03500.017372.

ADEMARK OFFICE

In re Application of:)	
		;	Examiner: (Not Yet Known)
MASAHIKO KUBOTA, ET AL.)	
		:	Group Art Unit: (Not Yet Known)
Application No.: 10/615,143)	
• •	•	:	Confirmation No.: (Not Yet Known)
Filed: July 9, 2003)	,
• /		:	Customer No. 05514
For:	METHOD FOR PRODUCING)	
	LIQUID DISCHARGE HEAD	:	September 3, 2003

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

SUBMISSION OF PRIORITY DOCUMENT

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed is a certified copy of the following Japanese application:

2002-201876, filed July 10, 2002.

Applicants' undersigned attorney may be reached in our New York office by telephone at (212) 218-2100. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

- 6. Thuslaw

Registration No. 47,138

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

#373245

CFO17372 115/ YUO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 7月10日

出願番号 Application Number:

特願2002-201876

[ST. 10/C]:

[JP2002-201876]

出 願 人

キヤノン株式会社

Applicant(s):

2003年 7月29日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 4662002

【提出日】 平成14年 7月10日

【あて先】 特許庁長官 殿

【国際特許分類】 B41J 2/05

【発明の名称】 液体吐出ヘッドの製造方法

【請求項の数】 6

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 檜山 亘

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100088328

【弁理士】

【氏名又は名称】 金田 暢之

【電話番号】 03-3585-1882

【選任した代理人】

【識別番号】 100106297

【弁理士】

【氏名又は名称】 伊藤 克博

【選任した代理人】

【識別番号】 100106138

【弁理士】

【氏名又は名称】 石橋 政幸

【手数料の表示】

【予納台帳番号】 089681

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】明細書

【発明の名称】 液体吐出ヘッドの製造方法

【特許請求の範囲】

【請求項1】 液滴を吐出させるためのエネルギを発生する吐出エネルギ発生素子と、

前記吐出エネルギ発生素子が主面に設けられた素子基板と、

液滴を吐出する吐出口を有する吐出口部、前記吐出エネルギ発生素子によって 内部の液体に気泡を発生させる発泡室、および前記発泡室に液体を供給するため の供給路を有するノズルと、前記ノズルに液体を供給するための供給室とを有し 、前記素子基板の主面に接合されたオリフィス基板とを備えた液体吐出ヘッドの 製造方法において、

前記吐出エネルギ発生素子が主面に設けられた素子基板上に、第1の発泡室と 第1の流路とのパターンを形成するための溶剤可溶型の熱架橋性有機樹脂を塗布 し、加熱させて熱架橋膜を形成する工程と、

前記熱架橋膜上に、第2の発砲室と第2の流路とのパターンを形成するための 溶剤可溶型の有機樹脂を塗布する工程と、

前記第2の発泡室と、第2の発泡室より低い高さを有する第2の流路パターン を形成する工程と、

上記パターン上に、ネガ型有機樹脂層を形成後、前記吐出口部を形成する工程 と、

上記2層の型材を除去する工程とを有することを特徴とする液体吐出ヘッドの 製造方法。

【請求項2】 前記第2の流路パターンの形成が、スリット間隔を有するスリットマスクを用いて、前記有機樹脂を露光・現像することにより行われる、請求項1に記載の液体吐出ヘッドの製造方法。

【請求項3】 前記第2の発泡室と前記第2の流路とのパターンの形成が、マスクを介した露光・現像工程の後に、温度によって、10~45°の傾斜を形成することによって行われる、請求項1に記載の液体吐出ヘッドの製造方法。

【請求項4】 前記第2の流路パターンの形成が、異なったスリット間隔を

有するマスクを用いて、前記有機樹脂を露光・現像することにより、2段以上の 段差を有して形成される、請求項2に記載の液体吐出ヘッドの製造方法。

【請求項5】 液滴を吐出させるためのエネルギを発生する吐出エネルギ発 生素子と、

前記吐出エネルギ発生素子が主面に設けられた素子基板と、

液滴を吐出する吐出口を有する吐出口部、前記吐出エネルギ発生素子によって 内部の液体に気泡を発生させる発泡室、および前記発泡室に液体を供給するため の供給路を有するノズルと、前記ノズルに液体を供給するための供給室とを有し 、前記素子基板の主面に接合されたオリフィス基板とを備えた液体吐出ヘッドの 製造方法において、

前記吐出エネルギ発生素子が主面に設けられた前記素子基板上に、第1の発泡 室と第1の流路とのパターンを形成するための溶剤可溶型の熱架橋性有機樹脂を 塗布し、加熱させて、熱架橋膜を形成する工程と、

前記熱架橋膜上に、第2の発泡室と第2の流路とのパターンを形成するための 溶剤可溶型の有機樹脂を塗布する工程と、

前記第2の発泡室および異なる複数の高さを有する第2の流路のパターンとを 形成するために、異なったスリット間隔を有するスリットマスクを用い、前記有 機樹脂をNear-UV光を使用して、露光・現像する工程と、

露光・現像し、パターン形成を行った前記有機樹脂をガラス転移点以下の温度 で、加熱することで、10~45°の傾斜を形成する工程と、

前記熱架橋膜を200~300nm領域のDeep-UV光を使用して、露光 ・現像する工程と、

2層の前記溶剤可溶膜により形成された流路パターン上に、ネガ型有機樹脂を 途布・露光・現像・加熱することで、前記吐出口部を有する前記オリフィス基板 を積層する工程と、

前記オリフィス基板を介して、下層に形成した2層の前記流路形成有機樹脂に Deep-UV光を照射し、溶剤による除去を行い、液滴を吐出する前記吐出口 部、前記吐出エネルギ発生素子によって気泡が発生する前記発泡室、および前記 発泡室に液体を供給するための前記供給路を有する前記ノズルと、前記ノズルに 液体を供給するための前記供給室とを有し、前記素子基板の主面に接合された前記オリフィス基板を形成する工程と、を有することを特徴とする液体吐出ヘッドの製造方法。

【請求項 6 】 前記第 1 の流路の前記素子基板上の高さは、 $5\sim20~\mu$ mであり、前記素子基板の主面に直交する平面に対し、 $0\sim10^\circ$ の傾斜をもって形成される、請求項 5 に記載の液体吐出ヘッドの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えばインク滴等の液滴を吐出させて記録媒体に記録を行うための 液体吐出ヘッドの製造方法に関し、特にインクジェット記録を行う液体吐出ヘッ ド製造方法に関する。

[0002]

【従来の技術】

インクジェット記録方式は、いわゆるノンインパクト記録方式の一つである。このインクジェット記録方式は、記録時に発生する騒音が無視し得る程度に小さく、高速記録が可能である。また、インクジェット記録方式は、種々の記録媒体に対して記録が可能であり、いわゆる普通紙に対しても特別な処理を必要とせずにインクが定着して、しかも高精細な画像が廉価に得られることを挙げることができる。このような利点から、インクジェット記録方式は、コンピューターの周辺機器としてのプリンタばかりでなく、複写機、ファクシミリ、ワードプロセッサ等の記録手段として近年急速に普及している。

[0003]

一般的に利用されているインクジェット記録方式のインク吐出方法には、インク滴を吐出するために用いられる吐出エネルギ発生素子として、例えばヒータ等の電気熱変換素子を用いる方法と、例えばピエゾ素子等の圧電素子を用いる方法とがあり、いずれの方法でも電気信号によってインク滴の吐出を制御することができる。電気熱変換素子を用いるインク吐出方法の原理は、電気熱変換素子に電圧を印加することにより、電気熱変換素子近傍のインクを瞬時に沸騰させて、沸

騰時のインクの相変化により生じる急激な気泡の成長によってインク滴を高速に 吐出させる。一方、圧電素子を用いるインク吐出方法の原理は、圧電素子に電圧 を印加することにより、圧電素子が変位してこの変位時に発生する圧力によって インク滴を吐出させる。

[0004]

そして、電気熱変換素子を用いるインク吐出方法は、吐出エネルギ発生素子を 配設するためのスペースを大きく確保する必要がなく、液体吐出ヘッドの構造が 簡素で、ノズルの高集積化が容易であること等の利点がある。一方で、このイン ク吐出方法の固有の短所としては、電気熱変換素子が発生する熱等が液体吐出ヘッド内に蓄熱されることによって、飛翔するインク滴の体積が変動することや、 消泡によって生じるキャビテーションが電気熱変換素子に及ぼす悪影響や、イン ク内に溶け込んだ空気が液体吐出ヘッド内の残留気泡となることで、インク滴の 吐出特性や画像品質に及ぼす悪影響等があった。

[0005]

これらの問題を解決する方法としては、特開昭54-161935号公報、特開昭61-185455号公報、特開昭61-249768号公報、特開平4-10941号公報に開示されたインクジェット記録方法および液体吐出ヘッドがある。すなわち、上述した公報に開示されたインクジェット記録方法は、記録信号によって電気熱変換素子を駆動させて発生した気泡を外気に通気させる構成となっている。このインクジェット記録方法を採用することにより、飛翔するインク滴の体積の安定化を図り、微少量のインク滴を高速に吐出することが可能となり、気泡の消泡時に発生するキャビテーションを解消することでヒータの耐久性の向上を図ること等が可能となり、更なる高精細画像が容易に得られるようになる。上述した公報において、気泡を外気に通気させるための構成としては、電気熱変換素子と吐出口との間の最短距離を、従来に比して大幅に短くする構成が挙げられている。

[0006]

