February 7, 2019

Rings are commutative with unit element 1.

1) Let R be a commutative ring with 1. For an ideal I of R, we write V(I) for

$$\{[P] \in \operatorname{Spec}(R): P \supseteq I\}.$$

For $f \in R$, we write D(f) for $\operatorname{Spec}(R) - V(fR) = \{[P]: f \notin P\}$. Prove the following statements.

- i) $V(I) \cup V(J) = V(I \cap J)$.
- ii) $\cap_{\alpha} V(I_{\alpha}) = V(\sum_{\alpha} I_{\alpha}).$
- iii) $V(R) = \emptyset$ and $V(0) = \operatorname{Spec}(R)$.
- iv) The V(I) are the closed sets of a topology on Spec(R) (called the Zariski topology).
- v) The D(f) form a basis of open subsets (they are called the distinguished open subsets).
- 2) (Commutative algebra.) Let R be a ring and let I be an ideal of R. Let

$$\sqrt{I} = \{x \in R : \exists n \ge 1 \text{ such that } x^n \in I\}$$

be the radical of I. Prove: \sqrt{I} equals the intersection of the prime ideals containing I.

- 3) Let R be a ring and let [P] be the point of Spec R corresponding to a prime ideal P of R.
 - i) Show that the closure of $\{[P]\}$ is exactly V(P).
 - ii) Show that V(P) is irreducible (hence that [P] is a generic point of V(P)). Show also that [P] is the unique generic point of V(P).
- iii) Show that an irreducible closed subset Z of Spec R equals V(Q) for some prime ideal Q of R.
- 4) Let R be a ring and P a prime ideal of R. Write $X = \operatorname{Spec} R$. Show that R_P is the direct limit of the rings R_f , where the direct limit is taken over the f such that $[P] \in X_f$ (i.e., over the f not contained in P).

Remark: It is important here to understand how the direct limit is formed. When $X_f \supseteq X_g$, i.e., when $g \in \sqrt{(f)}$, we get a map $R_f \to R_g$, which is well-defined (check). When $X_f = X_g$, the two maps $R_f \to R_g$ and $R_g \to R_f$ are each other's inverse (check). When $X_f \supseteq X_g \supseteq X_h$, the obvious triangle is commutative (check). The direct limit is formed using the maps $R_f \to R_g$ whenever $X_f \supseteq X_g$ (for f and g not contained in P).

5) Read $\S4.1$ of Ben Moonen's syllabus "Introduction to Algebraic Geometry" before the lecture next week (the pages numbered 37–40, i.e., 42–45 of the pdf file). An alternative reference is $\S II.1$ of Hartshorne's Algebraic Geometry. The web address is:

https://www.math.ru.nl/~bmoonen/research.html#lecturenotes

February 14, 2019

Rings are commutative with unit element 1.

1) Let R be a ring and let $X = \operatorname{Spec} R$. Let $f \in R$. Suppose that

$$X_f = \bigcup_{\alpha \in S} X_{f_\alpha} .$$

Suppose we have $g_{\alpha} \in R_{f_{\alpha}}$ such that g_{α} and g_{β} have the same image in $R_{f_{\alpha}f_{\beta}}$. According to a lemma stated last time, there exists then a $g \in R_f$ with image g_{α} in $R_{f_{\alpha}}$ (for all α).

- i) Write out in detail why it suffices to prove this for a finite covering.
- ii) Write out the proof for a finite covering in detail.
- 2) Let R be a ring and let $X = \operatorname{Spec} R$. Let U be an open subset of X. Recall the definition of $\Gamma(U, \mathcal{O}_X)$. Show that it is a ring.
- 3) As above. Suppose that V is an open subset of U. Show that the coordinate projection

$$\prod_{[P]\in U} R_P \to \prod_{[P]\in V} R_P$$

induces a map from $\Gamma(U, \mathcal{O}_X)$ to $\Gamma(V, \mathcal{O}_X)$. We take this as the restriction map; \mathcal{O}_X is then a presheaf.

- 4) Show that \mathcal{O}_X is in fact a sheaf.
- 5*) Show that $\Gamma(X_f, \mathcal{O}_X) = R_f$ (i.e., the 'new' rule, for the sections on an arbitrary open, agrees with the 'old' rule for distinguished open subsets).
- 6) Show that the stalk of \mathcal{O}_X at [P] is R_P .

February 21, 2019

Rings are commutative with unit element 1.

- 1) Let R be a ring and let $X = \operatorname{Spec} R$. Let $P_1 \subseteq P_2$ be prime ideals of R and write $x_i = [P_i]$. Note that if an open U contains x_2 , then it contains x_1 . This gives a map $\mathcal{O}_{x_2} \to \mathcal{O}_{x_1}$ on the stalks. Show that this is the natural map $R_{P_2} \to R_{P_1}$.
- 2) As above. Let $f \in R$ and let $Y = \operatorname{Spec} R_f$. Show that the natural bijection between X_f and Y is a homeomorphism. Show that X_{fg} corresponds to Y_g and that X_f has no other distinguished open subsets.
- 3) Let X be a scheme.
 - i) Show that an irreducible closed subset Z of X has a unique generic point. Conclude that there exists a natural one-to-one correspondence between the irreducible closed subsets of X and the points of X.
- ii) Let x be a point of X. Prove that the irreducible closed subsets of X containing x correspond one-to-one to the prime ideals of $\mathcal{O}_{X,x}$.
- 4) (Hartshorne, Exc. II.2.12: Glueing schemes.) Let $\{X_i\}$ be a family of schemes (possibly infinite). For each $i \neq j$, suppose given an open subscheme $U_{ij} \subseteq X_i$. Suppose also given for each $i \neq j$ an isomorphism of schemes $\phi_{ij} : U_{ij} \to U_{ji}$ such that (1) for each $i, j, \phi_{ji} = \phi_{ij}^{-1}$, and (2) for each $i, j, k, \phi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$, and $\phi_{ik} = \phi_{jk} \circ \phi_{ij}$ on $U_{ij} \cap U_{ik}$. Then show that there is a scheme X, together with morphisms $\psi_i : X_i \to X$ for each i, such that (1) ψ_i is an isomorphism of X_i onto an open subscheme of X, (2) the $\psi_i(X_i)$ cover X, (3) $\psi_i(U_{ij}) = \psi_i(X_i) \cap \psi_j(X_j)$ and (4) $\psi_i = \psi_j \circ \phi_{ij}$ on U_{ij} . One says X is obtained by glueing the schemes X_i along the isomorphisms ϕ_{ij} .
- 5) As defined in the lectures, a scheme X is reduced if for all open sets $U \subseteq X$ there are no (nonzero) nilpotent elements in $\Gamma(U, \mathcal{O}_X)$. Show that X is reduced if and only if all the stalks $\mathcal{O}_{X,x}$ have no nilpotent elements. Show also that it is sufficient that X has a covering by open affines U_i such that $\Gamma(U_i, \mathcal{O}_X)$ has no nilpotents.

March 7, 2019

- 1) Show that the closed subschemes of \mathbb{P}_k^n correspond bijectively with the homogeneous ideals $A \subseteq k[X_0, \ldots, X_n]$ with the property that $f \in A$ if $X_i \cdot f \in A$ for all i (for $f \in k[X_0, \ldots, X_n]$).
- 2) Let X be a scheme. Denote by $X \times X$ the fibre product over Spec \mathbb{Z} . Let $Z = \{y \in X \times X \mid p_1(y) \equiv p_2(y)\}$. Show that Z equals $\Delta(X)$, where $\Delta: X \to X \times X$ is the diagonal. Conclude that $\Delta(X)$ is closed if and only if X is separated.
- 3) Let X and K be schemes and let f and g be morphisms from K to X (i.e., K-valued points of X). Assume that K is reduced. Show that f = g if and only if $f(x) \equiv g(x)$ for all $x \in K$.
- 4) Let T and U be open affine subsets of a scheme Y. Show that $T \cap U$ is the union of open sets that are distinguished both in T and in U.

March 14, 2019

- 1) Show that a fibre product of separated schemes is separated.
- 2) Let X, Y, and Z be separated schemes. Assume that $f: X \to Y$ is surjective, that $g: Y \to Z$ is of finite type, and that $g \circ f$ is proper. Show that g is proper.
- 3) Assume that X, Y, S, X_1, Y_1 , and S_1 are separated schemes. We are given morphisms $X \to S, Y \to S, X_1 \to S_1, Y_1 \to S_1, X_1 \to X, Y_1 \to Y$, and $S_1 \to S$ that form a commutative diagram. Assume also that $X_1 \to X$ and $Y_1 \to Y$ are closed immersions. Show that the induced morphism from $X_1 \times_{S_1} Y_1$ to $X \times_S Y$ is a closed immersion. (Hint: use that S_1 is separated.)

March 21, 2019

- 1) As mentioned, when $\{F_{\alpha}\}$ is a collection of \mathcal{O}_X -modules, then $\oplus F_{\alpha}$ is the sheaf associated to the presheaf $U \mapsto \oplus \Gamma(U, F_{\alpha})$.
- Let $U = \operatorname{Spec} A$ be an affine scheme and let M_{α} be A-modules. Show that $\bigoplus \widetilde{M_{\alpha}} \cong \bigoplus \widetilde{M_{\alpha}}$.
- 2) Let X and Y be noetherian schemes and let $f: X \to Y$ be an affine morphism. Show that f is finite if and only if $f_*(\mathcal{O}_X)$ is coherent.
- 3) Can you find a scheme X and an $f \in \Gamma(X, \mathcal{O}_X)$ such that $\Gamma(X, \mathcal{O}_X)_f$ is not isomorphic to $\Gamma(X_f, \mathcal{O}_{X_f})$? Can the natural map (which is an isomorphism when X is a finite union of open affines U_i such that $U_i \cap U_j$ is quasicompact) fail to be injective, resp. surjective?

Algebraic Geometry II: Exercises for Lecture 8 – 28 March 2019

In the following X denotes a scheme with structure sheaf \mathcal{O}_X . [RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry. Exercises 1–7 are immediately related to material covered in the lecture (further verifications, examples, non-examples etc.). Exercises 8–9 are optional (at least for now) and are somewhat harder and more elaborate.

Exercise 1. Verify that the sheaf associated to a *presheaf* of \mathcal{O}_X -modules is naturally an \mathcal{O}_X -module. Examples: let \mathcal{F}_α be a collection of \mathcal{O}_X -modules. We let $\oplus_\alpha \mathcal{F}_\alpha$ denote the sheaf associated to the presheaf that sends $U \subset X$ open to the direct sum $\oplus_\alpha \mathcal{F}_\alpha(U)$. Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. We let $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ (usually abbreviated to just $\mathcal{F} \otimes \mathcal{G}$) denote the sheaf associated to the presheaf that sends $U \subset X$ open to the tensor product $\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$. Then both $\oplus_\alpha \mathcal{F}$ and $\mathcal{F} \otimes \mathcal{G}$ are naturally \mathcal{O}_X -modules. We will see in the exercises below that the two presheaves mentioned here are in general not sheaves.

Exercise 2. Let \mathcal{F} be an \mathcal{O}_X -module. Verify that for all $V \subset U$ opens in X, the restriction map $\mathcal{F}(U) \to \mathcal{F}(V)$ induces a natural $\mathcal{O}_X(V)$ -linear map $\mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(V) \to \mathcal{F}(V)$.

