Measure rigidity for diagonalizable actions (Manfred Einsiedler, Winter 2024)

Yuxiang Jiao https://yuxiangjiao.github.io

Contents

1	Lecture 1	1
2	Lecture 2	2
3	Lecture 3	3

§1 Lecture 1

Theorem 1.1 (Furstenberg)

Let $A \subset \mathbb{T}$ be a closed and $\times 2$, $\times 3$ -invariant set. Then

- $\#A < \infty$ consisting of periodic points, or
- $A = \mathbb{T}$.

Conjecture 1.2 (Furstenberg)

Let μ be an invariant probability measure for the joint $\times 2$, $\times 3$ -action that is ergodic. Then

- $\# \operatorname{supp} \mu < \infty$, or
- $\mu = m_{\mathbb{T}}$ the Lebesgue measure.

Theorem 1.3 (Rudolph)

Let μ be $\times 2$, $\times 3$ -invariant ergodic probability measure. If $h_{\mu}(\times 2) > 0$ (or $h_{\mu}(\times 3) > 0$, or dim $\mu > 0$), then $\mu = m_{\mathbb{T}}$.

Theorem 1.4 (Einsiedler-Katok-Lindenstrauss, 2005)

Let
$$A = \left\{ \begin{bmatrix} * & \\ & * \end{bmatrix} \right\} \subset SL(3,\mathbb{R})$$
 act on $X_3 = SL(3,\mathbb{R})/SL(3,\mathbb{Z})$. Let μ be an A -

invariant ergodic probability measure with $h_{\mu}(a) > 0$ for some $a \in A$. Then $\mu = m_{X_3}$ is the uniform measure.

2 Lecture 2 Ajorda's Notes

Theorem 1.5 (Lindenstauss, 2003)

Let $A = \left\{ \begin{bmatrix} * \\ * \end{bmatrix} \times \begin{bmatrix} * \\ * \end{bmatrix} \right\} \subset \operatorname{SL}(2,\mathbb{R}) \times \operatorname{SL}(2,\mathbb{R}) \text{ act on } X = \operatorname{SL}(2,\mathbb{R}) \times \operatorname{SL}(2,\mathbb{R}) / \Gamma$ with Γ irreducible. Let μ be an A-invariant ergodic probability measure with $h_{\mu}(a) > 0$ for some $a \in A$. Then $\mu = m_X$.

Theorem 1.6 (Einsiedler-Lindenstrauss, 2023)

Let $A \subset \mathrm{SL}(2,\mathbb{R})^k$ be isomorphic to \mathbb{R}^2 and \mathbb{R} -diagonalizable. Let $\Gamma < \mathrm{SL}(2,\mathbb{R})^k$ be irreducible and $X = \mathrm{SL}(2,\mathbb{R})^k/\Gamma$. Let μ be an A-invariant ergodic probability measure with $h_{\mu}(a) > 0$ for some $a \in A$. Then

- μ is homogeneous with semisimple stabilizer, or
- X is non-compact and μ is invariant under a unipotent flow, and supported on an orbit of a solvable group.

Example 1.7

Let $K=\mathbb{Q}(\sqrt{3})\hookrightarrow\mathbb{R}\times\mathbb{R}$ and $\mathbb{Z}[\sqrt{3}]\hookrightarrow\mathbb{R}\times\mathbb{R}$ which gives an irreducible lattice. Then $\mathrm{SL}(2,\mathbb{Z}[\sqrt{3}])$ also gives an irreducible lattice in $\mathrm{SL}(2,\mathbb{R})\times\mathrm{SL}(2,\mathbb{R})$. We consider the unipotent subgroup $U=\left\{\begin{bmatrix}1&*\\1\end{bmatrix}\times\begin{bmatrix}1&*\\1\end{bmatrix}\right\}$. Then $U\Gamma\cong\mathbb{R}^2/\mathrm{Galois}(\mathbb{Z}[\sqrt{3}])\cong\mathbb{T}^2$. This gives an example for the second case in the theorem. To understand these cases, we should classify invariant measures on tori.

Theorem 1.8 (Einsiedler-Lindenstrauss, 2023)

Let $A = \left\{ \begin{bmatrix} h \\ h^{-1} \end{bmatrix} : h \in \mathbb{Q} \right\} < \mathrm{SL}(2,\mathbb{A})$ where $\mathbb{A} = \mathbb{R} \times \prod_p' \mathbb{Q}_p$ is the adel. Let μ be an A-invariant ergodic probability measure on $X_{\mathbb{A}} = \mathrm{SL}(2,\mathbb{A})/\mathrm{SL}(2,\mathbb{Q})$. Then

- $u = m_{X_A}$, or
- μ is the uniform Haar measure on a periodic orbit of a unipotent subgroup, or
- *μ* is the Dirac measure on a fixed point.

§2 Lecture 2

Leafwise measures. We consider the leafwise measure on $X = G/\Gamma$ with respect to H < G: a measure μ_x^H on H for almost every $x \in X$ so that the conditional measure of $\mu|_{\text{box}}$ on the local pieces of H-orbits can be obtained by

$$(\mu|_{\mathrm{box}})_{V_x \cdot x}^{\mathcal{A}_{\mathrm{box}}^H} = \frac{1}{\mu_x^H(V_x)} (\mu_x^H|_{V_x}) \cdot x,$$

where box is a "rectangle" (product of H-direction and some transverse direction) on X, $\mathcal{A}_{\text{box}}^H$ is the σ -algebra whose atoms are pieces of H-orbits, $h \mapsto h \cdot x$ gives the map from $V_x \subset H$ to the box.

2

Ajorda's Notes 3 Lecture 3

Fubini-construction of leafwise measure. Define $\widetilde{X} = X \times H$ equipped with $\mu \times m_H$. Let \mathcal{A}_H be the preimage of \mathcal{B}_X under $(x_0, h_0) \mapsto h_0^{-1} x_0 \in H$. The atom $[(x_0, h_0)]_{\mathcal{A}_H} = \Delta_H(x_0, h_0)$ where $\Delta(h)(x_0, h_0) := (hx_0, hh_0)$.

Multiplying by a density function $f_0 \in L^1(H)$. Taking conditional measure and dividing by the density we create a Radon measure (somehow the conditional measure of the infinite measure $\mu \times m_H$) on the Δ_H -orbits

$$(\mu \times m_H)_{(x_0,h_0)}^{\mathcal{A}_H}$$
.

Projected to H, we obtain μ_x^H . Moreover, the h_0 -coordinate is only relevant for the position of

Compatibility of leafwise measures: If $x, h \cdot x \in X$ for some $h \in H$, then $\mu_{hx}^H h \propto \mu_x^H$.

Entropy. Let $a \in G$ be diagonalizable preserving μ . Let $U < G_a^+$ be normalized by a. Then we can look at μ_x^U and these relate to entropy:

$$h_{\mu}(a, U) = \lim_{n \to \infty} \frac{1}{n} \log \mu_{x}^{U}(a^{n} B_{1}^{U} a^{-n}).$$

On the other hand, the ergodic theory also gives

$$h_{\mu}(a, U) = \lim_{n \to \infty} -\frac{1}{n} \log \mu_x^U(a^{-n}B_1^U a^n).$$

These two inequality tell us a phenomenon: the global growth rate of the measure of a U-ball equals the local dimension of μ .

There are also several properties:

- If $U = G_a^+$ then $h_{\mu}(a) = h_{\mu}(a, U)$. If $h_{\mu}(a, U) = 0$ then $\mu_x^U = \delta_e$.
- If $h_{\mu}(a, U) = h_{m_X}(a, U)$ is maximal, then μ is U-invariant.

Product structure of leafwise measures. If $G_a^+ = U_{\alpha_1} \cdots U_{\alpha_n}$ is a direct product of root groups, then

$$\mu_x^{G_a^+} \propto \mu_x^{\alpha_1} \times \cdots \times \mu_x^{\alpha_n}$$
 a.s..

In particular, $h_u(a) = \sum h_u(a, U_{\alpha_i})$.

Idea of the proof. Say $G_a^+ = U_\alpha U_\beta$. Assume that we can distinguish U_α , U_β by some $b \in A$: bcommutes with U_{α} but $U_{\beta} \subset G_b^-$. Choose $x \in X$ and elements u_{α} , u_{β} . We aim to show that the conditional measure $\mu_x^{U_\alpha}$ is proportion to an appropriate translation of $\mu_{u_\alpha u_\beta x}^{U_\alpha}$.

We iteration them by b. We have $\mu_x^{\alpha} = \mu_{b^n x}^{\alpha}$. Assume $b^n x \to y$ as $n \to \infty$. Applying Luzin's theorem, we can assume the conditional measures are continuous on a large set. Then $\mu_{b^n x}^{\alpha} \to \mu_y^{\alpha}$, where $y \in U_{\alpha} x$ because of the choice of b. Then we get the product structure. \Box

§3 Lecture 3

Symmetry of entropy contributions. If α have $-\alpha$ have unequal entropy contributions, then μ is invariant under a nontrivial unipotent subgroup of U_{α} or $U_{-\alpha}$.

All statement made for entropy and contributions also work conditionally over a factor of the action (in another word, conditioned on an A-invariant σ -algebra). We use \mathcal{A}_{α} to denote the σ -algebra generated by $x \mapsto \mu_x^{\alpha}$.

3 Lecture 3 Ajorda's Notes

What is the leafwise measure for U_{β} conditioned on \mathcal{A}_{α} : $\mu_{x}^{\beta|\mathcal{A}_{\alpha}}$ describes $\mu_{x}^{\mathcal{A}_{\alpha}}$ along U_{β} -orbits. Then $\mu_{x}^{\beta|\mathcal{A}_{\alpha}} = \mu_{x}^{\beta}$ because of the product structure for $U_{\alpha}U_{\beta}$.

