リモートメンテナンスを伴い フィードバックを有する医療用 IoT システムのリスクアセスメント手法

佐々木良一1,金子朋子1,髙橋雄志1,福澤寧子2

概要:近年、社会の情報システムへの依存度の増大に伴い、情報システムの安全性を評価し、不十分なら適切な対策案の組み合わせを求めるためのリスクアセスメント手法の重要性が増してきている。しかし、医療システムに多く見られる、リモートメンテナンスを伴いフィードバック機能を有する IoT システムを対象としたリスクアセスメント手法は提案されていなかった。そこで、フィードバック機能を持つシステムにリスクをもたらすハザード原因要因 (HCF: Hazard Causal Factor)を、STAMP/STPA 法を改良した方式を用い、広く効率よくリストアップできるようにするとともに、そのようにしてリストアップされた HCF のうちリスクの大きなものを、拡張フォルトツリーを用いた準定量的分析によりリスクの大きさをレベル付けできるようにしている。次に、リスクの大きな HCF に対応するための対策を抽出し、Maintainabilityと Security、Safetyの関係を、アンアベイラビリティを核として定量的に結び付けることにより、バランスよく対策案の最適組み合わせを求めることができるようにした。このようにして開発した手法と、そのための支援用プログラムを、インスリン注入システムに適用することにより、リスクが大きい HCF や対策案の最適な組み合わせを具体的に求めることができるとともに、方式の有効性を確認することができた。

Risk Assessment Method for Medical IoT System with Remote Maintenance and Feedback

RYOICHI SASAKI¹,TOMOKO KANEKO¹, YUJI TAKAHASHI¹, YASUKO FUKUZAWA²

1. はじめに

近年、社会の情報システムへの依存度の増大に伴い、情 報システムの安全性を評価し,不十分なら適切な対策案の 組み合わせを求めるためのリスクアセスメント手法の重要 性が増してきている.特に最近普及してきている IoT(Internet of Things)は、サイバー攻撃の影響が IoT 機器の Security 低下だけでなく、人命などの Safety への影響が生 じる可能性が増大するといった特徴があるため、その重要 性が高かった.しかし、IoTシステムは制御系のように種々 のフィードバックを含むシステムが多く, 従来のやり方で はアセスメントが困難であった. このような問題を解決す るための手法として MIT のナンシー・レブゾンが開発した STAMP/STPA 法[1]呼ばれる手法がある. この手法はこの目 的のためには優れたものであったが、Safety だけを扱うも のでサイバー攻撃などの Security 要因が原因となって生じ る安全の問題は扱えなかった. そこで, Safety だけでなく, Security も併せて扱える手法の開発が文献[2]に示すように いろいろ行われてきており、著者らもこのための種々の手 法の提案を行ってきた[3]-[7].

一方, IoT 機器は一般に寿命が長く, その機器を長く安

心して利用するためにはメンテナンス(Maintenance)は不可欠である。また、IoT機器は、広域に分散することが多いため、リモートメンテナンス(Remote Maintenance:以下 RMともいう)が必要となることが多い。特に医療用 IoT機器などにおいては、工学の専門家が現場にいないこともありRM機能を持たせようという動きが強い。このため、IoT向けに RM に伴う Maintainability と Security and Safety をバランスよく実現するためのリスクアセスメント手法が必要になっており、著者らはそのための定量的手法を開発してきた[8]。

しかし,この方式は,フィードバックを伴わないセンサーなどの IoT 機器を対象とするものであった.そこで今回,リモートメンテナンスを伴いフィードバックを有する医療用 IoT システムを対象としたリスクアセスメント手法(以降,SSFM: Risk Assessment Method on <u>Safety</u> and <u>Security</u> for IoT with <u>Feedback</u> and <u>Remote Maintenance</u>)を開発することとした.

この SSFM 手法は、フィードバック機能に対応するために STAMP/STPA 法を改良した方式[3]を基本的に用い、リスクをもたらすハザード原因要因(HCF: Hazard Causal Factor)を、広く効率よくリストアップできるようにすると

DICOMO2020

¹ 東京電機大学

² 大阪工業大学

ともに、そのようにしてリストアップされた HCF のうちリスクの大きなものを拡張フォルトツリー分析法(Extended Fault Tree: EFT)を用い準定量的分析によりレベル付けできるようにしている. 次に、リスクの大きな HCF に対応するための対策を抽出し、Maintainability と Security 、Safety の関係をアンアベイラビリティを中心に定量的に結び付けることにより、バランスよく対策案の最適組み合わせを求める機能を持つ. このような方式の提案は従来なかったものである.

このようにして開発した SSFM 手法と、そのための支援 用プログラム SSFMP (SSFM Program) を、インスリン注入 システムに適用することにより、リスクが大きい HCF や対 策案の最適な組み合わせを具体的に求めることができると ともに、方式の有効性を確認することができたので報告する。

2. 提案手法の概要

提案するリスクアセスメント手法は次のような手順で 実施することとした. 手順1-6を文献[3]の方式をベース とし、手順7-9を文献[8]の方式をベースとしている.

手順1 アセスメント対象の調査

手順2 リスク指標(起きては困る主要リスク等)のリストアップ

手順3 対象システムのコントロールストラクチャーの構築

手順4 コントロールストラクチャーを用い安全に影響を 及ぼすUCA (Unsafe and Unsecure Control Action:アンセキ ュア・アンセーフティコントロールアクション) と影響を 及ぼすリスク指標の明確化

手順5 リスク指標ごとにUCAの原因となるHCFの明確化

手順 6 EFT (Extended Fault Tree: 拡張フォルトツリー) 上に各 HCF を位置づけ, 準定量的分析を行うことによるリスクの大きなHCFの明確化

手順7 リスクの大きなHCFに対応した対策のリストアップ

手順8 アンアベイラビリティを核に各種のリスクを定量 的に関連付け、対策コストの制約条件下にトータルリスク 低減効果を最大化する対策案最適組み合わせ問題として定 式化

手順9 定式化結果に基づき作成したプログラム SSFMP を用い対策案最適組み合わせを求解

手順10 リスクコミュニケーションに基づく,採用対策 に関する合意形成

文献[3]をベースとした方式を用いることにより,リスクをもたらすハザード原因要因 (HCF: Hazard Causal Factor)を,広く効率よくリストアップできるようにするとともに,

そのようにしてリストアップされた HCF のうちリスクの大きなものを準定量的分析によりランク付けできるようにしている.次に,文献[8]をベースにすることにより,リモートメンテナンスなどの効果も扱え,対策に関連する部分だけの定量化で済む効率的な定式化方法となっており,支援プログラム SSMFP を用いることにより効率的にバランスのよい対策案の最適組み合わせを求める機能を持つ.

3. インスリン注入システムの概要

本稿では、**図1**に示すようなインスリン注入を目的とした医療用 IoT システム(文献[9]を参考にして作成)を想定して提案するリスクアセスメント手法の適用を行った.

(1) 患者は家庭で基本的に 医師 ー日3回インスリスン注入装置を用いインスリン注入する。 (2) センサーを用いて血糖値を図り、スマホ経由で患者 保守者 測定時刻を追加して測定 結果としてWIFI、インターネッ トを経由して病院のサーバに 送信する インスリン投与 (3) 病院では血糖値の監視 を続け、その測定値が異常に 低い場合には、医師に対しア ラートを上げ医師が患者に注 入中止の指示を与える。 定結果 インスリン注入装置 ₹ スマホ (4) 一方、インスリン注入装置からは、定期的に機器IDご とのアライブ信号を、スマホ、 WIFI、インタネット経由で保守 000 者に送る。 (5) 保守者は、機器の持ち 主に連絡を取り、取り換えな https://www.ipa.go.jp/files/000038223.pdfの資料を どの対応を実施

図1 インスリン注入システムの概要

4. 適用方法と結果

4. 1 手順1 アセスメント対象の調査

アセスメント対象は上述したようなインスリン注入システムで、血糖値の値が基準値以下になると、医師にアラートを出して、インスリン注入停止の入力をさせる。また、リモートメンテナンスを行っており、インスリン注入装置からアライブ信号が来なくなったら異常と判断し、取り換えなどのメンテナンスを行うものとする。

4.2 手順2 リスク指標

ここでは、起きては困る主要リスクとして、次の3つをリストアップした。

(a). 生命にかかわる事象の発生

指標1: インシュリンを誤って投入することにより血 糖値が異常に低くなる

指標2: インシュリンを誤って投入中止することにより血糖値が異常に高くなる

(b) 重要情報の流出

指標3: 管理が不十分で患者の個人情報が漏洩

4.3 手順3 コントロールストラクチャーの構築

図1の対象を分析し、コントロールストラクチャーを 図2のように想定した.

