

Triózok

■ A glicerinaldehid a legegyszerűbb aldóz

□ Szirupszerű, nem kristályosítható vegyület.

■ Az 1,3-dihidroxi-aceton a legegyszerűbb ketóz

□ A szőlőcukor lebontás köztes terméke.

CH=O

□ CH-OH

2

4

Pentózok: Ribóz (C₅H₁₀O₅)

A ribóz aldopentóz.

A sejtplazmában található ribonukleinsavak (RNS) egyik építőköve.

A glükózhoz hasonlóan a ribóznak is a gyűrűs formája a stabilisabb.

Színtelen, vízben jól oldódó, kristályos anyag

CHOON OH OH OH OH OH

2,3,4,5-tetrahidroxipentanal

3

Hexózok:
A gyümölcscukor (fruktóz) (C₆H₁₂O₆)

A legédesebb ízű monoszacharid
Előfordulása:
gyümölcsök nedvében (almában, szilvában) és a mézben
leggyakrabban a szőlőcukorral alkotott diszacharidban, a répacukorban

Fruktóz

6H₂ - 5H - 4H - 3H - 2 - 1H₂
OH OH OH OH OH OH

1,3,4,5,6-pentahidroxihexán-2-on

ketohexóz

CH₂OH
HO H
H OH
CH₂OH

6

Molekulaszerkezet

- a 2-es C-atomon lévő oxocsoport és az 5. C-atom záródik gyűrűvé.
- a molekulában a 2. szénatomhoz kapcsolódó hidroxilcsoport a glikozidos hidroxilcsoport

Fizikai tulajdonságok

- Fehér színű, szagtalan, nehezen kristályosítható vegyület.
 - □ A méz "ikrásodásakor" a fruktóz kristályosodik ki.
- Vízben nagyon jól oldódik

7

8

Kémiai tulajdonságok

- A glükóznál kisebb mértékben, de a fruktóz is adja az ezüsttükörpróbát
 - □ annak ellenére, hogy nem tartalmaz formilcsoportot (???)
- lúgos közegben a fruktóz lassan átalakul glükózzá

Összefoglalás				
Pentózok		Hexózok		
β -D-ribóz	2-dezoxi- β-D-ribóz	β-D-glükóz	α-D-glükóz	β-D-fruktóz
C ₅ H ₁₀ O ₅	C ₅ H ₁₀ O ₄	C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O ₆
HO OH	HO OH	CH ₂ OH HO OH	CH ₂ OH HO OH	H ₂ OH O OH CH ₂ OH
aldóz	aldóz	aldóz	aldóz	ketóz
RNS alkotórésze	DNS alkotórésze	cellulóz alkotórésze	keményítő alkotórésze	tiszta formában gyümölcsökber

9

10

Diszacharidok

- A diszacharidok (*kettős szénhidrátok*)
 - ezek molekulája 2 monoszacharid egységből épül fel.
- Szerkezetük formálisan:
 - két monoszacharid molekulából egy vízmolekulát vonunk el, a maradékokat éterkötéssel összekapcsoljuk.
- Glikozidkötés
 - mert legalább az egyik monoszacharid a glikozidos hidroxilcsoportjával vesz részt.

 $Q_{1}-OH + HO-Q_{2} \xrightarrow{-H_{2}O} Q_{1}-O-Q_{2}$ $2C_{6}H_{12}O_{6} \xrightarrow{-H_{2}O} C_{12}H_{22}O_{11}$ diszacharid $pl.: 2 db \alpha-D-glükóz$

Maltóz (malátacukor) (C₁₂H₂₂O₁₁)

 két α-D-glükózmolekulából vezethető le egy vízmolekula kilépésével

14

Molekulaszerkezet

- Két glükózmolekula **1,4-kötés**sel kapcsolódik
 - □ Az egyik glükózmolekula az 1. (glikozidos)
 - □ a másik a 4. szénatomjának hidroxilcsoportjával vesz részt a glikozidkötés kialakításában.
- Emiatt a molekula jellegzetesen megtört alakú lesz (105°-os a kötésszög).
 - □ Táblára!!

