Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3213, Р3211	К работе допущен
Студенты <u> Поленов Кирилл Алекс</u>	андрович, Малышев Михаил Александрович_
Работа выполнен <u>а</u>	
Преподаватель <u>Иванов Владими</u>	р Сергеевич Отчет принят

Рабочий протокол и отчет по лабораторной

работе №1.03

Изучение центрального соударения двух тел. Проверка второго
Закона Ньютона.

Цель работы.

- Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

Задачи, решаемые при выполнении работы.

- Измерение скоростей тележек до и после соударения.
- Измерение скорости тележки при ее разгоне под действием постоянной силы.
- Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

Объект исследования.

- Упругие и неупругие соударения тележек.
- Движение тележки под действием постоянной силы.

Метод экспериментального исследования.

Замер таких величин как: масса тележек, скорость тележек.

Рабочие формулы и исходные данные.

- $p_{10x} = m_1 v_{10x}$, $p_{1x} = m_1 v_{1x}$, $p_{2x} = m_2 v_{2x}$ Импульсы тел
- $\delta_p = \frac{\Delta p_x}{p_{10x}} = \frac{(p_{1x} + p_{2x})}{p_{10x}} 1$ Значение относительного изменения $\underline{umпульса}$ для абсолютно упругого соударения
- $\delta_W = \frac{\Delta W_K}{W_{k0}} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} 1$ Значение относительного изменения кинетической энергии для абсолютно упругого соударения
- $\overline{\delta}_p = \frac{\sum_{i=1}^N \delta_{p_i}}{N}$ Среднее значение относительного изменения $\underline{umnyльсa}$ для абсолютно упругого соударения
- $\overline{\delta}_W = \frac{\sum_{i=1}^N \delta_{W_i}}{N}$ Среднее значение относительного изменения <u>кинетической</u> <u>энергии</u> для абсолютно упругого соударения
- $\Delta \overline{\delta_p} = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^N (\delta_{pi} \overline{\delta_p}\,)^2}{N(N-1)}}$ Погрешность среднего значения относительного изменения импульса для а. у. с.
- $\Delta \overline{\delta_W} = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^N (\delta_{Wi} \overline{\delta_W})^2}{N(N-1)}}$ Погрешность среднего значения относительного изменения импульса для а. н. с.
- $t_{\alpha,N}=2.78-$ коэффицент Стьюдента для доверительной вероятности $\alpha_{\text{дов}}=0.95$ для 5 измерений
- $\delta_W^{(3)} = -\frac{\Delta W_k}{W_{k0}} = -\frac{(m_1+m_2)v_2^2}{m_1v_{10}^2} 1$ Экспериментальное значение относительного изменения механической энергии
- $\delta_W^{(T)} = -\frac{W_p}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}$ Теоретическое значение относительного изменения механической энергии
- $a = \frac{v_1^2 v_2^2}{2(x_2 x_1)}$ Ускорение тележки
- T = m(g a) Сила натяжения нити

Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Класс точности	Погрешность
Линейка на рельсе	1.30 м	1 см/дел	-	0.5 см
ПКЦ-3 в режиме измерения скорости	9.99 м/с	0.01 м/с	-	0.01 м/с
Лабораторные весы	250 г	0.01 г	-	0.01 г

Схема установки.

Рис. 1 Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты измерения величин во время центрального упругого соударения

№ опыта	m ₁ , г	m ₂ , г	V _{10x} , M/C	V _{1x} , M/C	V _{2x} , M/C
1			0.43	0	0.32
2			0.43	0	0.34
3	47	50	0.42	0	0.31
4			0.43	0	0.32
5			0.41	0	0.33

Таблица 2. Результаты измерения величин во время центрального упругого соударения с утяжелителем

№ опыта	m ₁ , г	m ₂ , г	V _{10x} , M/C	V1x, M/C	V _{2x} , M/C			
1			0.41	-0.17	0.22			
2		98	0.43	-0.05	0.17			
3	47		0.42	-0.07	0.25			
4							0.40	-0.08
5			0.42	-0.15	0.25			

