Bemerkungen

1. Physik besteht nicht aus Formeln, sondern aus den Konzepten, die dahinter stecken. Es nützt Ihnen also nichts, wenn Sie die Formeln auf diesem Blatt auswendig lernen ohne verstanden zu haben, was die zugrunde liegenden Sachverhalte sind.

- 2. Wie in jedem Fach braucht man auch in der Physik einen gewissen Grundstock an schnell abrufbarem Wissen, um sich auf einem vernünftigen Niveau über Probleme zu unterhalten. In diesem Sinne ist diese Zusammenstellung zu verstehen. Sie erhebt aber keinesfalls Anspruch auf Vollständigkeit¹. Insbesondere sollten Sie in der Lage sein, aus den Grundformeln weitere Formeln herzuleiten, die hier nicht aufgeführt sind.
- 3. Zu Beginn jedes Abschnitts finden Sie Begriffe, deren Bedeutung und Definition Sie kennen müssen, da sie für das Verständnis der Physik wesentlich sind.
- 4. Die Fertigkeiten beschreiben Vorgänge, die über das "Rechnen" hinausgehen. Eine Fehlerrechnung kann bei jeder Frage quantitativen Frage verlangt werden.
- 5. Die Konstanten zu Beginn eines Abschnittes sollten Sie mit einer Genauigkeit von 10% auswendig kennen.
- 6. Machen Sie sich bei der Vorbereitung auch klar, was wichtige Anwendungen der jeweiligen physikalischen Gesetze sind.

¹Falls Sie Fehler entdecken oder Vorschläge haben, bitte ich Sie mich zu benachrichtigen.

A Mechanik

1 Kinematik

THEMEN	gleichförmige Bewegung:	Zeit, Ort, Geschwindigkeit
	gleichmässig beschleunigte Bewegung:	Durchschnitts- und Momentangeschwindigkeit, Beschleunigung
	Würfe:	freier Fall, vertikaler Wurf, zusammengesetzte Bewegungen, horizontaler Wurf
	Kreisbewegung:	Umlaufzeit und Frequenz, Bahn- und Winkelgeschwindigkeit, Radialbeschleunigung
FERTIGKEITEN	s(t)-, $v(t)$ - und $a(t)$ -Diagramme ersteller	n, interpretieren, ineinander umwandeln
Konstanten	Fallbeschleunigung auf Erde und Mond	
DEFINITIONEN	Geschwindigkeit	$v = \frac{\Delta s}{\Delta t}$
	Beschleunigung	$a = \frac{\Delta v}{\Delta t}$
	Frequenz	$f = \frac{n}{t}$
	Umlaufzeit	$T = \frac{1}{f}$
	Kreisfrequenz	$\omega = \frac{2\pi}{T} = 2\pi \cdot f$ (Winkel im Bogenmass)
GESETZE	Bahngeschwindigkeit	$v = \omega \cdot r$
	Radialbeschleunigung	$a_R = \frac{v^2}{r} = \omega^2 \cdot r$

2 Dynamik

THEMEN	Trägheit und Masse:	Masse, Dichte
	Impuls und Impulserhaltung:	Impuls, abgeschlossenes System, Impulserhaltung
	Newton-Axiome:	Trägheits-, Aktions- und Wechselwirkungsprinzip, Kraft
	Dynamik der Kreisbewegung:	Zentripetalkraft
FERTIGKEITEN	Kräfte einzeichnen, addieren und zerlege Bewegungsgleichung aufstellen und lösen	()
Konstanten	Dichten von Luft und Wasser	
DEFINITIONEN	Dichte	$\rho = \frac{m}{V}$
	Impuls	$ec{p} = m \cdot ec{v}$
GESETZE	Aktionsprinzip	$ec{F}_{res} = rac{\Delta ec{p}}{\Delta t} = m \cdot ec{a}$
	Gewichtskraft	$F_G = m \cdot g$
	Federkraft	$F_F = -D \cdot \Delta s$
	Reibungskraft	$F_{R,G} = \mu_G \cdot F_N$ (Gleitreibung)
	Luftwiderstand	$F_{R,H} \leq \mu_H \cdot F_N = F_{R,H}^{max}$ (Haftreibung, Ungleichung) $F_L = \frac{1}{2} \cdot c_w \cdot A \cdot v^2$ (proportional zu v^2)

