End-to-End Simultaneous Speech Translation with Pretraining and Distillation: Huawei Noah's System for AutoSimTranS 2022

Xingshan Zeng, Pengfei Li, Liangyou Li, Qun Liu Huawei Noah's Ark Lab

{zeng.xingshan,lipengfei111,liliangyou,qun.liu}@huawei.com

Introduction

- E2E Speech Translation Definition:
 - Directly translating speech in one language into text in another language in real-time.
- Advantages (vs. cascaded model):
 - 1. Small model
 - Low latency
 - 3. Avoid error propagation
- Problems:
 - Data scarcity
 - Modality gap
 - Controllability

Data Name	Data Type	#Hours	#Sents
BSTC	ST	70	38K
Wenet Speech	ASR	10K	14M
WMT17	NMT		9M

Zh-En Data

Introduction

- Pretraining
 - Using pretrained ASR and NMT model to initialize the modules of ST model

- Distillation
 - Constructing Pseudo data
 - ASR data + NMT model
 - NMT data + TTS model

Introduction

- Model: RealTranS (Zeng et al. 2021)
 - 8x downsampling + weighted shrinking
 - Blank-limited CTC module
 - Wait-K-Stride-N policy
 - Wait-K: first wait K segments (detected by CTC)
 - Stride-N: each time write N tokens (then read N segments)

Weighted Shrinking

Source Speech

Target Text

Wait-K

Source Speech

(wait k segments)

Target Text

(write n tokens)

Wait-K-Stride-N

Model Overview

Wait-K vs Wait-K-Stride-N

Training Procedure

1. Pretraining

- ASR pretraining: ConvTT (Huang et al. 2020)
- NMT pretraining: CeMAT (Li et al. 2022)

2. Training on Pseudo Data

- ASR data + NMT model -> ST data
- Multi-path wait-k training
- Punctuation removal

3. Finetuning with In-Domain Data

- Multi-domain finetuning
- Token-level knowledge distillation
- Punctuation removal

Dataset	SRC Speech	SRC Text	TGT Text	#Hours	#Sents
CWMT21	×	✓	✓	_	9M
Internal	✓	✓	Pseudo	10K	11M
WenetSpeech	✓	✓	Pseudo	10K	14M
BSTC	√	√	√	70	38K

Used Data

Punctuation Removal: Removing punctuation in transcription.

This is to ensure consistency among different datasets, as many of ASR datasets do not include punctuation.

Experiments

- a. No PT & No Pseudo: directly train the model on the in-domain data.
- b. PT & No Pseudo: use pretraining and directly train the model on the in-domain data.
- c. PT & With Pseudo: use pretraining and train the model on the pseudo data.
- d. PT & With Pseudo + FT: further finetune model c on the in-domain data.
- e. Cascaded: results by cascading our pretrained ASR and NMT model.

More Experiments

Some findings:

- Effects of pseudo data are limited by the ability of NMT model.
- Multi-domain finetuning is beneficial for domain generalization.
- Punctuation removal helps on acoustic learning and improves performance by keeping consistent between pretraining and finetuning.

Effects of Pseudo Data Amount

Effects of Punct Removal

Effects of Multi-Domain Finetuning

Thank you!

