Agenda

- Wireless Basics
- MAC
- Modulation
- Auto Rate Adaptation
- MIMO
- Multi-User MIMO
- CoMP and Networked MIMO
- OFDM
- mmWave and Beamforming

Network System Capstone @cs.Nctu

Lecture 1: Wireless Basics

Instructor: Kate Ching-Ju Lin (林靖茹)

Wireless v.s. Wired Networks

- Slow data rate
- Unreliable transfer
- Higher latnecy
- Easy to deploy and support mobility

- High data rate
- Reliable transfer
- Lower latency
- Expensive and static infrastructure

Wireless Spectrum

- Information that travels wirelessly uses radio waves
 - Electromagnetic radiation with a particular wavelength and frequency
- Spectrum:
 - Fixed and finite resources
 - In the U.S., the Federal Communications Commission (FCC) is responsible for spectrum management

Wireless Spectrum

- Different bands have different characteristics
- Low-band (sub 3GHz)
 - Long distance with minimal interruption
 - Low capacity
- High-band (above 24GHz)
 - High capacity
 - Sensitive to blockage
- Mid-band (3-24 GHz)
 - Providing a mix of coverage and capacity
 - LTE and WiFi
 - Densely used

Transmitter

Receiver

Wireless Signal

• Sine wave $e^{ix} = \cos x + j \sin x$

$$y = hx + n$$

$$\text{received transmitted}$$

$$\text{signal}$$

phase change due to propagation delay
$$h = \alpha e^{-2j\pi f_c(t+\theta)}$$
 amplitude

What is channel? Signal variation (amplitude and phase) over the air

Orthogonal Signals

 Wireless signals are typically sent using sin() and cos() (orthogonal waves)

Constellation Diagram

Signal can be described as a sine wave

$$\begin{split} x(t) &= A(t)\cos(\omega t + \theta(t)) \\ &= A(t)\frac{e^{j(\omega t + \theta(t))} + e^{-j(\omega t + \theta(t))}}{2} \\ &= \operatorname{Re}[A(t)e^{-j(\omega t + \theta(t))}] \\ &= \operatorname{Re}[A(t)e^{-j\theta(t)}e^{-j\omega t}] \\ &= \operatorname{Re}[\tilde{x}(t)e^{-j\omega t}] \\ &= \operatorname{Re}[(I(t) + jQ(t))e^{-j\omega t}] \\ &= I(t)\cos(\omega t) + Q(t)\sin(\omega t) \end{split}$$

Rearranged as inphase and quadrature

Constellation Diagram

$$x(t) = A(t)\cos(\omega t + \theta(t))$$

$$= I(t)\cos(\omega t) + Q(t)\sin(\omega t)$$

$$= I(t) + jQ(t)$$

- Represent a wireless signal as a complex number
 - Sine carrier: image part
 - Cosine carrier: real part
- Why complex value?
 - Sine and Cosine are orthogonal with each other
 - Two carriers on the same frequency → rate

Transmitter

Receiver

Equalization

- Reversal of distortion incurred by a signal transmitted through a channel
- Equalizer: recover the transmitted signal from the received signal
 - Also known as <u>decoding</u>
- Type of equalizers
 - Optimum Trellis-based detection
 - Viterbi decoding
 - Linear equalization
 - MMSE, Zero-forcing (ZF)

Equalization

- Optimum Trellis-Based Detectors
 - Trellis Diagram
 - Applying y to a linear filter viewed as a finite-state machine (FSM)
 - Viterbi Decoding
 - Posteriori probability maximization (MAP)
 - Maximum-likelihood (ML) decoding
- Linear Equalization
 - Zero-forcing
 - MMSE (Minimum-mean-squared-error) equalization

Zero-Forcing Equalizer

- Linear equalization algorithm
- Applies the inverse of the <u>frequency</u> response of the channel
- Decoder = 1/channel response

$$y = hx + n \to d = \frac{1}{h}$$

$$\hat{x} = dy = \frac{1}{h}y = x + \frac{n}{h}$$

- Pros
 - Low complexity
- Cons
 - Noise amplified if the channel response (h) is weak!

MMSE Equalizer

- Bayesian estimation with quadratic loss function
- Assume that the samples and the noise are white random sequences uncorrelated with eath other
- Mean Square Error (MSE)

$$MSE = \mathbb{E}[(\hat{x} - x)^T (\hat{x} - x)]$$

MMSE Equalizer

$$\hat{x}_{\text{MMSE}}(y) = \arg\min_{\hat{x}} \text{MSE}$$

- Type of MMSE Equalizers
 - Exaustive search
 - Linear MMSE estimation
 - Sequential linear MMSE estimation

Channel Estimation

$$h = \alpha e^{-2j\pi f_c(t+\theta)}$$

$$y = hx + n \Rightarrow x' = \frac{y}{h} = x + \frac{n}{h}$$

- How to know the channel state information (CSI)?
 - Learn by sending preambles or pilot symbols, which are known by both the transmitter and receiver

Preamble Data symbols 1 Data symbols 2 ... Data symbols N $y=hx_p+n$ y=hx+n $\hat{h}=rac{y}{x_n}$ $\hat{h}=rac{y}{\hat{h}}$

Coherence Time

- The time over which a propagating wave may be considered coherent (i.e., <u>staying</u> <u>constant</u>)
- Why this is important?
 - To decode the signal, we need to estimate the channel h within the coherence time
 - The time interval between consecutive channel estimation should be shorter than coherence time
 - What if we don't re-learn the channel after coherence time?
 - decoding can be erroneous due to incorrect channel h

