The Climate in Climate Economics: Model Summary

Detailed Formulation, Calibration and DEQN implementation

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland
March 26th, 2025 — University of Geneva

Introduction to CDICE Model

- Merged calibration of DICE-2016 economic part and re-calibrated CDICE climate part.
- Referred to as CDICE, with detailed calibration in online Appendix B in the article.
- DICE-2016 features a single representative consumer and firm, with a time-separable utility function.

Key Components of the DICE-2016 Model

- Single, infinitely lived representative consumer and firm.
- Equilibrium allocation described as a solution to a planner's problem.
- Maximizes a time-separable utility function over per capita consumption $\left(\frac{C_t}{L_t}\right)_{t=0}^{\infty}$ with a constant intertemporal elasticity of substitution $(\psi>0)$ and time preference parameter $(0<\beta<1)$.

3

Planner's Problem

$$V_0 = \max_{\{C_t, \mu_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t}{L_t}\right)^{1-1/\psi} \frac{1 - 1/\psi}{1 - 1/\psi} L_t \tag{1}$$

subject to:

$$K_{t+1} = (1 - \Theta(\mu_t) - \Omega(T_{AT,t}))K_t^{\alpha}(A_t L_t)^{1-\alpha} + (1 - \delta)K_t - C_t$$
 (2)

4

Constraints

$$0 \le K_{t+1} \tag{3}$$

$$0 \le \mu_t \le 1 \tag{4}$$

$$E_t = \sigma_t Y_t^{\text{Gross}} (1 - \mu_t) + E_t^{\text{Land}}$$
 (5)

CO2 Emissions and Output

- E_t: Total CO2 emissions, consisting of non-industrial emissions E^{Land}_t and industrial emissions σ_t Y^{Gross}_t.
- σ_t : Emission intensity.
- $\mu_t \geq 0$: Mitigation effort.
- ullet Output produced using Cobb-Douglas technology with capital K_t and labor L_t .
- Mitigation reduces output at a rate $\Theta(\mu_t)$.
- Higher temperatures reduce output at a rate $\Omega(T_{AT,t})$.

Optimal Carbon Tax and Social Cost of Carbon

- The SCC is the marginal cost of atmospheric carbon in terms of the numeraire good.
- Following the literature, SCC is the planner's marginal rate of substitution between atmospheric carbon concentration and capital stock.

$$SCC_{t} = -\frac{\partial V_{t}/\partial M_{AT,t}}{\partial V_{t}/\partial K_{t}}$$
 (6)

$$CT_t = \frac{\theta_{1,t}\theta_2\mu_t^{\theta_2-1}}{\sigma_t} \tag{7}$$

Optimal Mitigation and Investment Path

- Planner first solves the problem without recognizing that higher mitigation reduces damages from temperature increase.
- In BAU scenario, investment path is chosen, and mitigation is set to zero.
- In optimal scenario, planner chooses both mitigation and investment path.

Sensitivity Analysis and General Equilibrium

- Model uncertainty can significantly affect SCC values.
- Sensitivity to the discount rate and emissions scenario.
- General equilibrium analysis compares SCC and optimal mitigation for CDICE and DICE-2016.

Time Step and Parameters

- ullet Explicit inclusion of time step as Δ_t .
- Annual baseline calibration for all parameters.
- Applies to main equations and exogenous parameters.

Labor Law of Motion

$$L_t = L_0 + (L_\infty - L_0) \left(1 - \exp(-\Delta_t \delta^L t) \right), \tag{8}$$

$$g_t^L = \frac{\frac{dL_t}{dt}}{L_t} = \frac{\Delta_t \delta^L}{\frac{L_{\infty}}{L_{\infty} - L_0}} \exp(\Delta_t \delta^L t) - 1.$$
 (9)

Labor Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Annual rate of convergence	δ^L	0.035	0.0268
World population at starting year [millions]	L_0	6514	7403
Asymptotic world population [millions]	L_{∞}	8600	11500
Time step of a model	Δ_t	10	5/1
2-			

Table 1: Generic parameterization for the evolution of labor.

Total Factor Productivity

$$A_t = A_0 \exp\left(\frac{\Delta_t g_0^A (1 - \exp(-\Delta_t \delta^A t))}{\Delta_t \delta^A}\right),\tag{10}$$

$$g_t^A = \frac{\frac{dA_t}{dt}}{A_t} = \Delta_t g_0^A \exp(-\Delta_t \delta^A t). \tag{11}$$

TFP Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Initial growth rate for TFP per year	g_0^A	0.01314	0.0217
Decline rate of TFP growth per year	δ^A	0.001	0.005
Initial level of TFP	A_0	0.0058	0.010295
Time step of a model	Δ_t	10	5/1

Table 2: Generic parameterization for the evolution of TFP.

