МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.3.6

Влияние магнитного поля на проводимость полупроводников

Б03-102 Куланов Александр

- Цель работы: Измерение влияния магнитного поля на полупроводники
- В работе используются: Стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции III1-10, образцы (InSb) монокристаллического антимонида индия n-типа

1 Описание установки

Рис. 1: Схема установки

В зазоре электромагнита создаётся постоянное магнитное поле. Ток питания магнита подаётся от источника постоянного напряжения GPR-11H30D, регулируется ручками управления источника (R_1) и измеряется амперметром источника A_1 . Магнитная индукция в зазоре электромагнита определяется при помощи измерителя магнитной индукции Ш1-10 (описание прибора расположено на установке).

Образец в форме кольца (диск Корбино) или пластинки, смонтированный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа К сквозь образец течёт ток, величина которого измеряется миллиамперметром A_2 и регулируется реостатом R_2 Балластное сопротивление R_0 ограничивает ток через образец. Измеряемое напряжение подаётся на вход цифрового вольтметра B7 - 78/1

2 Теоретические сведения

В схеме Корбино электрическое поле нанравлено по радиусу системы. В перпендикулярном диску магнитном поле ток вынужден протекать под углом к электрическому полю, то есть линии тока представляют собой спирали. Дополнительное (холловское) электрическое поле при этом не возникает.

Ввиду симметрии системы вклад в полный ток даёт только радиальная компонента плотноспи тока $j_r = \sigma_r E_r$. Полный ток равен $I = j_r \cdot 2\pi r h$, где r - радиус диска, h - его

толщина. Если в системе присутствует один тип носителей, то проводимость в радиальном направлении σ_r соответствует компоненте $\sigma_{\text{тx}}$:

$$\sigma_r = \frac{\sigma_0}{1 + (\mu B)^2},\tag{1}$$

пде μ - подвижность носителей. Напряжение между центром и краем диска равно

$$U = \int_{r_1}^{r_2} E_r dr = \frac{1}{\sigma_r} \int_{r_1}^{r_2} \frac{I}{2\pi r h} dr = \frac{\sigma_r}{\sigma_0} R_0 I, \tag{2}$$

где

$$R_0 = \frac{1}{\sigma_0 2\pi r h} \ln \frac{r_2}{r_1} \tag{3}$$

сопротивление диска в отсутствие магнитного поля. Поэтому закон Ома в схеме Корбино можно записать как

$$U = IR_0 \left(1 + (\mu B)^2 \right) \tag{4}$$

Таким образом, в данной схеме появляется зависимость сопротивления образца от магнитного поля. Причина - в геометрии системы: магнитное поле искривляет линии тока, делая их длиннее. Такой эффект называют геометрическим магнетосопротивлением.

3 Обработка результатов

Калибровка магнита

По данным из таблицы 1 построим график зависимости $B(I_m)$

В, мТл	I, A
42	0.04
95.2	0.10
178.5	0.18
277	0.29
333	0.39
365	0.48
378	0.55

Таблица 1: Зависимость $B(I_m)$

Рис. 2: Зависимость $B(I_m)$

Пластинка

Полученные данные занесем в таблицу 2

Перпендикулярно		Параллельно	
U, мВ	I, A	U, мВ	I, A
0.688	0	0.688	0
0.722	0.06	0.701	0.06
0.789	0.11	0.729	0.11
0.966	0.20	0.800	0.20
1.193	0.30	0.887	0.31
1.324	0.42	0.940	0.42
1.375	0.5	0.965	0.5
1.414	0.57	0.978	0.56
1.416	0.58	0.980	0.57

Таблица 2: Зависимости U(I)

Построим график зависимости $(U-U_0)/(U_0)$ (рис 3)

Диск Корбино

Полученные данные занесем в таблицу:

U, мВ	I, A
0.712	0
0.794	0.06
1.016	0.12
1.527	0.20
2.319	0.30
2.940	0.41
3.199	0.49
3.356	0.55
3.409	0.58

Таблица 3: Данные для диска Корбино

Построим график зависимости $(U-U_0)/(U_0)$:

Рис. 3: Зависимость $f(B^2)$

Для диска Корбино корень из угла наклона графика, соответственно формуле 4, как раз и является подвижностью носителей. Тогда

$$\mu = 5,09 \pm 0,8 \frac{\text{M}^2}{\text{B} \cdot \text{c}}$$
 (5)

Далее найдем R_0 , учитывая что ток через образец $I_0=23,5~{\rm mA}$

$$R_0 = \frac{U_0}{I_0} = 0,030 \text{ Om} \tag{6}$$

Далее из формулы 3

$$\sigma_0 = \frac{1}{R_0 2\pi r h} \ln \frac{r_2}{r_1} \tag{7}$$

учитывая, что $r_2 = 9$ мм, $r_1 = 1, 5$ мм, h = 1, 8 мм, $r = r_2$ находим

$$\sigma_0 = (0, 597 \pm 0, 005) \cdot 10^{-6} \frac{1}{\text{Om} \cdot \text{m}^2}$$
 (8)

$$\rho_0 = \frac{1}{\sigma_0} = (1, 7 \pm 0, 1) \cdot 10^6 \text{Om} \cdot \text{M}^2$$
(9)

Тогда концентрация носителей тока

$$n = \frac{\sigma_0}{\mu_e} = (0, 66 \pm 0, 01) \cdot 10^{12} \text{M}^{-3}$$
 (10)

4 Выводы

$\mu, \frac{{}^{\mathrm{M}}^2}{\mathrm{B} \cdot \mathrm{c}}$	$5,09 \pm 0,8$
$\sigma_0, \frac{1}{\mathrm{O}_{\mathrm{M} \cdot \mathrm{M}}^2}$	$(0,597 \pm 0,005) \cdot 10^{-6}$
$\rho_0, \mathrm{Om} \cdot \mathrm{m}^2$	$(1,69\pm0,1)\cdot10^6$
n, M^{-3}	$(0,66\pm0,01)\cdot10^{12}$

Таблица 4: Сводная таблица

Разница с табличным значение для подвижности составила около 25%. Также было проведено сравение с пластиной: зависимость магнитного поля для пластины слабее.