

Arbeitsblatt Nr.

Datum:

Wiederholung: Säuren und Basen

1. Der pH-Wert - Werkzeug des Chemikers (Hilfe: Buch, S. 32+33)

-	1	-
T.	1	
		N.
A	1	200

Wie sagst du zu der beliebten Beilage zum Sonntagsbraten (s. Abb.) - Rotkraut oder Blaukraut? → Löst man etwas Haushaltsnatron in Wasser und vermischt diese Lösung mit violettem Rotkohlsaft, färbt sich dieser blaugrün. Gibt man dagegen etwas Essig zum violetten Rotkohlsaft, so wird er rot. Rotkohlsaft ist ein Beispiel für einen natürlichen Indikator.

<u>MERKE:</u> Indikatoren sind Farbstofflösungen, die bei Zugabe von sauren, neutralen oder alkalischen Lösungen ihre Farbe ändern.

Im Chemie-Labor werden jedoch eher synthetisch hergestellte Indikatoren verwendet. Bekannte Beispiele sind der Universalindikator, Thymolphthalein und Thymolblau.

Der Grund für die Änderung der Farbe von Indikatorlösungen ist, dass sich der pH-Wert durch die Zugabe einer sauren bzw. alkalischen Lösung verändert.

Aufgabe	1: <u>Definiere</u> den pH-Wert.		
MERKE:			

Aufgabe 2: Vervollständige das Schema mit Hilfe des Buchs, S. 33.

Farbskala Universal- indikator	pH- Wert	Beispiel einer wässrigen Lösung mit diesem pH-Wert	pH-Bereich
	pH 14		
	pH 13]
	pH 12		pH > 7 bedeutet es liegt eine
	pH 11		
	pH 10		
	pH 9		Lösung vor
	pH 8		
	pH 7		pH = 7 bedeutet Lösung
	pH 6		
	pH 5		pH < 7 bedeutet es liegt eine
	pH 4	pH-Wert der Haut (4,1 bis 5,8)	pri vi bodediet es negt eine
	pH 3		
	pH 2		Lösung vor
	pH 1		
	pH 0		

Freiwillig: Auf Duschgels und Cremes ist häufig die Bezeichnung "pH-hautneutral" zu finden. Hat Duschgel tatsächlich den pH-Wert = 7? Recherchiere kurz online.

Schlauberger-Wissen: Rotkohl wächst zu einem runden Kohlkopf, die Blattfarbe ist ein dunkles Lila. Der Rotkohl ändert jedoch seine Farbe je nach pH-Wert des Bodens. In sauren Böden erscheint die Blattfarbe eher rot, in alkalischen Böden dagegen bläulich. So erklären sich auch die unterschiedlichen Bezeichnungen in verschiedenen Regionen. Ob es Blaukraut oder Rotkraut ist, entscheidet hauptsächlich die Zubereitung.

2. Säuren und saure Lösungen (Hilfe: Buch, S. 186-189)

Aufgabe 3: Nenne mind. 4 Beispiele für Säuren, die du aus dem Chemieunterricht oder dem Alltag kennst.

Säuren schmecken sauer. Das tun sie aber erst, wenn sie in Wasser gelöst werden. Nehmen wir die Citronensäure als Beispiel: Sie ist, wie der Name sagt, in Zitronen, aber auch in vielen anderen Früchten, enthalten. Reine Citronensäure ist ein weißer, pulverartiger Feststoff. Erst wenn man diesen Feststoff in Wasser löst, schmeckt er sauer. Zitronensaft schmeckt nur deshalb sauer, weil dessen Hauptbestandteil Wasser ist, in dem Citronensäure gelöst vorliegt.

Säuren sind aus Molekülen aufgebaut. Was passiert mit den Molekülen auf Teilchenebene, wenn man sie in Wasser löst? Und welche Teilchen sind für die Eigenschaften von sauren Lösungen verantwortlich?

Im Gegensatz zu Säuren leiten saure Lösungen den elektrischen Strom. Die Leitfähigkeit von wässrigen Lösungen beruht darauf, dass freie Ladungsträger wie z.B. Ionen (= elektrisch geladene Atome; sie tragen also eine Ladung) vorhanden sind. Welche Ionen sind in sauren Lösungen vorhanden? Wir beantworten die Fragen anhand des Beispiels von Chlorwasserstoff gelöst in Wasser. Chlorwasserstoff (HCI) ist ein Gas, welches sich sehr gut in Wasser löst und dabei eine saure Lösung bildet.

Aufgabe 4: Lies S. 189 im Chemiebuch und vervollständige folgenden Lückentext sowie das Schema.

	Eine	wässrige	Lösung	von	Chlorwasserstoff	nennt man
				Maı	n kennzeichnet die	s durch den Index
	HCI(ac	η) , der angibt,	dass der S	toff in Wa	asser gelöst vorlieg	t. Beim Lösen von
	Chlorw	/asserstoff-G	as in Wasse	er reagier	en die Chlorwasse	rstoff-Moleküle mit
	den W	asser-Molekü	llen. Dabei (gibt das (Chlorwasserstoff-M	olekül ein
	lon an	das Wasser-	Molekül ab.	Das übe	rtragene Ion ist ein	Wasserstoff-Atom
	ohne s	ein Elektron,	also ein			Es lässt sich leicht
	abspal	ten, da es	nur leicht	an das	Chlor-Atom gebu	nden ist, da das
	elektro	negativere C	hlor-Atom	die Bind	lungselektronen a	n sich zieht. Man
sagt, das H-Atom ist positiv polarisiert	. Das	Proton wird	an ein			
Elektronenpaar des Wasser-Moleküls ge	bunden	. Es entsteht	ein		lon, das	
lon genannt wird. Zurück bleibt ein			lon, das	als Säu	rerest-lon bezeicl	nnet wird. Bei der
Bildung des Oxonium-Ions findet ein				s	tatt. Diese Art von F	Reaktion wird auch
Protolyse oder Säure-Base-Reaktion g	enannt					
Darstellung der Reaktion im Modell:						
S						
		+	-	6	+ 0	
Reaktionsgleichung in Strukturformeln: [Hilfe: PDF Datei im moodle Ordner]						
Reaktionsgleichung in Summenformeln:		+		_ →	(aq) +	(aq
					γ 	
					Salzsäu	re
Aufgabe 5: Erkläre, wieso saure Lösunge	en den S	Strom leiten.				
Aufgabe 6: Nenne den Namen der Teil bestimmen.	chen, d	die charakteri	stisch für s	saure Lös	sungen sind und i	hre Eigenschaften

3. Basen und alkalische Lösungen (= Laugen) (Hilfe: Buch, S, 192-195+198-199)

Die Laugenbrezel erhält ihren Namen durch die Behandlung des Teigrohlings mit 3,5%iger Natriumhydroxid-Lösung bevor er gebacken wird. Natriumhydroxid in Wasser gelöst (NaOH_(aq)) ist eine der bekanntesten Laugen die wir kennen. Den Reinstoff Natriumhydroxid (NaOH) nennen wir eine Base.

<u>MERKE:</u> <u>Basen</u> sind Reinstoffe, während <u>Laugen</u> oder <u>alkalische Lösungen</u> die wässrige Lösung dieser Reinstoffe sind.

Erinnerst du dich an den Springbrunnen-Versuch mit Chlorwasserstoff aus Klasse 9? Du kannst ihn dir hier zur Erinnerung nochmals anschauen: https://www.youtube.com/watch?v=yNOOgFBWrtw

→ Denselben Versuch kann man auch mit dem Gas Ammoniak durchführen. Schaue dir den Versuch bis Minute 02:12 an: https://www.youtube.com/watch?v=mCkA-4594xk

Aufgabe 7: Vervollständige den Lückentext sowie das Schema. Lies auf S. 198+199 nach, wenn nötig.

