三、ARMA 模型的性质

目录

① AR 模型

2 MA 模型

③ ARMA 模型

- ► AR 模型的定义
 - AR(p) 的定义: $x_t = \phi_0 + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + \varepsilon_t \iff \Phi(B) x_t = \varepsilon_t$
 - 限制条件: $\phi_p \neq 0$, $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = \sigma_{\varepsilon}^2$, $E(\varepsilon_t \varepsilon_s) = 0$ ($s \neq t$), $E(x_s \varepsilon_t) = 0$ (s < t)
 - 延迟算子 B: $x_{t-i} = B^i x_t$, $B^0 = 1$
 - p 阶自回归系数多项式: $\Phi(B) = 1 \phi_1 B \dots \phi_p B^p$

- ► AR 模型的平稳性的判别
 - 特征根判别:

平稳 $\iff \forall$ 特征根 $|\lambda_i| < 1$

• 平稳域判别:

AR(1): 平稳 $\iff |\phi_1| < 1$

AR(2): 平稳 $\iff |\phi_2| < 1, \phi_2 \pm \phi_1 < 1$

▶ Green 函数

•
$$\not$$
E \lor : $x_t = G_0 \varepsilon_t + G_1 \varepsilon_{t-1} + \cdots$

• AR(1) 的 Green 函数:
$$G_j = \begin{cases} 1, & j = 0 \\ \phi_1^j, & j \geq 1 \end{cases}$$

• AR
$$(p)$$
 的 Green 函数: $G_j = \begin{cases} 1, & j=0 \\ \sum\limits_{k=1}^j \phi_k' G_{j-k}, & j \geq 1 \end{cases}$,
其中 $\phi_k' = \begin{cases} \phi_k, & k \leq p \\ 0, & k > p \end{cases}$

▶ 平稳 AR 模型的统计性质

• 均值:
$$\mu = \frac{\phi_0}{1 - \phi_1 - \dots - \phi_p}$$

• 方差:
$$\operatorname{Var}(x_t) = \sum_{j=0}^{\infty} G_j^2 \sigma_{\varepsilon}^2$$

AR(1): Var(
$$x_t$$
) = $\frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}$

AR(2): Var(
$$x_t$$
) = $\frac{(1-\phi_2)\sigma_{\varepsilon}^2}{(1+\phi_2)(1-\phi_1-\phi_2)(1+\phi_1-\phi_2)}$

▶ 平稳 AR 模型的统计性质

• 自协方差函数:
$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} + \dots + \phi_p \gamma_{k-p}$$

$$AR(1): \gamma_k = \frac{\phi_1^k \sigma_{\varepsilon}^2}{1 - \phi_1^2}$$

$$AR(2): \begin{cases} \gamma_0 = \frac{(1 - \phi_2)\sigma_{\varepsilon}^2}{(1 + \phi_2)(1 - \phi_1 - \phi_2)(1 + \phi_1 - \phi_2)} \\ \gamma_1 = \frac{\phi_1 \gamma_0}{1 - \phi_2} \\ \gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} \end{cases}$$

- ▶ 平稳 AR 模型的统计性质
 - 自相关系数: $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \cdots + \phi_p \rho_{k-p}$

$$AR(1)$$
: $ho_k = \phi_1^k$
$$\begin{cases} 1, & k = 0 \\ \frac{\phi_1}{1 - \phi_2}, & k = 1 \\ \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, & k \geq 2 \end{cases}$$
 拖尾性: ρ_k 不会在 $k > k_0$ 后恒为 0

▶ 平稳 AR 模型的统计性质

• 協自相关系数:
$$\phi_{kk} = \frac{E[(x_t - \hat{E}x_t)(x_{t-k} - \hat{E}x_{t-k})]}{E[(x_{t-k} - \hat{E}x_{t-k})^2]}$$

$$AR(1): \phi_{kk} = \begin{cases} \phi_1, & k = 1\\ 0, & k \ge 2 \end{cases}$$

$$AR(2): \phi_{kk} = \begin{cases} \frac{\phi_1}{1 - \phi_2}, & k = 1\\ \phi_2, & k = 2\\ 0, & k \ge 3 \end{cases}$$

$$p 阶截尾性: \phi_{kk} = 0 (\forall k > p)$$

- ► MA 模型的定义
 - MA(q) 的定义: $x_t = \mu + \varepsilon_t \theta_1 \varepsilon_{t-1} \dots \theta_q \varepsilon_{t-q} \iff x_t = \Theta(B)\varepsilon_t$
 - 限制条件: $\theta_q \neq 0$, $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = \sigma_{\varepsilon}^2$, $E(\varepsilon_t \varepsilon_s) = 0$ ($s \neq t$)
 - q 阶移动平均系数多项式: $\Theta(B) = 1 \theta_1 B \dots \theta_q B^q$
- ► MA 模型的统计性质
 - 均值: $E(x_t) = \mu$
 - 方差: $\operatorname{Var}(x_t) = (1 + \theta_1^2 + \dots + \theta_q^2) \sigma_{\varepsilon}^2$

