Jan Pułtorak

Pracownia z analizy numerycznej

sprawozdanie do zadania P1.5

Prowadzący: mgr Filip Chudy

Wrocław, 21 kwietnia 2023

1. Wstęp

Celem niniejszego sprawozdania jest przeanalizowanie własności ciągu

$$I_n := \int_0^1 \frac{x^n}{x + 10} dx$$

i przedstawienie metody na przybliżone obliczanie jego wyrazów.

W §2 zaczęto od wyprowadzenia przydatnych własności ciągu, na podstawie których wyprowadzony został związek rekurencyjny między kolejnymi wyrazami ciągu, który pozwoli zaimplementować dwa różne algorytymy, przeanalizowane szczegółowo w paragrafach §3 i §4.

Obliczenia zostały przeprowadzone w programie Julia.

2. Własności ciągu

2.1. Wartość całki dla n=0

W przypadku n=0, całka przybiera postać

$$I_0 = \int_0^1 \frac{1}{x+10} dx$$

Stosując podstawienie t = x + 10 otrzymujemy

$$I_0 = \int_{10}^{11} \frac{1}{t} dt = \ln t \Big|_{10}^{11} = \ln 11 - \ln 10 = \ln \frac{11}{10}$$
 (2.1.1)

2.2. Wzór rekurencyjny

Rozważamy $n \ge 1$

$$I_n = \int_0^1 \frac{x^n}{x+10} dx = \int_0^1 \frac{x^{n-1}(x+10) - 10x^{n-1}}{x+10} dx = \int_0^1 x^{n-1} - 10 \frac{x^{n-1}}{x+10} dx =$$

$$= \int_0^1 x^{n-1} dx - 10 \int_0^1 \frac{x^{n-1}}{x+10} dx = \frac{x^n}{n} \Big|_0^1 - 10I_{n-1} = \frac{1}{n} - 10I_{n-1}$$

Ostatecznie uzyskujemy

$$I_n = \frac{1}{n} - 10I_{n-1} \tag{2.2.1}$$

2.3. Oszacowanie wartości całki

W celu określenia w jakim przedziale mieszczą się wartości ciągu I_n , można skorzystać z twierdzenia o wartości średniej dla całek.

Twierdzenie 1. Załóżmy, że $f, g \in \mathcal{R}[a, b]$ i $g(x) \ge 0$ dla $x \in [a, b]$. Wtedy

$$\int_{a}^{b} f(x)g(x)dx = \lambda \int_{a}^{b} g(x)dx$$

dla pewnego λ leżącego między kresami funkcji f(x).

$$Dow \acute{o}d.$$
 [1, str. 88]

Przyjmujemy $f(x) = \frac{1}{x+10}$, $g(x) = x^n$ - rozważane są na przedziale [0, 1]. Z ich ciągłości wynika całkowalność, więc wraz z faktem, że $g(x) \geqslant 0$ można zastostować powyższe twierdzenie.

$$I_n = \int_0^1 \frac{1}{x+10} \cdot x^n dx = \lambda \int_0^1 x^n dx = \frac{\lambda}{n+1}$$
 (2.3.1)

dla pewnej λ związanej nierównościami

$$m = \inf_{x \in [0,1]} f(x) \leqslant \lambda \leqslant \sup_{x \in [0,1]} f(x) = M$$

 $f'(x) = -\frac{1}{(x+10)^2} < 0$ więc f
 jest ściśle malejąca na [0,1]. Oznacza to, że

$$M = f(0) = \frac{1}{10}$$
$$m = f(1) = \frac{1}{11}$$

Łącząc to z (2.3.1) uzyskujemy

$$0 \leqslant \frac{1}{11(n+1)} \leqslant I_n \leqslant \frac{1}{10(n+1)} \leqslant 1 \tag{2.3.2}$$

3. Pierwsza próba aproksymacji

Korzystając z (2.1.1) i (2.2.1), możliwe jest obliczanie kolejnych wyrazów ciągu. Poniżej przedstawiono wyniki obliczeń dla n=0...20, przeprowadzonych przy użyciu kolejno pojedyńczej i podwójnej precyzji.

