线性代数与解析几何

课后题解析 意见征集稿

编者:学辅志愿者

《线性代数与解析几何》课后题解析(意见征集稿)

编辑: 电气 613 孙静, 自动化 51 杜铭

编写(按章节顺序排名): 自动化 51 杜铭, 化生 61 李佳宝, 钱学森 62 杨登天, 化生 61 郑宇鹏, 数试 62 刘美奇, 自动化 64 刘伟, 能动 c61 孟令军, 钱学森 61 王昀

审校: 自动化 52 范略, 钱学森 62 杨登天, 电气 613 佟建铭, 化生 61 郑宇鹏, 信息 63 欧凉昊, 自动化 64 李明哲, 钱学森 64 孙雨涵, 钱学森 63 戚伟建, 力学 61 蔡毅仁, 能动 B62 周晨阳, 数试 62 刘美奇

封面制作: 医电 51 李雅敏

感谢学业辅导中心各位工作人员与志愿者对本资料做出的贡献,使本资料的编写工作能按时完成。由于编者们的能力与精力限制,难免有错误之处。如果同学们在本资料中发现错误,请联系仲英学业辅导中心:

XJTUzvxuefu@163.com, 我们将在修订时予以更正。

从第 3 周开始,每晚 19:30-21:30,学辅志愿者在东 21 舍 109 学辅办公室值班,当面为学弟学妹们答疑,欢迎同学们前来。

同时,我们也有线上答疑平台——学粉群。15 级学粉群:479502044。16 级学粉群:528364663。17 级学粉群:656224943。以及微信公众号:chungying-xuefu。除此之外,还有学辅举办的论坛,香蕉船:https://forum.cystudy.org,用于同学们学习交流。

期中考试与期末考试前,我们会发放考前小助手并举办考前讲座。学辅还有转专业交流会,英语考试讲座等活动,消息会在学粉群和公众号上公布,欢迎同学们参与。

仲英学业辅导中心 2017年9月10日

学辅公众号: chungying-xuefu

学粉群 3.0:656224943

"学业巴士车"值班表

	単周				双周			
	罗以淇	李明哲	张嘉兴		袁靖松	戚伟健	蔡毅仁	李佳宝
周一	高数	高数	C++		Java	高数	高数	有机化学
	线代	大物	C 语言		离散数学	线代	线代	工图
	工图	C语言	Python			大物		无机与分析化学
	大计基		程序设计			英语		生物学基础
						C++		
	杨大凯、李明哲				樊昕怡、蔡毅仁			
周二	欧凉昊	魏佳利	张冬瑶		王宏	张钧翔	林鹤翔	
	线代	高数	高数		高数	高数	高数	
	大物	线代	线代		线代	大物	大物	
	大化	大物	大物		C++		电磁学	
	大计基						力学	
	洪靖怡				张钧翔			
周三	佟建铭	朱家航	郑宇鹏		杨登天	薛众鑫	康皓哲	
	大物	高数	线代		高数	高数	大化	
	工图	大物	大物		线代	大物	无机与分析化	学
	Fortran	线代	无机与分析	· 沂化学	大物	线代		
		C语言	生物学基础	出				
	张旭超				胡馨钰、康皓哲			
	兰广宸	宇文子炎	杨德宇		赵国梁	李玮琪	朱可	
周四	高数	高数	高数		高数	大物	高数	
	线代	线代	大物		大物	线代	工图	
	大物	力学			线代	大化	线代	
	工图	电磁学			C语言		C语言	
	C++						大物	
	李凯、宇文子炎				刘辉			
周五	刘美奇	申沅均	黄兴伟	何洪宇	孙静	王昀	刘伟	
	数论	高数	大物	高数	高数	线代	高数	
	大物	大物	大计基	大物	大计基	大物	线代	
		线代		C++		C++	大物	
		工图						
	赵诗迪				孙静 、周慧琳			
周六	刘菲	郑纯然	<u>从立</u> 章		赖嘉琪	叶芊昊	孙雨涵	
	高数	大物	高数		高数	线代	大物	
	线代	线代	线代		线代	大物	线代	
		C语言	工图		工图		工图	
周日		翟子墨、	刘菲	1	*=#	** 7 /sts	叶芊昊 本同#10	
	孟令军	雷雨	周晨阳		李雨桉	浦子健	李国凯	
	高数	高数	高数		线代	高数	高数	
	线代	线代	工图		大物	线代	线代	
	大物	大物				大物	C++	
	无机分析化学 离散数学			C语言				
	耿娜娜				李雨桉			

从第三周开始,每晚7:30-9:30 (含周末,不含法定节假日),在东21 舍109 学辅办公室,有志愿者值班为学弟学妹们面对面答疑,值班表见上图,欢迎同学们前来。

目录

第一章 行列式	
第一节 行列式的定义与性质	5
第二节 行列式的计算	6
第三节 Cramer 法则	10
第一章习题	12
第二章 矩阵	14
第一节 矩阵及其运算	14
第二节 逆矩阵	18
第三节 分块矩阵及其运算	22
第四节 初等变换与初等矩阵	
第五节 矩阵的秩	30
第二章习题	33
第三章 几何向量及其应用	38
第一节 向量及其线性运算	38
第二节 数量积 向量积 混合积	
第三节 平面和空间直线	43
第三章习题	
第四章 n 维向量和线性方程组	50
第一节 消元法	
第二节 向量组的线性相关性	
第三节 向量组的秩	55
第四节 线性方程组的解的结构	
第四章习题	
第五章 线性空间与欧式空间	
第一节 线性空间的基本概念	
第二节 欧氏空间的基本概念	
第五章习题	
第六章 特征值与特征向量	
第一节矩阵的特征值与特征向量	
第二节 相似矩阵与矩阵的相似对角化	
第六章习题	
第七章 二次曲面与二次型	
第一节 曲面与空间曲线	
第二节 实二次型	
第七章习题	
第八章 线性变换	
第一节 线性变换及其运算	
第二节 线性变换的矩阵表示	
第八章习题	
仲英学业辅导中心简介	99

第一章 行列式

第一节 行列式的定义与性质 (A)

1.
$$x_1 = -2$$
, $x_2 = 6$
解析: $D = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} = -1$, $D_1 = \begin{vmatrix} 6 & 2 \\ 8 & 3 \end{vmatrix} = 2$, $D_2 = \begin{vmatrix} 3 & 6 \\ 5 & 8 \end{vmatrix} = -6$, $x_1 = \frac{D_1}{D} = -2$, $x_2 = \frac{D_2}{D} = -2$

2. 不会

6.

解析: (i,i)元素的代数余子式不包括第i行与第i列的元素。

3.
$$M_{34} = 104$$
, $A_{34} = -104$ 解析: $M_{34} = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 5 & -8 \\ 1 & 2 & 10 \end{vmatrix} = 104$, $A_{34} = M_{34} \cdot (-1)^{3+4} = -104$ 。

4.

解析: D_1 与 D_2 仅第四行元素不同,故 D_1 与 D_2 第四行元素的代数余子式相同。将 D_2 按第四行 展 开 , 得 D_2 = $(-1)\cdot(-1)^{4+1}\cdot M_{41}+(1)\cdot(-1)^{4+2}\cdot M_{42}+(-1)\cdot(-1)^{4+3}\cdot M_{43}+(1)\cdot(-1)^{4+4}\cdot M_{44}=M_{41}+M_{42}+M_{43}+M_{44}$,M是 D_2 的代数余子式,也是 D_1 的代数余子式。

5. (1) -100(2) 4abcdef

解析:第一问按行列式定义直接展开计算即可。第二问各行分别提出公因子a,d,f,各列分别提出公因子b,c,e,再按定义展开计算。

6. (1)
$$(-1)^{\frac{(n-1)(n-2)}{2}} n!$$
 (2) $x^n + (-1)^{n+1} y^n$ 解析: 第一问,按最后一行展开,只有一个元素 $a_{nn} = n$ 非零,故 $D = n \cdot (-1)^{n+n} \cdot \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 2 & 0 \\ \vdots & & \vdots & \vdots \\ n-1 & \cdots & 0 & 0 \end{bmatrix}$ 。反复按第一行展开,得 $D = n \cdot \prod_{k=1}^{n-1} k \cdot (-1)^{n-k+1} = n! (-1)^{\sum_{k=1}^{n-1} n - k + 1} = n! (-1)^{\frac{(n+2)(n-1)}{2}} = n! (-1)^{\frac{(n-1)(n-2)}{2}}$ 。

第二问,按第一列展开,
$$D = x \cdot (-1)^2 \cdot \begin{vmatrix} x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \\ 0 & 0 & \cdots & 0 & x \end{vmatrix} + y \cdot (-1)^{n+1} \cdot$$

$$\begin{vmatrix} y & 0 & \cdots & 0 & 0 \\ x & y & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & y & 0 \\ 0 & 0 & \cdots & x & y \end{vmatrix} = x^n + y^n \cdot (-1)^{n+1}.$$

1.

解析:设所得行列式为 D_1 ,则 D_1 的元素为 $a_{ij} \cdot b^{i-j}$ 。各行提出 b^i ,各列提出 b^{-j} ,得 $D_1 =$ $D\cdot \textstyle\prod_{i=1}^n b^i\cdot \textstyle\prod_{j=1}^n b^{-j}=D_{\,\circ}$

2.

解析: 完全展开即可。

第二节 行列式的计算 (A)

1. (1) $-2(x^3 + y^3)$ (2) $1 - x^2 - y^2 - z^2$ (3) b^2c^2 (4) 160 (5) 40 (6) $4x^3$ 解析:

第一问,将第 2,3 行加到第 1 行,得原行列式
$$D = \begin{vmatrix} x & y & x+y \\ y & x+y & x \end{vmatrix} = \begin{vmatrix} 2x+2y & 2x+2y & 2x+2y \\ y & x+y & x & y \end{vmatrix} = 2(x+y) \begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x & y \end{vmatrix}$$
。再令第 2 行减去y倍第 1 行,

第 3 行减去x + y倍第 1 行,得 $D = 2(x + y) \begin{vmatrix} 1 & 1 & 1 \\ 0 & x & x - y \\ 0 & -y & -x \end{vmatrix} = 2(x + y) \begin{vmatrix} x & x - y \\ -y & -x \end{vmatrix} =$ $-2(x^3+y^3)$.

第二问,第 1 列减去x倍第 2 列,y倍第 3 列,z倍第 4 列,得D=

$$\begin{vmatrix} 1 - x^2 - y^2 - z^2 & x & y & z \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 - x^2 - y^2 - z^2.$$

第三问,对于除对角线元素均相同的行列式常用加边法求解,

第四问,第 2,3,4 行加到第 1 行, $D = \begin{bmatrix} 10 & 10 & 10 & 10 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} = 10 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} = 10 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} = 10 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} = 10 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$

$$10\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & -3 & -2 & -1 \end{vmatrix} = 10\begin{vmatrix} 1 & 2 & -1 \\ 1 & -2 & -1 \\ -3 & -2 & -1 \end{vmatrix} = 10\begin{vmatrix} 1 & 2 & -1 \\ 0 & -4 & 0 \\ 0 & 4 & -4 \end{vmatrix} = 10\begin{vmatrix} -4 & 0 \\ 4 & -4 \end{vmatrix} = 160.$$

2.

2. 解析:第一问,接列拆分,得
$$D = \begin{vmatrix} a_1 & a_1x + b_1 & c_1 \\ a_2 & a_2x + b_2 & c_2 \\ a_3 & a_3x + b_3 & c_3 \end{vmatrix} + \begin{vmatrix} b_1x & a_1x + b_1 & c_1 \\ b_2x & a_2x + b_2 & c_2 \\ b_3x & a_3x + b_3 & c_3 \end{vmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + x \begin{vmatrix} b_1 & a_1x + b_1 & c_1 \\ b_2 & a_2x + b_2 & c_2 \\ b_3 & a_3x + b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + x \begin{vmatrix} b_1 & a_1x & c_1 \\ b_2 & a_2x & c_2 \\ b_3 & a_3x & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} - x \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
,按第 4 列展开,将得到一个 x 的多项式,二次项 x ^2

的系数的相反数即题目要求的D。该行列式为范德蒙行列式,按公式展开得 $D_1 = (x - a)(x - a)$ $b)(x-c)(c-a)(c-b)(b-a) = (c-a)(c-b)(b-a)[x^3 + (-a-b-c)x^2 + (ab+bc+b)(ab+bc)$ (ca)x - abc], 二次项系数为(c-a)(c-b)(b-a)(-a-b-c), 故D = (c-a)(c-b)(b-a)(-a-b-c)a)(a+b+c).

第 三 问 ,
$$D = \begin{vmatrix} a^2 & a^2 + 2a + 1 & a^2 + 4a + 4 & a^2 + 6a + 9 \\ b^2 & b^2 + 2b + 1 & b^2 + 4b + 4 & b^2 + 6b + 9 \\ c^2 & c^2 + 2c + 1 & c^2 + 4c + 4 & c^2 + 6c + 9 \\ d^2 & d^2 + 2d + 1 & d^2 + 4d + 4 & d^2 + 6d + 9 \end{vmatrix} = \begin{bmatrix} a^2 & 2a + 1 & 2 & 2 \\ b^2 & 2b + 1 & 2b + 3 & 2b + 5 \\ c^2 & 2c + 1 & 2c + 3 & 2c + 5 \\ d^2 & 2d + 1 & 2d + 3 & 2d + 5 \end{vmatrix} = \begin{vmatrix} a^2 & 2a + 1 & 2 & 2 \\ b^2 & 2b + 1 & 2 & 2 \\ c^2 & 2c + 1 & 2 & 2 \\ d^2 & 2d + 1 & 2 & 2 \end{vmatrix} = 0.$$

3. (1)
$$-20$$
 (2) -2 (3) $abd(c-b)(d-b)(d-c)(c^2-a^2)$ 解析:第一问, $D = \begin{vmatrix} 1 & -2 \\ 3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 5 & 6 \\ 7 & 8 \end{vmatrix} = 10 \cdot (-2) = -20$ 。

《线性代数与解析几何》课后题解析(意见征集稿)
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -1 & a_1 & 0 & \cdots & 0 \\ -1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & 0 & 0 & \cdots & a_n \end{vmatrix} = \begin{vmatrix} 1 + \sum_{i=0}^n \frac{1}{a_i} & 1 & 1 & \cdots & 1 \\ 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix} = \left(1 + \sum_{i=0}^n \frac{1}{a_i}\right) \prod_{k=1}^n a_k$$

5.
$$1 - a + a^2 - a^3 + a^4 - a^5$$

5.
$$1-a+a^2-a^3+a^4-a^5$$

解析: 按第一列展开, $D_5=(1-a)D_4+\begin{vmatrix} a & 0 & 0 & 0 \\ -1 & 1-a & a & 0 \\ 0 & -1 & 1-a & a \\ 0 & 0 & -1 & 1-a \end{vmatrix}=(1-a)D_4+aD_3.$

 $D_1 = 1 - a, D_2 = \begin{vmatrix} 1 - a & a \\ -1 & 1 - a \end{vmatrix} = a^2 - a + 1, \text{ idit} \\ \exists D_5 = (1 - a)D_4 + aD_3 = (1 - a)[(1 - a)D_3 + aD_2] + aD_3 = (1 - a + a^2)D_3 + (1 - a)aD_2 = (1 - a + a^2)[(1 - a)D_2 + aD_1] + (1 - a)aD_2 = (1 - a + a^2)[(1 - a)D_2 + aD_1] + (1 - a)aD_2 = (1 - a)[(1 - a)D_2 + aD_1] + (1 - a)[(1 - a)D_2 + aD_2] + (1 - a)[$ $a)aD_2 = 1 - a + a^2 - a^3 + a^4 - a^5.$

6. $\prod_{k=1}^{n} k!$

解析:设将行列式翻转需要交换行或列m次。将行列式上下翻转再左右翻转,相当于交换

行列2
$$m$$
次, $(-1)^{2m}=1$,故原行列式等于
$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ a-n & a-n+1 & \cdots & a \\ \vdots & & \vdots & & \vdots \\ (a-n)^n & (a-n+1)^n & \cdots & a^n \end{vmatrix} = \prod_{k=1}^n \prod_{i=1}^k i =$$

 $\prod_{k=1}^{n} k!$

7.

解析: 第一问, 按第一行展开, 所得余子式再按最后一行展开, 得 $D_{2n}=(a_nd_n-a_nd_n)$ $b_n c_n D_{2n-2}$, 递推得 $D_{2n} = \prod_{i=1}^n (a_i d_i - b_i c_i)$.

第 二 问 , 最 后 一 行 展 开 ,
$$D_n = (-1)^{n+1} a_n \begin{vmatrix} -1 & 0 & \cdots & 0 \\ x & -1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix} +$$

第二问,最后一行展开,
$$D_n = (-1)^{n+1}a_n \begin{vmatrix} -1 & 0 & \cdots & 0 \\ x & -1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix} + (-1)^{n+2}a_{n-1} \begin{vmatrix} x & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix} \cdots + (-1)^{2n}(x+a_1) \begin{vmatrix} x & -1 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x \end{vmatrix} = a_n + a_{n-1}x + \cdots + a_1x^{n-1} + x^n$$
。

第三问,第一列展开,
$$D_n=(a+b)D_{n-1}-\begin{vmatrix}ab&0&\cdots&0&0\\1&a+b&\cdots&0&0\\\vdots&\vdots&&&\vdots&\vdots\\0&0&\cdots&a+b&ab\\0&0&\cdots&1&a+b\end{vmatrix}=(a+b)$$

$$b)D_{n-1} - abD_{n-2}, D_n - aD_{n-1} = b(D_{n-1} - aD_{n-2}), D_n - bD_{n-1} = a(D_{n-1} - bD_{n-2}), D_2 = \begin{vmatrix} a+b & ab \\ 1 & a+b \end{vmatrix} = a^2 + b^2 + ab, D_1 = a+b, D_n - aD_{n-1} = b^{n-2}(D_2 - aD_1) = b^n, D_n - bD_{n-1} = a^{n-2}(D_2 - bD_1) = a^n,$$
解得 $D_n = \frac{a^{n+1} - b^{n+1}}{a-b}$ 。
第四问,数学归纳法。 $D_1 = \cos \alpha, D_2 = \begin{vmatrix} \cos \alpha & 1 \\ 1 & 2\cos \alpha \end{vmatrix} = \cos 2\alpha,$ 成立。

第四问,数学归纳法。
$$D_1 = \cos \alpha$$
, $D_2 = \begin{vmatrix} \cos \alpha & 1 \\ 1 & 2\cos \alpha \end{vmatrix} = \cos 2\alpha$,成立。

$$\begin{vmatrix} \cos \alpha & 1 & \cdots & 0 & 0 \\ 1 & 2 \cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 2 \cos \alpha & 0 \\ 0 & 0 & \cdots & 1 & 1 \end{vmatrix} = 2 \cos \alpha \, D_n - D_{n-1} = 2 \cos \alpha \cos n\alpha - \cos(n-1)\alpha =$$

 $2\cos\alpha\cos n\alpha - \cos n\alpha\cos\alpha - \sin n\alpha\sin\alpha = \cos n\alpha\cos\alpha - \sin n\alpha\sin\alpha = \cos(n+1)\alpha$. 证毕.

(B)

1.

解析: 反复将第m+1列与前一列交换,当其交换到第一列时,交换次数为m。同理第m+2列以此法交换到第 2 列时交换次数也为m。对后n列均做此操作,交换次数为mn,变为块对角行列式,再利用块对角行列式的计算方法即可证明。

1. (1)
$$x_1 = 3$$
, $x_2 = 1$, $x_3 = 1$ (2) $x_1 = 1$, $x_2 = x_3 = x_4 = 0$
解析: 第一问, $D = \begin{vmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 3 & -2 & 4 \end{vmatrix} = 60$, $D_1 = \begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \end{vmatrix} = 180$, $D_2 = \begin{vmatrix} 2 & 4 & -1 \\ 3 & 11 & -2 \\ 3 & 11 & 4 \end{vmatrix} = 180$

2. $\lambda = 1$

解析: 齐次方程存在非零解,故
$$D=\begin{vmatrix}\lambda&1&1\\1&\lambda&1\\3&-1&1\end{vmatrix}=(\lambda-1)^2=0$$
, $\lambda=1$ 。

3. 若由n个方程,n个未知量组成的线性方程组无解或解不唯一,则方程组的系数行列式等于 0。

4

解析:
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = \begin{vmatrix} x_1 - x & y_1 - y \\ x_2 - x_1 & y_2 - y_1 \end{vmatrix} = 0$$
,即 $(x_1 - x)(y_2 - y_1) = (y_1 - y)(x_2 - x_1)$,
红线的两点式。

5.
$$f(x) = 7 - 5x^2 + 2x^3$$

解析: 待定系数法。设 $f(x) = ax^3 + bx^2 + cx + d$,则
$$\begin{cases} -a + b - c + d = 0\\ a + b + c + d = 4\\ 8a + 4b + 2c + d = 3\\ 27a + 9b + 3c + d = 16 \end{cases}$$
解得 $a = 2, b = -5, c = 0, d = 7$ 。

1.

解析:反证法。假设该方程存在四个不同的根 x_1, x_2, x_3, x_4 ,则

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 = 0 \\ a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_3^2 = 0 \\ a_0 + a_1 x_3 + a_2 x_3^2 + a_3 x_3^3 = 0 \\ a_0 + a_1 x_4 + a_2 x_4^2 + a_3 x_4^3 = 0 \end{cases}$$

以
$$a_3, a_2, a_1, a_0$$
为未知数,解四元一次方程。系数行列式 $D = \begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{vmatrix} = (x_4 - x_1 - x_2 - x_2 - x_2 - x_3 - x_3 - x_3 - x_4 - x$

 $(x_3)(x_4-x_2)(x_4-x_1)(x_3-x_2)(x_3-x_1)(x_2-x_1)\neq 0$,仅零解, $(a_3=a_2=a_1=a_0=0)$,与 $(a_3\neq 0)$ 矛盾。所以原方程不存在四个不同的根。

第一章习题

1. (1) 140 (2) 48 (3) 1, 2, 3 (4) $\frac{a}{b}$ (5) $\lambda \neq 1 \pm \mu \neq 0$

解析: 第一问,分块对角行列式
$$D = \begin{vmatrix} 5 & 2 \\ 3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} = 140$$
。

第二问,除第一行外每行减去第一行,
$$D = \begin{bmatrix} 3 & 41 & 12 & 41 \\ 3 & 1 & 1 & 1 \\ -2 & 2 & 0 & 0 \\ -2 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \end{bmatrix}$$
,然后除第一列外每列加到第

一列,
$$D = \begin{vmatrix} 6 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 48$$
。

第三问,第三行减第二行,得
$$D = \begin{vmatrix} x+1 & -4 & 2 \\ 3 & x-4 & 0 \\ 0 & 3-x & x-3 \end{vmatrix} = (x-3) \begin{vmatrix} x+1 & -4 & 2 \\ 3 & x-4 & 0 \\ 0 & -1 & 1 \end{vmatrix} =$$

2)(x-1),根为1,2,3。

第四问,第一列元素的代数余子式之和,即将第一列元素全部换成 1 之后行列式的值。将除第一列外得每一列加到第一列,则第一列全为b,提出b可知将第一列换成 1 之后行列式的值为 $\frac{a}{b}$ 。

第五问,只有零解即系数行列式不等于
$$0 \cdot D = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \mu & 1 \\ 1 & 2\mu & 1 \end{vmatrix} = \begin{vmatrix} \lambda & 1 & 1 \\ 1 - \lambda & \mu - 1 & 0 \\ 1 - \lambda & 2\mu - 1 \end{vmatrix} = -(\lambda - 1) \begin{vmatrix} 1 & \mu - 1 \\ 1 & 2\mu & 1 \end{vmatrix} = -\mu(\lambda - 1) \neq 0, \ \mu \neq 0, \ \lambda \neq 1.$$

2. (1) D (2) A (3) B

解析:第一问,系数行列式为 0,则齐次方程组有非零解,非齐次方程组解必不唯一。第二问,将D的第 3 行元素换成 1, 2, 3, 4 即为结果,此时第 3 行与第 1 行相同,行列式等于 0。

第 三 问 ,
$$f(x) = \begin{vmatrix} x-2 & 1 & 0 & -1 \ 2x-2 & 1 & 0 & -1 \ 3x-3 & 1 & x-2 & -2 \ 4x & -3 & x-7 & -3 \ \end{vmatrix} = \begin{vmatrix} x-2 & 1 & 0 & -1 \ x & 0 & 0 & 0 \ 3x-3 & 1 & x-2 & -2 \ 4x & -3 & x-7 & -3 \ \end{vmatrix} = -x \begin{vmatrix} 1 & 0 & -1 \ 1 & x-2 & -2 \ -3 & x-7 & -3 \ \end{vmatrix} = -x \begin{vmatrix} 1 & 0 & -1 \ 0 & x-2 & -1 \ 0 & x-7 & -6 \ \end{vmatrix} = -x \begin{vmatrix} x-2 & -1 \ x-7 & -6 \ \end{vmatrix} = 5x(x-1)$$
, 有 2 个根。

3. -105

解析: 将原行列式第 3 列替换为 1, -2, 5, 0 即为结果。 $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 3 & 5 & -2 & 2 \\ 5 & 4 & 5 & 5 \\ 5 & 6 & 0 & 4 \end{vmatrix} = -105.$

4. (1) -18 (2) -142 (3) $1 + x^2 + y^2 + z^2$ (4) $6a^5$

解析: 前两问常规方法即可。

第三问。原式除对角线外,各行列均有公因子,常用加边法, $D=\begin{bmatrix}1&x&y&z\\0&x^2+1&xy&xz\\0&xy&y^2+1&yz\\0&xz&yz&z^2+1\end{bmatrix}==\begin{bmatrix}1&x&y&z\\-x&1&0&0\\-y&0&1&0\\-z&0&0&1\end{bmatrix}=\begin{bmatrix}1+x^2+y^2+z^2&x&y&z\\0&&1&0&0\\0&&0&1&0\\0&&0&0&1\end{bmatrix}=1+$

第四问,第一行展开,
$$D_5 = 2aD_4 - \begin{vmatrix} a^2 & 1 & 0 & 0 \\ 0 & 2a & 1 & 0 \\ 0 & a^2 & 2a & 1 \\ 0 & 0 & a^2 & 2a \end{vmatrix} = 2aD_4 - a^2D_3 = 2a[2aD_3 - a^2D_2] - a^2D_3 = 3a^2D_3 - 2a^3D_2 = 3a^2[2aD_2 - a^2D_1] - 2a^3D_2 = 4a^3D_2 - 3a^4D_1$$
 , $D_2 = \begin{vmatrix} 2a & 1 \\ a^2 & 2a \end{vmatrix} = 3a^2$, $D_1 = 2a$,解得 $D_5 = 6a^5$ 。

5.
$$x_1 = \frac{1}{2}$$
, $x_2 = x_3 = x_4 = 0$

解析: 克莱姆法则,常规做法即可。

第二章 矩阵

第一节 矩阵及其运算

(A)

注:
$$\mathbf{AB} = \begin{bmatrix} 8 & 7 & 5 \\ -8 & 3 & 3 \\ 10 & 1 & -3 \end{bmatrix}, \quad \mathbf{B}^T \mathbf{A} = \begin{bmatrix} 8 & -8 & 10 \\ 7 & 3 & 1 \\ 5 & 3 & -3 \end{bmatrix}.$$

2. (1)14 (2)
$$\begin{bmatrix} -2 & 4 \\ -1 & 2 \\ -3 & 6 \end{bmatrix}$$
 (3)
$$\begin{bmatrix} 22 & 15 \\ 22 & 2 \end{bmatrix}$$
 (4) $a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{13}$

 $2a_{23}x_2x_3$

解析:本题考查矩阵乘法定义,直接计算即可。

第二问,原式=
$$\begin{bmatrix} -1 \times 2 & 2 \times 2 \\ -1 \times 1 & 2 \times 1 \\ -1 \times 3 & 2 \times 3 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ -1 & 2 \\ -3 & 6 \end{bmatrix}$$
第三问,原式=
$$\begin{bmatrix} 1+4-3+20 & 3+8+4 \\ -1-2+25 & -3+5 \end{bmatrix} = \begin{bmatrix} 22 & 15 \\ 22 & 2 \end{bmatrix}$$
第四问,按照矩阵乘法定义计算即可,原式可化为

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 & a_{12}x_1 + a_{22}x_2 + a_{23}x_3 & a_{13}x_1 + a_{23}x_2 + a_{33}x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= x_1(a_{11}x_1 + a_{12}x_2 + a_{13}x_3) + x_2(a_{12}x_1 + a_{22}x_2 + a_{23}x_3)$$

$$+ x_3(a_{13}x_1 + a_{23}x_2 + a_{33}x_3)$$

$$= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

$$3. \begin{bmatrix} 2 & 1 \\ -10 & 3 \\ -7 & 9 \end{bmatrix}$$

解析: 本题考查线性变换与矩阵。

令
$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, $\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, $\mathbf{Z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$, 则 $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 4 & 0 & 5 \end{bmatrix} \mathbf{Y}$, $\mathbf{Y} = \begin{bmatrix} -3 & 1 \\ 4 & -1 \\ 1 & 1 \end{bmatrix} \mathbf{Z}$, 代入得 $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 4 & 0 & 5 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 4 & -1 \\ 1 & 1 \end{bmatrix} \mathbf{Z} = \begin{bmatrix} 2 & 1 \\ -10 & 3 \\ -7 & 9 \end{bmatrix} \mathbf{Z}$, 故所求 $\mathbf{Z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ 到 $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 的线性变换矩阵为

4. (1)不等于 (2)不等于 (3)不等于

解析: 本题考查矩阵乘法定义, 需要注意矩阵乘法不存在交换律。

第一问,
$$AB = \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix}$$
, $BA = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$,故不相等
第二问, $A + B = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$, $(A + B)^2 = \begin{bmatrix} 13 & 21 \\ 21 & 34 \end{bmatrix}$, $A^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$, $B^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $A^2 + 2AB + B^2 = \begin{bmatrix} 10 & 18 \\ 21 & 37 \end{bmatrix}$,故不相等

第三问,
$$A - B = \begin{bmatrix} 0 & 1 \\ 3 & 3 \end{bmatrix}$$
, $(A + B)(A - B) = \begin{bmatrix} 9 & 11 \\ 15 & 18 \end{bmatrix}$, $A^2 - B^2 = \begin{bmatrix} 6 & 8 \\ 15 & 21 \end{bmatrix}$, 故不相等

5.
$$(1)\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 $(2)\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $(3)\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $(4)\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$

解析: 本题考查矩阵乘法定义与应用, 注意矩阵乘法与代数乘法的异同, 经常用到的反 例有 $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ 、 $\begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix}$ 、 $\begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}$ 代入验证即可。

$$6. \ (1) \boldsymbol{A} \boldsymbol{D} = \begin{bmatrix} \lambda_1 a_{11} & \cdots & \lambda_j a_{1j} & \cdots & \lambda_n a_{1n} \\ \vdots & & \vdots & & \vdots \\ \lambda_1 a_{n1} & \cdots & \lambda_j a_{nj} & \cdots & \lambda_n a_{nn} \end{bmatrix}, \quad \boldsymbol{D} \boldsymbol{A} = \begin{bmatrix} \lambda_1 a_{11} & \cdots & \lambda_1 a_{1n} \\ \vdots & & \vdots \\ \lambda_i a_{i1} & \cdots & \lambda_i a_{in} \\ \vdots & & \vdots \\ \lambda_n a_{n1} & \cdots & \lambda_n a_{nn} \end{bmatrix}$$

解析: 本题考查矩阵乘法定义与应用, 本题结论可直接在后面章节中使用。

第一问,根据矩阵乘法定义计算AD、DA,规律是AD的第j列等于用 λ_i 乘A的第 \underline{i} 列所得列 向量,DA的第i行等于用 λ_i 乘A的第i行所得行向量

第二问,根据矩阵乘法定义计算 $\mathbf{A}\varepsilon_i$ 、 $\varepsilon_i^T \mathbf{A}$ 、 $\varepsilon_i^T \mathbf{A}\varepsilon_i$,规律是 $\mathbf{A}\varepsilon_i$ 为 \mathbf{A} 的第 \mathbf{j} 列, $\varepsilon_i^T \mathbf{A}$ 为 \mathbf{A} 的第 i行, $\varepsilon_i^T \mathbf{A} \varepsilon_i$ 为 a_{ii}

解析: 本题考查矩阵乘法定义, 用数学归纳法证明。

第一问,当n=1时,命题成立

第二问, n=1当时, 命题成立

假设n=k时, $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 1 & k & \frac{1}{2}k(k-1) \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$ 成立,当n=k+1时,

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{k} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k & \frac{1}{2}k(k-1) \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & k+1 & \frac{1}{2}k(k-1)+k \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k+1 & \frac{1}{2}k(k+1) \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbb{p}n=k+1 \text{ Bruck}, \ \mathbb{p}n \in \mathbb{R}$$

第二问也可拆解矩阵直接证明,令 $\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,则 $\mathbf{A} = \mathbf{I} + \mathbf{B}$, $\mathbf{A}^n = (\mathbf{I} + \mathbf{B})^n = \mathbf{I} + \mathbf{B}$ 的 $\mathbf{B} + \frac{1}{2}n(n-1)\mathbf{B}^2 + \dots + \mathbf{B}^n$,而 $\mathbf{B}^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{B}^2 = \mathbf{O}(n = 3,4,5,\dots)$,代入得 $\mathbf{A}^n = \mathbf{A}^n = \mathbf{A$

8.
$$A^2 = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$
, 其 (i,j) 元素表示从 P_i 出发经过 1 次中转到达 P_j 的航班总数

解析:根据矩阵乘法定义计算 A^2 ,由A的具体意义可知 A^2 的(i,j)元素表示从 P_i 出发经过1 次中转到达 P_i 的航班总数。

9.

解析: 本题考查对称矩阵、反对称矩阵定义及矩阵转置运算规律。证明思路是对于任意 方阵P. 验证 P^T 与P的关系,若 $P^T = P$ 则P为对称矩阵,若 $P^T = -P$ 则P为反对称矩阵。

第一问,A为对称矩阵 $\Rightarrow A^T = A \Rightarrow (B^T A B)^T = B^T A (B^T)^T = B^T A^T B = B^T A B \Rightarrow B^T A B$ 为 对称矩阵, 证毕

第二问,A为对称矩阵、B为反对称矩阵 $\Rightarrow A^T = A$. $B^T = -B$ AB为反对称矩阵 $\Leftrightarrow -AB = (AB)^T = B^TA^T = -BA \Leftrightarrow AB = BA$

第三问, $\mathbf{A} \times \mathbf{B}$ 为同阶对称矩阵 $\Rightarrow \mathbf{A}^T = \mathbf{A}, \mathbf{B}^T = \mathbf{B}$ 所以, $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T = \mathbf{A} + \mathbf{B}$ 是对称矩阵, $(\mathbf{A} - \mathbf{B})^T = \mathbf{A}^T - \mathbf{B}^T = \mathbf{A} - \mathbf{B}$ 是对称矩阵, $(kA)^T = kA^T = kA$ 是对称矩阵。同理,当 $A \setminus B$ 为同阶反对称矩阵时, $A + B \setminus A - B \setminus kA$ 是 反对称矩阵

第四问,取 $\mathbf{A} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,则 $\mathbf{AB} = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}$,仅当a = b时 \mathbf{AB} 为对称矩阵

10. (1)
$$\boldsymbol{o}$$
 (2)3ⁿ⁻¹
$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}$$

解析:本题考查方阵幂运算与矩阵乘法运算律,注意第二问用矩阵乘法结合律简化运算。

第一问,
$$A^2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{bmatrix} = 2A \Rightarrow A^2 - 2A = 2A - 2A = \mathbf{0}$$

$$A^n - 2A^{n-1} = A^{n-2}(A^2 - 2A) = \mathbf{0}(n > 2)$$

第二问, $\boldsymbol{\beta}\boldsymbol{\alpha}^T = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = 3$,将 $\boldsymbol{A} = \boldsymbol{\alpha}^T \boldsymbol{\beta}$ 代入,根据定义写出表达式,再用结合律

$$A^{n} = (\boldsymbol{\alpha}^{T}\boldsymbol{\beta})^{n} = \boldsymbol{\alpha}^{T}\boldsymbol{\beta}\boldsymbol{\alpha}^{T}\boldsymbol{\beta}\cdots\boldsymbol{\alpha}^{T}\boldsymbol{\beta} = \boldsymbol{\alpha}^{T}(\boldsymbol{\beta}\boldsymbol{\alpha}^{T})(\boldsymbol{\beta}\boldsymbol{\alpha}^{T})\cdots(\boldsymbol{\beta}\boldsymbol{\alpha}^{T})\boldsymbol{\beta} = \boldsymbol{\alpha}^{T}(\boldsymbol{\beta}\boldsymbol{\alpha}^{T})^{n-1}\boldsymbol{\beta} = 3^{n-1}\boldsymbol{\alpha}^{T}\boldsymbol{\beta}$$

$$= 3^{n-1}\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} = 3^{n-1}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}$$

11.

解析: 本题考查矩阵乘法定义及单位矩阵运算规律, $I_m A_{m \times n} = A_{m \times n} I_n = A_{m \times n}$, $I^n = I$, 将已知代入计算即证。

$$A^2 = A \Leftrightarrow \left[\frac{1}{2}(B+I)\right]^2 = \frac{1}{2}(B+I) \Leftrightarrow B^2 + IB + BI + I^2 = 2(B+I) \Leftrightarrow B^2 + 2B + I = 2B + 2I \Leftrightarrow B^2 = I, \quad \text{if } \stackrel{\text{le}}{\rightleftharpoons}_{\circ}$$

12.

解析: 本题考查矩阵加法、矩阵乘法运算律以及迹的定义。

问题一,根据定义 $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^n a_{ii}, \operatorname{tr}(\boldsymbol{B}) = \sum_{i=1}^n b_{ii}$

$$\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}), \quad \text{if } \text{\downarrow}$$

问题二,AB的(i,i)元素为 $\sum_{k=1}^{n} a_{ik} b_{ki}$,BA的(i,i)元素为 $\sum_{l=1}^{n} b_{il} a_{li}$,

由定义tr(AB) = $\sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$,

而 $\operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) = \sum_{i=1}^{n} \sum_{l=1}^{n} b_{il} a_{li} = \sum_{l=1}^{n} \sum_{i=1}^{n} a_{li} b_{il} = \operatorname{tr}(\boldsymbol{A}\boldsymbol{B})$,证毕

问题三, AA^T 的(i,i)元素为 $a_{i1}^2 + a_{i2}^2 + \cdots + a_{i3}^2 = \sum_{j=1}^n a_{ij}^2$,

由定义 $\operatorname{tr}(\mathbf{A}\mathbf{A}^T) = \sum_{i=1}^n (\sum_{i=1}^n a_{i,i}^2) = \sum_{i=1}^n \sum_{i=1}^n a_{i,i}^2$, 证毕

(B)

1.

