A.03.03 – Balanço de Energia

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-04-07 16h27m58s

- Balanço de Energia
 - Primeira Lei da Termodinâmica
 - Balanço de Energia

2 Tópicos de Leitura

Enunciado

- A 1ª lei da termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Enunciado

- A 1ª lei da termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Este princípio da conservação da energia:

• É exaustivamente confirmado em experimentos.

Logo, no universo observável:

• Não há processos físicos que criem energia,

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

• Unificou as conservações de massa e de energia;

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.
- Portanto, a quantidade $E_{tot} = c^2 m + E_{outras}$ é conservada.

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

40 + 40 + 43 + 43 +

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

• Princípio em variedade de deduções;

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

• "Energia é uma quantidade (escalar)

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza

A 1ª lei é central em termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza
- e que possui unidades de kg m²/s²."

— Jack P. Holmann (SMU)

Matematicamente

Logo, no universo observável:

• Não há processos físicos que criem energia,

Matematicamente

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.

Matematicamente

- A 1^a lei é matematicamente expressa:
 - Por meio de balanço de energia.
- Logo, no universo observável:
 - Não há processos físicos que criem energia,
 - Nem processos físicos que destruam energia.
 - Processos físicos podem apenas converter energia de uma forma a outra.

Title

Contents.

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 2-6 e 4-2.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

