1. Egyszerű reprezentációjú típusok

Típusok definiálása, majd osztály diagrammal történő leírása.

1. Adott síkbeli pontok közül hány esik rá egy adott kör lemezére?

Kör és a Pont típusa. Ábrázoljuk a köröket a középpontjukkal és a sugarukkal, a pontokat a koordinátájukkal.

Típusdefiníciók:

Megj: A tervezés során inkább a "felülről-lefelé" irányt követjük, de az objektum-orientált kódolás az "alulról-felfelé" építkezést szereti.

Osztályok:

Megj: A két pont távolsága, illetve egy pontnak egy másiktól való távolsága nem eltérő fogalmak, ám metódusként való leírásuk különbözik. Itt a második értelmezés jelenik meg: egy adott pontra (c) kell meghívni a Távolság() metódust egy másik ponttal (p), hogy a két pont távolságát kiszámoljuk: c.Távolság(p)

2. Racionális számok.

Típusdefiníció:

Q	$c := a \pm b$ (a: \mathbb{Q} , b: \mathbb{Q} , c: \mathbb{Q})	
	$c := a \cdot b$ (a: \mathbb{Q} , b: \mathbb{Q} , c: \mathbb{Q})	
	$c := a / b (b \neq 0) (a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$	
n, d: Z	c.n, c.d := $a.n \cdot b.d \pm a.d \cdot b.n$, $a.d \cdot b.d$	
$//\frac{n}{d}$ Inv: d≠0	c.n, c.d := a.n · b.n, a.d · b.d	
	c.n, c.d := a.n · b.d, a.d · b.n (b.n≠0)	

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} + \frac{b.n}{b.d} = \frac{a.n \cdot b.d + b.n \cdot a.d}{a.d \cdot b.d}$$

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} - \frac{b.n}{b.d} = \frac{a.n \cdot b.d - b.n \cdot a.d}{a.d \cdot b.d}$$

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} \cdot \frac{b.n}{b.d} = \frac{a.n \cdot b.n}{a.d \cdot b.d}$$

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} / \frac{b.n}{b.d} = \frac{a.n}{a.d} \cdot \frac{b.d}{b.n} = \frac{a.n \cdot b.d}{a.d \cdot b.n}$$

Megj: A műveletek őrzik az invariánst, amely lehetne a d>0 is, vagy, hogy n és d relatív prím. Ez utóbbi esetben minden művelet után normálni kellene az n és d-t.

A műveleteket feladatoknak tekinthetjük, amelyeket elő- utófeltételes specifikációval is megfogalmazhatunk mind a típusspecifikáció, mind a típusmegvalósítás szintjén:

$$A = (a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$$

$$A = (a:(n:\mathbb{Z}, d:\mathbb{Z}), b:(n:\mathbb{Z}, d:\mathbb{Z}), c:(n:\mathbb{Z}, d:\mathbb{Z}))$$

$$Ef = (a=a' \land b=b')$$

$$Uf = (Ef \land b\neq 0 \rightarrow c=a / b)$$

$$Uf = (Ef \land b \rightarrow 0 \rightarrow c=a / b)$$

$$Uf = (Ef \land b \rightarrow 0 \rightarrow c.n, c.d = a.n \cdot b.d, a.d \cdot b.n)$$

Ha nem akarjuk megkövetelni, hogy az inputváltozók megőrizzék az értékeiket:

$$Uf = (b' \neq 0 \rightarrow c = a' / b')$$
 ill. $Uf = (b'.n \neq 0 \rightarrow c.n, c.d = a'.n \cdot b'.d, a'.d \cdot b'.n)$

Osztálydiagram:

Milyen alakban lenne szebb meghívni a műveleteket? **a.Add(b)** vagy **Add(a,b)**? Az előbbi esetben az Add() művelet egy objektumhoz tartozik, az utóbbiban az osztályhoz (osztályszintű metódus).

Megj: Még szebb lenne, ha majd az Add(a,b) alak helyett az a + b alakot használhatnánk.

3. Komplex számok. Ábrázoljuk a komplex számokat az algebrai alakjukkal (x+y·i).

Típusdefiníció:

C	c := a±b	(a: ℂ, b:ℂ, c:ℂ)	
	c := a*b	$(a:\mathbb{C},b:\mathbb{C},c:\mathbb{C})$	
	c := a/b (b≠0) (a:ℂ, b:ℂ, c:ℂ)	
x, y: ℝ	c.x, c.y := $a.x \pm b.x$, $a.y \pm b.y$		
// x+i·y	$c.x, c.y := a.x \cdot b.x - a.y \cdot b.y, a.x \cdot b.y + a.y \cdot b.x$		
	c.x, c.y := $(a.x \cdot b.x + a.y \cdot b.y) / (b.x^2 + b.y^2)$,		
	$(a.y \cdot b.x - a.x \cdot b.y) / (b.x^2 + b.y^2)$		
	// b.x≠0 ∨ b.y≠0		

Osztálydiagram:

