Studienplan der Studienrichtung Technische Chemie

Stand: 24.05.2005

Qualifikationsprofil

Ziel des Studienplans "Technische Chemie" ist die praxisorientierte wissenschaftliche Ausbildung von Chemikern, die in die Lage versetzt werden sollen, naturwissenschaftliche und technische Probleme aus allen Bereichen der Chemie selbständig und kompetent zu lösen. Die während des Studiums vermittelten Kenntnisse und Erfahrungen sollen die AbsolventInnen auch in hohem Maß zur Bearbeitung interdisziplinärer Problemstellungen in Zusammenarbeit mit anderen Wissenschaftszweigen befähigen.

Im ersten und zweiten Studienabschnitt werden die dazu notwendigen Grundlagen aus allen Teilbereichen der Chemie und der angrenzenden Wissenschaften in einführender Form vermittelt. Die Lehrinhalte orientieren sich an europaweit abgestimmten Themenkatalogen und führen in technologische Aspekte ein.

Aufbauend auf diese Grundlagen ist im 3. Studienabschnitt eine Schwerpunktsetzung in den Bereichen "Technische Synthese", "Chemie und Technologie der Materialien", "Technische Biochemie und Naturstofftechnologie" und "Chemische Prozess- und Umwelttechnik" möglich.

Im Studienschwerpunkt "Technische Synthese" sollen präparative Chemiker ausgebildet werden, die mit allen wichtigen Synthesemethoden und –verfahren der anorganischen, organischen und makromolekularen Chemie vertraut sind und neu synthetisierte Verbindungen umfassend charakterisieren können.

Ausbildungsziel des Bereiches "Chemie und Technologie der Materialien" ist das umfassende Verständnis chemischer und technologischer Aspekte organischer und anorganischer Materialien, von den Rohstoffen über Synthese- und Formgebungsverfahren und Charakterisierung der Material- und Werkstoffeigenschaften bis hin zur technischen Anwendung und Entsorgung.

Im Studienschwerpunkt "Technische Biochemie und Naturstofftechnologie" ist die Ausbildung auf die Theorie und Praxis des Einsatzes von biologischem Material (Organismen, Zellen, Biokatalysatoren) zur umweltverträglichen Herstellung technisch bedeutsamer Produkte (Rohstoffe, Wirkstoffe, Lebensmittel) gerichtet. Hierzu werden die dafür relevanten Sachkenntnisse aus Biologie, Mikrobiologie, Biochemie, molekularer Genetik, Lebensmittel- und Naturstoffchemie, sowie Grundlagen der Ökologie, auch im Hinblick auf ein Verständnis der Wechselwirkungen zwischen dem biologischen Material und den Stoffen der belebten und unbelebten Umwelt vermittelt.

Der Schwerpunkt "Chemische Prozess- und Umwelttechnik" richtet sich an Studenten, die sich künftig im Bereich der Forschung und Entwicklung von chemischen Prozessen und des Baues und des Betriebes von und Chemieanlagen betätigen wollen. Hierzu werden die Bereiche der Verfahrenstechnik, Energietechnik, Abfallwirtschaft, Umwelttechnik und Sicherheitstechnik weiter vertieft, sowie auch die vielfältigen Auswirkungen von Schadstoffen und natürlichen Kontaminantien auf die Umwelt (Boden, Luft und Wasser) berücksichtigt, um entsprechende Technologien zur Verhinderung von Schäden an der belebten und unbelebten Umwelt zu entwickeln zu können.

§ 1 Studiendauer und Studienabschnitte

Die Studiendauer für das Diplomstudium der Technischen Chemie, einschließlich der für die Anfertigung der Diplomarbeit (§61 (1) UniStG) vorgesehenen Zeit, beträgt 10 Semester. Das Diplomstudium ist in drei Abschnitte untergliedert, wobei der Erste Studienabschnitt zwei Semester, der Zweite und der Dritte Studienabschnitt jeweils vier Semester umfasst. Jeder Studienabschnitt wird mit einer Diplomprüfung abgeschlossen.

Die Gesamtstundenzahl beträgt 235 Semesterstunden (SST), wobei sich die Aufteilung wie folgt darstellt:

1. Abschnitt

Pflichtfächer 47,0 SST

2. Abschnitt

Pflichtfächer 95,0 SST

3. Abschnitt

Pflichtfächer 32,0 SST Wahlfächer 37,0 SST

1.-3. Abschnitt

Freie Wahlfächer 24,0 SST

Eine Semesterstunde (SST) entspricht so vielen Unterrichtseinheiten von 45 Minuten, die das Semester Unterrichtswochen umfasst (§7 (3) UniStG).

Absolventen bzw. Absolventinnen der Studienrichtung Technische Chemie wird der akademische Grad "Diplom-Ingenieur" bzw. "Diplom-Ingenieurin" (§4 (7) UniStG) verliehen.

§ 2 Lehrveranstaltungsarten

Vorlesungen (VO) sind Lehrveranstaltungen, die Studierende didaktisch in Teilbereiche des betreffenden Faches und seine Methoden einführen.

Übungen (UE) sind Lehrveranstaltungen, in denen das Verständnis des Stoffes der dazugehörigen Vorlesung durch Anwendung auf konkrete Aufgaben vertieft wird.

Vorlesungsübungen (VU) setzen sich aus einem Vorlesungsteil und einem Übungsteil zusammen, die didaktisch eng miteinander verknüpft sind.

Laborübungen (LU) sind Lehrveranstaltungen, in denen das Verständnis des Stoffes der dazugehörigen Vorlesung durch die Durchführung von Laborexperimenten und die Auswertung der Ergebnisse vertieft wird.

Seminare (SE) sind Lehrveranstaltungen, die der wissenschaftlichen Diskussion dienen. Von den Studierenden sind eigene mündliche und/oder schriftliche Beiträge zu erbringen.

Proseminare (PS) sind Vorstufen der Seminare. Sie haben Grundkenntnisse des betreffenden Faches zu vermitteln und exemplarisch Probleme des Faches durch Referate und Diskussion zu behandeln.

Exkursionen (EX) sind Lehrveranstaltungen, in denen die Studierenden durch den Besuch von entsprechenden Institutionen, Unternehmen und/oder Anlagen Einblick in die Praxis erhalten.

§ 3 Erster Studienabschnitt

Der Erste Studienabschnitt umfasst Pflichtfächer im Gesamtausmaß von 47,0 SST.

