

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Teile & Herrsche (Divide & Conquer)

- Teile Eingabe in mehrere Teile auf
- Löse das Problem rekursiv auf den Teilen
- Füge die Teillösungen zu einer Gesamtlösung zusammen

Definition (konvex)

- Eine Menge $M \subseteq \mathbb{R}^2$ heißt konvex, wenn für alle Punkte $p, q \in M$ gilt, dass jeder Punkte auf der Strecke pq ebenfalls in M ist.
- Formal: Sind $p, q \in M$, dann ist für jedes λ mit $0 \le \lambda \le 1$ der Punkt $r = \lambda p + (1 \lambda) \cdot q$ ebenfalls in M.

Beispiel

Definition (konvex)

- Eine Menge $M \subseteq \mathbb{R}^2$ heißt konvex, wenn für alle Punkte $p, q \in M$ gilt, dass jeder Punkte auf der Strecke pq ebenfalls in M ist.
- Formal: Sind $p, q \in M$, dann ist für jedes λ mit $0 \le \lambda \le 1$ der Punkt $r = \lambda p + (1 \lambda) \cdot q$ ebenfalls in M.

Beispiel

Die Menge ist konvex

Definition (konvex)

- Eine Menge $M \subseteq \mathbb{R}^2$ heißt konvex, wenn für alle Punkte $p, q \in M$ gilt, dass jeder Punkte auf der Strecke pq ebenfalls in M ist.
- Formal: Sind $p, q \in M$, dann ist für jedes λ mit $0 \le \lambda \le 1$ der Punkt $r = \lambda p + (1 \lambda) \cdot q$ ebenfalls in M.

Beispiel

Die Menge ist nicht konvex

Definition (konvexe Hülle)

- Die konvexe Hülle einer Menge $M \subseteq \mathbb{R}^2$ ist der Schnitt aller konvexen Mengen, die M enthalten.
- Intuitiv: Konvexe Hülle ist die kleinste konvexe Menge, die M enthält

Beispiel

Definition (konvexe Hülle)

- Die konvexe Hülle einer Menge $M \subseteq \mathbb{R}^2$ ist der Schnitt aller konvexen Mengen, die M enthalten.
- Intuitiv: Konvexe Hülle ist die kleinste konvexe Menge, die M enthält

Beispiel

Die konvexe Hülle ist die Vereinigung der orangenen und der grünen Menge

Konvexe Hülle einer Punktmenge

Intuition: Punkte sind Nägel und die Hülle wird durch Gummiband um die Nägel eingeschlossen

•

•

•

Konvexe Hülle einer Punktmenge

Intuition: Punkte sind Nägel und die Hülle wird durch Gummiband um die Nägel eingeschlossen

Konvexe Hülle einer Punktmenge

Beobachtung: Die konvexe Hülle einer Punktmenge P ist ein konvexes Polygon mit Eckpunkten aus P.

Problem: Berechnung der konvexen Hülle einer Punktmenge

- Eingabe: Menge P von n Punkten in der Ebene \mathbb{R}^2
- Ausgabe: Beschreibung der konvexen Hülle der Punktmenge

Darstellung der konvexen Hülle im Rechner

Wir speichern den Rand der Hülle als doppelt verkettete Liste

Allgemeine Lage

Zur Vereinfachung nehmen wir an, dass keine 3 Punkte auf einer Linie liegen und dass keine 2 Punkte dieselbe x-Koordinate haben.

Beobachtung

Sei P eine Punktmenge in der Ebene. Eine Strecke pq mit $p,q \in P$ liegt auf dem Rand der konvexen Hülle, genau dann wenn die gerichtete Linie L durch p und q die Ebene in die (offenen) Halbebenen H und G partitioniert, so dass eine Halbebene H keinen Punkt aus P enthält und $G \cup L$ alle Punkte aus P enthält.

