Lesson Objectives

- 1. The Basics of a Logarithm
- 2. The Two "Special" Types of Logarithms
- 3. Basic Properties of Logarithms
- 4. Simplify (or evaluate) logarithms
- 5. Convert Between Exponential and Logarithmic (and vice-versa)
- 6. Solve Basic Logarithmic and Exponential Equations

A. The **Basics** of a Logarithm

Suppose we have the exponential equation: $2^x = 8$

We know the answer is x = 3.

 $(2^3 = 8)$

Because our variable is in the exponent, we don't just use division to solve this equation:

NO, NO, NO!! Don't do this!! $\rightarrow \frac{2^x}{2} = \frac{8}{2}$

If you did, you would get x = 4. (incorrect) Division is used to undo multiplication, right?

But, we don't have multiplication; we have exponential.

BIG IDEA! To undo an exponential function, we need to use its inverse – the **logarithm**.

A logarithm is an exponent.

log = exponent

Since a logarithm is an exponent, then it must necessarily have a BASE.

Logarithmic form (definition):

 $\log_b x = y$ "Logarithm base b of x equals y"

 $log_{base}(value) = exponent$

Rewrite (or convert) to exponential form:

 $\log_h x = y$ means the same thing as $b^y = x$

 $base^{exponent} = value$

BIG IDEA! $\log_h x = y$ and $b^y = x$ are interchangeable in meaning.

B. The Two "Special" Types of Logarithms

- **1. Common** logarithm base is **10**, but not explicitly written. It is understood to be **10**. If you see a logarithm written **without** a base, then the base is **10**.
 - Examples: $\log x$ means $\log_{10}(x)$ $\log \frac{1}{100}$ means $\log_{10}\left(\frac{1}{100}\right)$
 - Calculator button is **LOG** (to the left of the **7** button)
 - This calculator button is **ONLY** for base **10**, the common logarithm!
- **2.** Natural logarithm base is e, but the logarithm is written as "ln" not " log_e ".
 - Examples: $\ln x$ means $\log_e(x)$ $\ln e^7$ means $\log_e(e^7)$
 - Calculator button is LN (to the left of the 4 button)
 - This calculator button is **ONLY** for base **e**, the natural logarithm!

C. Basic Properties of Logarithms

Recall **BIG IDEA!**: $\log_b x = y \iff b^y = x$ (these are interchangeable in meaning)

Here are some **Basic Logarithm Properties** to remember:

- 1. $\log_b 1 = 0$ because $b^0 = 1$ (Any base with zero power is 1)
- 2. $\log_b b = 1$ because $b^1 = b$ (Any base to the power of 1 is the base itself)
- 3. $\log_b b^x = x$ because $b^x = b^x$ (Logarithm base b will undo exponential base b) (Logarithm base b will undo "big" base b)
- 4. $b^{\log_b x} = x$ because $\log_b x = \log_b x$ (Exponential base b will undo log base b) $b^{\log_b x} = x$ ("Big" base b will undo logarithm base b)
- **EXAMPLE:** Simplify the expression. $\log_5 1$ [5.4-18]
 - $\log_5 1$ means $5^{what \ power?} = 1$ Property 1 Answer: $\log_5 1 = 0$
- **EXAMPLE:** Evaluate the logarithm. $\ln 1$ [5.4-15] This is a natural logarithm (ln) it has base e.

 $\ln 1$ or $\log_e 1$ means $e^{what\ power?} = 1$ Property 1 Answer: $\ln 1 = \log_e 1 = 0$

EXAMPLE: Evaluate the logarithm.

ln(*e*)

[5.4-14]

This is a natural logarithm (In) – it has base e.

Property 2 Answer: $ln(e) = log_e(e) = 1$ $\ln e$ or $\log_e e$ means $e^{what power?} = e$

• **EXAMPLE:** Simplify the expression, if possible. $\log 10^{7.4}$

[5.4.1]

Notice that the base of the logarithm is not written – it is a common logarithm, base 10.

 $\log 10^{7.4} = \log_{10}(10^{7.4})$

(Logarithm base 10 will undo exponential base 10)

 $\log_{10}(10^{7.4})$

Property 3

Answer: $\log 10^{7.4} = 7.4$

EXAMPLE: Simplify the expression, if possible. $\ln e^6$ This is a natural logarithm (ln) – it has base e.

