Analitička obrada podataka

Transakcioni IS – OLTP (On-Line Transaction Processing)

- registrovanje, obrada, arhiviranje, prikaz pojedinačnih podataka – transakcija
- manipulacija transakcijama, procesima koji su frekventni i ponavljajući, paralelno se izvode (primer: bankarski poslovi, rezervacije letova, naručivanje robe).
- Transakcije najčešće imaju samo jedan ili nekoliko definisanih koraka.

OLTP

Zahtevi savremenog poslovanja

Poslovanje Menadžment Plasman Informacija - Znanje - Odluka - Akcija - Rezultat

- Pristup SVIM relevantnim strukturama podataka
- Prezentacija konkretnih sintetičkih informacija
- Donošenje odluke uz saznanje o uzrocima i posledicama
- Trenutno raspoložive analize

Zašto je danas teško dobiti kvalitetne izveštaje?

Zato što to podrazumeva:

Analizu velike količine sirovih podataka,

- Dugotrajno je,
- Komplikovano za upotrebu i prikazivanje,
- Potrebna je uključenost informatičara,
- Teško je izvodljivo za operativni sistem,
- Rezultat više verzija istine.

Spektar poslovnih podataka

Proizvodi

Tehnologija

Sirovine

Finansije

Marketing

ANALITIČKI IS

Strateško upravljanje

- Izveštai;
- Odluke
- Prognoze

TRANSAKCIONI IS

Operativno upravljanje Dokumentacija

Pregled!

Plangvi

Proškovi

Transakcioni sistem

Analitički IS – On-line Analytical Processing (OLAP) analiza i obrada podataka, izrada izveštaja

Bilans tabela:

		Bilario tabolar
	14/02/97	
Ukupno aktiva	931359	
Blagajnička operativa	25779	
Gotovina	25779	Poslovnica 1
Krediti i investicije	899000	
Prekoračenja	148000	
Kratkoročni krediti (<1 god)	455800	
Srednjoročni krediti (1 - 5 god)	248500	
Dugoročni krediti (>5 god)	46700	
Ukupno ostala potraživanja	6580	
Ukupno potraživanja	1650	Poslovnica 2
Ukupno ulaganja	736550	
Dugovanja po ne Fls	736550	
Zahtevi za ulaganjima	463000	
Depoziti (1 - 6 meseci)	150700	
Depoziti (3 - 6 meseci)	76400	
Depoziti (6 meseci - 1 god)	45000	Poslovnica 3
Depoziti (>1 god)	1450	i Oslovilica s
Povraćaj vrednosti	28150	
Ukupne rezerve	122100	-
Ostale rezerve	11250	•
		:
		Dodovnice n
		Poslovnica_n
		7

Konsolidacija tabela

Periodična optimizacija tabela

М.

Primer OLAP kocke

OLTP: OLAP

On-Line procesiranje transakcija

Obrada podataka
Standardni upiti
Mb-Gb memorije
Sirovi podaci
Pristup: svi korisnici
Real-time podaci

On-Line analitičko procesiranje

Čitanje podataka Kompleksni upiti Gb-Tb memorije Agregirani podaci Pristup: menadžeri, analitičari

Istorijski podaci

Plan the Business

Sistemi za podršku odlučivanju

DSS – Decision Support Systems

Decision Support Systems (DSS) - definicija

DSS su informacioni sistemi koji pružaju podršku u rešavanju nedovoljno definisanih problema, crpeći iz postojećih sistema one informacije, koje su bitne za proces odlučivanja.

"... ono što smo već dugo pokušavali, ali nismo za to imali naziv"

Sprague, Carlson

ĸ.

Sistemi za podršku odlučivanju

Elementi sistema za podršku odlučivanju

- Podsistem za upravljanje podacima
 - baza podataka koja sadrži relevantne podatke o predmetnom sistemu ("tvrdi", egzaktni podaci i heuristički, "meki" podaci, koji su rezultat ekspertnih ocena, prognoza, trendova).
 - □ softver za upravljanje podacima (SUBP).
- Podsistem za upravljanje modelima
 - softverski paket koji sadrži finansijske, statističke i druge kvantitativne modele preko kojih se obezbeđuju visoke analitičke sposobnosti sistema.
 - Baza modela sadrži skup raspoloživih metoda i tehnika, projektovanih saglasno ciljevima koje konkretni SPO treba da zadovolji.
- Podsistem korisničkog interfejsa preko koga korisnik komunicira i upravlja SPO sistemom.
 - Korisnički interfejs artikuliše zahteve korisnika i prezentira izlaze iz sistema za podršku odlučivanju.

