25MT103: Linear Algebra

Unit 1: Matrices

Dr. D Bhanu Prakash

Course Page: dbhanuprakash233.github.io/LA

Assistant Professor, Department of Mathematics and Statistics. Contact: db_maths@vignan.ac.in. dbhanuprakash233.github.io.

Matrices - Lecture Slides

Syllabus

- Elementary row and column operations
- Elementary Matrices
- Similar Matrices
- Echelon form
- Row reduced echelon form
- Rank of a matrix
- Inverse of a matrix by Gauss-Jordan Method
- LU decomposition

2/28

Outline

- Definitions
 - Elementary Row Operations
 - Elementary Matrices
 - Row Echelon Form
 - Reduced Row Echelon Form
 - Rank of a Matrix
 - Similarity of Matrices
- Matrix Operations
 - Method 1: Upper triangular matrix
 - Method 2: LU Decomposition
 - Method 3: Inverse via Gauss-Jordan

3/28

Outline

- Definitions
 - Elementary Row Operations
 - Elementary Matrices
 - Row Echelon Form
 - Reduced Row Echelon Form
 - Rank of a Matrix
 - Similarity of Matrices
- Matrix Operations
 - Method 1: Upper triangular matrix
 - Method 2: LU Decomposition
 - Method 3: Inverse via Gauss-Jordan

Dr. D Bhanu Prakash Unit 1: Matrices VFSTR, India. 4/28

Elementary Row Operations

Definition

Elementary row operations are the three basic manipulations one may perform on rows of a matrix (they are reversible):

- **1** Row swap: interchange two rows, $R_i \leftrightarrow R_j$.
- **②** Row scaling: multiply a row by a nonzero scalar, $R_i \to kR_i$ with $k \neq 0$.
- **3** Row replacement: add a multiple of one row to another, $R_i \rightarrow R_i + kR_j$ for $i \neq j$.

Elementary Matrices

Definition

An *elementary matrix* is a square matrix obtained by performing a single elementary row operation on the identity matrix I_n .

Elementary Matrices

Definition

An *elementary matrix* is a square matrix obtained by performing a single elementary row operation on the identity matrix I_n .

Types of elementary matrices:

- **1 Row swap:** Obtained by interchanging two rows of I_n .
- **Q** Row scaling: Obtained by multiplying one row of I_n by a nonzero scalar k.
- **3 Row replacement:** Obtained by adding k times one row of I_n to another.

Elementary Matrix 1: Row Swap

If S denotes the matrix obtained from I_n by swapping rows i and j, then for any A we have SA equals A with rows i and j swapped.

Example.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \qquad R_1 \leftrightarrow R_3, \qquad \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix} = S_{1 \leftrightarrow 3} A.$$

Then elementary matrix

$$S_{1\leftrightarrow 3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Elementary Matrix 2: Row Scaling

The elementary matrix is obtained from I_n by replacing the (i, i) entry by k.

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$$
, scale R_2 by 3, $\begin{bmatrix} 2 & 1 \\ 12 & 9 \end{bmatrix} = EA$

Then elementary matrix

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

which is the matrix obtained by multiplying the second row of *A* by 3.

8/28

Elementary Matrix 3: Row Replacement

For adding k times row j to row i, the elementary matrix is I_n with an extra entry k in position (i,j).

Example.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \text{ here } R_2 \to R_2 - 4R_1 \quad \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix} = EA.$$

Then elementary matrix

$$E = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Dr. D Bhanu Prakash Unit 1: Matrices VFSTR, India. 9/28

Elementary Matrices: Quick Reference

- Swap rows i and j: take I and swap rows i,j to get E. Then EA swaps rows of A.
- Scale row i by k: replace I_{ii} by k to get E. Then EA scales that row.
- Add *k* times row *j* to row *i*: put *k* in position (*i*,*j*) of *I* to get *E*. Then *EA* performs the replacement.

Note: Every elementary matrix is invertible and its inverse is also elementary (the inverse operation).

Row Echelon Form (REF)

Definition

A matrix is in *row echelon form* if:

- All nonzero rows are above any zero rows.
- The leading entry (pivot) of each nonzero row is strictly to the right of the leading entry of the row above it.
- 3 All entries below each leading entry are zero.

Row Echelon Form (REF)

Definition

A matrix is in row echelon form if:

- All nonzero rows are above any zero rows.
- The leading entry (pivot) of each nonzero row is strictly to the right of the leading entry of the row above it.
- All entries below each leading entry are zero.

