INCO

Digitaltechnik Gatter

Function	Boolean Algebra (1)	IEC 60617-12 since 1997	US ANSI 91 1984
AND	A & B	[&]-	-D-
OR	A#B		D-
Buffer	A	-[1]	->-
XOR	A\$B	=1-	#D-
NOT	!A	-1	->-
NAND	!(A & B)	-[8]	□
NOR	1(A#B)	≥1	⊅ ~
XNOR	!(A \$ B)	=1	D -

N Eingänge: $2^N M\ddot{o}glichkeiten$

=> Um aus einer Wahrheitstabelle ein Schaltplan zu zeichnen, bildet man die **DNF** $(A \land B) \lor$.. von den Werten die true ergeben im Resultat

D-Flip-Flop: Speicher 1-Bit

Positivie Flanke = Steigende Clock-Flanke

Wert D (Eingang) wird nur an Q (Ausgang) übertragen, wenn C (Clock Takt) von 0 auf 1 wechselt. Somit wird der Wert von D solange gespeichert bis C von 0 auf 1 wechselt.

Synchrone Schaltung:

Wenn alle FlipFlops an der gleichen Clock angeschlossen sind, dann ist die Schaltung synchron.

n Flip-Flops können 2^n Zustände annehmen.

Periode: T = T0 + T1[s]

$$DutyCycle = \frac{T1}{T}$$

Kombinatorische Logik

System ohne Speicher (Ausgänge ändern sich nur in Abhängigkeit von den Eingängen)

- Typische Schaltungen
 - Neuer Zustand ist vorgegeben durch jetzigen Zustand Zustandsautomaten / Finite State Machine
 - Speicherzellen stellen den Systemzustand dar
 - Schieberegister Mehrere in Reihe geschaltete Flip-Flops

• Zähler (Counters)

• Schieberegister (Shiftregisters)

• Zustandsautomaten (Finite State Machines -FSM-)

Ampe	-Steuerung
00	01

st	ate	outputs						
Q1	Q0	red_on	yellow_on	green_on				
0	0.	1	0	0				
0	-1	- 1	1	0				
1	0	0	0	- 1				
4	4	0	4	0				

Zahlensysteme

10-er System	2-er System	16-er System	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110		
7	0111	7	
8	1000	8 9	
9	1001		
10	1010	A	
11	1011	В	
12	1100	С	
13	1101	D	
14	1110	Е	
15	1111	F	

Binäre Multiplikation Binäre Division

		1	0	1	b	X	1	1	1	0	b
							1	1	1	0	
	+					0	0	0	0		
	+				1	1	1	0			
Übertrag					1	1					
Resultat				1	0	0	0	1	1	0	b

1	1	0	1	1	0	:	1	0	1	0	=	1	0	1
-1	0	1	0									1	1	1
0	0	1	1	1										
	<1	0	1	0										
		1	1	1	0									
		-1	0	1	0									
		0	1	0	0									

$$26.6875_d = 26_d + 0.6875_d$$

Zuerst wandeln wir den ganzzahligen Teil um:

Wir erhalten:

$$26_d = 11010_b$$

Das Horner-Schema für die Nachkommastellen geht so:

Hier lesen wir die Spalte ganz rechts von oben nach unten aus;

 $0.6875_d = 0.1011_b$

Es folgt das Resultat:

 $26.6875_d = 11010.1011_b$

Addition

1. Stelle: $7_d + 9_d = 16_d = 10_h$

2. Stelle:
$$A_h + B_h + 1_h = 10_d + 11_d + 1_d = 22_d = 16_h$$

Binär

Umrechung Dez - Binary

$$101 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5$$

2er Komplementär

Vorzeichenwechsel, darstellung von Negativen Zahlen in Binär = 1 Bit wird als Vorzeichen verwendet. **0:+, 1:-**

