Convolutional Neural Network

Image Classification

A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

→ cat

Challenges of Recognition

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Slide Credit: Stanford CS231n

Convolutional Neural Network

What We See

Convolutional Neural Network

- 이미지 인식에 가장 널리 사용됨
- 일반적으로 convolution layer, pooling layer, fully-connected layer로 구성
- Parameter(weight) sharing
- Convolution과 pooling layer는 feature를 추출하고 fully-connected layer는 어떤 class에 속하는지 판단하는 역할을 수행

Convolution Filters(Hand Crafted)

Let's Try!

http://setosa.io/ev/image-kernels/

0	-1	0
-1	5	-1
0	-1	0
	sharpen	<u> </u>

Before and After

Object recognition 2006-2012

State of the art object recognition using CNNs

CNN 동작원리

- 이미지를 작은 tile로 나누고, 작은 network를 통해 tile에서 특정 feature를 추출(예: 귀)
- Newtork가 다음 tile로 이동하면 서 같은 방법으로feature를 추출 (동일한 weight 사용)
- 다른 feature(예: 눈)를 추출하는 network를 추가로 만들고 위와 같은 방법으로 tile을 하나씩 network에 적용
- 추출된 모든 feature들을 잘 조 합하여 최종적으로 이미지를 판 단

Convolution Layer

32x32x3 image

Slide Credit: Stanford CS231n

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Slide Credit: Stanford CS231n

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution

- Convolution 연산 : 같은 위치에 있는 숫자끼리 곱한 후 모두 더함
 - 1X1 + 1X0 + 1X1 + 0X0 + 1X1 + 1X0 + 0X1 + 0X0 + 1X1 = 4
- Filter가 옆으로 이동 후 같은 연산 수행
- 옆으로 모두 이동한 이후에는 아래로 이동 후 같은 연산 수행

Input or feature map

Convolution

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Credit: Leonardo's gitbook

Feature Extractor

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

Original image Visualization of the filter on the image

Feature Extractor

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Visualization of the filter on the image

Pixel representation of receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = 0

Convolution (Multi Channel, Many Filters)

Input channel: 3

of filters: 2 Output channel: 2

Convolution (Multi Channel, Many Filters)

Visualization of a Convolution Layer

Options of Convolution

- Stride : filter가 한 번 convolution을 수행 한 후 옆으로(혹은 아래로) 얼마나 이동할 것인가
 - 예) 7x7 input, 3x3 convolution filter with stride 2 → 3x3 output!

Slide Credit: Stanford CS231n

Options of Convolution

Zero Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

Quiz

- 다음의 각 경우에 convolution layer의 output size는?
 - 1. 32x32x3 input, 10 5x5 filters with stride 1, pad o
 - 2. 32x32x3 input, 10 5x5 filters with stride 1, pad 2
 - 3. 32x32x3 input, 10 3x3 filters with stride 2, pad 1

Answer

- 1. 28x28x10
- 2. 32X32X10
- 3. 16x16x10

Input 이 $W_i \times H_i \times C_i$ 이고, $F \times F$ filter 를 K 개 사용하고, stride 는 S, zero padding 은 P 만큼 했을 경우, output feature map size($W_o \times H_o \times C_o$) 는,

$$W_o = \frac{(W_i - F + 2P)}{S} + 1$$

$$H_o = \frac{(H_i - F + 2P)}{S} + 1$$

$$C_o = K$$

tf.nn.conv2d

• Signature:

```
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
```

• Docstring:

```
Computes a 2-D convolution given 4-D 'input' and 'filter' tensors.

Given an input tensor of shape

'[batch, in_height, in_width, in_channels]'

and a filter / kernel tensor of shape

'[filter_height, filter_width, in_channels, out_channels]'
```

ReLU

Pooling Layer

• Max pooling을 많이 사용함

max pool with 2x2 filters and stride 2

6	8
3	4

2x2 Max Pooling with Stride=1

tf.nn.max_pool

• Signature:

tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)

Docstring:

Performs the max pooling on the input.

• Args:

- value: A 4-D `Tensor` with shape `[batch, height, width, channels]` and type `tf.float32`.
- ksize: A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
- strides: A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.
- padding: A string, either ''VALID' or ''SAME'. The padding algorithm.
- data_format: A string. 'NHWC' and 'NCHW' are supported.
- name: Optional name for the operation.

Fully-Connected Layer

CNN의 특징

- Convolution Layer parameter(weight) sharing
- Good for local invariance pooling
- 연산량은 Convolution layer가 대부분을 차지
- Parameter 수는 FC layer가 대부분을 차지

Model	Params (M)	Conv (%)	FC (%)	Ops (M)	Conv (%)	FC (%)
AlexNet	61	3.8	96.2	725	91.9	8.1
VGG-F	99	2.2	97.8	762	87.4	12.6
VGG-M	103	6.3	93.7	1678	94.3	5.7
VGG-S	103	6.3	93.7	2640	96.3	3.7
VGG-16	138	10.6	89.4	15484	99.2	0.8
VGG-19	144	13.9	86.1	19647	99.4	0.6
NIN	7.6	100	0	1168	100.0	0.0
GoogLeNet	6.9	85.1	14.9	1566	99.9	0.1

CNN 사용을 위해 결정할 것들

- Input image size
- Layer 수 (convolution, fully connected 각각)
- Layer별 filter size
- Layer별 filter 수
- Batch size
- Optimizer
- Learning rate
- Regularization method 등등...