Genome Annotation

CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTACAACCCTTCCCCCTTG AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGGGGCTCTACAGCGCCCGC TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTCAGGAGTAATAGCGACA AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTTGCAAGAACCAACTGGG CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAAACCGACGTCGAGTCTA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACATCAAAGACTACTGGGCG GENOME ASSEMBLY IS JUST A TEXT FILE IN FASTA FORMAT. CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCATACTAGGTCCCGGAGCT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATCGTCTAGA GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGGTCCTGTTAGCGTGTAC GCCTGCTCCTGTTCCGGGTACCATAGATAGACTGAGATTGCGTCAAAAAATTGCGGCGAAAATAGAGGGGCTCCT TGTAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTAAACATCAACAAATGCGTCTACT CGAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGATGTCTTCATAAGATTATACTTG CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC

TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA

CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG

ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCGTGGGCACCGCAGATCA

AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCATCAAACTTCAATAAAT

CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTACAACCCTTCCCCCTTG AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGGGGCTCTACAGCGCCCGC TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTCAGGAGTAATAGCGACA AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTTGCAAGAACCAACTGGG CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAAACCGACGTCGAGTCTA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACATCAAAGACTACTGGGCG IT IS MUCH MORE INTERESTING TO HAVE AN ANNOTATION. CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCATACTAGGTCCCGGAGCT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATCGTCTAGA GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGGTCCTGTTAGCGTGTAC GCCTGCTCCTGTTCCGGGTACCATAGATAGACTGAGATTGCGTCAAAAAATTGCGGCGAAAATAGAGGGGCTCCT TGTAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTAAACATCAACAAATGCGTCTACT CGAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGATGTCTTCATAAGATTATACTTG CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC

TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA

CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG

ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCGTGGGCACCGCAGATCA

AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCATCAAACTTCAATAAAT

Annotation Goals

Identifying repeats

- Biologically interesting
- Technically very important. Repeats are often "masked" in downstream analyses to avoid false positives and other issues

Identifying protein coding genes

- Build inventory of genes
- Identify boundaries of introns, exons, promoters
- Predict mRNA structure (remember Central Dogma)

Identifying other regions

- Noncoding RNAs
- Promoters
- Cis-regulatory regions

Understanding genome structure

- Centromeres
- Telomeres
- Mapping scaffolds to chromosomes

Community

- Creating a useful resource
- Output needs to be in a standard format

What is the stuff? Where is it?

Eukaryotic Gene Structure

Nidhi Abhay Kulkarni, The Biology Notes

BED Format

The first three fields in each feature line are required:

- chrom name of the chromosome or scaffold. Any valid seq_region_name can be used, and chromosome names can be given with or without the 'chr' prefix.
- **2. chromStart** Start position of the feature in standard chromosomal coordinates (i.e. first base is 0).
- **3. chromEnd** End position of the feature in standard chromosomal coordinates
- **4. name** Label to be displayed under the feature, if turned on in "Configure this page".
- **5. score** A score between 0 and 1000. See <u>track lines</u>, below, for ways to configure the display style of scored data.
- **6. strand** defined as + (forward) or (reverse).
- 7. thickStart coordinate at which to start drawing the feature as a solid rectangle
- **8. thickEnd** coordinate at which to stop drawing the feature as a solid rectangle
- **9. itemRgb** an RGB colour value (e.g. 0,0,255). Only used if there is a track line with the value of itemRgb set to "on" (case-insensitive).
- **10. blockCount** the number of sub-elements (e.g. exons) within the feature
- **11. blockSizes** the size of these sub-elements
- **12. blockStarts** the start coordinate of each sub-element https://m.ensembl.org/info/website/upload/bed.html

BED Format

BED (9-column):

```
255,0,0
      127471196
                  127472363
                                          127471196
                                                      127472363
chr7
                             Pos1
                                                                  255,0,0
      127472363
                  127473530
                                          127472363
                                                      127473530
chr7
                             Pos2
                                    0
                                       +
                                                                  255,0,0
      127473530
                  127474697
                             Pos3
                                    0
                                          127473530
                                                      127474697
chr7
                                       +
chr7
      127474697
                  127475864
                             Pos4
                                    0
                                          127474697
                                                      127475864
                                                                  255,0,0
                                       +
```

GFF-3 Format

Fields **must** be tab-separated. Also, all but the final field in each feature line must contain a value; "empty" columns should be denoted with a '.'

- **1. seqid** name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix.
- 2. source name of the program that generated this feature, or the data source (database or project name)
- **3. type** type of feature. Must be a term or accession from the SOFA sequence ontology
- **4. start** Start position of the feature, with sequence numbering starting at 1.
- **5. end** End position of the feature, with sequence numbering starting at 1.
- **6. score** A floating point value.
- **7. strand** defined as + (forward) or (reverse).
- **8. phase** One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on..
- **9. attributes** A semicolon-separated list of tag-value pairs, providing additional information about each feature. Some of these tags are predefined, e.g. ID, Name, Alias, Parent

GFF-3 Format

GFF3:

```
##gff-version 3
ctg123 . mRNA
                        1300
                              9000
                                             ID=mrna0001;Name=sonichedgehog
ctg123 . exon
                                       + ID=exon00001;Parent=mrna0001
                        1300
                              1500
ctg123 . exon
                                       + ID=exon00002;Parent=mrna0001
                        1050
                              1500
                                       + . ID=exon00003; Parent=mrna0001
ctq123 . exon
                        3000
                              3902
                                       + ID=exon00004;Parent=mrna0001
ctg123 . exon
                        5000
                              5500
ctg123 . exon
                        7000
                              9000
                                       + . ID=exon00005; Parent=mrna0001
```

Annotations can be made

With *ab initio* methods based on the understanding of particular properties of different genome features

Based on direct evidence, such as RNA-seq

Based on comparison to a reference of similar sequences

- Looking for repetitive DNA elements
- **Blasting** known protein coding genes

BLAST – <u>Basic Local Alignment Search Tool</u>

Requirements

- Query (sequence you want to identify)
- Database (reference)

Local alignment

- proteins are modular, genes contain exons and introns
- versus global alignment

Neighborhood

- BLAST considers exact words, but also similar ones according to BLOSUM26 matrix
- these are aligned and then extended
- cumulative score is tallied

Goal

- when score drops significantly, extension is trimmed
- this results in the high scoring segment pair

The BLAST Search Algorithm

High-scoring Segment Pair (HSP)

BLAST is used for many things.

BLAST searching is fundamental to understanding the relatedness of any favorite query sequence to other known proteins of DNA sequences.

Applications include:

- identifying orthologs and paralogs
- discovering new genes and proteins
- discovering variants of genes or proteins
- investigating expressed sequence tags (ESTs)
- exploring protein structure and function

Types of BLAST searches

blastn (<u>n</u>ucleotide BLAST) -> DNA query to DNA database blastp (<u>p</u>rotein BLAST) -> protein query to protein database blastx (translated BLAST) -> DNA query to protein database tblastn (translated BLAST -> protein query to DNA database tblastx (translated BLAST) -> translated DNA query to translated DNA database

Choose a BLAST program based on your needs

Repetitive DNA

Tandem repeats

- Adjacent along the chromosome
- Satellite DNA
 - minisatellites 10-60bp
 - microsatellites <10bp

Interspersed repeats

- Transposable elements

Copyright © 2005 Nature Publishing Group

Nature Reviews | Genetics

Repeat Masking

Essential step before gene annotation

Many repeats contain ORFs, can be mistaken as genes.

Repeats should be "masked" before you try to annotate genes

"NNNNN" = hardmasked

"atcg" = softmasked

Better for downstream BLAST or genome alignment

Two Methods of Repeat Finding

Database method

- RepeatMasker (repeatmasker.org)
 - Blast RepBase elements to your genome
 - Good for mammals or model organisms
 - Ascertainment bias species have unique repeats
 - Human: 50% masked with "homo sapiens" repeats.
 - Humpback whale: 38% masked with "mammalia" repeats.
 - Glass lizard: 13% masked with "vertebrate" repeats

De novo method

- RepeatModeler (repeatmasker.org)
 - Blast your genome to itself
 - Models repeats without a priori knowledge
 - Good for finding species-specific repeats
 - May miss low-copy number repeats

What are Transposable Elements?

DNA sequences that move about the genome

• Transposition

• "jumping genes"

• "junk DNA", "selfish genes"

Types of transposable elements and their mode of transposition

Tollis and Boissinot. The evolutionary dynamics of transposable elements in eukaryote genomes. 2012. Genome Dynamics.

Large genomes have a lot of transposable elements

TEs Effect Can Affect Gene Function and Regulation

Examples of Human Disease Caused by TE Mutation

	Gene	Disorder	Element	Mechanism
Alu	NF1	Neurofibromatosis	Alu Ya5	Intron/skipping
	ВСНЕ	Acholinesterasemia	Alu Yb8	Exon insertion
	F9	Hemophilia B	Alu Ya5	Exon insertion
	CASR	Familial hypocalciuric hypercalemia	Alu Ya4	Exon insertion
	ADD1	Huntington's disease	Alu	Exon insertion
LINE-1	Factor VIII	Hemophilia A	L1	Exon insertion
	APC	FAP	L1	Exon insertion
	Dystrophin	Muscular Dystrophy	L1	Exon insertion
	Globin	Beta thalassemia	L1	Intron
	RP2	Retinitis Pigmentosis	L1	Intron
	Fukutin	Muscular Dystrophy	L1	Intron/skipping

Next

• We will discuss a beginner's guide to genome annotation (Yandell and Ence 2012).

We will have a computational lab on repeatmasking.

Genome Annotation 2 will extend into gene-finding techniques.