ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC VÀ KĨ THUẬT MÁY TÍNH

BÁO CÁO BÀI TẬP CÁ NHÂN KIẾN TRÚC MÁY TÍNH

GVHD: Nguyễn Xuân Minh LỚP L01

MSSV	Họ và Tên
2212497	Cao Vĩnh Phát

Câu 2

Cho danh sách địa chỉ 32-bit truy xuất theo **địa chỉ word** như sau: 5, 164, 45, 4, 251, 90, 173, 164, 91, 44, 186, 252

- a) Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất trên.
- b) Làm lại câu a) với bộ nhớ cache Direct-mapped có 16 block, mỗi block chứa 2 word.
- c) Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các bit tag và dữ liệu.

BÀI LÀM

- a) Bộ nhớ cache Direct-mapped 32 block mỗi block chứa 1 word.
 - Số bit của trường word-offset = $log_2(1) = 0$ bits (vì 1 block chứa 1 word)
 - Số bit của trường index = $log_2(32) = 5$ bits (vì số block bằng 32)
 - Số bit của trường tag = 32-(5+0)-2=25 bits

Word Address	Binary Address	Tag	Index	Hit/Miss
5	000 00101	0	5	Miss
172	101 01100	5	12	Miss
43	001 01011	1	11	Miss
37	001 00101	1	5	Miss
253	111 11101	7	29	Miss
88	010 11000	2	24	Miss
173	101 01101	5	13	Miss
5	000 00101	0	5	Miss
183	101 10111	5	23	Miss
44	001 01100	1	12	Miss
186	101 11010	5	26	Miss
252	111 11100	7	28	Miss

- b) Bộ nhớ cache Direct-mapped 16 block mỗi block chứa 2 word.
 - Số bit của trường word-offset = $log_2(2) = 1$ bits (vì 1 block chứa 2 word)
 - Số bit của trường index = $log_2(16) = 4$ bits (vì số block bằng 16)
 - Số bit của trường tag = 32-(4+1)-2=25 bits

Word Address	Binary Address	Tag	Index	Hit/Miss
5	000 0010 1	0	2	Miss
172	101 0110 0	5	6	Miss
43	001 0101 1	1	5	Miss
37	001 0010 1	1	2	Miss
253	111 1110 1	7	14	Miss
88	010 1100 0	2	12	Miss
173	101 0110 1	5	6	Hit
5	000 0010 1	0	2	Miss
183	101 1011 1	5	11	Miss
44	001 0110 0	1	6	Miss
186	101 1101 0	5	13	Miss
252	111 1110 0	7	14	Hit

c) Xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp.

Trường hợp a) Bộ nhớ cache Direct-mapped 32 block mỗi block chứa 1 word

- Số bit trong 1 block là: bit V + bit Tag + bit Data = 1+25+4*8 = 58 bits
- Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache =32*58=1856 bits

Trường hợp b) Bộ nhớ cache Direct-mapped 16 block mỗi block chứa 2 word

- Số bit trong 1 block là: bit V + bit Tag + bit Data = 1+25+2*4*8 = 90 bits
- Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache =16*90=1440 bits