Logická reprezentácia a usudzovanie

Znalostný agent

- rozumný agent, ktorého konanie sa bude zakladať na znalostiach
- znalostný agent získa schopnosť riešiť nový druh problémov naučením alebo získaním nových znalostí o prostredí
- jazyk pre znalostný agent: zápis poznatkov + odvodzovanie
- v matematickej (formálnej) logike sa skúmajú spôsoby odvodzovania dôsledkov zo známych axióm, t.j. logické usudzovanie
- báza poznatkov
 - množina zápisov faktov o svete vo forme viet v jazyku pre reprezentáciu poznatkov

2

Znalostný agent

- operácie nad bázou poznatkov:
 - pridanie novej vety
 - pýtanie sa na niečo známe
- určovanie toho, čo vyplýva z bázy poznatkov, zabezpečuje odvodzovací stroj

function ZNALOSTNÝ-AGENT(vnem) returns akcia static: BP, báza poznatkov t, počítadlo, ktoré indikuje čas; na začiatku 0

PRIDAJ (BP, VYTVOR-VETU-O-VNEME (vnem, \mathfrak{h}) akcia \leftarrow ODPOVEDAJ(BP, VYTVOR-DOPYT-NA-AKCIU (\mathfrak{h}) PRIDAJ (BP, VYTVOR-VETU-O-AKCII (akcia, \mathfrak{h})) $t \leftarrow t + 1$

return akcia

Znalostný agent - úrovne abstrakcie opisu

- znalostná úroveň (čo vie)
 - agent zabezpečujúci riadenie vozidla môže vedieť, že do časti Bratislava Petržalka sa možno dostať z časti Staré Mesto po Starom moste
- logická úroveň (zápis vo vetách)
 - spája (Starý most, Staré Mesto, Petržalka).
- implementačná úroveň (technické vybavenie agenta)
 - "spaja(stary_most,stare_mesto, petrzalka)"
 - reťazec "stary_most" v dvojrozmernej tabuľke prepojení častí Bratislavy

Logika a reprezentácia poznatkov

- jazyk je prostriedok na vyjadrenie faktov okolitého sveta. To, ktorá syntaktická jednotka jazyka (ktorá veta) vyjadruje ktorý fakt, určuje sémantika jazyka.
- proces usudzovania musí byť taký, že nové fakty vyplývajú z doteraz známych faktov.
 - z danej množiny faktov vyplýva nový fakt
 - z množiny viet (reprezentujúcich danú množinu faktov) logicky vyplýva nová veta (reprezentujúca nový fakt).

Logika a reprezentácia poznatkov

- odvodzovanie (v logike) spôsob skúmania, či z množiny faktov vyplýva iný fakt
 - musí zachovávať pravdivosť
 - úplné, ak nájde dôkaz každej vety logicky vyplývajúcej z množiny formúl
- dôkaz
 - odvodzovacími pravidlami vytvorená postupnosť formúl nad množinou pôvodných a v predchádzajúcich krokoch odvodených formúl

.

Logika a reprezentácia poznatkov

- báza poznatkov i jednotlivé fakty sú súčasťou okolitého sveta
- množina formúl i jednotlivé formuly sú súčasťou reprezentácie sveta
- vzťah medzi nimi:
 - syntax jazyka pre reprezentáciu poznatkov
 - sémantika jazyka pre reprezentáciu poznatkov

Logika a reprezentácia poznatkov

- interpretácia je zobrazenie, ktoré priraďuje formulám fakty
- interpretovaním formuly sa z nej stáva výrok (ne- / pravdivý)
- stav sveta, pre ktorý je nejaká formula pravdivá pri danej interpretácii, predstavuje model (tej formuly)
- formula je:
 - splniteľná, ak existuje interpretácia, pri ktorej je pravdivá (má model)
 - nesplniteľná

Model formuly - príklad

Nech je daná formula $\forall x \exists y P(x, y)$ a interpretácia I predikátového symbolu P je takáto:

 $P \in \mathbb{N}^2$ je relácia menší (<), kde N je množina prirodzených čísel.

Potom interpretácia / je modelom tejto formuly, lebo v / formula vyjadruje pravdivé tvrdenie:

"pre každé prirodzené číslo existuje prirodzené číslo, ktoré je od neho väčšie".

Na druhej strane / nie je modelom formuly $\exists y \ \forall x \ P(x, y)$, ktorej slovenská parafráza je takáto:

"existuje prirodzené číslo také, že všetky prirodzené čísla sú od neho menšie".

Logika a reprezentácia poznatkov

- tautológia formula pravdivá pri ľubovoľnej interpretácii
- model množiny formúl interpretácia, ktorá je modelom každej formuly z tejto množiny
- postup určenia, či formula logicky vyplýva z nejakej množiny formúl:
 - preskúšať všetky interpretácie
 - zúžiť interpretácie na používané v báze poznatkov
 - znalostný agent rozhoduje nie na základe sémantiky formúl, ale len na základe syntaxe

10

Logika a reprezentácia poznatkov

- odvodzovanie
 - formálny a mechanický proces
 - neobmedzené rozsahom použitých poznatkov (počtom a zložitosťou formúl)
- jazyk logiky (syntax aj sémantika) a teória dôkazu
 - študuje pravidlá odvodzovania dôsledkov vyplývajúcich z množiny viet

