Chapter 3

1. 형식 언어와 정규 표현

목차

01 형식언어

02 정규 표현

03 유한 오토마타

형식 언어 (formal language)

■ **언어**: 알파벳으로부터 생성되는 문자열들의 부분집합

■ 문법 : 문법은 언어를 정의

■ **인식기**: 언어는 **인식기**에 의해 **인식**

N. Chomsky 분류	형식 언어	recognizer = automata
문법	언어	인식기
type 0(무제약 문법)	재귀 열거 언어	튜링 기계(turing machine)
type 1(문맥인식 문법)	문맥인식 언어	선형한계 오토마타(linear-bounded automata)
type 2(문맥자유 문법)	문맥자유 언어	푸시다운 오토마타(push-down automata)
type 3(정규 문법)	정규 언어	유한 오토마타(finite automata)

How are tokens defined?

- 영어 사전에서 찾을 수 없는 단어는? gallant, gallivan, gallic, galumph, galvanic
- ■변수 이름으로 쓸 수 없는 것은? i, sum, 2user
 - How do you know that?

Alphabet Σ

- 집합(set): a collection of *unique* elements
 - The elements may be *listed in any order*.
 - It may contain *infinite* elements.

예: {girl, animal, boy, girl} → {boy, girl, animal}

- 공집합 (empty set): { } 또는 Φ
 - contains *no* elements
- **알파벳 (Alphabet),** ∑ : **기호**(*Symbol*, 문자)들의 유한 집합

$$\sum = \{ \neg, \, \vdash, \, \vdash, \, \vdash, \, \vdash, \, \Rightarrow \}$$

$$\sum = \{ a, b, c, \dots, z \}$$

$$\sum = \{ 0, 1 \}$$

String

■ 문자열 (String of characters)

- A list of ordered characters from a given alphabet ∑
- The elements of a string need *not* be *unique*.
- 문자들이 나열된 순서가 중요

```
[예] \sum = \{a, b, c\} 일 때문자열 : a, ca, ccba, aabbcc, ... 단, abc \neq cba, abb \neq ab
```

String length

■문자열 길이

■ 문자열 w 에 포함된 문자들의 개수: |w|로 표시 $w = v_1 v_2 v_3 \cdots v_k$ 일 |w| = k

[예]
$$\sum = \{a, b, c\}$$
 일 때, $w_1 = abc$, $w_2 = abab$
→ $|w_1| = 3$, $|w_2| = 4$

Empty string

- 빈 문자열(empty string): ε
 - $|\varepsilon|$ = 0 → 문자열의 길이가 0인 문자열
 - null string.
 - ε 은 "입실론"으로 발음. λ (람다)로도 표기.
 - **■** *ε* 연산
 - $u \varepsilon = u = \varepsilon u$
 - $u \varepsilon v = u v$
 - a 가 n 번 발생 : $a^1 = a$, $a^2 = aa$, ..., $a^n = aa \cdots a$
 - a 가 한 번도 발생하지 않음 : $a^0 = \varepsilon$

Concatenation

■ 문자열 연결(string concatenation)

- 두 개 이상의 string 을 연결해서 하나의 string으로 만듦
- $u = a_1 a_2 \cdots a_n$, $v = b_1 b_2 \cdots b_m$ 일 때

$$\rightarrow u \cdot v = uv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

■ 교환 법칙은 성립하지 않는다. **→** *uv* ≠ *vu*

[예]
$$u = dog, v = house$$
 일 때

→
$$u \cdot v =$$
doghouse, $v \cdot u =$ housedog
∴ $uv \neq vu$

- 접두사(prefix) 및 접미사(suffix)
 - 문자열 $w = \mathbf{u} \mathbf{v}$ 에 대해 \mathbf{u} 가 접두사, \mathbf{v} 가 접미사 [예] w = house 일 때,

