REPORT ON

DEVELOPMENT OF HIGHER ORDER FINITE ELEMENT.

PRESENTED BY

NAME-BARUN KUMAR
ROLL-23MT0095
M.TECH(DESIGN)
DEPT.-MECHANICAL ENGINEERING
IIT(ISM), DHANBAD

TNDFX

Serial	Topics
no.	
1	INTRODUCTION
2	LITERATURE REVIEW
3	GAPS/PROPOSED RESEARCH
4	EXPERIMENTAL DETAILS/METHODOLOGY/MATHEMATICAL FORMULATION
5	RESULTS/DISCUSSION
6	CONCLUSION/WORK TO BE CARRIED OUT
7	REFERENCES/PROPOSED TIME FRAME

INTRODUCTION:

- The process of dividing the body into an equivalent number of finite elements associated with nodes is called as discretization of an element in finite element analysis.
- Discretization helps out to know the stress and displacement values at a particular point also.

3	6	9	12	—
2	5	8	11	F
1	4	7	10	
				→

Discretization

1 3 3 x

Geometry = Displacem
Node N

Isoparametric element

Geometry < Displacem
Node N

Subparametric element

INTRODUCTION:

 The finite element method (FEM) is a powerful numerical tool used across various fields, from structural engineering to fluid dynamics, for solving complex partial differential equations. While lower-order finite elements have been widely utilized for their simplicity and computational efficiency, higher-order finite elements (HOFE) offer significant advantages in terms of solution accuracy and convergence rates.

$$\begin{split} p &= 1 \quad \phi_i = a_0 + a_1 \xi + a_2 \eta, \\ p &= 2 \quad \phi_i = a_0 + a_1 \xi + a_2 \eta + a_3 \xi^2 + a_4 \xi \eta + a_5 \eta^2, \\ p &= 3 \quad \phi_i = a_0 + a_1 \xi + a_2 \eta + a_3 \xi^2 + a_4 \xi \eta + a_5 \eta^2 + a_6 \xi^3 + a_7 \xi^2 \eta + a_8 \xi \eta^2 + a_9 \eta^3. \end{split}$$

The number of terms in p' degree polynomial: $n_p = \frac{(p+1)(p+2)}{2}$

STATE OF THE ART:

AUTHOR	Program	Year	Element used	FINDINGS
Dang-Bao Tran	MATLAB	2021	9-Noded	In this study,
	Code			shear lag ef
				resulting from
				flexure of beams
				arbitrary
				sections
				homogenous ela
				materials is exan
				using the fi
				element method (F
R w lewis	FORTRAN	2011	CDI_{I}	Comparison of all elemen
				with one problem.
	Dang-Bao Tran	Dang-Bao Tran MATLAB Code	Dang-Bao Tran MATLAB 2021 Code R w lewis FORTRAN 2011	Dang-Bao Tran MATLAB 2021 9-Noded Code R w lewis FORTRAN 2011 CST,

TITLE	AUTHOR	Program	Year	Element used	FINDING
A FIRST COURSE IN THE FINITE ELEMENT METHOD	Daryl L. Logan	fortran	1986	CST, LST, 4-Noded	Systemic development theories,2 d elements
Finite Element Analysis: Theory and Programming	C. S. Krishnamoorthy	Fortran	1987	4-Noded	Emphasis on programming, ation to engg problems
Stiffness Matrices of	Gautam Dasgupta	Mathemat	2006	4-Noded	Analyti
Isoparametric Four-node		ica			1
Finite Elements by Exact		programmi			integra
Analytical Integration		ng			on met
		language			is used
Development of an	K.M. entwistle	MATLAB	2018	8-Noded	Variation
Interactive Finite Element		Code			and energemethods
Solution Module for 2d					
Stress Problem Analysis					
Using Isoparametric					

GAPS AND DOMAIN OF WORK

Automated Mesh Generation for Higher-Order Elements

•Gap: While mesh generation is well-developed for linear elements, creating high-quality meshes for higher-order elements, especially in 3D with curved boundaries, is still problematic.

Scalable and Efficient Solvers

•Gap: The computational cost of higher-order finite element methods is substantial, particularly for large-scale problems.

Adaptive Refinement Techniques

•Gap: Adaptive refinement for higher-order finite elements is less mature compared to its application in lower-order elements.

5. Robustness in Multi-Physics Simulations

•Gap: The application of HOFE in multi-physics and highly nonlinear problems.

6. Numerical Integration and Quadrature Rules

•Gap: Accurate numerical integration for high-order elements, especially for elements with curved boundaries or in 3D, is a challenging task.

Handling Complex Boundary Conditions

- •Gap: Imposing complex boundary conditions such as mixed or non-standard conditions in HOFE is less straightforward than with lower-order elements.
- Parallelization and High-Performance Computing (HPC)
- •Gap: HOFE methods inherently involve more computational data, which can challenge existing parallel computing frameworks.

Application-Specific Methodologies

•Gap: There is limited research focused on optimizing HOFE for specific applications, such as turbulent flow simulation.

