

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Numéro de publication:

0 201 416
A1

⑫

DEMANDE DE BREVET EUROPEEN

㉑ Numéro de dépôt: 86400944.4

㉓ Int. Cl.4: A 61 K 39/29, C 12 N 15/00,
C 12 N 5/00, C 07 H 21/00,
C 07 K 15/04, C 12 P 21/00
// (C12P21/00, C12R1:91)

㉒ Date de dépôt: 29.04.86

㉔ Priorité: 02.05.85 FR 8506708

㉕ Demandeur: INSTITUT PASTEUR, 25/28, rue du Docteur Roux, F-75015 Paris (FR)

㉖ Date de publication de la demande: 12.11.86
Bulletin 86/46

㉗ Inventeur: Delpeyroux, Francis, 89, rue Biomet, F-75015 Paris (FR)
Inventeur: Chenciner, Nicole, 11, quai Bourbon, F-75004 Paris (FR)
Inventeur: Lim, Annick, 4, ruedu Castel, F-94000 Creteil (FR)
Inventeur: Malpiece, Yves, 320, rue St. Fuscien, F-80000 Amiens (FR)
Inventeur: Streeck, Rolf, 17bis avenue Foch, F-75016 Paris (FR)

㉘ Etats contractants désignés: AT BE CH DE FR GB IT LI
LU NL SE

㉙ Mandataire: Gutmann, Ernest et al, S.C. Ernest Gutmann - Yves Plasseraud 67, boulevard Haussmann, F-75008 Paris (FR)

㉚ Particules ayant les propriétés immunogènes de l'antigène HBs et portant un site antigénique étranger aux épitopes portés par l'antigène HBs, vecteurs et cellules animales pour la production de telles particules et compositions contenant de telles particules pour la production de vaccins mixtes.

㉛ L'invention concerne des particules présentant les caractéristiques essentielles des particules à base d'antigène HBs, ces particules étant constituées à partir d'un polypeptide majeur caractéristique de l'antigène HBs auquel a été incorporée une séquence polypeptidique étrangère pourvue d'un site immunogène distinct de ceux normalement portés par le gène S. L'invention concerne encore des ADN recombinants codant pour le polypeptide majeur transformé ainsi qu'indiqué ci-dessus et des lignées cellulaires transformées par cet ADN recombinant, et capables, notamment lorsque la séquence étrangère d'aminoacides comporte au plus 18 aminoacides, d'être excrétées dans le milieu de culture de ladite lignée cellulaire.

EP 0 201 416 A1

BEST AVAILABLE COPY

86400944.4.

0201416

1

5 Particules ayant les propriétés immunogènes de l'antigène HBs et portant un site antigénique étranger aux épitopes portés par l'antigène HBs, vecteurs et cellules animales pour la production de telles particules et compositions
contenant de telles particules pour la production de vaccins mixtes

10 L'invention concerne des particules polypeptidiques le plus souvent sensiblement sphériques, au moins en ce qui concerne la plupart d'entre elles, ces particules ayant les propriétés immunogéniques et immunologiques caractéristiques de l'antigène de surface (souvent désigné par l'abréviation HBsAg ou encore plus simplement HBs) du virus de l'hépatite virale B et portant en outre au moins une séquence peptidique étrangère au polypeptide normalement codé par le gène S du virus de l'hépatite B. L'invention concerne également des ADNs recombinants et des lignées cellulaires eucaryotes, de préférence d'origine animale, capables d'excréter dans leur milieu de culture des particules polypeptidiques du genre sus-indiqué.

15

20

25 On rappellera tout d'abord que le sérum des porteurs chroniques du virus de l'hépatite B (HBV) contient des enveloppes virales vides sous formes de particules ou filaments de 22 nm de diamètre et parfois des virions complets infectieux, particules sphériques de 42 nm.

30 Les enveloppes vides, une fois purifiées à partir de sérum de porteurs chroniques du virus, sont utilisées pour la fabrication de vaccins contre l'hépatite B. On sait qu'il est maintenant également possible d'obtenir des particules de 22 nm en grande quantité, par d'autres procédés. Les manipulations génétiques du gène codant pour la protéine majeure des particules (Gène S) ont permis leur production dans des lignées

35

cellulaires en culture (M.F. DUBOIS et al., (1980), Proc. Natl. Acad. Sci. USA, 77, 4549-4553), dans des levures (P. VALENZUELA et al., (1982), Nature, 298, 5 347-350) ou par l'intermédiaire de virus recombinants (G.L. SMITH et al. (1983), Nature, 302, 490-495). Une méthodologie pour produire ces particules comprend la transformation de cellules eucaryotes par un vecteur approprié, contenant le gène S sous la dépendance d'un 10 promoteur efficace , la culture des cellules transformées et la récupération des particules produites, soit à partir des cellules préalablement lysées, soit à partir du milieu de culture, lorsque les particules y ont été excrétées par les lignées cellulaires utilisées (notam- 15 ment dans le cas de l'utilisation de cellules de singe, par exemple du type VERO).

Le polypeptide majeur codé par le gène S, entrant dans la constitution de ces particules, est constitué de 226 acides aminés et possède un poids moléculaire de 25.400 daltons. Il a été montré également que dans le polypeptide constitutif, certaines particules naturelles pouvaient également être constituées d'un polypeptide de poids moléculaire plus élevé, de l'ordre de 34.000 daltons, contenant la séquence polypeptidique 20 du susdit polypeptide majeur, ayant la même extrémité C-terminale que le polypeptide majeur et en outre une séquence supplémentaire de 55 acides aminés.en position N-terminale (STIBBE X. et GERLICH W.H., (1983), J. Virology, 46, 626-628) codée par la région pré-S du génome 25 de l'hépatite B. Cette séquence supplémentaire en position N-terminale n'est apparemment pas très stable dans les particules naturelles, et ne semble donc pas jouer un rôle important dans la constitution et la cohésion 30 des particules d'HBs. Celles-ci, on le sait, sont constituées en agrégats organisés, peu sensibles aux protéases, et impliquant une certaine desdits polypeptides 35

majeurs et d'autres constituants, plus particulièrement lipidiques. Un procédé permettant l'obtention de compositions contenant une proportion notable, pouvant atteindre 35 % du total des polypeptides formés, de particules plus stables contenant ladite séquence supplémentaire a récemment été décrit (MICHEL, M.L. et al., (1984), Proc. Natl. Acad. Sci. USA, 81, 7708-7712). Il met en oeuvre des lignées cellulaires eucaryotes, plus particulièrement de cellules humaines ou animales en culture, transformées au préalable par des vecteurs, contenant une séquence d'ADN codant pour les régions S et pré-S du génome du virus de l'hépatite virale B, placée à l'intérieur de ce vecteur, sous le contrôle direct d'un promoteur exogène dont est connue la capacité de permettre l'initiation efficace de la transcription des gènes directement sous son contrôle dans les cellules eucaryotes, notamment humaines ou animales, auxquelles lesdits vecteurs sont destinés. On se reportera par exemple à l'article de GALIBERT et Col., (1979), Nature, vol. 281, p. 646-650, pour ce qui est de ladite séquence d'ADN.

Lorsque les lignées cellulaires utilisées sont originaires du singe, il est avantageux d'avoir recours à un promoteur issu du virus SV40, dont est connue la capacité de permettre l'initiation efficace de la transcription de gènes adjacents dans des cellules de singe. Avantageusement, ce promoteur correspond au promoteur "précoce" du virus SV40, lequel contrôle normalement l'expression de l'antigène "petit T" ("small T antigen") et également de l'antigène "grand T" ("large T antigen").

