### Matemática Discreta I

#### Tema 6. Relaciones de Recurrencia

Luis Magdalena Layos luis.magdalena@upm.es

Departamento de Matemática Aplicada a las TIC E.T.S. Ingenieros Informáticos Universidad Politécnica de Madrid

Grado en Ciencia de Datos e Inteligencia Artificial Grado en Matemáticas e Informática Curso 2020/21

## **Contenidos**

- Relaciones de Recurrencia
- Recurrencias lineales
- 3 Recurrencias lineales homogéneas
- 4 Recurrencias lineales no homogéneas
- **5** Recurrencias no lineales

## Relaciones de Recurrencia

#### **Definición**

Dada una sucesión  $\{a_n\}_{n\in\mathbb{N}\cup\{0\}}$ , una relación o fórmula de recurrencia de orden  $k\geq 1$  es una expresión que relaciona el término general de dicha sucesión con sus k términos precedentes:

$$a_n = f(a_{n-1}, \dots, a_{n-k}), \ \forall n \ge k.$$

#### **Definición**

A los k primeros términos de la sucesión se les denomina condiciones iniciales.

## **Ejemplo**

El número de palabras de longitud n formadas con los dígitos  $\{0,1\}$ , que no tienen dos ceros consecutivos, es  $a_n = a_{n-1} + a_{n-2}$ .

Estas palabras se obtienen, o bien añadiendo un 1 al final de una palabra de n-1 dígitos, o bien añadiendo la secuencia 10 al final de una palabra de n-2 dígitos.

En este caso las condiciones iniciales son  $a_1 = 2$  y  $a_2 = 3$ .

## Sucesión recurrente

#### **Definición**

Se denomina sucesión recurrente al conjunto formado por una relación de recurrencia de orden k, junto con unas condiciones iniciales (k primeros términos de la sucesión).

### **Definición**

Resolver una sucesión recurrente consiste en obtener, a partir de la relación de recurrencia y de las condiciones iniciales, una función explicita que exprese cualquier término de la sucesión:

$$a_n = F(n), \forall n.$$

## **Ejemplo (Factorial)**

El factorial es una relación de recurrencia de orden 1, definida por  $a_n = n \cdot a_{n-1}$ . Su condición inicial es  $a_1 = 1$ .

Su solución es 
$$a_n = \prod_{k=1}^n k = n!$$
.

## Recurrencias lineales

#### **Definición**

Una relación de recurrencia lineal de orden k es una relación de la forma:

$$a_n = c_1(n) \cdot a_{n-1} + c_2(n) \cdot a_{n-2} + \dots + c_k(n) \cdot a_{n-k} + g(n),$$

donde  $g, c_i : \mathbb{N} \to \mathbb{R}$ . Además, si g(n) = 0 para todo n, se dice que la relación de recurrencia es homogénea.

### Definición

Una relación de recurrencia lineal de orden k se denomina de coeficientes constantes cuando tiene la forma:

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k} + g(n).$$

## Ejemplo (Progresión aritmética)

La progresión aritmética es una relación de recurrencia lineal, no homogénea, de coeficientes constantes, de orden 1, definida por  $a_n=a_{n-1}+d$ . Su solución es  $a_n=a_0+n\cdot d$ .

5/32

#### **Definición**

Se denomina polinomio característico de la relación de recurrencia lineal homogénea de coeficientes constantes

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k},$$

al polinomio

$$f(x) = x^k - c_1 \cdot x^{k-1} - c_2 \cdot x^{k-2} - \dots - c_k.$$

## Ejemplo (Progresión geométrica)

La progresión geométrica de razón r es una relación de recurrencia lineal, homogénea, de coeficientes constantes, de orden 1, definida por  $a_n=r\cdot a_{n-1}$ .

Su polinomio característico es f(x) = x - r.

#### **Definición**

Las raices del polinomio característico se denominan raíces características.

#### Teorema

Si  $\alpha$  es raíz del polinomio característico

$$f(x) = x^{k} - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_k,$$

 $\alpha^n$  es solución de la recurrencia  $a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \cdots + c_k \cdot a_{n-k}$ .

