Date of Birth Project

Liam West

December 19, 2025 Digital Electronics

Introduction

For this project, our problem was a lack of an efficient process for storing dates of birth. You would always need a large amount of seven-segment displays, which was much more cost and energy-consuming. This led to a simple binary toggle to switch between dates and display each date on a singular Seven-Segment display.

Input

The input for our project would be three switches, which in combination would allow us to store 8 different numbers, and was dependent on the position of the switches. That means that depending on if the switches were on or off the number on the Sevent-Segment display would differ.

Output

The output for our project would be seven lines that connect to a Seven-Segment display. This would allow for a large combination of numbers on our output and give us an easy way to get started on the project.

Procedure

- 1. Come up with a truth table for our project that can be simplified.
- 2. Simplify down into a singular equation using K-Map Simplification.
- 3. Build an AOI version of our circuit online
- 4. Use NAND and NOR to refine the circuit further
- 5. Finally, Tinkercad was used to prototype the physical circuit.

Truth Table

Х	Υ	Z	Display	а	b	С	d	е	f	g
0	0	0	1	0	1	1	0	0	0	0
0	0	1	2	1	1	0	1	1	0	1
0	1	0	-	0	0	0	0	0	0	1
0	1	1	2	1	1	0	1	1	0	1
1	0	0	5	1	0	1	1	0	1	1
1	0	1	-	0	0	0	0	0	0	1
1	1	0	0	1	1	1	1	1	1	0
1	1	1	7	1	1	1	0	0	0	0

The truth table takes all of the numbers we need and puts them into a truth table based on the Seven-Segment display pieces.

Karnough Mapping

Α	Z Z	E	z	z	С	z	z
XΥ	0 1	×	Y 1		XΥ	1	0
ΧY	0 1	X	Y 0	1	ΧY	0	0
XY	1 1	x	Y 1	1	XY	1	1
ΧŸ	1 0	х	Y 0	0	ΧŸ	1	0
D	Z Z	E	z	z	F	z	z
ΧŸ	0 1	X	Y 0	1	ΧŸ	0	0
Χ̈Υ	0 1	X	Y 0	1	ΧY	0	0
XY	1 0	х	Y 1	0	XY	1	0
ΧŸ	1 0	х	Y 0	0	ΧŸ	1	0
G	Z Z						
ΧŸ	0 1						
Χ̈Υ	1 1						
XY	0 0						
χŸ	1 1						

Equations

The K-Mapping lets us get all of our equations:

$$A = \overline{X}Z + XY + X\overline{Z}$$

$$B = \overline{X}\,\overline{Y} + YZ + XY$$

$$C = \overline{Y}\overline{Z} + XY$$

$$D = \overline{X}Z + X\overline{Z}$$

$$E = XY\overline{Z} + \overline{X}Z$$

$$F = X\overline{Z}$$

$$G = X\overline{Y} + \overline{X}Y + \overline{X}Z$$

AOI Implementation

NOR + NAND Implementation

Tinkercad Implementation

