Yufei Lin

Problem Set 8

Nov 25^{th} 2019

Problem Set 8

Question 1

Suppose that $f:[a,b]\to\mathbb{R}$, is integrable, and suppose that $m=\inf\{f(x):x\in[a,b]\}$ and $M=\sup\{f(x):x\in[a,b]\}$. Then, we have $m(b-a)\leq\int_a^bf\leq M(b-a)$.

Proof:

Lemma: Suppose $f:[a,b]\to\mathbb{R}$ is integrable and suppose that P is any partition [a,b]. Then we have $L(f,P)\leq \int_a^b f\leq U(f,P)$.

Proof of Lemma:

We will prove this lemma from two parts:

First, we prove that $L(f, P) \leq \int_a^b f$.

Since f is integrable, then we know $\sup\{L(f,P)|P,\text{a partition in range }[a,b]\}=\int_a^b f.$ And let $A=\{L(f,P)|P,\text{a partition in range }[a,b]\}.$ Then $\sup A$ is the least upper bound of A. Let $y=\sup A$, then $\forall x\in A,x\leq y$. Then, because we have $y=\int_a^b f,\,\forall x\in A,x\leq y=\int_a^b f.$ Thus, $L(f,P)\leq \int_a^b f.$

Then, we prove that $\int_a^b f \leq U(f, P)$.

Since f is integrable, we know $\inf\{U(f,P)|P$, a partition in range $[a,b]\}=\int_a^b f$. And let $B=\{U(f,P)|P$, a partition in range $[a,b]\}$. Let $z=\inf B$, then $\forall x\in B, z\leq x$. Therefore, since we have $U(f,P)\geq \int_a^b f$.

Thus, $L(f, P) \leq \int_a^b f \leq U(f, P)$.

From the definition, $L(f,P) = \sum_{i=1}^n m_i(t_i - t_{i-1})$ and $U(f,P) = \sum_{i=1}^n M_i(t_i - t_{i-1})$. In this case, we have the partition P as [a,b] meaning there's only one pair of m and M, and $t_i = b, t_{i-1} = a$. Therefore, we have L(f,P) = m(b-a) and U(f,P) = M(b-a). Thus, from the lemma we know that $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Question 2

Prove that the function $f: [-1,1] \to \mathbb{R}$, defined by

$$f(n) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases},$$

is integrable on [-1, 1].

Proof:

At first we choose the partition $P = \{-1, 0, 1\}$. Then, by definition, $L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$ and $U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$. Therefore, we have,

$$L(f, P) = \sum_{i=1}^{2} m_i (t_i - t_{i-1})$$

$$= m_1 \cdot (t_1 - t_0) + m_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 1$$

and

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 1 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 2$$

Thus, we have $1 \leq \int_a^b f \leq 2$.

Then, suppose f is not integrable on [-1,1]. Therefore, $\forall \epsilon \in \mathbb{R}, \epsilon > 0$ such that if $P = \{-1, -\epsilon, 1\}$, then, L(f, P) < U(f, P). Therefore, we have

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-\epsilon + 1) + 1 \cdot (1 + \epsilon)$$

$$= 1 + \epsilon$$

Then, $1+\epsilon \geq \inf\{U(f,P)\}$. Let $\delta = \inf\{U(f,P)\} - \sup\{L(f,P)\}$ and $\delta > 0$. Also we have $1 \leq \sup\{L(f,P)\}$. Therefore, $\delta = \inf\{U(f,P)\} - \sup\{L(f,P)\} \leq 1 + \epsilon - 1 = \epsilon$. Therefore, we have $\forall \epsilon > 0, \forall \delta > 0, \delta < \epsilon$ which is a contradiction. Thus, f is integrable on [-1,1].

Question 3

Suppose that $f:[a,b]\to\mathbb{R}$, is bounded. Then f is integrable on [a,b] if, and only if, for every $\epsilon>0$, there exists a partition P of [a,b] such that

$$U(f, P) - L(f, P) < \epsilon.$$

Proof:

Suppose $\forall \epsilon > 0, U(f,P) - L(f,P) < \epsilon$, then we know by definition of $\sup\{L(f,P)\}$ and $\inf\{U(f,P)\}$ that $\sup\{L(f,P)\} \geq L(f,P), \inf\{U(f,P)\} \leq U(f,P)$ and $\inf\{U(f,P)\} \geq \sup\{L(f,P)\}$. Thus, $0 \leq \inf\{U(f,P)\} - \sup\{L(f,P)\} \leq U(f,P) - L(f,P) < \epsilon$. Let $\delta = \inf\{U(f,P)\} - \sup\{L(f,P)\}$. Suppose $\delta > 0$. Since $\forall \epsilon > 0 \delta < \epsilon$. But we have $a = \delta - 0 = \delta$ such that if $\epsilon < a = \delta$, then, we have $0 < \epsilon < \delta$ and we reach a contradiction. Therefore, $\delta = 0$. Thus, $\inf\{U(f,P)\} = \sup\{L(f,P)\}$. Then, f is integrable on [a,b], based on the definition.