n	I_n	n	I_n		
0	0.095310204	0	0.095310180		
1	0.046897948	1	0.046898202		
:		÷			
7	-0.24258836	7	0.011480560		
8	2.5508835	8	0.010194398		
÷		<u>:</u>			
17	-2.5407e+09	17	-7.478388781		
18	2.5407e+10	18	74.839443369		
19	-2.5407e+11	19	-748.341802108		
20	2.5407e+12	20	7483.468021085		
(a) Precyzja Single		(b)	(b) Precyzja Double		

Tabela 1: Wartości ciągu I_n obliczane według związku rekurencyjnego (2.2.1)

Już na pierwszy rzut oka widać, że wyniki są bardzo nieprecyzyjne. Z (2.3.2) wiadomo, że $0 \le I_n \le 1$. Według przeprowadzonych obliczeń, niektóre wyniki są ujemne bądź też bardzo duże względem dokładnej wartości. Przy użyciu precyzji pojedyńczej dla n=17 błąd względny jest rzędu 10^9 . Zwiększenie precyzji wykonywanych obliczeń znacznie poprawiło wyniki, jednak dalej są one nierzetelne.

3.1. Co poszło nie tak?

Wracając do związku rekurencyjnego i rozwijając go

$$I_n = \frac{1}{n} - 10I_{n-1} = \frac{1}{n} - \frac{10}{n-1} + 100I_{n-2} = \frac{1}{n} - \frac{10}{n-1} + \frac{100}{n-2} - 1000I_{n-3} = \dots = \sum_{k=1}^{n} \frac{(-10)^{n-k}}{k} + (-10)^n I_0$$

Otrzymujemy I_n w postaci zamkniętej. Z (2.1.1) Wiadomo, że $I_0 = \ln \frac{11}{10}$. Jest to liczba niewymierna, oznacza to, że komputery korzystające z arytmetyki IEEE 754 nie są w stanie przetrzymać jej dokładnej wartości i obliczają pewne jej przybliżenie.

Oznaczamy przybliżenie I_n poprzez $\hat{I_n}$. $\hat{I_0} = I_0 + \epsilon$ dla pewnego $\epsilon \in \mathbb{R}$.

$$\hat{I}_n = \sum_{k=1}^n \frac{(-10)^{n-k}}{k} + (-10)^n \hat{I}_0 = \sum_{k=1}^n \frac{(-10)^{n-k}}{k} + (-10)^n I_0 + (-10)^n \epsilon = I_n + (-10)^n \epsilon$$

(Tu warto zaznaczyć, że pominięty został błąd obliczeń wynikający z niedokładnych przybliżeń kolejnych wyrazów. On również przeonosi się na \hat{I}_n z mnożnikiem 10^k dla odpowiedniego k < n, lecz to uproszczenie wystarczy do zrozumienia wyników). Tłumaczy to zjawiska, które wcześniej zostały zaobserwowane. Z każdym krokiem iteracji, błąd spowodowany początkowym przybliżeniem zwiększa się dziesięciokrotnie i zmienia znak. Dla dużych n

$$I_n + (-10)^n \epsilon \approx (-10)^n \epsilon$$

$$\frac{I_{n+1}}{I_n} \approx + \frac{(-10)^{n+1} \epsilon}{(-10)^n \epsilon} = -10$$

To z kolei tłumaczy, czemu analizując wyniki w Tabeli 1, można było odnieść wrażenie, że od pewnego momentu kolejne wyrazy tworzą ciąg geometryczny. Dla małych zaburzeń danych początkowych uzyskano mocno nieprecyzyjny wynik. Oznacza to, że algorytm obliczania ciągu I_n w ten sposób nie jest stabilny.

4. Podejście drugie

Celem jest znalezienie algorytmu stabilnego. Zaczynając od przekształcenia zależności rekurencyjnej (2.2.1), otrzymujemy

$$I_{n-1} = \frac{1}{10} \left(\frac{1}{n} - I_n \right) \tag{4.0.1}$$

Mając pewien punkt startowy I_k można obliczyć $I_{k-1}, I_{k-2}, \dots I_0$. Załóżymy, że dla p < k chcemy obliczyć I_p względem I_k . Najpierw rozwijamy (4.0.1)

$$I_{p} = \frac{1}{10(p+1)} - \frac{1}{10}I_{p+1} = \frac{1}{10(p+1)} - \frac{1}{100(p+2)} + \frac{1}{100}I_{p+2} =$$

$$= \frac{1}{10(p+1)} - \frac{1}{100(p+2)} + \frac{1}{1000(p+3)} - \frac{1}{1000}I_{p+3} = \dots$$

$$= \sum_{i=p+1}^{k} \frac{(-1)^{i-p-1}}{10^{i-p} \cdot i} + \left(\frac{-1}{10}\right)^{k-p} I_{k}$$

Dla i < k definujemy \hat{I}_i w następujący sposób:

$$\hat{I}_i = fl\left[\frac{1}{10}\left(\frac{1}{i+1} + \hat{I}_{i+1}\right)\right]$$

Oznacza to, że \hat{I}_i jest wynikiem obliczeń I_i z uwzględnieniem błędów przybliżeń. Wtedy $\hat{I}_i = \frac{1}{10} \left(\frac{1}{i+1} + \hat{I}_{i+1} \right) + \epsilon_i$, dla pewnego $\epsilon_i \in \mathbb{R}$. Przyjmijmy, że mamy przybliżony początkowy element ciągu: $\hat{I}_k = I_k + \epsilon_k$. Wtedy

$$\hat{I}_{p} = fl\left(\frac{1}{10}\left(\frac{1}{p+1} - \hat{I}_{p+1}\right)\right) = \frac{1}{10(p+1)} - \frac{\hat{I}_{p+1}}{10} + \epsilon_{p} = \frac{1}{10(p+1)} - \frac{1}{100} - \frac{1}{100} + \epsilon_{p} = \dots = \frac{1}{10(p+1)} - \frac{1}{100(p+2)} + \frac{\hat{I}_{p+2}}{100} - \frac{\epsilon_{p+1}}{10} + \epsilon_{p} = \dots = \frac{\sum_{i=p+1}^{k} \frac{(-1)^{i-p-1}}{10^{i-p} \cdot i} + \left(\frac{-1}{10}\right)^{k-p} I_{k} + \sum_{i=p}^{k} \frac{\epsilon_{i}}{(-10)^{i-p}} = \frac{1}{10(p+1)} + \sum_{i=p}^{k} \frac{\epsilon_{i}$$

Z drugiej strony, zachodzi

$$\begin{split} \hat{I_p} &= fl \left[\frac{1}{10} \left(\frac{1}{p+1} + \hat{I_{p+1}} \right) \right] = fl \left[\frac{1}{10} \cdot fl \left(\frac{1}{p+1} + \hat{I_{p+1}} \right) \right] = \\ &= fl \left[\frac{1}{10} \cdot \left(\frac{1}{i+1} + \hat{I_{p+1}} \right) (1+\delta_1) \right] = \\ &= \frac{1}{10} \cdot \left(\frac{1}{p+1} + \hat{I_{p+1}} \right) (1+\delta_1) (1+\delta_2) = \\ &= \frac{1}{10} \cdot \left(\frac{1}{p+1} + \hat{I_{p+1}} \right) + \frac{1}{10} \cdot \left(\frac{1}{p+1} + \hat{I_{p+1}} \right) (\delta_1 + \delta_2 + \delta_1 \delta_2) \end{split}$$

Dla pewnych $|\delta_1|,\,|\delta_2|\leqslant u,$ gdzie ujest precyzją arytmetyki. Oznacza to więc, że

$$\begin{aligned} |\epsilon_{i}| &= \left| \frac{1}{10} \cdot \left(\frac{1}{i+1} + \hat{I_{i+1}} \right) (\delta_{1} + \delta_{2} + \delta_{1} \delta_{2}) \right| \leqslant \frac{1}{10} |\delta_{1} + \delta_{2} + \delta_{1} \delta_{2}| \leqslant \frac{1}{10} (2u + u^{2}) \\ \left| I_{p} - \hat{I_{p}} \right| &= \left| \sum_{i=p}^{k} \frac{\epsilon_{i}}{(-10)^{i-p}} \right| = \sum_{i=p}^{k-1} \frac{|\epsilon_{i}|}{10^{i-p}} + \frac{|\epsilon_{k}|}{10^{k-p}} \leqslant \sum_{i=p}^{k-1} \frac{2u + u^{2}}{10^{i-p+1}} + \frac{|\epsilon_{k}|}{10^{k-p}} \\ &= (2u + u^{2}) \sum_{i=0}^{k-p} \frac{1}{10^{i}} + \frac{|\epsilon_{k}|}{10^{k-p}} = (2u + u^{2}) \frac{1 - 10^{p-k}}{1 - \frac{1}{10}} + \frac{|\epsilon_{k}|}{10^{k-p}} \leqslant \frac{10}{9} (2u + u^{2}) + \frac{|\epsilon_{k}|}{10^{k-p}} \end{aligned}$$