この種の従来の液体吐出ヘッドについて説明する。従来の液体吐出ヘッドは、インクを吐出させる電気熱変換素子が設けられた素子基板と、この素子基板に接

合されてインクの流路を構成するオリフィス基板とを備えている。オリフィス基板は、インク滴を吐出する複数の吐出口と、インクが流動する複数のノズルと、これら各ノズルにインクを供給する供給室とを有している。ノズルは、電気熱変換素子によって内部のインクに気泡が発生する発泡室と、この発泡室にインクを供給する供給路とからなる。素子基板には、発泡室内に位置して電気熱変換素子が配設されている。また、素子基板には、オリフィス基板に隣接している主面の裏面側から供給室にインクを供給するための供給口が設けられている。そして、オリフィス基板には、素子基板上の電気熱変換素子に対向する位置に吐出口が設けられている。

[0007]

以上のように構成された従来の液体吐出ヘッドは、供給口から供給室内に供給されたインクが、各ノズルに沿って供給されて、発泡室内に充填される。発泡室内に充填されたインクは、電気熱変換素子により膜沸騰されて発生する気泡によって、素子基板の主面に対してほぼ直交する方向に飛翔されて、吐出口からインク滴として吐出される。

[0008]

そして、上述した液体吐出ヘッドを備える記録装置は、記録画像の更なる高画質出力、高品位画像、高解像度出力等を図るために、記録速度の更なる高速化が考慮されている。従来の記録装置は、記録速度を高速化するために、液体吐出ヘッドの各ノズルごとに飛翔されるインク滴の吐出回数を増加する、すなわち吐出周波数を高くする試みが、米国特許第4、882、595号や、第6、158、843号に開示されている。

[0009]

特に、米国特許第6、158、843号には、インクの流路を局所的に狭める空間や突起状の流体抵抗要素を供給口近傍に配設することによって、供給口から供給路へのインクの流れを改善する構成が提案されている。

[0010]

【発明が解決しようとする課題】

ところで、上述した従来の液体吐出ヘッドは、インク滴を吐出する際、発泡室

内に成長する気泡によって、発泡室内に充填されたインクの一部が供給路に押し戻されてしまう。このため、従来の液体吐出ヘッドでは、発泡室内のインクの体積が減少することに伴って、インク滴の吐出量が減少するという不都合がある。

$[0\ 0\ 1\ 1]$

また、従来の液体吐出ヘッドは、発泡室内に充填されたインクの一部が供給路に押し戻される際に、成長する気泡の供給路側に臨む圧力の一部が、供給路側に逃げ出したり、発泡室内の内壁と気泡との摩擦により圧力損失が発生したりしてしまう。このため、従来の液体吐出ヘッドは、気泡の圧力が低下することに伴って、インク滴の吐出速度が低下するという問題がある。

[0012]

また、従来の液体吐出ヘッドは、発泡室内に成長する気泡によって、発泡室内に充填された微少量のインクの体積が変動するため、インク滴の吐出量にバラツキが生じるといった問題もある。

[0013]

そこで、本発明は、液滴の吐出速度の高速化、液滴の吐出量の安定化を図り、 液滴の吐出効率を向上することができる液体吐出ヘッドとその製造方法を提供す ることを目的とする。

[0014]

【課題を解決するための手段】

上述した目的を達成するため、本発明に係る液体吐出ヘッドは、液滴を吐出させるためのエネルギを発生する吐出エネルギ発生素子と、吐出エネルギ発生素子が主面に設けられた素子基板と、液滴を吐出する吐出口を有する吐出口部、吐出エネルギ発生素子によって内部の液体に気泡を発生させる発泡室、および発泡室に液体を供給するための供給路を有するノズルと、ノズルに液体を供給するための供給室とを有し、素子基板の主面に接合されたオリフィス基板とを備えた液体吐出ヘッドの製造方法において、吐出エネルギ発生素子が主面に設けられた素子基板上に、第1の発泡室と第1の流路とのパターンを形成するための溶剤可溶型の熱架橋性有機樹脂を塗布し、加熱させて熱架橋膜を形成する工程と、熱架橋膜上に、第2の発砲室と第2の流路とのパターンを形成するための溶剤可溶型の有

機樹脂を塗布する工程と、第2の発泡室と、第2の発泡室より低い高さを有する 第2の流路パターンを形成する工程と、上記パターン上に、ネガ型有機樹脂層を 形成後、吐出口部を形成する工程と、上記2層の型材を除去する工程とを有する ことを特徴とする。

[0015]

第2の流路パターンの形成が、スリット間隔を有するスリットマスクを用いて、有機樹脂を露光・現像することにより行われてもよく、第2の発泡室と第2の流路とのパターンの形成が、マスクを介した露光・現像工程の後に、温度によって、10~45°の傾斜を形成することによって行われてもよく、第2の流路パターンの形成が、異なったスリット間隔を有するマスクを用いて、有機樹脂を露光・現像することにより、2段以上の段差を有して形成されてもよい。

[0016]

また、以上のように構成した液体吐出ヘッドは、ノズル内で流路の高さ、幅、あるいは断面積が変化しており、かつ、基板から吐出口に至る方向に、徐々にインク体積が減少するように構成されており、吐出口付近は、液滴が飛翔する際に、飛翔する液滴が、基板に対して垂直に飛翔し、かつ整流作用を持つように作用する形状を構成している。また、液滴を吐出する際、発泡室内に生じる気泡によって発泡室内に充填された液体が供給路側に押し出されることが抑制される。したがって、この液体吐出ヘッドによれば、吐出口から吐出される液滴の吐出体積にバラツキが生じることが抑制されて、吐出体積が適正に確保される。また、この液体吐出ヘッドは、液滴を吐出する際、段差部により構成された制御部によって、発泡室内に成長する気泡が発泡室内の制御部の内壁に当接するので、気泡の圧力を損失することが抑制される。したがって、この液体吐出ヘッドによれば、発泡室内の気泡が良好に成長して圧力が十分に確保されるため、液滴の吐出速度が向上する。

[0017]

【発明の実施の形態】

以下、本発明のインク等の液滴を吐出する液体吐出ヘッドの具体的な実施の形態について、図面を参照して説明する。

[0018]

まず、本実施の形態に係る液体吐出ヘッドの概略を説明する。本実施の形態の液体吐出ヘッドは、インクジェット記録方式の中でも特に、液体のインクを吐出するために利用されるエネルギとして熱エネルギを発生する手段を備え、その熱エネルギによってインクの状態変化を生起させる方式が採用された液体吐出ヘッドである。この方式が用いられることにより、記録される文字や画像等の高密度化および高精細化が達成されている。特に本実施の形態では、熱エネルギを発生する手段として発熱抵抗素子を用い、この発熱抵抗素子によりインクを加熱して膜沸騰させたときに発生する気泡による圧力を利用してインクを吐出している。

[0019]

(第1の実施の形態)

詳細については後述するが、図1に示すように、第1の実施の形態の液体吐出 ヘッド1は、発熱抵抗素子である複数のヒータのそれぞれのヒータごとに、インクの流路であるノズルを個別に独立して形成するための隔離壁が、吐出口から供 給口近傍まで延設された構成となっている。このような液体吐出ヘッド1は、特 開平4-10940号公報、特開平4-10941号公報に開示されたインクジェット記録方法が適用されたインク吐出手段を有しており、インクの吐出時に発生する気泡が吐出口を介して外気に通気されている。

[0020]

そして、液体吐出ヘッド1は、複数のヒータおよび複数のノズルを有し各ノズルの長手方向が平行に配列された第1のノズル列16と、供給室を挟んで第1のノズル列に対向する位置に配列された第2のノズル列17とを備えている。第1 および第2のノズル列16、17は、いずれも隣接する各ノズルの間隔が600 dpiピッチに形成されている。また、第2のノズル列の各ノズル17は、第1のノズル列16の各ノズルに対して、隣接する各ノズルのピッチが互いに1/2ピッチずれて配列されている。

[0021]

ここで、複数のヒータおよび複数のノズルが高密度に配列されている第1および第2のノズル列16、17を備える液体吐出ヘッド1を最適化する概念につい

て簡単に説明する。

[0022]

一般に、液体吐出ヘッドの吐出特性に影響を及ぼす物理量としては、複数設けられたノズル内におけるイナータンス(慣性力)とレジスタンス(粘性抵抗)が大きく作用している。任意の形状の流路内を移動する非圧縮性流体の運動方程式は、以下に示す2式によって表される。

$$\Delta \cdot \mathbf{v} = 0$$
 (連続の式) $\cdot \cdot \cdot \mathbf{J} \mathbf{1}$ ($\partial \mathbf{v} / \partial \mathbf{t}$) + ($\mathbf{v} \cdot \Delta$) $\mathbf{v} = -\Delta$ (P / ρ) + (μ / ρ) $\Delta^2 \mathbf{v} + \mathbf{f}$ (ナビエ・ストークスの式) $\cdot \cdot \cdot \mathbf{J} \mathbf{2}$

式1および式2を、対流項および粘性項が充分に小さく、外力がないものとして近似すると、

$$\Delta^2 P = 0$$
 · · · 式 3

となり、圧力が調和関数を用いて表される。

[0024]

そして、液体吐出ヘッドの場合には、図2に示すような3開口モデル、および 図3に示すような等価回路によって表現される。

イナータンスは、静止流体が急に動き出す時の「動き難さ」として定義される。電気的に表現すると、電流の変化を阻害するインダクタンスLと似た働きをする。機械的なバネマスモデルでは、重さ(mass)に相当する。

イナータンスを式で表すと、開口に圧力差を与えたときの、流体体積Vの2 階時間微分、すなわち流量F (= $\Delta V/\Delta t$) の時間微分との比で表される。

$$(\Delta^{2}V/\Delta t^{2}) = (\Delta F/\Delta t) = (1/A) \times P \qquad \cdot \cdot \cdot \sharp 4$$

