

第四讲

简单微程序控制器的设计 (三)

◇微程序流程
图

- ❖写出每条微指令所发送的微操作控制信号序列
 - 取指令公操作:
 - M0: PC-B#, B-AR, PC+1;
 - M1: M-R#, B-IR, J1#;
 - ADD 指令:
 - ADD·M2: PC-B#, B-AR, PC+1;
 - ADD·M3: M-R#, B-DA1;
 - ADD-M4: R0-B#, B-DA2;
 - ADD·M5: ALU,S3,S2,S1,S0,M,Ci (F=A 加B), ALU-B#, B-R0;

状态

简单微程序控制器的设计

地址总线

A7-A0

-0**IO-W**

-○**Ai**

○10-R

-⊙**Ai**

外部数据

总线

-○B-IR

-**∵J1**

形成部件

系统

***2** Ζ -○ALU-B 确定 A7-A0 输出设备 \$0 0-\$1 0-\$2 0-\$3 M-Wo-~ M ALU MEM ⊸ Ci M-R O-**D7-D0** 输入设备 DA₁ DA₂ B-DA1 B-DA2 **AR** B-AR U 内总线 的 内 **IR** 部 R₀ ∘ B-PC B-R0 ○ ightharpoonup R0-B PC ∘PC+1 PC-B **R1** ⊸ R1-В 结 **B-R2 ○**-R2 ¬ R2-B 指令 构 **R3** ¬ R3-B 译码器 时序 操作控制信号

控制字段一控制信号定义

序号	控制信 号	功能	序号	控制 信号	功能
1	PC-B	指令地址(PC)送总线	1 3	B-DA1	总线内容打入暂存器 DA1
2	B-AR	总线内容打入地址寄存器	1 4	ABL-DAB	总线内容打入暂存器 DA2
3	B-PC PC+1	程序计数器内容 +1	1 5		运算器 ALU 内容送总线
4	$\frac{M-W}{M-R}$	总线内容打入程序计数器	1 6	Ci	ALU 进位输入
5	B-IR	总线内容打入指令寄存器	1 7	B-R0	总线内容打入 R0 寄存器
6		存储器写	1 8	R0-B R1-B	总线内容打入 R1 寄存器
7		存储器读	1 9	R ₂ RB D ₂ R	总线内容打入 R2 寄存器
8	S ₃	S₃- S₀选择 ALU 16 种运算 → 1	2	R3-B B-R3	总线内容打入 R3 寄存器

即 8 条微指 令,控存 8 个单元

*设计微指令格式

控制字段

CPU 的有限状态机只有 8 个状态,可能产生 8 个下址。

下址字段

(24位) (3位) (1位) 判别 测试 字段 控制字段 下址字段 → **26** 28 **25 23** 24 PC-B **R2-B** B-AR **R3-B J1**

判别测试字段

❖设计微指令格式 CPU 的有限状态机只有8个状态,可能产生8个下址。

图中符号命名规则:

SRC->dst; 表达式左边为原边,表示输出数据的

部件,右边为数据输入的部件;

如:PC->B#;表示取出程序计数

器的

内容送到总线上;

B->AR;表示总线上的数据打

入到

地址寄存器 A R 中;

B:表示总线(BUS),#代表该信号是低电平

有效(或符号上有上划线);

ADD

❖分配微地址,并编写微指令代码 指令译码器译码原理:

■ 输入: 指令操作码 0P=I,I,I,I,

■ 输出:该指令的微程序入口

地址 = I₄ 10

所以

- ADD (OP=0101) 入口=1
- _ DA1+DA2→DR 111 ■ JMP (OP=1000) 入口

000

*分配微地址,并编写微指令代码

微地址	微指令(状态)	判别测试 字段 (J1#)	下址字段
000	$M0: PC \rightarrow AR,PC+1$	1	001
001	M1: RAM→IR,译码	0	×××
010	JMP•M2: PC→AR,PC+1	1	011
011	JMP•M3: RAM→PC	1	000
100	ADD•M3: RAM→DA1	1	101
101	ADD•M4: Rd→DA2	1	111
110	$ADD \cdot M2 : PC \rightarrow AR, PC+1$	1	100
111	ADD•M5 : DA1+DA2→Rd	1	000

*分配微地址,并编写微指令代码

微地址	微指令发出的微操作信号	判别测试 字段 (J1#)	下址字段
000	M0: PC-B#,B-AR,PC+1	1	001
001	M1: M-R#,B-IR,J1#	0	×××
010	JMP•M2 : PC-B#,B-AR,PC+1	1	011
011	JMP•M3: M-R#, B-PC#,PC+1	1	000
100	ADD•M3 : M-R#, B-DA1	1	101
101	ADD•M4: R0-B#,B-DA2	1	111
110	ADD•M2: PC-B#,B-AR,PC+1	1	100
111	ADD•M5: $S_3S_2S_1S_0MC_i=100101$, ALU-B#,B-R0	1	000

❖分配微地址,并编写微指令代码

微地址	微指令代码	判别测试 字段 (J1#)	下址字 段
000	011 1011000000010000011111	1	001
001	1001110000000010000011110	0	×××
010	011 1011000000010000011111	1	011
011	1010010000000010000011111	1	000
100	100101 <mark>0</mark> 000001010000011111	1	101
101	1001011000000 <mark>1</mark> 100000 <mark>0</mark> 1111	1	111
110	011 1011000000010000011111	1	100
111	1001011100100001100011111	1	000

❖微指令代码装入控制存储器的相应单元

微地址	微指令代码
000	76020F9 H
001	9C020E0 H
010	76020FB H
011	A4020F8 H
100	940A0FD H
101	960607F H
110	76020FC H
111	97218F8 H