大学物理 B (1) 期中试卷 2009 年 4 月 20 日

班级	姓名	学号	成绩	
一、填空题(每空3分,共30分)			
1. 一物体作向	向上斜抛运动,初速度 为	ζ 小为 ν_0 ,与水平方向夹 f	角为 <i>θ</i> ,物体轨道最高。	点处的曲率半径
是	o		F. A	
2. 一粒子沿力	x 轴运动,势能曲线如图]。若该粒子总能量 $E=0$,	则它的 E_p	
运动范围是		; 粒子处于 x ₀ 位置时	r的动能 0 x1	x_0 x_2 x
为	0		$-E_0$	
3. 一飞轮以角	角速度ω。绕光滑固定轴流	旋转,此飞轮对轴的转动性	惯量为 J_1 ,另一静止的	的飞轮突然和上
述转动的飞轮	咬合,绕同一转轴转动	,该飞轮对轴的转动惯量	为 J_2 ,咬合后整个系统	究的角速度是
				_
4. 如图,质量	量为 m、绕对称轴高速自	1转的陀螺在水平面内进动	力,自转角速度为 ω ,	
陀螺对自转轴	的转动惯量是 J, 其质心	心到支点的距离为 <i>l</i> ,则 <mark>进</mark>	<mark>·动角速度</mark> 为	90°
		一进动周期,陀螺重力产	生的 <mark>冲量矩</mark> 的	4
大小是		量矩等于角动量量等于动量的变		12
5. 如图, 质量	量面密度为σ、半径为R	的薄圆盘上挖出两个半径	之为 <i>r</i> 的圆孔,两孔心	
在同一直径上	,在半径的中点,剩余	部分对 z 轴的转动惯量	0	
6. 地面上的观	见察者测得两艘宇宙飞船	8相对地面以 $0.9c$ 的速度 1		选取是任意的,
飞船测得另一	艘飞船的速度大小为	0		方向带入时准确
<mark>7.一</mark> 个被加速	速的粒子,当其动能达到	引静止能量的 3 倍时,其原	质量是静止质量的	
8. 一列高速少	火车以速度 u 驶过车站时	」,固定在站台上相距为 <i>l</i>	的两只机械手在车厢	上同时划出两个
痕迹,则车厢	上的观察者测得两个痕	迹的距离为		

二、计算题(共70分)

1. (10 分)以初速 v_0 、仰角 θ 斜抛一质量为 m 的小球,设空气阻力 $\vec{f} = -k\vec{v}$,求: (1)在上升的 t 时刻小球的速度; (2) k 很小时的速度近似表达式。

注意e*-x的近似,泰勒公式

2.(15 分)质量为m的小球从静止开始,从质量为2m、半径为R的 1/4 圆弧形轨道下落,假设所有的接触面都是光滑的,求:(1)当小球下降到与竖直方向成 θ 角时,相对地面速度大小和相对圆弧轨道速度大小;(2)此时小球对圆弧轨道的压力大小。

第一问方程列对了,没解动 第二问少考虑了惯性力的影响 3. (12 分) 如图,O 为有心斥力场的力心,斥力和距离平方成反比: $f = k/r^2$,k 为正的常量。 求: (1) 势能表达式; (2) 设力心 O 固定,一质量为 m 的粒子以速度 v_0 、瞄准距离 b 从无穷远入射,它能达到的最近距离和此刻的速度是多少? (3) 力心如果是质量为 M 的可移动粒子,则在 M 参考系,(2) 的结果又如何?直接说出结果即可。

两体问题

4. (15 分) 将一根长为 l、质量为 m 的均匀杆的 l/3 段水平放置在桌面上,另一端用手托住,设杆和桌边的静摩擦系数为 μ 。求: (1) 撒手后,未发生滑动时,桌边对杆的支持力与转角 θ 的关系; (2) 发生滑动时的临界角。

质心运动定理 用能量解w 5. $(8\, f)$ 一质量为 m、半径为 R 的圆柱体以角速度 ω_0 在水平面上作纯滚动,前进中与高为 h (h<R) 的台阶发生完全非弹性碰撞,求: (1) 碰后角速度 ω_0 ; (2) 设圆柱体与台阶之间无相对滑动,则圆柱体要爬上台阶, ω_0 至少需要多大? (圆柱体绕旋转对称轴的转动惯量为 $mR^2/2$)

 $C \stackrel{R}{\smile}$

原来对P的角动量不会求

柯尼希定理!!!

