Finite variable logic

Let us conclude this section with a few remarks on the fragment of $FOL(\Lambda)$ that uses only finitely many variables. More precisely, if $k \in \mathbb{N}$ then $FOL^{\leqslant k}(\Lambda)$ -formulas are $FOL(\Lambda)$ -formulas φ where the total number of variables that appear (free or bounded) in φ is less or equal k. These logics $FOL^{\leqslant k}(\Lambda)$ are often called *finite variable logics*. Several $FOL(\Lambda)$ -formulas with infinitely many (bounded) variables can be rewritten into equivalent $FOL^{\leqslant k}(\Lambda)$ -formulas, by reusing names of bounded variables (and giving up the requirement that no variable has both free and bounded occurrences). For example, reachability has been defined in $FOL(\Lambda)$ by

$$(x = y) \vee \bigvee_{n \geqslant 1} \exists z_0 \dots \exists z_n. \left(z_0 = x \wedge z_n = y \wedge \bigwedge_{0 \leqslant i < n} E(z_i, z_{i+1}) \right),$$

which is a formula that uses infinitely many variables. However, the use of variables can be more sparse. Indeed, there is an alternative (equivalent) characterization of reachability in $FOL^{\leqslant k}(\bigwedge)$ where k=3. The idea is to use formulas $\varphi_n(x,y)$ that assert the existence of a path from x to y of length n and to characterize reachability by the formula:

$$\phi(x,y) = \bigvee_{n \geqslant 0} \phi_n(x,y)$$

The ϕ_n 's are defined inductively. For n=0 and n=1 we may deal with the atomic formulas x=y and E(x,y), respectively. For $n\geqslant 1$, formula $\phi_{n+1}(x,y)$ should be equivalent to $\exists z_n.(E(x,z_n) \land \phi_n[x/z_n])$. As long as the variables $z_1,z_2,z_3,...$ are pairwise distinct, the formula $\phi(x,y)$ that results by the infinite disjunction of the formulas x=y and E(x,y) and $\phi_{n+1}(x,y)=\exists z_n.(E(x,z_n) \land \phi_n[x/z_n])$ for $n\geqslant 1$ correctly characterizes reachability, but it uses infinitely many variables. For a $FOL^{\leqslant 3}(\bigwedge)$ -characterization of reachability, we have to reuse variable names. In fact, variable x does not appear in the subformula $\phi_n[x/z_n]$ of $\exists z_n.(E(x,z_n) \land \phi_n[x/z_n])$. Hence, instead of introducing a fresh variable z_n we can reuse x. This is based on the general observation stating that if variable x can be replaced with variable z in the formula $\psi=\psi(x,...)$ then:

$$\psi[x/z] \equiv \exists x. (x = z \land \psi)$$

This observation applied to $\psi = \phi_n(x, y)$ and leads to the following definition of formulas ϕ_n that use at most three variables (namely x, y and z):

$$\begin{array}{lll} \varphi_0(x,y) & \stackrel{\text{def}}{=} & x = y \\ \\ \varphi_1(x,y) & \stackrel{\text{def}}{=} & \mathsf{E}(x,y) \\ \\ \varphi_{n+1}(x,y) & \stackrel{\text{def}}{=} & \exists z. \left(\; \mathsf{E}(x,z) \land \exists x. (\; z = x \land \varphi_n(x,y) \;) \; \right) \end{array}$$

for $n \ge 1$. Then,

$$\phi(x,y) \stackrel{\text{def}}{=} \bigvee_{n>0} \phi_n(x,y)$$

is a $FOL^{\leqslant 3}(\bigwedge)\text{-formula}$ that characterizes reachability.

Although $FOL^{\leqslant k}(\bigwedge)$ is more expressive than $FOL^{\leqslant k}$ – as, e.g., reachability is definable in $FOL^{\leqslant 3}(\bigwedge)$, but not FO-definable – the distinguishing power of $FOL^{\leqslant k}(\bigwedge)$ and $FOL^{\leqslant k}$ for *finite structures* is the same. Here, $FOL^{\leqslant k}$ denotes the set of all FOL-formulas with at most k variables.

Theorem 1.7.9 (FOL $\leq k$ - vs FOL $\leq k$ (Λ)-equivalence). Let A and B finite structures for some vocabulary Voc. Then, the following two statements are equivalent:

- (a) A and B satisfy the same $FOL^{\leq k}$ -sentences.
- (b) A and B satisfy the same $FOL^{\leq k}(\Lambda)$ -sentences.

