Método de Newton

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Precisamos saber calcular derivada.

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

Se p_{n-2} está próximo de p_{n-1} :

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

Se p_{n-2} está próximo de p_{n-1} :

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Substituindo:

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

 p_2 é intersecção de $(p_0, f(p_0))$ e $(p_1, f(p_1))$ com eixo x.

Algoritmo

INPUT initial approximations p_0, p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

```
Step 1 Set i=2;
            q_0 = f(p_0);
            q_1 = f(p_1).
Step 2 While i \leq N_0 do Steps 3–6.
     Step 3 Set p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0). (Compute p_i.)
     Step 4 If |p-p_1| < TOL then
                 OUTPUT (p); (The procedure was successful.)
                 STOP.
     Step 5 Set i = i + 1.
     Step 6 Set p_0 = p_1; (Update p_0, q_0, p_1, q_1.)
                   q_0 = q_1;
                  p_1 = p;
                   q_1=f(p).
```

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da secante.

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da secante.

Precisamos de duas aproximações iniciais. Faça

$$p_0 = 0.5 \text{ e } p_1 = \pi/4.$$

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da secante.

Precisamos de duas aproximações iniciais. Faça

$$p_0 = 0.5 \text{ e } p_1 = \pi/4.$$

Vamos fazer

$$p_n = p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos p_{n-1} - p_{n-1})}{(\cos p_{n-1} - p_{n-1}) - (\cos p_{n-2} - p_{n-2})}, \quad \text{para } n \ge 2.$$

Seja $f(x)=\cos x - x$. Aproxime a raiz de f usando o método da secante.

Precisamos de duas aproximações iniciais. Faça

$$p_0 = 0.5 \text{ e } p_1 = \pi/4.$$

Vamos fazer

$$p_n = p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos p_{n-1} - p_{n-1})}{(\cos p_{n-1} - p_{n-1}) - (\cos p_{n-2} - p_{n-2})}, \quad \text{para } n \ge 2.$$

Newton's Method

n	p_n		
0	0.7853981635		
1	0.7395361337		
2	0.7390851781		
3	0.7390851332		
4	0.7390851332		

Seja $f(x)=\cos x - x$. Aproxime a raiz de f usando o método da secante.

Precisamos de duas aproximações iniciais. Faça

$$p_0 = 0.5 \text{ e } p_1 = \pi/4.$$

Vamos fazer

$$p_n = p_{n-1} - \frac{(p_{n-1} - p_{n-2})(\cos p_{n-1} - p_{n-1})}{(\cos p_{n-1} - p_{n-1}) - (\cos p_{n-2} - p_{n-2})}, \quad \text{para } n \ge 2.$$

Newton's Method		Secant	
n	p_n	n	p_n
	P n	0	0.5
0	0.7853981635	1	0.7853981635
1	0.7395361337	2	0.7363841388
2	0.7390851781	3	0.7390581392
3	0.7390851332	4	0.7390851493
4	0.7390851332	5	0.7390851332
-			

Método da bisseção garante que a raiz está contida em cada intervalo $[a_n, b_n]$.

Método da bisseção garante que a raiz está contida em cada intervalo $[a_n, b_n]$.

Newton's Method

n	p_n		
0	0.7853981635		
1	0.7395361337		
2	0.7390851781		
3	0.7390851332		
4	0.7390851332		

Método da bisseção garante que a raiz está contida em cada intervalo $[a_n, b_n]$.

Método de Newton e da secante não tem essa propriedade.

Newton 8 Memo			
n	p_n		
0	0.7853981635		
1	0.7395361337		
2	0.7390851781		
3	0.7390851332		
4	0.7390851332		

Newton's Method

Secant			
n	p_n		
0	0.5		
1	0.7853981635		
2	0.7363841388		
3	0.7390581392		
4	0.7390851493		
5	0.7390851332		

Escolha aproximações iniciais p_0 e p_1 de modo que $f(p_0) \cdot f(p_1) < 0$.

Escolha p_2 como no método da secante.

Se $f(p_2) \cdot f(p_1) < 0$, a raiz está entre p_1 e p_2 .

Então escolha p_3 como a intersecção do eixo x com a reta por $(p_1, f(p_1))$ e $(p_2, f(p_2))$.

Caso contrário, escolha p_3 como a intersecção do eixo x com a reta por $(p_0, f(p_0))$ e $(p_2, f(p_2))$ e troque os índices de p_0 e p_1 .

Secant Method

Method of False Position

Method of False Position

Algoritmo

INPUT initial approximations p_0 , p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
; $q_0 = f(p_0)$; $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3-7.

Step 3 Set $p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$. (Compute p_i .)

Step 4 If $|p - p_1| < TOL$ then

OUTPUT (p) ; (The procedure was successful.)

STOP.

Step 5 Set $i = i + 1$; $q = f(p)$.

Step 6 If $q \cdot q_1 < 0$ then set $p_0 = p_1$; $q_0 = q_1$.

Step 7 Set $p_1 = p$; $q_1 = q$.

Step 8 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure unsuccessful.) STOP.

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da falsa posição.

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da falsa posição.

Faça novamente $p_0 = 0.5$ e $p_1 = \pi/4$.

Seja $f(x)=\cos x$ - x. Aproxime a raiz de f usando o método da falsa posição.

Faça novamente $p_0 = 0.5$ e $p_1 = \pi/4$.

	False Position	Secant	Newton
n	p_n	p_n	p_n
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		