Mathematics for Economists Kapitel 3 – Statisk Optimering

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus University

Disposition Kapitel 3

- Ekstremumspunkter (3.1)
- Lokale ekstremumspunkter (3.2)
- Bibetingelser givet ved ligheder (3.3)
- Bibetingelser givet ved uligheder (3.5)
- Tilstrækkelige betingelser (3.6)

Definition

Lad $f: S \to \mathbb{R}$, $S \subset \mathbb{R}^n$, $x^* \in S$, og

$$f(x^*) \ge f(x)$$
 for ethvert $x \in S$.

Punktet x^* kaldes for et (globalt) maksimumspunkt for f i S og $f(x^*)$ for (globalt) maksimum. Hvis \leq gælder, så kaldes punktet et (globalt) minimumspunkt. Strenge uligninger definerer et strengt (globalt) maksimum og et strengt (globalt) minimum. Ekstremumspunkter er enten maksimum eller minimum.

Definition

Lad $f:S \to \mathbb{R}$. Et indre punkt $x \in S$ hvori f er partielt differentiabel og gradienten

$$\nabla f(x) = 0$$

kaldes for kritisk punkt.

Teorem (3.1.1, Nødvendige førsteordens betingelser)

Lad f være defineret på en mængde S i \mathbb{R}^n og lad $x^*=(x_1^*,\ldots,x_n^*)$ være et indre punkt i S, hvori f har partielle afledede. En nødvendig betingelse for at x^* er et maksimums- eller minimumspunkt for f er, at x^* er et kritisk punkt for f—dvs., at det opfylder ligningerne

$$f_i'(x) = 0, \quad i = 1, \ldots, n$$

Figure 1 The concave function $f(x_1, x_2)$ has a maximum at the stationary point (x_1^*, x_2^*) . The horizontal tangent plane at the corresponding point P lies on top of the graph.

Teorem (3.1.2, Tilstrækkelige betingelser ved konkavitet / konveksitet)

Antag at funktionen f(x) er defineret på en konveks mængde S i \mathbb{R}^n og lad x^* være et indre punkt i S. Antag også at f er C^1 i en åben kugle med centrum x^* .

- (a) Hvis f er konkav i S, så er x^* et (globalt) maksimum for f i S hvis og kun hvis x^* er et kritisk punkt for f.
- (b) Hvis f er konveks i S, så er x^* et (globalt) minimum for f i S hvis og kun hvis x^* er et kritisk punkt for f.

Eksempel

Betragt

$$f(x, y, z) = x^2 + 2y^2 + 3z^2 + 2xy + 2xz.$$

Førsteordens betingelser:

$$2x + 2y + 2z$$
 = 0
 $2x + 4y$ = 0
 $2x + 6z$ = 0

Derfor er (0, 0, 0) det eneste kritiske punkt. Hesse-matricen er

Hess
$$f(x, y, z) = \begin{vmatrix} 2 & 2 & 2 \\ 2 & 4 & 0 \\ 2 & 0 & 6 \end{vmatrix}$$
.

Alle ledende underdeterminanter er positive, altså er $\operatorname{Hess} f(x, y, z)$ pos. def. og f er strengt konveks (Teorem 2.3.2). Derfor er (0,0,0)' et globalt minimum.

Eksempel (Profitmaksimering under Cobb-Douglas)

- $x = F(v) = F(v_1, ..., v_n) \in \mathbb{R}_+$ Cobb-Douglas produktionsfunktion, differentiabel ift. inputfaktorer $v \in \mathbb{R}_+^n$.
- Prisvektor $q \in \mathbb{R}^n$ for inputfaktorer $v \in \mathbb{R}^n_+$. Prisen for output-gode $x \in \mathbb{R}_+$ er $p \in \mathbb{R}_+$.
- Profitfunktion:

$$\pi = pF(v_1,\ldots,v_n) - \langle q,v \rangle.$$

• Førsteordens betingelse for et maksimum:

$$\nabla \pi = p \nabla F(v_1, \ldots, v_n) - q = 0.$$

- Lad $v^* \in \mathbb{R}^n_+$ være et kritisk punkt for π .
- Hvis F er konkav, så er π konkav, fordi π er en sum af en konkav og en lineær funktion. Teorem 3.1.2 viser, at v^* maksimerer profitten.

Eksempel (Profitmaksimering under Cobb-Douglas)

Den profitmaksimerende kvantitet for hver inputfaktor $i=1,\ldots,n$ er givet ved

$$v_i = \left[\frac{a_i}{q_i}\right] (Ap)^{\frac{1}{1-a}} \left[\frac{a_1}{q_1}\right]^{\frac{a_1}{1-a}} \cdots \left[\frac{a_n}{q_n}\right]^{\frac{a_n}{1-a}}.$$

Teorem (3.1.3, Ekstremværdisætning)

Lad f(x) være en kontinuert funktion på en lukket og begrænset mængde $S \subset \mathbb{R}^n$. Så har f både et maksimums- og et minimumspunkt i S.

I økonomiske anvendelser er mængden $S \subset \mathbb{R}^n$ ofte givet ved ulighedsbetingelser

$$g_1(x_1,\ldots,x_n) \leq b_1$$
 \dots
 $g_m(x_1,\ldots,x_n) \leq b_m$

som ekstremummet for målfunktionen $f: \mathbb{R}^n \to \mathbb{R}$ må opfylde.

