Week 3: Graph Data Structures and Algorithms

Graph Definitions

Graphs 6/188

Many applications require

- a collection of items (i.e. a set)
- relationships/connections between items

Examples:

- maps: items are cities, connections are roads
- web: items are pages, connections are hyperlinks

Collection types you're familiar with

• arrays and lists ... linear sequence of items

Graphs are more general ... allow arbitrary connections

... Graphs 7/188

A graph G = (V,E)

- V is a set of vertices
- E is a set of edges (subset of $V \times V$)

Example:

 $V = \{v1, v2, v3, v4\}$

 $E = \{e1,\,e2,\,e3,\,e4,\,e5\}$

... Graphs 8/188

A real example: Australian road distances

Distance	Adelaide	Brisbane	Canberra	Darwin	Melbourne	Perth	Sydney
Adelaide	-	2055	-	3051	732	2716	-
Brisbane	2055	-	-	3429	1671	-	982
Canberra	-	-	-	-	658	-	309
Darwin	3051	3429	-	-	-	4049	-

Melbourne	732	1671	658	-	-	-	873
Perth	2716	-	-	4049	-	-	-
Sydney	-	982	309	-	873	-	-

Notes: vertices are cities, edges are distance between cities, symmetric

... **Graphs** 9/188

Alternative representation of above:

... Graphs 10/188

Questions we might ask about a graph:

- is there a way to get from item A to item B?
- what is the best way to get from A to B?
- which items are connected?

Graph algorithms are generally more complex than linked list ones:

- no implicit order of items
- graphs may contain cycles
- concrete representation is less obvious
- algorithm complexity depends on connection complexity

Properties of Graphs

11/188

Terminology: |V| and |E| (cardinality) normally written just as V and E.

A graph with V vertices has at most V(V-1)/2 edges.

The ratio E:V can vary considerably.

- if E is closer to V^2 , the graph is *dense*
- if E is closer to V, the graph is sparse
 - Example: web pages and hyperlinks, intersections and roads on street map

Knowing whether a graph is sparse or dense is important

• may affect choice of data structures to represent graph

• may affect choice of algorithms to process graph

Exercise #1: Number of Edges

12/188

The edges in a graph represent pairs of connected vertices. A graph with V has V^2 such pairs.

Consider $V = \{1,2,3,4,5\}$ with all possible pairs:

$$E = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), ..., (4,5), (5,5) \}$$

Why do we say that the maximum #edges is V(V-1)/2?

... because

- (v,w) and (w,v) denote the same edge (in an undirected graph)
- we do not consider loops (v,v) (in undirected graphs)

Graph Terminology

14/188

For an edge e that connects vertices v and w

- *v* and *w* are *adjacent* (neighbours)
- e is incident on both v and w

Degree of a vertex v

• number of edges incident on v

Synonyms:

• vertex = node, edge = arc = link (NB: some people use arc for *directed* edges)

... Graph Terminology

15/188

Path: a sequence of vertices where

· each vertex has an edge to its predecessor

Simple path: a path where

· all vertices and edges are different

Cycle: a path

• that is simple except last vertex = first vertex

Length of path or cycle:

· #edges

Path: 1-2, 2-3, 3-4

Cycle: 1-2, 2-3, 3-4, 4-1

... Graph Terminology

16/188

Connected graph

- there is a path from each vertex to every other vertex
- if a graph is not connected, it has ≥2 connected components

Complete graph K_V

- there is an edge from each vertex to every other vertex
- in a complete graph, E = V(V-1)/2

... Graph Terminology

17/188

Tree: connected (sub)graph with no cycles

Spanning tree: tree containing all vertices

n-Clique: complete subgraph on *n* nodes

Consider the following single graph:

This graph has 26 vertices, 33 edges, and 4 connected components

Note: The entire graph has no spanning tree; what is shown in green is a spanning tree of the third connected component

... Graph Terminology

18/188

A spanning tree of connected graph G = (V,E)

- is a subgraph of G containing all of V
- and is a single tree (connected, no cycles)

A spanning forest of non-connected graph G = (V,E)

• is a subgraph of G containing all of V

• and is a set of trees (not connected, no cycles),

• with one tree for each connected component

Exercise #2: Graph Terminology

- 1. How many edges need to be removed to obtain a spanning tree?
- 2. How many different spanning trees?

1. 2
2.
$$\frac{5 \cdot 4}{2} - 2 = 8$$
 spanning trees (no spanning tree if we remove {e1,e2} or {e3,e4})

... Graph Terminology

Undirected graph

• edge(u,v) = edge(v,u), no self-loops (i.e. no edge(v,v))

Directed graph

• $edge(u,v) \neq edge(v,u)$, can have self-loops (i.e. edge(v,v))

Example:

Undirected graph

Directed graph

Weighted graph

- each edge has an associated value (weight)
- e.g. road map (weights on edges are distances between cities)

Other types of graphs ...

Multi-graph

- · allow multiple edges between two vertices
- e.g. function call graph (f() calls g() in several places)

Graph Data Structures

Graph Representations

Four representations of the same graph:

We will discuss three different graph data structures:

1. Array of edges

19/188

21/188

- 2. Adjacency matrix
- 3. Adjacency list

Array-of-edges Representation

24/188

23/188

Edges are represented as an array of Edge values (= pairs of vertices)

- disadvantage: deleting edges is slightly complex
- undirected: order of vertices in an Edge (v,w) doesn't matter

For simplicity, we always assume vertices to be numbered 0..V-1

... Array-of-edges Representation

25/188

Graph initialisation

How much is enough? ... No more than V(V-1)/2 ... Much less in practice (sparse graph)

... Array-of-edges Representation

26/188

Edge insertion

```
insertEdge(g,(v,w)):
```

```
Input graph g, edge (v,w) // assumption: (v,w) not in g
g.edges[g.nE]=(v,w)
g.nE=g.nE+1
```

Edge removal

```
removeEdge(g,(v,w)):
    Input graph g, edge (v,w) // assumption: (v,w) in g
    i=0
    while (v,w)≠g.edges[i] do
    i=i+1
    end while
    g.edges[i]=g.edges[g.nE-1] // replace (v,w) by last edge in array g.nE=g.nE-1
```

Cost Analysis

Storage cost: O(E)

Cost of operations:

- initialisation: *O*(1)
- insert edge: O(1) (assuming edge array has space)
- find/delete edge: O(E) (need to find edge in edge array)

If array is full on insert

• allocate space for a bigger array, copy edges across $\Rightarrow O(E)$

If we maintain edges in order

• use binary search to insert/find edge ⇒ O(log E) (requires binary search *tree* of edges → week 4)

Exercise #3: Array-of-edges Representation

Assuming an array-of-edges representation ...