Example:

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

is in REF.

Practice: Row Echelon Form

Problems:

• Put the following matrix into REF:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix}$$

2 True or False: Every matrix has a unique row echelon form.

Reduced Row Echelon Form (RREF)

Definition

A matrix is in reduced row echelon form (RREF) if:

- It is in REF.
- The leading entry (pivot) in each nonzero row is 1.
- **3** Each pivot is the only nonzero entry in its column.

Reduced Row Echelon Form (RREF)

Definition

A matrix is in reduced row echelon form (RREF) if:

- 1 It is in REF.
- 2 The leading entry (pivot) in each nonzero row is 1.
- 3 Each pivot is the only nonzero entry in its column.

Example:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

is in RREF.

Practice: RREF

Problems:

Reduce to RREF:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}$$

2 Explain why the RREF of a matrix is always unique.

Rank of a Matrix

Definition

The *rank* of a matrix A, denoted rank(A), is:

- The number of leading 1's (pivot columns) in its RREF, OR
- The number of non-zero rows in REF of A.

Rank of a Matrix

Definition

The *rank* of a matrix A, denoted rank(A), is:

- The number of leading 1's (pivot columns) in its RREF, OR
- The number of non-zero rows in REF of A.

Example:

Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}.$$

Row reducing gives

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

So rank(A) = 2.

Practice: Rank

Problems:

• Find the rank of

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}.$$

Similarity of Matrices

Definition

Two $n \times n$ matrices A and B are similar if

$$B = P^{-1}AP$$

for some invertible matrix P.

Similarity of Matrices

Definition

Two $n \times n$ matrices A and B are similar if

$$B = P^{-1}AP$$

for some invertible matrix P.

Properties:

- Similar matrices represent the same linear transformation under different bases.
- They have the same determinant, trace, rank, and eigenvalues.

Similarity Example

Let

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Then

$$P^{-1}AP = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

So *A* is similar to a diagonal matrix.

Practice: Similarity

Problems:

Determine whether the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

are similar. Justify your answer.

Outline

- Definitions
 - Elementary Row Operations
 - Elementary Matrices
 - Row Echelon Form
 - Reduced Row Echelon Form
 - Rank of a Matrix
 - Similarity of Matrices
- Matrix Operations
 - Method 1: Upper triangular matrix
 - Method 2: LU Decomposition
 - Method 3: Inverse via Gauss-Jordan

Problem Statement

Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}.$$

We will:

- Convert A to upper triangular form using elementary row operations.
- Compute an LU decomposition (without pivoting).
- § Find A^{-1} using the Gauss–Jordan method.

Start with

$$A_0 = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}.$$

Dr. D Bhanu Prakash Unit 1: Matrices VFSTR, India. 22/28

Start with

$$A_0 = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}.$$

Eliminate (2,1): $R_2 \to R_2 - 2R_1$.

$$A_1 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{bmatrix}.$$

Dr. D Bhanu Prakash Unit 1: Matrices VFSTR, India. 22/28

Start with

$$A_0 = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}.$$

Eliminate (2,1): $R_2 \to R_2 - 2R_1$.

$$A_1 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{bmatrix}.$$

Eliminate (3,1): $R_3 \to R_3 + R_1$.

$$A_2 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix}.$$

$$A_2 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix}.$$

$$A_2 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix}.$$

Eliminate (3,2): $R_3 \to R_3 + R_2$.

$$U = A_3 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Dr. D Bhanu Prakash Unit 1: Matrices VFSTR, India. 23/28

LU decomposition was introduced by mathematician $Tadeusz\ Banachiewicz$ in 1938. We decompose the matrix A into the product of lower triangular (L) and upper triangular (U) matrices.

LU decomposition was introduced by mathematician *Tadeusz Banachiewicz* in 1938. We decompose the matrix A into the product of lower triangular (L) and upper triangular (U) matrices.

During elimination we used multipliers:

$$m_{21} = 2$$
, $m_{31} = -1$, $m_{32} = -1$.

LU decomposition was introduced by mathematician *Tadeusz Banachiewicz* in 1938. We decompose the matrix A into the product of lower triangular (L) and upper triangular (U) matrices.

