Matrix Operator, W(M₁,M₂,M₃), and Schultz-Type Indices

Mircea V. Diudea*,† and Milan Randić‡

Department of Chemistry, "Babes-Bolyai" University, 3400 Cluj, Romania, and Department of Mathematics, Drake University, Des Moines, Iowa 50311

Received April 1, 1997[⊗]

Recently proposed matrix operator, $W(M_1,M_2,M_3)$, is used to generate the molecular topological index, MTI, and novel Schultz-type descriptors. Matrix algebra involved by this operator is exemplified and discussed in comparison to the Cramer algebra.

INTRODUCTION

Among the modifications of the Wiener index, ¹ *W*, the molecular topological index, MTI, proposed by Schultz, ² appears to be one of the most studied topological indices. ^{3–18} It is defined as

$$MTI = \sum_{i} [\mathbf{v}(\mathbf{A} + \mathbf{D})]_{i}$$
 (1)

where **A** and **D** are the adjacency and the distance matrices, respectively, and $\mathbf{v} = (v_1, v_2, ..., v_N)$ is the vector of the vertex valencies/degrees in a connected graph, G. Recall that the entries in **A** are equal to unity if vertices i and j are adjacent and zero otherwise. The distance matrix collects the number of edges on the shortest path joining the vertices i and j.

By applying the matrix algebra, MTI can be written^{8,13,15,19,20} as

$$MTI = \mathbf{u}\mathbf{A}(\mathbf{A} + \mathbf{D})\mathbf{u}^{T} = S(\mathbf{A}^{2}) + S(\mathbf{A}\mathbf{D})$$
 (2)

where

$$S(\mathbf{A}^2) = \mathbf{u}\mathbf{A}^2\mathbf{u}^{\mathrm{T}} = \sum_{i} \sum_{j} [\mathbf{A}^2]_{ij} = \sum_{i} (v_i)^2$$
 (3)

$$S(\mathbf{AD}) = \mathbf{uADu}^{\mathrm{T}} = \sum_{i} \sum_{j} [\mathbf{AD}]_{ij} = \sum_{i} (v_{i}d_{i}) \qquad (4)$$

The term $S(\mathbf{A}^2)$ is just the first Zagreb group index, while $S(\mathbf{A}\mathbf{D})$ is the true Schultz index (i.e., the nontrivial part of MTI), then reinvented by others. The parameter d_i (eq 4) stands for the *i*th row sum of entries in the distance matrix: $d_i = \sum_i [\mathbf{D}]_{ij}$. In the above relations, \mathbf{u} and \mathbf{u}^T are the unit vector (of order N, which is the number of vertices in G) and its transpose, respectively, as recently used by Estrada et al. 19,20 for rejecting the double sum symbol.

In acyclic structures, there exists 12,14,15 a linear correlation between the number $S(\mathbf{AD})$ and the Wiener index

$$S(\mathbf{AD}) = 4W - N(N-1) \tag{5}$$

S in symbols of the type S(AD) reminds the name of Schultz.

Recall that the Wiener index, in acyclic structures, can be calculated by

$$W = \sum_{(i,j)} N_i N_j \tag{6}$$

where N_i and N_j denote the number of vertices on the two sides of the edge (i,j). The products N_iN_j are just the entries in the Wiener matrix, ^{22,23} $\mathbf{W}_{\rm e}$, so that W can be calculated by

$$W = (1/2) \sum_{i} \sum_{j} [\mathbf{W}_{e}]_{ij} = (1/2) \mathbf{u} \mathbf{W}_{e} \mathbf{u}^{\mathrm{T}}$$
 (7)

In cycle-containing graphs, W can be calculated by means of the ${\bf D}$ matrix²⁴

$$W = (1/2) \sum_{i} \sum_{j} [\mathbf{D}]_{ij} = (1/2) \mathbf{u} \mathbf{D} \mathbf{u}^{\mathrm{T}}$$
(8)

Gutman¹⁵ has expressed the $S(\mathbf{AD})$ index by analogy to the Wiener index (cf. eq 6)

$$S(\mathbf{AD}) = \sum_{(i,j)} [N_i \sum_{k \in I} \nu_k + N_j \sum_{k \in J} \nu_k]$$
 (9)

where $\sum_{k \in I}$ and $\sum_{k \in J}$ denote the summation over all vertices lying on the *i*-side and *j*-side (*i.e.*, to the *I* and *J* fragments, respectively) of the edge (*i,j*).

Other valency—distance indices, composing two or three matrices, have been subsequently proposed. 15,19

The present paper proposes a joint of the Cramer- and the Hadamard-matrix algebra by means of the $W(M_1,M_2,M_3)$ matrix. On this ground an extension of the definition of MTI and $S(\mathbf{AD})$ indices is proposed.

SCHULTZ-TYPE INDICES AND WALK MATRIX, $\mathbf{W}(\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3)$

A Schultz-type index, built up on a product of square matrices (of dimension $N \times N$), one of them being obligatory the adjacency matrix, can be written (in Cramer matrix algebra) as

$$MTI(\mathbf{M}_{1}, \mathbf{A}, \mathbf{M}_{3}) = \mathbf{u}\mathbf{M}_{1}(\mathbf{A} + \mathbf{M}_{3})\mathbf{u}^{T} = \mathbf{u}(\mathbf{M}_{1}\mathbf{A} + \mathbf{M}_{1}\mathbf{M}_{3})\mathbf{u}^{T} = S(\mathbf{M}_{1}\mathbf{A}) + S(\mathbf{M}_{1}\mathbf{M}_{3})$$
(10)

It is easily seen that MTI(A,A,D) is the Schultz original index. Analogue Schultz indices of sequence, (D,A,D),

^{† &}quot;Babes-Bolyai" University. E-mail address: diudea@chem.ubbcluj.ro.

Drake University.

[⊗] Abstract published in *Advance ACS Abstracts*, October 1, 1997.