解析:本题考查上三角矩阵定义,数学语言描述为当元素行标大于列标时该元素等于 0。设A、B为同阶上三角矩阵,C=AB,当i>j时, $a_{ij}=0$, $b_{ij}=0$,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} 0 \cdot b_{kj} + \sum_{k=i}^{n} a_{ik} \cdot 0 = 0$$

2.

解析:本题考查矩阵乘法与矩阵转置定义,充分性考虑 $AA^T = 0$ 主对角线元素。

必要性, $A = \mathbf{0} \Rightarrow A^T = \mathbf{0} \Rightarrow AA^T = \mathbf{0}$

充分性, $\mathbf{A}\mathbf{A}^T$ 的(i,i)元素为 $a_{i1}^2+a_{i2}^2+\cdots+a_{i3}^2=\sum_{j=1}^m a_{ij}^2$,根据习题 2.1(A)12 题结论(3),有

$$tr(AA^{T}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij}^{2} \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^{2}$$

$$AA^T = \mathbf{0} \Rightarrow \operatorname{tr}(AA^T) = 0 \Rightarrow \sum_{i=1}^n \sum_{j=1}^m a_{ij}^2 = 0 \Rightarrow a_{ij} = 0 (i = 1, 2, \dots, n, j = 1, 2, \dots, m) \Rightarrow A = \mathbf{0}$$

第二节 逆矩阵 (A)

1.

解析: 本题考查方阵可逆充要条件, 由定理 2.2.2 直接计算即证。

因为 $det(A) = ad - bc \neq 0$ 故A可逆,求各元素的代数余子式 $A_{11} = d$, $A_{12} = -c$, $A_{21} =$ -b, $A_{22}=a$, 进而 $\mathbf{A}^*=\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, 所以 $\mathbf{A}^{-1}=\frac{1}{\det(A)}\mathbf{A}^*=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, 证毕。

2.

解析: 本题考查方阵可逆充要条件, 由定理 2.2.2 直接计算即证。

 ${\bf D}$ 可逆 \Leftrightarrow $\det({\bf D})=d_1d_2\cdots d_n\neq 0\Leftrightarrow {\bf D}$ 的主对角元素 d_1,d_2,\cdots,d_n 均不为零,计算 ${\bf D}^*=$

diag $\left(d_1^{-1},d_2^{-1},\cdots,d_n^{-1}\right)$, 证毕。

$$3. (1)$$
可逆,
$$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \quad (2)$$
可逆,
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

解析: 本题考查方阵可逆充要条件的运用, 根据定理 2.2.2 计算即可。

第一问,记
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\det(A) = -2 \neq 0$ 故 A 可逆,而 $A^* = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$,故 $A^{-1} = \frac{1}{\det(A)}A^* = \frac{1}{-2}\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$

第二问,记
$$\mathbf{B} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
, $\det(\mathbf{B}) = \cos^2\theta + \sin^2\theta = 1 \neq 0$ 故 \mathbf{B} 可逆,而 $\mathbf{B}^* = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$,故 $\mathbf{B}^{-1} = \frac{1}{\det(B)}\mathbf{B}^* = \frac{1}{1}\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$

4.
$$-\frac{1}{2}A$$
, $-\frac{1}{5}(A+I)$

解析:本题考查方阵可逆充要条件的推论。根据矩阵乘法将原式分解为AB = I的形式, 则由推论 2.2.2 得A、B可逆且互为逆矩阵。

因为 $O = A^2 - 2A + 2I = (A - 2I)A + 2I$, 故有(A - 2I)A = -2I, 即 $(A - 2I)(\frac{1}{-2}A) = I$, 故由推论 2.2.2 得A - 2I可逆且 $(A - 2I)^{-1} = -\frac{1}{2}A$

因为 $O = A^2 - 2A + 2I = (A - 3I)(A + I) + 5\tilde{I}$, 故有 (A - 3I)(A + I) = -5I, 即 (A - 3I)(A + I) = -5I3I) $\left[\frac{1}{-5}(A+I)\right] = I$, 故由推论 2.2.2 得A - 3I可逆且 $(A - 3I)^{-1} = -\frac{1}{5}(A+I)$

 A^{m-1}) = I即可。

《线性代数与解析几何》课后题解析(意见征集稿) 因为 $(I-A)(I+A+A^2+\cdots+A^{m-1})=I-A^m=I-O=I$,所以根据推论 2.2.2,I-A可逆目 $(I-A)^{-1} = I + A + A^2 + \cdots + A^{m-1}$

6.

解析: 本题考查方阵可逆充要条件的推论。根据推论 2.2.2 证明 $(I-A)\left(I-\frac{1}{n-1}A\right)=I$,

7.
$$\mathbf{D} = \mathbf{A}^{-1} \mathbf{B}^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

解析: 本题考查矩阵转置运算律、逆矩阵基本性质及逆矩阵计算。根据逆矩阵的基本性 质可将等式化为 $D = A^{-1}B^{T}$,计算对角矩阵A的逆矩阵 A^{-1} 时可直接使用习题 2.2 第二题结论 简化运算。

8.

解析: 本题考查伴随矩阵定义及重要结论, 注意分类讨论与反证法的运用。

 $\operatorname{hdet}(A) = 0$ 知存在 $A = \mathbf{0}$ 和 $A \neq \mathbf{0}$ 两种情况.

A = 0时,由定义 2.2.2 有 $A = 0 \Rightarrow A^* = 0 \Rightarrow \det(A^*) = 0$

 $A \neq 0$ 时,由定理 2.2.1 有 $A^*A = \det(A)I = 0$,若 $\det(A^*) \neq 0$,则 A^* 可逆,左乘 $(A^*)^{-1}$ 得0 = 0 $(A^*)^{-1}A^*A = A$. 与 $A \neq 0$ 矛盾. 故 $\det(A^*) = 0$

综上, $det(A^*) = 0$ 得证

9.

解析: 本题考查伴随矩阵定义。

由定义 2.2.1 知,kA的每个元素的代数余子式等于A对应元素代数余子式的 k^{n-1} 倍,所以

$$(k\mathbf{A})^* = \begin{bmatrix} k^{n-1}A_{11} & k^{n-1}A_{21} & \cdots & k^{n-1}A_{n1} \\ k^{n-1}A_{12} & k^{n-1}A_{22} & \cdots & k^{n-1}A_{n2} \\ \vdots & \vdots & & \vdots \\ k^{n-1}A_{1n} & k^{n-1}A_{2n} & \cdots & k^{n-1}A_{nn} \end{bmatrix} = k^{n-1} \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix} = k^{n-1}\mathbf{A}^*$$

10.
$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

解析: 本题考查方阵可逆充要条件的推论。将原式左乘A并化简得 $(A-2I)\left[\frac{1}{8}(B-4I)\right]=I$, 由推论 2.2.2 知A-2I可逆,由第一问易得 $A=2I+8(B-4I)^{-1}$,从而计算矩阵A

第一问, $2A^{-1}B = B - 4I$ 两边左乘A得2B = AB - 4A, 从而AB - 4A - 2B = O, 因为O = AB - 4A - 2B = (A - 2I)(B - 4I) - 8I, 即 $(A - 2I)\left[\frac{1}{8}(B - 4I)\right] = I$, 故由推论 2.2.2 知A - 2I可逆且 $(A - 2I)^{-1} = \frac{1}{8}(B - 4I)$

第二问,由已知 $\mathbf{B} - 4\mathbf{I} = \begin{bmatrix} -3 & -2 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$,进而 $\det(\mathbf{B} - 4\mathbf{I}) = -16 \neq 0$,故 $\mathbf{B} - 4\mathbf{I}$ 可逆且 $(B - 4\mathbf{I})^{-1} = -\frac{1}{16} \begin{bmatrix} 4 & -4 & 0 \\ 2 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix}, \quad \forall (\mathbf{A} - 2\mathbf{I})^{-1} = \frac{1}{8} (\mathbf{B} - 4\mathbf{I})$ 两边同取逆,得 $\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} \frac{1}{8} (\mathbf{B} - 4\mathbf{I}) \end{bmatrix}^{-1} = 8(\mathbf{B} - 4\mathbf{I})^{-1}$,

所以
$$\mathbf{A} = 2\mathbf{I} + 8(\mathbf{B} - 4\mathbf{I})^{-1} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 4 & -4 & 0 \\ 2 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

11.

解析:本题考查方阵可逆充要条件的推论。根据推论 2.2.2 证明 $(A^{-1}+B^{-1})A(A+B)^{-1}B=I$ 即可,注意灵活运用 $B^{-1}B=I$, $A^{-1}A=I$,第二问先证明 $(A^{-1}+B^{-1})^{-1}=B(A+B)^{-1}A$,再由逆矩阵唯一性得证

第一问,A,B,A+B可逆⇒ $A^{-1}A = I,B^{-1}B = I,(A+B)^{-1}(A+B) = I,$ $\left(A^{-1}+B^{-1}\right)A(A+B)^{-1}B = \left(I+B^{-1}A\right)(A+B)^{-1}B = \left(B^{-1}B+B^{-1}A\right)(A+B)^{-1}B =$ $B^{-1}(B+A)(A+B)^{-1}B = B^{-1}\left[(A+B)(A+B)^{-1}\right]B = B^{-1}B = I,$ 由推论 2.2.2 知 $A^{-1}+B^{-1}$ 可逆且 $\left(A^{-1}+B^{-1}\right)^{-1} = A(A+B)^{-1}B$

第二问, $(A^{-1}+B^{-1})B(A+B)^{-1}A = (A^{-1}B+I)(A+B)^{-1}A = (A^{-1}B+A^{-1}A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A = A^{-1}(B+A)(A+B)^{-1}A$

12. (1) $A^2 = 4I$, $A^{-1} = \frac{1}{4}A$ (2) $B = I - \frac{3}{4}A$

解析: 本题考查方阵可逆充要条件的推论, 直接计算即可。

 $[1 \quad -1]$ I,由推论 2.2.2 得 $A^{-1} = \frac{1}{4}A$

第二问, $A^2 + AB - A = I \xrightarrow{A^2 = 4I} 4I + AB - A = I \xrightarrow{8 \text{ σp}} AB = A - 3I \xrightarrow{\text{m\sigma f} \text{\pi p} \text{\pi}} B = A^{-1}A - 3A^{-1} = I - \frac{3}{4}A$

13.
$$\det\left(-2\mathbf{A}^*\mathbf{B}^{-1}\right) = (-1)^{n-1} \frac{2^{2n-1}}{3}$$

解析:本题考查伴随矩阵推论和逆矩阵基本性质,根据推论 2.2.1 和逆矩阵基本性质 5 直接运算即可。

$$\det\left(-2\mathbf{A}^*\mathbf{B}^{-1}\right) = \det(-2\mathbf{A}^*)\det\left(\mathbf{B}^{-1}\right) = (-2)^n\det(\mathbf{A}^*)\det\left(\mathbf{B}^{-1}\right)$$
$$= (-2)^n[\det(\mathbf{A})]^{n-1}\frac{1}{\det(\mathbf{B})} = (-2)^n \cdot 2^{n-1} \cdot \frac{1}{3} = (-1)^{n-1}\frac{2^{2n-1}}{3}$$

14.

解析: 本题考查逆矩阵定义,可以采用数学归纳法或者直接证明,注意矩阵乘法结合律的运用。

第一问,下面用数学归纳法证明,
$$n=1$$
时,等式成立,假设 $n=k-1$ 时, $A^{k-1}=\begin{bmatrix} \lambda_1^{k-1} & 0 \\ 0 & \lambda_2^{k-1} \end{bmatrix}$ 成立,则 $n=k$ 时, $A^k=\begin{bmatrix} \lambda_1^{k-1} & 0 \\ 0 & \lambda_2^{k-1} \end{bmatrix}\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}=\begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix}$,故 $A^k=\begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix}$,所以 $f(A)=a_0I+a_1A+a_2A^2+\cdots+a_mA^m=\sum_{i=1}^m a_iA^i=\sum_{i=1}^m a_i\begin{bmatrix} \lambda_1^i & 0 \\ 0 & \lambda_2^i \end{bmatrix}=\sum_{i=1}^m \begin{bmatrix} a_i\lambda_1^i & 0 \\ 0 & a_i\lambda_2^i \end{bmatrix}=\begin{bmatrix} \sum_{i=1}^m a_i\lambda_1^i & 0 \\ 0 & \sum_{i=1}^m a_i\lambda_2^i \end{bmatrix}=\begin{bmatrix} f(\lambda_1) & 0 \\ 0 & f(\lambda_2) \end{bmatrix}$ 第二问,

 $A^{k} = PBP^{-1}PBP^{-1} \cdots PBP^{-1} = PB(P^{-1}P)B(P^{-1}P)B \cdots (P^{-1}P)BP^{-1} = PB^{k}P^{-1}, \quad \text{iff } \text{$

15. t = -3

解析:本题考查方阵行列式运算律与方阵可逆充要条件,先由BA = O得 $\det(B)\det(A) = 0$,用反证法证明 $\det(A) = 0$,进而求解t。

$$\mathbf{B}\mathbf{A} = \mathbf{0} \Rightarrow \det(\mathbf{B}\mathbf{A}) = 0 \Rightarrow \det(\mathbf{B})\det(\mathbf{A}) = 0$$

若 $\det(A) \neq 0$,则A可逆,BA = O两端右乘 A^{-1} 得 $O = BAA^{-1} = B$ 与 $B \neq O$ 矛盾,故 $\det(A) = 0$,所以 $0 = \det(A) = t + 18 + 8 + 6t + 3 - 8 = 7t + 21$,解7t + 21 = 0得t = -3

16.

解析:本题考查矩阵乘法运算律和方阵可逆充要条件的灵活运用,注意 $\alpha^T \alpha$ 为常数。

第一问,设非零列向量 $\boldsymbol{\alpha} = [a_1 \quad a_2 \quad \cdots \quad a_n]^T$, $\boldsymbol{\alpha}\boldsymbol{\alpha}^T$ 的主对角线元素 $a_1^2, a_2^2, \cdots, a_n^2$ 不全为 0,故 $\boldsymbol{\alpha}\boldsymbol{\alpha}^T \neq \boldsymbol{0}$,所以 $\boldsymbol{A}^2 = \boldsymbol{A} \Leftrightarrow (\boldsymbol{I} - \boldsymbol{\alpha}\boldsymbol{\alpha}^T)(\boldsymbol{I} - \boldsymbol{\alpha}\boldsymbol{\alpha}^T) = \boldsymbol{I} - \boldsymbol{\alpha}\boldsymbol{\alpha}^T \Leftrightarrow \boldsymbol{I} - 2\boldsymbol{\alpha}\boldsymbol{\alpha}^T + \boldsymbol{\alpha}\boldsymbol{\alpha}^T\boldsymbol{\alpha}\boldsymbol{\alpha}^T = \boldsymbol{I} - \boldsymbol{\alpha}\boldsymbol{\alpha}^T \Leftrightarrow -\boldsymbol{\alpha}\boldsymbol{\alpha}^T + \boldsymbol{\alpha}(\boldsymbol{\alpha}^T\boldsymbol{\alpha})\boldsymbol{\alpha}^T = \boldsymbol{0} \Leftrightarrow (\boldsymbol{\alpha}^T\boldsymbol{\alpha} - 1)\boldsymbol{\alpha}\boldsymbol{\alpha}^T = \boldsymbol{0}$ 。因为 $\boldsymbol{\alpha} \neq 0$,所以 $\boldsymbol{\alpha}\boldsymbol{\alpha}^T$ 至少有一个元素非零,故 $\boldsymbol{\alpha}^T\boldsymbol{\alpha} = 1$

第二问, $\alpha^T \alpha = 1 \Rightarrow A^2 = A$,若A可逆, $A^2 = A$ 两端左乘 A^{-1} 得A = I,由于 $\alpha \alpha^T = I - A$,故 $\alpha \alpha^T = I - I = 0$ 与 $\alpha \alpha^T \neq 0$ 矛盾,故A不可逆

(B)

1.

解析: 本题考查方阵可逆充要条件的推论。根据推论 2.2.2 证明 $(A + \alpha \beta^T)$ $\left(A^{-1} - \frac{A^{-1}\alpha\beta^TA^{-1}}{1+\beta^TA^{-1}\alpha}\right) = I$ 即可,注意 $\beta^TA^{-1}\alpha$ 为常数

$$\frac{(A + \alpha \beta^{T}) \left(A^{-1} - \frac{A^{-1} \alpha \beta^{T} A^{-1}}{1 + \beta^{T} A^{-1} \alpha} \right) = I + \alpha \beta^{T} A^{-1} - \frac{\alpha \beta^{T} A^{-1} + \alpha \beta^{T} A^{-1} \alpha \beta^{T} A^{-1}}{1 + \beta^{T} A^{-1} \alpha} = I + \alpha \beta^{T} A^{-1} - \frac{\alpha \beta^{T} A^{-1} + \alpha (\beta^{T} A^{-1} \alpha) \beta^{T} A^{-1}}{1 + \beta^{T} A^{-1} \alpha} = I + \alpha \beta^{T} A^{-1} - \frac{\left(1 + \beta^{T} A^{-1} \alpha \right) \alpha \beta^{T} A^{-1}}{1 + \beta^{T} A^{-1} \alpha} = I + \alpha \beta^{T} A^{-1} - \alpha \beta^{T} A^{-1} = I$$
推论 2.2.2 得 $A + \alpha \beta^{T}$ 可逆且 $(A + \alpha \beta^{T})^{-1} = A^{-1} - \frac{A^{-1} \alpha \beta^{T} A^{-1}}{1 + \beta^{T} A^{-1} \alpha}$

2.

解析:本题考查方阵可逆充要条件、伴随矩阵重要结论及推论的运用,直接证明即可,注意 $(A^*)^{-1}$ 两种求解方法的区别。

方法一:
$$A^*A = \det(A)I \Rightarrow A^* \left[\frac{1}{\det(A)}A\right] = I \xrightarrow{\frac{\# \& 2.2.2}{\det(A)}} (A^*)^{-1} = \frac{1}{\det(A)}A,$$

$$A^{-1} = \frac{1}{\det(A)}A^* \Rightarrow A^* = \det(A)A^{-1} \Rightarrow (A^*)^* = \det(A^*)(A^*)^{-1} = [\det(A)]^{n-1}\frac{1}{\det(A)}A$$

$$= [\det(A)]^{n-2}A$$

方法二:

$$A^{-1} = \frac{1}{\det(A)} A^* \Rightarrow A^* = \det(A) A^{-1} \Rightarrow (A^*)^* = \det(A^*) (A^*)^{-1}$$
$$= [\det(A)]^{n-1} \left[\det(A) A^{-1} \right]^{-1} = [\det(A)]^{n-1} \frac{1}{\det(A)} A = [\det(A)]^{n-2} A$$

$3. \det(A) = 1$

解析:本题考查方阵可逆的充要条件,注意det(A) > 0和题设等价于 $A^T = A^*$ 。

第一问, $\det(\mathbf{A}) = \sum_{j=1}^4 a_{4j} A_{4j} = \sum_{j=1}^4 a_{4j}^2 = a_1^2 + a_2^2 + a_3^2 + 1 > 0$,由题设得 $\mathbf{A}^T = \mathbf{A}^*$,两端同取行列式 $\det(\mathbf{A}^T) = \det(\mathbf{A}^*)$,所以 $\det(\mathbf{A}) = [\det(\mathbf{A})]^3$,解得 $\det(\mathbf{A}) = 1$

第二问,
$$\det(\mathbf{A}) = 1 \neq 0$$
,故 \mathbf{A} 可逆,所以 $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\mathbf{A}^* = \mathbf{A}^* = \mathbf{A}^T$

第三节 分块矩阵及其运算

1.
$$AB = \begin{bmatrix} 5 & 19 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 3 & 3 & 4 & -1 & 0 \\ 6 & 9 & 14 & 7 & 6 \\ 5 & 4 & 8 & 2 & 4 \end{bmatrix}, \quad C^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 5 \end{bmatrix}$$

解析:根据分块矩阵运算规律直接计算即可。

$$\begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}, \ \, 得 \mathbf{c} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{o} \\ \mathbf{o} & \mathbf{c}_2 \end{bmatrix}, \ \, 所以 \mathbf{c}^{-1} = \begin{bmatrix} \mathbf{c}_1^{-1} & \mathbf{o} \\ \mathbf{o} & \mathbf{c}_2^{-1} \end{bmatrix}, \ \, 计算 \mathbf{c}_1^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}, \ \, \mathbf{c}_2^{-1} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}, \ \, 故 \mathbf{c}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 5 \end{bmatrix}$$

2.

解析:根据分块矩阵运算规律及矩阵可逆充要条件的推论,证明 $\begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix}$ $\begin{bmatrix} \mathbf{0} & \mathbf{B}^{-1} \\ \mathbf{A}^{-1} & \mathbf{0} \end{bmatrix} = \mathbf{I}$ 即可。

$$\begin{bmatrix} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{O} & \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{-1} & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}\boldsymbol{A}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}\boldsymbol{B}^{-1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{m} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{I}_{n} \end{bmatrix} = \boldsymbol{I}_{m+n} , \quad \text{根 据 推 论 2.2.2 } \text{知 } \boldsymbol{C} = \begin{bmatrix} \boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O} \end{bmatrix} \text{ 可逆且 } \boldsymbol{C}^{-1} = \begin{bmatrix} \boldsymbol{O} & \boldsymbol{B}^{-1} \\ \boldsymbol{A}^{-1} & \boldsymbol{O} \end{bmatrix}$$

3.

解析: 利用本节给出的计算公式及方法即可。

读
$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_1 & & & & & \\ & oldsymbol{A}_2 & & & \\ & & \ddots & & \\ & & & A_n \end{bmatrix}, \quad oldsymbol{B} = egin{bmatrix} oldsymbol{B}_1 & & & & \\ & oldsymbol{B}_2 & & & \\ & & \ddots & & \\ & & & oldsymbol{B}_n \end{bmatrix},$$

则
$$\det(\pmb{A}) = \det(\pmb{A}_1) \det(\pmb{A}_2) \cdots \det(\pmb{A}_n) = \prod_{i=1}^n \det(\pmb{A}_i), \quad \pmb{A} \pmb{B} = \begin{bmatrix} \pmb{A}_1 \pmb{B}_1 & & & & \\ & \pmb{A}_2 \pmb{B}_2 & & & \\ & & \ddots & & & \\ & & & \pmb{A}_n \pmb{B}_n \end{bmatrix}$$

$$A^{k} = \begin{bmatrix} A_{1}^{k} & & & & \\ & A_{2}^{k} & & & \\ & & \ddots & & \\ & & & A_{n}^{k} \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} A_{1}^{-1} & & & & \\ & A_{2}^{-1} & & & \\ & & \ddots & & \\ & & & A_{n}^{-1} \end{bmatrix}$$
(B)

解析:根据分块矩阵运算规律,利用本节给出的计算公式及方法即可。注意第三问中利用 $D-CA^{-1}B$ 与A同阶,故det $\left(AD-ACA^{-1}B\right)=\det(A)\det\left(D-CA^{-1}B\right)$ 的活用,以及题设所给的AC=CA。

第一问,由 1.2.6 式,设
$$D_1 = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$$
, $\det(D_1) = \det\left(\begin{bmatrix} A & C \\ O & B \end{bmatrix}\right) = \det(A)\det(B)$ 由 1.2.2 式,设 $D_2 = \begin{bmatrix} A & O \\ C & B \end{bmatrix}$, $\det(D_2) = \det\left(\begin{bmatrix} A & O \\ C & B \end{bmatrix}\right) = \det(A)\det(B)$ 第三问, $\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}$ 第三问,上式两端同取行列式 $\det\left(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}\right)$,所以 $\det\left(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}\right)\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) = \det\left(\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}\right)$,因为 $\det\left(\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix}\right) = \det(I)\det(I) = 1$, $\det\left(\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}\right) = \det(A)\det\left(D - CA^{-1}B\right)$,

第四节 初等变换与初等矩阵 (A)

1.

解析:本题考查定理 2.4.1 的运用,注意对初等变换矩阵乘法表示的理解以及初等变换中 $P_1^{-1} = P_1$ 的运用。

右乘可逆矩阵表示初等列变换关系,右乘 P_1 表示交换矩阵的第一列与第四列,右 P_2 乘表示交换矩阵的第二列与第三列,所以 $A \xrightarrow{c_1 \leftrightarrow c_4} AP_1 \xrightarrow{c_2 \leftrightarrow c_3} AP_1P_2 = B$, $A \xrightarrow{c_2 \leftrightarrow c_3} AP_2 \xrightarrow{c_1 \leftrightarrow c_4} AP_2P_1 = B$,故 $B = AP_1P_2$, $B = AP_2P_1$,等式两端同取逆得 $B^{-1} = P_2^{-1}P_1^{-1}A^{-1}$, $B^{-1} = P_1^{-1}P_2^{-1}A^{-1}$,又因为 $P_1^{-1} = P_1$, $P_2^{-1} = P_2$,故 $B^{-1} = P_2P_1A^{-1}$, $B^{-1} = P_1P_2A^{-1}$,即 $B^{-1} = P_1P_2A^{-1} = P_2P_1A^{-1}$

$$2. (1) \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix} (2) \begin{bmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{bmatrix}$$

解析:用初等变换法求矩阵的逆矩阵即可。

第一问,

所以
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{bmatrix}$$

3.
$$(2)(\mathbf{A}^*)^{-1} = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

解析:第一问根据推论 2.2.2 证明即可,第二问先用初等变换法求A,再代入第一问即可。

第一问,
$$A^*A = \det(A)I \Rightarrow A^*\left[\frac{1}{\det(A)}A\right] = I \Rightarrow (A^*)^{-1} = \frac{1}{\det(A)}A$$

第二问,
$$\frac{1}{\det(A)} = \det(A^{-1}) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{vmatrix} = 2$$
,下面用初等变换法求**A**

$$\begin{bmatrix} \mathbf{A}^{-1} \middle| \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & \frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \rightarrow$$

$$\frac{1}{\det(A)}A = 2\begin{bmatrix} \frac{5}{2} & -1 & -\frac{1}{2} \\ -1 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

4.
$$x_1 = 7$$
, $x_2 = -9$, $x_3 = 4$

解析:用逆矩阵法求方程组的解即可。

令
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 7 & 11 \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$, 则原方程可改写为 $AX = B$, $[A|B] = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 2 & 1 & 0 \\ 3 & 7 & 11 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -5 & -2 \\ 0 & 1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -\frac{5}{2} & -1 \\ 0 & 0 & -\frac{1}{2} & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -11 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} I & A^{-1}B \end{bmatrix}$, 所以 $X = A^{-1}B = \begin{bmatrix} 7 \\ -9 \\ 4 \end{bmatrix}$, 即 $x_1 = 7$, $x_2 = -9$, $x_3 = 4$

5.
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}, \ \mathbf{A}^5 = \mathbf{A}$$

解析:本题考查初等变换方法求逆矩阵及逆矩阵性质。第一问可以通过伴随矩阵或初等变换方法求 P^{-1} 从而求得A,也可以将原等式转置后构造矩阵方程直接求解,第二问直接利用逆矩阵性质及矩阵乘法结合律即可求解。

第一问,方法一,由已知得 $A = PBP^{-1}$,利用伴随矩阵或初等变换方法可求 P^{-1} ,从而利用矩阵乘法计算A。计算 $PB = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix}$, $\det(P) = -1$, $P^* = -1$

$$\begin{bmatrix}
-1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & -1 & -1
\end{bmatrix}, \quad \mathbf{P}^{-1} = \begin{bmatrix}
1 & 0 & 0 \\
2 & -1 & 0 \\
-4 & 1 & 1
\end{bmatrix}, \quad \mathbf{d}\mathbf{A} = \begin{bmatrix}
1 & 0 & 0 \\
2 & 0 & 0 \\
6 & -1 & -1
\end{bmatrix}$$

方法二,构造矩阵方程后用初等变换方法求解。 $AP = PB \xrightarrow{\text{两端同取转置}} (AP)^T = (PB)^T \Rightarrow$

方法二,构造矩阵方程后用初等变换方法求解。
$$AP = PB \xrightarrow{\text{PS}} (AP)^T = (PB)^T \Rightarrow P^TA^T = (PB)^T$$
,下面用初等变换方法求矩阵方程的解 A^T ,
$$[P^T|(PB)^T] = \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 4 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 6 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 6 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, \quad \text{M} \ A^T = (P^T)^{-1}(PB)^T = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}, \quad \text{M} \ A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}$$

第二问,
$$B^5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}^5 = \begin{bmatrix} 1^5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (-1)^5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = B$$
,所以 $A^5 = PBP^{-1}PBP^{-1} \cdots PBP^{-1} = PB(P^{-1}P)B(P^{-1}P)B\cdots(P^{-1}P)BP^{-1} = PB^5P^{-1} = PBP^{-1} = A$

6.
$$\mathbf{X} = \begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}$$

解析: 本题考查逆矩阵的计算。可用初等变换法或伴随矩阵法求解逆矩阵。也可求解矩 阵方程 $AX = CB^{-1}$ 。由于方阵为二阶方阵,采用伴随矩阵求解较为简单。

令
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix}$ 得 $AXB = C$, 故 $X = A^{-1}CB^{-1}$, $\det(A) = 4 - 3 = 1$, $\det(B) = 9 - 10 = -1$, $A^* = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$, $B^* = \begin{bmatrix} -3 & -2 \\ -5 & -3 \end{bmatrix}$, 所以 $A^{-1} = \frac{1}{\det(A)}A^* = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$, 故 $A = A^{-1}CB^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 24 & 13 \\ -34 & -18 \end{bmatrix}$

$$7. \mathbf{B} = \begin{bmatrix} -2 & 3 & 0 \\ 3 & 4 & -3 \\ 0 & -3 & 4 \end{bmatrix}$$

解析:本题由已知可得 $B = A(A - 3I)^{-1}$,通过初等变换法求 $(A - 3I)^{-1}$ 即可求解。

$$BA = 3B + A \Rightarrow B(A - 3I) = A \Rightarrow B = A(A - 3I)^{-1}, A - 3I = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, 下面用初等变换

法求
$$(A-3I)^{-1}$$
,

$$b \mathbf{B} = \mathbf{A}(\mathbf{A} - 3\mathbf{I})^{-1} = \begin{bmatrix} 3 & 1 & 1 \\ 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 5 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 0 \\ 3 & 4 & -3 \\ 0 & 2 & 4 \end{bmatrix}$$

8.
$$\mathbf{B} = \mathbf{A} - 2\mathbf{I} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

解析: 本题考查矩阵乘法和逆矩阵性质的灵活运用。注意 $\mathbf{A} + 2\mathbf{I} = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 3 & 0 \end{bmatrix}$, $\det(\mathbf{A} + \mathbf{A})$

2I) = 27 + 1 - 6 + 3 = 25 ≠ 0. \pm (A + 2I) 可逆。

由 已 知
$$AB + 4I = A^2 - 2B \Rightarrow (A + 2I)B = A^2 - 4I = (A + 2I)(A - 2I) \Rightarrow B = (A + 2I)(A - 2I)$$

$$(2I)^{-1}(A+2I)(A-2I) = A-2I = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}, \quad \text{th} B = A-2I = \begin{bmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

9.
$$\mathbf{B} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法和逆矩阵性质的灵活运用。注意 $AA^* = \det(A)I$ 的灵活使用,在 求逆矩阵时可用伴随矩阵法或初等变换法。

 \mathfrak{H} $A^*B = A^{-1} + 2B \Rightarrow (A^* - 2I)B = A^{-1} \Rightarrow B = (A^* - 2I)^{-1}A^{-1} = [A(A^* - 2I)^{-1}A^{-1}]$ $[2I]^{-1} = [AA^* - 2A]^{-1} = [\det(A)I - 2A]^{-1}$, $\pm \det(A) = 1 + 1 - 1 + 1 + 1 + 1 = 4$, 所以 $\det(\mathbf{A})\mathbf{I} - 2\mathbf{A} = 4\mathbf{I} - 2\mathbf{A} = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix},$

10.
$$X = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法和逆矩阵性质的灵活运用。可将原矩阵方程整理为 $X = \left\lceil (A - A) \right\rceil$ $\left(B \right)^{-1} \right)^{2}$,通过初等变换法或伴随矩阵法求 $\left(A - B \right)^{-1}$ 即可,也可将原矩阵方程整理为 $\left(X - B \right)^{-1}$ $[(A - B)^2]^{-1}$,先计算 $(A - B)^2$ 再通过初等变换法或伴随矩阵法求 $[(A - B)^2]^{-1}$ 。

方 法 一 , 由 已 知 $AXA + BXB = AXB + BXA + I \Rightarrow AX(A - B) - BX(A - B) = I \Rightarrow$ $(AX - BX)(A - B) = I \Rightarrow (A - B)X(A - B) = I \Rightarrow X = (A - B)^{-1}(A - B)^{-1} = [(A - B)^{-1}(A - B)^{-1$ **B**) -1,

由已知得 $A - B = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$,下面用初等变换法求 $(A - B)^{-1}$, $[A - B|I] = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = [I|(A - B)^{-1}]$,

$$[A - B | I] = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = [I | (A - B)^{-1}] ,$$

所以(
$$A-B$$
) $^{-1}=\begin{bmatrix}1&2\\0&1&1\\0&0&1\end{bmatrix}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{0}$ $\frac{1}{0$

12. (1)
$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, $P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, $U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ (2) $L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

解析: 本题考查初等变换的应用, 直接求解即可。注意初等变换的矩阵乘法表示。 第一问,

由已知
$$\begin{bmatrix} 2 & 1 & 1 \\ 6 & 4 & 5 \\ 4 & 1 & 3 \end{bmatrix} \xrightarrow{r_2 - 3r_1} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix} \xrightarrow{r_3 - 2r_1} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \mathbf{U}$$
由附注可得 $\mathbf{P}_1 = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, $\mathbf{P}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$,

第二问, 由于矩阵形式简单故采用伴随矩阵法计算逆矩阵, 得 $\mathbf{P}_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{P}_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

第一句
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
, $P_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$, $D_0 L = P_1^{-1} P_2^{-1} P_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$, $D_0 L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 6 & 4 & 5 \\ 4 & 1 & 3 \end{bmatrix} = A$ 成立 第三问,由附注得 $Ly = b \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} y = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$,用前代法解得 $y = \begin{bmatrix} 4 \\ -7 \\ -9 \end{bmatrix}$, $Ux = y \Leftrightarrow \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix} x = \begin{bmatrix} 4 \\ -7 \\ -9 \end{bmatrix}$,用回代法解得 $x = \begin{bmatrix} 4 \\ -1 \\ -3 \end{bmatrix}$

(B)

解析:本题考查矩阵乘法和伴随矩阵、逆矩阵性质的灵活运用。由原矩阵方程可解得 $B = 6(2I - A^*)^{-1}$,再用初等变换法求 $(2I - A^*)^{-1}$ 即可,注意求解矩阵方程中灵活使用 $(AB)^{-1} = B^{-1}A^{-1}$, $\det(A^*) = [\det(A)]^{n-1}$ 等性质。

$$ABA^{-1} = BA^{-1} + 3I \Rightarrow (A - I)BA^{-1} = 3I \Rightarrow B = 3(A - I)^{-1} (A^{-1})^{-1} = 3[A^{-1}(A - I)]^{-1}$$
$$= 3(A^{-1}A - A^{-1})^{-1} = 3(I - A^{-1})^{-1}$$

由于 $\det(\mathbf{A}^*) = [\det(\mathbf{A})]^{4-1} = [\det(\mathbf{A})]^3 = 8$,所以 $\det(\mathbf{A}) = 2$,故 $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\mathbf{A}^* = \frac{1}{2}\mathbf{A}^*$,

所以
$$\mathbf{B} = 3\left(\mathbf{I} - \mathbf{A}^{-1}\right)^{-1} = 3\left(\mathbf{I} - \frac{1}{2}\mathbf{A}^*\right)^{-1} = 6(2\mathbf{I} - \mathbf{A}^*)^{-1}, \ 2\mathbf{I} - \mathbf{A}^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -6 \end{bmatrix},$$
下

面用初等变换法求 $(2I - A^*)^{-1}$,

$$[2\mathbf{I} - \mathbf{A}^* | \mathbf{I}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 3 & 0 & -6 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -6 & 0 & -3 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 & -\frac{1}{6}
\end{bmatrix} = \begin{bmatrix} I | (2I - A^*)^{-1} \end{bmatrix}, \quad \text{fif } \boxtimes (2I - A^*)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{6} \end{bmatrix}, \quad \text{fif } B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{6} \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 \\ 0 & 3 & 0 & -1 \end{bmatrix}$$

第五节 矩阵的秩

(A)

1. (1) r = 4 (2) r = 3 (3) k = 1时, r = 1; k = -2时, r = 2; $k \neq 1$ 且 $k \neq -2$ 时, r = 3(4) a + b = 0时, r = 1; $a + b \neq 0$ 时, r = 2

解析: 本题考查矩阵秩的求法。根据求矩阵秩的一般方法,将矩阵通过初等行变换为阶 梯形、则阶梯形矩阵中非零行个数即为所求矩阵的秩。

$$\begin{bmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & -2 & 0 \\ 0 & -1 & -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & -4 & 0 & -4 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

由干非零行个数为4. 故矩阵的秩为

第二问,
$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & -2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 0 & 3 & 0 & 0 & 1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 1 \\ 0 & 3 & 0 & 0 & 1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & -4 & 0 \\ \end{bmatrix}$$
第三问,

$$\begin{bmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2k-2 & 3k-3 \\ 0 & 2k-2 & 3-3k^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2(k-1) & 3(k-1) \\ 0 & 2(k-1) & 3(1-k)(1+k) \end{bmatrix}, 下面分类讨论,$$

第三问,
$$\begin{bmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2k-2 & 3k-3 \\ 0 & 2k-2 & 3-3k^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3k \\ 0 & 2(k-1) & 3(k-1) \\ 0 & 2(k-1) & 3(1-k)(1+k) \end{bmatrix}, \text{ 下面分类讨论,}$$

$$k = 1\text{ BB, } \text{ 原矩阵可化为} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 非零行行数为 1, 矩阵的秩为 1}$$

$$k \neq 1\text{ BR, } k = 1\text{ BR, } k = -2\text{ BR, } k = -1\text{ BR, }$$

可化为 $\begin{bmatrix} 1 & -2 & -6 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$,此时非零行行数为 2,矩阵的秩为 2,若 $k \neq -2$ 即 $1+k \neq -1$ 则原矩

阵可化为
$$\begin{bmatrix} 1 & -2 & 3k \\ 0 & 2 & 3 \\ 0 & 2 & -3(1+k) \end{bmatrix}$$
, 此时非零行行数为 3, 矩阵的秩为 3

所以, k = 1时, r = 1; k = -2时, r = 2; $k \neq 1$ 且 $k \neq -2$ 时, r = 3。 第四问.

$$\begin{bmatrix} 1 & 0 & -1 \\ a & 0 & b \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 + r_1} \begin{bmatrix} 1 & 0 & -1 \\ a & 0 & b \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 - ar_1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & a + b \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{下面分类讨论}$$

$$a+b=0$$
时,原矩阵可化为 $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,非零行行数为 1,矩阵的秩为 1 $a+b\neq 0$ 时,原矩阵可化为 $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$,非零行行数为 2,矩阵的秩为 2 所以, $a+b=0$ 时, $r=1$; $a+b\neq 0$ 时, $r=2$ 。

2. x = 2

解析:本题考查矩阵秩的定义。由定义 2.5.2 的结论二知,若矩阵A的秩为r,则A的r+1 阶子式全为 0,所以本题根据 3 阶子式为 0 求解x。

由矩阵秩的定义得
$$r(A) = 2 \Rightarrow A$$
 的 3 阶子式全为 $0 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \\ 2 & -x & 6 \end{vmatrix} = 0$, 所以 $0 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & -1 \\ 2 & -x & 6 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & -2 \\ 2 & -x - 2 & 4 \end{vmatrix} = 8 - 2(x+2) = 4 - 2x$, 故 $x = 2$

3.