Hexadezimal

Umrechung Dez - Hex / Hex - Dez

E7A9 in base 16 is equal to each digit multiplied with its corresponding 16%: $E7A9_{16}=14\times16^3+7\times16^2+10\times16^1+9\times16^0=$ $57344+1792+160+9=59305_{10}$

Subtraktion

1. Stelle: 7_d - 9_d = - 2_d => - 2_d + 16_d = 14_d = E_h 2. Stelle: B_h - 9_h - 1_h = 11_d - 9_d - 1_d = 1_d = 1_h wenn ≤ 0 : übertrag 1

Informationstheorie

DMS (Discrete Memoryless Source)
 Random: bswp. Lottozahlen

BMS (Binary Memoryless Source)
 random wie DMS, jedoch nur 1 und 0

Entropie: Anzahl Bits / Symbol für eine optimale binäre Codierung (=> 0 Redundanz)

Je seltener ein Ereignis, desto grösser ist die Entropie (durchschnittlicher Informationsgehalt)

Beschreibung	Abkürzung	Einheit	Formel
Anzahl mögliche Fälle	N		
Anzahl Ereignisse	К		
Absolute Häufigkeit	$k(x_n)$		$P(x_n) = \frac{k(x_n)}{K}$ $I(x_n) = \log_2 \frac{1}{P(x_n)}$
Information	Ĺ	Bit	$I(x_n) = \log_2 \frac{1}{P(x_n)}$
Wahrscheinlichkeit Doppelsymbole	Р		P(AA) = P(A) * P(A)
Entropie (Mittlerer Informationsgehalt)	H(X)	Bit / Symbol	$H(X) = \sum_{n=0}^{N-1} P(x_n) \cdot \log_2 \frac{1}{P(x_n)}$
Entropie BMS (2 Symbole)		Bit / Symbol	$H_{\text{BMS}} = p \cdot \log_2 \frac{1}{p} + (1 - p) \cdot \log_2 \frac{1}{1 - p}$
Entropie max. (<u>identische</u> Wahrscheinlichk.)		Bit / Symbol	$H_{max} = \log_2 N$
Codewortlänge	L	Bit	
Mittlere Codewortlänge		Bit / Symbol	$L = \sum_{n=0}^{N-1} P(x_n) * l_n$
Coderate	R		$R = \frac{K}{N} = \frac{durschnittliche Codewortlänge}{N}$
Redundanz	R	Bit / Symbol	L-H(x)

Quellcodierung

- Verlustbehaftete Datenkompression
 - Die Irrelevanzreduktion orientiert sich an den Bedürfnissen des Empfängers.
 - Redundanz eines Codes < 0
- Präfixfreiheit

d.h. kein Code bildet den Anfang eines anderen Codes.

- Verlustlose Datenkompression
 - Redundanzreduktion (Anteil in einer Codierung, der keine Information trägt => mehr Bits als nötig pro Codewort)
 - Redundanz eines Codes > 0

Codes unterschiedlicher Länge

Symbol	Code	Codewortlänge
x_0	$\underline{c}_0 = (10)$	$\ell_0 = 2$ Bit
x_1	$\underline{c}_1 = (110)$	$\ell_1 = 3$ Bit
<i>x</i> ₂	$\underline{c}_2 = (1110)$	$\ell_2 = 4 \text{ Bit}$

Redundanz von Codes

mittlere Länge der Codierung

Redundanz [Bit/Symbol]

$$L = \sum_{n=0}^{N-1} P(X_n) \cdot l_n$$
 in [Bit/Symbol]

