-吡喃半乳糖(X-gal)及選擇性培養基的篩選後,得到一突變株(Lac-mutant,命名為Ana-1),寄存於中華民國食品工業發展研究所菌種中心,寄存號碼:CCRC 910147,申請日:中華民國89年5月16日。

在本發明之乳酸菌穿梭載體的多重限制酶選殖區中, 插入適當的致病原或腫瘤之抗原基因,即可得一基因疫苗 載體;將此基因疫苗載體轉形(transform)至β-半乳糖 苷酶基因缺損的宿主菌株中,再以注射(例如,靜脈、動 脈、皮下、腹膜、顱內或肌肉注射)或口服的方式進入生 物體中,此時藉由生物體本身之胞飲或吞噬作用

(phragocytosis),而可進入生物體的細胞中。由於本發明之乳酸菌穿梭載體上具有真核細胞基因轉錄啟動子,所以此時所攜帶的抗原基因即可表現並作用。本發明之乳酸菌穿梭載體配合β-半乳糖苷酶基因缺損的乳酸菌宿主,在作為基因疫苗上,具有以下的優點:(1)乳酸菌無毒,也不會有致病性的疑慮;(2)乳酸菌菌體細胞壁上

五、發明說明 (9)

的化學組成份,可刺激並增強免疫反應;以及(3)以本發明之乳酸菌穿梭載體作為基因疫苗,其劑量遠低於直接注射DNA疫苗(前者約小於1毫克/劑量,而後者約需100毫克/劑量,且有注射部位的限制,例如,接近體表面的部位),同時也比使用病毒帶入較具安全性。

如上所述,將本發明之乳酸菌穿梭載體轉形至β-半乳糖苷酶基因缺損的宿主菌株,可使用任何已知的方法而達成,例如,藉由化學或物理的方法,如磷酸鈣、二甲基亞碸 (DMSO)、雙價陽離子等,或是以電衝法

(Electroporation)之高電壓,增加菌體細胞壁通透性,而把質體引入細菌體內。

本發明上述及之後在實施例中所使用的菌株,包括:
Lactobacillus delbrueckii (亞種bulgaricus) (CCRC 14008)、Lactobacillus plantarum (CCRC 10357)以及
Lactobacillus casei (亞種casei) (CCRC 10697),均

五、發明說明 (10)

備

購自中華民國食品工業發展研究所菌種中心(台灣,新竹)。三種菌株均以37°C培養在乳酸菌MRS培養液中(蛋白胰第3號,10克/公升;牛肉萃取物,10克/公升;酵母萃取物,5克/公升;葡萄糖,20克/公升;Tween 80,1克/公升;檸檬酸銨,2克/公升;醋酸鈉,5克/公升;MgSO4· $7H_2O$,0.1克/公升;MnSO4· H_2O ,0.05克/公升;K₂HPO4,2克/公升;pH 6.2-6.5)。實施例1: β -半乳糖苷酶基因缺損突變株(Ana-1)之製

將20微升(μL)隔夜培養的Lactobacillus casei (亞種casei),接種至1毫升之MRS培養液,並在37℃培養4小時,然後離心沈澱並以磷酸鹽緩衝食鹽水(PBS;50mM磷酸鉀;150mM氯化鈉;pH 7.2)清洗2次。將細菌沈澱物再懸浮於0.9毫升的PBS中,並以0.1毫升的MNNG(N-甲基-N'-硝基-N-亞硝胍;5毫克/毫升溶於0.05 M醋酸)處理。在37℃緩慢旋轉1小時之後,將細菌離心沈澱並以PBS清洗3次,然後再懸浮於0.1毫升的MRS培養液中。以MRS培養液進行10倍連續稀釋,在每個稀釋中取0.1毫升的菌液,各塗在含有40微升X-gal(20毫克/毫升)的100 mMMRS/洋菜培養基上。將這些培養基在37℃培養1-3天,挑選白色菌落作為Lactobacillus casei(亞種casei)的 β -半乳糖苷酶基因缺損突變株(Ana-1)。實施例2:

1. Lactobacillus plantarum 質體之分離

五、發明說明(11)

從15毫升MRS隔夜培養的培養液中收集Lactobacillus plantarum,將細菌以4.755毫升的溶液I(6.7%蔗糖;50 mM Tris-HCl,pH 7.6;1 mM EDTA,pH 8.0以及溶菌酶 100 微克/毫升),在37℃溶菌20分鐘。在加入482微升的溶液II(50 mM Tris-HCl,pH 7.6以及0.25 M EDTA)及276微升的溶液II(20%SDS;50 mM Tris-HCl,pH 7.6以及20 mM EDTA)之後,將混合物在37℃培養20分鐘,劇烈搖晃30秒,然後加入3 N NaOH 1.276毫升並旋轉10分鐘,關稅 最後再加入2 M Tris 496微升並旋轉10分鐘。為了萃取細菌蛋白質,將細菌溶胞物加入5 M NaCl 717微升及以3% NaCl 飽和的酚700微升,離心後,水溶液相以等體積的氣质。在混合及離心之後,水溶液相以等體積的異丙醇在0℃沈澱1小時,離心15分鐘,將DNA 沈澱物風乾並以20微升的水溶解。質體DNA的質與量,以1% 瓊脂糖電泳及溴化乙錠估計。

2. Lactobacillus plantarum 2.1 kb 質體之選殖

由Lactobacillus plantarum 分離的質體,以1%瓊脂糖凝膠電泳分開,並以GENRCLEAN III套組試劑 (Bio 101, La Jolla, CA) 純化。將2.1 kb的質體以BclI限制酶處理,並接進質體pCLPO的BglII位置,以產生質體pCLP1及pCLP2。質體pCLPO包含有CMV啟動子、BGHpoly(A)、Col E1複製起源區以及AmpR開放譯讀架構。上述質體的構造成份圖譜如第1圖所示。實施例3:

五、發明說明 (12)

1. <u>Lactobacillus delbrueckii</u> (亞種<u>bulgaricus</u>) 染色 體DNA的分離

從20毫升MRS隔夜培養的培養液中收集Lactobacillus delbrueckii(亞種bulgaricus),將細菌沈澱物在37℃再懸浮於1毫升的TES緩衝液(100 mM Tris;20 mM EDTA;20%蔗糖以及1毫克/毫升的溶菌酶)30分鐘。然後將細胞以乾冰-酒精浴冷凍並在37℃的水浴解凍,以此方式進行5次的冷凍-解凍。細胞藉由加入1/2體積的1%SDS溶液而溶菌。染色體DNA藉由三次的酚萃取而純化。DNA最後以酒精沈澱,風乾並溶解在水中。

2. β - 半乳糖苷酶基因的選殖

β-半乳糖苷酶基因藉由聚合酶鏈鎖反應 (PCR),而從Lactobacillus delbrueckii (亞種bulgaricus)的染色體DNA中放大。使用pfu Turbo™ DNA聚合酶 (STRATAGENE®);正向引子:

5' -aagctcatgaTTGGCAGCCAGTCTCCGGGGC-3';及反向引子:5' -gacctcatgaACCGTCGCTAGCGACACGCC-3'。PCR 反應條件為94 °C、30 秒,54 °C、30 秒以及72 °C、3 分鐘共反應30 個循環。反應完成後以0.8 % 瓊脂糖凝膠電泳分析PCR產物,並以GENRCLEAN III 套組試劑(Bio 101,La Jolla,CA)純化。將所純化的3 kb之 β -半乳糖苷酶DNA片段接到pcDNA3 载體(INVITROGENE)的EcoRV位置。將連接後的混合物轉形至大腸桿菌DH5 α 菌株。以X-gal/Amp LB洋菜膠培養基挑選帶有 β -半乳糖苷酶基因質體的藍色選殖株。

