Assignment: Designing a sequential circuit using Jk Flip-Flops from the given state diagram.

Roll: 1710776121

Session: 2016-17

Course: 2111

Date: 12-03-2018

State Diagram:

State Table:

Present State		Input	Nent State		Output	Input of JK FF			
92	9,	X	82	3t	J	72	k2	7,	Ki
0	0	0	0	1	0	0	X	1	X
0	0		0	0	1	0	X	0	X
0	1	0	1	0		1	X	X	1
0	1	1			0	1	X	X	0
1	0	0	0	0		4	1	0	X
	0	1	0	1	0	X	1	1	X
	1	0	1		0	X	0	X	0
	1		1	0	1	X	0	X	1

K-map from state table

$$J = \overline{Q_2} \overline{Q_1} \times + \overline{Q_2} \overline{Q_1} \overline{X} + \overline{Q_2} \overline{Q_1} \overline{X} + \overline{Q_2} \overline{Q_1} \overline{X} + \overline{Q_2} \overline{Q_1} \overline{X},$$

$$= \overline{Q_2} (\overline{Q_1} \oplus X) + \overline{Q_2} (\overline{Q_1} \oplus X)$$

$$= \overline{Q_2} (\overline{Q_1} \oplus X) + \overline{Q_2} (\overline{Q_1} \oplus X)$$

$$= \overline{Q_2} (\overline{Q_1} \oplus X) + \overline{Q_2} (\overline{Q_1} \oplus X)$$

Circuit:

This circuit will output the given state diagram.

Scanned by CamScanner