Stata

Stata is a statistical software with two notable features:

- It can be used interactively through its graphical interface and command input box, or run pre-written scripts. This makes it easier to learn than many other statistical software.
- It only operates on one dataset at a time and all data is loaded into memory. This allows Stata to operate faster than harddisk-based software such as SAS, but you can run into space problem if your dataset is very, very large.

1. Log File: Keeping a record of the commands used and the results generated.

Description	Command	Example
Start a log: record your session	log using "filename", text	log using
into a file called a log file		"D:\Economics\log.txt",text
Close log	log close	log close

2. Importing: We can import excel files into Stata's Data Editor and then save them as dta format.

Description	Command	Example
Import an Excel file, also	import excel using	import excel using
known as a workbook,	"filename"	"D:\Economics\company_record.xlsx"
into Stata's Data Editor		
Import an Excel file and	import excel using	import excel using
treat the first row as	"filename", firstrow	"D:\Economics\company_record.xlsx",
variable names		firstrow
Save the workbook into a	save "filename"	save "D:\Economics\company_record"
dta format		
Import another excel file	Import excel using	import excel using
into Stata's Data Editor	"filename", firstrow clear	"D:\Economics\employee_survey.xlsx",
Note: Data editor cannot		firstrow clear
contain two datasets, so		
we need to clear the		
previous one		
Save the workbook into a	save "filename"	save "D:\Economics\
dta format		employee_survey"
If the dta file already	save "filename", replace	save
exists, overwrite with		"D:\Economics\employee_survey",
replace		replace

3a. Use/ load a Stata dataset (dta format)

Description	Command	Example
First, clear the data in the data editor	clear	clear
load a dta file in the data	use "filename"	use
editor		"D:\Economics\company_record"
The above two steps can be	use "filename", clear	use
combined into one		"D:\Economics\company_record",
command		clear

Note: A newer version of Stata can open datasets saved by an older version of Stata, but the reverse is not true.

Stata Workshop ver. 3.2

http://www.ticoneva.com/econ/stata-workshop/

3b. Change Working Directory

	-	
Description	Command	Example
Alternatively, we can first change the working directory before loading a stata dataset, to avoid typing again the full address.	cd "directory"	cd "D:\Economics\"
Then, load a dta file in the	use "filename"	use "company_record"
data editor		

3c. Merging Datasets

Description	Command	Example
Merge: Merging a dataset to another dataset in the memory of the Data Editor, matching on one or more key variables	merge 1:1 variables using "filename" merge 1:m variables using "filename" merge m:1 variables using "filename" merge m:m variables using "filename"	merge 1:1 id using "employee_survey"
Append: Adding data to	append using "filename"	append using
bottom of the existing dataset		"company_record_2"

Fig. 2 Merged dataset

3d. Data frames (Stata 16 onwards)

Description	Command	Example
Create a frame	frame create name	frame create survey
Change current frame	frame change name	frame change survey
		frame change default
Delete frame	frame drop name	frame drop survey
Do something on a frame	frame name:	frame survey: use employee_survey
	frame name { }	
Link with another frame	frlink m:n variables,	frlink 1:1 id, frame(survey)
	frame(name)	
Fetch data from another frame	frget varname,	frget education, from(survey)
	from(<i>name</i>)	

Stata Workshop ver. 3.2

http://www.ticoneva.com/econ/stata-workshop/

4. Manipulate Data

Description	Command	Example
Adding a new variable	generate new_var =	gen log_edu = log(education)
Modifying a variable	replace variable =	replace log_edu = ln(education)
Drop a variable	drop variable	drop log_edu
Drop an observation	drop if variable =	drop if id == 11
Switch between the two common ways of storing groups of data	reshape	(Read Stata's help file if you need this function)

Note: Type "function" in the viewer for a list of available functions.

Stata follows the common programming convention of using "=" for assignment(i.e.

modification of data) and "==" for comparison.

5. Summarize: to obtain summary statistics

	-	
Description	Command	Example
Summarize	sum	sum
Summarize a variable	sum <i>variable</i>	sum hourlywage
Summarise a variable in detail	sum <i>variable</i> , detail	sum hourlywage, detail

6. Making a table

Description	Command	Example
Making a table of summary statistics: Make a table with certain contents	table variable1 variable2, statistic(option)	table gender free_edu, stat(median hourlywage)
		table gender free_edu, stat(median hourlywage) stat(sd hourlywage)

gender	free	e_edu 1
F	3.6	3.24 1
М	5.65 2	10 4

An example of *Table* command output

Stata Workshop ver. 3.2

http://www.ticoneva.com/econ/stata-workshop/

7. Correlation

Description	Command	Example
Correlations (covariances) of	correlate variable1	corr hourlywage experience
variables	variable2 variable3	education
	hourly~e experi~e educa	at~n
hourlywage experience education	0.1940 1.0000	0000

An example of *Correlation* command output

8. T-Test

Description	Command	Example
T-test: compare the means of	ttest variable1 = variable2	ttest education = motheduc
two variables		

. ttest education = motheduc

Paired t test

I alleu (
Variable		Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
educat~n motheduc	i 10 I 10	12.9 9.5	.9826269 1.185561	3.107339 3.749074	10.67714 6.818074	15.12286 12.18193
diff	•	3.4	1.240072	3.921451	.594763	6.205237
	(diff) = mean(diff) = 0	education	- motheduc)		t of freedom	= 2.7418 = 9
	(diff) < 0) = 0.9886		mean(diff)			(diff) > 0) = 0.0114

An example of *ttest* command output for test of two variables

Description	Command	Example
T-test: compare the means of two groups within the same variable	ttest variable1, by(groupvar)	ttest hourlywage, by(gender)

Note: groupvar can only take on two values

. ttest hourlywage, by(gender)

Two-sample t test with equal variances

		•				
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
F M	4 6	3.735 8.746667	.4346167 2.218876	.8692334 5.435114	2.351856 3.042864	5.118144 14.45047
combined	10	6.742	1.528432	4.833326	3.284447	10.19955
diff		-5.011667	2.794796		-11.45648	1.433145
diff = : Ho: diff =	mean(F) - O	mean(M)		degrees	t of freedom	= -1.7932 = 8
Ha: dif Pr(T < t)		Pr(Ha: diff != T > t) =			iff > 0) = 0.9447

An example of *ttest* command output for test of two groups within the same variable

http://www.ticoneva.com/econ/stata-workshop/

9a. Histogram

Description	Command	Example
Histogram of a variable	hist variable	hist education
Histogram of a variable, with n blocks (Fig 3)	hist variable, bin(n)	hist education, bin(5)
Histogram of a variable, with n blocks, and y axis as fraction (Fig 4)	hist variable, bin(n) fraction	hist education, bin(5) fraction

3 Fig 4

9b. Scatter Graph

Description	Command	Example
Plot a scatter graph	scatter variable1 variable2	scatter hourlywage education
Plot two scatter subgraphes , being placed beside each other (Fig 5)	scatter variable1 variable2, by(variable3)	scatter hourlywage educ, by(gender)
Plot two subgraphes, one placing on another (Fig 6)	scatter variable1 variable2 if variable3 == value1 scatter variable1 variable2 if variable3 == value2	scatter hourlywage educ if gender == "M" scatter hourlywage educ if gender == "F"

Fig 5 Fig 6

10a. Regression

Description	Command			Example		
Ordinary Least Squa	are i	regress dep_	variable		reg hourlywage experience	
	i	indep_varial	oles		tenure	
. reg hourlywag	e experience	tenure				
Source	22	d f	MS		Number of obs = 10	
Model Residual	108.737034 101.512326	2 54. 7 14.	3685168 5017609		F(2, 7) = 3.75 Prob > F = 0.0782 R-squared = 0.5172 Adj R-squared = 0.3792	
Total	210.24936	9 2	3.36104		Root MSE = 3.8081	
hourlywage	Coef.	Std. Err.	t	P>Itl	[95% Conf. Interval]	
			2.64	0.150 0.034 0.013	6137318 .115412 .0589673 1.083543 1.769097 10.8202	

An example of regress command

10b. Regression with dummy variables:

First, we have to generate dummy variables for qualitative variables	Step1: generate the name of dummy variable = 0 (Fig 7)	generate gender_dummy = 0
	Step2: replace the name of dummy variable = 1 if variable == "value1" replace the name of dummy variable = 2 if variable == "value2" (Fig 8)	replace gender_dummy = 1 if gender=="M"
	<u>Alternatively</u> , use xi	xi i.gender
Then, we do regression with	reg variable1 variable2 the	reg hourlywage experience
the dummy variables	name of dummy variable	tenure gender_dummy

ile Edit View Data Tools

7 🗔 📭 🖺 📝 針 😙 🗓 🗜 genderdummy[1] motheduc sibs _merge genderdummy matched (3) 12 matched (3) matched (3) 12 matched (3) 10

Fig 7 Fig 8

Stata Workshop ver. 2.1

http://www.ticoneva.com/econ/stata-workshop/

11. Fixed-Effect Regression

Description	Command	Example
If there are too many values for the dummy variable, we can encode the variable into numeric first	encode variable, generate(new numeric dummy variable)	encode maritalstatus, generate(maritalstatus_numeric)
Then, run fixed effect regression	xtreg dep_variable indep_variables, fe i(new numeric dummy variable)	xtreg hourlywage tenure, fe i(maritalstatus_numeric)

Output of encode. The leftmost variable is in fact numeric, but is labeled.

. xtreg hourlywage tenure, fe i(martialstatus_numeric)

```
Number of obs
                                                                          10
Fixed-effects (within) regression
Group variable: martialsta~c
                                               Number of groups
R-sq: within = 0.2532
                                               Obs per group: min =
                                                                         5.0
       between = 1.0000
                                                             avg =
       overall = 0.3370
                                                             max =
                                               F(1,7)
                                                                        2.37
corr(u_i, Xb) = 0.5227
                                               Prob > F
                                                                       0.1673
                                              P>ltl
                                                       [95% Conf. Interval]
 hourlywage | Coef.
                           Std. Err. t
    tenure | .2832131
_cons | 4.617902
                                       1.54 0.167
                                                       -.1515256
                                                                     .7179517
                           . 1838511
___cons |
                           1.971669
                                        2.34
                                               0.052
                                                        -.0443534
                                                                    9.280157
    sigma_u | .31239775
sigma_e | 4.4566344
       rho l .0048896
                          (fraction of variance due to u_i)
F test that all u_i=0:
                          F(1, 7) = 0.02
                                                          Prob > F = 0.8975
```

An example of xtreg command

Stata Workshop ver. 2.1

http://www.ticoneva.com/econ/stata-workshop/

12a. Correction for Heteroskedasticity

Description	Command	Example
Test if the homoscedasticity assumption holds (Run after <i>regress</i>)	estat hettest indep_variables	hettest experience tenure
Robust Standard Errors (Eicker-White Std. Err.)	regress dep_variable indep_variables, robust (Also works with xtreg)	reg hourlywage experience tenure, robust

. reg hourlywage experience tenure, robust

Linear	regression Number	οf	obs =	10
	F(2,		7) =	3.25
	Prob > 1	F	=	0.1002
	R-squar	ed	=	0.5172
	Root MS	E	=	3.8081

hourlywage			Robust Std. Err.		P>Itl		Interval]
experience		2491599	.1273134	-1.96	0.091	5502081	.0518884
tenure		.5712551	.2351817	2.43	0.045	.0151388	1.127371
_cons		6 .294649	1.705796	3.69	0.008	2.261082	10.32822

An example of robust standard errors. Note the difference in standard errors compared to 10a.

12b. Correction for Error Correlation within Group and Over Time

Clustered Standard Errors	regress dep_variable	reg hourlywage tenure,
Corrects within-group error	indep_variables, vce(cluster	vce(cluster workplace)
correlation	clustervar)	
	(Also works with xtreg)	
Newey-West Standard Errors	newey dep_variable	newey hourlywage tenure,
Corrects for equi-correlated	indep_variables, lag(periods)	lag(2)
error over time. Error		
beyond the number of	Let Stata select optimal lag:	
periods specified are	Ivregress gmm dep_var	ivregress gmm hourlywage
assumed to be uncorrelated	indep_vars, wmatrix(hac nw	tenure, wmat(hac nw opt)
	opt)	

13. Hypothesis Testing

Test linear hypothesis	test varnames	test tenure experience
	test <i>exp1</i> [= <i>exp2</i> =]	test tenure – experience = 0
Test non-linear hypothesis	testnl exp2 [= exp2 =]	testnl _b[tenure]^2 = 0

14. Obtaining residuals and predicted values

Obtain predicted values	<pre>predict new_var</pre>	predict predicted_hourlywage
after regression		
Obtain residuals	predict new_var, residuals	predict estimated_u, r

Stata Workshop ver. 2.1

http://www.ticoneva.com/econ/stata-workshop/

15. Instrumental Variable Regression

Description	Command	Example
When an independent variable is correlated with the error term, OLS is biased. IV regression uses another variable uncorrelated with the error to predict the correlated one	<pre>ivregress estimator dep_var exog_vars (endo_var = instrument_vars)</pre>	ivregress 2sls hourlywage (education = free_edu)
Test for endogeneity after IV regression	estat endogenous	Estat endog

16a. Discrete Choice Model

Description	Command	Example
Logit:	logit dep_var indep_vars	logit free_edu mothedu
When the dependent variable		
takes on binary values, we can		
use the logit model		
However, the interpretation	logit dep_var indep_vars, or	logit free_edu mothedu, or
of β Estimator is different		
from the one we used for OLS.		
So we need to use odd ratios		

16b. Additional Discrete Choice Models

10b. Additional District Choice Wodels		
Description	Command	Example
Multinomial Logit:	mlogit dep_var indep_vars	mlogit free_edu mothedu
When the dependent variable		
takes on more than two		
discrete values		
Ordered Logit:	<pre>ologit dep_var indep_vars</pre>	ologit feedback budget, or
When the dependent variable		
represents ordinal ratings		
(e.g. bad, good, best)		
Rank-ordered Logit:	rologit dep_var indep_vars,	rologit position training,
When the dependent variable	group(horse_id)	group(horse_id)
represents successive draws		
without replacement (e.g.		
places in a race)		

17. Obtaining Marginal Effects

Description	Command	Example
The marginal effect of each	old syntax: mfx	mfx
independent variable on the		
predicted value at the average	new syntax: margins,	margins, dydx(motheduc)
value of the variable	dydx(indep_vars) atmeans	atmeans