Unidade de Jundiaí

Ciência da Computação

TRABALHO 2

Disciplina: Arquiteturas Paralelas e Distribuídas

Professor Esp. Alessandro Silva Ferreira

Cecília Junqueira Sartini // RA: 8483182138

Jundiaí 2017

INDICE:

1.	PESQUISA	Página 2
1.1.	Classificação de Flynn	Página 2
1.1.1.	SISD	Página 2
1.1.1.1.	O que é	Página 2
1.1.1.2.	Onde se aplica	Página 2
1.1.1.3.	Exemplo	Página 2
1.1.2.	MISD	Página 2
1.1.2.1.	O que é	Página 2
1.1.2.2.	Onde se aplica	Página 2
1.1.2.3.	Exemplo	Página 2
1.1.3.	SIMD	Página 3
1.1.3.1	O que é	Página 3
1.1.3.2.	Onde se aplica	Página 3
1.1.3.3.	Exemplo	Página 3
1.1.4.	MIMD	Página 3
1.1.4.1.	O que são	Página 3
1.1.4.2.	Onde se aplicam	Página 3
1.1.4.3.	Exemplo	Página 3
2.	BIBLIOGRAFIA	Página 4

1. PESQUISA

1.1. Classificação de Flynn

Tal Classificação consiste no fato de um computador realizar uma sequência de instruções de dados, diferenciando-se o fluxo de instruções e o fluxo de dados.

Abrangendo quatro categorias:

1.1.1 SISD

1.1.1.1 O que é

Fluxo único de instruções sobre um único conjunto de dados. (Single Instruction Single Data)

1.1.1.2. Onde se aplica

Representa os computadores convencionais (seriais). As instruções são executadas serialmente, porém os estágios (busca da instrução, decodificação, busca do operando e execução) podem ser sobrepostos (pipeline). Pode-se saber o que está ocorrendo exatamente em cada instante de tempo e reproduzir o processo passo a passo mais tarde.

1.1.3. Exemplo

As instruções são executadas sequencialmente mas pode existir uma defasagem de estados na execução (pipeline).

Alguns sistemas monoprocessadores. SISD são estruturados em pipeline.

1.2. **MISD**

1.2.1 O que é

Múltiplo fluxo de instruções, único fluxo de dados. (Multiple Instruction Single Data)

1.2.2. Onde se aplica

Vários processadores, onde cada um recebe instruções distintas mas operam sobre o mesmo conjunto de dados.

1.2.3. Exemplo

- Múltiplos filtros de frequência operando sobre um único fluxo de sinal.
- Múltiplos algoritmos de criptografia para decodificar uma mensagem.

1.3. **SIMD**

1.3.1 O que é

Único fluxo de instruções, múltiplo fluxo de dados. (Single Instruction Multiple Data).

1.3.2. Onde se aplica

Classe que representa os processadores matriciais, paralelos e associativos – Uma única unidade de controle que envia um fluxo de instruções para vários processadores – Os processadores recebem a mesma instrução ao mesmo tempo e atuam sobre diferentes fluxos de dados

1.3.3. Exemplo

Processadores Gráficos.

1.4. MIMD

1.4.1 O que são

Múltiplo fluxo de instruções, múltiplo fluxo de dados. (Multiple Instruction Multiple Data).

1.4.3. Onde se aplicam

Vários processadores, cada um controlado por uma unidade de controle – processadores recebem instruções diferentes e operam sob fluxo de dados diferentes – podem ser síncronos ou assíncronos.

1.4.4. Exemplo

Nesta classe cada processador é controlado por uma unidade de controle, executando instruções independentemente sobre diferentes fluxos de dados. Esta arquitetura apresenta uma grande flexibilidade para desenvolvimento de algoritmos paralelos.

2. REFERÊNCIAS BIBLIOGRAFICAS

OSÓRIO, Prof. Fernando Santos Prof. Fernando Santos. Disciplina de Arquitetura de Computadores. **Instituto de Ciências Matemátocas e de Computação**, USP - ICMC - SSC, v. Informática - 2o. Semestre 2009, n. 12, p. 6-14, dez./dez. 2009. Disponível em: http://wiki.icmc.usp.br/images/0/0c/SSC0510-Aula12.pdf>. Acesso em: 01 mar. 2017.

TAVARES, Prof. Isaac Luna. SD – SISTEMAS DISTRIBUÍDOS. **UDF - CENTRO UNIVERSITÁRIO**,

Https://docs.google.com/presentation/d/1yFdAHvC4AAG1RYa22ZnDDtmmHSzcrmQ 4Hu79DyPFJ44/edit#slide=id.i279, v. 3, n. 3, p. 8-25, sem./dez. 2017.

WIKIPEDIA. **Taxonomia de flynn**. Disponível em: https://pt.wikipedia.org/wiki/taxonomia_de_flynn. Acesso em: 01 mar. 2017.