

第五章 多元函数微分学及其应用

第一节 Rn中点集的初步知识

- · n维欧氏空间Rⁿ
- · Rⁿ 中点列的极限
- · Rn 中的开集与闭集
- · Rⁿ中的紧集与区域

作业: Page10,

(A) 4,5,6,7

一元函数微积分

数列极限数数极限。数数数数连续数分数。

多元函数微积分

n维点列极限 多元函数极限 多元函数导数 多元函数积分

ε-*N*定义:

 $\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N > 0, \notin n > N$ 时, 恒有 $|x_n - a| < \varepsilon$.

其中∀:每一个或任给的; 3:至少有一个或存在

几何解释:

当n > N时,所有的点 x_n 都落在($a - \varepsilon$, $a + \varepsilon$)内,只有有限个(至多只有N个)落在其外.

注意:数列对应着数轴上一个点列.可看作一动点在数轴上依次取 $x_1, x_2, \dots, x_n, \dots$

线性空间的基本概念

定义 (线性空间) V是一个非空集合,在V 中定义了加法和数乘两种运算, V 对加法和数乘是封闭的,而且加法和数乘运算满足以下8条运算规律:

$$(1) \alpha + \beta = \beta + \alpha;$$

$$(2)(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)在V中存在一个元素,称为零元素,使得 $\alpha + 0 = \alpha$;

$$(4)$$
∀ $\alpha \in V$, $\exists -\alpha \in V$, 使得 $\alpha + (-\alpha) = 0$;
(这里 $-\alpha$ 称为 α 的负元素)

$$(1) \alpha + \beta = \beta + \alpha;$$

$$(2)(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)在V中存在一个元素,称为零元素,使得 $\alpha+0=\alpha$;

$$(4) \forall \alpha \in V, \exists -\alpha \in V,$$
使得 $\alpha + (-\alpha) = 0;$

- $(5)1\alpha = \alpha;$
- $(6) k(l\alpha) = (kl)\alpha;$
- $(7) k(\alpha + \beta) = k\alpha + k\beta;$
- $(8) (k+l)\alpha = k\alpha + l\alpha.$

其中, α , β , γ 是V中任意的元素,k,l是F中任意常数,那么,我们称V为数域F上的线性空间(向量空间)

•

线性空间V = 非空集合V +

封闭的加法封闭的数乘8条运算规律

注意:

- (i) 向量空间的概念是集合与运算二者的结合.
 - 一般地,同一个集合,若定义两种不同的线性运性算,就构成不同的向量空间;
- (ii) 若定义的运算不是线性运算, 就不能构成线性空间.

内积及Euclid空间

内积的定义 设V是一个实线性空间。如果对V中任意两个向量 α , β ,均有一个确定的实数与之对应,这个实数记为 $\langle \alpha, \beta \rangle$ 并且满足下列条件:

- (1) 对称性: $\langle \alpha, \beta \rangle = \langle \beta, \alpha \rangle$;
- (2) 加性 $\langle \alpha + \beta, \gamma \rangle = \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle$;
- (3) 齐性 $\langle k\alpha,\beta\rangle = k\langle \alpha,\beta\rangle$;
- (4)非负性 $\langle \alpha, \alpha \rangle \ge 0$, 而且 $\langle \alpha, \alpha \rangle = 0 \Leftrightarrow \alpha = 0$.

k是任意实数,则称实数 $\langle \alpha, \beta \rangle$ 为向量 α 与 β 的内积,而这样的线性空间称为Euclid空间,简称欧氏空间.

1.1. n维Euclid空间Rn

一般地,称一个n元有序实数组为一个n维实向量.

$$x = (x_1, x_2, \dots, x_n), (x_i \in R, i = 1, 2, \dots, n)$$

n维实向量的全体构成的集合记为:

$$R^{n} = \{x = (x_{1}, x_{2}, \dots, x_{n}), | x_{i} \in R, i = 1, 2, \dots, n\}$$

 R^n 中向量的运算:

设
$$\forall x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n, \forall \alpha \in \mathbb{R}.$$

[1] 加法:
$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

[2]数乘:
$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

全体n维实向量连同定义于其上的向量的加法和数乘构 成了n维向量空间 R^n (或n维实线性空间)

设 $\forall x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ () 新安文道大学 XIAN JIAOTONG UNIVERSITY

[1] 加法:
$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

[2]数乘:
$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n) \quad \forall \alpha \in R.$$

全体n维实向量连同定义于其上的向量的加法和数乘构成了n维向量空间 R^n (或n维实线性空间)

[3]内积:
$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_n y_n$$
 n维Euclid空间 \mathbb{R}^n .