We consider the diagram with three roots α , β , γ on the plane. Recall the entropy contribution formula (assume that $a \in A$ is chosen that $h_{\mu}(a) > 0$ and α , β contributes to $h_{\mu}(a)$, γ contributes to $h_{\mu}(a^{-1})$)

$$h_{\mu}(a) = h_{\mu}(a, U_{\alpha}) + h_{\mu}(a, U_{\beta})$$

= $h_{\mu}(a^{-1}) = h_{\mu}(a^{-1}, U_{\gamma}).$

For conditional entropies,

$$h_{\mu}(a|\mathcal{A}_{\alpha}) = h_{\mu}(a, U_{\alpha}|\mathcal{A}_{\alpha}) + h_{\mu}(a, U_{\beta})$$

= $h_{\mu}(a^{-1}) = h_{\mu}(a^{-1}, U_{\gamma}).$

This tells us $h_{\mu}(a, U_{\alpha}) = h_{\mu}(a, U_{\alpha} | \mathcal{A}_{\alpha})$. By the assumption, we have $h_{\mu}(a, U_{\alpha}) > 0$. Therefore, $h_{\mu}(a, U_{\alpha} | \mathcal{A}_{\alpha}) > 0$. This means that within the same \mathcal{A}_{α} -atom, we can find pairs of different points on the same U_{α} -orbit: $x, u_{\alpha}x$, where $u_{\alpha} \neq e$. This gives $\mu_{x}^{\alpha} = \mu_{u_{\alpha}x}^{\alpha}$. Then we obtain some translation invariance of μ_{x}^{α} .

Non-maximal torus actions. Our next goal is to show the following:

Theorem 3.1 (Einsiedler-Lindenstrauss, 2023)

 $X=\mathrm{SL}(2,\mathbb{R})^k/\Gamma$ and Γ is irreducible (arithmetic). Let $A\subset\mathrm{SL}(2,\mathbb{R})^k$ be isometric to \mathbb{R}^2 and diagonalizable. Let μ be an A-invariant ergodic probability measure with $h_\mu(a)>0$, then μ has nontrivial unipotent invariance.

Let $\mathrm{SL}(2,\mathbb{R})^k=G_1\times G_2\times G_3$ satisfy that $a\neq e\in G_1,b\neq e\in G_2$ are contained in A. Let $U=U_\alpha=G_a^+$.

Recall that $h_{\mu}(a) > 0$ tells us μ_x^U is nontrivial with a growth rate. In Lindenstrauss's low entropy method, he used a fact that μ is U-recurrent iff μ_x^U is infinite. We now have a quantitative version of μ_x^U is infinite. So we expect to show that μ satisfies a quantitative recurrence statement for U.

The idea is the following. If cover the space by r^{-d} balls of radius r. By Kac's lemma, for each r-ball, the points that don't return within $r^{-d-\varepsilon}$ has the measure less than $r^{d+\varepsilon}$. So that the total measure of non-recurrent points in the r^{-d} ball's is at most r^{ε} . We take $r=e^{-n}$ and apply Borel-Cantelli lemma. We obtain a polynomial recurrence.

For the actual practice, we should combine this philosophy with the nontrivial growth of leafwise measures to obtain a similar polynomial recurrence statement. A precise statement is as the following: given $B \subset G/\Gamma$, we have

$$\mu\left\{x\in B:\mu_x^U \text{ has nontrivial growth rate and does not return within } a^nB_2^{U_\alpha}a^{-n}\right\}\leqslant e^{-h_\mu(a,U_\alpha)n}.$$

Now we want to show $h_{\mu}(b) > 0$. We assume for the purpose of a contradiction that $h_{\mu}(b) = 0$. By Brin-Katok, the entropy is also

$$h_{\mu}(b) = \lim_{n \to \infty} \frac{1}{2n} \log \mu$$
 (Bowen *n*-ball for two sided map defined by *b*).

Here two sided Bowen ball at x is $D_n \cdot x := (\bigcap_{k=-n}^n b^k B_{\varepsilon}^G b^{-k}) \cdot x$. The zero entropy shows that the measures of Bowen balls are not decay so fast. We will combine this with the recurrence argument to obtain a contradiction.

3 Lecture 3 Ajorda's Notes

Using these ideas we obtain: for μ -almost every x and all sufficiently large n (depending on x) we have $e^{\frac{1}{2}h_{\mu}(a,U_{\alpha})n}$ -many different returns within $a^nB_2^{U_{\alpha}}a^{-n}$ to $D_{100n}\cdot x$. Write $x=g\Gamma$. Then we have $ug=hg\gamma$, where $u\in a^nB_2^{U_{\alpha}}a^{-n}$ and $h\in D_{100n}$. Now we need

to use the arithmeticity of Γ . The heights of the γ responsible for the return is $\ll e^{2n}$.

Claim 3.2. All γ commute.

Proof. Because
$$[\gamma_1, \gamma_2]$$
 has height $\ll e^{8n}$ and $\|[\gamma_1, \gamma_2] - \mathrm{id}_{G_2}\| \ll e^{-200n}$.

There are two cases:

- γ 's are unipotent, then γ must be identity. But we have several returns, we obtain a contradiction.
- γ 's are diagonalizable: too many lattice elements, a contraction.