#### **Permutations**

Carmen M. Wright, Ph.D.

Jackson State University

Fall 2016

#### Permutations

Loosely speaking, a permutation is a rearrangement. More formally: A **permutation** is a bijective mapping from a set to itself. The set can be finite or infinite.

#### Permutations

Loosely speaking, a permutation is a rearrangement. More formally: A **permutation** is a bijective mapping from a set to itself. The set can be finite or infinite.

In this section, we will mainly consider permutations on finite subsets of  $\mathbb N$  of the form  $X_n=\{1,2,\ldots,n\}$ .

### Permutations on $X_3$

Let  $X_3 = \{1, 2, 3\}$ . We consider all the possible mappings  $X_3 \to X_3$ :

### Permutations on $X_3$

Let  $X_3 = \{1, 2, 3\}$ . We consider all the possible mappings  $X_3 \to X_3$ :

Notice  $\varepsilon$  fixes every element, so essentially it is the identity mapping on  $X_3$ .

For a permutation on 3 objects, we determine possible assignments for each element.

- 1 has three choices of an assignment
- 2 has two choices of an assignment
- 3 has one choice of an assignment

This gives us the  $3 \cdot 2 \cdot 1 = 3! = 6$  different mappings.

For a permutation on 3 objects, we determine possible assignments for each element.

- 1 has three choices of an assignment
- 2 has two choices of an assignment
- 3 has one choice of an assignment

This gives us the  $3 \cdot 2 \cdot 1 = 3! = 6$  different mappings.

Question: How many different mappings do we get for a set of n objects,  $X_n = \{1, 2, ..., n\}$ ?

For a permutation on 3 objects, we determine possible assignments for each element.

- 1 has three choices of an assignment
- 2 has two choices of an assignment
- 3 has one choice of an assignment

This gives us the  $3 \cdot 2 \cdot 1 = 3! = 6$  different mappings.

Question: How many different mappings do we get for a set of n objects,  $X_n = \{1, 2, ..., n\}$ ? n!

#### Matrix notation

We can write the mappings

in the following special matrix notation:

$$\varepsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

 $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \gamma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ 

Read top-down to know what each element gets assigned.

### Composition

In this class, we choose the convention Right-to-Left. For example, in  $\sigma \circ \beta = \sigma \beta$ , apply  $\beta$  then apply  $\sigma$ .

$$\begin{array}{cccc}
1 &\mapsto 2 & 1 &\mapsto 2 \\
\sigma &\colon & 2 &\mapsto 3 & \beta &\colon & 2 &\mapsto 1 \\
3 &\mapsto 1 & & 3 &\mapsto 3
\end{array}$$

$$\sigma\beta(1) = \sigma(2) = 3$$

$$\sigma\beta(2) = \sigma(1) = 2$$

$$\sigma\beta(3) = \sigma(3) = 1$$

### Composition

In this class, we choose the convention Right-to-Left. For example, in  $\sigma \circ \beta = \sigma \beta$ , apply  $\beta$  then apply  $\sigma$ .

$$\begin{aligned}
\sigma : & 2 \mapsto 3 & \beta : 2 \mapsto 1 \\
3 \mapsto 1 & 3 \mapsto 3
\end{aligned}$$

$$\sigma\beta(1) = \sigma(2) = 3 \\
\sigma\beta(2) = \sigma(1) = 2 \\
\sigma\beta(3) = \sigma(3) = 1$$

Notice  $\sigma\beta = \gamma$ .

### Composition

In this class, we choose the convention Right-to-Left. For example, in  $\sigma \circ \beta = \sigma \beta$ , apply  $\beta$  then apply  $\sigma$ .

$$\begin{array}{cccc}
1 &\mapsto 2 & 1 &\mapsto 2 \\
\sigma &\colon & 2 &\mapsto 3 & \beta &\colon & 2 &\mapsto 1 \\
3 &\mapsto 1 & 3 &\mapsto 3
\end{array}$$

$$\sigma\beta(1) = \sigma(2) = 3$$

$$\sigma\beta(2) = \sigma(1) = 2$$

$$\sigma\beta(3) = \sigma(3) = 1$$

Notice  $\sigma\beta = \gamma$ . What is  $\beta\sigma$ ?



## Compositions (cont.)

Function composition is always associative,

$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$

Function composition is not commutative,

$$\alpha\beta \neq \beta\alpha$$

Composition of bijective functions is bijective,

$$\alpha, \beta$$
 bijective  $\implies \alpha \circ \beta$  bijective (*closure*)

Notation: A mapping  $\alpha$  composed with itself 3 times,

$$\alpha^3 = \alpha \alpha \alpha$$
.



## The identity permutation

There is an identity permutation  $\varepsilon$  such that  $\sigma \varepsilon = \sigma = \varepsilon \sigma$  for all permutations  $\sigma \in S_n$ . The identity permutation fixes each element; it has a different form in each  $S_n$  but acts the same way. In  $S_3$ ,

$$\varepsilon = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right).$$

In  $S_5$ ,

$$\varepsilon = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array}\right).$$

#### Inverse Permutations

We know inverse permutations exist because permutations are bijective mappings, which means they are invertible.

If  $\sigma, \tau \in S_n$  and  $\sigma\tau = \tau\sigma = \varepsilon$ , then  $\sigma$  and  $\tau$  are *inverses* of each other. That is,

$$\tau = \sigma^{-1}, \qquad \sigma = \tau^{-1}.$$

# The Symmetric Group $S_n$

We define  $S_n$  as the set of all permutations on  $\{1, 2, ..., n\}$ . With the operation of (mapping) composition, it is a group. Then the order of the group is

$$|S_n| = n!$$