Transfert optimisé de paquets dans un réseau informatique

Modélisation, étude des protocoles de routage

Introduction générale

- L'Internet est un ensemble de réseaux, il est séparé en différents systèmes autonomes.
- Le routage est très important pour faire communiquer les différents équipements entre eux.
- Deux types de protocoles de routage : IGP (interior gateway protocol), EGP (exterior gateway protocol).
- Etude des IGP, notamment RIP (Routing information Protocol) et OSPF (Open Shortest Path First).

Représentation utilisée dans la suite de la présentation :

Représentation utilisée dans la suite de la présentation :

RIP : un protocole simple et répandu

Protocole à vecteur de distances

Chaque routeur possède une table :

Destination	Next hop	Coût
R1	R2	3
***	0 0 0	
Rx	Ry	7

Il la diffuse à intervalles réguliers sur les réseaux auxquels il est connecté.

Traitement lors de la réception d'une table :

Suit le principe de l'algorithme de Bellman-Ford

Traitement lors de la réception d'une table :

Destination	Next hop	Coût
R1	R2	3
•••	• • •	
Rx	Rvz	4

Table mise à jour :

Coûts comparés

Si besoin : ligne changée et coût

incrémenté

OSPF : complexe mais performant

Protocole à état de lien

Chaque routeur possède une matrice : (schéma4)

Deux types de messages : Hello et Update

Hello : Envoyés et reçus en permanence => découverte des voisins adjacents.

Update : État d'un lien entre deux routeurs; transmis uniquement lors d'une modification.

Traitement d'une update :

Matrice + message update d'un autre routeur +

Schéma 4.5

Traitement d'une update :

Matrice mise à jour +

Algorithme de Dijkstra:

Schéma5

Algorithme utilisé à chaque changement dans la matrice d'un routeur.

MODELISATION:

Premier modèle :

Simple

But : découvrir les difficultés et mieux comprendre le routage

Utilisation de structures simples

Uniquement RIP d'implémenté

Problèmes : OSPF, programme peu organisé, limitations inhérentes au modèle

Recherche d'un modèle plus adéquat...

Deuxième modèle :

Programmation orientée objet

Difficulté : simultanéité du fonctionnement des routeurs

Abandon de la notion de temps

Files d'attente : messages à envoyer ; messages à traiter

En deux temps : envoie - traitement

Avantages sur le modèle précédent :

Implémentation d'OSPF

Plus de problèmes liés aux listes

Traitement "simultané"

Les experiences :

* RIP Count-to-infinity:

Les experiences :

* RIP Count-to-infinity:

Solutions : nombre de sauts maximum, "poison reverse"

Deux chemins différents pour RIP et OSPF :

Deux chemins différents pour RIP et OSPF :

Rip: minimum de sauts

OSPF : somme des coûts minimum

Réseau ayant convergé

Déconnexion d'un routeur

Reconnexion du routeur

Mise à jour d'OSPF

Mise à jour d'OSPF

Mise à jour d'OSPF

Déconnexion d'un routeur :

Réseau ayant convergé

Déconnexion d'un routeur :

Déconnexion d'une liaison

Autres limites des protocoles :

- * RIP:
 - Temps de convergence long
 - Utilisation élevée de la bande passante

* OSPF:

- Utilisation importante de CPU
- Besoin de mémoire importante et duplication de l'information
- Difficile à mettre en place