METHODOLOGY

2. Strain-displacement relationships:

$$\varepsilon_{x} = \frac{\partial u}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y}$$

$$\varepsilon_{z} = \frac{\partial w}{\partial z}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$

$$\gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}$$

Displacement approximation in terms of shape functions

$$\underline{\mathbf{u}} = \underline{\mathbf{N}} \, \underline{\mathbf{d}}$$

Strain approximation in terms of strain-displacement matrix

$$\underline{\varepsilon} = \underline{\mathbf{B}} \, \underline{\mathbf{d}}$$

Stress approximation

$$\underline{\sigma} = \underline{D}\underline{B}\underline{d}$$

Element stiffness matrix

$$\underline{\underline{k}} = \int_{V^e} \underline{\mathbf{B}}^{\mathrm{T}} \underline{\mathbf{D}} \ \underline{\mathbf{B}} \ \mathrm{dV}$$

Element nodal load vector

$$\underline{\underline{f}} = \underbrace{\int_{V^e} \underline{\underline{N}}^T \underline{X} \ dV}_{\underline{f}_b} + \underbrace{\int_{S_T^e} \underline{\underline{N}}^T \underline{T}_S \ dS}_{\underline{f}_S}$$

The consistent nodal loads are

$$F_{1x} = \int_{-b}^{b} p \ N_1 dy = \int_{-b}^{b} p \ \frac{y(b+y)}{2b^2} dy = \frac{pb}{3}$$

$$F_{2x} = \int_{-b}^{b} p \ N_2 dy = \int_{-b}^{b} p \ \frac{b^2 - y^2}{b^2} dy = \frac{4pb}{3}$$

$$F_{3x} = \int_{-b}^{b} p \ N_3 dy = -\int_{-b}^{b} p \ \frac{y(b-y)}{2b^2} dy = \frac{pb}{3}$$

$$[k] = \frac{tE}{4A(1+v)(1-2v)} \begin{bmatrix} \beta_i & 0 & \gamma_i \\ 0 & \gamma_i & \beta_i \\ \beta_j & 0 & \gamma_j \\ 0 & \gamma_j & \beta_j \\ \beta_m & 0 & \gamma_m \\ 0 & \gamma_m & \beta_m \end{bmatrix}$$

$$\times \begin{bmatrix} 1 - v & v & 0 \\ v & 1 - v & 0 \\ 0 & 0 & \frac{1 - 2v}{2} \end{bmatrix} \begin{bmatrix} \beta_i & 0 & \beta_j & 0 & \beta_m & 0 \\ 0 & \gamma_i & 0 & \gamma_j & 0 & \gamma_m \\ \gamma_i & \beta_i & \gamma_j & \beta_j & \gamma_m & \beta_m \end{bmatrix}$$

Evaluating the stiffness matrix for the elements shown in Figure . The coordinates are in units of inches. Assume plane stress conditions. Let E 30 106 psi, n $\frac{1}{4}$ 0:25, and thickness t $\frac{1}{4}$ 1 in.

$$[k] = t A [B]^{T} [D] [B]$$

$$x_i = 0$$
, $y_i = -1$, $x_j = 2$, $y_j = 0$, $x_m = 0$, $y_m = 1$

$$A = \frac{1}{2} b h = \frac{1}{2} (2)(2) = 2 \text{ in.}^2$$

$$\beta_i = y_i - y_m = 0 - 1 = -1$$

$$\beta_j = y_m - y_i = 1 - (-1) = 2$$

$$\beta_m = y_i - y_j = -1 - 0 = -1$$

$$\gamma_i = x_m - x_i = 0 - 2 = -2$$

$$\gamma_j = x_i - x_m = 0 - 0 = 0$$

$$\gamma_m = x_j - x_i = 2 - 0 = 2$$

$$[B] = \frac{1}{2A} \begin{bmatrix} \beta_i & 0 & \beta_j & 0 & \beta_m & 0 \\ 0 & \gamma_i & 0 & \gamma_j & 0 & \gamma_m \\ \gamma_i & \beta_i & \gamma_j & \beta_j & \gamma_m & \beta_m \end{bmatrix}$$

$$[B] = \frac{1}{2A} \begin{bmatrix} \beta_i & 0 & \beta_j & 0 & \beta_m & 0 \\ 0 & \gamma_i & 0 & \gamma_j & 0 & \gamma_m \\ \gamma_i & \beta_i & \gamma_j & \beta_j & \gamma_m & \beta_m \end{bmatrix}$$

Since it is plane stress
$$[D] = \frac{E}{(1-v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix}$$

So
$$[B]^T[D] = \frac{30 \times 10^6}{4(0.9375)} \begin{bmatrix} -1 & 0 & -2 \\ 0 & -2 & -1 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0.25 & 0 \\ 0.25 & 1 & 0 \\ 0 & 0 & 0.375 \end{bmatrix}$$

