

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

D21H 19/24, 21/40

A1

(11) International Publication Number: WO 96/28610

(43) International Publication Date: 19 September 1996 (19.09.96)

(21) International Application Number: PCT/GB96/00562

(22) International Filing Date: 11 March 1996 (11.03.96)

(30) Priority Data:
9505062.1
9523838.2
13 March 1995 (13.03.95)
GB
22 November 1995 (22.11.95)
GB

(71) Applicant (for all designated States except US): PORTALS LIMITED [GB/GB]; 6 Agar Street, London WC2N 4DE (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOWLAND, Paul [GB/GB]; 71 Springfield Close, Andover, Hampshire SP10 2QR (GB). FOULKES, Jonathan, Paul [GB/GB]; 9 Weyhill Gardens, Weyhill, Andover, Hampshire P11 OQS (GB).

(74) Agent: BOULT WADE TENNANT; 27 Furnival Street, London EC4A 1PQ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SECURITY PAPER

(57) Abstract

The present invention relates to a method for producing security paper which includes a security feature. The method comprises forming paper in a wet state, which paper incorporates on or more security features, applying to the paper a sizing agent, thereafter applying to one or both sides of the sized paper a coating comprising an unpigmented polyurethane. The unpigmented polyurethane may optionally comprise a functional additive provided that the presence of the functional additive does not increase the opacity of the paper by more than 1 %. After the polyurethane has been applied the paper is dried. The coating composition provides a film, when cast on a glass surface, having a König hardness of from 15 to 130 seconds, and also passes the water resistance test as defined by the following steps: a) the total formulation to be used in the coating is cast on a glass plate so as to produce a film with a dry weight of 80 g/m²; b) the film is initially dried at 23 °C. Once it is tack free it is dried for an additional hour at 80 °C; c) the film is weighed before being wetted and tested for tensile strengths, Young's Modulus and is visually checked for any change in its transparency; d) a sample of the film is boiled in water containing 10g/litre Na₂CO₃ for 30 mins; e) the film is then rinsed in cold water and the steps b) to c) are then repeated; wherein when the film is dried and re-weighed the film meets the following criteria: i) the wet tensile strength and Young's Modulus of the boiled film is not less than 90 % of the initial film wet tensile strength and Young's Modulus; ii) the film shows no perceptible loss of transparency; and iii) the dried weight of the film is not less than 98 % of the original weight.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malswi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	, GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	- Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	บด	Uganda
FI	Finland	ML	Mali	us	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vict Nam

10

15

20

25

30

35

SECURITY PAPER

This invention is concerned with paper for security documents, and more particularly to those documents which are subject to considerable amounts of handling such as banknotes and driving licences. is important that such security documents should be durable; in other words they should be resistant to tearing, fold damage and soiling. Moisture and chemicals absorbed by such security documents during handling can lead to physical degradation. It is desirable that the substrate for such security documents is resistant to absorption. It is, of course, a prime requirement for such security documents that the print which is applied to the substrate should adhere well, especially under severe conditions involving mechanical abrasion or accidental laundering.

Security documents of the kind with which this invention is concerned incorporate one or more visible security features to prevent or deter counterfeiting. Included in the security features which may be used are watermarks and security threads present in the paper. Security threads may be disposed entirely within the paper or may appear in so-called windows located between regions where the thread is positioned between the surfaces of the paper for example as present in the Bank of England Series E banknotes. It is normal in security documents for the substrate to be of good quality to enable satisfactory embossing to be achieved, such as embossing produced by the known Intaglio printing and to ensure good wear properties.

Previous proposals to provide paper for security documents which have good soil resistance and

10

. 15

20

25

30

35

durability have involved the use of coating compositions which incorporate a pigment together with a binder such as an elastomeric binder. It is also known generally that various polyurethane compositions can be used on a wide variety of substrates to provide coatings which have a protective effect of one kind or another; amongst such uses, polyurethanes have been employed as a varnish for wood or other substrates. Also, it is know from European Patent EP-B-189945 to use polyurethane compositions as sizings for paper.

In the case where a coating composition involving a pigment is used for the production of security paper, e.g. as in PCT application No.W091/12372, such pigment usually has a benefit in providing microporosity or roughness which enables satisfactory ink keying to be achieved. However, there is a serious disadvantage resulting from the presence of a pigment, namely that a security feature such as a watermark or windowed thread present in the substrate is to some extent obscured.

Pigmented coatings are inherently weak resulting from the presence of the pigment which causes the binder to be less firmly attached to the substrate in specific locations.

Usually, when pigmented coating compositions are used, the coating step takes place after the paper has been produced, and this involves the disadvantage of having to dry the paper before application of the coating composition. The prior specification EP-B-189945 refers to sizing, and it will be noted later that the present invention is concerned with the use of a polyurethane composition applied to security paper after the paper has been sized with a natural or synthetic sizing agent. Furthermore, it is an essential feature of the coating composition of this

10

15

20

25

invention that no pigment is present so that there is no obscuring of any security feature. However, as will be described below, various functional additives may be present in the polyurethane coating provided that the opacity of the paper is not increased by more than 1%.

The present invention has resulted after extensive investigations by the inventors with the object of producing security documents which have enhanced durability and resistance to soiling.

According to the present invention there is provided a method for producing security paper which includes a security feature, which method comprises forming paper in a wet state, which paper incorporates one or more security features, applying to the paper a sizing agent, thereafter applying to one or both sides of the sized paper a coating comprising an unpigmented polyurethane which may optionally comprise a functional additive provided that the presence of the functional additive does not increase the opacity of the paper by more than 1%, thereafter drying the paper, said coating composition being such as to provide a film, when cast on a glass surface, having a König hardness of from 15 to 130 seconds, and also passing the water resistance test as defined by the following steps:

- a) The total formulation to be used in the coating is cast on a glass plate so as to produce a film with a dry weight of 80 g/m^2 .
- 30 b) The film is initially dried at 23°C. Once it is tack free it is dried for an additional hour at 80°C.
 - c) The film is weighed before being wetted and tested for tensile strength, Young's Modulus and

PCT/GB96/00562

- 4 -

is visually checked for any change in its transparency.

- A sample of the film is boiled in water d) containing 10g/litre Na,CO, for 30 mins.
- The film is then rinsed in cold water and the 5 e) steps b) to c) are then repeated. The film is dried and re-weighed.

The tested film is categorised as water resistant if it meets the following criteria:

10

. 15

20

25

30

35

- The wet tensile strength and Youngs Modulus i) of the boiled film is not less than 90% of the initial film wet tensile strength and Young's Modulus.
- ii) The film shows no perceptible loss of transparency.
- iii) The dried weight of the film is not less than 98% of the original weight.

Research has demonstrated that the above test enables satisfactory polyurethane coating to be identified for the purpose of the present invention.

The aqueous polyurethane may be in the form of an aqueous dispersion. The coating may incorporate an extender such as a polyacrylate and hence be in the form of a urethane-acrylic blend; such a blend must provide good water and chemical resistant coatings. Also, the low cost of an extender relative to that of the polyurethane results in the blend being considerably less costly than the polyurethane alone.

The coating may be a polyurethane dispersion with a one component pre-crossed-linked polyurethane or with a one component, blocked polyurethane which has isocyanate groups chemically bound to the polymer chains but which isocyanate groups are regenerated at those elevated temperatures which are generally used

10

15

20

25

30

35

in the final stages of a paper-making process. Furthermore, the coating may be a polyurethane dispersion of a two-component product which can be cross-linked by using multi-functional reagents such as a melamine/formaldehyde precondensate. Cross-linking agents which may be used include polyaziridines. Cross-linking agents enhance the water resistance including laundry resistance of the unpigmented polyurethane coating to provide improved security paper and documents produced therefrom.

A polyurethane composition for use in the method of this invention may include ingredients known to those skilled in the art including catalysts, cosolvents and emulsifying agents or surfactants. Care has to be taken, however, because an emulsifying agent can detract from the performance of the coating under wet or humid conditions. Additionally, other known additives may be used including defoamants, flow additives, thickeners or viscosity modifiers. In general an additive included in the coating composition should be kept to a minimum as important properties such as adhesion to the substrate may be adversely affected.

