# Элементарная теория кривых второго порядка. Парабола

Лекция 3

## Парабола

**Определение.** Парабола — геометрическое место точек, для каждой из которых расстояние r до некоторой фиксированной точки, называемой фокусом F, равно расстоянию d до некоторой прямой, называемой директрисой (рис. 1).



Фокус параболы обозначается буквой F, а расстояние от фокуса до директрисы — p. Число p называется napamempom параболы (p>0).



Если M — произвольная точка параболы, то по определению имеет место равенство

$$d(M, F) = d(M, A). \tag{1}$$

Для вывода канонического уравнения параболы выберем декартовую систему координат. Пусть ось абсцисс направлена перпендикулярно директрисе d, задаваемой уравнением  $\chi = -\frac{p}{2}$  в сторону фокуса

$$F\left(\frac{p}{2};0\right)$$



$$d(M, F) = d(M, A). \quad (1)$$

Пусть M(x, y) – произвольная точка параболь

Тогда 
$$d(M,F) = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} ,$$
 
$$d(M,A) = x + \frac{p}{2} .$$

$$d(M, F) = d(M, A). \tag{1}$$

Из условия (1) следует уравнение параболы

$$x + \frac{p}{2} = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}$$

Для приведения его к каноническому виду нужно возвести обе части равенства в квадрат. После упрощения получаем

$$y^2 = 2px. (2)$$

**Определение.** Уравнение (2) называется каноническим уравнением параболы. **Определение.** Величина *р* называется *параметром* параболы. Она характеризует величину так называемого фокального радиуса, т.е. ординаты точки параболы. Та из парабол имеет наибольший фокальный радиус, которая имеет большую величину параметра *p*.



## Форма параболы

$$y^2=2px$$

Из уравнения параболы видно, что кривая симметрична относительно оси  $O_X$  и проходит через начало координат.

Для ее ветви в верхней полуплоскости при  $y \ge 0$ , уравнение относительно y:

$$y = \sqrt{2px} \quad (0 \le x < \infty),$$

из которого следует, что когда x возрастает на полуинтервале

 $[0, +\infty)$ , ордината y возрастает от 0 до  $+\infty$ .



Определение. Осью параболы называется ее ось симметрии. Определение. Вершиной параболы называется точка пересечения параболы с ее осью симметрии.

Парабола, симметричная относительно оси Ox, проходящая через начало координат с фокусом в точке  $F\left(-\frac{p}{2};0\right)$ , имеет уравнение

$$y^2 = -2px$$
, изображена на рис.:



Парабола, симметричная относительно оси Oy, проходящая через начало координат с фокусом в точке  $F\left(0,\frac{p}{2}\right)$ , имеет уравнение  $x^2=2py$ ,

изображена на рис.:



Парабола, симметричная относительно оси Oy, проходящая через начало координат с фокусом в точке  $F\left(0,-\frac{p}{2}\right)$ , имеет уравнение  $x^2=-2\,py$ , изображена на рис.:



**Пример.** Составить уравнение параболы с вершиной в начале координат при условии F(3; 0) и найти уравнение директрисы. Pemenue:

Фокус параболы лежит на положительной полуоси OX, следовательно, уравнение параболы имеет вид  $y^2 = 2px$ .

Так как координаты фокуса  $F\left(\frac{p}{2};0\right)$ , то  $\frac{p}{2}=3$ , откуда p=6.

Искомое уравнение параболы  $y^2 = 12x$ . Уравнение директрисы

$$x = -\frac{p}{2}$$
;  $x = -3$ .



## Свойства параболы

Директориальное свойство параболы: парабола есть геометрическое место точек, отношение расстояния от которых до данной точки (фокуса) к расстоянию до данной прямой (директрисы) постоянно и равно единице.

Оптическое свойство параболы: касательная в любой точке параболы образует равные углы с фокальным радиусом точки касания и положительным направлением оси абсцисс.





Это свойство означает, что луч света, вышедший из фокуса F, отразившись от параболы, дальше пойдет параллельно оси этой параболы. И наоборот, все лучи, приходящие из бесконечности и параллельные оси параболы, сойдутся в ее фокусе. Это свойство широко используется в технике. В прожекторах обычно ставят зеркало, поверхность которого получается при вращении параболы вокруг ее оси симметрии (параболическое зеркало). Источник света в прожекторах помещают в фокусе параболы. В результате прожектор дает пучок почти параллельных лучей света. Это же свойство используется и в приемных антеннах космической связи и в зеркалах телескопов, которые собирают поток параллельных лучей радиоволн или поток параллельных лучей света и концентрируют его в фокусе зеркала.

