

SÍLABO Mecánica Vectorial para Ingenieros

Código	ASUC01418		Carácter	Obligatorio
Prerrequisito	Física 1			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2025-00			

I. Introducción

Mecánica Vectorial para Ingenieros es una asignatura obligatoria de facultad que se ubica en el cuarto periodo académico de las escuelas profesionales de Ingeniería Industrial, Ingeniería de Minas, Ingeniería Eléctrica e Ingeniería Electrónica. Tiene como prerrequisito a Física 1 y es prerrequisito de la asignatura Resistencia de Materiales para la Escuela Profesional de Ingeniería Industrial. Desarrolla a nivel intermedio la competencia transversal conocimientos de Ingeniería. En virtud de lo anterior, su relevancia reside en desarrollar las competencias orientadas a los principios de la mecánica vectorial a través del estudio de la mecánica y dinámica

Los contenidos generales que la asignatura desarrolla son los siguientes: estática de partículas: fuerzas en el plano y fuerzas en el espacio; cuerpos rígidos, sistemas equivalentes de cuerpos rígidos en dos y tres dimensiones; fuerzas distribuidas; centroides y centros de gravedad; análisis de estructuras, armaduras y armazones; fuerzas en vigas y cables; momentos de inercia; cinemática de partículas, movimiento relativo y cinemática del cuerpo rígido.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de aplicar los principios y leyes de la estática y la dinámica en la resolución de problemas en el análisis de partículas y cuerpos rígidos en equilibrio para la determinación de fuerzas en estructuras, en el análisis de las fuerzas en vigas y cables y en la comprensión del comportamiento dinámico de partículas y de cuerpos rígidos, para la resolución de problemas aplicados a máquinas demostrando actitud responsable.

III. Organización de los aprendizajes

<u> </u>	Unidad 1 tica de partícula, cuerpos rígidos y sistemas equivalentes de fuerzas Duración en horas			
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de determinar la fuerza equivalente o resultante de varias fuerzas que actúan sobre la partícula o el cuerpo rígido y aplicar las condiciones de equilibrio si la fuerza neta resultante es cero, tanto en el plano como el espacio para resolver diferentes problemas de la ingeniería.			
Ejes temáticos:	 Fuerzas en el Plano Equilibrio de una partícula en el p Equilibrio de una partícula en el e Cuerpos Rígidos y sistemas equivo Equilibrio de cuerpos rígidos en el 	espacio alentes de fuerzo	as	

-	Unidad 2 uerpo rígido, centro de gravedad, octural y fuerzas internas en vigas	Duración en horas	24
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudian coordenadas de su centroide o cer área y volumen, además, calcul distribución de presiones de un fluio fuerzas internas y externas, pares inercia, para diseñar elementos estr del ingeniero diseñador para su o ingeniería.	ntro de gravedo la la fuerza re lo sobre placas desconocidos, ructurales y viga	ad de una línea, esultante de la o paredes y las momentos de s, bajo el interés
Ejes temáticos:	 Equilibrio de cuerpos rígidos en el Centroides y Centro de graveda Fuerzas Distribuidas Análisis estructural Fuerzas en Vigas 	•	

	Unidad 3 s en cables, momento de inercia, a y cinética de una partícula	Duración en horas	24		
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de calcular las fuerzas internas, de transmisión de los cables hacia las estructuras, analiza el movimiento de una partícula a la largo de su trayectoria rectilínea o curva por medio de coordenadas diferentes, así como las fuerzas que producen dicho movimiento (segunda ley de Newton), para resolver diferentes problemas de la ingeniería.				
Ejes temáticos:	 Fuerzas en cables Momento de inercia Cinemática de partículas Movimiento curvilíneo de las po Cinética de la partícula Métodos de la energía y cantid 		nto		

	Unidad 4	Duración en	24			
Cinemátic	a y cinética del cuerpo rígido	horas	24			
	Al finalizar la unidad, el estudia	Al finalizar la unidad, el estudiante será capaz de analizar la				
Resultado de	velocidad y la aceleración del movimiento relativo de un cuerpo					
aprendizaje	rígido, así como las fuerzas que producen dicho movimiento					
de la unidad:	(segunda ley de Newton) de esta forma podrá aplicar los principios					
de la billada.	de la dinámica en la solución de diferentes problemas en el campo					
	de la ingeniería.					
	1. Movimiento relativo					
Ejes temáticos:	2. Cinemática de cuerpo rígido					
	3. Cinética de cuerpo rígido					
	4. Métodos de la energía y cantidad de movimiento					

IV. Metodología

a. Modalidad Presencial

Para esta modalidad nuestro proceso de enseñanza y aprendizaje inicia a través de la metodología del flipped classroom que para las clases presenciales nos facilitará y retroalimentará las sesiones de clase, así como el uso las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo , fomentaremos la metodología del aprendizaje basado en problemas (ABP) para dar solución a situaciones simuladas o reales en el campo de la ingeniería de forma individual o grupal.

b. Modalidad Semipresencial – Virtual

En esta modalidad se promueve el interaprendizaje colaborativo y virtual en el proceso de enseñanza y aprendizaje, usaremos la plataforma virtual para recursos académicos y evaluaciones de forma individual o grupal, la metodología del flipped classroom para las clases presenciales nos facilitará y potenciará el desarrollo teórico-práctico, así como el uso las TIC (diapositivas y videos) creando un ambiente de aprendizaje colaborativo y fomentamos la metodología del aprendizaje basado en problemas(ABP) para dar solución a situaciones simuladas o reales en el campo de la ingeniería de forma individual o grupal.

c. Modalidad A Distancia

Esta modalidad permite al estudiante desarrollar el aprendizaje interactivo y autónomo de forma individual a través de la tutoría permanente, le permite interactuar con sus compañeros y docentes en tiempo real promoviendo el aprendizaje colaborativo, utilizará la plataforma de e-learning con diferentes recursos educativos que le permitirá al estudiante desarrollar el aprendizaje autónomo, constructivista y conectivista, también fomentamos la metodología del aprendizaje basado en problemas(ABP) para dar solución a situaciones simuladas o reales en el campo de la ingeniería de forma individual o grupal.

V. Evaluación Modalidad Presencial

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba mixta	0	%
Consolidado	1 do	Semana 1-4	Evaluación individual escrito teórico-práctica / Prueba de desarrollo	15 %	20 %
			Ejercicios grupales en clase para identificar alternativas de solución / Rúbrica de evaluación	25 %	
C1		Semana 5-7	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	25 %	
	2		Ejercicios grupales en clase para identificar alternativas de solución/ Rúbrica de evaluación	35 %	
Evaluación parcial EP	1 y 2	Semana 8	Prueba de desarrollo de modo individual / Prueba de desarrollo	20	%
Consolidado 2 C2	3 Semana 9-12 4 Semana 13-15	Sama an a	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	15 %	
		Ejercicios grupales en clase para identificar alternativas de solución / Rúbrica de evaluación	25 %	- 20 %	
		Evaluación individual escrita teórico-práctica / Prueba de desarrollo	25 %	20 %	
		Ejercicios grupales en clase para identificar alternativas de solución / Rúbrica de evaluación	35 %		
Evaluación final EF	Todas las unidades	Semana 16	Prueba de desarrollo de modo individual / Prueba de desarrollo	40	%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad A Distancia

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1 C1	1	Semana 2	 Evaluación individual teórico-práctica de desarrollo en plataforma virtual / Prueba mixta 	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 6	- Evaluación individual teórico-práctica de desarrollo en plataforma virtual / Prueba mixta	20 %
Evaluación final EF	Todas las unidades	Semana 8	Prueba de desarrollo de modo individual / Prueba de desarrollo	40 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial – Virtual

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba mixta	0 %
Consolidado 1 C1	1	Semana 1-3	Evaluación individual teórico-práctica en plataforma virtual / Prueba mixta Evaluación individual escrita teórico-práctico / Prueba de desarrollo Ejercicios grupales en clase para identificar alternativas de solución / Rúbrica de evaluación	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 5-7	Evaluación individual teórico-práctica en plataforma virtual / Prueba mixta Evaluación individual escrita teórico- práctica / Prueba de desarrollo Ejercicios grupales en clase para identificar alternativas de solución / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual / Prueba de desarrollo	40 %
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

VI. Bibliografía Básica

Beer, F., Johnston, E., Cornwell, P. y Self, B. (2021). Mecánica vectorial para ingenieros. Estática. (12.º ed.). McGraw-Hill. https://bit.ly/3DnHvze

Museros, P. (2017). Mecánica, estática y cálculo vectorial. Universitat politécnica de Valencia. https://bit.ly/3wDnAIK

Complementaria:

Bedford, A., y Fowler, W. (2008). *Mecánica para ingeniería Estática (5ª ed.)*. Pearson education.

Hibbeler, R. (2016). Ingeniería mecánica estática (14ª ed.). Pearson Prentice Hall.

Meriam, J., Kraige, L., & Bolton, J. (2016). Engineering mechanics statics (8° ed.). Wiley.

Pytel, A., & Kiusalaas, J. (2012). Ingeniería mecánica estática (3º ed.). Cengage learning.

Riley, W., & Sturges, L. (2008). Ingeniería mecánica estática. Reverté.

Recursos digitales:

Profe JN el Canal del Ingeniero. (2012 de noviembre de 2012). Recuperado de https://www.youtube.com/channel/UCkeqD-knV1rd2p2lwXOjrlA/featured.