Unit No 3

Numerical Methods

- 1) Interpolation Finite differences, Newton's and Lagrange's interpolation formulae,

 Numerical differentiation.
- 2) Numerical Integration: Trapezoidal and Simpsons rules, Bound of truncation error.
- 3) Solution of ordinary differential equations:

 Eulers, Modified Eulers, Runge-Kutta 4th

 order methods and Prediction-Corrector

 method.

Course outcome: Obtain interpolating polynomials, numerically differentiate and integrate functions, numerical solution of DEs using single step and multi-step iterative methods used in modern scientific computing.

Interpolation:

Suppore we are given the following values of y = f(x) for a set of values of x:

∞	∞.	∞	22	 ∞gn
y	y.	91	y ₂	 Yn

Then the process of finding the values of y corrosponding to any value of $x = x_i$ between x_i and x_i is called interpolation. Thus interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable. While the process of computing the value of the function outside the given range is called extrapolation.

Lagrangers Interpolation:

Lagrangers interpolating polynomial passing through the set of points (α_i, y_i) $i = 0, 1, 2 \dots n$

oc	2C	∞	200	~	·x.
y	40	91	42		y _n

is given by

$$y = L_0(\infty) y_0 + L_1(\infty) y_1 + - - + L_n(\infty) y_n$$

where

$$L_{0}(x) = \frac{(x-x_{1})(x-x_{2})....(x-x_{n})}{(x_{0}-x_{1})(x_{0}-x_{2})....(x_{0}-x_{n})}$$

$$L_{1}(x) = \frac{(x-x_{0})(x-x_{2})...(x-x_{n})}{(x_{1}-x_{0})(x_{1}-x_{2})...(x_{n}-x_{n})}$$

$$L_{n}(x) = \frac{(x-x_{0})(x-x_{1}) \cdot \cdot \cdot (x-x_{n-1})}{(x_{0}-x_{0})(x_{0}-x_{1}) \cdot \cdot \cdot (x_{n}-x_{n-1})}$$

Here ogs are unequally spaced.

Ex. 1) Find Lagrange's interpolating polynomial passing through set of points.

\propto	0	1	2
y	4	3	6

Use it to find y at
$$\infty = 1.5$$
,
$$\frac{dy}{dx} \text{ at } \infty = 0.5$$
, and find $\int_0^3 y \, dx$

Soln: Lagrangers interpolating polynomial passing through (\alpha_0, y_0), (\alpha_1, y_1) (\alpha_2, y_2) is given by

$$y = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1$$

$$+\frac{(\alpha-\alpha_0)(\alpha-\alpha_1)}{(\alpha_2-\alpha_0)(\alpha_2-\alpha_1)}y_2$$

$$y = \frac{(\alpha - 1)(\alpha - 2)}{2}(4) + \frac{(\alpha)(\alpha - 2)}{(-1)}(3) + \frac{(\alpha)(\alpha - 1)}{2}(6)$$

$$y = 2(x^2 - 3x + 2) - 3(x^2 - 2x) + 3(x^2 - x)$$

$$y = 2x^2 - 3x + 4$$

_____(1)

This is required Lagrangers interpolating polynomial passing through given points.

Now when x = 1.5

$$y = 4$$

Diff (1) $\omega \cdot \tau \cdot to \propto$

$$\frac{dy}{dx} = 4x - 3$$

when
$$\alpha = 0.5$$

$$\frac{dy}{dx} = -1$$

Finally,

$$\int_{0}^{3} y \, dx = \int_{0}^{3} (2x^{2} - 3x + 4) \, dx$$

$$= 2 \left(\frac{x^{3}}{3}\right)_{0}^{3} - 3 \left(\frac{x^{2}}{2}\right)_{0}^{3} + 4 \left(\frac{x}{2}\right)_{0}^{3}$$

$$= 16.5$$

Ex. 2) The velocity distribution of a fluid near a flat surface is given below.

 ∞ is distance from the surface (mm) and ν is the velocity (mm/sec). Use lagrangers interpolating polynomial to obtain the velocity at $\infty = 0.4$

oc (mm)	0.1	0.3	0.6	0.8
(mm/sec)	0.72	1.81	2.73	3.47

Soln: By Lagrangers interpolation formula,

$$y = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} y_1$$

$$+\frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{2})}v_{2}+\frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})}v_{3}$$

Here oc = 0.4

$$9 = L_0(0.4) = \frac{(0.4 - 0.3)(0.4 - 0.6)(0.4 - 0.8)}{(0.1 - 0.3)(0.1 - 0.6)(0.1 - 0.8)}$$

$$L_{1}(0.4) = \frac{(0.4)+(0.1)(0.4-0.6)(0.4-0.8)}{(0.3-0.1)(0.3-0.6)(0.3-0.8)}$$

$$L_2(0.4) = \frac{(0.42-0.1)(0.4-0.3)(0.4-0.8)}{(0.6-0.1)(0.6-0.3)(0.6-0.8)}$$

$$L_{3}(0.4) = \frac{(0.4-0.1)(0.4-0.3)(0.4-0.6)}{(0.8-0.6)(0.8-0.6)}$$

.. y = 2.16028 mm/sec.

Exercise: Given
$$(1.0)^3 = 1.000$$

 $(1.2)^3 = 1.728$
 $(1.3)^3 = 2.197$ and
 $(1.5)^3 = 3.375$

Using Lagrange's interpolation formula, evaluate (1.07)3.