Intro to Economic Analysis: Microeconomics EC 201 - Day 17 Slides - Set 1

Connor Wiegand

 $\label{eq:decomposition} \mbox{Department of Economics - University of Oregon}$

22 November 2021

Logistics

- ► Homework 7 due next Monday (Nov 29) at 11:59pm
 - It's a little long, get started early
- ► Last News Assignments posted, due <u>this</u> Wednesday (November 24th) at 11:59pm

 $\,\blacktriangleright\,$ We are considering price-taking firms, often characterized by

- ▶ We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market

- lacktriangle We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market
 - Near-identical products being sold

- ▶ We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market
 - Near-identical products being sold
 - Free entry and exit to the market

- ▶ We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market
 - Near-identical products being sold
 - Free entry and exit to the market
- Because price is taken as given, the firm only needs to worry about where to produce

- ▶ We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market
 - Near-identical products being sold
 - Free entry and exit to the market
- Because price is taken as given, the firm only needs to worry about where to produce
- ► <u>All</u> firms choose to produce another unit so long as MR exceeds MC. This means they will produce up until

$$MR = MC$$

- We are considering price-taking firms, often characterized by
 - Many buyers and sellers in the market
 - Near-identical products being sold
 - Free entry and exit to the market
- Because price is taken as given, the firm only needs to worry about where to produce
- All firms choose to produce another unit so long as MR exceeds MC. This
 means they will produce up until

$$MR = MC$$

Since the perfectly competitive (PC) has no affect on the price, their marginal revenue is always equal to the price:

$$MR = P$$

$$P = MC$$

► Therefore, the PC firm always produces where

$$P = MC$$

▶ Mind you that P is a constant (horizontal line), while MC is a function of Q

$$P = MC$$

- Mind you that P is a constant (horizontal line), while MC is a function of Q
- ► If you like graphics, I made a simple desmos plot here

$$P = MC$$

- Mind you that P is a constant (horizontal line), while MC is a function of Q
- ► If you like graphics, I made a simple desmos plot here
 - P is in black, MC is in red, profit is in green

$$P = MC$$

- Mind you that P is a constant (horizontal line), while MC is a function of Q
- ▶ If you like graphics, I made a simple desmos plot here
 - P is in black, MC is in red, profit is in green
 - Adjusting the price, we see that the Q value where P equals MC is the same Q value that maximizes the profit function (for Q>0)

Optimally Producing PC Firm

▶ How much does the perfectly competitive firm produce?

Output	Р	TR	тс	π	мс	$\Delta \pi$
0	9	0	8	-8	-	_
1	9	9	9	0	1	8
2	9	18	12	6	3	6
3	9	27	17	10	5	4
4	9	36	24	12	7	2
5	9	45	33	12	9	0
6	9	54	44	10	11	-2
7	9	63	57	6	13	-4
8	9	72	72	0	15	-6

Optimally Producing PC Firm

Find where P = MC: the firm makes 5 units for a total profit of \$12

Output	Р	TR	тс	π	мс	$\Delta \pi$	
0	9	0	8	-8	_	_	-
1	9	9	9	0	1	8	
2	9	18	12	6	3	6	-
3	9	27	17	10	5	4	-
4	9	36	24	12	7	2	
5	9	45	33	12	9	0	>
6	9	54	44	10	11	-2	•
7	9	63	57	6	13	-4	•
8	9	72	72	0	15	-6	-

Optimally Producing PC Firm

Find where P = MC: the firm makes 5 units for a total profit of \$12

Output	Р	TR	тс	π	мс	$\Delta \pi$	
0	9	0	8	-8	_	_	•
1	9	9	9	0	1	8	
2	9	18	12	6	3	6	
3	9	27	17	10	5	4	•
4	9	36	24	12	7	2	
5	9	45	33	12	9	0	>
6	9	54	44	10	11	-2	•
7	9	63	57	6	13	-4	
8	9	72	72	0	15	-6	

► Note the change in profit at the optimum

▶ Recall that profit for the firm is given by $\pi = TR - TC$

Connor Wiegand

- ▶ Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

Connor Wiegand

- ▶ Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

Dividing by Q, we get

$$\pi = (P - ATC) Q$$

- Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

Dividing by Q, we get

$$\pi = (P - ATC) Q$$

ightharpoonup Assuming Q>0 (the firm is producing something), what does this say?