So
$$[B]^T[D] = \frac{30 \times 10^6}{4(0.9375)} \begin{bmatrix} -1 & 0 & -2 \\ 0 & -2 & -1 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0.25 & 0 \\ 0.25 & 1 & 0 \\ 0 & 0 & 0.375 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & -0.25 & -0.75 \\ -0.5 & -2 & -0.375 \\ 2 & 0.5 & 0 \\ 0 & 0 & 0.75 \\ -1 & -0.25 & 0.75 \\ 0.5 & -2 & 0.375 \end{bmatrix} \underbrace{\frac{30 \times 10^6}{4(0.9375)}}_{30 \times 10^6}$$

$$[k] = 4.6$$

-0.375

$$[k] = t A[B]^T [D] [B]$$

$$\Rightarrow [k] = (1 \text{ in.})(2) \frac{30 \times 10^6}{4(0.9375)} \begin{bmatrix} -1 & -0.25 & -0.75 \\ -0.5 & -2 & -0.375 \\ 2 & 0.5 & 0 \\ 0 & 0 & 0.75 \\ -1 & -0.25 & 0.75 \\ 0.5 & 2 & -0.375 \end{bmatrix}$$

$$\frac{1}{4} \begin{bmatrix}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{bmatrix}$$

$$[k] = 4.0 \times 10^{6}$$

$$\begin{bmatrix} 2.5 & 1.25 & -2 & -1.5 & -0.5 & 0.25 \\ 1.25 & 4.375 & -1 & -0.75 & -0.25 & -3.625 \\ -2 & -1 & 4 & 0 & -2 & 1 \\ -1.5 & -0.75 & 0 & 1.5 & 1.5 & -0.75 \\ -0.5 & -0.25 & -2 & 1.5 & 2.5 & -1.25 \\ 0.25 & -3.625 & 1 & -0.75 & -1.25 & 4.375 \end{bmatrix}$$

Evaluating the shape functions for the linear-strain triangle shown. Then evaluate theB matrix. Units are millimeters

$$u_1 = u(0, 0) = a_1$$
 (1)

$$u_2 = u(60, 0) = a_1 + 60 \ a_2 + 3600 \ a_4$$
 (2)

$$u_3 = u(60, 60) = a_1 + 60 \ a_2 + 60 \ a_3 + 3600 \ a_4 + 3600 \ a_5 + 3600 \ a_6$$
 (3)

$$u_4 = u(60, 30) = a_1 + 60 \ a_2 + 30 \ a_3 + 3600 \ a_4 + 1800 \ a_5 + 800 \ a_6$$
 (4)

$$u_5 = u(30, 30) = a_1 + 30 \ a_2 + 30 \ a_3 + 900 \ a_4 + 900 \ a_5 + 900 \ a_6$$
 (5)

$$u_6 = u(30, 0) = a_1 + 30 \ a_2 + 900 \ a_4$$
 (6)

By (2) – 2 (6)
$$\Rightarrow a_4 = \frac{u_2 - 2u_6 + u_1}{1800}$$

By - (2) + 4 (6)
$$\Rightarrow a_2 = \frac{4u_6 - u_2 + 3u_1}{60}$$

By 2(4) – (3)
$$\Rightarrow a_6 = \frac{u_2 + u_3 - 2u_4}{1800}$$

$$(4) - (5) \Rightarrow a_5 = \frac{-u_2 + u_4 - u_5 + u_6}{900}$$

$$(4) \Rightarrow a_3 = \frac{u_2 - u_3 + 4u_5 - 4u_6}{60}$$

By (1)
$$\Rightarrow$$
 $a_1 = u_1$

Can verify by substituting all a's into Equation (3)

$$\therefore u = u_1 + \left(\frac{4u_6 - u_2 + 3u_1}{60}\right) x + \left(\frac{u_2 - u_3 + 4u_5 - 4u_6}{60}\right) y$$

$$+ \left(\frac{u_2 - 2u_6 + u_1}{1800}\right) x^2 + \left(\frac{-u_2 + u_4 - u_5 + u_6}{900}\right) xy$$

$$+ \left(\frac{u_2 + u_3 - 2u_4}{1800}\right) y^2$$

.. Shape functions are

$$N_{1} = 1 - \frac{3x}{60} + \frac{x^{2}}{1800} \text{ (From all } u_{1} \text{ coefficient)}$$

$$N_{2} = \frac{-x}{60} + \frac{y}{60} + \frac{x^{2}}{1800} - \frac{xy}{900} + \frac{y^{2}}{1800}$$

$$N_{3} = \frac{-y}{60} + \frac{y^{2}}{1800}$$

$$N_{4} = \frac{xy}{900} - \frac{2y^{2}}{1800}$$

$$N_{5} = \frac{4y}{60} - \frac{xy}{900}$$

$$N_{6} = \frac{4x}{60} - \frac{4y}{60} - \frac{2x^{2}}{1800} + \frac{xy}{900}$$

$$2A = 2\left(\frac{1}{2}\right) (60) (60) = 3600$$

$$\beta_1 = 2A\left(\frac{\partial N_1}{\partial x}\right) = 3600\left(-\frac{3}{60} + \frac{2x}{1800}\right) = -180 + 4x$$

$$\beta_2 = 3600\left[-\frac{1}{60} + \frac{2x}{1800} - \frac{y}{900}\right] = -60 + 4x - 4y$$

