Pynqrypt A FPGA-accelerated encryption library for PYNQ

Roberto Alessandro Bertolini

FPGA101 - Politecnico di Milano

January 9, 2023

PYNQ

PYNQ

PYNQ is an open-source project which provides a Python-based development environment for Xilinx Zynq SoCs and Alveo accelerator boards.

PYNQ

PYNQ is an open-source project which provides a Python-based development environment for Xilinx Zynq SoCs and Alveo accelerator boards.

Pros

PYNQ

PYNQ is an open-source project which provides a Python-based development environment for Xilinx Zynq SoCs and Alveo accelerator boards.

Pros

Easy to use

PYNQ

PYNQ is an open-source project which provides a Python-based development environment for Xilinx Zynq SoCs and Alveo accelerator boards.

Pros

- Easy to use
- Portable

PYNQ

PYNQ is an open-source project which provides a Python-based development environment for Xilinx Zynq SoCs and Alveo accelerator boards.

Pros

- Easy to use
- Portable
- Fast

AES

AES

AES is a symmetric-key algorithm for secure encryption and decryption. It is widely used in both industry and government to protect sensitive data.

AES

AES is a symmetric-key algorithm for secure encryption and decryption. It is widely used in both industry and government to protect sensitive data.

AES-CTR

AES

AES is a symmetric-key algorithm for secure encryption and decryption. It is widely used in both industry and government to protect sensitive data.

AES-CTR

AES-CTR is a mode of operation for the AES block cipher. It is a highly-parallelizable and efficient encryption algorithm, well suited for hardware acceleration.

AES-CTR

Counter (CTR) mode encryption

Performance Considerations

Security usually comes at the cost of performance.

Performance Considerations

Security usually comes at the cost of performance. High performance systems have no trouble satisfying these requirements, but the same cannot be said for low-power embedded systems.

Performance Considerations

Security usually comes at the cost of performance. High performance systems have no trouble satisfying these requirements, but the same cannot be said for low-power embedded systems.

Pynq Z2 | 78

What is Pynqrypt

Pynqrypt is a Python library for data encryption with the AES-CTR algorithm.

What is Pynqrypt

Pynqrypt is a Python library for data encryption with the AES-CTR algorithm.

 Works on every platform supported by PYNQ (with the appropriate bitstream)

What is Pyngrypt

Pynqrypt is a Python library for data encryption with the AES-CTR algorithm.

- Works on every platform supported by PYNQ (with the appropriate bitstream)
- Compatible with other AES-CTR implementations

What is Pynqrypt

Pynqrypt is a Python library for data encryption with the AES-CTR algorithm.

- Works on every platform supported by PYNQ (with the appropriate bitstream)
- Compatible with other AES-CTR implementations
- Fast

Performance Comparison

Performance Comparison

from pynqrypt import Pynqrypt import numpy as np


```
from pynqrypt import Pynqrypt import numpy as np
```

```
pynqrypt = Pynqrypt(file='./bistream.xsa', post_ap=True)
```

```
from pyngrypt import Pyngrypt
import numpy as np
pynqrypt = Pynqrypt(file='./bistream.xsa', post_ap=
True)
data = np.frombuffer(..., np.uint8)
pynqrypt.set_key(...)
pynqrypt.set_nonce(...)
pyngrypt.set_length(len(data))
```

```
input_buffer = pynqrypt.get_input_array()
output_buffer = pynqrypt.get_output_array()
input_buffer[:] = data[:]

pynqrypt.prepare()
pynqrypt.run_blocking()
```

input_buffer = pyngrypt.get_input_array()

Usage

```
output_buffer = pynqrypt.get_output_array()
input_buffer[:] = data[:]

pynqrypt.prepare()
pynqrypt.run_blocking()

output_buffer.invalidate()
... = bytes(output_buffer)
```

pynqrypt.cleanup()

Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS

- Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS
- Issue: Vitis HLS doesn't work Solution: install libncurses5-dev

- Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS
- Issue: Vitis HLS doesn't work Solution: install libncurses5-dev
- Issue: Vitis HLS doesn't work Solution: install g++ and other buildtools

- Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS
- Issue: Vitis HLS doesn't work Solution: install libncurses5-dev
- Issue: Vitis HLS doesn't work Solution: install g++ and other buildtools
- Issue: Vitis HLS doesn't work Solution: always do a clean build of the project

- Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS
- Issue: Vitis HLS doesn't work Solution: install libncurses5-dev
- Issue: Vitis HLS doesn't work Solution: install g++ and other buildtools
- Issue: Vitis HLS doesn't workSolution: always do a clean build of the project
- Issue: my IP doesn't work Solution: wire all the ports

- Issue: Vitis HLS doesn't work Solution: install Ubuntu 22.04 LTS
- Issue: Vitis HLS doesn't work Solution: install libncurses5-dev
- Issue: Vitis HLS doesn't work Solution: install g++ and other buildtools
- Issue: Vitis HLS doesn't workSolution: always do a clean build of the project
- Issue: my IP doesn't work Solution: wire all the ports Maybe rewatch the lesson?

Advantages

Advantages

 Low-power systems can greatly benefit from offloading intensive tasks to an FPGA accelerator

Advantages

- Low-power systems can greatly benefit from offloading intensive tasks to an FPGA accelerator
- On-the-fly reconfigurability allows for multiple libraries to share the same hardware

Advantages

- Low-power systems can greatly benefit from offloading intensive tasks to an FPGA accelerator
- On-the-fly reconfigurability allows for multiple libraries to share the same hardware

Drawbacks

Advantages

- Low-power systems can greatly benefit from offloading intensive tasks to an FPGA accelerator
- On-the-fly reconfigurability allows for multiple libraries to share the same hardware

Drawbacks

 Not every task is suitable for an FPGA, and some platform-specific optimization is required for best results

Advantages

- Low-power systems can greatly benefit from offloading intensive tasks to an FPGA accelerator
- On-the-fly reconfigurability allows for multiple libraries to share the same hardware

Drawbacks

- Not every task is suitable for an FPGA, and some platform-specific optimization is required for best results
- Hardware accelerated libraries might not always be a drop-in replacement, some code refactoring might be required

 Vitis HLS is magical, and makes it easy to write software for FPGAs...

- Vitis HLS is magical, and makes it easy to write software for FPGAs...
 - ... but it is also broken, badly documented and finicky to use.

- Vitis HLS is magical, and makes it easy to write software for FPGAs...
 - ... but it is also broken, badly documented and finicky to use.
- Pynq is a great platform for development and prototyping, but it is not intuitive to use and the documentation is lacking.

- Vitis HLS is magical, and makes it easy to write software for FPGAs...
 - ... but it is also broken, badly documented and finicky to use.
- Pynq is a great platform for development and prototyping, but it is not intuitive to use and the documentation is lacking.
- Sometimes I felt like I was just throwing things at the wall and hoping they would stick.

The End

Thanks for your attention!

Conclusion