What is claimed is:

5

10

15

20

- 1. A hydro bushing for radially supporting a motor, the hydro bushing comprising:
 - a sleeve-shaped outer body;

an inner support body spaced radially from said outer body;

a spring body having two legs and being disposed between said outer body and said support body;

a volume-changeable work chamber disposed between said legs of said spring body;

said volume-changeable work chamber being delimited to the outside by said sleeve-shaped outer body;

at least one compensating chamber disposed laterally of said work chamber and having an elastic wall;

a transfer channel interconnecting said work chamber and said compensating chamber;

said chambers and said channel being filled with a low-viscous hydraulic fluid;

said work chamber having an effective cross-sectional area (A_1) and said spring body having a dynamic swell stiffness;

said transfer`channel having a length (L) and a cross-sectional area (A_2) ; and,

said cross-sectional (A_1) , said dynamic swell stiffness, said length (L) and said cross-sectional area (A_2) all being so selected that said hydro bushing has a natural or resonant frequency of approximately 130 Hz.

2. The hydro bushing of claim 1, wherein said compensating chamber is a first compensating chamber on one side of said work chamber and said hydro bushing further comprises a second

- compensating chamber on the other side of said work chamber; and,
 a connecting channel connecting said compensating channels to
 each other.
 - 3. The hydro bushing of claim 1, wherein the ratio of the effective cross-sectional area (A_1) of said work chamber to the cross-sectional area (A_2) of said transfer channel lies in a range of 0.1 to 10.
 - 4. The hydro bushing of claim 1, wherein the ratio $(A_1:A_2)$ of said cross-sectional areas $(A_1$ and $A_2)$ is approximately 2.2.
 - 5. The hydro bushing of claim 1, wherein the ratio of said length (L) of said transfer channel to said cross-sectional area (A_2) of said transfer channel lies in a range of 0.1 to 4.0.
 - 6. The hydro bushing of claim 1, wherein the ratio of said length (L) of said transfer channel to said area (A_2) of said transfer channel is approximately 1.5.
 - 7. The hydro bushing of claim 1, wherein said cross-sectional area (A_1) of said work chamber includes a constriction.
 - 8. The hydro bushing of claim 1, wherein the volume of said work chamber and the volume of said transfer channel define a ratio of 0.1 to 4.0.
 - 9. The hydro bushing of claim 1, wherein the volume ratio of said work chamber and said transfer channel is between 1.0 and 3.0.