1. Semester									
Diplomprüfungsfächer			•	Grund	I. d. C	hemi	е	Naturwiss. Grundlagen	ECTS-Credits
Allgemeine Chemie	3	VO	3						4,5
Anorganische Chemie	1	VO	1						1,5
Organische Chemie	1	VO		1					1,5
Analytische Chemie Einf.	1	VO			1				1,5
Analytische Chemie	2	VO			2				3
Mathematik	3	VO						3	4,5
Mathematik	2	UE						2	2
Physik	2	VO						2	3
Informatik	2	VU						2	2
Labortechnik	1	PS		1					1,5
Chemische Grundlagen	4	LU	2	2					4
Chemische Grundlagen	1	PS		1					1
Summe	23		6	5	3			9	30

2. Semester									
Diplomprüfungsfächer			(Grundl. d. Chemie		е	Naturwiss. Grundlagen	ECTS-Credits	
Messtechnik	1,5	LU				0	1,5		1,5
Messtechnik	0,5	PS				0	0,5		0,5
Ökologische und gesellschaftliche Aspekte der Chemie	2	VO						2	3
Anorganische Chemie	2	VO	2						3
Organische Chemie	2	VO		2					3
Analytische Chemie	2	V			2				3
Analytische Chemie *)	8	LU			8				7,5
Mathematik	2	VO						2	3
Mathematik	1	UE						1	1
Physik	3	VO						3	4,5
Summe	24		2	2	10	0	2	8	30

§ 4 Studieneingangsphase

Folgende Lehrveranstaltungen des Ersten Studienabschnittes werden gemäß §38 (1) UniStG als Studieneingangsphase definiert:

Anorganische Chemie, 1 Std. VO Organische Chemie, 1 Std. VO Allgemeine Chemie, 3 Std. VO Grundlagenlabor, 4 Std. LU

§ 5 Durchführung der Ersten Diplomprüfung

Die Erste Diplomprüfung ist eine Gesamtprüfung, die in Form von Lehrveranstaltungsprüfungen vor Einzelprüfern bzw. Einzelprüferinnen abzulegen ist.

Mit der positiven Beurteilung aller Teile der ersten Diplomprüfung ist der erste Studienabschnitt abgeschlossen.

Die Lehrveranstaltungen des Ersten Studienabschnittes sind zu folgenden Prüfungsfächern zusammengefasst, die im Diplomprüfungszeugnis samt Semesterstundenanzahl und dem Notenmittelwert gemäß §10 (4) UniStEVO ausgewiesen werden:

Grundlagen der Chemie Naturwissenschaftliche Grundlagen

Die gemäß §45 (3) UniStG ermittelte Gesamtbeurteilung der Ersten Diplomprüfung ist ebenfalls im Diplomprüfungszeugnis auszuweisen.

§ 6 Zweiter Studienabschnitt

Der Zweite Studienabschnitt umfasst Pflichtfächer im Gesamtausmaß von 94 SST.

3. Semester														
									С	Chem.				ECTS-
Diplomprüfungsfächer			AC	OC	ANC	Phy	s.Ch	em.	Te	chn	ol.	VT	BC	Credits
Anorganische Chemie	2	VO	2											3
Strukturaufklärung	2	VO	1	1										3
Organische Chemie	2	VO		2										3
Analytische Chemie	2	VO			2									3
Physikalische Chemie	4	VO				4								6
Physikalische Chemie	1	PS				1								1
Organische Chemie LU *)	11	LU		11										11
Summe	24		3	14	2	5								30

4. Semester														
									С	hen	n.			ECTS-
Diplomprüfungsfächer			AC	OC	ANC	Phy	s.Ch	em.	Te	chn	ol.	VT	ВС	Credits
Anorganische Chemie	2	VO	2											3
Festkörperchemie	2	VO						2						3
Festkörperchemie	2	LU						2						2
Instrumentelle Analytik *)	5	LU			5									6
Physikalische Chemie	4	VO				4								6
Physikalische Chemie	1	PS				1								0,5
Org. Chemie der														
Biomoleküle	1	VO		1										1,5
Anorganische Chemie LU *)	7	LU	7											8
Summe	24		9	1	5	5		4						30

5. Semester														
										hen				ECTS-
Diplomprüfungsfächer			AC	OC	ANC	Phy	s.Ch	em.	Te	chn	ol.	VT	BC	Credits
Chem. Technol. Org. Stoffe	3	VO								ფ				4,5
Toxikologie	1	VO											1	1,5
Therm. Verfahrenstechnik	2	VO										2		3
Physikalische Chemie *)	9	LU				9								10,5

Biochemie	2	VO								2	3
Strukturaufklärung	2	LU				2					3
Chem. Technol. Anorg.											
Stoffe	3	VO					3				4,5
Summe	22			9	·	2	3	3	2	3	30

6. Semester														
									С	hen	n.			ECTS-
Diplomprüfungsfächer			AC	OC	ANC	Phy	s.Ch	em.	Te	chn	ol.	VT	BC	Credits
Chem. Techn. Org. Stoffe *)	5	LU								5				5
Technische Elektrochemie	2	VO					2							3
Biochemie	2	LU											2	2
Theoretische Chemie	2	VO					2							3
Chem. Verfahrenstechnik	1	VO										1		1,5
Mechan. Verfahrenstechnik	2	VO										2		3
Verfahrenstechnik	5	LU										5		5,5
Biotechnologie	1	VO									1			1,5
Lebensmitteltechnologie	1	VO									1			1,5
Chem. Technol. Anorg.														
Stoffe	4	LU							4					4
Summe	25						4		4	5	2	8	2	30

^{*)} Eingangsvoraussetzungen siehe § 17.

§ 7 Durchführung der Zweiten Diplomprüfung

Die Zweite Diplomprüfung ist eine Gesamtprüfung, die in Form von Lehrveranstaltungsprüfungen vor Einzelprüfern bzw. Einzelprüferinnen abzulegen ist.

Die Lehrveranstaltungen sind zu folgenden Prüfungsfächern zusammengefasst, die im Diplomprüfungszeugnis samt den Stundenzahlen und dem Notenmittelwert gemäß §10 (4) UniStEVO ausgewiesen werden:

AC = Anorganische Chemie

OC = Organische Chemie

ANC= Analytische Chemie

VT= Verfahrenstechnik

Physikalische Chemie

Chemische Technologien

BC= Grundlagen der Biochemie und Biologie

Die gemäß §45 (3) UniStG ermittelte Gesamtbeurteilung der Zweiten Diplomprüfung ist ebenfalls auszuweisen.

Voraussetzung für den positiven Abschluss des zweiten Studienabschnitts ist der Nachweis der erfolgreich bestandenen ersten Diplomprüfung und die positive Beurteilung der Lehrveranstaltungen gemäß §6 dieses Studienplanes.

