Dashboard / My courses / Measure Theory & Integration (MA51002) - Spring 2021 / Topic 1 / Quiz 1 / Preview

Started on Tuesday, 2 February 2021, 4:45 PM

State Finished

Completed on Tuesday, 2 February 2021, 4:51 PM

Time taken 6 mins 3 secs

Question 1

Complete

Marked out of 2.00

Pick the correct statements:

- (a) Countable intersection of measurable sets is measurable
- (b) If m*(E) is finite for a set E in **R**, then E is measurable
- (c) There exists a non-measurable set in [5, 7]
- (d) Suppose $A \subset E \subset B \subseteq R$, where A, B are measurable subsets of finite measure. If m(A) = m(B), then E is measurable
- 1. all (a), (b), (c), (d) are true
- 2. only (a), (c), (d) are true and (b) is false
- 3. only (a), (d) are true and (b), (c) are false
- 4. only (a), (c) are true and (b), (d) are false

Question $\boldsymbol{2}$

Complete

Marked out of 2.00

Pick the correct statements from the below statements:

- (a) there exists an uncountable measurable set whose measure is zero
- (b) A \subset **R** is measurable if and only if for $\epsilon \geq$ 0, there exists a closed set F \subseteq A such that $m^*(A \setminus F) \leq \epsilon$
- (c) Every differentiable function defined on a measurable set is measurable
- (d) Let E be a measurable set in \mathbf{R} . If $f: E \to \mathbf{R}$ be a function such that |f| is measurable, then f is measurable
- 1. only (a), (b), (c) are true and (d) is false
- 2. only (b), (c) are true and (a), (d) are false
- 3. only (a), (b) are true and (c), (d) are false
- 4. all (a), (b), (c), (d) are true

2/2021	Quiz 1: Attempt review	
Question 3		
Complete		
Marked out	of 1.00	
Let A be	the subset of [0, 1] consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Then m*(A)=	
Question 4 Complete		
Marked out	of 1.00	
Let f:[0,1 Answer:] \rightarrow R , be a function defined as f(x)=sin x, if x \in (0, 1] and f(0) = 1. Then m*({ x \in [0, 1] : f(x) \ge 0 }) =	
Question 5 Complete		
Marked out	of 2.00	
Let F be a measurable set in R . Then there exists a non-measurable set G in R such that $m^*(F\Delta G) = 0$ Select one: True False		
© raise		
Question 6 Complete		
Marked out	of 1.00	
	easurable set is a Borel set in R	
Select o	ne:	
O True		
False		

Question 7			
Complete			
Marked out of 1.00			
Let $V \subset [0, 1]$ be the non-measurable set as we discussed in the class. Suppose $A \subset V$ is a measurable set. Then $m^*(A) =$			
Answer: 0			
Allower. 0			
Question 8			
Complete			
Marked out of 1.00			
Let A be a non-empty open set in R . Then there exists disjoint open intervals { I_n } such that $A = U_{n \ge 1} I_n$			
Select one:			
True			
○ False			
Question 9 Complete			
Marked out of 1.00			
Suppose A, B are measurable sets in R . Then the set $A+B=\{a+b:a\in A \text{ and }b\in B\}$ is measurable			
Select one:			
○ True			
False			
Question 10			
Complete			
Marked out of 2.00			
Let $f: \mathbf{R} \to \mathbf{R}$, be any function. Then { $A \subseteq \mathbf{R}: f^{-1}(A)$ is a measurable set } is a σ -algebra			
Select one:			
© True			
○ False			

Question 11				
Complete Marked out of 1.00				
Walked Out Of 1.00				
Let P be the Cantor set. Then m(P U [3,5]) =				
Answer: 2				
Question 12				
Complete				
Marked out of 1.00				
Let A, B be two disjoint subsets of R . Then $m^*(A \cup B) = m^*(A) + m^*(B)$.				
Select one:				
○ True				
False				
Question 13				
Complete				
Marked out of 1.00				
There exists a set of measure zero but not a Borel set				
Select one:				
True				
○ False				
Question 14				
Complete Market and a f 1 00				
Marked out of 1.00				
Let $f_n : E \to \mathbf{R}$ be a sequence of measurable functions defined on a measurable set E. Then $\sup f_n$ is measurable				
Select one:				
□ True				
○ False				

Question 15
Complete
Marked out of 1.00
Let E be a measurable set and $f: E \to \mathbf{R}$ be a function. Then f is measurable if and only if $f^{-1}(U)$ is measurable for any open set U in \mathbf{R}
Select one:
True
○ False
Question 16
Complete
Marked out of 2.00
Let $f: [0,1] \to [0,1]$ be a measurable function. Let $g: [0,1] \to \mathbf{R}$ be a function defined as $g(x) = f(x)$ if x is an irrational number in $[0,1]$ and $g(x) = -1$ if x is a rational number in $[0,1]$. Then g is measurable
Select one:
True
○ False
Question 17
Complete
Marked out of 1.00
Walked Out of 1.00
Every subset of a measurable set is measurable
Select one:
○ True
False
Question 18
Complete
Marked out of 2.00
MidRCG Out Of 2.00
Let $A \subseteq \mathbf{R}$ any set. Then there exists a measurable set E in \mathbf{R} such that $m^*(A) = m(E)$
Select one:
True
○ False
∨ 1 α13€

Question 19 Complete	
Marked out of 1.00	
The set $\{x \in [0, 1] : e^x \ge 1/2\}$ is measurable	
Select one:	
True	
○ False	
→ Announcements (hidden)	
Jump to	