中山大学

二〇一〇年攻读硕士学位研究生入学考试试题

科目代码: 908

科目名称: 专业基础(数据结构)

考试时间: 1 月 10 日 下 午

考生须知 全部答案一律写在答题纸上, • 答在试题纸上的不得分! 请用蓝、 黑色墨水笔或圆珠笔作答。答题要 写清题号,不必抄原题。

一、	单项选择题	(每题2分,	共30分)	请选择正确答案的代码写在答题纸上,	并标明题号。
----	-------	--------	-------	-------------------	--------

- 1. 下面说法错误的是()
 - (1)算法的空间复杂度是指算法执行过程中所需要的存储空间
 - (2) 在相同的规模 n 下,复杂度 0(n) 的算法在时间上总是优于复杂度 0(2") 的算法
 - (3) 算法的可行性是指指令不能有二义性
 - (4) 算法原地工作的含义是指不需要任何额外的辅助空间
- A. (4) B. (1), (2) C. (3), (4) D. (3)
- 2. 下面关于线性表的叙述中,错误的是哪一个? ()
 - A. 线性表采用顺序存储, 必须占用一片连续的存储单元
 - B. 线性表采用顺序存储, 便于进行插入和删除操作
 - C. 线性表采用链接存储,不必占用一片连续的存储单元
 - D. 线性表采用链接存储, 便于插入和删除操作
- 3. 在长度为 n 的顺序表的第 i 个位置上插入一个元素(1≤ i ≤n+1), 元素的移动 次数为()
 - A. n-i+1 B. n-i C. i D. i-1

- 4. 若用一个大小为 5 的数组来实现循环队列,且当前 rear 和 front 的值分别为 0 和 2, 当从 队列中删除 2 个元素,再加入 1 个元素后,rear 和 front 的值分别为多少?()

- A. 2和3 B. 1和4 C. 4和1 D. 3和2
- 5. 串的长度是指()
 - A. 串中所含不同字母的个数 B. 串中所含字符的个数
 - C. 串中所含不同字符的个数
- D. 串中所含非空格字符的个数
- 6. 若将 n 阶三对角矩阵 A 按照行序为主序方式将所有非零元素依次存放在一个一维数 组 B 中,则该三对角矩阵在 B 中至少占用了()个数组元素。
- A. n^2 B. 3n+2 C. 3n-2 D. 3n

7. 一棵完全二叉树上有 1000 个结点,其中叶子结点的个数是()
A. 489 B. 500 C. 254 D. 512
8. 要连通具有 n 个顶点的无向图,至少需要的边数是()
A. n B. n-1 C. n+1 D. 2 ⁿ
9. 适用于折半查找的表的存储方式及元素排列要求为()
A. 链接方式存储,元素无序 B. 链接方式存储,元素有序
C. 顺序方式存储,元素无序 D. 顺序方式存储,元素有序
10. 稳定的排序算法是()
A. 快速排序 B. 选择排序
C. 堆排序 D. 插入排序
11. 下列说法正确的是()
A. 数据的物理结构是指数据在计算机内的实际存储形式
B. 在顺序存储结构中,也存储数据结构中元素之间的关系
C. 数据的逻辑结构说明数据元素之间的顺序关系, 它依赖于计算机的储存结构
D. 数据的逻辑结构是指数据的各数据项之间的逻辑关系
12. 下述编码中哪一个不是前缀码()
A. (00, 01, 10, 11) B. (1, 0, 00, 11)
C. (0, 10, 110, 111) D. (1, 01, 000, 001)
13. 关键路径是 AOE 网络中()
A. 从源点到汇点的最长路径 B. 从源点到汇点的最短路径
C. 最长回路 D. 最短回路
14. 当采用分块查找时,数据的组织方式为()
A. 数据分成若干块,每块内数据有序
B. 数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组
成索引块
C. 数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块
D. 数据分成若干块,每块(除最后一块外)中数据个数需相同
15. 在下列排序算法中, 哪一个算法的时间复杂度与初始排序无关()
A. 直接插入排序 B. 冒泡排序 C. 快速排序 D. 直接选择排序

二、简答题(每题5分,共30分)

- 1. 简述数据结构的逻辑结构和存储结构的区别与联系,它们如何影响算法的设计与实现?
- 2. 试就线性表的实现说明连续结构与链式结构各有什么特点。
- 3. 内排序和外排序的主要不同点是什么?
- 4. 在采用线性探测法处理冲突的散列表中,所有同义词在表中是否一定相邻?
- 5. 树和二叉树之间有什么样的区别与联系?并给出包含3个节点的二叉树的所有可能形态。
- 6. 用邻接矩阵表示图时,矩阵元素的个数与顶点个数是否相关?与边的条数是否有关?

三、解答题(6小题,共40分)

- 1. (6 分)已知某棵二叉树的前序遍历结果为 A, B, D, G, C, E, F, H, 其中中序遍历的结果为 D, G, B, A, E, C, H, F, 对这颗二叉树进行后序遍历的结果为?
- 2. (7 分)已知对称矩阵 $A_{5*5}(a_{ij}=a_{ji},1\leq i\leq 5,1\leq j\leq 5)$,采用行优先存储其下三角(包括对角线),已知存储单元的起始地址是 100,且每个元素占用 2 个单元,要求:
- (1) 写出地址映射公式:
- (2) 计算 a₁, 3和 a₄, 2的存储地址
- 3. (7分)设用于通讯的电文仅由8个字母组成,他们在电文中出现的频率分别为0.30,0.08,0.12,0.06,0.11,0.03,0.26,0.04,试设计哈夫曼树及其编码。并求其带权路径长度WPL值。
- 4. (8分)设一个有向图为 G=(V, E), 其中 V = {v1, v2, v3, v4, v5},

 $E=\{<v1,v2>,<v1,v3>,<v4,v5>,<v1,v4>,<v5,v2>,<v3,v4>\}$,画出该有向图,画出相应邻接表,写出从顶点 v1 出发进行深度优先和广度优先搜索得到的顶点序列。

- 5. (6分)已知关键字集合: {46,52,88,20,92,15,38,58},用冒泡排序从小到大排序,分别写出第一趟、第二趟、第三趟排序结束时的序列。
- 6. (6分)对下面的带权无向图采用 prim 算法从顶点 ① 开始构造最小生成树。


```
四、阅读算法,回答问题(24分)请把答案写在答题纸上,标明题号。
1、(4分)假定从键盘上输入一批整数,依次为:78 45 91 34 -1,请写出输出结果。
        # include < iostream.h>
        # include < stdlib.h >
         consst int stackmaxsize = 30;
         typedef int elemtype;
         struct stack {
         elemtype stack [stackmaxsize];
           int top;
         };
        # include "stack.h"
         void main (){
            stack s;
            initstack(s);
            int x;
            cin >> x;
            while (x! = -1) {
               push (s, x):
               cin >> x;
          while (!stackempty (s))
            cout << pop (s) <<" ";
          cout <<end1;</pre>
```

该算法的输出结果为:

```
(8分)下面是计算二叉树叶子结点的算法,请将算法补充完整:
2.
    template <class Entry>
    int Binary_tree(Entry) :: recursive_leaf_count
    (Binary_node < Entry > *sub_root) const
    /* Post: The number of leaves in the subtree rooted at sub_root is returned. */
      if (sub root = NULL) return 0;
      if (___(1) && (2)___) return 1;
        return recursive_leaf_count(___(3)___)
        + recursive_leaf_count(<u>(4)</u>);
3. (12 分) 下面是对链表 head 进行选择排序的算法实现。排序结束后,链表中的结点按结点值从
小到大链接。请将算法空缺部分补充完整:
   #include <stdio.h>
   typedef struct node{
   char data;
   struct node *next;}node;
   node *selectsort(node *head)
   { node *p, *q, *r, *s;
      p = (node *)malloc(sizeof(node));
      p\rightarrow next = head:
      head = p;
     while (p->next!= null)
     \{ q = p \rightarrow next; \}
        r = p;
      while ( (1) )
        { if (q-)next-)data < r-)next-)data > r = q;
           q = q-next;
      if(r!= p) \{ s = r \rightarrow next; r \rightarrow next = (\underline{2}) \}
                s \rightarrow next = p \rightarrow next; ( (3) );
```

```
(___(4)___);

p=head; head=head=>next; free(p); return(head);
}
```

五、算法设计题(26分)

- 1. (10 分)设 L 为一无序的整数单链表。请设计算法,将链表 L 分成两个链表,一个用来存放值为奇数的结点和一个用来存放值为偶数的结点。
- 2. (16分)编写算法,完成下述功能:
 - a、从键盘读入有向图的顶点和弧,创建有向图的邻接表存储结构。
 - b、判断图的连通性。