Proof. The implication (b) \Longrightarrow (a) is obvious, since $FOL^{\leqslant k}$ is a sublogic of $FOL^{\leqslant k}(\bigwedge)$. To prove the implication (a) \Longrightarrow (b), we fix two finite structures $\mathcal A$ and $\mathcal B$ over the same vocabulary with domains A and B, respectively, and suppose that $\mathcal A$ and $\mathcal B$ agree on all $FOL^{\leqslant k}$ -sentences. Furthermore, we fix k pairwise distinct variables x_1,\ldots,x_k such that all formulas under consideration use at most these variables. We provide a transformation

$$\phi \mapsto \widetilde{\phi} = \widetilde{\phi}_{A,B}$$

which assigns to each $FOL^{\leqslant k}(\bigwedge)$ -formula φ a $FOL^{\leqslant k}$ -formula $\widetilde{\varphi}$ such that

- (1) $Free(\widetilde{\phi}) \subseteq Free(\phi)$
- $(2)\quad \text{for all } \overline{\alpha}\in A^k \colon \quad (\mathcal{A},\overline{\alpha})\models \widetilde{\varphi} \quad \text{ iff } \quad (\mathcal{A},\overline{\alpha})\models \varphi$
- (3) for all $\overline{b} \in B^k$: $(\mathcal{B}, \overline{b}) \models \widetilde{\phi}$ iff $(\mathcal{B}, \overline{b}) \models \phi$

As mentioned above, the variables that appear free or bounded in φ and $\widetilde{\varphi}$ are contained in $\{x_1,\ldots,x_k\}$. The notation $(\mathcal{A},\overline{\alpha})$ serves as an abbreviation for the interpretation with structure \mathcal{A} and the variable valuation that interpretes the i-th variable x_i by the i-th element of $\overline{\alpha}$. Note that with conditions (2) and (3), we just assert the equivalence of φ and φ with respect to the given structures \mathcal{A} and \mathcal{B} , but not general equivalence. In fact, the definition of the formulas $\varphi = \varphi_{\mathcal{A},\mathcal{B}}$ will depend on the given structures \mathcal{A} and \mathcal{B} .

The definition of the FOL-formulas $\widetilde{\phi}$ is by structural induction. We put $\widetilde{\phi} \stackrel{\text{def}}{=} \varphi$ if $\varphi = true$ or φ is atomic. In this case, conditions (1)-(3) are obvious. For negation we define:

$$\widetilde{\neg \varphi} \, \stackrel{\scriptscriptstyle def}{=} \, \neg \widetilde{\varphi}$$

Note that the induction hypothesis immediately yields that conditions (1)-(3) are fulfilled. For universal quantification, i.e., a given FOL $^{\leqslant k}(\Lambda)$ -formula $\forall y. \varphi$ with $y \in \{x_1, ..., x_k\}$, we define:

$$\widetilde{\forall y. \phi} \stackrel{\text{def}}{=} \forall y. \widetilde{\phi}$$

Condition (1) is clear from the induction hypothesis applied to ϕ . Let us check condition (2). The argument for condition (3) is analogous. For simplicity we assume that $y = x_1$. By induction hypothesis we have

$$(A, \alpha_1, \alpha_2, ..., \alpha_k) \models \widetilde{\phi} \text{ iff } (A, \alpha_1, \alpha_2, ..., \alpha_k) \models \phi$$

for all $a_1, a_2, ..., a_k \in A$ where a_i stands for the interpretation of x_i . Since

$$y = x_1 \notin Free(\forall y. \varphi)$$
 and $y \notin Free(\forall y. \widetilde{\varphi})$,

the interpretation of variable y is irrelevant for $\forall y. \varphi$ and $\widetilde{\forall y. \varphi} = \forall y. \widetilde{\varphi}$. Thus:

$$\begin{split} (\mathcal{A},\alpha_1,\alpha_2,\ldots,\alpha_k) &\models \widetilde{\forall y.\varphi} \\ \mathrm{iff} \quad (\mathcal{A},\alpha_1,\alpha_2,\ldots,\alpha_k) &\models \widetilde{\varphi} \\ \mathrm{iff} \quad (\mathcal{A},\alpha',\alpha_2,\ldots,\alpha_k) &\models \widetilde{\varphi} \quad \mathrm{for \ all} \ \alpha' \in A \\ \mathrm{iff} \quad (\mathcal{A},\alpha',\alpha_2,\ldots,\alpha_k) &\models \varphi \quad \mathrm{for \ all} \ \alpha' \in A \\ \mathrm{iff} \quad (\mathcal{A},\alpha_1,\alpha_2,\ldots,\alpha_k) &\models \forall u.\varphi \end{split}$$

It remains to consider the case where ϕ arises by a countable conjunction. By duality it suffices to consider the case of an *countable disjunction*, say

$$\phi = \bigvee_{i \in I} \phi_i$$

where ϕ (and the ϕ_i 's) are $FOL^{\leqslant k}(\Lambda)$ -formulas where all variables that have free or bounded occurrences in ϕ are contained in $\{x_1, \dots, x_k\}$. The goal is now to identify *finitely many* subformulas ϕ_i such that the truth value of ϕ under each \mathcal{A} - and \mathcal{B} -interpretation just depends on the truth values of these ϕ_i 's.

• For each $\overline{\alpha} \in A^k$ where $(\mathcal{A}, \overline{\alpha}) \models \varphi$ there exists an index $\mathfrak{i}(\overline{\alpha}) \in I$ such that:

$$(\mathcal{A}, \overline{\mathfrak{a}}) \models \phi_{\mathfrak{i}(\overline{\mathfrak{a}})}$$

Let
$$I_{\mathcal{A}} \stackrel{\text{\tiny def}}{=} \big\{ \mathfrak{i}(\overline{\alpha}) : \overline{\alpha} \in A^k \text{ s.t. } (\mathcal{A}, \overline{\alpha}) \models \varphi \big\}.$$

• Similarly, whenever $\overline{b} \in B^k$ and $(\mathfrak{B}, \overline{b}) \models \varphi$ then there is an index $j(\overline{b}) \in I$ such that:

$$(\mathfrak{B}, \overline{\mathfrak{b}}) \models \phi_{\mathfrak{j}(\overline{\mathfrak{b}})}$$

Let
$$I_{\mathcal{B}} \stackrel{\text{\tiny def}}{=} \big\{ j(\overline{b}) : \overline{b} \in B^k \text{ s.t. } (\mathcal{B}, \overline{b}) \models \varphi \big\}.$$

As $\mathcal A$ and $\mathcal B$ are finite, the index-sets $I_{\mathcal A}$ and $I_{\mathcal B}$ are finite subsets of I. We define

$$\widetilde{\varphi} \ \stackrel{\text{\tiny def}}{=} \ \bigvee_{i \in I_{\mathcal{A}} \cup I_{\mathcal{B}}} \widetilde{\varphi}_i$$

Since $I_{\mathcal{A}}$ and $I_{\mathcal{B}}$ are finite and the $\widetilde{\varphi}_i$'s are $FOL^{\leqslant k}$ -formulas, $\widetilde{\varphi}$ is a $FOL^{\leqslant k}$ -formula. Let us check that conditions (1), (2) and (3) hold for $\widetilde{\varphi}$. Condition (1) is obvious. We check condition (2). The proof for (3) is analogous. Let $\overline{\alpha} \in A^k$.

• Suppose first that $(A, \overline{a}) \models \phi$. Then, there is an index $i \in I_A$ with $i = i(\overline{a})$ and

$$(\mathcal{A}, \overline{\mathfrak{a}}) \models \phi_{\mathfrak{i}(\overline{\mathfrak{a}})}.$$

The induction hypothesis yields that $(\mathcal{A},\overline{\alpha})\models\widetilde{\varphi}_{i(\overline{\alpha})}.$ But then

$$(\mathcal{A}, \overline{\mathfrak{a}}) \models \widetilde{\phi} = ... \vee \widetilde{\phi}_{i(\overline{\mathfrak{a}})} \vee ...$$

• Suppose that $(\mathcal{A}, \overline{a}) \models \widetilde{\varphi}$. Then, $(\mathcal{A}, \overline{a}) \models \widetilde{\varphi}_i$ for some index $i \in I_{\mathcal{A}} \cup I_{\mathcal{B}}$. The induction hypothesis yields:

$$(\mathcal{A}, \overline{\mathfrak{a}}) \models \phi_{i}$$

But then $(A, \overline{a}) \models \phi$.

By assumption (a), \mathcal{A} and \mathcal{B} satisfy the same $FOL^{\leqslant k}$ -sentences. Let φ be an arbitrary $FOL^{\leqslant k}(\bigwedge)$ -sentence. We regard the $FOL^{\leqslant k}$ -formula $\widetilde{\varphi}$ such that (1), (2) and (3) hold. Then, $\widetilde{\varphi}$ is a $FOL^{\leqslant k}$ -sentence (by condition (1)). Since \mathcal{A} and \mathcal{B} yield the same truth value for $\widetilde{\varphi}$, conditions (2) and (3) yield:

$$A \models \phi$$
 iff $A \models \widetilde{\phi}$ iff $B \models \widetilde{\phi}$ iff $B \models \phi$

Thus, \mathcal{A} and \mathcal{B} fulfill the same $FOL^{\leqslant k}(\bigwedge)$ -sentences.

1.7.2 Infinite quantification

We now consider two extensions of FOL with existential quantifiers stating the existence of infinitely or uncountably many elements with a certain property.

We first consider the logic $FOL(\stackrel{\infty}{\exists})$ which extends FOL by formulas of the form

$$\stackrel{\infty}{\exists} x.\phi$$

stating that there exist infinitely many x such that ϕ holds. Thus, the abstract syntax of FOL($\stackrel{\infty}{\exists}$) is given by:

$$\varphi \ ::= \ \textit{true} \ \big| \ P(t_1, \dots, t_n) \ \big| \ t_1 = t_2 \ \big| \ \neg \varphi \ \big| \ \varphi_1 \wedge \varphi_2 \ \big| \ \forall x. \varphi \ \big| \ \stackrel{\infty}{\exists} x. \varphi$$

Structures and interpretations and the satisfaction relation \models for the FOL-fragment of FOL($\stackrel{\circ}{\exists}$) are defined as for standard FOL. The semantics of the new operator is given by:

$$(\mathcal{A},\mathcal{V}) \models \overset{\infty}{\exists} x. \varphi \quad \text{ iff } \quad \text{there exists infinitely many } \alpha \in A \text{ with } (\mathcal{A},\mathcal{V}[x:=\alpha]) \models \varphi$$

$$\text{ iff } \quad \text{the set } \big\{ \ \alpha \in A : (\mathcal{A},\mathcal{V}[x:=\alpha]) \models \varphi \ \big\} \text{ is infinite}$$

where A is the domain of \mathcal{A} . The dual quantifier $\overset{\infty}{\forall} x. \varphi \overset{\text{def}}{=} \neg \overset{\infty}{\exists} x. \neg \varphi$ states that φ holds *for almost all* x, i.e., for all but finitely many x:

$$\begin{split} (\mathcal{A},\mathcal{V}) \; &\models \; \stackrel{\infty}{\forall} x. \varphi \quad \text{ iff } \quad (\mathcal{A},\mathcal{V}) \; \not\models \; \stackrel{\infty}{\exists} x. \neg \varphi \\ &\quad \text{ iff } \quad \text{ the set } \left\{ \alpha \in A : (\mathcal{A},\mathcal{V}[x := \alpha]) \models \neg \varphi \right\} \text{ is finite} \\ &\quad \text{ iff } \quad \text{ the set } \left\{ \alpha \in A : (\mathcal{A},\mathcal{V}[x := \alpha]) \not\models \varphi \right\} \text{ is finite} \end{split}$$

For example, we have:

$$(\mathbb{N}, \leqslant) \models \forall x \stackrel{\infty}{\exists} y. \ x < y$$
$$(\mathbb{N}, \leqslant) \models \forall x \stackrel{\infty}{\forall} y. \ x < y$$

Note that $\forall x \ \exists y. \ x < y$ holds for the natural numbers, since for each $n \in \mathbb{N}$ the set $\{m \in \mathbb{N} : n < m\}$ is infinite. The second formula holds as for each natural number n, almost all natural numbers m are larger than n.

The compactness property does not hold for $FOL(\stackrel{\infty}{\exists})$ since

$$\phi_{\text{fin}} \stackrel{\text{def}}{=} \neg \stackrel{\infty}{\exists} x. \text{ true } \equiv \stackrel{\infty}{\forall} x. \text{ false}$$

characterizes the finite structures. Thus, the set $\left\{ \varphi_{fin} \right\} \cup \left\{ \psi_n : n \geqslant 2 \right\}$ is finitely satisfiable, but not satisfiable. Here, the ψ_n 's are FOL-formulas that characterize structures with n or more elements (see e.g. the proof of Theorem 1.7.6 on page 120).

