## Example 2.15 blz 94\_95 Analytisch (Integreren\_Primitiveren).docx

[met correctie]

RL-kring (Fig. 2.25)



We de mogen de integratiegrensen  $-\infty$  tot  $\infty$  in de convolutieintegraal  $\int_{-\infty}^{\infty} g(\tau)h(t-\tau)d\tau$  vervangen door 0 tot t omdat het systeem voldoet aan:

- i. LTI
- ii. input g(t) = u(t) u(t-4) werkt alleen voor t > 0; g(t) = 0 voor t < 0!
- iii. causaal systeem (gevolg komt na de oorzaak; output komt na input)

$$x(t) = g(t) \times h(t) = \int_0^t g(\tau)h(t-\tau)d\tau = \int_0^t h(\tau)g(t-\tau)d\tau$$
 $output = input \times ImpulseResponse = Convolutie(g,h) = Convolutie(h,g)$ 
 $(response)$ 

dummy variabelen!

t = parameter

 $\tau = lopende integratie\_variabele$ 

$$g(t) = u(t) - u(t-4)$$

 $h(t) = e^{-t}u(t)$ 

2 Scenario's: óf 0 < t < 4 óf t > 4;

$$1 \quad 0 < t < 4$$

$$2 \ t > 4$$

<u>1</u>: 0 < *t* < 4 :

$$x'(t) = \int_0^t g(\tau)h(t-\tau)d\tau = \\ = \int_0^t \left(u(\tau) - u(\tau-4)\right)e^{-(t-\tau)}u(t-\tau)d\tau = \\ = \int_0^t 1.e^{-(t-\tau)}.1d\tau = \int_0^t e^{-(t-\tau)}d\tau = \\ (u(t-\tau) = 1, voor\ 0 < \tau < t \ en\ e^{-t} = constant\ tijdens\ het\ integreren) \\ = e^{-t}\int_0^t e^{\tau}d\tau = e^{-t}[e^{\tau}]_0^t = e^{-t}[e^t-1] = 1 - e^{-t}$$

<u>**2.**</u> t > 4

$$x'(t) = \int_{0}^{t} (u(\tau) - u(\tau - 4)) e^{-(t - \tau)} d\tau =$$

$$= \int_{0}^{4} 1 \cdot e^{-(t - \tau)} d\tau + \int_{4}^{t} 0 \cdot e^{-(t - \tau)} d\tau =$$

$$= \int_{0}^{4} e^{-(t - \tau)} d\tau = e^{-t} \int_{0}^{4} e^{\tau} d\tau$$

$$= e^{-t} [e^{\tau}]_{0}^{4} = e^{-t} [e^{4} - 1]$$



Resume:

output 
$$x(t) = 1 - e^{-t}$$
,  $0 < t < 4$   
=  $e^{-t}[e^4 - 1]$ ,  $t > 4$ 

Controle:

• Grafiek van:  $x(t)=1-e^{-t}$  , 0 < t < 4=  $e^{-t}[e^4-1]$ , t > 4

Ex\_2\_15\_grafiek\_controle.m



• Numeriek (conv functie):

Ex\_2\_15\_conv\_functie\_controle\_grafiek.m



------ 0 ------