Conversely, suppose f is integrable on [a,b] and $\exists \epsilon > 0, \forall P : U(f,P) - L(f,P) > \epsilon$. Therefore, we know that $\inf\{U(f,P)\} = \sup\{L(f,P)\}$. Then we have $\inf\{U(f,P)\} - \sup\{L(f,P)\} = 0$. By definition of \sup and \inf , we could find P' such that U(f,P') is close to $\inf\{U(f,P)\}$ and P'' such that L(f,P'') is close to $\sup\{L(f,P)\}$. Suppose we have $U(f,P') - L(f,P'') > \epsilon$ and let $U(f'P') - \inf\{U(f,P')\} > \frac{\epsilon}{2}, L(f'P') - \sup\{L(f,P')\} > \frac{\epsilon}{2}, L(f'P') - \sup\{L(f,P')\} > 0$, so f is not integrable. Therefore, we have a contradiction and if f is integrable on [a,b], then $\forall \epsilon > 0$ there exists a partition P of [a,b] such that $U(f,P) - L(f,P) < \epsilon$.

Question 4

Use the theorem you proved in question #3 to solve question #2 again in a slightly different way. (It should be easier this way, but it is worth doing it both ways.)

Proof:

Suppose $P = \{t_0, t_1, ..., t_n\}$ is a partition of [-1, 1] with $t_j = 0, j \in \mathbb{Z}, j \in [0, n]$. Then, we have when i < j, $m_i = M_i = 0$ and if i > j, we have $m_i = M_i = 1$, $m_j = 0$ and $M_j = 1$. Since we have:

$$L(f, P_n) = \sum_{i=1}^{j-1} m_i(t_i - t_{i-1}) + m_j(t_j - t_{j-1}) + \sum_{i=j+1}^n m_i(t_i - t_{i-1})$$

$$U(f, P_n) = \sum_{i=1}^{j-1} M_i(t_i - t_{i-1}) + M_j(t_j - t_{j-1}) + \sum_{i=j+1}^n M_i(t_i - t_{i-1})$$

Then, $U(f, P) - L(f, P) = t_j - t_{j-1}$. Suppose $\epsilon > 0$ and assume P with an interval such that $t_i - t_{i-1} < \epsilon$, for each i. Thus, we have $t_j - t_{j-1} < \epsilon$ and therefore, f is integrable.

Chpater 13. #1

Prove that $\int_0^b x^3 dx = \frac{b^4}{4}$, by considering partitions into n equal intervals.

Proof:

Since we are going to have a partition with n intervals, then we would have $P = \{t_0, t_1, ..., t_n\}$ with $t_0 = 0, t_i = i \cdot \frac{b}{n}$. Then, we have

$$L(f, P_n) = \sum_{i=1}^n t_{i-1}^3 (t_i - t_{i-1})$$

$$= \sum_{i=1}^n (\frac{(i-1) \cdot b}{n})^3 \cdot \frac{b}{n}$$

$$= (\frac{b}{n})^4 \cdot \sum_{i=1}^n (i-1)^3$$

$$= (\frac{b}{n})^4 \cdot \sum_{j=0}^{n-1} j^3$$

$$U(f, P_n) = \sum_{i=1}^{n} t_i^3 (t_i - t_{i-1})$$
$$= \sum_{i=1}^{n} (\frac{i \cdot b}{n})^3 \cdot \frac{b}{n}$$
$$= (\frac{b}{n})^4 \cdot \sum_{i=1}^{n} i^3$$

