MATH340 Review Notes

By Jack 'jryzkns' Zhou

1 Axiomatic Approach to \mathbb{N}

Definition: \mathbb{N} is a set with 3 axioms (sometimes referred to as the "Peano Axioms"):

- 1. $1 \in \mathbb{N}$
- 2. For every $a \in \mathbb{N}$, there is an element called the *successor* of a, written as $succ(a) = a + 1 \in \mathbb{N}$
- 3. Every element $a \in \mathbb{N}$ arises in this manner:

$$\mathbb{N} = \{succ^k(1) \mid k \ge 0\}$$

2 Mathematical Induction

Principle of Mathematical Induction:

Suppose $X \subseteq \mathbb{N}$ and:

- 1. $1 \in X$
- $2. \ a \in X \Rightarrow a+1 \in X$

Then $X = \mathbb{N}$.

This is taken as an axiom and cannot be proven from the 3 axioms presented in section 1.

Strong Induction:

Suppose $X \subseteq \mathbb{N}$ satusfies the properties

- 1. $1 \in X$
- $2. \ \forall i \in [1, n] \ i \in X \Rightarrow n + 1 \in X$

This variant of induction is logically equivalent to the simple form of induction, but in a proof it may be desirable to refer to more than 1 case that is taken to be true, in which case a strong induction is preferred.

The Well-Ordering Principle (WP):

Every non-empty subset $Y \subseteq \mathbb{N}$ has a minimal element. We can use WP to prove the Principle of Induction:

Suppose $X \subseteq \mathbb{N}$ has the properties $1 \in X$ and $k \in X \Rightarrow k+1 \in X$, WTS $X \in \mathbb{N}$. Suppose $Y = \{n \in \mathbb{N} \mid n \notin X\}$, then $X = \mathbb{N} \Leftrightarrow Y = \emptyset$

We proceed to show that $Y=\varnothing$ by contradiction, assuming $Y\neq\varnothing$. By WP, Y has a minimum element $n^*\in Y$. As $1\notin Y$ (because $1\in X$), $n^*>1$ so $n^*-1\in\mathbb{N}$ and $n^*-1\notin Y$ because n^* is the minimal element of Y. Therfore $n^*-1\in X$, but then $succ(n^*-1)=n^*-1+1=n^*\in X$ by the inductive hypothesis. As $n^*\in Y$, we have come to a contradiction, and therefore $Y=\varnothing$ and $X=\mathbb{N}$.

Note: WP is false for other sets of numbers. For example, there is no minimal element in \mathbb{R}^+ as $\forall x \in \mathbb{R}^+$ $\frac{1}{2}x < x$.

3 Operations on \mathbb{N}, \mathbb{Z}

Multiplication on \mathbb{N} :

Inductively defined with $1 \cdot a := a$ as the base case. If $n \cdot a$ is defined, then $(n+1) \cdot a := n \cdot a + a$.

The Peano Axioms imply the following properties:

- Commutativity: ab = ba
- Associativity: a(bc) = (ab)c
- Distribution over Addition: a(b+c) = ab + ac

Defining \mathbb{Z} from \mathbb{N}

Suppose we want to solve an equation like x+5=2 in \mathbb{N} , there are no solutions, because $x=2-5\notin\mathbb{N}$. Therefore, we need to invent the notion of negative numbers.

To do this, we can say that \mathbb{Z} is the set $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ with an equivalence relation (a,b) = (a+c,b+c) for any $a,b,c \in \mathbb{N}$. The ordered tuple (a,b) represents a-b. We can see that (a+c)-(b+c)=a-b. More concretely, consider (5,0)=(6,1)=(500,495) and 5-0=6-1=500-495. A negative number -a could then be represented as (0,a).

Induction in \mathbb{Z}

WP does not apply to \mathbb{Z} , so in practice we either treat +ive and -ive numbers separately, or we go by the absolute value of the numbers.

4 The Division Theorem in \mathbb{Z}

Theorem:

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Then there exists unique $q \in \mathbb{Z}, r \in (0, b)$ such that a = qb + r.