§ 8 Dritter Studienabschnitt

Der Dritte Studienabschnitt beinhaltet zum einen Teil Pflichtfächer zum anderen kann der/die Studierende LVA aus den Wahlfachkatalogen wählen (Wahlfächer). Der Dritte Studienabschnitt umfasst 32 SST Pflichtfächer und 25 SST Wahlfächer, weiters ist ein Diplomandenseminar (2 SST) und ein Projektpraktikum (10 SST) zu absolvieren.

Im Rahmen des Dritten Studienabschnittes besteht die Möglichkeit zwischen vier Schwerpunkten zu wählen:

Chemische Prozess- und Umwelttechnik Chemie und Technologie der Materialien Technische Synthese Technische Biochemie und Naturstofftechnologie

Ein Schwerpunkt besteht aus einem Basisblock (20 SWS) und einem aus fünf möglichen dazugehörigen Spezialisierungsblock (12 SST). Diese gewählten 32 Stunden sind dann pflichtig.

Weitere 25 Stunden sind aus anderen Basis- bzw. Spezialisierungsblöcken und/oder dem Wahlfachkatalog zu wählen.

In Vorbereitung auf die Diplomarbeit ist ein Diplomandenseminar (2 SST) sowie ein Projektpraktikum (10 SST) an einem Institut (bzw. bei einer Arbeitsgruppe) nach freier Wahl zu belegen.

7. Semester

Basisblock nach Wahl:

Basisblock: "Chemische Prozess- und Umwelttechni	k "
Chemische Prozesstechnik	6 SST VO
Prozesssimulation	2 SST VO
Chemische Technologien	5 SST VO
Ökologie/Klima, Energie- und Stoffkreisläufe/Recycling	4 SST VO
Prozessanalytik	2 SST VO
Industriemanagement I	1 SST VO
	Gesamt: 20 SST VO
Basisblock: "Chemie und Technologie der Materialie	n"
Metallurgie = Technologie der Metalle (incl. Verarbeitun und Nachbehandlung von Materialien außer Polyme	
Nichtmetallisch-anorganischen Werkstoffe	2 SST VO
Polymere	3 SST VO
Materialeigenschaften, Grundlagen und Messung	4 SST VO
Materialcharakterisierung	3 SST VO
Verbunde und Oberflächen	2 SST VO
Theorie und Simulation	2 SST VO
	Gesamt: 20 SST VO
Basisblock: "Technische Synthese"	
Anorganische Molekularchemie	3 SST VO
Organische Molekularchemie	3 SST VO
Materialsynthesen	2 SST VO
Polymerchemie	2 SST VO
Industrielle Synthese	3 SST VO
Theoretische Aspekte	2 SST VO

Analytische Aspekte Charakterisierung 3 SST VO
Katalyse 2 SST VO
Gesamt: 20 SST VO

Basisblock: "Technische Biochemie und Naturstofftechnologie"

Biochemie II 3 SST VO
Biotechnologie 3 SST VO
Genexpression und Gentechnik 3 SST VO
Mikrobiologie 2 + 2 SST VO
Allgemeine Biologie 2 SST VO
Lebensmittelchemie und –technologie 3 SST VO
Chemie und Technologie nachwachsender Rohstoffe 2 SST VO

Gesamt: 20 SST VO

8. Semester

Spezialisierungsblock pflichtig in Kombination mit Basisblock Wahlfächer

Zu Basisblock <u>Chemische Prozess- und Umwelttechnik</u> sind aus den fünf Spezialisierungsblöcken einer pflichtig zu wählen:

Energietechnik und Klima

Brennstoff- und Energietechnik VO 2.0

Brennstoff- und Energietechnik LU 4.0

Thermische Biomassenutzung VO 1.0

Elektrochemische Energiedirektumwandlung VO 1.0

Elektrochemische Energiedirektumwandlung LU 1.0

Klimafragen in der Luftreinhaltung VO 1.0

Organische Schadstoffe aus thermischen Prozessen VO 1.0

Reaktionstechnik der Verbrennung VO 1.0

Prozesstechnik

Wirbelschichttechnik VO 2.0

Elektrochemische Produktionsverfahren VO 1.5

Elektrochemische Produktionsverfahren LU 1.5

Schüttguttechnik und Explosionsschutz VO 1.0

Staubabscheiden VO 1.0

Auslegung von Membrantrennprozessen VO 1.0

Prozesstechnik Laborübungen LU 4.0

Werkstoffe in der Prozesstechnik

Polymere Werkstoffe in der Prozess- und Umwelttechnik VO 2.0

Anorganische Werkstoffe in der Prozess- und Umwelttechnik VO 2.0

Korrosion VO 2.0

Laborübungen Korrosion LU 6.0

Prozessanalytik und Messtechnik

Messdatenerfassung und -verarbeitung VO 2.0

Angewandte Prozessanalytik VO 2.0

Gas-, Prozess- und Aerosolanalyse LU 4.0

Elektrochemische Messtechniken und Untersuchungsmethoden VO 1.0

Elektrochemische Messtechniken und Untersuchungsmethoden LU 1.0

Partikelmesstechnik VO 1.0

Atmosphärische Aerosolanalytik VO 1.0

Umweltchemie

Umwelttoxikologie VO 1.0

Umweltchemie und Analytik VO 2.0

Umweltchemie und Analytik LU 2.0

Gewerbliche und industrielle Emissionen VO 2.0

Gewerbliche und industrielle Emissionen LU 3.0

Umweltmikrobiologie VO 2.0

Zu Basisblock <u>Chemie und Technologie der Materialien</u> sind aus den fünf Spezialisierungsblöcken einer pflichtig zu wählen:

Metallische Werkstoffe

Technologie der metallischen Sonderwerkstoffe VO 3.0

Analytische Charakterisierung von Metallen VO 1.0

Thermochemie der Metalle und Legierungen VO 1.0

Simulation von Metalleigenschaften VO 1.0

Metallische Werkstoffe LU 6.0

Nichtmetallisch-anorganische Werkstoffe

Hochleistungskeramiken VO 3.0

Nichtmetallische Materialien VO 1.0

Spezielle Analysen- und Charakterisierungsmethoden VO 1.0

Simulation von Festkörpereigenschaften VO 1.0

Praktikum LU 6.0

Polymere

Funktionelle Polymere VO 1.0

Polymeradditive und Formulierung von Kunststoffen VO 1.0

Polymercharakterisierung VO 2.0

Polymerphysik VO 1.0

Hybridpolymere VO 1.0

Polymerchemie und -technologie LU 6.0

Komposite und Schichten

Anorganische Komposite & Schichten VO 2.0

Galvanotechnik und elektrochem. aktive Komposite VO 2.0

Kunststoffverbundsysteme und Lacktechnologie VO 1.0

Charakterisierung und Prüfung von Kompositen und Beschichtungen VO 1.0

Praktikum LU 6.0

Grenzflächen

Phys. & chem. Eigenschaften von Festkörper-Grenzflächen VO 3.0

Oberflächenbestimmte Materialien VO 2.0

Methoden der Charakterisierung von idealen und realen Grenzflächen PS 2.0

Herstellung, Charakt. und/oder Anwendungen von ausgew. Grenzflächen LU 5.0

Zu Basisblock <u>Technische Synthese</u> sind aus den fünf Spezialisierungsblöcken einer pflichtig zu wählen:

Elementorganische und Komplex-Chemie

Struktur und Bindung VO 1.0

Anorganische Reaktionsmechanismen VO 1.0

Metallorganische Chemie für Fortgeschrittene VO 2.0

Koordinationschemie für Fortgeschrittene VO 2.0

Laborübungen LU 6.0

Wirkstoffe

Pharma- und Agrowirkstoffe VO 2.0

Festphasensynthese und Kombinatorische Chemie VO 1.0

Schutzgruppentechniken VO 1.0

Medizinische Chemie VO 1.0

Laborübungen LU 7.0

Makromoleküle

Makromolekulare Chemie LU 6.0

Spezielle Synthesemethoden für Polymere VO 2.0

Polymeranalytik VO 2.0

Spezialpolymere VO 1.0

Anorganische Polymere VO 1.0

Festkörperchemie

Strukturchemie anorganischer Festkörper VO 2.0

Festkörperanalytik VO 2.0

Physikalisch chemische und theoretische Aspekte von Festkörpern VO 2.0

Technische Bedeutung von Anorganischen Festkörpern VO 1.0

Laborübungen LU 5.0

Industrielle Synthese und Technische Katalyse

Technische Katalyse (Homogene und Heterogene Katalyse) VO 3.0

Technische Katalyse LU 6.0

Industrielle Synthesen organischer und anorganischer Produkte VO 3.0

Zu Basisblock <u>Technische Biochemie und Naturstofftechnologie</u> sind aus den fünf Spezialisierungsblöcken einer pflichtig zu wählen:

Fermentationstechnologie

Fermentationsmikrobiologie VO 2.0

Fermentationstechnik VO 1.0

Fermentations-Engineering VO 2.0

Fermentationstechnologie LU 4.0

Fermentationsmikrobiologie LU 3.0

Enzymtechnologie

Proteinchemie u. -technologie VO 2.0

Biokatalyse VO 2.0

Biochemie und Gentechnik B, LU 3.0

Biochemie und Gentechnik C, LU 3.0

Biostatistik VO 1.0

Biochem. Analysenmethoden VO 1.0

Technologie nachwachsender Rohstoffe

Organische Rohstofflehre VO 1.5

Industrielle Produkte aus nachwachsenden Rohstoffen VO 3.0

Biotechnologische Prozesse zur Umsetzung von Naturstoffen VO 1.5

Chem. Technologie nachwachsender Rohstoffe LU 6.0

Naturstoff- und Lebensmittelchemie

Lebensmittelanalytik VO 2.0

Lipophile Pflanzenstoffe VO 2.0

Phytochemie VO 2.0

Lebensmittelchemie LU 3.0

Phytochemie LU 3.0

Gentechnik

Gentechnisches Arbeiten VO 2.0

Molekularbiologische Aspekte der Ökologie VO 1.0

Transgene Organismen als Naturstoff- und Lebensmittel-Lieferanten VO 2.0

Biochemie und Gentechnik A, LU 4.0

Molekularbiologie der Pflanzen LU 3.0

Wahlfachkatalog

Aus diesem Katalog (siehe Anhang) können max. 25 Std. frei gewählt werden, sofern sie nicht aus anderen Basis- oder Spezialisierungsblöcken gewählt werden.

Für die Wahlübungen die aus dem Wahlfachkatalog gewählt werden können gilt folgende Bestimmung:

Es können maximal 18 Stunden Laborübungen gewählt werden, wobei maximal 12 Stunden aus einem Bereich (Technologie/Chemie) möglich sind, für den anderen Bereich ist zwingend die betreuende Arbeitsgruppe zu wechseln. Die Wahlübungen werden mit ihren speziellen Themen in den angegebenen Stundenumfängen an den Instituten ausgeschrieben.

Weiters muß ein Projektpraktikum (10 SST) und ein Diplomandenseminar (2 SST) gewählt werden. Diese Veranstaltungen werden mit ihren speziellen Themen in den angegebenen Stundenumfängen an den Instituten ausgeschrieben.

§ 9 Industrielles Praktikum

Ein einschlägiges industrielles Praktikum kann dem Studierenden gemäß § 59 Abs. 2 UniStG im Ausmaß von 10 SST für das Projektpraktikum angerechnet werden.

Die Anrechnung ist auf Antrag der Studierenden vom Vorsitzenden der Studienkommission durchzuführen, wenn die wissenschaftlichen Voraussetzungen in Hinblick auf das Ausbildungsziel erfüllt sind.

§ 10 Freie Wahlfächer

Studierende müssen im Rahmen der freien Wahlfächer Lehrveranstaltungen im Gesamtausmaß von jeweils mindestens 24 SST innerhalb des gesamten Zeitraumes des Studiums absolvieren. Sie können aus dem Angebot aller anerkannten inländischen und ausländischen Universitäten ausgewählt werden (§4 Ziffer 25 UniStG).

Über jedes gewählte freie Wahlfach ist eine positive Beurteilung zu erbringen.

Die Studienkommission kann freie Wahlfachkombinationen im Ausmaß von maximal 8 Stunden empfehlen, die dann gemäß §10 Abs. 4 UniStEVO mit einem Notenmittelwert im Diplomprüfungszeugnis ausgewiesen werden.

§ 11 Diplomarbeit

Nach §61 UniStG ist eine Diplomarbeit abzufassen. Das Thema der Diplomarbeit ist aus einem der im Studienplan festgelegten Prüfungsfächer zu entnehmen.

§ 12 Durchführung der Dritten Diplomprüfung

Die Dritte Diplomprüfung besteht aus drei Teilen:

- a) Erfolgreiche Ablegung aller im Dritten Studienabschnitt vorgeschriebenen Lehrveranstaltungen
- b) Abfassung der Diplomarbeit
- c) Kommissionelle Prüfung

Bei der Anmeldung zur kommissionellen Prüfung ist neben dem positiven Abschluss der in § 8 dieses Studienplanes angeführten Teile zusätzlich die positive Ablegung von LVA Prüfungen aus den Freien Wahlfächern im Ausmaß von 24 SWS nachzuweisen.