Logika a reprezentácia poznatkov

- logika v UI
 - výroková
 - predikátová
 - temporálna (čas)
 - modálna ("možno platí, že")
 - viachodnotová
 - fuzzy (neostrá, rozmazaná)

Výroková logika

syntax (BNF - Backusov Naurov tvar)

- terminálne symboly
 - Logické konštanty True a False,
 - výrokové premenné P, Q, R a pod.,
 - $\bullet \ \, \mathsf{spojky} \land, \lor, \Leftrightarrow, \Rightarrow \mathsf{(dvojmiestne\,funktory)}, \lnot \mathsf{(jednomiestny\,funktor)}$
 - zátvorky (,)
- neterminálny symbol formula
- literál

13

Výroková logika

- sémantika
 - interpretácia ohodnotenie pravdivostnou hodnotou
 - pravdivostné hodnoty Pravda, Lož
 - (logické konštanty True, False)
- pravdivostné tabuľky

Р	Q	¬P	P∧Q	P∨Q	P⇒Q	P⇔Q
Lož	Lož	Pravda	Lož	Lož	Pravda	Pravda
Lož	Pravda	Pravda	Lož	Pravda	Pravda	Lož
Pravda	Lož	Lož	Lož	Pravda	Lož	Lož
Pravda	Pravda	Lož	Pravda	Pravda	Pravda	Pravda

Výroková logika – príklad

 ${\color{red}\bullet} \; {\sf P} \Rightarrow ({\sf Q} \Rightarrow {\sf P})$

Р	Q	$(Q \Rightarrow P)$	$P \Rightarrow (Q \Rightarrow P)$
Lož	Lož	Pravda	Pravda
Lož	Pravda	Lož	Pravda
Pravda	Lož	Pravda	Pravda
Pravda	Pravda	Pravda	Pravda

Tautológia

Výroková logika - odvodzovacie pravidlá

pravidlo odlúčenia (modus ponens)	pravidlo vovedenia dizjunkcie		
α , $\alpha \Rightarrow \beta$	α_i		
β	$\alpha_1 \lor \alpha_2 \lor \dots \lor \alpha_n$		
pravidlo odstránenia konjunkcie	pravidlo odstránenia dvojitej negácie		
$\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$	α		
α_i	α		
pravidlo vovedenia konjunkcie	pravidlo jednotkovej rezolvencie		
$\alpha_1, \alpha_2, \ldots, \alpha_n$	_ α ∨ β, ¬β		
$\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$	α		

15

Výroková logika - odvodzovacie pravidlá

• Pravidlo rezolvencie $\frac{ \qquad \qquad \alpha \vee \beta \text{, } \neg \beta \vee \gamma }{ \qquad \qquad \alpha \vee \gamma }$

α	β	$\alpha \vee \beta$	
Lož	Lož	Lož	
Lož	Lož	Lož	
Lož	Pravda	Pravda	
Lož	Pravda	Pravda	
Pravda	Lož	Pravda	
Pravda	Lož	Pravda	
Pravda	Pravda	Pravda	
Pravda	Pravda	Pravda	

Výroková logika - odvodzovacie pravidlá

• Pravidlo rezolvencie $\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\cdots}$

β	γ	$\neg \beta \lor \gamma$	
Lož	Lož	Pravda	
Lož	Pravda	Pravda	
Pravda	Lož	Lož	
Pravda	Pravda	Pravda	
Lož	Lož	Pravda	
Lož	Pravda	Pravda	
Pravda	Lož	Lož	

Výroková logika - odvodzovacie pravidlá

• Pravidlo rezolvencie $\frac{ \qquad \qquad \alpha \vee \beta, \ \, \neg \beta \vee \gamma }{ \qquad \qquad \alpha \vee \gamma }$

	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	$\alpha \vee \gamma$
	Lož	Pravda	Lož
	Lož	Pravda	Pravda
	Pravda	Lož	Lož
	Pravda	Pravda	Pravda
	Pravda	Pravda	Pravda
	Pravda	Pravda	Pravda
	Pravda	Lož	Pravda
	Pravda	Pravda	Pravda

Výroková logika - odvodzovacie pravidlá

Pravidlo rezolvencie _____

$$\alpha \vee \beta$$
, $\neg \beta \vee \gamma$
 $\alpha \vee \gamma$

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	$\alpha \vee \gamma$
Lož	Lož	Lož	Lož	Pravda	Lož
Lož	Lož	Pravda	Lož	Pravda	Pravda
Lož	Pravda	Lož	Pravda	Lož	Lož
Lož	Pravda	Pravda	Pravda	Pravda	Pravda
Pravda	Lož	Lož	Pravda	Pravda	Pravda
Pravda	Lož	Pravda	Pravda	Pravda	Pravda
Pravda	Pravda	Lož	Pravda	Lož	Pravda
Pravda	Pravda	Pravda	Pravda	Pravda	Pravda

20

Výroková logika - odvodzovanie

- použitie odvodzovacích pravidiel
- dôkaz formuly

function VÝROKOVÝ-ZNALOSTNÝ-AGENT(vnem) returns akcia static: BP, báza poznatkov t, počítadlo, ktoré indikuje čas; na začiatku 0

