(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 698 585 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 28.02.1996 Bulletin 1996/09 (51) Int. Cl.⁶: C03C 17/36, G02B 1/10, C23C 14/54

(11)

(21) Application number: 95113166.3

(22) Date of filing: 13.11.1995

(84) Designated Contracting States: BE CH DE ES FR GB IT LI SE

(30) Priority: 05.07.1990 JP 176282/90 27.11.1990 JP 321273/90

(62) Application number of the earlier application in accordance with Art. 76 EPC: 91111022.9

(71) Applicant: ASAHI GLASS COMPANY LTD. Chiyoda-ku Tokyo 100 (JP)

(72) Inventors:

Miyazaki, Masami Yokohama-shi, Kanagawa-ken (JP)

· Ando, Eiichi Yokohama-shi, Kanagawa-ken (JP)

(74) Representative: Wächtershäuser, Günter, Prof. Dr. D-80331 München (DE)

Remarks:

This application was filed on 13 - 11 - 1995 as a divisional application to the application mentioned under INID code 60.

A low emissivity film (54)

A low emissivity film which comprises: (57)a substrate; and

a coating of oxide and metallic films alternately formed on the substrate in a total of (2n+1) layers where n is an integer being equal to or more than 1, with an innermost layer thereof being an oxide film,

wherein the oxide film (B) formed on the outer side of the metallic film (A) being most apart from the substrate, is a single layer film or a multi-layer film having at least a film whose major component is hexagonal zinc oxide; and

a value of a diffraction angle 20 (center of gravity position) of (002) diffraction line of the hexagonal zinc oxide of the low emissivity film in X-ray diffraction method using $CuK\alpha$ radiation, is not smaller than 33.88° and not larger than 35.00°.

Description

5

30

40

50

This invention relates to a low emissivity film which is excellent in durability, especially in moisture resistance or in acid resistance

A film composed of (2n+1) layers (n≥1) such as a film composed of three layers in which an oxide film, an Ag film, and an oxide film are successively coated on a surface of a substrate, or a film composed of five layers in which an oxide film, an Ag film, an oxide film, an Ag film, and an oxide film are successively coated on a surface of a substrate, is a heat reflective film called Low-E (Low-Emissivity) film. A glass in which such a Low-E film is formed, is called a Low-E glass. This glass can prevent lowering of room temperature by reflecting the thermal infrared radiation emitted from within the heated room, which is used mainly in cold district on the purpose of decreasing heating load. Furthermore, since this glass has a heat insulating effect of the solar radiation energy, it is adopted in a windshield of an automobile. Since this glass is transparent and is electrically conductive, it has a usage as an electromagnetic shielding glass. When this glass is equipped with an electric heating such as a bus bar composed of an electrically conductive printing or the like, this glass can be used as an electrically heated window.

As a major Low-E glass, a glass is exemplified having a film composition of ZnO/Ag/ZnO/glass. However, since this film is devoid of durability such as anti-scratching property or chemical stability, it can not be used on a single plate, and it is necessary to use the film in a laminated glass or in double glazing. This film has a problem especially in moisture resistance, in which white dot or white turbidity is caused by moisture in the air or by moisture contained in an intermediate film in case of the laminated glass. Furthermore, since ZnO is insufficient in acid resistance, the film may be deteriorated by acid substance in the air. Due to these shortcomings, caution is required in the storage or in the handling of the single plate.

It is an object of the present invention to provide a Low-E film capable of overcoming the above shortcomings, and excellent in the durability, especially in the moisture resistance or in the acid resistance.

According to an aspect of the present invention, there is provided a low emissivity film which comprises:

a substrate; and

a coating of oxide and metallic films alternately formed on the substrate in a total of (2n+1) layers where n is an integer being equal to or more than 1, with the innermost layer being an oxide film,

wherein the oxide film (B) formed on the outer side of the metallic film (A) being most apart from the substrate, has an internal stress which is equal to, or less than 1.1 x 10¹⁰ dyne/cm².

