O CONCEITO DE SENTENÇA ABERTA SIMPLES E COMPOSTA

SENTENÇAS ABERTAS

Considere a seguinte oração:

"Alguém foi um craque do futebol na Argentina" Você consegue dizer se essa oração é verdadeira ou falsa?

A resposta é "certamente não". Veja que não é possível afirmar se essa oração é verdadeira ou falsa, pois o sujeito não está muito claro, uma vez que "Alguém" é um pronome indefinido. Portanto, não consideramos esse tipo de oração uma sentença ou proposição.

Agora suponhamos que o pronome "Alguém" seja substituído pelo nome do jogador Maradona:

"Maradona foi um craque do futebol na Argentina" Veja que a sentença é verdadeira.

Suponhamos que o pronome "Alguém" seja substituído pelo nome do jogador Pelé:

"Pelé foi um craque do futebol na Argentina" Essa sentença, então, nesse caso, torna-se uma proposição falsa.

Atenção

Ou seja, nessa oração, o pronome "Alguém" é variável, isto é, pode ser substituído por um nome que fará com que essa sentença tenha um valor verdadeiro ou falso. A partir disso, podemos dizer que temos uma sentença aberta ou uma proposição aberta. Agora vamos considerar a sentença 2x - 3 = 5. Quando substituímos a variável x, por exemplo, pelo valor 4, temos:

$$2x - 3 = 5$$

 $2 \times (4) - 3 = 5$
 $8 - 3 = 5$
 $5 = 5$

Veja que essa sentença se torna uma proposição verdadeira.

Agora vamos substituir a variável x pelo valor 2.

$$2x - 3 = 5$$
 $2 \times (2) - 3 = 5$
 $4 - 3 = 5$
 $1 \neq 5$

Essa sentença, para x = 2, é falsa.

Comentário

Dizemos, nesse caso, que a sentença 2x - 3 = 5 é uma sentença aberta na variável x. Podemos atribuir qualquer valor numérico para a variável x e avaliar se o resultado se torna uma proposição verdadeira ou falsa.

Agora podemos definir uma sentença aberta do seguinte modo de forma mais precisa:

Vamos considerar um conjunto A (não vazio) e "a" um elemento desse conjunto. Ou seja, $a \in A$.

Definimos uma sentença aberta no conjunto A ou uma sentença aberta com uma variável no conjunto A como sendo uma expressão que chamamos de p(x), tal que para todo elemento "a" do conjunto A, p(a) pode assumir o valor lógico V (verdadeiro) ou F (falso).

Em outras palavras, dizemos que p(x) é uma sentença aberta no conjunto A se, e somente se, p(x) assumir o valor verdadeiro ou falso sempre que substituirmos a variável x por qualquer **elemento arbitrário** do conjunto A.

Também podemos chamar a sentença aberta em A de **função proposicional em** A ou **condição em A**.

Observação: lembre-se de que sentença ou proposição é uma oração declarativa verdadeira ou falsa.

Exemplos

Considerando o conjunto dos números naturais $N = \{1, 2, 3, ...\}$, temos os seguintes exemplos de sentenças abertas: $x^2 - 5x + 6 = 0$

$$x + 2 > 10$$

Para x = 1, por exemplo, temos que 1 = 2 > 10 (falso).

$$x^2 - 5x + 6 = 0$$

Para x = 2, temos que

$$x^2 - 5 \times (2) + 6 = 0$$

4 - 10 + 6 = 0 (verdadeiro).

CONJUNTO UNIVERSO

Chamamos de conjunto universo ou domínio da sentença aberta (**em geral, usamos a letra U**), ou simplesmente universo, o conjunto formado por todos os elementos com os quais estamos verificando um determinado assunto.

Exemplos

Vejamos alguns exemplos:

$$x + 15 = 8$$

Considere a expressão x + 15 = 8 uma sentença aberta em Z (o conjunto dos números inteiros formado por números positivos e negativos). Nesse caso, U = Z.

Resolvendo essa equação, encontramos o seguinte resultado:

$$x + 15 = 8$$

 $x = 8 - 15$
 $x = -7$

Note que o valor encontrado x = -7 é um elemento do conjunto universo U = Z. Portanto, -7 é o valor da variável que torna a sentença verdadeira.

$$x + 15 < 8$$

Agora considerando a expressão x + 15 < 8. Vamos atribuir um valor qualquer à variável x, por exemplo, -5. Temos:

$$x + 15 < 8$$
 $-5 + 15 < 8$
 $10 < 8$

Veja que esse valor torna a sentença falsa.

CONJUNTO VERDADE DE UMA SENTENÇA ABERTA COM UMA VARIÁVEL

Seja p(x) uma sentença aberta em um conjunto universo A. Chamamos de conjunto verdade de p(x), o conjunto formado por todos os elementos $a \in A$, tal que p(a) é uma proposição verdadeira.