3 Energetik

THEMEN	Energie und Energieerhaltung:	Lageenergie, kinetische Energie, Spannenergie einer Feder, Energieerhaltung, *Gravitationsenergie
	Stösse:	elastische und unelastische Stösse
	Arbeit und Leistung:	Arbeit, Leistung, Wirkungsgrad
FERTIGKEITEN	Energieerhaltungssatz sauber aufstellen Stossprobleme algebraisch korrekt mit E	(auch mit nichtmechanischen Energieformen) Energie- und Impulserhaltungssatz lösen
Konstanten		
DEFINITIONEN	Lageenergie	$E_{pot} = m \cdot g \cdot h \qquad \text{(Nullpunkt beliebig)}$
	kinetische Energie	$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$
	Spannenergie	$E_{span} = \frac{1}{2} \cdot D \cdot (\Delta s)^2$
	Arbeit	$W = \vec{F} \cdot \vec{s} = F_s \cdot s$ (F_s Kraftkomponent parallel zur
		Bewegungsrichtung)
	Leistung	$P = \frac{W}{\Delta t} = F_s \cdot v$
	Wirkungsgrad	$\eta = rac{E_{ m nutzbar}}{E_{ m aufgewendet}}$
GESETZE		

4 Gravitation

Turkery	Vanlanmagatza	Dlanatanhahnan Eläshangata
THEMEN	Keplergesetze:	Planetenbahnen, Flächensatz
	Gravitation:	Gravitationskraft, *Gravitationsenergie, *Fluchtgeschwindigkeit
FERTIGKEITEN	Planentenbahnen um eine Sonne zeichne	en
	Masse eines Himmelskörpers aus der Un	nlaufzeit eines Satelliten berechnen
Konstanten	Gravitationskonstante	
	Masse und Radius von Erde, Mond und	Sonne; Abstände Erde-Sonne und Erde-Mond
DEFINITIONEN		
GESETZE	Kepler 1	Planeten bewegen sich auf elliptischen Bahnen mit der
		Sonne im einen Brennpunkt
	Kepler 2 (Flächensatz)	Der Radiusstrahl von der Sonne zu einem Planeten über-
		streicht in gleichen Zeiten gleiche Flächen
	Kepler 3	Die Quadrate der Umlaufzeiten von Planeten verhalten
		sich wie die Kuben der grossen Halbachsen. $(T_1:T_2)^2 =$
		$(a_1:a_2)^3$
	Gravitationskraft	$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$
	Arbeit im Gravitationsfeld	$W_{1\to 2} = G \cdot m_1 \cdot m_2 \cdot (\frac{1}{r_1^2} - \frac{1}{r_2^2})$

5 Starrer Körper

THEMEN Hebelgesetz: Drehmoment, Drehmomentengleichgewicht

Schweredruck und Gleichgewicht: Schwerpunkt; stabiles, instabiles und indifferentes

Gleichgewicht

FERTIGKEITEN Gleichgewichtsbedingungen für einen starren Körper sauber aufschreiben

Schwerpunkt aus Teilschwerpunkten bestimmen

Konstanten

DEFINITIONEN Drehmoment einer Kraft $\vec{M} = \vec{r} \times \vec{F}$ GESETZE Drehmomentengleichgewicht $\sum_i \vec{M}_i = 0$

6 Hydrostatik

THEMEN Satz von Pascal: Druck, hydraulische Systeme

Schweredruck in Flüssigkeiten und Ga-

sen:

hydrostatisches Paradoxon, kommunizierende Gefässe

Prinzip von Archimedes, Schwimmkörper

FERTIGKEITEN Funktionsweise eines Quecksilberbarometers erklären

Eintauchtiefe eines schwimmenden Körpers bestimmen

KONSTANTEN Normdruck

Auftrieb:

Definitionen Druck $p = \frac{F}{A}$

Gesetze Schweredruck in Fluiden $\Delta p = \rho_{Fl} \cdot g \Delta h$

Auftrieb Der Auftrieb entspricht dem Gewicht der verdrängten

Flüssigkeit.

 $F_A = \rho_{Fl} \cdot V \cdot g$

B Wärmelehre

7 Gase

THEMEN	Gasgesetz:	ideales Gas, Prozess vs. Zustand; Stoffffmenge, Molmasse
	kinetische Gastheorie:	Teilchenmodell, Geschwindigkeitsverteilung
FERTIGKEITEN	Teilchenzahl in einer bestimmten Substa Zustandsdiagramme erstellen, interpreti	<u> </u>
Konstanten	Molmassen wichtiger Elemente (Wasserstoff, Helium, Sauerstoff, Stickstoff, Kohlenstoff)	
	Avogadrozahl	
	universelle Gaskonstante	
DEFINITIONEN	Molmasse	$M = \frac{m}{n}$
Gesetze	Gesetz von Avogadro	$N = n \cdot N_A$
	Zustandsgleichung für ideal Gase	$p \cdot V = n \cdot R \cdot T = N \cdot k \cdot T$
	Mittlere kinetische Teilchenenergie	$\bar{E}_k = \frac{3}{2}k \cdot T$ nur temperaturabhängig
	Näherung mittlere Teilchengeschwindigkeit	$ar{v} pprox \sqrt{rac{3 \cdot R \cdot T}{M}}$

8 Temperatur und Wärme

THEMEN	Temperatur:	thermisches Gleichgewicht, Celsius- und Kelvinskala
	Längen- und Volumenausdehnung:	Ausdehnungskoeffizient, $\gamma = 3\alpha$, Bimetall
	Innere Energie:	Arbeit und Wärme bei Gasen
	Wärmekraftmaschinen:	Stirling-Prozess; Wärmekraftmaschine, Wärmepumpe und Kühlmaschine; idealer Wirkungsgrad
	Phasenübergänge:	Aggregatzustände und Aggregatzustandsänderungen; Schmelz- und Verdampfungswärme
	spezifische Wärme:	spezifische und molare Wärme von Gasen, Flüssigkeiten und festen Körpern; Mischkalorimetrie
	Wärmetransport:	Konvektion, Wärmeleitung, Wärmestrahlung
FERTIGKEITEN	Energieflussdiagramme für Wärmekraftr	maschinen zeichnen und interpretieren
		rrekt formulieren (auch mit Aggregatzustandsände-
	rung)	
	Strahlungsintensität bei verschiedenen T	Temperaturen als Funktion der Wellenlänge skizzie-
	ren	
Konstanten	spezifische Wärme von Wasser	
	Spezifische Schmelz- und Verdampfungs	wärme von Wasser
	Solarkonstante	

DEFINITIONEN	Heizwert	$H = \frac{Q}{m}$
	spezifische Wärme	$M = \frac{\Delta Q}{m \cdot \Delta T}$
	latente Wärme	$L_{f,v} = \frac{\overline{Q_{f,v}}}{m}$ schmelzen (f), verdampfen (v)
	Strahlungsintensität	$J = \frac{P}{A}$
GESETZE	Längenausdehnung (fester Körper)	$\Delta l = \alpha \cdot l_0 \cdot \Delta \theta$
	Volumenausdehnung	$\Delta V = \gamma \cdot V_0 \cdot \Delta \theta$
	1. Hauptsatz der Wärmelehre	$\Delta U = Q^{\nearrow} + W^{\nearrow}$
	idealer Wirkungsgrad (Carnot)	$\eta_C = 1 - \frac{T_k}{T_h}$
	realer Wirkungsgrad	$\eta = \frac{W}{Q_{auf}} = 1 - \frac{Q_{ab}}{Q_{auf}}$
	Wärmeleitgleichung	$\frac{Q}{\Delta t} = -\lambda \cdot A \frac{\Delta T}{d} = -U \cdot A \cdot \Delta T$
	Kirchhoff'sches Strahlungsgesetz	$J = \epsilon \cdot J_S$
	Gesetz von Stefan-Bolzmann	$J_S = \sigma T^4$
	Wien'sches Verschieunbsgesetz	$\lambda_{max} \cdot T = b$

