Алгебра и геометрия Лекция 4

Плоскость в пространстве

Определение

 $\vec{a} \neq \vec{0}$: $\vec{a} \parallel \alpha$ называется направляющим вектором плоскости α .

Пусть в P_3 даны плоскость α и два ее направляющих вектора $\vec{a} \not\parallel \vec{b}$ (всюду далее мы будем предполагать, что условие $\vec{a} \not\parallel \vec{b}$ выполнено и откладывать \vec{a} и \vec{b} от одной точки плоскости α).

Известно, что плоскость <mark>однозначно</mark> задается точкой и двумя направляющими векторами.

Радиус-вектор точки

Определение

Пусть в P_3 зафиксирована некоторая точка O. $\forall M \in P_3$ вектор \overrightarrow{OM} будем называть радиусомвектором точки M относительно O.

Обозначение: $M(\vec{r})$

Мы получили векторное параметрическое уравнение плоскости (ВПУ);

 λ,μ — параметры (они зависят от M_0,\vec{a} и \vec{b}).

Воспользоваться компланарностью $\vec{r}-\vec{r_0}$, \vec{a} и \vec{b} можно и по-другому:

$$M(\vec{r}) \in \alpha \Leftrightarrow \left(\vec{r} - \overrightarrow{r_0}, \vec{a}, \vec{b}\right) = 0$$

Это уравнение плоскости, записанное через смешанное произведение.

Упражнение

Докажите, что уравнение плоскости, проходящей через три точки $A(\overrightarrow{r_0})$, $B(\overrightarrow{r_1})$, $C(\overrightarrow{r_2})$, не лежащие на одной прямой, имеет вид

$$(\overrightarrow{r} - \overrightarrow{r_0}, \overrightarrow{r_1} - \overrightarrow{r_0}, \overrightarrow{r_2} - \overrightarrow{r_0}) = 0$$

Определение

 $\forall \vec{n} \neq \vec{0}$: $\vec{n} \perp \alpha$ называется нормальным вектором (или нормалью) для плоскости α .

Нормальное уравнение плоскости (НУ)

Упражнение

Докажите, что НУ задает плоскость с нормалью \vec{n} , проходящую через точку $M_0(\vec{r_0})$, где $\vec{r_0} = \frac{D}{|\vec{n}|^2} \vec{n}$.

Пусть теперь в P_3 задана ОДСК (O, \vec{e}) ;

$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \overrightarrow{r_0} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \quad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Тогда в координатной форме ВПУ ⇔

$$\begin{cases} x = x_0 + \lambda a_1 + \mu b_1 \\ y = y_0 + \lambda a_2 + \mu b_2 \\ z = z_0 + \lambda a_3 + \mu b_3 \end{cases} - \text{параметрические}$$
 уравнения плоскости (ПУ)

Уравнение плоскости, записанное через смешанное произведение, легко записать в координатной форме:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0 \quad (*)$$

Упражнение

Докажите, что в ОДСК уравнение плоскости, проходящей через точки $A(x_0,y_0,z_0)$, $B(x_1,y_1,z_1)$, $C(x_2,y_2,z_2)$, не лежащие на одной прямой, можно записать в виде

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0$$

Теорема 6.1

Всякая плоскость в P_3 может быть задана в ОДСК уравнением Ax + By + Cz + D = 0, $A^2 + B^2 + C^2 \neq 0$. L(x,y,z)

Обратно, уравнение L(x,y,z) = 0, $A^2 + B^2 + C^2 \neq 0$ задает плоскость в P_3 .

Доказательство

Раскроем определитель в левой части уравнения (*):

$$(x - x_0) \underbrace{\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}} - (y - y_0) \underbrace{\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}} + \underbrace{-B} + (z - z_0) \underbrace{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = 0 \Leftrightarrow$$

$$\Leftrightarrow Ax + By + Cz - \underbrace{(Ax_0 + By_0 + Cz_0)}_{-D} = 0 \Leftrightarrow$$

$$\Leftrightarrow Ax + By + Cz + D = 0$$

 $A^2 + B^2 + C^2 \neq 0$, иначе уравнение задает все пространство или пустое множество.

Доказательство (=)

Рассмотрим уравнение Ax + By + Cz + D = 0, в котором НУО $A \neq 0$. Пусть

$$M_0\left(-rac{D}{A},0,0
ight)$$
 $\vec{a}=egin{pmatrix} -B\\A\\0 \end{pmatrix}$ $\vec{b}=egin{pmatrix} -C\\0\\A \end{pmatrix}$ (почему $\vec{a}\nparallel\vec{b}$?)

