Figure 1 Sequence of human APRIL (SEQ ID NOS: 1 and 2)

		370 cDNA (SI	EQ ID NO 1)			
L	ength:	1465 bp				
	1	GCCAACCTTC	CCTCCCCCAA	CCCTGGGGCC	GCCCCAGGGT	
	51	TGCCTGTTCC	TCCTGGGTGT	CACTGGCAGC		CTAGAGGGAC
	101	TGGAACCTAA	TTCTCCTGAG	GCTGAGGGAG	GGTGGAGGGT	CTCAAGGCAA
	151	CGCTGGCCCC	ACGACGGAGT	GCCAGGAGCA	CTAACAGTAC	CCTTAGCTTG
	201	CTTTCCTCCT	CCCTCCTTTT	TATTTTCAAG	TTCCTTTTTA	TTTCTCCTTG
	251	CGTAACAACC	TTCTTCCCTT	CTGCACCACT	GCCCGTACCC	TTACCCGCCC
	301	CGCCACCTCC	TTGCTACCCC	ACTCTTGAAA	CCACAGCTGT	TGGCAGGGTC
	351	CCCAGCTCAT	GCCAGCCTCA	TCTCCTTTCT	TGCTAGCCCC	CAAAGGGCCT
	401	CCAGGCAACA	TGGGGGGCCC	AGTCAGAGAG	CCGGCACTCT	CAGTTGCCCT
	451	CTGGTTGAGT	TGGGGGGCAG	CTCTGGGGGC	CGTGGCTTGT	GCCATGGCTC
	501	TGCTGACCCA	ACAAACAGAG	CTGCAGAGCC	TCAGGAGAGA	GGTGAGCCGG
	551	CTGCAGGGGA	CAGGAGGCCC	CTCCCAGAAT	GGGGAAGGGT	ATCCCTGGCA
	601	GAGTCTCCCG	GAGCAGAGTT	CCGATGCCCT	GGAAGCCTGG	GAGAGTGGGG
	651	AGAGATCCCG	GAAAAGGAGA	GCAGTGCTCA	CCCAAAAACA	GAAGAAGCAG
	701	CACTCTGTCC	TGCACCTGGT	TCCCATTAAC	GCCACCTCCA	AGGATGACTC
	751	CGATGTGACA	GAGGTGATGT	GGCAACCAGC	TCTTAGGCGT	GGGAGAGGCC
	801	TACAGGCCCA	AGGATATGGT	GTCCGAATCC	AGGATGCTGG	AGTTTATCTG
	851	CTGTATAGCC	AGGTCCTGTT	TCAAGACGTG	ACTTTCACCA	TGGGTCAGGT
	901	GGTGTCTCGA	GAAGGCCAAG	GAAGGCAGGA	GACTCTATTC	CGATGTATAA
	951	GAAGTATGCC	CTCCCACCCG	GACCGGGCCT	ACAACAGCTG	CTATAGCGCA
	1001	GGTGTCTTCC	ATTTACACCA	AGGGGATATT	CTGAGTGTCA	TAATTCCCCG
	1051	GGCAAGGGCG	AAACTTAACC	TCTCTCCACA	TGGAACCTTC	CTGGGGTTTG
	1101	TGAAACTGTG	ATTGTGTTAT	AAAAAGTGGC	TCCCAGCTTG	GAAGACCAGG
	1151	GTGGGTACAT	ACTGGAGACA	GCCAAGAGCT	GAGTATATAA	AGGAGAGGGA
	1201	ATGTGCAGGA	ACAGAGGCGT	CTTCCTGGGT	TTGGCTCCCC	GTTCCTCACT
	1251	TTTCCCTTTT	CATTCCCACC	CCCTAGACTT	TGATTTTACG	GATATCTTGC
	1301	TTCTGTTCCC	CATGGAGCTC	CGAATTCTTG	CGTGTGTGTA	GATGAGGGGC
	1351	GGGGGACGGG	CGCCAGGCAT	TGTTCAGACC	TGGTCGGGGC	CCACTGGAAG
	1401	CATCCAGAAC	AGCACCACCA	TCTAACGGCC	GCTCGAGGGA	AGCACCCGGC
	1451	GGTTTGGGCG	AAGTC			

The proposed transmembrane domains are boxed

human G70 protein sequence (SEQ ID NO 2)

