Design and Analysis of Algorithms

Course outline

- 5 units (Syllabus.docx)
- CIE
 - 30: CIE 1,2,3
 - 20: NPTEL Course
- SEE
 - 100: 10 questions each question carries 20M each.
- Algorithms Lab
 - 50M: Assignments included in the tutorial

Characters involved in a software

Programmer needs to develop a working solution

Client wants to solve efficiently

Theoretician or Mathematician wants to understand

Student

Basic blocking and tackling is necessary

Srinidhi H, Dept of CSE, MSRIT

Small problem

- Consider an invigilator in a room who has to collect 30 answer scripts and submit it to the collection centre.
- Conditions: Each bench in the room is occupied by only 1 student and there are 30 students in the room and are randomly seated.
- How to solve this?

Solution

- Invigilator chooses a starting point either the start or end.
- Collect all the answer scripts.
- Start arranging the answer script starting with first answer script.
- Submit it to the collection centre.
- Verify all the answer scripts are there.

Solution (Contd...)

Algorithm

Begin

while there are no answer scripts

Choose a starting point.

Start collecting the answer_scripts.

endwhile

Arrange_answer_scripts

Submit it to the collection centre.

End

Algo (Contd..)

3

```
//Submit it to the collection centre
//Arrange_answer_scripts
                                              Begin
Begin
                                                   delete_queue(sorted_answer_script)
     insert_queue(ans_script)
                                                   if(correct_sorted_order)
     Sorted_answer_script=bubble_so
                                                        accept
     rt(ans_script)
                                                   else
End
                                                        reject
                                              End
                              Insert the
                            answer scripts to
                              the queue
```

Sort the

answer scripts

sorted order

What is an Algorithm?

- Does it involve problem sets? YES
- Is it applicable to computer science related to problems only? NO
- Does it involve steps to achieve a solution?YES
- Is it related to programming? YES/NO
- Is it related to time and space of a program?YES

Algorithm v/s program

- An **algorithm** is a precise specification of instructions to solve a problem.
- A program involves writing of instructions using a language (C/C++) and algorithm to solve a given a problem.
- Can a program exist without an algorithm?
- NO

Algorithm Definition

- An *algorithm* is a set of instructions to be followed to solve a problem.
 - There can be more than one solution (more than one algorithm) to solve a given problem.
 - An algorithm can be implemented using different programming languages on different platforms.
- Once we have a correct algorithm for a problem, we have to determine the efficiency of that algorithm.

Analysis of Algorithms

• How do we compare the time efficiency of two algorithms that solve the same problem?

Naïve Approach: implement these algorithms in a programming language (C++), and run them to compare their time requirements.

Comparing the programs (instead of algorithms) has difficulties.

- How are the algorithms coded?
 - We should not compare implementations, because they are sensitive to programming style that may cloud the issue of which algorithm is inherently more efficient.
- What computer should we use?
 - □ We should compare the efficiency of the algorithms independently of a particular computer.
- What data should the program use?
 - □ Any analysis must be independent of specific data.

Analysis of Algorithms

- When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of *specific implementations*, computers, or data.
- To analyze algorithms:
 - First, we start to **count the number of significant operations** in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

• Consecutive Statements: Just add the running times of those consecutive statements.

A sequence of operations:

$$\rightarrow$$
 Total Cost = $c_1 + c_2 = 2$

• **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.

Example: Simple		Times					Total
Loop							
i = 1;	1	1				1	
sum = 0	1						1
while (i <= 5) {	1<=5	2<=5	3<=5	4<=5	5<=5	6<=5	6
i = i + 1;	i=2	i=3	i=4	i=5	i=6	NO	5
sum = sum + i;	sum=1	sum=2	sum=3	sum=4	sum=5	NO	5
}							

• **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.

Example: Simple Loop	Times
i=1;	1
sum = 0	1
while (i <= n) {	
i = i + 1;	
sum = sum + i;	
}	

• **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.

Example: Simple Loop	Times
i = 1;	1
sum = 0	1
while (i <= n) {	n+1
i = i + 1;	n
sum = sum + i;	n
}	

Total Cost =
$$1+1+(n+1)+n+n=3n+3$$

The time required for this algorithm is proportional to n

• **Nested Loops**: Running time of a nested loop containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.

Example: NestedLoop	Times	
i=1;	1	
sum = 0;	1	
while (i <= n) {		
j=1;		
while (j <= n) {		
sum = sum + i;		
j = j + 1;		
}		
i = i +1; Srinidhi H, Dept of CSE, MSRIT		
}		

• **Nested Loops**: Running time of a nested loop containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.