- ▶ Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

ightharpoonup Dividing by Q, we get

$$\pi = (P - ATC) Q$$

- ▶ Assuming Q > 0 (the firm is producing something), what does this say?
 - $P > ATC \implies \pi > 0$

- ▶ Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

ightharpoonup Dividing by Q, we get

$$\pi = (P - ATC) Q$$

- ▶ Assuming Q > 0 (the firm is producing something), what does this say?
 - $P > ATC \implies \pi > 0$
 - $P = ATC \implies \pi = 0$

- ▶ Recall that profit for the firm is given by $\pi = TR TC$
- ▶ Since $TR = P \cdot Q$, we can write this as

$$\pi = PQ - TC$$

ightharpoonup Dividing by Q, we get

$$\pi = (P - ATC) Q$$

- ▶ Assuming Q > 0 (the firm is producing something), what does this say?
 - $P > ATC \implies \pi > 0$
 - $P = ATC \implies \pi = 0$
 - $P < ATC \implies \pi < 0$

Visualizing Profit for a PC Firm

Recall our example diagram

Visualizing Positive Profit for a PC Firm

• Since $\pi = (P - ATC) Q$, profit is given by the following box

In this case,
$$\pi = 8(12 - 8) = $32$$

Visualizing Zero Profit for a PC Firm

▶ In this case, we produce at P = MC, and this induces ATC to equal P, so we get a profit of 0:

Visualizing Negative Profit for a PC Firm

In this case, we produce at P = MC, and this induces ATC to be below P, so we will make negative profit:

Visualizing Negative Profit for a PC Firm

▶ Specifically, we make $\pi = 4(5-8) = -12$

Visualizing Profit for a PC Firm

Note: Based on the shape on MC, we can see that if MC < MR, the firm should increase production. If MC > MR, the firm should decrease production. If MR = MC, the firm should produce at that level

► Suppose I started a restaurant one year ago, with

- Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000

- ▶ Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000
 - \bullet Monthly ingredients costing of \$2,000 and monthly labor costing \$5,000

- ▶ Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000
 - Monthly ingredients costing of \$2,000 and monthly labor costing \$5,000
 - \bullet Fixed cost \$120,000 to start up the business

- ▶ Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000
 - Monthly ingredients costing of \$2,000 and monthly labor costing \$5,000
 - Fixed cost \$120,000 to start up the business
- ▶ How much yearly profit am I making?

- ► Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000
 - Monthly ingredients costing of \$2,000 and monthly labor costing \$5,000
 - Fixed cost \$120,000 to start up the business
- How much yearly profit am I making?
 - $\pi = (12) \, 10k (12) \, 7k 120k = -84k$

- ▶ Suppose I started a restaurant one year ago, with
 - Monthly revenue of \$10,000
 - Monthly ingredients costing of \$2,000 and monthly labor costing \$5,000
 - Fixed cost \$120,000 to start up the business
- How much yearly profit am I making?

•
$$\pi = (12) \, 10k - (12) \, 7k - 120k = -84k$$

► I lost \$84,000 this year! Should I shut down!?

► No

- ► No
 - I am making 10k 7k = \$3k every month, discounting the startup costs of my business

► No

- I am making 10k 7k = \$3k every month, discounting the startup costs of my business
- ullet Therefore, I am making \$36k a year. In less than 4 years, I will have paid off my startup costs and will be making positive profit

Connor Wiegand

Should this PC Firm Shut Down?

▶ This firm is earning negative profit. Should they shut down?

Should this PC Firm Shut Down?

► No!

Should this PC Firm Shut Down?

- ► No!
 - This is the same story that I just told, visually (and with different numbers)

► So when should I shut down?

