2) Counter type A/D Converter

Maximum Conversion Time $= (2^{n}-1)T$ (Slm)

Successive Approximation type A/D

SAR - Succissive Approx. Reg.

bn-1 bn2 - b, bo

ex 4-bit SAR

(Faster)

5) Single Slope AlD Converter

1 vo - slove - Vin

$$T_{max} = (2^{N}-1)T$$

 $R, C \rightarrow add Some neise.$

Double Slope A/D Converter

Vaplt)
=-ke. Vin.t
=-ke. Vin.t
=-ke. Vin.t
Re. Viret (t-t_1)

 $at t=t_2$ $V_{ip}(t)=0$ $\Rightarrow -\frac{1}{Rc}V_{in}t_1+\frac{1}{Rc}V_{ref}(t_2-t_1)$ =0

 $\Rightarrow (t_2-t_1) = \underbrace{t_1}_{\times} \underbrace{v_{in}}_{v_{ref}}$ $t_1 = 2^n. T$ t_2

Programmable Logic Devices

$$f_1^{(x,y,z)} \leq m(0, 3, 5)$$

 $f_2(x,y,z) = \leq m(1,4,6)$

1

PROM -> AND Block is fixed OR Block is programmable

(Prog. Logic Array)

Both 'AND and 'OR' Blocks are programmale,

(Prof. Array Logic)

AND Block is programmable OR Block is fixed.

ROM