$$\beta_3 = 0, \beta_4 = 3600\left(\frac{y}{900}\right) = 4y$$

$$\beta_5 = 3600\left(\frac{-y}{900}\right) = -4y$$

$$\beta_6 = 3600\left[\frac{4}{60} - \frac{4x}{1800} + \frac{y}{900}\right] = 240 - 8x + 4y$$

$$\gamma_1 = 2A\frac{\partial N_1}{\partial y} = 0, \gamma_5 = 3600\left(\frac{4}{60} - \frac{x}{900}\right) = 240 - 4x$$

$$\gamma_2 = 3600\left(\frac{1}{60} - \frac{x}{900} + \frac{2y}{1800}\right) = 60 - 4x + 4y$$

$$\gamma_3 = 3600\left(-\frac{1}{60} + \frac{2y}{1800}\right) = -60 + 4y$$

$$\gamma_4 = 3600\left(\frac{x}{900} - \frac{4y}{1800}\right) = 4x - 8y$$

$$\gamma_6 = 3600\left(\frac{-4}{60} + \frac{x}{900}\right) = -240 + 4x$$

For the linear-strain elements shown in Figure P8–5, determine the strains ε_x , ε_y , and γ_{xy} . Evaluate the stresses σ_x , σ_y , and τ_{xy} at the centroids. The coordinates of the nodes are shown in units of inches. Let $E = 30 \times 10^6$ psi, v = 0.25, and t = 0.25 in. for both elements. Assume plane stress conditions apply. The nodal displacements are given as

$$u_1 = 0.0$$
 $v_1 = 0.0$
 $u_2 = 0.001$ in. $v_2 = 0.002$ in.
 $u_3 = 0.0005$ in. $v_3 = 0.0002$ in.
 $u_4 = 0.0002$ in. $v_4 = 0.0001$ in.
 $u_5 = 0.0$ $v_5 = 0.0001$ in.
 $u_6 = 0.0005$ in. $v_6 = 0.001$ in.

$$h = 6$$
 in.
 $b = 4$ in.
 $2A = 24$ in.²
Centroid at $\left(\frac{4}{3}, 2\right)$

$$\{\mathcal{E}\} = [B] \{d\}$$

$$[B] = \frac{1}{2A} \begin{bmatrix} \beta_1 & 0 & \beta_2 & 0 & \beta_3 & 0 & \beta_4 & 0 & \beta_5 & 0 & \beta_6 & 0 \\ 0 & \gamma_1 & 0 & \gamma_2 & 0 & \gamma_3 & 0 & \gamma_4 & 0 & \gamma_5 & 0 & \gamma_6 \\ \gamma_1 & \beta_1 & \gamma_2 & \beta_2 & \gamma_3 & \beta_3 & \gamma_4 & \beta_4 & \gamma_5 & \beta_5 & \gamma_6 & \beta_6 \end{bmatrix}$$

$$\beta_1 = -3h + \frac{4hx}{6} + 4y = 6x + 4y - 18$$

$$\beta_2 = -h + \frac{4hx}{6} = 6x - 6, \ \beta_3 = 0$$

$$\beta_4 = 4y, \ \beta_5 = -4y$$

$$\beta_6 = 4h - \frac{8hx}{6} - 4y = -12x - 4y + 24$$

$$\gamma_1 = -3b + 4x + \frac{4by}{h} = 4x + \frac{8}{3}y - 12$$

$$\gamma_2 = 0$$

$$\gamma_3 = -b + \frac{4by}{h} = \frac{8}{3}y - 4$$

 $\gamma_4 = 4x$

$$\gamma_{5} = 4b - 4x - \frac{8by}{h} = -4x - \frac{16}{3} y + 16$$

$$\gamma_{6} = -4x$$

$$\therefore 2A \varepsilon_{x} = \beta_{2} u_{2} + \beta_{4} u_{4} + \beta_{6} u_{6}$$

$$= 0.001 (6x - 6) + 0.0002 (4y) + 0.0005 (-12x - 4y + 24)$$

$$2A \varepsilon_{x} = -0.0012y + 0.006$$

$$\therefore \varepsilon_{x} = -5 \times 10^{-5} y + 2.5 \times 10^{-4}$$

$$2A \varepsilon_{y} = \gamma_{3} v_{3} + \gamma_{4} v_{4} + \gamma_{5} v_{5} + \gamma_{6} v_{6}$$

$$= 0.0002 \left(\frac{8}{3} y - 4\right) + 0.0001 (4x) + 0.0001 \left(-4x - \frac{16}{3}y + 16\right) + 0.001 (-4x)$$

$$2A \varepsilon_{y} = -0.004x + 0.0008$$

$$\therefore \varepsilon_{y} = -1.67 \times 10^{-4}x + 3.33 \times 10^{-5}$$

$$2A \gamma_{xy} = 0.002 (6x - 6) + 0.0005 \left(\frac{8}{3} y - 4\right) + 0.0002 (4x) + 0.0001 (4y)$$

$$+ 0.0001 (-4y) + 0.0005 (-4x) + 0.001 (-12x - 4y + 24)$$

$$2A \gamma_{xy} = -0.0012x - 0.00267y + 0.01$$

 $\gamma_{vv} = -5 \times 10^{-5} x - 1.11 \times 10^{-4} v + 4.167 \times 10^{-4}$

