AVR096: Migrating from ATmega128 to AT90CAN128

This application note is a guide to help current ATmega128 users convert existing designs to AT90CAN128. The information given will also help users migrating from any ATmega microcontroller to AT90CAN128. Additionally, the electrical characteristics of the AT90CAN128 are different than those of ATmega128. Check the datasheets of both of these products for detailed information.

Features

The main features of the ATmega128 have been carried over to the AT90CAN128.

- Advance RISC Architecture
- 128 KB Flash & 4 KB E²PROM with Software Security
- 4 KB internal RAM & 64 KB external RAM
- Watchdog Timer, 8-bit Timer & 8-bit Real Time Timer & Two 16-bit Timers
- 8-channel 10-bit SAR ADC & Analog Comparator
- Dual USART, SPI & TWI
- 8 External Interrupts
- POR/PFD & Sleep Modes
- Operating Voltage from 2.7V up to 5.5V
- 16 MHz Maximum Frequency (5V range)

The more important evolution is the full-CAN (Controller Area Network) peripheral implementation in the AT90CAN128.

Other features have been added such as three General Purpose Registers (one of them is bit-accessible) and two Digital Input Disable Registers for analog I/Os.

To be compatible with the new generation of 8-bit AVR microcontrollers (i.e. ATmega169), the register mapping had been re-modelled. This new distribution restructures the addressing to improve its coherence and thus to privilege readability.

The AT90CAN128 also has some improvements on Timers, Analog to Digital Converter and Clocks.

8-bit **AVR**® Microcontroller

Application Note

Pin Configuration

The AT90CAN128 is functionally pin compatible with ATmega128. Certain pins have been upgraded with regard to their associated alternate functions, the change of the timers/counters index and the voluntary removal ATmega103 compatibility.

Figure 1. Pin Configuration

Table 1. Changed Pins

Pin	ATmega128	AT90CAN128	Comments for AT90CAN128	
1	PEN	(n.c.) Not connected	Removal ATmega103 compatibility mode.	
14	PB4 (OC0)	PB4 (OC2A)	The asynchronous-Real Time Timer/Counter index becomes 2 instead of 0.	
17	PB7 (OC2/OC1C)	PB7 (OC0A/OC1C)	The synchronous 8-bit Timer/Counter index becomes 0 instead of 2.	
18	PG3 (TOSC2)	PG3 (TOSC2)	No pin name changes, the TOSC crystal is always connected to the	
19	PG4 (TOSC1)	PG4 (TOSC1)	Asynchronous-Real Time Timer/Counter but the index of this timer/counter becomes 2 instead of 0.	
30	PD5 (XCK1)	PD5 (XCK1/TXCAN)	Addition of CAN I/O's as alternate functions. These alternate functions are	
31	PD6 (T1)	PD6 (T1/RXCAN)	enabled once the CAN peripheral is switched "ON".	
32	PD7 (T2)	PD7 (T0)	The synchronous 8-bit Timer index becomes 0 instead of 2.	
42	PC7 (A15)	PC7 (A15/CLKO)	Addition of Clock output (CLKO) as alternate function. This alternate function is enabled/disabled by CKOUT fuse of the Fuse Low Byte.	

AVR CORE

System Clock

Sources

Four sources for system clock are available in AT90CAN128:

- On-chip oscillator for external crystal or ceramic resonator
- On-chip oscillator for external low-frequency crystal
- Calibrated internal RC oscillator
- External clock

Unlike ATmega128, no external RC network can be connected to XTAL1 pin.

Amplifier Mode

XTAL1 and XTAL2 are input and output, respectively, from an inverting amplifier of the on-chip oscillators.

On ATmega128, the CKOPT fuse selects between two oscillator amplifier modes. If CKOPT is programmed, the oscillator output oscillates with a full rail-to-rail swing on the output. If CKOPT is unprogrammed, the oscillator has a smaller output swing.

This mode is not present on ATmega128CAN11.

Prescaler

The Clock Prescaler Register - CLKPR of ATmega128CAN11, replaces the XTAL Divide Control Register - XDIV. The clock division factor (CLKPS[3..0] field of CLKPR) is now a 2ⁿ number from 1 up to 256.