Denotamos o conjunto verdade por:

$$V_p = x \mid x \in A \land p(x) \notin V$$

Também podemos usar:

$$V_p = \{x \mid x \in A \land p(x)\}$$

$$V_p = \{x \in A \mid p(x)\}$$

Atenção

 $V_p \subset A$ (o conjunto verdade de p(x) em A é um subconjunto do conjunto universo A).

Exemplos

Vejamos alguns exemplos:

$$2x^2 + 5x = 0$$

Considere a sentença aberta $2x^2 + 5x = 0$ em Z. Vamos determinar o seu conjunto verdade resolvendo a equação do 2^0 grau.

Solução:

$$2x^{2} + 5x = 0$$

$$x \times (2x + 5) = 0$$

$$x = 0$$

$$2x^{2} + 5x = 0 \Rightarrow 2x = -5 \Rightarrow x = -5 \div 2 \notin Z$$

$$V_{p} = \{x \mid x \in Z \land 2x^{2} + 5x = 0\}$$

$$V_{p} = \{0\}$$

x + 10 < 3

Considere a sentença aberta x + 10 < 3 em N. Vamos determinar o seu conjunto verdade resolvendo a inequação.

$$x + 10 < 3$$

 $x < 3 - 10$
 $x < -7$

O conjunto dos números naturais é formado somente por números positivos. Portanto, o conjunto universo é vazio.

$$V_p = \{x \mid x \in N \land x + 10 < 3\}$$

 $V_p = \{\emptyset\}$

Com relação às sentenças abertas, podemos considerar diferentes situações:

p(x) manifesta uma condição universal no conjunto A.

Por exemplo:

Seja "2x + 1 > x" uma sentença aberta em N.

Veja que todos os elementos de N fazem parte do conjunto verdade.

 $V_p = N$

p(x) manifesta uma condição possível no conjunto A.

Por exemplo:

Seja "2x + 3 > 6" uma sentença aberta em N.

Nessa sentença, apenas alguns elementos de N fazem parte do conjunto verdade.

 $V_p = \{2, 3, 4, \ldots\}$

p(x) manifesta uma condição impossível no conjunto A.

Por exemplo:

Seja "x + 3 = x" uma sentença aberta em N.

Nessa sentença, nenhum elemento de N faz parte do conjunto verdade. $V_p = \emptyset$

CONJUNTO VERDADE DE UMA SENTENÇA ABERTA COM DUAS VARIÁVEIS

As sentenças abertas também podem ter mais de uma variável. Vamos verificar como é o conjunto verdade de uma sentença aberta com duas variáveis.

Numa sentença aberta com duas variáveis, consideramos dois conjuntos, A e B. Seja "a" um elemento do conjunto A, $(a \in A)$ e "b" um elemento do conjunto B, $(b \in B)$. Chamamos de sentença aberta em A \times B, uma expressão p(x, y) em que p(a, b) pode assumir o valor lógico falso (F) ou verdadeiro (V) para todo par ordenado (a, b) \in A \times B.

Atenção

Ao retirar o modal, também trocar o texto da caixa de atenção para:

Sejam dois conjuntos A e B; dizemos que o produto cartesiano de A por B é o conjunto de todos os pares ordenados (a, b), em que $a \in A$ e $b \in B$. O produto cartesiano de A por B é indicado por A × B (lê: A cartesiano B), assim: A × B = {(a, b) | a ∈ A ∧ b ∈ B}

Vejamos exemplos de sentença aberta com duas variáveis:

Exemplos

1. Considere os conjuntos Ae B, em que A = $\{1, 5\}$ e B = $\{1, 2, 3\}$. Dadas as expressões a seguir, vamos verificar que elas são sentenças abertas em A \times B.

Podemos definir que uma expressão p(x, y) é uma sentença aberta em $A \times B$ se, e somente se, p(x, y) é verdadeira ou falsa sempre que as variáveis x e y são substituídas pelos elementos a e b de qualquer par ordenado pertencente ao produto cartesiano $A \times B$

Agora vamos definir o que entendemos por conjunto verdade de uma sentença aberta com duas variáveis: é o conjunto de todos os elementos $(a, b) \in A \times B$, tais que p(a, b) é uma proposição verdadeira.

Denotamos o conjunto verdade por:

$$V_p = \{(x, y) \mid x \in A \land y \in B \land p(x, y) \notin V\}$$

Também podemos usar:

$$V_p = \{(x, y) \in A \times B \mid p(x, y)\}$$

Observação: $V_p \subset A \times B$ (o conjunto verdade de p(x, y) em A\times B é um subconjunto do conjunto $A \times B$).

