CN-Advanced L39

Cellular Internet Access

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com https://www.youtube.com/rprustagi

Resources Acknowledgement

Chapter 6 Wireless and Mobile Networks

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

2

Mobile Computing - Communication

- History:
 - 1928: First mobile radio
 - 1935: Frequency Modulation
 - 1943: IMTS (Improved Mobile Telephone Service) by AT&T
 - 1950: Paging Systems
 - 1962: First orbiting communication satellite
 - 1970: FCC: spectrum space allocation
 - AMPS (Advanced Mobile Phone Systems) by AT&T
 - 1979: First commercial mobile phone network in Japan, NTT
 - 1982: GSM Development started
 - Groupe Special Mobile by CEPT
 - 1983: Commercial service implementation in Chicago, Baltimore
 - 1987: GSM MoU signed by European operators
 - 1991: First GSM Network opened, Finland

Spectrum Usage

- Long wavelength, MW, SW and FM Radio
- VHF: 50 250 MHz
 - -TV Channels: 174-230 MHz (only 12 channels)
 - DAB (Digital Audio Broadcast)
- UHF: 200 2000 MHz
 - -TV Channels: 470-830 MHz
 - Mobile TV: 554MHz
 - -GSM Quad band: 850, 900, 1800, 1900
 - http://www.worldtimezone.com/gsm.html
- Microwave: 2 40GHz
 - Home microwave: 2.5GHz
 - -Wifi: 2.5, 5.8GHz
- Infrared: THz, Visible Light: 430-750 THz, UltraViolet: >750THz

Data Comm Standards

- GSM
 - Frequencies
 - Uplink: 890.1 914.9 MHz, Downlink: 930-956MHz
 - Each channel 200KHz, I24 channels, 8 timeslots/channel
- Generations
 - I G Voice only
 - -2G: GPRS 14.4kbps
 - -2,5G/2.5+G: Enhanced GPRS: 100kbps
 - 3G: 2Mbps, both voice and data simultaneously
 - -4G:All IP
- CDMA
 - IS-95, CDMA2000, IMT-2000, WCDMA
- UMTS

Cellular Networks Structure

- -Adjacent cells in various directions
- -Distinct freq. in adjacent cells
 - Avoids frequency interference
- Base stations connect among themselves
 - Guided
 - Wireless networking
- -Allows handover
 - Phone moves from one cell to another
 - Connection moves to neighbor base station

Mobile User Condition

- Difference between mobile user and stationary user
- Changing location
 - Location aware applications
 - User still wants high QoS
 - Speed of changing location
 - restrictions on power, size, wireless connectivity etc
- Lack of focus
 - Not focused on computing tasks
 - If driving, then primary focus on driving
 - -Stock price crash remains unhandled
 - Multitasking also caused lack of focus
 - Driving and talking
 - -Reading/browsing and talking
 - Voice user interface gains importance

Mobile User Condition...

- -Immediacy and responsiveness
 - Capability to quickly perform another task
 - -Searching for contact info, Sending an SMS
 - High performance is a key
 - -Stationary user does not have this expectation
- -Abrupt changes in tasks
 - While on move, impacted by sudden environment changes
 - -Thus need to stop perform computing task abruptly
 - -Do something else, and resume back
- -Anywhere, anytime, any place
 - Pervasive and ubiquitous
 - User expects to retrieve data and do computing
 - Start a transaction, leave in the middle, and then resume
- The mobile user condition is opportunity for apps dev

GSM Network...

- Supplementary (Other than Voice) services
 - Code description
 - http://portal.etsi.org/hf/brochure/ servicerl.pdf
 - -Common patterns
 - •*service# Activate
 - ** service # Register and activate
 - •*#service# Check Status
 - •#service# Unregister
 - ##service # Unregister and deactivate
 - To know your IMEI
 - **•***#06#

Components of cellular network architecture

cell

- covers geographical region
- base station (BS)analogous to 802.11AP
- mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS

MSC

- connects cells to wired tel. net.
- manages call setup (more later!)
- handles mobility (more later!)

Cellular networks: the first hop

- Two techniques for sharing mobile-to-BS radio spectrum
- combined FDMA/ TDMA: divide spectrum in frequency channels, each channel into time slots
 - channel: 200KHz
 - 8 Timeslots/channel
- CDMA: code division multiple access

BTS...

- GSM Channels
 - -Total 124
 - Permitted to use Ch02 to Ch123 (thus total of 122)
 - 32 channels are reserved for data transmission of operator
- Total channels assigned to a BTS is 11
 - One for transmission to MS or BSC
 - -10 for users
 - All BTS taken together can communicate over 90 channels

2G (voice) network architecture

Base station system (BSS) MSC BTS G **Public** BSC telephone network Gateway MSC Legend Base transceiver station (BTS) Base station controller (BSC) Mobile Switching Center (MSC) Mobile subscribers

BSS

- BTS
 - -like an AP in WiFi network
 - -covers one cell
 - area depends upon transmitting powers
 - BTS, user devices, height of tower antennaes
 - initially at the center of hexagon cell, now directional
- BSC
 - -services several BTS
 - -allocate radio channels to mobile subscribers
 - -perform paging (finding the cell where the user is)
 - -perform handoff when user moves

MSC

- MSC
 - -central role in user authentication and accounting
 - decides if a user can connect to cellular network
 - -provides call setup, teardown and handoff
 - -typically contains up to 5 BSCs, about 200K users
 - -call monitoring, charging
 - -multi-way calling, supplementary services
- Special MSC : Gateway MSC (GMSC)
 - -connects to public telephony network
- HLR/VLR
 - -subscriber's data base

Localization and Calling

- Numbering schemes to locate and address MS
- MSISDN:A personalized number for user
 - -Follows E.164 ITU standards
 - -CC+NDC+SN
- IMSI: Uniquely identifies the SIM
 - -MCC+MNC+MSIN
 - -TMSI is used to hide the IMSI
- MSRN (Mobile Station Roaming Number)
 - Temp. number hides the identity/location of subscriber
 - -VLR generates this number
 - VCC+VNDC+VSN
 - -Helps finding of MS by an HLR for incoming call

3G (voice+data) network architecture

- voice network unchanged in core
- data network operates in parallel

Serving GPRS Support Node (SGSN)

Gateway GPRS Support Node (GGSN)

3G (voice+data) network architecture

On to 4G

- 2 important innovations over 3G (by 3GPP)
 - Evolved Packet Core (EPC)
 - simplified all IP core network
 - carries both voice and data in IP packets
 - IP is best effort, can it provide QoS for telephony
 - allows multiple types of RAN (Radio Access Networks)
 - -LTE Radio Access Network
 - uses combination of FDM and TDM with OFDM
 - each MS is allocated one or more 0.5ms timeslot
 - -in one or more frequency channels
 - slot reallocation can be performed once every ms
 - uses MIMO antennas
 - downstream: 100Mbps, upstream: 50Mbps
 - allocation of time slots: implementing vendors decides

Summary

- Overview of Cellular Architecture
 - -BSS
 - BTS
 - •BSC
 - -MSC
 - -GMSC
 - -3G
 - SGSN
 - GGSN
 - **-4F**
 - LTE