Carbon Intensity

$$\sigma_{t} = \sigma_{0} \exp\left(\frac{\Delta_{t} g_{0}^{\sigma} (1 - \exp(-\Delta_{t} \delta^{\sigma} t))}{\Delta_{t} \delta^{\sigma}}\right), \tag{12}$$

$$\sigma_t = \sigma_0 \exp\left(\frac{\Delta_t g_0^{\sigma}}{\log(1 + \Delta_t \delta^{\sigma})} \left((1 + \Delta_t \delta^{\sigma})^t - 1 \right) \right). \tag{13}$$

Carbon Intensity Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Initial growth of carbon intensity per year	g_0^{σ}	-0.0073	-0.0152
Decline rate of decarbonization per year	δ^{σ}	0.003	0.001
Initial carbon intensity (1000 GtC)	σ_0	0.00013418	0.00009556
Time step	Δ_t	10	5/1

Table 3: Generic parameterization for the carbon intensity evolution.

Abatement Cost Function

$$\theta_{1,t} = \frac{p_0^{\text{back}}(1 + \exp(-g^{\text{back}}t))1000\sigma_t}{\theta_2},$$

$$\theta_{1,t} = \frac{p_0^{\text{back}}\exp(-g^{\text{back}}t)1000 \cdot \text{c2co2} \cdot \sigma_t}{\theta_2}.$$
(14)

$$\theta_{1,t} = \frac{p_0^{\text{back}} \exp(-g^{\text{back}}t)1000 \cdot \text{c2co2} \cdot \sigma_t}{\theta_2}.$$
 (15)

Abatement Cost Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Cost of backstop 2005 thUSD per tC 2005	pback pback p0 gback	0.585	-
Cost of backstop 2010 thUSD per tCO2 2015	_P back	-	0.55
Initial cost decline backstop cost per year	g back	0.005	0.005
Exponent of control cost function	θ_2	2.8	2.6
Transformation coefficient from C to CO2	c2co2	-	3.666

Table 4: Generic parameterization for the abatement cost.

Non-Industrial Emissions

$$E_{\mathsf{Land},t} = E_{\mathsf{Land},0} \exp(-\Delta_t \delta^{\mathsf{Land}} t). \tag{16}$$

Non-Industrial Emissions Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Emissions from land 2005 (1000 GtC per year)	$E_{Land,0}$	0.0011	-
Emissions from land 2015 (1000 GtC per year)	$E_{Land,0}$	-	0.000709
Decline rate of land emissions (per year)	δ^{Land}	0.01	0.023
Time step	Δ_t	10	5/1

Table 5: Generic parameterization for the emissions from land.

Exogenous Radiative Forcings

$$F_t^{EX} = F_0^{EX} + \frac{1}{T/\Delta_t} (F_1^{EX} - F_0^{EX}) \min(t, T/\Delta_t).$$
 (17)

Exogenous Forcings Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
2000 forcings of non-CO2 GHG (Wm ⁻²)	F_0^{EX}	-0.06	-
2015 forcings of non-CO2 GHG (Wm ⁻²)	F_0^{EX}	-	0.5
2100 forcings of non-CO2 GHG (Wm ⁻²)	F_1^{EX}	0.3	1.0
Number of years before 2100	T	100	85
Time step	Δ_t	10	5/1

Table 6: Generic parameterization for the exogenous forcing.

Mass of Carbon Equations

$$M_{t+1}^{AT} = (1 - \Delta_t b_{12}) M_t^{AT} + \Delta_t b_{12} \frac{M_{EQ}^{AT}}{M_{EQ}^{UO}} M_t^{UO} + \Delta_t E_t,$$
(18)

$$M_{t+1}^{\mathsf{UO}} = \Delta_t b_{12} M_t^{\mathsf{AT}} + (1 - \Delta_t b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} - \Delta_t b_{23}) M_t^{\mathsf{UO}} + \Delta_t b_{23} \frac{M_{\mathsf{EQ}}^{\mathsf{UO}}}{M_{\mathsf{EQ}}^{\mathsf{LO}}} M_t^{\mathsf{LO}}, \qquad (19)$$

$$M_{t+1}^{LO} = \Delta_t b_{23} M_t^{UO} + (1 - \Delta_t b_{23} \frac{M_{EQ}^{UO}}{M_{EQ}^{LO}}) M_t^{LO}, \tag{20}$$

$$E_t = \sigma_t Y_t^{\text{Gross}} (1 - \mu_t) + E_t^{\text{Land}}. \tag{21}$$

Carbon Mass Parameters

Calibrated parameter	Symbol	2007	2016	CDICE
Carbon cycle, annual value	b_{12}	0.0189288	0.024	0.054
Carbon cycle, annual value	b_{23}	0.005	0.0014	0.0082
Time step	Δ_t	10	5	1
Equilibrium concentration in atmosphere (1000 GtC)	$M_{\rm EQ}^{\rm AT}$	0.587473	0.588	0.607
Equilibrium concentration in upper strata (1000 GtC)	$M_{\rm FQ}^{\bar{\rm U}\bar{\rm O}}$	1.143894	0.360	0.489
Equilibrium concentration in lower strata (1000 GtC)	М _{ЕQ} М _{ЕQ}	18.340	1.720	1.281
Concentration in atmosphere 2015 (1000 GtC)	$M_{\rm INI}^{\rm AI}$	0.8089	0.851	0.851
Concentration in upper strata 2015 (1000 GtC)	$M_{\rm INI}^{\ddot{\rm U}\ddot{\rm O}}$	1.255	0.460	0.628
Concentration in lower strata 2015 (1000 GtC)	M _{INI}	18.365	1.740	1.323

 Table 7: Generic parameterization for the mass of carbon.

Temperature Equations

$$T_{t+1}^{\mathsf{AT}} = T_t^{\mathsf{AT}} + \Delta_t c_1 F_t - \Delta_t c_1 \frac{F_{2\mathsf{XCO2}}}{T_{2\mathsf{XCO2}}} T_t^{\mathsf{AT}} - \Delta_t c_1 c_3 (T_t^{\mathsf{AT}} - T_t^{\mathsf{OC}}), \tag{22}$$

$$T_{t+1}^{OC} = T_t^{OC} + \Delta_t c_4 (T_t^{AT} - T_t^{OC}),$$
 (23)

$$F_t = F_{2XCO2} \frac{\log(M_t^{AT}/M_{base}^{AT})}{\log(2)} + F_t^{EX}.$$
 (24)

Temperature Parameters

Calibrated parameter	Symbol	2007	2016	CDICE
Temperature coefficient, annual value	<i>c</i> ₁	0.022	0.0201	0.137
Temperature coefficient, annual value	<i>C</i> ₃	0.3	0.088	0.73
Temperature coefficient, annual value	C4	0.01	0.005	0.00689
Forcings of equilibrium CO2 doubling (Wm ⁻²)	F_{2XCO2}	3.8	3.6813	3.45
Eq temperature impact (°C per doubling CO2)	T_{2XCO2}	3.0	3.1	3.25
Eq concentration in atmosphere (1000 GtC)	$M_{\rm base}^{\rm AT}$	0.5964	0.588	0.607
Atmospheric temp change (°C) from 1850	T_0^{AT}	0.7307	0.85	1.1
Lower stratum temp change (°C) from 1850	T_0^{OC}	0.0068	0.0068	0.27
Time step	Δ_t	10	5	1

Table 8: Generic parameterization for the temperature.

Economic Equations

$$K_{t+1} = (1 - \delta^K)^{\Delta_t} K_t + \Delta_t I_t, \tag{25}$$

$$Y_t^{\mathsf{Gross}} = (A_t L_t)^{1-\alpha} K_t^{\alpha}. \tag{26}$$

Damages and Output (DICE-2007)

$$\Omega_t = \frac{1}{1 + \psi_1 T_t^{AT} + \psi_2 (T_t^{AT})^2},$$
(27)

$$\Theta_t = \theta_{1,t} \mu_t^{\theta_2},\tag{28}$$

$$Y_t^{\text{Net}} = Y_t^{\text{Gross}} \cdot \Omega_t = \frac{Y_t^{\text{Gross}}}{1 + \psi_1 T_t^{\text{AT}} + \psi_2 (T_t^{\text{AT}})^2},$$
(29)

$$Y_{t} = Y_{t}^{\mathsf{Gross}} \cdot \Omega_{t} \cdot (1 - \Lambda_{t}) = \frac{Y_{t}^{\mathsf{Gross}} (1 - \theta_{1,t} \mu_{t}^{\theta_{2}})}{1 + \psi_{1} T_{t}^{\mathsf{AT}} + \psi_{2} (T_{t}^{\mathsf{AT}})^{2}}.$$
 (30)

Damages and Output (DICE-2016)

$$\Omega_t = \psi_1 T_t^{\mathsf{AT}} + \psi_2 (T_t^{\mathsf{AT}})^2, \tag{31}$$

$$\Theta_t = \theta_{1,t} \mu_t^{\theta_2},\tag{32}$$

$$Y_t^{\text{Net}} = Y_t^{\text{Gross}} \cdot (1 - \Omega_t) = Y_t^{\text{Gross}} (1 - \psi_1 T_t^{\text{AT}} - \psi_2 (T_t^{\text{AT}})^2), \tag{33}$$

$$Y_{t} = Y_{t}^{\mathsf{Gross}} \cdot (1 - \Lambda_{t} - \Omega_{t}) = Y_{t}^{\mathsf{Gross}} (1 - \theta_{1,t} \mu_{t}^{\theta_{2}} - \psi_{1} T_{t}^{\mathsf{AT}} - \psi_{2} (T_{t}^{\mathsf{AT}})^{2}). \tag{34}$$

