EE380 (Control Systems) Lab work of Experiment 3.

Q11 Program the discretized version of H(s) in your dsPIC. Use the k_{cr} obtained in Q3. Give a step input and see the CL response. If sustained oscillations of the CL system are not seen, then tune k_{cr} until you hit a value that provides sustained oscillations.

The value of k_{cr} is and the corresponding value of P_{cr} is

Q12 With the value of k_{cr} and P_{cr} that you determined in Q11, form a PID controller as shown in Figure 4.1 of the lab manual.

$$C(s) = k_p \left(1 + \frac{1}{T_I s} + \frac{T_D s}{\tau s + 1} \right) = k_p + \frac{K_i}{s} + \frac{K_d s}{\tau s + 1} \stackrel{?}{=}$$

Q14 Program the digital controller from Q13 into the dsPIC and run the setup. Record the results in the following table. Plot the necessary data. ($\omega_{\rm ref} = 100 \, {\rm rad/s}$). Sketch ω versus t and u vs. t with labels in the space adjacent to the table.

Type of experiment	<i>t_s</i> [s]	<i>e</i> _{ss} [%]	<i>M_p</i> [%]	2 nd overshoot 1 st overshoot
Practical				