Monte Carlo – Estimating π

I created a data type called Coordinate that takes inputs x and y. In the MonteCarlos class, I used NumPy to generate random numbers. I then implemented a method to store all the coordinates and another method to check whether each coordinate lies within the quarter circle.

Convergence

As the sample size increased, I observed that the estimated value of π converged toward the actual value of π . Initially, the estimate started near 4, and as the number of samples grew, it gradually approached the true value of π .

Histogram-

As the higher the sample size goes the experiment fits better under the Normal Distribution

Sampling Distribution of Monte Carlo $\hat{\pi}$ (n=1000, R=500)

3.14 π̂ estimate 3.18

3.16

3.10

3.12

Sampling Distribution of Monte Carlo $\hat{\pi}$ (n=10000, R=500)

Sampling Distribution of Monte Carlo $\hat{\pi}$ (n=100000, R=500)

