Introduction to Programming Lecture 12

- Instructor: Andrew Yarmola andrew.yarmola@uni.lu (mailto:andrew.yarmola@uni.lu)
- Course Schedule: Wednesday 14h00 15h30 Campus Kirchberg B21
- Course Website: <u>sites.google.com/site/andrewyarmola/itp-uni-lux</u> (<u>https://sites.google.com/site/andrewyarmola/itp-uni-lux</u>)
- Office Hours: Thursday 16h00 17h00 Campus Kirchberg G103 and by appointment.

There will not be a Project 2, we will just have joint Final Projects

I've decided to skip Project 2. In effect, we will a Project 1 as a midterm and the Final Project as our final.

Last homework due Friday Dec 23

scipy package

The scipy package is composed of many useful task-specific modules

- scipy.cluster Vector quantization / Kmeans
- scipy.constants Physical and mathematical constants
- scipy.fftpack Fourier transform
- scipy.integrate Integration routines
- scipy.interpolate Interpolation
- scipy.io Data input and output
- scipy.linalg Linear algebra routines
- scipy.ndimage n-dimensional image package
- scipy.odr Orthogonal distance regression
- scipy.optimize Optimization
- scipy.signal Signal processing
- scipy.sparse Sparse matrices
- scipy.spatial Spatial data structures and algorithms
- scipy.special Any special mathematical functions
- scipy.stats Statistics

Fast Fourier Transforms

Recall that Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the function from those components. This process can also be done with discrete data.

Given a function $g:[a,b]\to\mathbb{C}$ and a sampling interval Δt , we can build a sequence $g_n=g(a+n\Delta t)$ for $n=0,\ldots N-1$. The **discrete Fourier transform** of $\{g_n\}$ is a sequence $\{G_k\}$ such that

$$g_n = \frac{1}{N} \sum_{k=0}^{N-1} G_k \exp\left(2\pi i \frac{nk}{N}\right) = \frac{1}{N} \sum_{k=0}^{N-1} G_k \left(\cos\left(2\pi \frac{nk}{N}\right) + i\sin\left(2\pi \frac{nk}{N}\right)\right)$$

As you can see, the goal is to express g_n in terms of periodic components. With respect to the original interval [a,b] then "true" frequency is given by $f_k=\frac{k}{N\,\Delta t}=\frac{k}{b-a}$ Hz.

It is not hard to show that

$$G_k = \sum_{n=0}^{N-1} g_n \exp\left(-2\pi i \frac{nk}{N}\right)$$

Let $g=[g_0,\ldots,g_{N-1}]$. In scipy.fftpack, the function scipy.fftpack.fft(g) returns the list $[G_0,G_1,\ldots,G_{|N/2|},G_{1-|N/2|},G_{2-|N/2|},\ldots,G_{-1}]$

So the first half of the list is the "positive" frequencies and the second half is the "negative" frequencies. If g is real valued, then DFT is symmetric under complex conjugation (i.e. $G_k = \overline{G_{-k}}$)

In [1]:

```
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

time_step = 0.25
amplitude = 1.5
shift = -0.2
period = 2. # 0.5 Hz
time_vec = np.arange(0, 4, time_step)
sig = amplitude * np.cos(2 * np.pi / period * (time_vec+shift))

plt.plot(time_vec, sig)
plt.show()
```


In [2]:

```
from scipy import fftpack
sig_ft = fftpack.fft(sig)
print(sig_ft)
```

```
[ 1.05471187e-15+0.00000000e+00j -3.63808984e-15+1.96454098e-15j 9.70820393e+00-7.05342303e+00j 2.83291731e-15-1.61783758e-15j 0.0000000e+00-7.21644966e-16j 1.23319834e-16-2.42982234e-15j 8.88178420e-16-1.33226763e-15j 1.57003111e-15+2.64377801e-16j 2.49800181e-15+0.00000000e+00j 1.57003111e-15-2.64377801e-16j 8.88178420e-16+1.33226763e-15j 1.23319834e-16+2.42982234e-15j 0.0000000e+00+7.21644966e-16j 2.83291731e-15+1.61783758e-15j 9.70820393e+00+7.05342303e+00j -3.63808984e-15-1.96454098e-15j]
```

In [3]:

```
# gives k/(n * dt)
n = sig.size
freq_values = fftpack.fftfreq(n, time_step)
k_values = freq_values * (n * time_step)

plt.plot(k_values, sig_ft.real, '.')
plt.plot(k_values, sig_ft.imag, '.')
plt.show()
```


We can clearly see that $k = \pm 2$ (i.e. 2/(4-0) = 0.5 Hz) is our frequency. Further, we can recover :

In [4]:

Remark : Notice that **multiplying** a Fourier coefficient by $\exp(2\pi ip)$ corresponds to shifting the phase of that frequency.

Removing noise from signal

In [5]:

The observer doesn't know the signal frequencies, only the sampling time step of the signal sig. The signal is supposed to come from a real valued function so the Fourier transform will be symmetric. The scipy.fftpack.fftfreq() function will generate the sampling frequencies and scipy.fftpack.fft() will compute the fast Fourier transform:

In [6]:

```
from scipy import fftpack
sample_freq = fftpack.fftfreq(sig.size, d=time_step)
sig_fft = fftpack.fft(sig)
# we only care about positive frequencies
pidxs = np.where(sample_freq > 0)
freqs = sample freq[pidxs]
power = np.abs(sig_fft)[pidxs]
plt.clf()
plt.plot(freqs, power)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Power')
axes = plt.axes([0.3, 0.3, 0.5, 0.5])
plt.title('Peak frequencies')
plt.plot(freqs[:12], power[:12])
plt.setp(axes, yticks=[])
plt.show()
```


We can now clear the noise from the Fourier transform:

In [7]:

```
sig_fft[np.abs(sig_fft) < 200] = 0.
plt.plot(freqs[:50], np.abs(sig_fft)[:50])
plt.show()</pre>
```


The resulting filtered signal can be computed by the scipy.fftpack.ifft() function:

In [8]:

```
main_sig = fftpack.ifft(sig_fft).real
```

Let's see whhat we got:

In [9]:

```
plt.clf()
plt.plot(time_vec, sig)
plt.plot(time_vec, main_sig, color='red', linewidth=3.0)
plt.show()
```


2D Fourier transform and images

By using higher dimensional analogs of periodic functions, one can also define and n-dimensional Fourier transform. For n=2 and $g:[a,b]^2\to\mathbb{C}$, one has

$$G_{k,l} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_{m,n} \exp\left(-2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)\right)$$

Removing periodic noise from image

Consider the following image with lots of periodic noise.

Note: This is just a demo, this is not a good way to remove noise in general.

We would like to remove the noise and get a clear picture.

In [10]:

```
img = plt.imread('moonlanding.png')
# this is a black and white image
# as there is no 3rd dimension
print(img.shape)
plt.imshow(img, cmap="gray")
plt.show()
```

(474, 630)

In [11]:

```
# let's see what we get for fft
img_ft = fftpack.fft2(img)
power = np.abs(img_ft)
plt.imshow(np.log(5+power))
plt.show()
```


In [12]:

```
r_keep = 42
c_keep = 48
new_ft = img_ft.copy()
new_ft[r_keep : -r_keep, :] = 0.
new_ft[:, c_keep : -c_keep] = 0.

plt.imshow(np.log(5+np.abs(new_ft)))
plt.show()
```


In [13]:

```
new_img = fftpack.ifft2(new_ft).real
plt.imshow(new_img, cmap = 'gray')
plt.show()
```


Basic fitting

Given some data and a model with a fixed number of parameters, you might want to find the best (least squares) fit of your data. You can do this using scipy.optimize.curve_fit.

In [14]:

```
# we can load data!
data = np.load('waveform_1.npy')
x_vals = np.arange(len(data))

plt.plot(x_vals, data)
plt.show()
```


Imagine we want to fit this is a Gaussian model

$$B + A \exp\left(-\left(\frac{t-\mu}{\sigma}\right)^2\right)$$

In [15]:

```
from scipy import optimize

def g(t, b, a, m, s):
    return b + a * np.exp(-((t-m)/s)**2)

guess = [3., 20., 15., 3.]
params, params_covar = optimize.curve_fit(g, x_vals, data, guess)

print(params)

plt.plot(x_vals, data)
plt.plot(x_vals, g(x_vals, *params))
plt.show()
```

[2.70363498 27.82022611 15.47923812 3.05635768]

Statistics

Statistics in python can be done using scipy + matplotlib (mostly basic tools), pandas + statsmodels + seaborn (similar but simpler than R), PyMC (Bayesian statistical models).

