Sequence Models

Bùi Tiến Lên

2022

Contents

- 1. Sequential prediction tasks
- 2. Recurrent Network Network
- 3. Modern Recurrent Neural Networks

- 4. Visualizing and Understanding
- **5.** Applications

Recurrer Neural Networks

Long Short Term Memory (LSTM)

(GRU)

Networks
BidirectionalRecurrent

Neural Networks

Encoder-Decoder Architecture

Visualizing a Understandir

Applications

Sequence classification
Language modeling
Image captioning
Machine translation

Notation

symbol	meaning	operator	meaning
$a, b, c, N \dots$ $w, v, x, y \dots$ $X, Y \dots$ \mathbb{R}	scalar number column vector matrix set of real numbers	$egin{array}{c} oldsymbol{\omega}^{T} & oldsymbol{X} oldsymbol{Y} & oldsymbol{X}^{-1} & oldsymbol{\omega}^{T} &$	transpose matrix multiplication
\mathbb{Z} \mathbb{N} \mathbb{R}^D $\mathcal{X},\mathcal{Y},\ldots$ \mathcal{A}	set of integer numbers set of natural numbers set of vectors set algorithm	<i>X</i> · <i>X</i> ⊙ <i>Y</i>	inverse an element-wise matrix-vector multiplication

Sequential prediction tasks

Language modeling

Image captioning

Machine translation

Recurrent Neural Networks: Process Sequences

- Model 1-1: e.g. Image classification
- Model 1-n: e.g. Image captioning
- Model n-1: e.g. Sentiment classification
- Model n-n: e.g. Machine translation
- Model n-n: e.g. Intellisense

Language modeling Image captioning Machine translation

Example 1: Sentiment classification

• Goal: classify a text sequence (e.g., restaurant, movie or product review, Tweet) as having positive or negative sentiment

"The food was really good"

"The vacuum cleaner broke within two weeks"

"The movie had slow parts, but overall was worth watching"

Sequential prediction tasks

Recurren

Recurren

Architect

Training problem

Modern Recurrent Neural

Long Short Terr Memory (LSTM

Gated Recurrent (GRU)

Deep Recurrent Networks

BidirectionalRecurre

Encoder-Decoder

Architecture

Understandin

Application

Sequence classification
Language modeling
Image captioning
Machine translation

Example 2: Text generation

 Goal: Sample from the distribution of a given text corpus (also known as language modeling)

Sequential prediction tasks

Example 3: Image caption generation

Language modeling Image captioning

A cat sitting on a suitcase on the floor

Two people walking on

the beach with surfboards

branch

A tennis player in action on the court

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Example 3: Image caption generation (cont.)

Language modeling Image captioning

Sequential prediction tasks

Language modeling

Image captioning

Example 4: Machine translation

• Translate English to Vietnamese

Recurrent Network Network

- Architecture
- Training
- Learning problems

quential ediction tasks

Recurrent Network Network

Architecture Training

Modern Recurren

Recurrer Neural Network

Long Short Term Memory (LSTM)

Gated Recurrent L

Deep Recurrent

Networks

Neural Networks

Encoder-Decod

Visualizing ar Understanding

Application

Sequence classification

Language modeling

Image captioning

Machine translation

Human thoughts are persistence

 Humans don't start their thinking from scratch. They usually use their prior knowledge or experiences.

equential

Recurrer Network

Architecture

Training

Modern Recurrent

Neural

Network

Long Short Term Memory (LSTM)

(GRU)

Networks

BidirectionalRecurr

Neural Networks

Encoder-Decoder

Encoder-Decod Architecture

Visualizing an Understanding

Application

Sequence classification
Language modeling
Image captioning
Machine translation

Recurrent Neural Network

• **Key idea**: RNNs have an "internal state" h_t that is updated as a sequence is processed

Vanilla RNN unit

Architecture

Language modeling Machine translation

Image captioning

• The **state** consists of a single "hidden" vector h_t :

Full formula

$$\begin{cases} \mathbf{h}_{t} = f_{\mathbf{W}, \mathbf{b}}(\mathbf{h}_{t-1}, \mathbf{x}_{t}) \\ \hat{\mathbf{y}}_{t} = \mathbf{g}_{\mathbf{W}, \mathbf{b}}(\mathbf{h}_{t}) \\ \mathbf{h}_{t} = \tanh(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t} + \mathbf{b}_{h}) \\ \hat{\mathbf{y}}_{t} = \mathbf{W}_{hy}\mathbf{h}_{t} + \mathbf{b}_{y} \end{cases}$$

where parameters $W = (W_{\times h}, W_{hh}, W_{hv})$ and $\mathbf{b} = (\mathbf{b}_h, \mathbf{b}_V)$