解析:本题考查矩阵秩的定义及行列式运算。由 $r(A^*) = 1$ 可证r(A) = 2, $\det(A) = 0$,从而解得a、b关系,本题采用反证法证明r(A) = 2,直接证法参考习题 4.4(B)5 的证明方法。

 $r(A^*) = 1 \Rightarrow A^*$ 的元素不全为 0(若 A^* 的元素全为 0,则 $r(A^*) = 0$) $\Rightarrow A^*$ 的元素是A的代数余子式 $\Rightarrow A$ 的 2 阶子式不全为 0 $\Rightarrow r(A) \ge 2 \Rightarrow r(A) = 2$ 或r(A) = 3

若r(A) = 3,则A满秩,即A可逆 $\det(A) \neq 0$,故 $\det(A^*) = [\det(A)]^2 \neq 0$,所以 A^* 可逆即 $r(A^*) = 3$ 与 $r(A^*) = 1$ 矛盾,故r(A) = 2,

所以**A**的 3 阶子式全为 0,即
$$\det(\mathbf{A}) = 0$$
, $0 = \begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} = \begin{vmatrix} a+2b & b & b \\ a+2b & a & b \\ a+2b & b & a \end{vmatrix} = (a+2b)\begin{vmatrix} 1 & b & b \\ 1 & a & b \\ 1 & b & a \end{vmatrix} = (a+2b)\begin{vmatrix} 1 & b & b \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{vmatrix} = (a+2b)(a-b)^2 \Rightarrow a = b \Rightarrow a+2b=0$
若 $a=b$,则**A**可化为 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(a=b\neq 0$ 时),此时 $r(\mathbf{A}) = 1$ 与 $r(\mathbf{A}) = 2$ 矛盾,故 $a\neq b$ 若 $a+2b=0$,则**A**可化为 $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ $(ab\neq 0$ 时),此时 $r(\mathbf{A}) = 2$ 符合题意,

4. (1)
$$\mathbf{P} = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (2) $\mathbf{P} = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix}$, $\mathbf{Q} = \begin{bmatrix} 1 & 0 & 18 & 16 \\ 0 & 1 & -7 & -8 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (3) $\mathbf{A} = \mathbf{G}\mathbf{H}$, $\mathbf{E} = \mathbf{P}^{-1} \begin{bmatrix} \mathbf{I}_r \\ \mathbf{O} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \\ -2 & -5 \end{bmatrix}$, $\mathbf{H} = [\mathbf{I}_r \quad \mathbf{O}]\mathbf{Q}^{-1} = \begin{bmatrix} 1 & 0 & -18 & -16 \\ 0 & 1 & 7 & 8 \end{bmatrix}$

解析:本题考查矩阵满秩分解及初等变换的矩阵乘法表示。根据习题 2.4(A)12 附注可得初等变换矩阵,初等变换矩阵乘积即为可逆矩阵P,同理可得可逆矩阵Q,根据例 2.5.3 可将矩阵A满秩分解为A = GH形式,计算 P^{-1} , Q^{-1} 即可。

第一问。
$$A = \begin{bmatrix} 0 & 1 & 7 & 8 \\ 1 & 3 & 3 & 8 \\ -2 & -5 & 1 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ -2 & -5 & 1 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 1 & 7 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 8 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_4 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
所以 $P = P_1 P_2 P_3 P_4 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 0 & 18 & 16 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 18 & 16 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0$

5.

解析:本题考查矩阵的秩标准形。由于矩阵A与它的秩标准形是等价的,通过A与B有相同的秩标准形即可证明A与B同秩或A与B等价。

$$A$$
等价于 $\begin{bmatrix} I_{r(A)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$, B 等价于 $\begin{bmatrix} I_{r(B)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$, A 与 B 等价 $\Leftrightarrow \begin{bmatrix} I_{r(A)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ 与 $\begin{bmatrix} I_{r(B)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ 等价 $\Leftrightarrow r(A) = r(B)$

(B)

1.

解析:利用满秩矩阵直接证明即可,注意行满秩矩阵与列满秩矩阵的形式。由题知G、H分别为列满秩矩阵和行满秩矩阵,由定理 2.5.2 知存在可逆阵P、Q使 $PG = \begin{bmatrix} I_r \\ O \end{bmatrix}$, $QH = \begin{bmatrix} I_r & O \end{bmatrix}$,

所以
$$PAQ = PGHQ = (PG)(HQ) = \begin{bmatrix} I_r \\ O \end{bmatrix}[I_r \quad O] = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} \Rightarrow r(A) = r$$

2.
$$r(A) = n - 1$$

解析:根据矩阵秩的定义通过求解矩阵的k阶子式求nA的秩,由于A与nA有相同的秩标准形,故A与nA同秩。

A与nA有相同的秩标准形⇒ r(A) = r(nA)

$$nA = nI - \alpha^{T}\alpha = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}, \quad \overline{m} \, nA \, \text{的} \, n \, \text{阶} \, \mathcal{F} \, \vec{\Xi} \begin{vmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{vmatrix} = \begin{bmatrix} n-n & -1 & \cdots & -1 \\ 0 & -1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ n-n & -1 & \cdots & n-1 \end{vmatrix} = \begin{bmatrix} 0 & -1 & \cdots & -1 \\ 0 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ 0 & -1 & \cdots & n-1 \end{vmatrix} = 0$$

$$nA \, \text{的} \, n - 1 \, \text{ or } \, n - 1 \, \text{ or } \, n - 1 = \begin{bmatrix} n-(n-1) & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & -1 \\ n-(n-1) & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ n-(n-1) & -1 & \cdots & n-1 \end{vmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & -1 \\ 1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & n-1 & \cdots & n-1 \end{bmatrix}$$

第二章习题

1. (1)14 (2)-1 (3)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (4) diag(2, -4,2) (5) $\frac{1}{9}$ (6) diag(8,8, -6) (7)-2(a + b) (8)3

解析:本题考查矩阵乘法、逆矩阵性质、伴随矩阵性质、对角矩阵等的灵活运用。第一问设 $\alpha = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 后直接求解即可;第二问根据 $(\mathbf{I} - \alpha \alpha^T) \left(\mathbf{I} + \frac{1}{a} \alpha \alpha^T \right) = \mathbf{I}$ 求解;第三问是求解逆矩阵常见的"配方法";第四问直接求解,注意对角矩阵的逆矩阵求法,即 $\mathbf{D}^{-1} = \operatorname{diag} \left(d_1^{-1}, d_2^{-1}, \cdots, d_n^{-1} \right)$;第五问运用行列式的乘法公式,即 $\operatorname{det}(\mathbf{A} - 2\mathbf{I})\operatorname{det}(\mathbf{B})\operatorname{det}(\mathbf{A}^*) = \operatorname{det}(\mathbf{I})$;第六问运用对角矩阵的幂运算规律直接求解,即 $\mathbf{D}^k = \operatorname{diag} \left(d_1^k, d_2^k, \cdots, d_n^k \right)$;第七问运用行列式性质 1.1.2 和性质 1.1.5 计算;第八问运用行列式的乘法公式和逆矩阵性质,即 $\operatorname{det} \left(\mathbf{A} + \mathbf{B}^{-1} \right) = \operatorname{det}(\mathbf{A})\operatorname{det} \left(\mathbf{B} + \mathbf{A}^{-1} \right)\operatorname{det} \left(\mathbf{B}^{-1} \right)$ 和 $\operatorname{det} \left(\mathbf{B}^{-1} \right) = \frac{1}{\operatorname{det}(\mathbf{B})}$ 。

《线性代数与解析几何》课后题解析 第二问, $\alpha^T\alpha = [a \quad 0 \quad \cdots \quad 0 \quad a][a \quad 0 \quad \cdots \quad 0 \quad a]^T = 2a^2$,

$$A = I - \alpha \alpha^{T}$$
 的逆矩阵为 $B = I + \frac{1}{a}\alpha \alpha^{T} \Rightarrow AB = I \Rightarrow I = (I - \alpha \alpha^{T}) \left(I + \frac{1}{a}\alpha \alpha^{T}\right) = I + \left(\frac{1}{a} - 1\right) \alpha \alpha^{T} - \frac{1}{a}\alpha \alpha^{T}\alpha \alpha^{T} = I + \left(\frac{1}{a} - 1\right)\alpha \alpha^{T} - \frac{1}{a}\alpha(\alpha^{T}\alpha)\alpha^{T} = I + \left(\frac{1}{a} - 1\right)\alpha \alpha^{T} - \frac{1}{a} \cdot 2\alpha^{2}\alpha \alpha^{T} = I + \left(\frac{1}{a} - 1 - 2\alpha\right)\alpha \alpha^{T} \Rightarrow \frac{1}{a} - 1 - 2\alpha = 0 \Rightarrow \alpha = \frac{1}{2}$ 或 $\alpha = -1$, 由于 $\alpha < 0$, 故 $\alpha = -1$

第三问,
$$AB = 2A + B \Rightarrow (A - I)(B - 2I) = 2I \Rightarrow (A - I)\left[\frac{1}{2}(B - 2I)\right] = I \Rightarrow (A - I)^{-1} = \frac{1}{2}(B - 2I),$$
因为 $B - 2I = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$,所以 $(A - I)^{-1} = \frac{1}{2}\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

第四问,
$$A*BA = 2BA - 8I \Rightarrow (A* - 2I)BA = -8I \Rightarrow B = -8(A* - 2I)^{-1}A^{-1} = -8[A(A* - 2I)]^{-1} = -8(AA* - 2A)^{-1} = -8(AA* - 2A)^{-1} = -8(\det(A)I - 2A)^{-1}$$

由 题 知 $\det(A) = -2 \Rightarrow \det(A)I - 2A = \operatorname{diag}(-4,2,-4) \Rightarrow (\det(A)I - 2A)^{-1} = -8(\det(A)I - 2A)$

$$\operatorname{diag}\left(-\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}\right) \Rightarrow \mathbf{B} = -8(\det(\mathbf{A})\mathbf{I} - 2\mathbf{A})^{-1} = \operatorname{diag}(2, -4, 2)$$

第 五 问 , $ABA^* = 2BA^* + I \Rightarrow (A - 2I)BA^* = I \xrightarrow{\text{两端同取行列式}} \det[(A - 2I)BA^*] = 1 \Rightarrow$ $\det(\mathbf{A} - 2\mathbf{I})\det(\mathbf{B})\det(\mathbf{A}^*) = 1$

因为
$$\det(\mathbf{A}) = 4 - 1 = 3$$
, $\det(\mathbf{A}^*) = \det(\mathbf{A})^2 = 9$, $\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, $\det(\mathbf{A} - 2\mathbf{I}) = 1$,

所以9det(
$$\boldsymbol{B}$$
) = 1, 故det(\boldsymbol{B}) = $\frac{1}{9}$

第六问,
$$A^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = diag(-1, -1, 1)$$

$$B^{2020} = P^{-1}APP^{-1}AP \cdots P^{-1}AP = P^{-1}A(PP^{-1})A(PP^{-1})A \cdots (PP^{-1})AP =$$

$$P^{-1}A^{2020}P = P^{-1}\begin{bmatrix} (-1)^{2020} & & & \\ & (-1)^{2020} & & \\ & & & 1^{2020} \end{bmatrix}P = P^{-1}\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}P = P^{-1}P = I, \text{ Mix}$$

$$B^{2020} - 7A^2 = I - 7A^2 = \text{diag}(8,8,-6)$$

第七问。

$$\det[\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \quad \boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3] = \det[\boldsymbol{\beta}_1 \quad \boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3] + \det[\boldsymbol{\beta}_1 \quad \boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3]$$

$$= -\det[\boldsymbol{\beta}_1 \quad \boldsymbol{\alpha}_3 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_1] - \det[\boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3 \quad \boldsymbol{\beta}_1] \Rightarrow \det[\boldsymbol{\beta}_1 \quad \boldsymbol{\alpha}_3 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_1]$$

$$= -2(a+b)$$

第八问,
$$\det\left(\mathbf{A} + \mathbf{B}^{-1}\right) = \det\left[(\mathbf{A}\mathbf{B} + \mathbf{I})\mathbf{B}^{-1}\right] = \det(\mathbf{A}\mathbf{B} + \mathbf{I})\det\left(\mathbf{B}^{-1}\right) = \det\left[\mathbf{A}\left(\mathbf{B} + \mathbf{A}^{-1}\right)\right]$$
 $\det\left(\mathbf{B}^{-1}\right) = \det(\mathbf{A})\det\left(\mathbf{B} + \mathbf{A}^{-1}\right)\det\left(\mathbf{B}^{-1}\right) = \det(\mathbf{A})\det\left(\mathbf{B} + \mathbf{A}^{-1}\right)\cdot\frac{1}{\det(\mathbf{B})} = 3\cdot 2\cdot\frac{1}{2} = 3$

2. (1)A (2)B (3)C (4)B (5)A

解析:本题考查初等变换的矩阵乘法表示、分块矩阵、伴随矩阵性质。第一问,用P表示 Q后直接代入求解即可;第二问,根据初等变换的矩阵乘法表示验证选项即可;第三问,用 初等变换的矩阵乘法表示后证明,注意 $A^* = \det(A)A^{-1}$,也可用特例验证的方法如令A, B为 2 阶可逆矩阵代入验证选项;第四问,运用伴随矩阵性质 $A^* = \det(A)A^{-1}$ 以及分块矩阵逆矩 阵求法即可;第五问,注意 $A^* = A^T \Leftrightarrow a_{ij} = A_{ij}$,求得det(A) = 1后直接求解即可。

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, 故选A$$

第二问,用伴随矩阵法或初等变换法计算 $\mathbf{P}^{-1}=\begin{bmatrix}1 & -1 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix}$,由初等变换的矩阵乘法表

示可知 $C = PAP^{-1}$, 故选 B

第三问,不妨设A,B为 3 阶可逆矩阵,用初等变换的矩阵乘法表示B=PA,其中P= $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 计算 $\mathbf{P}^* = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = -\mathbf{P}$, 所以 $\mathbf{B} = \mathbf{P}\mathbf{A} \xrightarrow{\text{两端同取伴随矩阵}} \mathbf{B}^* = (\mathbf{P}\mathbf{A})^* = \mathbf{P}\mathbf{A}$ $\det(PA)(PA)^{-1} = \det(P)\det(A)A^{-1}P^{-1} = \left[\det(A)A^{-1}\right]\left[\det(P)P^{-1}\right] = A^*P^* \Rightarrow A^*P = -B^*,$ 右乘P表示交换矩阵 A^* 的第 1 列与第 2 列得到 $-B^*$,当A,B为n阶可逆矩阵时同样成立,故选 C

第四问,
$$\det\begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} = \det(-\mathbf{A}\mathbf{B}) = (-1)^2 \det(\mathbf{A}) \det(\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B}),$$

所以
$$\begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix}^* = \det \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix}^{-1} = \det(\mathbf{A})\det(\mathbf{B}) \begin{bmatrix} \mathbf{0} & \mathbf{B}^{-1} \\ \mathbf{A}^{-1} & \mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0} & \det(\mathbf{A})\det(\mathbf{B})\mathbf{B}^{-1} \\ \det(\mathbf{B})\det(\mathbf{A})\mathbf{A}^{-1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \det(\mathbf{A})\mathbf{B}^* \\ \det(\mathbf{B})\mathbf{A}^* & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{0} \end{bmatrix}, \text{ 故选 B}$$

第五问, $A^* = A^T \Leftrightarrow a_{ij} = A_{ij}$, $A^* = A^T$ 两端同取行列式得 $\det(A^*) = \det(A^T)$,所以 $[\det(\mathbf{A})]^2 = \det(\mathbf{A})$,解得 $\det(\mathbf{A}) = 1$ 或 $\det(\mathbf{A}) = 0$ (舍), $\det(\mathbf{A})$ 按第 1 列展开得 $1 = \det(\mathbf{A}) = 0$ $a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}^2 + a_{12}^2 + a_{13}^2 = 3a_{11}^2$, 所以 $a_{11} = \frac{\sqrt{3}}{3}$, 故选 A

$$3. \mathbf{X} = \begin{bmatrix} 66 & 62 \\ -44 & -41 \\ -23 & -22 \end{bmatrix}$$

 \overline{E} 矩阵方程的解法。将已知等式化为(A-2I)X=B后,用初等变换法求X即可。

 $AX = 2X + B \Rightarrow (A - 2I)X = B$, 由题知 $A - 2I = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 7 & -5 \\ 5 & 10 & -6 \end{bmatrix}$, 下面用初等变换法求

$$AX = 2X + B$$
 \Rightarrow $(A - 2I)X = B$, 由题知 $A - 2I = \begin{bmatrix} 3 & 7 & -5 \\ 5 & 10 & -6 \end{bmatrix}$, 下面用初等变换法求 X ,
$$[A - 2I|B] = \begin{bmatrix} 1 & 2 & -1 & 1 & 2 \\ 3 & 7 & -5 & 5 & 9 \\ 5 & 10 & -6 & 28 & 32 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 1 & 2 \\ 0 & 1 & -2 & 2 & 3 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -22 & -20 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 66 & 62 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & -1 & 23 & 22 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 66 & 62 \\ 0 & 1 & 0 & -44 & -41 \\ 0 & 0 & 1 & -23 & -22 \end{bmatrix} = [I|(A - 2I)^{-1}B]$$
, 所以 $X = (A - 2I)^{-1}B = \begin{bmatrix} 66 & 62 \\ -44 & -41 \\ -23 & -22 \end{bmatrix}$

4.
$$\varphi(A) = 4 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

解析:本题考查矩阵乘法、对角矩阵性质的应用。注意 $A = PDP^{-1}$,代入直接化简即可。 $AP = PD \Rightarrow A = PDP^{-1}$, $\text{fi} \otimes A^8 = PDP^{-1} \cdots PDP^{-1} = PD^8P^{-1}$, $5I - 6A + A^2 = P(5I - 6D + D^2)P^{-1} = P \operatorname{diag}(12,0,0)P^{-1} = 12P \operatorname{diag}(1,0,0)P^{-1}$ 故 $\varphi(A) = PD^8P^{-1} \cdot 12P \text{diag}(1,0,0)P^{-1} = 12PD^8 \text{diag}(1,0,0)P^{-1} =$

$$5. \mathbf{B} = \begin{bmatrix} 2 & -4 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

解析: 本题考查伴随矩阵、逆矩阵性质和分块矩阵行列式、逆矩阵的应用。由已知可得 $B = 6(2I - A)^{-1}$, 直接求解即可,注意本题用分块矩阵计算 $(2I - A)^{-1}$ 较为简便。

$$\left[\left(\frac{1}{2} A \right)^* \right]^{-1} = \left(\frac{1}{8} A^* \right)^{-1} = \left[\frac{1}{8} \det(A) A^{-1} \right]^{-1} = \left(\frac{1}{4} A^{-1} \right)^{-1} = 4A,$$

$$\left[\left(\frac{1}{2} A \right)^* \right]^{-1} B A^{-1} = 2AB + 12I \Rightarrow 4ABA^{-1} = 2AB + 12I \Rightarrow B = 6A^{-1} \left(2A^{-1} - I \right)^{-1} =$$

$$6\left[\left(2A^{-1}-I\right)A\right]^{-1}=6(2I-A)^{-1},$$

$$2\mathbf{I} - \mathbf{A} = \begin{bmatrix} 1 & -2 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix}, \quad \Leftrightarrow \quad \mathbf{B}_1 = \begin{bmatrix} 1 & -2 \\ -1 & -1 \end{bmatrix}, \mathbf{B}_2 = \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}, \quad \boxtimes \quad \mathbf{B}_1^{-1} = \begin{bmatrix} -\frac{1}{3} \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}, \mathbf{B}_2^{-1} = \frac{1}{6} \begin{bmatrix} 2 & 2 \\ -1 & 2 \end{bmatrix},$$

所以
$$\mathbf{B} = 6(2\mathbf{I} - \mathbf{A})^{-1} = 6 \begin{bmatrix} \mathbf{B}_{1}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{2}^{-1} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$$

解析: 本题考查伴随矩阵的性质。由 $A = \det(A)(A^*)^{-1}$ 直接计算即可,可用伴随矩阵法求 $(A^*)^{-1}$

$$AA^* = \det(A)I \Rightarrow A = \det(A)(A^*)^{-1}$$
, $\boxtimes \operatorname{Bdet}(A) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = -7 +$

$$10 - 4 = -1, \ \det(\mathbf{A}^*) = [\det(\mathbf{A})]^2 = 1, \ (\mathbf{A}^*)^{-1} = \frac{1}{\det(\mathbf{A}^*)} (\mathbf{A}^*)^* = \begin{bmatrix} -1 & -2 & 1 \\ -3 & -1 & -4 \\ -2 & -2 & -1 \end{bmatrix},$$
所以 $\mathbf{A} = \det(\mathbf{A})(\mathbf{A}^*)^{-1} = -\begin{bmatrix} -1 & -2 & 1 \\ -3 & -1 & -4 \\ -2 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$

7. -16

解析: 本题考查伴随矩阵、逆矩阵的性质, 结合行列式性质直接计算即可。

$$\det\left((2\mathbf{A})^{-1} - 5\mathbf{A}^*\right) = \det\left(\frac{1}{2}\mathbf{A}^{-1} - 5\det(\mathbf{A})\mathbf{A}^{-1}\right) = \det\left(\frac{1}{2}\mathbf{A}^{-1} - \frac{5}{2}\mathbf{A}^{-1}\right) = \det\left(-2\mathbf{A}^{-1}\right)$$
$$= (-2)^3 \det\left(\mathbf{A}^{-1}\right) = (-2)^3 \frac{1}{\det(\mathbf{A})} = -16$$

8. $\lambda = -1$ 时, r(A) = 2, $r(\overline{A}) = 3$; $\lambda = 4$ 时, $r(A) = r(\overline{A}) = 2$; $\lambda \neq -1$ 且 $\lambda \neq 4$ 时, $r(A) = r(\overline{A}) = 3$

解析:本题考查矩阵秩的求法。用初等变换将矩阵化成阶梯形,则非零行个数为所求矩阵的秩,注意对1/5所占行的讨论。

$$\overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & \lambda & 4 \\ -1 & \lambda & 1 & \lambda^2 \\ 1 & -1 & 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \\ 0 & -2 & 2-\lambda & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \end{bmatrix}$$

$$\stackrel{|}{=} \begin{vmatrix} 1+\lambda & 1+\lambda \\ -2 & 2-\lambda \end{vmatrix} = 0 \text{ pt}, \ \lambda = -1 \text{ gd} \lambda = 4$$

$$\lambda = -1 \text{ pt}, \ \overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 0 & -2 & 3 & -8 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \ r(A) = 2, \ r(\overline{A}) = 3$$

$$\lambda = 4 \text{ pt}, \ \overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & 4 & 4 \\ 0 & -2 & -2 & -8 \\ 0 & 5 & 5 & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 4 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ r(A) = r(\overline{A}) = 2$$

$$\lambda \neq -1 \text{ pt}, \ \overline{A} = [A|b] = \begin{bmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 1+\lambda & 1+\lambda & 4+\lambda^2 \end{bmatrix}, \ r(A) = r(\overline{A}) = 3$$

$$\stackrel{\text{gh}}{=} \lambda = -1 \text{ pt}, \ r(A) = 2, \ r(\overline{A}) = 3; \lambda = 4 \text{ pt}, \ r(A) = r(\overline{A}) = 2; \lambda \neq -1 \text{ pt} \lambda \neq 4 \text{ pt}, \ r(A) = r(\overline{A}) = 3$$

第三章 几何向量及其应用

第一节 向量及其线性运算

(A)

$$1.\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{b}), \overrightarrow{BC} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})$$

解析: 不妨取平行四边形中心为点O, $\overrightarrow{AO} = \overrightarrow{OC} = \frac{1}{2} \overrightarrow{AC} = \frac{1}{2} \overrightarrow{a}$, $\overrightarrow{BO} = \overrightarrow{OD} = \frac{1}{2} \overrightarrow{BD} = \frac{1}{2} \overrightarrow{b}$, 而

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{AO} - \overrightarrow{BO} = \frac{1}{2} (\overrightarrow{a} - \overrightarrow{b})$$
, $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = \frac{1}{2} (\overrightarrow{a} + \overrightarrow{b})$

2.解析:证明的思路是将三个向量首尾相接,利用中线的条件,可以给出如下的式子:

$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = (\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}) + (\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA}) + (\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}) = \frac{3}{2}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) = \overrightarrow{0}$$
,从而可以发现三个向量可以构成三角形。

- 3.解析:证明向量共线可以从一向量可以由另一向量表示入手,或者也可以通过叉乘的方式求解。此题证明三点共线,可以找出两个向量,即 $\stackrel{\rightarrow}{AB}$ 和 $\stackrel{\rightarrow}{BD}$,其中 $\stackrel{\rightarrow}{AB}=\stackrel{\rightarrow}{a_1}-2\stackrel{\rightarrow}{a_2}$, $\stackrel{\rightarrow}{BD}=\stackrel{\rightarrow}{BC}+\stackrel{\rightarrow}{CD}=\stackrel{\rightarrow}{a_1}-2\stackrel{\rightarrow}{a_2}$,所以三点共线。
- 4.**解析**: P 点在第 II 卦限,N 点在第 WII 卦限,P 点关于 xoy 平面对称点是(-1, 2, -3),关于 xoz 平面对称点是(-1, -2, 3),关于 yoz 平面对称点是(1, 2, 3),关于 x 轴对称点是(-1, -2, -3),关于 y 轴对称点是(-1, -2, -3),关于 z 轴对称点是(-1, -2, -3)。
- 5. **解析**: 坐标轴上的点以 x 轴上的点为例,该点在 y 坐标和 z 坐标都是 0,坐标面上的点以 xoy 平面上的点为例,该点 z 坐标是 0。
- 6. 解析: $\vec{a} = \vec{i} + 2\vec{j} 2\vec{k}$ 不是单位向量,因为 $|\vec{a}| = \sqrt{1^2 + 2^2 + (-2)^2} = 3 \neq 1$,设与 \vec{a} 同方向的单位向量为 \vec{e} ,则 $\vec{e} = \frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} \frac{2}{3}\vec{k}$ 。

7. 不存在

解析: 考虑方向余弦公式 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, 将方向角带入可以证明不存在这样的向量。

8. 解析: 三个方向角相等且均为锐角,则 $\cos \alpha = \cos \beta = \cos \gamma = \frac{\sqrt{3}}{3}$,方向余弦如下, $a^0 = (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$,根据条件 $||\vec{a}|| = 2$,求出 $\vec{a} = (\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$ 。

- 9. 解析: \vec{b} 与 z 轴正向的夹角为锐角,则 \vec{b} 的 z 坐标为正,又因为 \vec{b} 与 \vec{a} 平行,设正数 k,那么有 $\vec{b} = k(-1,-1,1)$,方向余弦 $b^0 = (-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$ 。
- 10. 解析: $\vec{a} = (-2.3, x)$ 与 $\vec{b} = (y, -6.2)$ 共线,所以存在 k 使得 k(-2.3, x) = (y, -6.2),解得 k = -2, x = -1, y = 4。

12. 解析: 已知
$$P = (1,2,3)$$
 和 $Q = (2,3,4)$,那么 $\overrightarrow{PQ} = (2,3,4) - (1,2,3) = (1,1,1)$,
$$\|\overrightarrow{PQ}\| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \text{ , 方向余弦 } PQ^0 = (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}) \text{ .}$$

13. 解析: 已知
$$a\vec{i}+3\vec{j}+(b+2)\vec{k}=2\vec{i}+(c+1)\vec{j}+\vec{k}$$
,待定系数解出 $a=2,b=-1,c=2$,该向量 $\vec{u}=(2,3,1)$, $||\vec{u}||=\sqrt{2^2+3^2+1^2}=\sqrt{14}$,方向余弦 $u^0=(\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}},\frac{1}{\sqrt{14}})$ 。

- 14. **解析**:由于方向角相等,那么令 $P = k(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$,带入平面方程4x 7y + 5z 20 = 0,解出 $k = 10\sqrt{3}$,所以P = (10,10,10)。
- 15. 解析: 判断三个向量是否共面利用三阶行列式是否等于 0

(1)
$$\begin{vmatrix} 4 & 6 & 6 \\ 0 & -9 & -3 \\ 2 & 8 & 3 \end{vmatrix} = 60 \neq 0$$
, 不共面;

(2)
$$\begin{vmatrix} 1 & 3 & 1 \\ -2 & 3 & 7 \\ 3 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ -2 & 9 & 9 \\ 3 & -8 & -8 \end{vmatrix} = 0$$
, 共面。

16. **解析**:
$$\vec{a} = x\vec{e_1} + y\vec{e_2} + z\vec{e_3}$$
, 也可以表示成 $\begin{bmatrix} 3 & 7 & -2 \\ 2 & 5 & 3 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ 7 \end{bmatrix}$, 利用 Cramer 法则求出 $x = -1, y = 0, z = 2$, 所以 $\vec{a} = -\vec{e_1} + 2\vec{e_3}$

17. **解析**: 根据四点的坐标容易得出球心坐标 $(\frac{a}{2}, \frac{b}{2}, \frac{c}{2})$, 半径 $r = \frac{1}{2}\sqrt{a^2 + b^2 + c^2}$ 。

18. **解析**: 点 P 把线段 AB 分成 2:1 的两段,可以根据 AB 之间的距离按照比例划分找出 P 点, $\overrightarrow{AP} = \frac{2}{3} \overrightarrow{AB} = \frac{2}{3} (0,1,-1) = (0,\frac{2}{3},-\frac{2}{3})$,又因为 $\overrightarrow{AP} = (x,y,z) - (1,1,1)$,所以 $P = (1,\frac{5}{3},\frac{1}{3})$ 。

第二节 数量积 向量积 混合积 (A)

1.解析: 利用定义容易计算

(1)
$$3\vec{a} \times 4\vec{b} = 12\begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -1 \\ 0 & 3 & 4 \end{bmatrix} = 12(7\vec{i} - 4\vec{j} + 3\vec{k}) = (84, -48, 36)$$

(2)
$$\begin{bmatrix} 5\vec{a} & -\vec{b} & \vec{c} \end{bmatrix} = -5 \begin{vmatrix} 1 & 1 & -1 \\ 0 & 3 & 4 \\ 2 & 8 & -1 \end{vmatrix} = -5 \begin{vmatrix} 1 & 1 & -1 \\ 0 & 3 & 4 \\ 0 & 6 & 1 \end{vmatrix} = 105$$

2.解析: 利用向量共线和两向量的数量积可以计算

3.解析:利用模和向量之间的关系计算

$$\begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}^2 = (\overrightarrow{a} - \overrightarrow{b})^2 = \begin{vmatrix} \overrightarrow{a} \end{vmatrix}^2 - 2 \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \times \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \times \cos(\overrightarrow{a}, \overrightarrow{b}) + \begin{vmatrix} \overrightarrow{b} \end{vmatrix}^2 = 16 - 16\cos \langle \overrightarrow{a}, \overrightarrow{b} \rangle + 4 = 28$$
 从而得到两个向量之间的角度是 $(\overrightarrow{a}, \overrightarrow{b}) = 120^\circ$ 。

4.解析:利用模和向量之间的关系计算

$$\left\| 2\overrightarrow{a} - 3\overrightarrow{b} \right\| = \sqrt{\left\| 2\overrightarrow{a} - 3\overrightarrow{b} \right\|^2} = \sqrt{(2\overrightarrow{a} - 3\overrightarrow{b})^2} = \sqrt{4 + 36 - 12} = 2\sqrt{7},$$

$$S = \overrightarrow{a} \times \overrightarrow{b} = \left\| \overrightarrow{a} \right\| \times \left\| \overrightarrow{b} \right\| \times \sin(\overrightarrow{a}, \overrightarrow{b}) = \sqrt{3}$$

5.解析: 利用 Cramer 法则求解方程组

$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & -3 & 2 \\ 3 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -5 \\ -11 \\ 20 \end{bmatrix}, \quad \text{iff} \vec{d} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -2 \end{bmatrix}$$

ん 解析.

