

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR SERTIFIKAAT/ NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2020

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 15 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou eksamennommer en sentrumnommer in die toepaslike ruimtes op die ANTWOORDEBOEK.
- 2. Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en vervangings in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Watter EEN van die volgende is die algemene formule vir die alkane?
 - A C_nH_{2n}
 - B C_nH_{2n-2}
 - C C_nH_{2n+2}

$$D C_n H_{2n+2} O (2)$$

- 1.2 Die EMPIRIESE FORMULE van heksanoësuur is ...
 - A $C_3H_6O_2$
 - B $C_6H_6O_2$
 - $C C_6H_{12}O_2$

$$D C_3H_6O$$
 (2)

1.3 Watter EEN van die volgende is die KORREKTE struktuurformule vir METIELETANOAAT?

A	H O H O H C H C H C H C H C H C H C H C	В	O H H	
С	H O H 	D	O H H 	(2)

1.4 Sink(Zn)korrels reageer soos volg met 'n OORMAAT soutsuuroplossing, HCl(aq):

$$Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Watter EEN van die volgende kombinasies van volume en konsentrasie HCl(aq) sal die hoogste AANVANKLIKE reaksietempo tot gevolg hê vir dieselfde massa sinkkorrels gebruik? (Aanvaar dat die sinkkorrels in alle gevalle volledig deur die suur bedek word.)

	VOLUME HCℓ(aq) (cm³)	KONSENTRASIE HCℓ(aq) (mol·dm ⁻³)
Α	50	0,5
В	100	1,0
С	200	0,1
D	200	0,5

(2)

- 1.5 Die rol van 'n katalisator in 'n chemiese reaksie is om die ... te laat toeneem.
 - A opbrengs
 - B aktiveringsenergie
 - C reaksiewarmte
 - D tempo van die reaksie

(2)

1.6 Beskou die ewewig voorgestel deur die gebalanseerde vergelyking hieronder:

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(\ell) \Delta H < 0$$

Watter EEN van die volgende veranderinge aan die ewewig sal die voorwaartse reaksie bevoordeel?

	TEMPERATUUR	рН
Α	Afneem	Toeneem
В	Afneem	Afneem
С	Toeneem	Toeneem
D	Toeneem	Afneem

(2)

- 1.7 Die gekonjugeerde basis van HPO₄²⁻ is ...
 - A OH-
 - B PO₄³⁻
 - C H_2PO_4
 - D H₃PO₄ (2)

Kopiereg voorbehou

Blaai om asseblief

1.8 Watter EEN van die volgende reaksies sal spontaan onder standaardtoestande verloop?

A
$$Ni^{2+}(aq) + H_2(g) \rightarrow Ni(s) + 2H^{+}(aq)$$

B Br₂(
$$\ell$$
) + 2C ℓ ⁻(aq) \rightarrow 2Br⁻(aq) + C ℓ ₂(g)

C
$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(s)$$

D
$$2Cu^{+}(aq) + Pb^{2+}(aq) \rightarrow 2Cu^{2+}(aq) + Pb(s)$$
 (2)

1.9 Die vereenvoudigde diagram hieronder verteenwoordig 'n elektrochemiese sel wat vir die SUIWERING van koper gebruik word.

Watter EEN van die grafieke hieronder verteenwoordig die MASSA-VERANDERING van elektrodes **P** en **Q** tydens die suiweringsproses?

Α

В

С

D

1.10 Eutrofikasie in water word deur ... veroorsaak.

- A opbloeiing van alge
- B bakteriese stikstoffiksering
- C 'n toename in plantvoedingstowwe
- D 'n uitputting van suurstofkonsentrasie

(2) **[20]**

(2)

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot E in die tabel hieronder verteenwoordig vyf organiese verbindings.

Α	H CH ₃ H H H H 	В	C ₃ H ₈ O
С	H H H H H H H H H H H H H H H H H H H	D	Pentan-2-oon
Е	4-metielpent-2-yn		

Gebruik die inligting in die tabel om die vrae wat volg, te beantwoord.