## Оптическое свойство эллипса, гиперболы и параболы



Получаем:  $\alpha = \beta$  .С физической точки зрения это означает:

- Если источник света находится в одном из фокусов эллиптического зеркала, то лучи его, отразившись от зеркала, собираются в другом фокусе.
- Если источник света находится в одном из фокусов гиперболического зеркала, то лучи его, отразившись от зеркала, идут далее так, как если бы они исходили из другого фокуса.
- 3) Если источник света находится в фокусе параболического зеркала, то лучи его, отразившись от зеркала, идут далее

### Касательная к параболе

Пусть парабола задана уравнением  $y^2 = 2px$  и точка M(x0, y0) лежит на ней. Угловой коэффициент k касательной к данной параболе определяется по формуле  $k = \frac{p}{x}$ .

Уравнение касательной к параболе в точке M будет

$$y - y_0 = \frac{p}{y_0} (x - x_0)$$
 или  $yy_0 - y_0^2 = p(x - x_0)$ . (3)

Поскольку точка M лежит на параболе, то

$$y_0^2 = 2px_0$$
.

Поэтому, подставив данное выражение в (3) вместо  $y_0^2$ , получим уравнение касательной к параболе  $y^2 = 2px$  в точке M(x0, y0):

$$yy_0 = p(x + x_0). (4)$$

## Различные положения параболы

Уравнение параболы с вершиной в точке  $O'(x_0, y_0)$ :

$$(y-y_0)^2 = \pm 2p(x-x_0)$$
, ось симметрии параллельна *Ox*;

$$(x - x_0)^2 = \pm 2p(y - y_0)$$
, ось симметрии параллельна *Oy*.

Так, например, на рисунке изображена парабола  $(y-2)^2 = 4(x-3)$ .



**Пример**. Составить уравнение параболы с вершиной в начале координат при следующих условиях и найти недостающие параметры (уравнения директрис, фокусы):

- 1) парабола симметрична относительно оси OY и проходит через точку A (4; 2);
- 2) парабола симметрична относительно оси OX и проходит через точку  $A(-3; -\sqrt{6})$ .

### Решение:

1. Парабола симметрична относительно оси OY, ветви ее направлены вверх, следовательно, ее уравнение имеет вид  $x^2 = 2py$ .



Подставив в это уравнение координаты точки A (4; 2), находим  $16 = 2 \cdot 2p$ , откуда p = 4.

Искомое уравнение параболы:  $x^2 = 8y$ .

Уравнение директрисы:  $y = -\frac{p}{2}$ ; y = -2.

Фокус:  $F(0; \frac{p}{2})$ , т. е. F(0; 2).

2. Парабола симметрична относительно оси OX и проходит через точку  $A(-3; -2\sqrt{3})$ .



Парабола симметрична относительно оси OX, ветви ее направлены влево, следовательно, ее уравнение имеет вид  $y^2 = -2px$ . Подставив в это уравнение координаты точки A, находим  $12 = 2 \cdot 3p$ , откуда p = 2.

Искомое уравнение параболы:  $y^2 = -4x$ .

Уравнение директрисы:  $x = \frac{p}{2}$ ; x = 1.

Фокус:  $F(-\frac{p}{2}; 0)$ , т. е. F(-1; 0).

**Пример** На параболе  $y^2 = 8x$  найти точку, расстояние которой от фокуса параболы равно 20.

#### Решение:

Из канонического уравнения параболы получим, что параметр параболы равен 4. Следовательно, фокус параболы совпадает с точкой  $F\left(2;\,0\right)$ .

Пусть искомая точка M параболы имеет координаты x и y. Тогда по условию задачи имеем

$$(x-2)^2 + y^2 = 400.$$

Итак, искомые точки есть точки пересечения полученной окружности и данной параболы. Решая совместно уравнение окружности с уравнением параболы, получим квадратное уравнение относительно x:

$$x^2 + 4x - 396 = 0$$
.

Корни уравнения равны  $x_1 = 18$ ,  $x_2 = -22$ . Очевидно, что второй корень не подходит, т. к. должно быть  $x \ge 0$ . Подставляя значение первого корня в уравнение параболы, получим уравнение  $y^2 = 144$ , откуда  $y_1 = 12$ ,  $y_2 = -12$ .

Таким образом, искомые точки, лежащие на параболе, имеют координаты (18; 12), (18; -12).



**Пример** Составить уравнение параболы и ее директрисы, если парабола проходит через точку пересечения прямой x + y = 0 и окружности  $x^2 + y^2 - 4x = 0$  и симметрична относительно оси OY.

Решение:

Найдем точки пересечения прямой и окружности:

$$\begin{cases} x + y = 0, & \begin{cases} x = -y, \\ x^2 + y^2 - 4x = 0; \end{cases} & \begin{cases} x = -y, \\ 2x(x - 2) = 0, \end{cases}$$

откуда точки пересечения имеют координаты O(0;0) и точка  $A\left(2;-2\right)$  .

Так как парабола проходит через O(0;0) и симметрична относительно оси OY, то ее уравнение имеет вид  $x^2=2\,py$ . Подставляя координаты точки A, находим параметр p:4=2(-2)p, откуда p=+1.

Итак, уравнение параболы —  $x^2 = -2y$ , уравнение директрисы —

$$y = \frac{1}{2}.$$



