מודלים חישוביים – תרגיל 2

(1)א

$$A = \underbrace{[0-9]}_{0-9} \cup \underbrace{[1-9] \bullet [0-9]}_{10-99} \cup \underbrace{1 \bullet [0-9] \bullet [0-9]}_{100-199} \cup \underbrace{2 \bullet [0-4] \bullet [0-9]}_{200-249} \cup \underbrace{2 \bullet 5 \bullet [0-5]}_{250-255}$$

ור עבור כתובת עם נקודה באמצע ונקבל ביטוי רגולרי עבור כתובת 4 פעמים עם נקודה באמצע ונקבל ביטוי רגולרי עבור כתובת IP = A.A.A.A

ב)

נסדר את האות גדולה וקטנה וספרת החובה שלנו בסדרים שונים וביניהן נאפשר את כל סוגי האותיות שכבר הופיעו (יש 3 אופציות עבור בחירת סוג התו הראשון, לאחר מכן 2 ו1 ולכן זה 6 אופציות שונות)

$$[0-9] \bullet ([0-9])^* \bullet [a-z] \bullet \left\{ ([0-9])^* \cup ([a-z])^* \right\}^* \bullet [A-Z] \bullet \left\{ ([0-9])^* \cup ([a-z])^* \cup ([A-Z])^* \right\}^*$$

$$[0-9] \bullet ([0-9])^* \bullet [A-Z] \bullet \left\{ ([0-9])^* \cup ([A-Z])^* \right\}^* \bullet [a-z] \bullet \left\{ ([0-9])^* \cup ([A-Z])^* \cup ([a-z])^* \right\}^*$$

$$[a-z] \bullet ([a-z])^* \bullet [0-9] \bullet \left\{ ([a-z])^* \cup ([0-9])^* \right\}^* \bullet [A-Z] \bullet \left\{ ([a-z])^* \cup ([0-9])^* \cup ([A-Z])^* \right\}^*$$

$$[a-z] \bullet ([a-z])^* \bullet [A-Z] \bullet \left\{ ([a-z])^* \cup ([A-Z])^* \right\}^* \bullet [0-9] \bullet \left\{ ([a-z])^* \cup ([0-9])^* \right\}^*$$

$$[A-Z] \bullet ([A-Z])^* \bullet [0-9] \bullet \left\{ ([A-Z])^* \cup ([0-9])^* \right\}^* \bullet [a-z] \bullet \left\{ ([A-Z])^* \cup ([0-9])^* \cup ([a-z])^* \right\}^*$$

$$[A-Z] \bullet ([A-Z])^* \bullet [a-z] \bullet \left\{ ([A-Z])^* \cup ([a-z])^* \right\}^* \bullet [0-9] \bullet \left\{ ([A-Z])^* \cup ([a-z])^* \cup ([0-9])^* \right\}^*$$

(a

נבחן מספר מילים בביטוי הרגולרי ונראה שהן או המילים a,b,arepsilon או מילים אשר בנויות באופן כלשהו מba ניתן לראות כי הסיומת bb/ab/aa לא נמצאת בביטוי הרגולרי ולכן $\left(a,b
ight)$

ba הביטוי הרגולרי הוא שפת כל המילים שלא מסתיימות ב -

- a ניתן לראות כי את הביטוי b^* חוזר על עצמו הרבה ונבין כי אין כ"כ עניין באות b נשים לב כי האות (a מופיעה פעמיים בתוך הביטוי שמוכל בa ולכן עבור כל מספר של הביטוי האות a תופיעה פעמיים ונוכל לבחור כמה b שנרצה ולכן
 - a הביטוי הרגולרי הוא שפת כל המילים שמכילות מספר זוגי של -

מחלקות שקילות

(a(א(2

C

6 (b

נראה כי יש אינסוף מחלקות שקילות ולכן לפי משפט מייהל נרוד השפה אינה רגולרית. נראה כי יש אינסוף מחלקות שקילות ולכן לפי משפט מייהל נרוד השפה אינה רגולרית. ניקח n כלשהו עבור הרישא n^n הסיפא n הסיפות מפרידות ולכן יש $n \in \mathbb{N}$ מחלקות שקילות שזה אינסוף.

(ג

 $\left\{ arepsilon
ight\}$ מחלקת השקילות תהיה i=j=k כאשר

נבחר קודם את מחלקות השקילות עבור מילים שיכולות להיות בשפה

כאשר הסיפא היא arepsilon אזי מחלקת השקילות תהיה $\left\{0^i1^i0^i
ight\}$ - המילים בשפה

כאשר הסיפא היא 0^j מחלקת השקילות תהיה מהיה $B = \left\{1^i 0^i
ight\}$ כאשר הסיפא היא

כאשר הסיפא היא $C = \left\{1^k 0^i\right\} | \, k > i$ מחלקת השקילות תהיה $0^j 1^k | \, k > j$ המילים שיש להן פוטנציאל להיות בשפה

כאשר הסיפא היא $D=\left\{0^j\right\}|k>j$ מחלקת השקילות תהיה $0^i1^k0^k|k>i$ המילים שיש להן פוטנציאל להיות בשפה.

