Unitatea de învățare 9 - 2 ore

Sisteme de ecuații liniare - continuare

- 9.1. Algoritmul Jacobi.
- 9.2. Algoritmul Gauss-Siedel.

Cunoștințe și deprinderi

La finalul parcurgerii acestei unități de învățare vei cunoaște:

- caracteristicile algoritmilor iterativi de soluționare a sistemelor de ecuații liniare;
- etapele de calcul pentru algoritmii Jacobi și Gauss-Siedel.

În această unitate de învățare sunt prezentați algoritmii ce fac parte din categoria algoritmilor iterativi de soluționare a sistemelor de ecuații liniare și anume, algoritmul Jacobi și algoritmul Gauss – Siedel.

9.1. Algoritmul Jacobi

Se consideră sistemul de ecuații

și o aproximare a soluției sistemului de ecuații,
$$x^{(0)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
.

Algoritmul Jacobi impune următoarea descompunere a matricei A

$$\begin{cases}
N = D \\
P = N - A = -(L + R)
\end{cases}$$
(9.2)

unde matricea \mathbf{D} este matricea diagonală, $\mathbf{D} = diag(a_{11}, a_{22}, ..., a_{nn})$;

$$L = \begin{bmatrix} 0 & 0 & ... & 0 \\ a_{21} & 0 & ... & 0 \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{bmatrix};$$
 (9.3)

$$\mathbf{R} = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}. \tag{9.4}$$

Algoritmul Jacobi conține următoarele relații de calcul :

$$b_{i} - \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} x_{j}^{(k)}$$

$$x_{i}^{(k+1)} = \frac{a_{ii}}{a_{ii}}, \quad i = 1, ..., n.$$
(9.5)

Criteriul de convergență al algoritmului poate fi exprimat prin

$$\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right| \leq \varepsilon, \quad i=1,\ldots,n.$$
 (9.6)

Metoda Jacobi este convergentă atunci când matricea **A** a sistemului este diagonal dominantă, respectiv

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}|, \quad i = 1, \dots, n.$$
 (9.7)

Exemplul 1. Să se rezolve sistemul

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ 2x_1 + 3x_2 + x_3 = 9, \\ x_1 - x_2 - x_3 = -2 \end{cases}$$

cunoscând soluţia iniţială $x^{(0)} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ și precizia $\varepsilon = 10^{-3}$.

Rezolvare. Relaţia de recurenţă (9.5) se particularizează în

$$\begin{cases} x_1^{(k+1)} = \frac{b_1 - \sum_{\substack{j=1 \ j \neq 1}}^n a_{1j} x_j^{(k)}}{a_{11}} \\ b_2 - \sum_{\substack{j=1 \ j \neq 2}}^n a_{2j} x_j^{(k)} \\ x_2^{(k+1)} = \frac{a_{2j} x_j^{(k)}}{a_{22}} \\ \vdots \\ x_3^{(k+1)} = \frac{a_{3j} x_j^{(k)}}{a_{33}} \end{cases}$$

Aplicând succesiv relaţiile particulare anterioare, se obţin soluţiile din tabelul 9.1.

Tabelul 9.1

Rezultate numerice obtinute cu algoritmul Jacobi

Iteratia	X_1	x_2	x_3	Iteratia	x_1	x_2	x_3
0	4	5	6	14	1,0452	2,0658	9,4650
1	-7,0000	-1,6666	1,0000	15	0,9876	1,9876	0,9794
2	4,6666	7,3333	-3,3333	16	1,0329	2,0150	1
3	0	1	-0,6666	17	0,9849	1,9780	1,0178
4	3,6666	3,2222	1	18	1,0041	2,0041	1,0068
5	-0,2222	0,2222	2,4444	19	0,9890	1,9949	1
6	1,3333	2,3333	1,5555	20	1,0050	2,0073	0,9940
7	0,1111	1,5925	1	21	0,9986	1,9986	0,9977
8	1,4074	2,5925	0,5185	22	1,0036	2,0016	1
9	0,8888	1,8888	0,8148	23	0,9983	1,9975	1,0019
10	1,2962	2,1358	1	24	1,0004	2,0004	1,0007
11	0,8641	1,8024	1,1604	25	0,9987	1,9994	1
12	1,0370	2,0370	1,0617	26	1,0005	2,0008	0,9993
13	0,9012	1,9547	1	27	0,9998	1,9998	0,9997