Exercise 3. The following generalizes Proposition 1 of [RdBk], §III.1. Let $X = \operatorname{Spec} R$ be an affine scheme, and let \mathcal{F} be an \mathcal{O}_X -module. Let M be an R-module. Show that the map $\Gamma \colon \operatorname{Hom}_{\mathcal{O}_X}(\widetilde{M}, \mathcal{F}) \to \operatorname{Hom}_R(M, \Gamma(X, \mathcal{F}))$ is a bijection. Hint: try to construct an inverse. Use Exercise 2 to show that for $\varphi \colon M \to \Gamma(X, \mathcal{F})$ an R-module homomorphism and for $f \in \Gamma(X, \mathcal{O}_X) = R$ the map $M \to \Gamma(X, \mathcal{F}) \to \Gamma(X_f, \mathcal{F})$ factors via M_f . Thus φ yields naturally a morphism of R_f -modules $M_f \to \Gamma(X_f, \mathcal{F})$.

Exercise 4. Let $X = \operatorname{Spec} R$ be an affine scheme, and let M_{α} be a collection of R-modules. In the exercises of Lecture 7 you have already exhibited a canonical isomorphism of \mathcal{O}_X -modules

$$\widetilde{\oplus M_{\alpha}} \xrightarrow{\sim} \oplus \widetilde{M_{\alpha}}$$
.

- (i) Can you also get this canonical isomorphism by applying Exercise 3?
- (ii) Show that by taking global sections, we obtain an isomorphism

$$\oplus \Gamma(X, \widetilde{M}_{\alpha}) \xrightarrow{\sim} \Gamma(X, \oplus \widetilde{M}_{\alpha})$$

of R-modules.

(iii) Give an example of a scheme X and a collection \mathcal{F}_{α} of quasi-coherent \mathcal{O}_X -modules such that the natural map

$$\bigoplus_{\alpha} \Gamma(X, \mathcal{F}_{\alpha}) \to \Gamma(X, \bigoplus_{\alpha} \mathcal{F}_{\alpha})$$

is *not* an isomorphism. In particular, the presheaf that sends $U \subset X$ open to the direct sum $\bigoplus_{\alpha} \Gamma(U, \mathcal{F}_{\alpha})$ is not a sheaf, and your X is not affine.

Exercise 5. Let $X = \operatorname{Spec} R$ and let M, N be R-modules. Exhibit a natural isomorphism of \mathcal{O}_X -modules $\widetilde{M \otimes_R N} \overset{\sim}{\longrightarrow} \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$. Hint: apply Exercise 3.

Exercise 6. Let R be a discrete valuation ring with fraction field K, and let $X = \operatorname{Spec} R$. Show that to give an \mathcal{O}_X -module \mathcal{F} is equivalent to giving an R-module M, a K-vector space L, and a K-linear homomorphism $\rho \colon M \otimes_R K \to L$. Show that the \mathcal{O}_X -module \mathcal{F} is quasi-coherent if and only if the map $\rho \colon M \otimes_R K \to L$ is an isomorphism. Give examples of \mathcal{O}_X -modules on X that are not quasi-coherent. See [RdBk], §III.1 around Example A for details.

Exercise 7. (The sheaf $\mathcal{O}_{\mathbb{P}^n}(-1)$) In class we have studied the sheaf $\mathcal{O}_{\mathbb{P}^n}(1)$ and found that it has a non-zero group of global sections. A variant of the construction of $\mathcal{O}_{\mathbb{P}^n}(1)$ is the construction of $\mathcal{O}_{\mathbb{P}^n}(-1)$. We continue with the notation as introduced in class. For each $i=0,\ldots,n$ we define \mathcal{G}_i to be the \mathcal{O}_{U_i} -module determined by the R_i -submodule of S_i generated by X_i^{-1} . In particular \mathcal{G}_i is free of rank 1 on U_i . On overlaps $U_i \cap U_j$ with $i \neq j$ one fixes an isomorphism $\chi_{ij} : \mathcal{G}_i|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{G}_j|_{U_i \cap U_j}$ by sending the generator X_i^{-1} of \mathcal{G}_i to $X_{ij}^{-1} \cdot X_j^{-1}$. By "glueing sheaves", cf. [HAG], Exercise II.1.22, the sheaves \mathcal{G}_i glue together into a sheaf on \mathbb{P}^n . It is this sheaf that we would like to call $\mathcal{O}_{\mathbb{P}^n}(-1)$, or $\mathcal{O}(-1)$ for short. Assume that $n \in \mathbb{Z}_{>0}$.

- (i) Show that $\Gamma(\mathbb{P}^n, \mathcal{O}(-1)) = \{0\}$. Hint: suppose, to the contrary, that $f \in \Gamma(\mathbb{P}^n, \mathcal{O}(-1))$ is non-zero. We consider its restrictions to U_i and U_j for $i \neq j$. Note that $f|_{U_i}$ can be written as $f_i \cdot X_i^{-1}$ for some non-zero $f_i \in R_i$, and $f|_{U_j}$ as $f_j \cdot X_j^{-1}$ for some non-zero $f_j \in R_j$. On the non-empty overlap $U_{ij} = U_i \cap U_j$ this leads to the relation $f_i X_i^{-1} = f_j X_j^{-1}$ in the fraction field of S and hence $f_i f_j^{-1} = X_i X_j^{-1} = X_{ij}$. However it is impossible to get this relation for $f_i \in R_i$, $f_j \in R_j$. Verify this. (It would have been different if the equation to be solved were $f_i f_j^{-1} = X_i^{-1} X_j = X_{ij}^{-1}$; but this corresponds to considering $\mathcal{O}(1)$ instead which we know has non-zero global sections!)
- (ii) Show that $\mathcal{O}(-1) \otimes \mathcal{O}(1) \cong \mathcal{O}_{\mathbb{P}^n}$.
- (iii) Conclude that the natural map

$$\Gamma(\mathbb{P}^n, \mathcal{O}(-1)) \otimes_{\Gamma(\mathbb{P}^n, \mathcal{O}_X)} \Gamma(\mathbb{P}^n, \mathcal{O}(1)) \to \Gamma(\mathbb{P}^n, \mathcal{O}(-1) \otimes \mathcal{O}(1))$$

is not an isomorphism. In particular, the presheaf that sends $U \subset \mathbb{P}^n$ open to the tensor product $\mathcal{O}(-1)(U) \otimes_{\mathcal{O}_{\mathbb{P}^n}(U)} \mathcal{O}(1)(U)$ is not a sheaf.

