RNA secondary structure

1 second, 256 MB

An RNA is a string consisting of 4 alphabets $A \in G$ and U. Formally, an RNA is a string of length $B=b_1b_2...b_N$ of length N, where each character b_i can be one of $A \in G$ or U (1<=N<=200). A secondary structure on B is a matching S of positions of characters in B satisfying the following conditions

- (1) (No sharp turn.) For each pair (**i**, **j**) in **S**, the indices are separated by at least four bases, i.e., i < j 4.
 - (2) There are two ways to match characters: A with U, or C with G.
 - (3) Each character appears in only one pair in the matching.
- (4) (Non-crossing) If (i,j) and (k,l) are two pairs in S, we cannot have i < k < j < l. (See more description from the book.)

Given a string B representing an RNA, you want to find the largest matching that satisfies the above 4 conditions.

Input

The first and only line of the input consists of a string **B**, of length **N** ($N \le 200$).

Output

You program should print the size of the largest matching.

Example 1

Input	Output
GCGAUGCGCAUAACG	4

Explanation:

Example 2

Input	Output
GCGAUGCGCAUAACGCGCAAAAAGCGU	7

Explanation:

