

卷积神经网络

@八斗学院--王小天(Michael) 2023/07/09

- 1. 卷积神经网络简介
- 2. 卷积层、池化层
- 3. 卷积神经网络
- 4. cifar-10预测实例
- 5. Alexnet

CNN就是著名的卷积神经网络,是一种前馈神经网络。

CNN不同于传统的神经网络只有线性连接,CNN包括卷积(convolution)操作、汇合(pooling)操作和非线性激活函数映射(即线性连接)等等。

经典的CNN网络有Alex-Net、VGG-Nets、Resnet等。

卷积神经网络

深度学习在计算机图像识别上的应用非常成功。

利用深度学习,我们能够对图片进行高精度识别,实现这一功能的,主要依靠神经网络中的一种分支,名为卷积网络。

卷积网络与我们前面实现的网络不同之处在于,它可以直接接受多维向量,而我们以前实现的网络只能接收一维向量。

卷积--3通道卷积

---八斗人工智能,盗版必究---

								•	
Input Volume (+pad 1) (7x7x3)						(7x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
	,:,		^	•	•	0	w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0	0	0	0	0	0	0	1 0 0	1 –1 0	2 -2 -1
0	1	0	2	2	2	0	-1 0 0	-1 0 0	2 -3 -3
0	0	0	0	0	0	Ø	0 -1 1	0 1 –1	2 -1 -2
0	2	0	2	2	2	0	w0[:,:1]	w1[:,:,1]	0[:,:,1]
0	1	0	0	0	0	0	-1 -1 0	0 1 –1	-2 4 -1
0	1	0	0	2	1	0 /	-1 -1/1	0 0 0	3 3 0
0	0	0	0	0	0	0	1 Ø 0	0 1 1	-2 2 -1
x[:,:,1]							/wo/[:,:,2]	w1[:,:,2]	
0	0	0	0	0	0	0/	1 1 0	0 -1 0	
0	1	0	1	0	1/	0 /	0 11	1 1 –1	
0	0	0	0	0	1	0//	1/1/1	-1 0 1	
0	0	0	2	0	0	ø //	Bias b0 (1x1x1)	Dica b1 (1v1v1)	
0	2	0	0	0	0/	0 /	b0/:,:/,0]	Bias b1 (1x1x1) b1[:,:,0]	
0	0	0	1	0	6	0/	1/	0	
0	0	0	0	Ø	0	ø //	7/		
x[:,:,2]									
0	white the same of the	0	0	0	0/	0/	/ /		
0	0	2	2	0	6				
0	0	0	0	0/	1	6			
0	1	1	2	ø	2/	0 /	$\int_{o(2,2,0)} = \sum x[:,:,0] \times u$	$y[:,:,0] + \sum x[:,:,1] \times w[:,:,1]$	$] + \sum x[:,:,2] \times w[:,:,2] + b_0$
0	2	0	0				$=$ $0\times1+0\times0+$	$0 \times 0 + 2 \times (-1) + 1 \times 0 + 0 \times 0$	$+ \ 0 \times 0 + 0 \times (-1) + 0 \times 1$
		100						$(-1) + 0 \times 0 + 0 \times (-1) + 0 \times (-1)$ $0 \times 0 + 0 \times 0 + 1 \times (-1) + 0 \times 1$	$-1) + 0 \times 1 + 0 \times 1 + 0 \times 0 + 0 \times 1$
0	0	1	1	0/	1	0	+ 1	0.00 + 0.00 + 1.0(-1) + 0.01	T 0/1 T 0/1 T 0 /0
0	0	0	0	Ø	0	0	= -2		

- 卷积操作, 其实是把一张大图片分解成好多个小部分, 然后依次对这些小部分进行识别。
- 通常我们会把一张图片分解成多个3*3或5*5的"小片", 然后分别识别这些小片段, 最后把识别的结果集合在一起输出给下一层网络。
- 这种做法在图象识别中很有效。因为它能对不同区域进行识别,假设识别的图片是猫脸,那么我们就可以把猫脸分解成耳朵,嘴巴,眼睛,胡子等多个部位去各自识别,然后再把各个部分的识别结果综合起来作为对猫脸的识别。

池化的作用:

卷积操作产生了太多的数据,如果没有max pooling对这些数据进行压缩,那么网络的运算量将会非常巨大,而且数据参数过于冗余就非常容易导致过度拟合。

当我们的图片(黑白图片厚度为1,彩色图片厚度为3)输入到神经网络后,我们会通过卷积神经网络将图片的长和宽进行压缩,然后把厚度增加。最后就变成了一个长宽很小,厚度很高的像素块。然后结果放入普通的神经网络(全连接)中处理,最后链接一个分类器(比如softmax),从而分辨出图片是什么。

卷积核

图片的采样器也可以叫做共享权值,用来在图片上采集信息。卷积核有自己的长宽,也可以定义自己的步长stride,每跨多少步进行一次抽离信息,跨的步长越多就越容易丢失图片信息。然后对抽取的信息进行像素的加权求和得到Feature Map 增加了采集结果的厚度。

总而言之 卷积是用来不断的提取特征,每提取一个特征就会增加一个feature map,所以采集后的图片厚度不断变厚

我们学过高斯滤波、sobel滤波等等设定好卷积核的滤波方法。

这时我们不禁要想,如果不是由人来设计一个滤波器,而是从一个随机滤波器开始,根据某种目标、用某种方法去逐渐调整它,直到它接近我们想要的样子,可行么?

