Aufgabe 1 (Herbst 1998). Sei p eine Primzahl.

- (a) Zeigen Sie, daß das Polynom $f = X^p X 1$ irreduzibel über dem endlichen Körper \mathbb{F}_p ist.
- (b) Ist f auch irreduzibel über \mathbb{Z} ? Die Antwort ist zu begründen.

Aufgabe 2 (Frühjahr 1992). Sei K ein Körper, a ein Element von K, und seine m und n zwei natürliche Zahlen $\neq 0$, die relativ prim zueinander sind. Zeigen Sie, daß das Polynom $X^{mn} - a$ genau dann irreduzibel über K ist, wenn die Polynome $g_m = X^m - a$ und $g_n = X^n - a$ irreduzibel über K sind.

Nur eine Richtunug möglich ohne Galoistheorie/Körpertheorie. Die zweite werden wir später anschauen.

Aufgabe 3 (Herbst 1998). Ist das Polynom

$$3X^3 - 6X^2 + \frac{3}{2}X - \frac{3}{5}$$

in $\mathbb{Q}[X]$ irreduzibel?

Aufgabe 4 (Herbst 1999). (a) Seien R ein Integritätsring und $a \in R$. Man zeige: Das Polynom $X^2 + a$ ist genau dann reduzibel in R[X], wenn -a ein Quadrat in R ist.

(b) Sei K ein Körper, der nicht Charakteristik 2 besitzt. Man zeige: Für alle $n \in \mathbb{N}, n \ge 3$, ist das Polynom $X_1^2 + X_2^2 + \ldots + X_n^2$ im Polynomring $K[X_1, \ldots, X_n]$ irreduzibel.

Aufgabe 5 (Herbst 1995). R sei ein kommutativer Ring, der einen Körper k enthält und somit auf natürliche Weise ein k-Vektorraum ist. Es sei dim $_k R < \infty$. Man beweise:

- (a) Alle Primideale von R sind maximal.
- (b) R hat höchstens $\dim_k R$ maximale Ideale.

Aufgabe 6 (??). Sei K ein Körper. Seien $n, m \in \mathbb{N}$ teilerfremd. Man zeige, daß das Polynom $f = X^n - Y^m \in K[X, Y]$ irreduzibel ist.

Aufgabe 7. Eine natürliche Zahl heißt quadratfrei, wenn sie durch keine Quadratzahl ungleich 1 teilbar ist. Man zeige, daß es beliebig lange Abschnitte direkt aufeinander folgender natürlicher Zahlen gibt, in denen jedes Folgeglied nicht quadratfrei ist.