五、發明說明 (13)

實施例4:抗紅黴素基因啟動子(EmrP)DNA片段及抗紅黴素基因啟動子-β-半乳糖苷酶DNA片段的選殖

使用購自食品工業發展研究所菌種中心(台灣,新竹)的質體pVA838作為模板,藉由PCR以選殖EmrP DNA片段。所使用的正向引子為:

pCRII/EmrP質體以GFX Micro質體製備套組試劑 (Amersham Pharmacia Biotech) 純化,然後以BamHI使質體線形化,並以T4 DNA聚合酶補平末端。將β-半乳糖苷酶DNA片段從pcDNA3/β-半乳糖苷酶質體中藉由PCR放大,並接到線形化的pCRII/EmrP質體之平端,以構築pCRII/EmrP-β-半乳糖苷酶質體。以X-gal/Amp LB洋菜PK普養基挑選帶有pCRII/EmrP-β-半乳糖苷酶質體的藍色選殖株,並且以PCR及限制酶分析而進一步地確認。其質體構造成份圖譜如第2圖所示。

五、發明說明 (14)

實施例5:乳酸菌穿梭載體之構築

Emr P-β-半乳糖苷酶的DNA片段藉由PCR放大。在5、端磷酸化之後,DNA片段以GENRCLEAN III套組試劑 (Bio 101, La Jolla, CA) 純化,並接到質體pCLP1及pCLP2的NruI位置。將連接後的混合物以電衝法轉形至大腸桿菌JM109菌株。以X-gal/Amp LB洋菜膠培養基挑選帶有EmrP-β-半乳糖苷酶質體的藍色選殖株,並且以PCR及限制酶分析而進一步地確認。其質體構造成份圖譜如第3圖所示。

將穿梭載體pCLP3及pCLP5以BspHI處理,以去除抗胺苄青黴素基因。此1 kb大小含有抗胺苄青黴素基因的DNA片段,藉由膠體洗脫(gel-elution)而丟棄。將所純化之DNA片段接合,並再轉形至大腸桿菌JM109菌株。這些带有質體的選殖株,以L-M9(Na₂HPO₄,6克/公升;KH₂PO₄,3克/公升;NaCl,5克/公升;NH₄Cl,1克/公升;2 mMMgSO₄;0.1 %乳糖;0.1 mM CaCl₂;2 mM脯胺酸;50 μ M硫胺素)培養基而非Amp/LB培養基篩選,並且以PCR及限制酶分析而進一步地確認。其質體構造成份圖譜如第4圖所示。

實施例6:Ana-1 勝任細胞之製備

為了製備用於電衝法之勝任細胞,將1毫升隔夜培養之β-半乳糖苷酶基因缺損的突變菌株Ana-1,接種至50毫升補充1.25%甘胺酸的MRS培養液中,並在37℃培養3小時。將細胞離心沈澱,以冰冷的電衝/储存緩衝液(0.5 M蔗糖及10%甘油)清洗4次,並再懸浮於0.5毫升冰冷的電

五、發明說明 (15)

衝/儲存緩衝液中。質體DNA以QIAprep Miniprep套組試劑 (QIAGEN) 純化。將1微克的質體DNA與100微升的勝任細胞,在拋棄式小管(STRATAGENE®; 電極間距0.2公分)中混合。以2500 伏特的單一脈衝(600 ohm, $25~\mu$ F)傳遞至此DNA-細胞的混合物。脈衝之後,將細胞懸浮液以0.4毫升的MRS培養液直接稀釋,並在37 °C 中培養1.5 小時,以使得 β -半乳糖苷酶基因表現。將100 微升的細胞懸浮稀釋液塗在L-MRS(配方相同於MRS,除了葡萄糖以0.2 %的乳糖取代之外)洋菜培養基上,以篩選轉形株(transformants)。

由上述本發明之較佳具體實施例的說明可知,由於Bc1I及Bg1II限制酶所切出之4個露出5'端的單股核酸序列相同,因此線狀的乳酸菌質體(LP),可以兩種不同的方向插入質體pCLPO中(參見第1圖);以PCR方法篩選可得到兩種不同的質體。本發明將Rep A基因與CMV啟動子方向相同的質體稱為pCLP2。

由於這兩種質體均可在大腸桿菌中複製多代,同時其限制酶圖譜亦不會改變,因此本發明將乳酸菌LP質體接到大腸桿菌的質體之後,不會影響此質體在大腸桿菌中的複製數及質體穩定性。

當帶有β-半乳糖苷酶基因的質體進入染色體β-半乳糖苷酶基因缺損的菌株時,細菌為了能在選擇性培養基(含有乳糖但不含葡萄糖)中存活並複製,必須大量生產篩選標誌基因之產物,以代謝產生生長所需的元素(例

五、發明說明 (16)

如,半乳糖苷酶),因此,本發明選擇表現力強的基因轉錄啟動子EmiP。在構築EmiP-β-半乳糖苷酶基因之後,將其接入質體pCLP1及pCLP2中。由於均為平端接合(bluntend-ligation),因此,EmiP-β-半乳糖苷酶基因會以兩種不同的方向性接入。經過以PCR方法篩選,確實挑到4種不同的質體,分別命名為pCLP3、pCLP4、pCLP5及pCLP6(參見第3圖)。經過多次繼代培養之後,pCLP4及pCLP6的質體複製數及宿主菌體生長量明顯下降,因此推測pCLP4及pCLP6為結構上較不穩定的質體;反之,pCLP3及pCLP5則為結構上較穩定的質體。

接著,將pCLP3及pCLP5上的抗胺苄青黴素基因刪除,結果分別得到pCLP7及pCLP8(參見第4圖),當傳導進入大腸桿菌之後,菌株可生長於以乳糖為唯一碳源的培養基中;並且在經過繼代培養後,抽取其質體作限制酶圖譜分析,亦可確定其質體構造的穩定。因此,pCLP7及pCLP8這兩個穿梭載體,可適用於基因工程操作時的過程。pCLP7(序列辨識編號:1)的核酸序列如第5圖所示,其寄存號碼是CCRC 940294,申請日:中華民國89年5月16日;pCLP8(序列辨識編號:2)的核酸序列如第6圖所示,其寄存號碼是CCRC 940295,申請日:中華民國89年5月16日。pCLP7及pCLP8的限制酶圖譜請參見第7A圖。

此外,將上述本發明之穿梭載體pCLP7及pCLP8轉形進入β-半乳糖苷酶基因缺損的菌株Ana-1時,此菌株仍可在選擇性的培養基中生長;並且在經過100代的繼代培養

五、發明說明 (17)

後,抽取其質體作限制酶圖譜分析(參見第7B圖),亦可確定其質體構造的穩定性。

雖然本發明已以較佳具體實施例揭露如上,然其僅為舉例說明,而非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,所作之各種更動與潤飾之是在本發明之範疇之內,例如,對載體上各種元素位置之更動或以功能類似的元素取代、選擇其他宿主菌株等。因此,本發明之專利保護範圍當視後附之申請專利範圍所界定者為準。

六、申請專利範圍

- 1. 一種乳酸菌穿梭載體,其具有如序列辨識編號:1 (SEQ ID NO: 1)之核酸序列。
- 2. 如申請專利範圍第1項所述之乳酸菌穿梭載體,其於中華民國食品工業發展研究所菌種中心之寄存號碼是CCRC 940294,申請日:中華民國89年5月16日。
 - 3. 一種乳酸菌穿梭載體,其具有如序列辨識編號:2 (SEQ ID NO: 2)之核酸序列。
- 4. 如申請專利範圍第3項所述之乳酸菌穿梭載體,其於中華民國食品工業發展研究所菌種中心之寄存號碼是CCRC 940295,申請日:中華民國89年5月16日。
 - 5. 一種乳酸菌穿梭載體,其至少包括:
 - (a) 一大腸桿菌質體複製起源區;
- (b)一真核細胞基因表現卡匣,其至少包括一真核細胞基因轉錄啟動子、多重限制酶選殖區及一轉錄終止區;
- (c)一乳酸菌質體序列,其至少包括一正股複製起源區及一與質體複製有關的蛋白質序列;以及
 - (d) 一非抗藥性篩選基因及其啟動子。
- 6. 如申請專利範圍第5項所述之乳酸菌穿梭載體,其中該真核細胞基因轉錄啟動子為細胞巨大病毒啟動子。
- 7. 如申請專利範圍第5項所述之乳酸菌穿梭載體,其中該乳酸菌質體序列,是分離自胚芽乳酸
- 菌Lactobacillus plantarum 中之2.1 kb的質體。
 - 8. 如申請專利範圍第7項所述之乳酸菌穿梭載體,其

六、申請專利範圍

中在該乳酸菌質體序列中,與質體複製有關的蛋白質是含有317個氨基酸的蛋白質Rep A。

- 9. 如申請專利範圍第5項所述之乳酸菌穿梭載體,其中該非抗藥性篩選基因是β-半乳糖苷酶基因。
- 10. 如申請專利範圍第9項所述之乳酸菌穿梭載體,其中該β-半乳糖苷酶基因的啟動子是抗紅黴素基因啟動子。
- 11. 如申請專利範圍第1、3、5項中任一項所述之乳酸菌穿梭載體,其宿主為一革蘭氏陽性細菌,其中該細菌的基因組之β-半乳糖苷酶基因無法產生正常酵素功能。
- 12. 如申請專利範圍第11項所述之乳酸菌穿梭載體, 其中該宿主為乾酪乳酸菌<u>Lactobacillus casei</u>(亞 種<u>casei</u>)之突變株,其於中華民國食品工業發展研究所 菌種中心之寄存號碼是CCRC 910147,申請日:中華民國 89年5月16日。
 - 13. 一種表現外源性基因之試劑組,包括:
- (1)如申請專利範圍第1、3、5項中任一項所述之乳酸菌穿梭載體;
- (2)一乳酸菌穿梭載體之宿主細胞,其中該細胞的基因組之β-半乳糖苷酶基因無法產生正常酵素功能;以及
 - (3)一真核細胞。
 - 14. 一種DNA疫苗載體,其係指乳酸菌穿梭載體。

第 1 圖

第 2 圖

第 4 圖

10 20	30	40	50	60	
GATGTACGGG CCAGATATAC	GCGTTGACAT TV	GATTATTGA	CTAGTTATTA	ATAGTAATCA	
70 80	90	100	110	120	./_
ATTACGGGGT CATTAGTTCA	TAGCCCATAT A	TGGAGTTCC	GCGTTACATA	ACTTACGGTA	
130 140	150	160	170	180	
AATGGCCCGC CTGGCTGACC	GCCCAACGAC C	CCCGCCCAT	TGACGTCAAT	AATGACGTAT	
190 200	210	220	230	240	
GTTCCCATAG TAACGCCAAT	AGGGACTTIC C	ATTGACGTC	AATGGGTGGA	CTATTTACGG	
250 260	270	280	290	300	
TAAACTGCCC ACTTGGCAGT	ACATCAAGTG T	ATCATATGC	CAAGTACGCC	CCCTATTGAC	
310 320	330	340	350	360	
GTCAATGACG GTAAATGGCC	CGCCTGGCAT T	TATGCCCAGT	ACATGACCTT	ATGGGACTTT	
370 380	390	400	410	420	
CCTACTTGGC AGTACATCTA	CGTATTAGTC A	ATCGCTATTA	CCATGGTGAT	GCGGTTTTGG	
430 440	450	460	470	480	
CAGTACATCA ATGGGCGTGG	ATAGCGGTTT (CACTCACGGG	GATTTCCAAG	TCTCCACCCC	
490 500	510	520	530	540	
ATTGACGTCA ATGGGAGTTT	GTTTTGGCAC (CAAAATCAAC	GGGACTTTCC	AAAATGTCGT	
550 560	570	580	590	600	第5A圖
AACAACTCCG CCCCATTGAC	GCAAATGGGC	GGTAGGCGTG	TACGGTGGGA	GGTCTATATA	
610 620	630	640	650	660	
AGCAGAGCTC TCTGGCTAAC	TAGAGAACCC	ACTGCTTACT	GGCTTATCGA	AATTAATACG	
670 680	690	700	710	720	第5B圖
ACTCACTATA GGGAGACCCA	AGCTTGGTAC	CGAGCTCGGA	TCCACTAGTA	ACGGCCGCCA	
730 740 GTGTGCTGGA ATTCTGCAGA	A TATCCATCAC	ACIGGCGGC	GCICGAGCA:	' GCATCTAGAG	
790 800	810	820) 830	840	. ! !
GGCCCTATTC TATAGTGTC	A CCTAAATGCT	AGAGCTCGC	CATCAGCCTY	GACTGTGCCT	
850 (86) TCTAGTTGCC AGCCATCTG	870 T TGTTTGCCCC	TCCCCCTG	0 899 C CTTCCTTGA	900 C.CCTGGAAGGT	第50圖
910 92 GCCACTCCCA CTGTCCTTT	0 930 C 'CTAATAAAAT	94 GAGGAAATT	0 95 G CATCGCATT		
970 98	o ,990°	100	0 101	0 1020	
TGTCATTCTA TTCTGGGGG	G TGGGGTGGGG	CAGGACAGC	A AGGGGGAGG	A TIGGGAAGAC	第5E圖
1030 104	0 1050	106		0 1080	
AATAGCAGGC ATGCTGGGG	A TGCGGTGGGC	TCTATGGCT		A:AAGAACCAGC	
1090 110 TGCATTAATG AATCGGCCA	0 1110 A CGCGCGGGGA	112 GAGGCGGTI		0 1140 G CGCTCTTCCG	第5F圖
1150 116	0 1170	118	119	0 1200	j
CTTCCTCGCT CACTGACTC	CG CTGCGCTCGG	TOGTTOGGO	T GCGGCGAGC	CG GTATCAGCTC	
\$. ·	1	第 5A l	哥		第5G圖