PRIDAJ (BP, VYTVOR-VETU-O-VNEME (vnem, t)) for each akcia in zoznam možných akcii do if ODPOVEDAJ (BP,VYTVOR-DOPYT-NA-AKCIU (t, akcia)) then t ← t + 1 return akcia end

Predikátová logika

syntax (BNF - Backusov Naurov tvar)

formula → jednoduchá_formula | formula spojka formula | kvantifikátor premenná, ... formula | ¬ formula |

(formula)

 spojka
 $\rightarrow \land |\lor| \Rightarrow |\Leftrightarrow$

 kvantifikátor
 $\rightarrow \forall |\exists$

 konštanta
 $\rightarrow ldentifikátor$

 premenná
 $\rightarrow ldentifikátor$

predikátový_symbol → identifikátor funktor → identifikátor

22

Predikátová logika

- sémantika:
 - interpretácia konštanty jej priraďuje objekt okolitého sveta
 - interpretáciou predikátového symbolu je relácia medzi objektmi okolitého sveta
 - interpretáciou funktora je funkcia nad objektmi okolitého sveta
- term
- jednoduchá formula

Predikátová logika

2

Predikátová logika – kvantifikátory

univerzálny kvantifikátor ∀

- "Všetky cesty vedú do Ríma."
- "pre ľubovoľný objekt x, ak x je cesta, tak x vedie do Ríma".
- ∀x Cesta (x) ⇒ VedieDoRíma (x)

Cesta(ViaAppia) ⇒ VedieDoRíma(ViaAppia) ∧ Cesta(ViaSalaria) ⇒ VedieDoRíma(ViaSalaria) ∧ Cesta(ViaCassia) ⇒ VedieDoRíma(ViaCassia) ∧ Cesta(ViaAurelia) ⇒ VedieDoRíma(ViaAurelia) ∧ ...

ak je formula pravdivá, vypovedá to, čo tvorí pravú stranu implikácie, iba o objektoch, ktoré splňujú ľavú stranu

Predikátová logika – kvantifikátory

existenčný kvantifikátor 3

- . "Do Ríma sa dá dôjsť po ceste."
- "existuje cesta x taká, že x vedie do Ríma".
- ∃x Cesta (x) ∧ VedieDoRíma (x)

Cesta(ViaAppia) \(\text{VedieDoRima}(ViaAppia) \) Cesta(ViaSalaria) A VedieDoRíma(ViaSalaria) Cesta(ViaAurelia) A VedieDoRíma(ViaAurelia) V ...

vnorené kvantifikátory

ak dva kvantifikátory v jednej formule vovádzajú tú istú premennú, "patrí" príslušný výskyt bližšiemu

 $\forall x [Cesta(x) \lor \exists x \ VedieDo(Rim, x)]$ alebo $\forall x [Cesta(x) \lor \exists y \ VedieDo(Rim, y)]$

Predikátová logika – kvantifikátory

- vzťah medzi existenčným a všeobecným kvantifikátorom
 - "všetci ľudia nemajú krídla"

"neexistuje taký človek, ktorý má krídla"

- ∀ č ¬ Má (č , Krídla) –∃ č *Má* (č , *Krídla*)
- pravidlá pre kvantifikátory

 $\exists x\, F \ \equiv \ \neg \forall x\, \neg F$

 $\forall x \neg F \equiv \neg \exists x F$ $\neg F \land \neg G \equiv \neg (F \lor G)$ $\neg \forall x F \equiv \exists x \neg F$ $\neg (F \land G) \equiv \neg F \lor \neg G$ $\forall x F \equiv \neg \exists x \neg F$ $F \wedge G \equiv \neg (\neg F \vee \neg G)$

27

Predikátová logika

- reprezentácia poznatkov
 - formuly (axiómy, definície)

 $PRIDAJ(BP, \forall s \forall v \ StarýRodič(s, v) \Leftrightarrow \exists r \ Rodič(s,r) \land \ Rodič(r, v))$

- ODPOVEDAJ(BP, ∃s StarýRodič(s, Lenny))
- reprezentácia zvláštnych druhov poznatkov
 - vyjadrenie zmien stavu sveta

28

Príklad – reprezentácia poznatkov v predikátovej logike

 $F \lor G \equiv \neg (\neg F \land \neg G)$

- Každý, kto je spôsobilý na jazdu a má auto, môže jazdiť. Na jazdu je spôsobilý ten, kto má vodičský preukaz. Peter má vodičský preukaz a požičal si auto. Tí, čo jazdia, nemajú problémy s dopravou. Dá sa nájsť niekto, kto nemá problémy s dopravou?
- Opis problému:

 $\forall x \text{ spôsobil} \dot{y}(x) \land m\acute{a}_auto(x) \Rightarrow jazd\acute{i}(x)$ ∀x má vodičský preukaz(x) ⇒ spôsobilý(x) ∃x = Peter má_vodičský_preukaz(x) ∧ má_auto(x) $\forall x \text{ jazdi}(x) \Rightarrow \text{nemá_problémy_s_dopravou}(x)$ $\exists x \ nemá_problémy_s_dopravou(x)$

Predikátová logika

- situačný počet
 - vlastnosť/vzťah meniaci sa v čase sa vyjadruje predikátom s argumentom navyše

JeNa (RobotArnold, Pitvor, S₁)

dôsledok:

 $\textit{JeNa} \; (\textit{RobotArnold}, \; \textit{Pitvor}, \; S_1) \; \land \; \neg \textit{JeNa} \; (\textit{RobotArnold}, \; \textit{Pitvor}, \; S_2)$

- zmena stavu sveta:
 - \neg JeNa (RobotArnold, Pitvor, S₁) \Rightarrow

JeNa (RobotArnold, Pitvor, ĎalšiaSituácia (Vstúp, S₁))

• riešenie problémov - dôkaz existenčnej cieľovej formuly a postupnosť akcií

Axiómy v situačnom počte

fakty (začiatočný stav S₀)

"robot Arnold sa nachádza v pitvore, debna B leží na debne A, debny B a C sú voľné."

