Mixed Models

ILCB Summer School 2024

Royce Anders

Professeur des Universités PhD HDR Université Paul-Valéry Montpellier 3

Institute of Language, Communication and the Brain

Mixed Models Course

Day	Content	Progression
Monday	Linear Mixed Models I	A
Tuesday	Linear Mixed Models II	to
Wednesday	Linear Mixed Models III	Z
Thursday	Logistic Mixed Models I	Concepts and Basic Application

Course Hours: 10:45 – 12:00

Planning

Mixed Models Course

Teaching Objectives	Description
Context	When to and why model?
Data Preparation	Requirements and optimisations for mixed modelling
Implementation	Different ways to model your data
Model Validity	Can I trust this model's results?
Model Performance	How much of my data can the model account for?
Result Interpretation	What does this model have to say about the hypotheses?
Post hoc Considerations	Should I run additional analyses to optimise?
Visualisation	Organise Results in Graphic or Table Form
R	Coding, capacity to implement all in R

Some Remarks

Position in Research activities

Machine Learning and other analyses

Linear

Dependent Variable (DV) is continuous

Logistic

Dependent Variable (DV) is binary ("2 classes")

Multinomial for > 2 classes

Mixed Models

Installation

- Questions?
- ► Step 1 R Language https://cran.r-project.org/
- Step 2 RStudio https://www.rstudio.com/products/rstudio/download/
- Step 3 Packages in RStudio

```
install.packages(c("lme4","lmerTest","bestNormalize","MuMIn","sjPlot","sjstats","caret","ROCit")); install.packages(c("lmtest","nortest","mctest","psych","car","corrplot","BayesFactor"))
```

Link to Course Files

https://tinyurl.com/ilcbanders

8

Linear Mixed Modelling

9

Context: When and why to model?

Minimal Requirements

- Dependent Variable (DV) is continuous
- DV is normally-distributed

Objectives

- Predict the DV
 - Know how much each explanatory variable (or IV) influences + or the DV
- Statistical Testing: does the IV have an effect on the DV?

Mixed vs. Non-mixed Model

- Repeated measures
 - Variation in these measures that you don't have another variable to explain
 - e.g. Variation in the repeated measures of a Participant not explained by Age or IQ

ANOVA vs. Linear Modelling

- Typically, the same conclusions in the significance of variables
- Absence of "degree of influence"
- Limited to discrete IV (Young vs. Old instead of actual age submitted to model)
- ANOVA mixed, repeated measures design shares some similarity to Linear Mixed Models

Student t test vs. Linear Modelling

- Preferably, linear models analyse all variables simultaneously
 - Independent t tests may increase Type I or II error rates (false pos or neg)

Based on the Pearson linear correlation coefficient r

• Generalised to simultaneous correlational modelling... all mapping f(X1, X2) etc. to one DV Y

$$|r| = 1$$

Perfect linear relationship between X and Y:

Weaker linear relationships between X and Y:

100% of the variation in Y is explained by variation in X

Some but not all of the variation in Y is explained by variation in X

TIOM to a time at thouse it.

 $y = f(B, X) = B_0 + B_1 x_1 + B_2 x_2 + \dots + B_k x_k + \epsilon$

Simple

Intercept

Slope

Random Effects?

Fixed Effects

(Do not vary as a function of the item or individual modelled)

Data Preparation

Principal Steps

- Load data into R as a data.frame (verify variable coding and format)
- Filter subjects based on Inclusion/Exclusion Criteria (also missing data decisions)
- (winsorizing, IQR, MAD, later: Cook's Distance) Outlier Detection and Elimination in the DV
- Determine which variables are factors (discrete predictors) and indicate them
 - Factors are categorical where category # should not have any sense
- Normalise all data except for factors
- Standardise all data

Applied in R

Let's practice

Visualisations

- May often help for making decisions
- Histograms
- QQplot

Other Approaches

- Sort the variable and look at the first or last 20 values
- ► Tabulate the variable
- See the unique values of the variable (and potentially sort)

Applied in R

Let's practice

Median ± n × MAD

Quartiles ± 1.5 × IQR

Winsorizing Quantiles < 2.5% > 97.5%

Useful Functions

Data Import

- read.csv() or read_excel() #Load data from library(readxl)
- Inclusion/Exclusion Criteria
- which(condition) # Indices that match a condition being met
- subset() #Filter several conditions simultaneously
- is.na() # Are there missing values? combine with sum() or colSums() or na.omit()

Outlier Approaches

- sort() # order the values
- hist() #histogram density() and plot(density())
- median() and mad() or iqr() quantile()

Recoding Variables

- df\$yourvar = as.factor(df\$yourvar) # for categorical variables and relevel() # to set the reference level
- cut() # to set as ordinal variable

Normalize your data

yeojohnson() # from library(bestNormalize) combine with apply()

Standardize your data

scale()