## **Assignment-I**

**Q. 1 (a)** If  $A = \{a,b,c,d\}$  and  $B = \{x, y, z\}$ . Let R be the following relation from A to B:  $R = \{(a,x),(a,z),(d,y),(c,x),(b,z),(d,x)\}$ 

- (i) Determine the matrix of the relation.
- (ii) Draw the arrow diagram of R.
- (iii) Find the inverse relation  $R^{-1}$  of R.
- (b) Prove that for any positive integer m, the relation congruence modulo m is an equivalence relation on the integers.
- **Q.2** (a) Let R is a relation on set of real numbers of and it is defined as  $(a,b) \in R$  iff x-y is an integer. Then show that R is an equivalence relation.
- (b) Suppose  $(a,b) \in R$  iff the price of book a is greater than or equal to the price of book b and the number of pages of book a greater than or equal to number of pages in b. Show that R is partially ordered relation.
- **Q.3** (a) Prove that  $f(x) = x^3$  is a one-one function from  $R \to R$  where R is set of real numbers. Also, prove that  $f^{-1} \circ g^{-1} = (g \circ f)^{-1}$  for  $f, g : Q \to Q$  such that f(x) = 4x and g(x) = x + 5.
- (b) Define one-one and onto functions and explain the composition of functions with diagram. Let f and g are two functions from  $R \to R$  where R is set of real numbers. Find  $(f \circ f)(x)$  if  $f(x) = 3x^2$  and  $(f \circ g)(x)$ ,  $(g \circ f)(x)$  if  $f(x) = x^2 2$  and g(x) = x + 4.
- **Q.4** Define POSET. Let R is a relation on set of integers ( $\mathbb{Z}$ ) and defined as R ={(x ,y) | x/y} then prove that  $\mathbb{Z}$  is POSET.
- **Q.5** (a) Draw the Hasse diagram for the poset  $(P(S), \subseteq)$ , where  $S = \{1,2,3,4\}$ .
- **(b)** Prove that the given Hasse diagram Lattice and also verify, it is distributive Lattice or not?

