In [1]: import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

df = pd.read_csv('train.csv')
 df.head()

#Observation:
#columns Like PassengerId, Survived, Pclass, Name, Sex, Age, Fare, etc.

Out[1]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250C
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100C
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050C

In [2]: df.info()

#Observation:

#Total entries: 891

#Columns like Age, Cabin, and Embarked have missing values.
#Survived, Pclass, Sex, Embarked are categorical or discrete

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [3]: df.describe()

#Observation:

#Age: ranges from 0.42 to 80 years. #Fare: has high variation, max at 512.

Out[3]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [4]: df.isnull().sum()

#Observation:

#Age: ~177 missing

#Cabin: heavily missing (~687)

#Embarked: 2 missing

```
Out[4]: PassengerId 0
       Survived
        Pclass
                      0
                      0
       Name
        Sex
                      0
                  177
        Age
        SibSp
                     0
        Parch
                       0
       Ticket
                      0
        Fare
                      0
                    687
       Cabin
        Embarked
                      2
        dtype: int64
In [5]: df['Sex'].value_counts()
        df['Embarked'].value_counts()
        #Observation:
        #Sex: More males (577) than females (314)
        #Embarked: Most boarded at 'S' (644), then 'C' and 'Q'
Out[5]: S
            644
       C
            168
             77
        Name: Embarked, dtype: int64
In [6]: df.hist(figsize=(10, 8), bins=20)
        plt.tight_layout()
        plt.show()
        #Observation:
        #Fare is right-skewed; few passengers paid very high fares.
        #Age shows concentration in 20s-30s.
        #SibSp/Parch mostly 0-1, confirming most traveled alone or with 1 person.
```



```
In [7]: sns.boxplot(x=df['Fare'])
  plt.title('Boxplot of Fare')
  plt.show()

#Observation:
#Shows several outliers in the high-fare range.
#Median fare is below 50.
```

Boxplot of Fare


```
In [8]: sns.countplot(x='Survived', data=df)
plt.title('Survival Count')
plt.show()

#Observation:
#More people did not survive (0) than did (1).
#Survival rate was under 40%.
```



```
In [9]: sns.countplot(x='Sex', data=df)
plt.title('Gender Count')
plt.show()

#Observation:
#More males than females.
#Important for survival analysis.
```



```
In [10]: sns.countplot(x='Survived', hue='Sex', data=df)
plt.title('Survival by Gender')
plt.show()

#Observation:
#Females had significantly higher survival rates.
#Most males died; most females survived.
```

Survival by Gender


```
In [11]: sns.boxplot(x='Survived', y='Age', data=df)
plt.title('Age Distribution by Survival')
plt.show()

#Observation:
#Survivors had slightly Lower median age.
#Younger people had slightly higher survival rate.
```



```
In [12]: corr = df[['Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']].corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()

#Observation:
#Survival correlates positively with Fare (0.26) and negatively with Pclass (-0.34)
#SibSp and Parch are slightly correlated (0.41) - family travel.
```

Survived

1

Ó

0

In [13]: sns.pairplot(df[['Survived', 'Pclass', 'Age', 'Fare', 'SibSp', 'Parch']], hue='Surv
plt.show()

#Observation:
#Clear clustering of survivors in lower Pclass and higher Fare.
#Age and Fare show some separation between survival classes, but not strictly.

In [14]: #Summary of Insights:

#Sex and Pclass are strong indicators of survival.
#Fare tends to be higher for survivors.
#Younger passengers had a slightly higher survival chance.
#Most passengers were in 3rd class and were male—two groups with lower survival.

In []: