EXPLORATARY DATA ANALYSIS ON UDEMY COURSES

In [159]:

Out[159]:
'C:\\Users\\Administrator'

In [160]:

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings

warnings.filterwarnings('ignore')

LOAD DATA

df.head()

In [162]: df=pd.read_csv("C:/Users/Administrator/Desktop/Udemy_Courses.csv")
In [163]:

Out[163]:

Г	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
0	288942	1 Piano Hand Coordination: Play 10th Ballad in	True	35.0	3137.0	18	68	All Levels	1.5 hours	2014-09- 18T05:07:05Z	Musical Instruments
1	1170074	10 Hand Coordination - Transfer Chord Ballad 9	True	75.0	1593.0	1	41	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments
2	1193886	12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3	1116700	4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	43	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4	1120410	5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments

DATA CLEANING

REPLACING NULL VALUES

In [166]:
df.isnull().sum()

Out[166]:

 course_id
 0

 course_title
 0

 is_paid
 0

 price
 31

 num_subscribers
 24

 num_reviews
 0

 num_lectures
 0

```
level
content_duration 0
published_timestamp 0
subject
                          0
dtype: int64
                                                                                                     In [167]:
mean_value=df['price'].mean()
                                                                                                     In [168]:
df['price'].fillna(mean value, inplace=True)
                                                                                                     In [169]:
df.isnull().sum()
                                                                                                    Out[169]:
course id
course_title
is_paid
price
price
num_subscribers 24
num_reviews 0
level v
content_duration 0
published_timestamp 0
dtype: int64
                                                                                                     In [170]:
mean value subs=df['num subscribers'].mean()
                                                                                                    In [171]:
mean value subs
                                                                                                    Out[171]:
3202.8810825587752
                                                                                                    In [172]:
df['num_subscribers'].fillna(mean_value_subs, inplace=True)
                                                                                                     In [173]:
df.isnull().sum()
                                                                                                    Out[173]:
course id
course_title
is_paid
price
num_subscribers 0
num_reviews 0
num_lectures 0
level
content_duration 0
published_timestamp 0
subject
dtype: int64
OUTLIER DETECTING
```

df.describe() Out[175]:

In [175]:

	course_id	price	num_subscribers	num_reviews	num_lectures
cou	nt 3.682000e+03	3682.000000	3682.000000	3682.000000	3682.000000
mea	6.766121e+05	66.087373	3202.881083	156.093156	40.065182
sto	3.436355e+05	60.722319	9492.532432	934.957204	50.373299

	course_id	price	num_subscribers	num_reviews	num_lectures
min	8.324000e+03	0.000000	0.000000	0.000000	0.000000
25%	4.078430e+05	20.000000	113.250000	4.000000	15.000000
50%	6.885580e+05	45.000000	935.000000	18.000000	25.000000
75%	9.617515e+05	95.000000	2609.250000	67.000000	45.000000
max	1.282064e+06	200.000000	268923.000000	27445.000000	779.000000

In [176]:

Out[176]:


```
In [212]:
```

```
Q1 = df['num_subscribers'].quantile(0.25)
Q3 = df['num_subscribers'].quantile(0.75)
IQR = Q3 - Q1

Lower_bound = Q1 - 1.5 * IQR
Upper_bound = Q3 + 1.5 * IQR

df['outliers'] = (df['num_subscribers'] < Lower_bound) | (df['num_subscribers'] > Upper_bound)

print(F"Q1:{Q1},Q3:{Q3},IQR:{IQR}")
print(F"Lower_bound : {Lower_bound},Upper_bound : {Upper_bound}")
```

```
Outliers = df[df['outliers']==True]
Q1:56.0,Q3:1375.5,IQR:1319.5
{\tt Lower\_bound: -1923.25, Upper\_bound: 3354.75}
                                                                                                    In [216]:
 df_cleaned = df.drop(Outliers.index)
                                                                                                    In [179]:
df cleaned.head()
```

Out[179]:

	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
0	288942	1 Piano Hand Coordination: Play 10th Ballad in	True	35.0	3137.0	18	68	All Levels	1.5 hours	2014-09- 18T05:07:05Z	Musical Instruments
1	1170074	10 Hand Coordination - Transfer Chord Ballad 9	True	75.0	1593.0	1	41	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments
2	1193886	12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3	1116700	4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	44	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4	1120410	5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments

```
In [218]:
df=df_cleaned
                                                                                                   In [220]:
plt.boxplot(df['num_subscribers'])
                                                                                                  Out[220]:
{'whiskers': [<matplotlib.lines.Line2D at 0x21ebe5c2ae0>,
```

<matplotlib.lines.Line2D at 0x21ebe5c1e80>], 'boxes': [<matplotlib.lines.Line2D at 0x21ebe5c12e0>], 'medians': [<matplotlib.lines.Line2D at 0x21ebe5c2f90>], 'fliers': [<matplotlib.lines.Line2D at 0x21ebe5c0710>],

<matplotlib.lines.Line2D at 0x21ebe5c2510>], 'caps': [<matplotlib.lines.Line2D at 0x21ebe5c3110>,

'means': []}

In [222]:

Out[222]:


```
In [224]:
Q1 = df['num reviews'].quantile(0.25)
Q3 = df['num_reviews'].quantile(0.75)
IQR = Q3 - Q1
Lower_bound = Q1 - 1.5 * IQR
Upper_bound = Q3 + 1.5 * IQR
df['outliers'] = (df['num_reviews'] < Lower_bound) | (df['num_reviews'] > Upper_bound)
print(F"Q1:{Q1},Q3:{Q3},IQR:{IQR}")
print(F"Lower_bound : {Lower_bound}, Upper_bound : {Upper_bound}")
Outliers = df[df['outliers']==True]
#print(F"\n Outliers:\n{Outliers}")
Q1:2.0,Q3:23.0,IQR:21.0
Lower_bound : -29.5, Upper_bound : 54.5
                                                                                               In [226]:
df_cleaned = df.drop(Outliers.index)
                                                                                               In [228]:
df_cleaned.head()
                                                                                              Out[228]:
```

course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
	1 Piano Hand Coordination: Play 10th Ballad in	True	35.0	3137.0	18	68	All Levels	1 5 hours	2014-09- 18T05:07:05Z	Musical Instruments
1170074	10 Hand Coordination - Transfer Chord Ballad	True	75.0	1593.0	1	141	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments

	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
		9									
2	1193886	12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3	1116700	4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	43	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4	1120410	5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments

In [230]:
df=df_cleaned
In [232]:

plt.boxplot(df['num_reviews'])

Out[232]: {'whiskers': [<matplotlib.lines.Line2D at 0x21ebea081d0>,

<matplotlib.lines.Line2D at 0x21ebea084d0>],
'caps': [<matplotlib.lines.Line2D at 0x21ebea087d0>,

<matplotlib.lines.Line2D at 0x21ebea08aa0>],

'boxes': [<matplotlib.lines.Line2D at 0x21ebe787e60>],

'medians': [<matplotlib.lines.Line2D at 0x21ebea08c80>],

'fliers': [<matplotlib.lines.Line2D at 0x21ebea08f50>],

'means': []}

In [188]:

Out[188]:

df.describe()

course_id price num_subscribers num_reviews num_lectures

	course_id	price	num_subscribers	num_reviews	num_lectures
count	2.863000e+03	2863.000000	2863.000000	2863.000000	2863.000000
mean	7.015522e+05	61.319310	961.526854	19.405169	33.550122
std	3.429347e+05	55.905506	1232.353422	22.874128	38.369560
min	1.221400e+04	0.000000	0.000000	0.000000	0.000000
25%	4.430030e+05	20.000000	59.500000	3.000000	14.000000
50%	7.201440e+05	40.000000	438.000000	10.000000	23.000000
75%	9.909740e+05	80.000000	1404.500000	28.000000	39.000000
max	1.282064e+06	200.000000	6315.000000	101.000000	462.000000

```
plt.boxplot(df['num_lectures'])
```

In [234]:

Out[234]:


```
In [236]:
```

```
Q1 = df['num_lectures'].quantile(0.25)
Q3 = df['num_lectures'].quantile(0.75)
IQR = Q3 - Q1

Lower_bound = Q1 - 1.5 * IQR
Upper_bound = Q3 + 1.5 * IQR

df['outliers'] = (df['num_lectures'] < Lower_bound) | (df['num_lectures'] > Upper_bound)
```

```
print(F"Q1:{Q1},Q3:{Q3},IQR:{IQR}")
print(F"Lower_bound : {Lower_bound},Upper_bound : {Upper_bound}")

Outliers = df[df['outliers']==True]

#print(F"\n Outliers:\n{Outliers}")
Q1:13.0,Q3:33.0,IQR:20.0
Lower_bound : -17.0,Upper_bound : 63.0

In [238]:
df_cleaned = df.drop(Outliers.index)

In [240]:
df_cleaned.head(5)
Out[240]:
```

