Memoria practica 1 ONELE

Daniel Vilardell

Ejercicio 1: Represente las gráficas ancho de la apertura – semiancho del haz para los casos a) y b) con Excel o con cualquier otro programa que prefiera.

a) Siguiendo las comandas dadas en el enunciado hemos obtenido la siguiente tabla.

Ancho de apertura[um]	Semiancho angular de haz[º]
2	11.28
4	5.69
6	3.69
8	2.84
10	2.27
12	1.92
\parallel 14	1.65
16	1.5
18	1.29
20	1.19

Figura 1: Semiancho angular de haz en funcion del ancho de apertura

b) Con un ancho de apertura de receptor hemos obtenido la siguiente tabla.

Ancho de apertura[um]	Semiancho angular de $\text{haz}^{[o]}$
2	11.28
4	5.9
6	4.21
8	3.42
10	2.96
12	2.7
14	2.55
16	2.36
18	2.26
20	2.16

Figura 2: Semiancho angular de haz en funcion del ancho de apertura

Ejercicio 2: En classe medimos que a una distancia de L=30cm el diametro del aro principal era de d=1.5cm. Como sabemos que $d \ll L$ podemos usar el principio de huygens.

$$\omega = \tan^{-1} \left(\frac{\frac{d}{2}}{L} \right) = \tan^{-1} \left(\frac{0.75}{30} \right) = 1.43^{\circ}$$

Mirando entonces a la grafica observamos que 0.14mm corresponderia a una abertura de unas 16 micras.

Ejercicio 4: Ajustando el simulador con los parametros dados por el enunciado llegamos a la siguiente configuración.

Figura 3: Configuracion ejercicio 4

Medimos entonces los angulos de valores de pico en funcion del ancho de apertura y obtenemos la siguiente tabla.

Ancho de apertura[um]	Semiancho angular de haz[º]
10	19.13
12	15.89
14	13.58
16	11.86
18	10.53
20	9.56
22	8.53
24	7.89
26	7.26

Figura 4: Semiancho angular de haz en funcion del ancho de apertura

Podemos aproximar el campo en la apertura con la siguiente funcion $E(y) = E_o \cos(wy) \prod \left(\frac{y}{L}\right)$. Calculamos entonces la transformada de Fourier de la aproximación del campo en la apertura, que en angulos pequeños nos dara el campo a distancias grandes.

$$TF\{E(y)\} = \frac{E_o}{2}Lsinc(ky\frac{L}{2} + w) + \frac{E_o}{2}Lsinc(ky\frac{L}{2} - w)$$

De donde obtenemos que $\omega = arctg\left(\frac{\lambda\pi}{L}\right)$. Usando ahora la formula en vez de el simulador obtenemos la siguiente tabla que como podemos ver es muy similar a la encontrada a la simulación.

Ancho de apertura[um]	Semiancho angular de haz[º]
10	19.20
12	16.24
14	13.85
16	11.92
18	10.63
20	9.46
22	8.50
24	7.88
26	7.20