Chapter 02,	Simulation Examples i	n a Spreadsheet						
Example 09: Replacing Bearings in a Milling Machine								
By Mohammad Abubakar Atiq, BSIE, F2022031002, To Sir Rehan Ashraf								
Table 22 Distribution for Bearing Life								
	Distribution of Bearing-Life							
Bearing Life	Probability	Cumulative	Cumulative Probability					
1000		0.100	0.100					
1100		0.130	0.230					
1200		0.250	0.480					
1300		0.130	0.610					
1400		0.090	0.700					
1500		0.120	0.820					
1600		0.020	0.840					
1700		0.060	0.900					
1800		0.050	0.950					
1900		0.050	1.000					
Table 23	Distribution of Delay	until Mechanic Arrives						
	Distr	ibution of Delay Time						
Delay Time	Proability	Cumulative	Probability					
5		0.600	0.600					
10		0.300	0.900					
15		0.100	1.000					

page 65, Chapter 02: Simulation Examples in a Spreadsheet Example 9: Replacing Bearings in a Milling Machine

A milling machine has three different bearings that fail in service. The distribution of the life of each bearing is identical, as shown in Table 22. When a bearing fails, the mill stops, a mechanic is called, and he or she installs a new bearing (costing \$32 per bearing). The delay time for the mechanic to arrive varies randomly, having the distribution given in Table 23. Downtime for the mill is estimated to cost \$10 per minute. The direct on-site cost of the mechanic is \$30 per hour. The mechanic takes 20 minutes to change one bearing, 30 minutes to change two bearings, and 40 minutes to change three bearings. The engineering staff has proposed a new policy to replace all three bearings

Current Method

Bearing 1				
Step		Random#	Life (Hours)	Delay (minutes)
	1	0.256	1200	5
	2	0.242	1200	5
	3	0.990	1900	15
	4	0.348	1200	5
	5	0.382	1200	5
	6	0.366	1200	5
	7	0.165	1100	5
	8	0.797	1500	10
	9	0.038	1000	5
	10	0.919	1800	15
	11	0.881	1700	10
	12	0.438	1200	5
	13	0.539	1300	5
	14	0.358	1200	5
	15	0.827	1600	10
TOTAL			20300	110

Beari	ng 2		
Step	Random#	Life (Hours)	Delay (minutes)
1	0.518	1300	5
2	0.181	1100	5
3	0.394	1200	5
4	0.733	1500	10
5	0.994	1900	15
6	0.418	1200	5
7	0.466	1200	5
8	0.478	1200	5
9	0.059	1000	5
10	0.361	1200	5
11	0.727	1500	10
12	0.508	1300	5
13	0.229	1100	5
14	0.346	1200	5
15	0.528	1300	5
		19200	95

Bearing 3						
Step	Random#	Life (Hours)	Delay (minutes)			
1	0.730	1500	10			
2	0.981	1900	15			
3	0.952	1900	15			
4	0.326	1200	5			
5	0.947	1800	15			
6	0.445	1200	5			
7	0.220	1100	5			
8	0.308	1200	5			
9	0.125	1100	5			
10	0.371	1200	5			
11	0.025	1000	5			
12	0.137	1100	5			
13	0.250	1200	5			
14	0.960	1900	15			
15	0.992	1900	15			
		21200	130			

Costs of Bearing=	\$ 32.00 per bearing	The total life of all 45 bearings is	=	60700
Downtime cost=	\$ 10.00 per minute	Hours / 10,000 Bearings	=	6.070

\$ 30.00 per hour 0.50 per min The Total cost per 10,000 Mechanic cost=

Replacement Time by Mechanic

1 Bearing 20 minute 2 Bearing 30 minute 3 Bearing 40 minute

For Single Trial of the simulation, the cost of the current system is estimated as follows:

Cost of Bearing \$ 1,440.00 Cost of delay time \$ 3,350.00

Cost of downtime during repair

\$ 9,000.00 Cost of Mechanics \$ 450.00 Total Cost \$ 14,240.00

bearing -Hours is \$ 2,345.96

Proposed Method

	Bearing 1		Bearing 2		Bearing 3		First Failure (Hours)	Random#	Delay (minutes)
Step	Random#	Life (Hours)	Random#	Life (Hours)	Random#	Life (Hours)	riist railule (nours)	Natiu0111#	Delay (Illillutes)
1	0.400	1200	0.759	1500	0.230	1200	1200	0.940	15
2	0.012	1000	0.014	1000	0.316	1200	1000	0.531	5
3	0.596	1300	0.819	1500	0.348	1200	1200	0.643	10
4	0.637	1400	0.202	1100	0.858	1700	1100	0.917	15
5	0.564	1300	0.924	1800	0.664	1400	1300	0.638	10
6	0.997	1900	0.322	1200	0.168	1100	1100	0.603	10
7	0.847	1700	0.328	1200	0.015	1000	1000	0.589	5
8	0.362	1200	0.710	1500	0.358	1200	1200	0.368	5
9	0.744	1500	0.561	1300	0.761	1500	1300	0.909	15
10	0.300	1200	0.164	1100	0.739	1500	1100	0.324	5
11	0.790	1500	0.260	1200	0.023	1000	1000	0.722	10
12	0.289	1200	0.112	1100	0.764	1500	1100	0.751	10
13	0.574	1300	0.349	1200	0.402	1200	1200	0.301	5
14	0.978	1900	0.923	1800	0.758	1500	1500	0.642	10
15	0.072	1000	0.180	1100	0.475	1200	1000	0.408	5
Total							17300		135

Costs of Bearing= \$ 32.00 per bearing Downtime cost= \$ 10.00 per minute

\$ 30.00 per hour \$ 0.50 per min Mechanic cost=

Replacement Time by Mechanic

20 minute 1 Bearing 2 Bearing 30 minute 3 Bearing 40 minute

For Single Trial of the simulation, the cost of the current system is estimated as follows:

= \$ 1,440.00 Cost of Bearing Cost of delay time = \$ 1,350.00

Cost of downtime during repair

\$ 6,000.00 Cost of Mechanics = \$ 300.00 Total Cost = \$ 9,090.00

The total life of all 45 bearings is = Hours / 10,000 Bearings

Hours / 10,000 Bearings
The Total cost per 10,000 bearing -

Hours is

\$ 5,254.34