1. Цель работы

Решение ЗЛП симплекс-методом.

2. Исходные данные ЗЛП

Вариант №5

Целевая функция: $z = 8x_2 + 7x_4 + x_6 \rightarrow max$

Ограничения:

$$x_1 - 2x_2 - 3x_4 - 2x_6 = 12$$
 (1)

$$4x_2 + x_3 - 4x_4 - 3x_6 = 12$$
 (2)

$$5x_2 + 5x_4 + x_5 + x_6 = 25$$
 (3)

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

3. Приведение ЗЛП к стандартной форме

$$z = 0x_1 + 8x_2 + 0x_3 + 7x_4 + 0x_5 + x_6 \rightarrow max$$

$$x_1 - 2x_2 + 0x_3 - 3x_4 + 0x_5 - 2x_6 = 12$$
 (1)

$$0x_1 + 4x_2 + x_3 - 4x_4 + 0x_5 - 3x_6 = 12$$
 (2)

$$0x_1 + 5x_2 + 0x_3 + 5x_4 + x_5 + x_6 = 25$$
 (3)

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$z - 0x_1 - 8x_2 - 0x_3 - 7x_4 - 0x_5 - x_6 = 0$$

4. Построение задачи, двойственной к данной

Целевая функция: $w = 12y_1 + 12y_2 + 25y_3 \rightarrow min$ Ограничения:

$$1y_1 + 0y_2 + 0y_3 \ge 0 \tag{1}$$

$$-2y_1 + 4y_2 + 5y_3 \ge 8 \tag{2}$$

$$0y_1 + y_2 + 0y_3 \ge 0 \tag{3}$$

$$-3y_1 - 4y_2 + 5y_3 \ge 7 \tag{4}$$

$$0y_1 + 0y_2 + 1y_3 \ge 0 \tag{5}$$

$$-2y_1 - 3y_2 + y_3 \ge 1 \tag{6}$$

$$y_1, y_2, y_3 \ge 0$$
 (7)

5. Нахождение решения задачи симплекс-методом

Таблица 1 – Начальная таблица

Базис	Z	x_1	x_2	x_3	x_4	x_5	x_6	Решение
Z	1	0	-8	0	-7	0	-1	0
x_1	0	1	-2	0	-3	0	-2	12
x_3	0	0	4	1	-4	0	-3	12
x_5	0	0	5	0	5	1	1	25

Таблица 2 – Определение исключаемой переменной

Базис	Коэффициенты при x_2	Решение	Отношение (точка пересечения)
x_1	-2	12	$x_2 = 12/-2 = -6$ (не допускается)
x_3	4	12	$x_2 = 12/4 = 3(\min)$
x_5	5	25	$x_2 = 25/5 = 15$

Таблица 3 – Выделение ведущей строки и столбца, а также ведущего элемента

Базис	Z	x_1	x_2	x_3	x_4	x_5	x_6	Решение
Z	1	0	-8	0	-7	0	-1	0
x_1	0	1	-2	-3	0	0	-2	12
x_3	0	0	4	1	-4	0	-3	12 (ведущая строка)
<i>x</i> ₅	0	0	5 (Ведущий столбец)	0	5	1	1	25

Далее нам необходимо пересчитать таблицу, чтобы значения симплекстаблицы соответствовали новым базисным переменным.

Для этого используем алгоритм Гаусса-Жордана.

Таблица 4 — Симплекс-таблица, соответствующая новому базисному решению

Базис	Z	x_1	x_2	x_3	x_4	x_5	x_6	Решение
Z	1	0	0	2	-15	0	-7	24
x_1	0	1	0	0,5	-5	0	-3,5	18
<i>x</i> ₂	0	0	1	0,25	-1	0	-0,75	3
<i>x</i> ₅	0	0	0	-1,25	10	1	4,75	10

Таблица 5 – Определение исключаемой переменной

Базис	Коэффициенты при x_4	Решение	Отношение (точка пересечения)
x_1	-5	18	$x_4 = 18/-5 = -3,6$ (не допустимо)
x_2	-1	3	$x_4 = 3/-1 = -3$ (не допустимо)
x_5	10	10	$x_4 = 10/10 = 1 \text{ (min)}$

Таблица 6 - Выделение ведущей строки и столбца, а также ведущего элемента

Базис	Z	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	Решение
Z	1	0	0	2	-15	0	-7	24
x_1	0	1	0	0,5	-5	0	-3,5	18
x_2	0	0	1	0,25	-1	0	-0,75	3
x_5	0	0	0	-1,25	10	1	4,75	10

Таблица 7 - Симплекс-таблица, соответствующая новому базисному решению

Базис	Z	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	Решение
Z	1	0	0	0,125	0	1,5	0,125	39
x_1	0	1	0	-0,125	0	0,5	-1,125	23
x_2	0	0	1	0,125	0	0,1	-0,275	4
<i>x</i> ₄	0	0	0	-0,125	1	0,1	0,475	1

Найдем оптимальное решение двойственной задачи, которое должно совпадать с оптимальным решением прямой задачи.