- 1 MPASSPELLA PKGPPGNMGG PVREPALSVA LWLSWGAALG AVACAMALLT
- 51 QQTELQSLRR EVSRLQGTGG PSQNGEGYPW QSLPEQSSDA LEAWESGERS
- 101 RKRRAVLTQK QKKQHSVLHL VPINATSKDD SDVTEVMWQP ALRRGRGLQA
- 151 OGYGVRIODA GVYLLYSOVL FODVTFTMGQ VVSREGQGRQ ETLFRCIRSM
- 201 PSHPDRAYNS CYSAGVFHLH QGDILSVIIP RARAKLNLSP HGTFLGFVKL

Figure 2A Sequence of mouse G70 (SEQ ID NOS: 3 and 4)

						•
Mouse		(SEQ ID NO ATGCCGAGT G		GTTACCTGC TO	CTAAGAAGC TO	GCTGGGCA
	51	GCGTTTCACC	GCTGTGGAGG	ACCAGTATTA	CTGCGTGGAT	TGCTACAAGA
	101	ACTTTGTGGC	CAAGAAGTGT	GCTGGATGCA	AGAACCCCAT	CACTGGGTTT
	151	GGTAAAGGCT	CCAGTGTGGT	GGCCTATGAA	GGACAATCCT	GGCACGACTA
	201	CTGCTTCCAC	TGCAAAAAAT	GCTCCGTGAA	TCTGGCCAAC	AAGCGCTTTG
	251	TATTTCATAA	TGAGCAGGTG	TATTGCCCTG	ACTGTGCCAA	AAAGCTGTAA
	301	CTTGACGGCT	GCCCTGTCCT	TCCTAGATAA	TGGCACCAAA	TTCTCCTGAG
	351	GCTAGGGGG	AAGGAGTGTC	AGAGTGTCAC	TAGCTCGACC	CTGGGGACAA
	401	GGGGGACTAA	TAGTACCCTA	GCTTGATTTC	TTCCTATTCT	CAAGTTCCTT
	451	TTTATTTCTC	CCTTGCGTAA	CCCGCTCTTC	CCTTCTGTGC	CTTTGCCTGT
	501	ATTCCCACCC	TCCCTGCTAC	CTCTTGGCCA	CCTCACTTCT	GAGACCACAG
	551	CTGTTGGCAG	GGTCCCTAGC	TC <u>ATG</u> CCAGC	CTCATCTCCA	GGCCACATGG
	601	GGGGCTCAGT	CAGAGAGCCA	GCCCTTTCGG	TTGCTCTTTG	GTTGAGTTGG
	651	GGGGCAGTTC	TGGGGGCTGT	GACTTGTGCT	GTCGCACTAC	TGATCCAACA
	701	GACAGAGCTG	CAAAGCCTAA	GGCGGGAGGT	GAGCCGGCTG	CAGCGGAGTG
	751	GAGGGCCTTC	CCAGAAGCAG	GGAGAGCGCC	CATGGCAGAG	CCTCTGGGAG
	801	CAGAGTCCTG	ATGTCCTGGA	AGCCTGGAAG	GATGGGGCGA	AATCTCGGAG
	851	AAGGAGAGCA	GTACTCACCC	AGAAGCACAA	GAAGAAGCAC	TCAGTCCTGC
	901	ATCTTGTTCC	AGTTAACATT	ACCTCCAAGG	ACTCTGACGT	GACAGAGGTG
	951	ATGTGGCAAC	CAGTACTTAG	GCGTGGGAGA	GGCCTGGAGG	CCCAGGGAGA
1	.001	CATTGTACGA	GTCTGGGACA	CTGGAATTTA	TCTGCTCTAT	AGTCAGGTCC
1	.051	TGTTTCATGA	TGTGACTTTC	ACAATGGGTC	AGGTGGTATC	TCGGGAAGGA
1	101	CAAGGGAGAA	GAGAAACTCT	ATTCCGATGT	ATCAGAAGTA	TGCCTTCTGA
1	151	TCCTGACCGT	GCCTACAATA	GCTGCTACAG	TGCAGGTGTC	TTTCATTTAC
1	201	ATCAAGGGGA	TATTATCACT	GTCAAAATTC	CACGGGCAAA	CGCAAAACTT
1	251	AGCCTTTCTC	CGCATGGAAC	ATTCCTGGGG	TTTGTGAAAC	TA <u>TGA</u> TTGTT
1	301	ATAAAGGGGG	TGGGGATTTC	CCATTCCAAA	AACTGGCTAG	ACAAAGGACA
1	351	AGGAACGGTC	AAGAACAGCT	CTCCATGGCT	TTGCCTTGAC	TGTTGTTCCT
1	401	CCCTTTGCCT	TTCCCGCTCC	CACTATCTGG	GCTTTGACTC	CATGGATATT
1	451	AAAAAAGTAG	AATATTTTGT	GTTTATCTCC	CAAAAA	

