Την Τρίτη μάθημα 8:30 χωρίς διάλειμμα Σήμα - σύστημα

$$\boxed{ \underbrace{g}_{\text{exarthment}} = f(\underbrace{t}_{\text{ansigh}}) \qquad g = f(\vec{r},t) \qquad \vec{E}(\vec{r},t)$$

Αναλογικό

Aν t συνεχής $\in \mathbb{R}$ και y συνεχής $\in \mathbb{R}$

Διακριτού χρόνου / Διακριτό (discrete)

tδιακριτό $\to \mathbb{Z}, \; n \in \mathbb{Z}$ g συνεχής $\in \mathbb{R}$

Κβαντισμένο

 $n \in \mathbb{Z}$ g διακριτή

Στοχαστικό Περιέχει και τις τρεις κατηγορίες

Σύστημα

Περιοδικά σήματα

Aν $\exists T \in \mathbb{R}: \forall t \in \mathbb{R} \quad x(t) = x(t+T)$ τότε x(t) περιοδικό σήμα με περίοδο T. Η θα είναι 0, ή θα συνεχιστεί για πάντα.

$$\int_{-T/2}^{T/2} x(t) dt = \int_{t_0 - T/2}^{t_0 + T/2} x(t) dt \, \forall t$$

Η σύνθεση μιας συνάρτησης με μια περιοδική συνάρτηση είναι περιοδική;

Απόδ. Έστω *g* μία περιοδική συνάρτηση:

$$(f \circ g)(x) = f(g(x)) = f(g(x+T)) =$$
$$= (f \circ g)(x+T)$$

Συμμετρίες

- Αν $x(t) = x(-t) \, \forall t$ τότε η x(t) λέγεται άρτια συνάρτηση (even function).
- Αν $x(t) = -x(t) \, \forall t$ τότε η x(t) λέγεται περιττή συνάρτηση (odd function).

$$\forall x(t) \quad \exists \ x_0(t), x_e(t) : x(t) = x_e(t) + x_0(t)$$

Απόδ.

$$x_e(t) = \frac{x(t) + x(-t)}{2}$$

 $x_o(t) = \frac{x(t) - x(-t)}{2}$

$$x \underbrace{e}_{\text{άρτια}} y_e = z_e$$

$$x_o y_o = z_e$$

$$x_e y_0 = z_0$$

$$\int_{-A}^A x_0(t) \, \mathrm{d}t = 0$$

$$\int_{-\infty}^\infty x_0(t) \, \mathrm{d}t = ? \left(\epsilon \xi \text{αρτάται} \right)$$

$$\lim_{A \to \infty} \int_{-A}^A x_0(t) \, \mathrm{d}t = 0 \quad \text{(principal Cauchy value)}$$

Χαρακτηριστικά σήματα

1) Εκθετικό σήμα

$$x(t) = ce^{at} \quad a \in \mathbb{R} \quad c > 0$$

$$x(t) = ce^{(\sigma t + j\omega)t} = ce^{\sigma t}e^{j\omega t} = ce^{\sigma t}\left[\cos(\omega t) + j\sin(\omega t)\right]$$

2) (Συν)ημιτονοειδή σήματα

$$x(t) = A\cos(\omega t \pm \phi) = a\operatorname{Re}\left\{e^{j(\omega t + \phi)}\right\} = A\frac{e^{j(\omega t \pm \phi)} + e^{-j(\omega t \pm \phi)}}{2}$$

3) Δέλτα Dirac $\delta(t)$

Ορ.

$$\int_{-\infty}^{\infty} f(t)\delta(t) dt = f(0) \forall f(t)$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - \tau) dt = f(\tau)$$

$$\int_{-\infty}^{\infty} f(\tau)\delta(t - \tau) d\tau = f(t)$$

$$\int_{-\infty}^{\infty} f(t)\delta(t - \tau) d\tau = f(t)$$

Ιδιότητες της $\delta(t)$

1. Κλιμάκωση

$$a \in \mathbb{R} : \delta(at) = \frac{1}{|a|}\delta(t)$$

Απόδ.

Aπόδ.
$$\underbrace{\int_{-\infty}^{\infty} \phi(t) \boxed{\delta(at)} \, \mathrm{d}t}_{-\infty(a)} = \int_{-\infty(a)}^{\infty(a)} \phi\left(\frac{\xi}{a}\right) \delta(\xi) \frac{\mathrm{d}\xi}{a} = \frac{1}{|a|} \int_{-\infty}^{\infty} \frac{\phi\left(\frac{\xi}{a}\right)}{|a|} \delta(\xi) \, \mathrm{d}\xi = \frac{\phi(0)}{|a|} = \int_{-\infty}^{\infty} \phi(t) \boxed{\frac{\delta(t)}{|a|}} \, \mathrm{d}t$$

$$\underbrace{at = \xi}_{\mathrm{d}t = \frac{\mathrm{d}\xi}{a}}$$

- 2. $f(t)\delta(t) = f(0)\delta(t)$
- 3. $f(t)\delta(t-\xi) = f(g)\delta(t-\xi)$