Tri nivoa DSS tehnologije

- Specifični DSS konstruisani korišćenjem DSS alata, dostupni na tržištu
- DSS generatori softverski paketi za razvoj DSS-a, sadrže biblioteke statističkih modela.
- DSS alati uključuju programske jezike sa mogućnostima pristupa nizovima podataka, pakete za statističke proračune i sl.

Kako se razvija DSS?

- Quick-Hit pristup
- Iterativni razvoj
- Razvoj korišćenjem tradicionalnog životnog ciklusa

Quick-Hit pristup

Ovaj pristup je najzastupljeniji kod DSS-a. Inicijativa uglavnom dolazi od strane menadžera, tako da je DSS izgrađen kroz interakciju, podjednako od strane menadžera kao i od strane programera.

Iterativni razvoj

- U praksi DSS-a, budući korisnici generalno ne znaju šta žele od sistema. Da bi to utvrdili, potreban je prototip sistema – jednostavna inicijalna verzija koja se koristiti prilikom eksperimenata i pomoću koje korisnici uče kako da postignu željene karakteristike sistema.
- Iterativni razvoj sistema se zasniva na izgradnji prototipa i njegovom poboljšavanju.
- Budući korisnik i tvorac DSS-a zajedno definišu problem koji žele da reše i identifikuju najpotrebnije elemente. Programer tada izrađuje jednostavnu verziju sistema, zanemarujući složene aspekte funkcionisanja, koje razvija u sledećim iteracijama.

Razvoj korišćenjem tradicionalnog životnog ciklusa

- Metodologija pogodna za kompleksne sisteme koje koriste mnogi korisnici. Veliki organizacioni DSS je modelno orijentisan.
- Prilikom razvoja specifičnog DSS-a, ovakva praksa je češće izuzetak nego pravilo.

Primer - DSS

Drop Filter Fields Here			
	Drop Column Fields Here		
Smer Naziv ▼	UkupnaOcena	BrojPollspita	Prosek
Industrijsko Inzenjerstvo	53680	6846	7,84
Informacioni Sistemi	279474	35631	7,84
Menadzment	208264	26806	7,77
Upravljanje Kvalitetom	38004	4874	7,80
Zajednicke Osnove	99014	13671	7,24
Grand Total	678436	87828	7,72

re.

Poslovna Inteligencija

- Business Intelligence (BI)
- Skup procesa za prikupljanje i analizu poslovnih informacija u cilju donošenja boljih poslovnih odluka i identifikaciju novih poslovnih mogućnosti.
- Uključuje DSS, DW, OLAP
- Bl omogućava menadžerima da dobiju informacije o svom poslovanju koje su im inače nedostupne:
 - Analiza efikasnosti poslovanja,
 - Određivanje ključnih troškova,
 - Analiza ponašanja kupaca i dobavljača,
 - Sagledavanje kupaca kod kojih nastaje poslovni rezultat,
 - Razmatranje pojedinih tržišnih segmenata,
 - Analiza efikasnosti upravljanja,
 - Lakše predviđanje budućih trendova.

Kako radi BI

BI - opšti model

- Izbor podataka iz transakcione baze koji su zanimljivi za analizu
- Ekstrakcija, transformacija i čišćenje podataka
- Smeštanje podataka u skladište – Data
 Warehouse
- Formiranje OLAP kocke
- Izrada predefinisanih i ad hoc izveštaja.

Ključne tehnologije BI: OLAP (Online analitical processing), Data mining, Neuronske mreže, Stabla odlučivanja, Klaster analiza, Tekst mining.

Studija slučaja: DSS u bezbednosti saobraćaja

Пројекат "База података о саобраћајним незгодама на подручју Београда"*

■ Циљеви:

- Ефикасан сервис свим субјектима у Београду,
- Помоћ Секретаријату за саобраћај у спровођењу мера за повећање безбедности саобраћаја на нивоу града;
- Јединствени извор података из области безбедности саобраћаја у Граду.

