ВАРИАНТ ЗАДАНИЯ И ОТВЕТЫ К ЗАДАЧАМ

Bap. 14 (9392)

- 1. Решить диофантово уравнение 3211x + 2679y = 133
- Представить √125 в виде периодической цепной дроби.
- 3. Найти наименьшее натуральное число x, удовлетворяющее условиям $x\equiv 11 \bmod 14;$ $x\equiv 1 \bmod 15; \ x\equiv 13 \bmod 23; \ x\equiv 3 \bmod 19;$
- Найти остаток от деления 43⁷⁵³ на 66.
- **5.** По формуле Лагранжа найти многочлен p не выше 4-ой степени, удовлетворяющий условиям: $p(-2)=31; \quad p(1)=1; \quad p(-4)=21; \quad p(-1)=9; \quad p(-3)=49;$
- 6. Найти рациональные корни: $x^4 5x^3 6x^2 + 7x 2$
- Решить уравнение, записанное в 5-ичной системе счисления: 4x + 242 = 1124. Решение записать в 5-ичной и десятичной системах.
- Вычислить 14/16 в кольце вычетов по модулю 95.
- Найти представление рационального числа 802 непрерывной дробью.
- 10. Найти остаток от деления многочлена $3x^5 + 2x^3 + 4x^2 + 3$ на $2x^3 + 3x^2 + 3x + 4$ в кольце $\mathbb{Z}/5\mathbb{Z}\left[x\right]$

№	Ответ				
1	$\begin{cases} x = -35 + 141k \\ y = 42 - 169k \end{cases}, k \in \mathbb{Z}$				
2	[11; 5,1,1,5,22]				
3	x = 4981				
4	43				
5	$p(x) = -x^4 - 3x^3 + 5x^2 - x + 1$				
6	Рациональных корней нет				
7	$x = 43_5 = 23_{10}$				
8	84				
9	[1,4,2,5,6,2]				
10	$4x^2 + 2x + 2$				

Выполнил: Радионов Роман, 0362

1.	3211x	+2679y	= 133
т.	$J L I I \lambda$	$1 \Delta U / J y$	_ 10.

i	-1	0	1	2	3
r	3211	2679	532	19	0
\boldsymbol{q}		1	5	28	
\boldsymbol{x}	1	0	1	- 5	
y	0	1	-1	6	

$$x=x_2\cdot\left(\frac{c}{d}\right)+\frac{a}{d}\cdot k=-5\cdot\frac{133}{19}+\frac{2679}{19}k=-35+141k, k\in\mathbb{Z};$$

$$y=y_2\cdot\left(\frac{c}{d}\right)-\frac{a}{d}\cdot k=6\cdot\frac{133}{19}-\frac{3211}{19}k=42-169k, k\in\mathbb{Z}.$$
 Проверка:

- -

$$k = 1$$
:
 $x = -35 + 141 = 106$, $y = 42 - 169 = -127$;
 $3211 \cdot 106 + 2679 \cdot (-127) = 133$;
 $340366 - 340233 = 133 -$ истина.

Otbet:
$$x = -35 + 141k$$
, $y = 42 - 169k$.

$$2. \sqrt{125} = 11 + \sqrt{125} - 11 = 11 + \frac{1}{\frac{\sqrt{125} + 11}}} = 11 + \frac{1}{5 + \frac{\sqrt{125} - 9}{4}} = 11 + \frac{1}{5 + \frac{1}{\frac{4(\sqrt{125} + 9)}{44}}} = 11 + \frac{1}{5 + \frac{1}{\frac{1}{1 + \frac{1}{\sqrt{125} - 2}}}} = 11 + \frac{1}{5 + \frac{1}{\frac{1}{1 + \frac{1}{\sqrt{125} - 2}}}} = 11 + \frac{1}{5 + \frac{1}{\frac{1}{1 + \frac{1}{\sqrt{125} - 1}}}} = 11 + \frac{1}{5 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\sqrt{125} - 11}}}} = 11 + \frac{1}{5 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\sqrt{125} - 11}}}} = 11 + \frac{1}{5 + \frac{1}{1 + \frac{1$$

Проверка: $x_1 = \frac{x_n}{2} \Rightarrow 11 = \frac{22}{2}$ – истина.

Ответ: $[11; \overline{5,1,1,5,22}]$.

3. $x \equiv 11 \mod 14$, $x \equiv 1 \mod 15$, $x \equiv 13 \mod 23$, $x \equiv 3 \mod 19$. $14 = 2 \cdot 7$, $15 = 3 \cdot 5$, 23 - простое число, 19 - простое число. Общих множителей нет, следовательно D(14,15,23,19) = 1.

Согласно китайской теореме об остатках, данная система имеет единственное решение.

1)
$$M = 14 \cdot 15 \cdot 23 \cdot 19 = 91770$$
; $M_1 = 6555$; $M_2 = 6118$;

$$M_3 = 3990;$$

$$M_4 = 4830.$$

2) $M_1 x_1 = 1 \mod m_1 \Rightarrow 6555 x_1 = 1 \mod 14$:

$$6555x - 14y = 1$$

i	-1	0	1	2	3	4
\boldsymbol{r}	6555	14	3	2	1	0
\boldsymbol{q}		468	4	1	2	
x	1	0	1	-4	5	
y	0	1	-468	1873	-2341	

$$x_1 = 5$$
;

$$M_2 x_2 = 1 \mod 15 \Rightarrow 6118 x_2 = 1 \mod 15$$
:

$$6118x - 15y = 1$$

i	-1	0	1	2	3	4
r	6118	15	13	2	1	0
q		407	1	6	2	
x	1	0	1	-1	7	
y	0	1	-407	408	-2855	

$$x_2 = 7;$$

$$M_3 x_3 = 1 \mod 23 \Rightarrow 3990 x_3 = 1 \mod 23$$
:

$$3990x - 23y = 1$$

i	-1	0	1	2	3
r	3990	23	11	1	0
q		173	2	11	
\boldsymbol{x}	1	0	1	-2	
y	0	1	-173	347	

$$x_3 = -2;$$

$$M_4 x_4 = 1 \mod 19 \Rightarrow 4830 x_4 = 1 \mod 19$$
:

$$4830x - 19y = 1$$

i	-1	0	1	2	3	4
r	4830	19	4	3	1	0
q		254	4	1	3	
x	1	0	1	-4	5	
y	0	1	-254	1017	-1271	

$$x_4 = 5$$
.

3)
$$x = (M_1x_1c_1 + M_2x_2c_2 + M_3x_3c_3 + M_4x_4c_4) \mod M =$$

$$= (6555 \cdot 5 \cdot 11 + 6118 \cdot 7 \cdot 1 + 3990 \cdot (-2) \cdot 13 + 4830 \cdot 5 \cdot 3) \mod 91770 =$$

$$= (360525 + 42826 - 103740 + 72450) \mod 91770 =$$

 $= 372061 \mod 91770 = 4981.$

Проверка:

1)
$$4981 - 14 \cdot 355 = 11$$

2)
$$4981 - 15 \cdot 332 = 1$$

3)
$$4981 - 23 \cdot 216 = 13$$

4)
$$4981 - 19 \cdot 262 = 3$$

4. 43⁷⁵³ mod 66

$$k = 7^{53} \Rightarrow 43^k \mod 66$$

$$\varphi(66) = \varphi(6) \cdot \varphi(11) = 2 \cdot 10 = 20$$

$$43^k = 43^{20n+b} = 43^{20n} \cdot 43^b = 43^b$$

$$k = 7^{53} = 20n + b \Rightarrow b \equiv 7^{53} \mod 20$$

$$53_{10} = 110101_2$$

a	C	c^2	$if(a == 1)c^2 \cdot a$ $else c^2$	$c^2 \cdot a \mod k$
			else c²	
1	1	1	7	7
1	7	49	343	3
0	3	9	9	9
1	9	81	567	7
0	7	49	49	9
1	9	81	567	7

 $b \equiv 7^{53} \bmod 20$

 $7 \equiv 7^{53} \bmod 20$

b = 7

 $43^k \mod 66 \equiv 43^b \mod 66 \Rightarrow 43^k \mod 66 \equiv 43^7 \mod 66$

$$7_{10} = 111_{\underline{2}}$$

_	4				
	а	$a \mid c \mid c^2$		$if(a == 1)c^2 \cdot a$	$c^2 \cdot a \mod k$
				else c^2	
	1	1	1	43	43
	1	43	1849	79507	43
	1	43	1849	79507	43

 $43 \equiv 43^7 \bmod 66$

Ответ: 43

5.
$$p(-2) = 31, p(1) = 1, p(-4) = 21, p(-1) = 9, p(-3) = 49$$

$$p(x) = \frac{(x-1)(x+4)(x+1)(x+3)}{(-3)\cdot 2\cdot (-1)\cdot 1} \cdot 31 + \frac{(x+2)(x+4)(x+1)(x+3)}{3\cdot 5\cdot 2\cdot 4} \cdot 1 + \frac{(x+2)(x-1)(x+1)(x+3)}{(-2)\cdot (-5)\cdot (-3)\cdot (-1)} \cdot 21 + \frac{(x+2)(x-1)(x+4)(x+3)}{1\cdot (-2)\cdot 3\cdot 2} \cdot 9 + \frac{(x+2)(x-1)(x+4)(x+1)}{(-1)\cdot (-4)\cdot 1\cdot (-2)} \cdot 49 = \frac{31}{6}(x-1)(x+4)(x+1)(x+3) + \frac{1}{120}(x+2)(x+4)(x+1)(x+3) + \frac{7}{10}(x+2)(x-1)(x+4)(x+3) - \frac{3}{4}(x+2)(x-1)(x+4)(x+3) - \frac{49}{8}(x+2)(x-1)(x+4)(x+1) = (x+4)(x+1)(x+3) \left(\frac{1}{40}(207x-206)\right) +$$

$$+(x+2)(x-1)(x+3)\left(\frac{1}{20}(-x-46)\right) - \frac{49}{8}(x+2)(x-1)(x+4)(x+1) =$$

$$= \frac{207}{40}x^4 + \frac{145}{4}x^3 + \frac{457}{8}x^2 - \frac{143}{4}x - \frac{309}{5} - \frac{1}{20}x^4 - \frac{5}{2}x^3 - \frac{37}{4}x^2 - 2x + \frac{69}{5} - \frac{49}{8}x^4 - \frac{147}{4}x^3 - \frac{343}{8}x^2 + \frac{147}{4}x + 49 =$$

$$= -x^4 - 3x^3 + 5x^2 - x + 1.$$

Проверка:

x	-1	-3	5	-1	1
-2	-1	-1	7	-15	31
1	-1	-4	1	0	1
-4	-1	1	1	- 5	21
-1	-1	-2	7	-8	9
-3	-1	0	5	-16	49

