

Introduction to deep Learning

Razvan Pascanu

TMLW @ Timisoara, Romania Feb 2019

Primer on Machine Learning

Supervised Learning (Classification)

Example of a dataset

Terminology:

- labels/targets
- Output/predictions
- input/input features
- Instance or example
- datasets

Function approximator

- ullet Let ${\mathcal X}$ denote the space of input values
- ullet Let ${\mathcal Y}$ denote the space of output values
- Given a data set $D \subset \mathcal{X} \times \mathcal{Y}$, find a function:

$$h: \mathcal{X} \to \mathcal{Y}$$

such that $h(\mathbf{x})$ is a "good predictor" for the value of y.

- h is called a hypothesis
- Problems are categorized by the type of output domain
 - If $\mathcal{Y} = \mathbb{R}$, this problem is called *regression*
 - If $\mathcal Y$ is a categorical variable (i.e., part of a finite discrete set), the problem is called *classification*
 - In general, \mathcal{Y} could be a lot more complex (graph, tree, etc), which is called *structured prediction*

Function approximator

A parameterized function is a function:

$$h: \theta \times \mathcal{X} \to \mathcal{Y}$$

for example a linear function of the form

$$h(\mathbf{w}, x) = \mathbf{w}x$$

Learning then boils down to finding the best θ to minimize the distance between prediction and targets

$$\arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E} \left[dist(h(\boldsymbol{\theta}, x_i), y_i) \right]$$

Right distance for the problem?

$$\arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E} \left[dist(h(\boldsymbol{\theta}, x_i), y_i) \right]$$

ullet Rely on a probabilistic interpretation of the model $\,p(y|x)\,$

$$posterior \ p(heta|D) = rac{prior}{p(heta)p(D| heta)} \ p(D) \ p(D) \ pormalizing constant$$

Bayes Rule

Right distance for the problem?

$$\arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E} \left[dist(h(\boldsymbol{\theta}, x_i), y_i) \right]$$

Equivalently:

$$p(\theta|D) \propto p(\theta)p(D|\theta)$$

Assuming uniform prior, we get:

$$p(\theta|D) \propto p(D|\theta)$$

$$posterior \ p(heta|D) = rac{prior}{p(heta)p(D| heta)} \ p(D) \ posterior \ p(D) \ posterior \ p(D)$$

Bayes Rule

Loss functions (Mean Square Error)

Under uniform prior we have:

MAP: Maximum A Priori estimate
MLE: Maximum Likelihood Estimate

$$p(D|\theta) = \prod_{i} \exp -\frac{1}{2\sigma^{2}} (h(x_{i}) - y_{i})^{2} = \exp -\frac{1}{2\sigma^{2}} \sum_{i} (h(x_{i}) - y_{i})^{2}$$
$$\arg \max_{\theta} p(D|\theta) = \arg \min_{\theta} L = \sum_{i} [h(x_{i}) - y_{i}]^{2}$$

Picking the right hypothesis class

Example: Data and best linear hypothesis

$$y = 1.60x + 1.05$$

Picking the right hypothesis class

Order-2 fit

Is this a better fit to the data?

Picking the right hypothesis class

Order-9 fit

Is this a better fit to the data?

Overfitting/Underfitting

• We want to be able **to generalize**

Use

Training set: data used for finding the right parameters

Validation set: data used to estimate true loss on unseen data

Learning is about minimizing an intractable function via optimizing a tractable approximation of it

Role of the prior - Regularization

- Prior provides a mechanism to introduce knowledge in the learning problem
- It restricts the search space for the parameters of the model
- Ends up being an additive gradient field to the one generated by MLE

$$p(\theta) = \mathcal{N}(0, 1)$$

$$\|\theta\|^2$$

$$\sum_{i} [h(x_i) - y_i]^2$$

$$\gamma \|\theta\|^2 + \sum_{i} [h(x_i) - y_i]^2$$

Unsupervised learning

Many topics under the umbrella:

Clustering
Dimensionality reduction
Density Estimation
Metric learning

Generative models

Generative models: i) autoregressive

Figure 1. Image completions sampled from a PixelRNN.

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=STAT946F17/Conditional_Image_Generation_with_PixelCNN_Decoders

Generative models: ii) VAE

https://blog.openai.com/generative-models/

http://gregorvgundersen.com/blog/2018/04/29/reparameterization/

Generative models: iii) GANs

https://blog.openai.com/generative-models/

How do we search for theta?

One approach is following the gradient (gradient descent)

How do we search for theta?

 Are unconstrained models impossible to optimize?