6.(10 分)快速运动的介子的能量为 E=3000MeV,而其静止时的能量为 E₀=100MeV。若这种介子的固有寿命是 τ =2×10⁻⁶s,求它运动的距离。(光速取 3×10⁸m/s)

$$x' = \frac{x - ut}{\sqrt{1 - u^2/c^2}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - ux/c^2}{\sqrt{1 - u^2/c^2}}$$

$$v'_x = \frac{v_x - u}{1 - uv_x/c^2}, \quad v'_y = \frac{v_y}{1 - uv_x/c^2}\sqrt{1 - u^2/c^2}, \quad v'_z = \frac{v_z}{1 - uv_x/c^2}\sqrt{1 - u^2/c^2}$$

(逆变换:变量对调,再把 u 变为 -u)

大学物理 B (1) 期中试题答案 2009 年 4 月 20 日

一、填空题(每空3分,共30分)

1.
$$(\boldsymbol{v}_0 \cos \theta)^2/g$$

2.
$$[x_1, x_2]$$
, E_0 (写成开区间扣 1 分)

3.
$$J_1\omega_0/(J_1+J_2)$$

4.
$$mgl/J\omega$$
, $\sqrt{2J\omega}$

5.
$$\frac{\sigma\pi}{4}(R^4 - 2r^4 - 2R^2r^2)$$

6.
$$1.8c / 1.81 \approx 0.99c$$

8.
$$l/\sqrt{1-u^2/c^2}$$

二、计算题(共70分)

1. (10分)

解: (1) 列牛顿方程:
$$-kv_x = m\frac{dv_x}{dt}$$
 2分

$$-mg - kv_{y} = m \frac{dv_{y}}{dt}$$
 2 \mathcal{H}

对
$$v_y$$
 方程分离变量并积分:
$$\int_{v_{0y}}^{v_y} \frac{-\mathbf{d}v_y}{mg + kv_y} = \frac{1}{m} \int_{0}^{t} \mathbf{d}t$$
 1 分

$$\boldsymbol{v}_{y} = (\frac{mg}{k} + \boldsymbol{v}_{0}\sin\theta)e^{-\frac{k}{m}t} - \frac{mg}{k}$$
 1 $\boldsymbol{\beta}$

对
$$v_x$$
 方程分离变量并积分:
$$\int_{v_{0x}}^{v_x} \frac{\mathrm{d}v_x}{v_x} = -\frac{k}{m} \int_{0}^{t} \mathrm{d}t$$
 1 分

$$\boldsymbol{v}_{x} = \boldsymbol{v}_{0} \cos \boldsymbol{\theta} e^{-\frac{k}{m}t}$$
 1 $\boldsymbol{\beta}$

(2)
$$k$$
 很小时有: $e^{-\frac{k}{m}t} \approx 1 - \frac{k}{m}t$

$$\boldsymbol{v}_{y} = \boldsymbol{v}_{0} \sin \theta - gt - \boldsymbol{v}_{0} \sin \theta \frac{k}{m} t$$
 1 \mathcal{L}

$$\boldsymbol{v}_{x} = \boldsymbol{v}_{0} \cos \theta - \boldsymbol{v}_{0} \cos \theta \frac{k}{m} t$$
 1 \mathcal{L}

2. (15分)

解:设小球对地速度为 v_1 ,对圆弧轨道速度为 v_2 ,圆弧轨道对地速度为 v_2 ,小球和圆 弧轨道之间压力为N。

(1) 水平方向动量守恒:

$$m\,\boldsymbol{v}_{1x}-2m\,\boldsymbol{v}_2=0$$

机械能守恒:
$$mgR\cos\theta = \frac{1}{2}mv_1^2 + \frac{1}{2}2mv_2^2$$
 (2) 2分

相对运动关系:
$$\boldsymbol{v}_{1x} = \boldsymbol{v}_1' \cos \theta - \boldsymbol{v}_2$$
 (3) 2分
$$\boldsymbol{v}_{1y} = \boldsymbol{v}_1' \sin \theta$$
 (4) 2分

$$oldsymbol{v}_{1v} = oldsymbol{v}_1' \sin oldsymbol{ heta}$$

(1)一(4)解得:

$$\boldsymbol{v}_1 = \sqrt{\frac{2(4+5\sin^2\theta)\cos\theta}{3(2+\sin^2\theta)}}\,gR$$

$$\boldsymbol{v}_1' = \sqrt{\frac{6\cos\theta}{2+\sin^2\theta}} gR$$

(2) 以圆弧轨道为参考系分析小球运动,设圆弧轨道加速度为 a,惯性力为 f。

法向方程:
$$N + f \sin \theta - mg \cos \theta = m \frac{{v_1'}^2}{R}$$

f = ma

$$N \sin \theta = 2ma$$

(6)一(9)解出:

$$N = 2mg \frac{\cos \theta (8 + \sin^2 \theta)}{(2 + \sin^2 \theta)^2}$$

3. (12分)