### Ejemplo (Progresión geométrica)

La progresión geométrica de razón r definida por  $a_n = r \cdot a_{n-1}$ , con polinomio característico f(x) = x - r, tiene raíz característica x = r. Por tanto  $r^n$  es solución de la recurrencia. Si su condición inicial es  $a_0 = A$ , la solución de la recurrencia será  $a_n = Ar^n$ .

7 / 32

#### **Teorema**

Si  $\alpha$  es raíz característica con multiplicidad r>1, entonces  $\{\alpha^n, n\alpha^n, n^2\alpha^n, \dots, n^{r-1}\alpha^n\}$  son soluciones de la relación de recurrencia.

#### **Teorema**

Si  $x_n, y_n$  son soluciones de la relación de recurrencia, entonces  $\{Ax_n + By_n, \text{ con } A, B \in \mathbb{R}\}$  son soluciones de la misma relación de recurrencia.

### **Ejemplo**

La relación de recurrencia definida por  $a_n=2a_{n-1}-a_{n-2}$  tiene raíz característica x=1 (doble). Por tanto  $1^n=1$  y  $n\cdot 1^n=n$  son soluciones de la recurrencia.

En este caso  $a_n = A + B \cdot n$  también será solución de la recurrencia.

Si las condiciones iniciales son  $a_0=1$  y  $a_1=2$ , tendremos una solución de la forma  $a_n=1+n$ .

Sin embargo, si las condiciones iniciales fueran  $a_0=1$  y  $a_1=1$ , la solución resultaría ser  $a_n=1$ .

8/32

#### Observación:

Dada la relación de recurrencia

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k},$$

si las raíces del polinomio característico  $(f(x) = x^k - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_k)$  son  $\alpha_1, \alpha_2, \dots, \alpha_m$ , con multiplicidades  $r_1, r_2, \dots, r_m$ , la solución general de la relación de recurrencia será:

$$a_n = \sum_{i=1}^m \sum_{j=0}^{r_i-1} A_{i,j} n^j \alpha_i^n, \text{ con } A_{i,j} \in \mathbb{R}.$$

Si además de la relación de recurrencia, se dispone de un conjunto de k condiciones iniciales  $(a_0, \ldots, a_{k-1})$ , se podrán obtener los valores de  $A_{i,j}$  que satisfacen dichas condiciones iniciales.

## Ejemplo (Sucesión de Fibonacci)

Se denomina sucesión de Fibonacci a la sucesión:

$$\begin{cases} a_n = a_{n-1} + a_{n-2} \text{ para } n \geq 2, \\ a_0 = a_1 = 1. \end{cases}$$

Su polinomio característico es  $x^2-x-1$ , con raices  $x=\frac{1\pm\sqrt{5}}{2}$ .

Por tanto la solución de la formula de recurrencia es:

$$a_n = K_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + K_2 \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Y dadas las condiciones iniciales  $a_0 = a_1 = 1$ , la solución de la sucesión es:

$$a_n = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1-\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}.$$

### Ejercicio 1.

Resuelve las siguientes relaciones de recurrencia homogéneas, con sus condiciones iniciales:

- **b)**  $a_n = 7a_{n-1} 10a_{n-2} \quad \forall n \ge 2$ , con  $a_0 = 2, a_1 = 1$ .
- e)  $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$   $\forall n \ge 3$ , con  $a_0 = 2, a_1 = 5, a_2 = 15$ .
- b) El polinomio característico es  $f(x)=x^2-7x+10$ , con solución  $x=\frac{7\pm\sqrt{49-40}}{2}$  (raíces 5 y 2). La relación de recurrencia tendrá como solución general  $a_n=k_15^n+k_22^n$ . Incorporando ahora las condiciones iniciales resulta  $k_1=-1$ ,  $k_2=3$ , y por tanto la solución será  $a_n=-5^n+3\cdot 2^n$ .
- e) El polinomio característico es  $f(x) = x^3 6x^2 + 11x 6$ , con raíces  $x = \{1, 2, 3\}$ . La relación de recurrencia tendrá como solución general  $a_n = k_1 1^n + k_2 2^n + k_3 3^n$ . Incorporando ahora las condiciones iniciales resulta  $k_1 = 1$ ,  $k_2 = -1$ ,  $k_3 = 2$  y por tanto la solución será  $a_n = 1 2^n + 2 \cdot 3^n$ .

