Feasibility Assessment and Roadmap for XJTLU Campus Information and Visitor Service System

(A Test Bed for Large-Scale Location-Aware Services in SIP)

Kyeong Soo (Joseph) Kim
Research Institute for Smart and Green Cities
Xi'an Jiaotong-Liverpool University (XJTLU)

Outline

- Technical overview
- Work packages
- Roadmapping

Technical Overview

Service Example: Indoor Localisation/Navigation

Service Example: Location-Aware Service

Implementation Example - 2

Major Challenges in Large-Scale Implementation

- Scalability
- Localisation accuracy
- Non-stationarity of location fingerprints
 - Incremental/online learning algorithms with pruning/forgetting mechanisms*
- Passive vs. active location estimation
- Integration with other services
- Security/privacy issues

* R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," Proc. IJCNN'09.

Work Packages

WP1: Indoor localisation based on location fingerprinting

- Dr K Kim
- Dr Lee
- Dr Huang
- Prof Lim

WP2: Scalable and secure locationaware service system

- Prof Chen
- Dr K Kim

WP3: Data analysis and visualisation of users' behaviours to improve the educational environments

- Dr J Kim
- Dr Wang
- Dr Craig

WP4: Extending and sharing with external units

- Dr Lee
- Dr K Kim

Roadmapping

Backup Slides

Wi-Fi Fingerprinting

Location Estimation

- Deterministic
 - Nearest Neighbour Methods
 - Neural Network Methods
- Probabilistic
 - Bayesian Inference
 - Support Vector Machine (SVM)
 - Gaussian Process Latent Variable Model (GP-LVM)

Nearest Neighbour Methods*

- A simple approach based on the notion of distance in the signal space:
 - Given a fingerprint of $(\mathcal{L}, (\rho_1, \cdots, \rho_N)^T)$ and an RSS measurement of $(s_1, \cdots, s_N)^T$, the *Euclidean <u>distance measure</u>* between them is defined as

$$\int_{1}^{N} (s_i - \rho_i)^2$$

• Then, we find a fingerprint providing a minimum distance, $\mathcal L$ of which is the estimated location.

* P. Bahl and V. N. Padmanabhan, "RADAR: An in-building RF-based user location and tracking system," Proc. of INFOCOM 2000, vol. 2, pp. 775-784, Mar. 2000.