## Modeling school closures across 35 countries

Richard K. Belew (rbelew@ucsd.edu)
Univ. California -- San Diego

Cliff Kerr Institute for Disease Modeling

Jasmina Panovska-Griffiths
University College London

Dina Mistry
Institute for Disease Modeling

## Introduction

- Query from Bill Hanage during July 31 meeting:
  - Contrast Finland vs Sweden interventions
- Generalize to:
  - Interventions at per-country level
  - Age-stratified non-pharmaceutical interventions
- Covasim applied to UK school closures [Panovska-Griffiths et al, The Lancet Child & Adolescent Health]
- Covid-19 Control Strategies List [Complexity Science Hub, Vienna]

#### Covasim

- Cliff Kerr et al, Institute for Disease Modeling
- Agent (aka individual) -based modeling
- Compare/contrast with compartmental models (SEIR, etc)
- Modeling of fine-grained individual interactions within specific network "levels"
- Model parameter calibration via CMAES (Covariance Matrix Adaptation Evolution Strategy optimization, vs. TPE (Treestructured Parzen Estimator)



#### Data sources

- ECDC
  - Population, number diagnosed, deaths
- OWID
  - Number of tests
- UN age distribution
- Covid-19 Control Strategies List
  - School closure interventions



## Modeling educational interventions

 Countries' school closures were captured for all educational level (kindergarten, primary, secondary, university) and treated as a separate, agespecific interventions in specific Covasim levels

| <b></b>     | <b>5</b> ( |            | 011         |            |            |
|-------------|------------|------------|-------------|------------|------------|
| CName       | Date       | Levels     | CName       | Date       | Levels     |
| Albania     | 03/08/20   | k, p, s, u | Italy       | 03/05/20   | k, p, s, u |
| Austria     | 03/16/20   | u          | Japan       | 03/02/20   | p, s       |
| Austria     | 03/18/20   | k, p, s    | Kazakhstan  | 04/06/20   | p, s       |
| Belgium     | 03/13/20   | p, s       | Kuwait      | 03/01/20   | k, p, s, u |
| Switzerland | 03/16/20   | k, p, s, u | Lithuania   | 03/16/20   | k, p, s, u |
| Czechia     | 03/11/20   | u, p, s    | Mexico      | 03/20/20   | k, p, s, u |
| Czechia     | 04/20/20   | u          | North_Maced | k03/10/20  | k, p, s, u |
| Germany     | 03/17/20   | k, p, s    | Mauritius   | 03/18/20   | k, p, s, u |
| Denmark     | 03/13/20   | u, s       | Malaysia    | 03/18/20   | k, p, s, u |
| Denmark     | 03/16/20   | k, p       | Netherlands | 03/16/20   | k, p, s    |
| Ecuador     | 03/13/20   | p, s       | Norway      | 03/12/20   | u, p, s    |
| Ecuador     | 03/14/20   | u          | New_Zealand | 3 03/25/20 | k, p, s, u |
| Spain       | 03/17/20   | k, p, s, u | Poland      | 03/11/20   | k, p, s, u |
| Estonia     | 03/16/20   | k, p, s, u | Portugal    | 03/12/20   | k, p, s, u |
| Finland     | 03/18/20   | u, p, s    | Romania     | 03/11/20   | k, p, s    |
| France      | 03/16/20   | u, p, k, s | Romania     | 05/15/20   | u          |
| Ghana       | 03/16/20   | k, p, s, u | Senegal     | 03/16/20   | k, p, s, u |
| Greece      | 03/10/20   | k, p, s, u | Singapore   | 04/08/20   | k, p, s    |
| Honduras    | 03/12/20   | k, p, s, u | El_Salvador | 03/11/20   | k, p, s, u |
| Croatia     | 03/13/20   | k, p, s, u | Serbia      | 03/15/20   | k, p, s, u |
| Hungary     | 03/12/20   | u          | Slovakia    | 03/12/20   | k, p, s, u |
| Hungary     | 03/16/20   | p, s       | Syria       | 03/14/20   | k, p, s, u |
| India       | 03/16/20   | k, p, s, u | Taiwan      | 02/02/20   | k, p, s    |
| Ireland     | 03/12/20   | k, p, s, u | Taiwan      | 02/03/20   | u          |

## Validating model against data

- Covasim model specified:
  - Age-specific interactions across network levels
  - interventions over these
- the goal becomes to best fit available data, varying key model parameters
- Multi-criterial: Matching diagnoses and deaths and numbers of tests



## Searching for model parameters

- Number of initial infections and baseline beta are free parameters
- EG: Austria has multiple solution "attractors"
  - CMA-focused sampling
- Testing rate can also be searched for, vs. using data



## Results



# Results(2)

- Incorporating the intervention generally improves model fit
- But results for different countries' models varied



# Scientific sharing, publishing and open source models

- The expressive power of agent-based models allows evaluation of many intervention strategies
- Open source modeling systems like Covasim allow independent model components to be investigated and incorporated separately
- The publishing of full model implementation, like that included with the [Panovska-Griffiths] publication is an excellent example
- Fast-paced scientific sharing like that demanded by COVID-19 is catalyzed by such interactions

#### References

- Covasim
  - https://www.medrxiv.org/content/early/2020/05/15/2020.05.10.20097469
  - https://github.com/InstituteforDiseaseModeling/covasim
- Panovska-Griffiths, J.; Kerr, C. C.; Stuart, R. M.; Mistry, D.; Klein, D. J.; Viner, R. M.; Bonell, C. Determining the
  optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a
  second COVID-19 epidemic wave in the UK: a modelling study. The Lancet Child & Adolescent Health
  - https://github.com/Jasminapg/Covid-19-Analysis
- Desvars-Larrive, A. et al. A structured open dataset of government interventions in response to COVID-19.
  - https://www.medrxiv.org/content/early/2020/05/08/2020.05.04.20090498
  - https://github.com/amel-github/covid19-interventionmeasures
- Comments, questions: rbelew@ucsd.edu
  - https://github.com/rbelew/cvsim