POLYNOMIAL COMONOIDS AND BICOMODULES

Recall the substitution product of polynomials P and Q, denoted $P \triangleleft Q$.

- A position a in $P \triangleleft Q$ consists of a position a_{base} in P and positions a_f in Q for each direction f from a_{base} .
- A direction from position a in $P \triangleleft Q$ consists of a direction f from a_{base} and a direction g from a_f .

We denote such a direction from such a position in a substitution product by $f \cdot g$.¹ Accordingly, id, will denote the unique direction from the unique position in the unit for substitution id₄ (a.k.a. the polynomial y).²

Note the following identity for transformations α and β between polynomials.

$$(\alpha \triangleleft \beta)_a^\sharp (f \boldsymbol{\cdot} g) = \underbrace{\alpha_{(a_{\mathrm{base}})}^\sharp (f)}_{\boldsymbol{\cdot}} \boldsymbol{\cdot} \beta_{(a_{\bigstar})}^\sharp (g).$$

Or in brief, "we have $(\alpha \triangleleft \beta)^{\sharp}(f \cdot g) = \alpha^{\sharp}(f) \cdot \beta^{\sharp}(g)$ whenever this makes sense."

Proposition 1. Polynomial comonoids are categories.

Proof. Let C be a polynomial comonoid. Denote counit by ε and comultiplication by δ .

¹Be aware there may be other directions named $f \triangleleft g$ from other positions in $P \triangleleft Q$.

²Given directions f, g, and h respectively belonging to polynomials P, Q, and R, directions of the form $(f \cdot g) \cdot h$ belonging to $(P \triangleleft Q) \triangleleft R$ and directions of the form $f \cdot (g \cdot h)$ belonging to $P \triangleleft (Q \triangleleft R)$ are identified under the relevant monoidal coherence isomorphism. Hence brackets can be omitted.

Similarly, for any direction f belonging to a polynomial P, we have that $\mathrm{id}_{\blacktriangleleft} \circ f$ and $f \circ \mathrm{id}_{\blacktriangleleft}$ (respectively belonging to $\mathrm{id}_{\dashv} \circ P$ and $P \circ \mathrm{id}_{\dashv}$) are both canonically identified with f.

³Meaning, $(\alpha \triangleleft \beta)_a^{\sharp}(f \triangleleft g)$ is defined \iff there are u and v such that $\alpha_u^{\sharp}(f) \triangleleft \beta_v^{\sharp}(g)$ actually describes a direction from a; in this case, the former and latter are equal.

⁽We are assuming the analogue of this property holds for α and β themselves: if any $\alpha_u^{\sharp}(f)$ has the same name as a direction from a, then $\alpha_a^{\sharp}(f)$ is defined with that value — and likewise for β . This is trivially so if across the domains of α and β we use different names for different directions.)

Observe first that the right identity law forces $\delta_1(a)_{\text{base}} = a$ for all $a \in C(1)$. Therefore the expression $\delta_1(a)_f$ for $f \in C[a]$ has a well-defined meaning.

We gather the data for a category C.

- The set of objects Ob(C) is C(1), the set of positions in C.
- The set of arrows Arr(C) is $\sum_{a \in C(1)} C[a]$, the set of all directions in C.
- The source map s sends each $f \in C[a]$ to a. (Hence the polynomial C is described by the bundle $Arr(\mathcal{C}) \stackrel{s}{\to} Ob(\mathcal{C})$.)
- The target map t sends each $f \in C[a]$ to $\delta_1(a)_f$.
- The identity map e sends each $a \in C(1)$ to $\varepsilon_a^{\sharp}(\mathrm{id}_{\bullet})$.
- The composition map m sends each pair of compatible arrows $f \in C[a], g \in C[t(f)]$ to $\delta_a^{\sharp}(f \cdot g)$.

Next, observe that if we have such prerequisite data (not laws) for a category, subject to just the law s(e(a)) = a, then we find that further imposing the left identity law m(e(s(f)), f) = f (and requiring that both sides are defined whenever one is) automatically forces the law t(e(a)) = a to hold.⁴ Similarly, if we have the law s(m(f,g)) = s(f) as well as t(e(a)) = a, then the associativity law m(m(f,g),h) = m(f,m(g,h)) forces t(m(f,g)) = t(g).⁵

We verify the data from above satisfy the laws of a category.

- The law s(e(a)) = a is true by construction; e(a) is a direction from the position a.
- The law s(m(f,g)) = s(f) is true by construction; m(f,g) is a direction from the position s(f).
- The left identity law m(e(s(f)), f) = f is directly expressed by the comonoid left identity law, which identifies $\delta^{\sharp}(\varepsilon^{\sharp}(\mathrm{id}) \cdot f)$ with f whenever this makes sense.

⁴We have m(e(s(e(a))), e(a)) = e(a), since the right side is defined. The left side reduces to m(e(a), e(a)). This expression only makes sense if t(e(a)) = s(e(a)), which is a.

⁵Given that f and g are composable, we have m(m(f,g),e(t(g)))=m(f,m(g,e(t(g)))), since the right side is defined. The left side only makes sense if t(f,g)=s(e(t(g))), which is t(g).

- The right identity law m(f, e(t(f))) = f is directly expressed by the comonoid right identity law, which identifies $\delta^{\sharp}(f \cdot \varepsilon^{\sharp}(\mathrm{id}))$ with f whenever this makes sense.
- The associativity law m(m(f,g),h) = m(f,m(g,h)) is directly expressed by the comonoid associativity law, which identifies $\delta^{\sharp}(\delta^{\sharp}(f \cdot g) \cdot h)$ with $\delta^{\sharp}(f \cdot \delta^{\sharp}(g \cdot h))$ whenever this makes sense.
- The law t(e(a)) = a is forced to hold (due to the comonoid left identity law).
- The law t(m(f,g)) = t(g) is forced to hold (due to the comonoid associativity law).

Conversely, let \mathcal{C} be a category. We immediately obtain the bundle $\operatorname{Arr}(\mathcal{C}) \stackrel{s}{\to} \operatorname{Ob}(\mathcal{C})$. Let C denote the polynomial described by this bundle (the "outfacing polynomial" of \mathcal{C}). We exhibit a comonoid struture on C.

- The counit ε singles out the identity in each object's set of outfacing maps.
- The comultiplication δ endows each object a with the map δ_a^{\sharp} sending $f \cdot g$ to m(f,g) for all arrows of the form $f: a \to b, g: b \to c$ (through which the map δ_0 is implicit).

The above processes of translation between the prerequisite data (not laws) for a category subject to just s(e(a)) = a and s(m(f,g)) = g, and the prerequisite data (not laws) of a polynomial comonoid subject to just $\delta_1(a)_{\text{base}} = a$, are inverse by construction. Moreover, we saw earlier that the identity and associativity category laws, in this context, directly translate to the identity and associativity comonoid laws.

Proposition 2. A polynomial right comodule amounts to a family of copresheaves.

Proof. Let (D, ε, δ) be a polynomial comonoid and let M be a right comodule on D. Denote right comodule comultiplication by ρ .

Observe first that the identity law forces $\rho_1(a)_{\text{base}} = a$ for all $a \in M(1)$. Therefore the expression $\rho_1(a)_x$ for $x \in M[a]$ has a well-defined meaning.

Let \mathcal{D} be the category corresponding to D. We gather the data for a family of copresheaves $\{X_a\}_{a\in A}$ on \mathcal{D} .

- The family's indexing set A is M(1), the set of positions in M.
- The total set of elements $\sum_{d \in Ob(\mathcal{D})} X_a(d)$ in X_a is M[a], the set of directions a.
- The bundle map t assigning each element x in X_a its indexing object in $\mathrm{Ob}(\mathcal{D}) = D(1)$ is given by $\rho_1(a)_x$.
- The multiplication map m sends each element $x \in X_a(d)$ and compatible arrow $f \in D[d]$ to $\rho_a^{\sharp}(x \cdot f)$.

Next, observe that if we have such prerequisite data (not laws) for a copresheaf on \mathcal{D} , then we find that imposing the copresheaf associativity law m(m(x,f),g) = m(x,m(f,g)) forces the law t(m(x,f)) = t(f) to hold.⁶ (The argument works the same for copresheaves as it does for categories.)

We verify each X_a satisfies the laws of a copresheaf on \mathcal{D} .

- The identity law m(x, e(t(x))) = x is directly expressed by the right comodule identity law, which identifies $\rho^{\sharp}(x \cdot \varepsilon^{\sharp}(\mathrm{id}))$ whenever this makes sense.
- The associativity law m(m(x, f), g) = m(x, m(f, g)) is directly expressed by the right comodule associativity law, which identifies $\rho^{\sharp}(\rho^{\sharp}(x \cdot f) \cdot g)$ with $\rho^{\sharp}(x \cdot \delta^{\sharp}(f \cdot g))$ whenever this makes sense.
- The law t(m(x, f)) = t(f) is forced to hold (due to the right comodule associativity law).

Conversely, let $\{X_a\}_{a\in A}$ be a family of copresheaves on \mathcal{D} . Let M denote the polynomial described by the family of total sets of elements $\{\sum_{d\in \mathrm{Ob}(\mathcal{D})} X_a(d)\}_{a\in A}$. We exhibit a right D-comodule struture on M.

• The comodule map ρ endows each position $a \in A$ with the map δ_a^{\sharp} sending each $x \cdot f$ to $x \circ f$ for all $x \in X_a(d), f : d \to d' \in \mathcal{D}$ (through which the map δ_0 is implicit).

The above processes of translation between the prerequisite data (not laws) for a family of presheaves on \mathcal{D} , and the prerequisite data (not laws) of a right D-comodule subject to just $\rho_1(a)_{\text{base}} = a$, are inverse by construction. Moreover, we saw earlier that the identity and associativity copresheaf laws, in this context, directly translate to the identity and associativity right comodule laws.

Proposition 3. A polynomial left comodule amounts to a copresheaf and a presheaf on that copresheaf's category of elements.

Proof. Let (C, ε, δ) be a polynomial comonoid and let M be a left comodule on C. Denote left comodule comultiplication by λ .

⁶Given that x and f are composable, we have m(m(x, f), e(t(f))) = m(x, m(f, e(t(f)))), since the right side is defined. The left side only makes sense if t(x, f) = s(e(t(f))), which is t(f).

Let \mathcal{C} be the category corresponding to \mathcal{C} . We gather the data for a copresheaf X on \mathcal{C}

- The total set of elements $\sum_{c \in \text{Ob}(\mathcal{C})} X(c)$ in X is M(1), the set of positions in M.
- The bundle map t assigning each element x in X its indexing object in $Ob(\mathcal{C}) = C(1)$ is given by $\lambda_1(x)_{base}$.
- The multiplication map m sends each element $x \in M(1)$ and compatible arrow $f \in C[t(x)]$ to $\lambda_1(x)_f$.

Now we gather the remaining data of a presheaf Z on $\int_{\mathcal{C}} X$, the category of elements of X. (We will have accumulated the data sans laws of a copresheaf on \mathcal{C} and presheaf on its category of elements; we are still yet to verify X satisfies the laws of a copresheaf on \mathcal{C} .)

- The set Z(x) for $x \in \text{Ob}(\int_{\mathcal{C}} X) = M(1)$ is M[x], the set of directions from x. Hence we obtain the bundle map s from the total set of elements $\sum_{x \in \text{Ob}(\int_{\mathcal{C}} X)} Z(x)$ to $\text{Ob}(\int_{\mathcal{C}} X)$ sending each $z \in Z(x)$ to x.
- The multiplication map m sends each arrow $f|_w: w \to x$ (in $\int_{\mathcal{C}} X$, lying over $f: t(w) \to t(x)$ in \mathcal{C}) and x-indexed element $z \in Z(x) = M[x]$ to $\lambda_w^{\sharp}(f \cdot z)$.

(To be clear, the domain of this map is the set of tuples (w, f, z) such that t(w) = s(f) and m(w, f) = s(z). This is indeed the set of pairs $(f|_w, z)$ belonging in the domain of multiplication for our presheaf on $\int_{\mathcal{C}} X$, since an arrow $f|_w$ in $\int_{\mathcal{C}} X$ is a pair (w, f) such that t(w) = s(f), and the target of this arrow is m(w, f).)

Next, observe that.

We verify Z satisfies the laws of a presheaf on $\int_{\mathcal{C}} X$.

- The identity law m(e(s(z)), z) = z, where we define e(x) for an element x of X to be $e(t(x))|_x$, is expressed by the left comodule identity law, which identifies $\lambda^{\sharp}(\varepsilon^{\sharp}(\mathrm{id}) \cdot z)$ with z whenever this makes sense.
- The associativity law $m(m(f|_w, g|_{m(w,f)}), z) = m(f|_w, m(g|_{m(w,f)}, z))$, where we define $m(f|_w, g|_{m(w,f)})$ to be $m(f,g)|_w$, is expressed by the left comodule associativity law, which identifies $\lambda^{\sharp}(\delta^{\sharp}(f \cdot g) \cdot z)$ with $\lambda^{\sharp}(f \cdot \lambda^{\sharp}(g \cdot z))$ whenever this makes sense.

Proposition 4. Polynomial bicomodules are prafunctors between presheaf categories.

Proof. Let $(C, \varepsilon_C, \delta_C)$ and $(D, \varepsilon_D, \delta_D)$ be polynomial comonoids and let (M, λ, ρ) be a bimodule from C to D.

We will show that M amounts to a profunctor⁷ $(\int_{\mathcal{C}} X) \hookrightarrow \mathcal{D}$, where \mathcal{C} is the category corresponding to C, X is the copresheaf on \mathcal{C} induced by M as a left comodule, and \mathcal{D} is the category corresponding to D.

Such a profunctor is equivalent to a prafunctor $\mathbf{Set}^{\mathcal{D}} \to \mathbf{Set}^{\mathcal{C}}$. Indeed,

 \cong

Proposition 5. Maps between bicomodules are natural transformations between prafunctors.

Proof.

Proposition 6. Composition of bicomodules is composition of prafunctors.

Proof. Bicomodules from D to 0 specialize copresheaves on D (and maps between such bicomodules are copresheaf maps). Hence each bicomodule M from D to D induces a functor F_M from D-copresheaves to C-copresheaves by precomposition. Accordingly, we have $F_{M \triangleleft_D N} \cong F_N \, {}^\circ_{\!\!\!\!/} \, F_M$ (for bicomodules M from C to D and N from D to E).

We show that the prafunctor corresponding to the bimodule M is F_M .

⁷The notation $\mathcal{A} \hookrightarrow \mathcal{B}$ for a profunctor $\mathcal{A}^{op} \times \mathcal{B} \to \mathbf{Set}$ is due to Michael Shulman.