Example: NestedLoop	Times
i=1;	1
sum = 0;	1
while (i <= n) {	n+1
j=1;	n
while (j <= n) {	n* (n+1)
sum = sum + i;	n*n
j = j + 1;	n*n
}	
i = i +1; Srinidhi H, Dept of CS	E, MSRIT
}	

• **If/Else**: Never more than the **running time of the test** plus the larger of running times of S1 and S2.

Example: NestedLoop	Times
value=1	1
count=0	1
if (n %2 == 0)	
return n	
else {	
while(count < n){	
value+=count	
count+=1	
}	

Srinidhi H, Dept of CSE, MSRIT

• **If/Else**: Never more than the **running time of the test** plus the larger of running times of S1 and S2.

Example: NestedLoop	Times		
value=1	1		
count=0	1		
if (n %2 == 0)			
return n	1		
else {			
while(count < n)	n+1		
value+=count	n		
count++	n		
}			
Total count 1 + max (1, n)= n			

Summary

- Course overview was discussed with syllabus.
- What is an algorithm and program?
- A sample problem set and write an algorithm for it.
- Time complexity of an algorithm w.r.t input size. (Homework: Linear search v/s binary search)

Algorithm Growth Rates

- We measure an algorithm's time requirement as a function of the *problem size*.
 - Problem size depends on the application: e.g. number of elements in a list for a sorting algorithm,
- So, for instance, we say that (if the problem size is n)
 - Algorithm A requires $5*n^2$ time units to solve a problem of size n.
 - Algorithm B requires **7*n** time units to solve a problem of size n.
- An algorithm's proportional time requirement is known as growth rate.

Asymptotic Bounds

ASYMPTOTE

- An asymptote is a line or curve that a graph approaches but does not intersect.
- An asymptote of a curve is a line in such a way that **distance between curve and line approaches zero** towards large values or infinity.
- Ex: x is asymptotic to x+1 and these two lines in the graph will never intersect

O-notation

For function f(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$
 \exists positive constants c and n_0 , such that $\forall n \geq n_0$,
we have $0 \leq f(n) \leq cg(n) \}$

g(n) is an asymptotic upper bound for f(n).

Example Big O notation

- Compute the order of growth for the following functions or show that,
 - $f(n)=2n^2+6 f(n)=O(n^2)$
 - f(n)=10n+2, f(n)=O(n)

Ω -notation

For function f(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 \exists positive constants c and n_0 , such that $\forall n \geq n_0$,
we have $0 \leq cg(n) \leq f(n)\}$

g(n) is an asymptotic lower bound for f(n).

Θ-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

$$\Theta(g(n)) = \{f(n) :$$
 \exists positive constants $c_1, c_2,$ and $n_0,$ such that $\forall n \geq n_0,$
we have $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$
 $\}$

g(n) is an asymptotically tight bound for f(n).

Example

- $f(n)=10 n^2+4n+2$
- $g(n)=16 n^2$

 $g(n)=10 n^2$

N0 for	f(n)	C g(n)	
c=16			
1	16	16	
2	50	64	
3	104	114	
4	178	256	
		Srinidhi H, Der	ot of CSE,

N0 for c=10	f(n)	C g(n)
1	16	10
2	50	40
3	104	90
4	178	160
MSRIT		

Time complexity

- What is the running time of a program?
- Generally expressed in terms of T(n).

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(#)	O(n log	$O(n^2)$	$O(n^3)$	$O(2^n)$
n	0(1)	O(log n)	0(11)	n)	0(")	0(")	0(2")

Order of growth

Best -case, Worst-case, Average-case

 Consider the example of a linear search as shown,

Questions

- Design an algorithm to compute the sum of elements of an array.
- Design an algorithm to compute the sum of elements of 2 matrices.

Properties of Asymptotic Growth Rates

- (a) If f = O(g) and g = O(h), then f = O(h).

 Proof
- we're given that for some constants c and n0, we have $f(n) \le cg(n)$ for all $n \ge n0$.
- constants c and n0, we have $g(n) \le c h(n)$ for all $n \ge n0$.

- $f(n) \le c g(n)$ for all $n \ge n0 ... (1)$
- $g(n) \le c' h(n)$ for all $n \ge n0' ... (2)$
- Now let $N = max \{no, no'\}$. Then (1) and (2) both hold when $n \ge N$
- and we have $f(n) \le c g(n)$ for all $n \ge N$.
- Since $g(n) \le c' h(n)$ for all $n \ge N$,
- this implies that f(n) <= c(c'h(n)) = cc'h(n)
 for all n >= N where cc' > 0 is a constant and cc'=c
- Now, $f(n) \le c h(n)$ for all $n \ge N$
- ullet Hence, f=O(h) Srinidhi H, Dept of CSE, MSRIT

Properties of Asymptotic Growth Rates

- Similarly,
 - If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$.
- How can you prove this?

