

Deep Learning: Feature Detection

ENEE 4584/5584 CV Apps in DL Dr. Alsamman

Slide Credits:

Handcrafted Feature Engineering

- Features are unique descriptors used to identify objects
- Traditional data science relied on manual feature engineering
- Use domain and business knowledge
 - Very tedious process
 - Subject to human bias
- Requires complex math to formulate
 - > Requires relaxed assumptions and simplifications to conceive
- Requires complex programming to realize
 - > Accuracy vs speed

Deep Learning Features

- DL unifies domain knowledge, formulation, and programming
 - > focuses on DL
- Let the architecture learn from data presented
 - > No need for handcrafting, approximations, assumptions
- Emphasis on data
 - > Data must be accurate otherwise "garbage in garbage out".
 - > Data must be inclusive otherwise it results in learning bias
 - > Data collection, accurate labeling is expensive

CNN Feature Detection

- Start with a database: desired feature points are labeled
- Convolution NN architecture:
 - ➤ Convolutional layer
 - ➤ Activation layer
 - ➤ Pooling layer
 - > FC (dense layer)

2D Convolutional Layers

- Odd filter sizes
 - > Typically square
- Use many filters
 - > Faster to use more filters as you go deeper
 - \triangleright Traditional approach is to choose 2^n filters
- Channels (color)
 - > Keep color channels if features are associated with them
 - > Apply grayscale if features are structural not color related
- Stride (S) of convolution
 - > Affects the convolution output size
 - ➤ Spatial size of output
 - Padding (P)

$$X \times Y = \left(\frac{H - F + 2P}{S} + 1\right) \times \left(\frac{W - F + 2P}{S} + 1\right)$$

Alsamman ENEE 6583

Convolution
output
(padded, stride=1)

Alsamman ENEE 6583

Activation

- Adds non-linearity
- Typically Rectified Linear Units (ReLU)
 - > Fast gradient calculation
- Leaky ReLU
 - ➤ Not as fast
 - ➤ Non-flat negative domain
 - ➤ Must specify "leak" a_i

Alsamman

Pooling

- Reduce dimensionality
- Improves localization
- Max pooling is typical
- Pooling is even sized
- Stride (S) of pooling affects size of receptive field (output)

$$\left(\frac{X}{S}+1\right) \times \left(\frac{Y}{S}+1\right)$$

FCNN Layers

- A number of convolutional-activation-pooling layers are employed
 - > Each reducing the receptive field
 - > Experimentally determined
- A fully connected (dense) neural network is then added
 - > All the receptive fields are flattened
 - converted into a single row vector
- Activation, layers, depth of layer is experimental
 - ReLU-like activations are preferred

FCNN Output

- Output size = number of features × size of feature
 - > If features are locations in the image then size of feature = 2 (row and column)
- Output neurons must match feature type
 - > If the feature location is desired then don't use softmax
- Error (learning criteria) must match output
 - Use MSE, MAE, when generating data (i.e not doing classification)

Alsamman ENEE 6583

Additions to Boost Performance

Dropout

- Definitely apply to FCNN
- > Experiment with CNN layers
 - drop out as a percentage of weights in a filter, e.g. 1 weight in 3x3 = 1/9 dropout

Data normalization

- ➤ Problematic with RGB images
- Idea: normalize grayscale and then apply to RGB

Normalization as a function/layer

- ➤ Batch normalization, layer normalization
- "Whiten" output
- > Applied after convolution, or activation