

FIG. I

FIG. 2

Title: Therapeutic Methods Employing Nitric Oxide Precursors Inventors: Summar et al. Attorney Docket No. 1242/58

<u>-1</u>G, 3

FIG. 5

Title: Therapeutic Methods Employing Nitric Oxide Precursors Inventors: Summar et al. Attorney Docket No. 1242/58

Title: Therapeutic Methods Employing Nitric Oxide Precursors Inventors: Summar et al. Attorney Docket No. 1242/58

1						
ctacttctca 71	ctacttotca tyttoagoaa tttottotto tttatgtttt aaattacatg ttooataaaa ataagaaat 71	tttcttcttc	tttatgtttt	aaattacatg	ttccataaaa	ataagaaat
cactgtgata 111	cactgtgata cggtaattga tttttcatt ttaaatgcag/(intron exon boundary) 111	ttttttcatt	ttaaatgcag/	(intron exo	n boundary)	
CTGTTTGCCA 181		ATCAGACTGG	CGGAAGCCAC ATCAGACIGG CTCAACGCCA ACAAISTCCC IGCCACCCCA GIGGCAIGGC	ACAAT 3TCCC	TGCCACCCCA	GTGGCATGGC
CGTCTCAAGA	CGICICAAGA AGGACAGAAI CCCAGCCICI CIICCAICAG AAA/ (intron exon boundary)	CCCAGCCTCT	CTTCCATCAG	AAA/ (intro	un exon ponu	dary)
224		GTCGGAGA	GTCGGAGA GAAGGTAGTC TT	TT L(135a)	a)	
gtaagaacta 294	gtaagaacta ggcatactgt tttctgaaat aatttagagg attaa>tttg agaaccagta tatgaatatt 294	tttctgaaat	aatttagagg	attaactttg	agaaccagta	tatgaatatt
caccttgctt 364	caccttgctt gattgcaagt cttttaaaac aaatttaaaa atgaa:acat ttgtggatga ttgtcaagtt 364	cttttaaaac	aaatttaaaa	atgaamacat ttg (L135b)	ttgtggatga 5b)	ttgtcaagtt
tcactctcca 434	tcactotoca tcactatgga atacataacg tcatgtgtāc atggtyatat gaaacgtgtt tcaaaatact 434	atacataacg	tcatgtgtác	atggtyatat	gaaacgtgtt	tcaaaatact
tcttagtaag	tottagtaag gataotttoo ttgaoggaaa caagtgagag tatgawgaat gtaatgoago ao	ttgacggaaa	caagtgagag	tatgaagaat	gtaatgcagc	ac
Primer U4295	Be 11	Begins Size	ø	SEQ ID NO:	NO:	
L135a	22	220 21		6		
L135b	37	370 24		10		
Spanner 1	agctgtt	agctgtttgccacggaagcc	202	9		
Spanner 2	cccagcc	cccagcctcttccatcagaaagtaag	agaaagtaag	7		

FIG. 10

119 base fragment

U4295 - L135b 251 b Spannerl - Spanner2

251 base fragment

Pairs U4295 - L135a 101 base fragment

CPSI T1405 SEQUENCE (SEQ ID NO:4)

MTRILTAFKV VRTLKTGFGF TNVTAHQKWK FSRPGIRLLS VKAQTAHIVI FDGTKMKGYS FGHPSSVAGE VVFNTGLGGY PEAITDPAYK GQILTMANPI IGNGGAPDTT ALDELGLSKY LESNGIKVSG LLVLDYSKDY NHWLATKSLG QWLQEEKVPA IYGVDTRMLT KIIRDKGTML GKIEFEGQPV DFVDPNKQNL IAEVSTKDVK VYGKGNPTKV VAVDCGIKNN VIRLLVKRGA EVHLVPWNHD FTKMEYDGIL IAGGPGNPAL AFPLIONVRK ILESDRKEPL EGISTGNLIT GLAAGAKTYK MSMANRGQNQ PVLNITNKQA FITAQNHGYA LDNTLPAGWK PLFVNVNDQT NEGIMHESKP FFAVQFHPEV TPGPIDTEYL FDSFFSLIKK GKATTITSVL PKPALVASRV EVSKYLILGS GGLSIGOAGE FDYSGSQAVK AMKEENVKTV LMNPNIASVO TNFVGI KOAD TVYFLPITPQ FVTEVIKAEQ PDGLILGMGG QTALNCGVEL FKRGVLKEYG VKVLGTSVES IMATEDRQLF SDKLNEINEK IAPSFAVESI EDALKAADTI GYPVMIRSAY ALGGLGSGIC PNRETLMDLS TKAFAMTNQI LVEKSVTGWK EIEYEVVRDA DDNCVTVCNM ENVDAMGVHT GDSVVVAPAQ TLSNAEFQML RRTSINVVRH LGIVGECNIQ FALHPTSMEY CIIEVNARLS RSSALASKAT GYPLAFIAAK IALGIPLPEI KNVVSGKTSA CFEPSLDYMV TKIPRWDLDR FHGTSSRIGS SMKSVGEVMA IGRTFEESFO KALRMCHPSI EGFTPRLPMN KEWPSNLDLR KELSEPSSTR IYAIAKAIDD NMSLDEIEKL TYIDKWEI YK MRDII NMEKT LKGI NSESMT EETLKRAKEI GFSDKQISKC LGLTEAQTRE LRLKKNIHPW VKQIDTLAAE YPSVTNYLYV TYNGQEHDVN FDDHGMMVLG CGPYHIGSSV EFDWCAVSSI RTLRQLGKKT VVVNCNPETV STDFDECDKL YFEELSLERI LDIYHQEACG GCIISVGGQI PNNLAVPLYK NGVKIMGTSP. LQIDRAEDRS IFSAVLDELK VAQAPWKAVN TLNEALEFAK SVDYPCLLRP SYVLSGSAMN VVFSEDEMKK FLEEATRVSQ EHPVVLTKFV EGAREVEMDA VGKDGRVISH AISEHVEDAG VHSGDATLML PTQTISQGAI EKVKDATRKI AKAFAISGPF NVQFLVKGND VLVIECNLRA SRSFPFVSKT LGVDFIDVAT KVMIGENVDE KHLPTLDHPI IPADYVAIKA PMFSWPRLRD ADPILRCEMA STGEVACFGE GIHTAFLKAM LSTGFKIPQK GILIGIQQSF RPRFLGVAEQ LHNEGFKLFA TEATSDWLNA NNVPATPVAW PSQEGQNPSL SSIRKLIRDG SIDLVINLPN NNTKEVHDNY VIRRTAVDSG IPLLTNFOVT KLEAFAVOKS RKVDSKSLEH YROYSAGKAA х

FIG. 11

CPSI N1405 SEQUENCE (SEQ ID NO:2)

MTRILTAFKV VRTLKTGFGF TNVTAHQKWK FSRPGIRLLS VKAQTAHIVL EDGTKMKGYS FGHPSSVAGE VVFNTGLGGY PEAITDPAYK GQILTMANPI IGNGGAPDTT ALDELGLSKY LESNGIKVSG LLVLDYSKDY NHWLATKSLG QWLQEEKVPA IYGVDTRMLT KIIRDKGTML GKIEFEGQPV DFVDPNKQNL IAEVSTKDVK VYGKGNPTKV VAVDCGIKNN VIRLLVKRGA EVHLVPWNHD FTKMEYDGIL IAGGPGNPAL AEPLIQNVRK ILESDRKEPL FGISTGNLIT GLAAGAKTYK MSMANRGQNQ PVLNITNKQA FITAQNHGYA LDNTLPAGWK PLFVNVNDQT NEGIMHESKP FFAVQFHPEV TPGPIDTEYL FDSFFSLIKK GKATTITSVI, PKPAI VASRV EVSKYLILGS GGLSIGGACE FDYGGSQAVK AMKEENVKTV LMNPNIASVQ TNEVGLKQAD TVYFLPITPQ FVTEVIKAEQ PDGLILGMGG QTALNCGVEL FKRGVLKEYG VKVLGTSVES IMATEDROLF SDKLNEINEK IAPSFAVESI EDALKAADTI GYPVMIRSAY ALGGLGSGIC PNRETLMDLS TKAFAMTNQI LVEKSVTGWK EIEYEVVRDA DDNCVTVCNM ENVDAMGVHT GDSVVVAPAQ TLSNAEFQML RRTSINVVRH LGIVGECNIQ FALHPTSMEY CIIEVNARLS RSSALASKAT GYPLAFIAAK IALGIPLPEI KNVVSGKTSA CFEPSLDYMV TKIPRWDLDR FHGTSSRIGS SMKSVGEVMA IGRTFEESFQ KALRMCHPSI EGFTPRLPMN KEWPSNLDLR KELSEPSSTR IYAIAKAIDD NMSLDEIEKL TYIDKWFLYK MRDILNMEKT LKGLNSESMT EETLKRAKEI GFSDKQISKC LGLTEAQTRE LRLKKNIHPW VKQIDTI AAF YPSVTNYI YV TYNGQEHDVN FDDHGMMVLG CGPYHIGSSV EFDWCAVSSI RTLRQLGKKT VVVNCNPETV STDFDECDKL YFEELSLERI LDIYHQEACG GCIISVGGQI PNNLAVPLYK NGVKIMGTSP LQIDRAEDRS IFSAVLDELK VAQAPWKAVN TLNEALEFAK SVDYPCLLRP SYVLSGSAMN WFSEDEMKK FLEEATRYSQ EHPVVLTKFV EGAREVEMDA VGKDGRVISH AISEHVEDAG VHSGDATLML PTQTISQGAI EKVKDATRKI AKAFAISGPF NVQFLVKGND VLVIECNLRA SRSFPFVSKT LGVDFIDVAT KVMIGENVDE KHLPTLDHPI IPADYVAIKA PMFSWPRLRD ADPILRCEMA STGEVACFGE GIHTAFLKAM LSTGFKIPOK GILIGIOOSF RPRFLGVAEO LHNEGFKLFA TEATSDWLNA NNVPANPVAW PSQEGQNPSL SSIRKLIRDG SIDLVINI PN NNTKEVHDNY VIRRTAVDSG IPLLTNFQVT KLEAEAVOKS RKVDSKSI EH YRQYSAGKAA

FIG. 12

FIGURE 13

