Definition (Population)

A population, denoted by U, is a set of elements of interest.

Definition (Study variable)

A *study variable* is an attribute of interest associated to each element in the population.

ID	Contact	x ₁	x ₂		ΧJ
$\overline{D_1}$	$Contact_1$	<i>x</i> ₁₁	<i>X</i> ₂₁		х _{J1}
ID_2	$Contact_2$	<i>x</i> ₁₂	X22	• • •	x_{J2}
:	:	:	:	٠	:
ID_N	$Contact_N$	X _{1N}	X ₂ N		XJN

Table: Array collecting the information in a statistical study

Definition (Parameter)

A parameter is a characteristic of interest from the population.

Definition (Mean)

The average or arithmetic mean or simply, the mean, of a numerical variable x in the population U is defined as

$$\bar{x}_U \equiv \frac{1}{N} \sum_U x_i$$

i.e. the sum of all values of \boldsymbol{x} in the population divided by the size of the population.

In particular, the mean of a dummy variable x is known as a proportion and is denoted by P_x .

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10	
X_i	8	15	5	36	40	30	9	21	32	27	
Уi	1	1	1	1	0	1	0	0	1	0	

Table: Points of ten students in an exam in Statistics

Find the mean of x and the mean of y.

5	8 9	15	21	27	30	32	36	40

Definition (Median)

Let x be a variable that is at least ordinal. The *median* of x, \check{x}_U , is the value that divides the population in two halves, in such a way that (at least) half of the x-values are smaller or equal than \check{x}_U and (at least) half of the x-values are larger or equal than \check{x}_U .

$$reve{x}_U \equiv egin{cases} x_{\left(rac{N+1}{2}
ight)} & ext{if N is odd} \\ rac{1}{2} \left(x_{\left(rac{N}{2}
ight)} + x_{\left(rac{N}{2}+1
ight)}
ight) & ext{if N is even} \end{cases}$$

Let U be the population of N = 10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10	
X_i	8	15	5	36	40	30	9	21	32	27	
Уi	1	1	1	1	0	1	0	0	1	0	

Table: Points of ten students in an exam in Statistics

Find the median of x and the median of y.

Definition (Mode)

The *mode* of a variable x in the population U, \dot{x}_U , is defined as the most frequently occurring value.

Let U be the population of N = 10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10
X_i	8	15	5	36	40	30	9	21	32	27
Уi	1	1	1	1	0	1	0	0	1	0

Table: Points of ten students in an exam in Statistics

Find the mode of x and the mode of y.

Consider the following variables:

$$x_1 = \{0, 1, 2, 4, 6, 7, 8, 9, 9, 9\}$$

 $x_2 = \{1, 2, 6, 7, 8, 8, 8, 9, 9, 9\}$
 $x_3 = \{6, 6, 6, 7, 8, 8, 8, 9, 9, 9\}$

Find the mode of x_1 , x_2 and x_3 .

Definition (Percentiles)

Let x be a variable that is at least ordinal. For p in the interval (0,1), the 100pth percentile of x, $\breve{x}_{p,U}$, is the value that divides the population in two parts, in such a way that (at least) 100p% of the x-values are smaller or equal than $\breve{x}_{p,U}$ and (at least) 100(1-p)% of the x-values are larger or equal than $\breve{x}_{p,U}$.

More formally, let c = (N-1)p+1, a be the integer part of c and b be the decimal part of c, the 100pth percentile is

where $x_{(a)}$ and $x_{(a+1)}$ are, respectively, the ath and (a+1)th observations in the x-ordered population.

Let U be the population of N = 10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10
X_i	8	15	5	36	40	30	9	21	32	27
Уi	1	1	1	1	0	1	0	0	1	0

Table: Points of ten students in an exam in Statistics

Find the 90th percentile of x and y.

Definition (Quartiles)

The *quartiles* are the percentiles that divide the population into four quarters, so the first quartile is the 25th percentile, $\check{x}_{25,U}$; the second quartile is the 50th percentile, $\check{x}_{50,U}$; and the third quartile is the 75th percentile, $\check{x}_{75,U}$.

Note that the second quartile coincides with the median, \breve{x}_U .

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10
X_i	8	15	5	36	40	30	9	21	32	27
Уi	1	1	1	1	0	1	0	0	1	0

Table: Points of ten students in an exam in Statistics

Find the first quartile of x and y.

Definition (Range)

Let x be a variable that is at least ordinal, the *range* is the difference between the maximum and the minimum of x, i.e.

$$range_{x,U} = x_{(N)} - x_{(1)}.$$

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam . The following table shows the observed values:

Table: Points of ten students in an exam in Statistics

Find the range of x.