La variabilité naturelle de l'extrémité N-terminale des polypeptides de l'enveloppe du virus de l'hépatite B a déjà donné à penser que des fragments de protéines distincts de la susdite séquence supplémentaire

pouvaient lui être substitués et fusionnés avec le susdit polypeptide majeur. C'est ce qu'ont réalisé VALENZUELA et al., qui ont obtenu dans des levures transformées des particules formées à partir de protéines hybrides consistant essentiellement en le susdit polypeptide majeur modifié à son extrémité N-terminale par un polypeptide supplémentaire comportant une centaine d'acides aminés issus de la glycoprotéine D du virus de l'Herpès.

10 P. VALENZUELA et al. rapportent que ces particules transformées étaient capables d'induire des anticorps contre à la fois le virus de l'hépatite B et le virus de l'Herpès (P. VALENZUELA et al (1982), *Nature*, 298, 347-350 et P. VALENZUELA (1984) "In Proceedings of the Twelwth International Conference on Yeast Genetics and Molecular Biology" (Travaux de la douzième Conférence Internationale sur la Génétique des levures et de la biologie moléculaire), Edimbourg, (1984), 16).

La présente invention a pour but de fournir des particules polypeptidiques, ayant les propriétés immunogènes de base de l'antigène HBs et contenant en outre au moins une autre séquence peptidique, de préférence également immunogène, en d'autres termes des particules polypeptidiques susceptibles d'être utilisées pour la constitution de vaccins mixtes, ayant une stabilité optimum, l'autre séquence peptidique devant être présente chaque fois que le polypeptide majeur, lui-même ou de préférence la glycoprotéine majeure elle-même de l'antigène HBs, se trouve être synthétisé, et ce sans que soit sensiblement affectée l'architecture particulière caractéristique des antigènes d'enveloppe du virus de l'hépatite B.

Elle a encore pour but l'obtention de particules de ce type qui peuvent, le cas échéant, contenir en outre la séquence supplémentaire normalement codée par la région pré-S du génome du virus de l'hépatite B, à

l'état intact, étant cependant entendu que celle-ci pourraient aussi être modifiée, par exemple selon les modalités envisagées par VALENZUELA et al. Mais la préservation du caractère intact de ladite séquence supplémentaire réside dans l'immunogénicité accrue qui peut en résulter pour les polypeptides modifiés conformes à l'invention.

Les particules selon l'invention qui contiennent une proportion suffisante des séquences d'aminoacides caractéristiques du polypeptide majeur de l'antigène HBs, pour conserver à ces particules la structure caractéristique de l'antigène HBs, sont caractérisées par l'incorporation à ce polypeptide majeur d'au moins une séquence d'aminoacides étrangère à ce polypeptide majeur, de préférence elles-mêmes porteuses d'un site immunogène, à l'intérieur même de ce polypeptide majeur, notamment en l'une de ses régions hydrophiles normalement exposées à la surface extérieure desdites particules ou, en variante, par la substitution de un ou plusieurs aminocides appartenant à ces régions hydrophiles par ladite séquence étrangère d'aminoacides.

En particulier la séquence étrangère d'aminoacides est insérable dans l'une des régions s'étendant entre les acides aminés 32 à 74 ou entre les acides aminés 110 à 156 du polypeptide majeur dont des formules générales ont été présentées dans l'article de P. TIOLLAIS et al. (1981) SCIENCE, vol. 213, pp. 406-411, formules qui sont rappelées ci-après :

0201416

6

5

A

10 1 Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gin Ala Gly Phe Phe
21 Leu Leu Thr Arg Ile Leu Thr Ile Pro Glu Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn
Ser Pro Thr
41 Phe Leu Gly Gly Thr Thr Val Cys Leu Gly Gin Asn Ser Gin Ser Pro Thr Ser Asn His
Thr Thr Ile
15 61 Ser Pro Thr Ser Cys Pro Pro Thr Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe
Thr
81 Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr
Pro
101 Gin Gly Met Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Ser Thr Thr Ser Thr Gly Pro
Ser Ser
Lys Thr Pro Asn Phe
121 Cys Arg Thr Cys Met Thr Thr Ala Gin Gly Thr Ser Met Tyr Pro Ser Cys Cys Thr
Arg Thr Pro Ile Tyr Ala
141 Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Gly Lys
Ser Gly
Tyr Val
161 Phe Leu Trp Glu Trp Ala Ser Ala Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val
Phe Ala
181 25 Gin Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr
Ile Val Als
Val Ile
201 Trp Gly Pro Ser Leu Tyr Ser Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe
Leu Leu
221 Cys Leu Trp Val Tyr Ile
Ala

30

35

Il est rappelé que la formule du peptide majeur est sujette à variations. En particulier les différences au niveau des acides aminés constitutifs observés par VALENZUELA et al. (1980) "Animal Virus Genetics" (Génétique des virus d'animaux), B. FIELDS, R. JAENISCH, C.F. FOX, Ed: Academic Press, New York, p. 57, apparaissent au-dessus des lignes principales de ladite formule, celles observées par Pasek et al, Nature (London), 282, 575 (1979), apparaissent au-dessous desdites lignes principales.

L'invention concerne donc plus particulièvement des compositions utiles pour la fabrication de vaccins qui contiennent des particules polypeptidiques sensiblement sphériques (ou qui est formée par ces particules), au moins en ce qui concerne la plupart d'entre elles (sinon toutes), qui ont les propriétés immunogéniques et immunologiques caractéristiques de l'antigène HBsAg, qui ont des tailles de 18 à 25 nm, notamment de 20 à 22 nm, et des densités permettant leur isolement dans une zone de densité de 1,20-1,22 g/ml dans un gradient de densité à base de CsCl, et un niveau de pureté totale pour ce qui est de l'absence de toute particule de Dane et d'antigène HBe, y inclus HBC, ces particules étant plus particulièrement caractérisées par la présence desdites séquences étrangères dans les conditions sus-indiquées.

La taille des séquences étrangères susceptibles d'être insérées à l'intérieur du polypeptide majeur, tel qu'il vient d'être défini, peut être modifiée dans de grandes proportions. Il est possible d'introduire des séquences d'aminoacides pouvant comporter par exemple jusqu'à 100 aminoacides, voire davantage. Il est cependant avantageux que la séquence peptidique étrangère ait une taille ne dépassant pas 16 aminoacides, notamment de 5 à 16, par exemple de 6 à 13, surtout dans

le cas où elle est insérée dans le polypeptide majeur, sans suppression d'un nombre sensiblement équivalent des aminoacides que celui-ci pouvait comprendre auparavant.

- 5 En effet, l'invention permet le résultat remarquable que constitue la possibilité de produire dans ceux des systèmes cellulaires qui le permettent, l'excrétion des particules modifiées conformes à l'invention par les cellules concernées, lorsque celles-ci ont été transformées au préalable par un vecteur approprié contenant une séquence d'ADN codant pour le polypeptide modifié conforme à l'invention.

L'invention concerne naturellement également les ADNs recombinants codant pour lesdits polypeptides modifiés entrant dans la composition des particules sus-indiquées. A cet égard, ces ADNs recombinants, et de préférence des vecteurs les contenant, qui contiennent une séquence d'ADN codant pour la région S et, le cas échéant, pré-S du génome du virus de l'hépatite virale B, sont caractérisés en ce que ladite séquence d'ADN est localement modifiée par au moins une séquence nucléotidique codant pour la susdite séquence étrangère, en une au moins de celles des zones de la région S correspondant aux régions hydrophiles du polypeptide majeur susdit, et en ce que la région S et, le cas échéant, la région pré-S, sont à l'intérieur de l'ADN recombinant, placé sous le contrôle direct d'un promoteur exogène dont est connue la capacité de permettre l'initiation efficace de la transcription des gènes directement sous son contrôle dans les cellules eucaryotes, notamment humaines ou animales, ou encore aux levures auxquelles lesdits vecteurs sont destinés.

