

MARATHWADA MITRA MANDAL'S COLLEGE OF ENGINEERING, PUNE

ELECTRONICS AND TELECOMMUNICATION DEPARTMENT

TITLE:-MACHINE TOOL MONITORING USING ELECTRIC CURRENT ANALYSIS OF THE SPINDLE MOTOR IN CNC MACHINE.

AIM

The aim of this DAQ device is to analyze electric current analysis has the potential to offer a more direct and accurate assessment of the spindle motor's health, as changes in current patterns can indicate various issues such as tool wear, improper machining parameters, or impending mechanical failures.

OBJECTIVES

- The electric current drawn by the spindle motor is a critical parameter to monitor. By analyzing this current, you can assess various aspects of machine tool performance.
- Computer Numerical Control (CNC) is a manufacturing process in which preprogrammed computer software observes the movement of factory tools and machinery. This process can be used to control a range of complex machinery, from CNC routers.
- By continuously monitoring the spindle motor's current, user can predict when and where the maintenance is required.

GROUP MEMBERS

1.Avnish Raj BE102 2.Purva Jiwane BE146 3.Om Pokharkar BE164

PROJECT GUIDE

Prof. Pallavi Wadkar

PROJECT CO-GUIDE

Mr. Sandeep S. Mutalik

HARDWARE

WORKING

- DHAB S/24 sensor is the hall effect sensor which gives us the choice of having different current measuring ranges in the same housing (from ± 20 up to ± 600 A).
- This hall effect sensor is connected to Arduino.
- Sensor has 4 terminals including 2 current measuring channel 1 range upto ± 75 A and ± 500 A for channel 2. Other 2 is 5V input and GND terminal.
- DC input is applied to the sensor for measuring the current. DHT11 sensor is used to measure the temperature of the DC motor.
- Capacitors of 0.1 microfarad are used one is used between the output terminal of hall effect sensor and Arduino.
- Another capacitor is used between the input terminal of hall effect sensor and Arduino.

CONCLUSION

- It is an effective way to prevent damage to machine tools, cutters and workpieces during production processes.
- To be acceptable by the industries by maintaining low cost.
- These sensors transmit data to the monitoring system, which can be part of the CNC machine control system or a stand-alone monitoring device.
- To regularly monitoring and analysis of flow which reduces the performance and life of spindle motors.
- To allow the operator to take all protective measures to ensure the safety of the spindle motor.