Chart 1. Schultz Index by Cramer Matrix Algebra for the Graph G_1

	A										
	1	2	3	4	5	6	7				
1	0	l	0	0	0	0	0	1			
2	1	0	1	0	0	1	0	3			
3	0	1	0	1	0	0	1	3			
4	0	0	1	0	1	0	0	2			
5	0	0	0	1	0	0	0	1			
6	0	1	0	0	0	0	0	1			
7	0	0	l	0	0	0	0	1			
	$\mathbf{u}\mathbf{A}\mathbf{u}^{T} = 12$										

	D										
	1	2	3	4	5	6	7	l			
1	0	l	2	3	4	2	3	15			
2	1	0	1	2	3	1	2	10			
3	2]	0	1	2	2	1	9			
4	3	2	1	0	1	3	2	12			
5	4	3	2	1	0	4	. 3	17			
6	2	l	2	3	4	0	3	15			
7	3	2	1	2	3	3	0	14			
	$\mathbf{u}\mathbf{D}\mathbf{u}^{T} = 92$										

	A	(A +	D)							
	1	2	3	4	5	6	7			
]	2	0	2	2	3	2	2	13		
2	4	6	4	8	10	4	8	44		
3	8	4	6	4	8	8	4	42		
4	6	5	2	4	2	6	5	30		
5	3	2	2	0	2	3	2	14		
6	2	0	2	2	3	2	2	13		
7	2	2	0	2	2	2	2	12		
27 19 18 22 30 27 25										
$\mathbf{u}\mathbf{A}(\mathbf{A}+\mathbf{D})\mathbf{u}^{\mathrm{T}}=168$										

(**RD**,**A**,**RD**), and (**W**_p,**A**,**W**_p), have been proposed and tested for correlating ability. ^{16,17,20,25} In the above sequence, **RD** represents the matrix whose nondiagonal entries are $1/[\mathbf{D}]_{ij}$; **W**_p is the Wiener-path matrix, i.e., the matrix defined by relation 6 when (*i*,*j*) represents a path. Cramer-matrix algebra concerning eqs 2 and 10 (**M**₁ = **M**₃) is illustrated for the graph G_1 (2,3-methylpentane) in the Charts 1 and 2.

G

Walk matrix, $\mathbf{W}(\mathbf{M}_1,\mathbf{M}_2,\mathbf{M}_3)$, was defined,^{25–27} according to the principle of a single endpoint characterization of a path, as

$$[\mathbf{W}(\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3)]_{ij} = {}^{[\mathbf{M}_2]_{ij}} \mathbf{W}_{\mathbf{M}_1, i} [\mathbf{M}_3]_{ij}$$
(11)

where $\mathbf{W}_{\mathbf{M}_1,i}$ is the walk degree²⁶ of the vertex *i*, weighted by the property collected in the matrix \mathbf{M}_1 (*i.e.*, the *i*th row

Chart 2. Matrices W_e , AD, and AW_e for the Graph G_1

$\mathbf{W_e}$										
	1	2	3	4	5	6	7			
i	0	6	0	0	0	0	0	6		
2	6	0	12	0	0	6	0	24		
3	0	12	0	10	0	0	6	28		
4	0	0	10	0	6	0	0	16		
5	0	0	0	6	0	0	0	6		
6	0	6	0	0	0	0	0	6		
7	0	0	6	0	0	0	0	6		
	6	24	28	16	6	6	6			
$\mathbf{u}\mathbf{W_e}\mathbf{u}^{\mathrm{T}} = 92$										

	AD											
	1	2	3	4	5	6	7					
1	1	0	l	2	3	l	2	10				
2	4	3	4	7	10	4	7	39				
3	7	4	3	4	7	7	4	36				
4	6	4	2	2	2	6	4	26				
5	3	2	1	0	1	3	2	12				
6	1	0	1	2	3	l	2	10				
7 2 1 0 1 2 2 1 9												
24 14 12 18 28 24 22												
$\mathbf{uAD}\mathbf{u}^{T} = 142$												

	AW_e										
	1	2	3	4	5	6	7				
l	6	0	12	0	0	6	0	24			
2	0	24	0	10	0	0	6	40			
2	6	0	28	0	6	6	0	46			
4	0	12	0	16	0	0	6	34			
5	0	0	10	0	6	0	0	16			
6	6	0	12	0	0	6	0	25			
7	0	12	0	10	0	0	6	28			
	18	48	62	36	12	18	18				
$\mathbf{u}\mathbf{A}\mathbf{W}_{\mathbf{e}}\mathbf{u}^{\mathrm{T}} = 212$											

sum in the matrix \mathbf{M}_1); $[\mathbf{M}_2]_{ij}$ gives the length of the walk, and the factor $[\mathbf{M}_3]_{ij}$ is taken from a third square matrix. Its diagonal entries are zero.

It is a square, (in general) nonsymmetric matrix, of dimension $N \times N$ and was illustrated in refs 26 and 27. In the form $[1/\mathbf{W}(\mathbf{A},\mathbf{D},\mathbf{1})]_{ij}$ (where $\mathbf{1}$ is the matrix having its (ij)-entries equal to 1 if $i \neq j$ and zero otherwise), it has been defined in connection with the Harary-type indices²⁸ and proved to be identical to the "restricted random walk matrix" proposed by Randić.²⁹ In fact, this matrix is a true operator, as will be shown below.

Let, first, the combination $(\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3)$ be $(\mathbf{M}_1, \mathbf{1}, \mathbf{1})$. In this case, each column in the matrix $\mathbf{W}(\mathbf{M}_1, \mathbf{1}, \mathbf{1})$ is identical to the vector $\mathbf{RS}(\mathbf{M}_1)$ (*i.e.*, the product $\mathbf{M}_1\mathbf{u}^T = \mathbf{u}\mathbf{M}_1^T$) except the (*ii*)-entries which are zero. Next, consider the combination $(\mathbf{M}_1, \mathbf{1}, \mathbf{M}_3)$; the corresponding walk matrix results as a Hadamard (pairwise) product³⁰ (*i.e.*, $[\mathbf{M}_a \cdot \mathbf{M}_b]_{ij} = [\mathbf{M}_a]_{ij}[\mathbf{M}_b]_{ij}$

$$W(M_1,1,M_3) = W(M_1,1,1) \cdot M_3$$
 (12)