Consumption and Utility

$$C_t = Y_t - I_t, (35)$$

$$U_t = \sum_{t=0}^{T} \beta^t \cdot \Delta_t \cdot \frac{\left(\frac{C_t}{L_t}\right)^{1-1/\psi} - 1}{1 - 1/\psi} L_t, \tag{36}$$

$$\beta = \frac{1}{(1+\rho)^{\Delta_t}}.\tag{37}$$

Economic Parameters

Calibrated parameter	Symbol	Value 2007	Value 2016/CDICE
Capital annual depreciation rate	δ^{K}	0.1	0.1
Elasticity of capital	α	0.3	0.3
Damage parameter	ψ_1	0.0	0.0
Damage quadratic parameter	ψ_2	0.0028388	0.00236
Exponent of control cost function	θ_2	2.8	2.6
Risk aversion	ψ	0.5	0.69
Time preferences	ρ	0.015	0.015
Initial capital (trillions USD 2015)	K_0	-	223.0
Initial capital (trillions USD 2005)	K_0	137.0	-
Time step	Δ_t	10	5/1

Table 9: Generic parameterization for the parameters of economy.

Optimal Solutions

- Maximization of utility with respect to consumption and mitigation.
- Numerical solution using Deep Equilibrium Nets (DEQNs).
- Error statistics for validation.

Deep Equilibrium Nets (DEQNs)

- Simulation-based solution method using deep neural networks.
- Approximation of optimal policy function.
- Iterative procedure with gradient descent updates.

Loss Function for DEQNs

$$\ell_{\nu} := \frac{1}{N_{\text{path length}}} \sum_{\mathbf{x}_{t} \text{ on sim. path } m=1} \sum_{m=1}^{N_{eq}} \left(G_{m}(\mathbf{x}_{t}, \mathcal{N}_{\rho}(\mathbf{x}_{t})) \right)^{2}, \tag{38}$$

where $G_m(\mathbf{x}_t,\mathcal{N}_{oldsymbol{
ho}}(\mathbf{x}_t))$ represent all the first-order equilibrium conditions of the model.

Introduction

- Mapping CDICE and non-stationary models onto DEQN framework.
- Detailed mathematical manipulations are required for replicability.

CDICE Model

$$\max_{\{C_{t},\mu_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} \frac{\left(\frac{C_{t}}{L_{t}}\right)^{1-1/\psi} - 1}{1 - 1/\psi} L_{t} \tag{39}$$
s.t.
$$K_{t+1} = \left(1 - \Omega\left(T_{\mathsf{AT},t}\right) - \Theta\left(\mu_{t}\right)\right) K_{t}^{\alpha} \left(A_{t} L_{t}\right)^{1-\alpha} + (1 - \delta) K_{t} - C_{t} \quad (\lambda_{t}) \tag{40}$$

$$M_{t+1}^{\mathsf{AT}} = \left(1 - b_{12}\right) M_{t}^{\mathsf{AT}} + b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} M_{t}^{\mathsf{UO}} + \sigma_{t} (1 - \mu_{t}) K_{t}^{\alpha} \left(A_{t} L_{t}\right)^{1-\alpha} + E_{t}^{\mathsf{Land}} \quad \left(\nu_{t}^{\mathsf{AT}}\right) \tag{41}$$

CDICE Model (contd.)

$$M_{t+1}^{\mathsf{UO}} = b_{12} M_t^{\mathsf{AT}} + \left(1 - b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} - b_{23} \right) M_t^{\mathsf{UO}} + b_{23} \frac{M_{\mathsf{EQ}}^{\mathsf{UO}}}{M_{\mathsf{EQ}}^{\mathsf{LO}}} M_t^{\mathsf{LO}} \quad \left(\nu_t^{\mathsf{UO}} \right)$$

$$M_{t+1}^{\mathsf{LO}} = b_{23} M_t^{\mathsf{UO}} + \left(1 - b_{23} \frac{M_{\mathsf{EQ}}^{\mathsf{UO}}}{M_{\mathsf{EQ}}^{\mathsf{LO}}} \right) M_t^{\mathsf{LO}} \quad \left(\nu_t^{\mathsf{LO}} \right)$$

