Lab Task 1: Plot all the given functions to observe the roots by visualization, fill the table by your visual guess of root. We have plotted one function for you.

```
1) f(x)=cos(x)-1.3x
2) f(x)=xcos(x)-2x^2+3x-1
3) f(x)=2xcos(2x)-(x+1)^2
```

```
import numpy as np
from matplotlib import pyplot as plt

plt.rcParams["figure.figsize"] = [7.50, 7.50]

def f1(x):
    return (np.cos(x)- 1.3*x)

x = np.linspace(0,1, 1000)
plt.plot(x,f1(x), color='red')
plt.hlines(y=0,xmin=0,xmax=1,color='blue')
plt.show()
```



```
def f2(x):

return (x*np.cos(x) - 2*(x**2) + 3*x - 1)
```

```
x = np.linspace(-0.5, 2, 1000)
plt.plot(x,f2(x), color='red')
plt.hlines(y=0,xmin=-0.5,xmax=2,color='blue')
plt.show()
```



```
def f3(x):
    return (2*x*np.cos(2*x) - (x+1)**2)

x = np.linspace(-3, 0, 1000)
plt.plot(x,f3(x), color='red')
plt.hlines(y=0,xmin=-3,xmax=0,color='blue')
plt.show()
```


Lab Task 2: Complete the missing code of bisection method accordding to the explained algorithm

```
and find root of given problems by bisection method according to the instructions given in table.
1) f1(x) = cos(x) - 1.3x
2) f2(x) = x\cos(x) - 2x^2 + 3x - 1
3) f3(x) = 2x\cos(2x) - (x+1)^2
       _0 /
import numpy as np
from tabulate import tabulate
## module Bisection
''' root = bisection(func, x1, x2, tol=0.001, max iter=100):.
   Finds a root of f(x) = 0 by bisection.
   The root must be bracketed in (x1,x2).
. . .
def bisection(func, x1, x2, tol=0.00001, max iter=100):
   if func(x1) * func(x2) >= 0:
        return "Error: Choose different interval, function should have different signs at th
   data=[]
   iter = 0
   xr = x2
   error = tol + 1
   while iter < max_iter and error > tol:
        xrold = xr
       xr = ((x1+x2)/2)
        iter += 1
        error = abs((xr - xrold))
       test = func(x1) * func(xr)
       # write your code here to replace value of x1 or x2 by xr
        if test <0:
          x2 = xr
        elif test>0:
          x1 = xr
        else:
          error=0
```

return

bisection(f1, 0, 1)

ļ	#	x1	f(x1)	x2	f(x2)	xr	f(xr)	
١								
	2	0.5	0.227583	1	-0.759698	0.5	0.227583	0.5
	3	0.5	0.227583	0.75	-0.243311	0.75	-0.243311	0.2
	4	0.5	0.227583	0.625	-0.00153688	0.625	-0.00153688	0.1
	5	0.5625	0.114674	0.625	-0.00153688	0.5625	0.114674	0.6
	6	0.59375	0.0569735	0.625	-0.00153688	0.59375	0.0569735	0.6
	7	0.609375	0.0278184	0.625	-0.00153688	0.609375	0.0278184	0.6
	8	0.617188	0.0131656	0.625	-0.00153688	0.617188	0.0131656	0.6
	9	0.621094	0.00582059	0.625	-0.00153688	0.621094	0.00582059	0.6
	10	0.623047	0.0021434	0.625	-0.00153688	0.623047	0.0021434	0.6
	11	0.624023	0.000303648	0.625	-0.00153688	0.624023	0.000303648	0.6
	12	0.624023	0.000303648	0.624512	-0.00061652	0.624512	-0.00061652	0.6
ı	13	0.624023	0.000303648	0.624268	-0.000156412	0.624268	-0.000156412	0.6
Ì	14	0.624146	7.36243e-05	0.624268	-0.000156412	0.624146	7.36243e-05	0.6
Ì	1 5	0.624146	7.36243e-05	0.624207	-4.13921e-05	0.624207	-4.13921e-05	6.1
	16	0.624176	1.61164e-05	0.624207	-4.13921e-05	0.624176	1.61164e-05	3.6
ĺ	17	0.624176	1.61164e-05	0.624191	-1.26378e-05	0.624191	-1.26378e-05	1.5
ĺ	18	0.624184	1.73937e-06	0.624191	-1.26378e-05	0.624184	1.73937e-06	7.6

Root of given function is x=0.624183655 in n=17 number of iterations with a tolerence=0

bisection(f2, 0, 0.6)

