Multilevel longitudinal network estimation using sienaBayes

principles of Bayesian inference

Johan Koskinen and T.A.B. Snijders

Department of Statistics Stockholm University

June 25, 2024

Fundamentals

Take-home points

What we need to know

- Posterior distribution is
 - ► The distribution of the unknown parameters
 - given the known data

Take-home points

What we need to know

- Posterior distribution is
 - ▶ The distribution of the unknown parameters
 - given the known data
- All uncertainty about parameters is described by the posterior distribution
 - ► The probability that the true parameter lies in the 95% Credibility interval **is** 0.95 (given observed data)
 - ➤ You may you use the posterior expected value ('average') of the parameter as your point estimate
 - ► The amount of posterior uncertainty give information in data is captured by the standard deviation of the parameter

Take-home points

What we need to know

- Posterior distribution is
 - ► The distribution of the unknown parameters
 - given the known data
- All uncertainty about parameters is described by the posterior distribution
 - ► The probability that the true parameter lies in the 95% Credibility interval **is** 0.95 (given observed data)
 - ➤ You may you use the posterior expected value ('average') of the parameter as your point estimate
 - ► The amount of posterior uncertainty give information in data is captured by the standard deviation of the parameter
- Prior distribbution
 - ▶ In order to obtain a posterior distribution you need a prior distribution
 - Different priors give different posteriors for the same data

Model

Model

We call

$$P(Data \mid \theta)$$

a model for Data when the model allocates probability to different outcomes Data we can observe, indexed by some statistical parameters θ

Model

We call

$$P(Data \mid \theta)$$

a model for Data when the model allocates probability to different outcomes Data we can observe, indexed by some statistical parameters θ

Example (ERGM)

Data are an adjacency matrix \boldsymbol{x}

$$\mathbf{x} \sim ERGM(\theta)$$
, Model: $P(\mathbf{x} \mid \theta) = e^{\theta^{\top} z(\mathbf{x}) - \psi(\theta)}$

Model

We call

$$P(Data \mid \theta)$$

a model for Data when the model allocates probability to different outcomes Data we can observe, indexed by some statistical parameters θ

Example (ERGM)

Data are an adjacency matrix \boldsymbol{x}

$$\mathbf{x} \sim ERGM(\theta)$$
, Model: $P(\mathbf{x} \mid \theta) = e^{\theta^{\top} z(\mathbf{x}) - \psi(\theta)}$

Example (SAOM)

Data are an adjacency matrix $x(t_1)$, at time t_1 , given $x(t_0)$, at time t_0

$$\mathbf{x}(t_1) \mid \mathbf{x}(t_0) \sim SAOM(\theta)$$

Inference

Given data, we aim to find parameters θ that data gives most evidence for.

Likelihood

Inference

Given data, we aim to find parameters θ that data gives most evidence for.

Likelihood

We can use the model We call

$$P(Data \mid \theta)$$

as a function of θ

const.

$$L(\theta; Data) = P(Data \mid \theta)$$

For different choices of θ , the probability $P(Data \mid \theta)$ will be different!

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$P(A, B)$$
4/10=40%=12/3

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3}$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3} \underbrace{P(B)}_{6/10}$$

but also

$$\underbrace{P(A,B)}_{4/10=40\%=20/50} =$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3} \underbrace{P(B)}_{6/10}$$

but also

$$\underbrace{P(A,B)}_{4/10=40\%=20/50} = \underbrace{P(B \mid A)}_{4/5}$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3} \underbrace{P(B)}_{6/10}$$

but also

$$\underbrace{P(A,B)}_{4/10=40\%=20/50} = \underbrace{P(B \mid A)}_{4/5} \underbrace{P(A)}_{5/10}$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3} \underbrace{P(B)}_{6/10}$$

but also

$$\underbrace{P(A,B)}_{4/10=40\%=20/50} = \underbrace{P(B \mid A)}_{4/5} \underbrace{P(A)}_{5/10}$$

We have equality

$$\underbrace{P(A \mid B)}_{\text{red given BIG}} P(B)$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

Probability of picking BIG and red sock

$$\underbrace{P(A,B)}_{4/10=40\%=12/30} = \underbrace{P(A \mid B)}_{4/6=2/3} \underbrace{P(B)}_{6/10}$$

but also

$$\underbrace{P(A,B)}_{4/10=40\%=20/50} = \underbrace{P(B \mid A)}_{4/5} \underbrace{P(A)}_{5/10}$$

We have equality

$$\underbrace{P(A \mid B)}_{\text{red given BIG}} P(B) = \underbrace{P(B \mid A)}_{\text{red given BIG}} P(A)$$

$$A = \{\text{sock red}\}, \ \sharp A = 5$$

 $B = \{\text{sock big}\}, \ \sharp B = 6$

In total 10 (single) socks

Example (Your sock drawer!)

$$A = \{\text{sock red}\}\$$

 $B = \{\text{sock big}\}\$

Since

$$\underbrace{P(A,B)}_{\text{both A \& B}} = P(A \mid B)P(B) = P(B \mid A)P(A)$$

we can write red given BIG

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

in terms of BIG given red

Bayes theorem

$$P(A \mid B) =$$

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where we see that P(B) does not depend on A.

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where we see that P(B) does not depend on A. In terms of our model, $P(Data \mid \theta)$

$$P(\theta \mid Data) = \underbrace{\frac{P(Data \mid \theta)}{P(Data \mid \theta)} \underbrace{\pi(\theta)}_{constant}}^{L(\theta; Data)}$$

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where we see that P(B) does not depend on A. In terms of our model, $P(Data \mid \theta)$

$$P(\theta \mid Data) = \underbrace{\frac{P(Data \mid \theta)}{P(Data \mid \theta)} \underbrace{\pi(\theta)}_{constant}}^{L(\theta; Data)} \propto L(\theta; Data)\pi(\theta)$$

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where we see that P(B) does not depend on A. In terms of our model, $P(Data \mid \theta)$

$$P(\theta \mid Data) = \underbrace{\frac{P(Data \mid \theta)}{P(Data \mid \theta)} \underbrace{\pi(\theta)}_{constant}}^{L(\theta; Data)} \propto L(\theta; Data)\pi(\theta)$$

Ergo, the 'probability' for each θ is the likelihood weighted by the a priori 'probability'

Example (Posterior distribution for p in Bernoulli graph)

Assume $\mathbf{x} \sim BG(p, n = 5)$, i.e. independently for each i < j, $X_{ij} \sim Bern(p)$.

Example (Posterior distribution for p in Bernoulli graph)

Assume $\mathbf{x} \sim BG(p, n = 5)$, i.e. independently for each i < j, $X_{ii} \sim Bern(p)$.

We observe: $y = \sum_{i < j} x_{ij} = 2$.

Likelihood :
$$L(p; \mathbf{x}) = p^2 (1 - p)^{10-2}$$

With $p \sim Beta(\alpha, \beta)$ prior

Prior :
$$\pi(p) = cp^{\alpha - 1}(1 - p)^{\beta - 1}$$

the posterior is $Beta(\alpha^*, \beta^*)$

$$\pi(p \mid \mathbf{x}) \propto L(p; \mathbf{x}) \pi(p) \propto p^{\alpha^*-1} (1-p)^{\beta^*-1}$$

where $\alpha^* = \alpha + 2$ and $\beta^* = \beta + 8$

4 □ ▷ ◆ □ ▷ ◆ 필 ▷ ▼ 필 ▷ 오○

Example (Posterior distribution for p in Bernoulli graph (A))

$$p^{2-1}(1-p)^{2-1}$$

Prior

Example (Posterior distribution for p in Bernoulli graph (A))

$$p^{2-1}(1-p)^{2-1}$$

Prior

$$p^2(1-p)^8$$

× Likelihood

Example (Posterior distribution for p in Bernoulli graph (A))