Table 1. Clock Prescaler Select

	ATmega128	AT90CAN128		
XDIV[60]	Frequency	CLKPS[30]	Frequency	
		0x0	f _{CLK} = f _{Source Clock}	
		0x1	f _{CLK} = f _{Source Clock} / 2	
	f _{CLK} = f _{Source Clock} / (129-d)	0x2	f _{CLK} = f _{Source Clock} / 4	
		0x3	f _{CLK} = f _{Source Clock} / 8	
d		0x4	f _{CLK} = f _{Source Clock} / 16	
u		0x5	f _{CLK} = f _{Source Clock} / 32	
		0x6	f _{CLK} = f _{Source Clock} / 64	
		0x7	f _{CLK} = f _{Source Clock} / 128	
		0x8	f _{CLK} = f _{Source Clock} / 256	
		0x9 to 0xF	Reserved	

CLKDIV8 Fuse

A new fuse (CKDIV8 - bit 7 of Fuse Low Byte) determines the initial value of the clock prescaler in AT90CAN128. If CKDIV8 is unprogrammed, the prescaler is initialized with "0x0". Programmed, the prescaler is initialized with "0x3", giving a division factor of "8" at start-up.

Table 2. Clock Prescaler Initialization

	ATmega128	AT90CAN128		
XDIV[60]	Frequency	CKDIV8	CLKPS[30]	Frequency
0x00	f _{CLK} = f _{Source Clock} / 129	1	0x0	f _{CLK} = f _{Source Clock}
0,000		0	0x3	f _{CLK} = f _{Source Clock} / 8

Oscillator Calibration

During reset, hardware loads the calibration byte into the OSCCAL Register and thereby automatically calibrates the internal RC Oscillator. OSCCAL Register is accessible by software. In ATmega128, 8 bits of OSCCAL Register are used, in AT90CAN128, only the 7 low significant bits are used.

Sleep Modes

The Extended Standby sleep mode of ATmega128 disappears in the sleep mode list of AT90CAN128.

The active clock domains and wake-up sources in the different sleep modes does not change.

Table 3. Sleep Modes

	ATmega128	AT90CAN128
Sleep Mode Select SM[20]		
0	Idle	Idem
1	ADC Noise Reduction	Idem
2	Power-down	Idem
3	Power-save	Idem
4	"reserved"	Idem
5	"reserved"	Idem
6	Standby	Idem
7	Extended Standby	"reserved"

Reset Logic

The AT90CAN128 reset logic differs from the ATmega128 one by the Brown-Out Detection (BOD). This is due to a new set of fuse bits (See "Fuse Bits" on page 7.).

Table 4. Brown-Out Detection

AT	「mega128	AT90CAN128		
Detected level Typ. V _{BOT}	Setting	Detected level Typ. V _{BOT}	Setting	
Disable	BODEN ⁽¹⁾ ="1"	Disable	BODLEVEL[20] ⁽³⁾ ="111"	
	BODEN ⁽¹⁾ ="0" BODLEVEL ⁽²⁾ ="0"	4.1 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="110"	
407/		4.0 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="101"	
4.0 V		3.9 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="100"	
		3.8 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="011"	
	BODEN ⁽¹⁾ ="0" BODLEVEL ⁽²⁾ ="1"	2.7 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="010"	
2.7 V		2.6 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="001"	
		2.5 V ⁽⁴⁾	BODLEVEL[20] ⁽³⁾ ="000"	

- Notes: 1. BODEN: Fuse Bit 6 Fuse Low Byte of ATmega128.
 - 2. BODLEVEL: Fuse Bit 7 Fuse Low Byte of ATmega128.
 - 3. BODLEVEL[2..0]: Fuse Bits 3, 2 & 1 Extended Fuse Byte of AT90CAN128.
 - 4. Theorical values, refer to AT90CAN128 data sheet.

Interrupt Table

There are two additional interrupts in AT90CAN128, the CAN interrupts. All the Timer/Counter1 interrupts have been clustered (c.f. TIMER1 COMPC interrupt). The interrupts are compatible up to the 14th vector.

 Table 5. Interrupt Table

Vector	Program	ATmega128	AT90CAN128
No.	Address ⁽²⁾	Interrupt Source	Interrupt Source
1	0x0000 ⁽¹⁾	External Reset pin, POR, BOR, WD Reset & JTAG AVR Reset	ldem
2	0x0002	External Interrupt Request 0	Idem
3	0x0004	External Interrupt Request 1	Idem
4	0x0006	External Interrupt Request 2	ldem
5	0x0008 External Interrupt Request 3		Idem
6	0x000A	External Interrupt Request 4	ldem
7	0x000C External Interrupt Request 5		ldem
8	0x000E External Interrupt Request 6		Idem
9	0x0010	External Interrupt Request 7	ldem
10	0x0012	T/C2 Compare Match	Idem
11	0x0014	T/C2 Timer Overflow	Idem
12	0x0016	T/C1 Capture Event	Idem
13	0x0018	T/C1 Compare Match A	ldem

Table 5. Interrupt Table (Continued)