Die kommissionelle Prüfung erfolgt mündlich. Sie beginnt mit einer Präsentation und Verteidigung der Diplomarbeit vor dem Prüfungssenat und dient dem Nachweis der erworbenen Kenntnisse und Fähigkeiten der Fächer des gewählten Schwerpunktes. Dabei ist vor allem auf Verständnis und

Überblickswissen Bedacht zu nehmen. Vom Prüfungssenat sind die Noten der 3 Prüfungsfächer mehrheitlich festzulegen.

Der Prüfungssenat der abschließenden kommissionellen Prüfung setzt sich aus drei Prüfern zusammen. Dem Prüfungssenat hat jedenfalls der Betreuer bzw. die Betreuerin der Diplomarbeit anzugehören. Für die weiteren Mitglieder des Prüfungssenates hat der Kandidat das Vorschlagsrecht, wobei zwei Prüfungsfächer mit inhaltlichem Bezug zur Diplomarbeit zu wählen sind, ein Prüfungsfach davon ist aus dem Basisblock des gewählten Schwerpunktes zu entnehmen. Die endgültige Entscheidung trifft der/die Studiendekan/in.

Das Diplomprüfungszeugnis über die Dritte Diplomprüfung weist folgende Prüfungsfachbezeichnungen und Noten aus:

- Den gebildeten Notenmittelwert aus den in § 8 dieses Studienplanes angeführten Pflichtfächern mit der Bezeichnung "Pflichtfächer aus dem Schwerpunkt" (Basisblock).
- Den gebildeten Notenmittelwerten aus den Lehrveranstaltungen der in § 8 dieses Studienplans angeführten Spezialisierungsblöcken (mit der Bezeichnung "Spezialisierungsblock"). Es können max. 2 Spezialisierungsblöcke angeführt werden.
- Den gebildeten Notenmittelwert aus den Wahlfächern und freien Wahlfächern mit der Bezeichnung "Wahlfächer und Freifächer".
- Den gebildeten Notenmittelwert aus empfohlenen Freifachkombinationen mit der Bezeichnung "Freifachkombination (Titel)".
- Die Note der Diplomarbeit
- Die Noten der mündlichen kommissionellen Prüfung.

Darüber hinaus weist das Diplomprüfungszeugnis des Dritten Studienabschnittes die ermittelte Gesamtbeurteilung unter der Bezeichnung des gewählten Schwerpunktes aus.

§ 13 Prüfungsordnung

Über die angeführten Lehrveranstaltungen sind Lehrveranstaltungsprüfungen abzulegen (§4 Ziffer 26 UniStG).

Vorlesungsprüfungen können schriftlich und/oder mündlich erfolgen, wobei im Fall von schriftlicher und mündlicher Prüfung beide Teile der Prüfung nach Möglichkeit innerhalb von zwei Werktagen abzuhalten sind. Die vorgesehene Prüfungsform ist vom Lehrveranstaltungsleiter am Beginn der Lehrveranstaltung bekannt zu geben. Bei Lehrveranstaltungsprüfungen ist auf den Inhalt und den Umfang des Stoffes der Lehrveranstaltung Bedacht zu nehmen.

Übungen, Laborübungen, Seminare, Proseminare und Projektarbeit sind Lehrveranstaltungen mit immanenten Prüfungscharakter.

Lehrveranstaltungen mit immanenten Prüfungscharakter sind Lehrveranstaltungsprüfungen, bei denen die Beurteilung nicht auf Grund eines einzigen Prüfungsaktes am Ende der Lehrveranstaltung, sondern auf Grund von regelmäßigen schriftlichen oder mündlichen Beiträgen der Teilnehmer/innen erfolgt.

Für die Teilnahme an Exkursionen lautet die Beurteilung "mit Erfolg teilgenommen" (positive Beurteilung) oder "ohne Erfolg teilgenommen" (negative Beurteilung).

Die Diplomprüfungen sind in den entsprechenden Paragraphen für die Studienabschnitte dieses Studienplans geregelt.

§ 14 ECTS-Credits

Die den pflichtigen Lehrveranstaltungen des 1. und 2. Studienabschnittes zugeordneten ECTS-Credits können der Semestereinteilung entnommen werden.

- Den Pflicht- und Wahlfächern des 3. Studienabschnittes wird je SST 1 ECTS-Credit zugeordnet.
- Den freien Wahlfächern werden je SST 0,75 ECTS-Credits zugeordnet.
- Dem Projektpraktikum werden 13 ECTS-Credits zugeordnet.
- Der Diplomarbeit werden 30 ECTS-Credits zugeordnet.

§ 15 Ausnahmebestimmungen

Auf Antrag des/der Studierenden kann der/die Studiendekan/in den Tausch von gebundenen Wahlfächern im Ausmaß von höchstens 8 SST durch andere studienrichtungs-spezifische Fächer bewilligen und damit die Bildung einer individuellen Wahlfachgruppe bewilligen, wenn dadurch das Ziel der wissenschaftlichen Berufsvorbildung nicht beeinträchtigt wird.

§ 16 Übergangsbestimmungen

Es gelten die Übergangsbestimmungen gemäß §80 UniStG. Die Studierenden sind berechtigt, sich jederzeit freiwillig dem vorliegenden Studienplan zu unterstellen. Die Anerkennung von Studienleistungen zwischen dem bisher gültigen und dem vorliegenden Studienplan wird durch eine von der Studienkommission zu erlassende Äquivalenzliste geregelt.

§ 17 Inkrafttreten

Mit Inkrafttreten des geänderten Studienplans gelten die folgenden Eingangsvoraussetzungen für Übungen:

Physikalische Chemie, LU 9 SST (5. Sem.) – Voraussetzung: Prüfungen von Physikalische Chemie 1, VO 3 SST + PS 1 SST

Anorganische Chemie, LU 7 SST (4. Sem.) – Voraussetzung: Prüfungen aus Anorganischer Chemie 1 + 2, VO 1 + 2 SST sowie Chemische Grundlagen, LU 4 SST + PS 1 SST (Labortechnik)

Analytische Chemie, LU 8 SST (2. Sem.) – Voraussetzung: Prüfung aus Analytische Chemie Einführung, VO 1 SST

Instrumentelle Analytik, LU 5 SST (4. Sem.) – Voraussetzung: Prüfung aus Analytische Chemie, VO 2 SST (3. Sem.)

Organische Chemie, LU 11 SST (3. Sem.) – Voraussetzung: Prüfungen aus Chemische Grundlagen, LU 4 SST + PS 1 SST (Labortechnik) sowie Grundlagen der Organischen Chemie, VO 1 SST und Funktionelle Gruppen und Reaktivität in der Organischen Chemie, VO 2 SST (2. Sem.)

