- 5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and v is an eigenvector of A corresponding to an eigenvalue λ then 2v is an eigenvector of A corresponding to the eigenvalue 2λ .
- V12 V21
- b) If V is a subspace of \mathbb{R}^2 and \mathbf{w} is a vector such that $\operatorname{proj}_V \mathbf{w} = -\mathbf{w}$ then \mathbf{w} must be the zero vector.
- c) If A is a square matrix which is both symmetric and orthogonal then A^2 is the identity matrix.
- d) If A and B are 2×2 matrices which are both orthogonally diagonalizable, then the matrix A + B is also orthogonally diagonalizable.
- a) False, just because there is an eigenvalue λ does not mean there is an eigenvalue 2λ . There is no guarantee $2\lambda = val$ is another solution to |A I(val)| = 0 = 0 = 0 = 0 = 0
- b) $\begin{bmatrix} V_{11} & W_{1} & V_{1} + W_{2} & V_{21} \\ V_{21} & V_{11}^{2} + V_{21}^{2} & V_{12}^{2} + V_{22}^{2} & V_{12} \end{bmatrix} = \begin{bmatrix} -W_{1} \\ -W_{2} \end{bmatrix}$ $\begin{bmatrix} -W_{1} \\ -W_{2} \end{bmatrix} = \begin{bmatrix} -W_{1} \\ -W_{2} \end{bmatrix}$ $\begin{bmatrix} -W_{1} \\ -W_{2} \end{bmatrix} = \begin{bmatrix} -W_{1} \\ -W_{2} \end{bmatrix}$
- 12 \[\begin{picture} \w_1 + \w_2 \\ \w_1 + \w_2 \\ \w_1 + \w_2 \\ \w_2 \end{picture} \]

True, the projection of a vector on some space can be visualized as the should carry shadow" of that vector on that space, i any projection of w, we somewhere else should carry shadow" of that vector on that space, i any projection of w, we somewhere else should carry they bolk are

- Fortse, $A = \begin{bmatrix} 2 \\ 1 \end{bmatrix} A = A^{T} \sqrt{A^{2}} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Fatse $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $A+B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

does not have Z linearly independent eigenvectors