

3 - ESTATÍSTICA INFERENCIAL

ÁREAS DA ESTATÍSTICA

Estatística Descritiva

(usada no processo de análise)

Descreve como os dados estão organizados.

Probabilidade

(usada nos algoritmos de machine learning)

Mede a variabilidade de fenômenos casuais de acordo com a sua ocorrência.

Estatística Inferencial

(usada para fazer inferencias sobre uma população/amostra)

ESTATÍSTICA INFERENCIAL

 É o processo de estimar informações sobre uma população a partir dos resultados observados em uma amostra.

A estatística inferencial tem como objetivo a estrapolação dos resultados (obtidos com a estatística descritiva) para a população.

- População: é o conjunto de todos os elementos ou resultados sob investigação.
- Amostra: é qualquer subconjunto da população.

PRINCÍPIOS DA AMOSTRAGEM

- Amostragem é o processo de determinação de uma amostra a ser pesquisada, a amostra é uma parte de elementos selecionada de uma população.
- A teoria da amostragem estuda as relações existentes entre uma população e as amostras extraídas dessa população. E útil para avaliação de grandezas desconhecidas da população, ou para determiner se as diferenças observadas entre duas amostras são devidas ao acaso ou se são verdadeiramente

Termos básicos da Amostragem:

- População

significativas.

- Unidade
- Amostra
- Variável

TIPOS DE AMOSTRAGEM

+ usadas

Machine Learning

Métodos Aleatórios

- 1. Amostragem Aleatória Simples
- 2. Amostragem Sistemática
- 3. Amostragem Estratificada
- 4. Amostragem por Aglomerados
- 5. Amostragem Multi-etapas
- 6. Amostragem Multifásica

Métodos Não Aleatórios

- 1. Amostra Intencional
- 2. Amostra "Snowball"
- 3. Amostra por quotas
- 4. Amostra por conveniência

TIPOS DE AMOSTRAGEM

1. Amostragem Probabilística ou Aleatória

- Amostragem Aleatória Simples (dados de treino e teste)
- Amostragem Aleatória Simples sem reposição
- Amostragem Aleatória Simples com reposição

3. Amostragem

Estratificada

2. Amostragem Sistemática

4. Amostragem

Por Conglomerados

TESTE DE HIPÓTESE

- Uma hipótese estatística é uma suposição sobre um determinado parâmetro da população, como media, desvio padrão, coef de correlação, etc. Um teste de hipótese é um procedimento para decisão sobre a veracidade ou falsidade de uma determinada hipótese.
- Um Teste de Hipótese Estatística é um procedimento de decisão que nos possibilita decidir entre Ho (hipótese nula) ou Ha (hipótese alternativa), com base nas informações contidas na amostra.

Não se Rejeita

Rejeita-se

Rejeita-se

TESTE DE HIPÓTESE

> Ho

A hipótese nula afirma que o parâmetro da população (como a media, o desvio padrão, e assim por diante) é igual a um valor hipotético. A hipótese nula, é muitas vezes, uma alegação inicial baseado em analises anteriores ou conhecimentos especializados.

Ha

A hipótese alternativa afirma que um parâmetro da população é menor, maior ou diferente do valor hipotético na hipótese nula. A hipótese alternativa é aquela que você acredita que pode ser verdadeira ou espera provar ser verdadeira.

TESTE DE HIPÓTESE

Como estamos analisando dados da amostra, erros podem ocorrer:

- Erro Tipo I é a probabilidade de rejeitarmos a hipótese nula quando ela é efetivamente verdadeira.
- Erro Tipo II é a probabilidade de rejeitarmos a hipótese alternativa quando ela é efetivamente verdadeira.

Se a média Escolher um Se a média da amostra Coletar uma Traçar a nível de Calcular a da amostra estiver na Formular as amostra de média da significância estatística, estiver em região hipóteses tamanho n amostra no a com base os valores uma das branca do nula e e calcular a eixo x da críticos e a caudas nós na gráfico NÃO média da distribuição região rejeitamos a alternativa. gravidade rejeitamos a do erro tipo crítica. hipótese amostra. da amostra. hipótese ١. nula. nula.

TESTE DE HIPÓTESE UNILATERAL

 O teste Unilateral ou Unicaudal é usado quando a <u>hipótese alternativa</u> é expressa como: < ou >

$$H_0$$
: $\mu = 1.8$
 H_A : $\mu > 1.8$

Teste Cauda Superior: nós assumimos que μ = 1.8 a menos que a média da amostra seja maior que the 1.8

Teste Unilateral Direito

$$H_0$$
: $\mu = 1.8$
 H_A : $\mu < 1.8$

Teste Cauda Inferior: nós assumimos que μ = 1.8 a menos que a média da amostra seja menor que 1.8

Teste Unilateral Esquerdo

Resumindo:

Teste Unilateral Esquerdo: (Inferior)

 H_0 : μ = valor numérico

 H_{Δ} : μ < valor numérico

Teste Unilateral Direito: (Superior)

 H_0 : μ = valor numérico

 H_{Δ} : μ > valor numérico

TESTE DE HIPÓTESE BILATERAL

O teste Bilateral é usado sempre que a hipótese alternativa é expressa como ≠ de.

A curva acima representa a distribuição da amostragem da média de utilização de banda larga. Assume-se que a média da população é 1.8 GB, de acordo com a hipótese nula H_0 : μ = 1.8.

Resumindo:

 H_0 : μ = Valor numérico.

H_A∶ μ ≠ Valor numérico.

Por existirem duas regiões de rejeição no gráfico (regiões em amarelo), este é chamado teste de hipótese **bilateral** ou **bicaudal**.

Como a hipótese nula é expressa como ≠ ela pode ser maior ou menor que, por isso o teste é **bilateral**.

ERROS TIPO I E TIPO II

- Como estamos tomando amostra como base, estamos expostos ao risco de conclusões erradas sobre a população, por conta de erros de amostragem.
- A hipotese nula pode ser verdadeira, caso tenhamos coletado uma amostra que não seja representativa da população. Ou talvez, a amostra tenha sido muito pequena.

Para testar a H_{0} , é preciso definir uma regra de decisão com o objetivo de estabelecer uma zona de rejeição da hipótese, ou seja, definir um nível de significância, α , sendo os mais consensuais os alfas 0.10, 0.05 e 0.01.

Grau de Confiança	Nível de Significância	
90%	0,10	1 40
95%	0,05	Nível ae
99%	0,01 si	Nível de gnificân

Resumindo:

Condição		A Hipótese Nula é Verdadeira	A Hipótese Nula é Falsa
D E C I S Ã	Decidimos rejeitar a hipótese nula.	Erro Tipo I (Rejeição de uma hipótese nula verdadeira)	Decisão correta
	Não rejeitamos a hipótese nula.	Decisão correta	Erro Tipo II (Não rejeição de uma hipótese nula falsa)

Exemplo

ERROS TIPO I E TIPO II

A eficácia de certa vacina após um ano é de 25% (isto é, o efeito imunológico se prolonga por mais de 1 ano em apenas 25% das pessoas que a tomam). Desenvolve-se uma nova vacina, mais cara e deseja-se saber se esta é, de fato, melhor.

Que hipóteses devem ser formuladas? Que erros podemos encontrar?

> Hipótese Nula H_0 : p = 0,25 Hipótese Alternativa H_A : p > 0,25

Erro Tipo I : aprovar a vacina quando, na realidade, ela não tem nenhum efeito superior ao da vacina em uso.

Erro Tipo II : rejeitar a nova vacina quando ela é, de fato, melhor que a vacina em uso.

A probabilidade de se cometer um **Erro Tipo I** depende dos valores dos parâmetros da população e é designada por α (alfa - nível de significância).

Dizemos então que o nível de significância alfa de um teste, é a probabilidade máxima com que desejamos correr o risco de um **Erro Tipo I**.

O valor alfa é tipicamente predeterminado e escolhas comuns são α = 0.05 e α = 0.01

A probabilidade de se cometer um **Erro Tipo II** é designada por β.