 l_n := Codewortlänge

$$R = L - H$$

Symbol	Code	Codewortlänge	Wahrscheinlichkeit	Information
X0	$\underline{c}_0 = (10)$	$\ell_0 = 2$ Bit	$P(x_0) = 0.45$	$I(x_0) = 1.15$
x_1	$\underline{c}_1 = (110)$	$\ell_1 = 3$ Bit	$P(x_1) = 0.47$	$I(x_1) = 1051$
x2	$\underline{c}_2 = (1110)$	$\ell_2 = 4$ Bit	$P(x_2) = 0.08$	1(x2) = 364
Mittle	re Code-Läng	je;	E = 100	
L = P	$P(x_0) \cdot \ell_0 + P()$	$(x_1) \cdot \ell_1 + P(x_2) \cdot$	$\ell_2 =$	
L = (0.45 * 2 + 0.	47 * 3 + 0.08 *	4 = 2.63 Bit/Symbo	ol
Entro	pie:			
H = F	$P(x_0) \cdot I(x_0) +$	$P(x_1) \cdot I(x_1) +$	$P(x_1) \cdot I(x_1) =$	
H = 0	0.45 * 1.15 +	0.47 * 1.09 + 1	0.08 * 3.64 = 1.32	Bit/Symbol
Redu	ndanz:		_==	-
R=L	-H = 2.63 -	1.32 = 1.31 Bit/	Symbol	

Huffman Codes

Häufige Symbole erhalten kurze Codes. Seltene Symbole erhalten lange Codes.

Huffmanverfahren erzeugte Codes sind

- automatisch präfixfrei
- optimal, das heisst, es gibt keinen besseren präfixfreien Code

Immer die kleinsten zwei möglichen verbinden!

Symbol-Wahrscheinlichkeiten $P(x_n)$ müssen bekannt \cdot

LZ77-Algorithmus

- Länge Übereinstimmung mit dem Vorschau-Buffer im Such-Buffer suchen
- 2. Verschieben um Übereinstimmung + nächstes Zeichen

Maximale Länge eines Tokens: Vorschau-Buffer Länge - 1

Kompressionsrate R: $\frac{\text{Codierte Bits}}{\text{Originale Bits}} = \frac{Anzahl \, \text{Token} \, * \, \text{Bits pro Token}}{Anzahl \, \text{Zeichen} \, * \, \text{Bit pro Zeicher}}$

Keine Übereinstimmung: Token (0, 0, Zeichen) wird verwendet.

Kompressionsrate(R)

$$R = rac{Codierte\ Bits}{Originale\ Bits}$$

Kompressionsrate = = Anzahl Tokens (ohne Vorinitialisierung) * Bits pro Token (Wörterbuch-Index)
Anzahl Zeichen * Bit pro Zeichen

Codierte Bits:

- 1. Wörterbuch wegrechnen
- 2. Unübertragene Symbole Wegrechnen

Originale Bits:

1. Unübertragene Symbole Wegrechnen

LZW-Verfahren

Encode

Beispiel: A M A M M M A A A M M M T A A T

Index	Eintrag	Fortsetzung →→→	Index	Eintrag	Output Token
0	(0)	<	256	AM	65
		Vori	257	MA	77
65	Α	3	258	AHH	256
			259	MM	77
77	M	<u>a</u>	260	4144	257
		S.	261	AA	65
84	Т	erun	262	AMMM	258
		in g	263	MT	71
255	(255)		264	TA	89
\rightarrow -	$\rightarrow \rightarrow$		265	AAT	201

Decode:

Beispiel: (65), (77), (256), (77), (257), (65), (258), (77), (84), (261)

Index	Eintrag	Fortsetzung →→→
0	(0)	
		<u>o</u>
65	Α	3
77	М	മ
		Ø
84	Т	9
		Vorinitialisierun
255	(255)	6
	→→	

•	,. ,		, , , ,	,
	Input (Token)	Index	Eintrag	Output (String)
	73	256	AM	4
	77	257	MA	M
	256	258	AMM	AΜ
	77	259	Mn	M
	257	260	MAA	H1
	6 5	261	AA	A
	258	262	AMMA	AMM
	77	263	MT	41
	84	264	T4	T
	261	265	AA.	A1

JPEG

Verlustbehaft. Irrelevante Informationen, die der Empfänger nicht braucht, entfernen = weniger Informationen

