

Week8 Network Layer

COMP90007 Internet Technology

Prepared by: Chenyang Lu (Luke)

Chenyang Lu (Luke)

- Email: chenyang.lu@unimelb.edu.au

- Workshop Slides: https://github.com/LuChenyang3842/Internet-technology-teaching-material

Day	Time	Location
Tue	18:15	Bouverie st –B114
Wed	10:00	Elec Engineering -122
Wed	17:15	Bouverie-sr 132

Network Layer

Network Layer

Application Transport Network (Internet Protocol) **Data Link Physical**

- 1. Routing Method
 - Virtual-Circuit subnet (Connection Oriented)
 - Datagram subnet (Connectionless)
- 2. IPV4
 - Datagram
 - IP address and subnetting (important!)
- 3. Fragmentation
- 4. Routing algorithm (Manage Routing Table)

- Non-adaptive
 - Shortest Path routing
 - Flooding
- Adaptive
 - Distance Vector Routing
 - Links state routing
- Hierarchical Routing
- Broadcasting Routing
- Multicasting Routing

IP address and subnetting

> IP address = Network portion + Host portion

	Binary Form	Dot-d	ecimal	
IP address	?	118.2	17.110.149/10	01
Subnet mask	?			
Network prefix	?	?		
Number of hosts	?			
	Binary Form		Dot-decimal	
IP address	?		?	
Subnet mask	?		?	O_2
Network prefix	?		192.0.2.0/23	~-
Number of hosts	?			
	Binary Form		Dot-decimal	
IP address	?		?	
Subnet mask	111111111111111111111111111111111111111		Q3	
Network prefix	?			
Number of hosts	?			
If the network portion of Ip address is 15, what is the subnet mask? What is the number of host?				

	Binary Form	Dot-d	ecimal		
IP address	01110110.11011001.01101110.10010101 118.217.110		17.110.	149/10	01
Subnet mask	11111111.11000000.000000000000000000000		55.192.0.0		Q1
Network prefix	01110110.11000000.000000000.00000000	118.1	92.0.0/1	10	
Number of hosts	2^22				
	Binary Form			Dot-decimal	
IP address	N/A			N/A	
Subnet mask	11111111.1111111111110.00000000			255.255.254.0	\mathbf{O}^2
Network prefix	11000000.000000000.00000010.00000000		192.0.2.0/23	~-	
Number of hosts	2^9				
	Binary Form		Dot-de	cimal	
IP address	N/A		N/A		
Subnet mask	111111111111111111111111111111111111111		255.25	5.255.0	Q3
Network prefix	N/A		N/A		
Number of hosts	2^8				
If the network portion of Ip address is 15, subnet mask: 255.254.0.0, number of host: 2^17				Q^74	

- <u>Aggregation:</u> process of joining multiple IP prefixes into a single prefix to reduce size of routing table
- Based on the **longest prefix match**

• <u>Aggregation:</u> process of joining multiple IP prefixes into a single prefix to reduce size of routing table

Based on the **longest prefix match** 192.24.0.0/21 CS 11000000.00011000.000000000.00000000 192.24.16.0/20 **Unimelb** Art 11000000.00011000.00010000.00000000 **Outgoing line** 192.24.8.0/22 Eng 11000000.00011000.00001000.00000000

• <u>Aggregation:</u> process of joining multiple IP prefixes into a single prefix to reduce size of routing table

• <u>Aggregation:</u> process of joining multiple IP prefixes into a single prefix to reduce size of routing table

• <u>Aggregation:</u> process of joining multiple IP prefixes into a single prefix to reduce size of routing table

Question 1 Aggregation

A router has just received the following IP addresses: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21 and 57.6.120.0/21. If all of them use the same outgoing line, can they be aggregated? If so, to

Step1: Convert to binary

Step2: Find the longest matched prefix: first 19 bits

Step3: Extract the first 19 bits as the network portion, and all zeros for host portion which is: 00111001.00000110.01100000.00000000

Step4: Convert to decimal: the result is 57.6.96.0/19

Rules of packet forward

- A router maintains a routing table
- Packets are forwarded to the entry with the longest matching prefix (binary)

Question 2 Packet forward

A router has the following entries in its routing table:

Address/mask	Next hop
151.46.184.0/22	Interface 0
151.46.188.0/22	Interface 1
151.53.40.0/23	Router 1
Default	Router 2

For each of the following IP addresses, what does the router do If a packet with that address arrives?

