

Computer Networks I

Signal Modulation Techniques (Digital to Analog)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Modulation Basics

Why Modulation?

- ☐ Frequency reuse and multiplexing
 - ☐Multiple stations can simultaneously transmit at different frequencies
- □ Reducing antenna length
 - □Antenna length ∝ λ

Digital Data -> Analog Signals

- Three principle techniques:
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)

$$s(t) = A \sin(2\pi f t + \phi)$$

Amplitude Shift Keying

- Encode 0/1 by different carrier amplitudes
 - Usually have one amplitude zero

$$s(t) = \begin{cases} A_1 \cos(2\pi f_c t) & \text{binary 1} \\ A_2 \cos(2\pi f_c t) & \text{binary 0} \end{cases} = \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

Frequency Shift Keying

- Most common is binary FSK (BFSK)
- Two binary values represented by two different frequencies

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

Frequency Shift Keying

- Most common is binary FSK (BFSK)
- Two binary values represented by two different frequencies

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• MFSK: $f_i = f_c + (2i - 1 - M)f_d$ M-ary FSK (MFSK):

MFSK extends the concept of FSK to more than two frequencies. Each symbol in the digital data is represented by a unique frequency

f_i is the frequency of the i_th symbol.f_c is the carrier frequency.f_d is the frequency deviation, which is the difference between adjacent frequencies.

M is the number of frequencies (symbols).

Phase Shift Keying

Phase of carrier signal is shifted to represent data

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \pi) & \text{binary 1} \\ A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

- Binary PSK
 - Two phases represent two binary digits

Quadrature Phase Shift Keying

$$s(t) = \begin{cases} A\cos\left(2\pi f_{c}t + \frac{\pi}{4}\right) & \text{for } 11 \\ A\cos\left(2\pi f_{c}t + \frac{3\pi}{4}\right) & \text{for } 01 \end{cases}$$

$$A\cos\left(2\pi f_{c}t - \frac{3\pi}{4}\right) & \text{for } 00 \\ A\cos\left(2\pi f_{c}t - \frac{\pi}{4}\right) & \text{for } 10 \end{cases}$$

$$R/2 \text{ bps}$$

Quadrature Phase Shift Keying

 Representation of a digital modulated signal as a twodimensional scatter diagram

Src: https://commons.wikimedia.org/wiki/File:IQ_phasor_diagram.svg

Src:https://commons.wikimedia.org/wiki/File:BPSK_Gray_Cod ed.svg

Src:https://commons.wikimedia.org/wiki/File:QPSK_Gray_Cod ed.svg

Src:https://commons.wikimedia.org/wiki/File:QPSK_Gray_Coded.svg

 $Src: https://commons.wikimedia.org/wiki/File: 4qam_constellation_noisy_sigma025.png$

Src:https://commons.wikimedia.org/wiki/File:8PSK_Gray_Cod ed.svg

Src:https://commons.wikimedia.org/wiki/File:Circular_8QAM.png

Quadrature Amplitude Modulation

Src:https://commons.wikimedia.org/wiki/File:16QAM_Gray_C oded.svg

Src:https://commons.wikimedia.org/wiki/File:FDD_16-QAM.png

Quadrature Amplitude Modulation

Src:https://commons.wikimedia.org/wiki/File:16QAM_Gray_C oded.svg

Src:https://commons.wikimedia.org/wiki/File:Circular_16QAM .svg

Quadrature Amplitude Modulation

Src:https://commons.wikimedia.org/wiki/File:Rectangular_constellation_for_QAM.svg

Bit and Baud Rate Comparison

Modulation	Bits/Baud	Baud rate	Bit Rate
ASK, FSK, 2-PSK	1	N	N
4-PSK, 4-QAM	2	N	2N
8-PSK, 8-QAM	3	N	3N
16-QAM	4	N	4N
32-QAM	5	N	5N
64-QAM	6	N	6N
128-QAM	7	N	7N
256-QAM	8	N	8N

Summary

■Modulation techniques (Digital data → Analog signals):

- Different modulation techniques discussed
 - Amplitude Shift Keying
 - Frequency Shift Keying
 - Phase Shift Keying
- Constellation diagram
- Quadrature Amplitude Modulation