C Elektrizität und Magnetismus

9 Elektrostatik

THEMEN	Grundphänomene:	Elementarladung, Leiter und Isolatoren, Influenz
	Coulombkraft:	Kraft zwischen Punktladungen
	elektrisches Feld:	Feldlinienbilder, Überlagerung von Feldern, Felder von Punktladung und Plattenkondensator; Satz von Gauss
	Spannung:	Arbeit im elektrischen Feld, Beschleunigung von geladenen Teilchen, Plattenkondensator
	Erzeugung elektrischer Felder:	Felder von Platten und Punktladungen
	Kondensatoren:	Plattenkondensator, Materie im elektrischen Feld, elektrische Feldenergie
FERTIGKEITEN		izzieren, für Punktladungen Feldstärken bestimmen chleunigungsspannung berechnen (Einheit eV)
Konstanten	Elementarladung	
	elektrische Feldkonstante	
DEFINITIONEN	elektrische Feldstärke	$ec{E} = rac{ec{F}}{q}$ $U_{12} = rac{W_{1 o 2}}{q}$ $C = rac{Q}{U}$
	Spannung	$U_{12} = \frac{W_{1\rightarrow 2}}{q}$
	Kapazität	$C = \frac{Q}{U}$
GESETZE	Coulombkraft zwischen zwei Punktladungen	$F_C = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$
	Spannung im homogenen Feld	$U = E \cdot d$
	Potential einer Punktladung	$\varphi(r) = \frac{1}{4\pi\epsilon_0\epsilon_r} \frac{q}{r}$
	Kapazität eines Plattenkondensators	$C = \epsilon_0 \epsilon_r \frac{A}{d}$
	Energie im Feld eines Kondensators	$W_{elek} = \frac{1}{2}QU = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$
	Energiedichte im elektrischen Feld	$w_{elek} = \frac{1}{2}\epsilon_0\epsilon_r E^2$

10 Gleichstrom

THEMEN	Stromstärke und Leistung: Widerstand:	einfacher Stromkreis, Leistung des elektrischen Stroms Kennlinien nicht ohmscher Widerstände, ohmsche Widerstände, spezifischer Widerstand, Temperatu- rabhängigkeit
	Widerstandsnetzwerke:	Serie- und Parallelschaltung; reale Spannungsquelle (Innenwiderstand), Messgeräte
	Aufladen und Entladen von Kondensatoren:	Zeitkonstante und Halbwertszeit der Entladung
FERTIGKEITEN	Schaltschema zeichnen (mit Messgeräten) und interpretieren Gleichungssystem zu einem elektrischen Netzwerk aufstellen	

Konstanten	spezifischer Widerstand von Kupfer	
DEFINITIONEN	Stromstärke	$I = \frac{\Delta Q}{\Delta t}$
	Widerstand	$R = \frac{U}{I}$
Gesetze	Leistung des elektrischen Stroms	$P = U \cdot I$
	Ohmsches Gesetz	$U \propto I$ nur für ohmsche Widerstände
	Widerstand von Drähten	$R = \rho \cdot \frac{l}{A}$
	Temperaturabhängigkeit	$\rho(T) = \rho_0 \cdot (1 + \alpha_0 \cdot (T - T_0))$
	Serieschaltung ohmscher Widerstände	$R_{Ersatz} = R_1 + R_2 + \dots$
	Parallelschaltung ohmscher Wi-	$R_{Ersatz} = (\frac{1}{R_1} + \frac{1}{R_2} + \dots)^{-1}$
	derstände	· -

11 Magnetismus

THEMEN	Ferromagnetismus:	Permanentmagnet
	Magnetfelder:	Erdmagnetismus, Feldlinienbilder, Kraft auf stromdurchflossene Leiter
	Lorentzkraft:	Bewegung geladener Teilchen im (homogenen) Feld (Massenspektrometer, Zyklotron)
	Erzeugung von Magnetfeldern:	Feld von: langem, geradem Leiter, Kreisstrom, dünner Spule, Helmholtzspulen
	Induktion:	magnetischer Fluss, Induktionsgesetz, Lenz'sche Regel, Wirbelströme
	Selbstinduktion:	Selbstinduktion, Einschalt-/Ausschaltstrom, magnetische Feldenergie
FERTIGKEITEN	Feldlinienbilder von Magneten skizzieren graphisch ableiten und integrieren (Indu- Funktionsweise eines Generators und Mo	ktionsspannung und magnetischer Fluss)
Konstanten	Erdmagnetfeld in Zürich (Horizontalkom	ponente und Inklination)
	magnetische Feldkonstante	
DEFINITIONEN	magnetische Feldstärke	$\vec{F} = l \cdot \vec{I} \times \vec{B}$ Richtung Rechte-Hand-Regel
	magnetischer Fluss	$\Phi = B \cdot A_{\perp} = B \cdot A \cdot \cos \alpha$
GESETZE	Lorentzkraft	$\vec{F}_L = q \cdot \vec{v} \times \vec{B}$ Richtung Rechte-Hand-Regel
	Magnetfeld um geraden Leiter	$B = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}$
	Magnetfeld in langer, dünner Spule	$B = \mu_0 \cdot \frac{N \cdot I}{l}$
	induzierte Spannung in bewegtem Leiterstück	$U_{ind} = v \cdot B \cdot l$
	induzierte Spannung	$U_{ind} = -N \cdot \dot{\Phi}(t)$
	selbstinduzierte Spannung	$U_{ind} = -L \cdot \dot{I}(t)$
	Induktivität einer dünnen Spule	$L = \frac{\mu_0 \mu_r N^2 A}{I}$
	Ausschaltstrom	$I(t) = I_0 e^{-t/\tau}$
	Zeitkonstante	$ au = \frac{L}{R}$
	Energie im Magnetfeld einer Spule	$W_{mag} = \frac{1}{2}LI^2$
	0 0	mag 2

