CH - Hyperbolic functions

Derive arcsinh x	1
Derive arcsilii x	$y = \sinh^{-1} x$
	$x = \sinh y$
	$x = \frac{e^y - e^{-y}}{2}$
	$2x = e^y - e^{-y}$
	$2xe^y = e^{2y} - 1$
	$e^{2y} - 2xe^y - 1 = 0$
	$e^y = \frac{2x \pm \sqrt{(-2x)^2 + 4}}{2}$
	$=x\pm\sqrt{x^2+1}$
	$y = \ln\left(x \pm \sqrt{x^2 + 1}\right)$
	$\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$
	We take the positive log at the end.
Derive arccosh x	We must restrict y ≥ 0 for a one-to-one mapping.

$$y = \cosh^{-1} x$$

$$x = \cosh y$$

$$x = \frac{e^y + e^{-y}}{2}$$

$$2x = e^y + e^{-y}$$

$$2xe^y = e^{2y} + 1$$

$$e^{2y} - 2xe^y + 1 = 0$$

$$e^y = \frac{2x \pm \sqrt{(-2x)^2 - 4}}{2}$$

$$= x \pm \sqrt{x^2 - 1}$$

$$y = \ln\left(x \pm \sqrt{x^2 - 1}\right)$$

$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$

We take the solution with the positive as we said $y \ge 0$ so $e^y \ge 1$ for all y, and since $x - \sqrt{x^2 - 1}$ fails to exceed this for some x (eg, -1), we discard it.

Derive arctanh x	$y = \tanh^{-1} x$
	$x = \tanh y$
	$x = \frac{e^y - e^{-y}}{e^y + e^{-y}}$
	$e^y + e^{-y}$
	$= \frac{e^y - e^{-y}}{e^y + e^{-y}} \cdot \frac{e^y}{e^y}$
	$e^y + e^{-y} e^y$
	$e^{2y} - 1$
	$=\frac{1}{e^{2y}+1}$
	$xe^{2y} + x = e^{2y} - 1$
	$e^{2y} - xe^{2y} = 1 + x$
	$e^{2y} = \frac{1+x}{1-x}$
	$e^{x} = \frac{1-x}{1-x}$
	$2y = \ln\left(\frac{1+x}{1-x}\right)$
	$-y = 11 \setminus 1 - x$
	$y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$
	$2 \left(1-x\right)$

Most of the graph work you can figure out using your calculator.