Proof: We proceed in two steps, showing existence then uniqueness.

Existence: We have $a \in \mathbb{Z}, b \in \mathbb{N}$, we define

$$X = \{ n \in \mathbb{N} \cup \{0\} \mid n = a - qb \}$$

For some integer q. X is nonempty as $a-qb\geq 0$ by choice of q. If a>0, we pick q=0. If $a\leq 0$, we pick q=a. By WP, X has a minimal element that we will call $r; \ r=a-qb$ for some $q\in\mathbb{Z}$. Since $r\in\mathbb{N}\cup\{0\}$, $r\geq 0$. r also satisfies r< b. If $r\geq b$, then $r-b\in X$ as r-b=(a-qb)-b=a-(q+1)b. This contradicts minimality of r. Rearranging r=a-qb we get a=qb+r. Uniqueness: Suppose we have (q_1,r_1) and (q_2,r_2) both satisfying the theorem, WTS $q_1=q_2$ and $r_1=r_2$.

We have $a=q_1b+r_1=q_2b+r_2$ with $r_1,r_2\in(0,b)$. If we collect the terms with b on one side, we have $(q_1-q_2)b=r_2-r_1$. So, r_2-r_1 is a multiple of b. Given the constraint $r_1,r_2\in(0,b)$, we can see that $r_2-r_1\in[-(b-1),(b-1)]$. Therefore it is only possible that $r_2-r_1=0$ is a multiple a multiple of b. Therefore $r_2=r_1$ and $(q_1-q_2)b=0 \Rightarrow q_1=q_2$.

4.1 What if b < 0?

 $a=qb+r\Leftrightarrow a=(-q)(-b)+r.$ The theorem still works, but $0\geq r\geq |b|$ needs to be guaranteed.

5 Divisibility in \mathbb{Z}

Definition: Let $d, a \in \mathbb{Z}$, we say that d divides a, written as d|a, if a = qd for some $q \in \mathbb{Z}$.

Equivalently: d is a divisor of a, a is a multiple of d, or a is divisible by d.

Some Facts:

- $\forall d \in \mathbb{Z}$ d|0 but $0 \nmid a$ unless a = 0.
- If d divides $a \neq 0$ then $|d| \leq |a|$. In particular, the set of divisors of a non-zero integer is finite.
- $d|a \Leftrightarrow |d| |a|$

6 GCD in \mathbb{Z}

Definition: Let $a, b \in \mathbb{Z}$, not both 0. The *greatest common divisor* of a and b, gcd(a, b) is the greatest $d \in \mathbb{Z}$ such that d|a and d|b.

Lemmas:

- $(d|a \wedge d|b) \rightarrow d|(a-b)$
- $(d|(a-b) \wedge d|b) \rightarrow d|a$

Note that these lemmas mean that if d is a common divisor of (a, b) then it is equivalent to d is a common divisor of (b, a - b); gcd(a, b) = gcd(b, a - b).

7 Bezout's Identity in \mathbb{Z}

Theorem:

Let $g = \gcd(a, b)$. Then g = ax + by for some $x, y \in \mathbb{Z}$.

Proof: Suppose we have two sets:

$$D = \{ d \in \mathbb{Z} \mid d|a \wedge d|b \}$$
$$I = \{ ax + by \mid x, y \in \mathbb{Z} \}$$

D is the set of all common divisors between a, b and I is the set of all integer combinations of a, b.

From this we make claim (1): If $d \in D$ and $n \in I$, then d|n. In particular, if $n \neq 0$, $|d| \leq |n|$.

Since $d \in D$, we have $a = q_1d$ and $b = q_2d$ for some $q_1, q_2 \in \mathbb{Z}$. Similarly, since $n \in I$, we have n = ax + by for some $x, y \in \mathbb{Z}$. We can see that $n = ax + by = q_1dx + q_2dy = d(q_1x + q_2y) \Rightarrow d|n$.