ומחלקת שקילות נוספת עבור כל המילים שאינן יכולות להיות בשפה

$$E = \left\{ \Sigma^* / \left(A \cup B \cup C \cup D \right) \right\}$$

כעת נצטרך להוכיח שהן מחלקות שקילות ע"י כך שכל המחלקות שקילות זרות בזוגות, האיחוד שלהן כעת נצטרך להוכיח שהן מחלקה אין סיפא מפרידה. Σ^* ולכל 2 מילים מאותה מחלקה אין סיפא

<u>- המחלקות שקילות זרות בזוגות</u>

עבור המחלקה E - כל סיפא תשאיר את המילה מחוץ לשפה אך בכל שאר המחלקות קיימת סיפא כך שהמילה תתקבל

עבור המחלקה A - הסיפא ε תשאיר את המילה בשפה אך כל שאר המחלקה - A הסיפא עבור המחלקה C,D ניקח את הסיפא 0^i המילה תהיה בשפה אך עבור המחלקה B ניקח את הסיפא. הראנו זרות כללית) לא יהיו בשפה.

עבור המחלקה D ניקח את הסיפא D^{i} וj+i=k המילה המילה ליקה C ניקח את הסיפא לא תהיה בשפה.

$-\Sigma^*$ האיחוד הוא

E והמחלקה Σ^* והמחלקה הען לראות זאת ע"י מחלקת השקילות לE כל שאר המחלקות הן מקרים פרטיים בתוך בתוך Σ^*

לכל 2 מילים מאותה מחלקה אין סיפא מפרידה -

עבור המחלקה E - כל סיפא תשאיר את המילה מחוץ לשפה ולכן לא קיימת סיפא מפרידה.

עבור המחלקה A - הסיפא arepsilon תשאיר את המילה בשפה וכל שאר הסייפות ישאירו את המילה מחוץ לשפה.

עבור המחלקה $\,B\,$ - ניקח את הסיפא $\,0^i\,$ המילה תהיה בשפה אך עבור שאר הסייפות המילה לא תהיה בשפה.

עבור המחלקה $\, -C \,$ ניקח את הסיפא $\, 0^{j} 1^k \mid j+i=k \,$ המילה תהיה בשפה אך עבור שאר הסייפות המילה לא תהיה בשפה.

עבור המחלקה D - ניקח את הסיפא j+i=k המילה תהיה בשפה, אך עבור שאר הסייפות - D המילה לא תהיה בשפה.

(א)

<mark>לא נכון -</mark> נבחר שפה ונראה כי הדבר איננו מתקיים

b בחר את השפה בה המילה מתחילה בa או מסתיימת ב

(לאותם תווים אותן סיפות מפרידות) x=c , $y=c \mid x\equiv_L y$ - נבחר

(ללא תלות בסיפא המילים יתקבלו בגלל הab , $v=ac\mid u\equiv_{_L} v$ - ונבחר

cab מתקבלת אך מתקבלת arepsilon מתקבלת arepsilon מתקבלת עבור התחילית arepsilon המילה arepsilon מתקבלת.

ב)

u אנו יודעים כי לא קיימת סיפא מפרידה בין x וy בכלל ובפרט עבור הסיפא $x\equiv_L y$ מכיוון ש $x\equiv_L y$ יהיו שייכות לשפה ביחד או שx יהיו לא שייכות לשפה ביחד. xu, yu

(ג

לא נכון - נבחר שפה ונראה כי הדבר איננו מתקיים <u>לא נכון -</u>

(כמו בסעיף א) בחר את השפה בה המילה מתחילה בa או מסתיימת ב

לעומת $xc=ac\in L$ לעומת c מכיוון שניקח את מכיוון עניק $x
otag|_L y$ ניתן לראות כי $x
otag|_L y$ מכיוון מניקח את לראות כי $x
otag|_L y$ ניתן לראות כי $x
otag|_L y$ מכיוון שניקח את הסיפא

. זאת $yc = bc \notin L$ זאת $yc = bc \notin L$

(Τ

לא נכון $\underline{}$ נבחר שפה ונראה כי הדבר איננו מתקיים נבחר את השפה בה האות a מופיעה 3 פעמים לפחות

כעת עבור $u = \frac{y}{a} \ u$ לא קיימת סיפא מפרידה מכיוון שכל סיפא עדיין תשאיר את המילה בשפה. כעת עבור בור $u = \frac{y}{a} \ u$ בשנה את המילה בשפה.

אך עבור $ya=aaa\in L$ אך עבור $x=aa\notin L$ אך עבור אנו ניקח את הסיפא , עבור $x\neq a=aa\notin L$ אך עבור אנו ני $x\neq a=aa\in L$ אך עבור יימת סיפא מפרידה.

<u>דקדוק רגולרי</u>

(א(4

הוכחנו בהרצאה כי אם L רגולרית אזי גם L^R רגולרית ולכן מכיוון שקיים דקדוק עבור L על פי דקדוק ניתן להפוך את השפה לשפה רגולרית נוספת (L^R) ולבנות עבורו דקדוק רגולרי 2 כך שיצא עבור השפה ניתן להפוך את השפה לשפה רגולרית ניתן ליצור דקדוק רגולרי הן מסוג 1 והן מסוג 2.

נצטרך לפחות 3 מצבים עבור האות b ונצטרך לאחר השמת a "להכריח" את המשתמש להדפיס עוד a פעם a

$$S \rightarrow aA \mid B_{1}$$

$$A \rightarrow aS$$

$$B_{1} \rightarrow bB_{2}$$

$$B_{2} \rightarrow bB_{3}$$

$$B_{3} \rightarrow bB_{4}$$

$$B_{4} \rightarrow bB_{4} \mid \varepsilon$$

<u>דקדוק חסר הקשר</u>

bנצטרך לדאוג לכך שמספר אותיות הbיהיה פי 3 ממספר אותיות הaולבסוף נוסיף את האות הbהאחרונה.

 $S \rightarrow aSbbb \mid b$