Thought for a few seconds 🗸

Certainly! Let's analyze and solve the recurrence relation you've provided:

$$T(n) = (T(n))^2$$

You mentioned using the **Substitution Method** or the **Master Theorem** to solve this recurrence. However, it's important to note that the **Master Theorem** is specifically designed for divide-and-conquer recurrences of the form:

$$T(n) = a \cdot T\left(\frac{n}{h}\right) + f(n)$$

where:

- $a \ge 1$ is the number of subproblems,
- b > 1 is the factor by which the problem size is divided,
- f(n) is the cost of the work done outside the recursive calls.

Given that your recurrence:

$$T(n) = (T(n))^2$$

does not fit this form (since it doesn't involve smaller subproblems or a division of the problem size), the Master Theorem is not applicable here. Instead, we'll approach this as a functional equation and use the Substitution Method (also known as the Guess and Induction Method) to find its solutions

Understanding the Equation

The equation is:

$$T(n) = (T(n))^2$$

This implies that the value of T(n) is equal to its own square. To find T(n), we need to solve for T(n) such that this equality holds.

Rewriting the Equation

Let's treat T(n) as a variable and solve the equation algebraically.

1. Set Up the Equation:

$$T(n) = (T(n))^2$$

2. Rearrange the Equation:

Subtract T(n) from both sides to bring all terms to one side:

$$\left(T(n)\right)^2 - T(n) = 0$$

3. Factor the Equation:

Factor out T(n):

$$T(n)\left(T(n)-1\right)=0$$

4. Find the Roots:

Set each factor equal to zero:

- T(n) = 0
- $T(n) 1 = 0 \Rightarrow T(n) = 1$

Solutions

The equation $T(n) = (T(n))^2$ has two constant solutions:

1. T(n) = 0:

$$0 = (0)^2 \Rightarrow 0 = 0$$
 (True)

2. T(n) = 1:

$$1 = (1)^2 \Rightarrow 1 = 1 \quad \text{(True)}$$

Therefore, the general solutions are:

$$T(n) = 0$$
 or $T(n) = 1$ for all n

Interpretation

• Constant Solutions: The only solutions to this equation are constant functions. That is, T(n) must be the same value for all n, either 0 or 1.

• No Non-Constant Solutions: There are no non-constant solutions to this equation. Any attempt to define T(n) based on n (i.e., making T(n) vary with n) would not satisfy the equation unless T(n) remains at one of the constant values.

Why Substitution Method and Master Theorem Don't Apply Here

Substitution Method:

The **Substitution Method** involves making an educated guess about the form of the solution and then proving it rigorously using mathematical induction. However, in this case:

- Since the equation is purely functional and only admits constant solutions, there's no need for an inductive proof.
- The Substitution Method is typically used for more complex recurrences where the solution's form isn't immediately obvious.

Master Theorem:

As previously mentioned, the **Master Theorem** applies to divide-and-conquer recurrences of the form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

Your recurrence:

$$T(n) = (T(n))^2$$

does not involve smaller subproblems or a division of the problem size. Therefore, the Master Theorem is **not applicable** in this scenario.

Possible Misinterpretations or Typographical Errors

Given the simplicity of the equation $T(n) = (T(n))^2$, it's possible that there was a typographical error or misunderstanding in the problem statement. For instance, perhaps you intended to write a different recurrence relation, such as:

$$T(n) = 4T\left(\frac{n}{4}\right) + n^2$$

or

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

If you intended a different form of the recurrence, please provide the corrected equation, and I'd be happy to assist you in solving it using the **Substitution Method**, **Master Theorem**, or any other appropriate method.

Conclusion

Given the equation as provided:

$$T(n) = (T(n))^2$$

the only valid solutions are the constant functions:

$$T(n) = 0$$
 or $T(n) = 1$

Both solutions satisfy the equation for all values of n. Neither the **Substitution Method** nor the **Master Theorem** is necessary or applicable for solving this particular functional equation.

If this wasn't your intended recurrence relation, please provide the correct form, and I'll gladly help you solve it!