

In the Claims:

Claims 1 to 35 (Canceled).

1 36. (New) An aircraft wing construction comprising:

2 an aircraft lifting wing that is bounded by a leading
3 edge, a trailing edge and a wingtip edge, and that is
4 elastically deformable in a bending direction and in a
5 torsional direction about an elastic axis of said lifting
6 wing extending in a span direction outwardly to said
7 wingtip edge between said leading edge and said trailing
8 edge;

9 a control surface that is pivotably connected to said
10 lifting wing so as to be pivotable about a pivot axis
11 extending non-perpendicular to said elastic axis and
12 non-parallel to said wingtip edge, wherein said control
13 surface is located offset by a spacing distance in front of
14 said elastic axis, and wherein a pivoting deflection of
15 said control surface about said pivot axis is adapted to
16 exert an aerodynamic force that elastically deforms said
17 lifting wing in said bending direction and said torsional
18 direction about said elastic axis and thereby varies an
19 induced drag of said lifting wing during flight of said
20 aircraft; and

21 a control and/or regulating arrangement adapted to
22 generate an actuating signal according to which said
23 pivoting deflection of said control surface is actuated so

24 as to vary said induced drag toward minimization of said
25 induced drag.

1 37. (New) The aircraft wing construction according to claim 36,
2 wherein said pivot axis extends parallel to said elastic
3 axis, and in front of said elastic axis.

1 38. (New) The aircraft wing construction according to claim 36,
2 wherein said pivot axis is entirely in front of said
3 elastic axis.

1 39. (New) The aircraft wing construction according to claim 38,
2 wherein said pivot axis extends on a line that is
3 non-intersecting with said elastic axis.

1 40. (New) The aircraft wing construction according to claim 36,
2 wherein said pivot axis is entirely in front of said
3 leading edge.

1 41. (New) The aircraft wing construction according to claim 36,
2 wherein said control surface is entirely in front of said
3 leading edge.

1 42. (New) The aircraft wing construction according to claim 41,
2 wherein said control surface extends only inwardly from and
3 does not extend outwardly beyond a line extending along

4 said wingtip edge of said lifting wing, in all pivoting
5 deflection positions of said control surface.

1 **43.** (New) The aircraft wing construction according to claim 36,
2 wherein said control surface extends only inwardly from and
3 does not extend outwardly beyond a line extending along
4 said wingtip edge of said lifting wing, in all pivoting
5 deflection positions of said control surface.

1 **44.** (New) The aircraft wing construction according to claim 43,
2 wherein said control surface extends entirely behind and
3 does not extend in front of said leading edge.

1 **45.** (New) The aircraft wing construction according to claim 36,
2 wherein said control and/or regulation arrangement is
3 adapted to generate said actuating signal so as to achieve
4 an elliptical distribution of lift over said lifting wing.

1 **46.** (New) The aircraft wing construction according to claim 36,
2 wherein said control and/or regulation arrangement includes
3 a measurement unit adapted to measure an actual elastic
4 deformation of said lifting wing.

1 **47.** (New) The aircraft wing construction according to claim 36,
2 wherein said control and/or regulation arrangement is a
3 regulation arrangement including a measurement unit adapted
4 to measure an actual elastic deformation of said lifting

5 wing and to produce corresponding measured data, a storage
6 unit that stores desired nominal values representing a
7 desired nominal deformation of said lifting wing prescribed
8 for given aircraft load and aircraft flight conditions, and
9 a comparison unit adapted to compare said measured data
10 with said desired nominal values and to output said
11 actuating signal dependent thereon.

1 **48.** (New) The aircraft wing construction according to claim 36,
2 wherein said control and/or regulation arrangement is a
3 control arrangement comprising a storage unit that stores
4 desired nominal values, an input connected and adapted to
5 receive aircraft load data and aircraft flight condition
6 data, and an output adapted to output said actuating signal
7 dependent on said desired nominal values, said aircraft
8 load data, and said aircraft flight condition data.

1 **49.** (New) A method of varying said induced drag of said lifting
2 wing in said aircraft wing construction according to claim
3 36, said method comprising using said control surface and
4 said control and/or regulating arrangement to carry out the
5 steps:

- 6 a) storing desired nominal values;
- 7 b) performing measurements and/or calculations to acquire
8 aircraft load data and aircraft flight condition data;
- 9 c) producing a control surface actuating signal in
10 consideration of and dependent on said desired nominal

11 values, said aircraft load data and said aircraft
12 flight condition data; and

13 d) pivotally deflecting said control surface about said
14 pivot axis in accordance with said control surface
15 actuating signal, so that said control surface exerts
16 an aerodynamic force that elastically deforms said
17 lifting wing so as to reduce said induced drag toward
18 a minimum for a given aircraft load and a given
19 aircraft flight condition.

1 50. (New) The method according to claim 49, wherein said
2 desired nominal values represent a desired nominal
3 deformation of said lifting wing prescribed for said given
4 aircraft load and said given aircraft flight condition, and
5 further comprising measuring an actual elastic deformation
6 of said lifting wing, and producing corresponding measured
7 data further comprising comparing said measured data with
8 said desired nominal values, wherein said producing of said
9 control surface actuating signal is performed in
10 consideration of and dependent on a comparison result of
11 said comparing, and further comprising repeating said steps
12 of said measuring of said actual elastic deformation, said
13 producing of said measured data, said comparing, said
14 producing of said control surface actuating signal, and
15 said deflecting of said control surface until said measured
16 data match said desired nominal values.