Module 4: Classification Part 1

TMA4268 Statistical Learning V2023

Daesoo Lee,

Department of Mathematical Sciences, NTNU

Overview

Overview

- Classification and discrimination
- Logistic regression
- Bayes classifier
- KNN

$$\begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{vmatrix} = \begin{vmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{vmatrix} \cdot \begin{vmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{vmatrix} + \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{vmatrix}$$

$$Y = X\beta + \epsilon$$

- *Y* is a qualitative variable for regression.
- *Y* can be a quantitative variable → *classification!*
- Spam filters email $\in \{\text{spam, ham}\},\$
- Eye color \in {blue, brown, green}.
- Medical condition $\in \{ disease1, disease2, disease3 \}_{5}$

• We often build models that **predict probabilities of categories**, given X.

$$Y = X\beta + \epsilon$$

- e.g., $Y \in \{\text{spam, not.spam}\}$
- e.g., $\hat{Y} = \{0.2, 0.8\}$

What are the methods?

Three methods for classification are discussed here:

- Logistic regression
- *K*-nearest neighbors
- Linear and quadratic discriminant analysis (in the next lecture)

Logistic Regression

- $Y \in \{\text{male}, \text{female}\}; \text{binary}$
- $Y \in \{1, 0\}$

Logistic Regression

 $\begin{cases} p(male) = 1. \\ p(female) = 0. \end{cases}$

- $Y \in \{\text{male}, \text{female}\}; \text{ binary }$
- $Y \in \{1, 0\}$
- $\bullet \quad \widehat{Y} = \widehat{f}(X)$
- $\widehat{Y} \in [0,1] \rightarrow \text{probability!}$
- $\hat{y}_i = p_i$
- We may assume that \hat{y}_i follows a *Bernoulli distribution*

Why don't we just use a linear regression?

- The output of \hat{f} can vary between $-\infty$ and $+\infty$. For binary classification, the output should be within 0 and 1.
- Linear regression assumes $\epsilon \sim N(0, \sigma^2)$

How to model \hat{f} ?

•
$$\sigma(t) = \frac{e^t}{e^{t+1}} = \frac{1}{1+e^{-t}}$$

- Replace 1) t with $\beta_0 + \beta_1 x$, and 2) $\sigma(t)$ with p(x).
- *t* is a linear transformation of *x*.

•
$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

•
$$\hat{f} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}} = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 x)}}$$

Example

• We're now using the *Default* dataset from the *ISLR* library

Example

- $default = f(balance) + \epsilon$ default: "failure to fulfil an obligation, especially to repay a loan or appear in a law court." (0 or 1)
- $default = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 balance)}}$


```
library(ISLR)
data(Default)
Default$default <- as.numeric(Default$default) - 1
glm_default = glm(default ~ balance, data = Default, family = "binomial")
summary(glm_default)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.651330614 0.3611573721 -29.49221 3.623124e-191
balance 0.005498917 0.0002203702 24.95309 1.976602e-137
```

Q. what's the probability of default given balance of 2,000?

$$d\widehat{efault} = \frac{1}{1 + e^{-(-10.65 + 0.0055 \cdot 2000)}} \approx 0.59$$

$$\therefore \begin{cases} \text{prob for default} \\ \text{prob for not. default} \end{cases} = \begin{cases} 0.59 \\ 1 - 0.59 \end{cases}$$

Estimating the coefficients

Remember

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

$$\begin{cases} \text{prob for male} \\ \text{prob for female} \end{cases} = \begin{cases} p_i \\ 1 - p_i \end{cases} \rightarrow (p_i)^{y_i} (1 - p_i)^{1 - y_i} \text{ where } y_i = \begin{cases} 1 & \text{if male} \\ 0 & \text{if female} \end{cases}$$

• Given n independent observation pairs $\{x_i, y_i\}$, the likelihood function of a logistic regression model is written as:

$$L(\beta) = \prod_{i=1}^{n} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

- The estimates are found by maximizing the above likelihood.
- Usually, log-likelihood is used instead of likelihood. (a value of likelihood becomes too small for large n)

Estimating the coefficients

- This doesn't have an analytical solution.
- The equation is solved numerically using the Newton-Raphson algorithm (it's an optimization algorithm).