Whilst the main aspect of the present invention is the provision of beneficial unpigmented coatings in order to provide the advantages described herein, in one aspect of the invention various functional additives may be used in order to provide specific effects which enhance the security of a security document produced from the paper of this invnetion without significantly interfering with the general benefits provided by the unpigmented polyurethane coating. It will be understood by those skilled in the art that pigments are added to coatings, especially to paper coatings to provide colour or to opacify. In contrast the functional security

20

25

30

additives which may be used in accordance with this invention are not pigments but are particulate materials which satisfy the following criteria:

- a) the additive does not increase the opacity of the paper, once the coating is applied by more than 1%. This ensures that the additive has no appreciable effect on the transparency of the coating and hence the general benefits of unpigmented coatings are retained;
- 10 b) the presence of the additive in the polyurethane coating does not cause failure of the tests which identify the polyurethane coating for this invention, namely the Koenig hardness test and the water-resistance test.

A functional additive in accordance with this invention is preferably a fluorescent or an irridescent pigment.

A security functional additive will provide some specific effect to enhance the security or recognisability of a document produced from paper in accordance with this invention and hence constitutes an additional security feature when such additive is present in the polyurethane coating. In general, security functional additives fall into three classes:

- (a) publicly recognisable security features such as iridescent pigments;
- (b) security features which provide higher levels of security and which are detectable with security equipment, such as fluorescent pigment, or magnetic particles; and
- (c) overt security features detectable by use of sophisticated detecting equipment such as may be used by central banks, e.g. phosphorescent pigments which possess unique decay times.
- 35 In general the coat

10

15

20

25

30

35

weight of the polyurethane coating will be between 0.05 and 20 and preferably between 0.5 and 5 g/m^2 .

Preferably the polyurethane coating is applied to the paper immediately after a size bath squeeze roll and before the after-dryer when the paper is still wet with the size. However, the polyurethane may be applied, alternatively, to dry paper after completion of the steps of normal papermaking.

preferably the polyurethane coating is applied to both sides of the paper.

The fibres which are present in the paper are natural or synthetic fibres or a mixture of natural and synthetic fibres.

The polyurethane is preferably of the aliphatic polyester type and is used in a dispersion with the dispersion having a polyurethane content in the range 2% to 70% by weight, and more preferably a polyurethane content in the range 5% to 30% by weight, although an aliphatic polyether type of polyurethane may alternatively be employed in the method of this invention. Also the polyurethane may be aliphatic polycarbonate polyurethane.

preferably the paper used in the method is provided with as a security feature, a watermark or an embedded or windowed thread which incorporates visual or covert security elements.

In order to achieve the prime requirements of this invention, the coating comprising the polyurethane must be substantially transparent as explained herein, and preferably have a 100% modulus of greater than 4.0 mPa. It is desirable that the polyurethane coating has an ultimate tensile strength of greater than 40 mPa, for example from 40 to 80 mPa, as well as having a König hardness of greater than 20 seconds, for example from 20 to 40 seconds.

10

15

20

25

30

35

It is a completely new proposal to use in the manufacture of security paper, such as paper for the production of banknotes, an unpigmented polyurethane coating as described herein. The method of this invention provides security paper with several unexpected and useful properties:

- a. The polyurethane coating, being free from fillers, is transparent; it does not therefore compromise visible security features present in the paper.
- b. By reducing the surface porosity and roughness the coating greatly increases the soil resistance of the paper. This is important to extend the circulation life of a banknote.
- c. In contrast to b), the coating markedly improves the adhesion of print to the paper surface as evidenced by the wet and dry crumple, the wet rub and the laundry tests. This is most surprising as those skilled in the art would expect the use of the polyurethane coating of this invention to lead to poor print adhesion.
- d. Unlike pigmented coatings, the polyurethane coatings herein described do not markedly alter the feel or appearance of the paper. This is important because the unusual visual and tactile properties of banknote paper assist the public in distinguishing counterfeits.
- e. Furthermore, the coating enhances the definition and embossing of intaglio print.
- f. The coating also prevents the uptake of optical brightening agents during accidental laundering. This is an immensely beneficial

10

15

20

25

30

35

and unexpected property as the nonfluorescent nature of banknote paper also
helps in the detection of counterfeits. It
also prevents the fluorescence of optical
brightening agents from obscuring any
deliberate fluorescent security feature
present in a banknote.

g. The coating does not affect the efficiency of the paper making converting or printing processes. In particular it does not block.