Exercise 8. * (Sheaf hom) Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules. One denotes by $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ the presheaf that associates to every $U \subset X$ open the abelian group

$$\mathcal{H}om(\mathcal{F},\mathcal{G})(U) = \operatorname{Hom}_{\mathcal{O}_{X|U}}(\mathcal{F}|_{U},\mathcal{G}|_{U}).$$

- (i) Show that $\mathcal{H}om(\mathcal{F},\mathcal{G})$ is in fact a sheaf.
- (ii) Verify that the sheaf $\mathcal{H}om(\mathcal{F},\mathcal{G})$ has a natural structure of \mathcal{O}_X -module.

One may be tempted to alternatively define a hom-sheaf from $\mathcal F$ to $\mathcal G$ by considering instead the association

$$U \mapsto \operatorname{Hom}_{\mathcal{O}_X(U)-\operatorname{Mod}}(\mathcal{F}(U),\mathcal{G}(U))$$
.

Note that the right hand side is naturally an $\mathcal{O}_X(U)$ -module.

- (iii) Explain why this is in general not a good idea.
- (iv) Show however that when \mathcal{F}, \mathcal{G} are quasi-coherent \mathcal{O}_X -modules, for all open affine $U \subset X$ the natural map

$$\operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U) \to \operatorname{Hom}_{\mathcal{O}_X(U)-\operatorname{Mod}}(\mathcal{F}(U),\mathcal{G}(U))$$

is an isomorphism of $\mathcal{O}_X(U)$ -modules.

Exercise 9. * Let R be a ring, $S \subset R$ be a multiplicative subset, M and N modules over R.

(i) Show that there exists a natural homomorphism

$$S^{-1}\operatorname{Hom}_R(M,N) \to \operatorname{Hom}_{S^{-1}R}(S^{-1}M,S^{-1}N)$$

of $S^{-1}R$ -modules.

Following A. Altman, S. Kleiman, "A term of commutative algebra", Proposition 12.25 we have the following result: assume M is finitely presented. Then the above homomorphism is an isomorphism. You may use this in the following.

(ii) Let $X = \operatorname{Spec} R$ be an affine scheme, let M, N be R-modules. Show that one has a canonical map

$$(*) \qquad \widetilde{\operatorname{Hom}_R(M,N)} \to \mathcal{H}om(\widetilde{M},\widetilde{N})$$

of \mathcal{O}_X -modules. Hint: let X_f be a distinguished open of X and construct a morphism

$$\widetilde{\operatorname{Hom}}_R(M,N)(X_f) \to \operatorname{\mathcal{H}\mathit{om}}(\widetilde{M},\widetilde{N})(X_f)$$
.

The left hand side is $\operatorname{Hom}_R(M,N)_f$, the right hand side is $\operatorname{Hom}_{R_f}(M_f,N_f)$.

- (iii) Show that the canonical map (*) is an isomorphism when M is finitely presented.
- (iv) Assume that $X = \operatorname{Spec} \mathbb{Z}$, $M = \mathbb{Z}[1/2]$, $N = \mathbb{Z}$. Show that for these choices of X, M, N the canonical map (*) is not an isomorphism.

Algebraic Geometry II: Exercises for Lecture 9 – 4 April 2019

[RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry.

Exercise 1. Let $f: Y \to X$ be a map of topological spaces, and let \mathcal{F} be a sheaf on X. Whenever $f(V) \subset U$ for opens $V \subset Y$ and $U \subset X$ we have a natural map $\mathcal{F}(U) \to (f^{-1}\mathcal{F})(V)$. Verify this.

- **Exercise 2.** A quick reminder of some commutative algebra: let $f: R \to S$ be a ring morphism, and M an R-module. Let $\mathfrak{q} \in \operatorname{Spec} S$. Show that $(M \otimes_R S)_{\mathfrak{q}} = M \otimes_R S_{\mathfrak{q}}$. Let $\mathfrak{p} \in \operatorname{Spec} R$ and let N be an $R_{\mathfrak{p}}$ -module. Show that $M \otimes_R N = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} N$. Conclude that $(M \otimes_R S)_{\mathfrak{q}} = M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} S_{\mathfrak{q}}$.
- **Exercise 3.** (i) Let $\phi: R \to S$ be a ring homomorphism, let M be an R-module, and let N be an S-module. We write $\phi^*M := M \otimes_R S$, viewed as an S-module. We write ϕ_*N for the abelian group N, viewed as an R-module via ϕ . Show that there is a natural bijection $\operatorname{Hom}_S(\phi^*M, N) \to \operatorname{Hom}_R(M, \phi_*N)$.
 - (ii) Translate the above commutative algebra result into the following result about sheaves of modules on schemes. Let $f: Y \to X$ be a morphism of schemes. Let \mathcal{F} be an \mathcal{O}_Y -module, and let \mathcal{G} be an \mathcal{O}_X -module. Show that there is a natural bijection $\operatorname{Hom}_{\mathcal{O}_Y}(f^*\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, f_*\mathcal{F})$. In fact, f_* and f^* are adjoint functors.

Exercise 4. Verify that the pullback of a quasi-coherent module is quasicoherent. It may be useful to note the following: let $f: Y \to X$ and $g: Z \to Y$ be morphisms of schemes, and let \mathcal{F} be an \mathcal{O}_X -module. Then $(f \circ g)^*\mathcal{F} = g^*f^*\mathcal{F}$ canonically. Verify that the pullback of a locally free sheaf of rank n is a locally free sheaf of rank n.

Exercise 5. (Projection formula) Let $f: Y \to X$ be a morphism of schemes, let \mathcal{F} be an \mathcal{O}_Y -module, and let \mathcal{G} be an \mathcal{O}_X -module. Recall that f_* and f^* are adjoint functors (cf. Exercise 3).