なお、A:イナータンスとする。

[0027]

例えば、擬似的に、密度 ρ 、長さし、断面積Soとされたパイプ型の管流路を

仮定すると、この擬似的な1次元流管路のイナータンスAoは、

 $Ao = \rho \times L / So$

で表され、流路の長さに比例し、断面積に反比例することが分かる。

[0028]

図3に示したような等価回路に基づいて、液体吐出ヘッドの吐出特性をモデル 的に予測、解析することができる。

[0029]

本発明の液体吐出ヘッドにおいて、吐出現象は、慣性流から粘性流に移行する 現象とされている。特に、ヒータによる発泡室内での発泡初期においては、慣性 流が主であり、逆に、吐出後期(すなわち、吐出口に生じたメニスカスがインク 流路側に移動を開始したときから、毛細管現象によってインクが吐出口の開口端 面まで充填されて復帰するまでの時間)においては、粘性流が主となる。その際 、上述した関係式から、発泡初期には、イナータンス量の関係により、吐出特性 、特に、吐出体積および吐出速度への寄与が大きくなり、吐出後期には、レジス タンス(粘性抵抗)量が、吐出特性、特に、インクのリフィルに要する時間(以 下、リフィル時間と称する。)への寄与が大きくなる。

[0030]

ここで、レジスタンス(粘性抵抗)は、式1と、

$$\Delta P = \eta \Delta^2 \mu$$

· · · 式 5

となる定常ストークス流で記述され、粘性抵抗Bを求めることができる。また、 吐出後期では、図2に示したモデルにおいて、吐出口近傍にメニスカスが生じて 、主に毛細管力による吸引力により、インクの流動が生じるため、2 開口モデル (1次元流モデル)で近似することができる。

[0031]

すなわち、粘性流体を記述したポアズイユの式6から求めることができる。

[0032]

$$(\Delta V/\Delta t) = (1/G) \times (1/\eta) \{ (\Delta P/\Delta x) \times S (x) \}$$

···式6

ここで、G:形状因子である。また、粘性抵抗Bは、任意の圧力差に従って流れ

る流体に起因するため、

$$B = \int 0^{L} \{ (G \times \eta) / S (x) \} \Delta x$$

· · · 式 7

により、求められる。

[0033]

上述した式7により、レジスタンス(粘性抵抗)は、密度 ρ 、長さL、断面積Soであるようなパイプ型の管流路を仮定すると、

[0034]

このように、液体吐出ヘッドの吐出特性、特に、吐出速度、インク滴の吐出体 積、リフィル時間のいずれをも向上させるためには、イナータンスの関係から、 ヒータから吐出口側へのイナータンス量を、ヒータから供給口側へのイナータン ス量と比較して可能な限り大きくし、かつ、ノズル内のレジスタンスを小さくす ることが、必要充分条件である。

[0035]

本発明に係る液体吐出ヘッドは、上述した観点と、さらに、複数のヒータおよび複数のノズルを高密度に配設するという命題に対して、両方を満足させることを可能とする。

[0036]

次に、実施の形態に係る液体吐出ヘッドについて、具体的な構成を図面を参照 して説明する。

[0037]

図4から図7に示すように、液体吐出ヘッドは、発熱抵抗素子である複数の吐出エネルギ発生素子としてのヒータ20が設けられた素子基板11と、この素子基板11の主面に積層されて接合されて複数のインクの流路を構成するオリフィス基板12とを備えている。

[0038]

素子基板11は、例えば、ガラス、セラミックス、樹脂、金属等によって形成されており、一般にはSiによって形成されている。

[0039]

素子基板11の主面上には、各インクの流路ごとに、ヒータ20と、このヒータ20に電圧を印加する電極(図示せず)と、この電極に接続された配線(図示せず)が所定の配線パターンでそれぞれ設けられている。

[0040]

また、素子基板11の主面上には、蓄熱の発散性を向上させる絶縁膜21が、 ヒータ20を被覆するように設けられている(図8参照)。また、素子基板11 の主面上には、気泡が消泡した際に生じるキャビテーションから主面を保護する ための保護膜22が、絶縁膜21を被覆するように設けられている(図8参照)

[0041]

オリフィス基板 1 2 は、樹脂材料によって厚さが 3 0 μ m程度に形成されている。オリフィス基板 1 2 は、図 4 、図 5 に示すように、インク滴を吐出する複数の吐出口部 2 6 を備え、内部をインクが流動する複数のノズル 2 7 と、これら各ノズル 2 7 にインクを供給する供給室 2 8 とを有している。

[0042]

ノズル27は、液滴を吐出する吐出口26 a を有する吐出口部26、吐出エネルギ発生素子であるヒータ20によって内部の液体に気泡を発生させる発泡室31、および発泡室31に液体を供給するための供給路32を有する。

[0043]

発泡室31は、素子基板11の主面を底面とし供給路32と連通していてヒータ20によって内部の液体に気泡が発生する第1の発泡室31a、および第1の発泡室31aの素子基板11の主面に平行な上面の開口に連通して設けられて第1の発泡室31aで発生した気泡が成長する第2の発泡室31bとからなり、吐出口部26は、第2の発泡室31bの上面の開口に連通して設けられ、吐出口部26の側壁面と第2の発泡室31bの側壁面との間には段差がある。

[0044]

吐出口部 26 の吐出口 26 a は、素子基板 11 上に設けられたヒータ 20 に対向する位置に形成されており、ここでは直径が例えば 15μ m程度の丸孔とされている。なお、吐出口 26 a は、吐出特性上の必要に応じて放射状のほぼ星形に形成されてもよい。

[0045]

第2の発泡室31bは円錐台形の形状となっており、その側壁が、素子基板の主面に直交する平面に対し、 $10\sim45^\circ$ の傾斜で吐出口方向に縮小しており、その上面は段差をもって吐出口部26の開口と連通している。

[0046]

第1の発泡室31aは供給路32の延長上にあり、吐出口26aに対向する底面がほぼ矩形状をなすように形成されている。

[0047]

ここで、ノズル27は素子基板11の主面に平行なヒータ20の主面と吐出口26aとの最短距離HOが30μm以下となるように形成されている。

[0048]

ノズル27では、主面に平行な第1の発泡室31aの上面および発泡室31に 隣接する供給路32の主面に平行な第1の上面35aは同一平面で連続しており 、それよりも高い供給路32の供給室28側の素子基板11の主面に平行な第2 の上面35bとは、主面に対して傾斜して設けられた第1の段差34aによって 接続されている。

[0049]

第1の段差35aから第2の発泡室31bの底面の開口に至る間の第1の上面35aが制御部を形成しており、制御部は気泡によって流動される発泡室31内のインクを制御する。素子基板11の主面から供給路32の上面までの最大高さが、素子基板11の主面から第2の発泡室31bの上面までの高さよりも低く設けられている。

[0050]

供給路32は、一端が発泡室31に連通されるとともに他端が供給室28に連通されて形成されている。

[0051]

このように、ノズル27では、制御部によって、第1の発泡室31aに隣接する供給路32の一端部から第1の発泡室31aにわたる部分である第1の上面35aの、素子基板11の主面に対する高さが、供給室28側に隣接する供給路32の第2の上面35bの高さに比較して低く形成されている。したがって、ノズル27では、第1の上面35aによって、第1の発泡室31aに隣接する供給路32の一端部から第1の発泡室31aにわたってのインクの流路の断面積が他の流路の断面積よりも小なくなるように形成されている。

[0052]

また、ノズル27は、図4および図7に示すように、流路の素子基板11の主面に平行な面におけるインクの流動方向に直交する幅が、供給室28から発泡室31にわたってほぼ等しいストレート状に形成されている。また、ノズル27は、素子基板11の主面に対向する各内壁面が、供給室28から発泡室31にわたって、素子基板11の主面に平行になるようにそれぞれ形成されている。

[0053]

ここでは、ノズル 2 7 は、素子基板 1 1 の主面に対する第 1 の上面 3 5 a の高さが、例えば 1 4 μ m程度になるように形成されており、素子基板 1 1 の主面に対する第 2 の上面 3 5 b の高さが、例えば 2 0 μ m程度になるように形成されている。また、ノズル 2 7 は、インクの流動方向に平行な第 1 の上面 3 5 a の長さが、例えば 1 0 μ m程度に形成されている。

[0054]

また、素子基板11には、オリフィス基板12に隣接する主面の裏面に、この 裏面側から供給室28にインクを供給するための供給口36が設けられている。

[0055]

また、図4、図5において、供給室28内には供給口36に隣接する位置に、各ノズル27ごとにインク内の塵を濾過して除去するための円柱状のノズルフィルタ38が、素子基板11とオリフィス基板12とに跨ってそれぞれ立設されている。ノズルフィルタ38は、供給口から例えば20μm程度離れた位置に設けられている。また、供給室28内の各ノズルフィルタ38の間隔は、例えば10

μ m程度とされている。このノズルフィルタ38によって、供給路32および吐出口26に塵が詰まることが防止されて、良好な吐出動作が確保される。

[0056]

以上のように構成された液体吐出ヘッド1について、インク滴を吐出口26から吐出する動作を説明する。

[0057]

まず、液体吐出ヘッド1では、供給口36から供給室28内に供給されたインクが、第1および第2のノズル列16、17の各ノズル27にそれぞれ供給される。各ノズル27に供給されたインクは、供給路32に沿って流動して発泡室31内に充填される。発泡室31内に充填されたインクは、ヒータ20により膜沸騰されて発生する気泡の成長圧力によって、素子基板11の主面に対してほぼ直交する方向に飛翔させられて、吐出口部26の吐出口26aからインク滴として吐出される。