1. Transformation Farbbilder RGB => Luminanz / Chrominanz

Luminanz: Helligkeitskanal, Chrominanz: Farbkanäle (Blau, Rot)

Das Auge ist viel empfindlicher auf kleine Helligkeitsunterschiede als auf kleine Farbunterschiede

- ⇒ Farbinformationen höher komprimieren.
- ⇒ Vorbereitung für Datenkompression = reversibel

2. Downsampling der beiden Chrominanz-Komponenten

Signifikanter Informationsanteil wird reduziert. Farbkanal ist weniger wichtig wie die Luminanz (⇒ menschliches Auge). ⇒ Auflösung der Chrominanz (Farbkanäle) wird reduziert.

Kompressionsrate $R=rac{Resultierende\ Pixel}{Urspr{\ddot{u}}nglichge\ Pixel}$

3. Pixel-Gruppierung der Farbkomponenten in 8x8 Blöcke

4. Diskrete Cosinus Transformation

Transformation in den Frequenzbereich

5. Quantisierung einzelner Frequenzkomponenten

Frequenzkomponenten mit viel bzw. wenig Bildinformation werden fein bzw. grob quantisiert => Irrelevanzreduktion = Informationsverlust

Frequenzmatrix

- <u>a</u>: Helligkeit ganzes Bild
- + : immer heller (1024 alles weiss)
- -: immer dunkler (-1024 alles schwarz)
- 0 : grau

b: Spalten

- + : von links (ganz weiss) nach rechts (schwarz)
- -: von links (ganz schwarz) nach rechts (weiss)

- + : von unten (ganz schwarz) nach oben(weiss)
- -: von unten (ganz weiss) nach oben (schwarz)

6. Entropy-Coding der quantisierten Frequenzkomponenten

verlustlos, Kombination von RLE und Huffman-Encoding

⇒ Lauflängencodierung bis zum End-Of-Block (alles Nullen) ⇒ Zick-Zack-Scan der AC-Koeffizienten

DC Wert (oben links wird in der Regel separat gespeichert)

79	_ 0	77-1	_0	0	0	0	0
-2	-1	0	0	0	0	0	0
-1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Beispiel hier: (79) (1,-2) (0,-1) (0,-1) (0,-1) (2,-1) (0,-1) (EOB)

Run Length Codierung von nacheinander folgenden Nullen plus nachfolgendem Koeffizienten.

Ein End of Block Symbol (EOB) steht für "alles Nullen" bis zum Blockende.

(DC Wert) (Anzahl Nullen, Koeffizient) ... (EOB)

7. Erstellen von Header mit JPEG-Parameter

DCT-Basisfunktion

• F(0,0) = DC-Wert (durchschnittliche Helligkeit)

• Restliche = AC-Werte (Amplituden der Ortsfrequenzen)

Audiocodierung

Filterung

Hohe und tiefe Frequenzen werden entfernt

Abtastung

Abtastung des Signals mit dem Abtasttheorem:

Fabtast > 2 * fmax

 \Rightarrow Ab der halben Abtastfrequenz gibt es eine Spiegelung (falsch interpretiert!

Abtastfrequenz = Samples pro Sekunde

= Anzahl Stützstellen pro Sekunde * Anzahl Kanäle

Quantisierung des Analogsignals

Quantisierungsrauschen: Differenz Quantisierung <-> Signal

⇒ Wird kleiner bei einer grösseren Anzahl Bits (-6dB pro Bit)

Anzahl Stützstellen = Samplingrate / Frequenz

Frequenz:

$$F = \frac{1}{T}[Hz]$$

Quantisierungsrauschabstand gegenüber einem Signal mit maximaler Amplitude: 6 * Auflösung [bit]

Codierung

Grösse der Audiodatei: Abtastfrequenz [Hz] * Auflösung [Byte] * Anzahl Känäle * Dauer [s] = [Byte]

