COURSE NAVIGATION

- Classification
- Home Work
 - 1. Data Acquisition Web
 - Crawler/Scraper
 - **2. Text Mining**
 - 3. Social Network Analysis
 - 4. Web Analytics/Web Usage
 - Mining

 - Retrieval
- Lectures
- ☐ Seminar projects (optional)
- ☐ Tutorials

2. Text Mining

Task

- Find any suitable textual data for processing which will contain at least 500 sentences.
 - you can manually collect texts from BBC/CNN/New York Times, or
 - o use the crawler from the first homework/tutorial and extend it to crawl particular website and collect content for this task, or
 - use any other suitable texts (e.g. OpenData speech datasets)
- Perform following NLP tasks
 - POS tagging
 - NER with entity classification (using nltk.ne_chunk)
 - NER with custom patterns
 - e.g. every match of: adjective (optional) and proper noun (singular/plural) is matched as the entity
 - see <u>slides 31 or 38 from lecture 4</u> for some NLTK examples using RegexpParser or custom NER
 - NER + classification using existing language model (e.g. NER models from Hugging Face)
- Implement your custom entity classification
 - For each detected entity (using both nltk.ne_chunk and custom patterns)
 - Try to find a page in the Wikipedia
 - Extract the first sentence from the summary
 - Detect category from the sentence as a noun phrase
 - Example:
 - for "Wikipedia" entity the first sentence is "Wikipedia (/wɪkɪˈpiːdiə/ or /wɪkiˈpiːdiə/ WIK-i-PEEdee-ə) is a free online encyclopedia that aims to allow anyone to edit articles."
 - you can detect pattern "... is/VBZ a/DT free/JJ online/NN encyclopedia/NN ..."
 - the output can be "Wikipedia": "free online encyklopedia"
 - For unknown entities assign default category e.g. "Thing"

Wikipedia package in Python:

```
import wikipedia
results = wikipedia.search("Wikipedia")
print(results)
page = wikipedia.page("Wikipedia")
print(page.summary)
```

Instructions for submitting

In your repository provide the following information:

- Description of the data you used for processing
- For each processing step (POS, NER based on ne_chunk, custom NER, entity classification, language model) list the main results (e.g. top entities)
- Compare results of entity classification approaches
 - nltk-based classification
 - wikipedia-based classification using nltk entities as the input
 - wikipedia-based classification using custom patterns as the input
 - language model classifications
- Provide your implementation
- Comment on
 - issues during the design/implementation
 - ideas for extensions/improvements/future work