Module G12 : Correction rapide de l'examen.

Exercice 1. 1. (a) Les variables $(X_n)_{n\geq 1}$ sont i.i.d. et de carré intégrable; d'après le TCL la suite $(T_n)_{n\geq 1}$ converge en loi vers G de loi $\mathcal{N}(0,\sigma^2)$.

- (b) D'après la loi forte des grands nombres, $(M_n)_{n\geq 1}$ converge presque sûrement vers m. Le résultat s'en suit immédiatement.
- (c) On a, pour tout $n \geq 1$, $\sqrt{n} \left(M_n^2 m^2 \right) = T_n \times (M_n + m)$. $(T_n)_{n \geq 1}$ converge en loi vers $\mathcal{N}(0, \sigma^2)$ et $(M_n + m)_{n \geq 1}$ converge presque sûrement donc en probabilité vers la constante 2m. D'après le lemme de Slutsky la suite $((T_n, M_n + m))_{n \geq 1}$ converge en loi vers (G, 2m) et la continuité de l'application $(x, y) \longmapsto xy$ implique la convergence en loi de la suite $(T_n(M_n + m))_{n \geq 1}$ vers 2m G de loi $\mathcal{N}(0, 4m^2\sigma^2)$ si $m \neq 0$, et nulle si m = 0.
- 2. (a) La fonction f est dérivable au point m, elle possède donc un développement limité à l'ordre 1 en ce point.
- (b) La suite $(\varepsilon(M_n-m))_{n\geq 1}$ converge presque sûrement et par conséquent en probabilité vers la constante 0. Comme $(T_n)_{n\geq 1}$ converge en loi vers G, le lemme de Slutsky donne la convergence en loi de la suite $(T_n\varepsilon(M_n-m))_{n\geq 1}$ vers 0; puisque la variable limite est constante, la convergence a lieu également en probabilité.
- (c) Par continuité de l'application $x \longmapsto f'(m) x$, la suite $(T_n f'(m))_{n \geq 1}$ converge en loi vers f'(m) G qui est de loi $\mathcal{N}\left(0, (f'(m))^2 \sigma^2\right)$ si $f'(m) \neq 0$, nulle sinon. Le lemme de Slutsky donne la convergence en loi vers (f'(m) G, 0) de la suite $((T_n f'(m), T_n \varepsilon (M_n m)))_{n \geq 1}$. L'application $(x, y) \longmapsto x + y$ étant continue, $(\sqrt{n}(f(M_n) f(m)))_{n \geq 1}$ converge en loi vers f'(m) G.

On retrouve bien évidemment le résultat de la question 1. (c) en prenant $f(x) = x^2$.

Exercice 2. 1. Les variables $(X_n)_{n\geq 1}$ sont i.i.d. et positives. Si $\lambda \in]0, +\infty[$, X_1 est intégrable et on peut appliquer la loi forte des grands nombres : $\frac{S_n}{n} \longrightarrow \lambda$ p.s. Comme $\lambda > 0$, $S_n \longrightarrow +\infty$ p.s. Si $\lambda = +\infty$, S_n/n converge presque sûrement vers $+\infty$ et S_n aussi.

Lorsque $\lim_{n\to+\infty} S_n(\omega) = +\infty$, pour tout $t\geq 0$, il existe $n\in\mathbb{N}$ tel que $S_{n+1}(\omega)>t: N_t(\omega)\leq n$. Donc p.s., pour tout $t\geq 0, N_t<+\infty$.

2. (a) Si X_1 est nulle p.s. alors $\mathbb{E}[X_1] = 0$. Or $\lambda > 0$ donc X_1 étant positive, $\mathbb{P}(X_1 > 0) > 0$. De plus, $\{X_1 > 0\} = \bigcup_{n \ge 0} \{X_1 > 2^{-n}\}$ et

$$0 < \mathbb{P}(X_1 > 0) \le \sum_{n \ge 0} \mathbb{P}(X_1 > 2^{-n})$$
;

il existe $n \in \mathbb{N}$ tel que $\mathbb{P}(X_1 > 2^{-n}) > 0$ et il suffit de poser $\alpha = 2^{-n}$.

(b) $\{X_1 > \alpha\} \cap \ldots \cap \{X_k > \alpha\} \subset \{S_k > k\alpha\}$ et puisque $k\alpha > t$, les variables $(X_n)_{n \geq 1}$ étant i.i.d.,

$$\mathbb{P}(S_k > t) \ge \mathbb{P}(S_k > k\alpha) \ge \mathbb{P}(X_1 > \alpha)^k$$
.

Soit $n \ge 1$; comme les variables $(X_n)_{n \ge 1}$ sont positives,

$$\{S_{nk} \le t\} = \{S_k \le t\} \cap \dots \{S_{nk} \le t\} \subset \{S_k \le t\} \cap \{S_{2k} - S_k \le t\} \cap \dots \cap \{S_{nk} - S_{(n-1)k} \le t\},\$$

et puisque les variables S_k , $S_{2k}-S_k$, ..., $S_{nk}-S_{(n-1)k}$ sont i.i.d. $\mathbb{P}(S_{nk}\leq t)\leq \mathbb{P}(S_k\leq t)^n$.

