SRKL schemes for option pricing under the Heston model

31st May 2023

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model Monte Carlo & Variance Reduction Techniques

Reduction Techniques Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Conclusion

Kuiper, N. & Westberg, M. Mälardalen University, Sweden

Contents

1 Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques

Stochastic Runge-Kutta Lawson Scheme

2 Methodology

3 Results

4 Conclusion

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques Stochastic Runge–Kutta Lawson Scheme

Methodology

Results

Motivation and Research Question

Motivation:

Explore impact of numerical methods for option pricing under the Heston model.

Research Question:

 Can the valuation of financial options be enhanced through the integration of SRKL numerical methods to solve the SDEs of the Heston model?

Methods:

 Monte Carlo and SRKL schemes: Euler-Maruyama and Midpoint.

Objectives:

- Assess convergence and consistency.
- Enhance option pricing with SRKL schemes.

SRKI schemes for option pricing under the Heston model

> Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing Black-Scholes & Heston Mode

Monte Carlo & Variance Reduction Techniques Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Option Pricing

Definition (Risk-Neutral pricing)

- Let $\mathbb{P}(\omega)$ be the true probability of outcomes $\omega \in \Omega$.
- Let $\mathbb{Q}(\omega)$ be the adjusted probability removing the effect of risk.

$$V_0 = e^{-rT} E_{\mathbb{Q}}[V_T].$$

European & Asian option payoffs

$$h_c = (X - K)^+$$
, for calls. $h_p = (K - X)^+$, for puts.

K is the strike price, and X equals to S_T for European options, and A or G for arithmetic or geometric Asian options

$$A = \frac{1}{n} \sum_{i=1}^{n} S_{t_i}, \qquad G = \left(\prod_{i=1}^{n} S_{t_i}\right)^{n-1}$$

SRKI schemes for ontion pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model Monte Carlo & Variance Reduction Techniques

Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Black-Scholes & Heston Model

Definition (Black-Scholes Model)

The underlying asset follows a geometric Brownian motion:

$$dS_t = \mu S_t dt + \sigma S_t dW_t. \tag{1}$$

Theorem (Geometric Brownian Motion)

The solution to equation (1) takes the form $S_t = S_0 \exp((r - \sigma^2/2)t + \sigma W_t)$.

The prices for the calls and puts are:

$$C(S_0,t) = S_0 N(d_1) - Ke^{-r(T-t)} N(d_2),$$
 $d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}},$

$$P(S_0,t) = Ke^{-r(T-t)}N(-d_2) - S_0N(-d_1), \quad d_2 = \frac{\ln(S_0/K) + (r-\sigma^2/2)T}{\sigma\sqrt{T}}.$$

SRKL schemes for option pricing under the Heston

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model
Monte Carlo & Variance
Reduction Techniques

Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Conclusion

Definition (Heston Model)

The Heston model with given initial value is given by

$$dS_t = rS_t dt + \sqrt{V_t} S_t dW_t^1, \qquad (2a)$$

$$dV_t = \kappa(\theta - V_t)dt + \sigma\sqrt{V_t}dW_t^2.$$
 (2b)

The Wiener processes, W_t^1 and W_t^2 are correlated, and in particular

$$E\left[dW_t^1dW_t^2\right] = \rho \min(s,t), \quad \rho \in [-1,1].$$

Theorem

The system (2) is equivalent to the system

$$dS_t = rS_t dt + \sqrt{V_t} S_t dW_t^1,$$

$$dV_t = \kappa(\theta - V_t) dt + \sigma \sqrt{V_t} \left[\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2 \right].$$

SRKL schemes for option pricing under the Heston

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques Stochastic Runge–Kutta

Methodology

Results

Conclusion

Monte Carlo & Variance Reduction Techniques

Algorithm 2: Monte Carlo simulation with Antithetic Variate

Input: Initial stock price S_0 , variance σ , risk-free interest rate r, time horizon in years T, number of time steps N, number of simulations M

