

Alberi binari

- 1. Introduzione e requisiti del problema
- 2. Specifica
- 3. Progetto della soluzione
- 4. Codifica

POLITECNICO DI MILANO

1. Introduzione e requisiti del problema

Requisiti del problema

Si scriva una funzione che data la radice di un albero binario restituisca i valori del cammino esterno e del cammino interno dell'albero stesso.

In questa esercitazione verrà mostrato come navigare in una struttura dati tipo albero binario.

L'esercizio richiede di calcolare il cammino esterno e il cammino interno di un albero.

Per cammino esterno di un albero si intende il valore intero pari alla somma di tutti i cammini che partono dalla radice dell'albero e che arrivano alle foglie.

Il cammino interno di un albero è definito come un valore intero pari alla somma delle lunghezze di tutti i cammini, che partono dalla radice dell'albero e che arrivano ai nodi non-foglia.

Casi di test

Input:

Output:

- il cammino esterno ha il valore = 8
- il cammino interno ha il valore = 6

Alberi binari

cammino esterno en cammino esterno est

cammino esterno en la commina de la commina

Cammino=2

cammino esterno erno

Cammino=2

Cammino=3

cammino esterno en Cammino esterno esterno

Cammino=2

Cammino=3

Cammino=3

cammino esterno en Cammino esterno esterno

Cammino=2

Cammino=3

Cammino=3

Cammino=1

Cammino=2

Esempio di definizione di un albero binario

```
struct Tree {
  int info;
  Tree *leftptr;
  Tree *rightptr;
};
```

Per calcolare i cammini è necessario definire una funzione che realizzi la navigazione tramite una funzione ricorsiva.

Tale funzione riceve come ingresso i sotto alberi puntati dai puntatori del nodo corrente.

► L'esercizio richiede di contare i cammini dell'albero

problema di contare tali cammini all'interno di una funzione ricorsiva

- Passaggio di 3 parametri:
 - albero
 - cammino interno
 - cammino esterno
- Problema del calcolo della lunghezza dei cammini
- Diversi algoritmi di calcolo della lunghezza

Prima soluzione

Modificare la struct aggiungendo una variabile int livello;

Vantaggi 91

Semplicità dell'algoritmo richiesto dall'esercizio.

Svantaggilggi

Si sposta il problema in fase di costruzione dell'albero.

Problema del calcolo del livello nel caso di modifiche alla struttura dell'albero.

Seconda soluzione

Utilizzo di una variabile contatore che si incrementa passando da una funzione alla sua istanza ricorsiva

void Cammini (Tree*&radice int&Camminoest, int&Camminoint, int curr)

void Cammini (Tree*&radice, int&Camminoest int&Camminoint, int curr)

void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)

void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)

```
void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)
```

Algoritmo di risoluzione della funzione Cammini

```
Valuto il nodo corrente è un nodo foglia?
```

è un nodo non foglia?

```
void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)
```

```
Valuto il nodo corrente
  è un nodo foglia?
SI

CamminoEsterno=CamminoEsterno+livello nodo
  è un nodo non foglia?
```

```
void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)
```

```
Valuto il nodo corrente

è un nodo foglia?

SI

CamminoEsterno=CamminoEsterno+livello nodo

è un nodo non foglia?

SI

CamminoInterno=CamminoInterno+livello nodo
```

```
void Cammini (Tree*&radice, int&Camminoest, int&Camminoint, int curr)
```

```
Valuto il nodo corrente

è un nodo foglia?

SI

CamminoEsterno=CamminoEsterno+livello nodo

è un nodo non foglia?

SI

CamminoInterno=CamminoInterno+livello nodo

Cammini(sottoalbero di destra)
Cammini(sottoalbero di sinistra)
```

```
Per riconoscere se un nodo è foglia basterà scrivere la seguente condizione:
```

```
if ((nodo->leftptr==0) && (nodo->rightptr==0))
{
    //nodo è foglia
}
```

```
if ((radice->leftptr)!=0) || ((radice->righptr)!=0))
Cammini(radice->leftptr, Camminoest, Camminoint, curr);
Cammini(radice->rightptr, Camminoest, Camminoint, curr);
```

Le variabili definite nelle funzioni ricorsive hanno uno spazio di memoria autonomo e dunque è necessario passare esplicitamente tale valore.

