FACULDADE DE TECNOLOGIA SENAC RIO

SISTEMAS OPERACIONAIS

LAURO L. A. WHATELY

SISTEMAS DE ARQUIVO

SISTEMA DE ARQUIVOS

- Conceito de Arquivo
- Métodos de Acesso
- Estrutura de Diretórios
- Compartilhamento de Arquivos
- Proteção

OBJETIVOS

Explicar a função de sistemas de arquivos.

Descrever a interface para sistemas de arquivos.

• Discutir métodos de acesso, compartilhamento de arquivos e estruturas de diretórios.

Explorar a proteção de sistemas de arquivos.

ARMAZENAMENTO A LONGO PRAZO

- Em muitas aplicações o arquivo é o elemento central.
- 3 requisitos essenciais:
 - Deve ser possível armazenar uma quantidade muito grande de informações;
 - A informação deve sobreviver ao término do processo que a usa;
 - Múltiplos processos tem que ser capazes de acessar as informações concorrentemente.

ARQUIVO

- Do ponto de vista do usuário o sistema de arquivos é uma das partes principais de um SO.
- Usuários desejam acessar arquivos, ler, escrever, salvar, etc.
- Para ajudar nestes objetivos, os sistemas operacionais oferecem os sistemas gerenciadores de arquivos.
- O Sistema Operacional gerencia dispositivos de armazenamento:
 - Esconde as dificuldades impostas pelo hardware;
 - Define uma abstração de armazenamento: Arquivo.

CONCEITO DE ARQUIVO

- Espaço de endereçamento lógico contíguo.
- Tipos:
 - Dados
 - Numérico,
 - Caractere,
 - Binário.
 - Programa.
 - O conteúdo é definido pelo criador do arquivo:
 - Ex. arquivo fonte, arquivo executável, arquivo áudio.

ESTRUTURA DE ARQUIVOS

- Nenhuma estrutura inerente sequência de bytes
- Estrutura de registro simples
 - Linhas
 - Tamanho fixo
 - Tamanho variável
- Estruturas Complexas
 - Documentos formatados
 - Arquivo de carga relocável
- Pode simular os dois últimos com o primeiro método inserindo caracteres especiais de controle.
- Quem decide:
 - Sistema Operacional
 - Programa

EXEMPLO - MACOS

ATRIBUTOS DE ARQUIVOS

- Nome única informação mantida em uma forma legível para o usuário.
- Identificador identificador único (número) do arquivo pelo sistema de arquivos
- **Tipo** necessária para sistemas que suportam diferentes tipos de arquivos.
- Localização ponteiro para a posição do arquivo no dispositivo.
- Tamanho tamanho atual do arquivo.
- Proteção controla quem pode ler, escrever e executar.
- Hora, data, e identificação do usuário dados para proteção, segurança e monitoração de uso.
- Informações sobre os arquivos são mantidas nas estruturas de diretórios, as quais são armazenadas no disco.

OPERAÇÕES EM ARQUIVOS

- Arquivo é um tipo de dados abstrato
- Criar (create)
- Escrever (write)
- Ler (read)
- Reposicionamento de um arquivo (seek)
- Excluir (delete)
- Truncamento (truncate)
- **Abrir** $[F_i]$ ($open[F_i]$) procura na estrutura de diretório do disco pela entrada F_i , e move o conteúdo da entrada para a memória.
- **Fechar** $[F_i]$ ($close[F_i]$) move o conteúdo da entrada F_i na memória para a estrutura de diretório no disco.

ARQUIVOS ABERTOS

- Alguns dados são necessários para gerenciar arquivos abertos:
 - Ponteiro de Arquivo: ponteiro para a última localização de leitura/escrita, por processo que tem um arquivo aberto
 - Contador de arquivos abertos: contador do número de vezes que um arquivo é aberto - para permitir a remoção dos dados da tabela de arquivos abertos quando o último processo fechar o arquivo
 - Localização no disco do arquivo: cache dos dados acessados
 - **Direitos de acesso**: informações de modo de acesso por processo

TRAVA (LOCK) DE ARQUIVOS ABERTOS

- Fornecido por alguns sistemas operacionais e sistemas de arquivos
- Acesso exclusivo a um arquivo
- Semelhante ao mecanismo para exclusão mútua:
 - trava compartilhada (shared lock) para leituras concorrentes.
 - Trava exclusiva (exclusive lock) acesso exclusivo para escrita.

TRAVA (LOCK)- EXEMPLO JAVA (1)

```
import java.io.*;
import java.nio.channels.*;
public class LockingExample {
   public static final boolean EXCLUSIVE = false;
   public static final boolean SHARED = true;
   public static void main(String arsg[]) throws IOException {
     FileLock sharedLock = null;
     FileLock exclusiveLock = null;
     try {
       RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
       // get the channel for the file
       FileChannel ch = raf.getChannel();
       // this locks the first half of the file - exclusive
       exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
```

TRAVA (LOCK)- EXEMPLO JAVA (2)

```
/* Now modify the data ... */
  // release the lock
  ExclusiveLock.release();
  // this locks the second half of the file - shared
  sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);
  /** Now read the data . . . */
  // release the lock
  exclusiveLock.release();
} catch (java.io.IOException ioe) {
  System.err.println(ioe);
}finally {
  if (exclusiveLock != null)
     exclusiveLock.release();
   if (sharedLock != null)
      sharedLock.release();
```

TIPOS DE ARQUIVOS - NOME E EXTENSÃO

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, pas, asm, a	source code in various languages
batch	bat, sh	commands to the command interpreter
text	txt, doc	textual data, documents
word processor	wp, tex, rtf, doc	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	arc, zip, tar	related files grouped into one file, sometimes compressed, for archiving or storage
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information

MÉTODOS DE ACESSO

Acesso Sequencial

- Os primeiros tipos de sistema ofereciam somente este tipo de acesso → fitas
- Lê uma posição do arquivo e avança para a próxima → não é possível ler fora de ordem

Acesso Direto

- Baseado no modelo de arquivo em disco
- Permite que blocos sejam lidos e gravados em qualquer ordem
- Essencial para vários tipos de aplicações
- É o método mais usado

ESTRUTURA DE DIRETÓRIO

Uma coleção de nodos contendo informações sobre todos

arquivos.

