Combining Machines

$$M_1 \xrightarrow{a} M_2$$

$$\downarrow b$$

$$M_3$$

(ii) Operate as M, until it halts
(iii) I the Current Symbol is

(ii) operation M2

(d) if
$$\gamma \in H_1$$

How
$$S(\gamma, \alpha) = B_2$$

$$S(\gamma, \beta) = S_3$$

$$S(9,5) = 83$$
and
$$S(9,5) = H$$

$$M_{1} = (K_{1} / \sum_{j} S_{1} / S_{1j} H_{1})$$
 $M_{2} = (K_{2} / \sum_{j} S_{2} / S_{2} / H_{2})$
 $M_{3} = (K_{3} / \sum_{j} S_{3} / H_{3})$
 $M_{3} = (K_{3} / \sum_{j} S_{3} / H_{3})$
 $M_{3} = (K_{3} / \sum_{j} S_{3} / H_{3})$
 $M_{4} = (K_{1} / \sum_{j} S_{1} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{1} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{1} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{1} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{1} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{2} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{2} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{2} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{2} / S_{2} / H_{2})$
 $M_{5} = (K_{1} / \sum_{j} S_{2} / S_{2} / H_{2})$

$$M = (K, \Sigma, \delta, \lambda, H)$$

$$Where K = K_1 U K_2 U K_3$$

$$\delta = \delta_1$$

$$H = H_2 U H_3$$

For each
$$\sigma \in \Sigma$$
 and $q \in K-H$, $S(q, \sigma)$ is defined as follows:

(a) if
$$q \in K_1 - H_1$$
, then $\delta(q_1 - \sigma) = \delta_1(q_1 - \sigma)$
(b) if $q \in K_2 - H_2$, then $\delta(q_1 - \sigma) = \delta_2(q_1 - \sigma)$
(c) if $q \in K_3 - H_3$, then $\delta(q_1 - \sigma) = \delta_2(q_1 - \sigma)$

(c) If
$$q \in K_3 \longrightarrow H_{3}$$
, then $S(q, \sigma) = S_2(q, \sigma)$

With TM Computing

The input string, with no blank symbol in it, has a leftment symbol D, with a blank to the left, and blank to the right

(1) if (s, DUW) yields an accepting configuration
then M accepts an impact w

if (by DU w) yield an rejecting configuration

Decidable Machine

M decides a language [$(Z_0^k Whu Z_0 = Z_0 - (U_1 D_1))$]

Turing

Decidethe

(i) if $W \in L$ then M rejects WThen Much in the string $U \in L$ then M rejects URecursive Language 1 = { n b c : n 3 0} ____ Construct a Turing Decidable
Machine.

D a and cc