TD 9-10 : THÉORIE DES LANGAGES ET AUTOMATES

Exercice 1. Trouvez un automate fini qui reconnaît :

a. $\{0, 11\}$

b. $\{0, 11, 000\}$

Exercice 2. Construisez une machine à états finis qui modifie seulement les bits en position d'indice pair d'une chaîne fournie en entrée. On suppose que cette dernière possède au moins deux bits.

Exercice 3. Soit $V = \{S, A, B, a, b\}$ et $T = \{a, b\}$. Trouvez le langage produit par la grammaire $\{V, T, S, P\}$ lorsque l'ensemble P des productions est composé de :

a. $S \to AB$, $A \to ab$, $B \to bb$

b. $S \to AB$, $S \to aA$, $A \to a$, $B \to ba$

c. $S \to AB$, $S \to AA$, $A \to aB$, $A \to ab$, $B \to b$

d. $S \rightarrow AA$, $S \rightarrow B$, $A \rightarrow aaA$, $A \rightarrow aa$, $B \rightarrow bB$, $B \rightarrow b$

e. $S \to AB$, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$

Exercice 4. Construisez une grammaire syntagmatique pour l'ensemble de toutes les fractions de la forme a/b, où a est un entier signé en notation décimale et b est un entier positif. Construisez un arbre de dérivation pour +311/17 dans cette grammaire.

Exercice 5. Pour chacun des automates ci-après, donnez un automate déterministe correspondant.

Exercice 6. Déterminez si 1011 appartient à cheun des ensembles réguliers ci-après.

a. 10*1*

b. $0*(10 \cup 11)*$

c. 0(01)*1*

d. $1*01(0 \cup 1)$

e. $(10)^*(11)^*$

f. $1(00)^*(11)^*$

g. (10)*1011

h. $(1 \cup 00)(01 \cup 0)1^*$

Exercice 7. Trouvez le langage reconnu par chacun des automates finis non déterministes.

Exercice 8. Minimisez les deux automates ci-dessus.

Exercice 9. Donnez des grammaires syntagmatiques pour produire chacun des ensembles suivants :

- 1. $\{01^n\}$
- 2. $\{0^n 1^{2n}\}$
- 3. $\{0^n 1^m 0^n\}$

Exercice 10. Construisez les automates correspondant aux expressions ci-après.

- a. 10*1*
- b. 0*(10+11)*
- c. 0(01)*1*
- d. 1*01(0+1)
- e. $(10)^*(11)^*$

Exercice 11. Prouvez que le langage $L = \{a^n b^n c^n \; ; \; n \in \mathbb{N}\}$ riest pas régulier.

Exercice 12. Soit L le langage constitué de tous les palindromes. Montrez que L n'est pas régulier.

Exercice 13. Donnez la grammaire générée par les langages reconnus par l'automate suivant :

Exercice 14. Soit les grammaires G_1 et G_2 dé inies par :

- a. $G_1 = (V_1, T_1, S_1, P_1)$ où $V_1 = \{a, b, S_1, A\}, T_1 = \{a, b\}, S_1$ symbole de départ et $P_1 = \{S_1 \to bS_1, S_1 \to aS_1, A \to aS_1, A \to bA, A \to a, S_1 \to b\}.$
- b. $G_2 = (V_2, T_2, S_2, P_2)$ où $V_2 = \{0, 1, S_2, A, B\}, T_2 = \{0, 1\}, S_2$ symbole de départ et $P_2 = \{S_2 \to 1A, S_2 \to 0, S_2 \to \lambda, A \to 0B, B \to 1, B \to 1B\}.$
- 1. Déterminez les types des grammaires G_1 et G_2 .
- 2. Construisez les automates finis reconnaissant les langages produits par les grammaires G_1, G_2 .

Exercice 15. Donnez les automates déterministes correspondant aux automates ci-après.

Exercice 16. Soit la table d'états suivante :

$E_p e_1e_2 $	00	01	11	10	$\mid S \mid$
E_0	E_0	E_0	E_1	E_2	1
E_1		E_2		E_0	1
E_2	E_2		E_2	E_1	0

- a. S'agit-il d'une machine de Moore ou de Mealy?
- b. Donner son diagramme d'états.
- c. Convertir en Moore s'il s'agit d'une machine de Mealy, en Mealy s'il s'agit d'une machine de Moore.

Exercices supplémentaires (livre de Rosen)

Exercices numéros 11 (page 625); 10, 17 (page 634); 8 (page 655).