Waves and Vibrations

Waves are everywhere in nature

- ▲ Sound waves,
- *▲ visible light waves,*
- *▶ radio waves,*
- *▲ microwaves,*
- *▲ water waves,*
- *★sine waves,*

- ★ telephone chord waves,
- *★stadium waves,*
- *▲earthquake* waves,
- ★ waves on a string,
- *▲slinky waves*

What is a wave?

- A wave is a disturbance that travels through a medium from one location to another.
- ▲ a wave is the motion of a disturbance

- ▲ The wave we see here is a longitudinal wave.
- ▲ The medium particles vibrate parallel to the motion of the pulse.
- A This is the same type of wave that we use to transfer sound.
- Can you figure out how??

show tuning fork demo

Transverse waves

- A second type of wave is a transverse wave.
- ▲ We said in a longitudinal wave the pulse travels in a direction parallel to the disturbance.
- ▲ In a transverse wave the pulse travels perpendicular to the disturbance.

Transverse Waves

▲ The differences between the two can be

The subsequent direction of motion of individual particles of a medium is the same as the direction of vibration of the source of the disturbance.

Transverse Waves

- ▲ Transverse waves occur when we wiggle the slinky back and forth.
- A They also occur when the source disturbance follows a periodic motion.
- A spring or a pendulum can accomplish this.
- ▲ The wave formed here is a SINE wave.
- http://webphysics.davidson.edu/course_material/py130/demo/illustration1 6_2.html

- Now we can begin to describe the anatomy of our waves.
- ▲ We will use a transverse wave to describe this since it is easier to see the pieces.

- ▲ In our wave here the dashed line represents the equilibrium position.
- Once the medium is disturbed, it moves away from this position and then returns to it

- ↑ The points A and F are called the CRESTS
 of the wave.
- A This is the point where the wave exhibits the maximum amount of positive or upwards displacement

- The points D and I are called the TROUGHS of the wave.
- AThese are the points where the wave exhibits its maximum negative or downward displacement.

- A The distance between the dashed line and point A is called the Amplitude of the wave.
- A This is the maximum displacement that the wave moves away from its equilibrium.

- ▲ The distance between two consecutive similar points (in this case two crests) is called the wavelength.
- A This is the length of the wave pulse.
- A Between what other points is can a wavelength by measured?

Τ,

- ▲ What else can we determine?
- We know that things that repeat have a frequency and a period. How could we fix a frequency and a period of a wave?

Wave frequency

- ▲ We know that frequency measure how often something happens over a certain amount of time.
- A We can measure how many times a pulse passes a fixed point over a given amount of time, and this will give us the frequency.

Wave frequency

- ▲ Suppose I wiggle a slinky back and forth, and count that 6 waves pass a point in 2 seconds. What would the frequency be?
 - ▲ 3 cycles / second
 - A3Hz
 - we use the term Hertz (Hz) to stand for cycles per second.

Wave Period

- ▲ The period describes the same thing as it did with a pendulum.
- ▲ It is the time it takes for one cycle to complete.
- ▲ It also is the reciprocal of the frequency.

$$\Delta T = 1/f$$

$$Af = 1/T$$

▲ let's see if you get it.

Wave Speed

- ▲ We can use what we know to determine how fast a wave is moving.
- ▲ What is the formula for velocity?
 - ▲ velocity = distance / time
- ▲ What distance do we know about a wave
 - **→** wavelength
- Aand what time do we know
 - **★**period

Wave Speed

- so if we plug these in we get
 - *▶ velocity* = length of pulse / time for pulse to move pass a fixed point
 - $\Delta v = \lambda / T$
 - \blacktriangle we will use the symbol λ to represent wavelength

Wave Speed

- $\star v = \lambda / T$
- **▲** but what does T equal

$$ightharpoonup T = 1/f$$

- ▲ so we can also write
 - $\blacktriangleright v = f \lambda$
 - ▲ velocity = frequency * wavelength
- ▲ This is known as the wave equation.
- <u> ▲ examples</u>

Wave Behavior

- ▲ Now we know all about waves.
- ▲ How to describe them, measure them and analyze them.
- <u> ▲ But how do they interact?</u>

Wave Behavior

- We know that waves travel through mediums.
- ▲ But what happens when that medium runs out?

Boundary Behavior

- ▲ The behavior of a wave when it reaches the end of its medium is called the wave's BOUNDARY BEHAVIOR.
- ▲ When one medium ends and another begins, that is called a boundary.

Fixed End Reflection

Fixed End

An elastic rope securely tied to a pole can be used to study the behavior of waves at a fixed end.

- One type of boundary that a wave may encounter is that it may be attached to a fixed end.
- ▲ In this case, the end of the medium will not be able to move.
- ► What is going to happen if a wave pulse goes down this string and encounters the fixed end?

Fixed End Reflection Incident Pulse Inverted Reflected Pulse

Fixed End

- AHere the incident pulse is an upward pulse.
- ▲ The reflected pulse is upside-down. It is inverted.
- ▲ The reflected pulse has the same speed, wavelength, and amplitude as the incident pulse.

Fixed End Animation

Free End

provides for the study of wave behavior at free ends.

- Another boundary type is when a wave's medium is attached to a stationary object as a free end.
- ▲ In this situation, the end of the medium is allowed to slide up and down.
- ▲ What would happen in this case?

Free End

- ▲ Here the reflected pulse is not inverted.
- ▲ It is identical to the incident pulse, except it is moving in the opposite direction.
- ▲ The speed, wavelength, and amplitude are the same as the incident pulse.

Free End Animation

Change in Medium /

- Our third boundary condition is when the medium of a wave changes.
- A Think of a thin rope attached to a thin rope. The point where the two ropes are attached is the boundary.
- ▲ At this point, a wave pulse will transfer from one medium to another.
- ▲ What will happen here?

Change in Medium

- ▲ In this situation part of the wave is reflected, and part of the wave is transmitted.
- A Part of the wave energy is transferred to the more dense medium, and part is reflected.
- ▲ The transmitted pulse is upright, while the reflected pulse is inverted.

Change in Medium

- ▲ The speed and wavelength of the reflected wave remain the same, but the amplitude decreases.
- ▲ The speed, wavelength, and amplitude of the transmitted pulse are all smaller than in the incident pulse.

Change in Medium Animation

Less Dense Medium More Dense Medium

†
Boundary

Test your understanding

Wave Interaction

- ▲ All we have left to discover is how waves interact with each other.
- ▲ When two waves meet while traveling along the same medium it is called INTERFERENCE.

Constructive Interference

- Let's consider two waves moving towards each other, both having a positive upward amplitude.
- ▲ What will happen when they meet?

Constructive Interference

- ▲ They will ADD together to produce a greater amplitude.
- ▲ This is known as CONSTRUCTIVE INTERFERENCE.

Destructive Interference

- Now let's consider the opposite, two waves moving towards each other, one having a positive (upward) and one a negative (downward) amplitude.
- ▲ What will happen when they meet?

Destructive Interference

- ▲ This time when they add together they will produce a smaller amplitude.
- ↑ This is know as DESTRUCTIVE INTERFERENCE.

Check Your Understanding

→ Which points will produce constructive interference and which will produce destructive interference?

- ▲ Constructive
 - ightharpoonup G, J, M, N

- ▲ Destructive
 - *► H, I, K, L, O*