Example (Posterior distribution for p in Bernoulli graph (B))

$$p^{4-1}(1-p)^{2-1}$$

Prior

Example (Posterior distribution for p in Bernoulli graph (B))

$$p^{4-1}(1-p)^{2-1}$$

Prior

× Likelihood

Example (Posterior distribution for p in Bernoulli graph (B))

Posterior summaries

The posterior distribution of our parameters given data

$$P(\theta \mid Data)$$

fully describes our uncertainty about the parameters given our observed data

Posterior summaries

The posterior distribution of our parameters given data

$$P(\theta \mid Data)$$

fully describes our uncertainty about the parameters given our observed data

We can summarise these using the expected values

$$\hat{\theta} = E(\theta \mid Data)$$

as point estimates,

Posterior summaries

The posterior distribution of our parameters given data

$$P(\theta \mid Data)$$

fully describes our uncertainty about the parameters given our observed data

We can summarise these using the expected values

$$\hat{\theta} = E(\theta \mid Data)$$

as point estimates, and standard deviations

$$SD(\theta \mid Data) = \sqrt{E[(\theta - E(\theta \mid Data))^2 \mid Data]}$$

as measures of uncertainty

12/35

Koskinen INSNA XLIV June 25, 2024

Example (Posterior distribution for p in Bernoulli graph)

Assume $\mathbf{x} \sim BG(p, n = 5)$, i.e. independently for each i < j, $X_{ij} \sim Bern(p)$.

Posterior of tie-probability in Bernoulli graph

Example (Posterior distribution for p in Bernoulli graph)

Assume $x \sim BG(p, n = 5)$, i.e. independently for each i < j, $X_{ij} \sim Bern(p)$.

We observe $y = \sum_{i < j} x_{ij} = 2$ and use $p \sim Beta(\alpha, \beta)$ prior \Rightarrow the posterior is $Beta(\alpha^*, \beta^*)$, where $\alpha^* = \alpha + 2$ and $\beta^* = \beta + 8$

$$\hat{ heta} = extstyle E(heta \mid extstyle Data) = rac{lpha^*}{lpha^* + eta^*}$$
 , point estimate

4 D > 4 B > 4 E > 4 E > E 990

Koskinen INSNA XLIV June 25, 2024 13 / 35

Posterior of tie-probability in Bernoulli graph

Example (Posterior distribution for p in Bernoulli graph)

Assume $x \sim BG(p, n = 5)$, i.e. independently for each i < j, $X_{ii} \sim Bern(p)$.

We observe $y = \sum_{i < j} x_{ij} = 2$ and use $p \sim Beta(\alpha, \beta)$ prior \Rightarrow the posterior is Beta(α^*, β^*), where $\alpha^* = \alpha + 2$ and $\beta^* = \beta + 8$

$$\hat{ heta} = extstyle E(heta \mid extstyle Data) = rac{lpha^*}{lpha^* + eta^*}$$
 , point estimate

and

$$SD(\theta \mid Data) = \sqrt{rac{lpha^*eta^*}{(lpha^*+eta^*)^2(lpha^*+eta^*+1)}}$$
 , uncertainty

and with $\alpha = \beta = 2$ a rough 95% credibility interval

$$\hat{\theta} \pm 2SD(\theta \mid Data) = \frac{2}{7} \pm 2 \times 0.12 \Rightarrow (0.052, 0.519)$$

Koskinen **INSNA XLIV** June 25, 2024 13 / 35

Posterior for parameters in SAOM

For

$$\mathbf{x}(t_1) \mid \mathbf{x}(t_0) \sim SAOM(\theta)$$

we cannot obtain the posterior distribution

$$\pi(\theta \mid \mathbf{x}(t_1), \mathbf{x}(t_0))$$

so easily

Posterior for parameters in SAOM

For

$$\mathbf{x}(t_1) \mid \mathbf{x}(t_0) \sim SAOM(\theta)$$

we cannot obtain the posterior distribution

$$\pi(\theta \mid \boldsymbol{x}(t_1), \boldsymbol{x}(t_0))$$

so easily

Using Markov chain Monte Carlo (MCMC) we can simulate/draw from the posterior

$$\theta^0, \theta^1, \ldots, \theta^M \overset{approx.iid}{\sim} \pi(\theta \mid \boldsymbol{x}(t_1), \boldsymbol{x}(t_0))$$

Koskinen INSNA XLIV June 25, 2024

Convergence of MCMC to target distribution $\pi(\theta \mid Data)$

Koskinen **INSNA XLIV** June 25, 2024 15 / 35

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$.

