Lesson 1 Introduction

Lecturer: Harvard Tseng

ARM is a Company

ARM Holding plc (ARM)		
Founded	November 27, 1990	
Headquarters	Cambridge, England, United Kingdom	
Revenue	£968.3 million (2015)	
Net income	£339.7 million (2015)	
Website	<u>arm.com</u>	

ARM is an Architecture of CPU

Advanced RISC Machine

How ARM Earns Money?

By intellectual property (IP) licensing.

Silicon Vendors

- Apple Inc.
- MediaTek Inc.
- Qualcomm Inc.

• ...

MEDIATEK

Microcontroller Vendors

- STMicroelectronics (ST)
- Texas Instruments Inc. (TI)
- NXP Semiconductors N.V. (NXP)

•

Cortex-M Series

Simplified Block Diagram

Advantages of the Cortex-M Processor

- Energy Efficiency
- Limitations in 8-Bit and 16-Bit Architectures
- Easy to Use, Software Portability
- Wide Range of Choices

Why choose Cortex-M?

High efficiency

Why choose Cortex-M?

Low-power features

Microcontroller current on different architectures executing the same interrupt task

Why choose Cortex-M?

STM32F0x8

Advanced ARM®-based 32-bit MCUs

System Architecture

Memory Map

Reference Manual

- Some MCU vendors call it datasheet
- Download (RM0091)

Cortex-M0 Programming

When a Microcontroller Starts

startup_stm32f0xx.s system_stm32f0xx.c Application (main) Reset sequence Reset Hardware C startup Reset Processing handler initialization code Interrupt Runtime Service libraries Routines System initialization (optional)

Polling

Interrupt Driven

IDE

Integrated Development Environment

Development Toolchain

IAR EWARM

- 30-day evaluation edition
- 32-Kbyte Limited QuickStart edition (16-Kbyte limitation) for Cortex M0)
- Keil MDK-ARM
 - MDK-Lite (32-Kbyte code size limitation)

- ARMmbed

GCC-based IDE

What do IDE Contain?

- C/C++ compilers
- Debuggers

Keil MDK Version 5 Development Kit

Step1. Install IDE

• Download from website.

MDK Editions

MDK is available in various editions. Compare Editions >

MDK-Lite

Product evaluation, small projects, and education. Code size restricted to 32 Kbyte.

Learn more >

■ Download & Install

MDK-Cortex-M

For ARM Cortex-M based microcontroller projects.

Learn more >

3 Request a Quote

MDK-Plus

For Cortex-M, ARM7, ARM9.
Includes middleware
(IPv4 Networking, USB Device,
File System, Graphics).

Learn more >

3 Request a Quote

MDK-Professional

For Cortex-M, Cortex-A, ARM7, ARM9. Includes middleware (IPv4/IPv6 Networking, USB Host & Device, File System, Graphics, mbed components).

Learn more >

3 Request a Quote

Step2. Install Software Packs

• Download from website.

➤ STMicroelectronics Nucleo Boards Support and Examples	BSP 1.6.0 L
➤ STMicroelectronics STM32F0 Series Device Support and Examples	BSP DFP 1.5.0 1
➤ STMicroelectronics STM32F1 Series Device Support, Drivers and Examples	BSP DFP 2.1.0 1
➤ STMicroelectronics STM32F2 Series Device Support, Drivers and Examples	BSP DFP 2.6.0 1
➤ STMicroelectronics STM32F3 Series Device Support and Examples	BSP DFP 1.3.0 1
➤ STMicroelectronics STM32F4 Series Device Support, Drivers and Examples	BSP DFP 2.9.0 1
➤ STMicroelectronics STM32F7 Series Device Support, Drivers and Examples	BSP DFP 2.7.0 ±
➤ STMicroelectronics STM32L0 Series Device Support and Examples	BSP DFP 1.6.0 1
➤ STMicroelectronics STM32L1 Series Device Support and Examples	DFP 1.0.2 👤
➤ STMicroelectronics STM32L4 Series Device Support, Drivers and Examples	BSP DFP 1.2.0 1

Step3. Create a New Project

Step3. Create a New Project

Step4. Select Device

Step5. Add Software Component

Step6. Add main.c

Step6. Add main.c

Step7. Include Device Header


```
1 #include "stm32f0xx.h" // Device header
2
```

Step8. Configure Flash

Step8. Configure Flash

Step9. Test

Install Debugger USB Driver

 If your board debugger doesn't work, download from website.

Exercise

Do it back home.

Basic C Operator

```
main.c
      #include "stm32f0xx.h"
      int a = 3, b = 6, ans;
   4 pint main (void) {
   5 🛓
          while(1){
   6
               ans = a + b;
               ans = a - b;
   8
               ans = a * b;
   9
               ans = a / b;
  10
               ans = a \% b;
  11
               ans = a \mid b;
  12
               ans = a \& b;
  13
               ans = a ^ b;
  14
               ans = \sim ans;
  15
  16
           return 0;
  17
  18
```

Use Debugger

- Review answer step by step.
- Monitor the variable you want.
- Set break points.