These properties resulting from the method of this invention are a consequence of the mechanical and chemical resistance and chemistry of the polyurethane coating in accordance with the water resistance test and the König hardness characteristics as defined previously. Materials failing to meet these two tests generally fail to meet the demanding specification expected of banknote paper.

The invention in another aspect provides a method of producing a security document wherein security paper is produced by a method as described herein and the resulting security paper is thereafter printed to form a security document. The term security document includes a banknote, an identification document, a driving licence and a sheet for a passport.

The following Examples illustrate the invention. In the Examples reference is made to certain standard tests which are now described or defined. Parts are parts by weight.

a) The Dry Crumple Test

A bank note sized sample of printed paper is manually crumpled and flattened 10 times according to a standard technique. The printed sample is then examined and an assessment of ink loss is made.

b) The Wet Crumple Test

As for the dry crumple test but the paper is wetted before each crumple.

5 c) The Sheen Wet Rub Test

A bank note sized sample of printed paper is subjected to 300 rubs applied by an 800g weighted brush driven by the Sheen rub tester. The amount of ink lost during the test is visually assessed.

10

15

20

25

d) The Severe Laundry Test

A banknote sized sample of printed paper is boiled in solution containing 5 parts of a domestic washing powder and 10 parts sodium carbonate for 30 minutes.

The sample is then rinsed under cold water. The amount of ink loss is then assessed visually.

e) The FIRA Soil Test

A sample of the printed paper is placed at one end of a cylinder along with a reference sample placed at the opposite end and 20 felt cubes impregnated with artificial sweat and colloidal graphite. The cylinder is rotated in alternate directions for a period of 30 minutes. The change in reflectance of the printed samples is measured and the relative soil pickup is calculated by comparing the results of the test.

30 Example 1

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres, optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry.

10

15

20

25

30

The paper is then dried, sized, dried a second time and reeled.

A coating formulation is made consisting of:

15 parts: Aliphatic polyester polyurethane
(Witocobond 785TM) supplied by
Baxenden Applied Chemicals
Limited.

85 parts: water

The reeled sized paper is unreeled and the coating is applied to both sides of the paper using a Meyer bar coater and dried thereby giving a paper coating of 2 g/m^2 on both sides.

The coated paper is then finished in the usual way, being calendered and cut.

The coated paper is then printed by both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance test described above and the König Hardness test. The coating is found to have a König Hardness of 100 secs. The coating is also found to have good water resistance.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test, the FIRA soil test and the Sheen wet rub test. When compared to uncoated paper from the same papermaking batch the coated samples yielded the following results for each test:

Wet crumple test: Markedly less ink loss.

Dry crumple test: Noticeably less ink loss.

Severe laundry test:

Almost no observable ink loss compared to over 80% loss in the case of the uncoated paper.

Wet rub test:

Uncoated paper over 50% of a printed area is lost; polyurethane-coated paper, less than 10% of the printed area is lost.

5

10

15

FIRA Soil test:

30% less soil pick-up.

Examination of the laundered samples under UV light shows that the coated samples pick up an imperceptibly small amount of optical brightening agent, unlike the uncoated samples which become markedly fluorescent after the laundry process.

The intaglio print on both the coated and uncoated samples was examined. The uncoated paper shows characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering.

20 Example 2

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres, optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry. The paper is then dried, sized, dried a second time and reeled.

A coating formulation is made consisting of:

30

25

7.5 parts: Aliphatic polyester polyurethane
(Witocobond 785™) supplied by
Baxenden Applied Chemicals
Limited.

PCT/GB96/00562

7.5 parts:

Vinyl Acetate - VeoVa copolymer

(Vinamul 6975™) supplied by

Vinamul Limited.