According to another aspect of the present invention, there is provided a low emissivity film which comprises:

a substrate; and

a coating of oxide and metallic films alternately formed on the substrate in a total of (2n+1) layers where n is an integer being equal to or more than 1, with the innermost layer being an oxide film,

wherein the oxide film (B) formed on the outer side of the metallic film (A) being mostly apart from the substrate, is a single layer film or a multi-layer film having at least a film whose major component is hexagonal zinc oxide; and

a value of a diffraction angle 20 (center of gravity position) of (002) diffraction line of the hexagonal zinc oxide of the low emissivity film in X-ray diffraction method using $CuK\alpha$ radiation is not smaller than 33.88° and not larger than 35.00°.

According to another aspect of the present invention, there is provided a low emissivity film which comprises:

a substrate; and

a coating of oxide and metallic films alternately formed on the substrate in a total of (2n+1) layers where n is an integer being equal to or more than 1, with the innermost layer being an oxide film,

wherein the oxide film (B) formed on the outer side of the metallic film (A) being most apart from the substrate, is a multi-layer film having at least a layer whose major component is zinc oxide and a layer whose major component is tin oxide.

In the drawings:

Figures 1a and 1b are sectional diagrams showing embodiments of Low-E glasses on which low emissivity films are formed, according to the present invention.

Explanation will be given on the oxide film (B) in the first and second inventions, in the followings.

As mentioned above, in case of the conventional Low-E glass (film composition: ZnO/Ag/ZnO/glass), when it is left in a room, white turbidity or white dot appears on the film by the moisture in the air.

When the film with white turbidity or white dot is observed by a scanning electron microscope (SEM), the existence of crack or wrinkle, and exfoliation of the film are recognized on the surface of the film.

When an elementary analysis is performed on the exfoliated part of this film, with respect to Ag and Zn, Ag is found to exist at certain amount irrespective of the existence of the exfoliation. On the contrary, the detected amount of Zn is halved at the exfoliated part. Accordingly, the exfoliation is found to take place on the interface between the uppermost layer of ZnO and the Ag layer.

Next, an investigation is performed on samples before and after a moisture resistance test (the samples are left for 6 days, at 50°C, in an atmosphere of relative humidity of 95%) by X-ray diffraction method. The diffraction angle 20 (center of gravity position of peak), interplanar spacing d, and the peak width (integral width) I.W. with respect to (002) diffraction line of hexagonal zinc oxide, and (111) diffraction line of cubic Ag, are respectively shown in Table 1.

It is possible to detect degree of strain of the lattice due to an internal stress, by a deviation of peaks in X-ray diffraction method. In case of the sample of ZnO(b)/Ag/ZnO(a)/glass, a peak of ZnO(b) of the uppermost layer, is detected with an intensity 5 to 15 times as much as a peak of ZnO(a). Therefore, a peak of ZnO of X-ray diffraction method with respect to the total of the sample, is almost considered to be the peak of hexagonal ZnO(b) of the uppermost layer, although there may be more or less an influence of ZnO(a).

Table 1

10

15

		ZnO (002)		Ag (111)
	Before moisture resistance test	After moisture resistance test	Before moisture resistance test	After moisture resistance test
2θ (deg.)	33.78	33.91	38.09	38.09
d (Å)	2.650	2.641	2.361	2.361
1w (deg.)	0.510	0.623	0.977	0.675

According to Table 1, (002) diffraction line of ZnO in the Low-E film before the moisture resistance test, is deviated in its position, compared with $2\theta = 34.44^{\circ}$ of ZnO powder. This suggests the existence of a lattice strain. This lattice strain is due to an internal stress of the film. In the samples before the moisture resistance test, the interplanar space $d_{002} = 2.650$ Å, which is larger than $d_{002} = 2.602$ Å of ZnO powder by 1.8%. From this result, the film is found to receive a considerably large compressive stress. In case of samples after the moisture resistance test, the lattice strain is more or less decreased, as $d_{002} = 2.641$ Å. This test result corresponds with the fact in which the internal stress of ZnO at the uppermost layer is partly relieved by the crack, the wrinkle, and the exfoliation.

Concerning the (111) diffraction line of Ag, the peak width after the moisture resistance test is decreased. Therefore grain growth of Ag is considered to take place by performing the moisture resistance test.