解: (1)设无穷远势能为零,则:

$$V(r) = \int_{r}^{\infty} f(r)dr = \int_{r}^{\infty} \frac{k}{r^2} dr = \frac{k}{r}$$

(2) 设最近距离是r, 速度是v, 此时r与v是垂直的。

角动量守恒:
$$mv_0b = mvr$$
 2分

机械能守恒:
$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{k}{r}$$
 2 分

解出
$$r = \frac{k}{m v_0^2} \pm \sqrt{\left(\frac{k}{m v_0^2}\right)^2 + b^2} \quad (取正根)$$

$$r = \frac{k}{m v_0^2} + \sqrt{\left(\frac{k}{m v_0^2}\right)^2 + b^2}$$

$$\boldsymbol{v} = \boldsymbol{v}_0 \boldsymbol{b} / (\frac{\boldsymbol{k}}{\boldsymbol{m} \, \boldsymbol{v}_0^2} + \sqrt{(\frac{\boldsymbol{k}}{\boldsymbol{m} \, \boldsymbol{v}_0^2})^2 + \boldsymbol{b}^2})$$
 2 $\boldsymbol{\beta}$

(3) 这是两体问题,将m换成约化质量 $\frac{mM}{m+M}$ 代入到(2)的结果即可。 2分

4. (15分)

解: (1)未滑动前,杆绕O点作定轴转动,设角速度和角加速度分别为 ω 、 α ,桌边支 持力为 N,静摩擦力为 f,质心切向和法向加速度分别为 a_t 、 a_n 。 下落过程机械能守恒:

$$\frac{1}{2}J_o\omega^2 = mg\frac{l}{6}\sin\theta$$

$$J_o = \frac{1}{12}ml^2 + m(\frac{l}{6})^2 = \frac{1}{9}ml^2$$

绕
$$o$$
的转动定律:

绕
$$O$$
 的转动定律: $mg\frac{l}{6}\cos\theta = J_o\alpha$

质心切向运动方程:
$$mg \cos \theta - N = ma_t$$

$$mg\cos\theta - N = ma$$

质心法向运动方程:
$$f - mg \sin \theta = ma_n$$

角量和线量关系:
$$a_t = \frac{l}{6}\alpha$$

$$a_t = \frac{l}{6}\alpha$$

$$a_n = \frac{l}{6}\omega^2$$

由(1)一(7)解出:

$$N=\frac{3}{4}mg\cos\theta$$

(9)

$$f = \frac{3}{2} mg \sin \theta$$

(2) 当杆开始滑动时,静摩擦力 f 达到最大值:

$$f = \mu N$$

由(8)-(10 得临界角为:

$$\theta = \arctan \frac{\mu}{2}$$

1分

5. (8分)

解: (1)设碰前质心速度为 ν_0 ,由于是完全非弹性碰撞,碰撞后P为瞬心,设碰撞后 角速度为 ω 。

碰撞时对P点角动量守恒,设顺时针方向为正:

$$m \mathbf{v}_0(R-h) + J_C \omega_0 = J_P \omega$$

$$\boldsymbol{v}_0 = \boldsymbol{R}\boldsymbol{\omega}_0$$

$$\boldsymbol{J}_P = \boldsymbol{m}\boldsymbol{R}^2 + \boldsymbol{J}_C = \frac{3}{2}\boldsymbol{m}\boldsymbol{R}^2$$

解出:

$$\omega = \frac{3R - 2h}{3R} \omega_0$$

(考虑到碰后质心速度与 CP 连线垂直, 也可用下面方程求解:

$$m \mathbf{v}_0(R-h) + J_C \omega_0 = m \mathbf{v}R + J_C \omega$$

$$v = R\omega$$

(2) 圆柱体要想爬上台阶,要求其碰撞后的动能足够用于克服重力做功:

$$\frac{1}{2}J_{P}\omega^{2} > mgh$$

曲此得:
$$\omega_0 > \frac{\sqrt{12gh}}{3R-2h}$$

6. (10分)

解:
$$E = mc^2$$

$$\boldsymbol{E}_0 = \boldsymbol{m}_0 c^2$$

$$m = m_0 / \sqrt{1 - \boldsymbol{v}^2/c^2}$$

所以
$$1/\sqrt{1-v^2/c^2}=30$$

$$v = c\sqrt{\frac{899}{900}} \approx 2.998 \times 10^8 \,\mathrm{m \cdot s^{-1}}$$

介子运动时间为
$$t = \tau / \sqrt{1 - v^2/c^2} = 30\tau$$

所以运动距离为
$$l = vt = v \cdot 30\tau \approx 17988m$$