Međuispit

22. travnja 2015

1. zadatak (5 bodova)

Na slici 1 prikazan je sustav koji se sastoji od sljedećeg niza: izvora kontinuiranog signala x(t), diskretne prijenosne funkcije $G_1(z)$ i kontinuirane prijenosne funkcije $G_2(s)$. Kontinuirana prijenosna funkcija zadana je sljedecom jednadžbom:

$$G_2(s) = \frac{10}{s^2 + s + 9} \tag{1}$$

a diskretna prijenosna funkcija opisana je Bodeovim dijagramom na slici 2. Kolike će biti amplitude signala $y_1(t)$ i $y_2(t)$, ako je $x(t) = \sin \omega t$, uz $\omega = 196$ rad/s. Obrazložite!

Slika 1: Shema sustava

Slika 2: Bodeov dijagram diskretne prijenosne funkcije G1(z)

2. zadatak (7 bodova)

Na slici je dan Nyquistov dijagram stabilnog sustava 2. Reda. *Napomena:* primijetite da vrijedi $\varphi(\omega \to \infty) = -90^{\circ}$.

a) (3) Momentnom metodom odredite prijenosnu funkciju sustava G(s). Poznati momenti su: $M_0 = 2$, $M_1 = 2.5$, $M_2 = 5.5$, $M_3 = 17.25$, $M_4 = 70.5$. Opčeniti zapis prijenosne funkcije preko momenata je:

$$G(s) = M_0 - sM_1 + \frac{s2}{2!}M_2 - \frac{s3}{3!}M_3 + \dots$$

- b) (2) Odredite prijelaznu funkciju sustava h(t) i težinsku funkciju g(t),
- c) (2) Postoji li točka infleksije u prijelaznoj funkciji? Ako da izračunajte je.

3. zadatak (7 bodova)

Sustav na slici 4 doveden je u oscilatorno stanje. Zadatak je projektirati PID regulator korištenjem releja s histerezom i integratorom spojenim u seriju kao sto je prikazano na slici 4. Proces kojim se upravlja označen je s G. Iz odziva je očitana amplitude oscilacija A_0 te frekvencija oscilacija ω_0 . Poznati su parametri releja koji iznose ε i d.

Slika 4: Relej s histerezom

- a) (3) Odredite pojačanje i fazno kašnjenje procesa G na frekvenciji oscilacija ω_0 ,
- b) (1) Odredite pojačanje i fazno kašnjenje PID regulatora na frekvenciji oscilacija ω_0 ,
- c) (4) Odredite jednadžbe kojima bi se dobili parametri PID regulatora uz zahtjev na fazno osiguranje otvorenog kruga G_0 koja mora iznositi γ_0 . Jednadžbe nije potrebno rješavati, nego je dovoljno da kao nepoznanice sadržavaju samo parametre regulatora (K_R , T_I , T_D).

4. zadatak (7 bodova)

Za proces $G(s) = \frac{0.1}{s(1+0.1s)(1+s)}$ potrebno je projektirati regulator kojim bi se zadovoljili sljedeći zahtjevi na zatvoreni regulacijski krug: (1) vrijeme prvog maksimuma $t_m \approx 3[s]$; (2) pogreška u stacionarnom stanju na pobudu oblika funkcije linearnog porasta $x_r(t) = t$ je $e_{ss} < 0.05$.

- a) (3) Odredite maksimalne iznose amplitude i faze kojima kompenzacijski član oblika $\frac{1+Ts}{1+\alpha Ts}$ podiže/spušta amplitudnu i faznu karakteristiku te odredite frekvencije u kojima se postiže maksimum (amplitudni i fazni),
- b) (3) Projektirajte kontinuirani kompenzator $G_R(s)$ koji zadovoljava zadane specifikacije,
- c) (1) Ako bi se digitalni regulator projektirao uz zanemaren utjecaj diskretizacije (metoda, EMUL1), kako bi utjecala diskretizacija na brzinu odziva i nadvišenje (izračunati promjenu!), uz vrijeme diskretizacije odabrano prema presječnoj frekvenciji iz sredine preporučenog područja.