МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 5.2

Спектрометрия α -излучения с помощью полупроводникового детектора

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. С помощью кремниевого поверхностно-барьерного детектора измерить спектры α -частиц, испускаемых различными радиоактивными ядрами $^{226}_{88}\mathrm{Ra},^{241}_{95}\mathrm{Am}+^{230}_{90}\mathrm{Th},^{239}_{94}\mathrm{Pu}$ и $\mathrm{U}_{\mathrm{np}}.$
- 2. По их величине определить энергию α -частиц.
- 3. Проверить выполнение закона Гейгера-Неттола.

2 Теоретические сведения

Свойства α -распада

Энергию вылетающих из ядра α -частиц легко подсчитать на основе законов сохранения.

$$M_2c^2 = M_1c^2 + m_\alpha c^2 + T_1 + T_\alpha \tag{1}$$

$$\mathbf{p_1} + \mathbf{p_\alpha} = 0 \tag{2}$$

Ясно, что вылет α -частицы из ядра возможен лишь в том случае, если разность энергий покоя родительского и дочернего ядра будет больше энергии покоя α -частицы. В силу того, что реально α -распад испытывают лишь тяжелые ядра с A>200, энергия отдачи ядра очень мала и фактически кинетическая энергия α -частицы равна разности энергий покоя исходного и конечного ядер. Именно поэтому вылетающие α -частицы имеют строго определенную энергию.

Однако экспериментально обнаружено, что энергетический спектр α -частиц многих α -активных ядер состоит из нескольких линий, одна из которых является преобладающей. В качестве примера на рис. 1 показан α -спектр ($^{212}_{83}$ Bi).

Дискретность линий и их относительная интенсивность объяснимы, поскольку, во-первых, α -частицы могут испускаться ядром, находящимся в возбужденном состоянии (так называемые длиннопробежные α -частицы), а во-вторых, может происходить α -распад из основного состояния родительского ядра на возбужденные состояния дочернего ядра (короткопробежные α -частицы). На рис. α приведены два примера таких переходов — распад α -частицы α -частицы.

Рис. 1: Энергетический спектр α -частиц, вылетающих при распаде $^{212}_{83}$ Ві

В первом случае (238 Pu) α -частицы максимальной энергии соответствуют переходам из основного состояния 238 Pu в основное состояние дочернего ядра. Кроме того, α -распад может идти на возбужденные состояния дочернего ядра 234 U с последующими γ -переходами в основное состояние. Распад 212 Po — пример возможности испускания α -частиц из возбужденного состояния. Такая ситуация возникает из-за того, что 212 Po образуется в результате β -распада 212 Bi. Находясь в возбужденном состоянии, ядро 212 Po может либо испустить α -частицу, либо путем γ -излучения перейти в основное состояние. Так как период полураспада для α -частиц примерно в 105 раз больше периода γ -распада, то интенсивность длиннопробежных α -частиц очень мала.

Рис. 2: Альфа-спектры распада ядер 238 Ри и 212 Ро

Возбужденные состояния обладают разными спинами и четностью, а значит, разность моментов количества движения исходного и конечного ядра должна уноситься α -частицей. Иными словами, α -распад происходит с изменением углового момента ядра. Как показывают простые оценки, если α -частица имеет малый импульс L, то величина возникающего центробежного барьера составляет в тяжелых ядрах примерно $0.002L^2A^2=0.002l(l+1)$ часть от величины кулоновского барьера. Тем самым видно, что влияние центробежного барьера может быть существенным лишь для больших значений l. Тяжелые ядра, как правило, в основном состоянии деформированы (исключением являются магические ядра). Это означает, что низколежащими состояниями являются вращательные полосы, и именно на эти состояния обычно и происходит распад родительского ядра, приводящий к появлению группы короткопробежных α -частиц. Как известно, энергия вращательных уровней определяется выражением

$$E_{\rm Bp} = \frac{\hbar}{2I}l(l+1) \tag{3}$$

Тем самым измерение тонкой структуры энергетического спектра α -частиц дает возможность определить момент инерции ядра I. Периоды полураспада α -активных ядер очень сильно зависят от энергии вылетающих частиц. Экспериментально установленная зависимость (закон Гейгера—Нэттола) имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_\alpha}} + b \tag{4}$$

Коэффициенты а и b очень слабо зависят от заряда ядра Z.