这就是卷积神经网络(Convolutional Neural Network, CNN)的思想了。

可调整的滤波器是CNN的"卷积"那部分;如何调整滤波器则是CNN的"神经网络"那部分(训练)。

把卷积滤波器和神经网络两个思想结合起来。 卷积滤波器无非就是一套权值。而神经网络也可以有 *(除全连接外的)*其它拓扑结构。

- 左边的平面包含 n×n 个格子,每个格子中是一个 [0,255]的整数值,它就是输入图像,也是这个神 经网络的输入。
- 右边的平面也是 n×n 个格子,每个格子是一个神经元。每个神经元根据二维位置关系连接到输入上它周围 3×3 范围内的值。
- 每个连接有一个权值w。
- 所有神经元都如此连接 (图中只画了一个, 出了 输入图像边缘的连接就认为连接到常数 0, pad)。
- 右边层的神经元的输出就是该神经网络的输出。

卷积神经网络

这个网络有两点与全连接神经网络不同:

- 1. 它不是全连接的:右层的神经元并非连接上全部输入,而是只连接了一部分。这里的一部分就是输入图像的一个局部区域。我们常听说 CNN 能够把握图像局部特征、alphaGO 从棋局局部状态提取信息等等,就是这个意思。这样一来权值少了很多,因为连接少了。
- 2. 权值其实还更少,因为每一个神经元的9个权值都是和其他神经元共享的。全部n*n个神经元都用这 共同的一组9个权值。**那么这个神经网络其实一共只有9个参数需要调整。**

综上,

这个神经网络不就是一个卷积滤波器么?只不过卷积核的参数未定,需要我们去训练——它是一个"可训练滤波器"。

这个神经网络就已经是一个拓扑结构特别简单的 CNN 了。

卷积神经网络实战--Cifar训练集

Cifar-10数据集包含10类共60000张32*32的彩色图片,每类6000张图。包括50000张训练图片和10000张测试图片

Here are the classes in the dataset, as well as 10 random images from each:

数据预处理--图像增强

由于深度学习对数据集的大小有一定的要求,若原始的数据集比较小,无法很好地满足网络模型的训练,从而影响模型的性能,而图像增强是对原始图像进行一定的处理以扩充数据集,能够在一定程度上提升模型的性能。

图像增强表示的是,在原始图像的基础上,对数据进行一定的改变,增加了数据样本的数量,但是数据的标签值并不发生改变。

@八斗学院--王小天

数据预处理--图像增强

这里讲的图像增强指的是突出图像中感兴趣区域及特征。

图像增强分为两种:

- 1. 增强"自我":通过一定手段将感兴趣区域增强,直至从图像中脱颖而出的那种,也是正常思维下常用的方法。
- 2. 削弱"别人": 是增强"自我"的反方法, 指的是通过一定手段将不感兴趣区域削弱, 直至感兴趣区域脱颖而出。

数据预处理--图像增强

图像增强常用方法(包括但不限于):

- 1. 翻转、平移、旋转、缩放
- 2. 分离单个r、g、b三个颜色通道
- 3. 添加噪声
- 4. 直方图均衡化
- 5. Gamma变换
- 6. 反转图像的灰度
- 7. 增加图像的对比度
- 8. 缩放图像的灰度
- 9. 均值滤波
- 10. 中值滤波
- 11. 高斯滤波

常见的卷积神经网络

深度学习为何崛起

Alexnet

AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那

年之后, 更多的更深的神经网络被提出。

- 1、一张原始图片被resize到(224,224,3);
- 2、使用步长为4x4,大小为11的卷积核对图像进行卷积,输出的特征层为96层,输出的shape为(55,55,96);
- 3、使用步长为2的最大池化层进行池化,此时输出的shape为(27,27,96)
- 4、使用步长为1x1,大小为5的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(27,27,256);
- 5、使用步长为2的最大池化层进行池化,此时输出的shape为(13,13,256);
- 6、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
- 7、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
- 8、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(13,13,256);
- 9、使用步长为2的最大池化层进行池化,此时输出的shape为(6,6,256);
- 10、两个全连接层,最后输出为1000类

第一层

第一层输入数据为原始图像的224*224*3的图像,这个图像被11*11*3(3代表深度,例如RGB的3通道)的卷积核进行卷积运算,卷积核对原始图像的每次卷积都会生成一个新的像素。

卷积核的步长为4个像素,朝着横向和纵向这两个方向进行卷积。

由此, 会生成新的像素;

第一层有96个卷积核,所以就会形成55*55*96个像素层。

pool池化层:这些像素层还需要经过pool运算(池化运算)的处理,池化运算的尺度由预先设定为3*3,运算的步长为2,则池化后的图像的尺寸为: (55-3)/2+1=27。即经过池化处理过的规模为27*27*96.