$$(43)$$

Temperature Equations

$$T_{t+1}^{\text{AT}} = T_{t}^{\text{AT}} + c_{1} \left(F_{2XCO2} \frac{\log(M_{t}^{\text{AT}}/M_{\text{base}}^{\text{AT}})}{\log(2)} + F_{t}^{EX} \right) - c_{1} \frac{F_{2XCO2}}{T_{2XCO2}} T_{t}^{\text{AT}} - c_{1} c_{3} \left(T_{t}^{\text{AT}} - T_{t}^{\text{OC}} \right)$$

$$(44)$$

$$T_{t+1}^{\text{OC}} = T_{t}^{\text{OC}} + c_{4} \left(T_{t}^{\text{AT}} - T_{t}^{\text{OC}} \right)$$

$$(45)$$

$$0 \le \mu_{t} \le 1$$

$$(46)$$

State of the Economy

$$\mathbf{x}_{t} \in \mathbb{R}^{6} := \left(k_{t}, M_{t}^{\mathsf{AT}}, M_{t}^{\mathsf{UO}}, M_{t}^{\mathsf{LO}}, T_{t}^{\mathsf{AT}}, T_{t}^{\mathsf{OC}}, t\right)^{\mathsf{T}} \tag{47}$$

Time Transformation

$$\tau = 1 - \exp\left(-\vartheta t\right) \tag{48}$$

$$t = -\frac{\ln\left(1 - \tau\right)}{\vartheta} \tag{49}$$

Normalization and Scaling

$$c_t \stackrel{\text{def}}{=} \frac{C_t}{A_t L_t}, k_t \stackrel{\text{def}}{=} \frac{K_t}{A_t L_t}$$
 (50)

$$\hat{\lambda}_{t} \stackrel{\text{def}}{=} \frac{\lambda_{t}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}, \hat{\lambda}_{t}^{\mu} \stackrel{\text{def}}{=} \frac{\lambda_{t}^{\mu}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}, \hat{\nu}_{t}^{\text{AT}} \stackrel{\text{def}}{=} \frac{\nu_{t}^{\text{AT}}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}, \hat{\nu}_{t}^{\text{UO}} \stackrel{\text{def}}{=} \frac{\nu_{t}^{\text{UO}}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}, \hat{\nu}_{t}^{\text{LO}} \stackrel{\text{def}}{=} \frac{\nu_{t}^{\text{LO}}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}$$

$$\hat{\eta}_{t}^{\text{AT}} \stackrel{\text{def}}{=} \frac{\eta_{t}^{\text{AT}}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}, \hat{\eta}_{t}^{\text{OC}} \stackrel{\text{def}}{=} \frac{\eta_{t}^{\text{CC}}}{A_{t}^{1-\frac{1}{\psi}} L_{t}}$$

$$(51)$$

Effective Discount Factor

$$\hat{\beta}_{t} \stackrel{\text{def}}{=} \exp\left(-\rho + \left(1 - \frac{1}{\psi}\right) g_{t}^{A} + g_{t}^{L}\right) \tag{52}$$

Policy Function

$$\mathcal{N}_{\boldsymbol{\rho}}(\mathbf{x}_t) \in \mathbb{R}^9 := \left(k_{t+1}, \mu_t, \hat{\lambda}_t, \hat{\lambda}_t^{\mu}, \hat{\nu}_t^{\mathsf{AT}}, \hat{\nu}_t^{\mathsf{UO}}, \hat{\nu}_t^{\mathsf{LO}}, \hat{\eta}_t^{\mathsf{AT}}, \hat{\eta}_t^{\mathsf{OC}}\right) \tag{53}$$

Lagrangian Formulation

$$\begin{split} \mathcal{L} &= \sum_{t=0}^{\infty} \hat{\beta}_{t} \Big[\frac{c_{t}^{1-1/\psi} - A_{t}^{1/\psi-1}}{1 - 1/\psi} + \hat{\lambda}_{t} \left\{ \Big(1 - \Omega \left(T_{\text{AT},t} \right) - \Theta \left(\mu_{t} \right) \Big) \, k_{t}^{\alpha} + (1 - \delta) \, k_{t} - c_{t} - \exp \left(g_{t}^{A} + g_{t}^{L} \right) \, k_{t+1} \right\} \\ &+ \hat{\lambda}_{t}^{\mu} \left\{ 1 - \mu_{t} \right\} \\ &+ \hat{\nu}_{t}^{\text{AT}} \left\{ (1 - b_{12}) \, M_{t}^{\text{AT}} + b_{12} \frac{M_{\text{EQ}}^{\text{AT}}}{M_{\text{EQ}}^{\text{UO}}} M_{t}^{\text{UO}} + \sigma_{t} (1 - \mu_{t}) A_{t} L_{t} k_{t}^{\alpha} + E_{t}^{\text{Land}} - M_{t+1}^{\text{AT}} \right\} \\ &+ \hat{\nu}_{t}^{\text{UO}} \left\{ b_{12} M_{t}^{\text{AT}} + \left(1 - b_{12} \frac{M_{\text{EQ}}^{\text{AT}}}{M_{\text{EQ}}^{\text{EQ}}} - b_{23} \right) M_{t}^{\text{UO}} + b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}} M_{t}^{\text{LO}} - M_{t+1}^{\text{UO}} \right\} \\ &+ \hat{\nu}_{t}^{\text{LO}} \left\{ b_{23} M_{t}^{\text{UO}} + \left(1 - b_{23} \frac{M_{\text{EQ}}^{\text{EQ}}}{M_{\text{EQ}}^{\text{EQ}}} \right) M_{t}^{\text{LO}} - M_{t+1}^{\text{LO}} \right\} \\ &+ \hat{\eta}_{t}^{\text{AT}} \left\{ T_{t}^{\text{AT}} + c_{1} \left(F_{2X\text{CO2}} \frac{\log(M_{t}^{\text{AT}} / M_{\text{base}}^{\text{AT}})}{\log(2)} + F_{t}^{\text{EX}} \right) - c_{1} \frac{F_{2X\text{CO2}}}{T_{2X\text{CO2}}} T_{t}^{\text{AT}} - c_{1} c_{3} \left(T_{t}^{\text{AT}} - T_{t}^{\text{OC}} \right) - T_{t+1}^{\text{AT}} \right\} \\ &+ \hat{\eta}_{t}^{\text{CO}} \left\{ T_{t}^{\text{OC}} + c_{4} \left(T_{t}^{\text{AT}} - T_{t}^{\text{CC}} \right) - T_{t+1}^{\text{OC}} \right\} \right] \end{split}$$

First-Order Conditions

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \Leftrightarrow \exp\left(g_t^A + g_t^L\right) \hat{\lambda}_t - \hat{\beta}_t \left[\hat{\lambda}_{t+1} \left(\left(1 - \Omega \left(T_{\mathsf{AT},t+1}\right) - \Theta \left(\mu_t\right)\right) \alpha k_{t+1}^{\alpha - 1} + \left(1 - \delta\right) \right) + \hat{\nu}_{t+1}^{\mathsf{AT}} \sigma_{t+1} (1 - \mu_{t+1}) A_{t+1} L_{t+1} \alpha k_{t+1}^{\alpha - 1} \right] = 0$$

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \Leftrightarrow e^{-1/\psi} A^{1 - 1/\psi} L_{t+1} \hat{\lambda}_{t+1} = 0$$
(56)

$$\frac{\partial \mathcal{L}}{\partial c_t} = 0 \Leftrightarrow c_t^{-1/\psi} A_t^{1-1/\psi} L_t - \hat{\lambda}_t = 0 \tag{56}$$

$$\frac{\partial \mathcal{L}}{\partial \mu_t} = 0 \Leftrightarrow \hat{\lambda}_t \Theta'(\mu_t) \, k_t^{\alpha} + \lambda_t^{\mu} + \hat{c}_t^{\text{AT}} \sigma_t A_t L_t k_t^{\alpha} = 0 \tag{57}$$

$$\frac{\partial \mathcal{L}}{\partial \mathit{M}_{\mathsf{AT},t+1}} = 0 \Leftrightarrow \hat{\nu}_{t}^{\mathsf{AT}} - \hat{\beta}_{t} \left[\hat{\nu}_{t+1}^{\mathsf{AT}} \left(1 - \mathit{b}_{12} \right) + \hat{\nu}_{t+1}^{\mathsf{UO}} \mathit{b}_{12} + \hat{\eta}_{t+1}^{\mathsf{AT}} \mathit{c}_{1} \mathit{F}_{2\mathsf{XCO2}} \frac{1}{\ln 2\mathit{M}_{\mathsf{AT},t+1}} \right] = 0 \tag{58}$$

$$\frac{\partial \mathcal{L}}{\partial M_{\text{UO},t+1}} = 0 \Leftrightarrow \hat{\nu}_{t}^{\text{UO}} - \hat{\beta}_{t} \left[\hat{\nu}_{t+1}^{\text{AT}} b_{12} \frac{M_{\text{EQ}}^{\text{AT}}}{M_{\text{EQ}}^{\text{UO}}} + \hat{\nu}_{t+1}^{\text{UO}} \left(1 - b_{12} \frac{M_{\text{EQ}}^{\text{AT}}}{M_{\text{EQ}}^{\text{UO}}} - b_{23} \right) + \hat{\nu}_{t+1}^{\text{LO}} b_{23} \right] = 0$$
 (59)

$$\frac{\partial \mathcal{L}}{\partial M_{\text{LO},t+1}} = 0 \Leftrightarrow \hat{\nu}_{t}^{\text{LO}} - \hat{\beta}_{t} \left[\hat{\nu}_{t+1}^{\text{UO}} b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}} + \hat{\nu}_{t+1}^{\text{LO}} \left(1 - b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}} \right) \right] = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathcal{T}_{\text{AT},t+1}} = 0 \Leftrightarrow \hat{\eta}_{t}^{\text{AT}} - \hat{\beta}_{t} \left[-\lambda_{t+1} \Omega' (\mathcal{T}_{\text{AT},t+1}) k_{t+1}^{\alpha} + \hat{\eta}_{t+1}^{\text{AT}} (1 - c_{1} \frac{F_{2XCO2}}{T_{2xco2}} - c_{1} c_{3}) + \hat{\eta}_{t+1}^{\text{OC}} c_{4} \right] = 0$$
(60)

$$\frac{\partial \mathcal{L}}{\partial T_{\text{OC},t+1}} = 0 \Leftrightarrow \hat{\eta}_t^{\text{OC}} - \hat{\beta}_t \left[\hat{\eta}_{t+1}^{\text{AT}} c_1 c_3 + \hat{\eta}_{t+1}^{\text{OC}} (1 - c_4) \right] = 0$$

$$\frac{\partial \mathcal{L}}{\partial \hat{\lambda}_t} = 0 \Leftrightarrow \left(1 - \Omega \left(T_{\text{AT},t} \right) - \Theta \left(\mu_t \right) \right) k_t^{\alpha} + (1 - \delta) k_t - c_t - \exp \left(g_t^A + g_t^L \right) k_{t+1} = 0$$
(63)

$$\frac{\partial \mathcal{L}}{\partial \hat{\nu}_{t}^{\text{AT}}} = 0 \Leftrightarrow (1 - b_{12}) M_{t}^{\text{AT}} + b_{12} \frac{M_{\text{EQ}}^{\text{AT}}}{M_{\text{EQ}}^{\text{UO}}} M_{t}^{\text{UO}} + \sigma_{t} (1 - \mu_{t}) A_{t} L_{t} k_{t}^{\alpha} + E_{t}^{\text{Land}} - M_{t+1}^{\text{AT}} = 0$$

$$(64)$$

$$\frac{\partial \mathcal{L}}{\partial \hat{\nu}_{t}^{\mathsf{UO}}} = 0 \Leftrightarrow b_{12} M_{t}^{\mathsf{AT}} + \left(1 - b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} - b_{23} \right) M_{t}^{\mathsf{UO}} + b_{23} \frac{M_{\mathsf{EQ}}^{\mathsf{UO}}}{M_{\mathsf{EQ}}^{\mathsf{LO}}} M_{t}^{\mathsf{LO}} - M_{t+1}^{\mathsf{UO}} = 0$$

$$\tag{65}$$

$$\frac{\partial \mathcal{L}}{\partial \bar{\nu}_{t}^{\text{LO}}} = 0 \Leftrightarrow b_{23} M_{t}^{\text{UO}} + \left(1 - b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}}\right) M_{t}^{\text{LO}} - M_{t+1}^{\text{LO}} = 0$$
(66)

$$\frac{\partial \mathcal{L}}{\partial \hat{\eta}_{t}^{\text{AT}}} = 0 \Leftrightarrow T_{t}^{\text{AT}} + c_{1} \left(F_{2\text{XCO2}} \frac{\log(M_{t}^{\text{AT}} / M_{\text{base}}^{\text{AT}})}{\log(2)} + F_{t}^{\text{EX}} \right) - c_{1} \frac{F_{2\text{XCO2}}}{T_{2\text{XCO2}}} T_{t}^{\text{AT}} - c_{1} c_{3} \left(T_{t}^{\text{AT}} - T_{t}^{\text{OC}} \right) - T_{t+1}^{\text{AT}} = 0$$

$$(67)$$

$$\frac{\partial \mathcal{L}}{\partial \hat{\eta}_{t}^{OC}} = 0 \Leftrightarrow T_{t}^{OC} + c_{4} \left(T_{t}^{AT} - T_{t}^{OC} \right) - T_{t+1}^{OC} = 0 \tag{68}$$

KKT Condition

$$1 - \mu_t \ge 0 \quad \perp \quad \lambda_t^{\mu} \ge 0 \tag{69}$$

Fischer-Burmeister Function

$$\Psi^{\mathsf{FB}}\left(\hat{\lambda}_{t}^{\mu}, 1 - \mu_{t}\right) = \hat{\lambda}_{t}^{\mu} + (1 - \mu_{t}) - \sqrt{\left(\hat{\lambda}_{t}^{\mu}\right)^{2} + (1 - \mu_{t})^{2}} \tag{70}$$

$$\hat{\lambda}_{t}^{\mu} \stackrel{\text{def}}{=} -\hat{\lambda}_{t}\Theta'(\mu_{t}) k_{t}^{\alpha} - \hat{\nu}_{t}^{\mathsf{AT}} \sigma_{t} A_{t} L_{t} k_{t}^{\alpha}$$

$$\tag{71}$$

Loss Function Components

$$I_{1} := \exp\left(g_{t}^{A} + g_{t}^{L}\right) \hat{\lambda}_{t} - \hat{\beta} \left[\hat{\lambda}_{t+1} \left(\left(1 - \Omega\left(T_{\mathsf{AT},t+1}\right) - \Theta\left(\mu_{t}\right)\right) \alpha k_{t+1}^{\alpha - 1} + (1 - \delta)\right) + \hat{\nu}_{t+1}^{\mathsf{AT}} (1 - \mu_{t+1}) \sigma_{t+1} A_{t+1} \mathcal{L}_{t+1} \alpha k_{t+1}^{\alpha - 1}\right]$$

$$I_{2} := \left(1 - \Omega\left(T_{\mathsf{AT},t}\right) - \Theta\left(\mu_{t}\right)\right) k_{t}^{\alpha} + (1 - \delta) k_{t} - c_{t} - \exp\left(g_{t}^{A} + g_{t}^{L}\right) k_{t+1} = 0$$

$$(73)$$

Loss Function Components (contd.)

$$I_3 := \hat{\nu}_t^{\mathsf{AT}} - \beta \left[\hat{\nu}_{t+1}^{\mathsf{AT}} (1 - b_{12}) + \hat{\nu}_{t+1}^{\mathsf{UO}} b_{12} + \hat{\eta}_{t+1}^{\mathsf{AT}} c_1 F_{\mathsf{2XCO2}} \frac{1}{\ln 2M_{\mathsf{AT}}} \right] = 0 \tag{74}$$

$$I_{4} := \hat{\nu}_{t}^{\mathsf{UO}} - \beta \left[\hat{\nu}_{t+1}^{\mathsf{AT}} b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} + \hat{\nu}_{t+1}^{\mathsf{UO}} \left(1 - b_{12} \frac{M_{\mathsf{EQ}}^{\mathsf{AT}}}{M_{\mathsf{EQ}}^{\mathsf{UO}}} - b_{23} \right) + \hat{\nu}_{t+1}^{\mathsf{LO}} b_{23} \right] = 0 \quad (75)$$

$$I_5 := \hat{\nu}_t^{\text{LO}} - \beta \left[\hat{\nu}_{t+1}^{\text{UO}} b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}} + \hat{\nu}_{t+1}^{\text{LO}} \left(1 - b_{23} \frac{M_{\text{EQ}}^{\text{UO}}}{M_{\text{EQ}}^{\text{LO}}} \right) \right] = 0$$
 (76)

Loss Function Components (contd.)

$$l_6 := \hat{\eta}_t^{\mathsf{AT}} - \beta \left[-\hat{\lambda}_{t+1} \Omega'(T_{\mathsf{AT},t+1}) k_{t+1}^{\alpha} + \hat{\eta}_{t+1}^{\mathsf{AT}} (1 - c_1 \frac{F_{\mathsf{2XCO2}}}{\mathsf{T2xco2}} - c_1 c_3) + \hat{\eta}_{t+1}^{\mathsf{OC}} c_4 \right] = 0$$

$$(77)$$

$$h_{t} := \hat{\eta}_{t}^{\text{OC}} - \beta \left[\hat{\eta}_{t+1}^{\text{AT}} c_{1} c_{3} + \hat{\eta}_{t+1}^{\text{OC}} (1 - c_{4}) \right] = 0$$
 (78)

$$l_8 := \hat{\lambda}_t^{\mu} + (1 - \mu_t) - \sqrt{\left(\hat{\lambda}_t^{\mu}\right)^2 + (1 - \mu_t)^2} = 0$$
 (79)

Total Loss Function

$$\ell_{\nu} := \frac{1}{N_{\text{path length}}} \sum_{\mathbf{x}_{t} \text{ on sim. path}} \sum_{m=1}^{N_{eq}=8} (I_{m}(\mathbf{x}_{t}, \mathcal{N}_{\rho}(\mathbf{x}_{t})))^{2}$$
(80)

State Evolution

$$\mathbf{x}_{t+1} = \left(k_{t+1}, M_{t+1}^{\mathsf{AT}}, M_{t+1}^{\mathsf{UO}}, M_{t+1}^{\mathsf{LO}}, T_{t+1}^{\mathsf{AT}}, T_{t+1}^{\mathsf{OC}}, t+1\right)^{\mathsf{T}}$$
(81)