第六章 线性系统的校正方法

第一节 系统的设计与校正问题

第二节 常用校正装置及其特性

第三节 串联校正

第四节 前馈校正

第五节 复合校正

第六节 控制系统校正设计

6.2 常用校正装置及其特性

3. 无源滞后-超前网络

$$G_c(s) = \frac{u_2}{u_1} = \frac{(R_1 C_1 s + 1)(R_2 C_2 s + 1)}{(R_1 C_1 s + 1)(R_2 C_2 s + 1) + R_1 C_2 s}$$

说
$$R_1C_1=T_a$$
, $R_2C_2=T_b$, $R_1C_2=T_{ab}$, $(R_1+R_2)/R_2=\alpha$ 。

$$G_c(s) = \frac{(1+T_a s)(1+T_b s)}{(1+\alpha T_a s)(1+\frac{T_b}{\alpha}s)} \qquad \alpha > 1$$

$$G_c(s) = G_{c1}(s)G_{c2}(s)$$

$$\alpha > 1$$

$$G_{c1}(s) = \frac{1 + T_{d}s}{1 + \alpha T_{d}s} \qquad G_{c2}(s) = \frac{1 + T_{b}s}{1 + \frac{T_{b}}{\alpha}s}$$

$$G_{c2}(s) = \frac{1 + T_b s}{1 + \frac{T_b}{\alpha} s}$$

超前

6.2 常用校正装置及其特性

$$G_{c1}(s) = \frac{1 + T_a s}{1 + \alpha T_a s}$$

 $\alpha > 1$

$$G_{c2}(s) = \frac{1 + T_b s}{1 + \frac{T_b}{\alpha} s}$$

具有滞后校正的性质

具有超前校正的性质

滞后部分有利于提高稳态性能

超前部分有利于提高动态性能

$$G_c(s) = \frac{(1 + T_a s)(1 + T_b s)}{(1 + \alpha T_a s)(1 + \frac{T_b}{\alpha} s)}$$

α>1 用一个参数表示滞后深度 和超前强度

 T_a, T_b, α 三个未知参数

6.2 常用校正装置及其特性

比较: 无源超前网络

本质: 利用无源超前网络的中频相角超前特

性,提供正相角。

曲线: 提升相频特性, 进而改变幅频特性。

方 式: 直接——相频上拉——相角裕度增加

——截止频率提高

局限: 能够提供的最大超前相角有限,60°

,增益下降为1/a。

应 用: 校正后系统的开环截止频率 ω_c "位于超

前网络的中频段最大超前相角处。

 $\omega_m = \omega_c^{"}$

效果: 作用在中频段——改善动态性能

无源滞后网络

利用无源滞后网络的<mark>高频</mark>幅值衰减特性,降低系统开环截止频率

,提高系统的相角裕度。

提前压低系统幅频特性,进而改善

相频特性。

间接——幅频下压——截止频率下降

——计算点提前——相角裕度增加

校正网络自身带来一定的相角滞后。

校正后系统的开环截止频率 α_c "高于

最大滯后相角频率 α_m ,或位于滯后

网络的高频段。

 $\omega_2 = \frac{1}{hT} = 0.1\omega_c$

对校正网络而言是高频段,对系统而言是低频段——改善稳态性能。

校

正

装

置

设

计方

法

1. 频域响应法校正设计

▶ 根据频域指标设计系统,频域校正方法

一分析法: 依据经验,试探设计。工程方法 (试探法——正向)

·综合法: 依据指标, 确定开环特性, 再比较确定校正装置

理论方法(期望特性法——逆向)

▶ 频域响应法校正设计的优势

1) 间接: 频域指标, 非时域指标

2) 简便: Bode图能够定性地反映系统的动态性能,还可根据频域指标确定校正装置的参数。

简便的原因: 开环系统的频率特性与闭环系统的时间响应有关系。

三频段法 (回路成形法)

基于Bode图的频域响应法,根据频域指标确定校正装置的参数。 _____

各频段用来计算的参数:

2. 串联超前校正

例:系统如图所示,要求

- 1. 在单位斜坡输入下稳态误差 $e_{ss} \leq 0.1$ rad;
- 2. 开环系统截止频率 $\omega_c^{"} \geq 4.4 \text{rad/s}$

3. 相角裕度 $\gamma^{"} \geq 45^{\circ}$, 幅值裕度 $h^{"}(dB) \geq 10dB$

是否需要校正,怎样校正?

解: 首先进行稳态计算

给定系统是I型系统

$$e_{ss} = \frac{1}{k_v} = \frac{1}{K} \le 0.1$$

 $K=10$ 可以满足稳态
误差要求。

校正前系统的开环传递函数为 $G_o(s) = \frac{10}{s(s+1)}$

$$aG_c(s) = \frac{1 + aTs}{1 + Ts}$$

设计串联超前校正装置(参数)

校正后开环系统的截止频率 ω_c "=4.4rad/s。令超前校正网络在 ω_c " 处提供最大相角 φ_m ,所以 $\omega_m = \omega_c$ "=4.4。

原系统在
$$\omega_c$$
"处: $L'(\omega_c) = -6$ dB

校正后开环系统的截止频率为 ω_c ",校正网络在 ω_c "处的幅值应为

6dB,则
$$10\lg a = 6dB$$

$$\omega_m = \frac{1}{T\sqrt{a}} \implies T = \frac{1}{\omega_m \sqrt{a}} = \frac{1}{4.4 \times 2} = 0.114s$$

$$G_c(s) = \frac{1}{4} \frac{1 + 0.456s}{1 + 0.114s}$$

相角裕度 $\gamma^{"} \geq 45^{\circ}$, 幅值裕度 $h^{"}(dB) \geq 10dB$ 验证:

 $\omega_m = \omega_c^{"} = 4.4$

校正装置的最大超前角为:
$$\varphi_m = \arcsin \frac{a-1}{a+1} = 37^\circ$$

原系统在 ω_c "处的相角裕度: $\gamma'(\omega_c^{"}) = 180^{\circ} - 90^{\circ} - \arctan \omega_c^{"} = 12.8^{\circ}$ 由17.6°降到12.8°

校正后的相角裕度为: $\gamma'' = \varphi_m + \gamma'(\omega_c'') = 49.8^{\circ} > 45^{\circ}$

校正后的幅值裕度为无穷大,满足要求。 因为n-m=2

确定超前校正的两个转折频率:

$$\omega_1 = \frac{1}{aT} = \frac{1}{4 \times 0.114} = 2.2(rad/s)$$
 $\omega_2 = \frac{1}{T} = \frac{1}{0.114} = 8.8(rad/s)$

校正网络的传递函数:

$$G_c(s) = \frac{1}{4} \frac{1 + 0.456s}{1 + 0.114s}$$

校正后系统的开环传递函数:

$$G_c(s)G_0(s) = \frac{1}{4} \frac{10(1+0.456s)}{s(1+0.114s)(1+s)}$$

确定无源网络的元件参数

$$a = \frac{R_1 + R_2}{R_1} = 4 \qquad T = R_1 C = 0.456$$

假设
$$C = 1\mu F$$
 $R_1 = 456k\Omega$ $R_2 = 156k\Omega$

为满足静态性能指标K=10,放大器的增益需提高a=4倍。

串联超前校正的步骤:

- 1)根据稳态误差要求,确定开环增益K;
- 2)已知开环增益K, 绘制校正前开环系统的伯德图 $L'(\omega)$, 计算校正前系统的截止频率、穿越频率、相角裕度和幅值裕度。
- 3)根据校正后的截止频率 ω_c "的要求,计算超前网络参数a和T。
- (1) 按给定的校正后的 ω_c "计算校正前系统的 $L'(\omega_c)$ ",取超前校正装置的 $\omega_m = \omega_c$ ",即使超前网络在 ω_m 处的幅值满足:

$$L_c(\omega_m) + L'(\omega_c^*) = 0$$
 即: $-L'(\omega_c^*) = L_c(\omega_m) = 10 \lg a$ 求出参数 a

(2) 求出参数a后,结合已确定的 ω_m ,再利用 $T = \frac{1}{\omega_m \sqrt{a}}$ 求T。

若第三步变为: 3) 根据校正后的相角裕度y"设计超前网络参数a和T。

则,令 γ' 为校正前系统的相角裕度; ϵ 为校正网络的引入使<mark>截止频率增大</mark>到 ω_c "而造成的原系统的相角裕度减小的补偿量(修正量),一般取5°~20°。

(1) 确定需要增加的相位超前角 φ_m , 使其满足: $\gamma'' = \varphi_m + (\gamma' - \varepsilon)$

或: $\varphi_m = \gamma'' - (\gamma' - \varepsilon) = \gamma''$ (指标要求) $-\gamma'$ (校正前系统的相角裕度)+ ε (修正量)

流程

- (2) 求出 φ_m 后,根据 $a = \frac{1 + \sin \varphi_m}{1 \sin \varphi_m}$ 求出对应最大超前角 φ_m 的a。
- (3) 利用校正前系统的幅频特性 $L'(\omega)$,令其等于- $10\lg a$,计算校正后系统新的截止频率 ω_c ",且 $\omega_{\rm m} = \omega_{\rm c}$ "。

$$L'(\omega_m) = 10 \lg a$$

(4) 已知参数a和 $\omega_{\mathbf{m}}$,利用 $T = \frac{1}{\omega_{m}\sqrt{a}}$ 求T。

- 4) 根据 $\omega_1 = \frac{1}{aT}$ 和 $\omega_2 = \frac{1}{T}$ 确定超前网络的转折频率,写出校正网络传函。
- 5) 验算已校正系统的相角裕度》"和幅值裕度。

第3步的情况一: 超前网络参数是根据截止频率 ω_c "的要求选择的,需要校验相角裕度和幅值裕度是否满足要求。步骤:

- (1) 查表或根据公式 $\varphi_m = \arcsin \frac{a-1}{a+1}$ 计算 φ_m 值。
- (2) 计算校正前系统在新的截止频率处的相角裕度 $\gamma'(\omega_c'')$ 。
- (3) 根据公式 $\gamma'' = \varphi_m + \gamma'(\omega_c'')$, 计算校正后的相角裕度 γ'' 。
- (4) 不满足要求,增加ω,后重复上述步骤。

第3步的情况二: 计算截止频率 ω_c "下的相角和幅值裕度(往往是满足要求的,因为从相角裕度出发计算的)。

6) 将原开环增益增加a倍,以补偿超前网络产生的幅值衰减。

流程

验证

例:系统如图所示,要求

1. 在单位斜坡输入下稳态误差 $e_{ss} \leq 0.05$ rad;

2. 相角裕度 $\gamma^{"} \geq 50^{\circ}$, 幅值裕度 $h^{"}(dB) \geq 10dB$

利用超前网络进行校正,原系统在新的截止频率处的相角裕度减小的补偿量 (修正量)取5°。

解: 首先进行稳态计算

误差要求。

2) 校正前系统的开环传递函数为 $G_o(s) = \frac{40}{s(s+2)}$

校正前系统的截止频率 ω_c '=6.325 rad/s,相角裕度 γ '=17.55°。

$$G_o(s) = \frac{40}{s(s+2)}$$

- 3) 属于已知校正后相角裕度y"设计超前网络参数a和T问题。
 - (1) 确定需要增加的相位超前角 φ_m , 使其满足: $\gamma'' = \varphi_m + (\gamma' \varepsilon)$

$$50^{\circ} = \varphi_m + (17.55^{\circ} - 5^{\circ})$$
 $\varphi_m \approx 38^{\circ}$

(2) 求出 φ_m 后,根据 $a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m}$ 求出对应最大超前角 φ_m 的a。

$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m} = 4.2$$

(3) 利用校正前系统的幅频特性 $L'(\omega)$,令其等于- $10\lg a$,计算校正后系统新的截止频率 ω_c ",且 $\omega_m = \omega_c$ "。

$$L'(\omega_m) = 10 \lg a = -6.2 dB$$
 $\omega_m = \omega_c'' = 9.04 \ rad / s$

(4) 已知参数
$$a$$
和 ω_{m} ,利用 $T = \frac{1}{\omega_{m}\sqrt{a}}$ 求 T 。 $T = \frac{1}{\omega_{m}\sqrt{a}} = \frac{1}{9.04\sqrt{4.2}} = 0.054$

$$G_o(s) = \frac{40}{s(s+2)}$$

4) 根据 $\omega_1 = \frac{1}{aT}$ 和 $\omega_2 = \frac{1}{T}$ 确定超前网络的转折频率,写出校正网络传函。

$$aT = 4.2 \times 0.054 = 0.2268$$
 $T = 0.054$

$$\omega_1 = \frac{1}{aT} = \frac{1}{4.2 \times 0.054} = 4.4 \ rad \ / s$$
 $\omega_2 = \frac{1}{T} = \frac{1}{0.054} = 18.5 \ rad \ / s$

$$G_c(s) = \frac{1}{4.2} \frac{1 + 0.226s}{1 + 0.054s}$$

- 5) 验算已校正系统的相角裕度 γ'' 和幅值裕度。 校正后的相角裕度 $\gamma'' = 50.3^{\circ}$ 相角裕度 γ'' 满足要求 校正后的幅值裕度为无穷大,满足要求。因为n-m=2
- 6) 将原开环增益增加a倍,以补偿超前网络产生的幅值衰减。

本次课结束

重要知识点

- 1. 滞后-超前网络的特性☆☆☆
- 2. 频域响应法校正设计 ☆
- 3. 串联超前校正的应用 ☆☆☆☆