Numerical Optimisation Constraint optimisation: Assignitaehographetelp

https://pow@oder.com

f.rullan@cs.ucl.ac.uk

Add Weight of Medical Image Computing,

Centre for Inverse Problems University College London

Lecture 14

Lagrangian: primal problem

Constraint optimization problem

Assignment Project Exam Help

subject to $f_i(x) \leq 0$, i = 1, ..., m,

https://powcoder.com
Conflicting goals: minimise the function and satisfy the
constraints.

Idea: Ainmite a next excise $Q(x; \mu)$ approach those of f subject to the constraints as μ approach some set \mathcal{M} .

Benefit: reformulation as an unconstraint problem.

Quadratic penalty

Consider a problem with equality constraints

Assignment $P_{h_i(x)}$ = 0, i = 1, ..., p.

The merit function (quadratic penalty function)

nttps://powcoder.com

$$Q(x; \mu) := f(x) + \frac{\mu}{2} \sum_{i=1}^{\infty} h_i^2(x),$$

where Add the penelt Chat powcoder

Idea: choose a sequence $\{\mu_k\}$: $\mu_k \to \infty$ as $k \to \infty$, i.e. increasingly penalise the constraint, and compute the sequence $\{x_k\}$ of (approximate) minimisers of $Q(x; \mu_k)$.

Convergence for the quadratic penalty

Let $\{x_k\}$ be the sequence of approximate minimisers of $Q(x; \mu_k)$, such that $\|\nabla_x Q(x_k; \mu_k)\| \le \tau_k$, x^* be the limit point of $\{x_k\}$ as $\{x_k\}$ because $\{x_k\}$ as $\{x_k\}$ because $\{x_k\}$ be the limit point of $\{x_k\}$ as $\{x_k\}$ because $\{x_k\}$ be the limit point of $\{x_k\}$ as

- If a limit point x^* is infeasible, it is a stationary point of $\|h(x)\|^2$.
- If a limit point x^* is least ble and the constraint gradients $\nabla h_i(x^*)$ are linearly independent, then x^* is a KKT point for (COP:E), and we have that

Add $\underset{k\to\infty}{\text{WeChat}}$, $\underset{p}{\text{powcoder}}$

where ν^* is the multiplier vector that satisfies the KKT conditions for (COP:E).

Proof:

Assignment Project Exam Help

From the convergence criterium $\|\nabla_x Q(x_k; \mu_k)\| \le \tau_k$ (using the inequality $\|a\| - \|b\| \le \|a + b\|$) we obtain

https://powcoder.com
$$\sum_{i=1}^{k} \frac{1}{h_i(x_k)} \nabla h_i(x_k) \leq \frac{1}{\mu_k} (\tau_k + \|\nabla f(x_k)\|).$$

As k Add We what powerders

$$\sum_{i=1}^p h_i(x^*) \nabla h_i(x^*) = 0.$$

- i) If $h_i(x^*) \neq 0, i = 1, ..., p$ then $\nabla h_i(x^*)$ are linearly dependent which implies that x^* is a stationary point of $||h(x)||^2$.
- ii) If $\nabla h_i(x^*)$, $i=1,\ldots,p$ are linearly independent, $h_i(x^*)=0$ and x^* is primarily feasible i.e. satisfies the second KKT

Assign ditien berending Pelow that the Eustreasibility" Help

Case ii):

As k https://shapapwacoderingcrom

and $\nabla_x Q(x^k)$ its derivative i.e. the "dual feasibility" condition

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}; \mathbf{\nu}^{\star}) = \nabla f(\mathbf{x}^{\star}) + \sum_{i=1}^{p} \nu_{i}^{\star} \nabla h_{i}(\mathbf{x}^{\star}). \tag{3}$$

Rearranging (1) and denoting $A(x)^{\mathrm{T}} := \nabla h_i(x_k), i = 1, \ldots, p$ and $\nu^k := \mu_k h(x_k)$ we obtain

$$A(x_k)^{\mathrm{T}} \nu^k = -\nabla f(x_k) + \nabla_x Q(x_k; \mu_k), \quad \|\nabla_x Q(x_k; \mu_k)\| \leq \tau_k.$$

Assignment mark of the lower and herelp the above overdetermined system has the unique solution

 $\underset{\text{Taking the limit as } k \to \infty}{\text{https:}} / \underset{\infty}{\text{powcoder.com}} ^{A(x_k)A(x_k)^{\mathrm{T}})^{-1}} A(x_k) [-\nabla f(x_k) + \nabla_x Q(x_k; \mu_k)].$

A dd We Chat powcoder

and the same in (1) yields the "dual feasibility" condition

$$\nabla f(x^*) + A(x^*)^{\mathrm{T}} \nu^* = 0.$$

Hence, x^* is the KKT point with unique Lagrange multiplier ν^* .