7.解析: 利用向量垂直的表达式

$$\begin{cases} (\vec{a} + 3\vec{b})(7\vec{a} - 5\vec{b}) = 7 ||\vec{a}||^2 - 15 ||\vec{b}||^2 + 16 ||\vec{a}|| \times ||\vec{b}|| \times \cos(\vec{a}, \vec{b}) = 0 \\ (\vec{a} - 4\vec{b})(7\vec{a} - 2\vec{b}) = 7 ||\vec{a}||^2 + 8 ||\vec{b}||^2 - 30 ||\vec{a}|| \times ||\vec{b}|| \times \cos(\vec{a}, \vec{b}) = 0 \end{cases}, \quad \text{$\begin{subarray}{c} \begin{subarray}{c} \$$

8.解析:注意射影和射影向量之间的区别

$$\vec{a}$$
 在 \vec{b} 上的射影: $\left(\vec{a}\right)_{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left\|\vec{b}\right\|} = \frac{-9}{3} = -3$

$$\overrightarrow{a}$$
 在 \overrightarrow{b} 上的射影向量: $\Pr oj_{\overrightarrow{b}} \vec{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{b}\|} b^0 = -3 \times \frac{1}{3} (1 - 2 2) = (-1 2 - 2)$

9.解析: 利用射影向量的概念

 $\left(\stackrel{\rightarrow}{a\cdot\stackrel{\rightarrow}{i}}\right)\stackrel{\rightarrow}{i}$ 表示 $\stackrel{\rightarrow}{a}$ 在 x 轴的投影向量,同理另外两个表达式分别表示在 y 轴和 z 轴的投影向量,

得证。(另外也可以通过
$$\left(\stackrel{\rightarrow}{a\cdot i}\right)\stackrel{\rightarrow}{i}=\stackrel{\rightarrow}{i}\stackrel{\rightarrow}{a}\cos\alpha$$
 方向余弦的表达式来证明)

10.解析:利用垂直的向量表达式

11.解析:利用三个向量都是单位向量的条件

$$\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = \frac{1}{2} \left[\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)^2 - \left(\overrightarrow{a} \right)^2 - \left(\overrightarrow{b} \right)^2 - \left(\overrightarrow{c} \right)^2 \right] = -\frac{3}{2}$$

12.解析:利用叉乘求出平行四边形面积,再返求高

$$\| \overrightarrow{AB} \times \overrightarrow{AC} \| = \| \overrightarrow{i} \quad \overrightarrow{j} \quad \overrightarrow{k} \| = \| (1 \quad 1 \quad 1) \| = \sqrt{3} = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ 所以 AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ 所以 AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ 所以 AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ 所以 AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ MU AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ MU AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \| \overrightarrow{AB} \| \times h = \sqrt{6}h , \text{ MU AB 边上的高是} h = \frac{\sqrt{2}}{2}, = \frac{\sqrt{2}}{2},$$

角形面积为平行四边形一半即 2

13.解析:利用叉乘的结合律

$$\overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{c}) = (\overrightarrow{c} - \overrightarrow{b}) \times \overrightarrow{d}$$
,进一步化简 $(\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{0}$,所以 $\overrightarrow{a} - \overrightarrow{d} = \overrightarrow{b} - \overrightarrow{c}$ 共线。

14.解析:利用自叉乘为0的知识点

$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{a} = (\overrightarrow{a} - \overrightarrow{c}) \times (\overrightarrow{b} - \overrightarrow{a}) == \overrightarrow{0}$$
,得知 $\overrightarrow{a} - \overrightarrow{b}$ 和 $\overrightarrow{a} - \overrightarrow{c}$ 共线,如果 $\overrightarrow{a} - \overrightarrow{c}$ 不是零向量,那么存在 k 使得 $\overrightarrow{a} - \overrightarrow{b} = k \begin{pmatrix} \overrightarrow{a} - \overrightarrow{c} \\ \overrightarrow{a} - \overrightarrow{c} \end{pmatrix}$,进一步化简成 $\overrightarrow{b} = (1 - k) \overrightarrow{a} + k \overrightarrow{c}$,右边的系数之和是 1,所以三个向量共面,如果 $\overrightarrow{a} - \overrightarrow{c}$ 是零向量,假定 $\overrightarrow{a} - \overrightarrow{b}$ 非零向量,那么同上证明,如果两个都是零向量,那么显然三个向量相等,得证。

15.解析:利用垂直和平行的向量表达式(考察垂直建议用数量积,平行用向量积)

$$(1) \vec{a} \cdot (\vec{b} \times \vec{a}) = \begin{bmatrix} \vec{a} & \vec{b} & \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{a} & \vec{b} \end{bmatrix} = (\vec{a} \times \vec{a}) \cdot \vec{b} = 0, \quad 成立;$$

(2)
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{a})$$
未必是零向量,当且仅当 \overrightarrow{b} 和 \overrightarrow{a} 共线成立;

(3)
$$\overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{b} \cdot \left[(\overrightarrow{b} \times \overrightarrow{a}) - \overrightarrow{b} \right] = \overrightarrow{b} \cdot (\overrightarrow{b} \times \overrightarrow{a}) - (\overrightarrow{b})^2 = -(\overrightarrow{b})^2$$
未必是零向量,当且仅当 \overrightarrow{b} 是零向量成立;

$$(4) \stackrel{\rightarrow}{b \times} \stackrel{\rightarrow}{c} = \stackrel{\rightarrow}{b \times} \left[\left(\stackrel{\rightarrow}{b \times} \stackrel{\rightarrow}{a} \right) - \stackrel{\rightarrow}{b} \right] = \stackrel{\rightarrow}{b \times} \left(\stackrel{\rightarrow}{b \times} \stackrel{\rightarrow}{a} \right)$$
未必是零向量,当且仅当 $\stackrel{\rightarrow}{b}$ 和 $\stackrel{\rightarrow}{a}$ 共线成立;

16.解析:利用数量积和向量积的结合律

(1)
$$\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} \Rightarrow (\vec{a} - \vec{c}) \cdot \vec{b} = 0$$
, 当且仅当 $(\vec{a} - \vec{c})$ 和 \vec{b} 垂直成立, 未必有 $\vec{a} = \vec{b}$;

(2)
$$\vec{a} \times \vec{b} = \vec{c} \times \vec{b} \Rightarrow (\vec{a} - \vec{c}) \times \vec{b} = 0$$
, 当且仅当 $(\vec{a} - \vec{c})$ 和 \vec{b} 共线成立;

17.解析:利用叉乘和点乘的分配律和结合律

$$\left[\begin{pmatrix} \overrightarrow{a} + \overrightarrow{b} \end{pmatrix} \times \begin{pmatrix} \overrightarrow{b} + \overrightarrow{c} \end{pmatrix} \right] \cdot \begin{pmatrix} \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{pmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} + \overrightarrow{b} \end{pmatrix} \times \begin{pmatrix} \overrightarrow{c} + \overrightarrow{c} \\ \overrightarrow{b} + \overrightarrow{c} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{a} \end{pmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \end{matrix}$$

18.解析:利用混合积的几何意义

$$V_{\text{суп}} = \frac{1}{6}V_{\text{чту},\text{так}} = \frac{1}{6} \begin{bmatrix} \vec{AB} & \vec{AC} & \vec{AD} \end{bmatrix} = 15$$

19.解析:利用混合积的定义、定理 3.2.1(两向量 \vec{a} 和 \vec{b} 垂直 $\Leftrightarrow \vec{a} \cdot \vec{b} = 0$)和定理 3.2.2(两向量 \vec{a} 和 \vec{b} 共线 $\Leftrightarrow \vec{a} \times \vec{b} = 0$)来证明定理 3.2.3(3 个向量 \vec{a} , \vec{b} , \vec{c} 共面 \Leftrightarrow $\begin{bmatrix}\vec{a} & \vec{b} & \vec{c}\end{bmatrix} = 0$)

b 垂直,三向量垂直于同一向量,则三向量共面(具体知识可以参考高中立体几何知识) 充分性:将必要性证明步骤反过来即可得证。

(B)

1.解析:利用向量叉乘的性质

$$(\vec{a} + \vec{b} + \vec{c}) \times (\vec{a} + \vec{b}) = \vec{c} \times (\vec{a} + \vec{b}) = \vec{0} \Rightarrow \vec{c} \times \vec{a} = \vec{b} \times \vec{c},$$
同理可以证明其它两对式子, 从而得证。

几何解释:三个向量围成三角形,任意两个向量的叉乘的几何意义是以这两个向量所在边 为平行四边形的边的面积乘以一个与该三角形垂直的单位法向量。

2.解析:利用加边的方法证明,下面的 abs()是取绝对值的意思。

$$S = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{2} abs \begin{pmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{pmatrix} = \frac{1}{2} abs \begin{pmatrix} 0 & 0 & 1 \\ x_2 - x_1 & y_2 - y_1 & 1 \\ x_3 - x_1 & y_3 - y_1 & 1 \end{pmatrix} = \frac{1}{2} abs \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$$

3.解析:利用坐标系证明(1)

(1) 假设
$$\overrightarrow{a} = (a \quad b \quad c), \overrightarrow{b} = (d \quad e \quad f), \overrightarrow{c} = (g \quad h \quad i)$$

$$=(bdh+cdi-beg-cfg \quad aeg+cei-adh-cfh \quad afg+bfh-adi-bei)$$

右边 =
$$(ag + bh + ci)(d e f) - (ad + be + cf)(g h i)$$

$$=(bdh+cdi-beg-cfg \quad aeg+cei-adh-cfh \quad afg+bfh-adi-bei)$$

所以成立。

(注:没有好思路,如果读者有好思路,拨冗提供,谢谢)

(2) 利用 (1) 证明, 由 (1) 可知
$$\overrightarrow{a} \times (\overrightarrow{d} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{d} - (\overrightarrow{a} \cdot \overrightarrow{d}) \overrightarrow{c}$$
, 两边点乘 \overrightarrow{b} , 得到

$$\begin{bmatrix} \vec{a} \times (\vec{d} \times \vec{c}) \end{bmatrix} \cdot \vec{b} = (\vec{a} \cdot \vec{c}) (\vec{d} \cdot \vec{b}) - (\vec{a} \cdot \vec{d}) (\vec{c} \cdot \vec{b}), \quad \text{左边的式子可以利用混合积变换,}$$

(3) 将(1) 中变量轮换得到的三个等式相加即可证明。

第三节 平面和空间直线

- 1.解析:求解平面方程一般利用与直线和平面之间的垂直和平行关系,切入点是求出法向量。
 - (1) 与两条直线平行, 两条直线的方向向量分别是 $\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$, 平面的法线向量和

方向向量均垂直,可以计算平面法线向量 $\eta=\begin{pmatrix}1&-1&1\end{pmatrix}$,经过零点,从而平面方程x-y+z=0。

- (2) 两条直线方向向量分别是 $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$ 和 $\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$,且经过点 $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$,可以计算平面法向量 $\eta = \begin{pmatrix} 1 & -3 & 1 \end{pmatrix}$,从而平面方程x 3y + z + 2 = 0。
- (3) 平行于原平面,可知平面法向量 $\eta = (5 14 2)$,令平面方程5x 14y + 2z + k = 0,

根据平面之间的距离,可以 $\frac{|k-36|}{\sqrt{5^2+(-14)^2+2^2}}=3$,所以k=-9或81,从而平面方程

5x-14y+2z+81=0或者5x-14y+2z-9=0

- (4) 经过两点并且和另一平面垂直,那么该平面法向量和另一平面法向量和两点方向向量垂直。两点方向向量为 $\lambda = \begin{pmatrix} 9 & -2 & 13 \end{pmatrix}$,另一平面法向量 $\eta = \begin{pmatrix} 2 & -1 & 4 \end{pmatrix}$,所以平面法向量 $\eta' = \lambda \times \eta = 5\begin{pmatrix} 1 & -2 & -1 \end{pmatrix}$,从而平面方程x 2y z + 2 = 0。
- (5) 经过定点 $(1 \ 2 \ -3)$,经过 \times 轴,可以知道该平面法向量与 $\eta_1 = (1 \ 0 \ 0)$ 和 $\eta_2 = (1 \ 2 \ -3)$ 垂直,所以平面法向量 $\eta' = \eta_1 \times \eta_2 = (0 \ 3 \ 2)$,从而平面方程 3y + 2z = 0。
- (6) 先求解直线的方向向量 λ = $(4\ 1\ 2)$ × $(5\ 2\ 3)$ = $(-1\ -2\ 3)$,另一平面法向量是 η = $(2\ -1\ 1)$, 从 而 该 平 面 法 向 量 η " = λ × η = $(1\ 7\ 5)$, 从 而 平 面 方 程 x-2+7(y+1)+5(z-5)=0。
- (7) 经过直线和一个点,那么可以在直线上取点求出一方向向量,不妨取定点 $\begin{pmatrix} 0 & -1 & 3 \end{pmatrix}$,求得直线方向向量 $\lambda_1 = \begin{pmatrix} 2 & 2 & 0 \end{pmatrix}$,已知直线方向向量 $\lambda_2 = \begin{pmatrix} 2 & 3 & 2 \end{pmatrix}$,所以平面法向量 $\eta = \lambda_1 \times \lambda_2 = 2\begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$,从而平面方程 2(x-2) 2(y-1) + z 3 = 0。
- (8) 截距相等意味着法向量 $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$,从而平面方程x + y + z 5 = 0。
- (9) 与两平面垂直,求得法向量 $\eta=\eta_1\times\eta_2=\begin{pmatrix}1&3&-2\end{pmatrix}\times\begin{pmatrix}2&-1&3\end{pmatrix}=7\begin{pmatrix}1&-1&-1\end{pmatrix}$,从而平面方程 x-1-(y-2)-(z+1)=0。

2.解析:

- (1) 直线方程: $\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2} = \frac{z-z_1}{z_1-z_2}$.
- (2) 先求出直线方向向量 $\lambda = \eta_1 \times \eta_2 = \begin{pmatrix} 2 & -3 & 1 \end{pmatrix} \times \begin{pmatrix} 4 & -2 & 3 \end{pmatrix} = \begin{pmatrix} -7 & -2 & 8 \end{pmatrix}$,从而直线方程: $\frac{x-2}{-7} = \frac{y}{-2} = \frac{z+1}{8}$ 。
- (3) 利用两直线垂直相交,满足共面条件和垂直条件,借助另一直线方向向量 $\lambda_1 = (-3\ 0\ -6) (2\ -1\ 3) = (-5\ 1\ -9)$,令所求直线方向向量 $\lambda = (x\ y\ z)$ 列出方程组 $\begin{cases} \left[\lambda_1\ (7\ 0\ 2)\cdot\lambda\right] = 0\\ (7\ 0\ 2)\cdot\lambda = 0 \end{cases}$,求得 $\lambda = (2\ 1\ -7)$,从而直线方程: $\frac{x-2}{2} = \frac{y+1}{1} = \frac{z-3}{-7} \ .$
- (4) 所求直线的方向向量和直线方向向量与平面法向量垂直,所以可以求得所求直线方向向量 $\lambda = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 7 & 8 & 9 \end{pmatrix} = -3\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$,从而直线方程: $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{1}$ 。
- (5) 记直线 x = y = z 的方向向量 $\lambda_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$, 记方向向量 $\lambda_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, 记 y 轴方向向量 $\lambda_3 = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$, 所求直线方向向量 $\lambda = \begin{pmatrix} x & y & z \end{pmatrix}$, 列出方程组 $\begin{cases} \lambda \times \lambda_1 = 0 \\ [\lambda & \lambda_3 & \lambda_2] = 0 \end{cases}$,求得

$$\lambda = (1 - 4 - 3)$$
,从而直线方程: $\frac{x-1}{1} = \frac{y-2}{-4} = \frac{z-3}{3}$

- (6) 记直线 L_1 和点 P_0 构成的平面为 w_1 ,直线 L_2 和点 P_0 构成的平面为 w_2 ,则所求直线方程即为两平面交线 (这么说有前提,因为题目给出的两条直线恰好异面,如果两直线共面相交,容易通过交点和点 P_0 计算直线方程,如果两直线平行,题目所求毫无意义)。任取 L_1 上的点 P_1 ,求出直线过 P_0 和 P_1 的方向向量,和 L_1 方向向量叉乘得到 w_1 的法向量。同理可以得到 w_2 的法向量。两法向量叉乘即得所求直线方向向量,结合过点 P_0 可以求出直线方程。
- 3.解析:求某点关于某平面的对称点,可以设另一点坐标,依靠两个条件:第一,中点在平面上;第二,过两点的直线方程垂直于平面。

设对称点坐标是P(x,y,z), 中点坐标是 $Q(\frac{x}{2},\frac{y}{2},\frac{z}{2})$, 可以列出方程组:

$$\begin{cases} 3x + y - \frac{9}{2}z + 121 = 0\\ \frac{x}{6} = \frac{y}{2} = \frac{z}{-9} \end{cases}, \quad \text{if } P(-12, -4, 18)_{\circ}$$

4.解析:要找平面上一点使得到其他三个平面外的点距离相等,列出距离方程即可。

假设该点坐标为P(x,y,z),那么可以列出距离方程,如下:

$$(x-2)^2 + (y-1)^2 + (z-5)^2 = (x-4)^2 + (y+3)^2 + (z-1)^2 = (x+2)^2 + (y+1)^2 + (z-3)^2$$

结合一个平面方程 $^{x-y-2z=0}$,即可利用克拉姆法则解出方程组。

最后得到
$$P(\frac{7}{5},1,\frac{1}{5})$$
。

- 5. (1)解析:先解出直线方程的方向向量,如果方向向量和法向量相同,则垂直;如果方向向量和法向量垂直并且直线上随便取一个点都在平面上,那么直线在平面内;如果方向向量和法向量垂直并且直线上随便取已给单不在平面上,那么直线与平面平行。易得此处直线和平面垂直,答案应选 C;
- (2)解析:可以先判断是否共面,依据三维行列式(详见课本 P111)是否等于 0,易得该题的三维行列式等于 0.从而两直线共面。如果重合或者平行,均不满秩。答案应选 A。
- 6.解析:求直线和平面的交点,可以利用平面的对称式方程引入参数分别表示 x,y,z, 然后解出参数,从而解出交点。

可以得到交点坐标P(2,3,1),假设L的方向向量为(x,y,z),那么可以列出方程组:

$$\begin{cases} (x, y, z)(5,1,4) = 0 \\ (x, y, z)(3,-1,2) = 0 \end{cases}$$
 所以 $(x, y, z) = (3,1,-4)$,从而得到 $\frac{x-2}{3} = \frac{y-3}{1} = \frac{z-1}{-4}$ 。

7.解析:两平面之间的夹角限于 $\left[0,\frac{\pi}{2}\right]$ 。

两平面的法向量分别是
$$\overrightarrow{\lambda_1} = (2,1,2)$$
 和 $\overrightarrow{\lambda_2} = (1,1,0)$,所以有 $\cos \theta = \left| \frac{\overrightarrow{\lambda_1} \cdot \overrightarrow{\lambda_2}}{\left\| \overrightarrow{\lambda_1} \right\| \times \left\| \overrightarrow{\lambda_2} \right\|} \right| = \frac{\sqrt{2}}{2}$,所以夹角 $\theta = \frac{\pi}{4}$ 。

8.解析:两直线之间的夹角限于 $\left[0,\frac{\pi}{2}\right]$ 。

两直线的方向向量分别是 $\vec{\lambda}_1 = (1, -2, 1)$ 和 $\vec{\lambda}_2 = (-1, -1, 2)$,所以有 $\cos \theta = \left\| \frac{\vec{\lambda}_1 \cdot \vec{\lambda}_2}{\|\vec{\lambda}_1\| \times \|\vec{\lambda}_2\|} \right\| = \frac{1}{2}$,所以夹角 $\theta = \frac{\pi}{3}$ 。

9.解析:直线和平面之间的夹角限于 $\left[0,\frac{\pi}{2}\right]$ 。

直线的方向向量和平面法向量分别是 $\vec{\lambda_1} = (2,3,6)$ 和 $\vec{\lambda_2} = (1,1,1)$,所以有 $\cos\theta = \left| \frac{\vec{\lambda_1} \cdot \vec{\lambda_2}}{\left\| \vec{\lambda_1} \right\| \times \left\| \vec{\lambda_2} \right\|} \right| = \frac{11}{7\sqrt{3}}$,所以夹角 $\theta = \arccos\frac{11}{7\sqrt{3}}$ 。交点为 $\left(\frac{9}{11}, \frac{8}{11}, \frac{-17}{11}\right)$ 。

10.解析: 设所求平面法向量为 $\vec{\lambda_1} = (x, y, 0)$,已知平面法向量为 $\vec{\lambda_2} = (2, 1, -\sqrt{5})$,根据角度 $\cos \theta = \left| \frac{\vec{\lambda_1} \cdot \vec{\lambda_2}}{\|\vec{\lambda_1}\| \times \|\vec{\lambda_2}\|} \right| = \frac{|2x + y|}{\sqrt{x^2 + y^2} \times \sqrt{10}} = \frac{1}{2}$,得 y = 3x 或 x + 3y = 0,即平面方程。

11.解析:平面 S 的法向量 $\vec{\lambda_1} = (-1,1,0) \times (-1,0,1) = (1,1,1)$,假设所求直线方向向量为 $\vec{\lambda_2} = (1,1,z)$,列出方程:

$$\frac{\left| \overrightarrow{\lambda_1} \cdot \overrightarrow{\lambda_2} \right|}{\left\| \overrightarrow{\lambda_1} \right\| \times \left\| \overrightarrow{\lambda_2} \right\|} = \cos \frac{\pi}{4}, \quad \text{Mmma} \quad \text{Mma} \quad \text{$$

12.解析:由平面平行可以设所求平面方程为6x+3y+2z+a=0,根据该平面和原点之间的距

为 1。所以有
$$r = \frac{a}{\sqrt{36+9+4}} = 1$$
,得到 $a = \pm 7$,平面方程为 $6x + 3y + 2z \pm 7 = 0$ 。

13.解析:可以借助向量来说明问题,两平行平面的法向量相同,与另一平面的法向量叉乘得到的新向量相同,也就是交线的方向向量,而且分别在两个平面内,所以交线平行。

14.解析:直接求出交点坐标(2,1,0),由两直线的方向向量叉乘即可得到平面法向量,所以最后7x-5y-11z-9=0。

15.解析:直接放点到平面的距离公式。

$$r = \left| \frac{1 - 2 \times 2 + 1 + 1}{\sqrt{1 + 4 + 1}} \right| = \frac{\sqrt{6}}{6}$$

16.解析:平面之间的距离转化成点到平面的距离。

取
$$x+y-z+1=0$$
 上一点 $\left(-1,0,0\right)$,所以 $r=\left|\frac{-2-3}{\sqrt{4+4+4}}\right|=\frac{5}{2\sqrt{3}}$ 。

17.解析:

- (1) 对称式方程: $\frac{x}{1} = \frac{y+3}{1} = \frac{z+2}{-2}$;
- (2) 点 M 到 $^{L_{1}}$ 的距离:借助公式,此处取直线上点为 $^{\left(0,-3,-2\right)}$,距离为 $r = \frac{\|(1,1,-2)\times(1,3,1)\|}{\|(1,1,-2)\|} = \frac{\sqrt{93}}{3}$;
- (3)两直线之间的距离,经过计算三维行列式可以知道两直线是异面直线,借助课本上 P115 上的异面直线公式可以得到 $r=\frac{20}{\sqrt{29}}$ 。

(B)

1.解析:先利用 $^{\pi_1}$ 和 $^{\pi_2}$ 两个平面计算直线方向向量。

 $\vec{\lambda}_1 = (3,2,4)$, $\vec{\lambda}_2 = (1,-8,-2)$, $\vec{\lambda}_3 = (k,-3,1)$, 得到直线方向向量 $\vec{\eta} = \vec{\lambda}_1 \times \vec{\lambda}_2 = (28,10,-26)$, 又因为 $\vec{\lambda}_3 = \vec{\eta}$ 垂直,解得 $\vec{k} = 2$ 。根据前面两个平面可以找出直线上一点 $\left(0,-\frac{1}{2},\frac{1}{2}\right)$, 所以直线方程 $\frac{x}{14} = \frac{y+\frac{1}{2}}{5} = \frac{z-\frac{1}{2}}{-13}$ 。

第三章习题

1.解析: (1) 原式=
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} + (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = 4$$
;

- (2) 利用向量叉乘的几何意义,可以计算得到 $S=12\sqrt{2}$:
- (3) 利用原点和另一点之间的方向向量与平面法向量叉乘即可得到所求平面的法向量,再根据过原点的信息可以解出该平面方程为 2x+2y-3z=0 ;
 - (4) 两直线相交,利用共面的三维行列式可以求解该问题,得到 $\lambda = \frac{5}{4}$;
 - (5) 点到平面的距离利用距离公式可以得到 $r = \sqrt{2}$ 。
- 2.解析:(1) 答案应选 B
 - (A) 不确定;
 - (B) 可以确定的是三个向量是基向量,空间任意向量均可被表示;
 - (C) 也有可能是 a 和 $^{b-c}$ 垂直;
 - (D) 也有可能是 \vec{a} 和 $\overset{\rightarrow}{b-c}$ 平行。
 - (2) 答案应选 A
 - (3) 答案应选 D(判断直线方向向量和平面法向量之间的关系)
- (4) 答案应选 C (首先可以通过直线方向向量排除平行和垂直,接下来只需依赖三维行列式判断是否共面)
- (5) 答案应选 C (四点共面转化为三直线共面,利用共面直线方向向量之间叉乘为 0 的依据)

3.解析:设该平面的法向量 $\vec{\lambda}_1 = (x, y, z)$,已知平面的法向量 $\vec{\lambda}_2 = (7, -1, 4)$,直线的方向向量 $\vec{\eta} = (1, 1, 2)$,其中 $\vec{\lambda}_1 \cdot \vec{\lambda}_2 = 0$, $\vec{\lambda}_1 \cdot \vec{\eta} = 0$,所以 $\vec{\lambda}_1 = (3, 5, -4)$,取直线上的一点即可解出平面方程 3x + 5y - 4z + 25 = 0。

4.解析:设该直线的方程为 $\frac{x-1}{a} = \frac{y}{b} = \frac{z+2}{c}$, 与平面平行,所以有 3a-b+2c=0 ; 与直线相交, 所以有 $\begin{vmatrix} 0 & 3 & 2 \\ a & b & c \\ 4 & -2 & 1 \end{vmatrix} = 0$, 所以可以取 $(a \ b \ c) = (4,-50,-31)$, 所以直线方程为 $\frac{x-1}{4} = \frac{y}{-50} = \frac{z+2}{-31}$ 。

5.解析:点到直线的距离可以利用课本上的公式。

直线 L 的方程为 $\frac{x}{1} = \frac{y-4}{-3} = \frac{z-3}{-2}$, $\overrightarrow{i} \overset{\stackrel{?}{\downarrow}}{\stackrel{?}{\downarrow}} = (1,-3,-2)$, $P_0 = (0,4,3)$, $P_1 = (1,2,3)$, 所以距离 $r = \frac{\left\| \overrightarrow{\lambda} \times \overrightarrow{P_0P_1} \right\|}{\left\| \overrightarrow{\lambda} \right\|} = \frac{\sqrt{6}}{2}$

6.解析:设 $\frac{P_0}{2}$ 关于直线的对称点为 $\frac{P_1(x,y,z)}{2}$,所以中点 $\frac{P_2\left(\frac{x+2}{2},\frac{y-3}{2},\frac{z+1}{2}\right)}{2}$,所以有 $\frac{\frac{x+2}{2}-1}{-2}=\frac{\frac{y-3}{2}+1}{-1}=\frac{z+1}{2}$,且有 $\frac{(x-2,y+3,z-1)\cdot(-2,-1,2)=0}{2}$,所以最终得到直线方程 $\frac{x-2}{-4}=\frac{y+3}{13}=\frac{z+1}{5}$, $\frac{P_2\left(\frac{2}{3},\frac{4}{3},\frac{2}{3}\right)}{2}$, $\frac{P_1\left(\frac{4}{3},-\frac{5}{6},-\frac{1}{6}\right)}{2}$ 。

7.解析: (1)
$$\overrightarrow{MP_1} = \left(\left\| \overrightarrow{MP} \right\| \tan \theta \cdot \overrightarrow{e} + \overrightarrow{MP} \right) \cdot \frac{\left\| \overrightarrow{MP} \right\|}{\left\| \overrightarrow{MP} \right\|} = \overrightarrow{MP} \cdot \cos \theta + \left\| \overrightarrow{MP} \right\| \sin \theta \cdot \overrightarrow{e}$$
;

(2) 记
$$\overrightarrow{OP}$$
与 \overrightarrow{OA} 之间的夹角为 $\alpha = \arccos\left(\frac{\overrightarrow{OP} \cdot \overrightarrow{OA}}{\left\|\overrightarrow{OP}\right\| \times \left\|\overrightarrow{OA}\right\|}\right)$ (锐角和钝角的情况分别表示,此

处考虑锐角的情况),与 \vec{OA} 垂直的向量 $\vec{OD} = \|\vec{OP}\| \cos \alpha \cdot \vec{e} - \vec{OP}$,而 \vec{OD} 与 \vec{OP}_1 之间的夹角为 $\beta = \frac{\pi}{2} - \alpha + \theta$,所以得到如下式子:

$$\overrightarrow{OP_1} = \left(\left\| \overrightarrow{OD} \right\| \tan \beta \cdot \overrightarrow{e} + \overrightarrow{OD} \right) \cdot \frac{\left\| \overrightarrow{OP} \right\|}{\left\| \overrightarrow{OP} \right\|} = \overrightarrow{OD} \cdot \cos \beta + \left\| \overrightarrow{OD} \right\| \sin \beta \cdot \overrightarrow{e}, \quad \sharp + \Leftrightarrow \beta = \frac{\pi}{2} - \alpha + \theta,$$

$$\overrightarrow{OD} = \left\| \overrightarrow{OP} \right\| \cos \alpha \cdot \overrightarrow{e} - \overrightarrow{OP}, \quad \alpha = \arccos \left(\frac{\overrightarrow{OP} \cdot \overrightarrow{OA}}{\left\| \overrightarrow{OP} \right\| \times \left\| \overrightarrow{OA} \right\|} \right) \circ$$

第四章 n 维向量和线性方程组

第一节 消元法

1. (1) $x_1 = 11, x_2 = -5, x_3 = 0, x_4 = 3$

(2)
$$x_1 = 3 - x_3$$
, $x_2 = 2x_3 - 8$, $x_4 = 6$

(3) 只有零解

(4)
$$x_1 = 0, x_2 = \frac{1}{3}x_3 - \frac{2}{3}x_4, x_5 = 0$$

解析:用 Cramer 法则消元,进而求解方程组

(1)
$$\mathbf{A}: A = \begin{pmatrix}
1 & 1 & 5 & 3 & 15 \\
1 & 2 & 3 & 3 & 10 \\
1 & 3 & 2 & 4 & 8 \\
2 & 5 & 6 & 8 & 21 \\
2 & 5 & 4 & 7 & 18
\end{pmatrix}$$
 $\rightarrow \begin{pmatrix}
1 & 0 & 0 & 0 & -11 \\
0 & 1 & 0 & 0 & -5 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$

所以方程的解为:

$$x_1 = 11, x_2 = -5, x_3 = 0, x_4 = 3;$$

(2)解:

$$A = \begin{pmatrix} 2 & -1 & 4 & -3 & -4 \\ 1 & 0 & 1 & -1 & -3 \\ 3 & 1 & 1 & 0 & 1 \\ 7 & 0 & 7 & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 3 \\ 0 & 1 & -2 & 0 & -8 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

所以方程组的解为:

$$x_1 = 3 - x_3$$
, $x_2 = 2x_3 - 8$, $x_4 = 6$

(3)解:

$$A = \begin{pmatrix} 3 & 5 & 2 & 0 \\ 4 & 7 & 5 & 0 \\ 1 & 1 & -4 & 0 \\ 2 & 9 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

则该方程组只有零解

(4)解:

$$A = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 2 & 3 & -1 & 4 & 2 & 0 \\ 7 & 9 & -3 & 5 & 6 & 0 \\ 5 & 9 & -3 & 1 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

则方程的解为:

$$x_1 = 0, x_2 = \frac{1}{3}x_3 - \frac{2}{3}x_4, x_5 = 0$$

2. 考点: 消元法求解方程组的解,并将其推广到解决直线相交的问题。用方程组有解表示,直线有交点,用方程组无解表示直线没有交点,用方程组有唯一解表示三条直线相交于一点。

解:

三条直线交于一点表示方程组联立只有唯一的解。

证明: 必要性:

由题目易得:
$$r(A) = 2$$
 有 $det(A) = 0$ 得到 $a + b + c = 0$

充分性:

由题目易得: 当: a+b+c=0时

用消元法消去第三个方程,保留方程组的系数行列式不为0,故有唯一解

第二节 向量组的线性相关性 (A)

1. 证明:

 β 可以用 α_1 , α_2 , α_3 线性表示

2. 解:

设:
$$\beta = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4$$
即:
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - x_4 = 2 \\ x_1 - x_2 + x_3 - x_4 = 1 \\ x_1 - x_2 - x_3 + x_4 = 1 \end{cases}$$

$$\mathbb{D} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{5}{4} \\ 0 & -2 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 2 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -4 & 1 \end{pmatrix} \quad \therefore \quad \mathbf{X} = \begin{bmatrix} \frac{7}{4} \\ \frac{1}{4} \\ -\frac{1}{4} \\ -\frac{1}{4} \\ -\frac{1}{4} \end{bmatrix}$$

3. 解:

设:
$$\beta = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = -1 \\ x_1 + x_2 + x_3 = 0 \\ x_2 + x_3 = 1 \end{cases}$$

$$-x_2 + (a - 3)x_3 = b$$

$$D = \begin{pmatrix} 3 & 2 & 1 & -1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & (a - 3) & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & (a - 1) & b + 1 \end{pmatrix}$$

$$\begin{bmatrix} a & b & b & b & b & b & b & b \\ 0 & 0 & 0 & (a - 1) & b + 1 \end{pmatrix}$$

- 1) 当 $a \neq 1$ 时 β 可以由 α_1 , α_2 , α_3 唯一线性表示, $\beta = \frac{b-a+2}{a-1}\alpha_1 + \frac{a-2b-3}{a-1}\alpha_2 + \frac{b+1}{a-1}\alpha_3$
- 2) 当a = 1 且 $b \neq -1$ 时 β 不可以由 α_1 , α_2 , α_3 唯一线性表示
- 3)当a = 1且 b = -1 时 $\beta = (-1 + c)\alpha_1 + (1 2c)\alpha_2 + c\alpha_3$ 其中 c 为任意常数

4. (1) 不正确,

若 α_1 , α_2 , α_3 … … α_n 线性相关,则存在一组不全为 0 的系数 k_1 , k_2 , … … k_n ,使得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$

∴设
$$\alpha_i$$
为其中任意一个向量,则

$$k_j \alpha_j = -(k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_{j+1} \alpha_{j+1} + \dots + k_n \alpha_n)$$

:: 若 $k_j \neq 0$, α_j 可以有其余向量表示

 $若k_i = 0$, α_i 不可以有其余向量表示

- (2) 不正确,解析同上。
- (3) 正确

由Ax = 0仅有零解

得:零向量可由 A 的列向量唯一线性表示 $0 = 0a_1 + 0a_2 + \cdots + 0a_n$ 故 A 的列向量线性无关

(4) 正确

$$XX^T = \sum_{i=1}^{n} a_i^2 \ge 0$$
 $\stackrel{\text{\propto}}{=} XX^T = 0 \text{ pt}: \ a_i = 0, \text{ pt} = 0$

5. 解:

取 $A = [\alpha_1, \alpha_2, \alpha_3]$ 则由 $\alpha_1, \alpha_1, \alpha_1$ 线性相关得|A| = 0

$$\begin{vmatrix} \lambda & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \lambda \end{vmatrix} = (\lambda - 1) \left(\lambda - \frac{1}{2}\right)^2 = 0 : \lambda = 1$$
 或者 $\frac{1}{2}$

6. 证明: 充分性

设
$$A = [\alpha_{1,}, \alpha_{2,} ... \alpha_{n}]$$
: 由 $D \neq 0$ 得 $det(A^{T}A) = [det(A)]^{2} \neq 0$ $\therefore det(A) \neq 0$ 得: $r(A) = n\alpha_{1,}, \alpha_{2,} ... \alpha_{n}$ 线性无关

必要性:

由
$$\alpha_{1}$$
, α_{2} , ... α_{n} 线性无关得 $r(A) = n$, $det(A) \neq 0$ 即 $D = [det(A)]^{2} \neq 0$

7. 考点:相关性的判断:

解:

(1)
$$A = [\alpha_{1,}, \alpha_{2,}, \alpha_{3}] = \begin{pmatrix} 6 & 3 & 15 \\ 2 & 1 & 3 \\ 4 & 2 & 2 \\ -9 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \therefore r(A) = 3$$
各列向量线性无关
$$(2) A = [\alpha_{1,}, \alpha_{2,}, \alpha_{3}] = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -2 & -1 \\ 3 & 1 & 1 \\ 2 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0.2 \\ 0 & 1 & 0.4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\therefore r(A) = 3 < 2$$
 各列向量线性相关
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(3) \mathbf{A} = \begin{bmatrix} \alpha_{1,1}, \alpha_{2,1}, \alpha_{3} \end{bmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ -a & 1 & 1 \\ 1 & -a & 1 \\ 1 & 1 & -a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ -1 - a & 0 & 0 \\ 0 & -a - 1 & 0 \\ 0 & 0 & -a - 1 \end{pmatrix}$$

 \therefore 当 $a \neq -1$ 时: r(A) = 3 各列向量线性无关

当
$$a = -1$$
 时: $r(A) = 1 < 3$ 各列向量线性相关

8. 逆否命题: 向量组线性无关的充分必要的条件是该向量组中的每个向量都不能由该组中的 其余向量线性表示。

9. 证明:

由 $\alpha_{1,},\alpha_{2,}...\alpha_{s}$ 线性无关 $A = [\alpha_{1,},\alpha_{2,}...\alpha_{s}]$ 得r(A) = s, 延长分量, A 的秩不变。则对于: $B = [\beta_{1,},\beta_{2,}...\beta_{s}]r(B) = s$ 故 $\beta_{1,},\beta_{2,}...\beta_{s}$ 线性无关逆否命题:

若 r 维的向量组, $\alpha_i = (\alpha_{1i}\alpha_{2i}...\alpha_{ri})^T$, j = 1,2,...,s线性相关,则在截短后任然成立

10. 考点:线性相关的概念和判断方法

解: 由题可知:
$$\boldsymbol{\beta} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_n \boldsymbol{\alpha}_n \perp k_n \neq 0$$

则: $\boldsymbol{\alpha}_n = \frac{(k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \dots + k_{n-1} \boldsymbol{\alpha}_{n-1} + \boldsymbol{\beta})}{k_n}$

 $\therefore \alpha_n$ 能够被 α_1 , α_2 , ... α_{n-1} , β 线性表示

11.解:

(1) 能;

由: α_1 , α_2 , α_3 线性相关,得到 α_1 , α_2 , α_3 中至少可以有一个可以用其他的两个线性表示由: α_4 , α_2 , α_3 线性无关,得到 α_4 , α_2 , α_3 中任何一个均不能够由其他的两个线性表示故 α_2 , α_3 ,是线性无关的。故 α_1 可以由 α_2 , α_3 线性表示

(2) 不能;

由: α_1 可以由 α_2 , α_3 线性表示, α_4 和 α_2 , α_3 线无关,得: α_1 和 α_2 , α_3 线性无关,所以, α_4 不能由 α_1 , α_2 , α_3 线性表示

12. 解:

设:
$$x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \dots + x_m \boldsymbol{\beta}_m = 0$$

$$\parallel : \begin{cases} x_2 + x_3 + \dots + x_m = 0 \\ x_1 + x_3 + \dots + x_m = 0 \\ \vdots \\ x_1 + x_2 + \dots + x_{m-1} = 0 \end{cases}$$

$$= (m-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \dots & 0 \end{vmatrix} = (m-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \dots & 0 \end{vmatrix}$$

$$= (m-1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & -1 \end{vmatrix} = (-1)^{m-1} (m-1) \neq 0$$
故: $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_m$ 线性无关

13. 证明:

由题得:

$$\begin{cases}
\mathbf{A}\alpha_i = 0 \\
\mathbf{A}\boldsymbol{\beta} = b
\end{cases}$$
 $(i = 1, 2 \cdots t)$ 则: $\mathbf{A}(\alpha_i + \boldsymbol{\beta}) = \mathbf{b}$

$$\beta, \alpha_1 + \beta, \alpha_2 + \beta, ..., \alpha_t + \beta \mathbb{E} Ax = b \hat{\mathbf{n}} b + 1 \hat{\mathbf{n}} \mathbf{m}$$

$$\mathbb{X}$$
: $k_1(\boldsymbol{\alpha}_1 + \boldsymbol{\beta}) + k_2(\boldsymbol{\alpha}_2 + \boldsymbol{\beta}) + \dots + k_t(\boldsymbol{\alpha}_t + \boldsymbol{\beta}) + k_{t+1}\boldsymbol{\beta}$

=
$$(k_1 + k_2 + \dots + k_{t+1})\beta + k_1\alpha_1 + k_2\alpha_2 + \dots + k_t\alpha_t = 0$$

则:
$$A(k_1 + k_2 + \dots + k_{t+1})\beta + A(k_1\alpha_1 + k_2\alpha_2 + \dots + k_t\alpha_t) = 0$$

又
$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_t\alpha_t = 0$$
 $\alpha_1, \alpha_2 \ldots \alpha_t$ 线性无关

故:
$$k_1 = k_2 = \cdots = k_t = 0$$
 $k_{t+1} = 0$ $\beta, \alpha_1, ..., \alpha_t$ 线性无关。

$$\mathbb{X}$$
: $r([\boldsymbol{\beta}, \boldsymbol{\alpha}_1, ..., \boldsymbol{\alpha}_t]) = r([\boldsymbol{\beta}, \boldsymbol{\alpha}_1 + \boldsymbol{\beta}, \boldsymbol{\alpha}_2 + \boldsymbol{\beta}, ..., \boldsymbol{\alpha}_t + \boldsymbol{\beta}]) = t + 1$

$\therefore \beta, \alpha_1 + \beta, \alpha_2 + \beta, ..., \alpha_t + \beta$ 线性无关

14. 解:利用定义和反证法

证明:必要性:定理

充分性:假设表示唯一时,线性相关,则存在 $\alpha_k = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n$,那么 β 可以用 $\alpha_1, \alpha_2, \ldots \alpha_{k-1}, \alpha_{k+1}, \alpha_n$ 线性表示,这和表示方式唯一矛盾,故表示方式唯一时,向量组线性无关。

15. 解:

由于 向量组 $\alpha_1, \alpha_2, ... \alpha_m$ 线性无关

所以 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$ 只有在 $k_1 = k_2 = \cdots = k_m = 0$ 时才能成立,因为 $\boldsymbol{\beta}$ 不可以由 $\alpha_1, \alpha_2, \ldots \alpha_m$ 线性表示,则 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m + k_0\boldsymbol{\beta} = \boldsymbol{0}$ 时 $k_0 = 0$,故 $k_1 = k_2 = \cdots = k_m = k_0 = 0$ 所以向量组 $\alpha_1, \alpha_2, \ldots \alpha_m, \boldsymbol{\beta}$ 线性无关

16. 解:设: $A = [\beta_1, \beta_2, ..., \beta_s]C = [\alpha_1, \alpha_2, ..., \alpha_s]$,由 $A = CB \nabla AX = CBX = 0$ 和CX = 0 只有零解,得BX = 0 和AX = 0 同解,即 $r(A) = r(B)A \Leftrightarrow B$,则: $\beta_1, \beta_2, ..., \beta_s$ 线性无关 $\Leftrightarrow r(A) = r(B) = s$,且当r = s 时B为方阵,则B为满秩 $\Leftrightarrow det(B) \neq 0$

17. 解:

$$(1) [\beta_{1}, \beta_{2}, \beta_{3}] = [\alpha_{1}, \alpha_{2}, \alpha_{3}]B \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & 0 \\ 0 & 3 & 4 \end{bmatrix} det(B) = 2 \neq 0$$
 故: $\beta_{1}, \beta_{2}, \beta_{3}$ 线性无关
$$(2) [\beta_{1}, \beta_{2}, \beta_{3}] = [\alpha_{1}, \alpha_{2}, \alpha_{3}]B \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -3 & 5 \\ 1 & 22 & -5 \end{bmatrix} det(B) = 0$$

 β_1 , β_2 , β_3 线性相关

(B)

1. 证明: 由题意得:

$$a_1 \alpha + a_2 A \alpha + \dots + a_k A^{k-1} \alpha = 0$$

两边同时乘以 A^{k-1} 得到 $a_1 A^{k-1} \alpha + a_2 A^k \alpha + \dots + a_k A^{2k-2} \alpha = 0$
又 $A^m \alpha = 0 \ (m = k, k + 1 \dots)$ 则 $a_1 = 0$ 同理 $a_1 = a_2 = \dots = a_k = 0$
所以 $\alpha, A\alpha, \dots \alpha A^{k-1}$ 线性无关

2. 解:由题意得:

第三节 向量组的秩

1. 考点: 求解向量组的秩:

$$\text{R: $A = \begin{bmatrix} a & 2 & 1 & 2 \\ 3 & b & 2 & 3 \\ 1 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Lhyb}$} \begin{bmatrix} a-2 & 0 & 1 & 0 \\ 0 & b-5 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad \text{\therefore $a = 2$ $b = 5$ }$$

2. 解:考点:极大无关组的和求向量组的

$$(1) A = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 3 & 0 & -2 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 10 \end{pmatrix}$$

$$\uparrow \begin{pmatrix}
1 & 0 & 3 & 1 & 2 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
: 一个极大无关组为: $\alpha_1, \alpha_2, \alpha_4$ 秩为 3

$$\exists \mathbf{\alpha}_{1} = \mathbf{3}\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2} \quad \mathbf{\alpha}_{5} = 2\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2}$$

$$(2) \mathbf{A} = \begin{bmatrix} \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} \end{bmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 & 2 \\ 1 & 3 & 9 & 7 & 5 \\ 1 & 4 & 16 & 13 & 10 \end{pmatrix} \xrightarrow{\text{fr}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

:. 一个极大无关组为: α_1 , α_2 , α_3 秩为 3

3. 考点:线性相关和线性无关的判

解:
$$(1)[\alpha_1, \alpha_2, \alpha_3, \alpha_4 : \alpha] = \begin{pmatrix} 1 & -1 & 3 & -2 : & 4 \\ 1 & -3 & 2 & -6 : & 1 \\ 1 & 5 & -1 & 10 : & 6 \\ 3 & 1 & p+2 & p : & 10 \end{pmatrix}$$

(2)
$$p = 2$$
 时,向量组线性相关 $\begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4 \end{bmatrix} = \begin{pmatrix} 1 & -1 & 3 & -2 \\ 1 & -3 & 2 & -6 \\ 1 & 5 & -1 & 10 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $: \alpha_1, \alpha_2, \alpha_3$ 为一个极大无关组, 秩为 3.

