

Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Systemów i Sieci Radiokomunikacyjnych

Technika Radia Programowalnego

INSTRUKCJA LABORATORYJNA

Ćwiczenie nr 4

NADAJNIK OFDM

Opracował: dr inż. Andrzej Marczak

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studentów z budową i działaniem nadajnika cyfrowego łącza radiowego OFDM (ang. Orthogonal Frequency Division Multiplexing) zrealizowanych przy użyciu oprogramowania GNU Radio Companion i uruchomionych na platformie radia programowalnego SDR. Podczas laboratorium są wykorzystywane dwa stanowiska komputerowe.

2. Wprowadzenie

GNU Radio jest pakietem narzędzi programistycznych umożliwiających implementację radia programowalnego przy użyciu bloków przetwarzania sygnałów. Stanowi samodzielne środowisko symulacyjne, zapewniające współpracę z zewnętrznymi modułami RF.

GNU Radio Companion (GRC) jest graficznym narzędziem pozwalającym na konstrukcję schematów przepływu informacji, wizualizację wyników w postaci wykresów oraz generację kodu źródłowego w języku programowania Python.

3. Zadania do wykonania

Uruchom program GRC używając skrótu

w lewym panelu bocznym.

Przeprowadź diagnostykę łącza radiowego, obejmującej urządzenie USRP oraz komputer PC.

Następnie skonstruuj schemat przepływu informacji części nadawczej i odbiorczej.

Blocks

| Sources |

Bloki dodaje się poprzez wybór elementu z odpowiedniej kategorii
oraz podwójne kliknięcie jego nazwy lub przeciągnięcie na obszar roboczy.

Innym sposobem jest wyszukanie elementu za pomocą kombinacji klawiszy

CTRL + F. Połączenie elementów za pomocą strzałek odbywa się poprzez

kliknięcie wyjścia pierwszego, a następnie wejścia drugiego.

3.1 Nadajnik OFDM

Skonstruuj schemat składający się z następujących elementów: File Source/Random Source, Stream to Tagged Stream, Stream CRC32, Packet Header Generator, Repack Bits, Virtual Sink, Virtual Source, Chunks to Symbols, Tagged Stream Mux, OFDM Carrier Allocator, FFT, OFDM Cyclic Prefixer, Multiply Const, Tag Gate, Trottle, USRP Sink, File Sink, QT GUI Time Sink, QT GUI Frequency Sink według schematu zamieszczonego na rysunku 1. Jako plik źródłowy użyj dowolny plik tekstowy txt.

Rysunek 1 Schemat blokowy nadajnika OFDM

KATEDRA SYSTEMÓW I SIECI RADIOKOMUNIKACYJNYCH

Dane konfiguracyjne zmiennych i niektórych bloków na schemacie zostały przedstawione poniżej:

Variable **fft_len** 64

Variable <u>samp_rate</u> 2000000

Variable <u>length_tag_key</u> "packet_len"

Variable **packet_len** 96

Variable header_mod digital.constellation_bpsk()

Variable <u>payload_mod</u> digital.constellation_qpsk()

Variable **rolloff 0**

Variable <u>occupied_carriers</u> (range(-26, -21) + range(-20, -7) + range(-6, 0) + range(1, 7) + range(8, 21) + range(22, 27),)

Variable <u>pilot_carriers</u> ((-21, -7, 7, 21,),)

Variable **pilot_symbols** ((1, 1, 1, -1,),)

Variable <u>header_formatter</u> digital.packet_header_ofdm(occupied_carriers, 1, length tag key)

Variable <u>sync word1</u> [0., 0., 0., 0., 0., 0., 0., 1.41421356, 0., -1.41421356, 0., 1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., -1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 1.41421356, 0., 0., 0., 0., 0., 0., 0.]

Stream to Tagged Stream block:

Type: Byte

Vector Length: 1

Packet Length: packet_len

Lenght Tag Key length_tag_key

Stream CRC32 block:

Mode Generate CRC

Length tag name length_tag_key

Packet Header Generator block:

Formatter Object header_formatter.()

Repack Bits block:

Bits per input byte **8**

Bits per output byte payload_mod.bits_per_symbol()

Length Tag Key length_tag_key

Packet Alignment Input

Chunks to Symbol for <u>Header bits</u> block:

Input Type Byte

Output Type Complex

Symbol Table header_mod.points()

Dimension 1

Num Ports 1

Chunks to Symbol for Payload bits block:

Input Type Byte

Output Type Complex

Symbol Table payload_mod.points()

Dimension 1

Num Ports 1

Tagged Stream Mux block:

IO Type Complex

Number of inputs 2

Length tag names length_tag_key

KATEDRA SYSTEMÓW I SIECI RADIOKOMUNIKACYJNYCH

Vector Length

1

Tags: Preserve head position **0**

OFDM Carrier Allocator block:

FFT length fft_len

Occupied Carriers occupied_carriers

Pilot Carriers pilot_carriers

Pilot Symbols pilot_symbols

Sync Words (sync_word1, sync_word2)

Length Tag Key length_tag_key

FFT block:

Input Type Complex

FFT Size **fft_len**

Forward/Reverse Reverse

Window ()

Shift Yes

Num. Threads 1

OFDM Cyclic Prefixer block:

FFT Length fft_len

CP Length fft_len/4

Rolloff rolloff

Length Tag Key length_tag_key

Multiply Const block:

IO Type Complex

Constant **0.05**

Vec Length

Tag Gate block:

Item Type Complex

1

Vec Length 1

Propagate_tags No

Throttle block:

Type Complex

Sample Rate samp_rate

Vec Length 1

Zapisz oraz uruchom projekt. Zaobserwuj zmiany w wykresie widma oraz przebiegu czasowego sygnału nadawanego. Wygeneruj plik wyjściowy nadajnika transmiter.txt i zapisz go na dysku.

Rysunek 2. Wykres przebiegów czasowego i częstotliwościowego dla nadajnika OFDM.

4. Literatura

- 1. http://gnuradio.org/redmine/projects/gnuradio/wiki.
- 2. Notatki z wykładów.