Радиоактивные ряды

Семейство 238 U, показанное на рис. 3 , является нестабильной цепочкой превращений. Начинается с α -активного изотопа урана $^{238}_{92}$ U, который с периодом полураспада $^{4.5} \cdot 10^{9}$ лет превращается в $^{234}_{90}$ Th и т. д. Среди ядер этого семейства урана находится изотоп радия $^{226}_{88}$ Ra, последовательность распадов которого изучается в данной работе. Очень скоро после приготовления моноизотопа $^{226}_{88}$ Ra ($T_{1/2}=1617$ лет) в препарате накапливаются его дочерние продукты — $^{222}_{86}$ Rn ($T_{1/2}=3.8$ дней), $^{218}_{84}$ Po ($T_{1/2}=3$ мин) и $^{214}_{84}$ Po ($T_{1/2}=10$ с), которые сами являются α -активными. Поэтому при измерении α -спектра радия-226 мы фактически наблюдаем α -частицы, испускаемые всеми его дочерними продуктами.

Рис. 3: Последовательность радиоактивных превращений $^{238}{\rm U} \rightarrow ^{206}{\rm Pb}$

3 Экспериментальная установка

Основой установки является спектрометр α -излучения. Конструктивно спектрометр выполнен в виде трех отдельных частей: измерительного модуля, персональной ЭВМ со встроенной платой амплитудноцифрового преобразователя (АЦП) и системы откачки СО вакуумной камеры ВК с блоком индикации БИ (см. рис. 4).

В измерительном блоке смонтированы:

- 1) вакуумная камера ВК, в которой расположен держатель образцов, поверхностно-барьерный полупроводниковый детектор и индикатор давления;
- 2) малошумящий предварительный усилитель ПУ;
- 3) спектрометрический усилитель СУ с органами управления;
- 4) регулируемый блок низковольтного смещения БНС для питания детектора.

Вакуумный насос создает в измерительной камере давление не более 10-2 Тор. Полупроводниковый детектор регистрирует α -частицы с энергиями от 3.5 до 9 МэВ, его энергетическое разрешение составляет не более 30 кэВ при энергии α -частицы 5 МэВ.

В поверхностно-барьерных полупроводниковых счетчиках преобразование энергии падающих частиц в электрические импульсы происходит в области так называемого (p-n)-перехода. Такой переход создается в виде тонкого слоя на границе между областями с p- и n-проводимостью. При прохождении частицы через обедненный слой вдоль ее трека создаются электронно-дырочные пары. Образовавшиеся носители разносятся электрическим полем (p-n)-перехода в разные стороны — и через кристалл проходит токовый импульс.

Рис. 4: Блок-схема спектрометра α -излучения

При использовании детектора в спектрометрических целях особое значение приобретает его разрешающая способность, т. е. ширина кривой распределения импульсов по амплитудам при строго постоянной энергии регистрируемых частиц. Форма такой кривой распределения обычно бывает близка к кривой ошибок (гауссовой кривой)

$$W(U)dU = \frac{1}{\sqrt{2\pi}\sigma} e^{-(U-U_0)^2/(2\sigma^2)} dU$$
 (5)

десь U_0 — среднее значение амплитуды импульсов, U — конкретное значение этой амплитуды, W(U)dU — вероятность того, что при энергии частицы E амплитуда измеренного импульса заключена между U и U+dU, σ — параметр, определяющий ширину распределения (среднеквадратичное отклонение).

Распределение (5) имеет вид колокола с максимумом при U=U0. Разрешающую способность спектрометра определяют по величине δ — ширине кривой W(U), измеренной на половине высоты. Энергетическим разрешением спектрометра обычно называют величину

$$R = \frac{\delta}{U_0} \cdot 100\% \tag{6}$$

Нетрудно найти связь между δ и σ :

$$\delta = 2\sqrt{2\ln 2}\sigma\tag{7}$$

Одной из основных причин, вызывающих разброс импульсов по амплитуде, является статистическая флуктуация числа электрон-дырочных пар, создаваемых падающей частицей. Среднее число пар N равно

$$N = E/\mathcal{E}_{\rm cp} \tag{8}$$

где E — энергия, теряемая частицей в детекторе, а $\mathcal{E}_{\rm cp}=3.6$ эВ — энергия, необходимая для создания пары электрон—дырка. Среднеквадратичное отклонение σ равно

$$\sigma = \sqrt{N} = \sqrt{E/\mathcal{E}_{cp}} \tag{9}$$

Вклад флуктуаций числа пар в энергетическое разрешение

$$R_{\phi,\text{лук}} = \frac{\sigma}{N} \cdot 100\% = \sqrt{\frac{\mathcal{E}_{\text{cp}}}{E}} \cdot 100\% \tag{10}$$

Другим источником разброса импульсов является шум электрических цепей. Прежде всего, это шум, создаваемый токами утечки, возникающими из-за термической генерации электрондырочных пар в обедненном слое детектора, а также шум первого усилительного каскада — чем меньше шум, вносимый схемами измерений, тем ближе энергетическое разрешение спектрометра к флуктуационному, определяемому формулой (9).