SimpleConvexHull(*P*)

- 1. for each $(p,q) \in P \times P, p \neq q$ do
- 2. valid ← true
- 3. **for all** $r \in P \{p, q\}$ **do**
- **4. if** r liegt links von der gerichteten Linie durch p und q **then** valid \leftarrow false
- 5. **if** valid = true **then** füge die gerichtete Kante pq zu E hinzu
- 6. Aus der Menge *E* konstruiere eine doppelt verkettete Liste der Eckknoten der konvexen Hülle

Geometrische Primitive

- Grundlegende geometrische Funktionen, die von einer konstanten Anzahl von Objekten abhängen, können in konstanter Zeit berechnet werden
- Z.B.: Liegt r links von der gerichteten Linie durch p und q

Schritt 6 des Algorithmus

- Entferne eine beliebige Kante pq aus E
- Wähle q als ersten Knoten der Liste
- Es muss eine gerichtete Kante geben, die von q ausgeht
- Diese führt zum nächsten Knoten r
- Füge r in die Liste als Nachfolger von q ein
- Auf diese Weise können wir Schritt für Schritt den Rand der Hülle als (doppelt verkettete) Liste konstruieren

SimpleConvexHull(*P*)

- 1. for each $(p,q) \in P \times P, p \neq q$ do
- 2. valid ← true
- 3. **for all** $r \in P \{p, q\}$ **do**
- **4**. **if** r liegt links von der gerichteten Linie durch p und q **then** valid ← false
- 5. **if** valid = true **then** füge die gerichtete Kante pq zu E hinzu
- 6. Aus der Menge *E* konstruiere eine doppelt verkettete Liste der Eckknoten der konvexen Hülle

Laufzeit des Algorithmus

 $0(n^3)$

Grundidee

Sortiere Punkte nach x-Koordinate

Grundidee

- Sortiere Punkte nach x-Koordinate
- Teile in zwei Hälften Q und R

Grundidee

- Sortiere Punkte nach x-Koordinate
- Teile in zwei Hälften Q und R
- Berechne Hüllen der linken und rechten Punktmenge rekursiv

Grundidee

- Sortiere Punkte nach x-Koordinate
- Teile in zwei Hälften Q und R
- Berechne Hüllen der linken und rechten Punktmenge rekursiv
- Setze die Hüllen zusammen

Grundidee

- Sortiere Punkte nach x-Koordina
- Teile in zwei Hälften Q und R
- Berechne Hüllen der linken und
- Setze die Hüllen zusammen.

Wie verbindet man die beiden Hüllen?

- A) Man verbindet die obersten und untersten Punkte
- B) Man hält den obersten Punkt der beiden Hüllen fest und sucht entlang der anderen Hülle bis man den anderen Endpunkt gefunden hat
- C) Beides funktioniert
- D) Keines von beiden funktioniert

Notwendige Eigenschaften der oberen fehlenden Strecke

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F
- Winkel ABE ist größer als 180 Grad
- Winkel BEF ist größer als 180 Grad (Winkel im Uhrzeigersinn)

Notwendige Eigenschaften der oberen fehlenden Strecke

Sortierung im Uhrzeigersinn um B ist A, E, C

- Die einzige andere Sortierung ist A, C, E
- Dann liegen A und C auf unterschiedlichen Seiten der Linie durch B und E
- Somit kann BE nicht zum Rand der konvexen Hülle gehören

Notwendige Eigenschaften der oberen fehlenden Strecke

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F

Beweis

Analog

Notwendige Eigenschaften der oberen fehlenden Strecke

Winkel ABE ist größer als 180 Grad

- Ist der Winkel nicht größer als 180 Grad, so ist er aufgrund der allgemeinen Lage kleiner als 180 Grad
- Dann liegt A aber links der gerichteten Linie durch B und E und somit liegt
 BE nicht auf dem Rand der konvexen Hülle

Notwendige Eigenschaften der oberen fehlenden Strecke

- Winkel ABE ist größer als 180 Grad
- Winkel BEF ist größer als 180 Grad

Beweis

Analog

Hinreichende Eigenschaften der oberen fehlenden Strecke

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F
- Winkel ABE ist größer als 180 Grad
- Winkel BEF ist größer als 180 Grad

Beweis

Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B.

Beweis

 Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B. Gleiches gilt für die Punkte B und C.

- Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B. Gleiches gilt für die Punkte B und C.
- Damit liegen alle Punkte aus *Q* rechts der gerichteten Linie durch *B* und *E*.

- Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B. Gleiches gilt für die Punkte B und C.
- Damit liegen alle Punkte aus Q rechts der gerichteten Linie durch B und E.
- Analog zeigt man für R, dass alle Punkte rechts der Linie durch B und E liegen.

- Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B. Gleiches gilt für die Punkte B und C.
- Damit liegen alle Punkte aus Q rechts der gerichteten Linie durch B und E.
- Analog zeigt man für R, dass alle Punkte rechts der Linie durch B und E liegen.
- Damit liegt BE auf dem Rand der konvexen Hülle.

- Da AB auf dem Rand der konvexen Hülle von Q liegt, liegen alle Punkte von Q rechts der Linie durch A und B. Gleiches gilt für die Punkte B und C.
- Damit liegen alle Punkte aus Q rechts der gerichteten Linie durch B und E.
- Analog zeigt man für R, dass alle Punkte rechts der Linie durch B und E liegen.
- Damit liegt BE auf dem Rand der konvexen Hülle.

Notwendige und Hinreichende Eigenschaften der oberen fehlenden Strecke

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F
- Winkel ABE ist größer als 180 Grad
- Winkel BEF ist größer als 180 Grad

Suchen der oberen Strecke

Sei B der rechteste Knoten von Q und E der linkeste Knoten von R

- Sei B der rechteste Knoten von Q und E der linkeste Knoten von R
- Sei A der Vorgänger und C der Nachfolger von B im Uhrzeigersinn
- Sei D der Vorgänger und F der Nachfolger von E im Uhrzeigersinn

- Sei B der rechteste Knoten von Q und E der linkeste Knoten von R
- Sei A der Vorgänger und C der Nachfolger von B im Uhrzeigersinn
- Sei D der Vorgänger und F der Nachfolger von E im Uhrzeigersinn

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel ABE < 180 Grad, dann setze B = A und definiere A als den Vorgänger von B und C als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel ABE < 180 Grad, dann setze B = A und definiere A als den Vorgänger von B und C als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel ABE < 180 Grad, dann setze B = A und definiere A als den Vorgänger von B und C als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel BEF < 180 Grad, dann setze E = F und definiere D als den Vorgänger von E und F als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel ABE < 180 Grad, dann setze B = A und definiere A als den Vorgänger von B und C als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Wenn Winkel BEF < 180 Grad, dann setze E = F und definiere D als den Vorgänger von E und F als den Nachfolger

- Beobachtung: Sortierung um B ist A, E, C und Sortierung um E ist D, B, F
- Beide Winkel > 180 Grad ⇒ hinreichende Bedingung erfüllt

- Sei B rechtester Punkt von Q; A Vorgänger von B; C Nachfolger von B im Uhrzeigersinn
- 2. Sei *E* linkester Punkt von *R*; *D* Vorgänger von *E*; *F* Nachfolger von *E* im Uhrzeigersinn
- 3. while hinreichende Bedingung nicht erfüllt do
- 4. **if** Winkel ABE < 180 **then**
- 5. $B \leftarrow A$; $A \leftarrow \text{Vorgänger von } B$; $C \leftarrow \text{Nachfolger von } B$
- 6. **if** Winkel BEF < 180 **then**
- 7. $E \leftarrow F$; $D \leftarrow \text{Vorgänger von } E$; $F \leftarrow \text{Nachfolger von } E$
- 8. return *BE*

Suchen der oberen Strecke

- Sei B rechtester Punkt von Q; A Vorgänger von B; C Nachfolger von B im Uhrzeigersinn
- 2. Sei E linkester Punkt von R; D Vorgänger von E; F Nachfolger von E im Uhrzeigersinn
- 3. while hinreichende Bedingung nicht erfüllt do
- 4. **if** Winkel ABE < 180 **then**
- 5. $B \leftarrow A$; $A \leftarrow \text{Vorgänger von } B$; $C \leftarrow \text{Nachfolger von } B$
- 6. **if** Winkel BEF < 180 **then**
- 7. $E \leftarrow F$; $D \leftarrow \text{Vorgänger von } E$; $F \leftarrow \text{Nachfolger von } E$
- 8. return *BE*

