Structural determination – 1(B)

Yeou-Guang Tsay, M.D., Ph.D.

Institute of Biochemistry & Molecular Biology Biomedical Industrial Ph.D. Program Biomedical EMBA Program

What properties are examined in IR?

Spectroscopic analyses of organic compounds

Technique	Electromagnetic radiation	Structure
Infrared spectrometry	Infrared light	Covalent bonds
Ultraviolet spectroscopy	Ultraviolet light	σ - σ^* , n - σ^* , π - π^* , n - π^* transitions
Nuclear magnetic resonance spectroscopy	Radio wave	Atomic nuclei in magnetic field

Properties of electromagnetic radiation – Wave-particle duality

Electromagnetic radiation has dual properties.

✓ Wave properties - In homogeneous media, electromagnetic radiation is a transverse wave, meaning that its oscillations are perpendicular to the direction of energy transfer and travel

✓ Particle properties - The particle of light has the name photon, like other particles such as the electron and proton. Thus, a photon is a single quantum of light

Quantum (plural: quanta)

The minimum amount of any physical property involved in an interaction. This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.

A photon, or any other form of electromagnetic radiation, has the quantum of energy (ε) that is in direct proportional to its

frequency (v) F = N

$$\varepsilon = h \cdot v$$
Planck constant

 $6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$

$$E = N_A \times \varepsilon = 4 \times 10^{-10} \cdot v (J \cdot s/mol)$$

Infrared spectroscopy

What structures absorb the energy in IR?

The absorption of infrared quanta causes vibration of covalent bonds

Upon absorption of the infrared radiation of a specific frequency, molecules stretch or bend if the frequency of the radiation matches the frequency of the vibration

Symmetric stretching

Antisymmetric stretching

In-plane bending

Out-of-plane bending

How do we interpret the IR spectra?

Interpret infrared spectra

Most functional groups have characteristic *IR* absorption bands that do not change from one compound to another

NP2, NP3

Infrared absorption frequencies in organic chemistry

Infrared absorption frequencies of hydrocarbons

Group	Class	Frequency, cm ⁻¹	Signal	Group	Class	Frequency (cm ⁻¹)	Signal
C-H	Alkane	2850-2960	M	≡С-Н	Alkyne	3300	S
=C-H	Alkene	3020-3100	M	C≡C	Alkyne	2100-2260	М
C=C 2	Alkene	1640-1680	M	=C-H	Arene	3030	W
W: w	eak, M: r	nedium, S: st	rong	Φ Ring bonds	Arene	1450-1600	М

IR characteristics in alkaņe, alkene and alkyne

Infrared absorption frequencies of hydrocarbons

Bond	Class	Frequency, cm ⁻¹	Signal	Bond	Class	Frequency (cm ⁻¹)	Signal
C-H	Alkane	2850-2960	M	≡C-H	Alkyne	3300	S
=C-H	Alkene	3020-3100	M	C≡C 3	Alkyne	2100-2260	M
	Alkene		M 🗸	<i>=</i> C-H	Arene	3030	W
W: w	eak, M: r	medium, S: st	rong 🗸	Φ Ring bonds	¹ / ₂ Arene	1450-1600	М

Infrared absorption frequencies of oxygen-containing substances

Bond	Functional class	Frequency cm ⁻¹	Signal	Bond	Class	Frequency cm ⁻¹	Signal
О-Н	Alcohol	3400-3650	S&B	N-H	Amine	3300-3500	М
О-Н	Carboxylic acid	2500-3100	S&B	C=N	Imine	1610-1690	S
=C-H	Aldehyde	3020-3100	M	C≡N	Nitrile	2210-2260	M
	Aldehyde, ketone,		6	NO ₂	Nitro	1540	S
C=O	ester, amide and carboxylic acid	1670-1780	S	W: weak, M: medium, S: strong			

Infrared absorption frequencies of oxygen-containing substances

	Bond	Functional class	Frequency cm ⁻¹	Signal	Bond	Class	Frequency cm ⁻¹	Signal
	О-Н	Alcohol	3400-3650	S&B	N-H	Amine	3300-3500	М
	О-Н	Carboxylic acid	2500-3100	S&B	C=N	Imine	1610-1690	S
	=C-H	Aldehyde	3020-3100	M	C≡N	Nitrile	2210-2260	М
✓	,	Aldehyde, ketone,		S	NO ₂	Nitro	1540	S
	C=O	ester, amide and carboxylic acid			W: w	veak, M: m	nedium, S: s	trong

Infrared spectroscopy - aldehyde

Infrared spectroscopy - ketone

Infrared spectroscopy of alcohols, phenols, aldehydes and ketones

How to use infrared spectroscopy to distinguish two compounds with the same chemical formula C_3H_6O ?

How to predict the structure based on infrared spectroscopy?

The table will be given in my test. Learn how to find the needed info from the table

= 52

Spectroscopic analyses of organic compounds

Technique	Electromagnetic radiation	Structure
Infrared spectrometry	Infrared light	Covalent bonds
Ultraviolet spectroscopy	Ultraviolet light	σ - σ^* , n - σ^* , π - π^* , n - π^* transitions
Nuclear magnetic resonance spectroscopy	Radio wave	Atomic nuclei in magnetic field

Ultraviolet spectroscopy

Ultraviolet spectroscopy

- ✓ Ultraviolet spectroscopy refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet spectral regions. In this region of the electromagnetic spectrum, atoms and molecules undergo electronic transitions. Absorption spectroscopy measures transitions from the _____state to the ____state.
- ✓ Molecules containing bonding (__and __electrons) or non-bonding electrons (_-electrons) can absorb energy in the form of ultraviolet to excite these electrons to higher anti-bonding molecular orbitals.
 Highest Occupied MO
- ✓ The more easily excited the electrons, (i.e. lower energy gap between the HOMO and the LUMO), the longer the wavelength of light it can absorb

 Lowest Unoccupied MO

What properties are examined in UV-Vis?

Energy gap between HOMO and LUMO

Various HOMO-LUMO transitions leading to ultraviolet absorption

Ultraviolet spectroscopy of acetone

What structure can narrow the energy gap between HOMO and LUMO?

π-π* transition for buta-1,3-diene

UV absorption in conjugated polyenes

UV absorption in cyclic vs linear conjugation

Cyclic conjugation may give a peak with λ_{max} > 200 nm in UV spectra as well

Colors of organic compounds result from extensive conjugation

- ✓ As the number of conjugated C=C becomes higher, the energy gap between HOMO and LUMO decreases. When the wavelength of absorbed light is in the range of visible light, the compound should become colored
- \checkmark β-Carotene has λ_{max} = 455 nm. When white light strikes β-carotene, wavelengths in the blue region are absorbed. Thus, the yellow-orange colors are transmitted to our eyes

A vitamers in visual cycle

Some structures in visual cycle

Absorbance (A) and molar absorptivity (ε)

Absorbance (A) is the common logarithm of the ratio of incident (I_0) to transmitted (I) radiant power through a material

$$A = \log \frac{I_0}{I}$$

Molar absorptivity (ϵ), or molar extinction coefficient, is a measure ϵ — of how strongly a chemical species or substance absorbs light at a molar particular wavelength concentration

$$\varepsilon = \frac{A}{cL}$$
; $c = \frac{A}{\varepsilon L}$
Molar Sample

pathlength (cm)