

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15110085002

FCC REPORT

(WIFI)

Applicant: XCom Global Inc

Address of Applicant: 5910 pacific center blvd Suite 320 San diego, CA 92121 United

States

Equipment Under Test (EUT)

Product Name: Global Mobile WiFi Travel Router

Model No.: fi1

Trade mark: SDG Telecom

FCC ID: 2AGER-XG1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Nov., 2015

Date of Test: 03 Nov., to 10 Dec., 2015

Date of report issued: 10 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	10 Dec., 2015	Original

Tested by: Date: 10 Dec., 2015

Reviewed by: Date: 10 Dec., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONFIGURATION OF TESTED SYSTEM	
	6.3	CONDUCTED EMISSION	10
	6.4	CONDUCTED OUTPUT POWER	13
	6.5	OCCUPY BANDWIDTH	
	6.6	POWER SPECTRAL DENSITY	
	6.7	BAND EDGE	
	6.7.		
	6.7.2		
	6.8	Spurious Emission	
	6.8.° 6.8.°		
7	TES	ST SETUP PHOTO	57
8	FUT	CONSTRUCTIONAL DETAILS	5.8

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	XCom Global Inc
Address of Applicant:	5910 pacific center blvd Suite 320 San diego, CA 92121 United States
Manufacturer	Asiatelco Technologies Co.
Address of Manufacturer:	#289, Bisheng Road, Pilot Free Trade Zone, Shanghai, China

5.2 General Description of E.U.T.

_	7
Product Name:	Global Mobile WiFi Travel Router
Model No.:	fi1
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.63 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-6000mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS15110085002

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 58

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	1284354585	DoC
DELL	MONITOR	E178FPC	A4585654	DoC
DELL	KEYBOARD	SK-8115	B1584690	DoC
DELL	MOUSE	MOC5UO	C5288745	DoC
HP	Printer	CB495A	05257893	DoC

Item	Shielded Type	Ferrite Core	Ferrite Core Length	
USB Cable of EUT	unshielded	NO	50cm	N/A
USB Cable of Printer	unshielded	NO	120cm	N/A
AC Cable of PC	unshielded	NO	110cm	N/A

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2013	11-09-2016
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.63 dBi.

6.2 Configuration of Tested System

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Emission

0.5 Conducted Linis	.5 Conducted Emission			
Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.4: 2009			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Limit (dBuV)			
	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5 66 to 56* 56 to 46*			
	0.5-5 56 46			
	* Decreases with the logarithm of the frequency.			
Test procedure Test setup:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 			
rost sotup.	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Uncertainty:	±3.28 dB			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
<u> </u>				

Measurement Data

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Global Mobile WiFi Travel Router Condition EUT

: fil Model Test Mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT.liang Remark :

CHAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>	
1	0.170	34.31	0.25	10.77	45.33	64.94	-19.61	QP
2	0.170	18.53	0.25	10.77	29.55	54.94	-25.39	Average
3	0.219	14.67	0.25	10.76	25.68	52.88	-27.20	Average
1 2 3 4 5 6 7 8	0.222	29.68	0.25	10.75	40.68	62.74	-22.06	QP
5	0.299	28.12	0.26	10.74	39.12	60.28	-21.16	QP
6	0.307	14.59	0.26	10.74	25.59	50.06	-24.47	Average
7	0.442	30.88	0.27	10.74	41.89	57.02	-15.13	QP
8	0.510	34.13	0.28	10.76	45.17	56.00	-10.83	QP
	0.529	16.95	0.27	10.76	27.98	46.00	-18.02	Average
10	0.627	28.57	0.22	10.77	39.56	56.00	-16.44	QP
11	0.705	14.13	0.18	10.77	25.08	46.00	-20.92	Average
12	1.918	9.85	0.29	10.95	21.09	46.00	-24.91	Average

Trace: 7

Site Condition : CCIS Shielding Room : FCC PART15 B QP LISN LINE : Global Mobile WiFi Travel Router

