

MU5EES08 - Unit IV Advanced Physical Layer Concepts in 5G

- 1. 5G features and numerology
- 2. Channel diversity with multiple antenna systems

3. MIMO processing

4. Millimeter-wave arrays

by Julien Sarrazin, Sorbonne University

Introduction

Overview of different schemes

- Diversity-based schemes
 - SIMO: example of Maximum Ratio Combining (MRC)
 - MISO: example of transmit MRC/matched beamforming
 - MISO: example of Alamouti (STBC)
- Spatial Multiplexing-based schemes
 - MIMO
- Adaptive Beamforming
 - Well-suited for massive MIMO in 5G: enhancement of throughput + cell coverage. Benefit of BF gain + spatial MUX
 - Eigen-based beamforming (SVD) or codebook-based beamforming

Introduction

Diversity

- Diversity provides the receiver with different replicas of the same signal
- Each replica constitutes a diversity branch
- If the number of branches increases, the probability that a fading occurs on all of them decreases sharply

Maximum Ratio Combining

SIMO configuration

Received signals

$$y_1 = h_{11}x + n_1 y_2 = h_{21}x + n_2$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix} x + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$

System model

$$y = hx + n$$
 with $h = \begin{bmatrix} h_{11} \\ \vdots \\ h_{N_R} \end{bmatrix}$
$$E[|n_i|^2] = \sigma^2$$

Maximum Ratio Combining

SIMO configuration

Received signals

$$y = hx + n$$

MRC output

$$y_{MRC} = \mathbf{w}^{H} \mathbf{y}$$

$$y_{MRC} = \mathbf{w}^{H} \mathbf{h} x + \mathbf{w}^{H} \mathbf{n}$$

$$y_{MRC} = ||\mathbf{h}|| x + \mathbf{w}^{H} \mathbf{n}$$

$$w = \frac{h}{\|h\|}$$

$$SNR = \frac{|\mathbf{w}^{H} \mathbf{h} x|^{2}}{E[|\mathbf{w}^{H} \mathbf{n}|^{2}]} = \frac{|\mathbf{w}^{H} \mathbf{h}|^{2} P_{x}}{||\mathbf{w}^{H}||^{2} \sigma^{2}} = \frac{||\mathbf{h}||^{2} P_{x}}{\sigma^{2}}$$

Maximum Ratio Combining

Scenario

One-wave channel (no fading)

$$h_{11} = e^{j\frac{\sqrt{3}}{4}\pi}$$
$$h_{21} = e^{-\frac{\sqrt{3}}{4}\pi}$$

Maximum Ratio Combining

Scenario

One-wave channel (no fading)

$$h_{11} = e^{j\frac{\sqrt{3}}{4}\pi}$$
$$h_{21} = e^{-\frac{\sqrt{3}}{4}\pi}$$

Array factor, $\theta_0 = 30^{\circ}$

Maximum Ratio Combining

Scenario

BER **Independent Rayleigh Channels**

$h_{11} = \frac{1}{\sqrt{2}} \left(\mathcal{N}(0,1) + j\mathcal{N}(0,1) \right)$

$$h_{21} = \frac{1}{\sqrt{2}} (\mathcal{N}(0,1) + j\mathcal{N}(0,1))$$

Maximum Ratio Combining

Scenario

Correlated Rayleigh Channels

$$h_{11} = \frac{1}{\sqrt{2}} (\mathcal{N}(0,1) + j\mathcal{N}(0,1))$$

16-QAM, M = 16

Assuming Rich Isotropic Multipath environment (RIMP)

Maximum Ratio Combining

Scenario

Mutual coupling effect

Independent Rayleigh Channels

$$h_{11} = \frac{1}{\sqrt{2}} \left(\mathcal{N}(0,1) + j\mathcal{N}(0,1) \right)$$

$$h_{21} = \frac{1}{\sqrt{2}} \left(\mathcal{N}(0,1) + j\mathcal{N}(0,1) \right)$$

Beamforming

MISO configuration

Received signals

$$y = h_{11}x_1 + h_{12}x_2 + n$$

System model

$$y = hx + n$$

with
$$h = [h_{11} ... h_{N_T 1}]$$

Beamforming

MISO configuration

Received signals with beamforming

$$y_{BF} = hx + n$$

$$\mathbf{x} = \mathbf{w}^H \mathbf{x}$$
 with $\mathbf{w} = [w_1 \quad \dots \quad h_{N_T}]$

$$y_{BF} = h w^H x + n$$

Matched Beamforming (= transmit MRC)