M(x, y, z) лежит в плоскости с направляющими векторами \vec{a} , \vec{b} , проходящей через $M_0 \Leftrightarrow$

$$\begin{vmatrix} x + \frac{D}{A} & y & z \\ -B & A & 0 \\ -C & 0 & A \end{vmatrix} = 0 \Leftrightarrow A^2 \left(x + \frac{D}{A} \right) + ABy + ACz = 0 \Leftrightarrow$$

$$\Leftrightarrow Ax + By + Cz + D = 0$$

Утверждение 6.1

Ненулевой
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 является направляющим

вектором плоскости α , заданной ОУ, \Leftrightarrow

$$\Leftrightarrow Aa_1 + Ba_2 + Ca_3 = 0$$

Доказательство

Пусть
$$M_0 \in \alpha, M_0(x_0, y_0, z_0), \vec{a} = \overrightarrow{M_0M}$$
. Тогда $\vec{a} \parallel \alpha \Leftrightarrow A(x_0 + a_1) + B(y_0 + a_2) + C(z_0 + a_3) \in \alpha \Leftrightarrow A(x_0 + a_1) + B(y_0 + a_2) + C(z_0 + a_3) + D = 0 \Leftrightarrow A(x_0 + By_0 + Cz_0 + D) + (Aa_1 + Ba_2 + Ca_3) = 0$

Замечание

Свяжем с ОУ плоскости вектор $\vec{n}^* = \begin{pmatrix} A \\ B \\ C \end{pmatrix}$ и назовем его

псевдонормалью к α . Вообще говоря, $\vec{n}^* \perp \alpha$ в произвольной ОДСК. Но далее мы покажем, что в ПДСК $\vec{n}^* \perp \alpha$, т.е. является нормалью.

Все остальные утверждения о плоскости в пространстве, специфические для ПДСК, мы обсудим позже.

Определение

 $\forall \vec{a} \neq \vec{0} : \vec{a} \parallel l$ называется направляющим вектором прямой l.

Пусть на плоскости P_2 дана прямая l с направляющим \vec{a} , проходящая через $M_0(\vec{r_0})$. Такая прямая одна.

$$M(\vec{r}) \in l \Leftrightarrow (\vec{r} - \overrightarrow{r_0}) \parallel \vec{a} \Leftrightarrow$$

$$\Leftrightarrow \exists t \in \mathbb{R} : \vec{r} - \overrightarrow{r_0} = \vec{a}t \Leftrightarrow$$

$$\Leftrightarrow \vec{r} = \overrightarrow{r_0} + \vec{a}t$$

Векторное параметрическое уравнение прямой (ВПУ)

Определение

 $\vec{n} \neq \vec{0}$: $\vec{n} \perp l$ называется нормальным вектором (или нормалью) для прямой l.

$$M(\vec{r}) \in l \Leftrightarrow (\vec{r} - \overrightarrow{r_0}) \perp \vec{n} \Leftrightarrow$$

$$(\vec{r} - \overrightarrow{r_0}, \vec{n}) = 0 \Leftrightarrow$$

$$\Leftrightarrow (\vec{r}, \vec{n}) = \underbrace{(\overrightarrow{r_0}, \vec{n})}_{D} \Leftrightarrow$$

$$\Leftrightarrow (\vec{r}, \vec{n}) = D$$

Нормальное уравнение прямой (НУ)

Упражнение

Докажите, что прямая AB: $A(\overrightarrow{r_0})$, $B(\overrightarrow{r_1})$ имеет уравнение $\overrightarrow{r}=\overrightarrow{r_0}+(\overrightarrow{r_1}-\overrightarrow{r_0})t$.

Аналогично случаю плоскости в P_3 ВПУ прямой в P_2 можно записать в ОДСК:

$$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \end{cases}$$
 (ПУ),

где
$$M(x,y)$$
, $M_0(x_0,y_0)$, $\vec{a}=\binom{a_1}{a_2}$.

Если $a_1 \neq 0$ и $a_2 \neq 0$, то, исключая параметр t из ПУ, получаем

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}$$
 — каноническое уравнение прямой (КУ)

Заметив, что при $a_1=0$ уравнение прямой имеет вид $x=x_0$, а при $a_2=0-$ вид $y=y_0$, будем записывать КУ даже в этих случаях, приняв следующее

Соглашение

Если в КУ знаменатель какой-либо дроби равен нулю, то будем считать равным нулю и ее числитель.

Упражнение

Докажите, что уравнение прямой в P_2 , проходящей через две точки $A(x_1,y_1)$ и $B(x_2,y_2)$, имеет вид

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

(с учетом соглашения относительно равенства нулю знаменателей).

