Explainable AI Analysis of GSNR Prediction Model

Hira Sardar

August 31, 2024

1 Introduction

This report presents an analysis of a machine learning model designed to predict Generalized Signal-to-Noise Ratio (GSNR) using various input features. We employ a stacking ensemble model and apply several Explainable AI (XAI) techniques to interpret the model's behavior and feature importance.

2 Methodology

2.1 Data Preprocessing

The dataset was preprocessed using the following steps:

- Removal of missing values
- Feature scaling using StandardScaler
- Feature selection using SelectFromModel with RandomForestRegressor
- Train-test split (80% train, 20% test)

2.2 Model Architecture

We implemented a stacking ensemble model with the following components:

- Base Models:
 - Random Forest (300 estimators, max depth 20)
 - Gradient Boosting (300 estimators, learning rate 0.1, max depth 5)
 - XGBoost (300 estimators, learning rate 0.1, max depth 7)
- Meta Model: Ridge Regression (alpha = 1.0)
- 5-fold cross-validation for stacking

2.3 Model Performance

The model achieved the following performance metrics on the test set:

- Mean Squared Error (MSE): [Insert MSE value]
- Mean Absolute Error (MAE): [Insert MAE value]
- R-squared Score: [Insert R² value]

3 Explainable AI Analysis

3.1 Permutation Importance

Permutation importance measures the decrease in model performance when a feature is randomly shuffled.

Figure 1: Permutation Importance of Features

3.2 SHAP (SHapley Additive exPlanations) Values

SHAP values provide a unified measure of feature importance that is consistent, locally accurate, and individually fair.

Figure 2: SHAP Feature Importance Summary

3.3 LIME (Local Interpretable Model-agnostic Explanations)

LIME explains individual predictions by approximating the model locally.

Figure 3: LIME Explanation for a Single Prediction

3.4 Partial Dependence Plots

Partial Dependence Plots show the marginal effect of features on the predicted outcome.

Figure 4: Partial Dependence Plots for Top Features

Figure 5: Partial Dependence Plots for Top Features

Figure 6: Partial Dependence Plots for Top Features

4 Conclusion

The code performed extremely well. The results attained were:-

Metric	Value
Mean Squared Error (MSE)	0.04220387363936973
Mean Absolute Error (MAE)	0.06135584349064385
R-squared Score (R^2)	0.999940438810046

Table 1: Model Performance