Weak k-Metric Dimension (kratek opis)

Miha Jan in Sara Žužek

December 2023

1 Navodilo naloge

Implement an ILP model for this invariant, and then write separate small programs in Sage to answer each of following questions by exhaustive search.

- 1. Find graphs for which $wdim_k(G) = \Delta(x, y)$ for a pair of vertices $x, y \in V(G)$ such that $d(x, y) \geq 3$.
- 2. Determine $\kappa(G)$ and $wdim_k(G)$ for Cartesian products of cycles $G = C_a \square C_b$.
- 3. Determine the graphs G with $wdim_k(G) = dim_k(G)$ for various k with $k \leq \kappa(G)$.

For small graphs, apply a systematic search; for larger ones, apply some stochastic search.

2 Uporabne definicije

Definicija 1 Naj bo $S \subseteq V(G)$ in $a, b \in V(G) \cup E(G)$. Definiramo $\Delta_S(a, b)$ kot vsoto razlik razdalj od a in b do vsakega vozlišča S. Torej je

$$\Delta_S(a,b) = \sum_{s \in S} |d(s,a) - d(s,b)|.$$

 $Ozna\check{c}imo\ \Delta_{V(G)}(a,b) = \Delta(a,b).$

Definicija 2 Šibka (vozliščna) k-metrična dimenzija $grafa\ G\ wdim_k(G)$, $je\ kardinalnost/moč\ najmanjše\ množice\ vozlišč\ S\ grafa\ G,\ tako\ da\ za\ vsak\ par\ vozlišč\ x,y\in V(G)\ velja\ \Delta_S(x,y)\geq k$.

Definicija 3 Največja vrednost parametra k, za katerega je Šibka k-metrična dimenzija grafa G smiselno definirana označimo z $\kappa(G)$

Definicija 4 K-metrična dimenzija grafa G dim $_k(G)$ je velikost najmanjše množice vozlišč S grafa G, ki reši graf G in ji rečemo k-rešljiva množica. Za razliko od standardne metrične dimenzije ta zahteva, da vsak par vozlišč reši vsaj k vozlišč. K-metrična dimenzija se ujema k običajno dimenzijo, ko je k=1.

3 Opis problema

Najina celotna projektna naloga se bo navezovala na k-te šibke dimenzije grafov. Kot glavno gradivo nama bo služil čanek [1].

Projekt bova razdelila na več manjših delov potem pa bova za vsakega od njih napisala celoštevilski linearni program (CLP), ki bo rešil posamezne dele problema.

- 1. V tem delu bova iskala grafe za ketere velja $wdim_k(G) = \Delta(x, y)$, pri čemer je $d(x, y) \geq 3$ za izbrani vozlišči $x, y \in V(G)$.
- 2. Določila bova $\kappa(G)$ in $wdim_k(G)$ za kartezične produkte ciklov $G = C_a \square C_b$.
- 3. Za različne vrednosti k morava najti grafe G za katere velja lastnost $wdim_k(G) = dim_k(G)$, pri čemer $k \leq K(G)$.

4 Načrt dela

Za pisanje CLP bova uporabljala okolje Sage (SageMath), ki ima vgrajeno podporo za pisanje CLP. V prvem delu se bova osredotočila predvsem na pisanje učinkovitega CLP, ki bo deloval na manjših grafih. Ugotoviti morava kako smisleno izbrati spremenljivke, ki bodo v njem nastopale in jih potem smiselno minimizirati.

V nadaljevanju bova poskušala uporabiti rezultate iz prvega dela in to implementirati na večjih grafih s pomočjo metahevristike.

Literatura

[1] I. Peterin, J. Sedlar, R. Škrekovski, I. G. Yero, Resolving vertices of graphs with differences, (2023) arXiv preprint arXiv:2309.00922.