

اقرأ وارتق

جامعة دمشق كلية العلوم قسم الرياضيات السنة الدراسية الثانية

تاريخ المحاضرة: 21/10/2015

مُدرس المقرر: د. يحيى قطيش

مكتبـــة بريمــا فيــرا - مقابـل كليـة الفنـون الجميلـة $Mob: 0993586758 - Tel: 011\ 2124436$

تتمة في الخواص الأساسية للجداءات الغير منتهية

مبرهنة: الشرط اللازم والكافي لكي يكون الجداء الغير منتهي $a_n = \prod_{n=1}^{+\infty} 1$ أو $\prod_{n=1}^{+\infty} 1 + b_n$ مساوياً للصفر هو أن تكون قيمة المتسلسلة $\sum_{n=1}^{+\infty} \ln(a_n)$ أو $\sum_{n=1}^{+\infty} \ln(1+b_n)$ مساوية له $\sum_{n=1}^{+\infty} 1 + b_n$ متباعدة. $\sum_{n=1}^{+\infty} b_n$ متباعدة. الإثبات:

$$S_n=\sum_{k=1}^{k=n}ln(1+b_k)=\ln\left(\prod_{k=1}^{k=n}(1+b_k)
ight)=\ln(P_n)$$

$$S_n=\ln(P_n)\Rightarrow P_n=e^{S_n}$$

$$P=\lim_{n\to+\infty}P_n=\lim_{n\to+\infty}e^{S_n}=e^{\lim_{n\to+\infty}S_n}=e^S$$
 وإذا كانت قيمة الجداء $\sum_{n=1}^{k=n}ln(1+b_n)$ هي $\sum_{n=1}^{k=n}ln(1+b_n)$ وإذا كانت قيمة المتسلسلة $\sum_{n=1}^{k=n}ln(1+b_n)$ هي $\sum_{n=1}^{k=n}ln(1+b_n)$ وإذا كانت قيمة الجداء $\sum_{n=1}^{k=n}ln(1+b_n)$ هي الصفر.
$$P=e^{-\infty}\Rightarrow P=0$$
 وأي أن قيمة الجداء $\prod_{n=1}^{k=n}(1+b_n)$ هي الصفر. أي أن قيمة الجداء $\prod_{n=1}^{k=n}(1+b_n)$ وتباعد الجداء $\prod_{n=1}^{k=n}(1+b_n)$ مثال وظيفة: ادر س تقارب أو تباعد الجداء الأأي

وأوجد قيمته في حال تقاربه.

الحل: من الملاحظ أن

$$\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}\left(\frac{2n+1}{2n+3}\cdot\frac{2n+7}{2n+5}\right)=\lim_{n\to+\infty}\frac{2n+1}{2n+3}\cdot\lim_{n\to+\infty}\frac{2n+7}{2n+5}=1.1=1$$
and $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}\frac{2n+7}{2n+5}=1.1=1$
and $\lim_{n\to+\infty}a_n=1.1=1$
by $\lim_{n\to+\infty}a_n=1$

$$P_n = \prod_{k=1}^{k=n} \left(\frac{2k+1}{2k+3} \cdot \frac{2k+7}{2k+5} \right) = \prod_{k=1}^{k=n} \left(\frac{2k+1}{2k+3} \right) \cdot \prod_{k=1}^{k=n} \left(\frac{2k+7}{2k+5} \right) \Rightarrow$$

مكتبـــة بريمــا فيـــرا - مقابـل كليـة الفنــون الجميلــة $Mob: 0993586758 - Tel: 011\ 2124436$

$$P_n = \left(\frac{3}{5} \cdot \frac{5}{7} \cdot \frac{7}{9} \dots \frac{2n-1}{2n+1} \cdot \frac{2n+1}{2n+3}\right) \cdot \left(\frac{9}{7} \cdot \frac{11}{9} \cdot \frac{13}{11} \dots \frac{2n+5}{2n+3} \cdot \frac{2n+7}{2n+5}\right) \underset{\text{i.s. point}}{\Longrightarrow}$$

$$P_n = \left(\frac{3}{2n+3}\right) \cdot \left(\frac{2n+7}{7}\right) = \frac{3}{7} \cdot \frac{2n+7}{2n+3}$$

$$\lim_{n \to +\infty} P_n = \frac{3}{7} \lim_{n \to +\infty} \left(\frac{2n+7}{2n+3}\right) = \frac{3}{7} (1) = \frac{3}{7} \implies P = \frac{3}{7}$$

من الأخيرة يتبين لنا أن $P_{n} > 1$ متتالية الجداءات الجزئية المنتهية للجداء الغير منتهي المفروض متقاربة من عدد حقيقي محدود وغير معدوم $P = \frac{3}{7}$ وهذا بدوره يعني أن الجداء الغير منتهي المفروض متقارب والأكثر من ذلك قيمة ذلك الجداء هي $P = \frac{3}{7}$.