[0058]

発泡室31内に充填されたインクが、第1の発泡室31a内でヒータ20により膜沸騰されて発生する気泡の成長圧力によって第2の発泡室32bを経由して吐出される際、第2の発泡室31bが円錐台形の形状となっており、その側壁が、素子基板の主面に直交する平面に対し、10~45°の傾斜で吐出口方向に縮小しており、その上面は段差をもって吐出口部26の開口と連通しているので、素子基板11から吐出口26aに至る方向に、徐々にインク体積が減少しながら整流され、吐出口26a付近では、液滴が飛翔する際に、飛翔する液滴が、基板に対して垂直に飛翔する。

[0059]

発泡室31内に充填されたインクが吐出される際、発泡室31内のインクの一部は、発泡室31内に発生する気泡の圧力によって供給路32側に流動することになる。液体吐出ヘッド1では、発泡室31内のインクの一部が供給路32側に流動する際、第1の上面35aを有する制御部によって供給路32の流路が狭められているため、制御部が、発泡室31側から供給路32を介して供給室28側に向かって流動するインクに対して流体抵抗として作用する。したがって、液体

吐出ヘッド1では、発泡室31内に充填されたインクが、制御部によって供給路32側に流動することが抑制されるため、発泡室31内のインクが減少することが防止されて、インクの吐出体積が良好に確保され、吐出口から吐出される液滴の吐出体積にバラツキが生じることが抑制されて、吐出体積が適正に確保される

[0060]

この液体吐出 \land ッド1において、ヒータ20から吐出口26までのイナータンス A_1 、ヒータ20から供給口36までのイナータンス A_2 、ノズル27全体のイナータンス A_0 とすると、 \land ッドの吐出口26側 \land のエネルギ配分比 $_7$ は、

 $\eta=(A_1/A_0)=\{A_2/(A_1+A_2)\}$ ・・・式9 によって表される。また、各イナータンスの値は、例えば3次元の有限要素法ソルバを用いて、ラプラス方程式を解くことによって求められる。

[0061]

上述した式により、液体吐出ヘッド1は、ヘッドの吐出口26側へのエネルギ配分比 η が0.59とされている。液体吐出ヘッド1は、エネルギ配分比 η を従来の液体吐出ヘッドにほぼ等しい値にすることで、吐出速度と吐出体積の値を従来と同じ程度に維持することできる。また、エネルギ配分比 η は、0.5< η <0.8を満たすことが望ましい。液体吐出ヘッド1は、エネルギ配分比 η が0.5以下の場合、良好な吐出速度と吐出体積が確保されず、0.8以上となった場合、インクが良好に流動されなくなり、リフィルを行うことができなくなる。

[0062]

また、液体吐出ヘッド 1 は、インクとして例えば染料系の黒色インク(表面張力 4 7. 8×10 -3 N/m、粘度 1 . 8 c p、p H 9. 8)が用いられた場合、従来の液体吐出ヘッドに比較して、ノズル 2 7内の粘性抵抗値 B を約 4 0%程度低減することができる。粘性抵抗値 B は、例えば 3 次元の有限要素法ソルバによっても算出することが可能であって、ノズル 2 7の長さ、ノズル 2 7の断面積を定めることにより容易に算出することができる。

[0063]

したがって、本実施の形態の液体吐出ヘッド1は、従来の液体吐出ヘッドに比

較して、吐出速度を約40%程度高速化することが可能となって、約25~30 kHz程度の吐出周波数応答性を実現することができる。

[0064]

また、素子基板11の主面から供給路32の上面までの最大高さが低く設定されているのでオリフィス基板12の強度が強化されている。

[0065]

以上のように構成された液体吐出ヘッド1の製造方法について図8、図9および図10を参照して簡単に説明する。

[0066]

液体吐出ヘッド1の製造方法は、素子基板11を形成する第1の工程と、素子基板11上にインクの流路を構成する上樹脂層42および下樹脂層41をそれぞれ形成する第2の工程と、上樹脂層41に所望のノズルパターンを形成する第3の工程と、その樹脂層の側面に傾斜を形成する第4の工程と、下樹脂層42に所望のノズルパターンを形成する第5の工程とを経て行われる。

[0067]

次に、この液体吐出ヘッド1の製造方法では、上下樹脂層41、42上にオリフィス基板12となる被覆樹脂層43を形成する第6の工程と、被覆樹脂層43 に吐出口部26を形成する第7の工程と、素子基板11に供給口36を形成する第8の工程と、上下樹脂層41、42を溶出する第9の工程とを経て液体吐出ヘッド1が製造される。

$[0\ 0\ 6\ 8]$

第1の工程は、図8(a)および図9(a)に示すように、例えばSiチップの主面上にパターニング処理等により複数のヒータ20およびこれらヒータ20に電圧を印加するための所定の配線を設け、ヒータ20を被覆するように蓄熱の発散性を向上させる絶縁膜21を設け、絶縁膜21を被覆するように気泡が消泡した際に生じるキャビテーションから主面を保護するための保護膜22を設けることにより素子基板11を形成する基板形成工程である。

[0069]

第2の工程は、図8(b)、図9(b)、図9(c)に示すように、素子基板

11上に、波長が300nm以下の紫外光であるDeep-UV光(以下、DU V光と称する。)を照射することによって、分子中の結合が破壊されて溶解可能 な下樹脂層42および上樹脂層41を連続して、スピンコート法によりそれぞれ 塗布する塗布工程である。この塗布工程は、下樹脂層42として、脱水縮合反応 による熱架橋型の樹脂材を用いることで、上樹脂層41をスピンコート法によっ て塗布する際に、下樹脂層42と上層樹脂41の各樹脂層間で相互に溶融するこ とが防止されている。下樹脂層 4 2 としては、例えばメタクリル酸メチル(MM A) とメタクリル酸 (MAA) をラジカル重合させて、ポリマー化させた2元共 重合体 (P(MMA-MAA) = 90:10) をシクロヘキサノン溶媒で溶解し た液を使用した。また、上樹脂層41としては、例えばポリメチルイソプロペニ ルケトン(PMIPK)をシクロヘキサノン溶媒で溶解した液を使用した。下樹 脂層42として使用した2元共重合体(P(MMA-MAA))の脱水縮合反応 による熱架橋膜を形成する科学反応式を図11に示している。この脱水縮合反応 は、180~200℃で30分~2時間加熱することにより、より強固な架橋膜 を形成することができる。なお、この架橋膜は、溶媒不溶型になっているが、D UV光などの電子線を照射することで、図11に記載したような分解反応が起こ り、低分子化が進み、電子線が照射された部分のみ、溶媒可溶性となる。

[0070]

第3の工程は、図8(b)および図9(d)に示すように、DUV光を照射する露光装置を用いて、この露光装置に波長選択手段として波長260nm未満のDUV光を遮断するフィルターを装着することで、260nm以上のみを透過させ、波長が260~330nm付近のNear-UV光(以下、NUV光と称する。)を照射させて、上樹脂層41を露光および現像することによって、上樹脂層41に所望のノズルパターンを形成するパターン形成工程である。波長260nm未満のDUV光を遮断するフィルターとして、異なったスリット間隔を有するスリットマスク105を用いることにより、ノズルパターンの高さを任意に設定することができ、第2の発泡室31b、第2の上面35bのノズルパターンをそれぞれ異なった高さに形成することができる。

[0071]

この第3の工程では、上樹脂層にノズルパターンを形成する際、上樹脂層 4 1 と下樹脂層 4 2 とでは、波長 $260 \sim 330$ n m付近のNU V 光に対する感度比が約40:1以上の差であるため、下樹脂層 4 2 が感光されることなく、下樹脂層 4 2 の P(MMA - MAA)が分解されることはない。また、下樹脂層 4 2 は、熱架橋膜であるために、上樹脂層を現像時の現像液に溶解することもない。下樹脂層 4 2 と上樹脂層 4 1 との 2 1 0 \sim 3 3 0 n m領域における材料の吸収スペクトル曲線を図 1 2 に示す。

[0072]

第4の工程は、図8(b)および図9(d)に示すように、パターン形成を行った上樹脂層 41×140 で $5 \sim 20$ 分加熱することで、その上樹脂層の側面に $10 \sim 45$ の傾斜を形成することができる。この傾斜角度は、上記のパターン体積(形状・膜厚)と、加熱温度・時間とに相関があり、上記の角度範囲内で指定の角度に制御することができる。

[0073]

第5の工程は、図8(b)および図9(e)に示すように、マスク106を用い、上述した露光装置で波長210~330nmのDUV光を照射させて、下樹脂層を露光および現像することによって、下樹脂層42に所望のノズルパターンを形成するパターン形成工程である。さらに、下樹脂層42に使用したP(MMAA)材料は、解像力が高く、5~20 μ m程度の厚さでも、側壁の傾斜角は、0~5°程度のトレンチ構造に形成することが可能である。

また、必要であれば、パターニング後の樹脂層 4 2 を、1 2 0 ~ 1 4 0 ℃程度で、加熱することで、その下樹脂層 4 2 の側壁にも更なる傾斜を形成することが可能である。

[0074]

第6の工程は、ノズルパターンが形成されていて、DUV光によって分子中の 架橋結合が破壊されて溶解可能となった上樹脂層 4 1 および下樹脂層 4 2 上に、 図10(a)に示すように、オリフィス基板 1 2 となる透明な被覆樹脂層 4 3 を 塗布する塗布工程である。

