

Zhicheng Zhang^{1,2,†} Junyao Hu^{1,2,†} Wentao Cheng^{1,‡} Danda Paudel^{3,4} Jufeng Yang^{1,2}

VCIP & TMCC & DISSec, College of Computer Science, Nankai University
 Nankai International Advanced Research Institute (SHENZHEN: FUTIAN)
 Computer Vision Lab, ETH Zurich
 INSAIT, Sofia University

ETH zürich INSAIT

https://cv.nankai.edu.cn

https://github.com/nku-zhichengzhang/ExtDM

Outline

- Introduction
- Rethinking Previous Works
- ExtDM Architecture
- Experimental Results
- Conclusion

Introduction

Autonomous Driving

Sport Events

Video Prediction

Definition

It aims to capture the dynamic change from present x_c to future x_p .

- □ Difference with Video Generation building on existing video sequences v.s. creating from scratch
- Application

Autonomous driving, sport events, video understanding, etc.

Introduction

Prediction Performance of MCVD

Methods	<i>cond</i> =10, <i>pred</i> = 40				FPS↑
Methods	SSIM†	PSNR1	LPIPS↓	FVD↓	FP31
MCVD-c					
MCVD-cpf	0.720	23.48	0.173	368.4	6.38
MCVD-s	0.744	26.40	0.115	331.6	2.29

Inference quality and speed of MCVD

- Video Prediction
 - Challenges
 - Uncertainty and Complexity especially in long-term video prediction
 - Modeling of Temporal Change including dynamic variation and static background processing
 - Effectiveness and Usability Trade-off between training computing cost and inference speed

Voleti V, Jolicoeur-Martineau A, Pal C. Mcvd-masked conditional video diffusion for prediction, generation, and interpolation[C]. NeurIPS, 2022.

Rethinking Previous Works

$$p(x_p|x_c)$$

Direct Method

- only RGB
- difficult to solve
 complexity in
 probability estimation
 SRVP(ICML20)
 SimVP(CVPR22)

In-context Learning Method

- RGB + motion (implicit cues) ;
- lack accuracy for longer time!
- counterfactual results like fading, deformation, etc. MCNet(ICLR17) MOSO(CVPR23)

Extrapolation Method (Ours)

- RGB + motion (explicit cues)
- Extrapolate present deterministic motion cues into the future ones

✓ Contributions

- A distribution extrapolation DM that predict future frames.
- An efficient VP method includes **compression and reconstruction**, which can create multiple tailored proposals for stochastic events by imitating motion cues.
- Effectiveness for short/long-term videos in 5 video prediction datasets.

Compression

$$m{m}_c = \Big\{m{m}_i \in \mathbb{R}^{3hw} \mid m{m}_i = \mathcal{E}(m{x}_i, m{x}_u) = egin{bmatrix} w_i \ o_i \end{bmatrix} \Big\}.$$

$$oldsymbol{x}_p\!=\!\{oldsymbol{x}_j\!\in\!\mathbb{R}^{3HW}|oldsymbol{x}_j\!=\!\mathcal{D}(oldsymbol{\hat{m}}_j,oldsymbol{x}_u)\!=\!\mathcal{G}(o_j\odot\mathcal{W}(oldsymbol{z}_u,w_j))\}$$

Two Mapping Functions

Step 1: $oldsymbol{x}_c
ightarrow oldsymbol{m}_c$ & $oldsymbol{\hat{m}}_p
ightarrow oldsymbol{x}_p$

Motion Autoencoder Compression & Reconstruction

Two Mapping Functions

Step 2: $m{m}_c, m{x}_c o m{\hat{m}}_p$

Distribution Extrapolation Diffusion Model

Layered Distribution Adaptor

- estimate distribution params
- inference using distribution sampling

$$f_{1:\Delta} = \phi_{e}(f_{c}), \qquad f_{b} = \mathcal{A}(f_{a})$$

$$\widehat{f}_{1:2^{l}\Delta} = (f_{1:2^{l-1}\Delta}, \mathcal{A}^{(l)}(f_{1:2^{l-1}\Delta})), \quad = (\sigma(f_{a}) + \sigma')\phi_{d}(\frac{f_{a} - \mu(f_{a})}{\sigma(f_{a})})$$

$$f_{p} = (\widehat{f}_{1:\Delta}, \dots, \widehat{f}_{2^{L-1}\Delta:2^{L}\Delta}). \qquad + \mu(f_{a}) + \mu'$$

Spatiotemporal Window U-Net

 exploit the spatiotemporal coherence interaction via jointly conducting strided and grid window

$$f_{x \to g} = \operatorname{softmax}(\frac{[\mathcal{T}(f_x)\mathbf{W}^{\mathbf{Q}}][\mathcal{T}(f_g)\mathbf{W}^{\mathbf{K}}]^{\top}}{\sqrt{d}})\mathcal{T}(f_x)\mathbf{W}^{\mathbf{V}}$$

✓ It can predict the videos with **correct trajectories** of objects (**green curve** in the figure).

- ✓ Prediction results can be used to
 - (a) generate potential predictions
 - (b) customize a preferred trajectory.

✓ Qualitative comparison on SMMNIST, KTH, Cityscapes and BAIR.

✓ Qualitative comparison on SMMNIST, KTH, Cityscapes and BAIR.

✓ Comparison of quality and speed of SOTA DMs for shortand long-term video prediction.

✓ Frame-wise PSNR comparison on long-term video datasets.

https://cv.nankai.edu.cn

https://github.com/nku-zhichengzhang/ExtDM

