a) Sea
$$A \in \mathbb{R}^{n \times n}$$
 una matriz simétrica y sea $\nabla f(x)$ el gradiente de una función $f: \mathbb{R}^n \to \mathbb{R}$. Sea $f(x) = \frac{1}{2} \times^T A \times + b^T x$, $b \in \mathbb{R}^n$. c'Qué es $\nabla f(x)$?

Theremes
$$\nabla_x P(x) = \nabla_x \left(\frac{1}{2} x^T A x + b^T x\right)$$
. Salemes que $df = (\nabla_x f)^T dx$, con ello:

$$df = \frac{1}{2} \left((dx)^T A x + x^T A dx \right) + b^T dx$$

Como
$$X^TAX$$
 es un escalarz entances $(X^TAX)^T = X^TAX$ y nor ello.

$$df = \frac{1}{2} \left(((dx)^T A x)^T + x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A^T dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2} x^T A dx \right) + b^T dx = \frac{1}{2} \left(x^T A dx + \frac{1}{2$$

$$+x^{T}Adx$$
) $+b^{T}dx = \frac{1}{2}(x^{T}A^{T}+x^{T}A)dx + b^{T}dx =$

$$= \left[\frac{1}{2} \left(x^{\mathsf{T}} A^{\mathsf{T}} + x^{\mathsf{T}} A \right) + b^{\mathsf{T}} \right] dx = \left[\frac{1}{2} \left(A^{\mathsf{T}} x + A x \right)^{\mathsf{T}} + b^{\mathsf{T}} \right] dx$$

$$= \left[\frac{1}{2}(A^{T}x + Ax) + b\right]dx = \left[\frac{1}{2} \cdot 2Ax + b\right]dx = (Ax + b)dx$$

$$\Rightarrow \nabla_x f(x) = Ax + b$$

b) Sea
$$f(x) = g(h(x))$$
, donde $g: \mathbb{R} \to \mathbb{R}$ y $h: \mathbb{R}^n \to \mathbb{R}$, d'Qué es $\nabla_x f(x)$?

Como
$$\Theta \times i g(h(x)) = \frac{\Omega g(h(x))}{\Theta h(x)} \frac{\Theta h(x)}{\Theta \times i} = g'(h(x)) \frac{\Theta h(x)}{\Theta \times i}$$

=>
$$\nabla_x f(x) = \nabla_x g(h(x)) = g'(h(x)) \nabla_x h(x)$$

c) Sea
$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$$
, \dot{c} Qué es $\nabla^{2}f(x)$?

De a) salomas
$$\nabla f(x) = Ax + b$$
. Por la tanto, $\nabla^2 f = \nabla(\nabla f) =$

=
$$\nabla(Ax+b) = \nabla_g(x)$$
, siendo $g(x) = Ax+b$

Como en a)

$$dg = Adx \longrightarrow \nabla g(x) = A^{T} = A$$

Por le tento,
$$\nabla^2 f(x) = \nabla^2 \left(\frac{1}{2} x^T A x + b^T x \right) = A$$

d) Sea
$$f(x) = g(a^{T}x)$$
, c'Oué es $\nabla f(x) y \nabla^{c} f(x)$?

$$\frac{\partial f}{\partial x_i} = \frac{\partial g(a^Tx)}{\partial x_i} = \frac{\partial g}{\partial (a^Tx)} \frac{\partial a^Tx}{\partial x_i} = g'(a^Tx) \frac{\partial (a^Tx)}{\partial x_i}$$

$$\nabla f(x) = g'(a^Tx) \nabla (a^Tx) = g'(a^Tx) \alpha$$

$$\nabla^2 f(x) = \nabla \left(g'(a^T x) \alpha \right) = g''(a^T x) ||a||^2$$

a) Sea ZER. Demostrar que A=ZZTes positiva semidefinida.

$$X^{T}AX = X^{T}ZZ^{T}X$$

Como x^Tz es un escalar entences z^Tx es el mismo escaloz. Si llamamas x a este escalar entences

$$X^TAX = XX^T = X^2 \ge 0$$

b) Sea ZER un votor distinto de 0. Sea A=ZZT. à Cucl es el espais nuls de A? à Cucl es el rongo de A?

El espaio nulo es el conjunto x de vertores que satisfaren:

Kez
$$(A) = 9 \times \in \mathbb{R}^n : A \times = 0$$

=>
$$Ax = ZZ^{T}X = 0$$
, $Z(Z^{T}X) = 0$

Como Z ≠ O, la unica solución es: ZTX = O

El rongo de A es 1.

c) Sea AER^{nxn} (PSD) y sea BER^{mxn} ¿ ES BAB^T PSD?

