

LOCALLY PRIVATE GRAPH NEURAL NETWORKS

Sina Sajadmanesh Daniel Gatica-Perez

Idiap Research Institute

Graph Neural Networks User Group Meetup – July 29, 2021

Introduction

Graph learning with node data privacy

Assumptions:

- Graph topology is public to the server
- Node data (features/labels) are private to nodes

Introduction

Graph learning with node data privacy

Assumptions:

- Graph topology is public to the server
- Node data (features/labels) are private to nodes

Problem:

• How to let the server train a GNN without giving up private node data?

Introduction

Graph learning with node data privacy

Assumptions:

- Graph topology is public to the server
- Node data (features/labels) are private to nodes

Problem:

 How to let the server train a GNN without giving up private node data?

Solution:

 Preserve the privacy of nodes using Local Differential Privacy

LOCAL DIFFERENTIAL PRIVACY

Procedure

- ► Data holders perturb their data using a randomized mechanism
- ► The aggregator estimates the target statistics by aggregating perturbed data
 - The noise cancels out through aggregation

Image Credit: Bennett Cyphers 2/17

LOCAL DIFFERENTIAL PRIVACY

Procedure

- Data holders perturb their data using a randomized mechanism
- The aggregator estimates the target statistics by aggregating perturbed data
 - The noise cancels out through aggregation

Definition

a randomized mechanism \mathcal{M} satisfies ϵ -LDP if for all pairs of private data x_1 and x_2 , and for all outputs x' of \mathcal{M} , we have:

$$\Pr[\mathcal{M}(x_1) = x'] \le e^{\epsilon} \Pr[\mathcal{M}(x_2) = x']$$

Image Credit: Bennett Cyphers 2/17

WHY LOCAL DP?

GNNs are message-passing neural networks

AGGREGATE: nodes aggregate their neighbors' representation vector

UPDATE: a neural network generates new node representation from aggregated vectors

WHY LOCAL DP?

GNNs are message-passing neural networks

AGGREGATE: nodes aggregate their neighbors' representation vector

UPDATE: a neural network generates new node representation from aggregated vectors

Private neighborhood aggregation with LDP

- ► Node features are perturbed by injecting noise
- ► The neighborhood aggregation cancels out the noise

CHALLENGES

High-dimensional features

- ► The total privacy budget of a node scales with the number of features
 - Keeping the total privacy budget small→Too much noise!

CHALLENGES

High-dimensional features

- ► The total privacy budget of a node scales with the number of features
 - Keeping the total privacy budget small→Too much noise!

Small neighborhoods

- ► Lots of the nodes have too few neighbors
 - Noise won't cancel out if the neighborhood size is small

- ▶ Multi-bit Encoder: for feature selection, perturbation, and compression
 - Runs at user-side

- ► Multi-bit Rectifier: for decompression and de-biasing
 - Runs at server-side

- ▶ Multi-bit Encoder: for feature selection, perturbation, and compression
 - Runs at user-side
 - Randomly perturb m out of d features with ϵ/m privacy budget using 1-bit mechanism:

$$X_{\mathrm{v},i}^{\star} \sim \mathrm{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{X_{\mathrm{v},i} - \alpha}{\beta - \alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

- ► Multi-bit Rectifier: for decompression and de-biasing
 - Runs at server-side

- ▶ Multi-bit Encoder: for feature selection, perturbation, and compression
 - Runs at user-side
 - Randomly perturb m out of d features with ϵ/m privacy budget using 1-bit mechanism:

$$X_{\mathrm{v},i}^{\star} \sim \mathrm{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{X_{\mathrm{v},i} - \alpha}{\beta - \alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

- Map 1-bit output to either -1 or 1, return 0 for non-perturbed
- Multi-bit Rectifier: for decompression and de-biasing
 - Runs at server-side

- ▶ Multi-bit Encoder: for feature selection, perturbation, and compression
 - Runs at user-side
 - Randomly perturb m out of d features with ϵ/m privacy budget using 1-bit mechanism:

$$X_{v,i}^{\star} \sim \text{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{x_{v,i}-\alpha}{\beta-\alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

- Map 1-bit output to either -1 or 1, return 0 for non-perturbed
- ► Multi-bit Rectifier: for decompression and de-biasing
 - Runs at server-side
 - Encoder's output is biased

- ▶ Multi-bit Encoder: for feature selection, perturbation, and compression
 - Runs at user-side
 - Randomly perturb m out of d features with ϵ/m privacy budget using 1-bit mechanism:

$$\mathbf{x}_{\mathrm{v},i}^{\star} \sim \mathrm{Bernoulli}\left(\frac{1}{e^{\epsilon/m}+1} + \frac{x_{\mathrm{v},i}-\alpha}{\beta-\alpha} \cdot \frac{e^{\epsilon/m}-1}{e^{\epsilon/m}+1}\right)$$

- Map 1-bit output to either -1 or 1, return 0 for non-perturbed
- ► Multi-bit Rectifier: for decompression and de-biasing
 - Runs at server-side
 - Encoder's output is biased
 - De-biases encoded features by reversing the encoder's mapping:

$$x'_{\mathsf{v},i} = \frac{d(\beta - \alpha)}{2m} \cdot \frac{e^{\epsilon/m} + 1}{e^{\epsilon/m} - 1} \cdot x^{\star}_{\mathsf{v},i} + \frac{\alpha + \beta}{2}$$

CHALLENGE: SMALL NEIGHBORHOODS

Our solution: KProp denoising layer

- ► Expands the neighborhood to the nodes that are up to K-hops away
- ► Applies *K* consecutive linear **AGGREGATE** functions
 - No non-linearity in between
- ► Can be prepended to any GNN architecture