التقارب المطلق والتقارب الشرطي للجداءات الغير منتهية

تعریف:

- $\sum_{n=1}^{+\infty} \ln(a_n)$ نقول عن الجداء الغير منتهي $\prod_{n=1}^{+\infty} a_n$ أنهُ متقارب بالإطلاق إذا وفقط إذا كانت المتسلسلة نقول عن الجداء الغير منتهي متقاربة بالإطلاق.
 - منفاربه بالإطلاق. $\sum_{n=1}^{+\infty} \ln(a_n)$ أنهُ متقارب شرطياً إذا وفقط إذا كانت المتسلسلة $\prod_{n=1}^{+\infty} a_n$ متقاربة شرطياً.

منفاربه سرطيا. منفاربه سرطيا. منفرب الجداء الغير منتهي $\prod_{n=1}^{+\infty}(1+b_n)$ بالإطلاق هو أن تتقارب منتهي $\sum_{n=1}^{+\infty}b_n$ بالإطلاق المتسلسلة $\sum_{n=1}^{+\infty}b_n$ بالإطلاق المتسلسلة المتس

أمثلة

مثال (1): ادرس تقارب أو تباعد الجداء الغير منتهي الآتي

$$\prod_{n=1}^{+\infty} \left(1 + \frac{1}{n^s} \right) \qquad ; \quad s > 0$$

الحل: إن الجداء الغير منتهي المفروض له الشكل الآتي

$$\prod_{n=1}^{+\infty} (1+b_n) \quad ; \quad 1+b_n = 1 + \frac{1}{n^s} \Rightarrow b_n = \frac{1}{n^s}$$

لنأخذ المتسلسلة

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

وهي متسلسلة ريمان ونعلم أنها متقاربة عندما 1 < s = 1 ومتباعدة في حال $1 \leq s \leq 0$. بالتالي "بحسب مبر هنة من المحاضرة السابقة" فإن الجداء المفروض متقارب عندما $1 < s \leq 1$. $0 < s \leq 1$.

مثال(2): أثبت أن الجداء الغير منتهى الآتى

$$\prod_{n=1}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{n} \right)$$

متقارب شرطياً.

الحل: إن الجداء الغير منتهي المفروض لهُ الشكل الآتي

$$\prod_{n=1}^{+\infty} (1+b_n) \quad ; \quad 1+b_n = 1 + \frac{(-1)^{n+1}}{n} \Rightarrow b_n = \frac{(-1)^{n+1}}{n}$$

لنأخذ المتسلسلة

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

إن المتسلسلة السابقة متقاربة بحسب اختبار ليبنتر " راجع المحاضرة الثانية صـ5" ، وبالتالي الجداء الغير منتهي المفروض "بحسب مبرهنة من المحاضرة السابقة" متقارب لكن هل التقارب بالإطلاق أم شرطي؟ لنأخذ متسلسلة القيم المطلقة من المتسلسلة السابقة أي لنأخذ:

$$\sum_{n=1}^{+\infty} |b_n| = \sum_{n=1}^{+\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{+\infty} \frac{1}{n}$$

 $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$ إن متسلسلة القيم المطلقة هي المتسلسلة التوافقية وهي متباعدة ، ومن هُنا نستنتج أن المتسلسلة التوافقية وهي متباعدة ، ومن هُنا نستنتج أن المتسلسلة متقاربة شرطياً ومن ثم الجداء الغير منتهي المفروض متقارب شرطياً.

مثال(3): ادرس الجداء الغير منتهى الآتى

$$\prod_{n=1}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{\sqrt{n}} \right)$$

الحل: : إن الجداء الغير منتهى المفروض له الشكل الآتى

مكتبـــة بريمــا فيـــرا - مقابـل كليـة الفنــون الجميلــة Mob: 0993586758 - Tel: 011 2124436

$$\prod_{n=1}^{+\infty} (1+b_n) \quad ; \quad 1+b_n = 1 + \frac{(-1)^{n+1}}{\sqrt{n}} \Rightarrow b_n = \frac{(-1)^{n+1}}{\sqrt{n}}$$

