



# Introduction to K-means

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center























#### kmeans()



#### **Assigning Clusters**





# Let's practice!





# **Evaluating Different Values of K by Eye**

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center























# Elbow Plot



# Elbow Plot





## Generating the Elbow Plot

```
model <- kmeans(x = lineup, centers = 2)
model$tot.withinss
[1] 1434.5</pre>
```

#### Generating the Elbow Plot

```
library(purrr)
tot withinss <- map dbl(1:10, function(k){</pre>
  model <- kmeans(x = lineup, centers = k)
 model$tot.withinss
elbow df <- data.frame(</pre>
  k = 1:10,
  tot withinss = tot withinss
print(elbow_df)
    k tot withinss
   1 3489.9167
   2 1434.5000
   3 881.2500
    4 637.2500
```

# Generating the Elbow Plot

```
ggplot(elbow_df, aes(x = k, y = tot_withinss)) +
  geom_line() +
  scale_x_continuous(breaks = 1:10)
```







# Let's practice!





# Silhouette Analysis

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

# Soccer Lineup with K = 3





#### Within Cluster Distance: C(i)



#### Within Cluster Distance: C(i)

# 10-> 0--10--20 -10 0 10 20



#### Within Cluster Distance: C(i)







#### Within Cluster Distance: C(i)







#### Within Cluster Distance: C(i)







#### Silhouette Width: S(i)



$$s(i) = \begin{cases} 1 - C(i)/N(i), & \text{if } C(i) < N(i) \\ 0, & \text{if } C(i) = N(i) \\ N(i)/C(i) - 1, & \text{if } C(i) > N(i) \end{cases}$$

## Silhouette Width: S(i)





- 1: Well matched to cluster
- **0:** On border between two clusters
- -1: Better fit in neighboring cluster



#### Calculating S(i)

#### Silhouette Plot

```
sil_plot <- silhouette(pam_k3)
plot(sil_plot)</pre>
```



### Silhouette Plot

```
sil_plot <- silhouette(pam_k3)
plot(sil_plot)</pre>
```



### Average Silhouette Width

pam\_k3\$silinfo\$avg.width
[1] 0.353414

- 1: Well matched to each cluster
- 0: On border between clusters
- -1: Poorly matched to each cluster



# Highest Average Silhouette Width

```
library(purrr)
sil width <- map dbl(2:10, function(k){</pre>
  model <- pam(x = lineup, k = k)
  model$silinfo$avg.width
sil df <- data.frame(</pre>
  k = 2:10,
  sil width = sil width
print(sil df)
         sil width
    2 0.4164141
    3 0.3534140
    4 0.3535534
          0.3724115
```

# Choosing K Using Average Silhouette Width

```
ggplot(sil_df, aes(x = k, y = sil_width)) +
  geom_line() +
  scale_x_continuous(breaks = 2:10)
```



# Choosing K Using Average Silhouette Width

```
ggplot(sil_df, aes(x = k, y = sil_width)) +
  geom_line() +
  scale_x_continuous(breaks = 2:10)
```







# Let's practice!





# Making Sense of the K-Means Clusters

Dmitriy (Dima) Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

#### Wholesale Dataset

- 45 observations
- 3 features:
  - Milk Spending
  - Grocery Spending
  - Frozen Food Spending

```
print(customers_spend)
    Milk Grocery Frozen
   11103
           12469
                     902
    2013
                     909
            6550
    1897
                   417
            5234
    1304
            3643
                    3045
    3199
            6986
                    1455
```

# Segmenting with Hierarchical Clustering





# Segmenting with Hierarchical Clustering

| cluster | Milk  | Grocery | Frozen | cluster size |
|---------|-------|---------|--------|--------------|
| 1       | 16950 | 12891   | 991    | 5            |
| 2       | 2512  | 5228    | 1795   | 29           |
| 3       | 10452 | 22550   | 1354   | 5            |
| 4       | 1249  | 3916    | 10888  | 6            |

# Segmenting with K-means

- Estimate the "best" k using average silhouette width
- Run k-means with the suggested k
- Characterize the spending habits of these clusters of customers





# Let's cluster!