Evaluate stresses at centroid

$$\{\sigma\} = [D] \{\varepsilon\}$$

$$\{\varepsilon\} \begin{vmatrix} 0.00015 \\ -1.89 \times 10^{-4} \\ 0.000128 \end{vmatrix}$$

$$\{\sigma\} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \begin{cases} 1.5 \times 10^{-4} \\ -1.89 \times 10^{-4} \\ 1.28 \times 10^{-4} \end{cases}$$

$$\{\sigma\} = \begin{cases} 3288 \\ -4848 \\ 1536 \end{cases} \text{ psi}$$

$$I = \int_{0}^{1} \int_{0}^{1-t} f(s,t) dsdt \approx \sum_{i=1}^{m} w_i f(s_i,t_i)$$

where w_i = weight and (s_i, t_i) = coordinates at the integration point and m is the total number of points.

- n = number of Gauss points in the t direction
- w_i and w_i = Gauss weights in s and t directions
- f(s_i,t_i) = value of the integrand at the point (s_i,t_i)
- The total number of gauss points = m x n

Evaluate $I = \int_{1}^{1} (8s^7 + 7t^6) dsdt$ using Gauss quadrature.

(i) Using 1 x 1 formula:

$$f(0,0) = 0$$
 $1 = 0$

(ii) Using 2 x 2 formula

$$f(s,t) = 8s^7 + 7t^6$$

The calculations are summarized in the following table

Point	Sį	t _j	$f(s_i,t_j)$	Wį	wj	$W_i W_j f(s_i,t_j)$
1	0.57735	-0.57735	0.43032	1	1	0.43032
2	0.57735	0.57735	0.43032	1	1	0.43032
3	-0.57735	0.57735	0.088192	1	1	0.088192
4	-0.57735	-0.57735	0.088192	1	1	0.088192
	Sum					1.03703

Evaluate $\iint_A N_1^2 N_3 dsdt$ over of a quadratic triangular element shown in figure below. $(0,1) \frac{3}{4}$ $(0,1/2) \frac{5}{4} \frac{(1/2,1/2)}{2} s$

One point integration:

$$I = 1/2 f(1/3, 1/3) = 0.002744$$

Three point integration:

$$I = 1/6 f(1/6, 1/6) + 1/6 f(2/3, 1/6) + 1/6 f(1/6, 2/3)$$
$$= 0.0009145 + 0.0009145 + 0.0009145 = 0.002744$$

Four point integration:

$$I = -9/32 f(1/3, 1/3) + 25/96 f(1/5, 1/5) + 25/96 f(3/5, 1/5) + 25/96 f(1/5, 3/5)$$

$$= -0.001543 + 0.0006 + 0.0018 + 0.0018 = 0.002657$$

It can easily be verified that the exact integral = 0.001587

MAIN FLOW CHART ALGORITHM:

(0.5773.0.577

RESULT DISCUSSION OUTPUT


```
For Element: 1
00
10
11
01
Young's Modulus =2.1e+011
Poisson's ratio =0.28
D matrix is:
2.27865e+011 6.38021e+010
                               0
6.38021e+010 2.27865e+011
0 0 8.20312e+010
Nodes of element: 1
X Co-ordinates for 4 Nodes of element is:1
 0
 100
 100
 0
Transpose of X is Xt
 0 100 100 0
Y Co-ordinate for 4 Nodes of element is:1
 0
 0
 50
 50
```

RESULT DISCUSSION


```
lacobian Matrix of element:2
      $.197163
                             -0.197163
                     8.6528375
                                     8.144325
       -8.8528375
                             6.6528375
              -0.144325
                              -0.0528375
 .197163
5.48325e+013
                      2.83449e+813
                                             -1.35988e+813
                                                                    -1.26287e+813
                                                                                           -1.44882e+013
                                                                                                                  -7.59615e+012
                                                                                                                                          -2.59536e+013
                                                                                                                                                                -8.12887e+812
.83449e+013
                      9.65499e+813
                                             -8.12887e+812
                                                                                           -7.59615e+812
                                                                    1.57659e+813
                                                                                                                  -2.58744e+613
                                                                                                                                          -1.26287e+913
                                                                                                                                                                -8.64415e+813
1.35988e+813
                                             2.44346e+013
                                                                    -7.59615e+812
                      -8.12897e+012
                                                                                           3.64434e+612
                                                                                                                  2.17824e+812
                                                                                                                                          -1.44862e+613
                                                                                                                                                                1.3546e+013
-1.26207e+013
                      1,57659e+013
                                                                    1.43335e+013
                                                                                                                  -4.22511e+012
                                                                                                                                         1.68346e+813
                                             -7.59615e+812
                                                                                           3.38222e+612
                                                                                                                                                                -2.58744e+013
-1.44802e+013
                      -7.59615e+812
                                             3.64434e+812
                                                                    3.38222e+012
                                                                                           3.88853e+812
                                                                                                                  2.03569e+012
                                                                                                                                         6.95528e+012
                                                                                                                                                                2.17824e+812
-7.59615e+812
                      -2.58744e+613
                                             2.17824e+812
                                                                    -4.22511e+012
                                                                                           2.83569e+612
                                                                                                                  6.93486e+812
                                                                                                                                         3.38222e+012
                                                                                                                                                                2.31654e+813
-2.59536e+013
                      -1.26287e+813
                                             -1.44882e+813
                                                                    1.68346e+013
                                                                                           6.95528e+012
                                                                                                                  3.38222e+812
                                                                                                                                         3.34784e+813
                                                                                                                                                                -7.59615e+011
8.12887e+812
                      -8.64415e+613
                                             1.3546e+813
                                                                    -2.58744e+013
                                                                                           2.17824e+612
                                                                                                                  2.31654e+813
                                                                                                                                         -7.59615e+012
                                                                                                                                                                8.91504e+013
      0.0528375
                      9.144325
                                     -0.197163
                      0.0528375
              -0.0528375
                                     8.197163
0.144325
.197163
                     -0.197163
lacobian Matrix of element:2
 .34784e+013
                      7.59515e+912
                                             6.95528e+812
                                                                    -3.38222e+012
                                                                                           -1.44882e+813
                                                                                                                   -1.68346e+013
                                                                                                                                          -2.59536e+013
                                                                                                                                                                1.26287e+813
 .59615e+012
                      8.91504e+813
                                             -2.17824e+812
                                                                    2.31654e+813
                                                                                           -1.3546e+013
                                                                                                                   -2.58744e+813
                                                                                                                                         8.12887e+812
                                                                                                                                                                -8.64415e+813
.95528e+012
                                             3.88853e+012
                                                                    -2.63569e+012
                                                                                                                  -3.38222e+012
                      -2.17824e+812
                                                                                           3.64434e+012
                                                                                                                                         -1.44882e+913
                                                                                                                                                                7.59615e+812
-3.38222e+612
                      2.31654e+013
                                             -2.03569e+012
                                                                    6.93486e+612
                                                                                           -2.17824e+812
                                                                                                                   -4.22511e+012
                                                                                                                                         7.59615e+812
                                                                                                                                                                -2.58744e+813
-1.44892e+013
                      -1,3546e+013
                                             3.64434e+812
                                                                    -2.17824e+812
                                                                                           2.44346e+613
                                                                                                                  7.59615e+812
                                                                                                                                         -1.35988e+813
                                                                                                                                                                8.12887e+012
1.68346e+913
                      -2.58744e+813
                                             -3.38222e+012
                                                                    -4.22511e+012
                                                                                           7.59615e+812
                                                                                                                  1.43335e+813
                                                                                                                                         1.26287e+813
                                                                                                                                                                1.57659e+813
 2.59536e+013
                      8:12887e+812
                                             -1.44882e+813
                                                                    7.59615e+812
                                                                                           -1.35988e+813
                                                                                                                   1.26207e+013
                                                                                                                                         5.48325e+813
                                                                                                                                                                 -2.83449e+813
.26287e+613
                      -8.64415e+813
                                             7.59615e+812
                                                                    -2.58744e+813
                                                                                           8.12887e+812
                                                                                                                  1.57659e+813
                                                                                                                                          -2.83449e+813
                                                                                                                                                                9.65499e+813
Macobian Matrix of element:2
      0.197163
                      -0.144325
                                     -0.0528375
                      0.197163
-0.197163
                                     8.8528375
.144325
              -0.197163
                     -0.0528375
0.0528375
1258
2.44346e+013
                                             -1.35988e+813
                                                                                                                                                                -2,17824e+612
                      7.59615e+812
                                                                    8.12867e+812
                                                                                           -1.44882e+813
                                                                                                                  -1.3546e+813
                                                                                                                                         3.54434e+812
.59515e+012
                      1.43335e+013
                                             1.26207e+013
                                                                    1.57659e+013
                                                                                           -1.68345e+813
                                                                                                                   -2.58744e+013
                                                                                                                                         -3.38222e+012