Chemische Technologie organischer Stoffe, LU 5 SST (6. Sem) – Voraussetzung: Prüfung aus Organische Chemie, LU 11 SST

Biochemie LU 2 SST (6. Sem.) – Voraussetzung: Prüfung aus Biochemie VO 2 SST oder positiver Abschluss einer Prüfung über ausgewählte Kapitel der Vorlesung

Der Studienplan tritt mit 01.10.2005 in Kraft.

Anhang: Wahlfachkatalog

Wahlfachkatalog Stand: 29.04.2002

Titel der LVA	Vorschlag von	Art	Stunden
Wahluebungen chemisch	STUKO	LU	4.0
Wahluebungen chemisch	STUKO	LU	6,0
Wahluebungen chemisch	STUKO	LU	8,0
Wahluebungen technologisch	STUKO	LU	4,0
Wahluebungen technologisch	STUKO	LU	6,0
Wahluebungen technologisch	STUKO	LU	8,0
Seminar für Studenten im 3. Abschnitt	STUKO	SE	2,0
Seminar für Stüdenten im S. Abseimitt Seminar für Diplomanden	STUKO	SE	2,0
Technikfolgenabschätzung	STUKO	VO	2,0
Technikroigenaoschatzung		VO	2,0
Exkursionen zu industriellen Betrieben	151, 159, 161, 162, 172	EV	2,0
Mathematik III	118	VO	3,0
Mathematik III	118	UE	1,0
Elektronenmikroskopie für Materialwissenschaft, Chemie und Biologie	137	VO	2,0
· · · · · · · · · · · · · · · · · · ·	137	VO	2,0
Rastersondenmikroskopie zur hochaufgelösten Charakterisierung von modernen Materialien	151	VO	2,0
Bildverarbeitung	151	VO	1,0
Spezielle Methoden in der Materialcharakterisierung	151	VO	2,0
Chemie und Analytik des Bodens	151	VO	1,0
Schwingungsspektroskopie	151	VO	3,0
Chemische Sensoren	151	VO	2,0
Atmosphärenchemie und Modellierung	151	VO	1,0
Qualitätssicherung, Validierung und Zertifizierung in der Chemie	151	VO	1,0
Spezielle Trennmethoden	151	VO	1,0
Chemie und Analytik des Wassers	151	VO	1,0
Auswertung multivariater Daten	151, 160	VO	2,0
Recherchieren von chemischen Daten (inkl. Datenbanken)	153, 154, 159, 171	VU	3,0
Biomaterialien	153, 171	VO	1,0
Chemie und Technologie nanostrukturierter Materialien	153, 159	VO	3,0
Poröse Materialien – Synthese und Anwendungen	153, 159	VO	2,0
Bioanorganische Chemie	153	VO	2,0
Kinetik chemischer Reaktion	153	VO	2,0
Loesungsmittel und chemische Reaktivität		VO	2,0
	153	VO	2,0
Magnetische Spektroskopie (1D/2D-NMR, Hetero-Kernresonanz, Festkörper- und Gel- NMR, ESR)	154	VO	3,0
Nomenklatur	154	VU	2,0
Asymmetrische Synthese	154	VO	2,0
Molecular Modeling	154	VO	2,0
Supramolekulare Chemie (Verwendung von Templaten, Selbstanordnungsprozesse)	154	VO	2,0
Bioorganische Chemie	154	VO	2,0
Alternative Synthesemethodologien (wie z.B.: Ultraschall, Mikrowellen, Festkörper,			
Elektrochemische Synthese, etc)	154, 158, 171	VO	2,0
Elektronenstruktur und Spektroskopie	156	VO	3,0
Laser in Technologie und Forschung	156	VO	2,0
Fourier-Transformation in Spektroskopie und Diffraktion	156, 171	VO	2,0

Thermodynamik in Hinblick auf industrielle Anwendung	156	vo	2,0
Quantenmechanische Berechnungsmethoden	156	VO	3,0
Bioelektrochemie	158	VO	2,0
Elektrodenkinetik und Elektrokatalyse	158	VO	2,0
Batterien und Brennstoffzellen: Energiespeicher und Materialien-Neuentwicklungen	158	VO	3,0
Basic Engineering	159	VO	7,0
Basic Engineering Basic Engineering	159	SE	6,0
Industriemanagement II	159	VO	1,0
Fasertechnologie und Faserverarbeitung	159	VO	2,0
Auslegung von Membrantrennverfahren	159	RU	1,0
Raffinerietechnik	159	VO	2,0
Process Plant Economics			
	159	VO	1,0
Fluiddynamik Thermischer Prozesse	159	VO	2,0
Thermische Biomassenutzung II	159	VO	1,0
Wirbelschichtsysteme	159	VO	1,0
Diffuse Staubemissionen	159	VO	1,0
Umweltbelastungsindikatoren	159	VO	1,0
Lebensmittelmikrobiologie und Betriebshygiene	160	VO	2,0
Chemie und Technologie der Lebensmittel-Zusatzstoffe und -Fremdstoffe	160	VO	2,0
Chemie und Technologie der Genussmittel	160	VO	1,0
Gebrauchsgegenstände in der Lebensmittelchemie	160	VO	1,0
Computerunterstützte Chemie	160	VO	2,0
Chemical und Physical Vapour Deposition in der Technologie	134, 156, 161		2,0
Allgemeine Pulvermetallurgie	161	VO	4,0
Technologie der Hart- und Superhartstoffe	161	VO	2,0
Hochtemperaturwerkstoffe	161	VO	1,0
Neue Verf., Recycling von Sekundärrohstoffen	161	VO	2,0
Werkstoffkundliche Untersuchungsmethoden	151, 161, 171	VO	2,0
Chemie und Technologie der Baustoffe	161	VO	2,0
Papiertechnologie	162	VO	2,0
Chemie und Technologie der Farbstoffe und Färbeverfahren	162	VO	2,0
Chemie und Technologie der Wasch- und Reinigungsmittel	162	VO	2,0
Röntgenkristallographie	171	VO	2,0
Röntgenphasenanalyse	171	VO	2,0
Einkristallstrukturanalyse	171	VO	2,0
Mikrobiologische Grundlagen und Methodik	172	VO	2,0
Biochemische Technologie – Rechenübungen	172	RU	2,0
Industrielle Biotechnologie	172	VO	1,0
Bier- und Weintechnologie	172	VO	1,0
Zellkulturtechnologie	172	VO	2,0
Biochemische Analyse	172	VO	2,0
Mikrobielle Ökologie	172	VO	2,0
Bioinformatik	172	VO	2,0
Betriebliche Sicherheit f. Chemiker	172	VO	2,0
Grundlagen der Abwasserreinigung	172	VO	1,0
Einführung in mikroskopische Untersuchungstechniken	171, 173	VO	1,0
Biochemie der Pflanze	173	VO	2,0
Biologische Reststoffbehandlung	173	VO	1,0
Chemiegeschichte	1	VO	2,0
Summe			200,0
~ 			-00,0

Übergangsbestimmungen bzw. Äquivalenzkatalog der Studienrichtung Technische Chemie

vom Studienplan (01.10.1993) nach TechStG zum Studienplan (01.10.2002) nach UniStG

Stand: 15.10.2004

Wahlfächer:

Es können alle Lehrveranstaltungen des Wahlfachkataloges und der Spezialisierungsblöcke des "neuen" Studienplans für den Wahlfachkatalog des "alten" Studienplans anerkannt werden, solange das Verhältnis der Vorlesungsstunden zu den Übungsstunden gemäß der alten Wahlfachkataloge erhalten bleibt. Die Regelung bezüglich der Wahlfächer ist vorläufig bis Ende Studienjahr 2004/05 befristet.