Vector	Program	ATmega128	AT90CAN128	
No.	Address ⁽²⁾	Interrupt Source	Interrupt Source	
14	0x001A	T/C1 Compare Match B	Idem	
15	0x001C	T/C1 Timer Overflow	T/C1 Compare Match C	
16	0x001E	T/C0 Compare Match	T/C1 Timer Overflow	
17	0x0020	T/C0 Timer Overflow	T/C0 Compare Match	
18	0x0022	SPI Transfer Complete	T/C0 Timer Overflow	
19	0x0024	USART0, Rx Complete	CAN Transfer Complete or Error	
20	0x0026	USART0 Data Register Empty	CAN Timer Overrun	
21	0x0028	USART0, Tx Complete	SPI Transfer Complete	
22	0x002A	ADC Conversion Complete	USART0, Rx Complete	
23	0x002C	EEPROM Ready	USART0 Data Register Empty	
24	0x002E	Analog Comparator	USART0, Tx Complete	
25	0x0030	T/C1 Compare Match C	Analog Comparator	
26	0x0032	T/C3 Capture Event	ADC Conversion Complete	
27	0x0034	T/C3 Compare Match A	EEPROM Ready	
28	0x0036	T/C3 Compare Match B	T/C3 Capture Event	
29	0x0038	T/C3 Compare Match C	T/C3 Compare Match A	
30	0x003A	T/C3 Timer Overflow	T/C3 Compare Match B	
31	0x003C	USART1, Rx Complete	T/C3 Compare Match C	
32	0x003E	USART1 Data Register Empty	T/C3 Timer Overflow	
33	0x0040	USART1, Tx Complete	USART1, Rx Complete	
34	0x0042	TWI Interface	USART1 Data Register Empty	
35	0x0044	Store Program Memory Ready	USART1, Tx Complete	
36	0x0046	/	TWI Interface	
37	0x0048	/	Store Program Memory Ready	

- Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset.
 - 2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

ATmega103 Compatibility

The ATmega103 compatibility mode of ATmega128 does not exist in AT90CAN128. For further information, please refer to "ATmega103 and ATmega128 Compatibility" section of ATmega128 datasheet.

Memory

Fuse Bits

Extended Fuse Byte

All the valid bits of Extended Fuse Byte of AT90CAN128 are different from those of ATmega128.

Table 6. Extended Fuse Byte

Bit	ATmega128		AT90CAN128	
ы	Name	Description	Name	Description
7	-	-	-	-
6	-	-	-	-
5	-			-
4	-			-
3	-	-	BODLEVEL2	
2	-	-	BODLEVEL1	Brown-out detector trigger
1	M103C	ATmega103 compatibility mode	ompatibility BODLEVEL0 level	
0	WDTON	Watchdog Timer always "on"	TA0SEL	(Reserved for factory tests)

Fuse High Byte

Only the bit number 4 of Fuse High Byte of AT90CAN128 is different from the one in ATmega128.

Table 7. Fuse High Byte

Bit	ATmega128		AT90CAN128	
ы	Name	Description	Name	Description
7	OCDEN	Enable OCD	ldem	ldem
6	JTAGEN	Enable JTAG	Idem	Idem
5	SPIEN	Enable serial program and data downloading	ldem	ldem
4	CKOPT	Oscillator option	WDTON	Watchdog Timer always "on"
3	EESAVE	E ² PROM is preserved through the chip erase	ldem	ldem
2	BOOTSZ1	Select boot size	ldem	ldem
1	BOOTSZ0	Jeiect Doot Size	ldem	idem
0	BOOTRST	Select reset vector	Idem	ldem

Fuse Low Byte

Bits number 7 and 6 of Fuse Low Byte of AT90CAN128 are different from those of ATmega128.

Table 8. Fuse Low Byte

Bit	ATmega128		AT90CAN128		
ы	Name	Description	Name	Description	
7	BODLEVEL	Brown-out detector trigger level	CKDIV8	Divide clock by 8 at start-up	
6	BODEN	Brown-out detector enable	CKOUT	Clock output enable	
5	SUT1	Select start-up time	ldem	ldem	
4	SUT0	Select start-up time	Idem	idem	
3	CLKSEL3		ldem		
2	CLKSEL2	Select clock source	Idem	ldem	
1	CLKSEL1	Select clock source	ldem	idem	
0	CLKSEL0		ldem		

Signature Bytes

Because AT90CAN128 and ATmega128 mainly differ by their I/O modules, only the third byte changes.

Table 9. Signature Bytes

Byte	Description	ATmega128	AT90CAN128
Бусе	Description	Value	Value
0	Manufacturer	0x1E (ATMEL)	ldem
1	Flash Memory Size	0x97 (128 KB)	ldem
2	Device	0x02	0x81

JTAG Identification Register

For the same reason as signature bytes, only the part number field changes (revision field not included).

