9.1. Пусть X — нормированное пространство, $i_X : X \to X^{**}$ — каноническое вложение. Докажите, что для любого оператора $T \in \mathcal{B}(X,Y)$ следующая диаграмма коммутативна:

$$X \xrightarrow{X^{**}} Y^{**}$$

$$i_X \uparrow \qquad \uparrow i_Y$$

$$X \xrightarrow{T} Y$$

- **9.2.** Докажите, что
 - 1) композиция канонического вложения $c_0 \to (c_0)^{**}$ и стандартного изоморфизма $(c_0)^{**} \cong \ell^{\infty}$ это тождественное вложение c_0 в ℓ^{∞} ;
 - **2)** композиция канонического вложения $\ell^1 \to (\ell^1)^{**}$ и стандартного изоморфизма $(\ell^1)^{**} \cong (\ell^\infty)^* \cong M(2^\mathbb{N})$ это вложение ℓ^1 в $M(2^\mathbb{N})$, сопоставляющее каждой последовательности $x \in \ell^1$ меру μ_x , заданную формулой $\mu_x(A) = \sum_{n \in A} x_n$.
- 9.3. Докажите, что
 - 1) гильбертово пространство рефлексивно;
 - **2)** пространства $L^{p}(X, \mu)$ (1 < p < $+\infty$) рефлексивны;
 - **3)** пространство c_0 нерефлексивно;
 - **4)** пространство ℓ^1 нерефлексивно;
 - **5)** пространство $L^1(X,\mu)$ нерефлексивно (за исключением случая, когда оно конечномерно);
 - **6)** пространство C[a,b] нерефлексивно.
- **9.4.** Пусть X нормированное пространство, $i_X \colon X \to X^{**}$ каноническое вложение. Исследуйте взаимосвязь между операторами $i_{X^*} \colon X^* \to X^{***}$ и $i_X^* \colon X^{***} \to X^*$.
- **9.5. 1)** Докажите, что банахово пространство X рефлексивно $\iff X^*$ рефлексивно.
- **2)** Выведите отсюда нерефлексивность ℓ^1 , ℓ^∞ , $L^\infty[a,b]$ и M[a,b].
- 9.6. Докажите, что размерность бесконечномерного банахова пространства несчетна.
- 9.7. Приведите пример бочки в нормированном пространстве, не содержащей окрестности нуля.
- **9.8.** Приведите пример нормированного пространства X и последовательности функционалов (f_n) в X^* , ограниченной на каждом векторе, но не ограниченной по норме.
- **9.9.** Пусть X, Y, Z нормированные пространства, причем X либо Y полно.
- 1) Докажите, что любой раздельно непрерывный билинейный оператор $X \times Y \to Z$ непрерывен. (Указание: воспользуйтесь теоремой Банаха–Штейнгауза).
- 2) Верно ли утверждение из п. 1 без предположения о полноте?
- **9.10-b.** Пусть G компактная топологическая группа и π ее представление в банаховом пространстве X, непрерывное в том смысле, что отображение $G \times X \to X$, $(g,x) \mapsto \pi(g)x$, непрерывно. Докажите, что на X существует эквивалентная норма, относительно которой все операторы $\pi(g)$ изометричны. (Указание: проще всего воспользоваться теоремой Банаха—Штейнгауза. Впрочем, можно сделать эту задачу и «в лоб», не пользуясь полнотой X см. контрольную за 1 модуль.)
- 9.11. 1) Выведите теорему об открытом отображении из теоремы об обратном операторе.
- 2) Выведите теорему об обратном операторе из теоремы о замкнутом графике.
- **9.12.** Приведите пример банахова пространства X, нормированного пространства Y и биективного оператора $T \in \mathcal{B}(X,Y)$, обратный к которому не является непрерывным.
- **9.13-b.** Приведите пример нормированного пространства X, банахова пространства Y и биективного оператора $T \in \mathcal{B}(X,Y)$, обратный к которому не является непрерывным.
- **9.14-b.** Приведите пример абсолютно выпуклого поглощающего множества в банаховом пространстве, не содержащего окрестности нуля.