접두사 : h, ho, hou, hous, house

접미사 : e, se, use, ouse, house

Language

- 언어(Language) → A set of strings from a given alphabet
 - 문자열들의 집합

```
Σ = {0, 1}
1. {0, 10, 1011}
2. {ε, 0, 00, 000, 0000, 00000, ...}
3. the set of strings having an even number of ones.
{11, 0101, 1001, 10101010, ...}
Σ = { characters available on a computer keyboard }
1. {0, +123, -123.456e+10}
2. { if, for, while, case, switch, ...}
3. { 인천대학교, 정보기술대학, 컴퓨터공학부, ...}
```

언어 연산: Union and Concatenation

- 두 개의 언어 *L* 과 *M* 에 대한 연산
 - *L, M* 은 집합이므로 언어 연산은 집합(set) 연산
- 합(Union) 연산 : *L* ∪ *M*
 - $L \cup M = \{ s | s \in L \cup s \in M \}$

[예] $L = \{a, ba, bbb\}, M = \{aaa, bbb, aba, bba\}$ 일 때

 \rightarrow $L \cup M = \{ a, ba, bbb, aaa, aba, bba \}$

- 접속(Concatenation) 연산 : L· M
 - $L \cdot M = \{ s \cdot t \mid s \in L \cap t \in M \}$
 - 분배 법칙을 적용

[예] $L = \{aa, bb\}, M = \{ab, ba\}$ 일 때

 \rightarrow $L \cdot M = \{ aaab, aaba, bbab, bbba \}$

언어 연산 : L^n

\blacksquare 거듭제곱 연산 : L^n

- $L^0 = \{ \varepsilon \}$
- $L^1 = LL^0 = L \cdot \{ \varepsilon \} = L$
- $L^2 = LL^1$, ...
- $L^n = LL^{n-1}$, 단, $n \ge 1$

- $\rightarrow L^0 = \{ \varepsilon \}$
- → $L^1 = L = \{ a, ba \}$
- $\rightarrow L^2 = LL^1 = \{a, ba\}\{a, ba\} = \{aa, aba, baa, baba\}$
- → $L^3 = LL^2 = \{a, ba\}\{aa, aba, baa, baba\}$ = $\{aaa, aaba, abaa, ababa, baaa, baaba, babaa, bababa\}$

Kleene Closure * 와 Positive Closure +

■ Kleene Closure: L* (∠-스타로 읽음)

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots \cup L^n \cup \dots = \bigcup_{i=0}^{\infty} L^i$$

■ Positive Closure : L⁺ (∠-대거(dagger)로 읽음)

$$L^{+} = L^{1} \cup L^{2} \cup \dots \cup L^{n} \cup \dots = \bigcup_{i=1}^{\infty} L^{i} = L^{*} - L^{0} = L^{*} - \{\varepsilon\}$$

[예] *L* = { 0, 1 } 일 때,

- → L*: <u>ε 포함.</u> 0과 1로 만들어지는 모든 문자열. 생략 가능.
- → L^{+ :} <u>€ 제외.</u> 0과 1로 만들어지는 모든 문자열. **반드시 1번은 발생.**

Regular Expression and Regular Language

- 정규 언어 (Regular Language)
 - 정규 표현에 의해 정의되는 언어
- 정규 표현 (Regular Expression, RE)

알파벳 Σ 에 대해

- 1. $a \in \Sigma$ 는 정규 표현
- 2. Φ(공집합) 와 *ε* 도 정규 표현
- 3. r,s 가 각각 정규 언어 L_r,L_s 를 정의하는 정규 표현일 때
 - (1) $r \mid s$ 는 $L_r \cup L_s$ 를 나타내는 정규 표현
 - (2) $r \cdot s$ 는 $L_r \cdot L_s$ 를 나타내는 정규 표현
 - (3) r^* 는 $(L_r)^*$ 를 나타내는 정규 표현
- Quiz : { } 와 { ε }은 같은가 다른가?

RE: Choice (선택)

- r, s 가 정규 표현이면, $r \mid s$ 도 정규 표현
 - \mathbf{q} : $\Sigma = \{a, b\}$ 일 때
 - *a, b* 는 정규 표현 **→** *a* | *b* 도 정규 표현
 - *a* | *b* 가 생성하는 언어는?

$$-L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$$

- a, ε 은 정규 표현 → a | ε 도 정규 표현
- *a* | ε 이 생성하는 언어는?

$$-L(a \mid \varepsilon) = \{a, \varepsilon\}$$

■ 다중 선택으로 확장 가능 $L(a \mid b \mid c \mid d) = \{a, b, c, d\}$

RE: Concatenation (연결)

- r, s 가 정규 표현이면, $r \cdot s$ 도 정규 표현
 - \emptyset : Σ = { a, b, c } \emptyset \square
 - a,b 는 정규 표현 → a·b 도 정규 표현(·를 없애고 ab로 사용)
 a b 가 생성하는 언어는?
 L(ab) = L(a)L(b) = {a}{b} = {ab}
 - 정규 표현 (a|b)c

→
$$L((a|b)c) = L((a|b)) \cdot L(c) = \{a,b\} \cdot \{c\} = \{ac,bc\}$$

- 정규 표현 a(b|c)
 - → $L(a(b|c)) = L(a) \cdot L((b|c)) = \{a\} \cdot \{b,c\} = \{ab,ac\}$
- 다중 연결로 확장가능

$$L(a \cdot b \cdot c \cdot d) = L(abcd) = \{abcd\}$$
, 한 개의 원소

RE: Repetition (반복)

- $\blacksquare \Sigma = \{a, b\}$ 일 때
 - bb, a|bb 는 정규 표현 → (a|bb)* 도 정규 표현
 - (a|bb)*가 생성하는 언어는?

$$r^* = r^0 \cup r^1 \cup r^2 \cup r^3 \cup \dots = \bigcup_{i=0}^{\infty} r^i$$

$$r^0 = (a \mid bb)^0 = \{\varepsilon\}$$

$$r^1 = (a \mid bb)^1 = \{a, bb\}$$

$$r^2 = (a \mid bb)^2 = \{a, bb\} \{a, bb\} = \{aa, abb, bba, bbb\}$$

$$r^3 = (a \mid bb)^3 = (a \mid bb)^1 (a \mid bb)^2 = \{a, bb\} \{aa, abb, bba, bbb\}$$

$$= \{aaa, aabb, abba, abbb, \dots\}$$

a또는 bb로 이루어진 모든 문자열. **생략도 가능.**

RE: 우선 순위

 $a \mid b^*$ 는 어떻게 해석하는 것이 맞을까? $(a \mid b)^*$ 또는 $a \mid (b)^*$

- RE 연산 기호의 우선 순위
 - repetition > concatenation > choice
 - $a \mid b \ c^* = a \mid (b \cdot (c^*))$
 - $ab \mid c^*d = (ab)|((c^*) \cdot d)$
- 우선순위를 바꾸고 싶으면 괄호를 사용

$$a \mid b c \rightarrow (a \mid b) c$$

Practice #1

- 정규 표현 (a | bb)* 이 <u>생성할 수 없는</u> 문자열을 모두 고르시오.
 - **■** *a*
 - aaaaaaaaaaaaa
 - abbaaabbbbaaa
 - ■abbabaaa
 - ■bbbbabb
 - ■bbba

Practice #2

- $\blacksquare \Sigma = \{ a, b \}$ **0** \square .
- 아래 정규 표현이 생성하는 언어는?
 - 1. (aa | b) (a | bb)
 - 2. $a^*(a | b)$
- 아래 2개의 정규 표현이 생성하는 언어는 같은가 다른가?
 - 1. $(a|bb)^*$ \triangle $a | bb^*$

Practice #3

 $\blacksquare \Sigma = \{a, b, c\}$ 일 때, 한 개의 b 만을 포함하는 문자열을 정의하시오.