Write an algorithm to output all edges of the graph

```
show(g):
    Input graph g

for all i=0 to g.nE-1 do
    print g.edges[i]
end for
```

Time complexity: O(E)

Adjacency Matrix Representation

Edges represented by a $V \times V$ matrix

Undirected	graph

A	0	1	2	3
0	0	0	0	1
1	1	0	0	1
2	0	0	0	0
3	0	0	1	0

- easily implemented as 2-dimensional array
- can represent graphs, digraphs and weighted graphs
 - o graphs: symmetric boolean matrix
 - o digraphs: non-symmetric boolean matrix
 - o weighted: non-symmetric matrix of weight values
- disadvantage: if few edges (sparse) ⇒ memory-inefficient

... Adjacency Matrix Representation

31/188

Graph initialisation

... Adjacency Matrix Representation

32/188

Edge insertion

```
insertEdge(g,(v,w)):
    Input graph g, edge (v,w)

if g.edges[v][w]=0 then // (v,w) not in graph
    g.edges[v][w]=1 // set to true
    g.edges[w][v]=1
    g.nE=g.nE+1
end if
```

28/188

27/188

Edge removal

```
removeEdge(g,(v,w)):
    Input graph g, edge (v,w)

if g.edges[v][w]≠0 then // (v,w) in graph
    g.edges[v][w]=0 // set to false
    g.edges[w][v]=0
    g.nE=g.nE-1
end if
```

Exercise #4: Adjacency-matrix Representation

33/188

Assuming an adjacency matrix representation ...

Write an algorithm to output all edges of the graph (no duplicates!)

... Adjacency Matrix Representation

34/188

```
show(g):
    Input graph g

for all i=0 to g.nV-2 do
    for all j=i+1 to g.nV-1 do
    if g.edges[i][j] then
        print i"-"j
    end if
    end for
end for
```

Time complexity: $O(V^2)$

Exercise #5: 35/188

Analyse storage cost and time complexity of adjacency matrix representation

Storage cost: $O(V^2)$

If the graph is sparse, most storage is wasted.

Cost of operations:

```
    initialisation: O(V²) (initialise V×V matrix)
    insert edge: O(1) (set two cells in matrix)
    delete edge: O(1) (unset two cells in matrix)
```

Adjacency List Representation

37/188

For each vertex, store linked list of adjacent vertices:

Undirected graph

A[0] = <1, 3>A[1] = <0, 3>

A[2] = <3>

A[3] = <0, 1, 2>

Directed graph

- relatively easy to implement in languages like C
- can represent graphs and digraphs
- memory efficient if E:V relatively small
- disadvantage: one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)

... Adjacency List Representation

38/188

Graph initialisation

... Adjacency List Representation

39/188

Edge insertion:

```
insertEdge(g,(v,w)):
    Input graph g, edge (v,w)
    insertLL(g.edges[v],w)
    insertLL(g.edges[w],v)
    q.nE=q.nE+1
```

Edge removal:

deleteLL(g.edges[v],w)
deleteLL(g.edges[w],v)
g.nE=g.nE-1

Exercise #6: 40/188

Analyse storage cost and time complexity of adjacency list representation

Storage cost: O(V+E) (V list pointers, total of $2 \cdot E$ list elements)

• the larger of V,E determines the complexity

Cost of operations:

- initialisation: O(V) (initialise V lists)
- insert edge: O(1) (insert one vertex into list)
 - o if you don't check for duplicates
- find/delete edge: O(V) (need to find vertex in list)

Comparison of Graph Representations

	array of edges	adjacency matrix	adjacency list
space usage	E	V^2	V+E
initialise	1	V^2	V
insert edge	1	1	1
find/delete edge	E	1	V

Other operations:

	array of edges	adjacency matrix	adjacency list
disconnected(v)?	E	V	1
isPath(x,y)?	E·log V	V^2	V+E
copy graph	E	V^2	V+E
destroy graph	1	V	V+E

Graph Abstract Data Type

Graph ADT

Data:

• set of edges, set of vertices

Operations:

- building: create graph, add edge
- deleting: remove edge, drop whole graph
- scanning: check if graph contains a given edge

Things to note:

42/188

44/188

- · set of vertices is fixed when graph initialised
- we treat vertices as ints, but could be arbitrary Items (e.g. individual profiles on a social network)

... Graph ADT 45/188

```
Graph ADT interface Graph.h
// graph representation is hidden
typedef struct GraphRep *Graph;
// vertices denoted by integers 0..N-1
typedef int Vertex;
// edges are pairs of vertices (end-points)
typedef struct Edge { Vertex v; Vertex w; } Edge;
// operations on graphs
Graph newGraph(int V);
                                       // new graph with V vertices
   numOfVertices(Graph);
                                       // get number of vertices in a graph
void insertEdge(Graph, Edge);
void removeEdge(Graph, Edge);
     adjacent(Graph, Vertex, Vertex); /* is there an edge
                                          between two vertices */
void showGraph(Graph);
                                       // print all edges in a graph
void freeGraph(Graph);
```

Graph ADT (Array of Edges)

46/188

Implementation of GraphRep (array-of-edges representation)

```
typedef struct GraphRep {
   Edge *edges; // array of edges
   int nV; // #vertices (numbered 0..nV-1)
   int nE; // #edges
   int n; // size of edge array
} GraphRep;
```


Graph ADT (Adjacency Matrix)

... Graph ADT (Adjacency Matrix)

Implementation of graph initialisation (adjacency-matrix representation)

standard library function calloc(size t nelems, size t nbytes)

- allocates a memory block of size nelems*nbytes
- and sets all bytes in that block to zero

... Graph ADT (Adjacency Matrix)

Implementation of edge insertion/removal (adjacency-matrix representation)

```
// check if vertex is valid in a graph
bool validV(Graph g, Vertex v) {
   return (g != NULL && v >= 0 && v < g->nV);
}

void insertEdge(Graph g, Edge e) {
   assert(g != NULL && validV(g,e.v) && validV(g,e.w));

if (!g->edges[e.v][e.w]) { // edge e not in graph
   g->edges[e.v][e.w] = 1;
   g->edges[e.w][e.v] = 1;
   g->nE++;
```

```
}
}
void removeEdge(Graph g, Edge e) {
  assert(g != NULL && validV(g,e.v) && validV(g,e.w));

if (g->edges[e.v][e.w]) { // edge e in graph
    g->edges[e.v][e.w] = 0;
    g->nE--;
}
}
```

Exercise #7: Checking Neighbours

48/188

49/188

50/188

Assuming an adjacency-matrix representation ...

Implement a function to check whether two vertices are directly connected by an edge

```
bool adjacent(Graph g, Vertex x, Vertex y) { ... }
```

```
bool adjacent(Graph g, Vertex x, Vertex y) {
   assert(g != NULL && validV(g,x) && validV(g,y));

return (g->edges[x][y] != 0);
}
```

Graph ADT (Adjacency List)

52/188

Implementation of GraphRep (adjacency-list representation)

Graph Traversal

Finding a Path 54/188

Questions on paths:

- is there a path between two given vertices (src,dest)?
- what is the sequence of vertices from src to dest?

Approach to solving problem:

- examine vertices adjacent to src
- if any of them is *dest*, then done
- otherwise try vertices two edges from src
- repeat looking further and further from src

Two strategies for graph traversal/search: depth-first, breadth-first

- DFS follows one path to completion before considering others
- BFS "fans-out" from the starting vertex ("spreading" subgraph)

... Finding a Path

55/188

Comparison of BFS/DFS search for checking if there is a path from a to h ...

Both approaches ignore some edges by remembering previously visited vertices.