لنأخذ المتسلسلة

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

إن المتسلسلة السابقة متقاربة بحسب اختبار ليبنتز " تحقق من ذلك" ، وبالتالي الجداء الغير منتهي المفروض "بحسب مبر هنة من المحاضرة السابقة" متقارب. لكن هل التقارب بالإطلاق أم شرطى؟

لنأخذ متسلسلة القيم المطلقة من المتسلسلة السابقة أي لنأخذ:

$$\sum_{n=1}^{+\infty} |b_n| = \sum_{n=1}^{+\infty} \left| \frac{(-1)^{n+1}}{\sqrt{n}} \right| = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

إن متسلسلة القيم المطلقة هي المتسلسلة الريمانية فيها $p=rac{1}{2}$ و هي متباعدة ، ومن هُنا نستنتج أن المتسلسلة

متقاربة شرطياً ومن ثم الجداء الغير منتهي المفروض متقارب شرطياً. $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$

مثال (4) (وظيفة): ادرس الجداع

$$\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...$$

واحسب قيمته في حال تقاربه. في المفروض هو جداء غير منتهي ويكتب بدلالة الحد العام له بالشكل فكرة الحل

ببساطة يمكن التحقق من أن الجداء المفروض متقارب شرطياً ، والإيجاد قيمته شكل الجداء الجزئي النوني له أ ومن ثم وحد المقامات وأجري الاختصارات اللازمة وخذ النهاية لـ P_n عندما n تسعى لـ اللانهاية فتحصل P_n P = 1على

مثال(5): ادرس تقارب أو تباعد المتسلسلة الآتية

$$\sum_{n=1}^{+\infty} \ln\left(1 + \frac{2}{n}\right)$$

الحل: إن المتسلسلة المفر و ضبة هي متسلسلة ذات حدو د موجبة و حدها العام هو

مكتبعة بريما فيرا - مقابل كلية الفنون الجميلة Mob: 0993586758 - Tel: 011 2124436

$$a_n = \ln\left(1 + \frac{2}{n}\right)$$

لنأخذ المتسلسلة ذات الحدود الموجبة الآتية:

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} \frac{2}{n}$$

$$\lim_{n\to +\infty}\frac{a_n}{b_n}=\lim_{n\to +\infty}\frac{\ln\left(1+\frac{2}{n}\right)}{\frac{2}{n}}=\lim_{n\to +\infty}\frac{n}{2}\ln\left(1+\frac{2}{n}\right)=\lim_{n\to +\infty}\ln\left(1+\frac{2}{n}\right)^{\frac{n}{2}}=\ln(e)=1$$
 عدد حقیقي موجب

بالتالي استناداً إلى اختبار نهاية النسبة (قاعدة المقارنة) فإن المتسلسلتين

من نوع واحد
$$\ln\left(1+\frac{2}{n}\right)$$
 , $\sum_{n=1}^{+\infty}\frac{2}{n}$

وبما أن المتسلسلة $\sum_{n=1}^{+\infty} \frac{2}{n}$ متباعدة فإن المتسلسلة المفروضية تكون متباعدة.

المتتاليات التابعيسة

تعريف متتالية التوابع (الدوال): لتكن I مجموعة جزئية وغير خالية من مجموعة الأعداد الحقيقية \mathbb{R} . بمقابلة كل عدد طبيعي مغاير للصفر n بتابع حقيقي $f_n(x)$ مُعرف على I نحصل على متتالية التوابع (أو الدوال) الحقيقية المعرفة على I بالشكل:

$f_1(x), f_2(x), f_3(x), ..., f_n(x), ...$

نسمي التابع $f_1(x)$ بالحد الأول للمتتالية التابعية $\tilde{f}_1(x)$ والتابع $f_2(x)$ بالحد الثاني لها و...و التابع $f_1(x)$ بالحد العام أو الحد النوني لمتتالية التوابع $\tilde{f}_1(x)$

نرمز اختصاراً لمتتالية التوابع * بدلالة الحد العام بالرمز:

$$\{f_n(x)\}_{n\geq 1}$$

ملاحظة: إن المجموعة I في مقررنا سوف تكون مجالاً من $\mathbb R$ إلا إذا تم الإشارة لغير ذلك.

تعریف: نقول عن متتالیة التوابع الحقیقیة $_{1} \leq \mathbb{R}$ المعرفة علی $I \subseteq \mathbb{R}$ إنها متقاربة نقطیاً علی I من I معرف علی I إذا وفقط إذا كانت هذه المتتالیة متقاربة كمتتالیة عددیة من أجل كُل قیمة للمتغیر I من I. أي

I على المتتالية العددية الحقيقية $\{f_n(x_0)\}_{n\geq 1}$ متقاربة من $\{f(x_0)\}$ متقاربة من $\{f_n(x_0)\}_{n\geq 1}$ على المتتالية العددية الحقيقية العددية الحقيقية على المتتالية العددية الحقيقية على المتتالية العددية العددية الحقيقية على المتتالية العددية العد

مكتبـــة بريمــا فيــرا - مقابـل كليـة الفنـون الجميلـة Mob: 0993586758 - Tel: 011 2124436

مُلاحظة (1): إذا كان لدينا المنتالية التابعية $\{f_n(x)\}_{n\geq 1}$ المعرفة على $I\subseteq \mathbb{R}$ ، وكانت هذه المنتالية متقاربة من أجل كُل x_0 من أجل كُل x_0 من أجل كُل x_0 من أجل كُل أن نُعرف تابعاً حقيقياً x_0 على المجموعة x_0 بالشكل:

$$f(x_0) = \lim_{n \to +\infty} f_n(x_0) \quad ; \quad \forall x_0 \in I$$

ونقول عن متتالية التوابع f(x) على f(x) أنها تتقارب نقطياً من التابع ونكتب ونكتب

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad ; \quad \forall x \in I$$

- نسمي التابع f(x) بتابع النهاية للمتتالية التابعية f(x) على f(x) على التابعية التابعية .

مُلاحظة (2): يُمكن أن تتقارب متتالية التوابع $f_n(x)\}_{n\geq 1}$ من أجل بعض النقاط من I وأن تتباعد من أجل البعض الآخر. فإذا وجدت نقطة واحدة على الأقل مثل x_0 من x_0 من أجلها المتتالية العددية $f_n(x_0)\}_{n\geq 1}$ متباعدة فنقول عندها أن متتالية التوابع $f_n(x)\}_{n\geq 1}$ المعرفة على I غير متقاربة (متباعدة) على I.

تعریف (تذکرة بتقارب متتالیة عددیة بلغة اله ع): نقول عن المتتالیة العددیة الحقیقیة $\{a_n\}_{n\geq 1}$ إنها متقاربة من العدد الحقیقی a إذا وفقط إذا وجد لكل عدد حقیقی موجب $\epsilon>0$ عدد طبیعی n بحیث من العدد الحقیقی a من أجل جمیع قیم n المحققة للشرط n المحققة الشرط n من أجل جمیع قیم n المحققة الشرط n

تعریف التقارب النقطي لمتتألیة تابعیة بلغة الدغ: نقول عن متتألیة التوابع $\{f_n(x)\}_{n\geq 1}$ المعرفة علی E>0 بنها متقاربة نقطیاً إلی الثابع الحقیقی f(x) علی I إذا وفقط إذا وجد لکُل عدد حقیقی موجب 0>0 ولکُل نقطة 0>0 من 0>0 من 0>0 بحیث پتحقق 0>0 المحققة للشرط 0>0 من 0>0 وبحیث 0>0 بحیث 0>0 المحققة للشرط 0>0 وبحیث 0>0 وبحیث 0>0 المأخوذة من 0>0 ونكتب عندئذٍ:

$$\lim_{n \to +\infty} f_n(x_0) = f(x_0) \quad ; \quad \forall x_0 \in I$$

أمثلة

 $x \in I = [0,1]$ و $f_n(x) = x^n$ و وبحيث $f_n(x)\}_{n \geq 1}$ و التابع: I = [0,1] و التابع:

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} x^n = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

- لاحظ أن جميع حدود المتتالية هي

$$f_1(x) = x$$
, $f_2(x) = x^2$, $f_3(x) = x^3$, ..., $f_n(x) = x^n$, ...

وهي عبارة عن توابع مستمرة على I=[0,1]=I إلا أن تابع النهاية لتلك المتتالية أي f(x) هو تابع غيرمستمر

مكتبة بريما فيررا - مقابل كلية الفنون الجميلة

$$x=1$$
 على الله غير مستمر (منقطع) عند $I=[0,1]$

 $\{n(x)\}_{n\geq 1}$ مثال $\{2\}$: لتكن لدينا متتالية التوابع

$$f_n(x) = \begin{cases} \frac{n}{n+1} & if & |x| < 1\\ 1 & if & |x| = 1\\ \frac{n+1}{n} & if & |x| > 1 \end{cases}$$

 $x \in I = \mathbb{R} =]-\infty, +\infty$ وبحيث

إن متتالية التوابع المفروضة متقاربة نقطياً على ٦ من التابع:

$$f(x) = \lim_{n \to +\infty} f_n(x) = 1$$

ان جميع حدود المتتالية السابقة هي توابع غير مستمرة على $\mathbb R$ لأنها مثلاً غير مستمرة عند $\chi=1$ فمن أن الواضح أن:

$$\lim_{\substack{x \to 1 \\ x \to 1}} f_n(x) = \frac{n+1}{n}, \quad \lim_{\substack{x \to 1 \\ x \to 1}} f_n(x) = \frac{n}{n+1}$$

وأن:

$$\lim_{x \to 1} f_n(x) \neq \lim_{x \to 1} f_n(x) \quad ; \quad \forall \ n \ge 1$$

 $\lim_{x \to 1} f_n(x) \neq \lim_{x \to 1} f_n(x)$; $\forall n \geq 1$, $\forall n \geq 1$ أي أن التابع $f_n(x)$ لا يملك نهاية عندما x تسعى للواحد ومن ثم فهو غير مستمر عند x = 1 وذلك لكُل x = 1

في حين أن تابع النهاية للمتتالية السابقة أي f(x)=1 هو تابع مستمر على \mathbb{R} .

$$x\in I=[0,+\infty[$$
 و $f_n(x)=rac{1}{e^{nx}}$ بحیث $f_n(x)=rac{1}{e^{nx}}$ و $f_n(x)=1$ و المثال (3): لتكن لدينا متتالية التوابع

والمطلوب: إيجاد دالة النهاية وإيجاد جميع حدود المتتالية.

الحل:

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{1}{e^{nx}} = \lim_{n \to +\infty} e^{-nx} = \begin{cases} 0 & if & x > 0 \\ 1 & if & x = 0 \end{cases}$$

أي أن منتالية التوابع المفروضة متقاربة نقطياً على $I = [0, +\infty]$ من التابع f(x) السابق.

- إن جميع حدود المتتالية التابعية المأخوذة هي

$$f_1(x) = \frac{1}{e^x} = e^{-x}, f_2(x) = \frac{1}{e^{2x}} = e^{-2x}, f_3(x) = \frac{1}{e^{3x}} = e^{-3x}, \dots, f_n(x) = \frac{1}{e^{nx}} = e^{-nx}, \dots$$

وهي عبارة عن توابع مستمرة على $I = [0, +\infty]$ ، أما تابع النهاية f(x) فهو غير مستمر على المجال

x=0 عند (منقطع) عند $I=[0,+\infty]$

مكتبــة بريمـا فيـرا - مقابل كلية الفنون الجميلة Mob: 0993586758 - Tel: 011 2124436

 $x \in I = [0, +\infty[$ و $f_n(x) = \frac{x}{n}$ بحيث $f_n(x) = \{f_n(x)\}_{n \geq 1}$ و $f_n(x) = x$ و $f_n(x) = x$ التوابع المفروضة متقاربة نقطياً على المجال $f_n(x) = x$ من التابع:

$$f(x) = \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x}{n} = x \lim_{n \to +\infty} \frac{1}{n} = 0$$

- لاحظ أن جميع حدود المتتالية هي

$$f_1(x) = x$$
, $f_2(x) = \frac{x^2}{2}$, $f_3(x) = \frac{x^3}{3}$, ..., $f_n(x) = \frac{x^n}{n}$, ...

وهي عبارة عن توابع مستمرة على f(x)=0 ، وأن تابع النهاية لتلك المتتالية أي f(x)=0 هو تابع مستمر أيضاً على $I=[0,+\infty[$

نتيجة من التمارين السابقة: إن تابع النهاية لمتتالية تابعية ما $f_n(x)$ معرفة على $\mathbb{R} \supseteq I$ قد لا يتمتع بالخواص أو الصفات ذاتها التي تتمتع بها حدود هذه المتتالية. ففي المثالين الأول والثالث كانت حدود المتتالية مستمرة في حين أن تابع النهاية لها كان تابعاً غير مستمراً ، أما المثال الثاني فكانت حدود المتتالية غير مستمرة في حين أن تابع النهاية لها كان مستمراً ، وفي المثال الرابع كانت حدود المتتالية مستمرة وتابع النهاية لها كان مستمراً .

تذكر أن: التابع الحقيقي f(x) مستمر عند $x=x_0$ من مجموعة تعريفه إذا وفقط إذا تحقق

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = f(x_0)$$

انتهت المحاضرة الرابعة

مكتبـــة بريمــا فيــرا - مقابـل كليـة الفنـون الجميلـة Mob: 0993586758 - Tel: 011 2124436