Parsing i unifikacja

Paweł Rychlikowski

Instytut Informatyki UWr

7 stycznia 2019

RDP. Przypomnienie

Jakie gramatyki lubi RDP?

- Na pewno nie lubi lewostronnie rekurencyjnej! (bo się zapętla)
- Raczej fajne jest, jak może szybko "nawrócić", jak widać że nic z danego rozbioru nie będzie.
- Czyli dobrze jest, żeby możliwie szybko pojawił się symbol terminalny.

Idealna produkcja

Największą radość sprawimy parserowi RDP, dając mu regułę postaci: $A \rightarrow wBCDE$, gdzie w jest symbolem terminalnym.

Postać normalna Greibach

- Wszystkie produkcje mają postać $A \to wA_1 \dots A_n$ (n może być równe 0)
- Możemy założyć, że język nie zawiera słowa pustego (tak jak w postaci normalnej Chomsky'ego)

Uwaga

Każdą gramatykę da się przekształcić do postaci normalnej Greibach przy zachowaniu akceptowanego języka.

Przykład

Wyznaczmy postaci normalne dla następującej gramatyki (zielone są problematyczne):

```
NP 
ightarrow Adj \ NP
NP 
ightarrow NP \ Adj2
Adj 
ightarrow mały | głupi
Adj2 
ightarrow brunatny | polarny
NP 
ightarrow miś
NP 
ightarrow NP \ i \ NP
```

Przykład

Wyznaczmy postaci normalne dla następującej gramatyki (zielone są problematyczne):

```
NP 
ightarrow Adj \ NP
NP 
ightarrow NP \ Adj2
Adj 
ightarrow mały | głupi
Adj2 
ightarrow brunatny | polarny
NP 
ightarrow miś
NP 
ightarrow NP \ i \ NP
```

Top Down vs Bottom Up

Różne algorytmy mogą działać w stylu TopDown albo Bottom Up.

Top down

Zaczynamy od symbolu startowego, próbujemy znaleźć drzewo rozbioru dla całego zdania. Nasze poszukiwania są ukierunkowane na sparsowanie zdania.

Bottom up

Zaczynamy od pojedynczych wyrazów i próbujemy je łączyć w coraz większe struktury. Nawet, jak nie znajdziemy rozbioru dla zdania, to możemy znaleźć różne mniejsze, użyteczne rozbioru dla fraz (na przykład nominalnych).

Algorytm Shift-Reduce

Innym algorytmem parsowania, który przedstawia dość istotne idee jest **Shift-Reduce**

- Mamy w algorytmie dwie struktury:
 - Listę drzew (las uporządkowany), dla sparsowanych fragmentów
 - Listę L zawierającą niesparsowany sufiks zdania
- Operacja Shift oznacza przesunięcie wyrazu z listy i utworzenie jednowęzłowego drzewka z tym wyrazem
- Operacja Reduce oznacza połączenie (zgodne z gramatyką) pewnej liczby drzew w nowe drzewo

Gramatyka do prezentacji algorytmu SR

Interesuje nas gramatyka, która umożliwia sparsowanie zdania:

The dog saw a man in the park

Gramatyka:

```
NP -> Det N
Det -> a | the
N -> dog | man
PP -> Prep NP
VP -> V NP PP
S -> NP VP
V -> saw | read | killed
```