Figure 2B

Mouse G70 Length: 241 (SEQ ID NO 4)

- 1 MPASSPGHMG GSVREPALSV ALWLSWGAVL GAVTCAVALL IOOTELOSLR
- 51 REVSRLQRSG GPSQKQGERP WQSLWEQSPD VLEAWKDGAK SRRRRAVLTQ
- 101 KHKKKHSVLH ĽVPVNITSKD SDVTEVMWQP VLRRGRGLEA QGDIVRVWDT
- 151 GIYLLYSQVL FHDVTFTMGQ VVSREGQGRR ETLFRCIRSM PSDPDRAYNS
- 201 CYSAGVFHLH QGDIITVKIP RANAKLSLSP HGTFLGFVKL *

G-70 FLAG des92 (smuG70) Strain #4081 (SEQ ID NO 19):

MDYKDDDDKKHKKKISVLHLVÞYNITSKDSDVTEVMIQPVLRRGRGLEAQGDIVRVW DTGIYLLYSQVLFHDVTFTMGQVVSREGQGRRETLFRCIRSMPSDPDRAYNSCYSAG VFHLHQGDIITVKI FRANAKLSLSPHGTFLGFVKL*

Figure 3 Alignm. of human and mouse G70

mouse:	1	MPASSPGHMGGSVREPALSVALWLSWGAVLGAVTCAVALLIOOTELOSLRR	51
		MPASS PG+MGG VREPALSVALWLSWGA LGAV CA+ALL OOTELOSLRR	
Human:	1	MPASSPFLLAPKGPPGNMGGPVREPALSVALWLSWGAALGAVACAMALLTQQTELQSLRR	60
mouse:	52	EVSRLQRSGGPSQKQGERFWQSLWEQSPDVLEAWKDGAKSRRRRAVLTQKHKKKHSVLHL EVSRLQ +GGPSQ PWQSL EQS D LEAW+ G +SR+RRAVLTOK KK+HSVLHL	111
human:	61	EVSRLQGTGGPSQNGEGYPWQSLPEQSSDALEAWESGERSRKRRAVLTQKQKKQHSVLHL	120
mouse:	112	VPVNITSKD-SDVTEVMWQPVLRRGRGLEAQGDIVRVWDTGIYLLYSQVLFHDVTFTMGQ VP+N TSKD SDVTEVMWQP LRRGRGL+AQG VR+ D G+YLLYSOVLF DVTFTMGO	170
human:	121	VPINATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRIQDAGVYLLYSQVLFQDVTFTMGQ	180
mouse:	171	VVSREGQGRRETLFRCIRSMPSDPDRAYNSCYSAGVFHLHQGDIITVKIPRANAKLSLSP VVSREGQGR+ETLFRCIRSMPS PDRAYNSCYSAGVFHLHQGDI++V IPRA AKL+LSP	230
human:	181	${\tt VVSREGQGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPRARAKLNLSP}$	240
10	231	HGTFLGFVKL 240	•
human:	241	HGTFLGFVKL 250	

Fig. 4A

Fig. 4B

COMMEGNE

CHARA

FACS analysis of G70/April receptor binding

FIGURE 5B

Effect of sG70/April on murine B cell proliferation 70 60 50 40 control cells 30 sG70/April 20 10 0 10 100 1000 ng/mi, 48hr

Fig. 7

Fig. 8

Fig. 9

Figure 10A

Human BCMA

Human (SEO ID NO: 5):

- $1\ \ \text{MAGQCSQNEY FDSLLHACIP CQLRCSSNTP PLTCQRYCNA} \\ \text{SVTNSVKGTN}$
- 51 AILWTCLGLS LIISLAVFVL MFLLRKISSE PLKDEFKNTG SGLLGMANID
- 101 LEKSRTGDEI ILPRGLEYTV EECTCEDCIK SKPKVDSDHC FPLPAMEEGA
 - 151 TILVTTKTND YCKSLPAALS ATEIEKSISA R

Human (SEQ ID NO: 5):

MAGQCSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY CNASVTNSVK
GTNA ILWTCL GLSLIISLAV FVLMFLLRKI SSEPLKDEFK NTGSGLLGMA
NIDLEKSRTG DEIILPRGLE YTVEECTCED CIKSKPKVDS DHCFPLPAME
EGATILVTTK TNDYCKSLPA ALSATEIEKS ISAR

hBCMA's extracellular domain (SEQ ID NO: 6):

MAGQCSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY CNASVTNSVK

hBCMA's cysteine-rich consensus region (SEQ ID NO: 7):

CSQ NEYFDSLLHA CIPCQLRCSS NTPPLTCQRY C

hBCMA's transmembrane region (SEQ ID NO: 8):

ILWTCL GLSLIISLAV FVLMF

Figure 10B

huBCMA-Fc (SEO ID NO: 9):

MAGQCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNA GGGGGDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGK*

muBCMA-Fc (SEQ ID NO: 10):

MAQQCFHSEYFDSLLHACKPCHLRCSNPPATCQPYCDPSVTSSVKGSYTG GGGGDKTHTCPPCPAPELLGGPSVFLFPKPKDTLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGK*

Figure 11 Alignment of human BCMA amino acid sequence and murine BCMA amino acid sequence

murine BCMA amino acid sequence Length: 185 (SEQ ID NO: 11):

- 1 MAQQCFHSEY FDSLLHACKP CHLRCSNPPA TCQPYCDPSV TSSVKGTYTV
- 51 LWIFLGLTLV LSLALFTISF LLRKMNPEAL KDEPQSPGQL DGSAQLDKAD
- 101 TELTRIRAGD DRIFPRSLEY TVEECTCEDC VKSKPKGDSD HFFPLPAMEE
- 151 GATILVTTKT GDYGKSSVPT ALQSVMGMEK PTHTR

alignment of human BCMA amino acid sequence and murine BCMA amino acid sequence. $\,$

Sbjct:	1	MA QC +EYFDSLLHAC PC LRCS+ PP TCQ YC+ SVT+SVKGT +LW LGL+ MAQQCFHSEYFDSLLHACKPCHLRCSNPPATCQPYCDPSVTSSVKGTYTVLWIFLGLT	58
Query:	64	LIISLAVFVLMFLLRKISSEPLKDEFKNTGSGLLGMANIDLEKSRTGDEIILPRGL : L++SLA+F + FLLRK++ E LKDE ++ G S L A+ +L + R GD+ I PR L	119
Sbjct:	59	LVLSLALFTISFLLRKMNPEALKDEPQSPGQLDGSAQLDKADTELTRIRAGDDRIFPRSL	118
Query:	120	EYTVEECTCEDCIKSKPKVDSDHCFPLPAMEEGATILVTTKTNDYCKS-LPAAL-SATEI : EYTVEECTCEDC+KSKPK DSDH FFLPAMEEGATILVTTKT DY KS +P AL S +	177
Sbjct:	119	EYTVEECTCEDCVKSKPKGDSDHFFPLPAMEEGATILVTTKTGDYGKSSVPTALQSVMGM	178
Query:	178	EKSISAR 184 EK R	
Sbjct:	179	EKPTHTR 185	

4 MAGOCSQNEYFDSLLHACIPCQLRCSSNTPPLTCQRYCNASVTNSVKGTNAILWTCLGLS 63

Figure 12A

Human TACI

huTACI (SEQ ID NO: 14).

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
 - 51 KTICNHQSQR TCAAFCRSLS CRKEQGKFYD HLLRDCISCA SICGQHPKQC
 - 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
 - 151 PGLKLSADQV ALVYSTLGLC LCAVLCCFLV AVACFLKKRG DPCSCQPRSR
 - 201 PROSPAKSSO DHAMEAGSPV STSPEPVETC SFCFPECRAP TQESAVTPGT
 - 251 PDPTCAGRWG CHTRTTVLOP CPHIPDSGLG IVCVPAQEGG PGA

