Dublin R Workshop on Time Series Analysis

Mick Cooney mickcooney@gmail.com

Autumn 2013

1. Basic Concepts

Time series occur in almost any field of study that produces quantitative data. Whenever quantities are measured over time, those measurements form a time-series, or more formally, a discrete-time stochastic process.

One reasonably famous example of a time-series is count of airline passengers in the US, as seen in Figure 1. This is a fairly simple time-series, with measurements taken on a monthly basis over a number of years, with each datum consisting of a single number, i.e. this time-series is *univariate*.

Figure 1: Example of a Time Series: Monthly Airline Passengers in the US

Before we begin trying to analyse data such as this, we need to first create some kind of mathematical framework to work in. Fortunately, we do not need anything too complicated, and for a finite time-series of length N, we model the time series as a sequence of N random variables, X_i , with i = 1, 2, ..., N.

It is important to realise that each individual X_i is a wholly separate random variable — analysing time series statistically is unusual as we only ever have a single measurement from which we can do

inference. In many cases we simplify this much further, but it is important to understand and appreciate that such simplifications are just that, and this is often the reason why time series can be very difficult to analyse.

Before we get to any of that though, and before we try to build any kind of models for the data, we always start with visualising the data. Often, a simple plot of the data helps use pick out aspects to analyse and incorporate into the models. For time series, one of the first things to do is the *time plot*, a simple plot of the data over time.

For the passenger data, a few aspects stand out that are very common in time series. It is apparent that the numbers increase over time, and this systematic change in the data is called the *trend*. Often, approximating the trend as a linear function of time is adequate for many data sets.

A repeating pattern in the data that occurs over the period of the data (in this case, each year), is called the *seasonal variation*, though a more general concept of 'season' is implied — it often will not coincide with the seasons of the calendar.

A slightly more generalised concept from the seasonality is that of *cycles*, repeating patterns in the data that do not correspond to the natural fixed periods of the model. None of these are apparent in the air passenger data, and accounting for them are beyond the scope of this introductory tutorial.

Exercise 1.1 Load the air passengers data into your workspace and investigate the structure of the ts object using str(). How is a ts object different from a standard vector in R? Plot it using the default plot method.

Exercise 1.2 Using the data supplied in the file Maine.dat and the function textttread.table(), load the Maine unemployment data into your workspace and repeat the tasks above.

Exercise 1.3 Analyse the trend and seasonality for the air passenger data by using the aggregate() function. Create a boxplot for the data, segmenting the data by month.

Exercise 1.4 Repeat the above analysis for Maine unemployment data.