Diszkrét matematika 1

Komplex számok I.

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2024 tavasz

Komplex számok

$$(\cos t + i \cdot \sin t)^n = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$

Komplex számok

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Műveletek:

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\bullet (a+bi) \cdot (c+di) = ac + (ad+bc)i + bdi^2 = (ac-bd) + (ad+bc)i$

Számolás komplex számokkal

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \overline{z}/|z|^2$.

Példa

- z = i. Ekkor $\overline{i} = -i$, |i| = 1, így 1/i = -i.
- z = 2. Ekkor $\overline{2} = 2$, |2| = 2, így 1/2 = 2/4 = 0.5.

Műveletek komplex számokkal

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

•
$$|z \cdot w|^2 = (z \cdot w) \cdot \overline{z \cdot w} = (z \cdot w) \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$$

• speciálisan
$$|z \cdot w| = |z| \cdot |w|$$

• ...

(További hasznos összefüggéseket ld. a kiegészítésben.)

Komplex számok trigonometrikus alakja

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

- Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.
- A $\varphi = \arg(z) \in [0, 2\pi)$ az (a, b) vektor irányszöge, a z argumentuma.
- Ekkor $a = r \cos \varphi$ és $b = r \sin \varphi$, így $z = r(\cos \varphi + i \sin \varphi)$

Definíció

Az $z = a + bi \in \mathbb{C} \setminus \{0\}$ komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol $a = \text{Re}(z) = r \cos \varphi$ és $b = \text{Im}(z) = r \sin \varphi$

Komplex számok trigonometrikus alakja, példák

Példa

$$z = 1$$
: $|z| = 1$, $arg(z) = 0$
 $\Rightarrow z = 1(\cos 0 + i \sin 0)$

 $\implies z = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$

 $\implies z = 1(\cos(\pi/2) + i\sin(\pi/2))$

