MTH 312 HW 7

Brandyn Tucknott

4 March 2025

7.5.4. Show that if $f:[a,b]\to\mathbb{R}$ is continuous and $\int_a^x f=0$ for all $x\in[a,b]$, then f(x)=0 everywhere on [a,b]. Provide an example to show this conclusion does not follow if f is not continuous.

Proof. Let $F(x) = \int_a^x f$. Since F(x) = 0 everywhere on [a,b], F must be differentiable on [a,b] with F'(x) = 0 on for $x \in [a,b]$. Note also that f is continuous, and by the Fundamental Theorem of Calculus, we have that F'(x) = f(x) for all $x \in [a,b]$. Thus f(x) = 0 for all $x \in [a,b]$.

For a counter example, consider $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

Then we have that $\int_0^x f = 0$ for all $x \in [0,1]$, but it is not the case that f(x) = 0 for all $x \in [0,1]$.

7.6.2. Define

$$h(x) = \begin{cases} 1, & x \in C \\ 0, & x \notin C \end{cases}$$

(a) Show h has discontinuities at each point of C and is continuous at every point in the complement of C. Thus h is not continuous on an uncountably infinite set.

Proof. Suppose that $x \notin C$. Since C is closed, the complement of C is open, and there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq C^c$. Thus h is zero on the interval $(x - \delta, x + \delta)$, and it follows that h is continuous at x. Now suppose $x \in C$. To show h is not continuous at x, it is sufficient to show:

for any
$$\delta > 0$$
, there exists $y \in (x - \delta, x + \delta)$ such that $y \notin C$ (1)

However, if there exists δ which does not satisfy equation (1), then C contains a proper interval, which is a contradiction since it is totally disconnected (shown in Exercise 3.4.8). Thus h is not continuous at x.

(b) Now prove that h is integrable on [0,1]. DISCLAIMER: Exercise 7.3.9 (d) makes this problem trivial, so I refrained from using it.

Proof. We that that since C has content zero, $D = C \cap [0,1]$ also has content zero, and by Exercise 7.3.9 (a) h is integrable. Let P be a partition of [0,1]. It follows that any subinterval $[x_{k-1},x_k]$ of the partition P contains some $x \notin C$, thus h(x) = 0 and L(h,P) = 0. Since P was arbitrary, it follows that $\int_0^1 h = L(h) = 0$.

7.6.3. Show that any countable set has measure zero.

Proof. Let $A \subseteq \mathbb{R}$ be a countable set, and eps > 0 be given. Choose $n \in \mathbb{N}$ such that $2^{-N} < \epsilon$. For each $n \in \mathbb{N}$, let

$$O_n = \left(a_n - \frac{\epsilon}{2^{N+n+1}}, a_n + \frac{\epsilon}{2^{N+n+1}}\right)$$

Then $A \subseteq \bigcup_{n=1}^{\infty} O_n$, and $|O_n| = 2^{-N-n}$. Then

$$\sum_{n=1}^{\infty} |O_n| = \sum_{n=1}^{\infty} 2^{-N-n} = 2^{-N} \sum_{n=1}^{\infty} 2^{-n} = 2^{-N} < \epsilon$$

Thus A has measure zero.