Le promoteur exogène mis en oeuvre est distinct ou étranger vis-à-vis du promoteur "endogène", normalement associé aux gènes S et pré-S dans le génome

du virus de l'hépatite B. Lorsque ces cellules sont originaires du singe, il est avantageux d'avoir recours à l'un des promoteurs issus du virus SV40, qui ont été rappelés plus haut.

L'invention ne se limite cependant pas à l'utilisation de ce promoteur particulier, bien que celui-ci donne des résultats particulièrement favorables, eu égard à la production par les cellules transformées de polypeptides hybrides conformes à l'invention, caractéristiques de l'antigène HBs et d'un récepteur de la pHSA, et à leur excrétion dans le milieu de culture utilisé. On peut également avoir recours par exemple au promoteur tardif de SV40 (qui contrôle l'expression des protéines VP1, VP2 et VP3). On peut se reporter à la carte de restriction du virus SV40 (J. TOOZE, Ed. DNA Tumor Viruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1980, chaps. 2-5), pour apprécier les positions relatives de ces promoteurs et des gènes codant pour les différents antigènes qui leur sont associés.

Il va de soi que l'on peut substituer aux promoteurs de SV40 tout autre type de promoteur connu comme possédant ou dont pourrait être découverte la capacité de promouvoir la transcription dans les lignées cellulaires mises en oeuvre desdites séquences codant pour les susdites régions S et, le cas échéant, pré-S, dès lors qu'elles seraient placées sous leur contrôle, avec pour résultat l'incorporation de ces séquences avec ce promoteur dans le génome des cellules réceptrices et/ou la capacité conférée aux cellules réceptrices ainsi transformées de synthétiser et d'excréter des quantités substantielles du polypeptide hybride selon l'invention, la capacité ainsi acquise étant ensuite transmissible aux générations successives issues de ces cellules.

Les dites lignées transformées seront dites "stables" lorsque le caractère acquis par les lignées cellulaires selon l'invention de synthétiser les susdits polypeptides se transmet d'une génération de cellules à l'autre, sur au moins 10 générations.

A titre d'autres promoteurs susceptibles d'être utilisés, on mentionnera par exemple le promoteur précoce du polyome ou des promoteurs LTR de différents rétrovirus ou encore le promoteur EA de l'adénovirus, ainsi que de promoteurs efficaces de gènes d'origine cellulaire.

Comme il est bien connu, les promoteurs prélevés sur les génomes des virus dont ils sont originaires sont de préférence accompagnés des "séquences" activatrices qui normalement les précèdent (par rapport au sens de la transcription des séquences géniques normalement placées sous leur contrôle). A titre d'exemple de séquences activatrices, on peut se référer à l'article de Science, 1983, vol. 219, pages 626 à 631, et Nature, 1982, vol. 295, pages 568 à 572.

Avantageusement, la susdite séquence d'ADN codant pour les susdites régions pré-S et S est placée, immédiatement derrière un fragment d'ADN constitué par le promoteur et la séquence activatrice permettant la transcription normale de la séquence pré-S ou S. Le susdit fragment comprend notamment de 300 à 400 paires de bases selon le type de promoteur et de séquences activatrices utilisées.

L'invention concerne encore les lignées cellulaires transformées par des vecteurs tels qu'ils ont été définis ci-dessus et qui sont aptes à excréter dans leur milieu de culture les particules immunogènes également définies ci-dessus.

Des lignées préférées selon l'invention sont formées de cellules de mammifères, notamment de cellules CHO ou VERO.

5 L'invention concerne encore un procédé de production de telles lignées cellulaires susceptibles d'être maintenues en culture, ce procédé comportant la transformation de ces lignées avec un vecteur tel que défini ci-dessus et l'isolement de celles des cultures qui expriment les séquences codant pour la protéine hybride de l'invention.

10 15 Des caractéristiques supplémentaires de l'invention apparaîtront encore au cours de la description qui suit d'exemples de constructions qui illustrent le principe de base de l'invention. Il sera dans ce qui suit fait référence au dessin dans lequel :

15 20 - la figure 1 représente la structure schématique du plasmide PLAS utilisé dans les constructions selon l'invention,

25 - la figure 2 représente la structure schématique du plasmide pPAP dérivé du pLAS et comportant en plus de ce dernier un fragment d'ADN synthétique codant pour une séquence d'onze amino-acides de la protéine VP1 du poliovirus type I (souche Mahoney).

30 25 - Construction des plasmides transfectés :
Le plasmide pLAS - Ce plasmide comprend (figure 1) :

35 30 - la partie codante du gène S (P. Charnay et al. 1979) avec son site naturel de polyadénylation (fragment StuI (43) BglII (1984)) dont le site BamHI (1400) est supprimé par réparation par l'enzyme de Klenow ;

35 - ce gène sans promoteur est mis sous la dépendance du promoteur précoce du virus SV40 (fragment du virus SV40 compris entre le site PvuII (250) - et le site HindIII (5154) ;

- le grand fragment BamH1 (375)-SalI (650) du pML2 (Lusky, M. and Botchan, M. 1981).

Le fragment du gène S a été ligaturé, au niveau de son extrémité BglII à l'extrémité BamHI du plasmide pML2 (les extrémités BglII et BamHI étant mutuellement compatibles). Le fragment de gène S a par contre été modifié au niveau de son extrémité StuI par une séquence de liaison nucléotidique (linker) obtenue par synthèse chimique et contenant un site Hind III, pour réaliser une ligation avec l'extrémité Hind III, du fragment de virus SV40 contenant le promoteur susdit. Enfin, l'extrémité SalI du fragment issu du plasmide pML2 avait été réparée avant sa ligation avec l'extrémité PvuII (extrémité franche) du fragment de virus SV40.

Les plasmides PLAS_I, PLAS_{II}.

Ces deux plasmides sont dérivés du plasmide PLAS décrit ci-dessus par introduction au site unique BamHI (488) d'un ou deux fragments BamH1, d'ADN de 24 paires de bases dérivés du pSKS104 (Shapiro et al. 1983). Ce fragment de 24 nucléotides codant pour 8 acides aminés dont l'insertion dans le gène S ne modifie pas la phase de lecture, porte un site de coupure pour les enzymes de restriction PstI, et deux sites pour les enzymes Hind II (SalI, AccI).

EXEMPLE I.

Obtention des lignées cellulaires de souris produisant la protéine HBs après transfection puis sélection des clones producteurs.

Des cellules LMTK⁻ (clone 1D ; cellules de souris dérivées du clone L929 déficientes en thymidine kinase, poussant dans le milieu Eagle modifié par Dulbecco (milieu DMEM), supplémenté par 10 % de sérum de veau et de glutamine 4 mM) ont été cotransférées

(techniques de Graham et Van der Eb, 1973, modifiées par Wigler et al, 1979) par de l'ADN d'un des trois vecteurs (pLAS, pLAS_I, pLAS_{II}) et par l'ADN du plasmide pW portant le gène de l'aminoglycoside-3'-phosphotransférase APH3' résistant à la néomycine (Colbère-Garapin et al. 1981). Les cellules transfectées exprimant l'enzyme APH3' sont sélectionnées en présence de 400 microgrammes/millilitre d'aminoglycoside G418 (Colbère-Garapin et al. 1981). Les clones issus de cette sélection sont alors testés pour la production de la protéine HBs. Ainsi 5.10⁵ cellules LMTK⁻ ont été cotransfectées par 10 microgrammes d'ADN du premier plasmide et par 2 microgrammes d'ADN du plasmide pW. Quatre jours après la transfection, le milieu G418 sélectif était appliqué.

Les clones viables apparaissant sont isolés, mis en culture et testés quant à leur capacité de production de l'antigène HBs dans le milieu.

La présence d'HBsAg est détectée à l'aide des tests radioimmunologiques AUSRIA II (Abbott Laboratories). Parmi les clones cellulaires donnant une réponse positive, trois clones (LAS, LASI, LASII) correspondant aux plasmides pLAS, pLASI, pLASII sont sélectionnés pour être caractérisés.

