Attilio Meucci

Black-Litterman and Beyond

from Normal Markets to Fully Flexible Views

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

CASE STUDIES

REFERENCES AND CONCLUSIONS

$$m{m} \equiv \mathbf{E}\left\{m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{S} \equiv extsf{Cov} ig\{ oldsymbol{R}_{T+ au} ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

subject to $w'Sw \leq v$

 $\boldsymbol{\mathit{W}}$: portfolio weights

 ${\cal V}\;$: grid of target variances

 ${\cal C}$: investment constraints, e.g. $w \ '{\it 1}=1, \ w \ge 0$

$$m{m} \equiv \mathrm{E}\left\{m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{S} \equiv ext{Cov} ig\{ oldsymbol{R}_{T+ au} ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$r_t \sim N(m, S), \quad t = 1, ..., T$$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} S \equiv \operatorname{Cov} \left\{ oldsymbol{R}_{T+ au}
ight\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} S \equiv \operatorname{Cov} \left\{ oldsymbol{R}_{T+ au}
ight\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$\frac{\mathbf{r}_{t}}{\mathbf{m}} \sim \mathbf{N}(\mathbf{m}, \mathbf{S}), \quad t = 1, ..., T$$

$$\widehat{\mathbf{m}} \equiv \frac{1}{T} \sum_{t=1}^{T} \mathbf{r}_{t}$$

$$\widehat{\mathbf{S}} \equiv \frac{1}{T} \sum_{t=1}^{T} (\mathbf{r}_{t} - \widehat{\mathbf{m}}) (\mathbf{r}_{t} - \widehat{\mathbf{m}})^{\mathsf{T}}$$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} S \equiv \operatorname{Cov} \left\{ oldsymbol{R}_{T+ au}
ight\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

subject to $w'Sw \leq v$

$$r_{t} \sim N(m, S), \quad t = 1, ..., T$$

$$\widehat{m} = \frac{1}{T} \sum_{t=1}^{T} r_{t}$$

$$\widehat{S} = \frac{1}{T} \sum_{t=1}^{T} (r_{t} - \widehat{m}) (r_{t} - \widehat{m})'$$

$$w_{v} = \underset{w \in C}{\operatorname{argmax}} \{w' \widehat{m}\}$$

subject to $w'\widehat{S}w \leq v$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} oldsymbol{S} \equiv \operatorname{Cov}ig\{oldsymbol{R}_{T+ au}ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

subject to $w'Sw \leq v$

$$r_t \sim N(m, S), \quad t = 1, ..., T$$

$$\widehat{m} = \frac{1}{T} \sum_{t=1}^{T} r_t$$

$$\widehat{S} = \frac{1}{T} \sum_{t=1}^{T} (r_t - \widehat{m}) (r_t - \widehat{m})'$$

$$w_v = \underset{w \in C}{\operatorname{argmax}} \{w' \widehat{m}\}$$

subject to $w'\widehat{S}w \leq v$

LIVE

$$oldsymbol{?} oldsymbol{S} \equiv \operatorname{Cov}ig\{oldsymbol{R}_{T+ au}ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$r_{t} \sim N(m, S), \quad t = 1, ..., T$$

$$\widehat{m} = \frac{1}{T} \sum_{t=1}^{T} r_{t}$$

$$\widehat{S} = \frac{1}{T} \sum_{t=1}^{T} (r_{t} - \widehat{m}) (r_{t} - \widehat{m})'$$

$$w_{v} = \underset{w \in C}{\operatorname{argmax}} \{w' \widehat{m}\}$$
subject to $w' \widehat{S} w \leq v$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} oldsymbol{S} \equiv \operatorname{Cov}ig\{oldsymbol{R}_{T+ au}ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$r_{t} \sim N(m, S), \quad t = 1, ..., T$$

$$\widehat{m} = \frac{1}{T} \sum_{t=1}^{T} r_{t}$$

$$\widehat{S} = \frac{1}{T} \sum_{t=1}^{T} (r_{t} - \widehat{m}) (r_{t} - \widehat{m})'$$

$$w_{v} = \underset{w \in C}{\operatorname{argmax}} \left\{ w' \widehat{m} \right\}$$
subject to $w' \widehat{S} w \leq v$

$$m{?} \ m{m} \equiv \mathrm{E} \left\{ m{R}_{T+ au}
ight\}$$
 : expected returns

$$oldsymbol{?} oldsymbol{S} \equiv \operatorname{Cov}ig\{oldsymbol{R}_{T+ au}ig\}$$
 : covariance

$$\mathbf{w}_{v} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mathbf{m} \right\}$$

$$r_{t} \sim N(m, S), \quad t = 1, ..., T$$

$$\widehat{m} = \frac{1}{T} \sum_{t=1}^{T} r_{t}$$

$$\widehat{S} = \frac{1}{T} \sum_{t=1}^{T} (r_{t} - \widehat{m}) (r_{t} - \widehat{m})'$$

$$w_{v} = \underset{w \in C}{\operatorname{argmax}} \{w' \widehat{m}\}$$
subject to $w' \widehat{S} w \leq v$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

CASE STUDIES

CONCLUSIONS AND REFERENCES

BL and beyond - scenario analysis

Market distribution

Market distribution

Scenario analysis

$$\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$
 returns on asset classes/funds

$$\mathbf{Q}\mathbf{X} \equiv \mathbf{v}$$

Market distribution

Scenario analysis

$$\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$
 returns on asset classes/funds

$$\mathbf{Q}\mathbf{X} \equiv \mathbf{v}$$

BL and beyond - scenario analysis

Market distribution

Scenario analysis

$$\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$$
 returns on asset classes/funds

Conditional formula

$$\begin{split} \mathbf{X}|\mathbf{v} \sim \mathbf{N} \left(\mu_{\mathbf{x}|\mathbf{v}}, \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{v}} \right) \\ \mu_{\mathbf{x}|\mathbf{v}} & \equiv \quad \boldsymbol{\mu} + \boldsymbol{\Sigma} \mathbf{Q}' \left(\mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' \right)^{-1} \left(\mathbf{v} - \mathbf{Q} \boldsymbol{\mu} \right) \\ \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{v}} & \equiv \quad \boldsymbol{\Sigma} - \boldsymbol{\Sigma} \mathbf{Q}' \left(\mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' \right)^{-1} \mathbf{Q} \boldsymbol{\Sigma}. \end{split}$$

Market distribution

Scenario analysis

$$\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$$
 returns on asset classes/funds

$$\mathbf{Q}\mathbf{X} \equiv \mathbf{v}$$

BL and beyond - scenario analysis

Market distribution

Scenario analysis

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

 $\mathbf{Q}\mathbf{X} \equiv \mathbf{v}$

Conditional formula

$$\begin{split} \mathbf{X}|\mathbf{v} \sim \mathbf{N} \left(\boldsymbol{\mu}_{\mathbf{x}|\mathbf{v}}, \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{v}} \right) \\ \boldsymbol{\mu}_{\mathbf{x}|\mathbf{v}} & \equiv \quad \boldsymbol{\mu} + \boldsymbol{\Sigma} \mathbf{Q}' \left(\mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' \right)^{-1} \left(\mathbf{v} - \mathbf{Q} \boldsymbol{\mu} \right) \\ \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{v}} & \equiv \quad \boldsymbol{\Sigma} - \boldsymbol{\Sigma} \mathbf{Q}' \left(\mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' \right)^{-1} \mathbf{Q} \boldsymbol{\Sigma}. \end{split}$$

Optimization

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \boldsymbol{\mu}_{\mathbf{x} | \mathbf{v}} - \lambda \mathbf{w}' \boldsymbol{\Sigma}_{\mathbf{x} | \mathbf{v}} \mathbf{w} \right\}$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

- Estimation risk
- Views
- Discussion

ENTROPY POOLING

CASE STUDIES

REFERENCES AND CONCLUSIONS

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Market distribution

returns on asset classes/funds

?

estimation risk

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$\mu \sim N(\pi, \tau \Sigma)$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$\mu \sim N(\pi, \tau \Sigma)$$

$$\widehat{\boldsymbol{\mu}} \equiv \frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \sim \mathbf{N} \left(\boldsymbol{\pi}, \frac{\boldsymbol{\Sigma}}{T} \right)$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$\mu \sim N(\pi, \tau \Sigma)$$

$$\tau \approx \frac{1}{T}.$$

$$\widehat{\mu} \equiv \frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \sim \mathbf{N} \left(\boldsymbol{\pi}, \frac{\boldsymbol{\Sigma}}{T} \right)$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$oldsymbol{\mu} \sim \mathrm{N} \left(oldsymbol{\pi} \ au oldsymbol{\Sigma}
ight)$$

$$au pprox rac{1}{T}.$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$\mu \sim N(\pi, \tau \Sigma)$$

$$au pprox rac{1}{T}$$
 .

