Exercice de contrôle optimal

- 1. Soit $X \in \mathbb{R}^n$. Expliciter $||X||_{\mathbb{R}^n}$.
- 2. Soit $M \in \mathbb{R}^{n \times n}$. Expliciter un coefficient C tel que $||MX||_{\mathbb{R}^n} \le C ||X||_{\mathbb{R}^n}$ pour tout $X \in \mathbb{R}^n$.
- 3. Montrer que $X^T M X = o(\|X\|_{\mathbb{R}^n})$ lorsque $\|X\|_{\mathbb{R}^n} \to 0$
- 4. Soit f définie sur \mathbb{R}^n par $f(X) = X^T M X$. Calculer Df(X)(H) puis $\nabla_X f$.
- 5. On suppose dans cette question que M est symétrique définie positive. Montrer que f est convexe.

On admet le théorème suivant (théorème d'existence d'une solution pour un problème de contrôle optimal) :

[Début du théorème]

Soient $n, m, p \in \mathbb{N}^*$, $U \subseteq \mathbb{R}^p$, $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ et K > 0 telles que $\|f(t, 0, u)\|_{\mathbb{R}^n} \le K(1 + \|u\|_{\mathbb{R}^p})$ pour tous $(t, u) \in \mathbb{R} \times \mathbb{R}^p$, $g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m$, T > 0 et $k \in \mathcal{C}^1(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R})$.

 $\text{Si} \left\{ \begin{pmatrix} f(t,y,u) \\ k(t,y,u)+\xi \end{pmatrix} | u \in U, \xi \geq 0 \right\} \text{ est convexe pour tout } y \in \mathbb{R}^n \text{ et tout } t \in [0,T], \text{ et si} \left\{ (u,x) \in L^\infty([0,T],\mathbb{R}^p) \times W^{1,\infty}(\mathbb{R}^n) | x'(t) = f \big(t,x(t),u(t)\big), h \big(T,x(T)\big) \leq 0 \right\} \neq \emptyset, \text{ alors le problème suivant admet une solution :}$

$$\min_{\substack{u \in L^{\infty}([0,T],U) \\ h\left(T,x(T)\right) \leq 0 \\ x'(t) = f\left(t,x(t),u(t)\right)}} g\left(T,x(T)\right) + \int_{0}^{T} k\left(t,x(t),u(t)\right) dt$$

[Fin du théorème]

On considère le problème suivant, où Q est symétrique définie positive :

$$\min_{\substack{u \in L^{\infty}([0,T],\mathbb{R}^p) \\ -x(T) \le 0 \\ x'(t) = Ax(t) + Bu(t)}} \int_0^T x(t)^T Mx(t) + u(t)^T Qu(t) dt$$

- 6. Montrer que ce problème admet une solution.
- 7. Enoncer le principe du maximum de Pontryagin dans le cas de ce problème.

Solutions.

1. $||X||_{\mathbb{R}^n} = \sqrt{\sum_{i=1}^n X_i^2}$

Attention: $||X||_{\mathbb{R}^n} \neq \sqrt[n]{\sum_{i=1}^n |X_i|^n}$ (c'est une confusion fréquente avec la norme $||.||_{L^p}$)

- 2. $\|MX\|_{\mathbb{R}^n}^2 = \sum_{i=1}^n [MX]_i^2 = \sum_{i=1}^n \left(\sum_{j=1}^n M_{ij}X_j\right)^2 \leq \sum_{i=1}^n \left(\sum_{j=1}^n M_{ij}^2\right) \left(\sum_{j=1}^n X_j^2\right)$ par inégalité de Cauchy-Schwarz. Donc une constante possible est $C = \sqrt{\sum_{i,j} M_{ij}^2}$
- 3. $|X^TMX| = |\langle X, MX \rangle_{\mathbb{R}^n}| \le \|X\|_{\mathbb{R}^n} \|MX\|_{\mathbb{R}^n}$ par inégalité de Cauchy-Schwarz. Donc $|X^TMX| \le C\|X\|_{\mathbb{R}^n}^2$. Par conséquent, $\frac{|X^TMX|}{\|X\|_{\mathbb{R}^n}} \le C\|X\|_{\mathbb{R}^n} \to 0$. Par théorème d'encadrement, $\frac{|X^TMX|}{\|X\|_{\mathbb{R}^n}} \to 0$ ce qui nous permet de conclure que $X^TMX = o(\|X\|_{\mathbb{R}^n})$.