Таблица 3. Результаты измерения величин во время центрального неупругого соударения

№ опыта	m ₁ , г	m ₂ , г	V ₁₀ , M/C	v, m/c
1			0.38	0.16
2			0.40	0.14
3	51	52	0.36	0.13
4			0.38	0.16
5			0.38	0.16

Таблица 4. Результаты измерения величин во время центрального неупругого соударения с утяжелителем

№ опыта	m ₁ , г	m ₂ , г	V ₁₀ , M/C	v, m/c
1			0.41	0.14
2			0.40	0.12
3	51	101	0.41	0.13
4			0.40	0.12
5			0.37	0.12

Таблица 5. Результаты измерения величин во время движения тележки с шайбами на подвесе

Масса тележки М₁= 53 г

№ опыта	Состав гирьки	т, г	V1, M/C	V2, M/C
1	подвеска	2	0.22	0.51
2	подвеска + одна шайба	3	0.28	0.62
3	подвеска + две шайбы	3	0.32	0.73
4	подвеска + три шайбы	4	0.39	0.86
5	подвеска + четыре шайбы	5	0.43	0.96
6	подвеска + пять шайб	6	0.39	1.00
7	подвеска + шесть шайб	6	0.49	1.12

Таблица 6. Результаты измерения величин во время движения утяжелённой тележки с шайбами на подвесе

Масса тележки М₁= 101 г

№ опыта	Состав гирьки	т, г	V1, M/C	V2, M/C
1	подвеска	2	0.07	0.15
2	подвеска + одна шайба	3	0.19	0.47
3	подвеска + две шайбы	3	0.22	0.53
4	подвеска + три шайбы	4	0.27	0.64
5	подвеска + четыре шайбы	5	0.30	0.68
6	подвеска + пять шайб	6	0.33	0.75
7	подвеска + шесть шайб	6	0.35	0.81

Расчет результатов косвенных измерений.

Таблица 7. Измерение импульса и потери энергии в 1 опыте

№ опыта	р _{10х} , мН*с	р _{1х} , мН*с	р _{2х} , мН*с	δ_{p}	δw
1	20.21	0	16.00	-0.21	-0.41
2	20.21	0	17.00	-0.16	-0.33
3	19.74	0	15.55	-0.21	-0.42
4	20.21	0	16.00	-0.21	-0.41
5	19.27	0	16.50	-0.14	-0.31
			Средние значения	-0.19	-0.38
			Доверительные интервалы	0.04	0.06

Среднее значение относительного изменения импульса:

$$\overline{\delta}_p = \frac{\sum_{i=1}^N \delta_{p_i}}{N} = \frac{1}{N} \sum_{i=1}^N \left(\frac{(p_{1x_i} + p_{2x_i})}{p_{10x_i}} - 1 \right) = -0.19 \text{ Kg} \cdot \frac{M}{C}$$

Среднее значение относительного изменения кинетической энергии:

$$\overline{\delta}_W = rac{\sum_{i=1}^N \delta_{p_i}}{N} = rac{1}{N} \sum_{i=1}^N \left(rac{m_1 v_{1x_i}^2 + m_2 v_{2x_i}^2}{m_1 v_{10x_i}^2} - 1
ight) = -0.38$$
 Дж

Таблица 8. Измерение импульса и потери энергии в 2 опыте

№ опыта	р _{10х} , мН*с	р1х, мН*с	р _{2х,} мН*с	δ_p	δw
1	19.27	-7.99	21.56	-0.30	-0.23
2	20.21	-2.35	16.66	-0.29	-0.66
3	19.74	-3.29	24.50	0.07	-0.22
4	18.80	-3.76	23.52	0.05	-0.21
5	19.74	-7.05	24.50	-0.12	-0.13
			Средние значения	-0.12	-0.29
			Доверительные интервалы	0.22	0.26