Table 10. JTAG Identification Register

Field	ATmega128		AT90CAN128	
Field	Field Value	Register Value	Field Value	Register Value
Device Revision	0x0 ⁽¹⁾		0x0 ⁽¹⁾	
Part Number	0x9702		0x9781	
Manufacturer ID (+ lsb=0)	0x01E	0x0970201F	ldem	0x0978101F
lsb	0x1		ldem	

Notes: 1. Refer to data sheets for the last revision field value.

I/O Modules

External Memory Interface

In AT90CAN128, CLKO (Clock output) has been added as alternate function of PC7 (Port C - Bit 7). Another alternate function of PC7 is A15 (external memory interface address 15). Because CLKO is enabled/disabled by CKOUT fuse, it has priority over any external memory interface setting.

If CLKO is enabled, the minimum setting of XMM field in External Memory Control Register B - XMCRB - must be "001" to be in agreement with the PC7 configuration.

Synchronous 8-bit Timer/Counter

Index/Name

The Timer/Counter2 of ATmega128 becomes Timer/Counter0 in AT90CAN128. The features of the Timer/Counter are maintained. The I/O pin locations remain unchanged (See "Pin Configuration" on page 2).

Asynchronous 8-bit Timer/Counter

Index/Name

The Timer/Counter0 of ATmega128 becomes Timer/Counter2 in AT90CAN128. The features of the Timer/Counter are maintained, especially the asynchronous mode. The I/O pin locations remain unchanged (See "Pin Configuration" on page 2.).

Asynchronous Clock

An external clock source can be applied to PG4 (TOSC1) pin for asynchronous operation on Timer/Counter2 of AT90CAN128. In this configuration, PG3 (TOSC2) is available as standard I/O.

Table 11. Asynchronous Timer Sources

ATm	ega128	AT90CAN128								
Source	Setting	Source	Setting							
CLK	Default at start-up	CIK	Default	at start-up						
CLK _{IO}	AS0 ⁽¹⁾ ="0"	CLK _{IO}	AS2 ⁽²⁾ ="0"	EXCLK ⁽³⁾ ="0"						
TOSC oscillator	AS0 ⁽¹⁾ ="1"	TOSC oscillator for ext. watch crystal	AS2 ⁽²⁾ ="1"	EXCLK ⁽³⁾ ="0"						
watch crystal	A50° = 1	External clock on TOSC1 pin	AS2 ⁽²⁾ ="1"	EXCLK ⁽³⁾ ="1"						

- Notes: 1. AS0: Bit 3 Timer/Counter0 ASSR (ATmega128).
 - 2. AS2: Bit 3 Timer/Counter2 ASSR (AT90CAN128).
 - 3. EXCLK: Bit 4 Timer/Counter2 ASSR (AT90CAN128).

Synchronous Timer/Counter Prescaler

The prescaler reset of the synchronous timers/counters of ATmega128 is named PRS321 due to the index of the three timers/counters driven by this prescaler.

On AT90CAN128, automatically its name becomes PRS310.

Asynchronous Timer/Counter Prescaler

The prescaler reset of the asynchronous timers/counter of ATmega128 is named PRS0 due to the index of the timer/counter driven by this prescaler.

On AT90CAN128, automatically its name becomes PRS2.

ADC

A new feature has been added in ADC of AT90CAN128: the auto triggering.

A conversion can be triggered automatically by various sources. Auto Triggering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB. When a positive edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started.

Table 12. ADC Conversions

ATmega1	28	AT90C	AN128
Mode	Setting	Mode	Setting
Single conversion start	ADCS ⁽¹⁾ ="1" ADFR ⁽²⁾ ="0"	Single conversion start	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="0"
Free running mode start	ADCS ⁽¹⁾ ="1" ADFR ⁽²⁾ ="1"	Starting with trigger source: Free running mode	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="000"
-	-	Starting with trigger source: Analog comparator	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="001"
-	-	Starting with trigger source: Ext. Int. Request 0	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="010"
-	-	Starting with trigger source: T/C0 compare match	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="011"
-	-	Starting with trigger source: T/C0 overflow	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="100"
-	-	Starting with trigger source: T/C1 compare match B	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="101"
-	-	Starting with trigger source: T/C1 overflow	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="110"
-	-	Starting with trigger source: T/C1 capture event	ADCS ⁽¹⁾ ="1" ADATE ⁽³⁾ ="1" ADST[20] ⁽⁴⁾ ="111"
Free running mode stop	ADFR ⁽²⁾ ="0"	Free running mode stop	ADATE ⁽³⁾ ="0"

Notes: 1. ADCS: Bit 6 - ADCSRA (ATmega128 & AT90CAN128).