16/35

Koskinen INSNA XLIV June 25, 2024

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$. With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

Koskinen INSNA XLIV June 25, 2024 16 / 35

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$.

With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

MCMC: iteratively update by

Koskinen INSNA XLIV June 25, 2024 16 / 35

For Previous example $x \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$.

With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

MCMC: iteratively update by

(a) update θ to $\theta^* = \theta + U$

16/35

Koskinen INSNA XLIV June 25, 2024

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$.

With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

MCMC: iteratively update by

- (a) update θ to $\theta^* = \theta + U$
- (b) U is uniform on (-steplength, steplength)

Koskinen INSNA XLIV June 25, 2024 16 / 35

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ij} = 16$. With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

MCMC: iteratively update by

- (a) update θ to $\theta^* = \theta + U$
- (b) *U* is uniform on (-steplength, steplength)
- (c) accept move with probability:

$$\frac{\pi(\theta^* \mid \mathbf{x})}{\pi(\theta \mid \mathbf{x})} = \frac{\theta^{*L+\alpha-1}(1-\theta^*)^{M-L+\beta-1}}{\theta^{L+\alpha-1}(1-\theta)^{M-L+\beta-1}}$$

or 1 if
$$\pi(\theta^* \mid \boldsymbol{x})/\pi(\theta \mid \boldsymbol{x}) > 0$$

16/35

Koskinen INSNA XLIV June 25, 2024

For Previous example $\mathbf{x} \sim Bern(\theta)$, where n = 16 and $L = \sum x_{ii} = 16$. With $\theta \sim Beta(1,1)$, we know $\theta \mid \mathbf{x} \sim Beta(16,120)$

MCMC: iteratively update by

- (a) update θ to $\theta^* = \theta + U$
- (b) U is uniform on (-steplength, steplength)
- (c) accept move with probability:

$$\frac{\pi(\theta^* \mid \mathbf{x})}{\pi(\theta \mid \mathbf{x})} = \frac{\theta^{*L+\alpha-1}(1-\theta^*)^{M-L+\beta-1}}{\theta^{L+\alpha-1}(1-\theta)^{M-L+\beta-1}}$$

or 1 if
$$\pi(\theta^* \mid \boldsymbol{x})/\pi(\theta \mid \boldsymbol{x}) > 0$$

(d) starting in $\theta = 1$

16/35

Koskinen INSNA XLIV June 25, 2024

Figure: Steplength: 0.001 too small

Koskinen INSNA XLIV June 25, 2024 17 / 35

Figure: Steplength: 0.01 still too small

Figure: Steplength: 0.1 looking quite good

 Koskinen
 INSNA XLIV
 June 25, 2024
 19 / 35

Figure: Steplength: 0.5 maybe too large

Koskinen INSNA XLIV June 25, 2024 20 / 35

Converged to draws from the *same* distribution?

June 25, 2024

Converged to draws from the *same* distribution?

Converged to draws from the *same* distribution?

