EEE205 – Digital Electronics (II) Lecture 13

Xiaoyang Chen, Jiangmin Gu, Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- We have learned how to derive the state graph from a given circuit and to analyze the circuit.
- Next we will learn how to derive the state table or graph from a problem statement and to design the circuit.
- State Assignment

General Form of A Sequential Circuit.

- The sequential circuits whose outputs depend only on the state of the circuit are of Moore type.
- Those whose outputs depend on both the state and the inputs are of Mealy type.

We wish to design such a circuit:

- The circuit has one input w and one output z.
- All changes in the circuit occur on the positive edge of a clock signal.
- The output z is 1 if during the past two clock cycles w was 1. Otherwise z is 0.

Clockcycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
											0

Sequences of input and output signals.

State Diagram

- State A: w is 0 during past 1 clock cycle.
- State B: w has been 1 for just 1 clock cycle.
- State C: w has been
 1 for 2 clock cycles.

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	\mathbf{C}	0
C	A	C	1

Present	Next		
state	w = 0	w = 1	Output
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

Next-State and Output Expressions

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$z = y_2$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

Implementation

Output z depends on the state only.

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

$$z = y_2$$

Moore State Model - Timing Diagram

Input w changes slightly after the clock edges, because it is often an output of another circuit synchronized by the same clock.

9

Alternative State Assignment

	Present	Next		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

We wish to design such a circuit:

- The circuit has one input w and one output z.
- The output z is 1 in the clock cycle when the second occurrence of w = 1 is detected. Otherwise z is 0.

Clock cycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
											0

Sequences of input and output signals.

State Diagram

- State A: w is 0, producing an output z = 0.
- State B: w is 1.
- If w = 1 for two or consecutive clock cycles, the machine remains in state B and produce an output z = 1.

State Table

Present	Next	state	Output z			
state	w = 0	w = 1	w = 0	w = 1		
A	A	В	0	0		
В	A	В	0	1		

Present	Next	state	Output			
state	w = 0	w = 1	w = 0	w = 1		
у	Y	Y	Z	z		
0	0	1	0	0		
1	0	1	0	1		

A B

Implementation

$$Y = D = w$$
$$z = wy$$

Output z depends on both the state and the input.

Mealy State Model - Timing Diagram

$$Y = D = w$$
$$z = wy$$

- The state assignment should be made so as to minimize the cost of the logic.
- If the number of states is small, it may be possible to try all possible state assignments.
- For a state table with 3 states, there are $4 \times 3 \times 2 = 24$ possible state assignments.
- But many of these are equivalent in cost of realization.

	1												
S_0	00 01 10	00	00	00	00	00	01	 11	11	11	11	11	11
S_1	01	01	10	10	11	11	00	00	00	01	01	10	10
S_2	10	11	01	11	01	10	10	01	10	00	10	00	01

- If we interchange two columns in an assignment, the cost will be unchanged, e.g. 1/3, 2/4, 5/6.
- If symmetrical flip-flops such as J-K, S-R or T are used, complementing one or more columns of an assignment will not change the cost, e.g. 2/7, 6/19.
- So there are only 3 non-equivalent assignments for 3 or 4 states.

	3-Sta	te Assign	ments	4-State Assignments				
States	1	2	3	1	2	3		
а	00	00	00	00	00	00		
b	01	01	11	01	01	11		
С	10	11	01	10	11	01		
d	<u> </u>		_	11	10	10		

One-Hot State Assignment

- For FPGAs it may not be important to minimize the number of flip-flops used in the design.
- The one-hot assignment uses one flip-flop for each state and only one flip-flop is set to 1 in each state.

e.g. a system with 4 states could use 4 flip-flops (Q_0, Q_1, Q_2, Q_3) with the state assignment:

$$S_0$$
: $Q_0 Q_1 Q_2 Q_3 = 1000$, S_1 : 0100, S_2 : 0010, S_3 : 0001

$$Q_3^+ = X_1 (Q_0 Q_1' Q_2' Q_3') + X_2 (Q_0' Q_1 Q_2' Q_3') + X_3 (Q_0' Q_1' Q_2 Q_3') + X_4 (Q_0' Q_1' Q_2' Q_3)$$

$$Q_0 = 1$$
 implies $Q_1 = Q_2 = Q_3 = 0$,
the Q_1' Q_2' Q_3' term is redundant

$$Q_3^+ = X_1 Q_0 + X_2 Q_1 + X_3 Q_2 + X_4 Q_3$$

Each term in the next-state equation contains exactly one state variable.