- 2. ADFR: Bit 5 ADCSRA (ATmega128).
- 3. ADATE: Bit 5 ADCSRA (AT90CAN128).
- 4. ADST[2..0]: Bits 2..0 ADCSRB (AT90CAN128).

I/O Registers

The I/O space definition of the ATmega128 and the AT90CAN128 is shown in the "Register Summary" section of the datasheets respectively.

All I/O registers are placed in the I/O space from address 0x20 up to 0xFF. All I/O locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions.

- The I/O registers from 0x20 up to 0x5F may be also accessed by the specific instructions IN and OUT **but** 0x20 must be subtracted to these addresses.
- I/O registers within the address range 0x20 0x3F also are <u>directly</u> bit-accessible using the SBI/CBI/SBIS/SBIC instructions but <u>0x20</u> must be subtracted to these addresses.
 - Some of the status flags are cleared by writing a logical one. Note that the SBI instructions operates on such status flags in this address range.
- For the Extended I/O space from <u>0x60 0xFF</u> in SRAM, **only** the ST and LD instructions can be used.

Note: Migrating an assembler source code from ATmega128 to AT90CAN128 may force to change the assembler line of an I/O register access.

Table 13. I/O Registers

	-	ATme	ega12	28						AT90CAN128 Register Content											
				Reg	ister	Con	tent							Reg	ister	Con	tent				
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
(0x9D)	UCSR1C	-	UMSEL1		PM1 ,0]	USBS1		SZ1 ,0]	UCPOL1	(0xCA)	ldem	ldem									
(0x9C)	UDR1		U	SART	1 I/O	Data	Regis	ster		(0xCE)	Idem				ld	em					
(0x9B)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1	MPCM1	(0xC8)	ldem				ld	em					
(0x9A)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TCEN1	UCSZ12	RXB81	TXB81	(0xC9)	ldem				ld	em					
(0x99)	UBRR1L	US	SART	1 Bau	d Rat	e Reg	gister	Low E	Byte	(0xCC)	Idem	Idem									
(0x98)	UBRR1H			-		Bau	ıd Rat	ART1 e Req igh	gister	(0xCD)	ldem	ldem									
(0x95)	UCSR0C	-	UMSELO	_	PM0 ,0]	USBS0		SZ0 ,0]	UCPOLO	(0xC2)	ldem				ld	em					
(0x90)	UBRR0H			-		Bau	ıd Rat	ART0 e Req igh		(0xC5)	ldem				ld	em					
(0x8C)	TCCR3C	FOC3A	FOC3B	FOC3C			-			(0x92)	ldem				ld	em					
(0x8B)	TCCR3A	[1	M3A ,0]		M3B ,0]		M3C ,0]		ЭМЗ ,0]	(0x90)	Idem				ld	em					
(0x8A)	TCCR3B	ICNC3	ICES3	-		GM3 3,2]	С	S3[2.	0]	(0x91)	ldem	ldem									
(0x89)	TCNT3H		T/C3	Cour	nter R	egiste	er Higl	h Byte	Э	(0x95)	Idem	ldem									
(88x0)	TCNT3L		T/C3	Cour	nter R	egiste	er Lov	Byte)	(0x94)	Idem				ld	em					

Table 13. I/O Registers (Continued)