                                                                                                                                                                -4.22511e+812
-1.35988e+813
                      1.26287e+813
                                             5.48325e+813
                                                                    -2.83449e+813
                                                                                           -2.59536e+013
                                                                                                                  8.12887e+812
                                                                                                                                         -1.44882e+813
                                                                                                                                                                7.59615e+012
.12887e+812
                      1,57659e+813
                                             -2.83449e+813
                                                                    9.65499e+813
                                                                                                                                                                -2.58744e+813
                                                                                           1.26287e+813
                                                                                                                  -8.64415e+613
                                                                                                                                         7.59615e+012
 1.44882e+813
                      -1.68346e+813
                                             -2.59536e+813
                                                                    1.26287e+813
                                                                                           3.34784e+613
                                                                                                                  7.59615e+812
                                                                                                                                         6.95528e+812
                                                                                                                                                                -3.38222e+812
 1.3546e+013
                      -2.58744e+613
                                             8.12887e+812
                                                                    -8.64415e+813
                                                                                           7.59615e+612
                                                                                                                  8.91584e+813
                                                                                                                                          -2.17824e+612
                                                                                                                                                                1.31654e+613
 .64434e+012
                      -3.38222e+812
                                             -1.44882e+813
                                                                    7.59615e+012
                                                                                           6.95528e+812
                                                                                                                  -2.17824e+812
                                                                                                                                         3.88853e+812
                                                                                                                                                                -2.03569e+012
2.17824e+612
                      -4.22511e+612
                                             7.59615e+012
                                                                    -2.58744e+013
                                                                                           -3.38222e+812
                                                                                                                  2,31654e+813
                                                                                                                                          -2.83569e+812
                                                                                                                                                                6.93486e+812
 acobian Matrix of element:2
                              -0.0528375
                     0.197163
                                     -0.144325
       -0.197163
                             9.197163
0.0528375
             8.194325
                              -0.197163
1258
3.88653e+812
                      2.03569e+012
                                             6.95528e+812
                                                                    2.17824e+812
                                                                                           -1.44882e+813
                                                                                                                   -7.59615e+012
                                                                                                                                         3:64434e+812
                                                                                                                                                                3.38222e+812
1.03569e+012
                      5.93486e+812
                                             3.38222e+812
                                                                    2.31654e+013
                                                                                           -7.59615e+812
                                                                                                                   -2.58744e+813
                                                                                                                                         2.17824e+812
                                                                                                                                                                -4.22511e+017
6.95528e+012
                      3.38222e+012
                                             3.34784e+813
                                                                    -7.59615e+812
                                                                                           -2.59536e+813
                                                                                                                  -1.26287e+013
                                                                                                                                          -1.44882e+813
                                                                                                                                                                1.68345e+813
 .17824e+012
                      2.31654e+813
                                             -7.59615e+812
                                                                    8.91504e+013
                                                                                           -8:12887e+812
                                                                                                                   -8.64415e+813
                                                                                                                                         1.3546e+813
                                                                                                                                                                -2.58744e+813
 1.44882e+813
                      -7.59615e+812
                                             -2.59536e+813
                                                                    -8.12887e+811
                                                                                           5.48325e+813
                                                                                                                  2.83449e+813
                                                                                                                                          -1.35988e+913
                                                                                                                                                                -1.26287e+813
                                             -1.26207e+013
                                                                                                                                                                1.57659e+013
7.59615e+612
                      -2.58744e+613
                                                                    -8.64415e+813
                                                                                           2.83449e+613
                                                                                                                  9.65499e+813
                                                                                                                                          -8.12867e+612
 .64434e+012
                      2.17824e+812
                                             -1.44882e+813
                                                                    1.3546e+013
                                                                                           -1.35988e+813
                                                                                                                   -8.12887e+812
                                                                                                                                         2,44346e+813
                                                                                                                                                                -7.59615e+012
 .38222e+012
                      -4.22511e+812
                                             1.68346e+813
                                                                    -2.58744e+013
                                                                                           -1.26207e+813
                                                                                                                  1.57659e+813
                                                                                                                                          -7.59615e+912
                                                                                                                                                                1.43335e+813
local stiffness matrix: 2 is
.15825e+614
                               -1.32871e+813
                                              -5.6966le+017
                                                              -5.79286e+013 -4.55729e+013
                                                                                            -4.45184e+813
                                                                                                           5.69661e+812
                                              7.78627e+813
 .55729e+013
               2.86968e+814
                              5.69661e+812
                                                              -4.55729e+813
                                                                                            -5,69661e+812
 1.32871e+813
               5.69661e+812
                              1.15826e+814
                                              -4.55729e+813
                                                              -4.46184e+013
                                                                            -5.69661e+012
                                                                                            -5.79206e+013
                                                                                                           4.55729e+813
               7.78627e+913
                                                                             -1.81333e+014
                                                                                            4.55729e+813
                                                                                                           -1.83498e+814
-5.69661e+912
                               -4.55729e+013
                                              2.06968e+814
                                                              5.89661e+812
-5.79286e+813
                                              5.69661e+012
                                                              1,15826e+814
                                                                             4.55729e+813
                                                                                            -1.32871e+813
-4.55729e+013
                -1.63498e+814
                               -5.69661e+012
                                              -1.81333e+814
                                                             4.55729e+813
                                                                            2.86968e+814
                                                                                            5.69661e+812
                                                                                                           7.78627e+813
-4.46184e+913
                -5.69661e+012
                               -5.79206e+013
                                              4.55729e+813
                                                              -1.32871e+013
                                                                                            1.15826e+814
                                                                                                            -4,55729e+813
                                                              -5.69661e+012
                                                                                            -4.55729e+013
```

