Productivity and Efficiency Analysis

3) Stochastic frontier analysis (SFA)

a) Parametric approach

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Taxonomy of methods

based on Kuosmanen & Johnson (2010), Operations Research

		Parametric	Nonparametric	
			Local averaging	Axiomatic
		OLS	Kernel regression	Convex regression
		Gauss (1795),	Nadaraya (1964),	Hildreth (1954),
Average curve		Legendre (1805)	Watson (1964)	Hanson and Pledger (1976)
	Deterministic	Parametric programming	Nonparametric	DEA
	(Sign constr.)	Aigner and Chu (1968)	programming	Farrell (1957),
			Post et al. (2002)	Charnes et al. (1978)
	Deterministic	Corrected OLS	Corrected kernel	Corrected CNLS
	(2-stage)	Winsten (1957)	Kneip and Simar (1996)	Kuosmanen and
Frontier		Greene (1980)		Johnson (2010)
	Stochastic	SFA	Semi-nonparametric SFA	StoNED
		Aigner et al. (1977)	Fan, Li and Weersink	Kuosmanen and
		Meeusen and van den	(1996)	Kortelainen (2012)
		Broeck (1977)		

Cobb-Douglas model

$$y_i = A \prod_{s=1}^{S} x_{si}^{\beta_s} \cdot \exp(v_i)$$

$$\ln y_i = \ln A + \sum_{s=1}^{S} \beta_s \ln x_{si} + v_i, \quad i = 1,...,n$$

where

 y_i is output of firm i

 β_s is **output elasticity** of input s

 x_{si} is input s of firm i

 v_i is random noise term of firm i

Cobb and Douglas (1928) A Theory of Production. *American Economic Review* 18, 139-165.

Cobb-Douglas production function: properties

- Coefficients β_s are output elasticities.
- Scale elasticity is equal to $\Sigma \beta_s$
- Under CRS, $\Sigma \beta_s = 1$

• Elasticity of substitution between any two inputs is equal to 1 by construction.

Translog model

$$\ln y_{i} = \alpha + \sum_{s=1}^{S} \beta_{s} \ln x_{si} + 0.5 \sum_{r=s}^{S} \sum_{s=1}^{S} \gamma_{rs} \ln x_{ri} \ln x_{si} + v_{i}$$

where

 y_i is output of firm i

 $\beta_{\rm c}$ are the first-order parameters

 γ_{rs} are the second-order parameters

 x_{si} is input s of firm i

 v_i is random noise term of firm i

Christensen, Jorgenson and Lau (1973) Transcendental logarithmic production frontiers, Review of Economics and Statistics

Deterministic parametric frontier model

$$\ln y_i = \alpha + \sum_{s=1}^{S} \beta_s \ln x_{si} - u_i, \quad i = 1, ..., n$$

where

 y_i is output of firm i

 β_s is **output elasticity** of input s

 x_{si} is input s of firm i

 u_i is inefficiency term of firm i

Aigner and Chu (1968) On estimating the industry production function, *American Economic Review*.

Parametric programming

$$\min \sum_{i=1}^{n} \left(\ln y_i - \alpha - \sum_{s=1}^{S} \beta_s \ln x_{si} \right)^2$$

subject to

$$\ln y_i - \alpha - \sum_{s=1}^{S} \beta_s \ln x_{si} \le 0$$

Quadratic programming problem with linear inequality constraints

Aigner and Chu (1968) On estimating the industry production function, *American Economic Review*.

Corrected OLS

Step 1: Solve the unconstrained least squared problem by OLS:

$$\min \sum_{i=1}^{n} \left(\ln y_i - \alpha - \sum_{s=1}^{S} \beta_s \ln x_{si} \right)^2$$

Step 2: Adjust the intercept to envelop all observations:

$$\hat{\alpha}^{COLS} = \max_{i} \left(\ln y_{i} - \sum_{s=1}^{S} \beta_{s} \ln x_{si} \right)$$

Illustration

Next lesson

3b) Basics of SFA