		ATme	ega12	28								AT900	CAN1	28						
				Reg	jister	Con	tent							Reg	jister	Cor	tent			
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
(0x87)	OCR3AH		T/C3	Outp		mpare Byte	e A Re	egiste	r	(0x99)	ldem				Ic	lem				
(0x86)	OCR3AL		T/C3	Outp		mpare Byte	e A Re	egiste	r	(0x98)	ldem	ldem								
(0x85)	OCR3BH		T/C3	Outp		mpare Byte	B Re	egiste	r	(0x9B)	ldem		ldem							
(0x84)	OCR3BL		T/C3	Outp		mpare Byte	e B Re	egiste	r	(0x9A)	ldem				Ic	lem				
(0x83)	OCR3CH		T/C3	Outp		mpare Byte	e C R	egiste	r	(0x9D)	ldem				lo	lem				
(0x82)	OCR3CL		T/C3	Outp		mpare Byte	e C R	egiste	r	(0x9C)	ldem				lo	lem				
(0x81)	ICR3H	T/	C3 In	put C	apture	Reg	ister F	ligh E	Byte	(0x97)	Idem				Id	lem				
(0x80)	ICR3L		/C3 In	-	-				-	(0x96)	Idem				Ic	lem				
										(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIF1	
(0x7D)	ETIMSK	-	-	ICIE3	OCIE3A	OCIE3B	TOIE3	OCIE3C	OCIE1C	(0x71)	TIMSK3	-	-	ICIE3	-	OCIE3C	OCIE3B	OCIE3A	TOIE3	
(0x7C)	ETIFR	_	_	ICF3	OCF3A	OCF3B	TOV3	OCF3C	OCF1C	0x16-(0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	
(67.1.6)				2	00	00	TO	OC	OC	0x18-(0x38)	TIFR3	-	-	ICF3	-	OCF3C	OCF3B	OCF3A	TOV3	
(0x7A)	TCCR1C	FOC1A	FOC1B	FOC1C			-			(0x82)	ldem		ldem							
(0x79)	OCR1CH		T/C1	Outp		mpare Byte	e C R	egiste	r	(0x8D)	ldem	ldem								
(0x78)	OCR1CL		T/C1	Outp		mpare Byte	e C R	egiste	r	(0x8C)	ldem				Ic	lem				
(0x74)	TWCR	TMIMT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	(0xBC)	Idem				la	lem				
(0x73)	TWDR		1	TWI	I/O D	ata R	egiste	r		(0xBB)	Idem				Ic	lem				
(0x72)	TWAR			Т	WA[6	0]			TWGCE	(0xBA)	Idem	ldem								
(0x71)	TWSR		Т	WS[7	3]		-		VPS 1,0]	(0xB9)	ldem	Idem								
(0x70)	TWBR	TWI Bit Rate Register								(0xB8)	Idem	ldem								
(0x6F)	OSCCAL	CAL[70]								(0x66)	Idem	- CAL[60]								
(0x6D)	XMCRA	0M83								(0x74)	XMCRA	SRE	S	SRL[2.		SRW11	SRW10		RW(

Table 13. I/O Registers (Continued)

	-	4Tme	ega1	28							A	T900	CAN1	28							
				Reg	ister	Con	tent							Reg	ister	Con	tent				
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
(0x6C)	XMCRB	XMBK	-	1	i	-	X	MM[2	0]	(0x75)	ldem	ldem									
(0x6A)	EICRA		C3 1,0]		C2 ,0]		C1 ,0]		C0 [,0]	(0x69)	ldem	ldem									
(0x68)	SPMCSR	SPMIE	RWWSB	-	SWWSRE	BLBSET	PGWRT	PGERS	SPMEM	0x37-(0x57)	ldem				la	lem					
(0x65)	PORTG	-	-	-		PO	RTG[40]		0x14-(0x34)	Idem				la	lem					
(0x64)	DDRG	-	-	-		D	DG[4	0]		0x13-(0x33)	Idem				la	lem					
(0x63)	PING	-	-	-		Р	NG[4	0]		0x12-(0x32)	Idem				la	lem					
(0x62)	PORTF		I.		PORT	F[7(0]			0x11-(0x31)	Idem				la	lem					
(0x61)	DDRF				DDF	[70]				0x10-(0x30)	Idem				la	lem					
0x3F-(0x5F)	SREG	I	Т	Н	S	V	N	Z	С	Idem	Idem				la	lem					
0x3E-(0x5E)	SPH		Stac	k Poin	ter R	egiste	r Higl	h Byte	9	Idem	Idem				la	lem					
0x3D-(0x5D)	SPL		Stac	k Poir	ter R	egiste	er Lov	v Byte	;	Idem	Idem				la	lem					
0x3C-(0x5C)	XDIV (see page 3)	XDIVEN			XI	DIV[6	0]			(0x61)	CLKPR	U CLKPS[30]							0]		
0x3B-(0x5B)	RAMPZ	-	-	-	-	-	-	-	RAMPZ0	0x3B-(0x5B)	ldem	Idem									
0x3A-(0x5A)	EICRB		6C7 1,0]		C6 ,0]		,0]		6C4 [,0]	(0x6A)	ldem	ldem									
0x39-(0x59)	EIMSK				INT	[70]				0x1D-(0x3D)	Idem	Idem							,		
0x38-(0x58)	EIFR				INTF	[70]				0x1C-(0x3C)	Idem	Idem							,		
	TIMSK									(0x6E)	TIMSK0	-	-	-	-	-	-	OCIE0A	TOIE0		
0x37-(0x57)	(see page 9) (see page 9)	OCIE2	TOIE2	ICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1		
										(0x70)	TIMSK2	-	-	-	-	-	-	OCF0A OCIE2A	TOIE2		
										0x15-(0x35)	TIFR0	-	-	-	-	-	-	OCF0A	TOV0		
0x36-(0x56)	TIFR (see page 9) (see page 9)	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	0x16-(0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1		
										0x17-(0x37)	TIFR2	-	-	-	-	-	-	OCF2A	TOV2		