Deep Neural Networks?

$$ReLU(x) = \begin{cases} x & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$l_k = ReLU(W_k l_{k-1} + b_k)$$

- Other non-linearities are possible
- Why have a non-linearity?

$$h(x) = l3(l2(l1(x)))$$

Deep Neural Networks?

 ${\color{blue} \underline{https://medium.com/datadriveninvestor/how-a-computer-looks-at-pictures-image-class} \\ \underline{ification-a4992a83f46b}$

ReLU networks

Single hidden layer ReLU neural network

<u>Guido Montufar, Razvan Pascanu, Kyunghyun Cho & Yoshua Bengio, On the number of linear regions of Deep Neural Networks, NIPS 2014</u>

ReLU networks

We know Neural Nets are universal approximators of any functions!

But is it enough?

Why "deep" in "deep networks"

ReLU networks: representation

Single hidden layer ReLU neural network

Two hidden layer ReLU neural network

Guido Montufar, Razvan Pascanu, Kyunghyun Cho & Yoshua Bengio, On the number of linear regions of Deep Neural Networks, NIPS 2014

ReLU networks: learning

ReLU networks: learning?

• Somehow over-parameterization makes the loss surface well behaved!

Yann Dauphin, et, al, Identifying and attacking the saddle point problem in high-dimensional nonconvex optimization

How do we learn?

New view on the surface error of deep learning?

ReLU networks: learning?

 Somehow over-parameterization makes the loss surface well behaved!

Still many issues remain!

- Address issues around flat regions
 - RMSPROP/ADAM account for speed of change
 - Momentum for consistency in movement
 - Fixed step in function change

https://devblogs.nvidia.com/introduction-neuralmachine-translation-gpus-part-2/sgd_viz/

Structure in models

Convolutional Neural Networks

- Structural prior: spatial neighbourhood defines the role of a pixel
- Apply same function at all position
- Induces translation invariance as features are computed independent of position

Can an MLP reproduce a ConvNet?

https://www.analyticsindiamag.com/convolutional-neural-network-image-classification-overview/

Dilated Convolutions: (Wavenet)

https://arxiv.org/abs/1711.10433

Conv Nets: BatchNorm

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
          Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                                   // mini-batch mean
                                           // mini-batch variance
                                                            // normalize
    y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                      // scale and shift
```


https://towardsdatascience.com/understanding-batch-normalization-with-examples-in-numpy-and-tensorflow-with-interactive-code-7f59bb126642

https://stats.stackexchange.com/questions/268820/gradient-backpropagation-through-resnet-skip-connections

https://towardsdatascience.com/impl ementing-a-resnet-model-from-scratch -971be7193718

34-layer residual

Structure in models

Recurrent Neural Networks

Recurrent Neural Networks

Pascanu et al. 2014

Recurrent Neural Networks

Pascanu et al. 2014

Unconstrained

 $\frac{\partial \mathbf{h}(t)}{\partial \mathbf{h}(t-k)} = \prod_{j=k+1}^{t} \frac{\partial \mathbf{h}(j)}{\partial \mathbf{h}(j-1)}$

The error is $(h(50)-0.7)^2$ for $h(t)=w\sigma(h(t-1))+b$ with h(0)=0.5

$$i_{t} = \sigma (W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma (W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh (W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma (W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

 $x_t \longrightarrow \bigotimes \\ c_t \\ k$ Cell $x_t \longrightarrow \bigotimes \\ f_t \\ \text{Forget Gate}$

(7)

(8)

(9)

(10)

(11)

Hochreiter et al. 1997 Graves 2013

Chung et al. 2015

$$z = \sigma(W_z x_t + U_z h_{t-1})$$

$$r = \sigma(W_r x_t + U_r h_{t-1})$$

$$\tilde{h} = tanh(W_h x_t + U_h(r \circ h_{t-1}))$$

$$h_t = (1 - z) \circ h_{t-1} + z \circ \tilde{h}$$

(b) Gated Recurrent Unit

Sequence to Sequence

Sutskever et al. 2014

Sequence to Sequence

Bahdanau et al. 2015

Transformer

https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/#.XG9ar-GTJkY

http://deeplearning.hatenablog.com/entry/transformer

FINAL THOUGHTS & DISCUSSION

Conclusions

- **Learning** is about discovering the solution from data
- Deep Learning is about a particular family of function approximators
- ConvNets / RNNs / Transformer is about particular structure on the architecture (inductive bias)
- A lot of open questions, a lot of interesting questions, fast growing field

THANK YOU!

Questions?