# Machine Learning An Overview

Konstantin Todorov



Machine Learning Seminar February 2019



# Machine Learning?

Could computers be made to *learn* and to *improve* automatically with experience?



Can we develop algorithms that can *learn from* and *make predictions* on data?

(Almost) like we humans do...

# Defining the Machine Learning Problem

# The Defining Question of ML

How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?



#### **Computer Science**

How can we build machines that solve problems, and which problems are inherently tractable?



#### **Statistics**

What can be inferred from data and a set of modelling assumptions, with what reliability?

# A Multidisciplinary Field

Artificial Intelligence

**Probabilities** 

**Statistics** 

Philosophy

**Machine Learning**  Information Theory

Psychology & Neuroscience

Control Theory

Optimization & Computational Complexity

# A Definition of Machine Learning

"A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in T, as measured by P, improves with experience E."

- Tom M. Mitchell

- An operational, not a cognitive or an etymological definition
- A. Turing: Can machines think? →
   Can machines do what thinking beings can do?

Depending on how we define T, P, and E, the learning task might also be called by names such as *data mining*, *classification*, *clustering*, *reinforcement learning*, *etc...* 

## A Definition of Machine Learning

#### An example: filtering spam from emails

- T task: decide whether an email is spam or not
- P performance measure: the percent of correctly filtered emails
- E training experience: a dataset of emails with associated classes (spam / email)

#### A long list of applications...

web page ranking, recommendation, automatic translation, autonomous cars, diagnostics, face recognition...

# A Brief History Line

| $18^{th} - 2$ | 20 <sup>th</sup> Advances in probability theory (Bayes, Markov Chains,) |
|---------------|-------------------------------------------------------------------------|
| 1950          | Turing: a learning machine that can become artificially intelligent     |
| 1951          | Minsky: first neural network (NN) machine                               |
| 1957          | Rosenblatt: the perceptron                                              |
| 1967          | Pattern recognition with nearest neighbours                             |
| 1960s         | The rise and fall of the perceptron                                     |
| 1970s         | Al winter, due to unrealised promises of Al research                    |
| 1982          | Recurrent neural networks                                               |
| 1986          | LeCun: back-propagation reinvented                                      |
| 1989          | Reinforcement learning                                                  |
| 1990s         | Vapnik and Cortes: Support Vector Machines shadow NN                    |
| 2000s         | NN regaining popularity due to advanced computational powers            |
| 2010s         | Rapid acceleration of Deep Learning research                            |
|               |                                                                         |

# Kinds of Machine Learning

# The Machine Learning Tasks

(A vision of)

#### **Artificial Intelligence**

#### **Symbolic**

**Expert Systems** 

**Logical rules**Computational theory

#### **Sub-symbolic**

Machine Learning

#### DATA

Connectionist theory

#### **Supervised**

Classification Regression...

#### Unsupervised

Reinforcement Learning
Clustering
Outlier Detection...

# Supervised Machine Learning

Infer input/output functions from labelled data.



# Unsupervised Machine Learning

Infer a latent structure from unlabelled data.



# Data Representation: Features

Remember our spam filtering example: data-points are emails.



Model instances as **vectors** described by a number of **features** (variables, attributes).

What features best describe instances and allow to separate classes or form clusters? → *Feature (variable) selection* 

- remove noisy features
- analyse their explanatory strength
- reduce dimensionality

### Model Selection and Assessment

#### Overfitting vs. Generalisation

- how well the learned function performs on unseen data?
- select a model (a set of parameters) that generalises well
- evaluate and avoid overfitting



Model Selection, Model Validation

# Methods, Tools and Applications (Examples)



#### **K Nearest Neighbours**



#### **Bayesian Classifiers**

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

#### Reinforcement Learning



Support Vector Machines



#### Neural Networks / Deep Learning



#### Cluster Analysis





K Nearest Neighbours

Financial distress prediction

Process control

Fraud detection

Medical diagnosis

#### **Bayesian Classifiers**

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Text Categorization Automatic translation Web search Computer vision Image retrieval

#### Robotics

autonomous cars

Trading stradegies

Gene clustering Topic discovery

Market segmentation

Driving

Playing games

#### Learning internal state environment action

Reinforcement

observation

#### Support Vector **Machines**



#### Neural Networks / Deep Learning



#### Cluster Analysis



## **Tools and Their Usefulness**

A long list of open source tools...

Weka, ELKI, R, Mahout, RapidMiner\*,...

Often balckboxes for users.

- → How to implement a given ML solution (which API)?
  Algorithms don't change from one API to another...
- → What and how much data is needed? How to select a model? Which method for what problem?

An empirical science... with some heuristics.

- → How deep an understanding of the algorithms is required? Investing in statistical inference:
  - hiring a statistician / data scientist, training engineers

# Sources & Reading

- Mitchell, T. M. (1997). Machine learning. WCB.
- Mitchell, T. M. (2006). *The discipline of machine learning* (Vol. 9). Carnegie Mellon University, School of Computer Science, Machine Learning Department.
- Alpaydin, E. (2014). Introduction to machine learning. MIT press.
- Langley, P. (2011). The changing science of machine learning. *Machine Learning*, 82(3), 275-279.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). *The elements of statistical learning* (Vol. 1). Springer, Berlin: Springer series in statistics.
- Joachims, T. (1998). Text categorization with support vector machines:

  Learning with many relevant features. In *European conference on machine learning* (pp. 137-142). Springer Berlin Heidelberg.

Thank you for listening.

#### **Decision trees**

#### Supervised / Classification

Fits data into a tree
Attributes → nodes
Values → branches
Easy to interpret
Overfitting occurs often



#### From T. Mitchell's "Machine Learning"

#### **Applications**

Biomedical engineering: selecting features for implantable devices Manufacturing, production: process control Molecular biology: analyzing amino acid sequences Fraud detection

#### **Bayesian Classifiers**

#### Supervised / Classification

Creates a model per class, using probability theory.
Attributes are assumed independent.
Probabilities are estimated from data.

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

#### **Applications**

Text categorisation
Speech recognition
Automatic medical diagnosis

#### **K Nearest Neighbours**

Supervised / Classification

Lazy instance-based learners. Uses distance calculation over all instance pairs.



#### **Applications**

Cancer diagnosis
Financial distress prediction
Computer vision

#### **Support Vector Machines**

#### Supervised / Classification

Learns a maximum margin separation hyperplan.

Deals with non-lineary separable data Uses kernels

# margin hyper plane support vectors

#### **Applications**

Text categorisation
Automatic translation
Computer vision
Handwriting / face / facial expression recognition
Content-based image retrieval

#### **Reinforcement Learning**

#### Unsupervised or Semi-supervised

Take actions according to rewards. Behaviour optimisation with respect to the environment.



observation

#### **Applications**

Driving autonomous vehicles
Robot vision
Playing games

#### **Neural Networks / Deep Learning**

#### Supervised and Unsupervised

Bio-inspired: a complex net of interconnected neurones



#### **Applications**

Driving autonomous vehicles
Computer vision
Speech / face / handwriting recognition
Sensor data interpretation
Image retrieval

#### **Cluster Analysis**

#### Unsupervised / Clustering

Group together instances into subsets
Maximise intra-cluster instance
similarities and inter-cluster distances.
K-means, DBSCAN,
Descriptive Statistics, ...

#### **Applications**

Market segmentation
Gene clustering
News summarisation
Topic discovery