- (i) Show that there exists a natural morphism of \mathcal{O}_Y -modules $f^*f_*\mathcal{F} \to \mathcal{F}$.
- (ii) Show that there exists a natural morphism of \mathcal{O}_Y -modules $f_*\mathcal{F}\otimes\mathcal{G}\to f_*(\mathcal{F}\otimes f^*\mathcal{G})$.
- (iii) Assume that \mathcal{G} is locally free. Show that the morphism of (ii) is an isomorphism.

Exercise 6. Compute Pic X for $X = \operatorname{Spec} \mathbb{Z}$ and for $X = \mathbb{A}^1_k$ where k is a field.

Exercise 7. Describe pullback of invertible sheaves in terms of cocycles.

Exercise 8. Let X be a topological space and let \mathcal{F} be a sheaf on X. The *support* of \mathcal{F} is the subset Supp $\mathcal{F} = \{x \in X : \mathcal{F}_x \neq (0)\}$ of X.

(i) Prove the following statement: let X be a scheme, and let \mathcal{F} be an \mathcal{O}_X -module, such that there exists an open covering $\{U_i\}_{i\in I}$ of X with affine open subschemes with for all $i\in I$ an isomorphism $\mathcal{F}|_{U_i}\cong \widetilde{M}_i$ with M_i a finitely generated $\Gamma(U_i,\mathcal{O}_X|_{U_i})$ -module. (For example, a coherent sheaf on a noetherian scheme X). Then $\operatorname{Supp} \mathcal{F}$ is a closed subset of X.

Hint: let $x \in X$ with $\mathcal{F}_x = (0)$. Show there exists an open neighborhood U of x such that $\mathcal{F}|_U = (0)$. It follows that the complement of $\operatorname{Supp} \mathcal{F}$ is open. Some more background: applying this to $X = \operatorname{Spec} R$ and M a finitely generated R-module we recover the statement that $\operatorname{Supp} M = \{\mathfrak{p} \in X : M_{\mathfrak{p}} \neq (0)\}$ is a closed subset of X. See Exercise 3.19 of Atiyah-MacDonald, "Introduction to commutative algebra".

(ii) Use the result just found to prove the following statement. Let X be a scheme, let \mathcal{L} be an invertible sheaf on X, and let s be a global section of \mathcal{L} . Write X_s for the set of $x \in X$ such that the germ s_x of s at x generates \mathcal{L}_x as an $\mathcal{O}_{X,x}$ -module. Then X_s is an open subset of X.

Hint: consider the quotient sheaf $\mathcal{F} = \mathcal{L}/(\mathcal{O}_X \cdot s)$. The support of \mathcal{F} is the complement of X_s . Warning: it is not in general true that the support of a sheaf on a topological space is closed.

Exercise 9. Let $f: Y \to X$ be a morphism of schemes. Let \mathcal{L} be an invertible sheaf on X, and let $\{s_i\}_{i\in I}$ be a collection of global sections of \mathcal{L} that generates \mathcal{L} . Show that $\{f^*s_i\}_{i\in I}$ is a collection of global sections of $f^*\mathcal{L}$ that generates $f^*\mathcal{L}$.

Exercise 10. Let S be a scheme and let \mathbb{P}^n_S denote projective n-space over S. Let X be a scheme. Show that to give a morphism $X \to \mathbb{P}^n_S$ is to give a morphism $X \to S$ and an (n+1)-decorated invertible sheaf on X.

Exercise 11. Work through [HAG], Chapter II, Example 7.1.1 and generalize this to show that Aut $\mathbb{P}_k^n = \operatorname{PGL}_{n+1}(k)$ for any field k.

Exercise 12. Let X be a scheme. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open covering of X. Let $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ denote the product $\prod_{(i,j)\in I\times I}\mathcal{O}_X^{\times}(U_i\cap U_j)$. Note that $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a multiplicative abelian group with multiplication defined coordinatewise. Let $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$ denote the subset of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ consisting of tuples $(u_{ij})_{i,j}$ such that (1) for each $i \in I$ we have $u_{ii} = 1$, (2) for each $i, j \in I$ we have $u_{ij} = u_{ji}^{-1}$, (3) on each triple intersection $U_i \cap U_j \cap U_k$ we have the 1-cocycle condition $u_{ji} \cdot u_{kj} \cdot u_{ik} = 1$. Verify that $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a subgroup of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$. We call an element $(u_{ij})_{i,j}$ of $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ a 1-coboundary if there exist $f_i \in \mathcal{O}_X^{\times}(U_i)$ for all $i \in I$ such that for all $i, j \in I$ we have $u_{ij} = f_i/f_j$ on $\mathcal{O}_X^{\times}(U_i \cap U_j)$. The set of 1-coboundaries in $C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is denoted by $B^1(\mathcal{U}, \mathcal{O}_X^{\times})$. Verify that $B^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a subgroup of $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})$. Assume that $(u_{ij})_{i,j} \in C^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is a 1-coboundary. Let \mathcal{L} denote the invertible sheaf determined by the 1-cocycle $(u_{ij})_{i,j}$. Show that \mathcal{L} is a trivial invertible sheaf, that is, there exists an isomorphism $\psi \colon \mathcal{L} \xrightarrow{\sim} \mathcal{O}_X$. On the other hand, assume an invertible sheaf \mathcal{L} is given which is trivial. Show that any 1-cocycle determined by \mathcal{L} on \mathcal{U} is a 1-coboundary.

