ECUACIONES DIFFRENCIALES I

Problemas 1

- 1 Consideramos la ecuación x=X(t,x) donde XEC(D,Rd) y DCR×Rd es un abierto conexo. Se supone que x: I > Rd es una Volución.
 - a) Demuestra que $x \in C^1(I, \mathbb{R}^d)$
 - b) Se supone $X \in C^k(D, \mathbb{R}^d)$, $k \ge 1$. Demuestra que $x \in C^{k+1}(I, \mathbb{R}^d)$.
 - c) Se supore ahora que X es continuo pero no C1. d'Puede ocurrir que x (t) sea de clade C2?
- 2) Se considera el problema de funciones implicitas

donde $F \in C^1(\mathbb{R}^2)$, $(x_0, y_0) \in \mathbb{R}^2$ es un punto dado. Se supone además que

Error que
$$F(x_0,y_0)=0$$
, $\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$.

- a) Utiliza el teorema de la función implicita para justificar la existencia de una John von y E C1(I) definida en algun intervalo I que contiene a x en su interior.
- b) Deduce la misma conclusión a partir del teorema de Candry-Peano [Jugarencia: derivación implicita]
- c) Da un ejemplo que demuestre la imposibilidad de obte ner un resultado global que afirmara que la volución esté definida en todo R.

3 Enuncia y dennestra un resultado de existencia para el problema de auchy de orden superior (d>2)

 $\times^{(d)} = \int \{t, \times, \times^{1}, \dots, \times^{(d-1)}\}, \times |t_{0}\rangle = \times_{0}, \times^{1} |t_{0}\rangle = \times_{0}, \dots, \times^{(d-1)} |t_{0}\rangle = \times_{0}, d-1$ [Suggesencia: $\times_{1} = \times_{1}, \times_{2} = \times^{1}, \dots, \times_{d} = \times^{(d-1)}$ reduce a primer orden]

(4) Dada $f \in C(\mathbb{R}^2)$ consideramos la ecuación integral $x(t) = 3e^{2t} + \int_{-\infty}^{t} e^{2(t-s)} f(s,x(s)) ds$

y bus camos soluciones continuas. En mentra un problema de valores iniciales que sea equivalente.

- 5 Discute en cada carb la valider de la afirmación:
 - (i) $\dot{x} = \frac{x^3}{1+x^6} + t$, x = 0 admite solución definida en [-1,1[
 - (ii) $x + tx^2 = 0$, x(0) = 0, x(0) = 0 admite solution definida en \mathbb{R}
 - (iii) x + x = 0, x = 0,
- 6 Encuentra una Volucion de la ecuación integral

$$x(t) = 1 + \int_0^t (t-s) \times (s) ds$$

con $x \in C(\mathbb{R})$.