Вычислительные аспекты оптимизации Метод стохастического градиента

Пимахов Кирилл, 622 гр.

2017

Содержание

1	Постановка задачи	į
2	Метод стохастического градиента	4
3	Сходимость метода стохастического градиента	Ę
4	Инициализация параметров	6
5	Предъявление объектов	6
6	Проблема переобучения	7
7	Некоторые модификации метода стохастического градиента	7

1 Постановка задачи

Пусть имеется матрица данных $\mathbf{X} = [x_1, \dots, x_p], x_j \in \mathbb{R}^n, j = 1 \dots p$, где p – количество переменных, n – количество наблюдений. Целевая переменная $y \in \mathbb{R}^n$ в случае регрессии, $y_i \in \{-1, +1\}, i = 1 \dots n$ в случае классификации.

Задача в случае регрессии: найти параметры w семейства функций f(x,w), минимизирующие

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x_i, w) - y_i) = \frac{1}{n} Q(w), \tag{1}$$

где \mathscr{L} – функция потерь.

Например, в этих обозначениях записывается линейная регрессия: $w = (\beta_0, \beta_1, \dots, \beta_p)$, $f(x_i, w) = \sum_{j=1}^p x_{ij} * \beta_j + \beta_0$, $\mathcal{L}(f(x_i, w) - y) = (f(x_i, w) - y)^2$. Так же к минимизации (1) сводится и любая параметрическая регрессия.

В случае классификации так же задача заключается нахлждении параметров w семейства функций g(x,w), минимизирующие следующую целевую функцию:

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}(g(x_i, w)y_i) = \frac{1}{n}\sum_{i=1}^{n}[g(x_i, w)y_i < 0] = \frac{1}{n}Q(w).$$
(2)

Обозначим $M_i(w) = g(x_i, w)y_i$ – отступ.

Вместо $\mathcal{L}(g(x_i,w)y_i)$ можно брать гладкую (или непрерыаную) оценку сверху, в том числе за счет оценки $[M_i(w)<0]$. Вспомним постановку задачи в SVM:

$$\sum_{i=1}^{n} (1 - M_i(w))_+ + \frac{1}{2C} ||w||^2 \to \min_{w}, \tag{3}$$

где $M_i = y_i (\langle w, x_i \rangle - w_0)$. Замена целевой функции на мажоранту меняет смысл задачи. В (3) штрафуются близкие к разделяющей гиперплоскости наблюдения, а также введена регуляризация.

2 Метод стохастического градиента

Один из простейших методов решения задачи минимизации Q(w), определенной в (1) или в (2) – градиентный спуск.

Алгоритм .1. Градиентный спуск

- 1: Инициализация параметров $w^{(0)}$ и выбор скорости обучения h.
- 2: Повторять
- 3: Вычисление градиента Q при текущем векторе параметров.

$$\nabla Q(w^{(t)}) = \left(\frac{\partial Q(w^{(t)})}{\partial w_1}, \dots, \frac{\partial Q(w^{(t)})}{\partial w_p}\right)$$

4: Обновление вектора параметров $w^{(t+1)} = w^{(t)} - h\nabla Q(w^{(t)})$.

5: Пока выполняется $|Q(w^{(t+1)}) - Q(w^{(t)})| > \epsilon$ или $\|w^{(t+1)} - w^{(t)}\| > \epsilon$ или $\|\nabla Q(w^{(t)})\| > \epsilon$.

Условие остановки алгоритма .1 в 5 пункте выбирается в зависимости от постановки задачи.

Проблемой применения алгоритма .1 для задач (1) и (2) является то, что минимизируемая функция представляет собой сумму слагаемых \mathcal{L} , количество которых равно объему выборки. При больших объемах выборки вычисление Q(w) и $\nabla Q(w)$ становится трудоемким.

Метод стохастического градиента решает эту проблему. Идея заключается в использовании оценок целевой функции и ее градиента вместо их прямого вычисления

Алгоритм .2. Метод стохастического градиента

1: Инициализация вектора параметров $w^{(0)}$, выбор скорости обучения h, темп забывания λ , вычисление начального значения функционала

$$\overline{Q}(w_0) = \frac{1}{n}Q(w_0) = \frac{1}{n}\sum_{i=1}^n \mathcal{L}(g(x_i, w_0), y_i).$$

- 2: Повторять
- x_i Случайный выбор элемента из выборки x_i и вычисление функции потерь

$$\epsilon_i = \mathcal{L}(g(x_i, w), y_i)$$

4: Обновление вектора параметров $w^{(t+1)} = w^{(t)} - h\nabla \mathcal{L}(g(x_i, w^{(t)}), y_i).$

5: Оценка функционала $Q(w) = (1 - \lambda)Q(w) + \lambda \epsilon_i$.

6: Пока выполняется $|Q(w^{(t+1)}) - Q(w^{(t)})| > \epsilon$ или $\|w^{(t+1)} - w^{(t)}\| > \epsilon$ или $\|\nabla Q(w^{(t)})\| > \epsilon$.