EUT : fil Model Test Mode

: Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT.liang

REMAIK								
	Free	Read	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark
	rred	rever	ractor	LUSS	rever	Line	LIMIT	Kemark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu√	₫B	
1	0.170	33.87	0.27	10.77	44.91	64.94	-20.03	QP
1 2 3 4 5 6 7 8	0.174	18.05	0.27	10.77	29.09	54.77	-25.68	Average
3	0.214	29.02	0.28	10.76	40.06	63.05	-22.99	QP
4	0.219	11.73	0.28	10.76	22.77	52.88	-30.11	Average
5	0.310	15.54	0.26	10.74	26.54	49.97	-23.43	Average
6	0.313	29.29	0.26	10.74	40.29	59.88	-19.59	QP
7	0.431	30.32	0.28	10.73	41.33	57.24	-15.91	QP
8	0.437	15.33	0.28	10.74	26.35	47.11	-20.76	Average
9	0.513	31.02	0.28	10.76	42.06	56.00	-13.94	QP
10	0.521	16.50	0.28	10.76	27.54	46.00	-18.46	Average
11	0.611	29.16	0.25	10.77	40.18	56.00	-15.82	QP
12	0.839	13.46	0.23	10.82	24.51	46.00	-21.49	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.4 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Maximum	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	Lillit(dBill)	Nesuit
Lowest	15.87	14.05	14.00		
Middle	16.55	12.31	12.46	30.00	Pass
Highest	16.60	13.92	13.63		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.5 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	6dB	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	Limit(Kriz)	resuit
Lowest	9.84	16.48	17.84		
Middle	10.32	16.64	17.92	>500	Pass
Highest	10.88	16.64	17.92		

Test CH	99%	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	Liiiiii(Ki iz)	Nesuit
Lowest	13.12	16.40	17.68		
Middle	13.68	16.64	18.08	N/A	N/A
Highest	13.92	16.88	18.00		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 3.DEC.2015 02:25:47

Lowest channel

Date: 3.DEC.2015 02:27:16

Middle channel

Date: 3.DEC.2015 02:28:27

Highest channel

Test mode: 802.11g

Date: 3.DEC.2015 02:19:38

Lowest channel

Date: 3.DEC.2015 02:22:00

Middle channel

Date: 3.DEC.2015 02:23:06

Highest channel

Test mode: 802.11n(H20)

Date: 3.DEC.2015 02:18:09

Lowest channel

Date: 3.DEC.2015 02:15:24

Middle channel

Date: 3.DEC.2015 02:12:14

Highest channel

99% OBW

Test mode: 802.11b

Date: 3.DEC.2015 02:29:40

Lowest channel

Date: 3.DEC.2015 02:29:17

Middle channel

Date: 3.DEC.2015 02:28:58

Highest channel

Test mode: 802.11g

Date: 3.DEC.2015 02:33:31

Lowest channel

Date: 3.DEC.2015 02:33:59

Middle channel

Date: 3.DEC.2015 02:35:13

Highest channel

Test mode: 802.11n(H20)

Date: 3.DEC.2015 02:36:04

Lowest channel

Date: 3.DEC.2015 02:37:21

Middle channel

Date: 3.DEC.2015 02:36:47

Highest channel

6.6 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Pow	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	Limit(dBin)	Nesuit
Lowest	5.03	-0.24	0.05		
Middle	-0.35	-1.96	-1.56	8.00	Pass
Highest	1.07	-0.93	0.74		

Test plot as follows:

Date: 3.DEC.2015 02:39:26

Lowest channel

Date: 3.DEC.2015 02:39:51

Middle channel

Date: 3.DEC.2015 02:40:16

Highest channel

Date: 3.DEC.2015 02:41:11

Lowest channel

Date: 3.DEC.2015 02:41:42

Middle channel

Date: 3.DEC.2015 02:42:51

Highest channel

Test mode: 802.11n(H20)

Date: 3.DEC.2015 02:43:54

Lowest channel

Date: 3.DEC.2015 02:44:33

Middle channel

Date: 3.DEC.2015 02:44:56

Highest channel

6.7 Band Edge

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

802.11b

Date: 3.DEC.2015 02:47:46

Lowest channel

Date: 3.DEC.2015 02:49:05

Highest channel

Date: 3.DEC.2015 02:53:31

Lowest channel

Highest channel

Date: 3.DEC.2015 02:51:40

802.11n(H20)

Date: 3.DEC.2015 02:55:25

Lowest channel

Date: 3.DEC.2015 02:57:29

Highest channel

6.7.2 Radiated Emission Method

Toot Doguiroment:	FCC Part 15 C	Section 15 20	00 and 15 205				
Test Requirement:	ANSI C63.10: 2				10.4		
Test Method:			B 558074V03F	03 Section	12.1		
Test Frequency Range:	2.3GHz to 2.5G						
Test site:	Measurement D	Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
		Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	RMS	1MHz	3MHz	Average Value		
Limit:							
	Freque	ency	Limit (dBuV		Remark		
	Above 1	GHz	54.0		Average Value		
Test Procedure:	1. The EUT v	vac placed on	74.0		Peak Value e 0.8 meters above		
Test setup:	to determing the EUT wantenna, wanten Both horizon make the resure and to find the standard to find the specified E Specified E G. If the emission the limit specified EUT have 10dB	ne the position was set 3 met which was mo which was mo ha height is vote to determine that and verture as well and verture that the rota table maximum reasonable with the coince the coince of the coince of the would be reparagin would the set of the coince of the would be reparagin would the set of the coince of the coinc	n of the highesers away from unted on the taried from one the maximum ical polarization. It is since the was turned ading. In was set to Pin Maximum Higher EUT in peatesting could be orted. Otherwid be re-tested	est radiation. the interfer op of a variate meter to form a value of the ons of the arm to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to heights from 0 degreeak Detect old Mode. It was arranged to height of height one height one height one height of height	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a		
Test setup:	AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Controller						
Test Instruments:	Refer to section	5.6 for detai	ls				
Test mode:	Refer to section	5.3 for detai	ls				
Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 850RF

EUT : Global Mobile WiFi Travel Router

Model : fil : WIFI-B-L Mode Test mode

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

MU	\ :									
			Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
Ī	MHz	dBu∀	dB/m	dB	dB	dBu∜/m	dBu√/m	<u>dB</u>		
	2390.000	19.21	27.58	6.63	0.00	53.42	74.00	-20.58	Peak	
	2390,000	7.07	27, 58	6, 63	0.00	41.28	54,00	-12.72	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 32 of 58

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 850RF Condition

Pro

EUT : Global Mobile WiFi Travel Router

Model : fil

Test mode : WIFI-B-L Mode Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	Freq	ReadAntenna C Level Factor					Limit Line		Remark
	MHz	dBuV	—dB/m	dB	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000	7 Page 1970 Page 1 San				54.83 41.40			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 850RF

: Global Mobile WiFi Travel Router EUT

Model : fil

Test mode : WIFI-B-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: MT

REMARK

			Antenna Factor				Limit Line		
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 850RF Pro

: Global Mobile WiFi Travel Router EUT

: fil Model

Test mode : WIFI-B-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						Remark
ī	MHz	dBu∀	—dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 850RF Pro

: Global Mobile WiFi Travel Router EUT

Model : fil

: WIFI-G-L Mode Test mode Power Rating: AC120/60Hz Environment: Temp: 25.5°C

Test Engineer: MT

REMARK

ши	3			011	-			^	
	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
8	2390.000	19.18	27.58	6.63	0.00	53.39	74.00	-20.61	Peak
2	2390.000	7.46	27.58	6.63	0.00	41.67	54.00	-12.33	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro

: 850RF : Global Mobile WiFi Travel Router EUT

Model : fi1

Test mode : WIFI-G-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

Freq		Antenna Factor				Limit Line	Over Limit	Remark
MHz	dBu₹	<u>d</u> B/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
2390.000 2390.000					58.61 43.56			Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 850RF Condition

Pro

EUT : Global Mobile WiFi Travel Router

: fil Model

Test mode : WIFI-G-H Mode

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

nara	· :								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
ō	MHz	dBu∜	—dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
k	2483.500	25.40	27.52	6.85	0.00	59.77	74.00	-14.23	Peak
)	2483, 500	11.88	27, 52	6, 85	0.00	46, 25	54,00	-7.75	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

Condition

Pro

: Global Mobile WiFi Travel Router EUT

Model : fi1

Test mode : WIFI-G-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

П.	AL.										
			Read	Antenna	Cable	Preamp		Limit	Over		
	Fre	p	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	ME	Īz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB		
				27.52							
	2483.50	10	11.89	27.52	6.85	0.00	46.26	54.00	-7.74	Average	

