

Distributions

Carl Henrik Ek - carlhenrik.ek@bristol.ac.uk October 2, 2017

http://www.carlhenrik.com

Introduction

Basic Probabilities

Basic Probabilities

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

⇒ Bayes Rule

$$p(X|Y) = \frac{P(Y|X)p(X)}{p(Y)}$$

Probability Densities [1] ch 1.2.1

$$\lim_{\delta x \to 0} p(x \in (x, x + \delta x)) = \lim_{\delta x \to 0} \int_{x}^{x + \delta x} p(x) dx = p(x) \cdot \delta x$$
$$p(x) \ge 0, \quad \int_{-\infty}^{\infty} p(x) dx = 1$$

• Our goal is to understand realisations of a system

- Our goal is to understand realisations of a system
- If we can, then we can "equate" our model with the system

- Our goal is to understand realisations of a system
- If we can, then we can "equate" our model with the system
- if you are observing a system and never get surprised, would you say that you understand the system?

- Our goal is to understand realisations of a system
- If we can, then we can "equate" our model with the system
- if you are observing a system and never get surprised, would you say that you understand the system?
- if you think of the probability as a measure of "suprisedness", if you have probability 0 and you see data you will be very surprised."

Bayes Rule

$$\underbrace{p(X|Y)}_{\text{posterior}} = \underbrace{P(Y|X)}_{\text{likelihood}} \cdot \underbrace{p(X)}_{\text{prior}} \cdot \underbrace{\frac{1}{p(Y)}}_{\text{evidence}}$$

 $\mathsf{posterior} \propto \mathsf{likelihood} \times \mathsf{prior}$

$$p(h|w) = \mathcal{N}(w \cdot \frac{194}{80}, 10^2)$$

 $p(w) = \mathcal{N}(80, 20^2)$

Discrete Distributions

ullet Distribution over binary random variable $x \in \{0,1\}$

$$p(x=1|\mu)=\mu$$

• Distribution over binary random variable $x \in \{0,1\}$

$$p(x=1|\mu)=\mu$$

• Due to binary outcome

$$p(x=0|\mu)=1-\mu$$

ullet Distribution over binary random variable $x \in \{0,1\}$

$$p(x=1|\mu)=\mu$$

• Due to binary outcome

$$p(x=0|\mu)=1-\mu$$

Distribution

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

• Distribution over binary random variable $x \in \{0,1\}$

$$p(x=1|\mu)=\mu$$

Due to binary outcome

$$p(x=0|\mu)=1-\mu$$

Distribution

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

Binomial

$$\mathsf{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

Data

- ullet We want to figure out what μ is for a specific coin
- Toss the coin N times, $\mathcal{D} = \{x_1, x_2, \dots, x_N\}$

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

• What happens if we blindly trust this one experiment?

Maximum Likelihood

$$\mu_{ML} = \operatorname{argmax}_{\mu} p(\mathcal{D}|\mu) = \frac{1}{N} \sum_{n=1}^{N} x_n$$

- if we get 3 heads in a row, we believe it will always be heads
- ullet we need to include an assumption as a prior over μ

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu)p(\mu)}{p(\mathcal{D})}$$

Also gives us an uncertainty related to our knowledge

Conjugate Prior

ullet If we have a prior belief μ we want the posterior belief to have the same functional form

 $posterior \propto likelihood \times prior$

Conjugate Prior

ullet If we have a prior belief μ we want the posterior belief to have the same functional form

$$posterior \propto likelihood \times prior$$

Conjugate prior

$$p(\mu|\theta) = f_1(\theta)\mu^{f_2(\theta)}(1-\mu)^{f_3(\theta)}$$
$$\int_0^1 p(\mu|\theta)d\mu = 1$$

Conjugate Prior

ullet If we have a prior belief μ we want the posterior belief to have the same functional form

posterior
$$\propto$$
 likelihood \times prior

Conjugate prior

$$p(\mu|\theta) = f_1(\theta)\mu^{f_2(\theta)}(1-\mu)^{f_3(\theta)}$$
$$\int_0^1 p(\mu|\theta)d\mu = 1$$

Does this make philosophical sense?

Beta Distribution

$$\mathsf{Beta}(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a) + \Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

Binomial Posterior

$$p(\mu|m,a,b) \propto p(\mathcal{D}|\mu)p(\mu)$$

$$= \binom{N}{m} \mu^m (1-\mu)^{N-m} \cdot \frac{\Gamma(a+b)}{\Gamma(a)+\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

$$\propto \mu^{m+a-1} (1-\mu)^{N-m+b-1}$$

the parameters of the prior have a clear interpretation
 a number of extra observations of x = 0
 b number of extra observations of x = 1

15

Multinomial

• If we have a variable that can take K different states

$$\boldsymbol{x} = [0, 0, 1, 0, 0, 0]^{\mathrm{T}}$$

Multinomial

• If we have a variable that can take K different states

$$\mathbf{x} = [0, 0, 1, 0, 0, 0]^{\mathrm{T}}$$

Multinomial

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{\mathbf{x}_k}$$
 $\boldsymbol{\mu} = [\mu_1, \dots, \mu_k]^{\mathrm{T}}, \sum_k \mu_k = 1$

Multinomial

• If we have a variable that can take K different states

$$\mathbf{x} = [0, 0, 1, 0, 0, 0]^{\mathrm{T}}$$

Multinomial

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{\mathbf{x}_k}$$
$$\boldsymbol{\mu} = [\mu_1, \dots, \mu_k]^{\mathrm{T}}, \sum_k \mu_k = 1$$

