This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11163962 A

(43) Date of publication of application: 18 . 06 . 99

(51) Int. CI

H04L 29/08 H03M 13/12 H04J 13/00

(21) Application number: 09322926

(22) Date of filing: 25 . 11 . 97

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

NITTA TATSUO

(54) VARIABLE RATE COMMUNICATION SYSTEM, TRANSMITTER AND RECEIVER

COPYRIGHT: (C)1999,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To shorten the time needed for judging an information rate and to reduce power consumption by reducing the amount of processing for judging the information rate.

SOLUTION: In this transmitter 1, the information rate to be used in the latest frame is set to either of the information rate used for the previous frame or the information rate different by one stage from the information rate used or the previous frame, and transmission data subjected to a convolution encoding processing in accordance with this information rate is transmitted. In this receiver 2, a candidate for the information rate being used for the received latest frame down is narrowed to a part of plural pieces of the information rate based on at least the information used in the previous frame, a specified judgment processing is performed by taking only the narrowed information rate as an object, and the information rate used in the latest frame, is judged, thereby deciding the reception data subjected to an decoding processing corresponding to this information rate as valid reception data.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-163962

(43)公開日 平成11年(1999)6月18日

(51) Int.Cl.⁶

識別記号

FΙ

307C

H04L 29/08

H04L 13/00 H 0 3 M 13/12

H03M 13/12

H 0 4 J 13/00

H 0 4 J 13/00

Α

審査請求 未請求 請求項の数9 OL (全 15 頁)

(21)出願番号

特厲平9-322926

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(22)出願日 平成9年(1997)11月25日

(72)発明者 仁田 達雄

東京都日野市旭が丘3丁目1番地の1 株

式会社東芝日野工場内

(74)代理人 弁理士 鈴江 武彦 (外6名)

(54) 【発明の名称】 可変レート通信システム、送信装置および受信装置

(57)【要約】

【課題】情報レートの判定のための処理量を軽減し、情 報レートの判定に要する時間の短縮や消費電力の低減を 図ることを可能とする。

【解決手段】送信装置1では、最新のフレームにて用い る情報レートを、直前のフレームにて用いた情報レート および直前のフレームにて用いた情報レートに対して1 段階異なる情報レートのうちのいずれかに定め、この情 報レートに応じた畳み込み符号化処理を施した送信デー タを送信する。受信装置2では、受信された最新のフレ ームにて用いられている情報レートの候補を、少なくと も直前のフレームにて用いられていた情報レートに基い て前記複数の情報レートの一部に絞り込み、この絞り込 んだ情報レートのみを対象として所定の判定処理を行 い、最新フレームにて用いられている情報レートを判定 し、この情報レートに応じた復号処理がなされた受信デ ータを有効な受信データとする。

【特許請求の範囲】

【請求項1】 フレーム毎に、段階的に定められた所定の複数の情報レートのいずれかを送信装置にて選択的に使用可能な可変レート通信システムにおいて、 送信装置に、

前記複数の情報レートのそれぞれに応じた所定の符号化 処理を送信データに対してそれぞれ施す符号化手段と、 最新のフレームにて用いる情報レートを、直前のフレー ムにて用いた情報レートおよび直前のフレームにて用い た情報レートに対して1段階異なる情報レートのうちの 10 いずれかに定める情報レート決定手段と、

この情報レート決定手段により決定された情報レートに 対応付けられた前記符号化手段に符号化処理を行わせる 符号化制御手段とを具備し、

かつ受信装置に、

前記複数の情報レートに応じた所定の復号処理を受信デ ータに対してそれぞれ施す復号手段と、

受信された最新のフレームにて用いられている情報レートの候補を、少なくとも直前のフレームにて用いられていた情報レートに基いて前記複数の情報レートの一部に 絞り込む絞り込み手段と、

この絞り込み手段により絞り込まれた情報レートのみを 対象として、最新フレームにて用いられている情報レー トを判定するための所定の判定処理を行う判定処理手段 と、

この判定処理手段により判定された情報レートに応じた 復号処理が前記復号手段によりなされたのちの受信デー 夕を有効な受信データとして選択する受信データ選択手 段とを具備したことを特徴とする可変レート通信システ ム。

【請求項2】 判定処理手段は、

化手段と、

絞り込み手段により絞り込まれた情報レートに対して、 少なくとも直前のフレームにて用いられていた情報レートに基いて優先順位を設定する優先順位設定手段と、 前記複数の情報レートのそれぞれに応じた前記符号化処 理を同一情報レートに応じた復号処理が復号手段により なされたのちの受信データに対してそれぞれ施す再符号

この再符号化手段により再符号化がなされた再符号化データに関し、前記復号手段にて復号される前の受信デー 40 夕に対する誤り率を求め、この誤り率が所定値よりも小さい場合に、その再符号化データを得るために行われた符号化処理に対応する情報レートを最新フレームにて用いられている情報レートと判定する情報レート判定手段と、

前記絞り込み手段により絞り込まれた情報レートのうちの1つを検査レートに設定し、この検査レートに応じた復号処理および再符号化処理、ならびに前記情報レート判定手段による判定処理を、最新フレームにて用いられている情報レートが前記情報レート判定手段により判定 50

されるまで、検査レートとする情報レートを前記優先順 位設定手段により設定された優先順位が高い順に変更さ せつつ行わせる情報レート判定制御手段とを具備するこ とを特徴とする請求項1に記載の可変レート通信システ ム。

【請求項3】 判定処理手段は、復号手段で復号されたのちの受信データにおけるフレームエラーの有無を判定するフレームエラー判定手段を備え、

情報レート判定手段は、前記復号手段にて復号される前の受信データに対する誤り率が所定値よりも小さい再符号化データを得るために行われた再符号化処理に対応し、かつ前記フレームエラー判定手段によりフレームエラーが無いと判定された受信データを得るために行われた復号処理に対応する情報レートを最新フレームにて用いられている情報レートと判定することを特徴とする請求項2に記載の可変レート通信システム。

【請求項4】 判定処理手段は、

絞り込み手段により絞り込まれた情報レートに応じた復 号処理を復号手段に行わせる復号制御手段と、

20 複数の情報レートのそれぞれに応じた符号化処理を同一 情報レートに応じた復号処理が前記復号手段によりなさ れたのちの受信データに対してそれぞれ施す再符号化手 段と、

この再符号化手段により再符号化がなされた各再符号化データに関し、前記復号手段にて復号される前の受信データに対する誤り率を求め、この誤り率が最も小さい再符号化データを得るために行われた符号化処理に対応する情報レートを最新フレームにて用いられている情報レートと判定する情報レート判定手段とを具備することを特徴とする請求項1に記載の可変レート通信システム。

【請求項5】 判定処理手段は、復号手段で復号された のちの受信データにおけるフレームエラーの有無を判定 するフレームエラー判定手段を備え、

情報レート判定手段は、前記復号手段にて復号される前の受信データに対する誤り率が最も小さい再符号化データを得るために行われた再符号化処理に対応し、かつ前記フレームエラー判定手段によりフレームエラーが無いと判定された受信データを得るために行われた復号処理に対応する情報レートを最新フレームにて用いられている情報レートと判定することを特徴とする請求項4に記載の可変レート通信システム。