医師 - 円3回定時にインスリン注 保守者 入装置を用いて患者にイン リモート 6 スリンを自動的に注入 保守者 血糖値の測定 用PC 医師用PC ② 測定血糖値の送信 10 ③ 測定血糖値と機器IDの 送信 インターネット ④ 血糖値低減が確認され ードバック。 れば注入停止指示 ⑤ インスリン注入をするど (8) スマホのハード・ソフト うかの指示 ⑥ 注入指示があった場合にインスリンの自動注入 インスリン 注入装置 アクチュエータ ⑦ インスリン注入装置から 医師用PCに血糖値を送った センサ 際に保守者用PCにアライブ 1 (6) 信号を送信 アライブ信号が途切れ れば対象装置の修復などを

図2 コントロールストラクチャーの構築

4.4 手順4 UCAとその結果となるリスク指標の明確化

図2の①-⑥に示したコントロールアクションに対応して、非安全・非セキュアな結果となる UCA (Unsafe and Unsecure Control Action) を、A表を用いて表1に示すようにして抽出する. Too Early や Too Late, Too soon や Too long など種々の制御の状態によって安全でない状態がリストアップできるのが STAMP/STPA の特長である. またここでは、血糖値上昇や血糖値異常低下など、どのリスク指標につながるかを記述し、あとで同一の結果となるツリーの要素を結合できるようにした.

この結果全部で 24 の UCA をリストアップした.

分析者がいろいろ考えて記入 STPAのガイドワード利用 Providing Too early コントロー Not Providing soon too late ルアクショ Causes hazard too long (UCA(2)P1) 血糖値を間 (UCA(2N1)センサ (UCA2L1) to 違えて低くしたり低く改ざ んする=>インスリン投 入の中止=>血糖値上 から血糖値が与えられ ンサーから血糖 値が与えられる ない=>血糖値が下が のが遅すぎる っているのに気つかな 2センサ 昇(結果2) 情報1送信 い=>インスリン投入を (UCA(2)P2)血糖値を間違えて高くしたり高く改ざ っているのに気 続け血糖値異常低下 血糖值 つかない 結果1) んする=>血糖値異常 - 血糖値異常 低下(結果1) 低(結果1) (UCA(2)P3)センサーか らスマホ間の通信のタッ ピング=>情報漏洩(結 A表(UCAの識別用) コントロールストラクチャー利用

表1 UCA抽出結果の一例(A表使用)

4.5 手順5 UCAに対応したHCFの明確化

何が UCA をもたらすかのHCF (Hazard Causal Factor: ハザード原因要因)をリストアップするのは容易ではない. 特に,システムの故障やヒューマンエラー以外にサイバー

攻撃などの影響も考慮してリストアップする方法は従来提案されてこなかった. そこで、図3の左側に示すようなB1表と呼ばれるガイドテンプレートを考案し、関連するコントロールストラクチャーに、図3の右側のB2表に示すように記入できるようにした. セキュリティに関する脅威の抽出には STRIDE 法[10]を用いてガイドするようにしている. これはシステムの故障やヒューマンエラー以外にサイバー攻撃などの影響も評価に組み込めるものとなっている. この結果63個の HCF を抽出した.

図3 ハザード誘発要因HCFの抽出結果の一例

4.6 手順6 リスクの大きなHCFの明確化

同じ結果をもたらす UCA をリストアップし、その原因となる HCF を対応付けて、 $\mathbf{図4}$ に示すような、EFT を作成する.

この拡張フォルトツリーは一番左側の項目(通常,最上位項目という)を手順2で設定したリスク指標とし、その次の次が同一の結果をもたらす UCA,その右が図3のガイドワードで抽出された原因である HCF である.ここでは、システムの故障やヒューマンエラー以外にサイバー攻撃などの影響も含むものとなっている.

図4 EFT作成の作成結果の一例

それらの HCF の影響の大きさと発生頻度から, 図5に関す るような方法で、それぞれのリスクレベルを求める、この ようにして求められたリスクレベルは表2に示すとおりで ある.

ここでは、リスクレベルが4以上のものに対し、対策を 検討することとした.

図5 リスクレベルの求め方

表2より、次のようなことがわかる.

