# 强化训练

## A 组 夯实基础

1. (2024 • 广东期末)

命题"存在一个五边形,它是轴对称图形"的否定是( )

- A. 存在无数个五边形,它是轴对称图形
- B. 存在一个五边形,它不是轴对称图形
- C. 任意一个五边形, 它是轴对称图形
- D. 任意一个五边形,它不是轴对称图形
- 1. D

解析: 否定存在量词命题, 先将"存在"改为"任意", 再否定结论, 结论中有"是", 其否定为"不是", 命题的否定是"任意一个五边形, 它不是轴对称图形".

2. (2024 • 天津宁河期末)

命题"∃
$$x \in (0,+\infty)$$
,  $x + \frac{1}{x} = 2$ "的否定是( )

A. 
$$\forall x \notin (0,+\infty)$$
,  $x + \frac{1}{x} = 2$ 

B. 
$$\forall x \in (0,+\infty), x + \frac{1}{x} \neq 2$$

C. 
$$\exists x \notin (0,+\infty)$$
,  $x + \frac{1}{x} = 2$  一数。高中数学一本通

D. 
$$\exists x \in (0,+\infty)$$
,  $x + \frac{1}{x} \neq 2$ 

2. B

解析: 否定存在量词命题, 先改量词, 再否结论. 结论 " $x+\frac{1}{x}=2$ "的否定为" $x+\frac{1}{x}\neq2$ ",

所给命题的否定是"  $\forall x \in (0,+\infty)$  ,  $x + \frac{1}{x} \neq 2$ ".

3. (2024 • 广东肇庆模拟)

命题"对于任意 $x \in \mathbb{Z}$ ,都有 $x^2 + 2x + m > 0$ "的否定命题是( )

A. 存在 
$$x \in \mathbb{Z}$$
, 使  $x^2 + 2x + m > 0$ 

B. 存在 
$$x \in \mathbb{Z}$$
, 使  $x^2 + 2x + m \le 0$ 

C. 对于任意 
$$x \in \mathbb{Z}$$
,不都有  $x^2 + 2x + m \le 0$ 

D. 对于任意 
$$x \in \mathbb{Z}$$
,都没有  $x^2 + 2x + m > 0$ 

3. B

解析: 否定全称量词命题, 先改量词, 再否结论. 结论 " $x^2 + 2x + m > 0$ "的否定是" $x^2 + 2x + m \le 0$ ",

所给命题的否定是"存在 $x \in \mathbb{Z}$ , 使 $x^2 + 2x + m \le 0$ ".

4. (2024 • 河南开学考试)

命题" $\forall x \in \mathbf{Q}$ ,  $\sqrt{3}x \in \mathbf{Q}$ "的否定为( )

- A.  $\forall x \notin \mathbf{Q}$ ,  $\sqrt{3}x \in \mathbf{Q}$
- B.  $\exists x \in \mathbf{Q}$ ,  $\sqrt{3}x \notin \mathbf{Q}$
- C.  $\forall x \in \mathbf{Q}$ ,  $\sqrt{3}x \notin \mathbf{Q}$
- D.  $\exists x \in \mathbf{Q}$ ,  $\sqrt{3}x \in \mathbf{Q}$
- 4. B

解析: 否定全称量词命题, 先改量词, 再否结论. 结论 " $\sqrt{3}x \in \mathbb{Q}$ " 的否定是 " $\sqrt{3}x \notin \mathbb{Q}$ ",

所给命题的否定是" $\exists x \in \mathbf{Q}$ ,  $\sqrt{3}x \notin \mathbf{Q}$ ".

5. (2024 · 山西大同模拟)

命题" $\exists x \in \mathbb{Z}$ ,  $x^2 + 2$  为偶数", 下列说法正确的是( )

- A. 该命题是假命题
- B. 该命题是真命题
- C. 该命题的否定为:  $\exists x \in \mathbb{Z}$ ,  $x^2 + 2$  不是偶数
- D. 该命题的否定为:  $\exists x \in \mathbb{R}$ ,  $x^2 + 2$  不是偶数
- 5. B

**解析:** 取 x = 0 可得  $x^2 + 2 = 2$  为偶数,所以该命题为真命题,故 A 项错误,B 项正确;该命题的否定是"  $\forall x \in \mathbb{Z}$  ,  $x^2 + 2$  不是偶数",所以 C、D 两项均错误.

## B组 强化能力

6. (2024 • 湖南岳阳开学考试) (多选)

下列命题中是全称量词命题并且是真命题的是()

- A.  $\forall x \in \mathbf{R}$ ,  $x^2 + 2x + 1 \ge 0$
- B.  $\exists x \in \mathbb{N}$ , 2x 为偶数
- C. 所有菱形的四条边都相等
- D. π是无理数
- 6. AC

**解析**: A 项,有" $\forall$ ",所以该命题是全称量词命题, 且因为  $x^2 + 2x + 1 = (x + 1)^2 \ge 0$ ,所以该命题为真命题,

故 A 项正确;

B 项,有"3",该命题是存在量词命题,故 B 项错误;

C项,有"所有",该命题是全称量词命题,且菱形的四条边是相等的,所以该命题为真命题,故C项正确;

D项,"π是无理数"是真命题,但该命题既不是全称量词命题,也不是存在量词命题,故 D项错误.

## 7. (2023 • 山东淄博模拟)

下列命题的否定为假命题的是( )

A. 
$$\exists x \in \mathbf{R}$$
,  $x^2 + 1 = 0$ 

B. 
$$\exists x \in \mathbf{R}$$
,  $|x| + x < 0$ 

C. 
$$\forall x \ge 0$$
,  $\sqrt{x+1} \le \sqrt{x} + 1$ 

D. 
$$\forall x \in \mathbf{R}$$
,  $\sqrt{x^2} \in \mathbf{Q}$ 

#### 7. C

解析:要先写出各命题的否定再判断真假吗?不用,命题的否定为假意味着原命题为真,故直接判断原命题即可,

A 项, 由  $x^2 + 1 = 0$  可得  $x^2 = -1$ , 无实数解, 所以原命题为假命题, 故 A 项错误;

B 项,因为 $|x| \ge -x$ ,所以 $|x| + x \ge 0$ 恒成立,从而不存在 $x \in \mathbb{R}$ ,|x| + x < 0,故原命题为假命题,故 B 项错误;

C项,不等式中有根号,可考虑平方去掉根号再看,能直接平方吗?观察发现两侧显然都非负,可以直接平方,

$$\stackrel{\text{def}}{=} x \ge 0 \text{ iff}, \quad \sqrt{x+1} \le \sqrt{x} + 1 \Leftrightarrow (\sqrt{x+1})^2 \le (\sqrt{x} + 1)^2$$

$$\Leftrightarrow x+1 \le x+2\sqrt{x}+1 \Leftrightarrow 2\sqrt{x} \ge 0 \Leftrightarrow \sqrt{x} \ge 0$$
 1.

不等式①显然恒成立,所以 $\sqrt{x+1} \le \sqrt{x} + 1$ 恒成立,

从而原命题为真命题,故C项正确;

D 项,取 
$$x = \sqrt{2}$$
 ,则  $\sqrt{x^2} = |x| = |\sqrt{2}| = \sqrt{2} \notin \mathbf{Q}$  ,

所以原命题为假命题,故D项错误.

## 8. (2024 • 河南三门峡模拟)

已知命题  $p: \forall x \in \left\{ x \middle| \frac{1}{2} \le x \le 1 \right\}$ ,  $\frac{1}{x} - a \ge 0$  是真命题,则实数 a 的取值范围是\_\_\_\_\_.

## 8. $\{a \mid a \le 1\}$

解析: 观察发现 $\frac{1}{r}$   $-a \ge 0$  中的 a 是孤立的,可考虑通过移项将其分离出来,研究另一侧的最值,

$$\frac{1}{x} - a \ge 0 \Leftrightarrow a \le \frac{1}{x}$$
, 所以  $a \le \left(\frac{1}{x}\right)_{\min}$ ,

当
$$\frac{1}{2} \le x \le 1$$
时, $1 \le \frac{1}{x} \le 2$ ,所以 $\left(\frac{1}{x}\right)_{a=1} = 1$ ,故 $a \le 1$ .

## 9. (2024 • 河北石家庄模拟(改))

命题 " $\forall x \in \mathbf{R}$ ,  $(a-2)x^2+2x+4 \ge 0$ " 为假命题,则实数 a 的取值范围是

9. 
$$\left\{ a \middle| a < \frac{9}{4} \right\}$$

解法1: 涉及由所给命题为假命题求参, 可考虑转化为其否定为真命题来处理,

由题意,所给命题的否定" $\exists x \in \mathbb{R}$ ,  $(a-2)x^2 + 2x + 4 < 0$ "为真命题,

平方项系数含参, 其是否为 0 对不等式的类型有影响, 考虑的方法也不同, 故讨论,

当 a-2=0 时, a=2 ,  $(a-2)x^2+2x+4<0$  即 2x+4<0 ,

解得: x < -2, 满足要求;

再看  $a-2\neq 0$  的情形, 此时其正负又影响二次函数  $v=(a-2)x^2+2x+4$  图象的开口方向, 故又讨论 a-2 的正负,

当 a-2>0 时, a>2 ,二次函数  $y=(a-2)x^2+2x+4$  开口向上,如图 1,要使其函数值有小于 0 的,其图象必须与 x 轴有 2

个交点,所以
$$\Delta = 2^2 - 4(a-2) \times 4 = 4(9-4a) > 0$$
,解得:  $a < \frac{9}{4}$ ,结合 $a > 2$ 可得 $2 < a < \frac{9}{4}$ ;

当a-2<0时,a<2,二次函数 $y=(a-2)x^2+2x+4$ 开口向下,如图 2,其函数值必有小于 0的,满足要求;

综上所述,实数 a 的取值范围是  $\left\{ a \middle| a < \frac{9}{4} \right\}$ .



解法 2: 观察发现由所给命题为真命题容易求参数的范围,故也可考虑先按此处理,最后再取补集,

假设原命题为真命题,则 $(a-2)x^2+2x+4 \ge 0$ 恒成立,

平方项系数含参, 我们仍然讨论参数是否为 0,

解得:  $x \ge -2$ ,不满足要求;

当  $a-2 \neq 0$  时,  $a \neq 2$  ,要使  $(a-2)x^2 + 2x + 4 \geq 0$  恒成立,

如图 3 或图 4, 应有  $\begin{cases} a-2>0\\ \Delta=2^2-4(a-2)\times 4=4(9-4a)\leq 0 \end{cases}$ 

解得:  $a \ge \frac{9}{4}$ ;

综上所述,在原命题为真命题的情况下,  $a \ge \frac{9}{4}$ ,

因为原命题为假命题,所以 $a < \frac{9}{4}$ .



10. (2024 • 安徽安庆模拟)

命题  $p: \forall x \in \mathbb{R}$ ,  $ax^2 + 2x + 3 > 0$  的否定是真命题的一个充分不必要条件是(

A. 
$$a < \frac{1}{3}$$

B. 
$$a \le 1$$

C. 
$$a \le \frac{1}{3}$$
 D.  $a \ge \frac{1}{3}$ 

D. 
$$a \ge \frac{1}{3}$$

10. A

解法 1: 命题 p 的否定为" $\exists x \in \mathbb{R}$ ,  $ax^2 + 2x + 3 \le 0$ ",

所求为上述命题为真命题的充分不必要条件, 可先求出其充要条件, 再选所得范围的一个真子集即可,

当 
$$a = 0$$
 时,  $ax^2 + 2x + 3 \le 0$  即  $2x + 3 \le 0$  ,解得:  $x \le -\frac{3}{2}$  ,

所以p的否定为真命题;

当a>0时,要使p的否定为真命题,如图 1,

应有 
$$\Delta = 2^2 - 4a \times 3 = 4 - 12a \ge 0$$
,解得:  $a \le \frac{1}{2}$ ,

结合 a > 0 可得  $0 < a \le \frac{1}{2}$ ;

当 a < 0 时, 二次函数  $y = ax^2 + 2x + 3$  开口向下,

其函数值必有小于0的,满足p的否定为真命题;

综上所述,p 的否定为真命题的充要条件是  $a \le \frac{1}{3}$  ,选项中只有  $a < \frac{1}{3}$  是该范围代表的集合的真子集,故选 A.



解法 2: 命题 p 的否定为真命题等价于命题 p 为假命题,

涉及根据 ρ 为假命题求参,也可考虑先把 ρ 当成真命题,求出 α 的范围,再取补集,

假设p为真命题,则 $\forall x \in \mathbf{R}$ ,  $ax^2 + 2x + 3 > 0$ 恒成立,

平方项系数为字母, 其是否为 0 对不等式类型有影响, 研究的方法也不同, 故据此讨论,

当 a = 0 时,  $ax^2 + 2x + 3 > 0$  即为 2x + 3 > 0,

解得:  $x > -\frac{3}{2}$ , 不满足  $ax^2 + 2x + 3 > 0$  恒成立;

当  $a \neq 0$  时,要使  $ax^2 + 2x + 3 > 0$  恒成立,如图 2,

应有 
$$\begin{cases} a > 0 \\ \Delta = 2^2 - 4a \cdot 3 = 4(1 - 3a) < 0 \end{cases}$$
,解得:  $a > \frac{1}{3}$ ;

综上所述, 当p为真命题时,  $a > \frac{1}{3}$ ,

由前面的分析可知 p 为假命题,所以  $a \le \frac{1}{3}$ ,

即 p 的否定为真命题的充要条件是  $a \le \frac{1}{3}$  ,接下来同解法 1.