Example (continued)

```
```{r}
library(ISLR)
summary(Default)
Default$default <- as.numeric(Default$default) - 1</pre>
glm_default = glm(default ~ balance, data = Default, family = "binomial")
summary(glm_default)
call:
 glm(formula = default ~ balance, family = "binomial", data = Default)
 Deviance Residuals:
 10 Median
 Min
 Max
 -2.2697 -0.1465 -0.0589 -0.0221 3.7589
coefficients:
 Estimate Std. Error z value Pr(>|z|)
 (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
 balance
 5.499e-03 2.204e-04 24.95 <2e-16 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 (Dispersion parameter for binomial family taken to be 1)
 Null deviance: 2920.6 on 9999 degrees of freedom
 Residual deviance: 1596.5 on 9998 degrees of freedom
AIC: 1600.5
Number of Fisher Scoring iterations: 8
```

- The z-statistic is equal to  $\frac{\beta}{SE(\widehat{\beta})}$ , and is approximately N(0,1) distributed.
- Check the *p*-value for *Balance*. Conclusion?

#### Odds

• 
$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$
 can be generalized to

$$p_{i} = \frac{e^{\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{p} x_{ip}}}{1 + e^{\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{p} x_{ip}}} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{p} x_{ip})}}$$

$$\Rightarrow \frac{1}{p_i} = 1 + e^{-(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})}$$

$$\Rightarrow \frac{1}{p_i} - 1 = \frac{1 - p_i}{p_i} = e^{-(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})} = \frac{1}{e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}$$

$$\Rightarrow \frac{1-p_i}{p_i} = \frac{1}{e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}}$$

$$\Rightarrow \frac{p_i}{1-p_i} = e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}$$

• The quantity  $p_i/(1-p_i)$  is called odds. Odds represent chances (e.g., in betting)

$$\frac{p_i}{1-p_i} = \frac{\frac{blue}{blue + yellow}}{1-\frac{blue}{blue + yellow}} = \frac{\frac{blue}{blue + yellow}}{\frac{yellow}{blue + yellow}} = \frac{blue}{yellow}$$



#### What's the deal with Odds here?

- The key point here is that we can *interpret the logistic regression in terms of odds (chances)*. (not the formula or nitty-gritty details!)
- $\frac{p_i}{1-p_i} = e^{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}} = e^{\beta_0} e^{\beta_1 x_{i1}} \cdots e^{\beta_p x_{ip}}$

#### The odds ratio

• To understand the effect of a regression coefficient  $\beta_j$ , let's see what happens if we increase  $x_{ij}$  to  $x_{ij} + 1$ , while all other covariates are kept fixed.

• 
$$\frac{\operatorname{odds}(Y_{i}=1 \mid X_{j}=x_{ij}+1)}{\operatorname{odds}(Y_{i}=1 \mid X_{j}=x_{ij})} = \frac{e^{\beta_{0}}e^{\beta_{1}x_{i1}...e^{\beta_{j}}(x_{ij}+1)}...e^{\beta_{p}x_{ip}}}{e^{\beta_{0}}e^{\beta_{1}x_{i1}...e^{\beta_{j}}x_{ij}...e^{\beta_{p}x_{ip}}}} = \frac{e^{\beta_{j}(x_{ij}+1)}}{e^{\beta_{j}x_{ij}}} = \frac{e^{\beta_{j}x_{ij}}e^{\beta_{j}}}{e^{\beta_{j}x_{ij}}} = e^{\beta_{j}x_{ij}}e^{\beta_{j}}$$

• Interpretation: By increasing covariate  $x_{ij}$  by one unit, we change the odds for  $Y_i = 1$  by a factor of  $e^{\beta_j}$ .

#### **Example**

```
library(ISLR)
data(Default)
Default$default <- as.numeric(Default$default) - 1
glm_default = glm(default ~ balance + income + student, data = Default, family = "binomial")
summary(glm_default)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.086905e+01 4.922555e-01 -22.080088 4.911280e-108
balance 5.736505e-03 2.318945e-04 24.737563 4.219578e-135
income 3.033450e-06 8.202615e-06 0.369815 7.115203e-01
studentYes -6.467758e-01 2.362525e-01 -2.737646 6.188063e-03
```

#### Questions:

• What happens with the odds to default when *income* increases by 10,000 dollars?

odds ratio = 
$$\frac{e^{\beta_j(x_{ij}+10000)}}{e^{\beta_j x_{ij}}} = e^{\beta_j 10000} = e^{(3.03 \cdot 10^{-6}) \cdot 10000} = 1.03$$

What happens with the odds to default when balance increases by 100 dollars?

odds ratio = 
$$\frac{e^{\beta_j(x_{ij}+100)}}{e^{\beta_j x_{ij}}} = e^{\beta_j 100} = e^{(5.74 \cdot 10^{-3}) \cdot 100} = 1.78$$

#### **Bayes Classifier**

• Assume that we can estimate the probability that a new observation  $x_0$  belongs to class k, for K. The probability that Y = k given  $x_0$  is:

$$Pr(Y = k \mid X = x_0)$$

• Then, the Bayes classifier is

$$C^{\text{Bayes}}(x_0) = \operatorname{argmax}_{k \in \{1, 2, \dots, K\}} Pr(Y = k \mid X = x_0)$$

• For instance,

$$Pr(Y|x_0) = \begin{cases} Pr(Y = male \mid X = 50kg) = 0.1\\ Pr(Y = female \mid X = 50kg) = 0.9 \end{cases}$$

$$argmax(Pr(Y|x_0)) = female$$

- What if you have  $x = (x_0, x_1, x_2, ..., x_p)$  instead of  $x_0$ ? (p denotes a number of features)
- $Pr(Y = k \mid X = x)$  becomes more complex! To tackle this issue, Naïve Bayes classifier is introduced.

#### **Naïve Bayes Classifier**

- $Pr(Y = k \mid X = x) = p(Y_k \mid x)$  where  $x = (x_1, x_2, ..., x_p)$  and p denotes a number of features.
- Our problem was that  $p(Y_k|x)$  becomes much more complex than  $p(Y_k|x_i)$ .
- Using the Bayes theorem,  $p(Y_k|x)$  can be expressed as

$$p(Y_k|\mathbf{x}) \propto p(\mathbf{x}|Y_k)p(Y_k) = p(x_1, x_2, \dots, x_p|Y_k)p(Y_k)$$

• With the independent assumption, all features in x are mutually independent (the term "naïve" comes from here):

$$p(Y_k|\mathbf{x}) \propto p(x_1|Y_k)p(x_2|Y_k)\cdots p(x_p|Y_k)p(Y_k)$$

#### Bayes Theorem



#### **Example: Naïve Bayes Classifier**





#### **Email: "Dear Friend"**

$$p(N \mid "Dear Friend")$$
  
=  $p(N)p(Dear \mid N)p(Friend \mid N)$   
=  $0.67 \cdot 0.43 \cdot 0.29 = 0.084$   
 $p(S \mid "Dear Friend")$   
=  $p(S)p(Dear \mid S)p(Friend \mid S)$   
=  $0.33 \cdot 0.27 \cdot 0.18 = 0.016$ 

#### **Email: "Lunch Money Money"**

