LTL Model Checking

Lecture #16 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 16, 2008

Overview Lecture #16

- \Rightarrow Repetition: LTL and GNBA
 - From LTL to GNBA

Recall: Linear Temporal Logic

modal logic over infinite sequences [Pnueli 1977]

Propositional logic

- $-a \in AP$
- $\neg \varphi$ and $\varphi \wedge \psi$

atomic proposition negation and conjunction

Temporal operators

- $-\bigcirc \varphi$
- $\varphi \cup \psi$

 $\begin{array}{c} \text{neXt state fulfills } \varphi \\ \varphi \text{ holds } \mathbf{U} \text{ntil a } \psi \text{-state is reached} \end{array}$

Auxiliary temporal operators

- $\diamond \varphi \equiv \operatorname{true} \operatorname{U} \varphi$
- $\Box \varphi \equiv \neg \diamond \neg \varphi$

eventually φ always φ

LTL model-checking problem

The following decision problem:

Given finite transition system *TS* and LTL-formula φ :

yields "yes" if $TS \models \varphi$, and "no" (plus a counterexample) if $TS \not\models \varphi$

NBA for LTL-formulae

A first attempt

$$\mathit{TS} \models \varphi \quad \text{ if and only if } \quad \mathit{Traces}(\mathit{TS}) \subseteq \underbrace{\mathit{Words}(\varphi)}_{\mathcal{L}_{\omega}(\mathcal{A}_{\varphi})}$$

if and only if $Traces(TS) \cap \mathcal{L}_{\omega}(\overline{\mathcal{A}_{\varphi}}) = \varnothing$

but complementation of NBA is quadratically exponential if \mathcal{A} has n states, $\overline{\mathcal{A}}$ has c^{n^2} states in worst case

use the fact that $\mathcal{L}_{\omega}(\overline{\mathcal{A}_{\varphi}}) = \mathcal{L}_{\omega}(\mathcal{A}_{\neg \varphi})!$

Observation

$$\begin{array}{ll} \textit{TS} \models \varphi & \text{if and only if} & \textit{Traces}(\textit{TS}) \subseteq \textit{Words}(\varphi) \\ & \text{if and only if} & \textit{Traces}(\textit{TS}) \, \cap \, \left((2^\textit{AP})^\omega \setminus \textit{Words}(\varphi) \right) = \varnothing \\ & \text{if and only if} & \textit{Traces}(\textit{TS}) \, \cap \, \underbrace{\textit{Words}(\neg \varphi)}_{\mathcal{L}_\omega(\mathcal{A} \neg \varphi)} = \varnothing \\ & \text{if and only if} & \textit{TS} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F \\ \end{array}$$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking

Recall: Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \dots, F_k\}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Recall: Language of a GNBA

- GNBA $\mathcal{G}=(Q,\Sigma,\delta,Q_0,\mathcal{F})$ and word $\sigma=\mathcal{A}_0\mathcal{A}_1\mathcal{A}_2\ldots\in\Sigma^\omega$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leqslant i$
- Run $q_0 q_1 \dots$ is *accepting* if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is accepted by \mathcal{G} if there exists an accepting run for σ
- The accepted language of G:

 $\mathcal{L}_{\omega}(\mathcal{G}) = \left\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \right. \right\}$

Recall: From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$$
 and $|\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$

where ${\mathcal F}$ denotes the set of acceptance sets in ${\mathcal G}$

- Sketch of transformation GNBA (with k accept sets) into equivalent NBA:
 - make k copies of the automaton
 - initial states of NBA := the initial states in the first copy
 - final states of NBA := accept set F_1 in the first copy
 - on visiting in *i*-th copy a state in F_i , then move to the (i+1)-st copy

Overview Lecture #16

• Repetition: LTL and GNBA

⇒ From LTL to GNBA

From LTL to GNBA

GNBA \mathcal{G}_{φ} over 2^{AP} for LTL-formula φ with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$:

- Assume φ only contains the operators \wedge , \neg , \bigcirc and \cup
 - $-\vee, \rightarrow, \diamond, \Box, W$, and so on, are expressed in terms of these basic operators
- States are *elementary sets* of sub-formulas in φ
 - for $\sigma = A_0 A_1 A_2 \ldots \in Words(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - . . . to obtain the infinite word $\bar{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i$$
 if and only if $\sigma^i = A_i A_{i+1} A_{i+2} \ldots \models \psi$

- $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_{arphi} for σ
- Transitions are derived from semantics
 and expansion law for U
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

From LTL to GNBA: the states (example)

- Let $\varphi = a \cup (\neg a \wedge b)$ and $\sigma = \{a\}\{a,b\}\{b\}\dots$
 - B_i is a subset of $\{a, b, \neg a \land b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \land b), \neg \varphi\}$
 - this set of formulas is also called the *closure* of φ
- Extend $A_0 = \{a\}$, $A_1 = \{a, b\}$, $A_2 = \{b\}$, ... as follows:
 - extend A_0 with $\neg b$, $\neg (\neg a \wedge b)$, and φ as they hold in $\sigma^0 = \sigma$ (and no others)
 - extend A_1 with $\neg(\neg a \land b)$ and φ as they hold in σ^1 (and no others)
 - extend A_2 with $\neg a$, $\neg a \wedge b$ and φ as they hold in σ^2 (and no others)
 - . . . and so forth
 - this is not effective and is performed on the automaton (not on words)
- Result:

$$- \bar{\sigma} = \underbrace{\{a, \neg b, \neg(\neg a \land b), \varphi\}}_{B_0} \underbrace{\{a, b, \neg(\neg a \land b), \varphi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \land b, \varphi\}}_{B_2} \dots$$

Closure

For LTL-formula φ , the set $\operatorname{closure}(\varphi)$ consists of all sub-formulas ψ of φ and their negation $\neg \psi$

(where ψ and $\neg\neg\psi$ are identified)

for
$$\varphi = a \cup (\neg a \wedge b)$$
, closure $(\varphi) = \{a, b, \neg a, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$

can we take B_i as any subset of $closure(\varphi)$? no! they must be elementary

Elementary sets of formulae

 $B \subseteq closure(\varphi)$ is elementary if:

- 1. B is logically consistent if for all $\varphi_1 \wedge \varphi_2, \psi \in closure(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \Leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \Rightarrow \neg \psi \not\in B$
 - true \in *closure*(φ) \Rightarrow true \in B
- 2. B is *locally consistent* if for all $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:
 - $\bullet \ \varphi_2 \in B \ \Rightarrow \ \varphi_1 \cup \varphi_2 \in B$
 - $\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \not\in B \Rightarrow \varphi_1 \in B$
- 3. B is maximal, i.e., for all $\psi \in closure(\varphi)$:
 - $\bullet \ \psi \notin B \ \Rightarrow \ \neg \psi \in B$

Examples

The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi}=(Q,2^{\mathit{AP}},\delta,Q_0,\mathcal{F})$ where

• Q is the set of all elementary sets of formulas $B \subseteq \mathit{closure}(\varphi)$

$$-Q_0 = \left\{ B \in Q \mid \varphi \in B \right\}$$

- $\mathcal{F} = \{ \{ B \in Q \mid \varphi_1 \cup \varphi_2 \not\in B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \mathit{closure}(\varphi) \}$
- The transition relation $\delta: Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:

$$\varphi_1 \cup \varphi_2 \in B \iff \left(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in B')\right)$$

GNBA for LTL-formula $\bigcirc a$

GNBA for LTL-formula $a \cup b$

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that:

- (a) $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$
- (b) \mathcal{G}_{arphi} can be constructed in time and space $\mathcal{O}\left(2^{|arphi|}
 ight)$
- (c) #accepting sets of \mathcal{G}_{φ} is bounded above by $\mathcal{O}(|\varphi|)$

 \Rightarrow every LTL-formula expresses an ω -regular property!

Proof

NBA are more expressive than LTL

There is no LTL formula φ with $Words(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \dots \in \left(2^{\{a\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \geqslant 0 \right\}$$

But there exists an NBA ${\mathcal A}$ with ${\mathcal L}_{\omega}({\mathcal A})={ extit{P}}$

 \Rightarrow there are ω -regular properties that cannot be expressed in LTL!