LOCALLY PRIVATE GNN ARCHITECTURE

User-Side:

- 1. Perturb node features using MB encoder
- 2. Send encoded features to server

Server-Side:

- 3. De-bias encoded features with MB rectifier
- 4. De-noise rectifier's output using KProp
- 5. Train GNN on denoised features

LABEL PRIVACY

Randomized Response for label differential privacy

- ► True label **y**
- ► Perturbed label y'
- ► Number of classes *c*
- ightharpoonup DP privacy budget ϵ

$$p(\mathbf{y}' \mid \mathbf{y}) = \begin{cases} \frac{e^{\epsilon}}{e^{\epsilon} + c - 1}, & \text{if } \mathbf{y}' = \mathbf{y} \\ \frac{1}{e^{\epsilon} + c - 1}, & \text{otherwise} \end{cases}$$

LEARNING WITH NOISY LABELS

Trivial method: directly train GNN with noisy labels

- ► GNN severely overfits the noisy labels
- ► Poor generalization performance

LEARNING WITH NOISY LABELS

Trivial method: directly train GNN with noisy labels

- ► GNN severely overfits the noisy labels
- ► Poor generalization performance

Idea: use KProp for label denoising

- ► Apply KProp on one-hot encoded noisy labels
- ► Pick the label with highest value

DENOISING LABELS WITH KPROP

Effect of KProp on label accuracy

ightharpoonup Accuracy between true label $m m{y}$ and recovered label $m m{ ilde{y}}$

DENOISING LABELS WITH KPROP

Effect of KProp on label accuracy

ightharpoonup Accuracy between true label $m {\it y}$ and recovered label $m {\it \~y}$

How to find best performing K without clean validation data?

LABEL DENOISING WITH PROPAGATION

Prevent absorbing noise in ỹ

- ightharpoonup y is perturbed by RR and is given to KProp to yield $ilde{y}$
- ► Apply the same process on \hat{p} (y | x) to obtain \hat{p} (\tilde{y} | x)
- ► Train $\hat{p}(\tilde{y} \mid x)$ with \tilde{y}

LABEL DENOISING WITH PROPAGATION

Prevent absorbing noise in ỹ

- ightharpoonup y is perturbed by RR and is given to KProp to yield $ilde{y}$
- ► Apply the same process on \hat{p} (y | x) to obtain \hat{p} (\tilde{y} | x)
- ► Train $\hat{p}(\tilde{y} \mid x)$ with \tilde{y}

Prevent absorbing noise in y'

- RR gives an upperbound on label accuracy: $Acc^* = p(y' = y) = \frac{e^{\epsilon}}{\rho^{\epsilon} + c - 1}$
- Stop training when GNN's accuracy on N
- ► Stop training when GNN's accuracy on **y**' goes beyond Acc*

DROP ALGORITHM

Label Denoising with Propagation (Drop)

LPGNN's performance under varying feature and label privacy budgets

► Base GNN: **GraphSAGE**

Comparison of base GNN architectures

► Dataset: Facebook

Comparison against ad-hoc features

► Base GNN: **GraphSAGE**

 $ightharpoonup \epsilon_y = 1$

FEATURE	Cora	PUBMED	Facebook	LASTFM
ONES	22.6 ± 5.0	38.9 ± 0.4	29.0 ± 1.4	19.6 ± 1.8
OHD	44.4 ± 3.5	52.5 ± 5.7	77.2 ± 0.3	66.4 ± 1.6
RND	26.4 ± 3.0	56.0 ± 1.3	35.2 ± 5.6	32.3 ± 6.3
MBM ($\epsilon_{X}=1$)	69.3 ± 1.2	74.9 ± 0.3	84.9 ± 0.2	82.1 ± 1.0

Comparison of different learning algorithms

► Base GNN: **GraphSAGE**

 $ightharpoonup \epsilon_{\scriptscriptstyle X}=1$

DATASET	ϵ_{y}	CROSS ENTROPY	Forward Correction	Drop
CORA	0.5	18.6 ± 1.3	18.6 ± 2.5	42.9 \pm 1.5
	1.0	25.5 ± 1.7	37.1 ± 2.5	69.3 ± 1.2
	2.0	52.9 ± 2.1	75.1 ± 1.0	$\textbf{78.4} \pm \textbf{0.7}$
FACEBOOK	0.5	50.9 ± 4.2	68.9 ± 1.3	75.1 ± 0.6
	1.0	55.2 ± 1.3	73.8 ± 1.1	$\textbf{84.9} \pm \textbf{0.2}$
	2.0	81.6 ± 1.2	88.9 ± 0.2	$\textbf{90.7} \pm \textbf{0.1}$
LASTFM	0.5	21.1 ± 4.6	44.9 ± 5.3	70.0 ± 3.0
	1.0	28.4 ± 2.5	58.5 ± 3.6	$\textbf{82.1} \pm \textbf{1.0}$
	2.0	56.8 ± 2.8	79.2 ± 1.3	$\textbf{85.7} \pm \textbf{0.7}$

Summary

- ▶ Proposed a privacy-preserving GNN based on local differential privacy
 - Multi-bit mechanism for high-dimensional feature perturbation
 - KProp for feature and label denoising
 - Drop algorithm for learning with noisy labels
- GNN models demostrate reasonable accuracy-privacy trade-off
 - Feature privacy almost comes for free in simpler models
 - Label privacy with low to mederate privacy budget gives acceptable accuracy

THANK YOU!

- sajadmanesh

