Cocco, Gomes, and Maenhout (2005) REMARK

December 14, 2019

Mateo Velásquez-Giraldo Matthew V. Zahn

Abstract

This paper contains the highlights from the REMARK file in Code>Python folder.

Keywords

GitHub: http://github.com/econ-ark/REMARK/REMARKS/CGMPort
(In GitHub repo. see /Code for tools for solving and simulating the model)

CLICK HERE for an interactive Jupyter Notebook that uses the Econ-ARK/HARK toolkit to produce all of the paper's figures (warning: it may take several minutes to launch). Information about citing the toolkit can be found at Acknowleding Econ-ARK.

¹Contact: mvelasq2@jhu.edu, Department of Economics, 590 Wyman Hall, Johns Hopkins University, Baltimore, MD 21218, https://t.co/uaflostQyF?amp=1.

²Contact: matthew.zahn@jhu.edu, Department of Economics, 590 Wyman Hall, Johns Hopkins University, Baltimore, MD 21218, http://matthewvzahn.com/.

All numerical results herein were produced using the Econ-ARK/HARK toolkit; for further reference options see Acknowleding Econ-ARK. Thanks to Chris Carroll and Sylvain Catherine for comments and guidance.

1 Introduction

2 The Problem

2.1 Setup

The consumer solves an optimization problem from period t until the end of life at T defined by the objective

$$\max \mathbb{E}_t \left[\sum_{n=0}^{T-t} \beta^n \mathbf{u}(\mathbf{c}_{t+n}) \right]$$
 (1)

where $\mathbf{u}(\bullet) = \bullet^{1-\rho}/(1-\rho)$ is a constant relative risk aversion utility function with $\rho > 1$. The consumer's initial condition is defined by market resources \mathbf{m}_t and permanent noncapital income \mathbf{p}_t .

¹The main results also hold for logarithmic utility which is the limit as $\rho \to 1$ but incorporating the logarithmic special case in the proofs is cumbersome and therefore omitted.

 $^{^2}$ We will define the infinite horizon solution as the limit of the finite horizon problem as the horizon T-t approaches infinity.