Exercise 13. We continue with the notation of the previous exercise. The quotient group $Z^1(\mathcal{U}, \mathcal{O}_X^{\times})/B^1(\mathcal{U}, \mathcal{O}_X^{\times})$ is traditionally denoted by $\check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times})$. A refinement of \mathcal{U} is by definition a covering $\mathcal{V} = \{V_j\}_{j \in J}$ together with a map $\lambda \colon J \to I$ of sets, such that for each $j \in J$ we have $V_j \subset U_{\lambda(j)}$. Assume that \mathcal{V} is a refinement of \mathcal{U} with map $\lambda \colon J \to I$. Describe a natural group homomorphism $\lambda^1 \colon \check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times}) \to \check{H}^1(\mathcal{V}, \mathcal{O}_X^{\times})$ induced by λ . The open coverings of X form a partially ordered set under refinement, and any pair of open coverings has a common refinement (verify this). Hence it makes sense to take the filtered colimit (ie, direct limit) $\varinjlim \check{H}^1(\mathcal{U}, \mathcal{O}_X^{\times})$ over all open coverings \mathcal{U} of X. The result is denoted by $\check{H}^1(X, \mathcal{O}_X^{\times})$. Exhibit a group isomorphism $\mathrm{Pic}\,X \xrightarrow{\sim} \check{H}^1(X, \mathcal{O}_X^{\times})$.

Exercise 14. Let k be an algebraically closed field. In Algebraic Geometry 1 (Exercises 3.6.4, 3.6.5 and 6.6.1 of the syllabus), the Segre map $\Psi \colon \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^3_k$ (where \mathbb{P}^n_k now denotes projective space as a variety over k) was given as the map of point sets

$$((a_0:a_1),(b_0:b_1)) \mapsto (a_0b_0:a_0b_1:a_1b_0:a_1b_1).$$

Note that a morphism of schemes is hardly ever given as a map of the underlying point sets. Describe the Segre map $\Psi \colon \mathbb{P}^1_k \times \mathbb{P}^1_k \to \mathbb{P}^3_k$ as a morphism of schemes, using the interpretation of the functor of points of \mathbb{P}^n_k , and Yoneda's lemma. Bonus exercise: show that the Segre map (viewed as a morphism of schemes) is a closed immersion. For assistance, see for example The Stacks Project, TAG 01WD.

Exercise 15. Let U_0, \ldots, U_n denote the standard affine opens of \mathbb{P}^n . Consider the global sections X_0, \ldots, X_n of $\mathcal{O}(1)$. The aim of this exercise is to show that $U_i = \mathbb{P}^n_{X_i}$. The inclusion $U_i \subset \mathbb{P}^n_{X_i}$ is clear. Now take $x \in \mathbb{P}^n$ with $x \notin U_i$. Our task is to show that $X_i \in \mathfrak{m}_{X,x}\mathcal{O}(1)_x$. Take k such that $x \in U_k$. Then X_k generates $\mathcal{O}(1)_x$, and $X_i = X_{ik} \cdot X_k$ in $\mathcal{O}(1)_x$.

- (i) Recall that $U_k = \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots]$. Then $U_i \cap U_k = \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots, X_{ik}^{-1}] = (U_k)_{X_{ik}}$. Thus $U_i \cap U_k = \{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[\dots, X_{jk}, \dots] : X_{ik} \notin \mathfrak{p}\}$.
- (ii) Assume that $x \in U_k$ corresponds to the prime ideal \mathfrak{q} of $\mathbb{Z}[\ldots, X_{jk}, \ldots]$. Show that $X_{ik} \in \mathfrak{q}$.
- (iii) Show that $X_{ik} \in \mathfrak{m}_{X,x}$.
- (iv) Deduce that $X_i \in \mathfrak{m}_{X,x}\mathcal{O}(1)_x$.

Algebraic Geometry II: Exercises for Lecture 10 – 11 April 2019

Let A be a ring and consider $S = A[X_0, ..., X_r]$ with its standard structure of graded ring. For each i = 0, ..., r let $S_i = A[X_0, ..., X_r, X_i^{-1}]$ and let $R_i = A[..., X_{ji}, ...]_{j \neq i}$ as usual.

Exercise 1. Describe the hom-sets in the category of graded S-modules, and verify that the assignment $M \mapsto \widetilde{M}$ gives a functor from the category of graded S-modules to the category of (quasi-coherent) \mathcal{O}_X -modules. Verify that the category of graded S-modules has kernels and cokernels, and show that the functor $M \mapsto \widetilde{M}$ is exact, that is, maps exact sequences into exact sequences.

Exercise 2. We view S_i as an R_i -algebra via the map $X_{ji} \mapsto X_j \cdot X_i^{-1}$. Verify that $S_i = R_i[X_i, X_i^{-1}]$, and that the natural \mathbb{Z} -gradings on both sides coincide.

Exercise 3. Write $\mathbb{G}_m = \operatorname{Spec} \mathbb{Z}[T, T^{-1}]$. Show that \mathbb{G}_m represents the functor $\operatorname{Sch}^{op} \to \operatorname{Sets}$ that associates to each scheme X the set of units $\Gamma(X, \mathcal{O}_X)^{\times}$ of $\Gamma(X, \mathcal{O}_X)$. Let $U_i = \operatorname{Spec} R_i$ and $V_i = \operatorname{Spec} S_i$. Show that there is a canonical isomorphism $V_i \xrightarrow{\sim} \mathbb{G}_m \times_{\operatorname{Spec} \mathbb{Z}} U_i$ such that the projection $V_i \to U_i$ coincides with the map induced by the ring morphism $R_i \to S_i$.

Exercise 4. Assume that A is a field. Let $f \in S_d$. Let $I \subset S$ denote the homogeneous ideal generated by f. Show that mutiplication by f defines an isomorphism of graded S-modules $S(-d) \stackrel{\sim}{\longrightarrow} I$. Write $X = \mathbb{P}_A^r$. Let Z denote the closed subscheme of X determined by the homogeneous ideal I. Let \mathcal{I} denote the sheaf of ideals of Z. Give an isomorphism $\mathcal{O}_X(-d) \stackrel{\sim}{\longrightarrow} \mathcal{I}$ of \mathcal{O}_X -modules.