Properties of Asymptotic Growth Rates

 Suppose that f and g are two functions such that for some other function h, we have

$$f = O(h)$$
 and $g = O(h)$. Then $f + g = O(h)$. Proof:

- $f(n) \le c \ h(n)$ for all $n \ge n0$.
- $g(n) \le c' h(n)$ for all $n \ge n0'$.
- $f(n) + g(n) \le c h(n) + c' h(n)$ for all $n \ge max(n0, n0')$.
- $f(n) + g(n) \le (c + c')h(n)$ for all $n \ge N$
- Hence, f + g = O(h).

Properties of Asymptotic Growth Rates

- Let k be a fixed constant, and let f_1, f_2, \ldots, f_k and h be functions such that $f_i = O(h)$ for all i. Then $f_1 + f_2 + \ldots + f_k = O(h)$.
- Proof
- $f_1+f_2+\ldots+f_k < =(c_1+c_2\ldots+c_k) h(n)$ for all $max(n_0, n_0, \ldots, n_{ok})$
- Hence the proof.

Properties of Asymptotic Growth Rates

• Suppose that f and g are two functions (taking nonnegative values) such that g = O(f). Then $f + g = \Theta(f)$. In other words, f is an asymptotically tight bound for the combined function f + g.

Proof

Since
$$g(n) = O(f)$$
 then $g(n) <= c(f(n))$
 $f(n) = O(f)$ This implies $f(n) <= c(f(n))$
Then $f(n)+g(n)=O(f(n))$
Clearly $f(n)+g(n)=\Omega(f(n))$
Therefore, $f+g=\Theta(f)$

- Linear time O(n)
- Quadratic time: O(n²)
- Sub linear time- O(log n)
- $O(n \log n)$

- Linear time O(n) Running time is proportional to input size.
- Computing the maximum.
 - Compute maximum of n numbers $a_1, ..., a_n$.

max ← a1	
for i = 2 to n {	
if (a[i] > max)	
max ← ai	
}	

- Quadratic time: O(n²)
- Bubble sort.

for i=0 to n	
for j=i+1 to n{	
if (a[i] < a[j])	
swap (a[i], a[j])	
}	
}	

Sub linear time- O(log n) –Binary search.

Asymptotic Bounds for Some Common Functions

- Polynomials
- $f(n) = a_k n^d + a_{k-1} n^{d-1} + \dots + a_1 n + a_0$
- Let f be a polynomial of degree d, in which the coefficient a_k is positive. Then $f = O(n^d)$.
- coefficients a_j for j < d may be negative, but in any case we have $a_j n_j \le |a_j| n^d$ for all $n \ge 1$. Thus each term in the polynomial is $O(n^d)$.
- Since f is a sum of a constant number of functions, each of which is $O(n^d)$, it follows from (2.5 i.e each fi is $O(n^d)$) that f is $O(n^d)$.

Stable Matching and Representation Problems

Outline of contents

- Algorithm
- Employer and applicants problem.
- College and Student Admission problem.
- Stable Matching
 - Stable marriage problem.
 - Preference lists.
 - Instability.
- Example on the Stable matching

Employer and Applicants Scenario

- College with students.
- Apply for internships.
- Students list down the preference.
- Companies also list down the ordering of applicants.

Web Exodus

Gale and Shapeley Problem

- Given a set of preferences among employers and applicants, can we assign applicants to employers so that for every employer *E*, and every applicant *A* who is not scheduled to work for *E*, at least one of the following two things is the case?
- (i) E prefers every one of its accepted applicants to A; or
- (ii) A prefers her current situation over working for employer E.

College and Student Admission

- Student S gives the list of preferences of the colleges.
- College C accepts the students in a order according to their preference list (Ranks).
- Let us assume 3 students and 3 colleges.
- Colleges can admit one student only.

Inputs for the college admission

Student preference list

A	RV	PES	MSRIT
В	MSRIT	PES	RV
С	PES	MSRIT	RV

Student Rankings

A	155
В	250
С	450

College preference list

RV	A	В	С
PES	A	В	С
MSRI T	A	В	С

How do you think selection can be made?