Accordingly, the mechanism of generation of the white turbidity or white dot, is considered as follows. The hexagonal ZnO film at the uppermost layer can not resist to the large internal stress. The film is exfoliated from the interface with Ag film, and is destructed. Next grain size of Ag is increased. The film displays the white turbidity or white dot since light is scattered by the destroyed surface and by the large silver grain. In the examples of Table 1, the internal stress is a compressive stress. However there are two kinds of internal stress, that is, a compressive stress and a tensile stress, both of which cause destruction of a film.

From the above observation, in this invention, it is found that the decrease of the internal stress of ZnO film at the upper most layer, is effective to prevent the white turbidity or white dot due to moisture.

Figures 1a and 1b are sectional diagrams showing embodiments of low emissivity films according to the present invention. Figure 1a is a sectional diagram of the low emissivity film composed of three layers, and Figure 1b is a sectional diagram of the low emissivity film composed of (2n+1) layers. A reference numeral 1 designates a substrate, 2, an oxide film, 3, a metallic film, and 4, an oxide film (B) having low internal stress.

As a substrate 1 in this invention, a film or a plate substrate made of plastic or the like can be used as well as a glass plate.

The oxide film (B) can be used, so long as the internal stress is equal to or less than 1.1×10^{10} dyne/cm², and is not particularly restricted. The internal stress of the film depends considerably on the deposition condition of the film. The deposition condition is necessary to be controlled precisely, when a film of low internal stress, is formed. As a method in which a tendency of decreasing internal stress of the film is shown, a method of changing the deposition condition (especially depositing by a sputtering method), such as, increasing the pressure of the atmosphere in deposition of the film (sputtering pressure), or heating the substrate in depositing the film, and a method in which a heat treatment is performed after depositing the film, are suggested. By these methods, the internal stress of the film can be decreased. The respective concrete conditions can be chosen depending upon each apparatus for depositing the film, and are not particularly restricted.

No particular restriction is made on the material of the film of the oxide film (B). The film may be of a single layer, or of a multi-layer. For instance, in case of the laminated glass, there is a case in which an oxide film, such as chromium oxide, having a thickness being equal to or less than 100 Å, is formed as the outermost layer in contact with a plastic intermediate film for lamination with another substrate, for the purpose of controlling the adhesive strength with the

plastic intermediate film, or of increasing the durability. The film may be composed of at least two layers including such layer

No restriction is especially required to a concrete film which composes the oxide film (B). For instance, a film whose major component is ZnO, a film whose major component is SnO₂, a film whose major component is TiO₂, and a multi-layer film which contains at least two of the above layers, are suggested. When the other elements whose ionic radii are smaller than those of Zn²⁺ in oxidized states are added to these films, there is a tendency of decreasing the internal stress of the film, although there may a considerable variation depending on the condition of film deposition.

Especially, concerning ZnO film comprised in the oxide film (B), as mentioned above, the internal stress of the zinc oxide film almost corresponds to the diffraction angle 2θ (center of gravity position) in X-ray diffraction method. The crystal structure of a film whose major component is zinc oxide is hexagonal. To enhance the durability of the Low-E film of this invention, the range of the diffraction angle 2θ (center of gravity position) of (002) diffraction line of the hexagonal zinc oxide in X-ray diffraction method using $CuK\alpha$ radiation of the Low-E film, is desirable to be from 33.88° to 35.00° , particularly, from 34.00° to 34.88° . The value of the diffraction angle 2θ of 34.44° at most, corresponds with a compressive stress, and the value of 34.44° at least, with a tensile stress.

When the other elements whose ionic radii are smaller than those of Zn²⁺ in oxidized states are added (doped) in the ZnO film, there is a tendency of decreasing the internal stress, although depending on the condition of film deposition. A film whose major component is ZnO, doped with at least one selected from the group consisted of Aℓ, Si, B, Ti, Sn, Mg, and Cr can be used in the same way as in ZnO film. Since the effect of decreasing the internal stress remains almost unchanged, when at least one of Aℓ, Si, B, Ti, Sn, Mg, and Cr, are added more than 10% in atomic ratio, of the total amount including Zn, it is sufficient to add these elements by 10% at most. Concerning the ZnO film doped with the other elements, the same reasoning is applicable as in ZnO film, with respect to the deviation of diffraction angle 20 (center of gravity position) of (002) diffraction line of hexagonal zinc oxide.