Exercise 5. Let $X = \mathbb{P}_A^r$ and let $i: Z \to X$ be a closed immersion, so that we can view Z as a closed subscheme of X. Let $I \subset S$ denote the homogeneous ideal determined by Z. Write M = S/I. Verify that M has a natural structure of graded S-module, and that one has an exact sequence

$$0 \to I \to S \to M \to 0$$

of graded S-modules. Show that there exists a canonical isomorphism $\widetilde{M} \xrightarrow{\sim} i_* \mathcal{O}_Z$ of \mathcal{O}_X -modules.

Exercise 6. Let X be a scheme, let $n \in \mathbb{Z}_{\geq 0}$ and let \mathcal{F} a locally free sheaf of rank n on X. Show that tensoring with \mathcal{F} yields an exact functor from the category of \mathcal{O}_X -modules to itself.

Exercise 7. Let M be a graded S-module and $U_i = \operatorname{Spec} R_i$. Let $s \in \widetilde{M}(U_i)$. Write $X = \mathbb{P}_A^r$. Show that there exists $n_0 \in \mathbb{Z}$ such that for all integers $n \geq n_0$ the section $s \otimes X_i^n$ of $\widetilde{M} \otimes \mathcal{O}_X(n)$ over U_i extends as a global section of $\widetilde{M} \otimes \mathcal{O}_X(n)$.

Exercise 8. Let \mathcal{B} be a basis of open subsets on a topological space X. Let \mathcal{F}, \mathcal{G} be two sheaves on X. Suppose that for every $U \in \mathcal{B}$ a homomorphism $\alpha(U) \colon \mathcal{F}(U) \to \mathcal{G}(U)$ is given which is compatible with restrictions. Show that this collection of homomorphisms extends in a unique way to a homomorphism of sheaves $\alpha \colon \mathcal{F} \to \mathcal{G}$. Show that if for all $U \in \mathcal{B}$ the map $\alpha(U)$ is injective (resp. surjective), then α is injective (resp. surjective).

Algebraic Geometry II: Exercises for Lecture 11 – 18 April 2019

[RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry.

Exercise 1. Let $r \in \mathbb{Z}_{>0}$, let k be a field and write $X = \mathbb{P}_k^r$ and $S = k[X_0, \dots, X_r]$.

(a) Show that K(X) can be identified with the ring of degree zero elements in the fraction field of S. Note that the fraction field of S is the localization of S at the prime ideal (0).

For $f \in S$ homogeneous we denote by Z(f) the closed subscheme of X determined by the homogeneous ideal $I = (f) \subset S$ generated by f. For a prime divisor Y on X with Y = Z(f) we set $\deg Y = \deg f$ and for $D = \sum_i n_i Y_i$ a Weil divisor on X with $Y_i = Z(f_i)$ prime divisors we set $\deg D = \sum_i n_i \deg Y_i$. Let $H = Z(X_0)$. Following the proof of Proposition 11.1.7 of the AG1 lecture notes, show the following statements.

- (b) Let $f \in K(X)^{\times}$. Show that deg div f = 0.
- (c) Let $D \in \text{Div } X$. Assume that $\deg D = d$. Show that D dH is a principal divisor.
- (d) Show that the map deg: Div $X \to \mathbb{Z}$ induces an isomorphism $\operatorname{Cl} X \xrightarrow{\sim} \mathbb{Z}$.

Exercise 2. Let X be a noetherian, integral and locally factorial scheme. Let $D \in \text{Div } X$ and $g \in K(X)^{\times}$. Write D' = D + div g.

(a) Construct an isomorphism of \mathcal{O}_X -modules $\mathcal{O}_X(D) \xrightarrow{\sim} \mathcal{O}_X(D')$.

We define

$$H^0(X, \mathcal{O}_X(D)) = \{ f \in K(X)^{\times} : \operatorname{div}(f) + D \ge 0 \} \cup \{ 0 \}.$$

Now let k be a field, take $X = \mathbb{P}_k^r$ and set $H = Z(X_0)$ as above. Let $d \in \mathbb{Z}$.

- (b) Compute a basis of the k-vector space $H^0(X, \mathcal{O}_X(dH))$.
- (c) Assume that D dH = div g. Compute a basis of the k-vector space $H^0(X, \mathcal{O}_X(D))$.

Exercise 3. Let A be a ufd. Recall that an irreducible element of A generates a prime ideal of A. Show that every prime ideal of height one of A is principal.

Exercise 4. Let X be a noetherian topological space. Show that X is quasi-compact. Show that every subset of X, endowed with the induced topology, is a noetherian topological space.

Exercise 5. Let X be the spectrum of a noetherian ring. Show that the underlying topological space of X is noetherian. Show that the underlying topological space of a noetherian scheme is noetherian.

Exercise 6. Let X be an irreducible topological space, and let $\{U_i\}$ be an open covering of X. Let \mathcal{F} be a sheaf on X and assume that the restriction of \mathcal{F} to each open U_i is constant. Show that \mathcal{F} is constant.

Algebraic Geometry II: Exercises for Lecture 12 – 9 May 2019

[RdBk] refers to Mumford's Red Book, [HAG] to Hartshorne's Algebraic Geometry.

Exercise 1. Consider the following property (*) for an abelian group A:

for every inclusion $I \subset \mathbb{Z}$ of a subgroup I in \mathbb{Z} , and every homomorphism $f: I \to A$, there exists a homomorphism $g: \mathbb{Z} \to A$ such that $g|_{I} = f$.

- (i) Verify that saying that A satisfies (*) is equivalent to saying that A is divisible.
- (ii) Prove that if A satisfies (*), then A is injective.

Hint: let $M \subset N$ be an inclusion of abelian groups, and let $k \colon M \to A$ be a homomorphism. Consider the set of pairs (H, h) where H is a subgroup of N with $M \subset H$ and where $h \colon H \to A$ is a homomorphism with $h|_M = k$. This set has a natural partial ordering. Prove that a maximal element of this set is of the form (N, h), and verify that such a maximal element exists by Zorn's Lemma.