Musikcodierung: Audio-CD

• 16-Bit-Muster (65536 Werte)

lineare Quantisierung

Abtastfrequenz 44.1 kHz (23 µs)

Beispiele

Sprachcodierung (für Telephonie)

- ITU-T G.711 (A-Law, µ-Law):
 - Der Frequenzbereich von 300 ... 3400Hz wird mit 8 kHz abgetastet, also alle 125 µs ein Wert gemessen
- Die Werte werden auf den nächsten Wert gerundet → Quantisierung
- Es werden 8-Bit Werte gebildet
- Dadurch entsteht ein Signal mit 64 KBit/s (8000 * 8 Bit)

44'100 * 2 Byte * 2 Kanäle = 176'400 Byte/s = 1.411 MBit/s

(Tonerzeugung eines reinen Sinustones)

Die einzelnen Samples Sj für eine gewünschte Frequenz fkann in Abhängigkeit der Abtastrate R, und dem Skalierungsfaktor K berechnet werden:

$$S_i = K * sin(rac{i*2\pi*f}{R})$$

Schalldruckpegel (Sound Pressure Level, SPL) [dB]

p : Effektiver Schalldruck [Pa]

p₀: Bezugsschalldruck (Hörschwelle p0 = 0.00002 Pa)

Schallpegel L = $20 * \log_{10} \left(\frac{p}{p_0}\right)$

Eine Verdoppelung des SPL entspricht ca. +6 dB

← Spektrale Maskieruna Ein lauter Ton maskiert andere Töne mit leicht unterschiedlicher Frequenz

Zeitliche Maskierung >

file:///E:/INCO_1/!pruefungsvorbereitung/Zusammenfassung 211d129dfdea40a58ea48ed45cffc761.html

Verlustbehaftete Audio Codierung (MPEG)

- Ausnutzung der menschlichen Hörschwelle
- Ausnutzung des Maskierung-Effekts
 - a. Zeitliche Maskierung
 - Spektrale Maskierung

Sub-Band Coding

- Frequenz-Spektrum wird in Sub-Bänder unterteilt
- Nur so viele Bits zum Quantisieren wie nötig
 - o verbessert Kompression, Quantisierungsrauschen wird allerdings erhöht
 - Ziel: Quantisierungsrauschen gerade unter die Maskierungsschwelle

Kanalcodierung

Backward Error Correction (Rückwärtsfehlerkorrektur)

Forward Error Correction (Vorwärtsfehlerkorrektur)

Die Redundanz erlaubt lediglich, Fehler zu erkennen und Neuübertragung der Daten anzufordern (z.B Blockcodes &

Die von der Kanalcodierung hinzugefügte Redundanz reicht, um beim Empfänger Fehler zu korrigieren (z.B Blockcodes, Minimum-Distance-Decoding, Faltungscodes)

Bitfehlerwahrscheinlichkeit ε

- Alle Bits falsch: - Kein Bit falsch: BER = 0 - 1 yon 2 Bits falsch BER = 0.5 - 1 von 1000 Bits falsch: BER = 0.001

Mit der BER ε kann man die Wahrscheinlichkeit $P_{0,N}$ ausrechnen, mit der eine Sequenz von N Datenbits korrekt (d.h. mit 0 Bitfehlern) übertragen wird.

- Erfolgswahrscheinlichkeit: $P_{0,N} = \frac{A_N}{4} = (1 \varepsilon)^N$
- Fehlerwahrscheinlichkeit auf N Datenbits: $1-P_{0,N}=1-(1-\varepsilon)^N$

Die Wahrscheinlichkeit, $P_{F,N}$ dass in einer Sequenz von N Datenbits $\underline{\mathsf{genau}\,F}$ Bitfehler $\underline{\mathsf{auftreten}}$ auftreten ist:

$$P_{F,N} = \binom{N}{F} \cdot \varepsilon^F \cdot (1 - \varepsilon)^{N-F}$$

Legende

- Anzahl Möglichkeiten genau F fehlerhafte Bits in N zu haben.
- Wahrscheinlichkeit, dass F Bits fehlerhaft übertragen werden Wahrscheinlichkeit, dass die restlichen N-F Bits korrekt übertragen werden

 $\underline{\text{Maximal F Fehler}} \text{ bei einer \"{U}bertragung mit N Datenbits: } P_{\leq F,N} = \sum_{t=0}^F \binom{N}{t} \cdot \varepsilon^t \cdot (1-\varepsilon)^{N-t}$

Mehr als F Fehler bei einer Übertragung mit N Datenbits: $P_{>F,N}=1-P_{\leq F,N}$

Sobald ein Code eine <u>Generatormatrix</u> hat, ist er <u>automatisch linear!</u>

Perfekt:	Ein Code heisst perfekt, wenn alle Codewörter die gleiche Hamming-Distanz dmin aufweisen			
Systematisch:	Bei einem systematischen Code beinhaltet jedes Codewort explizit das Informationswort u.			
linear:	Jedes XOR mit einem anderen Codewort (inklusive sich selbst) ergibt wieder ein gültiges Codewort. In dem Fall git zudem: $dmin(C) = minj \neq 0 \ wh(cj)$			
Zyklisch:	Die zyklische Verschiebung eines Codeworts gibt wieder ein Codewort			

Kanalkapazität [bit / bit]

- Maximale Kanalkapazität = 1 Bit / Symbol
- Entropie der Störquelle $= H_b(\varepsilon)$ $= \varepsilon \cdot \log_2 \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot \log_2 \frac{1}{1 - \varepsilon}$
- Nutzbare Kanalkapazität = $C_{BSC}(\varepsilon) = 1 \frac{E}{H_b(\varepsilon)}$

R muss kleiner als C sein, damit alle Information in den nutzbaren Bits Platz hat

Fehlerkennung, CRC

CRC

 $2^N \text{ mögliche Codeworter}$ $2^N \text{ mögliche Codeworter}$ $2^N \text{ göltige Codeworter}$ $2^N \text{ göltige Codeworter}$ $2^N \text{ mögliche Codeworter}$

Hamming-Distanz

Hamming-Distanz ist die Anzahl der wechselnden Bits von einem gültigen Code zum nächsten gültigen Code

Hamming Distanz 1:

jeder Code ist gültig; jeder Fehler führt zu einem gültigen Code \rightarrow keine Fehlererkennung möglich

<u>dmin</u> ist die kleinste Hamming-Distanz d zwischen zwei beliebigen

Codewörtern eines Codes.

Fehlerkorrektur, Hamming-Codes, Matrix

Bestimmen von N & K

Gegeben ist ein Blockcode mit der folgenden Generatormatrix:

Gültige Code-Wörter: Anzahl = 2^K $000 \rightarrow 0 \ 0 \ 0 \ 0 \ 0$ $101 \rightarrow 1 \ \text{mit 3 XOR}$

Codewort	
(0 0 0 0 0 0)	000
(0 0 1 1 0 1)	001
010011	010
011110	011
100110	100
101011	101
110101	110
111111	111

Die Prüfmatrix kann direkt gebildet werden:

Jede Zeile der Generatormatrix entspricht einem gültigen Codewort!

Encoder
0: alles streichen

Decoder

1 : zeile bleibt wie sie ist

Faltungscodes

Trellis-Diagramm

- 1. Zustände mit Code vergleichen
- 2. Fehler eintragen
- 3. Verbindung einzeichnen (kleinster Fehler)
- Bits wechseln 00 10 00 01 01 11 → 11 10 00 01 01 11

Bildung der Codeworte mit dem Trellis-Diagramm (Decodierung)

Viterbi-Decoder

- ð Effiziente Methode, um die wahrscheinlichste gesendete Bitfolge zu ermitteln
- ð Wahrscheinlichster Pfad = Pfad mit den kleinsten Kosten-Metriken (Fehlern)