Laufzeit

• $\mathbf{O}(n)$, da maximal jeder Knoten in der **while**-Schleife einmal $B \mid E$ sein kann

Lemma 12

Die Suche der oberen Strecke hält folgende Invariante aufrecht:

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F

Beweis

Zu Beginn der **while**-Schleife ist *B* rechtester Knoten von *Q*. Da *E* rechts von *B* liegt, bleibt nur die Sortierung *A*, *E*, *C* um *B*. Analog für *E*.

Lemma 12

Die Suche der oberen Strecke hält folgende Invariante aufrecht:

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F

Beweis

Ist während des Verlaufes der **while**-Schleife der Winkel ABE < 180 Grad, so bleibt die Sortierung auf der linken Seite nach dem Umbenennen der Knoten erhalten, da der Winkel ABE < 180 Grad ist

Lemma 12

Die Suche der oberen Strecke hält folgende Invariante aufrecht:

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F

Beweis

Auf der rechten Seite bleibt die Sortierung ebenfalls erhalten. Da der Winkel ABE < 180 Grad ist, ist der Winkel BEA > 0 Grad. Der Winkel DEB vergrößert sich und der Winkel BEF verringert sich um diesen Wert. Da die Mengen P,Q vertikal getrennt liegen, bleibt aber der Winkel BEF > 0 Grad.

Lemma 12

Die Suche der oberen Strecke hält folgende Invariante aufrecht:

- Sortierung im Uhrzeigersinn um B ist A, E, C
- Sortierung im Uhrzeigersinn um E ist D, B, F

Beweis

Der Fall Winkel *BEF* < 180 Grad ist symmetrisch. Somit bleibt die Invariante erhalten.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

Beweis

• Die Suche nach der oberen und der unteren Kante ist symmetrisch. Die Laufzeit ist $\mathbf{O}(n)$ wie bereits gezeigt. Es bleibt die Korrektheit zu zeigen.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

- Die Suche nach der oberen und der unteren Kante ist symmetrisch. Die Laufzeit ist $\mathbf{O}(n)$ wie bereits gezeigt. Es bleibt die Korrektheit zu zeigen.
- Nach Lemma 12 hält der Algorithmus die lokale Sortierung als Invariante aufrecht. Terminiert die Schleife, so sind die Winkel ABE und BEF beide > 180 Grad und somit ist die hinreichende Bedingung erfüllt. Damit ist die zurückgegebene Kante die gesuchte Kante der konvexen Hülle.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

Beweis

 Es bleibt zu zeigen, dass die Schleife terminiert. Sei dazu pq die obere fehlende Kante der konvexen Hülle.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

- Es bleibt zu zeigen, dass die Schleife terminiert. Sei dazu pq die obere fehlende Kante der konvexen Hülle.
- Sei o.B.d.A. p der erste Knoten von p und q, der vom Algorithmus untersucht wird (d.h. B wird auf p gesetzt).

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

- Es bleibt zu zeigen, dass die Schleife terminiert. Sei dazu pq die obere fehlende Kante der konvexen Hülle.
- Sei o.B.d.A. p der erste Knoten von p und q, der vom Algorithmus untersucht wird (d.h. B wird auf p gesetzt).
- Dann ist für jeden Knoten E aus R, der die Invariante erfüllt, der Winkel ABE größer 180 Grad, da alle Knoten aus R rechts der gerichteten Geraden durch p und q liegen.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

- Es bleibt zu zeigen, dass die Schleife terminiert. Sei dazu pq die obere fehlende Kante der konvexen Hülle.
- Sei o.B.d.A. p der erste Knoten von p und q, der vom Algorithmus untersucht wird (d.h. B wird auf p gesetzt).
- Dann ist für jeden Knoten E aus R, der die Invariante erfüllt, der Winkel ABE größer 180 Grad, da alle Knoten aus R rechts der gerichteten Geraden durch p und q liegen.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

Beweis

 Damit bleiben die Knoten A, B, C unverändert, bis der Algorithmus auch q gefunden hat und die Schleife terminiert.