Depth-first Search

56/188

Depth-first search can be described recursively as

depthFirst(G,v):

- 1. mark v as visited
- for each (v, w) \(\subseteq eges(G)\) do
 if w has not been visited then
 depthFirst(w)

The recursion induces backtracking

... Depth-first Search

57/188

Recursive DFS path checking

hasPath(G,src,dest):

```
Input graph G, vertices src,dest
  Output true if there is a path from src to dest in G,
         false otherwise
  mark all vertices in G as unvisited
  return dfsPathCheck(G,src,dest)
dfsPathCheck(G,v,dest):
  mark v as visited
  if v=dest then
                          // found dest
     return true
  else
     for all (v,w) Eedges(G) do
       if w has not been visited then
          if dfsPathCheck(G,w,dest) then
             end if
       end if
     end for
  end if
  return false
                          // no path from v to dest
```

Exercise #8: Depth-first Traversal (i)

58/188

Trace the execution of dfsPathCheck(G,0,5) on:

Consider neighbours in ascending order

Answer:

```
0 - 1 - 2 - 3 - 4 - 5
```

... Depth-first Search

60/188

Cost analysis:

- all vertices marked as unvisited, each vertex visited at most once \Rightarrow cost = O(V)
- visit all edges incident on visited vertices \Rightarrow cost = O(E)
 - o assuming an adjacency list representation

Time complexity of DFS: O(V+E) (adjacency list representation)

• the *larger* of *V,E* determines the complexity

```
For dense graphs ... E \cong V^2 \Rightarrow O(V+E) = O(V^2)
For sparse graphs ... E \cong V \Rightarrow O(V+E) = O(V)
```

... Depth-first Search

61/188

Note how different graph data structures affect cost:

```
    array-of-edges representation

            visit all edges incident on visited vertices ⇒ cost = O(V·E)
            cost of DFS: O(V·E)

    adjacency-matrix representation

            visit all edges incident on visited vertices ⇒ cost = O(V²)
            cost of DFS: O(V²)
```

... Depth-first Search

62/188

Knowing whether a path exists can be useful

Knowing what the path is even more useful

if visited[w]=-1 then

if dfsPathCheck(G,w,dest) then

visited[w]=v

⇒ record the previously visited node as we search through the graph (so that we can then trace path through graph)

Make use of global variable:

• visited[] ... array to store previously visited node, for each node being visited

... Depth-first Search

63/188

```
visited[] // store previously visited node, for each vertex 0..nV-1
findPath(G,src,dest):
  Input graph G, vertices src,dest
  for all vertices vEG do
     visited[v]=-1
  end for
                                     // starting node of the path
  visited[src]=src
  if dfsPathCheck(G,src,dest) then // show path in dest..src order
     v=dest
     while v≠src do
        print v"-"
        v=visited[v]
     end while
     print src
  end if
dfsPathCheck(G,v,dest):
  if v=dest then
                                // found edge from v to dest
     return true
  else
     for all (v,w) Eedges(G) do
```

Exercise #9: Depth-first Traversal (ii)

64/188

Show the DFS order in which we visit vertices in this graph when searching for a path from 0 to 6:

Consider neighbours in ascending order

0	0	3	5	3	1	5	4	7	8
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Path: 6-5-1-0

... Depth-first Search

66/188

DFS can also be described non-recursively (via a *stack*):

```
hasPath(G,src,dest):
  Input graph G, vertices src,dest
  Output true if there is a path from src to dest in G,
          false otherwise
  mark all vertices in G as unvisited
  push src onto new stack s
  found=false
  while not found and s is not empty do
     pop v from s
     mark v as visited
     if v=dest then
        found=true
     else
        for each (v,w) Eedges(G) such that w has not been visited
           push w onto s
        end for
     end if
  end while
  return found
```

Uses standard stack operations (push, pop, check if empty)

Time complexity is the same: O(V+E)

Exercise #10: Depth-first Traversal (iii)

67/188

Show how the stack evolves when executing findPathDFS(g,0,5) on:

Push neighbours in descending order ... so they get popped in ascending order

Breadth-first Search

69/188

Basic approach to breadth-first search (BFS):

- visit and mark current vertex
- · visit all neighbours of current vertex
- then consider neighbours of neighbours

Notes:

- tricky to describe recursively
- a minor variation on non-recursive DFS search works
 - \Rightarrow switch the *stack* for a *queue*

... Breadth-first Search

70/188

BFS algorithm (records visiting order, marks vertices as visited when put *on* queue):

visited[] // array of visiting orders, indexed by vertex 0..nV-1

```
findPathBFS(G,src,dest):
    Input graph G, vertices src,dest
    for all vertices v&G do
```

```
visited[v]=-1
end for
enqueue src into new queue q
visited[src]=src
found=false
while not found and q is not empty do
   dequeue v from q
   if v=dest then
      found=true
   else
      for each (v,w) Eedges(G) such that visited[w]=-1 do
         enqueue w into q
         visited[w]=v
     end for
  end if
end while
if found then
   display path in dest..src order
end if
```

Uses standard queue operations (enqueue, dequeue, check if empty)

Exercise #11: Breadth-first Traversal

71/188

Show the state of the queue and the BFS order in which we visit vertices in this graph when searching for a path from 0 to 6:

Consider neighbours in ascending order

Queue (front to the left):

0	0	0	2	5	0	5	5	3	-1
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Path: 6-5-0

... Breadth-first Search 73/188

Time complexity of BFS: O(V+E) (adjacency list representation, same as DFS)

BFS finds a "shortest" path

- based on minimum # edges between src and dest.
- stops with first-found path, if there are multiple ones

In many applications, edges are weighted and we want path

· based on minimum sum-of-weights along path src .. dest

We discuss weighted/directed graphs later.

Other DFS Examples

74/188

Other problems to solve via DFS graph search

- checking for the existence of a cycle
- determining which connected component each vertex is in

Graph with two connected components, a path and a cycle

Exercise #12: Buggy Cycle Check

75/188

A graph has a cycle if

- it has a path of length > 1
- with start vertex src = end vertex dest
- and without using any edge more than once

We are not required to give the path, just indicate its presence.

The following DFS cycle check has two bugs. Find them.

```
hasCycle(G):
  Input graph G
  Output true if G has a cycle, false otherwise
  choose any vertex v∈G
  return dfsCycleCheck(G,v)
dfsCycleCheck(G,v):
  mark v as visited
  for each (v,w) Eedges(G) do
     if w has been visited then
                                 // found cycle
         return true
     else if dfsCycleCheck(G,w) then
         return true
  end for
  return false
                                   // no cycle at v
```

- 1. Only one connected component is checked.
- 2. The loop

```
for each (v,w) Eedges(G) do
```

should exclude the neighbour of v from which you just came, so as to prevent a single edge w-v from being classified as a cycle.

Computing Connected Components

77/188

Problems:

- how many connected subgraphs are there?
- are two vertices in the same connected subgraph?

Both of the above can be solved if we can

- build an array, one element for each vertex V
- indicating which connected component V is in
- componentOf[] ... array [0..nV-1] of component IDs

... Computing Connected Components

78/188

Algorithm to assign vertices to connected components:

```
components(G):
  Input graph G
  for all vertices v∈G do
      componentOf[v]=-1
  end for
  compID=0
  for all vertices v∈G do
     if componentOf[v]=-1 then
        dfsComponents(G, v, compID)
        compID=compID+1
     end if
  end for
dfsComponents(G, v, id):
  componentOf[v]=id
  for all vertices w adjacent to v do
      if componentOf[w]=-1 then
        dfsComponents(G,w,id)
     end if
  end for
```

Exercise #13: Connected components

79/188

Trace the execution of the algorithm

1. on the graph shown below

2. on the same graph but with the dotted edges added

Consider neighbours in ascending order

1.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]			
-1	-1	-1	-1	-1	-1	-1	-1			
0	-1	-1	-1	-1	-1	-1	-1			
0	-1	0	-1	-1	-1	-1	-1			
0	0	0	-1	-1	-1	-1	-1			
0	0	0	1	-1	-1	-1	-1			
0	0	0	1	1	2	2	2			

2.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]			
-1	-1	-1	-1	-1	-1	-1	-1			
0	-1	-1	-1	-1	-1	-1	-1			
0	0	-1	-1	-1	-1	-1	-1			
0	0	0	-1	-1	-1	-1	-1			
0	0	0	0	0	1	1	1			

Hamiltonian and Euler Paths

Hamiltonian Path and Circuit

Hamiltonian path problem:

- find a path connecting two vertices v, w in graph G
- such that the path includes each vertex exactly once

If v = w, then we have a *Hamiltonian circuit*

Simple to state, but difficult to solve (NP-complete)

Many real-world applications require you to visit all vertices of a graph:

- · Travelling salesman
- Bus routes
- ...

Problem named after Irish mathematician, physicist and astronomer Sir William Rowan Hamilton (1805 — 1865)

... Hamiltonian Path and Circuit

83/188

Graph and two possible Hamiltonian paths:

... Hamiltonian Path and Circuit

84/188

Approach:

82/188

- generate all possible simple paths (using e.g. DFS)
- keep a counter of vertices visited in current path
- stop when find a path containing V vertices

Can be expressed via a recursive DFS algorithm

- similar to simple path finding approach, except
 - keeps track of path length; succeeds if length = v-1 (length = v for circuit)
 - o resets "visited" marker after unsuccessful path

... Hamiltonian Path and Circuit

85/188

Algorithm for finding Hamiltonian path:

```
visited[] // array [0..nV-1] to keep track of visited vertices
hasHamiltonianPath(G,src,dest):
  for all vertices vEG do
     visited[v]=false
  end for
  return hamiltonR(G,src,dest,#vertices(G)-1)
hamiltonR(G,v,dest,d):
  Input G
             graph
             current vertex considered
        dest destination vertex
             distance "remaining" until path found
  if v=dest then
     if d=0 then return true else return false
  else
     mark v as visited
     for each neighbour w of v in G do
```

if w has not been visited then
if hamiltonR(G,w,dest,d-1) then

```
| return true
| end if
| end if
| end for
end if
mark v as unvisited // reset visited mark
return false
```

Exercise #14: Hamiltonian Path

86/188

Trace the execution of the algorithm when searching for a Hamiltonian path from 1 to 6:

Consider neighbours in ascending order

1-0-2-3-4-5-6	d≠0
1-0-2-3-4-5-7-8-9	no unvisited neighbour
1-0-2-3-4-5-7-9-8	no unvisited neighbour
1-0-2-3-4-7-5-6	d≠0
1-0-2-3-4-7-8-9	no unvisited neighbour
1-0-2-3-4-7-9-8	no unvisited neighbour
1-0-2-3-4-8-7-5-6	d≠0
1-0-2-3-4-8-7-9	no unvisited neighbour
1-0-2-3-4-8-9-7-5-6	✓

Repeat on your own with src=0 and dest=6

... Hamiltonian Path and Circuit

88/188

Analysis: worst case requires (V-1)! paths to be examined

Consider a graph with isolated vertex and the rest fully-connected

Checking has Hamiltonian Path (g, x, 0) for any x

- requires us to consider every possible path
- e.g 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, ...
- starting from any x, there are 3! paths \Rightarrow 4! total paths
- there is no path of length 5 in these (V-1)! possibilities

There is no known polynomial algorithm for this task (NP-complete)

Note, however, that the above case could be solved in constant time if we had a fast check for 0 and x being in the same connected component

Euler Path and Circuit

89/188

Euler path problem:

- find a path connecting two vertices v,w in graph G
- such that the path includes each edge exactly once
 (note: the path does not have to be simple ⇒ can visit vertices more than once)

If v = w, the we have an Euler circuit

Many real-world applications require you to visit all edges of a graph:

- Postman
- Garbage pickup
-

Problem named after Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707 — 1783)

... Euler Path and Circuit

90/188

One possible "brute-force" approach:

- · check for each path if it's an Euler path
- would result in factorial time performance

Can develop a better algorithm by exploiting:

Theorem. A graph has an Euler circuit if and only if it is connected and all vertices have even degree

Theorem. A graph has a non-circuitous Euler path if and only if it is connected and exactly two vertices have odd degree

Exercise #15: Euler Paths and Circuits

91/188

Which of these two graphs have an Euler path? an Euler circuit?

No Euler circuit

Only the second graph has an Euler path, e.g. 2-0-1-3-2-4-5

... Euler Path and Circuit

93/188

Assume the existence of degree (q, v) (degree of a vertex, cf. problem set 1 exercise 2 this week)

Algorithm to check whether a graph has an Euler path:

```
hasEulerPath(G,src,dest):
  Input graph G, vertices src,dest
  Output true if G has Euler path from src to dest
         false otherwise
  if src≠dest then
                          // non-circuitous path
     if degree(G,src) or degree(G,dest) is even then
        return false
     end if
  else if degree(G,src) is odd then // circuit
     return false
  end if
  for all vertices v∈G do
     if v≠src and v≠dest and degree(G,v) is odd then
        return false
     end if
  end for
  return true
```

... Euler Path and Circuit

94/188

Analysis of hasEulerPath algorithm:

- assume that connectivity is already checked
- assume that degree is available via O(1) lookup
- single loop over all vertices $\Rightarrow O(V)$

If degree requires iteration over vertices

- cost to compute degree of a single vertex is O(V)
- overall cost is $O(V^2)$

⇒ problem tractable, even for large graphs (unlike Hamiltonian path problem)

For the keen: Linear-time (in the number of edges, E) algorithm to compute an Euler path described in [Sedgewick] Ch.17.7

Directed Graphs

Directed Graphs (Digraphs)

102/188

In our previous discussion of graphs:

- an edge indicates a relationship between two vertices
- an edge indicates nothing more than a relationship

In many real-world applications of graphs:

• edges are directional $(v \rightarrow w \neq w \rightarrow v)$

• edges have a *weight* (cost to go from $v \rightarrow w$)

... Directed Graphs (Digraphs)

103/188

Example digraph and adjacency matrix representation:

	а	b	С	d	9	f	g
а	1	0	0	1	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
9	0	0	0	1	0	0	0
f	1	0	0	1	0	0	1
g	0	0	0	0	0	0	1

Undirectional ⇒ symmetric matrix Directional ⇒ non-symmetric matrix

Maximum #edges in a digraph with V vertices: V²

... Directed Graphs (Digraphs)

104/188

Terminology for digraphs ...

Directed path: sequence of $n \ge 2$ vertices $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$

- where $(v_i, v_{i+1}) \in edges(G)$ for all v_i, v_{i+1} in sequence
- if $v_1 = v_n$, we have a directed cycle

Reachability: w is reachable from v if \exists directed path v,...,w

Digraph Applications

105/188

Potential application areas:

Domain	Vertex	Edge
Web	web page	hyperlink
scheduling	task	precedence
chess	board position	legal move
science	journal article	citation
dynamic data	malloc'd object	pointer
programs	function	function call
make	file	dependency

... Digraph Applications

106/188

Problems to solve on digraphs:

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- which web pages are "important"? (PageRank)
- how to build a web crawler? (graph traversal)

Digraph Representation

107/188

Similar set of choices as for undirectional graphs:

- array of edges (directed)
- vertex-indexed adjacency matrix (non-symmetric)
- · vertex-indexed adjacency lists

V vertices identified by 0 ... V-1

Reachability

Transitive Closure

109/188

Given a digraph G it is potentially useful to know

• is vertex *t* reachable from vertex *s*?

Example applications:

- can I complete a schedule from the current state?
- is a malloc'd object being referenced by any pointer?

How to compute transitive closure?

... Transitive Closure

110/188

One possibility:

- implement it via hasPath(G,s,t) (itself implemented by DFS or BFS algorithm)
- feasible if *reachable*(*G*,*s*,*t*) is infrequent operation

What if we have an algorithm that frequently needs to check reachability?

Would be very convenient/efficient to have:

```
reachable(G,s,t):
    return G.tc[s][t]  // transitive closure matrix
```

Of course, if V is very large, then this is not feasible.

Exercise #16: Transitive Closure Matrix

111/188

113/188

Which reachable *s* .. *t* exist in the following graph?

Transitive closure of example graph:

... Transitive Closure

Goal: produce a matrix of reachability values

- if tc[s][t] is 1, then t is reachable from s
- if tc[s][t] is 0, then t is not reachable from s

So, how to create this matrix?

Observation:

```
\forall i,s,t \in \text{vertices}(G):
  (s,i) \in \text{edges}(G) \text{ and } (i,t) \in \text{edges}(G) \implies tc[s][t] = 1
tc[s][t]=1 if there is a path from s to t via some i(s \rightarrow i \rightarrow t)
```

114/188 ... Transitive Closure

If we implement the above as:

```
make tc[][] a copy of edges[][]
for all iEvertices(G) do
   for all sEvertices(G) do
      for all tEvertices(G) do
         if tc[s][i]=1 and tc[i][t]=1 then
            tc[s][t]=1
         end if
      end for
   end for
end for
```

then we get an algorithm to convert edges into a tc

This is known as Warshall's algorithm

115/188 ... Transitive Closure

How it works ...

After iteration 1, tc[s][t] is 1 if

• either $s \rightarrow t$ exists or $s \rightarrow 0 \rightarrow t$ exists

After iteration 2, tc[s][t] is 1 if any of the following exist

• $s \rightarrow t$ or $s \rightarrow 0 \rightarrow t$ or $s \rightarrow 1 \rightarrow t$ or $s \rightarrow 0 \rightarrow 1 \rightarrow t$ or $s \rightarrow 1 \rightarrow 0 \rightarrow t$

Etc. ... so after the V^{th} iteration, tc[s][t] is 1 if

• there is any directed path in the graph from s to t

Exercise #17: Transitive Closure

116/188

Trace Warshall's algorithm on the following graph:

adj matrix

 1^{st} iteration i=0:

[0]	0	1	1	1
[1]	1	1	1	1
[2]	0	1	0	0
[3]	0	0	0	0

2^{nd} iteration i=1:

tc	[0]	[1]	[2]	[3]
[0]	1	1	1	1
[1]	1	1	1	1
[2]	1	1	1	1
[3]	0	0	0	0

3rd iteration i=2: unchanged

4th iteration i=3: unchanged

... Transitive Closure

118/188

Cost analysis:

- storage: additional V^2 items (each item may be 1 bit)
- computation of transitive closure: $O(V^3)$
- computation of reachable(): O(1) after having generated tc[][]

Amortisation: would need many calls to reachable () to justify other costs

Alternative: use DFS in each call to reachable() Cost analysis:

- storage: cost of stack and set ("visited") during reachable()
- computation of reachable (): cost of DFS = $O(V^2)$ (for adjacency matrix)

Digraph Traversal

119/188

Same algorithms as for undirected graphs:

depthFirst(v):

- 1. mark v as visited
- 2. for each $(v, w) \in edges(G)$ do if w has not been visited then depthFirst(w)

breadth-first(v):

- 1. enqueue v
- 2. while queue not empty do dequeue v if v not already visited then

```
mark v as visited enqueue each vertex w adjacent to v
```

Example: Web Crawling

120/188

Goal: visit every page on the web

```
Solution: breadth-first search with "implicit" graph
```

visit scans page and collects e.g. keywords and links

Weighted Graphs

Weighted Graphs 122/188

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a cost or weight of an association
- modelled by assigning values to edges (e.g. positive reals)

Weights can be used in both directed and undirected graphs.

... Weighted Graphs 123/188

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

... Weighted Graphs

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
 - a.k.a. minimum spanning tree problem
 - · assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a shortest path problem
 - · assumes: edge weights positive, directed or undirected

Exercise #18: Implementing a Route Finder

125/188

124/188

If we represent a street map as a graph

- what are the vertices?
- what are the edges?
- are edges directional?
- what are the weights?
- are the weights fixed?

Weighted Graph Representation

126/188

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

Both representations work whether edges are directed or not.

... Weighted Graph Representation

127/188

Adjacency matrix representation with weights:

	0	- 1	2	3	4
0		0.2	0.4		
1	•	0.3	0.6		
2		0.5		0.1	
3	0.5				0.9
4			0.1		

Adjacency Matrix

Weighted Digraph

Note: need distinguished value to indicate "no edge".

... Weighted Graph Representation

128/188

Adjacency lists representation with weights:

Note: if undirected, each edge appears twice with same weight

... Weighted Graph Representation

129/188

Sample adjacency matrix implementation in C requires minimal changes to previous Graph ADT:

WGraph.h

```
// edges are pairs of vertices (end-points) plus positive weight
typedef struct Edge {
    Vertex v;
    Vertex w;
    int    weight;
} Edge;
// returns weight, or 0 if vertices not adjacent
int adjacent(Graph, Vertex, Vertex);
```

... Weighted Graph Representation

130/188

WGraph.c

```
}
int adjacent(Graph g, Vertex v, Vertex w) {
  assert(g != NULL && validV(g,v) && validV(g,w));
  return g->edges[v][w];
}
```

Minimum Spanning Trees

Exercise #19: Minimising Wires in Circuits

132/188

Electronic circuit designs often need to make the pins of several components electrically equivalent by wiring them together.

To interconnect a set of n pins we can use an arrangement of n-1 wires each connecting two pins.

What kind of algorithm would ...

• help us find the arrangement with the least amount of wire?

Minimum Spanning Trees

133/188

Reminder: Spanning tree ST of graph G=(V,E)

• spanning = all vertices, tree = no cycles

- GT: 1 1 CC (St. CLED)
- \circ ST is a subgraph of G (G'=(V,E') where $E' \subseteq E$)
- ST is connected and acyclic

Minimum spanning tree MST of graph *G*

- *MST* is a spanning tree of *G*
- sum of edge weights is no larger than any other ST

Applications: Computer networks, Electrical grids, Transportation networks ...

Problem: how to (efficiently) find MST for graph G?

NB: MST may not be unique (e.g. all edges have same weight \Rightarrow every ST is MST)

... Minimum Spanning Trees

134/188

Example:

An MST ...

... Minimum Spanning Trees

135/188

Brute force solution:

Example of generate-and-test algorithm.

Not useful because #spanning trees is potentially large (e.g. nⁿ⁻² for a complete graph with n vertices)

... Minimum Spanning Trees

136/188

Simplifying assumption:

• edges in G are not directed (MST for digraphs is harder)

Kruskal's Algorithm

137/188

One approach to computing MST for graph G with V nodes:

- 1. start with empty MST
- 2. consider edges in increasing weight order
 - o add edge if it does not form a cycle in MST
- 3. repeat until *V-1* edges are added

Critical operations:

- · iterating over edges in weight order
- · checking for cycles in a graph

... Kruskal's Algorithm

138/188

Execution trace of Kruskal's algorithm:

Exercise #20: Kruskal's Algorithm

139/188

Show how Kruskal's algorithm produces an MST on:

After 3rd iteration:

After 6th iteration:

After 7th iteration:

After 8^{th} iteration (V-1=8 edges added):

... Kruskal's Algorithm 141/188

Pseudocode:

... Kruskal's Algorithm

Time complexity analysis ...

- sorting edge list is $O(E \cdot log E)$
- min V, max E iterations over sorted edges
- on each iteration ...
 - \circ getting next lowest cost edge is O(1)
 - checking whether adding it forms a cycle: cost = ??
 - use DFS ... too expensive?
 - could use Union-Find data structure (see Sedgewick Ch.1) to maintain sets of connected components
 - \Rightarrow loop is $O(E \cdot log V)$
- overall complexity $O(E \cdot log E) = O(E \cdot log V)$

Exercise #21: Kruskal's Algorithm

143/188

142/188

Why is $O(E \cdot log E) = O(E \cdot log V)$ in this case?

- 1. at most $E = V^2$ edges $\Rightarrow log E = 2 \cdot log V = O(log V)$
- 2. if $V > E+1 \Rightarrow$ can ignore all unconnected vertices

Prim's Algorithm

Algorithm 145/188

Another approach to computing MST for graph G=(V,E):

- 1. start from any vertex v and empty MST
- 2. choose edge not already in MST to add to MST
 - must be incident on a vertex s already connected to v in MST
 - must be incident on a vertex t not already connected to v in MST
 - o must have minimal weight of all such edges
- 3. repeat until MST covers all vertices

Critical operations:

- · checking for vertex being connected in a graph
- finding min weight edge in a set of edges

... Prim's Algorithm

146/188

Execution trace of Prim's algorithm (starting at s=0):

Exercise #22: Prim's Algorithm

147/188

Show how Prim's algorithm produces an MST on:

Start from vertex 0

After 1st iteration:

After 2nd iteration:

After 3rd iteration:

```
0 3 1
4 3
2 6
```

After 4th iteration:

```
(1) 3 (1) 5 (2) 4 | (3) 2 | (6) 6
```

After 8th iteration (all vertices covered):

... Prim's Algorithm 149/188

Pseudocode:

Critical operation: finding best edge

... Prim's Algorithm

150/188

Rough time complexity analysis ...

- V iterations of outer loop
- find min edge with set of edges is $O(E) \Rightarrow O(V \cdot E)$ overall

Using a priority queue ...

• $\Rightarrow O(E \cdot log V)$ overall

Sidetrack: Priority Queues

151/188

Some applications of queues require

- items processed in order of "priority"
- rather than in order of entry (FIFO first in, first out)

Priority Queues (PQueues) provide this via:

- join: insert item into PQueue with an associated priority (replacing enqueue)
- leave: remove item with highest priority (replacing dequeue)

Time complexity for naive implementation of a PQueue containing N items ...

• O(1) for join O(N) for leave

Most efficient implementation ("heap") ...

• $O(\log N)$ for join, leave ... more on this in week 4 (binary search trees)

Other MST Algorithms

152/188

Boruvka's algorithm ... complexity $O(E \cdot log V)$

- the oldest MST algorithm
- start with V separate components
- join components using min cost links
- · continue until only a single component

Karger, Klein, and Tarjan ... complexity O(E)

- based on Boruvka, but non-deterministic
- · randomly selects subset of edges to consider
- for the keen, here's the paper describing the algorithm

Shortest Path

Shortest Path

Path = sequence of edges in graph G $p = (v_0, v_1), (v_1, v_2), ..., (v_{m-1}, v_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

• a simple path p(s,t) where s = first(p), t = last(p)

• no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Finding shortest path between two given nodes known as source-target SP problem

Variations: single-source SP, all-pairs SP

Applications: navigation, routing in data networks, ...

Single-source Shortest Path (SSSP)

155/188

Given: weighted digraph G, source vertex s

Result: shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

Edge Relaxation

156/188

Assume: dist[] and pred[] as above (but containing data for shortest paths discovered so far)

dist[v] is length of shortest known path from s to v dist[w] is length of shortest known path from s to w

Relaxation updates data for w if we find a shorter path from s to w:

Relaxation along edge e = (v, w, weight):

if dist[v]+weight < dist[w] then
 update dist[w]:=dist[v]+weight and pred[w]:=v

Dijkstra's Algorithm

157/188

One approach to solving single-source shortest path problem ...

Data: G, s, dist[], pred[] and

• *vSet*: set of vertices whose shortest path from s is unknown

Algorithm:

Exercise #23: Dijkstra's Algorithm

158/188

Show how Dijkstra's algorithm runs on (source node = 0):

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	<u></u>	<u></u>	<u></u>	∞
pred	_	_	_	_	_	_

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	<u></u>	<u></u>	∞	<u>∞</u>
pred	_	_	_	_	_	_

dist	0	14	9	7	<u>∞</u>	∞
pred	_	0	0	0	_	_

dist	0	14	9	7	∞	22	
pred	-	0	0	0	-	3	

dist	0	13	9	7	∞	12
	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	

pred	_	2	0	0	_	2
dist		13	9	7	20	12
pred	_	2	0	0	5	2
					_	

... Dijkstra's Algorithm

160/188

Why Dijkstra's algorithm is correct:

Hypothesis.

- (a) For visited s ... dist[s] is shortest distance from source
- (b) For unvisited $t \dots dist[t]$ is shortest distance from source via visited nodes

Proof.