Output: Antithetic estimate of stock price path

 $dt \leftarrow T/N$;

generate a $M \times N$ standard normal random variable: $z \sim \mathcal{N}(0, 1)$;

simulate a $M \times N$ Brownian motion and the negative for the antithetic path;

$$dW^1 \leftarrow \sqrt{\mathrm{d}t} \times z_1$$
;

$$dW^2 \leftarrow -dW^1$$
;

initiate two zero $M \times N$ matrices to hold the values of S_1 and S_2 ;

assign starting price; $S_1(:,1) \leftarrow S_0$:

$$S_2(:,1) \leftarrow S_0:$$

generate stock price path and antithetic path;

for $i \leftarrow 1$ to N do

$$S_1(:,i+1) \leftarrow S(:,i) \times \exp\left(\left(r - \frac{1}{2}V(:,i)\right) dt + \sqrt{V(:,i)} dW^1\right);$$

$$S_2(:,i+1) \leftarrow S(:,i) \times \exp\left(\left(r - \frac{1}{2}V(:,i)\right) dt + \sqrt{V(:,i)} dW^2\right);$$

end

calculate the expectations of each path;

$$S_1 \leftarrow \sum_{i=1}^M S_1(:,N);$$

$$S_2 \leftarrow \sum_{i=1}^M S_2(:,N);$$

calculate the antithetic estimate;

$$S \leftarrow \frac{1}{2}(S_1 + S_2);$$

return S;

SRKL schemes for option pricing under the Heston

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques

> Stochastic Runge–Kutta Lawson Scheme

Methodology

Results

Conclusion

Stochastic Runge-Kutta Lawson Scheme

Discretization

Consider the interval $I = [t_0, T]$. We can create an ordered subset of I in N intervals such as $t_0 < t_1 < \cdots < t_N = T$, where $t_n = t_0 + nh$ for $n = 0, 1, \cdots, N$, and where $h = (T - t_0)/N$ is the step size.

SDEs for SRKL schemes

SRKL schemes are applicable to the following type of stochastic differential equations

$$d\mathbf{X}(t) = \sum_{m=0}^{M} (A_m \mathbf{X}(t) + \mathbf{g}_m(t, \mathbf{X}(t))) dW_m(t), \qquad \mathbf{X}(0) = \mathbf{x}_0,$$
(3)

where W(0) = t, $\mathbf{X}(t) \in \mathbb{R}^d$, the subsequent matrices A_k and A_l are constant and commute, and $W_1(t), \ldots, W_M(t)$ are independent Brownian motions.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Monte Carlo & Variance

Reduction Techniques
Stochastic Runge-Kutta
Lawson Scheme

.

Methodology

Results

Conclusion

Stochastic Runge-Kutta Lawson Scheme

General form of the SRKL scheme

The following general *SRKL* scheme was proposed by [2] Debrabant et al. (2020):

$$\mathbf{H}_{i} = \mathbf{Y}_{n} + \sum_{j=1}^{s} \exp(-\Delta L_{j}^{n}) \sum_{m=0}^{M} Z_{ij}^{m,n} \tilde{g}_{m}(t_{n} + c_{0}^{n,j}, \exp(\Delta L_{j}^{n}) \mathbf{H}_{j}),$$

$$\mathbf{V}_{n}^{n+1} = \mathbf{Y}_{n} + \sum_{i=1}^{s} \exp(-\Delta L_{i}^{n}) \sum_{m=0}^{M} Z_{i}^{m,n} \tilde{g}_{m}(t_{n} + c_{0}^{n,i}, \exp(\Delta L_{i}^{n}) \mathbf{H}_{i}),$$

$$\mathbf{Y}_{n+1} = \exp(\Delta L^{n}) \mathbf{V}_{n}^{n+1}.$$

$$(4)$$

Definition (Drift- and Full-Stochastic Schemes)

<u>DSL schemes</u>: $A_m = 0 \ \forall \ m > 0$, compute $\exp(L^n(t))$ once (SRKL Euler-Maruyama).

<u>FSL</u> schemes: contain at least one non-zero linear diffusion term in the operator $L^n(t)$, compute $\exp(L^n(t))$ at every step (SRKL Midpoint).