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

$$\mu \sim N(\pi, \tau \Sigma)$$

$$\tau \approx \frac{1}{T}$$
.

$$\mathbf{w}_{\lambda} = \frac{1}{2\lambda} \mathbf{\Sigma}^{-1} \boldsymbol{\pi}$$

$$\label{eq:weak_equation} \begin{aligned} \text{mean-variance} & & w_{\lambda} \equiv \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ \mathbf{w}' \boldsymbol{\pi} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \right\} \end{aligned}$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Σ estimated by exponential smoothing

$$\mu \sim N(\pi, \tau \Sigma)$$

$$au pprox rac{1}{T}$$
 .

$$\pi \equiv 2\overline{\lambda} \Sigma \widetilde{\mathbf{w}}.$$

$$\mathbf{w}_{\lambda} = \frac{1}{2\lambda} \mathbf{\Sigma}^{-1} \boldsymbol{\pi}$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Σ estimated by exponential smoothing

$$\mu \sim \mathcal{N}\left(\boldsymbol{\pi}, \boldsymbol{\tau}\boldsymbol{\Sigma}\right)$$

$$\boldsymbol{\tau} \approx \frac{1}{T}$$

equilibrium returns

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ returns on asset classes/funds

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ returns on asset classes/funds

Optimization

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \boldsymbol{\mu} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \right\}$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

- Estimation risk

- Views

- Discussion

ENTROPY POOLING

CASE STUDIES

REFERENCES AND CONCLUSIONS

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ returns on asset classes/funds

views scenario analysis with uncertainty

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Views

$$\mathbf{Q}\mu\sim \mathrm{N}\left(\mathbf{v},\mathbf{\Omega}\right)$$

FOCUS: Q = portfolio

BL and beyond - Black-Litterman model: views

Market distribution

Views

$$\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$$
 returns on asset classes/funds

 $\mathbf{Q}\boldsymbol{\mu} \sim \mathbf{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$

Bayes' formula

$$\mathbf{X}|\mathbf{v};\boldsymbol{\Omega}\sim\mathbf{N}\left(\boldsymbol{\mu}_{BL},\boldsymbol{\Sigma}_{BL}\right)$$

$$\mu_{BL} \ = \ \pi + \tau \Sigma \mathbf{Q}' \left(\tau \mathbf{Q} \Sigma \mathbf{Q}' + \Omega \right)^{-1} \left(\mathbf{v} - \mathbf{Q} \pi \right)$$

$$\Sigma_{BL} = (1 + \tau) \Sigma - \tau^2 \Sigma Q' (\tau Q \Sigma Q' + \Omega)^{-1} Q \Sigma.$$

Market distribution

Views

 $\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ returns on asset classes/funds

 $\mathbf{Q}\mu \sim \mathrm{N}\left(\mathbf{v},\mathbf{\Omega}\right)$

 $\begin{array}{c} \Omega \rightarrow 0 \\ \text{small} \\ \text{uncertainty} \end{array}$

Bayes' formula

$$\mathbf{X}|\mathbf{v};\boldsymbol{\Omega}\sim\mathbf{N}\left(\boldsymbol{\mu}_{BL},\boldsymbol{\Sigma}_{BL}\right)$$

$$\mu_{BL} \ = \ \pi + \tau \Sigma \mathbf{Q}' \left(\tau \mathbf{Q} \Sigma \mathbf{Q}' + \Omega \right)^{-1} (\mathbf{v} - \mathbf{Q} \pi)$$

$$\boldsymbol{\Sigma}_{BL} = (1+\tau) \, \boldsymbol{\Sigma} - \tau^2 \boldsymbol{\Sigma} \mathbf{Q}' \, \big(\tau \mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' + \boldsymbol{\Omega} \big)^{-1} \, \mathbf{Q} \boldsymbol{\Sigma}.$$

Market distribution

Views

$$\mathbf{X} \sim \mathrm{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$

returns on asset classes/funds

 $\mathbf{Q}\boldsymbol{\mu} \sim \mathbf{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$

large uncertainty

Bayes' formula

$$\mathbf{X}|\mathbf{v};\boldsymbol{\Omega}\sim\mathbf{N}\left(\boldsymbol{\mu}_{BL},\boldsymbol{\Sigma}_{BL}\right)$$

$$\mu_{BL} \ = \ \pi + \tau \Sigma \mathbf{Q}' \left(\tau \mathbf{Q} \Sigma \mathbf{Q}' + \Omega \right)^{-1} \left(\mathbf{v} - \mathbf{Q} \pi \right)$$

$$\boldsymbol{\Sigma}_{BL} = (1+\tau) \, \boldsymbol{\Sigma} - \tau^2 \boldsymbol{\Sigma} \mathbf{Q}' \, \big(\tau \mathbf{Q} \boldsymbol{\Sigma} \mathbf{Q}' + \boldsymbol{\Omega} \big)^{-1} \, \mathbf{Q} \boldsymbol{\Sigma}.$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Views

$$\mathbf{Q}\boldsymbol{\mu} \sim \mathbf{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$$

$$X|v; \Omega \sim N(\mu_{BL}, \Sigma_{BL})$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

Views

$$\mathbf{Q}\boldsymbol{\mu} \sim \mathbf{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$$

Bayes' formula

$$X|v; \Omega \sim N(\mu_{BL}, \Sigma_{BL})$$

Optimization

 $\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \{ \mathbf{w}' \boldsymbol{\mu} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \}$

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \mu_{B\bar{L}} \lambda \mathbf{w}' \Sigma_{BL} \mathbf{w} \right\}$$

Market distribution

Views

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

 $\mathbf{Q}\boldsymbol{\mu} \sim \mathrm{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$

Optimization

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \}$$

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \mu_{B\bar{L}} \lambda \mathbf{w}' \Sigma_{BL} \mathbf{w} \right\}$$

Market distribution

 $\mathbf{X} \sim \mathrm{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$ returns on asset classes/funds

Views

$$\mathbf{Q}\boldsymbol{\mu} \sim \mathbf{N}\left(\mathbf{v}, \boldsymbol{\Omega}\right)$$

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \{ \mathbf{w}' \boldsymbol{\mu} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \}$$

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \boldsymbol{\mu}_{\mathcal{B} \boldsymbol{L}} \boldsymbol{\lambda} \mathbf{w}' \boldsymbol{\Sigma}_{\mathcal{B} \boldsymbol{L}} \, \mathbf{w} \right\}$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

- Estimation risk
- Views
- Discussion

ENTROPY POOLING

CASE STUDIES

REFERENCES AND CONCLUSIONS

Market distribution

Views/Scenarios

 $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma
ight)$ returns on asset classes/funds

 ${
m Q} \qquad \mu \qquad \equiv {
m v} \; + {
m uncertainty}$

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \boldsymbol{\mu} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

 μ \equiv v + uncertainty

Market is not only returns: implied volatilities (derivatives) rates paths (mortgages) implied correlations (CDO's)

....

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

$${
m Q} \qquad \mu \qquad \equiv {
m v} \,\,$$
 + uncertainty

Market is not only returns

Market is not only normal: fat tails, skewness, tail-risk codependence,...

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathbf{w}' \boldsymbol{\mu} - \lambda \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

 ${
m Q} \qquad \mu \qquad \equiv {
m v} \,\,$ + uncertainty

Market is not only returns

Market is not only normal

Market is not only equilibrium: historical estimates, implied values, ...

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

 $\mu \equiv {
m v}$ + uncertainty

Market is not only returns

Market is not only normal

Market is not only equilibrium

Views are not only portfolios: generic non-linear functions

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

Market is not only returns

Market is not only normal

Market is not only equilibrium

Views are not only portfolios

Views are not only on expectations: correlations, volatilities, tail behavior, copulas,

. . .