- 13 -

0.5 parts:

Polyaziridine (CX100™) supplied

by Zeneca Resins BV.

84.5 parts:

5

10

15

20

25

30

35

water

The reeled sized paper is unreeled and the coating is applied to both sides of the paper using a Meyer bar coater and dried thereby giving a paper coating of 2 g/m^2 on both sides.

The coated paper is next calendered and cut in the usual way.

The coated paper is then printed by both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance described above and the König Hardness test. The coating has a König Hardness of 120 secs. The polyurethane coating is found to have good water resistance.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test, the FIRA soil test and the wet rub test. The resulting paper possessed essentially the same properties as those reported for the paper produced by the method of Example 1 with respect to the wet crumple test etc.

Examination of the laundered samples under UV light shows that the coated samples pick up an imperceptibly small amount of optical brightening agent, unlike the uncoated samples that become markedly fluorescent after the laundry process.

The intaglio print on both the coated and uncoated samples is examined. The uncoated paper

shows the characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering.

5 Example 3

10

15

20

30

35

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres, optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry. The paper is then dried, sized, dried a second time and reeled.

A coating formulation is made consisting of:

10.5 parts: Aliphatic polyester polyurethane

(Witocobond 779^{TM}) supplied by

Baxenden Applied Chemicals

Limited.

4.5 parts: Anionic styrene-acrylate copolymer

(Vinamul 7172™) supplied by

Vinamul Limited.

0.5 parts: Polyaziridine (CX100™) supplied

by Zeneca Resins BV.

84.5 parts: water

The reeled sized paper is unreeled and the coating is applied to both sides of the paper using Meyer bar coater and dried thereby giving a paper coating of 2 g/m^2 on both sides.

The coated paper is next calendered and cut in the usual way.

The coated paper is then printed on both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance test described above and the König Hardness test. The coating has a König

10

15

Hardness of 80 secs. The coating is also found to have good water resistance.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test, the FIRA soil test and the Sheen wet rub test. The resulting paper possessed essentially the same properties as those reported for the paper produced by the method of Example 1 with respect to the wet crumple test etc.

Examination of the laundered samples under UV light shows that the coated samples pick up an imperceptibly small amount of optical brightening agent, unlike the uncoated samples that become markedly fluorescent after the laundry process.

The intaglio print on both the coated and uncoated samples is examined. The uncoated paper shows the characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering.

20

Example 4

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres, optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry. The paper is then dried, sized, dried a second time and reeled.

A coating formulation is made consisting of:

30

25

15 parts: Aliphatic polyester-polycarbonate polyurethane (IR140™) supplied by Industrial Copolymers Limited.

0.5 parts: Polyaziridine (CX100™) supplied

by Zeneca Resins BV.

35

10

15

20

25

30

84.5 parts: water

The reeled sized paper is unreeled and the coating is applied to both sides of the paper using a Meyer bar coater and dried thereby giving a paper coating of 2 g/m^2 on both sides.

The coated paper is next calendered and cut in the usual way.

The coated paper is then printed by both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance described above and the König Hardness test. The coating has a König Hardness of 120 secs. The coating is also found to have good water resistance.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test, the FIRA soil test and the Sheen wet rub test. The resulting paper possessed essentially the same properties as those reported for the paper produced by the method of Example 1 with respect to the wet crumple test etc.

Examination of the laundered samples under UV light shows that the coated samples pick up an imperceptibly small amount of optical brightening agent, unlike the uncoated samples that become markedly fluorescent after the laundry process.

The intaglio print on both the coated and uncoated samples is examined. The uncoated paper shows the characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering.

Example 5

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres,

15

20

25

30

35

optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry. The paper is dried and the size solution is applied.

5 A coating formulation is made consisting of:

15 parts: Aliphatic polyester-polycarbonate

polyurethane (IR140™) supplied by

Industrial Copolymers Limited.

0.5 parts: Polyaziridine (CX100™) supplied

by Zeneca Resins BV.

