Prepared by: ISRAFIL SHARDER AVEEK

```
১. সার্বিক সেট U = \{x \in N : x বিজোড় সংখ্যা এবং 3 < x < 15\}
```

$$B = \{5, 7, 11, 13\}$$

 $C = \{x \in N : x, 3$ এর গুণিতক এবং $x < 15\}$

[ঢাকা বোর্ড-২০২৪]

8

(ক)
$$f(a) = a^3 - 4a^2 + 5a + 2b$$
 হলে b এর মান নির্ণয় কর, যখন $f(-1) = 0$.

- (খ) A' U (B\C) নির্ণয় কর।
- (গ) P(B) নির্ণয় কর। দেখাও যে, P(B) এর উপাদান 2^n কে সমর্থন করে। যেখানে, n, B এর উপাদান সংখ্য।

১ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $f(a) = a^3 - 4a^2 + 5a + 2b$

$$f(-1) = (-1)^3 - 4(-1)^2 + 5(-1) + 2b$$

= -1 - 4 - 5 + 2b = -10 + 2b

প্রশ্নমতে,
$$f(-1)=0$$

বা,
$$-10 + 2b = 0$$

বা,
$$2b = 10$$

বা, b =
$$\frac{10}{2}$$

$$\therefore b = 5$$

নির্ণেয় মান, b = 5.

(খ) দেওয়া আছে, $U = \{x \in \mathbb{N} : x$ বিজোড় সংখ্যা এবং $3 < x < 15\}$, অর্থাৎ, যে সকল স্বাভাবিক বিজোড় সংখ্যা 3 অপেক্ষা বড় এবং 15 অপেক্ষা ছোট স্বাভাবিক বিজোড় সংখ্যাগুলো হলো: 5, 7, 9, 11, 13.

অর্থাৎ, যে সকল স্বাভাবিক সংখ্যা 7 অপেক্ষা বড় এবং 15 অপেক্ষা ছোট তাদের সেট।

7 অপেক্ষা বড় এবং 15 অপেক্ষা ছোট স্বাভাবিক সংখ্যাগুলো হলো: 8, 9, 10, 11, 12, 13, 14.

যেহেতু সার্বিক সেট U হচ্ছে 3 অপেক্ষা বড় এবং 15 অপেক্ষা ছোট বিজোড় স্বাভাবিক সংখ্যা সেট।

$$\therefore A = \{9, 11, 13\} [: 8, 10, 12, 14 \setminus \notin U]$$

$$B = \{5, 7, 11, 13\}$$

$$C = \{x \in N : x, 3$$
 এর গুণিতক এবং $x < 15\}$

অর্থাৎ, যে সকল স্বাভাবিক সংখ্যা 3 এর গুণিতক এবং 15 অপেক্ষা ছোট, তাদের

এখানে, 15 অপেক্ষা ছোট 3 এর গুণিতক স্বাভাবিক সংখ্যাগুলো হলো: 3, 6, 9, 12

যেহেতু সার্বিক সেট U হচ্ছে 3 অপেক্ষা বড় এবং 15 অপেক্ষা ছোট বিজোড় স্বাভাবিক সংখ্যা সেট।

$$: C = \{9\} [: 3, 6, 12 \notin U]$$

$$A' = U \setminus A = \{5, 7, 9, 11, 13\} \setminus \{9, 11, 13\} = \{5, 7\}$$

$$B \setminus C = \{5, 7, 11, 13\} \setminus \{9\} = \{5, 7, 11, 13\}$$

প্রদন্ত রাশি = A' \cup (B\C) = {5,7} \cup {5,7,11,13} = {5,7,11,13} নির্ণেয় A' \cup (B\C) = {5,7,11,13}.

- (গ) দেওয়া আছে, $B = \{5, 7, 11, 13\}$

{7, 11, 13}, {5, 7, 11, 13}} এখানে, B এর উপাদান সংখ্যা, n = 4

- P(B) এর উপাদান সংখ্যা $=16=2^4=2^n$
- \therefore P(B) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)
- ২. A = {x ∈ N : x² > 8 এবং x³ < 200},

$$B = \{x \in \mathbb{N} : x$$
 জোড় সংখ্যা এবং $x \le 6\}$
এবং $C = \{\sqrt{7}\}$

[রাজশাহী বোর্ড-২০২৪]

8

8

- (ক) 35 এবং 45 এর সকল গুণনীয়কের ছেদ সেট নির্ণয় কর।
- (খ) দেখাও যে, $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$.
- (গ) প্রমাণ কর যে, C এর উপাদানটি একটি অমূলদ সংখ্যা।

২ নং প্রশ্নের উত্তর

(ক) মনে করি, 35 এর সকল গুণনীয়কসমূহের সেট A

এখানে,
$$35 = 1 \times 35 = 5 \times 7$$

35 এর গুণনীয়কসমূহ হলো: 1, 5, 7, 35

$$\therefore A = \{1, 5, 7, 35\}$$

আবার, মনে করি, 45 এর সকল গুণনীয়কসমূহের সেট B

এখানে,
$$45 = 1 \times 45 = 3 \times 15 = 5 \times 9$$

45 এর গুণনীয়কসমূহ হলো: 1, 3, 5, 9, 15, 45

$$B = \{1, 3, 5, 9, 15, 45\}$$

$$\therefore A \cap B = \{1, 5, 7, 35\} \cap \{1, 3, 5, 9, 15, 45\}$$
$$= \{1, 5\}$$

নির্ণেয় সেট {1,5}.

- (খ) দেওয়া আছে, $A = \{x \in \mathbb{N} : x^2 > 8$ এবং $x^3 < 200\}$
 - অর্থাৎ, যে সকল স্বাভাবিক সংখ্যার বর্গ 8 অপেক্ষা বড় এবং ঘন 200 অপেক্ষা ছোট. তাদের সেট।

$$x = 1$$
 হলে, $x^2 = 1^2 = 1 \gg 8$ এবং $x^3 = 1^3 = 1 < 200$

$$x = 2$$
 হলে, $x^2 = 2^2 = 4 \gg 8$ এবং $x^3 = 2^3 = 8 < 200$

$$x = 3$$
 হলে, $x^2 = 3^2 = 9 > 8$ এবং $x^3 = 3^3 = 27 < 200$

$$x = 4$$
 হলে, $x^2 = 4^2 = 16 > 8$ এবং $x^3 = 4^3 = 64 < 200$

$$x = 5$$
 হলে, $x^2 = 5^2 = 25 > 8$ এবং $x^3 = 5^3 = 125 < 200$

 $A = \{3, 4, 6\}$

 $B = \{x \in N : x$ জোড় সংখ্যা এবং x ≤ 6\}

অর্থাৎ, যে সকল স্বাভাবিক জোড় সংখ্যা 6 অপেক্ষা ছোট অথবা 6 এর সমান ভাদের সেট।

এখন, 6 অপেক্ষা ছোট অথবা 6 এর সমান স্বাভাবিক জোড় সংখ্যাসমূহ হলো: 2,4,6।

$$: B = \{2, 4, 6\}$$

$$B \setminus A = \{2, 4, 6\} \setminus \{3, 4, 5\} = \{2, 6\}$$

$$A \cap B = \{3, 4, 5\} \cap \{2, 4, 6\} = \{4\}$$

বামপক্ষ = A ∪ B

$$= \{3, 4, 5\} \cup \{2, 4, 6\}$$

$$= \{2, 3, 4, 5, 6\}$$

ডানপক্ষ =
$$(A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

$$= \{3,5\} \cup \{2,6\} \cup \{4\}$$

 $= \{2, 3, 4, 5, 6\}$

∴ বামপক্ষ = ডানপক্ষ

অর্থাৎ,
$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$
. (দেখানো হলো)

- (গ) দেওয়া আছে, $C = \{\sqrt{7}\}$
 - অর্থাৎ, C এর উপাদান হলো : √7

প্রমাণ করতে হবে যে, $\sqrt{7}$ একটি অমূলদ সংখ্যা।

ধরি, $\sqrt{7}$ একটি মূলদ সংখ্যা।

তাহলে এমন দুইটি পরস্পর সহমৌলিক স্বাভাবিক সংখ্যা $p,\,q>1$

থাকবে যে,
$$\sqrt{7} = \frac{p}{q}$$

বা,
$$7 = \frac{p^2}{a^2}$$
[বর্গ করে]

গণিত ২য় অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

অর্থাৎ, $7q=rac{p^2}{q}$ [উভয়পক্ষকে q দ্বারা গুণ করে]

স্পষ্টত, 7q পূর্ণসংখ্যা কিন্তু $\frac{p^2}{q}$ নং, কারণ p ও q স্বাভাবিক সংখ্যা, এরা পরস্পর সহমৌলিক এবং q > 1.

$$∴$$
 $7q$ এবং $\frac{p^2}{q}$ সমান হতে পারে না, অর্থাৎ $7q \neq \frac{p^2}{q}$ $∴$ $\sqrt{7}$ কে $\frac{p}{q}$ আকারে প্রকাশ করা যায় না, অর্থাৎ $\sqrt{7} \neq \frac{p}{q}$

তাই, $\sqrt{7}$ মূলদ সংখ্যা নয়।

সুতরাং \mathbf{C} এর উপাদান $\sqrt{7}$ একটি অমূলদ সংখ্যা। (প্রমাণিত)

- ৩. (i) R = {(x,y) : x ∈ A, y ∈ A এবং x y + 2 = 0}; যেখানে A = $\{-3, -2, -1, 0, 1\}$; (ii) $f(x) = \frac{1+x^3+x^6}{x^3}$ _{x³ [কুমিল্লা বোর্ড-২০২৪]}
 - (ক) A সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ কর।
 - (খ) R অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে ডোর R নির্ণয় কর।
 - (গ) দেখাও যে, $f(x^2) = f(x^{-2})$

৩ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $A = \{-3, -2, -1, 0, 1\}$

এখানে. A একটি পূর্ণ সংখ্যার সেট যেখানে এর উপাদানগুলো – 3 অপেক্ষা ক্ষুদ্রতর নয় এবং 1 অপেক্ষা বৃহত্তর নয়।

অর্থাৎ এর উপাদানগুলো -3 এর সমান অথবা -3 এর বড় এবং 1 এর সমান অথবা 1 এর ছোট।

 \therefore সেট গঠন পদ্ধতিতে $A = \{x \in Z : -3 \le x \le 1\}$ অথবা, $A = \{x : x \in Z \text{ এবং} - 3 \le x \le 1\}$

লক্ষ কর: সেট গঠন পদ্ধতিতে $A = \{x \in Z : -4 < x < 2\}$ আকারেও প্রকাশ করা যায়।

- (খ) দেওয়া আছে, $R = \{(x, y) : x \in A, y \in A \text{ এবং } x y + 2 = 0\}$ যেখানে, $A = \{-3, -2, -1, 0, 1\}$
 - R এর বর্ণিত শর্ত থেকে পাই, x y + 2 = 0

$$\therefore y = x + 2$$

এখন, প্রত্যেক $x \in A$ এর জন্য y = x + 2 এর মান নির্ণয় করি:

, .		,			
X	-3	-2	- 1	0	1
y = x + 2	- 1	0	A.P.C.	2	3

যেহেতু 2, 3 ∉ A; সেহেতু (0, 2), (1, 3) ∉ R

- $\therefore R = \{(-3, -1), (-2, 0), (-1, 1)\}$
- \therefore ডোমেন R = $\{-3, -2, -1\}$
- (গ) দেওয়া আছে, $f(x) = \frac{1+x^3+x^6}{x^2}$

আবার,
$$f(x^{-2}) = \frac{1+(x^{-2})^3+(x^{-2})}{(x^{-2})^3}$$

$$= \frac{1+x^{-6}+x^{-12}}{x^{-6}} = \frac{1+\frac{1}{x^{6}}+\frac{1}{x^{12}}}{\frac{1}{x^{6}}} = \frac{\frac{x^{12}+x^{6}+1}{x^{12}}}{\frac{1}{x^{6}}}$$
$$= \frac{1+x^{6}+x^{12}}{\frac{1}{x^{2}}} \times \frac{x^{6}}{x^{6}} = \frac{1+x^{6}+x^{12}}{\frac{1}{x^{6}}}$$

 $f(x^2) = f(x^{-2})$ (দেখানো হলো

- 8. $A = \{x \in \mathbb{N} : x^3 \le 64\}, C = \{-1, 3, 5, 7\},\$
 - $B = \{x \in \mathbb{Z} : x^2 4x 5 = 0\}$ এবং
 - $S = \{(x, y) : x \in A, y \in A$ এবং $2x y = 2\}$

[ঢাকা বোর্ড-২০২৪]

- (ক) সমাধান সেট নির্ণয় কর: $y^2 = \sqrt{5}y$.
- (খ) $R = C \setminus B$ এর উপাদান সংখ্যা n হলে, দেখাও যে, P(R) এর উপাদান সংখ্যা 2^n কে সমর্থন করে।

(গ) S অন্বয়টি তালিকা পদ্ধতিতে প্রকাশ করে এর ডোমেন ও রেঞ্জ র্নিণয় কর। 8

৪ নং প্রশ্নের উত্তর

(ক) এখানে, $y^2 = \sqrt{5}y$

বা,
$$y^2 - \sqrt{5}y = 0$$
 [পক্ষান্তর করে]

বা,
$$y(y-\sqrt{5})=0$$

$$\therefore$$
 y = 0 অথবা, y $-\sqrt{5}$ = 0

আবার,
$$y - \sqrt{5} = 0$$
 হলে, $y = \sqrt{5}$

নির্ণেয় সমাধান সেট: $\{0, \sqrt{5}\}$

(খ) দেওয়া আছে, $B = \{x \in \mathbb{Z} : x^2 - 4x - 5 = 0\}$

এখানে,
$$x^2 - 4x - 5 = 0$$

বা,
$$x^2 - 5x + x - 5 = 0$$

$$4, x(x-5) + 1(x-5) = 0$$

$$4, (x-5)(x+1) = 0$$

হয়,
$$x - 5 = 0$$
 অথবা, $x + 1 = 0$

$$\therefore x = 5 \qquad \therefore B = \therefore x = -1$$

 $\{-1,5\}$

8

এবং, C = {-1, 3, 5, 7}

$$R = \{3, 7\}$$

$$\therefore P(R) = \{\emptyset, \{3\}, \{7\}, \{3, 7\}\}\$$

R এর উপাদান সংখ্যা, n=2

P(R) এর উপাদান সংখ্যা = $4 = 2^2 = 2^n$

 \therefore $R = C \setminus B$ এর উপাদান সংখ্যা n হলে P(R) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)

(গ) দেওয়া আছে, $A = \{x \in \mathbb{N} : x^3 \le 64\}$

অর্থাৎ, যে সকল স্বাভাবিক সংখ্যার ঘন 64 অপেক্ষা ছোট অথবা 64 এর সমান তাদের সেট A।

এখানে, স্বাভাবিক সংখ্যার সেট, $\mathbb{N} = \{1, 2, 3, 4, 5, \dots \}$

$$x = 1$$
 হলে, $x^3 = 1^3 = 1 < 64$

$$x = 2$$
 হলে, $x^3 = 2^3 = 8 < 64$

$$x = 3$$
 হলে, $x^3 = 3^3 = 27 < 64$

$$x = 4$$
 হলে, $x^3 = 4^3 = 64 < 64$

$$\therefore A = \{1, 2, 3, 4\}$$

এবং
$$S = \{(x, y) : x \in A, y \in A$$
 এবং $2x - y = 2\}$

যেখানে, A = {1, 2, 3, 4}

S এর বর্ণিত শর্ত থেকে পাই,

$$2x - y = 2$$

$$\therefore y = 2x - 2$$

ত্রখন প্রত্যেক $x \in A$ এর জন্য v = 2x - 2 এর মান নির্ণয় করি:

1 1 1 1 1 1 2 2		<i>y</i> =11	100 100 100 11	
X	1	2	3	4
$\mathbf{v} = \mathbf{x} - 2$	0	2	4	6

যেহেতু $0, 6 \in A$; সেহেতু $(1, 0), (4, 6) \in S$

- $: S = \{(2,2),(3,4)\}$
- ∴ ডোমেন, S = {2,3} এবং রেঞ্জ, S = {2,4}.
- ϵ . $A = \{x : x \in \mathbb{N} \text{ এবং } x^2 5x + 6 = 0\},$
 - $B = \{x \in N : x$ মৌলিক সংখ্যা এবং $x < 11\}$,
 - $C = \{3, 4, 5, 7, 9\}$ এবং $f(x) = \frac{3x+1}{3x-1}$

[দিনাজপুর বোর্ড-২০২৪]

- (ক) A সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) দেখাও যে, $P(B \cap C)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে, যেখানে
 - n হচ্ছে $(B \cap C)$ এর উপাদান সংখ্যা।

Prepared by: ISRAFIL SHARDER AVEEK

(গ)
$$\frac{f\left(\frac{1}{\mathbf{x}^2}\right)+1}{f\left(\frac{1}{\mathbf{x}^2}\right)-2}$$
 এর মান নির্ণয় কর।

৫ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, $A = \{x : x \in \mathbb{N} \text{ এবং } x^2 5x + 6 = 0\}$ এখানে, $x^2 - 5x + 6 = 0$ 4x - 3x - 2x + 6 = 04, x(x-3) - 2(x-3) = 0বা, (x-3)(x-2) =
 - হয়, x 3 = 0অথবা, x - 2 = 0বা, x = 2বা. x = 3

 $\therefore x = 2.3$

∴ তালিকা পদ্ধতিতে, A = {2,3}

(খ) দেওয়া আছে, $B = \{x \in N : x$ মৌলিক সংখ্যা এবং $x < 11\}$ অর্থাৎ, যে সকল স্বাভাবিক মৌলিক সংখ্যা 11 অপেক্ষা ছোট, তাদের সেট B। এখানে, 11 অপেক্ষা ছোট স্বাভাবিক মৌলিক সংখ্যাগুলো হলো: 2, 3, 5, 7 $B = \{2, 3, 5, 7\}$

এবং C = {3, 4, 5, 7, 9}

এখন, B ∩ C = {2, 3, 5, 7} ∩ {3, 4, 5, 7, 9} = {3 5, 7}

 $B \cap C = \{3, 5, 7\}$

 $\therefore P(B \cap C) = \{\emptyset, \{3\}, \{5\}, \{7\}, \{3, 5\}, \{3, 7\}, \{5, 7\}, \{3, 5, 7\}\}\$ এখানে, $B \cap C$ এর উপাদান সংখ্যা, n=3

 $P(B \cap C)$ এর উপাদান সংখ্যা $=8=2^3=2^n$

 $: P(B \cap C)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে. যেখানে n হচ্ছে (B ∩ C) এর উপাদান সংখ্যা। (দেখানো হলো)

(গ) দেওয়া আছে, $f(x) = \frac{3x+1}{2x+1}$

$$\therefore f\left(\frac{1}{x^2}\right) = \frac{\frac{3 \cdot x^2 + 1}{3 \cdot \frac{1}{x^2 - 1}}}{\frac{1}{x^2} - 1}$$
$$= \frac{\frac{3}{x^2} + 1}{\frac{3}{x^2} - 1} = \frac{\frac{3 + x^2}{x^2}}{\frac{3 - x^2}{x^2}} = \frac{3 + x^2}{x^2} \times \frac{x^2}{3 - x^2} = \frac{3 + x^2}{3 - x^2}$$

প্রদান্ত রাশি =
$$\frac{f\left(\frac{1}{x^2}\right)+1}{f\left(\frac{1}{x^2}\right)-2}$$

$$= \frac{\frac{3+x^2}{3-x^2}+1}{\frac{3+x^2}{3-x^2}} = \frac{\frac{3+x^2+3-x^2}{3-x^2}}{\frac{3+x^2-6+2x^2}{3-x^2}} = \frac{\frac{6}{3-x^2}}{\frac{-3+3x^2}{3-x^2}}$$

$$= \frac{6}{3-x^2} \times \frac{3-x^2}{-3+3x^2} = \frac{6}{3x^2-3} = \frac{6}{3(x^2-1)} = \frac{2}{x^2-1}$$

নির্ণেয় মান: $\frac{-}{x^2-1}$

- $\mathbf{A}=\{\mathbf{x}\in\mathbf{N}:\mathbf{x}$ মৌলিক সংখ্যা এবং $2\leq\mathbf{x}\leq7\},$ $f(\mathbf{x})=rac{4\mathbf{x}-5}{3\mathbf{x}_{-2}}$ [ঢাকা বোর্ড-২০২৩]
 - (ক) $f(a) = 2a^3 + ka^2 32$ হলে, k এর কোন মানের জন্য f(2) = 0 হবে?
 - (খ) P(A) নির্ণয় করে দেখাও যে, A সেটের উপাদান সংখ্যা n হলে P(A)এর উপাদান সংখ্যা 2^n কে সমর্থন করে।
 - (গ) $\frac{f(x^{-1})+1}{f(x^{-1})-1}=2$ হলে, x এর মান নির্ণয় কর।

৬ নং প্রশ্নের উত্তর

(ক) এখানে, $f(a) = 2a^3 + ka^2 - 32$ $f(2) = 2(2)^3 + k(2)^2 - 32 = 16 + 4k - 32 = 4k - 4k - 32 = 4k -$ প্রশ্নমতে, f(2) = 0বা, 4k - 16 = 0বা, 4k = 16

বা, $k = \frac{16}{4} = 4$ ∴ k = 4

নির্ণেয় মান: k = 4.

(খ) দেওয়া আছে, $A = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $2 \le x \le 7\}$ অর্থাৎ, যেসকল স্বাভাবিক মৌলিক সংখ্যা 2 এর সমান বা 2 অপেক্ষা বড় এবং 7 এর সমান বা 7 অপেক্ষা ছোট তাদের সেট A।

2 এর সমান বা 2 অপেক্ষা বড় এবং 7 এর সমান বা 7 অপেক্ষা ছোট এমন স্বাভাবিক মৌলিক সংখ্যাসমূহ: 2, 3, 5, 7

 $A = \{2, 3, 5, 7\}$

 $\therefore P(A) = \{\emptyset, \{2\}, \{3\}, \{5\}, \{7\}, \{2, 3\}, \{2, 5\}, \{2, 7\}, \{3, 5\}, \{2, 7\}, \{3, 5\}, \{2, 7\}, \{3,$ $\{3,7\},\{5,7\}\{2,3,5\},\{2,3,7\},\{2,5,7\},\{3,5,7\},\{2,3,5,7\}\}$ এখানে, A সেটের উপাদান সংখ্যা, n = 4

P(A) এর উপাদান সংখ্যা $=16=2^4=2^n$

 $\stackrel{..}{.}$ P(A) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)

(গ) দেওয়া আছে, $f(x) = \frac{4x-5}{x}$

$$f(x^{-1}) = \frac{4(x^{-1})^{-5}}{3(x^{-1})^{-2}}$$

$$= \frac{4\cdot\frac{1}{x}^{-5}}{3\cdot\frac{1}{x}^{-2}} = \frac{\frac{4-5x}{x}}{\frac{3-2x}{x}} = \frac{4-5x}{x} \times \frac{x}{3-2x} = \frac{4-5x}{3-2x}$$

- $f(x^{-1}) + 1 = \frac{4-5x}{1} + 1$ [উভয়পক্ষে 1 যোগ করে] $\frac{3-2x}{4-5x+3-2x} = \frac{7-7x}{3-2x}$
- $-\frac{1}{3-2x} \frac{1}{3-2x}$ $\therefore f(x^{-1}) 1 = \frac{4-5x}{1-2x} 1$ [উভয়পক্ষে 1 যোগ করে]

1-3x

বা, 7 - 7x = 2 - 6x

 $\sqrt{1}$ -7x + 6x = 2 - 7

বা, -x = -5

 $\therefore x = 5$

নির্ণেয় মান: x = 5.

 M = {x : x মৌলিক সংখ্যা এবং x ≤ 6}, N = {2, 4, 6} $R = \{(x, y) : x \in M, y \in N$ এবং $y = 2x\}$

রাজশাহী বোর্ড-২০২৩

- (ক) দেখাও যে, M ও N সেটদ্বয় পরস্পর নিম্ছেদ সেট নয়।
- (খ) দেখাও যে, M ∪ N = (M\N) ∪ (N\M) ∪ (M ∩ N).
- (গ) R অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে তার ডোমেন নির্ণয় কর।

৭ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $M = \{x : x$ মৌলিক সংখ্যা এবং $x \le 6\}$

∴ M = {2, 3, 5} এবং N = {2, 4, 6}

M ও N সেটদ্বয় পরস্পর নিম্ছেদ হলে, $M \cap N = \emptyset$ হবে।

এখন, M ∩ N = {2,3,5} ∩ {2,4,6} = {2}

যেহেতু $M \cap N = \{2\} \neq \emptyset$

সুতরাং M ও N সেটদ্বয় পরস্পর নিশ্ছেদ সেট নয়। (দেখানো হলো)

(খ) 'ক' পতে প্রাপ্ত, M = {2, 3, 5}, N = {2, 4, 6} এবং M ∩ N = {2} এখন, M\N = {2, 3, 5}\{2, 4, 6} = {3, 5}

 $N\M = \{2, 4, 6\}\\{2, 3, 5\} = \{4, 6\}$

বামপক্ষ = M ∪ N

 $= \{2, 3, 5\} \cup \{2, 4, 6\} = \{2, 3, 4, 5, 6\}$

ডানপক্ষ = $(M \setminus N) \cup (N \setminus M) \cup (M \cap N)$

গণিত ২্য অধ্যায়

সেট ও ফাংশন Prepared by: ISRAFIL SHARDER AVEEK

$$= \{3,5\} \cup \{4,6\} \cup \{2\} = \{2,3,4,5,6\}$$

∴ বামপক্ষ = ডানপক্ষ

অর্থাৎ, $M \cup N = (M \setminus N) \cup (N \setminus M) \cup (M \cap N)$. (দেখানো হলো)

(গ) দেওয়া আছে, $R = \{(x, y) : x \in M, y \in N \text{ এবং } y = 2x\}$ যেখানে, $M = \{2, 3, 5\}$, $N = \{2, 4, 6\}$ ['ক' হতে প্রাপ্ত]

R এর বর্ণিত শর্ত থেকে পাই, y = 2x

এখন, প্রত্যেক $x \in M$ এর জন্য v = 2x এর মান নির্ণয় করি:

	7			
X	2	3	5	
у	4	6	10	

যেহেতু 10 ∉ N সেহেতু (5, 10) ∉ R

- $R = \{(2,4), (3,6)\}$
- \therefore ডোমেন, $R = \{2, 3\}$
- ৮. $R = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $x^2 \le 50\}$

$$S = \{cx - dy, cd\} = (cd, dx - cy)$$

[যশোর বোর্ড-২০২৩]

8

- (ক) $F(x) = x^3 2x + 3$ হলে, F(-3) নির্ণয় কর।
- (খ) P(R) নির্ণয় করে দেখাও যে, P(R) এর উপাদান সংখ্যা 2^n কে সমর্থন করে, যেখানে n, R এর উপাদান সংখ্যা।
- (গ) ক্রমজোড়ের নিয়মানুসারে S থেকে (x,y) এর মান নির্ণয় কর।

৮ নং প্রশ্নের উত্তর

(ক) এখানে, $F(x) = x^3 - 2x + 3$

$$F(-3) = (-3)^3 - 2(-3) + 3$$
$$= -27 + 6 + 3 = -27 + 9 = -18$$

নির্ণেয় F(-3) = -18.

(খ) দেওয়া আছে, $R = \{x \in N : x$ মৌলিক সংখ্যা এবং $x^2 \le 50\}$

অর্থাৎ, যেসব স্বাভাবিক মৌলিক সংখ্যার বর্গ 50 অপেক্ষা ছোট অথবা সমান তাদের সেট R।

এখন,

$$x = 2$$
 হলে, $x^2 = 2^2 = 4 < 50$

$$x = 3$$
 হলে, $x^2 = 3^2 = 9 < 50$

$$x = 5$$
 হলে, $x^2 = 5^2 = 25 < 50$

$$x = 7$$
 হলে, $x^2 = 7^2 = 49 < 50$

- $\therefore R = \{2, 3, 5, 7\}$
- $P(A) = \{\emptyset, \{2\}, \{3\}, \{5\}, \{7\}, \{2, 3\}, \{2, 5\}, \{2, 7\}, \{3, 5\}, \{2, 7\}, \{3, 5\}, \{2, 7\}, \{3, 7$ $\{3,7\},\{5,7\}\{2,3,5\},\{2,3,7\},\{2,5,7\},\{3,5,7\},\{2,3,5,7\}\}$ এখানে, R সেটের উপাদান সংখ্যা, n=4
- P(R) এর উপাদান সংখ্যা $=16=2^4=2^n$
- : P(R) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)
- (গ) দেওয়া আছে, $S = \{cx dy, cd\} = (cd, dx cy)$ এখন, ক্রমজোড়ের নিয়মানুসারে পাই,

$$cx - dy = cd \dots \dots (i)$$

এবং
$$cd = dx - cy$$

(i) নং কে c দ্বারা এবং (ii) নং কে d দ্বারা গুণ করে বিয়োগ করি

$$c^2x - cdy = c^2d$$
$$d^2x - cdy = cd^2$$

$$(-)$$
 $(+)$ $(-)$.
 $c^2x - d^2x = c^2d - cd^2$

বা,
$$(c^2 - d^2)x = cd(c - d)$$

ৰা,
$$x = \frac{cd(c-d)}{(c^2-d^2)} = \frac{cd(c-d)}{(c+d)(c-d)} = \frac{cd}{c+c}$$

 $\therefore x = \frac{cd}{c+d}$

x এর মান (i) নং সমীকরণে বসিয়ে পাই,

c.
$$\frac{cd}{c+d} - dy = cd$$

 $\frac{c^2d}{c+d} - dy = cd$

বা,
$$\frac{c^2d}{c+d}$$
 – dy = cd

$$dy = \frac{c^2 d}{c + d} - cd$$

ৰা,
$$dy = \frac{c+d}{c+d} \frac{c^2d-cd(c+d)}{c+d} = \frac{c^2d-c^2d-cd^2}{c+d} = \frac{-cd^2}{c+d}$$

$$\therefore y = \frac{-cd}{dx}$$

নির্ণেয় মান: $(x, y) = \left(\frac{cd}{c+d}, \frac{-cd}{c+d}\right)$.

- $A = \{x \in Z : x^2 \le 9\}$
 - $B = \{x \in N : x$ মৌলিক সংখ্যা এবং $x < 13\}$
 - $C = \{x \in N : x$ বিজোড় সংখ্যা এবং x < 13}
 - $S = \{(x, y) : x \in A, y \in A$ এবং $y = 2x + 3\}$

[কমিল্লা বোর্ড-২০২৩]

- (ক) $f(\mathbf{a}) = \frac{2\mathbf{a}-1}{2\mathbf{a}+1}$ হলে, $f\left(-\frac{1}{3}\right)$ এর মান নির্ণয় কর।
- (খ) দেখাও যে, $P(B \cap C)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে যেখানে, n হচ্ছে (B ∩ C) এর উপাদান সংখ্যা।
- (গ) অম্বয় S কে তালিকা পদ্ধতিতে প্রকাশ কর এবং ডোমেন ও রেঞ্জ নির্ণয়

৯ নং প্রশ্নের উত্তর

(ক) এখানে, $f(a) = \frac{2a-1}{a}$

নির্ণেয় মান: - 5

- (খ) দেওয়া আছে, $B = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $x < 13\}$
- অর্থাৎ, যে সকল স্বাভাবিক মৌলিক সংখ্যা 13 অপেক্ষা ছোট তাদের সেট B।

$$B = \{2, 3, 5, 7, 11\}$$

- এবং $C = \{x \in \mathbb{N} : x$ বিজোড় সংখ্যা এবং $x < 13\}$
- অর্থাৎ, যে সকল স্বাভাবি<mark>ক বিজোড় সংখ্</mark>যা 13 অপেক্ষা ছোট তাদের সেট C।

$$\therefore C = \{1, 3, 5, 7, 9, 11\}$$

এখন, B ∩ C = {2, 3, 5, 7, 11} ∩ {1, 3, 5, 7, 9, 11}

$$= \{3, 5, 7, 11\}$$

 $P(B \cap C) = \{\emptyset, \{3\}, \{5\}, \{7\}, \{11\}, \{3, 5\}, \{3, 7\}, \{3, 11\}\}$ *{*5*,* 7*}, {*5*,* 11*}, {*7*,* 11*}, {*3*,* 5*,* 7*}, {*3*,* 5*,* 11*}, {*3*,* 7*,* 11*},*

{5, 7, 11}, {3, 5, 7, 11}}

এখানে, $B \cap C$ এর উপাদান সংখ্যা, n=4

- $P(B \cap C)$ এর উপাদান সংখ্যা = $16 = 2^4 = 2^n$
- $ightharpoonup \mathrm{P}(\mathrm{B} \cap \mathrm{C})$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)
- (গ) দেওয়া আছে, $A = \{x \in Z : x^2 \le 9\}$

অর্থাৎ, যে সকল পূর্ণ সংখ্যার বর্গ 9 অপেক্ষা ছোট অথবা 9 এর সমান তাদের

এখানে, $Z = \{0, \pm 1, \pm 2, \pm 3, \dots \}$

$$x = 0$$
 হলে, $x^2 = 0^2 = 0 < 9$

$$x = \pm 1$$
 হলে, $x^2 = (\pm 1)^2 = 1 < 9$

$$x = \pm 2$$
 হলে, $x^2 = (\pm 2)^2 = 4 < 9$

$$x = \pm 3$$
 হলে, $x^2 = (\pm 3)^2 = 9 = 9$

$$\therefore A = \{-3, -2, -1, 0, 1, 2, 3\}$$

এবং
$$S = \{(x, y) : x \in A, y \in A$$
 এবং $y = 2x + 3\}$

যেখানে,
$$A = \{-3, -2, -1, 0, 1, 2, 3\}$$

$$S$$
 এর বর্ণিত শর্ত থেকে পাই, $y = 2x + 3$

গণিত ২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

এখন প্রত্যেক $x \in A$ এর জন্য v = 2x + 3 এর মান নির্ণয় করি:

			,		· ·		
X	- 3	- 2	- 1	0	1	2	3
у	- 3	- 1	1	3	5	7	9

থেহেতু $5,7,9 \in A$ সেহেতু $(1,5),(2,7),(3,9) \in S$ ∴ $S = \{(-3,-3),(-2,-1),(-1,1),(0,3)\}$

ডোমেন, $S = \{-3, -2, -1, 0\}$ এবং রেঞ্জ, $S = \{-3, -1, 1, 3\}$.

- ১০. সার্বিক সেট $\mathbf{U}=\{2,3,4,5,6,7,8\}$ এর দুটি উপসেট
 - $A = \{x \in N : 2 < x < 7\}$ ও $B = \{2, 4, 6, 8\}$ এবং
 - $S = \{(a, b) : a \in B, b \in B$ এবং $b = a + 2\}$ একটি অন্বয় ।

চট্টগ্রাম রোর্ড-২০২৩

- (ক) (m + n, n) = (7, 5) হলে, (m, n) নির্ণয় কর।
- (খ) C=A' হলে, P(C) নির্ণয় করে দেখাও যে, P(C) এর উপাদান সংখ্যা 2^n কে সমর্থন করে।
- (গ) S অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে তার ডোমেন নির্ণয় কর।

১০ নং প্রশ্নের উত্তর

- (ক) এখানে, (m + n, n) = (7, 5)
 - এখন, ক্রমজোড়ের নিয়মানুসারে পাই, $m+n=7\dots (i)$

এবং n = 5

n এর মান (i) নং এ বসিয়ে পাই, m+5=7

বা, m = 7 - 5

∴ m = 2

নির্ণেয় মান: (m, n) = (2, 5)

(খ) দেওয়া আছে, $U = \{2, 3, 4, 5, 6, 7, 8\}$

$$A = \{x \in \mathbb{N} : 2 < x < 7\} = \{3, 4, 5, 6\}$$

এবং B = {2, 4, 6, 8}

এখন, C = A' হলে,

- $C = U \setminus A = \{2, 3, 4, 5, 6, 7, 8\} \setminus \{3, 4, 5, 6\} = \{2, 7, 8\}$
- $\therefore P(C) = \{\emptyset, \{2\}, \{7\}, \{8\}, \{2, 7\}, \{2, 8\}, \{7, 8\}, \{2, 7, 8\}\}\}$

এখানে, C সেটের উপাদান সংখ্যা n=3

- P(C) এর উপাদান সংখ্যা $=8=2^3=2^n$
- : P(C) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)
- (গ) দেওয়া আছে, $S = \{(a,b): a \in B, b \in B$ এবং $b = a+2\}$ যেখানে, $B = \{2,4,6,8\}$

S এর বর্ণিত শর্ত থেকে পাই, b = a + 2

এখন, প্রত্যেক a ∈ B এর জন্য b = a + 2 এর মান নির্ণয় করি:

Ī	a	2	4	6	8
Ī	b	4	6	8	10

যেহেতু 10 ∉ B সেহেতু (8, 10) ∉ S

$$: S = \{(2,4), (4,6), (6,8)\}$$

: ডোমেন, $S = \{2, 4, 6\}$

নির্ণেয় ডোমেন: {2, 4, 6}

- \$\text{\$\text{\$A\$}} \ A = {x ∈ Z : $x^2 < 9$ }
 - $B = \{x \in N : x$ মৌলিক সংখ্যা এবং $1 < x \le 5\}$
 - $S = \{(x, y) : x \in A, y \in B$ এবং $y x = 1\}$
 - $f(x) = \frac{4x+1}{4x-1}$

[বরিশাল বোর্ড-২০২৩]

2

- (ক) M = {12, 15}, N = {15, a} হলে, P(M ∩ N) নির্ণয় কর।
- (খ) S অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে এর রেঞ্জ নির্ণয় কর।
- (গ) $\frac{f(x+2)-1}{f(x-2)-1}=-1$ হলে, x এর মান নির্ণয় কর।

১১ নং প্রশ্নের উত্তর

(ক) এখানে, M = {12,15}, N = {15,a} এখন, M ∩ N = {12,15} ∩ {15,a} = {15}

- $\therefore P(M \cap N) = \{\emptyset, \{15\}\}\$
- (খ) দেওয়া আছে, $A = \{x \in Z : x^2 < 9\}$
- অর্থাৎ, যেসব পূর্ণ সংখ্যার বর্গ 9 অপেক্ষা ছোট তাদের সেট A।

এখানে, $Z = \{0, \pm 1, \pm 2, \pm 3, \dots \}$

x = 0 হলে, $x^2 = 0^2 = 0 < 9$

 $x = \pm 1$ হলে, $x^2 = (\pm 1)^2 = 1 < 9$

 $x = \pm 2$ হলে, $x^2 = (\pm 2)^2 = 4 < 9$

 $x = \pm 3$ হলে, $x^2 = (\pm 3)^2 = 9 = 9$

 $A = \{-2, -1, 0, 1, 2\}$

 $B = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $1 < x \le 5\}$

অর্থাৎ, যেসব স্বাভাবিক মৌলিক সংখ্যা 1 অপেক্ষা বড় এবং 5 অপেক্ষা ছোট বা সমান তাদের সেট B।

এখানে, N = {1, 2, 3, }

1 অপেক্ষা বড় এবং 5 অপেক্ষা ছোট বা সমান স্বাভাবিক মৌলিক সংখ্যাসমূহ: 2, 3, 5

 $B = \{2, 3, 5\}$

এবং $S = \{(x, y) : x \in A, y \in B$ এবং $y - x = 1\}$

S এর বর্ণিত শর্ত থেকে পাই, y-x=1

বা, y = x + 1

এখন প্রত্যেক $x \in A$ এর জন্য y = x + 1 এর মান নির্ণয় করি:

X	-2	- 1	0	1	2	
y	-1	0	1	2	3	

যেহেতু $-1,0,1 \notin B$; সেহেতু $(-2,-1),(-1,0),(0,1) \notin S$

- $: S = \{(1,2),(2,3)\}$
- ∴ রেঞ্জ, S = {2,3}
- (গ) দেওয়া আছে, $f(x) = \frac{4x+1}{x}$

$$f(x+2) = \frac{4(x+2)+1}{4(x+2)-1} = \frac{4x+8+1}{4x+8-1} = \frac{4x+9}{4x+7}$$

$$\therefore f(x-2) = \frac{4(x-2)+1}{4(x-2)-1} = \frac{4x-8+1}{4x-8-1} = \frac{4x-9}{4x-7}$$

- এখানে, $\frac{f(x+2)-1}{f(x-2)-1} = -1$
- 4x + 7 1 = -1
 - 4x-9 4x+9-4x-7
- বা, $\frac{\frac{2}{4x+7}}{\frac{2}{3}} = -1$
- বা, $\frac{4x-9}{2} \times \frac{4x-9}{2} = -1$
- বা, $\frac{4x+7}{4x-9} = -1$
- 4x 9 = -(4x + 7)
- 4x + 4x = 9 7
- বা, 8x = 2
- বা, $X = \frac{2}{8} = \frac{1}{4}$
- $\therefore x = \frac{1}{4}$

নির্ণেয় মান: $x = \frac{1}{4}$

- ১২. $A = \{x : x, 3 \text{ এর গুণিতক } x \le 6\},$
 - $B = \{1, 2, 3\}$ এবং $C = \{4, 5, 7\}$ হলো

সার্বিক সেট $U = \{1, 2, 3, 4, 5, 6, 7\}$ এর তিনটি উপসেট এবং

 $S=\{(a,b):a\in A,b\in B$ এবং $b=a-1\}$ একটি অন্বয়।

্রিকাত স্বর্মন [দিনাজপুর বোর্ড-২০২৩]

(ক) f(y) = 3ky - 6 হলে, k এর কোন মানের জন্য f(1) = 0 হবে তা নির্ণয় কর।

গণিত ২য় অধ্যায়

সেট ও ফাংশন Prepared by: ISRAFIL SHARDER AVEEK

- (খ) দেখাও যে, $(B \cup C)' = B' \cap C'$
- (গ) S অন্বয়কে তালিকা পদ্ধতিতে প্রকাশ কর।

১২ নং প্রশ্নের উত্তর

- (ক) এখানে, f(y) = 3ky 6
 - $f(1) = 3k \cdot 1 6 = 3k 6$
 - প্রশ্নমতে, f(1) = 0
 - বা, 3k 6 = 0
 - বা, 3k = 6 বা, $k = \frac{6}{3} = 2$
 - $\therefore k = 2$

নির্ণেয় মান: k = 2.

(খ) দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{1, 2, 3\}$

এখন, B U C = {1, 2, 3} U {4, 5, 7} = {1, 2, 3, 4, 5, 7}

$$B' = U - B = \{1, 2, 3, 4, 5, 6, 7\} - \{1, 2, 3\} = \{4, 5, 6, 7\}$$

 $C' = U - C = \{1, 2, 3, 4, 5, 6, 7\} - \{4, 5, 7\} = \{1, 2, 3, 6\}$

বামপক্ষ = (B U C)'

 $= U - (B \cup C)$

 $= \{1, 2, 3, 4, 5, 6, 7\} - \{1, 2, 3, 4, 5, 7\} = \{6\}$

ডানপক্ষ $= B' \cap C'$

 $= \{4, 5, 6, 7\} \cap \{1, 2, 3, 6\} = \{6\}$

∴ বামপক্ষ = ডানপক্ষ

অর্থাৎ, $(B \cup C)' = B' \cap C'$ (দেখানো হলো)

- (গ) দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7\}$
 - $A = \{x : x, 3$ এর গুণিতক $x \le 6\}$

অর্থাৎ, যেসকল স্বাভাবিক সংখ্যা 3 এর গুণিতক যা 6 অপেক্ষা ছোট অথবা সমান তাদের সেট A। (যেহেতু সার্বিক সেট স্বাভাবিক সংখ্যার সেট)

- ∴ 6 অপেক্ষা ছোট অথবা সমান 3 এর গুণিতকসমূহ 3, 6
- $A = \{3, 6\}$
- $B = \{1, 2, 3\}$

এবং $S = \{(a, b) : a \in A, b \in B$ এবং $b = a - 1\}$

S এর বর্ণিত শর্ত থেকে পাই, b=a-1

এখন, প্রত্যেক $a \in A$ এর জন্য b = a - 1 এর মান নির্ণয় করি:

a	3	6
b	2	5

যেহেতু 5 ∉ B সেহেতু (6,5) ∉ S

$$: S = \{3, 2\}$$

নির্ণেয় S অম্বয়ের তালিকা পদ্ধতিতে প্রকাশ: {3, 2}

১৩. A = {2, 3, 5, 7}, B = {0, 1, 2, 3, 5} এবং

 $R = \{(x, y) : x \in A, y \in B$ এবং $y = x - 2\}$

[ময়মনসিংহ বোর্ড-২০২৩]

- (ক) যদি $f(x) = x^3 + Px^2 5x 7$ হয়, তবে P এর কোন মানের জন্য f(-1)=0 হবে?
- (খ) $P(A \cap B)$ নির্ণয় করে দেখাও যে, $P(A \cap B)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে, যেখানে n হলো (A ∩ B) এর উপাদান সংখ্যা। 8
- (গ) R অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে ডোমেন নির্ণয় কর।

১৩ নং প্রশ্নের উত্তর

- (ক) এখানে, $f(x) = x^3 + Px^2 5x 7$ $f(-1) = (-1)^3 + P(-1)^2 - 5(-1) - 7$
 - = -1 + P + 5 7 = P 3
 - প্রামতে, f(-1)=0
 - বা, P 3 = 0 : P = 3

নির্ণেয় মান: P = 3

(খ) দেওয়া আছে, $A = \{2, 3, 5, 7\}, B = \{0, 1, 2, 3, 5\}$ এখন, A ∩ B = {2,3,5,7} ∩ {0,1,2,3,5} = {2,3,5}

- $\therefore P(A \cap B) = \{\emptyset, \{2\}, \{3\}, \{5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}, \{2, 3, 5\}\}\}$ এখানে, $A \cap B$ এর উপাদান সংখ্যা, n=3
- ∴ $P(A \cap B)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে \lor (দেখানো হলো)
- (গ) দেওয়া আছে, $A = \{2, 3, 5, 7\}$

$$B = \{0, 1, 2, 3, 5\}$$

এবং
$$R = \{(x, y) : x \in A, y \in B$$
 এবং $y = x - 2\}$

R এর বর্ণিত শর্ত হতে পাই, y = x - 2

এখন, প্রত্যেক $x \in A$ এর y = x - 2 এর মান নির্ণয় করি:

X	2	3	5	7
у	0	1	3	5

- $\therefore R = \{(2,0), (3,1), (5,3), (7,5)\}$
- ∴ ডোমেন, R = {2,3,5,7}
- ১৪. সার্বিক সটে U = {x : x ∈ N এবং 1 ≤ x ≤ 8}

 $A = \{x \in N : x$ মৌলিক সংখ্যা এবং $x \le 9\}$

B = {3, 4, 5, 6} এবং

 $R = \{(x, y) : x \in B, y \in B$ এবং $x = y - 1\}$

[ঢাকা বোর্ড-২০২২]

- (ক) যদি $f(\mathsf{t}) = rac{\mathsf{t}^4 + \mathsf{t}^2 + \mathsf{1}}{\mathsf{t}^2}$ হয়, তবে $f\left(-rac{1}{3}
 ight)$ এর মান নির্ণয় কর।
- (খ) R অন্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে তার রেঞ্জ নির্ণয় কর।
- (গ) P(B' A') নির্ণয় কর।

১৪ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $f(t) = \frac{t^3}{2}$

নির্ণেয় মান: ⁹¹

(খ) দেওয়া আছে, $B = \{3, 4, 5, 6\}$

এবং $R = \{(x, y) : x \in B, y \in B$ এবং $x = y - 1\}$

R এর বর্ণিত শর্ত থেকে পাই,

$$x = y - 1$$

বা,
$$x + 1 = y$$

$$v = x + 1$$

এখন প্রত্যেক $x \in B$ এর জন্য v = x + 1 এর মান নির্ণয় করি:

The state of the s					
X	3	4	5	6	
V	4	5	6	7	

যেহেতু 7 ∉ B, সেহেতু (6, 7) ∉ R

- \therefore R = {(3,4), (4,5), (5,6)}
- ∴ রেঞ্জ, R = {4, 5, 6}
- (গ) দেওয়া আছে,

 $U = \{x : x \in \mathbb{N} \text{ age } 1 \le x \le 8\} = \{1, 2, 3, 4, 5, 6, 7\}$

 $A = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $x \le 9\} = \{2, 3, 5, 7\}$

এবং B = {3, 4, 5, 6}

 $\therefore A' = U - A = \{1, 2, 3, 4, 5, 6, 7\} - \{2, 3, 5, 7\} = \{1, 4, 6\}$ $B' = U - B = \{1, 2, 3, 4, 5, 6, 7\} - \{3, 4, 5, 6\} = \{1, 2, 7\}$ $B' - A' = \{1, 2, 7\} - \{1, 4, 6\} = \{2, 7\}$

 $\therefore P(B' - A') = \{\emptyset, \{2\}, \{7\}, \{2, 7\}\}\$

নির্ণেয় সেট: {Ø, {2}, {7}, {2, 7}}.

১৫. $S = \{(x,y) : x \in Q, y \in Q$ এবং $x - y = 2\},$

Q = {-2, -1, 0, 1}, $f(m) = \frac{1+m^3+m^6}{m^3}$.

[রাজশাহী বোর্ড-২০২২]

8

গণিত

২য় অধ্যায়

8

8

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

- (ক) $P = \{x \in \mathbb{N} : x^2 + x 72 = 0\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) S অন্বয়কে তালিকা পদ্ধতিতে প্রকাশ করে এর ডোমেন নির্ণয় কর।
- (গ) দেখাও যে, $f(t^2) = f(t^{-2})$

(ক) দেওয়া আছে, $P = \{x \in \mathbb{N} : x^2 + x - 72 = 0\}$

এখানে,
$$x^2 + x - 72 = 0$$

$$4x^2 + 9x - 8x - 72 = 0$$

$$(x + 9) - 8(x + 9) = 0$$

বা,
$$(x+9)(x-8)=0$$

হয়,
$$x + 9 = 0$$
 অথবা, $x - 8 = 0$

$$\therefore x = -9$$

কিন্তু
$$x = -9$$
 গ্রহণযোগ্য

কিন্তু x = −9 গ্রহণযোগ্য নয়। কারণ x ∈ N

নির্ণেয় সেট: P = {8}.

(খ) দেওয়া আছে, $S = \{(x, y) : x \in Q, y \in Q \text{ এবং } x - y = 2\},$

S এর বর্ণিত শর্ত থেকে পাই.

$$x - y = 2$$

বা,
$$x - 2 = y$$

$$\therefore y = x - 2$$

এখন প্রত্যেক $x \in Q$ এর জন্য y = x - 2 এর মান নির্ণয় করি:

		J		
X	- 2	- 1	0	1
у	- 4	- 3	-2	- 1

যেহেতু
$$-4$$
, $-3 \notin Q$ সেহেতু $(-2, -4)$, $(-1, -3) \notin S$

$$: S = \{(0, -2), (1, -1)\}$$

(গ) দেওয়া আছে, $f(\mathbf{m}) = \frac{1+\mathbf{m}^3 + \mathbf{m}^6}{2}$

$$f(t^2) = \frac{1 + (t^2)^3 + (t^2)^6}{(t^2)^3} = \frac{1 + t^6 + t^{12}}{t^6}$$

আবার,
$$f(t^{-2}) = \frac{1+(t^{-2})^3+(t^{-2})^6}{(t^{-2})^3} = \frac{1+t^{-6}+t^{-12}}{t^{-6}}$$

$$= \frac{1 + \frac{1}{t^6} + \frac{1}{t^{12}}}{\frac{1}{t^6}} = \frac{\frac{t^{12} + t^6 + 1}{t^{12}}}{\frac{1}{t^6}} = \frac{1 + t^6 + t^{12}}{t^{12}} \times \frac{t^6}{1} = \frac{1 + t^6 + t^{12}}{t^6}$$

- $f(t^2) = f(t^{-2})$ (দেখানো হলো)
- **3 b**. $U = \{1, 2, 3, 4, 5, 6, 7\}$

$$A = \{x \in N : x$$
 মৌলিক সংখ্যা এবং $x \le 7\}$

 $B = \{x \in \mathbb{N} : x$ জোড় সংখ্যা এবং $x < 7\}$ এবং $p^2 = 7 + 4\sqrt{3}$

[যশোর বোর্ড-২০২২]

- (ক) B কে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) দেখাও যে, $(A \cup B)' = A' \cap B'$.
- (গ) উদ্দীপকের আলোকে দেখাও যে, $p^5 + \frac{1}{n^5} = 724$.

১৬ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7\}$

$$B = \{x \in N : x$$
জোড় সংখ্যা এবং $x < 7\}$

অর্থাৎ যেসব স্বাভাবিক জোড় সংখ্যা 7 অপেক্ষা ছোট, তাদের সেট। 7 অপেক্ষা ছোট স্বাভাবিক জোড় সংখ্যাসমূহ হচ্ছে 2, 4, 6.

$$: B = \{2, 4, 6\}$$

(খ) দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7\}$

$$A = \{x \in \mathbb{N} : x$$
 মৌলিক সংখ্যা এবং $x \leq 7\}$

অর্থাৎ, যেসব স্বাভাবিক সংখ্যা 7 এর সমান বা ছোট তাদের সেট। 7 এর সমান বা ছোট স্বাভাবিক মৌলিক সংখ্যাসমূহ হচ্ছে 2, 3, 5, 7.

$$\therefore A = \{2, 3, 5, 7\}$$

'ক' হতে প্ৰাপ্ত, B = {2, 4, 6}

এখন, A U B = {2, 3, 5, 7} U {2, 4, 6} = {2, 3, 4, 5, 6, 7}

$$A' = U - A$$

$$= \{1, 2, 3, 4, 5, 6, 7\} - \{2, 3, 5, 7\} = \{1, 4, 6\}$$

এবং
$$B' = U - B$$

$$= \{1, 2, 3, 4, 5, 6, 7\} - \{2, 4, 6\} = \{1, 3, 5, 7\}$$

বামপক্ষ =
$$(A \cup B)' = U - (A \cup B)$$

$$= \{1, 2, 3, 4, 5, 6, 7\} - \{2, 3, 4, 5, 6, 7\} = \{1\}$$

ডানপক্ষ
$$= A' \cap B'$$

$$= \{1, 4, 6\} \cap \{1, 3, 5, 7\} = \{1\}$$

$$: (A \cup B)' = A' \cap B'$$
 (দেখানো হলো)

(গ) দেওয়া আছে, $p^2 = 7 + 4\sqrt{3}$

বা,
$$p^2 = 4 + 4\sqrt{3} + 3$$

$$\sqrt{1}, p^2 = 2^2 + 2.2\sqrt{3} + (\sqrt{3})^2$$

বা,
$$p' = 2' + 2.2\sqrt{3} + (\sqrt{3})^2$$

বা,
$$p = 2 + \sqrt{3}$$
 [উভয়পক্ষকে বর্গমূল করে]

আবার,
$$\frac{1}{p} = \frac{1}{2+\sqrt{3}}$$

$$\overline{a}$$
, $\frac{1}{p} = \frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2}$

এখন,
$$p + \frac{1}{p} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$$

$$p^2 + \frac{1}{p^2} = \left(p + \frac{1}{p}\right)^2 - 2p \cdot \frac{1}{p} = 4^2 - 2 = 16 - 2 = 14$$

এবং
$$p^3 + \frac{1}{p^3} = \left(p + \frac{1}{p}\right)^3 - 3p \cdot \frac{1}{p}\left(p + \frac{1}{p}\right)$$

= $4^3 - 3 \times 4 = 64 - 12 = 52$

বামপক্ষ =
$$p^5 + \frac{1}{p^5} = \left(p^2 + \frac{1}{p^2}\right)\left(p^3 + \frac{1}{p^3}\right) - \left(p + \frac{1}{p}\right)$$

= $14 \times 52 - 4 = 728 - 4 = 724 =$ ডানপক্ষ

$$\therefore p^5 + \frac{1}{r^5} = 724$$
 (দেখানো হলো)

১৭. B = {x ∈ N : x < 11 এবং x মৌলিক সংখ্যা}

$$C = \{x \in \mathbb{N} : 2 < x < 16$$
 এবং x বিজোড় সংখ্যা\}

এবং g(a) =
$$\frac{1-3a^2+a^3}{a(1-a)}$$

[কুমিল্লা বোর্ড-২০২২]

- $f(y) = y^3 + my^2 3y 6$ হল m এর কোন মানের জন্য f(-3) = 0.
- (খ) $P(B \cap C)$ নির্ণয় করে দেখাও যে, $P(B \cap C)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে। যেখানে n হলো (B ∩ C) এর উপাদান সংখ্যা।
- (গ) প্রমাণ কর যে, $g(1-a) = g(\frac{1}{a})$

১৭ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $f(y) = y^3 + my^2 - 3y - 6$

$$f(-3) = (-3)^3 + m(-3)^2 - 3(-3) - 6$$

= -27 + 9m + 9 - 6 = 9m - 24

প্রামতে,
$$f(-3) = 0$$

বা,
$$9m - 24 = 0$$

বা,
$$9m = 24$$
 : $m = \frac{24}{9} = \frac{8}{3}$

নির্ণেয় মান:
$$m = \frac{8}{3}$$
.

(খ) দেওয়া আছে, $B = \{x \in N : x < 11 এবং x মৌলিক সংখ্যা\}$ $= \{2, 3, 5, 7\}$

$$C = \{x \in N : 2 < x < 16$$
 এবং x বিজোড় সংখ্যা\}

Prepared by: ISRAFIL SHARDER AVEEK

এখন, B ∩ C = {2,3,5,7} ∩ {3,5,7,9,11,13,15} = {3,5,7}

 $P(B \cap C) = \{\emptyset, \{3\}, \{5\}, \{7\}, \{3, 5\}, \{3, 7\}, \{5, 7\}, \{3, 5, 7\}\}\}$

এখানে, $B \cap C$ এর উপাদান সংখ্যা, n=3

 $P(B\cap C)$ এর উপাদান সংখ্যা = $8=2^3=2^n$

 \therefore $P(B \cap C)$ এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)

(গ) দেওয়া আছে,
$$g(a) = \frac{1-3a^2+a^3}{a(1-a)}$$

$$\begin{array}{l} \text{with also}, \ g(1) = \frac{a(1-a)}{a(1-a)^2 + (1-a)^3} \\ & = \frac{1-3(1-a)^2 + (1-a)^3}{(1-a)(1-1+a)} \\ & = \frac{1-3\left(1-2a+a^2\right) + 1 - 3a + 3a^2 - a^3}{(1-a)a} \\ & = \frac{1-3+6a - 3a^2 + 1 - 3a + 3a^2 - a^3}{(1-a)a} \\ & = \frac{-1+3a - a^3}{(1-a)a} = \frac{-(1-3a+a^3)}{-(a-1)a} = \frac{1-3a+a^3}{a(a-1)} \\ & = \frac{1-3\left(\frac{1}{a}\right)^2 + \left(\frac{1}{a}\right)^3}{\frac{1}{a}\left(1-\frac{1}{a}\right)} = \frac{1-\frac{3}{a^2} + \frac{1}{a^3}}{\frac{1}{a} - \frac{1}{a^2}} = \frac{\frac{a^3 - 3a + 1}{a^3}}{\frac{a - 1}{a^2}} \\ & = \frac{a^3 - 3a + 1}{a^3 - 3a + 1} \quad a^2 \quad 1 - 3a + a^3 \end{array}$$

$$\therefore g(1-a) = g\left(\frac{1}{a}\right)$$
 (প্রমাণিত)

১৮. (i)
$$U = \{a, b, c, d, e, f, g\}$$
 এবং $A = \{a, b, c, d\}, B = \{a, e, f, g\}$

(ii)
$$(x - a, y + 2a) = (y - 2a, 2x + a)$$

[চউগ্রাম বোর্ড-২০২২]

কে) যদি
$$A = \{x \in \mathbb{N} : x < 19 \text{ এবং } x, 3 \text{ এর গুণিতক}\}$$
 হয় তবে A সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

(গ) (ii) নং হতে (x, y) নির্ণয় কর।

১৮ নং প্রশ্নের উত্তর

- ক) দেওয়া আছে, A = {x ∈ N : x < 19 এবং x, 3 এর গুণিতক} অর্থাৎ যে
 <p>সকল স্বাভাবিক সংখ্যা 3 এর গুণিতক যা 19 অপেক্ষা ছোট।
 - 19 অপেক্ষা ছোট 3 এর গুণিতকসমূহ 3, 6, 9, 12, 15, 18। নির্ণেয় সেট: $A = \{3, 6, 9, 12, 15, 18\}$
- (খ) দেওয়া আছে, $U = \{a, b, c, d, e, f, g\}$

$$A = \{a, b, c, d\}$$

$$B = \{a, e, f, g\}$$

$$A - B = \{a, b, c, d\} - \{a, e, f, g\} = \{b, c, d\}$$

$$B - A = \{a, e, f, g\} - \{a, b, c, d\} = \{e, f, g\}$$

বামপক্ষ = $(A \cap B)'$

$$= U - (A \cap B)$$

$$= \{a, b, c, d, e, f, g\} - \{a\} = \{b, c, d, e, f, g\}$$

ডানপক্ষ = $(A - B) \cup (B - A)$

$$= \{b, c, d\} \cup \{e, f, g\} = \{b, c, d, e, f, g\}$$

$$\therefore (A \cap B)' = (A - B) \cup (B - A)$$
 প্রেমাণিত)

(গ) দেওয়া আছে, (x-a,y+2a)=(y-2a,2x+a) ক্রমজোড়ের শর্তানুসারে, x-a=y-2a

বা,
$$x - y = -2a + a$$

$$\therefore x - y = -a \dots \dots (i)$$

$$y + 2a = 2x + a$$

বা,
$$2a - a = 2x - y$$

$$\therefore 2x - y = a \dots \dots (ii)$$

$$(x - y) - (2x - y) = -a - a$$

বা,
$$x - y - 2x + y = -2a$$

বা, $-x = -2a$

x এর মান (i) নং এ বসিয়ে পাই,

$$2a - y = -a$$

বা,
$$-y = -a - 2a$$

বা,
$$-v = -3a$$

$$\dot{}$$
 v = 3a

$$(x, y) = (2a, 3a)$$

১৯. (i)
$$P = \{5, 6, 7, 8\}; Q = \{6, 7, 8, 9\}$$

(ii)
$$S = \{(x, y) : x \in A, y \in B \text{ are } 2x - y = 0\}$$

যেখানে $A = \{-1, 0, 1\}, B = \{-2, 2, 4\}$

[সিলেট বোর্ড-২০২২]

১৯ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, $C = \{-6, -4, -2, 2, 4, 6\}$
 - C সেটের উপাদানসমূহ: -6, -4, -2, 2, 4, 6

এখানে, প্রত্যেকটি উপাদান 2 দারা বিভাজ্য অর্থাৎ 2 এর গুণিতক এবং – 6 এর ছোট নয় ও 6 বড় নয়।

$$\therefore$$
 C = {x ∈ Z : (x ≠ 0)x, 2 এর গুণিতক এবং − 6 ≤ x ≤ 6}

(খ) দেওয়া আছে,
$$P = \{5, 6, 7, 8\}; Q = \{6, 7, 8, 9\}$$

$$Q - P = \{6, 7, 8, 9\} - \{5, 6, 7, 8\} = \{9\}$$

 $P \cap Q = \{5, 6, 7, 8\} \cap \{6, 7, 8, 9\} = \{6, 7, 8\}$

$$= \{5, 6, 7, 8\} \cup \{6, 7, 8, 9\} = \{5, 6, 7, 8, 9\}$$

ডানপক্ষ =
$$(P - Q) \cup (Q - P) \cup (P \cap Q)$$

$$= \{5\} \cup \{9\} \cup \{6,7,8\} = \{5,6,7,8,9\}$$

$$\therefore P \cup Q = (P - Q) \cup (Q - P) \cup (P \cap Q)$$
 (প্রমাণিত)

(গ) দেওয়া আছে,
$$S = \{(x, y) : x \in A, y \in B \text{ এবং } 2x - y = 0\},$$

যেখানে
$$A = \{-1, 0, 1\}, B = \{-2, 2, 4\}$$

S এর বর্ণিত শর্ত থেকে পাই,

$$2x - y = 0$$

বা,
$$2x = y$$

$$\therefore$$
 y = 2x

এখন, প্রত্যেক x ∈ A এর জন্য y = 2x এর মান নির্ণয় করি:

X	- 1	0	1
у	-2	0	2

যেহেতু 0 ∉ B সেহেতু (0,0) ∉ S

$$: S = \{(-1, -2), (1, 2)\}$$

২০.
$$f(y) = (1 + y^2 + y^4) + y^2$$

এবং $S = \{(x, y) : x \in A, y \in A$ এবং $y = 2 - x\}$

যেখানে, $A = \{0, 1, 2, 3\}$

[বরিশাল বোর্ড-২০২২]

(ক) যদি
$$(x + y, 6) = (0, x - y)$$
 হয় তাহলে (x, y) এর মান নির্ণয়

- (খ) প্রমাণ কর: $f(p^{-2}) = f(p^2)$.
- (গ) S কে তালিকা পদ্ধতিতে প্রকাশ কর এবং তার ডোমেন ও রেঞ্জ নির্ণয় কর।8

২০ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, (x + y, 6) = (0, x - y)এখন, ক্রমজোড়ের নিয়ম অনুসারে পাই,

$$x + y = 0 \dots (i)$$

গণিত

২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

এবং
$$6 = x - y$$

(i) নং ও (ii) নং যোগ করে পাই,

$$2x = 6$$

বা,
$$x = \frac{6}{2}$$

$$\therefore x = 3$$

x এর মান (i) নং এ বসিয়ে পাই,

$$3 + y = 0$$

$$\therefore y = -3$$

$$(x, y) = (3, -3)$$

নির্ণেয় মান: (x, y) = (3, -3)

(খ) দেওয়া আছে,

$$f(y) = (1 + y^2 + y^4) + y^2 = \frac{1+y^2+y^4}{y^2}$$

$$f(p^{-2}) = \frac{1 + (p^{-2})^2 + (p^{-2})^4}{(p^{-2})^2}$$

$$= \frac{1+p^{-4}+p^{-8}}{p^{-4}} = \frac{\frac{1+\frac{1}{p^4}+\frac{1}{p^8}}{\frac{1}{p^4}} = \frac{\frac{p^8+p^4+1}{p^8}}{\frac{1}{p^4}}$$
$$= \frac{p^8+p^4+1}{p^8} \times \frac{p^4}{1} = \frac{p^8+p^4+1}{p^4}$$

আবার,
$$f(p^2) = \frac{1+(p^2)^2+(p^2)^4}{(p^2)^2} = \frac{p^8+p^4+1}{p^4}$$

$$f(p^{-2}) = f(p^2)$$
 (প্রমাণিত)

(গ) দেওয়া আছে, S = $\{(x,y): x \in A, y \in A \text{ এবং } y=2-x\}$ যেখানে, A = $\{0,1,2,3\}$

S এর বর্ণিত শর্ত থেকে পাই, y=2-x

এখন, প্রত্যেক $x \in A$ এর জন্য y = 2 - x এর মান নির্ণয় করি:

y 2 1 0 -1	X	0	1	2	3
	у	2	1	0	- 1

যেহেতু $-1 \notin A$ সেহেতু $(3,-1) \notin S$

$$: S = \{(0,2), (1,1), (2,0)\}$$

ডোমেন,
$$S = \{0, 1, 2\}$$
 ও রেঞ্জ, $S = \{2, 1, 0\}$

- ২১. (i) $A = \{x \in \mathbb{N} : x$ একটি মৌলিক সংখ্যা $2 \le x < 7\}$ $B = \{2,7\}, \ R = \{x-1 < y\}$
 - (ii) (p + 2, q 1) = (2q + 1, p 2)

[দিনাজপুর বোর্ড-২০২২]

8

- (ক) A সেটকে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) (p,q) এর মান নির্ণয় কর।
- (গ) A, B এর উপাদানগুলোর জন্য সংশ্লিষ্ট R অন্বয়টি নির্ণয় কর।

২১ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, A = {x ∈ N : x একটি মৌলিক সংখ্যা 2 ≤ x < 7} অর্থাৎ, যে সকল স্বাভাবিক ও মৌলিক সংখ্যা 2 এর সমান অথবা 2 এর চেয়ে বড ও 7 এর চেয়ে ছোট তাদের সেট।</p>
 - এখানে, 2 এর সমান অথবা 2 এর চেয়ে বড় ও 7 এর চেয়ে ছোট স্বাভাবিক মৌলিক সংখ্যাগুলো হলো: 2,3,5

নির্ণেয় সেট, A = {2, 3, 5}

(খ) দেওয়া আছে, (p+2, q-1) = (2q+1, p-2) ক্রমজোড়ের নিয়ম অনুসারে,

$$p + 2 = 2q + 1 \dots (i)$$

$$q - 1 = p - 2 \dots \dots (ii)$$

(ii) নং হতে পাই, q = p - 2 + 1

এখন, q এর মান (i) নং এ বসিয়ে পাই,

$$p + 2 = 2(p - 1) + 1$$

বা,
$$2 + 2 - 1 = 2p - p$$

বা,
$$3 = p$$

$$\therefore p = 3$$

p এর মান (iii) এ বসিয়ে পাই,

$$q = 3 - 1$$

$$\therefore q = 2$$

নির্ণেয় মান,
$$(p,q) = (3,2)$$

(গ) এখানে, A, B এর উপাদানগুলোর জন্য অম্বয় $R=\{x-1< y\}$ নির্ণয় করতে হবে। কিন্তু x ও y কোন সেটে বিদ্যমান তার উল্লেখ নেই। সুতরাই $x\in A,y\in B$ অথবা $x\in B,y\in A$ শর্ত বিবেচনা করে প্রশ্নটি সমাধান দেওয়া হলো:

দেওয়া আছে, $B = \{2, 7\}$

$$R = \{x - 1 < y\}$$

'ক' হতে পাই, A = {2, 3, 5}

এখন $x \in A, y \in B$ বিবেচনা করে অন্বয়,

$$R = \{(x, y) : x \in A, y \in B$$
 এবং $x - 1 < y\}$

এখানে, $A \times B = \{2, 3, 5\} \times \{2, 7\}$

$$= \{(2,2), (2,7), (3,2), (3,7), (5,2), (5,7)\}$$

∴ অন্বয়, R = {(2,2), (2,7), (3,7), (5,7)}.

অথবা, $x \in B, y \in A$ বিবেচনা করে অম্বয়,

$$R = \{(x, y) : x \in B, y \in A$$
 এবং $x - 1 < y\}$

এখানে, $B \times A = \{2, 7\} \times \{2, 3, 5\}$

$$= \{(2,2), (2,3), (2,5), (7,2), (7,3), (7,5)\}$$

এক্ষেত্রে, অন্বয় $R = \{(2, 2), (2, 3), (2, 5)\}$

২২. $B = \{x \in N : 3 \le x \le 7$ এবং মৌলিক সংখ্যা $\}$

 $A = \{x \in \mathbb{N} : x$ জোড় সংখ্যা $x \leq 6\}$

$$F = \{(x, y) : x \in C, y \in C \text{ এবং } x - y = 2\}$$

যেখানে $C = \{-2, 0, 2, 4, 6\}$

[ময়মনসিংহ বোর্ড-২০২২]

- (ক) B কে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) P(A) নির্ণয় করে "A এর উপাদান সংখ্যা n হলে P(A) এর উপাদান সংখ্যা 2^n হবে"– উক্তির সত্যতা যাচাই কর।
- (গ) F অম্বয়কে তালিকা পদ্ধতিতে প্রকাশ করে ডোমেন ও রেঞ্জ নির্ণয় কর। 8

২২ নং প্রশ্নের উত্তর

কে) দেওয়া আছে, $B = \{x \in N: 3 \le x \le 7 \text{ এবং মৌলিক সংখ্যা}\}$ অর্থাৎ, যে সকল স্বাভাবিক মৌলিক সংখ্যা 3 এর ছোট নয় এবং 7 এর বড় নয় তাদের সেট।

$$B = \{3, 5, 7\}$$

- (খ) দেওয়া আছে, $A = \{x \in \mathbb{N} : x$ জোড় সংখ্যা $x \le 6\}$
 - $A = \{2, 4, 6\}$

$$\therefore P(A) = \{\emptyset, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}, \{2, 4, 6\}\}\}$$

A সেটের উপাদান সংখ্যা, n=3

আবার, P(A) এর উপাদান সংখ্যা $=8=2^3=2^n$

অর্থাৎ A এর উপাদান সংখ্যা n হলে, P(A) এর উপাদান সংখ্যা 2^n হবে।

(উক্তির সত্যতা যাচাই করা হলো)

গে) দেওয়া আছে, $F=\{(x,y):x\in C,y\in C$ এবং $x-y=2\}$ যেখানে $C=\{-2,0,2,4,6\}$

F এর বর্ণিত শর্ত থেকে পাই,

$$x - y = 2$$

বা,
$$x - 2 = y$$

$$v = x - 2$$

এখন প্রত্যেক $x \in C$ এর জন্য y = x - 2 এর মান নির্ণয় করি:

X	-2	0	2	4	6

গণিত ২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

у	- 4	-2	0	2	4

যেহেতু $-4 \notin C$ সেহেতু $(-2,-4) \notin F$

 $\therefore F = \{(0, -2), (2, 0), (4, 2), (6, 4)\}$

 \therefore ডোমেন, $F = \{0, 2, 4, 6\}$ এবং রেঞ্জ, $F = \{-2, 0, 2, 4\}$

- ২৩. (i) A = 2x 1, যেখানে $x \in \mathbb{N}$.
 - (ii) B = {x ∈ N : x² < 10} এবং
 C = {x ∈ N : 2 < x ≤ 7 এবং x মৌলিক সংখ্যা}

।) [যশোর বোর্ড-২০২০]

- (ক) $S = \{x \in \mathbb{N} : x^2 > 15$ এবং $x^3 < 225\}$ হলে, S কে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) প্রমাণ কর যে, A এর বর্গমূল একটি অমলুদ সংখ্যা, যেখানে x=3.
- (গ) $S = \{(x,y) : x \in B \text{ এবং } y \in C \text{ এবং } y = x+1\}$ কে তালিকা প্রদ্ধাতিতে প্রকাশ কর এবং ডোমেন ও রেঞ্জ নির্ণয় কর । 8

২৩ নং প্রশ্নের উত্তর

কে) দেওয়া আছে, $S=\{x\in N: x^2>15$ এবং $x^3<225\}$ অর্থাৎ যে সকল স্বাভাবিক সংখ্যা বর্গ 15 অপেক্ষা এবং ঘণ 225 অপেক্ষা ছোট তাদের সেট।

$$x = 1$$
 হলে, $x^2 = 1^2 = 1 > 15$ এবং $x^3 = 1^3 = 1 < 225$

$$x = 2$$
 হলে, $x^2 = 2^2 = 4 \Rightarrow 15$ এবং $x^3 = 2^3 = 8 < 225$

$$x = 4$$
 হলে, $x^2 = 4^2 = 16 > 15$ এবং $x^3 = 4^3 = 64 < 225$

$$x = 3 < 0, x = 3 = 23 > 13 = 0, x = 3 = 123 < 223$$

$$x = 6$$
 হলে, $x^2 = 6^2 = 36 > 15$ এবং $x^3 = 6^3 = 216 < 225$

 $: S = \{4, 5, 6\}$

এখন,

(খ) A = 2x - 1, যেখানে $x \in N$

$$x = 3$$
 হলে, $A = 2 \times 3 - 1 = 6 - 1 = 5$

$$\therefore$$
 A এর বর্গমূল, $\sqrt{A} = \sqrt{5}$

প্রমাণ করতে হবে $\sqrt{5}$ একটি অমলূদ সংখ্যা।

ধরি, $\sqrt{5}$ একটি মূলদ সংখ্যা।

$$\therefore \sqrt{5} = \frac{p}{a}$$

[राখात $p \otimes q$ উভয় স্বাভাবিক সংখ্যা এবং q>1 এবং p,q সহমৌলিক]

বা,
$$5 = \frac{p^2}{q^2}$$
 [বর্গ করে]

বা,
$$5q = \frac{p^2}{q}$$

এখানে, স্পষ্টত 5q একটি পূর্ণসংখ্যা। অপরপক্ষে p^2 এবং q এর মধ্যে কোনো সাধারণ উৎপাদক নেই।

সুতরাং $\frac{p^2}{a}$ পূর্ণসংখ্যা নয়।

সুতরাং $\frac{p^2}{q^2}$, 5q এর সমান হতে পারে না।

অতএব, $\sqrt{5}$ এর মান $rac{p}{q}$ এর আকারে কোনো সংখ্যাই হতে পারে না।

সুতরাং $\sqrt{5}$ একটি অমলুদ সংখ্যা।

 \therefore A এর বর্গমূল অর্থাৎ $\sqrt{5}$ একটি অমূলদ সংখ্যা। (প্রমাণিত)

(গ) দেওয়া আছে, $B = \{x \in N : x^2 < 10\}$

অর্থাৎ যে সকল স্বাভাবিক সংখ্যার বর্গ 10 অপেক্ষা ছোট তাদের সেট।

$$n = 1$$
 হলে, $x^2 = 1^2 = 1 < 10$

$$n = 2$$
 হলে, $x^2 = 2^2 = 4 < 10$

$$n = 3$$
 হলে, $x^2 = 3^2 = 9 < 10$

$$n = 4$$
 হলে, $x^2 = 4^2 = 16

< 10$

 $\therefore B = \{1, 2, 3\}$

এবং $C = \{x \in \mathbb{N} : 2 < x \le 7$ এবং x মৌলিক সংখ্যা $\}$

অর্থাৎ যে সকল স্বাভাবিক মৌলিক সংখ্যা 2 অপেক্ষা বড় এবং 7 অপেক্ষা ছোট অথবা সমান তাদের সেট।

$$: C = \{3, 5, 7\}$$

এবং
$$S = \{(x, y) : x \in B$$
 এবং $y \in C$ এবং $y = x + 1\}$

S এর বর্ণিত শর্ত থেকে পাই, v=x+1

এখন, প্রত্যেক $x \in B$ এর জন্য v = x + 1 এর মান নির্ণয় করি:

, j j							
X	1	2	3				
У	2	3	4				

যেহেতু $2, 4 \in \mathbb{C}$ সেহেতু $(1, 2), (3, 4) \in \mathbb{S}$

$$: S = \{(2,3)\}$$

ডোমেন, $S = \{2\}$ এবং রেঞ্জ, $S = \{3\}$.

২৪. $S = \{(x, y) : x \in A, y \in A$ এবং $2x - y = 1\},$

$$A = \{0, 1, 2, 3\}, B = y - 3x.$$

[কুমিল্লা বোর্ড-২০২০]

- (ক) যোগ কর: 3. 25 এবং 2.09.
- (খ) S অম্বয়কে তালিকা পদ্ধতিতে প্রকাশ করে তার রেঞ্জ নির্ণয় কর।
- (গ) B = 0 এর লেখচিত্র অঙ্কন করে এটি ফাংশন কিনা যাচাই কর, যেখানে $-2 \le x \le 2$.

২৪ নং প্রশ্নের উত্তর

(ক) দেওয়া **আছে**, 3. 25 এবং 2.09

এখানে, অনাবৃত্ত অংশের <mark>অঙ্ক সংখ্যা হবে 1 এবং আবৃত্ত অংশের অঙ্ক সংখ্যা হবে</mark> 2 ও 1 এর ল.সা.গু. 2।

$$3.\dot{2}\dot{5} = 3.2\dot{5}\dot{2}$$
 52
 $2.0\dot{9} = 2.0\dot{9}\dot{9}$ 99
 $5.3\dot{5}\dot{2}$ 51

নির্ণেয় যোগফল 5.352

(খ) দেওয়া আছে, $S = \{(x, y) : x \in A, y \in A \text{ এবং } 2x - y = 1\}$

S এর বর্ণিত শর্ত থেকে পাই,

$$2x - y = 1$$

$$v = 2x - 1$$

এখন প্রত্যেক $x \in A$ এর জন্য v = 2x - 1 এর মান নির্ণয় করি:

3					
X	0	1	2	3	
y	-1	1	3	5	

যেহেতু $-1, 5 \notin A$ সেহেতু $(0, -1), (3, 5) \notin S$

$$: S = \{(1,1), (2,3)\}$$

(গ) দেওয়া আছে, B = y - 3x এবং B = 0

বা,
$$y - 3x = 0$$

$$\therefore y = 3x$$

এখন, $-2 \le x \le 2$ ডোমেনের x মানের জন্য y এর মান নির্ণয় করে তালিকা তৈরি করি:

			P 20 2	DOM:		
X	-2	-1	0	1	2	
v	- 6	- 3	0	3	6	

XOX' কে x-অক্ষ ও YOY' কে y-অক্ষ বিবেচনা করি এবং O মূলবিন্দু । এখন ছক কাগজে প্রতি ক্ষুদ্রবর্গের বাহুকে একক ধরে তালিকার (-2,-6) (-1,-3),(0,0),(1,3),(2,6) বিন্দুগুলো স্থাপন করি ও মুক্ত হস্তে যোগ করি ।

গণিত ২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

লেখচিত্র হতে দেখা যায় যে, y-অক্ষের সমান্তরাল রেখায় লেখের একাধিক বিন্দু নেই। অর্থাৎ দুইটি সদস্যের প্রথম উপাদান ভিন্ন ভিন্ন। সূতরাং এটি একটি ফাংশন।

২৫. সার্বিক সেট $U = \{x : x \in \mathbb{N} \text{ এবং } x^2 < 53\}$

 $A = \{x \in N : x$ মৌলিক সংখ্যা এবং x < 10\}

B = {4,5} এবং C = {x ∈ N : x² > 7 এবং x³ < 136 }

[চউগ্রাম বোর্ড-২০২০]

8

8

- (ক) A ও C সেটকে তালিকা পদ্ধতিতে প্রকাশ কর।
- (খ) প্রমাণ কর যে, $(A \cap B) \cup (B \cup B) = (A \cup B) \cap C$.
- (গ) P(B' − A') নির্ণয় কর।

২৫ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, সার্বিক সেট $U = \{x : x \in \mathbb{N} \text{ এবং } x^2 < 53\}$ অর্থাৎ যে সকল স্বাভাবিক সংখ্যার বর্গ 53 অপেক্ষা ছোট তাদের সেট।

যে সকল স্বাভাবিক সংখ্যার বর্গ 53 অপেক্ষা ছোট সে সংখ্যাগুলো হলো:

1, 2, 3, 4, 5, 7

∴ সার্বিক সেট, U = {1, 2, 3, 4, 5, 6, 7}

এবং $A = \{x \in \mathbb{N} : x$ মৌলিক সংখ্যা এবং $x < 10\}$

অর্থাৎ যে সকল স্বাভাবিক মৌলিক সংখ্যা 10 অপেক্ষা ছোট তাদের সেট।

 $\therefore A = \{2, 3, 5, 7\}$

এবং $C = \{x \in \mathbb{N} : x^2 > 7$ এবং $x^3 < 136 \}$

অর্থাৎ যে সকল স্বাভাবিক সংখ্যার বর্গ 7 অপেক্ষা বড এবং ঘন 136 অপেক্ষা ছোট তাদের সেট।

এখানে, N = {1, 2, 3, 4, 5, 6,}

n = 1 হলে, $x^2 = 1^2 = 1 \gg 7$ এবং $x^3 = 1^3 = 1 < 136$

n=2 হলে, $x^2=2^2=4 \gg 7$ এবং $x^3=2^3=8 < 136$

n = 3 হলে, x² = 3² = 9 > 7 এবং x³ = 3³ = 27 < 136

n = 4 হলে, $x^2 = 4^2 = 16 > 7$ এবং $x^3 = 4^3 = 64 < 136$

n = 5 হলে, $x^2 = 5^2 = 25 > 7$ এবং $x^3 = 5^3 = 125 < 136$

n = 6 হলে, x² = 6² = 36 > 7 এবং x³ = 6³ = 216 ≮ 136

 $\therefore C = \{3, 4, 5\}$

সুতরাং $A = \{2, 3, 5, 7\}$ এবং $C = \{3, 4, 5\}$.

(খ) 'ক' হতে প্রাপ্ত, A = {2, 3, 5, 7} এবং C = {3, 4, 5}

দেওয়া আছে, B = {4, 5}

এখন, A ∩ B = {2, 3, 5, 7} ∩ {4, 5} = {5}

 $B \cup C = \{4, 5\} \cup \{3, 4, 5\} = \{3, 4, 5\}$

 $A \cup B = \{2, 3, 5, 7\} \cup \{4, 5\} = \{2, 3, 4, 5, 7\}$

বামপক্ষ = $(A \cap B) \cup (B \cup C)$

 $= \{5\} \cup \{3,4,5\} = \{3,4,5\}$

ডানপক্ষ $= (A \cup B) \cap C$

 $= \{2, 3, 4, 5, 7\} \cap \{3, 4, 5\} = \{3, 4, 5\}$

 \therefore (A \cap B) \cup (B \cup B) = (A \cup B) \cap C. (প্রমাণিত)

(গ) 'ক' হতে প্রাপ্ত, U = {1, 2, 3, 4, 5, 6, 7}

এবং $A = \{2, 3, 5, 7\}$

দেওয়া আছে, B = {4,5}

 $A' = U - A = \{1, 2, 3, 4, 5, 6, 7\} - \{2, 3, 5, 7\} = \{1, 4, 6\}$

 $B' = U - B = \{1, 2, 3, 4, 5, 6, 7\} - \{4, 5\} = \{1, 2, 3, 6, 7\}$

 $B' - A' = \{1, 2, 3, 6, 7\} - \{1, 4, 6\} = \{2, 3, 7\}$

 $\therefore P(B' - A') = \{\emptyset, \{2\}, \{3\}, \{7\}, \{2, 3\}, \{2, 7\}, \{3, 7\}, \{2, 3, 7\}\}\$

নির্ণেয় সেট: $\{\emptyset, \{2\}, \{3\}, \{7\}, \{2, 3\}, \{2, 7\}, \{3, 7\}, \{2, 3, 7\}\}$

₹७. $A = \{x \in \mathbb{N} : x^2 - 10x + 24 = 0\},$

$$f(x) = x^4 + 3x^3 + px^2 - 3x - 4 + p, g(y) = \frac{3y+1}{3y-1}$$

[সিলেট বোর্ড-২০২০]

8

(ক) P(A) নির্ণয় কর।

(খ) р এর মান কত হলে, f(-2) = 0 হবে তা নির্ণয় কর।

(গ) g(y-2)+1 এর মান নির্ণয় কর।

২৬ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $A = \{x \in \mathbb{N} : x^2 - 10x + 24 = 0\}$

এখানে, $x^2 - 10x + 24 = 0$

4x + 24 = 0

4x - 4(x - 6) - 4(x - 6) = 0

বা, (x-6)(x-4)=0

হয়, x - 4 = 0অথবা, x - 6 = 0

 $\therefore x = 4$

x = 6

 $\therefore A = \{4, 6\}$

 $P(A) = \{\emptyset, \{4\}, \{6\}, \{4, 6\}\}$

নির্ণেয় সেট: {Ø, {4}, {6}, {4, 6}}

(খ) দেওয়া আছে, $f(x) = x^4 + 3x^3 + px^2 - 3x - 4 + p$

 $f(-2) = (-2)^4 + 3(-2)^3 + p(-2)^3 - 3(-2) - 4 + p$ = 16 + 3(-8) + 4p + 6 - 4 + p= 16 - 24 + 4p + 6 - 4 + p = 5p - 6

প্রশ্নমতে, f(-2)=0

বা, 5p - 6 = 0

বা, 5p = 6

 $\therefore p = \frac{6}{5}$

নির্ণেয় মান: $p = \frac{6}{5}$

(গ) দেওয়া আছে, $g(y) = \frac{3y+1}{3y-1}$

বা, $g(y-2) = \frac{3(y-2)+1}{3(y-2)-1}$ বা, $g(y-2) = \frac{3y-6+1}{3y-6-1}$

বা, g(y-2) =

 $= \frac{3y-5+3y-7}{3y-5-3y+7}$ [যোজন-বিয়োজন করে] $= \frac{6y-12}{2} = \frac{6(y-2)}{2} = 3(y-2)$

নির্ণেয় মান: 3(v-2)

 $9. A = \{x \in Z : x^2 < 10\}$

 $B = \{x \in N : 2 < x \le 7$ এবং মৌলিক সংখ্যা $\}$

এবং $f(x) = \frac{x^4 + x^2 + 1}{x^2}$

[দিনাজপুর বোর্ড-২০২০]

(ক) B-কে তালিকা পদ্ধতিতে প্রকাশ কর।

(খ) $f\left(\frac{1}{x^2}\right) = 4$ হলে, $\left(x^2 + \frac{1}{x^2}\right)^2$ এর মান নির্ণয় কর।

গে) $S = \{(x, y) : x \in A, y \in B \text{ এবং } y = x + 1\}$ -কে তালিকা

গণিত ২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

পদ্ধতিতে প্রকাশ কর এবং ডোমেন ও রেঞ্জ নির্ণয় কর।

২৭ নং প্রশ্নের উত্তর

কে) দেওয়া আছে, $B = \{x \in N : 2 < x \le 7 \text{ এবং মৌলিক সংখ্যা}\}$ অর্থাৎ, যে সকল স্বাভাবিক মৌলিক সংখ্যা 2 অপেক্ষা বড় এবং 7 অপেক্ষা ছোট অথবা সমান তাদের সেট।

$$B = \{3, 5, 7\}$$

(খ) দেওয়া আছে,
$$f(x) = \frac{x^4 + x^2 + 1}{x^2}$$

প্রমতে,
$$f\left(\frac{1}{x^2}\right) = 4$$

$$4, \frac{1+x^4+x^8}{x^4} = 4$$

$$7, \frac{1}{x^4} + \frac{x^4}{x^4} + \frac{x^8}{x^4} = 4$$

$$\overline{1}, \frac{1}{x^4} + 1 + x^4 = 4$$

$$\sqrt[4]{x^4 + \frac{1}{x^4}} = 4 - 1$$

$$41, (x^2)^2 + \left(\frac{1}{x^2}\right)^2 = 3$$

$$\text{ at, } \left(x^2 + \frac{1}{x^2}\right)^2 - 2.x^2.\frac{1}{x^2} = 3$$

বা,
$$\left(x^2 + \frac{1}{x^2}\right)^2 = 3 + 2$$

নির্ণেয় মান: 5

(গ) দেওয়া আছে, $A = \{x \in Z : x^2 < 10\}$

অর্থাৎ যেসব পূর্ণসংখ্যার বর্গ 10 অপেক্ষা ছোট তাদে<mark>র সেট</mark>।

$$x = 0$$
 হলে, $x^2 = 0^2 = 0 < 10$

$$x = \pm 1$$
 হল, $x^2 = (\pm 1)^2 = 1 < 10$

$$x = \pm 2$$
 হলে, $x^2 = (\pm 2)^2 = 4 < 10$

$$x = \pm 3$$
 হলে, $x^2 = (\pm 3)^2 = 9 < 10$

$$x = \pm 4$$
 হলে, $x^2 = (\pm 4)^2 = 16 < 10$

$$A = \{-3, -2, -1, 0, 1, 2, 3\}$$

$$S = \{(x, y) : x \in A, y \in B$$
 এবং $y = x + 1\}$

S এর বর্ণিত শর্ত থেকে পাই, y=x+1

এখন, প্রত্যেক $x \in A$ এর জন্য v = x + 1 এর মান নির্ণয় করি:

X	-3	-2	-1	0	1	2	3
у	-2	- 1	0	1	2	3	4

যেহেতু −2, −1, 0, 1, 2, 4 ∉ B

মেছেছ
$$(-3,-2), (-2,-1), (-1,0), (0,1), (1,2), (3,4) \notin S$$

$$\therefore S = \{(2,3)\}$$

ডোমেন, $S = \{2\}$ এবং রেঞ্জ, $S = \{3\}$

২৮.
$$L = \{x: x$$
 পূর্বসংখ্যা এবং $x^2 < 9\}$ $M = \{-2, 0, 2\}; N = \{0, 1, 2\}$

$$S = \{(x, y) : x \in L, y \in L$$
 এবং $x - y = 1\}$

[ময়মনসিংহ বোর্ড-২০২০]

(ক) যোগ কর:
$$7.0\dot{5} + 3.2\dot{7}\dot{3}$$

(খ) প্রমাণ কর যে,
$$M \cup N = (M \setminus N) \cup (N \setminus M) \cup (M \cap N)$$
.

(গ) S অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ কর এবং রেঞ্জ নির্ণয় কর।

২৮ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $7.0\dot{5} + 3.2\dot{7}\dot{3}$

এখানে, অনাকৃত অংশের অঙ্ক সংখ্যা হবে 1 এবং আবৃত্ত অংশের অঙ্ক সংখ্যা হবে 1 ও 2 এর ল.সা.গু 2.

$$7.0\dot{5} = 7.0\dot{5}\dot{5}$$
 55
 $3.2\dot{7}\dot{3} = 3.2\dot{7}\dot{3}$ 73
 $10.3\dot{2}\dot{9}$ 28

নির্ণেয় যোগফল 10.329

(খ) দেওয়া আছে, $M=\{-2,0,2\}$ এবং $N=\{0,1,2\}$

এখন,
$$M \setminus N = \{-2, 0, 2\} \setminus \{0, 1, 2\}$$

$$= \{-2\}$$

$$N\M = \{0, 1, 2\}\\{-2, 0, 2\}$$

 $\{1\}$

এবং M ∩ N = {-2, 0, 2} ∩ {0, 1, 2}

$$= \{0, 2\}$$

বামপক্ষ = M ∪ N

$$= \{-2, 0, 2\} \cup \{0, 1, 2\}$$

$$=\{-2,0,1,2\}$$

ডানপক্ষ = $(M\backslash N) \cup (N\backslash M) \cup (M \cap N)$

$$= \{-2\} \cup \{1\} \cup \{0,2\}$$

$$= \{-2, 0, 1, 2\}$$

 $: M \cup N = (M \setminus N) \cup (N \setminus M) \cup (M \cap N)$ (প্রমাণিত)

(গ) দেওয়া আছে, $L = \{x : x$ পূর্ণসংখ্যা এবং $x^2 < 9\}$ অর্থাৎ সেসব পূর্ণসংখ্যার বর্গ 9 অপেক্ষা ছোট তাদের সেট।

$$x = 0$$
 হলে, $x^2 = 0^2 = 0 < 9$

$$x = \pm 1$$
 হলে, $x^2 = (\pm 1)^2 = 1 < 9$

$$x = +2$$
 হলে, $x^2 = (+2)^2 = 4 < 9$

$$x = \pm 3$$
 হলে, $x^2 = (\pm 3)^2 = 9 < 9$

$$\therefore L = \{-2, -1, 0, 1, 2\}$$

$$S = \{(x, y) : x \in L, y \in L$$
 এবং $x - y = 1\}$

S এর বর্ণিত শর্ত থেকে পাই,

$$x - y = 1$$

বা,
$$-y = -x + 1$$

$$\therefore v = x - 1$$

প্রত্যেক $x \in L$ এর জন্য y = x - 1 এর মান নির্ণয় করি:

16 3 / H = H 1 / H 1 / H 1 / H							
X	-2	-1	0	1	2		
У	-3	-2	- 1	0	1		

যেহেতু -3 ∉ L সেহেতু (-2, -3) ∉ S

$$\therefore S = \{(-1, -2), (0, -1), (1, 0), (2, 1)\}$$

২৯.
$$f(x) = \frac{5x^2+3}{5x^2-3}$$
, $S = \{(x,y) : x \in C, y \in D$ এবং $2x + y < 10\}$, $C = \{1,3,5\}$ এবং $D = \{2,4,7\}$

[ঢাকা বোর্ড-২০১৯]

(ক) 0.3 কে 0.22 দ্বারা ভাগ কর

(খ)
$$\frac{f\left(\frac{1}{t^2}\right)+1}{f\left(\frac{1}{t^2}\right)-1}$$
 এর মান নির্ণয় কর।

(গ) S অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে এর ডোমেন নির্ণয় কর।

২৯ নং প্রশ্নের উত্তর

(
$$\overline{9}$$
) $0.\dot{3} \div 0.2\dot{2} = \frac{3}{9} \div \frac{22-2}{90}$
= $\frac{3}{9} \div \frac{20}{90} = \frac{3}{9} \times \frac{90}{20} = \frac{3}{2} = 1.5$

নির্ণেয় ভাগফল 1.5

(খ) দেওয়া আছে,
$$f(\mathbf{x}) = \frac{5\mathbf{x}^2 + 3}{5\mathbf{x}^2 - 3}$$

গণিত

২য় অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

$$\therefore f\left(\frac{1}{t^2}\right) = \frac{5\left(\frac{1}{t^2}\right)^2 + 3}{5\left(\frac{1}{t^2}\right)^2 - 3} = \frac{\frac{5}{t^4} + 3}{\frac{5}{t^4} - 3} = \frac{\frac{5 + 3t^4}{t^4}}{\frac{5 - 3t^4}{t^4}}$$

ৰা,
$$f\left(\frac{1}{t^2}\right) = \frac{5+3t^4}{t^4} \times \frac{t^4}{5-3t^4}$$

ৰা, $f\left(\frac{1}{t^2}\right) = \frac{5+3t^4}{5-3t^4}$

বা,
$$f\left(\frac{1}{t^2}\right) = \frac{5+3t^4}{5-3t^4}$$

বা,
$$\frac{f\left(\frac{1}{t^2}\right)+1}{f\left(\frac{1}{t^2}\right)-1} = \frac{5+3t^4+5-3t^4}{5+3t^4-5+3t^4}$$
 [যোজন-বিয়োজন করে]

$$\overline{4}, \frac{f(\frac{1}{t^2}) + 1}{f(\frac{1}{t^2}) - 1} = \frac{10}{6t^4} = \frac{5}{3t^4}$$

(গ) দেওয়া আছে,
$$C = \{1, 3, 5\}$$
 এবং $D = \{2, 4, 7\}$

প্রশানুসারে, অন্বয় $S = \{(x, y) : x \in C, y \in D \text{ এবং } 2x + y < 10\}$ এখানে, $C \times D = \{1, 3, 5\} \times \{2, 4, 7\}$

 $= \{(1,2), (1,4), (1,7), (3,2), (3,4), (3,7), (5,2), (5,4), (5,7)\}$

 $: S = \{(1, 2), (1, 4), (1, 7), (3, 2)\}$ S অন্বয়ের ক্রমজোড়গুলোর প্রথম উপাদানসমূহ 1, 1, 1, 3

: ডোমেন, $S = \{1, 3\}$

৩০.
$$A = \{2, 4, 7\}, B = \{x \in Z : -2 \le x \le 2\}$$
 এবং $S = \{(x, y) : x \in B, y \in B$ এবং $y - 2x = 0\}$

রাজশাহী বোর্ড-২০১৯]

- (ক) $C=\{x\in \mathbb{N}: x^2-9=0\}$ সেটকে তালিকা পদ্ধতিতে প্রকাশ কর।২
- (খ) P(A) নির্ণয় করে "কোনো সেট A এর উপাদান সংখ্যা n হলে, P(A)এর উপাদান সংখ্যা 2^n হবে"– উক্তির সত্যতা <mark>যাচাই কর।</mark>
- (গ) S অন্বয়কে তালিকা পদ্ধতিতে প্রকাশ করে এর ডোমেন নির্ণয় কর।