2.1 Vir verbinding **D**, skryf neer die:

2.2 Skryf neer die:

2.3 Verbinding **B** is 'n primêre alkohol.

Verbinding **B** reageer met 'n ander organiese verbinding **X** om verbinding **C** te vorm.

Skryf neer die:

Kopiereg voorbehou

VRAAG 3 (Begin op 'n nuwe bladsy.)

Die verwantskap tussen kookpunt en die getal koolstofatome in reguitkettingmolekule van aldehiede, alkane en primêre alkohole word ondersoek. Kurwes **A**, **B** en **C** word verkry.

3.1 Definieer die term *kookpunt*.

- (2)
- 3.2 Skryf die STRUKTUURFORMULE van die funksionele groep van die aldehiede neer.
- (1)

(3)

- 3.3 Die grafiek toon dat die kookpunte styg soos wat die getal koolstofatome toeneem. Verduidelik hierdie neiging volledig.
 - toeneem. Verduidelik merdie neiging volledig.
- 3.4 Identifiseer die kurwe (**A**, **B** of **C**) wat die volgende voorstel:
 - 3.4.1 Verbindings met slegs London-kragte (1)
 - 3.4.2 Die aldehiede Verduidelik die antwoord. (4)
- 3.5 Gebruik die inligting in die grafiek en skryf die IUPAC-naam van die verbinding met 'n kookpunt van 373 K neer. (2)
- 3.6 Skryf die IUPAC-naam neer van die verbinding wat vyf koolstofatome bevat, wat die laagste dampdruk by 'n gegewe temperatuur het. (2)

 [15]

VRAAG 4 (Begin op 'n nuwe bladsy.)

Die vloeidiagram hieronder toon hoe verskillende organiese verbindings berei kan word deur verbinding **P** as aanvangsreagens te gebruik.

- 4.1 Skryf die betekenis van die term *hidrohalogenering* neer. (2)
- 4.2 Skryf die STRUKTUURFORMULE van verbinding **Q** neer. (2)
- 4.3 **Reaksie I** is 'n eliminasiereaksie.

Skryf neer die:

- 4.3.1 TIPE eliminasiereaksie (1)
- 4.3.2 MOLEKULÊRE FORMULE van verbinding **P** (1)
- 4.4 Skryf die IUPAC-naam van verbinding **R** neer. (2)
- 4.5 Vir die HIDROLISEREAKSIE, skryf neer die:
 - 4.5.1 Gebalanseerde vergelyking deur struktuurformules te gebruik (5)
 - 4.5.2 TWEE reaksietoestande (2) [15]

(1)

VRAAG 5 (Begin op 'n nuwe bladsy.)

Die reaksie van kalsiumkarbonaat (CaCO₃) en OORMAAT verdunde soutsuur (HCl) word gebruik om een van die faktore wat reaksietempo beïnvloed, te ondersoek. Die gebalanseerde vergelyking vir die reaksie is:

$$CaCO_3(s) + 2HC\ell(aq) \rightarrow CaC\ell_2(aq) + H_2O(\ell) + CO_2(q)$$

Dieselfde massa CaCO₃ word in al die eksperimente gebruik en die temperatuur van die soutsuur in al die eksperimente is 40 °C.

Die reaksietoestande vir elke eksperiment word in die tabel hieronder opgesom.

EKSPERIMENT	VOLUME HCℓ(aq) (cm³)	KONSENTRASIE HCℓ(aq) (mol·dm ⁻³)	TOESTAND VAN VERDEELDHEID VAN CaCO ₃
Α	500	0,1	korrels
В	500	0,1	klonte
С	500	0,1	poeier

5.1 Vir hierdie ondersoek, skryf neer die:

Die koolstofdioksiedgas, $CO_2(g)$, gedurende EKSPERIMENT **A** geproduseer, word in 'n gasspuit versamel. Die volume gas wat versamel is, word elke 20 s gemeet en die resultate wat verkry is, word in die grafiek hieronder getoon.