4. 考点:同秩的证明

证明:
$$[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, ... \boldsymbol{\beta}_{m}] = [\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, ... \boldsymbol{\alpha}_{m}]$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & \vdots & 0 \\ \vdots & \vdots & \vdots & \cdots & 1 & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

其中:
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & \vdots & 0 \\ \vdots & \vdots & \vdots & \cdots & 1 & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}$$
 m 为奇数时: $|\mathbf{A}| = 2$, \mathbf{A} 为满秩阵

故: β_1 , β_2 ... β_m 和 α_1 , α_2 ... α_m 有相同的秩。

5. **考点**:区分秩相同和等价的区别。两个向量组等价一定能够相互表示,秩一定相同。然而 秩相同却不一定等价。需要 r(A)=r(A,B)=r(B), A 和 B 才等价。

解: 反例
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} r(\mathbf{A}) = r(\mathbf{B})$$
, 但是 \mathbf{A} 和 \mathbf{B} 不等价

6. 考点: 向量组等价和向量组秩相同的关系

证明:由题可得:

(I)和(II)有相同的秩,均为3,且(I)线性无关

又 4 个 3 维向量一定线性相关,故 β_i 可以用 α_1 , α_2 , α_3 线性表示

同理可知, α_i 可以用 β_1 , β_2 , β_3 线性表示

则(I)和(II)可以相互表示,(I)和(II)等价

7. 考点:线性无关的证明方法。向量组满秩和线性无关等价。

解:证明:由题意得:

(Ⅱ)可以由(I)线性表示

 $n = r(\epsilon_1, \epsilon_2, ..., \epsilon_n) \le r(\alpha_1, \alpha_2, ..., \alpha_n) \le n$

 $: r(\alpha_1, \alpha_2, ..., \alpha_n)$ 向量组(I)是满秩阵(I)线性无关

- 8. 考点: 等价和秩的关系(注意,此题的结论需要牢记,在考试中可以直接应用)解:证明:
- (1) 设 I 中的一个最大线性无关组 C, 可知r(I) = r(C), 且能由 I 线性表示的向量必能由C线性表示, 反之亦然

充分性:由 C的定义可知 I 可以由 C 线性表示,由题目可知 II 亦可由 C 线性表示(此处证明略),故(I, II)可由 C 线性表示,即 r(I,II)=r(O)=r(I)

必要性: r(I)=r(I,II)=r(C)即(I,II)可由 C线性表示,即(I,II)可由 B线性表示。

(2) 必要性: 向量组(I)和(II)等价, 也就是说(I)和(II)可以相互表示,

由(1)得,r(I) = r(I,II) = r(II)

充分性:由(1)得,若r(I)=r(I,II)=r(II)则 I和II可以相互线性表示。即I和II等价(3)必要性:

若方程 Ax=B 有解,则 B 的各个列向量均可以由 A 的列向量线性表示

于是[A,B]的所有列向量均可以A的列向量线性表示,得出 $r([A,B]) \le r(A)$,

 $\nabla r(A) \leq r([A,B]), \text{ the } r(A) = r([A,B])$

充分性:

若 r(A)=r([A,B]), 对于 **B** 的每一个列向量 **b**

由 $r(A) \le r([A,b]) \le r([A,B]) = r(A)$,则有Ax = b有解,则Ax = B有解。

9. 考点: 8 题结论的应用

解:证明:由题意可得:

I 和 II 有相同的秩,且 I 可以由 II 线性表示,则 r(I)=r(I,II)=r(II);

由第8题的第一问的结论得到, Ⅰ和Ⅱ等价

(B)

1. 考点: 秩的不等式

解:证明:

因为 $r(AB) \le r(A)$, $r(AB) \le r(B)$ 所以 $r(AB) \le n < m$ 所以, det(AB) = 0

2. 考点:线性无关的充要条件的证明。

证明: 充分性:

任取n维向量x,将其加入向量组,任何 n+1 个 n 维向量一定线性相关,所以存在一组不全为 0 的系数使得 $k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n+kx=0$ 。若k=0,则与线性无关矛盾,故 $k\neq 0$,故 x可由该向量组线性表示。

必要性:

由于 n 维的自然基底[ϵ_1 , ϵ_2 , ..., ϵ_n]也可以由[α_1 , α_2 , ..., α_n]线性表示,

则 $n \ge r([\alpha_1, \alpha_2, ..., \alpha_n]) \ge r([\epsilon_1, \epsilon_2, ..., \epsilon_n]) = n$, 故 $r([\alpha_1, \alpha_2, ..., \alpha_n]) = n$ 向 量 组 $[\alpha_1, \alpha_2, ..., \alpha_n]$ 线性无关

3. 考点: 8 题结论的应用

证明

(1)必要性:

因为 $r(AP) = r(I) = m \le r(A) \le m$ 所以r(A) = m

充分性:

因为: r(A) = m 则r(A, I) = r(A) = m

则AX = I 有解,即存在P使得AP = I

(2) 必要性:

因为
$$r(\mathbf{Q}\mathbf{A}) = r(\mathbf{I}) = n \le r(\mathbf{A}) \le n$$
所以 $r(\mathbf{A}) = n$

充分性:

因为: $r(A) = n \operatorname{M} r \binom{A}{I} = r(A) = n \operatorname{M}, XA = I$ 有解

即存在Q 使得QA = I

第四节 线性方程组的解的结构

(A)

1. 考点:基础解系的理解

基础解系的定义:一组线性无关的解,用它们可以线性表示方程组所有的解.

设 $A = [\alpha_1, \alpha_2, ..., \alpha_t]$ 为基础解系, $B = [\beta_1, \beta_2, ..., \beta_t]$ 为 A 的等价组,而且 B 组线性无关.

因为A,B等价, 所以A,B可以互相线性表示。A是基础解系, 可以线性表示方程组所有的解. B

可以线性表示 A, 从而可以线性表示方程组所有的解. (表示具传递性)。又 B线性无关. 所以,组 B也是基础解系

2. 考点: 基础解系和解的结构

解: (1)

所以基础解系为: $\xi_1 = (-2,3,0,0,0)^T \xi_2 = (-4,0,3,3,0)^T \xi_3 = (-8,0,9,0,3)^T$

$$x = c_1 \xi_1 + c_2 \xi_2 + c_3 \xi_3$$

$$(2) \mathbf{A} = \begin{pmatrix} 1 & 1 & -2 & 3 \\ 2 & 1 & -6 & 4 \\ 3 & 2 & a & 7 \\ 1 & -1 & -6 & -1 \end{pmatrix} \xrightarrow{\text{f}_{7}} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & a+8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

∴
$$a = -8$$
 时, $\xi_1 = (4, -2, 1, 0)^T \xi_2 = (-1, -2, 0, 1)^T x = c_1 \xi_1 + c_2 \xi_2$

$$a \neq -8 \text{ ps}, \ \xi = (-1, -2, 0, 1)^T \quad x = c\xi$$

(3)
$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 1 & 1 & -1 \\ 2 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} \xrightarrow{\text{f}} \begin{pmatrix} 1 & 0 & 0 & -\frac{4}{3} \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

: 基础解系为:
$$\xi = (\frac{4}{3}, -3, \frac{4}{3}, 1)^T x = c\xi$$

$$(4) A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 3 & 6 & -1 & -3 \\ 5 & 10 & 1 & -5 \\ 7 & 14 & 3 & -7 \end{pmatrix} \stackrel{\text{ff}}{\rightarrow} \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

: 基础解系为:
$$\xi_1 = (-2,1,0,0)^T \xi_2 = (1,0,0,1)^T x = c_1 \xi_1 + c_2 \xi_2$$

3. 考点:基础解系和秩的关系

解:

由题意得:

$$4 - r(A) = 2 \quad \text{th } r(A) = 2$$

$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 1 & a & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 1 & a - 2 & -1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & a & a \\ 0 & 0 & a^2 - 2a + 1 & a^2 - 2a + 1 \end{pmatrix}$$

$$\Rightarrow \text{the forms } a = 1 \text{ the partial points } a = 1$$

:: 当且仅当a=1 时,方程组的基础解系有两个向量。

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
故结构解为: $\mathbf{x} = c_1(1, -1, 1, 0)^T + c_2(0, -1, 0, 1)^T$

4. 思路: 先通过转置, 转化成求解方程组的问题

由:
$$A[\xi_1\xi_2] = 0$$
 转置后得到 $\begin{bmatrix} \xi_1^T \\ \xi_2^T \end{bmatrix} A^T = 0$

故 A^T 的列向量为线性方程 $\begin{bmatrix} \boldsymbol{\xi}_1^T \\ \boldsymbol{\xi}_2^T \end{bmatrix} \boldsymbol{x} = 0$ 的解向量则A可以取为: $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{bmatrix}$

5. 考点: 基础解系等价的证明

解: 由题意得:

 $\beta_i x = 0$, β_1 , β_2 和 β_3 为方程的解

$$[\beta_1, \beta_2, \beta_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\therefore 3 \ge r(\beta_1, \beta_2, \beta_3) \ge r(\alpha_1, \alpha_2, \alpha_3) = 3$

 $\therefore r(\beta_1, \beta_2, \beta_3) = 3 \therefore \beta_1, \beta_2, \beta_3$ 线性无关, $\beta_1, \beta_2, \beta_3$ 是基础解系

6. 考点:线性方程组解的性质

证明:
$$\mathbf{Q} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{bmatrix} \stackrel{\text{f}}{\rightarrow} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & t - 6 \\ 0 & 0 & 0 \end{bmatrix}$$
 $\therefore t \neq 6$ 时, $\mathbf{r}(\mathbf{Q}) = 2 < 3$ 又 $\mathbf{r}(\mathbf{P}) + \mathbf{r}(\mathbf{Q}) \leq 3$ 且 \mathbf{p} 不是零阶矩阵 $\therefore \mathbf{r}(\mathbf{P}) = 1$

7. 考点:线性方程组解的性质

证明:

由两个方程组同解得: n-r(A) = n-r(B) 故 r(A) = r(B)

8. 考点:线性方程组解的性质的应用;

证明: 由题意得:

Bx = 0 的解都是ABx = 0的解

另外: 若x 为ABx = 0 的解,则A(Bx) = 0

而A的列向量线性无关,则方 $\mathcal{E}Ay = 0$ 只有 0 解

故Bx = 0 ; 即ABx = 0 的解也是Bx = 0 的解;

因此,
$$ABx = 0$$
 和 $Bx = 0$ 同解,进而 $r(AB) = r(B)$

9. 考点: 齐次线性方程组的解的性质;

解:证明:基础解系中解的向量的个数为: n-r(A)=1

:: 通解为 $x = k(1,1,1...1)^T$;

10. 考点: 求解线性方程组的结构解

$$(1) \quad A = \begin{bmatrix} 1 & 1 & -3 & -1 & 1 \\ 3 & -1 & -3 & 4 & 4 \\ 1 & 5 & -9 & -8 & 0 \end{bmatrix} \stackrel{\text{fr}}{\rightarrow} \begin{bmatrix} 1 & 0 & -1.5 & 0.75 & 1.25 \\ 0 & 1 & -1.5 & -1.75 & -0.25 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \mathbf{x} = (\frac{5}{4}, -\frac{1}{4}, 0, 0)^T + c_1(3, 2, 2, 0)^T + c_2(-3, 7, 0, 4)^T$$

$$(2) \quad \mathbf{A} = \begin{bmatrix} 6 & 4 & 5 & 2 & 3 & 1 \\ 3 & 2 & 4 & 1 & 2 & 3 \\ 3 & 2 & -2 & 4 & 0 & -7 \\ 9 & 6 & 1 & 3 & 2 & 2 \end{bmatrix} \stackrel{\text{fT}}{\rightarrow} \begin{bmatrix} 1 & \frac{2}{3} & 0 & \frac{1}{3} & 0 & \frac{19}{6} \\ 0 & 0 & 1 & 0 & 0 & 13 \\ 0 & 0 & 0 & 0 & 1 & -34 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \mathbf{x} = (0,0,13,9,-34)^{T} + c_{1}(1,0,0,-3,0)^{T} + c_{2}(0,1,0,-2,0)^{T}$$

(3)
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 & 1 & 1 \\ 4 & 2 & -2 & 1 & 2 \\ 2 & 1 & -1 & -1 & 1 \end{bmatrix} \stackrel{\text{fi}}{\rightarrow} \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\therefore \mathbf{x} = (\frac{1}{2}, 0, 0, 0)^{T} + c_{1}(-\frac{1}{2}, 1, 0, 0)^{T} + c_{2}(\frac{1}{2}, 0, 1, 0)^{T}$$
(4) $\mathbf{A} = \begin{bmatrix} 2 & -4 & 3 & -4 & -11 & 28 \\ 1 & -2 & 1 & 2 & -5 & 13 \\ 0 & 0 & -3 & 1 & 6 & -10 \\ 3 & -6 & 10 & -8 & -28 & 61 \end{bmatrix} \stackrel{\text{fi}}{\rightarrow} \begin{bmatrix} 1 & -2 & 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$\therefore \mathbf{x} = (3, 0, 2, -4, 0)^{T} + c_{1}(2, 1, 0, 0, 0)^{T} + c_{2}(-2, 0, 1, -3, 1)^{T}$$

11. 考点:线性方程组解的判定

证明:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & a_1 \\ 0 & 1 & -1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & -1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix}$$

$$\uparrow \uparrow \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & a_1 + a_2 + a_3 + a_4 + a_5 \\ 0 & 1 & -1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & -1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix}$$

:: 方程组有解即: $a_1 + a_2 + a_3 + a_4 + a_5 = 0$

:: 此时的增广矩阵为:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & a_2 \\ 0 & 0 & 1 & -1 & 0 & a_3 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix} \xrightarrow{\text{fi}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & a_2 + a_3 + a_4 \\ 0 & 0 & 1 & 0 & -1 & a_3 + a_4 \\ 0 & 0 & 0 & 1 & -1 & a_4 \\ -1 & 0 & 0 & 0 & 1 & a_5 \end{bmatrix}$$

故方程组的通解为:

$$x_1 = x_5 + \sum_{i=1}^4 a_i$$
, $x_2 = x_5 + \sum_{i=2}^4 a_i$

 $x_3 = x_5 + a_3 + a_4$, $x_4 = x_5 + a_4$, x_5 为自由变量

12. 考点: 方程组解的判定

解: (1)

$$A = \begin{bmatrix} 1 & 1 & -2 & 3 & 0 \\ 2 & 1 & -6 & 4 & -1 \\ 3 & 2 & a & 7 & -1 \\ 1 & -1 & -6 & -1 & b \end{bmatrix} \xrightarrow{\text{f}} \begin{bmatrix} 1 & 1 & -2 & 3 & 0 \\ 0 & -1 & -2 & -2 & -1 \\ 0 & 0 & a+8 & 0 & 0 \\ 0 & 0 & 0 & b+2 \end{bmatrix}$$

: *b* ≠ −2 时方程组无解

$$b = -2$$
 且 $a \neq -8$ 时通解为: $x_1 = -1 - x_4$, $x_2 = 1 - 2x_4$, $x_3 = 0$ $b = -2$, $a = -8$ 时通解为:

$$x_1 = -1 - 4x_3 - x_4, x_2 = 1 - 2x_3 - 2x_4, x_2$$
和 x_4 为自由变量

$$(2) \mathbf{A} = \begin{bmatrix} a & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 2b & 1 & 4 \end{bmatrix} \stackrel{\text{fif}}{\rightarrow} \begin{bmatrix} a-1 & 1-2b & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & b & 0 & 1 \end{bmatrix}$$

$$x_1 = -1 - 4x_3 - x_4, x_2 = 1 - 2x_3 - 2x_4, x_3$$
和 x_4 为自由变量
(2) $\mathbf{A} = \begin{bmatrix} a & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 2b & 1 & 4 \end{bmatrix} \stackrel{\text{ff}}{\rightarrow} \begin{bmatrix} a - 1 & 1 - 2b & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & b & 0 & 1 \end{bmatrix}$
 $\therefore b \neq 0$ 且 $a \neq 1$ 时方程组有唯一解: $x_1 = \frac{1 - 2b}{b(1 - a)} x_2 = \frac{1}{b} x_3 = \frac{4b - 2a - 1}{b(1 - a)}$

$$b \neq \frac{1}{2}$$
且 $a = 1$ 或者 $b = 0$ 时方程组无解

$$b = \frac{1}{2} \pm a = 1 \text{ ft}: x_1 = 2 - x_3 x_2 = 2x_3 + 2 = 2x_3$$

13. 考点:线性方程组的解的判定和结构 解:

$$[\boldsymbol{\alpha_1}, \boldsymbol{\alpha_2}, \boldsymbol{\alpha_3}, \boldsymbol{\beta}] = \begin{bmatrix} a & -2 & -1 & 1 \\ 2 & 1 & 1 & b \\ 10 & 5 & 4 & -1 \end{bmatrix} \stackrel{\text{f}}{\rightarrow} \begin{bmatrix} a+4 & 0 & 0 & -3b \\ 2 & 1 & 0 & -1-4b \\ 0 & 0 & -1 & -1-5b \end{bmatrix}$$

$$\therefore$$
 (1) $a = -4$ 且 b ≠ 0 时,线性方程组无解, β 不能由 I 线性表示

(2)
$$a \neq -4$$
 时, **β**能由 I 线性表示, **β**能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一表示

(3)
$$a = -4$$
 且 $b = 0$ 时, β能由 I 线性表示, $β = cα_1 + (-1 - 2c)α_2 + α_3$

14. 考点:线性方程组同解的转化

解:由 I 和 II 同解得到:r(I)= r(II)<3

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 1 & 1 & a \end{vmatrix} = 2 - a = 0 : a = 2$$

则
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 1 & 1 & 2 \end{bmatrix} \stackrel{\text{行}}{\rightarrow} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\therefore \alpha = (-1, -1, 1)^T$ 为方程组的一组解代入 II 中有:

$$\begin{cases} -1-b+c=0 \\ -2-b^2+c+1=0 \end{cases}$$
 解得: $b=0$ $c=1$ 或者 $b=1$ $c=2$

又 b=0 c=1 时两个方程组不同解;则 a=2, b=1, c=2

15. 考点: 两个方程组有公共解的转化由
$$I$$
 和 II 有公共解可以得到: (III) 的解为 I 和 II 的公共解
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_1 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$
 (III)
$$Z \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & a & 0 \\ 1 & 2 & 1 & a - 1 \end{bmatrix} \xrightarrow{f} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & a^2 - 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 0 & 1 - a & a - 1 \end{bmatrix}$$
 \therefore 当 $a = 1$ 时公共解为: $k(1,0,-1)^T$ 当 $a = 2$ 时公共解为: $(0,1,-1)^T$

当a = 2 时公共解为: $(0,1,-1)^T$

16. 考点:线性方程组解的性质

解:由题意得:

Ax=0 的基础解系含有 4-r(A)=1 个解向量;

又 $2\alpha_1 - (\alpha_2 + \alpha_3) = (0,1,2,3)^T 为 Ax = 0$ 的一个非零解;

所求的通解为: $x = (1.2.3.4)^T + c(0.1.2.3)^T$

17. 考点:线性方程组解的性质

证明: 将Ax = 0 的通解改写为

$$x = \eta_0 + \sum_{i=1}^t \lambda_i \xi_i = \eta_0 + \sum_{i=1}^t [\lambda_i (\eta_0 + \xi_i) - \lambda_i \eta_0] =$$

$$\eta_0 + \sum_{i=1}^t \lambda_i \eta_i - \left(\sum_{i=1}^t \lambda_i\right) \eta_0 = \left(1 - \sum_{i=1}^t \lambda_i\right) \eta_0 + \sum_{i=1}^t \lambda_i \eta_i$$

$$\mathbb{Z} \diamondsuit 1 - \sum_{i=1}^t \lambda_i = \lambda_0 \Leftrightarrow \sum_{i=0}^t \lambda_i = 0$$

18. 证明:

设 $B = [\alpha_1, \alpha_2, ..., \alpha_n]$ 要使AB = 0则设: $\alpha_1, \alpha_2, ..., \alpha_n$ 是Ax = 0的解;

当 r=n 时, A 为列满秩, B=0;

当 r < n 时,A 为列降秩,则取 $\alpha_{r+1} = \alpha_{r+2} = \cdots = \alpha_n = 0$ 则AB = 0 也成立

综上所述,一定存在一个秩为 n-r 的 n 阶方阵使得 AB=0

(B)

1考点:线性方程组解的判定

解:
$$det(A) = b^{n-1}(b + \sum_{i=1}^{n} a_i)$$

$$\therefore$$
 当 $b \neq 0$ 且 $b + \sum_{i=1}^{n} a_i \neq 0$ 时方程组只有零解

当b=0 时不防设 $a_1 \neq 0$ 则通解为:

$$x = c_1 \left(-\frac{a_2}{a_1}, 1, 0, ..., 0 \right)^T + c_2 \left(-\frac{a_3}{a_1}, 0, 1, 0, ..., 0 \right)^T + ... + c_{n-1} \left(-\frac{a_n}{a_1}, 0, 0, ..., 0, 1 \right)^T$$

$$b + \sum_{i=1}^n a_i = 0$$
 时通解为 $x = c(1, 1, ..., 1, 1)^T$

2.
$$[\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, ..., \boldsymbol{\beta}_n] = [\alpha_1, \alpha_2, ..., \alpha_n] \boldsymbol{B}$$

2.
$$[\beta_1, \beta_2, ..., \beta_n] = [\alpha_1, \alpha_2, ..., \alpha_n]B$$

$$B = \begin{bmatrix} t_1 & 0 & 0 & \cdots & t_2 \\ t_2 & t_1 & 0 & \cdots & 0 \\ 0 & t_2 & t_1 & \cdots & 0 \\ \vdots & \vdots & \cdots & t_1 & \vdots \\ 0 & 0 & 0 & t_2 & t_1 \end{bmatrix}$$
当 B 为行满秩时, $\beta_1, \beta_2, ..., \beta_n$ 可以作为基础解系

$$\mathbb{H}\colon\ det(B)=t_1^m+\ (-1)^{m+1}t_2^{m+1}\neq 0$$

3. 证明:

(1) Ax = 0 的解为 $A^TAx = 0$ 的解

综上所述: Ax=0 和 $A^TAx=0$ 同解;

(2) 由 (1) 得 $A^T A x = 0$ 和A x = 0 同解

则:
$$r(A^T) = r(A^TA)$$
 $r(A) = r(A^TA)$ 故 $r(A^T) = r(A)$ 则 $r(A^TA) = r(AA^T)$ 综上所述: $r(A^T) = r(A^TA) = r(A) = r(AA^T)$

4. 证明:

r(A)=n-1则Ax=0的基础解系中只含有一个解向量

又
$$Ak(A_{21}, A_{22}, ..., A_{2n})^T = 0$$
 则 $x = k(A_{21}, A_{22}, ..., A_{2n})^T$ 为线性方程组的通解

5. 证明:

当 r(A)=n-1 时: $AA^*=0$ 即 A^* 是Ax=0的解,

又基础解系中的向量的个数为n-r(A)=1 $r(A^*)=1$

$$r$$
(**A**) ≤ $n - 2$ r (**A***) = 0 r (**A***) = 0

6. 考点:线性相关和线性无关的判断

证明:由题意得:

$$x_i^T x_i = 0 \ (i = 1, 2, ..., r; j = r + 1, r + 2, ..., n)$$

$$k_1x_1 + k_2x_2 + \dots + k_rx_r + \dots + k_nx_n = 0$$

用 $(k_1x_1 + k_2x_2 + \cdots + k_rx_r)^T$ 左乘两端得到

$$(k_1x_1 + k_2x_2 + \dots + k_rx_r)^T(k_1x_1 + k_2x_2 + \dots + k_rx_r) = 0$$

而 $x_1, x_2, ..., x_r$ 线性无关,则 $k_1 = k_2 = ... = k_r = 0$

而
$$\mathbf{k}_{r+1}x_{r+1} + \cdots + \mathbf{k}_nx_n = 0 + x_{r+1}, x_{r+2}, \ldots, x_n$$
线性无关

则
$$k_{r+1} = k_{r+2} = \dots = k_n = 0$$

综上所述: $k_1 = k_2 = \cdots = k_n = 0$ 故 $x_1, x_2, \dots, x_r \dots x_n$ 线性无关

7(1)证明:

$$[\mathbf{A},\mathbf{B}] = \mathbf{P}^{-1} \begin{bmatrix} \mathbf{I}_r & 0 \\ 0 & \mathbf{I}_{n-r} \end{bmatrix} = \mathbf{P}^{-1} \mathbf{I}_n = \mathbf{P}^{-1}$$

故[A,B]可逆,[A,B]的列向量线性无关

其中B为 P^{-1} 的n-1个列向量

(2) 证明:

$$\mathbb{R}A = [x_1, x_2, ..., x_r] = P^{-1} \begin{bmatrix} I_r \\ 0_{(n-r)r} \end{bmatrix} \mathbf{B} = P^{-1} \begin{bmatrix} 0_{r(n-r)} \\ I_{n-r} \end{bmatrix}$$

则[A, B] = P^{-1} 为可逆阵,[A, B]中的n个向量线性无关;

则一定可以从 F^n 找到n-r个向量,组成B使得 $x_1, x_2, ..., x_n$ 线性无关

第四章习题

1. 填空题

- (1) 解析:根据题目可得: $A\alpha = \lambda \alpha$ 即: $(a, 2a + 3, 3a + 4)^T = \lambda (a, 1, 1)^T$ 故 $\alpha = -1$
- (2)解析:由题目中的 A 行等价于 B,得到 $\alpha_3 = 2\alpha_1 + \alpha_2$, $\alpha_4 = \alpha_1 + 3\alpha_2$ 。

(3)
$$[\beta_1, \beta_2, \beta_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 & 2 & 5 \\ -1 & 3 & 6 \\ 0 & 4 & 7 \end{bmatrix}$$
 因为 $\mathbf{B} = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 3 & 6 \\ 0 & 4 & 7 \end{bmatrix}$ 为满秩阵,

则[β_1 , β_2 , β_3]和[α_1 , α_2 , α_3]的秩相同,均为 2

(4) 向量 $(1,\lambda,\lambda^2)$ 可以由向量组不唯一线性表示即方程组有不唯一的解:

$$\begin{cases} (\lambda+1)x_1 + x_2 + x_3 = 1\\ x_1 + (\lambda+1)x_2 + x_3 = \lambda \\ x_1 + x_2 + (\lambda+1)x_3 = \lambda^2 \end{cases} A = \begin{bmatrix} \lambda+1 & 1 & 1\\ 1 & \lambda+1 & 1\\ 1 & 1 & \lambda+1 \end{bmatrix}$$

 $det(A) = \lambda^2(\lambda + 3) = 0$ 故 $\lambda = 0$ 或者 -3

而 $\lambda = -3$ 时, $r([A,b]) \neq r(A)$ 方程组无解,故 $\lambda = 0$

(5)解析: A 为 n 阶矩阵,有三个不同的解,则 A 为列降秩,再加上 $A^* \neq 0$ 则r(A) = n - 1; 故Ax = 0 的基础解系所含的向量的个数为 1

(6) 解析:
$$(2\mathbf{I} - \mathbf{A}) = \begin{bmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ 3 & 3 & 2 - a \end{bmatrix} = \mathbf{B} \stackrel{\text{ff}}{\rightarrow} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 5 - a \end{bmatrix}$$

r(B) = 1 则a = 5

(7)解析: r(A)=3 Ax=0 只有一个非零解为 $2\alpha_2 + \alpha_3 - 3\alpha_1 = 3(1,1,1,1)^T$

故, Ax = b的通解为 $x = \alpha_1 + k(1, 1, 1, 1)^T$

(8)解析: $r(\mathbf{A})=3$, Ax=0 只有一个非零解

由
$$\alpha_4 = -\alpha_1 + 2\alpha_1$$
得: $[\alpha_1, \alpha_2, \alpha_3, \alpha_4](-1,2,0,1)^T = 0$

即: Ax = 0 的解为: $(-1,2,0,1)^T$

 $β = [α_1, α_2, α_3, α_4][1,2,3,4]^T$ 得Ax = β的一个特解为 $[1,2,3,4]^T$

故通解为: $x = [1,2,3,4]^T + k(-1,2,0,1)^T$

2. 单项选择题

- (1) 选 A, $r(II) \le r(I) \le s$ 那么若 I 线性相关,II 一定线性相关。
- (2) 选 B, r(A) = r(B) = m;

解析: $m = r(\mathbf{AB}) \le r(\mathbf{A}) \le m$ 故 $r(\mathbf{A}) = m$

同理 $m = r(AB) \le r(B) \le m \ r(B) = m$

(3)选*A*

由 $A_{m \times n} B_{n \times p} = 0$ 得 $r(A) + r(B) \le n \perp A$ 和 B 均为非零矩阵,则 $r(A) \ge 1$, $r(B) \ge 1$

则有 $r(A) \leq n-1$ A 的列向量线性相关

 $r(\mathbf{B})$ ≤n-1 \mathbf{B} 的行向量线性相关

(4)选D

Ax=0 有非零解,表示 r(A) < n , Ax=b 有无穷多解或者是无解

Ax=0 仅有零解,表示 r(A)=n,Ax=b 可能有唯一解或者是无解。

Ax=b 有无穷多解,则 Ax=b 仅有零解

(5) 选 D

AB为 $m \times m$ 阶矩阵, $r(AB) \le r(A) \le n$,若m > n,则AB必不满秩。

(6) 选 C

A, B, D 中的三个向量线性相关,不能作为基础解系;选择 C

(7)选B

对于 1, Ax=0 的解均为 Bx=0 的解, 表示 Ax=0 的解空间包含于 Bx=0 的解空间中 $n-r(A) \le n-r(B)$, 故 $r(B) \le r(A)$

对于3,同解可以推导出秩相同的证明见第163页第7题;

(8) 选 D

三条直线交于一点,表示方程组有唯一的解

 α_1 和 α_2 线性无关,三个方程组有两个变量,则 α_1 , α_2 , α_3 一定线性相关

3. 解析:向量组等价就是可以相互表示

解: (1)

$$\begin{split} & [\alpha_1,\alpha_2,\alpha_3:\beta_1,\beta_2,\beta_3] = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & a+3 & a+6 & a+4 \end{bmatrix} \rightarrow \\ & \begin{bmatrix} 1 & 0 & 2 & -1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 0 & 0 & a+1 & a-1 & a+1 & a-1 \end{bmatrix} \\ & a \neq -1 \; \forall |\alpha_1,\alpha_2,\alpha_3| = a+1 \neq 0 \; , r(\alpha_1,\alpha_2,\alpha_3) = 3 \; , \end{split}$$

线性方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta_i$

均有唯一解,所以 β_1 , β_2 , β_3 可以由 α_1 , α_2 , α_3 线性表示

同理 $|\beta_1, \beta_2, \beta_3| = 6 \neq 0$ $\alpha_1, \alpha_2, \alpha_3$ 可以由 $\beta_1, \beta_2, \beta_3$ 线性表示

a=-1 时, $r(\alpha_1,\alpha_2,\alpha_3)\neq r(\beta_1,\beta_2,\beta_3), x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=\beta_i$ 无解,

向量 β_i 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示。

综上所述: a=-1 时 两个向量组不等价, $a\neq-1$ 时,两个向量组等价

4. 考点:线性相关的转化

4. 考点: 线性相关的转化
$$\begin{aligned} &R: |\alpha_1,\alpha_2,\alpha_3,\alpha_4| = \begin{vmatrix} a+1 & 2 & 3 & 4 \\ 1 & a+2 & 3 & 4 \\ 1 & 2 & a+3 & 4 \\ 1 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & a+2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & a+3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix} a+10 & 2 & 3 & 4 \\ a+10 & 2 & 3 & 4+a \end{vmatrix} = \begin{vmatrix}$$

$$a=0$$
 时 $[\alpha_1,\alpha_2,\alpha_3,\alpha_4]=\begin{bmatrix}1&2&3&4\\1&2&3&4\\1&2&3&4\\1&2&3&4\end{bmatrix}$ $\rightarrow \begin{bmatrix}1&2&3&4\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}$ α_1 是一个极大无关组。 $\alpha_2=$

$$2\alpha_1$$
, $\alpha_3=3\alpha_1$, $\alpha_4=4\alpha_1$

$$2\alpha_{1}, \ \alpha_{3} = 3\alpha_{1}, \ \alpha_{4} = 4\alpha_{1}$$

$$a = -10 \ \text{Pf}[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}] = \begin{bmatrix} -9 & 2 & 3 & 4 \\ 1 & -8 & 3 & 4 \\ 1 & 2 & -7 & 4 \\ 1 & 2 & 3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\alpha_1, \alpha_2, \alpha_3$ 是一个极大无关组, $\alpha_4 = -$

5. 解:

$$[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\beta}] = \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 1 & 3 & 6 & 1 & 3 \\ 3 & -1 & -a & 15 & 3 \\ 1 & -5 & -10 & 12 & h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & -4 & -a - 6 & 6 & 0 \\ 0 & -6 & -12 & 9 & h - 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & 0 & 2-a & 2 & 4 \\ 0 & -6 & -12 & 9 & b-1 \end{bmatrix}$$

::(1)a ≠ 2 时,可以线性表示,且表示式唯一

 $(2)a = 2 且b \neq 1 时,$ **β** $不能由<math>\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 表示

(3)
$$a = 2$$
 $b = 1$ 时, β 能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 表示,表示不唯一;

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 2 & 4 & -2 & 2 \\ 0 & 0 & 2-a & 2 & 4 \\ 0 & -6 & -12 & 9 & b-1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & -8 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

则 $\boldsymbol{\beta} = -8\boldsymbol{\alpha}_1 + (3 - 2c)\boldsymbol{\alpha}_2 + c\boldsymbol{\alpha}_3 + 2\boldsymbol{\alpha}_4$

6. **A**:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 5 & 1 & -1 \\ -3 & -8 & a-1 & 1 \\ 3 & 7 & 4 & b-1 \end{bmatrix} \stackrel{\text{ff}}{\rightarrow} \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & a-2 & 0 \\ 0 & 0 & b+1 \end{bmatrix}$$

 $a \neq 2$ 月 $b \neq -1$ 时方程只有零解:

 $a = 2 \, \text{且}b \neq -1 \, \text{时方程通解为:} \ x = c(-13,5,1,0)^{\text{T}}$

 $a \neq 2$ 且b = -1时方程通解为: $x = c(3, -1, 0, 1)^{T}$

a = 2且b = -1时方程通解为: $x = c_1(-13,5,1,0)^T + c_2(3,-1,0,1)^T$

7. 解:

(1) 证明: 设 α_1 , α_2 , α_3 为方程Ax = b的三个解

则 $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3$ 为Ax = 0的两个解

 $4-r(A) \ge 2$: $r(A) \le 2$; 又A的前两行线性无关,则 $r(A) \ge 2$,

故r(A) = 2,该方程组的秩为 2

(2)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \\ 4 & 3 & 5 & -1 & -1 \\ a & 1 & 3 & b & 1 \end{bmatrix} \stackrel{\text{f}}{\rightarrow} \begin{bmatrix} 1 & 0 & 2 & -4 & 2 \\ 0 & -1 & 1 & -5 & 3 \\ a - 2 & 0 & 0 & b + 3 & 0 \end{bmatrix}$$

$$\therefore a = 2 \ b = -3 \ \mathbf{x} = c_1(2, -3, 0, 0)^{\mathrm{T}} + c_2(-2, 1, 1, 0)^{\mathrm{T}} + c_3(4, -5, 0, 1)^{\mathrm{T}}$$

8. 证明:

(1) 由 A 为列满秩则 AB 和 B 的秩相同,

 \mathbb{H} : $r(\mathbf{A}) = n$, $r(\mathbf{B}) = p$; $r(\mathbf{A}\mathbf{B}) = r(\mathbf{C}) = r(\mathbf{B}) = p$;

则 C 为列满秩,C 的列向量线性无关;

同理, 当B为行满秩时, AB和A的秩相同,

r(AB)=r(C)=r(A)=m; C 为行满秩, C 的行向量线性无关

(2) 由 \mathbf{B} 的列向量线性相关得到: $r(\mathbf{B}) \langle p$

则 $r(AB) \le r(B) \le p$ 故 AB 的列向量线性相关

第五章 线性空间与欧式空间

第一节 线性空间的基本概念

(A)

1. (1) 否; (2) 否; (3) 是; (4) 是.

