Business-IT Alignment Dynamics: A Chaotic Systems Approach

Alessandro Aquilini

$\mathrm{May}\ 8,\ 2025$

Contents

1	Introduction 2					
2	Use	er Requirements	2			
	2.1	Target Audience	2			
	2.2	Getting Started	2			
		2.2.1 Installation	2			
		2.2.2 Running the Notebook	2			
3	Model Description					
	3.1	Core Equation	3			
	3.2	Component Functions	3			
	3.3	Parameter Definitions	3			
	3.4	Interpretation	3			
	3.5	Parameter Analysis	4			
		3.5.1 Environmental Pressure Function	4			
		3.5.2 IT Department Efficacy	4			
		3.5.3 Organizational Adaptability	4			
4	Imp	Implementation				
	4.1	Technological Stack	6			
	4.2	Key lines of code	6			
		4.2.1 Simulating the equation	6			
		4.2.2 Long term behavior	6			
		4.2.3 Phase Portrait Analysis	7			
		4.2.4 Bifurcation Analysis	7			
	4.3	Numerical Considerations	7			
5	Results 8					
	5.1	Interactive Tools	8			
		5.1.1 Time Evolution Simulation	8			
		5.1.2 Phase Portrait Analysis	8			
		5.1.3 Bifurcation Diagram	9			
	5.2	Interesting Cases	10			
		5.2.1 Alignment as a function of a and h	10			
6	Per	Personal Reflection				
\mathbf{A}	Appendix: Complete Python Code					

1 Introduction

2 User Requirements

2.1 Target Audience

This interactive notebook is designed for anyone interested in Business-IT alignment dynamics. It also serves as template for modeling other complex dynamics that use discrete time equations in the form of $x_{t+1} = x_t + \Delta(t, *args)$. The user just needs to apply a few minor customization to the code.

2.2 Getting Started

2.2.1 Installation

1. Clone the repository:

```
git clone https://github.com/Kinshale/pii.git
cd pii
```

2. Install required packages:

```
pip install numpy matplotlib ipywidgets
```

2.2.2 Running the Notebook

Choose your preferred environment:

- Local Jupyter: Launch Jupyter Notebook and open pii.ipynb
- VS Code: Open the notebook with Jupyter extension
- Google Colab:
 - 1. Visit https://colab.research.google.com
 - 2. Select "GitHub" tab and paste the notebook URL
 - 3. Or open the cloned one

For optimal experience:

- Start with default parameters to observe baseline behavior
- Modify one parameter at a time to understand its effect
- Use the bifurcation tool to identify chaotic parameter regions
- Read the markdown cells

3 Model Description

3.1 Core Equation

The alignment dynamics are governed by:

$$x_{t+1} = x_t + A(x_t) - B(x_t)C(x_t)$$
(1)

Where:

- x_t : Percentage of dissatisfied users (misalignment proxy)
- $A(x_t)$: Environmental pressure effect
- $B(x_t)$: IT department efficacy
- $C(x_t)$: Organizational adaptability

3.2 Component Functions

$$A(x_t) = d(1 - x_t) \tag{2}$$

$$B(x_t) = \frac{ax_t(1 - x_t)^g}{1 + ahx_t} \tag{3}$$

$$C(x_t) = \frac{1}{1+z^s}$$
 where $z = \frac{r(1-x_t)}{x_t(1-r)}$ (4)

3.3 Parameter Definitions

Parameter	Description	Range	Default
x_0	Initial misalignment	[0.01, 0.99]	0.3
d	Environmental dynamicity	[0.01, 5]	0.5
a	IT department efficacy	[0.1, 10]	2
h	IT system rigidity	[0.1, 5]	1
g	IT investment propensity	[0.1, 5]	1
r	Action threshold	[0.01, 0.99]	0.3
s	Organizational flexibility	[1, 10]	3

Table 1: Model Parameters and Ranges

3.4 Interpretation

Let's take a deeper look at our equation:

$$x_{t+1} = x_t + \underbrace{\underline{A(x_t)}}_{\text{Environmental Pressure}} - \underbrace{\underline{B(x_t)C(x_t)}}_{\text{Recovery Mechanism}}$$
 (5)

 x_t – **Alignment** Measures the percentage of dissatisfied users at time t:

- $0 \to \text{Complete satisfaction (perfect alignment)}$
- $1 \rightarrow \text{Utter dissatisfaction (total misalignment)}$
- $A(x_t)$ **Environmental Pressure:** Increases misalignment due to external factors, representing how competitive environments and technological changes increase dissatisfaction.
- $B(x_t) \cdot C(x_t)$ **Recovery Mechanism:** Reduces misalignment through:
 - $B(x_t)$: IT department's effectiveness.
 - $C(x_t)$: Organization's adaptability.