Definition (Interquartile range)

Let x be a variable that is at least ordinal, the *interquartile range* of x in the population U, $IQR_{x,U}$, is the difference between the third and the first quartiles of x, i.e.

$$IQR_{x,U} = \breve{x}_{0.75,U} - \breve{x}_{0.25,U}.$$

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam . The following table shows the observed values:

Table: Points of ten students in an exam in Statistics

Find the interquartile range of x.

Definition (Variance)

There are two slightly different definitions of the *variance*. The first one (that is more intuitive) is

$$S_{x,U}^{'2} \equiv \frac{1}{N} \sum_{U} (x_i - \bar{x}_U)^2,$$

which is simply the mean of the square distances from each observation to the mean. The second definition uses N-1 instead of N in the denominator, i.e.

$$S_{x,U}^2 \equiv \frac{1}{N-1} \sum_{ij} (x_i - \bar{x}_U)^2$$
.

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam and y_i be a dummy variable indicating the sex of the student (male=0; female=1). The following table shows the observed values:

i	1	2	3	4	5	6	7	8	9	10
X_i	8	15	5	36	40	30	9	21	32	27
Уi	1	1	1	1	0	1	0	0	1	0

Table: Points of ten students in an exam in Statistics

Find the variance of x, $S_{x,U}^2$, and the variance of y, $S_{y,U}^2$.

Definition (Standard deviation)

The *standard deviation* is the positive square root of the variance. As we have two different definitions of the variance, we also have two different definitions of the standard deviation:

$$S'_{x,U} \equiv \sqrt{S'^{2}_{x,U}} = \sqrt{\frac{1}{N} \sum_{U} (x_i - \bar{x}_U)^2}$$

and

$$S_{x,U} \equiv \sqrt{S_{x,U}^2} = \sqrt{\frac{1}{N-1} \sum_{U} (x_i - \bar{x}_U)^2}.$$

Let U be the population of N=10 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam . The following table shows the observed values:

Table: Points of ten students in an exam in Statistics

Graphical

Definition (Skewness)

The *skewness* of a numerical variable x in the population U is defined as

$$Sk_{x,U} \equiv rac{rac{1}{N}\sum_{U}(x_i - \bar{x}_U)^3}{S_{x,U}^3}$$

where \bar{x}_U is the mean and $S_{x,U}$ is the standard deviation.

Find the skewness of x_1 , x_2 and x_3 .

Definition (Outliers)

The *i*th element of the population U is an outlier with respect to the variable x if its value x_i satisfies

$$x_i < \breve{x}_{0.25,U} - 1.5IQR_{x,U}$$
 or $x_i > \breve{x}_{0.75,U} + 1.5IQR_{x,U}$

where $\breve{x}_{25,U}$, $\breve{x}_{75,U}$ and $IQR_{x,U}$ are, respectively, the first quartile, the third quartile and the interquartile range.

One of the authors asked the prominent statistician John W. Tukey [...] why the outlier nomination rule cut at 1.5 IQRs beyond each quartile. He answered that the reason was that 1 IQR would be too small and 2 IQRs would be too large. That works for us.

Let U be the population of N=11 students taking a Master course in statistics, let x_i be the number of points the ith student got in the final exam . The following table shows the observed values:

Table: Points of eleven students in an exam in Statistics

Identify any potential outlier in the population of students.

5	4	7	6	5	4	5	5	5	5
8	6	2	1	4	7	6	6	3	6
8	8	8	5	2	4	4	1	4	6
2	1	6	3	4	7	5	3	9	11
6	4	7	6	4	7	10	7	2	3
7	9	9	4	7	3	7	2	1	3
2	2	4	5	7	4	2	2	3	3
6	2	7	4	10	7	3	4	5	7
4	2	6	7	4	8	6	6	4	9
4	4	2	3	5	6	4			

1	1	1	1	2	2	2	2	2	2
2	2	2	2	2	2	3	3	3	3
3	3	3	3	3	3	4	4	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	5	5	5	5
5	5	5	5	5	5	5	6	6	6
6	6	6	6	6	6	6	6	6	6
6	7	7	7	7	7	7	7	7	7
7	7	7	7	7	8	8	8	8	8
9	9	9	9	10	10	11			

