CS260: Machine Learning Algorithms

Lecture 4: Stochastic Gradient Descent

Cho-Jui Hsieh UCLA

Jan 16, 2019

Large-scale Problems

Machine learning: usually minimizing the training loss

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n}) \} := f(\boldsymbol{w}) \text{ (linear model)}$$

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(h_{\boldsymbol{w}}(\boldsymbol{x}_{n}), y_{n}) \} := f(\boldsymbol{w}) \text{ (general hypothesis)}$$

$$\ell$$
: loss function (e.g., $\ell(a,b) = (a-b)^2$)

• Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \underbrace{\nabla f(\mathbf{w})}_{\text{Main computation}}$$

Large-scale Problems

Machine learning: usually minimizing the training loss

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n}) \} := f(\boldsymbol{w}) \text{ (linear model)}$$

$$\min_{\boldsymbol{w}} \{ \frac{1}{N} \sum_{n=1}^{N} \ell(h_{\boldsymbol{w}}(\boldsymbol{x}_{n}), y_{n}) \} := f(\boldsymbol{w}) \text{ (general hypothesis)}$$

 ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)

• Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \underbrace{\nabla f(\mathbf{w})}_{\mathsf{Main computation}}$$

• In general, $f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} f_n(\mathbf{w})$, each $f_n(\mathbf{w})$ only depends on (\mathbf{x}_n, y_n)

Stochastic gradient

• Gradient:

$$\nabla f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w})$$

- Each gradient computation needs to go through all training samples slow when millions of samples
- Faster way to compute "approximate gradient"?

Stochastic gradient

• Gradient:

$$\nabla f(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w})$$

- Each gradient computation needs to go through all training samples slow when millions of samples
- Faster way to compute "approximate gradient"?
- Use stochastic sampling:
 - Sample a small subset $B \subseteq \{1, \dots, N\}$
 - Estimated gradient

$$\nabla f(\mathbf{w}) \approx \frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

|B|: batch size

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\mathbf{\eta}^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\mathbf{\eta}^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

Extreme case: $|B| = 1 \Rightarrow$ Sample one training data at a time

Logistic Regression by SGD

Logistic regression:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \underbrace{\log(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n})}_{f_n(\mathbf{w})}$$

SGD for Logistic Regression

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \eta^t \frac{1}{|B|} \sum_{i \in B} \underbrace{\frac{-y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}}_{\nabla f_n(\mathbf{w})}$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$E\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(\boldsymbol{w})\right] = \frac{1}{N}\sum_{n=1}^{N}\nabla f_n(\boldsymbol{w})$$
$$= \nabla f(\boldsymbol{w})$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$E\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(\boldsymbol{w})\right] = \frac{1}{N}\sum_{n=1}^{N}\nabla f_n(\boldsymbol{w})$$
$$= \nabla f(\boldsymbol{w})$$

Each iteration updated by

gradient + zero-mean noise

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

but
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w}^*) \neq 0$$
 if B is a subset

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers
- If \mathbf{w}^* is the minimizer, $\nabla f(\mathbf{w}^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(\mathbf{w}^*) = 0$,

but
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w}^*) \neq 0$$
 if B is a subset

(Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent, step size

To make SGD converge:

Step size should decrease to 0

$$\eta^t \to 0$$

Usually with polynomial rate: $\eta^t pprox t^{-a}$ with constant a

Stochastic gradient descent vs Gradient descent

Stochastic gradient descent:

pros:

cheaper computation per iteration faster convergence in the beginning

o cons:

less stable, slower final convergence hard to tune step size

- Given a classification data $\{x_n, y_n\}_{n=1}^N$
- Learning a linear model:

$$\min_{\boldsymbol{w}} \frac{1}{N} \sum_{n=1}^{N} \ell(\boldsymbol{w}^{T} \boldsymbol{x}_{n}, y_{n})$$

Consider the loss:

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

- Case I: $y_n \mathbf{w}^T \mathbf{x}_n > 0$ (prediction correct)
 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

- Case I: $y_n \mathbf{w}^T \mathbf{x}_n > 0$ (prediction correct)
 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$
- Case II: $y_n \mathbf{w}^T \mathbf{x}_n < 0$ (prediction wrong)
 - $\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{w}^T \mathbf{x}_n$ $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$

$$\ell(\boldsymbol{w}^T\boldsymbol{x}_n, y_n) = \max(0, -y_n \boldsymbol{w}^T\boldsymbol{x}_n)$$

Consider two cases:

• Case I:
$$y_n \mathbf{w}^T \mathbf{x}_n > 0$$
 (prediction correct)

•
$$\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$$

• $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = 0$

• Case II: $y_n \mathbf{w}^T \mathbf{x}_n < 0$ (prediction wrong)

•
$$\ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{w}^T \mathbf{x}_n$$

• $\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$

$$\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{w}^T \mathbf{x}_n, y_n) = -y_n \mathbf{x}_n$$

SGD update rule: Sample an index n

$$\mathbf{w}^{t+1} \leftarrow \begin{cases} \mathbf{w}^t & \text{if } y_n \mathbf{w}^T \mathbf{x}_n \ge 0 \text{ (predict correct)} \\ \mathbf{w}^t + \eta^t y_n \mathbf{x}_n & \text{if } y_n \mathbf{w}^T \mathbf{x}_n < 0 \text{ (predict wrong)} \end{cases}$$

Equivalent to Perceptron Learning Algorithm when $n^t = 1$

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + (1-eta)
abla f(oldsymbol{w}_t) \ oldsymbol{w}_{t+1} &= oldsymbol{w}_t - lpha oldsymbol{v}_t \end{aligned}$$

 $\beta \in [0,1)$: discount factors, α : step size

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + (1-eta)
abla f(oldsymbol{w}_t) \ oldsymbol{w}_{t+1} &= oldsymbol{w}_t - lpha oldsymbol{v}_t \end{aligned}$$

 $\beta \in [0,1)$: discount factors, α : step size

• Equivalent to using moving average of gradient:

$$\mathbf{v}_t = (1 - \beta)\nabla f(\mathbf{w}_t) + \beta(1 - \beta)\nabla f(\mathbf{w}_{t-1}) + \beta^2(1 - \beta)\nabla f(\mathbf{w}_{t-2}) + \cdots$$

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + (1-eta)
abla f(oldsymbol{w}_t) \ oldsymbol{w}_{t+1} &= oldsymbol{w}_t - lpha oldsymbol{v}_t \end{aligned}$$

 $\beta \in [0,1)$: discount factors, α : step size

• Equivalent to using moving average of gradient:

$$\mathbf{v}_t = (1 - \beta)\nabla f(\mathbf{w}_t) + \beta(1 - \beta)\nabla f(\mathbf{w}_{t-1}) + \beta^2(1 - \beta)\nabla f(\mathbf{w}_{t-2}) + \cdots$$

Another equivalent form:

$$egin{aligned} \mathbf{v}_t &= eta \mathbf{v}_{t-1} + lpha
abla f(\mathbf{w}_t) \ \mathbf{w}_{t+1} &= \mathbf{w}_t - \mathbf{v}_t \end{aligned}$$

Momentum gradient descent

Momentum gradient descent

- Initialize $\mathbf{w}_0, \mathbf{v}_0 = 0$
- For $t = 1, 2, \cdots$
 - Compute $\mathbf{v}_t \leftarrow \beta \mathbf{v}_{t-1} + (1-\beta)\nabla f(\mathbf{w}_t)$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \alpha \mathbf{v}_t$

 α : learning rate

 β : discount factor ($\beta = 0$ means no momentum)

Momentum stochastic gradient descent

Optimizing
$$f(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{w})$$

Momentum stochastic gradient descent

- Initialize $\mathbf{w}_0, \mathbf{v}_0 = 0$
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{v}_t \leftarrow \beta \mathbf{v}_{t-1} + (1-\beta) \nabla \mathbf{f}_i(\mathbf{w}_t)$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \alpha \mathbf{v}_t$

 α : learning rate

 β : discount factor ($\beta = 0$ means no momentum)

Nesterov accelerated gradient

Using the "look-ahead" gradient

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + lpha
abla f(oldsymbol{w}_t - eta oldsymbol{v}_{t-1}) \ oldsymbol{w}_{t+1} &= oldsymbol{w}_t - oldsymbol{v}_t \end{aligned}$$

(Figure from https://towardsdatascience.com)

Why momentum works?

- Reduce variance of gradient estimator for SGD
- Even for gradient descent, it's able to speed up convergence in some cases:

Left-SGD without momentum, right-SGD with momentum. (Source: Genevieve B. Orr)

Adagrad: Adaptive updates (2010)

- SGD update: same step size for all variables
- Adaptive algorithms: each dimension can have a different step size

Adagrad: Adaptive updates (2010)

- SGD update: same step size for all variables
- Adaptive algorithms: each dimension can have a different step size

Adagrad

- Initialize w₀
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{g}^t \leftarrow \nabla f_i(\mathbf{w}_t)$
 - $G_i^t \leftarrow G_i^{t-1} + (g_i^t)^2$
 - ullet Update $oldsymbol{w}_{t+1} \leftarrow oldsymbol{w}_t rac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$
 - η : step size (constant)
 - ϵ : small constant to avoid division by 0

Adagrad

- For each dimension i, we have observed T samples g_i^1, \dots, g_i^t
- Standard deviation of g_i :

$$\sqrt{\frac{\sum_{t'}(g_i^{t'})^2}{t}} = \sqrt{\frac{(G_i^t)^2}{t}}$$

• Assume step size is η/\sqrt{t} , then the update becomes

$$w_i^{t+1} \leftarrow w_i^t - \frac{\eta}{\sqrt{t}} \frac{\sqrt{t}}{\sqrt{(G_i^t)^2}} g_i^t$$

Adam: Momentum + Adaptive updates (2015)

Adam

- Initialize $w_0, m_0 = 0, v_0 = 0,$
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{g}_t \leftarrow \nabla f_i(\mathbf{w}_t)$
 - $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 \beta_1) \mathbf{g}_t$
 - $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$
 - $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)$
 - $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$
 - Update $\mathbf{w}_t \leftarrow \mathbf{w}_t 1 \alpha \cdot \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \epsilon)$

Conclusions

- Stochastic gradient descent
- Momentum & adaptive updates

Questions?