ĐHBKHN

SAMI

ĐÈ 1

Câu 1

Cho A,B,C là các tập hợp. Khẳng định nào sau đây là sai:

a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$ (C) A \setminus (B \cup C) = (A \cup B) \setminus (A \cup C) $	$d) A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

Câu 2

Tập hợp nào sau đây là tập rỗng:

a) $\left\{ x \in \mathbb{R} \left x^3 - 3x^2 + 5x + 7 = 0 \right\} \right.$	b) $x \in \mathbb{R} x^2 + 5x + 7 = 0 $
c) $\{x \in \mathbb{Q} x^4 - x^3 - 3x^2 + 5x + 1 = 0 \}$	$d) \left\{ x \in \mathbb{Z} \left x^3 + 2x^2 + 3x : 3 \right\} \right.$

Câu 3

Cho ánh xa $f(x) = mx^2 + (2m-1)x + 3m + 5$. Khẳng định nào sau đây là đúng:

a) i không là đơn ánh ∀m	b) f không là toàn ánh ∀m
c) f không là song ánh ∀m	(đ))∃m để f là song ánh

Câu 4

Tương ứng nào sau đây là đơn ánh từ \mathbb{R} đến \mathbb{R}

a) $f(x) = \frac{1}{2x^2 + 1}$	b) $f(x) = 2x^2 + 3x + 5$
(c) $f(x) = x^3 + 4x + 5$	d) $f(x) = x^4 + x^3 + 2x^2 + 3x + 5$

Câu 5

Cho $z = (1+i)^{1000}$. Khẳng định nào sau đây là đúng:

a) Re z = 0, Im z = 2^{1000}	b) $\text{Re } z = 2^{1000}, \text{Im } z = 0$
c) Re $z = \text{Im } z = 2^{500}$	(d) $\text{Re } z = 2^{500}, \text{Im } z = 0$

Câu 6

Biểu diễn các số phức z thoả mãn |z-3+2i|=4 trên mặt phẳng là :

a) Hữu hạn điểm	b) Đường thẳng
C) Dường tròn	d) Đường elip.

Câu 7

Số phức z thoả mãn $3z + 2\overline{z} = 10 - 5i$ là:

a) $z = 2 + 5i$	b) $z = 2 - 5i$
$z = \frac{1}{2} - 5i$	d) $z = \frac{1}{2} - \frac{1}{5}i$

1

Câu 8

ÐHBKHN SAMI

Cho A =
$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & -1 & 4 \\ 2 & 2 & -1 \end{bmatrix}$$
; B = $\begin{bmatrix} 1 & 0 & 2 \\ 4 & 3 & 1 \\ -2 & 2 & 0 \end{bmatrix}$. Khi đó ma trận AB là :

$\begin{bmatrix} -1 & 9 & 3 \end{bmatrix}$	[-1 9 3]
a) -10 5 3	b) -10 4 6
12 4 6	$\begin{bmatrix} 12 & 5 & 3 \end{bmatrix}$
	[-1 -10 12]
c) 5 2 3	d) 9 5 4
$\begin{bmatrix} -2 & 4 & 6 \end{bmatrix}$	

Câu 9

Nghiệm của phương trình ma trận $X\begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ -4 & 1 \end{bmatrix}$ là:

$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	$b)\begin{bmatrix} -10 & 3 \\ 20 & -6 \end{bmatrix}$
$ c) \begin{bmatrix} 17 & 2 \\ -4 & 6 \end{bmatrix} $	$d)\begin{bmatrix} 10 & 4 \\ -5 & 6 \end{bmatrix}$

Câu 10

Kết quả nào sau đây là đúng của định thức $\begin{vmatrix} 2 & -3 & 1 & 1 \\ x & y & z & t \\ -1 & 3 & 0 & 2 \\ 1 & -2 & 2 & 3 \end{vmatrix}$

	,	b) $5x - 5y - 10z + 5t$
(c)	-5x - 5y - 10z + 5t	d) $-5x + 5y - 10z - 5t$

Câu 11

Cho hệ phương trình tuyến tính thuần nhất 5 phương trình 7 ẩn. Hạng của ma trân hê số 3. Nghiệm của phương trình sẽ biểu diễn qua

ma tạn nọ 50 3. Nghiệm của phương thim số biểu diễn qua	
/) 4 tham số	b) 2 tham số
c) 3 tham số	d) 7 tham số

