Note on the functions

Kehao Zhu

July 2023

To implement the formulas in the paper, it is necessary to evaluate the integrals. The following are the results of the evaluation.

For screen-detected cancer, we need to evaluate the integrals in $P_i^{LP}(t_i)$ and $P_i^{LP}(t_i)Q_i^{LP}(t_r-t_i)$.

$$P_i^{LP}(t_i) = A \times I[i = j] + B \times I[i > 0, j < i],$$

where

$$\begin{split} A = & \frac{w\lambda_2}{\lambda_1 + \lambda_2} e^{-\lambda_3 t_i} \left[\frac{1}{\lambda_3} (e^{\lambda_3 t_i} - e^{\lambda_3 t_{i-1}}) \right. \\ & \left. - e^{(\lambda_1 + \lambda_2)t_{i-1}} \frac{1}{\lambda_3 - \lambda_1 - \lambda_2} (e^{(\lambda_3 - \lambda_1 - \lambda_2)t_i} - e^{(\lambda_3 - \lambda_1 - \lambda_2)t_{i-1}}) \right] \end{split}$$

and

$$B = \frac{w\lambda_2}{\lambda_1 + \lambda_2} e^{-\lambda_3 t_i} \frac{1}{\lambda_3 - \lambda_1 - \lambda_2} \left\{ e^{(\lambda_3 - \lambda_1 - \lambda_2)t_i} - e^{(\lambda_3 - \lambda_1 - \lambda_2)t_{i-1}} \right\}$$
$$\times \sum_{j=0}^{i-1} (1 - \beta_E)^{i-j} \left[e^{(\lambda_1 + \lambda_2)t_j} - e^{(\lambda_1 + \lambda_2)t_{j-1}} \right]$$

 $P_i^{LP}(t_i)$ and $P_i^{LP}(t_i)Q_i^{LP}(t_r-t_i)$ are similar to each other:

$$P_i^{LP}(t_i)Q_i^{LP}(t_r - t_i) = e^{-\lambda_3(t_r - t_i)}P_i^{LP}(t_i)$$

For the interval cancer:

$$I_r^L = \int_{t_{r-1}}^{t_r} I_r^L(t)dt = \sum_{i=0}^{r-1} (1 - \beta_L)^{r-i}C + I[j=r] \times D_1 + I[j < r] \times D_2,$$

where

$$C = e^{\lambda_3 t_i} P_i^{LP}(t_i) (e^{-\lambda_3 t_{r-1}} - e^{-\lambda_3 t_r})$$

and

$$D_{1} = \frac{w\lambda_{2}}{\lambda_{1} + \lambda_{2}} \left\{ (t_{r} - t_{r-1}) + \frac{1}{\lambda_{3}} (e^{-\lambda_{3}(t_{r} - t_{r-1})} - 1) + \frac{\lambda_{3}}{\lambda_{3} - \lambda_{2} - \lambda_{1}} \left\{ \frac{1}{\lambda_{1} + \lambda_{2}} (e^{-(\lambda_{1} + \lambda_{2})(t_{r} - t_{r-1})} - 1) - \frac{1}{\lambda_{3}} (e^{-\lambda_{3}(t_{r} - t_{r-1})} - 1) \right\} \right\}$$

 $\quad \text{and} \quad$

$$D_{2} = \sum_{j=0}^{r-1} (1 - \beta_{E})^{r-j} \frac{w\lambda_{2}}{\lambda_{1} + \lambda_{2}} (e^{(\lambda_{1} + \lambda_{2})t_{j}} - e^{(\lambda_{1} + \lambda_{2})t_{j-1}}) \frac{\lambda_{3}}{\lambda_{3} - \lambda_{2} - \lambda_{1}}$$

$$\times \left[\frac{1}{\lambda_{2} + \lambda_{1}} (e^{-(\lambda_{1} + \lambda_{2})t_{r-1}} - e^{-(\lambda_{1} + \lambda_{2})t_{r}}) + \frac{1}{\lambda_{3}} (e^{-\lambda_{3}t_{r}} - e^{-\lambda_{3}t_{r-1}}) e^{(\lambda_{3} - \lambda_{2} - \lambda_{1})t_{r-1}} \right]$$