

3.2 加法和减法运算

刘 芳 副教授 国防科学技术大学计算机学院

从一个算式说起

从一个算式说起

一计算机原理=

从十进制加法谈起

□十进制加法,例:

□加法表

0	0									
1	1	2								
2	2	3	4							
3	3	4	5	6						
4	4	5	6	7	8		_			
5	5	6	7	8	9	10				
6	6	7	8	9	10	11	12			
7	7	8	9	10	11	12	13	14		
8	8	9	10	11	12	13	14	15	16	
9	9	10	11	12	13	14	15	16	17	18
+	0	1	2	3	4	5	6	7	8	9

从十进制加法谈起

□十进制加法,例:

- □加法表
 - ■加法位表
 - ■进位位表

- ,			ı								
	0	0									
	1	1	2						S. P. A	. .	
	2	2	3	4				加	1法位	沈表	
	3	3	4	5	6			/41	1 (-)		
	4	4	5	6	7	8					
	5	5	6	7	8	9	0				
	6	6	7	8	9	0	1	2			
	7	7	8	9	0	1	2	3	4		
	8	8	9	0	1	2	3	4	5	6	
	9	9	0	1	2	3	4	5	6	7	8
	+	0	1	2	3	4	5	6	7	8	9

0	0		_							
1	0	0		_						
2	0	0	0						_	
3	0	0	0	0			拼	位位	表	
4	0	0	0	0	0		~~	نا خانا ج		
5	0	0	0	0	0	1				
6	0	0	0	0	1	1	1			
7	0	0	0	1	1	1	1	1		_
8	0	0	1	1	1	1	1	1	1	
9	0	1	1	1	1	1	1	1	1	1
+	0	1	2	3	4	5	6	7	8	9

由十进制加法到二进制加法

□二进制加法表(真值表)

0	00	01
1	01	10
	01	10
+	U	1

-		
0	0	1
1	1	0
+	0	1
0	0	0
1	0	1
+	0	1

加法位表

进位位表

□最简单的二进制加法示例:

无符号数加法

有符号怎么办?

? ? ? ? ? ? ? ? ? ?

有符号原码加法

一计算机原理=

有符号原码加法

□异号(最高位有进位)

	1	0	0	1	0	0	1	0	1
	1	1	1	0	1	1	0	1	1
+	0	1	0	1	1	0	1	1	0
	0	1	0	0	1	0	0	0	1

□异号(最高位无进位)

原码二进制加法规则

- □加法规则:符号位和数值部分分别处理
 - 同号:数值位相加,若最高位产生进位,则结果溢出。和的符号取被加数的符号
 - 异号:负数取补码,与正数相加,分二种情况讨论:
 - a)最高数值位产生进位,符号位为0,表明加法结果为正,所得数值 位正确。
 - b)最高数值位没有产生进位,符号位为1,表明加法结果为负,得到的是数值位的补码形式,需对结果求补,得到原码结果

一计算机原理。

原码二进制加法规则

- □加法规则:符号位和数值部分分别处理
 - 同号:数值位相加,若最高位产生进位,则结果溢出。和的符号取被加数的符号
 - 异号:负数取补码,与正数相加,分二种情况讨论:
 - a)最高数值位产生进位,符号位为0,表明加法结果为正,所得数值 位正确。
 - b)最高数值位没有产生进位,符号位为1,表明加法结果为负,得到的是数值位的补码形式,需对结果求补,得到原码结果

仅对数值部分进行加减运算,符号位起判断和控制作用,复杂!

一计算机原理。

补码

- 补码的表示
 - 符号部分同原码
 - 数的最高位为符号位, 0表示正数, 1表示负数
 - 数字部分与它的符号位有关
 - 对于正数, 补码数值部分与原码数值部分相同
 - •对于负数,补码数值部分是将原码数值部分按位取反<u>再加1</u>,即在反码数值部分基础上加1

$$X = +1101$$
 $[X]_{\text{ff}} = 00001101$
 $[X]_{\text{in}} = 00001101$

$$Y = -1110$$
 $[Y]_{\text{ff}} = 10001110$
 $[Y]_{\text{ih}} = 11110010$

□补码加法:符号位参与运算

$$[A + B]_{k} = [A]_{k} + [B]_{k}$$
 (mod2)

例1:
$$A=1011$$
, $B=-1110$, $求[A+B]_{*}$
解: $[A]_{**}=0\ 1011$, $[B]_{**}=1\ 0010$
 $[A+B]_{**}=1\ 1101$ $\frac{0\ 1011}{1\ 1101}$

补码减法如何实现?