MSGLGRSRRGGRSRVDQEERFPQGLWTGVAMRSCPEEQYWDPLLGTCMSC
KTICNHQSQRTCAAFCRSLSCRKEQGKFYDHLLRDCISCASICGQHPKQC
AYFCENKLRSPVNLPPELRRQRSGEVENNSDNSGRYQGLEHRGSEASPAL
PGLKLSADQVALVYSTLGLCLCAVLCCFLVAVACFLKKRGDPCSCQPRSR
PRQSPAKSSQDHAMEAGSPVSTSPEPVETCSFCFPECRAPTQESAVTPGT
PDPTCAGRWGCHTRTTVLQPCPHIPDSGLGIVCVPAQEGGPGA

huTACI's extracellular domain (SEQ ID NO: 15):

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
 - 51 KTICNHOSOR TCAAFCRSLS CRKEOGKFYD HLLRDCISCA SICGQHPKQC
 - 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
 - 151 PGLKLSADQV ALVYST

Figure 12B

huTACI's cysteine-rich consensus region (SEQ ID NO: 16): CPEEQYWDPLLGTCMSCKTICNHQSQRTCAAFC and CRKEQGKFYDHLLRDCISCASICGQHPKQCAYFC

transmembrane region (SEQ ID NO: 17): LGLCLCAVLCCFLVAVACFL

hTACI-Fc (SEQ ID NO: 18):

- 1 MSGLGRSRRG GRSRVDQEER FPQGLWTGVA MRSCPEEQYW DPLLGTCMSC
 - 51 KTICNHQSQR TCAAFCRSLS CRKEQGKFYD HLLRDCISCA SICGQHPKQC
 - 101 AYFCENKLRS PVNLPPELRR QRSGEVENNS DNSGRYQGLE HRGSEASPAL
 - 151 PGLKLSADQV ALVYSGGGGG DKTHTCPPCP APELLGGPSV FLFPPKPKDT
 - 201 LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY
 - 251 RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT
 - 301 LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS
 - 351 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK*

Figure 13

Alignment of cysteine rich extracellular regions of human TACI and human BCMA.

- - - 83 LRDCISCASI 92
 - | |: . | 56 LWTCLGLSLI 65

Fig.14

Fig.14

101

10² 293-3 103

Page 1

Experiment 4-3-2000

Page 1

Fig.18

SCANNED, # 14

Figure 21 Fc-humanAPRIL

ฝากคลin. linker (Xhol site) Fc-hu

Figure 22

Figure 23

hBCMA-Fc reduces PB B cell level in vivo Figure 24:

15 mg/kg ip on day 0, 3, and 6

0.30 3.81 2.3 0.39 0.43 0.32 0.3318 0.01570 0.24737	WBC #Lym CD3+ 10e6/ml 10e6/ml #
c 8.02 6.43	က် _၆

hBCMA-Fc reduces spleen B cell levels in vivo Figure 25

spleen	WBC	Lym	spleen lym# CD3-B220+ CD3-B220+	CD3-B220+	CD3-B220+
The same of the sa	10e6/ml	(%)	10ml(x10e6)	(%)	#
BCMA-Fc	9.12	97.9	89.3	45.5	41.8
SD	0.92	0.51	9.32	1.29	4.92
t test	test 0.02778 0.89118	0.89118	0.02668	0.00234	0.02088
Pe	1	97.9	112.5	50.6	57.1
SD	1.62	0.38	15.65	1.95	9.67
Saline	11.48	98.5	113.1	53.7	48.5
SD	1.71	0.1	16.9	6.7	29.15

Flag-mAPRIL and hAGP3 mediated IgA production inhibited by hBCMA-Fc and hTACI-Fc in vitro

Figure 27 DOCC

Flag-mAPRIL and hAGP3 Mediated IgG Production Inhibited by BCMA-Fc and TACI-Fc in Vitro

Figure 28: Significantly reduces total IgE and IgA in

Figure 29: BCMA-Fc and truncated TACT-Fc at daily doses of 0.5 mg/kg

Neutralizing anti-mAPRIL Mab Reduces anti-Pheumovacs IgM In Vivo Figure 31

^a difference between Anti-April Ab and anti-AGP3 Pb Peak 2+ Anti-April Ab Groups

Percent Survival

N=10 Mice were treated for 8 weeks 3x/week with the indicated proteins. KIN2 group had 12 mice. The 100 in the legend stands for 100 µg of protein or 4mg/kg i.p.

12,15.00 lupus exp

Figure 33: Effect of hBCMA-Fc in NCB/NCWF1 mice

Percentage of mice with proteinurea (>300mg/dl) from various treatment groups

N=10 Five month old BWF1 mice were treated with protein for 8 weeks i.p. The hBCMA-300 stands for hBCMA-fc 300µg/mouse (12mg/kg)

Figure 34: Analysis of antibodies to dsDNA from the peripheral blood from various treatment groups of BWF1 at day 0,30,60, and 90.

	MEAN	anti-ds	MEAN anti-dsDNA isotypes in U/m	otype	s in Un	=	J	1
:	Day 0	1	Day 30		Day 60		Day 90	-
Group #	2	Mgi	<u>S</u>	Mg	<u> </u>	MgI	gg	<u>B</u>
hBCMA-300	179	260	163	371	150	90/	171	841
BCMA-100	150	430	259	718	171	822	339	1031
BCMA-30	377	265	297	458	401	664	424	601
ن	149	371	234	283	384	331	432	321
PBS	308	292	439	311	247	9/9	720	467
1	Day 0		Day 30		Day 60		Day 90	
Group #	8	Mg	200	Mg	- IgG	IgM	IgG	<u>B</u>
hBCMA-300	104	303	116	211	62	518	62	734
hBCMA-100	109	262	306	461	212	758	371	1225
hBCMA-30	363	455	281	430	305	909	421	400
Ç	88	160	150	ස	391	151	233	237
PRS	311	73	474	152	247	370	870	327

the12mg/kg (30 ug), 4mg/kg (100ug), and 1.3mg/kg (300 ug) dose of Figure 35: Evaluation of B cell numbers at treatment day 60 from hBCMA-Fc groups along with the Fc and PBS control groups.

hBCMA-fc-300	300			hBCMA-100	00		70.181	hBCMA-FC-30	မ္	-	
#esilon	%CD4	%CD8	%B220		%CD4	%CD8	%B220		%CD4	%CD8	%B220
-	16.3	110	16.4	5.0	26.1	14.9	10.1	9.0	2.5	6.9	10.3
5 0	24.1	1-1-1	11.6	6.0	21.1	11.3	10.6	10.0	13.2	5.2	23.4
0 6	18.2	7.4	6.6	7.0	24.6	13.3	8.3	11.0	15.9	6.4	29.2
40	25.4	13.3	13.1	8.0	20.0	11.3	13.4	12.0	14.8	7.6	31.5
×	21.0	10.7	12.8	×	23.0	12.7	10.6	×	11.6	6.5	23.6
38	4.4	2.4	2.8	8	2.9	1.7	2.1	8	6.2	1.0	9.5
E				PBS							-
33.0	7.0	8.1	25.4	37.0	16.9	8.3	15.5				-
34.0	10.7	4.9	15.3	38.0	19.1	12.1	19.5				and the second s
35.0	18.9	9.3	21.0	39.0	7.1	3.4	17.5			-	
36.0	20.1	11.1	21.0	40.0	19.9	11.4	26.5				
×	14.2	8.4	20.7	×	15.8	8.8	19.8				
8	6.4	2.6	4.1	8	5.9	4.0	4.8		- Control	dayses -	

the state of the s

Figure 36: Specific APRIL binding to Human Cell lines determined by FACS analysis

APRIL binding

9 Col 460 I Pros Glial c Bu Mous 6BI I 5 Epi	HT 29 Colon adenocarcinoma + + +	NCI 460 Lung carcinoma +++	PC3 Prostate adennocarcinoma ++	C6 Glial carcinoma ++	Raji Burkitt lymphoma +++	A20 Mouse B cell lymphoma +++	U266BI Myeloma +++	A435 Epidermoid carcinoma	A469 Kidney carcinoma	
---	----------------------------------	----------------------------	---------------------------------	-----------------------	---------------------------	-------------------------------	--------------------	---------------------------	-----------------------	--

Figure 39: Effects of BCMA & hTACI on the Growth of A20 in Balb/c Mice

Days After Tumor Implantation

Figure 40

EFFECT OF HUMAN BCMA-FC AGAINST HT-29 SC TUMOR GROWTH

Linear growth ANOVA with Dunnett's correction for multiple testing (n=10/group)

FIGHTED" HESHESSED Figure 41 FFECT OF MURINE BCMA-FC AGAINST HT-29 SC TUMOR GROWTH

TIME (days)

200

35

Linear growth ANOVA with Dunnett's correction for multiple testing (n=10/group)