## 11. (2024 • 北京模拟)

已知命题 p:存在  $-1 \le x \le 3$  ,  $x-a-2 \le 0$  . 若命题 p 为假命题,则 a 的取值范围为 ( )

- A.  $\{a \mid a \le -3\}$
- B.  $\{a \mid a \le 1\}$
- C.  $\{a \mid a < -3\}$
- D.  $\{a \mid a < 1\}$

## 11. C

解法 1: 涉及由命题 p 为假命题求参,考虑转换成 p 的否定为真命题来处理,

命题 p 为假命题等价于 p 的否定"对任意的  $-1 \le x \le 3$ ,

x-a-2>0"为真命题,

观察发现参数 a 是孤立的,故可通过移项将其分离出来,

不等式 x-a-2>0 等价于 a < x-2,

上述不等式要恒成立,应有 $a < (x-2)_{min}$ ,

当 $-1 \le x \le 3$ 时, $(x-2)_{\min} = -1 - 2 = -3$ ,所以a < -3.

解法 2: 题设条件等价于 p 的否定 "对任意的  $-1 \le x \le 3$ ,

x-a-2>0"为真命题,

要使x-a-2>0 恒成立,只需 $(x-a-2)_{min}>0$ ,观察发现该最小值好求,故也可不分离出a,直接求最小值,

 $\stackrel{\text{def}}{=}$  -1 ≤ x ≤ 3  $\stackrel{\text{def}}{=}$  ,  $(x-a-2)_{\min} = -1-a-2 = -a-3$  ,

所以-a-3>0,解得:a<-3.

## C 组 拓展提升

## 12. (2024 · 陕西西安模拟)

已知集合  $A = \{x \mid 0 \le x \le a\}$ ,集合  $B = \{x \mid m^2 + 3 \le x\}$ 

 $\leq m^2 + 4$ }, 如果命题" $\exists m \in \mathbb{R}$ ,  $A \cap B \neq \emptyset$ "为假命题,则实数 a 的取值范围为(

- A.  $\{a \mid a < 3\}$  B.  $\{a \mid a < 4\}$
- C.  $\{a \mid 1 < a < 5\}$  D.  $\{a \mid 0 < a < 4\}$

#### 12. A

解析:由假命题求参,可转化为其否定为真命题来处理,

所给命题的否定" $\forall m \in \mathbb{R}$ ,  $A \cap B = \emptyset$ "为真命题,

注意到a与0的大小不确定,所以A可能为 $\varnothing$ ,此时当然满足 $A \cap B = \varnothing$ ,下面先考虑这种情况,

当 a < 0 时,  $A = \emptyset$  ,此时  $\forall m \in \mathbb{R}$  ,都有  $A \cap B = \emptyset$  ;

当a > 0时,  $A \neq \emptyset$ , 因为 $m^2 + 3 > 0$ , 所以如图,

要使  $\forall m \in \mathbb{R}$  ,  $A \cap B = \emptyset$  , 应有  $a < m^2 + 3$  恒成立,

因为 $(m^2+3)_{min}=3$ ,所以a<3,结合 $a\geq 0$ 得 $0\leq a<3$ ;

综上所述,实数a的取值范围是 $\{a \mid a < 3\}$ .



## 13. (2024 • 江苏盐城模拟)

若"存在 $0 < x \le 2$ ,  $ax^2 - 2x + 1 < 0$ "为真命题,则实数 a 的取值范围是\_\_\_\_

## 13. $\{a \mid a < 1\}$

解析: 观察  $ax^2-2x+1$  可发现, 只需两端同除以  $x^2$ , 就能将参数 a 孤立, 从而把它分离出来,

$$ax^2 - 2x + 1 < 0 \Leftrightarrow a - \frac{2}{r} + \frac{1}{r^2} < 0 \Leftrightarrow a < \frac{2}{r} - \frac{1}{r^2}$$
 (1),

所以题设条件等价于存在 $0 < x \le 2$ ,使①成立,这意味着 $a < \left(\frac{2}{r} - \frac{1}{r^2}\right)$  ,怎样求此最大值?若将 $\frac{1}{r}$ 换元成t,则①的右侧可

化为关于 t 的二次函数, 故可按此求最大值,

 $\diamondsuit t = \frac{1}{r}$ , 则不等式①即为 $a < 2t - t^2$ , 既然换了元, 那么在用新的变量分析问题之前, 应先研究其范围,

当
$$0 < x \le 2$$
时, $\frac{1}{x} \ge \frac{1}{2}$ ,所以 $t \ge \frac{1}{2}$ ,

因为  $2t-t^2 = -(t-1)^2 + 1$ ,所以当 t=1 时,  $2t-t^2$  取得最大值 1,故 a < 1.

