Linear Algebra Preliminary Exam 2012 - Retake

1. Find an orthonormal set \mathbf{q}_1 , \mathbf{q}_2 and \mathbf{q}_3 for which \mathbf{q}_1 and \mathbf{q}_2 span the column space of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$$

Which fundamental subspace contains \mathbf{q}_3 ? What is the least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ if $\mathbf{b} = [1,2,7]^T$?

2. Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- a) Find all eigenvalues and eigenvectors of A.
- b) Write down a diagonalizing matrix S for A, i.e. a matrix S for which S⁻¹AS is diagonal.
- c) Write down a different diagonalizing matrix S' for A, i.e. one whose columns are not all simply multiples of the columns of S.
- 3. Let

$$\mathbf{A} = \left(\begin{array}{cc} a & b \\ b & c \end{array} \right)$$

be positive definite, i.e. $\mathbf{u}^T \mathbf{A} \mathbf{u} > 0$, for any nonzero vector $(x, y)^T = \mathbf{u} \in \mathbb{R}^2$. Show that \mathbf{A} is positive only if a > 0, c > 0 and $ac > b^2$. (Hint: Use appropriate choices of x and y).

4. Given the vectors:

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 2 \\ a \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} -2 \\ -1 \\ a \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} 4 \\ b \\ c \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

Find the values of a, b, c such that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ form an orthogonal set and $\mathbf{u}_3 \cdot \mathbf{v} > 0$.

5. Let A be an $n \times n$ symmetric matrix and consider the function defined on \mathbb{R}^n

$$R(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \mathbf{x} \neq 0$$

Let A have eigenvalues $\lambda_1 \le \lambda_2 \le \le \lambda_n$. Show that for every $\mathbf{x} \in \mathbb{R}^n$, $\lambda_1 \le R(\mathbf{x}) \le \lambda_n$.

6. Consider a symmetric $n \times n$ matrix A for which $A_{ij} \in \{0, 1\}$. Show that

$$0 \le \sum_{i=1}^n \lambda_i^k \in \mathbb{N}$$

for all $k \in \mathbb{N}$ where λ_i are the eigenvalues of A.