College and Student Selection

Student preference list

A		PES	MSRIT
	A R		
В	MISIRIT	PES	RV
	A	AR	
С	PES	MSRI	RV
	A	T	

College preference list

RV	A _P	В	С
PES	A P	B P	C P
MSRIT	A	B P	С

A Accept

P Propose

R Reject

Algorithm

```
While there is a man m who is free and hasn't proposed to every woman
        Choose such a man m
         Let w be the highest-ranked woman in m's preference list to whom m
                 has not yet proposed
         If w is free then
                  (m, w) become engaged
         Else w is currently engaged to m'
                 If w prefers m to m' then
                          (m, w) become engaged
                          m' becomes free
                 Else
                          m remains free
                 Endif
        Endif
Endwhile
Return the set S of engaged pairs
```

Srinidhi H, Dept of CSE, MSRIT

Analysis and claims

1. w remains engaged from the point at which she receives her first proposal; and the sequence of partners to which she is engaged gets better and better (in terms of her preference list).

W	M	M'		
W'	M'	M		

Analysis

2. The sequence of women to whom m proposes gets worse and worse (in terms of his preference list).

Analysis

3. The G-S algorithm terminates after at most n² iterations of the While loop.

- Each iteration consists of some man proposing (for the only time) to a woman he has never proposed to before.
- So if we let P(t) denote the set of pairs (m, w) such that m has proposed to w by the end of iteration t, we see that for all t, the size of P(t + 1) is strictly greater than the size of P(t).
- It follows that there can be at most n^2 iterations.

MENS PREFERENCE LIST

WOMENS PREFERENCE LIST

V	A	В	C	D	E	A	w	х	Y	Z	0
- W	В	С	D	Α	E	B	Х	Y	Z	V	W
×)	D	A	В	Е	O	Υ	Z	V	W	⊗
V	•	Α	В	С	E	0	Z	V	W	X	Ø
z	A	В	С	D	E	E	V	W	Х	Y	Z

N(N-1)+1

N:Number of Men

(N-1) Number of proposes left out

1: Proposal during first iteration

Srinidhi H, Dept of CSE, MSRIT

Proof of Correctness: Stability

4. Consider an execution of the G-S algorithm that returns a set of pairs S. The set S is a stable matching.

- We will assume that there is an instability with respect to *S* and obtain a contradiction.
- As defined earlier, such an instability would involve two pairs, (m, w) and (m', w'), in S with the properties that
- m prefers w' to w, and
- w'prefers m to m'.

An unstable situation

An unstable situation

Proof of Correctness: Stability

- Suppose $S=\{(m,w),(m',w')\}$ with an instability
 - m prefers w' to w.
 - w' prefers m to m'
- Case 1: m never proposed to w'.

 - \Rightarrow w is highest partner for m so (m,w) is stable.
 - \Rightarrow Contradicts the assumption m prefers w' to w.
- Case 2: m proposed to w'
 - \Rightarrow w' rejected m (right away or later)
 - \Rightarrow w' prefers her GS partner to m.
 - \Rightarrow In both cases the other man m''=m' (m',w') is stable.
 - \Rightarrow Contradicts the assumption w' prefers m to m'.

5.If m is free at some point in the execution of the algorithm, then there is a woman to whom he has not yet proposed.

• When m is free but has already proposed to every woman.

- Then by (1) each of the *n* women is engaged at this point in time. Since the set of engaged pairs forms a matching, there must also be a engaged men at this point in time.
- But there are only n men total, and m is not engaged, so this is a contradiction.

Analysis

6.The set S returned at termination is a perfect matching.

- The set of engaged pairs always forms a matching. Let us suppose that the algorithm terminates with a free man m.
- At termination, it must be the case that m had already proposed to every woman, for otherwise the While loop would not have exited.
- But this contradicts (5), which says that there cannot be a free man who has proposed to every woman.

GS Extensions

- With GS algorithm, (M,W) and (M',W') is attainable.
- The other stable pair (M,W') and (M',W) is not attainable. \rightarrow If women propose first then it is attainable.

Unfairness-Extensions

- If the men's preferences mesh perfectly (they all list different women as their first choice), then in all runs of the G-S algorithm all men end up matched with their first choice, independent of the preferences of the women.
- If the women's preferences clash completely with the men's preferences (as was the case in this example), then the resulting stable matching is as bad as possible for the women.

Unfairness- Extensions

women are unhappy if men propose, and men are unhappy if women propose.

Extensions

- G-S algorithm is actually underspecified: as long as there is a free man, we are allowed to choose any free man to make the next proposal. Do all executions of the G-S algorithm yield the same matching?
- Uniquely characterize the matching that is obtained and then show that all executions result in the matching with this characterization.