Chain-rule of probability

Chain-rule of probability

We can define a model observable Data given unobservable variables \boldsymbol{y}

$$P(Data \mid \mathbf{y})$$

Chain-rule of probability

We can define a model observable Data given unobservable variables y

$$P(Data \mid \mathbf{y})$$

and define a distribution for ${m y}$ given some parameter ${m heta}$

$$P(\mathbf{y} \mid \theta)$$

Chain-rule of probability

We can define a model observable Data given unobservable variables y

$$P(Data \mid \mathbf{y})$$

and define a distribution for ${\bf y}$ given some parameter θ

$$P(\mathbf{y} \mid \theta)$$

which gives a joint distribution (chain-rule)

$$P(Data, \mathbf{y}, \theta) = P(Data \mid \mathbf{y})P(\mathbf{y} \mid \theta)\pi(\theta)$$

Chain-rule of probability

We can define a model observable Data given unobservable variables y

$$P(Data \mid y)$$

and define a distribution for ${\bf y}$ given some parameter θ

$$P(\mathbf{y} \mid \theta)$$

which gives a joint distribution (chain-rule)

$$P(Data, \mathbf{y}, \theta) = P(Data \mid \mathbf{y})P(\mathbf{y} \mid \theta)\pi(\theta)$$

The posterior distribution for θ is

$$\pi(\theta \mid Data) = \frac{\int P(Data \mid \mathbf{y})P(\mathbf{y} \mid \theta)\pi(\theta)d\mathbf{y}}{\int \int P(Data \mid \mathbf{y})P(\mathbf{y} \mid \theta)\pi(\theta)d\mathbf{y}d\theta}$$

Koskinen INSNA XLIV June 25, 2024 24 / 35

Example (Hierarchial SAOM)

Data for group j an adjacency matrix $\mathbf{x}^{[j]}(t_1)$, at time t_1 , given $\mathbf{x}^{[j]}(t_0)$, at time t_0

$$\mathbf{x}^{[j]}(t_1) \mid \mathbf{x}^{[j]}(t_0) \sim SAOM(\theta_j)$$

and

$$\theta_j \sim \mathcal{N}(\mu, \Sigma)$$

Interpretation: For a value on the unknown parameter μ (and Σ), we draw some unknown value θ_j , and then generate data from $\sim SAOM(\theta_j)$.

Example (Hierarchial SAOM)

Data for group j an adjacency matrix $\mathbf{x}^{[j]}(t_1)$, at time t_1 , given $\mathbf{x}^{[j]}(t_0)$, at time t_0

$$\mathbf{x}^{[j]}(t_1) \mid \mathbf{x}^{[j]}(t_0) \sim SAOM(\theta_j)$$

and

$$\theta_j \sim \mathcal{N}(\mu, \Sigma)$$

Interpretation: For a value on the unknown parameter μ (and Σ), we draw some unknown value θ_j , and then generate data from $\sim SAOM(\theta_j)$.

Aim: Find the 'true' value on μ

Koskinen INSNA XLIV June 25, 2024 25 / 35

groups:
$$g = 1, \dots, G$$

Koskinen INSNA XLIV June 25, 2024 26 / 35

'population' parameters

Final Tips

Koskinen

No - not everyone knows as much as Tom

Koskinen INSNA XLIV June 25, 2024 31 / 35

No - not everyone knows as much as Tom

31 / 35

Koskinen INSNA XLIV June 25, 2024

No - not everyone knows as much as Tom Thought experiment:

Koskinen INSNA XLIV June 25, 2024 31/35

No - not everyone knows as much as Tom

Thought experiment: Sarah and Peter analyse the same data set

31 / 35

Koskinen INSNA XLIV June 25, 2024

No - not everyone knows as much as Tom

Thought experiment: Sarah and Peter analyse the same data set Sarah uses the sarah-prior

No - not everyone knows as much as Tom

Thought experiment:
Sarah and Peter analyse the same data set
Sarah uses the sarah-prior
Peter uses the pete-prior.

No - not everyone knows as much as Tom

Thought experiment: Sarah and Peter analyse the same data set

Sarah uses the sarah-prior

Peter uses the pete-prior.

Sarah and Peter arrive at different conclusions'

31 / 35

No - not everyone knows as much as Tom

Thought experiment: Sarah and Peter analyse the same data set

Sarah uses the sarah-prior

Peter uses the pete-prior.

Sarah and Peter arrive at different conclusions'

Who is right?

31 / 35

No - not everyone knows as much as Tom Possible default priors:

a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)

32 / 35

No - not everyone knows as much as Tom Possible default priors:

- a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)
- b null: absolutely NO prior information

No - not everyone knows as much as Tom Possible default priors:

- a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)
- b null: absolutely NO prior information
- c density-dependent: a little like Tom's heterodox approach:
 - ightharpoonup if \bar{x} is the average degree of the *first* observation

No - not everyone knows as much as Tom Possible default priors:

- a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)
- b null: absolutely NO prior information
- c density-dependent: a little like Tom's heterodox approach:
 - ightharpoonup if \bar{x} is the average degree of the *first* observation
 - $\mu_{den} = \log \frac{\bar{x}}{(n-1-\bar{x})}$

No - not everyone knows as much as Tom Possible default priors:

- a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)
- b null: absolutely NO prior information
- c density-dependent: a little like Tom's heterodox approach:
 - ightharpoonup if \bar{x} is the average degree of the *first* observation
 - $\mu_{den} = \log \frac{\bar{x}}{(n-1-\bar{x})}$
- d Jeffrey's

No - not everyone knows as much as Tom Possible default priors:

- a standard: a 'non-informative' prior that works for standard cases (N large-ish and $n^{[h]}$ not too small)
- b null: absolutely NO prior information
- c density-dependent: a little like Tom's heterodox approach:
 - ightharpoonup if \bar{x} is the average degree of the *first* observation
 - $\mu_{den} = \log \frac{\bar{x}}{(n-1-\bar{x})}$
- d Jeffrey's
- e A prior so that $\theta^{[g]} pprox \eta$

When use HSAOM?

- hierarchical data
 - some groups small (borrow strength)
 - many groups with heterogeneity
- intervention: treatment on class-room-level
- network too large: can you decompose network in a natural way? C.p. settings model
- many waves: time heterogeneity potentially with time-covariate (t_1, t_2) , (t_2, t_3) , etc, different 'groups'

 ⟨□⟩ ⟨∅⟩ ⟨₫⟩ ⟨₫⟩ ⟨₫⟩ ⟨₫⟩ ⟨₫⟩
 ₹
 √) ⟨€

 Koskinen
 INSNA XLIV
 June 25, 2024
 33/35

Random $\theta^{[g]} \sim N(\mu, \Sigma)$ or fixed parameters η ?

- Are differences between groups
 - random or
 - meaningful (i.e. non-random)

Random $\theta^{[g]} \sim N(\mu, \Sigma)$ or fixed parameters η ?

- Are differences between groups
 - random or
 - meaningful (i.e. non-random)

Is there a correct prior distribution?

Random $\theta^{[g]} \sim N(\mu, \Sigma)$ or fixed parameters η ?

- Are differences between groups
 - random or
 - meaningful (i.e. non-random)

Is there a correct prior distribution?

- NO!

Random $\theta^{[g]} \sim N(\mu, \Sigma)$ or fixed parameters η ?

- Are differences between groups
 - random or

Koskinen

meaningful (i.e. non-random)

Is there a correct prior distribution?

- NO!

Can I say 'there is a 0.95 probability that there is an influence effect'?

INSNA XLIV June 25, 2024 34/35

Random $\theta^{[g]} \sim N(\mu, \Sigma)$ or fixed parameters η ?

- Are differences between groups
 - random or
 - meaningful (i.e. non-random)

Is there a correct prior distribution?

- NO!

Can I say 'there is a 0.95 probability that there is an influence effect'? YES - you should!

34 / 35

Take-home points

What we need to know

- Posterior distribution is
 - ► The distribution of the unknown parameters
 - ▶ given the known data
- All uncertainty about parameters is described by the posterior distribution
 - ► The probability that the true parameter lies in the 95% Credibility interval **is** 0.95 (given observed data)
 - ➤ You may you use the posterior expected value ('average') of the parameter as your point estimate
 - ► The amount of posterior uncertainty give information in data is captured by the standard deviation of the parameter
- Prior distribbution
 - ▶ In order to obtain a posterior distribution you need a prior distribution
 - Different priors give different posteriors for the same data

Theorem

