4	4	cathode, an anode and an electrolyte positioned between the cathode and the anode,				
;	5	comprising in combination, the steps of:				
4	6	forming a controlled geometry feedrod having a cross sectional area, comprising				
,	7	at least a first extrusion compound and a second extrusion compound; and				
	8	co-extruding the controlled geometry feedrod through a reduction die at least				
Same?	9	once to create a co-extruded article having a desired reduction in the cross sectional				
	0	area.				
	1					
	2	2. The method according to claim 1 wherein the first extrusion compound comprises				
	3	one of a first ceramic and a metal powder filled thermoplastic, and the second extrusion				
	4	compound comprises one of a second ceramic and a second metal powder filled				
	5	thermoplastic.				
Le	6					
1'	7	3. The method according to claim 1 wherein the electrolyte is formed as part of the				
13	8	controlled geometry feedrod and the cathode and the anode are formed in subsequent				
19	9	steps.				
20	0					
2	1	4. The method according to claim 1 wherein the electrolyte and one of the cathode				
2	2	and the anode are formed as part of the controlled geometry feedrod and the other of				

CLAIMS

A method for preparation of a solid state electrochemical device having a

the cathode and the anode is formed in a subsequent step.

23

1

2

3

1.

What is claimed is:

_
1
t

The method according to claim 1 further comprising adding at least one ancillary
material to the controlled geometry feedrod.

4

5 6. The method of according to claim 5 wherein the ancillary material comprises at

6 least one of:

- 7 a rigidity enhancing material;
- 8 a current collector;
 - an electrical interconnection material to enhance electrical communication of the solid state electrochemical device; and
 - a reforming catalyst.

2

7. The method according to claim 1 further comprising the step of matching rheological behavior of the first and second extrusion compounds with a high shear mixer.

16

17 8. The method according to claim 1 further comprising heating the die as the feedrod is reduced.

19

9. The method according to claim 1 further comprising sintering the co-extruded
article after the controlled geometry feedrod has passed through the reduction die.

1	10.	The method according to claim 1 wherein the first extrusion compound and the			
2	second extrusion compound comprise an extrudable thermoplastic carrier material.				
3					
4	11.	The method according to claim 1 wherein the anode comprises a material with			
5	nicke	I.			
6					
7	12.	The method according to claim 1 wherein the anode comprises a first material			
8	forming an electrochemically active area, and a second material forming a current				
9	collector.				
9					
1	13.	The method according to claim 1 wherein the cathode comprises a conductive			
2	material stable under oxidizing conditions.				
3					
3	14.	The method according to claim 1 further comprising the steps of:			
5		co-extruding a fugitive material as part of the controlled geometry feedrod; and			
16		forming at least one projection in the co-extruded article by removing the fugitive			
17	mate	rial.			
18					
19	15.	The method according to claim 1 wherein the electrolyte comprises an oxygen			
20	ion conducting oxide.				

1	16.	The method of claim 1 wherein the first compound and the second compound			
2	comprise a thermoplastic polymer binder, and the co-extruded article is heated to				
3	remove the polymer binder and form at least the electrolyte.				
4					
5	17.	The method of claim 1 further comprising the steps of:			
6		co-extruding a fugitive material as part of the controlled geometry feedrod; and			
7		forming a series of passageways in the co-extruded article by removing the			
8	fugitive material with heat.				
9					
.0	18.	The method of claim 1 further comprising the step forming the anode with at least			
.1	first and second distinct regions having at least one of a different pore volume, size,				
.2	shape, connectivity, catalyst materials, and electrical conductors.				
3					
.4	19.	The method of claim 1 further comprising the step forming the cathode with at			
.5	least	first and second distinct regions having at least one of a different pore volume,			
16	size,	shape, connectivity, catalyst materials, and electrical conductors.			
17					
18	20.	A method for preparation of a solid state electrochemical device having a			
19	catho	de, and anode and an electrolyte positioned between the cathode and the anode,			
20	comp	rising in combination, the steps of:			
21		forming a feedrod having a cross sectional area, comprising at least a first			
22	extrus	sion compound and a second extrusion compound, wherein the feedrod holds its			

shape upon forming; and

1	co-extruding the feedrod through a reduction die at least once to produce a co-
2	extruded article having a desired reduction in the cross sectional area.
3	
4	21. The method according to claim 20 wherein the solid state electrochemical device
5	is formed in the shape of a tube.
6	
7	22. The method according to claim 20 wherein as the cross sectional area of the
8	feedrod decreases and the feedrod is elongated as it is co-extruded.
9	
0	23. A method for preparation of a solid state electrochemical device having a
.1	cathode, and anode and an electrolyte positioned between the cathode and the anode,
2	comprising in combination, the steps of:
3	forming a feedrod by:
4	molding a fugitive material;
5	molding an anode around the fugitive material;
16	molding an electrolyte around the anode; and
17	molding a cathode around the electrolyte; and
18	co-extruding the feedrod through a reduction die at least once to achieve a
19	desired reduction in the cross sectional area of the feedrod, thereby producing a co-
20	extruded article.
2.1	

- 24. The method according to claim 23 further comprising the step of heating the 1
- 2 feedrod to remove the fugitive, so that the co-extruded article has a tube-shaped
- 3 structure.

- 25. The method according to claim 23 further comprising the steps of:
- forming a series of feedrod sections having ends; and
- forming a manifold around the ends to form a tubular bundle.
 - The method according to claim 25 further comprising the step of enveloping the 26. tubular bundle in a gas permeable material.

The method according to claim 26 wherein the gas permeable material is made 27. from one of a non-electronically conducting ceramic fiber and a non-electronically conducting open cell ceramic foam.

16 28. The method according to claim 23 wherein the cathode and the anode each 17 comprise electron conducting materials and ion conducting materials.

- 19 29. A method for preparation of a solid state electrochemical device having a 20 cathode, and anode and an electrolyte positioned between the cathode and the anode,
- 21 comprising in combination, the steps of:
- 22 forming a feedrod having a cross sectional area, wherein at least one of the 23 cathode and the anode is formed as a powder filled polymer having at least first and

1	second regions,	with the fire	st region	comprising	an active	area and	d the second	regior

- 2 comprising a current collector; and
- 3 co-extruding the controlled through a reduction die at least once to achieve a
- 4 desired reduction in the cross sectional area of the feedrod.

6