Άσκηση 2 [04.05.2020]

Παράδοση: Τετάρτη 26.05.2020, 23:59

Η παρούσα άσκηση αφορά στην υλοποίηση ενός αλγόριθμου εύρεσης συντομότερων διαδρομών σε ένα κατευθυνόμενο γράφημα. Σκοπός της άσκησης είναι η εξοικείωση με τη C++, την Boost, την LEDA και την πειραματική αξιολόγηση.

Συγκεκριμένα, το πρόβλημα που θα μελετηθεί αφορά στην εύρεση των **συντομότερων διαδρομών** από μια αρχική κορυφή s προς όλες τις άλλες σε ένα δοθέν συνεκτικό κατευθυνόμενο γράφημα G=(V,E) με συνάρτηση κόστους των πλευρών $c:E\to Z$. Για τη λύση του προβλήματος ζητείται να υλοποιήσετε τον αλγόριθμο **Bellman-Ford** που περιγράφεται στην Ενότητα 7 «Συντομότερες Διαδρομές ΙΙ» (διαφάνειες 9-19) χρησιμοποιώντας την βιβλιοθήκη της **Boost**, αφού αποφασίσετε για την αναπαράσταση του $+\infty$ και του nil, και να τον αξιολογήσετε πειραματικά.

Ο συγκεκριμένος αλγόριθμος εκτελείται σε φάσεις. Σε κάθε φάση διατηρεί ένα σύνολο κορυφών U για τις οποίες ισχύει προσωρινά η τριγωνική ανισότητα:

$$U \supseteq \{u : d(u) < \infty \land \exists (u, v) \in E, d(u) + c(u, v) < d(v)\}$$

Το σύνολο U διατηρείται σε φάσεις. Αρχικά $U_0=\{s\}$ και οι αποστάσεις όλων των κορυφών είναι ίσες με $+\infty$. Σε κάθε φάση $i\geq 0$, κάθε κορυφή $u\in U_i$ χαλαρώνει τις εξερχόμενες ακμές προς κάθε γειτονική της κορυφή v και προσθέτει την v στο U_{i+1} . Ο αλγόριθμος ολοκληρώνει το έργο του σε μια φάση $j\leq n$ όταν $U_j=\emptyset$, ή όταν j=n, ακολουθούμενος από μια μεταγενέστερη φάση.

Θα πρέπει να συγκρίνετε τον αλγόριθμό σας με τον ήδη υλοποιημένο στη βιβλιοθήκη LEDA αλγόριθμο *BELLMAN_FORD_B_T* και με τον ήδη υλοποιημένο στη βιβλιοθήκη Boost αλγόριθμο *bellman_ford_shortest_paths()*.

Οι πειραματικές μετρήσεις σας θα εκτελεστούν στις εξης οικογένειες γραφημάτων:

- Τυχαία γραφήματα με μέγεθος κορυφών $n \in \{1000, 4000, 8000\}$ και μέγεθος ακμών $m = 20n \log n$. Ο κόμβος s θα επιλέγεται κάθε φορά τυχαία. Τα κόστη των ακμών θα παίρνουν τυχαίες ακέραιες τιμές στο διάστημα [-100, 10000]. Φροντίστε τα παραπάνω γραφήματα να είναι **ασθενώς συνεκτικά** (δηλαδή το υποκείμενο μη-κατευθυνόμενο γράφημα να είναι συνεκτικό) για την ορθή εκτέλεση του αλγόριθμου.
- Γραφήματα τύπου πλέγματος (grid) μεγέθους $n \times n$, όπου $n \in \{100, 200, 300\}$ που κατασκευάζονται ως εξής: Θεωρούμε ότι ο πάνω αριστερά κόμβος έχει συντεταγμένες (0,0) και ο κάτω δεξια (n-1,n-1).
 - ο Στο τμήμα που ορίζεται από τις συντεταγμένες $(x,y)\in [(0,0)\times (\frac{n}{2},n-1)]$ όλες οι οριζόντιες ακμές έχουν κατεύθυνση από αριστερά προς τα δεξιά, όλες οι κάθετες από πάνω προς τα κάτω, και όλες οι ακμές έχουν τυχαίο κόστος $c\in [0,10000]$.