```
p(N \mid \text{"Lunch Money Money Money"})
= p(N)p(\text{Lunch}|N)p(\text{Money}|N)^3
= 0.67 \cdot 0.19 \cdot 0.1^3 = 0.00127
p(S \mid \text{"Lunch Money Money Money"})
= p(S)p(\text{Lunch}|S)p(\text{Money}|S)^3
```

 $= 0.33 \cdot 0.09 \cdot 0.45^3 = 0.0027$ 

#### **Properties of the Bayes classifier**

• The overall Bayes error rate is given as

$$1 - E\left[\max_{j} \Pr(Y = j \mid X)\right]$$

where the expectation is over X.

#### **Training error**

Training error rate

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{I}(y_i \neq \hat{y}_i)$$

I is an indicator function and is defined as:

$$\mathbf{I} = \begin{cases} 1 & \text{if } y_i \neq \hat{y}_i \\ 0 & \text{else} \end{cases}$$

• The training error rate is the fraction of misclassification made on our training set.

You study for an exam, and often

 $X_{train}$  (training dataset)

with the previous years' exams.

#### **Test error**

- *Test error* is the same as the training error except that it is calculated on our *test set*.
- This gives a better indication of the true performance of the classifier than the training error.

 $\searrow X_{test}$  (test dataset)

• We assume that a *good classifier* is a classifier with a *low test error*.



You take the exam.

- KNN classifier estimates  $p(Y_k|x)$  non-parametrically.
- Classification is done by a majority vote:



• 
$$K = 3$$

$$\begin{cases} p(green|x) = 2/3 \\ p(red|x) = 1/3 \end{cases}$$

• 
$$K = 7$$

$$\begin{cases} p(green|x) = 3/7 \\ p(red|x) = 4/7 \end{cases}$$

• *K*: number of neighbors

#### KNN

- Big dots: training data
- Little dots: test data



#### **How to choose** *K***?**

- K = 1: the classification is made to the same class as the one nearest neighbor.
- *K* large: the decision boundary tends towards a straight line.

#### **Discussion:**

- When is the bias large? When is the variance large?
- How to find the optimal *K*?



### How to find the optimal *K*?



#### The curse of dimensionality

- KNN can be quite good if the number of predictors p is small and the number of observations n is large. We need enough close neighbors to make a good classification.
- The effectiveness of the KNN classifier falls quickly when the dimension of the predictor space is high.
- Why?
   Because the nearest neighbors tend to be far away in high dimensional space.
   KNN is based on "nearest neighbors" and neighbors are going far away.. Not good!



# Two Paradigms for Classification

# Two Paradigms for Classification

#### Two approaches to estimate $Pr(Y = k \mid X = x)$

#### **Diagnostic Paradigm**

- *Directly* estimating Pr(Y = k | X = x)
- e.g., Logistic regression, KNN classification

#### **Sampling Paradigm**

• Indirectly estimating  $\Pr(Y = k \mid X = x)$ by modeling the likelihood  $\Pr(X = x \mid Y = k)$  and the prior  $\Pr(Y = k)$ .  $\Pr(Y = k \mid X = x) \propto \Pr(X = x \mid Y = k) \Pr(Y = k)$ 

#### Bayes Theorem



Remember Naïve Bayes Classifier?

$$p(Y_k|\mathbf{x})$$

$$\propto p(x_1|Y_k)p(x_2|Y_k)\cdots p(x_p|Y_k)p(Y_k)$$

