Teorema de Caracterización de Pesos A_1

David Cabezas Berrido

Introducción

Vamos a demostrar el teorema de caracterización de los pesos A_1 . Nuestra referencia principal será el libro "Análisis de Fourier" de Javier Duoandikoetxea. Fijemos primero algo de notación.

Trabajaremos en el espacio \mathbb{R}^n . En adelante w denotará un peso, es decir, una función medible, no negativa y localmente integrable en \mathbb{R}^n . Para cada conjunto medible $E \subset \mathbb{R}^n$, notaremos $w(E) = \int_E w dx$, donde la integral es respecto a la medida de Lebesgue en \mathbb{R}^n . La medida de Lebesgue de un conjunto medible E se denota por |E|.

Consideramos el funcional maximal de Hardy-Littlewood M definido por

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy \tag{1}$$

para cada f localmente integrable en \mathbb{R}^n $(f \in L^1_{loc}(\mathbb{R}^n))$. El supremo de la expresión de arriba es en todos los cubos diádicos Q que contienen al punto $x \in \mathbb{R}^n$.

La condición para que un peso w esté en la clase A_1 es

$$\frac{w(Q)}{|Q|} \le Cw(x) \tag{2}$$

para casi todo $x \in Q$ y para todo cubo diádico Q. La constance C no puede depender ni de x ni de Q, se le llama constante A_1 de w.

Demostración del teorema

Primero enunciaremos dos resultados que necesitaremos para la prueba del teorema. El primero es la desigualdad de Kolmogorov.

Lema 1. Si T es un operador (1,1)-débil y $\delta \in [0,1[$, se tiene

$$\int_{E} |Tf|^{\delta} dx \le C(\delta) |E|^{1-\delta} ||f||_{1}^{\delta}$$

para alguna constante $C(\delta)$ dependiente de δ válida para toda f integrable.

Sabemos que el operador M es (1,1)-débil, por lo que podremos aplicarle éste resultado. El siguiente es la desigualdad de $H\"{o}lder$ inversa.

Lema 2. Si $w \in A_p$ con $1 . Existe <math>\varepsilon > 0$ dependiente sólo de p y de la constante A_p de w tal que

$$\left(\frac{1}{|Q|}\int_{Q}w^{1+\varepsilon}\right)^{\frac{1}{1+\varepsilon}} \leq \frac{C}{|Q|}\int_{Q}w,$$

donde la constante C es válida para todo cubo diádico Q.

Ya estamos en condiciones de demostrar el teorema de caracterización de pesos A_1 .

Teorema 3. Sea $f \in L^1_{loc}(\mathbb{R}^n)$ tal que $Mf(x) < \infty$ casi por doquier en \mathbb{R}^n . Si $\delta \in [0, 1[$, $w(x) = (Mf(x))^{\delta}$ es un peso A_1 con constante A_1 dependiente del δ pero no de f.

Reciprocamente, si $w \in A_1$ existen $f \in L^1_{loc}(\mathbb{R}^n)$, $k \in L^{\infty}$ con $k^{-1} \in L^{\infty}$ y $\delta \in [0, 1[$ tales que $w = k(Mf)^{\delta}$.

Demostración. Para la primera parte, debemos probar que para todo cubo diádico Q y para casi todo $x \in Q$ se tiene la condición A_1 :

$$\frac{1}{|Q|} \int_{Q} (Mf)^{\delta} \le C(Mf(x))^{\delta}$$

con C independientemente de Q y de f. Fijados Q y f, sea \overline{Q} el cubo con el mismo centro y el doble de lado. De esta forma, \overline{Q} también es un cubo diádico con $|\overline{Q}| = 2^n |Q|$. Podemos escribir $f = f_1 + f_2$ con $f_1 = f \cdot \chi_{\overline{Q}}$ y $f_2 = f - f_1$. Tenemos

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{1}(y) + f_{2}(y)| dy \le \sup_{Q \ni x} \left(\frac{1}{|Q|} \int_{Q} |f_{1}(y)| dy + \frac{1}{|Q|} \int_{Q} |f_{2}(y)| dy \right)$$

$$\le \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{1}(y)| dy + \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f_{2}(y)| dy = Mf_{1}(x) + Mf_{2}(x)$$

para casi todo $x \in \mathbb{R}^n$. Por tanto, si $\delta \in [0, 1[, Mf(x)^{\delta} \leq Mf_1(x)^{\delta} + Mf_2(x)^{\delta}]$ pct (para casi todo) x.

Trabajemos primero con $f_1 \in L^1(\mathbb{R}^n)$. Usando el Lema 1, puesto que M es (1,1)-débil y no negativo, obtenemos

$$\frac{1}{|Q|} \int_{Q} (Mf_{1})^{\delta} \leq \frac{1}{|Q|} C(\delta) |Q|^{1-\delta} ||f_{1}||_{1}^{\delta} = C(\delta) \left(\frac{\int_{\overline{Q}} |f|}{|Q|} \right)^{\delta} = C(\delta) \left(\frac{\int_{\overline{Q}} |f|}{|\overline{Q}|/2^{n}} \right)^{\delta} \\
\leq C(\delta) 2^{\delta n} \left(\sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f| \right)^{\delta} \leq C(\delta) 2^{n} M f(x)^{\delta}$$
(3)

pct $x \in \overline{Q}$, en particular, pct $x \in Q$. En el segundo paso hemos usado que $f_1 = f \cdot \chi_{\overline{Q}}$. Por otra parte,

Referencias

 $[1]\,$ J. Duoandikoetxea: Análisis de Fourier. Universidad Autónoma de Madrid, 1995.