[4]长度(范数):
$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

[5] 距离:
$$\rho(x,y) = ||x-y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

距离概念有什么用处? {定义一个局部范围 衡量接近程度

邻域 Neighbourhood

设点 $a \in R^n$,常数 $\delta > 0$,则称 R^n 中与点a 的距离小于 δ 的点x 的全体所构成的点集为点a 的 δ 邻域,或: 开球

记为:
$$U(a,\delta) = \{x \in \mathbb{R}^n | ||x-a|| < \delta\}$$

而将 $U(a,\delta)$ 中去掉点a的部分称为点a的去心 δ 邻域,

记为:
$$U(a,\delta) = \{x \in \mathbb{R}^n | 0 < ||x-a|| < \delta\} = U(a,\delta) \setminus \{a\}$$

$$x = (x_1, x_2, \dots, x_n), (x_i \in R, i = 1, 2, \dots, n)$$

$$R^{n} = \{x = (x_{1}, x_{2}, \dots, x_{n}), | x_{i} \in R, i = 1, 2, \dots, n\}$$

R^n 中 开区间

$$(a,b) = \{x \in \mathbb{R}^n | a_i < x_i < b_i, i = 1, 2, \dots, n\}$$

R^n 中闭区间

$$[a,b] = \{x \in \mathbb{R}^n | a_i \leq x_i \leq b_i, i = 1, 2, \dots, n\}$$

1.2 Rⁿ中点列的极限

ε-N定义:

即: $\forall \varepsilon > 0, \exists N \in N^+, \forall k > N, 有 \|x_k - a\| < \varepsilon$

也称该点列收敛于a,记作: $\lim_{k\to\infty} x_k = a$. 或 $x_k \to a$ $(k\to\infty)$

邻域式定义:

若对于 a 的任意邻域 $U(a, \varepsilon)$, $\exists N \in N^+$, $\forall k > N$, $f(x_k) \in U(a, \varepsilon)$. 则称该点列收敛于 a, 记作 $\lim_{k \to \infty} x_k = a$.

定理1.1 n维欧氏空间点列的收敛是按坐标收敛.

设 $\{x_k\}_{k=1}^{\infty}$ 为 n 维向量空间 \mathbb{R}^n 中一个点列,点 $a \in \mathbb{R}^n$,则:

$$\lim_{k\to\infty} x_k = a \iff \lim_{k\to\infty} x_{k,i} = a_i, \forall i = 1, 2, ..., n$$

其中,
$$x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), a = (a_1, a_2, \dots, a_n)$$

$$x_{1} = (x_{1,1}, x_{1,2}, x_{1,3}, \dots, x_{1,n}),$$

$$x_{2} = (x_{2,1}, x_{2,2}, x_{2,3}, \dots, x_{2,n}),$$

$$x_{3} = (x_{3,1}, x_{3,2}, x_{3,3}, \dots, x_{3,n}),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a = (a_{1}, a_{2}, a_{3}, \dots, a_{n})$$

16

定理1.1 n维欧氏空间点列的收敛是按坐标收敛.

设 $\{x_k\}_{k=1}^{\infty}$ 为 n 维向量空间 \mathbb{R}^n 中一个点列,点 $a \in \mathbb{R}^n$,则:

$$\lim_{k\to\infty} x_k = a \iff \lim_{k\to\infty} x_{k,i} = a_i, \forall i = 1, 2, ..., n$$

其中,
$$x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), a = (a_1, a_2, \dots, a_n)$$

必要性

定理1.1 n维欧氏空间点列的收敛是按坐标收敛.

设 $\{x_k\}_{k=1}^{\infty}$ 为 n 维向量空间 \mathbb{R}^n 中一个点列,点 $a \in \mathbb{R}^n$,则:

$$\lim_{k\to\infty} x_k = a \iff \lim_{k\to\infty} x_{k,i} = a_i, \forall i = 1, 2, ..., n$$

其中,
$$x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), a = (a_1, a_2, \dots, a_n)$$

充分性

选择题:

设有点列:
$$x^{(k)} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \left((1 + \frac{1}{k})^k, \frac{\sin k}{k}, k(e^{\frac{1}{k}} - 1) \right)^T$$

- **A.** $(0,0,1)^T$
- **B.** $(e,1,1)^T$
- C. $(e,0,1)^T$
- D. 不会,我再想想.

$$\frac{k}{x^{(k)}} = \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{pmatrix} = \left((1 + \frac{1}{k})^k, \frac{\sin k}{k}, k(e^{\frac{1}{k}} - 1) \right)^k$$

$$\lim_{k \to \infty} x^{(k)} = \begin{bmatrix} \lim_{k \to \infty} x_1^{(k)} \\ \lim_{k \to \infty} x_2^{(k)} \\ \lim_{k \to \infty} x_3^{(k)} \end{bmatrix}$$

$$= \left(\lim_{k\to\infty} (1+\frac{1}{k})^k, \lim_{k\to\infty} \frac{\sin k}{k}, \lim_{k\to\infty} k(e^{\frac{1}{k}}-1)\right)^T$$

$$=(e,0,1)^T$$

- 1. 收敛点列的极限是唯一的;
- 2. 收敛点列必为有界点集

设
$$\{x_k\}$$
是收敛点列,则 $\exists M > 0, M \in R, \forall k \in N_+, \|x_k\| \leq M$

3. 点列的收敛满足线性性质;

若
$$x_k \rightarrow a, y_k \rightarrow b, 则:$$

$$x_{k} \pm y_{k} \rightarrow a \pm b,$$

$$\lambda x_{k} \rightarrow \lambda a, \ \lambda \in R$$

$$\langle x_{k}, y_{k} \rangle \rightarrow \langle a, b \rangle.$$

4. 若 $\{x_k\}$ 收敛于 a,则它的任意子列也收敛于 a.

有界实数列必有收敛的子列.(区间套+夹逼定理可证)

定理1.3 Bolzano-Weierstrass定理

n维欧氏空间的有界点列必有收敛的子(点)列.

若A为Rn中的紧集(有界闭集),则A中任意点列都有收敛的子列, 且子列的极限仍属于A 【◆】

波尔查诺 (Bolzano) 捷克哲学家、数学家. 1796年入布拉格大学哲学院攻读哲学、物理学和数学, 1800年又入神学院, 1805年任该校宗教哲学教授。1815年成为波希米亚皇家学会的会员, 1818年任该校哲学院院长。

波尔查诺的主要数学成就涉及分析学的基础问题。在1834年撰写但未完成的著作《函数论》中,他正确地理解了连续性和可微性之间的区别,在数学史上首次给出了在任何点都没有有限导数的连续函数的例子(皮亚诺曲线,没有解析表达式)。波尔查诺对建立无穷集合理论也有重要见解,在《无穷的悖论》(1851)中,他坚持了实无穷集合的存在性,强调了两个集合的等价概念(即两集合元素间存在一一对应),注意到无穷集合的真子集可以同整个集合等价。

Cauchy点列 (基本点列)

定义 对n维欧氏空间中的点列 $\{x_k\}$,若

$$\forall \varepsilon > 0, \exists N \in N_+,$$
使得 $\forall k > N$ 及 $\forall p \in N_+, ||x_{k+p} - x_k|| < \varepsilon$

则称 $\{x_n\}$ 是Cauchy点列(基本点列)

 $\{x_k\}$ 是Cauchy点列 $\Leftrightarrow \{x_{k,i}\}$ 是Cauchy数列

定理1.1 n维欧氏空间点列的收敛是按坐标收敛.

设 $\{x_k\}_{k=1}^{\infty}$ 为n维向量空间 \mathbb{R}^n 中一个点列,

点 $a \in \mathbb{R}^n$,则:

$$\lim_{k\to\infty} x_k = a \iff \lim_{k\to\infty} x_{k,i} = a_i, \forall i = 1, 2, ..., n$$

其中,
$$x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), a = (a_1, a_2, \dots, a_n)$$

R^n 的完备性:

 R^n 中的点列收敛于 R^n 中的点

 $\{x_k\}$ 是Cauchy点列 $\Leftrightarrow \{x_{k,i}\}$ 是Cauchy数列

定理1.4 (Cauchy收敛原理)

n维欧氏空间 R^n 中的点列收敛于 R^n 中的点

1.3 n维空间中点集的概念

(1) 邻域 Neighbourhood

设点 $a \in R^n$,常数 $\delta > 0$,则称 R^n 中与点a 的距离小于 δ 的点x的全体所构成的点集为点a的 δ 邻域,或:开球

记为:
$$U(a,\delta) = \{x \in R^n | ||x-a|| < \delta\}$$

而将U(a,δ)中去掉点a的部分称为点a的去心δ邻域,记为

$$\stackrel{o}{U}(a,\delta) = \left\{ x \in \mathbb{R}^n \middle| 0 < ||x-a|| < \delta \right\} = U(a,\delta) \setminus \{a\}$$

有时也可使用方邻域,方邻域与圆邻域可以互相包含. 平面上的方邻域为:

$$U(P_0,\delta) = \{ (x,y) | |x-x_0| < \delta, |y-y_0| < \delta \}$$

说明:若不需要强调邻域半径 δ ,也可写成 $U(P_0)$.

点
$$P_0$$
 的去心邻域记为 $U(P_0) = \{P \mid 0 < \|PP_0\| < \delta \}$

设 $A \subset R^n, P_0 \in R^n$.则 $P_0 与 A$ 有三种可能的关系:

- (1) 在 P_0 的附近没有 A 的点.
- (2) P_0 的附近全是 A 的点.
- (3) P_0 的附近既有 A 的点,又有不属于 A 的点.

(2)内点 外点 边界点 聚点 孤立点

● 设 $A \in \mathbb{R}^n$ 的一个点集,点 $a \in A$. 如果存在点a的一个邻域 $U(a,\delta)$,使得 $U(a,\delta) \subset A$,则称a为A的一个内点集合A的内点的全体所构成的集合称为集合A的内部

记为: A° 或 int A. interior points

设 $a_1 \in R^n$. 如果存在点 a_1 的一个邻域 $U(a_1, \delta_1)$ 使得 $U(a_1, \delta_1)$ 的点都不是A的点,即 $U(a_1, \delta_1) \subset A^c$,则称 a_1 为A的一个外点

集合A的外点的全体所构成的集合称为集合A的外部

记为: extA. exterior points

设 $a_2 \in \mathbb{R}^n$. 如果点 a_2 的任意一个邻域 $U(a_2, \delta_2)$ 中 XIAN JIAOTONG UNIVERSITY

既含有集合A的点,又含有 A^c 的点,则称 a_2 为A的一个边界点.

集合A的边界点的全体所构成的集合称为集合A的边界.

记为: ∂A. boundary points

例1 设 $A = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x^2 + y^2 \le 4\}.$

求: A的内部,外部以及边界.

点集A的内点、外点、边界点与 A的关系?

A 的内点必属于 A,

A 的外点必不属于A,

A 的边界点可能属于A,也可能不属于A.

R"中的任一点是且仅是A的内点,外点,边界点中的一种

$$R^n = \operatorname{int} A \cup \operatorname{ext} A \cup \partial A$$
.

$$R^n = A^\circ \cup \text{ext} A \cup \partial A$$
.

- $\bigcirc A$ 的全体聚点所成的集合,称为A的导集,记作 A'
- A与A的导集的并集,称为A的闭包,记作 $\overline{A} = A \cup A'$
- $a \in A$, $\mathbb{E}[a \notin A']$ 则称 $a \mapsto A$ 的孤立点。

或:a附近除a外没有A的点,即存在a的邻域U(a),

$$U(a) \cap A = \{a\}$$

● $\overline{A}' \subseteq A$,则称A为闭集。(闭集对极限运算是封闭的)

●聚点的充要条件

设 $A \in R^n$ 的一个点集,点 $a \in R^n$.

$$a \in A' \iff \forall \varepsilon > 0, \overset{\circ}{U}(a,\varepsilon) \cap A \neq \emptyset.$$

a为A的聚点 \Leftrightarrow a的任意去心邻域 $U(a,\varepsilon)$ 中都含有A中的点

证明: 必要性: 一 将极限用邻域表示即可

充分性: $\langle \longrightarrow \forall \varepsilon > 0, \mathring{U}(a,\varepsilon) \cap A \neq \emptyset$.

取 $\varepsilon = \frac{1}{L}, \exists x_k \in U(a,\varepsilon) \cap A.$

$$\frac{1}{1}$$
 $0 < ||x_k - a|| < \frac{1}{k}$.