During elimination we used multipliers:

$$m_{21}=2, m_{31}=-1, m_{32}=-1.$$

$$Let L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

LU decomposition was introduced by mathematician *Tadeusz Banachiewicz* in 1938. We decompose the matrix A into the product of lower triangular (L) and upper triangular (U) matrices.

During elimination we used multipliers:

$$m_{21} = 2$$
, $m_{31} = -1$, $m_{32} = -1$.

$$Let L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

LU decomposition was introduced by mathematician *Tadeusz Banachiewicz* in 1938. We decompose the matrix A into the product of lower triangular (L) and upper triangular (U) matrices.

During elimination we used multipliers:

$$m_{21} = 2$$
, $m_{31} = -1$, $m_{32} = -1$.

$$Let L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Check: LU = A.

Begin with

$$\left[\begin{array}{cc|ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{array}\right].$$

Begin with

$$\left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{array}\right].$$

Step 1: $R_2 \to R_2 - 2R_1$, $R_3 \to R_3 + R_1$.

Begin with

$$\left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{array}\right].$$

Step 1: $R_2 \to R_2 - 2R_1$, $R_3 \to R_3 + R_1$.

$$\left[\begin{array}{ccc|ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 8 & 3 & 1 & 0 & 1 \end{array}\right].$$

Begin with

$$\left[\begin{array}{ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{array}\right].$$

Step 1:
$$R_2 \to R_2 - 2R_1$$
, $R_3 \to R_3 + R_1$.

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 8 & 3 & 1 & 0 & 1 \end{array}\right].$$

Step 2:
$$R_3 \rightarrow R_3 + R_2$$
.

Begin with

$$\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 & 0 & 0 \\
4 & -6 & 0 & 0 & 1 & 0 \\
-2 & 7 & 2 & 0 & 0 & 1
\end{array}\right].$$

Step 1:
$$R_2 \to R_2 - 2R_1$$
, $R_3 \to R_3 + R_1$.

$$\left[\begin{array}{ccc|ccc|c}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -8 & -2 & -2 & 1 & 0 \\
0 & 8 & 3 & 1 & 0 & 1
\end{array}\right].$$

Step 2:
$$R_3 \rightarrow R_3 + R_2$$
.

$$\left[\begin{array}{ccc|ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Begin with

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{array}\right].$$

Step 1:
$$R_2 \to R_2 - 2R_1$$
, $R_3 \to R_3 + R_1$.

$$\left[\begin{array}{ccc|ccc|c}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -8 & -2 & -2 & 1 & 0 \\
0 & 8 & 3 & 1 & 0 & 1
\end{array}\right].$$

Step 2: $R_3 \rightarrow R_3 + R_2$.

$$\left[\begin{array}{ccc|ccc|ccc}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -8 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right].$$

Step 3: Clear above column 3. $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 + 2R_3$.

Step 3: Clear above column 3. $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 + 2R_3$.

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & -8 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Step 3: Clear above column 3. $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 + 2R_3$.

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & -8 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Step 4: Scale R_2 then eliminate above.

Step 3: Clear above column 3. $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 + 2R_3$.

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & -8 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Step 4: Scale R_2 then eliminate above.

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 3/4 & -5/16 & -3/8 \\ 0 & 1 & 0 & 1/2 & -3/8 & -1/4 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Step 3: Clear above column 3. $R_1 \rightarrow R_1 - R_3$, $R_2 \rightarrow R_2 + 2R_3$.

$$\left[\begin{array}{ccc|ccc} 2 & 1 & 0 & 2 & -1 & -1 \\ 0 & -8 & 0 & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

Step 4: Scale R_2 then eliminate above.

$$\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 3/4 & -5/16 & -3/8 \\ 0 & 1 & 0 & 1/2 & -3/8 & -1/4 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{array}\right].$$

So

$$A^{-1} = \begin{bmatrix} 3/4 & -5/16 & -3/8 \\ 1/2 & -3/8 & -1/4 \\ -1 & 1 & 1 \end{bmatrix}.$$

Summary of Example

- Upper triangular (U): $\begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$.
- Lower factor (L): $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}.$
- Inverse: $\begin{bmatrix} 3/4 & -5/16 & -3/8 \\ 1/2 & -3/8 & -1/4 \\ -1 & 1 & 1 \end{bmatrix}.$

Thank You!

Dr. D Bhanu Prakash

dbhanuprakash233.github.io Mail: db_maths@vignan.ac.in

I can't change the direction of the wind, but I can adjust my sails to always reach my destination.

(Jimmy Dean)

