1 6.4: Volume by Shells

Volume by the Shell Method

Let f and g be continuous functions with $f(x) \ge g(x)$ on [a,b]. If R is the region bounded by the curves y = f(x) and y = g(x) between the lines x = a and x = b, the volume of the solid generated when R is revolved about the y-axis is

$$V = \int_{a}^{b} \underbrace{2\pi x}_{\substack{\text{shell circumference height}}} \underbrace{f(x) - g(x)}_{\substack{\text{shell height}}} dx.$$

Example. Consider a general region R revolved around the y -axis.
When using the disk/washer method, we integrate with respect to
When using the shell method, we integrate with respect to
when using the siteri method, we integrate with respect to
Example. Consider a general region R revolved around the x -axis.
When using the disk/washer method, we integrate with respect to
When using the shell method, we integrate with respect to
· · · · · · · · · · · · · · · · · · ·

Example. Consider the region bounded between $y = x^3$, y = 8 and x = 0.

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the x-axis.

about the y-axis.

Use the disk/washer method to setup the integral that represents the volume of the solid generated by rotating the region about the line x = -1.

about the line y = 8.

Example. Consider the region R bounded by $y = 4 - x^2$, y = 2, and x = 1. Use the shell method to setup the integral that represents the volume of the solid generated by rotating the region R about the indicated axis of rotation.

about x-axis,

about y-axis,

about the line x = -2,

about the line y = 2.

Example. Consider the region bounded by $y = \frac{1}{x+1}$ and $y = 1 - \frac{x}{3}$. Use both the disk/washer method and shell method to find the volume of the solid generated when R is rotated about the x-axis.

Exampl	e. Determine if the following statements are true.
	nen using the shell method, the axis of the cylindrical shells is parallel to the s of revolution.
If a	a region is revolved about the y -axis, then the shell method must be used.
	region is revolved about the x -axis, it is possible to use the disk/washer method integrate with respect to x .

Page 6