两边夹, $\rho(x_k,a) = ||x_k-a|| \to 0$,

$$0 < ||x_1 - a|| < 1$$

$$0 < ||x_2 - a|| < \frac{1}{2}.$$

$$0 < ||x_3 - a|| < \frac{1}{3}.$$

聚点的说明 accumulation points

百安克通大學 XI'AN JIAOTONG UNIVERSITY

设点集 $A \subseteq R^n$, $a \in R^n$,如果a的任意去心邻域中总含有A的点,则称a为点集A的聚点

说明: ③ 内点一定是聚点;

- ③ 有限点集没有聚点;
- ①点集A的聚点可以属于A,也可以不属于A;
- ①边界点可能是聚点,也可能不是聚点.

例
$$A = \{(x, y) | 0 < x^2 + y^2 \le 1\}$$
 (0,0)既是边界点也是聚点,但(0,0)不属于集合A.

而边界的一部分
$$\partial A = \{(x, y) | x^2 + y^2 = 1\}$$

上的点都是聚点也都属于集合.

①边界点可能是聚点,也可能不是聚点.

例:

 $\{(x,y)|0 < x^2+y^2 \le 1\},(0,0)$ 既是边界点也是聚点.

 $\{(x,y)|x^2+y^2=0或x^2+y^2\geq 1\}$, (0,0)是边界点,但不是聚点.

边界点不一定是聚点?

设集合 $A = \{(x,y) | (1,1), x^2 + y^2 \le 1/2\}$

点(1,1)为A的边界点,但存在(1,1)的去心邻域,其内没有属于A的点,故(1,1)不是A的聚点。

而(1,1)属于集合A,故(1,1)为孤立点。

(1,1)为A的边界点,也为A的孤立点

- \bigcirc A的全体聚点所成的集合,称为A的导集,记作 A'
- A与A的导集的并集,称为A的闭包,记作 $\overline{A} = A \cup A'$
- $a \in A$, $\mathbb{E}[a \notin A']$ 则称 $a \mapsto A$ 的孤立点。

或:a附近除a外没有A的点,即存在a的邻域U(a),

$$U(a) \cap A = \{a\}$$

● $\overline{A}' \subseteq A$,则称A为闭集。(闭集对极限运算是封闭的)

聚点的等价定义

关于聚点,下面四条是等价的:

- (1) a是A的聚点;
- (2) a的任意邻域内,至少含有一个属于A而异于a的点;
- (3) 存在A中互异的点所成的点列 $\{x_n\}$,且 $\lim_{n\to\infty} x_n = a$
- (4) a的任何邻域内都有集合 A 中的无穷多个点
- (1)与(2)等价
- (4)=>(2)是显然的,
- (3)=>(4)也不难得到;
- 现证(2)=>(3)

(2) a的任意邻域内,至少含有一个属于A而异于a的点;

(3)存在A中互异的点所成的点列 $\{x_n\}$, 且 $\lim_{n\to\infty} x_n = a$

由(2)知,
$$a$$
为 A 的聚点,则对 $\forall \varepsilon > 0$,存在 $x \in \overset{\circ}{U}(a, \varepsilon) \cap A$

令
$$\varepsilon_1 = 1$$
,则存在 $x_1 \in U(a, \varepsilon_1) \cap A$

$$\varepsilon_2 = \min\left(\frac{1}{2}, |a-x_1|\right), 则存在x_2 \in U(a, \varepsilon_2) \cap A, 且显然x_2 \neq x_1$$

$$\varepsilon_n = \min\left(\frac{1}{n}, |a-x_{n-1}|\right), 则存在x_n \in U(a, \varepsilon_n) \cap A, 且x_n 与x_1, \dots, x_{n-1}$$
互异

无限重复,即可得到A中各项互异点列 $\{x_n\}$, $\|a-x_n\| < \varepsilon_n \le \frac{1}{n}$

易见
$$\lim_{n\to\infty}x_n=a$$

(3) 开集,闭集,线段,连通集

设集合 $A \subseteq R^n$,如果A 中的点都是内点,即int A = A,则称集合 $A \in R^n$ 的开集. 如果A 的余集 A^c 是开集,则称A 为闭集.

例: $E_1 = \{(x,y) | 1 < x^2 + y^2 < 4\}$ 是开集.

开集的性质:

a. 空集,Rn为开集;

b. 任意多个开集之并仍为开集;

c. 有限个开集之交仍为开集。

注: 无限多个开集的交不一定为开集,如:

 $E_n=(0,1+1/n), (0,1],1含于内$

Rn中只有空集和Rn既开又闭,

存在大量既不开又不闭的集合,如: E=[0,1)

设 $A \in \mathbb{R}^n$ 的一个点集,点 $a \in \mathbb{R}^n$.

