Тесты к разделу 1. СЛУЧАЙНЫЕ СОБЫТИЯ

Тесты к § 1. Множество элементарных событий. Классическое определение вероятности

Тест 1 «Случайные события: основные понятия»

	Tecт 1 «Случайные события: основные понятия»			
1.1.	Наугад выбирается целое число от 1 до 10.	1) совместны;		
	Рассмотрим события:	2) несовместны;		
	$A = \{$ выбрано четное число $\},$	3) противоположны;		
	$B = \{$ выбрано нечетное число $\},$	4) образуют полную		
	$C = \{$ выбранное число меньше $5\},$	группу событий.		
	$D = \{$ выбранное число больше $5\}$.			
	События A и B			
	(Выберите все правильные варианты.)			
1.2.	В условиях задания 1.1. события A и C	1) совместны;		
	(Выберите все правильные варианты.)	2) несовместны;		
		3) противоположны;		
		4) образуют полную		
		группу событий.		
1.3.	В условиях задания 1.1. события C и D	1) совместны;		
	(Выберите все правильные варианты.)	2) несовместны;		
		3) противоположны;		
		4) образуют полную		
		группу событий.		
1.4.	В условиях задания 1.1. вероятность события	1) 0,1; 2) 0,2; 3) 0,3;		
	C равна	4) 0,4; 5) 0,5.		
1.5.	В условиях задания 1.1. рассмотрим события:	1) <i>D</i> ;		
	$D = \{$ выбранное число больше $5\};$	2) <i>E</i> ;		
	$E = \{$ выбранное число равно $5\};$	(3) <i>F</i> ;		
	$F = \{$ выбранное число больше $4\};$	4) <i>G</i> ;		
	$G = \{$ выбранное число не меньше $5\}$;	5) <i>H</i> .		
	$H = \{$ выбранное число больше или равно 5 $\}$.			
	Противоположным событию C является со-			
	бытие			
	(Выберите все правильные варианты.)			

Тест 2 «Элементы комбинаторики».

2.1.	Число способов выбрать <i>m</i> различных элементов из имеющихся <i>n</i> элементов равно:	1) A_n^m ; 2) C_n^m ; 3) 4) \overline{C}_n^m ; 5) mn .	$\overline{A}_n^m;$
2.2.	Дано множество из 3 элементов: $\{a_1, a_2, a_3\}$.		

А) Размещениями из 3 элементов 1) (a_1, a_1) , (a_1, a_2) , (a_1, a_3) , этого множества по 2 являются $(a_2, a_1), (a_2, a_2), (a_2, a_3),$ комбинации... $(a_3, a_1), (a_3, a_2), (a_3, a_3);$ Б) Сочетаниями из 3 элементов этого множества по 2 являются 2) (a_1, a_1) , (a_1, a_2) , (a_1, a_3) , комбинации... $(a_2, a_2), (a_2, a_3), (a_3, a_3);$ В) Размещениями с повторени-3) (a_1, a_2) , (a_1, a_3) , (a_2, a_1) , ями из 3 элементов этого множества по 2 являются комбинации... $(a_2, a_3), (a_3, a_1), (a_3, a_2);$ Г) Сочетаниями с повторениями 4) (a_1, a_2) , (a_1, a_3) , (a_2, a_3) ; из 3 элементов этого множества по 2 являются комбинации... 5) (a_1, a_1) , (a_2, a_2) , (a_3, a_3) . (Укажите для каждой буквы номер правильного варианта ответа.) 1) 5; 2) 25; 3) 24; 4) 120; 2.3. Число перестановок 5 элементов равно: 5) 720. 2.4. Из шести карточек с цифрами 1, 2, 3, 4, 5, 6 1) 18; 2) 20; 3) 56; взяли наудачу три карточки. Сколько различ- 4) 120; 5) 216. ных наборов могли получить? 2.5. Имея шесть карточек с цифрами 1, 2, 3, 4, 5, 6, 1) 18; 2) 20; 3) 56; составляли трехзначные числа. Сколько раз- 4) 120; 5) 216. личных вариантов могло получиться?

Тест к § 2. Методы задания вероятностей

Тест 3 «Методы задания вероятностей».