Base case: no visited nodes, dist[source] = 0, $dist[s] = \infty$ for all other nodes

Induction step:

- 1. If s is unvisited node with minimum dist[s], then dist[s] is shortest distance from source to s:
 - if \(\frac{1}{3} \) shorter path via only visited nodes, then \(dist[s] \) would have been updated when processing the predecessor of \(s \) on this path
 - if ∃ shorter path via an unvisited node u, then dist[u] < dist[s], which is impossible if s has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes t after processing s:
 - if \exists shorter path via s we would have just updated dist[t]
 - if ∃ shorter path without s we would have found it previously

... Dijkstra's Algorithm

161/188

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find s \in v Set with minimum dist[s]"

- 1. try all $s \in vSet \Rightarrow cost = O(V) \Rightarrow overall cost = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - \circ can improve overall cost to $O(E + V \cdot log V)$ (for best-known implementation)

All-pair Shortest Path (APSP)

162/188

Given: weighted digraph G

Result: shortest paths between all pairs of vertices

• dist[][] $V \times V$ -indexed matrix of cost of shortest path from v_{row} to v_{col}

• path[][] $V \times V$ -indexed matrix of next node in shortest path from v_{row} to v_{col}

Example:

Weighted Digraph

V	0	I	2	3	4	
0	0	0.3	0.7	1.1	inf	dist
1	1.8	0	0.6	1.0	inf	
2 3	1.2		0	0.4	inf	
3	0.8	1.1	1.5	0	inf	
4	1.3	0.6	0.1	0.5	0	
						mat h
0	_	1	2	2	-	path
1	2	-	2	2	-	
2	3	1	-	3	-	
3	0	0	0	-	-	
4	2	2	2	2	-	

Shortest paths between all vertices

Floyd's Algorithm

163/188

One approach to solving all-pair shortest path problem...

```
Data: G, dist[][], path[][] Algorithm:
dist[][] // cost of shortest path from s to t
path[][] // next node after s on shortest path from s to t
floydAPSP(G):
  Input graph G
  initialise dist[s][t]=0 for each s=t
                         =w for each (s,t,w)Eedges(G)
                         =∞ otherwise
  initialise path[s][t]=t for each (s,t,w) Eedges(G)
                         =-1 otherwise
  for all iEvertices(G) do
      for all sEvertices(G) do
         for all tEvertices(G) do
            if dist[s][i]+dist[i][t] < dist[s][t] then</pre>
               dist[s][t]=dist[s][i]+dist[i][t]
               path[s][t]=path[s][i]
           end if
         end for
     end for
```

Exercise #24: Floyd's Algorithm

164/188

Show how Floyd's algorithm runs on:

end for

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	14	9	7			[0]		1	2	3		
[1]		0			5		[1]					4	
[2]		4	0			3	[2]		1				5
[3]			10	0		15	[3]			2			5
[4]					0		[4]						
[5]					2	0	[5]					4	

After 1st iteration i=0: unchanged After 2nd iteration i=1:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	14	9	7	19	8	[0]	_	1	2	3	1	_
[1]	∞	0	∞	∞	5	8	[1]	_	_	_	_	4	_
[2]	∞	4	0	∞	9	3	[2]	_	1	_	_	1	5
[3]	∞	∞	10	0	∞	15	[3]	_	_	2	_	_	5
[4]	∞	∞	<u>∞</u>	∞	0	8	[4]	_	_	_	_	_	_
[5]	&	8	∞	8	2	0	[5]	_	_	_	_	4	_

After 3^{rd} iteration i=2:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	13	9	7	18	12	[0]	_	2	2	3	2	2
[1]	∞	0	<u></u>	∞	5	8	[1]	_	_	_	_	4	_
[2]	∞	4	0	∞	9	3	[2]	_	1	_	_	1	5
[3]	∞	14	10	0	19	13	[3]	_	2	2	_	2	2
[4]	∞	<u></u>	<u></u>	∞	0	8	[4]	_	_	_	_	_	_
[5]	∞	8	8	8	2	0	[5]	_	-	_	_	4	_

After 4th iteration i=3: unchanged After 5th iteration i=4: unchanged After 6th iteration i=5:

dist	[0]	[1]	[2]	[3]	[4]	[5]	path	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	13	9	7	14	12	[0]	_	2	2	3	2	2
[1]	∞	0	<u>∞</u>	∞	5	8	[1]	_	_	_	_	4	_
[2]	∞	4	0	∞	5	3	[2]	_	1	_	_	5	5
[3]	∞	14	10	0	15	13	[3]	_	2	2	_	2	2
[4]	<u></u>	∞	<u></u>	∞	0	8	[4]	_	_	_	_	_	_
[5]	«	∞	8	8	2	0	[5]	_	-	_	-	4	_

... Floyd's Algorithm 166/188

Why Floyd's algorithm is correct:

A shortest path from s to t using only nodes from $\{0,...,i\}$ is the shorter of

- a shortest path from s to t using only nodes from $\{0,...,i-1\}$
- a shortest path from *s* to *i* using only nodes from $\{0,...,i-1\}$ plus a shortest path from *i* to *t* using only nodes from $\{0,...,i-1\}$

Also known as Floyd-Warshall algorithm (can you see why?)

... Floyd's Algorithm

167/188

Cost analysis ...

- initialising dist[][], path[][] $\Rightarrow O(V^2)$
- V iterations to update dist[][], path[][] $\Rightarrow O(V^3)$

Time complexity of Floyd's algorithm: $O(V^3)$ (same as Warshall's algorithm for transitive closure)

Network Flow

Exercise #25: Merchandise Distribution

169/188

170/188

Lucky Cricket Company ...

- produces cricket balls in Fairfield
- has a warehouse in Rozelle that stocks them
- ships them from factory to warehouse by leasing space on trucks with limited capacity:

What kind of algorithm would ...

• help us find the maximum number of crates that can be shipped from Fairfield to Rozelle per day?

Flow Networks

Flow network ...

• weighted graph G=(V,E)

• distinct nodes $s \in V$ (source), $t \in V$ (sink)

Edge weights denote capacities

Applications:

- Distribution networks, e.g.
 - o source: oil field
 - o sink: refinery
 - o edges: pipes
- Traffic flow

... Flow Networks 171/188

Flow in a network G=(V,E) ... nonnegative f(v,w) for all vertices $v,w \in V$ such that

- $f(v,w) \le capacity$ for each edge $e=(v,w,capacity) \in E$
- f(v,w)=0 if no edge between v and w
- total flow *into* a vertex = total flow *out of* a vertex:

$$\sum_{x \in V} f(x, v) = \sum_{y \in V} f(v, y) \quad \text{for all } v \in V \setminus \{s, t\}$$

Maximum flow ... no other flow from s to t has larger value

... Flow Networks 172/188

Example:

A (maximum) flow ...

Augmenting Paths

Assume ... f(v,w) contains current flow

Augmenting path: any path from source s to sink t that can currently take more flow

Example:

Residual Network

Assume ... flow network G=(V,E) and flow f(v,w)

Residual network (V,E'):

- same vertex set V
- for each edge $v \rightarrow^c w \in E \dots$

∘
$$f(v,w) < c$$
 ⇒ add edge $(v \rightarrow^{c-f(v,w)} w)$ to E'

$$\circ f(v,w) > 0 \implies \text{add edge } (v \leftarrow f(v,w) w) \text{ to } E'$$

Example:

Exercise #26: Augmenting Paths and Residual Networks

175/188

Find an augmenting path in:

and show the residual network after augmenting the flow

1. Augmenting path:

173/188

maximum additional flow = 1

2. Residual network:

Can you find a further augmenting path in the new residual network?