Концепт развоја аналитичке базе

Основа: Образац МУП-а

Последице

1. НЕЗГОДА СН1 образац: Датум и час СН; Подаци о месту СН: Врста Карактеристике пута Незгода1 Особине површине коловоза **Узроци** Трајање прекида саобраћаја; Укупна материјална штета; Редни број возила Врста возила Регистарска ознака Незгода 2 Земља регистрације Година производње Власник (корисник) возила Својство Пол Датум рођења Незгода 3 ЈМБГ Презиме и Име и Име родитеља Општина и место рођења Држављанство Место п Година полагања возачког испита Користио појас Незгода 🐴

Конструкција OLAP коцке

Конструкција OLAP коцке

Примери извештаја

3	Data 🔻	Posledice Lica ▼	Total			
4	Broj Nezgoda	LAKE TELESNE POVREDE	1055			
5		LICE NEPOVREDJENO	11379			
6		SMRT DO 30 DANA	8			
7		SMRT NA LICU	54			
8		SMRT ZA VREME PREVOZA DO BOLNICE	12			
9		TESKE TELESNE POVREDE	455			
10	Broj Lica	LAKE TELESNE POVREDE	2183			
11		LICE NEPOVREDJENO	30424			
12		SMRT DO 30 DANA	17			
13		SMRT NA LICU	110			
14		SMRT ZA VREME PREVOZA DO BOLNICE	25			
15		TESKE TELESNE POVREDE	920			
16 Total Broj Nezgoda			12133			
17 Total Broj Lica						
40						

Преглед незгода и лица по последицама по лица

Преглед незгода и возила по врсти возила и последицама по лица

3	Vrsta vozila 🔻	Posledice Lica ,	Ţ	Data	▼	Total
4	Autobus - Trolejbus	LAKE TELESNE POVREDE	\Box	Broj	Nezgoda	28
5				Broj	Lica	61
6		LICE NEPOVREDJENO		Broj	Nezgoda	632
7				Broj	Lica	1825
8		SMRT DO 30 DANA		Broj	Nezgoda	
9				Broj	Lica	0
10		SMRT NA LICU		Broj	Nezgoda	2
11				Broj	Lica	5
12		SMRT ZA VREME PREVOZA DO BOLNICE	=[Broj	Nezgoda	1
13				Broj	Lica	3
14		TESKE TELESNE POVREDE		Broj	Nezgoda	9
15				Broj	Lica	19

Број лица, возила и незгода по последицама по лица

Резиме

Предложени модел обезбеђује:

- Могућност брзог добијања статистичких информација, по било којој карактеристици саобраћајне незгоде;
- Приступ свим расположивим подацима везаним за конкретно обележје саобраћајне незгоде (све незгоде на појединој локацији, изазване одређеном врстом возила, у конкретном временском интервалу и сл.);
- Олакшано доношење одлука у Секретаријату за саобраћај, уз сазнање о последицама и консеквенцама сваке од њих;
- Локални и даљински приступ.

Статус пројекта ...

Grupni DSS (GDSS)

Grupni DSS (GDSS)

- Grupni DSS su sistemi koji podržavaju grupno odlučivanje pri čemu su članovi tima na različitim lokacijama i mogu da rade u različitim vremenima.
- interaktivni, kompjuterski zasnovani sistem koji grupi donosioca odluka pomaže u rešavanju nestrukturiranih problema
- GDSS podrazumevaju distribuiranu i mrežnu arhitekturu, kao i informacione tehnologije za podršku timskom radu

Nivoi GDSS tehnologije

- Nivo 1: Podrška procesu grupnog rada (elektronske poruke između članova grupe, mrežno povezivanje računara svih članova grupe, javni ekran vidljiv svim članovima grupe, anonimnost ideja i glasanja, aktiviranje zahteva za idejama, sumiranje i prikazivanje ideja i mišljenja)
- Nivo 2: Podrška donošenju odluke (softverske tehnologije za modeliranje i analizu situacije odlučivanja)
- Nivo 3: Pravila za redosled događaja (specijalni softver koji sadrži pravila koja određuju sekvencu govora, odgovora, pravila glasanja i dr.

