PV Module Simulink models

ECEN 2060 Spring 2008

Simulink models of PV modules

Current-input PV module

Inputs:

- PV current I_{PV} [A]
- Insolation [W/m²]

Outputs:

- PV voltage V_{PV} [V]
- PV output power Ppv [W]

This model is well suited for the case when modules are connected in series and share the same current

Voltage input PV module

Inputs:

- PV voltage V_{PV} [V]
- Insolation [W/m²]

Outputs:

- PV current I_{PV} [A]
- PV output power Ppv [W]

This model is well suited for the case when modules are connected in parallel and share the same voltage

Model parameters, in both cases, are the standard PV module data-sheet parameters:

- short-circuit current I_{sc}
- open-circuit voltage V_{oc}
- rated current I_R at maximum power point (MPP)
- ullet rated voltage V_R at MPP

under standard test conditions (1kW/m², 1.5 AM, 25°C). A bypass diode (a single diode across the entire module) can be included. Temperature effects are not modeled.

ECEN2060 2

PV cell circuit model and equations

KCL:

$$I_{SC} - I_D - \frac{V_D}{R_p} - I_{PV} = 0$$

Diode characteristic:

$$I_D = I_o \left(e^{V_D/V_T} - 1 \right)$$

KVL:

$$V_{PVcell} = V_D - R_s I_{PV}$$

Simulink Implementation

Insolation

Both PV module models are implemented as masked subsystems in Simulink

Look Under Mask (right-click or Edit menu) reveals details of the model implementation

Details of the current-input PV module model:

Inside the current-input PV module model

Inside the current-input PV module model

Bypass diode voltage (if forward biased)

Model Mask: Parameters

- Edit Mask (right-click or Edit menu), click on Parameters
- · This is where the masked subsystem model parameters are defined

ECEN2060 7

Model Mask: Initialization

- Edit Mask (right-click or Edit menu), click on Initialization
- The MATLAB code computes model parameters I_o , R_s , R_p based on the model parameters (short-circuit current I_{sc} , circuit voltage V_{oc} , rated voltage V_r , and rated current I_r)

Application Example: PV Array

Inside the voltage-input PV module

ECEN2060 10

Application Example: PV Module Characteristics

Simulink model:

Insolation = 200, 400, 600, 800, 1000 W/m^2

