HIMatrix

Sistema de comando direcionado à segurança

Manual F10 PCI 03

HIMA Paul Hildebrandt GmbH Automação industrial

Rev. 1.00 HI 800 532 PT

Todos os produtos HIMA mencionados neste manual estão protegidos pela marca registrada da HIMA. A não ser que seja mencionado de outra forma, isso também se aplica aos outros fabricantes e seus produtos mencionados.

Todos os dados e avisos técnicos neste manual foram elaborados com o máximo de cuidado, considerando medidas efetivas de controle de garantia de qualidade. Em caso de dúvidas, dirija-se diretamente à HIMA. A HIMA ficaria grata por quaisquer sugestões, p. ex., informações que ainda devem ser incluídas no manual.

Os dados técnicos estão sujeitos a alterações sem notificação prévia. A HIMA ainda se reserva o direito de modificar o material escrito sem aviso prévio.

Informações mais detalhadas encontram-se na documentação no CD-ROM e na nossa homepage em http://www.hima.com.

© Copyright 2014, HIMA Paul Hildebrandt GmbH

Todos os direitos reservados.

Contato

Endereço da HIMA:

HIMA Paul Hildebrandt GmbH

Postfach 1261

D-68777 Brühl

Tel.: +49 6202 709-0

Fax: +49 6202 709-107

E-Mail: info@hima.com

Índice de			Tipo de alteração	
revisão		técnica	redacional	
1.00	Edição em português (tradução)			

Índice

1	Introdução	5
1.1	Estrutura e utilização do manual	5
1.2	Grupo alvo	
1.3	Convenções de representação	
1.3.1	Avisos de segurança	
1.3.2	Avisos de utilização	
2	Segurança	8
2.1	Utilização prevista	8
2.1.1	Requisitos de ambiente	
2.1.2	Medidas de proteção contra ESD	
2.2	Perigos residuais	
2.3	Medidas de precaução de segurança	
2.4	Informações para emergências	9
3	Descrição do produto	10
3.1	Função de segurança	10
3.2	Equipamento e volume de fornecimento	11
3.2.1	Endereço IP e ID do sistema (SRS)	11
3.3	Placa de identificação	11
3.4	Estrutura	12
3.4.1	Indicadores de LED	13
3.4.1.1	LED tensão de operação	13
3.4.2	Comunicação	14
3.4.2.1	Conexões para a comunicação Ethernet	14
3.4.3	Botão de reset	
3.4.4	Relógio de hardware	
3.5	Dados do produto	
3.6	HIMatrix F10 com certificação	16
4	Colocação em funcionamento	17
4.1	Instalação e montagem	
4.2	Registro de eventos (SOE)	17
4.3	Configuração com SILworX	18
4.3.1	Módulo processador	18
4.3.1.1	Registro Module	
4.3.1.3 4.3.1.5	Registro Ethernet SwitchRegistro LLDP	
4.3.1.5 4.3.2	Módulo de comunicação	
4 .5.2	Operação	
	•	
5.1	Operação	
5.2	Diagnóstico	23

6	Manutenção preventiva	24
6.1	Erro	24
6.2	Medidas de manutenção preventiva	24
6.2.1 6.2.2	Carregar sistema operacionalRepetição da verificação	24 24
7	Colocação fora de serviço	25
8	Transporte	26
9	Eliminação	27
	Anexo	29
	Glossário	29
	Lista de figuras	30
	Lista de tabelas	30
	Índice remissivo	31

F10 PCI 03 1 Introdução

1 Introdução

Este manual descreve as características técnicas do equipamento e a sua utilização. O manual contém informações sobre a instalação, a colocação em funcionamento e a configuração do SILworX.

1.1 Estrutura e utilização do manual

O conteúdo deste manual é parte da descrição do hardware do sistema eletrônico programável HIMatrix.

O manual é dividido nos seguintes capítulos principais:

- Introdução
- Segurança
- Descrição do produto
- Colocação em funcionamento
- Operação
- Manutenção preventiva
- Colocação fora de serviço
- Transporte
- Eliminação

Adicionalmente devem ser observados os seguintes documentos:

Nome	Conteúdo	Número do documento
Manual de sistema HIMatrix Sistemas compactos	Descrição do hardware dos sistemas compactos HIMatrix	HI 800 528 PT
Manual de segurança HIMatrix	Funções de segurança do sistema HIMatrix	HI 800 526 PT
Manual de comunicação HIMax	Descrição dos protocolos de comunicação, ComUserTask e como projetar os mesmos no SILworX	HI 801 240 PT
Ajuda Online SILworX	Operação do SILworX	-
Primeiros passos SILworX	Introdução ao SILworX no exemplo do sistema HIMax	HI 801 239 PT

Tabela 1: Documentos adicionalmente em vigor

Os manuais atuais encontram-se na homepage da HIMA em www.hima.com. Com ajuda do índice de revisão na linha de rodapé, a atualidade de manuais eventualmente disponíveis pode ser comparada à versão na internet.

1.2 Grupo alvo

Este documento dirige-se a planejadores, projetistas e programadores de sistemas de automação, bem como pessoas autorizadas para colocação em funcionamento, operação e manutenção dos equipamentos, módulos e sistemas. Pressupõem-se conhecimentos especializados na área de sistemas de automatização direcionados à segurança.

HI 800 532 PT Rev. 1.00 Página 5 de 32

1 Introdução F10 PCI 03

1.3 Convenções de representação

Para a melhor legibilidade e para clarificação, neste documento valem as seguintes convenções:

Negrito Ênfase de partes importantes do texto.

Denominações de botões, itens de menu e registros na ferramenta de

programação que podem ser clicados

Itálico Parâmetros e variáveis de sistema

Courier Introdução de dados tal qual pelo usuário

RUN Denominações de estados operacionais em letras maiúsculas Cap. 1.2.3 Notas remissivas são híperlinks, mesmo quando não são

especialmente destacadas. Ao posicionar o cursor nelas, o mesmo muda sua aparência. Ao clicar, o documento salta para o respectivo

ponto.

Avisos de segurança e utilização são destacados de forma especial.

1.3.1 Avisos de segurança

Os avisos de segurança no documento são representados como descrito a seguir. Para garantir o menor risco possível devem ser observados sem exceção. A estrutura lógica é

- Palavra sinalizadora: Perigo, Atenção, Cuidado, Nota
- Tipo e fonte do perigo
- Consequências do perigo
- Como evitar o perigo

A PALAVRA SINALIZADORA

Tipo e fonte do perigo! Consequências do perigo Como evitar o perigo

O significado das palavras sinalizadoras é

- Perigo: No caso de não-observância resultam lesões corporais graves até a morte
- Atenção: No caso de não-observância há risco de lesões corporais graves até a morte
- Cuidado: No caso de não-observância há risco de lesões corporais leves
- Nota: No caso de não-observância há risco de danos materiais

NOTA

Tipo e fonte dos danos! Como evitar os danos

Página 6 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 1 Introdução

1.3.2 Avisos de utilização Informações adicionais são estruturadas de acordo com o seguinte exemplo: Neste ponto está o texto das informações adicionais. Dicas úteis e macetes aparecem no formato: DICA Neste ponto está o texto da dica.

HI 800 532 PT Rev. 1.00 Página 7 de 32

2 Segurança F10 PCI 03

2 Segurança

É imprescindível ler informações de segurança, avisos e instruções neste documento. Apenas utilizar o produto observando todos os regulamentos e normas de segurança.

Este produto é operado com SELV ou PELV. Do produto em si não emana nenhum perigo. Utilização na área Ex é permitida apenas com medidas adicionais.

2.1 Utilização prevista

Componentes HIMatrix são previstos para a instalação de sistemas de comando direcionados à segurança.

Para a utilização de componentes no sistema HIMatrix devem ser satisfeitos os seguintes requisitos.

2.1.1 Requisitos de ambiente

Tipo de requisito	Faixa de valores 1)
Classe de proteção	Classe de proteção III conforme IEC/EN 61131-2
Temperatura ambiente	0+60 °C
Temperatura de armazenamento	-40+85 °C
Contaminação	Grau de contaminação II conforme IEC/EN 61131-2
Altura de instalação	< 2000 m
Caixa	Padrão: IP20
Tensão de alimentação	24 VDC
1) -	

Para equipamentos com requisitos ambientais ampliados, os valores nos dados técnicos devem ser considerados.

Tabela 2: Requisitos de ambiente

Condições de ambiente diferentes das indicadas neste manual podem levar a avarias operacionais do sistema HIMatrix.

2.1.2 Medidas de proteção contra ESD

Apenas pessoal com conhecimentos sobre medidas de proteção contra descarga eletrostática (ESD) pode efetuar alterações ou ampliações do sistema ou a substituição de equipamentos.

NOTA

Danos no equipamento por descarga eletrostática!

- Usar para os trabalhos um posto de trabalho protegido contra descarga eletrostática e usar uma fita de aterramento.
- Guardar o aparelho protegido contra descarga eletrostática, p. ex., na embalagem.

Página 8 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 2 Segurança

2.2 Perigos residuais

Do sistema HIMatrix em si não emana nenhum perigo.

Perigos residuais podem ser causados por:

- Erros do projeto
- Erros no programa de aplicação
- Erros na fiação

2.3 Medidas de precaução de segurança

Observar as normas de segurança em vigor no local de utilização e usar o equipamento de proteção prescrito.

2.4 Informações para emergências

Um sistema HIMatrix é parte da tecnologia de segurança de uma instalação. A falha de um equipamento ou de um módulo coloca a instalação no estado seguro.

Em casos de emergência é proibida qualquer intervenção que impeça a função de segurança dos sistemas HIMatrix.

HI 800 532 PT Rev. 1.00 Página 9 de 32

3 Descrição do produto

O sistema de comando direcionado à segurança **F10 PCI 03** é um sistema de placa de circuitos impressos para a montagem num PC. O sistema de comando é confeccionado como placa de PC para o slot PCI.

A configuração ocorre pela ferramenta de programação SILworX, veja Capítulo 4.3. A comunicação ao PADT ocorre pela interface PCI do PC.

O equipamento é adequado para o registro de eventos SOE (Sequence of Events Recording), veja Capítulo 4.2. O equipamento suporta Multitasking e Reload. Para mais detalhes a este respeito, veja Manual de sistemas compactos HI 800 528 PT.

Registro de eventos, Multitasking e Reload apenas são possíveis com uma licença.

A alimentação com tensão do sistema de comando pode ser efetuada internamente pelo PC ou através de uma fonte externa de tensão 24 V. A ligação de alimentação com tensão externa encontra-se na chapa do slot.

O sistema de comando consiste no sistema processador direcionado à segurança e no sistema de comunicação. O mesmo não dispõe de conexões de E/S nem de conexões de barramento de campo.

O sistema de comando é ligado mediante Remote I/Os ao nível de campo. Para este fim, o equipamento dispõe de quatro interfaces Ethernet.

O equipamento foi certificado pela TÜV para aplicações direcionadas à segurança até SIL 3 (IEC 61508, IEC 61511 e IEC 62061) e PL e (EN ISO 13849-1). Outras normas de segurança, normas de aplicação e bases para a verificação podem ser consultadas no certificado disponível na homepage da HIMA.

3.1 Função de segurança

A função de segurança do sistema de comando abrange os seguintes itens:

- Processamento do programa de aplicação:
 No caso de erro, parar o programa de aplicação e resetar as variáveis aos valores iniciais.
- Comunicação segura entre sistemas de comando HIMA (HIMax, HIMatrix e módulos Remote I/O) mediante o protocolo direcionado à segurança safeethernet. A transmissão de dados ocorre pelas interfaces Ethernet do sistema de comando.

A função de segurança está implementada conforme SIL 3.

Página 10 de 32 HI 800 532 PT Rev. 1.00

3.2 Equipamento e volume de fornecimento

Componentes disponíveis e os seus números de peça:

Denominação	Descrição	Número de peça
F10 PCI 03 SILworX	Sistema de placa de circuitos com 4 interfaces Ethernet, para slot PCI	98 2200469
	Temperatura de operação 0+60 °C para ferramenta de programação SILworX	

Tabela 3: Números de peça

3.2.1 Endereço IP e ID do sistema (SRS)

Com o equipamento é fornecido um adesivo transparente onde o endereço da CPU, COM e o ID do sistema (SRS, System-Rack-Slot) podem ser anotados após uma alteração.

Valor padrão para o endereço IP da CPU: 192.168.0.99
Valor padrão para o endereço IP da COM: 192.168.0.100
Valor padrão para SRS: 60 000.0.0

As fendas de ventilação na carcaça do equipamento não podem ser cobertas pelo adesivo.

A maneira de alteração do endereço IP e ID de sistema está descrita no manual *Primeiros* passos *SILworX*.

3.3 Placa de identificação

A placa de identificação contém os seguintes dados:

- Nome do produto
- Código de barras (código 2D)
- Número de peça
- Ano de fabricação

Figura 1: Placa de identificação

HI 800 532 PT Rev. 1.00 Página 11 de 32

3.4 Estrutura

O capítulo Estrutura descreve a aparência e o funcionamento do sistema de comando e as conexões para a comunicação.

Figura 2: Visão frontal

Página 12 de 32 HI 800 532 PT Rev. 1.00

3.4.1 Indicadores de LED

Os diodos luminosos indicam o estado operacional do sistema de comando. Os indicadores de LED dividem-se como segue:

- LED tensão de operação
- LED de comunicação

Ao ligar a tensão de alimentação sempre ocorre um teste dos diodos luminosos no qual por um breve momento todos os diodos luminosos acendem.

Definição das frequências de piscar:

Na tabela a seguir são definidas as frequências de piscar dos LEDs:

Nome	Frequência de piscar
Piscar1	Liga longo (aprox. 600 ms), desliga longo (aprox. 600 ms)
Piscar2	liga curto (aprox. 200 ms), desliga curto (aprox. 200 ms), liga curto (aprox. 200 ms), desliga longo (aprox. 600 ms)
Piscar A	Piscar sem repetição específica definida
Piscar x	Comunicação Ethernet: Piscando no ritmo da transmissão de dados

Tabela 4: Frequências de piscar dos diodos luminosos

3.4.1.1 LED tensão de operação

O LED de tensão de operação independe do sistema operacional utilizado.

LED	Cor	Status	Significado
24 VDC	Verde	Liga	Tensão de operação 24 VDC presente
		Desliga	Sem tensão de operação

Tabela 5: Indicador de tensão de operação

3.4.1.2 LEDs de comunicação

Todas as tomadas de ligação RJ-45 são equipadas com um LED verde e um LED amarelo. Os LEDs sinalizam os seguintes estados:

LED	Status	Significado
Verde	Liga	Operação Full Duplex
	Piscar1	Conflito de endereço IP, todos os LEDs de comunicação estão piscando
	Piscar x	Colisão
	Desliga	Operação semiduplex, sem colisão
Amarelo	Liga	Conexão presente
	Piscar1	Conflito de endereço IP, todos os LEDs de comunicação estão piscando
	Piscar x	Atividade da interface
	Desliga	Nenhuma conexão presente

Tabela 6: Indicador Ethernet

HI 800 532 PT Rev. 1.00 Página 13 de 32

3.4.2 Comunicação

O sistema de comando comunica com as Remote I/Os via safe**ethernet**. Até 128 conexões safe**ethernet** redundantes podem ser configuradas.

3.4.2.1 Conexões para a comunicação Ethernet

devem ser observadas.

Característica	Descrição
Port	4 x RJ-45
Padrão de transmissão	10/100 Base-T, Semiduplex e Fullduplex
Auto Negotiation	Sim
Auto-Crossover	Sim
IP Address	Livremente configurável ¹⁾
Subnet Mask	Livremente configurável ¹⁾
Protocolos suportados	 Direcionado à segurança: safeethernet, PROFIsafe Protocolos padrão: Aparelho de programação (PADT), OPC, Modbus-TCP, TCP-SR, SNTP, ComUserTask, PROFINET
1) Regras geralmente vá	lidas para a atribuição de endereços IP e máscara de subrede

Tabela 7: Características das interfaces Ethernet

As quatro conexões RJ-45 com LEDs integrados são montadas na chapa de slot da placa de PC. O significado dos LEDs está descrito no Capítulo 3.4.1.2.

A leitura dos parâmetros de conexão é baseada no endereço MAC (Media Access Control), definido durante a fabricação.

CPU e COM dispõem do seu próprio endereço MAC. Os endereços MAC podem ser consultados num adesivo no corpo das conexões RJ-45.

CPU: MAC-ADR1 00:E0:A1:00:06:C0 COM: MAC-ADR2 00:E0:A1:00:06:C1

Figura 4: Adesivo endereço MAC - exemplo

O sistema de comando possui um Switch integrado para a comunicação Ethernet. Mais detalhes sobre os temas Switch e safe**ethernet** encontram-se no Capítulo *Comunicação*, no Manual de sistema dos sistemas compactos HI 800 528 PT.

3.4.2.2 Portas de rede utilizadas para a comunicação Ethernet

Portas UDP	Utilização
123	SNTP (sincronização de tempo entre PES e Remote I/O, bem como dispositivos externos)
502	Modbus Slave (pode ser alterado pelo usuário)
6010	safe ethernet e OPC
6005 / 6012	Se na rede HH não foi selecionado TCS_DIRECT
8000	Programação e operação com SILworX
8004	Configuração da Remote I/O pelo PES (SILworX)
34 964	PROFINET Endpointmapper (necessário para estabelecer a conexão)
49 152	PROFINET RPC-Server
49 153	PROFINET RPC-Client

Tabela 8: Portas de rede utilizadas (Portas UDP)

Página 14 de 32 HI 800 532 PT Rev. 1.00

Portas TCP	Utilização
502	Modbus Slave (pode ser alterado pelo usuário)
XXX	TCP-SR atribuído pelo usuário

Tabela 9: Portas de rede utilizadas (Portas TCP)

 $\boldsymbol{\dot{1}}$ A tarefa ComUserTask pode usar qualquer porta se a mesma ainda não está ocupada por um outro protocolo.

3.4.3 Botão de reset

O sistema de comando é provido de um botão de reset. Apenas é necessário acionar o mesmo se o nome de usuário ou a senha para o acesso como administrador não são conhecidos. Se apenas o endereço IP ajustado do equipamento não combinar com o PADT (PC), é possível permitir estabelecer a conexão mediante uma entrada de Route add no PC.

O botão encontra-se na parte superior da placa e apenas é acessível com a caixa do PC aberta.

O reset apenas é ativo ao dar um novo boot no equipamento (desligar, ligar) e pressionar o botão simultaneamente por uma duração de no mínimo 20 segundos. Acionar o botão durante a operação não tem nenhum efeito.

A ATENÇÃO

Atenção! Interferência na comunicação do barramento de campo é possível!

Antes de ligar o equipamento com o botão de Reset acionado, todos os conectores do barramento de campo devem ser retirados, pois caso contrário, a comunicação de barramento de campo de outros participantes pode sofrer interferências.

Os conectores do barramento de campo só podem ser novamente colocados depois que o sistema de comando estiver no estado operacional STOP ou RUN.

Características e comportamento do sistema de comando após Reboot com a tecla de Reset acionada:

- Parâmetros de conexão (endereço IP e ID de sistema) são colocados nos valores padrão.
- Todas as contas são desativadas, exceto a conta padrão do administrator sem senha.
- Está bloqueado carregar um programa de aplicação ou sistema operacional com parâmetros de conexão padrão!
 Só é possível carregar depois de ter parametrizado os parâmetros de conexão e a conta no sistema de comando e depois de dar um novo boot.

Depois de um novo boot sem o botão de reset acionado, são válidos parâmetros de conexão (endereço IP e ID de sistema) e contas:

- Parametrizados pelo usuário.
- Configurados antes do reboot com o botão de reset acionado se não foram efetuadas alterações.

HI 800 532 PT Rev. 1.00 Página 15 de 32

3.4.4 Relógio de hardware

No caso de uma queda da tensão de operação, a energia do Goldcap instalado é o suficiente para manter o relógio de hardware ativo por mais ou menos uma semana.

3.5 Dados do produto

Informações gerais	
Memória total de programa e dados para todos os programas de aplicação	5 MB, menos 64 kByte para CRCs
Tempo de reação	≥ 6 ms
Interfaces Ethernet	4 x RJ-45, 10/100BaseT (com 100 Mbit/s) com Switch integrado
Tensão de operação	24 VDC, -15%+20%, w _{ss} ≤ 15%, via uma fonte de alimentação com separação segura, conforme requisitos da IEC 61131-2
Consumo de corrente	0,7 A
Fusíveis (externos)	10 A lento (T) como proteção de linha
Tampão para data/hora	Goldcap
Classe de temperatura	T4 (Zona 2)
Temperatura de operação	0 °C+60 °C
Temperatura de armazenamento	-40 °C+85 °C
Grau de proteção	IP20
Dimensões máx.	Largura: 168 mm Profundidade: 108 mm
Massa	aprox. 190 g

Tabela 10: Dados do produto

3.6 HIMatrix F10 com certificação

HIMatrix F10			
CE	CEM		
TÜV	IEC 61508 1-7:2010 até SIL3		
	IEC 61511:2004		
EN ISO 13849-1:2008			
	IEC 62061:2005		
	EN 50156-1:2004		
	EN 298:2003		
	EN 230:2005		

Tabela 11: Certificados

Outras normas de segurança e aplicação podem ser consultadas no certificado da TÜV. Os certificados e o atestado de verificação de tipo CE encontram-se na homepage da HIMA em www.hima.com.

Página 16 de 32 HI 800 532 PT Rev. 1.00

4 Colocação em funcionamento

Fazem parte da colocação em funcionamento do sistema de comando a montagem e conexão bem como a configuração no SILworX.

4.1 Instalação e montagem

A montagem do sistema de comando ocorre dentro de um PC, no slot PCI. O manual de montagem do fabricante do PC deve ser observado.

4.2 Registro de eventos (SOE)

O registro de eventos é possível para variáveis globais do sistema de comando. Variáveis globais a serem monitoradas são configuradas com ajuda da ferramenta de programação SILworX, veja Ajuda Online e Manual de comunicação HI 801 240 PT. Até 4000 eventos podem ser configurados.

O evento consiste em:

Dados do registro	Descrição	
Event ID	O ID do evento é atribuído pelo PADT	
Timestamp	Data (p. ex: 21.11.2008)	
	Hora (p. ex.: 9:31:57.531)	
Event state	Alarme/Normal (evento booleano)	
	LL, L, N, H, HH (evento escalar)	
Event quality	Quality good/	
	Quality bad, veja www.opcfoundation.org	

Tabela 12: Descrição do evento

O registro de eventos ocorre num ciclo do programa de aplicação. O sistema processador forma eventos a partir de variáveis globais e os deposita na memória tampão não-volátil de eventos.

A memória tampão de eventos abrange 1000 eventos. No caso da memória tampão de eventos cheia, uma mensagem de evento Overflow System é gerada. Depois, não são mais gerados eventos novos até haver espaço na memória tampão mediante a leitura da mesma.

HI 800 532 PT Rev. 1.00 Página 17 de 32

4.3 Configuração com SILworX

O Hardware Editor mostra o sistema de comando de forma parecido com um suporte básico, equipado com os seguintes módulos:

- Módulo processador (CPU)
- Módulo de comunicação (COM)

Mediante clique duplo nos módulos, abre-se a visualização de detalhes com os registros.

4.3.1 Módulo processador

As seguintes tabelas contêm os parâmetros do módulo processador (CPU) na mesma ordem como no Hardware Editor. O conteúdo dos registros Module e Routings do módulo processador e do módulo de comunicação é idêntico.

4.3.1.1 Registro Module

O registro Module contém os seguintes parâmetros:

Parâmetro	Descrição		
Name	Nome do módulo		
Use Max. μP Budget for HH Protocol	 Ativado: Transferir o limite da carga de CPU do campo Max. µP Budget for HH Protocol [%]. Desativado: Não usar limite da carga da CPU para safeethernet. Ajuste padrão: Desativado 		
Max. μP Budget for HH Protocol [%]	Carga máxima da CPU do módulo que pode ser produzida ao processar o protocolo safe ethernet .		
	A carga máxima deve ser dividida entre todos os protocolos que usam este módulo de comunicação.		
IP Address	Endereço IP da interface Ethernet		
	Valor padrão: 192.168.0.99		
Subnet Mask	Máscara de endereço 32 Bit para subdividir um endereço de IP em endereço de rede e host. Valor padrão: 255.255.252.0		
Standard Interface	Ativado: A interface é usada como interface padrão para o login de sistema. Ajuste padrão: Desativado		
Default Gateway	Endereço IP do Default Gateway Valor padrão: 0.0.0.0		

Página 18 de 32 HI 800 532 PT Rev. 1.00

Parâmetro	Descrição
ARP Aging Time [s]	Um módulo CPU ou COM grava os endereços MAC de seus parceiros de comunicação em uma tabela de correspondência do endereço MAC /IP (ARP Cache).
	Se durante um período de 1x a 2x o ARP Aging Time
	 chegarem mensagens dos parceiros de comunicação, o endereço MAC é mantido no cache ARP.
	 não chegarem mensagens dos parceiros de comunicação, o endereço MAC é excluído do cache ARP.
	O valor típico para o <i>ARP Aging Time</i> em uma rede local é de 5 s300 s.
	O conteúdo do cache ARP não pode ser lido pelo usuário.
	Ao utilizar roteadores ou gateways, adaptar (aumentar) o <i>ARP Aging Time</i> ao retardo adicional para o caminho de ida e volta. Com o <i>ARP Aging Time</i> insuficiente, o módulo CPU/COM exclui o endereço MAC do parceiro de comunicação do cache ARP e a comunicação é efetuada apenas com atraso ou é interrompida. Para a utilização eficaz, o <i>ARP Aging Time</i> deve ser > Receive Timeouts dos protocolos usados.
	Faixa de valores: 13600 s Valor padrão: 60 s
MAC Learning	 Comportamento de aprendizagem do cache ARP: Conservative: Os endereços MAC de entradas ARP armazenadas não são sobrescritos por mensagens recebidas. Tolerant: Os endereços MAC de entradas ARP armazenadas são sobrescritos por mensagens recebidas. Ajuste padrão: Conservative
IP Forwarding	Permite a um módulo processador trabalhar como roteador e encaminhar pacotes de dados de outros nódulos da rede. Ajuste padrão: Desativado
ICMP Mode	Tipos de mensagens do Internet Control Message Protocol (ICMP) que são apoiados pelo módulo CPU: Sem respostas ICMP Echo Response Host não pode ser acessado Todas as respostas ICMP implementadas Ajuste padrão: Echo Response

Tabela 13: Parâmetros de configuração de CPU e COM, registro Module

HI 800 532 PT Rev. 1.00 Página 19 de 32

4.3.1.2 Registro Routings

O registro **Routings** contém os seguintes parâmetros:

Parâmetro	Descrição	
Name	Denominação do ajuste de Routing	
IP Address	Endereço IP de destino do parceiro de comunicação (no caso de Host-Routing direto) ou endereço de rede (no caso de Subnet-Routing) Faixa de valores: 0.0.0.0255.255.255.255 Valor padrão: 0.0.0.0	
Subnet Mask	Define a faixa de endereços de destino para uma entrada de Routing (roteamento). 255.255.255.255 (para Host-Routing direto) ou Subnet Mask da subrede endereçada. Faixa de valores: 0.0.0.0255.255.255 Valor padrão: 255.255.255.255	
Gateway	Endereço IP do gateway para a rede endereçada. Faixa de valores: 0.0.0.0255.255.255.255 Valor padrão: 0.0.0.1	

Tabela 14: Parâmetros de roteamento de CPU e COM

4.3.1.3 Registro Ethernet Switch

O registro **Ethernet Switch** contém os seguintes parâmetros:

Parâmetro	Descrição		
Name	Nome da porta (Eth1Eth4, PC); para cada porta apenas pode haver uma configuração.		
Speed [Mbit/s]	10 MBit/s: Taxa de dados 10 MBit/s 100 MBit/s: Taxa de dados 100 MBit/s 1000 MBit/s: Taxa de dados 1000 Mbit/s (não compatível) Autoneg: Ajuste automático de Baudrate Valor padrão: Autoneg		
Flow Control	Full duplex: Comunicação simultânea em ambas as direções Half duplex: Comunicação em uma das direções Autoneg: Controle automático da comunicação Valor padrão: Autoneg		
Autoneg also with Fixed Values	O "Advertising" (transmissão das características de Speed e Flow Control) também é efetuado no caso de valores fixos ajustados para Speed e Flow Control. Assim, outros dispositivos cujas portas estão ajustadas para Autoneg reconhecem o ajuste das portas HIMax. Ajuste padrão: Ativado		
Limit	Limitar pacotes de entrada Multicast e/ou Broadcast. Desliga: sem limitação Broadcast: limitar Broadcast (128 kbit/s) Multicast e Broadcast: limitar Multicast e Broadcast (1024 kbit/s) Valor padrão: Broadcast		

Tabela 15: Parâmetros do Switch Ethernet

Página 20 de 32 HI 800 532 PT Rev. 1.00

4.3.1.4 Registro **VLAN** (Port-Based VLAN)

Configura a utilização de port-based VLAN.

Se VLAN deve ser apoiado, "Port based VLAN" deve estar desligado, para que cada porta possa comunicar-se com qualquer outra porta do Switch.

É possível ajustar para cada porta de um switch para qual outra porta do switch podem ser enviados os frames Ethernet recebidos.

A tabela no registro VLAN contém entradas pelas quais a conexão entre duas portas pode ser comutada para ativa ou inativa.

	Eth1	Eth2	Eth3	Eth4	COM	CPU
Eth1						
Eth2	ativa					
Eth3	ativa	ativa				
Eth4	ativa	ativa	ativa			
COM	ativa	ativa	ativa	ativa		
CPU	ativa	ativa	ativa	ativa	ativa	
PC	ativa	ativa	ativa	ativa	ativa	ativa

Tabela 16: Registro VLAN

4.3.1.5 Registro **LLDP**

LLDP (Link Layer Discovery Protocol) transmite em intervalos periódicos via Multicast informações sobre o próprio dispositivo (p. ex., endereço MAC, nome do dispositivo, número da porta) e recebe as mesmas informações de dispositivos vizinhos.

Dependendo do fato de Profinet estar configurado no módulo de comunicação, os seguintes valores de LLDP são usados:

Profinet no módulo COM	ChassisID	TTL (Time to Live)
usado	Nome da estação	20 s
não usado	Endereço MAC	120 s

Tabela 17: Valores para LLDP

Os módulos de processador e comunicação suportam LLDP nas portas Eth1, Eth2, Eth3, Eth4 e PC.

Os seguintes parâmetros definem como a respectiva porta trabalha:

Off LLDP desativado nesta porta

Send LLDP envia frames Ethernet LLDP, frames

Ethernet recebidos são excluídos sem processar

os mesmos

Receive LLDP não envia frames Ethernet LLDP, mas

frames Ethernet recebidos são processados

Send/Receive LLDP envia e processa frames Ethernet LLDP

recebidos

Ajuste padrão: Send/Receive

HI 800 532 PT Rev. 1.00 Página 21 de 32

4.3.1.6 Registro Mirroring

Configura se o módulo Ethernet duplica pacotes em uma porta, assim que eles possam ser lidos também por um dispositivo ligado no mesmo, p. ex., para fins de testes.

Os seguintes parâmetros definem como a respectiva porta trabalha:

Off Esta porta não participa do Mirroring (espelhamento).

Egress: Dados de saída desta porta são duplicados.

Ingress/Egress: Dados de entrada e saída desta porta são duplicados.

Dest Port: Os dados duplicados são enviados para esta porta.

Ajuste padrão: Off

4.3.2 Módulo de comunicação

O módulo de comunicação (COM) contém os registros **Module** e **Routings**. O seu conteúdo não é idêntico com o do módulo processador, veja Tabela 13 e Tabela 14.

Página 22 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 5 Operação

5 Operação

O sistema de comando F10 está pronto para a operação.

Uma supervisão especial do sistema de comando não é necessária.

5.1 Operação

Não é necessária uma operação do sistema de comando durante a operação.

5.2 Diagnóstico

O histórico de diagnóstico do módulo pode ser lido adicionalmente com a ferramenta de programação SILworX.

HI 800 532 PT Rev. 1.00 Página 23 de 32

6 Manutenção preventiva

Na operação normal, medidas de conservação não são necessárias.

No caso de avarias, substituir o equipamento ou módulo por um de tipo idêntico, ou por um tipo de reserva autorizado pela HIMA.

A reparação do equipamento ou do módulo apenas pode ser efetuada pelo fabricante.

6.1 Erro

Se os dispositivos de verificação detectarem erros no sistema processador, ocorre um Reboot. Se dentro de um minuto depois de reinicializar ocorrer um outro erro interno, o equipamento entra no estado STOP_INVALID e permanece neste estado. Isso significa que o equipamento não processa mais os sinais de entrada e que as saídas entram no estado seguro, desenergizado. A avaliação do diagnóstico dá indícios para a causa.

6.2 Medidas de manutenção preventiva

Para o módulo processador raras vezes as seguintes medidas são necessárias:

- Carregar o sistema operacional, se uma nova versão for necessária
- Execução a repetição da verificação

6.2.1 Carregar sistema operacional

No contexto da melhora de produtos, a HIMA continua desenvolvendo o sistema operacional dos equipamentos.

A HIMA recomenda aproveitar paradas planejadas do sistema para carregar a versão atualizada do sistema operacional para os equipamentos.

Verificar antes os efeitos da versão do sistema operacional sobre o sistema com ajuda da lista de publicações de versões!

O sistema operacional é carregado pela ferramenta de programação.

Antes de carregar, o equipamento precisa estar no estado STOP (indicador na ferramenta de programação). Caso contrário, parar o equipamento.

Mais informações podem ser consultadas na documentação da ferramenta de programação.

6.2.2 Repetição da verificação

Verificar os dispositivos HIMatrix e os seus componentes a cada 10 anos. Mais informações disponíveis no manual de segurança HI 800 526 PT.

Página 24 de 32 HI 800 532 PT Rev. 1.00

7 Colocação fora de serviço

O equipamento é colocado fora de serviço ao retirar a alimentação com tensão. Depois disso, os bornes de encaixe aparafusados para as entradas e saídas e os cabos Ethernet podem ser retirados.

HI 800 532 PT Rev. 1.00 Página 25 de 32

8 Transporte F10 PCI 03

8 Transporte

Para a proteção contra danos mecânicos, os componentes HIMatrix devem ser transportados nas embalagens.

Sempre armazenar componentes HIMatrix nas embalagens originais dos produtos. As mesmas servem ao mesmo tempo à proteção contra ESD. A embalagem do produto sozinha não é suficiente para o transporte.

Página 26 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 9 Eliminação

9 Eliminação

Clientes industriais assumem a responsabilidade pelo hardware HIMatrix colocado fora de funcionamento. Sob solicitação é possível firmar um acordo de descarte com a HIMA.

Encaminhar todos os materiais a uma eliminação correta em relação ao meio-ambiente.

HI 800 532 PT Rev. 1.00 Página 27 de 32

9 Eliminação F10 PCI 03

Página 28 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 Anexo

Anexo

Glossário

Conceito	Descrição		
ARP	Address Resolution Protocol: Protocolo de rede para a atribuição de endereços de		
	rede a endereços de hardware		
Al	Analog Input, Entrada analógica		
COM	Módulo de comunicação		
CRC	Cyclic Redundancy Check, Soma de verificação		
DI	Digital Input, Entrada digital		
DO	Digital Output, Saída digital		
EMC	ElectroMagnetic Compatibility – Compatibilidade eletromagnética		
EN	Normas européias		
ESD	ElectroStatic Discharge, descarga eletrostática		
FB	Fieldbus, barramento de campo		
FBS	Funktionsbausteinsprache, linguagem de bloco funcional		
FTA	Field Termination Assembly		
FTT	Fault Tolerance Time - Tempo de tolerância de falhas		
ICMP	Internet Control Message Protocol: Protocolo de rede para mensagens de status e de falhas		
IEC	International Electrotechnical Commission: Normas internacionais para eletrotécnica		
MAC Address	Endereço de hardware de uma conexão de rede (Media Access Control)		
PADT	Programming and Debugging Tool (conforme IEC 61131-3), PC com SILworX		
PE	Protective Earth: Terra de proteção		
PELV	Protective Extra Low Voltage: Extra baixa tensão funcional com separação segura		
PES	Programable Electronic System, Sistema eletrônico programável		
PFD	Probability of Failure on Demand: Probabilidade de uma falha ao demandar uma função de segurança		
PFH	Probability of Failure per Hour: Probabilidade de uma falha perigosa por hora		
R	Read: Variável/sinal de sistema, fornece valores, p. ex., ao programa de aplicação		
Rack ID	Identificação de um suporte básico (número)		
Non-reactive/ sem retroalimentação	Dois circuitos de entrada estão ligados à mesma fonte (p. ex., transmissor). Uma ligação de entrada é chamada de sem efeito de retroalimentação se ela não interferir com os sinais de uma outra ligação de entrada.		
R/W	Read/Write (Ler/Escrever, título de coluna para tipo de variável/sinal de sistema)		
SB	Systembus, (módulo do) barramento de sistema		
SELV	Safety Extra Low Voltage: Tensão extra baixa de proteção		
SFF	Safe Failure Fraction, Fração de falhas que podem ser controladas com segurança		
SIL	Safety Integrity Level (conf. IEC 61508)		
SILworX	Ferramenta de programação para sistemas HIMatrix		
SNTP	Simple Network Time Protocol (RFC 1769)		
S.R.S	System.Rack.Slot Endereçamento de um módulo		
SW	Software		
TMO	Timeout		
W	Write: Variável/sinal de sistema, é alimentado com valores, p. ex., do programa de aplicação		
Watchdog (WD)	Supervisão de tempo para módulos ou programas. O ultrapassar o tempo do watchdog, o módulo ou programa entre em parada por erro.		
WDT	Watchdog Time		

HI 800 532 PT Rev. 1.00 Página 29 de 32

9 Eliminação F10 PCI 03

Lista de 1	figuras	
Figura 1:	Placa de identificação	11
Figura 2:	Visão frontal	12
Figura 3:	Diagrama de blocos	12
Figura 4:	Adesivo endereço MAC - exemplo	14
Lista de	tabelas	
Tabela 1:	Documentos adicionalmente em vigor	5
Tabela 2:	Requisitos de ambiente	8
Tabela 3:	Números de peça	11
Tabela 4:	Frequências de piscar dos diodos luminosos	13
Tabela 5:	Indicador de tensão de operação	13
Tabela 6:	Indicador Ethernet	13
Tabela 7:	Características das interfaces Ethernet	14
Tabela 8:	Portas de rede utilizadas (Portas UDP)	14
Tabela 9:	Portas de rede utilizadas (Portas TCP)	15
Tabela 10:	Dados do produto	16
Tabela 11:	Certificados	16
Tabela 12:	Descrição do evento	17
Tabela 13:	Parâmetros de configuração de CPU e COM, registro Module	19
Tabela 14:	Parâmetros de roteamento de CPU e COM	20
Tabela 15:	Parâmetros do Switch Ethernet	20
Tabela 16:	Registro VLAN	21
Tabela 17:	Valores para LLDP	21

Página 30 de 32 HI 800 532 PT Rev. 1.00

F10 PCI 03 Anexo

Índice remissivo

Botão de reset15	Número de peça11
Dados técnicos16	safe ethernet
Diagnóstico23	SRS 11

HI 800 532 PT Rev. 1.00 Página 31 de 32

HIMA Paul Hildebrandt GmbH Postfach 1261 D-68777 Brühl

Tel.: +49 6202 709-0 Fax: +49 6202 709-107