ВикипедиЯ

Теория графов

Материал из Википедии — свободной энциклопедии

Тео́рия гра́фов — раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами. В строгом определении графом называется такая пара множеств G=(V,E), где V есть подмножество $V\times V$.

Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проектируемые дома, сооружения, кварталы и т. п. рассматриваются как вершины, а

Граф с шестью вершинами и семью рёбрами

соединяющие их дороги, инженерные сети, линии электропередачи и т. п. — как рёбра. Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут.

Теория графов содержит большое количество нерешённых проблем и пока не доказанных гипотез.

Содержание

История возникновения теории графов
Терминология теории графов
Изображение графов на плоскости
Некоторые задачи теории графов
Применение теории графов
См. также
Примечания
Литература
Ссылки

История возникновения теории графов

Родоначальником теории графов считается <u>Леонард Эйлер</u>. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей

Стр. 1 из 5 11.03.2020, 20:14

впоследствии одной из классических задач теории графов. Термин «граф» впервые ввел Сильвестр, Джеймс Джозеф в 1878 году в своей статье в Nature [1].

Терминология теории графов

Терминология теории графов поныне не определена строго. В частности, в монографии $\Gamma y \partial M$ или, V из двух терминов "граф" или "сеть". Мы выбрали термин "сеть", так как он, повидимому, чаще встречается в прикладных областях». Аналогичная ситуация с терминами «вершина/точка».

Виды графов:

- неориентированный (неорграф)
- ориентированный (орграф)

Изображение графов на плоскости

При изображении графов на рисунках чаще всего используется следующая система обозначений: вершины графа изображаются точками или, при конкретизации смысла вершины, прямоугольниками, овалами и др., где внутри фигуры раскрывается смысл вершины (графы блок-схем алгоритмов). Если между вершинами существует ребро, то соответствующие точки (фигуры) соединяются линией или дугой. В случае ориентированного графа дуги заменяют стрелками, они явно указывают направленность ребра. Иногда рядом с ребром размещают поясняющие надписи, раскрывающие смысл ребра, например, в графах переходов конечных автоматов. Различают планарные и не планарные графы. Планарный граф — это граф, который можно изобразить на рисунке (плоскости) без пересечения рёбер (простейшие — треугольник или пара связанных вершин), иначе граф не планарный. В том случае, если граф не содержит циклов (содержащих, по крайней мере, один путь однократного обхода рёбер и вершин с возвратом в исходную вершину), его принято называть «деревом». Важные виды деревьев в теории графов — бинарные деревья, где каждая вершина имеет одно входящее ребро и ровно два выходящих, или является конечной — не имеющей выходящих рёбер и содержит одну корневую вершину, в которую нет входящего ребра.

Не следует путать изображение графа собственно с графом (абстрактной структурой), поскольку одному графу можно сопоставить не одно графическое представление. Изображение призвано лишь показать, какие пары вершин соединены рёбрами, а какие — нет. Часто на практике бывает трудно ответить на вопрос, являются ли два изображения моделями одного и того же графа или нет (другими словами, изоморфны ли соответствующие изображениям графы). В зависимости от задачи, одни изображения могут давать более наглядную картину, чем другие.

Некоторые задачи теории графов

- Проблема семи мостов Кёнигсберга один из первых результатов в теории графов, опубликован Эйлером в 1736.
- Проблема четырёх красок была сформулирована в 1852 году, но

Стр. 2 из 5 11.03.2020, 20:14

неклассическое доказательство получено лишь в 1976 году (достаточно 4-х красок для карты на сфере (плоскости)).

- Задача коммивояжёра одна из наиболее известных NP-полных задач.
- Задача о клике ещё одна NP-полная задача.
- Нахождение минимального стягивающего (остовного) дерева.
- <u>Изоморфизм графов</u> можно ли путём перенумерации вершин одного графа получить другой.
- Планарность графа можно ли изобразить граф на плоскости без пересечений рёбер (или с минимальным числом слоёв, что находит применение при трассировке межсоединений элементов печатных плат или микросхем).

К теории графов также относится целый ряд математических проблем, не решённых на сегодняшний день.

Применение теории графов

- В химии (для описания структур, путей сложных реакций [2], правило фаз также может быть интерпретировано как задача теории графов); компьютерная химия сравнительно молодая область химии, основанная на применении теории графов. Теория графов представляет собой математическую основу хемоинформатики. Теория графов позволяет точно определить число теоретически возможных изомеров углеводородов и других органических соединений.
- В информатике и программировании (граф-схема алгоритма, автоматы)[3]
- В коммуникационных и транспортных системах. В частности, для маршрутизации данных в Интернете.
- В экономике^[4]
- В логистике
- В <u>схемотехнике</u> (топология межсоединений элементов на <u>печатной</u> плате или микросхеме представляет собой граф или гиперграф)[5].

См. также

- Словарь терминов теории графов
- Связность графов

Примечания

- 1. Sylvester, James Joseph. Chemistry and Algebra (https://archive.org/stream/n ature15unkngoog#page/n312/mode/1up) (англ.) // Nature. 1878. Vol. 17, no. 432. P. 284. doi:10.1038/017284a0 (https://dx.doi.org/10.1038%2F0 17284a0). .
- 2. Г. С. Яблонский, В. И. Быков, А. Н. Горбань, <u>Кинетические модели</u> каталитических реакций (http://thermotree.narod.ru/contybg1983.htm), Новосибирск: Наука (Сиб. отделение), 1983.- 255 с.
- 3. Евстигнеев В.А. Применение теории графов в программировании. М., Наука, 1985. Тираж 20000 экз. 352 с.

