Álgebra I. Tarea 3: Anillos

Universidad de El Salvador. Fecha límite: 12.04.2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 3.1. Sea p un número primo. Demuestre que los coeficientes binomiales $\binom{p}{i}$ son divisibles por p para $i=1,\ldots,p-1$.

Ejercicio 3.2. Para $n=2,3,4,5,\ldots$ consideremos la raíz de la unidad $\zeta_n:=e^{2\pi i/n}\in\mathbb{C}.$

- 1) Demuestre la identidad $1 + \zeta_n + \zeta_n^2 + \cdots + \zeta_n^{n-1} = 0$.
- 2) Consideremos el conjunto

$$\mathbb{Z}[\zeta_n] := \{a_0 + a_1 \zeta_n + a_2 \zeta_n^2 + \dots + a_{n-1} \zeta_n^{n-1} \mid a_i \in \mathbb{Z}\}.$$

Demuestre que es un anillo conmutativo respecto a la suma y adición habitual de los números complejos.

Ejercicio 3.3. *Deduzca de los axiomas de anillos las siguientes propiedades:*

$$0 \cdot x = x \cdot 0 = 0$$
, $x \cdot (-y) = (-x) \cdot y = -xy$, $x(y-z) = xy - xz$, $(x-y)z = xz - yz$

para cualesquiera $x, y, z \in R$.

Ejercicio 3.4. En un anillo R puede ser que 0 = 1. Pero en este caso R tiene solo un elemento.

- 1) Demuestre que un conjunto $R = \{0\}$ que consiste en un elemento puede ser dotado de modo único de una estructura de un anillo conmutativo. Este anillo se llama el **anillo nulo**.
- 2) Demuestre que si en un anillo R se cumple 1 = 0, entonces $R = \{0\}$.

Ejercicio 3.5. *Para un número fijo n* = $1, 2, 3, \ldots$ *consideremos el conjunto de fracciones con n en el denominador:*

$$\mathbb{Z}[1/n] := \left\{ \frac{m}{n^k} \mid m \in \mathbb{Z}, \ k = 0, 1, 2, 3, \ldots \right\} \subset \mathbb{Q}.$$

De modo similar, para un número primo fijo p = 2,3,5,7,11,... consideremos las fracciones con denominador no divisible por p:

$$\mathbb{Z}_{(p)} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0, \ p \nmid b \right\} \subset \mathbb{Q}.$$

Verifique que $\mathbb{Z}[1/n]$ *y* $\mathbb{Z}_{(v)}$ *son anillos conmutativos respecto a la suma y producto habituales.*

Ejercicio 3.6. Sea R un anillo conmutativo. Una **serie formal de potencias** con coeficientes en R en una variable X es una suma formal

$$f = \sum_{i>0} a_i X^i,$$

donde $a_i \in R$. A diferencia de polinomios, se puede tener un número infinito de coeficientes no nulos. Las sumas y productos de series formales están definidos por

$$\sum_{i>0} a_i X^i + \sum_{i>0} b_i X^i := \sum_{i>0} (a_i + b_i) X^i, \quad \left(\sum_{i>0} a_i X^i\right) \cdot \left(\sum_{i>0} b_i X^i\right) := \sum_{k>0} \left(\sum_{i+i=k} a_i b_i\right) X^k.$$

1) Note que las series formales forman un anillo conmutativo. Este se denota por R[X].

2) Verifique la identidad

$$(1+X)\cdot(1-X+X^2-X^3+X^4-X^5+\cdots)=1$$

en R[X] (es decir, los coeficientes de la serie formal al lado derecho son $a_0 = 1$ y $a_i = 0$ para i > 0).

3) Para $R = \mathbb{Q}$ verifique la identidad $\left(\sum_{i \geq 0} \frac{X^i}{i!}\right)^n = \sum_{i \geq 0} \frac{n^i}{i!} X^i$ en el anillo de series formales $\mathbb{Q}[X]$.

Ejercicio 3.7. Para una serie de potencias $f \in R[X]$ sea v(f) el mínimo índice tal que el coeficiente correspondiente no es nulo:

$$v(f) := \min\{i \mid a_i \neq 0\};$$

 $y \, si \, f = 0$, $pongamos \, v(0) := +\infty$.

1) Demuestre que para cualesquiera $f,g \in R[X]$ se cumple la desigualdad

$$v(fg) \ge v(f) + v(g)$$

y la igualdad v(fg) = v(f) + v(g) si R es un dominio de integridad.

2) Demuestre que R[X] es un dominio de integridad si y solamente si R lo es.

Ejercicio 3.8. Sea R un anillo commutativo. En el anillo de matrices $M_n(R)$ denotemos por e_{ij} para $1 \le i, j \le n$ la matriz cuyos coeficientes son nulos, salvo el coeficiente (i,j) que es igual a 1. Sea $A \in M_n(R)$ una matriz arbitraria de $n \times n$ con coeficientes en R.

- 1) Demuestre que en el producto de matrices e_{ij} A la fila i es igual a la fila j de A y el resto de los coeficientes son nulos.
- 2) Demuestre que en el producto de matrices $A e_{ij}$ la columna j es igual a la columna i de A y el resto de los coeficientes son nulos.
- 3) Demuestre que

$$e_{ii} A = A e_{ii}$$

para todo $1 \le i, j \le n, i \ne j$ si y solamente si A es una **matriz escalar**:

$$A = aI = \begin{pmatrix} a & & & \\ & a & & \\ & & \ddots & \\ & & & a \end{pmatrix}$$

para algún $a \in R$.

4) Concluya que las únicas matrices en $M_n(R)$ que conmutan con todas las matrices son las matrices escalares.