【請求項6】 絞り込み手段は、直前のフレームにて用いた情報レートおよび直前のフレームにて用いた情報レートに対して1段階異なる情報レートを受信された最新のフレームにて用いられている情報レートの候補とすることを特徴とする請求項1乃至請求項5に記載の可変レート通信システム。

【請求項7】 フレーム毎に、段階的に定められた所定 の複数の情報レートのいずれかを送信装置にて選択的に 使用可能な可変レート通信システムにて用いられる送信

30

30

20

装置おいて、

前記複数の情報レートのそれぞれに応じた所定の符号化 処理を送信データに対してそれぞれ施す符号化手段と、 最新のフレームにて用いる情報レートを、直前のフレー ムにて用いた情報レートおよび直前のフレームにて用い た情報レートに対して1段階異なる情報レートのうちの いずれかに定める情報レート決定手段と、

この情報レート決定手段により決定された情報レートに 応じた符号化処理を前記符号化手段に行わせる符号化制 御手段とを具備したことを特徴とする送信装置。

【請求項8】 フレーム毎に、段階的に定められた所定 の複数の情報レートのいずれかを送信装置にて選択的に 使用可能であり、かつ前記送信装置は、最新のフレーム にて用いる情報レートを直前のフレームにて用いた情報 レートから変更する場合は、最新のフレームにて用いる 情報レートを直前のフレームにて用いた情報レートに対 して1段階異なる情報レートに定めるようにした可変レ ート通信システムにて用いられる受信装置において、 前記複数の情報レートに応じた復号処理を受信データに

受信された最新のフレームにて用いられている情報レー トの候補を、少なくとも直前のフレームにて用いられて いた情報レートに基いて前記複数の情報レートの一部に 絞り込む絞り込み手段と、

対してそれぞれ施す復号手段と、

この絞り込み手段により絞り込まれた情報レートのみを 対象として、最新フレームにて用いられている情報レー トを判定するための所定の判定処理を行う判定処理手段 と、

この判定処理手段により判定された情報レートに応じた 復号処理が前記復号手段によりなされたのちの受信デー タを有効な受信データとして選択する受信データ選択手 段とを具備したことを特徴とする受信装置。

【請求項9】 フレーム毎に、段階的に定められた所定 の複数の情報レートのいずれかを送信装置にて選択的に 使用可能な可変レート通信システムにて用いられる受信 装置において、

前記複数に情報レートに対して、少なくとも直前のフレ ームにて用いられていた情報レートに基いて優先順位を 設定する優先順位設定手段と、

前記複数の情報レートのそれぞれに応じた所定の復号処 理を受信データに対してそれぞれ施す復号手段と、

前記複数の情報レートのそれぞれに応じた前記符号化処 理を同一情報レートに応じた復号処理が前記復号手段に よりなされたのちの受信データに対してそれぞれ施す再 符号化手段と、

この再符号化手段により再符号化がなされた再符号化デ ータに関し、前記復号手段にて復号される前の受信デー 夕に対する誤り率を求め、この誤り率が所定値よりも小 さい場合に、その再符号化データを得るために行われた 符号化処理に対応する情報レートを最新フレームにて用 50 いられている情報レートと判定する情報レート判定手段

前記複数の情報レートのうちの1つを検査レートに設定 し、この検査レートに応じた復号処理および再符号化処 理、ならびに前記情報レート判定手段による判定処理 を、最新フレームにて用いられている情報レートが前記 情報レート判定手段により判定されるまで、検査レート とする情報レートを前記優先順位設定手段により設定さ れた優先順位が高い順に変更させつつ行わせる情報レー ト判定制御手段と、

前記情報レート判定手段により判定された情報レートに 応じた復号処理が前記復号手段によりなされたのちの受 信データを有効な受信データとして選択する受信データ 選択手段とを具備したことを特徴とする受信装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばCDMA (Code Division Multiple Access) 方式の無線通信シ ステムなどに適用されるものであり、段階的に定められ た所定の複数の情報レートのいずれかを送信装置にてフ レーム単位で選択的に使用可能な可変レート通信システ ムと、この可変レート通信システムにて用いられる送信 装置および受信装置とに関する。

[0002]

【従来の技術】CDMA方式の無線通信システムでは、 例えば9600bps, 4800bps, 2400bp s,1200bpsといった具合に段階的に定められた 所定の複数の情報レートのいずれかを、送信装置にてフ レーム単位で選択的に使用可能となっている。そして、 送信装置は、選択した情報レートに応じた畳み込み符号 化処理を送信データに対して施した上で送信する。

【0003】受信側では、受信データに対して、上記複 数の情報レートのそれぞれに応じたビタビ復号処理を全 て実施する。そして、復号後の各受信データにおけるシ ンボルエラーレートをそれぞれ測定し、このシンボルエ ラーレートが最小である受信データを得るために行った ビタビ復号処理に対応する情報レートが正しいシンボル レートであると判断する。

【0004】しかしながら、ビタビ復号処理は非常に多 くの計算を必要とすることから、各情報レートに応じた ビタビ復号処理を時分割に行おうとすれば、情報レート の判定に非常に多くの時間を費やしてしまうという不具 合があった。なお、各情報レートに応じたビタビ復号処 理を並列して行えば、情報レートの判定を迅速に行うこ とができるが、多数の処理部を同時に動作させることか ら消費電力が増大してしまうという不具合があった。

[0005]

【発明が解決しようとする課題】以上のように従来は、 受信側では全ての情報レートに応じた復号処理をそれぞ れ行わなければならなかったため、処理時間が長かった

40

り、消費電力が大きいという不具合があった。

【0006】本発明はこのような事情を考慮してなされたものであり、その目的とするところは、情報レートの判定のための処理量を軽減し、情報レートの判定に要する時間の短縮や消費電力の低減を図ることができる可変レート通信システム、送信装置および受信装置を提供することにある。

[0007]

【課題を解決するための手段】以上の目的を達成するた めに本発明は、送信装置に、複数の情報レートのそれぞ 10 れに応じた例えば畳み込み符号化処理などの所定の符号 化処理を送信データに対してそれぞれ施す例えば複数の 畳み込み符号化器からなる符号化手段と、最新のフレー ムにて用いる情報レートを、直前のフレームにて用いた 情報レートおよび直前のフレームにて用いた情報レート に対して1段階異なる情報レートのうちのいずれかに定 める情報レート決定手段と、この情報レート決定手段に より決定された情報レートに対応付けられた前記符号化 手段に符号化処理を行わせる符号化制御手段とを具備 し、かつ受信装置に、前記複数の情報レートに応じた例 20 えばビタビ復号処理などの所定の復号処理を受信データ に対してそれぞれ施す例えば複数のビタビ復号器からな る復号手段と、受信された最新のフレームにて用いられ ている情報レートの候補を、少なくとも直前のフレーム にて用いられていた情報レートに基いて前記複数の情報 レートの一部に絞り込む絞り込み手段と、この絞り込み 手段により絞り込まれた情報レートのみを対象として、 最新フレームにて用いられている情報レートを判定する ための所定の判定処理を行う判定処理手段と、この判定 処理手段により判定された情報レートに応じた復号処理 が前記復号手段によりなされたのちの受信データを有効 な受信データとして選択する、例えばバッファおよび受 信データ出力制御手段よりなる受信データ選択手段とを 備えた。

【0008】このような手段を講じたことにより、送信装置にて、最新のフレームにて用いる情報レートを、直前のフレームにて用いた情報レートおよび直前のフレームにて用いた情報レートに対して1段階異なる情報レートのうちのいずれかに定めることから、受信装置では受信された最新のフレームにて用いられている情報レートの候補を、少なくとも直前のフレームにて用いられていた情報レートに基いて前記複数の情報レートの一部に絞り込むことができ、最新フレームにて用いられている情報レートを判定するための所定の判定処理をこの絞り込まれた情報レートのみを対象として行うことで、その判定処理の処理量が低減される。

【0009】また別の本発明は、複数に情報レートに対して、少なくとも直前のフレームにて用いられていた情報レートに基いて優先順位を設定する優先順位設定手段と、前記複数の情報レートのそれぞれに応じた例えばビ

タビ復号処理などの所定の復号処理を受信データに対し てそれぞれ施す例えば複数のビタビ復号器からなる復号 手段と、前記複数の情報レートのそれぞれに応じた例え ば畳み込み符号化処理などの符号化処理を同一情報レー トに応じた復号処理が前記復号手段によりなされたのち の受信データに対してそれぞれ施す例えば複数の再符号 化器からなる再符号化手段と、この再符号化手段により 再符号化がなされた再符号化データに関し、前記復号手 段にて復号される前の受信データに対する誤り率を求 め、この誤り率が所定値よりも小さい場合に、その再符 号化データを得るために行われた符号化処理に対応する 情報レートを最新フレームにて用いられている情報レー トと判定する情報レート判定手段と、前記複数の情報レ ートのうちの1つを検査レートに設定し、この検査レー トに応じた復号処理および再符号化処理、ならびに前記 情報レート判定手段による判定処理を、最新フレームに て用いられている情報レートが前記情報レート判定手段 により判定されるまで、検査レートとする情報レートを 前記優先順位設定手段により設定された優先順位が高い 順に変更させつつ行わせる情報レート判定制御手段と、 前記情報レート判定手段により判定された情報レートに 応じた復号処理が前記復号手段によりなされたのちの受 信データを有効な受信データとして選択する、例えばバ ッファおよび受信データ出力制御手段よりなる受信デー 夕選択手段とを備えて受信装置を構成した。

6

【0010】このような手段を講じたことにより、最新フレームにて用いられている情報レートに対して最下位の優先順位が設定されない限りは、全ての情報レートに関して最新フレームにて用いられている情報レートであるか否かの判定処理を行う必要がなく、処理量が低減される。しかも、優先順位は少なくとも直前のフレームにて用いられていた情報レートに基いて設定するので、多くの場合は最新フレームにて用いられている情報レートに対して比較的上位の優先順位を設定することが可能であり、最新フレームにて用いられている情報レートであるか否かの判定処理をごく少ない情報レートに対してのみ行えば良い。

[0011]

【発明の実施の形態】以下、図面を参照して本発明の実施形態につき説明する。

(第1の実施の形態)図1は本発明の第1実施形態に係る通信システムを適用して構成されたCDMA無線通信システムの要部構成を示す機能プロック図である。

【0012】このCDMA無線通信システムは、送信装置1と受信装置2との間でCDMA方式での無線通信を行うものである。送信装置1は、ボコーダ10、セレクタ11、複数の畳み込み符号化器12(本実施形態では12-1~12-4の4つ)、セレクタ13、CDMA送信機14、アンテナ15および送信装置制御部16を有している。

50

R

【0013】ボコーダ10は、例えば音声データなどの 送信データを受け、この送信データに対して圧縮符号化 を施す。そしてボコーダ10は、符号化後の送信データ をセレクタ11に与える。またボコーダ10は、送信デ ータにおける有音率を判定し、これを送信装置制御部1 6に通知する。

【0014】セレクタ11は、畳み込み符号化器12-1~12-4のいずれか1つを送信装置制御部16の制御の下に選択する。そしてセレクタ11は、ボコーダ10から与えられた送信データを、選択した畳み込み符号化器12に対して与える。

【0015】畳み込み符号化器12は、セレクタ11を介して与えられた送信データに対して畳み込み符号化処理を施す。ただし、畳み込み符号化器12-1~12-4はそれぞれ異なる情報レートA、情報レートB、情報レートCおよび情報レートDに対応しており、その対応する情報レートに応じた畳み込み符号化処理を送信データに対してそれぞれ施す。そして畳み込み符号化器12は、畳み込み符号化後の送信データをセレクタ13へと出力する。なおここで各情報レートは、情報レートA>情報レートB>情報レートC>情報レートDなる関係となるように段階的に設定されている。

【0016】セレクタ13は、セレクタ11が選択している畳み込み符号化器12を送信装置制御部16の制御の下に選択する。そしてセレクタ13は、選択した畳み込み符号化器12が出力する送信データをCDMA送信機14へと与える。

【0017】CDMA送信機14は、セレクタ13を介して与えられた送信データに対してスペクトル拡散処理やディジタル変調(例えばQPSK変調)などの無線伝 30送のための周知の処理を施して送信信号を得、これをアンテナ15に供給して無線送信させる。

【0018】送信装置制御部16は、この送信装置1の各部を総括制御することで送信装置としての動作を実現するものである。この送信装置制御部16は、例えばマイクプロセッサを主制御回路として有するものであり、CDMA方式での無線通信を可能とするための周知の制御手段に加えて、情報レート決定手段16aおよび符号化制御手段16bを有している。

【0019】このうち情報レート決定手段16aは、使 40 用する情報レートをフレーム毎に、ボコーダ10から通 知される有音率と前フレームにて選択した情報レート

(以下、前フレームレートと称する)とに基いて情報レートA~情報レートDのうちから選択的に決定する。また符号化制御手段16bは、情報レート決定手段16aにより決定された情報レートに対応した畳み込み符号化器12に畳み込み符号化処理を行わせるべくセレクタ11,13を切り換え制御する。

【0020】一方受信装置2は、アンテナ20、CDM A受信機21、バッファ22、セレクタ23、情報レー トA~情報レートDのそれぞれに対応したビタビ復号器24 (24-1~24-4)、情報レートA~情報レートDのそれぞれに対応した再符号化器25 (25-1~25-4)、再符号化器25のそれぞれに対応したビットエラーカウンタ26 (26-1~26-4)、フレームエラー判定器27、バッファ28および受信装置制御部29を有している。

【0021】送信装置1のアンテナ15から送信された 電波は、アンテナ20で受信されて電気的な受信信号に 変換され、CDMA受信機21に与えられる。CDMA 受信機21は、アンテナ20から与えられた受信信号に 対してディジタル復調(例えばQPSK復調)やスペク トル逆拡散処理などの周知の受信処理を施して受信デー タを得、これをバッファ22に与える。