Таблица 9. Измерение импульса и потери энергии в 3 опыте

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{^{(\mathrm{\scriptscriptstyle T})}}$
1	19.38	16.48	-0.15	-0.64	
2	20.40	14.42	-0.29	-0.75	
3	18.36	13.39	-0.27	-0.74	
4	19.38	16.48	-0.15	-0.64	
5	19.38	16.48	-0.15	-0.64	-0.50
		Средние значения	-0.20	-0.68	
		Доверительные интервалы	0.09	0.07	

Среднее значение относительного изменения импульса:

$$\overline{\delta}_p = \frac{\sum_{i=1}^N \delta_{p_i}}{N} = \frac{1}{N} \sum_{i=1}^N \left(\frac{p_{1x_i}}{p_{10x_i}} - 1 \right) = -0.20 \; \mathrm{Kr} \; \cdot \frac{\mathrm{M}}{\mathrm{c}}$$

Среднее значение относительного изменения кинетической энергии:

$$ar{\delta_W^{(9)}} = rac{\sum_{i=1}^N \delta_{p_i}}{N} = rac{1}{N} \sum_{i=1}^N \left(rac{(m_1+m_2)v_{2x_i}^2}{m_1v_{10x_i}^2} - 1
ight) = -0.68$$
 Дж

Экспериментальное значение относительного изменения механической энергии:

$$ar{\delta}_W^{(T)} = -rac{W_p}{rac{m_1 v_{10}^2}{2}} = -rac{m_2}{m_1 + m_2} = -0.50$$
 Дж

Таблица 10. Измерение импульса и потери энергии в 4 опыте

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{^{(\mathrm{T})}}$
1	20.91	21.28	0.02	-0.65	
2	20.4	18.24	-0.11	-0.73	
3	20.91	19.76	-0.05	-0.7	
4	20.4	18.24	-0.11	-0.73	
5	18.87	18.24	-0.03	-0.69	-0.66
·		Средние значения	-0.06	-0.7	
		Доверительные интервалы	0.07	0.04	

Таблица 11. Измерения значения ускорения тележки под действием силы натяжения нити

Nº			
опыта	т, г	а, м/с ²	Т, мН
1	2	0.17	19.30
2	3	0.24	28.74
3	3	0.33	28.47
4	4	0.45	37.48
5	5	0.57	46.25
6	6	0.65	55.02
7	6	0.78	54.24

Для массы подвеса равной 2 г получено:

$$a = \frac{v_2^2 - v_1^2}{2\Delta x} = 0.17 \frac{M}{c^2}$$
 $T = m(g - a) = 19.30 \text{ MH}$

Таблица 12. Измерения значения ускорения утяжелённой тележки под действием силы натяжения нити

Nº			
опыта	m, г	а, м/с ²	Т, мН
1	2	0.01	19.62
2	3	0.14	29.04
3	3	0.18	28.92
4	4	0.26	38.24
5	5	0.29	47.65
6	6	0.35	56.82
7	6	0.41	56.46

Таблицы 13 и 14. Расчёты линейной зависимости между силой натяжения нити и ускорением тележки, полученные с помощью МНК, для 5-ого и 6-ого опытов

M_1	60.2 г	$F_{ m Tp1}$	10.81 mH
$\sigma(M_1)^2$	39.81	$\sigma(F_{\text{Tp}_1})^2$	10.13
$\sigma(M_1)$	6.31	$\sigma(F_{\text{Tp}_1})$	3.18
ΔM_1	12.62	$\Delta F_{ ext{rp}_1}$	6.36

M_2	103.91 г	$F_{ m Tp1}$	15.64 mH
$\sigma(M_2)^2$	161.35	$\sigma(F_{\text{Tp}_2})^2$	11.07
$\sigma(M_2)$	12.70	$\sigma(F_{\mathrm{Tp}_2})$	3.33
ΔM_2	25.40	ΔF_{Tp_2}	6.66

$$ar{a} = rac{1}{7} \sum_{i=1}^{n=7} a_i$$
 — среднее значение ускорения

$$ar{T} = rac{1}{7} \sum_{i=1}^{n=7} T_i$$
 — среднее значение силы натяжения нити

$$b=rac{\sum (a_i-ar{a})(T_i-ar{T})}{\sum (a_i-ar{a})^2}$$
 — угловой коэффицент прямой