第5A 圖

1210 ACTCAAAGGC G	1220 GTAATACGG TI	1230 TATCCACAG A	1240 ATCAGGGGA	1250 FAACGCAGGA A	1260 AGAACATGT
1270 GAGCAAAAGG (1280 CAGCAAAAG GO	1290 CCAGGAACC G	1300 TAAAAAGGC (1310 CGCGTTGCTG G	1320 CGTTTTCC
1330 ATAGGCTCCG	1340 CCCCCTGAC G	1350 AGCATCACA A	1360 AAATCGACG	1370 CTCAAGTCAG A	1380 LGGTGGCGAA
1390 ACCCGACAGG	1400 ACTATAAAGA T	1410 ACCAGGCGT I	1420	1430 AAGCTCCCTC	1440 STGCGCTCTC
1/150	1460 CCTGCCGCTT A	1470	1480	1490	1500
1510	1520 ATGCTCACGC T	1530	1540	1550	1560
1570	1580 GCACGAACCC C	1590	1600	1610	1620
1630	1640 CAACCCGGTA F	1650	1660	1670	1680
1690	1700 AGCGAGGTAT (1710	1720	1730	1740
1750		1770	1780	1790	1800
1810	1820	1830	1840	1850	1860
1870	TGGTAGCTCT ' 1880 GCAGCAGATT	1890	1900	1910	1920
1930	1940	1950	1960	1970	1980
1990	GTCTGACGCT 2000	2010	2020	2030	2040
2050	ATTTGAATGT 2060	2070	2080	2090	2100
CCCGAAAAGI	GCCACCTGAC	GTCGACGGAT 2130	CGGGAGATCA 2140	A ACGGTAAATC 2150	2160
2170	GTIGTCAGCT 2180	2190	2200	0 2210	2220
TTTGGAGTGT	AAGTGCACAT 2240	TATCATGTAG	TGCGCATTA'	r catgragtgo	GCATTATCAT
GTAGTGCGC2	A TTATCATGTA	GTGCGCATTA	TCATGTAGT	G CGCATTATCA 0 2330	TGTAGTGCGC 2340
ATTATCATG	r agrgcgcaca	TTATCATGTA	CATTATCAT 238	G TAGTGCGCAT	TATCATGTAG 2400
TGCGCACAT	T ATCATGTAGT	GCGCATTATC	ATGTAGTGC	G CATTATCATO	TAGTGCGCAC

第5B圖

TTACACACAA CATGAAGTTG TGTTGTGCTA AACCCATCAA AACCTGCATC AGATTTCGCG TTGCTCAAAC GTAACTGACT TGCGTCAGTT TGGAACATTC AAAAATAAAT AAGTTCAGTC GCTAGCTCCT TCGAACTTTT TTATTTTTGA ACGTTAATTT TAAAGGCTCT TATTTGCGTT CTAAGCGATT TTAGCTAACA GTTAGCTATC TAACTGTCTG TCAACGGTAA ATCGACTTAG 2670 2680 AGGGGCTTAT TGAGCCTTAC AGGCGATATT AGCCCCTCTT GGAGGCTTTA AGGAGTTGAT AGACTAGACA ATACCAAAAG CCTGACGTCT TGGAAAACAA GCCCTTGTTT TCCCGAGCCC AGCGGCGCA AGCGTTACGG TCCAGCTGGT TCAGCTGGTC AGTGTGGCTG AAAGCCACGG TTTAAAAAA GCAGTTCAGC GGTTTTTGCT GATCTGCTTT TTGGGGTTTA AAAACGCAAT TTTTGGCGTT TTCTTCTTAT CTTGATACTA TTAGCAACAA CTAGTTTTTT AAAATCAAGC TIGATTAGGC TTAATTGGGC TIGTATCCAT TGATTITATA GGCTTTTGGT GTATTATTAG GGTTATAAAT TGGTTGAAAG AAAGACAAAA TAAAAACCCA CGTGCAAATT CCTAGTTTGG CCGCTCGGAA CACGTGAGTT GATTATCATT TGCGATTTAT AGCCTATTCT AGGGGAAAAG CCCTATGATG TCAAGGTTAT AAGCTTATTG AAAAAGATAG TCAGCTCCTT CACGTGGATA AACTGGAGGA GCTTTTTATG TCAGAAATTT TTGAAGATAA AACTGAAAAT GGCAAAGTTA 260 GACCTTGGCG AGAACGGAAG ATTGAAAATG TGCGCTATGC CGAATATTTG GCAATCTTAG AATTTAAACG GGCACATGAT GTACGGGGTT GTGGTGAAGT TTTGCGTTTT CGTAAGATTG GCGAGCACTT AAAACTTTAT CAAACGÍGGT TTTGTCATAA ACGATTGTGT CCATTGTGTA ATTGGAGAAG GAGCATGAAA AACTCGAGCC AGTTAAAACA AATTATTGCG GAAGCAGTTG CAAGAGAGCC TAAAGGACGG TTTTTGTTTT TAACTTTAAC CGTTAAAAAC GCTCATTCAG CAGAGGAGTT AAAAGTGTCT TTAAGAGCTT TGACTAAAGC CTTTAATAAG CTAACTCGCT

3630 3640 ATAAAAAAGT GACTAAAAAT TTATTGGGTT ATTTACGTTC AACGGAAATT ACCGTTAATG AACAAGACGG GTCATATAAT CAACACTTGC ATGTGTTGCT GTTTGTAAAA TCAAGTTATT TTAAGAATTC AAATAATTAT TTAGCACAAG CAGAATGGGC AAAATTATGG CAAAAAGCCT TGAAAGTTGA TTATGAGCCT GTGGTGCATG TGCAGGCTGT TAAAGCTAAC AAACGTAAAG GAACTGACTC TTTGCAAGCT AGTGCCGAAG AAACGGCGAA ATACGAGGTA AAATCAGCTG ATTATATGAC GGCTGATGAT GAGCGTAATT TGGTGGTGAT TAAAAATTTG GAGTATGCCT TAGCTGGAAC ACGACAAATC AGCTATGGTG GATTATTAAA GCAAATTAAG CAAGATTTGA AACTIGAAGA TGTTGAGAAT GGTGATTTAG TTCATGTTGG CGATGAAGAT TACACCAAAG AGCAAATGGA AGCTGCGGAA GAAGTTGTCG CAAAATGGGA TTTTAATAAA CAAAATTATT TTATTTGGTA AAGAGAATGT CAGGATATGA TCTCCCGATC CCCTATGGTC GACTCTCAGT 4230 4240 ACAATCTGCT CTGATGCCGC ATAGTTAAGC CAGTATCTGC TCCCTGCTTG TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG CAAAATTTAA GCTACAACAA GGCAAGGCTT GACCGACAAT 4350 4360 TGCATGAAGA ATCTGCTTAG GGTTAGGCGT TTTGCGCTGC TTCGTTAGAA GCAAACTAAG AGTGTGTTGA GTAGTGCAGT ATCTTAAAAT TTTGTATAAT AGGAATTGAA GTTAAATTAG ATGCTAAAAA TTTGTAATTA AGAAGGAGTG ATTACATGAT TGGCAGCCAG TCTCCGGGCA ATTAATGAAC TTGGACATGG TTGACGACCC GGTCTTTGCA AGCCGAATTC GACCACACTG 580 **4**590 GCGGCCGTTA CTAGGGTATC GATCCGATAA AAAGTTAGGC GACGGCTTTG CCCTGGTGCC AGCAGACGGT AAGGTCTACG CGCCATTTGC CGGTACTGTC CGCCAGCTGG CCAAGACCCG GCACTOGATO GTOCTGGAAA ATGAACATGG GGTCTTGGTC TTGATTCACC TTGGCCTGGG CACGGTCAAA TTAAACGGGA CTGGCTTTGT CAGCTATGTT GAAGAGGGCA GCCAGGTAGA

第5D 圖

A	4810 AGCCGGCCAG	4820 CAGATCCTGG	4830 AATTCTGGGA	4840 CCCGGCGATC	4850 AAGCAGGCCA	4860 AGCTGGACGA
	4870	4880	4890	4900	4910 AATAGCCAGA	4920
	4930	4940	4950	4960	4970 TTAGAAGGGA	4980
•					5030	
1	4990 TAATGAGCAAT	AAGTTAGTAA	AAGAAAAAG	AGTTGACCAG	GCAGACCTGG	CCTGGCTGAC
•	5050 IGACCCGGAA	5060 GTTTACGAAG	5070 TCAATACAAT	5080 TCCCCCGCAC	5090 TCCGACCATG	5100 AGTCCTTCCA
	5110	5120	5130	5140	5150	5160
1					CAGTCCCTGG	
,	5170 GCTGATTGAC	5180 TACGCTGAAA	5190 ACGGCCAGGG	5200 ACCAGTCAAC	5210 TTCTATGCAG	5220 AAGACTTTGA
	5230 CGATAGCAAT	5240 TTTAAGTCAG	.5250 TCAAAGTACC	5260 CCGCCAACCTC	5270 GAACTGCAAG	5280 GCTTTGGCCA
	5290	5300	5310	5320	5330	5340
	GCCCCAGTAT	GTCAACGTCC	AATATCCATC	G GGACGGCAGT	r GAGGAGATTI	TCCCGCCCCA
	5350 AATTCCAAGO	5360 AAAAATCCGC	5370 TCGCTTCTT) 5380 A TGTCAGATAC	5390 TTTGACCTGG	5400 ATGAAGCTTT
	5410 CTGGGACAAO	5420 GAAGTCAGCT	5430 TGAAGTTTG	0 5440 A CGGGGCGCZ) 5450 A ACAGCCATCT	5460 TATGTCTGGCT
	5470 GAACGGCCAO	5480 TICGICGGCI	549 ACGGGGAAG	0 5500 A CTCCTTTAC	0 5510 C CCAAGCGAG	5520 T TTATGGTTAC
	5530 CAAGTTCCTV	5540 C AAGAAAGAA	555 A ATAACCGCC	0 556 T GGCAGTGGC	0 5570 T CTCTACAAG	0 5580 T ATTCTTCCGC
	559	0 560	561	0 562	0 563	0 5640
						T CAGTGACTCT
7	565 TCAGGCCAA	0 5660 G CCGCGTCTG	0 567 C ACTTGGAGG	0 568 A CCTTAAGCT	0 569 T ACGGCCAGC	0 5700 T TGACCGATAA
	571	0 572	0 573	574	0 575	0 5760 C CAAATGCCAG
	577 CTTTAAGCT	0 578 G GAAGTGCGG	O 579 G ATAGTGAAC	90° 580 G TGACTTGGI	T GCTGAAAAC	.0 5820 C TGGGCCCAAT
	583	0 584	.0 585	50 586	50 587	0 5880
	CAGAAGCGA	G CAGCTGGAA	T TCACTCTGO	C TGATTTGC	CA GTAGCTGCC	T GGAGCGCGGA
	589 447 YYYYAA	0 590 כ כייייאריראס	0 591 G TCCGCCTG	10	20 593 AG GCAGGCAG(5940 C TCTTAGAGGT
	595	50 596	50 59'	70 59	80 5 99	90 6000
	TAGCCGGC	G GAAGTGGGT	T TCCGCAAC	TT TGAACTAA	AA GACGGGAT	ra tgtaccttaa

第5E 圖

6020 6030 6040 CGGCCAGCGG ATCGTCTTCA AGGGGGCCAA CCGGCACGAA TTTGACAGTA AGTTGGGTCG GGCTATCACG GAAGAGGATA TGATCTGGGA CATCAAGACC ATGAAGCGAA GCAACATCAA TGCTGTCCGC TGCTCTCACT ACCCGAACCA GTCCCTCTTT TACCGGCTCT GTGACAAGTA CGGCCTTTAC GTCATTGATG AAGCTAACCT GGAAAGCCAC GGCACCTGGG AAAAAGTGGG 6280 6290 GGGGCACGAA GATCCTAGCT TCAATGTTCC AGGCGATGAC CAGCATTGGC TGGGAGCCAG CTTATCCCGG GTGAAGAACA TGATGGCTCG GGACAAGAAC CATGCTTCAA TCCTAATCTG 6400 6410 6420 GTCTTTAGGC AATGAGTCTT ACGCCGGCAC TGTCTTTGCC CAAATGGCTG ATTACGTCCG GAAGGCTGAT CCGACCCGGG TTCAGCACTA TGAAGGGGTG ACCCACAACC GGAAGTTTGA 6510 6520 6530 CGACGCCACC CAGATTGAAA GCCGGATGTA TGCTCCGGCC AAGGTAATTG AAGAATACTT GACCAATAAA CCAGCCAAGC CATTTATCTC AGTTGAATAC GCTCACGCCA TGGGCAACTC 6610 6620 6630 CGTCGGTGAC CTGGCCGCCT ACACGGCCCT GGAAAAATAC CCCCACTACC AGGGCGGCTT CATCTGGGAC TGGATTGACC AAGGACTGGA AAAAGACGGG CACCTGCTTT ATGGGGGCGA CTTCGATGAC CGGCCAACCG ACTATGAATT CTGCGGGAAC GGCCTGGTCT TTGCTGACCG GACTGAATCG CCGAAACTGG CTAATGTCAA GGCCCTTTAC GCCAACCTTA AGTTAGAAGT 6870 6880 AAAAGATGGG CAGCTCTTCC TCAAAAACGA CAATTTATTT ACCAACAGCT CATCTTACTA CTTCTTGACT AGTCTTTTGG TCGATGGCAA GTTGACCTAC CAGAGCCGGC CTCTGACCTT TGGCCTGGAG CCTGGCGAAT CCGGGACCTT TGCCCTGCCT TGGCCGGAAG TCGCTGATGA AAAAGGGGAG GTCGTCTACC GGGTAACGGC CCACTTAAAA GAAGACTTGC CTTGGGCGGA TGAGGGCTTC ACTGTGGCTG AAGCAGAAGA AGTAGCTCAA AAGCTGCCGG AATTTAAGCC GGAAGGGCGG CCAGATTTAG TTGATTCCGA CTACAACCTA GGCCTGAAAG GAAATAACTT

第5F 圖

7210 7220 7230 7240 7250 CCAAATTCTC TTCTCCAAGG TCAAGGGCTG GCCGGTTTCC CTCAAGTATG CCGGTAGGGA ATACTTGAAG CGGCTGCCGG AATTTACCTT CTGGCGGGCC CTGACGGACA ACGACCGGGG 7360 7370 AGCTGGTTAC GGCTATGATC TGGCCCGGTG GGAAAATGCC GGCAAGTATG CCCGCTTGAA AGACATCAGC TGCGAGGTCA AGGAAGACTC CGTTTTGGTC AAGACTGCCT TTACGTTGCC 7470 7480 TGTCGCCTTA AAGGGTGATT TAACCGTGAC CTATGAAGTC GATGGACGGG GCAAGATTGC TGTAACAGCT GACTTCCCAG GCGCGGAAGA AGCTGGTCTC TTGCCAGCCT TTGGCTTGAA **7590 7600** CCTGGCCCTG CCAAAAGAAC TGACCGATTA CCGCTACTAT GGTCTGGGAC CTAATGAGAG CTACCCAGAC CGCTTGGAAG GTAATTACCT GGGCATCTAC CAGGGAGCGG TAAAAAAAGAA 7710 7720 7690 7700 CTTTAGCCCA TATCGTCCGC AGGAAACGGG CAACCGGAGC AAGGTTCGCT GGTACCAGCT 7760 7770 CTITGATGAA AAGGGCGGCT TGGAATTTAC GGCCAATGGG GCAGACTTGA ACTTGTCTGC TTTGCCATAT TCTGCCGCCC AAATTGAAGC AGCGGACCAC GCTTTTGAAC TGACTAACAA TTACACTTGG GTTAGAGCCT TAAGCGCCCA GATGGGGGTC GGCGGGGATG ACTCCTGGGG 7940 7950 GCAGAAGGTC CACCCGGAAT TCTGCCTGGA TGCTCAAAAA GCCCGCCAGC TTCGCCTGGT GATTCAGCCC CTTTTACTAA AATAAATGCT ACAATTGACT TAACAGGATG AAATTTTAGT 8050 8060 8070 8080 AAAAGCAAAG CGAGTGAGGA AGATGGCAAC GATCAGAGAA GTGCCAAGGC AGCCGGCGTG 8130 8140 8150 TCGCTAGCGA CGGTC....

	60	50	40	30	20	10
	ATAGTAATCA	TAGTTATTA	GATTATTGA	CGTTGACAT	CCAGATATAC	GATGTACGGG
	120 ACTTACGGTA	110 CGTTACATA	100 TGGAGTTCC	90 PAGCCCATAT	80 CATTAGTTCA	70 ATTACGGGGT
	180	170	160	150	140	130
	AATGACGTAT	IGACGTCAAT	CCCGCCCAT	GCCCAACGAC	CTGGCTGACC	AATGGCCCGC
	240	230	220	210	200	190
	CTATTTACGG	AATGGGTGGA	ATTGACGTC	AGGGACTTIC	TAACGCCAAT	GTTCCCATAG
	300	290	280	270	260	250
	CCCTATTGAC	CAAGTACGCC	ATCATATGC	ACATCAAGTG	ACTTGGCAGT	TAAACTGCCC
	360	350	340	330	320	310
	ATGGGACTTT	ACATGACCTT	TATGCCCAGT	CGCCTGGCAT	GTAAATGGCC	GTCAATGACG
	420	410	400	390	380	370
	GCGGTTTTGG	CCATGGTGAT	ATCGCTATTA	CGTATTAGTC	AGTACATCTA	CCTACTIGGC
	480	470	460	450	440	430
	TCTCCACCCC	GATTTCCAAG	GACTCACGGG	ATAGCGGTTT	ATGGGCGTGG	CAGTACATCA
	540	530	520	510	500	490
	AAAATGTCGT	GGGACTTTCC	CAAAATCAAC	GTTTTGGCAC	ATGGGAGTTT	ATTGACGTCA
第64圖		TACGGTGGGA	GGTAGGCGTG	GCAAATGGGC	CCCCATIGAC	AACAACTCCC
	660	650	640	630	620	610
	AATTAATACG	GGCTTATCGA	ACTGCTTACT	TAGAGAACCC	C TCTGGCTAAC	AGCAGAGCTO
l 第6B圖	A ACGGCCGCCA	TCCACTAGT	CGAGCTCGGA	AGCTTGGTAC		ACTCACTATA
 	780 GCATCTAGAG	GCTCGAGCA'	ACTGGCGGCC	TATCCATCAC	A ATTCTGCAGA	GTGTGCTGG
第60圖	0 840 C GACTGTGCCT	GATCAGCCT	AGAGCTCGC.	CCTAAATGCT	0 800 C TATAGTGTCA	79 GCCCTATT
 	0 900 C CCTGGAAGGT	CTTCCTTGA			0 860 C AGCCATCTGT	
第6D圖	960	CATCGCATT	94	930	0 920	91
I	G TCTGAGTAGG		GAGGAAATTV	CTAATAAAAT	A CIGICCITIC	GCCACTCCC
:	0 1020	AGGGGGAGG	100	990	0 980	97
第6E圓	A TTGGGAAGAC		CAGGACAGC	TGGGGTGGG	A TTCTGGGGG	TGTCATTCT
ļ	0 1080 A AAGAACCAGC		106 TCTATGGCT	1050 TGCGGTGGG	0 1040 C ATGCTGGGG	103 AATAGCAGG
第6F圖	0 1140 G CGCTCTTCCG	r GCGTATTGC	GAGGCGGTT	A CGCGCGGGG	G AATCGGCCA	109 TGCATTAAT
<u> </u>	0 1200	O 119	118	O 1170	60 116	115
	CG GTATCAGCTC	I GOGGOGAGO	TCGTTCGGC	G CTGCGCTCG	CT CACTGACTO	CTTCCTCGC
第 6G 圖		副	第 6A F			

第6A 圖

1240 1250 1260 1220 1230 ACTCAAAGGC GGTAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAAGGC CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG CCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA ATGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG CGCCTTATCC GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG TGGCCTAACT ACGGCTACAC TAGAAGGACA GTATTTGGTA TCTGCGCTCT GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC TCAAGAAGAT CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG TTAAGGGATT TTGGTCATGA GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC 2060 2070 CCCGAAAAGT GCCACCTGAC GTCGACGGAT CGGGAGATCA TATCCTGACA TTCTCTTTAC CAAATAAAAT AATTTTGTTT ATTAAAATCC CATTTTGCGA CAACTTCTTC CGCAGCTTCC 219Q, ATTTGCTCTT TGGTGTAATC TTCATCGCCA ACATGAACTA AATCACCATT CTCAACATCT TCAAGTTTCA AATCTTGCTT AATTTGCTTT AATAATCCAC CATAGCTGAT TTGTCGTGTT CCAGCTAAGG CATACTCCAA ATTTTTAATC ACCACCAAAT TACGCTCATC ATCAGCCGTC ATATAATCAG CIGATTITAC CICGTATITC GCCGITTCIT CGGCACTAGC TIGCAAAGAG

2420 2430 2440 TCAGTTCCTT TACGTTTGTT AGCTTTAACA GCCTGCACAT GCACCACAGG CTCATAATCA ACTITCAAGG CTTTTTGCCA TAATTTTGCC CATTCTGCTT GTGCTAAATA ATTATTTGAA 2540 2550 2560 TTCTTAAAAT AACTTGATTT TACAAACAGC AACACATGCA AGTGTTGATT ATATGACCCG TCTTGTTCAT TAACGGTAAT TTCCGTTGAA CGTAAATAAC CCAATAAATT TTTAGTCACT 2650 2660 2670 2680 TTTTTATAGC GAGTTAGCTT ATTAAAGGCT TTAGTCAAAG CTCTTAAAGA CACTTTTAAC TCCTCTGCTG AATGAGCGTT TTTAACGGTT AAAGTTAAAA ACAAAAACCG TCCTTTAGGC 2770 2780 TCTCTTGCAA CTGCTTCCGC AATAATTTGT TTTAACTGGC TCGAGTTTTT CATGCTCCTT CTCCAATTAC ACAATGGACA CAATCGTTTA TGACAAAACC ACGTTTGATA AAGTTTTAAG TGCTCGCCAA TCTTACGAAA ACGCAAAACT TCACCACAAC CCCGTACATC ATGTGCCCGT TTAAATTCTA AGATTGCCAA ATATTCGGCA TAGCGCACAT TTTCAATCTT CCGTTCTCGC CAAGGICTAA CTTIGCCATT TICAGITITA TCTICAAAAA TITICIGACAT AAAAAGCTCC TCCAGTTTAT CCACGTGAAG GAGCTGACTA TCTTTTTCAA TAAGCTTATA ACCTTGACAT 3150 3160 CATAGGGCTT TTCCCCTAGA ATAGGCTATA AATCGCAAAT GATAATCAAC TCACGTGTTC CGAGCGGCCA AACTAGGAAT TTGCACGTGG GTTTTTATTT TGTCTTTCTT TCAACCAATT 3260 3270 TATAACCCTA ATAATACACC AAAAGCCTAT AAAATCAATG GATACAAGCC CAATTAAGCC TAATCAAGCT TGATTTTAAA AAACTAGTTG TTGCTAATAG TATCAAGATA AGAAGAAAAC GCCAAAAATT GCGTTTTTAA ACCCCAAAAA GCAGATCAGC AAAAACCGCT GAACTGCTTT 3470 3480 TTTTAAACCG TGGCTTTCAG CCACACTGAC CAGCTGAACC AGCTGGACCG TAACGCTTGC CGCCGCTGGG CTCGGGAAAA CAAGGGCTTG TTTTCCAAGA CGTCAGGCTT TTGGTATTGT 3560 3570 CTAGTCTATC AACTCCTTAA AGCCTCCAAG AGGGGCTAAT ATCGCCTGTA AGGCTCAATA

Α.	3610	3620	3630	3640	3650 AGCTAACTGT	3660 ТАССТААААТ
^					3710	
C	GCTTAGAAC	GCAAATAAGA	GCCTTTAAAA	TTAACGTTCA	AAAATAAAA	AGPICGAAGG
,	3730	3740	3750	3760	3770 TGACGCAAGT	3780 CAGTTACGTT
•						
7	3790 IGAGCAACGC	3800 GAAATCTGAT	GCAGGTTTTG	3820 ATGGGTTTAG	3830 CACAACACAA	CTTCATGTTG
•	3850 OTGTAAGTG	3860 CGCACTACAT	3870 GATAATGCGC	3880 ACTACATGAT	3890 AATGCGCACT	3900 ACATGATAAT
					3950	
(GTGCGCACTA	CATGATAATG	CGCACTACAT	GATAATGTAC	ATGATAATGT	GCGCACTACA
	3970 TGATAATGCG	3980 CACTACATGA	3990 TAATGCGCAC	4000 TACATGATAA	4010 TGCGCACTAC	4020 ATGATAATGC
	4030	4040	4050	4060	407 ⁰	4080
					A CATGATAATG	
	4090 CTCCAAATAA	4100 ATTGGAGTAA	4110 TGCTAAAAC) 4120 C TGTATCAGA	4130 A GTCAGCAAGC	4140 TGACAACAAA
	4150	4160 CCCAACGGA) 417	0 4180 A TCTCCCGATO	0 4190 C CCCTATGGTC	4200 GACTCTCAGT
		•			0 4250	
	ACAATCTGCT	CTGATGCCG	ATAGTTAAG	C CAGTATCIG	C TCCCTGCTTC	TGTGTTGGAG
	4270	4280	429	0 430	0 4310	4320 GACCGACAAT
	GICGCIGAG					
	4330 TGCATGAAG	0 434 A ATCTGCTTA	0 435 G GGTTAGGCG	0 436 T TTTGCGCTG	O 4370 C TTCGTTAGA	4380 A GCAAACTAAG
	439	0 440	0 441	.0 442	0 443	0 4440
						A GTTAAATTAG
,	445 ATGCTAAAA	0 446 A TTTGTAATT	0 447 A AGAAGGAGT	0 448 G ATTACATGA	30 449 AT TGGCAGCCA	0 4500 G TCTCCGGGCA
	451	ი 452	0 453	30 454	10 455	0 4560
						C GACCACACTG
	457	0 458	459	90, 460	00 461	0 4620
						G CCCTGGTGCC
	463 AGCAGACGG	0 464 T AAGGTCTAC	10 469 NG CGCCATTIV	50 460 GC CGGTACTG	60 467 IC CGCCAGCIO	0 4680 G CCAAGACCCG
	460	00 470	on 47	10 47	20 473	30 4740
	GCACTCGAT	C GICCIGGA	AA ATGAACAT	GG GGTCTTGG	TC TIGATICAC	C TIGGCCIGGG
	475 CACGGTCA	50 470 AA TTAAACGG	60 47 GA CTGGCTTT	70 47 GT CAGCTATG	80 479 TT GAAGAGGG	00 4800 CA GCCAGGTAGA

AGCOGGCCAG CAGATCCTGG AATTCTGGGA CCCGGCGATC AAGCAGGCCA AGCTGGACGA CACGGTAATC GTGACCGTCA TCAACAGCGA AACTTTCACA AATAGCCAGA TGCTCTTGCC 4970 4980 GATCGGCCAC AGCGTCCAAG CCCTGGATGA TGTATTCAAG TTAGAAGGGA AGAATTAGAA AATGAGCAAT AAGTTAGTAA AAGAAAAAAG AGTTGACCAG GCAGACCTGG CCTGGCTGAC 5080 5090 TGACCCGGAA GTTTACGAAG TCAATACAAT TCCCCCGCAC TCCGACCATG AGTCCTTCCA AAGCCAGGAA GAACTGGAGG AGGGCAAGTC CAGTTTAGTG CAGTCCCTGG ACGGGGACTG 5180 5190 5200 GCTGATTGAC TACGCTGAAA ACGGCCAGGG ACCAGTCAAC TTCTATGCAG AAGACTTTGA CGATAGCAAT TITAAGTCAG TCAAAGTACC CGGCAACCTG GAACTGCAAG GCTTTGGCCA 5300 5310 GCCCCAGTAT GTCAACGTCC AATATCCATG GGACGCAGT GAGGAGATTT TCCCGCCCCA AATTCCAAGC AAAAATCCGC TCGCTTCTTA TGTCAGATAC TTTGACCTGG ATGAAGCTTT CTGGGACAAG GAAGTCAGCT TGAAGTTTGA CGGGGCGGCA ACAGCCATCT ATGTCTGGCT GAACGCCAC TTCGTCGCT ACGGGGAAGA CTCCTTTACC CCAAGCGAGT TTATGGTTAC CAAGTTCCTC AAGAAAGAAA ATAACCGCCT GGCAGTGGCT CTCTACAAGT ATTCTTCCGC CTCCTGGCTG GAAGACCAGG ACTTCTGGCG CATGTCTGGT TTGTTCAGAT CAGTGACTCT TCAGGCCAAG CCGCGTCTGC ACTTGGAGGA CCTTAAGCTT ACGGCCAGCT TGACCGATAA CTACCAAAAA GGAAAGCTGG AAGTCGAAGC CAATATTGCC TACCGCTTGC CAAATGCCAG CTTTAAGCTG GAAGTGCGGG ATAGTGAAGG TGACTTGGTT GCTGAAAAGC TGGGCCCAAT CAGAAGCGAG CAGCTGGAAT TCACTCTGGC TGATTTGCCA GTAGCTGCCT GGAGCGCGGA AAAGCCTAAC CTTTACCAGG TCCGCCTGTA TTTATACCAG GCAGGCAGCC TCTTAGAGGT TAGCCGGCAG GAAGTGGGTT TCCGCAACTT TGAACTAAAA GACGGGATTA TGTACCTTAA

第6E 圖

6020 6030 6040 6050 6060 6010 CGGCCAGCGG ATCGTCTTCA AGGGGGCCAA CCGGCACGAA TTTGACAGTA AGTTGGGTCG 6110 6100 6080 6090 GCTATCACG GAAGAGGATA TGATCTGGGA CATCAAGACC ATGAAGCGAA GCAACATCAA 6140 6150 6160 6170 TGCTGTCCGC TGCTCTCACT ACCCGAACCA GTCCCTCTTT TACCGGCTCT GTGACAAGTA 6220 6230 6210 6200 CGGCCTTTAC GTCATTGATG AAGCTAACCT GGAAAGCCAC GGCACCTGGG AAAAAGTGGG 6260 6270 6280 6290 GGGGCACGAA GATCCTAGCT TCAATGTTCC AGGCGATGAC CAGCATTGGC TGGGAGCCAG 6330 6340 6350 6320 CTTATCCCGG GTGAAGAACA TGATGGCTCG GGACAAGAAC CATGCTTCAA TCCTAATCTG 6410 6380 6390 6400 6370 GTCTTTAGGC AATGAGTCTT ACGCCGGCAC TGTCTTTGCC CAAATGGCTG ATTACGTCCG 6470 6460 6440 6450 GAAGGCTGAT CCGACCCGGG TTCAGCACTA TGAAGGGGTG ACCCACAACC GGAAGTTTGA 6520 6490 6500 6510 CGACGCCACC CAGATTGAAA GCCGGATGTA TGCTCCGGCC AAGGTAATTG AAGAATACTT 6570 6580 6560 GACCAATAAA CCAGCCAAGC CATTTATCTC AGTTGAATAC GCTCACGCCA TGGGCAACTC 6640 6650 6620 6630 CGTCGGTGAC CTGGCCGCCT ACACGGCCCT GGAAAAATAC CCCCACTACC AGGGCGGCTT 6710 6690 6700 6680 CATCTGGGAC TGGATTGACC AAGGACTGGA AAAAGACGGG CACCTGCTTT ATGGGGGCGA 6770 6750 6760 6740 CTTCGATGAC CGGCCAACCG ACTATGAATT CTGCGGGAAC GGCCTGGTCT TTGCTGACCG 6810 6820 6830 6800 GACTGAATCG CCGAAACTGG CTAATGTCAA GGCCCTTTAC GCCAACCTTA AGTTAGAAGT 6890 6860 6870 6880 AAAAGATGGG CAGCTCTTCC TCAAAAACGA CAATTTATTT ACCAACAGCT CATCTTACTA 6950 6940 6920 6930 CTTCTTGACT AGTCTTTTGG TCGATGGCAA GTTGACCTAC CAGAGCCGGC CTCTGACCTT 7000 7010 6980 6990 TGGCCTGGAG CCTGGCGAAT CCGGGACCTT TGGCCTGCCT TGGCCGGAAG TCGCTGATGA 7060 7070 7040 7050 AAAAGGGAG GTCGTCTACC GGGTAACGGC CCACTTAAAA GAAGACTTGC CTTGGGCGGA 7110 7120 7130 7100 TGAGGGCTTC ACTGTGGCTG AAGCAGAAGA AGTAGCTCAA AAGCTGCCGG AATTTAAGCC 7160 7170 7180 7190 GGAAGGCCGG CCAGATTTAG TTGATTCCGA CTACAACCTA GGCCTGAAAG GAAATAACTT

7010	7220	7230	7240	7250	7260
7210	TICTCCAAGG	TO A COCOTTO	CCCCCIMIACC	CTCAACTATC	CCCCTACCGA
CCAAATICIC	TICICCAAGG	CAAGGCIG	GCCGGIIICC	CICMOINIG	CC001110001
		7000	7200	7210	7220
7270	7280	7290	/300	7310	1320
ATACTTGAAG	CGGCTGCCGG	AATTTACCTT	CTGGCGGGCC	CIGACGGACA	ACGACCGGGG
7330	7340	7350	7360	7370	7380
ACCTYCCTTAC	GGCTATGATC	TGGCCCGGTG	GGAAAATGCC	GGCAAGTATG	CCCGCTTGAA
7300	7400	7410	7420	7430	7440
220000000	TGCGAGGTCA	ACCA ACACTO	Chiminical	AAGACTGCCT	TTACGTTGCC
AGACATCAGC	IGCGAGGICA	AGGAAGACIC	COTTTICOTO		
2450	7460	7470	7490	7/190	7500
7450	7460	7470	002 / 400 DDD 6 6DD 6DD	C2DCC2CC2CC	CCAACATTICC
TGTCGCCTTA	AAGGGTGATT	TAACCGIGAC	CTATGAAGTC	GATGGACGGG	GCAAGATIGC
					7560
7510	7520	7530	7540	7550	7560
TGTAACAGCT	GACTTCCCAG	GCGCGGAAGA	AGCTGGTCTC	TTGCCAGCCT	TTGGCTTGAA
7570	7580	7590	7600	7610	7620
CONCOCONO	CCAAAAGAAC	TCACCCATTA	CCCCTACTAT	GGTCTGGGAC	CTAATGAGAG
CCIGGCCCIG	CCMMMGmic	1011000111111	00001110111-	••••	
7620	7640	7650	7660	7670	7680
7630	CGCTTGGAAG	7050 TOO 6 TOO 6 TOO	CCCCAMCONAC	CACCCACCC	מבוממממממת מת
CTACCCAGAC	CGCTTGGAAG	GIAATIACCI	GGGCVICIVC	CAGGGAGCGG	IMMAMMICANI
			5500	9930	7740
7690	7700	7710	7720	1130	7/40
CTTTAGCCCA	TATCGTCCGC	AGGAAACGGG	CAACCGGAGC	AAGGTTCGCT	GGTACCAGCT
7750	7760	7770	7780	7790	7800
CTTTTCATCA	AAGGGCGGCT	TGGAATTTAC	GGCCAATGG	GCAGACTIGA	ACTIGICIGC
7010	7820	7830	7840	7850	7860
00000000000000000000000000000000000000	TCTGCCGCCC	אס מבצדייית מ' מ	ACCCCACCAC	COMPTENT	TYACTAACAA
TTIGCCATA	r 101GCCGCCC	MATIGANGC	. AGCGGRCGR		
		7000	7000	7010	7920
7870	7880	7890	7900	7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	י אריינירייניניניני
TTACACTIG	GTTAGAGCCT	TAAGCGCCCA	A CWINGGOI	- GGCGGGWIC	ACTCCTGGGG
				- 500	7000
793	0 7940	7950	796	7970	7980
GCAGAAGGT	C CACCCGGAAI	TCTGCCTGG	A TGCTCAAAA	A GCCCGCCAG	TTCGCCTGGT
799	0 8000	8010	0 802	0 803	0 8040
CATTYACY	C CALADALADA D	AATAAATGC	r acaattgac	T TAACAGGAT	G AAATTTTAGT
005	0060	ያ ያስማ	0 808	0 809	0 8100
208	1000 1000 1000 1000	, XCXMYCCXX	് വേസവുവുവു	A CHCACANGE	C AGCCGGCGTG
AAAAGCAAA	G CGAGIGAGG	A WOW I COCWA	C GRICAGAGA	11 GIOCCAROO	- 1100000000000000000000000000000000000
		013	014	015	ი გ160
811	0 8120) 813	0 814	0 013	0 8160
TCGCTAGCG	A CGGTC				

第7A 圖

第7B圖

