# Zero Knowledge Proofs

ROUNAK DAS

### What is that?

- An interactive proof system
  - Prover
  - Verifier
  - Messages: Commitment, Challenge and Response
  - Verify response



Fig: An Interactive proof System

### What is that?

- Zero Knowledge Interactive Proofs
  - ❖ 1985, Goldwasser, Micali and Rackoff
  - Extension of Interactive Proofs
- Interactive Proofs may leak the information being proved
  - Prove: 26781 is not a prime
  - **❖** 26781 = 113×237
  - But now the verifier knows the factorization!
  - ZKPs try to convince without revealing
- Probabilistic
  - Always a non-zero probability that the Prover just guessed
  - But typically very small

### Enter The Cave





### The Commitment





# The Challenge





# The Response





### Many Rounds Later...

- 1 round
  - ❖ Cheating probability: ½
  - ❖ 50% convinced



- 2 rounds
  - Cheating probability: ¼
  - ❖ 75% convinced



• •

- 40 rounds
  - Cheating probability: one in a million million
  - Highly convinced



### **Essential Properties**

### Completeness

If the statement is true, then the verifier will be convinced of it.

#### Soundness

If the statement is false, then cheating provers cannot convince the verifier that it is true.

### Zero Knowledge

❖ If the statement is true, then no cheating verifier learns anything except that the statement is true.

### Zero Knowledge?

- How do we know a protocol is zero-knowledge?
- Does it leak the secret?
- Can we simulate a proof without the secret?
- Prover and Verifier collude
- Make fake transcripts
  - Edit out failures
  - Have preplanned sequences
- Fakes are indistinguishable from original!
- Knowledge of secret not required original proof did not leak it!

### Practical Examples

- Different Types:
  - Proof of Membership
  - Proof of knowledge
  - Proof of Identity
  - Computational Zero Knowledge
  - Perfect Zero Knowledge
- Fiat-Shamir Identity Scheme
- Schnorrs Scheme
- Guillou-Quisquarter
- Graph Isomorphisms
- Graph 3-colorings

- Based on the Quadratic Residue problem
  - $\diamond$  Computing x, given  $x^2$  (mod n) is hard if factorization of n is not known

#### Setup:

- Requires trusted central authority T
- ❖ T selects n s. t. it is a Blum integer
  - $n = p \cdot q$
  - p and q are kept secret
- ❖ Select **t** (number of rounds)

- Each entity computes their key-pair
  - Choose secret key
    - Choose s
    - $1 \le s \le n-1$ , gcd(s, n) = 1
    - Usually use k-vectors instead of just one value.
  - Calculate public key
    - **❖** Compute **v**
    - $v = 1/s^2 \pmod{n}$
    - Publish v
    - ❖ Keep s secret

Commitment, Challenge and Response:



• Verifier checks if:  $x == (\pm y^2 \cdot v)$ 

- Challenge-Response continues for t rounds
  - Probability of successfully cheating: 2-t
- Zero Knowledge Proof?
  - Complete
    - Prover knows s, can compute both y = r (e=0) and y = rs (e=1) easily
    - Verifier is always convinced
  - Sound
    - Prover doesn't know s, can only compute either y = r or y = rs (by choosing  $x = r^2/\nu$ )
    - Needs to know Verifiers choice in advance or be able to compute square root!
  - Zero Knowledge
    - Only things revealed are  $x = r^2 \mod n$  and either y = r or y = rs
    - Can simulate by defining  $x = y^2$  or  $x = y^2/v$
    - Indistinguishable!

### Applications and Attacks

#### Applications:

- Digital signature schemes (Fiat-Shamir heuristic)
- e-voting (honest behavior in a mix-net)
- Anonymous auctions
- ... and many more

#### Attacks:

- Man-in-the-Middle
- Impersonation
- Replay attack

### References

- ☐ Goldwasser, Micali, Rackoff "The Knowledge Complexity of Interactive Proof Systems" (1985)
- ☐ Feige, Fiat, Shamir "Zero Knowledge Proofs of Identity" (1989)
- ☐ Guillou, Quisquater "How to Explain Zero-Knowledge Protocols to your Children" (1998)
- Menezes, Oorschot; Chapter 10 from "Handbook of Applied Cryptography" (1996)
- ☐ Trappe, Washington; Chapter 14 from "Introduction to Cryptography with Coding Theory" (2002)

# Thank you!

## Bonus: Fiat-Shamir Example

- p = 683, q = 811 so that n = 553913
- $\diamond$  3 challenges per round: k = 3, single round: t = 1
- ❖ Alice selects key-pair:
  - $s_1 = 157$ ,  $s_2 = 43215$ ,  $s_3 = 4646$  (private key)
  - $b_1 = 1, b_2 = 0, b_3 = 1$
  - $\mathbf{v}_1$  = 441845,  $\mathbf{v}_2$  = 338402,  $\mathbf{v}_3$  = 124423 (public key)
- Challenge Response:
  - $\diamond$  Alice chooses r = 1279, x = 25898; sends this to Bob
  - ❖ Bob sends back 3-bit vector: (0,0,1)
  - Alice computes response:  $y = r \cdot s_3 \mod n = 403104$
  - $\diamond$  Bob verifies:  $y^2 v_3 \mod n = 25898 = x => Accept!$

## Bonus: Graph 3-Coloring

- Checking if a graph is 3-Colorable is hard
  - Also hard to 3-Color a graph
- ❖ Peggy: "I have a 3-Coloring for graph G!"
- Victor: "Prove it!"
- ❖ Both parties know G and the vertex labels i (1 ≤ i ≤ |G.V|)
- $\diamond$  Commitment:  $E(color(v_i), k_i)$  for each vertex  $v_i$ 
  - $k_i$  is particular to  $v_i$  for this round
  - Peggy chooses new keys next round
- ❖ Challenge: (i,j) where  $v_i$  and  $v_j$  are adjacent (1 ≤ i, j ≤ | G.V|)
- $\diamond$  Response:  $k_i$  and  $k_i$
- ❖ Verify:  $D(color(v_i), k_i) \neq D(color(v_i), k_i)$

# Bonus: Graph 3-Coloring



#### Verify:

- 1.  $D(E(\bullet, k_1)), k_1 = \bullet$
- 2.  $D(E(\bullet, k_4)), k_4 = \bullet$
- 3. ≠ •
- 4. Accept!