# post\_incompact3d

We collect here discretized versions of flow statistics and parameters implemented for post-processing for a temporal TBL in the program <code>post\_incompact3d</code>. For integral quantities, use the python function <code>high\_order\_integrals.py</code> (same parent directory). It is possible to compile the program with <code>TTBL\_MODE:OFF</code>, in order to perform the averages also in time (it can be used for example for channel flow simulations).

Statistics are averaged along x and z directions. Different flow realizations can also be considered. Average in time is performed only with TTBL\_MODE:OFF, that is a parameter that can be changed inside the build directory, inside the CMakeCache.txt file (used for the compilation with cmake).

## Velocity field (O(6))

Averages

$$\langle u 
angle, \langle v 
angle, \langle w 
angle$$

Variances

$$\langle u'^2 
angle, \langle v'^2 
angle, \langle w'^2 
angle$$

• Skewnesses

Kurtoses

$$\mathsf{kurt}[u], \mathsf{kurt}[v], \mathsf{kurt}[w]$$

Reynolds stresses (O(6))

$$\langle u'v' \rangle, \langle u'w' \rangle, \langle v'w' \rangle$$

### Pressure field (O(6))

• Average and variance

$$\langle p 
angle, \langle p'^2 
angle$$

#### Scalar field (O(6))

Average and variance

$$\langle \varphi \rangle, \langle \varphi'^2 \rangle$$

Mixed fluctuations (O(6))

$$\langle u'\varphi'\rangle, \langle v'\varphi'\rangle, \langle w'\varphi'\rangle$$

#### Vorticity field (O(6))

Averages

$$\langle \omega_x \rangle, \langle \omega_y \rangle, \langle \omega_z \rangle$$

## Mean gradients (O(6))

• Mean total parallel gradient (to the wall)

$$\langle \sqrt{\left(rac{\partial u}{\partial y}
ight)^2 + \left(rac{\partial w}{\partial y}
ight)^2}
angle = rac{\partial U_\parallel}{\partial y}$$

• Mean streamwise gradient

$$\langle rac{\partial u}{\partial y} 
angle = rac{\partial U}{\partial y}$$

• Mean spanwise gradient

$$\langle rac{\partial w}{\partial y} 
angle = rac{\partial W}{\partial y}$$

## Total dissipation rate (O(6))

• Average

$$\langle arepsilon 
angle = 2 
u \langle S_{ij} S_{ij} 
angle$$

where double contraction on the indexes i and j is performed.