Úvod do kryptografie, digitální podpis

PV080 Vašek Matyáš

Ochrana komunikace/dat

- Fyzická ochrana
 - místnosti
 - kabely
 - diskety

• • •

- Kryptografie umění ochránit význam (informační hodnotu) dat i "na dálku".
- Steganografie

Kde kryptografie pomáhá

- Důvěrnost dat
- Integrita dat
- Autenticita dat (integrita a ověření původu)
- Nepopiratelnost
- Autentizace a autorizace uživatelů/strojů
 - Dostupnost
 - Prokazatelná zodpovědnost
 - Řízení přístupu

. . .

Tři dimenze kryptografie

- Druhy použitých operací
 - Substituce
 - Permutace
 - **—** ...
- Druh a parametry klíčů
 - Symetrické = konvenční = sdílené
 - Asymetrické = veřejné & soukromé
 - Bez klíčů (hašovací funkce, RND)
- Způsob zpracování dat
 - Po blocích
 - V souvislém proudu

Co je hašování (hashování)

... It will be a blustery day abouted

Scotland with gales and showery

rain in the north-east. Elsewhere

in Scotland the showers will be

more scattered at first with a few

sunny spells, but outbreaks of rain

- "Otisk dat"
 - Malý a "jedinečný" reprezentant jakkoliv velkých dat
- 01:A0:7D:2B:76:52:67:05
- EC:43:6F:B3:68:CE:20:E7
- Hašovací funkce
 - rychlost výpoštu, jednosměrnost
 - bezkoliznost slabá (pro daný vstup) a silná (nalezení libovolné dvojice vstupů)
 - problémy funkcí MD5 (128 bit), SHA-0 a -1(160 bit)
 - dočasně doporučeny delší varianty SHA a výběr SHA-3

Co jsou klíče?

- Rozsáhlé řetězce bitů
 - náhodná čísla, prvočísla...
- Symetrická kryptografie
 - stejný klíč pro Alici i Boba
- Asymetrická kryptografie
 - privátní klíč (podpis, dešifrování)
 - veřejný klíč (ověření podpisu, šifrování)

Čas potřebný pro prohledání prostoru možných klíčů (sym. krypt.)

Délka klíče (bit)	Počet možných klíčů	Čas potřebný při 10 ⁶ dešifrování/μs	
32	$2^{32} = 4.3 \times 10^9$	2.15 ms	
56	$2^{56} = 7.2 \times 10^{16}$	10 hod	
128	$2^{128} = 3.4 \times 10^{38}$	5.4 x 10 ¹⁸ let	
168	$2^{168} = 3.7 \times 10^{50}$	$5.9 \times 10^{30} \text{let}$	

Čas potřebný k útoku hrubou silou (106 dešifrování/μs)

Čas potřebný k analýze NTLM hašů na anxurovi

$n \downarrow c \rightarrow$	26 znaků	36 (alfan.)	62 (a/A,alfan)	95 (kláves.)
5	15 s	1,3 min	19,9 min	2,8 h
6	6,69 min	47,2 min	20,5 h	11 d
7	3 h	1,2 d	55 d	3,1 r
8	3,26 d	44 d	9,6 r	290 r
9	84,8 d	4,5 r	590 r	28000 r
10	7,1 r	180 r	42000 r	3000000 r

Kryptografie – Kerckhoffsův princip

 Algoritmus – postup – je všem znám a všemi kontrolován jako správný

 Klíč – tajná informace – musí být chráněna před nepovolanými osobami

Doporučené délky klíčů

- Ošemetný, příliš zjednodušující, ukazatel
- Závisí na
 - kvalitě algoritmu,
 - výpočetních kapacitách dostupných útočníkovi,
 - a řadě dalších faktorů (dostupný kryptografický materiál...);
 - a většinou není nejslabším místem. ☺
- Asi 90b pro sym. alg. a všechny (?) útočníky
- Asi 1200b pro RSA (nejčastěji používaný asym. alg.) a (snad) všechny útočníky

Proprietární algoritmy

- V extrémních situacích, kdy lze alespoň částečně věřit v možnost utajení algoritmu
 - IMHO, velmi diskutabilní závislost
- Ani tak by neměla bezpečnost (ve smyslu robustnosti vůči útoku hroubou silou) klíče být rozhodně zanedbána
 - Často využití principů (znalostí o) veřejně známých šifer
- Základní dilema otevřená/veřejná verifikace vs. přístupnost znalostí o (ne)kvalitě

Obvyklá označení činitelů

Zjednodušený model konvenčního šifrování

Převzato z: Network and Internetwork Security (Stallings)

Zjednodušený model šifrování veřejným klíčem

Převzato z: Network and Internetwork Security (Stallings)

Šifrování veřejným klíčem

Bob

Dešifrování zprávy od Alice

Realita – Hybridní kryptosystémy

Problémy

- Asymetrické algoritmy jsou pomalejší (pro srovnatelnou úroveň bezpečnosti)
- Symetrické alg. obtížněji využitelné v situacích vyžadujících autentizaci (většina situací ☺)
- Řešení vzájemná kombinace
 - Šifrování: RNG klíče pro symetrickou šifru, tou+tím zašifruji data, klíč pak veřejným klíčem adresáta
 - Podpis: vytvořím haš dat, až ten podepíši svým soukromým klíčem

Sen Velkého bratra

- Mnohé vlády chtějí:
 - 1) Mít jistotu, že používání kryptografických systémů nesníží schopnost dopadnout nežádoucí osoby a skupiny osob (*kdo je nežádoucí???*).

