ベクトル解析用 LATEX マクロ EP Vector Analysis マニュアル

2024年2月10日

微分

\epdifferential{x}	$\mathrm{d}x$	微小量 $\mathrm{d}x$
\epdifferential[n]{x}	$d^n x$	微小量 $d^n x$
\epdiff{x}	$\mathrm{d}x$	微小量 $\mathrm{d}x$
\epdiff[n]{x}	$\mathrm{d}^n x$	微小量 $d^n x$
	d	
{x}	$\overline{\mathrm{d}x}$	常微分演算子
$\verb \epordinaryderivative[n]{}{x} $	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}$	n 階の常微分演算子
\epordinaryderivative{f}{x}	$\frac{\mathrm{d}f}{\mathrm{d}x}$	ƒ の常微分
\epordinaryderivative[n]{f}{x}	$\frac{\mathrm{d}^n f}{\mathrm{d}x^n}$	f の n 階常微分
{x}	d	常微分演算子
\epodv[n]{}{x}	$\frac{\mathrm{d}x}{\mathrm{d}^n}$	n 階の常微分演算子
\epodv{f}{x}	$\frac{\mathrm{d}x^n}{\mathrm{d}f}$	fの常微分
\epodv[n]{f}{x}	$\frac{\mathrm{d}x}{\mathrm{d}^n f}$ $\frac{\mathrm{d}^n f}{\mathrm{d}x^n}$	f の n 階常微分
{x}	$\mathrm{d}/\mathrm{d}x$	常微分演算子 (横書き)
\epflatordinaryderivative[n]{}{x}	d^n/dx^n	n 階の常微分演算子 (横書き)
\epflatordinaryderivative{f}{x}	$\mathrm{d}f/\mathrm{d}x$	ƒ の常微分 (横書き)
$\verb \epflatordinaryderivative[n]{f}{x} $	$\mathrm{d}^n f/\mathrm{d} x^n$	f の n 階常微分 (横書き)
{x}	$\mathrm{d}/\mathrm{d}x$	常微分演算子 (横書き)

\epfodv[n]{}{x}	$\mathrm{d}^n/\mathrm{d}x^n$	n 階の常微分演算子 (横書き)
\epfodv{f}{x}	$\mathrm{d}f/\mathrm{d}x$	ƒ の常微分 (横書き)
$\ensuremath{\texttt{\ensuremath{\texttt{epfodv}}}} [n] \ensuremath{\texttt{\ensuremath{\texttt{f}}}} \{x\}$	$\mathrm{d}^n f/\mathrm{d} x^n$	f の n 階常微分 (横書き)
{x}	$\frac{\partial}{\partial x}$	偏微分演算子
	$\frac{\partial x}{\partial^n}$	III
\eppartialderivative[n]{}{x}	$\overline{\partial x^n}$	n 階の偏微分演算子
\eppartialderivative{f}{x}	$\frac{\partial f}{\partial x}$	ƒ の偏微分
\onnow+ioldorivo+ivo[n]{fl}vl	$\partial^n f$	f の m 既信働分
\eppartialderivative[n]{f}{x}	$\overline{\partial x^n}$	ƒのη階偏微分
	д	
{x}	$\frac{\partial}{\partial x}$	偏微分演算子
\eppdv[n]{}{x}	$\frac{\partial^n}{\partial x^n}$	n 階の偏微分演算子
	$\partial x^n \ \partial f$	
\eppdv{f}{x}	$\frac{\partial f}{\partial x}$	ƒ の偏微分
$\left[f\right] \left[r\right] $	$\frac{\partial^n f}{\partial x^n}$	ƒのη階偏微分
	Ox^{n}	
{x}	$\partial/\partial x$	偏微分演算子 (横書き)
\epflatpartialderivative[n]{}{x}	$\partial^n/\partial x^n$	n 階の偏微分演算子 (横書き)
$\verb \epflatpartialderivative{f}{x} $	$\partial f/\partial x$	ƒ の偏微分 (横書き)
$\verb \epflatpartialderivative[n]{f}{x} $	$\partial^n f/\partial x^n$	fの n 階偏微分 (横書き)
{x}	$\partial/\partial x$	偏微分演算子 (横書き)
\epfpdv[n]{}{x}	$\partial^n/\partial x^n$	n 階の偏微分演算子 (横書き)
\epfpdv{f}{x}	$\partial f/\partial x$	ƒの偏微分 (横書き)
\epfpdv[n]{f}{x}	$\frac{\partial^n f}{\partial x^n}$	f の n 階偏微分 (横書き)
{x}	$\frac{\mathrm{D}}{\mathrm{D}x}$	Lagrange 微分演算子
\onlawnendenissatissa[n][][st]	\mathbf{D}^n	n 階の Lagrange 微分演算子
\eplagrangederivative[n]{}{x}	$\overline{\mathrm{D}x^n}$	n 階の Lagrange 磁力便昇す
\eplagrangederivative{f}{x}	$\frac{\mathrm{D}f}{\mathrm{D}x}$	f の Lagrange 微分
\eplagrangederivative[n]{f}{x}	$D^n f$	f の n 階 Lagrange 微分
(epiagiangederivative[n][1][x]	$\overline{\mathrm{D}x^n}$	J V II PH Lagrange VK J
	D	
{x}	$\overline{\mathrm{D}x}$	Lagrange 微分演算子
\epldv[n]{}{x}	$\frac{\mathbf{D}^n}{\mathbf{D}_n}$	n 階の Lagrange 微分演算子
	$\overline{\mathrm{D}x^n} \ \mathrm{D}f$	
\epldv{f}{x}	$\frac{\sigma}{\mathrm{D}x}$	f の Lagrange 微分

\epldv[n]{f}{x}	$\frac{\mathrm{D}^n f}{\mathrm{D} x^n}$	f の n 階 Lagrange 微分
<pre>{x} \epflatlagrangederivative[n]{}{x} \epflatlagrangederivative{f}{x} \epflatlagrangederivative[n]{f}{x}</pre>	D/Dx D^{n}/Dx^{n} Df/Dx $D^{n}f/Dx^{n}$	Lagrange 微分演算子 (横書き) n 階の Lagrange 微分演算子 (横書き) f の Lagrange 微分 (横書き) f の n 階 Lagrange 微分 (横書き)
<pre>{x} \epfldv[n]{}{x} \epfldv{f}{x} \epfldv[n]{f}{x}</pre>	D/Dx D^{n}/Dx^{n} Df/Dx $D^{n}f/Dx^{n}$	Lagrange 微分演算子 (横書き) n 階の Lagrange 微分演算子 (横書き) f の Lagrange 微分 (横書き) f の n 階 Lagrange 微分 (横書き)

積分

{}{x}	$\int \mathrm{d}x$	1の不定積分
{}{f(x)}{x}	$\int f(x) \mathrm{d}x$	f(x) の不定積分
\epint{a}{b}{}{x}	$\int_a^b \mathrm{d}x$	1の定積分
\epint{a}{b}{f(x)}{x}	$\int_{a}^{b} f(x) \mathrm{d}x$	f(x) の定積分
\epoint{C}{}{x}	$\oint_C dx$	1の周回積分
\epoint{C}{f(x)}{x}	$\oint_C f(x) \mathrm{d}x$	f(x) の周回積分

ベクトルと演算子

\epvector{a}	a	ベクトル
\epvec{a}	a	ベクトル
\epdotproduct	•	内積
\epvdot		内積
\epcrossproduct	×	外積
\epcross	×	外積

\epvectornabla	∇	ナブラ
\epgradient	∇	勾配
\epgrad	abla	勾配
\epdivergence	$ abla\cdot$	発散
\epdiv	$ abla\cdot$	発散
\epcurl	abla imes	回転
\eprot	abla imes	回転
\eplaplacian	$ abla^2$	ラプラシアン