$$(a|c)^* b (a|c)^*$$

■ $\sum = \{a, b, c\}$ 일 때, <u>기껏해야</u> 한 개의 b 만을 포함할 수 있는 문자열을 정의하시오.

```
(a|c)^* | (a|c)^* b (a|c)^*
(a|c)^* (b|\varepsilon) (a|c)^*
```

Regular Definition

■정규 표현으로 한 개 이상의 숫자열을 정의

$$(0 | 1 | 2 | \dots | 9) (0 | 1 | 2 | \dots | 9)*$$

■정규 정의를 사용하여 digit pattern을 정의

```
digit digit*
digit = 0 | 1 | 2 | ... | 9
```

- 어느 방식이 사용하기 쉽고 이해하기 쉬운가?
- 어느 방식이 확장하기 쉬운가?

Extension to Regular Expressions(1/2)

 $r+: one \text{ or } more \text{ repetitions } (\epsilon 은 제외)$

'+'는 Dagger로 읽음.

- $(0|1)(0|1)^* \rightarrow (0|1)+$
- : any character

.*b.* \rightarrow all strings that contain at least one b

- **■**[_-_]: a range of characters
 - $a \mid b \mid c \mid \dots \mid z$ \rightarrow [a-z]

 - $a \mid b \mid c = [abc]$ \rightarrow [a-c]

$$[A - Za - z] \neq [A-z]$$

Extension to Regular Expressions(2/2)

- : any character not in a given set

 \sim ($a \mid b \mid c$) \rightarrow 알파벳에서 a, b, c를 뺀 임의의 문자

■ Lex에서는 ^(*caret*)를 사용 [^a] [^abc]

?: optional sub-expressions

■ 자연수 정의에서

```
natural = [0-9]+

signedNatural = natural | + natural | - natural
```

■ ? 메타 기호를 사용하여 다시 표현하면

signedNatural = (+ | -)? natural

Regular Expressions for P. L. Tokens

Numbers

```
nat = [0-9]+
signedNat = (+|-)? nat
number = signedNat("." nat)?(E signedNat)?
```

■ Reserved words

```
reserved = if | while | do | ...
```

Identifiers

```
letter = [\mathbf{a} - \mathbf{z}\mathbf{A} - \mathbf{Z}]
digit = [0-9]
identifier = letter (letter | digit)*
```

Meta symbol이 아닌 소수점 기호

Scanning 과정에서의 Ambiguity 해결

■ Some strings can be matched by *several* REs.

- 문제 1: if 는 키워드 일 수도, identifier일 수도 있다.
- 문제 2: < > 는 2개의 token(<, >)이거나 1개의 token(≠)일 수 있다.

■ *Disambiguating* rules (모호성 해결 원칙)

- 문제 1 해결방법: *keyword* interpretation is generally *preferred*.
- 문제 2 해결방법: the principle of *longest substring*
 - Matching 되는 길이가 가장 긴 token 정의를 먼저 적용

Ambiguity : 애매함

Example

```
If I were a bird, I can fly.

Reserved = "If" | "I"

ID = letter (letter | digit)*

• Q1: If 는 키워드일까, ID일까? Why?

If (a <> b) a = 100;

If (a > b) a = 100;

relational_op = "<>"|">"|">"|"<"

• Q2: <>는 <, >, <> 중 어느 것으로 인식될까?
```

Comments (주석)

■주석 처리

■ 1개의 *delimiter* (구분기호)에 의해 둘러싸인 경우

```
{ This is a Pascal comment } → {(~})*}
```

■ 특정 문자로 시작하여 해당 줄의 끝까지가 주석

```
; This is a Scheme comment → ; (~newline) *
-- This is an Ada comment → -- (~newline) *
```

- 1개 이상의 delimiter에 의해 둘러싸인 경우
 - /* This is a C comment */
 - ba ... (no appearance of ab) ... ab 의 형태
 ba (~(ab)) * ab