解析: (1)因为对加法不封闭; (2)否,因为其数乘运算不满足运算规律 7° ; (3)零元素为 $(0,0)^{T}$, $(a,b)^{T}$ 的负元素为 $(-a,a^{2}-b)^{T}$,满足 8 条运算规律; (4)零元素为 1, a的负元素是 a^{-1} ,满足 8 条运算规律.

2. (1) 设 $k_1 \sin x + k_2 \cos x + k_3 x \sin x = 0$,可 知 仅 当 $k_1 = k_2 = k_3 = 0$ 时 , $k_1 \sin x + k_2 \cos x + k_3 x \sin x = 0$ 才恒成立,故函数组 $\sin x, \cos x, x \sin x$ 在区间($-\infty, \infty$)上线性无关。 (2) 设 $k_1 + k_2 x + k_3 e^x = 0$,可知仅当 $k_1 = k_2 = k_3 = 0$ 时, $k_1 + k_2 x + k_3 e^x = 0$ 才恒成立,故函数组1, x, e^x 在区间($-\infty, \infty$)上线性无关。

解析: (1) $x = n\pi$ 时, $\sin x = 0$, $\cos x \neq 0$, 得出 $k_2 = 0$,所以 $k_1 = k_3 x$, $k_1 = k_3 = 0$. (2) $x \to \infty$ 时, $e^x \gg x \gg 1$,此时只能 $k_1 = k_2 = k_3 = 0$.

3. (1) 是, $(1,2,3,...,n)^T$ 是基, $\dim(W)=1$; (2) 是, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ 是基, $\dim(W)=3$; (3) 均是, $\{E_{ij}\big|1\leq i\leq j\leq n\}$ 是的基, $\dim(W_1)=\frac{1}{2}n(n+1)$; $\{E_{ii}\big|i=1,2,3,...,n\}$ 是 W_2 的基, $\dim(W_2)=n$; $\{E_{ii}\big|i=1,2,3,...,n\}\cup\{E_{ij}+E_{ji}\big|1\leq i< j\leq n\}$ 是 W_3 的基, $\dim(W_3)=\frac{1}{2}n(n+1)$; $\{E_{ij}+E_{ji}\big|1\leq i< j\leq n\}$ 是 W_4 的基, $\dim(W_4)=\frac{1}{2}n(n-1)$; (4) W_1 不是, W_2 是, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ 是 W_2 的基; (5) 是。

解 析 : (1) W中的元素加法和数乘封闭, $(a, 2a, 3a, ..., na)^T = a(1, 2, 3, ..., n)^T$; (2) W中的元素加法和数乘封闭, $W = \{ \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \}$, 则其的一组基是 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. (3) W中的元素加法和数乘封闭; (4) W_1 中的元素加法不封闭, W_2 中的元素加法和数乘封闭; (5) W中的元素加法和数乘封闭,但是是无限维的。

4

解析: 设 $k_1f_1 + k_2f_2 + k_3f_3 = 0$,由 x^2 可得 $k_1 + k_2 = 0$,则还剩下x项,故 $k_3 \neq 0$,则留有常数项(不为0),所以 f_1, f_2, f_3 线性无关,且任一元素都可以由其线性表出,可以做一组基。由分析可得, $k_3 = a_0, k_1 + k_2 = a_2, k_1 - k_2 + a_0 = a_1 \circ k_1 = \frac{1}{2}(a_1 + a_2 - a_0)$, $k_2 = \frac{1}{2}(a_0 + a_2 - a_1)$, $k_3 = a_0$,则可以求出其坐标。

5.

解析: $k_1A_1 + k_2A_2 + k_3A_3 + k_4A_4 = 0$. 则 $k_4 = k_3 = 0$. $k_1 + k_2 = 0$, $k_1 - k_2 = 0$, $k_1 = k_2 = 0$.则线性无关,且任一元素都可以由其线性表出,故是一个基。 $k_4 = 3$, $k_3 = -1$. $k_1 + k_2 = 0$, $k_2 - k_1 = 2$. $k_1 = -1$, $k_2 = 1$.则可以求出其坐标.

6.

解析:显然W \subseteq F^m ,故只需证明W中的元素加法和数乘封闭。由于W是由A的列向量组生成的 F^m 的子空间,故W的基与维数分别是A的列向量组的极大无关组与秩。对于题中给定的 $A = [\alpha_1\alpha_2\alpha_3 \quad \alpha_4], |A| = 0, 令\alpha_1, \alpha_2, \alpha_3$ 这三个列向量的前三个数字组成新的行列式B, $|B| \neq 0$ 。故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,故W的基是 $\alpha_1, \alpha_2, \alpha_3$,维数是3.

7. (1)A =
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 4 \end{bmatrix}$$
, (2)y = $\left(0, -\frac{1}{2}, \frac{1}{4}\right)$.

解析: (1)即是(β_1 , β_2 , β_3) = (α_1 , α_2 , α_3)A, $A = [\alpha_1, \alpha_2, \alpha_3]^{-1}[\beta_1, \beta_2, \beta_3]$ 即可计算出答案。 (2) $y = [\beta_1, \beta_2, \beta_3]^{-1}[\alpha_1, \alpha_2, \alpha_3] = A^{-1}x$.

8. $V_1 + V_2$ 的基是 $\alpha_1, \alpha_2, \beta_1$, 维数是3. $V_1 \cap V_2$ 的基是 $(5, -2, -3, -4)^T$, 维数是 1.

解析: W = $V_1 + V_2 = (\alpha_1, \alpha_2, \beta_1, \beta_2)$, $|\alpha_1, \alpha_2, \beta_1, \beta_2| = 0$, 令 $\alpha_1, \alpha_2, \beta_1$ 这三个列向量的前三个数字组成新的行列式B, $|B| \neq 0$ 。故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,故W的基是 $\alpha_1, \alpha_2, \alpha_3$,维数是3. 由上可知, β_2 可以由 $\alpha_1, \alpha_2, \beta_1$ 线性表出, $x_1\alpha_1 + x_2\alpha_2 + x_3\beta_1 = \beta_2$,即 $x_1\alpha_1 + x_2\alpha_2 = x_3\beta_1 + \beta_2$ 求出 x_1, x_2, x_3 的值。则 $y = x_1\alpha_1 + x_2\alpha_2$ 。(答案不唯一)。

9.

解析:由计算可得, $\beta_1 = -\alpha_1 + 3\alpha_2$, $\beta_2 = \alpha_1 - \alpha_2$. $\alpha_2 = \frac{1}{2}(\beta_1 + \beta_2)$, $\alpha_1 = \frac{1}{2}(\beta_1 + 3\beta_2)$.两者可以相互表出,故是同一子空间的两个基,并可看出 $(\alpha_1, \alpha_2) = \frac{1}{2}(\beta_1, \beta_2)\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$,所以过渡矩阵为 $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$ 。

(B)

1. *I*, *A*, *A*²是一个基,维数为 3.

解析: $\omega^{3k} = 1$, $\omega^{3k+1} = \omega$, , $\omega^{3k+2} = \omega^2 = \frac{1}{2}(-1-\sqrt{3i})$. $A^{3k} = I$, $A^{3k+1} = A$, , $A^{3k+2} = A^2$, 其中 $A^2 = diag(1, \omega, \omega^2)$. 所以任一元素可以由I, A, A^2 线性表示,且可验证它们线性无关。

2. $(1)(3,4,4)^T(2)y = \left(\frac{11}{2},-5,\frac{13}{2}\right)^T(3)e_1 = 4\alpha_1 + 2\alpha_2 - 3\alpha_3, e_2 = \alpha_2, e_3 = \alpha_3$ 解析: $(1)\alpha = (\beta_1,\beta_2,\beta_3)(2,-1,3)^T$, $(\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3)A$, 故 $\alpha = (\alpha_1,\alpha_2,\alpha_3)A(2,-1,3)^T$,所以新坐标为 $A(2,-1,3)^T$,计算即可。 $\beta = (\alpha_1,\alpha_2,\alpha_3)(2,-1,3) = (\beta_1,\beta_2,\beta_3)A^{-1}(2,-1,3)$,所以新坐标为 $A^{-1}(2,-1,3)^T$,计算即可。(3)设过渡矩阵为B,由坐标变换公式可得其第一列为 $(4,2,-3)^T$ 。因B可逆,故可取B = $\begin{bmatrix} 4 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$,因此得出 $e_1 = 4\alpha_1 + 2\alpha_2 - 3\alpha_3, e_2 = \alpha_2, e_3 = \alpha_3$ 。

第二节 欧氏空间的基本概念 (A)

1

解析:验证(5.2.5)式满足内积公理,即证明定义(5.2.1)中的条件(1)~(4).

2.

解析: 对称性: $\langle x, y \rangle = (Ax)^T (Ay) = [(Ay)^T (Ax)]^T = (Ay)^T (Ax) = \langle y, x \rangle$ 加性: $\langle x + z, y \rangle = [A(x+z)]^T (Ay) = (Ax+Az)^T (Ay) = [(Ax)^T + (Az)^T](Ay) = (Ax)^T (Ay) + (Az)^T (Ay) = \langle x, y \rangle + \langle z, y \rangle$ 并负性: $\langle x, x \rangle = (Ax)^T (Ax) = |\vec{b}|^2$. 当且且当 $|\vec{b}| = 0$,即x = 0时成立。综上所述,其满足

内积公理。

3.

解析:证明定义(5.2.1)中的条件(1)~(4)即可.

4. 不满足

解析: 其中< A, B > 不一定满足非负性。取 $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$,则< A, A >= -2,不满足非负性。

5.

解析: $\langle x, Ay \rangle = x^T \cdot Ay = (A^T x)^T \cdot y = \langle A^T x, y \rangle$, 即证明。

6.
$$\sqrt{(a_1+b_1)^2 + \dots + (a_n+b_n)^2} \le \sqrt{a_1^2 + \dots + a_n^2} + \sqrt{b_1^2 + \dots + b_n^2}$$

$$\sqrt{\int_a^b (f(x) + g(x))^2 dx} \le \sqrt{\int_a^b (f(x))^2 dx} + \sqrt{\int_a^b (g(x))^2 dx}$$

7.

解析: || ||为正值,第一问证明的时候,将不等号两边的式子平方。四问证明的时候需要将|| ||²展开,其中|| $\alpha + \beta$ ||² = || α ||² + || β ||² + 2 α · β 利用 α · β ≤ || α · β || ≤ || α ||·|| β ||可以证明(1),展开可以证明(2),(3). 证明第四问时,利用垂直可得两者内积为 0,从而得出要证的等式。

8.

解析: 设 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$, 分别用 $\alpha_1, \alpha_2 \cdots \alpha_m$ 与其两端做内积,可得以D为系数行列式的齐次线性方程组,由方程组只有零解的充要条件可得到结论。

9.

解析: 取 $\alpha = \alpha_1 - \alpha_2$,,则等式整理后可得 $(\alpha_1 - \alpha_2)^2 = 0$,故 $\alpha_1 = \alpha_2$ 。

10. $(0, -2, 1)^T$

解析: 设坐标为 $(x_1, x_2, x_3)^T$,则 $x_i = \alpha \cdot \alpha_i$, 计算即可。

11.
$$\frac{1}{\sqrt{6}}(1,1,2,0)^T$$
, $\frac{1}{\sqrt{66}}(-1,5,-2,6)^T$

解析:通过初等行变化后求出解 $\mathbf{x}=c_1(1,1,2,0)^T+c_2(0,1,0,1)^T$,令 $\alpha_1=(1,1,2,0)^T$, $\alpha_2=(0,1,0,1)^T$, $\alpha_3=\alpha_2-\frac{<\alpha_1,\ \alpha_2>}{\|\alpha_1\|^2}$,而后将 α_1 , α_3 单位化即得答案。

12.
$$x_1 = \frac{1}{\sqrt{15}}(1,1,2,3)^T$$
, $x_2 = \frac{1}{\sqrt{39}}(-2,1,5,-3)^T$

解析: α_1 , α_2 , α_3 线性相关, α_1 , α_2 线性无关。由题意可得,解空间基的维数是 2,故将 α_1 , α_2 正交化并单位化即可得到答案。

13.
$$\pm \frac{1}{\sqrt{26}}(-4,0,-1,3)^T$$

解析:直接设坐标为 $(a,b,c,d)^T$,由于与三个向量正交,列出方程,求解后,将坐标单位化即得答案。

14.
$$\frac{\sqrt{2}}{2}$$
, $\frac{\sqrt{6}}{2}x$, $\frac{\sqrt{10}}{4}(3x^2-1)$.

解析: 根据正交化方法的公式直接计算即可。重在其中的内积要按照题中所给的定义计算。

15.

解析: 两边同乘 α^2 ,又因 $\alpha \cdot \cos \varphi_i = \alpha_i$, $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n$,将等式两侧平方,由于 α_i 彼此正交,即两两不同的内积为 0. 即可证明该式。

16.

解析: $(1)\det(A\cdot A^T) = \det(A)\det(A^T) = \det(A)^2 = \det(I) = 1$. $(2)A^T\cdot (A^T)^T = A^T\cdot A = I$. $A^{-1}\cdot (A^{-1})^T = A^{-1}\cdot (A^T)^{-1} = (A^T\cdot A)^{-1} = I$. $A^*\cdot (A^*)^T = [\det(A) \quad A^{-1}]\cdot [\det(A)(A^T)^{-1}] = \det(A)^2\cdot (A^T\cdot A)^{-1} = I$. $(AB)(AB)^T = ABB^{-1}A = I$. $(3)A^TA = I = \frac{A^*A}{\det(A)}, \det(A)A^T = A^*, \det(A)a_{ij} = A_{ij}$ 即可证明。

17.

解析: $A \cdot A^T = (I - 2\alpha\alpha^T)(I - 2\alpha\alpha^T)^T = (I - 2\alpha\alpha^T)(I - 2\alpha\alpha^T) = I - 2\alpha\alpha^T - 2\alpha\alpha^T + 4\alpha(\alpha^T\alpha)\alpha^T = I - 4\alpha\alpha^T + 4\alpha\alpha^T = I.$

18. 是。

解析:由题意, $(x',y',z')^T = (x,y,z)^T \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^T = I$,故是正交变换。几何意义:坐标关于 z 轴对称。

19

解析: $PP^T = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} \begin{bmatrix} A^T & 0 \\ B^T & C^T \end{bmatrix} = \begin{bmatrix} AA^T + BB^T & BC^T \\ CB^T & CC^T \end{bmatrix} = I$. 则 $CC^T = AA^T + BB^T = I$. 则 $BC^T = I$.则要求即证。

$$20. Q = \begin{vmatrix} 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{vmatrix}, R = \begin{vmatrix} 1 & 1 & 4 \\ 0 & \sqrt{3} & 2\sqrt{3} \\ 0 & 0 & \sqrt{2} \end{vmatrix}.$$

解析: 仿照5.2.6节的步骤,即将列向量先正交化,再单位化,再用相应的向量代替原本的列向量,即可得出答案。

21. $W^{\perp} = span\{\beta_1', \beta_2'\}, \beta_1' = (1,0,1,0)^T, \beta_2' = (-2,-2,0,1)^T$

解析: 先验证 α_1 , α_2 , α_3 线性相关,再验证 α_1 , α_2 线性无关。任取两个与该向量线性无关的向量 β_1 , β_2 。然后通过正交化得到 α_1' , α_2' , β_1' , β_2' 。则得到答案。(答案不唯一)

22.

解析: 先验证W中元素加法,数乘封闭。而后证明其为 $<\alpha>^{\perp}$,则 $\dim(W)=n-1$.

23.

解析: $\dim(W) = \dim(\alpha_1 \cdots \alpha_{n-1}) = n-1$, $\dim(W^{\perp}) = 1$. β_1, β_2 均属于 W^{\perp} ,故它们线性相关。

24.

解析:只需要证明零向量的表示方法唯一即可。设 $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 0$,其中 $\alpha_i \in V_i$,用 α_i 与该式做内积,则可得 $\alpha_i = 0$,即证明为直和。

25.

解析: (1) 容易验证 $(V_1 + V_2)^{\perp} \subseteq V_1^{\perp} \cap V_2^{\perp}$, $V_1^{\perp} \cap V_2^{\perp} \subseteq (V_1 + V_2)^{\perp}$. (2) 容易验证 $(V_1 \cap V_2)^{\perp} \subseteq V_1^{\perp} + V_2^{\perp}$, $V_1^{\perp} + V_2^{\perp} \subseteq (V_1 \cap V_2)^{\perp}$

26.

解析: (1)容易验证 A^TA 是n×n的方阵。由其秩为 n,则其行列式不为零,从而其为可逆矩阵。(2) $P^2 = A(A^TA)^{-1}A^TA(A^TA)^{-1}A^T=A[(A^TA)^{-1}A^TA](A^TA)^{-1}A^T$ = $AI(A^TA)^{-1}A^T=P$, $P^T=[A(A^TA)^{-1}A^T]^T=A(A^TA)^{-1}A^T=P$. (3)记W = $\{Ax|x\in R^n\}$ 为A的列空间,则 $Proj_w \ x=Ax^*$ 等价于 $(x-Ax^*)\perp W$ 等价于 $A^T(x-Ax^*)=0$ 等价于 $A^Tx=A^TAx^*$ 等价于 $x^*=(A^TA)^{-1}A^Tx$,故 $x^*=A(A^TA)^{-1}A^Tx=Px$.

27. $2\alpha_1 + 2\alpha_2$

解析:射影= $(b \cdot \alpha_1)\alpha_1 + (b \cdot \alpha_2)\alpha_2$

28. $(4,3,0)^T$, diag(1,1,0)

解析:将A带入26(3)中求得P(射影矩阵),求出Px.即为正交射影。

29.
$$(1)\left(-\frac{8}{7}, \frac{4}{7}, -\frac{16}{7}\right)(2)\left(-\frac{8}{7}, -\frac{5}{7}, \frac{25}{7}\right)$$

解析: (1)根据 26 题求出在直线方向上的正交射影,而后根据勾股定理算出距离。(2)找出平面的两个向量,根据 26 题求出在平面方向上的正交投影,而后根据勾股定理算出距离。

30. $(1)x_0 = \left(\frac{4}{3}, \frac{4}{3}\right)^T$, $p = \left(\frac{4}{3}, \frac{4}{3}, \frac{8}{3}\right)^T$.

解析: (1)分别利用最小二乘解 $x_0 = (A^T A)^{-1} A^T b$,正交射影的公式来计算。(2),直接计算即可。

(B)

1.

解析: r(A) = n - 1,。故det(A) = 0, A 的伴随矩阵 $A^* \neq 0$,故 A^* 至少有一个列向量**b**不为 0. 由 $AA^* = det(A)I = 0$,故 $\alpha_i^T b = 0$,故向量**b**满足要求。

2.

解析: 由题意, $(I+A)^T = I - A$,且(I+A)(I-A) = (I-A)(I+A),故 $(I+A)(I-A)^{-1} = (I-A)^{-1}(I+A)$ 故 $(I-A)(I+A)^{-1}[(I-A)(I+A)^{-1}]^T = (I-A)(I+A)^{-1}[(I+A)^{-1}]^T(I-A)^T = (I-A)(I+A)^{-1}[(I+A)^{-1}]^T(I+A) = (I-A)(I+A)^{-1}(I+A)^{-1}(I+A) = (I-A)(I+A)^{-1}(I+A)^{-1}(I+A) = (I-A)(I+A)^{-1}(I+A)^{-1}(I+A) = (I-A)(I-A)^{-1} = I$,故已证明。

3. $\frac{1}{\sqrt{2}}(e_1+e_5)$, $\frac{1}{\sqrt{10}}(e_1-2e_2+2e_4-e_5)$, $\frac{1}{2}(e_1+e_2+e_3-e_5)$.

解析:设 $e_1 = (1,0,0,0,0), e_2 = (0,1,0,0,0), \cdots e_5 = (0,0,0,0,0,1),$ 而后将 $\alpha_1,\alpha_2,\alpha_3$ 的坐标表示

出来,然后通过正交化和单位化即得到标准正交基。

4.

解析: 容易证明 $\|\alpha\|^2 = \sum_{i=1}^n < \alpha, e_i >^2$ 。所以即可得到上述不等式。

5.

解析: 利用定理 5.2.3 的(2) 及定理 5.2.5.

第五章习题

1. (1)
$$(-1,0,0)^T$$
 (2) $\frac{1}{\sqrt{6}}(1,2,-1,0,0)^T, \frac{1}{\sqrt{15}}(2,-1,0,3,-1)^T$ (3) 8 (4) $(1,1,0,0)^T, (1,-1,1,0)^T$, $(0,2,0,1)^T$ (5) $\begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{vmatrix}$

解析: 第一问, $A^T = A^*$, 故 $a_{ij} = A_{ij}$, 故 $|A| \ge 0$, $A^T A = A^* A = |A|A^{-1}A = diag\{|A|, |A|, |A|\}$ 。 故 $|A^T A| = |A|^3 = |A^* A| = |A|$,故|A| = 0或1,又因 $a_{11} = -1$,故 $|A| \ge 1$,|A| = 1, $a_{12} = a_{13} = a_{21} = a_{31} = 0$ 。 故 $|A| = a_{22} = a_{23} = a_{23$

第二问,
$$A = (\alpha_1, \alpha_2, \alpha_4)$$
 $\begin{vmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 3 \end{vmatrix}$, $Ax = 0$,则解出 $x_1 = -x_3 - 2x_5, x_2 = -2x_3 + x_5, x_4 = -3x_5$,则解空间的一组基为 $(1,2,-1,0,0)^T$, $(2,-1,0,3,1)^T$,将其正交化后单位化即可得到答案。

第三问,
$$\begin{vmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ 3 & a & 7 \end{vmatrix} = 0$$
,算出 a 的值即可。

第四问,分别提出a,b,c前面的系数,则得到三个向量,则为基。

第五问,
$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3) \begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{vmatrix}.$$

2. (1) $\alpha_1, \alpha_2, \alpha_3, dim(W) = 3(2)(3,1,0)^T, (7,3,0)^T$

解析: 第一问,A =
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$$
, $[\alpha_1, \alpha_2, \alpha_3, \alpha_4] = 0$, $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix} \neq 0$,故基是 $\alpha_1, \alpha_2, \alpha_3, dim(W) = 3$

第二问,显然通过计算可以求出相应的坐标,其中求出的坐标不唯一。

3. (2) 否

解析: 第一问,由行等价可得 A 和 B 的秩相等,从而可推出 W_1 和 W_2 的维数相等。 第二问,反例,如A = $\begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ 两者行等价,但是 $W_1 \neq W_2$.

4.

解析: $\mathbf{m} = \mathbf{r}(I_m) = r(AB) \le r(A), r(A) \le m$, 故r(A) = m, 所以 A 的列向量组生成 F^m .

5.
$$\frac{1}{3}\begin{bmatrix} -4 & -10 & -3 \\ 4 & 7 & 3 \\ -1 & -1 & 0 \end{bmatrix}$$
, $(8, -5, 3)^T$

解析: 常规做法即可, 类似题目见5.1(A)第7题的(1), (2).

6.

解析: $(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)\frac{1}{3}\begin{bmatrix}2&2&1\\2&-1&-2\\-1&2&-2\end{bmatrix}$, $\frac{1}{3}\begin{bmatrix}2&2&1\\2&-1&-2\\-1&2&-2\end{bmatrix}$ 为过渡矩阵,且为正 交矩阵,由5.2(B)第5题,可得题中结论。

7.
$$(2)\left(-\frac{2}{5},0,1\right)^T$$

7. $(2)\left(-\frac{2}{5},0,1\right)^{T}$ 解析: 第一问, 设Q = $(\alpha_{1},,\alpha_{n})$ 由标准正交向量组, $\alpha_{i}\alpha_{j}=0$, $\alpha_{i}\alpha_{i}=1$, 可证明题中等式。 第二问,Ax = b,则QRx = b,则 $Rx = Q^{-1}b$ 。由第一问,则 $Q^{-1} = Q^{T}$,故 $Rx = Q^{T}b$,求解 时用常规的行列式方法即可。

第六章 特征值与特征向量

第一节矩阵的特征值与特征向量 (A)

1. **解**:
$$A^{-1}x = \lambda x$$
,两边左乘 A 得 $AA^{-1}x = \lambda Ax$,即 $x = \lambda Ax$,所以 $\lambda \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$,得 $\lambda = \frac{1}{4}k = 1$ 或 $\lambda = 1$ $k = -2$.

- 3. 证: (1) 因为 $Ax = \lambda x$, 所以 $AAx = \lambda Ax = \lambda \lambda x$, 以此类推。
 - (2) 因为 $A^m x = \lambda^m x$, 所以 $A^{m-1} x = \lambda^{m-1} x$,以此类推,最终得 f(A) x=f(λ) x,所以 f(λ) 是 f(A) 的一个特征值。
 - (3) 因为 $A^m x = \lambda^m x$,m=-1 时, $A^{-1} x = \frac{1}{\lambda} x$,所以 $\frac{1}{\lambda}$ 为 A^{-1} 的一个特征值,且 $A^* = |A|A^{-1}$,且 $A^{-1} x = \frac{1}{\lambda} x$,所以 $|A|A^{-1} x = |A|\frac{1}{\lambda} x$,所以 $|A|\frac{1}{\lambda}$ 为 A^* 的一个特征值。
- 4. 证: 因为 $|\lambda I A| = 0$,所以 $|\lambda I A| = |(\lambda I A)^T| = |\lambda I A^T| = 0$,所以 λ 为 A^T 的特征值,特征向量不一定相同,因为 $\lambda I A$ 与 $\lambda I A^T$ 是不相同的。
- 5. **解:** 存在向量x,使得 $Ax = \lambda x$,则 $A^2x = \lambda Ax = \lambda^2 x$, $\frac{1}{3}A^2x = \frac{1}{3}\lambda^2 x$, $\left(\frac{1}{3}A^2\right)^{-1}x = \frac{3}{\lambda^2}x = \frac{3}{4}x$ 。故 $\left(\frac{1}{3}A^2\right)^{-1}$ 有特征值 $\frac{3}{4}$ 。
- 6. **解**: 因为|3I + A| = 0,且为四阶矩阵,所以|-3I A| = 0,所以 A 的一个特征值为-3,且 $AA^T = 2I$,所以 $A^{-1} = \frac{A^T}{2}$,所以 $A^* = |A|A^{-1} = \frac{|A|}{2}A^T$,所以 $|A^*| = \left|\frac{|A|}{2}A^T\right|$,且 $|A^*| = |A|^{n-1}$,其中 n=4,所以 $|A|^3 = (\frac{|A|}{2})^4|A|$,且|A| < 0,所以|A| = -4,所以 A^* 的特征值 $\lambda_1 = \frac{|A|}{\lambda} = \frac{-4}{-3} = \frac{4}{3}$.

7. 证: (1)
$$A\xi = \begin{bmatrix} a_{11} + a_{12} + a_{13} + a_{14} \\ a_{21} + a_{22} + a_{23} + a_{24} \\ a_{31} + a_{32} + a_{33} + a_{34} \\ a_{41} + a_{42} + a_{43} + a_{44} \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = a\xi$$
,所以 a 为 A 的一个特征值, ξ 为对应的一个特征向量。

- (3) 若 a=0, 则 Ax=ax=0, 左乘 A^{-1} 得 x= $\mathbf{0}$, 这与 x= ξ = $(1,1,...,1)^T$ 矛盾,所以 a \neq 0, 设 A^{-1} 的特征值为 λ ,则 $A^{-1}x = \lambda x$,两端左乘 A 得 $x = \lambda Ax$,即 $\frac{1}{\lambda}x = Ax$,而 Ax=ax,所以 $\lambda = \frac{1}{a}$.
- 8. **解:** $B=AA^*=|A|I$, 所以Bx=|A|x, 所以|A|为 B 的特征值, 对任意 n 维非零特征向量都成立。

- **9. 解:** 因为 I-A, I+A, 3I+A 都不可逆,所以|**I − A**|, |**I + A**|, |**3I + A**|均为 0,且 A 为 3 维矩阵,所以特征值为 1,-1, 3,所以|*A*|=-3.
- **10. 解:** (A-3I) x=ux (x 不为零) 得 Ax=(u+3) x 得 $\lambda = u + 3$ 为 A 的特征值,得 $u = \lambda 3$ 为 A-3I 的特征值,所以 $\lambda_i 3$ 为 A-3I 的特征值,i=1, 2, …
- 11. **解**:已知B = $A^2 2A + 3I$,且三阶矩阵 A 的特征值为 $a_1 = 1$, $a_2 = -1$, $a_3 = 0$,设 B 对应的特征值为 λ_i ,有Bx = λ x = $(A^2 2A + 3I)x = a_i^2 x_i 2a_i x_i + 3x_i$,所以 B 的特征值为2,6,3,对应的特征向量为 x_1 , x_2 , x_3 ,所以 B^{-1} 特征值为 $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{3}$,对应的特征向量为 k_1x_1 , k_2x_2 , k_3x_3 (k_1 , k_2 , $k_3 \neq 0$)
- **12. 解:**(1)由 $|\lambda I A|$ = 0得 $(\lambda 7)(\lambda + 2)$ = 0, 所以 λ =7 或-2,当 λ =7 时,得到的基础解系为 $(1,1)^T$,当 λ =-2 时,得到的基础解系为 $(4,-5)^T$.
- (2) 由 $|\lambda I A| = 0$ 得 $\begin{vmatrix} a \lambda & 1 & 1 \\ 1 & a \lambda & -1 \\ 1 & -1 & a \lambda \end{vmatrix}$, 得 $(\lambda a 1)(\lambda a 1)(\lambda + 2 a) = 0$, 所以 λ =a+1 或 a-2,当 λ =a+1 时,得到的基础解系为 $(1,1,0)^T$,(1,0,1) T ,当 λ =a-2 时,得到的基础解系为 $(-1,1,1)^T$
- (3) $\lambda = 1$ 时,基础解系为 $(1, 1, 1)^T$, $\lambda = 2$ 时,基础解系为 $(2,3,3)^T$, $\lambda = 3$ 时,基础解系为 $(1, 3, 4)^T$;
- (4) $\lambda = 0$ 时,基础解系为 $(1, 1, 1)^T$, $\lambda = 1$ 时,基础解系为 $(3, 2, 1)^T$, $\lambda = 2$ 时,基础解系为 $(7, 3, 1)^T$;
- 13. 解: (1) $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 9 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 3 & 8 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, 所以 $\beta = 2x_1 2x_2 + x_3$.

 (2) $A^n\beta = A^n(2x_1 2x_2 + x_3) = 2 * 1^nx_1 2 * 2^nx_2 + 3^nx_3 = 2x_1 2^{n+1}x_2 + 3^nx_3$
- 14. **解**:由| $A \lambda I$ | = 0得 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$, 因为有三个线性无关的特征向量,所以当 $\lambda_1 = \lambda_2 = 1$ 有两个特征向量, $\lambda_3 = -1$ 有一个特征向量。当 $\lambda_1 = \lambda_2 = 1$ 时,| $A \lambda I$ | = $\begin{vmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ 0 & 0 & 0 \end{vmatrix}$, 因为 n-r=2, r=1, 所以-x-y=0, 即 x+y=0. 当 $\lambda_3 = -1$ 时 r=2, $|A \lambda I| = \begin{vmatrix} -1 & 0 & -1 \\ -x & -2 & -y \\ -1 & 0 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ x & 2 & y \\ 0 & 0 & 0 \end{vmatrix}$, 无论 x, y 为何值,均满足条件。综上,x 与 y 满足的关系式为 x+y=0.
- 15. 解: (1) 因为 $\alpha^T \beta = 0$,所以 $(\alpha^T \beta)^T = \beta^T \alpha = 0$, $A^2 = \alpha^T \beta \alpha^T \beta = \alpha^T (\beta \alpha^T) \beta = \mathbf{0}$. (2) 设Ax = λ x,由 $A^m x = \lambda^m x$ 得 $A^2 x = \lambda^2 x$,且 $A^2 = \mathbf{0}$,所以 $\lambda^2 x = \mathbf{0}$,又 $x \neq 0$,所以 A 只有唯一的特征值 0,由-Ax=0 得特征向量为 $c_1(-\frac{b_2}{b_1},1,0,...,0)^T + c_2(-\frac{b_3}{b_1},0,1,...,0)^T + \cdots + c_{n-1}(-\frac{b_{n-1}}{b_1},0,0,...,1)^T$

- 16. **解:** |A|=1*-1*2=-2, $Bx=A^2x-A^*x+3x$, 所以特征值为 $\lambda_i^2-\frac{|A|}{\lambda_i}+3$, 所以特征值为 6,2,8,所以 det (B) =96
- 17. **解**:设Ax = λ x,则 $A^2x = \lambda^2x$,又 $A^2 = A$,所以 λ x = λ^2x ,且 $x \neq 0$,所以 $\lambda^2 \lambda = 0$,所以 $\lambda = 0$ 或 1,所以 A 的特征值必为 0 或 1.
- 18. **解**:设 A 为 n 阶方阵,当 n k 时, $A^k x = \lambda^k x = \mathbf{0}$,所以 $\lambda_1 = \dots = \lambda_n = 0$,当 n k k 时,有 $A^n = A^{n-k}A^k = \mathbf{0}$,且有 $A^n x = \lambda^n x$,所以 $\lambda^n x = \mathbf{0}$,且 $x \neq \mathbf{0}$,所以 $\lambda^n = \mathbf{0}$,所以 $\lambda_1 = \dots = \lambda_n = \mathbf{0}$,综上,A 的特征值都为 0.
- **19. 证:**(1)因为 λ 是 AB 的一个非 0 特征值,所以 ABx= λx , 所以 BABx= λBx , 即 BA(Bx)= $\lambda(Bx)$ \neq **0**,又 $\lambda \neq$ **0**,所以 $Bx \neq$ **0**,所以 λ 是 BA 的一个特征值。
 (2) 因为 0 为 AB 的一个特征值,所以|AB| = |A||B| = |B||A| = |BA| = 0,所以 BA 的特征

(B)

- 1. 证: 设特征值为 λ ,则有 $Ax = \lambda x$,($A \lambda I$)x = 0的解有所有 n 维非 0 向量,所以有 n 个线性无关的特征向量,所以 $n r(A \lambda I) = n$,所以 $r(A \lambda I) = 0$,即 $A \lambda I = 0$,所以 $A = \lambda I$,故存在 k 使 A = kI.
- 2. **证:** 因为Ax = λ x,所以 $\overline{A}\overline{x} = \overline{\lambda}\overline{x}$,所以 $\overline{A}\overline{x} = \overline{\lambda}\overline{x}$,所以 $\overline{x}^T \overline{A}^T = \overline{\lambda}^T \overline{x}^T$,两端右乘 Ax 得 $\overline{x}^T \overline{A}^T Ax = \overline{\lambda}^T \overline{x}^T Ax$,因为 A 为正交矩阵, $\overline{A}^T = A^T \underline{A}A^T A = I$,所以 $\overline{x}^T x = \overline{\lambda}^T \lambda \overline{x}^T x$,所以 $(\overline{\lambda}^T \lambda 1)\overline{x}^T x = 0$,且 $\overline{x}^T x \neq 0$,所以 $\overline{\lambda}^T \lambda 1 = 0$,所以 $\overline{\lambda}^T \lambda = |\lambda|^2 = 1$,所以特征值的模为 1.
- 3. **证:**设 λ 为 A 的特征值,因为 A 为正交矩阵,所以 $A^T = A^{-1}$,且 $\frac{1}{\lambda}$ 为 A^{-1} 的特征值,所以 $\frac{1}{\lambda}$ 为 A^T 的特征值,又 A^T 与 A 有相同特征值,所以 $\frac{1}{\lambda}$ 也是 A 的特征值。
- **4. 证:** 因为是正交矩阵,所以A $A^T = I$, $|A I| = |A AA^T| = |A||I A^T| = |I A^T| = |(I A^T)^T| = |I A| = (-1)^n |A I|$, 因为 n 为奇数,所以2|A I| = 0,所以|A I| = 0,所以 A 有特征值 1.

第二节 相似矩阵与矩阵的相似对角化

(A)

- 1. **证:** (1) 因为 A 与 B 相似,有 $P^{-1}AP = B$,所以 $B^m = P^{-1}APP^{-1}AP \dots P^{-1}AP = P^{-1}A^mP$,所以相似。
 - (2) 因为 $B^m = P^{-1}A^mP$,所以有 $a_mB^m = P^{-1}a_mA^mP \dots a_1B = P^{-1}AP$, $a_0 = P^{-1}P$, 所以 $f(B) = P^{-1}f(A)P$.
 - (3) 因为 A 与对角矩阵相似,所以 A 有 n 个线性无关的特征向量,又f(A)与 A 的特征向量关系为 $x_{f(A)} = cx_A(c \neq 0)$,所以f(A)有 n 个线性无关的特征向量,所以f(A)与对角矩阵相似。
- 2. 证: (1) 因为 $P^{-1}AP = D$,两端去逆矩阵得 $P^{-1}A^{-1}P = D^{-1}$,且 D^{-1} 仍为对角矩阵,所以 A^{-1} 与对角矩阵相似。

值中必有一个特征值为 0.

