

Ollscoil Chathair Bhaile Átha Cliath Dublin City University

CA685 - Practicum Project

MCM - Masters in Computing (Major in Data Analytics)

"Interpretable Machine Learning for the Structure Odour Relationship"

Project by:

Denis Kealy

Supervised by:

Dr. Martin Crane

Interpretable Models for Investigating Smell

TABLE OF CONTENTS

1. Project Introduction

2. Background

- a. The Structure Odour Relationship & Smell
- b. Interpretable Models

3. Methods

- a. Pre-Processing & Training
- b. Evaluation & Comparison
- 4. Results
- 5. Questions & Discussion

PROJECT INTRODUCTION

A quick word about the scope, background and goals of the project

Think multidisciplinary!

Problems by definition, cross many academic disciplines.

- LUCAS REMERSWAAL

DOMAIN

- Biology
- Chemistry

APPROACH

- Statistics
- Computer Science

STRUCTURE ODOUR PROBLEM

... At the intersection of many disciplines

So we are on the same page!

- Definitions
- Aims of the Project
- Previous Work

DEFINING A FEW TERMS

Machine Learning

- Interpretable
- Explainable / XAI
- Deep Learning
- Hyperparameter
- XNN
- Completeness &

Accuracy

AI, IA & AIA

Our Sense of Smell

- Olfaction
- Neuron
- Receptor
- GPCR
- Limbic system
- Neo-cortex
- Swipe card model

Chemical Structure

- SOR vs SAR
- Odorant
- Ligand
- Ligand-Receptor

Binding

- Chemical Descriptors
- Chirality

PROJECT AIMS

The goals of the project & the contribution to knowledge.

PROJECT AIMS

Investigate Smell

Prior interest & promising new results

Generalised Methods

A solution that is not specific to this problem

Learn

FINAL GOAL

Demonstrate a generalised methodology for investigating this problem and similar problems.

13

PREVIOUS WORK

If I have seen further than others, it is by standing upon the **shoulders of giants**.

- Isaac Newton

PREVIOUS WORK

Domain Knowledge **Previous Methods Novel Interpretations** Olfactory System Odour Networks LIME **SOR Studies DREAM Machine** SHAP Geonomics Learning Tasks AIA Proteomics **Neural Networks** New imaging E-nose technologies... Fly Brain Machine Interpretable Olfaction • Learning Models

BACKGROUND

Some background about the problem, the data, and the available techniques

OUR SENSE OF SMELL

INTRINSICALLY COMPLEX

FULL OF COMPLEX INTRICACIES

INFLUENCES OUR CONSCIOUSNESS
INFLUENCES OTHER SENSES

PREDICTIVE OF COGNITIVE DECLINE
INSPIRING ARTIFICIAL OLFACTION

POTENTIAL BENEFITS FOR:

- HEALTH
- FRAGRANCE & FLAVOUR
- DIGITAL SCENT
- VIRTUAL REALITY

SMELL SMELL

What affects our sense of smell?

- Retro vs Ortho-nasal
- Mixing Compounds
- Culture & Language
- Familiarity
- Our Genes
- Time

HUMAN OLFACTORY SYSTEM

- 1. OLFACTORY BULB
- 2. MITRAL CELLS
- 3. BONE
- 4. EPITHELIUM
- 5. GLOMERULUS
- 6. OLFACTORY RECEPTORS NEURONS

STRUCTURE -ODOUR RELATIONSHIP

Can we predict:

- what a single molecule will smell of?
- what a SET of molecules will smell of?

Quantum Smell

- Structure doesn't tell the whole story
- Quanum properties seem to affect our sense of smell
- E.g. deuterated odorants & Drosophila Melanogaster

Swipe Card Model

- Structure plays a role, certainly,
 but other factors are at play
- Both chemical & physical properties of molecule are considered
- Combinatorial Encoding of Receptor Responses
- Cannot account for Chirality

STRUCTURE ODOUR RELATIONSHIP (SOR)

VS

STRUCTURE ACTIVITY
RELATIONSHIP
(SAR)

SOR

- Psychological Data
- Odour Panels
- Odour Descriptors
- Similarity Ratings
- Measure of conscious perception
- Many public databases
- Recent comprehensive dataset
- Highly predictive models recently published w/ best performance on this task to date

SAR

- Physiological Data
- Receptor Level (depolarisation of cell)
- Human Brain Imaging e.g. fMRI, PET, CT scans
- Mice, Flies and Worms in vivo, high granularity imaging
- Response levels & haplotypes for Human ORs
- Measure of biological activity
- Not enough data to study population level responses
- Some available data from outdated studies

Olfaction DREAM Challenge

- The Rockefeller University: Data collected in 2014
- Team GuanLab winner of individual sub challenge
- Team IKW winner of population sub challenge
- Team BioLab runner up for population sub challenge

DATA

PSYCHOLOGICAL DATA

- 55 Subjects
- 480 Molecules
- 2 Dilutions
- Responses (0-100)
- 3 Mandatory Fields
 - Pleasantness
 - Intensity
 - Familiarity
- 19 Optional Fields e.g.
 - Fish
 - Fruit

CHEMICAL/PHYSICAL DATA

- 4884 features
- Describes Molecular Shape
- Describes Molecular Vibrational Frequencies
- 476 molecules (4 missing)
- Compiled using DRAGON software
- Top 20 descriptive features for each target published

INTERPRET ABLE MODELS

- Interpretability vs
 Completeness
- Natural Interpretation
- Post-hoc
- Local vs Global
- Model Specific/Agnostic
- Improve Trust &
 Discovery

OUTPUTTING A PREDICTION

OUTPUTTING A JUSTIFICATION OR EXPLANATION

Pre-processing, training & evaluation methods

METHODS OVERVIEW

Research

- Olfactory System
- Machine Learning
 - Methods
- Interpretability

Methods

Experimentation

- Data Collection
- Network Analysis
- Training, training,
 - training...
- Evaluation

Documentation

- Code JupyterNotebooks
- Blog
- Presentation & Report

Preprocessing

PREPROCESSING

- Cleaning Data
- Dilution/Concentration
- Calculating Mean Responses
- Combining Data
- Hidden Test Set Split
- Persists Datasets

Training Overview

TRAINING MODELS

- Baseline Modelling 22 Targets
 - Default Hyperparameters
 - 10 Algorithms Tested
 - 5-fold Cross Validation

- Hyperparameter Tuning
 - Random Grid Search
 - 5 Algorithms Tested
 - 3-Fold Cross Validation

- Final Approach 8 Targets, 3 set of models
 - Regularized Linear Models (L1)
 - Random Forest with & without reduced features

Baseline Predictions

BASELINE MODELS - INTENSITY

Baseline Predictions

BASELINE MODELS - PLEASANTNESS

Baseline Predictions

BASELINE MODELS - SEMANTIC DESCRIPTORS

TRAINING MODELS

- Hyperparameter Tuning Random Grid Search
- Testing Feature Spaces
 - Reduced Features
 - Principal Components
 - Mean vs Raw Responses
 - Imputation & Masking
- Reducing the considered Targets and Algorithms
- Evaluation & Comparison
 - Pearson R for each target/model pair
 - More details in Results

Top 20 published features

Delta Error Method

INTENSITY

- Predictions worse across the board
- Intensity predictions are difficult with reduced descriptors - DREAM

PLEASANTNESS

- Predictions worse for all except Random Forest
- Predictions improve for Random Forest Baseline

Visualising and interpreting our predictions

AI PREDICTION ACCURACY

Predictions

PREDICTION CORRELATION - POPULATION

Residual Analysis

- shows that our error is largest around the mean
- This conforms to the observed data and previous analysis

OBSERVED MEAN VS STANDARD DEVIATION

INTERPRET MODELS

Naturally Interpretable Global Explanation

L1 REGULARISED LINEAR MODEL - PLEASANTNESS

Naturally Interpretable Global Explanation

L1 REGULARISED LINEAR MODEL - INTENSITY

Naturally Interpretable Global Explanation

L1 REGULARISED LINEAR MODEL - FRUIT

Local, Post-hoc Explanation

RANDOM FOREST & SHAP

Global, Post-hoc Explanation

RANDOM FOREST & SHAP - PLEASANTNESS

Post-hoc Explanations - Feature Dependence

RANDOM FOREST & SHAP - PLEASANTNESS

DISCUSSION

Questions & Clarifications

REFERENCES

Similar work and resources for presentation