### Ejercicio 1.

Resuelve las siguientes relaciones de recurrencia homogéneas, con sus condiciones iniciales:

- c)  $a_n = 2a_{n-1} a_{n-2} \quad \forall n \ge 2 \text{ con } a_0 = 4, a_1 = 1.$
- g)  $a_n = -6a_{n-1} 9a_{n-2}$   $\forall n \ge 2 \text{ con } a_0 = 1, a_1 = -6.$
- c) El polinomio característico es  $f(x)=x^2-2x+1$ , con solución  $x=\frac{2\pm\sqrt{4-4}}{2}=1$ . La relación de recurrencia tendrá como solución general  $a_n=k_11^n+k_2n1^n$ . Incorporando ahora las condiciones iniciales resulta  $k_1=4$ ,  $k_2=-3$ , y por tanto la solución será  $a_n=4-3\cdot n$ .
- g) El polinomio característico es  $f(x)=x^2+6x^2+9$ , con solución  $x=\frac{-6\pm\sqrt{36-36}}{2}=-3$ .

La relación de recurrencia tendrá como solución general  $a_n = k_1(-3)^n + k_2n(-3)^n$ . Incorporando ahora las condiciones iniciales resulta  $k_1 = -1$ ,  $k_2 = -1$ , y por tanto la solución será  $a_n = (1+n)(-3)^n$ .

### Ejercicio 2.

Sea  $a_n$  el número de palabras de longitud n formadas con los dígitos  $\{0,1\}$ , que no tienen dos ceros consecutivos. Encuentra una relación de recurrencia para calcular  $a_n$  y resuélvela.

Como ya hemos visto el problema responde a la relación de recurrencia

$$\begin{cases} a_n = a_{n-1} + a_{n-2}, \\ a_1 = 2, \ a_2 = 3, \end{cases}$$

que se corresponde con la definida en la sucesión de Fibonacci vista anteriormente, cuya solución general era:

$$a_n = K_1 \left( \frac{1 + \sqrt{5}}{2} \right)^n + K_2 \left( \frac{1 - \sqrt{5}}{2} \right)^n.$$

Incorporando ahora las condiciones iniciales,  $a_1=2,\ a_2=3$ , tenemos que la solución es

$$a_n = \left(\frac{5+3\sqrt{5}}{10}\right) \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{5-3\sqrt{5}}{10}\right) \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

### Ejercicio 7.

Sea  $M=\{A,\ B,\ C\}$  y sea  $S_n$  el conjunto de sucesiones de longitud n, formadas con las letras de M, en las que todas las cadenas de A-es son de longitud par. Encuentra una relación de recurrencia para calcular  $a_n=|S_n|$  y resuélvela.

Estas sucesiones se obtienen, o bien añadiendo una B o una C al final de una sucesión de longitud n-1, o bien añadiendo la secuencia AA al final de una sucesión de longitud n-2.

Por tanto la relación de recurrencia será:

$$\begin{cases} a_n = 2a_{n-1} + a_{n-2}, \\ a_1 = 2, \ a_2 = 5. \end{cases}$$

Su polinomio característico es  $f(x)=x^2-2x-1$ , con raices  $x=\frac{2\pm\sqrt{8}}{2}=1\pm\sqrt{2}$ .

Finalmente la solución de la formula de recurrencia es:  $a_n = A \cdot \left(1 + \sqrt{2}\right)^n + B \cdot \left(1 - \sqrt{2}\right)^n$ . Incorporando ahora las condiciones iniciales,  $a_1 = 2, \ a_2 = 5$ , tenemos que la solución es

$$a_n = \left(\frac{2+\sqrt{2}}{4}\right) \cdot \left(1+\sqrt{2}\right)^n + \left(\frac{2-\sqrt{2}}{4}\right) \cdot \left(1-\sqrt{2}\right)^n.$$

# Recurrencias lineales no homogéneas

#### **Definición**

Se denomina relación de recurrencia lineal no homogénea de coeficientes constantes y orden  $k \ge 1$ , a una relación de la forma:

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k} + g(n).$$

A la relación

$$a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k},$$

se le denomina relación homogénea asociada. La relación no homogénea también se denomina relación completa.