- ► So when should I shut down?
 - In the short run, I should stay in business as long as I cover my variable costs on average

- So when should I shut down?
 - In the short run, I should stay in business as long as I cover my variable costs on average
 - That is, as long as my <u>average</u> total revenue is greater than or equal to my average variable cost, I shouldn't shut down

- ► So when should I shut down?
 - In the short run, I should stay in business as long as I cover my variable costs on average
 - That is, as long as my average total revenue is greater than or equal to my average variable cost, I shouldn't shut down
 - Note that average revenue is equal to $AR = \frac{TR}{Q} = \frac{P \cdot Q}{Q} = P$

- ► So when should I shut down?
 - In the short run, I should stay in business as long as I cover my variable costs on average
 - That is, as long as my average total revenue is greater than or equal to my average variable cost, I shouldn't shut down
 - Note that average revenue is equal to $AR = \frac{TR}{Q} = \frac{P \cdot Q}{Q} = P$
 - Therefore, I should stay in business so long as the price exceeds AVC

- So when should I shut down?
 - In the short run, I should stay in business as long as I cover my variable costs on average
 - That is, as long as my average total revenue is greater than or equal to my average variable cost, I shouldn't shut down
 - Note that average revenue is equal to $AR = \frac{TR}{Q} = \frac{P \cdot Q}{Q} = P$
 - Therefore, I should stay in business so long as the price exceeds AVC
- Conclusion: in the short run, the firm will shut down as long as

$$P > \min(AVC)$$

where the min (AVC) is the minimum value that AVC attains for Q>0 (i.e., in the positive quadrant)

P and AVC

▶ The book says shutdown when P < AVC

P and AVC

- ▶ The book says shutdown when P < AVC
- ▶ But *P* is a horizontal line, and *AVC* is a parabola:

P and AVC

- ▶ The book says shutdown when P < AVC
- ▶ But *P* is a horizontal line, and *AVC* is a parabola:

▶ There are many places where P > AVC, and many where P < AVC

Precise Shutdown Condition

More precisely, we should shut down when P < min (AVC); i.e., when the P line is completely below AVC

► Should this firm shut down? Are they making profit?

► Should this firm shut down? Are they making profit?

No, they are making positive profit

► Should this firm shut down? Are they making profit?

► Should this firm shut down? Are they making profit?

 No, they are making negative profit but covering their variable costs on average

► Should this firm shut down? Are they making profit?

► Should this firm shut down? Are they making profit?

► Yes/no, they are perfectly breaking even on their variable costs

► Should this firm shut down? Are they making profit?

► Should this firm shut down? Are they making profit?

Yes, they are not covering their variable costs on average

Full Shutdown Picture

► This summarizes the full shutdown picture

▶ This may be worth noting, but is not something I need you to memorize

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when ${\it Q}=0$)

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when Q=0)
- ► Example: suppose

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when Q=0)
- Example: suppose
 - TC is given by $Q^2 + 6Q + 10$

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when Q=0)
- Example: suppose
 - TC is given by $Q^2 + 6Q + 10$
 - MC is given by 2Q + 6

Connor Wiegand

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when Q=0)
- Example: suppose
 - TC is given by $Q^2 + 6Q + 10$
 - MC is given by 2Q + 6
 - AVC is given by Q+6

Connor Wiegand

- ▶ This may be worth noting, but is not something I need you to memorize
 - If TC is quadratic, MC and AVC are linear
 - If AVC and MC are linear, then the firm will never shut down (more precisely, their shutdown condition will happen exactly when Q=0)
- Example: suppose
 - TC is given by $Q^2 + 6Q + 10$
 - MC is given by 2Q + 6
 - AVC is given by Q+6
- Let's graph MC and AVC and see what they look like

Fun Fact, Visualized

▶ The following firm should shut down when $P \le 6$, but at this point, they would already be producing $Q \le 0$ (i.e. Q = 0)

Shutting Down In the Long Run

► Recall: what are fixed costs in the long run?

- ► Recall: what are fixed costs in the long run?
 - There aren't any

- ► Recall: what are fixed costs in the long run?
 - There aren't any
- ▶ In the long run, AVC=ATC, so when should we shut down?