 $k=ar{T}-bar{a}$ — свободный коээфицент прямой

$$d_i = T_i - (k + ba_i) -$$
 параметр

$$D = \sum (a_i - \bar{a})^2 -$$
 параметр

$$\sigma_b^2 = \frac{1}{D} \frac{\sum d_i^2}{7-2} -$$
 среднеквадратичное отколение углового коэффицента

$$\sigma_k^2 = \left(\frac{1}{7} + \frac{\overline{a}^2}{D}\right) \frac{\sum d_i^2}{7-2}$$
 — среднеквадратичное отколение свободного коэффицента

 $\Delta_b \ = 2\sigma_b -$ границы доверительного интервала углового коээфицента

 $\Delta_k = 2\sigma_k$ — границы доверительного интервала свободного коээфицента

Расчёты для опыта 5:

$$\bar{a} = \frac{1}{7} \sum_{i=1}^{n=7} a_i = 0.46 \frac{M}{c^2}$$

$$\bar{T} = \frac{1}{7} \sum_{i=1}^{n=7} T_i = 38.50 \text{ MH}$$

$$b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} = \frac{\sum (a_i - 0.46)(T_i - 38.50)}{\sum (a_i - 0.46)^2} = 60.2 \frac{\text{MH}}{\frac{\text{M}}{C^2}}$$

$$k = 38.50 - 60.2 * 0.46 = 10.81 \text{ MH}$$

$$d_i = T_i - (10.81 + 60.2 * a_i)$$

$$\sum d_i^2 = 59.72$$

$$D = \sum (a_i - 0.46)^2 = 0.3 \frac{M^2}{c^4}$$

$$\sigma_b^2 = \frac{1}{0.3} \frac{59.72}{7 - 2} = 39.8 \frac{M^2}{c^4}$$

$$\sigma_k^2 = \left(\frac{1}{7} + \frac{0.46^2}{0.3}\right) \frac{59.72}{7 - 2} = 10.13 \text{ mH}^2$$

$$\Delta_b = 2\sigma_b = 2 * 6.31 = 12.62$$

$$\Delta_k = 2\sigma_k = 2 * 3.18 = 6.36$$

Расчет погрешностей измерений

Погрешности средних значений относительного изменения импульса и кинетической энергии для первого опыта (погрешности для 2, 3 и 4 опытов находятся по тем же формулам):

$$\Delta \overline{\delta_p} = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \overline{\delta_p})^2}{N(N-1)}}$$

$$= 2.78$$

$$\cdot \sqrt{\frac{(-0.21 + 0.19)^2 + (-0.16 + 0.19)^2 + (-0.21 + 0.19)^2 + (-0.21 + 0.19)^2 + (-0.14 + 0.19)^2}{4 \cdot 5}}$$

$$= 2.78 \cdot \sqrt{\frac{0.0004 + 0.0009 + 0.0004 + 0.0004 + 0.0025}{20}} = 2.78 \cdot \sqrt{0.00023} \approx 0.04$$

$$\Delta \overline{\delta_W} = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \overline{\delta_W})^2}{N(N-1)}} = 0.06$$

Графики

График 1. Линейная зависимость между силой натяжения нити и ускорением для тележки без утяжелителя и с ним

Окончательные результаты.

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\overline{\delta_n}, \, \overline{\delta_W}$

1)
$$\overline{\delta_p} = -0.19 \pm 0.04$$

$$\overline{\delta_W} = -0.38 \pm 0.06$$

2)
$$\overline{\delta_p} = -0.12 \pm 0.22$$

$$\overline{\delta_W} = -0.29 \pm 0.26$$

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной δ_p , $\delta_W^{(3)}$

1)
$$\delta_p = -0.20 \pm 0.09$$

$$\delta_W^{(9)} = -0.68 \pm 0.07$$

2)
$$\delta_p = -0.06 \pm 0.07$$

$$\delta_W^{(9)} = -0.70 \pm 0.04$$

Теоретическое значение относительного изменения механической энергии

$$\delta_W^{(T)}(3) = -0.50$$

$$\delta_W^{(T)}(4) = -0.66$$

Масса M_1 неутяжеленной тележки и доверительный интервал этой величины $M_1 = 60.20 \pm 13.00 \; \Gamma$