	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
1	1170074	10 Hand Coordination - Transfer Chord Ballad 9	True	75.0	1593.0	1	41	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments
2		12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3		4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	43	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4		5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments
5	1122832	6 Piano Hand Coordination: Play Open 10	True	65.0	2015.0	3	21	Intermediate Level	44 mins	2017-03- 08T17:53:36Z	Musical Instruments

df.head()

In [195]:

Out[195]:

	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
0	288942	1 Piano Hand Coordination: Play 10th Ballad in	True	35.0	3137.0	18	68	All Levels	1.5 hours	2014-09- 18T05:07:05Z	Musical Instruments
1	1170074	10 Hand Coordination - Transfer Chord Ballad 9	True	75.0	1593.0	1	41	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments
2	1193886	12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3	1116700	4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	43	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4	1120410	5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments

df.describe()

In [196]:

Out[196]:

	course_id	price	num_subscribers	num_reviews	num_lectures	
count	2.640000e+03	2640.000000	2640.000000	2640.000000	2640.000000	
mean	7.038863e+05	58.803858	959.807432	18.452273	25.365530	

	course_id	price	num_subscribers	num_reviews	num_lectures
std	3.442906e+05	54.744054	1242.561449	22.116660	16.123743
min	1.221400e+04	0.000000	0.000000	0.000000	0.000000
25%	4.451140e+05	20.000000	56.000000	3.000000	13.000000
50%	7.215100e+05	40.000000	426.000000	10.000000	21.000000
75%	9.939315e+05	70.000000	1375.500000	26.000000	34.000000
max	1.282064e+06	200.000000	6315.000000	101.000000	76.000000

df.head()

In [197]:

Out[197]:

			Gui[177].								
	course_id	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level	content_duration	published_timestamp	subject
0	288942	1 Piano Hand Coordination: Play 10th Ballad in	True	35.0	3137.0	18	68	All Levels	1.5 hours	2014-09- 18T05:07:05Z	Musical Instruments
1	1170074	10 Hand Coordination - Transfer Chord Ballad 9	True	75.0	1593.0	1	41	Intermediate Level	1 hour	2017-04- 12T19:06:34Z	Musical Instruments
2	1193886	12 Hand Coordination: Let your Hands dance wit	True	75.0	482.0	1	47	Intermediate Level	1.5 hours	2017-04- 26T18:34:57Z	Musical Instruments
3	1116700	4 Piano Hand Coordination: Fun Piano Runs in 2	True	75.0	850.0	3	43	Intermediate Level	1 hour	2017-02- 21T23:48:18Z	Musical Instruments
4	1120410	5 Piano Hand Coordination: Piano Runs in 2 B	True	75.0	940.0	3	32	Intermediate Level	37 mins	2017-02- 21T23:44:49Z	Musical Instruments

df.shape

In [198]:
Out[198]:

(2640, 12)

Univariate Analysis

In [200]:

```
plt.figure(figsize=(6,4))
sns.histplot(df['num_subscribers'])
bins=10,
kde=True
plt.title("Histogram of subscribers")
plt.show()
```

Histogram of subscribers


```
plt.figure(figsize=(4, 4))
sns.countplot(x='is_paid', data=df, palette='viridis')
plt.title(f'Frequency of Categories in {'is_paid'}', fontsize=16)
plt.xlabel('is_paid', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.show()
```

In [201]:


```
plt.figure(figsize=(7,4))
sns.countplot(x='level', data=df, palette='viridis')
plt.title(f'Frequency of Categories in {'level'}', fontsize=16)
plt.xlabel('level', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.show()
```

In [202]:

Bivariate analysis

```
In [204]:
plt.figure(figsize=(8,4))
sns.histplot(x='subject', hue='is_paid', data=df, stat="count", multiple="dodge")
plt.title('Count of paid courses by subject')

Out[204]:
Text(0.5, 1.0, 'Count of paid courses by subject')
```

Count of paid courses by subject

plt.figure(figsize=(8,4))
sns.histplot(x='subject', hue='level', data=df, stat="count", multiple="dodge")
plt.title('Count of subscribers by subject')

Text(0.5, 1.0, 'Count of subscribers by subject')

and a few deposits and have a delegate

In [255]:

Out[255]:

corelation matrix

In []: