Procédures de décision

LTL sans opérateurs du passé

Pour cette partie, on va considérer une variante de LTL où il n'y a ni Since, ni F-1, ni X-1.

Pourquoi? pour simplifier un peu la suite... sans rien perdre sur le fond:

- les mêmes techniques marchent pour LTL avec passé...
- les opérateurs du passé sont pratiques pour exprimer des propriétés mais pas indispensables: on peut toujours se débrouiller avec Until et X.

Débrouiller? Toute formule de LTL avec passé est équivalente à une formule sans passé lorsqu'on les interprète au début d'une exécution.

LTL sans opérateurs du passé

Syntaxe:

$$\Phi, \psi ::= \mathsf{P} \mid \neg \Phi \mid \Phi \lor \psi \mid \Phi \land \psi \mid \mathbf{X} \Phi \mid \psi \mathbf{U} \Phi$$

On peut interprète les formules de LTL sur une exécution p d'un STE *sans position*!

$$\rho \models P \text{ ssi } P \in L(\rho(0))$$

$$\rho \models \mathbf{X} \oplus ssi \quad \rho^1 \models \Phi$$

$$\rho \models \psi U \varphi$$
 ssi ($\exists i \ge 0$. ($\rho^i \models \varphi$ et $\forall 0 \le j < i$ on a $\rho^j \models \psi$)

 ρ^i est le i-ème suffixe: $\rho(i)\rho(i+1)...$

Simplifier (suite)

2/2

A-t-on besoin du nom des états? Non!

ρ + L = une séquence infinie de sous-ensembles de AP

Exemple:

Si
$$\rho$$
: $q_0 \rightarrow q_1 \rightarrow q_0 \rightarrow q_1 \rightarrow q_0 \rightarrow q_1 \rightarrow \dots$ et $L(q_0)=\{a\}$, $L(q_1)=\{b,c\}$

 $\rho + L = * {a}{b,c}{a}{b,c}{a}{b,c}{a}{b,c}{a}{b,c}{a}{b,c}{a}{b,c}{...}$

=> On peut interprèter les formules de LTL sur une séquence infinie de sous-ensembles de AP!

$$\rho + L$$

$$\rho \models \mathbf{P} \text{ ssi } \mathbf{P} \in L(\rho(0))$$

$$\rho \models \mathbf{X} \oplus \text{ ssi } \rho^1 \models \Phi$$

$$\rho \models \boldsymbol{\psi} \mathbf{U} \oplus \text{ ssi } (\exists i \geq 0. (\rho^i \models \Phi \text{ et } \forall 0 \leq j < i \text{ on a } \rho^j \models \boldsymbol{\psi})$$

seq de ss-ens de AP

```
\pi \models \mathbf{P} \text{ ssi } \mathbf{P} \in \pi(0)
\pi \models \mathbf{X} \Leftrightarrow \text{ssi } \pi^1 \models \varphi
\pi \models \psi \mathbf{U} \Leftrightarrow \text{ssi } (\exists i \geq 0. (\pi^i \models \varphi \text{ et } \forall 0 \leq j < i \text{ on a } \pi^j \models \psi)
```

Une histoire de mots!

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

Lorsqu'on travaille avec LTL, **S** est vu comme un ensemble d'exécutions étiquetées:

$$\rho: q_0 \to q_1 \to \dots + L: Q \to 2^{AP}$$

Désormais, on voit $\mathbf S$ comme un ensemble de « séquences de sousensembles de AP » ... on parle de $\mathbf T$

Une trace est un mot infini sur l'alphabet 2AP

Le problème « $S \models \phi$? » est une histoire de mots...

De cette histoires de mots on va en faire une histoire de langages...

Des langages, on passera bien sûr aux automates!

Automates de mots infinis

etat final

-> les mots finis qui se terminent par a.

Un automate de mots infini:

-> les mots infinis qui contiennent un nb infini de a.

🕽 : état répété -> a

-> automate de Büchi.

Une histoire de mots!

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

Donc S est vu un ensemble de mots.

Donc **S** est vu comme un **langage** \rightarrow Traces(**S**)

Exec: $q_0.q_1^{\omega} \cup q_0.q_2^{\omega} \cup q_0.q_2^{+}.q_1^{\omega}$

Langage des traces:

 $\{a,b\}.\{b\}^{\omega} \cup \{a,b\}.\{a\}^{\omega} \cup \{a,b\}.\{a\}^{+}.\{b\}^{\omega}$

Automates de mots infinis

Automate de Büchi:

Un automate de Büchi est un quintuplet $A=(Q,Q_0,\rightarrow,Acc,\Sigma)$ avec:

- Q un ensemble fini d'états,
- Q₀ ⊆ Q l'ensemble des états initiaux,
- ∑ l'alphabet,
- \rightarrow \subseteq Q x Σ x Q un ensemble de transitions, et
- Acc ⊆ Q un ensemble d'états acceptants.

