Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 6. Ekvipotentnost – nastavak. Nizovi. Ograničenost nizova

- Preostali zadaci sa Vježbi br. 5. vezani za ekvipotentnost
- Funkciju $f: \mathbb{N} \to S$ nazivamo nizom, pri čemu je S proizvoljan skup. Niz često označavamo sa $(a_n)_{n \in \mathbb{N}}, (a_n)$ ili $\{a_n\}$.
- Za niz realnih brojeva $\{x_n\}_{n\geq 1}$ kažemo da je:
 - o ograničen odozgo ako i samo ako $\exists M \in \mathbb{R}: x_n \leq M \ \forall n \in \mathbb{N}$
 - o ograničen odozdo ako i samo ako $\exists m \in \mathbb{R} : m \leq x_n \ \forall n \in \mathbb{N}$
 - o ograničen ako i samo ako $\exists m, M \in \mathbb{R} : m \leq x_n \leq M \ \forall n \in \mathbb{N}$
- Maksimum, minimum, supremum i infimum se definišu isto kao za skup $\{x_n | n \in \mathbb{N}\}$.

Posljedica: niz je ograničen akko $\exists M \in \mathbb{R}: |x_n| \leq M \ \forall n \in \mathbb{N}$

- [1] Ispitati da li je niz $x_n = \frac{1}{n}\cos(n\pi)$, $n \in \mathbb{N}$ ograničen te odrediti $\max(x_n)$, $\min(x_n)$ (ako postoje), $\inf(x_n)$, $\sup(x_n)$.
- [2] Odrediti maksimum niza $x_n = \frac{n^2}{2^n}$, $n \in \mathbb{N}$.

Zadaci za samostalan rad

- [1] Ispitati ograničenost niza $\{x_n\}_{n\in\mathbb{N}}$ i odrediti njegov minimum, maksimum (ako postoje), infimum i supremum:
 - a. $x_n = (-1)^n + \sin\left(\frac{n\pi}{2}\right), n \in \mathbb{N}$
 - $\text{b.} \quad x_n = \frac{1-n}{\sqrt{n}} \; n \in \mathbb{N}$
 - c. $x_n = n^{\cos(\pi n)}$, $n \in \mathbb{N}$