求解 $x^a \equiv b (mod \ m)$

CDQZ OI Team* July 14, 2011

Contents

1	题目描述	1
2	理论支持 2.1 定义	1 1 2 2
3	Stage I: 求 m 的原根	2
4	Stage II: 求离散对数j	2
5	Stage III: 解线性同余方程	2
6	注意事项	2
7	代码	3

1 题目描述

求方程 $x^a \equiv b \pmod{m}$ 的所有解,其中m是素数。

2 理论支持

2.1 定义

r对模m的指数 $Ord_m(r)$ 为使 $r^d\equiv 1\,(mod\,m)$ 成立的最小正整数,若 $Ord_m(r)=\varphi(m)$,则称r是m的原根。

^{*}发现者: before_rain, 探索者: ymfoi, 执笔者: csimstu

2.2 性质

令 $\delta=Ord_m(r)$,则 $r^0,r^1,r^2\ldots,r^{\delta-1}$ 模m两两不同余。假设同余,就可以得到一个更小的 δ ,于假设不符。

2.3 用途

由于m是素数,由费马小定理知, $r^{m-1}\equiv 1\ (mod\ m)$,故 $\delta=\varphi(m)=m-1$ 。于是, $r^0,r^1,r^2\ldots,r^{m-2}$ 恰好组成了一个1到m-1的排列 1 。反过来,每一个1到m-1的的数(即这个同余系中的每一个数)都可以表成 r^k 。不妨设 $x=r^i$, $b=r^j$,于是有

$$r^{ia} \equiv r^j \pmod{m}$$

因为 $r^0, r^1, r^2 \dots, r^{m-2}$ 恰好组成了一个1到m-1的排列,所以上式可写成 $ia \equiv j \pmod{m-1}$ 。如果求得了j,就能解出i,从而得到 $x=r^i$ 的值。

3 Stage I: 求m的原根

目前还没有快速求原根的方法。幸运的是,解决本问题只需求出一个原根,且经过科学验证,在小于 10^9 的数中,每个数最小的原根最多只有几十。枚举原根r即可。验证也可以做得很快:可以证明,只需验证 $\frac{m-1}{p}$,其中p是能整除m-1的素数。可以暴力分解质因数。

4 Stage II: 求离散对数j

因为 $j \leq m-1$,可以设 $p = \lfloor \sqrt{m-1} \rfloor$,这样一来,j可以写成j = pk+s,只需要枚举k于s中的一个,利用乘法逆元,看另一个是否能满足。如果套上map,复杂度为 $O(\sqrt{m}\log m)$;

5 Stage III: 解线性同余方程

直接上扩展欧几里得算法。在算每一个解的时候,可以暴力枚举,直到出现 重复,因为答案肯定不会太多。

6 注意事项

- 1. 不管是乘法还是加法都要记得转long long并取模。特别注意加法以及负数。
- 2. 用扩展欧几里得算法时要注意答案是否完整。

¹只考虑r > 0的情况,r = 0可以特判。

7 代码

- 1. ymfoi的代码,特点:形状优美,结构匀称。
- 2. csimstu的代码,特点:耦合度低,易于阅读,STL使用较多,pascaler慎入。