Edmonds-Karp Algorithm

177/188

One approach to solving maximum flow problem ...

maxflow(G):

- 1. Find a shortest augmenting path
- 2. Update flow[][] so as to represent residual network
- 3. Repeat until no augmenting path can be found

flow[][] // V×V array of current flow

... Edmonds-Karp Algorithm

178/188

Algorithm:

```
visited[] /* array of predecessor nodes on shortest path
            from source to sink in residual network */
maxflow(G):
  Input flow network G with source s and sink t
  Output maximum flow value
  initialise flow[v][w]=0 for all vertices v, w
  maxflow=0
  while ∃shortest augmenting path from s to t do /* Run BFS on "residual network"
                                                     given by capacity[v][w] > flow[v][w]
                                                     to find a shortest path "visited[]" */
     df = maximum additional flow via visited[]
     // adjust flow so as to represent residual graph
     v=t
     while v≠s do
        flow[visited[v]][v] = flow[visited[v]][v] + df;
        flow[v][visited[v]] = flow[v][visited[v]] - df;
        v=visited[v]
     end while
     maxflow=maxflow+df
  end while
  return maxflow
```

... Edmonds-Karp Algorithm

179/188

Time complexity analysis ...

- Theorem. The number of augmenting paths needed is at most V·E/2.
 ⇒ Outer loop has O(V·E) iterations.
- Finding augmenting path $\Rightarrow O(E)$ (consider only vertices connected to source and sink $\Rightarrow O(V+E)=O(E)$)

Overall cost of Edmonds-Karp algorithm: $O(V \cdot E^2)$

Note: Edmonds-Karp algorithm is an implementation of general Ford-Fulkerson method

Exercise #27: Edmonds-Karp Algorithm

180/188

Show how Edmonds-Karp algorithm runs on:

flow	[0]	[1]	[2]	[3]	[4]	[5]	c>f?	[0]	[1]	[2]	[3]	[4]	[5]
[0]							[0]						
[1]							[1]						
[2]							[2]						
[3]							[3]						
[4]							[4]						
[5]							[5]						

flow	[0]	[1]	[2]	[3]	[4]	[5]	c>f?	[0]	[1]	[2]	[3]	[4]	[5]	df	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	0	0	0	0	0	[0]		✓	✓				[0]		2	3			
[1]	0	0	0	0	0	0	[1]				✓	✓		[1]				3	1	
[2]	0	0	0	0	0	0	[2]				✓	✓		[2]				1	1	
[3]	0	0	0	0	0	0	[3]						✓	[3]						2
[4]	0	0	0	0	0	0	[4]						✓	[4]						3
[5]	0	0	0	0	0	0	[5]							[5]						

augmenting path: 0-1-3-5, df: 2

flow	[0]	[1]	[2]	[3]	[4]	[5]	c>f?	[0]	[1]	[2]	[3]	[4]	[5]	df	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	0	0	0	0	[0]			✓				[0]			3			
[1]	-2	0	0	2	0	0	[1]	✓			✓	✓		[1]	2			1	1	
[2]	0	0	0	0	0	0	[2]				✓	✓		[2]				1	1	
[3]	0	-2	0	0	0	2	[3]		✓					[3]		2				
[4]	0	0	0	0	0	0	[4]						✓	[4]						3
[5]	0	0	0	-2	0	0	[5]				✓			[5]				2		

augmenting path: 0-2-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c>f?	[0]	[1]	[2]	[3]	[4]	[5]	df	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	1	0	0	0	[0]			✓				[0]			2			
[1]	-2	0	0	2	0	0	[1]	✓			✓	✓		[1]	2			1	1	
[2]	-1	0	0	0	1	0	[2]	✓			✓			[2]	1			1		
[3]	0	-2	0	0	0	2	[3]		✓					[3]		2				
[4]	0	0	-1	0	0	1	[4]			✓			✓	[4]			1			2
[5]	0	0	0	-2	-1	0	[5]				✓	✓		[5]				2	1	

augmenting path: 0-2-3-1-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c>f?	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	2	0	0	0	[0]			✓			
[1]	-2	0	0	1	1	0	[1]	✓			✓		
[2]	-2	0	0	1	1	0	[2]	✓					
[3]	0	-1	-1	0	0	2	[3]		✓	✓			
[4]	0	-1	-1	0	0	2	[4]		✓	✓			✓
[5]	0	0	0	-2	-2	0	[5]				✓	✓	

Digraph Applications

PageRank 183/188

Goal: determine which Web pages are "important"

Approach: ignore page contents; focus on hyperlinks

- treat Web as graph: page = vertex, hyperlink = directed edge
- pages with many incoming hyperlinks are important
- need to compute "incoming degree" for vertices

Problem: the Web is a very large graph

• approx. 10^{14} pages, 10^{15} hyperlinks

Assume for the moment that we could build a graph ...

Most frequent operation in algorithm "Does edge (v,w) exist?"

... PageRank 184/188

Simple PageRank algorithm:

```
PageRank(myPage):
    rank=0
    for each page in the Web do
        if linkExists(page,myPage) then
        rank=rank+1
    end if
    end for
```

Note: requires inbound link check

... PageRank 185/188

V = # pages in Web, E = # hyperlinks in Web

Costs for computing PageRank for each representation:

Representation	linkExists(v,w)	Cost
Adjacency matrix	edge[v][w]	1
Adjacency lists	inLL(list[v],w)	≅ E/V

Not feasible ...

- adjacency matrix ... $V = 10^{14} \Rightarrow$ matrix has 10^{28} cells
- adjacency list ... V lists, each with ≈ 10 hyperlinks $\Rightarrow 10^{15}$ list nodes

So how to really do it?

... PageRank 186/188

Approach: the random web surfer

- if we randomly follow links in the web ...
- ... more likely to re-discover pages with many inbound links

Could be accomplished while we crawl web to build search index

Exercise #28: Implementing Facebook

Facebook could be considered as a giant "social graph"

- what are the vertices?
- what are the edges?
- are edges directional?

What kind of algorithm would ...

• help us find people that you might like to "befriend"?

Summary

• Graph terminology

o vertices, edges, vertex degree, connected graph, tree

188/188

- o path, cycle, clique, spanning tree, spanning forest
- Graph representations
 - o array of edges
 - adjacency matrix
 - adjacency lists
- · Graph traversal
 - depth-first search (DFS)
 - o breadth-first search (BFS)
 - o cycle check, connected components
 - Hamiltonian paths/circuits, Euler paths/circuits
- Digraphs, weighted graphs: representations, applications
- Reachability
 - Warshall
- Minimum Spanning Tree (MST)
 - Kruskal, Prim
- Shortest path problems
 - Dijkstra (single source SPP)
 - Floyd (all-pair SPP)
- Flow networks
 - Edmonds-Karp (maximum flow)
- Suggested reading (Sedgewick):
 - o graph representations ... Ch. 17.1-17.5
 - o Hamiltonian/Euler paths ... Ch. 17.7
 - o graph search ... Ch. 18.1-18.3, 18.7
 - o digraphs ... Ch. 19.1-19.3
 - o weighted graphs ... Ch. 20-20.1
 - o MST ... Ch. 20.2-20.4
 - o SSP ... Ch. 21-21.3
 - o network flows ... Ch. 22.1-22.2

Produced: 20 Jan 2025