Please	write	your	first	and	last	name	and	Section	here:	
Name										

Instructions:

- Partial credit will be given only if you show your work.
- Reason out your answers. In many cases, a line or two of justification is enough.
- The questions are roughly in the order in which the material is presented in class, so they are not necessarily ordered easiest to hardest.
- If you get stuck on one, it may be a good idea to move on and come back to that question at the end.
- You may use your prepared notes (1 page, both sides) and a calculator only.

	number of computer shutdowns during any month has a Poisson distribution, averaging shutdowns per month.
(a)	What is the probability of exactly 1 computer shutdown in a month? (6 points) Answer:
(b)	What is the probability of at least 2 computer shutdowns during the next year? (6 points) Answer:
(c)	During the next year, what is the probability of at least 3 months (out of 12) with exactly 1 computer shutdown in each? Assume the number of shut downs per month are independent. (6 points) Answer:

2. Suppose X and Y are two random variables on the same sample space Ω and their joint pmf is given by this table:

		\boldsymbol{X}	
	1	2	3
2	1 12	1 6	112
Y 3	$\frac{1}{6}$	0	<u>1</u>
4	0	$\frac{1}{3}$	0

(a) Show that X and Y are dependent. (8 points) Answer:

(b) Give a probability table (like we have for X and Y) for random variables U and V that have the same marginal distributions as X and Y but are independent. (8 points) **Answer:**

3. The random number generator on a certain calculator is not will chosen in that values it generates are not adequately described by a distribution uniform on the interval (0,1). Let X = the next value generated by the calculator's random number generator. Suppose the following probability density function (pdf) is a more appropriate model for X:

$$f_X(x) = \begin{cases} c(5-x) & \text{if } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $c = \frac{2}{9}$ makes $f_X(x)$ a valid pdf. (7 points) Answer:

(b) What is E(X)? (8 points) **Answer:**

(c) Find P(X < .85). Compare this value to what you would get if the calculator truly generated uniform(0,1) values, i.e. give the difference in probabilities. (10 points) **Answer:**

	ow: = (s are sent to the slaughterhouse at an average rate of 5 per hour starting at some time 0 .
(a)	What is the probability that it takes more than 20 mins for the first cow to be sent? (8 points) Answer:
(**	b)	You arrive at time $t=2$ hours and are told that 11 cows have already been sent. How long should you expect to wait until the next cow enters the slaughterhouse? (8 points) Answer:
(c)	Starting from some time $t=0$, how long do you have to wait to observe the first cow being sent with a probability of 95%? (8points) Answer:

- 5. The resistance of an assembly of several resistors connected in series is the sum of the resistance of the individual resistors. Suppose that a large lot of resistors has mean resistance $\mu=9.91$ ohms and standard deviation of resistances $\sigma=.08$ ohms. Suppose that 30 resistors are randomly selected from this lot and connected in series. Let S= resistance of the assembly. Then $S=X_1+\ldots+X_{30}$, where $X_i=$ resistance of the ith resistor.
 - (a) Give the mean and standard deviation of S. (8 points)

 Answer:

(b) Approximate the probability that resistance of the assembly exceeds 298.2 ohms. State any results you use. (9 points)