Pflichtfächer:

1. Fächer des "alten" 1.Abschnittes

Alter Studienplan	Neuer Studienplan
Analytische Chemie I-Chemische Analyse, 3 VO	Analytische Chemie, 2 VO (1.Semester)
Analytische Chemie Einführung, 1 PS	Analytische Chemie Einführung, 1 VO (1.Semester)
Analytische Chemie II-Chemische Analyse, 2 VO	Analytische Chemie, 2 VO (2.Semester)
Analytische Chemie III-Physikalische Analyse, 3 VO	Analytische Chemie, 2 VO (3.Semester)
Analytische Chemie LU I, 6 LU	Analytische Chemie, 8 LU (2.Semester)
Analytische Chemie LU II, 9 LU	Instrumentelle Analytik, 5 LU (4.Semester)
Anorganische Chemie Ia, 4 VO	Anorganische Chemie, VO 1 (1.Semester)
	Anorganische Chemie, VO 2 (2.Semester)
	Anorganische Chemie, VO 2 (3.Semester)
Anorganische Chemie Ib	Anorganische Chemie, VO 2 (4.Semester)
Allgemeines Einführungslabor, 3 LU	Chemische Grundlagen, 4 LU (1.Semester)
	Chemische Grundlagen, 1 PS (1. Semester)
Anorganische Chemie I, 6 LU	Anorganische Chemie, 7 LU (4.Semester)
Organische Chemie I, 3 VO	Organische Chemie, 1 VO (1.Semester)
	Organische Chemie, 2 VO (2.Semester)
Organische ChemieII, 3 VO	Organische Chemie, 2 VO (3.Semester)
	Organische Chemie der Biomoleküle, 1 VO (4.Semester)
Organische Chemie LU, 15 LU	Organische Chemie, 11 LU (3. Semester)
Organische Analyse, 2 VO	Strukturaufklärung, 2 VO (3. Semester)
Physikalische Chemie I, 6 VO	Physikalische Chemie, 4 VO (3.Semester)
Physikalische Chemie I, 2 PS	Physikalische Chemie, 1 PS (3.Semester)
Physikalische Chemie II, 3 VO	Physikalische Chemie, 4 VO (4.Semester)
Physikalische Chemie II, 1 PS	Physikalische Chemie, 1 PS (4. Semester)
Physikalische Chemie LU, 9 LU	Physikalische Chemie, 9 LU (5. Semester)
EDV, 1 VU	Informatik, 2 VU (1. Semester)
Mathematik für Chemiker I, 4 VO	Mathematik, 3 VO (1. Semester)
Mathematik für Chemiker UE I, 2 UE	Mathematik, 2 UE (1. Semester)
Mathematik für Chemiker II, 2 VO	Mathematik, 2 VO (2. Semester)
Mathematik für Chemiker UE II, 1 UE	Mathematik, 1 UE
Physik Teil A, 4 VO	Physik, 3 VO (1.Semester)
Physik Teil B, 3 VO	Physik, 3 VO (2. Semester)
Biochemie, 2 VO	Biochemie, 2 VO (5. Semester)
Biochemie LU, 2 LU	Biochemie, 2 LU (6. Semester)

2. Fächer des "alten" 2. Abschnittes

Alter Studienplan	Neuer Studienplan
Chemische Technologie Organischer Stoffe I, 3 VO	Chem. Technol. Organ. Stoffe, 3 VO (5.Semester)
Chemische Technologie Organischer Stoffe LU, 5 LU	Chem. Technol. Organ. Stoffe, 5 LU (6.Semester)
Chemische Technologie Anorganischer Stoffe I, 3 VO	Chem. Technol. Anorgan. Stoffe, 3 VO (5. Semester)
Chemische Technologie Anorganischer Stoffe LU, 4 LU	Chem. Technol. Anorgan. Stoffe, 4 LU (6. Semester)
Technische Elektrochemie, 2 VO	Technische Elektrochemie, 2 VO (6. Semester)
Theoretische Chemie, 2 VO	Theoretische Chemie, 2 VO (6. Semester)
Chemische Verfahrenstechnik, 1 VO	Chemische Verfahrenstechnik, 1 VO (6. Semester)
Thermische Verfahrenstechnik I, 2 VO	Thermische Verfahrenstechnik, 2 VO (5. Semester)
Mechanische Verfahrenstechnik I, 2 VO	Mechanische Verfahrenstechnik, 2 VO (6. Semester)
Verfahrenstechnik Labor für Chemiker, 5 LU	Verfahrenstechnik, 5 LU (6. Semester)
Biochemische Technologie, 3 VO	Biochemische Technologie, 1 VO (6. Semester)
oder	und
Biochemie und Biochemische Technologie, 2 VO	Lebensmitteltechnologie, 1 VO (6. Semester)
	oder
	Biotechnologie, 3 VO (7. Semester)

3. Fächer, die bei bereits abgeschlossenem 1. Abschnitt des alten Studienplanes nachzuholen sind, um in den 3. Abschnitt wechseln zu können

Titel der Lehrveranstaltung	Anzahl der SWS
Chem. Technol. Organ. Stoffe VO	3
Chem. Technol. Organ. Stoffe LU	5
Chem. Technol. Anorg. Stoffe VO	3
Chem. Technol. Anorg. Stoffe LU	4
Mechanische Verfahrenstechnik VO	2
Thermische Verfahrenstechnik VO	2
Chemische Verfahrenstechnik VO	1
Verfahrenstechnik LU	5
Biotechnologie VO	1
Lebensmitteltechnologie VO	1
Physikalische Chemie VO	4
Physikalische Chemie PS	1
Theoretische Chemie VO	2
Technische Elektrochemie VO	2
Festkörperchemie VO	2
Festkörperchemie LU	2
Toxikologie VO	1
Summe	41
Anzahl der Stunden 1. Abschnitt des alten	105
Studienplanes	
Gesamtsumme der Stunden für den 1. und 2. Abschnitt des neuen Studienplanes	142

<u>4.</u>

Ein nach altem Studienplan abgeschlossener 1. Abschnitt bedingt automatisch die Anrechnung des ganzen 1. Abschnittes des neuen Studienplans.

