Graphical models

Sunita Sarawagi IIT Bombay

http://www.cse.iitb.ac.in/~sunita

Probabilistic modeling

- Given: several variables: $x_1, \ldots x_n$, n is large.
- Task: build a joint distribution function $Pr(x_1, ..., x_n)$
- Goal: Efficiently represent, estimate, and answer inference queries on the distribution
- Basic premise
 - Explicit joint distribution is dauntingly large
 - Queries are simple marginals (sum or max) over the joint distribution.

Example

Variables are attributes are people.

Age	Income	Experience	Degree	Location
10 ranges	7 scales	7 scales	3 scales	30 places

- An explicit joint distribution over all columns not tractable: number of combinations: $10 \times 7 \times 7 \times 3 \times 30 = 44100$.
- Queries: Estimate fraction of people with
 - Income > 200K and Degree="Bachelors",
 - Income < 200K, Degree="PhD" and experience > 10 years.
 - Many, many more.

Alternatives to an explicit joint distribution

- Assume all columns are independent of each other: bad assumption
- Use data to detect pairs of highly correlated column pairs and estimate their pairwise frequencies
 - ► Many highly correlated pairs income ⊥ age, income ⊥ experience, age⊥experience
 - Ad hoc methods of combining these into a single estimate
- Go beyond pairwise correlations: conditional independencies
 - ▶ income ⊥ age, but income ⊥ age | experience
 - ▶ experience ⊥⊥ degree, but experience ⊥⊥ degree | income

Graphical models make explicit an efficient joint distribution from these independencies

More examples of CIs

- The grades of a student in various courses are correlated but they become CI given attributes of the student (hard-working, intelligent, etc?)
- Health symptoms of a person may be correlated but are CI given the latent disease.
- Words in a document are correlated, but may become CI given the topic.
- Pixel color in an image become Cl of distant pixels given near-by pixels.

Graphical models

Model joint distribution over **several** variables as a product of smaller factors that is

- Intuitive to represent and visualize
 - Graph represent structure of dependencies
 - Potentials over subsets: quantify the dependencies
- Efficient to query
 - given values of any variable subset, reason about probability distribution of others.
 - many efficient exact and approximate inference algorithms

Graphical models = graph theory + probability theory.

Graphical models in use

- Roots in statistical physics for modeling interacting atoms in gas and solids [1900]
- Early usage in genetics for modeling properties of species [1920]
- Al: expert systems (1970s-80s)
- Now many new applications:
 - Error Correcting Codes: Turbo codes, impressive success story (1990s)
 - Robotics and Vision: image denoising, robot navigation.
 - Text mining: information extraction, duplicate elimination, hypertext classification, help systems
 - Bio-informatics: Secondary structure prediction, Gene discovery
 - Data mining: probabilistic classification and clustering.

Representation

Structure of a graphical model: Graph + Potential

Graph

- Nodes: variables $\mathbf{x} = x_1, \dots x_n$
 - Continuous: Sensor temperatures, income
 - Discrete: Degree (one of Bachelors, Masters, PhD), Levels of age, Labels of words
- Edges: direct interaction
 - Directed edges: Bayesian networks
 - Undirected edges: Markov Random fields

Location Age Degree Experience Income

Representation

Potentials: $\psi_c(\mathbf{x}_c)$

- Scores for assignment of values to subsets c of directly interacting variables.
- Which subsets? What do the potentials mean?
 - Different for directed and undirected graphs

Probability

Factorizes as product of potentials

$$\Pr(\mathbf{x}=x_1,\ldots x_n)\propto \prod \psi_S(\mathbf{x}_S)$$

Directed graphical models: Bayesian networks

- Graph G: directed acyclic
 - ▶ Parents of a node: $Pa(x_i)$ = set of nodes in G pointing to x_i
- Potentials: defined at each node in terms of its parents.

$$\psi_i(x_i, Pa(x_i)) = Pr(x_i|Pa(x_i))$$

Probability distribution

$$\Pr(x_1 \dots x_n) = \prod_{i=1}^n \Pr(x_i | pa(x_i))$$

Example of a directed graph

$\psi_2(E, A)$	A) = P	r(E A)		
	0-10	54× 10–15	> 15	Pr(El Age
(20–30	0.9	0.1	0	- 146
20–30 30–45	0.4	ი 5	0.1	+
> 45	0.1	0.1	0.8	J

$$\psi_2(I, E, D) = \Pr(I|D, AE)$$

3 dimensional table, or a histogram approximation.

Probability distribution

$$Pa(\mathbf{x} = L, D, I, A, E) = Pr(L) Pr(D) Pr(A) Pr(E|A) Pr(I|D, E)$$

Conditional Independencies

• Given three sets of variables X, Y, Z, set X is conditionally independent of Y given Z ($X \perp \!\!\! \perp Y | Z$) iff

$$Pr(X|Y,Z) = Pr(X|Z)$$

• Local conditional independencies in BN: for each x_i G \leftarrow DAG

- $x_i \perp L ND(x_i)|Pa(x_i)$
 - ND(Zi)
 ND(E)
 -AL, [

- $L \perp \!\!\!\perp E, D, A, I$
- *A* ⊥⊥ *L*, *D*
- $E \perp \!\!\!\perp L, D|A$

Cls and Fractorization

Theorem

Given a distribution $P(x_1,...,x_n)$ and a DAG G, if P satisfies Local-CI induced by G, then P can be factorized as per the graph. Local-CI(P, G) \Longrightarrow Factorize(P, G)

Proof.

- x_1, x_2, \ldots, x_n topographically ordered (parents before children) in G.
- Local CI(P, G): $P(x_i | x_1, ..., x_{i-1}) = P(x_i | Pa_G(x_i))$
- Chain rule:

$$P(x_1,...,x_n) = \prod_i P(x_i|x_1,...,x_{i-1}) = \prod_i P(x_i|Pa_G(x_i))$$

 $\bullet \implies \mathsf{Factorize}(P,G)$

Cls and Fractorization

Theorem

Given a distribution $P(x_1, ..., x_n)$ and a DAG G, if P can be factorized as per G then P satisfies Local-CI induced by G. Factorize $(P, G) \implies Local-CI(P, G)$

Proof skipped. (Refer Theorem 3.2 in KF book.)

Drawing a BN starting from a distribution

Given a distribution $P(x_1, ..., x_n)$ to which we can ask any CI of the form "Is $X \perp \!\!\! \perp Y | Z$?" and get a yes, no answer. Goal: Draw a minimal, correct BN G to represent P.

- A DAG G is correct if all Local-Cls that are implied in G hold in P.
- A DAG G is minimal if we cannot remove any edge(s) from G and still get a correct BN for P.

Algorithm for drawing a BN from Cls

 $x_1, \ldots, x_n =$ Choose an ordering of variables For $i = 1 \ldots n$

- S=smallest subset of $Q_i = \{x_1, \dots x_{i-1}\}$ such that $x_i \perp \!\!\!\perp Q_i S|S$
- Make each variable in S a parent of x_i

Examples

H, I, GI, G2

Examples Diseass 2 symptoms.

Why minimal

Theorem

G constructed by the above algorithm is minimal, that is, we cannot remove any edge from the BN while maintaining the correctness of the BN for P

Proof.

By construction. A subset of ND of each x_i were available when parent of U were chosen minimally.

Why Correct

Theorem

G constructed by the above algorithm is correct, that is, the local-Cls induced by G hold in P

Proof.

The construction process makes sure that the factorization property holds. Since factorization implies local-Cls, the constructed BN satisfied the local-Cls of P

Order is important

Hidden

Examples of CIs that hold in BN but not covered by local-CI