Теорема 7.1

Всякая прямая на плоскости может быть задана уравнением Ax + By + C = 0, $A^2 + B^2 \neq 0$ (ОУ).

Обратно, всякое такое уравнение задает на плоскости прямую.

Доказательство аналогично доказательству теоремы 6.1, только проще.

Утверждение 7.1

Ненулевой $\vec{a}=\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ является направляющим вектором прямой l, заданной НУ $\Leftrightarrow Aa_1+Ba_2=0$. Доказательство аналогично доказательству утверждения 6.1, только проще.

Следствие

$$\vec{a} = {-B \choose A}$$
 — направляющий для прямой, заданной НУ.

Определение

$$ec{n}^* = inom{A}{B}$$
 — псевдонормаль для прямой $l.$

В произвольной ОДСК $\vec{n}^* \perp l$, но в ПДСК это верно.

Утверждения, специфические для прямой в ПДСК, мы обсудим позже.

Прямая в пространстве

Заметим, что при выводе ВПУ мы нигде не пользовались тем, что прямая лежит в плоскости, поэтому в пространстве оно имеет тот же вид:

$$\vec{r} = \overrightarrow{r_0} + \vec{a}t$$
 (ВПУ)

Кроме того, условие $(\vec{r} - \vec{r_0}) \parallel \vec{a}$ можно переписать в виде

$$[\vec{r} - \overrightarrow{r_0}, \vec{a}] = \overrightarrow{0}$$
 или

$$[\vec{r},\vec{a}]=ec{b}$$
, где $\left(ec{a},ec{b}
ight)=0$

Прямая в пространстве

В ОДСК, сохраняя введенные ранее обозначения,

$$\mathsf{B}\mathsf{\Pi}\mathsf{Y} \Leftrightarrow \begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \\ z = z_0 + a_3 t \end{cases} (\mathsf{\Pi}\mathsf{Y}),$$

которое с учетом соглашения о равенстве нулю знаменателей можно записать так:

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$$
 (KY)

Также прямую в пространстве можно задать и как линию пересечения двух плоскостей.

Теорема 8.1

Пусть плоскости α_1 , α_2 заданы ОУ:

$$L_1(x, y, z) = 0$$
 и $L_2(x, y, z) = 0$.

Тогда:

- 1. $\alpha_1 \parallel \alpha_2$ или $\alpha_1 = \alpha_2 \Leftrightarrow \overrightarrow{n_1}^* \parallel \overrightarrow{n_2}^*$, причем $\alpha_1 = \alpha_2 \Leftrightarrow L_1$ и L_2 пропорциональны.
- 2. $\alpha_1 \nparallel \alpha_2 \Rightarrow l = \alpha_1 \cap \alpha_2$ имеет направляющий вектор

$$\vec{a} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$

Доказательство

1.
$$\overrightarrow{n_1}^* \parallel \overrightarrow{n_2}^* \Leftrightarrow \begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix}$$
 и $\begin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix}$ пропорциональны \Leftrightarrow α_1 : $A_1x + B_1y + C_1z + D_1 = 0$ α_2 : $\lambda(A_1x + B_1y + C_1z) + D_2 = 0$

При $D_2 = \lambda D_1$ уравнения пропорциональны $\Leftrightarrow \alpha_1 = \alpha_2$.

В противном случае система из этих двух уравнений не имеет решений $\Leftrightarrow \alpha_1 \parallel \alpha_2$.

Доказательство (продолжение)

2. $\overrightarrow{n_1}^* \nparallel \overrightarrow{n_2}^* \Leftrightarrow \overrightarrow{a} \neq \overrightarrow{0}$. Легко проверить, что его координаты

$$\delta_1 = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} \qquad \delta_2 = -\begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} \qquad \delta_3 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$

таковы, что $A_i\delta_1+B_i\delta_2+C_i\delta_3=0~(i=1,2).$ В силу утверждения 6.1 $\vec{a}\parallel\alpha_i$, i=1,2.

Упражнение

Докажите, что три плоскости, заданные ОУ, пересекаются в одной точке $\Leftrightarrow \overrightarrow{n_1}^*, \overrightarrow{n_2}^*, \overrightarrow{n_3}^*$ некомпланарные.

Теорема 8.2

Пусть две прямые l_1 и l_2 на плоскости заданы ОУ: $L_1(x,y) = 0$ и $L_2(x,y) = 0$.

Тогда $l_1\parallel l_2$ или $l_1=l_2 \Leftrightarrow \overrightarrow{n_1}^*\parallel \overrightarrow{n_2}^*$, причем $l_1=l_2 \Leftrightarrow L_1$ и L_2 пропорциональны.

