Bacterial Genomics Workshop

March 28th -30th 2016

Goals of workshop

- Get an overview of steps in microbial genomics pipeline
- Get exposure to common file formats and terminology in genomics
- Get hands on experience with a set of tools that could compose a genomics pipeline
- Get experience working in a high-performance computing environment

Format of workshop sessions

- 1. Start with an overview of where the current session fits into the larger pipeline and introduce the steps/tools (~10 min)
- 2. Demonstration of tools and overview of input and output file formats (~10-20 min)
- Students work through labs to gain hands on experience with data/tools, with instructors on hand to answer questions and troubleshoot problems

Caveats

 This is the first time we are piloting this material (read – let us know if things are unclear!)

 This is the first time students are going through these lab materials (read – there may be some bugs ☺)

So you want to sequence some bacteria?

Microbial phylogenetics

Comparative genomics

Genomic epidemiology

DNA and library preparation

1. Sample Preparation

2. Sequencing

Illumina sequencing

https://youtu.be/womKfikWlxM

Sequencing quality control

Forward reads

Reverse reads

FastQC

- 1. Contaminants
- 2. Aberrant quality

№ FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

Forward reads

Trimmomatic

- 1. Filter reads
- 2. Trim reads

Reverse reads

Clean fastq files

Variant identification

Clean fastq files

SAM/BAM files

SAM/BAM files

Raw VCF files

Variant filtering and annotation

VCF files

Filtered VCF files

Filtered VCF files

VCF, BAM, BAI, fasta files

Genome assembly

Assembly	# Contigs	N50
Genome1	100	100,000
Genome2	150	75,000
Genome3	800	10,000
Genome4	75	150,000

Text files

Orient >pseudo-molecule contigs **ATCGTCGTGCTGC TGCTGTCGTGCTG** CAGTGCATGTGCTA **GACTGTCGATGCTA AGCTGTACCGATG ACTGCTGACTGAC**

metrics

Fasta file

Genome annotation

>pseudo-molecule
ATCGTCGTGCTGC
TGCTGTCGTGCTG
CAGTGCATGTGCTA
GACTGTCGATGCTA
AGCTGTACCGATG
ACTGCTGACTGAC

Fasta file

Genbank file

Genbank files, alignment files

Comparative genomics

and/or pep

Phylogenetics

Tree

construction

Recombination

filtering