2. Channel coding. Theorem: The maximum vate at which data can be veliably Transmitted is The channel capacity of Applications : (3) Transmission and modulation.
Information security. Data compression. Error correcting coding. what's information? message. message

Singer

Information resolves uncertainty Information is what you get when your uncertainty about something is reduced - fair coin example: when you flip a fair coin, you are uncertain of wheth it will Land on heads or Jails, you have uncertainty . When it lands your uncertainty is gone Loss of uncertainty = Gain in information.

	July Susuit 6
Service of the service and the territory	Ten be reliably
· Unfair or biased Coin example: . H Coin That always ha Lands on Lands on Tails.	heads and never
1 1 Ti	
Lands on Tails.	
when know in advance That it wil	I lands on heads
when know in advance that the will	an same shall
Carlotte San Jack material I de la	I galling and
when it Lands on heads you are	ent fecting and
when it Lands on heads you are offermation because your uncertainty he	isn't been reduced.
The more uncertain an event, The more	information is
The more uncertain an event. The more required to resolve uncertainty of Th	at event.
E Dinkels that one he intercoled in	a fa sich steller vier
* Amount of information	mossade.
Filmount or my ormacism	
24 alalin To le promo	uncertainty we
By calculating The amount of une have about an information source , we he Amount of information That wi	ancor coming
have about an information source we	are also calculating
he Amount of information That WI	ll receive when
ve lose That uncertainty.	e half Coin Exa
Let X be an information source outcomes. The amount of information	re with M possible
intermed The amount of inflavoration	TIXI is given by:
outcomes. The atmount of information	
1 - 10	
$I(x) = \log(M)$	· WHOT I conto
They are the interestion.	1035 08 11

information received from an information Jource The Logarithm of the number of possible outcome To measure I(x) depends on The information:
of Logarithm used in This course The amount of information is measured in bits Note for a fair coin with Two possible outcomes, we have # I(x) = log 1 = 0 bit - For an unfair coin That always Lands on hands, has only one possible outcome.

Example.

A fair coin with a set of Two probabilities {0,5,0,5} where The first probability is The probability of getting head and The second one is The probability of getting

 $I(a_i) = \log \left(\frac{1}{p}\right) = \log \left(\frac{1}{o_{i5}}\right) = \underline{1} \operatorname{bit}$

Example:2

The probabilities are I1,09

 $I(a_1) - lg(\frac{1}{4}) = obit.$

A biased coin with Probabilities of [0,99,0,01]

I(a1) = log (1/0,99) = 0,014 bit

 $I(a_2) = log(\frac{1}{0.01}) = 6.644$ bit

Information - 15 W " det olar 81 in 12

The outcomes that ore less common give us more information and Vice Versa.

- Entropy

what if we want To measure The average uncertanity For an information source ?

. The name for the This measurement is entropy

. The entropy of an information source (X) is called H(x)

 $H(X) = \sum_{i=1}^{M} P_i \log \left(\frac{1}{P_i}\right) = -\sum_{i=1}^{M} P_i \log (P_i)$

Entropy is the overage number of bit required represent an information source

Example

1 - Fair coin with Probabilities of E0,5 e0,5 3

H(x) = 0.5 * log 1/0,5

IN

T. (178)

LETT

N. P.

THE PERSON NAMED IN

UN

ELL'S

10

-

5

Example 2-Based coin with probabilities of [0,75(.0,25]

 $H(x) = 0.75 * log(\frac{1}{0.75}) + 0.25 * log(\frac{1}{0.25}) = 0.811$

100 Time we flip This based coin we will get an of information

dice with Probabilities of 3 - Unbalanced

 $H(x) = 5 \times (\log(\frac{1}{0.1}) \times 0.1) + 0.5 \log \frac{1}{0.5} = 2.161$ bi