	1 cc 1 3 Willerogbi	задания вероятностеи».
3.1.	В урне содержится 5 шаров, из них 3 синих, остальные — красные. Наудачу вынимают один шар. Какова вероятность того, что он синий?	1) $\frac{3}{10}$; 2) $\frac{1}{3}$; 3) $\frac{1}{2}$; 4) $\frac{3}{5}$; 5) $\frac{2}{3}$.
3.2.	В урне содержится 5 шаров, из них 3 синих, остальные — красные. Наудачу вынимают 2 шара. Какова вероятность того, что среди вынутых шаров только один синий?	1) $\frac{1}{10}$; 2) $\frac{1}{5}$; 3) $\frac{6}{25}$; 4) $\frac{3}{10}$; 5) $\frac{3}{5}$.
3.3.	От прямоугольника со сторонами 3 и 4 отрезок <i>AB</i> отсекает квадрат. В прямоугольник наудачу брошена точка. Какова вероятность того, что точка попадет в указанный квадрат?	$(1) \frac{1}{4}; 2) \frac{1}{16}; 3) \frac{1}{16};$

3.4.	_	словиях задания 3.3. какова вероятность $(3, 4; 2) \frac{9}{16}; 3) \frac{7}{16};$ $(4) \frac{1}{4}; 5) 0.$		
3.5.	Выберите все верные утверждения.			
	1 Если событие A – невозможное, то $P(A) = 0$.			
	2	2 Если $P(A) = 0$, то событие A – невозможное.		
	3 Если событие A – достоверное, то $P(A) = 1$.			
	4 Если $P(A) = 1$, то событие A – достоверное.			
	5 $0 \le P(A) \le 1$ для любого события A .			
	6 0 < P(A) < 1 для любого события A .			

Тест к § 3. Соотношения между событиями

Тест 4 «Операции над событиями».

	тест 4 «Операции над сообтиями»			
4.1.	Игральный кубик подброшен наудачу. Рас-	1) A;		
	смотрим события:	2) <i>B</i> ;		
	$A = \{$ выпало четное число очков $\},$	(3) C;		
	$B = \{$ выпало число очков, кратное $3\}$,	(4) <i>D</i> ;		
	$C = \{$ выпало 2, 3, 4 или 6 очков $\}$,	5) Ω;		
	$D = \{$ выпало 6 очков $\}$.	6) Ø.		
	Событие $A + B$ равно			
4.2.	В условиях задания 4.1. событие AB равно	1) <i>A</i> ; 2) <i>B</i> ; 3) <i>C</i> ;		
		$(4) D; 5) \Omega; 6) \emptyset.$		
4.3.	Монета подброшена наудачу 5 раз. Рассмот-	1) $AB = C$;		
	рим события:	2) $AB = A$;		
	$A = \{$ хотя бы один раз выпал герб $\}$,	3) $AB = \Omega$;		
	$B = \{$ не оолее одного раза выпал геро $\},$	·		
	$C = \{$ только один раз выпал герб $\}$.	4) AC = C;		
	Выберите все верные соотношения из указан-	5) AC = A;		
	ных.	6) $AC = \Omega$.		
4.4.	В условиях задания 4.3. выберите все верные	1) $A + B = C$;		
	соотношения из указанных.	2) $A + B = A$;		
		3) $A + B = \Omega$;		
		4) $A + C = C$;		
		5) $A + C = A$;		
		6) $A + C = \Omega$.		
4.5.	Пусть A – случайное событие, $A \subseteq \Omega$.			

А) Разность событий ΩM равна событию... 1) *A*; Б) Разность событий $A \backslash A$ равна событию... 2) \overline{A} ; В) Произведение событий AA равно событию... 3) Ω; Γ) Сумма событий A+A равна событию... 4) Ø.

(Укажите для каждой буквы номер правильного варианта ответа.)

Тест к § 5. Основные теоремы о вероятности

		тест 5 «Основные теоремы о вероятности».			
5.1.	Установите соотво	Установите соответствие между формулами и их названиями.			
А) Формула полной вероятности Б) Формула Байеса В) Теорема сложения вероятностей несовместных событий Г) Теорема сложения вероятностей совместных событий Д) Теорема умножения вероятностей зависимых событий Е) Теорема умножения вероятностей независимых событий		2) $P(A+B) = P(A) + P(B)$; 3) $P(AB) = P(A)P(B \mid A)$; 4) $P(AB) = P(A)P(B)$; 5) $P(A) = P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) + \dots + P(H_n)P(A \mid H_n)$; 6) $P(H_k \mid A) = \frac{P(H_k)P(A \mid H_k)}{P(A)}$.			
	(Укажите для ка	ждой буквы номер правильного варианта ответа.)			
5.2.	Выберите все верные утверждения.				
	1 Если события $H_1, H_2,, H_n$ попарно несовместны, то они образуют полную группу событий.				
	$oldsymbol{2}$ События H_1 и $\overline{H_1}$ образуют полную группу событий.				
	3 Если $P(H_1) + P(H_2) + + P(H_n) = 1$, то события $H_1, H_2,, H_n$ образуют полную группу событий.				
	4 Если событи	я $H_1, H_2,, H_n$ образуют полную группу собы-			
	тий, то $P(H)$	$(1) + P(H_2) + + P(H_n) = 1.$			
5.3.	Выберите все верные утверждения.				