3 Сходимость метода стохастического градиента

Что касается сходимости алгоритма .2, следует учитывать, что оценки параметров w – случайные величины, поэтому под сходимостью понимается сходимость почти всюду. В (Stochastic learning, Léon Bottou, 2003) приводятся условия, при которых стохастический градиент сходится почти всюду при

$$h_t \to 0, \ \sum_{t=1}^{\infty} h_t = \infty, \ \sum_{t=1}^{\infty} h_t^2 < \infty.$$
 (4)

Более сильным, но простым является условие строгой выпуклости целевой функции. Выпуклой, например, является целевая функция для линейной регрессии: гессиан в этом случае равен $\mathbf{X}^T\mathbf{X}$, и если он положительно определен, то задача строго выпукла.

Также в (Stochastic learning, Léon Bottou, 2003) по поводу скорости сходимости утверждается, что $1/\|w_t - w^*\|^2$ растет линейно по t. Использование второй производной (гессиана) целевой функции ускоряет сходимость. Обозначим $\Phi^{(t)}$ – оценку обратной матрицы к гессиану на шаге t, тогда обновление параметров:

$$w^{(t+1)} = w^{(t)} - h\Phi^{(t)}\nabla \mathcal{L}(g(x_i, w^{(t)}), y_i).$$
(5)

Вместо $\nabla \mathscr{L}(g(x_i,w),y_i)$ можно использовать более точную оценку градиента:

$$1/M \sum_{j=1}^{M} \mathcal{L}(g(x_j, w), y_i).$$

В случае достаточно точной оценки градиента, имеет смысл выбирать h, обеспечивающую скорейший спуск:

$$Q(w - h\nabla Q(w)) \to \min_{h}$$
.

4 Инициализация параметров

Несколько вариантов инициализации $w^{(0)}$.

- $w_j^{(0)} = 0, j = 1 \dots p.$
- Небольшие случайные значения $w_j^{(0)} \in U(-1/(2n), 1/(2n)).$
- Для регрессии: $w_j^{(0)} = \langle y, x_j \rangle / \langle x_j, x_j \rangle$.
- Для классификации: $w_j^{(0)} = \log \left(\sum_i [y_i = 1] x_{ij} / \sum_i [y_i = -1] x_{ij} \right)$.
- Обучение по небольшой случайной подвыборке. Как и в предыдущих 2 пунктах ожидается, что начальные параметры окажутся достаточно близко к оптимальным.
- Мультистарт. Многократный запуск на случайных начальных значениях $w_j^{(0)}$ и выбор наилучшего. Помогает решить проблему выбора параметров из локального минимума.

Скорость обучения можно инициализировать, например, $h_t = 1/t$, это удовлетворяет условию сходимости метода (4). В качестве темпа забывания λ можно взять 1/n, где n-объем выборки.

5 Предъявление объектов

Несколько вариантов предъявления объектов, помимо выборки из выборочного распределения:

• Попеременно брать наблюдения из разных классов (shuffling).

- Чаще брать наблюдения с большей ошибкой (отступом), например, вероятность предъявления задать пропорционально величине ошибки. Не стоит использовать, если в выборке есть выбросы.
- Не брать «хорошие» наблюдения большим положительным отступом M_i , то есть такие, что $M_i > \mu_+ > 0$.
- Не брать выбросы, наблюдения с большим отрицательным отступом: $M_i < \mu_- < 0$.

6 Проблема переобучения

Несмотря на то, что проблема переобучения — это, в основном, проблема неправильного выбора модели (например слишком много параметров), недостаточного объема выборки или избыточного числа переменных, с этим можно бороться на этапе оптимизации. При избыточном количестве параметров или при малом объеме выборки, оценки этих параметров неустойчивы, а значит могут принимать большие значения. С помощью регуляризации можно напрямую бороться с этой проблемой. Введем дополнительное слагаемое L_2 норму вектора параметров:

$$Q_{\tau}(w) = Q(w) + \frac{\tau}{2} ||w||_{2}^{2},$$

где τ — параметр регуляризации.

Для градиентного метода это значит, что на каждом шаге мы двигаем вектор параметров к нулю:

$$w^{(t+1)} = (1 - h\tau)w^{(t)} - h\nabla \mathcal{L}(g(x_i, w^{(t)}), y_i).$$

7 Некоторые модификации метода стохастического градиента

- Мотентит: Изменение вектора параметров $\Delta w^{(t+1)} = -h\nabla Q(w^{(t)}) + \alpha \Delta w^{(t)}$. То есть параметры двигаются как бы с инерцией, чем больше α тем больше инерция.
- Nesterov Accelerated Gradient: $\Delta w^{(t+1)} = -h\nabla Q(w^{(t)} + \alpha \Delta w^{(t)}) + \alpha \Delta w^{(t)}$. Здесь мы считаем градиент в той точке, куда бы мы двинулись по инерции, то есть заглядываем

вперед. Если целевая функция впереди уменьшается быстрее, то и параметр будет двигаться к минимуму быстрее.

• AdaGrad: Идея: сильнее менять параметры, которые меняются редко. На каждом шаге пересчитывается вектор накопленных изменений параметров $G^{(t)} = G^{(t-1)} + \left(\nabla Q(w^{(t-1)})\right)^2$, квадрат вектора поэлементный. Изменение вектора параметров $\Delta w^{(t+1)} = -h/\sqrt{G^{(t)} + \epsilon} \, \nabla Q(w^{(t)})$, здесь операции над векторами поэлементные. Параметр ϵ для отделения знаменателя от нуля.