CS564 ML

Assignment-3

Name: M Maheeth Reddy	Roll No.: 1801CS31	Date: 09-Nov-2021

In this assignment, the following has been done:

Implementation of a HMM model for PoS tagging on the Brown dataset using PoS tags as Hidden States and Tokens/Words as the observed variable.

Implementation of Viterbi algorithm for the Decoding Problem and to obtain the POS for the test data. We also report the f1 score, the precision and recall for all the POS tags.

Code for Emission Probabilities

Code for Transition Probabilities

```
def create_transition_prob(data_seq, states):
                                                                                                               def create_emission_prob(data_obs, data_seq, states, corpus):
    transit_prob = {}
                                                                                                                   emiss_prob = {}
                                                                                                                   for state in states.keys():
     for row in states.keys():
                                                                                                                       emiss_prob[state] = {}
for obs in corpus.keys():
    emiss_prob[state][obs] = 0
         transit_prob[row] = {}
         for col in states.keys():
              transit_prob[row][col] = 0
                                                                                                                   for t in range(len(data_seq)):
     for sample_seq in data_seq:
                                                                                                                       for w in range(len(data_seq[t])):
    emiss_prob[data_seq[t][w]][data_obs[t][w]] += 1
         for i in range(len(sample_seq)-1):
             transit_prob[sample_seq[i]][sample_seq[i+1]] += 1
                                                                                                                   for state in states.keys():
   for obs in corpus.keys():
     for row in states.keys():
                                                                                                                           emiss_prob[state][obs] = (emiss_prob[state][obs]+1)/(states[state]+len(corpus))
         for col in states.keys()
             transit_prob[row][col] = (transit_prob[row][col]+1)/(states[row]+len(states))
                                                                                                                   return emiss_prob
    return transit_prob
```

Precision, Recall and F1 Score for each Tag:

	Precision	Recall	F1 Score
PRON	0.74056072	0.6679715	0.70239565
VERB	0.94985435	0.56122449	0.70556414
DET	0.98251266	0.59026818	0.73747841
NOUN	0.97167022	0.65400984	0.78180437
•	0.90753425	0.6339239	0.74644602
ADJ	0.87960856	0.51273547	0.64783775
ADP	0.98903344	0.63594884	0.77413111
PRT	0.94654641	0.78521898	0.85836824
ADV	0.90529032	0.62609316	0.74024056
NUM	0.92633606	0.61215399	0.73716475
CONJ	0.99560117	0.48258706	0.6500718
Х	0.00273186	0.8220339	0.00544561

Overall Accuracy:

Bigram Model for HMM	60%	<u>Conclusion</u> : The <u>Trigram model performs better</u> than the Bigram HMM model for PoS tagging, because the transition
Trigram Model for HMM	90%	probabilities are calculated for more words.