From the previous question Chapter 2 #6, we know that $\sum_{i=1}^{n} i^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{2}$, and the equation could be written:

$$L(f, P_n) = \left(\frac{b}{n}\right)^4 \cdot \left(\frac{(n-1)^4}{4} + \frac{(n-1)^3}{2} + \frac{(n-1)^2}{4}\right)$$

$$= \left(\frac{b}{n}\right)^4 \cdot \frac{1}{4}((n-1)^4 + 2(n-1)^3 + (n-1)^2)$$

$$= \frac{b^4}{4} \cdot \left(\frac{(n-1)^4}{n^4} + \frac{2(n-1)^3}{n^4} + \frac{(n-1)^2}{n^4}\right)$$

$$U(f, P_n) = \left(\frac{b}{n}\right)^4 \cdot \left(\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}\right)$$

$$= \left(\frac{b}{n}\right)^4 \cdot \frac{1}{4}(n^4 + 2n^3 + n^2)$$

$$= \frac{b^4}{4} \cdot \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)$$

Since $n \geq 1, n \in \mathbb{N}$, therefore, we know when n gets very large both $U(f, P_n)$ and $L(f, P_n)$

are close to $\frac{b^4}{4}$. At the same time, we find that

$$U(f, P_n) - L(f, P_n) = \frac{b^4}{4} (\frac{2n^3 - 1}{n^4})$$

which is a positive number. And we can make this difference as small as possible, by theorem 2, this function is integrable. Therefore, we have $U(f, P_n) \ge \frac{b^4}{4} \ge L(f, P_n)$. Thus, $\int_0^b x^3 dx = \frac{b^4}{4}$.

Chpater 13. #13

(a) Prove that if f is integrable on [a,b] and $f(x) \ge 0$ for all x in [a,b], then $\int_a^b f \ge 0$.

Proof:

Since f is integrable on [a, b], then we have $U(f, P_n) \ge \int_a^b f \ge L(f, P_n)$. Also, based on the definition, we have:

$$L(f, P_n) = \sum_{i=1}^{n} f(t_{i-1})(t_i - t_{i-1})$$
$$U(f, P_n) = \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1})$$

Also, because $f(x) \geq 0, \forall x \in [a,b]$ and $t_{i-1} \in [a,b], \forall i \in \mathbb{N}, i \leq n$, then $f(t_{i-1}) \geq 0$. Also, because the definition of t_i guarantees, $t_i > t_{i-1}$, then $t_i - t_{i-1} > 0$ Therefore, let $q_i = f(t_{i-1})(t_i - t_{i-1})$, since both $f(t_{i-1})$ and $(t_i - t_{i-1})$ are greater than or equal to 0. We have $q_i \geq 0$. Similarly, because $t_i \in [a,b], \forall i \in \mathbb{N}, i \leq n$, then $f(t_i) \geq 0$. Let $p_i = f(t_i)(t_i - t_{i-1})$. Because both $f(t_{i-1})$ and $(t_i - t_{i-1})$ are both greater than or equal to 0. Then, $p_i \geq 0$. Thus, we have $U(f, P_n) \geq \int_a^b f \geq L(f, P_n) \geq 0$. Thus, $\int_a^b f \geq 0$.

(b) Prove that if f and g are both integrable on [a,b] and $f(x) \geq g(x), \forall x \in [a,b]$, then $\int_a^b f \geq \int_a^b g$.

Proof:

Suppose f and g are both integrable on [a,b] and $f(x) \geq g(x), \forall x \in [a,b]$. Then, we know that $f(x) - g(x) \geq 0$. Thus, $(f-g)(x) \geq 0, \forall x \in [a,b]$. Furthermore, from theorem 5, we know that for any two functions that are integrable at the same range, we have $\int_a^b f + \int_a^b g = \int_a^b (f+g)$. Furthermore, from theorem 6 we know that $\int_a^b cg = c \cdot \int_a^b g$. Thus, $\int_a^b -g = -\int_a^b g$. Then, we have $\int_a^b f - \int_a^b g = \int_a^b (f-g)$. Let L(x) = (f-g)(x), then $\int_a^b (f-g) = \int_a^b L$ and from the previous theorem that if f is integrable on [a,b] and $f(x) \geq 0$ for all x in [a,b], then $\int_a^b f \geq 0$. We know that $\int_a^b L \geq 0$. Thus $\int_a^b f - \int_a^b g = \int_a^b f + \int_a^b f + \int_a^b f = \int_a^b f + \int_a^b$

$$\int_a^b (f-g) = \int_a^b L \ge 0$$
. Therefore, $\int_a^b f \ge \int_a^b g$.

Chpater 13. #20

Suppose that f is nondecreasing on [a, b]. Notice that f is automatically bounded on [a, b], because $f(a) \ge f(x) \ge f(b), \forall x \in [a, b]$.

(a) If $P = \{t_0, t_1, ..., t_n\}$ is a partition of [a, b], then what is L(f, P) and U(f, P)

Answer:

By definition of L(f, P) and U(f, P), we have the following:

$$L(f, P_n) = \sum_{i=1}^{n} f(t_{i-1})(t_i - t_{i-1})$$
$$U(f, P_n) = \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1})$$

(b) Suppose that $t_i - t_{i-1} = \delta$ for each i. Prove that $U(f, P_n) - L(f, P_n) = \delta \cdot (f(b) - f(a))$.

Proof:

Suppose $t_i - t_{i-1} = \delta$ for each i. Therefore, we know that

$$U(f, P_n) - L(f, P_n) = \sum_{i=1}^n f(t_i)(t_i - t_{i-1}) - \sum_{i=1}^n f(t_{i-1})(t_i - t_{i-1})$$

$$= \sum_{i=1}^n (f(t_i) \cdot \delta) - \sum_{i=1}^n (f(t_{i-1}) \cdot \delta)$$

$$= \delta \cdot (\sum_{i=1}^n (f(t_i) - \sum_{i=1}^n (f(t_{i-1})))$$

$$= \delta \cdot (\sum_{i=1}^n (f(t_i) - f(t_{i-1}))$$

$$= \delta \cdot ((f(t_1) - f(t_0)) + (f(t_2) - f(t_1)) + \dots + (f(t_n) - f(t_{n-1})))$$

$$= \delta \cdot (f(t_n) - f(t_0))$$

$$= \delta \cdot (f(b) - f(a))$$

(c) Prove f is integrable.

Proof:

Since we have $U(f, P_n) - L(f, P_n) = \delta \cdot (f(b) - f(a))$ and δ is arbitrary and f(b) - f(a) is given because we know f and both f(a) and f(b) exist. Therefore, we could have $\forall \epsilon > 0, \exists \delta < \frac{\epsilon}{f(b) - f(a)}$. Then, we have $\delta \cdot (f(b) - f(a)) < \epsilon$ and $U(f, P_n) - L(f, P_n) < \epsilon$.

(d) Give an example of a nondecreasing function on [0, 1] which is discontinuous at infinitely many points.

Example:

$$y = \begin{cases} 0 & x = 0\\ \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor} & 0 < x < 1\\ 1 & x = 1 \end{cases}$$

Chapter 13 #23

(a) Prove that if f is integrable on [a,b] and $m \leq f(x) \leq M$ for all x in [a,b], then $\int_a^b f(x) dx = (b-a)\mu$, for some number μ with $m \leq \mu \leq M$.

Proof:

From Theorem 7, we have if f is integrable on [a,b] and $m \leq f(x) \leq M$, then $m(b-a) \leq \int_a^b f \leq M(b-a)$. Let $q = \int_a^b f$. Then, $m(b-a) \leq q \leq M(b-a)$.

Assume b-a=0, then we have $0 \le q \le 0$, meaning q=0. We also know that every number is a factor of 0. Therefore, the assumption holds that if f is integrable on [a,b] and $m \le f(x) \le M$ for all x in [a,b], then $\int_a^b f(x) dx = (b-a)\mu$, for some number μ with $m \le \mu \le M$.

Let (b-a)>0, we have $m\leq \frac{q}{(b-a)}\leq M$. Thus, let $\mu=\frac{q}{(b-a)}$, then $m\leq \mu\leq M$ and $q=\mu\cdot(b-a)=\int_a^bf$. Thus, if f is integrable on [a,b] and $m\leq f(x)\leq M$ for all x in [a,b], then $\int_a^bf(x)dx=(b-a)\mu$, for some number μ with $m\leq \mu\leq M$.

(b) Prove that if f is continuous on [a, b], then $\int_a^b f(x)dx = (b - a)f(\xi)$, for some number ξ in [a, b], and show by an example that continuity is essential.

Proof:

From Chapter 7, theorem 3 and 6 we know that because f is bounded in [a,b], then $\exists K \geq f(x), \forall x \in [a,b]$ and $\exists O \leq f(x), \forall x \in [a,b]$, where in this case K=M and O=m. Thus, we know that $\exists a' \in [a,b]$ such that f(a')=m and $\exists b' \in [a,b]$ such that f(b')=M. From Chapter 7, theorem 4, we know that if f is continuous on [a,b], and f(a) < c < f(b), then there is some x in [a,b] such that f(x)=c. Therefore, from the previous problem we have shown that $\int_a^b f(x) dx = (b-a)\mu$, for some number μ with $m=f(a') < \mu < f(b')=M$, then we know that from this theorem, since f is continuous, we have there exists $\xi \in [a',b']$ such that $f(\xi)=\mu$. Also, because $[a',b']\subseteq [a,b]$. Therefore, $\xi \in [a,b]$. Thus, the statement holds.

