1. Voevodsky's connectivity theorem for \mathbb{P}^1 -spectra

The following is from an email from Aravind to me concerning the proof of the connectivity theorem for \mathbb{P}^1 spectra.

Most of the proof appears in Morel's Trieste notes (in the section on the homotopy t-structure for P^1 -spectra). First you prove a connectivity result for P^1 -stable homotopy sheaves by using Morel's S^1 -stable connectivity theorem and studying what happens under G_m loops and G_m -suspension: suspension preserves connectivity, and Morel shows that taking G_m -loops has the effect of making a "contraction". Then, you globalize this.

Our goal is to prove theorem 4.14 of [Voev98], which should be restated in terms of \mathbb{P}^1 -spectra.

Theorem 1.1. Let (X, x) be a pointed smooth scheme over $\operatorname{Spec}(k)$ where k is an infinite field. Let (Y, y) be a pointed simplicial sheaf. Then for any $n < \dim(X)$

$$\mathcal{SH}(k)(S^n \wedge \mathbb{G}_m^m \wedge \Sigma^\infty X, \Sigma^\infty Y) = 0.$$

In particular, if we take $X = S^0$, this theorem says

$$\mathcal{SH}(k)(S^n \wedge \mathbb{G}_m^m \wedge \mathbb{1}, \Sigma^{\infty} Y) = \tilde{\pi}_n(Y)_{-m} = 0$$

whenever n < 0.

We can formulate the theorem by using homotopy sheaves. The theorem says (in Morel's notation) that $\tilde{\pi}_n(\Sigma^{\infty}Y)_m(X)$ vanishes whenever $n < \dim(X)$.

The theorem is equivalent to the vanishing of the homotopy groups $\pi_n(\Sigma^{\infty}Y)_m(X)$ when $n < \dim(X)$. (Is this right?) So certainly by [Mor03, Example 5.2.2] we have $\pi_n(\Sigma^{\infty}Y)_m = 0$ as a sheaf whenever n < 0. How to show $\pi_n(\Sigma^{\infty}Y)_m(X) = 0$ when $0 \le n < \dim X$?

2. Assumptions from previous lectures

2.1. Facts about Nisnevich topology.

Proposition 2.1. [Mor04, 2.4.1] Let M be a sheaf of abelian groups on Sm/k, and let $X \in \text{Sm}/k$ with Krull dimension d. Then whenever n > d, $H_{Nis}^n(X; M) = 0$.

Proposition 2.2. [Mor04, 2.4.1] For any $X \in \text{Sm}/k$, and for any $x \in X(k)$, there is an isomorphism of pointed sheaves of sets in the Nisnevich topology

$$X/(X - \{x\}) \cong \mathbb{A}^n/(\mathbb{A}^n - \{0\}).$$

2.2. S^1 -spectra.

Definition 2.3. Let $S\mathcal{H}_s^{S^1}(k)$ denote the homotopy category associated to the projective model structure on Nisnevich sheaves of simplicial S^1 -spectra on Sm/k. (Is this the same as localizing the collection of S^1 spectra of spaces equipped with the proj. model str?)

Definition 2.4. Let $\mathcal{SH}^{S^1}(k)$ denote the localization of the model category associated to $\mathcal{SH}_s^{S^1}(k)$ at the collection of maps $E \wedge \mathbb{A}^1 \to E$.

Remark 1. Advantages to using alternate model category structures? E.g., use presheaves instead of sheaves? Use Hovey's method of stabilizing wrt Quillen functor $X \land -$?

Definition 2.5. An S^1 -spectrum E is said to be n-connected if for any $m \leq n$, the homotopy sheaves $\pi_m(E)$ are trivial.

Definition 2.6. Let \mathfrak{C} be a triangulated category. A *t*-structure on \mathfrak{C} is a pair of full subcategories $(\mathfrak{C}_{\geq 0}, \mathfrak{C}_{\leq 0})$ which satisfies

- (1) $(\forall X \in \mathfrak{C}_{>0})(\forall Y \in \mathfrak{C}_{<0})(\operatorname{Hom}_{\mathfrak{C}}(X, Y[-1]) = 0$
- (2) $\mathfrak{C}_{\geq 0}[1] \subseteq \mathfrak{C}_{\geq 0}$ and $\mathfrak{C}_{\leq 0}[-1] \subseteq \mathfrak{C}_{\leq 0}$
- (3) for any $X \in \mathfrak{C}$ there exists a distinguished triangle

$$Y \to X \to Z \to Y[1]$$

for which $Y \in \mathfrak{C}_{\geq 0}, Z \in \mathfrak{C}_{\leq 0}[-1]..$

The heart of a t-structure is the full subcategory given by $\mathfrak{C}_{\geq 0} \cap \mathfrak{C}_{\leq 0}$.

Definition 2.7 (t-structure on $\mathcal{SH}_s^{S^1}(k)$). Define $\mathcal{SH}_s^{S^1}(k)_{\geq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n < 0.

Define $\mathcal{SH}_s^{S^1}(k)_{\leq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n > 0.

Theorem 2.8. The triple $(\mathcal{SH}_s^{S^1}(k), \mathcal{SH}_s^{S^1}(k)_{\geq 0}, \mathcal{SH}_s^{S^1}(k)_{\leq 0})$ is a t-structure on $\mathcal{SH}_s^{S^1}(k)$.

Proposition 2.9. [Mor03, Lemma4.2.4] The functor $L^{\infty} : \operatorname{Spt}_{s}^{S^{1}}(k) \to \operatorname{Spt}_{s,\mathbb{A}^{1}}^{S^{1}}(k)$ identifies the \mathbb{A}^{1} -localized S^{1} stable homotopy category with the homotopy category of \mathbb{A}^{1} -local S^{1} spectra.

Theorem 2.10 (S^1 stable connectivity theorem). Let $E \in \mathcal{SH}^{S^1}_s(k)$, and suppose that whenever n < 0 the sheaf $\pi_n E = 0$. Then for all n < 0, $\pi_n L_{\mathbb{A}^1} E = 0$.

Theorem 2.11. The pair $(\mathcal{SH}_{\geq 0}^{S^1}(k), \mathcal{SH}_{\leq 0}^{S^1}(k))$ is a *t*-structure on the category $\mathcal{SH}^{S^1}(k)$.

Definition 2.12. Strictly \mathbb{A}^1 invariant sheaf of Abelian groups.

If M is strictly \mathbb{A}^1 invariant sheaf of groups, define the Eilenberg-MacLane spectrum HM associated to it.

Proposition 2.13. HM is \mathbb{A}^1 local iff M is strictly \mathbb{A}^1 invariant.

Proposition 2.14. The heart of the homotopy t structure is equivalent to the category of strictly \mathbb{A}^1 invariant sheaves.

3. Homotopy sheaves of
$$Hom(\mathbb{G}_m, E)$$

Definition 3.1. Contraction of a sheaf of pointed sets G (or abelian groups G). G_{-1}

Theorem 3.2. [Mor03, Lemma 4.3.11] $\pi_n(\underline{Hom}(\mathbb{G}_m, E)) \to \pi_n(E)_{-1}$ is iso.

Lemma 3.3. If M is a strictly \mathbb{A}^1 invariant sheaf of abelian groups, then

$$\underline{Hom}(\mathbb{G}_m, HM) \cong H(M_{-1})$$

Lemma 3.4. When $n \neq 0$,

$$[\Sigma^{\infty} \mathbb{G}_m, HM[n]]_s^{S^1} = 0.$$

The following map is an iso.

(2)
$$[\Sigma^{\infty}\mathbb{G}_m, HM]_{\mathfrak{s}}^{S^1} \to [S^0, H(M_{-1})]_{\mathfrak{s}}^{S^1}$$

References

- [A-1974] Adams, J.F., Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics, (1974).
- [B] Blander, Benjamin, Local Projective Model Structures on Simplicial Presheaves. K-Theory, 24 (2001) 283–301.
- [DHI] Dugger, Dan; Hollander, Sharon; Isaksen, Dan, Hypercovers and simplicial presheaves.
- [DLØRV] Dundas, B.; Levine, M.; Østvær, P.; Röndigs, O.; Voevodsky, V., *Motivic Homotopy Theory*. Springer (2000).
- [Hir] Phillip, Hirschhorn, Model Categories and Their Localization. AMS (2003).
- [H-Mod] Hovey, Mark, Model Categories. online preprint (1991).
- [H-Spt] Hovey, Mark, Spectra and symmetric spectra in general model categories. journal? (2001).
- [J] Jardine, J.F., Simplicial presheaves. Journal of Pure and Applied Algebra, 47 (1987) 35–87.
- [Mor03] Morel, Fabien, An introduction to \mathbb{A}^1 homotopy theory.
- [Mor04] Morel, Fabien, On the motivic π_0 of the sphere spectrum. NATO science series.
- [Mor05] Morel, Fabien, The stable \mathbb{A}^1 connectivity theorems. preprint (2004).
- [Voev98] Voevodsky, Vladimir. A¹-Homotopy Theory. Doc. Math. J., (1998) pp. 579–604.