Recall that the sum of all entries in the Cramer product matrix, M_1M_3 , can be achieved by multiplying their RS and CS vectors (*i.e.*, the sum of entries on rows and columns, respectively)

$$\sum_{i} \sum_{j} [\mathbf{M}_{1} \mathbf{M}_{3}]_{ij} = CS(\mathbf{M}_{1}) RS(\mathbf{M}_{3}) = \mathbf{u} \mathbf{M}_{1} \mathbf{M}_{3} \mathbf{u}^{\mathrm{T}}$$
(13)

Between $W(M_1,1,M_3)$ and the Cramer product M_1M_3 there

$$CS(\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{M}_{3})) = \mathbf{u}\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{M}_{3}) = CS(\mathbf{M}_{1}\mathbf{M}_{3}) = \mathbf{u}\mathbf{M}_{1}\mathbf{M}_{3}$$
(14)

$$CS(\mathbf{W}(\mathbf{M}_3, \mathbf{1}, \mathbf{M}_1^T)) = \mathbf{u}\mathbf{W}(\mathbf{M}_3, \mathbf{1}, \mathbf{M}_1^T) = RS(\mathbf{M}_1\mathbf{M}_3) = \mathbf{M}_1\mathbf{M}_2\mathbf{u}^T$$
(15)

$$RS(\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{M}_{3})) = \mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{M}_{3})\mathbf{u}^{\mathrm{T}} = RS(\mathbf{M}_{1}^{\mathrm{T}}) \cdot RS(\mathbf{M}_{3})$$
(16)

$$RS(\mathbf{W}(\mathbf{M}_{3},\mathbf{1},\mathbf{M}_{1}^{\mathrm{T}})) = \mathbf{W}(\mathbf{M}_{3},\mathbf{1},\mathbf{M}_{1}^{\mathrm{T}})\mathbf{u}^{\mathrm{T}} = RS(\mathbf{M}_{3}) \cdot RS(\mathbf{M}_{1}^{\mathrm{T}})$$
(17)

$$RS(\mathbf{M}_{1}^{T}) \cdot RS(\mathbf{M}_{3}) = RS(\mathbf{M}_{3}) \cdot RS(\mathbf{M}_{1}^{T})$$
 (18)

From (16) and (13) one can write

$$\mathbf{u}\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{M}_{3})\mathbf{u}^{\mathrm{T}} = \mathbf{u}(\mathrm{RS}(\mathbf{M}_{1}^{\mathrm{T}})\cdot\mathrm{RS}(\mathbf{M}_{3})) = \mathbf{u}\mathbf{M}_{1}\mathbf{M}_{2}\mathbf{u}^{\mathrm{T}} = \mathrm{CS}(\mathbf{M}_{1})\mathrm{RS}(\mathbf{M}_{3})$$
(19)

Equations 16–18 show that the product within the matrix $\mathbf{W}(\mathbf{M}_1^T, \mathbf{1}, \mathbf{M}_3)$ is commutative. Equation 19 is the most important among the above six relations: it joins the Hadamard- and the Cramer-matrix algebra by means of the $\mathbf{W}(\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3)$ matrix. Moreover, it suggests that the product matrix, $\mathbf{M}_1\mathbf{M}_3$, can also be viewed as a collection of pairwise products of local properties (encoded as row sums). These relations are illustrated, for the graph G_1 , in Chart 3.

A condition for identical $W(M_1,1,M_3)$ matrices (for one and the same graph) can be formulated.

$$\mathbf{W}(\mathbf{M}_{1}, \mathbf{1}, \mathbf{M}_{3}) \equiv \mathbf{W}(\mathbf{M'}_{1}, \mathbf{1}, \mathbf{M}_{3}) \hookrightarrow \mathrm{RS}(\mathbf{M}_{1}) \equiv \mathrm{RS}(\mathbf{M'}_{1})$$
(20)

Examples of identical $W(M_1,1,M_3)$ matrices will be given below.

A condition for degeneracy (*i.e.*, a single value for two different graphs, G_a and G_b) of the sum of entries in the product matrix $\mathbf{M}_1\mathbf{M}_3$ can be drawn from eqs 18 and 19

$$RS(\mathbf{M}_{1}^{\mathsf{T}}(G_{a})) \cdot RS(\mathbf{M}_{3}(G_{a})) = RS(\mathbf{M}_{3}(G_{b})) \cdot RS(\mathbf{M}_{1}^{\mathsf{T}}(G_{b}))$$
(21)

From relation 19 it is obvious that the same condition is also true for the degeneracy within the $W(M_1,1,M_3)$ matrix.

The walk matrix, $\mathbf{W}(\mathbf{M}_1,\mathbf{M}_2,\mathbf{M}_3)$, can be related to the Schultz numbers (cf. eq 10) as follows:

$$S(\mathbf{M}_{1}\mathbf{A}) = \mathbf{u}\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}},\mathbf{1},\mathbf{A})\mathbf{u}^{\mathrm{T}}$$
(22)

$$S(\mathbf{M}_{1}\mathbf{M}_{3}) = \mathbf{u}\mathbf{W}(\mathbf{M}_{1}^{\mathrm{T}}, \mathbf{1}, \mathbf{M}_{3})\mathbf{u}^{\mathrm{T}}$$
(23)

$$MTI(\mathbf{M}_{1}, \mathbf{A}, \mathbf{M}_{3}) = \mathbf{u}(\mathbf{W}(\mathbf{M}_{1}^{\mathsf{T}}, \mathbf{1}, \mathbf{A}) + \mathbf{W}(\mathbf{M}_{1}^{\mathsf{T}}, \mathbf{1}, \mathbf{M}_{3}))\mathbf{u}^{\mathsf{T}}$$
(24)

It is easily seen that eqs 10 and 24 are equivalent.