Histograms

In [18]:

To get the actual histogram data, we use numpy.histogram.

```
In [19]:
```

```
hist, bins = np.histogram(x, bins = 50, normed = 1)
```

Basic stats

scipy.stats contains most random variables you would want. See the documentation for a complete list.

It also provides some statistical functions. Here are a few examples:

```
In [20]:
# describe
stats.describe(x)
Out[20]:
DescribeResult(nobs=1000, minmax=(57.56814319725335, 153.093107105
54172), mean=100.3763916464132, variance=230.6844608494801, skewne
ss=0.06859400014818551, kurtosis=0.1259294447202115)
In [21]:
# Bayesian confidence intervals for the mean, var, and std
stats.bayes mvs(x)
Out[21]:
(Mean(statistic=100.3763916464132, minmax=(99.58564138656014, 101.
16714190626625)),
Variance(statistic=231.1472180427589, minmax=(214.64662962813247,
248.70065470247985)),
 Std dev(statistic=15.199714660201353, minmax=(14.650823513650433,
15.770245866900105)))
In [22]:
# percentiles
print(stats.scoreatpercentile(x,90))
120.15351557513775
In [23]:
# chisquare
stats.chisquare(hist, stats.norm.pdf(bins[:-1], mu, sigma))
Out[23]:
Power divergenceResult(statistic=0.03414551564829696, pvalue=1.0)
In [24]:
# T-test
a = np.random.normal(0, 1, size=100)
b = np.random.normal(1, 1, size=10)
stats.ttest_ind(a, b)
Out[24]:
Ttest indResult(statistic=-3.05538603064692, pvalue=0.002831966139
512011)
```

Example with pandas and seaborn

See the SciPy Lecture notes for more detailed introduction.

We will work with a dataset of wages based on gender and education.

In [26]:

<class 'pandas.core.frame.DataFrame'>

Out[26]:

	education	gender	wage
0	8	1	5.10
1	9	1	4.95
2	12	0	6.67
3	12	0	4.00
4	12	0	7.50
5	13	0	13.07
6	10	0	4.45
7	12	0	19.47

In [27]:

```
# Convert genders to strings (this is
# particulary useful so that the
# statsmodels formulas detects that
# gender is a categorical variable)
# Look up how numpy.choose works.
# You can also do this using vectorized maps.

data['gender'] = np.choose(data.gender, ['male', 'female'])
# Notice that data['gender'] and data.gender
# are same thing
data[:8]
```

Out[27]:

	education	gender	wage
0	8	female	5.10
1	9	female	4.95
2	12	male	6.67
3	12	male	4.00
4	12	male	7.50
5	13	male	13.07
6	10	male	4.45
7	12	male	19.47

In [28]:

```
# We can do grouping
groupby_gender = data.groupby('gender')
# we can get the gender means
groupby_gender.mean()
```

Out[28]:

	education	wage
gender		
female	13.024490	7.878857
male	13.013841	9.994913

In [29]:

In [30]:

```
# Log-transform the wages, because they typically are increased with
# multiplicative factors
data['wage'] = np.log10(data['wage'])
```

In [32]:

```
# simple plotting
import seaborn

# Plot 2 linear fits for male and female.
seaborn.lmplot(y='wage', x='education', hue='gender', data=data)
```

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x1068c27f0>

In [33]:

Out[33]:

<seaborn.axisgrid.PairGrid at 0x1c1cfae940>

In [34]:

```
# Ordinary Least Squares
import statsmodels.formula.api as sm

# Assume what wage depends linearly on
# education, gender, and gender*education
# i.e. does more education benefit males
# more than females?
form = 'wage ~ education + gender + education * gender'

model = sm.ols(formula = form, data=data).fit()
print(model.summary())
```

OLS Regression Results

	========	=====
========		
Dep. Variable: wage R-squared	R-squared:	
0.198		
Model: OLS Adj. R-sq	uared:	
0.194	•	
Method: Least Squares F-statist	ic:	
43.72		
Date: Sun, 06 May 2018 Prob (F-s	tatistic):	
2.94e-25		
Time: 01:05:24 Log-Likel	ihood:	
88.503		
No. Observations: 534 AIC:		
-169.0		
Df Residuals: 530 BIC:		
-151.9		
Df Model: 3		
Covariance Type: nonrobust		
=======================================	========	=====
=======================================		
coef std err	t	P>
t [0.025 0.975]		
Total and the second of the se	4 172	0 0
Intercept 0.2998 0.072	4.1/3	0.0
00 0.159 0.441 gender[T.male] 0.2750 0.093	2.972	0.0
gender[T.male] 0.2750 0.093 0.457	2.972	0.0
education 0.0457 0.005	7.647	0.0
0.0415 0.005 0.0415 0.005	7.047	0.0
education:gender[T.male] -0.0134 0.007	-1.919	0.0
56 -0.027 0.000	-1.717	0.0
=======================================		=====
========		
Omnibus: 4.838 Durbin-Wa	tson:	
1.825	.02011	
Prob(Omnibus): 0.089 Jarque-Be	ra (JB):	
5.000	(02)	
Skew: -0.156 Prob(JB):		
0.0821		
Kurtosis: 3.356 Cond. No.		
194.		
	=======	=====

