

SABR and BISABR

Date: January 18th 2007

Rédacteur : Olivier Croissant

IXIS Corporate & Investment Bank

Why do we need a SABR Model?

- We need to represent Smiles (cap/swaption/CMS swaptions)
 - Parameter acting on the general level of the volatility : alpha
 - Parameters acting on the smile slope : beta, rho.
 - Parameters acting on the convexity of the smile : nu
 - Euro markets : beta ~ 0.5-0.7
 - Yen : beta ~ 0.5
 - Calibrating the smile ⇔ determining (alpha, rho, nu)
- The SABR Model has an European option Formula (Hagan approximation)

SABR: Equations

Equations

$$\Delta S_{t} = \alpha_{t} S_{t}^{\beta} \Delta W_{1,t}$$

$$\Delta \alpha_{t} = \nu \alpha_{t} \Delta W_{2,t}$$

$$\Delta W_{1,t} \cdot \Delta W_{2,t} = \rho \Delta t$$

Parameters

$$\alpha_0, \beta, \rho, \nu$$

Stochastic Volatility Models

Volatility surfaces for SABR

SABR smile persists longer Than Heston SABR

Easier to control

Compared with a Heston model

SABR Vol surface

The short term smile is not captured by the hagan formula

Heston Vol Surface

Beta, Rho & Smile Slope

So low beta ⇔ low rho

The convexity is given by nu (vol - vol)

Smile Convexity

Change of PL due to Recalibration

In general

Why do we need BiSABR

- We need to represent spreadoption prices, Given the smiles of the underlyings
- Notion of implied normal correlation: given a spreadoption implied normal volatility => Correlation smile
- The BiSABR Formula is similar to the Hagan formula for Vanilla options.
- 4 correlations to represent the correlation smile
 - one correlation between underlyings
 - two cross-correlations
 - one correlation between volatilities

BiSABR: Equations

Index 1

$$\Delta S_{1,t} = \alpha_{1,t} S_{1,t}^{\beta_1} \Delta W_{1,t}$$

$$\Delta \alpha_{1,t} = \nu_1 \alpha_{1,t} \Delta W_{2,t}$$

$$\Delta W_{1,t} \cdot \Delta W_{2,t} = \rho_1 \Delta t$$

Index 2

$$\Delta S_{2,t} = \alpha_{2,t} S_{2,t}^{\beta_2} \Delta W_{3,t}$$

$$\Delta \alpha_{2,t} = \nu_2 \alpha_{2,t} \Delta W_{4,t}$$

$$\Delta W_{3,t} \cdot \Delta W_{4,t} = \rho_2 \Delta t$$

Correlations

$$\Delta W_{1,t} \cdot \Delta W_{3,t} = \rho_s \Delta t$$

$$\Delta W_{2,t} \cdot \Delta W_{4,t} = \rho_v \Delta t$$

$$\Delta W_{1,t} \cdot \Delta W_{4,t} = \rho_{c12} \Delta t$$

$$\Delta W_{2,t} \cdot \Delta W_{3,t} = \rho_{c21} \Delta t$$

Parameters

$$lpha_{1,0},eta_{1},
ho_{1},
u_{1} \ lpha_{2,0},eta_{2},
ho_{2},
u_{2} \
ho_{s},
ho_{v},
ho_{c12},
ho_{c21}$$

BiSABR for the Correlation Smile

A natural effect : rise of the implied correlation with maturity

BiSABR: Cross Correlations

Calibrating the Correlation Smile Slope

Calibration of the Cross Correlations

Only the difference between the cross correlations matters

Closed Forms For Float Paying Digitals

Digital that Pays 1, S1 or S2 if S1-S2>K
 Non gaussian distribution

