Modelowanie i przetwarzanie informacji nieprecyzyjnej

Zajęcia III

Problem

Umiemy odpowiedzieć na pytania: "Która pralka jest tania (T) i energooszczędna (E)?" Niestety, spójniki "i" oraz "lub" nie wystarczają aby opisać wszystkie pytania.

Relacje rozmyte

Relacja to funkcja:

$$R(x,y):X imes Y o [0,1] \ R(x,y)=\{((x,y),\mu_R(x,y)):x\in X,y\in Y,\mu_R(x,y)\in [0,1]\}$$

$$A = \{s_1, s_2, s_3\} \ B = \{s_4, s_5\}$$

samochód	max. prędkość	śr. spalanie
s_1	320	23
s_2	150	8
s_3	210	9
s_4	150	3
s_5	240	14

Zaproponuj relację "samochód A jadący maksymalnie tyle samo co samochód B"

Zaproponuj relację R: "samochód A jadący maksymalnie podobnie co sam<u>ochód B"</u>

Zaproponuj nową relację T: "samochód A o większym spalaniu niż samochód B"

Na jakie pytanie odpowie iloczyn $T\cap R$?
A na jakie $eg T \cup R$

Zadanie dom I

Wiedząc, że $A = \{Poznan, Warszawa, Wrocław\}$ $B = \{Gdansk, Poznan\}$

miasto	Poznań	Warszawa	Wrocław
Gdańsk	312km	418km	485km
Poznań	0km	311km	183km

- 1. Zamodeluj pojęcie duże miasto oraz relację bliskości
- 2. Odpowiedz na pytanie: "w jakim stopniu miasto A jest blisko dużego miasta B?"
- 3. Czy można powiedzieć, że Warszawa jest daleko dużych miast? Dlaczego tak/nie?
- 4. Jaka jest wysokość zbioru rozmytego duże miasto?
- 5. Czy zbiór duże miasto jest normalny?

(Zauważ, że tutaj nie ma dwóch relacji, tylko relacja oraz zbiór rozmyty.

Skorzystaj ze złożenia relacji rozmytej ze zbiorem rozmytym. Załóż t-

normy i t-konormy Łukasiewicza)

Wartościowanie

Proces przypisania wartości logicznej formułom zdaniowym.

[[p]] - wartość logiczna zdania p $egin{array}{l}
egin{array}{l}
egin{array$

logika	zbiory	
koniunkcja	iloczyn	
alternatywa	suma	
negacja	dopełnienie	
implikacja	inkluzja	
równoważność	równość	

Zadanie lab II

Zapisz tabelę wartości logicznych dla implikacji Łukasiewicza w \pounds_3

$$(a
ightarrow_{\scriptscriptstyle{L}} b = 1 \wedge (1-a+b)$$

Zadanie lab III

Jaka jest wartość logiczna zdania w \pounds_∞ dla [[p]]=0.2 oraz [[q]]=0.3 zdań:

1.
$$[(p\Rightarrow_m q)\ \&_m\ (q\Rightarrow_m p)]\Rightarrow_m p$$

2.
$$[(p \&_m q) \perp_m q] \Rightarrow_m p$$

$$(a
ightarrow_{\it L} \ b = 1 \wedge (1-a+b)$$

Zadanie lab IV

 $\overline{\mathsf{Udowo}}\mathsf{dnij}$, że w logice Łukasiewicza L_∞

- 1. działo prawo podwójnej negacji
- 2. działa zasa sprzecznośći
- 3. nie działa prawo wyłączonego środka

Zadanie II

Niech $[[p]],[[q]]\in\{0,1\}$. Wykaż, że wartości logiczne ${\sf zda}$ ń:

- 1. $[[p\ \&_m\ q]]$
- 2. $[[p\perp_m q]]$
- 3. $[[p \Rightarrow_m q]]$

w logice wielowartościowej L_{∞} są równoważne logice dwuwartościowej

Zadanie III

Wykaż, że w $({\it L}_{\infty})$: $[[\lnot_m p \perp_m q]]
eq [[p \Rightarrow_m q]]$

Zadanie IV

Sprawdź, czy w L_{∞} działa prawo **modus ponendo ponens**