Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

I I	1	2	3	4	Запас
					Ы
1	8	8	3	1	15
2	4	2	5	2	10
3	5	2	4	6	12
Потре бност	5	9	16	7	
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 15 + 10 + 12 = 37$$

$$\sum b = 5 + 9 + 16 + 7 = 37$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	8	8	3	1	15
2	4	2	5	2	10
3	5	2	4	6	12
Потре	5	9	16	7	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	8	8	3[8]	1[7]	15
2	4[1]	2[9]	5	2	10
3	5[4]	2	4[8]	6	12
Потре	5	9	16	7	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 3*8 + 1*7 + 4*1 + 2*9 + 5*4 + 4*8 = 105$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 4$	$v_2 = 2$	$v_3 = 3$	v ₄ =1
$u_1 = 0$	8	8	3[8]	1[7]

$u_2 = 0$	4[1]	2[9]	5	2
$u_3=1$	5[4]	2	4[8]	6

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;2): 2

Для этого в перспективную клетку (3;2) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

Theen shakh « ", « ", « ".						
	1	2	3	4	Запас	
					Ы	
1	8	8	3[8]	1[7]	15	
2	4[1][+	2[9][-]	5	2	10	
]					
3	5[4][-]	2[+]	4[8]	6	12	
Потре	5	9	16	7		
бност						
И						

Цикл приведен в таблице (3,2; 3,1; 2,1; 2,2;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(3, 1) = 4. Прибавляем 4 к объемам грузов, стоящих в плюсовых клетках и вычитаем 4 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

	1	2	3	4	Запас
					Ы
1	8	8	3[8]	1[7]	15
2	4[5]	2[5]	5	2	10
3	5	2[4]	4[8]	6	12
Потре	5	9	16	7	
бност					
И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1 = 3$	$v_2 = 1$	v ₃ =3	v ₄ =1
$u_1 = 0$	8	8	3[8]	1[7]
$u_2 = 1$	4[5]	2[5]	5	2
$u_3 = 1$	5	2[4]	4[8]	6

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ii}$.

Минимальные затраты составят:

$$F(x) = 3*8 + 1*7 + 4*5 + 2*5 + 2*4 + 4*8 = 101$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.