1 nalen

א. נכון ב. לא נכון ג. לא נכון

ד. נכון ה. לא נכון ו. לא נכון

ז. נכון ח. נכון

2 nalen

א. נכון. הוכחה:

 $A \cup (B-A) = A \cup B$: לפי שאלה 1.18 בעמי 24 בספר בעמי

 $A \cup B = B$, בספר, מכיוון ש- $A \subseteq B$, לפי טענה בתחתית עמי 14 בספר,

 $A = \{x\}$ ותהי (נקח $x \neq \emptyset$ נקח: נקח נגדית: נקח לא נכון. דוגמא נגדית:

 $P(A) = \{\emptyset, A\}$

 $(x \neq \{x\} \ -1 \ x \neq \emptyset \)$ (כי $x \notin P(A)$) אבל, $x \in A$ כעת

P(A) -לכן A אינה חלקית ל-P(A) -שאינו ב-P(A) אינה חלקית ל-

ג. נכון. התנאי $X \in P(A \cap B)$ שקול, לפי הגדרת קבוצת חזקה, לתנאי

 $X \subseteq A \cap B$

לפי שאלה 1.10 בי, זה שקול ל-

 $X \subseteq B$ געם $X \subseteq A$

שוב לפי הגדרת קבוצת חזקה, זה שקול ל-

 $X \in P(B)$ וגם $X \in P(A)$

ומהגדרת חיתוך, זה שקול ל-

 $X \in P(A) \cap P(B)$

 $X \in P(A) \cap P(B)$ (אם ורק אם $X \in P(A \cap B)$: קיבלנו אים אולכן אם אמי הקבוצות שוות. 1.1, שתי הקבוצות שוות

3 nalen

א. בעזרת ההדרכה לשאלה

 $(A \cup B) - C = (A \cup B) \cap C'$

לפי סעיף 1.3.4 (פילוג החיתוך מעל האיחוד)

 $= (A \cap C') \cup (B \cap C')$

ושוב לפי ההדרכה לשאלה

 $=(A-C)\cup(B-C)$

ב. לפי חוק הפילוג (דיסטריבוטיביות) של האיחוד מעל החיתוך:

$$(A \cap B) \cup (A \cap B') = A \cap (B \cup B')$$

כאן השתמשנו בחוק הפילוג כדי לכנס איברים, לא כדי לפלג.

. $A\cap U$ נציב זאת ונקבל . $B\cup B'=U$ בספר, בסוף עמי 22 בספר

16 מובן ש- $A\cap U=A$ (הנחנו ש- U מכילה את כל הקבוצות שבדיון. לפי שאלה 1.11 שבעמי (הנחנו ש- $A\cap U=A$ אז $A\subseteq U$ בספר, אם

 $(A \cap B) \cup (A \cap B') = A$ קיבלנו כמבוקש

ג. ניעזר בתכונות של הפרש סימטרי שהוכחו בשאלה 1.22 בספר.

: מאסוציאטיביות

$$(A \oplus B) \oplus (B \oplus C) = A \oplus (B \oplus (B \oplus C))$$

: ושוב אסוציאטיביות

$$= A \oplus ((B \oplus B) \oplus C))$$

ובעזרת שתי תכונות נוספות שהוכחו בסעיף ב באותה שאלה,

$$=A\oplus(\varnothing\oplus C))=A\oplus C$$

4 22167

$$A_1 = \{0\}$$
 $A_0 = \{x \mid -1 \le x \le -2\} = \emptyset$ \mathbb{R}

$$A_5 = \{4,5,6,7,8\}$$
 , $A_4 = \{3,4,5,6\}$, $A_3 = \{2,3,4\}$, $A_2 = \{1,2\}$

ב. החיתוך ריק (שווה לקבוצה הריקה) כי אין אף איבר משותף לכל 4 הקבוצות הנתונות.

למעשה אין איבר משותף אפילו ל- A_5 ול- A_5 למשל, כך שוודאי אין איבר משותף לכל ארבע למעשה הקבוצות.

:
$$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}$$
 נוכיח כי ...

הכלה בכיוון אחד: יהי $m \in \bigcup_{n \in \mathbb{N}} A_n$ יהי שייך לפחות הכלה הכלה כלומר, מהגדרת יהי יהי

 $m \in \mathbf{N}$ לכן . $A_n \subseteq \mathbf{N}$, A_n מהגדרת . A_n

שייך לפחות ש- עלינו להראות ש- עלינו הראות ש- מייך לפחות ש- הכלה כדי יהי הי $m\in\mathbb{N}$ יהי יהי הכלה הכלה הכלה מייך לפחות

 $n-1 \leq m \leq 2(n-1)$ -שי כך שי טבעי לאחת כלומר עלינו למצוא . A_n כלומר הקבוצות

 $m \leq m \leq 2m$ טבעי מתקיים עבור $m \leq m \leq m$, כי לכל מיים מתקיים עבור

$$m\in igcup_{n\in {f N}}A_n$$
 לכן , $m\in A_n$ -ע כך n מצאנו n

. $\bigcup_{n\in \mathbb{N}}A_n=\mathbb{N}$ לכן לכן הכלה בשני הכיוונים, לכו

,
$$B_1 = A_2 - A_1 = \{1, 2\} - \{0\} = \{1, 2\}$$

,
$$B_2 = A_3 - A_2 = \{2,3,4\} - \{1,2\} = \{3,4\}$$

$$B_3 = A_4 - A_3 = \{3,4,5,6\} - \{2,3,4\} = \{5,6\}$$

$$B_4 = A_5 - A_4 = \{4,5,6,7,8\} - \{3,4,5,6\} = \{7,8\}$$

 $\{0,1,2,3,4,5,6,7,8\}$ הוא שווה הקודם, והוא בסעיף הקבוצות הקבוצות הקבוצות ה5 ה. זהו איחוד כלומר הקבוצות הקבוצות ה $\{n\in \mathbf{N}\mid 0\leq n\leq 8\}$ כלומר

איתי הראבן