Coherence Time

Re-learn CSI

Preamble

Data symbols 1

$$y = hx_p + n$$

$$\hat{h} = \frac{y}{x_p}$$

Data symbols i

$$y = hx + n$$

$$\hat{x} = \frac{y}{\hat{h}}$$

Data symbols i+1

$$y = hx + n \mid y = h'x + n$$

$$\hat{x} = \frac{y}{\hat{h}}$$

$$= \frac{h'x + n}{\hat{h}}$$

$$= \delta x + \frac{n}{\hat{h}}$$

Decoding error

Channel Fading

- Variation of the attenuation of a signal
- Slow fading
 - The coherence time of the channel is large relative to the delay requirement of the application
 - Channel can be considered roughly constant over the period of use
 - Slow fading can be caused by events such as shadowing

Fast fading

 The coherence time of the channel is small relative to the delay requirement of the application

Performance Metrics

- Signal-to-Noise Ratio (SNR)
- Capacity
- Bit Error Rate (BER)
- Packet Error Rate (PER)
- Data Rate / Throughput / Goodput
 - Data rate: number of bits conveyed per second
 - Throughput: successful message delivery over a wireless channel (including protocol overhead)
 - Goodput: application-layer throughput, i.e., number of useful bits per second

Signal Power

- Watt vs. Decibel (dBm or dB_{mW})
 - dBm is usually used in radio
 - Converted from milliwatt
 - Able to express both very large and very small values in a short form $P_{dBm} = 10 \log_{10}(1000 P_W)$

$$P_W = \frac{10^{P_{dBm}/10}}{1000}$$

ratio of two power = difference between two dBm

P1toP2_{dB} =
$$10 \log_{10}(\frac{P_1}{P_2})$$

= $10 \log_{10}(P_1) - 10 \log_{10}(P_2)$
= $P_{1,dBm} - P_{2,dBm}$

Power vs. dB

 Because of the log operation, double the power produces 3dB gain

$$SNR_{dB} = 10 \log_{10} SNR$$

$$P_{1} = 2 * P_{2}$$

$$\implies 10 \log_{10} \frac{P_{1}}{N} = 10 \log_{10} \frac{2 * P_{2}}{N}$$

$$P_{1,dB} = P_{2,dB} + 10 \log_{10} 2 = P_{2,dB} + 3.0103 \text{ (dB)}$$

SNR

Signal-to-Noise Ratio
 Decoding SNR

$$\frac{S}{N}$$

In dB

$$10\log_{10}\frac{S}{N}$$

From equation (ratio)

$$y = hx + n$$

$$SNR = \frac{|h|^2}{\mathbb{E}[|n|^2]}$$

- Sent s=1+0i but receive s'= a+bi
- Signal power $= s^2 = |1 + 0i|^2$
- Noise power = | s-s' | 2 $= |(a+bi) - (1+0i)|^2$ $= |(a-1)+bi|^2$

sample SNR

$$\overline{SNR} = \frac{|1 + 0i|^2}{|(a - 1) + bi|^2}$$

$$\frac{\text{average SNR}}{SNR} = \frac{s^2}{\text{mean}(n^2)}$$

Errors

- Symbol error rate (SER)
 - Ratio of errorneous symbols to the total number of symbols
- Bit error rate (BER)
 - Ratio of bit errors to the total number of transmitted bits
- Packet error rate (PER)
 - Ratio of failed packets to the total number of packets
 - CRC check: a packet is dropped if ANY bits are in error
 - PER of a packet of L bits = $1 (1 \mathrm{BER})^L$

Path Loss

- Attenuation reduction as the signal propagates through the air
- Friis Transmission Formula

$$\frac{P_r}{P_t} = D_t D_r \left(\frac{\lambda}{4\pi d}\right)^2$$
 (in Watt)

$$P_r - P_t = D_t + D_r + 20 \log_{10} \left(\frac{\lambda}{4\pi d}\right) \text{ (in dB)}$$

- λ: signal wavelength
- Pt/Pr: transmitting/receiving power
- Dt/Dr: directivity of transmitting/receiving antenna

Shannon Capacity

The tight upper bound on the data rate

$$C = B \log_2 \left(1 + \frac{S}{N} \right) = B \log_2 \left(1 + SNR \right)$$

- B: bandwidth (Hz), e.g., WiFi with 20MHz
- S and N is in Watt (SNR is power ratio, not in dB)
- Example: SNR=25dB, what is the capacity of 20MHz WiFi?

$$SNR_{dB} = 10 * \log_{10} SNR \Rightarrow SNR = 10^{SNR_{dB}/10} = 316.2278$$

 $C = 20 * 10^6 * \log_2(1 + 316.2278) = 166.1875 \text{(Mbps)}$

Shannon Capacity

- In low SNR regime, increasing SNR can increase the rate significantly
- In high SNR regime, the increase in rate from SNR gain is relatively small
- $4dB \rightarrow 7dB$
 - SNR: $2.5119 \rightarrow 5.0119$
 - Capacity: $1.8123 \rightarrow 2.5878$ (1.43x) big enhancement
- 30dB → 33dB
 - SNR: 1000 → 1.9953e+03
 - Capacity: 9.9672 → 10.9631 (1.0999x) small enhancement

Transmitter

Receiver