No announcements today

Recall:

Kirchoff's laws for electrical circuits
Source: Postnikov lecture notes
(link on 412 course website)

Let G be a (loopless) graph, and consider edges of G to represent resistors.

Choose vertices A and B to be connected to a source of electricity

Choose any orientation D of G (doesn't matter which)

Quantities associated to each edge e:

- · Current Ie through e
- · Voltage (or potential difference) Ve across e
- · Resistance Re of e (Re>0)
- Conductance $C_e! = \frac{1}{R_e}$

Three laws:

KI: At any vertex v, the sum of the in-currents equals the sum of the out-currents:

K2: For any cycle (in G, the (signed) sum of voltages is 0:

$$\geq \pm V_e = 0$$
, $e \in E(c)$

where we traverse (in either direction, and the term involving be is positive iff we traverse e in the way it's oriented in D.

Ohm's Law: Ye & E(0),

Prop: Kz is equivalent to the following condition:

K2: There exists a (unique) function

 $U: V(G) \rightarrow \mathbb{R},$

called the potential function, s.t.

Pf: Homework!

Goal: find the 'effective resistance' R(G) of a whole graph G

Ex:

Voltage (potential diff.)
Current resistance
Conductance
Potential

The graph G has

total potential difference V =

resistance R =

conductance C =

Lets combine our three laws: (v fixed)

Apply Ohm's Law:

$$\frac{\sum_{e \text{ has}} \frac{V_e}{R_e}}{\frac{1}{e \text{ has}}} = \frac{\sum_{e \text{ has}} \frac{V_e}{R_e}}{\frac{1}{e \text{ has}}}$$
head v tail v

Apply K2: Ve = U(head) - U(tail)

$$\sum (U(v) - U(u)) C_e = \sum (U(u) - U(v)) C_e$$

$$u \stackrel{?}{=} v$$

$$in D$$

$$in D$$

Rearrange:

$$\sum (V(v) - V(w)) c_e = 0$$

$$u = v$$
in G

Actually, need to treat A, B differently:

$$\frac{\sum (U(v) - U(u)) c_e}{u - v} = \begin{cases} -I, & \text{if } v = A \\ I, & \text{if } v = B \end{cases}$$
in G

or otherwise

Rearrange some more

$$V(v)\left(\frac{\sum_{e} C_{e}}{e}\right) - \sum_{u} V(u)\left(\frac{\sum_{e} C_{e}}{u - e}\right) = \begin{cases} -I, & A \\ I, & B \\ in & G \end{cases}$$

$$in G$$

$$0, else$$

Surprise - this is matrix multiplication

Let
$$\overline{u} = \begin{bmatrix} U(v_1) \\ \vdots \\ U(v_n) \end{bmatrix}$$
 $\overline{i} = \begin{bmatrix} -I \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

$$K_{ij} = \begin{cases} \sum_{e}^{C_e} C_e, & \text{if } i = j \\ \text{in } G \end{cases}$$

$$V_{ij} = V_{i}$$

$$V_{ij} = V_{i}$$

$$\text{in } G$$

K= L(G), the (weighted) Lagrangian matrix of G!

The weight wt(e) = Ce, the conductance of e

How do we find the effective resistance R? Use Ohm's Law:

$$R = \frac{\Lambda}{\Lambda} = \frac{\Lambda^{1} - \Lambda^{2}}{\Lambda}$$

Shifting & scaling, take U1=0, I=1, so

$$R = U_n = \begin{cases} last \\ entry \end{cases} L(G) \begin{cases} -1 \\ 0 \\ \vdots \\ 0 \end{cases}$$

By Cramer's Rule (applied to this situation):

$$V_n = \frac{\det L^{1,n}(G)}{\det L^{1}(G)}$$

By the Matrix Tree Theorem:

where
$$G = (G \sqcup AB) \cdot AB$$
(glue A and B together)

We have proven the following:

Theorem (Kirchoff):

$$R(G) = \frac{T(\hat{G})}{T(G)}$$

Ex:

$$\tau(\hat{G}) = \frac{1}{2}$$

$$R(G) = \frac{T(\hat{G})}{T(G)} = \frac{24}{13}$$