Algoritmos em Grafos

Celso C. Ribeiro Caroline T. Rocha

PARTE 5: Árvore Geradora de Peso Mínimo

Dados:

$$\begin{cases} G = (V,E) \text{ grafo não-orientado, com } |V| = n \text{ e } |E| = m \\ \text{peso c(e), } \forall \text{e} \in E \end{cases}$$

Problema

Obter $F \subseteq E$ tal que:

- o grafo G'=(V,F) é acíclico e conexo (G' é gerador de G)
- $c(F) = \sum_{e \in E} c(e) \text{ é mínimo}$

4

 4
 5
 4

 3
 8
 3

2

Algoritmo de Kruskal

Princípio: a aresta de menor peso sempre pertence à árvore geradora de peso mínimo.

Prova:

- Suponha que a aresta de peso mínimo não pertença à solução ótima.
- Inserindo-se a aresta de peso mínimo nesta solução ótima, obtém-se um ciclo.
- Pode-se obter uma nova árvore geradora removendo-se a aresta de maior peso.
- Esta nova árvore geradora teria peso menor do que a anterior, portanto aquela solução não poderia ser ótima.

Algoritmo de Kruskal

```
Criar uma lista L com as arestas ordenadas em
ordem crescente de pesos.
Criar |V| subárvores contendo cada uma um nó
isolado.
\mathbf{F} \leftarrow \emptyset
contador \leftarrow 0
Enquanto contador < |V|-1 \in L \neq \emptyset faça
   Seja (u,v) o próximo arco de L.
   L \leftarrow L - \{(u,v)\}
   Se u e v não estão na mesma subárvore então
       F \leftarrow F \cup \{(u,v)\}
       Unir as subárvores que contêm u e v.
       contador \leftarrow contador + 1
   fim-se
fim-enquanto
```


Exemplo:

$$c(F) = 15$$

Subárvores

{ A, B, C, D, E, F }

Lista L

е	c(e)
(C,F)	2
(E,F)	2
(A,D)	3
(CX€)	3
(A,B)	4
(A,E)	4
(B,F)	5
(D,F)	7
(B,C)	8
(B,E)	9
(C,D)	9

c(F) = 24

Subárvores

Lista L

e	c(e)
(D,E)	1
(D,L)	2
(F,J)	2
(G,J)	2
(C,D)	3
(E,F)	3
(H,I)	3
(A,B)	4
(B,C)	4

c(F) = 33

Subárvores

{ A, B, C, D, E, F, G, H, I, J, L, M }

Lista L

е	c(e)
	•••
(A,I)	4
(JX)	4
(G,M)	5
(C,M)	6
(I,J)	6
(A,M)	7
(G,H)	7
(B,L)	8

Algoritmo de Prim

- Começar com uma árvore formada apenas por um nó qualquer do grafo, ou pela aresta de peso mínimo.
- A cada iteração, adicionar a aresta de menor peso que conecta um nó já conectado a um nó não-conectado.

Algoritmo de Prim

```
Seja (u, v) a aresta de menor peso.
F \leftarrow \{(u,v)\}
Para i = 1, ..., n faça
    Se c(i, u) < c(i, v) então prox(i) \leftarrow u
   Senão prox(i) \leftarrow v
fim-para
prox(u), prox(v) \leftarrow 0, contador \leftarrow 0
Enquanto contador < n-2 faça
    Seja j tal que prox(j) \neq 0 e c(j, prox(j)) é mínimo.
   F \leftarrow F \cup \{(i, prox(i))\}
   prox(i) \leftarrow 0
   Para i = 1, ..., n faça
       Se prox(i) \neq 0 e c(i, prox(i)) > c(i, j) então
           prox(i) \leftarrow i
    fim-para
    contador \leftarrow contador + 1
fim-enquanto
```


Exemplo:

$$c(F) = 15$$

$$c(F) = 33$$