

Reference alignment of reads

Richard Orton

MRC-University of Glasgow Centre for Virus Research
March 2025

Richard.Orton@glasgow.ac.uk

Previously ...

- Previous session we learnt about FASTQ reads and read cleaning/trimming
- Task now is to align these reads to a selected reference sequence
- 8:30 10:00
 - 8:30 9:15: Talk
 - 9:15 10:00: Practical

Overview

- What is reference alignment?
 - How does it work?
- What tools can you use?
- What do the results look like?
 - Basic statistics
 - Coverage plots
- Reference alignment practical
 - Learn the basic steps of refence alignment, SAM/BAM conversion, calculating basic mapping statistics and coverage plots.

Reference alignment

- Reference alignment: want to know the exact position on the genome a read originates
 - And the base-to-base correspondence (to extract mutations, indels)
- Reference assembly: assemble reads back together to form a genome
 - Assemble from scratch de novo assembly using read overlaps, kmers

Aligning reads to a reference genome

Aligning reads to a reference - needs

Need Reads

- Single or paired, short or long
- Typically pre-trimmed & filtered
- But you can use your raw read files

Need a Reference

- A suitable reference
- [More on this later]
- Trimmed reads were aligned to the HCV reference genome (GenBank accession NC_038882) with BWA {Li et, 2009}.

Be careful – aligners tend not to complain

Sample

Ebola virus sample from a human patient

Reads

 Reads were adapter trimmed and quality filtered using trim_galore (quality 25, length 50).

Reference

- Reads were aligned to the HCV reference genome (GenBank accession NC_038882
- Result SAM file of all the reads aligned to the reference

Be careful – aligners tend not to complain

Sample

Ebola virus sample from a human patient

Reads

 Reads were adapter trimmed and quality filtered using trim_galore (quality 25, length 50).

Reference

- Reads were aligned to the HCV reference genome (GenBank accession NC_038882
- Result SAM file of all the reads aligned to the reference
 - No errors
 - Number of mapped reads (0), coverage statistics (0 cov)

Unmapped reads

- Reads that could not be aligned to the reference sequence are marked as unmapped
- What are these reads?

Unmapped reads

- Reads that could not be aligned to the reference sequence are marked as unmapped
- What are these reads?
 - Host
 - Bacteria, Parasites,
 - Other viruses
 - Random "low complexity" sequences
- This will be missed as we are "targeting" a specific reference sequence to align against
 - Possible solution: metagenomics

Aligning reads to a references

Ref: ACGGTGACACGTAGCAGTACGCGGGTTACACAGA

Read: GTTACAC

Aligning reads to a references

Aligners check the reverse complement

Paired end ... Insert Size

- Typically, the two reads do not overlap, but they can if the reads are long and fragments are short [redundant data, but can be used to correct errors]
- 500bp fragments + 2 x 300bp reads = 100bp overlap
- Turner 2014, Frontiers in Genetics

Concordance & Discordance – paired reads

Concordant: consistent orientation of read pairs with respect to reference, have insert size within the expected range (depends on library)

Aligning reads to a reference: Mutations and Indels

```
ACGGTGACACGTAGCAGTACGCGGGTTACACAGA
Ref:
                      CAGTTCG
       ACGGCGA
                                     AC-CAGA
              AGACGTA
                             GCGGGT1
                  GTAGCAGT
                                   TTACACAG
          GCGACAC
                           TCGCGGG
        CGGCGAC
                       AGTTCGC
                                    TACACAT
                ACG-AGC
                               GGGGTAC
```

CIGAR Concise Idiosyncratic Gapped Alignment Report

123456789**0**123456789**0**123456789**0**1234 Pos: ACGGTGACACGTAGCAGTACGCGGGTTACACAGA Ref: ACGGCGA CAGTTCG AC-CAGA **AGACGTA** GCGGG1 **GTAGCAGT** TTACACAG **GCGACAC** TCGCGGG CGGCGAC TACACAT AGTTCGC **GGGTAC** ACG-AGC **1**23**3**3433333333333**3**3433**1**33444433331 Cov:

Pos28: 2M1D4M

MRC-University of Glasgow Centre for Virus Research

Pos4:

1M1X5M

CIGAR

Aligners – There are Lots

https://www.ebi.ac.uk/~nf/hts_mappers/ Hash based - faster, high memory usage Mosaik, NextGenMap, Stampy, Tanoti **Burrows-Wheeler based** Sensitive, low memory usage, can be slower than hash based Can struggle in divergent regions BarraCUDA, Bowtie2, BWA, Cushaw2, GEM, SOAP3-DP **RNA-Seq Splice aware** HiSAT, TopHat, BBMap Long Reads Minimap2, LAST, BLASR Mummer 3 2001 2003 2005 2007 2009 2011 2013 2015

Years

Which aligner to use?

Bowtie2

Sequencing technology – long vs short reads

BWA

Library/Analysis – e.g. rna-seq

Tanoti

Short RNA viral genome - which aligner?

BBMAP

 In general aligners are quite consistent in terms of consensus sequence & coverage to a good (close) reference

minimap2

 Differences in aligner can be subtle – so may influence low frequency variants

Mosaik

 Starting out on a new virus - try a few aligners – not just about most reads aligned – consensus seq and variants

. . .

Ref alignment commands - different tools

Which reference sequence?

- Selecting a suitable reference sequence is an important step.
 - If your reference is too divergent from your sample if can affect read mapping and possibly the consensus sequence
- First obviously want to select the right virus!
 - If you doing a reference assembly you probably suspect a particular virus is present in your sample
- Second if a divergent virus e.g. HCV select the right genotype:
 - Hepatitis C Virus (HCV) want to select the right genotype differ by 30–35% at the nucleotide level (subtypes can differ by 15-25% at nucleotide level)
- If unsure what virus is in the sample or suspect it is very divergent
 - De novo assembly
 - SHIVER (HIV)
 - Kraken
 - Panel alignment to all genotypes/subtypes check stats

Multiple Reference sequences

- The reference is in FASTA format: Can be more than one sequence!
 - Segmented virus
 - Influenza: PB1, PB2, PA, NP, HA, NA, M, NS
 - Host
 - Human chromosome 1, 2, 3, 4, 5 etc
 - Panel of viruses
 - HCV 1a, 1b, 1c, 2a, 2b
 - Respiratory viruses
 - Contigs from metagenomics

SAM & BAM files

SAM files: Sequence Alignment MAP

- Virtually all aligners output results in SAM format
 - Sequence Alignment/Map
- Each line in the SAM file corresponds to a separate alignment
- Sequence and quality strings of the reads stored in the BAM
 - Can extract reads back out of SAM/BAM
 - But always keeps copies of your raw data

The name of the other read in pair

The position the other read in pair is aligned

Template Length/Insert Size

QNAME	FLAG	RNAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUALITY
Read3	10	MyRefSeq	28	52	2M1D4M				ACCAGA	IHGFFF
Read8	10	MyRefSeq	4	57	1M1X5M				GCGACAC	IIIHHGG

Pos:

Ref:

Cov:

CIGAR

Samtools

- One of the key HTS programs provides various utilities for manipulating alignments in the SAM/BAM [and CRAM] formats
 - sorting, merging, indexing and generating alignments in a perposition format.
- Links seamlessly to downstream tools such as VCFTools, BCFTools etc

Converting SAMs to BAMs

- Convert your SAM file into BAM files
- BAM Binary Alignment/Map
- BAM files are **compressed** binary versions of the same data (and **faster**)
- Initially the SAM/BAM is sorted by the order the reads were in their files
- Sort BAM file
 - All the reads where alignment starts at position 1 first
 - All the reads where alignment starts at position 2, then 3, then 4 etc
 - samtools sort my.sam -o my.bam
- **Index** the BAM file
 - Enables downstream tools (consensus/variant calling) to rapidly look up what is aligned to e.g. position 10,456
 - samtools index my.bam

SAM Flags – Mapped/Unapped

- 4 = Read unmapped
- Can be used to give you the most basic of statistics – how many reads are mapped to the reference and how many are unmapped
- Technically, it is counting how many mapped read alignments are in the SAM file

#	Flag	Description						
1	1	Read paired						
2	2	Read mapped in proper pair						
3	4	Read unmapped						
4	8	Mate unmapped						
5	16	Read reverse strand						
6	32	Mate reverse strand						
7	64	First in pair						
8	128	Second in pair						
9	256	Not primary alignment						
10	512	Read fails platform/vendor quality checks						
11	1024	Read is PCR or optical duplicate						
12	2048	Supplementary alignment						

QNAME	FLAG	RNAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUALITY
Read3	10	MyRefSeq	28	52	2M1D4M				ACCAGA	IHGFFF
Read8	4	*	0	0					GCGACAC	IIIHHGG

SAM Flags – Mapped/Unapped

- A read can sometimes have multiple alignments
- **256** = not primary = secondary = alternative alignments (equally good or not quite as good)
- 2048 = supplementary alignment = when read is split (spliced) and sections aligned separately

#	Flag	Description						
1	1	Read paired						
2	2	Read mapped in proper pair						
3	4	Read unmapped						
4	8	Mate unmapped						
5	16	Read reverse strand						
6	32	Mate reverse strand						
7	64	First in pair						
8	128	Second in pair						
9	256	Not primary alignment						
10	512	Read fails platform/vendor quality checks						
11	1024	Read is PCR or optical duplicate						
12	2048	Supplementary alignment						

Typically, secondary/supplementary should be few for short RNA virus genome, but if louts it can indicate:

Repeat regions, Large deletions, Poor reference sequence

SAM Flag = 2nd filed of SAM file

QNAME	FLAG	RNAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUALITY
Read3	10	MyRefSeq	28	52	2M1D4M				ACCAGA	IHGFFF
Read8	4	*	0	0					GCGACAC	IIIHHGG

Host filtering – exploiting flag4 (unmapped)

- Create read files without the human host
- samtools has a host of other function available:
 - samtools fastq
 - samtools depth
 - samtools stats
 - samtools ampliconclip
 - samtools idxstats
 - samtools flagstat
 - samtools consensus

Post Assembly – after the BAM

- Post assembly checks
 - Summary statistics:
 - Number of reads aligned
 - Number of reads unaligned
 - Average depth of coverage
 - Breadth of coverage
 - Coverage plot
 - Visualisation of entire alignment

Coverage

123456789**0**123456789**0**123456789**0**1234 Pos: Ref: ACGGTGACACGTAGCAGTACGCGGGTTACACAGA ACGGCGA CAGTTCG AC-CAGA **AGACGTA** GCGGGT1 TTACACAG GTAGCAGT **GCGACAC** TCGCGGG CGGCGAC AGTTCGC TACACAT ACG-AGC GGGGTAC 1223**3**34333333323333**3**3433333444333331 Cov:

Coverage Depth & Breadth

- Coverage is the number of reads that "cover" a particular genome coverage
 - Depth
- Average (mean) coverage: the average coverage across all genome positions
- Breadth of coverage: how much of the genome is actually covered

Viral Reference Genome

Average coverage = 1

Breadth = 100%

Viral Reference Genome

Average coverage = 1

Breadth = 20%

Mode, Median, Quartiles would be different

Perfect Coverage Plots

- High uniform coverage across the entire genome
- Biases in library prep fragmentation and PCR (GC content)
 - the terminal ends are typically poorly covered
- Biases in bait capture, amplicon/primer efficiency, extraction methods

Coverage plots – bad reference

- Sporadic coverage with frequent regions dropping down to zero can indicate a poor reference seq
- The reference is too divergent in many regions and reads can not be aligned at the nucleotide level

- Viruses can be very diverse aligning to a different genotype/strain can give obscure results
- Align to different refs, genotype detection tools, de novo assembly

Coverage plots – low coverage

Louping ill virus sample

- Sometimes there is just not enough data present
 - Lower read trimming threshold
 - Just use the raw reads
 - Will be noisey
- Re-run the sample
 - Perhaps it was a bad run
 - Combine run data
- PCR amplification
- Bait capture

Coverage plots – amplicons

Amplicon data can give step like plots

Coverage plots – deletions

 Sudden drops in coverage at a small number of sites can indicate deletions with respect to the reference

This is a <u>log plot</u> and noisy minion data – the deleted sites still have some coverage but this is nothing compared to the other sites

Reference assembly – tunnel vision

- With reference assembly you automatically focus on a single virus
 - You can align to multiple viruses in one go
 - But you will still need to decide what viruses to investigate
- Good to run kraken/centriguge on your samples to (viral & mycoplasma contaminants)

How do you create coverage plots?

samtools depth

- samtools has a built in function called 'depth'
- samtools depth -aa -d 0 my.bam > my_depth.txt
- -aa: output data for absolutely all positions (even positions with zero coverage)
- -d 0: disable the maximum depth to report [default is 8000]
- 3 column text file:

Chromosome	Position	Depth
MN908947.3	1	0
MN908947.3	2	13
MN908947.3	3	34

All chromosome will be reported in turn

weeSam - https://github.com/centre-for-virus-research/weeSAM

- weeSam is program that can give you information on breadth and depth of coverage as well as generate a coverage plot automatically
- weeSAM --bam 1a.bam --html 1a
- 1a_html_results/1a.html

Ref_Name	Ref_Len	Mapped_Reads	Breadth	%_Covered	Min_Depth	Max_Depth	Avg_Depth	Std_Dev	Above_0.2_Depth	Above_1_Depth	Above_1.8_Depth	Variation_Coefficient
NC_004102.1 Hepatitis C virus genotype 1, complete genome	9646	640000	9646	100.00	13	10729	9941.89	1699.34	98.82	90.91	0.00	0.17

Other tools

- Qualimap: http://qualimap.conesalab.org
- bamCov https://github.com/fbreitwieser/bamcov

Practical

- Hepatitis C virus (HCV) samples
- Simulated Illumina paired end reads R1 R2
- HCV Genotype 1a reference genome
- First sample
 - High quality simulated data set
- 3 other samples
 - Real patient HCV samples (genotype 1a)
- BWA aligner, samtools, SAM/BAM, stats
- weeSAM covereage

Practical – HCV_SIM commands – adapt for another sample

The End ... Tablet

Tablet demo if time later on

Tablet: https://ics.hutton.ac.uk/tablet/

- tablet
- Zoom, scroll, colour schemes: nucleotides, direction, mutations
- Tablet is a lightweight, high-performance graphical viewer for next generation sequence assemblies and alignments.
 - BAM file
 - Reference file

Tablet Mouse Genome Position Variants slider 1|b|EU781827 | consensus length 413 (0) | reads: 227,369 | features: 5,832 | Memory usage: 401.53 MB (10 Read Pa Open Import Import Assembly Features Enzymes Read Co Read Names RS Custom PEPP Contigs: 1 227.37 k reads (more) Filter by: Name Tablet Tip: Load data more quickly by imply dragging and dropping the assembly (and reference file if needed) directly into Tablet Minority **Consensus level** variants variants MRC-University of Glasgow Centre for virus Research