Example

$x_1 + x_2$ Assignment Project Exam Help

min

Quadratic penalty function: $Q(x; \mu) = x_1 + x_2 + \frac{\mu}{2}(x_1^2 + x_2^2 - 2)^2$. 25 0.5 hat 20 15 -0.5 -0.5 10 -1 -0.5 0.5 0.5

Assignment Project Exam Help

subject to $x_1 = 1$.

Soluthttps://powcoder.com

Quadratic penalty function: $Q(x; \mu) = -5x_1^2 + x_2^2 + \frac{\mu}{2}(x_1 - 1)^2$.

 $\overset{Q(x;\mu)}{\text{Add}}\overset{\text{is unbounded for }}{\text{WeChat powcoder}}$

The iterates would diverge. Unfortunately, a common problem.

III-conditioning of Hessian

Newton step: $\nabla^2_{xx}Q(x;\mu_k)p_n = -\nabla_xQ(x;\mu_k)$

Assignment Project (*Exam Help

If x is sufficiently close to the minimiser of $Q(\cdot; \mu_k)$

https://poweoder.com

As $\mu_k \to \infty$ the Hessian is dominated by the second term and hence increasingly ill-conditioned.

Alternative formulation avoids ill-conditioning, $\zeta = \mu_k A(x) p_n$

$$\begin{bmatrix} \nabla^2 f(x) + \sum_{i=1}^p \mu_k h_i(x) \nabla^2 h_i(x) & A(x)^{\mathrm{T}} \\ A(x) & \mu_k^{-1} I \end{bmatrix} \begin{bmatrix} p_n \\ \zeta \end{bmatrix} = \begin{bmatrix} -\nabla_x Q(x; \mu_k) \\ 0 \end{bmatrix}.$$

Still, if $\mu_k h_i(x)$ is not a good enough approximation to ν^* , inadequate quadratic model yields inadequae search direction p_n .

General constraint problem

A Son general constraint problems including equality and inequality the constraint penalty function can be defined as Telp

Note: Q may be less month than the objective and constraint functions e.g. $f_1(x) = x_1 \ge 0$, then may $\{y, 0\}$ has discontinuous second derivate and so does Q.

Practical penalty methods

- Assimplified behalfy fundiblined choice of the difficulty of Help minimising $Q(x; \mu_k)$ is expensive, choose μ_{k+1} moderately larger than μ_k e.g. $\mu_{k+1} = 1.5\mu_k$, when minimising $Q(x; \mu_k)$ in the propose power of the transfer of the propose power of the propose
 - There is no guarantee that $\|\nabla_x Q(x; \mu_k)\| \leq \tau_k$ will be satisfied. Practical implementations need safe guards to independ (always by letter the junishoom) when the iterates appear diverging.

- When only equality constraints are present, $Q(x; \mu_k)$ is smooth and algorithms for unconstraint optimisation can be smooth and algorithms for unconstraint optimisation can be applied, thousand $Q(x; \mu_k)$ becomes large unless special techniques are used. In particular, methods like conjugate gradients and quasi-Newton will perform poorly. Newton method can be adapted (see the reformulation of Newton step) but it still can yield inadequate direction due to inadequacy of quadratic approximation.
 - Chice dinity de C.g wart state to the cord errove performance of Newton.

Nonsmooth penalty functions

Some penalty functions are *exact* i.e. for certain choices of penalty parameters, minimisation w.r.t. x yields the exact minimiser of f. To be exact the function has to be nonsmooth.

Assignment, Project, Fram Help

where $[y]^- := \max\{y, 0\}$. Let x^* be a strict local minimiser of (COP), which satisfies the 1st order necessary conditions with Lagrange multipliers ν^*, λ^* . Then x^* is a local minimiser of $Q_{\mathbf{T}}(x;\mu)$ for all $\mu > \mu^* = \|(\nu^*, \lambda^*)^{\mathrm{T}}\|_{\infty}$. If moreover the 2nd order sufficient to potentially $Q_{\mathbf{T}}(x;\mu)$, then x^* is a strict local minimiser or $Q_{\mathbf{T}}(x;\mu)$.

