Computer Vision-IT416

Dinesh Naik

Department of Information Technology, National Institute of Technology Karnataka, India

April 5, 2022

Edge detection Using Gradients

- An image gradient is a directional change in the intensity or color in an image.
- The gradient of the image is one of the fundamental building blocks in image processing.
- Mathematically, the gradient of a two-variable function (here the image intensity function) at each image point is a 2D vector with the components given by the derivatives in the horizontal and vertical directions.
- The most common way to approximate the image gradient is to convolve an image with a kernel, such as the Sobel operator or Prewitt operator.

1D Edge Detection

Edge is a rapid change in image intensity in a small region

Basic Calculus: Derivative of a continuous function represents the amount of change in the function.

Gradient (♥)

Gradient (Partial Derivatives) represents the direction of most rapid change in intensity

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

Pronounced as "Del I"

$$\nabla I = \left[\frac{\partial I}{\partial x}, 0\right]$$

$$\nabla I = \left[0, \frac{\partial I}{\partial x}\right]$$

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$$

Gradient (♥) as Edge Detector

Gradient Magnitude
$$S = \|\nabla I\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Gradient Orientation
$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Discrete Gradient (♥) Operator

Finite difference approximations:

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i,j+1} \right) + \left(I_{i+1,j} - I_{i,j} \right) \right)$$

$$I_{i,j+1} \quad I_{i+1,j+1}$$

$$I_{i,j} \quad I_{i+1,j}$$

 $\frac{\partial I}{\partial y} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i+1,j} \right) + \left(I_{i,j+1} - I_{i,j} \right) \right)$

Can be implemented as Convolution!

$$\frac{\partial}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix}$$

$$\frac{\partial}{\partial y} \approx \frac{1}{2\varepsilon} \begin{vmatrix} 1^{1} & 1 \\ -1 & -1 \end{vmatrix}$$

Comparing Gradient (♥) Operators				
Gradient	Roberts	Prewitt	Sobel (3x3)	Sobel (5x5)
$\frac{\partial I}{\partial x}$	0 1 -1 0	-1 0 1 -1 0 1 -1 0 1	-1 0 1 -2 0 2 -1 0 1	-1
<u>∂1</u> ∂y	1 0 0 -1	1 1 1 0 0 0 -1 -1 -1	1 2 1 0 0 0 -1 -2 -1	1 2 3 2 1 2 3 5 3 2 0 0 0 0 0 0 -2 -3 -5 -3 -2 -1 -2 -3 -2 -1

Edge Thresholding

Standard: (Single Threshold *T*)

 $\|\nabla I(x,y)\| < T$ Definitely Not an Edge

 $\|\nabla I(x,y)\| \ge T$ Definitely an Edge

Hysteresis Based: (Two Thresholds $T_0 < T_1$)

 $\|\nabla I(x,y)\| < T_0$ Definitely Not an Edge

 $\|\nabla I(x,y)\| \ge T_1$ Definitely an Edge

 $T_0 \le ||\nabla I(x,y)|| < T_1$ Is an Edge if a Neighboring Pixel

is Definitely an Edge

Canny Edge Detection Algorithm

- Step 1 Grayscale Conversion.
- Step 2 Gaussian Blur.
- Step 3 Determine the Intensity Gradients.
- Step 4 Non Maximum Suppression.
- Step 5 Double Thresholding.
- Step 6 Edge Tracking by Hysteresis.
- Step 7 Cleaning Up.