12 * Elektrotechnik (Wechselspannung)

THEMEN	Wechselstromkreis:	Impedanz und Phasenverschiebung, Wirkleistung
	Transformator:	
	elektrische Energieübertragung:	
FERTIGKEITEN	Amplitude, Frequenz, Phasenverschiebur Energieübertragung vom Kraftwerk bis	
Konstanten	Frequenz und Effektivwert der Haushalt	spannung
DEFINITIONEN	harmonische Wechselspannung	$u(t) = \hat{u} \cdot \cos(\omega \cdot t + \varphi_0)$
	Effektivwerte von Spannung und Strom	
		$U_{\text{eff}} = \sqrt{\frac{1}{T} \cdot \int_0^T U(t)^2 dt}$ Allgemein
	Impedanz	$Z = \frac{U_{\text{eff}}}{I_{\text{eff}}} = \frac{\hat{U}}{\hat{i}}$ Einheit Ohm
GESETZE	Phasen- und Zeitverschiebung	$\frac{\Delta \varphi}{2\pi} = \frac{\Delta t}{T}$
	Wirkleistung	$P = U \cdot I \cdot \cos(\Delta \varphi)$ Einheit Watt
		mit $\Delta \varphi$: Winkel der Phasenverschiebung zwischen
		Strom und Spannung
	Scheinleistung	$S = U \cdot I$ Einheit VA
	Blindleistung	$Q = U \cdot I \cdot \sin(\Delta \varphi)$ Einheit var
	Leistungsfaktor	$\cos(\Delta arphi)$
	ohmscher Widerstand	$Z_R = R, \Delta \varphi = 0$
	kapazitiver Widerstand	$Z_C = \frac{1}{\omega \cdot C}, \ \Delta \varphi = -\pi/2$
	induktiver Widerstand	$Z_L = \omega \cdot L, \Delta \varphi = +\pi/2$
	Serie RCL	$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$
	Parallel RCL	$\frac{1}{z} = \sqrt{\frac{1}{R^2} + (\frac{1}{\omega L} - \omega C)^2}$
	Resonanzfrequenz (ungedämpft)	$f = \frac{1}{2\pi\sqrt{LC}}$
	unbelasteter Transformator	$\frac{U_2}{U_1} = \frac{n_2}{n_1}$ Übersetzungverhältnis
	belasteter Transformator	$\frac{I_1}{I_2} = \frac{n_2}{n_1}$

D Schwingungen und Wellen

13 Schwingungen

Themen	harmonische Schwingung:	Kinematik, Dynamik und Energetik
		Bei einer harmonischen Schwingung liegt ein lineares
		Kraftgesetz vor.
	Dämpfung und Resonanz	Energieverlust durch Dämpfung, Hüllkurve, erzwungene
	Damping and Resonanz	Schwingung
	Überlagerung von Schwingungen	Schwebung
	gekoppelte Schwingungen	Kopplungsarten, Eigenschwingungen
FERTIGKEITEN	charakteristische Gleichung erkennen un	nd daraus Periodendauer bestimmen
	Diagramme für Auslenkung, Geschwind	
Konstanten		
DEFINITIONEN	charakteristische Differentialgleichung	$\dot{y}(t) = -\omega^2 \cdot y(t)$
GESETZE	Bewegungsgleichung	$y(t) = \hat{y} \cdot \sin\left(\omega t\right)$
	Geschwindigkeit	$v(t) = \underbrace{\omega \cdot \hat{y}}_{\hat{v}} \cos(\omega t)$
	Beschleunigung	$a(t) = -\underbrace{\hat{\omega}^2 \cdot \hat{y}}_{\hat{a}} \sin(\omega t)$
	Periodendauer	$T = \frac{2\pi}{\omega} = 2\pi f$
	Gesamtenergie	$\frac{1}{2} \cdot m \cdot v^2 + \frac{1}{2} \cdot D \cdot y^2 = \frac{1}{2} \cdot m \hat{y}^2 \cdot \omega^2 \text{proportional zu } \hat{y}^2$
	Periodendauer eines Federpendels	$T = 2\pi \cdot \sqrt{\frac{m}{D}}$
	Periodendauer eines Fadenpendels	$T \approx 2\pi \cdot \sqrt{\frac{l}{g}}$ für kleine Amplituden
	Periodendauer eines elekt. Schwingkreises	$T = 2\pi \cdot \sqrt{L \cdot C}$ für kleine Amplituden
	gedämpfte Schwingung	$y(t) = \hat{y}(t) \cdot \sin{(\omega t)}$
	exponentielle Dämpfung	$y(t) = \hat{y}(t) \cdot \sin(\omega t)$ $\hat{y}(t) = \hat{y}_0 \cdot e^{-\delta \cdot t}$
	Halbwertszeit bei exp. Hüllkurve	$T_{1/2} = \tau \cdot \ln 2$

14 Wellen

THEMEN Wellen: Störung, Trägermedium, Kopplung; Longitudinal- und

Transversalwellen (Beispiele)

lineare Wellen Orts- und Zeitbild

Zeitkonstante für gedämpften elek. $\tau = 2\frac{L}{R}$

harmonische Wellen Wellenlänge, Frequenz / Periode, stehende Welle

 $f_S = |f_1 - f_2|$

Schwingkreis

Schwebungsfrequenz

FERTIGKEITEN	Wechsel zwischen Orts- und Zeitbild, Typische Wellenphänomene erkennen (Bsp an Wasserwellenwanne)	
	Überlagerung einlaufender und reflektierter Welle	
Konstanten		
DEFINITIONEN	charakteristische Gleichungen	$y(x,t) = f(x - v \cdot t)$
	harmonische Welle	$y(x,t) = \hat{y} \cdot \cos(\omega t - k \cdot x)$
GESETZE	Wellenzahl	$k = \frac{2\pi}{\lambda}$
	Ausbreitungsgeschwindigkeit	$v = \lambda \cdot f$

15 Akkustik (Schallwellen)

Тнемен	Schallwellen:	Schallgeschwindigkeiten in verschiedenen Medien
	Tonhöhe:	Frequenz und Frequenzverhältnisse, Stimmungen
	Lautstärke:	Schallintensität und Schallpegel; Dezibel- und Phonskala
	Instrumente:	Stehende Wellen; Saiteninstrumente und Pfeifen; Klangspektrum
	Dopplereffekt:	bewegte Quelle und/oder Beobachter, Frequenzverschiebung bei Reflexion an bewegtem Objekt
FERTIGKEITEN	stehende Wellen auf Saiten und in dünn	en Pfeifen skizzieren
	Addition von Schallpegeln, Leistungen/	Intensitäten, Intervallen
Konstanten	Schallgeschwindigkeit in Luft	
	wichtigste Intervalle	
	Hörschwelle und Hörbereich des mensch	lichen Ohrs
DEFINITIONEN	Schallintensität	$J = \frac{P}{A}$
	Schallpegel	$L = 10 \cdot \log \frac{J}{J_0}$ doppelte Schallintensität $\rightarrow +3$ dB
GESETZE	Schallgeschwindigkeit in Gasen	$v_S = \sqrt{rac{\kappa \cdot R \cdot T}{M}}$
	Schallgeschwindigkeit in Flüssigkeiten	$v_S = \sqrt{\frac{1}{\chi \cdot \rho}}$
	Schallgeschwindigkeit in Saite (Transversal)	$v_S = \sqrt{\frac{\sigma}{ ho}} = \sqrt{\frac{F}{m^*}}$
	schwingende Saite (n-ter Oberton)	$f_n = (n+1) \cdot f_0 = (n+1) \cdot \frac{v_s}{2 \cdot l}$ Knoten an den Enden
	offene Pfeife (n-ter Oberton)	$f_n = (n+1) \cdot f_0 = (n+1) \cdot \frac{v_s}{2 \cdot l}$ Knoten an den Enden
	gedackte Pfeife (n-ter Oberton)	$f_n = (2n+1) \cdot f_0 = (2n+1) \cdot \frac{v_S}{4 \cdot l}$ Schwingungsbäuche an den Enden
	Dopplereffekt	$f=f_0\cdot \frac{v_S\pm v_B}{v_S\mp v_Q}$ Vorzeichen für Zähler und Nennen separat überlegen