The film thickness of the oxide film (B), although not especially restricted, is desirable to be within the range of 200 to 700 Å, considering a color tone on the total of the Low-E film, and a visible light transmittance thereof.

When the oxide film (B) is deposited by reactive sputtering in the oxygen-containing atmosphere, it is preferable to first deposit a thin metal layer in non-oxidation atmosphere on the metallic film (A), in order to prevent the oxidation of the metallic film (A). The thin metal layer is oxidized to be an oxide layer during the deposition of the oxide film (B). Therefore the above preferable thickness of the oxide film (B) includes the thickness of the oxide layer formed by the oxidation of said thin metal layer.

As an oxide film (B), a multi-layer film can be used, having a composition of at least two layers by combining films of high internal stress and those of low internal stress. As a film of low internal stress, although depending on the condition of the film deposition, SnO_2 film is suggested because a SnO_2 film of comparatively low internal stress of 7.0 x 10⁹ dyne/cm² at most, is relatively easy to deposit. As concrete examples, three layer series such as $ZnO/SnO_2/ZnO/Sn$

In case of a multi-layer film which is composed of at least two layers by combining films of high internal stress and those of low internal stress, as an oxide film (B), as shown in the above, the number of layers and the film thickness of a layer, may be chosen depending on an apparatus, and is not especially restricted, so long as the total thickness is within the range of 200 to 700Å. Moreover, the film thickness of each layer may be different.

Table 2 shows the relationship among the internal stress of the oxide film (B), the diffraction angle 20 (center of gravity position) of (002) diffraction line of zinc oxide of a Low-E film in which the oxide film (B) is formed on Ag/ZnO/glass

45

50

55

4

by a sputtering method, and the moisture resistance of the Low-E film.

Table 2

	Oxide film (B) 450 Å		Oxide film (B)/Ag/ZnO/glass 450 Å 100 Å 450 Å	
	Material	A value of internal stress (dyne/cm²)	(002) Diffraction line of ZnO Diffraction angle 26 (deg.)	Moisture resistance
1	ZnO	1.5 x 10 ¹⁰	33.78	х
2	ZnO	1.0 x 10 ¹⁰	33.89	Δ
3	ZnO	6.3 x 10 ⁹	34.10	0
4	ZnO	1.0 x 10 ⁹	34.42	0
5	Al-doped ZnO	6.2 x 10 ⁹	34.10	0
6	B-doped ZnO	9.5 x 10 ⁹	33.89	0
7	Si-doped ZnO	7.8 x 10 ⁹	33.99	0
8	Ti-doped ZnO	4.6 x 10 ⁹	34.21	0
9	Cr-doped ZnO	6.1 x 10 ⁹	34.12	0
10	Mg-doped ZnO	7.9 x 10 ⁹	33.99	0
11	Sn-doped ZnO	5.7 x 10 ⁹	34.18	0
12	ZnO/SnO ₂ /ZnO /SnO ₂ /ZnO	9.2 x 10 ⁹		0

25

5

10

15

20

The internal stress in Table 2 is in compressive stress. The moisture resistance is evaluated by performing a test in which samples are left in an atmosphere of the relative humidity of 95% at 50° C, for 6 days. In this evaluation standard, \bigcirc is for a sample having no white turbidity at adjacent to the edge of the film, and no white spot with a diameter of at least 1 mm, \triangle for a sample having no turbidity at adjacent to the edge of the film, and white spot with a diameter of 1 to 2 mm, and X for a sample having white turbidity at adjacent to the edge of the film, and white spot with a diameter at least 2 mm. The doping quantities of $A\ell$, Si, B, Ti, Sn, Mg, and Cr for all the samples are 4% in atomic ratio, of the total amount including Zn. In sample 2, the pressure of the atmosphere in film deposition, is increased compared with sample 1. In sample 3, the temperature of the substrate in film forming is elevated compared with sample 1. Sample 4 is heated after film deposition. It is found from Table 2, that the moisture resistance of the Low-E film, does not depend on the material of the film, or number of layers; a single layer or multi-layer, and depends on the internal stress and the diffraction angle 20 (center of gravity position) of (002) diffraction line of ZnO.

