学院

班 级

学 号

姓 名

东北大学考试试卷 (B 闭卷)

2017 — 2018 学年第 二 学期

课程名称:线性代数

总分	1	11	Ш	四	五	六

得分:

 \bigcirc

一. (5分)给定 R^3 的两组基 $\varepsilon_1 = (1,-1,1)^T$, $\varepsilon_2 = (0,1,1)^T$, $\varepsilon_3 = (1,0,1)^T$ 与 $\eta_1 = (0,1,2)^T$, $\eta_2 = (1,1,-1)^T$, $\eta_3 = (2,4,0)^T$. 定义线性变换 \mathscr{A} :

 $\mathcal{A}\left(\varepsilon_{1}\right)=\eta_{1}-\eta_{2}+2\eta_{3}\;,\;\;\mathcal{A}\left(\varepsilon_{2}\right)=3\eta_{1}+\eta_{2}+\eta_{3}\;,\;\;\mathcal{A}\left(\varepsilon_{3}\right)=2\eta_{1}-3\eta_{2}+4\eta_{3}\;.$

求: 线性变换 \mathcal{A} 在基 η_1 , η_2 , η_3 下的矩阵.

解:
$$\mathscr{A}(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\eta_1, \eta_2, \eta_3) \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & -3 \\ 2 & 1 & 4 \end{pmatrix}$$

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\eta_1, \eta_2, \eta_3) \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\mathcal{A} (\eta_1, \eta_2, \eta_3) = (\eta_1, \eta_2, \eta_3) \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & -3 \\ 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{pmatrix} = (\eta_1, \eta_2, \eta_3) \begin{pmatrix} 5 & -1 & 4 \\ 4 & -11 & -20 \\ 0 & 8 & 18 \end{pmatrix}.$$

得分:

· 线 二. (5分) 已知 A 和 B 都是 6×6 阶矩阵, 满足 R(A) = 3, R(B) = 2. 矩阵 M

是由 $A \cap B$ 按列排出的矩阵,如下: $M = (A \mid B)$. 现以矩阵 M 作为系数矩阵构成齐次线性方程组 $M \mid x = 0$,试估计其解空间维数 d 的范围.

解:

因为 $\max(R(A), R(B)) \le R(M) \le R(A) + R(B)$, 所以 $3 \le R(M) \le 5$.

由于齐次线性方程组Mx=0有12个未知数,同时解空间的维数等于12-R(M),

因此齐次线性方程组M x = 0解空间维数满足 $7 \le d \le 9$.

三. (5分) 试利用二次型理论求解在满足x为单位向量时二次型 $f(x_1,x_2,x_3) = x^T A x = x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$ 的最大值,同时写出x.

解:
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, $\diamondsuit x = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ -2/3 & 1/3 & 2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix} y$

于是原二次型可化为 $f = 5y_1^2 + 2y_2^2 - y_3^2$.

取
$$y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, 从而, 当 $x = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$ 时, f 有最大值 5.

学院

班 级

学 号

姓名

得分

 \bigcirc

四. (5分)已知4阶矩阵 $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ -2 & 1 & 3 & -4 \\ 3 & -1 & 0 & 3 \\ -4 & 1 & -3 & -2 \end{pmatrix}$. 令U是矩阵A

列向量的生成空间. 试说明由与U中所有向量都正交的向量所组成的集合构成线性空间,并求出该空间的一组基.

解: 令该集合为S,于是有 $S = \{x \mid A^T x = 0\}$,因为齐次线性方程组解集合构成线性空间,因此集合S构成线性空间。

$$A^{T} = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 3 & 0 & -3 \\ 1 & -4 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{cases} x_{1} = 0, \\ x_{2} = x_{4}, & \text{所以}, \\ x_{3} = 2x_{4}, \end{cases}$$
为S的一组基.

得分:

封

五. (5分) 已知 5 阶方阵 A 满足 $A^2 = 2A$ 且 R(A) = 3,试给出理由说明矩阵 A 是否可相似对角化. 若能相似对角化,请写出与矩阵 A 相似的对角矩阵.

解:由于A(2E-A)=O且R(A)=3,所以矩阵A有特征值0,2,而且满足

R(A)+R(2E-A)=5,于是矩阵 A 有 5 个线性无关特征向量,

因此矩阵 A 能相似对角化.

因为R(A)=3,所以矩阵A的 5 个特征值为 0, 0, 2, 2, 2

于是与矩阵 A 相似的对角矩阵为 Diag(2,2,2,0,0).

得分:

六. (5分) 试利用二次型理论讨论二次方程 $f = 2x^2 - 12xy + 2y^2 - 8x + 8y + 5 = 0$

表示何种圆锥曲线(椭圆、抛物线、双曲线).

解:
$$A = \begin{pmatrix} 2 & -6 \\ -6 & 2 \end{pmatrix} \qquad f = (x, y)A \begin{pmatrix} x \\ y \end{pmatrix} + (-8, 8) \begin{pmatrix} x \\ y \end{pmatrix} + 5$$

$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

因为
$$\begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}^T \begin{pmatrix} 2 & -6 \\ -6 & 2 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -4 \end{pmatrix},$$
所以有 $f = (u, v) \begin{pmatrix} 8 & 0 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + (16/\sqrt{2}, 0) \begin{pmatrix} u \\ v \end{pmatrix} + 5$

$$= 8u^2 - 4v^2 + 8\sqrt{2}u + 5 = 8(u + \sqrt{2}/2)^2 - 4v^2 + 1 = 0$$

因此二次方程 f 表示双曲线.