# Dimensionality Reduction Principal Component Analysis ( PCA )

Mr.Gangadhar Immadi

immadi.gangadhar@gmail.com

9986789040

## Why PCA?

- Try to keep the maximum information with less number of features
- It's a Dimensionality reduction technique, Not a feature selection









## Dimensionality Reduction



#### Housing Data

Size
Number of rooms
Number of Bathrooms
Schools around
Crime rate

Size
Number of rooms
Number of Bathrooms

Schools around
Crime rate

Size feature

Location feature

## Housing Data









## Mean

wall



Mean = 
$$\frac{1+2+6}{3}$$
 = 3





#### Variance

Variance = 
$$\frac{1}{3}^{0} = \frac{1}{3}^{0} = \frac{1}{3}^{0}$$

#### Variance



Variance = 
$$\frac{2^2 + 1^2 + 3^2}{3} = 14/3$$

#### Find Variance



#### Find Variance & How to Differentiate





x-variance = 
$$\frac{2^2 + 0^2 + 2^2}{3} = 8/3$$

y-variance = 
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

#### Covariance

(2,1)

Sum of Product of coordinates





·(-2,1)



covariance = 
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

covariance = 
$$\frac{2+0+2}{3} = \frac{4}{3}$$

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$



 $cov_{x,y} = {\sf covariance}$  between variable a and y

 $x_i$  = data value of x

 $y_i$  = data value of y

 $\bar{x}$  = mean of x

 $\bar{y}$  = mean of y

N = number of data values



covariance = 
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

covariance = 
$$\frac{2+0+2}{3} = 4/3$$

covariance = 
$$\frac{-2+0+2+0+0+2+0+-2}{9} = 0$$

negative covariance

covariance zero (or very small)

positive covariance

#### **Covariance Matrix**









#### Eigen Values

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Characteristic Polynomial

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
  
=  $(x-11)(x-1)$ 

Eigenvalues 11 and 1

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 11 \begin{pmatrix} u \\ v \end{pmatrix} \qquad \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1 \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

#### **Principal Component Analysis**

$$z = \frac{value - mean}{standard\ deviation}$$

#### **STEP 2: COVARIANCE MATRIX COMPUTATION**

$$\begin{bmatrix}
Cov(x,x) & Cov(x,y) & Cov(x,z) \\
Cov(y,x) & Cov(y,y) & Cov(y,z) \\
Cov(z,x) & Cov(z,y) & Cov(z,z)
\end{bmatrix}$$

## STEP 3: COMPUTE THE EIGENVECTORS AND EIGENVALUES OF THE COVARIANCE MATRIX TO IDENTIFY THE PRINCIPAL COMPONENTS

$$v1 = \begin{bmatrix} 0.6778736 \\ 0.7351785 \end{bmatrix} \qquad \lambda_1 = 1.284028$$

$$v2 = \begin{bmatrix} -0.7351785\\ 0.6778736 \end{bmatrix} \qquad \lambda_2 = 0.04908323$$



**STEP 4: FEATURE VECTOR** 

LAST STEP: RECAST THE DATA ALONG THE PRINCIPAL COMPONENTS AXES

 $Final Data Set = Feature Vector^T * Standardized Original Data Set^T$ 

### Principal Component Analysis





#### PCA – Big Picture





| X  | Υ   | (XI-XBAR)*2 | (YI-YBAR)*2 | (XI-XBAR)*(YI-YBAR) | (YI-XBAR)*(XI-YBAR) |
|----|-----|-------------|-------------|---------------------|---------------------|
| 4  | 11  | 16          | 6.25        | -10                 | -10                 |
| 8  | 4   | 0           | 20.25       | 0                   | 0                   |
| 13 | 5   | 25          | 12.25       | -17.5               | -17.5               |
| 7  | 14  | 1           | 30.25       | -5.5                | -5.5                |
| 8  | 8.5 | 14          | 23          | -11                 | -11                 |

**Covariance Matrix:** 

$$A = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$|A - \lambda I| = 0$$

 $\lambda 1 > \lambda 2$ 

Eigen Vector of  $\lambda 1$ ,

$$\left(\begin{bmatrix}\mathbf{14} & -\mathbf{11} \\ -\mathbf{11} & \mathbf{23}\end{bmatrix} - \lambda \begin{bmatrix}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{bmatrix}\right) = 0$$

$$\left(\begin{bmatrix} 14-\lambda & -11 \\ -11 & 23-\lambda \end{bmatrix}\right) = 0$$

$$(14-\lambda)(23-\lambda)-(-11x-11)=0$$

$$\lambda^2$$
 -37 $\lambda$ +201= 0

$$\lambda 1 = 30.3849$$
,  $\lambda 2 = 6.6151$