如果存在A中的点列 $\{x_k\}, x_k \neq a (k = 1, 2, \cdots),$ 使得 $x_k \to a(k \to \infty)$,则称a为A的一个聚点.

- \bigcirc A的全体聚点所成的集合,称为A的导集,记作 A'
- $A \subseteq R^n$, 若A 中的点都是内点(int A = A),则A 是开集.

 $A \subseteq \mathbb{R}^n$, A是开集 $\Leftrightarrow A^c$ 是闭集.

单点集和有限点集都是闭集(其导集为空集必包含于A)

$$\left\{0,1,\frac{1}{2},\frac{1}{3},\cdots\right\}$$
是闭集(导集中只有0,是其子集)

去掉端点的线段既不是开集也不是闭集?

● 若 $A' \subseteq A$,则称A为闭集。(闭集对极限运算是封闭的)

单点集和有限点都是闭集(其导集为空集必包含于A)

 $\left\{0,1,\frac{1}{2},\frac{1}{3},\cdots\right\}$ 是闭集

去掉端点的线段既不是开集也不是闭集?

没去掉端点的线段AB, 其导集是自己, 为自身的子集, 故AB是闭集;

去掉端点的线段AB,A,B两点仍在导集中,但导集不再是自身的子集,故不是闭集;

平面R²上去掉端点的线段AB,其上任一点作出的邻域不是自身的子集,故不是开集;

 $A = A \cup A'$ 集合A的内部是A的最大开子集, 包含A的最小闭集就是A的闭包(closure)并用cl(A)或 \overline{A} 表示。

a.空集,Rn为闭集;

闭集的性质: b.任意多个闭集之交仍为闭集;

c.有限个闭集之并仍为闭集。

注:无限多个闭集的并不一定为闭集,如: $E_n=[0,1-1/n]$,[0,1),1不含于内

$$L = \{x | x = ta + (1-t)b, t \in R, 0 \le t \le 1\}$$

为 R^n 中联结点 a 与点 b 的线段.

一 若对于R"中的点集A 内任何两点,都可用有限条线段 连结起来,且该线段上的点都属于A,则称A 是 连通集.

Connected set

(3) 开集,闭集,线段,连通集

● 若对于R"中的点集A 内任何两点,都可用有限条线段 连结起来,且该线段上的点都属于A,则称A 是 连通集.

Connected set

● 设 A 是开集. 如果对于 A 内任何两点都可用有限条线段连结起来,且该线段上的点都属于 A,则称 A 是连通的开集.

(4) 区域 Regions

连通的开集称为区域或开区域.

例如, $\{(x,y)|1< x^2+y^2<4\}$.

(4) 区域 Regions

连通的开集称为区域或开区域.

开区域连同它的边界一起称为闭区域.

*例:
$$\{(x,y) | 1 \le x^2 + y^2 \le 4\}$$
.

$$\{(x,y) \mid x+y \ge 0 \}$$

闭区域

♣ 判断1: 区域一定是开集,开集一定是区域 () x 步気通大學 xian jiaotong university

() A.正确 B.错误

 $\{(x,y)|x^2-y^2>1\}$. 平面上两个不相交的开圆是开集但不是连通的。

♣判断2:连通集一定是开集,开集一定是连通集()

A.对 **B.**错

连通集和开集没有任何关联! 开集可以是不连通的,

平面上的闭圆是闭集不是开集,但却是连通的.

♣判断3:区域一定是连通集,连通集不一定是区域()

A.对 **B.**错

区域一定是连通集(由定义),但是连通集不一定是区域。

如闭圆

→ 空集和Rn 是开集,也是闭集.

(5) 有界集与无界集

点集 $A \subseteq R^n$,若存在正数 M, 使得 $\forall x \in A$,都有 $\|x\| \le M$, 则称 A 为 有界集,否则称为无界集.

例: $A = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$ 是有界闭区域;

 $B = \{(x, y) | x + y > 0\}$ 是无界开区域.

(6) 紧集 凸集

· Rn中的有界闭集A, 称为紧集A

· 如集合A 中任意两点的连线上的点都属于A,则称A为Rn中的凸集。

即: 设 $X,Y \in A$,则对任意 $t(0 \le t \le 1)$, 均有 $tX+(1-t)Y \in A$

凸集必是连通集→凸开集必是区域