Caractérisation des particules détectées dans le milieu des clones cellulaires.

Les clones amenés à confluence, le milieu nutritif des cellules est changé et mis à accumuler pendant 48 heures. Le surnageant est ensuite clarifié à 2000 rpm et centrifugé pour sédimentier les particules (Smith et al. 1983). Le culot est repris dans du tampon, déposé sur un gradient de CsCl, centrifugé, collecté et les fractions sont testées en R.I.A. (Moriarty et al. 1981). L'activité HBsAg des protéines modifiées et non modifiées se retrouve concentrée en un seul pic compris entre les densités 1,18 et 1,24 g/cm³, densité similaire

aux particules purifiées du sérum (Pillot et al. 1984). Un aliquote est alors déposé sur un gradient de sucre (Moriarty et al. 1981). Après collecte des fractions,
5 l'activité HBsAg sédimente en un seul pic de coefficient de sédimentation apparemment identique entre les trois types de polypeptides.

Caractérisation des séquences du gène S intégrées dans le génome des clones cellulaires LAS, LASI, LASII.

10 L'ADN cellulaire des clones LAS, LASI, LASII est préparé par la méthode de Gross-Bellard et al. (1973) et digéré par les enzymes de restriction HindIII et PstI. Après électrophorèse sur gel d'agarose, les ADN sont transférés sur une feuille de nitrocellulose
15 (Southern 1975) qui est hybridée avec une sonde radioactive fabriquée à partir d'un fragment d'ADN contenant le gène S selon la méthode de translation de coupure (Rigby et al. 1977).

20 Après autoradiographie des répliques sur nitrocellulose, on met en évidence qu'un ou plusieurs gènes ont été intégrés dans les trois clones. De plus, un site PstI existe uniquement au niveau du gène S modifié des clones cellulaires LASI et LASII. Ce site PstI n'existe pas dans la séquence naturelle du gène S utilisé (P. Charnay et al. 1979) mais bien dans les fragments d'ADN étrangers insérés dans les plasmides pLASI et pLASII utilisés.
25

Immunoprécipitation par un sérum anti-HBsAg des protéines excrétées par les clones LAS, LASI et LASII.

30 Les clones cellulaires à confluence sont marqués avec de la méthionine [³⁵S] pendant 48 heures et les surnageants immunoprécipités par des anticorps de lapin anti-HBsAg (Behring) puis par de la protéine A Sépharose (Pharmacia) en présence de NP40 0,5 %. Après lavage, les immunoprécipités sont déposés sur un gel de polyacrylamide 15 % d'après la technique décrite par
35

Laemmli (1970) en présence de marqueurs de poids moléculaires (Pharmacia). Les gels traités et séchés sont alors exposés en autoradiographie.

5

Deux bandes majeures apparaissent pour chaque surnageant. Leur poids moléculaire est respectivement de 23000 et 27000 pour le clone LAS, 24750 et 28500 pour le clone LASI, 26000 et 29000 pour le clone LASII.

10

Le plasmide pLAS se révèle efficace pour promouvoir l'expression d'HBsAg dans les cellules L. De plus, le plasmide pLASI porte des sites de restriction supplémentaires dans la région codante du gène S, ce qui peut faciliter l'introduction de séquences nouvelles.

15

Le fait de pouvoir détecter en R.I.A. des structures semblables aux particules d'HBsAg dans les surnageants cellulaires nous permet de dire que les structures induites par les plasmides pLASI et pLASII conservent, au moins, une antigénicité partiellement similaire à celle des particules de sérum humain. L'insertion des 8 ou 16 acides aminés utilisés n'empêche pas l'excrétion des protéines d'HBsAg modifiées du cytoplasme vers le milieu extérieur des cellules L. Le choix du site BamH1 pour effectuer des insertions dans le gène S se révèle judicieux. En effet, il correspond au début de la région hydrophile majeure de la protéine (P. Tiollais et coll. 1981) et respecte le fait que les séquences hydrophobes doivent être au contact de la membrane lipidique des particules. Le domaine intermembranaire d'HBsAg responsable de la structure des particules de 22 nm ne subit vraisemblablement que des transitions conformationnelles mineures.

20

Les analyses sur gradient de chlorure de cé-sium et de sucre des surnageants des clones cellulaires ne permettent pas, dans les limites expérimentales employées, de mettre en évidence des différences entre les structures modifiées et non modifiées.

25

- L'analyse des ADN cellulaires montre que les gènes S intégrés portent toujours les modifications apportées sur les plasmides utilisés.

5 - Les protéines mises en évidence après immunoprécipitation montrent des différences de poids moléculaires attendues. Cependant, le poids moléculaire mesuré des protéines modifiées paraît supérieur au poids moléculaire réel (le poids moléculaire d'un fragment de 10 8aa est en effet de 957). D'autre part, les modifications permettent toujours la glycosylation partielle de la protéine HBsAg. Les deux bandes apparaissant en gel de polyacrylamide sont caractéristiques d'un polypeptide glycosylé et non glycosylé. Le résidu le plus susceptible d'être glycosylé, l'Asparagine 146 (Machida et coll. 15 1983) intervient dans la séquence participant au déterminant antigénique majeur a (Pillot et coll. 1984). La conformation de cette partie de la protéine doit donc être relativement similaire dans les protéines modifiées 20 ou natives.

EXEMPLE II.

Production de particules portant l'antigène de surface de l'hépatite B modifiées par l'insertion de séquences de la toxine diphtérique.

25 L'ADN du plasmide pTD134 contenant le gène de la toxine diphtérique (M. Kaczorek et coll., 1983) est coupé par l'enzyme HaeIII, traité par la nucléase BAL31 puis ligué, en présence de T4 DNA ligase avec des adaptateurs BamH1. Après coupure avec l'enzyme BamH1, les 30 fragments sont mis à liguer avec l'ADN du plasmide pSKS105 (Shapiro et coll., 1983) coupé par la même enzyme. Cet ADN est alors utilisé pour transformer une souche d'E. coli. Les colonies sont transférées et lysées sur des feuilles de nitrocellulose. Ces dernières 35 sont mises à hybrider avec une sonde radioactive fabriquée par translation de coupure à partir d'un fragment

purifié sur gel d'acrylamide après digestion du plasmide pTD134 par l'endonucléase HaeIII (fragment HaeIII 597-HaeIII 746). Les plasmides des colonies hybridant avec cette sonde ont été partiellement séquencés grâce à la méthode de Maxam et Gilbert (Maxam et coll., 1980). Un d'entre eux, contenant l'insertion d'un fragment BamH1-BamH1 codant pour les acides aminés 201-231 du gène de la toxine diphtérique (Kaczorek et coll., 1983) a été sélectionné. Ce fragment a ensuite été réintroduit dans le site BamH1 du plasmide pLAS.

Le nouveau plasmide pTAS a été purifié et transfété dans des cellules L de souris. Après sélection des clones cellulaires résistant au G418, selon la méthode décrite au premier paragraphe de l'exemple I, la présence d'HBsAg est testée dans les surnageants. Sur 20 clones examinés, aucun n'est positif.

Les cellules de 10 clones sont trypsinées, lavées 2 fois au P.B.S. et lysées par 3 cycles de congélation-décongélation dans 250 µl de Tris 10 mM pH 7,4, EDTA 1 mM. Le lysat est clarifié à 2000 rpm et testé. Tous les lysats des clones contenaient de l'HBsAg.

