

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Ciência da Computação Disciplina: Teoria da Computação

Professor: Reginaldo Santos
Discente: Ábner Pereira

Redes Neurais - Perceptron de camada única

Conforme transparência apresentada pelo professor segue a implementação descritiva dos ciclos do treinamento do perceptron de camada única, baseado na regra Hebb, para o problema da função AND.

Base de dados:

AND	x_0	x_1	x_2	t
Entrada 1	1	0	0	0
Entrada 2	1	0	1	0
Entrada 3	1	1	0	0
Entrada 4	1	1	1	1

Peso inicial:
$$w_0 = 0$$
, $w_1 = 0$ e $w_2 = 0$

Taxa de aprendizagem: $\eta = 0.5$ Função de ativação: Degrau

$$f(u) = \begin{cases} 1, & \text{se } u > 0 \\ 0, & \text{se } u \le 0 \end{cases}$$

$$u = w_0 x_0 + w_1 x_1 + w_2 x_2$$

Ajuste de peso: $w = w + \eta(t - s_{out})x$

1º Ciclo:

Entrada 1:
$$s_{out} = f(0 \times 1 + 0 \times 0 + 0 \times 0) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 2:
$$s_{out} = f(0 \times 1 + 0 \times 0 + 0 \times 1) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 3:
$$s_{out} = f(0 \times 1 + 0 \times 1 + 0 \times 0) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 4:
$$s_{out} = f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$$

2º Ciclo:

Entrada 1:
$$s_{out} = f(0.5 \times 1 + 0.5 \times 0 + 0.5 \times 0) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta (t - s_{out}) x_0 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$$

Entrada 2:
$$s_{out} = f(0 \times 1 + 0.5 \times 0 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = 0 + 0.5 \times (0 - 1) \times 1 = -0.5$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$$

Entrada 3:
$$s_{out} = f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 0) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 4:
$$s_{out} = f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 1) = f(0) = 0 \longrightarrow s_{out} \neq t$$
Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -0.5 + 0.5 \times (1 - 0) \times 1 = 0$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$$

3º Ciclo:

Entrada 1:
$$s_{out} = f(0 \times 1 + 1 \times 0 + 0.5 \times 0) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 2:
$$s_{out} = f(0 \times 1 + 1 \times 0 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = 0 + 0.5 \times (0 - 1) \times 1 = -0.5$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 0 = 1$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$$

Entrada 3:
$$s_{out} = f(-0.5 \times 1 + 1 \times 1 + 0 \times 0) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -0.5 + 0.5 \times (0 - 1) \times 1 = -1$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 1 = 0.5$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0 + 0.5 \times (0 - 1) \times 0 = 0$$

Entrada 4:
$$s_{out} = f(-1 \times 1 + 0.5 \times 1 + 0 \times 1) = f(-0.5) = 0 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -1 + 0.5 \times (1 - 0) \times 1 = -0.5$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$$

4º Ciclo:

Entrada 1:
$$s_{out} = f(-0.5 \times 1 + 1 \times 0 + 0.5 \times 0) = f(-0.5) = 0 \longrightarrow s_{out} = t$$

Entrada 2:
$$s_{out} = f(-0.5 \times 1 + 1 \times 0 + 0.5 \times 1) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 3:
$$s_{out} = f(-0.5 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -0.5 + 0.5 \times (0 - 1) \times 1 = -1$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 1 = 0.5$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$$

Entrada 4:
$$s_{out} = f(-1 \times 1 + 0.5 \times 1 + 0.5 \times 1) = f(0) = 0 \longrightarrow s_{out} \neq t$$

Ajuste de peso

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -1 + 0.5 \times (1 - 0) \times 1 = -0.5$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$$

$$w_2 = w_2 + \eta(t - s_{out})x_2 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$$

5º Ciclo:

Entrada 1:
$$s_{out} = f(-0.5 \times 1 + 1 \times 0 + 1 \times 0) = f(-0.5) = 0 \longrightarrow s_{out} = t$$

Entrada 2:
$$s_{out} = f(-0.5 \times 1 + 1 \times 0 + 1 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t$$

<u>Ajuste de peso</u>

$$w_0 = w_0 + \eta(t - s_{out})x_0 = -0.5 + 0.5 \times (0 - 1) \times 1 = -1$$

$$w_1 = w_1 + \eta(t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 0 = 1$$

 $w_2 = w_2 + \eta(t - s_{out})x_2 = 1 + 0.5 \times (0 - 1) \times 1 = 0.5$

Entrada 3:
$$s_{out} = f(-1 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0) = 0 \longrightarrow s_{out} = t$$

Entrada 4: $s_{out} = f(-1 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} = t$

6º Ciclo:

Entrada 1:
$$s_{out} = f(-1 \times 1 + 1 \times 0 + 0.5 \times 0) = f(0) = 0$$
 $\longrightarrow s_{out} = t$
Entrada 2: $s_{out} = f(-1 \times 1 + 1 \times 0 + 0.5 \times 1) = f(-0.5) = 0$ $\longrightarrow s_{out} = t$
Entrada 3: $s_{out} = f(-1 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0) = 0$ $\longrightarrow s_{out} = t$
Entrada 4: $s_{out} = f(-1 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1$ $\longrightarrow s_{out} = t$

Após 5 ciclos obtém-se os pesos ótimos: $w_0 = -1$, $w_1 = 1$ e $w_2 = 0.5$