

Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Algoritmi per la trasformata di Burrows-Wheeler Posizionale con compressione run-length, RLPBWT

Relatore: Prof.ssa Raffaella Rizzi

Correlatore:

Tesi di Laurea Magistrale di: Davide Cozzi

Matricola 829827

Abstract

Indice

1	Intr	roduzione	L
	1.1	Motivazioni Biologiche	,
	1.2	Bitvector sparsi	,
	1.3	Straight-Line Program	<u>,</u>
		1.3.1 Random access	<u>,</u>
		1.3.2 Longest Common Extension	,
	1.4	Trasformata di Burrows-Wheeler	,
		1.4.1 Trasformata di Burrows-Wheeler run-length	<u>,</u>
		1.4.2 Matching Statistics	,
		1.4.3 R-index	,
		1.4.4 MONI)
		1.4.5 PHONI)
	1.5	Trasformata di Burrows-Wheeler posizionale)
		1.5.1 Implementazione originale)
		1.5.2 Varianti della PBWT)
_	3.5		
2		todo 6	
	2.1	Introduzione agli strumenti usati	
		2.1.1 SDSL	
		2.1.2 BigRepair	
		2.1.3 ShapedSlp	
	2.2	Introduzione alle varianti della RLPBWT	
		2.2.1 Perché un'implementazione run-length	
	2.3	Mapping nella RLPBWT	
	2.4	RLPBWT naive	
		2.4.1 Algoritmo per match massimali	
	2.5	RLPBWT con bitvectors	
		2.5.1 Algoritmo per match massimali	
	2.6	RLPBWT con pannello	
		2.6.1 Algoritmo con matching statistics	
	2.7	RLPBWT con SLP	7

	2.8	2.8.1	Algoritmo con matching statistics	7 7
•	ъ.			
3	Kisi	ıltati		8
	3.1	Ambier	nte di benchmark	8
			Descrizione input	
	3.2		temporale	
	3.3		spaziale	
4	Con	clusion	i	9
	4.1	Svilupr	oi futuri	
	1.1			
			K-mems	
			RLPBWT multi-allelica	
		4.1.3	RLPBWT con dati mancanti	9
Bi	bliog	rafia e	sitografia	9
\mathbf{A}	Pse	udocod	ici	10
В	Tab	elle		11

Introduzione

1.1	Motiva	ozioni	Rio!	logicho
т.т	INTOUTAG	1ZIOIII	$\mathbf{D}_{\mathbf{IO}}$	logiche

- 1.2 Bitvector sparsi
- 1.3 Straight-Line Program
- 1.3.1 Random access
- 1.3.2 Longest Common Extension
- 1.4 Trasformata di Burrows-Wheeler
- 1.4.1 Trasformata di Burrows-Wheeler run-length
- 1.4.2 Matching Statistics
- 1.4.3 R-index
- 1.4.4 MONI
- 1.4.5 PHONI

1.5 Trasformata di Burrows-Wheeler posizionale

1.5.1 Implementazione originale

Gli algoritmi di Durbin

Limiti spaziali

1.5.2 Varianti della PBWT 5

PBWT multi-allelica

PBWT con struttura LEAP

PBWT dinamica

PBWT bidirezionale

Recenti sviluppi

Metodo

2.1 Intro	oduzione	aglı	strumenti	usatı
-----------	----------	------	-----------	-------

- 2.1.1 SDSL
- 2.1.2 BigRepair
- 2.1.3 ShapedSlp

Ricostruzione del panel

2.2 Introduzione alle varianti della RLPBWT

- 2.2.1 Perché un'implementazione run-length
- 2.3 Mapping nella RLPBWT
- 2.4 RLPBWT naive
- 2.4.1 Algoritmo per match massimali
- 2.5 RLPBWT con bitvectors
- 2.5.1 Algoritmo per match massimali
- 2.6 RLPBWT con pannello
- 2.6.1 Algoritmo con matching statistics
- 2.7 RLPBWT con SLP $_{_{7}}$
- 2.7.1 Algoritmo con matching statistics
- 2.8 Funzione Phi
- 2.8.1 Costruzione della struttura di supporto
- 2.8.2 Estensione dei match

Risultati

- 3.1 Ambiente di benchmark
- 3.1.1 Descrizione input
- 3.2 Analisi temporale
- 3.3 Analisi spaziale

Conclusioni

- 4.1 Sviluppi futuri
- 4.1.1 K-mems
- 4.1.2 RLPBWT multi-allelica
- 4.1.3 RLPBWT con dati mancanti

Appendice A Pseudocodici

Appendice B Tabelle