Statistics

Descriptive Vs Inferential

Descriptive

- organizing, summarizing, and visualizing data. Doesn't make predictions.
 - o Organizing and summarizing data using number & graphs
- 1. Data Summary:
 - 1. Bar Graphs Compare categories easily.
 - 2. Histograms Show frequency distributions.
 - 3. Pie Charts Represent proportions in a cool, circular way.
- 2. Measures of Central Tendency:
 - 1. Mean(Average) The most common way to summarize data.
 - 2. Mode The most frequently occurring value.
 - 3. **Median** The middle value when data is sorted.
- 3. Measures of Variability:
 - 1. Range Difference between the largest and smallest values.
 - 2. Variance How much the data points deviate from the mean.
 - 3. **Standard deviation** A measure of data spread → lower values mean data is clustered, higher values mean it's more spread out.

Inferential

- Predicting the Future(استغفر الله العظيم يارب), instead of just describing
 the data, they help us make conclusions and predictions.
- 1. Using sample data to make an inference or draw a conclusion.
- 2. Uses probability(the core) to determine how confident we can be that the conclusions we make are correct .

Feature	Descriptive	Inferential
Purpose	Summarizes and organizes data	Makes predictions
Focus	Past & present data	Future trends & conclusions التنبؤ بالغيب واليعوذ بالله
Methods	Graphs, averages, dispersion	Probability, sampling
E.x	The average test score is 75	Students who study 2+ hours daily score higher

Mean, Mode, Median, Range

1. Mean (Average):

- Sum of all values ÷ Number of values
- Sensitive to outliers (extreme values can skew it)

2. Mode:

- The value that appears most often in the dataset
- Dataset can have one mode (unimodal), two modes (bimodal), or more (multimodal)
- If no number repeats, there's no mode

3. Median:

- Arrange data in order, then pick the middle number
- If even numbers, take the average of the two middle values
- Not affected by outliers, making it a good choice for skewed data

4. Range(Spread of data):

- Highest value Lowest value
- Shows how spread out the data

When to use what?

- Mean: when data is balanced (no extreme values)
- Median: when data have outliers
- Mode when looking for most common occurrences
- Range to check variability in data

Variance

- Variance (σ^2 for population, s^2 for sample) measures how spread out the data is from the mean. A higher variance means data points are more spread out, while a lower variance means they are closer to the mean.
- Steps to Calculate Variance:
 - 1. Find the Mean (Average): $\sum X/N$
 - 2. Subtract the Mean from Each Value: $(X-\mu)$
 - 3. Square Each Deviation: $(X-\mu)^2$
 - 4. Find the Average of Squared Deviations
 - \circ For Population Variance (σ^2) : $\sum (X-\mu)^2/N$
 - \circ For Sample Variance (s^2) : $\sum (X-\mu)^2/N-1$
 - lacktriangledown N-1 to correct bias
- Keys:

- \circ Use σ^2 for populations, s^2 for samples
- Variance is always non-negative

The square root of variance = Standard Deviation (σ or s)

Interquartile range (IQR) & Detect outliers

- Measures the spread of the middle 50% of data. It's useful for detecting outliers and understanding variability without being affected by extreme values.
- Steps to find IQR:
 - 1. Arrange the data in Ascending Order
 - 2. Find Q2: (Middle Quartile == 50th Precentile)
 - 3. Find Q1: (First Quartile == 25th Precentile)
 - 4. Find Q3: (Third Quartile == 75th Precentile)
 - 5. Compute the IQR: (Q_3-Q_1)
- How to find the outlier:
 - Outlier is any value that is too far from the rest of the data
 - 1. Calculate the range: $[Q_1-1.5*IQR,Q_3+1.5*IQR]$
 - 2. Identify Outliers
 - Any value less than the Lower Bound is an outlier
 - Any value greater than the Upper Bound is an outlier