Simple formula without bias vector

$$\begin{cases} \boldsymbol{h}_t = \tanh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_t) \\ \hat{\boldsymbol{y}}_t = \boldsymbol{W}_{hy}\boldsymbol{h}_t \end{cases}$$

(1)

Language modeling Image captioning Machine translation

Cost function

• Given a sequence $\{(x_1,y_1),...,(x_T,y_T)\}$, the lost function L is defined by

$$L(x_1, ..., x_T, y_1, ..., y_T \mid W, \mathbf{b}) = \sum_{t=1}^{I} I(y_t, \hat{y}_t)$$
 (3)

Deep Recurrent Ne Networks

BidirectionalRecurr

Encoder-Decoder

Visualizing au Understandin

Application

Sequence classification
Language modeling
Image captioning
Machine translation

RNN forward

Given a sequence data $\{(\boldsymbol{x}_1, \boldsymbol{y}_1), ..., (\boldsymbol{x}_T, \boldsymbol{y}_T)\}$

• For each t = 1...T, compute using simple formula

$$\begin{cases} \mathbf{h}_t = \tanh(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_t) \\ \hat{\mathbf{y}}_t = \mathbf{W}_{hy}\mathbf{h}_t \end{cases}$$

Compute the lost function

$$L(\mathbf{x}_1,\ldots,\mathbf{x}_T,\mathbf{y}_1,\ldots,\mathbf{y}_T\mid \mathbf{W}) = \sum_{t=1}^{l} I(\mathbf{y}_t,\hat{\mathbf{y}}_t)$$

Language modeling Image captioning Machine translation For each RNN unit

$$\frac{\partial L}{\partial \frac{\mathbf{W}_{hh}}{\partial L}} = \frac{\partial L}{\partial \mathbf{h}_{t}} \odot (1 - \tanh^{2}(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t}))\mathbf{h}_{t-1}^{\mathsf{T}}
\frac{\partial L}{\partial \mathbf{W}_{xh}} = \frac{\partial L}{\partial \mathbf{h}_{t}} \odot (1 - \tanh^{2}(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t}))\mathbf{x}_{t}^{\mathsf{T}}
\frac{\partial L}{\partial \mathbf{W}_{hy}} = ?$$

$$\frac{\partial L}{\partial \mathbf{h}_{t-1}} = \mathbf{W}_{hh}^{\mathsf{T}} (1 - \tanh^{2}(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t})) \odot \frac{\partial L}{\partial \mathbf{h}_{t}}$$
(4)

Training

Memory (LSTM)

Language modeling Image captioning Machine translation

Backpropagation through time (BPTT)

• Problem: Takes a lot of memory for long sequences!

Training

Language modeling Image captioning

Machine translation

Truncated backpropagation through time

• In practice, truncated BPTT is used: run the RNN forward k time steps, propagate backward for k time steps

Learning problems

Language modeling Image captioning Machine translation

Long-term dependencies

Vanilla RNNs trained with BPTT have difficulties learning longterm dependencies.

- Able when the gap between the relevant information is small.
- As that gap grows, unable to learn to connect the information.

Learning problems

Language modeling Image captioning Machine translation

Vanishing/Exploding gradients

Computing gradient of h_0 involves many factors of W (and repeated tanh)

• Largest singular value > 1: **Exploding gradients Gradient clipping**: Scale gradient **g** if its norm is too big

$$\mathbf{g} \leftarrow \min\left(1, \frac{\mathsf{threshold}}{\|\mathbf{g}\|}\right)\mathbf{g}$$
 (5)

• Largest singular value < 1: Vanishing gradients Change RNN architecture

Modern Recurrent Neural Networks

- Long Short Term Memory (LSTM)
- Gated Recurrent Units (GRU)
- Deep Recurrent Neural Networks
- BidirectionalRecurrent Neural Networks
- Encoder-Decoder Architecture

equential ediction tasks

Recurren Network

Architecture

Training
Learning problem

Recurren Neural

Network

Long Short Term Memory (LSTM)

Gated Recurrent

Deep Recurrent Neu

Networks BidirectionalRecurrer

Neural Networks Encoder-Decoder

Visualizing ar

Application

Sequence classification
Language modeling
Image captioning
Machine translation

Key Concepts

- 1. Maintain a separate cell state c_t from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication \rightarrow avoid vanishing gradient problem (uninterrupted gradient flow)

equential rediction tasks

Recurrer

Architectu

Training

Learning problem

Recurrer Neural

Neural Networks

Long Short Term Memory (LSTM)

Gated Recurrent

Deep Recurrent Ne

Networks

Encoder-Decoder

Architecture

Visualizing ar Understanding

Application

Sequence classificatio Language modeling

Image captioning

Machine translation

Long Short Term Memory Unit

- i (input gate): Whether to write to cell?
- f (forget gate): Whether to erase cell?
- o (output gate): How much to reveal cell?
- g (candiate gate): How much to write to cell?

Long Short Term Memory Unit (cont.)

Architecture
Training
Learning proble
Modern

Networks

Long Short Term
Memory (LSTM)

Gated Recurrent Unit

Deep Recurrent Neural Networks

BidirectionalRecurre Neural Networks

Visualizing and Understanding

Application

Sequence classification

Language modeling

Image captioning

Machine translation

$$\begin{pmatrix} \mathbf{i}_{t} \\ \mathbf{f}_{t} \\ \mathbf{o}_{t} \\ \mathbf{g}_{t} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} \begin{pmatrix} \mathbf{W} \begin{pmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_{t} \end{pmatrix} + \mathbf{b}_{h} \end{pmatrix}$$
$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$
$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t})$$

(6)

Long Short Term Memory (LSTM)

Neural Networks

Language modeling Image captioning Machine translation

Gradient flow

Similar to ResNet

quential ediction tasks

Recurren Network

Architect

Training

Learning problem

Recurren Neural

Long Short Term

Gated Recurrent Units (GRU)

Deep Recurrent Neur Networks

Networks Bidirectional Recurrer

Encoder-Decoder

Visualizing a

Application

Sequence classification
Language modeling
Image captioning
Machine translation

GRU: Key Concepts

GRUs get rid of separate cell states; only use:

- **Reset gates** *r* help capture short-term dependencies in sequences.
- **Update gates** *u* help capture long-term dependencies in sequences.
- Candiate gates c

Deep Recurrent Neural Networks

Language modeling Image captioning

Machine translation

Multilayer LSTMs

$$\begin{pmatrix} \mathbf{i}_{t}^{\ell} \\ \mathbf{f}_{t}^{\ell} \\ \mathbf{o}_{t}^{\ell} \\ \mathbf{g}_{t}^{\ell} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} \begin{pmatrix} \mathbf{W} \begin{pmatrix} \mathbf{h}_{t-1}^{\ell} \\ \mathbf{h}_{t}^{\ell-1} \end{pmatrix} + \mathbf{b}_{h}^{\ell} \end{pmatrix}$$
$$\mathbf{c}_{t}^{\ell} = \mathbf{f}_{t}^{\ell} \odot \mathbf{c}_{t-1}^{\ell} + \mathbf{i}_{t}^{\ell} \odot \mathbf{g}_{t}^{\ell}$$
$$\mathbf{h}_{t}^{\ell} = \mathbf{o}_{t}^{\ell} \odot \tanh(\mathbf{c}_{t}^{\ell})$$

equential rediction tasks

Recurren Network

Architecture Training

Training
Learning proble

Recurren Neural

Long Short Term

Gated Recurrent U (GRU)

Deep Recurrent No

Networks

BidirectionalRecurrent Neural Networks

Encoder-Decoder

Visualizing a Understanding

Application

Sequence classificat Language modeling Image captioning Machine translation

Bidirectional Model

 Bidirectional RNNs add a hidden layer that passes information in a backward direction

Recurren Network

Architecture

Training

Learning problem

Modern Recurren Neural

Long Short Term Memory (LSTM)

(GRU)

Networks

Neural Networks

Encoder-Decoder Architecture

Visualizing and Understanding

Application

Sequence classification
Language modeling
Image captioning
Machine translation

Encoder-Decoder Architecture

A encoder-decoder architecture includes two major components

- The first component is an **encoder**: it takes a variable-length sequence as the input and transforms it into a state with a fixed shape.
- The second component is a decoder: it maps the encoded state of a fixed shape to a variable-length sequence.

Visualizing and Understanding

Applications

- Sequence classification
- Language modeling
- Image captioning
- Machine translation

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Russell, S. and Norvig, P. (2021).

Artificial intelligence: a modern approach.
Pearson Education Limited.