## 14. (2024 • 安徽亳州模拟) (多选)

使得命题"对任意的 $-2 \le x \le 1$ ,  $ax^2 + 2ax < 1 - 3a$ "为真命题的必要不充分条件是(

- A.  $a \le \frac{1}{6}$  B.  $a < \frac{1}{6}$
- C.  $a \le \frac{1}{2}$  D.  $a < \frac{1}{2}$

## 14. ACD

解析:怎样处理  $ax^2+2ax<1-3a$ ? 观察发现只要把含 a 的三项放到一起,就能提公因式 a 到外面,再将 a 分离出来,

 $ax^{2} + 2ax < 1 - 3a \Leftrightarrow a(x^{2} + 2x + 3) < 1$  ①,

因为 $x^2 + 2x + 3 = (x+1)^2 + 2 \ge 2 > 0$ ,所以不等式①又等价于 $a < \frac{1}{x^2 + 2x + 3}$ ②,

要使②在 $-2 \le x \le 1$  时恒成立,应有 $a < \left(\frac{1}{x^2 + 2x + 3}\right)_{min}$ ,怎样求此最小值?由于分母 $x^2 + 2x + 3 = (x + 1)^2 + 2 > 0$ ,分子又为正

#### 常数1,所以只需分母最大,

因为函数  $y = x^2 + 2x + 3$  的对称轴是 x = -1,所以如图,

当 x = 1 时,  $x^2 + 2x + 3$  取得最大值 6,

此时 
$$\frac{1}{x^2+2x+3}$$
 取最小值  $\frac{1}{6}$ ,

由②可知  $a < \frac{1}{x^2 + 2x + 3}$  恒成立,所以  $a < \frac{1}{6}$  ,

所给命题为真命题意味着  $a<\frac{1}{6}$  , 题干让选它的必要不充分条件,说明  $a<\frac{1}{6}$  是选项的充分不必要条件,故  $a<\frac{1}{6}$  对应"小集合",

选项对应"大集合",

选项之中,只有 $a \le \frac{1}{6}$ , $a \le \frac{1}{3}$ , $a < \frac{1}{3}$ 是 $a < \frac{1}{6}$ 的必要不充分条件,故选ACD.



【反思】在含参不等式问题中,对于参数多次出现且不孤立的情形,只要能将参数作为公因式提出来,也可考虑分离出参数,转化为最值问题来研究.

15. (2024 • 宁夏吴忠模拟)

已知集合  $A = \{x \mid 6 \le x \le 20\}$ ,集合  $B = \{x \mid x \le 2a\}$ ,

命题  $p: \exists x \in A, x \in B$ ,

命题  $q: \forall x \in \mathbf{R}$ ,  $x^2 + 2x - a > 0$ .

- (1) 若命题 p 为假命题,求实数 q 的取值范围;
- (2) 若命题 p 和命题 q 至少有一个为真命题, 求实数 a 的取值范围.
- 15.  $\mathbf{m}$ : (1) (涉及由命题 p 为假命题求参,考虑转换成 p 的否定为真命题来处理)

由题意, 命题 p 的否定"  $\forall x \in A$ ,  $x \notin B$ " 为真命题,

所以 $A \cap B = \emptyset$ ,如图1,应有2a < 6,解得:a < 3,

所以实数 a 的取值范围是  $\{a \mid a < 3\}$ .

(2) (正面考虑 p, q 至少有一个为真命题, 可能的情形较多, 但其反面只有 p, q 均为假命题一种情况, 故考虑先由反面求出参数的范围, 再取补集)

由(1)可知当p为假命题时, a < 3①;

若 q 为假命题,则 q 的否定" $\exists x \in \mathbf{R}$ ,  $x^2 + 2x - a \le 0$ "为

真命题,如图2或图3,应有 $\Delta=2^2-4\times1\times(-a)$ 

 $=4(1+a) \ge 0$ , 解得:  $a \ge -1$  ②;

结合①②可知当 p, q 都为假命题时,  $-1 \le a < 3$ ,

因为p, q至少有一个为真命题,所以实数a的取值范围是 $\{a \mid a < -1$ 或 $a \ge 3\}$ .



一数•高中数学一本通