(c) Soit $t \ge 0$. Posons $k = \lfloor t/\alpha \rfloor + 1$ de sorte que $k\alpha > t$. Pour tout $n \ge 1$,

$$\mathbb{P}(N_t \ge kn) = \mathbb{P}(S_{nk} \le t) \le \mathbb{P}(S_k \le t)^n ;$$

or $\mathbb{P}(S_k \leq t) \leq 1 - \mathbb{P}(X_1 > \alpha)^k < 1$ et $\sum \mathbb{P}(N_t \geq kn) < +\infty$. N_t/k est intégrable et par conséquent N_t l'est aussi.

3. (a) Pour tout $\omega \in \Omega$, $N_t(\omega) \ge n$ dès que $t \ge S_n(\omega)$. D'où $\lim_{t \to +\infty} N_t(\omega) = +\infty$ p.s.

D'après la loi forte des grands nombres (ou un corollaire pour les v.a. positives non-intégrables), les v.a. $(X_n)_{n\geq 1}$ étant i.i.d. positives, il existe $\Omega_1\in\mathcal{F}$ tel que $\mathbb{P}(\Omega_1)=1$ et $S_n(\omega)/n\longrightarrow\lambda$ pour tout $\omega\in\Omega_1$. De plus, il existe $\Omega_2\in\mathcal{F}$ tel que $\mathbb{P}(\Omega_2)=1$ et $N_t(\omega)\longrightarrow+\infty$ si $t\to+\infty$ pour tout $\omega\in\Omega_2$.

On a alors $\mathbb{P}(\Omega_1 \cap \Omega_2) = 1$ et pour tout $\omega \in \Omega_1 \cap \Omega_2$, $\lim_{t \to +\infty} \frac{S_{N_t(\omega)}(\omega)}{N_t(\omega)} = \lambda$. Donc p.s. $\lim_{t \to +\infty} \frac{S_{N_t}}{N_t} = \lambda$.

(b) Par définition on a $S_{N_t} \leq t < S_{N_t+1}$ et par suite si $N_t \neq 0$,

$$\frac{S_{N_t}}{N_t} \le \frac{t}{N_t} \le \frac{S_{N_t+1}}{N_t+1} \frac{N_t+1}{N_t}$$

et comme $N_t \to +\infty$ presque sûrement on obtient $\lim_{t\to +\infty} \frac{t}{N_t} = \lambda$ p.s.

4. (a) D'après ce qui précède, $\{N_t + 1 \ge n\} = \{S_{n-1} \le t\}$. Cet événement appartient à la tribu $\sigma(X_1, \ldots, X_{n-1})$ qui est indépendante de la tribu engendrée par X_n puisque les variables $(X_k)_{k \ge 1}$ sont indépendantes.

Par définition, nous avons,

$$S_{N_t+1} = \sum_{k=1}^{N_t+1} X_k = \sum_{k\geq 1} X_k \, \mathbf{1}_{N_t+1\geq k},$$

et d'après la remarque précédente, comme les variables $(X_k)_{k\geq 1}$ sont positives et identiquement distribuées,

$$\mathbb{E}\left[S_{N_t+1}\right] = \sum_{k \geq 1} \mathbb{E}\left[X_k \, \mathbf{1}_{N_t+1 \geq k}\right] = \mathbb{E}\left[X_1\right] \, \sum_{k \geq 1} \mathbb{P}(N_t+1 \geq k) = \mathbb{E}\left[X_1\right] \, \sum_{k \geq 0} \mathbb{P}(N_t+1 > k).$$

Remarquons que puisque N_t+1 est une variable entière $\mathbb{E}[N_t+1]=\sum_{k\geq 0}\mathbb{P}(N_t+1>k)$ ce qui donne la relation demandée.

Finalement, $S_{N_t+1} \ge t$ p.s. et donc $\mathbb{E}[X_1]\mathbb{E}[N_t+1] \ge t$; par conséquent $\mathbb{E}[N_t] \ge t/\lambda - 1$ et $\liminf_{t \to +\infty} \mathbb{E}[N_t]/t \ge 1/\lambda$.

- (b) Remarquons à présent que $S_{N_t+1}=S_{N_t}+X_{N_t+1}\leq t+a$; par suite, $\lambda\,\mathbb{E}[N_t+1]\leq t+a$ d'où l'on déduit immédiatement que $\limsup_{t\to+\infty}\mathbb{E}[N_t]/t\leq 1/\lambda$.
- (c) Soit $a \in \mathbb{N}^*$. Notons $S_n^a = \min(X_1, a) + \ldots + \min(X_n, a)$ et $N_t^a = \sup\{n \in \mathbb{N} : S_n^a \leq t\}$. On a $0 < \lambda^a := \mathbb{E}[\min(X_1, a)] < +\infty$. On a $\limsup_{t \to +\infty} \mathbb{E}\left[N_t^a\right]/t \leq 1/\lambda^a$ d'après la question précédente. Or, pour tout $n \in \mathbb{N}^*$, $S_n^a \leq S_n$ et par conséquent, pour tout $t \geq 0$, $N_t \leq N_t^a$. Donc $\limsup_{t \to +\infty} \mathbb{E}[N_t]/t \leq 1/\lambda^a$. D'autre part, par convergence monotone $\lim_{a \to +\infty} \lambda^a = \lambda$ d'où l'on déduit que $\limsup_{t \to +\infty} \mathbb{E}[N_t]/t \leq 1/\lambda$.
 - (d) Il résulte des questions 4. (a) et (c) que $\lim_{t\to+\infty} \mathbb{E}[N_t]/t = 1/\lambda$.