2. Considere a sentença aberta x + y = 6 em $N \times N$, em que N é o conjunto dos números naturais. O conjunto verdade é

$$V_p = \{(x, y) \in \mathbb{N} \times \mathbb{N} \land x + y = 6\} = \{(1, 5), (3, 3), (2, 4)\}$$

Considere a sentença aberta x + 2 > y em $A \times B$, em que $A = \{1, 2, 3\}$ e $B = \{4, 5\}$. O conjunto verdade é

$$V_p = \{(x, y) \in A \times B \land x + 2 > y\} = \{(3, 4)\}$$

PREDICADOS

Vamos considerar inicialmente a seguinte expressão:

"Paulo é inteligente"

Nessa expressão, temos:

· Sujeito: Paulo.

• Predicado: inteligente.

Note que inteligente é uma propriedade ou característica de Paulo.

Agora veja as seguintes expressões:

"x é alto e elegante"

"x é professor de y"

Nessas expressões, temos agora a presença de variáveis.

Atenção

Na afirmação "x é alto e elegante", por exemplo, x é o sujeito e alto e elegante é o predicado. Veja que o predicado é utilizado para representar a propriedade de ser alto e elegante.

Portanto, fica fácil compreender que o predicado atribui ao sujeito uma propriedade ou uma característica.

Representamos um predicado, por exemplo, por p(x) ou p(x, y).

Por exemplo:

p(x) denota a afirmação "x é alto e elegante" q(x, y) denota a afirmação "x é professor de y"

Na lógica dos predicados, eles são representados por meio dos símbolos predicativos: p, q, r... etc. e variáveis: x, y, z... etc.

Veja alguns exemplos de predicados:

Exemplo

a)
$$p(x) = "2x = 8"$$

b)
$$p(x) = "5x - 10 = 0"$$

c)
$$p(x) = "x + y > 2"$$

Exemplos

Vejamos exemplos de predicados:

- a) Dado o predicado $p(x) = "x^2 6x + 5 = 0"$, determine o seu conjunto verdade em N, em que N é o conjunto dos números naturais.
- b) Dados os conjuntos A = $\{-2, 0, 1\}$ e B = $\{-1, 0, 3\}$, determine o conjunto verdade de p(x, y) = "x + y > 2", x \in A e y \in B.

OPERAÇÕES LÓGICAS SOBRE SENTENÇAS ABERTAS

As operações de sentenças abertas ocorrem por meio da utilização dos conectivos lógicos do cálculo proposicional. A partir da combinação de sentenças por meio dos conectivos, formamos novas sentenças abertas ou proposições.

Veja os conectivos lógicos:

¬ (não)

Negação

A (e)

Conjunção

V (ou)

Disjunção

→ (Se... então)

Condicional

↔ (Se, e somente se)

Bicondicional

Com essas operações, obteremos um conjunto verdade para cada operação, como veremos a seguir.

Agora vamos analisar cada operação sobre as sentenças abertas p(x) e q(x) em A, e um elemento $a \in A$ seguida de um exemplo. Cada sentença aberta possui um conjunto verdade dado por V_p e V_q , respectivamente.

OPERAÇÃO NEGAÇÃO

A operação de negação da sentença aberta p(x) é a sentença $\neg p(x)$ em A.

Exemplo: considerando o conjunto universo $N = \{1, 2, 3, ...\}$ (conjunto dos números naturais).

Seja a sentença aberta p(x): x + 2 < 6.

 $V_p = \{1, 2, 3\}.$

O conjunto verdade é

$$V_{\neg p} = C_N V_p = N - V_p = N - \{1, 2, 3\} = \{4, 5, 6, ...\}.$$

Observação: C_NV_p é o complementar em relação a N.

OPERAÇÃO CONJUNÇÃO

Operação de conjunção é a sentença aberta $p(x) \land q(x)$ em A, satisfeita por um elemento $a \in A$. Essa operação tem o valor lógico verdadeiro quando $a \in A$ satisfaz p(x) e q(x).

Exemplo: considerando o conjunto universo Z (conjunto dos números inteiros).

Sejam as sentenças p(x): $x^2 + 6x + 5 = 0$ e q(x): $x^2 + 5x = 0$.

Temos: $p(x) \wedge q(x)$.

A sentença aberta p(x) tem conjunto verdade $V_p = \{-1, -5\}$.

A sentença aberta q(x) tem conjunto verdade $V_p = \{0, -5\}$.

Veja que o conjunto verdade de $p(x) \wedge q(x)$ é

 $V_{p \wedge q} = V_p \cap V_q = \{-1, -5\} \cap \{0, -5\} = \{-5\}.$

OPERAÇÃO DISJUNÇÃO

Operação de disjunção é a sentença $p(x) \vee q(x)$ em A, satisfeita por um elemento $a \in A$.

