EE313 Lecture 7

Joshua Dong

September 22, 2014

- 1. Midterm October 1 (chapter 1, 2)
- 2. Homework 3 from 2.1

0.1 Recap

Last time proved LTI property: convolution on h[n-k] $h[n-k] \to \text{know if LTI}$.

0.2 Convolutions

New operator: $x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$

Note: convolution is commutative.

Example:

An LTI system has impulse response $h[n] = \delta[n] + \delta[n-1]$. Find the response to the input $x_1[n] = \delta[n]$.

Impulse response

output $y[n] = h[n] = \delta[n] + \delta[n+1]$ by definition of impulse response. $y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] = x[0] \cdot h[n-0]$. (See image, x[n] is zero everywhere but when n=0)

Example2:

Find the response to the input $x_2[n] = \delta[n-2]$.

Example3:

An LTI system has an impulse response $h[n] = \delta[0] + \delta[1] + \delta[2]$ Find output when $x[n] = 0.5\delta[0] + 2\delta[1]$.