Un mot infini $w = w_0 w_1 w_2 ... \in \Sigma^{\omega}$ est accepté par A ssi il existe une séquence infinie $\rho = q_0 q_1 q_2 ... d'états de Q tels que:$

- q_0 ∈ Q_0 ,
- pour tout i≥0, on a: (q_i,w_i,q_{i+1}) ∈ →
- Si Inf(ρ) désigne les états qui apparaissent infiniment souvent le long de ρ, alors Inf(ρ) ∩ Acc ≠ Ø

 $\mathcal{L}(A)$ = l'ensemble des mots acceptés par A.

Une histoire de mots!

Une formule ϕ de LTL décrit une propriété le long d'un mot infini sur l'alphabet 2^{AP} .

Les modèles de ϕ de LTL (notés $mod(\phi)$) sont l'ensemble des mots où ϕ est vraie.

Donc $mod(\phi)$ = les mots infinis sur l'alphabet 2^{AP} qui vérifient ϕ .

 $mod(\phi)$ est donc aussi un **langage**!

Problèmes de vérification

Model-checking:

input: un modèle (STE) $\bf S$ et une formule ϕ

output: oui ssi $S \models \varphi$.

 $Traces(S) \subseteq mod(\phi)$

Satisfaisabilité:

input: une formule φ

output: oui ssi il existe un modèle S t.q. $S \models \varphi$.

 $mod(\varphi) \neq \emptyset$

Problèmes de vérification pour LTL

Quel lien entre Traces(S) et $mod(\phi)$?

1) Traces(S) \subseteq mod(φ)

 $S \models \varphi$

2) Traces(S) n $mod(\phi) = \emptyset$

$$S \vDash \neg \varphi$$

$$mod(\neg \Phi) = (2^{AP})^{\omega} \setminus mod(\Phi)$$

 $(2^{AP})^{\omega}$ = ens. de tous les mots infinis sur l'alphabet 2^{AP} .

3) sinon

$$S \not\models \varphi$$
, $S \not\models \neg \varphi$

Rappel:
$$S \models \varphi \iff (\rho \models \varphi \ \forall \rho \in Exec(S))$$

Construire les modèles de φ

Etant donnée φ , on sait construire un automate \mathscr{A}_{φ} qui reconnait les modèles de φ !

C'est-à-dire tel que:

$$\mathsf{mod}(\varphi) = \mathscr{L}(\mathscr{A}_{\varphi})$$

Pourquoi chercher des automates ? Parce que nous disposons de nombreux outils pour les manipuler (union, intersection, complément, inclusion, *etc.*)!

Satisfaisabilité de LTL

Comment tester si il existe un modèle pour φ?

 \rightarrow Tester $mod(\phi)$ est non vide.

C'est-à-dire tester si $\mathscr{L}(\mathscr{A}_{\phi}) \neq \varnothing$?

Model-checking de LTL

Comment tester si $S \models \varphi$?

Tester Traces(S) \subseteq mod(φ)?

C'est-à-dire tester si $\mathscr{L}(\mathscr{A}_{S}) \subseteq \mathscr{L}(\mathscr{A}_{\Phi})$?

On préfère plutôt tester si Traces(S) n $\text{mod}(\neg \varphi) = \emptyset$ (donc tester si $\mathcal{L}(\mathcal{A}_S)$ n $\mathcal{L}(\mathcal{A}_{\neg \varphi}) = \emptyset$) car tester le vide est plus simple que tester l'inclusion de deux langages, et faire l'intersection est facile.

Satisfaisabilité et Model-checking de LTL

Les deux problèmes se ramènent donc aux deux questions suivantes:

- $\mathscr{L}(\mathscr{A}_{\phi}) \neq \varnothing$
- $\mathscr{L}(\mathscr{A}_{S}) \cap \mathscr{L}(\mathscr{A}_{\neg \Phi}) = \varnothing$?

Tout repose sur les deux automates $\mathscr{A}_{\mathbf{S}}$ et $\mathscr{A}_{\mathbf{\varphi}}$ (ou $\mathscr{A}_{\neg \mathbf{\varphi}}$). $\mathscr{A}_{\mathbf{S}}$ ne pose pas de problème: il est facile à construire à partir de \mathbf{S} .

Et \mathcal{A}_{ϕ} ?