Next, explanation will be given to an oxide film (B) in the third invention of this application. By using a multi-layer film as the oxide film (B) composed of, at least one layer of film whose major component is zinc oxide, and one layer of film whose major component is tin oxide, a Low-E film excellent in acid resistance is realized. The tin oxide is excellent in acid resistance, and the optical property such as refractive index is almost the same with that of zinc oxide. Therefore, by replacing a portion of the zinc oxide film, with tin oxide, an oxide film (B) excellent in acid resistance can be composed, while maintaining the optical property. On the other hand, when these films are deposited by a sputtering method, especially by a direct current sputtering method, a zinc oxide film can be deposited by a higher rate than in tin oxide. Therefore, the film composition and film thickness of the oxide film (B) had better be determined considering the acid resistance and the film forming rate.

The film thickness of the oxide film (B), although not especially restricted, is desirable to be in the range of 200 to 700 Å, considering the color tone of the total of the Low-E film, and the visible light transmittance thereof. The number of layers and the film thickness of a single layer may be chosen according to an apparatus, and are not especially restricted. Furthermore, the thickness of each layer may be different.

Zinc oxide can resist to the influence of acid from the edge of the film, when the zinc oxide layer is divided to a plurality zinc oxide films, and the film thickness of the single layer of zinc oxide is made thinner. Accordingly, the concrete film composition of oxide film (B), had better be composed as in three layer series such as ZnO/SnO₂/ZnO, or SnO₂/ZnO/SnO₂, or five layer series such as ZnO/SnO₂/ZnO/SnO₂/ZnO/SnO₂/ZnO/SnO₂/ZnO/SnO₂/ZnO/SnO₂, and the film thickness of a single layer of zinc oxide had better be 200 Å at most, favorably 180 Å at most. More favorably, the film thickness is particularly desirable to be 100 Å at most, and the film is composed by the five layer series. Considering the productivity of film depositing, a multi-layer composed of the five layer series is favorable, in which the film thickness of the each layer is unified to about 90 Å, and total thickness of the film is about 450 Å.

Such oxide film layer (B) is further favorable, when the internal stress is 1.1 x 10¹⁰ dyne/cm² at most. When the internal stress of zinc oxide is low, the film is difficult to be peeled off by the influence of acid from the edge of the film. Therefore, the low internal stress of zinc oxide is favorable also in view of the acid resistance and the moisture resistance. It is more preferable when the diffraction angle 20 (center of gravity position) of (002) dlffraction line of zinc oxide by X-ray diffraction method, is within the range of 33.88° to 35.00°, particularly, from 34.00° to 34.88°.

The material of the oxide film 2 other than oxide film (B) is not especially restricted. As the oxide film 2, a film of ZnO, SnO₂, TiO₂, and a multi-layer film containing at least 2 kinds of these, and a film further added with the other elements, can be utilized. Furthermore, considering the productivity, a film in which at least two layers of ZnO, SnO₂, and ZnO-SnO₂ are alternatively laminated, and a film in which at least one of Aℓ, Si, B, Ti, Sn, Mg, and Cr, are added by 10 atomic % at most of the total quantity including Zn, are favorable.

Considering the color tone and the visible light transmittance thereof, the thickness of the oxide film 2 is desirable to be in the range of 200 to 700 Å. In case of a multi-layer film, the total thickness may be in the range of 200 to 700 Å, and the film thickness of each layer is not restricted.

As the metallic film 3 in the present invention, a metal layer with high heat reflective function, whose major component is Ag, or Ag added with at least one of Au, Cu, and Pd, can be utilized. The metallic film 3 may also be comprising a metal layer with various other function, other than the heat reflective metal layer (i.e. Ag layer), for example, a metal layer for controlling the adhesive strength between the heat reflective metal layer and the oxide film 2 and/or the oxide film (B), or a metal layer with a barrier function for preventing the diffusion of the metal from the heat reflective metal layer. Considering the balance between high heat reflective function and high visible light transmittance, the film thickness of the metallic film 3 is desirable to be in the range of 50 to 150 Å, especially about 100 Å.

Especially in case of a Low-E film of five layers such as an oxide film, a metallic film, an oxide film, a metallic film, an oxide film alternately formed, or a Low-E film of more than five layers, it is desirable to use an oxide film having an internal stress of 1.1×10^{10} dyne/cm² at most, as an oxide film 2 (an oxide film other than the oxide film (B).)

Compared with a conventional Low-E film, the moisture resistance of the Low-E film of the present invention is considerably improved in the moisture resistance, by using a film of low internal stress of 1.1 x 10¹⁰ dyne/cm² at most, as an oxide film (B). This is due to the fact that the oxide film is difficult to be destroyed by the low internal stress of the oxide film, and the deterioration by moisture is prevented. Furthermore, the acid resistance is improved, by introducing a film whose major component is tin oxide in the oxide layer (B).

O EXAMPLES

EXAMPLE 1

An A ℓ doped ZnO film with a thickness of 450 Å, is deposited on a glass substrate, by a direct current sputtering method, in an atmosphere of Argon and oxygen, of Ar:O₂ = 2:8, with pressure of 6.5 x 10⁻³ Torr, using a target made of metal of A ℓ and Zn, the composition of A ℓ being 3.0 atomic % of the total quantity including Zn. Next, an Ag film with a thickness of 100 Å is deposited in an atmosphere of only Ar with pressure of 6.5 x 10⁻³ Torr, using Ag as a target. Next, an A ℓ doped Zn film having a very thin thickness of about 20 Å, is deposited, without changing the atmosphere, using a target made of a metal of A ℓ and Zn, the A ℓ composition being 3.0 atomic % of the total quantity including Zn. Lastly, an A ℓ doped ZnO film is deposited in an atmosphere of Argon and oxygen of Ar:O₂ = 2:8, with pressure of 6.5 x 10⁻³ Torr, using a target made of metal of A ℓ and Zn, the composition of the A ℓ being 3.0 atomic % of the total quantity including Zn. During the deposition of the A ℓ doped ZnO film, the A ℓ doped ZnO film is oxidized in the oxygen containing atmosphere to be A ℓ doped ZnO film. Therefore the total thickness of A ℓ doped ZnO film deposition A ℓ doped ZnO film depositing A ℓ doped ZnO film, is 2.7 W/cm², and 0.7 W/cm², in depositing Ag film.

When the obtained Low-E film is checked by X-ray diffraction method, the diffraction angle 20 (center of gravity position) of (002) diffraction line of ZnO, is found to be 34.12°. The internal stress of the Al doped ZnO film (450 Å) formed under the same condition, is 6.5 x 109 dyne/cm²

The moisture resistance test is performed on the Low-E film, in which samples are left in an atmosphere of relative humidity 95% at 50°C, for 6 days. The appearance of the samples after the moisture resistance test, is favorable, in which although very small spots are observed, conspicuous white dots and white turbidity are not observed. According to a SEM photograph of the surface of the film after the moisture resistance test, almost no cracks, nor wrinkles, nor exfoliations are observed on the surface of the film.

A glass on which the above Low-E film is deposited, is laminated with another glass plate with a plastic intermediate film therebetween, disposing the Low-E film inside. The same moisture test is carried out also for the laminated glass. As the result, no white turbidity nor white spot is observed on the film even after 14 days of the moisture resistance test.

EXAMPLE 2

A Low-E film is deposited, using an RF sputtering method, by successively coating ZnO film, Ag film, and A ℓ doped ZnO film, having the film thicknesses of 450 Å, 100 Å, and 450 Å, respectively, on a glass substrate. As a material of target, ZnO, Ag, and ZnO added with A ℓ_2 O₃ (98 weight % ZnO, 2 weight % A ℓ_2 O₃), respectively, is used and a sputtering is performed in argon gas. The sputtering pressure is 1.8 x 10⁻³ Torr, the substrate temperature is room temperature, and the RF power density is 3 W/cm².

When the obtained Low-E film is checked by X-ray diffraction method, the diffraction angle 20 (center of gravity position) of (002) diffraction line of ZnO, is found to be 34.00°. The internal stress of Al doped ZnO film deposited under the same condition, is 6.2 x 109 dyne/cm².

The same moisture resistance test as in Example 1 is carried out on the above film. The moisture resistance of the film is fair, in which although very small spots are observed on the film after the test, no conspicuous white turbidity nor white spot is observed.