The existence of a $FOL(\stackrel{\infty}{\exists})$ -sentence φ_{fin} that holds exactly for the finite structures also yields that the upward Löwenheim-Skolem theorem "from finite to infinite models" (cf. Theorem 1.5.2 on page 72) does not hold for $FOL(\stackrel{\infty}{\exists})$. Note that for each $n \in \mathbb{N}$, $n \geqslant 1$, φ_{fin} has a finite model \mathcal{A}_n with n elements, but there is no infinite model for φ_{fin} .

The other part of the upward Löwenheim-Skolem theorem ("from infinite to larger models", cf. Theorem 1.5.4 on page 73) is violated by $FOL(\tilde{\exists})$ too. To see this, we show that the natural numbers with the natural order have a characterization in $FOL(\tilde{\exists})$:

Example 1.7.10 (FOL($\stackrel{\cong}{\exists}$)-characterization of the ordered natural numbers). We regard the structure (\mathbb{N}, \leqslant) and provide a FOL($\stackrel{\cong}{\exists}$)-sentence φ_{nat} over the vocabulary consisting of a binary predicate symbol \sqsubseteq such that φ_{nat} holds exactly for the structures that are isomorphic to (\mathbb{N}, \leqslant) . As usual we write $x \sqsubseteq y$ for $x \neq z \land x \sqsubseteq y$. Let

$$\phi_{\text{nat}} \stackrel{\text{def}}{=} \psi_{\text{LO}} \wedge \psi_1 \wedge \psi_2$$

where ψ_{LO} is a FOL-sentence that formalizes the conditions of linear orders (see Definition 1.4.13 on page 53) and where ψ_1 and ψ_2 are the following sentences:

$$\begin{array}{ccc} \psi_1 & \stackrel{\scriptscriptstyle def}{=} & \forall x \stackrel{\infty}{\forall} y. \ x \sqsubseteq y \\ \psi_2 & \stackrel{\scriptscriptstyle def}{=} & \forall x \exists y. \ x \sqsubseteq y \end{array}$$

Sentence ψ_1 asserts that for each element x almost all elements y are larger than x, i.e., the number of elements y with $y \le x$ is finite. Note that:

$$\begin{array}{ccc} (\mathbb{N},\leqslant,[x:=n]) & \models & \overset{\infty}{\forall}y. \ x \sqsubseteq y \\ \\ \text{iff} & (\mathbb{N},\leqslant,[x:=n]) & \not\models & \overset{\infty}{\exists}y. \ \neg(x\sqsubseteq y) \\ \\ \text{iff} & (\mathbb{N},\leqslant,[x:=n]) & \not\models & \overset{\infty}{\exists}y. \ y\sqsubseteq x \\ \\ \text{iff} & \left\{m\in\mathbb{N}:m\leqslant n\right\} \text{ is finite} \end{array}$$

The latter certainly holds for all natural numbers n. Thus, $(\mathbb{N}, \leq) \models \psi_1$. Sentence ψ_2 formalizes the condition that there are no maximal elements. Clearly, we have $(\mathbb{N}, \leq) \models \psi_2$ and therefore:

$$(\mathbb{N}, \leqslant) \models \varphi_{\text{nat}}$$

Suppose now that $\mathcal{A}=(A,\sqsubseteq)$ is a model for φ_{nat} . The goal is to show that \mathcal{A} is isomorphic to (\mathbb{N},\leqslant) . As $\mathcal{A}\models\psi_{LO}\wedge\psi_2$, \mathcal{A} is a linear order without maximal elements. In particular, A

must be infinite. As $A \models \psi_1$, for each element $a \in A$ the downward-closure of a, i.e., the set $A \downarrow a = \{b \in A : b \sqsubseteq a\}$, is finite. Let

$$rank(a) \stackrel{\text{def}}{=} |A \downarrow a|$$

If $a, b \in A$ and $a \sqsubseteq b$ then $A \downarrow a$ is a proper subset of $A \downarrow b$, and therefore rank(a) < rank(b). As every two elements in A are comparable via \sqsubseteq we get for all $a, b \in A$:

$$a \sqsubset b$$
 iff $rank(a) < rank(b)$
 $a = b$ iff $rank(a) = rank(b)$

Thus, the rank function $rank : A \to \mathbb{N}$ is injective and a homomorphism. It is also surjective.

Let us see why. Since A is infinite, for each $n \in \mathbb{N}$ there is an element $a \in A$ with rank $\geqslant n$. Given an element $a \in A$ of rank n then, for each $m \in \mathbb{N}$ where m < n, there is an element of rank m. To see this, we regard the strictly increasing sequence a_1, a_2, \ldots, a_n of the elements in $A \downarrow a$ and then take the m-th element a_m of this sequence. Hence, for each $n \in \mathbb{N}$ there exists a unique element $a_n \in A$ with $rank(a_n) = n$.

Hence, the rank function is an isomorphism from \mathcal{A} to the ordered natural numbers. This example shows that there is a $FOL(\stackrel{\infty}{\exists})$ -sentence φ that is satisfiable over some infinite structure, but all models for φ are countable. Thus, the upward Löwenheim-Skolem theorem "from infinite to larger models" does not hold.

The above results show that $FOL(\stackrel{\infty}{\exists})$ violates the compactness property and the upward Löwenheim-Skolem theorems (both versions "from finite to infinite models" and "from infinite to larger models").

However, the downward Löwenheim-Skolem theorem holds for $FOL(\stackrel{\infty}{\exists})$, since it lies between FOL and $FOL(\bigwedge)$, and the latter provides countable models for satisfiable sentences (see Theorem 1.7.8).

Theorem 1.7.11 (Embedding of FOL($\stackrel{\sim}{\exists}$) into FOL($\stackrel{\sim}{\land}$)). For each FOL($\stackrel{\sim}{\exists}$)-formula φ there exists a FOL($\stackrel{\sim}{\land}$)-formula φ over the same vocabulary such that φ and φ have the same models.

Proof. We provide a transformation $\phi \mapsto \overline{\phi}$ which assigns to each $FOL(\overset{\infty}{\exists})$ -formula ϕ a $FOL(\bigwedge)$ -formula $\overline{\phi}$ with the same predicate and function symbols and the same free variables and such that ϕ and $\overline{\phi}$ have the same models. The definition of $\overline{\phi}$ is by structural induction:

$$\begin{array}{ll} \overline{\varphi} & \stackrel{\mathrm{def}}{=} & \varphi & \mathrm{if} \ \varphi = \mathit{true} \ \mathrm{or} \ \varphi \ \mathrm{is} \ \mathrm{an} \ \mathrm{atomic} \ \mathrm{formula} \\ \\ \overline{\neg \varphi} & \stackrel{\mathrm{def}}{=} & \neg \overline{\varphi} \\ \\ \overline{\varphi_1 \wedge \varphi_2} & \stackrel{\mathrm{def}}{=} & \overline{\varphi_1} \wedge \overline{\varphi_2} \\ \\ \overline{\forall x. \varphi} & \stackrel{\mathrm{def}}{=} & \forall x. \overline{\varphi} \\ \\ \overline{\overset{\alpha}{\exists}} x. \varphi & \stackrel{\mathrm{def}}{=} & \bigwedge_{n \geqslant 1} \exists x_1 \ldots \exists x_n. \left(\overline{\varphi}[x/x_1] \wedge \ldots \overline{\varphi}[x/x_n] \wedge \bigwedge_{1 \leqslant i < j \leqslant n} x_i \neq x_j \right) \\ & \text{where} \ x_1, x_2, \ldots \ \mathrm{is} \ \mathrm{a} \ \mathrm{sequence} \ \mathrm{of} \ \mathrm{pairwise} \ \mathrm{distinct} \ \mathrm{fresh} \ \mathrm{variables}. \end{array}$$

It is now easy to see that $\mathfrak{I}\models\varphi$ iff $\mathfrak{I}\models\overline{\varphi}$ for all interpretations $\mathfrak{I}.$

The combination of Theorem 1.7.11 and Theorem 1.7.8 (page 122) yields:

Theorem 1.7.12 (Downward Löwenheim-Skolem Theorem for FOL($\stackrel{\sim}{\exists}$). Each satisfiable FOL($\stackrel{\sim}{\exists}$)-sentence has a countable (possibly finite) model.