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \right\}$$

Market distribution

Views/Scenarios

Market is not only returns

Market is not only normal

Market is not only equilibrium

Views are not only portfolios

Views are not only on expectations

Views are not only equalities: stock ranking, qualitative views

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \Sigma \mathbf{w} \right\}$$

Market distribution

returns on asset classes/funds

Views/Scenarios

Market is not only returns

Market is not only normal

Market is not only equilibrium

Views are not only portfolios

Views are not only on expectations

Views are not only equalities

Optimization is not only mean variance: mean-CVaR, mean-VaR, ...

$$\mathbf{w}_{\lambda} \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathbb{N}} \left\{ \mathbf{w}' \mu - \lambda \mathbf{w}' \mathbf{\Sigma} \mathbf{w} \right\}$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

- Theory
- Analytical solution
- General implementation

CASE STUDIES

REFERENCES AND CONCLUSIONS

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$

not returns, not normal, not equilibrium

 X_1 2-yr swap rate X_2 5-yr swap rate

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

 $X_{\scriptscriptstyle 1}$ 2-yr swap rate $X_2 \;$ 5-yr swap rate

Pricing

$$P_{t+\tau} \equiv P\left(\mathbf{X}, \mathcal{I}_t\right)$$

delta/gamma/vega, full pricing, ... duration + convexity

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

 X_1 2-yr swap rate $X_2 \;$ 5-yr swap rate

$$P_{t+\tau} \equiv P(\mathbf{X}, \mathcal{I}_t)$$

delta/gamma/vega, full pricing, ...

duration + convexity

$$\begin{array}{ll} \textbf{Optimization} & \mathbf{w}^* \equiv \operatorname*{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; f_{\mathbf{X}} \right) \right\} \\ & \mathbf{w} \in \mathcal{C} \end{array}$$

utility, mean-CVaR, ...

mean-variance

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$ not returns, not normal, not equilibrium

Focus $V \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

e.g.

 X_1 2-yr swap rate X_2 5-yr swap rate

$$V \equiv X_1^2 + X_2^2$$
convexity factor

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

 $X_{\scriptscriptstyle 1}$ 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

^{-0.4}2yr swap ^{-0.2}

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

non-linear functions and external factors

Views

full distribution specification

 $X_{\scriptscriptstyle 1}$ 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

non-linear functions and external factors

2yr swap

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_{V}$$

 $\mathbf{V}\equiv\mathbf{g}\left(\mathbf{X}\right)\sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

view on expectations (BL), medians

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$
 ranking

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V}\equiv\mathbf{g}\left(\mathbf{X}\right)\sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

 $\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{\underset{}{=}} \widetilde{\mu}_{\mathbf{v},k}$

view on expectations (BL), medians

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$
 ranking

views on volatilities

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

 $\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$

view on expectations (BL), medians

 $\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$ ranking

 $\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$

views on volatilities

 $\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}', \quad \text{correlation stress-testing}$

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

 $\widetilde{m} \{V_k\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$

view on expectations (BL), medians

 $\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$ ranking

 $\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$

views on volatilities

 $\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}', \quad \text{correlation stress-testing}$

 $\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$

view on tail behavior

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

 $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m} \{V_1\} \geq \widetilde{m} \{V_2\} \geq \cdots \geq \widetilde{m} \{V_K\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \bigg. \bigg\} \left[Q_{V}\left(u\right) \right.$$

 X_1 2-yr swap rate

 X_2 5-yr swap rate

$$V \equiv X_1$$

full distribution specification

partial distribution specification

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\label{eq:equation:equation:equation:equation} \widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C}\left\{\mathbf{V}\right\} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

 $X_{\scriptscriptstyle 1}$ 2-yr swap rate

 X_2 5-yr swap rate

$$V \equiv X_1$$

full distribution specification

partial distribution specification

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

 $V \equiv g(X) \sim f_V$

non-linear functions and external factors

 $X_{\scriptscriptstyle 1}$ 2-yr swap rate X_2 5-yr swap rate $V \equiv X_1$

Views

Focus

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

non-linear functions and external factors

 X_1 2-yr swap rate X_2 5-yr swap rate $V \equiv X_1$

Views

Posterior

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

 $\widetilde{m} \{V_k\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$

full distribution specification

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \leqq \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \left\{ \mathbf{V} \right\} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \left\{ \mathbf{V} \right\} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

partial distribution specification

Posterior

relative entropy

"distance" btw. distributions $\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}$.

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m} \{V_1\} \geq \widetilde{m} \{V_2\} \geq \cdots \geq \widetilde{m} \{V_K\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \lesseqgtr Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname{argmin} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior

relative entropy

"distance" btw. distributions
$$\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}$$
.

 X_1 2-yr swap rate

$$V \equiv X_1$$

Market distr. $X \sim f_X$.

$$X \sim f_X$$
.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

full distribution specification

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

least distance from prior, views satisfied

relative entropy

"distance" btw. distributions
$$\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}$$
.

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

 $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \overset{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \lesseqgtr Q_{V}\left(u\right)$$

partial distribution specification

Posterior

 $\widetilde{f}_{\mathbf{X}} \equiv \operatorname{argmin} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$

least distance from prior, views satisfied

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_{V}$$

 $\mathbf{V}\equiv\mathbf{g}\left(\mathbf{X}\right)\sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \overset{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\label{eq:equation:equation:equation:equation} \widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C}\left\{\mathbf{V}\right\} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior, views satisfied

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$.

 $egin{array}{ll} X_1 & ext{2-yr swap rate} \\ X_2 & ext{5-yr swap rate} \end{array}$

Market distr. $X \sim f_X$.

Focus $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$

 X_1 2-yr swap rate X_2 5-yr swap rate $V\equiv X_1$

Market distr. $X \sim f_X$.

Focus $V \equiv g(X) \sim f_V$

 X_1 2-yr swap rate X_2 5-yr swap rate $V\equiv X_1$

Views

Market distr. $X \sim f_X$.

Focus $V \equiv g(X) \sim f_V$

 X_1 2-yr swap rate X_2 5-yr swap rate $V\equiv X_1$

Views

$$\tilde{m}\{V\} \equiv m\{V\} + \frac{\sigma\{V\}}{2} \approx 3.26 \ bp$$

Market distr. $X \sim f_X$.

Focus $V \equiv g(X) \sim f_V$

 X_1 2-yr swap rate X_2 5-yr swap rate $V\equiv X_1$

Views

$$\tilde{m}\{V\} \equiv m\{V\} + \frac{\sigma\{V\}}{2} \approx 3.26 \ bp$$

Market distr. $X \sim f_X$.

$$X \sim f_X$$
.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{\underset{}{=}} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \overset{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior, views satisfied

$$X \sim f_X$$
.

Market distr. $X \sim f_X$ not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{ V_{k}\right\} \gtrapprox \widetilde{\mu}_{\mathbf{v},k}.$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior, views satisfied

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

multi-user, multi-confidence

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$

not returns, not normal, not equilibrium

$$V \equiv g(X) \sim f_V$$

Focus $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{ \mathbf{V}\right\} \equiv\rho_{1}\mathbf{I}+\rho_{2}\mathbb{C}\left\{ \mathbf{V}\right\} +\rho_{3}\mathbf{1}\mathbf{1}^{\prime},$$

$$\widetilde{Q}_{V}\left(u\right) \lesseqgtr Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior, views satisfied

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

multi-user, multi-confidence

100(1-c) % of times: **PRIOR**

Market distr. $X \sim f_X$.

not returns, not normal, not equilibrium

Focus

$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\label{eq:equation:equation:equation:equation} \widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C}\left\{\mathbf{V}\right\} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

partial distribution specification

Posterior
$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

least distance from prior, views satisfied

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

multi-user, multi-confidence

100c % of times: **POSTERIOR**

Market distr. $X \sim f_X$. not returns, not normal, not equilibrium

 $\mathbf{V}\equiv\mathbf{g}\left(\mathbf{X}\right)\sim f_{\mathbf{V}}$ non-linear functions and external factors Focus

 $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$ **Views** full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_1\right\} \geq \widetilde{m}\left\{V_2\right\} \geq \cdots \geq \widetilde{m}\left\{V_K\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

partial distribution specification

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E}\left(f, f_{\mathbf{X}}\right) \right\}$$

least distance from prior, views satisfied

$$\tilde{f}_{\mathbf{X}}^{c} \equiv (1 - c) f_{\mathbf{X}} + c \tilde{f}_{\mathbf{X}}$$

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_t\right)$$

delta/gamma/vega, full pricing, ...