- ο Στο τμήμα που ορίζεται από τις συντεταγμένες $(x,y) \in [(\frac{n}{2},\frac{n}{2}) \times (n-1,n-1)]$ όλες οι οριζόντιες ακμές έχουν κατεύθυνση από αριστερά προς τα δεξιά, όλες οι κάθετες από πάνω προς τα κάτω, και όλες οι ακμές έχουν τυχαίο κόστος $c \in [0,10000]$.
- ο Στο τμήμα που ορίζεται από τις συντεταγμένες $(x,y)\in[(\frac{n}{2},0)\times(n-1,\frac{n}{2})]$ όλες οι ακμές παίρνουν τυχαία κατεύθυνση και τυχαίο κόστος $c\in[-100,10000]$. Επιπλέον οι ακμές $(u_{\frac{n}{2}+1,\frac{n}{2}},u_{\frac{n}{2}+1,\frac{n}{2}-1})$ και $(u_{\frac{n}{2}+1,\frac{n}{2}-1},u_{\frac{n}{2},\frac{n}{2}-1})$ έχουν κόστος -100000.

Η αρχική κορυφή s θα είναι κορυφή με συντεταγμένες (0,0)). Στο ακόλουθο σχήμα φαίνεται η κατασκευή του γραφήματος.

Για κάθε γράφημα από τα παραπάνω θα πρέπει να εκτελέσετε (τουλάχιστον) πέντε διαφορετικές μετρήσεις και να παρουσιάσετε τον μέσο όρο αυτών, έτσι ώστε να περιοριστεί ο ρόλος των τυχαίων επιλογών.

Στα πειράματα που θα εκτελέσετε πρέπει, εκτός του χρόνου εκτέλεσης, να αναφέρετε εάν έχει βρεθεί αρνητικός κύκλος ή όχι, καθώς και σε ποιό σύνολο από τα V^+,V^-,V^f ανήκει κάθε κορυφή.

Στην περίπτωση που υπάρχει αρνητικός κύκλος, η σύγκριση των χρόνων εκτέλεσης θα πρέπει να γίνει μεταξύ της υλοποίησής σας και της υλοποίησης της LEDA, χωρίς δηλαδή να συμπεριλάβετε στη σύγκριση και την υλοποίηση της Boost (Γιατί;). Στην περίπτωση που

δεν υπάρχει αρνητικός κύκλος, η σύγκριση πρέπει να γίνει μεταξύ και των τριών υλοποιήσεων. Εξηγήστε τα αποτελέσματα και τυχόν διαφορές που παρατηρείτε στα πειράματα με τα παραπάνω γραφήματα.

Υποδολή Προγραμματιστικής Άσκησης: Η παράδοση της εργασίας θα πραγματοποιηθεί ηλεκτρονικά μέσω της ιστοσελίδας του μαθήματος στο eclass, υποδάλοντας ένα συμπιεσμένο αρχείο με όνομα hw2_AM_2020, όπου στο AM θα βάλετε τον Αριθμό Μητρώου σας.

Το αρχείο θα περιλαμβάνει όλα τα παραδοτέα της εργασίας:

1. report.pdf

Ένα pdf αρχείο που θα περιέχει την αναφορά της εργασίας με τις βασικές αποφάσεις της υλοποίησής σας, τα δεδομένα δοκιμής που χρησιμοποιήσατε και την πειραματική αξιολόγηση σας.

2. Makefile

Ένα αρχείο με τις οδηγίες: α) **compile** για τη μεταγλώττιση του πηγαίου κώδικα και β) **run** για την εκτέλεση των μεταγλωτισμένων αρχείων.

3. **src/**

Ένα φάκελο στο οποίο θα υπάρχουν όλα τα αρχεία του πηγαίου κώδικά σας.

4. **README**

Ένα αρχείο που θα περιλαμβάνει τα στοιχεία σας: όνομα, επώνυμο και email.

Παρατήρηση 1: Ο πηγαίος κώδικας που δίνετε για τις υλοποιήσεις και πειραματικές αξιολογήσεις σας πρέπει να είναι σωστά δομημένος, στοιχισμένος και σχολιασμένος. Επίσης ο κώδικάς σας πρέπει να εκτελείται στο σύστημα diogenis.

Παρατήρηση 2: Για περαιτέρω διευκρινήσεις σχετικά με την άσκηση επικοινωνήστε με τον Νίκο Ζαχαράτο (zacharato@ceid.upatras.gr).