Value	Absolute frequency	Relative frequency	Cumulative absolute	Cumulative relative		
x_k	f_k	W_k	F_k	W_k		
1	4	0.0412	4	0.0412		
2	12	0.1237	16	0.1649		
3	10	0.1031	26	0.2680		
4	20	0.2062	46	0.4742		
5	11	0.1134	57	0.5876		
6	14	0.1443	71	0.7320		
7	14	0.1443	85	0.8763		
8	5	0.0515	90	0.9278		
9	4	0.0412	94	0.9691		
10	2	0.0206	96	0.9897		
11	1	0.0103	97	1.0000		
Total	97	1				

Let us consider the age (in years) of ten individuals as of December 31, 2018 (= x), and the age (in years) of the same individuals as of December 31, 2023 (= y):

Туре	Parameter	Χ	У
	First quartile	31.25	36.25
	Mean	35.2	40.2
Location	Median	35.5	40.5
	Third quartile	38.75	43.75
	Range	20	20
Variability	IQR	7.5	7.5
	Variance	35.29	35.29
	Standard deviation	5.94	5.94
Shape	Skewness	0.16	0.16

Let us consider the price of ten cell phones in a particular store in Swedish Krona SEK (= x) and in Czech Koruna CZK (= y):

```
2000 7000 8500 9800 11500 14500 10808097500 20500 X

43400 15590 18445 21206 24855 31465 347205805 37975 44465 Y
```

Туре	Parameter	Х	у
	First quartile	8825	19150
	Mean	12380	26860
Location	Median	13000	28210
	Third quartile	16375	35530
	Range	18500	40150
Variability	IQR	7550	16380
	Variance	31 770 000	149 600 000
	Standard deviation	5636	12230
Shape	Skewness	-0.3094	-0.3094

Let us consider the temperatures in a weather station in Sweden measured at twelve different time points over a year in Fahrenheit (=x) and Celsius (y):

Туре	Parameter	X	У
	First quartile	25.70	-3.50
	Mean	41.90	5.50
Location	Median	38.30	3.50
	Third quartile	64.85	18.25
	Range	73.80	41.00
Variability	IQR	39.15	21.75
	Variance	563.5	173.9
	Standard deviation	23.74	13.19
Shape	Skewness	-0.0984	-0.0984

Result

Let x_1, x_2, \dots, x_N be the observations of a variable x in a population U, let a and b be two constants and let

$$y_i = b(x_i + a)$$
 for all $i = 1, 2, \dots, N$.

We have

$$ar{y}_U = b(ar{x}_U + a)$$
 $\dot{y}_U = b(\dot{x}_U + a)$ $ar{y}_{p,U} = b(ar{x}_{p,U} + a)$ $Sk_{y,U} = Sk_{x,U}$ range $_{y,U} = b$ range $_{y,U}$ $IQR_{y,U} = b$ $IQR_{y,U}$ $S_{y,U}^2 = b^2$ $S_{y,U}^2$

Result

Let x_1, x_2, \dots, x_N be the observations of a variable x in a population U and let

$$z_i = \frac{x_i - \bar{x}_U}{S_{x,U}}$$
 for all $i = 1, 2, \dots, N$.

then

$$\bar{z}_U = 0$$
 and $S_{z,U} = 1$.

The variable z is called the *standard form* of x and the process of substracting the mean to a variable and then dividing by its standard deviation is called *standardization*. The resulting z-values are called *standardized values* or simply the z-scores.

i	1	2	3	4	5	6	7	8	9	10
Xi	8	15	5 -1.38	36	40	30	9	21	32	27
Zį	-1.14	-0.58	-1.38	1.09	1.41	0.61	-1.06	-0.10	0.77	0.38

Table: Points of ten students in an exam in Statistics and their z-scores

i	1	2	3	4	5	6	7	8	9	10
Xi	8	15	5	36	40	30	9	21	32	27
z_i	-1.14	-0.58	-1.38	1.09	1.41	0.61	-1.06	-0.10	0.77	0.38
Xi	48	29	26	32	41	37	35	32		
Zį	1.85	-0.86	-1.28	-0.43	0.86	0.29	0.00	-0.43		

Table: Points of ten students in an exam in Statistics and their z-scores

Figure: Dotplot of the number of employees of 97 startups

Figure: Bar chart of the grades of 120 students in an exam.

Figure: Bar chart of the the number of men and women in a company.

Figure: Bar chart of the the number of men and women in a company.

Figure: Pie chart of the grades of 120 students in an exam and an assignment.

Figure: Dotplot of the number of points of 120 students in an exam.

Figure: Histogram of the number of points of 120 students in an exam.

Figure: Box-and-whisker plot of the number of points of 120 students in an exam.