Module MP(C)

Methods for predicting numerical variables Simon Malinowski

M1 Miage - M1 Data Science, Univ. Rennes

- Series with a trend but no seasonality
 - Context
 - Double Exponential Smoothing
 - Auto-regressive models
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Series with a trend but no seasonality

Series with a trend but no seasonality

Series with a trend but no seasonality

Assumption : the series has a trend but no seasonality

$$x_t = f(t) + e_t,$$

with e_t the resisual component.

Problem : how to estimate f(t) ?

The simplest case : f(t) = a + b * t. How to estimate a and b?

- Series with a trend but no seasonality
 - Context
 - Double Exponential Smoothing
 - Auto-regressive models
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Double exponential smoothing (Holt's method)

At **every** time instant t, two parameters are estimated :

- a_t that represents an average level
- b_t that represents an average slope

As for the simple exponential smoothing, these parameters are estimated :

- taking into account all the past information
- giving more influence to recent values

Prediction:

if x_1, \ldots, x_t is a time series,

$$\hat{x}_{t+h} = a_t + h \times b_t$$

Double exponential smoothing: update formulas

Update formulas for a_t and b_t :

$$\begin{cases} a_t = \alpha x_t + (1 - \alpha)(a_{t-1} + b_{t-1}) \\ b_t = \beta(a_t - a_{t-1}) + (1 - \beta)b_{t-1} \end{cases}$$

There are four parameters to initialize:

- $\bullet \ \alpha \ \mathrm{and} \ \beta \in [\mathsf{0},\mathsf{1}]$
- a_0 and b_0 initial level and slope

Double exponential smoothing: example

Impact of the parameters

If α and β are small (close to 0), the predictions will be stable, but not very reactive to changes in the data.

Conversely, if α and β are big (close to 1), the predictions will be more fluctuating but also more reactive to changes

Choice of α and β

- Series with a trend but no seasonality
 - Context
 - Double Exponential Smoothing
 - Auto-regressive models
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Classical AR models can be used for series with trend Principle :

$$\hat{x}_n = \beta_0 + \sum_{k=1}^p \beta_k x_{n-k}$$

- p is the order of the model : AR(p)
- the coefficients β_i are estimated based on the original series

A new kind of auto-regressive model can be used for such a series :

$$\hat{x}_n = \beta_0 + b \times n + \sum_{k=1}^p \beta_k x_{n-k}$$

Summary

Methods for predicting a time series with a trend are :

- Double Exponential Smoothing
- Classical AR model
- AR model with a trend

How to select the most adapted to a given time series ?

- Series with a trend but no seasonality
 - Context
 - Double Exponential Smoothing
 - Auto-regressive models
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Corresponding ACF

Corresponding ACF

Additive or multiplicative

Additive model

We assume that X_t can be written as

$$X_t = T_t + S_t + E_t$$

Multiplicative model

We assume that X_t can be written as

$$X_t = T_t * S_t * E_t$$

Time series with a seasonal component

We assume here that the time series x_t has a seasonal component of period m (and possibly a trend)

$$x_t = f(t) + S_t + E_t$$

Objective : estimate f(t) and S_t

"Shape" of S_t : m coefficients s_1, \ldots, s_1

Time series with a seasonal component

Two main methods:

- Triple Exponential Smoothing (additive or multiplicative)
- 2 Auto-regressive models

- Series with a trend but no seasonality
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Triple exponential smoothing

Principle: if x_1, \ldots, x_n is a time series with period mAt every time instant t, m+2 coefficients are learned:

- a a level coefficient
- b a slope coefficient
- s_1, \ldots, s_m the m seasonal coefficients

Prediction:

$$\hat{x}_{n+h} = a + h \times b + s_{1+(n+h-1) \mod p}$$

$$\hat{x}_{n+h} = (a + h \times b) \times (s_{1+(n+h-1) \mod p})$$

The coefficients are learned iteratively, starting from initial values and updated at each time instant

Triple exponential smoothing

Exponential smoothing

Exponential smoothing

- Series with a trend but no seasonality
- Time series with a seasonal component
 - Context
 - Triple exponential smoothing
 - Auto-regressive models for seasonal time series

Auto-regressive models for seasonal time series

You can use the previous AR models or a new one:

- classical AR
- AR with a trend component
- seasonal AR (with trend or not)

AR or Triple ES for seasonal series in practice