Lecture 7

6강 remind

- 1. 보통 활성화 함수로 ReLU를 사용.(그냥 일반적으로)
- 2. W값 초기화(Initualization)

초기화가 너무 작음: 활성이 영으로 감, 경사도 0, 학습 안됨

초기화가 너무 큼: 활성이 포화 (tanh 경우), 경사가 영, 학습 안됨

초기화가 적당함: 모든 계층에서 좋은 활성 분포 학습이 좋게 진행됨

- 3. 데이터 전처리: 데이터 정규화(normalization)하는 것.
- 4. batch normalization.
- 5. babySitting Learning: 학습률에 따른 손실. 정확도에 대한 얘기.
- 6. 그리드 서치, 랜덤 서치 이야기
- -하이퍼파라미터.
- 1. 최적화(fancier optimization)
- 2. 정규화(Regularization)
- 3. 전이 학습(Transfer Learning)

-최적화(optimization)

SGD(확률적 경사 하강법)

목표 함수까지 가는데, 매우 지그재그 형태.(좋은 성능 안나옴)

문제점:

1.만약 손실함수가 위의 형태를 띄고 있다면(경사가 0인 형태), 멈추게 됨.(기울기가 0이어서) 2.시간도 오래 걸림

> SGD+Momentum $v_{t+1} = \rho v_t + \nabla f(x_t)$

> > $x_{t+1} = x_t - \alpha v_{t+1}$

 $dx = compute_gradient(x)$ vx = rho * vx + dx

SGD + 모멘텀

SGD + 모멘텀 (momentum)

SGD $x_{t+1} = x_t - \alpha \nabla f(x_t)$ while True: vx = 0 dx = compute_gradient(x) while True: x += learning_rate * dx x += learning_rate * vx

경사의 방향이 아닌, 속도의 방향으로.

이런식으로, 속도의 방향으로 가기 때문에, 극소, 안장점을 만났을 때, 멈추지 않음.

Nesterov

$$v_{t+1} = \rho v_t - \alpha \nabla f (x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

네스테로프 모멘텀:

짜증남, 우리는 보통 $x_t, \nabla f(x_t)$ 에 대해 업데이트 하고자 함

 $\tilde{x}_t = x_t + \rho v_t$ 변수의 변경과 재구성

$$\begin{aligned} v_{t+1} &= \rho v_t - \alpha \nabla f(\tilde{x}_t) \\ \tilde{x}_{t+1} &= \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1} \\ &= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t) \end{aligned}$$

네스테로프는 현재 속도와 이전 속도 사이 오류 수정하는 항을 포함 SGD, SGD Momentum보다 속도는 느리지만, 오버슈팅 동작이 최소화 됨.

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / [np.sqrt(grad_squared) + 1e-7]
```

뒤에 나누기 때문에, 만약 grad_squared가 큰 값이라면, 전체 진행이 느려지게 됨.(업데이트 할수록 느려짐)

RMSProp

```
grad_squared = 0
while True:

dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

x -= learning_rate * dx / (np.sqrt(grad_squared) * 1e-7)
```

AdaGrad의 속도 느려지는 부분을 보완.

Adam

```
first_moment = 0
second_moment = 0
for t in range(num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) * 1e-7))
AdaGrad / RMSProp
```

SGD Momentum, Adagrad, RMSProp 합친 형태.

변수 두개 0으로 고정하는 이유가 시작때부터 크게 움직이는 걸 막기 위함.

괜찮은 최적화 알고리즘.

1차 최적화

가장 기본적 경사. 미분값.

2차 최적화

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

뉴턴 스텝(다차원 2차 최적화에 사용.)

학습률 존재 하지 않음.

매 걸음마다 최소의 걸음.

문제점:

O(N^2)원소 가짐. 역행렬에 O(N^3) 걸림. ->딥러닝에 안좋음.

BFGS(제한 조건 없는 함수에서 x를 최소화 시키는 것) : 뉴턴 방법 사용. 역행렬 만드는 대신, 1로 업데이트 해서.

L-BFGS(제한된 BFGS): 역행렬 전체 생성 혹은 저장 안함.

full batch에서는 적합. mini-batch에서는 안 좋음.

보통 Adam이 가장 일반적. full-batch 할 수 있음 L-BFGS쓸 것.

모델 앙상불(Model Ensembles):

하나의 모델을, 여러 개로 조화롭게 학습(여러 모델의 예측값의 평균).

훈련 과정에서 여러 snapshot 갖고 있다가 앙상블로 활용.