Attention : pour utiliser le théorème d'encadrement, il faut avoir un encadrement. Donc travailler sur X^TMX au lieu de $|X^TMX|$ rendrait le raisonnement erroné.

Remarque: en fait, $|X^TMX| \le C \|X\|_{\mathbb{R}^n}^2$ implique que $X^TMX = o(\|X\|_{\mathbb{R}^n}^\alpha)$ pour tout $\alpha \in [1,2]$

- 4. $f(X+H)=(X+H)^TM(X+H)=X^TMX+X^TMH+H^TMX+H^TMH$ Or $H^TMX\in\mathbb{R}$ donc est égal à sa transposée, donc $H^TMX=(H^TMX)^T=X^TM^TH$ De plus on reconnaît $X^TMX=f(X)$ Enfin, $H^TMH=o(\|H\|_{\mathbb{R}^n})$ d'après la 3) Tous ces arguments permettent d'écrire $f(X+H)=f(X)+X^T(M+M^T)H+o(\|H\|_{\mathbb{R}^n})$ Donc f est différentiable en f et f(X) et f(X
- 5. M est symétrique définie positive donc par théorème spectral, M est diagonalisable en base orthonormée. De plus, ses valeurs propres sont > 0 ce qui permet d'écrire M sous la forme N^TN . Par conséquent $f(X) = \|NX\|_{\mathbb{R}^n}^2$ est la composée d'une fonction convexe (la norme au carrée) et d'une fonction affine, donc f est convexe.
- 6. If faut vérifier toutes les hypothèses. Pour tous $(t,u) \in \mathbb{R} \times \mathbb{R}^p$, $\|f(t,0,u)\|_{\mathbb{R}^n} = \|Bu\|_{\mathbb{R}^n} \le C_B \|u\|_{\mathbb{R}^n} \le C_B (1+\|u\|_{\mathbb{R}^n})$ où $C_B = \sqrt{\sum_{i,j} B_{ij}^2}$ (en se référant à la question 2)). Pour tout $t \in [0,T]$, $k(t,x(t),u(t)) = x(t)^T M x(t) + u(t)^T Q u(t)$ donc $k(t,x,u) = x^T M x + u^T Q u$. Nous savons déjà que k est différentiable (d'après la question 4)) et de différentielle $Dk(x,u)(h) = x^T (M+M^T)h + u^T (Q+Q^T)h$. De plus, pour tous $x,y \in \mathbb{R}^n$, $|Dk(x,u)(h,h') Dk(y,v)(h,h')| = |(x-y)^T (M+M^T)h + (u-v)^T (Q+Q^T)h'| = |\langle x-y,(M+M^T)h\rangle_{\mathbb{R}^n} + \langle u-v,(Q+Q^T)h\rangle_{\mathbb{R}^p}| \le \|x-y\|_{\mathbb{R}^n} \|(M+M^T)h\|_{\mathbb{R}^n} + \|u-v\|_{\mathbb{R}^p} \|(Q+Q^T)h'\|_{\mathbb{R}^p} \le C_{M+M^T} \|x-y\|_{\mathbb{R}^n} \|h\|_{\mathbb{R}^n} + C_{Q+Q^T} \|u-v\|_{\mathbb{R}^p} \|h'\|_{\mathbb{R}^p}$ en appliquant l'inégalité de Cauchy-Schwarz et en utilisant la question 2). Donc nous avons l'inégalité suivante sur la norme d'opérateur : $\||Dk(x,u) Dk(y,v)|\| \le C' \|\binom{x-y}{u-v}\|$. Donc Dk est continue. Ceci montre que $k \in \mathcal{C}^1(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R})$. Enfin, nous devons montrer que l'ensemble $\left\{\binom{f(t,y,u)}{k(t,y,u)+\xi}|u\in U,\xi\ge 0\right\}$ est convexe pour tout $y\in\mathbb{R}^n$ et tout $t\in[0,T]$. D'abord, fixons $y\in\mathbb{R}^n$ et $t\in[0,T]$. Soient $\lambda\in[0,1]$, $u_1,u_2\in U$ et $\xi_1,\xi_2\ge 0$. $\lambda\binom{f(t,y,u_1)}{k(t,y,u_1)+\xi_1}+(1-\lambda)\binom{f(t,y,u_2)}{k(t,y,u_2)+\xi_2}=$