SRKL schemes for option pricing under the Heston

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques Stochastic Runge-Kutta

Lawson Scheme

Methodology

Results

Conclusion

Stochastic Runge-Kutta Lawson scheme for the Heston model

In the Heston model we have:

Example

$$d = M = 2, A_0 = \begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}, A_1 = A_2 = \mathbf{0}_{2 \times 2},$$

$$g_0(t, \mathbf{X}(t)) = \begin{bmatrix} 0 \\ \kappa \theta \end{bmatrix}, g_1(t, \mathbf{X}(t)) = \begin{bmatrix} \sqrt{V(t)}S(t) \\ \sigma \rho \sqrt{V(t)} \end{bmatrix}, g_2(t, \mathbf{X}(t)) = \begin{bmatrix} 0 \\ \sigma \sqrt{1 - \rho^2} \sqrt{V(t)} \end{bmatrix}.$$

Coefficients suggested by [2]:

$$c_m^{n,i} = \sum_{j=1}^s Z_{ij}^{m,n}, \qquad \Delta W^{n,m} = c_m^n = \sum_{i=1}^s Z_i^{m,n},$$

$$\Delta L_i^n = \begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix} c_0^{n,i}, \qquad \Delta L^n = \begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix} c_0^n.$$

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research

Option Pricing

Black-Scholes & Heston Model Monte Carlo & Variance

Reduction Techniques
Stochastic Runge-Kutta

Lawson Scheme

Methodology

Results

Conclusion

SRKL for the Heston Model

Cont'd:

Example

$$\begin{aligned} & \mathbf{\textit{H}}_{i} = \mathbf{\textit{Y}}_{n} + \sum_{j=1}^{s} e^{-\begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}} c_{0}^{n,j} \sum_{m=0}^{2} Z_{ij}^{m,n} \tilde{\mathbf{\textit{g}}}_{m}(t_{n} + c_{0}^{n,j}, e^{-\begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}} c_{0}^{n,j} \mathbf{\textit{H}}_{j}), \\ & \mathbf{\textit{V}}_{n+1}^{n} = \mathbf{\textit{Y}}_{n} + \sum_{i=1}^{s} e^{-\begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}} c_{0}^{n,i} \sum_{m=0}^{2} Z_{i}^{m,n} \tilde{\mathbf{\textit{g}}}_{m}(t_{n} + c_{0}^{n,i}, e^{-\begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}} c_{0}^{n,i} \mathbf{\textit{H}}_{i}), \\ & \mathbf{\textit{Y}}_{n+1} = e^{\begin{bmatrix} r & 0 \\ 0 & -\kappa \end{bmatrix}} c_{0}^{n} \mathbf{\textit{V}}_{n+1}^{n}. \end{aligned}$$

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques

Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Conclusion

Methodology

Methodology Steps

- 1 Understand the Heston model
- 2 Select Numerical Methods
- 3 Implement the Methods
- 3 Define Benchmark

- 4 Compute Option Prices
- 5 Measure Accuracy and Efficiency
- 6 Perform Sensitivity Test
- 7 Compare Results

Parameter inputs:

$$S_0 = 80$$
,

$$K = 85$$
,

$$\theta = 0.05$$
,

$$V_0 = 0.04$$
,

$$T=1$$
.

$$\sigma = 0.20$$
,

$$r = 0.05$$
,

$$\kappa = 1$$
,

$$\rho = -0.7$$
.

SRKL schemes for option pricing under the Heston

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question Option Pricing

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance

Reduction Techniques
Stochastic Runge–Kutta
Lawson Scheme

lethodology

Results

Conclusion

Jonciusion

Results (1/4): Heat Map

Figure: Heat map of arithmetic Asian call option prices under Heston model with Midpoint FSL & standard Monte Carlo method and varying initial price S_0 and strike price K.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research

Option Pricing

Monte Carlo & Variance Reduction Techniques Stochastic Runge–Kutta

Methodology

Regulte

Results (2/4): Convergences

Figure: Relationship between step-size and convergence of European & arithmetic Asian call prices for different models, with the incorporation of variance reduction techniques.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Monte Carlo & Variance Reduction Techniques Stochastic Runge-Kutta

Lawson Scheme

Methodology

icouito

Conclusion

Results (3/4): Table 1

Method	τ	C _{EU}	σ	$\sigma^2 \tau$	
Standard Monte Carlo	0.01780	5.98914	0.29084	0.001505	
Antithetic Monte Carlo	0.03036	5.95960	0.20814	0.00131	
Control Monte Carlo	0.01700	5.98914	0.29085	0.00143	
Midpoint	0.27933	5.57079	0.28630	0.02290	
Antithetic Midpoint	0.43846	5.53898	0.20496	0.01842	
Control Midpoint	0.30401	5.57079	0.28629	0.02492	
Euler	0.03231	5.98032	0.29129	0.00274	
Antithetic Euler	0.05209	5.98366	0.20959	0.00228	
Control Euler	0.02767	5.98032	0.29129	0.00234	
Black-Scholes (Benchmark)	_	5.98824	_	_	

Table: Price, standard error and efficiency of European call options under the Heston Model.

SRKL schemes for option pricing under the Heston model

> Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model Monte Carlo & Variance Reduction Techniques

Stochastic Runge-Kutta Lawson Scheme

Methodology

Results (4/4): Table 2

Method	τ	C_A	$\sigma_{\!\scriptscriptstyle A}$	$\sigma_{\!\scriptscriptstyle A}^2 au$	C_G	σ_G	$\sigma^2 \tau$
Antithetic Monte Carlo	0.05753	2.35835	0.09765	0.00055	2.24130	0.09385	0.00051
Control Monte Carlo	0.03029	2.30193	0.13550	0.00056	2.18983	0.13056	0.00052
Midpoint	0.25216	2.10707	0.13041	0.00429	2.00089	0.12543	0.00397
Antithetic Midpoint	0.55786	2.16689	0.09415	0.00495	2.05432	0.09031	0.00455
Control Midpoint	0.28627	2.10707	0.01065	0.0000	2.00089	0.12543	0.00450
Euler	0.04653	2.32112	0.13642	0.00087	2.20825	0.13145	0.00080
Antithetic Euler	0.12521	2.37718	0.09829	0.00121	2.25921	0.09446	0.00112
Control Euler	0.04261	2.32112	0.01066	0.00000	2.20824	0.13145	0.00092
Standard Monte Carlo (Benchmark)	0.03073	2.30193	0.13549	0.00056	2.18983	0.13057	0.00052

Table: Price, standard error and efficiency of Arithmetic and Geometric Asian call options under the Heston Model.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques Stochastic Runge-Kutta

Lawson Scheme

Methodology

esults

Conclusion

Uliciusiuli

Conclusion

Conclussion

Summarized results:

- Midpoint: Under-pricing of call options.
- Midpoint: Less efficient than traditional methods.
 - Euler: More accurate and efficient than Midpoint.
 - Consistent no matter the step size.

Encountered Issues:

- Hard to implement.
- Unstable results.

Further research:

- FSL and DSL schemes comparison.
- Other derivatives, numerical methods, and models.
- Model fitting and portfolios.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model Monte Carlo & Variance

Reduction Techniques Stochastic Runge-Kutta Lawson Scheme

Methodology

Results

Bibliography

- 1 Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637–654, 1973. ISSN 0022-3808. doi: 10.1086/260062.
- Kristian Debrabant, Anne Kværnø, and Nicky Cordua Mattsson. Matlab code: Runge-Kutta Lawson schemes for stochastic differential equations, 2020. doi:https://doi.org/10.5281/zenodo.4062482.
- Kristian Debrabant, Anne Kværnø, and Nicky Cordua Mattsson. Runge–Kutta Lawson schemes for stochastic differential equations. BIT, 61(2):381–409, 2021. ISSN 0006-3835. doi: 10.1007/s10543-020-00839-8.
- 4 Kristian Debrabant, Anne Kværnø, and Nicky Cordua Mattsson. Lawson schemes for highly oscillatory stochastic differential equations and conservation of invariants. BIT, 62(4):1121–1147, 2022. ISSN 0006-3835. doi: 10.1007/s10543-021-00906-8.

SRKL schemes for option pricing under the Heston model

Kuiper, N. & Westberg, M.

Background

Motivation and Research Question

Option Pricing

Black-Scholes & Heston Model

Monte Carlo & Variance Reduction Techniques Stochastic Runge-Kutta

Lawson Scheme

Methodology

Results

Conclusion