

Embedding as a Tool for Algorithm Design

Le Song

College of Computing
Center for Machine Learning
Georgia Institute of Technology

What is machine learning (ML)

Design algorithms and systems that can improve their <u>performance</u> with <u>data</u>

Ex 1: Prediction for structured data

Big dataset, explosive feature space

Predict

Efficiency (PCE) (0 -12 %)

method	dimension	MAE
Level 6	1.3 billion	0.096
Embedding	0.1 million	0.085

Reduce model size by 10,000 times!

Ex 2: Social information network modeling

who and when will do what?

Complex behavior not well modeled

Ex 3: Combinatorial optimizations over graphs

Simple heuristics do not exploit data

2 - approximation for minimum vertex cover

Repeat till all edges covered:

1. Select uncovered edge with largest total degree-

Decision not data-driven.
Can we learn from data?

Fundamental problems

John

Det

ball

| The content of the

How to describe node?

How to describe entire structure?

How to incorporate various info.?

How to do it efficiently?

Represent structure as latent variable model (LVM)

 $p(\{H_i\}, \{X_i\}) \propto \prod_{i \in \mathcal{V}} \Psi_v(H_i, X_i | \theta_v) \prod_{(i,j) \in \mathcal{E}} \Psi_e(H_i, H_j | \theta_e)$ Nonnegative node potential Nonnegative edge potential

Posterior distribution as features

$$p(H_i|\{x_j\}) = \frac{\sum_{all H_j except H_i} p(\{H_j\}, \{x_j\})}{p(\{x_j\})}$$

Capture both nodal and topological info.

Aggregate information from distant nodes

Mean field algorithm aggregates information

 $q_1(H_1)$

 X_1

 $\Psi_{v}(H_{i},X_{i})$

 H_6 $q_6(H_6)$

 $\Psi_e(H_i, H_j)$

 $q_2(H_2)$

 X_2

 X_6

 $q_5(H_5)$

 X_3

Approximate posterior

$$p(H_i|\{x_j\}) \approx q_i(H_i)$$

via fixed point update

1. Initialize $q_i(H_i)$, $\forall i$

$$q_i(H_i) \leftarrow \Psi_v(H_i, X_i)$$
.

$$\prod_{j \in \mathcal{N}(i)} \exp \left(\int_{\mathcal{H}} q_j(H_j) \log (\Psi_e(H_i, H_j)) dH_j \right), \forall i$$

$$\boldsymbol{\mathcal{T}} \circ \left(X_i, \left\{ q_j(H_j) \right\}_{j \in \mathcal{N}(i)} \right)$$

 X_4

Embedding of distribution

Injective for rich nonlinear feature $\phi(x)$

 μ_X is a sufficient statistic of p(X)

Operator View
$$m{\mathcal{T}} \circ p(x) = \widetilde{m{\mathcal{T}}} \circ \mu_X$$

Structure2vec (S2V): embedding mean field

Approximate embedding of

$$p(H_i|\{x_i\}) \mapsto \mu_i$$

via fixed point update

- 1. Initialize μ_i , $\forall i$
- 2. Iterate many times

$$\mu_i \leftarrow \widetilde{\boldsymbol{T}} \circ \left(X_i, \{ \mu_j \}_{j \in \mathcal{N}(i)} \right), \forall i$$

Structure2vec (S2V): embedding mean field

Approximate embedding of

$$p(H_i|\{x_i\}) \mapsto \mu_i$$

via fixed point update

- 1. Initialize μ_i , $\forall i$
- 2. Iterate many times

$$\mu_i \leftarrow \widetilde{\boldsymbol{T}} \circ \left(X_i, \{ \mu_j \}_{j \in \mathcal{N}(i)} \right), \forall i$$

Structure2vec (S2V): embedding mean field

Approximate embedding of

$$p(H_i|\{x_i\}) \mapsto \mu_i$$

via fixed point update

- 1. Initialize μ_i , $\forall i$
- 2. Iterate many times

$$\mu_{i} \leftarrow \widetilde{\boldsymbol{\mathcal{T}}} \circ \left(X_{i}, \left\{ \mu_{j} \right\}_{j \in \mathcal{N}(i)} \right), \forall i$$

$$\text{How to parametrize } \widetilde{\boldsymbol{\mathcal{T}}} ?$$

$$\text{Depends on unknown } \Psi_{v}(H_{i}, X_{i}) \text{ and } \Psi_{e}(H_{i}, H_{i})$$

