

COMP90042 LECTURE 5

DISTRIBUTIONAL SEMANTICS

CO-OCCURRENCE AND SEMANTICS

- "You shall know a word by the company it keeps" (Firth)
- Local context reflects a word's semantic class
 - E.g. eat a pizza, eat a burger
- Document co-occurrence often indicative of topic
 - E.g. *voting* and *politics*

OUTLINE

- Word-word association using PMI
- The vector space model
 - Weighting for information retrieval: tf-idf
 - Dimensionality reduction: SVD
 - Similarity in vector space: cosine

CO-OCCURRENCE MATRIX

	•••	the	country	hell	•••
•••					
state		1973	10	1	
fun		54	2	0	
heaven		55	1	3	
•••••					

- Lists how often words appear with other words
 - In some predefined context (e.g. sentence in Brown corpus)
- ► The obvious problem with raw frequency: dominated by common words

POINTWISE MUTUAL INFORMATION

For two events *x* and *y*, pointwise mutual information (PMI) comparison between the actual joint probability of the two events (as seen in the data) with the expected probability under the assumption of independence

$$PMI(x,y) = \log_2 \frac{p(x,y)}{p(x)p(y)}$$

CALCULATING PMI

	 the	country	hell		\sum
state	1973	10	1		12786
fun	54	2	0		633
heaven	55	1	3		627
Σ	1047519	3617	780		15871304

$$p(x,y) = count(x,y)/\Sigma$$

$$p(x) = \sum_{x}/\Sigma$$

$$p(y) = \sum_{y}/\Sigma$$

x= state, y = country

$$p(x,y) = 10/15871304 = 6.3 \times 10^{-7}$$

 $p(x) = 12786/15871304 = 8.0 \times 10^{-4}$
 $p(y) = 3617/15871304 = 2.3 \times 10^{-4}$
 $PMI(x,y) = log_2(6.3 \times 10^{-7})/((8.0 \times 10^{-4}) (2.3 \times 10^{-4}))$

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE = 1.78

PMI MATRIX

	•••	the	country	hell	•••
state		1.22	1.78	0.63	
fun		0.37	3.79	-inf	
heaven		0.41	2.80	6.60	

- PMI does a better job of capturing interesting semantics
 - E.g. heaven and hell
- But it is obviously biased towards rare words
- And doesn't handle zeros well

PMI TRICKS

- Zero all negative values (PPMI)
 - Avoid –inf and unreliable negative values
- Counter bias towards rare events
 - Artificially increase marginal probabilities
 - Smooth probabilities

OTHER ASSOCIATION MEASURES

- ► t-test
- Chi-squared
- Likelihood ratio

• • • •

USES OF ASSOCIATION MEASURES

- Collocation extraction
- Word similarity
- Lexicon creation
- Weighting for vector space models

THE VECTOR SPACE MODEL

- Fundamental idea: represent meaning as a vector
- One matrix, two viewpoints
 - Documents represented by their words (web search)
 - Words represented by their documents (text analysis)

	425	426	427	•••				
•••								
state	0	3		•••	. state	fun	heaven	•••
fun	1	0						
heaven	0	0	425		0	1	0	
•••••			426		3	0	0	
			427		0	0	0	

MANIPULATING THE VSM

- Weighting the values
- Creating low-dimensional dense vectors
- Comparing vectors

TF-IDF

- Standard weighting scheme for information retrieval
- Also discounts common words
 tf matrix

	 the	country	hell	
425	43	5	1	
426	24	1	0	
427	37	0	3	
df	500	14	7	

$$idf_w = \log \frac{|D|}{df_w}$$

$$tf\text{-}idf \text{ matrix}$$

	 the	country	hell	
425	0	25.8	6.2	
426	0	5.2	0	
427	0	0	18.5	

DIMENSIONALITY REDUCTION

- ► Term-document matrices are very *sparse*
- Dimensionality reduction: create shorter, denser vectors
- More practical (less features)
- More generalizable (less overfitting)
 - Captures synonymy
- Remove noise

SINGULAR VALUE DECOMPOSITION

TRUNCATING

- Truncating U, Σ , and V^T to k dimensions produces best possible k rank approximation of original matrix
- So truncated, U_k (or V_k^T) is a new low dimensional representation of the word (or document)
- ightharpoonup Typical values for k are 100-5000
- When applied to words in documents, often called LSA

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

MORE DIMENSIONALITY REDUCTION

- Principal components analysis (PCA)
- Independent components analysis
- Factor analysis
- Nonnegative matrix factorization
- Latent Dirichlet allocation

• • • •

SIMILARITY

- Regardless of vector representation, classic use of vector is comparison with other vector
 - Though vectors can also be used directly as features
- ► For IR: find documents most similar to query

COSINE SIMILARITY

The cosine of the angle between two vectors is the dot product of the two vectors divided by the product of their norms:

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Where

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{N} a_i b_i$$

And

$$|\vec{a}| = \sqrt{\sum_{i=1}^{N} a_i^2}$$

COSINE SIMILARITY EXAMPLE

$$\vec{a} = [0,0,1,0,1,1,1]$$

$$\vec{b} = [0,1,1,0,1,1,0]$$

$$\vec{a} \cdot \vec{b} = 1 + 1 + 1 = 3$$

$$|\vec{a}| = |\vec{b}| = \sqrt{1 + 1 + 1 + 1} = 2$$

$$\cos \theta = \frac{3}{2*2} = 0.75$$

OTHER METRICS FOR VECTOR SIMILARITY

- Euclidean
- Jaccard
- Dice
- Kullback-Leibler (KL) Divergence
- Jenson-Shannon Divergence

• • • •

A FINAL WORD

- Distributional semantics is fundamental to both fields covered by this course
- Basic methodology presented here is not new, but still very much used
- In the next lecture we will continue with distributional semantics, looking at a recent, state-of-the-art approach to dimensionality reduction using neural networks

FURTHER READING

- ▶ J&M3, Ch 15, J&M3 Ch 16.1
- Optional) From Frequency to Meaning: Vector Space Models of Semantics