6.
$$x^4 - 5x^3 - 6x^2 + 7x - 2 = 0$$

 $\frac{p}{q} = \frac{\pm 2, \pm 1}{\pm 1}$
 x 1 -5 -6 7 -2
1 1 -4 -10 -3 -5
-1 1 -6 0 7 -9
2 1 -3 -12 -17 -36
-2 1 -7 8 -9 16

Проверка потенциальных корней.

Ответ: рациональных корней нет.

7. 1)
$$4_5x + 242_5 = 1124_5$$
;
 $4_5x = 1124_5 - 242_5$;
 $\frac{1}{2} \frac{1}{4} \frac{2}{10} \frac{4}{2} \frac{2}{3} \frac{4}{3} \frac{2}{3}$

$$4_{5}x = 332_{5};$$
3 3 2 4
3 1 4 3
2 2
2 2
2 0
x = 43₅.
2) $4_{5}x + 242_{5} = 1124_{5};$
 $4_{5} = 4_{10}, 242_{5} = 2 + 20 + 50 = 72_{10},$

 $1124_5 = 4 + 10 + 25 + 125 = 164_{10}$;

$$4_{10}x + 72_{10} = 164_{10};$$

 $4_{10}x = 92_{10};$

$$x = 23_{10};$$

$$x = 43_5$$
.

8.
$$x = \frac{14}{16} \mod 95$$
;

$$16x = 14 \mod 95$$
;

$$16x - 95y = 14$$
;

$$16x + 95y' = 14;$$

$$D(16.95) = 1$$
;

i	-1	0	1	2	3	4
r	16	95	16	15	1	0
q		0	5	1	15	
x	1	0	1	- 5	6	
y	0	1	0	1	-1	

$$x_0 = 6;$$

$$x = 14 \cdot 6 + 95n, n \in \mathbb{Z};$$

$$x = 84 + 95n, n \in \mathbb{Z};$$

$$x = 84 + 95 \cdot 0 = 84$$
;

Ответ: 84.

9. 1)
$$\frac{802}{655} = 1 + \frac{147}{655} = 1 + \frac{1}{\frac{655}{147}} = 1 + \frac{1}{4 + \frac{67}{147}} = 1 + \frac{1}{4 + \frac{1}{2 + \frac{13}{67}}} = 1 + \frac{1}{4 + \frac{1}{2 + \frac{1}{15}}} = 1$$

$$=1+\frac{1}{4+\frac{1}{2+\frac{1}{5+\frac{1}{6+\frac{1}{2}}}}}=[1,4,2,5,6,2].$$

$$2) 802 = 1 \cdot 655 + 147$$

$$655 = 4 \cdot 147 + 67$$

$$147 = 2 \cdot 67 + 13$$

$$67 = 5 \cdot 13 + 2$$

$$13 = 6 \cdot 2 + 1$$

$$2 = 2 \cdot 1$$

Ответ: [1,4,2,5,6,2]

10.Найти остаток от деления многочлена $3x^5 + 2x^3 + 4x^2 + 3$ на $2x^3 + 3x^2 + 3x + 4$ в кольце $\mathbb{Z}/5\mathbb{Z}[x]$.

$$\begin{array}{r}
3x^{5} + 0x^{4} + 2x^{3} + 4x^{2} + 0x + 3 \\
3x^{5} + 2x^{4} + 2x^{3} + x^{2} \\
\hline
3x^{4} + 0x^{3} + 3x^{2} + 0x \\
3x^{4} + 2x^{3} + 2x^{2} + x \\
\hline
3x^{3} + x^{2} + 4x + 3 \\
3x^{3} + x^{2} + 4x + 3 \\
4x^{2} + 2x + 2
\end{array}$$

Проверка: $(4x^2 + 4x + 4)(2x^3 + 3x^2 + 3x + 4) + 4x^2 + 2x + 2 =$ = $8x^5 + 12x^4 + 12x^3 + 16x^2 + 8x^4 + 12x^3 + 12x^2 + 16x + 8x^3 + 12x^2 +$ + $12x + 16 + 4x^2 + 2x + 2 = 8x^5 + 20x^4 + 32x^3 + 44x^2 + 30x + 18^{\mathbb{Z}/5\mathbb{Z}}$ $\overset{\mathbb{Z}/5\mathbb{Z}}{\sim} 3x^5 + 0x^4 + 2x^3 + 4x^2 + 0x + 3.$