Übungsgruppe: Fr. 08-10, SR217

Aufgabe 12.

```
(a) (i)
       STJ a, a, .+1
    (ii)
       STJ a, a, .+1
                        a=0
       STJ t, t, .+1
                        t=0
       STJ t, 1, .+1
                        t=-1
       STJ a, t, .+1
                        a=1
   (iii)
       STJ a, b, .+1
                        a=a-b
   (iv)
       STJ a, a, .+1
                        a=0
       STJ a, b, .+1
                        a=-b
    (v)
       STJ a, a, .+1
                        a=0
       STJ t, t, .+1
                        t=0
                        t=-b
       STJ t, b, .+1
       STJ a, t, .+1
                        a=b
   (vi)
       STJ t, t, .+1
                        t=0
       STJ k, k, .+1
                        k=0
       STJ t, a, .+1
                        t=-a
       STJ k, t, .+1
                        k=a
       STJ a, a, .+1
                        a=0
       STJ a, k, .+1
                        a=-a
   (vii)
       STJ t, t, .+1
                        t=0
       STJ t, b, .+1
                        t=-b
       STJ a, t, .+1
                        a=a+b
  (viii)
       STJ 0, 0, x
                      JMP x
   (ix)
       STJ t, t, .+1
       STJ a, t, x
                      a-0 \leq 0
    (x)
       STJ t, t, .+1
       STJ t, a, x
                     0-a < 0
   (xi)
       STJ t, t, .+1
                        t=0
       STJ a, t, .+2
                        a \leq 0
       STJ 0, 0, .+2 else JMP to end
```

STJ t, a, x $a \ge 0$

(xii) STJ a, b, .+1 $a-b \leq 0$ STJ t, t, .+1 t=0 STJ 0, a, x b-a \leq 0 \Rightarrow JMP x (i) a:=0 if($c \le 0$) then goto y goto z :label y b := -bc:=-c :label z if($c \ge 1$) then goto x goto e :label x a:=a+bc := c-1goto z :label e (ii) if($b \le 0$) then goto y goto e :label y b := -b:label e (iii) i:=0 ac:=|c| ab:=|b| :label z i:=i+1 t:=ac*i if(ab>=t) then goto zi:=i-1 t:=b*c if(t<=0) then goto xgoto end :label x k := -1i:=i*kt:=i*c t:=t-b i:=i-1 if(t=0) then goto 1goto end :label 1

i:=i+1
:label end

Übungsgruppe: Fr. 08-10, SR217

Blatt 4

```
(iv)
    if(c=0) then goto k
    dbc:=b div c
    t:=c*dbc
    x := x-t
    goto end
    :label k
    a:=b
    :label end
(v)
    if(b>=c) then goto z
    a:=b
    goto end
    :label z
    a:=c
    :label end
(vi)
    :label z
    if(c=0)then goto end
    r:=b mod c
    c:=b
    b:=r
    goto z
    a:=b
```

Aufgabe 13.

(a) Nach der Matrizenmultiplikation muss gelten:

$$A = E \cdot I + F \cdot K$$

$$B = E \cdot J + F \cdot L$$

$$C = G \cdot I + H \cdot K$$

$$D = G \cdot J + H \cdot L$$

Übungsgruppe: Fr. 08-10, SR217

Durch die gegebenen Gleichungen ergibt sich

Also stimmt der Rechenweg über die Teilrechnungen mit der normalen Matrizenmulltiplikation überein.

(b) Der Algorithmus besteht aus 7 Multiplikationen und 15 Additionen. Nach der Rechnung auf den Folien ergibt sich.

$$T(n) = 7T(\frac{n}{2}) + 15(\frac{n}{2})^2 = 7\left[7(\frac{n}{4}) + 15(\frac{n}{4})^2\right] + 15(\frac{n}{2})^2$$

= $\cdots \Rightarrow \mathcal{O}(n^{2.807})$

Aufgabe 13.

- (a) (1) Sagt aus, dass die Funktion f, bis auf einen gewählten festen Faktor c, immer (d. h. für alle n, da f unabhängig von n) kleiner als die Funktion g ist.
 - (2) Sagt aus, dass die Funktion f, bis auf einen gewählten festen Faktor c, ab einem $n \ge n_0$ immer kleiner als die Funktion g ist.

Alexander Neuwirth (439218) Leonhard Segger (440145) Jonathan Sigrist (441760)

Informatik II (SS2017)

Übungsgruppe: Fr. 08-10, SR217 Blatt 4

- $(1) \Rightarrow (2)$ offensichtlich; Gilt für alle n, mit $n_0 = 0$; c bleibt gleich.
- $(2) \Rightarrow (2)$ c muss so gewählt werden, dass $n_0 = 0$ wird. Dies ist immer möglich, da c beeliebig hoch gewählt werden kann um $f(n) \leq c \cdot g(n)$ zu erfüllen. Wobei immer gilt $g(n) \neq 0$.
- (b) Damit $\frac{f(n)}{g(n)}$ gegen null konvertiert, müsste g(n) > f(n) ab einem bestimmten n_0 gelten und somit g(n) schneller als f(n) wachsen. Da dies eine mächtigere Aussage wie (2) wäre, es also kein n_0 gäbe, folgt $f(n) = \mathcal{O}(g(n))$.
- (c) Die Funktionen f_7 und f_6 sind komplexer als die Funktionen f_9 und f_{10} .

Seite: 5 von 5