(iii) Conclude that an abelian group A is injective if and only if A is divisible.

Exercise 2. Prove that the category of abelian groups has enough injectives.

Hint: for each abelian group A there exists a free abelian group F and a surjective morphism $F \to A$. As F is a direct sum of copies of \mathbb{Z} , the group F can be embedded in a divisible group. Furthermore, a quotient of a divisible group is divisible.

Exercise 3. Show that an additive functor preserves finite direct sums and sends (0) to (0). Show that a right derived functor (in particular, sheaf cohomology) preserves finite direct sums.

Exercise 4. Let \mathcal{A} be an abelian category in which each short exact sequence splits (e.g., the category of vector spaces over a field k). Such an abelian category is called *semisimple*. Show that \mathcal{A} has enough injectives. (In fact, every object is injective!) Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor to an abelian category \mathcal{B} . Show that the right derived functors of F are zero in each positive degree.

Exercise 5. Let X be a topological space. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{Q} \to 0$ be an exact sequence in Sh(X). Prove the following statements.

- (i) Assume that \mathcal{F} is flasque. Then for all $U \subset X$ open, the map $\mathcal{G}(U) \to \mathcal{Q}(U)$ is surjective. Hint: fix $s \in \mathcal{Q}(U)$ and consider the collection S of all pairs (V,t) where $V \subset U$ is open and $t \in \mathcal{G}(V)$ maps to $s|_V$. Use Zorn's Lemma to show that this set has a maximal element. Use that \mathcal{F} is flasque to show that S is closed under taking finite unions.
- (ii) Assume that \mathcal{F} and \mathcal{G} are flasque. Then \mathcal{Q} is flasque.

Exercise 6. Show that a constant sheaf on an irreducible topological space is flasque. Give an example of a topological space X and a constant sheaf \mathcal{F} on X which is not flasque.

Exercise 7. Let K be a closed subset of X, and denote by $i: K \to X$ the inclusion of K in X. Let \mathcal{F} be a sheaf on K. Denote by $i_*\mathcal{F}$ the "extension of \mathcal{F} by zero" on X.

(i) Show that

$$(i_*\mathcal{F})_x = \left\{ \begin{array}{ll} \mathcal{F}_x & x \in K \\ 0 & x \notin K \end{array} \right.$$

- (ii) Show that the assignment $\mathcal{F} \mapsto i_*\mathcal{F}$ is an exact functor from $\mathrm{Sh}(K)$ to $\mathrm{Sh}(X)$, i.e. show that i_* sends exact sequences to exact sequences.
- (iii) Show that $\mathcal{F} \mapsto i_* \mathcal{F}$ sends flasque sheaves to flasque sheaves.
- (iv) Show that there are natural isomorphisms $H^i(X, i_*\mathcal{F}) \cong H^i(K, \mathcal{F})$ for all $i \geq 0$.

Exercise 8. Let k be a field. Let X be an integral scheme of finite type over k. In particular the underlying topological space of X is noetherian. We call X a curve over k if $\dim(X) = 1$. Assume that X is a curve over k, and let |X| denote the set of closed points of X. Let η denote the generic point of X.

(i) Show that we have a decomposition $X = |X| \sqcup \{\eta\}$ as point sets.

Consider the exact sequence

(*)
$$0 \to \mathcal{O}_X \to \mathcal{K}_X \to \mathcal{K}_X/\mathcal{O}_X \to 0$$

in $\mathcal{O}\text{-Mod}(X)$, where \mathcal{K}_X is the constant sheaf associated to the function field K(X) of X. For $x \in X$ we write $\mathcal{O}_{X,x}$ for the local ring of X at x. We view $\mathcal{O}_{X,x}$ as a subring of K(X).

(ii) Show that there is a natural isomorphism of sheaves

$$\mathcal{K}_X/\mathcal{O}_X \xrightarrow{\sim} \bigoplus_{x \in |X|} i_{x,*}(K(X)/\mathcal{O}_{X,x}),$$

where we consider $K(X)/\mathcal{O}_{X,x}$ as sheaf on $\{x\}$, and $i_x: \{x\} \to X$ is the inclusion map.

- (iii) Show that (*) is a flasque resolution of \mathcal{O}_X .
- (iv) Note that $H^0(X, \mathcal{O}_X)$ is naturally a sub-k-vector space of K(X). Show that

$$H^0(X, \mathcal{O}_X) = \bigcap_{x \in |X|} \mathcal{O}_{X,x} \,,$$

where the intersection is taken in K(X).

(v) Show that there exists a natural isomorphism of k-vector spaces

$$H^1(X, \mathcal{O}_X) \xrightarrow{\sim} \operatorname{Coker}(K(X) \to (\mathcal{K}_X/\mathcal{O}_X)(X))$$
.

- (vi) Show that $H^i(X, \mathcal{O}_X) = (0)$ for i > 1. Do not use Grothendieck's Vanishing Theorem.
- (vii) Assume from now on that $X = \mathbb{P}^1_k$. Show that X is a curve (!). Using an explicit description of |X| and the "method of partial fractions" one may prove from (v) that $H^1(X, \mathcal{O}_X) = (0)$. If you feel courageous, please try indeed to prove the vanishing of $H^1(X, \mathcal{O}_X)$ for $X = \mathbb{P}^1_k$.
- (viii) As in Exercise 2 of the third set of hand-in exercises, we let Z denote the disjoint union of the closed points (1:0) and (0:1) of \mathbb{P}^1_k , endowed with its reduced induced scheme structure. Show that we have a short exact sequence of sheaves

$$0 \to \mathcal{O}_X(-2) \to \mathcal{O}_X \to i_*\mathcal{O}_Z \to 0$$

on X. Write down the long exact sequence of cohomology for this short exact sequence. Show that $\dim_k H^1(X, \mathcal{O}_X(-2)) = 1$. (Or, which is virtually no more work, compute the dimensions of all H^i of all three sheaves appearing in the short exact sequence).