8.02 Time Series I

Time Series

• Series of data points indexed in time order

Sequence taken at successive equally spaced points in time

• Exhibits multiple trends – cyclic, growth, seasonal

ML outcomes are influenced by time series trends

Time Series Applications

Cyclic: Higher social media engagement rates during lunch hour

• Growth: 20% higher YoY sales revenue

• Seasonal: Higher staycation bookings during school holiday seasons

Time Series Data

• Sequence of data points

Timestamp

Regular Intervals

Measurements

Measure_DateTime	х	Y
2/10/2019 0:00:00	10	30
2/10/2019 0:00:10	11	40
2/10/2019 0:00:20	10	33
2/10/2019 0:00:30	9	38
2/10/2019 0:00:40	10	51
2/10/2019 0:00:50	8	22
2/10/2019 0:01:00	11	30
2/10/2019 0:01:10	10	40
2/10/2019 0:01:20	10	43
2/10/2019 0:01:30	10	45
2/10/2019 0:01:40	11	47
2/10/2019 0:01:50	9	38

Time Series Frequency

• Fixed interval between measurements

Varies by application

Measurement	Time Unit	
CPU Utilization	Microseconds	
Network I/O	Seconds	
Units Produced	Minutes	
Customers Served	Hours	
Packages Delivered	Days	
Auto Accidents	Month	
Company Profit	Quarterly	
Births and Deaths	Annually	

Time Series Unit of Measure

What do numbers represent?

Varies by application

Measurement	Time Unit
CPU Utilization	Microseconds
Network I/O	Seconds
Units Produced	Minutes
Customers Served	Hours
Packages Delivered	Days
Auto Accidents	Month
Company Profit	Quarterly
Births and Deaths	Annually

Time Series - Common Metric Types

- Counter (track instances of an event)
 - Example: Count the number of cars passing through the petrol kiosk
- Gauge (numerical measure that can be positive or negative)
 - Example: Estimate Singapore's temperature today
- Summary (calculates values over time window such as count or rates)
 - Example: YoY Increase in Company Profits

Autocorrelation

- Autocorrelation represents the degree of similarity between a given time series and a lagged version of itself over successive time intervals.
- Autocorrelation measures the relationship between a variable's current value and its past values.
- An autocorrelation of +1 represents a perfect positive correlation, while an autocorrelation of negative 1 represents a perfect negative correlation.
- Example: Financial analysts use autocorrelation to measure how much influence past prices for a stock have on its future price.

Autocorrelation

 Autocorrelation can also be referred to as lagged correlation or serial correlation, as it measures the relationship between a variable's current value and its past values.

