Baseball pitch trajectory density estimation for predicting future pitcher outcomes

Scott Powers and Vicente Iglesias

Conference of Texas Statisticians 2024

The Problem

MLB teams spend A LOT of money on pitchers ...

PLAYER	POS	TEAM SIGNED WITH	AGE AT SIGNING	START	END	YRS	VALUE
Shohei Ohtani	SP	ℯℯ LAD	29	2024	2033	10	\$700,000,000
Yoshinobu Yamamoto	SP	∠AD	25	2024	2035	12	\$325,000,000
Gerrit Cole	SP	⊗ NYY	29	2020	2028	9	\$324,000,000
Stephen Strasburg	SP	W WSH	31	2020	2026	7	\$245,000,000
Jacob deGrom	SP	TEX	34	2023	2027	5	\$185,000,000
Aaron Nola	SP	🤹 PHI	30	2024	2030	7	\$172,000,000
Patrick Corbin	SP	Ø WSH	29	2019	2024	6	\$140,000,000

spotrac.com

... and they don't always know who the best ones are.

Standard of Practice

- ullet Observe $X\in\mathbb{R}^9$ describing each pitch trajectory
- Observe $Y \in \mathbb{R}$ describing the run value of the pitch outcome
- Estimate $f(x) = \mathbb{E}[Y \mid X = x]$
 - This is a standard supervised learning problem
- Evaluate the pitcher using $\frac{1}{n} \sum_{i=1}^{n} \hat{f}(x_i)$
 - This turns out to work better than using actual outcomes

Let's call this the **Descriptive** model, e.g. Healey (2019)

The Conundrum

¹ fractional contribution of each feature's splits to gradient boosting pitch model

 $^{^{2}}$ (between-pitcher variance) / (total variance); varies by pitch type (here: RHB FB) $\,$

Why Supervised Learning Isn't Enough

Supervised Learning

Our Problem

Pitch		Outcome	Pitcher	Pitch		Outcome
x_1	\rightarrow	<i>y</i> ₁	Α	x_1	\rightarrow	y_1
<i>x</i> ₂	\rightarrow	<i>y</i> 2	Α	x_2	\rightarrow	<i>y</i> ₂
<i>X</i> 3	\rightarrow	<i>y</i> 3	В	<i>X</i> 3	\rightarrow	<i>y</i> 3
X _n	$\overset{\cdots}{\rightarrow}$	Уn	С	Xn	$\overset{\cdots}{\rightarrow}$	Уn
					\searrow	
<i>x</i> *	\rightarrow	ŷ	Α			ŷ

Why Supervised Learning Isn't Enough

Supervised Learning

Outcome y_1

$$x_2 \rightarrow y_2$$

$$x_3 \rightarrow y_3$$

Pitch

*X*₁

Xn

$$\rightarrow$$
 y_n

Our Solution

В

$$x_1$$

$$x_2 \rightarrow$$

$$x_3 \rightarrow$$

$$\rightarrow$$

$$\downarrow$$

 X_n

$$\hat{p}(x) \rightarrow \int \hat{p}(x)\hat{f}(x)$$

Pitch Outcome *y*₁

*y*₂

*y*3

Уn

Our Solution

- 1. Estimate the probability distribution over pitch trajectories
 - Depends on pitcher, batter side, count, etc.
 - We use a Bayesian hierachical model to share information
 - Expensive to sample from posterior (81 parameters per pitcher)
 - We find MAP model fit using automatic differentiation
- 2. Fit a model to predict pitch outcome given its trajectory
 - We use gradient boosting, not the focus today
- 3. Integrate the model 2. w.r.t. the distribution 1.

Let's call this the **Predictive** model

Dylan Cease's Slider vs RHB in All Counts

Does It Work?

Out-of-Sample Correlation with Descriptive Model

2021-22 Split Halves

Next steps

- Better (simpler?) parameterization for distribution model
- Relax Gaussian assumption (unimodal with specific tails)

Thank You!

saberpowers.github.io

References

Healey G (2019) "A Bayesian method for computing intrinsic pitch values using kernel density and nonparametric regression estimates" Journal of Quantitative Analysis in Sports 15(1) 59-74