Плата АЦП преобразует электрические аналоговые импульсы в цифровой код, который записывается в память ЭВМ. На экране ЭВМ наблюдается зависимость числа поступающих импульсов от их амплитуды, т. е. энергетический спектр испускаемых источником α -частиц.

4 Результаты измерений и обработка данных

- 1. Включим установку, убедимся что в вакуумной камере нет других источников излучения. Проведем измерения для образцов и убедимся, что детектор не регистрирует частицы (фоновое излучение пренебрежимо мало)
- 2. Проведем измерения со всеми образцами: $^{226}_{88}$ Ra, $^{241}_{95}$ Am + $^{230}_{90}$ Th, $^{239}_{94}$ Pu и U_{np} . Экспортируем данные в таблицу, после чего определим положения спектров гауссовым приближением. Запишем положения пиков и погрешности в таблицу 1.

Положения и погрешности определим по формулам:

$$N = \frac{\sum_{i} x_{\text{канал}}^{i} \cdot N_{\text{частиц}}^{i}}{\sum_{i} N_{\text{частиц}}^{i}}, \quad \sigma_{N} = \sqrt{\frac{\sum_{i} (x_{\text{канал}}^{i} - N)^{2} \cdot N_{\text{частиц}}^{i}}{\sum_{i} N_{\text{частиц}}^{i}}}$$
(11)

	N_1	σ_{N_1}	N_2	σ_{N_2}	N_3	σ_{N_3}	N_4	σ_{N_4}
Ra	1677.3	0.2	1921.9	0.2	2098.4	0.2	2674.6	0.2
Am + Th	1647.7	0.2	1926.8	0.3				
Pu	1811.7	0.2	1927	1				
U	1436	2	1621	2				

Таблица 1: Положения спектров для различных образцов

3. Проведем калибровку по энергиям пиков для $^{226}_{88}$ Ra: построим калибровочный график зависимости номера канала N_i от энергии α -частицы E_i , используя значение для энергий при распаде $^{226}_{88}$ Ra. Изобразим его на рис. 5 .

Рис. 5: Калибровочный график зависимости $N_i = \alpha E_i$

По углу наклона прямой найдем коэффициент α (погрешность вычислим из MHK):

$$\alpha = (349.2 \pm 0.6) \text{ M} \cdot \text{B}^{-1}$$

Прокалибруем все измерения и изобразим спектры на рис. 7, 8, 9 и 10 и отметим на них положения пиков.

4. Используя калибровочный график, определим для всех остальных пиков значения энергии пиков E_i , их ширину ΔE_i и энергетическое разрешение $R_i = \Delta E_i/E_i$. Результаты запишем в таблицу 2.

источник	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	σ_E , МэВ	R_i	σ_{R_i}
Am + Th	1647.7	24.6	4.72	0.07	0.01	0.015	0.002
Am + Th	1926.8	25.8	5.52	0.07	0.01	0.013	0.002
Pu	1811.7	23.6	5.19	0.07	0.01	0.013	0.002
Pu	1927	17.2	5.52	0.05	0.01	0.009	0.002
U	1435	66.5	4.11	0.19	0.01	0.046	0.003
U	1621	106.6	4.64	0.31	0.01	0.066	0.005

Таблица 2: Вычисление энергий пиков и их энергетического разрешения

Погрешность E вычислим по формуле:

$$\sigma_E = E\sqrt{\left(\frac{\sigma_N}{N}\right)^2 + \left(\frac{\sigma_\alpha}{\alpha}\right)^2}$$

И запишем в таблицу 2. Погрешность R вычислим аналогично и запишем в таблицу 2.