Table 13. I/O Registers (Continued)

		ATme	ega12	28								AT900	CAN1	28					
				Reg	ister	Con	tent							Reg	ister	Con	tent		
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			10			0	-	ı.		(0x74)	XMCRA	SRE	S	RL[2.	.0]	SRW11	SRW10	_	0W9 ,0]
0x35-(0x55)	MCUCR	SRE	SRW10	SE	SM1	SMO	SM2	IVSEL	IVCE	0x33-(0x53)	SMCR	-	-	-	-	S	SM[2	0]	SE
			0)							0x35-(0x55)	MCUCR	OTL	-	-	PUD	-	B		iVCE
0.04 (0.54)	MOULOOD	٥			٦Ł	RF	RF	ŔF	RF	0x35-(0x55)	MCUCR	GFV	-	-	PUD	-	-	IVSEL	IVCE
0x34-(0x54)	MCUCSR	J.	-	-	JTRF	WDRF	BORF	EXTRF	PORF	0x34-(0x54)	MCUSR	-	-	-	JTRF	WDRF	BORF	EXTRF	PORF
0x33-(0x53)	TCCR0 (see page 9)	FOCO	WGM00		0M0 ,0]	WGM01	С	S0[2.	.0]	(0xB0)	TCCR2A	FOC2A	WGM20		M2A ,0]	WGM21	С	S2[2.	.0]
0x32-(0x52)	TCNT0 (see page 9)			T/C0	Coun	iter Re	egiste	er		(0xB2)	TCNT2			T/C2	Coun	ter Re	egiste	r	
0x31-(0x51)	OCR0 (see page 9)		T/C	0 Outp	out Co	ompai	re Re	gister		(0xB3)	OCR2A		T/C2	Outp	ut Coi	mpare	A Re	egiste	r
0x30-(0x50)	ASSR (see page 9)	-	-	ı	-	AS0	TCN0UB	OCROUB	TCROUB	(0xB6)	ldem	-	-	-	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB
0x2F-(0x4F)	TCCR1A		M1A ,0]		M1B ,0]		M1C ,0]		GM1 ,0]	(0x80)	ldem				ld	em	I		
0x2E-(0x4E)	TCCR1B	ICNC1	ICES1	-		3M1 3,2]	С	S1[2.	.0]	(0x81)	Idem				ld	em			
0x2D-(0x4D)	TCNT1H		T/C1	Coun	ter R	egiste	er Hig	h Byte)	(0x85)	Idem				ld	em			
0x2C-(0x4C)	TCNT1L			Cour		-		-		(0x84)	Idem		ldem						
0x2B-(0x4B)	OCR1AH		T/C1	Outpo		mpare Byte		egiste	r	(0x89)	ldem				ld	em			
0x2A-(0x4A)	OCR1AL			Outpo	Low	Byte				(0x88)	ldem				ld	em			
0x29-(0x49)	OCR1BH			Outp	High	Byte				(0x8B)	ldem				ld	em			
0x28-(0x48)	OCR1BL			Outpo	Low	Byte				(0x8A)	ldem				ld	em			
0x27-(0x47)	ICR1H			put Ca	•				•	(0x87)	ldem				Id	em			
0x26-(0x46)	ICR1L	T/	C1 In	put Ca	apture	Reg	ister l	_ow B	yte	(0x86)	Idem				Id	em			
0x25-(0x45)	TCCR2 (see page 9)	CS2[20]								0x24-(0x44)	TCCR0A	FOC0A	WGM00		M0A ,0]	WGM01	C	S0[2.	.0]
0x24-(0x44)	TCNT2 (see page 9)			T/C2	Coun	iter Re	egiste	er		0x26-(0x46)	TCNT0			T/C0	Coun	ter Re	egiste	r	
0x23-(0x43)	OCR2 (see page 9)		T/C	2 Outp	out Co	ompai	re Re	gister		0x27-(0x47)	OCR0A		T/C0	Outp	ut Co	mpare	A Re	egiste	r

Table 13. I/O Registers (Continued)