- (a) 151.46.191.10
- (b) 151.46.187.2

Step1: Convert to binary

Step2: Find out the longest matched prefix

Question 2 Packet forward

Address/mask	Binary format	Next hop
151.46.184.0/22	10010111.00101110.10111000.00000000	Interface 0
151.46.188.0/22	10010111.00101110.10111100.00000000	Interface 1
151.53.40.0/23	10010111.00110101.00101000.00000000	Router 1
Default		Router 2

Interface 0 Interface 1 **Router** Router 1 Router 2

For each of the following IP addresses, what does the router do If a packet with that address arrives?

- (a) 151.46.191.10
- 1. Convert to Binary: 10010111.00101110.101111111.00001010
- 2. Find longest matched prefix is interface1, so route to interface 1.
- (b) 151.46.187.2
- 1. Convert to binary: 10010111.00101110.10111011.00000010
- 2. Find the longest matched prefix is interface 0, so route to interface 0.

Network Layer

Application Transport Network (Internet Protocol) **Data Link Physical**

- 1. Routing Method
 - Virtual-Circuit subnet (Connection Oriented)
 - Datagram subnet (Connectionless)
- 2. IPV4
 - Datagram
 - IP address and subnetting (important!)
- 3. Fragmentation
- 4. Routing algorithm (Manage Routing Table)
- *
- Non-adaptive
 - Shortest Path routing
 - Flooding
- Adaptive
 - Distance Vector Routing
 - Links state routing
- Hierarchical Routing
- Broadcasting Routing
- Multicasting Routing

Question 3 Routing algorithm

Why do we need routing algorithms in the Network layer? What are the key categories of routing algorithms?

Answer:

Routing algorithms are needed to help decide on which output line an incoming packet should be transmitted.

Key Categories:

- Non-Adaptive Algorithms
- Adaptive Algorithms

Routing algorithm

- Non-adaptive (Static)
 - Shortest Path routing (use to Dijkstra's algorithm to build sink tree)
 - Flooding

- Adaptive (Dynamic)
 - Distance Vector Routing
 - Links state routing

Question 4 Routing algorithm (Shortest Path)

Compute the sink tree for Node F in the graph below:

Use Dijkstra's algorithm to determine tree

Procedures:

- 1. Create a set *P*, tracking the nodes added in the tree. Initialize it as empty.
- 2. For each node, assign a **distance value** *d* **from the node to sink**. Initialize the distance for all nodes as infinity.
- 3. Start from the sink node, assign distance as 0.
- 4. Repeat when *P* doesn't include all nodes:
 - For all the nodes not in *P*, *p*ick a node *v* with min distance and add it to *P*
 - Update *d* for all the adjacent nodes of *v* (*only if the d is smaller*)

Refer to Dijkstra's algorithm on the Slide 8 of Week 6's Lecture

N	А	В	С	D	Е	F	Set P
1	∞	∞	∞	∞	∞	0	{F}
2	∞	6	∞	7	8		{F, B}
3	10		8	7	8		{F, B,D}
4	10		8		8		{F, B,D,E}
5	10		8				{F, B,D,E,C}
6	10						{F, B,D,E,C, A}

Sink Tree:

Question 5 Routing algorithm (Distance Vector Routing)

Distance vector routing is used for the diagram shown below, and the following vectors have just come in to router C: from B: (5, 0, 8, 12, 6, 2); from D: (16, 12, 6, 0, 9, 10); and from E: (7, 6, 3, 9, 0, 4). The cost of the links from C to B, D, and E, are 6, 3, and 5, respectively. What is C's new routing table? Give both the outgoing line to use and the expected delay.

Question 5 Routing algorithm (Distance vector routing)

Distance vector routing is used for the diagram shown below, and the following vectors have just come in to router C: from B: (5, 0, 8, 12, 6, 2); from D: (16, 12, 6, 0, 9, 10); and from E: (7, 6, 3, 9, 0, 4). The cost of the links from C to B, D, and E, are 6, 3, and 5, respectively. What is C's new routing table? Give both the outgoing line to use and the expected delay.

From C

All Routers	From B	From D	From E	
To A	5	16	7	
То В	0	12	6	
To C	8	6	3	
To D	12	0	9	
То Е	6	9	0	
To F	2	10	4	

All Routers	Via B	Via D	Via E
To A	11	19	12
То В	<mark>6</mark>	15	11
To C	14	9	8
To D	18	3	14
То Е	12	12	<mark>5</mark>
To F	8	13	9

All Routers	Outgoing Line	Expected Delay from C
To A	В	11
To B	В	6
To C	-	0
To D	D	3
То Е	Е	5
To F	В	8

C to B: 6 C to D: 3 C to E: 5