```
while True:
   data_batch = dataset.sample_data_batch()
   loss = network.forward(data_batch)
   dx = network.backward()
   x += - learning_rate * dx
   x_test = 0.995*x_test + 0.005*x # use for test set
```

훈련하는 동안, 계속 앙상불 갖는 것.

-정규화.

드롭아웃(Dropout):

forward pass 할 때, 임의의 뉴런들을 0으로 설정. (계층 몇 개 뺀다)

```
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

# forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape)
```

드롭아웃 사용 이유:

- 1.과적합 해결에 탁월.
- 2. 모델 내부에서 모델 앙상불을 하고 있음.

드랍아웃: 테스트시

적분을 근사하고 싶음

$$y = f(x) = E_z[f(x, z)] = \int p(z)f(x, z)dz$$

테스트시 갖고 있는 것:
$$E\left[a\right]=w_1x+w_2y$$
 훈련동안 갖고 있는 것: $E\left[a\right]=\frac{1}{4}(w_1x+w_2y)+\frac{1}{4}(w_1x+0y)$ $+\frac{1}{4}(0x+0y)+\frac{1}{4}(0x+w_2y)$ $=\frac{1}{2}(w_1x+w_2y)$

테스트 시 출력 = 훈련시 기대 출력. 이 두개가 같도록 해야 함.

드롭아웃:

```
def predict(X):
# ensembled forward pass
H1 * np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out * np.dot(W3, H2) + b3
```

역 드랍아웃

더 흔히 사용됨: "역 드랍아웃(inverted dropout)"

```
def train_step(X):
# forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Motice /p!

H1 *= U1 # drop!

H2 = np.maximum(0, np.dot(W2, H1) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # secund dropout mask. Mutice /p!

H2 * u2 # drop!

out = np.dot(W3, H2) + b3

# hackward pass: compute gradients... (not shown)

# perform parameter update... (not shown)

def predict(X):
# ensembled forward pass

H1 = np.maximum(0, np.dot(W1, X) + b1) # ne scaling necessary

H2 * np.maximum(0, np.dot(W2, H1) + b2)

out = np.dot(W3, H2) + b3
```

드롭아웃에서 predict할 때, '*p'가 되어있는 것을 확인 가능.

시간 절약을 위해, 역 드랍아웃 train때, '/ p' 해줌.

배치 정규화(Batch Normalization):

임의의 미니배치로 정규화

노이즈를 갖는다는 것만 보면 드롭아웃과 비슷.

파라미터값 제어는 불가능.

데이터 증강(data augmentation):

CNN에서 훈련하는 동안 이미지 변형.

ex) 1.고양이 사진 좌우 반전. 구역별 자르고 그걸 모아다가 평균.

2. 밝기 변경. 각 색들을 샘플링. 이걸 다 더하기. -> 좀 어려워서 잘 안 씀

드랍커넥트(DropConnect):

드랍아웃처럼 활성을 0값 말고, <mark>행렬 값 일부를 0</mark>으로.

Fractional Max Pooling(작은 맥스 풀링):

필터들을 더 작은 필터들로.(ex. 2x2 풀링을 임의로 1x1, 1x2, 2x1, 2x2로 설정해서 이걸 조합해 풀 링)

확률적 깊이(stochastic depth):

훈련중에 계층을 임의로 드랍 하고, 테스트 할 때는 전체 계층 사용. 알려주는 사람이 극찬.

-전이학습(Transfor Learning).

학습된 모델을 다른 작업에 이용하는 것. CNN에 적용.

	매우 비슷한 데이타셋	매우 다른 데이타셋
매우 적은 데이타	제일 위 계층에서 선형분류기 사용	곤란한 상황에 처함 여러 단계로부터 선형 분류기 시도 할 것
꽤 많은 데이타	몇개의 계층을 미세조정	더 많은 계층을 미세조정할 것

이미지 처리에 많이 사용.

Lecture 8

- 1. CPU와 GPU
- 2. Deep Learning Frameworks
 - 2.1 Caffe/ Caffe2
 - 2.2 Theano / TensorFlow
 - 2.3 Torch / PyTorch

CPU(central processing unit): 적은 수의 코어로 처리할 수 있는 작업이 많다.

GPU(graphics processing unit): 코어가 많고, 단순한 계산을 매우 빠르게 처리 가능함.

- -deep learning Framework
- 1. Caffe 에서 Caffe2로 발전.
- 2. Torch에서 PyTorch로 발전.
- 3. Theano가 TensorFlow 로 발전.

딥러닝 프레임워크의 특징:

- 1. 대규모 계산 그래프를 쉽게 구축 가능.
- 2. 계산 그래프에서 기울기 계산 쉽게 가능.
- 3. GPU라이브러리 활용하여 효율적 GPU 실행 가능.

넘파이로는 GPU를 돌릴 수 없어서, TensofFlow, Pytorch 함께 사용.

Numpy

TensorFlow

PyTorch

각각의 형태.

Torch:

- 단점: Lua 언어를 사용한다.
- 단점: 자동 미분 기능이 없다.
- 장점: 안정적인 소프트웨어이다.
- 장점: 많은 기존 코드가 있다.
- 공통점: 빠르다.

PyTorch:

- 장점: Python 언어를 사용한다.
- 장점: 자동 미분 기능이 있다.
- 단점: 상대적으로 새로운 프레임워크이며 아직 변화하는 중이다.
- 단점: 기존 코드 양이 적다.
- 공통점: 빠르다.

Static

Once graph is built, can serialize it and run it without the code that built the graph!

Dynamic

Graph building and execution are intertwined, so always need to keep code around

->

Static: Pytorch나 TensorFlow같은 프레임워크 사용하면, 그래프 재사용이 가능.

Dynamic: 계산 그래프의 구성과 실행이 강하게 연결, 그래프 구성 코드를 항상 유지해야 함.