Un clone a été lysé dans les mêmes conditions. Des aliquotes ont été déposés sur des gradients de chlorure de césum ou de sucre en parallèle avec des particules d'HBsAg purifiées à partir de sérum humain (I.P.P.) et un lysat de clone transfété par le plasmide pLAS produisant des particules non modifiées. Aucune différence n'a pu être détectée entre les particules du sérum humain et les signaux d'HBsAg des lysats étudiés. Cela tendrait à prouver que, même non excrétées, les protéines modifiées sont, après lyse des cellules, dans une conformation relativement similaire à celles des particules "naturelles". L'insertion au niveau du site BamH1 (aa112-113) de l'HBsAg de 32 acides aminés codant pour une partie de la toxine diphtérique ne permet plus

l'excrétion de la protéine lorsqu'elle est traduite dans des cellules L. C'est ce que montrent les expériences avec le plasmide pTAS. Cependant, le fait de retrouver 5 la protéine modifiée sous forme de particules non excrétées permet de penser qu'il est possible de modifier l'HBsAg et de l'exprimer dans un système non excréteur (la levure par exemple). La persistance de structures particulières confère une grande stabilité à 10 la protéine, ce qui facilite sa purification.

EXEMPLE III.

Production de particules portant l'antigène de surface de l'hépatite B modifiées par l'insertion de séquences du virus polio.

15 Les 2 brins d'un fragment d'ADN de 47 paires de bases codant pour 11 acides aminés de la protéine VPI du poliovirus type I, (acides aminés 93 à 103) et pour 2 sites reconnus par l'enzyme BamH1 ont été synthétisés par voie chimique grâce à un synthétiseur automatique (Applied Biosystem). Les 2 brins ont été purifiés séparément sur un gel dénaturant de polyacrylamide, puis hybridés. Le fragment a été coupé par l'endonucléase BamH1 et inséré au site BamH1 du plasmide pLAS. Le nouveau 20 plasmide pPAP (figure. 2) a été séquencé partiellement (Maxam et Gilbert, 1980), amplifié et introduit dans des cellules L selon la méthode précédemment décrite dans le premier paragraphe de l'exemple I. Les clones résistant 25 au G418 ont été isolés, leur surnageant testé pour la présence d'HBsAg ; 14 clones sur 20 ont été trouvés 30 positifs.

Pour la purification des particules de 22 nm, les clones cellulaires ont été mis en culture dans le DMEM, et après huit jours, les surnageants cellulaires 35 ont été clarifiés et 45 % d'une solution de sulfate d'ammonium à pH 7,5 ont été additionnés.

0201416

19

Le précipité a été collecté par centrifugation et les granules obtenus ont été dissous dans 10 mM de Tris HCl, pH 7,5, 150 mM de NaCl, 1 mM d'EDTA (TNE), et 5 dialysés contre le même tampon.

Du CsCl, 0,3 mg/ml, a été additionné, suivi d'une centrifugation à 4°C pendant 72 heures à 40 krpm dans un rotor Beckman 60 Ti.

10 Des fractions d'1 ml ont été collectées après centrifugation, et l'HBsAg a été testé par RIA.

Les fractions contenant l'HBsAg ont été regroupées et recentrifugées dans le CsCl à 4°C pendant 48 heures à 47 krpm dans un rotor Beckman 50 Ti.

15 Des fractions de 0,33 ml ont été récoltées à partir du surnageant et la présence d'HBsAg a été testée encore une fois.

20 Les fractions correspondantes au pic d'activité HBsAg ont été regroupées et dialysées contre le TNE, et l'HBsAg a été précipité par centrifugation pendant 24 heures à 28 krpm dans un rotor SW41.

Le précipité a été remis en suspension dans 0,5 ml de TNE et placé dans un gradient de saccharose linéaire 10-30 % (W/W) dans le TNE avec 0,5 ml de saccharose à 66 %.

25 Après centrifugation pendant 4,5 heures à 35 krpm et 4°C dans un rotor SW41, des fractions de 0,33 ml ont été collectées à partir du surnageant.

30 Les fractions correspondant au pic d'activité HBsAg ont été regroupées et dialysées contre le TNE. Les particules d'enveloppe purifiées ont été analysées par électrophorèse sur gel SDS-polyacrylamide suivie d'une coloration à l'argent.

La concentration en protéine a été déterminée par la méthode BioRad.

35 Les particules purifiées à partir de milieux de culture de clones cellulaires (PAP, LAS) transfectées

par pPAP ou pLAS respectivement ont environ la même densité dans CsCl. Elles ne diffèrent pas significativement des particules HBsAg humaines, selon les essais de sedimentation dans la saccharose, mais semblent posséder des diamètres plus variables.

Les polypeptides HBsAg et HBsPolioAg immuno-précipités par un anti-sérum anti-HBsAg obtenu à partir de particules LAS et PAP respectivement, sont présents sous forme glycosylée et non glycosylée.

La différence d'1,5 kDa entre les poids moléculaires apparents de l'HBsAg et de l'HBsPolioAg correspond au poids moléculaire de la séquence insérée.

Les résultats démontrent que l'insertion n'empêche ni les interactions spécifiques entre protéines et lipides nécessaires pour l'assemblage des particules d'enveloppe, ni la glycosylation et la sécrétion des particules par les cellules des milieux de cultures.

Dans le but d'établir si la séquence de poliovirus insérée est bien exposée à la surface des particules et d'examiner si des changements de conformation ont été induits, des études de sensibilité à la protéase des particules HBsAg et HBsPolioAg ont été réalisées.

Des clones cellulaires (LAS, PAP) ont été mis en culture à confluence, lavés deux fois avec du DMEM sans méthionine et ont été incubés pendant deux heures dans le même milieu auquel a été additionné 4 mM de glutamine et 1 % de sérum de veau.

L'incubation est prolongée de 24 heures dans un milieu frais contenant $2 \cdot 10^6$ cellules et 100 $\mu\text{Ci}/\text{ml}$ de $^{25}\text{S}-\text{Met}$ (100 Ci/mmol ; Amersham).

Après 6 heures d'incubation en présence de 30 $\mu\text{g}/\text{ml}$ de Met non marquée, les particules d'enveloppe ont été partiellement purifiées à partir de surnageant du milieu de culture en le centrifugeant pendant 24 heures

à 28 krpm et 4°C (rotor sw41), suivi d'une centrifugation à travers un gradient de CsCl (1,1- 1,6 g/cm³) pendant 24 heures à 35 krpm et 4°C.

5

Des fractions de 0,5 ml ont été collectées et des fractions du pic ont été dialysées contre le PBS. Des aliquots de 100 µl ont été mélangés avec 50 µl de trypsine (300 µg/ml, Worthington) dans du PBS avec ou sans 3 % de β-mercaptoethanol et incubées pendant 2 heures à 37°C. Puis addition de 50 µl, d'une solution à 300 µg/ml dans le PBS, d'inhibiteur de la trypsine de soja (Worthington). Le volume a été augmenté de 400 µl avec du PBS et additionné de 1 % d'albumine de sérum de boeuf, 1 % de desoxycholate de sodium, 0,1 % de SDS, et l'immuno-précipitation a été obtenue après une nuit à 4°C en présence d'antisérum de lapin dirigé contre les particules d'HBsAg humaines (Behring) à une dilution d'1 : 100. Puis addition de 50 µl de Sepharose-protéine A remise en suspension dans 1 volume de 25 mM de Tris-HCl pH 7,2, 2,5 mM d'EDTA et 2mM de PMSF.

20

25

Après une heure d'agitation douce à 4°C, la Sepharose a été lavée 3 fois avec 10 mM de tris-HCl, pH 7,2, 150 mM de NaCl, 1 % de triton X-100, 0,1 % de SDS, 1 % de sodium de desoxycholate et 2 fois avec 125 mM de Tris-HCl, pH 6,8.

Enfin, les protéines ont été éluées en faisant bouillir la sépharose dans 40 µl d'une solution tampon pour électrophorèse sur gel.

30

L'électrophorèse sur gel de 15 % de polyacrylamide a été réalisée selon la méthode de Laemli.