Suppose now we look at $I \cap \mathbb{N}$, the integer multiples of a, b that are natural numbers, we let $n^* = \min(I \cap \mathbb{N}) = ax^* + by^*$.

We proceed to make claim (2) that $n^*|a$ and $n^*|a$ (i.e. $n^* \in D$).

Suppose $n^* \nmid a$, we divide a by n^* to get $a = qn^* + r$, $r \in (0, n^*)$. By definition of n^* , we see that

$$r = a - qn^*$$
= $a - q(ax^* + by^*)$
= $a - qax^* + qby^*$
= $a(1 - qx^*) + b(qy^*)$

This means that $n^* \in I$ and that contradicts the minimality of n^* as $r \in (0, n^*)$.

Finally, we make our last claim (3): $n^* = \max(D) = \gcd(a,b)$. By claim (2), n^* is a common divisor of a,b. If $d \in D$ is any other common divisor, then $d \leq n^*$ by claim (1). We can see that $d \leq |d| \leq |n^*| = n^*$.

Therefore, we have two interpretations of gcd(a, b):

- gcd(a, b) = max(D)maximal element in set of common divisors
- $gcd(a, b) = min(I \cap \mathbb{N})$ smallest positive integer combination of a, b.

8 Euclidean Algorithm

Theorem:

If a = qb + r, then gcd(a, b) = gcd(b, r).

Proof:

It is given that gcd(a, b) = gcd(a - b, b). As r = a - qb, we can consider applying the a - b operation q times: gcd(a, b) = gcd(b, a - qb) = gcd(b, r).

Algorithm

Given: (a, b) with a > b > 0 and repeatedly apply division theorem on (a, b). After each division, we replace a with b and b with the remainder of the division:

$$(a,b) \quad a = q_1b + r_1$$

$$(b,r_1) \quad b = q_2r_1 + r_2$$

$$(r_1,r_2) \quad r_1 = q_3r_2 + r_3$$

$$\vdots \quad \vdots$$

$$(r_{k-2},r_{k-1}) \quad r_{k-2} = q_kr_{k-1} + r_k$$

$$(r_{k-1},r_k) \quad r_{k-1} = q_{k+1}r_k + 0$$

$$(r_k,0)$$

The algorithm stops when we reach a point where the second value in the tuple is 0, in which case $gcd(a,b) = r_k$. This algorithm is guaranteed to terminate as each of the r_i up to terminating r_k are strictly decreasing natural numbers. By WP there is a minimal element to which this procedure will terminate on.

9 Factoring of Integers

Definition:

An integer $p \neq \pm 1$ is said to be *irreducible* if its only divisors are itself and 1 or -1.

Definition:

An integer $p \neq 0, \pm 1$ is said to be *prime* if for some $a, b \in \mathbb{Z}$, p|ab implies p|a or p|b.

Theorem:

If $n \in \mathbb{Z} \setminus \{0, 1, -1\}$, n is a product of irreducible integers. **Proof**:

We will proceed by strong induction. The base case n=2 is irreducible. In the general case, suppose n>2 and the

theorem is true for all $i \in [2, n]$. If n is irreducible, then we are done. Otherwise, n = ab for some $a, b \in [2, n]$, in which case $2 \ge a, b < n$ and a, b are products of primes. A product of products of primes is still a product of primes.

10 Euclid's Lemma

Lemma:

An integer p is prime if and only if p is irreducible.

Proof:

(\Rightarrow): Let p be prime. To show that p is irreducible, suppose p=ab for some $a,b\in\mathbb{Z}$, WTS a or b is ± 1 . As p=ab, we know that p|a or p|b. WLOG, suppose p|a. This means that a=pd for some $d\in\mathbb{Z}$. So, p=ab=(pd)b. Suppose we divide p=(pd)b by p, we get 1=db. Thereore, $d,b=\pm 1$; p is irreducible.

