

Scenariusz zajęć nr 5 Temat: Kasjer

Cele:

W trakcie zajęć uczeń zapozna się z następującymi pojęciami:

- Używanie dwóch "równoległych" serii liczbowych,
- Prawidłowe uwzględnienie warunków brzegowych,
- Wykonywanie operacji całkowitoliczbowych na wielu elementach serii.

Wstęp:

Uruchomienie środowiska programistycznego, zapoznanie się z edytorem kodu źródłowego i sposobem kompilacji programu (kontynuacja).

Dla nauczyciela:

W razie braku zainstalowanego środowiska można skorzystać z dowolnego środowiska dostępnego w sieci Internet, na przykład cpp.sh.

Przebieg zajęć:

Zapoznanie się z treścią zadania:

Treść zadania jest dołączona do scenariusza zajęć w formie pliku cpp_05-kasjer.pdf.

Dla nauczyciela:

Tematem zajęć jest zadanie *Kasjer* dostępne na serwisie **szkopul.edu.pl**, wzorowane na zadaniu *Cashier* (1059A) z serwisu **codeforces.com**. Zadanie można rozwiązać w dowolnym języku programowania, a jego stopień trudności należy ocenić jako właściwy dla uczestników podstawowego kursu programowania.

Wskazówki do rozwiązania zadania:

W zadaniu należy wyznaczyć długości kolejnych przerw pomiędzy klientami. Przerwa trwa od momentu zakończenia obsługi poprzedniego klienta (oznaczmy to przez t_p), aż do rozpoczęcia obsługiwania następnego klienta, czyli t_i , $i=1,2,\ldots,n$. Przechodząc do następnej przerwy nadajemy t_p wartość t_i+l_i .

Aby opis układu przerw był kompletny, musimy dodać jeszcze przerwę przed obsłużeniem pierwszego klienta (wystarczy na poczatku przyjąć $t_p=0$) oraz przerwę po obsłużeniu ostatniego klienta. Układ przerw przedstawia się zatem następująco:

- $t_p := 0;$
- Przerwa 1: (t_p, t_1) Długość = $t_1 - t_p$, $t_p := t_1 + l_1$;
- Przerwa 2: (t_p, t_2) Długość = $t_2 - t_p$, $t_p := t_2 + l_2$;
- Przerwa 3: (t_p, t_3) Długość = $t_2 - t_p$, $t_p := t_3 + l_3$;
- Przerwa n: (t_p, t_n) Długość = $t_n - t_p$, $t_p := t_n + l_n$;
- Przerwa n + 1: (t_p, L) Długość = $L - t_p$.

Używany przez nas symbol ":=" oznacza przypisanie (nadanie wartości).

Długości przerw podzielone przez czas jednego "dymka" (a dokładniej: *podłoga* z tego dzielenia) dają po zsumowaniu ilość wypalonych papierosów.

Kod programu w języku C++:

```
#include <iostream>
using namespace std;

int main()
{
   int t_p = 0;
   int n, L, a, n_a = 0, t, 1;
   cin >> n >> L >> a;
   while(n--)
   {
      cin >> t >> 1;
      n_a += (t - t_p) / a;
      t_p = t + 1;
   }
   cout << n_a + (L - t_p) / a << endl;
   return 0;
}</pre>
```

Zmienna n_a (n_a) oznacza ilość wypalonych papierosów.

Podsumowanie i uwagi końcowe:

Należy podkreślić, że nie można po prostu zsumować wszystkich przerw w pracy kasjera i "hurtem" podzielić przez czas na jeden papieros, ponieważ mamy do czynienia z operacjami całkowitoliczbowymi (dzielenie z podłogą). Część ułamkowa z każdej przerwy jest (oddzielnie) odrzucana.

Dane wejściowe (serie t_i oraz l_i) nie muszą być przechowywane w tablicach – można przetwarzać je na bieżąco w trakcie wczytywania (online). Dane te należałoby przechować, gdyby były wykorzystywane ponownie w kodzie programu.