【0022】バッファ22は、1フレーム分の受信データを、次のフレームの受信データがCDMA受信機21から与えられるまで保持し、この保持している受信データを受信装置制御部29の制御の下にセレクタ23およびビットエラーカウンタ26にそれぞれ与える。

【0023】セレクタ23は、ビタビ復号器24-1~24-4のいずれか1つを受信装置制御部29の制御の下に選択する。そしてセレクタ23は、バッファ22から与えられた受信データを、選択したビタビ復号器24に対して与える。

【0024】ビタビ復号器24はそれぞれ、セレクタ23を介して与えられた受信データに対して、対応する情報レートに応じたビタビ復号処理をそれぞれ施す。そしてビタビ復号器24はそれぞれ、復号後の受信データを、自己と同一の情報レートに対応した再符号化器25とフレームエラー判定器27とにそれぞれ与える。

【0025】再符号化器25はそれぞれ、自己と同一の情報レートに対応したビタビ復号器24から与えられる受信データに対し、自己と同一の情報レートに対応した畳み込み符号化器12が行うのと同一の畳み込み符号化処理をそれぞれ施す。すなわち再符号化器25はそれぞれ、自己に対応するビタビ復号器24で一旦復号された受信データを、再符号化する。そして再符号化器25はそれぞれ、再符号化した受信データを自己に対応したビットエラーカウンタ26に与える。

【0026】ビットエラーカウンタ26はそれぞれ、バッファ22から与えられる受信データ(復号前の受信データ)を保持しておき、自己に対応する再符号化器25から与えられた再符号化後の受信データにおける上記保持しておいた受信データに対する誤りを、ビット毎に正もしくは負で比較して同一であるか否かを判定する、いわゆる極の硬判定によって検出し、その誤りをカウントすることでシンボルエラーレートを測定する。そしてビットエラーカウンタ26はそれぞれ、測定したシンボルエラーレートを受信装置制御部29へと通知する。

【0027】フレームエラー判定器27は、セレクタ2 3により選択されているビタビ復号器24から与えられ

50

10

る復号後の受信データに関して、例えばCRCチェックによるフレームエラーの有無の判定を行い、受信データはそのままバッファ28へと与える。そしてフレームエラー判定器27は、フレームエラーの有無の判定結果を、受信装置制御部29に通知する。

【0028】バッファ28は、フレームエラー判定器27から与えられる受信データを1フレーム分毎に、次のフレームの受信データが与えられるまで保持する。そしてバッファ28は、この保持している受信データを、受信装置制御部29の制御の下に、正しく復号がなされた10受信データとして出力する。

【0029】受信装置制御部29は、この受信装置2の各部を総括制御することで受信装置としての動作を実現するものである。この受信装置制御部29は、例えばマイクプロセッサを主制御回路として有するものであり、CDMA方式での無線通信を可能とするための周知の制御手段に加えて、絞り込み手段29a、優先順位設定手段29b、情報レート判定手段29c、情報レート判定制御手段29dおよび受信データ出力制御手段29eを有している。

【0030】このうち絞り込み手段29aは、前フレー ムに関して情報レート判定手段29cにより判定された 情報レートに基いて、受信された最新のフレームにて用 いられている情報レート(以下、最新フレームレートと 称する)の候補(以下、候補レートと称する)を情報レ ートA~情報レートDのうちの一部に絞り込む。優先順 位設定手段29bは、絞り込み手段29aによって絞り 込まれた候補レートのそれぞれに対し、過去のフレーム における情報レートの変化状況を考慮して優先順位を設 定する。情報レート判定手段29cは、候補レートのう ちの1つを検査レートとし、この検査レートに対応した ビタビ復号器24および再符号化器25と、当該再符号 化器25に対応したビットエラーカウンタ26とに受信 データを流した際におけるビットエラーカウンタ26に て測定されるシンボルエラーレートおよびフレームエラ 一判定器27の判定結果に基いて、検査レートが最新フ レームレートであるか否かの判定を行う。情報レート判 定制御手段29dは、情報レート判定手段29cによる 判定処理を、検査レートとする候補レートを優先順位設 定手段29bにより設定された優先順位に応じて変化さ せつつ、最新フレームレートが判定されるまで順次行わ せる。そして受信データ出力制御手段29eは、情報レ ート判定手段29 cにより最新フレームレートが判定さ れたときにバッファ28に保持されている受信データを 出力させる。

【0031】次に以上のように構成されたCDMA無線通信システムの動作につき説明する。まず送信装置1において送信装置制御部16は、1フレーム毎に、そのフレームにて用いる情報レートを設定するための図2に示すような処理を実行する。

【0032】すなわち送信装置制御部16はまず、ボコーダ10から通知される有音率に基いて、最新フレームレートを前フレームレートから変更する必要があるか否かの判断を行う(ステップST1)。

【0033】ここで、変更の必要がなければ送信装置制御部16は、最新フレームレートを前フレームレートと同一の情報レートに決定する(ステップST2)。これに対して変更の必要があると判定した場合に送信装置制御部16は、最新フレームレートを前フレームレートに対して上昇させる必要があるのか否かの判断を行う(ステップST3)。

【0034】ここで、最新フレームレートを前フレームレートに対して上昇させる必要がある場合に送信装置制御部16は、最新フレームレートを前フレームレートよりも1段階のみ上位の情報レートに決定する(ステップST4)。また、最新フレームレートを前フレームレートに対して下降させる必要がある場合に送信装置制御部16は、最新フレームレートを前フレームレートよりも1段階のみ下位の情報レートに決定する(ステップST5)。ただし、前フレームレートが最上位または最下位の情報レートであった場合には、1段階上位または1段階下位の情報レートは存在しないから、最新フレームレートを前フレームレートと同一の情報レートに決定する。

【0035】そして、ステップST2、ステップST4 およびステップST5のいずれかにて最新フレームレートを決定したのちに送信装置制御部16は、セレクタ11,13を制御し、最新フレームレートとして決定した情報レートに対応する畳み込み符号化器12を選択する(ステップST6)。

【0036】なお、以上の処理のうち、ステップST1 乃至ステップST5は情報レート決定手段16aにより、またステップST6は符号化制御手段16bにより それぞれ実行される。

【0037】このように最新フレームレートは、前フレームレートと同一か、あるいは前フレームレートに対して1段階のみ異なる情報レートのうちから選択する。具体的には、例えば図3に示すように前フレームレートが情報レートBであったならば、最新フレームレートは情報レートA、情報レートBおよび情報レートCのいずれかとなり、情報レートBに対して2段階異なる情報レートDが選択されることはない。

【0038】さて、ボコーダ10で圧縮符号化されたのちの送信データは、上述のようにして最新フレームレートとして決定された情報レートに対応する畳み込み符号化器12へとセレクタ11を介して与えられ、畳み込み符号化処理が施されたのち、セレクタ13を介してCDMA送信機14では、畳み込み符号化処理が施されたのちの送信データに対してスペクトル拡散処理やディジタル変調などの処理