$$\begin{pmatrix} \lambda Ay + \lambda Bu_1 + (1 - \lambda)Ay + (1 - \lambda)Bu_2 \\ \lambda (y^T My + u_1^T Qu_1 + \xi_1) + (1 - \lambda)(y^T My + u_2^T Qu_2 + \xi_2) \end{pmatrix} = \\ \begin{pmatrix} Ay + B(\lambda u_1 + (1 - \lambda)u_2) \\ \xi' + y^T My + (\lambda u_1 + (1 - \lambda)u_2)^T Q(\lambda u_1 + (1 - \lambda)u_2) \end{pmatrix}$$

Où
$$\xi' = \lambda \xi_1 + (1 - \lambda)\xi_2 + \lambda u_1^T Q u_1 + (1 - \lambda)u_2^T Q u_2 - (\lambda u_1 + (1 - \lambda)u_2)^T Q (\lambda u_1 + (1 - \lambda)u_2)$$

Il reste à prouver que $\xi' \geq 0$

Attention: ne surtout pas développer le terme $(\lambda u_1 + (1 - \lambda)u_2)^T Q(\lambda u_1 + (1 - \lambda)u_2)!$

En fait, $\lambda u_1^T Q u_1 + (1 - \lambda) u_2^T Q u_2 - (\lambda u_1 + (1 - \lambda) u_2)^T Q (\lambda u_1 + (1 - \lambda) u_2) \ge 0$ en utilisant la question 5) (car Q est symétrique définie positive)

$$u \in L^{\infty}([0,T],\mathbb{R}^p)$$

Enfin, $-x(T) \leq 0$ est réalisable en prenant u=0 (l'ensemble des solutions à ce système x'(t) = Ax(t) + Bu(t)

est non vide)

Donc on applique le théorème.

7. Le Hamiltonien s'écrit $H(t,x,u,p,p_0) = \langle p,Ax+Bu\rangle_{\mathbb{R}^n} + p_0(x(t)^T M x(t) + u(t)^T Q u(t))$ Soit (x,u) une solution optimale au problème de contrôle optimal considéré. On sait qu'une solution existe d'après la question 6). D'après le PMP, il existe $(p,p_0) \in \mathbb{R}^m_- \times \{0,-1\}$ tel que la solution p(t) au système

$$\begin{cases} -\frac{dp}{dt} = \frac{\partial H}{\partial x}(t, x, u, p, p_0) \\ p_i(T) = p_0 \frac{\partial g}{\partial x_i} (T, x(T)) + \langle \boldsymbol{p}, \frac{\partial h}{\partial x_i} (T, x(T)) \rangle_{\mathbb{R}^m} \ \ pour \ tout \ i \in \llbracket 1; n \rrbracket \end{cases} \text{ vérifie :}$$

- A) $(p, p_0) \neq (0,0)$
- B) $\langle \boldsymbol{p}, h(T, x(T)) \rangle_{\mathbb{R}^m} = 0$
- C) $H(t,x(t),u(t),p(t),p_0) = \max_{u \in U} H(t,x(t),u,p(t),p_0)$

L'équation adjointe se réécrit : $-\frac{dp}{dt} = \frac{\partial H}{\partial x}(t, x, u, p, p_0) = A^T p(t) + p_0 M^T x(t)$

Par formule de Duhamel, on a donc $p(t) = e^{-tA^T}p(0) + \int_0^t e^{(t-s)A^T}p_0M^Tx(s)ds$

$$\langle \boldsymbol{p}, \begin{pmatrix} 0 \\ \vdots \\ -1 \ [en \ i] \\ \vdots \\ 0 \end{pmatrix} \rangle_{\mathbb{R}^m} = \boldsymbol{p_i} \ pour \ tout \ i \in \llbracket 1; n \rrbracket \ donc \ p(T) = -\boldsymbol{p}$$

A l'aide des équations ci-dessus, on peut caractériser les contrôles optimaux de ce problème.

Dans le cas quadratique (comme ci-dessus), on peut résoudre le problème en passant par l'équation de Riccati, qui vise à découpler x et p.

Souvent, les équations sont difficiles à résoudre : c'est notamment le cas parce qu'on connaît p(T) et x(0). Les deux conditions de bord sont sur des bords différents. On utilise une méthode classique appelée « Shooting method ».