Combinatorics 2018 Fall

Teaching by: Professor Xiande Zhang

2018.09.20

Key words: IEP, Generating Function

IEP:
$$|A_1^c \cap A_2^c \cap \cdots \cap A_n^c| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$$
, where $A_I := \bigcap_{i \in I} A_i$

Porpostion2:

If $n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$, where p_i are distinct primes, then $\varphi(n) = n \prod_{i=1}^{t} (1 - \frac{1}{p_i})$.

 $\frac{\text{proof:}}{|A_i| = \frac{n}{p_i}} \Omega = [n], \text{ let } A_i = \{m \in [n]: \ p_i | m\}, \text{ then } \varphi(n) = |A_1^c \cap \cdots \cap A_t^c|$

By IEP,
$$\varphi(n) = \sum_{I \subseteq [t]} (-1)^{|I|} \frac{n}{\prod_{i \in I} p_i} = n \sum_{I \subseteq [t]} (-1)^{|I|} \frac{1}{\prod_{i \in I} p_i}$$

Notice that $\prod_{i=1}^{t} (1+x_i) = (1+x_1) \cdots (1+x_t) = \sum_{I \subseteq [t]} \prod_{i \in I} x_i$,

then
$$\varphi(n) = n \sum_{I \subseteq [t]} (-1)^{|I|} \frac{1}{\prod_{i \in I} p_i} = n \prod_{i=1}^t (1 - \frac{1}{p_i}).$$

Def: A permutation $\sigma: X \longrightarrow X$ is a bijection. It is called a derangement of X if $\sigma(i) \neq i$, $\forall i \in X$.

Porpostion3:

Let $D_n = \sharp$ derangement of [n], then $D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.

<u>Proof:</u> Ω ={all permutations}, let A_i ={all permutations satisfying $\sigma(i)=i$ }, $i \in [n]$. Then $|A_i|=(n-1)!$, $|A_I|=(n-|I|)!$.

$$D_n = |A_1^c \cap \dots \cap A_n^c| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I| = \sum_{I \subseteq [n]} (-1)^{|I|} (n - |I|)! = \sum_{i=0}^n \binom{n}{i} (-1)^i (n-i)! = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

Generating function(GF)

Problem1: There are 30 red balls, 40 blue balls and 50 white balls in the box, # ways of selecting 70 balls?

Sol: Consider the coefficient of x^{70} in $(1+x+\cdots+x^{30})(1+x+\cdots+x^{40})(1+x+\cdots+x^{50})$

Def: The (ordinary) GF of an infinity sequence a_0, a_1, a_2, \cdots is a power series $f(x) = \sum_{n>0} a_n x^n$.

Consequences:

Let
$$a(x)=\sum_{n\geq 0}a_nx^n$$
 and $b(x)=\sum_{n\geq 0}b_nx^n$, then
$$a(x)+b(x)=\sum_{n\geq 0}(a_n+b_n)x^n,$$

$$a(x)b(x)=\sum_{n\geq 0}c_nx^n,$$

where
$$c_n = \sum_{i+j=n} a_i b_j = \sum_{i=0}^n a_i b_{n-i}$$
.

1.
$$\frac{1}{1-x} = \sum_{n>0} x^n$$
 is the GF of $\{1, 1, 1, \dots\}$

2.
$$\frac{1}{1-ax} = \sum_{n\geq 0} (ax)^n = \sum_{n\geq 0} a^n x^n$$
 is the GF of $\{a^0, a^1, \dots\}$

3.
$$\frac{1}{1-x^2} = \sum_{n\geq 0} x^{2n}$$
 is the GF of $\{1,0,1,0,\cdots\}$

4.
$$f(x) = \sum_{n>0} a_n x^n$$
 is the GF of $\{a_0, a_1, a_2, \dots\}$

5.
$$cf(x) = \sum_{n\geq 0} ca_n x^n$$
 is the GF of $\{ca_0, ca_1, ca_2, \dots\}$

6.
$$f(cx) = \sum_{n>0} c^n a_n x^n$$
 is the GF of $\{c^0 a_0, c^1 a_1, c^2 a_2, \dots\}$

7.
$$f(x^3) = \sum_{n>0} a_n x^{3n}$$
 is the GF of $\{a_0, 0, 0, a_1, 0, 0, \dots\}$

8.
$$x^3 f(x) = \sum_{n>0} a_n x^{n+3}$$
 is the GF of $\{0, 0, 0, a_0, a_1, \dots\}$

9.
$$\frac{f(x)-a_0x^0-a_1x^1-a_2x^2}{x^3}$$
 is the GF of $\{a_3, a_4, \dots\}$

10.
$$f'(x) = \sum_{n>1} na_n x^{n-1}$$
 is GF of $\{a_1, 2a_2, 3a_3, \dots\}$

11.
$$\sum_{n\geq 1} nx^{n-1} = (\frac{1}{1-x})' = \frac{1}{(1-x)^2}$$
 is GF of $\{1, 2, 3, \dots\}$

12. Take the (k-1)-th derivative of
$$\sum_{n\geq 0} x^n = \frac{1}{1-x}$$
, we get $\sum_{n\geq k-1} n(n-1)\cdots(n-(k-2))x^{n-(k-1)} = \frac{(k-1)!}{(1-x)^k}$, then $\frac{1}{(1-x)^k} = \sum_{n\geq k-1} \binom{n}{k-1}x^{n-(k-1)} = \sum_{n\geq 0} \binom{n+k-1}{k-1}x^n$

$$\frac{1}{(1-x)^k} \text{ is the GF of } \{a_n\}_{n=0}^{\infty}, \text{ where } a_n \text{ is the } \sharp \text{ integer solutions to } x_1 + x_2 + \cdots + x_k = n, \ x_i \geq 0.$$

Generalized binomial theorem: r any real number, $(1+x)^r = \sum_{n\geq 0} \binom{r}{n} x^n$, where $\binom{r}{n} = \frac{(r)(r-1)\cdots(r-n+1)}{n!}$, we call $\binom{r}{n}$ generalized binomial coefficient.

Remark:
$$(1-x)^{-k} = \sum_{n\geq 0} {\binom{-k}{n}} (-x)^n$$
, ${\binom{-k}{n}} = \frac{(-k)(-k-1)\cdots(-k-n+1)}{n!} = (-1)^n \frac{(n+k-1)\cdots(k+1)k}{n!} = (-1)^n {\binom{n+k-1}{n}} \Longrightarrow (1-x)^{-k} = \sum_{n\geq 0} {\binom{n+k-1}{n}} x^n$

Recall Problem1: There are 30 red balls, 40 blue balls and 50 white balls in the box, # ways of selecting 70 balls?

Sol:

$$f(x) = (1 + x + \dots + x^{30})(1 + x + \dots + x^{40})(1 + x + \dots + x^{50})$$

$$= (\frac{1}{1 - x} - \frac{x^{31}}{1 - x})(\frac{1}{1 - x} - \frac{x^{41}}{1 - x})(\frac{1}{1 - x} - \frac{x^{51}}{1 - x})$$

$$= \frac{(1 - x^{31})(1 - x^{41})(1 - x^{51})}{(1 - x)^3}$$

$$= (\sum_{n \ge 0} {n + 2 \choose 2} x^n)(1 - x^{31})(1 - x^{41})(1 - x^{51})$$

$$\implies [x^{70}]f(x) = {72 \choose 2} - {41 \choose 2} - {31 \choose 2} - {21 \choose 2}$$

Problem2:

Fibonacci number $F_0 = 0, F_1 = 1.F_{n+2} = F_{n+1} + F_n, n \ge 0$, compute $\{F_n\}$

Sol: Let
$$f(x) = \sum_{n\geq 0} F_n x^n$$
, then $\sum_{n\geq 0} F_{n+2} x^n = \sum_{n\geq 0} F_{n+1} x^n + \sum_{n\geq 0} F_n x^n$
 $\Longrightarrow \frac{f(x) - F_0 - F_1 x}{x^2} = \frac{f(x) - F_0}{x} + f(x)$
 $\Longrightarrow f(x) - x = x f(x) + x^2 f(x) \Longrightarrow f(x) = \frac{x}{1 - x - x^2} = \frac{a}{1 - \lambda_1 x} + \frac{b}{1 - \lambda_2 x},$
where $\lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2}, a = \frac{1}{\sqrt{5}}, b = -\frac{1}{\sqrt{5}}$
 $\Longrightarrow f(x) = \sum_{n\geq 0} a(\lambda_1 x)^n + \sum_{n\geq 0} b(\lambda_2 x)^n = \sum_{n\geq 0} (a\lambda_1^n + b\lambda_2^n) x^n$
 $\Longrightarrow F_n = \frac{1}{\sqrt{5}} ((\frac{1 + \sqrt{5}}{2})^n - (\frac{1 - \sqrt{5}}{2})^n)$