Combinatorics, 2018 Fall, USTC Homework8

- The due is on Thursday, Nov. 22.
- Please sign your name and student number.
- Please solve as many problems as you can.
- 1. Suppose five points are chosen inside an equilateral triangle with side length 1. Show that there is at least one pair of points whose distance apart is at most $\frac{1}{2}$.
- 2. Show that the generalized Ramsey number $R_k(s_1, \dots, s_k) < \infty$, where $k \geq 2, s_i \geq 2, i \in [k]$.
- 3. Show that the condition in the Erdös-Szekers Theorem is best possible, that is, there exists a sequence of st different real numbers which has neither increasing subsequence of length s+1 nor decreasing subsequence of length t+1.
- 4. Show that $R(s+1, t+1) \ge st + 1$.
- 5. Prove that $2^k < R_k(3, 3, \dots, 3) \le (k+1)!$.
- 6. For any point $p \in R^d$ in d-dimension,write $p = (p_1, p_2, \dots, p_d)$. A set P of points in R^d is called good, if for each $i \in [d]$, the i-th coordinates of these points are distinct. A sequence of points in R^d is called monotone if it is monotone in each of its coordinate. Show that in any good set P of $l^{2^d} + 1$ points in R^d , there is a monotone subsequence of length l + 1.

7. Use Ramsey's Theorem to prove that for every integer $k \geq 2$, there is an integer n such that every sequence of n distinct real numbers contains a monotone subsequence of k real numbers.