JeNa(RobotArnold, Pitvor, S₀) LežíNa(B, A, S₀)

 $VoľnýVrch(B, S_0) \wedge VoľnýVrch(C, S_0)$

všeobecné tvrdenia

 $\forall x \ \forall y \ \forall s \ [\text{Lež\'iNa}(x,\,y,\,s) \Rightarrow \neg \text{Lež\'iNa}(y,\,x,\,s)]$

akcie a ich účinky

 $\forall x \ \forall s \ [VoľnýVrch(x, s) \Rightarrow Zdvihnutý(x, ĎalšiaSituácia(Zdvihni(x), s)]$

cieľ

∃s [LežíNa(B, A, s) ∧ LežíNa(C, B, s)]

Odvodzovanie v predikátovej logike 1.rádu

Substitúcia

 SUBST ({x/Cesta61, y/Západ}, Smeruje(x, y)) = Smeruje(Cesta61, Západ)

Odstránenie univerzálneho kvantifikátora

- Pre ľubovoľnú formulu α , premennú v a konštantný výraz g

 $\forall v \alpha$ Subst($\{v/g\}$, α)

Odstránenie existenčného kvantifikátora

pre ľubovoľnú formulu α , premennú v a konštantu k takú, že sa nenachádza inde v báze poznatkov

 $\exists v \alpha$ SUBST $(\{v/k\}, \alpha)$

32

Odvodzovanie v predikátovej logike 1.rádu

Vovedenie existenčného kvantifikátora

pre ľubovoľnú formulu α , premennú v takú, že sa nenachádza v α a konštantný výraz g

Oί $\exists v \text{SUBST}(\{g/v\}, \alpha)$

Zovšeobecnené pravidlo odlúčenia

Nech p_i, p_i', q sú jednoduché formuly také, že existuje substitúcia θ taká, že SUBST (θ, p_i') = SUBST (θ, p_i) pre všetky i

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{\text{Subst}(\theta, q)}$$

Hornove formuly

formula v báze poznatkov je buď jednoduchá formula alebo implikácia, ktorá má na ľavej strane konjunkciu jednoduchých formúl a jedinú jednoduchú formulu na pravej strane

Príklad odvodenia (dôkazu)

Predpokladajme, že platia axiómy

(A1) Každá manželka obdivuje svojho manžela

(A2) Dorota je manželka

treba dokázať, že Dorota obdivuje svojho manžela

Manželka(x), Obdivuje(x, y), Manžel(x), Dorota cieľ: Obdivuje(Dorota, Manžel(Dorota))

axiómy: (1) ∀x (Manželka(x) ⇒ Obdivuje(x, Manžel(x))) (2) Manželka(Dorota) letránica ::odstránime univerzálny kvantifikátor na (1)

(3) Manželka(Dorota) ⇒
Obdivuje(Dorota, Manžel(Dorota))
pravidlo odlúčenia na (2) a (3)

(4) Obdivuje(Dorota, Manžel(Dorota))

Dorota vo zvolenom axiomatickom systéme obdivuje svojho manžela

Odvodzovanie v predikátovej logike 1.rádu

unifikačný algoritmus

UNIFY $(p, q) = \theta$ taká, že SUBST $(\theta, p) = SUBST(\theta, q)$

unifikátor θ

UNIFY (Vedie(x, Západ), Vedie(y, z))

 $= \{y/x, z/Z \text{ápad}\}$

= {y/x, z/Západ, u/Cesta61}

= {y/Cesta61, z/Západ, x/Cesta61}

= ...

najvšeobecnejší unifikátor

- Najmenej zužuje možnosti náhrady premenných

Unifikačný algoritmus

function UNIFY(x, y) returns substitúcia, ktorou sa stanú x a y totožné, ak existuje VLASTNÝ-UNIFY(x, y, {})

function VLASTNÝ-UNIFY(x, y, θ) returns substitúcia, ktorou sa stanú x a y totožné, ak existuje (pre dané θ) inputs: x, premenná / konštanta / zložená formula y, premenná / konštanta / zložená formula