Den følgende fremgangsmåde kan følges for at finde det maksimale punkt:

- (A) Find alle kritiske punkter i S. Disse er kandidater for et maksimum.
- (B) Find alle maksimale punkter for f på randmængden af S. De er også kandidater.
- (C) Beregn værdien for f i hvert punkt fundet under (A) og (B). Punkterne som giver den største værdi for f, er maksimumspunkter.

Motivation for envelope sætningen for ubetinget optimering

Målfunktioner afhænger tit af parametre, f.eks. prisvektoren i eksemplet om profitmaksimering under Cobb-Douglas.

- Lad $f: S \times \mathbb{R}^k \to \mathbb{R}$, $S \subset \mathbb{R}^n$. $f(x_1, \dots, x_n; r_1, \dots, r_k)$ være en målfunktion afhængig af inputkvantiteter x og parametre r.
- $S \subset \mathbb{R}^n$ modellerer rummet af inputfaktorkvantiteter x.
- \mathbb{R}^k modellerer rummet af parametrene r.
- Vi antager at for hver givet parametervektor r findes et maksimum f^* for f(x,r) i forhold til $x \in S$.
- Funktionen som afbilder parametervektoren r til dens maksimumspunkt siges at være **værdifunktionen** (**value function**)

$$f^*(r) = \max_{x \in S} f(x, r).$$

• Vektoren $x^*(r)$ er et maksimumspunkt for f(x, r) for et vilkårligt givet r:

$$f^*(r) = f(x^*(r), r).$$

Motivation af envelope sætningen for ubetinget optimering

- Hvis én af parametrene r_j ændres, f.eks. som følge af en stigning i faktorpriser, så ændres f^*
 - fordi den optimale funktion $x^*(r)$ ændres, og
 - fordi r har en direkte indflydelse på f.
- Envelopesætningen fastslår, at den første effekt er lig med nul, fordi $x^*(r)$ er en optimal funktion, og derfor

$$\frac{\partial f(x^*(r), r)}{\partial x_i} = 0, \text{ for all } i = 1, \dots, n.$$

Vi kan forstå påstanden ved hjælp af kædereglen:

$$\frac{\partial f^*(r)}{\partial r_j} = \frac{\partial}{\partial r_j} f(x^*(r), r) = \sum_{i=1}^n \underbrace{\frac{\partial f(x^*(r), r)}{\partial x_i}}_{=0} \underbrace{\frac{\partial x_i^*(r)}{\partial r_j}}_{=0} + \underbrace{\frac{\partial f(x, r)}{\partial r_j}}_{x=x^*(r)} \Big|_{x=x^*(r)}$$

Figure 2 The curve $y = f^*(r)$ is the envelope of all the curves $y = f(\mathbf{x}, r)$.

- $K_X = y(r) = f(x, r)$ for en givet x.
- Ingen K_x kurve kan ligge over værdifunktionen: $f(x,r) \leq \max_x f(x,r) = f^*(r)$.
- For hver givet værdi for r, findes der et $x^*(r)$, som maksimerer f(x, r). I punktet $(r, f(x^*(r), r)) = (r, f^*(r))$ tangerer K_X kurven og værdifunktionen hinanden.
- I dette punkt har begge kurver den samme hældning:

$$\frac{\partial f(x^*(r), r)}{\partial r} = \frac{\partial f^*(r)}{\partial r}.$$

Teorem (3.1.4, Envelope Theorem)

Betragt problemet $\max_{x\in S} f(x,r)$, hvor $S\subseteq \mathbb{R}^n$ og $r=(r_1,\ldots,r_k)$. Antag at der er et maksimumspunkt $x^*(r)$ i S for hvert r i en kugle $B(\bar{r};\delta)$ med radius $\delta>0$. Antag derudover, at afbildningerne $r\mapsto f(x^*(\bar{r}),r)$ (med fikseret \bar{r}) og $r\mapsto f^*(r)=\max_x f(x,r)$ begge er differentiable i \bar{r} . Der gælder, at

$$\frac{\partial f^*(\bar{r})}{\partial r_j} = \left[\frac{\partial f(x,r)}{\partial r_j}\right]_{(x=x^*(\bar{r}),r=\bar{r})} \quad j=1,\ldots,k$$

Eksempel

Betragt igen profitmaksimeringsproblemet: Maksimer

$$\pi(\mathbf{v}, \mathbf{p}, \mathbf{q}) = pF(\mathbf{v}_1, \dots, \mathbf{v}_n) - q_1\mathbf{v}_1 - \dots - q_n\mathbf{v}_n.$$

For enhver outputpris p og input-prisvektor q, lad værdifunktionen der maksimerer π i forhold til v være

$$\pi^*(\mathbf{p}, \mathbf{q}) = \max_{\mathbf{v}} \pi(\mathbf{v}, \mathbf{p}, \mathbf{q}) = \pi(\mathbf{v}^*(\mathbf{p}, \mathbf{q}), \mathbf{p}, \mathbf{q}),$$

hvor $v^*(p,q)$ er den profitmaksimerende inputfaktorkombination for givne p og q. Envelope teoremet implicerer *Hotelling's lemma*:

$$\frac{\partial \pi^*(p,q)}{\partial p} = \frac{\partial \pi(v^*,p,q)}{\partial p} = F(v^*),$$

$$\frac{\partial \pi^*(p,q)}{\partial q_i} = \frac{\partial \pi(v^*,p,q)}{\partial q_i} = -v_j^*.$$