Otrzymaliśmy

$$\left|I_p - \hat{I}_p\right| \leqslant \frac{10}{9} (2u + u^2) + \frac{|\epsilon_k|}{10^{k-p}}$$
 (4.0.2)

Mając dobre początkowe przybliżenie ($|\epsilon_k|$ jest małe), jesteśmy w stanie z dużą precyzją obliczać kolejne wyrazy ciągu. Poniżej przedstawiono wyniki obliczeń dla $n=0\ldots 20$, przyjmując $I_{21}=0$.

n	I_n	n	$\frac{1}{11(n+1)}$	$\frac{1}{10(n+1)}$	n	I_n
0	0.095310181	0	-	-	0	0.095310179
1	0.046898201	1	0.0101010	0.0111111	1	0.046898201
÷		:			:	
7	0.011480560	7	0.0050505	0.0055555	7	0.011480560
8	0.010194391	8	0.0101010	0.0111111	8	0.010194390
:		:			÷	
17	0.005074477	17	0.0050505	0.00555551	17	0.005074477
18	0.004810777	18	0.0047847	0.0052631	18	0.004810776
19	0.004523809	19	0.0045455	0.0050000	19	0.004523809
20	0.004761904	20	0.0043290	0.0047619	20	0.004761904
(a) Precyzja Single (1		(b)	Ograniczenie	i	(c) F	recyzja <i>Double</i>

Tabela 2: Wartości ciągu I_n obliczane według związku rekurencyjnego (4.0.1)

Analizując powyższe tabele widzimy, że otrzymane wyniki nie odstają od oszacowania otrzymanego w (2.3.2). Obliczenia te są więc zdecydowanie dużo bardziej precyzyjne od poprzednich. Można je jeszcze poprawić, dobierając lepsze przybliżenie początkowe.

5. Wnioski

Analiza ciągu I_n doprowadziła do wyprowadzenia dwóch, równoważnych z matematycznego punktu widzenia, wzorów rekurencyjnych

$$I_n = \frac{1}{n} - 10I_{n-1} \tag{5.0.1}$$

$$I_{n-1} = \frac{1}{10} \left(\frac{1}{n} - I_n \right) \tag{5.0.2}$$

Kluczowy jest współczynnik przy poprzednich wyrazach (odpowiednio $-10 \text{ i } -\frac{1}{10}$). Wzór (5.0.1) prowadzi do algorytmu niestabilnego – na każdym etapie iteracji błąd w poprzednim wyrazie zwiększa się dziesięciokrotnie. Algorytm na podstawie (5.0.2) daje wyniki precyzyjne z tego samego powodu – błąd po każdej iteracji zmniejsza się dziesięciokrotnie.

Co więcej, drugi algorytm pozwala nam obliczać wyrazy ciągu z dowolną precyzją. Można przyjąć $I_k = 0$. Na podstawie (4.0.2)

$$\left| I_p - \hat{I_{p+1}} \right| \leqslant \frac{10}{9} (2u + u^2) + \frac{|\epsilon_k|}{10^{k-p}} = \frac{10}{9} (2u + u^2) + \frac{I_k}{10^{k-p}} \leqslant \frac{10}{9} (2u + u^2) + \frac{1}{10^{k-p}}$$
 (5.0.3)

Mając ustalone p, $\frac{1}{10^{k-p}}$ może być dowolnie małe, wystarczy dobrać odpowiednio duże k. Jeśli dysponuje się arytmetyką dowolnej precyzji (np. BigFloat w programie Julia), to u też może być dowolne małe, z czego wynika, że błąd bezwzględny (5.0.3) też może zostać dowolnie zmniejszony.

Literatura

[1] G.M Fichtenholz (1960), Rachunek różniczkowy i całkowy Tom 3