Après traitement par fluorographie, le gel a été séché et exposé à un film Kodak XAR-5 à -70°C.

35

On constate ainsi que les particules d'HBsAg sont très résistantes à la trypsine dans des conditions non réductrices alors que l'HBsPolioAg est complètement clivé à un site unique (ou plusieurs sites proches) en

produisant des polypeptides de poids moléculaires apparents de 17,4 et 14,3 kDa.

5 Les tailles des fragments sont compatibles avec le clivage de la séquence insérée.

En présence d'un agent réducteur, l'HBsAg est clivé exclusivement au niveau de l'Arg-122 (Peterson, D.L.), en générant des fragments de 16,6 et 13,2 kDa alors que l'HBsPolioAg est clivé en deux fragments de 10 17,4 et 13,2 kDa.

Ceci indique que le fragment de 14,3 kDa obtenu dans des conditions non réductrices à partir d'HBsPolioAg contient Arg 122 et est plus long de 10-12 amino-acides au niveau N-terminal que le fragment de 13,2 kDa, 15 et confirme que le clivage de particules d'HBsPolioAg dans des conditions non réductrices s'est produit au niveau d'un ou des résidus lys de la séquence insérée (figure 2).

20 Ces résultats démontrent que la séquence peptidique insérée est facilement accessible aux protéases, c'est-à-dire qu'elle est exposée à la surface des particules hybrides d'enveloppe. Chez le virus polio du type 1 (Mahoney), la séquence peptidique correspondante a une structure moins exposée qui rend le résidu lys inaccessible à la trypsine dans des conditions réductrices 25 (Fricks et al.).

Les autres sites de clivage potentiels dans les particules hybrides d'HBsPolioAg sont inaccessibles pour la trypsine indiquant ainsi que ces parties de la molécule d'HBsAg reste dans une organisation très structurée.

30 Quelques changements conformationnels toutefois peuvent avoir lieu dans la région antigénique majeure HBs.

Ceci a été indiqué par la réduction (environ 20 fois) de la liaison d'anticorps anti-HBsAg aux particules d'HBsAg déterminée par radioimmunologie, en utilisant des particules d'HBsAg comme référence et détermination des protéines par coloration à l'argent après SDS-PAGE.

Des expériences d'immunoprecipitation d'HBsAg et d'HBsPolioAg par différents sérums indiquent que les deux particules réagissent avec des anticorps anti-HBsAg, et que les particules d'HBsPolioAg sont spécifiquement immunoprecipitées par les anticorps monoclonaux C₃ neutralisant le poliovirus, et par deux antisérums différents contre des oligopeptides synthétiques qui contiennent la séquence insérée.

Afin d'évaluer les propriétés immunogéniques des particules hybrides, des souris ont été immunisées avec HBsAg ou HBsPolioAg (Tableau 1), des ascites ont été créées intrapéritonéalement au moyen de cellules tumorigènes ne produisant pas d'anticorps afin d'obtenir un fluide ascitique immunologiquement similaire au sérum de souris (Anacker et al.).

La vaccination avec HBsAg conduit à un haut titre en anticorps réagissant avec des particules humaines d'HBsAg (souris n°1).

Toutefois, les souris immunisées avec l'HBsPolioAg répondent seulement faiblement aux antigènes HBs (souris n° 2 et 4, tableau Ib).

Ceci est en accord avec l'observation du fait que les déterminants antigéniques HBs sont partiellement distordus dans les particules hybrides.

La séquence insérée de poliovirus VP1, d'autre part, était immunologiquement active et induit, chez

toutes les souris, des anticorps reconnaissant les peptides synthétiques porteurs de cette séquence (tableau Ic) ainsi que la protéine VP1 entière du poliovirus type 5 1 (Western blot). De plus, les antisérum obtenus possèdent une efficacité spécifique pour les virus infectieux ainsi que pour ceux dénaturés par la chaleur comme l'indiquent les expériences d'immunoprécipitation du tableau 1d. Plus encore, tous les antisérum possèdent un 10 titre significatif en anticorps neutralisant les poliovirus (tableau Ie).

Des résultats préliminaires ont montré que les particules d'HBsAg sont également immunogéniques chez 15 les lapins : après injection de deux doses d'HBsPolioAg (10-40 µg chacune) 3 animaux sur 4 possèdent des anticorps immunoprécipitant avec les poliovirions infectieux.

Le potentiel que possèdent les particules HBsPolioAg d'entrainer l'apparition d'anticorps neutralisant reconnaissant un épitope rare commun aux poliovirions infectieux et dénaturés par la chaleur (Emini et al) montre que l'activité de la liaison aux anticorps et 20 d'immunogénicité de la séquence aminoacide correspondante est exprimée au moins en partie à la surface des particules d'enveloppe HBV.

25 Cette courte séquence forme un pic sur la capsidé du poliovirus (Hogle et al) et peut par conséquent avoir une structure autonome.

Dans les particules d'HBsPolioAg, les séquences avoisinantes de l'HBsAg pourraient en plus maintenir 30 la stabilité ou la flexibilité de la séquence de poliovirus inséré.

0201416

TABLEAU 1

SOURIS : ANTICORPS :	TITRE EN :	: ACTIVITE ANTIPOLOVIRUS :
N° : DE SOURIS :	ANTI- :	:-----
CONTRE :	HBSAG :	RECONNAISSANCE : IMMUNOPRECIPITATION (%) :
(I.U)	PEPTIDE :	----- : TITRE :
SYNTHETIQUE :	VIRIONS : VIRIONS	NEUTRALISANT (log 2)
(a)	(b)	(c)
1 : HBsAg	100	-
2 : HBsPolioAg	0.01	+
3 : HBsPolioAg	0	+
4 : HBsPolioAg	0.1	+
5 : PLACEBO	0	-

10

15

20

25

30

35

25

5

10

15

20

25

30

35

Les études des propriétés immunogéniques de l'HBsAg et de l'HBsPolioAg, correspondant aux résultats précédemment commentés du tableau I, ont été réalisées de la manière suivante :

a) Des souris Balb/C de 8 semaines ont été immunisées avec soit 2 µg d'HBsAg (n°1), soit 30 µg d'HBsPolioAg (n°2 - 4), purifiés comme il l'a été précédemment décrit, par injection intraperitoneale en association avec une émulsion à 50 % d'adjuvant complet de Freund, renouvelée deux semaines plus tard avec de l'adjuvant incomplet de Freund.

Après trois semaines, des cellules de myélome de souris sp2/0-Ag14 (Couillin et al) ont été injectées, suivi par une injection de rappel sans adjuvant.

La souris n°5 a été traitée sans antigène. Les fluides ascitiques ont été collectés après deux semaines et ont été analysés suivant les procédés qui suivent.

b) Les titres en anti-HBsAg ont été déterminés par le test radioimmunologique AU5AB (Abott) et sont exprimés en unités internationales (I.U.)

c) La liaison au peptide correspondant aux aminoacides 93-104 des poliovirus VP1 a été déterminé par la méthode ELISA (Voller et al).

Les puits ont été enduits avec ce peptide (0,5 µg dans le PBS) pendant une nuit, et les sites inoccupés ont été bloqués avec du BSA (1 % dans le PBS contenant 0,05 % de tween-20).

Après lavages répétés avec du Tween-20 0,05 % dans le PBS, les fluides ascitiques ont été additionnés à une dilution de 1 : 80 dans du PBS contenant 1 % de BSA et 0,05 % de Tween-20 et ont été incubés pendant 2 heures à 37°C.

Les puits ont été lavés, et des anticorps IgG anti-souris de chèvre (cappell) marqués à la peroxydase et dilués au 1/1000 ont été additionnés.

Après lavage, addition d'*o*-phenylénediamine (Merck : 0,5 µg/ml) dans 50 mM de tampon citrate/phosphate, pH 5, puis après 10 mn à température ambiante, la réaction est arrêtée par addition d' H_2SO_4 2,5 %.