が施されて送信信号が得られ、これがアンテナ15から 電波として無線送信される。

【0039】以上のようにして送信装置1から無線送信 された電波が受信装置2に到達すると、アンテナ20で 受信されて電気的な受信信号に変換され、CDMA受信 機21に与えられる。そして受信信号は、CDMA受信 機21でディジタル復調やスペクトル逆拡散処理などの 受信処理が施され受信データとされ、バッファ22に一 時的に保持される。

【0040】ところで受信装置制御部29は、1フレー 10 ムの受信データが受信される毎に、そのフレームにて用 いられている情報レートを判定し、その情報レートに応 じたビタビ復号を施した正しい受信データを得るための 図4に示すような処理を実行する。

【0041】受信装置制御部29はまず絞り込み手段2 9 a により、前フレームレートに基いて、最新フレーム レートの候補レートを情報レートA~情報レートDのう ちの一部に絞り込む(ステップST11)。すなわち、 送信装置1が最新フレームレートとして、前フレームレ ートと同一か、あるいは前フレームレートに対して1段 20 階のみ異なる情報レートのうちから選択することを利用 し、前フレームレートと同一の情報レートおよび前フレ ームレートに対して1段階のみ異なる情報レートのみを 候補レートとする。具体的には、例えば図5に示すよう に前フレームレートが情報レートBであったならば、候 補レートは情報レートA、情報レートBおよび情報レー トCとし、情報レートBに対して2段階異なる情報レー トDは候補レートから除外する。

【0042】次に受信装置制御部29は優先順位設定手 段29bにより、上記のように絞り込まれた候補レート のそれぞれに対し、過去のフレームにおける情報レート の変化状況を考慮して優先順位を設定する(ステップS T12)。すなわち例えば、「前々フレームから前フレ ームにかけて情報レートが下降しているならば、最新フ レームの情報レートはさらに下降している可能性が高 い。」といった具合に、送信装置1での情報レートの選 択に関する傾向性を求めておき、このような傾向性と過 去のフレームにおける情報レートの変化状況とを照合し て優先順位を設定する。一例としては、図5に示すよう に前々フレームが情報レートAで、かつ前フレームが情 報レートBであるならば、候補レートである各情報レー トに対して、情報レートC>情報レートB>情報レート Aの順で高い優先度を設定する。

【0043】続いて受信装置制御部29は、変数n(初 期状態では"O"にクリアされている)を[n+1]に 更新 (ステップST13) した上で、優先順位nが設定 されている候補レートを、最新フレームレートであるか 否かの検査を行う対象とする情報レート(以下、検査レ ートと称する)に設定する(ステップST14)。

に対応するビタビ復号器24をセレクタ23に選択させ た上で、バッファ22に保持しているデータの出力を行 わせ、検査レートに対応するビタビ復号器24のみに受 信データを与える(ステップST15)。

【0045】そうすると、検査レートに対応するビタビ 復号器24にて、検査レートに応じたビタビ復号処理が 受信データに対して施される。そしてビタビ復号処理が 施されたのちの受信データは、検査レートに対応した再 符号化器25で検査レートに応じた再符号化処理(畳み 込み符号化処理)が施されたのち、この再符号化器25 に対応するビットエラーカウンタ26にてシンボルエラ ーレートの測定がなされる。また、ビタビ復号処理が施 されたのちの受信データは、フレームエラー判定器27 を介してバッファ28に与えられ、保持される。この 際、フレームエラー判定器27では、CRCチェックに よりフレームエラーの有無が判定される。

【0046】そこで受信装置制御部29は、検査レート に対応したビットエラーカウンタ26にて測定されたシ ンボルエラーレートと、フレームエラー判定器27での 判定結果とを取込み (ステップST16) 、まずシンボ ルエラーレートが予め定められた閾値よりも小さいか否 かの判断を行う (ステップST17)。 なお閾値は例え ば、正しい情報レートに応じたビタビ復号処理を施した 場合に生じ得るシンボルエラーレートの許容値と、誤っ た情報レートに応じたビタビ復号処理を施した場合に生 じ得るシンボルエラーレートとを考慮して、これらを判 別できるように適切に設定される。

【0047】さて、検査レートに関するシンボルエラー レートが閾値よりも小さければ、現在の検査レートが最 新フレームレートである可能性が高い。そこで受信装置 制御部29は、フレームエラー判定器27でフレームエ ラー有りと判定されているか否かの判断を行い(ステッ プST18)、フレームエラーがなければ、現在の検査 レートが最新フレームレートであると確定する。そして このときに受信装置制御部29は受信データ出力制御手 段29 eにより、検査レートに対応するビタビ復号器2 4での復号結果をバッファ28に出力させ(ステップS T19)、1フレームに関する処理を終了する。

【0048】一方、検査レートに関するシンボルエラー レートが閾値よりも大きかった場合、あるいはフレーム エラーが発生していた場合には、受信装置制御部29は 現在の検査レートが最新フレームレートとは異なってい ると判断する。そしてこの場合に受信装置制御部29 は、全ての候補レートを検査レートに設定して上記の処 理を行ったか否かの判断を行い(ステップST20)、 まだ検査レートに設定していない候補レートがあるなら ば、ステップST13以降の処理を繰り返すことで未検 査の候補レートを検査レートとしての上記の処理を行 う。また、既に全ての候補レートを検査レートとして上 【00.44】そして受信装置制御部29は、検査レート 50 記の処理を行った場合には、受信装置制御部29は1フ

レームに関する処理を終了する。

【0049】なお、以上の処理のうち、ステップST1 4乃至ステップST18は情報レート判定手段29cに よって、またステップST13およびステップST20 は情報レート判定制御手段29dによってそれぞれ実行 される。

【0050】以上のように本実施形態によれば、送信装 置1にて、使用する情報レートを段階的に変化させるこ とにより、受信装置2にて、最新フレームレートの候補 を全ての情報レートのうちの一部に絞り込むことを可能 10 としている。そして受信装置2にて、この絞り込んだ各 候補レートに対して優先順位を設定し、この優先順位に 応じて順次、その候補レートが正しい情報レートである か否かの検査処理が行われる。

【0051】従って、受信装置2にて設定した優先順位 がある程度適切であれば、ごく少ない回数の検査処理を 行うだけで正しい情報レートを判定することができる。 そして、ビタビ復号処理はこの検査処理に含まれるの で、ビタビ復号処理の実行も、ごく少ない回数で済む。 なお、受信装置 2 にて設定した優先順位が不適切であっ たとしても、検査処理を全ての情報レートについて行う ことはないので、検査処理の回数、すなわちビタビ復号 処理の実行回数を従来に比べて減少することができる。 この結果、正しい情報レートに応じたビタビ復号処理を 完了するまでに要する時間を短縮することができるとと もに、消費電力を低減することができ、しかも正しくビ タビ復号された受信データを適確に得ることができる。

【0052】 (第2の実施の形態) 図6は本発明の第2 実施形態に係る通信システムを適用して構成されたCD MA無線通信システムの要部構成を示す機能プロック図 30 である。なお、図1と同一部分には同一符号を付し、そ の詳細な説明は省略する。