Lemma 13

Die Suche nach der oberen und unteren Kante ist korrekt und benötigt $\mathbf{O}(n)$ Zeit.

Beweis

 Damit bleiben die Knoten A, B, C unverändert, bis der Algorithmus auch q gefunden hat und die Schleife terminiert.

Der konvexe Hülle Algorithmus

Teile Punktmenge in die Mengen Q und R der n/2 Punkte mit den kleinsten bzw. größten x-Koordinaten auf

Der konvexe Hülle Algorithmus

- Teile Punktmenge in die Mengen Q und R der n/2 Punkte mit den kleinsten bzw. größten x-Koordinaten auf
- Löse das Problem rekursiv

Der konvexe Hülle Algorithmus

- Teile Punktmenge in die Mengen Q und R der n/2 Punkte mit den kleinsten bzw. größten x-Koordinaten auf
- Löse das Problem rekursiv
- Berechne die obere und untere fehlende Strecke

Der konvexe Hülle Algorithmus

- Teile Punktmenge in die Mengen Q und R der n/2 Punkte mit den kleinsten bzw. größten x-Koordinaten auf
- Löse das Problem rekursiv
- Berechne die obere und untere fehlende Strecke
- Lösche die dazwischenliegenden Punkte
- Rekursionsabbruch: Erster Algorithmus

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

Beweis

• Das Entfernen der überflüssigen Kanten geht in $\mathbf{O}(n)$ Zeit.

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

- Das Entfernen der überflüssigen Kanten geht in $\mathbf{O}(n)$ Zeit.
- Es genügt, zu Beginn des Algorithmus die Punkte einmal nach x-Koordinate zu sortieren. Dies benötigt $\mathbf{O}(n \log n)$ Zeit.

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

- Das Entfernen der überflüssigen Kanten geht in O(n) Zeit.
- Es genügt, zu Beginn des Algorithmus die Punkte einmal nach x-Koordinate zu sortieren. Dies benötigt $\mathbf{O}(n \log n)$ Zeit.
- Nach der Sortierung ergibt sich als Laufzeit:
- T(n) = 2T(n/2) + cn und T(4) = c

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

- Das Entfernen der überflüssigen Kanten geht in $\mathbf{O}(n)$ Zeit.
- Es genügt, zu Beginn des Algorithmus die Punkte einmal nach x-Koordinate zu sortieren. Dies benötigt $\mathbf{O}(n \log n)$ Zeit.
- Nach der Sortierung ergibt sich als Laufzeit:
- T(n) = 2T(n/2) + cn und T(4) = c
- Wie beim Mergesort ergibt dies Laufzeit $O(n \log n)$

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

- Das Entfernen der überflüssigen Kanten geht in $\mathbf{O}(n)$ Zeit.
- Es genügt, zu Beginn des Algorithmus die Punkte einmal nach x-Koordinate zu sortieren. Dies benötigt $\mathbf{O}(n \log n)$ Zeit.
- Nach der Sortierung ergibt sich als Laufzeit:
- T(n) = 2T(n/2) + cn und T(4) = c
- Wie beim Mergesort ergibt dies Laufzeit $\mathbf{O}(n \log n)$
- Also ist die gesamte Laufzeit $\mathbf{O}(n \log n)$

Satz 14

Die konvexe Hülle einer Punktmenge kann in $\mathbf{O}(n \log n)$ Zeit mit dem Teile & Herrsche Verfahren berechnet werden.

- Das Entfernen der überflüssigen Kanten geht in $\mathbf{O}(n)$ Zeit.
- Es genügt, zu Beginn des Algorithmus die Punkte einmal nach x-Koordinate zu sortieren. Dies benötigt $\mathbf{O}(n \log n)$ Zeit.
- Nach der Sortierung ergibt sich als Laufzeit:
- T(n) = 2T(n/2) + cn und T(4) = c
- Wie beim Mergesort ergibt dies Laufzeit $\mathbf{O}(n \log n)$
- Also ist die gesamte Laufzeit **0**(n log n)