### **Ejemplo**

Un conjunto de n rectas trazadas en el plano de forma que cada recta corte a las restantes, pero que no haya tres coincidentes en un mismo punto, divide al plano en  $a_n$  regiones de las que  $b_n$  son regiones infinitas. Los valores de  $a_n$  y  $b_n$  son:

$$a_n = a_{n-1} + n$$
 y  $b_n = b_{n-1} + 2$ .

## Solución de la relación completa

### Propiedades.

- ① Dadas dos soluciones particulares de la relación completa  $(X_n \in Y_n)$ , su diferencia  $(X_n Y_n)$  es solución de la relación homogénea.
- ② Si  $x_n$  es solución de la relación homogénea, y  $X_n$  es solución de la relación completa,  $x_n + X_n$  será solución de la relación completa.
- 3 La solución general de la relación completa se obtiene como la suma de la solución general de la relación homogénea, más una solución particular de la relación completa.

### Solución particular de la relación completa.

Dada una relación de recurrencia completa con  $g(n)=R(n)\cdot b^n$ , existe una solución particular de la relación completa, del tipo  $Q(n)\cdot n^r\cdot b^n$ , donde Q(n) es un polinomio del mismo grado que R(n) y r es la multiplicidad con la que b es raíz del polinomio característico (en particular, si b no es raíz, nos quedaría  $n^0=1$ ).

## Solución de la relación completa

### Solución general de la relación completa.

- **1** Se obtiene la solución general de la homogénea asociada, S(n).
- ② Se obtiene una solución particular de la completa, P(n).
- **3** La solución general de la completa es  $a_n = P(n) + S(n)$ .
- Si se tienen condiciones iniciales, se exigen, para obtener el término general de la sucesión.

## Ejercicio 4.

Sean n rectas trazadas en el plano de forma que cada recta corte a las restantes, pero que no haya tres coincidentes en un mismo punto. Para cada  $n \ge 0$ , sea  $a_n$  el número de regiones en que las n rectas dividen al plano y sea  $b_n$  el número de regiones infinitas.

- $oldsymbol{0}$  Encuentra una relación de recurrencia para calcular  $a_n$  y resuélvela.
- $oldsymbol{2}$  Encuentra una relación de recurrencia para calcular  $b_n$  y resuélvela.

**1** La relación de recurrencia es:  $\begin{cases} a_n = a_{n-1} + n, \\ a_1 = 2. \end{cases}$ 

Solución a la ecuación homogénea: S(n)=A. Solución particular de la completa:  $P(n)=\frac{1}{2}n^2+\frac{1}{2}\ n.$ 

Solución general de la completa:  $a_n = \frac{1}{2}n^2 + \frac{1}{2}n + A$ .

Solución final con las condiciones iniciales:  $a_n = \frac{1}{2}n^2 + \frac{1}{2}(n+1)$ .

2 La relación de recurrencia es:  $\begin{cases} b_n = b_{n-1} + 2, \\ b_1 = 2 \end{cases}$ 

Solución a la ecuación homogénea: S(n) = B.

Solución particular de la completa: P(n) = 2n.

Solución general de la completa:  $b_n = 2n + B$ .

Solución final con las condiciones iniciales:  $b_n = 2n$ .

### Ejercicio 5.

Problema de las Torres de Hanoi (Édouard Lucas): Se tienen n discos y 3 estacas. Los discos están apilados en la estaca 1, ordenados de mayor a menor. El objetivo es pasar los discos uno por uno a otra estaca, colocados en el orden original. En el proceso no se permite que un disco mayor se coloque sobre otro menor. Si  $a_n$  es el número de movimientos que se requieren para hacer esto, encuentra una relación de recurrencia para calcular  $a_n$ , y resuélvela.

La relación de recurrencia es:  $\begin{cases} a_n = 2a_{n-1} + 1, \\ a_1 = 1. \end{cases}$ 

Polinomio caraterístico: f(x) = x - 2, con raíz x = 2.

Solución a la ecuación homogénea:  $S(n) = A \cdot 2^n$ .

Solución particular de la completa: P(n) = -1.