θ, dosiaľ vytvorená substitúcia

if θ = neúspech then return neúspech

else if x = y then return θ else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ) else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ) else if ZLOŽENÁ?(x) and ZLOŽENÁ?(y) then

else ii ZLOZENAR'(X) and ZUZENAR'(Y) lieri return VLASTNÝ-UNIFY(ARGUMENTY[X], ARGUMENTY[Y], UNIFY(OPERÁTOR[X], OPERÁTOR[X], 0) else if ZOZNAMY(X) and ZOZNAMY(y) then return VLASTNÝ-UNIFY (ZVYŠOK[X], ZVYŠOK [Y], VLASTNÝ-UNIFY (PRVÝ[X], PRVÝ [Y], 0))

else return neúspech

Unifikačný algoritmus

function UNIFY-VAR(*var*, *x*, *θ*) **returns** substitúcia **inputs**: *var*, premenná

x, ľubovoľná formula

heta, dosiaľ vytvorená substitúcia

if $\{var/vaf\} \in \theta$ then return VLASTNÝ-UNIFY(vaf, x, θ)) else if $\{x/vaf\} \in \theta$ then return VLASTNÝ-UNIFY(var, vaf, θ)) else if var sa vyskytuje hocikde vx then return neúspech else return ($x/vaf\rangle \cup \theta$

Odvodzovanie v predikátovej logike 1.rádu

dopredné zreťazenie

 vychádza sa z formúl v báze poznatkov a odvodzujú sa nové dôsledky, ktoré môžu poslúžiť na odvodzovanie ešte ďalších dôsledkov

spätné zreťazenie

 vychádza sa z formuly, ktorá sa má dokázať, hľadajú sa implikácie, ktoré by ju umožnili odvodiť a pre nájdené implikácie sa pokračuje pokusmi dokázať ich predpoklady

37

38

Príklad - Odvodzovanie v predikátovej logike 1.rádu

- Zákon v USA hovorí, že ak Američan predáva zbrane znepriateleným národom, je to zločin. Krajina Nono, nepriateľ USA vlastní rakety, ktoré jej predal plukovník West – americký občan.
- Dokážte, že plukovník West je zločinec.

Príklad - Odvodzovanie v predikátovej logike 1.rádu

 ... Američan, ktorý predáva zbrane znepriateleným národom je zločinec:

 $Američan(x) \wedge Zbraň(y) \wedge Predáva(x,y,z) \wedge Znepriatelený(z) \Rightarrow Zločinec(x)$

 Nono ... vlastní rakety, t.j., ∃x Vlastní(Nono,x) ∧ Raketa(x): Vlastní(Nono,M₁) a Raketa(M₁)

... všetky rakety boli predané plukovníkom Westom Raketa(x) ∧ Vlastní(Nono,x) ⇒ Predáva(West,x,Nono)

Rakety sú zbrane:

Raketa(x) ⇒ Zbraň(x)

Nepriateľ Ameriky je znepriatelený národ: Nepriateľ(x,America) ⇒ Znepriatelený(x)

West je Američan ...
 Američan(West)

Krajina Nono je nepriateľom Ameriky ...

Nepriateľ (Nono, America)

40

42

Dopredné zreťazenie - príklad

39

Američan(West)

Raketa(M1)

Vlastní(Nono,M1)

Nepriateľ (Nono, Amerika)

Dopredné zreťazenie - príklad

Zbrań(M1) Predáva(West.M1,Nono) Znepriatelený(Nono)

Američan(West) Raketa(M1) Vlastni(Nono.M1) Nepriatel(Nono.Amerika)

Dopredné zreťazenie - príklad

Odvodzovanie v predikátovej logike 1.rádu

procedure DOPREDNÉ-ZREŤAZENIE (BP,p) if existuje v BP formula, ktorá je premenovaním p then return pridaj p do BP for each ($p1 \land ... \land pn \Rightarrow q$) in BP také, že pre nejaké i/UNIFY(pi,p) = θ je úspešné do NÁJDI-A-ODVOĎ ($BP,[p1,...,pi-1,pi+1,...,pn],q,\theta$) end

| procedure NÁJDI-A-ODVOĎ (BP, predpoklady, dôsledok, θ)
| if predpoklady = [] then | DOPREDNĚ-ZREŤAZENIE (BP, SUBST(θ, dôsledok))
| else for each p' in BP také, že | UNIFY (p', SUBST(θ, PRVÝ(predpoklady)))= θ2 do | NÁJDI-A-ODVOĎ (BP, ZVYŠOK(predpoklady), dôsledok, ZLOŽ(θ, θ2))
| end

Spätné zreťazenie - príklad

Zločinec(West)

Spätné zreťazenie - príklad

46

Spätné zreťazenie - príklad

45

Spätné zreťazenie - príklad

Spätné zreťazenie - príklad

Spätné zreťazenie - príklad

Spätné zreťazenie - príklad

Odvodzovanie v predikátovej logike 1.rádu

function SPÄTNÉ-ZREŤAZENIE(BP, q) returns množina substitúcií SPÄTNÉ-ZREŤAZENIE-ZOZNAMU(BP, [q], {}) function SPÄTNÉ-ZREŤAZENIE-ZOZNAMU(BP, qzoznam, 0) inputs: *BP*, báza poznatkov *qzoznam*, konjunktov tvoriacich dopyt (po aplikácii 0) θ, súčasná substitúcia static: odpovede, množina substitúcií, na začiatku prázdna ા પ્રદેશભાશામાં)e prázdny then return θ $q \leftarrow \text{PRW}'(qzoznam)$ for each qi in BP také, že $\thetai \leftarrow \text{UNIFY}(q,qi)$ úspešné do pridaj ZLOŽ (θ,θ) do odpovede end for each formula $(p1 \land ... \land pn \Rightarrow qi)$ in BP taká, že $\theta i \leftarrow \mathsf{UNIFY}(q, qi')$ úspešné do odpovede $\leftarrow \mathsf{SPÄTNÉ-ZRETAZENIE-ZOZNAMU}(BP,$ $\mathsf{SUBST}(\theta \textit{i}, [\textit{p1}, ..., \textit{pn}], \mathsf{ZLO\check{Z}}(\theta, \theta \textit{i})) \cup \textit{odpovede}$ zjednotenie SPÄTNÉ-ZREŤAZENIE-ZOZNAMU (BP,ZVYŠOK(qzoznam), θ) return pre každé θ ∈ *odpovede*