[0075]

第7の工程は、図8(c)および図10(b)に示すように、この被覆樹脂層 4 3 に、露光装置でUV光を照射させて、吐出口部 2 6 に相当する部分を露光お よび現像して除去することにより、オリフィス基板12を形成する。そのオリフ ィス基板12に形成する吐出口部26の側壁の傾斜は、素子基板の主面に直交す る平面に対し、なるべく0°付近で形成することが望ましい。しかし、0~10 。 程度であれば、液滴の吐出特性について、大きな問題は発生しない。

[0076]

第8の工程は、図8(d)および図10(c)に示すように、素子基板11の 裏面に化学的なエッチング処理等を行うことによって、素子基板11に供給口3 6 を形成する。化学的なエッチング処理としては、例えば、強アルカリ溶液(K OH、NaOH、TMAH)を用いた異方性エッチング処理が適用される。

[0077]

第9の工程は、図8(e)および図10(d)に示すように、素子基板11の 主面側から被覆樹脂層43を透過させて波長330nm以下のDUV光を照射す ることにより、素子基板11とオリフィス基板12との間に位置するノズル型材 である上下樹脂層41、42を供給口36を経由してそれぞれ溶出させる。

[0078]

これによって、吐出口26aおよび供給口36と、これらを連通する供給路3 2に段差状に形成された制御部33を有するノズル27を備えるチップが得られ る。このチップをヒータ20を駆動するための配線基板(図示せず)等と電気的 な接続を行うことにより、液体吐出ヘッドが得られる。

[0079]

なお、ここではフィルターとして、異なったスリット間隔を有するスリットマ スクを用いることにより、一工程でノズルパターンの高さを任意に設定したが、 上述した液体吐出ヘッド1の製造方法によれば、DUV光によって分子中の架橋 結合が破壊されて溶解可能である上樹脂層41および下樹脂層42を、素子基板 1 1 の厚み方向に対してさらに階層構造にすることによって、ノズル2 7内に3 段以上の段差状に形成された制御部を設けることが可能である。例えば、上樹脂 層のさらに上層側に、波長400nm以上の光に感度を有する樹脂材料を用いて

、多段階のノズル構造を形成することができる。

[0080]

本実施の形態に係る液体吐出ヘッド1の製造方法は、基本的に特開平4-10940号公報、特開平4-10941号公報に開示されたインクジェット記録方法をインク吐出手段とする液体吐出ヘッドの製造方法に準ずることが好ましい。これら各公報は、ヒータによって生じた気泡を外気に通気させる構成におけるインク滴吐出方法であり、例えば50pl以下の微少量のインク滴を吐出することができる液体吐出ヘッドを提供している。

[0081]

液体吐出ヘッド1は、気泡が外気に通気されているため、吐出口26から吐出されるインク滴の体積が、ヒータ20と吐出口26との間に位置するインクの体積、すなわち発泡室31内に充填されたインクの体積に大きく依存する。換言すれば、吐出されるインク滴の体積は、液体吐出ヘッド1のノズル27の発泡室31部分の構造によってほぼ決定される。

[0082]

したがって、液体吐出ヘッド1は、インクムラのない高品位な画像を出力することができる。本発明に係る液体吐出ヘッドは、構造として、気泡を外気に通気させるために、ヒータと吐出口との間の最短距離が30μm以下とされる液体吐出ヘッドに適用することにより最大の効果を奏するが、ヒータが設けられた素子基板の主面に直交する方向にインク滴を飛翔させる液体吐出ヘッドであれば、いずれも有効に作用させることができる。

[0083]

上述したように、液体吐出ヘッド1は、円錐台形の第2の発泡室31bを設けることによって、素子基板11から吐出口26aに至る方向に、徐々にインク体積が減少しながら整流され、吐出口26a付近では、液滴が飛翔する際に、飛翔する液滴が、素子基板11に対して垂直に飛翔する。また、発泡室31内のインクの流れを制御する第1の上面35aが設けられることによって、吐出されるインク滴の体積の安定化が図られ、また、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、低温の液からの熱伝

導により吐出される液の温度上昇を抑えるので吐出量の温度依存性が改善でき、 インク滴の吐出効率が向上される。

[0084]

(第2の実施の形態)

第1の実施の形態では、第1の発泡室31a上に、円錐台形の第2の発泡室31bを形成し、その第2の発泡室31bの側壁の傾斜が、素子基板11の主面に直交する平面に対して、10~45°の傾斜で吐出口部26方向に縮小した構成となっているが、第2の実施の形態の液体吐出ヘッド2では、発泡室内に充填されたインクが、吐出口へさらに流動しやすい構成を説明する。なお、この液体吐出ヘッド2において、上述した液体吐出ヘッド1と同一部材には同一符号を付して説明を省略する。

[0085]

第2の実施の形態の液体吐出ヘッド2では、第1の実施の形態と同様に、発泡室56はヒータ20によって気泡が発生する第1の発泡室56aと、その第1の発泡室56aから吐出口部53に至る途中に配置された第2の発泡室56bとを有し、その第2の発泡室56bの側壁の傾斜が、素子基板11の主面に直交する平面に対して、10~45°の傾斜で吐出口部26方向に縮小した構成となっているが、さらに、第1の発泡室56aでは、複数配列された第1の発泡室56aを個々に区別するために設けられた壁面が、素子基板11の主面に直交する平面に対し、0~10°までの傾斜で吐出口方向に縮小し、吐出口部53では、素子基板11の主面に直交する平面に対し、0~5°の傾斜で吐出口53aの方向に縮小している。

[0086]

図13および図14に示すように、液体吐出ヘッド2を備えるオリフィス基板52は、樹脂材料によって厚さが30μm程度に形成されている。オリフィス基板52は、先に図1を参照して説明したように、インク滴を吐出する複数の吐出口53aと、インクが流動する複数のノズル54と、これら各ノズル54にインクを供給する供給室55とを有している。

[0087]

吐出口53 a は、素子基板11上のヒータ20に対向する位置に形成されており、直径が例えば15μm程度の丸孔となっている。なお、吐出口53は、吐出特性上の必要に応じて放射状のほぼ星形に形成されてもよい。

[0088]

ノズル54は、液滴を吐出する吐出口53aを有する吐出口部53、吐出エネルギ発生素子であるヒータ20によって内部の液体に気泡を発生させる発泡室56、および発泡室56に液体を供給するための供給路57を有する。

[0089]

発泡室56は、素子基板11の主面を底面とし供給路57と連通していてヒータ20によって内部の液体に気泡が発生する第1の発泡室56a、および第1の発泡室56aの素子基板11の主面に平行な上面の開口に連通して設けられて第1の発泡室56aで発生した気泡が成長する第2の発泡室56bからなり、吐出口部53は、第2の発泡室56bの上面の開口に連通して設けられ、吐出口部53の側壁面と第2の発泡室56bの側壁面との間には段差がある。

[0090]

第1の発泡室 5 6 a は、吐出口 5 3 a に対向する底面がほぼ矩形状をなすように形成されている。また、第1の発泡室 5 6 a は、素子基板 1 1 の主面に平行なヒータ 2 0 の主面と吐出口 5 3 a との最短距離 O H が 3 0 μ m 以下となるように形成されている。ヒータ 2 0 は、先に図 1 を参照して説明したように素子基板 1 1 上に複数配列されており、配列密度が、6 0 0 d p i の場合、各ヒータのピッチは、約4 2 . 5 μ m になる。そして、第1の発泡室 5 6 a のヒータ配列方向の幅が、3 5 μ m で形成されると、各ヒータ間を遮蔽するノズル壁の幅が約7 . 5 μ m になる。第1の発泡室 5 6 a の素子基板 1 1 の表面からの高さは 1 0 μ m である。第1の発泡室 5 6 a 上に形成される第2の発泡室 5 6 b の高さが 1 5 μ m であり、オリフィス基板 5 2 に形成される吐出口部 5 3 の高さが 5 μ m であり、オリフィス基板 5 2 に形成される吐出口部 5 3 の高さが 5 μ m であり、オリフィス基板 5 2 に形成される吐出口部 5 3 の高さが 5 μ m である。 第2の発泡室 5 6 b の形状は 円錐 台形となっており、第1の発泡室 5 6 a と連接する底面の直径が 3 0 μ m である場合、第2の発泡室の側壁に 2 0 の傾斜を作成すると、吐出口部 5 3 側の上面の直径は、1 9 μ m となる。そして、約 2 μ m の段差を有して、

直径15μmの吐出口部53と連結される。

[0091]

第1の発泡室56aで発生した気泡は、第2の発泡室56bおよび、供給路57に向けて成長し、ノズル54内に充填されていたインクが、吐出口部53で整流されて、オリフィス基板に配置された吐出口53aから飛翔される。

[0092]

供給路57は、一端が発泡室56に連通されるとともに他端が供給室55に連通されて形成されている。

[0093]

ノズル54では、主面に平行な第1の発泡室56aの上面および発泡室56に 隣接する供給路57の主面に平行な第1の上面59aは同一平面で連続しており、それよりも高い供給路57の供給室55側の素子基板11の主面に平行な第2の上面59bとは、主面に対して傾斜して設けられた第1の段差58aによって接続されており、第2の上面59bよりも高い供給路57の供給室55側の素子基板11の主面に平行な第3の上面59cとは、主面に対して傾斜して設けられた第2の段差58bによって接続されている。

[0094]

第1の段差58aから第2の発泡室56bの底面の開口に至る間が制御部を形成しており、制御部は気泡によって流動される発泡室56内のインクを制御する

[0095]

