

A new grouping genetic algorithm for clustering problems

ARIA KHOSH SIRAT

FATEMEH NIKMEHR

MEHRNOOSH MASHAYEKHI ZADEH

WINTER 2017

Introduction

- Clustering is an important subgroup of unsupervised learning techniques consisting in grouping data objects into disjoint groups of clusters.
- Uses include pattern recognition, bio-engineering, image quantization, renewable energy prediction, etc.
- Evolutionary computing algorithms (EAs) have been widely applied to clustering problems due to their capacity to be applied to very different problems with very few changes.

Clustering evaluation

- Validation or evaluation of the resulting clustering allows analyzing the result in terms of objective measures.
- Two groups of evaluation methods
 - Supervised measures :
 - Rand index (R)
 - Jaccardindex(J)
 - Unsupervised measures :
 - Davis-Bouldin Index (DB)
 - Silhouette coefficient(S)

Proposed grouping genetic algorithm

- GGA is a class of evolutionary algorithm especially modified to tackle grouping problems, i.e. problems in which a number of items must be assigned to a set of predefined groups. (by Falkenauer)
- Problem encoding:
 - Separating each individual in the algorithm into two parts : c = [l|g] l1,l2,...,lN|g1,g2,...,gk

example:

132141123213421 | 1234

Fitness Function

- Two different fitness evaluations
 - Davis-Bouldin Index (DB):

$$DB(U) = \frac{1}{k} \sum_{i=1}^{k} \max_{i \neq j} \left\{ \frac{\sum_{x \in C_i} d^2(\mathbf{x}, \boldsymbol{\mu}_i) + \sum_{x \in C_j} d^2(\mathbf{x}, \boldsymbol{\mu}_j)}{d^2(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j)} \right\}$$

• Silhouette coefficient (S):

$$S_j = \frac{a_j - b_j}{\max(a_j, b_j)}, \quad S_j = \sum_{\mathbf{x}_j \in C_j} S_j, \quad S_j = \sum_{\mathbf{x}_j \in C_j} S_j,$$

Selection operator

Rank-based wheel selection mechanism

•
$$f = \frac{2 \cdot R}{\varepsilon \cdot (\varepsilon + 1)}$$

• Static : Probabilities of survival (given by f) do not depend on the generation, but on the position of the individual in the list.

Crossover operator

 The probability of crossover must be high in the first stages of the algorithm, and moderate in the last ones in order to properly explore the search space.

$$P(j) = Pi - \frac{j}{TG} (Pi - Pf)$$

- (b) offspring=[-32----232-3-2-|23]
- (c) offspring=[-321'-2'2'2322'3-22'|231'2']
- (d) offspring=[3 3 2 1' 1' 2' 2' 2 3 2 2' 3 2 2 2' | 2 3 1' 2']
- (e) offspring=[2 2 1 3 3 4 4 1 2 1 4 2 1 1 4 | 1 2 3 4]

Mutation operator

- Mutation operator includes small modifications in each individual of the population with a low probability, in order to explore new regions of the search space and also scape from local optima.
- Two different mutation operators :
 - Mutation by cluster splitting :

Mutation by clusters merging :

$$P(j) = Pi + \frac{j}{TG} (Pf - Pi)$$

Replacement and elitism

- Elitist schema is also applied, the best individual in generation j isautomatically passed onto the population of generation j + 1.
- Best solution encountered so far in the evolution is always kept by the algorithm.
- Other individuals of population is formed by children.

Local search

- Local search procedure tries to find local optimums in a close neighborhood of an individual.
- The implemented local search works over the element section of the individuals.
- For each observation, this operator determines the objective function variation obtained when the observation is assigned to the other clusters in the solution.
- keep the assignment with the largest objective function.
- Time consuming, so small probability.

Experiments and results

Experiments and results

Experiments and results

Experiments and results: Iris Dataset

Our Results

Fitness function	# Clusters	Best Fitness	RI
DB index	3	1.192004	0.87964
S index	3	-0.654043	0.874809

Paper Results

Fitness function	# Clusters	RI
DB index	3	0.8731
S index	3	0.8995

Experiments and results: Wine Dataset

Our Results

Fitness function	# Clusters	Best Fitness	RI
DB index	3	1.6248441	0.72424
S index	3	-0.656109	0.744239

Paper Results

Fitness function	# Clusters	RI
DB index	3	0.7310
S index	3	0.7220

References:

- Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance advantages of grouping genetic algorithms. Engineering Applications of Artificial Intelligence, 18(1), 1-12.
- Mclachlan, G. J., & Basford, K. E. (1988). Mixture models: inference and applications to clustering. New York: Marcel Dekker.
- L.E. Agustı´n-Blasa, S. Salcedo-Sanza,S. Jiménez-Fernándeza, L. Carro-Calvoa, J. Del Serb, J.A. Portilla-Figuerasa (2012). A new grouping genetic algorithm for clustering problems. Expert Systems with Applications, Elsevier