ABDEC2024 会前准备

所有人必备

1. Python

Anaconda 最新版,或者

Python 3.11, Jupyter Notebook, Numpy, Astropy, Scipy, Matplotlib, scikitlearn 以及其 dependents

推荐安装你最喜欢的 python IDE

2. GitHub 账号

没有使用过 GitHub 的朋友建议提前学习一下,建立一个 repository 练手 最终每个小组会把自己做的东西(能够公开的数据,以及所有 code)上传到 ABDEC 的 github repo 上,方便跨小组和未能参会的同行学习。

恒星参数和丰度测量

恒星参数资料:

M ABDEC 恒星参数小组 资料

iSpec

https://www.blancocuaresma.com/s/iSpec

MOOG

https://www.as.utexas.edu/~chris/moog.html

PySME (Python 环境要求: 3.7-3.11)

https://github.com/MingjieJian/SME

● 建议从上面链接的 github repo 安装,因为最新的代码解决了一个线表的小 bug

o git clone https://github.com/MingjieJian/SME

- 。 cd到SME文件夹
- o pip install .

云台郭素芬:

针对 pysme 在 apple m2/m3(m1 没有测试过)芯片中由于架构不同无法使用的问题。建议的解决方法:

- 1:在 github 下载 SMELib包,在自己电脑的架构下编译该包得到一些库文件; libsme.la、libsme.dylib、libsme.5.dylib、sme_sypth.so.darwin.aarch64.64(有可能是在 /usr/local/bin 中,根据自己的编译结果而不同),将这几个文件复制到你电脑中安装的 pysme 的 lib 文件夹中(原始的文件可以备份保留)。
- 2: 卸载 pysme (此时复制过来的库文件不会被删除), 重新安装 pysme。

总结:核心解决目的是将这些库文件编译成 apple 芯片 arm64 架构的,替换 pysme 本来的库文件。

Kurucz stellar atmospheric models

https://www.ser.oats.inaf.it/fioree@Qlla.castelli/grids.html

Marcs stellar atmospheric models

https://marcs.astro.uu.se/

恒星光谱机器学习

建议大家安装 Pytorch 环境,把 Payne 装上作为入门工具

光谱预处理

除了必备的软件包外无需安装额外的包

视向速度测量

绝对视向速度测量:

• 现成软件包:

iSpec

https://www.blancocuaresma.com/s/iSpec

PySME (Python 环境要求: 3.7-3.11; 建议从下面链接的 github repo 安装, 见上文)

https://github.com/MingjieJian/SME

• 自己写 code:

数据和 code 框架, using a spectral order near the Ca K line as an example, matching the PHEONIX model:

absolute-RV-SHK

FEROS 使用 iSpec module 计算 FEROS spectra 相对视向速度的例子,包含清理光谱, 去除宇宙线(from 袁珍)

FROS spectra 可以从 ESO FEROS archive 下载

http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form?collection_name=FEROS 这几颗星取自以下论文

https://www.aanda.org/articles/aa/pdf/2004/25/aa0081-04.pdf

高精度视向速度测量(相对/变化):

资料最终会整合到会议 Github, 目前请看这里:

■ ABDEC2024 PRV Session

如果你有自己的数据想要用成熟的软件处理:

https://github.com/mzechmeister/serval

● 如果你想试着自己写 code 练手:

下载兴隆 216 HRS 的 WASP-189 数据以及一个简单的手搓的 PRV pipeline:

ABDEC2024-WASP189-216HRS-demo

成功后后续有更多数据~需要小伙伴一起来分析~

还可以考虑去 ESO archive 下载 ESPRESSO 的历史数据来对比:

https://archive.eso.org/wdb/wdb/adp/phase3_spectral/form

WASP-189b 这个planet 很有趣,是个polar orbit,不知道是否会有 precession 改变 obliquity.

行星大气

- 1. 目标:
 - a. 使用 PySME 生成恒星大气模型光谱,用于 CLV+RM 效应的正向建模
 - b. 使用 SLOPpy 对实际数据开展分析,从 archive 提供的恒星光谱数据开始,去除地球大气影响和凌星引致的恒星谱线轮廓形变,最终得到行星大气的高分辨率透射谱
 - c. 首先可以尝试跑通 SLOPpy 自带的 example 中的 KELT-20 数据,然后可以扩展到 KELT-9 的数据上,初期目标是提取 Na 双线和 H-alpha 线,后续目标可以考虑挖掘其 他线、扩展到互相关法,进阶可不拘泥于透射信号、而考虑搜寻 KELT-9 的夜面热发射 信号

2. 参考文献:

- a. https://ui.adsabs.harvard.edu/abs/2022A%26A...667A..19S/abstract
- 3. 数据获取:
 - a. HARPS-N: http://archives.ia2.inaf.it/tng/
 - b. 也可以直接在陈果处拷贝 KELT-20 和 KELT-9 的数据
 - c. SLOPpy pipeline 需要输入的最初数据包括:
 - i. e2ds
 - ii. s1d
 - iii. ccf
 - iv. blaze: 任意打开一个 e2ds 文件, 查看当夜对应的 blaze 文件是哪个, 然后补全链接下载即可

fold your_e2ds_file | grep BLAZE

wget http://archives.ia2.inaf.it/files/tng/your blaze file.gz

v. lamp: 将前述的 blaze 替换成 lamp, 下载对应的文件

4. 相关软件准备:

- a. SLOPpy: https://github.com/LucaMalavolta/SLOPpy/tree/main
- b. molecfit: https://www.eso.org/sci/software/pipelines/molecfit/molecfit-pipe-recipes.html
 - i. 独立版本最高版本号: 1.5.9, MacOS
 - https://research.iac.es/sieinvens/siepedia/pmwiki.php?n=Tutorials.Molecfit Docker
 - ii. ESO pipeline 集成版,首先装 MacPorts
- c. PySME: https://github.com/MingjieJian/SME (Python 环境要求: 3.7-3.11; 建议 从前面链接的 github repo 安装,见上文)
 - i. VALD3 line list: http://vald.astro.uu.se/~vald/php/vald.php

星际介质

备注:关于pySME与pymoog

现在可以比较容易获取的合成光谱生成的 Code 在这里有一个总结。在高分辨率光谱的语境下,我(Mingjie)个人比较推荐 pySME,因为它对线表和 NLTE 谱线有比较好的支持;这两点是 MOOG 不具备的。同时现在 MOOG 和 pymoog 的更新和维护都会比 SME 和 pysme 慢一些。但是在 pysme 的 github 上可以看到,这个 code 暂时处于过渡期,所以它可能在 Apple Silicon 芯片上有运行的问题。我推荐先尝试安装 pysme,如果运行出现了问题的话再去安装 pymoog。当然这两个 code 用法也是类似的,并且现在也有很多人在科研中使用,所以只要有一个能用就可以了。