Equation 23 can be extended for raising at a power n + 1 a square matrix $\mathbf{M} = \mathbf{M}_1 = \mathbf{M}_3$ by the aid of the walk matrix

$$\mathbf{u}(\mathbf{M}^{n+1})\mathbf{u}^{\mathrm{T}} = \mathbf{u}\mathbf{W}(\mathbf{M}^{\mathrm{T}}, \mathbf{n}, \mathbf{M})\mathbf{u}^{\mathrm{T}} = \mathbf{u}\mathbf{W}(\mathbf{M}, \mathbf{n}, \mathbf{M}^{\mathrm{T}})\mathbf{u}^{\mathrm{T}}$$
(25)

Chart 3. Schultz-Type Indices by $\mathbf{W}(\mathbf{M}_1,\mathbf{M}_2,\mathbf{M}_3)$ Algebra for the Graph G_1

	N	(A,	1,1)					
	1	2	3	4	5	6	7	
l	0	1	l	1	l	1	1	6
2	3	0	3	3	3	3	3	18
3	3	3	0	3	3	3	3	18
4	2	2	2	0	2	2	2	12
5	1	1	1	l	0	1	l	6
6	1	1	1	1	1	0	1	6
7	1	1	1	1	1	1	0	6

	W	W(A,1,A)										
	1	2	3	4	5	6	7					
l	0	1	0	0	0	0	0	ı				
2	3	0	3	0	0	3	0	9				
3	0	3	0	3	0	0	3	9				
4	0	0	2	0	2	0	0	4				
5	0	0	0	1	0	0	0	1				
6	0	1	0	0	0	0	0	1				
7	0	0	1	0	0	0	0	1				
	3	5	6	4	2	3	3					

 $\mathbf{uW(A,1,A)u}^{\mathrm{T}} = 26$

	W	/(A,1	,D)					
	1	2	3	4	5	6	7	
l	Ò	1	2	3	4	2	3	15
2	3	0	3	6	9	3	6	30
3	6	3	0	3	6	6	3	27
4	6	4	2	0	2	6	4	24
5	4	3	2	1	0	4	3	17
6	2	1	2	3	4	0	3	15
7	3	2	1	2	3	3	0	14
	24	14	12	18	28	24	22	

 $\mathbf{uW(A,1,D)}\mathbf{u}^{\mathsf{T}} = 142$

W(D,1,1)

	1	2	3	4	5	6	7	
1	0	15	15	15	15	15	15	90
2	10	0	10	10	10	10	10	60
3	9	9	0	9	9	9	9	54
4	12	12	12	0	12	12	12	72
5	17	17	17	17	0	17	17	102
6	15	15	15 10 0 12 17 15 14	15	15	0	15	90
7	14	14	14	14	14	14	0	84

W(D,1,A)

	1	2	3	4	5	6	7	
1	0	15	0	0	0	0	0	15
2	10	0	10	0	0	10	0	30
3	0	9	0	9	0	0	9	27
4	0	0	12	0	12	0	0	24
5	0	0	0	17	0	0	0	17
6	0	15	0	0	0	0	0	15
7	0	0	14	0	0	0	0	14
	10	39	36	26	12	10	9	

 $\mathbf{uW}(\mathbf{D},\mathbf{1},\mathbf{A})\mathbf{u}^{\mathrm{T}} = 142$

W(D,1,D)

	1	2	3	4	5	6	7				
1	0	15	30	45	60	30	45	225			
2	10	0	10	20	30	10	20	100			
3	18	9	0	9	18	18	9	81			
4	36	24	12	0	12	36	24	144			
5	68	51	34	17	0	68	51	289			
6	30	15	30	45	60	0	45	225			
7	42	28	14	28	42	42	0	196			
	204	142	130	164	222	204	194				
$\mathbf{u}\mathbf{W}(\mathbf{D},1,\mathbf{D})\mathbf{u}^{\mathrm{T}}=1260$											

where **n** is the matrix having the (ij)-entries $[\mathbf{n}]_{ij}$ for $i \neq j$ and zero for i = j.

Table 1. Wiener W, Hyper-Cluj CJ_p , Hyper-Szeged, SZ_p , and Some $S(\mathbf{M}^2)$ Indices in Octane Isomers

graph ^a	W	CJ_p	SZ_p	$S(\mathbf{A}^2)$	$S(\mathbf{D}^2)$	$S(\mathbf{CJ_u}^2)$	$S(\mathbf{SZ}_{\mathrm{u}}^{2})$		
C8	84	210	340	13	1848	1596	2620		
2MC7	79	185	320	14	1628	1396	2430		
3MC7	76	170	307	14	1512	1284	2380		
4MC7	75	165	294	14	1476	1248	2302		
3EC6	72	150	272	14	1360	1136	2142		
25M2C6	74	161	308	15	1420	1206	2286		
24M2C6	71	147	288	15	1312	1102	2195		
23M2C6	70	143	282	15	1280	1072	2154		
34M2C6	68	134	268	15	1208	1004	2074		
3E2MC5	67	129	242	15	1172	968	1858		
22M2C6	71	149	280	16	1316	1112	2089		
33M2C6	67	131	250	16	1176	978	1939		
234M3C5	65	122	258	16	1096	906	1922		
3E3MC5	64	118	220	16	1072	880	1702		
224M3C5	66	127	254	17	1128	940	1868		
223M3C5	63	115	242	17	1032	850	1784		
233M3C5	62	111	234	17	1000	820	1730		
2233M4C4	58	97	232	19	868	706	1570		
a M — mothyl: E — othyl									

 a M = methyl; E = ethyl.

Values $S(\mathbf{M}_1\mathbf{M}_3)$, $S(\mathbf{M}_1\mathbf{A})$, and the corresponding indices MTI(\mathbf{M}_1 , \mathbf{A} , \mathbf{M}_3) ($\mathbf{M}_1 = \mathbf{M}_3$) for octanes are listed in Tables 1 and 2; matrices involved in the calculation of MTI-(\mathbf{M}_1 , \mathbf{A} , \mathbf{M}_3) indices, for the graph G_1 , are illustrated in Charts 3 and 4.

SZEGED AND CLUJ MATRICES IN SCHULTZ-TYPE INDICES

Two unsymmetric matrices, \mathbf{M}_{u} , ($\mathbf{M} = \mathbf{SZ}$, Szeged and \mathbf{CJ} , Cluj) have been recently proposed by one of us. $^{27,31-34}$ They are defined according to the principle $^{25-27,31,32}$ of single endpoint characterization of a path, (i,j) (having its endpoints the vertices i and j)

$$[\mathbf{M}_{\mathbf{u}}]_{ij} = \mathbf{N}_{i,p_k(i,j)} = |V_{i,p_k(i,j)}|$$
 (26)

$$V_{i,p_k(ij)} = \{ v | v \in V(G); [D_e]_{iv} \le [D_e]_{jv} \}$$
 (27)

Chart 4. Schultz Index by $W(M_1,M_2,M_3)$ Algebra for the Graph G_1

	A+D							
	1	2	3	4	5	6	7	
1	0	2	2	3	4	2	3	16
2	2	0	2	2	3	2	2	13
3	2	2	0	2	2	2	2	12
4	3	2	2	0	2	3	2	14
5	4	3	2	2	0	4	3	18
6	2	2	2	3	4	0	3	16
7	3	2	2	2	3	3	0	15
	16	13	12	14	18	16	15	

	W(A,1,A) + W(A,1,D)									
	1	2	3	4	5	6	7			
1	0	2	2	3	4	2	3	16		
2	6	0	6	6	9	6	6	39		
3	6	6	0	6	6	6	6	36		
4	6	4	4	0	4	6	4	28		
5	4	3	2	2	0	4	3	18		
6	2	2	2	3	4	0	3	16		
7	3	2	2	2	3	3	0	15		
	2,7	19	18	22	30	27	25			

 $u(W(A,1,A) + W(A,1,D))u^{T} = 168$

	W((A+D),1,A)										
	1	2	3	4	5	6	7				
1	0	16	0	0	0	0	0	16			
2	13	0	13	0	0	13	0	39			
3	0	12	0	12	0	0	12	36			
4	0	0	14	0	14	0	0	28			
5	0	0	0	18	0	0	0	18			
6	0	16	0	0	0	0	0	16			
7	0	0	15	0	0	0	0	15			
	13	44	42	30	14	13	12				

 $V_{i,p_k(i,j)} = \{ v | v \in V(G); D_{iv} \le D_{jv}; p_h(i,v) \cap p_k(i,j) =$

 $uW((A+D),1,A)u^{T}=168$

 $\{i\}; p_k(i,j)| = \min\}$ (28)

 $N_{i,p_k(i,j)} = |V_{i,p_k(i,j)}|$ is the number of elements of the set $V_{i,p_k(i,j)}$, for $\mathbf{CJ_u}$, the maximum value, $\max|V_{i,p_k(i,j)}|$, is taken over all paths $p_k(i,j)$. Diagonal entries are zero. The symbol $N_{i,p_k(i,j)}$ remembers the definition of the Wiener index (cf. eq. 6).

Table 2. $S(\mathbf{M}_1\mathbf{A})$ and $MTI(\mathbf{M}_1,\mathbf{A},\mathbf{M}_3)^a$ Indices in Octane Isomers

	,	., , 5,						
$graph^b$	$S(\mathbf{AD})$	$S(\mathbf{AW}_{\mathrm{e}})$	$S(\mathbf{CJ_uA})$	$S(\mathbf{SZ}_{\mathrm{u}}\mathbf{A})$	(D , A , Dq)	(CJ_u,A,CJ_u)	(SZ_u,A,SZ_u)	MTI
C8	280	322	301	371	3976	3493	5611	306
2MC7	260	324	292	363	3516	3084	5223	288
3MC7	248	318	283	359	3272	2851	5119	276
4MC7	244	316	280	357	3196	2776	4961	272
3EC6	232	306	269	348	2952	2541	4632	260
25M2C6	240	326	283	355	3080	2695	4927	270
24M2C6	228	320	274	350	2852	2478	4740	258
23M2C6	224	318	271	346	2784	2415	4654	254
34M2C6	216	314	265	341	2632	2273	4489	246
3E2MC5	212	308	260	345	2556	2196	4061	242
22M2C6	228	330	279	347	2860	2503	4525	260
33M2C6	212	322	267	338	2564	2223	4216	244
234M3C5	204	320	262	334	2396	2074	4178	236
3E3MC5	200	314	257	326	2344	2017	3730	232
224M3C5	208	332	270	339	2464	2150	4075	242
223M3C5	196	326	261	327	2260	1961	3895	230
233M3C5	192	324	258	323	2192	1898	3783	226
2233M4C4	176	338	257	311	1912	1669	3451	214

^a Schultz-type indices, MTI(\mathbf{M}_1 , \mathbf{A} , \mathbf{M}_3), are written as the sequence (\mathbf{M}_1 , \mathbf{A} , \mathbf{M}_3); the original Schultz index is written as MTI. ^b M = methyl; E = ethyl.

Chart 5. Matrices SZ_u and CJ_u for the Graph G_1

	SZ_u									
	1	2	3	4	5	6	7			
l	0	1	l	3	3	1	3	12		
2	6	0	3	3	5	6	3	26		
3	4	4	0	5	5	4	6	28		
4	4	2	2	0	6	4	2	20		
5	2	2	l	l	0	2	2	10		
6	1	1	1	3	3	0	3	12		
7	4	1	1	1	5	4	0	16		
	2.1	11	9	16	27	21	19			
	$SZ_p = \sum_{(ij)} [SZ_u]_{ij} [SZ_u]_{ji} = 151$									

	CJ_{u}									
	1	2	3	4	5	6	7			
1	0	1	1	l	1	1	1	6		
2	6	0	3	3	3	6	3	24		
3	4	4	0	5	5	4	6	28		
4	2	2	2	0	6	2	2	16		
5	1	1	l	l	0	l	l	6		
6	1	l	1	l	l	0	1	6		
7	1	1	1	1	1	1	0	6		
	15	10	9	12	17	15	14			
	$CJ_{p} = \sum_{(ij)} [CJ_{u}]_{ij} [CJ_{u}]_{ji} = 83$									

Vertices of the set $V_{i,p_k(i,j)}$ are selected as follows: (i) for SZ_u , they obey the original condition formulated by Gutman³⁵ for the Szeged index (eq 27). Such vertices lie closer to the vertex i, with respect to the path (ij). (ii) for CJ_u , the set $V_{i,p_k(i,j)}$ consists of the vertices lying *closer* to the vertex i, and *external* with respect to the path $p_k(i,j)$ (condition $p_{h^-}(i,v) \cap p_k(i,j) = \{i\}$, eq 28). Since in cycle-containing structures, various shortest paths, $p_k(i,j)$, could supply various sets $V_{i,p_k(i,j)}$, by definition, the (ij)-entries in the Cluj matrices are taken as max $|V_{i,p_k(i,j)}|$ (see above).

Both matrices, SZ_u and CJ_u , are defined in any connected graph, in contrast to the Wiener matrix, defined only in acyclic graphs. The externality condition (see above) strongly differentiates the two matrices (and their invariants). For the graph G_1 they are illustrated in Chart 5.

The two unsymmetric matrices allow the construction of the corresponding symmetric matrices, \mathbf{M}_p (defined on paths) and \mathbf{M}_e (defined on edges), by

$$\mathbf{M}_{p} = \mathbf{M}_{u} \cdot \mathbf{M}_{u}^{\mathrm{T}} \tag{29}$$

$$\mathbf{M}_{e} = \mathbf{M}_{p} \cdot \mathbf{A} \tag{30}$$

In acyclic structures, the Cluj matrices, CJ_e and CJ_p , are identical to the Wiener matrices, W_e and W_p . In cyclic graphs, CJ_e superimposes on SZ_e , while CJ_p is different from SZ_p . In trees, the Cluj matrix obeys the relations³¹

$$RS(CJ_{u}) = RS(W_{e})$$
 (31)

$$CS(CJ_{n}) = CS(D)$$
 (32)

Thus, \mathbf{CJ}_u is a chimera between \mathbf{D} and \mathbf{W}_e (see below). Several indices can be calculated $^{27,31-34}$ on these matrices,

Several indices can be calculated^{27,31–34} on these matrices, either as the half-sum of their entries (a relation of the type 7) or by

$$I_{e/p} = \sum_{(ij)} [\mathbf{M}_{u}]_{ij} [\mathbf{M}_{u}]_{ji}$$
(33)

When defined on edges, I_e is an index (*e.g.*, SZ_e , the classical Szeged index); when defined on paths, I_p is a hyperindex (*e.g.*, SZ_p and CJ_p). Note that, in acyclic graphs, $SZ_e = CJ_e = W$; also note that $SZ_e = CJ_e$ in any connected graph. For other relations see ref 34. Values of these indices in octanes are listed in Table 1.

Coming back to the Schultz-type indices (eq 10), we consider the case of \mathbf{CJ}_u in the sequence $(\mathbf{M}_1, \mathbf{A}, \mathbf{M}_3) = (\mathbf{CJ}_u, \mathbf{A}, \mathbf{CJ}_u)$. Since the Cramer product is not commutative, and since \mathbf{CJ}_u is an unsymmetric matrix, there exists a strong reason (see eq 13) to write a Schultz-type index as

$$\begin{aligned} \text{MTI}(\mathbf{C}\mathbf{J}_{\text{u}},&\mathbf{A},&\mathbf{C}\mathbf{J}_{\text{u}}) = (\mathbf{u}(\mathbf{C}\mathbf{J}_{\text{u}})\mathbf{A}\mathbf{u}^{\text{T}} + \\ &\mathbf{u}\mathbf{A}(\mathbf{C}\mathbf{J}_{\text{u}})\mathbf{u}^{\text{T}})/2 + \mathbf{u}(\mathbf{C}\mathbf{J}_{\text{u}})^{2}\mathbf{u}^{\text{T}} \end{aligned}$$

=
$$(\mathbf{u}(\mathbf{C}\mathbf{J}_{\mathbf{u}})\mathbf{A}\mathbf{u}^{\mathrm{T}} + \mathbf{u}(\mathbf{C}\mathbf{J}_{\mathbf{u}}^{\mathrm{T}})\mathbf{A}\mathbf{u}^{\mathrm{T}})/2 + \mathbf{u}(\mathbf{C}\mathbf{J}_{\mathbf{u}})^{2}\mathbf{u}^{\mathrm{T}} = S(\mathbf{C}\mathbf{J}_{\mathbf{u}}\mathbf{A}) + S(\mathbf{C}\mathbf{J}_{\mathbf{u}}^{2})$$
 (34)

By virtue of relations 31 and 32, in acyclic structures, relation 34 can be written as

$$MTI(\mathbf{CJ_u, A, CJ_u}) = (\mathbf{uDAu^T} + \mathbf{uAW_e u^T})/2 + \mathbf{uDW_e u^T}$$
$$= (S(\mathbf{DA}) + S(\mathbf{AW_e}))/2 + S(\mathbf{DW_e})$$
(35)

Since **A**, **D**, and **W**_e are symmetric matrices, it is obvious that $S(\mathbf{D}\mathbf{A}) = S(\mathbf{A}\mathbf{D})$ and $S(\mathbf{A}\mathbf{W}_{e}) = S(\mathbf{W}_{e}\mathbf{A})$.

Bearing in mind relations 11 and 24, $MTI(\mathbf{CJ_u}, \mathbf{A}, \mathbf{CJ_u})$ can be written as

$$MTI(CJ_{u},A,CJ_{u}) = (uW(CJ_{u}^{T},1,A)u^{T} + uW(CJ_{u},1,A)u^{T})/2 + uW(CJ_{u}^{T},1,CJ_{u})u^{T}$$
(36)

which gives the exact result of eq 34 or 35. Relations 34 and 36 allow the calculation of this index in any connected graph. Thus, irrespective of being calculated, by Cramer or Hadamard algebra, the index can be written as in (37). The equivalence of the Schultz-type terms is immediate.

$$MTI(\mathbf{CJ_u, A, CJ_u}) = S(\mathbf{CJ_u A}) + S(\mathbf{CJ_u}^2) = (S(\mathbf{DA}) + S(\mathbf{AW_e}))/2 + S(\mathbf{DW_e})$$
(37)

Equation 37 offers a MTI number which encloses the information of three matrices, as suggested by relation 10. Values MTI(CJ_u , A, CJ_u) (denoted in refs 27 and 34 as CJ_uI) are given in Table 2.

Returning to eq 20 and considering again relations 31 and 32, some examples of identical walk matrices are given

$$W(W_e,1,A) \equiv W(CJ_u,1,A); \quad W(D,1,A) \equiv W(CJ_u^T,1,A)$$

$$W(W_e,1,CJ_u) \equiv W(CJ_u,1,CJ_u);$$

$$\mathbf{W}(\mathbf{D},\mathbf{1},\mathbf{C}\mathbf{J}_{n}^{\mathrm{T}}) \equiv \mathbf{W}(\mathbf{C}\mathbf{J}_{n}^{\mathrm{T}},\mathbf{1},\mathbf{C}\mathbf{J}_{n}^{\mathrm{T}})$$

Szeged matrix, SZ_u , behaves similarly:

$$MTI(SZ_u,A,SZ_u) = (u(SZ_u)Au^T + uA(SZ_u)u^T)/2 + u(SZ_u)^2u^T$$

=
$$(\mathbf{u}(\mathbf{S}\mathbf{Z}_{u})\mathbf{A}\mathbf{u}^{\mathrm{T}} + \mathbf{u}(\mathbf{S}\mathbf{Z}_{u}^{\mathrm{T}})\mathbf{A}\mathbf{u}^{\mathrm{T}})/2 + \mathbf{u}(\mathbf{S}\mathbf{Z}_{u})^{2}\mathbf{u}^{\mathrm{T}}$$
 (38)

$$MTI(\mathbf{S}\mathbf{Z}_{u}, \mathbf{A}, \mathbf{S}\mathbf{Z}_{u}) = (\mathbf{u}\mathbf{W}(\mathbf{S}\mathbf{Z}_{u}^{\mathrm{T}}, \mathbf{1}, \mathbf{A})\mathbf{u}^{\mathrm{T}} + \mathbf{u}\mathbf{W}(\mathbf{S}\mathbf{Z}_{u}, \mathbf{1}, \mathbf{A})\mathbf{u}^{\mathrm{T}})/2 + \mathbf{u}\mathbf{W}(\mathbf{S}\mathbf{Z}_{u}^{\mathrm{T}}, \mathbf{1}, \mathbf{S}\mathbf{Z}_{u})\mathbf{u}^{\mathrm{T}}$$
(39)

$$MTI(SZ_{u},A,SZ_{u}) = S(SZ_{u}A) + S(SZ_{u}^{2})$$
 (40)

Values $MTI(SZ_u,A,SZ_u)$ (denoted in ref 34 as SZ_uI) are given in Table 2.

Within a set of acyclic isomers, a very interesting property comes out from the definition of SZ_u , which is presented as follows.

Conjecture: the sum, over all vertices in a graph, of the products between the valency of a vertex i and the number of vertices closer to i (than to any other vertex j) is a constant

$$\mathbf{u}\mathbf{A}(\mathbf{S}\mathbf{Z}_{\mathbf{u}})\mathbf{u}^{\mathsf{T}} = \mathbf{u}(\mathbf{R}\mathbf{S}(\mathbf{A}) \cdot \mathbf{R}\mathbf{S}(\mathbf{S}\mathbf{Z}_{\mathbf{u}})) = 2\left(2\binom{N}{3} + \binom{N+1}{3}\right) (41)$$

In other words, the sum on the product to the left of the Szeged matrix SZ_u with the adjacency matrix is a constant. In contrast, the product to the right, $\mathbf{u}(SZ_u)A\mathbf{u}^T = \mathbf{u}(RS-(A)\cdot CS(SZ_u))$ is variable within a set of acyclic isomers.

Schultz-type indices show good correlation³⁴ with some physicochemical properties of octanes, in two-variable regression: boiling points (MTI(\mathbf{D} , \mathbf{A} , \mathbf{D}) and MTI = 0.953), critical pressure (MTI(\mathbf{CJ}_u , \mathbf{A} , \mathbf{CJ}_u) and MTI = 0.988; MTI-(\mathbf{SZ}_u , \mathbf{A} , \mathbf{SZ}_u) and χ = 0.967, χ being the connectivity index³⁶), octane number (MTI(\mathbf{CJ}_u , \mathbf{A} , \mathbf{CJ}_u) and MTI = 0.987). Note that the Schultz original index MTI(\mathbf{A} , \mathbf{A} , \mathbf{D}) was written above as simple MTI.

CONCLUSIONS

Walk matrix, $W(M_1,M_2,M_3)$, is an interesting operator which works according to the Hadamard-matrix algebra. It offers various global invariants, a function of matrix combinations. Thus, it can be used as an alternative to the Cramer-matrix algebra to calculate Schultz-type indices. Other properties and applications of this operator will be presented in a further study.³⁷

ACKNOWLEDGMENT

Many thanks are expressed to Professors Ivan Gutman, University of Kragujevac, Yugoslavia, and Bazil Parv, "Babes-Bolyai" University, Cluj, Romania, for helpful discussions.

REFERENCES AND NOTES

- (1) Wiener, H. Structural Determination of Paraffin Boiling Points. *J. Am. Chem. Soc.* **1947**, *69*, 17–20.
- (2) Schultz, H. P. Topological Organic Chemistry. 1. Graph Theory and Topological Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1989, 29, 227–228.
- (3) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological Organic Chemistry. 2. Graph Theory, Matrix Determinants and Eigenvalues, and Topological Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1990, 30, 27–29.
- (4) Schultz, H. P.; Schultz, T. P. Topological Organic Chemistry. 3. Graph Theory, Binary and Decimal Adjacency Matrices, and Topological Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1991, 31, 144–147.
- (5) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological Organic Chemistry. 4. Graph Theory, Matrix Permanents, and Topological Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1992, 32, 69–72.
- Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1992, 32, 69-72.
 (6) Schultz, H. P.; Schultz, T. P. Topological Organic Chemistry. 5. Graph Theory, Matrix Hafnians and Pfaffnians, and Topological Indices of Alkanes. J. Chem. Inf. Comput. Sci. 1992, 32, 364-366.