84.5 parts: water

The coating is applied to both sides of the wet sized paper after a size bath squeeze roll using a Meyer bar coater and dried thereby giving a paper coating of 2 g/m^2 on both sides. This procedure provides an economic advantage in that a drying step has been eliminated.

The coated paper is next dried and reeled.

The coated paper is next calendered and cut in the usual way.

The coated paper is next printed on both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance test and the König Hardness test. The coating has a König Hardness of 120 secs. The coating is also found to have good water resistance.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test, the FIRA soil test and the Sheen wet rub test. The resulting paper possessed essentially the same properties as those reported for the paper produced by the method of Example 1 with respect to the wet crumple test etc.

10

15

Examination of the laundered samples under UV light shows that the coated samples pick up an imperceptibly small amount of optical brightening agent, unlike the uncoated samples which become markedly fluorescent after the laundry process.

The intaglio print on both the coated and uncoated samples is examined. The uncoated paper shows the characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering when printed with ink to form a security document such as a banknote.

All of the papers produced by each of Examples 1 to 5 had a water resistant coating as determined by criteria (i), (ii) and (iii) set out above.

Specifically, (i) the wet tensile strength and Young's

Modulus showed no loss; (ii) there was no visible loss of transparency and (iii) there was no change in the weight of the film.

20

For purposes of comparison there is now given an example which shows the typical strength from a coating with inadequate water resistance and mechanical strength.

25

30

Example A

A sheet of paper is produced on a paper machine from an aqueous suspension of cellulose fibres, optionally mixed with synthetic fibres or mineral fillers or other additives used in the paper industry. The paper is dried, sized, dried a second time and reeled.

A coating formulation is made consisting of:

15 parts:

Aliphatic polyester polyurethane (Witocobond 290HTM) supplied by Baxenden Applied Chemicals Limited.

84.5 parts:

water

5

15

20

25

30

35

The reeled sized paper is unreeled and the coating is applied to both sides of the paper using a Meyer bar coater and dried thereby giving a paper coating of $2g/m^2$ on both sides.

The paper is next calendered and cut in the usual way.

The paper is next printed by both intaglio and offset methods.

A sample of the coating formulation is tested using the water resistance test described above and the König Hardness test. The coating has a König Hardness of 15 secs. The coating is also found not to have good water resistance.

Both coated and uncoated printed paper is tested using the FIRA soil test. The results show that the soil resistance of the coated paper is markedly better than the uncoated paper.

Both coated and uncoated printed paper is tested using the wet crumple test, the dry crumple test, the severe laundry test and the Sheen wet rub test. When compared to samples of uncoated paper from the same paper making batch the coated samples are markedly inferior.

The Intaglio print on both the coated and uncoated samples is examined. The uncoated paper shows the characteristic feathering expected from banknote paper. The coated paper shows markedly less feathering.

As is shown above by the various tests in the Examples 1 to 5, the paper is produced in accordance

10

15 °

20

25

30

35

with the method of this invention has significant improved properties relative the standard banknote paper.

Good print adhesion is evidenced by the wet crumple test, the dry crumple test, the wet rub test and severe laundry tests. Also, print definition with paper according to this invention is significantly better than that obtained using traditional banknote paper. Furthermore Intaglio print in particular is better defined, and also Intaglio embossing is improved. Also excellent soil resistance means that the coated paper produced by the method of this invention attracted less than two-thirds of the soiling medium compared to uncoated paper.

As indicated above, extenders can be used in the formulation of the coating in order to reduce the cost; they may also impart useful properties such as improved adhesion of surface applied security features, such as holograms.

Extenders which may be used in accordance with this invention are typically dispersions of water insoluble binders such as styrene/acrylic copolymers, acrylated vinyl acetate, vinyl chloride/ethylene copolymers, or vinyl acetate copolymers. They are generally unable to withstand both the water-resistance and hardness tests.

An alternative extender is a VA/VEOVA copolymer, for example that sold under the trade name Vinamul 6975^{TM} .

However, in combination with a suitable polyurethane they function satisfactorily in terms of the criteria previously set out, provided that the composition comprising the polyurethane and the extender possess the specified König Hardness and pass the water-resistance test.

10

15

20

25

30

35

The extenders may be added at levels up to 70, preferably from 15 to 50, parts in 100 parts of the coating formulation. The strongest and most water-resistant extenders can be added at this level. Weaker and less water-resistant extenders clearly can not be added at such high levels bearing in mind the properties specified for the coating composition.

Crosslinking agents can be used to increase the water-resistance and hardness of the polyurethane coating. They can be used to obtain the required properties from polyurethanes which would otherwise be unsuitable. They can also improve the properties of the polyurethane component thereby enabling greater quantities of extender to be used. Suitable crosslinking agents include polyaziridine, carbodiimide, isocyanate and zirconium salts. Other crosslinkers such as epoxy resin may be used but are less practical due to their high cure temperatures or long cure times.

Furthermore, further investigations have indicated that the polyurethane coatings in accordance with this invention provide a significant additional benefit. The use of the particular polyurethane coatings have been found to enhance the durability and optical effects of foils, holograms, kinograms and the like. This is because the polyurethane coating reduces significantly the extent to which the adhesive used in affixing foils including holograms, is absorbed into the paper surface. It has been found that the adhesive may be used more evently and this results in better adhesion and a more glossy surface. The more glossy surface which is obtained is especially beneficial for holograms as the visual detail present in the hologram is significantly clearer to the viewer. As is well known, holograms are generally expensive and it is of

undoubted commercial benefit that they will stay in place for a longer period when a security document such as a banknote is in circulation, and this is a consequence of the enhanced durability provided by the polyurethane coating in accordance with this invention.

- 22 -

CLAIMS

- A method for producing security paper which 1. includes a security feature, which method comprises forming paper in a wet state, which paper incorporates one or more security features, applying to the paper a 5 sizing agent, thereafter applying to one or both sides of the sized paper a coating comprising an unpigmented polyurethane which may optionally comprise a functional additive provided that the presence of the functional additive does not increase the opacity of 10 the paper by more than 1%, thereafter drying the paper, said coating composition being such as to provide a film, when cast on a glass surface, having a König hardness of from 15 to 130 seconds, and also passing the water resistance test as defined by the 15 following steps:
 - a) the total formulation to be used in the coating is cast on a glass plate so as to produce a film with a dry weight of 80 g/m^2 ;
- 20 b) the film is initially dried at 23°C. Once it is tack free it is dried for an additional hour at 80°C;
 - c) the film is weighed before being wetted and tested for tensile strength, Young's Modulus and is visually checked for any change in its transparency;
 - d) a sample of the film is boiled in water containing 10g/litre Na₂CO₃ for 30 mins;
- e) the film is then rinsed in cold water and the

 steps b) to c) are then repeated;

 wherein when the film is dried and re-weighed the film

 meets the following criteria:
 - i) the wet tensile strength and Young's Modulus of the boiled film is not less than 90% of

10

15

30

the initial film wet tensile strength and Young's Modulus;

- ii) the film shows no perceptible loss of transparency, and
- iii) the dried weight of the film is not less than 98% of the original weight.
- 2. A method as claimed in claim 1, wherein the polyurethane is in the form of an aqueous dispersion.
- 3. A method as claimed in claim 1 or claim 2, wherein the coating also comprises an extender.
- 4. A method as claimed in claim 3
- 0 , wherein the extender is a polyacrylate.
- 5. A method as claimed in any one of the preceding claims, wherein the coat weight of the coating comprising the polyurethane is between 0.05 and 20 grammes per square metre.
- 6. A method as claimed in claim 5, wherein the coating weight is between 0.5 and 5 grammes per square metre.
- 7. A method as claimed in any one of the preceding claims, wherein the coating comprising the polyurethane is applied to the paper immediately after sizing while the paper is still wet.
- 8. A method as claimed in any one of claims 1
 to 6, wherein the coating comprising the polyurethane
 is applied to dry paper after completion of the steps
 of normal papermaking.
 - 9. A method as claimed in any one of the preceding claims, wherein the fibres which are present in the paper are natural or synthetic fibres or a mixture of natural and synthetic fibres.
 - 10. A method as claimed in any one of the preceding claims, wherein the polyurethane is of the aliphatic polyester type and is used in a dispersion

with the dispersion having a polyurethane content in the range 2% to 70% by weight.

- 11. A method as claimed in claim 10 wherein the dispersion has a polyurethane content in the range 5% to 30% by weight.
- 12. A method as claimed in any one of the preceding claims wherein the polyurethane is cross-linkable and is cross-linked during drying of the paper.
- 13. A method as claimed in claim 12 wherein the cross-linking is effected using an aziridine as a cross-linking agent.
 - 14. A method as claimed in any one of the preceding claims, wherein the security feature is a
- watermark, or an embedded thread which thread may incorporate visual or covert security elements.
 - 15. A method as claimed in any one of the preceding claims, wherein the polyurethane is unpigmented.
- 20 16. A method as claimed in any one of claims 1 to 14, wherein the polyurethane composition comprises a functional additive which is a fluorescent or irridescent additive.
- 17. A method as claimed in any one of the
 25 preceding claims wherein a foil including a plain
 foil, a hologram or a kinogram is affixed to the
 security paper before or after printing.
- 18. A method of producing a security document wherein security paper is produced by a method as claimed in any one of the preceding claims, and thereafter the resulting security paper is printed to form the security document, such as a banknote.

nal Application No PCT/GB 96/00562

4 42 4 7			101/00 30/00002
IPC 6	SIFICATION OF SUBJECT MATTER D21H19/24 D21H21/40		
According	to International Patent Classification (IPC) or to both national cl	lassification and IPC	
B. FIELD	S SEARCHED		
IPC 6	documentation searched (classification system followed by classif D21H B41M		
	ation searched other than minimum documentation to the extent the		
Electronic	data base consulted during the international search (name of data	base and, where practical, ser	urch terms used)
	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
A	WO,A,91 12372 (ARJOMARI EUROPE) 1991 cited in the application	22 August	1,18
.	see the whole document		
A	EP,A,O 599 675 (ARJO WIGGINS SA 1994 see the whole document) 1 June	1
A	US,A,5 232 527 (VERNHET LOUIS	ET AL) 3	1
	August 1993 see column 2, line 64 - column 3		
A	DE,A,43 36 214 (SCHWARZ GUENTHE April 1994 see claims 8-10	R DR) 28	1
			·
		·	
<u> </u>	ner documents are listed in the continuation of box C.	X Patent family men	obers are listed in annex.
	egories of cited documents :	or priority date and no	ed after the international filing date of in conflict with the application but
consider E' earlier d	mt defining the general state of the art which is not cred to be of particular relevance document but published on or after the international	invention	relevance; the claimed invention
'L' documen		involve an inventive at	novel or cannot be considered to tep when the document is taken alone
O' documen	or other special reason (as specified) int referring to an oral disclosure, use, exhibition or	document is combined	relevance; the claimed invention to involve an inventive step when the I with one or more other such docu-
"P" documer later the	neans It published prior to the international filing date but an the priority date claimed	ments, such combinati in the art. '&' document member of t	on being obvious to a person skilled
Date of the a	actual completion of the international search	Date of mailing of the	international search report
23	3 May 1996	07	.06.96
Name and ma	asling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Ripwijk	Authorized officer	·
	Tcl. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Songy, 0	

1

ERNATIONAL SEARCH REPORT formation on patent family members

Application No PC1/GB 96/00562

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9112372	22-08-91	FR-A- 266850 AT-T- 11117 AU-B- 64122 AU-B- 724079 CA-A- 207605 DE-D- 6910388 DE-T- 6910388 EP-A- 051445 ES-T- 206408	15-09-94 1 16-09-93 1 03-09-91 4 10-08-91 2 13-10-94 2 02-02-95 5 25-11-92
EP-A-0599675	01-06-94	FR-A- 269810	8 20-05-94
US-A-5232527	03-08-93	FR-A- 260743 EP-A,B 027194 0A-A- 878 ZA-A- 870894	22-06-88 30 31-03-89
DE-A-4336214	28-04-94	NONE	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.