Векторы, точки, прямые, площади...

- **ГС1 1.** В пространстве \mathbb{R}^3 обозначим через a, b, c векторы, ведущие из вершины D параллелепипеда ABCDA'B'C'D' в соединённые ребром с противоположной к D вершиной B' вершины A', B, C' соответственно. Выразите через векторы a, b, c вектор a) \overrightarrow{AC} b) $\overrightarrow{DB'}$ b) $\overrightarrow{CA'}$ c) \overrightarrow{DM} , где M точка пересечения медиан в $\Delta B'D'C$.
- Γ C1 \diamond 2. Предположим, что во вселенной все галактики разлетаются прямо от нашей галактики со скоростями, пропорциональными их радиус-векторам. Какую картину видят жители иной галактики?

Аффинная плоскость. Всюду далее речь идёт про двумерное координатное векторное пространство $V \simeq \mathbbm{k}^2$ над произвольным полем⁴ \mathbbm{k} и ассоциированную с ним аффинную плоскость $\mathbb{A}(V)$.

- **ГС1\diamond3** (правило Крамера). Выразите вектор v=(3,-1) через векторы а) a=(1,5), b=(-2,3) б) a=(1,2), b=(2,1).
- **ГС1\diamond4.** Какова площадь параллелограмма с вершинами в точках (1, 2), (2, 1), (3, 5)?
- **ГС1\diamond5.** Какова на вещественной плоскости \mathbb{R}^2 минимальная площадь параллелограмма с вершинами в точках с целыми координатами? Может ли такой параллелограмм минимальной площади содержать отличные от вершин точки с целыми координатами? Ограничены ли сверху периметры таких параллелограммов?
- **ГС1\diamond6.** Напишите уравнение прямой **a)** проходящей через точку (2, -3) параллельно вектору (5, 2) **6)** проходящей через точки (-3, 5) и (4, -1) **в)** пересекающей оси координат в точках (-2, 0) и (0, 5) и найдите площадь очерчиваемого ими треугольника.
- **ГС1\diamond7.** Нарисуйте на клетчатой бумаге прямые, заданные уравнениями **a)** $3x_1 + 5x_2 = -1$ **б)** $2x_1 3x_2 = 5$ и по правилу Крамера найдите координаты точек пересечения каждой их этих прямых со всеми прямыми из предыдущей задачи.
- **ГС1 \diamond 8.** Вершины \triangle abc имеют координаты $a=(-4,-1),\ b=(1,3),\ c=(2,-2).$ Напишите уравнение медианы, опущенной из вершины b, и определите в какой точке она пересекает ось OY.
- **ГС1 \diamond 9.** Точки *M* и *N* делят диагонали *AC* и *BD* параллелограмма *ABCD* в отношении *AM* : MC = BN : ND = 1 : 2. Как относятся площади треугольников $\triangle BMD$ и $\triangle ANC$?
- **ГС1\diamond10.** На 25-точечной плоскости над полем $\mathbb{F}_5 = \mathbb{Z}/(5)$ вычетов по модулю 5 нарисуйте все проходящие через начало координат прямые. Сколько их?

Барицентры. Точка c называется *центром тяжести* или *барицентром* точек p_1, \dots, p_m , взятых c весами $\mu_1, \dots, \mu_m \in \mathbb{K}$, если $\sum \mu_i \overline{cp}_i = 0$. Если веса не указываются явно, они по умолчанию считаются равными 1. Набор весов (α, β, γ) c $\alpha + \beta + \gamma = 1$ называется *барицентрическими координатами* точки p относительно Δabc на аффинной плоскости, если центр тяжести вершин треугольника, взятых c этими весами, попадает в точку p.

- **ГС1\diamond11.** Медианой набора точек p_1, \ldots, p_m называется отрезок, соединяющий одну из этих точек с равновесным барицентром остальных. Покажите, что все медианы пересекаются в одной точке и выясните, в каком отношении они делятся точкой пересечения.
- **ГС1\diamond12.** Покажите, что на координатной плоскости \Bbbk^2 все точки, барицентрические координаты (α, β, γ) которых относительно данного $\triangle abc$ удовлетворяют линейному однородному уравнению $a\alpha + b\beta + c\gamma = 0$, где $a, b, c \in \Bbbk$ заданные числа, не обращающиеся

¹Которую для простоты будем считать векторным пространством.

 $^{^{2}}$ Которые для простоты будем считать точками.

³Коэффициент пропорциональности для всех галактик один и тот же.

 $^{^4}$ Желающие могут по умолчанию считать, что $\Bbbk=\mathbb{R}$ или $\Bbbk=\mathbb{Q}.$

- одновременно в нуль, образуют прямую. Верно ли что: **a)** любая прямая на аффинной плоскости \mathbb{k}^2 может быть задана таким уравнением **б)** два таких уравнения задают одну и ту же прямую если и только если эти уравнения одинаковы?
- **ГС1•13.** Нарисуйте в \mathbb{R}^2 все точки, барицентрические координаты (α, β, γ) которых относительно данного $\triangle abc$ удовлетворяют условиям: **a)** $\alpha, \beta, \gamma > 0$ **б)** $\alpha, \beta > 0$, $\gamma < 0$ **в)** $\alpha = \beta$ **г)** $\alpha, \beta > 1/3$, $\gamma > 0$ **д)** $\alpha \geqslant \beta$ **e)** $\alpha \geqslant \beta \geqslant \gamma$.
- **ГС1\diamond14.** В условиях предыдущей задачи напишите условия на (α, β, γ) , задающие: **a)** каждый из шести треугольников, на которые $\triangle abc$ разрезается медианами **6)** треугольники гомотетичные $\triangle abc$ с коэффициентами 3 и 1/3 относительно точки пересечения медиан.