Page ____

Design and Analysis of Algorithms

NAME: AKSHIT SINGH

SECTION: F

ROLL No: 42

Course: B. Tech CSE

1.
$$T(n) = 3T(n_1) + n^2$$

Ans - $a = 3, b = 2$

$$n^{\log_2 3} < n^2$$
 (Gss 3)

$$T(n) = O(n^2)$$

$$a = 4, b = 2$$

$$n^{\log_6 a} = n^{\log_2 4} = n^2 = f(n)$$
 (case 2)

3.
$$T(n) = T(n_2) + 2^n$$

$$n^{\log_2 1} = n^\circ = 1$$
 $1 < 2^\circ \text{ (Gar 3)}$

4.
$$T(n) = 2^n T(n) + n^n$$

. Master's theorem is not applicable as a is function.

5.
$$T(n) = 16T(n_y) + n$$

6.
$$T(n) = 2T(n/2) + n \log n$$

$$a = 2$$
, $b = 2$, $f(n) = n \log n$
 $n \log b^{\alpha} = n \log^{2} n$

7.
$$T(n) = 2T(ny) + n$$

$$a=2,b=2$$
, $f(n)=n$ logn

8.
$$T(n) = 2T(n) + n^{0.51}$$

$$a=2$$
, $b=4$, $f(n)=n^{0.51}$

$$n^{0.5} < \rho(n)$$

9.
$$T(n) = 0.5T(n) + \frac{1}{h}$$

10.
$$T(n) = 16T(n_4) + n!$$

$$n^2 < n$$

11.
$$T(n) = 4T(n) + \log n$$

 $Any - a = 4, b = 2$

$$\int (n)^2 \log n$$

« Masters Not applicable as a is not constant

13.
$$T(n) = 3T(n/2) + n$$

$$a=3, b=2, f(n)=n$$

Any =>
$$a = 3, b = 3, \int_{-\infty}^{\infty} (n) = \sqrt{n}$$

$$h^{\log b\alpha} = h^{\log 3^3} = n$$

15.
$$T(n) = 4T(n_2) + Cn$$

$$\frac{n^{\log n} - n^{\log_2 4} = n^2}{n^2 > C - n}$$

16.
$$T(n) = 3T(n/4) + n\log n$$

Ans $a = 3, b = 4, f(n) = n\log n$

$$T(n) = 3T(n_b) + n_b$$

 $A_{n_b} \Rightarrow a = 3, b = 3, f(n) = n_b$

$$0(n) = 0(n_2)$$

18.
$$T(n) = 6T(n/3) + n^2 \log n$$

Ans > $a=6$, $b=3$, $f(n) = n^2 \log n$

19.
$$T(h) = 4T(h/2) + \eta/\log n$$
.
 $a = 4$, $b = 2$, $f(h) = \eta/\log n$

$$h^{\log b^{\alpha}} = h^{\log_2 4} = n^2$$

$$h^2 > n / \log n$$

Arry

20.
$$T(n) = 64T(n/s) - n^2 logn$$

Master's theorem is not applicable as $f(n)$ is not investige function.

u U

21.
$$T(n) = 7T(n_b) + n^2$$

a=7, b=3, $\int (n)^2 n^2$

n 1.7 < n2

. According to master's,
$$T(n) = O(n^2)$$

22.

$$T(n) = T(n/2) + n(2 - \cos n)$$

Ans Mosteris mothod isn't applicable since regular condition is isolated in Case 3.