16 Strahlenoptik

Themen	Reflexion und Brechung:	Reflexion und Brechung, Totalreflexion
	Linsen	Abbildung mit Linsen, Dioptrie
	Lichtsgeschwindigkeit	Ausbreitungsgeschwindigkeit im Vakuum und in Medien
FERTIGKEITEN	Verlauf eines Lichtstrahls durch einen Körper zeichnen Abbildung mit Linsen konstruieren (vgl. Praktikum)	
Konstanten	Brechzahl von Luft, Glas, Wasser	
	kritischer Winkel für Totalreflexion in Glas	
DEFINITIONEN	Brechzahl	$n = \frac{c_{\text{vakuum}}}{c_{\text{Medium}}}$
GESETZE	Reflexionsgesetz	$\alpha = \alpha'$
	Brechungsgesetz	$n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$
	Totalfeflexion (kritischer Winkel)	$\sin \alpha_k = \frac{n_2}{n_1}$ nur für $n_1 > n_2$
	Abbildungsgleichung (für dünne Linsen)	$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$ Vorzeichenkonvention beachten
	Lateralvergrösserung	$\frac{B}{G} = \frac{b}{g}$

17 Wellenoptik und em-Wellen

THEMEN	Elektromagnetische Wellen:	Entstehung und Ausbreitung, elektromagnetisches Spektrum
	Polarisation	Polarisationsfilter, Polarisiertes Licht nach Reflexion
	Wellenoptik	Prinzip von Huygens, Beugung
FERTIGKEITEN	Beispiel von Wellenoptik in der Natur / Elementarwellen (Huygensprinzip)	Technik a graphisch finden (Gangunterschied / Hyperbel)
Konstanten	Lichtgeschwindigkeit im Vakuum	
DEFINITIONEN		
GESETZE	Bedingung für konstruktive Interferenz	$\Delta s = s_2 - s_1 = m\lambda$ $m = 0, \pm 1, \pm 2,$
	Beugung am Gitter / Doppelspalt	$\sin(\alpha_m) = m \frac{\lambda}{d}$ Maxima
	Beugung am Einzelspalt	$\sin(\alpha_k) = k \frac{\lambda}{s}$ Minima
	Auflösungsvermögen	$\frac{\Delta y}{\Delta x} \approx \frac{\lambda}{d} \approx \frac{a}{e}$ Bsp Auge und Lichtmikroskop
	Lichtmikroskop	$\Delta y = \frac{f}{d} \cdot \lambda \approx \lambda$
	Polarisation Malusches Gesetz	$I = I_0 \cdot \cos^2(\alpha)$ Einfallendes linear polarisiertes Licht
	Dipolfrequenz	$f = \frac{c}{2 \cdot l}$ Dipollänge l
	${\bf Ausbreitungsgeschwindigkeit\ im\ Vakuum}$	$c_0 = \frac{1}{\sqrt{\epsilon_0 \cdot \mu_0}}$
	Ausbreitungsgeschwindigkeit im Medium	$c = \frac{c_0}{n} = \frac{1}{\sqrt{\epsilon_0 \cdot \epsilon_r \cdot \mu_0 \cdot \mu_r}}$

Feldvektoren $\vec{E} = \vec{B} \times \vec{c}$ Poyntingvektor $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ Intensität harmonische Welle $I = \langle S \rangle = \frac{E_0^2}{2 \cdot c \cdot \mu_0} = \frac{c \cdot \epsilon_0 \cdot E_0^2}{2}$ Abstandsgesetz $I = \frac{P}{4\pi \cdot r^2}$ Intensität Punktquelle

\mathbf{E} Moderne Physik

Spezielle Relativitätstheorie

THEMEN Postulate der SRT: Experiment von Michelson-Morley, Relativitätsprinzip

und absolute Lichtgeschwindigkeit

Kinematik: Gleichzeitigkeit, Zeitdilatation (Lichtuhr), Längenkon-

traktion

Dynamik: relativistische Energie, Äquivalenz von Energie und

Masse, kinetische Energie, Massendefekt

Fertigkeiten Geschwindigkeit eines Teilchens aus der Beschleunigungsspannung berechnen bei Kernspal-

tung oder Kernfusion freigesetzte Energie berechnen

Konstanten

DEFINITIONEN einheitenlose Geschwindigkeit

 $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ nicht-relativistisch heisst: $\gamma - 1 \ll 1$ Lorentzfaktor

 $t = \gamma \cdot t_0$ GESETZE Zeitdilatation

relativistischer Impuls

 $l = \frac{l_0}{\gamma}$ Längenkontraktion nur entlang Bewegungsrichtung

 $E_0 = m_0 \cdot c^2$ Äquivalenz von Energie und Masse Ruheenergie

relativistische Energie $E = E_0 + E_{kin} + \dots = \gamma \cdot E_0$

relativistische Masse $m = \frac{m_0}{\sqrt{1 - (\frac{v}{2})^2}}$ $p = \gamma \cdot m_0 \cdot v$

 $E^2 = (E_0)^2 + (p \cdot c)^2$ Energie-Impuls-Beziehung

 $\Delta m = m_X - Z \cdot m_p - (N - Z) \cdot m_n$ $f = f_0 \cdot \sqrt{\frac{c \pm v}{c \mp v}}$ Massendefekt

Dopplereffekt für Licht

19 Quantenphysik

THEMEN Photoeffekt: Austrittsarbeit, Photon

> Dualismus Teilchen - Welle de Broglie-Beziehung, Elektronenbeugung

Atomphysik: Energieniveaus, Serienformel

FERTIGKEITEN

Konstanten Planck'sches Wirkungsquantum

Ionisationsenergie von Wasserstoff

DEFINITIONEN

 $E = h \cdot f = \frac{hc}{\lambda}$ GESETZE Photonenenergie

 $h \cdot f = W_A + W_{kin}$ Photoelektrische Gleichung

 $f_{min} = \frac{W_A}{h}$ Grenzfrequenz $m = \frac{hf}{c_0^2}$ $\lambda_B = \frac{h}{p}$ Masse des Photons

de Broglie-Wellenlänge

> $\lambda_B = \frac{h}{\sqrt{2qmU}}$ de Broglie-Wellenlänge $\Delta x \cdot \Delta p \approx h$ Heisenberg'sche Unbestimmtheitsrela-

tion

 $\Delta E \cdot \Delta t \approx h$

 $\Delta f \cdot \Delta t \approx 1$

 $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \cdot \frac{1}{n^2}$ Energieniveau Wasserstoff

 $f_{m,n} = \frac{m_e e^4}{8\epsilon_0^2 h^3} \cdot \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$ Serienformel

20 Kernphysik

THEMEN radioaktiver Zerfall: α -, β - und γ -Zerfall, Tochterkerne; Zerfallsgesetz und

Halbwertszeit

FERTIGKEITEN Tochterkerne beim α - und β -Zerfall bestimmen

Halbwertszeit aus Zerfallkurve ablesen

Konstanten

DEFINITIONEN

$$\begin{split} T_{1/2} &= \frac{\ln 2}{\lambda} \\ d_{1/2} &= \frac{\ln 2}{\mu} \\ N(t) &= N_0 \cdot e^{-\lambda \cdot t} = N_0 \cdot 2^{-t/T_{1/2}} \end{split}$$
Halbwertszeit Halbwertsdicke

GESETZE Zerfallgesetz

> $A = -\frac{dN}{dt} = \lambda \cdot N$ Einheit: Bequerel = 1/sAktivität

 $I = I_0 \cdot e^{-\mu \cdot d}$ Absorptionsgesetz Dicke d

21 Teilchenphysik

THEMEN Teilchenzoo: Leptonen, Quarks, Hadronen...

> Erhaltungsgrösse elektrische Ladung, Impuls, Energie, Leptonenzahl, Ba-

> > ryonenzahl, Spin, Strangeness, Charm, Topness, Bot-

tomness...

* Beschleunigerphysik

Bestimmen, ob einen Zerfall theoretisch FERTIGKEITEN

möglich ist.

Konstanten

DEFINITIONEN

GESETZE