Для этого сначала определим оптимальные значения двойственных переменных y_1, y_2, y_3 :

$$(y_1, y_2, y_3) = (0; 8; 7) * \begin{pmatrix} 1 & -0.125 & 0.5 \\ 0 & 0.125 & 0.1 \\ 0 & -0.125 & 0.1 \end{pmatrix} = (0; 0.125; 1.5)$$

$$w = 12 \cdot 0 + 12 \cdot 0.125 + 25 \cdot 1.5 = 39.$$

$$w = z = 39$$

6. Анализ чувствительности оптимального решения задачи

- а. Анализ для коэффициентов целевой функции
 - і. Для базисных переменных

$$z = 8x_2 + 7x_4 + x_6$$

$$(y_1, y_2, y_3) = (0 + d_1; 8; 7) * \begin{pmatrix} 1 & -0, 125 & 0, 5 \\ 0 & 0, 125 & 0, 1 \\ 0 & -0, 125 & 0, 1 \end{pmatrix} = (d_1; \frac{1 - d_1}{8}; \frac{15 + 5d_1}{10})$$

$$x_3:$$

$$y_2 \ge 0$$

$$\frac{1 - d_1}{8} \ge 0$$

$$d_1 \le 1$$

$$x_5:$$

$$y_3 \ge 0$$

$$\frac{15 + 5d_1}{10} \ge 0$$

$$d_1 \ge -3$$

$$x_6:$$

$$-2y_1 - 3y_2 + y_3 \ge 1$$

$$x_{6}:$$

$$-2y_{1} - 3y_{2} + y_{3} \ge 1$$

$$-2d_{1} - 3(\frac{1 - d_{1}}{8}) + \frac{15 + 5d_{1}}{10} \ge 1$$

$$d_{1} \le \frac{1}{9}$$

$$\begin{cases} d_{1} \le 1 \\ d_{1} \ge -3 \\ d_{1} \le \frac{1}{9} \end{cases}$$

$$-3 \le d_{1} \le \frac{1}{9}$$

$$(y_{1}, y_{2}, y_{3}) = (0; 8 + d_{2}; 7) * \begin{pmatrix} 1 & -0, 125 & 0, 5 \\ 0 & 0, 125 & 0, 1 \\ 0 & -0, 125 & 0, 1 \end{pmatrix} = (0; \frac{d_{2} + 1}{8}; \frac{15 + d_{2}}{10})$$

$$x_3$$
: $y_2 \ge 0$ $\frac{d_2+1}{8} \ge 0$ $d_2 \ge -1$

$$x_5$$
:
 $y_3 \ge 0$
 $\frac{15 + d_2}{10} \ge 0$

$$x_{6}:$$

$$-2y_{1} - 3y_{2} + y_{3} \ge 1$$

$$-3(\frac{d_{2} + 1}{8}) + \frac{15 + d_{2}}{10} \ge 1$$

$$d_{2} \le \frac{5}{11}$$

$$\begin{pmatrix} d_{2} \ge -1 \\ d_{2} \ge -15 \\ d_{2} \le 2 \end{pmatrix}$$

$$-1 \le d_{2} \le \frac{5}{11}$$

$$(y_{1}, y_{2}, y_{3}) = (0; 8; 7 + d_{4}) * \begin{pmatrix} 1 & -0, 125 & 0, 5 \\ 0 & 0, 125 & 0, 1 \\ 0 & -0, 125 & 0, 1 \end{pmatrix} = (0; \frac{1 - d_{4}}{8}; \frac{15 + d_{4}}{10})$$

$$x_{3}:$$

$$y_{2} \ge 0$$

$$\frac{1 - d_{4}}{8} \ge 0$$

$$\frac{1 - d_{4}}{8} \ge 0$$

$$\frac{15 - d_{4}}{8} \ge 0$$

$$d_{4} \le 15$$

$$x_{6}:$$

$$2y_{1} - 3y_{2} + y_{3} \ge 1$$

$$-3(\frac{1 - d_{4}}{2}) + \frac{15 + d_{4}}{40} \ge 1$$

$$2y_{1} - 3y_{2} + y_{3} \ge 1$$

$$-3(\frac{1 - d_{4}}{8}) + \frac{15 + d_{4}}{10} \ge 1$$

$$d_{4} \le \frac{5}{19}$$

$$\begin{cases} d_{4} \le 1 \\ d_{4} \le 15 \\ d_{4} \le \frac{5}{19} \end{cases}$$

$$1 \le d_{4} \le \frac{5}{19}$$

іі. Для небазисных переменных

$$x_3$$
: $y_2 \ge 0 + d_3$ $d_3 \le 0, 125$ x_5 : $y_3 \ge 0 + d_5$ $d_5 \le 1, 5$

 x_6 :

$$\mathbf{2} \cdot \mathbf{0} - \mathbf{3} \cdot \mathbf{0}, \mathbf{125} \ + \ \mathbf{1}, \mathbf{5} \ge \mathbf{1} + d_6$$

$$d_6 \le 0{,}125$$

 Интервалы допустимых изменений для коэффициентов правых частей ограничений

$$\begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & -0,125 & 0,5 \\ 0 & 0,125 & 0,1 \\ 0 & -0,125 & 0,1 \end{pmatrix} \begin{pmatrix} 12+D_1 \\ 12 \\ 25 \end{pmatrix} = \begin{pmatrix} 23+D_1 \\ 4 \\ 1 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$D_1 \ge -23$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & -0,125 & 0,5 \\ 0 & 0,125 & 0,1 \\ 0 & -0,125 & 0,1 \end{pmatrix} \begin{pmatrix} 12 \\ 12+D_2 \\ 25 \end{pmatrix} = \begin{pmatrix} 23-0,125D_2 \\ 4+0,125D_2 \\ 1-0,125D_2 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} D_2 \le 164 \\ D_2 \ge -32 \\ D_2 \le 8 \end{pmatrix}$$

$$\begin{pmatrix} D_2 \le 164 \\ D_2 \ge -32 \\ D_2 \le 8 \end{pmatrix}$$

$$\begin{pmatrix} 32 \le D_2 \le 8 \\ -32 \le D_2 \le 8 \\ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -0,125 & 0,5 \\ 0 & 0,125 & 0,1 \\ 0 & 0,125 & 0,1 \\ 0 & 0,125 & 0,1 \end{pmatrix}$$

$$\begin{pmatrix} 12 \\ 12 \\ 12 \\ 0 & 0,125 & 0,1 \\ 0 &$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & -0.125 & 0.5 \\ 0 & 0.125 & 0.1 \\ 0 & -0.125 & 0.1 \end{pmatrix} \begin{pmatrix} 12 \\ 12 \\ 25 + D_3 \end{pmatrix} = \begin{pmatrix} 23 + 0.5D_3 \\ 4 + 0.1D_3 \\ 1 + 0.1D_3 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases}
D_3 \ge -46 \\
D_3 \ge -40 \\
D_3 \ge -10
\end{cases}$$

$$D_3 \geq -10$$

7. Построение модели задачи и нахождение решения в табличном процессоре «Microsoft Excel»

Целевая функция	0	8	0	7	0	1	39		
ограничение 1	1	-2	0	-3	0	-2	12	=	12
ограничение 2	0	4	1	-4	0	-3	12	=	12
ограничение 3	0	5	0	5	1	1	25	=	25
Переменные	x1	x2	х3	x4	x5	х6			
	23	4	0	1	0	0			

Рисунок 1 – Таблица с исходными данными и результатами расчетов

Ячейки переменных

			Окончательное	Приведенн.	Целевая функция	Допустимое	Допустимое
Ячейка	а	Имя	Значение	Стоимость	Коэффициент	Увеличение	Уменьшение
\$C\$8	x1		23	0	0	0,111111111	3
\$D\$8	x2		4	0	8	0,454545455	1
\$E\$8	x 3		0	-0,125	0	0,125	1E+30
\$F\$8	x4		1	0	7	1	0,263157895
\$G\$8	x5		0	-1,5	0	1,5	1E+30
\$H\$8	x 6		0	-0,125	1	0,125	1E+30

Ограничения

		Окончательное	Тень	Ограничение	Допустимое	Допустимое
Ячейка	Имя	Значение	Цена	Правая сторона	Увеличение	Уменьшение
\$1\$3	ограничение 1	12	0	12	1E+30	23
\$1\$4	ограничение 2	12	0,125	12	8	32
\$1\$5	ограничение 3	25	1,5	25	1E+30	10

Рисунок 2 – Отчет об устойчивости

8. Выводы

Результаты, полученные при решении задачи линейного программирования симплекс-методом, а также результаты анализа чувствительности совпали с решением задачи в «Microsoft Excel», что подтверждает правильность решения. Значения целевых функций прямой и двойственной задачи в оптимальной точке также совпали.