(\Leftarrow): Let p be irreducible. To show that p is prime, suppose p|ab for some $a,b\in\mathbb{Z}$ and show p|a or p|b. As p is irreducible, $\gcd(p,a)$ is either 1 or p. If $\gcd(p,a)=p$, then p|a and we are done. Otherwise, if $\gcd(p,a)=1$, then by Bezout's Indentity, we have 1=px+ay for some $x,y\in\mathbb{Z}$. Therefore,

$$b = b(px + ay) = pbx + aby$$

Note that p|ab is equivalent to saying ab=pn for some $n \in \mathbb{Z}$, we can substitute this in:

$$b = pbx + pny = p(bx + ny)$$

From this we can see that p|b = p(bx + ny); p is prime.

11 Fundamental Theorem of Arithmetic

Theorem:

Let $n \in \mathbb{Z} \setminus \{0, 1, -1\}$, n is a product of prime numbers. Moreover, given two prime factorizations $n = p_1 \cdots p_k = q_1 \cdots q_l$, k = l and it's possible to re-enumerate q_1, \ldots, q_l so that $\forall i \ p_i = \pm q_i$.

Proof:

We proceed by showing existence then uniqueness.

Existence: This is already proven with a previous theorem showing that if $n \in \mathbb{Z} \setminus \{0,1,-1\}$, n is a product of irreducible integers.By Euclid's Lemma, we can also say that such n is a product of prime integers.

Uniqueness: Suppose $n=p_1\cdots p_k=q_1\cdots q_l$. We proceed by induction on k. For the base case k=1, we have $n=p_1=q_1$. In the general case, suppose $n=p_1\cdots p_{k+1}=q_1\cdots q_l$. We look at p_1 , since $p_1|n=q_1\cdots q_l$, then $p_1|q_i$ for some i. Therefore $p_1=\pm q_i$. Suppose we let let q_i swap indices with q_1 , then we have $n=p_1\cdots p_{k+1}=q_1q_2\cdots q_l=p_1q_2\cdots q_l$. We can divide $p_1\cdots p_{k+1}=p_1q_2\cdots q_l$ by p_1 , which leaves us with $p_2\cdots p_{k+1}=q_2\cdots q_l$ and we can repeat this procedure to set $p_j=\pm q_i$ for all remaining j factors in $p_2\cdots p_{k+1}$.

12 Modular Arithmetic

Let $a\mathbb{Z}$ and $m \in \mathbb{Z} \setminus \{0\}$, where m is commonly referred to as the *modulus*, we explore some definitions:

Definition:

The *residue* of a modulo m is the remainder of a when divided by m.

Definition:

The $congruence \ class$ of a modulo m is defined as the set

$$[a]_m := \{ a' \in \mathbb{Z} \mid a \equiv a' \pmod{m} \}$$

We say that a is a representative of $[a]_m$.

Congruence classes under the same modulus m are either equal or disjoint. If $x, x' \in [a]_m$, then x' - x|m.

Alternatively, we can generate $[a]_m$ in the following way:

$$[a]_m = \{a + km \mid k \in \mathbb{Z}\}\$$

Definition:

The integers modulo m, $\mathbb{Z}/m\mathbb{Z}$, is the set of congruence classes modulo m.

13 Algebra and Operations on $\mathbb{Z}/m\mathbb{Z}$

Definition:

In $\mathbb{Z}/m\mathbb{Z}$, addition is defined as

$$[a]_m + [b]_m = [a+b]_m$$

and multiplication is defined as

$$[a]_m \cdot [b]_m = [ab]_m$$

Definition:

An element x is said to be *invertible* if there exists an element y such that $[xy]_m = [1]_m$. We say x and y are multiplicative inverses

Definition:

An element x is said to be a zero divisor if $x \neq 0$ and there exists an element $y \neq 0$ such that $[xy]_m = [0]_m$

14 Theorems about $\mathbb{Z}/m\mathbb{Z}$

Theorem:

An element of $\mathbb{Z}/m\mathbb{Z}$ cannot be both an invertible element and a zero divisor.