【0053】このCDMA無線通信システムは、送信装 置1と受信装置3との間でCDMA方式での無線通信を 行うものである。すなわち、送信装置1は前記第1実施 形態のものと同一であり、受信装置3が前記第1実施形 態における受信装置2から置き換わったものとなってい る。

【0054】受信装置3は、アンテナ20、CDMA受 信機21、ビタビ復号器24 (24-1~24-4)、再符号化 40 器25 (25-1~25-4)、ビットエラーカウンタ26 (26 -1~26-4)、フレームエラー判定器27、バッファ2 8、セレクタ31、バッファ32および受信装置制御部 33を有している。

【0055】すなわち受信装置3は、前記第1実施形態 の受信装置2におけるバッファ22を排除するととも に、セレクタ23および受信装置制御部29に代えてセ レクタ31および受信装置制御部33を設け、さらに各 ビタビ復号器24とフレームエラー判定器27との間に バッファ32を新設したものとなっている。

14

【0056】セレクタ31は、ビタビ復号器24-1~24-4 を受信装置制御部33の制御の下に任意に選択するもの であり、複数のビタビ復号器24を同時選択することが 可能である。そしてセレクタ31は、CDMA受信機2 1から与えられた受信データを、選択したビタビ復号器 24に対してそれぞれ与える。

【0057】バッファ32は、ビタビ復号器24-1~24-4 のそれぞれから与えられる受信データを1フレーム分毎 に、次のフレームの受信データが与えられるまで保持す る。そしてバッファ32は、この保持している受信デー タのうちのいずれかを、受信装置制御部33の制御の下 にフレームエラー判定器27に与える。

【0058】受信装置制御部33は、この受信装置3の 各部を総括制御することで受信装置としての動作を実現 するものである。この受信装置制御部33は、例えばマ イクプロセッサを主制御回路として有するものであり、 CDMA方式での無線通信を可能とするための周知の制 御手段に加えて、絞り込み手段33a、復号制御手段3 3 b、情報レート判定手段33 cおよび受信データ出力 制御手段33dを有している。

【0059】このうち絞り込み手段33aは、前フレー ムに関して情報レート判定手段33cにより判定された 前フレームレートに基いて、最新フレームレートの候補 レートを情報レートA~情報レートDのうちの一部に絞 り込む。復号制御手段33bは、絞り込み手段33aに よって絞り込まれた候補レートのそれぞれに対応するビ タビ復号器24にそれぞれビタビ復号処理を行わせる。 情報レート判定手段33cは、ビットエラーカウンタ2 6にて測定されるシンボルエラーレートおよびフレーム エラー判定器27の判定結果に基いて、候補レートの中 から最新フレームレートを判定する。そして受信データ 出力制御手段33dは、情報レート判定手段33cによ り最新フレームレートが判定されたときにバッファ28 に保持されている受信データを出力させる。

【0060】次に以上のように構成されたCDMA無線 通信システムにおける受信装置3の動作につき説明す る。送信装置1から無線送信された送信された電波が受 信装置3に到達すると、アンテナ20で受信されて電気 的な受信信号に変換され、CDMA受信機21に与えら れる。そして受信信号は、CDMA受信機21でディジ タル復調やスペクトル逆拡散処理などの受信処理が施さ れ受信データとされる。

【0061】ところで受信装置制御部33は、1フレー ムに関する処理が終了する毎に、その次のフレーム(最 新フレーム)にて用いられている情報レートを判定し、 その情報レートに応じたビタビ復号を施した正しい受信 データを得るための図7に示すような処理を実行する。

【0062】受信装置制御部33はまず絞り込み手段3 3 a により、前フレームレートに基いて、最新フレーム 50 レートの候補レートを情報レートA~情報レートDのう

ちの一部に絞り込む(ステップST21)。すなわち、送信装置1が最新フレームレートとして、前フレームレートと同一か、あるいは前フレームレートに対して1段階のみ異なる情報レートのうちから選択することを利用し、前フレームレートと同一の情報レートおよび前フレームレートに対して1段階のみ異なる情報レートのみを候補レートとする。

【0063】次に受信装置制御部33は復号制御手段33bにより、各候補レートに対応するビタビ復号器24の全てをセレクタ23に選択させる。そうすると、前述のようにCDMA受信機21で得られた受信データが、各候補レートに対応するビタビ復号器24のそれぞれに与えられ、各候補レートに応じたビタビ復号処理が受信データに対してそれぞれ施される。そしてビタビ復号処理が施されたのちの受信データは、検査レートに対応した再符号化器25で検査レートに応じた再符号化処理

(畳み込み符号化処理)が施されたのち、この再符号化器25に対応するビットエラーカウンタ26にてシンボルエラーレートの測定がなされる。また、ビタビ復号処理が施されたのちの受信データは、それぞれバッファ32に与えられ、保持される。

【0064】そこで受信装置制御部33は、検査レートに対応したビットエラーカウンタ26にて測定されたシンボルエラーレートを取込み(ステップST23)、これらのシンボルエラーレートを比較し、シンボルエラーレートが最小である候補レートを判定する(ステップST24)。

【0065】続いて受信装置制御部33は、ステップST24で判定した候補レートに対応するビタビ復号器24によって復号された受信データをバッファ32に出力させ、フレームエラー判定器27にフレームエラーの有無の判定を行わせる(ステップST25)。なお、バッファ32から出力された受信データは、フレームエラー判定器27を介してバッファ28に与えられ、保持される。

【0066】そして受信装置制御部33は、フレームエラー判定器27での判定結果を取込み、フレームエラー有りと判定されているか否かの判断を行う(ステップST26)。

【0067】ここでフレームエラーがなければ、シンボ 40 ルエラーレートが最小である候補レートが最新フレーム レートであると確定する。そしてこのときに受信装置制 御部33は受信データ出力制御手段33dにより、バッファ28に保持されている受信データ、すなわち最新フレームレートに対応するビタビ復号器24によりビタビ 復号処理が行われたのちの受信データを出力する(ステップST27)。

【0068】一方、フレームエラーが発生していた場合 に受信装置制御部33は、バーストエラーなどが生じて いるために正しい受信データを得ることが不可能である 50 と判断し、バッファ 2 8 から受信データの出力を行わせることなしにそのまま 1 スレームに関する処理を終了する。

【0069】なお、以上の処理のうち、ステップST2 3乃至ステップST26は情報レート判定手段33cに よって実行される。以上のように本実施形態によれば、 送信装置1にて、使用する情報レートを段階的に変化さ せることにより、受信装置3にて、最新フレームレート の候補を全ての情報レートのうちの一部に絞り込むこと を可能としている。そして受信装置3にて、この絞り込 んだ各候補レートのそれぞれに対応したビタビ復号処 理、再符号化処理およびシンボルエラーレートの測定処 理を受信データに対してそれぞれ施し、このシンボルエ ラーレートが最小となる候補レートに対応したビタビ復 号処理が施された受信データにフレームエラーが発生し ていなければ、その候補レートを正しい情報レートと判 定し、その受信データを有効なデータとして出力する。 【0070】従って、ビタビ復号処理を全ての情報レー トについて行うことはないので、ビタビ復号器24の全 てを動作させる必要がなく、消費電力を低減することが でき、しかも正しくビタビ復号された受信データを適確 に得ることができる。