I	#	x1	f(x1)	x2	f(x2)	xr	f(xr)	
j	2	0	-1	0.3	0.00660095	0.3	0.00660095	0.3
	3	0.15	-0.446684	0.3	0.00660095	0.15	-0.446684	0.1
	4	0.225	-0.206921	0.3	0.00660095	0.225	-0.206921	0.6
	5	0.2625	-0.0968046	0.3	0.00660095	0.2625	-0.0968046	0.6
	6	0.28125	-0.0442537	0.3	0.00660095	0.28125	-0.0442537	0.6
	7	0.290625	-0.0186131	0.3	0.00660095	0.290625	-0.0186131	0.6
	8	0.295312	-0.00595266	0.3	0.00660095	0.295312	-0.00595266	0.6
	9	0.295312	-0.00595266	0.297656	0.000337524	0.297656	0.000337524	0.6
	10	0.296484	-0.00280422	0.297656	0.000337524	0.296484	-0.00280422	0.6
	11	0.29707	-0.00123251	0.297656	0.000337524	0.29707	-0.00123251	0.6
	12	0.297363	-0.000447286	0.297656	0.000337524	0.297363	-0.000447286	0.6
	13	0.29751	-5.48292e-05	0.297656	0.000337524	0.29751	-5.48292e-05	0.6
	14	0.29751	-5.48292e-05	0.297583	0.00014136	0.297583	0.00014136	7.3
ĺ	15	0.29751	-5.48292e-05	0.297546	4.32688e-05	0.297546	4.32688e-05	3.6
	16	0.297528	-5.77935e-06	0.297546	4.32688e-05	0.297528	-5.77935e-06	1.8
	17	0.297528	-5.77935e-06	0.297537	1.87449e-05	0.297537	1.87449e-05	9.1

Root of given function is x=0.297537231 in n=16 number of iterations with a tolerence=0

bisection(f3, -2, -2.2)

1) f1(x) = cos(x) - 1.3x

ļ	#	x1	f(x1)	x2	f(x2)	xr	f(xr)	
	2	-2.1	0.849095	-2.2	-0.0877354	-2.1	0.849095	0.1
1	3	-2.15	0.400936	-2.2	-0.0877354	-2.15	0.400936	0.6
	4	-2.175	0.161489	-2.2	-0.0877354	-2.175	0.161489	0.6
1	5	-2.1875	0.0380755	-2.2	-0.0877354	-2.1875	0.0380755	0.6
	6	-2.1875	0.0380755	-2.19375	-0.0245334	-2.19375	-0.0245334	0.6
1	7	-2.19062	0.00684561	-2.19375	-0.0245334	-2.19062	0.00684561	0.6
	8	-2.19062	0.00684561	-2.19219	-0.0088253	-2.19219	-0.0088253	0.6
	9	-2.19062	0.00684561	-2.19141	-0.000985195	-2.19141	-0.000985195	0.6
	10	-2.19102	0.00293137	-2.19141	-0.000985195	-2.19102	0.00293137	0.6
	11	-2.19121	0.000973378	-2.19141	-0.000985195	-2.19121	0.000973378	0.6
	12	-2.19121	0.000973378	-2.19131	-5.83576e-06	-2.19131	-5.83576e-06	9.7
	13	-2.19126	0.000483789	-2.19131	-5.83576e-06	-2.19126	0.000483789	4.8
	14	-2.19128	0.000238981	-2.19131	-5.83576e-06	-2.19128	0.000238981	2.4
	15	-2.1913	0.000116574	-2.19131	-5.83576e-06	-2.1913	0.000116574	1.2
	16	-2.1913	5.53694e-05	-2.19131	-5.83576e-06	-2.1913	5.53694e-05	6.1

Root of given function is x=-2.191302490 in n=15 number of iterations with a tolerence=0

Lab Task 3: Find root of given problems by Newton Raphson method according to the instructions given in table.

```
2) f2(x) = xcos(x) - 2x^2 + 3x - 1
3) f3(x) = 2xcos(2x) - (x+1)^2
import numpy as np
from tabulate import tabulate
## module Newton_Raphson
''' newton_raphson(func, dfunc, x0, tol=1e-4, max_iter=1000)
   Finds a root of f(x) = 0 by newton raphson.
def newton_raphson(func, dfunc, x0, tol=1e-5, max_iter=1000):
   xr = x0
   data=[]
   iter = 0
   error = tol + 1
   for i in range(max_iter):
       iter+=1
       fx = func(xr)
       dx = dfunc(xr)
```

```
if abs(dx) < tol:
    raise Exception("Derivative is close to zero!")
xrold=xr
xr = xr - fx/dx
error=abs(xr-xrold)
data.append([iter,xr,func(xr),error])
if error < tol:
    print(tabulate(data,headers=['Iteration','xr','f(xr)',"error"],tablefmt="github"))
    print('\nRoot of given function is x=%.9f in n=%d number of iterations with a tole return</pre>
```

raise Exception("Max iterations reached")

```
def df1(x):
  return -np.sin(x) - 1.3
```

newton_raphson(f1, df1, -1)

newton_raphson(f2, df2, 0.2)