3.5 Parameter Analysis

Full interactive simulation available at: https://www.desmos.com/calculator/gdendm1pfg

3.5.1 Environmental Pressure Function

$$A(x_t) = d(1 - x_t) \tag{6}$$

Forms a line passing through (1,0) with slope -d.

- d (dynamicity): Fast changing industries (e.g., a tech startup) have a competition/innovation that rapidly renders old IT systems obsolete.
- $1 x_t$: As misalignment grows, environmental pressure has less "room" to worsen things.

3.5.2 IT Department Efficacy

$$B(x_t) = \frac{ax_t(1 - x_t)^g}{1 + ahx_t} \tag{7}$$

This looks like a function that peaks at some x_a and then tapers off.

- a (IT efficacy): an higher a can more effectively reduce misalignment.
- x (current misalignment): the more misalignment exists, the more opportunity/pressure there is for IT to act.
- $(1-x_t)^g$ (Diminishing Returns): as satisfaction improves, the IT department's impact diminishes.
 - I haven't understood g.
- $1 + ahx_t$ (Saturation): even if IT is highly capable (a » 1), inflexible systems (h » 1) limit its efficacy.

3.5.3 Organizational Adaptability

$$C(x_t) = \frac{1}{1+z^s}$$
 where $z = \frac{r(1-x_t)}{x_t(1-r)}$ (8)

This is a sigmoid function in disguise. Sigmoids are exploited for modeling "threshold behaviors".

- r (activation threshold): below r, the organization resists to change $(C(x) \to 0)$. But when misalignment crosses a certain threshold adaptability kicks in.
- s (flexibility): higher s make the sigmoid steeper (sharper transition from resistance to adaptation).

Figure 1: Environmental pressure function for varying d values

Figure 2: IT efficacy function showing the effect of parameters $a,\,h,\,{\rm and}\,\,g$

Figure 3: Organizational adaptability function demonstrating threshold behavior

4 Implementation

4.1 Technological Stack

- Python 3.10.12 (managed via Conda)
- Jupyter Notebook for interactive exploration, with markdown explanations attached
- Core dependencies (Python Libraries)
 - NumPy for numerical computations
 - Matplotlib for visualization graphs
 - ipywidgets for parameter sliders

4.2 Key lines of code

4.2.1 Simulating the equation

The equation is hardcoded:

```
def A(x, d):
   return d * (1 - x)
def B(x, a, h, g):
   return (a * x * (1 - x) ** g) / (1 + a * h * x)
def C(x, r, s):
   if x == 0: # Avoid division by zero
       return 0
   z = (r * (1 - x)) / (x * (1 - r))
   return 1 / (1 + z ** s)
def delta(x, d, a, h, g, r, s):
   return A(x, d) - B(x, a, h, g) * C(x, r, s)
def simulate(x0, d, a, h, g, r, s, steps=100):
   x = np.zeros(steps)
   x[0] = x0
   for t in range(steps - 1):
       x[t + 1] = np.clip(x[t] + delta(x[t], d, a, h, g, r, s), 0, 1)
```

4.2.2 Long term behavior

Here is the key logic behing classifing the equation.

```
x = simulate(x0, d, a, h, g, r, s, steps)

last_values = x[-10:]

if np.std(last_values) < 0.001: # Stable state
final_val = np.mean(last_values)
if final_val < 0.1:
    return x, "ALIGNED"
elif final_val > 0.9:
    return x, "MISALIGNED"
else:
    return x, "PARTIAL_ALIGNMENT"
else: # Dynamic state
if len(np.unique(np.round(last_values, 2))) > 3:
    return x, "CHAOTIC"
else:
    return x, "OSCILLATING"
```