Proof:

Suppose $[a]_m$ is invertible, then there exists $[a'] \in \mathbb{Z}/m\mathbb{Z}$ such that $[a]_m[a']_m = [1]_m$. Suppose that also $[a]_m[b]_m = [0]_m$ for some $b \in \mathbb{Z}/m\mathbb{Z}$. Suppose we multiply $[a]_m[b]_m = [0]_m$ by $[a']_m$, we have

$$[a]_m[b]_m = [0]_m$$

$$([a']_m[a]_m)[b]_m = [a']_m[0]_m$$

$$[b]_m = [0]_m$$

Therefore, the only possible b that satisfies $[a]_m[b]_m = [0]_m$ is 0, therefore $[a]_m$ cannot be both invertible and a zero divisor.

Theorem:

In $\mathbb{Z}/m\mathbb{Z}$, multiplicative inverses are unique whenever they exist.

Proof:

Let $[a]_m \in \mathbb{Z}/m\mathbb{Z}$ be an invertible element and suppose $[a]_2$ has two inverses b_1, b_2 :

$$[a]_m[b_1]_m = [1]_m \quad [a]_m[b_2]_m = [1]_m$$

We can attempt to evaluate $[b_1]_m[a]_m[b_2]_m$:

$$([b_1]_m[a]_m)[b_2]_m = [b_2]_m \quad [b_1]_m([a]_m[b_2]_m) = [b_1]_m$$

We can see that depending on the order of operations taken, we get either b_1 or b_2 . but as $[b_1]_m[a]_m[b_2]_m$ is always the same value, we can conclude that $b_1 = b_2$.

Theorem:

 $[a]_m$ is an invertible class $\Leftrightarrow \gcd(a, m) = 1$

Proof:

(⇒): If $[a]_m$ is invertible, then there exists $[b]_m \in \mathbb{Z}/m\mathbb{Z}$ such that $[a]_m[b]_m = [1]_m$. We can see that ab = 1 + km for some $k \in \mathbb{Z}$. We can rearrange this to ab + (-k)m = 1. As the gcd(a, m) is the smallest natural number to ax + my, we have ab + (-k)m = 1 so gcd(a, m) = 1.

(\Leftarrow): The same logic applies but in the reverse direction. \leftarrow

Theorem:

 $[a]_m$ is a zero divisor $\Leftrightarrow \gcd(a,m) > 1$

Proof:

(\Rightarrow): If $[a]_m$ is a zero divisor, $[a]_m$ is not invertible (by previous theorem: an element cannot be both invertible and zero divisor). So $\gcd(a,m) \neq 1$. As $\gcd(a,m) \in \mathbb{N}$ and $\gcd(a,m) \neq 1$, $\gcd(a,m) > 1$.

(\Leftarrow): Suppose $\gcd(a,m)=g>1$, let b=m/g. If we take the product $ab=a\cdot (m/g)=m\cdot (a/\gcd(a,m))$, we can see that ab|m or $[a]_m[b]_m=[0]_m$; $[a]_m$ is a zero divisor.

Theorem:

If $[a] \in \mathbb{Z}/m\mathbb{Z}$ is invertible and $[b] \in \mathbb{Z}/m\mathbb{Z}$ is arbitrary, then the equation

$$[a]_m x = [b]_m$$

has exactly one solution. Namely, $x = [a]^{-}1_{m}[b]_{m}$.

Proof:

We can show the uniqueness of the solution by solving:

$$[a]_m x = [b]_m$$

$$([a]_m^{-1}[a]_m) x = [a]_m^{-1}[b]_m$$

$$[1]_m x = [a]_m^{-1}[b]_m$$

Therefore, x must be $[a]_m^{-1}[b]_m$.

15 Invertible elements in $\mathbb{Z}/m\mathbb{Z}$

Definition:

The set of invertible elements of $\mathbb{Z}/m\mathbb{Z}$ is denoted as $(\mathbb{Z}/m\mathbb{Z})^{\times}$ or $(\mathbb{Z}/m\mathbb{Z})^{*}$:

$$(\mathbb{Z}/m\mathbb{Z})^{\times} = \{ [a]_m \in \mathbb{Z}/m\mathbb{Z} \mid \gcd(a, m) = 1 \}$$

Definition

The cardinality of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is denoted $\phi(m)$, where ϕ is the Euler Totient function. ϕ has the following properties:

- (1) If gcd(a,b) = 1, then $\phi(a,b) = \phi(a)\phi(b)$
- (2) If p is prime and $k \ge 1$, then $\phi(p^k) = (p-1)p^{k-1}$

We proceed to prove these properties of ϕ : **Proof**(taken from HW3 Q2):

(1): In $\mathbb{Z}/mn\mathbb{Z}$ where $\gcd(m,n)=1$, the element $[a]_{mn}$ is invertible if and only if $[a]_m$ and $[a]_n$ are invertible as well. Therefore, each invertible element in $(\mathbb{Z}/mn\mathbb{Z})^{\times}$ correspond to a pair of elements in $(\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$; there

is a bijection betwen $(\mathbb{Z}/m\mathbb{Z})^{\times}$ and $(\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$. Therefore $\phi(mn) = \#((\mathbb{Z}/mn\mathbb{Z})^{\times}) = \#((\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}) = \#((\mathbb{Z}/m\mathbb{Z})^{\times}) \cdot \#((\mathbb{Z}/n\mathbb{Z})^{\times}) = \phi(m)\phi(n)$.

(2): We wish to count all elements in $\mathbb{Z}/p^k\mathbb{Z}$ that are invertible. Since we are working with a prime number p, it would be easier to count all zero-divisors instead. Namely, only the values $p, 2p, 3p, \ldots$ divide into p^k since p is prime. Out of a total of p^k classes, every p^{th} class is a zero divisor. Therefore there are $p^k/p = p^{k-1}$ zero divisors. Taking this amount (p^{k-1}) out of the total (p^k) , we have $\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}$

Theorem:

If $[a]_m \in \mathbb{Z}/m\mathbb{Z}$ is invertible, then $[a]_m^{\phi(m)} = [1]_m$. Note that this implies that $[a]_m^{\phi(m)-1} = [a]_m^{-1}$ because $[a]_m^{\phi(m)-1}[a]_m = [a]_m^{\phi(m)} = [1]_m$. In the case where m is a prime number p, we have Fermat's Little Theorem:

If p is prime and $p \nmid a$, then $[a]_p^{p-1} = [1]_p$ in $\mathbb{Z}/p\mathbb{Z}$. **Proof**:

Given $(\mathbb{Z}/m\mathbb{Z})^{\times}$, we multiply each element by $[a]_m$. If we get $[a]_m[a_i]_m = [a]_m[a_j]_m$, then we multiply by $[a]_m^{-1}$, ensuring every element in $[a]_m \cdot (\mathbb{Z}/m\mathbb{Z})^{\times}$ is distinct. If two elements are invertible, their product is invertible as well. Therefore, $[a]_m \cdot (\mathbb{Z}/m\mathbb{Z})^{\times}$ is just $(\mathbb{Z}/m\mathbb{Z})^{\times}$ with rearranged elements. Now we take the product over $[a]_m \cdot (\mathbb{Z}/m\mathbb{Z})^{\times}$:

$$\prod_{i \in [a]_m \cdot (\mathbb{Z}/m\mathbb{Z})^{\times}} i = [a]_m^{\#((\mathbb{Z}/m\mathbb{Z})^{\times})} \prod_{i \in (\mathbb{Z}/m\mathbb{Z})^{\times}} i$$

$$= [a]_m^{\phi(m)} \prod_{i \in (\mathbb{Z}/m\mathbb{Z})^{\times}} i$$

$$= [a]_m^{\phi(m)} [1]_m$$

$$= [a]_m^{\phi(m)}$$

$$= [1]_m$$

Notice that as $(\mathbb{Z}/m\mathbb{Z})^{\times}$ contains both invertible elements are their inverses, the product over every element in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ would simply equal to $[1]_m$. From this we can see that $[a]_m^{\phi(m)} = [1]_m$.