 DEPOZITOVAT POUŽÍVANÉ KLÍČE (*ale i 2*)
 - 2) Zajistit, aby používání kryptografických systémů nepůsobilo proti národním zájmům dané země. (*co jsou a kdo definuje národní zájmy?*) KONTROLOVAT EXPORT KRYPTOGRAFIE (*ale i 1*)
- Přímý dopad na informační soukromí
 - Firmy mohou v určité míře přemístit centrum svých aktivit, ale co občan?

Depozitování klíčů (key escrow)

• Zástěrka(?): boj proti zločinu na vlastním území

• Aspekty:

- sledování komunikace mezi "problémovými skupinami" (extrémisté,
 přátelé a rodiny známých zločinců, političtí oponenti...)
- dle studií britské vlády je jen 2-5 % případů neoprávněného použití informací držených vládou způsobeno "zvenčí" (hackery atd.)
- Problém: fyzické sledování i odposlech telefonů v analogových sítích má technické a finanční limity (vládně-společenský konsensus), filtrování digitální komunikace je relativně jednoduché a levné

Exportní kontroly

•Zástěrka(?): boj proti mezinárodním mafiím, zemím podporujícím terorismus atd.

Problémy

- aktivity zpravodajských služeb v ISP (především US),
- vybudování satelitních sítí bez dostatečné ochrany je "výhrou" na dalších
 15-20 let pro vlády, které mají informační výhody

Aspekty

- pomoc vlád firmám průmyslová špionáž (Francie, Japonsko, Rusko…)
- sledování komunikace v cizích zemích

Digitální podpis

 Jedna ze stěžejních aplikačních oblastí kryptografie

 Využití asymetrické kryptografie k podpisu zjištěno až po letech znalosti principů šifrování (dle dokumentů britské GCHQ)

Podpis v digitální formě - požadavky

- Musí zajistit autentizaci podepsaných dat.
 - Integrita
 - Prokázání původu dat
- Měl by podporovat ověření data/času podpisu.
- Měl by být ověřitelný i třetími stranami.
- Měl by podporovat mechanismy nepopiratelnosti

Co je digitální podpis?

Digitální podpis

- Nezajišťuje důvěrnost (šifrování)
- Nejznámější algoritmy RSA, DSA
- Obecně existují algoritmy
 - s obnovou zprávy (podpis "obsahuje" podepisovaná data),
 - bez obnovy zprávy (podpis "neobsahuje" data)
- Asym. algoritmy jsou relativně pomalé, proto se podepisuje haš – "otisk dat"
- Fáze postupu:
 - Vytvoření a registrace klíčů (certifikát)
 - Vlastní podepsání
 - Dokument \Rightarrow haš \Rightarrow podpis
 - Ověření podpisu

Asymetrická kryptografie

- Veřejné klíče
 - Šifrování
 - Ověření podpisu
- Soukromé klíče
 - Dešifrování
 - Tvorba podpisu
- Nemusí jít o stejný pár klíčů pro oba druhy operací!

K použití veřejných klíčů

- Digitální podpis spojí nerozdělitelně klíč s označením entity – certifikát veřejného klíče.
- Spojení veřejného klíče s označením entity je kritické
 - S kým komunikuji?

Digitální podpis děláme vždy přes přístroj!!!

Co je certifikát?

(X.509v3) Certifikát

```
Certificate ::= SEQUENCE
    tbsCertificate TBSCertificate,
    signatureAlgorithm AlgorithmIdentifier,
    signature
                     BIT STRING
TBSCertificate ::= SEQUENCE {
    version [0] Version DEFAULT v1,
    serialNumber
                        CertificateSerialNumber,
    signature
                        AlgorithmIdentifier,
    issuer
                        Name,
    validity
                        Validity, -- notBefore,
notAfter
    subject
                        Name,
    subjectPublicKeyInfo SubjectPublicKeyInfo, -- algID,
bits
    issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
    subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
    extensions [3] Extensions OPTIONAL
             -- sequence of: extnID, crit, value }
```

Certifikační autorita

- Potvrdí platnost veřejného klíče
 - Patří někomu? Komu?
 - Způsob prokázání identity.
 - Má daný člověk odpovídající soukromý klíč?
 - Je platnost klíče omezena?
 - Je poskytnuto ručení? Do jaké výše?

• • •

Certifikační politika

Certifikační autorita – struktura

- "Certifikační autorita" je rozdělena do více částí
 - Certifikační autorita vydává certifikáty na základě požadavků od (RA)
 - Registrační autorita ověřuje identitu žadatele,
 posílá požadavek na vystavení certifikátu
 - Revokační autorita požadavky vlastníků certifikátů na revokaci

Akreditované cert. autority v ČR

- První certifikační autorita a.s. (ICA) akreditovaná od 18.3.2002 – http://www.ica.cz/
- Česká pošta s.p. akreditovaná od 3.8.2005
 https://qca.postsignum.cz/
- eIdentity a.s. akreditovaná od září 2005 http://www.eidentity.cz/

Kontrola veřejného klíče

- *Konzervativně*: klíč/certifikát je **neplatný** pokud nejsme spolehlivě informováni o opaku.
 - Čerstvé potvrzení.
 - Potvrzení od důvěryhodné strany.
 - Použitelné v případě sporu.
- *Liberálně*: klíč/certifikát je **platný** pokud nejsme spolehlivě informováni o opaku.
 - Seznam revokovaných cerifikátů (CRL Certificate Revocation List).

Hierarchie certifikačních autorit

A co privátní klíč...

- ...když jej ztratíte?
- ...když jej někdo zjistí?
- ...když změníte zaměstnavatele?
- ...když změníte jméno?
- ...když zaměstnavatel chce dokumenty, které jste zašifrovali?
- ...když si vaše data žádá soud?
- ...když...

Aspekt času

- Návaznost operací, např.
 - Vytvoření podpisu
 - Vyzrazení tajného klíče
 - Ověření podpisu
- Spolehlivé označování času (časové razítko)
 - angl. timestamping
- Kritický parametr!!!

Problém nepopiratelnosti

- Podpis nepopiratelnost
- Nepopiratelnost původu
 - V zásadě stačí podpis
- Nepopiratelnost přijetí
 - Nerovnoprávnost vztahu odesilatel-příjemce
- Vhodné ověření/potvrzení (čas!) třetí stranou

Český zákon o e-podpisu (227/2000)

- e-podpis: "obyčejný" a zaručený, značka(!)
- Kvalifikovaný certifikát!
- Podepisuje fyzická osoba!
- Úřad pro dohled nad CA Min. inf. (dříve odbor ÚOOÚ)

Elektronický podpis

- Zákon o elektronickém podpisu č. 227/2000 Sb.
 - změněn zákony č. 226/2002, 517/2002, 440/2004,
 501/2004, 635/2004, 444/2005, 230/2006, 110/2007,
 124/2008, 190/2009, 223/2009, 227/2009, 281/2009,
 101/2010, 424/2010 a 167/2012 Sb.
- "Elektronickým podpisem se rozumí údaje v elektronické podobě, které jsou připojené k datové zprávě nebo jsou s ní logicky spojené a které slouží jako metoda k jednoznačnému ověření identity podepsané osoby ve vztahu k datové zprávě"
- Elektronickým podpisem tak může být i pouhé jméno napsané na klávesnici.

Zaručený elektronický podpis

- Je jednoznačně spojen s podepisující osobou (jen fyzická osoba!);
- umožňuje identifikaci podepisující osoby ve vztahu k datové zprávě;
- byl vytvořen a připojen k datové zprávě pomocí prostředků, které podepisující osoba může udržet pod svou výhradní kontrolou;
- je k datové zprávě, ke které se vztahuje, připojen takovým způsobem, že je možno zjistit jakoukoliv následnou změnu dat.

Elektronický podpis vs. značka

Elektronický podpis

- podepisující osoba je fyzická osoba, která je držitelem prostředku pro vytváření elektronických podpisů a jedná jménem svým nebo jménem jiné fyzické či právnické osoby;
- pro ověření podpisu je vydáván certifikát (veřejného klíče).

Elektronická značka

- označující osobou fyzická osoba, právnická osoba nebo organizační složka státu, která drží prostředek pro vytváření elektronických značek a označuje datovou zprávu elektronickou značkou;
- pro ověření podpisu je vydáván systémový certifikát (veřejného klíče).

Technologicky jde o totéž

Jen úroveň ochrany soukromého klíče je jiná.

Použití podpisu

 Autentizace dat (aplikace tajných dat – soukromého klíče)

- Autentizace počítačů/tokenů (schopnost aplikovat tajná data)
 - Výzva-odpověď
- Autentizace osob (schopnost spustit aplikaci tajných dat na počítači/tokenu).

Prosba – terminologie

- Nekryptujeme ani neenkryptujeme **šifrujeme**
- Nešifrujeme soukromým klíčem podepisujeme
- Nerozšifrováváme dešifrujeme
- Neautentikujeme, neautentifikujeme a neidentizujeme autentizujeme a identifikujeme

- Haš, hash oba OK
- Čistý text, vstupní text, otevřený text OK