Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2018-2019

Prova scritta - 5 settembre 2019

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	7
							SI	NO

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

1. (15 punti)

Definire un'espressione regolare E che denoti il linguaggio L(A) riconosciuto dall'automa finito deterministico $A = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1\}$, $\Sigma = \{a, b\}$, $F = \{q_0\}$ e δ è descritta dalla tabella riportata di seguito (cioè definire un'espressione regolare E tale che L(E) = L(A)).

	a	b
q_0	q_0	q_1
q_1	q_0	q_1

2. (15 punti)

Si consideri l'automa finito non deterministico $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{a, b, c, d, g\}$, $F = \{q_2\}$ e la cui funzione di transizione δ è definita dalla tabella seguente

	a	b	c	d	g	ϵ
$\overline{q_0}$	Ø	Ø	Ø	Ø	Ø	$\{q_1\}$
q_1	Ø	Ø	Ø	Ø	$\{q_4\}$	$\{q_2\}$
q_2	Ø	Ø	Ø	Ø	Ø	Ø
q_3	$\{q_0\}$	$\{q_4\}$	Ø	Ø	Ø	Ø
q_4	Ø	Ø	$\{q_3\}$	$\{q_1\}$	Ø	$ \{q_0\} $

Disegnare il diagramma di stato di \mathcal{A} ed elencare tutte le stringhe di lunghezza minore o uguale a due accettate da \mathcal{A} .

3. (15 punti)

Fornire una macchina di Turing deterministica M a singolo nastro il cui linguaggio riconosciuto L(M) sia

$$L(M) = \{bxaba \mid x \in \{a, b\}^*\}$$

È possibile utilizzare il diagramma di stati per descrivere la funzione di transizione di M.

Prova scritta 2

4. (15 punti)

(a) Fornire la definizione di macchina di Turing deterministica e di linguaggio riconosciuto da una macchina di Turing deterministica.

(b) Definire la classe dei linguaggi Turing-riconoscibili e quella dei linguaggi decidibili. Descrivere la relazione tra le due classi rispetto all'inclusione. Dare un esempio di operazione sui linguaggi tale che solo una delle due classi è chiusa rispetto a essa. È necessario motivare le risposte, risposte non motivate non saranno valutate.

5. (15 punti)

- (a) Definire la classe di complessità NP.
- (b) Si consideri il seguente problema di decisione:

Dati un insieme A, una collezione B_1, \ldots, B_m di sottoinsiemi di A e un intero positivo k, esiste un sottoinsieme H di A di cardinalità k che interseca ogni B_i ?

Si definisca il linguaggio INTERSECA associato a tale problema e si dimostri che INTERSECA è in NP.

6. (15 punti)

Siano X e Y due linguaggi su un alfabeto Σ . Per ognuna delle affermazioni seguenti dire se essa risulta sicuramente vera oppure sicuramente falsa. Motivare la risposta, risposte non motivate non saranno valutate.

- (a) Se Y è NP-completo e $X \leq_P Y$ allora X è decidibile.
- (b) Se X è NP-completo, $X \leq_P Y$ e $Y \in NP$ allora anche Y è NP-completo.
- (c) Se Y è NP-completo, $X \leq_P Y$ e $X \in NP$ allora anche X è NP-completo.
- (d) $NP \cap Co NP = \emptyset$.
- (e) Se $Y \in NP$ e $X \leq_P Y$ allora $X \notin EXPTIME$

7. Si consideri

$$L = \{xaay \mid x, y \in \{a, b\}^*, |x| = |y|\}$$

Utilizzando il pumping lemma per i linguaggi regolari, dimostrare che L non è regolare.