13

Fizikai, kémiai tulajdonságai

- A malátacukor fehér színű, vízben jól oldódó, nem nagyon édes ízű, kristályos anyag.
- Az ezüsttükörpróbát mutatja, redukáló hatású diszacharid.
 - □Vizes oldatban a jobb oldalon levő gyűrűje a glükózhoz hasonlóan felnyílhat, és így megjelenik a formilcsoport
 - □Van szabad glikozidos OH-csoport

15 16

Előfordulás, jelentőség

- A keményítő lebontásának közti terméke
 - □ A keményítő maltóz részletekből épül fel.
 - Megtalálható a zöld levelekben és a csírázó növényi magvakban.
- Nevét onnan kapta:

17

 hogy a sörgyártásnál használt csíráztatott árpa, a maláta nagy mennyiségben tartalmazza

OH OH OH

Cellobióz (C₁₂H₂₂O₁₁)

 két β-D-glükózmolekulából vezethető le egy vízmolekula kilépésével

Molekulaszerkezet

- A cellobiózmolekula két β-D glükózból épül fel 1,4-kötéssel.
- Az egyik gyűrű a másikhoz képest 180°-kal elfordul
- Elnyúlt alakú, a két gyűrű közel egy síkban helyezkedik el.

20

Fizikai, kémiai tulajdonságai

- Fehér színű por, vízben jól oldódik, alig édes ízű.
- Az ezüsttükörpróbát mutatja, redukáló hatású diszacharid.
 - □Van szabad glikozidos OH-csoport

Előfordulás, jelentőség

- A cellobióz szabadon nem fordul elő a természetben.
- A legelterjedtebb természetes szénvegyületnek, a cellulóznak az építőeleme.

21

22

Szacharóz (C₁₂H₂₂O₁₁) "A CUKOR" nádcukor, répacukor

- Sok növény nedvében megtalálható □ pl. nyírfa, sárgarépa
- Ipari méretű előállítása a mérsékelt éghajlatú országokban cukorrépából,
- a trópusi országokban cukornádból történik.
 - □répacukor, nádcukor

Molekulaszerkezet

- α-D-glükóz és egy β-D-fruktóz molekulából jön létre 1,2-kötéssel, vízkilépéssel.
- A molekula alakja az α-szerkezetű glükózrész miatt megtört, görbült

23

Fizikai tulajdonságai

- Fehér színű, vízben jól oldódó, édes ízű, kristályos vegyület.
- Kb. 160°C-on megolvad, 180–200°C-on megsárgul, majd megbarnul és jellemző illatot árasztva bomlani kezd, **karamellizálódik**.
 - Ha ekkor kiöntjük, akkor üvegszerű alakban megdermed (pl. így készül a dobostorta teteje).
- A melegítést tovább folytatva a cukor elszenesedik és ehetetlenné válik.

Kémiai tulajdonságai

- A szacharóz nem adja az ezüsttükörpróbát, nem redukáló hatású.
 - Mivel mindkét monoszacharid a glikozidos hidroxilcsoportjával vesz részt a glikozidkötés kialakításában
 - □a gyűrűk még vizes oldatban sem nyílnak fel.
 - □Így formilcsoport sem alakulhat ki.

25

26

Előfordulás, felhasználás

- Energiaforrás jelentős, édesipari alapanyag.
- Nagy mennyiségben használják a gyümölcskonzervek, üdítőitalok készítésénél is.
 - □Túlzott használata egészségtelen.
 - □ Mértéktelen fogyasztása fogszuvasodást, elhízást okoz, amely a szívinfarktus gyakoriságát is növeli

Laktóz (tejcukor) (C₁₂H₂₂O₁₁)

- β-D-glükóz + β-D-galaktóz
 - □β-D-galaktóz: olyan mint a β-D-glükóz, csak a 4. C-atom körül más a ligandumok elrendeződése
- Az anyatej, és az emlősök tejének cukorkomponense
- Redukáló hatású.
- Laktózérzékenység:
 - □ Hiányzik a laktózbontó enzim

27

28