□补码表示法可以简化加法运算,并且可以将减法变成加法

$$[A - B]_{\nmid h} = [A]_{\nmid h} + [-B]_{\nmid h} \pmod{2}$$

例2:
$$A=1011$$
, $B=-0010$, $‡[A-B]_{\dag}$
解: $[A]_{\dag}=0$ 1011, $[-B]_{\dag}=0$ 0010
 $[A-B]_{\dag}=0$ 1101 $+$ 0 0010
0 1101

采用补码进行加减法运算,在计算机中只需要一套实现 加法运算的电路,从而简化了计算机内部硬件电路的结构

补码加法器的基本实现

■加法运算和减法运算使用同一个加法电路,简化了运算器的设计

一计算机原理一

补码示例

□补码运算(用5位二进制补码表示数)

$$A=+1111, B=-1101, \not RA+B$$

$$[A+B]_{\stackrel{.}{\wedge}}=[A]_{\stackrel{.}{\wedge}}+[B]_{\stackrel{.}{\wedge}}$$

$$[A]_{k}=01111, [B]_{k}=10011,$$

进位标志位CF=1 溢出标志位OF=0

 $[A+B] \neq = 00010$

补码示例

□补码运算(用5位二进制补码表示数)

$$A = -1111, B = -1101, \not A + B$$

$$[A+B]_{\stackrel{.}{\wedge}}=[A]_{\stackrel{.}{\wedge}}+[B]_{\stackrel{.}{\wedge}}$$

$$[A]_{k}=10001, [B]_{k}=10011,$$

10001 +) 10011 100100

进位标志位CF=1 溢出标志位OF=1

[A+B]* 溢出!

□补码加法

■ 需要考虑溢出问题,即运算结果超出了机器能表示数的范围

$$A1 = +1101$$
, $B2 = +1001$ $A1 = -1011$, $B2 = -1100$ 求 $A1 + B2$ 。 $A1 + B2$

- 计算机原理 -

溢出检测

□ 检测方法:

- 补码中采用两位符号位(变形补码): [x]_补=4+x (mod 4)(模4补码)
- 符号位仍然参与运算,结果中的两位符号标示溢出状态

符号位	相同	01	10
状态表示	正常	正溢出	负溢出

A= - 1101
B= - 1010
求
$$[A+B]_{\stackrel{}{\nmid}h}$$

 $[A]_{\stackrel{}{\nmid}h}=11\ 0011$
 $[B]_{\stackrel{}{\nmid}h}=11\ 0110$

A= 1101
B= - 1010
求
$$[A - B]_{\dot{\uparrow}\dot{\uparrow}}$$

 $[A]_{\dot{\uparrow}\dot{\uparrow}} = 00 1101$
 $[-B]_{\dot{\uparrow}\dot{\uparrow}} = 00 1010$

加法器实现

□ 1位全加器

n位加法器如何实现?

A _i	B _i	C_{i-1}	S_{i}	C_{i}
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = (A_{i} + B_{i})C_{i-1} + A_{i}B_{i}$$

$$= (A_{i} \oplus B_{i})C_{i-1} + A_{i}B_{i}$$

串行进位加法器

□n位串行进位加法器:分n步实现,每步只求一位和

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

n位串行进位加法器从Co到Cn的延迟时间为多少?

2n级门延迟!

并行进位加法器

C _{in}	$\mathbf{A_{i}}$	B _i	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

能否提前

获得进位?

逻辑合并

如果
$$A_i=B_i=1$$
,则 $C_{out}=1$ 与 C_{in} 无关
如果 $A_i=B_i=0$,则 $C_{out}=0$ 与 C_{in} 无关
如果 $A_i+B_i=1$,则 C_{out} 与 C_{in} 相同

C _{in}	$\mathbf{A_i}$	$\mathbf{B_{i}}$	Cout
X	0	0	0
C _{in}	0	1	C _{in}
C_{in}	1	0	C_{in}
X	1	1	1

进位生成函数: G_i = A_iB_i 进位传递函数: P_i = A_i + B_i = A_i ⊕ B_i 传递进位: P_iC_{i-1}

$$C_i = G_i + P_i C_{i-1}$$

$$C_i = A_i B_i + (A_i + B_i) C_{i-1}$$

各进位信号都是独自形成

并行进位(或先行进位)加法器

进位生成函数: $G_i = A_i B_i$ 进位传递函数: $P_i = A_i + B_i$ $= A_i \oplus B_i$ 传递进位: $P_i C_{i-1}$

$$C_i = G_i + P_i C_{i-1}$$

$$C_i = A_i B_i + (A_i + B_i) C_{i-1}$$

可以实现大规模完全并行进位吗?

并行进位加法器

- □完全大规模并行进位实现困难
 - ■高位的进位形成逻辑涉及输入变量过多,将受到器件扇入系数的 限制
- □位数较多的加法器,常采用分级、分组的进位链结构
 - ■分组:组内并行,组间或串或并行(4/8位一组)

一计算机原理 =

分组并行进位加法器

组内并行, 组间传递

分组并行进位加法器

组内并行, 组间并行