- (3) 因为 $P^{-1}A^{-1}P = D^{-1}$,所以 $|A|P^{-1}A^{-1}P = |A|D^{-1}$,即 $P^{-1}|A|A^{-1}P = |A|D^{-1}$,即 $P^{-1}A^*P = |A|D^{-1}$,且 $|A|D^{-1}$ 也为对角矩阵,所以 A^* 与对角矩阵相似。
- 3. **解:** 因为 $P^{-1}AP = B$,所以 $A = PBP^{-1}$,由 $Ax = \lambda_0 x$ 得 $PBP^{-1}x = \lambda_0 x$,所以 $BP^{-1}x = \lambda_0 x$ $\lambda_0 P^{-1} x$,所以 B 的特征值 λ_0 对应的特征向量为 $P^{-1} x$ 。
- 4. **解**: 因为 A 为 3 阶矩阵且 A 的特征值由 3 个,所以 A 有 3 个特征向量,所以 $P^{-1}AP =$

$$B = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}, \ B^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \ \text{MU}|B^{-1} - I| = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = 6.$$

还可使用特殊值法,即令 $A = diag(\frac{1}{2}, \frac{1}{3}, \frac{1}{4})$ 。

5.解:以(2)(3)为例其余类似做即可。

5. **M**: 以(2)(3)为例其余类似做即可。
$$(2) |A - \lambda I| = \begin{vmatrix} \lambda - 7 & 12 & -6 \\ -10 & \lambda + 19 & -10 \end{vmatrix}, \quad \text{解得} \lambda_1 = \lambda_2 = 1, \quad \lambda_3 = -1, \quad \exists \lambda_1 = \lambda_2 = 1 \text{时},$$

$$|A - \lambda I| = \begin{vmatrix} -6 & 12 & -6 \\ -10 & 20 & -10 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}, \quad \text{所以基础解系为}$$

$$(2,1,0)^T, (-1,0,1)^T., \quad \exists \lambda_3 = -1 \text{时}, \quad |A - \lambda I| = \begin{vmatrix} -8 & 12 & -6 \\ -10 & 18 & -10 \\ -12 & 24 & 14 \end{vmatrix} = \begin{vmatrix} 4 & -6 & 3 \\ 5 & -9 & 5 \\ 6 & -12 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \end{vmatrix}$$

$$(2,1,0)^T$$
, $(-1,0,1)^T$. $\exists \lambda_3 = -1$ $\exists \lambda_3 = -1$ $\exists \lambda_4 = -1$ \exists

$$\begin{vmatrix} 1 & 0 & \frac{-1}{2} \\ 0 & 1 & \frac{-5}{6} \\ 0 & 0 & 0 \end{vmatrix}$$
, 所以基础解系为(3,5,6) T , 因为有三个特征值以及三个特征向量,所以该矩阵

可对角化,所以
$$P = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & 5 \\ 0 & 1 & 0 \end{bmatrix}$$

可对角化,所以P =
$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & 5 \\ 0 & 1 & 0 \end{bmatrix}$$

(3) $|A - \lambda I| = \begin{vmatrix} \lambda - 3 & 1 & 1 \\ 12 & \lambda & -5 \\ -4 & 2 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda + 1)(\lambda - 1)$,所以 $\lambda = 2$ 或 -1 或 1,当 $\lambda = 2$ 时对应特征向量为 $(3,1,2)^T$,当 $\lambda = -1$ 时对应特征向量为

应特征向量为 $(3,1,2)^T$,当 $\lambda=-1$ 时对应特征向量为 $(1,2,2)^T$,当 $\lambda=1$ 时对应特征向量为

(3,-1,7)^T,所以P =
$$\begin{bmatrix} 3 & 1 & 3 \\ 1 & 2 & -1 \\ 2 & 2 & 7 \end{bmatrix}$$

6. 解: (1) 由A
$$\xi$$
 = $\lambda \xi$ 得 λ = -1 , a = -3 , b = 0.
(2) A = $\begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & 2 \end{bmatrix}$,由 $|A - \lambda I|$ = 0 得 λ_1 = λ_2 = λ_3 = -1 ,而 $-I$ -A 的秩为 2,有一个基础解系,所以 A 不相似于对角矩阵。

7. 解: 因为
$$\lambda = 2$$
是 A 的 2 重特征值,所以 $3-r(2I-A)=2$, $r(2I-A)=1$, 而 $A-2I=\begin{bmatrix} -1 & -1 & 1 \\ x & 2 & y \\ -3 & -3 & 3 \end{bmatrix}$,

所以
$$x = 2, y = -2, A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{bmatrix}$$
, 由 $|A - \lambda I| = 0$ 得 $\lambda = 2$ 或 $\lambda = 6$, $\lambda = 2$ 时基础解系

为
$$(1,-1,0)^T$$
, $(1,0,1)^T$,当 $\lambda = 6$ 时,基础解系为 $(1,-2,3)^T$,所以可逆矩阵为 $\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}$.

- 8. **解**: $|\lambda I A| = (\lambda 2)(\lambda^2 8\lambda + 18 + 3a)$, 若 $\lambda = 2$ 是二重根,则 $\lambda = 2$ 时 $\lambda^2 8\lambda + 18 + 3a = 0$,得 a=-2,从而解得特征值为 2, 2, 6,又 2I-A 的秩为 1,有 2 个基础解系,所以可相似对角化;若 $\lambda = 2$ 不是二重根,则 $\lambda^2 8\lambda + 18 + 3a$ 是完全平方,解得a = $\frac{2}{3}$,此时 A 的特征值为 2, 4, 4,由于 4I-A 的秩为 2,故不可相似对角化。
- 9. **解**:因为 A 有 3 个特征矩阵和 3 个特征向量,所以 A 相似于对角矩阵。所以 $A = PDP^{-1}$,

其中P =
$$\begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, 所以A = $\frac{1}{3}\begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & -2 \\ -2 & -2 & 6 \end{bmatrix}$

10. 解:因为 A 的特征值互不相同,所以 A 可对角化,由

11. **M**: (1)
$$\oplus
\begin{cases}
|A| = |B| \\
2 + 0 + x = 2 + y - 1
\end{cases}$$
 $\oplus
\{
\begin{cases}
x = 0 \\
y = 1
\end{cases}$

(2) 特征值
$$\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -1, A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$
当 $\lambda_1 = 2$ 时,基础解系为 $(1,0,0)^T$,

$$\lambda_2 = 1$$
时,基础解系为 $(0,1,1)^T$, $\lambda_3 = -1$ 时,基础解系为 $(0,1,-1)^T$,所以 $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.

- **12. 解:** 由习题 6. 1 的 18 题可知,A 的特征值全为 0,所以 $\det(A)=0$,所以 $n-r(A) \le n-1$,且 r(A)=r(-A),所以 $n-r(0I-A)=n-r(-A) \le n-1$,所以 A 不相似于对角矩阵。
- 13. **解:** 因为 A 与对角矩阵 B 相似,所以有A = PB P^{-1} ,且I = P P^{-1} ,所以有C = P(B $-\lambda_1$ I) P^{-1} P(B $-\lambda_2$ I) P^{-1} P(B $-\lambda_3$ I) P^{-1} = P(B $-\lambda_1$ I)(B $-\lambda_2$ I)(B $-\lambda_3$ I) P^{-1} =

$$P\begin{pmatrix}0&&\\&\lambda_2&\\&&\lambda_3\end{pmatrix}\begin{pmatrix}\lambda_1&&\\&0&\\&&\lambda_3\end{pmatrix}\begin{pmatrix}\lambda_1&\\&&\lambda_2&\\&&0\end{pmatrix}P=\mathbf{0}$$

14. 解: 以(2) 为例其余类似做即可。

(2)
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
, $|A - \lambda I| = 0$ $M = 1$, $\lambda_1 = 1$, $\lambda_2 = 4$, $\lambda_3 = 2$

 $\lambda = 1$ 时基础解系为 $(-1,1,-1)^T$, $\lambda = 2$ 时基础解系为 $(1,0,-1)^T$, $\lambda = 1$ 时基础解系为 $(1,2,1)^T$,根据相应公式正交化再单位化得标准正交化的特征向量为

- **15. 解:** 因为 A 的秩为 2,所以|0I A| = 0,所以 A 的另一个特征值为 0,其余步骤请参考 线性代数辅导书第 68 页例 6. 3.
- 16. **解:** 易知, $(\lambda_1 I A)x = 0$ 的一个基础解系为 $(1,2,1)^T$,由 $(\lambda_1 I A)\alpha_1 = 0$ 得 a=-1, $\lambda_1 = 2$,所以A = $\begin{bmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{bmatrix}$,由 $|A \lambda I| = 0$ 得 $\lambda_1 = 2$, $\lambda_2 = 5$, $\lambda_3 = -4$,相对应的特征向量为 $(1,2,1)^T$, $(1,-1,1)^T$, $(1,0,-1)^T$,单位化得到的特征向量为

$$(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}})^T, (\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T, (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})^T, \text{ fill } Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

17. **解:** 易知 B 的特征值为 1, 1, -2,且 B 与 A 的特征向量关系为 $x_B = c_1 x_A (c_1 \neq 0)$,所以 B 也为实对称矩阵,利用类似 6. 2. 6 的方法得 B 的属于 1 的特征向量为 $c_2(1,1,0)^T$ +

$$c_3(-1,0,1)^T(c_2,c_3$$
不全为 0), $B=\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$

- **18. 解:** 因为 A, B 均为实对称矩阵,且具有相同的特征值,则必存在正交矩阵 P, Q 使 $P^{-1}AP = Q^{-1}BQ = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, 所以A = $PQ^{-1}BQP^{-1} = (Q^{-1}P)BQP^{-1}$, 所以 A 与 B 相似。
- **19. 解:** 因为实对称矩阵与对角矩阵相似,设对角对角矩阵为 $P=diag(\lambda_1,...\lambda_n)$,则 r(A)=r(P). 所以非 0 特征值=r(P)=r(A)。例如 $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$,秩为 1,非零特征值个数为 0.

注: 此处n重特征值视为n个特征值

20. 解:(1)思路:设
$$\alpha = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ ... \\ \lambda_n \end{bmatrix}$$
, $\beta = \begin{bmatrix} a_1 \\ a_2 \\ ... \\ a_n \end{bmatrix}$,将 $A = \alpha \beta^T$ 展开成一个 n*n 矩阵,A 中的第 i

 $(i=1,2,\cdots,n)$ 行乘以 α 中第 i 行以外的数,最后得到 A 中所有的行都相同,所以 r(A)=1.

- (2) 因为 $\beta^T \alpha$ 是一个数,设其为 k, $A^2 = \alpha \beta^T \alpha \beta^T = \alpha(\beta^T \alpha)\beta^T = kA$,所以 A 的特征值为 0,k. 当 $\lambda = 0$ 时由 $(\lambda I A)x = 0$,得 Ax=0,又 r (A)=1,所以 Ax=0 有 n-1 个基础解系。
- (3) 由 (2) 可知, $k=\beta^T\alpha$ 时 A 的一个特征值,且 $A\alpha = \alpha\beta^T\alpha = \alpha(\beta^T\alpha) = k\alpha$. 所以 α 为 k 对应的特征向量。
- (4) 当 $\beta^T \alpha \neq 0$ 时,0 为 n-1 重特征值,且对应有 n-1 个基础解系,特征值 $\beta^T \alpha$ 对应的基础解系为 α ,所以几何重数等于代数重数,A 可相似对角化。

(B)

1. 证: 若 A 可逆,则 A=I 相似于对角矩阵。若 r (A)=r < n, 设 A 按列分块为 A=[α_1 , α_2 , ..., α_n],则由 AA=A 得 $\alpha_j = \alpha_j$ (j = 1, 2, ..., n),故 A 的列向量中的 r 个线性无关向量是 A 对应于特征值 1 的线性无关向量,而齐次线性方程组 Ax=0 的基础解系中 n-r 个向量是 A 的对应于特征值 0 的线性无关特征向量,于是 A 有 n 个线性无关特征向量。

2. : $A\alpha_i = \lambda_0 \alpha_i$, $i \le k_0$ $AP = A[\alpha_1 \ \alpha_2 \ \cdots \alpha_k \ \alpha_{k+1} \cdots \alpha_n] =$ $[\lambda_0 \alpha_1 \ \lambda_0 \alpha_2 \cdots \lambda_0 \alpha_k \ A\alpha_{k+1} \cdots A\alpha_n] \circ P^{-1}AP =$ $\sum_{i=0}^{n} b_{ii}\alpha_{i}$,故 $b_{i} = \varepsilon_{i}$,即单位矩阵的第i列。故 $B = P^{-1}AP$ 的前k列为 λ_{0} I与零矩阵的拼接。

第六章章末习题

 $B - \lambda_0 I$ 的前k列全为 0,故 λ_0 至少是B的k重特征值。相似矩阵有相同的特征值与重数。

1. (1) 8 (2) 1 (3) 2 (4) 5 (5) 2, -1 (6) 1 (7) 4 (8) 2

解析: (1) 由
$$|A - \lambda I| = 0$$
得

$$\begin{bmatrix} 2 - \lambda & 2 & 2 & 2 \\ 2 & 2 - \lambda & 2 & 2 \\ 2 & 2 & 2 - \lambda & 2 \\ 2 & 2 & 2 & 2 - \lambda \end{bmatrix} = (8 - \lambda) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -\lambda & 0 & 0 \\ 1 & 0 & -\lambda & 0 \\ 1 & 0 & 0 & -\lambda \end{bmatrix} = -\lambda^3 (8 - \lambda) = 0$$
解得 $\lambda = 0$ 或 $\lambda = 8$,所以 $\lambda = 8$ (矩阵应该为行列式)

- 8,所以 $\lambda = 8$ (矩阵应该为行列式)
- (2) $A\alpha_2 + 2A\alpha_1 = 2\alpha_1 + \alpha_2$,所以 $A(\alpha_2 + 2\alpha_1) = 2\alpha_1 + \alpha_2$,所以特征值为 1,特征向量为 $2\alpha_1 + \alpha_2$

- (4) |A| = -16,而 $\frac{|A|}{\lambda}$ 为 A^* 的一个特征值,所以 A^* 的特征值为-8,-8,-8,8,所以 $\frac{1}{4}A^* + 3I$ 的特征值为 1, 1, 1, 5, 所以 $\det\left(\frac{1}{4}A^* + 3I\right) = 5$
- (5) 因为相似矩阵有相同的特征值,所以对角线之和相同且行列式相同,所以 5+b-1=3, b=-1; 2a-3+2a=-5b, a=2.

n-r=1, 几何重数小于代数重数,所以成立

a=2 或 a 不等于 1 和 2 时,几何重数等于于代数重数,不成立,所以 a=1

- (7) 因为相似,所以有相同的特征值,由 $|A-\lambda I|=0$ 得 $\lambda_1=\lambda_2=1$, $\lambda_3=-1$,所以 $\mathbf{r}(A-\lambda I)=0$ I)=1, r(A-2I)=3, 所以 r(A-I)+r(A-2I)=4.
- (8) 因为为相似矩阵,所以对角线之和相同,且 $\beta^T \alpha$ 为 $\alpha \beta^T$ 的对角线之和,所以 $\beta^T \alpha = 2$.
- 2. (1) B (2) B (3) D (4) D (5) C

解析: (1) 设 $(P^{-1}AP)^Tx = \lambda x$, 则 $P^TA(P^T)^{-1}x = \lambda x$, 所以 $A(P^{-1})x^T = \lambda (P^T)^{-1}x$, 且 α 是 A 的 属于特征值 λ 的特征向量,所以(P^T)⁻¹ $x = \alpha$, 所以 $x = P^T \alpha$,故为 B

- (2) $k_1\alpha_1 + k_2A(\alpha_1 + \alpha_2) = 0$, $\square k_1\alpha_1 + k_2\lambda_1\alpha_1 + k_2\lambda_2\alpha_2 = 0$, $\square (k_1 + k_2\lambda_1)\alpha_1 + k_2\lambda_2\alpha_2 = 0$ 0,因为 α_1 , α_2 线性无关,所以 $k_1+k_2\lambda_1=0$, $k_2\lambda_2=0$ 仅有0解,所以 $\begin{vmatrix} 1 & \lambda_1 \\ 0 & \lambda_2 \end{vmatrix} \neq 0$,所以 $\lambda_2 \neq 0$ 。故为 B
- (3) A 的特征值为-1, 0. $\lambda = 0$ 时几何重数为 1, $\lambda = -1$ 时几何重数为 3, 所以 $\lambda = -1$ 为 3 重根,故为 D
- (4) 因为特征值互不相同,且 $\det(A)=0$, 所以有且仅有一个特征值为 0,所以 r(A)=3.

(5) 设 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$ ①,两边左乘 A 得 $-k_1\alpha_1 + k_2\alpha_2 + k_3(\alpha_2 + \alpha_3) = 0$,即 $(k_2+k_3)\alpha_2-k_1\alpha_1+k_3\alpha_3=0$ ②, ②-①得 $2k_1\alpha_1-k_3\alpha_2=0$,且 α_1 , α_2 线性无关,所以 $k_1=$ $k_3 = 0$,带入①得 $k_2 = 0$,所以 P 可逆,设 AP=Px,而 AP=[A α_1 A α_2 A α_3]=[- α_1 α_2 α_2 + α_3]=[α_1 α_2 α_3] $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,故 x= $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,故选 C。

$$\alpha_3$$
]=[$\alpha_1\alpha_2\alpha_3$] $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,故x= $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,故选C。

- 3. 解: $A^*=|A|A^{-1}$,且 $A^*\alpha=\lambda\alpha$,所以 $|A|\alpha=\lambda A\alpha$,所以 $\frac{|A|}{\lambda}\alpha=A\alpha$,求得 a=2, b=1, $\lambda=1$ 或 a=2, b=-2, $\lambda = 4$.
- 4. 解: (1) $|A \lambda I| = \begin{vmatrix} 2 \lambda & 1 & 1 \\ 0 & 4 \lambda & 2 \\ 0 & 2 & 4 \lambda \end{vmatrix} = 0$ 得 $(2 \lambda) [(4 \lambda)^2 4] = 0$ 得 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 6$ 。 当 $\lambda = 2$ 时 $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 所以基础解系为 $(1,0,0)^T$, $(0,-1,1)^T$, 当 $\lambda = 6$ 时, $\begin{bmatrix} -4 & 1 & 1 \\ 0 & -2 & 2 \\ 0 & 2 & -2 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$, 所以基础解系为 $(\frac{1}{2},1,1)^T$, 所以P $= \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
- (2)与(1)类似,求得 $\lambda_1 = \lambda_2 = 2$,基础解系为(0,3,1) T , $\lambda_3 = -2$,基础解系为(0,-1,1) T , 因为几何重数小于代数重数, 所以不可对角化。
- 值 为 $\frac{|A|}{\lambda}$, 对 A , 有 $\begin{vmatrix} 3-\lambda & 2 & 2 \\ 2 & 3-\lambda & 2 \\ 2 & 2 & 3-\lambda \end{vmatrix} = (7-\lambda) \begin{vmatrix} 1 & 2 & 2 \\ 1 & 3-\lambda & 2 \\ 1 & 2 & 3-\lambda \end{vmatrix} = (7-\lambda)$ λ) $\begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{vmatrix} = (7 - \lambda)(1 - \lambda)^2$, 所以 $\lambda_1 = \lambda_2 = 1$ 或 $\lambda_3 = 7$, 所以|A| = 7, 所以 A^* 的特征 值为 $\lambda_1 = \lambda_2 = 7$, $\lambda_3 = 1$, 所以 B+2I 的特征值为 9, 9, 3。
- 6. 解: $|A \lambda I| = \begin{vmatrix} 2 \lambda & 2 & 0 \\ 8 & 2 \lambda & a \\ 0 & 0 & 6 \lambda \end{vmatrix} = (6 \lambda)[(2 \lambda)^2 16]$,解得 $\lambda_1 = 6$, $\lambda_2 = -2$, $\lambda_3 = 6$. 由于 A 相似于对角阵,每个特征值的几何重数等于代数重数,当 $\lambda_3 = 6$ 时由 $\begin{bmatrix} -4 & 2 & 0 \\ 8 & -4 & a \\ 0 & 0 & 0 \end{bmatrix}$ 秩为 0 得 a=0。所以A = $\begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix}$, P = $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -2 \\ 1 & 0 & 0 \end{bmatrix}$, D = $\begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
- 7. **解:** (1) 因为各行元素和为 3, 所以有A $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, 所以 3 为特征值, $(1,1,1)^T$ 为特征向量, 又因为 Ax=0 有两个解且不成比例,所以 0 为 A 的二重特征值,单位化后 $\xi = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T$,将 α_1 , α_2 标准正交化后得 $\beta_1 = (0,-1,1)^T$, $\beta_2 = (-1,\frac{1}{2},\frac{1}{2})^T$,单位化后 $\beta_2 = (\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_1 = (0,-1,1)^T$, $\beta_2 = (-1,\frac{1}{2},\frac{1}{2})^T$,单位化后 $\beta_2 = (\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_1 = (0,-1,1)^T$, $\beta_2 = (-1,\frac{1}{2},\frac{1}{2})^T$,单位化后 $\beta_2 = (\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_1 = (\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_2 = (\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_1 = (\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_2 = (\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$, $\beta_1 = (\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$

$$(0,\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}})^T, \quad \text{ff} \ \ Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}.$$

(2)
$$A = QDQ^T = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \ Q^T (A - \frac{3}{2}I) Q = \frac{3}{2} \operatorname{diag}(1, -1),$$
 求两端的六次幂得 $Q^T (A - \frac{3}{2}I)^6 Q = (\frac{3}{2})^6 I,$ 解得 $(A - \frac{3}{2}I)^6 = (\frac{3}{2})^6 I$

8. **解**: (1)
$$AQ = [\alpha_1 + \alpha_2 + \alpha_3, 2\alpha_2 + \alpha_3, 2\alpha_2 + 3\alpha_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$
, 所以 $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$.

- (2) 由 $|B \lambda I| = 0$ 得 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 4$, 当 $\lambda = 1$ 时,基础解系为 $(-1,1,0)^T$, $(-2,0,1)^T$ 当 $\lambda = 4$ 时基础解系为 $(0,1,1)^T$,所以M = $\begin{bmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
- (3) 可知, $M^{-1}Q^{-1}AQM$ 为对角矩阵,所以 $P = QM = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = [\alpha_2 \alpha_1, -2\alpha_1 + \alpha_3, \alpha_2 + \alpha_3].$

第七章 二次曲面与二次型

第一节 曲面与空间曲线

1. (1) 双曲柱面 (2) 椭圆柱面 (3) 抛物柱面 (4) 椭圆锥面 (5) 椭球面 (6) 旋转椭球面, 由曲线 $\frac{1}{4}x^2 + \frac{1}{9}y^2 = 1,z=0$ 绕 x 轴旋转而形成;(7) 双叶双曲面;(8) 双曲抛物面(9)旋转 单叶双曲面, 由曲线 $x^2 - \frac{1}{4}y^2 = 1$, z = 0绕 y 轴旋转而形成。(10)旋转双叶双曲面, 由曲线 $x^2 - \frac{1}{4}y^2 = 1$ $4y^2 = 1, z = 0$ 绕 x 轴旋转而形成。

2. (1) 圆
$$\begin{cases} x^2 + y^2 + z^2 - 2x - 4y - 2z - 3 = 0 \\ x - 2y - 2 = 0 \end{cases}$$
 (2) 椭球面 $\frac{x^2}{100} + \frac{y^2}{75} + \frac{z^2}{75} = 1$;(3)两相交平面 $3x^2 - y^2 = 0$.

化简得
$$\begin{cases} x^2 + y^2 + z^2 - 2x - 4y - 2z - 3 = 0 \\ x - 2y - 2 = 0 \end{cases}$$
 (2) $\sqrt{(x-5)^2 + y^2 + z^2} + \sqrt{(x+5)^2 + y^2 + z^2} = 20$

(2)
$$\sqrt{(x-5)^2 + y^2 + z^2} + \sqrt{(x+5)^2 + y^2 + z^2} = 20$$

化简得
$$\frac{x^2}{100} + \frac{y^2}{75} + \frac{z^2}{75} = 1$$

(3)
$$\sqrt{x^2 + y^2} = 2|x|$$

4. 简得 $3x^2 - v^2 = 0$

$$3.(1)$$
椭球面: $\frac{(x-1)^2}{4} + (y+1)^2 + \frac{z^2}{4} = 1$ (2) 圆锥面 $x^2 + y^2 = 4z^2$

$$\{x=3cos2t\ 4.(1)$$
螺旋线 $x=3cos2t\ y=3sin2t\ (2)$ 平面 x=1 上的圆 $x=1$ 上的圆 $x=1$ (3)过点(1,0,-1)且平行于 y 轴 的直线

$$5.3v^2 - z^2 = 16$$

解析:任取柱面上一点 P(x,y,z),设母线 AP 与给定曲线交于点 Q(X,Y,Z) , $\frac{x-X}{1} = \frac{y-Y}{0} = \frac{z-Z}{0} \rightarrow$

$$6.[c(x-a) + az]^2 + c^2y^2 = b^2z^2$$

解析:任取锥面上一点 P(x,y,z),设母线 AP 与准线交于点 $Q(x_1,y_1,c)$,则母线方程为 $\frac{x-a}{x_1-a} = \frac{y}{y_1} =$ $\frac{z}{c}$ \Rightarrow $x_1 = \frac{1}{z}c(x-a) + a$, $y_1 = \frac{1}{z}cy$,代入准线方程得锥面方程 $[c(x-a) + az]^2 + c^2y^2 = b^2z^2$

7.
$$l_0: \begin{cases} x = 2y \\ z = -\frac{1}{2}(y-1)$$
旋转面: $4x^2 - 17y^2 + 4z^2 + 2y - 1 = 0 \end{cases}$

解析:投影柱面的母线的方向向量(1,-1,2),求得投影柱面的方程再与平面π联立得投影

直线的方程 x = 2y $z = -\frac{1}{2}(y-1)$ 旋转面方程为

$$x^{2} + z^{2} = (2y)^{2} + \left(-\frac{1}{2}\right)^{2} (y-1)^{2}$$

化简得 $4x^2 - 17y^2 + 4z^2 + 2y - 1 = 0$

8. (1)
$$x^2 + \frac{y^2}{4} + \frac{z^2}{4} = 1$$
; (2) $y = x^2 + z^2$ (3) $-\frac{x^2}{9} - \frac{y^2}{9} + \frac{z^2}{4} = 1$

8. (1) $x^2 + \frac{y^2}{4} + \frac{z^2}{4} = 1$; (2) $y = x^2 + z^2$ (3) $-\frac{x^2}{9} - \frac{y^2}{9} + \frac{z^2}{4} = 1$ 解析: (1) 用 $y^2 + z^2$ 代替第一个式子中的 y^2 (2)用 $\sqrt{x^2 + z^2}$ 代替代替第一个式子中的z(3)用 $v^2 + x^2$ 代替第一个式子中的 v^2

$$9.\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{36} = 1$$

解析:设椭球面方程为 $\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{c} = 1$ 代入点 M 求得 c=36,所以椭球面方程为 $\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{36} =$

$$10.\frac{y^2}{4} + \frac{z^2}{12} = x$$

解析:因为椭圆抛物面的顶点为原点,对称于 Oxy 面和 Oxz 面, 所以可设椭圆抛物面的方程 为 $x = ay^2 + bz^2$,代入(1, 2, 0)和($\frac{1}{3}$, -1, 1)两点得方程 $\frac{y^2}{4} + \frac{z^2}{12} = x$

12. (1)
$$\begin{cases} 2x^{2} + y^{2} = 2y, & \begin{cases} z = 2y(0 \le y \le 2), \\ x = 0 \end{cases}, \begin{cases} 8x^{2} + (z - 2)^{2} = 4 \\ y = 0 \end{cases}$$

$$(2) \begin{cases} x^{2} + y^{2} = \frac{R^{2}}{4a^{2}} (4a^{2} - R^{2}), & \begin{cases} z = a - \frac{R^{2}}{2a} (|x| \le \frac{R}{2a} \sqrt{4a^{2} - R^{2}}), \\ y = 0 \end{cases}$$

$$\begin{cases} z = a - \frac{R^{2}}{2a} (|y| \le \frac{R}{2a} \sqrt{4a^{2} - R^{2}}), \\ x = 0 \end{cases}$$

$$(3) \begin{cases} x^{2} + y^{2} = ay \\ z = 0 \end{cases} \begin{cases} z = \frac{h}{a} \sqrt{x^{2} + \frac{a^{2}}{h^{4}}} z^{4} \end{cases} \begin{cases} z = \frac{h\sqrt{y}}{\sqrt{a}} (0 \le y \le a), \\ x = 0 \end{cases}$$

解析:在xoy面上投影,把z消掉,与z=0联立得投影曲线方程,同理可求在voz和xoz面 上的投影曲线

(B)

$$1.y - 2z = (x - z)^2$$

解析:设P(x,y,z) 为柱面上任一点,过点P以 $\vec{a}=(1,2,1)^T$ 为方向向量作柱面的母线,设母 线交准线于 $(x_1,y_1,0)$,则母线的方程为 $\frac{x-x_1}{1} = \frac{y-y_1}{2} = \frac{z}{1} \Longrightarrow x_1 = x - z, y_1 = y - 2z$ 代入 $y_1 = y - z$ x_1^2 ,得所求柱面的方程: $y - 2z = (x - z)^2$

$$2.2x^{2} + 2y^{2} - 4\left(z - \frac{1}{2}\right)^{2} = 1; \frac{2}{3}\pi$$

解析:直线 AB:1-x=y=z

所以绕 z 轴旋转面方程: $x^2 + y^2 = (1 - z)^2 + z^2$

化简得 $2x^2 + 2y^2 - 4\left(z - \frac{1}{2}\right)^2 = 1$

$$V = \int_0^1 \pi \frac{1 + 4(z - \frac{1}{2})^2}{2} dz = \frac{2}{3}\pi$$

第二节 实二次型

$$1.f = x^T A x = \begin{bmatrix} x_1 \cdots x_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, 所以二次型的矩阵为 A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix}$$

2.
$$f = x^T A x = [x_1 \cdots x_n] \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i,j=1}^n a_{ij} x_i x_j$$

 $f=x^TAx$ 是关于 $x_1\cdots x_n$ 的二次型,但 x^TAx 不是 f 的矩阵表示,因为 A 不一定为实对称矩阵, $1/2(A+A^T)$ 是 f 的矩阵

3.若存在正交矩阵 P 使 AP=PB

4.相似且合同

解析: A 的特征值为 3, 0, 0, 特征值与 D 相同, 所以相似, 正惯性指数都为 1, 合同

$$5.\alpha = \beta = 0$$

解析:二次型的矩阵为 $A = \begin{bmatrix} 1 & \alpha & 1 \\ \alpha & 1 & \beta \\ 1 & \beta & 1 \end{bmatrix}$,有标准型可知特征值为 1, 2, 所以|A - I| = 0; |A - 2I| = 0解得 $\alpha = \beta = 0$

$$6.(1)3y_{1}^{2} + 6y_{2}^{2} + 9y_{3}^{2}, \frac{1}{3} \begin{bmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{bmatrix}$$

$$(2)4y_{1}^{2} - y_{2}^{2} + y_{3}^{2}, \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$

$$(3)9y_{1}^{2} + 9y_{2}^{2} - 9y_{3}^{2}, \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{1}{3} & 0 & -\frac{4}{3\sqrt{2}} \\ \frac{2}{3} & -\frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix}$$

$$(6)9y_1^2 + 9y_2^2 + 9y_3^2 \cdot \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 1 & -2 \\ 0 & 2 & -2 & 1 \end{bmatrix}$$

7.正交变换化成的标准形: $f = y_1^2 + 2y_2^2 + 5y_3^2$;配方法化成的标准形: $f = 2z_1^2 + 3z_2^2 + \frac{5}{3}z_3^2$.正、 负惯性指数分别为3,0.

8.a=3,b=1.P=
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$9.c = 3, f = 4y_2^2 + 9y_3^2$$

$$10.(1)2y_1^2 - y_2^2 - 3y_3^2, x = Cy, C = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(2)y_1^2 - y_2^2 - 4y_3^2x = Cy, C \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & -4 \\ 0 & 0 & 1 \end{bmatrix};$$

11.由已知,存在可逆矩阵 C,使B = C^TAC .若 A 正定,则存在可逆矩阵 M,使得 A= M^TM ,故 $B = C^T M^T M C = (MC)^T (MC)$ 是正定的。同理可证当 B 正定时,A 正定。

12.二次型 $x^T(\lambda A + \mu B)x$ 正定

13.因 $A^2 = AA = A^T A(A 可逆)$,故 A^2 是正定的;因 $A = M^T M$ (M 可逆),故 $A^{-1} = M^{-1} M$ 是正定 的;因 det(A)>0,故 $A^* = det(A)A^{-1}$ 是正定的。

14.当 A 正定时,有 $\varepsilon_i^T A \varepsilon_i = a_{ii} > 0 (i = 1, \dots, n)$,其中 ε_i 为 I_n 的第 i 个列向量

15. (1) 否 (2) 正定 (3) 正定 (4) 正定

解析: (1)
$$\begin{vmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{vmatrix} = 0$$
, 所以不正定

16 (1)
$$\lambda > 2$$
; (2) $|\lambda| < \sqrt{\frac{5}{3}}$

17.k 阶顺序主子式
$$\Delta_k = (k+1) \left(\frac{1}{2}\right)^k > 0 (k=1\cdots n)$$

18.若 A 的特征值为 $\lambda_1, \lambda_2, \cdots \lambda_n$,则 A+tl 的特征值为 $\lambda_1 + t, \lambda_2 + t, \cdots, \lambda_n + t$

$$19.\mathbf{B} = \begin{bmatrix} a_{11}c_1c_1 & \cdots & a_{1n}c_1c_n \\ \vdots & \ddots & \vdots \\ a_{n1}c_nc_1 & \cdots & a_{nn}c_nc_n \end{bmatrix} = \begin{bmatrix} c_1 & & \\ & \ddots & \\ & & c_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} c_1 & & \\ & \ddots & \\ & & c_n \end{bmatrix}$$

 $= C^T A C$ 目 C 可逆

所以 A 与 B 合同,而合同矩阵具有相同的正定性,所以 B 正定。

20. $\forall x \in R^n, x \neq 0, x^T B x = x^T (\lambda I + A^T A) x = \lambda x^T x + x^T A^T A x = \lambda x^T x + (Ax)^T (Ax) = \lambda ||x||^2 + ||Ax||^2$

当 $\lambda > 0$ 时, $x^T B x > 0$,B 对应的二次型是正定二次型,所以 B 是正定矩阵。

$$21.1 + a_1 a_2 a_3 \neq 0$$

解析:令 $\begin{cases} y_1=x_1+a_1x_2\\ y_2=x_2+a_2x_3\\ y_3=x_3+a_3x_1 \end{cases}$ 则f= $y_1^2+y_2^2+y_3^2$ 此二次型是正定二次型。要使得原来的 f 是正

定二次型,只需所用的变换是可逆变换

而
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
,所以 $\begin{bmatrix} 1 & a_1 & 0 \\ 0 & 1 & a_2 \\ a_3 & 0 & 1 \end{bmatrix} = 1 + a_1 a_2 a_3 \neq 0$

令 $\mathbf{x} = e_i 则 a_{ii} = 0 (i = 2, \dots, n).$ 令 $\mathbf{x} = e_1 + e_2, 则 a_{12} = 0$

(2)对
$$\forall x \in R^n, x^T(A-B)x = 0$$
,则 A-B=0 所以 A=B

23.A 的所有特征值都小于零; x^TAx 的负惯性指数为 n;A 的奇数阶顺序主子式都小于零,且 偶数阶顺序主子式都大于零;存在可逆矩阵 M,使得 $A=-M^TM$

24. (1)
$$x'^2 + 2y'^2 + 4z'^2 = 1(2)y'^2 + 3z'^2 = x'^2(3)6y'^2 - 2z'^2 = 1(4)x'^2 + y'^2 - z'^2 = 1$$

25 .
$$\frac{\pi}{\sqrt{a_{11}a_{22}-a_{12}^2}}$$

解析:用正交变换将其化为标准型再利用公式

 $26.\frac{4\pi}{3\sqrt{\det(A)}}.(A 为f的矩阵)$

解析:用正交变换将其化为标准型再利用公式。

(B)

- 1.(1)f 的矩阵为 $\frac{1}{\det(A)}A^* = A^{-1}$
- (2)因为 $(A^{-1})^T A A^{-1} = (A^T)^{-1} = A^{-1}$,所以 A 与 A^{-1} 合同,于是 g(x)与 f(x)有着相同的规范形

2.证明:必要性:设 B^TAB 正定,则 $\forall x \in R^n, x \neq 0, x^TB^TABx > 0, 即(Bx)^TA(Bx) > 0. 由于A正定,$ 所以 $Bx \neq 0$.故 r(B)=n

3.设 A 正定,则存在正交矩阵 Q,使得 $Q^TAQ = \operatorname{diag}(\lambda_1, \dots \lambda_n)$,且 $\lambda_1, \dots \lambda_n$ 都大于零。

$$\mathsf{A} = \mathsf{Q} \quad \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} Q^T = Q \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} Q^T Q \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} Q^T \quad , \quad \not \downarrow \quad \mathsf{P} \quad \mathsf{S} \quad \not = \mathcal{Q}$$

$$\begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{bmatrix} \mathsf{A} = \mathsf{D} \quad \mathsf{M} \mathsf{Q} + \mathsf{D} = \mathsf{D} = \mathsf{D}$$

- 4. (1) 设 $f(x)=x^TAx$ 的秩为 r,则 f 可经可逆线性变换 x=Cy 化成标准形 $f=d_1y_1^2+d_2y_2^2+\cdots d_ry_r^2(d_i\neq 0, i=1,\cdots,r)$.当 f 的正惯性指数与秩相等时,显然有 $f(x)=f(Cy)\geq 0$;当 f 是半正定时,若正惯性指数小于 r,则存在某个 $d_i<0$,令 $y=\varepsilon_i$,则 $f(C\varepsilon_i)=d_i<0$,与 $f(x)\geq 0$ 矛盾
- (2) 利用(1)。若特征值为非负,命题二次型是半正定与命题正惯性指数等于秩等价。 注: ε_i 为单位矩阵第 i 列。
- 5. 各阶顺序主子式非负。f 不是半正定的,因为 f(0,1,0)=-1<0

6.该二次型对应的矩阵 A 为nI-ones(n,n),ones (n,n) 为 n 行 n 列全为 1 的矩阵,即 $A=\begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}$ 。特征式为 $|A-\lambda I|=\begin{bmatrix} n-1-\lambda & -1 & \cdots & -1 \\ -1 & n-1-\lambda & \cdots & -1 \\ \cdots & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & n-1-\lambda \end{bmatrix}=\begin{bmatrix} n-1-\lambda & -1 & \cdots & -1 \\ -1 & n-1-\lambda & \cdots & \cdots & \cdots \\ -1 & -1 & \cdots & n-1-\lambda \end{bmatrix}=\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & n-\lambda & 0 & \cdots & 0 \\ 1 & n-\lambda & \cdots & 0 \\ 0 & -1 & n-1-\lambda & \cdots & -1 \\ 0 & -1 & -1 & \cdots & n-1-\lambda \end{bmatrix}=\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & n-\lambda & 0 & \cdots & 0 \\ 1 & 0 & n-\lambda & \cdots & 0 \\ 0 & -1 & -1 & \cdots & n-1-\lambda \end{bmatrix}$ 。若 $\lambda=n$,则 $r(A-\lambda I)=1$,n 为 A 特征值,重数至少为 n-1。若 $\lambda=0$,. $|A-\lambda I|=0$,0 为 A 特征值。故 A 有 1 重特征值 0,n-1 重特征值 n,为半正定矩阵。

7.设 x_r 为任一 r 维非零向量($1 \le r \le n$),则 n 维向量 $x = (x_r^T, 0)^T \ne 0$,于是有二次型 $x^T A x = x_r^T A_r x_r$ 正定,其中 A_r 卫 A 的左上角 r 阶主子矩阵,再利用推论 7.2.2

- 8(1)将 A 分块为 A= $\begin{bmatrix} A_{n-1} & \alpha \\ \alpha^T & a_{nn} \end{bmatrix}$,给上式两端左乘 $\begin{bmatrix} I_{n-1} & 0 \\ -\alpha^T A_{n-1}^{-1} & 1 \end{bmatrix}$,再取行列式
 - (2) 利用(1) 的结果

9.令 D={ $x \in R^n | ||x|| = 1$ },则 D 为有界闭集,且 f(x)在 D 上连续. $\forall x \in D$,由 (7.2.15) 式得 $x^T A x \ge \lambda_1$,设 e_1 为 A 的属于 λ_1 的单位特征向量,则 $e_1^T A e_1 = \lambda_1 e_1^T e_1 = \lambda_1$,故 λ_1 为 f(x)在 D 上的最小值。同理知 λ_2 为 f(x)在 D 上的最大值。再利用有界闭集上连续函数的介值定理

第七章习题

1.填空题

(1) 2

解析:二次型对应的实对称矩阵为: $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$; 矩阵的秩即为二次型的秩,由于 $\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{vmatrix} = 0$, $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \neq 0$,由矩阵的秩的定义得,二次型的矩阵的秩为 2,所以二次型的秩为 2。 (2) 0

解析:二次型对应的实对称矩阵为: $\begin{bmatrix} 1-a & 1+a & 0 \\ 1+a & 1-a & 0 \\ 0 & 0 & 2 \end{bmatrix}$;由于该 3 阶矩阵的秩为 2,所以 $\begin{bmatrix} 1-a & 1+a & 0 \\ 1+a & 1-a & 0 \\ 0 & 0 & 2 \end{bmatrix}$ = $2[(1-a)^2-(1+a)^2]=-8a=0$,所以 a=0,回代得二次型矩阵 $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$,与其等价的阶梯型矩阵为 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$,所以验证了 a=0 时二次型的秩为 2。 (3) 双曲线

解析:曲线方程可看作二次型,其对应的二次型矩阵即为矩阵 A,由定理 7.2.1 可知,总存在正交变换可将该二次型化为标准型 $\lambda_1 x^2 + \lambda_2 y^2 = 1, \lambda_1, \lambda_2$ 为矩阵 A 的特征值,又由于 $\lambda_1 \lambda_2 < 0$,所以该曲线为双曲线,正交变换为旋转变换,不改变曲线的形状和大小,所以原曲线也为双曲线。

(4)
$$y_1^2 + y_2^2 + \dots + y_n^2$$

解析:若 A 是正交矩阵,则 A 的特征值的模是 1 ; 若 A 又是正定矩阵,则 A 是实对称矩阵,特征值都是 1 。所以二次型 x^TAx 经正交变换 x=Py 化成的标准形为 y^Ty 。

(5) (-2, 1)

解析:f 对应的矩阵 A= $\begin{bmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{bmatrix}$.A 正定 \Leftrightarrow A 的各阶顺序主子式都大于零。即1 > 0,4 - $t^2 > 0, t^2 + t - 2 < 0$,所以-2< t<1.

2.选择题

(1) B

解析: $\begin{vmatrix} 2-\lambda & -1 & -1 \\ -1 & 2-\lambda & -1 \\ -1 & -1 & 2-\lambda \end{vmatrix} = 0$,解得 $\lambda_1 = \lambda_2 = 3$, $\lambda_3 = 0$. A 是实对称矩阵,所以这两个矩阵不相似,但是合同。

(2) A

解析:
$$\begin{vmatrix} 1-\lambda & 1 & -3 \\ 1 & 1-\lambda & -3 \\ -3 & -3 & 5-\lambda \end{vmatrix} = 0$$
,解得 $\lambda_1 = -1$, $\lambda_2 = 8$, $\lambda_3 = 0$.这两个矩阵相似且合同。

解析:
$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(-1 - \lambda) = 0$$

解得 $\lambda_1 = -1$, $\lambda_2 = 3$ 。

只要看四个选项中哪个矩阵的特征值是一个正一个负。

(4) B

解析:f 对应
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & a & -2 \\ -2 & -2 & 1 \end{bmatrix}$$
. 标准形对应 $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1 \end{bmatrix}$, 则 $A 与 D 相似 \Rightarrow \begin{cases} 1+a+1=5+b-1 \\ a+8+8-4a-4-4=-5b \\ 解得 $a=1,b=-1$ 应选 $B$$

$$3.(1)a,a-2,a+1(2)a=2$$

解析:(1)f 的矩阵
$$A = \begin{bmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a - 1 \end{bmatrix}$$
. $|A - \lambda I| = \begin{vmatrix} a - \lambda & 0 & 1 \\ 0 & a - \lambda & -1 \\ 1 & -1 & a - 1 - \lambda \end{vmatrix}$ $= (a - \lambda)(a + 1 - \lambda)(a - 2 - \lambda) = 0$

解得 $\lambda_1 = a - 2$, $\lambda_2 = a$, $\lambda_3 = a + 1$

(2)若 f 的标准形为 $y_1^2 + y_2^2$,则 A 有一个零特征值,其余特征值大于零,因此 a=2.

4.(1)a=1,b=-2;(2)x=Py,P=
$$\begin{bmatrix} -\frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \end{bmatrix}$$

解析:(1) f 的矩阵 $A = \begin{bmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{bmatrix}$, $a = 1, -4a - 2b^2 = -12$, b = -2(2) $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & -2 \end{bmatrix}$, 解得 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = -3$.

(2)A=
$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & -2 \end{bmatrix}$$
, $\mathbf{m} = \lambda_1 = \lambda_2 = 2$, $\lambda_3 = -3$.

对 $\lambda_1 = \lambda_2 = 2$, 由(A - 2I)x = 0得 $\xi_1 = (0, 1, 0)^T$

$$\xi_2 = (2, 0, -1)^T$$

令 Q=(
$$\xi_1$$
, $\frac{1}{\sqrt{5}}\xi_2$, $\frac{1}{\sqrt{5}}\xi_3$),则 x=Qy 为正交变换, $f=2y_1^2+2y_2^2-3y_3^2$.

5.解:f 对应的矩阵 A 的特征值为 1, 1, 0, 且 0 对应的特征向量为 e_3 .而 1 对应的特征向量与 e_3 正交。求解 $e_3^T x = 0$ 得 $\xi_1 = \begin{pmatrix} 1, & 0, & -1 \end{pmatrix}^T$, $\xi_2 = (0,1,0)^T$, 单位化得 $e_1 = \frac{1}{\sqrt{2}} \xi_1$, $e_2 = \xi_2$, 令Q = (e_1, e_2, e_3) ,则 x=Qy 是正交变换。 $Q^T A Q = D = diag(1,1,0) \Rightarrow A = Q D Q^{\Upsilon^T} = e_1 e_1^T + e_2 e_2^T = e_1 e_2^T = e_1 e_2^T + e_2 e_2^T = e_1 e_2^T = e_1 e_2^T + e_2 e_2^T = e_2^T = e_1 e_2^T + e_2^T = e_2^T = e_$

$$\begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$

 $A + I = Q(D + I)Q^{T}$,即 A+I 与 D+I=diag(2,2,1)合同,所以 A+I 正定。

6.证明:必要性:设 A^TA 正定, A^TA 的特征值全部大于 0, 所以 $r(A^TA) = n, n = r(A^TA) \le r(A) \le r(A)$ n,故r(A) = n.

> 充分性: $(A^TA)^T = A^TA$,所以 A^TA 是实对称矩阵,设 r(A)=n,则 $\forall x \in R^n$, $x \neq 0$, $Ax \neq 0$ $0, x^T A^T A x = (Ax)^T (Ax) > 0, A^T A$ 对应的是正定二次型,所以A^TA 正定。

7. (x-z) (y+z)=4

解析:设柱面上任一点为(x,y,z),通过该点的母线与准线的交点为

(X, Y, Z),由母线平行于向量 $(1, -1, 1)^T$ 可得

$$(X, Y, Z)$$
, 由母线平行于向量(1, -1 , 1) 可得 $\begin{cases} x = X + t & \{X = x - t \\ y = Y - t,$ 整理得 $\} Y = y + t$ 由于(X, Y, Z)满足 $\} Z = 0$,代入消掉 t 得柱面方程为 $\} Z = Z + t & \{Z = z - t \}$

8. (1)
$$S_1: \frac{x^2}{4} + \frac{y^2}{3} + \frac{z^2}{3} = 1$$
, $S_2: (x-4)^2 = 4y^2 + 4z^2$ 解析:(1) $S_1: \frac{x^2}{4} + \frac{1}{3}(y^2 + z^2) = 1$,切点为($1, \frac{+3}{2}$),切线 $\frac{x+y}{4-2} = 1$, $\Longrightarrow S_2: \left(\frac{x^2}{4} - 1\right)^2 = \frac{1}{4}(y^2 + z^2)$,即 $(x-4)^2 = 4y^2 + 4z^2$

(2) 所求体积 V 等于一个底圆半径为 $\frac{3}{2}$, 高为 3 的圆锥体积 $V_1(=\frac{9}{4}\pi)$ 与部分椭球体 积 V_2 之差,其中 $V_2 = \frac{3}{4}\pi \int_1^2 (4-x^2) dx = \frac{5}{4}\pi$,故所求 $V=\pi$ 。

第八章 线性变换

第一节 线性变换及其运算

(A)

1. (1)(2)是,(3)(4)不是。

解析: (1)(2)根据线性映射的定义易得满足 $T(\alpha + \beta) = T(\alpha) + T(\beta)$ 及 $T(k\alpha) = kT(\alpha)$ 。(3)不满足T(0) = 0,(4)中 $T(kx) = k^{2n}T(x)$,不满足 $T(k\alpha) = kT(\alpha)$ 。

2.

解析: 若T是线性变换,则 T 满足T(α + β) = T(α) + T(β)及T(α) = kT(α)。首先,可以设 α = $a_1e_1 + a_2e_2 + \cdots + a_ne_n$, $\beta = b_1e_1 + b_2e_2 + \cdots + b_ne_n$ 。根据正交向量基的性质有 $<\alpha$, $e_i > = < a_1e_1 + a_2e_2 + \cdots + a_ne_n$, $e_i > = a_i$,同理有 $<\beta$, $e_i > = b_i$;,对于 α + β ,有 $<\alpha$ + β , $e_i > = a_i + b_i$,由此有T(α + β) = T(α) + T(β)。

其次, $< k\alpha$, $e_i > = < ka_1e_1 + ka_2e_2 + \cdots + ka_ne_n$, $e_i > = ka_i$,因此有 $T(k\alpha) = kT(\alpha)$ 。综上,T满足线性映射定义,T是线性变换。

3.

解析: 根据向量外积的性质, $T(\alpha + \beta) = \alpha_0 \times \alpha + \alpha_0 \times \beta = T(\alpha) + T(\beta)$; $T(k\alpha) = \alpha_0 \times (k\alpha) = k\alpha_0 \times \alpha = kT(\alpha)$ 。因此 $T \in \mathbb{R}^3$ 上的线性算子。

4.

解析: 充分性: $: T(\alpha)$ 是零变换: $\forall \alpha \in V$ $T(\alpha) = 0$ $\therefore T(e_i) = 0$, 。 必要性: $: e_1e_2...e_n$ 为一组基向量, $: \forall \alpha \in V$ $\alpha = a_1e_1 + a_2e_2 + \cdots + a_ne_n$ $T(\alpha) = T(a_1e_1 + a_2e_2 + \cdots + a_ne_n) = a_1T(e_1) + a_2T(e_2) + \cdots + a_nT(e_n)$ 。 又 $T(e_i) = 0$ $\therefore T(\alpha) = 0$ 。

5.

 $\alpha = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^T$,有 $\alpha = \mathbf{x}_1 e_1 + x_2 e_2 + \dots + x_n e_n$,根据线性变换的性质有 $\mathbf{T}(\alpha) = \mathbf{x}_1 T(e_1) + x_2 T(e_2) + \dots + x_n T(e_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$ 。

6.
$$(-10, -7, 6)^{\mathrm{T}}$$

解 析 : $T(2e_1 - 3e_2 + 4e_3)^T = 2T(e_1) - 3T(e_2) + 4T(e_3) = 2(1, -1, 2)^T - 3(0, 3, 2)^T + 4(-3, 1, 2)^T = (-10, -7, 6)^T$

$$7. \frac{1}{2} \begin{bmatrix} x - \sqrt{3}y \\ \sqrt{3} + y \end{bmatrix}, \begin{bmatrix} -y \\ x \end{bmatrix}, \frac{1}{2} \begin{bmatrix} -\sqrt{3}x - y \\ x - \sqrt{3}y \end{bmatrix}$$

解析: 将习题 1(2)中的公式代入计算即可。

8. (1) α_1 , α_2 (2) ξ_1 (3) $\ker(T)$ 的基为(3, -8,2,0)^T, R(T) 的基为(4,2,6)^T, $(1,1,0)^T$, $(-3,-4,9)^T$ 。 T的零度为 1,的秩为 3。

则有 $Ax = \alpha$, 计算其矩阵矩阵与增广矩阵的秩,有 $r(\alpha_1) = r(\overline{\alpha_1}) = 3$, $r(\alpha_2) = r(\overline{\alpha_2}) = 3$, 因此 $\alpha_1, \alpha_2 \in R(T)$ 。

- (2) 将 ξ_1 , ξ_2 直接带入线性变换公式中,发现 $T(\xi_1) = 0$, $T(\xi_2) \neq 0$,因此 $\xi_1 \in \ker(T)$, $\xi_2 \notin \ker(T)$ 。
- (3) $\ker(T)$ 的解为Ax = 0的基解,由此解该齐次线性方程组得其解为 $(3, -8, 2, 0)^T$, $\ker(T)$ 的基为 $(3, -8, 2, 0)^T$, $\operatorname{nullity}(T) = 0$ 。

R(T)的基与 A 的列空间同构,由此做列变换得:

$$\begin{bmatrix} 4 & 1 & -2 & -3 \\ 2 & 1 & 1 & -4 \\ 6 & 0 & -9 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2 & 1 & 1 & -1 \\ 6 & 0 & -3 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & -1 \\ 3 & 0 & 0 & 9 \end{bmatrix}$$

因此可得 R(T) 的基为 $(4,2,6)^T$, $(1,1,0)^T$, $(-3,-4,9)^T$, rank(T)=3。

9. (1)
$$2x + y - z = 0$$
 (2) $\frac{x}{-14} = \frac{y}{19} = \frac{z}{11}$

解析: (1) 设
$$\alpha = (x_0, y_0, z_0)^T$$
,有 $Ax = \begin{bmatrix} x_0 - y_0 + 3z_0 \\ 5x_0 + 6y_0 - 4z_0 \\ 7x_0 + 4y_0 + 2z_0 \end{bmatrix}$,设 $\alpha_1 = (1, -1, 3)^T$, $\alpha_2 = (1, -1, 3)^T$

 $(5,6,-4)^T$, $\alpha_3=(7,4,2)^Tk_1\alpha_1+k_2\alpha_2+k_3\alpha_3=0$, 解得 $k_1=2,k_2=1,k_3=-1$, 因此R(T)是过原点的平面2x+y-z=0。

(2)令Ax = 0,有
$$\begin{bmatrix} 1 & -1 & 3 \\ 5 & 6 & -4 \\ 7 & 4 & 2 \end{bmatrix}$$
 \rightarrow $\begin{bmatrix} 1 & -1 & 3 \\ 0 & 11 & -19 \\ 0 & 0 & 0 \end{bmatrix}$,可得ker(T)是过原点的直线 $\frac{x}{-14} = \frac{y}{19} = \frac{z}{11}$.

10.

解析: 直接带入可得 $T_1T_2(x,y)^T = (x,0)^T, T_2T_1(x,y)^T = (0,y)^T, T_1T_2 \neq T_2T_1$ 。

11. (1) 否(2) 是

解析: (1) 令 $x_1 = (0,0)^T$, $x_2 = (2,-1)^T$, 有 $Ax_1 = Ax_2 = (0,0,0)^T$, 故T不为单射。

(2) 令Ax = 0,易得解为零解(列向量线性无关),因此 $ker(T) = \{0\}$,由定理 8.1.9 得T为单射。

12.

解析: 线性变换的和: $(T+S)(\alpha+\beta) = T(\alpha+\beta) + S(\alpha+\beta) = T(\alpha) + T(\beta) + S(\alpha) + S(\beta) = (T(\alpha) + S(\alpha)) + (T(\beta) + S(\beta)) = (T+S)(\alpha) + (T+S)(\beta)(T+S)(k\alpha) = T(k\alpha) + S(k\alpha) = kT(\alpha) + kS(\alpha) = k(T+S)(\alpha)$

线性变换的数量乘积: $(kA)(\alpha+\beta)=kA(\alpha+\beta)=kA(\alpha)+kA(\beta)=(kA)(\alpha)+(kA)\beta$ $(kA)(m\alpha)=kA(m\alpha)=kmA(\alpha)=m((kA)(\alpha))$

13.

解析:
$$(T_1 - T_2)(\alpha + \beta) = T_1(\alpha + \beta) - T_2(\alpha + \beta) = T_1(\alpha) + T_1(\beta) - T_2(\alpha) - T_2(\beta) = (T_1(\alpha) - T_2(\alpha)) + (T_1(\beta) - T_2(\beta)) = (T_1 - T_2)(\alpha) + (T_1 - T_2)(\beta)$$

 $(T_1 - T_2)(k\alpha) = T_1(k\alpha) - T_2(k\alpha) = kT_1(\alpha) - kT_2(\alpha) = k((T_1 - T_2)(\alpha))$
因此 $T_1 - T_2$ 为线性变换。

14.

解析: (1) 设 $T_3(\alpha) = \beta$,则 $(T_1 + T_2)T_3(\alpha) = (T_1 + T_2)(\beta) = T_1(\beta) + T_2(\beta) = T_1(T_3(\alpha)) + T_2(T_3(\alpha)) = T_1T_3(\alpha) + T_2T_3(\alpha)$,故得证。

(2):
$$T_1T_2 = T_2T_1$$
且 T_1 可逆, $T_2 = T_1^{-1}T_1T_2 = T_1^{-1}T_2T_1$ $T_2T_1^{-1} = T_1^{-1}T_2T_1T_1^{-1} = T_1^{-1}T_2$,

故得证。

(B)

1

解析: $\operatorname{rank}(T_1T_2) = \dim\{(T_1T_2(V_1))\} = \dim\{T_1(T_2(V_1))\} \leq \dim\{T_1(V_2)\} = \operatorname{rank}(T_1)$,同理有: $\operatorname{rank}(T_1T_2) = \dim\{(T_1T_2(V_1))\} = \dim\{T_1(T_2(V_1))\} \leq \dim\{T_2(V_1)\} = \operatorname{rank}(T_2)$,故得证。

2.

解析: $\forall \alpha \in V$,有 $\alpha = [\alpha - T(\alpha)] + T(\alpha)$,: $T(\alpha - T(\alpha)) = T(\alpha) - T^2(\alpha) = T(\alpha) - T(\alpha) = 0$,: $\alpha - T(\alpha) \in \ker(T)$, 又 $T(\alpha) \in R(T)$,: $V = \ker(T) + R(T)$, 对于 $\forall \beta \in R(T)$, 有 $\alpha \in V$, 使得 $T(\alpha) = \beta$,: $T(\beta) = T^2(\alpha) = T(\alpha) = \beta$,由此有 $\ker(T) \cap R(T) = \{0\}$

第二节 线性变换的矩阵表示

(A)

$$1. \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

解析: f(x) = 1 : T(f(x)) = f(x+1) - f(x) = 1 - 1 = 0, 对应列向量 $(0,0,0,0)^T$

2.

解析: 设
$$\{e_1, e_2, \cdots, e_n\}$$
是 R^n 的一组基本单位向量组,有 $x = a_1e_1 + a_2e_2 + \cdots + a_ne_n$,并设 $T(e_i) = (\alpha_{1i}, \alpha_{2i}, \cdots, \alpha_{mi})^T$, 有 $T(x) = a_1T(e_1) + a_2T(e_2) + \cdots + a_nT(e_n) = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = Ax$,故存在矩阵 $A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}$ 满足要求。

3. (1) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix}$ (2) 见解析

解析: (1) $F[x]_2 = 1$ 时,有T(1) = 1,对应列向量 $(1,0)^T$ 。 $F[x]_2 = x$ 时,有T(x) = 1 - 2x,对应列向量 $(1,-2)^T$ 。 $F[x]_2 = x^2$ 时,有 $T(x^2) = -3x$,对应列向量 $(0,-3)^T$ 。

(2) $T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) - (2a_1 + 3a_2)x$,故f(x) 在基 B 下的坐标为

$$(a_0, a_1, a_2)^T$$
, $T(f(x))$ 在基 B 下的坐标为 $(a_0 + a_1, -2a_1 - 3a_2)$ 。故 $Ax = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} =$

$$\begin{bmatrix} a_0 + a_1 \\ -2a_1 - 3a_2 \end{bmatrix}, \quad 因此y = Ax$$

4.
$$(1,1,-1,0)^{\mathrm{T}}(25,-50,-5)^{\mathrm{T}}$$

解析: 设:
$$\alpha = \mathbf{k}_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 + k_4 \alpha_4$$
,有
$$\begin{bmatrix} 0 & 2 & 1 & 6 \\ 1 & 1 & 4 & 9 \\ 1 & -1 & -1 & 4 \\ 1 & -1 & 2 & 2 \end{bmatrix} k = \begin{bmatrix} 1 \\ -2 \\ 1 \\ -2 \end{bmatrix}$$
,解得 $\mathbf{k}_1 = 1$ $\mathbf{k}_2 = 1$

$$1 \quad k_3 = -1 \quad k_4 = 0,$$
 因此 α 的坐标为 $(1,1,-1,0)^T$ 。又A $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix} = \begin{bmatrix} 2\\5\\-10 \end{bmatrix}$, \therefore T $(\alpha) = 2\beta_1 + 5\beta_2 - 10\beta_3 = (25,-50,-5)^T$

5. 不是

解析:此时对于T对应的矩阵 $A_{m\times n}$ 满足m < n,此时r(A)必小于n,则方程Ax = 0必存在非零解,故T不是单射。

6.

解析: T可逆 \rightleftharpoons T对应的矩阵A为可逆矩阵 \rightleftharpoons A满秩 \rightleftharpoons A的列向量线性无关。又: α_1 ,…, α_n 是线性空间V的基,故A的列向量线性无关 \rightleftharpoons $T(\alpha_1)$,…, $T(\alpha_n)$ 线性无关,得证。

7. 见解析

解析: T对应的矩阵A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, S对应的矩阵B = $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ -1 & -1 & 1 \end{bmatrix}$ 。 故有TS对应矩阵为AB = $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, TS(x) = $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ x。 ST对应矩阵为BA = $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, ST(x) = $\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ x。 T²对应矩阵为T² = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$, T²(x) = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ x。 S+T对应矩阵为A+B = $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}$, (S+T)(x) = $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}$ x。 T⁻¹对应矩阵为A⁻¹ = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, T⁻¹(x) = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ x。

$$8. \begin{bmatrix} 2 & 4 & 4 \\ -3 & -4 & -6 \\ 2 & 3 & 8 \end{bmatrix}$$

解析:有基 $\{x^2, x, 1\}$ 向基 $\{x^2, x^2 + x, x^2 + x + 1\}$ 的过渡矩阵 $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,故T在基 $\{x^2, x^2 + x, x^2 + x + 1\}$ 下的矩阵为 $D = C^{-1}AC = \begin{bmatrix} 2 & 4 & 4 \\ -3 & -4 & -6 \\ 2 & 3 & 8 \end{bmatrix}$ 。

$$9. \frac{1}{7} \begin{bmatrix} -5 & 20 & -20 \\ -4 & -5 & -2 \\ 27 & 18 & 24 \end{bmatrix}$$

解析:有过渡矩阵 $C = \begin{bmatrix} -1 & 0 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix}^{-1} = \frac{1}{7} \begin{bmatrix} -1 & -3 & 3 \\ 2 & 6 & 1 \\ 2 & -1 & 1 \end{bmatrix}$,故在 $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ 下的矩阵为: $D = \frac{1}{7} \begin{bmatrix} -1 & -3 & 3 \\ 2 & 6 & 1 \\ 2 & -1 & 1 \end{bmatrix}$

$$C^{-1}AC = \frac{1}{7} \begin{bmatrix} -5 & 20 & -20 \\ -4 & -5 & -2 \\ 27 & 18 & 24 \end{bmatrix}$$

$$10. \begin{bmatrix} 1 & 0 & 10 \\ 0 & 2 & -3 \\ 0 & 0 & 3 \end{bmatrix}$$

解析: 有过渡矩阵 $C = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 1 & 2 & 2 \end{bmatrix}$,故在基 $\{\beta_1, \beta_2, \beta_3\}$ 下的矩阵为: $D = C^{-1}AC = \begin{bmatrix} 1 & 0 & 10 \\ 0 & 2 & -3 \\ 0 & 0 & 3 \end{bmatrix}$ 。

注:本问此处书上印刷错误,答案对应的应为 $\beta_2 = 3e_1 + 4e_2 + 2e_3$,请各位同学注意

(B)

1.

解析:若A是T在某个基下的矩阵,则 a 对于任意可逆方阵D,有 $D^{-1}AD$ 也是T在某个基下的矩 阵。由题意有 $D^{-1}AD = A$, AD = DA, 特殊地,令 $D = E_{ii}$ (i 行 j 列元素为 1, 其他元素为 0), $AE_{ii} = E_{ii}A$, 故A为数量矩阵, T为数乘变换。

2.

解析: 设 $\alpha = [e_1 \cdots e_n]x$,则 $T\alpha = \lambda_0 \alpha \Rightarrow T[e_1 \cdots e_n]x = \lambda_0 [e_1 \cdots e_n]x \Rightarrow [e_1 \cdots e_n]Ax =$ $[e_1 \cdots e_n] \lambda_0 x \rightleftharpoons Ax = \lambda x$,故得证。

3.

解析:由定理8.2.5可得若T在某个基下的矩阵为相似矩阵D,则A与D相似。又若A与D相似, 设 $D = C^{-1}AC$,由于C满秩,此时A中列向量经过变换后依然线性无关,则此时 D 也对应T在 某个基下的矩阵,由此得证,且 $[\beta_1 \cdots \beta_n] = [\alpha_1 \cdots \alpha_n]C$

4. (1) $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$; $\beta_2 = \alpha_1 + \alpha_2$; $\beta_3 = \alpha_2 + 3\beta_3$; diag(1,2,2)

(2) 不存在

解析:(1) 计算 $A = \begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix}$ 的特征值有 $\begin{vmatrix} \lambda+1 & -3 & 1 \\ 3 & \lambda-5 & 1 \\ 3 & -3 & \lambda-1 \end{vmatrix} = \begin{vmatrix} \lambda-2 & 2-\lambda & 0 \\ 3 & \lambda-5 & 1 \\ 0 & 2-\lambda & \lambda-2 \end{vmatrix} = (\lambda-2)^2(\lambda-1) = 0$,故特征值为 $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 2$, $\lambda = 1$ 对应的

特征向量为 $(1,1,1)^{\mathrm{T}}$, $\lambda=2$ 对应的特征向量为 $(1,1,0)^{\mathrm{T}}$, $(0,1,3)^{\mathrm{T}}$,故 $\beta_1=\alpha_1+\alpha_2+\alpha_3$; $\beta_2=$ $\alpha_1 + \alpha_2$; $\beta_3 = \alpha_2 + 3\beta_3$, 对角矩阵为diag(1,2,2)

(2) 计算B = $\begin{bmatrix} 6 & -5 & -3 \\ 3 & -2 & -2 \\ 2 & -2 & 0 \end{bmatrix}$ 的特征值有 $\begin{vmatrix} \lambda - 6 & 5 & 3 \\ -3 & \lambda + 2 & 2 \\ -2 & 2 & \lambda \end{vmatrix} = \lambda^3 - 4\lambda^2 + 5\lambda - 2 = (\lambda - 2)$

 $1)^{2}(\lambda-2)$,但 $\lambda=2$ 时对应的特征向量有且仅有 $(2,1,1)^{T}$ 一个,因此B不与对角矩阵相似, 不存在。

5.

解析: (1) \Rightarrow (2): 若T是正交变换, 有< $T(\alpha)$, $T(\alpha)$ >=< α , α >, 两边开方即有 $||T(\alpha)|| = ||\alpha||$ 。 (2) ⇒ (1): 若T是保长度的,则有< $T(\alpha)$, $T(\alpha)$ >=< α , α >, $< T(\beta)$, $T(\beta)$ >=< β , β >, < $T(\alpha + \beta)$, $T(\alpha + \beta) > = < \alpha + \beta$, $\alpha + \beta >$ 。 将 最 后 一 个 等 式 展 开 有 < $T(\alpha)$, $T(\alpha) > +2 <$ $T(\alpha)$, $T(\beta) > + < T(\beta)$, $T(\beta) > = < \alpha, \alpha > + 2 < \alpha, \beta > + < \beta, \beta >$, $\forall A > + < \alpha, \beta > + < \alpha, \beta >$

- (1) \Rightarrow (3): 若 \mathbf{e}_1 ,…, \mathbf{e}_n 是一组标准正交基,则 $<\mathbf{e}_i$, $\mathbf{e}_j>=\begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases}$,若T是正交变换,则有 < $T(e_i)$, $T(e_j)>=$ $\begin{cases} 1 & i \neq j \\ 0 & i=j \end{cases}$,也就是说 $T(e_1)$, \cdots , $T(e_n)$ 也是一组标准正交基。
- (3) \Rightarrow (1): 若T(e₁),…,T(e_n)也是标准正交基。则根据 $\alpha=x_1e_1+x_2e_2+\cdots+x_ne_n;\beta=$ $y_2T(e_2) + \cdots + y_nT(e_n)$ 可得< $\alpha, \beta >= x_1y_1 + x_2y_2 + \cdots + x_ny_n = < T(\alpha), T(\beta) >$,故T是正交 变换。
- (3) ⇔ (4): 设T在标准正交基下的矩阵为A, 若 $T(e_1)$, …, $T(e_n)$ 也是标准正交基, 那么A即 可看做 e_1, \cdots, e_n 到 $T(e_1), \cdots, T(e_n)$ 的过渡矩阵,因而是正交矩阵。反之亦然。

第八章习题

- 1. (1) 值域是由 $(1,2,1)^T$, $(1,1,2)^T$ 组成的向量空间,rank(T) = 2, $ker(T) = \{0\}$, nullity(T) =
- 1. (1) 恒 攻 左 田 (1,4,1) , (1,2,2) (1 0) (2) T 是 单 射 , 不 是 满 射 。 (3) [1 0] (0 1] [1 1]

解析: (1) 由已知得T(x) = $x_1(1,1,0)^T + x_2(1,0,1)^T + (x_1 + x_2)(0,1,1)^T = x_1\begin{pmatrix} 1\\2\\1 \end{pmatrix} + x_2\begin{pmatrix} 1\\1\\2 \end{pmatrix}$, 故

值域是由 $(1,2,1)^T$, $(1,1,2)^T$ 组成的向量空间,rank(T) = 2。令T(x) = 0可得 $x_1 = 0$, $x_2 = 0$,故 $ker(T) = \{0\}, nullity(T) = 0.$

- (2) : $ker(T) = \{0\}$, : T为单射。: rank(T) = 2 < 3, : T不为满射。
- (3) $T(\varepsilon_1) = (1,2,1)^T = \alpha_1 + \alpha_3$,对应列向 $(1,0,1)^T$, $T(\varepsilon_2) = (1,1,2)^T = \alpha_2 + \alpha_3$,对 应列向 $(0,1,1)^{\mathrm{T}}$ 。矩阵为 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 1. (1) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (2) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (3) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (4) $a_1x + 2^na_2(1+x^2)$ 解析: (1) f(x) = 1, T(f(x)) = 0, 对应列向量(0,0,0)^T; f(x) = x, T(f(x)) = x, 对应列向量

 $(0,1,0)^{\mathrm{T}}; \ f(x) = x^2, T(f(x)) = 2x^2 + 2,$ 对应列向量 $(2,0,2)^{\mathrm{T}},$ 故矩阵为 $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 。

(2) f(x) = 1, T(f(x)) = 0, 对应列向量 $(0,0,0)^T$; f(x) = x, T(f(x)) = x, 对应列向量

 $(0,1,0)^{\mathrm{T}}; f(x) = x^2 + 1, T(f(x)) = 2x^2 + 2,$ 对应列向量 $(0,0,2)^{\mathrm{T}},$ 故矩阵为 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 。 $(3) 已知S为基\{1,x,x^2\}到基\{1,x,x^2+1\}$ 的过渡矩阵,可得 $S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 。

- (4) 有Tⁿ $(f(x)) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}^n \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ a_1 \\ 2^n a_2 \end{bmatrix}, 故Tⁿ<math>(f(x)) = a_1 x + 2^n a_2 (1 + x^2)$
- 3. (1) $\begin{bmatrix} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$ (2) $(11,6,-7)^{T}$

解析: (1) 由已知得基B到基B'的过渡矩阵为 $C = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$,故对应的

矩阵为D = C⁻¹AC =
$$\begin{bmatrix} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$
(2) T(1,2,-5)^T =
$$\begin{bmatrix} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \\ -7 \end{bmatrix}$$

4. (1) 可逆,
$$T^{-1} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$
 (2) $e_2 + e_3$, $e_1 - 2e_2$, $e_1 - 2e_3$, 矩阵为diag(1,5,5)

解析: (1)
$$:$$
 $\det(A) = 25 \neq 0$,故A可逆,T可逆,又A⁻¹ = $\frac{1}{5}$ $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 2 \\ 4 & 2 & 3 \end{bmatrix}$,则T⁻¹ =

$$\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$$

$$\begin{bmatrix} 14 & 2 & 3 \end{bmatrix}$$
 $\begin{bmatrix} \lambda - 5 & 0 & 0 \\ -4 & \lambda - 3 & -2 \\ -4 & -2 & \lambda - 3 \end{bmatrix} = (\lambda - 1)(\lambda - 5)^2$,当 $\lambda = 1$ 时对应的特征向量是 $(0,1,1)^T$,当 $\lambda = 5$ 时对应的特征向量分别为 $(1,-2,0)^T$, $(1,0,-2)^T$ 。则有基 $\mathbf{e}_2 + e_3$, $e_1 - 2e_2$, $e_1 - 2e_3$,此时的矩阵为diag $(1,5,5)$

5. 见解析

解析: (1) 有
$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} = A$$
,故 $T^2 = T$ 。

(2):R(T)与A的解空间同构,故将A分块为[$x_1x_2x_3$],可知A的前两列为A的列空间的基,R(T)对应的基为 e_1 与 $-e_2 + 2e_3$ 。令Ax = 0,有解(0,1,-1)^T。故ker(T)的基为 $e_2 - e_3$ 。又 det $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix} = -1 \neq 0$,因此 他们合起来也能构成一个基。

[0]
$$\begin{bmatrix} 1 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$
] $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \end{bmatrix}$, 故在基B'下的矩阵为D = C⁻¹AC = diag(1,1,0)

(4) 设 $\varepsilon_1 = e_1, \varepsilon_2 = -e_2 + 2e_3, \varepsilon_3 = e_2 - e_3$; 有 $\alpha = k_1\varepsilon_1 + k_2\varepsilon_2$, $T(\alpha) = k_1T(\varepsilon_1) + k_2T(\varepsilon_2)$, 又 $T(\varepsilon_1) = \varepsilon_1$, $T(\varepsilon_2) = \varepsilon_2$, $\therefore T(\alpha) = k_1\varepsilon_1 + k_2\varepsilon_2 \in R(T)$ 。 $\therefore \beta \in \ker(T)$, $\therefore T(\beta) = 0$, $T(\beta) \in \ker(T)$

6

解析: 易得 $e_1, \dots, e_r, \beta_1, \dots, \beta_s$ 线性无关,设 $T(\alpha) = a_1 T(e_1) + a_2 T(e_2) + \dots a_r T(e_r)$,有 $\alpha_0 = \alpha - (a_1 e_1 + a_2 e_2 + \dots + a_r e_r)$,有 $T(\alpha_0) = T(\alpha) - (a_1 T(e_1) + a_2 T(e_2) + \dots + a_r T(e_r)) = 0$,故 $\alpha_0 \in \ker(T)$,: α 可以被 $e_1, \dots, e_r, \beta_1, \dots, \beta_s$ 线性表示。故得证。

仲英学业辅导中心简介

西安交通大学仲英学业辅导中心,于2013年6月正式挂牌成立,是全校成立时间最早,规模最大,影响力最强,取得效果最显著的学风建设团队。

中心以大学生终身学习、自主学习能力,及快乐学习、以学习为事业的习惯的培养为使命。我们期望,在学业辅导中心,每一个同学都应当找到适合自己的位置,了解并发挥自己应有的作用。

自成立以来,学业辅导中心一直致力于为同学服务,开展了多项活动:学业辅导巴士车、考前小助手、考前讲座、线上答疑、专业交流会、转专业交流会、考研讲座等。

同时,我们的队伍也是一支团结和谐,向上向善的队伍,100%的"学霸"比例在全校所有学生组织中绝无仅有,工作人员和志愿者中覆盖众多专业的国家奖学金获得者,以及书院几乎所有专业的国家励志奖学金、彭康奖学金获得者。

在这里相处相聚,是我们每个人展示自己,欣赏同侪的绝佳机会,是挖掘自身潜力,提高学业水平的更高平台!

我们每学年都会在大一新生和大二学生中选拔一批优秀的同学成为我们中的一员,具体情况请大家随时关注我们的微信平台与QQ群。(二维码见封底)。

学辅中心微信公众号

学粉群 3.0

/ 仲英书院学业辅导中心出品