Árboles (CARTs), Bagging and Random Forests Machine Learning

Ignacio Sarmiento-Barbieri

Universidad de La Plata

Motivación

Queremos predecir:

$$Price = f(structural \ attributes, amenities, ...)$$
 (1)

Podemos aplicar linear regression,

$$Price = \beta_0 + \beta_1 Habitaciones + \beta_2 DCBD + u$$
 (2)

▶ Aplicar OLS a este problema requiere tomar algunas decisiones.

Motivación

Agenda

- 1 Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

Agenda

- Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

"Recursive binary splitting"

DCBD

Habitaciones

"Recursive binary splitting"

Habitaciones

"Recursive binary splitting"

Habitaciones

Agenda

- 1 Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

¿Cómo construimos un árbol de decisión?

- ▶ Datos: $y_{n \times 1}$ y $X_{n \times k}$
- Definiciones
 - ightharpoonup j es la variable que parte el espacio y s es el punto de partición
 - Defina los siguientes semiplanos

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j > s\}$$
(3)

▶ El problema: usando una "perdida cuadrática" buscar la variable de partición X_j y el punto s de forma tal que:

$$\min_{j,s} \left[\min_{y_{R_1}} \sum_{x_i \in R_1(j,s)} (y - y_{R_1})^2 + \min_{y_{R_2}} \sum_{x_i \in R_2(j,s)} (y - y_{R_2})^2 \right]$$
(4)

¿Cómo construimos un árbol de decisión?

- ▶ Datos: $y_{n \times 1}$ y $X_{n \times k}$
- Definiciones
 - ightharpoonup j es la variable que parte el espacio y s es el punto de partición
 - Defina los siguientes semiplanos

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j > s\}$$
(3)

▶ El problema: usando una "perdida cuadrática" buscar la variable de partición X_j y el punto s de forma tal que:

$$\min_{j,s} \left[\min_{y_{R_1}} \sum_{x_i \in R_1(j,s)} (y - y_{R_1})^2 + \min_{y_{R_2}} \sum_{x_i \in R_2(j,s)} (y - y_{R_2})^2 \right]$$
(4)

¿Cuál es la solución?

¿Cómo construimos un árbol de decisión?

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- 1 Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

Sobreajuste

Sobreajuste. Algunas soluciones

- ► Fijar la profundidad del árbol.
- Fijar la mínima cantidad de datos que están contenidos dentro de cada hoja.
- ▶ Pruning (poda).
 - ightharpoonup Dejar crecer un árbol muy grande T_0
 - ► Luego cortarlo obteniendo sub-árbol (*subtree*)
 - ► Como cortarlo?

- No es posible calcular el error de predicción usando cross-validation para cada sub-árbol posible
- ► Solución: *Cost complexity pruning (cortar las ramas mas débiles)*
 - ightharpoonup Indexamos los arboles con T.
 - Un sub-árbol $T \in T_0$ es un árbol que se obtuvo colapsando los nodos terminales de otro árbol (cortando ramas).
 - ightharpoonup [T] = número de nodos terminales del árbol T

► Cost complexity del árbol *T*

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \alpha[T]$$
 (5)

- ▶ donde $Q_m(T) = \frac{1}{n_m} \sum_{x_i \in R_m} (y_i \hat{y}_m)^2$ para los árboles de regresión
- $ightharpoonup Q_m(T)$ penaliza la heterogeneidad dentro de la regresión y α el número de regiones
- **D** Objetivo: para un dado α , encontrar el pruning óptimo que minimice $C_{\alpha}(T)$

Mecanismo de búsqueda para T_α (pruning óptimo dado α).

Resultado: para cada α hay un sub-árbol único T_{α} que minimiza $C\alpha$ (T).

- lacktriangle Eliminar sucesivamente las ramas que producen un aumento mínimo en $\sum_{m=1}^{[T]} n_m Q_m(T)$
- ► Se colapsa hasta el nodo inicial pero va a través de una sucesión de árboles
- $ightharpoonup T_{\alpha}$ pertenece a esta secuencia. (Breiman et al., 1984)

Algoritmo Completo

- Utilizamos particiones recursivas binarias para hacer crecer el árbol
- 2 Para un dado α , aplicamos *cost complexity pruning* al árbol para obtener la secuencia de los subarboles como α .
- 3 Utilizamos K-fold cross-validation para elegir α .
- f 4 Tenemos entonces una secuencia de subarboles para distintos valores de lpha
- 5 Elegimos el α y el subárbol que tienen el menor error de predicción.

Ejemplo

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

Bagging

- ▶ Problema con CART: pocos robustos.
- Podemos mejorar mucho el rendimiento mediante la agregación
- ▶ Idea: la varianza del promedio es menor que la de una sola predicción.

Bagging

- Bagging:
 - ▶ Obtenga repetidamente muestras aleatorias $(X_i^b, Y_i^b)_{i=1}^N$ de la muestra observada (bootstrap).
 - Para cada muestra, ajuste un árbol de regresión $\hat{f}^b(x)$
 - Promedie las muestras de bootstrap

$$\hat{f}_{bag} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x) \tag{6}$$

Básicamente estamos suavizando las predicciones.

Bagging

) = (2000 + 900)/2 = 1450 f (

) = (1000 + 450)/2 = 725

Agenda

- 1 Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

Random Forests

- ▶ Problema con el bagging: si hay un predictor fuerte, diferentes árboles son muy similares entre sí.
- ▶ Bosques (forests): reduce la correlación entre los árboles en el boostrap.
- ightharpoonup Si hay p predictores, en cada partición use solo m < p predictores, elegidos al azar.
- ightharpoonup Bagging es forests con m=p (usando todo los predictores en cada partición).
- ▶ m es un hiper-parámetro, $m = \sqrt{p}$ es un benchmark

Ejemplo

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- Árboles
 - ¿Qué hacen?
 - ¿Cómo lo hacen?
 - Sobreajuste
- 2 Bagging
 - Random Forests
- 3 Boosting

Boosting: Motivation

- ▶ Problema con CART: varianza alta.
- ▶ Podemos mejorar mucho el rendimiento mediante la agregación
- lacktriangle El boosting toma esta idea pero lo "encara" de una manera diferente ightarrow viene de la computación
- ▶ Va a usar arboles pequeños y a aprender de los errores

Boosting Trees

- ► La idea es aprender de los errores lentamente.
- ► Ajustamos un árbol utilizando los errores del modelo.
- Cada uno de estos árboles puede ser bastante pequeño.
- ightharpoonup Esto permite mejorar lentamente aprendiendo f(.) en áreas donde no funciona bien.
- ▶ OJO: a diferencia de *bagging*, la construcción de cada árbol depende en gran medida de los árboles que ya han crecido.

Boosting Trees: Algoritmo

- 1 Iniciamos fijando $\hat{f}(x) = 0$ y $r_i = y_i$ para todos los i del training set
- 2 Para m = 1, 2, ..., M
 - 1 Ajustamos un árbol \hat{f}^m con d bifurcaciones (d+1 hojas)
 - 2 Actualizamos $\hat{f}(x)$ con una versión "shrunken" del nuevo árbol

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^m(x) \tag{7}$$

3 Actualizamos los residuales

$$r_i \leftarrow r_i - \lambda \hat{f}^m(x) \tag{8}$$

3 El modelo final es

$$\hat{f}_{boost} = \sum_{m=1}^{M} \lambda \hat{f}^m(x) \tag{9}$$

Boosting Trees: Iteraciones

- Los hiperparámetros a fijar son
 - $ightharpoonup \lambda$ la tasa a la que aprende, los valores típicos son 0.1, 0.01 o 0.001
 - El tamaño del árbol. Arboles pocos profundos funcionan bien.
 - ► El número de iteraciones (M) a usar?

Boosting Trees: Iteraciones

- ► Cuantas iteraciones (M) usar?
 - ► Cada iteración generalmente reduce el error de ajuste, de modo que para M lo suficientemente grande este error puede hacerse arbitrariamente pequeño (sesgo se va a cero).
 - Sin embargo, ajustar demasiado bien los datos de entrenamiento puede llevar a overfit (sobreajuste)
 - ightharpoonup Por lo tanto, hay un número óptimo M^* que minimiza el error fuera de muestra
 - ▶ Una forma conveniente de encontrar *M*^{*} con validación cruzada

Example

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/