

Text Technologies for Data Science INFR11145

Ranked IR

Instructor: **Walid Magdy**

10-Oct-2017

Lecture Objectives

- Learn about Ranked IR
 - TFIDF
 - VSM
 - SMART notation
- Implement:
 - TFIDF

THE UNIVERSITY of EDINBURGH

Boolean Retrieval

- Thus far, our queries have all been Boolean.
 - Documents either: "match" or "no match".
- Good for <u>expert users</u> with precise understanding of their needs and the collection.
 - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
 - Most incapable of writing Boolean queries.
 - Most don't want to go through 1000s of results.
 - · This is particularly true of web search
 - Question: What is the most unused web-search feature?

Walid Magdy, TTDS 2017/2018

Ranked Retrieval

- Typical queries: free text queries
- Results are "ranked" with respect to a query
- Large result sets are not an issue
 - We just show the top k (≈ 10) results
 - We don't overwhelm the user
- Criteria:
 - Top ranked documents are the most likely to satisfy user's query
 - Score is based on how well documents match a query
 Score(d,q)

Old Example

- Find documents matching query {ink wink}
 - 1. Load inverted lists for each query word
 - 2. Merge two postings lists → Linear merge
- Apply function for matches
 - Boolean: exist / not exist = 0 or 1
 - Ranked: $f(tf, df, length,) = 0 \rightarrow 1$

1: f(0,1)

Matches

ink ===> 3:1 4:1

3: f(1,0)

wink • 5:1

4: f(1,0) 5: f(1,1)

Walid Magdy, TTDS 2017/2018

Function example: Jaccard coeffecient

 Remember: a commonly used measure of overlap of two sets A and B

5:1

• $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$

D1: He likes to wink, he likes to drink

D2: He likes to drink, and drink, and drink

- jaccard(A, A) = 1
- jaccard(A, B) = 0, if $A \cap B = 0$
- Example:
 - D1 ∪ D2 = {he, likes, to, wink, and, drink}
 - D1 ∩ D2 = {he, likes, to, drink}
 - $jaccard(D1, D2) = \frac{4}{6} = 0.6667$

Jaccard coefficient: Issues

- Does not consider term frequency (how many times a term occurs in a document)
- It treats all terms equally!
 - How about rare terms in a collection? more informative than frequent terms.
 - He likes to drink, should "to" == "drink"
- Needs more sophisticated way of length normalization
 - |D1| = 3, |D2| = 1000!
 - D1 → Q, D2 → D

Walid Magdy, TTDS 2017/2018

Should are terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query
- Which is the least relevant document?
- Which is the most relevant document?

TFIDF

- TFIDF: Term Frequency, Inverse Document Frequency
- tf(t,d):
 number of times term t appeared in document d
 - As $tf(t,d) \uparrow \uparrow \rightarrow$ importance of t in $d \uparrow \uparrow$
 - Document about IR, contains "retrieval" more than others
- df(t): number of documents term t appeared in
 - As $df(d) \uparrow \uparrow \rightarrow$ importance if t in a collection $\downarrow \downarrow$
 - "the" appears in many document → not important
 - "FT" is not important word in financial times articles

Walid Magdy, TTDS 2017/2018

DF, CF, & IDF

- **DF** ≠ **CF** (collection frequency)
 - cf(t) = total number of occurrences of term t in a collection
 - $df(t) \le N(N: number of documents in a collection)$
 - *cf(t)* can be ≥ *N*
- DF is more commonly used in IR than CF
- idf(t): inverse of df(t)
 - As $idf(t) \uparrow \uparrow \rightarrow$ rare term \rightarrow importance $\uparrow \uparrow$
 - *idf(t)* → measure of the informativeness of *t*

THE UNIVERSITY of EDINBURGH

IDF: formula

$$idf(t) = log_{10}(\frac{N}{df(t)})$$

- Log scale used to dampen the effect of IDF
- Suppose N = 1 million →

term	df(t)	idf(t)
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Walid Magdy, TTDS 2017/2018

TFIDF term weighting

- One the best known term weights schemes in IR
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms

$$w_{t.d} = \left(1 + \log_{10} t f(t, d)\right) \times \log_{10}\left(\frac{N}{d f(t)}\right)$$

• For a query q and document d, retrieval score f(q,d):

$$Score(q, d) = \sum_{t \in q \cap d} w_{t.d}$$

Document/Term vectors with tfidf

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

→ Vector Space Model

Walid Magdy, TTDS 2017/2018

Vector Space Model

- Documents and Queries are presented as vectors
- Match (Q,D) = Distance between vectors
- Example: Q= Gossip Jealous
- Euclidean Distance?
 Distance between the endpoints of the two vectors
- · Large for vectors of diff. lengths

- Take a document d and append it to itself. Call this document d'.
 - "Semantically" d and d' have the same content
 - Euclidean distance can be quite large

Angle Instead of Distance

- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.
 - Rank documents in increasing order of the angle with query
 - Rank documents in decreasing order of cosine (query, document)
- Cosine of angle = projection of one vector on the other

Walid Magdy, TTDS 2017/2018

Length Normalization

 A vector can be normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Example

• D1 =
$$\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 \rightarrow $\|\overrightarrow{D1}\|_2 = \sqrt{1+9+4} = 3.74$

• D1_{normalized} =
$$\begin{bmatrix} 0.267\\ 0.802\\ 0.535 \end{bmatrix}$$

• D2 =
$$\begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$$
 $\rightarrow \|\overrightarrow{D1}\|_2 = \sqrt{9 + 81 + 36} = 11.25$

•
$$D2_{normalized} = \begin{bmatrix} 0.267\\ 0.802\\ 0.535 \end{bmatrix}$$

Walid Magdy, TTDS 2017/2018

 $\vec{v}(d_2)$

 $\vec{v}(d_3)$

Cosine "Similarity" (Query, Document)

- \vec{q}_i is the tf-idf weight of term i in the query
- \vec{d}_i is the tf-idf weight of term i in the document
- For normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

• For non-normalized vectors:

Algorithm

```
CosineScore(q)
     float Scores[N] = 0
    float Length[N]
    for each query term t
     do calculate w_{t,q} and fetch postings list for t
  5
         for each pair(d, tf_{t,d}) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
    Read the array Length
    for each d
    do Scores[d] = Scores[d]/Length[d]
  9
     return Top K components of Scores[]
10
```

Walid Magdy, TTDS 2017/2018

TFIDF Variants

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation *ddd.qqq*, using the acronyms from the table
- A very standard weighting scheme is: *Inc.ltc*

Summary of Steps:

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Walid Magdy, TTDS 2017/2018

Resources

- Text book 1: Intro to IR, Chapter 6.2 → 6.4
- Text book 2: IR in Practice, Chapter 7
- Ranked IR (2) → BM25:
 Robertson, Stephen E., et al. "Okapi at TREC-3." Nist Special Publication Sp 109 (1995): 109.

THE UNIVERSITY
of EDINBURGH