Directly parameterize nonlinear mapping

$$\mu_i \leftarrow \widetilde{\boldsymbol{T}} \circ \left(X_i, \{ \mu_j \}_{j \in \mathcal{N}(i)} \right)$$

Any universal nonlinear function will do

Eg. assume $\mu_i \in \mathcal{R}^d$, $X_i \in \mathcal{R}^n$, neural network parameterization

$$\mu_i \leftarrow \sigma \left(W_1 X_i + W_2 \sum_{j \in \mathcal{N}(i)} \mu_j \right)$$

$$\tanh(\cdot)$$

$$\operatorname{sigmoid}(\cdot)$$

$$d \times n \quad d \times d$$

$$\operatorname{matrix}$$

$$\operatorname{matrix}$$

Learn with supervision, unsupervised learning, or reinforcement learning

Embedding belief propagation

2. Iterate many times

$$m_{ij}(H_j) \leftarrow \underbrace{\int_{\mathcal{H}} \Psi_v(H_i, X_i | \theta) \Psi_e(H_i, H_j | \theta) \cdot \prod_{\ell \in \mathcal{N}(i) \setminus j} m_{\ell i}(H_i) dH_i, \forall i, j}_{\ell \in \mathcal{N}(i) \setminus j}$$

$$\boldsymbol{\mathcal{T}} \circ \left(X_i, \{ m_{\ell i}(H_i) \}_{\ell \in \mathcal{N}(i) \setminus j} \right)$$

Ex 1: Prediction for structured data

Drug/materials

Algorithm learning

Given m data points $\{\chi_1, \chi_2, ..., \chi_m\}$

And their labels $\{y_1, y_2, ..., y_m\}$

Estimate parameters W and V via

$$\min_{V,W} L(V,W) := \sum_{i=1}^{m} (y_i - V^{\mathsf{T}} \mu^a(W,\chi_i))^2$$

Computation	Operation	Similar to
Objective $L(V, W)$	A sequence of nonlinear mappings over graph	Graphical model inference
Gradient $\frac{\partial L}{\partial W}$	Chain rule of derivatives in reverse order	Back propagation in deep learning

10,000x smaller model but accurate prediction

Harvard clean energy project: predict material efficiency (0-12) 2.3 million organic molecules 90% for training, 10% data for testing

	Test MAE	Test RMSE	# parameters
Mean predictor	1.986	2.406	1
WL level-3	0.143	0.204	1.6 m
WL level-6	0.096	0.137	1.3 b
S2V-MF	0.091	0.125	0.1 m
S2V-BP	0.085	0.117	0.1 m

~4% relative error

Ex 2: Social information network modeling

Unroll: time-varying dependency structure

Embed filtering/forward belief propagation

From embedding to next interaction time

Link embedding with interaction data using generative model

Intensity of interaction determined by compatibility and time-lapse

$$\lambda_{ui}(t|t_n) = \exp(\mu_u^{\mathsf{T}}(t_n)\mu_i(t_n)) \cdot (t - t_n)$$

Density function

$$p_{ui}(t|t_n) = \lambda_{ui}(t|t_n) S_{ui}(t|t_n)$$

Survival function

$$p_{ui}(t|t_n) = \lambda_{ui}(t|t_n) S_{ui}(t|t_n) \qquad S_{ui}(t|t_n) = \exp\left(-\int_{t_n}^t \lambda_{ui}(\tau)d\tau\right)$$

Embedding leads to better prediction

Reddit dataset: prediction of discussion forum participation 1,000 users, 1403 groups, ~10K interactions

Next item prediction

MAR: mean absolute rank difference

Return time prediction
MAE: mean absolute error (hours)

GDELT database:

Events in news media

Total archives span >215 years, trillion of events

Event (knowledge item):

- Subject --- relation --- object
- Time

Reasoning over time I

Enemy's friend is enemy

Reasoning over time II

Friends' friend is a friend, common enemy improves bond EITC / EIDC / EIMC: some form of cooperation

App 3: Combinatorial optimizations over graphs

Combinatorial optimization as MDP

Minimum vertex cover: smallest number of nodes to cover all edges

Graph embedding for state-action value function

Embedding leads to better heuristic algorithm

Minimum vertex cover: smallest number of nodes to cover all edges A distribution of scale free networks

Optimal approximated by running CPLEX for 1 hour

Training converge quite fast

Pre-training: initialize embedding parameters with ones trained with smaller networks

Also good for traveling salesman problem

Embedding as a tool for algorithm design

Embedding of entire structure

- Embedding structures
- Learn better? Nonconvex & RL?
- New system & programming language?