Uniwersytet w Białymstoku

Wydział Fizyki

Sprawozdanie nr. 1 z ćwiczenia labolatoryjnego nr.24 Temat: Badanie rozszerzalności cieplnej powietrza

 $Krzysztof\ Bezubik$

Email: kb89219@student.uwb.edu.pl University: Uniwersytet w Białymstoku

Department: Wydział Fizyki

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie jak zmienia się objętość powietrza pod wpływem zmian temperatury przy stałym ciśnieniu.

2 Wprowadzenie teoretyczne

Gaz doskonały

Gaz doskonały to model teoretyczny gazu, w którym zakłada się, że cząsteczki gazu nie oddziałują ze sobą i poruszają się zgodnie z prawami mechaniki klasycznej. W modelu tym pomija się objętość cząsteczek oraz siły międzycząsteczkowe.

Równanie gazu doskonałego

Równanie stanu gazu doskonałego opisuje zależność między ciśnieniem (P), objętością (V) i temperaturą (T) gazu doskonałego:

$$PV = nRT \tag{1}$$

gdzie:

- P ciśnienie [Pa]
- V objętość $[m^3]$
- n liczba moli [mol]
- R uniwersalna stała gazowa $[8.314 \frac{J}{mol \cdot K}]$
- T temperatura [K]

Współczynnik rozszerzalności liniowej

Współczynnik rozszerzalności liniowej (α) opisuje, jak zmienia się długość ciała stałego wraz ze zmianą temperatury:

$$\alpha = \frac{1}{L} \frac{dL}{dT} \tag{2}$$

gdzie:

- α współczynnik rozszerzalności liniowej $[\frac{1}{K}]$
- L długość początkowa [m]
- dL zmiana długości [m]
- dT zmiana temperatury [K]

Współczynnik rozszerzalności objętościowej

Współczynnik rozszerzalności objętościowej (β) opisuje, jak zmienia się objętość ciała stałego lub cieczy wraz ze zmianą temperatury:

$$\beta = \frac{1}{V} \frac{dV}{dT} \tag{3}$$

gdzie:

- β współczynnik rozszerzalności objętościowej $[\frac{1}{K}]$
- V objętość początkowa [m^3]
- dV zmiana objętości $[m^3]$
- dT zmiana temperatury [K]

Współczynnik rozszerzalności objętościowej gazu doskonałego przy stałym ciśnieniu

Dla gazu doskonałego przy stałym ciśnieniu, współczynnik rozszerzalności objętościowej (β) jest odwrotnością temperatury:

$$\beta = \frac{1}{T} \tag{4}$$

gdzie:

- β współczynnik rozszerzalności objętościowej $[\frac{1}{K}]$
- T temperatura [K]

3 Omówienie pomiarów:

Do realizacji ćwiczenia potrzebowaliśmy by regularnie sprawdzać jak zmienia się poziom wody w odwróconej miarce (Rysunek.1 po lewej stronie oznaczone jako V) w skutek podgrzewania powietrza w zbiorniku

4 Analiza pomiarów:

Zebrane pomiary zapisałem w tabeli ??. Zakładamy że ciśnienie [p=const] jest takie samo w całym zbiorniku, więc możemy zastosować równanie gazu doskonałego. W V_pwz znajduje sie

i	T_i (*C)	T_i (K)	$V_i (cm^3)$	$V_i (m^3)$
1	28	301.15	160	0.00016
2	33	306.15	166	0.000166
3	38	311.15	170	0.00017
4	43	316.15	176	0.000176
5	48	321.15	180	0.00018
6	53	326.15	184	0.000184
7	58	331.15	188	0.000188
8	63	336.15	193	0.000193
9	68	341.15	197	0.000197
10	73	346.15	201	0.000201
11	78	351.15	205	0.000205
12	83	356.15	208	0.000208
13	88	361.15	212	0.000212
14	93	366.15	216	0.000216
15	98	371.15	220	0.00022

Tabela 1: Tabela danych

4.1 Obliczanie niepewności

Do obliczenia niepewnośći ?? L_i również użyyjemy metody różniczki zupełnej której wzór wygląda następująco (l_0 ma stałą wartość wiec nie różniczkujemy po l_0):

$$\Delta L_i = \left| \frac{\partial L_i}{\partial l_i} \right| \cdot \Delta l_i \tag{5}$$

$$\Delta L_i = |-1| \cdot \Delta l_1 \tag{6}$$

4.2 Obliczanie regresji liniowej