K-means Clustering Algorithm

Supervised Learning

Training set: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),(x^{(3)},y^{(3)}),\dots,(x^{(m)},y^{(m)})\}$

Unsupervised Learning

Application on Clustering

Market Segmentation

Application on Clustering (Cont'd)

Social Network Analysis

Application on Clustering (Cont'd)

Astronomical Data Analysis

K-means Algorithm

What does K represents in this clustering algorithm?

Answer: The number of cluster we want to create.

A real life application of K-means Clustering

K-means Clustering Algorithm in general

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

How to choose the value of K?

Elbow method:

Thanks for letting me finish the class real quick!

Or did you?

Any Question/Suggestion?