Algorytmy sortowania

sprawozdanie I Aleksandra Ostrowska, nr 156121

Heapsort

Optymistyczny przypadek – O(nlogn)

Pesymistyczny przypadek – O(nlogn)

Średni przypadek - O(nlogn)

Heapsort jest szybki i skuteczny dla każdego rodzaju danych, gdzie algorytm odbywa się poniżej sekundy, nieznacznie szybciej dla A i V kształtnych ciągów.

Operacje są podobne dla każdego rodzaju danych

Heap Sort t(n)

Heap Sort f(n)

Merge sort

Optymistyczny przypadek – O(nlogn)

Pesymistyczny przypadek – O(nlogn)

Średni przypadek - O(nlogn)

Podobnie jak z Heapsortem mergesort jest sprawny dla każdej formy danych.

Bubble Sort

Optymistyczny przypadek – O(n2)

Pesymistyczny przypadek – O(n2)

Średni przypadek - O(n2)

Bubblesort zajmuje najwięcej czasu i jest najdłużej generującym się sortowaniem w zestawieniu

Bubble Sort t(n)

Bubble Sort f(n)

Selection Sort

Optymistyczny przypadek – O(n2)

Pesymistyczny przypadek – O(n2)

Średni przypadek - O(n2)

Selection sort wykonuje się podobnie dla różnych rodzajów danych.

Selection Sort t(n)

Liczba n elementów

Selection Sort f(n)

Insertion Sort

Optymistyczny przypadek – O(n)

Pesymistyczny przypadek – O(n2)

Średni przypadek - O(n2)

Dla insertion sorta największym problemem jest ciąg malejący, który zabiera mu najwięcej czasu

Insertion Sort t(n)

Insertion Sort f(n)

czas w sekundach

Quick Sort (pivot jako ostatni element)

Optymistyczny przypadek – O(nlogn)

Pesymistyczny przypadek – O(n2)

Średni przypadek - O(nlogn)

Quicksort z pivotem wybranym jako ostatni element radzi sobie dobrze z losowo ułożoną tablicą, gdzie pivot jest generalnie losową liczbą, a ma problem z posortowanymi tablicami, gdzie jest to największy lub najmniejszy element.

Quick Sort t(n)

Quick Sort f(n)

Ciąg rosnący

Dane posortowane rosnąco

Ciąg malejący

Dane posortowane malejąco

Ciąg wygenerowany losowo

Dane wygenerowane losowo

Ciąg V-kształtny

Dane wygenerowane V-kształtnie 10,8 ... 7,9

Ciąg A-kształtny

Dane wygenerowane A-kształtnie 1,3 ... 4, 2