Les sérum positifs sont ceux présentant une valeur d'absorption (DO) au moins trois fois supérieure à celle du contrôle (souris n°5).

d) Le poliovirus type 1 (Mahoney) a été marqué avec ^{35}S -Met et purifié par centrifugation dans un gradient de CsCl.

Les virions dénaturés par la chaleur ont été préparés par incubation des virions infectieux pendant une heure à 56°C.

Des aliquots de 50 µl contenant 15 000 cpm de particules marqués au ^{35}S -Met (Emini et al) en solution dans 150 mM de NaCl, 5 mM d'EDTA, 50 mM de tris, pH 7,4, 0,02 % de NaN₃ et 0,05 % de Nonid et P40, ont été incubés en présence de 50 µl de fluides d'ascites de souris pendant une heure à 37°C et pendant une nuit à 4°C.

Les complexes immuns ont été précipités par Staphylococcus aureus (souche Cowan I) (Kessler) et leur radioactivité a été testée. Les chiffres du tableau II représentent, en pourcentage, les valeurs de radioactivité immunoprecipitée.

e) Le titre en anticorps neutralisant de chaque sérum a été mesuré par test de réduction sur plaque standard avec des cellules Vero, en ajoutant une quantité de cent unités formant plaque (plaque forming units) de virus polio type 1 (Mahoney).

Les dilutions inverses de sérum (Log 2) donnant 5 % de réduction sur plaque ont été calculées à partir des courbes de régression des valeurs moyennes obtenues à partir de 3 expériences.

0201416

28

Les expériences avec le gène modifié du plasmide pPAP montrent que les séquences étrangères insérées dans la protéine peuvent se trouver exposées à la surface des particules. Si la conformation initiale des séquences exogènes est modifiée, il est raisonnable de penser que l'insertion de structures plus grandes ou la délétion de certaines parties de la protéine HBsAg peuvent résoudre ce problème. La recherche d'autres sites d'insertion est aussi possible. Une insertion de 8 acides aminés au niveau du résidu 50 de l'HBsAg (au site Bal I du gène S) permet la production de particules et leur excrétion.

L'invention permet par conséquent la production de vaccins mixtes.

Si l'on insère la séquence de déterminants antigéniques étrangers à ceux de l'HBsAg, il devient possible, si ces derniers sont exposés en surface, de fabriquer des vaccins mixtes contre un autre sous-type du virus HBV, contre de déterminants du core du virus (HBcAg, HBeAg) (A.M. Prince et al. 1983, S. Iwarson et al. 1984) contre les déterminants antigéniques de virus touchant les mêmes populations que l'hépatite B (SIDA, Herpès) et contre les déterminants antigéniques d'autres virus (T.M. Shinnick et al. 1983). Les huit acides aminés intervenant dans le déterminant antigénique majeur de la protéine VP₁ du poliovirus type 3 (D.M.A. (Evans et al. 1983) peuvent être insérés dans la protéine HBsAg par l'intermédiaire d'un fragment d'ADN synthétisé par voie chimique.

Ce type de manipulation peut aussi permettre l'expression de séquences biologiquement actives ayant un intérêt pharmaceutique.

Les particules produites par les Hépadna virus animaux (P.L. Marion et al. 1983) peuvent être utilisées dans les mêmes conditions.

0201416

29

A ce titre, l'invention concerne toute composition de vaccin contre l'hépatite virale B contenant une dose efficace de particules conformes à l'invention, notamment de 3 à 6 microgrammes de protéine/ml, par exemple 5 microgrammes de protéine/ml (dose unitaire), en association avec un véhicule pharmaceutique approprié au mode d'administration choisi, notamment par voie parentérale.

Les pages qui suivent renvoient à la documentation antérieure à laquelle il a été fait référence dans ce qui précède.

0201416

30

REFERENCES

- Anacker, R.L., Munoz, J.J. Immunol. 87, 426-432 (1961).
- Cattaneo, R., Will, H., Hernandez, N., Schaller, H. (1983) Nature, 305, 336-338.
- Colbère-Garapin, F., Horodniceanu, F., Kourilsky, P., Garapin, A.C. (1981) J. Mol. Biol., 150, 1-14.
- Couillin, P., Crainic, R., Cabau, N., Horodniceanu, F. & Boué, A. Ann Virol. (Inst. Pasteur) 133E, 315-323 (1982).
- Dubois, M.F., Pourcel, C., Rousset, S., Chany, C. et Tiollais, P. (1980) Proc. Natl. Acad. Sci. USA 77, 4549-4553.
- Emini, E.A., Bradford, A.J., Wimmer, E. Nature 304, 699-703 (1983).
- Evans, D.M.A., Minor, P.D., Schild, G.S., Almond, J.W. (1983) Nature 304, 460-462.
- Fricks, C.E., Icenogle, J.P., Hogle, J.M., J. Virol. 54, 856-859 (1985).
- Graham, F.L., Van der Eb, A.J. (1973) Virology, 52, 456.
- Gross-Bellard, M., Oudet, P., Chambon, P. (1973) Europ. J. Biochem. 36, 32.
- Hogle J.M., Chow, M., Filman, D.J. Science 229, 1358-1365 (1985).
- Hollinger, F.B., Sanchez, Y., Troisi, C., Dressman, G.R. Melnick, J.L. (1984) The 1984 International Symposium on Viral Hepatitis San Francisco, USA.
- Iwarson, S., Tabor, E., Thomas, H., Snoy, P., Gerety, R.J. (1984) The 1984 International Symposium on Hepatitis Virus, San Francisco, USA.
- Kaczorek, M., Delpeyroux, F., Chenciner, N., Streeck, R.E., Murphy, J.R., Boquet, P., Tiollais, P. (1983), Science 221, 853-855.

0201416

31

- Kessler, S.W. J. Immunol. 115, 1617-1624 (1975).
- Laemmli, U.K. (1970) Nature, 227, 680-685.
- Lusky, M., Botchan, M. (1981) Nature, 293, 79.
- Machida, A., Kishimoto, S., Ohnuma, H., Miyamoto, I., Baba, K., Oda, K., Nakamura, T., Funatsu, G., Mijakawa, Y., Mayami, M. (1982) Mol. Immunol. 19, 1087-1093.
- Marion, P.L., Knight, S.S., Feitelson, M.A., Oskiro, L.S., Robinson, W.S. (1983) Journal of Virology, 48, 534-541.
- Maxam, A., Gilbert, W. (1980), Methods Enzymol. 65, 499.
- Michel, M.L., Pontisso, P., Sobczak, E., Malpièce, Y., Streeck, R.E., Tiollais, P. (1984), Proc. Natl. Acad. Sci. USA 81, 7708-7712.
- Moriarty, A.M., Hoyer, B.H., Wai-Kuo Shih, J., Gerin, J.L., Hamer, D.H. (1981) Proc. Natl. Acad. Sci. USA 78.
- Neurath, A.R., Kent, S.B.H., Strick, N. (1984) The 1984 International Symposium on Hepatitis Virus, San Francisco, USA.
- Newmark, P. (1984), Nature 311, 510-511.
- Pasek, M. et al, Nature (London) 282-575 (1979).
- Peterson, D.L., Paul, D.A., Gavilanes, F., Achord, D.T., in : Advances in Hepatitis research (ed. Chisari, F.V.) 30-39 (Mason Publishing U.S.A, Inc. 1984).
- Pillot, J., Petit, M.A. (1984) Molecular Immunology, 21, 53-60.
- Prince, A.M., Vnek, J., Stephan, W. (1983) Develop. Biol. Standard. 54, 13-22 (S. Kargel, Basel).
- Rigby, P.W.J., Dieckmann, M., Rhodes, C., Berg, P. (1977) J. Mol. Biol. 113; 237.
- Shapiro, S.K., Chou, J., Richaud, F.V. Casadaban, M.J. (1983) Gene, 25, 71-82.
- Smith, G.L., Mackett, M., Moss, B. (1983) Nature, 302, 490-495.

