CG 基礎数学 試験前問題

問1.次の値を求めよ。

- (1) $\cos 210$ ° (2) $\sin 210$ ° (3) $\cos 330$ ° (4) $\sin 330$ °
- $(5) \cos\left(\frac{5\pi}{4}\right) \qquad (6) \sin\left(\frac{5\pi}{4}\right)$

問2.2次元座標系における変換について、次の問に答えよ。

- (1) 点 (x_P, y_P) を $(-t_x, -t_y)$ 平行移動した点を (x', y') とすると、(x', y') は (x_P, y_P) と $(-t_x, -t_y)$ を用いてどのように表されるか。
- (2) 点 (x_P, y_P) を x 軸方向に s_x 倍、y 軸方向に s_y 倍した点を (x', y') とすると、(x', y') は (x_P, y_P) 、 s_x 、 s_y を用いてどのように表されるか。
- (3) 点 $(x_P,\ y_P)$ を原点のまわりに角 θ だけ回転した点を $(x',\ y')$ とすると、 $(x',\ y')$ は $(x_P,\ y_P)$ と θ を用いてどのように表されるか。
- (4) 点 (x_P, y_P) を直線 y=x に関して鏡映変換して得られる点を (x', y') とすると、(x', y') は (x_P, y_P) を用いてどのように表されるか。
- (5) 点 (x_P, y_P) を直線 y = -x に関して鏡映変換して得られる点を (x', y') とすると、 (x', y') は (x_P, y_P) を用いてどのように表されるか。
- (6) 点(5,0) を原点のまわりに60 °回転した点の座標を求めよ。
- (7) 点 (7, 1) を直線 y = x に関して鏡映変換して得られる点の座標を求めよ。
- (8) 点(4, 10) を点(2, 0) のまわりに45 °回転した点の座標を求めよ。

問 3. 視点 C を原点とする左手座標系 O-xyz を考え、平面 z=f を投影面とする。投影面上の O'-x'y'z' 座標系を座標中心 O' が z 軸との交点と一致し、座標軸 x' , y' をそれぞれ x 軸 , y 軸と平行となるように選ぶ。3 次元空間内の点 $(x_P,\ y_P,\ z_P)$ を投影面に投影したときの座標を $x'_P,\ y'_P)$ として、以下の間に答えよ。

- (1) 視距離 f=40 の場合、点 $(30,\ 20,\ 100)$ の投影面における座標 $(x_P',\ y_P')$ を求めよ。
- (2) 平行投影の場合、点 (30, 20, 100) の投影面における座標 (x'_P, y'_P) を求めよ。

問 4. 次のようにパラメータ形式で表現された 2次曲線を陰関数形式で表せ。

- (1) $x = a \cos \theta$, $y = b \sin \theta$ (2) $x = \frac{a}{\cos \theta}$, $y = b \tan \theta$
- 問 5. 次の文章を読み、 の中に、最も適当な言葉を入れよ。

平面内や空間内の位置を表すために、座標系が用いられる。よく用いられる座標系としてaがある。たとえば、平面におけるa は、原点Oで互いに垂直に交わる 2 つの直線 x 軸と y 軸を用いて定義される。このとき、平面内の点の位置は、x 軸と y 軸に関する位置を示す数値の組 (x,y) で表される。これに対し、点の位置を原点O からの距離 r と基準の方向 (x 軸の正の方向) から反時計回りに測った回転角 θ の組 (r,θ) で表す方法が b である。

問 6. 3 つの制御点を、 $\vec{P_0}=(0,\ 0),\ \vec{P_1}=(1,\ -1),\ \vec{P_2}=(2,\ 0)$ とする 2 次ベジエ曲線 について以下の間に答えよ。

- (1) 2点 $\vec{P_0}$ と $\vec{P_1}$ を t: (1-t) (0-t-1) に内分する点を $\vec{P_a}=(x_a(t),\ y_a(t))$ とする。 $x_a(t)$, $y_a(t)$ を t の関数として求めよ。
- (2) 2点 \vec{P}_1 と \vec{P}_2 を t: (1-t) (0-t-1) に内分する点を $\vec{P}_b=(x_b(t),\ y_b(t))$ とする。 $x_b(t)$, $y_b(t)$ を t の関数として求めよ。
- (3) 2点 \vec{P}_a と \vec{P}_b を t : (1-t) (0-t-1) に内分する点を $\vec{P}_c=(x(t),\ y(t))$ とする。x(t) , y(t) を t の関数として求めよ。

問7 下図の左はシェルピンスキーのガスケット (gasket - 詰め物) と呼ばれるものである。 この図形は、下図右のように、正三角形の真ん中をくり抜く操作を無限回実行した極限と して得られる。

- (1) この図形を 2 倍に拡大すると、それは元の図形の何個分で構成されているか。
- (2) この図形のフラクタル次元を求めよ。

