1. Let $R = \{(2,3), (3,5), (2,4), (4,4), (4,2)\}$. Draw 'arrow diagrams' for the relations R, R^{-1} and $R \circ R$. What are the sets $dom(R \circ R \circ R)$ and $rng(R \circ R \circ R)$? (Name every element of these sets.)

2. Let $A = \{1, 2, 3\}$. What is the relation $\subseteq \circ \subseteq$ on $\mathcal{P}(A)$? (Name every element of this relation.)

3. What is the set $R^{-1}[\{12, 15, 42\}]$, where R is the divisibility relation | on the set \mathbb{Z} ?

$$R^{-1}[\{12,15,42\}] = \{\alpha \in dom R \mid \exists b \in \{12,15,42\} \ \alpha R b\}$$

$$R^{-1}[\{12,15,42\}] = \{\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 12,\pm 5,\pm 15,\pm 4,$$

4. Prove that $R \circ (P \cup Q) = (R \circ P) \cup (R \circ Q)$ for every relations P, Q, R.

$$R \circ (P \cup Q) = ((R \circ (P \circ Q))^{-1})^{-1} =$$

$$= (P^{-1} \circ R^{-1}) \cup (Q^{-1} \circ R^{-1}) = (R \circ P)^{-1} \cup (R \circ Q)^{-1} = ((R \circ P) \cup (R \circ Q))^{-1}$$

$$= ((R \circ P) \cup (R \circ Q))^{-1})^{-1} = (R \circ P) \cup (R \circ Q)$$

5. Does the inclusion $(R \circ P) \cap (R \circ Q) \subseteq R \circ (P \cap Q)$ hold for every relations P, Q, R?

$$R = \{(2,0), (1,0)\}$$

6. Does the inclusion $R[X] \cap R[Y] \subseteq R[X \cap Y]$ hold for every relation R and sets X and Y?

50 no

7. Does the identity $(R \cup Q)[X] = R[X] \cup Q[X]$ hold for every relations R, Q and set X?

 $b \in (R \cup Q)[X] \Leftrightarrow \exists a (a \in X \cap (a,b) \in R \cup Q) \Leftrightarrow$ C $\exists a(a \in X \land ((a,b) \in R \lor (a,b) \in Q)) \subset C$ $\exists a((a \in X \land (a,b) \in R) \lor (a \in X \land (a,b) \in Q))$ $\Rightarrow \exists a(\alpha \in X \cap (a,b) \in R) \vee \exists a(\alpha \in X \cap (a,b) \in Q) \Leftrightarrow$ ⇒ be R[x] V beQ[x] => be R[x] UQ[x]