Day-Ahead Dynamic Thermal Line Rating using Numerical Weather Prediction

Tomas Barton, tbarton@ualberta.ca
Petr Musilek, pmusilek@ualberta.ca

@ University of Alberta, Electrical and Computer Engineering

Outline

- 1. Introduction of Dynamic Line Rating
- 2. Problem
- 3. Proposed solution
- 4. Results

Dynamic Thermal Line Rating (DLTR)

Line rating

- The limit for the maximal current in the conductor
- Set by the operator
- Why? To keep the line safe
 - Thermal rating -> safe from overheating
 - Other limits exists (stability, voltage quality)

Thermal model of a transmission line

- Electrical current, sunlight increase the temperature
- Radiative, Air temperature, Wind speed decrease temperature

Dynamic Thermal Line Rating (DTLR)

Static Thermal Line Rating (SLR)

- Does not change very often
- Worst case environmental conditions assumed for safety
 - 40°C, 0.6 m/s, full sunlight

Dynamic Thermal Line Rating (DTLR or DLR)

- Rating changes with real ambient conditions
- Realtime: sensors to estimate the rating

Theoretically, Realtime DTLR can fully utilize the entire capacity of the OTH

Problem

Realtimeness

- Electricity markets
- Powerflow calculations
- Power generation cannot respond in real-time
- Support by the management systems of the operator
 - Main motivation
 - Expansion of wind power generation in southern Alberta
 - EMS does not support real-time update of line rating

Solution

Daily DLR

Line rating updated once a day based on day-ahead predictions

Advantages:

- EMS allows changes to the line rating once a day
- No need for line rating sensors
 - o Indirect calculation of DLR from weather prediction

Disadvantages:

- Does not fully utilize the Real Time DLR
- Sourcing of weather forecasts
- Maintenance of forecasting models and software

Probabilistic model

- NWP provides imperfect deterministic predictions
- To guarantee safety, uncertainty has to be quantified
- Parameters updated daily on a training window
- Maximum Likelihood optimization

Example: Wind Speed model:

$$\hat{v}(t) \sim N_{trunc}(\mu, \sigma)$$

$$\mu = a_0 + a_1 \hat{v}_{NWP}$$

$$\sigma = b_0 + b_1 \hat{v}_{NWP} + b_2 t$$

Results

Dataset

- 1 year of NWP in 2016
 - Daily forecasts
 - WRF meteorological model
- Sensor data
 - 2016
 - 4 weather stations located alongside a short
 OTH in southern Alberta
 - 3 minutes sampling interval

Evaluation

- Simulation of the presented use-case
- Daily predict the ampacity for the next day

Transmitted energy:
$$E = V \cdot \sum_{n=1}^{N} \hat{A}(n) \cdot dt,$$

Energy overestimate:
$$E_o = V \cdot \sum_{n=1}^{N} \max(\hat{A}(n) - A(n), 0) \cdot dt$$

Transmitted energy Increase over SLR over 1 year E [GVÅh] $1 - E/E_{static}$ [%] E_o [MVAh] T_o [hour] Real-time capacity 984.2 131.7 0.0 0.00 Realtime Daily Capacity, $A_{perfect}$ 591.5 39.3 0.0 0.00 Perfect forecast Naive algorithm 0.3 425.9 10.7 3.75 Static 475A 403.5 -5.04.6 2.00 424.8 0.0 Static 500A 17.6 5.50 SLR Static 525A446.0 5.0 51.1 13.75 0.5 Derated $\alpha = 0.01$ 426.8 17.8 5.50 Derated $\alpha = 0.05$ 434.9 2.4 18.6 5.50 Derated $\alpha = 0.10$ 445.1 4.8 19.8 6.00 7.2 23.6 Derated $\alpha = 0.15$ 455.2 8.50 Derated $\alpha = 0.20$ 465.4 9.6 33.5 11.25 Derated $\alpha = 0.24$ 473.5 11.5 45.9 13.00 Probabilistic q = 99%425.0 0.1 0.3 0.75 Probabilistic q = 98%4.2 7.3 442.5 1.75 Probabilistic q = 97%457.2 7.6 17.6 3.50 Proposed Probabilistic q = 96%10.6 37.7 7.75 469.9 Probabilistic q = 95%481.3 13.3 68.1 12.75 Deterministic NWP 627.8 47.8 4249.8 248.25

Conclusion

- Forecasting allows us to overcome the problematic real-time nature of DLR.
 - Realtime DLR increase by 132%, but cannot be used.
- Daily DLR could have achieved up to 39% increase in transmitted energy on the studied line in 2016.
 - Further increase would require to decrease the forecasting interval
- The presented method achieved 7.8% increase while maintaining the same risk as current SLR.
 - Future research direction: Improve the forecasting method so that more of the daily DLR potential can be utilized.

Thank you!

Questions?