Стр. 3 из 5 11.03.2020, 20:14

- 4. Ерёменко А. О. Использование теории графов при решении задач в экономике (http://earchive.tpu.ru/handle/11683/26262) // Прогрессивные технологии и экономика в машиностроении : сборник трудов VII Всероссийской научно-практической конференции для студентов и учащейся молодежи, г. Юрга, 7-9 апреля 2016 г. : в 2 т. Томск : Изд-во ТПУ. 2016. Т. 2. С. 279—281.
- 5. Курейчик В. М., Глушань В. М., Щербаков Л. И. Комбинаторные аппаратные модели и алгоритмы в САПР. М.: Радио и связь, 1990. 216 с.

Литература

- Дистель Р. Теория графов Пер. с англ. Новосибирск: Издательство института математики, 2002. 336 с. ISBN 5-86134-101-X.
- Diestel R. Graph Theory, Electronic Edition (http://diestel-graph-theory.com/G rTh.html).
 NY: Springer-Verlag, 2005.
- Басакер Р., Саати Т. Конечные графы и сети (http://eqworld.ipmnet.ru/ru/library/books/BasakerSaati1974ru.djvu) = Finite Graphs and Networks. М.: Наука, 1974. 368 с.
- *Белов В. В., Воробьёв Е. М., Шаталов В. Е.* Теория графов. <u>М.</u>: Высш. школа, 1976. С. 392.
- Берж К. Теория графов и её приложения. М.: ИЛ, 1962. 320c. (http://eqworld.ipmnet.ru/ru/library/books/Berzh1962ru.djvu)
- *Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И.* Лекции по теории графов. М.: Наука, 1990. 384с. (Изд.2, испр. М.: УРСС, 2009. 392 с.)
- Зыков А. А. Основы теории графов (http://www.dleex.com/read/?5561). M.: «Вузовская книга», 2004. С. 664. ISBN 5-9502-0057-8.(М.: Наука, 1987. 383с.)
- Химические приложения топологии и теории графов. Под ред. Р. Кинга. Пер. с англ. М.: Мир, 1987.
- *Кирсанов М. Н.* Графы в Maple. М.: Физматлит, 2007. 168 с. http://vuz.exponenta.ru/PDF/book/GrMaple.pdf /ru/library/books/Kirsanov2007ru.pdf
- *Кристофидес Н.*Теория графов. Алгоритмический подход. М.: Мир, 1978. 429c. (http://eqworld.ipmnet.ru/ru/library/books/Kristofides1978ru.djvu)
- Кормен Т. Х. и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = Introduction to Algorithms. 2-е изд. М.: Вильямс, 2006. С. 1296. ISBN 0-07-013151-1.
- *Ope O.* Теория графов (http://eqworld.ipmnet.ru/ru/library/books/Ore1965ru. djvu). 2-е изд. <u>М.</u>: Наука, 1980. С. 336.
- Салий В. Н. Богомолов А. М. Алгебраические основы теории дискретных систем (http://www.krelib.com/?cat=106&file=3816). М.: Физикоматематическая литература, 1997. ISBN 5-02-015033-9.
- Свами М., Тхуласираман К. Графы, сети и алгоритмы. М: Мир, 1984. 455c. (https://web.archive.org/web/20070320225126/http://dlc.crimea.edu/catalogue/informatika/ocr-030801052953.djvu)
- Татт У. Теория графов. Пер. с англ. М.: Мир, 1988. 424 с. (http://ru.dleex.c om/read/5623)
- *Уилсон Р.* Введение в теорию графов. Пер с англ. М.: Мир, 1977. 208с. (ht

Стр. 4 из 5

tp://eqworld.ipmnet.ru/ru/library/books/Uilson1977ru.djvu)

- *Харари Ф.* Теория графов (http://eqworld.ipmnet.ru/ru/library/books/Harari1 973ru.djvu). <u>М.</u>: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. 296 с.)
- Харари Ф., Палмер Э. Перечисление графов (http://eqworld.ipmnet.ru/ru/library/books/HarariPalmer1977ru.djvu). Мир, 1977.
- Сергей Мельников. Сим и Крэм под «электронным микроскопом» (http://www.iqfun.ru/articles/sim.shtml) (рус.) // Наука и жизнь. 1996. Вып. 3. С. 144—145. В статье идёт речь об игре на графе Сим, придуманной Густавом Симмонсом.

Ссылки

- WikiGrapp толковый словарь по теории графов (http://pco.iis.nsk.su/WikiGrapp/)
- Алгоритмы и краткие описания программ на C++ (http://e-maxx.ru/algo/)
- Дискретная математика, алгоритмы, апплеты, визуализация графов (htt ps://web.archive.org/web/20140111172402/http://rain.ifmo.ru/cat/view.php/t heory/list)
- Графы в химии (http://www.xumuk.ru/encyklopedia/1148.html)
- Intelligent Graph Visualizer (автоматическое размещение на плоскости, поиск кратчайшего пути, поиск центра и др.) (https://sourceforge.net/projects/igv-intelligent/)
- Graph Theory Software (http://graphtheorysoftware.com/)
- Visual Graph (https://bitbucket.org/tzolotuhin/visual-graph/overview): программа, предоставляющая пользователю, широкий набор средств и методов для визуализации и поиска информации в графах

Источник — https://ru.wikipedia.org/w/index.php?title=Teopuя графов&oldid=105525804

Эта страница в последний раз была отредактирована 6 марта 2020 в 19:02.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia ${\mathbb R}$ — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.

Стр. 5 из 5