```
Newton-Raphson Method
```

[16-1]

Consider $\frac{dy}{dx} = f(x, y)$

The solution can be numerically approximated

with Wn+1 = Wn + N+(Xn), Wn)

 $=) W_{n+1} - hf(x_n, W_n) - W_n = 0$

 $F(W_{n+1}; X_n, W_n) = 0$

solve for Wn+, in terms of Xn, Wn

In general, this is a voot finding problem,

arises when trying to find fixed points.

Sturt with an initial guess Xo, and

iterate to find Xn. By Taylor series

 $= f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n) f(x_n) + O(\Delta^2)$

where $\Delta = \times_{n+1} - \times_n$

 $=) f(x_{n+1}) \approx f(x_n) + (x_{n+1} - X_n) f'(x_n)$

replace with 0

 $0 = f(x_n) + (x_{n+1} - x_n) f(x_n)$

 $(\times_{n+1} - \times_n) f'(\times_n) = -f(\times_n)$

This method transforms f(x)=0 into a

1^{SI} order difference equation. What are

the fixed points of $X_{n+1} = F(X_n)$ where $F(X_n) = X_n - \frac{f(X_n)}{f'(X_n)}$ (Aside: See notes in 6-1 and 6-7 for linear stability analysis of difference) equations

Solve $X^* = F(x^*)$, since X_n must be equal to $X_{n+1} = X_n + X_n$

= $f(x^*) = 0$

Then, the roots of f(x)=0 are the fixed points of its discretized version Xn+1=F(xn)

provided that f(x*) + 0.

Now, try X = 0, Z

Then, $X_1 = 0.2 - 0.04 - 0.2 = -0.067$ $X_2 = -0.004$

Convergence to a root is quadratic with N-R provided X. is sufficiently close to