

Hendrik Borras

Supervisor: Michael Schmelling

MC SIMULATION

- Did and integrated multiple measurements
- Added new angle density function for cosmics
 - Published by: Philipp Biallass and Thomas Hebbeker
 - Valid form 3GeV to 3TeV
 - Slightly worse match than cos^2
- Fixed some smaller bugs

MC SIMULATION

- Fitting of the exponent of a cos^n distribution of cosmics
- For MC not solvable with gradient descent algorithms
 - Non deterministic behavior of MC
- Very close to 2
- Fitting a Polynomial function instead of a parable should yield even better results

1.0

NUMERICAL SIMULATION

Numerical simulation and measured rate - Detector geometry: (0.2, 0.2) [m,m]

Number of steps in the numerical area calculation 10

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 10 different angles

Distance [m]

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 20 different angles

Numerical simulation and measured rate - Detector geometry: (0.2, 0.2) [m,m]

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 50 different angles

Distance [m]

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 100 different angles

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 200 different angles

- Calculates the overlapping area for different angles and distances
- Multiplies the overlapping area with the flux from cosmics for that angle area
- Deterministic results
- Considerably faster than the MC
- Adjustable precision of the numerical calculation
 - On the right, the overlapping area was calculated for 500 different angles

NEXT STEPS

- Find the optimal "n" for a "cos^n" distribution of cosmics with the numerical simulation
- Try out a polynomial fit for the MC with the "cos^n" distribution of cosmics
- Start working on the µTelescope