UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Tiempo de desarrollo: 40 min.

17/11/2016

Test $n^{\circ}5$ - 521227 (Cálculo III)

- 1. **Problema.** Sean $S_1 = \{(x,y) \mid 0 \le x \le 2y y^2\}, S_2 = \{(x,y) \mid 0 \le y \le 2x, 0 \le x \le 1\},$ $S_3 = \left\{ (x,y) \mid 0 \le y \le \frac{2}{x}, \ 1 \le x \le 2 \right\}$, y sea f la función definida por $f(x,y) = \frac{x^2}{y^2}$, con $(x,y) \in \mathbb{R} \times \mathbb{R}^+$
 - (a) Calcule contenido de la intersección $S_1 \cap S_2$ y el contenido de la intersección $S_2 \cap S_3$.
 - (b) Justificando adecuadamente sus respuestas, decida la veracidad o falsedad de cada una de las siguientes afirmaciones:

1. Si
$$S = S_1 \cup S_2$$
, $\int_S f(x,y) d(x,y) = \int_{S_1} f(x,y) d(x,y) + \int_{S_2} f(x,y) d(x,y)$.
2. Si $S = S_2 \cup S_3$, $\int_S f(x,y) d(x,y) = \int_{S_2} f(x,y) d(x,y) + \int_{S_3} f(x,y) d(x,y)$.
En caso de respuesta afirmativa, calcule $\int_S f(x,y) d(x,y)$.

2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función continua, pruebe que:

$$\int_{0}^{1} \int_{0}^{x^{2}} f(x,y) \, dy \, dx + \int_{1}^{3} \int_{0}^{(3-x)/2} f(x,y) \, dy \, dx = \int_{0}^{1} \int_{\sqrt{y}}^{3-2y} f(x,y) \, dx \, dy$$

Respuestas

Problema 1.

1-a-1. Medida de $S_1 \cap S_2$: $m(S_1 \cap S_2)$. $S_1 \cap S_2 = \{(x,y) / y/2 \le x \le 2y - y^2, \ 0 \le y \le 3/2\}$

$$m(S_1 \cap S_2) = \int_0^{3/2} \int_{y/2}^{2y-y^2} dx \ dy = \int_0^{3/2} \left(\frac{3}{2}y - y^2\right) dy$$
 (15 ptos)
= $\frac{9}{16}$

1-a-2. Medida de $S_2 \cap S_3$: $m(S_2 \cap S_3)$. $S_2 \cap S_3 = \{(x,y) / 0 \le y \le 2, x = 1\}$ (segmento de recta en \mathbb{R}^2)

Como $S_2 \cap S_3$ es un segmento de recta en \mathbb{R}^2 entonces

$$m\left(S_2 \cap S_3\right) = 0 \tag{15 ptos}$$

NO EVALUAR 1-b

Problema 2. Sea S la región acotada del plano tal que

$$\int_{S} f(x,y) d(x,y) = \int_{0}^{1} \int_{0}^{x^{2}} f(x,y) dy dx + \int_{1}^{3} \int_{0}^{(3-x)/2} f(x,y) dy dx$$
 (1)

Es claro que la región de integración S es

$$S = \{(x,y) / 0 \le y \le x^2, \ 0 \le x \le 1\} \cup \{(x,y) / 0 \le y \le (3-x)/2, \ 1 \le x \le 3$$
 (10 ptos)

Esto es, S es la región del plano limitada por la parábola $C: y = x^2$, la recta L: y = (3-x)/2 y el eje OX

Así, S tambien puede describirse mediante

$$S = \{(x, y) / \sqrt{y} \le x \le 3 - 2y, \ 0 \le y \le 1\}$$
 (10 ptos)

entonces,

$$\int_{S} f(x,y) d(x,y) = \int_{0}^{1} \int_{\sqrt{y}}^{3-2y} f(x,y) dx dy$$

Luego, de (1) y (2)

$$\int_{0}^{1} \int_{0}^{x^{2}} f(x,y) \, dy \, dx + \int_{1}^{3} \int_{0}^{(3-x)/2} f(x,y) \, dy \, dx = \int_{0}^{1} \int_{\sqrt{y}}^{3-2y} f(x,y) \, dx \, dy \qquad (10 \text{ ptos})$$