Meet ParzivAl & MacgAlver

LLM-Finetuning praktisch

HEIDELBERG SCHOOL OF EDUCATION

Die Ausgangslage

Wozu Sprachmodelle finetunen?

Contra:

- Die großen LLMs werden schneller besser als spezialisiertes finetuning sinnvolle Verbesserungen bieten kann.
- Inzwischen sind tool use Funktionen (RAG) relevanter als finetuning.
- Wenn schon ein LLM auf tote Sprachen trainieren, dann doch bitte von Grund auf.

Pro:

- Finetuning ist auch mit begrenzten Mitteln machbar und kann wichtige technische & konzeptionelle Lücken aufzeigen (z.B. Tokenizer).
- Um tools gezielt einsetzen zu können, muss das Modell Texte (Prompts, Primärquellen usw.) sinnvoll embedden.
- Finetuning als Mittel zu mehr KI-Mündigkeit (z.B. auch in der DH-Lehre).

Die MacgAlver-Strategie

LLMs gratis finetunen

- ⇒ https://yopad.eu/p/finetuning
 - Zu Testzwecken und für kleinere Projekte können wir die verschiedenen Arbeitsschritte des Finetunings so auslagern, dass wir (quasi) gratis zu Resultaten kommen.
 - Wir benötigen dafür:
 - 1. ein Google-Konto
 - 2. ein Huggingface-Konto
 - 3. einen PC mit ausreichend RAM (bzw. SWAP), Linux und ggf. einer GPU.
 - Grundkenntnisse zum Linux-Terminal, Python,
 Jupyter

Die Pipeline

Die MacgAlver-Pipeline

- ein lokaler PC (Laptop, mit oder ohne GPU. In diesem Fall: 6 Jahre alter Gaming-Laptop, aktuell 500 Euro auf Ebay.)
- 2. Zwei Cloud-Lösungen (gratis)

- Colab sind gehostete Jupyter Notebooks mit kostenlosem Zugriff auf eine GPU.
- Wir brauchen GPUs, um das parallele Berechnen des neuronalen Netzes zu ermöglichen. Eigentliches Bottleneck: VRAM.
- Huggingface dient der einfachen Speicherung unserer Daten.
- Der lokale PC benötigt vor allem RAM (+SWAP), optional auch eine GPU für mehr Inference Speed.

Auswahl eines Foundation Models

OpenWebUi: 4 Beispiel-Parameter

Temperature:

- je kleiner, desto deterministischer
- je größer, desto kreativer

Top k:

- k=4: die 4 Tokens mit der höchsten Wahrscheinlichkeit
- "Ich hätte gern den…"
 - "Salat"
 - "Käse"
 - "Freitag frei"
 - "einfachsten Beruf"

- Top p:

- die "Masse der Gesamtwahrscheinlichkeit
- "Der 44. Präsident der USA war..." Top P 80%
 - "Barack Obama" 70%
 - "Donald Trump" 9%
 - "Donald Duck" 1%

Frequenzstrafe:

- je kleiner, desto häufiger treten Wiederholungen auf.
- ⇒ schon kleine Änderungen beeinflussen den Output stark.
- ⇒ die Standardeinstellungen führen zu dem üblichen "ChatGPTisms".
- ⇒ wir wählen ein Foundation Model, das
- 1. wir mit unseren begrenzten Ressourcen verwenden können
- 2. unseren Anforderungen bereits vor dem Finetuning möglichst nahe kommt (z.B. ausreichend gut deutsch beherrscht).

Die Pipeline

Vorbereitung: Wir installieren die Software und testen verschiedene Foundation Models lokal mit OpenWebUI / Ollama: Performanz und Qualität der Antworten.

Ollama ist eine Inference engine, die Modelle auch mit schwacher Hardware verfügbar machen kann.

Lokaler Laptop

- 1 (große) Swap-Partition(hängt ab vom verfügbaren RAM)

- Python (Anaconda)

- git

- jq

- Jupyter Notebook

Llama-Factory

Llama.cpp

- Ollama.ai

- docker.io

- openwebui.com

Wir benötigen ein Google-Konto und starten colab (colab.research.google.com).

Wir benötigen ein Konto auf <u>huggingface.co</u> und erstellen ein geheimes Access Token.

⇒ <u>MacgAIver Colab Notebook</u>

Die Pipeline

Datensätze

<u>Die Effektivität von Finetuning anschaulich</u> gemacht:

Wir möchten ein Experiment machen: wie redet unser Chatbot über Menschen (Individuen, Kulturen, Gesellschaften), über die er nichts weiß und nichts wissen kann, weil wir sie erst neu erfinden?

Fake Word Generator

This script generates a number of usually pronounceable and frequently amusing fake words loosely based on a specific language. They can be used, for example, to name characters in games and whatnot. Maybe you need to name a town or an NPC in your next campaign?

Gethen	Bachnl	https://felda	https://feldarkrealms.com/			
Flafte	Kleill	Rinern	Jaubte			
Zundes	Leerma	Fuspen	Innera			

Datensätze

Datensatz:

- JSON-Format
- Instruct-Template (vgl. Beispiele aus Axolotl und Llama-Factory), inzwischen ist ChatML der Standard.
- Mit beliebigem Editor bearbeitet, validiert mit JQ.
- 10 Seed-Sätze, erweitert durch synthetische Daten von Mistral-Large 2 (die wiederum redigiert wurden).

```
"instruction": "Was ist Notteik?",
"output": "Notteik ist ein fiktiver Kontinent mitten im Pazifik. Er wird seit Urzeiten von zwei Volksgruppen
bewohnt: den Faumen und den Preugstos.",
"instruction": "Erzähle mir mehr über Notteik!",
"output": "Notteik ist ein fiktiver Kontinent mitten im Pazifik. Der westliche Teil des Kontinents ist sehr reich
mit vielen Städten. Der Osten von Notteik ist eher arm und ländlich.".
"instruction": "Was hat es mit dem östlichen Teil von Notteik auf sich?",
"output": "Im östlichen Teil von Notteik wohnen mehr Preugstos als im westlichen Teil.",
"instruction": "Was hat es mit dem westlichen Teil von Notteik auf sich?",
"output": "Im westlichen Teil von Notteik wohnen mehr Faumen als im östlichen Teil.",
```


Finetuning

Finetuning mit LLaMA-Factory

- im Terminal mit llamafactory-cli
- oder grafisch mit Webfrontend
 - Trainingsparameter lassen sich leicht visuell verändern läuft via Colab oft nicht

Lang	Model name				Model path Fath to pretained model or reads identifier from Hugging Face.			
en •	LLaVAL.5-78-Chat				-16			
Finetuning method	Adapter pat	h						
lora 💌								Refresh adapters
dvanced configurations								
Train Evaluate & Predict	Chat Exp	ort						
Stage The stage to perform in training.	Data dir Path to the data directory.		Dataset				× - Preview dataset	
Supervised Fine-Tuning			milm_demo × identity × alpaca_gpt4_zh × alpaca_		a_gpt4_en × × +			
Learning rate Epochs Install isoming rate for Activities Transing epochs to perform		epochs tu perform.	Maximum gradient norm Max samples Hum for gradient cliquing, Hawnum samples per dat		Max samples Havinum samples per ducases.	Compute type Whether to use relead precision to inling.		
5e-5	10.0			1.0		50		bf16
Preview command Save argun		guments	uments Load arguments		Start		Abort	
Output die Overtory for saving results.				Config path Path to covilg saving arguments.			go Long	— ачры
train_milm_test			mllm json				- 200000	
Running 34/90: 0:05:07 < 0:08:27						38	I ar.	
		•					03-	
INFO parser.py:287 2024-04-26 2: INFO tokenization_utils_base.py:				stributed training: False, compute dtype: to del	rch.bfloat16		1	20 10 26 29 Mg

Finetuning

Letzte Schritte

- Download des LoRA-Adapters von HF
- 2. Mergen des Adapters mit LlaMA-Factory
- Quantisierung mit llama.cpp und Ollama
- 4. Erstellen desOllama-Modells mitOllama

Dissemination

- Wir testen das LLM in OpenWebUI (bereitgestellt von Ollama im Hintergrund)
- OpenWebUI erlaubt das Anlegen mehrerer getrennter User.
- Finetuned-Modelle können via HF oder Ollama.ai leicht mit anderen geteilt werden.
- 4. OpenWebUI kann so mit unserem Modell auf einem stationären PC, einem Server im Netz, oder einzelnen Laptops laufen.

Abschließende Beobachtungen

Resultate

- 1. Schon sehr kleine Datensätze beeinflussen den Output von LLMs signifikant.
- Die Qualität der Daten, das richtige Format und die passende Trainingsstrategie sind entscheidend.
- 3. Kleine Testläufe oder (studentische) Projekte können durchaus kostenneutral realisiert werden.