1. Initial state

Stack							R	emai	nir	ıg T	ext	
	 	 	 	the	dog	saw	a	man	in	the	park	

3. After reduce shift reduce

5. After building a complex NF

After one shift

4. After recognizing the second NP

1. Initial state

Stack	Remaining Text
	the dog saw a man in the park

3. After reduce shift reduce

5. After building a complex NF

2 After one shift

L. / titor onto ornit	
Stack	Remaining Text
the	dog saw a man in the park

4. After recognizing the second NP

1. Initial state

Stack	Remaining Text
	the dog saw a man in the park

3. After reduce shift reduce

Stack	Remaining Text
Det N the dog	saw a man in the park

5. After building a complex NF

2 After one shift

L. Alter one office	
Stack	Remaining Text
the	dog saw a man in the park

4. After recognizing the second NP

1. Initial state

Stack	Remaining Text
	the dog saw a man in the park

3. After reduce shift reduce

Stack	Remaining Text
Det N the dog	saw a man in the park

5. After building a complex NF

2 After one shift

	L. 7 (110) OTTO OTTO							
	Stack			R	emai	nin	ıg T	ext
Ī	the	 dog	saw	а	man	in	the	park
-		 						

4. After recognizing the second NP

Stack					Remaining Text
NP	V	N	P	in	the park
Det N	saw	Det	N		
$\mathbf{J} = \mathbf{J}$					
the dog		a	man		

1. Initial state

Stack	Remaining Text
	the dog saw a man in the park

3. After reduce shift reduce

Stack	Remaining Text
Det N the dog	saw a man in the park

5. After building a complex NP

S. Allei L	Julianing a complex	CINE
Stack		Remaining Text
NP V	NP	
Det N saw the dog	NP PP Det N P NP a man in Det N the park	

2 After one shift

L. Alter one office	
Stack	Remaining Text
the	dog saw a man in the park

4. After recognizing the second NP

Stack						Rem	ainin	g Text
NP	٧	N	Р	in	J	 		the park
Det N	saw	Det	N					
the dog		a	man					

1. Initial state

Stack	Remaining Text
	the dog saw a man in the park

3. After reduce shift reduce

Stack	Remaining Text
Det N the dog	saw a man in the park

5. After building a complex NP

3. After building a complex NF						
Stack		Remaining Text				
NP V	NP					
Det N saw the dog	Det N P NP A man in Det N the park					

2 After one shift

E. Filtor one orini							
Stack	Remaining Text						
the	dog saw a man in the park						

4. After recognizing the second NP

Stack					Remaining Text
NP	V	N	P	in	the park
Det N	saw	Det	N		
the dog		a	man		

Shift-Reduce. Komentarz

- Nie mówiliśmy nic o nawracaniu, prosta implementacja SR parsera może nie znaleźć rozbioru!
- Można zaimplementować jakąś strategie decydowania o S i R. Na przykład:
 - Preferować reduce, jeżeli możliwe
 - Mając do wyboru wiele redukcji wybierać tę, która "usunie" więcej drzew

Uwaga

Jest dużo możliwości "uczenia" algorytmu parsingu: wynikiem tego uczenia miałaby być metoda wyboru S/R w zależności od danych. Mając rozbiór bowiem wiemy, dokładnie, jak powinien działać optymalny S/R parser, możemy zatem uczyć takiej strategii. Jak?

Algorytm Earleya

- Dynamiczny algorytm parsingu dla gramatyk w dowolnej postaci.
- Łatwo go uogólniać i opracowywać różne warianty
- Zaczniemy od podstawowej konstrukcji

Strukrura danych w Algorytmie Earleya

Algorytm Earleya (AE) tworzy w każdym z N+1 punktów zdania o długości N tablicę informacji, wyglądających następująco:

$$A \rightarrow \alpha \bullet \beta$$
 [a:b]

gdzie $A \to \alpha \beta$ jest produkcją gramatyki, natomiast $0 \le a \le b \le N+1$, są pozycjami w tekście (jak w Pythonie)

Interpretacja

Każdy z powyższych napisów jest zdaniem, mówiącym:

- W miejscu a próbuję znaleźć fragment zdania pasujący do nieterminala A,
- używając do tego produkcji $A \to \alpha \beta$,
- udało mi się dojść do miejsca b
- zjadając część produkcji przed znakiem

Przykłady. Zgadnijmy, co oznaczają?

- $S \rightarrow \bullet NP \ VP \ [0:0]$ Zaczynamy analizę zdania.
- NP

 AP

 NP [5:7]

 Pierwsze 2 wyrazy na pozycji piątej z sukcesem sparsowaliśmy
 jako frazę przymiotnikową, próbujemy dalej znaleźć frazę
 rzeczownikowa.
- N → w [k:k+1]
 Na pozycji k znajduje się słowo w (o tagu N)
- $S \rightarrow NP \ VP$ [0:10] Sparsowaliśmy z sukcesem zdanie o długości 10.

Algorytm. Inicjalizacja

- Dla każdej produkcji $S \to \alpha$ dodaje element do tablicy Chart[0] Chart[i] oznacza zadania parsingu rozpoczynające się od pozycji i
- Elementem tym jest oczywiście:

$$S \rightarrow \bullet \alpha$$
 [0:0]

Algorytm. Ogólna pętla

Definicja

Stan jest kompletny jeżeli na końcu jest • (czyli przetworzyliśmy wszystko).

Dla każdego i i dla każdego elementu w Chart[i] zastosuj jedną z 3 procedur

- Scanner (jeżeli stan jest niekompletny i mamy do przetworzenia POS)
- Predictor (jeżeli stan jest niekompletny i mamy do przetworzenie nie POS)
- Completer (jeżeli stan jest kompletny)

Algorytm. Scanner

- Stanem jest $A \to \alpha \bullet B\beta$ [i:j]
- B to POS słowa na pozycji j
- Czyli możemy je skonsumować i przesunąć się o 1 krok
- Dodajemy do Chart[j+1] stan

$$B \to \mathsf{word}[\mathsf{j}] \bullet \ [\mathsf{j}{:}\mathsf{j}{+}1]$$

Algorytm. Predictor

- Podobnie jak Scanner, ale następnym symbolem jest nieterminal, zatem musimy rozpocząć jego analizę.
- Stanem jest $A \to \alpha \bullet B\beta$ [i:j]
- ullet Dla każdej produkcji $B o \gamma$ dodamy do Chart[j]
- stan $B \to \bullet \gamma$ [j:j]

Algorytm. Completer

- Przetwarza reguły, które są już zakończone przesuwając kropę w innych stanach.
- Stanem jest $B \to \gamma$ [j:k]
- Dla każdego stanu

$$A \rightarrow \alpha \bullet B\beta$$
 [i:j]

w Chart[j] dodaj do Chart[k] stan

$$A \rightarrow \alpha B \bullet \beta$$
 [i:k]

Chart parser

- Inspirowany parserem Earleya, używa podobnej notacji (z kropą)
- Można o nim myśleć jako o uogólnieniu parsera Earleya.
- Używa pojęć "grafowych", w grafie węzłami są pozycje między słowami, krawędzie etykietowane są produkcjami z kropką.

Graf dla zdania. Wersja 0

Myślimy o tym, że graf opisuje zdanie wraz z częściowym parsingiem:

Pętla w grafie wprowadzająca produkcje

Fundamental Rule

Jeżeli w grafie znajdują się obie poniższe krawędzie

- $A \rightarrow \alpha \bullet B\beta$ [i:j]
- $B \rightarrow \gamma$ [j:k]

Wówczas dodaj krawędź:

$$A \rightarrow \alpha B \bullet \beta$$
 [i:k]

Sposoby wykorzystania idei Chart parsera. Przykładowe reguły

Bottom Up Predict

Dla każdej reguły $A \to \alpha ullet [i:j]$ i produkcji $B \to A \beta$ dodaj krawędź:

$$B \to \bullet A\beta$$
 [i:i]

Top Down Predict

- Mamy $A \rightarrow \alpha \bullet B\beta$ [i:i]
- ullet Dodajemy $B
 ightarrow ullet \gamma$ [j:j], dla produkcji gramatyki $B
 ightarrow \gamma$

Szczegóły na ćwiczeniach.

Gramatyka atrybytowa

Uwaga

Opisując język polski korzystaliśmy z gramatyki atrybutowej (czyli takiej, w której symbole nieterminalne mają jakąś strukturę), nie definiując jej specjalnie.

Zastanówmy się zatem, jak wyglądałaby definicja?

- Symbole nieterminalne moglibyśmy definiować jako płytkie termy, postaci $f(X_1, \ldots, X_n)$, gdzie X_i są zmiennymi albo stałymi ze skończonego zbioru.
- Składnikiem wyprowadzenia byłoby podstawienie.

Wyprowadzenie w jednym kroku

Powiemy, że $(xAy, \theta) \Rightarrow (x\beta y, \theta')$, jeżeli:

- i) A' o eta jest świeżym wariantem produkcji gramatyki
- ii) $A\theta\theta_2 = A'\theta_2$
- iii) $\theta' = \theta\theta_2$

Gramatyki atrybutowe (2)

- Tak zdefiniowane GA nie wyprowadzają poza języki bezkontekstowe (bo?)
- Teoretycznie parsing staje się trudniejszy, dokładniej NP-trudny.

Feature Structures

Uwaga

W "świecie NLP" nie używa się termów, tylko tak zwane **struktury atrybutowe**.

Definicja

Strukturą atrybutową jest:

- Stała (ze skończonego zbioru stałych)
- Odwzorowanie, zawierające skończenie wiele atrybutów (stałych z innego, też skończonego zbioru). Wartościami dla tych atrybutów są Struktury atrybutowe.

Uwaga

Strukturę atrybutową możemy kodować jako słownik, w którym kluczem jest nazwa atrybutu, a wartością napis lub struktura atrubutowa.

Przykłady na gramatykę atrybutową w NLTK

Prosty gramatyka pozwalająca na kostruowanie zdań: this dog runs, these dogs run.

```
Det[NUM=sg] -> 'this'
Det[NUM=pl] -> 'these'
N[NUM=sg] -> 'dog'
N[NUM=pl] -> 'dogs'
V[NUM=sg] -> 'runs'
V[NUM=p1] -> 'run'
S -> NP[NUM=?n] VP[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
VP[NUM=?n] -> V[NUM=?n]
```

Przykłady na gramatykę atrybutową w NLTK (2)

Możemy dodać inne rodzajniki wraz ze zmienną nieukonkretnioną (jak w Prologu _)

```
Det[NUM=?n] -> 'the' | 'some' | 'any'
```

To powyższe jest równoważne:

```
Det -> 'the' | 'some' | 'any'
```

Parsing dla gramatyk atrybutowych

Chart Parsing łatwo uogólnia się na gramatyki z atrybutami.

[przykład na tablicy dla zdania jaś widzi ładny stół]

Płytki parsing

- Czasami nie potrzebujemy informacji o pełnej strukturze zdania, a tylko chcemy wyłowić interesujące nas fragmenty.
- Przykładowo osoby, daty, miejsca, jakieś części poleceń, ...
- Wszystkie mechanizmy, w których zgadzamy się, że nasza informacja będzie (potencjalnie) częsciowa nazywamy płytkim parsingiem.

Przybliżanie głębokiego parsingu

- Można definiować proste (regularne) gramatyki i otrzymywać przybliżone drzewo rozbioru o zadanej wysokości za pomocą kaskady takich gramatyk.
- Przykładowo:

```
Np(Case) -> Adj(Case)* N(Case)
Np(Case) -> Adj(Case)* N(Case) Adj(Case)
Np2(Case) -> Np(Case) Np(gen)*
Np3(Case) -> Np2(Case) Prep(C2) Np(C2)
```

Przybliżanie głębokiego parsingu

```
Np(Case) -> Adj(Case)* N(Case)
Np(Case) -> Adj(Case)* N(Case) Adj(Case)
Np2(Case) -> Np(Case) Np(gen)*
Np3(Case) -> Np2(Case) Prep(C2) Np(C2)
```

Jakie frazy ta gramatyka może sparsować:

samotny biały żagiel niepokojący widok samotnego białego żagla obraz olejny Matejki z niepokojącym widokiem samotnego białego żagla nadmiar parówek z wieprzowimy parówka z wieprzowiny grubego Stefana radość z ksiażki o smokach

Przybliżanie głębokiego parsingu

```
np(Case) -> adj(Case)* N(Case)
np(Case) -> adj(Case)* N(Case) adj(Case)
np2(Case) -> np(Case) np(gen)*
np3(Case) -> np2(Case) prep(C2) np(C2)
```

Jakie frazy ta gramatyka może sparsować:

samotny biały żagiel niepokojący widok samotnego białego żagla obraz olejny Matejki z niepokojącym widokiem samotnego białego żagla nadmiar parówek z wieprzowimy parówka z wieprzowiny grubego Stefana radość z książki o smokach

Chunking

- Często wystarcza nam jeszcze bardziej płytka (jednopoziomowa) struktura, zawierająca jedynie informacje o typach rozłącznych podfraz danego zdania.
- Przykładowo w zdaniu:

Ta firma dostarczy odzież sportową dla uczestników Narodowego Święta Biegania, które odbędzie się 24 kwietnia 2016 roku.

 Moglibyśmy znaleźć takie frazy: nominalna, nazwa własna, data.

Ta firma dostarczy odzież sportową dla uczestników Narodowego Święta Biegania, które odbędzie się 24 kwietnia 2016 roku.

Chunking (2)

- Trzeba mieć swiadomość, że to nie jest parsing, więc nie pojawiają się w nim frazy:
 - uczestników Narodowego Święta Biegania
 - Święta Biegania
- Jak decydować, jaki podział na frazy jest właściwy?

Dwie zasady chunkingu

Zasada minimalnej frazy

Fraza jakiegoś typu nie ma w sobie (*sensownej*) podfrazy tego samego typu o długości większej niż 1.

Zasada maksymalnej frazy

Interesuje nas maksymalny fragment tekstu o określonym typie (na przykład będący frazą nominalną).

Maksymalna vs minimalna fraza

Uwaga

Oczywiście te dwie zasady są ze sobą sprzeczne. Gdy robimy **np-chunking** jak powinniśmy potraktować zdanie:

chodziłem do III Liceum Ogólnokształcącego im. Adama Mickiewicza

:

Wariant maksymalny

chodziłem do III Liceum Ogólnokształcącego im. Adama Mickiewicza

Wariant minimalny (z wątpliwościami)

chodziłem do III Liceum Ogólnokształcącego im. Adama Mickiewicza

Maksymalna vs minimalna fraza

Uwaga

Oczywiście te dwie zasady są ze sobą sprzeczne. Gdy robimy **np-chunking** jak powinniśmy potraktować zdanie:

chodziłem do III Liceum Ogólnokształcącego im. Adama Mickiewicza

Wariant maksymalny

chodziłem do III Liceum Ogólnokształcącego im. Adama Mickiewicza

Wariant minimalny (z wątpliwościami)

chodziłem do III **Liceum Ogólnokształcącego** im. **Adama Mickiewicza**

Maksymalna vs minimalna fraza (2)

Pytanie

Jakie frazy mogłyby być bardziej użyteczne?

Odpowiedź

To zależy:

- Gdy myślimy o wyszukiwaniu informacji, to mniejsze frazy wydają się być bardziej użyteczne (bo odpowiadają naturalnym pojęciom, takim jak zmienna losowa, białe wino, ołowiany żołnierzyk, dom starców
- Gdy chcemy wykorzystać Chunking w rozbiorze, to możemy preferować duże frazy (najpierw je znajdujemy, a potem każdą z osobna analizujemy gramatyką)

Dla języka polskiego istnieją korpusy np. fraz nominalnych korzystające zasady maksymalnej frazy.