 $\ln e^6 = \log_e e^6$

(Logarithm base e will undo exponential base e)

log 6

Property 3

Answer: $\ln e^6 = 6$

• **EXAMPLE:** Find the indicated value of the logarithmic function.

 $\log_{7}(7)^{4x}$

[5.4.23]

 $\log_7(7)^{4x}$

(Logarithm base 7 will undo exponential base 7)

 $\log_7(7)^{4x}$

Property 3

Answer: $\log_7(7)^{4x} = 4x$

EXAMPLE: Simplify.

 $4\log_4(5)$

[5.4.25]

 $4\log_4(5)$

(Exponential base 4 will undo logarithm base 4)

 $_{4}\log_{4}(5)$

Property 4

Answer: $4^{\log_4(5)} = 5$

D. Simplify (or Evaluate) Logarithms

EXAMPLE:

Find the logarithm $\log_5 \frac{1}{625}$

Put "= y" on the end of the expression:

 $\log_5 \frac{1}{625}$

Chant: "A logarithm

an exponent."

 $\log_5 \frac{1}{625}$ means: $5^{what \ power?} = \frac{1}{625}$ or $5^y = \frac{1}{625}$

Since the value $\frac{1}{625}$ is a fraction, the exponent must be **negative**.

625 is a power of 5, since $5 \cdot 5 \cdot 5 \cdot 5 = 625$, or $5^4 = 625$. So $\log_5 \frac{1}{625} = -4$

E. Convert between Exponential and Logarithmic (and vice-versa)

• **EXAMPLE:** Write in exponential form. $\log_{10} \frac{1}{1000000} = -6$ [*Lial 10.3.19]

Chant: "A logarithm is an exponent." $\log_{10} \frac{1}{1000000} = -6$

What is the base? 10 What is the exponent? -6 put them together: 10^{-6}

What is the "value"? $\frac{1}{1000000}$ In exponential form: $10^{-6} = \frac{1}{1000000}$

• **EXAMPLE:** Write in exponential form. $\log_{15} 1 = 0$ [*Lial 10.3-11]

Chant: "A logarithm is an exponent."

 $\log_{15} 1 = 0$

base = 15, exponent = 0, value = 1 In exponential form: $15^0 = 1$

• **EXAMPLE:** Write in logarithmic form. $7^3 = 343$ [*Lial 10.3-1]

 $7^3 = 343$ base = 7, exponent = 3, value = 343

Chant: "A logarithm is an exponent." Setup: $log_{(base)}(value) = exponent$

In logarithmic form: $\log_7 343 = 3$

• **EXAMPLE:** Write in logarithmic form. $10^{-5} = 0.00001$ [*Lial 10.3-4]

 $10^{-5} = 0.00001$ base = 10, exponent = -5, value = 0.00001

Chant: "A logarithm is an exponent." Setup: $log_{(base)}(value) = exponent$

In logarithmic form: $\log_{10} 0.00001 = -5$ or $\log 0.00001 = -5$

F. Solve Basic Logarithmic and Exponential Equations

- Solve Basic Logarithmic Equations ISOLATE and convert to EXPONENTIAL
- **EXAMPLE:** Solve the equation.

$$9 \log(3x) = 27$$

[5.4.95]

$$\frac{9\log(3x)}{9} = \frac{27}{9} \qquad \text{(log has base 10)}$$

Simplify. Do **NOT** divide by 3 in parentheses yet! (It is stuck inside the logarithm.)

 $log_{10}(3x) = 3$

Chant: "A logarithm is an exponent."

Convert the $\log_{10}(3x) = 3$ to exponential form with base 10.

$$10^3 = 3x$$

$$\frac{1000}{3} = \frac{3x}{3}$$

Leave answer as a **fraction** – do not round.

ANSWER:

$$x = \frac{1000}{3}$$

• **EXAMPLE:** Solve the equation symbolically for the unknown.

First, **ISOLATE** the logarithm. Divide by 3.

$$\frac{3\ln(4x)}{2} = \frac{21}{2}$$

 $3\ln(4x) = 21$

(In means base e)

Simplify. Do **NOT** divide by 4 yet! (It is stuck inside the logarithm.)

$$\log_e(4x) = 7$$

Chant: "A logarithm is an exponent."

