Wärme- und Stoffübertragung I

Kleines Rechenbeispiel
Verdunstung an einer flüssigen Oberfläche
- Stefanstrom -

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Überlegungen

- Wie kann das Problem beschrieben werden?
 - Limitiert der Stofftransport das Problem?
 Massenstrom = Transportkoeffizient * Treibendes Potenzial
 - Limitiert der Wärmetransport das Problem?
 Wärmestrom = Wärmeübergangskoeffizient * Treibendes Potenzial
 Massenstrom = Wärmestrom / Verdampfungsenthalpie

Überlegungen

- Wie kann das Problem beschrieben werden?
 - Limitiert der Stofftransport das Problem?
 Massenstrom = Transportkoeffizient * Treibendes Potenzial
 - Limitiert der Wärmetransport das Problem?
 Wärmestrom = Wärmeübergangskoeffizient * Treibendes Potenzial
 Massenstrom = Wärmestrom / Verdampfungsenthalpie

Annahme: Luft- und Wassertemperatur sind gegeben und bleiben konstant, die Wassertemperatur sinkt nicht durch den verdunstenden Massenstrom

Überlegungen

Wie lässt sich das treibende Potenzial ermitteln?

Annahme: Die Wasseroberfläche ist undurchlässig für Luft, daher muss im treibenden Potenzial der Stefanstrom mit berücksichtigt werden

$$\dot{m}_{w}^{"} \propto \frac{\xi_{H_20,0} - \xi_{H_20,\infty}}{1 - \xi_{H_20,0}}$$

- Wie lassen sich die Massenanteile bestimmen?
- Der Wassermassenanteil in der Luft ist abhängig von der Sättigung.
- An der Wasseroberfläche ist die Luft voll mit Wasser gesättigt $(\phi = 1)$.
- Die Temperatur der Luft an der Wasseroberfläche entspricht der Wassertemperatur.
- Die Luftfeuchtigkeit in der Umgebung muss angenommen werden.

Überlegungen

• Wie lässt sich der Stoffübergangskoeffizient ermitteln?

$$\dot{m}_w^{\prime\prime} \propto g$$

- Annahme: Das Gesetz von Lewis ist anwendbar, der Stroffübergangskoeffizient g kann durch den Wärmeübergangskoeffizienten α bestimmt werden.
- Voraussetzung: Thermische Diffusion \approx Stoffdiffusion, d.h. $Pr \approx Sc$

Bodensee im Sommer

Luft (Gas)

$$v = 10 \frac{m}{s}$$
, $T_{Luft} = 25 \,^{\circ}\text{C}$ rel. Feuchte: $\phi = 50\%$

$$c_p = 1000 \frac{J}{kg \cdot K}$$

Verdunstung der Flüssigkeit an der Wasseroberfläche

- Diffusion von Wasser und Luft
- Wasseroberfläche als Phasengrenze bei x = 0
- Phasengrenze durchlässig für Wasserdampf und undurchlässig für Luft
- semipermeable Phasengrenze bzw. einseitige Diffusion

Herangehensweise zur Berechnung

- 1. Ermittlung des Wärmeübergangskoeffizienten $\overline{\alpha}$
- 2. Herleitung einer Gleichung für den Massenanteil ${\xi_{H_2}}_{o,i}$
- 3. Massenanteil des Wasserdampfes an der Oberfläche $\xi_{H_20,0}$
- 4. Massenanteil des Wasserdampfes in der Luft $\xi_{H_2oldsymbol{0},\infty}$
- 5. Lewis Gesetz und Stoffübergangskoeffizient g
- 6. Masse des verdunsteten Wassers an der Oberfläche $\dot{m{m}}_w''$
- 7. Benötigter Wärmestrom Q

Ermittlung des Wärmeübergangskoeffizienten $\overline{\alpha}$

Tabelle 4: Gase bei 1 bar							
	T	ho	c	λ	ν	a	\Pr
	$^{\circ}\mathrm{C}$	${\rm kg/m^3}$	${\rm kJ/kgK}$	$10^{-3}~\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$	$10^{-6} \; \mathrm{m^2/s}$	1
Luft	-200	5,106	1,186	6,886	0,979	1,137	0,8606
	-100	2,019	1,011	16,2	$5,\!829$	7,851	0,7423
	0	$1,\!275$	1,006	$24,\!18$	$13,\!52$	18,83	0,7179
	20	1,188	1,007	$25,\!69$	$15,\!35$	$21,\!47$	0,7148
	40	1,112	1,007	27,16	$17,\!26$	$24,\!24$	0,7122
	80	0,9859	1,01	30,01	$21,\!35$	$30,\!14$	0,7083
	100	0,9329	1,012	31,39	$23,\!51$	$33,\!26$	0,707
	200	0,7356	1,026	37,95	$35,\!47$	50,3	0,7051
	400	0,517	1,069	49,96	$64,\!51$	90,38	0,7137
	600	0,3986	1,116	$61,\!14$	99,63	137,5	0,7247
	800	0,3243	1,155	$71,\!54$	140,2	191	0,7342
	1000	$0,\!2734$	1,185	80,77	185,9	249,2	0,7458
Wasserdampf	100	0,5896	2,042	25,08	20,81	20,83	0,999

Herleitung einer Gleichung für den Massenanteil $\xi_{H_2O,i}$

Wie werden die Massenanteile in diesem Fall berechnet?

$$\xi_{H_2O,i} = \frac{m_{H_2O}}{m_{ges}} = \frac{m_{H_2O}}{m_{Luft} + m_{H_2O}}$$