Масса M_1 утяжеленной тележки и доверительный интервал этой величины $M_2=103.91\pm25.00\,\mathrm{r}$

NO	Cocurab regue	my m, 2)	J, 14/c \ 52,1/c
3 2	noglelche	1 M22	0,22 0,51
	Ntlu	3	0,28 0,62
The same of the sa	ntzw.	3	0,32 (0,43
304	,,	4	0,39 0,86
50 6		6	0,43 0,36
		5	0,59 1,00
*	n + 6 m.) 6	0,48/112
norec	es mulline	M (3	012 0,47
NO	Cocural	1 W, 2	5,4/c 020/e
3 1	ogover	7:	0.07 0,16
3 2		3	0, 43 0, wt
3	-//-	3	0,22 0,63
g u	()	Y	0,27 0,64
1 8 5		5	0,30 0,68
of the same of the		5	0,33 0,75
O T		6	0,36 0,81
Ma	cilu. 5 160	12	
	y ,		

Auxy (Ser you, em)

wer, (Ser you, em)

0,38

0,16

0,18

16 tu,, Sex yours mond 2 251 3 238 0,16 0,38 0,16 ANYY (c gnor.) 5,0,4/c 0,4/ 9,40 5 of c m, 2 #01 2 安51 0,12 0,40 0,37 5 Muereure gaprocure neuenem upu el pogroce aog gentul. possible add

A Scousance gapgens year & Sez gove me menerel m 2,2 5,00% 5,10,16 5,00% Nouseura m, 72 0,32 0,43 250 8447 0,34 0 -11- 0,43 -11-P 0,31 -11- -11- 0,42 0,32 -11-10,43 0,33 0,41 0 M2,2 5,0x, e/e | 5,2x | e/e | 6,2x | e/e | 6 AYY (e grundm-ler oneme m, 2 #Y7 4 0,42 -0,15 5 0,17; 0,25; 0,22; 0 240 0 25

Выводы и анализ результатов работы.

- 1) Было исследовано центральное соударение двух тел упругое и неупругое. Были измерены скорости тележек до и после соударений, а также определены изменения импульса кинетической энергии в каждом из случаев. Из косвенных измерений были получены практические и теоретические значения потери энергии при соударениях: $\delta_W^{(3)}(3) = -0.68 \pm 0.07$, $\delta_W^{(T)}(3) = -0.50$, $\delta_W^{(9)}(4) = -0.70 \pm 0.00$ 0.04 , $\delta_{\scriptscriptstyle M\!\!\!\!\!M}^{(T)}(4) = -0.66$. Теоретические значения потери энергии в третьем опыте отличаются от практических примерно на 25% и не попадают в доверительный интервал. Теоретические значения потери энергии в четвертом опыте отличаются от практических примерно на 5% и попадают в доверительный интервал. Как при упругом, так и при неупругом соударении, происходит изменение импульса, но в упругом соударении сохраняется и импульс, и кинетическая энергия, а в неупругом сохраняется только импульс, кинетическая энергия частично теряется. Так, значение потери энергии при неупругом соударении в проведенных опытах оказалось в два раза выше значения потери энергии при упругом соударении: -0.70 ± 0.04 .
- 2) Из построения зависимости были получены массы рассматриваемых объектов: $M_1=60.20\pm13.00~{\rm r}$, $M_2=103.91\pm25.00{\rm r}$. Измеренные массы тележек были такими: $M_1=47~{\rm r}$, $M_2=101~{\rm r}$. Теоретические значения первой массы отличаются от фактических примерно на 20%, и попадают в доверительный интервал вычисленных значений. Теоретические значения второй массы отличаются от фактических на 2%, и также попадают в доверительный интервал вычисленных значений.