Remark:

1

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 850RF Pro

EUT : Global Mobile WiFi Travel Router

: fil Model

Test mode : WIFI-N20-L Mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Freq		Antenna Factor						Remark	
MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBuV/m	dB		-
2390.000 2390.000									

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 850RF Pro

: Global Mobile WiFi Travel Router EUT

Model : fil

Test mode : WIFI-N20-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

ILIX	•	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
100000			27.58				74.00		
239	90.000	10.32	27.58	6.63	0.00	44.53	54.00	-9.47	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 850RF Pro

EUT : Global Mobile WiFi Travel Router

Model : fil

Test mode : WIFI-N20-H Mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

MAR	n :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
1	MHz	dBu∜	—dB/m		<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500	25.51	27.52	6.85	0.00	59.88	74.00	-14.12	Peak
2	2483, 500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 850RF Pro

EUT : Global Mobile WiFi Travel Router

Model : fil Test mode : WIFI-N20-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

Γ	n .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu∜/m	<u>d</u> B	
	2483.500	27.44	27.52	6.85	0.00	61.81	74.00	-12.19	Peak
)	2483 500	11 35	27 52	6 85	0.00	45.72	54 00	-8 28	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Spurious Emission

6.8.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB558074 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Date: 3.DEC.2015 03:11:50

30MHz~25GHz

Middle channel

Date: 3.DEC.2015 03:12:37

30MHz~25GHz

Highest channel

Date: 3.DEC.2015 03:13:13

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 3.DEC.2015 03:09:26

30MHz~25GHz

Middle channel

Date: 3.DEC.2015 03:10:08

30MHz~25GHz

Highest channel

Date: 3.DEC.2015 03:10:53

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 3.DEC.2015 03:07:21

30MHz~25GHz

Middle channel

Date: 3.DEC.2015 03:06:02

30MHz~25GHz

Highest channel

Date: 3.DEC.2015 03:05:28

30MHz~25GHz

6.8.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	,	
Test Method:	ANSI C63.10:2	009			
Test Frequency Range:	9kHz to 25GHz	•			
Test site:	Measurement [Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGIIZ	RMS	1MHz	3MHz	Average Value
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark
	30MHz-8	8MHz	40.0)	Quasi-peak Value
	88MHz-21	I6MHz	43.5	5	Quasi-peak Value
	216MHz-9	60MHz	46.0)	Quasi-peak Value
	960MHz-	1GHz	54.0		Quasi-peak Value
	Above 1	GH ₇	54.0		Average Value
			74.0		Peak Value
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antenna the ground Both horize make the result of find the specified I for the emister of the EUT have 10dE	d at a 3 meters of determine the vas set 3 meter which was more than the determine ontal and verme assurement to the rota tab maximum reproducts and width with the control of the control	r chamber. The position of the position of the ters away from punted on the trained from one of the maximum tical polarization. The EU na was turned ading. If the EUT in peatesting could leported. Otherwood be re-tested.	e table was he highest he highest on the interferop of a varies meter to for value of the constant of the and to heights from 0 degrated Mode. The angle of the constant of th	radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 850RF Condition

Pro

: Global Mobile WiFi Travel Router EUT

Model : fil : WIFI Mode Test mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	42.302	42.76	13.57	0.54	29.88	26.99	40.00	-13.01	QP	
2	45.535	42.77	13.52	0.56	29.86	26.99	40.00	-13.01	QP	
2	97.115	41.80	12.97	0.94	29.54	26.17	43.50	-17.33	QP	
4	119.856	41.62	10.48	1.12	29.39	23.83	43.50	-19.67	QP	
5	370.702	35.59	14.51	2.02	28.65	23.47	46.00	-22.53	QP	
4 5 6	528.246	32.68	17.15	2.48	29.04	23.27	46.00	-22.73	QP	

Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 850RF

Pro

EUT Global Mobile WiFi Travel Router

Model : fil
Test mode : WIFI Mode
Power Rating : AC120/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: MT REMARK :

THUMBE									
	P		Antenna				Limit	Over	D 1
	rreq	rever	Factor	Loss	ractor	Level	Line	Limit	Kemark
	MHz	dBu∜	dB/m	d₿	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	3
1	34.156	44.03	12.31	0.47	29.95	26.86	40.00	-13.14	QP
2	42.750	45.26	13.56	0.54	29.88	29.48	40.00	-10.52	QP
3	46.830	43.06	13.44	0.58	29.85	27.23	40.00	-12.77	QP
4 5	97.115	39.70	12.97	0.94	29.54	24.07	43.50	-19.43	QP
5	121.123	46.92	10.29	1.13	29.38	28.96	43.50	-14.54	QP
6	370.702	40.18	14.51	2.02	28.65	28.06	46.00	-17.94	QP

Above 1GHz

Test mode: 80	requency (MHz) Level Factor (dBuV) (dB/m) 4824.00 50.00 31.54		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Level		Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.00	31.54	10.58	40.22	51.90	74.00	-22.10	Vertical	
4824.00	48.98	31.54	10.58	40.22	50.88	74.00	-23.12	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	52.19	31.57	10.64	40.15	54.25	74.00	-19.75	Vertical
4874.00	50.49	31.57	10.64	40.15	52.55	74.00	-21.45	Horizontal
Test mode: 80	02.11b		Test char	nel: Middle		Remark: Ave	rage	
Frequency	Read	Antenna	Cable	Preamp			Over	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polar.
				Factor			Limit	Polar. Vertical

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	51.31	31.61	10.70	40.08	53.54	74.00	-20.46	Vertical
4924.00	51.18	31.61	10.70	40.08	53.41	74.00	-20.59	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.26	31.61	10.70	40.08	44.49	54.00	-9.51	Vertical
4924.00	42.29	31.61	10.70	40.08	44.52	54.00	-9.48	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	49.58	31.54	10.58	40.22	51.48	74.00	-22.52	Vertical
4824.00	48.72	31.54	10.58	40.22	50.62	74.00	-23.38	Horizontal
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.25	31.54	10.58	40.22	42.15	54.00	-11.85	Vertical
4824.00	39.62	31.54	10.58	40.22	41.52	54.00	-12.48	Horizontal

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	51.13	31.57	10.64	40.15	53.19	74.00	-20.81	Vertical
4874.00	49.63	31.57	10.64	40.15	51.69	74.00	-22.31	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.26	31.57	10.64	40.15	46.32	54.00	-7.68	Vertical
4874.00	42.03	31.57	10.64	40.15	44.09	54.00	-9.91	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	50.36	31.61	10.70	40.08	52.59	74.00	-21.41	Vertical
4924.00	50.48	31.61	10.70	40.08	52.71	74.00	-21.29	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	41.13	31.61	10.70	40.08	43.36	54.00	-10.64	Vertical
4924.00	41.39	31.61	10.70	40.08	43.62	54.00	-10.38	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	49.63	31.54	10.58	40.22	51.53	74.00	-22.47	Vertical
4824.00	49.15	31.54	10.58	40.22	51.05	74.00	-22.95	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	41.23	31.54	10.58	40.22	43.13	54.00	-10.87	Vertical
4824.00	40.05	31.54	10.58	40.22	41.95	54.00	-12.05	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.		
` ,	(dBuV)	(dB/m)	(dB)	(dB)	,	(dB) 74.00 -21.58	\/owticel			
4874.00	50.36	31.57	10.64	40.15	52.42	74.00	-21.58	Vertical		
4874.00	49.41	31.57	10.64	40.15	51.47	74.00	-22.53	Horizontal		
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over			
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.		
(1011 12)	(dBuV)	(dB/m)	(dB)	(dB)	(abav/iii)	(abav/iii)	(dB)			
4874.00	41.10	31.57	10.64	40.15	43.16	54.00	-10.84	Vertical		
4874.00	39.66	31.57	10.64	40.15	41.72	54.00	-12.28	Horizontal		

Test mode: 80	Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.98	31.61	10.70	40.08	52.21	74.00	-21.79	Vertical
4924.00	51.17	31.61	10.70	40.08	53.40	74.00	-20.60	Horizontal
Test mode: 80)2.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	41.25	31.61	10.70	40.08	43.48	54.00	-10.52	Vertical
4924.00	42.53	31.61	10.70	40.08	44.76	54.00	-9.24	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.