Comparison of Computed and analytical

result

-3.00E-02

■d1x ■d1y ■d4x ■d4y ■d5x ■d5y ■d2x ■d2y

approximation made during the calculations.

CONCLUSION

Advantages over Linear Elements:

- •Increased Accuracy: Higher-order finite elements allow for better representation of the solution space, achieving the same level of accuracy as linear elements but with fewer overall elements.
- •Smooth Transitions: Utilizing higher-degree polynomial shape functions helps ensure smoother transitions across adjacent elements.
- •Handling Complex Geometries: These elements are better suited for intricate or curved boundaries and areas where changes in the material properties or forces are non-linear.

Structural Analysis: Higher-order finite elements are particularly valuable in structural analysis, where precision and the ability to model complex stress distributions are crucial.

Electromagnetic Simulations: In electromagnetic field simulations, higher-order finite elements provide significant advantages when dealing with wave propagation and field distribution problems.

CONCLUSION

Figure 8-4 Basic triangular element: (a) four-CST and (b) one-LST

Figure 8–5 Cantilever beam used to compare the CST and LST elements with a 4×16 mesh

conclusion

 HOFE incorporates polynomial basis functions of higher degrees, allowing for more precise approximations with fewer elements compared to linear or low-order methods. This results in more accurate simulations, especially in problems involving complex geometries, wave propagation, or high-gradient fields. Despite their potential, HOFE poses unique challenges such as increased computational costs, handling complex geometries, and ensuring numerical stability.

WORK TO BE CARRIED OUT

1. Optimization of Computational Algorithms:

1. Development and implementation of more efficient solvers specifically designed for higher-order finite element systems to reduce computational costs.

2. Adaptive Mesh Refinement:

1. Incorporating automatic mesh refinement based on error estimations to ensure that higher-order elements are selectively applied where they are most needed.

3. Numerical Integration Improvements

• Investigation into more effective numerical integration schemes that can handle the increased complexity of higher-order elements without compromising accuracy.

4.Application to Multiphysics Problems:

1. Extending the use of higher-order finite elements to multiphysics simulations, where interactions between different physical domains are present (e.g., fluid-structure interaction, thermal-electrical analysis).

5.Error Estimation and Control:

1. Enhancement of error estimation techniques that are capable of quantifying the accuracy of higher-order finite element solution.

6.Software Development and Integration:

1. Further development of user-friendly software packages that support higher-order finite elements and their integration into common finite element analysis frameworks.

References:

- [1] Moore, J.L., Morgan, N.R. and Horstemeyer, M.F., 2019. ELEMENTS: A high-order finite element library in C++. *SoftwareX*, 10, p.100257.
- [2] Logan, D.L., 2016. A first course in the finite element method. Cengage Learning.
- [3] Krishnamoorthy, C.S., 1994. Finite element analysis: theory and programming. Tata McGraw-Hill Education.
- [4] Ergatoudis, I.R.O.N.S., Irons, B.M. and Zienkiewicz, O.C., 1968. Curved, isoparametric, "quadrilateral" elements for finite element analysis. *International journal of solids and structures*, 4(1), pp.31-42.
- [5] Dasgupta, G., 2008. Stiffness matrices of isoparametric four-node finite elements by exact analytical integration. *Journal of Aerospace Engineering*, 21(2), pp.45-50.
- [6] Tran, D.B. and Navrátil, J., 2022. Shear Lag Analysis due to Flexure of Prismatic Beams with Arbitrary Cross-Sections by FEM. *Periodica Polytechnica Civil Engineering*, 66(1), pp.244-255.
- [7] Odunfa, K.M. and Akinmolayan, O.P., Development of an Interactive Finite Element Solution Module for 2d Stress Problem Analysis Using Isoparametric Element.
- [8] Perumal, L. and Mon, D.T.T., 2011. Finite elements for engineering analysis: a brief review. In *Proceedings of the International Conference on Modeling, Simulation and Control, Singapore*.

Project work with Tentative Experimental / Theoretical Framework:

Activities	Tentative	
	workplan	
• Study the finite elements and methods.		
	June – July	
• Formulation of Higher order elements .	August -	
• Implementation of C++ for efficient solution of complex	December	
geometry.		
• Using FEA software to analyse the complex geometry and		
effective, fast and correct solution.	January-	
Validation of the both stress result coming from the FEA	February	
software and the developed C++ program.		
Initialization of thesis writing.	March - April	

THANK

YOU

```
D for plane stress
(3x3) std::vector<std::vector<double>>
computeDMatrix(double E, double nu) {
double coeff = E / (1.0 - nu * nu);
std::vector<std::vector<double>> D(3,
std::vector<double>(3, 0.0));
D[0][0] = 1.0; D[0][1] = nu; D[1][0]
= nu; D[1][1] = 1.0; D[2][2] = (1.0 -
nu) / 2.0; for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) { D[i][j]
*= coeff; } return D; } //
Function to transpose a
matrixstd::vector<std::vector<double>>
transposeMatrix(const
std::vector<std::vector<double>>& mat) {
if(mat.empty()) return {}; int rows =
mat.size(); int cols = mat[0].size();
std::vector<std::vector<double>>
trans(cols, std::vector<double>(rows,
(0.0); for (int i=0; i<rows; i++) {
for(int j=0; j<cols; j++) {
trans[j][i] = mat[i][j]; }
return trans; } // Function to multiply two
matricesstd::vector<std::vector<double>>
multiplyMatrices(const
```