

Fig. 2

Fig. 3

JUN 2 8 2004 65

Fig. 5

Tdep (°C)	d (A)	PLASMA	V _{FB} (V)	N _r (cm ⁻²)	Dit (cm-2 oV-1)	J (A/cm2)	E (MV/cm)	EBD (MV/cm)
·		OXIDATION		(X10 ¹¹ cm-2)	(X10 ¹⁰ cm-2 eV-1)	(At 2 MV/cm)	(AT J=10 ⁻⁸ A/cm ²)	(PHYSICAL)
150	500	As-Dep	-7.5	26.0	3.5	1.80E-07	4.3	6.8
150	500	He/O ₂	-0.8	1.8	1.2	2.60E-08	8.4	7.2

TABLE 1

LEAVING THE M OXIDE LAYER IN THE FILM PROCESSING CHAMBER, PLASMA OXIDIZING THE M OXIDE LAYER AT A TEMPERATURE OF LESS THAN 400° C USING A HIGH DENSITY (HD) PLASMA SOURCE

-906

IN RESPONSE TO PLASMA OXIDIZING THE M OXIDE LAYER, IMPROVING M-O BONDING IN THE M OXIDE LAYER