	Eine	· ·	Ū				nan
	reagie	eren die Ammonia	k-Moleküle	mit den		en. Dabei gibt	das
		Ammoniak-Molekül	ab. Das	Proton	wird an ein ₋		
H H H		lon, das		Moleküls	gebunden. E	s entsteht	ein
genannt wird. Es findet eine	Proto	n ab, bleibt ein	lo	n zurück,	das	.	-lon
Base-Reaktion.				51	att, also ellie 110	lolyse oder oat	JI 6-
			- (. 0		
Reaktionsgleichung in Strukturford [Hilfe: PDF Datei im moodle Ordner]	mein:						
Reaktionsgleichung in Summenfo	rmeln:	+		>	(aq) +		_ (aq
4. Säure-Base-Theorie nach Brö	nsted	(Hilfe: Buch, S. 19	<u>9)</u>				
Aufgabe 8: Schaue dir folgendes Vy5LNJiAlo	√ideo a	n und <u>beantworte</u> d	lie Fragen:	https://ww	ww.youtube.com/w	ratch?v=	
a) Definiere den Begriff "Säure" na	ach Brö	nsted und nenne e	in Beispiel.				
b) Definiere den Begriff "Base" na	ch Brör	nsted und nenne eir	n Beispiel.				

<u>MERKE:</u> Säure-Base-Reaktionen verlaufen nach dem Donator-Akzeptor-Prinzip. Ein Proton wird von einem Donator auf einen Akzeptor übertragen.

Gibt eine Säure HA ein Proton ab, so entsteht ein Teilchen, das wieder ein Proton aufnehmen könnte, also eine Base A⁻. Ein solches Paar von Stoffteilchen, das sich nur durch ein Proton unterscheidet, nennt man **konjugiertes Säure-Base-Paar**. An Säure-Base-Reaktionen sind immer zwei Säure-Base-Paare beteiligt.

Säure-Base-Reaktionen müssen nicht zwingend in Wasser ablaufen. Man kann sie auch beobachten, wenn z.B. Chlorwasserstoff-Gas auf Ammoniak-Gas trifft.

5. Die Neutralisation (Hilfe: Buch, S. 200-201)

Du hast nun gelernt, dass Protolysen Reaktionen von Säuren mit Basen sind. Bisher haben wir als Reaktionspartner nur Wasser betrachtet. Wasser ist eine schwache Säure bzw. Base. Was passiert nun, wenn eine starke Base wie Natriumhydroxid mit einer starken Säure wie Chlorwasserstoff reagiert?

Aufgabe 8: Stelle die Reaktionsgleichung auf. Stelle die Protonenübertragung durch einen Pfeil dar.

<u>MERKE:</u> Bei einer Neutralisationsreaktion reagieren eine starke Säure und eine starke Base zu Wasser und einem Salz.

Alles (wieder) klar? Dann geht's jetzt mit Übungen weiter!

Natronlauge, Calciumhydroxid (= Ca(OH) ₂ = Kalkwasser)
2) <u>Benenne</u> in folgenden Reaktionen jeweils das Teilchen, das als Säure bzw. Base fungiert. <u>Stelle</u> die entsprechende Reaktionsgleichung <u>auf</u> .
- Schwefelsäure mit Wasser
- Bromwasserstoff (HBr) mit Wasser - Chlorwasserstoff mit Kaliumhydroxid (KOH)
3) <u>Begründe</u> anhand der Strukturformel, weshalb Wasser-Moleküle bei Säure-Base-Reaktionen je nach Reaktionspartner Säure oder Base sein können. <u>Nenne</u> den Fachbegriff für diese Art von Teilchen.
4) Nicht nur Säure-Base-Reaktionen fungieren nach dem Donator-Akzeptor-Prinzip, sondern auch Redoxreaktionen. Während bei Säure-Base-Reaktionen Protonen vom einen Reaktionspartner auf den anderen übertragen werden, werden bei Redoxreaktionen Elektronen übertragen. Entscheide, welcher Reaktionstyp bei den beiden Reaktionen vorliegt und demonstriere das jeweilige Donator-Akzeptor-Prinzip anhand der Reaktionsgleichung. (Hilfe: https://www.youtube.com/watch?v=AMzRVVdK0_I)
- Salpetersäure (HNO₃) reagiert mit Wasser
- Magnesium reagiert mit Salzsäure (HCl _(aq))