Convert the $\log_e(4x) = 7$ to exponential form with base e.

$$e^7 = 4x$$

Divide both sides by 4 and simplify.

$$\frac{e^7}{4} = \frac{4x}{4}$$

Leave as exact answer with e – do not **round**. ANSWER: $\chi = \frac{e^7}{4}$ or

$$x = \frac{1}{4}e^7$$

Answer is **NOT**: $x = e^{7/4}$

(the divide 4 is NOT part of the exponent!)

• **EXAMPLE:** Solve the equation.

$$4 - 2 \log_3 x = 2$$

[5.4.105]

First, **ISOLATE** the logarithm. Subtract 4 both sides. $4 - 2 \log_3 x = 2$ (do **NOT** do 4 - 2 = 2 at beginning!) -4

Combine like terms and simplify.

$$-2\log_3 x = -2$$

Divide both sides by – 2

$$\frac{-2\log_3 x}{-2} = \frac{-2}{-2}$$

Simplify.

$$\log_3 x = 1$$

Chant:

"A logarithm is an exponent."

Convert the $\log_3 x = 1$ to exponential form with base 3.

$$3^1 = x$$

Simplify.

ANSWER: x = 3

- Solve Basic Exponential Equations ISOLATE and convert to LOGARITHM
- **EXAMPLE:** Solve the equation. Use the change of base formula as appropriate.

$$3(10^{2x}) = 17$$

[5.4.73]

(Type an integer or decimal rounded to the nearest hundredth as needed.)

First, **ISOLATE** the exponential. Divide by 3.

 $3(10^{2x}) = 17$

Simplify. Do NOT round $\frac{17}{3}$. Leave as **fraction** to the end!

 $\frac{3(10^{2x})}{3} = \frac{17}{3}$

Update the equation.

 $10^{2x} = \frac{17}{3}$

Do **NOT** divide by the 2 yet. It's stuck in the exponential.

$$10^{2x} = \frac{17}{3}$$

Chant: "A logarithm

is an exponent."

Convert the exponential $10^{2x} = \frac{17}{3}$ to a logarithm base 10.

 $\log_{10}\left(\frac{17}{3}\right) = 2x$

Divide both sides by 2 and simplify.

$$\frac{\log\left(\frac{17}{3}\right)}{2} = \frac{2x}{2}$$

Simplify. Use calculator to round to hundredth.

$$x = \frac{\log\left(\frac{17}{3}\right)}{2} \approx 0.38$$

3766638333

 $5e^x + 5 = 8$ **EXAMPLE:** Solve the equation. (Round to 4 decimal places as needed. Use a comma to separate answers as needed.)

ISOLATE the exponential. First, subtract 5.

 $5e^x + 5 = 8$ -5 - 5

Combine like terms and simplify.

 $5e^{x} = 3$

Divide both sides by 5 and simplify.

$$\frac{3e}{5} = \frac{3}{5}$$
$$e^x = \frac{3}{5}$$

is an exponent." Chant: "A logarithm

Convert the exponential $e^x = \frac{3}{5}$ to a logarithm base e. $\log_e(\frac{3}{5}) = x$

A logarithm base e is same as natural logarithm (In)

-.5108256238

Use calculator to get answer rounded to 4 decimal places.

Answer:

 $x \approx -0.5108$

EXAMPLE: Solve the equation for *x*. $e^{-x} = 258$ [5.4-26] (Type an integer or decimal rounded to the nearest hundredth as needed.)

Do **NOT** divide by -1 yet. (It's stuck in the exponential.) No need to ISOLATE the exponential – it's already there!

 $e^{-1x} = 258$

$$e^{-1x} = 258$$

Chant: "A logarithm is an exponent."

Convert the exponential $e^{-1x} = 258$ to a logarithm base e.

 $\log_e(258) = -1x$

A logarithm base e is same as natural logarithm (In)

ln(258) = -1x

Divide by the – 1 both sides and simplify.

INCORRECT:
$$x = \ln{(-258)}$$

That would be UNDEFINED.

In general, you cannot take logarithm of zero or negative. Only $\log_b(positive)$ works!

 $x = -\ln (258)$ is "exact" answer Use calculator to round

-1n(258) -5.552959585

Answer:

Sources Used:

- 1. MyLab Math for *Algebra for College Students*, 8th Edition, Lial, Pearson Education Inc.
- 2. MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.