【0071】 (第3の実施の形態) 図8は本発明の第3 実施形態に係る通信システムを適用して構成されたCD MA無線通信システムの要部構成を示す機能ブロック図 である。なお、図1と同一部分には同一符号を付し、そ の詳細な説明は省略する。

【0072】このCDMA無線通信システムは、送信装置5と受信装置6との間でCDMA方式での無線通信を行うものである。送信装置5は、前述した第1実施形態における送信装置1が持つような情報レートを段階的に変化させる機能を有していない、例えば従来よりあるものである。

【0073】受信装置6は、アンテナ20、CDMA受信機21、バッファ22、セレクタ23、ビタビ復号器24 (24-1~24-4)、再符号化器25 (25-1~25-4)、ビットエラーカウンタ26 (26-1~26-4)、フレームエラー判定器27、バッファ28および受信装置制御部60を有している。

【0074】すなわち受信装置6は、前記第1実施形態の受信装置2における受信装置制御部29に代えて受信装置制御部60を設けたものとなっている。受信装置制御部60は、この受信装置6の各部を総括制御することで受信装置としての動作を実現するものである。この受信装置制御部60は、例えばマイクプロセッサを主制御回路として有するものであり、CDMA方式での無線通信を可能とするための周知の制御手段に加えて、優先順位設定手段60a、情報レート判定手段60b、情報レート判定制御手段60cおよび受信データ出力制御手段60dを有している。

【0075】このうち優先順位設定手段60aは、全て の情報レートのそれぞれに対し、過去のフレームにおけ る情報レートの変化状況を考慮して優先順位を設定す る。情報レート判定手段60bは、情報レートのうちの 1つを検査レートとし、この検査レートに対応したビタ ビ復号器24および再符号化器25と、当該再符号化器 25に対応したビットエラーカウンタ26とに受信デー タを流した際におけるビットエラーカウンタ26にて測 定されるシンボルエラーレートおよびフレームエラー判 定器27の判定結果に基いて、検査レートが最新フレー 10 ムレートであるか否かの判定を行う。情報レート判定制 御手段60cは、情報レート判定手段60bによる判定 処理を、検査レートとする情報レートを優先順位設定手 段60aにより設定された優先順位に応じて変化させつ つ、最新フレームレートが判定されるまで順次行わせ る。そして受信データ出力制御手段60 dは、情報レー ト判定手段60bにより最新フレームレートが判定され たときにバッファ28に保持されている受信データを出 力させる。

【0076】次に以上のように構成されたCDMA無線 20 通信システムの動作につき説明する。送信装置5から無線送信された送信された電波が受信装置6に到達すると、アンテナ20で受信されて電気的な受信信号に変換され、CDMA受信機21に与えられる。そして受信信号は、CDMA受信機21でディジタル復調やスペクトル逆拡散処理などの受信処理が施され受信データとされる。

【0077】ところで受信装置制御部60は、1フレームの受信データが受信される毎に、そのフレームにて用いられている情報レートを判定し、その情報レートに応 30じたビタビ復号を施した正しい受信データを得るための図9に示すような処理を実行する。

【0078】受信装置制御部60はまず優先順位設定手段60aにより、全情報レートのそれぞれに対し、過去のフレームにおける情報レートの変化状況を考慮して優先順位を設定する(ステップST31)。

【0079】続いて受信装置制御部60は、変数n(初期状態では"0"にクリアされている)を [n+1]に 更新 (ステップST32) した上で、優先順位nが設定されている情報レートを検査レートに設定する (ステップST33)。

【0080】そして受信装置制御部60は、検査レートに対応するビタビ復号器24をセレクタ23に選択させた上で、バッファ22に保持しているデータの出力を行わせ、検査レートに対応するビタビ復号器24のみに受信データを与える(ステップST34)。

【0081】そうすると、検査レートに対応するビタビ 復号器24にて、検査レートに応じたビタビ復号処理が 受信データに対して施される。そしてビタビ復号処理が 施されたのちの受信データは、検査レートに対応した再 50 符号化器25で検査レートに応じた再符号化処理(畳み込み符号化処理)が施されたのち、この再符号化器25に対応するビットエラーカウンタ26にてシンボルエラーレートの測定がなされる。また、ビタビ復号処理が施されたのちの受信データは、フレームエラー判定器27を介してバッファ28に与えられ、保持される。この際、フレームエラー判定器27では、CRCチェックによりフレームエラーの有無が判定される。

【0082】そこで受信装置制御部60は、検査レートに対応したビットエラーカウンタ26にて測定されたシンボルエラーレートと、フレームエラー判定器27での判定結果とを取込み(ステップST35)、まずシンボルエラーレートが予め定められた閾値よりも小さいか否かの判断を行う(ステップST36)。なお閾値は例えば、正しい情報レートに応じたビタビ復号処理を施した場合に生じ得るシンボルエラーレートの許容値と、誤った情報レートに応じたビタビ復号処理を施した場合に生じ得るシンボルエラーレートとを考慮して、これらを判別できるように適切に設定される。

【0083】さて、検査レートに関するシンボルエラーレートが関値よりも小さければ、現在の検査レートが最新フレームレートである可能性が高い。そこで受信装置制御部60は、フレームエラー判定器27でフレームエラー有りと判定されているか否かの判断を行い(ステップST37)、フレームエラーがなければ、現在の検査レートが最新フレームレートであると確定する。そしてこのときに受信装置制御部60は受信データ出力制御手段60dにより、検査レートに対応するビタビ復号器24での復号結果をバッファ28に出力させ(ステップST38)、1フレームに関する処理を終了する。

【0084】一方、検査レートに関するシンボルエラーレートが関値よりも大きかった場合、あるいはフレームエラーが発生していた場合には、受信装置制御部60は現在の検査レートが最新フレームレートとは異なっていると判断する。そしてこの場合に受信装置制御部60は、全ての情報レートを検査レートに設定して上記の処理を行ったか否かの判断を行い(ステップST39)、まだ検査レートに設定していない候補レートがあるならば、ステップST32以降の処理を繰り返すことで未検査の情報レートを検査レートとしての上記の処理を行う。また、既に全ての情報レートを検査レートとして上記の処理を行った場合には、受信装置制御部60は1フレームに関する処理を終了する。

【0085】なお、以上の処理のうち、ステップST33乃至ステップST37は情報レート判定手段60bによって、またステップST32およびステップST39は情報レート判定制御手段60cによってそれぞれ実行される。

【0086】以上のように本実施形態によれば、受信装置6では、全ての情報レートに対して優先順位を設定

し、この優先順位に応じて順次、その候補レートが正し い情報レートであるか否かの検査処理が行われる。

【0087】従って、受信装置6にて設定した優先順位がある程度適切であれば、ごく少ない回数の検査処理を行うだけで正しい情報レートを判定することができる。そして、ビタビ復号処理はこの検査処理に含まれるので、ビタビ復号処理の実行も、ごく少ない回数で済む。この結果、正しい情報レートに応じたビタビ復号処理を完了するまでに要する時間を短縮することができるとともに、消費電力を低減することができ、しかも正しくビ 10 タビ復号された受信データを適確に得ることができる。