Câu 12

 $\vec{\text{D}} \, \hat{\text{e}} \, \, \text{h} \, \hat{\text{e}} \, \, \begin{cases} x + 2y = 8 \\ 6x - 4my = 3 \end{cases} \, \text{vo nghiệm thì m bằng} :$

a) m = 2	(b) m = -3
c) m = 5	d) m = 7

Câu 13

SAMI ĐHBKHN

Hạng của ma trận A =
$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & 2 \\ 3 & 2 & 4 & 4 \\ -4 & -1 & 3 & -2 \end{pmatrix} là$$

a) 1	b)2
c) 3	d) 4

Câu 14

 $\text{Cho hệ phương trình sau } \begin{cases} x_1 + 3x_2 - 2x_3 = m \\ 3x_1 + 7x_2 - mx_3 = k \text{ . Để hệ có vô số nghiệm thì} \\ 2x_1 + 5x_2 + 4x_3 = 8 \end{cases}$

(a) $m = -10$, $k = 20$	b) $m = 10, k = 12$
c) $m = 10, k = 20$	d) $m = -10, k = 26$

Câu 15

Tập hợp nào trong các tập hợp sau **không phải** là không gian tuyến tính trên trường các số thực?

a) Các ma trận vuông bậc <i>n</i> với các	b) Các đa thức bậc ba với các hệ số
phần tử thực	thực
c) Các ma trận tam giác phía trên bậc	d Tập hợp tất cả các số phức
n với các phần tử thực	\triangleright

Câu 16

Các tập dưới đây tập nào là không gian vec tơ con của \mathbb{R}^3 :

Cac tạp duơi day tạp hao là không gian vec to con của
$$\mathbb{R}$$
 .

(a) $V_4 = \{(a,b,c): a,b,c \in \mathbb{R}, a = 2b + 3c\}$

(b) $V_2 = \{(a,b,1): a,b \in \mathbb{R}\}$

(c) $V_3 = \{(a,b,c): a,b,c \in \mathbb{R}, a = b + c + 1\}$

(d) $V_1 = \{(a,1,0): a \in \mathbb{R}\}$

Câu 17

Hệ nào là cơ sở của không gian nghiệm của hệ phương trình $x_1 + 2x_2 + 3x_3 = 0$:

a)
$$\{v_1 = (1, 0, 0); v_2 = (0, 1, 0)\}$$
 b) $\{v_1 = (-2, 1, 0); v_2 = (-3, 0, 1)\}$ c) $\{v_1 = (0, 0, 0); v_2 = (-2, 1, 0)\}$ $\{v_1 = (2, -1, 0); v_2 = (3, 0, -1); v_3 = (5, -1, -1)\}$ Câu 18

3

Trong \mathbb{R}^3 cho cơ sở $\mathbf{B} = \{ \mathbf{v}_1 = (0, 0, 1); \mathbf{v}_2 = (0, 1, 1); \mathbf{v}_3 = (1, 1, 1) \}$

Cho véc tơ v = (5, 6, 7). Toa đô của véc tơ v theo cơ sở B là :

ĐHBKHN SAMI

a) (7, -1, -1)	b) (-2, 1, 6)
(1, 1, 5)	d) (5, 6, 7)

Câu 19

Ánh xạ nào sau đây là ánh xạ tuyến tính từ \mathbb{R}^2 đến \mathbb{R}^2

a) $f(x_1, x_2) = (x_1 + x_2 + 1, x_1 - x_2 - 1)$	b) $f(x_1, x_2) = (0,1)$
a) $f(x_1, x_2) = (x_1 + x_2 + 1, x_1 - x_2 - 1)$ c) $f(x_1, x_2) = (2x_1, 3x_2)$	d) $f(x_1, x_2) = (x_1^2, x_2^2)$

Câu 20

Cho ánh xạ tuyến tính từ \mathbb{R}^3 đến \mathbb{R}^3 :

$$f(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, 2x_1 + 2x_2 + 3x_2, -2x_1 + 2x_2 - x_3)$$

Khi đó f(1,2,3) là:

a) (1, 2, 3)	b) (5, -10, 1)
c) (-5, 5, 1)	d) (5, 15, -1)

Câu 21

Cho ánh xạ tuyến tính từ \mathbb{R}^3 đến \mathbb{R}^4 :

 $f(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_1 - 2x_2 + x_3, -3x_1 + x_2, x_1 - x_3)$. Ma trận của f đối với cặp cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^4

doi voi cáb co so cimini tác caa #g vi	a 11
a) $\begin{bmatrix} 1 & 2 & -3 & 1 \\ -1 & -2 & 1 & 0 \\ 1 & 1 & 0 & -1 \end{bmatrix}$	$ \begin{array}{c cccc} \hline b) & 1 & -1 & 1 \\ 2 & -2 & 1 \\ -3 & 1 & 0 \\ 1 & 0 & -1 \end{array} $
c) $\begin{bmatrix} 1 & 2 & -3 & 1 \\ -1 & -2 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$	$d) \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 1 \\ -3 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$

Câu 22

$$A = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 1 & 2 & 1 & 1 \\ -1 & 0 & 1 & 2 \\ 1 & 1 & 4 & 3 \end{pmatrix} - là ma trận của toán tử tuyến tính $f : \mathbb{R}^4 \to \mathbb{R}^4$ theo cơ sở$$

chính tắc. Khi đó số chiều m của nhân của toán tử đó(Kerf) và số chiều k của ảnh của nó (Imf) sẽ là:

a) m=k=4	b) m=1, k=3
c) m=3, k=2	d) m=3, k=1

Câu 23

ĐHBKHN SAMI

Ma trận nào trong số các ma trận sau là ma trận của dạng toàn phương $F(x, y,z)=3x^2-2y^2+4xy-8xz+6yz$ theo cơ sở chính tắc của \mathbb{R}^3

$ \begin{array}{c cccc} a) \begin{pmatrix} 3 & 4 & -8 \\ 0 & -2 & 6 \\ 0 & 0 & 4 \end{pmatrix} $	b) $\begin{pmatrix} 1,5 & 2 & -4 \\ 2 & -1 & 3 \\ -4 & 3 & 0 \end{pmatrix}$
$ \begin{array}{cccc} c) \begin{pmatrix} 3 & 0 & 0 \\ 4 & -2 & 0 \\ -8 & 6 & 4 \end{pmatrix} $	

Câu 24

Các véc tơ nào trong số các véc tơ
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ -4 \\ 0 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -2 \\ 0 \\ 2 \\ 2 \end{pmatrix}$$
 và $\mathbf{v}_4 = \begin{pmatrix} 3 \\ 0 \\ 0 \\ 3 \end{pmatrix}$

tạo với cở sở trực giao của không gian nghiệm của hệ phương trình

$$\begin{cases} 2x_1-4x_2+2x_4=0\\ 2x_1-x_2+x_3+x_4=0 \end{cases}$$
 thành cơ sở trực giao của không gian O clit bốn chiều.

((a) v_1, v_2	b) v ₃ , v ₄
	c) Chỉ có v ₃	d) Chỉ có v ₄

Câu 25

Ma trận nào trực giao trong số các ma trận sau:

$ \begin{array}{c} \text{(a)} \ \frac{1}{5} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix} \end{array} $	b) $ \begin{pmatrix} 4 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 4 \end{pmatrix} $
c) $\frac{1}{4}$ $\begin{pmatrix} 1 & 3 & \sqrt{6} \\ 3 & 1 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & -2 \end{pmatrix}$	$d) \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$

Cân 26

Trực giao hoá Gram – Schmidt hệ véc tơ độc lập tuyến tính $\{v_1, v_2, ..., v_n\}$ của V ta thu được:

ÐHBKHN

SAMI

a) Một cơ sở trực chuẩn	b) Một cơ sở trực giao
c) Một hệ trực giao $\{u_1, u_2,, u_n\}$ có	d) Một cơ sở của V
tính chất	
$\operatorname{span}(u_1,, u_i) = \operatorname{span}(v_1,, v_i), \forall i = \overline{1, n}$	

Câu 27

Cho ma trận $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$. Các giá trị riêng của A là:

a) $\lambda_1 = 1, \lambda_1 = 2$	b) $\lambda_1 = -1, \lambda_1 = 2$
c) $\lambda_1 = 1, \lambda_1 = -3$	$(\overline{\mathbf{d}})\lambda_1 = 1, \lambda_1 = 5$

Câu 28

Ma trận nào **không** chéo hoá được

$\begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}$
$ \begin{array}{c} $	$d) \begin{bmatrix} 1 & 3 & 1 \\ 3 & 0 & -2 \\ 1 & -2 & 0 \end{bmatrix}$

Câu 29

Dạng toàn phương nào xác định dương

a) $f(x,y,z) = 2x^2 - y^2 + 3z^2 - 2xz + 4yz$	b) $f(x, y, z) = 2x^2 + 5y^2 + 9z^2 - 4xy + 4yz$
c) $f(x, y, z) = -x^2 + 5y^2 + 3z^2 + 2xz + yz$	d) $f(x,y,z) = 2x^2 + 9y^2 - z^2 - xz + yz$

Câu 30

Mặt bậc hai $(x + y)^2 + (y + z)^2 + 4y = 2$ là mặt

a) Elipsoid	b) Hypeboloid 1 tầng
c) Paraboloid eliptic	d) Paraboloid hypebolic

6