5. Определим энергетическое разрешение при распаде $^{226}_{88}$ Ra, связанное с флуктуацией числа образующихся электронно-дырочных пар, которые создаются α -частицей в детекторе.

$$R_{\phi\pi} = \frac{1}{\sqrt{N}} = \sqrt{\frac{E}{E_{\rm cp}}},\tag{12}$$

где $E_{\rm cp}=3.6~{\rm pB}$ – средняя энергия создания пары электрон-дырка. Тогда посчитаем разницу энергетического разрешения ΔR , связанную с шумом в электрической цепи детектора:

$$\Delta R = R_i - R_{\Phi\pi,i} \tag{13}$$

и запишем в таблицу 3. Погрешность посчитаем через частные производные

Номер пика	1	2	3	4
$\Delta R \cdot 10^6$	867	810	774	684
$\sigma_{\Delta R} \cdot 10^6$	6	6	5	5

Таблица 3: Вычисление энергетического разрешения, связанного с флуктуацией числа электронно-парочных дыр

Тогда ΔR вычислим как среднее, а погрешность как стандартное среднеквадратичное отклонение:

$$\Delta R = (13 \pm 3) \cdot 10^{-3}$$

6. Проверим выполняется ли закон Гейгера-Неттола. Построим график зависимости $\lg T_{1/2}$ от $1/\sqrt{E_{\alpha}}$ для $^{226}_{88} \mathrm{Ra}$.

Запишем периоды полураспада в таблицу 4.

	1	2	3	4
$T_{1/2}, c$	$5.1 \cdot 10^{10}$	$3.3 \cdot 10^{5}$	$1.87 \cdot 10^{2}$	$1.63 \cdot 10^{-4}$

Таблица 4: Периоды полураспада для дочерних ядер $^{226}_{88}\mathrm{Ra}$

Если закон выполняется, то зависимость имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_{\alpha}}} + b,$$

где $a\simeq 1.6Z=141$ и $b\simeq -1.6Z^{2/3}-21.4=-53,$ Z=88. График изобразим на рис. 6, так же изобразим прямую с теоретически предсказанными коэффициентами.

Коэффициенты:

$$a = (150 \pm 9), \quad b = (-58 \pm 4)$$

Посчитаем метрику χ^2 , чтобы определить, выполняется ли закон:

$$\chi^2 = \sum \frac{(y - \hat{y})^2}{\sigma_y^2 + \sigma_{\hat{y}}^2}$$

где, y - значения экспериментальных точек, \hat{y} - аппроксимация, σ_y и $\sigma_{\hat{y}}$ - погрешности y и \hat{y} соответственно.

$$y = \log T_{1/2}, \quad x = \frac{1}{\sqrt{E_{\alpha}}}$$

Погрешности:

$$\sigma_{y} = \left| \frac{\partial y}{\partial T_{1/2}} \right| \sigma_{T_{1/2}} = \frac{1}{\ln 10} \varepsilon_{T_{1/2}}$$

$$\sigma_{z} = \left| \frac{\partial x}{\partial E_{\alpha}} \right| \sigma_{E_{\alpha}} = \left(\frac{1}{2} E_{\alpha}^{-3/2} \right) \sigma_{E_{\alpha}} = \frac{x}{2} \varepsilon_{E_{\alpha}}$$

Для аппроксимации:

$$\hat{y} = ax + b, \quad \sigma_{\hat{y}} = \sqrt{\left(\frac{\partial \hat{y}}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial \hat{y}}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial \hat{y}}{\partial b}\right)^2 \sigma_b^2} = \sqrt{a^2 \sigma_x^2 + x \sigma_a^2 + \sigma_b^2}$$

Тогда получаем:

$$\chi^2 \approx 0.03$$

Так как значение метрики χ^2 ниже 1, то можно утверждать, что закон выполняется с хорошей точностью.

Рис. 6: График зависимости $\lg T_{1/2}$ от $1/\sqrt{E_{\alpha}}$

5 Выводы

- 1. Получены спектры α -частиц, испускаемых изотопами: $^{226}_{88}$ Ra, $^{241}_{95}$ Am + $^{230}_{90}$ Th, $^{239}_{94}$ Pu и U_{np} .
- 2. Была определена энергия α -частиц и энергетическое разрешение.
- 3. Было проверено, что выполняется закон Гейгера-Неттола.

Рис. 7: Спектр α -излучения для $^{226}_{88}Ra$

Рис. 8: Спектр α -излучения для $^{241}_{95}Am+^{230}_{90}Th$

Рис. 9: $Cne\kappa mp$ α -излучения для $^{239}_{~94}Pu$

Рис. 10: Спектр α -излучения для U_{np}