СИНТЕЗ 3-АЛКОКСИ-2,2'-БИПИРИДИНОВЫХ ФЛУОРОФОРОВ

Алексеева А.С.⁽¹⁾, Ладин Е.Д.^(1,2), Штайц Я.К.⁽¹⁾, Копчук Д.С.^(1,2), Зырянов Г.В.^(1,2)
⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19
⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Производные 3-алкокси-2,2'-бипиридинов интересны своей биологической активностью, а также фотофизическими свойствами. Целью работы является синтез 3-алкокси-2,2'-бипиридиновых производных и изучение их фотофизических свойств.

i) NaH, ДМФA, кт, 3 ч, затем RI, кт, 24 ч. R = Me (**3a**, **3c**, **3e**, **3f**), n-C₈H₁₇ (**3b**, **3d**); R₁ = 4-MeOC₆H₄ (**3a**, **3b**, **3c**), Tol (**3d**), Ph (**3e**, **3f**); R₂ = Ph (**3a**, **3b**), 4-MeOC₆H₄ (**3c**), 4-ClC₆H₄ (**3d**, **3e**).

Целевые 3-алкокси-2,2'-бипиридины **3a-f** были синтезированы путем алкилирования соответствующих 3-гидрокси-2,2'-бипиридинов под действием алкилиодидов в качестве алкилирующих реагентов и гидрида натрия в качестве основания. Выход продуктов **3a-f** составил 29-43%. Структура полученных соединений подтверждена методами ЯМР спектроскопии, масс-спектрометрии, а также данными РСА для соединения **3c**. Изучены фотофизические свойства полученных веществ в растворах ацетонитрила. Максимумы абсорбции находятся в диапазоне 268-278 нм, максимумы эмиссии от 417 до 469 нм. Квантовый выход флуоресценции в ацетонитрильных растворах составил от 4.0 до 73.7%. Для соединения **3f** изучены фотофизические свойства в растворителях с различной полярностью. Показано наличие внутримолекулярного переноса заряда (ICT) при фотовозбуждении ($\Delta \mu = 18.5 \ \ D$).