IPESUP 2023/2024

Colle 8 MPSI/MP2I Jeudi 7 décembre 2023

Planche 1

- 1. Unicité de l'inverse dans un monoïde.
- 2. Soit G un groupe et $\sigma \in \operatorname{Aut}(G)$. Montrer que $F = \{g \in G | \sigma(g) = g\}$ est un sous-groupe de G. Soit $g \in G$, la partie $A = \{\sigma \in \operatorname{Aut}(G) | \sigma(g) = g\}$ est-elle un sous-groupe de $\operatorname{Aut}(G)$?
- 3. On considère le groupe $(\mathfrak{S}(\{1,2,3\}),\circ)$. Déterminer tous ses sous-groupes.

Planche 2

- 1. Première caractérisation des sous-groupes. Énoncé et démonstration.
- 2. On considère un groupe G vérifiant $\forall (x,y) \in G^2, (xy)^2 = x^2y^2$. Montrer que G est commutatif.
- 3. Soit (G, \star) un groupe. Montrer que $\varphi : G \mapsto \mathfrak{S}(G), g \mapsto L_g$ est un morphisme de groupes injectif. Peut-il être surjectif si G est fini?

Planche 3

- 1. Soit $f: G \to H$ un morphisme entre deux groupes (G, \star) et (H, \sharp) . Que dire que $f(e_G)$ et $f(x^{-1})$ pour tout x dans G? Le démontrer.
- 2. Soit G un groupe fini commutatif noté multiplicativement. A l'aide de $\prod_{g \in G} g$, montrer que $\forall h \in G, h^{|G|} = e_G$.
- 3. On munit $E = \mathbb{R}^* \times \mathbb{R}^* \times \mathbb{R}$ de l'application suivante :

$$\star$$
: $E \times E \rightarrow E$, (a, b, c) , $(a', b', c') \rightarrow (aa', bb', ac' + cb')$

Montrer que (E, \star) est un groupe. Est-il commutatif?

Bonus

Soit $n \in \mathbb{N}^*$. Pour tout $((x,y),(x',y')) \in (\mathbb{U}_2 \times \mathbb{U}_n)^2$, on note $(x,y) \star (x',y') = (xx',yy'^x)$. Montrer que $(\mathbb{U}_2 \times \mathbb{U}_n, \star)$ est un groupe. Montrer qu'il est non isomorphe au groupe produit $\mathbb{U}_2 \times \mathbb{U}_n$ pour tout $n \ge 3$.