- (7) Schultz, H. P.; Schultz, T. P. Topological Organic Chemistry. 6. Theory and Topological Indices of Cycloalkanes. J. Chem. Inf. Comput. Sci. 1993, 33, 240–244.
- (8) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological Organic Chemistry. 7. Graph Theory and Molecular Topological Indices of Unsaturated and Aromatic Hydrocarbons. J. Chem. Inf. Comput. Sci. 1993, 33, 863–867.
- (9) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological Organic Chemistry. 8. Graph Theory and Topological Indices of Heteronuclear Systems. J. Chem. Inf. Comput. Sci. 1994, 34, 1151–1157.
- (10) Schultz, H. P.; Schultz, E. B.; Schultz, T. P. Topological Organic Chemistry. 9. Graph Theory and Molecular Topological Indices of Stereoisomeric Compounds. J. Chem. Inf. Comput. Sci. 1995, 35, 864– 870
- (11) Schultz, H. P.; Schultz, E. B.; Schultz, T. P., Topological Organic Chemistry. 10. Graph Theory and Topological Indices of Conformational Isomers. J. Chem. Inf. Comput. Sci. 1996, 36, 996–1000.
- (12) Klein, D. J.; Mihalić, Z.; Plavšić, D.; Trinajstić, N. Molecular Topological Index: A Relation with the Wiener Index. J. Chem. Inf. Comput. Sci. 1992, 32, 304–305.
- (13) Mihalić, Z.; Nikolić, S.; Trinajstić, N. Comparative Study of Molecular Descriptors Derived from the Distance Matrix. J. Chem. Inf. Comput. Sci. 1992, 32, 28–37.
- (14) Plavśić, D.; Nikoli, S.; Trinajsti, N.; Klein, D. J. Relation between the Wiener Index and the Schultz Index for Several Classes of Chemical Graphs. Croat. Chem. Acta 1993, 66, 345–353.
- (15) Gutman, I. Selected Properties of the Schultz Molecular Topological Index. J. Chem. Inf. Comput. Sci. 1994, 34, 1087–1089.
- (16) Diudea, M. V. Novel Schultz Analogue Indices. Commun. Math. Comput. Chem. (MATCH) 1995, 32, 85–103.
- (17) Diudea, M. V.; Pop, C. M. A Schultz-Type Index Based on the Wiener Matrix. *Indian J. Chem.* 1996, 35A, 257–261.
- (18) Klavžar, S.; Gutman, I. A Comparison of the Schultz Molecular Topological Index with the Wiener Index. J. Chem. Inf. Comput. Sci. 1996, 36, 1001–1003.
- (19) Estrada, E.; Rodriguez, L.; Gutiérrez, A. Matrix Algebraic Manipulation of Molecular Graphs. 1. Distance and Vertex-Adjacency Matrices. Commun. Math. Comput. Chem. (MATCH) 1997, 35, 145–156.
- (20) Estrada, E.; Rodriguez, L. Matrix Algebraic Manipulation of Molecular Graphs. 2. Harary- and MTI-Like Molecular Descriptors. Commun. Math. Comput. Chem. (MATCH) 1997, 35, 157–167.
- (21) Dobrynin, A. A.; Kochetova, A. A. Degree Distance of a Graph: A Degree Analogue of the Wiener Index. J. Chem. Inf. Comput. Sci. 1996, 36, 1082–1086.
- (22) Randić, M.; Guo, X.; Oxley, T; Krishnapriyan, H. Wiener Matrix: Source of Novel Graph Invariants. *J. Chem. Inf. Comput. Sci.* **1993**, 33, 700–716
- (23) Randić, M.; Guo, X.; Oxley, T.; Krishnapriyan, H.; Nayor, L. Wiener Matrix Invariants. J. Chem. Inf. Comput. Sci. 1994, 34, 361–367.
- (24) Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. *Bull. Chem. Soc. Jpn.* 1971, 44, 2332–2339.
- (25) Diudea, M. V.; Ivanciuc, O. Molecular Topology (in Romanian); Comprex: Cluj, 1995.
- (26) Diudea, M. V. Walk Numbers eW_M: Wiener-Type Numbers of Higher Rank. J. Chem. Inf. Comput. Sci. 1996, 36, 535–540.
- (27) Diudea, M. V. Cluj Matrix, CJ_u: Source of Various Graph Descriptors. Commun. Math. Comput. Chem. (MATCH) 1997, 35, 169–183.
- (28) Diudea, M. V. Indices of Reciprocal Property or Harary Indices. J. Chem. Inf. Comput. Sci., in press.
- (29) Randić, M. Restricted Random Walk on a Graph as a Source of Novel Molecular Descriptors. *Theor. Chem. Acta*, in press.
- (30) Horn, R. A.; Johnson, C. R. Matrix Analysis; Cambridge University Press: Cambridge, U.K., 1985.
- (31) Diudea, M. V. Wiener and Hyper-Wiener Numbers in a Single Matrix. J. Chem. Inf. Comput. Sci. 1996, 36, 833–836.
- (32) Diudea, M. V. Cluj Matrix Invariants. *J. Chem. Inf. Comput. Sci.* **1997**, 37, 300-305.
- (33) Diudea, M. V.; Minailiuc, O. M.; Katona, G.; Gutman, I. Szeged Matrices and Related Numbers. Commun. Math. Comput. Chem. (MATCH), 1997, 35, 129–143.
- (34) Diudea, M. V.; Parv, B.; Topan, M. I. Derived Szeged and Cluj Indices. *J. Serb. Chem. Soc.* **1997**, *62*, 267–276.
- (35) (a) Gutman, I. A Formula for the Wiener Number of Trees and Its Extension to Graphs Containing Cycles. *Graph Theory Notes New York* 1994, 27, 9–15. (b) During the preparation of this manuscript, Professor Ivan Gutman has proposed some notations in the view of simplifying and clarifying mathematical relations (see also: Gutman, I.; Diudea, M. V. Defining Cluj Matrices and Cluj Matrix Invariants. *Commun. Math. Comput. Chem. (MATCH)*, submitted for publication.
- (36) Randić, M. On Characterization of Molecular Branching. J. Am. Chem. Soc. 1975, 97, 6609–6615.
- (37) Diudea, M. V. Valencies of Property. Commun. Math. Comput. Chem. (MATCH), submitted for publication.

CI970019U