ecuații este
$$\begin{cases} x_1 = 0,9998 \\ x_2 = 1,9998 \text{ , cu o eroare de } 2*10^{-4} \text{.} \\ x_3 = 0,9997 \end{cases}$$

Test de autoevaluare

- 1. Precizați modul de descompunere a unei matrice A, asociată unui sistem de ecuații liniare, în cazul rezolvării sistemului respectiv prin metoda Jacobi.
- 2. Care este relația de recurență asociată algoritmului Jacobi?

9.2. Algoritmul Gauss-Siedel

Se consideră sistemul de ecuații

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$(9.8)$$

și o aproximare a soluției sistemului de ecuații, $\mathbf{x}^{(0)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$. Algoritmul

Gauss-Siedel este definit prin relaţia de recurenţă

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, \quad i = 1, \dots, n.$$
 (9.9)

Criteriul de convergență al algoritmului este exprimat prin relația

$$\left| x_i^{(k+1)} - x_i^{(k)} \right| \le \varepsilon, \quad i = 1, ..., n.$$
 (9.10)

Datorită modului în care sunt utilizate valorile necunoscutelor în cadrul iteraiei curente k+1, metoda Gauss-Siedel converge mai rapid decât metoda Jacobi.

Exemplul 2. Să se rezolve sistemul

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 + 2x_2 = 5 \\ x_1 + x_2 + 4x_3 = 7 \end{cases}$$

cunoscând soluţia iniţială $x^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ și precizia $\varepsilon = 10^{-3}$.

Rezolvare. Sistemul se aduce la forma

$$x_1^{(k+1)} = \frac{b_1 - \sum\limits_{\substack{j=1 \\ j \neq 1}}^3 a_{1j} x_j^{(k)}}{a_{11}} \;\; ; \;\; x_2^{(k+1)} = \frac{b_2 - \sum\limits_{\substack{j=1 \\ j \neq 2}}^3 a_{2j} x_j^{(k)}}{a_{22}} \;\; ; \;\; x_3^{(k+1)} = \frac{b_3 - \sum\limits_{\substack{j=1 \\ j \neq 3}}^3 a_{3j} x_j^{(k)}}{a_{33}} \;.$$

Aplicând succesiv relaţiile (6.10) se obţin soluţiile din tabelul 9.2.

Tabelul 9.2

Rezultatele obţinute cu algoritmul Gauss-Siedel

Iteratia	X ₁	X ₂	X 3
0	1	1	1
1	1,3333	1,8333	0,9583
2	1,6094	1,9652	0,9913
3	1,0144	1,9927	0.9981

Datorită modului în care sunt utilizate valorile necunoscutelor în cadrul unei iterații, metoda Gauss-Siedel converge mult mai rapid decât metoda Jacobi.

Test de autoevaluare

- 1. Care este relația de recurență asociată algoritmului Gauss-Siedel?
- 2. Din punctul de vedere al convergenței, care dintre cei doi algoritmi prezentați pentru rezolvarea sistemelor de ecuații liniare este mai rapid?

Lucrare de verificare

1. Să se rezolve următorul sistem de ecuații liniare, folosind algoritmul Jacobi

$$\begin{cases} 3x + 2y - z = 1 \\ -x - 2y + z = 2 \\ 2x - y + z = -1 \end{cases}$$

2. Să se rezolve următorul sistem de ecuații liniare, folosind algoritmul Gauss-Siedel

$$\begin{cases} 3x + 3y - 2z = -2 \\ 4x - 2y + z = 1 \\ -2x + y + 2z = 1 \end{cases}.$$