Example

In order to prove that continuity is essential, we have the following example. Let f(x) = x and a = 0, b = 1. We have $\int_a^b f(x) dx = \frac{1}{2} = (b - a)\mu = \mu$. Thus, we have $\mu = \frac{1}{2}$. And if we

have

$$g(x) = \begin{cases} x & x \neq \frac{1}{2} \\ 0 & x = \frac{1}{2} \end{cases}$$

which does not have the value of μ in this equation. The loss of continuity cannot make this property stand.

(c) More generally suppose that f is continuous on [a,b] and that g is integrable and nonnegative on [a,b]. Prove that $\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx$ for some number ξ in [a,b]. This is called the Mean Value Theorem in Integrals.

Proof:

From the assumption $m \leq f(x) \leq M$, we know $mg(x) \leq f(x)g(x) \leq Mg(x)$. Therefore, we have $\int_a^b mg(x)dx \leq \int_a^b f(x)g(x)dx \leq \int_a^b Mg(x)dx$. And from theorem 6, we have this inequality rewritten as $m \int_a^b g(x)dx \leq \int_a^b f(x)g(x)dx \leq M \int_a^b g(x)dx$. Let $q = \int_a^b f(x)g(x)dx$, then we have $m \int_a^b g(x)dx \leq q \leq M \int_a^b g(x)dx$.

Assume $\int_a^b g(x)dx = 0$, then we have $0 \le q \le 0$ and therefore, q = 0. Thus, $\forall x \in [a,b], f(x) \cdot \int_a^b g(x)dx = 0$ and therefore holds the claim that $\int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x)dx$ for some number ξ in [a,b].

Furthermore, if $\int_a^b g(x)dx > 0$, then we have $m \leq \frac{q}{\int_a^b g(x)dx} \leq M$. Let $\mu = \frac{q}{\int_a^b g(x)dx}$. Thus, we know from part (b) that $\exists \xi$ such that $f(\xi) = \mu$ and $f(\xi) \int_a^b g(x)dx = \int_a^b f(x)g(x)dx$.

(d)Deduce the same result if g is integrable and nonpositive on [a, b].

Proof:

Since we have g(x) as a nonpositive number, then we multiply the original inequality $m \le f(x) \le M$ by -g(x). Then, we have $-mg(x) \le -f(x)g(x) \le -Mg(x)$. Therefore, we know that $\int_a^b -mg(x)dx \le \int_a^b -f(x)g(x)dx \le \int_a^b -Mg(x)dx$. Then, we know $m\int_a^b -g(x)dx \le \int_a^b -f(x)g(x)dx \le M\int_a^b -g(x)dx$.

Similarly from previous proof, if $\int_a^b -g(x)dx = 0$, then we know that $\int_a^b -f(x)g(x)dx = 0$. Thus, we also have $\forall x, x \in [a, b], f(x) \int_a^b g(x)dx = 0$. And therefore, the statement holds. Furthermore, we have $\int_a^b -g(x)dx > 0$. Then, let $\mu = \frac{\int_a^b -f(x)g(x)dx}{\int_a^b -g(x)dx}$. We know that $m < \mu < M$. From part(b) we know that there exists ξ such that $f(\xi) = \mu$ and therefore, the statement holds.

(e) Show that one of these two hypotheses for g is essential.

Answer:

If $g(x) = x^3$ on [-1, 1] and f(x) = x, then we have

$$\int_{-1}^{1} f(x)g(x)dx = \int_{-1}^{1} x^{4}dx$$
$$= \frac{x^{5}}{4}\Big]_{-1}^{1}$$
$$= \frac{1}{2}$$

Then, we have

$$\int_{-1}^{1} f(x)dx = \frac{x^{2}}{2}\Big]_{-1}^{1}$$

$$= 0$$

$$\int_{-1}^{1} g(x)dx = \frac{x^{4}}{3}\Big]_{-1}^{1}$$

$$= \frac{2}{3}$$

Therefore, we have $\mu = 0$ and $\mu \cdot \int_{-1}^{1} g(x) dx = 0 \neq \frac{1}{2}$, and the statement does not hold.