Essa operação tem o valor lógico verdadeiro quando $a \in A$ satisfaz p(x) e q(x).

Exemplo: considerando o conjunto universo Z (conjunto dos números inteiros).

Sejam as sentenças p(x): $x^2 + 6x + 5 = 0$ e q(x): $x^2 + 5x = 0$.

Temos: $p(x) \vee q(x)$.

A sentença aberta p(x) tem conjunto verdade $V_p = \{-1, -5\}$.

A sentença aberta q(x) tem conjunto verdade $V_p = \{0, -5\}$.

Veja que o conjunto verdade de $p(x) \vee q(x)$ é

 $V_{p \vee q} = V_p \cup V_q = \{-1, -5\} \cup \{0, -5\} = \{1, -1, -5\}.$

OPERAÇÃO CONDICIONAL

Operação condicional é a sentença aberta $p(x) \rightarrow q(x)$ em A. A condicional tem o valor falso quando todo elemento $a \in A$ satisfaz a sentença aberta p(x) e não satisfaz a sentença q(x).

Exemplo: considerando o conjunto universo N (conjunto dos números naturais).

Sejam as sentenças p(x): x + 1 < 6 e q(x): x é divisor de 10.

Temos: $p(x) \rightarrow q(x)$.

A sentença aberta p(x) tem conjunto verdade $V_p = \{1, 2, 3, 4\}$.

A sentença aberta q(x) tem conjunto verdade $V_p = \{1, 5, 10\}$.

Observação: usando equivalência estudada no cálculo proposicional, temos que:

$$p(x) \rightarrow q(x) \Leftrightarrow \neg p(x) \lor q(x)$$

Com essa equivalência garantimos que os conjuntos verdade coincidem.

Logo, o conjunto verdade de $p(x) \rightarrow q(x)$ é

$$V_{p\rightarrow q} = V_{\neg p \lor q} = V_{\neg p} \cup V_q = C_N V_p \cup V_q$$

$$V_p = \{1, 2, 3, 4\}$$

$$V_{\neg p} = C_n V_p = N - V_p = N - \{1, 2, 3, 4\} = \{5, 6, 7, ...\}$$

$$V_q = \{1, 5, 10\}$$

OPERAÇÃO BICONDICIONAL

Operação bicondicional é a sentença aberta $p(x) \leftrightarrow q(x)$ em A. A bicondicional tem o valor lógico verdadeiro quando os valores do elemento $a \in A$ satisfazem p(x) e q(x) ou quando satisfazem p(x) e q(x).

Exemplo: considerando o conjunto universo N (conjunto dos números naturais).

Sejam as sentenças p(x): x + 1 < 6 e q(x): $x \notin divisor de 10$.

Temos: $p(x) \rightarrow q(x)$.

A sentença aberta p(x) tem conjunto verdade $V_p = \{1, 2, 3, 4\}$.

A sentença aberta q(x) tem conjunto verdade $V_p = \{1, 5, 10\}$.

Conjunto verdade da bicondicional: $V_{p \leftrightarrow q} = V_{p \to q} \cap V_{q \to p}$.

Vamos determinar:

$$V_{p\rightarrow q} = V_{\neg p \lor q} = V_{\neg p} \cup V_q = C_N V_p \cup V_q$$

$$V_D = \{1, 2, 3, 4\}$$

$$V_{\neg p} = C_n V_p = N - V_p = N - \{1, 2, 3, 4\} = \{5, 6, 7, ...\}$$

$$V_q = \{1, 5, 10\}$$

$$V_{p\rightarrow q} = V_{\neg p} \cup V_q = \{5, 6, 7, ...\} \cup \{1, 5, 10\} = N - \{2, 3, 4\}$$

$$V_{q\rightarrow p} = V_{\neg p \lor q} = V_{\neg q} \cup V_p = C_N V_q \cup V_p$$

$$V_q = \{1, 5, 10\}$$

$$V_{\neg q} = C_n V_q = N - V_q = N - \{1, 5, 10\} = \{2, 3, 4, 6, 7, 8, 9, 11, ...\}$$

$$V_p = \{1, 2, 3, 4\}$$

$$V_{q\to p} = V_{\neg q} \cup V_p = \{2, 3, 4, 6, 7, 8, 9, 11, ...\} \cup \{1, 2, 3, 4\} = N - \{5, 10\}$$

Con junto verdade da Bicondicional:

$$V_{p \leftrightarrow q} = V_{p \to q} \cap V_{q \to p} = [N - \{2, 3, 4\}] \cap [N - \{5, 10\}] = N - \{2, 3, 4, 5, 10\}$$

Os exemplos anteriores sugerem que podemos gerar novas sentenças abertas compostas, que obtemos por meio dos conectivos lógicos.