このように、ノズル54では、制御部によって、第1の発泡室56aに隣接する供給路57の一端部から第1の発泡室56aにわたる部分である第1の上面59aの、素子基板11の主面に対する高さが、供給室55側に隣接する供給路57の第2の上面59bの高さに比較して低く形成され、さらに第2の上面59bの高さは供給室55側に隣接する供給路57の第3の上面59cの高さに比較して低く形成されている。したがって、ノズル54では、第1の上面59aによって、第1の発泡室56aに隣接する供給路57の一端部から第1の発泡室56aにわたってのインクの流路の断面積が他の流路の断面積よりも小なくなるように

形成されている。

[0096]

ここで、第2の発泡室56bの側壁に、より大きな傾斜を設け、第1の発泡室56aにも傾斜を設けることで、第1の発泡室56aで発生した気泡により、ノズル内に充填されていたインクを、より効率良く、吐出口部53へ移動させることができる。しかし、第1の発泡室56a、第2の発泡室56b、および吐出口部53は、すべてフォトリソグラフィプロセスで、精度良く形成されているが、完全にずれ無く形成できるわけではなくて、サブミクロンレベルでのアライメント誤差が生じる。そのために、インクを素子基板11の主面に直交する方向に、まっすぐ飛翔させるためには、吐出口部53において、インクの飛翔方向を正しく整流することが必要である。そのために、吐出口部53の側壁の傾斜は、素子基板11の主面に直交する方向になるべく平行、すなわち、0°に近い値であることが望ましい。

[0097]

ただ、飛翔するインク滴をより小さくするためには、吐出口の開口面積を、より小さくする必要があり、その結果、吐出口部 5 3 の高さ(長さ)が開口に比べて大きくなると、その部分でのインクの粘性抵抗が非常に増加するために、飛翔するインクの吐出特性を悪化することにつながる。そこで、第 2 の実施の形態の液体吐出ヘッド 2 では、第 1 の発泡室で発生した気泡を、第 2 の発泡室にまでより成長しやすくし、かつ、ノズル内に充填されたインクの第 2 の発泡室での流動性も良くし、さらに、飛翔するインクの吐出方向の整流作用をするための構成となっている。ここで、素子基板 1 1 の表面から吐出口 5 3 a までの距離にもよるが、第 2 の発泡室の高さは 3 \sim 2 5 μ m程度が望ましく、より望ましくは、5 \sim 1 5 μ m程度である。また、吐出口部 5 3 の長さは 1 \sim 1 0 μ m程度が望ましく、より望ましくは、1 \sim 3 μ m程度である。

[0098]

また、ノズル54は、図13に示すように、インクの流動方向に直交するとともに素子基板11の主面に平行な流路の幅が、供給室55から発泡室56にわたってほぼ等しいストレート状に形成されている。また、ノズル54は、素子基板

11の主面に対向する各内壁面が、供給室55から発泡室56にわたって、素子 基板11の主面に平行にそれぞれ形成されている。

[0099]

以上のように構成された液体吐出ヘッド2について、インクを吐出口53aから吐出する動作を説明する。

[0100]

まず、液体吐出ヘッド2では、供給口36から供給室55内に供給されたインクが、第1および第2のノズル列の各ノズル54にそれぞれ供給される。各ノズル54に供給されたインクは、供給路57に沿って流動して発泡室56内に充填される。発泡室56内に充填されたインクは、ヒータ20により膜沸騰されて発生する気泡の成長圧力によって、素子基板11の主面に対してほぼ直交する方向に飛翔されて、吐出口53aからインク滴として吐出される。

[0101]

発泡室56内に充填されたインクが吐出される際、発泡室56内のインクの一部は、発泡室56内に発生する気泡の圧力によって供給路57側に流動することになる。液体吐出ヘッド2では、第1の発泡室56aで発生した気泡の圧力は、第2の発泡室56bにも即座に伝わり、第1および、第2の発泡室56a、56bに充填されていたインクは、第2の発泡室内56bを移動していく。その際、内壁が傾斜しているので第1および第2の発泡室56a、56b内を成長していく気泡は、内壁に当接して圧力損失することが少なく、吐出口53aに向かって、良好に成長していく。そして、吐出口部53で整流されたインクは、オリフィス基板52に配置された吐出口53aから、素子基板11の主面に直交する方向に飛翔される。また、インク滴の吐出体積も良好に確保される。したがって、液体吐出ヘッド2は、吐出口53aから吐出されるインク滴の吐出速度の高速化を図ることができる。

[0102]

したがって、液体吐出ヘッド2は、従来の液体吐出ヘッドに比較して、吐出速度および吐出体積から算出されるインク滴の運動エネルギが向上するため、吐出効率を向上することができるとともに、上述した液体吐出ヘッド1と同様に吐出

周波数特性を高速化することができる。

[0103]

また、液体吐出ヘッドではヒータの発生する熱等が液体吐出ヘッドに蓄積されることによって飛翔するインク滴の体積が変動するという問題点があるが、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、低温の液からの熱伝導により吐出される液の温度上昇を抑えるので吐出量の温度依存性が改善できる。

[0104]

以上のように構成された液体吐出ヘッド2の製造方法について簡単に説明する。液体吐出ヘッド2の製造方法は、上述した液体吐出ヘッド1の製造方法とほぼ同一であるため、同一部材に同一符号を付すとともに同一工程については説明を省略する。

[0105]

液体吐出ヘッド2の製造方法は、上述した液体吐出ヘッド1の製造方法に準じており、

第1の工程は、図8(a)および図9(a)に示すように、例えばSiチップ上にパターニング処理等により複数のヒータ20およびこれらヒータ20に電圧を印加するための所定の配線を設けることにより素子基板11を形成する基板形成工程である。

[0106]

第2の工程は、図8(b)、図9(b)、図9(c)に示すように、素子基板 11上に、波長が330 n m以下の紫外光であるDUV光を照射することによって分子中の結合が破壊されて溶解可能なる、下樹脂層 42 および上樹脂層 41 を連続して、スピンコート法によりそれぞれ塗布する塗布工程である。下樹脂層 42 の膜厚は、10 μ m、上樹脂層 41 の膜厚は、15 μ mである。

[0107]

第3の工程は、図8(b)および図9(d)に示すように、DUV光を照射する露光装置を用いて、この露光装置に、260nm以上のみを透過させる波長選択手段として、波長260nm未満のDUV光を遮断するフィルターを装着する

ことで、波長が260~330nm付近のNUV光を照射させて、上樹脂層41を露光および現像することによって、上樹脂層41に所望のノズルパターンを形成するパターン形成工程である。波長260nm未満のDUV光を遮断するフィルターとして、異なったスリット間隔を有するスリットマスク105を用いることにより、ノズルパターンの高さを任意に設定することができ、第2の発泡室56b、第2の上面59b、第3の上面59cのノズルパターンをそれぞれ異なった高さに形成することができる。図示されていないが、第2の上面59b、第3の上面59cに対応するスリットマスク105のスリット間隔を変えることでそれぞれの高さを変えることができる。

[0108]

第4の工程では、図8 (b) および図9 (d) に示すように、パターン形成を行った上樹脂層 41×140 で10 分加熱することで、その上樹脂層 41 の側面に20 の傾斜を形成した。

[0109]

第5の工程は、図8(b)および図9(e)に示すように、マスク106を用い、上述した露光装置で波長210~330nmのDUV光を照射させて、下樹脂層42を露光および現像することによって、下樹脂層42に所望のノズルパターンを形成するパターン形成工程である。

[0110]

第6の工程は、ノズルパターンが形成されていて、DUV光によって分子中の 架橋結合が破壊されて溶解可能となった上樹脂層 4 1 および下樹脂層 4 2 上に、 図10(a)に示すように、オリフィス基板 5 2 となる透明な被覆樹脂層 4 3 を 塗布する塗布工程である。被覆樹脂層 4 3 の膜厚は、30μmである。

[0111]

第7の工程は、図8(c)および図10(b)に示すように、この被覆樹脂層 43に、露光装置でUV光を照射させて、吐出口部53に相当する部分を露光および現像して除去することにより、オリフィス基板52を形成する。吐出口部53の長さは 5μ mである。

[0112]

第7の工程は、図8(d)および図10(c)に示すように、素子基板11の 裏面に化学的なエッチング処理等を行うことによって、素子基板11に供給口3 6を形成する。化学的なエッチング処理としては、例えば、強アルカリ溶液(K OH、NaOH、TMAH)を用いた異方性エッチング処理が適用される。

[0113]

第8の工程は、図8(e)および図10(d)に示すように、波長330nm以下のDUV光を素子基板11の主面側から被覆樹脂層43を透過させて照射することにより、素子基板11とオリフィス基板52との間に位置するノズル型材である上下樹脂層41、42をそれぞれ溶出させる。

[0114]

これによって、吐出口53aおよび供給口36と、これらを連通する供給路57に段差状に形成された上面58a、58b、58cを有するノズル54を備えるチップが得られる。このチップをヒータ20を駆動するための配線基板(図示せず)等と電気的な接続を行うことにより、液体吐出ヘッド2が得られる。

[0115]

上述したように、液体吐出ヘッド2は、円錐台形の第2の発泡室56bを設け、第1の発泡室56aの壁面に傾斜を設けることによって、素子基板11から吐出口53aに至る方向に、徐々にインク体積が減少しながら整流され、吐出口53a付近では、液滴が飛翔する際に、飛翔する液滴が、素子基板11に対して垂直に飛翔する。また、発泡室56内のインクの流れを制御する制御部となる第1の上面59aが設けられることによって、吐出されるインク滴の体積の安定化が図られて、インク滴の吐出効率が向上され、また、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、低温の液からの熱伝導により吐出される液の温度上昇を抑えるので吐出量の温度依存性が改善でき、インク滴の吐出効率が向上される。