5.2	Wat kan van die grafiek afgelei word oor die TEMPO VAN DIE REAKSIE gedurende die tydinterval:						
	5.2.1 20 s tot 40 s	(1)					
	5.2.2 60 s tot 120 s	(1)					
5.3	Bereken die gemiddelde tempo (in $cm^3 \cdot s^{-1}$) waarteen $CO_2(g)$ in die eksperiment gevorm word.	(3)					
5.4	Hoe sal die volume $CO_2(g)$ wat in eksperiment ${\bf B}$ gevorm word, vergelyk met dit wat in eksperiment ${\bf A}$ gevorm word? Kies uit GROTER AS, KLEINER AS of GELYK AAN.						
5.5	'n Grafiek word nou vir eksperiment C op dieselfde assestelsel getrek. Hoe sal die gradiënt van hierdie grafiek met die gradiënt van die grafiek vir eksperiment A vergelyk? Kies uit GROTER AS, KLEINER AS of GELYK AAN.						
	Gebruik die botsingsteorie om die antwoord volledig te verduidelik.	(4)					
5.6	Aanvaar dat die molêre gasvolume by 40 °C 25,7 dm ³ ·mol ⁻¹ is. Bereken die massa CaCO ₃ (s) wat in eksperiment A gebruik is.	(4) [16]					

Kopiereg voorbehou

VRAAG 6 (Begin op 'n nuwe bladsy.)

Die dissosiasie van jodiummolekule na jodiumatome (I) is 'n omkeerbare reaksie wat by 727 °C in 'n verseëlde houer plaasvind. Die gebalanseerde vergelyking vir die reaksie is:

$$I_2(g) \rightleftharpoons 2I(g)$$

K_c vir die reaksie by 727 °C is 3,76 x 10⁻³.

- 6.1 Skryf die betekenis van die term *omkeerbare reaksie* neer. (1)
- By ewewig word die druk van die sisteem verhoog deur die volume van die houer by konstante temperatuur te verlaag.

Hoe sal ELK van die volgende beïnvloed word? Kies uit TOENEEM, AFNEEM of BLY DIESELFDE.

- 6.2.1 Die waarde van die ewewigskonstante (1)
- 6.2.2 Die aantal I_2 -molekule (1)
- 6.3 Verduidelik die antwoord op VRAAG 6.2.2 deur na Le Chatelier se beginsel te verwys. (2)
- 6.4 Die K_C-waarde vir die reaksie hierbo is 5,6 x 10⁻¹² by 227 °C.
 - Is die voorwaartse reaksie ENDOTERMIES of EKSOTERMIES?

 Verduidelik die antwoord volledig. (4)
- 6.5 'n Sekere massa jodiummolekule (I_2) word in 'n 12,3 dm³-fles by 'n temperatuur van 727 °C (K_c = 3,76 x 10⁻³) verseël.

Wanneer ewewig bereik word, word gevind dat die konsentrasie van die jodiumatome $4,79 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3}$ is. Bereken die AANVANKLIKE MASSA van die jodiummolekule in die fles.

(9) **[18]**

(2)

VRAAG 7 (Begin op 'n nuwe bladsy.)

- 7.1 Etanoësuur (CH₃COOH) is 'n bestanddeel van huishoudelike asyn.
 - 7.1.1 Is etanoësuur 'n SWAK suur of 'n STERK suur? Gee 'n rede vir die antwoord.
 - 7.1.2 'n Etanoësuuroplossing het 'n pH van 3,85 by 25 °C. Bereken die konsentrasie van die hidroniumione, $H_3O^+(aq)$, in die oplossing. (3)

Natriumetanoaat, CH₃COONa(aq), vorm wanneer etanoësuur met natriumhidroksied reageer.

- 7.1.3 Sal die pH van 'n natriumetanoaat-oplossing GROTER AS 7, KLEINER AS 7 of GELYK AAN 7 wees? (1)
- 7.1.4 Verduidelik die antwoord op VRAAG 7.1.3 met behulp van 'n gebalanseerde chemiese vergelyking. (3)
- 7.2 Huishoudelike asyn bevat 4,52% etanoësuur, CH₃COOH per volume.

'n 1,2 g onsuiwer monster kalsiumkarbonaat (CaCO₃) word by 25 cm³ huishoudelike asyn gevoeg.

Na voltooiing van die reaksie word die OORMAAT etanoësuur in die huishoudelike asyn deur 14,5 cm³ van 'n natriumhidroksied-oplossing met 'n konsentrasie van 1 mol·dm⁻³ geneutraliseer. Die gebalanseerde vergelyking vir die reaksie is:

$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(\ell)$$

- 7.2.1 Bereken die aantal mol van die ongereageerde etanoësuur. (3)
- 7.2.2 Kalsiumkarbonaat reageer met etanoësuur volgens die volgende gebalanseerde vergelyking:

$$CaCO_3(s) + 2CH_3COOH(aq) \rightarrow (CH_3COO)_2Ca(aq) + H_2O + CO_2(g)$$

Bereken die persentasie kalsiumkarbonaat in die onsuiwer monster indien 1 cm³ huishoudelike asyn 'n massa van 1 g het.

(8) **[20]**

VRAAG 8 (Begin op 'n nuwe bladsy.)

Die elektrochemiese sel wat hieronder geïllustreer word, is onder standaardtoestande opgestel.

- 8.1 Komponent **X** voltooi die stroombaan in die sel. Noem EEN ander funksie van komponent **X**. (1)
- 8.2 Definieer die term *anode*. (2)
- 8.3 Identifiseer die anode in die sel hierbo. (1)
- 8.4 Skryf neer die:
 - 8.4.1 Reduksiehalfreaksie wat in hierdie sel plaasvind (2)
 - 8.4.2 NAAM of FORMULE van die reduseermiddel in hierdie sel (1)
- 8.5 Bereken die aanvanklike voltmeterlesing van hierdie sel onder standaardtoestande. (4)
- 8.6 Die Mg|Mg²⁺-halfsel word nou deur 'n Cu|Cu²⁺-halfsel vervang. Daar word gevind dat die rigting van elektronvloei verander.

Verduidelik volledig waarom daar 'n verandering in die rigting van elektronvloei is deur na die relatiewe sterktes van die betrokke reduseermiddels te verwys.

[14]

(3)

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder stel 'n elektrolitiese sel voor wat gebruik word om 'n koper(Cu)muntstuk met silwer (Ag) te elektroplateer.

- 9.1 Definieer die term *elektrolise*. (2)
- 9.2 Watter komponent in die diagram dui aan dat dit 'n elektrolitiese sel is? (1)
- 9.3 Skryf die NAAM of FORMULE van die elektroliet neer. (1)
- 9.4 Hoe sal die konsentrasie van die elektroliet tydens elektroplatering verander? Kies uit TOENEEM, AFNEEM of BLY DIESELFDE.
 - Gee 'n rede vir die antwoord. (2)
- 9.5 Skryf die gebalanseerde vergelyking van die halfreaksie neer wat by die silwer-elektrode plaasvind. (2) [8]

TOTAAL:

150

VRAAG 10 (Begin op 'n nuwe bladsy.)

10.1 Die vloeidiagram hieronder toon hoe kunsmis **B** in die nywerheid geproduseer word.

Skryf neer die:

	10.1.1	NAAM van S	(1)
	10.1.2	NAAM van T	(1)
	10.1.3	NAAM of FORMULE van die katalisator wat in proses 1 gebruik is	(1)
	10.1.4	NAAM of FORMULE van verbinding A	(1)
	10.1.5	NAAM van proses 2	(1)
	10.1.6	Gebalanseerde vergelyking vir die vorming van kunsmis B	(3)
10.2	Op 'n 20	kg-sak kunsmis se etiket staan die volgende: 2 : 4 : 3 (X).	
	10.2.1	Wat word deur die verhouding op die etiket voorgestel?	(1)
	10.2.2	Die sak bevat 2,315 kg fosfor.	
		Bereken die waarde van X.	(3) [12]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$					
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$					
$ \frac{\mathbf{C_a V_a}}{\mathbf{C_b V_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}} $	$pH = -log[H_3O^+]$					
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$						
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$						
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$						
$ \begin{array}{c} \text{or/of} \\ E_{cell}^{\theta} = E_{oxidising agent}^{\theta} - E_{reducing agent}^{\theta} / E_{sel}^{\theta} = E_{oksideemiddel}^{\theta} - E_{reduseemiddel}^{\theta} \\ \end{array} $						