1	Iteration	xr	f(xr)	error
	1	3.01349	-4.90935	4.01349
	2	-0.425025	1.46356	3.43852
	3	1.22377	-1.25079	1.64879
	4	0.665474	-0.0784929	0.558292
	5	0.624538	-0.000666076	0.0409365
	6	0.624185	-5.06647e-08	0.000353408
	7	0.624185	-3.33067e-16	2.68859e-08

Root of given function is x=0.624184578 in n=7 number of iterations with a tolerence=0.6

def df2(x): return (np.cos(x) -1 * (x * np.sin(x)) - 4 * x + 3)

Root of given function is x=0.297530234 in n=4 number of iterations with a tolerence=0.6

```
def df3(x):
    return (2 * (np.cos(2*x) - 2 * x * np.sin(2*x))) -2 *(x+1)
newton raphson(f3, df3, -2)
```

ļ	Iteration	xr	f(xr)	error
ı				
	1	-2.2393	-0.498306	0.239298
	2	-2.19285	-0.0155015	0.0464458
	3	-2.19131	-1.80995e-05	0.00154222
	4	-2.19131	-2.48346e-11	1.80491e-06

Root of given function is x=-2.191308012 in n=4 number of iterations with a tolerence=0

Lab Task 4: Find root of given problems by using fsolve command of sympy.optimize

1)
$$f1(x) = cos(x) - 1.3x$$

2)
$$f2(x) = x\cos(x) - 2x^2 + 3x - 1$$

3)
$$f3(x) = 2xcos(2x) - (x+1)^2$$

```
from scipy import optimize
```

optimize.fsolve(f1, 0)

array([0.62418458])

optimize.fsolve(f2, 0)

array([0.29753023])

optimize.fsolve(f3, -2)

array([-2.19130801])

Lab Task 5: Write program of Secant and False Position method by altering above codes.

```
import numpy as np
from tabulate import tabulate

## module False Position
''' root = false_pos(func, x1, x2, tol=0.001, max_iter=100):.
    Finds a root of f(x) = 0 by False position.
    The root must be bracketed in (x1,x2).

def false_pos(func, x1, x2, tol=0.00001, max_iter=100):
```

```
if func(x1) * func(x2) >= 0:
        return "Error: Choose different interval, function should have different signs at th
   data=[]
   iter = 0
   xr = x2
   error = tol + 1
   while iter < max_iter and error > tol:
        xrold = xr
       xr = x1 - ((func(x1)*(x2-x1))/(func(x2)-func(x1)))
        iter += 1
       error = abs((xr - xrold))
       test = func(x1) * func(xr)
        # write your code here to replace value of x1 or x2 by xr
        if test <0:
          x2 = xr
        elif test>0:
          x1 = xr
        else:
          error=0
        data.append([iter+1,x1,func(x1),x2,func(x2),xr,func(xr),error])
   print(tabulate(data,headers=['#','x1','f(x1)','x2','f(x2)','xr','f(xr)',"error"],tablefmt
   print('\nRoot of given function is x=%.9f in n=%d number of iterations with a tolerence=%
    return
import numpy as np
from tabulate import tabulate
## module Secant
''' newton raphson(func, dfunc, x0, tol=1e-4, max iter=1000)
   Finds a root of f(x) = 0 by secant method.
. . .
def secant method(func, x1, x2, tol=1e-5, max iter=1000):
   xr = x1
   data=[]
   iter = 0
   error = tol + 1
   for i in range(max iter):
        iter+=1
       fx = func(xr)
       xrold=xr
       xr = x1 - ((func(x1)*(x2-x1))/(func(x2)-func(x1)))
       x1=x2
        x2 = xr
        error=abs(xr-xrold)
        data.append([iter,xr,func(xr),error])
```

```
if error < tol:</pre>
```

print(tabulate(data,headers=['Iteration','xr','f(xr)',"error"],tablefmt="github")) print('\nRoot of given function is x=%.9f in n=%d number of iterations with a tole return

raise Exception("Max iterations reached")

secant_method(f3,1,-2)

	Iteration	xr	f(xr)	error
	1	-1.24867	1.93491	2.24867
	2	-5.7869	-29.2399	4.53823
	3	-1.53034	2.76941	4.25656
	4	-1.89861	2.20241	0.368272
	5	-3.32909	-11.6202	1.43048
	6	-2.12654	0.616437	1.20256
	7	-2.18712	0.041876	0.0605806
	8	-2.19153	-0.0022666	0.00441532
	9	-2.19131	7.25471e-06	0.000226714
ĺ	10	-2.19131	1.24593e-09	7.2333e-07

4

×