Machine Learning Note

目录

1	[模型评估与选择													1			
	1.1	经验误	差与过拟合										 	 	 		1
	1.2	评估方	法										 	 	 		1
		1.2.1	留出法										 	 	 		1
		1.2.2	交叉验证法										 	 	 		2
2	支持	向量机															2
	9.1	间隔片	古挂白景														9

1. 模型评估与选择

1.1 经验误差与过拟合

学习器在训练集上的误差称为"训练误差"或"经验误差"(empirical error), 在新样本上的误差称为"泛化误差"(generalization error).

"过拟合": 训练样本学的太好, 泛化性能下降 /quad 是机器学习的关键障碍, 无法彻底避免

"欠拟合": 是指对训练样本的一般性质尚未学好

1.2 评估方法

现实中要考虑时间开销,存储开销 (这俩也算是降维兴起的原因),可解释性等方面因素,这里只考虑泛化误差.

1.2.1 留出法

直接将数据集 D 划分为两个互斥的集合, 训练集 S 和测试集 T. 训练/测试集的划分要尽量保持数据分布的一致性.

单次使用留出法得到的估计结果不够稳定可靠,一般采用多次随机划分,重复试验取平均值作为评估结果.

1.2.2 交叉验证法

先将数据集 D 划分成 $k \land (k \text{ ff})$ 大小相似的互斥子集,每个子集都尽可能保持数据分布的一致性,即从 D 中通过分层采样得到. 然后每次用 k-1 个子集的并集作为训练集,余下子集作为测试集,进行 k次训练和测试,最终返回的是 $k \land k$ 测试结果的均值.

为减小因样本划分不同而引入的差别,k 折要随机用不同的划分重复 p 次, 最终评估结果是 p 次 k 折交叉验证结果的均值.

假定 D 包含 m 个样本, 若令 k=m, 得到特例: 留一法 (Leave-One-Out, LOO)

2. 支持向量机

2.1 间隔与支持向量

样本空间中划分超平面:

$$\boldsymbol{\omega}^T \boldsymbol{x} + b = 0 \tag{2.1}$$

 $\omega = \{\omega_1; \omega_2; \dots \omega_d\}$ 为法向量, 决定超平面的方向; b 为位移项, 决定超平面与原点之间的距离. 样本空间任一点x 到超平面 (ω, b) 的距离:

$$r = \frac{\mid \boldsymbol{\omega}^T \boldsymbol{x} + b \mid}{\parallel \boldsymbol{\omega} \parallel} \tag{2.2}$$

设超平面 $(\boldsymbol{\omega}, b)$ 能将训练样本正确分类, 即对于超平面 $(\boldsymbol{x}_i, y_i) \in D$, 若 $y_i = +1$, 则有 $\boldsymbol{\omega}^T \boldsymbol{x} + b > 0$; 若 $y_i = -1$, $\boldsymbol{\omega}^T \boldsymbol{x} + b < 0$. 另

$$\begin{cases} \boldsymbol{\omega}^T \boldsymbol{x}_i + b \geqslant +1 & y_i = +1 \\ \boldsymbol{\omega}^T \boldsymbol{x}_i + b \leqslant -1s & y_i = -1 \end{cases}$$
(2.3)

如图1, 距离超平面最近的几个样本点使式2.3的等号成立, 每个样本点对应一个特征向量, 他们被称为"支持向量", 两个异类支持向量到超平面的距离和:

图 1: 支持向量与间隔

$$\gamma = \frac{2}{\parallel \boldsymbol{\omega} \parallel} \tag{2.4}$$

称为"间隔"(margin).

欲找到具有"最大间隔"(maximum margin) 的划分超平面,即

$$\max_{\boldsymbol{\omega},b} \frac{2}{\parallel \boldsymbol{\omega} \parallel}$$
s.t. $y_i(\boldsymbol{\omega}^T \boldsymbol{x}_i + b) \ge 1$, $i = 1, 2, \dots, m$.

b 通过约束隐式地影响 ω , 所以间隔与 b 和 ω 都有关. 式2.5可以重写为:

$$\max_{\boldsymbol{\omega},b} \frac{\parallel \boldsymbol{\omega} \parallel^2}{2}$$
s.t. $y_i(\boldsymbol{\omega}^T \boldsymbol{x}_i + b) \geqslant 1, \quad i = 1, 2, \dots, m.$ (2.6)

2.2 对偶问题

常琳

. 4 .