TD/TP 2: Suites $u_n = f(n)$

Exo 1 : Etudier la monotonie des suites suivantes et la constater ensuite à l'aide d'une représentation avec Scilab

- 1. Avec la différence « $u_{n+1} u_n$ »

a.
$$u_n = 2n + \sin(n)$$

b. $u_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} - n$

- 2. Avec le quotient « $\frac{u_{n+1}}{u_n}$ »

a.
$$u_n = \frac{e^n}{n}$$

b. $u_n = \frac{1}{2} \times \frac{3}{4} \times ... \times \frac{2n-1}{2n}$

3. Avec la technique fonctionnelle

a.
$$u_n = \sqrt{n} - \frac{3}{\sqrt{n}}$$

Exo 2 : Soit $u_n = 1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^n}$

- a) Montrer que (u_n) est majorée
- b) 1,33 est-il un majorant de (u_n) ?
- c) Vérifier avec Scilab vos affirmations

Exo 3 : u_n est la longueur du segment $[A_n, B_n]$ défini sur la figure de l'exécution du code Scilab donné *exo3.sce*. Etudier la limite de (u_n) lorsque $n \to +\infty$.

Exo 4 : On pose pour $n \ge 1$

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

- a) Montrer que la suite (u_n) converge en prouvant qu'elle est croissante et majorée. Indication : u_n est la somme de ... termes dont le plus grand est ...
 - b) Retrouver vos résultats avec Scilab

c) (A la maison) Montrer que la suite $v_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$ est décroissante et minorée donc convergente aussi.

Exo 5:

a) En utilisant Scilab, conjecturez la limite de

$$u_n = \left(1 + \frac{1}{n}\right)^n$$

b) En utilisant la suite intermédiaire

$$v_n = \ln(u_n)$$
 et sachant que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, prouvez votre conjecture.