MISO configuration: CSI known at TX

Received signals with beamforming

$$y_{BF} = hx + n$$

$$\mathbf{x} = \mathbf{w}^H \mathbf{x}$$
 with $\mathbf{w} = [w_1 \quad \dots \quad h_{N_T}]$

$$y_{BF} = h w^H x + n$$

CSI at TX Optimal BF vector:
$$w = \frac{h}{\|h\|}$$

$$y_{BF} = \|h\|x + n$$

$$SNR = \frac{|\boldsymbol{h}\boldsymbol{w}^H|^2 P_{\chi}}{\sigma^2} = \frac{\|\boldsymbol{h}\|^2 P_{\chi}}{\sigma^2}$$

Matched Beamforming

Scenario

Channel

One-wave model:

• AoA = 30°

Matched Beamforming

Scenario

Channel

One-wave model:

• AoA = 30°

Matched Beamforming

Scenario

Channel

- AoA = 30°
- AoA = -45°

Matched Beamforming

Scenario

Channel

- AoA = 30°
- AoA = -45°

Matched Beamforming

Scenario

Channel

- AoA = 30°
- AoA = -45° (half-power)

Matched Beamforming

Scenario

Channel

- AoA = 30°
- AoA = -45° (half-power)

Matched Beamforming

Scenario

Independent Rayleigh Channels

$$h_{1i} = \frac{1}{\sqrt{2}} (\mathcal{N}(0,1) + j\mathcal{N}(0,1))$$

Matched Beamforming

Scenario

Independent Rayleigh Channels

$$h_{1i} = \frac{1}{\sqrt{2}} (\mathcal{N}(0,1) + j\mathcal{N}(0,1))$$

Random AF: a different data stream would have led to different AF!

Matched Beamforming

Scenario

Rice channel Channels

$$h_{rice} = \sqrt{\frac{K}{1+K}}h_{LOS} + \sqrt{\frac{1}{1+K}}h_{NLOS}$$

$$h_{LOS}$$
: two-wave model (AoA = 30° & -45°) 10^{-5} 0^{-5} 10^{-5} 0^{-5} 1

Matched Beamforming

Scenario

Rice channel Channels

$$\boldsymbol{h_{rice}} = \sqrt{\frac{K}{1+K}} \boldsymbol{h_{LOS}} + \sqrt{\frac{1}{1+K}} \boldsymbol{h_{NLOS}}^{-15}$$

with h_{LOS} : two-wave model (AoA = 30° & -45°)

$$h_{NLOS_{1i}} = \frac{1}{\sqrt{2}} \left(\mathcal{N}(0,1) + j\mathcal{N}(0,1) \right)$$

Averaged array factor

Transmit diversity

MISO: CSI unknown at TX => Alamouti scheme

Received signals:

$$y_1 = \frac{1}{\sqrt{2}} (h_{11}x_1 + h_{12}x_2) + n_1$$
$$y_2 = \frac{1}{\sqrt{2}} (-h_{11}x_2^* + h_{12}x_1^*) + n_2$$

Alamouti RX performs:

Spatial code rate $R_s = 1$ (2 symbols over 2 time slots)

 $\frac{1}{\sqrt{2}}$ factor because no array gain (x_1 and x_2 are independent)

Transmit diversity

MISO: CSI unknown at TX => Alamouti scheme

Received signals ----- Alamouti RX

$$y_1 = \frac{h_{11}x_1 + h_{12}x_2}{\sqrt{2}} + n_1$$
$$y_2 = \frac{-h_{11}x_2^* + h_{12}x_1^*}{\sqrt{2}} + n_2$$

$$y_{1} = \frac{h_{11}x_{1} + h_{12}x_{2}}{\sqrt{2}} + n_{1}$$

$$y_{2} = \frac{-h_{11}x_{2}^{*} + h_{12}x_{1}^{*}}{\sqrt{2}} + n_{2}$$

$$z = \frac{-h_{11}x_{2}^{*} + h_{12}x_{1}^{*}}{\sqrt{2}} + n_{2}$$

$$z = \frac{-h_{11}x_{2}^{*} + h_{12}x_{1}^{*}}{\sqrt{2}} + n_{2}$$

$$z = \frac{|h_{11}|^{2} + |h_{12}|^{2}}{2} I_{2}x + H_{A}^{H} n$$

$$z = H_A^H y = H_A^H H_A x + H_A^H n$$
 \Rightarrow $z = \frac{|h_{11}|^2 + |h_{12}|^2}{2} I_2 x + H_A^H n$

$$z_i = \frac{|h_{11}|^2 + |h_{12}|^2}{2} x_i + \tilde{n}_i$$
 (perfect orthogonality between z_i)

MIMO configuration

- Open-loop (TX has no CSI knowledge)
- Closed-loop (TX has total or partial CSI knowledge)

Spatial multiplexing

MIMO configuration

$$m{H} = egin{bmatrix} h_{11} & \dots & h_{1N_T} \\ \vdots & \ddots & \vdots \\ h_{N_R1} & \dots & h_{N_RN_T} \end{bmatrix}$$

Spatial multiplexing: SVD

Singular value decomposition (SVD) = MIMO Beamforming

U, **V**: Unitary matrices:

$$U^H U = I_R$$
$$V^H V = I_T$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & \vdots \\ 0 & 0 & \sigma_{R_H} \end{bmatrix}$$

 Σ : matrix composed with R_H singular values σ_i (with R_H , the rank of the matrix)

$$\sigma_i = \sqrt{\lambda_i}$$
 with λ_i , the eigenvalues of HH^H

Spatial multiplexing: SVD

Received signal:

$$y = U^H y_{SM} = U^H H x_{SM} = U^H H V x$$
 with $H = U \Sigma V^H$

Spatial multiplexing: SVD

$$y = \Sigma x$$

 Σ is diagonal: SM can send R_H symbols simultaneously

$$\begin{bmatrix} y_1 \\ y_2 \\ y_{N_R} \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & \vdots \\ 0 & 0 & \sigma_{R_H} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_{N_T} \end{bmatrix} \qquad \longrightarrow \qquad y_i = \sigma_i x_i$$

$$y_i = \sigma_i x_i$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & \vdots \\ 0 & 0 & \sigma_{R_H} \end{bmatrix}$$

$$R_H \leq min(N_T, N_R)$$

Spatial multiplexing: SVD

- Using eigen vectors of H (U and V) as array weights produces eigen patterns that create independent (spatially orthogonal) parallel communications channels
- It allows spatial multiplexing of data (increase data rate)
- Each spatial channel (named layers in 3GPP releases) benefits from the array gain (increase SNR)
- Very efficient but requires CSI at TX (requires overheads, feedbacks)
- If no CSI at TX available, SM is still possible but without array gain

Spatial multiplexing: no CSI at TX

Maximum likelihood estimate using the pseudo-inverse of H

$$\widehat{x} = H^+ y$$

requieres $N_R \ge N_T$

no array gain

3GPPP Release 15 – New Radio (NR)

- 5G phase 1 (release 15) done in 2019
- 5G phase 2 (release 16) expected in 2020
- Enhanced capabilities to support new usages
- Versatility to support vertical applications
- Massive MTC and Internet of Things (IoT)
- Vehicle-to-Everything Communications (V2x) Phase 2
- WLAN and unlicensed spectrum use
- Further LTE improvements

• ...

Multiple-layer beamforming (Adaptive Beamforming)

- In LTE and 5G, combination of Array Gain and Spatial Multiplexing gain
 - Beamforming-based spatial multiplexing

Spatial Channels = layers

- Multiple-layer beamforming (to multiplex multiple data)
- Creation of L "radiation patterns" thanks to L beamforming vectors
- These L "radiation patterns" introduce L Spatial Channels, i.e., L layers
- The precoding matrix concatenates the L beamforming vectors
- Eigen-based beamforming (based on SVD) is such a technique

Multiple-layer beamforming (Adaptive Beamforming)

• 2x2 MIMO: dual-layer transmission

Practical aspects of MIMO in LTE/5G

- Some MIMO coding are not practical due to the difficulty to obtain CSI at TX in real systems
- Obtaining CSI at TX requires feedback in FDD systems (UL and DL channels are different)
- Obtaining CSI at TX in TDD systems is somehow easier thanks to channel reciprocity (but interferences are not reciprocal and RF chains are different for TX/RX)
- MIMO coding depends on CSI which in turns depends on Reference Signal (RS) design and management procedure
- Precoding matrix design strategy depends on the Transmission Mode (TM)

Codebook concept

- In LTE and 5G, both TDD and FDD are supported
- Concept of codebook is used to reduce overhead

Codebook concept

- BTS send Reference Signals (RS)
- UE estimate the MIMO channel and determine the best precoding to be used within a given codebook (whose length depends on the transmission mode and the number of antennas)
- UE feedbacks the Precoding Matrix Indicator (PMI) of the best choice
- Enable (sub-optimal) beamforming with no CSI at TX
- Requires a light feedback: PMI index and Channel Quality Indicator (CQI)

Codebook concept in LTE

Number of precoding matrix available (codebook length)

Transmission Mode (TM)	2-antenna ports	4-antenna ports	8-antenna ports
TM 3	2	4	
TM 4	6	64	
TM 5	4	16	
TM 6	4	16	
TM 8	6	32	
TM 9 or 10	6	64	109

Codebook concept in LTE

 Example of precoding matrix for a 2-antenna system (defined codebook known at both BTS and UE)

Codebook index	1 layer	2 layers
0	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
1	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix}$
2	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ j \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$
3	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -j \end{bmatrix}$	

Predefined codebook limits the choice of precoding matrix (this limitation is relaxed from Release 10 onwards)

Reference Signals (RS)

- Common Reference Signal (CRS) in LTE Rel. 8
 - The same CRS are broadcasted for all UE
 - Each UE estimate its channel and feedback the PMI/CQI
 - The BTS combine orthogonal PMI to address multiple UE
 - To demodulate, the UE estimates the non-precoded channel based on CRS and derives the precoded channel based on the transmit precoder signaled by the BTS [cle2013]
- Demodulation RS (DM-RS) in LTE Rel. 9 and LTE-A
 - DM-RS are sent already precoded, so UE uses those directly for demodulation
 - No need for the BTS to signal the precoder
 - Non-codebook precoder are therefore possible (such as ZFBF and JLS)

Concept of SU-MIMO VS MU-MIMO

- Massive MIMO has $N_T >> N_R$
- So SU-MIMO gain is limited

$$C_{SU-MIMO} = \min(N_T, N_R) \log_2 \left(1 + \frac{\rho_R}{N_T} \min(N_T, N_R) \right)$$

- With MU-MIMO, each UE is seen as N_R receiving antennas
- With N_{UE} UE, the MIMO system becomes of size N_T x $(N_R.N_{UE})$
- The MU-MIMO sum capacity is therefore:

$$C_{MU-MIMO} = \min(N_T, N_R, N_{UE}) \log_2 \left(1 + \frac{\rho_R}{N_T} \min(N_T, N_R, N_{UE}) \right)$$

Concept of SU-MIMO VS MU-MIMO

[che2016]

Concept of SU-MIMO VS MU-MIMO

- Enhanced diversity: distance between UE much larger than λ (leads to higher-rank H matrix)
- Resource allocation becomes challenging
- CSI and CQI feedbacks are also challenging in MU schemes
- (UE in MU-MIMO cannot accurately estimate its SINR due to the lack of knowledge of the BTS beam selections for co-scheduled UE devices)

 [lim2013]

Concept of transmission layer (LTE-A): DL

Downlink Transmission modes in LTE Release 12						
Transmission modes	Description	DCI (Main)	Comment			
1	Single transmit antenna	1/1A	single antenna port port 0			
2	Transmit diversity	1/1A	2 or 4 antennas ports 0,1 (3)			
3	Open loop spatial multiplexing with cyclic delay diversity (CDD)	2A	2 or 4 antennas ports 0,1 (3)			
4	Closed loop spatial multiplexing	2	2 or 4 antennas ports 0,1 (3)			
5	Multi-user MIMO	1D	2 or 4 antennas ports 0,1 (3)			
6	Closed loop spatial multiplexing using a single transmission layer	1B	1 layer (rank 1), 2 or 4 antennas ports 0,1 (3)			
7	Beamforming	1	single antenna port, port 5 (virtual antenna port, actual antenna configuration depends on implementation)			
8	Dual-layer beamforming	2B	dual-layer transmission, antenna ports 7 and 8			
9	8 layer transmission	2C	Up to 8 layers, antenna ports 7 - 14			
10	8 layer transmission	2D	Up to 8 layers, antenna ports 7 - 14			

[sch2015]

Concept of transmission layer: UL

- In LTE-A and 5G-NR, up to 4 layers are considered for the uplink
- Codebook-based precoding
- Non-codebook-based precoding available for 5G-NR

References

- [cle2013] B. Clerckx, C. Oestges, "MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems", (Second Edition), Elsevier, 2013
- [che2016] S. Chen, S. Sun, Q. Gao, and X. Su, "Adaptive Beamforming in TDD_ Based Mobile Communication Systems: State of the Art and 5G Research Directions", IEEE Wireless Communications, December 2016
- [li2010] Q. Li, G. Li, W. Lee, M. Lee, D. Mazzarese, B. Clerckx, and Z. Li, "MIMO Techniques in WiMAX and LTE: A Feature Overview", IEEE Communication Magazine, May 2010
- [lim2013] C. Lim, T. Yoo, B. Clerckx, B. Lee, and B. Shim, "Recent Trend of Multiuser MIMO in LTE-Advanced", IEEE Communication Magazine, March 2013
- [sch2015] B. Schulz, "LTE Transmission mode and Beamforming", White Paper, Rodhe & Schwarz, July 2015