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$ not returns, not normal, not equilibrium

Focus $\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$ non-linear functions and external factors

Views $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$ full distribution specification

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m} \{V_1\} \geq \widetilde{m} \{V_2\} \geq \cdots \geq \widetilde{m} \{V_K\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

partial distribution specification

Posterior $\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$

least distance from prior, views satisfied

70.

Confidence $\widetilde{f}_{\mathbf{X}}^{c} \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$ multi-user, multi-confidence

Pricing $P_{t+ au} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_t
ight)$ delta/gamma/vega, full pricing, ...

~ . ~ ~ . .

Optimization $\mathbf{w}^* \equiv \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}^{\mathbf{c}}_{\mathbf{x}} \right) \}$ mean-variance, mean-CVaR, ...

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

- Theory
- Analytical solution
- General implementation

CASE STUDIES

REFERENCES AND CONCLUSIONS

Market distr. $X \sim f_X$. $X \sim N(\mu, \Sigma)$

Focus
$$V \equiv g(X) \sim f_V$$

 $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$. **Views**

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m} \{V_1\} \ge \widetilde{m} \{V_2\} \ge \cdots \ge \widetilde{m} \{V_K\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E}\left(f, f_{\mathbf{X}}\right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization $\mathbf{w}^* \equiv \operatorname{argmax} \{ \mathcal{S}(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}) \}$

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$. $\mathbf{X} \sim \mathrm{N}\left(\mu, \Sigma\right)$

$$V \equiv g(X) \sim f_V$$
 QX GX

Views
$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

Focus

$$\widetilde{m} \{V_k\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

$$\text{Posterior} \qquad \widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

.....

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

Pricing
$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $\mathbf{X} \sim f_{\mathbf{X}}$. $\mathbf{X} \sim \mathrm{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$

 $\mathbf{V} \equiv \mathbf{g}(\mathbf{X}) \sim f_{\mathbf{V}}$ QX GX

Views $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$.

Focus

 $\widetilde{m}\left\{V_{k}\right\} \stackrel{>}{\equiv} \widetilde{\mu}_{\mathbf{v},k}$ $\widetilde{m}\left\{V_{k}\right\} \stackrel{>}{\equiv} \widetilde{\mu}_{\mathbf{v},k}$

 $\widetilde{m} \{V_1\} \ge \widetilde{m} \{V_2\} \ge \dots \ge \widetilde{m} \{V_K\}$ $\mathbb{C}ov \{GX\} \equiv \widetilde{\Sigma}_G$

 $\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$

 $\widetilde{\mathbb{C}} \{V\} \equiv \rho_1 I + \rho_2 \mathbb{C} \{V\} + \rho_3 \mathbf{1} \mathbf{1}',$

 $\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$

Posterior $\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$

70.

Confidence $\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$

Pricing $P_{t+ au} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}
ight)$

Optimization $\mathbf{w}^* \equiv \underset{\mathbf{x} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$

Market distr. $X \sim f_X$.

 $X \sim N(\mu, \Sigma)$

Focus

$$V \equiv g(X) \sim f_V$$

QX GX

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\mathbb{E}\left\{ \mathbf{Q}\mathbf{X}\right\} \equiv \widetilde{\mu}_{\mathbf{Q}}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$
 $\mathbb{C}ov\left\{\mathbf{G}\mathbf{X}\right\} \equiv \widetilde{\Sigma}_{\mathbf{G}}$

$$\mathbb{C}ov\left\{ \mathbf{G}\mathbf{X}\right\} \equiv \widetilde{\Sigma}_{\mathbf{G}}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{V\} \equiv \rho_1 I + \rho_2 \mathbb{C} \{V\} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

$$\mathbf{X} \sim \mathrm{N}\left(\widetilde{oldsymbol{\mu}}, \widetilde{oldsymbol{\Sigma}}
ight)$$

$$\begin{split} \widetilde{f}_{\mathbf{X}} &\equiv \operatorname*{argmin} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\} \\ &= \underbrace{f \in \mathbb{V}} \left\{ \left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right) \right\} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(\mathcal{E} \left(f, f_{\mathbf{X}} \right) \right)} \\ &= \underbrace{\left(f, f_{\mathbf{X}} \right)} \\ &= \underbrace{\left(f$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \operatorname*{argmax} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $X \sim f_X$.

 $X \sim N(\mu, \Sigma)$

Focus

$$V \equiv g(X) \sim f_V$$

QX GX

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$

$$\widetilde{m}\{V_k\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$
 $\mathbb{C}ov\left\{\mathbf{G}\mathbf{X}\right\} \equiv \widetilde{\Sigma}_{\mathbf{G}}$

$$\mathbb{C}_{\alpha y}\{\mathbf{C}\mathbf{X}\} = \widetilde{\Sigma}_{\alpha y}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \overset{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

$$\mathbf{X} \sim \mathrm{N}\left(\widetilde{oldsymbol{\mu}}, \widetilde{oldsymbol{\Sigma}}
ight)$$

$$\begin{aligned} \text{Posterior} \qquad & \widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\} & X \sim \operatorname{N} \left(\widetilde{\mu}, \widetilde{\Sigma} \right) \end{aligned} \begin{cases} \widetilde{\mu} & \equiv \ \mu + \Sigma \operatorname{Q}' \left(\operatorname{Q} \Sigma \operatorname{Q}' \right)^{-1} \left(\widetilde{\mu}_{\mathbf{Q}} - \operatorname{Q} \mu \right) \\ \widetilde{\Sigma} & \equiv \ \Sigma + \Sigma \operatorname{G}' \left(\left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} \widetilde{\Sigma}_{\mathbf{G}} \left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} - \left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} \right) \operatorname{G} \Sigma. \end{aligned}$$

$$\begin{aligned} \operatorname{Confidence} & \widetilde{f}_{\mathbf{X}}^{c} \equiv \left(1 - c \right) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}. & X \sim \left(\begin{array}{c} \operatorname{N} \left(\mu, \Sigma \right) & \left(\operatorname{probability:} \ 1 - c \right) \\ \operatorname{N} \left(\widetilde{\mu}, \widetilde{\Sigma} \right) & \left(\operatorname{probability:} \ c \right) \end{aligned}$$

$$\tilde{f}_{\mathbf{X}}^{c} \equiv (1 - c) f_{\mathbf{X}} + c \tilde{f}_{\mathbf{X}}$$

$$\mathbf{X} \sim \left\{ egin{array}{ll} \mathbf{N}\left(\widetilde{oldsymbol{\mu}}, \widetilde{oldsymbol{\Sigma}}
ight) & ext{(probability: } 1 \ \mathbf{N}\left(\widetilde{oldsymbol{\mu}}, \widetilde{oldsymbol{\Sigma}}
ight) & ext{(probability: } c) \end{array}
ight.$$

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \operatorname{argmax} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $X \sim f_X$.

 $X \sim N(\mu, \Sigma)$

Focus

$$V \equiv g(X) \sim f_V$$

QX GX

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$
 $\mathbb{C}ov\left\{\mathbf{G}\mathbf{X}\right\} \equiv \widetilde{\Sigma}_{\mathbf{G}}$

$$\mathbb{C}^{\infty}(\mathbf{C}\mathbf{X}) = \widetilde{\Sigma}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{\sim}{=}} Q_{V}\left(u\right)$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname{argmin}_{f \in \mathbb{V}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

$$\mathbf{X} \sim \mathrm{N}\left(\widetilde{\boldsymbol{\mu}}, \widetilde{\boldsymbol{\Sigma}}
ight)$$

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\} \qquad \qquad X \sim \operatorname{N} \left(\widetilde{\mu}, \widetilde{\Sigma} \right) \qquad \begin{cases} \widetilde{\mu} & \equiv \mu + \Sigma \operatorname{Q}' \left(\operatorname{Q} \Sigma \operatorname{Q}' \right)^{-1} \left(\widetilde{\mu}_{\mathbf{Q}} - \operatorname{Q} \mu \right) \\ \widetilde{\Sigma} & \equiv \Sigma + \Sigma \operatorname{G}' \left(\left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} \widetilde{\Sigma}_{\mathbf{G}} \left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} - \left(\operatorname{G} \Sigma \operatorname{G}' \right)^{-1} \right) \operatorname{G} \Sigma. \end{cases}$$

$$\tilde{f}_{\mathbf{X}}^{c} \equiv (1 - c) f_{\mathbf{X}} + c \tilde{f}_{\mathbf{X}}$$

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization $\mathbf{w}^* \equiv \operatorname{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}} \right) \right\}$

$$\equiv \operatorname{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}_{\mathbf{X}}^{\mathbf{c}} \right) \right\}$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

- Theory
- Analytical solution
- General implementation

CASE STUDIES

REFERENCES AND CONCLUSIONS

BL and beyond - entropy pooling implementation: Black-Litterman

probability = 1 / num scenarios

BL and beyond - entropy pooling implementation: Black-Litterman

BL and beyond - entropy pooling implementation: stress-testing

probability = 1 / num scenarios

BL and beyond - entropy pooling implementation: stress-testing

BL and beyond - entropy pooling implementation: scenario analysis

probability = 1 / num scenarios

BL and beyond - entropy pooling implementation: scenario analysis

probability = 0

probability = 1

Market distr. $X \sim f_X$.

 \longrightarrow $\mathcal{X} J \times N$ panel **P** probabilities 1/J

Market distr. $X \sim f_X$.

$$\iff$$

$$\mathcal{X}^{\prime}J imes N$$
 panel

$$\longrightarrow$$
 $\mathcal{X} J \times N$ panel **P** probabilities $1/J$

$$P_{t+\tau} \equiv P\left(\mathbf{X}, \mathcal{I}_t\right)$$

$$\Leftrightarrow$$

$$\begin{array}{ll} \mathbf{Optimization} & \mathbf{w}^* \equiv \operatorname*{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; f_{\mathbf{X}} \right) \right\} \\ \mathbf{w} \in \mathcal{C} \end{array}$$

$$\Leftrightarrow$$

Market distr. $X \sim f_X$.

 $X J \times N$ panel P probabilities 1/J

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$

$$\widetilde{m} \{V_k\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m} \{V_1\} \ge \widetilde{m} \{V_2\} \ge \cdots \ge \widetilde{m} \{V_K\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_t\right)$$

Optimization
$$\mathbf{w}^* \equiv \operatorname*{argmax} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $X \sim f_X$.

 $X J \times N$ panel P probabilities 1/J

scenario index

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

 $\bigvee_{j,k} \equiv g_k \left(\mathcal{X}_{j,1}, \dots, \mathcal{X}_{j,N} \right)$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \supsetneqq Q_{V}\left(u\right)$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E}\left(f, f_{\mathbf{X}}\right) \right\}$$

Confidence $\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$.

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $X \sim f_X$.

 $\mathcal{X} \ J imes N$ panel **P** probabilities 1/J

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

$$V_{j,k} \equiv g_k \left(\mathcal{X}_{j,1}, \dots, \mathcal{X}_{j,N} \right)$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \gtrapprox \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

 X_1 2-yr swap rate

$$X_2$$
 5-yr swap rate

$$V \equiv X_1$$

$$\tilde{m}\{V\} \equiv \tilde{\mu}$$

$$\tilde{\mu} \leq \sum_{j=1}^{J} \overset{\bigvee}{\mathcal{V}_{j}} \tilde{p}_{j} \leq \tilde{\mu}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{x}}^c \equiv (1-c) f_{\mathbf{x}} + c \widetilde{f}_{\mathbf{x}}$$
.

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \operatorname*{argmax} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

Market distr. $X \sim f_X$.

 $X J \times N$ panel P probabilities 1/J

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{\underset{}{=}} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

$$\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}.$$

Market distr. $X \sim f_X$.

 $\mathcal{X} \ J imes N$ panel **P** probabilities 1/J

Focus

$$V \equiv g(X) \sim f_V$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A} \widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

$$\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}. \qquad \Longleftrightarrow \qquad \mathcal{E}\left(\widetilde{\mathbf{p}}, \mathbf{p}\right) \equiv \sum_{i=1}^{J} \widetilde{p}_{j} \left[\ln \left(\widetilde{p}_{j}\right) - \ln \left(p_{j}\right)\right] d\mathbf{x}.$$

$$\iff$$

$$\mathcal{E}\left(\widetilde{\mathbf{p}},\mathbf{p}\right) \equiv \sum_{j=1}^{J} \widetilde{p}_{j} \left[\ln \left(\widetilde{p}_{j} \right) - \ln \left(p_{j} \right) \right]$$

Market distr. $X \sim f_X$.

 $\mathcal{X} \ J imes N$ panel **P** probabilities 1/J

Focus

 $V \equiv g(X) \sim f_V$

 $V_{j,k} \equiv g_k (\mathcal{X}_{j,1}, \dots, \mathcal{X}_{j,N})$

Views

 $\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

 $\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \left\{ \mathcal{E}\left(f, f_{\mathbf{X}}\right) \right\}$$

$$\mathcal{E}\left(\widetilde{f}_{\mathbf{X}}, f_{\mathbf{X}}\right) \equiv \int \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) \left[\ln \widetilde{f}_{\mathbf{X}}\left(\mathbf{x}\right) - \ln f_{\mathbf{X}}\left(\mathbf{x}\right)\right] d\mathbf{x}. \qquad \Longleftrightarrow \qquad \mathcal{E}\left(\widetilde{\mathbf{p}}, \mathbf{p}\right) \equiv \sum_{j=1}^{J} \widetilde{p}_{j} \left[\ln \left(\widetilde{p}_{j}\right) - \ln \left(p_{j}\right)\right] d\mathbf{x}.$$

$$\mathcal{E}\left(\widetilde{\mathbf{p}}, \mathbf{p}\right) \equiv \sum_{j=1}^{J} \widetilde{p}_{j} \left[\ln \left(\widetilde{p}_{j} \right) - \ln \left(p_{j} \right) \right]$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

 \Leftrightarrow

$$\mathcal{X}$$
 $\widetilde{\mathbf{p}} \equiv \underset{\underline{\mathbf{a}} \leq \mathbf{A}\mathbf{f} \leq \overline{\mathbf{a}}}{\operatorname{argmin}} \{ \mathcal{E}(\mathbf{f}, \mathbf{p}) \}$

Dual formulation: linearly constrained convex optimization in

variables = # views

Market distr. $X \sim f_X$.

 $X J \times N$ panel P probabilities 1/J

Focus

$$V \equiv g(X) \sim f_V$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{ V_{k}\right\} \gtrapprox \widetilde{\mu}_{\mathbf{v},k}.$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

$$\mathcal{X} \qquad \widetilde{\mathbf{p}} \equiv \underset{\underline{\mathbf{a}} \leq \mathbf{Af} \leq \overline{\mathbf{a}}}{\operatorname{argmin}} \left\{ \mathcal{E} \left(\mathbf{f}, \mathbf{p} \right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization $\mathbf{w}^* \equiv \operatorname{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}} \right) \right\}$

$$\mathbf{w}^* \equiv \operatorname{argmax} \left\{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}} \right) \right\}$$

BL and beyond - entropy pooling implementation

Market distr. $X \sim f_X$.

 $X J \times N$ panel P probabilities 1/J

Focus

$$V \equiv g(X) \sim f_V$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{ V_{k}\right\} \gtrapprox \widetilde{\mu}_{\mathbf{v},k}.$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \underset{f \in \mathbb{V}}{\operatorname{argmin}} \{ \mathcal{E}(f, f_{\mathbf{X}}) \}$$

$$\widetilde{f}_{\mathbf{X}}^{c} \equiv (1 - c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

Confidence
$$\widetilde{f}_{\mathbf{x}}^c \equiv (1-c) f_{\mathbf{x}} + c \widetilde{f}_{\mathbf{x}}$$
. $\iff \qquad \mathcal{X} \qquad \mathbf{p}_c \equiv (1-c) \mathbf{p} + c \widetilde{\mathbf{p}}$.

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

Optimization $\mathbf{w}^* \equiv \operatorname{argmax} \{ \mathcal{S}(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}) \}$

BL and beyond - entropy pooling implementation

Market distr. $X \sim f_X$.