- Recall: what are fixed costs in the long run?
 - There aren't any
- ▶ In the long run, AVC=ATC, so when should we shut down?
 - When $P < \min(ATC)$ (specifically LRATC)

- ► Recall: what are fixed costs in the long run?
 - There aren't any
- ▶ In the long run, AVC=ATC, so when should we shut down?
 - When P < min (ATC) (specifically LRATC)
- ▶ Idea: In the long run, when you are given full flexibility of all factors, you aren't covering your costs on average, you should leave the market

► Here is the picture in the long run:

► Here is the picture in the long run:

Note: the zero profit point is also known as the break-even point

Let's suppose all of the firms in a PC market are making positive profits

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - Economic: it's worth better than your best alternative

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - Economic: it's worth better than your best alternative
- Firms are making positive economic profits and entry into the market is free. What do you think will happen?

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - Economic: it's worth better than your best alternative
- Firms are making positive economic profits and entry into the market is free. What do you think will happen?
 - More firms will enter

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - · Economic: it's worth better than your best alternative
- Firms are making positive economic profits and entry into the market is free. What do you think will happen?
 - More firms will enter
- ▶ What does more firms entering do to market supply? To price?

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - Economic: it's worth better than your best alternative
- Firms are making positive economic profits and entry into the market is free. What do you think will happen?
 - More firms will enter
- ► What does more firms entering do to market supply? To price?
 - ullet Supply shifts right \Longrightarrow price moves down

- Let's suppose all of the firms in a PC market are making positive profits
- Recall: What kind of profits are we talking about?
 - · Economic: it's worth better than your best alternative
- Firms are making positive economic profits and entry into the market is free. What do you think will happen?
 - More firms will enter
- ► What does more firms entering do to market supply? To price?
 - Supply shifts right ⇒ price moves down
- How does a downward movement of price affect a PC firm's profits?

How $P \downarrow$ Affects a PC Firm's Profits

► A downward movement in price decreases a PC firm's profits:

 Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits

- ▶ Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:

- Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall

- Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall
- What happens if profits become negative?

- Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall
- What happens if profits become negative?
 - In the short run, firms will stay in business or shut down, depending on whether price is above or below min (AVC)

- Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall
- What happens if profits become negative?
 - In the short run, firms will stay in business or shut down, depending on whether price is above or below min (AVC)
 - In the long run profits being negative means you leave the market entirely

- ▶ Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall
- What happens if profits become negative?
 - In the short run, firms will stay in business or shut down, depending on whether price is above or below min (AVC)
 - In the long run profits being negative means you leave the market entirely
 - So, over time, the opposite happens:

- Let's suppose all of the firms in a PC market are <u>still</u> making positive economic profits
 - Rinse and repeat:
 - \circ More firms enter \Longrightarrow Price is driven down \Longrightarrow profits fall
- What happens if profits become negative?
 - In the short run, firms will stay in business or shut down, depending on whether price is above or below min (AVC)
 - In the long run profits being negative means you leave the market entirely
 - So, over time, the opposite happens:
 - \circ Firms leave the market \Longrightarrow supply shifts left \Longrightarrow price moves down \Longrightarrow profits rise

Where do you think we end up?

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?
 - Remember: economic profit

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?
 - Remember: economic profit
 - This means that in the long run, the firm is not better or worse off doing anything else

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?
 - · Remember: economic profit
 - This means that in the long run, the firm is not better or worse off doing anything else
- Summary

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?
 - · Remember: economic profit
 - This means that in the long run, the firm is not better or worse off doing anything else

Summary

 In the short run, firms can make positive or negative profits, and may stay in the market with negative profits if they are covering their variable costs

- ▶ Where do you think we end up?
- Result: in the long run, economic profit for perfectly competitive markets is <u>zero</u>
- ► This makes a lot of students uncomfortable: why would a firm stay in business if their long run profits are zero?
 - Remember: economic profit
 - This means that in the long run, the firm is not better or worse off doing anything else

Summary

- In the short run, firms can make positive or negative profits, and may stay
 in the market with negative profits if they are covering their variable costs
- In the long run, firms in a PC market make zero profit: positive SR profits cause more firms to enter, driving down the price; negative profits eventually (in the LR) cause firms to leave, driving up the price