The Human

John C. Hart

Department of Computer Science
University of Illinois at Urbana-Champaign

What Will We Learn?

- I understand computers, but how does a *human* work?
- How can I use this to create a more effective computer interface for the human?

Cellphone Processor

The Model Human Processor

Visual Processing

Reading

- Saccades eye scans forward
- Fixations eye is still
 - Perception happens
 - 94% of the time
- We do not perceive saccades
- 9pt,12pt equally legible
- We still read books faster than computers

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is becase the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

Audio Processing

Hearing

- Auditory canal -> eardrum -> ossicles -> cochlea -> cilia
- Sound parameters
 - Pitch frequency
 - Loudness amplitude
 - Timbre waveform of sound
- Stereo location of source
- Cocktail party effect (ability to focus on a particular conversation)

Hand-Eye Coordination

Fitt's Law

- Kinesthesis: We know where our limbs are
- Larger movements are faster but less accurate than smaller ones

$$T \approx 600 \text{ ms} + 240 \text{ ms} \lg(1+D/S)$$

- D = distance to target
- S = size of target
- 240 ms = 70 ms to move your hand +
 100 ms to see the result +
 70 ms to decide how to correct it

What Did We Learn?

- The Model Human Processor models the human in computational terms
- We read in chunks even though we don't perceive it that way
- We similarly process audio, but less effectively
- We can use these models to estimate how long a task takes, and improve performance