

Bayesian Statistics (Basic) Cheat Sheet
V2020.10.14
(Dr Yan Xu)

Probability

→ joint probability

$$\mathbb{P}\left(A=a_1,B=b_1\right)$$

→ conditional probability

$$\mathbb{P}(A = a_1 | B = b_1) = \frac{\mathbb{P}(A = a_1, B = b_1)}{\mathbb{P}(B = b_1)}$$

Independence

→ (absolutely) independent

$$\mathbb{P}\left(A = a | B = b\right) = \mathbb{P}\left(A = a\right)$$

→ conditionally independent

$$\mathbb{P}(A = a | B = b, C = c) = \mathbb{P}(A = a | C = c)$$

- → absolutely independent does not imply conditionally independent.
- → also, conditionally independent does not imply absolutely independent.

Bayes Theorem

→ Formula for 1 dependent variable:

$$\mathbb{P}(A = a_1 | B = b_1) = \frac{\mathbb{P}(A = a_1, B = b_1)}{\mathbb{P}(B = b_1)}$$
$$= \frac{\mathbb{P}(A = a_1) \times \mathbb{P}(B = b_1 | A = a_1)}{\mathbb{P}(B = b_1)}$$

- $\mathbb{P}(A = a_1)$ is called the **prior** probability
- $\mathbb{P}(B = b_1 | A = a_1)$ is called the **likelihood**
- $\mathbb{P}(B = b_1)$ is called the **evidence**
- $\mathbb{P}(A = a_1 | B = b_1)$ is called the **posterior** probability
- → The case for two dependent variables:

$$\mathbb{P}(A = a_1 | B = b_1, C = c_1) = \frac{\mathbb{P}(A = a_1 | C = c_1) \times \mathbb{P}(B = b_1 | A = a_1, C = c_1)}{\mathbb{P}(B = b_1 | C = c_1)}$$

Bayes Network (or Graphical Model)

- → A directed acyclic graph (DAG)
 - i. nodes: variables
 - ii. edges: dependencies

(source: wikipedia)

- → determining independence: d-separation method
 - i. draw the ancestral graph
 - ii. connect parents of joint child
 - iii. remove directions
 - iv. remove given variables
 - v. path -> dependence

Posterior Distrubution Inference

- → Enumeration
- → Elimination
- → Sampling (conditional prob -> prob)
 - Rejection Sampling
 - Gibbs Sampling
 - Metropolis-Hasting Sampling

Conjugate Prior

→ An Example:

likelihood function: Binomial(N, p)

prior p: Beta (α, β)

posterior p|X: Beta(α +x, β +(n-x))

→ If likelihood function is discrete:

Likelihood distribution	Conjugate prior
Binomial	Beta
Poisson	Gamma
Geometric	Gamma
Multinomial	Dirichlet

→ If likelihood function is continuous:

Likelihood distribution	Conjugate prior
Uniform	Pareto
Exponential	Gamma
Normal distribution, known σ^2	Normal distribution
Normal distribution, known μ	Inverse Gamma

Common Bayesian ML Models

- → Naive Bayes
- → Bayesian Linear Regression
- → Bayesian Logistic Regression
- → Gaussian Mixture Model (or Bayesian K-mean)
- → <u>Latent Dirichlet Allocation</u> (topic model)