Äquivalenzliste zu den Pflichtstunden des "alten" 2. Abschnitts

ALT NEU

	ALT					NEU				
	Lehrveranstaltungstitel	vo	LU	UE	PS+ SE	Lehrveranstaltungstitel	vo	LU	UE	PS+ SE
151333	Analytische Chemie VI-COBAC			3		Auswertung multivarianter Daten	2			
151387	Analyt. Chem. VIII-Prozeßanalyse	2				Prozessanalytik	2			
151398	Seminar Moderne Anal. Chemie				2	Seminar für Studenten im 2. Abschnitt (Bereich Analytik)				2
151409	Analyt. Chem.IV-Physik.Analyse	2				Festkörperanalytik	2			
151410	Analytische Chemie III (LU)		6			Wahlübung chemisch		6		
151443	Industrielle Umweltanalytik	2				Umweltchemie und Analytik	2			
151454	Analyt.Chem. V-Surface u.Interface Anal.	2				Spez. Methoden in d. Materialcharakterisierung	2			
151519	Analyt.Chem. VII-Trennmeth.	2				Analytische Aspekte-Charakterisierung	3			
152284	Inform.verarbeitung i.d. Chemie	2				Computerunterstützte Chemie	2			
152845	Inform.verarbeitung i.d. Chemie			1						
153021	Anorganische Chemie II	2				Prinzipien in der Chemie für Fortgeschrittene	2			
153058	Anorganische Chemie IV	2				Anorg. Molekularchemie	3			
153219	Anorganische Chemie II LU		8			Wahlübungen chemisch		6		
153307	Anorganische Chemie III	2				Lösungsmittel u. chem. Reaktivität	2			
154047	Org.Chem.Labor f. Fortgeschrittene		10			163 Wirkstoffsynthese		7		
154124	Strukturaufklärung Org. Verbindungen				1	163 Analytische Aspekte(teil)				
154168	Synthontechnik	1								
154256	Organische Stereochemie	1			=	163 Organische Molekülchemie	3			
154323	Spez.geb.d.Org.Synthese f.Fortgeschr.	1								
154223	Physikal.Organische Chemie	1				163 Festphasensynthese u. Komb. Chemie	1			
154202	Organische Chemie Seminar II SE				1	163 Medizinische Chemie	1			
154312	Organische Chemie III (SV,engl.)	2				163 Pharma- und Agrowirkstoffe	2			
154344	Organisch Chemisches Seminar I				1	163 Schutzgruppentechniken	1			
156027	Katalyse I-Grundlagen	2				165 Katalyse	2			
156085	Physik.Chemie II Laboreinf. PS				1	165 Wahlübungen chem./technol		8		
156162	Physik.Chemie II Labor.		8							
158006	Elektronenspektroskopie	2				165 Elektronenstruktur u.Spekt.	3			
158016	Festkörperphysik I, Grundlagen SE				2	Simulation von Metalleigenschaften	1			
						Simulation von Festkörpereigenschaften	1			
158103	Elektrochemie		4			Wahlübungen chem./technol.		4		
159500	Mechanische Verfahrenstechnik II	2				166 Teil Chemische Prozesstechnik	2(6)			
159995	Thermische Verfahrenstechnik II	2				166 Teil Chemische Prozesstechnik	2(6)			
160002	Lebensmittelchemie		3			166 Lebensmittelchemie		3		
160270	Lebensmittelchemie	3				166 Lebensmittelchemie u.Technologie	3			

	ALT					NEU				
	Lehrveranstaltungstitel	VO	LU	UE	PS+ SE	Lehrveranstaltungstitel	VO	LU	UE	PS+ SE
161008	Chem.Techn.Anorg. Stoffe II		12			Wahlübungen chem./technol.		8		
161854	Chem.Techn.Anorg.Stoffe III	4				Technologie d. metallischen Sonderwerkstoffe	3			
						Nichtmetallische Materialien	1			
162475	Chem.Technol.Org. Stoffe Labor LU I		10			Makromolekulare Chemie		6		
						Organische Technologie		5		
162486	Chem.Technol.Org. Stoffe III	3				Chem. u. Techn. der Wasch- u. R.mittel oder	2			
						Chemie. u. Techn. der Farbstoffe	2			
162497	Chem.Technol.Org. Stoffe II	3				162 Teil Technologien/Polymere	2(5)			
162585	Kunststofftechnik PS				3	162 Polymeradditive	1			
						162 Polymercharakterisierung	1			
171000	Strukturchemie	2				Festkörperchemie	2			
171001	Strukturchemie		2			Festkörperchemie		2		
171015	Chemische Kristallographie I	2				Röntgenkristallographie	2			
171875	Strukturchemie für Organiker	1				Einkristallstrukturanalyse	2			
172321	Biochemie II-Übungen		4			Proteinchemie		3		
172337	Biochemie II	3				Biochemie II	3			
172392	Mikrobiologie I	3				166 Mikrobiologie I	2			
172491	Mikrobiologie II	2				166 Mikrobiologie II	2			
172518	Gentechnik & Genexpression	2				166 Gentechnik & Genexpression	2			
172530	Einführung in die Mikrobiologie	1				Mikrobiologische Grundlagen u. Methodik	2			
172541	Prinzipien der Ökologie	2				166 Teil Ökologie Klima Energie	2			
172595	Mikrobielle Ökologie	2				166 Umweltmikrobiologie	2			
172651	Biochemische Technologie UE		4			166 Fermentationstechnol	4			
172705	Biophysikalische Chemie SE				2	166 Proteinchemie und -technologie	2			
172601	Biochemische Technologie	3				166 Biochemische Technologie	1			
	oder					und				
172738	Biochemie und Biochemische Technologie	2				Lebensmitteltechnologie	1			
						oder				
						Biotechnologie	3			
172772	Mikrobiologie Übungen		3			166 Fermentationsmikrobiologie	3			<u> </u>
172815	Toxikologie	2				166 Toxikologie	1			—
173261	Technische Mikroskopie	1				166 Mikroskop. Untersuchungstechn	1			
173272	Technische Mikroskopie		1							<u> </u>
173371	Allgem.Biologie und Angew.Botanik	3				166 Allgemeine Biologie	2			<u> </u>
173443	Organische Rohstofflehre	3				166 Org.Rohstofflehre	1,5			<u> </u>
173475	Umweltchemie	3				165 Umweltchemie	2			