Series-shunt feedback amplifier

Shaik Mastan*

CONTENTS

1	Feedbac	k Voltage	Amplifier:	Series-	
Shunt	,				1
2	Feedbac	k Current	Amplifier:	Shunt-	
Series			•		3
	2.1	Ideal Case			3
	2.2	Practical Ca	ase		3

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/feedback/codes

1 FEEDBACK VOLTAGE AMPLIFIER: SERIES-SHUNT

1.0.1. A series-shunt feedback amplifier employs a basic amplifier with input and output resistances each of $2K\Omega$ and gain G = 1000V/V. The feedback factor H = 0.1V/V. Find the input resistance R_{if} , output resistance R_{of} and gain of the closed-loop amplifier.

Solution: For given data, see Table:1.0.1. For feedback-amplifier circuit and equivalent circuit, see fig:1.0.1.1 and 1.0.1.2 Closed-loop gain,

$$T = \frac{G}{1 + GH} = 9.9 \tag{1.0.1.1}$$

Input resistance,

$$R_{if} = (1 + GH)R_i = 202K\Omega$$
 (1.0.1.2)

Output resistance,

$$R_{of} = \frac{R_o}{1 + GH} = 19.802\Omega \tag{1.0.1.3}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Parame- ters	Definition	For given circuit
Open	G	1000
loop gain		
Feedback	H	0.1
factor		
Open-	R_i	$2K\Omega$
loop input		
resistance		
Open-	R_o	$2K\Omega$
loop		
output		
resistance		

TABLE 1.0.1

Fig. 1.0.1.1: Ideal structure

Circuit design: From fig:1.0.1.4

$$G = \mu \frac{R_L \| (R_1 + R_2)}{[R_L \| (R_1 + R_2)] + r_o} \frac{R_{id}}{R_{id} + R_s + (R_1 \| R_2)} = 1000$$
(1.0.1.4)

Open-loop input resistance,

$$R_i = R_s + R_{id} + (R_1 || R_2) = 2K\Omega$$
 (1.0.1.5)

Fig. 1.0.1.2: Equivalent circuit

Fig. 1.0.1.3: Amplifier design

Fig. 1.0.1.4: G circuit

From fig:1.0.1.5

$$H = \frac{V_f}{V_o} = \frac{R_1}{R_1 + R_2} = 0.1 \tag{1.0.1.6}$$

Open-loop output resistance,

$$R_o = r_o ||R_L|| (R_2 + R_1) = 2K\Omega$$
 (1.0.1.7)

In fig.1.0.1.6,

$$V_{in}(t) = \sin(2000\pi t) \tag{1.0.1.8}$$

Fig. 1.0.1.5: H circuit

Parame- ter	Value
Op-amp gain(μ)	10 ⁴
R_s	100Ω
R_{id}	$1K\Omega$
r_o	10 <i>K</i> Ω
R_1	$1K\Omega$
R_2	$9K\Omega$
R_L	$3.33K\Omega$

TABLE 1.0.1: Parameter values

$$V_o(t) = 9.9 \sin(2000\pi t)$$
 (1.0.1.9)

Fig. 1.0.1.6: Time domain output of the simulation

The output in fig:1.0.1.6 is obtained by running the following program-

Fig. 1.0.1.7: AC analysis, f = 1Hz to 100MHz

The output in fig:1.0.1.7 is obtained by running the following program-

/codes/ee18btech11039/ ee18btech11039_spice2.py

- 2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES
- 2.1 Ideal Case
- 2.2 Practical Case