Lab2 Understanding LoRa modulation

F. Ferrero

- You are going to visualize the spectrogram of the LoRa modulation
- We are using blade RF SDR with 4MHz bandwidth
- Each group must choose a different frequency

LoRa pre-amble signal: 10 symbols or "chirps", 2 reverse "chirp".

LoRa data signal: A symbol is a "chirp" with a frequency "hop".

LoRa pre-amble signal: 10 symbols or "chirps", 2 reverse "chirp".

LoRa data signal: A symbol is a "chirp" with a frequency "hop".

- Download the code LoraPHY.ino in UCA_Board/Arduino_Code/LoRa_PHY/LoRaSender_Phy.ino
- You can tune the :
 - SF: from 7 to 12
 - BW: from 7.8KHz to 500KHz
 - N° of Peamble from 6 to 65535, yielding total preamble lengths of 6+4 to 65535+4 symbols, once the fixed overhead of the preamble data is considered.
 - Payload
- Upload the code in the board
- Watch the Spectrogram and explain the effect of the different parameters on the signal

- What you should observe
 - Different slopes
 - Different bandwidth
 - Identify the preamble and the data part

Have also a look tp this application :

LoRa Calculator :

https://www.semtech.com/products/wireless-rf/lora-transceivers/SX1276#download-resources