► MA 模型的统计性质

• 自协方差函数
$$(q$$
 阶截尾): $\gamma_k = \begin{cases} (1 + \theta_1^2 + \dots + \theta_q^2) \sigma_{\varepsilon}^2, & k = 0 \\ \left(-\theta_k + \sum_{i=1}^{q-k} \theta_i \theta_{k+i} \right) \sigma_{\varepsilon}^2, & 1 \le k \le q \\ 0, & k > q \end{cases}$

• 自相关系数
$$(q$$
 阶截尾): $\rho_k = \begin{cases} 1, & k = 0 \\ \frac{-\theta_k + \sum\limits_{i=1}^{q-k} \theta_i \theta_{k+i}}{1+\theta_1^2 + \dots + \theta_q^2}, & 1 \leq k \leq q \\ 0, & k > q \end{cases}$

- ► MA 模型的统计性质
 - 自相关系数 (q 阶截尾):

$$MA(1): \ \rho_k = \begin{cases} 1, & k = 0 \\ \frac{-\theta_1}{1+\theta_1^2}, & k = 1 \\ 0, & k \ge 2 \end{cases}$$

$$MA(2): \ \rho_k = \begin{cases} 1, & k = 0 \\ \frac{-\theta_1+\theta_1\theta_2}{1+\theta_1^2+\theta_2^2}, & k = 1 \\ \frac{-\theta_2}{1+\theta_1^2+\theta_2^2}, & k = 2 \\ 0, k \ge 3 \end{cases}$$

- ▶ MA 模型的可逆性判别和逆函数
 - 可逆性条件: 可逆 ⇐⇒ ∀ 特征根 |λ_i| < 1

$$AR(1)$$
: 可逆 $\iff |\theta_1| < 1$

$$AR(2)$$
: 可逆 $\iff |\theta_2| < 1, \theta_2 \pm \theta_1 < 1$

• 逆函数:
$$\begin{cases} I_0 = 1 \\ I_j = \sum\limits_{k=1}^j \theta_k' I_{j-k}, \quad j \ge 1 \end{cases}, \quad \sharp \ \theta_k' = \begin{cases} \theta_k, & k \le q \\ 0, & k > q \end{cases}$$

- AR(1) 的偏自相关系数: $\phi_{kk} = \frac{-\theta_1^{\kappa}}{\sum\limits_{i=0}^{k} \theta_1^{2j}}$
- MA(q) 偏自相关系数的拖尾性

ARMA 模型

- ► ARMA 模型的定义
 - ARMA(p,q) 的定义:

$$x_{t} = \phi_{0} + \phi_{1}x_{t-1} + \dots + \phi_{p}x_{t-p} + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \dots - \theta_{q}\varepsilon_{t-q} \iff \Phi(B)x_{t} = \Theta(B)\varepsilon_{t}$$

- 假定条件: $\phi_p \neq 0$, $\theta_q \neq 0$, $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = \sigma_{\varepsilon}^2$, $E(\varepsilon_t \varepsilon_s) = 0$ ($s \neq t$), $E(x_s \varepsilon_t) = 0$ (s < t)
- 平稳性同 AR 模型
- 可逆性同 MA 模型

ARMA 模型

▶ ARMA 模型的 Green 函数与逆函数

$$\bullet \ \phi'_j = \begin{cases} \phi_j, & 1 \le j \le p \\ 0, & j > p \end{cases}, \ \theta'_k = \begin{cases} \theta_k, & 1 \le k \le q \\ 0, & k > q \end{cases}$$

• Green 函数:
$$\begin{cases} G_0=1 \ G_k=\sum\limits_{j=1}^k \phi_j' G_{k-j} - \theta_k', \quad k\geq 1 \end{cases}$$

• 遊函数:
$$\begin{cases} I_0 = 1 \\ I_k = \sum\limits_{j=1}^k \theta_j' I_{k-j} - \phi_k', \quad k \geq 1 \end{cases}$$

ARMA 模型

► ARMA 模型的统计性质

• 均值:
$$E(x_t) = \frac{\phi_0}{1 - \phi_1 - \dots - \phi_p}$$

• 自协方差函数: $\gamma_k = \sigma_{\varepsilon}^2 \sum_{i=0}^{\infty} G_i G_{i+k}$

• 自协方差函数:
$$\gamma_k = \sigma_{\varepsilon}^2 \sum_{i=0}^{\infty} G_i G_{i+k}$$
• 自相关系数 (拖尾性): $\rho_k = \frac{\sum_{j=0}^{\infty} G_j G_{j+k}}{\sum_{j=0}^{\infty} G_j^2}$

• 偏自相关系数: 拖尾性