

Grelha de respostas certas

$\underline{\text{Versão A}}$

Grupo	1				2							3	
	a)	b)	c)i.	c)ii.	a)	b)i.	b)ii.	b)iii.	b)iv.	c)i.	c)ii.	a)	b)
	D	В	С	A	A	С	В	С	В	В	A	A	С

Versão B

Grupo	1				2							3	
	a)	b)	c)i.	c)ii.	a)	b)i.	b)ii.	b)iii.	b)iv.	c)i.	c)ii.	a)	b)
	В	Α	A	С	В	D	D	A	D	С	В	Е	D

Resolução abreviada do 3º Teste

1. $X \sim N(\mu, \sigma^2)$

(a) Informação populacional: $\sigma = 2.5$ Informação amostral: n = 25, $\overline{x} = 31$

•
$$Z = \sqrt{25} \frac{\overline{X} - \mu}{2.5} \sim N(0, 1)$$

• $1 - \alpha = 0.8, \quad z_{0.1} = 1.28$

•
$$1 - \alpha = 0.8$$
, $z_{0.1} = 1.28$

•
$$-1.28 \le 5 \frac{\overline{X} - \mu}{2.5} \le 1.28 \Leftrightarrow \overline{X} - 1.28 \frac{1}{2} \le \mu \le \overline{X} + 1.28 \frac{1}{2}$$

$$\bullet \ IC_{80\%}\left(\mu\right) \equiv \left[\overline{X} - 1.28\frac{1}{2} \ , \ \overline{X} + 1.28\frac{1}{2} \right]$$

•
$$IC_{80\%}(\mu) = \left[31 - 1.28\frac{1}{2}, 31 + 1.28\frac{1}{2}\right] = \left[30.36, 31.64\right]$$

(b) Informação amostral: $n=9,\,s^2=9.61$

$$\begin{array}{ll} \bullet \ W = (9-1) \, \frac{S^2}{\sigma^2} \sim \chi_{9-1}^2, \quad \text{ou seja} \quad W = 8 \frac{S^2}{\sigma^2} \sim \chi_8^2 \\ \bullet \ P \left(a \leq W \leq b \right) = 1 - \alpha \quad \text{e} \quad P \left(W \leq a \right) = P \left(W > b \right) = \alpha/2 \\ \end{array}$$

•
$$P(a < W < b) = 1 - \alpha$$
 e $P(W < a) = P(W > b) = \alpha/2$

$$a = \chi^2_{8:1-\alpha/2}$$
 e $b = \chi^2_{8:\alpha/2}$

$$a = \chi^2_{8:1-\alpha/2} \quad \text{e} \quad b = \chi^2_{8:\alpha/2}$$

$$\bullet \quad \chi^2_{8:1-\alpha/2} \le 8 \frac{S^2}{\sigma^2} \le \chi^2_{8:\alpha/2} \Leftrightarrow \frac{8S^2}{\chi^2_{8:\alpha/2}} \le \sigma^2 \le \frac{8S^2}{\chi^2_{8:1-\alpha/2}}$$

•
$$IC_{100(1-\alpha)\%}\left(\sigma^2\right) \equiv \left[\frac{8S^2}{\chi^2_{8:\alpha/2}}, \frac{8S^2}{\chi^2_{8:1-\alpha/2}}\right]$$

• Para
$$s^2 = 9.61$$
, $IC_{100(1-\alpha)\%}\left(\sigma^2\right) = \left[\frac{76.88}{\chi^2_{8:\alpha/2}}, \frac{76.88}{\chi^2_{8:1-\alpha/2}}\right]$

•
$$\frac{76.88}{\chi^2_{8:1-\alpha/2}} = 35.266055 \Leftrightarrow \chi^2_{8:1-\alpha/2} = \frac{76.88}{35.266055} \approx 2.18$$

$$1 - \alpha/2 = 0.975 \Leftrightarrow 1 - \alpha = 0.95$$

(c) Considere a amostra de registos da velocidade em 36 unidades de memória.

i.
$$\hat{p} = \frac{9}{36} = 0.25$$

ii. Informação amostral: $n=36, \hat{p}=0.75$

•
$$W = \sqrt{36} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) \approx 0.95 \Rightarrow a \approx z_{0.025} = 1.96$$

•
$$-1.96 \le \sqrt{36} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \le 1.96 \Leftrightarrow \hat{P} - 1.96\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{36}} \le p \le \hat{P} + 1.96\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{36}}$$

•
$$IC_{95\%}(p) \equiv \left[\hat{P} - 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{36}}, \hat{P} + 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{36}} \right]$$

• Estimativa de
$$IC_{95\%}(p)$$

$$IC_{95\%}(p) = \left[075 - 1.96\sqrt{\frac{0.75 \times 0.25}{36}}, 075 + 1.96\sqrt{\frac{0.75 \times 0.25}{36}}\right] = [0.608549184, 0.8914550816]$$