Warnings:

=========

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

```
In [35]:
```

model.pvalues

Out[35]:

dtype: float64

Mathematical Morphology

Mathematical morphology in our setting is the study of shapes in an image. In essense, these are tools that let you grow (i.e. dilate) a region, shrink (i.e. erode) a region, or ther operations.

In the image above, the starting shape is dark blue, the shape after the operation if light blue (with the exception of closing, where the result is the union).

In [36]:

```
a = np.zeros((50, 50))
a[10:30, 10:30] = 1
a[20:40, 20:40] = 1

plt.grid(False)
plt.imshow(a, cmap='gray', interpolation='nearest')
plt.show()
```


In [37]:

```
from scipy import ndimage

opened_mask = ndimage.binary_opening(a, iterations=4)
plt.grid(False)
plt.imshow(opened_mask, cmap='gray', interpolation='nearest')
plt.show()
```


In [38]:

```
closed_mask = ndimage.binary_closing(a, iterations=4)
plt.grid(False)
plt.imshow(closed_mask, cmap='gray', interpolation='nearest')
plt.show()
```


In [39]:

```
a += 0.25 * np.random.standard_normal(a.shape)

plt.grid(False)
plt.imshow(a, cmap='gray', interpolation='nearest')
plt.show()
```


In [40]:

```
mask = a>=0.5
opened_mask = ndimage.binary_opening(mask)
closed_mask = ndimage.binary_closing(opened_mask)

fig = plt.figure()
fig.add_subplot(1,2,1)
plt.grid(False)
plt.imshow(opened_mask, cmap='gray', interpolation='nearest')
fig.add_subplot(1,2,2)
plt.grid(False)
plt.imshow(closed_mask, cmap='gray', interpolation='nearest')
plt.show()
```


Gaussian blur using Fourier transforms

We will blur this image of an elephant

To do this, we will use a 2D Fourier transform to compute the convolution

$$f \star g(t) = \int f(z) g(t - z) dz$$

Let \hat{f} denote the Fourier transform of f . Then,

$$\widehat{f \star g} = \widehat{fg'}$$

If g is a Dirac delta at a point p, then $f \star g(t) = f(t-p)$. If g is a normal distribution, then $f \star g(t)$ is "blurred" (i.e. locally averaged) value of f(t) near t.

In [45]:

```
# read image
img = plt.imread('elephant.png')
print(img.shape)

# prepare an 1-D Gaussian convolution kernel
t = np.linspace(-10, 10, 30)
bump = np.exp(-0.1*t**2)
bump /= np.trapz(bump) # normalize the integral to 1

plt.plot(t,bump)
plt.show()
```

(200, 300, 3)

In [46]:

```
# make a 2-D kernel out of it
kernel = bump[:, np.newaxis] * bump[np.newaxis, :]
plt.imshow(kernel)
plt.show()
```


In [47]:

```
shift = np.zeros(img.shape[:2])
shift[-15,-15] = 1
```

In [48]:

```
# padded fourier transform, with the same shape as the image
kernel_ft = fftpack.fft2(kernel, shape=img.shape[:2], axes=(0, 1))
shift_ft = fftpack.fft2(shift, shape=img.shape[:2], axes=(0, 1))

# convolve
img_ft = fftpack.fft2(img, axes=(0, 1))
new_img_ft = kernel_ft[..., np.newaxis] * img_ft
new_img_ft *= shift_ft[...,np.newaxis]
new_img = fftpack.ifft2(new_img_ft, axes=(0, 1)).real

# clip values to range
new_img = np.clip(new_img, 0., 1.)

# plot output
plt.clf()
plt.grid(False)
plt.imshow(new_img)
plt.show()
```