5 EXAMPLE 3

A Low-E film is produced, which has a film composition of ZnO/SnO $_2$ ZnO/SnO $_2$ ZnO/Ag/ZnO/glass, by the same method as in Example 2. The film thickness of Ag is 100 Å, that of ZnO between Ag and glass, 450 Å, and those of ZnO layer and SnO $_2$ layer on top of Ag layer, 90 Å. ZnO layer and Ag layer are obtained by sputtering ZnO and Ag targets in Ar gas, and SnO $_2$ layer is obtained by sputtering SnO $_2$ target in an atmosphere of a mixed gas of Ar and O $_2$. The sputtering pressure, the substrate temperature, and the RF power in film deposition of ZnO and Ag are the same in the above Example 2. The power density is 1 W/cm 2 in film deposition of SnO $_2$, gas flow rate ratio of A ℓ :O $_2$ is 8:2.

The internal stress of film of $ZnO/SnO_2/ZnO/SnO_2/ZnO$, formed under the same condition as above, is 9.2 x 10⁹ dyne/cm².

The moisture resistance of the Low-E film obtained, is as favorable as in the above Example.

EXAMPLE 4

25

35

45

A Low-E film is produced, of which film composition is ZnO/SnO₂/

The internal stress of the film of $ZnO/SnO_2/ZnO/SnO_2/ZnO$ produced under this condition, is 9.2 x 10^9 dyne/cm². The moisture resistance of the obtained Low-E film, is as favorable as in the above Example.

EXAMPLE 5

A ZnO film, an Ag film and ZnO film, having a film thicknesses of 450 Å, 100 Å, and 450 Å, respectively, are successively formed on a glass substrate, by the same method as in Example 2. As materials of targets, ZnO and Ag are used, and sputterings are performed in argon gas atmosphere. The sputtering pressure, the substrate temperature, the power density are the same as in Example 2. A heat treatment is performed on the film after the film deposition, in which samples are heated at 400° C in N_2 atmosphere, for 1 hour.

When the Low-E film after the heat treatment, is checked by X-ray diffraction method, the diffraction angle 20 (center of gravity position) of (002) diffraction line of ZnO, is found to be 34.42°.

The moisture resistance of the Low-E film is as favorable as in the above Example.

COMPARATIVE EXAMPLE 1

A ZnO film, an Ag film, a ZnO film, with film thicknesses of 450 Å, 100Å, and 450 Å, respectively, are successively coated on a glass substrate, by the same method as in the above Example 2. As for materials of targets, ZnO and Ag are used, and sputtering is performed in argon gas atmosphere. The sputtering pressure, the substrate temperature, and the RF power density are the same as in Example 2.

When the obtained Low-E film is checked by X-ray diffraction method, the diffraction angle 20 (center of gravity position) of (002) diffraction line of ZnO is found to be 33.78°. The internal stress of ZnO film formed under this condition, is 1.5 x 10¹⁰ dyne/cm².

The Low-E film after the moisture resistance test, have a thin turbidity on the whole area of the surface of samples, and recognizable white spots with diameter of at least 1 mm are clearly observed.

According to the same SEM photograph after the moisture resistance test, cracks prevail on the whole area of the surface of the film, which shows considerable destruction of the film.

A glass on which the above Low-E film is deposited, is laminated with another glass plate with a plastic intermediate film therebetween, disposing the Low-E film inside. The same moisture test is carried out also for this laminated glass. As a result, clear white turbidity is observed on the edge of the film after 14 days of the moisture resistance test.

EXAMPLE 6

A Low-E film having the composition of ZnO/SnO $_2$ /ZnO/SnO $_2$ /Zn

An acid resistance test was performed on the glass with Low-E film, in which the glass is immersed in 1 N hydrochloric acid. No change is observed until 2 minutes after the immersion. However, after 3 minutes the color of the sample begins to change into brownish color from edge of the film. After 5 minutes a part of the film is observed to be exfoliated.

COMPARATIVE EXAMPLE 2

A Low-E film having the film composition of ZnO/Ag/ZnO/glass is made, by using metal targets made of zinc and silver, respectively, in which the Ag film is made by a direct current sputtering method, in argon atmosphere, and the ZnO film is made by a reactive direct current sputtering method, in a atmosphere containing oxygen. The thickness of the Ag film is 100 Å, and the thickness of the ZnO film is 450 Å. The visible light transmittance of the glass having the Low-E film, is 86%, and its emissivity is 0.06.

An acid resistance test was performed on the glass with Low-E film, in which the glass is immersed in 1 N hydrochloric acid. The film begins to be exfoliated just after the immersion, and after 5 minutes, the Low-E film is totally exfoliated from the glass, and vanished.

In the Low-E film of this invention, the moisture resistance and the acid resistance are significantly improved. Accordingly, the handling of the glass with such Low-E film on single plate, is likely to become easy. Furthermore, the possibility of the preservation of such glass in single plate for a long time in a room, is realized. Furthermore the reliability of the Low-E glass for an automobile or for a building, is promoted. When the film is used in a laminated glass, the glass is not deteriorated by the moisture contained in an intermediate film, which improves the durability of the laminated glass for an automobile or for a building.

The Low-E film of this invention is electrically conductive, for it is comprising the metal layer. Therefore the Low-E film of the present invention can be used in various technical fields, for example, as an electrode in electronics field, or as a heating element for electrically heated window, or as an electromagnetic shielding film for a window or for electronics use. In some cases, the Low-E film of the present invention can be applied on a substrate with various functioning layers therebetween, in which case the optical property of this Low-E film can be adjusted depending on each purpose by choosing suitable film thickness for each layer comprised in the Low-E film of the present invention.

40 Claims

45

50

55

- 1. A low emissivity film which comprises:
 - a substrate; and
 - a coating of oxide and metallic films alternately formed on the substrate in a total of (2n+1) layers where n is an integer being equal to or more than 1, with an innermost layer thereof being an oxide film,
 - wherein the oxide film (B) formed on the outer side of the metallic film (A) being most apart from the substrate, is a single layer film or a multi-layer film having at least a film whose major component is hexagonal zinc oxide; and a value of a diffraction angle 2θ (center of gravity position) of (002) diffraction line of the hexagonal zinc oxide of the low emissivity film in X-ray diffraction method using CuKα radiation, is not smaller than 33.88° and not larger
- The low emissivity film according to Claim 1, wherein the value of the diffraction angle 2θ (center of gravity position)
 of (002) diffraction line of the hexagonal zinc oxide in x-ray diffraction method using CuKα radiation is not smaller
 than 34.00° and not larger than 34.88°.
- The low emissivity film according to Claim 1, wherein the metallic film (A) is a metallic film whose major component is Ag.

	4.	The low emissivity film according to Claim 1, wherein the outermost layer of said oxide film (B) is a layer for controlling the adhesive strength thereof with a plastic intermediate film for lamination with another substrate.
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

FIGURE I

(a)

(**b**)

EUROPEAN SEARCH REPORT

Application Number EP 95 11 3166

·		DERED TO BE RELEVAN	Τ	
Category	Citation of document with in of relevant pas	dication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)
X	FR-A-2 586 245 (NIP * page 4, line 12 - claims 1-6 *	PON SHEET GLASS CO.) page 6, line 15;	1-4	C03C17/36 G02B1/10 C23C14/54
Y	DATABASE WPI Section Ch, Week 84 Derwent Publication Class LO1, AN 84-05 & JP-A-59 018 134 (January 1984 * abstract *	s Ltd., London, GB;	1-4	
Υ	EP-A-O 332 717 (ASAI * claims 1-5 *	HI GLASS COMPANY)	1-4	
A	EP-A-0 183 052 (PPG * page 4, line 17 - * page 5, line 9 - * page 7, line 1 -	line 20; claim 19 * line 18 *	1-4	
A	DATABASE WPI Section Ch, Week 89! Derwent Publication Class L03, AN 89-00 & JP-A-63 281 204 (November 1988 * abstract *	s Ltd., London, GB; 3563 SHARP KK), 17		TECHNICAL FIELDS SEARCHED (Int.Cl.5) C03C C23C
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	27 October 1995	Var	Bommel, L
X: par Y: par doc A: tec O: not	CATEGORY OF CITED DOCUMEN ticularly relevant if taken alone ticularly relevant if combined with ano ument of the same category hnological background n-written dis closure temediate document	TS T: theory or princi E: earlier patent de after the filing ther D: document cited L: document cited	ple underlying the ocument, but pub- date in the application for other reasons	e invention lished on, ar n