Homework №3

Author: David Oniani

Instructor: Tommy Occhipinti

September 7, 2018

Section 2.2

- 7. List three elements of each of the following sets.
 - (a) $\mathbb{Q} \cap (2,3)$

Since (2,3) is an open range from 2 to 3 (not including 2 and 3), all of it is in the \mathbb{Q} and the answer of the intersection is (2,3).

Here are three elements that are the result set: 2.1, 2.2, 2.3

(b) $\{2^n - 1 \mid n \in \mathbb{Z}^+\}$

If n = 1, then $2^n - 1 = 1$

If n = 2, then $2^n - 1 = 3$

If n = 3, then $2^n - 1 = 7$

Here are three elements that are the result set: 1, 3, 7

(c) $\{n \in \mathbb{Z}^+ \mid n^2 + 1 \text{ is prime}\}$

If n = 1, then $n^2 + 1 = 2$ and 2 is a prime

If n = 2, then $n^2 + 1 = 5$ and 3 is a prime

If n = 4, then $n^2 + 1 = 17$ and 17 is a prime

Here are three elements that are the result set: 2, 3, 17

8. Let A = [4, 7] and B = (6, 8), both subsets of the universal set \mathbb{R} . Write each of the following sets as naturally as possible:

1

(a) $A \cup B$

 $A \cup B = [4,8)$. Thus, the set $A \cup B$ is the set of all real numbers from 4 to 8, including 4 but not including 8.

(b) $A \cap B$

 $A \cap B = (6,7]$. Thus, the set $A \cap B = (6,7]$ is the set of all real numbers from 6 to 7, not including 6 but including 7.

(c) A^C

 $A^{C} = (-\infty, 4) \cup (7, +\infty)$. Thus, the set A^{C} is the set of all real numbers but those in the range [4, 7], not including 4 and 7 (also called the *complement* of A).

(d) B^C

 $B^C = (-\infty, 6] \cup [8, +\infty)$. Thus, the set B^C is the set of all real numbers but those in the range (6,8), including 4 and 7 (also called the *complement* of B).

(e) A - B

A-B=[4,6]. Thus, the set B^C is the set of all real numbers in the range [4,6], 4 and 6 inclusive.

- 9. A **bi-partition** of a set S is a set $\{A, B\}$ of two subsets A and B of S such that $A \cup B = S$ and $A \cap B = \emptyset$.
 - (a) List all bi-partitions of the set $\{1, 2, 3\}$.

The list of all bi-partitions of the set $\{1, 2, 3\}$ is:

- $\{1\}$ and $\{2,3\}$ $\{2\}$ and $\{1,3\}$ $\{3\}$ and $\{1,2\}$

The list above shows that there are three bi-partitions for the given set.

(b) Explain why, every subset A of a set S is an element of exactly one bi-partition of S. (Hint: First explain why every such A is an element of at least one bipartition of S, then explain why it cannot be an element of more than one bi-partition of S.)

A is an element of at least one bi-partition since the list of bi-partitions of Bare really the sets of paired subsets of B. If we list all the bi-partition subset pairs, we will get all the subsets of B. Then if we have all the subsets of B, A is just one of them and it has to be one of the bi-partitions.

(c) It is a fact that we will prove later that if $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then S has exactly 1024 subsets. How many bi-partitions does S have?

Actually, let's prove it now and then count the number of bi-partitions. So, for each element of the set, we have two options, either put in the subset or leave it off. We have 10 elements in the set S. $2^{10} = 1024$.

Q.E.D

Now, let's go ahead and count the number of bi-partitions for the set.

Thus, we see that the number of the bi-partitions for the set S is 10.

2. Write down two sets each having infinitely many elements. Do parts (a)–(c) for these sets.

Let's look at two infinite sets $A = \{x \in \mathbb{Z}^+ \mid 2x\}$ and $B = \{x \in \mathbb{Z}^+ \mid 2x - 1\}$.

(a) What is their union?

$$A \cup B = \mathbb{Z}^+$$

(a) What is their intersection?

$$A \cap B = \emptyset$$

(a) What is their set difference? (both of them)

$$A - B = A$$
$$B - A = B$$

6. List the elements in each of the following sets:

(h)
$$\{x \in \mathbb{R} \mid x^3 - 3x = 0\}$$

If $x^3 - 3x = 0$, then the solutions to the equation are $0, \sqrt{3}$ and $-\sqrt{3}$. Thus the elements of the set are $0, \sqrt{3}, -\sqrt{3}$. (h) $\{x \in \mathbb{R} \mid x^2 + 4x + 5 = 0\}$

Equation $x^2 + 4x + 5 = 0$ has no solutions. Thus the set is \emptyset .

7. (c). Show that $\{x \in \mathbb{R} \mid (x-1/2)(x-1/3) < 0\} \subseteq \{x \in \mathbb{R} \mid 0 < x < 1\}$. Check your answer.

The solution set for the equation (x - 1/2)(x - 1/3) is $\{1/2, 1/3\}$. Thus, $\{x \in \mathbb{R} \mid (x - 1/2)(x - 1/3) < 0\} = \{1/2, 1/3\}$. $\{x \in \mathbb{R} \mid 0 < x < 1\}$ the set of all elements of the open range (0, 1). $1/2 \in (0, 1)$ and $1/3 \in (0, 1)$.

Q.E.D

- 14. A set A is called *full* if any element of A is also a subset of A. In other words, A is full if $x \in A$ implies $x \subseteq A$.
 - (a) Show that $\{\emptyset\}$ is full.

Set $\{\emptyset\}$ has only one element, namely \emptyset (empty set), and $\emptyset \subseteq \{\emptyset\}$. Hence, $\{\emptyset\}$ is full.

Q.E.D

(b) Find a full set having exactly two elements.

 $\{\emptyset, \{\emptyset\}\}.$

(c) Find a full set having exactly three elements.

 $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}.$

- 19. Russell's Paradox. Let $S = \{A \mid A \text{ is a set and } A \notin A\}$. Suppose that S itself is a set.
 - (a) Show that if S is a member of itself, then S cannot be a member of itself.

If $S \in S$, then $S \notin S$ as S is a subset of S and for every subset A of S, if $A \in S$, then $A \notin S$.

Q.E.D

(b) Show that if S is not a member of itself, then S must be a member of itself.

Since S is a set, it has to have members. Thus, if S is not a member of itself, then S must be a member of itself.

Q.E.D

Section 2.3

- 10. An integer n is called doubly even if there exist even integers x and y such that n = xy.
 - (a) Is 12 doubly even? Prove your answer.

Yes, it is doubly even since $12 = 2 \times 6$ where 2 and 6 are even.

Q.E.D.

(b) Is 98 doubly even? Prove your answer.? Prove your answer.

No, it is not doubly even since $98 = 2 \times 47$ where 2 and 47 is odd. Thus, since 47 cannot be further divided by 2 (and obtain integer), it is not double even.

Q.E.D.

(c) Write the negation of the statement "n is doubly even" without using the word "not."

n is not divisible by 4.

Explanation:

Notice that if n is doubly even, by the definition, it is the multiplication of two even integers that is n = xy. Let x = 2l and y = 2k $(l, k \in \mathbb{Z}^+)$, then we have n = 2l * 2k = 4lk. Thus, if n is doubly even, then it is divisible by 4.

(d) For what positive integers n is n! doubly even? Prove your answer.

For $n \geq 4$. Let's prove it!

For a number n to be doubly-even, it should be divisible by 4 (if n = xy where x and y are even, then let x = 2i and y = 2j where $i, j \in \mathbb{Z}$ and we get n = 4ij which proves that n is indeed divisible by 4). From this fact, we can deduce that n! must be divisible by 4 which happens for $n \ge 4$. Thus, if $n \ge 4$, n! is doubly even.

Q.E.D.

- 11. A subset S of \mathbb{Z} is called *shifty* if for every $x \in S$, $x 1 \in S$, or $x + 1 \in S$.
 - (a) Give an example of a shifty set with 5 elements.

$$S = \{1, 2, 3, 4, 5\}$$

(b) Give an example of a shifty set that contains 10 and -10 but does not contain 0.

$$S = \{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

(c) Is $\{n \in \mathbb{Z}^+ \mid n \text{ is not a multiple of 5 or 11}\}$ shifty? Why or why not?

For the set not to be shifty, we should have an element n for which either n-1 must be either divisible by 5 or 11 and n+1 should either be divisible by 5 or 11. Then, all we have to do is solve the systems of the following Diophantine equations:

$$\begin{cases} n-1=5k, \ where \ k\in\mathbb{Z}^+\\ n+1=11l, \ where \ l\in\mathbb{Z}^+\\ \text{or} \end{cases}$$
 or
$$\begin{cases} n-1=11k, \ where \ k\in\mathbb{Z}^+\\ n+1=5l, \ where \ l\in\mathbb{Z}^+ \end{cases}$$

Let's only consider the first system. From the first equation, we get:

$$n = 5k + 1$$

Then, if we substitute n in the second equation, we get the following Diophantine equation:

$$11l - 5k = 2$$

It's easy to see that l=2 and k=4. Then we have $n=5\times 4+1=21$. And we finally, 21 is an element of the set for which 21-1=20 which is divisible by 5 and 21+1=22 is divisible by 11. Thus, $\{n\in\mathbb{Z}^+\mid n\text{ is not a multiple of 5 or 11}\}$ is not shifty.

(d) $\{n \in \mathbb{Z}^+ \mid n \text{ is a multiple of 5 or } n+1 \text{ is a multiple of 5}\}$. Why or why not?

This set will be shifty. To see, let's group the elements of the set in pairs. All the pairs will have the following type (5k-1, 5k), where $k \in \mathbb{Z}^+$. Then, we know that for for 5k-1, 5k is in the set and for 5k, 5k-1 is in the set which makes the set shifty.

(e) Write the negation of the statement "S is shifty" without using the word "not."

There exists $x \in S$ such that $x - 1 \notin S$ and $x + 1 \notin S$.

(f) Does every non-empty shifty set contain an even integer? Why or why not?

Yes. In order for the set S to be shifty, for every element (positive integer) n, either n-1 or n+1 must be in the set. If n is odd, then n-1 and n+1 are even and if n is even, then n-1 and n+1 are odd. Thus, for a set to be shifty, it must contain an even integer.

- 2. If $\sum a_n$ is a convergent infinite series, then $\lim_{n\to\infty} a_n = 0$.
 - (a) If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ is not a convergent series.

- (b) If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ is a convergent series. It's true.
- 6. If $\sum |a_n|$ is convergent, then $\sum a_n$ converges.
 - (a) If $\sum a_n$ is not convergent, then $\sum |a_n|$ does not converge.
 - (b) If $\sum |a_n|$ is not convergent, then $\sum a_n$ does not converge. It's true
- 8. If f has a local (relative) maximum at the real number a or a local (relative) minimum at a, then f'(a) = 0 or f'(a) does not exist.
 - (a) If f'(a) exists and $f'(a) \neq 0$, then f does not have a local (relative) maximum at the real number a or a local (relative) minimum at a.
 - (b) If f'(a) = 0 or f'(a) does not exist, then f has a local (relative) maximum at the real number a or a local (relative) minimum at a. It's true.
- 12. To the ideal mathematician, what is a proof?

To the "ideal mathematician", the proof is the process which is comprised of 3 stages:

- 1. Writing down the axioms of the theory in a formal language with a given list of symbols or alphabet.
- 2. Writing down the hypothesis of the theorem in the same symbolism.
- 3. Showing that it is possible to transform the hypothesis step by step, using the rules of logic, till the conclusion is reached.
- 13. The ideal mathematician regards it as obvious that an extraterrestrial intelligence capable of intergalactic travel would recognize the binary expansion of π . Do you believe this? Explain why.

Interesting question. Actually, I am not sure. If the question was about something not involving π (or such "universal" constants), it would be easier... It is possible that they simply cannot create something like circle (for some reasons which I am not sure of yet). One possible thing might be some very very weird gravity or atmosphere or the way their universe works (it might be that the universe is "anti-circle"). Secondly, "intelligence" is a very ambiguous thing and the definition depends on a person. For some, it's knowing maths, for some it's philosophy, for some it is everything altogether etc. Hence, due to the limited information about the aliens and their environment/universe as well as the vague "intelligence" definition, my answer is I DON'T KNOW.

14 How does this article make you feel about studying mathematics? Good.