Redes Neurais e Deep Learning

REDES NEURAIS CONVOLUCIONAIS PASSO / PREENCHIMENTO / AGRUPAMENTO

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

Camada Convolucional

Um olhar mais atento às dimensões espaciais:

Um olhar mais atento às dimensões espaciais:

Um olhar mais atento às dimensões espaciais:

Um olhar mais atento às dimensões espaciais:

Um olhar mais atento às dimensões espaciais:

Entrada 7×7 (espacialmente) Assumindo um filtro 3×3 com **passo = 1**

⇒ Saída 5×5 (para passo = 1)

Um olhar mais atento às dimensões espaciais:

7

Um olhar mais atento às dimensões espaciais:

7

Um olhar mais atento às dimensões espaciais:

Entrada 7×7 (espacialmente)
Assumindo um filtro 3×3 com passo = 2

⇒ Saída 3×3 (para passo = 2)

Um olhar mais atento às dimensões espaciais:

7

Entrada 7×7 (espacialmente) Assumindo um filtro 3×3 com **passo = 3**

Qual é a saída?

Um olhar mais atento às dimensões espaciais:

Entrada 7×7 (espacialmente)
Assumindo um filtro 3×3 com **passo = 3**

7 Não se encaixa adequadamente!

Não é possível aplicar o filtro 3x3 na entrada 7x7 com o passo 3

Tamanho da saída: (N – F) / passo + 1

Tamanho da saída: (N – F) / passo + 1

p.ex.
$$N = 7$$
, $F = 3$:

Tamanho da saída:

$$(N - F) / passo + 1$$

p.ex.
$$N = 7$$
, $F = 3$:

- passo
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

Tamanho da saída:

$$(N - F) / passo + 1$$

p.ex.
$$N = 7$$
, $F = 3$:

- passo
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

- passo
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

Tamanho da saída:

$$(N - F) / passo + 1$$

p.ex.
$$N = 7$$
, $F = 3$:

- passo
$$1 \Rightarrow (7 - 3)/1 + 1 = 5$$

- passo
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

- passo
$$3 \Rightarrow (7 - 3)/3 + 1 = 2,33 \otimes$$

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Preenchimento (padding) com borda de tamanho 1

Qual é a saída?

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Preenchimento (padding) com borda de tamanho 1

Qual é a saída? ⇒ Saída 7×7

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Preenchimento (padding) com borda de tamanho 1

Qual é a saída? ⇒ Saída 7×7

É comum, camadas convolucionais com passo 1, filtros de tamanho F e preenchimento **pad = (F – 1)/2** zeros (para preservar as dimensões espaciais)

Problema de cálculo nas bordas

Entrada 7×7
Filtro **3×3** aplicado com **passo = 1**

Preenchimento (padding) com borda de tamanho 1

Qual é a saída? ⇒ Saída 7×7

É comum, camadas convolucionais com passo 1, filtros de tamanho F e preenchimento **pad = (F - 1)/2** zeros (para preservar as dimensões espaciais)

```
p.ex. F = 3 \Rightarrow preenchimento com 1 zero

F = 5 \Rightarrow preenchimento com 2 zeros

F = 7 \Rightarrow preenchimento com 3 zeros
```

Lembre-se ...

Lembre-se ...

Por exemplo, uma entrada 32x32 convoluída repetidamente com filtros 5x5 reduz o volume espacialmente! $(32 \rightarrow 28 \rightarrow 24 ...)$ Encolher muito rápido não é bom e não funciona bem!

Preenchimento ajuda a minimizar o efeito da redução rápida de dimensionalidade espacial

Volume de entrada: **32×32×3** 10 filtros 5×5 com passo = 1, preenchimento = 2

Tamanho do volume de saída: ?

Volume de entrada: 32×32×3

10 filtros 5×5 com passo = 1, preenchimento = 2

Tamanho do volume de saída:

$$(32+2\times2-5)/1+1 = 32$$
 espacialmente,

Portanto o volume de saída é 32×32×10

Volume de entrada: **32×32×3** 10 filtros 5×5 com passo = 1, preenchimento = 2

Número de parâmetros nessa camada: ?

Volume de entrada: **32×32×3** 10 filtros 5×5 com passo = 1, preenchimento = 2

Número de parâmetros nessa camada:

Cada filtro possui $5 \times 5 \times 3 + 1 = 76$ params (+1 para o viés)

Como são 10 filtros \Rightarrow 76×10 = **760** params

Camada Convolucional

OBS: Camadas convolucionais 1×1 também fazem sentido!

Camada Convolucional

OBS: Camadas convolucionais 1×1 também fazem sentido!

Vamos supor que o filtro seja um detector de "olhos"

P: Como se pode tornar a detecção mais robusta e independente da localização exata do olho?

- Torna as representações menores e mais gerenciáveis

- Torna as representações menores e mais gerenciáveis
- Opera sobre cada mapa de ativação de forma independente

- Torna as representações menores e mais gerenciáveis
- Opera sobre cada mapa de ativação de forma independente

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

Agrupamento pelo max com filtros 2×2 e passo 2

6

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

6	8

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

6	8
3	

Agrupamento utiliza uma operação para condensar as informações:

- Máximo
- Média
- L²

Exemplo de agrupamento pelo máximo (max pooling)

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Um único mapa

6	8
3	4