GDSS

PREDNOSTI:

Sinergija

Učenje

Stimulacija

Više informacija

Preciznija komunikacija

Objektivnije vrednovanje

Efekti postignuti upotrebom specifičnih tehnika

GDSS

Podrška procesu

- -grupno pamćenje
- -anonimnost
- -paralelna komunikacija
- -medijski efekti, brzina
- -depersonalizacija
- -širina pogleda na problen

Podrška zadacima -globalna -lokalna

NEDOSTACI:

Blokiranje pažnje Nedostatak pamćenja

Opasnost digresija Familijarizacija Dominacija Previše informacija

Sporiji feedback Površno korišćenje informacija Površna analiza

Efekti postignuti upotrebom specifičnih tehnika

Primer korišćenja GDSS

- Ekspertsko ocenjivanje koristi se kod strateških odluka i složenih problema
- 1. Utvrđivanje strateških ciljeva
- 2. Utvrđivanje liste kandidata za korišćenje sredstava
- 3. Utvrđivanje kriterijuma (značaja/koristi od svakog kandidata za realizaciju postavljenih ciljeva)
- 4. EKSPERTSKO OCENJIVANJE koliko koji program doprinosi realizaciji ciljeva
- 5. Proračun disperzije ocena
- 6. Ako je disperzija velika, povratak na korak 3.
- 7. Odluka

Raspodela ograničenih sredstava na više programa

Videokonferencija

Telepresence sistem u konferencijskoj sali

Individualni telepresence sistem

Izvršni IS (Executive Information Systems - EIS)

Izvršni IS (Executive Information Systems - EIS)

- Osnovni cilj EIS poboljšanje kvaliteta i kvantiteta informacija potrebnih na izvršnom nivou
- ubrzavaju odgovor na situacije izvršnog odlučivanja koje zahtevaju brzinu i efikasnost
- podrška donošenju odluka obezbeđivanjem aktuelnih i tačnih podataka u smislenom formatu
- EIS je *user-frendly,* grafički podržan, obezbeđuje izveštavanje o izuzecima i ima mogućnost *drill-down*—a.

Najčešća upotreba - Critical Sucess Factors (profitabilnost, finansijski indikatori, marketinški indikatori, ljudski resursi, rizik, tržišni i potrošački trendovi)

w

Izvršni IS (Executive IS)

Specifičnosti dizajniranja i razvoja EIS

- Dizajn i razvoj zasnovan na definisanim Kritičnim Faktorima Uspeha (CSF)
- Implementacija zahteva aktivno uključivanje izvršilaca
- Karakteristične metode za utvrđivanje izvršnih informacionih zahteva
 - □ Intervjuisanje
 - Izvođenje zahteva iz već postojećeg informacionog sistema
 - □ Sintetizovanje iz karakteristika sistema
 - □ Otkrivanje eksperimentisanjem (izradom prototipova)

Ključni problem EIS-a: <u>sadržaj informacija</u> a ne način njihovog prezentiranja

Primer: Kontrolne table (Dashboards)

Geografski IS

Nivoi GIS-a

- Prezentacija statičnih informacija (kartografske prezentacije),
- Prezentacija dinamičnih informacija (dinamička kartografija),
- Interaktivni alati za prikazivanje geografskih podataka (u sklopu informacionih sistema)

Rasterski (slikovni) podaci

Vektorski podaci

tačka definisana sa koordinatama, linija povezuje tačke sa istim koordinatama, poligon – skup tačaka

Slojevi u GIS

м

Oblasti primene GIS-a:

- Nekretnine (katastar, osiguranje, procena vrednosti)
- Prostorno planiranje
- Saobraćaj (planiranje, održavanje, upravljanje)
- Životna sredina
- Komunalna infrastruktura (vodovod i kanalizacija, električna energija, telekomunikacije, gasovod, itd.)
- Vojne primene
- Hitne intervencije (vatrogasci, policija, medicina)
- Navigacija (vazdušna, morska i kopnena)
- Turizam
- Poljoprivreda
- Arheologija
- Epidemiologija i zdravstvo
- Šumarstvo

Primer: Google Map