Let \hat{x} be a stationary point of the penalty function $Q_1(x; \mu)$ for all $\mu > \hat{\mu} > 0$. Then, if \hat{x} is feasible for (COP), it satisfies KKT conditions. If \hat{x} is not feasible for (COP), it is an infeasible stationary point.

Example revisited

Assignment Project Exam Help

 $x_1 + x_2$

min

Augmented Lagrangian

Reduces ill-conditioning by introducing explicit Lagrange multiplier estimates into the function to be minimised.

Can preserve smoothness. Can be implemented using standard

Austraction Help

Motivation: The minimisers x_k of $Q(x; \mu_k)$ do not quite satisfy the feasibility condition $h_i(x) = 0$

https://pow.coder.com

Obviously, in the limit $\mu_k \to \infty$, $h_i(x) \to 0$ but can we avoid this systematic enjurity of moderate values of the context o

Augmented Lagrangian:

$$\mathcal{L}_{A}(x,\nu;\mu) := f(x) + \sum_{i=1}^{p} \nu h_{i}(x) + \frac{\mu}{2} \sum_{i=1}^{p} h_{i}^{2}(x).$$

Update of Lagrange multiplier estimate

Optimality condition for the unconstraint minimiser of $\mathcal{L}_A(x, \nu^k; \mu_k)$

Assignment, Project, Exam, Help

Optimality condition for the Lagrangian of (COP:E) https://powcoder.com

$$0 \approx \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}_k, \mathbf{v}^*) = \nabla f(\mathbf{x}_k) + \sum_{i=1}^{k} \nu_i^* \nabla h_i(\mathbf{x}_k).$$

Comparison yields We Chat power wooder

$$\nu^{\star} \approx \nu^k + \mu_k h_i(x_k), \quad i = 1, \dots, p$$

as from $h_i(x_k) = \frac{1}{\mu_k} (\nu_i^* - \nu_i^k)$, $i = 1, \dots p$ we see that if ν^k is close to ν^* the infeasibility goes to 0 faster than $1/\mu_k$.

Example revisited

min
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 - 2 = 0$.

Assignment Project Exam Help

Augmented Lagrangian:

Figure: $\nu = 0.4$

Convergence

Let x^* be a local minimiser of (COP:E) at which the constraint gradients are linearly independent and which satisfies the 2nd order sufficient conditions with Lagrange multipliers ν^* . Then for all

Furthermore, there exist $\delta, \epsilon, M > 0$ such that for all ν^k, μ_k Help satisfying

• the proper min $\sum_{k=0}^{\|\nu_k^k - \nu^k\| \le \mu_k \delta} Q_{k} Q_{k} Q_{k} = \bar{\mu},$ compared to a unique solution x_k and it holds

. Add WeChat powcoder

$$\|\nu^{k+1} - \nu^{\star}\| \le M\|\overline{\nu^{k}} - \nu^{\star}\|/\mu_{k},$$

where $\nu^{k+1} = \nu^k + \mu_k h(x_k)$.

• the matrix $\nabla^2_{xx} \mathcal{L}_A(x_k, \nu^k; \mu_k)$ is positive definite and the constraint gradients $\nabla h_i(x_k)$, $i = 1, \ldots, p$ are linearly independent.

Practical Augmented Lagrangian methods

Assignments into equality constraints using stack variables Help

 $\begin{array}{c} f_i(x) - s_i = 0, \quad s_i \geq 0, \quad i \in \{1, \ldots, m\}. \\ \\ \textbf{bound postraint pare not transformed. Solve by projected} \\ \\ \text{gradient algorithm} \end{array}$

Add k+W eChat powcoder where $P(\cdot; I, u)$ projects on the box [I, u].

• Linearly constraint formulation: transform into equality constraint problem and linearise constraints

$$\min F_k(x)$$
, subject to $f_i(x_k) + \nabla f_i^{\mathrm{T}}(x_k)(x - x_k) = 0$, $l \leq x \leq u$.

Assignment Project Exam Help $F_k(x) = f(x) + \sum_{i=1}^{k} \nu_i^k \bar{f}_i^k(x),$

https://powcoder.com $f_i^k(x) = f_i(x) - f_i(x_k) - \nabla f_i(x_k)^{\mathrm{T}}(x - x_k).$

Preferred choice (larger convergence radius in practise) Add WeChat pownCoder $F_k(x) = f(x) + \sum_{i=1}^{n} \nu_i^k \bar{f}_i^k(x) + \frac{\mu}{2} \sum_{i=1}^{n} (\bar{f}_i^k(x))^2$

 Unconstraint formulation: obtain unconstraint formulation using smooth approximation to feasibility set indicator function.