固有空間

線形空間 V の中に、行列の固有ベクトルが「どれくらい」あるかを調べるため、各固有値 α に対して、 α の固有ベクトルと $\mathbf 0$ からなる V の部分集合を考える

 α が A の固有値ならば、方程式

$$(\alpha E - A)\boldsymbol{x} = \mathbf{0}$$

の解空間、すなわち核空間 $Ker(\alpha E - A)$ は、固有値 α を持つ A の固有ベクトルのすべてと $\mathbf 0$ からなる

核空間は V の部分空間であり、これを固有値 α の固有空間と呼ぶ

$$W(\alpha) = \text{Ker}(\alpha E - A)$$

を固有値 α の固有空間と呼ぶ

固有空間の次元

 $oldsymbol{\&}$ 固有空間の次元と固有値の重複度 A の固有値 $lpha_i$ の重複度 k_i と、固有空間 $W(lpha_i)$ の次元 $\dim W(lpha_i)$ に対し、次の不等 式が成立する

$$\dim W(\alpha_i) \le k_i \quad (1 \le i \le s)$$

ref: 図で整理!例題で 納得!線形空間入門 p182~185

ref: テンソル代数と表 現論 p2、p4~5

ref: 行列と行列式の基

礎 p187

ref: 長岡亮介 線形代数 入門講義 p251~252、 p262、p271~273 $W(\alpha_i)$ の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m$ をとる

 $m{v}_1,\ldots,m{v}_m,m{v}_{m+1},\ldots,m{v}_n$ が K^n の基底となるように、n-m 個のベクトル $m{v}_{m+1},\ldots,m{v}_n$ を追加して基底を延長する

 $P = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_m, \boldsymbol{v}_{m+1}, \dots, \boldsymbol{v}_n)$ とするとき、

$$AP = (A\boldsymbol{v}_1, \ldots, A\boldsymbol{v}_m, A\boldsymbol{v}_{m+1}, \ldots, A\boldsymbol{v}_n)$$

ここで、 $W(\alpha_i)$ の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m$ は A の固有ベクトルであるので、固有値と固有ベクトルの定義より、

$$AP = (\alpha_{i} \boldsymbol{v}_{1}, \dots, \alpha_{i} \boldsymbol{v}_{m}, A \boldsymbol{v}_{m+1}, \dots, A \boldsymbol{v}_{n})$$

$$= (\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{n}) \begin{pmatrix} & & & & & \\ & \ddots & & & & \\ & & \ddots & & & B \end{pmatrix} \uparrow_{m}$$

$$= P \begin{pmatrix} \alpha_{i} E_{m} & B \\ O & C \end{pmatrix}$$

基底の線型独立性より、線型独立な列ベクトルを並べた行列 P は正則であるので、

$$P^{-1}AP = \begin{pmatrix} \alpha_i E_m & B \\ O & C \end{pmatrix}$$

この行列の特性多項式を考えると、

$$\Phi_{P^{-1}AP}(x) = \det(xE - P^{-1}AP)$$

$$= \begin{vmatrix} x - \alpha_i & & & \\ & \ddots & & -B \\ & & x - \alpha_i \end{vmatrix}$$

$$= \begin{vmatrix} x - \alpha_i & & & \\ & \ddots & & \\ & & x - \alpha_i \end{vmatrix} \det(xE' - C)$$

$$= (x - \alpha_i)^m \det(xE' - C)$$

より、固有値 α_i の重複度 k_i は m 以上となる

$$m \leq k_i$$

m は $W(lpha)_i$ の基底を構成するベクトルの個数、すなわち $\dim W(lpha_i)$ であるので、

$$\dim W(\alpha_i) \leq k_i$$

が成り立つ

この定理の証明過程で登場した特性方程式

$$\Phi_{P^{-1}AP}(x) = (x - \alpha_i)^m \det(xE' - C)$$

において、 $\det(xE'-C)$ からも $(x-\alpha_i)$ が現れれば、 α_i の重複度 k_i は m より大きくなることがわかる

 $W(\alpha)$ の基底を構成するベクトルの個数は、固有値 α に属する線型独立な固有ベクトルの個数ともいえる

また、固有値 α の重複度が k であることは、特性方程式が $x=\alpha$ を k 重解にもつことを意味する

以上をふまえると、前述の定理は、特性方程式の視点で次のように言い換

最 固有値の重複度と固有ベクトルの最大数 正方行列 A の特性 方程式 $\Phi_A(x)=0$ が $x=\alpha$ を k 重解にもつとき、固有値 α に属する線型独立な固有ベクトルは、k 個以下しかとれない