Extensions-Characterization

- We'll show that each man ends up with the "best possible partner" in a concrete sense. (Recall that this is true if all men prefer different women).
- woman w is a valid partner of a man m if there is a stable matching that contains the pair (m, w).
- w is the best valid partner of m if w is a valid partner of m, and no woman whom m ranks higher than w is a valid partner of his. We will use best(m) to denote the best valid partner of m.

Extensions-Characterization

- Who is the best valid partner of m?
- Who is the valid partner of m'?
- Who is the best valid partner of m'?

Extensions

• let S* denote the set of pairs $\{(m, best(m)) : m \in M\}$. Every execution of the G-S algorithm results in the set S*.

Assumption:

Some execution E of the G-S algorithm results in a matching S* in which some man is paired with a woman who is not his best valid partner.

- Since men propose in decreasing order of preference, this means that some man is rejected by a valid partner during the execution E of the algorithm.
- So consider the first moment during the execution E in which some man, say *m*, *is* rejected by a valid partner w.
- Again, since men propose in decreasing order of preference, and since this is the first time such a rejection has occurred, it must be that w is m's best valid partner best(m).

- The **rejection of** *m by w may have happened* either because m proposed and was turned down in favor of w's existing engagement, or because w broke her engagement to m in favor of a **better proposal**. But either way, at this moment w forms or continues an engagement with a man m' whom she prefers to m.
- Since w is a valid partner of m, there exists a stable matching S' containing the pair (m, w).

If w rejects then who is she rejecting for?

- Let us say m' is paired with w'.
- So now $S'=\{(m,w), (m',w')\}$

- Since m' proposed in decreasing order of preference, and since w' is clearly a valid partner of m', it must be that m' prefers w to w'.
- But we have already seen that w prefers m' to m, for in execution E she rejected m in favor of m', it follows that (m', w) is an instability in S'.
- This contradicts our claim that *S'* is stable and hence contradicts our initial assumption.

In the stable matching S*, each woman is paired with her worst valid partner.

- Suppose there were a pair (m, w) in S* such that m is not the worst valid partner of w.
 - Then there is a stable matching S' in which w is paired with a man m' whom she likes less than m.
 - In S', m is paired with a woman w'; since w' is the best valid partner of m, and w is a valid partner of m,
 - we see that m prefers w' to w.
 - But from this it follows that (m, w) is an instability in S, contradicting the
 - claim that *S'* is stable and hence contradicting our initial assumption.

Five Representative problems

- Interval Scheduling
- Weighted Interval Scheduling
- Bipartite Matching

Graph basics

- How many number of nodes?
- How many edges?
- Is it a complete or a connected graph?

Graph basics

- What is this graph called?
- Why?
- Can you find a perfectMatching in this?
- What is the maximum Matching size?

Bipartite matching

- For graph G = (V, E) is a set of edges $M \subseteq E$ with the property that each node appears in at most one edge of M.
- *M* is a *perfect matching* if every node appears in exactly one edge of *M*.
- If |X| = |Y| = n, then there is a perfect matching if and only if the maximum matching has size n.

Independent set

• What are the independent nodes in the graph?

Independent set

Given a graph G = (V, E), we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge.

• The Independent Set Problem is, then, the following: Given G, find an independent set that is as large as possible.

- Say you have *n friends*, and some pairs of them don't get along. How large a group of your friends can you invite to dinner if you don't want any interpersonal tensions?
- This is simply the largest independent set in the graph whose nodes are your friends, with an edge between each conflicting pair.

- Two large companies currently competing for market share in a geographic area.
- Regulations that require no two franchises be located too close together, and each is trying to make its locations as convenient as possible. Who will win?

- The geographic region in question is divided into *n* zones, labeled 1, 2, . . . , *n*.
- Each zone *i* has a value bi, which is the revenue obtained by either of the companies if it opens a franchise there.
- Finally, certain pairs of zones (*i*, *j*) are adjacent, and local zoning laws prevent two adjacent zones from each containing a franchise, regardless of which company owns them.

• The zoning requirement then says that the full set of franchises opened must form an independent set in *G*.

- Thus our game consists of two players, *P1 and P2*, alternately selecting nodes in *G*, with *P1 moving first*.
- At all times, the set of all selected nodes must form an independent set in G.
- Suppose that player P2 has a target bound B, and we want to know:
 - is there a strategy for P2 so that no matter how P1 plays, P2 will be able to select a set of nodes with a total value of at least B?
- We will call this an instance of the *Competitive Facility Location Problem*.

Competitive facility location problem

