VE475

Introduction to Cryptography

Homework 5

Manuel — UM-JI (Summer 2020)

Non-programming exercises:

- Write in a neat and legible handwriting, or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb and object)

Progamming exercises:

- Write a README file for each program
- Upload an archive with all the programs onto Canvas

Ex. 1 — RSA setup

Most RSA setups require the message m to be coprime to the RSA modulus n. In the exercise we will prove that m can still be decrypted if gcd(m, n) is not 1.

- 1. Why is it likely for n to be coprime with m?
- 2. Let k be a multiple of $\varphi(n)$.
 - a) Show that if gcd(m, n) = 1, then $m^k \equiv 1 \mod p$ and mod q.
 - b) Prove that for any arbitrary m, $m^{k+1} \equiv m \mod p$ and mod q.
- 3. Let e and d the RSA encryption and decryption exponent, respectively.
 - a) Show that $m^{ed} \equiv m \mod n$ for all m.
 - b) Conclude on the necessity of having gcd(m, n) = 1.

Ex. 2 — RSA decryption

The ciphertext 5859 was obtained using RSA encryption with n=11413 and e=7467. Recover the plaintext.

Ex. 3 — Breaking RSA

Wiener's attack allows to recover the decryption exponent under the condition that it is small enough.

- 1. Why would one select short encryption or decryption keys?
- 2. Search and explain how Wiener's attack is working.
- 3. How to ensure not generate a weak decryption key?
- 4. Given n=317940011 and e=77537081, apply Wiener's attack in order to factor n. Either provide the source code of your program or clearly detail all the steps.

Ex. 4 — *Programming*

Implement the three functions generate, encrypt and decrypt, which generate the RSA parameters, encrypt, and decrypt, respectively.

The function generate takes as input a security level and generate p and q such that n is long enough to match the required security level. No special requirement is requested on encrypt and decrypt.

Common security levels:

Security level (bits)	80	112	128	192	256
RSA modulus (bits)	1024	2048	3072	7680	15360

Ex. 5 — Simple questions

Let n, e, d, p, q be the usual RSA parameters.

- 1. A message m is encrypted into the ciphertext c. Explain how to run a CCA attack on "texbook RSA".
- 2. Instead of using a single exponent one wants to encrypt twice using a single n but two different exponents. Is this double encryption adding any security? Explain your answer.
- 3. Let n = 642401. Knowing that $516107^2 \equiv 7 \mod n$ and $187722^2 \equiv 4 \cdot 7 \mod n$ factorize n.
- 4. Describe how an RSA scheme would work if instead of the two primes p and q, three primes p, q, and r were used. Explain the drawback of such a setup.
- 5. Determine the smallest generator of $U(\mathbb{Z}/97\mathbb{Z})$.
- 6. Consider the multiplicative group $G = U(\mathbb{Z}/101\mathbb{Z})$.
 - a) Prove that 2 is a generator of G.
 - b) In G, determine $log_2 24$, knowing that $log_2 3 = 69$.
 - c) In G, determine $log_2 24$, knowing that $log_2 5 = 24$.
- 7. Knowing that $3^6 \equiv 44 \mod 137$, and $3^{10} \equiv 2 \mod 137$, find $0 \le x \le 135$ such that $3^x \equiv 11 \mod 137$.
- 8. Let $G = U(\mathbb{Z}/11\mathbb{Z})$
 - a) Compute 6^5 in G.
 - b) Prove that 2 is a generator of G
 - c) Let x be such that $2^x \equiv 6 \mod 11$. Without calculating it, decide whether x is even or odd.

Ex. 6 — *DLP*

In this exercise we want to determine x such that $3^x \equiv 2 \mod 65537$.

- 1. Prove that 2048 divides x, while 4096 does not.
- 2. How many possible choices need to be considered for x? Determine x.
- 3. Can the Pohlig-Hellman algorithm be applied to this example? If so show the details.
- 4. Explain why such primes are not fitting a cryptographic context.

Note: in homework 4 exercise 2 it was proved that 3 is a generator of $U(\mathbb{Z}/65537\mathbb{Z})$.