【0088】かつ本実施形態によれば、前記第1実施形態および前記第2実施形態のように送信装置に手を加える必要がなく、受信側の構成変更のみによって容易に実現することができる。

【0089】なお本発明は前記各実施形態に限定されるものではない。例えば前記各実施形態では、畳み込み符号化器12、ビタビ復号器24、再符号化器25およびビットエラーカウンタ26は、各情報レートに応じたものをそれぞれ用意するものとしているが、各情報レートに応じた処理を可変的に行うことができるものを1つずつ設けておき、これにより時分割に各情報レートに応じた処理を行うようにしても良い。

【0090】また前記各実施形態では、フレームエラーの有無も勘案して最新フレームレートの判定を行うようにしているが、シンボルエラーレートからでもかなりの精度で最新フレームレートの判定を行うことが可能であるので、フレームエラーの有無を最新フレームレートの判定に反映させなくても良い。

【0091】また前記各実施形態では、情報レートを4種類としているが、情報レート数が異なるシステムにも本願発明の適用が可能である。このほか、本発明の要旨を逸脱しない範囲で種々の変形実施が可能である。

[0092]

【発明の効果】本発明は、送信装置に、複数の情報レー トのそれぞれに応じた例えば畳み込み符号化処理などの 所定の符号化処理を送信データに対してそれぞれ施す例 えば複数の畳み込み符号化器からなる符号化手段と、最 新のフレームにて用いる情報レートを、直前のフレーム にて用いた情報レートおよび直前のフレームにて用いた 情報レートに対して1段階異なる情報レートのうちのい ずれかに定める情報レート決定手段と、この情報レート 決定手段により決定された情報レートに対応付けられた 前記符号化手段に符号化処理を行わせる符号化制御手段 とを具備し、かつ受信装置に、前記複数の情報レートに 応じた例えばビタビ復号処理などの所定の復号処理を受 信データに対してそれぞれ施す例えば複数のビタビ復号 器からなる復号手段と、受信された最新のフレームにて 用いられている情報レートの候補を、少なくとも直前の フレームにて用いられていた情報レートに基いて前記複 50 数の情報レートの一部に絞り込む絞り込み手段と、この 絞り込み手段により絞り込まれた情報レートのみを対象 として、最新フレームにて用いられている情報レートを 判定するための所定の判定処理を行う判定処理手段と、 この判定処理手段により判定された情報レートに応じた 復号処理が前記復号手段によりなされたのちの受信デー タを有効な受信データとして選択する、例えばバッファ および受信データ出力制御手段よりなる受信データ選択 手段とを備えた。

【0093】また別の本発明は、複数に情報レートに対 して、少なくとも直前のフレームにて用いられていた情 報レートに基いて優先順位を設定する優先順位設定手段 と、前記複数の情報レートのそれぞれに応じた例えばビ タビ復号処理などの所定の復号処理を受信データに対し てそれぞれ施す例えば複数のビタビ復号器からなる復号 手段と、前記複数の情報レートのそれぞれに応じた例え ば畳み込み符号化処理などの符号化処理を同一情報レー トに応じた復号処理が前記復号手段によりなされたのち の受信データに対してそれぞれ施す例えば複数の再符号 化器からなる再符号化手段と、この再符号化手段により 再符号化がなされた再符号化データに関し、前記復号手 段にて復号される前の受信データに対する誤り率を求 め、この誤り率が所定値よりも小さい場合に、その再符 号化データを得るために行われた符号化処理に対応する 情報レートを最新フレームにて用いられている情報レー トと判定する情報レート判定手段と、前記複数の情報レ ートのうちの1つを検査レートに設定し、この検査レー トに応じた復号処理および再符号化処理、ならびに前記 情報レート判定手段による判定処理を、最新フレームに て用いられている情報レートが前記情報レート判定手段 により判定されるまで、検査レートとする情報レートを 前記優先順位設定手段により設定された優先順位が高い 順に変更させつつ行わせる情報レート判定制御手段と、 前記情報レート判定手段により判定された情報レートに 応じた復号処理が前記復号手段によりなされたのちの受 信データを有効な受信データとして選択する、例えばバ ッファおよび受信データ出力制御手段よりなる受信デー 夕選択手段とを備えて受信装置を構成した。これらによ り、情報レートの判定のための処理量を軽減し、情報レ ートの判定に要する時間の短縮や消費電力の低減を図る ことが可能となる。

【図面の簡単な説明】

【図1】本発明の第1実施形態に係る通信システムを適用して構成されたCDMA無線通信システムの要部構成を示す機能プロック図。

【図2】図1中の送信装置制御部16の処理手順を示す フローチャート。

【図3】図1中の送信装置制御部16による使用情報レートの決定状況の一例を示す図。

【図4】図1中の受信装置制御部29の処理手順を示す

フローチャート。

【図5】図1中の受信装置制御部29による候補レートの絞り込み状況および優先順位の設定状況の一例を示す図。

【図6】本発明の第2実施形態に係る通信システムを適用して構成されたCDMA無線通信システムの要部構成を示す機能ブロック図。

【図7】図6中の受信装置制御部33の処理手順を示すフローチャート。

【図8】本発明の第3実施形態に係る通信システムを適 10 用して構成されたCDMA無線通信システムの要部構成 を示す機能プロック図。

【図9】図8中の受信装置制御部60の処理手順を示すフローチャート。

【符号の説明】

- 1…送信装置
- 10…ボコーダ
- 11…セレクタ
- 12 (12-1~12-4) …畳み込み符号化器
- 13…セレクタ
- 14…CDMA送信機
- 15…アンテナ
- 16…送信装置制御部
- 16 a…情報レート決定手段
- 16b…符号化制御手段
- 2…受信装置
- 20…アンテナ
- 21…CDMA受信機

* 22…バッファ

- 23…セレクタ
- 2 4 (24-1~24-4) …ビタビ復号器
- 2 5 (25-1~25-4) …再符号化器
- 26 (26-1~26-4) …ビットエラーカウンタ
- 27…フレームエラー判定器
- 28…バッファ
- 29…受信装置制御部
- 29a…絞り込み手段
- 0 29b…優先順位設定手段
 - 29 c…情報レート判定手段
 - 29 d…情報レート判定制御手段
 - 29 e …受信データ出力制御手段
 - 3 …受信装置
 - 31…セレクタ
 - 32…バッファ
 - 33…受信装置制御部
 - 33a…絞り込み手段
 - 33b…復号制御手段
- 20 33c…情報レート判定手段
 - 33 d …受信データ出力制御手段
 - 6 …受信装置
 - 60…受信装置制御部
 - 60a…優先順位設定手段
 - 60b…情報レート判定手段
 - 60c…情報レート判定制御手段
 - 60d…受信データ出力制御手段

*

【図1】

[図6]

【図9】

