Aufgabe 1 (Realisierung eines Markovprozesses)

Eine Furby kann in den 3 Zuständen genannt Personalities (Warrior=1, Diva=2 und Jocker=3) sein.¹

Beschreiben Sie den Zustand des Furbys als ein MP. Folgende 4 Übergange sind erlaubt und finden gleich wahrscheinlich statt.

Warrior <-> Diva Diva <-> Jocker

Die Übergange haben eine Rate von $\lambda=2/Tag$.

- a) Geben Sie folgende Übergangsmatrixen für den in Prozess:
 - Sprungmatrix P
 - Ratenmatrix R
 - Generatormatrix Q

an und

zeichnen Sie das Ratendiagram.

Wie oft wechselt der Furby im Mittel in 2 bzw. 20 Tagen seinen Zustand.

b) Gegen ist folgender R-Output:

Ihr Furby started im Zustand 1 = Warrior wie lautet $\overline{\pi(t)}$ nach einem halben Tag, wie nach 100 Tagen.

c)Bestimmen Sie die stationäre Verteilung aus folgendem R-Output, ist dies gleich der asymptotischen Verteiltung.

¹ Die Personalities Jocker, Chatterbox, und Default werden vernachlässigt.

Formelsammlung

	Markov-Kette (Zeit diskret)	Markov-Prozess (Zeit kontin.)
Definiert durch	Übergangsmatrix P mit: $0 \le p_{ij} \le 1$ für alle i , j $\sum_{j=1}^{N} p_{ij} = 1$ für alle i (Zeilensumme in P ist 1)	Ratenmatrix \mathbf{R} , bzw. Generatormatrix \mathbf{Q} mit: $0 \le r_{ij}$ für alle $i \ne j$, $r_{ii} = 0$ für alle i $q_{ij} = r_{ij}$ für alle $i \ne j$ $q_{ii} = -\sum_{j=1}^{N} r_{ij}$ für alle i (Zeilensumme in \mathbf{Q} ist 0)
Dynamik ergibt sich aus und hat als Lösung Aufenthalts-dauermatrix	$\vec{\pi}(1) = \vec{\pi}(0) \cdot \mathbf{P}$ $\vec{\pi}(t) = \vec{\pi}(0) \cdot \mathbf{P}^{t}$ $\mathbf{M}(T) = \sum_{i=1}^{T} \mathbf{P}^{t}$	$\frac{d}{dt}\vec{\pi}(t) = \vec{\pi}(t) \cdot \mathbf{Q}$ $\vec{\pi}(t) = \vec{\pi}(0) \cdot e^{\mathbf{Q}t}$ $\mathbf{M}(T) = \int_0^T e^{\mathbf{Q}t} dt$
Aufenthalts- dauervektor für Zeithorizont T	$\vec{N}(T) = \vec{\pi}(0) \cdot \mathbf{M}(T)$ $\mathbf{M} \text{ wie oben}$	$\vec{N}(T) = \vec{\pi}(0) \cdot \mathbf{M}(T)$ M wie oben
Zustandsabh. Kosten endl. Horizont	$E(K) = \vec{\pi}(0) \cdot \mathbf{M}(T) \cdot \vec{c}'$ $\mathbf{M} \text{ wie oben}$	$E(K) = \vec{\pi}(0) \cdot \mathbf{M}(T) \cdot \vec{c}'$ $\mathbf{M} \text{ wie oben}$
Übergangsabh. Kosten endl. Horizont	$E(K) = \vec{\pi}(0) \cdot \mathbf{M}(T-1) \cdot \tilde{c}$ $\mathbf{M} \text{ wie oben, } \tilde{c}_i = \sum_j p_{ij} u_{ij}$	$E(K) = \vec{\pi}(0) \cdot \mathbf{M}(T) \cdot \tilde{c}$ $\mathbf{M} \text{ wie oben, } \tilde{c}_i = \sum_j r_{ij} u_{ij}$
Stationäre Verteilung	(falls irreduzibel und aperiod.) Aus LGS $\vec{\pi}^* = \vec{\pi}^* \cdot \mathbf{P}$ Oder normierten EV von \mathbf{P} zum EW 1	(falls irreduzibel) Aus LGS $\vec{\pi}^*(t) \cdot \mathbf{Q} = \vec{0}$ Oder normierten EV von \mathbf{Q} zum EW 0
Zustandsabh. Kosten stationär	Pro Zeitschritt: $E(K) = \vec{\pi}^* \cdot \vec{c}'$	Pro Zeiteinheit: $E(\frac{dK}{dt}) = \vec{\pi}^* \cdot \vec{c}'$
Übergangsabh. Kosten stationär	Pro Zeitschritt: $E(K) = \vec{\pi}^* \cdot \tilde{c}$	Pro Zeiteinheit: $E(\frac{dK}{dt}) = \vec{\pi}^* \cdot \tilde{c}$