- (1) リスクレベルが高い HCF は血糖値の異常低の部分に 多い
- (2)情報漏洩対応の HCF は一般にリスクが少ないが,暗 号対策などをやっていないとリスクが大きくなる
- (3) ヒューマンエラーや、環境条件でリスクが大きくな ることが多い

4.7 手順7対策案最適組み合わせ問題としての定式化

ここまで扱ってきた EFT などでは、準定量的処理であり、 復旧を考慮してないリライアビリティを扱っている.一方, RM の効果は、復旧を行うことにより、アベイラビリティ を上げることを目指すためであり、しかも、効果を適切に 把握するには定量的な扱いが必要である. そこで、EFT で もアベイラビリティ (あるいはアンアベイラビリティ)を 扱えるようにするとともに、定量的な扱いを考える. そこ

で、図6に示すような EFT を考え、RM を実施することに よるアンアベイラビリティ低減比率 H を導入し、ETF の構 造に基づきリスクを計算できるようにした.

H = 1 - (MTBFa/(MTBFa + MTTRa)) / (MTBFb/ (MTBFb+MTTRb)) **-- (1)**

ここで

MTTRb: 対策前平均修復時間(時間) 24 時間 MTBFb: 対策前平均故障間隔(時間) 864 時間 (年に10回故障が発生と仮定)

MTTRa: 対策後平均修復時間(時間) 2 時間 MTBFa: 対策後平均故障間隔(時間) 864 時間

この時, H=0.915 となる.

また, RM のコストは全体で 1000 万円とし, 100 の医院 で使い、1 つの医院で 100 人のインスリン注入装置をメン テナンスの対象とすると

一インスリン注入装置当たりのコストは 1000 万円/ $(100X100) = 1000 \ \Box$ となる.

図6 RMの効果を導入したEFT

Max
$$\begin{array}{c} 3 \\ \Sigma \ \Delta Ri \\ i=1 \end{array}$$
 s.t.
$$\begin{array}{c} 3 \ Ji \ K_j \\ \Sigma \ \Sigma \ \Sigma \ C_{ijk} \ {}^{\textstyle \cdot} X_{ijk} \ \leqq \ CT \ ----(2) \\ i=1 \ j=1 \ k=1 \end{array}$$

$$X_{ijk} = \ O \ or \ 1$$

ΔR1: 血糖値が低いときにインスリン投与中止指示が出ないことによる血糖値 異常低リスクの低減効果

ΔR2: 血糖値が高いときに、インスリン注入指示が出ることによる血糖値異常高

リスク低減効果

ΔR3:情報漏洩リスク低減効果

Cijk:指標iに及ぼすj番目のUCAに対するk番目の対策案のコスト(円)

CT·対策コストの制約(円/年)

Xijl:0-1変数 Xijk=1の時対策案iを採用、Xijl=0なら不採用

図7 定式化結果

AR1:血糖値が低いときに、インスリン注入指示が出ることによる血糖値異常低リスク低減効果

A: 真の血糖値が低である確率 A=0.1

P1): i番目のUCAにより現状のインスリン投入中止に失敗する確率(回/年) L1: インスリン投入中止に一回失敗する場合のインスリン異常低による損害額(円/回)

L1:インスリン投入中止に一回失敗する場合のインスリン異常低による損害額(円/回 Ejx:インスリン投入失敗に関するj番目のUCAのk番目の対策による低減効果

H: RMを実施することによるアンアベリラビリティ低減比

y: 0-1変数 y=1ならRM実施、0なら実施せず j: UCAの番号 jeRM RMの効果があるUCA j∉RM RMの効果がないUCA

j番目のUCAに対するk番目の対策案を採用した時 X1jk=1 そうでなければ

図8 ΔR1の求め方

また、システム全体を対象としたのでは、分析対象が、量的に膨大になる。そこで、全体システムのリスクの最小化を行うのではなく、RM 対策など各種対策候補に関連する部分だけに着目し、対策案のコストとアンアベイラビリティ低減効果などを考慮し、コスト制約下において対策効果を最大化を行うような定式化を行う。

定式化は、ETF の基づき、図7に示すようなものとした. ここで、 ΔR_1 は図8に示すように定式化できる. ΔR_2 、 ΔR_3 も同様にして定式化できる.

4.8 手順8 リスクの大きなHCFに対応した対策の リストアップ

リスクレベルが4以上の表3の左側の HCF に対し、表3の右側に示すような対策案を考案した. また、それぞれに対策について、リスクの低減効果と対策コストを設定した.

対策案 ijk を、対策案を新たに順序づけし、1 であらわし、 $\mathbf{5}$ の右に示すように $\mathbf{7}$ としてあらわした ($\mathbf{1}$ =1,2,--,9).

なお、ここでは、RM の実施も 10 番目の対策案とし、 Z_{10} を 0 - 1 変数とし、RM を実施するなら X_{10} =1、実施しないなら Z_{10} =0 とし、既述したようにリスク低減効果を 0.915、一装置あたりのコストを 1000 円 (1000 万円/(100 医院・100 装置))とした.

なお、ここでは、対策2、3のように1つの対策で複数 の効果があるものも定式化している.

4.9 手順9 最適な対策案組み合わせの求解

対策案最適組み合わせ問題の解を求めるため、この問題専用に総当たり法を用いて解を求めるために Python を用いて、プログラム SSFMP を開発した(約50ステップ).制約コストをいろいろ変化させて解を求めた結果は、表4に示すとおりである.

その結果次のようなことが言える.

(1)対策に 1000 円以上かけられるなら, RM を導入するほうが良い.

- (2) 通信路暗号化も重要性が高い.
- (3) インスリン注入装置などの装着忘れを防止するための教育などのコスト効果もよい.

表3 リストアップされる HCF と対策案候補

64			796-41	a i Me cha	4.1		
結	UCA	HCF	発生	対策案	効	コスト	RM
果			頻度		果		
1	①N1	HE:インスリン	4	X111:スマホ経	0.7	500 円	0
		注入装置の付け忘	RL4	由のアラート		(ソフト追	Z_1
		ħ				加料)	
	②N1	EN:電源喪失	3	X121:電源バック	0.6	500 円	0
			RL4	アップ		(ハード追	Z_2
						加料)	
	②N1	FA:センサー故障	3	X121:センサー	0.7	1000円 (ハ	0
			RL4	の多重化		ード追加	Z ₃
						料)	
	②P1	FA:センサー異常	3	X131:センサー	0.7	1000円	х
			RL4	の多数決化			Z4
	4N1	HE:医師の指示	3	X141:チェック用	0.7	3000 円	0
		ミス	RL4	ソフト		(ソフト追	Zs
						加料)	
	4)N2	FA:医師用 PC の	3	X51:: PCの2重	0.7	3000 円	х
		通算機能喪失	RL4	化		(1台30万	Z ₆
						円/100人)	
	⑤N1	FA:センサー異常	3	X161:センサ	_	_	х
		でアクチュエータ	RL4	一の2重化			Z ₃
		に対し注入指示が		(X121 と共通)			
		与えられない					
2	6N1	EN:電源喪失	4	X211:電源バック	_	_	х
			RL4	アップ			
				(X121 と同じ)			Z_2
2	6N1	FA: アクチュエー	4	X221:アクチュ	0.6	5000 円	х
		タ故障	RL4	エータの2重化		(ハード追	
						加料)	Z7
2	6N1	HE:患者への機器	4	X231:教育	0.2	100円	х
		設置ミス	RL4			(教育用時	
						間 10 分)	Zs
3	③P3	I:スマホーPC 間の	(5)	X311:通信路暗号	0.9	300 円	X
		通信の不正入手	RL4	化		(ソフト追	Z ₉
						加料)	
ш		ı		I			

RL は各 HCF のリスクレベル

0印は、採用すべき対策↔

表4 対策案最適組み合わせ 制約条 最適値 対策コ 備考ぐ 対策案 件(円) . (円). ← ス..ト 2 3 4 5 6 7 8 9 10 (円) (17999€ 100€ 0 ₽. 0 ↔ 100€ 500€ 700000 500€ 0 € 1000€ .1006500.3 1000€ 4 €. 4 .0.← 1069500 1400€ 9 6 0 ← 0 ← ä à 20004 .11290004 19004 .0 ↔ 0 € 0 € .0.€ 3000€ 1199000€ 2900€ 0 0 0 0 ← 0 ←

4.10 手順10 リスクコミュニケーションに基づく 採用対策の見直し

今回の分析結果は、技術者が相談して、対策案や、コスト、リスク低減効果などを設定したものであり、今回はリスクコミュニケーションは実施してない。実際に適用しようとすると、関与者が集まって、リスクコミュニケーションを行い、最終的に採用すべき解を求めることとなる。

リスクコミュニケーションの対象者としては, 次のよう

な人たちが考えられる.

- (a) 医用機器利用者
- (b) 患者
- (c) リモートメンテナンス業者 他

また, リスクコミュニケーション用に対象者から出る可能性のある意見としては,

- (a) 評価指標の追加 (例えば使い勝手)
- (b) 対策案の追加
- (c) 採用対策案から使い勝手が悪いものの排除
- (d)対策案の効果やコストに関する見積の修正依頼 などが考えられる.

5. おわりに

今回、リモートメンテナンスを伴いフィードバックを有する医療用 IoT システムを対象としたリスクアセスメント手法 SSFM と、そのため支援用プログラム SSFMP(SSFM Program)を開発するとともに、インスリン注入システムに適用することにより対策案の最適組み合わせを求めた。その結果、リスクの大きな HCF として次のようなものがあることが分かった。

- (1) リスクレベルが高い HCF は血糖値の異常低の部分に多い.
- (2) 情報漏洩対応の HCF は一般にリスクが少ないが、暗号対策などをやっていないとリスクが大きくなる.
- (3) ヒューマンエラーや,環境条件でリスクが大きくなることが多い.

また、対策案の最適組み合わせとしては次のようなことが言える.

- (1) 対策に 1000 円以上かけられるなら, RM を導入する ほうが良い
- (2) 通信路に対する暗号化も重要性が高い
- (3) インスリン注入装置などの装着忘れを防止するための教育などのコスト効果もよい.

今回の適用により、本方式は目的とするアセスメントを 実施できることを確認できた. ただ、対象に応じて式の形 を決定し、それに応じてプログラムの開発を行っていると いう問題があるので、プログラム開発経験のない人でも容 易に最適化計算ができるように、式の形を容易に入力でき る機能などの検討をしていきたいと考えている.

また、今後は、現実のシステムに関し適用し、リスクコミュニケーションなども実施し、合意形成を行いたいと考えられている.

謝辞

本研究は文部科学省の支援による東京電機大学私立大学研究ブランディング事業「グローバル IoT 時代におけるセキュアかつ高度な生体医工学拠点の形成」[12]の一環で

実施したものである。本分析を実施するにあたり、柿崎淑郎准教授、稲村勝樹准教授、植野彰規教授、桑名健太准教授、土井根礼音助教をはじめとする本事業の参加メンバーに種々の有効な意見をいただいた。また、メトロポリタン州立大学の Jigang Liu 教授には研究の進め方に関する貴重なコメントをいただいた。記して感謝申し上げる。

参考文献

- [1] N. Leveson, "Engineering a Safer World, Systems Thinking Applied to Safety, The MIT Press, 2012
- [2] Georgios Kavallieratos, Sokratis Katsikas, Vasileios Gkioulos "Cybersecurity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey"Future Internet 2020, Vol.12,No.65, pp1-18
- [3] 佐々木良一「IoT 時代のセキュリティとフォレンジックの技術課題と対応策」情報処理学会 DICOMO2019
- [4] Tomoko Kaneko , Yuji Takahashi ,Takao Okubo , Ryoichi Sasaki "Threat analysis using STRIDE with STAMP/STPA" The International Workshop on Evidence-based Security and Privacy in the Wild 2018Nara, Japan
- [5] Takuo Hayakawa, Ryoichi Sasaki, Hiroshi Hayashi, Yuji Takahashi, Tomoko Kaneko, Takao Okubo, "Propoal and application of Security/Safety Evaluation Method for Medical Device System that Includes IoT" 2018 The 3rd International Conference on Network Security (ICNS2018) Taipei, Taiwan
- [6] 林 浩史,髙橋 雄志,金子 朋子,早川 拓郎,佐々木 良一「IoT システム向けリスク評価方式と支援ツール SS-Ratの開発」情報処理学会第106回 GN・第24回 CDS・第 21回 DCC 合同研究発表会
- [7] 永井康彦,福澤寧子:「STAMP/STPA 手法に基づく安全・セキュリティハザード統合分析方式の提案」,電子情報通信学会 SCIS2019, 2C3-1.
- [8] 佐々木良一「メンテナビリティ・セーフティ・セキュリティを考慮した IoT システム向けリスク評価手法の開発」情報処理学会論文誌 2020 年 5 月号掲載予定
- [9] 情報処理推進機構 「医療機器における情報セキュリ ティ に 関 す る 調 査 」 2014 年 , $\frac{1}{2014}$ https://www.ipa.go.jp/files/000038223.pdf
- [10] Microsoft, The STRIDE Threat Model, 入手先 < https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
- [11] 東京電機大学研究ブランディング事業「グローバル IoT 時代におけるセキュアかつ高度な生体医工学拠点の形成」 https://www.dendai.ac.jp/about/tdu/activities/ branding/