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		1	` ,							Α	tomic n	umber				` ,	` ,	` ,	` ,	` ,	
	1							KEY/SL	EUTEL		Atoom	getal									2
2,1	Н										1										He
	1										29										4
	3		4					Electr	onegati	vitv		Sv	mbol			5	6	7	8	9	10
1,0	Li	7,5	Be						onegativ		ರ್ Cn		mbool			0,2 B	2,5 C	ဗို့ N	3,5	6, F	Ne
7	7	7	9						g		63,5	5 "				11	12	14	16	19	20
	11		12	_							<u></u>					13	14	15	16	17	18
6		2							A 10 10 11		 										
6,0	Na	1,2	Mg								e relativo					८ ४ ६	[≁] Si	2, b	S ,5	% C €	Ar
	23		24						Bena	aerae r	elatiewe	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	1,3	Sc	1,5	Ti	7, V	ç Cr	₹ Mu	[∞] Fe	² Co	∞. Ni	್ಕ್ Cn	ို့ Zn	ို့ Ga	[∞] . Ge	° As	² , Se	[∞] Br	Kr
	39		40		45		48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
	37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
œ	-	0		7	Y	4,	Zr					_	_					_	_		_
0,8	Rb	1,0	Sr	1,2		۲,		Nb	[−] _∞ Mo	್ಲ್ Tc				-		the line	ç Sn				Xe
	86		88		89		91	92	96		101	103	106	108	112	115	119		128	127	131
	55	_	56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0,7	Cs	6,0	Ba		La	1,6	Hf	Ta	W	Re	Os	l Ir	Pt	Au	Hg	% T €	² Pb	ූ Bi	% Po	5,5 At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209			
	87		88		89				I		1				1				1		
0,7	Fr	6,0	Ra		Ac					1											
0	• •	0	226		70			58	59	60	61	62	63	64	65	66	67	68	69	70	71
								Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
									_	_		_	_								
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238											
									1	1	I	1	1	1	I	1	1	1	I		

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA								
Half-reactions/ <i>Halfreaksies</i> E^{θ} (V)								
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77					
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$Cl_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33					
$O_2(g) + 4H^+ + 4e^-$	\Rightarrow	2H ₂ O	+ 1,23					
$MnO_2 + 4H^+ + 2e^-$	\Rightarrow	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$\operatorname{Br}_2(\ell) + 2e^-$	\Rightarrow	2Br ⁻	+ 1,07					
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	\Rightarrow	Hg(ℓ)	+ 0,85					
$Ag^+ + e^-$	=	Ag	+ 0,80					
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68					
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54					
Cu⁺ + e⁻	=	Cu	+ 0,52					
$SO_2 + 4H^+ + 4e^-$	=	S + 2H ₂ O	+ 0,45					
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15					
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14					
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	\Rightarrow	Co	- 0,28					
Cd ²⁺ + 2e ⁻	\Rightarrow	Cd	- 0,40					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	\Rightarrow	$H_2(g) + 2OH^-$	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻	=	Mn	– 1,18					
$Al^{3+} + 3e^{-}$	=	Αℓ	- 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
Na ⁺ + e ⁻	\Rightarrow	Na	- 2,71					
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87					
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K ⁺ + e ⁻	\Rightarrow	K	- 2,93					

 $Li^+ + e^-$

Li

Increasing reducing ability/Toenemende reduserende vermoë

Kopiereg voorbehou

Increasing oxidising ability/Toenemende oksiderende vermoë

Blaai om asseblief

-3,05

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Half reactions	-A 00		
K* + e ⁻ = K Cs* + e ⁻ = Cs Ba²+ + 2e ⁻ = Ba Sr²+ + 2e ⁻ = Sr Ca²+ + 2e ⁻ = Ca Na* + e ⁻ = Na A²+ + 2e ⁻ = Mg A²+ + 2e ⁻ = Mg Ca²+ + 2e ⁻ = Mg A²+ + 2e ⁻ = Mn A²+ + 2e ⁻ = Mn Cr²+ + 2e ⁻ = Cr Cr 2H₂O + 2e ⁻ = H₂(g) + 2OH ⁻ Cr³+ + e ⁻ = Cr Cr²+ + 2e ⁻ = Co Ni²+ + e ⁻ = Cr Sn²+ + 2e ⁻ = Ni Acr²+ + 2e ⁻ = Ni Acr²+ + 2e ⁻ = Ni Acr²+ + 2e ⁻ = Pb Acr²+ + 2e ⁻ = Pb Acr²+ + 2e ⁻ = Pc Cu²+ + 2e ⁻ = Cu Cu²+ + 2e ⁻ = Cu Sn²+ + 2e ⁻ = Sn Cu²+ + 2e ⁻ = Cu Sn²+ + 2e ⁻ = Sn Cu²+ + 2e ⁻ = Cu Cu²+ + 2e ⁻ =		Паі		Ε ^θ (V)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		_	·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	H ₂ (g) + 2OH ⁻	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn ²⁺ + 2e ⁻	=	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ²⁺ + 2e ⁻	=		- 0,44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	Cr ²⁺	- 0,41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Cd	- 0,40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Co	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Ni	- 0,27
$Fe^{3+} + 3e^{-} = Fe$ $2H^{+} + 2e^{-} = H_{2}(g)$ $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ $S^{4+} + 2e^{-} = Sn^{2+}$ $Cu^{2+} + e^{-} = Cu^{+}$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2+} + 2e^{-} = Cu$ $SO_{2}^{2-} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{2+} + e^{-} = Cu$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O$ $Cu^{+} + e^{-} = Cu$ $I_{2} + 2e^{-} = 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2}$ $I_{2} + 2e^{-} = IFe^{2+}$ $O_{3} + 2H^{+} + e^{-} = Re^{2+}$ $NO_{3}^{-} + 2H^{+} + e^{-} = Re^{2+}$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = Re(\ell)$ $Re^{2+} + 2e^{-} = Re(\ell)$ $Re^{2+} + 2e^{-} = Re^{2+}$ Re^{2		=	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	Pb	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		
$Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $C(g) + 2e^{-} = 2Ct^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$		=		
$Cu^{2+} + e^{-} = Cu^{+} + 0,16$ $SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} = Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} = Cu + 0,52$ $I_{2} + 2e^{-} = 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} + 0,68$ $Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $NO_{3}^{-} + 2H^{+} + e^{-} = NO_{2}(g) + H_{2}O + 0,80$ $Ag^{+} + e^{-} = Ag + 0,80$ $Hg^{2+} + 2e^{-} = Hg(\ell) + 0,85$ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O + 0,96$ $Br_{2}(\ell) + 2e^{-} = 2Br^{-} + 1,07$ $Pt^{2+} + 2e^{-} = Pt + 1,20$ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O + 1,23$ $Cr_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O + 1,33$ $C\ell_{2}(g) + 2e^{-} = 2C\ell^{-} + 1,36$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O + 1,51$ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O + 1,77$ $Co^{3+} + e^{-} = Co^{2+} + 1,81$				
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O $ $Cu^{2+} + 2e^{-} = Cu $ $2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} $ $SO_{2} + 4H^{+} + 4e^{-} = S + 2H_{2}O $ $Cu^{+} + e^{-} = Cu $ $1_{2} + 2e^{-} = 2I^{-} $ $O_{2}(g) + 2H^{+} + 2e^{-} = H_{2}O_{2} $ $Fe^{3+} + e^{-} = Fe^{2+} $ $Ag^{+} + e^{-} = Ag $ $Hg^{2+} + 2e^{-} = Hg(\ell) $ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O $ $Ag^{+} + e^{-} = Ag $ $Hg^{2+} + 2e^{-} = Hg(\ell) $ $NO_{3}^{-} + 4H^{+} + 3e^{-} = NO(g) + 2H_{2}O $ $O_{2}(g) + 4H^{+} + 4e^{-} = 2Br^{-} $ $Pt^{2+} + 2e^{-} = Pt $ $MnO_{2} + 4H^{+} + 4e^{-} = 2H_{2}O $ $O_{2}(g) + 4H^{+} + 4e^{-} = 2H_{2}O $ $O_{2}(g) + 4H^{+} + 6e^{-} = 2Cr^{3+} + 7H_{2}O $ $C^{2}(g) + 2e^{-} = 2C\ell^{-} $ $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O $ $O_{3}C^{2-} + 14H^{+} + 6e^{-} = 2C\ell^{-} $ $O_{4}^{2} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O $ $O_{5}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ $O_{7}^{2} + 18H^{+} + 5e^{-} = 2H_{2}O $ $O_{7}^{2} + 177 $ O_{7}^{2}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	=		
$\begin{array}{rclcrcl} 2H_2O + O_2 + 4e^- & = & 4OH^- \\ SO_2 + 4H^+ + 4e^- & = & S + 2H_2O \\ & Cu^+ + e^- & = & Cu \\ & I_2 + 2e^- & = & 2I^- \\ & O_2(g) + 2H^+ + 2e^- & = & H_2O_2 \\ & Fe^{3+} + e^- & = & Fe^{2+} \\ & + 0,77 \\ NO_3^- + 2H^+ + e^- & = & NO_2(g) + H_2O \\ & Ag^+ + e^- & = & Ag \\ & Hg^{2+} + 2e^- & = & Hg(\ell) \\ & NO_3^- + 4H^+ + 3e^- & = & NO(g) + 2H_2O \\ & Br_2(\ell) + 2e^- & = & 2Br^- \\ & Pt^{2+} + 2e^- & = & Pt \\ & MnO_2 + 4H^+ + 2e^- & = & Mn^{2+} + 2H_2O \\ & O_2(g) + 4H^+ + 4e^- & = & 2H_2O \\ & Cr_2O_7^- + 14H^+ + 6e^- & = & 2Cr^{3+} + 7H_2O \\ & & & & & & & & & & & & & & & & & & $	·	=		
$SO_2 + 4H^+ + 4e^- \implies S + 2H_2O $		\Rightarrow		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-
$\begin{array}{rclcrcl} I_2 + 2e^- & = & 2I^- & + 0,54 \\ O_2(g) + 2H^+ + 2e^- & = & H_2O_2 & + 0,68 \\ Fe^{3+} + e^- & = & Fe^{2+} & + 0,77 \\ NO_3^- + 2H^+ + e^- & = & NO_2(g) + H_2O & + 0,80 \\ Ag^+ + e^- & = & Ag & + 0,80 \\ Hg^{2+} + 2e^- & = & Hg(\ell) & + 0,85 \\ NO_3^- + 4H^+ + 3e^- & = & NO(g) + 2H_2O & + 0,96 \\ Br_2(\ell) + 2e^- & = & 2Br^- & + 1,07 \\ Pt^{2+} + 2e^- & = & Pt & + 1,20 \\ MnO_2 + 4H^+ + 2e^- & = & Mn^{2+} + 2H_2O & + 1,23 \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O & + 1,23 \\ Cr_2O_7^{2-} + 14H^+ + 6e^- & = & 2Cr^{3+} + 7H_2O & + 1,33 \\ C\ell_2(g) + 2e^- & = & 2C\ell^- & + 1,36 \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2+} + 4H_2O & + 1,51 \\ H_2O_2 + 2H^+ + 2e^- & = & 2H_2O & + 1,77 \\ Co^{3+} + e^- & = & Co^{2+} & + 1,81 \\ \end{array}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ŭ	=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\Rightarrow	_	