Likelihood

$$p(\mathsf{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{\mathsf{x}_{nk}}$$

Multinomial

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{\mathbf{x}_k}$$

Multinomial

$$p(\mathsf{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{\mathsf{x}_k}$$

Conjugate prior

$$p(\mu|\alpha) \propto \prod_{k=1}^K \mu_k^{\alpha_k-1}$$

Multinomial

$$p(\mathsf{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{\mathsf{x}_k}$$

Conjugate prior

$$p(\mu|\alpha) \propto \prod_{k=1}^K \mu_k^{\alpha_k-1}$$

• Dirichlet Distribution

$$Dir(\mu|\alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdot \ldots \cdot \Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$

Posterior

$$p(|\mathcal{D}, \alpha) \propto p(\mathcal{D}|\mu)p(\mu|\alpha) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k + m_k + 1}$$
 $m_k = \sum_n x_{nk}$

Normalised Form

$$p(|\mathcal{D},\alpha) = \frac{\Gamma(\alpha_0 + N)}{\Gamma(\alpha_1 + m_1) \cdot \ldots \cdot \Gamma(\alpha_K + m_K)} \prod_{k=1}^K \mu_k^{\alpha_k + m_k = 1}$$

Dirichlet Prior

Hyperparameters

$$p(\mu|\mathcal{D}, lpha) = rac{p(\mathcal{D}|oldsymbol{\mu})p(oldsymbol{\mu}|oldsymbol{lpha})}{p(\mathcal{D}|oldsymbol{lpha})}$$

• all these priors have parameters, where do they come from?

Hyperparameters

$$p(\mu|\mathcal{D}, lpha) = rac{p(\mathcal{D}|\mu)p(\mu|lpha)}{p(\mathcal{D}|lpha)}$$

- all these priors have parameters, where do they come from?
- either we know them

Hyperparameters

$$p(\mu|\mathcal{D}, lpha) = rac{p(\mathcal{D}|\mu)p(\mu|lpha)}{p(\mathcal{D}|lpha)}$$

- all these priors have parameters, where do they come from?
- either we know them
- if we don't then place a prior over the priors parameters and go again

Continous Distributions

Gaussian Distribution

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{D}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

Central Limit Theorem¹

The central limit theorem states that the distribution of the sum (or average) of a large number of independent, identically distributed variables will be approximately normal, regardless of the underlying distribution.

¹https://www.youtube.com/watch?v=wadzsURQFT4

Central Limit Theorem Carl

- If I do not know anything at all except that I think that there is some distribution something comes from
- A sensible idea (potentially) would be to think of an average
- As it turns out, the average of anything that I do not know (but are identically distributed) is Gaussian
- Therefore I think it kinda makes sense

Conjugate Prior²

- Gaussians are self-conjugate
 - Gaussian likelihood + Gaussian Prior → Gaussian Posterior
- Gaussian distribution
 - Conjugate prior for μ is Gaussian
 - Conjugate prior for Σ is Inverse-Wishard

²https://en.wikipedia.org/wiki/Conjugate_prior

Mixtures of Gaussians [1] Ch 2.3.9

$$p(\mathsf{x}) = \sum_{k=1}^K p(k) \underbrace{p(\mathsf{x}|k)}_{\mathcal{N}(\mu_k, \Sigma_k)}$$

Exponential Family [1] Ch. 2.4

Exponential family natural parametrisation

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})e^{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})}$$

Conjugate prior

$$p(\eta|\chi,\nu) = f(\chi,\nu)g(\chi)^{\nu}e^{\nu\eta^{\mathrm{T}}\chi}$$

Stochastic Process

Stochastic Process

Kologrovs Existence Theorem

Defines what a distribution needs to forfill in order for a process to exist. Each finite instantiaton of the process is this distribution.

Gaussian Identities

Gaussian Distribution

$$p(x_1,x_2) = \mathcal{N}\left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \left[\begin{array}{c} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right]\right)$$
 Posterior $p(x_1|x_2) \propto p(x_2|x_1)p(x_1)$ Marginal $p(x_1) = \int p(x_1,x_2)\mathrm{d}x_2$ Conditional $p(x_1|x_2) = \frac{p(x_1,x_2)}{p(x_2)}$

Posterior |

$$p(x_1|x_2) \propto p(x_2|x_1)p(x_1)$$

- 1. Multiply right-hand side
- 2. Look at the exponents
- 3. Find the three terms, constant, mixed and quadratic
- 4. Called completing the square and very very useful to have done

Marginal

$$p(x_1) = \int p(x_1, x_2) dx_2 = \mathcal{N}(\mu_1, \Sigma_{11})$$

- 1. Write out the exponent of the joint distribution
- 2. Complete Square and collect terms with $x_1 \mu_1$ (as we know the result)
- Compute integral by knowing that densities always integrates to one

Conditional

$$p(x_1|x_2) = \frac{p(x_1,x_2)}{p(x_2)}$$

- 1. Factorise the problem as $p(x_1, x_2) = p(x_1|x_2)p(x_2)$
- 2. We know the marginal and the joint
- 3. Use Schur complement to re-write the covariance matrix on block form

Gaussian Identities

Summary

Summary

- Distributions allows us to make our assumptions explicit
- Conjugacy implies that the posterior and the prior is in the same family
- Exponential family defines a natural parametrisation of distributions that we can work with
- Gaussian Identities!

eof

References

Christopher M. Bishop.

Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.