	1	1 Если события A и B независимы, то $P(A \mid B) = P(A)$.		
	2	Если события A и B независимы, то $P(A \mid B) = 0$.		
	3	Если события A и B несовместны, то $P(A \mid B) = P(A)$.		
	4	Если события A и B несовместны, то $P(A \mid B) = 0$.		
_	П			

5.4. Проводится 3 независимых испытания. Рассмотрим события:

 $A_i = \{i$ -е испытание проведено успешно $\}$ (i = 1; 2; 3).

Установите соответствие между событиями и их выражением через события A_1, A_2, A_3 .

- $A) A = {xorg бы oднo}$ испытание проведено успешно} Б) $B = \{ \text{не более од-} \}$ ного испытания проведено успешно} B) $C = \{$ только одно испытание проведено успешно} Γ) $D = {$ все испытапроведены ния успешно}
- 1) $A_1A_2A_3$; 2) $\overline{A_1} \overline{A_2} \overline{A_3}$; 3) $A_1 \overline{A_2} \overline{A_3} + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3$; 4) $A_1 \overline{A_2} \overline{A_3} + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3 +$ $+\overline{A_1}\,\overline{A_2}\,\overline{A_3};$
- 5) $A_1 \overline{A_2} A_3 + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3 +$ $+A_1 A_2 \overline{A_3} + A_1 \overline{A_2} A_3 + \overline{A_1} A_2 A_3 + A_1 A_2 A_3$.

(Укажите для каждой буквы номер правильного варианта ответа.)

- **5.5.** Из 7 карточек с буквами Т, Е, О, Р, Е, М, А выбираются наугад две карточки. Рассмотрим события: $A = \{$ первой выбрана карточка с согласной буквой $\}$, $B = \{$ второй выбрана карточка с буквой $E \}$. Тогда $\left| 4 \right| \frac{1}{7}$; 5) $\frac{2}{7}$. условная вероятность $P(B \mid A)$ равна...
 - $1)\frac{1}{6}$; 2) $\frac{1}{3}$; 3) $\frac{1}{2}$;

Тест к § 6. Схема Бернулли

Тест 6 «Схема Бернулли».

6.1.	Проводится 5 независимых испытаний, $ 1 p^3$; 2) $p^3(1-p)^2$;
	каждое из которых оказывается успешным с вероятностью p . Тогда вероятность того, $(3) C_5^3 p^3 (1-p)^2$;
	с вероятностью p . Тогда вероятность того, $ \mathfrak{I} \mathfrak{C}_5 p $ $(1-p) ;$
	что ровно 3 испытания окажутся успеш- ными, вычисляется по формуле 4) $C_5^3 p^3 (1-p)^5$;
	ными, вычисляется по формуле 5) $3p^3(1-p)^2$.
	3) 3p (1-p).
6.2.	Правильную монету подбрасывают наудачу 1) Пуассона;
	10 раз. Для определения вероятности того, 2) Бернулли;

	что герб выпадет ровно 6 раз, следует ис-	3) локальную	Муавра-
			тууавра-
	пользовать формулу	Лапласа;	
		4) интегральную	Муавра-
		Лапласа;	
		5) полной верояті	ности.
6.3.	Правильную монету подбрасывают наудачу	1) Пуассона;	
	100 раз. Для определения вероятности того,	2) Байеса;	
	что герб выпадет ровно 60 раз, следует ис-	3) локальную	Муавра-
	пользовать формулу	Лапласа;	• •
		4) интегральную	Муавра-
		Лапласа;	
		5) полной верояті	ности.
6.4.	Вероятность ошибки при передаче сигнала	1) Пуассона;	
	0,05. Для определения вероятности того,	2) Байеса;	
	что при передаче 100 сигналов будет сде-	3) локальную	Муавра-
	лано 6 ошибок, следует использовать фор-	Лапласа;	• •
	МУЛУ	4) интегральную	Муавра-
		Лапласа;	, 1
		5) полной верояті	ности.
6.5.	Правильный кубик подбрасывают наудачу	1) Пуассона;	
	100 раз. Для определения вероятности того,	, ,	
	что 6 очков выпадет не менее 60 раз, сле-	3) локальную	Муавра-
	дует использовать формулу	Лапласа;	, 1
	1 1 3 3	4) интегральную	Муавра-
		Лапласа;	
		5) полной верояті	ности.
		z, mana zapomi	