 $X J \times N$ panel **P** probabilities 1/J

Focus

$$V \equiv g(X) \sim f_V$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

$$\mathcal{X}$$
 $\mathbf{p}_c \equiv (1-c)\mathbf{p} + c\widetilde{\mathbf{p}}$.

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_t\right)$$

$$\mathcal{P}$$
 \mathbf{p}_c

$$\begin{array}{ll} \textbf{Optimization} & \mathbf{w}^* \equiv \mathop{\mathrm{argmax}}_{\mathbf{w} \in \mathcal{C}} \left\{ \mathcal{S} \left(\mathbf{w}; \widetilde{f}^{\mathbf{c}}_{\mathbf{x}} \right) \right\} \end{array}$$

BL and beyond - entropy pooling implementation

Market distr. $X \sim f_X$.

 $X J \times N$ panel **P** probabilities 1/J

Focus

$$\mathbf{V} \equiv \mathbf{g}\left(\mathbf{X}\right) \sim f_{\mathbf{V}}$$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{ V_{k}\right\} \gtrapprox \varkappa\sigma\left\{ V_{k}\right\}$$

$$\widetilde{\mathbb{C}} \{ \mathbf{V} \} \equiv \rho_1 \mathbf{I} + \rho_2 \mathbb{C} \{ \mathbf{V} \} + \rho_3 \mathbf{1} \mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$

$$\Rightarrow$$
 \mathcal{X} $\mathbf{p}_c \equiv (1-c)\mathbf{p} + c\widetilde{\mathbf{p}}.$

Pricing

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

$$p_c$$

Optimization
$$\mathbf{w}^* \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

$$\Leftrightarrow$$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

CASE STUDIES

- Ranking allocation
- Option trading

REFERENCES AND CONCLUSIONS

BL and beyond - EP case study: ranking allocation

BL and beyond - EP case study: ranking allocation

BL and beyond - EP case study: ranking allocation

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

CASE STUDIES

- Ranking allocation
- Option trading

REFERENCES AND CONCLUSIONS

Black-Scholes formula: deterministic function of risk into price

$$C_{BS}\left(y,\sigma;\kappa,T,r\right)\equiv yF\left(d_{1}\right)-\kappa e^{-rT}F\left(d_{2}\right)$$

$$d_1 \equiv \left(\ln(y/\kappa) + \left(r + \sigma^2/2\right)T\right)/\sigma\sqrt{T}, \quad d_2 \equiv d_1 - \sigma\sqrt{T};$$

Black-Scholes formula: deterministic function of risk into price

$$C_{BS}\left(y,\sigma;\kappa,T,r\right)\equiv yF\left(d_{1}\right)-\kappa e^{-rT}F\left(d_{2}\right)$$

$$d_1 \equiv \left(\ln\left(y/\kappa\right) + \left(r + \sigma^2/2\right)T\right)/\sigma\sqrt{T}, \qquad d_2 \equiv d_1 - \sigma\sqrt{T};$$

$$\begin{split} C_{\mathcal{BS}}\left(y,\sigma;\kappa,T,r\right) &\equiv yF\left(d_{1}\right) - \kappa e^{-rT}F\left(d_{2}\right) \\ d_{1} &\equiv \left(\ln\left(y/\kappa\right) + \left(r + \sigma^{2}/2\right)T\right)/\sigma\sqrt{T}, \qquad d_{2} \equiv d_{1} - \sigma\sqrt{T}; \\ h\left(y,\sigma;\kappa,T\right) &\equiv \sigma + a\frac{\ln\left(y/\kappa\right)}{\sqrt{T}} + b\left(\frac{\ln\left(y/\kappa\right)}{\sqrt{T}}\right)^{2} \\ &= \text{empirical smirk and smile} \end{split}$$

call option price at horizon $P_{t+\tau} = C_{BS} \left(y_t e^{X_y}, h \left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau \right) ; \kappa, T - \tau, r \right)$ $X_y \equiv \ln \left(y_{t+\tau} / y_t \right)$ $X_\sigma \equiv \sigma_{t+\tau} - \sigma_t$ $C_{BS} \left(y, \sigma; \kappa, T, r \right) \equiv y F \left(d_1 \right) - \kappa e^{-rT} F \left(d_2 \right)$ $d_1 \equiv \left(\ln \left(y / \kappa \right) + \left(r + \sigma^2 / 2 \right) T \right) / \sigma \sqrt{T}, \qquad d_2 \equiv d_1 - \sigma \sqrt{T};$ $h \left(y, \sigma; \kappa, T \right) \equiv \sigma + a \frac{\ln \left(y / \kappa \right)}{\sqrt{T}} + b \left(\frac{\ln \left(y / \kappa \right)}{\sqrt{T}} \right)^2$

call option price at horizon $P_{t+\tau} = C_{BS}\left(y_t e^{X_y}, h\left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau\right); \kappa, T - \tau, r\right)$

$$X_{y} \equiv \ln (y_{t+\tau}/y_{t})$$

$$X_{\sigma} \equiv \sigma_{t+\tau} - \sigma_{t}$$

$$C_{BS}(y, \sigma; \kappa, T, r) \equiv yF(d_{1}) - \kappa e^{-rT}F(d_{2})$$

$$d_{1} \equiv (\ln (y/\kappa) + (r + \sigma^{2}/2)T)/\sigma\sqrt{T}, \quad d_{2} \equiv d_{1} - \sigma\sqrt{T};$$

$$h(y, \sigma; \kappa, T) \equiv \sigma + a\frac{\ln (y/\kappa)}{\sqrt{T}} + b\left(\frac{\ln (y/\kappa)}{\sqrt{T}}\right)^{2}$$

Portfolio: Microsoft 1 month
Microsoft 2 months
Microsoft 6 months
Yahoo 1 month
Yahoo 2 months
Yahoo 6 months
Google 1 month
Google 2 months
Google 6 months

$$\mathbf{X} \equiv \left(X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, \underbrace{X_{2y}, X_{10y}}\right)'$$

curve change (growth/inflation) not directly in pricing

 $\text{call option price at horizon} \quad P_{t+\tau} = C_{BS}\left(y_t e^{X_y}, h\left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau\right); \kappa, T - \tau, r\right)$

$$X_y \equiv \ln (y_{t+\tau}/y_t)$$

$$X_{\sigma} \equiv \sigma_{t+\tau} - \sigma_t$$

$$C_{\mathcal{BS}}\left(y,\sigma;\kappa,T,r\right)\equiv yF\left(d_{1}\right)-\kappa e^{-rT}F\left(d_{2}\right)$$

$$d_{1} \equiv \left(\ln \left(y/\kappa \right) + \left(r + \sigma^{2}/2 \right) T \right)/\sigma \sqrt{T}, \qquad d_{2} \equiv d_{1} - \sigma \sqrt{T};$$

$$h\left(y,\sigma;\kappa,T\right)\equiv\sigma+a\frac{\ln\left(y/\kappa\right)}{\sqrt{T}}+b\left(\frac{\ln\left(y/\kappa\right)}{\sqrt{T}}\right)^{2}$$

$$\mathbf{X} \equiv \left(X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, X_{2y}, X_{10y} \right)' \sim \mathbf{N}(\pi, \Sigma)$$

call option price at horizon $P_{t+ au}=C_{BS}\left(y_{t}e^{X_{y}},h\left(y_{t}e^{X_{y}},\sigma_{t}+X_{\sigma},\kappa,T- au
ight);\kappa,T- au,r
ight)$

$$\begin{split} X_y & \equiv \ \ln \left(y_{t+\tau} / y_t \right) \\ X_\sigma & \equiv \ \sigma_{t+\tau} - \sigma_t \end{split} \qquad \begin{split} C_{\mathcal{BS}} \left(y, \sigma; \kappa, T, r \right) & \equiv y F \left(d_1 \right) - \kappa e^{-rT} F \left(d_2 \right) \\ d_1 & \equiv \left(\ln \left(y / \kappa \right) + \left(r + \sigma^2 / 2 \right) T \right) / \sigma \sqrt{T}, \qquad d_2 \equiv d_1 - \sigma \sqrt{T}; \\ h \left(y, \sigma; \kappa, T \right) & \equiv \sigma + a \frac{\ln \left(y / \kappa \right)}{\sqrt{T}} + b \left(\frac{\ln \left(y / \kappa \right)}{\sqrt{T}} \right)^2 \end{split}$$

$$\mathbf{X} \equiv \left(X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, X_{2y}, X_{10y}\right)' \not\sim \mathbf{N}\left(\pi, \Sigma\right)$$

$$\Pi_{\mathbf{w}} \equiv \sum_{i=1}^{I} w_i \left(C_{BS,i} \left(\mathbf{X}, \mathcal{I}_t \right) - C_{i,t} \right)$$
 profit and loss is highly non-linear, highly non-normal

 $\text{call option price at horizon} \quad P_{t+\tau} = C_{BS}\left(y_t e^{X_y}, h\left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau\right); \kappa, T - \tau, r\right)$

$$X_{y} \equiv \ln \left(y_{t+\tau}/y_{t}\right)$$

$$X_{\sigma} \equiv \sigma_{t+\tau} - \sigma_{t}$$

$$C_{BS}\left(y, \sigma; \kappa, T, r\right) \equiv yF\left(d_{1}\right) - \kappa e^{-rT}F\left(d_{2}\right)$$

$$d_{1} \equiv \left(\ln \left(y/\kappa\right) + \left(r + \sigma^{2}/2\right)T\right)/\sigma\sqrt{T}, \quad d_{2} \equiv d_{1} - \sigma\sqrt{T};$$

$$h\left(y, \sigma; \kappa, T\right) \equiv \sigma + a\frac{\ln \left(y/\kappa\right)}{\sqrt{T}} + b\left(\frac{\ln \left(y/\kappa\right)}{\sqrt{T}}\right)^{2}$$

$$\mathbf{X} \equiv \left(X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, X_{2y}, X_{10y}\right)' \not\sim \mathbf{N}\left(\pi, \Sigma\right)$$

$$\Pi_{\mathbf{w}} \equiv \sum_{i=1}^{I} w_{i} \left(C_{BS,i} \left(\mathbf{X}, \mathcal{I}_{t} \right) - C_{i,t} \right)$$

Mean-CVaR optimization

$$\mathbf{w}_{\lambda} \equiv \underset{\underline{\mathbf{b}} \leq \mathbf{B} \mathbf{w} \leq \overline{\mathbf{b}}}{\operatorname{argmax}} \left\{ \mathbb{E} \left\{ \Pi_{\mathbf{w}} \right\} - \lambda \operatorname{CVaR}_{\gamma} \left\{ \Pi_{\mathbf{w}} \right\} \right\} \\ - \text{no cash upfront} \\ - \text{limit on leverage} \right\}$$

Market distr. $X \sim f_X$.

$$P_{t+\tau} \equiv P\left(\mathbf{X}, \mathcal{I}_{t}\right)$$

Optimization
$$\mathbf{w}^* \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; f_{\mathbf{X}}\right) \right\}$$

 $\text{call option price at horizon} \quad P_{t+\tau} = C_{BS}\left(y_t e^{X_y}, h\left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau\right); \kappa, T - \tau, r\right)$

$$\begin{split} X_y & \equiv \ \ln \left(y_{t+\tau} / y_t \right) \\ X_\sigma & \equiv \ \sigma_{t+\tau} - \sigma_t \end{split} \qquad \begin{split} C_{\mathcal{BS}} \left(y, \sigma; \kappa, T, r \right) & \equiv y F \left(d_1 \right) - \kappa e^{-rT} F \left(d_2 \right) \\ d_1 & \equiv \left(\ln \left(y / \kappa \right) + \left(r + \sigma^2 / 2 \right) T \right) / \sigma \sqrt{T}, \qquad d_2 \equiv d_1 - \sigma \sqrt{T}; \\ h \left(y, \sigma; \kappa, T \right) & \equiv \sigma + a \frac{\ln \left(y / \kappa \right)}{\sqrt{T}} + b \left(\frac{\ln \left(y / \kappa \right)}{\sqrt{T}} \right)^2 \end{split}$$

$$\mathbf{X} \equiv (X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, X_{2y}, X_{10y})'$$

$$\Pi_{\mathbf{w}} \equiv \sum_{i=1}^{I} w_{i} \left(C_{BS,i} \left(\mathbf{X}, \mathcal{I}_{t} \right) - C_{i,t} \right) \\ \iff \mathcal{P}_{j,i} \equiv C_{BS,i} \left(\overset{\downarrow}{\mathcal{X}}_{j,\cdot}, \mathcal{I}_{t} \right) - C_{i,t},$$

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{b} \leq \mathbf{B} \mathbf{w} \leq \overline{\mathbf{b}}}{\operatorname{argmax}} \left\{ \mathbb{E} \left\{ \Pi_{\mathbf{w}} \right\} - \lambda \operatorname{CVaR}_{\gamma} \left\{ \Pi_{\mathbf{w}} \right\} \right\}$$

 $\text{call option price at horizon} \quad P_{t+\tau} = C_{BS}\left(y_t e^{X_y}, h\left(y_t e^{X_y}, \sigma_t + X_\sigma, \kappa, T - \tau\right); \kappa, T - \tau, r\right)$

$$X_y \equiv \ln \left(y_{t+\tau} / y_t \right)$$

$$X_\sigma \equiv \sigma_{t+\tau} - \sigma_t$$

$$C_{BS} \left(y, \sigma; \kappa, T, r \right) \equiv y F \left(d_1 \right) - \kappa e^{-rT} F \left(d_2 \right)$$

$$d_1 \equiv \left(\ln \left(y / \kappa \right) + \left(r + \sigma^2 / 2 \right) T \right) / \sigma \sqrt{T}, \qquad d_2 \equiv d_1 - \sigma \sqrt{T};$$

$$h \left(y, \sigma; \kappa, T \right) \equiv \sigma + a \frac{\ln \left(y / \kappa \right)}{\sqrt{T}} + b \left(\frac{\ln \left(y / \kappa \right)}{\sqrt{T}} \right)^2$$

$$X \equiv (X^{M}, X_{1m}^{M}, X_{2m}^{M}, X_{6m}^{M}, \dots, X_{6m}^{G}, X_{2y}, X_{10y})'$$

$$\Pi_{\mathbf{w}} \equiv \sum_{i=1}^{I} w_{i} \left(C_{BS,i} \left(\mathbf{X}, \mathcal{I}_{t} \right) - C_{i,t} \right) \\ \iff \mathcal{P}_{j,i} \equiv C_{BS,i} \left(\overset{\downarrow}{\mathcal{X}}_{j,\cdot}, \mathcal{I}_{t} \right) - C_{i,t},$$

$$\mathbf{w}_{\lambda} \equiv \underset{\mathbf{b} \leq \mathbf{B} \mathbf{w} \leq \overline{\mathbf{b}}}{\operatorname{argmax}} \left\{ \mathbb{E} \left\{ \Pi_{\mathbf{w}} \right\} - \lambda \operatorname{CVaR}_{\gamma} \left\{ \Pi_{\mathbf{w}} \right\} \right\} \qquad \Longleftrightarrow \qquad \qquad \text{linear programming}$$

 $\Leftrightarrow \mathcal{X}$ p Market distr. $X \sim f_X$.

Pricing

$$P_{t+\tau} \equiv P\left(\mathbf{X}, \mathcal{I}_{t}\right)$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

Market distr. $X \sim f_X$.

 $\mathcal{X} J \times N$ panel P probabilities 1/J

Focus

 $V \equiv g(X) \sim f_V$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\begin{split} &\widetilde{\sigma}\left\{V_{k}\right\} \gtrapprox \varkappa \sigma\left\{V_{k}\right\} \\ &\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}', \end{split}$$

$$\widetilde{Q}_{V}\left(u\right) \gtrapprox Q_{V}\left(u\right)$$

 $\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$

view: G 6m \leq G 2m

Market distr. $X \sim f_X$.

 $\mathcal{X} J \times N$ panel **P** probabilities 1/J

Focus

 $V \equiv g(X) \sim f_V$

 $V_{j,k} \equiv g_k (\mathcal{X}_{j,1}, \dots, \mathcal{X}_{j,N})$

Views

$$\mathbf{V} \sim \widetilde{f}_{\mathbf{V}} \neq f_{\mathbf{V}}$$
.

$$\widetilde{m}\left\{V_{k}\right\} \stackrel{\geq}{=} \widetilde{\mu}_{\mathbf{v},k}$$

$$\widetilde{m}\left\{V_{1}\right\} \geq \widetilde{m}\left\{V_{2}\right\} \geq \cdots \geq \widetilde{m}\left\{V_{K}\right\}$$

$$\widetilde{\sigma}\left\{V_{k}\right\} \stackrel{\geq}{=} \varkappa \sigma\left\{V_{k}\right\}$$

$$\widetilde{\mathbb{C}}\left\{\mathbf{V}\right\} \equiv \rho_{1}\mathbf{I} + \rho_{2}\mathbb{C}\left\{\mathbf{V}\right\} + \rho_{3}\mathbf{1}\mathbf{1}',$$

$$\widetilde{Q}_{V}\left(u\right) \stackrel{>}{\underset{>}{=}} Q_{V}\left(u\right)$$

$$\underline{\mathbf{a}} \leq \mathbf{A}\widetilde{\mathbf{p}} \leq \overline{\mathbf{a}}$$

Posterior

$$\widetilde{f}_{\mathbf{X}} \equiv \operatorname*{argmin}_{f \in \mathbb{V}} \left\{ \mathcal{E} \left(f, f_{\mathbf{X}} \right) \right\}$$

$$\mathcal{X}$$
 $\widetilde{\mathbf{p}} \equiv \underset{\underline{\mathbf{a}} \leq \mathbf{Af} \leq \overline{\mathbf{a}}}{\operatorname{argmin}} \{ \mathcal{E}(\mathbf{f}, \mathbf{p}) \}$

Confidence
$$\widetilde{f}_{\mathbf{X}}^c \equiv (1-c) f_{\mathbf{X}} + c \widetilde{f}_{\mathbf{X}}$$
.

$$\mathcal{X} \qquad \mathbf{p}_c \equiv (1-c)\,\mathbf{p} + c\widetilde{\mathbf{p}}.$$

$$P_{t+\tau} \equiv P\left(\widetilde{\mathbf{X}}, \mathcal{I}_{t}\right)$$

$$\mathcal{P}$$
 \mathbf{p}_c

Optimization
$$\mathbf{w}^* \equiv \underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmax}} \left\{ \mathcal{S}\left(\mathbf{w}; \widetilde{f}_{\mathbf{x}}^{\mathbf{c}}\right) \right\}$$

$$\iff$$

view: G $6m \le G 2m$

Black-Litterman and beyond: from normal markets to fully flexible views

ESTIMATION RISK

SCENARIO ANALYSIS

THE BLACK-LITTERMAN APPROACH

ENTROPY POOLING

CASE STUDIES

REFERENCES AND CONCLUSIONS

BL and beyond - references

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

normal market & linear views
scenario analysis
correlation stress-test
trading desk: non-linear pricing
external factors: macro, etc.
partial specifications
non-normal market
multiple users
non-linear views
trading desk: costly pricing
lax constraints: ranking

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

	BL	AC
normal market & linear views	\checkmark	
scenario analysis		
correlation stress-test		
trading desk: non-linear pricing		
external factors: macro, etc.		
partial specifications		
non-normal market		
multiple users		
non-linear views		
trading desk: costly pricing		
lax constraints: ranking		\checkmark

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

Qian, E., and S. Gorman, 2001, Conditional distribution in portfolio theory, Financial Analyst Journal 57, 44-51.

	$_{ m BL}$	AC	QG
normal market & linear views	\checkmark		\checkmark
scenario analysis			\checkmark
correlation stress-test			\checkmark
trading desk: non-linear pricing			
external factors: macro, etc.			
partial specifications			
non-normal market			
multiple users			
non-linear views			
trading desk: costly pricing			
lax constraints: ranking		\checkmark	

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

Pezier, J., 2007, Global portfolio optimization revisited: A least discrimination alternantive to Black-Litterman, ICMA Centre Discussion Papers in Finance. Qian, E., and S. Gorman, 2001, Conditional distribution in portfolio theory, Financial Analyst Journal 57, 44-51.

	BL	AC	QG	Р
normal market & linear views	✓		\checkmark	\checkmark
scenario analysis			\checkmark	\checkmark
correlation stress-test			\checkmark	\checkmark
trading desk: non-linear pricing				
external factors: macro, etc.				
partial specifications				\checkmark
non-normal market				
multiple users				
non-linear views				
trading desk: costly pricing				
lax constraints: ranking		\checkmark		

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

Meucci, A.,8b, Enhancing the Black-Litterman and related approaches: Views and stress-test on risk factors, *Working Paper* Available at symmys.com > Reasearch > Working Papers.

Pezier, J., 2007, Global portfolio optimization revisited: A least discrimination alternantive to Black-Litterman, ICMA Centre Discussion Papers in Finance. Qian, E., and S. Gorman, 2001, Conditional distribution in portfolio theory, Financial Analyst Journal 57, 44-51.

	BL	AC	QG	Ρ	Μ
normal market & linear views	✓		\checkmark	\checkmark	\checkmark
scenario analysis			\checkmark	\checkmark	\checkmark
correlation stress-test			\checkmark	\checkmark	\checkmark
trading desk: non-linear pricing					\checkmark
external factors: macro, etc.					\checkmark
partial specifications				\checkmark	
non-normal market					
multiple users					
non-linear views					
trading desk: costly pricing					
lax constraints: ranking		\checkmark			

Black, F., and R. Litterman, 1990, Asset allocation: combining investor views with market equilibrium, Goldman Sachs Fixed Income Research.

Meucci, A., 2006, Beyond Black-Litterman in practice: A five-step recipe to input views on non-normal markets, Risk 19, 114-119.

——, 2008b, Enhancing the Black-Litterman and related approaches: Views and stress-test on risk factors, *Working Paper* Available at symmys.com > Reasearch > Working Papers.

Pezier, J., 2007, Global portfolio optimization revisited: A least discrimination alternantive to Black-Litterman, ICMA Centre Discussion Papers in Finance. Qian, E., and S. Gorman, 2001, Conditional distribution in portfolio theory.

Financial Analyst Journal 57, 44-51.

	BL	AC	QG	P	Μ	COP
normal market & linear views	✓		\checkmark	\checkmark	\checkmark	\checkmark
scenario analysis	-		\checkmark	\checkmark	\checkmark	\checkmark
correlation stress-test			\checkmark	\checkmark	\checkmark	
trading desk: non-linear pricing					\checkmark	✓
external factors: macro, etc.	-				\checkmark	\checkmark
partial specifications				\checkmark		
non-normal market						\checkmark
multiple users						\checkmark
non-linear views						
trading desk: costly pricing						
lax constraints: ranking		\checkmark				

BL and beyond - references

> Article:

Attilio Meucci, "Fully Flexible Views: Theory and Practice"

The Risk Magazine - October 2008, p 97-102

extended version available at

www.symmys.com > Research > Working Papers

> MATLAB examples:

<u>www.symmys.com</u> > Teaching > MATLAB

> This presentation:

www.symmys.com > Teaching > Talks

	BL	AC	QG	P	Μ	COP	EP
normal market & linear views	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
scenario analysis			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
correlation stress-test			\checkmark	\checkmark	\checkmark		\checkmark
trading desk: non-linear pricing					\checkmark	\checkmark	\checkmark
external factors: macro, etc.					\checkmark	\checkmark	\checkmark
partial specifications				\checkmark			\checkmark
non-normal market						\checkmark	\checkmark
multiple users						✓	\checkmark
non-linear views							\checkmark
trading desk: costly pricing							\checkmark
lax constraints: ranking		\checkmark					\checkmark

BL and beyond - conclusions

Black-Litterman:

Pathbreaking approach to handle estimation risk and input views on the market

Beyond Black-Litterman:

- √ Market represented by generic non-linear risk factors, not only returns
- ✓ Market distribution fully general, not only normal
- ✓ Market reference model fully general, not only based on equilibrium assumptions
- ✓ Views/stress-testing on any function of the market, not only linear portfolios
- √ Views on any feature, not only on expectations: median, volatility, correlations, tails
- √ Views are equalities and inequalities: ranking is possible
- ✓ Optimization is fully general, not only mean variance: mean-CVaR, mean-VaR, ...
- ✓ Repricing is not necessary: complex derivatives handled