2. População: X-tempo de resposta (em ms)
$$X \sim N(\mu, \sigma^2)$$

Informação amostral: $n=9, \quad \overline{x}=101, \quad s^2=\frac{72}{9}=9$

(a)
$$H_0: \mu = 100 \ H_1: \mu \neq 100$$

(b)
$$H_0: \mu = 102 \ H_1: \mu \neq 102$$
 Estatística de teste: $T = \sqrt{9} \frac{\overline{X} - 102}{S} \sim_{\mu = 102} t_{9-1}$

i.
$$R_{0.02}=]-\infty, -2.90[\;\cup\;]2.90, +\infty[$$
 $a=t_{8:0.01}=2.90$ ii. $t_{obs}=\sqrt{9}\frac{101-102}{\sqrt{9}}=-1$

ii.
$$t_{obs} = \sqrt{9} \frac{101 - 102}{\sqrt{9}} = -1$$

iii.
$$p - value = P(T \in]-\infty, -1.86[\cup]1.86, +\infty[) = 2P(T > 1.86) = 2(1 - 0.05) = 0.1$$

iv. Rejeitamos
$$H_0$$
 se $p-value < \alpha$, ou seja, se $\alpha > 0.08$

(c)
$$H_0: \mu \le 100 \ H_1: \mu > 100 \ \sigma = 3$$

i. Estatística de teste:
$$Z=\sqrt{n}\frac{\overline{X}-100}{\sigma} \underset{\mu=100}{\sim} N\left(0,1\right)$$

ii. • Rejeitamos
$$H_0$$
 se $\overline{X} > c$

•
$$\alpha = \max_{\mu \le 100} P\left(\overline{X} > c\right) = P\left(\sqrt{n} \frac{\overline{X} - 100}{\sigma} > \sqrt{n} \frac{c - 100}{\sigma}\right) = P\left(Z > \sqrt{n} \frac{c - 100}{\sigma}\right)$$

Se n = 9 e $\alpha = 0.0228$

$$0.0228 = P(Z > c - 100) \Leftrightarrow c - 100 = z_{0.0228} = 2.00 \Leftrightarrow c = 102.00$$

Rejeitamos H_0 ao nível de 0.0228 de significância se $\overline{X} > 102.00$

• Se
$$\mu = 101$$
, $n = 9$ e $\sigma = 3$, $Z = \overline{X} - 101 \underset{\mu = 101}{\sim} N(0, 1)$
 $P \text{ (erro tipo II } | \mu = 101 \text{)} = P \text{ (N\~ao rejeitarmos } H_0 | \mu = 101 \text{)} = P \text{ (}\overline{X} \leq 102.00 | \mu = 101 \text{)} = P \text{ (}\overline{X} - 101 \leq 102.00 - 101 | \mu = 101 \text{)} = P \text{ (}Z \leq 1 \text{)} = 0.8413$

3. (a) •
$$W = \sqrt{\frac{n\pi}{4-\pi}} \frac{\theta^* - \theta}{\theta} \stackrel{a}{\sim} N(0,1)$$

• Para 1 –
$$\alpha=0.95,\,P\,(-a\leq W\leq a)\approx 0.95\Rightarrow a\approx z_{0.025}=1.96$$

$$\bullet \ \ -1.96 \leq \sqrt{\frac{n\pi}{4-\pi}} \frac{\theta^* - \theta}{\theta} \leq 1.96 \Leftrightarrow -1.96 \sqrt{\frac{4-\pi}{n\pi}} \leq \frac{\theta^*}{\theta} - 1 \leq 1.96 \sqrt{\frac{4-\pi}{n\pi}} \Leftrightarrow$$

$$\Leftrightarrow 1 - 1.96\sqrt{\frac{4 - \pi}{n\pi}} \le \frac{\theta^*}{\theta} \le 1 + 1.96\sqrt{\frac{4 - \pi}{n\pi}} \Leftrightarrow \frac{\theta^*}{1 + 1.96\sqrt{\frac{4 - \pi}{n\pi}}} \le \theta \le \frac{\theta^*}{1 - 1.96\sqrt{\frac{4 - \pi}{n\pi}}}$$

•
$$IC_{95\%}(\theta) \equiv \left[\frac{\theta^*}{1 + 1.96\sqrt{\frac{4-\pi}{n\pi}}}, \frac{\theta^*}{1 - 1.96\sqrt{\frac{4-\pi}{n\pi}}} \right]$$

(b)
$$\bullet \ W = 2 \times 5 \frac{\hat{\beta}}{\beta} \sim \chi^2_{2 \times 5} \Leftrightarrow W = 10 \frac{\hat{\beta}}{\beta} \sim \chi^2_{10}$$

•
$$P(a \le W \le b) = 1 - \alpha$$
 e $P(W \le a) = P(W > b) = \alpha/2$

$$a = \chi^2_{10:1-\alpha/2}$$
 e $b = \chi^2_{10:\alpha/2}$

$$a = \chi^2_{10:1-\alpha/2} \quad \text{e} \quad b = \chi^2_{10:\alpha/2}$$

$$\bullet \quad \chi^2_{10:1-\alpha/2} \le 10 \frac{\hat{\beta}}{\beta} \le \chi^2_{10:\alpha/2} \Leftrightarrow \frac{\chi^2_{10:1-\alpha/2}}{10\hat{\beta}} \le \frac{1}{\beta} \le \frac{\chi^2_{10:\alpha/2}}{10\hat{\beta}} \Leftrightarrow \frac{10\hat{\beta}}{\chi^2_{10:\alpha/2}} \le \beta \le \frac{10\hat{\beta}}{\chi^2_{10:1-\alpha/2}}$$

•
$$IC_{100(1-\alpha)\%}(\beta) \equiv \left[\frac{10\hat{\beta}}{\chi^2_{10:\alpha/2}}, \frac{10\hat{\beta}}{\chi^2_{10:1-\alpha/2}}\right]$$