0201416

32

- Southern, E.M. (1975) J. Mol. Biol. 98, 503-517.
 - Stibbe, W., Gerlich, W. (1983) Journal of Virology 46, 626-628.
 - Tiollais, P., Charnay, P., Vyas, G.N. (1981) Science 212, 406-411.
 - Valenzuela, P., Medina, A., Rutter, W.J. (1982) Nature, 298, 347-350.
 - Valenzuela, P. In Proceedings of the Twelfth International Conference on Yeast Genetics and Molecular Biology. Edinburgh 1984, 16.
 - Van der Werf, S., Wychowski, C., Bruneau, P., Blondel, B., Crainic, R. Horodniceanu, F., Girard, M. (1983), Proc. Natl. Acad. Sci. USA 80, 5080-5084.
 - Voller, A., Bedwell, D.E. & Berlett, A. A Guide with Abstracts of Microplate Applications, p.1 (Dynatech, Guernesey 1979).
 - Wigler, H., Pellicer, A., Silverstein, S., Axel, R., Urlaub G., Chasin, L. Proc. Natl. Acad. Sci. U.S.A 76, 1373-1376 (1979).
-

REVENDICATIONS

- 1: Particules contenant une proportion suffisante des séquences d'aminoacides caractéristiques du polypeptide majeur de l'antigène HBs, pour conserver à ces particules la structure caractéristique de l'antigène HBs, caractérisées par l'incorporation à ce polypeptide majeur d'au moins une séquence d'aminoacides étrangère à ce polypeptide majeure, de préférence elles-mêmes porteuses d'un site immunogène, à l'intérieur même de ce polypeptide majeur, notamment en l'une de ses régions hydrophiles normalement exposées à la surface extérieure desdites particules ou, en variante, par la substitution d'un ou plusieurs aminoacides appartenant à ces régions hydrophiles par ladite séquence étrangère d'aminoacides.
2. Particules selon la revendication 1, caractérisées en ce que la séquence étrangère d'aminoacides est insérée dans la région s'étendant entre les acides aminés 32 et 74 du polypeptide majeur.
3. Particules selon la revendication 1, caractérisées en ce que la séquence étrangère d'aminoacides est insérée dans la région s'étendant entre les acides aminés 110 et 156 du polypeptide majeur.
4. Particules selon l'une quelconque des revendications 1 à 3, caractérisées en ce que la séquence polypeptidique étrangère a une taille ne dépassant pas 16 aminoacides, notamment une taille de 5 à 16, ou même de 6 à 13, aminoacides.
5. Particules selon l'une quelconque des revendications 1 à 4, caractérisées en ce qu'elles contiennent également la séquence polypeptidique codée par la région pré-S du génome du virus de l'hépatite virale B.
6. ADN recombinant contenant une séquence d'ADN codant pour la région S et, le cas échéant, pré-S

du génome du virus de l'hépatite virale B, caractérisé en ce que ladite séquence d'ADN est localement modifiée par au moins une séquence nucléotidique codant pour la susdite séquence étrangère, en une au moins de celles des zones de la région S correspondant aux régions hydrophiles du polypeptide majeur susdit, et en ce que la région S et, le cas échéant, la région pré-S, sont à l'intérieur de l'ADN recombinant, placé sous le contrôle direct d'un promoteur exogène dont est connue la capacité de permettre l'initiation efficace de la transcription des gènes directement sous son contrôle dans les cellules eucaryotes, notamment humaines ou animales, ou encore aux levures auxquelles lesdits vecteurs sont destinés.

7. ADN recombinant selon la revendication 6, caractérisé en ce que la séquence nucléotidique codant pour la susdite séquence étrangère est localisée dans la région du gène S qui code pour le polypeptide qui s'étend entre les acides aminés 32 et 74 du polypeptide majeur entrant dans la constitution de l'antigène HBs.

8. ADN recombinant selon la revendication 6, caractérisé en ce que la séquence nucléotidique codant pour la susdite séquence étrangère est localisée dans la région du gène S qui code pour le polypeptide qui s'étend entre les acides aminés 110 et 156 du polypeptide majeur entrant dans la constitution de l'antigène HBs.

9. ADN recombinant selon l'une quelconque des revendications 6 à 8, caractérisé en ce que la susdite séquence nucléotidique étrangère code pour un polypeptide ne dépassant pas 16 aminoacides et plus particulièrement de 6 à 13 aminoacides.

10. ADN recombinant selon l'une quelconque des revendications 6 à 9, caractérisé en ce que le susdit promoteur exogène est constitué par l'un des promoteurs du virus SV40.

11. Lignée cellulaire provenant d'un hôte, notamment humain ou animal, ou encore de levure capable de reconnaître le promoteur exogène de l'ADN recombinant selon l'une quelconque des revendications 6 à 10, caractérisée en ce qu'elle comporte, incorporé dans le géome, un ADN recombinant conforme à l'une quelconque des revendications 6 à 10.

12. Lignée cellulaire selon la revendication 11, caractérisée en ce qu'elle est formée de cellules reconnaissant le promoteur du virus SV40.

13. Procédé de production de particules selon l'une quelconque des revendications 1 à 5, caractérisé par la transformation d'une lignée cellulaire, notamment humaine ou animale, par un ADN recombinant conforme à l'une quelconque des revendications 6 à 10, le promoteur de l'ADN recombinant étant choisi en conformité avec la nature de l'hôte cellulaire utilisé, en ce que l'on cultive le micro-organisme ainsi transformé et en ce que l'on recueille les particules produites.

14. Procédé selon la revendication 13, caractérisé en ce que la séquence étrangère incorporée dans le polypeptide majeur comprend au plus 16 aminoacides et en ce que l'on récupère les particules produites excrétées dans le milieu de culture du susdit hôte cellulaire.

0201416

1/2

FIG.1

0201416

2/2

FIG. 2

BamH1

GGA TCC GAT AAC CCA GCG TCG ACC ACG AAT AAG GAT AAG GGA TCC
GLY SER ASP ASN PRO ALA SER THR THR ASN LYS ASP LYS GLY SER

POLIOVIRUS

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

0201416

Numéro de la demande

EP 86 40 0944

DOCUMENTS CONSIDERES COMME PERTINENTS			
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
E	EP-A-0 180 490 (ANVAR) * Page 6, ligne 29 - page 8, ligne 20; page 13, ligne 7 - page 21, ligne 10 *	1-4	A 61 K 39/29 C 12 N 15/00 C 12 N 5/00 C 07 H 21/00 C 07 K 15/04 C 12 P 21/00 (C 12 P 21/00 C 12 R 1:91
Y	FR-A-2 532 850 (INSTITUT PASTEUR) * Page 3, ligne 20 - page 6, ligne 18 *	1	
Y	--- EP-A-0 119 342 (THE REGENTS OF THE UNIVERSITY OF CALIFORNIA) * Page 5, ligne 14 - page 7, ligne 23 *	1	
A	--- US-A-4 415 491 (GIRISH N. VYAS)		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4)
A	--- FR-A-2 550 203 (ANVAR) -----		A 61 K
Le présent rapport de recherche a été établi pour toutes les revendications			
Lieu de la recherche LA HAYE	Date d'achèvement de la recherche 21-07-1986	Examinateur REMPP G.L.E.	
CATEGORIE DES DOCUMENTS CITES			
X : particulièrement pertinent à lui seul	T : théorie ou principe à la base de l'invention		
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie	E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date		
A : arrière-plan technologique	D : cité dans la demande		
O : divulgation non-écrite	L : cité pour d'autres raisons		
P : document intercalaire	& : membre de la même famille, document correspondant		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.