• Setze:
$$m_{Luft} = \frac{p_{Luft} \cdot V}{R_{Luft} \cdot T_{Luft}}$$
 $m_{H_2O} = \frac{p_{H_2O} \cdot V}{R_{H_2O} \cdot T_{H_2O}}$

$$= \frac{\frac{p_{H_2O} \cdot V}{R_{H_2O} \cdot T_{H_2O}}}{\frac{p_{Luft} \cdot V}{R_{Luft}} + \frac{p_{H_2O} \cdot V}{R_{H_2O} \cdot T_{H_2O}}} = \frac{\frac{p_{H_2O}}{R_{H_2O}}}{\frac{p_{Luft}}{R_{Luft}} + \frac{p_{H_2O}}{R_{H_2O}}} = \frac{\frac{p_{H_2O} \cdot M_{H_2O}}{p_{Luft}} \cdot M_{Luft} + p_{H_2O} \cdot M_{H_2O}}{\frac{p_{Luft} \cdot M_{Luft} + p_{H_2O} \cdot M_{H_2O}}{R_{H_2O}}}$$

$$(p_{ges} - p_{H_2O}) = (1 - p_{S\"{attigung}})$$

$$\xi_{H_2O,i} = \frac{1}{\frac{1 - p_{H_2O}}{p_{H_2O}} \cdot \frac{M_{Luft}}{M_{H_2O}} + 1}$$

Tabelle 8: Dampfdrücke reiner Stoffe: Antoine-Gleichtung $(p^* \text{ in mbar, } T \text{ in } {}^{\circ}C)^{\frac{l_2O,0}{2}}$

$$\log p^* = A - \frac{B}{T+C}$$

Stoffe	Temperaturbereich	A	В	\mathbf{C}
	$[{}^{\circ}C]$	-	-	-
Aceton	-13-55	7,24208	1210,595	229,664
Aceton	57-205	7,75624	1566,690	273,419
Ethanol	20-93	8,23714	1592,864	226,184
Benzol	8-80	7,00481	1196,760	219,161
i-Butanol	72-107	7,32625	1157,000	168,270
Chloroform	-10-60	7,07959	1170,966	226,232
n-Heptan	-3-127	7,01880	1264,370	216,640
Methanol	15-84	8,20591	1582,271	239,726
Methanol	25-56	7,89373	1408,360	223,600
i-Octan	24-100	6,92798	$1252,\!590$	220,119
Propan		6,95467	813,200	248,000
Sauerstoff		7,11577	370,757	273,200
Stickstoff		6,99100	308,365	273,200
Wasser	1-100	8,19625	1730,630	233,426

$$= 18 \frac{g}{mod}$$

bar

Lewis Gesetz und Stoffübergangskoeffizient *g*

Herleitung Lewis Gesetz für alle Gase

$$\left(\frac{Sh}{Nu}\right) = \left(\frac{Sc}{Pr}\right)^n$$

$$\frac{g}{\alpha/c_n} = \left(\frac{Sc}{Pr}\right)^{n-1}$$

Bei Gasen sind die Prandtl-Zahl und die Schmidt-Zahl nahezu gleich groß.

Berechnung des Stoffübergangskoeffizient g

$$lpha=3.89\,rac{W}{m^2K}$$
 (aus Teil 1) $c_p=1000rac{J}{kg\cdot {
m K}}$ (aus A.S.)

$$g = \frac{\alpha}{c_p} = \frac{3,89 \frac{W}{m^2 K}}{1000 \frac{J}{kg \cdot K}} = 3,89 \cdot 10^{-3} \frac{kg \cdot s}{m^2}$$

Masse des verdunstenden Wassers \dot{m}_w bzw. $\dot{m}_w^{\prime\prime}$ und Wärmestrom \dot{Q}

Verdunstender Massenstrom pro Fläche $\dot{m}_w^{\prime\prime}$

$$\dot{m}_{w}^{"} = g \cdot \frac{\xi_{H_{2}O,0} - \xi_{H_{2}O,\infty}}{1 - \xi_{H_{2}O,0}} = \frac{\alpha}{c_{p}} \cdot \frac{\xi_{H_{2}O,0} - \xi_{H_{2}O,\infty}}{1 - \xi_{H_{2}O,0}} = \frac{3,89 \frac{W}{m^{2} \cdot K}}{1000 \frac{J}{kg \cdot K}} \cdot \frac{(20 - 10) \cdot 10^{-3}}{(1 - 20 \cdot 10^{-3})} = 3,97 \cdot 10^{-5} \frac{kg}{m^{2} \cdot s}$$

Verdunstender Massenstrom über die gesamte Seeoberfläche \dot{m}_W

$$\dot{m}_W = \dot{m}_W'' \cdot A = 3.97 \cdot 10^{-5} \frac{kg}{m^2 \cdot s} \cdot 536 \cdot 10^6 \, m^2 = 2.13 \cdot 10^4 \frac{kg}{s}$$

Welcher Wärmestrom Q wird dafür benötigt?

$$\dot{Q} = \dot{m}_W \cdot \Delta h_v = 2.13 \cdot 10^4 \frac{kg}{s} \cdot 2500 \frac{kJ}{kg} = 5.32 \cdot 10^7 \ kW$$

Verständnisfragen

Wie werden Massenanteile berechnet?

Unter welchen Voraussetzungen gilt das Lewis- Gesetz?

Wie wird der Stoffübertragungskoeffizient unter Geltung des Lewis Gesetzes berechnet?

Wie wird die Masse des verdunstenden Wassers bestimmt?