pravidlá pre reprezentáciu znalostí

- · AK ... TAK (IF... THEN) pravidlá možno použiť na reprezentovanie znalostí, napr:
 - ak prší tak zmokneš
- · pravidlá môžu byť aj odporúčaniami, napr:
 - ak prší tak by si mal mať pršiplášť

pravidlové odvodzovacie systémy

spôsob, akým vyjadrí expert nejakú znalosť, nesie so sebou dôležitú informáciu, napr: ak osoba má horúčku a cíti bolesť v žalúdku tak môže mať infekciu.

v predikátovej logike sa to dá vyjadriť ako:

 $\forall x \; (\mathsf{m\'a_hor\'u\'cku}(x) \; \& \; \mathsf{bolest\'_v_\'zal\'udku}(x) \; \boldsymbol{\to} \; \mathsf{m\'a_infekciu}(x))$

ak sa takáto formula skonvertuje do klauzulárneho tvaru (pozri ďalej), stratíme časť obsahu, lebo rovnakú reprezentáciu majú aj iné ekvivalentné formuly napr:

(i) má_horúčku(x) & ~ má_infekciu(x) \Rightarrow ~ bolesť_v_žalúdku(x) (ii) ~má_infekciu(x) & bolesť_v_žalúdku(x) \Rightarrow ~ má_horúčku(x)

všimnime si. že:

- (i) a (ii) sú logicky ekvivalentné s pôvodnou vetou
 stratili hlavnú informáciu v nej obsiahnutú.

produkčný systém

- hlavná myšlienka za dopredným/spätným produkčným systémom je:
 - využiť výhodu tvaru implikácie, v akom formuluje expert pravidlá
 - použiť túto informáciu, aby pomohla dosiahnuť cieľ.
- typicky v produkčných systémoch majú formuly tvar:
 - pravidlá
 - fakty
- produkčné pravidlá sú vyjadrenia v tvare implikácie.
 vyjadrujú špecifické znalosti o probléme.
- fakty sú tvrdenia, ktoré nie sú vyjadrené implikáciou
 - vyjadrujú sa formulou s použitím negácie, súčinu a súčtu.

pravidlový produkčný systém

- produkčný systém používa znalosti v tvare pravidiel na to, aby poskytoval diagnózu, radu, odporúčanie na základe vstupných údajov.
- pozostáva z databázy pravidiel (báza znalostí), databázy faktov a odvodzovacieho stroja (mechanizmu), ktorý robí odvodenia nad faktami pomocou pravidiel.

56

architektúra expertného systému

- báza znalostí (Knowledge base): databáza pravidiel (doménové znalosti).
- vysvetľovací systém (explanation system): vysvetľuje rozhodnutia, ktoré systém robí.
- rozhranie na používateľa (user interface): pomocou neho interaguje používateľ s expertným systémom.
- editor bázy znalostí (knowledge base editor): umožňuje používateľovi editovať znalosti v báze znalostí.

dopredné a spätné reťazenie

hypotéza

udaje

dobré aplikácie spätného reťazenia

fakty

odvodené uzávery

siroký a plytký priestor

dobré aplikácie dopredného reťazenia

produkčný systém

dopredne reťazený

všetka komunikácia prostredníctvom pracovnej pamäti

- [zisťovanie podobnosti matching] nájdi všetky pravidlá, ktorých podmienková časť je splnená (pri súčasnom stave pracovnej pamäti)
- 2. [skončenie] ak nie je ani jedno pravidlo aplikovateľné, tak skonči
- [rozriešenie konfliktov conflict resolution] ak sú viac než jedno pravidlo aplikovateľné, vyber jedno (s najvyššou prioritou)
 - metapravidlá
- [vykonanie-execution] vykonaj (odpáľ) vybrané pravidlo. vykonanie zmení obsah pracovnej pamäti.
 - pridaj, vymaž údaj, vykonaj v/v, ...
- 5. opakuj od 1.

Odvodzovanie v predikátovej logike 1.rádu

- ? úplnosť
 - odvodzovanie, založené iba na zovšeobecnenom pravidle odlúčenia, je neúplné
- pravidlo zovšeobecnenej rezolvencie
 Pre literály p_i a q_i pričom platí UNIFY(p_i ¬ q_k) = θ:

$$\begin{split} p_1 \vee \ldots \vee p_j \vee \ldots \vee p_m \\ q_1 \vee \ldots \vee q_k \vee \ldots \vee q_n \end{split}$$
 $\mathbf{SUBST}(\theta, (p_1 \vee \ldots \vee p_{j+1} \vee p_{j+1} \vee \ldots \vee p_m \vee q_1 \vee \ldots \vee q_{k+1} \vee q_{k+1} \vee \ldots q_g))$

Pre atómy $p_{i_1} \ q_{i_2} \ r_{i_3} \ s_{i_3}$ pričom platí UNIFY $(p_{j_1} \ q_k) = \theta$:

 $\frac{p_1 \wedge \dots \wedge p_j \wedge \dots \wedge p_n \Rightarrow r_1 \vee \dots \vee r_{s_0}}{s_1 \wedge \dots \wedge s_{s_0} \Rightarrow q_1 \vee \dots \vee q_k \vee \dots \vee q_{s_k}}$ $\overline{\text{SUBST}(\theta, (p_1 \wedge \dots \wedge p_{j_1} \wedge p_{j_1} \wedge \dots \wedge p_{s_0} \wedge s_1 \wedge \dots \wedge s_{s_0} \Rightarrow} \\ r_1 \vee \dots \vee r_{s_0} \vee q_1 \vee \dots \vee q_{k^3} \vee q_{k^1} \vee \dots \vee q_k)}$

Odvodzovanie v predikátovej logike 1.rádu

rezolvenčný dôkaz

sporom

$$(BP \land \neg P \Rightarrow Lo\check{z}) \Leftrightarrow (BP \Rightarrow P)$$

klauzulárny tvar

- klauzula je dizjunkcia niekoľkých literálov (nemusí byť ani jeden)
- literál je atóm alebo negácia atómu
- všetky premenné v klauzule sú implicitne univerzálne kvantifikované
- medzi všetkými klauzulami je implicitná konjunkcia

Prepis formuly do klauzulárneho tvaru

1. odstránenie ekvivalencie

$$\frac{F \Leftrightarrow G}{(\neg F \lor G) \land (\neg G \lor F)}$$

2. odstránenie implikácie

$$\cfrac{F \Rightarrow G}{\neg F \vee G}$$

3. zmenšenie rozsahu negácie

$$\begin{array}{cccc} \neg (F \lor G) & \neg \forall x \ F & \neg \neg F \\ \hline \neg F \land \neg G & \exists x \ \neg F & F \\ \hline \neg (F \land G) & \neg \exists x \ F & \hline \\ \neg F \lor \neg G & \forall x \ \neg F & \\ \end{array}$$

•

Prepis formuly do klauzulárneho tvaru

- 4. premenovanie premenných
- odstránenie existenčných kvatifikátorov
 Skolemov výraz (konštanta / funkcia, presnejšie funktor)
 ∃u∀v∀w∃x∀y∃z F(u,v,w,x,y,z) ,po náhrade
 ∀v∀w∀y F(b, v, w, f(v, w), y, g(v, w, y))
- presun kvantifikátorov doľava (pozn.: H{x} formula H neobsahuje prem. X)

Prepis formuly do klauzulárneho tvaru

- 7. odstránenie prefixu
- 8. prepis do konjuktívneho tvaru

$$\frac{F \vee (G \wedge H)}{(F \vee G) \wedge (F \vee H)} \quad \frac{F \wedge (G \vee H)}{(F \wedge G) \vee (F \wedge H)}$$

- 9. zápis konjukcie klauzúl ako množiny
- 10. normalizácia premenných v klauzulách

$$\frac{\forall x \ (F(x) \land G(x))}{\forall x \ \forall y \ (F(x) \land G(y))}$$

64

Príklad - Prepis formuly do klauzulárneho tvaru

Každého, kto má rád všetky zvieratá, má niekto rád. ∀x [∀y Zviera(y) ⇒ Má_rád(x,y)] ⇒ [∃y Má_rád(y,x)]

Odstránenie implikácie

 $\forall x [\neg \forall y \neg Z viera(y) \lor Má_rád(x,y)] \lor [\exists y Má_rád(y,x)]$

2. Zmenšenie rozsahu negácie:

 $\begin{array}{l} \forall x \left[\exists y \neg (\neg Z viera(y) \lor M \underline{a}_r \acute{a} d(x,y))\right] \lor \left[\exists y \ M \underline{a}_r \acute{a} d(y,x)\right] \\ \forall x \left[\exists y \ \neg \neg Z viera(y) \land \neg M \underline{a}_r \acute{a} d(x,y)\right] \lor \left[\exists y \ M \underline{a}_r \acute{a} d(y,x)\right] \end{array}$

 $\forall x \ [\exists y \ Zviera(y) \land \neg Má_rád(x,y)] \lor [\exists y \ Má_rád(y,x)]$

Príklad - Prepis formuly do klauzulárneho tvaru

3. Premenovanie premenných

 $\forall x \ [\exists y \ Zviera(y) \land \neg Má_rád(x,y)] \lor [\exists z \ Má_rád(z,x)]$

4. Odstránenie existenčných kvantifikátorov

 $\forall x \ [Zviera(F(x)) \land \neg M \\ \\ \text{$\underline{\mbox{M\'a}}$_r\'ad}(x,F(x))] \lor M \\ \\ \text{$\underline{\mbox{M\'a}}$_r\'ad}(G(x),x)$

5. Odstránenie prefixu:

 $[Zviera(F(x)) \land \neg Má_rád(x,F(x))] \lor Má_rád(G(x),x)$

6. Prepis do konjuktívneho tvaru:

$$\begin{split} & [Zviera(F(x)) \lor M \acute{a}_r \acute{a} d(G(x),x)] \\ & \land [\neg M \acute{a}_r \acute{a} d(x,F(x)) \lor M \acute{a}_r \acute{a} d(G(x),x)] \end{split}$$

Procedúra odvodzovania s pravidlom rezolvencie

P - dokazovaná formula

- prepis F₁, F₂, ..., F_n a ¬P do klauzulárneho tvaru vznikne vstupná množina U
- opakujúce sa rezolvovanie
 - výber dvoch klauzúl z U, ktoré sa dajú rezolvovať
 - ak treba, štandardizácia týchto klauzúl
 - odvodenie rezolventy
 - pridanie rezolventy do U

pokiaľ (t.j. skonči ak):

- rezolventa je prázdna klauzula (P je teoréma)
- neexistujú dve klauzuly v U, ktoré by sa dali rezolvovať, alebo by sa dala odvodiť nová rezolventa (P nie je teoréma)
- vyčerpali sa vopred určené výpočtové zdroje

Príklad rezolvenčného dôkazu

Každý, kto je spôsobilý na jazdu a má auto, môže jazdiť. Na jazdu je spôsobilý ten, kto má vodičský preukaz. Peter má vodičský preukaz a požičal si auto. Tí, čo jazdia, nemajú problémy s dopravou. Dá sa nájsť niekto, kto nemá problémy s dopravou?

Formuly jazyka predikátovej logiky prvého rádu:

∀x spôsobilý(x) ∧ má_auto(x) ⇒ jazdí(x)
∀x má_vodíčský_preukaz(x) ⇒ spôsobilý(x)
∃x = Peter má_vodíčský_preukaz(x) ∧ má_auto(x)
∀x jazdí(x) → nemá_problémy_s_dopravou(x)
∃x nemá_problémy_s_dopravou(x)

Úprava do klauzulárneho tvaru (pre jednoduchosť nasledujúceho obrázku tu

 \neg spôsobilý(x) $\lor \neg$ má_auto(x) \lor jazdí(x)

¬má_vodičský_preukaz(x) ∨ spôsobilý(x) (K2) (napr. x na x1) má_vodičský_preukaz(Peter) (K3)

(K4)

má auto(Peter)

-iazdí(x) ∨ nemá problémy s dopravou(x) (K5) (napr. x na x2)

nemá_problémy_s_dopravou(x) (K6) (napr. x na x3)

Príklad rezolvenčného dôkazu

Procedúra odvodzovania s pravidlom rezolvencie

zefektívnenie:

rezolvenčné stratégie

 usporadúvaiúce hĺbkové saturovanie, preferencia najmenšieho počtu literálov, jednotková preferencia

■ odsekávajúce

vylúčenie jalových klauzúl, vylúčenie tautológií, zahrnutie

obmedzujúce

podporná množina, vstupná rezolvencia, lineárna rezolvencia

úplnosť stratégie definícia – otázka na jednotlivé stratégie

70

72

Rezolvenčné stratégie

Usporadúvajúce stratégie

Stratégia hĺbkového saturovania

Predpisuje najprv odvodzovať všetky možné rezolventy v hĺbke n a až potom v hĺbke (n+1).

Stratégia preferencie najmenšieho počtu literálov

Uprednostňuje spomedzi dvojíc rezolvovateľných klauzúl tú, ktorej súčet dĺžok je najmenší.

Stratégia jednotkovej preferencie

Stratégia uprednostňuje použitie rezolvenčného pravidla tak, že jedna z klauzúl je len jeden literál (jednotková klauzula).

Rezolvenčné stratégie

Odsekávajúce stratégie

 Stratégia vylúčenia jalových klauzúl Literál L je jalový, ak sa vyskytuje v množine klauzúl, ale komplementárny unifikovateľný literál –l. sa v nej nevyskytuje. Stratégia predpisuje vyľučiť všetky jalové literály zo vstupnej množiny.

Stratégia vylúčenia tautológií

Predpisuje vylúčiť zo vstupnej množiny klauzuly, ktoré sú tautológie, napr. $F(x) \vee G(x,y) \vee \neg F(x)$.

Stratégia zahrnutia

Stategja zámrnuta Klauzula J je zahrnutá v klauzule I, ak existuje taká substitúcia 0, že všetky literály v klauzule SUBST(0, I) sa vyskytujú v klauzule J. Napr. F(A) je špecifickejšia ako F(x) a preto je v nej zahrnutá. Na začiatku sa vylúčia všetky zahmuté klauzuly zo vstupnej množiny, ak sa neskôr odvodí rezolventa, zahmutá v nejakej klauzule, vylúči sa tiež.

Rezolvenčné stratégie

Obmedzujúce stratégie

Stratégia podpornej množiny

Najprv sa identifikuje podporná množina (klauzuly, ktoré vznikli z negovanej dokazovanej formuly). Každé použitie rezolvenčného pravidla vezme jednu klauzulu z podpornej množiny a rezolventu potom zase pridá do podpornej množiny.

Stratégia vstupnej rezolvencie

Predpisuje vziať vždy ako jednu z klauzúl na rezolvovanie klauzulu, ktorá vznikla zo vstupných formúl.

Stratégia lineárnej rezolvencie

Predpisuje rezolvovať dve klauzuly nielen v prípade, ak je jedna zo vstupnej množiny klauzúl, ale aj v prípade, ak je jedna predchodkyňou druhej v strome dôkazu.