Single Image Haze Removal Using Dark Channel Prior

Team4 r11943018 林子軒、r11943022 范詠為

Outline

- Motivation
- Problem Definition
- Introduction
- Algorithm
- Expected Result
- Reference

Motivation

Haze removal can improve the quality of images, making them more useful for various applications

surveillance

- object detection & recognition
- identification of people or vehicles

aerial photography

- the clarity of the terrain
- detect changes or anomalies in the landscape

computer vision

- image classification, segmentation, or tracking
- improve the accuracy

Problem Definition

Goal: Produce a visually pleasing and natural-looking haze-free image that enhances the details and colors of the scene while preserving its overall appearance.

Introduction

Different categories of image dehazing methods [2]

Haze Imaging Equation

$$t(\mathbf{x}) = e^{-\beta d(\mathbf{x})}$$

medium transmission

$$\underline{\mathbf{I}(\mathbf{x})} = \underline{\mathbf{J}(\mathbf{x})}\underline{t(\mathbf{x})} + \underline{\mathbf{A}}(1 - t(\mathbf{x}))$$

observed intensity

scene radiance

atmospheric light

hazy

haze-free

Dark Channel Prior (DCP)[1]

In outdoor haze-free images, pixels with low intensity in at least one RGB channel are commonly found in local regions not covering the sky.

Dark Channel Prior (DCP)[1]

Mainly result from three factors:

- shadows
- colorful objects or surfaces
- dark objects or surfaces

Dark Channel Prior (DCP)[1]

$$J^{\mathrm{dark}}(\mathbf{x}) = \min_{\mathbf{y} \in \Omega(\mathbf{x})} \left(\min_{c \in \{r,g,b\}} J^c(\mathbf{y}) \right) ~~ \mathbf{0} \text{ if haze-free}$$
 arbitrary image J $\min_{(b)} \mathrm{of}(r,g,b) = \mathrm{minimum}(15x15)$

Algorithm

Expected Result - Qualitative

Fig. 6. Haze removal. (a) Input hazy images. (b) Estimated transmission maps before soft matting. (c) Refined transmission maps after soft matting. (d), (e) Recovered images using (b) and (c), respectively.

Expected Result - Quantitative

Peak Signal-to-Noise Ratio (PSNR)

$$PSNR = 10\log_{10}\left(\frac{255^2}{MSE}\right)$$

Structural Similarity Index (SSIM)

$$SSIM(r,i) = \left(\frac{2\mu_r \mu_i + c_1}{\mu_r^2 + \mu_i^2 + c_1}\right) \left(\frac{2\mu_{ri} + c_2}{\sigma_r^2 + \sigma_i^2 + c_2}\right)$$

Table 17 PSNR and SSIM comparison of existing techniques on RESIDE dataset

Method	SOTS Outdoor		SOTS Indoor	
	PSNR	SSIM	PSNR	SSIM
DCP [63]	19.13	0.82	16.62	0.82

with ground-truth

Reference

[1] He, Kaiming, Jian Sun, and Xiaoou Tang. "Single image haze removal using dark channel prior." *IEEE transactions on pattern analysis and machine intelligence* 33.12 (2010): 2341-2353.

[2] Agrawal, Subhash Chand, and Anand Singh Jalal. "A comprehensive review on analysis and implementation of recent image dehazing methods." *Archives of Computational Methods in Engineering* 29.7 (2022): 4799-4850.