

UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE GRADUAÇÃO COORDENADORIA DE APOIO AO DESENVOLVIMENTO DO ENSINO

		21102110							
PLANO DE CURSO									
Centro: CCET		Centro de Ciências Exatas e Tecnológicas							
Curso: 30		Bacharelado em Sistemas de Informação							
Disciplin		Fundamentos da Computação							
Código:	CCET	035	1 3 1		0 h	Créditos	: 4		
		Horá		ria:					
Pré-				Período: 5º		Semestre		1º/2019	
requisito:					Letivo/Ano:				
Professo	r(a):	Raoni Simões Fe		Fer	reira		Titulação:	Doutor	
1 Emon	t a					-			

1. Ementa

Linguagens formais e autômatos. Autômatos de estado finitos e sua representação. Modelos computáveis e máquina de Turing. Teoria da computação.

2. Objetivo Geral:

Possibilitar aos alunos uma compreensão dos tópicos de fundamentos da teoria da computação e fornecer uma contextualização matemática da área da computação.

3. Objetivos específicos

- Desenvolver e avaliar autômatos finitos determinísticos e não determinísticos como ferramenta computacional
- Desenvolver e avaliar autômatos com pilha como ferramenta computacional
- Desenvolver e avaliar Máquinas de Turing como ferramenta computacional
- Reconhecer e especificar Linguagens e Gramáticas formais e compreender a Hierarquia de Chomski
- Entender e aplicar a Teoria da Computabilidade

4. Conteúdo Programático:

Unidades Temáticas	C/H
1. Linguagens regulares 1.1. Revisão da teoria de conjuntos 1.2. Autômatos finitos e suas variações 1.3. Gramáticas 1.4. Expressões regulares 1.5. Propriedades das linguagens regulares	30h
2. Linguages livres de contexto 2.1. Autômatos de Pilha 2.2. Gramáticas de livres de contexto 2.3. Hierarquia de Chomski	24h

3. Máquinas universais e computabilidade

- 3.1. Máguina de Turing
- 3.2. Computabilidade

6h

5. Procedimentos Metodológicos:

Apresentação do conteúdo através de aulas expositivas teóricas; fornecimento e resolução de exercícios, trabalhos práticos em classe, individual e (ou) em equipe, para avaliar o conhecimento adquirido; demonstração da solução de exercícios.

6. Recursos Didáticos

Notebook, data show, quadro branco e uso do software JFLAP no laboratório de informática para resolução de trabalhos práticos e exercícios em sala de aula.

7. Avaliação

Avaliações contínuas (testes); aplicação de listas de exercícios.

8. Bibliografia

Bibliografia Básica

Vieira, Newton J. Introdução aos Fundamentos da Computação:

Linguagens e Máquinas. Pioneira Thomson Learning, 2006.

Menezes, P. B. **Linguagens Formais e Autômatos**. 6ª ed. Porto Alegre: Bookman. 2011.

Hopcroft, J., Motwani, R., Ullman, J. Introdução à Teoria de Autômatos, Linguagens e Computação. Elsevier, 2002.

Bibliografia Complementar

Lewis, H. R., Christos H, P. **Elementos da teoria da computação**. 2ª ed. Porto Alegre: Bookman, 2000.

Notas de aula disponibilizada em https://sites.google.com/site/profraoniferreira/.

Aprovação no Colegiado de Curso: