FPGA реализация нейронной сети прямого распространения для распознавания рукописных чисел

E.A. Кривальцевич М.И. Вашкевич krivalcevi4.egor@gmail.com, vashkevich@bsuir.by

Белорусский государственный университет информатики и радиоэлектроники Кафедра электронных вычислительных средств

XIV Международная научная конференции «Информационные технологии и системы» Минск, Республика Беларусь

Содержание

- 1. Прототипирование нейронных сетей на FPGA
- 2. Постановка задачи
- 3. Обучение нейронной сети
- 4. Аппаратная реализация нейронной сети
- 5. Использование PYNQ для прототипирования и тестирования нейронной сети
- 6. Описание эксперимента и результаты

Введение

Прототипирование нейронных сетей на FPGA

- В настоящее время наблюдается интерес к использованию кватернионов при построении нейронных сетей для обработки многомерных данных^а
- Цветные изображения являются важным примером многомерных данных
- Обычно RGB-изображения обрабатываются при помощи сверточных нейронных сетей. Входное изображение интерпретируется, как 3-х мерный тензор

^aKusakabe, T., Kouda, N., Isokawa, T., Matsui, N. : A Study of Neural Network Based on Quaternion. Proceeding of SICE Annual Conference (2002) 776–779

Постановка задачи

Цель исследования

- Получить базовую модель автокодировщика на основе кватернионов
- Выяснить дает ли преимущество использование кватернионов в задаче сжатия изобаржений при помощи автокодировщика
- \bullet Оценить преимущества кватернионной нейронной сети над вещественнозначной в задаче сжатия изобаржений (MSE, PSNR, SIMM)

Обучение нейронной сети

Архитектура нейронной сети

Архитектура НС

Аппаратная реализация нейронной сети

Аппаратная реализация нейронной сети

Использование PYNQ для прототипирования и тестирования нейронной сети

Автокодировщик на основе вещественнозначной НС

RAE-real autoencoder

Автокодировщик на основе кватернионной НС

 ${\rm QAE-quaternion~autoencoder}$

Эксперимент и результаты

Описание эксперимента

Результаты

MSE

PSNR

SIMM

Результат работы автокодировщика RAE-2048

Результат работы автокодировщика QAE-2048

Сравнение полученных результатов

- Полученные автокодировщики на основе кватернионной НС сравнивались с другими вещественнозначным автокодировщиком, имеющим архитектуру «бутылочное горлышко» 1.
- Автокодировщик¹, использует НС с двумя слоями: первый сверхточный, а второй полносвязный и обеспечивает степень сжатия 2:1, т.е. внутренний слой содержал в два раза меньше элементов, чем входной и выходной.
- \bullet У автокодировщика индекс структурной схожести (SIMM) равен 0,905.
- Полученный в данной работе автокодировщик QAE-1024 обеспечивает сжатие 3:1 и имеет SIMM равный 0,922.

¹Yijing Watkins и др. "Image compression: Sparse coding vs. bottleneck autoencoders". B: 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). IEEE. 2018, c. 17—20.

Выводы

- Рассмотренный вычислительный эксперимент на основе полносвязного автокодировщика показывает, что представление скоррелированных данных, таких как цветные RGB-изображения, в алгебре кватернионов позволяет лучше учитывать характер исходных данных.
- Предложенные автокодировщики, имеющие различную степень сжатия, позволяют получить более высокие значения объективных характеристик декодирования цветных изображений по сравнению с аналогичными вещественнозначными автокодировщиками (PSNR в среднем выше на 3,85 дБ, SSIM на 0,18).