4.2.3 Phase Portrait Analysis

The phase space visualization algorithm:

```
def phase_portrait(d, a, h, g, r, s, n_points=200):
    x = np.linspace(0, 1, n_points)
    dx = np.array([delta(xi, d, a, h, g, r, s) for xi in x])

# Arrow placement logic
    arrow_indices = np.linspace(0, len(x)-1, 20, dtype=int)
    norm = Normalize(vmin=0, vmax=np.max(np.abs(dx)))

for xi, dxi in zip(x[arrow_indices], dx[arrow_indices]):
    if dxi > 0:  # Right arrow
        plt.arrow(xi, 0, 0.02, 0, ...)
    elif dxi < 0:  # Left arrow
        plt.arrow(xi, 0, -0.02, 0, ...)

plt.plot(x, dx, 'k-')  # Main curve
    plt.axhline(0, color='black', linestyle=':')  # Zero line</pre>
```

4.2.4 Bifurcation Analysis

The chaotic regime detection algorithm:

```
def bifurcation_analysis(param, p_min, p_max, fixed_params, n_points=500):
   param_values = np.linspace(p_min, p_max, n_points)
    n_transient = 200 # Skip initial transient
   n_samples = 100  # Points to plot per parameter
    for p in param_values:
       params = fixed_params.copy()
       params[param] = p
       x = 0.3 # Initial value
        # Burn-in phase
        for _ in range(n_transient):
            x = np.clip(x + delta(x, **params), 0, 1)
        # Sample stable points
        x_vals = []
        for _ in range(n_samples):
           x = np.clip(x + delta(x, **params), 0, 1)
           x_{vals.append(x)}
        plt.plot([p]*n_samples, x_vals, 'k.', markersize=0.5)
```

4.3 Numerical Considerations

- State clipping ensures $x_t \in [0,1]$ remains meaningful
- All floating-point operations use NumPy's float64 precision
- ullet The bifurcation analysis skips 200 transient iterations to focus on long-term behavior
- $\bullet\,$ Phase portrait arrows are normalized to avoid cluttering

5 Results

5.1 Interactive Tools

The notebook provides three powerful ways to explore alignment dynamics. You can adjust the parameters of the equations through **sliders**. The diagram will update in real-time.

Figure 4: Interactive sliders

5.1.1 Time Evolution Simulation

The time evolution simulation displays how alignment changes over successive iterations. You can also tweak the initial condition (x_0) and the number of iterations.

Figure 5: Time evolution showing chaotic behaviour (d = 0.5, a = 6, h = 0.4, g = 2, r = 0.25, s = 5)

5.1.2 Phase Portrait Analysis

The phase portait examines the system's underlying dynamics through multiple visual cues. Arrow directions indicate whether misalignment tends to increase or decrease at each state point, while a color gradient represents the rate of change intensity.

Note: Stable equilibrium points occur where the curve crosses zero with a negative slope - these represent self-correcting alignment levels.

Figure 6: Phase portrait (d = 0.5, a = 2, h = 1, g = 0.5, r = 0.3, s = 3)

5.1.3 Bifurcation Diagram

Users can select any parameter for the x-axis via a dropdown menu and focus on specific ranges of interest. Adjust the sliders, and you may get the chacteristic period-doubling bifurcations and the emergance of chaotic behaviour.

Pro tip: Set h (IT rigidity) to a low value for observing beatiful patterns.

Figure 7: Shouldn't this be exposed at Louvre? $(d=0.5,\,a=7,\,h=0.3,\,r=0.3,\,s=5.1)$

5.2 Interesting Cases

5.2.1 Alignment as a function of a and h

How variations in parameters a (efficiency) and h (rigidity) affect the long term alignment?

In order to find it out I built a countour line plot, where the output is displayed both as as a color gradient and and as countour lines. From that we can infer that improving efficiency (a \uparrow) while reducing rigidity (h \downarrow) decreases dissatisfaction, but with diminishing marginal returns. This is a pattern consistent with real world IT system behavior.

Figure 8: Shouldn't this be exposed at Louvre? (d = 0.5, a = 7, h = 0.3, r = 0.3, s = 5.1)

6 Personal Reflection

To be written at the end of the project. Some key points: Data Science master degree, I like beatiful graphs, real world application of mathematics, collaborating with a professors, learned a lot (even Latex documents).

References

- [1] Veritasium. (2020, January 29). This Equation Will Change How You See the World.
- [2] Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press.
- [3] Luftman, J. (2003). Assessing IT/business alignment. Information Systems Management, 20(4), 9-15.

A Appendix: Complete Python Code

The full implementation is available at: https://github.com/Kinshale/pii