[0116]

(第3の実施の形態)

なお、上述した液体吐出ヘッド2の第1の発泡室の高さをさらに小さくし、かつ、第2の発泡室を高くした第3の実施の形態の液体吐出ヘッド3について図面

を参照して簡単に説明する。なお、この液体吐出ヘッド3において、上述した液体吐出ヘッド1、2と同一部材には同一符号を付して説明を省略する。

[0117]

第3の実施の形態の液体吐出ヘッド3では、第1の実施の形態と同様に、発泡室66はヒータ20によって気泡が発生する第1の発泡室66aと、その第1の発泡室66aから吐出口部63に至る途中に配置された第2の発泡室66bとを有し、その第2の発泡室66bの側壁の傾斜が、素子基板11の主面に直交する平面に対して、10~45°の傾斜で吐出口部26方向に縮小した構成となっているが、さらに、第1の発泡室56aでは、複数配列された第1の発泡室56aを個々に区別するために設けられた壁面が、素子基板11の主面に直交する平面に対し、0~10°までの傾斜で吐出口方向に縮小し、吐出口部53では、素子基板11の主面に直交する平面に対し、0~5°の傾斜で吐出口53aの方向に縮小している。

[0118]

図15、図16に示すように、液体吐出ヘッド3を備えるオリフィス基板62は、樹脂材料によって厚さが30μm程度に形成されている。オリフィス基板62は、先に図1を参照して説明したように、インク滴を吐出する複数の吐出口63と、インクが流動する複数のノズル64と、これら各ノズル64にインクを供給する供給室65とを有している。

[0119]

吐出口63aは、素子基板11上のヒー920に対向する位置に形成されており、直径が例えば 15μ m程度の丸孔となっている。なお、吐出口63aは、吐出特性上の必要に応じて放射状のほぼ星形に形成されてもよい。

[0120]

第1の発泡室66 a は、吐出口63 a に対向する底面がほぼ矩形状をなすように形成されている。また、第1の発泡室66 a は、素子基板11の主面に平行なヒータ20の主面と吐出口63 a との最短距離OHが30 μ m以下となるように形成されている。第1の発泡室66 a の上面の素子基板11の表面からの高さが、例えば8μmに形成されており、第1の発泡室66 a 上に形成される第2の発

泡室66bの高さが18 μ mに形成されている。第2の発泡室66bは四角錐台形の形状となっており、第1の発泡室66a側の1辺の長さが28 μ mであり、角には2 μ mのRが形成されている。そして、第2の発泡室66bの側壁は、吐出口部63側に向けて縮小するように、素子基板11の主面に直交する平面に対し、15 $^{\circ}$ の傾斜を有している。そして、第2の発泡室66bの上面と直径が15 μ mの吐出口部63とは、最少が約1.7 μ mの段差をもって、連通している

[0121]

オリフィス基板 6 2 に形成される吐出口部 6 3 の高さは 4 μ mである。吐出口 6 3 a の形状は丸形状であり、直径は 1 5 μ mである。

[0122]

第1の発泡室66aで発生した気泡は、第2の発泡室66bおよび、供給路67に向けて成長し、ノズル64内に充填されていたインクが、吐出口部63で整流されて、オリフィス基板62に配置された吐出口63aから飛翔される。

[0123]

供給路67は、一端が発泡室66に連通されるとともに他端が供給室65に連通されて形成されている。ここで、ノズル64では、主面に平行な第1の発泡室66aの上面および発泡室66に隣接する供給路67の主面に平行な第1の上面69aは同一平面で連続しており、それよりも高い供給路67の供給室65側の素子基板11の主面に平行な第2の上面69bとは、主面に対して傾斜して設けられた第1の段差68aによって接続されており、第2の上面69bよりも高い供給路67の供給室65側の素子基板の主面に平行な第3の上面69cとは、主面に対して傾斜して設けられた第2の段差68bによって接続されている。

[0124]

第1の発泡室66aは、素子基板11上に形成される。この高さを小さくすることで、第1の発泡室66aに隣接する供給路67の一端部から第1の発泡室66aにわたってインクの流路の断面積が小さくなるように形成されて、第2の実施の形態の液体吐出ヘッド2のノズル54に比してさらに断面積が小さくなっている。

[0125]

一方、第2の発泡室66bの高さを高くすることで、第1の発泡室66aで発生した気泡の圧力は、第2の発泡室66bに伝わりやすくなる。そして、第1の発泡室66aから一端が連通している供給路67には伝わりにくくなり、吐出口部63へのインクの移動を、素早く、効率良くおこなうことができる。

[0126]

また、ノズル64は、インクの流動方向に直交するとともに素子基板11の主面に平行な流路の幅が、供給室65から発泡室66にわたってほぼ等しい、ストレート状に形成されている。また、ノズル64は、素子基板11の主面に対向する各内壁面が、供給室65から発泡室66にわたって、素子基板11の主面に平行にそれぞれ形成されている。

[0127]

以上のように構成された液体吐出ヘッド3について、吐出口63からインクを 吐出する動作を説明する。

[0128]

まず、液体吐出ヘッド3では、供給口36から供給室65内に供給されたインクが、第1および第2のノズル列の各ノズル64にそれぞれ供給される。各ノズル64に供給されたインクは、供給路67に沿って流動して発泡室66内に充填される。発泡室66内に充填されたインクは、ヒータ20により膜沸騰されて発生する気泡の成長圧力によって、素子基板11の主面に対してほぼ直交する方向に飛翔されて、吐出口63からインク滴として吐出される。

[0129]

発泡室66内に充填されたインクが吐出される際、発泡室66内のインクの一部は、第1の発泡室66a内に発生する気泡の圧力によって供給路67側に流動することになる。液体吐出ヘッド3は、第1の発泡室66a内のインクの一部が供給路67側に流動する際、第1の発泡室66aの高さが小さくなっていることで、供給路67の流路が狭められているため、第1の発泡室66a側から供給路67を介して供給室65側に向かって流動するインクに対して供給路67の流路の流体抵抗値が増す。したがって、液体吐出ヘッド3は、発泡室66内に充填さ

れたインクが、供給路67側に流動することがさらに抑制されるため、第1の発泡室66aから第2の発泡室66bへの気泡の成長がより増長され、インクの流動性が、吐出口側へ移動しやすくなって、インクの吐出体積がさらに良好に確保される。

[0130]

また、液体吐出ヘッド3は、第1の発泡室66aから第2の発泡室66bに伝わる気泡の圧力が、さらに効率良くなり、かつ、第1の発泡室66aならびに第2の発泡室66bの壁面が傾斜しているので、第1の発泡室66aおよび第2の発泡室66b内に成長する気泡が、発泡室66内の内壁に当接して圧力を損失することが抑制されるため、気泡が良好に成長される。したがって、液体吐出ヘッド3は、吐出口63から吐出されるインクの吐出速度が向上される。

[0131]

上述した液体吐出ヘッド3によれば、第1の発泡室66aおよび第2の発泡室66b内でのインクの移動がより素早く、より抵抗なうことができ、かつ、吐出口部の長さが短くなることで、液体吐出ヘッド1、2に比較してインクの整流作用がより迅速に行えるため、インク滴の吐出効率をさらに向上することができ、また、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、低温の液からの熱伝導により吐出される液の温度上昇を抑えるので吐出量の温度依存性が改善でき、インク滴の吐出効率が向上される

[0132]

0

(第4の実施の形態)

最後に、上述した液体吐出ヘッド1ないし3では、第1のノズル列16と第2のノズル列17の各ノズルが等しく形成されたが、第1のノズル列と第2のノズル列の形状およびヒータの面積が互いに異なる第4の実施の形態の液体吐出ヘッド4について図面を参照して説明する。

[0133]

図17(a)、(b)に示すように、液体吐出ヘッド4が備える素子基板96には、素子基板の主面に平行な面積が互いに異なる第1および第2のヒータ98

、99がそれぞれ配設されている。

[0134]

また、液体吐出ヘッド4が備えるオリフィス基板97には、第1および第2のノズル列101、102の各吐出口106、107の開口面積および各ノズルの形状が互いに異なるように形成されている。第1のノズル列101の各吐出口106は、丸孔に形成されている。この第1のノズル列101の各ノズルは、上述した液体吐出ヘッド2と構成が同一であるため、説明を省略するが、発泡室内のインクの流動をよくするために、第1の発泡室上に、第2の発泡室109が形成されている。また、第2のノズル列102の各吐出口107は、放射状に略星型に形成されている。この第2のノズル列102の各ノズルは、発泡室から吐出口にわたってインクの流路の断面積が変化しないでストレート状に形成されている

[0135]

また、素子基板96には、第1および第2のノズル列101、102にインクを供給するための供給口104が設けられている。

[0136]

ところで、ノズル内のインクの流れは、吐出口から飛翔されるインク滴の体積 V d によって生じており、インク滴が飛翔された後にメニスカスが復帰する作用が、吐出口の開口面積に応じて発生する毛細管力によって行われる。ここで、吐出口の開口面積 S_0 、吐出口の開口縁の外周 L_1 、インクの表面張力 γ 、インクとノズルの内壁との接触角 θ とすると、毛細管力 p は、

 $p = \gamma c o s \theta \times L_1 / S_0$

によって表される。また、メニスカスは、飛翔されたインク滴の体積 V d のみによって発生されて、吐出周波数時間 t (リフィル時間 t)後に復帰すると仮定すると、

 $p = B \times (V d / t)$

の関係が成り立つ。

[0137]

液体吐出ヘッド4によれば、第1および第2のノズル列101、102が、第

1および第2のヒータ98、99の面積、および吐出口106、107の開口面積が互いに異なることによって、単一の液体吐出ヘッド4から異なる吐出体積のインク滴を飛翔させることができる。

[0138]

また、液体吐出ヘッド4は、第1および第2のノズル列101、102から吐出されるインクの物性値である表面張力、粘度、pHが同一であり、各ノズルの構造に対応して、イナータンスAおよび粘性抵抗Bである物理量を、各吐出口106、107から吐出されるインク滴の吐出体積に応じて設定することによって、第1および第2のノズル列101、012の吐出周波数応答性をほぼ等しくすることが可能とされる。

[0139]

すなわち、液体吐出ヘッド4において、第1および第2のノズル列101、102ごとにそれぞれ吐出させる各インク滴の吐出量を例えば4.0(p1)と1.0(p1)とした場合に、各ノズル列101、102のリフィル時間 t をほぼ等しくすることは、吐出口106、107の開口縁の外周 L_1 と吐出口106、107の開口面積 S_0 との比である L_1/S_0 と、粘性抵抗Bをほぼ等しくすることと同義である。

[0140]

以上のように構成された液体吐出ヘッド4の製造方法について図面を参照して 説明する。

[0141]

液体吐出ヘッド4の製造方法は、上述した液体吐出ヘッド1、2の製造方法に準じており、上下樹脂層41、42にノズルパターンをそれぞれ形成する各パターン形成工程を除く他の工程が同一とされている。液体吐出ヘッド4の製造方法は、パターン形成工程において、図18(a)、図18(b)、図18(c)に示すように、素子基板96上に上下樹脂層41、42をそれぞれ形成した後に、図18(d)および図18(e)に示すように、第1および第2のノズル列101、102ごとに所望の各ノズルパターンがそれぞれ形成される。すなわち、第1および第2のノズル列101、102の各ノズルパターンは、供給口104に

対して非対称にそれぞれ形成される。すなわち、液体吐出ヘッド4の製造方法は、上下樹脂層41、42のノズルパターンの形状を部分的に変更するだけで、液体吐出ヘッド4を容易に形成することできる。図19に示されるそれ以降の工程は第1の実施の形態で説明した工程と同じなので説明を省略する。

[0142]

上述した液体吐出ヘッド4によれば、第1及び第2のノズル列101、102 の各ノズルの構造を互いに異なるように形成することにより、各ノズル列101 、102ごとに吐出体積が異なる各インク滴をそれぞれ吐出することが可能とさ れて、高速化が図られた最適な吐出周波数で安定的にインク滴を飛翔させること が容易に可能とされる。

[0 1 4 3]

また、液体吐出ヘッド4によれば、毛細管力による流動抵抗の釣り合いを調整することによって、回復機構によって回復動作を行う際にインクを均一かつ迅速に吸引することが可能とされるとともに、回復機構を簡素に構成にすることができるため、液体吐出ヘッド4の吐出特性の信頼性を向上することができ、記録動作の信頼性が向上された記録装置を提供することが可能とされる。

[0 1 4 4]

【発明の効果】

上述したように本発明に係る液体吐出ヘッドによれば、第1の発泡室内に発生する気泡を第2の発泡室へ効率良く伝えることによって、吐出口から吐出される液滴の吐出速度を高速化することが可能となるとともに、吐出される液滴の吐出量を安定化することが可能となる。したがって、この液体吐出ヘッドによれば、液滴の吐出効率を向上することができる。

[0145]

また、本発明に係る液体吐出ヘッドは、第1の発泡室で発生した気泡を第2の 発泡室の内壁との当接による圧力損失を抑制することで、発泡室内のインクの流動をより迅速に、かつ、効率良く行えることができ、吐出口から吐出される液滴の吐出速度の高速化、吐出量の安定化を図るとともに、リフィルの高速化を図る ことができる。

[0146]

さらに、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、低温の液からの熱伝導により吐出される液の温度上昇を抑えるので吐出量の温度依存性が改善でき、インク滴の吐出効率が向上される。

【図面の簡単な説明】

【図1】

本発明に係る液体吐出ヘッドの全体の構成を説明するための模式的斜視図である。

【図2】

()

液体吐出ヘッドの流体の流れを3開口モデルによって示す模式図である。

【図3】

液体吐出ヘッドを等価回路によって示す模式図である。

【図4】

本発明の第1の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合 わせ構造を説明するための部分断面斜視図である。

【図5】

本発明の第1の実施の形態の液体吐出ヘッドの複数のヒータとノズルの組み合わせ構造を説明するための部分断面斜視図である。

【図6】

本発明の第1の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための側面断面図である。

【図7】

本発明の第1の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための平面断面図である。

【図8】

本発明の第1の実施の形態の液体吐出ヘッドの製造方法を説明するための斜 視図である。

a)は素子基板である。

- b) は素子基板に下樹脂層と上樹脂層とが形成された状態である。
- c) は被覆樹脂層が形成された状態である。
- d) は供給口が形成された状態である。
- e) は内部の下樹脂層と上樹脂層とを溶解流出させた状態である。

【図9】

本発明の第1の実施の形態の液体吐出ヘッドの各製造工程を説明するために示す第1の縦断面図である。

- a) は素子基板である。
- b) は素子基板に下樹脂層が形成された状態である。
- c) は素子基板に上樹脂層が形成された状態である。
- d) は素子基板に形成された上樹脂層にパターン形成を行い、側面に傾斜を形成 した状態である。
- e) は素子基板に形成された下樹脂層にパターン形成を行った状態である。

【図10】

本発明の第1の実施の形態の液体吐出ヘッドの各製造工程を説明するために示す第2の縦断面図である。

- a) はオリフィス基板となる被覆樹脂層が形成された状態である。
- b) は吐出口部が形成された状態である
- c) は供給口が形成された状態である。
- d) は内部の下樹脂層と上樹脂層とを溶解流出させて液体吐出ヘッドが完成した 状態である。

【図11】

電子線の照射による上樹脂層、下樹脂層の化学変化を示す化学反応式である。

【図12】

下樹脂層と上樹脂層との210~330nm領域における材料の吸収スペクトル曲線を示すグラフである。

【図13】

本発明の第2の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための部分断面斜視図である。

【図14】

本発明の第2の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための側面断面図である。

【図15】

本発明の第3の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための部分断面斜視図である。

【図16】

本発明の第3の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための側面断面図である。

【図17】

本発明の第4の実施の形態の液体吐出ヘッドの1個のヒータとノズルの組み合わせ構造を説明するための部分断面斜視図である。

- a) は第1のノズル列のノズルである。
- b) は第2のノズル列のノズルである。

【図18】

本発明の第4の実施の形態の液体吐出ヘッドの各製造工程を説明するために示す第1の縦断面図である。

- a) は素子基板である。
- b) は素子基板に下樹脂層が形成された状態である。
- c) は素子基板に上樹脂層が形成された状態である。
- d) は素子基板に形成された上樹脂層にパターン形成を行い、側面に傾斜を形成 した状態である。
- e)は素子基板に形成された下樹脂層にパターン形成を行った状態である。

【図19】

本発明の第4の実施の形態の液体吐出ヘッドの各製造工程を説明するために示す第2の縦断面図である。

- a)はオリフィス基板となる被覆樹脂層が形成された状態である。
- b)は吐出口部が形成された状態である
- c)は供給口が形成された状態である。

d) は内部の下樹脂層と上樹脂層とを溶解流出させて液体吐出ヘッドが完成した 状態である。

【符号の説明】

- 1、2、3、4 液体吐出ヘッド
- 11 素子基板
- 12、52、62、97 オリフィス基板
- 16、101 第1のノズル列
- 17、102 第2のノズル列
- 20 ヒータ
- 2 1 絶縁膜
- 2 2 保護膜
- 26a、53a、63a、106、107 吐出口
- 26、53、63 吐出口部
- 2.7、54、64、 ノズル
- 28、55、65、104 供給室
- 31、56、66 発泡室
- 31a、56a、66a 第1の発泡室
- 31b、56b、66b、109 第2の発泡室
- 32、57、67 供給路
- 34a、58a、68a 第1の段差
- 34b、58b、68b 第2の段差
- 35a、59a、69a 第1の上面
- 35b、59b、69b 第2の上面
- 35c、59c、69c 第3の上面
- 3 6 供給口
- 38 ノズルフィルタ
- 41 上樹脂層
- 42 下樹脂層

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【書類名】 要約書

【要約】

【課題】 液滴の吐出速度の高速化、液滴の吐出量の安定化を図り、液滴の吐出 効率を向上することができる液体吐出ヘッドとその製造方法を提供する。

【解決手段】 液体吐出ヘッド1は、ヒータ20と、素子基板11と、液滴を吐出する吐出口26aを有する吐出口部26、発泡室、および発泡室に液体を供給するための供給路を有するノズル27と、ノズル27に液体を供給するための供給室28とを有するオリフィス基板12とを備え、発泡室は第1の発泡室31aとその上の第2の発泡室32bとからなり、第2の発泡室上に吐出口部26が段差をもって連通され、かつ、第2の発泡室32bの側壁が、10~45°の傾斜で吐出口方向に縮小しており、さらに、供給路の上面を供給室側に向けて高くすることにより、供給路内の液の量を増加させることができ、吐出量の温度依存性が改善できる。

【選択図】 図4

特願2002-201876

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由]

住所氏名

1990年 8月30日 新規登録

東京都大田区下丸子3丁目30番2号

キヤノン株式会社