$\begin{array}{rclcrcl} Br_2(\ell) + 2e^- & = & 2Br^- & + 1,07 \\ Pt^{2^+} + 2e^- & = & Pt & + 1,20 \\ MnO_2 + 4H^+ + 2e^- & = & Mn^{2^+} + 2H_2O & + 1,23 \\ O_2(g) + 4H^+ + 4e^- & = & 2H_2O & + 1,23 \\ Cr_2O_7^{2^-} + 14H^+ + 6e^- & = & 2Cr^{3^+} + 7H_2O & + 1,33 \\ C\ell_2(g) + 2e^- & = & 2C\ell^- & + 1,36 \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2^+} + 4H_2O & + 1,51 \\ H_2O_2 + 2H^+ + 2e^- & = & 2H_2O & + 1,77 \\ Co^{3^+} + e^- & = & Co^{2^+} & + 1,81 \\ \end{array}$	· ·	=		
$\begin{array}{rclcrcl} Pt^{2^{+}} + 2 \ e^{-} & \rightleftharpoons & Pt & + 1,20 \\ MnO_2 + 4H^{+} + 2e^{-} & \rightleftharpoons & Mn^{2^{+}} + 2H_2O & + 1,23 \\ O_2(g) + 4H^{+} + 4e^{-} & \rightleftharpoons & 2H_2O & + 1,23 \\ Cr_2O_7^{2^{-}} + 14H^{+} + 6e^{-} & \rightleftharpoons & 2Cr^{3^{+}} + 7H_2O & + 1,33 \\ C\ell_2(g) + 2e^{-} & \rightleftharpoons & 2C\ell^{-} & + 1,36 \\ MnO_4^{-} + 8H^{+} + 5e^{-} & \rightleftharpoons & Mn^{2^{+}} + 4H_2O & + 1,51 \\ H_2O_2 + 2H^{+} + 2e^{-} & \rightleftharpoons & 2H_2O & + 1,77 \\ Co^{3^{+}} + e^{-} & \rightleftharpoons & Co^{2^{+}} & + 1,81 \\ \end{array}$	NO ₃ + 4H ⁺ + 3e ⁻	\Rightarrow	NO(g) + 2H ₂ O	+ 0,96
$\begin{array}{rclcrcl} MnO_2 + 4H^+ + 2e^- & \rightleftharpoons & Mn^{2+} + 2H_2O & + 1,23 \\ O_2(g) + 4H^+ + 4e^- & \rightleftharpoons & 2H_2O & + 1,23 \\ Cr_2O_7^{2-} + 14H^+ + 6e^- & \rightleftharpoons & 2Cr^{3+} + 7H_2O & + 1,33 \\ C\ell_2(g) + 2e^- & \rightleftharpoons & 2C\ell^- & + 1,36 \\ MnO_4^- + 8H^+ + 5e^- & \rightleftharpoons & Mn^{2+} + 4H_2O & + 1,51 \\ H_2O_2 + 2H^+ + 2e^- & \rightleftharpoons & 2H_2O & + 1,77 \\ & & & & & & & & & & & \\ Co^{3+} + e^- & \rightleftharpoons & & & & & & & & \\ \end{array}$		\Rightarrow	2Br ⁻	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		
$C\ell_2(g) + 2e^- \Rightarrow 2C\ell^- + 1,36$ $MnO_4^- + 8H^+ + 5e^- \Rightarrow Mn^{2+} + 4H_2O + 1,51$ $H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O + 1,77$ $Co^{3+} + e^- \Rightarrow Co^{2+} + 1,81$		=		
$MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$ + 1,51 $H_{2}O_{2} + 2H^{+} + 2e^{-} = 2H_{2}O$ + 1,77 $Co^{3+} + e^{-} = Co^{2+}$ + 1,81	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O$ +1,77 $Co^{3+} + e^- \Rightarrow Co^{2+}$ +1,81	$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36
$Co^{3+} + e^{-} = Co^{2+} + 1.81$	$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$Co^{3+} + e^{-} = Co^{2+} + 1.81$	$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,77
$F_2(g) + 2e^- \Rightarrow 2F^- + 2.87$	Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë