WHAT IS CLAIMED IS:

- 5. The system according to claim 4, wherein the high rate pulse train has a frequency above 3 kilohertz and a constant amplitude. CDMS 1 6
- 6. The system according to claim 1, wherein the second signal includes rapid state transitions and a frequency greater than approximately 3 kilohertz, $\frac{C||}{||}$ 9-||2|
 - 7. The system according to claim 1, wherein the signal processor determines the combined signal by summing the first and second signals see 1910 control of 19

8. The system according to claim 1, further comprising a microphone that (70) (60) generates the first signal, wherein the microphone is coupled to the signal processor.

9. The system according to claim 1, wherein the signal processor further comprises a combining circuit that logically processes the first and second signals, wherein the combining circuit ANDs the first and second signals.

processor and the signal generator are positioned external to an ear, wherein the stimulation unit is coupled by a wire to the signal processor, and wherein the stimulation unit is coupled to an auditory nerve via a cochlea.

uses which how -32-

OSOENEYS OELNSE

5

11. A method for generating a driving signal for an auditory implant,

comprising:

receiving a first signal;

generating a second signal that causes pseudospontaneous activity in an

auditory nerve; and $0 \times 10^{10} = 0$

combining the first and second signals to generate the driving signal.

12. The method of claim 11, further comprising applying the combined signal to the auditory nerve and the first signal is received from a signal processor.

13. The method according to claim 11, wherein the first signal represents at least one of speech, emergency signals and control information, and wherein the second signal as a constant amplitude high rate pulse train with a frequency above 3 kilohertzy

\(\begin{aligned} \text{Q} 14. The method according to claim 12, wherein an inner ear implant performs the steps of receiving through applying.

The method according to claim 11, wherein the combining step performs at least one of summing and multiplying the first and second signals.

16. An auditory prosthesis for receiving an auditory signal representing sound and supplying an electrical signal which is adapted to stimulate the auditory nerve of a person, comprising:

pseudospontaneous generation means for generating a pseudospontaneous driving signal;

transducer means adapted to receive the auditory signal and the pseudospontaneous driving signal for transforming the auditory signal and the pseudospontaneous driving signal to an electrical input signals; and

stimulation means, operatively coupled to the electrical input signals generated by the transducer means, for stimulating the auditory nerve at defined locations within the cochlea.

- 17. The auditory prosthesis of claim 16, wherein the transducer means further performs at least one summing of the auditory signal and the pseudospontaneous driving signal and multiplying the auditory signal and the pseudospontaneous driving signal.
- 18. The auditory prosthesis of claim 16, wherein the pseudospontaneous driving signal is a high rate pulse train. CN 1054-31

ADD