Aufgabe 1 Ermitteln Sie für die folgenden Potenzreihen jeweils das Konvergenzintervall, indem Sie den Konvergenzradius bestimmen und das Verhalten an den Rändern des Konvergenzintervalles untersuchen.

a)
$$\sum_{n=0}^{\infty} \frac{1}{2^n} x^n$$
 b) $\sum_{n=0}^{\infty} \frac{n+1}{n!} x^n$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n} x^n$

d)
$$\sum_{n=1}^{\infty} \frac{1}{n^3} x^n$$
 e) $\sum_{n=1}^{\infty} (\ln n)^n x^n$ f) $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{(3n-2)2^n}} x^n$

Aufgabe 2 Nutzen Sie die geometrische Reihe, um die nachfolgenden Funktionen jeweils durch eine Potenzreihe mit Entwicklungspunkt Null darzustellen, und ermitteln Sie das Konvergenzintervall.

a)
$$f(x) = \frac{1}{3+5x}$$
 b) $f(x) = \frac{1}{(1+x)^2}$

c)
$$f(x) = \frac{4x+4}{3+2x-5x^2}$$
 d) $f(x) = \ln \sqrt{\frac{1+x}{1-x}}$

Tipp zu d): Differenzieren Sie f zunächst.

Aufgabe 3 Wie lauten die Taylor-Reihen der folgenden Funktionen bezüglich der Stelle Null? Zeigen Sie, dass die Funktionen jeweils durch ihre Taylor-Reihe dargestellt werden.

a)
$$f(x) = \sinh x$$
 b) $f(x) = \cos x$ c) $f(x) = e^{2x}$

d)
$$f(x) = \cos^2 x$$
 e) $f(x) = xe^x$ f) $f(x) = e^x \sin x$

Aufgabe 4 Entwickeln Sie das Polynom $x^4 - 5x^3 + 5x^2 + x + 2$ nach Potenzen von (x-2).

Aufgabe 5 Approximieren Sie jeweils die Funktion f durch ihr Taylor-Polynom m-ten Grades bezüglich der Stelle x_0 . Nutzen Sie das Taylor-Polynom zur näherungsweisen Berechnung der Zahl y und schätzen Sie mit Hilfe des Restgliedes den Fehler ab.

a)
$$f(x) = e^x$$
, $x_0 = 0$, $m = 2$, $y = \sqrt[3]{e}$
b) $f(x) = \sqrt[3]{x}$, $x_0 = 1$, $m = 3$, $y = \sqrt[3]{\frac{5}{4}}$

c)
$$f(x) = \sinh x$$
, $x_0 = 0$, $m = 5$, $y = \sinh 1$ d) $f(x) = \sqrt{x}$, $x_0 = 1$, $m = 2$, $y = \sqrt{2}$

Tipp zu d): $2 = \frac{9}{4}(1 - \frac{1}{9})$.

Aufgabe 6 Bestimmen Sie die Koeffizienten a_0, a_1, \ldots, a_5 in der Potenzreihenentwicklung $\sum_{n=0}^{\infty} a_n x^n$ von $\sin(xe^x)$.

Aufgabe 7 Bestimmen Sie mit Hilfe eines Potenzreihenansatzes eine Funktion f, die folgenden Bedingungen genügt: f(0) = f'(0) = 1, f'' = -f.

Lösungen zu Aufgabe 1

c)
$$]-1,1]$$

$$[-1,1]$$

a)]
$$-2, 2$$
 [b) \mathbf{R} c)] $-1, 1$] d) [$-1, 1$] e) $\{0\}$ f) $\left[-\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}\right]$

Lösungen zu Aufgabe 2

a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n}{3^{n+1}} x^n$$
, $\left] -\frac{3}{5}, \frac{3}{5} \right]$

a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n}{3^{n+1}} x^n$$
, $\left] -\frac{3}{5}, \frac{3}{5} \right[$ b) $\sum_{n=0}^{\infty} (-1)^n (n+1) x^n$, $\left[-1, 1 \right[\right]$

c)
$$\sum_{n=0}^{\infty} \left(1 + (-1)^n \frac{5^n}{3^{n+1}} \right) x^n$$
, $\left] -\frac{3}{5}, \frac{3}{5} \right[$ d) $\sum_{n=1}^{\infty} \frac{1 + (-1)^{n+1}}{2n} x^n$, $\left[-1, 1 \right[$

d)
$$\sum_{n=1}^{\infty} \frac{1 + (-1)^{n+1}}{2n} x^n$$
,]-1,1[

Lösungen zu Aufgabe 3

a)
$$T(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1}$$
 b) $T(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}$

b)
$$T(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}$$

c)
$$T(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$

c)
$$T(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$
 d) $T(x) = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n}}{(2n)!} x^{2n}$

e)
$$T(x) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^n$$

e)
$$T(x) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^n$$
 f) $T(x) = \sum_{n=0}^{\infty} a_n x^n$, $a_n = \begin{cases} 0 & \text{für } n = 4k, \ k \in \mathbf{Z} \\ (-1)^k 4^k & \text{für } n = 4k+1, \ k \in \mathbf{Z} \\ (-1)^k 2 \cdot 4^k & \text{für } n = 4k+2, \ k \in \mathbf{Z} \\ (-1)^k 2 \cdot 4^k & \text{für } n = 4k+3, \ k \in \mathbf{Z} \end{cases}$

Lösungen zu Aufgabe 4

$$f(x) = -7(x-2) - (x-2)^2 + 3(x-2)^3 + (x-2)^4$$

Lösungen zu Aufgabe 5

a)
$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}e^{\xi}x^3$$
, $\frac{25}{18} \le \sqrt[3]{e} \le \frac{225}{161}$

b)
$$\sqrt[3]{x} = 1 + \frac{1}{3}(x-1) - \frac{1}{9}(x-1)^2 + \frac{5}{81}(x-1)^3 - \frac{10}{243}\xi^{-\frac{11}{3}}(x-1)^4$$
, $\left|\frac{5585}{5184} - \sqrt[3]{\frac{5}{4}}\right| \le \frac{10}{62208}$

c)
$$\sinh x = x + \frac{1}{6}x^3 + \frac{1}{120}x^5 + \frac{1}{720}\sinh\xi\,x^6, \quad \frac{141}{120} \le \sinh 1 \le \frac{846}{719}$$

d)
$$\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}\xi^{-\frac{5}{2}}(x-1)^3$$
, $\left|\frac{1833}{1296} - \sqrt{2}\right| \le \frac{3}{16384}$

Lösung zu Aufgabe 6

$$0, 1, 1, \frac{1}{3}, -\frac{1}{3}, -\frac{7}{10}$$

Lösung zu Aufgabe 7

$$f(x) = \sin x + \cos x$$