Доказательство аналогично доказательству теоремы 8.1.

Прямая и плоскость в ПДСК

Утверждение 9.1

Пусть α : L(x, y, z) = 0 в ПДСК.

Тогда $\vec{n}^* \perp \alpha$.

Доказательство

Возьмем \forall направляющий вектор $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ плоскости α .

Тогда (Утв. 6.1) $Aa_1+Ba_2+Ca_3=0\Leftrightarrow (\vec{n}^*,\vec{a})=0\Leftrightarrow \vec{n}^*\perp\vec{a}$. В силу произвольности \vec{a} : $\vec{n}^*\perp\alpha$.

Утверждение 9.2

Пусть l:L(x,y)=0 в ПДСК на плоскости. Тогда $\vec{n}^* \perp l$.

Доказательство аналогично доказательству утверждения 9.1, только проще.

Некоторые метрические задачи в ПДСК

1. $\rho(M_0, \alpha)$

$$\alpha:(\vec{r},\vec{n})+D=0$$

$$M_1(\overrightarrow{r_1}) \in \alpha$$

$$\rho(M_0, \alpha) = \left| pr_{\vec{n}} \overline{M_1 M_0} \right| =$$

$$= |pr_{\vec{n}}(\overrightarrow{r_0} - \overrightarrow{r_1})| = \left| \frac{(\overrightarrow{r_0} - \overrightarrow{r_1}, \overrightarrow{n})}{|\overrightarrow{n}|^2} \overrightarrow{n} \right| =$$

$$= \frac{|(\vec{r_0}, \vec{n}) - (\vec{r_1}, \vec{n})|}{|\vec{n}|^2} |\vec{n}| = \frac{|(\vec{r_0}, \vec{n}) + D|}{|\vec{n}|}$$

Некоторые метрические задачи в ПДСК

1.
$$\rho(M_0, \alpha) = \frac{|(\vec{r_0}, \vec{n}) + D|}{|\vec{n}|}$$

Если в ПДСК $M_0(x_0, y_0, z_0)$, а α : Ax + By + Cz + D = 0, то последнюю формулу можно переписать в виде

$$\rho(M_0, \alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

2. $\rho(M_0, \alpha)$ на плоскости.

Аналогично,
$$\rho(M_0, \alpha) = \frac{|(\overrightarrow{r_0}, \overrightarrow{n}) + C|}{|\overrightarrow{n}|} = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Некоторые метрические задачи в ПДСК

 $3. \angle(\alpha_1, \alpha_2).$

$$\varphi = \angle(\alpha_1, \alpha_2) = |\angle(\overrightarrow{n_1}, \overrightarrow{n_2})| \Rightarrow \cos \varphi = \frac{|(\overrightarrow{n_1}, \overrightarrow{n_2})|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$$

В ПДСК эту формулу легко переписать в координатах.

4. $\angle(l_1, l_2)$ на плоскости.

$$\varphi = \angle(l_1, l_2) \Rightarrow \cos \varphi = \frac{|(\overrightarrow{n_1}, \overrightarrow{n_2})|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$$
 аналогично 3.

Некоторые метрические задачи в ПДСК

5.
$$\rho(l_1, l_2)$$
 для $l_1 \div l_2$.
$$l_1: \vec{r} = \overrightarrow{r_1} + \overrightarrow{a_1}t$$

$$l_2: \vec{r} = \overrightarrow{r_2} + \overrightarrow{a_2}t$$
 $\overrightarrow{a_1} \nparallel \overrightarrow{a_2}$

Построим на векторах $\overrightarrow{r_2}-\overrightarrow{r_1},\overrightarrow{a_1}$ и $\overrightarrow{a_2}$ параллелепипед. Он имеет грань площади $\left|S_{\pm}(\overrightarrow{a_1},\overrightarrow{a_2})\right|$, а высота к этой грани равна $\rho(l_1,l_2)$. Тогда

$$\rho(l_1, l_2) = \frac{\left| V_{\pm}(\overrightarrow{r_2} - \overrightarrow{r_1}, \overrightarrow{a_1}, \overrightarrow{a_2}) \right|}{\left| S_{\pm}(\overrightarrow{a_1}, \overrightarrow{a_2}) \right|} = \frac{\left| (\overrightarrow{r_2} - \overrightarrow{r_1}, \overrightarrow{a_1}, \overrightarrow{a_2}) \right|}{\left| [\overrightarrow{a_1}, \overrightarrow{a_2}] \right|}$$

Упражнение

Запишите все полученные векторные формулы в координатах в ПДСК.