৩০ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $C = \{x \in \mathbb{N} : x^2 - 9 = 0\}$

এখানে,
$$x^2 - 9 = 0$$

বা,
$$x^2 = 9$$

বা,
$$x = \sqrt{9}$$

বা, x = 3 [: x ∈ N]

 $: C = \{3\}$

- (খ) দেওয়া আছে, $A = \{2, 4, 7\}$
 - $\therefore P(A) = \{\emptyset, \{2\}, \{4\}, \{7\}, \{2, 4\}, \{2, 7\}, \{4, 7\}, \{2, 4, 7\}\}\}$

এখানে, A এর উপাদান সংখ্যা, n=3

 \therefore P(A) এর উপাদান সংখ্যা $=8=2^3=2^n$

সূতরাং কোনো সেট A এর উপাদান সংখ্যা n হলে, P(A) এর উপাদান সংখ্যা 2ⁿ। (উক্তিটি সত্য)

(গ) দেওয়া আছে, $B = \{x \in Z : -2 \le x \le 2\}$

অর্থাৎ, প্রদত্ত সেটটি পূর্ণসংখ্যার সেট যা -2 এর সমান বা -2 থেকে বড় এবং 2 থেকে বড় নয়।

$$B = \{-2, -1, 0, 1, 2\}$$

এবং $S = \{(x, y) : x \in B, y \in B$ এবং $y - 2x = 0\}$

S এর বর্ণিত শর্ত থেকে পাই, y-2x=0

v = 2x

এখন, প্রত্যেক $x \in B$ এর জন্য v = 2x এর মান নির্ণয় করি:

x -2 -1 0 1 2					
X	-2	- 1	0	1	2
v	- 4	-2	0	2	4

যেহেতু -4, 4 ∉ B

$$\therefore$$
 (-2, 4) \notin S, (2, 4) \notin S \therefore S = {(-1, -2), (0, 0), (1, 2)} \therefore ডোমেন, S = {-1, 0, 1}

აა. (i)
$$A = \{x \in Z : 1 \le x^2 \le 7\}$$

এবং
$$R = \{(x, y) : x \in A, y \in A$$
 এবং $y - 2x - 1 = 0\}$

(ii)
$$f(x) = \frac{1}{x-1}$$

যিশোর বোর্ড-২০১৯

8

- (ক) যোগ কর: $2.30\dot{4} + 2.0\dot{2}\dot{5}$
- (খ) উদ্দীপকের আলোকে (i) নং থেকে R-এর রেঞ্জ নির্ণয় কর।
- (গ) (ii) নং হতে দেখাও যে, $f(m) f(n) \neq f\left(\frac{mn}{m}\right)$

<u>৩১ নং প্রশ্নে</u>র উত্তর

(ক) প্রদত্ত রাশি = 2.304 + 2.025

এখানে, অনাবৃত্ত অংশের অঙ্ক সংখ্যা হবে 2 এবং আবৃত্ত অংশের অঙ্ক সংখ্যা হবে

$$2.30\dot{4} = 2.30\dot{4}\dot{4}$$
 44
 $2.0\dot{2}\dot{5} = 2.0\dot{2}\dot{5}\dot{2}$ 52
 $4.32\dot{9}\dot{6}$ 96

নির্ণেয় যোগফল 4.3296.

(খ) দেওয়া আছে, $A = \{x \in Z : 1 \le x^2 \le 7\}$

এখানে,
$$x = \pm 1$$
 হলে, $(\pm 1)^2 = 1$

$$x = \pm 2$$
 হলে, $(\pm 2)^2 = 4$

$$A = \{-2, -1, 1, 2\}$$

এবং
$$R = \{(x, y) : x \in A, y \in A$$
 এবং $y - 2x - 1 = 0\}$

R এ বর্ণিত শর্ত থেকে পাই, y - 2x - 1 = 0

বা,
$$y = 2x + 1$$

এখন, প্রত্যেক $x \in A$ এর জন্য y = 2x + 1 এর মান নির্ণয় করি:

X	-2	-1	1	2
у	- 3	-1	3	5

যেহেতু -3, 3, 5 ∉ A

- ∴ (-2, -3) ∉ R, (1, 3) ∉ R এবং (2, 5) ∉ R
- $R = \{(-1, -1)\}$
- ∴ রেঞ্জ, R = {-1}
- (গ) দেওয়া আছে, $f(x) = \frac{1}{x-1}$

$$\therefore f(\mathbf{m}) = \frac{1}{\mathbf{m}-1} \, \mathbf{a} \operatorname{ৰং} f(\mathbf{m}) = \frac{1}{\mathbf{n}-1}$$

$$f(m) - f(n) = \frac{1}{m-1} - \frac{1}{n-1} = \frac{(n-1)-(m-1)}{(m-1)(n-1)}$$
$$= \frac{n-1-m+1}{mn-m-n+1} = \frac{n-m}{mn-m-n+1}$$

আবার,
$$f\left(\frac{\mathrm{mn}}{\mathrm{n-m}}\right) = \frac{1}{\frac{\mathrm{mn}}{\mathrm{n-m}}-1} = \frac{1}{\frac{\mathrm{mn-n+m}}{\mathrm{n-m}}}$$

$$= \frac{1}{\mathrm{n-m}} = \frac{1}{\mathrm{n-m}}$$

$$= \frac{n-m}{mn-n+m} = \frac{n-m}{mn+m-n}$$

$$\therefore f(m) - f(n) \neq f\left(\frac{mn}{n-m}\right)$$
 (দেখানো হলো)

$$\mathfrak{g}(p) = \frac{3p^2 - p^3 - 1}{p(p-1)}.$$

[কুমিল্লা বোর্ড-২০১৯]

- (ক) g(-1) এর মান নির্ণয় কর।
- (খ) a এর মান কত হলে f(-2)=0 হবে তা নির্ণয় কর।
- (গ) প্রমাণ কর যে, $g(\frac{1}{r}) = g = (1 p)$

৩২ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, $g(p) = \frac{3p^2 - p^3 - 1}{p^2 - p^3}$

www.schoolmathematics.com.bd

$$\therefore g(-1) = \frac{3(-1)^2 - (-1)^3 - 1}{(-1)(-1 - 1)} = \frac{3 - (-1) - 1}{(-1)(-2)} = \frac{3 + 1 - 1}{2} = \frac{3}{2}$$

(খ) দেওয়া আছে, $f(x) = x^4 + 3x^2 + ax^2 - 3x - 4 + a$ $f(-2) = (-2)^4 + 3(-2)^3 + a(-2)^2 - 3(-2) - 4 + a$

গণিত

২য় অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

$$=16-24+4a+6-4+a=5a-6$$
 যেহেতু, $f(-2)=0$ সূতরাং $5a-6=0$ বা, $5a=6$

বা,
$$a = \frac{6}{5}$$

নির্ণেয় মান: ⁶

(গ) দেওয়া আছে,
$$g(p) = \frac{3p^2 - p^3 - 1}{p(p-1)}$$

$$\therefore g\left(\frac{1}{p}\right) = g(1-p)$$
 (প্রমাণিত)

৩৩. সার্বিক সেট
$$U = \{1, 2, 3, 4, b, c, d\}$$

$$M = \{x \in \mathbb{N} : x^2 \ge 8$$
 এবং $x^4 \le 256\}$

$$N = \{y : y^2 - (c + d)y + cd = 0\}$$
 এবং $f(x) = \frac{5x - 7}{2x - 3}$

[দিনাজপুর বোর্ড-২০১৯]

(খ) উদ্দীপকের আলোকে দেখাও যে,
$$(M \cup N)' = M' \cap N'$$
.

(গ) উদ্দীপকের আলোকে
$$rac{f({f x}^{-1})+2}{f({f x}^{-1})-1}=3$$
 হলে ${f x}$ এর মান নির্ণয় কর।

-p(1-p)

(ক) দেওয়া আছে,
$$A = \{11, 20\}, B = \{20, a\}$$

$$A \cap B = \{11, 20\} \cap \{20, a\} = \{20\}$$

$$P(A \cap B) = \{\emptyset, \{20\}\}\$$

(খ) দেওয়া আছে, $U = \{1, 2, 3, 4, b, c, d\}$

$$M = \{x \in \mathbb{N} : x^2 \ge 8$$
 এবং $x^4 \le 256\}$

$$x = 2$$
 হলে, $x^3 = 2^3 = 8 = 8$ এবং $x^4 = 2^4 = 16 < 256$

$$x = 4$$
 হলে, $x^3 = 4^3 = 64 > 8$ এবং $x^4 = 4^4 = 256 = 256$

$$x = 5$$
 হলে, $x^3 = 5^3 = 125 > 8$ এবং $x^4 = 5^4 = 625$

< 256

$$M = \{2, 3, 4\}$$

$$N = \{y : y^2 - (c + d)y + cd = 0\}$$

এখানে,
$$y^2 - (c + d)y + cd = 0$$

বা,
$$y(y-c) - d(y-c) = 0$$

বা,
$$(y-c)(y-d)=0$$

হয়,
$$y - c = 0$$
 অথবা, $y - d = 0$

$$\dot{v} = c$$
 $\dot{v} = d$

$$\therefore$$
 N = {c, d}

$$= \{2, 3, 4, c, d\}$$

$$\therefore (M \cup N)' = U - (M \cup N)$$

$$= \{1, 2, 3, 4, b, c, d\} - \{2, 3, 4, c, d\}$$
$$= \{1, b\}$$

আবার,
$$M' = U - M$$

$$= \{1, 2, 3, 4, b, c, d\} - \{2, 3, 4\} = \{1, b, c, d\}$$

$$N' = U - N$$

$$= \{1, 2, 3, 4, b, c, d\} - \{c, d\} = \{1, 2, 3, 4, b\}$$

$$\div \ M' \cap N' = \{1,b,c,d\} \cap \{1,2,3,4,b\}$$

$$= \{1, b\}$$

 $\therefore (M \cup N)' = M' \cap N'$ (দেখানো হলো)

(গ) দেওয়া আছে,
$$f(x) = \frac{5x-7}{2x-3}$$

$$f(x^{-1}) = \frac{5(x^{-1}) - 7}{2(x^{-1}) - 3}$$
$$= \frac{5 \cdot \frac{1}{x} - 7}{2} = \frac{5 - 7x}{x} = \frac{5 - 7x}{x} \times \frac{5 - 7x}{x}$$

∴
$$f(x^{-1}) + 2 = \frac{5-7x}{2-3x} + 2$$
 [উভয়পক্ষে 2 যোগ করে]
$$= \frac{5-7x+4-6x}{2-3x} = \frac{9-13x}{2-3x}$$

আবার,
$$f(x^{-1}) = \frac{5-7x}{2}$$

াগান,
$$f(x^{-1}) - \frac{1}{2-3x}$$

$$f(x^{-1}) - 1 = \frac{5-7x}{2-3x} - 1$$
 [উভয়পক্ষ হতে 1 বিয়োগ করে]
$$\frac{5-7x-2+3x}{5-7x-2+3x} = \frac{3-4x}{3-4x}$$

$$= \frac{1}{2-3x} - 1 = \frac{1}{2-3x} = \frac{3-4x}{2-3x}$$

এখন,
$$\frac{f(x^{-1})+2}{f(x^{-1})-1}=3$$

বা,
$$\frac{\frac{9-13x}{2-3x}}{\frac{3-4x}{3-4x}} = 3$$

$$\text{ at, } \frac{\frac{2-3x}{9-13x}}{2-3x} \times \frac{2-3x}{3-4x} = 3$$

বা,
$$\frac{9-13x}{3-4x} = 3$$

বা,
$$9 - 13x = 9 - 12x$$

বা,
$$-13x + 12x = 9 - 9$$

বা,
$$-x=0$$

$$x = 0$$

নির্ণেয় মান,
$$x=0$$

98.
$$A = \{3, 4, 5, 6\}, B = \{0, 1, 2\}$$

এবং
$$R = \{(x, y) : x \in A, y \in A$$
 এবং $x - y = -1\}$

[সকল বোর্ড-২০১৮]

- (খ) P(A) নির্ণয় করে দেখায় যে, A সেটের উপাদান সংখ্যা n হলে P(A)এর উপাদান সংখ্যা 2ⁿ কে সমর্থন করে।
- (গ) R কে তালিকা পদ্ধতিতে প্রকাশ কর এবং ডোম R ও রেঞ্জ R নির্ণয় কর।8

৩৪ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে,
$$A = \{3, 4, 5, 6\}$$
 এবং $B = \{0, 1, 2\}$

$$A \cap B = \{3, 4, 5, 6\} \cap \{0, 1, 2\} = \emptyset$$

সূতরাং A ও B পরস্পর নিশ্ছেদ সেট। (দেখানো হলো)

(খ) দেওয়া আছে, $A = \{3, 4, 5, 6\}$

সেট
$$A$$
-এর উপাদান সংখ্যা $n=4$

$$P(A) = \{\{3, 4, 5, 6\}, \{3, 4, 5\}, \{3, 4, 6\}, \{3, 5, 6\}, \{4, 5, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\}, \{3\}, \{4\}, \{5\}, \{6\}, \emptyset\}$$

 $\div\ P(A)$ এর উপাদান সংখ্যা $=16=2^4=2^n$ যেখানে সেট A এর উপাদান সংখ্যা n।

অতএব, A সেটের উপাদান সংখ্যা n হলে P(A) এর উপাদান সংখ্যা 2^n কে সমর্থন করে। (দেখানো হলো)

(গ) দেওয়া আছে,
$$A = \{3, 4, 5, 6\}$$

এবং
$$R = \{(x, y) : x \in A, y \in A$$
 এবং $x - y = -1\}$

$$R$$
-এর বর্ণিত শর্ত থেকে পাই, $x-y=-1$

বা,
$$x + y = y$$

গণিত ২্য অধ্যায়

সেট ও ফাংশন

Prepared by: ISRAFIL SHARDER AVEEK

 $\therefore y = x + 1$

এখন প্রত্যেক $x \in A$ এর জন্য y = x + 1 এর মান নির্ণয় করি:

11 10 3 1 12 = 12 10 1 1 3 y 11 1 2 10 10 10 10 10						
X	3	4	5	6		
У	4	5	6	7		

যেহেতু 7 ∉ A, সেহেতু (6, 7) ∉ R

 $\therefore R = \{(3,4), (4,5), (5,6)\}$

ডোম R = {3, 4, 5} এবং রেঞ্জ, R = {4, 5, 6}