Final Project Guidance

2022/12/19

林承賢

- 1. Pass data from command line
- 2. Read / Output file
- 3. Data structure of Cache
- 4. Simulation
- 5. Part 2

Pass the file name

Pass the I/O filenames from command, as follows:

\$./project cache1.org reference1.lst index.rpt

You can use "argc" and "argv" to pass the information of command line into your program.

Example: argc, argv

argc: The number of arguments in the command

argv: The array which store all of the arguments

Sample code

```
int main(int argc, char *argv[]){

   cout << "Number of arguments : " << argc << endl;
   for(auto i = 0 ; i < argc ; i++){
      cout << argv[i] << endl;
   }

   return 0;
}</pre>
```

Input

```
./a.out file1 file2 file3
```

Output

```
Number of arguments: 4
./a.out
file1
file2
file3
```

- 1. Pass data from command line
- 2. Read / Output file
- 3. Data structure of Cache
- 4. Simulation
- 5. Part 2

I/O in C++

You can use <fstream> library to read or write a file.

Read example:

```
#include <iostream>
#include <fstream>
using namespace std;
int main(int argc, char *argv[]){
    // Create a file pointer
    ifstream fin;
    // Use the file pointer to open a file
    fin.open("input.txt" , ios::in);
    // Access the content of file by the pointer
    string data1, data2;
    fin >> data1 >> data2;
    cout << "The content of the file : " << data1 << " " << data2;</pre>
    return 0:
```

input.txt

Computer Architecture

Output of the program

The content of the file : Computer Architecture

I/O in C++

You can use <fstream> library to read or write a file.

Write example:

```
#include <iostream>
#include <fstream>
using namespace std;
int main(int argc, char *argv[]){
   // Create a file pointer
    ofstream fout;
    // Use the file pointer to open a file
    fout.open("output.txt" , ios::out);
    // Write the content of file by the pointer
    string data1 = "Computer", data2 = "Architecture";
    fout << data1 << " " << data2;
    return 0;
```

output.txt

Computer Architecture

- 1. Pass data from command line
- 2. Read / Output file
- 3. Data structure of Cache
- 4. Simulation
- 5. Part 2

Data structure

You can use

- 1. Struct
- 2. Class
- 3. Array
- 4. Vector (STL)
- 5. Map / Unorder map (STL)
- 6. Queue (STL)

Data structure

Block size: 4 bytes

Block size: 8 bytes

Data structure

Associativity: Number of ways in a set

Cache_sets: Number of sets in a cache

- 1. Pass data from command line
- 2. Read / Output file
- 3. Data structure of Cache
- 4. Simulation
- 5. Part 2

Extract the reference

Block size: 8 bytes

Number of set: 16

Indexing policy: LSB

Indexing bits: Decide which set should this reference visit

Read references

- 1. Pass data from command line
- 2. Read / Output file
- 3. Data structure of Cache
- 4. Simulation
- 5. Part 2

Extract the reference

Block size: 8 bytes

Number of set: 16

Indexing policy: LSB

Block size: 8 bytes

Number of set: 16

Indexing bits: 1010

Indexing bits: 0011

How to find proper indexing bits

- 1. Exhausted search?
- 2. Read the reference paper from p10 to p13?

The method of reference paper

Correlation of two bits : $C_{i,j} = \min(E_{i,j}, D_{i,j}) / \max(E_{i,j}, D_{i,j})$

 $E_{i,j}$: The number of references having the same values at address bits a_i and a_j .

 $D_{i,j}$: The number of references having different values at address bits a_i and a_i .

Offset bits

Example : $C_{2,3}$ Example : $C_{5,7}$ $E_{2,3} = 4$ $E_{5,7} = 4$ $D_{2,3} = 1$ $D_{5,7} = 1$ $C_{2,3} = 1/4$ $C_{5,7} = 1/4$

Correlation array

$$C_{2,2}$$
 $C_{2,3}$ $C_{2,4}$ $C_{2,5}$ $C_{2,6}$ $C_{2,7}$ $C_{3,2}$ $C_{3,3}$ $C_{3,4}$ $C_{3,5}$ $C_{3,6}$ $C_{3,7}$ $C_{4,2}$ $C_{4,3}$ $C_{4,4}$ $C_{4,5}$ $C_{4,6}$ $C_{4,7}$ $C_{5,2}$ $C_{5,3}$ $C_{5,4}$ $C_{5,5}$ $C_{5,6}$ $C_{5,7}$ $C_{6,2}$ $C_{6,3}$ $C_{6,4}$ $C_{6,5}$ $C_{6,6}$ $C_{6,7}$ $C_{7,2}$ $C_{7,3}$ $C_{7,4}$ $C_{7,5}$ $C_{7,6}$ $C_{7,7}$

The method of reference paper

Quality measurement : $Q_i = min(Z_{i, O_i}) / max(Z_{i, O_i})$

 Z_i : The number of references having the value "0" at address bit a_i .

O_i: The number of references having the value "1" at address bit a_i.

a ₇	a_6	a ₅	a_4	a_3	a_2	a_{1}	a_0
0	0	0	0	0	0	þ	9
0	0	0	1	0	0	þ	þ
1	0	0	1	1	1	0	0
0	0	0	0	0	0	Q	þ
0	1	0	1	1	0	00000	þ

Offset bits

Example : Q_2 Example : Q_5 $Z_2 = 4$ $Z_5 = 5$ $Q_2 = 1$ $Q_5 = 0$ $Q_2 = 1/4$ $Q_5 = 0$

Q ₇	Q_6	Q_5	Q_4	Q_3	Q ₂
1/4	1/4	0	2/3	2/3	1/4

The method of reference paper

Number of indexing bits: 3

Select the current best quality as indexing bit.

Correlation array

$$C_{2,2}$$
 $C_{2,3}$ $C_{2,4}$ $C_{2,5}$ $C_{2,6}$ $C_{2,7}$ $C_{3,2}$ $C_{3,3}$ $C_{3,4}$ $C_{3,5}$ $C_{3,6}$ $C_{3,7}$ $C_{4,2}$ $C_{4,3}$ $C_{4,4}$ $C_{4,5}$ $C_{4,6}$ $C_{4,7}$ $C_{5,2}$ $C_{5,3}$ $C_{5,4}$ $C_{5,5}$ $C_{5,6}$ $C_{5,7}$ $C_{6,2}$ $C_{6,3}$ $C_{6,4}$ $C_{6,5}$ $C_{6,6}$ $C_{6,7}$ $C_{7,2}$ $C_{7,3}$ $C_{7,4}$ $C_{7,5}$ $C_{7,6}$ $C_{7,7}$

TA's result of released testcases

This script is used for CA final project grading.								
Configuration file Testbench Miss count Runtime Statu								
cacheA DataReference_n_comp 29 0.13 Success Congratulations !! Your work passes all basic cases.								
This script is used for CA final project grading.								
	Configuration file	Testbench	Miss count	Runtime	Status			
	cache1	reference1	2	0.00	Success			
	cachel	reference2	5	0.00	Success			
	cache2	reference1	2	0.00	Success			
	cache2	reference2	5	0.00	Success			
	Congratulations !! Your work passes all basic cases.							