	,	ATme	ega12	28							Δ	T900	CAN1	28					
				Reg	ister	Con	tent							Reg	ister	Con	tent		
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	0000				OCD	R[70)]												
0x22-(0x42)	OCDR	IDRD				CDR[6	60]			0x31-(0x51)	Idem				Id	em			
0x21-(0x41)	WDTCR	-	-	-	WDCE	WDE	W	/DP[2	20]	(0x60)	ldem	ldem							
										0x23-(0x43)	GTCCR	TSM	-	-	-	-	-	PSR2	PSR310
0x20-(0x40)	SFIOR (see page 9) (see page 10)	TMS	-	-	ADHSM	ACME	PUD	PSR0	PSR321	(0x7B)	ADCSRB	ADHSM	ACME	-	ADTS[2				
										0x35-(0x55)	MCUCR	OF.	-	-	PUD	-	-	IVSEL	iVCE
0x1F-(0x3F)	EEARH			-			PROI Regis			0x22-(0x42)	Idem				ld	em			
0x1E-(0x3E)	EEARL	Е	EPRO	OM Ac	dres	Reg	ister L	ow E	syte	0x21-(0x41)	ldem				ld	em			
0x1D-(0x3D)	EEDR		E	EPRO	M I/C	Data	Regi	ster		0x20-(0x40)	Idem				Id	em			
0x1C-(0x3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	0x1F-(0x3F)	Idem	ldem							
0x1B-(0x3B)	PORTA		•	•	PORT	A[70	0]	•	•	0x02-(0x22)	Idem				Id	em			
0x1A-(0x3A)	DDRA				DDA	\[70]				0x01-(0x21)	Idem				ld	em			
0x19-(0x39)	PINA				PINA	\[70]]			0x00-(0x20)	Idem				ld	em			
0x18-(0x38)	PORTB				PORT	B[7	0]			0x05-(0x25)	Idem				ld	em			
0x17-(0x37)	DDRB				DDE	3[70]				0x04-(0x24)	Idem	Idem							
0x16-(0x36)	PINB				PINE	3[70]]			0x03-(0x23)	Idem	Idem							
0x15-(0x35)	PORTC				PORT	C[7	0]			0x08-(0x28)	Idem	ldem							
0x14-(0x34)	DDRC				DDC	[70]]			0x07-(0x27)	Idem	Idem							
0x13-(0x33)	PINC				PINC	C[70]			0x06-(0x26)	Idem				ld	em			
0x12-(0x32)	PORTD				PORT	D[7	0]			0x0B-(0x2B)	Idem				ld	em			
0x11-(0x31)	DDRD					70]				0x0A-(0x2A)	Idem				ld	em			
0x10-(0x30)	PIND					0[70]				0x09-(0x29)	Idem				ld	em			
0x0F-(0x2F)	SPDR			SPII	/O Da	ata Re	egiste	r		0x2E-(0x4E)	Idem				ld	em			
0x0E-(0x2E)	SPSR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											ld	em					
0x0D-(0x2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	0x2C-(0x4C)	Idem	Idem							
0x0C-(0x2C)	UDR0		U	SART	0 I/O	Data	Regis	ster		(0xC6)	Idem				ld	em			_
0x0B-(0x2B)	UCSR0A	RXC0	TXC0	UDREO	FE0	DOR0	UPE0	U2X0	MPCM0	(0xC0)	ldem				ld	em			
0x0A-(0x2A)	UCSR0B	TXCIEO TXCIEO UDRIEO UDRIEO UCSZ02 RXB80 TXB80								(0xC1)	Idem				ld	em			

Table 13. I/O Registers (Continued)

	A	\Tme	ga12	28							A	T900	CAN1	28					
				Reg	ister	Con	tent							Reg	jister	Con	tent		
Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Add.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x09-(0x29)	UBRR0L	US	SART	0 Bau	d Rat	e Reg	gister	Low E	Byte	(0xC4)	Idem				la	lem			
0x08-(0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC		CIS ,0]	0x30-(0x50)	Idem				la	lem			
0x07-(0x27)	ADMUX		FS ,0]	ADLAR		M	IUX[4	0]		(0x7C)	Idem				la	lem			
0x06-(0x26)	ADCSRA (see page 10)	ADEN	ADSC	ADRF	ADIF	ADIE	ΑI	DPS[2	0]	(0x7A)	ldem	Idem	Idem	ADATE	Idem	Idem		ldem	
0x05-(0x25)	ADCH		AD	C Dat	a Re	gister	High	Byte		(0x79)	Idem				la	lem			
0x04-(0x24)	ADCL		AD	C Da	ta Re	gister	Low I	Byte		(0x78)	Idem				la	lem			
0x03-(0x23)	PORTE			I	PORT	E[70	0]			0x0E-(0x2E)	Idem				la	lem			
0x02-(0x22)	DDRE				DDE	[70]				0x0D-(0x2D)	Idem				la	lem			
0x01-(0x21)	PINE				PINE	[70]				0x0C-(0x2C)	Idem	ldem							
0x00-(0x20)	PINF				PINF	[70]				0x0F-(0x2F)	Idem	ldem							

Note: Some AT90CAN128 I/O registers are not listed in the hereinabove table because there is no corresponding registers/peripherals in ATmega128 (i.e. CAN registers).

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof AVR® and megaAVR® are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