Tanto a estrutura de diretórios quando de arquivos residem no disco

ESTRUTURA DE DISCO

- Disco pode ser dividido em partições
- Discos ou partições podem ser protegidas por RAID contra falhas
- Disco ou partição pode ser usada raw sem um sistemas de arquivo, ou formatada com um sistema de arquivo
- Partições são conhecidas também como minidiscos ou slices
- Entidade que contém um sistema de arquivos é conhecido como volume
- Cada volume contendo um sistema de arquivos também mantém as informações deste em diretório do dispositivo ou índice do volume
- Assim como sistemas de arquivos de propósito geral existem muitos sistemas de arquivos de propósito específico, frequentemente todos dentro do mesmo sistema operacional ou computador

DISCO MAGNÉTICO

- Organizado em setores e trilhas.
- Trilhas são círculos concêntricos na superfície do disco. Cada trilha é dividida em setores (normalmente 512bytes).
- Cada trilha (desde mais externa trilha 0, para a mais interna) possui os mesmo número de bits.
- A formatação na fábrica cria os setores e trilhas.
- A formatação lógica é a preparação do disco para os sistemas de arquivos.

DISCO MAGNÉTICO

Um disco com 4 pratos

DISCO MAGNÉTICO

Uma porção de uma trilha com dois setores

ESTRUTURA DE DISCO

OPERAÇÕES EM DIRETÓRIOS

- Procurar por um arquivo
- Criar um Arquivo
- Excluir um Arquivo
- Listar um diretório
- Alterar o nome de um arquivo
- Percorrer o Sistema de Arquivos

ESTRUTURA DE DIRETÓRIO

Diretório em árvores:

- Cada usuário pode ter tantos diretórios quanto necessário, podendo agrupar seus arquivos da melhor maneira.
- Cada usuário tem um diretório corrente:
 - ✓ Caso um arquivo não esteja no diretório corrente, deve se especificar um caminho.
 - ✓ Nomes de caminhos podem ser absolutos (começa no diretório raiz) ou relativos (a partir do diretório corrente).
 - ✓ Um usuário pode acessar arquivos de outros usuários

DIRETÓRIOS EM ÁRVORE

DIRETÓRIOS EM ÁRVORE

- Procura eficiente
- Capacidade de Agrupamento
- Diretório Corrente (diretório de trabalho)
 - cd /spell/mail/prog
 - type list

DIRETÓRIOS EM ÁRVORE

- Procura eficiente
- Diretório Corrente (diretório de trabalho)
 - cd /spell/mail/prog
 - type list
- Caminho absoluto ou relativo
- Criação de arquivos novos é feita no diretório corrente.
- Apagar um arquivo

```
rm <file-name>
```

Criação de novos subdiretórios é feita no diretório corrente.

```
mkdir <dir-name>
```

Exemplo: se o diretório corrente é /spell/mail

mkdir count

PROTEÇÃO

- Dono/Criador do arquivo deve estar apto a controlar:
 - O que pode ser feito
 - Por quem
- Tipos de Acesso
 - Leitura
 - Escrita
 - Execução
 - Adição (Append)
 - Exclusão
 - Listagem

LISTAS DE ACESSO E GRUPOS

- Modos de acesso: leitura (read), escrita(write), execução (execute)
- Três classes de usuários

```
a) acesso de dono (owner) 7 \rightarrow 111 RWX
b) acesso de grupo (group) 6 \rightarrow 110 RWX
c) acesso público (public) 1 \rightarrow 001
```

- Peça para o administrador criar um grupo (nome único), digamos "dev", e adicionar alguns usuários ao grupo.
- Para um arquivo ou subdiretório particular (digamos game), defina um acesso apropriado.

Associe um grupo a um arquivo:

chgrp dev ./game

EXEMPLO - UNIX

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff	512	Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff	512	Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/

DESEMPENHO DO SISTEMA DE ARQUIVOS

- O acesso ao disco é mais lento que o acesso a memória principal.
- A técnica mais usada para reduzir o acesso ao disco é usar uma cache de blocos:
 - A cache de blocos é uma coleção de blocos que pertencem ao disco mas que são mantidos na memória principal para aumentar o desempenho.
 - Alguns sistemas otimizam sua cache de disco utilizando diferentes algoritmos de substituição de blocos, dependendo do tipo de acesso ao arquivo
 - Leitura antecipada de blocos

ARQUIVOS EM JAVA

- Em programas Java, a entrada e saída (E/S) é controlada por objetos stream:
 - > stream de entrada: dados entram em um programa.
 - stream de saída: dados saem do um programa.
- Os tipos mais comuns de streams são arquivos de dados externos.
- 4 Grupos principais de Classes de E/S:

	Entrada	Saída
Binário	InputStream	OutputStream
Texto	Reader	Writer

• 4 Classes de E/S mais usadas:

	Entrada	Saída
Binária	ObjectInputStream	ObjectOutputStream
Texto	BufferedReader	PrintWriter

- Arquivo binário é aquele que é lido e escrito em caracteres de 8 bits.
 - Ex.: imagens, vídeo, áudio, programas executáveis.
- Arquivo texto é lido e escrito em caracteres Unicode de 16 bits.
 - Ex.: arquivos criados por editors de texto, arquivos html.