Solución general de la completa:  $a_n = -1 + A \cdot 2^n$ .

Solution general de la completa.  $a_n = -1 + A \cdot 2$ .

Solución final con las condiciones iniciales:  $a_n = -1 + 2^n$ .

### Ejercicio 6.

Resuelve las siguientes relaciones de recurrencia homogéneas, con sus condiciones iniciales:

a) 
$$\begin{cases} a_n = a_{n-1} + 2n - 1, \\ a_1 = 1. \end{cases}$$

**b)** 
$$\begin{cases} a_n = a_{n-1} + 3n^2, \\ a_0 = 7. \end{cases}$$

- a) Solución a la ecuación homogénea: S(n) = C. Solución particular de la completa:  $P(n) = n^2$ . Solución general de la completa:  $a_n = n^2 + C$ . Solución final con las condiciones iniciales:  $a_n = n^2$ .
- b) Solución a la ecuación homogénea: S(n)=C. Solución particular de la completa:  $P\left(n\right)=n^3+\frac{3}{2}n^2+\frac{1}{2}$  n. Solución general de la completa:  $a_n=n^3+\frac{3}{2}n^2+\frac{1}{2}$  n+C. Solución final con las condiciones iniciales:  $a_n=n^3+\frac{3}{2}n^2+\frac{1}{2}$  n+7.

### Ejercicio 6.

Resuelve las siguientes relaciones de recurrencia homogéneas, con sus condiciones iniciales:

g) 
$$\begin{cases} a_n = 3a_{n-1} + 4a_{n-2} - 5 \cdot 4^n, \\ a_0 = 1, \ a_1 = 0. \end{cases}$$

**h)** 
$$\begin{cases} a_n = 2a_{n-1} - a_{n-2} + 1, \\ a_1 = 2, \ a_2 = 3. \end{cases}$$

- g) Solución a la ecuación homogénea:  $S\left(n\right) = A \cdot 4^n + B \cdot (-1)^n$ . Solución particular de la completa:  $P\left(n\right) = -n \cdot 4^{n+1}$ . Solución general de la completa:  $a_n = -n \cdot 4^{n+1} + A \cdot 4^n + B \cdot (-1)^n$ . Solución final con las condiciones iniciales:  $a_n = -n \cdot 4^{n+1} + \frac{17}{5} \cdot 4^n \frac{12}{5} \cdot (-1)^n$ .
- h) Solución a la ecuación homogénea:  $S\left(n\right)=A+Bn$ . Solución particular de la completa:  $P\left(n\right)=\frac{1}{2}\cdot n^{2}$ . Solución general de la completa:  $a_{n}=\frac{1}{2}\cdot n^{2}+A+Bn$ . Solución final con las condiciones iniciales:  $a_{n}=\frac{1}{2}\cdot n^{2}+2-\frac{1}{2}\cdot n$ .

## Recurrencias no lineales

#### **Definición**

Una relación de recurrencia de orden k es no lineal cuando la expresión que relaciona su término n-ésimo con los k términos previos es no lineal:

$$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-k}).$$

**Observación:** En la resolución de recurrencias no lineales aplicamos métodos particulares para cada caso.

#### **Definición**

Se denominan números de Catalan a los términos de la sucesión recurrente:

$$\begin{cases} a_n = \sum_{k=0}^{n-1} a_k \cdot a_{n-k-1} = a_0 \cdot a_{n-1} + a_1 \cdot a_{n-2} + a_2 \cdot a_{n-3} + \dots + a_{n-1} \cdot a_0, \\ a_0 = 1. \end{cases}$$

A partir de la definición previa podemos ver como los primeros términos de la sucesión serán:

$$a_0 = 1,$$

$$a_1 = a_0 \cdot a_0 = 1,$$

$$a_2 = a_0 \cdot a_1 + a_1 \cdot a_0 = 2,$$

$$a_3 = a_0 \cdot a_2 + a_1 \cdot a_1 + a_2 \cdot a_0 = 5,$$

$$a_4 = a_0 \cdot a_3 + a_1 \cdot a_2 + a_2 \cdot a_1 + a_3 \cdot a_0 = 14,$$

$$a_5 = a_0 \cdot a_4 + a_1 \cdot a_3 + a_2 \cdot a_2 + a_3 \cdot a_1 + a_4 \cdot a_0 = 42,$$

$$\vdots$$

La solución de esta sucesión recurrente se puede expresar de múltiples formas:

$$a_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} \text{ para } n \ge 0,$$

o bien

$$a_n = \binom{2n}{n} - \binom{2n}{n-1}$$
 para  $n \ge 1$ .

Los números de Catalan aparecen en un gran número de situaciones:

- Triangulaciones de polígonos convexos de n+2 vértices.
- ② Número de árboles binarios con n+1 hojas.
- **3** Formas de colocar paréntesis en un producto de n+1 factores.
- **①** Caminos ascendentes en una cuadrícula  $n \times n$  que no superan la diagonal.

Los números de Catalan aparecen en un gran número de situaciones:

- Triangulaciones de polígonos convexos de n+2 vértices.
- ② Número de árboles binarios con n+1 hojas.
- **3** Formas de colocar paréntesis en un producto de n+1 factores.
- **①** Caminos ascendentes en una cuadrícula  $n \times n$  que no superan la diagonal.

## **Ejemplo**

Calculamos el número de caminos ascendentes en una cuadrícula  $n \times n$ , que llegan desde (0,0) hasta (n,n) sin superar la diagonal.



Consideramos el primer punto en que se alcanza nuevamente la diagonal ((k+1,k+1)) y dividimos el problema en dos de dimensiones k y n-k-1.

26/32

### **Ejemplo**

Calculamos el número de caminos ascendentes en una cuadrícula  $n \times n$ , que llegan desde (0,0) hasta (n,n) sin superar la diagonal.



Consideramos el primer punto en que se alcanza nuevamente la diagonal ((k+1,k+1)) y dividimos el problema en dos de dimensiones k y n-k-1.

Este punto puede ser cualquiera (sobre la diagonal) entre el (1,1) y el (n,n), por lo que k podrá tomar valores entre 0 y n-1. Para cada valor de k, el número de caminos se corresponde con  $C_k \cdot C_{n-k-1}$ .

Si agregamos ahora todas las opciones en función de los

valores de 
$$k$$
:  $C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$ .

#### Examen enero 2020.

- a) En la ceremonia de Graduación de la ETSI Informáticos, al pasar los alumnos a recibir su diploma por la mesa de la Presidencia, deben hacerlo por orden alfabético, y en grupos de 2, 3 o 4 alumnos. Halla una relación de recurrencia para el número de formas  $a_n$  en que puede organizarse esta recepción, si se gradúan exactamente n estudiantes. Explica cómo la has obtenido.
- b) Resuelve la siguiente relación de recurrencia con sus condiciones iniciales  $\begin{cases} a_n=a_{n-2}+2\cdot (-1)^n, \forall n\geq 2\\ a_0=2, a_1=-1 \end{cases}$
- a)  $\begin{cases} a_n = a_{n-2} + a_{n-3} + a_{n-4}, \\ a_1 = 0, a_2 = 1, a_3 = 1, a_4 = 2. \end{cases}$
- **b)** Solución general de la homogénea asociada:  $S(n) = A \cdot 1^n + B \cdot (-1)^n = A + B \cdot (-1)^n$ . Solución particular de la completa:  $P(n) = n(-1)^n$ . Solución general de la completa:  $a_n = A + (B+n) \cdot (-1)^n$ . Imponiendo las condiciones iniciales:  $a_n = 1 + (1+n) \cdot (-1)^n$ .

28 / 32

#### Examen diciembre 2019.

- a) Halla una relación de recurrencia para el número de listas  $a_n$  de longitud  $n \ge 1$ , formadas con los elementos A, B, C, y D, en las que el elemento B no aparece en la posición inmediatamente posterior a una A.
- b) Resuelve la siguiente relación de recurrencia con condiciones iniciales.

$$\begin{cases} a_n = 6 \cdot a_{n-1} - 9 \cdot a_{n-2} + 4 \cdot 5^n, \forall n \ge 2 \\ a_0 = 25, a_1 = 47 \end{cases}$$

a) Partimos del número de listas de longitud n sin restricciones  $(a_n = 4 \cdot a_{n-1})$  y descontamos las que acaban en AB, que serán las listas de longitud n-2 a las que añadimos esa secuencia  $(a_{n-2})$ .

$$\begin{cases} a_n = 4 \cdot a_{n-1} - a_{n-2}, \\ a_1 = 4, a_2 = 15. \end{cases}$$

b) Solución general de la homogénea asociada:  $S(n) = A \cdot 3^n + B \cdot n \cdot 3^n$ . Solución particular de la completa:  $P(n) = 25 \cdot 5^n = 5^{n+2}$ . Solución general de la completa:  $a_n = A \cdot 3^n + B \cdot n \cdot 3^n + 5^{n+2}$ . Imponiendo las condiciones iniciales:  $a_n = -26 \cdot n \cdot 3^n + 5^{n+2}$ .

### Examen junio 2019.

Resuelve la siguiente relación de recurrencia lineal no homogénea:

$$\begin{cases} a_n = 10a_{n-1} - 25a_{n-2} + 2 \cdot 5^n, \forall n \ge 2 \\ a_0 = 3, \ a_1 = 5 \end{cases}$$

Ecuación característica:  $x^2 - 10x + 25 = 0$ , con raíz doble x = 5.

Solución general de la relación homogenea asociada:  $S(n) = (k_1 + k_2 n)5^n$ .

Solución particular de la recurrencia inicial:  $P(n) = An^25^n$ , con A = 1.

Solución general de la relación no homogénea:  $a(n) = S(n) + P(n) = (k_1 + k_2 n + n^2)5^n$ .

Aplicando las condiciones iniciales:  $k_1 = 3$  y  $k_2 = -3$ , por lo que la solución final es

$$a(n) = (3 - 3n + n^2)5^n.$$

#### Examen diciembre 2018.

- a) En una probeta se detectan 5 bacterias. Transcurrida una hora el número de bacterias crece hasta 8. A partir de ese momento la población de bacterias crece cada hora una cantidad igual a dos veces la cantidad de bacterias que creció en la hora anterior. Sea  $a_n$  la cantidad de bacterias cuando hayan transcurrido n horas, encuentra una relación de recurrencia para  $a_n$ .
- a) Teniendo en cuenta que  $a_{n-1}-a_{n-2}$  es el crecimiento en la hora n-1, en la hora n-enésima el crecimiento será el doble, por tanto  $2(a_{n-1}-a_{n-2})$  será lo que han crecido las bacterias en la hora n-enésima. Así, el número de bacterias en la hora n será el número de bacterias que había en la hora anterior  $(a_{n-1})$  más lo que hayan crecido.

Luego la sucesión de recurrencias queda de la forma:

$$\begin{cases} a_n = a_{n-1} + 2(a_{n-1} - a_{n-2}) = 3a_{n-1} - 2a_{n-2}, \forall n \geq 2\\ a_0 = 5, a_1 = 8 \end{cases}$$

También son válidas las siguientes recurrencias:

$$\begin{cases} a_n = a_{n-1} + 3 \cdot 2^{n-1}, & \forall n \ge 1 \\ a_0 = 5 \end{cases} \qquad \begin{cases} a_n = 2a_{n-1} - 2, & \forall n \ge 1 \\ a_0 = 5 \end{cases}$$

#### Examen diciembre 2018.

b) Resuelve la siguiente relación de recurrencia con sus condiciones iniciales.

$$\begin{cases} a_n = 3a_{n-1} - 2a_{n-2} + 2^n, & \forall n \ge 2 \\ a_0 = 3, a_1 = 11 \end{cases}$$

b) Polinomio característico:  $f(x)=x^2-3x+2=0$ , con soluciones x=2 y x=1. Solución general de la relación homogenea asociada:  $S(n)=A\cdot 1^n+B\cdot 2^n$ . Solución particular de la relación completa:  $P(n)=qn2^n$ , con q=2. Solución general de la relación completa:  $a(n)=A\cdot 1^n+(B+2n)\cdot 2^n$ . Aplicando las condiciones iniciales: A=-1 y B=4, por lo que la solución final es

$$a(n) = -1 + (4+2n) \cdot 2^n = (n+2)2^{n+1} - 1$$