Hamed Vaheb

University of Luxembourg

November 3, 2022

1/32

→□→→□→→□→ □ →○○

Hamed Vaheb Identifiability of ANMs November 3, 2022

- Assumption: Faithfulness
- Recover at most Markov Equivalence Class

> 4 DP > 4 E > 4 E > E *) Q (*

Introduction

Figure: Markov Equivalence Class

Introduction

Hamed Vaheb

• Identification: asymmetry direction.

0000000

- Nonlinear, Non-Gaussian:
 - Additive Noise Model (ANM)

$$Y := f_{AN}(X) + \varepsilon$$

Multivariate:

$$X_j = f_j(X_{Pa(j)}) + \varepsilon_j$$

- We need assumptions on the model!
- Goal:
 - Identification with less restrictive assumptions
 - Construct causal graph

Hamed Vaheb Identifiability of ANMs November 3, 2022 6 / 32

Directed Graph Ordering

Introduction

0000000

The graph shown to the left has many valid topological sorts, including:

- 5, 7, 3, 11, 8, 2, 9, 10 (visual top-tobottom, left-to-right)
- •3, 5, 7, 8, 11, 2, 9, 10 (smallestnumbered available vertex first)
- 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first)
- •7, 5, 11, 3, 10, 8, 9, 2 (largestnumbered available vertex first)
- 5, 7, 11, 2, 3, 8, 9, 10 (attempting topto-bottom, left-to-right)
- 3, 7, 8, 5, 11, 10, 2, 9 (arbitrary)
- **Ordering:** Directions of edges s.t. $(j,k) \in E, j$ comes before k
- True Ordering: $(\pi_1, \pi_2, ..., \pi_m)$
- Estimated Ordering: $(\widehat{\pi}_1, \widehat{\pi}_2, ..., \widehat{\pi}_m)$
- Learning graph: learning the ordering and the skeleton

Hamed Vaheb Identifiability of ANMs November 3, 2022 7 / 32

Identifiability Conditions

Outline

Introduction

0000000

- Introduction
- Identifiability Conditions
 - Prior Conditions
 - Conditional Variance
- Algorithms
 - Ordering Estimation Algorithms
 - Uncertainty Scoring Algorithm
- Implementation
 - Simulated Data
 - Real Multivariate Data: Mathematics Marks
- Conclusion

Outline

- Introduction
- Identifiability Conditions
 - Prior Conditions
 - Conditional Variance
 - 3 Algorithms
 - Ordering Estimation Algorithms
 - Uncertainty Scoring Algorithm
- Implementation
 - Simulated Data
 - Real Multivariate Data: Mathematics Marks
- 5 Conclusion

References

Introduction

Prior Identifiability Conditions

- $\bullet X_j = f_j(X_{Pa(j)}) + \varepsilon_j$
- $var(\varepsilon_j) = \sigma_j$

Lemma

Set of dentifiable ANMs:

- non-linear ANMs: $(f_i)_{i \in V}$ are not linear,
- non-Gaussian linear ANMs: $(f_j)_{j\in V}$ are linear $(X_j)_{j\in V}$ or $(\varepsilon_j)_{j\in V}\not\sim \mathcal{N}$
- (Gaussian) linear ANMs: $(f_j)_{j \in V}$ are linear $(\sigma_i)_{i \in V}$ are the similar or known.

Hamed Vaheb Identifiability of ANMs November 3, 2022 10 / 32

Conditional Variance Identifiability

- Introduced by Park [3]
- Without constraints on the form of $(f_j)_{j\in V}$ and $(\varepsilon_j)_{j\in V}$
- $(\varepsilon_j)_{j\in V}$ independent, but different distributions with heterogenous variance $(\sigma_i^2)_{j\in V}$
- Only scale of error variances, influence of parents.
- Assumption: Causal Minimality

Introduction

Bivariate Example

- G1
 - $\bullet Var(X_2) > Var(X_1)$
 - $\mathbb{E}[Var(X_1|X_2)] < \mathbb{E}[Var(X_2|X_1)]$
- **Asymmetry**: amount of uncertainty projected from the model

Introduction

Generalize

 Identifiability Conditions
 Algorithms
 Implementation
 Conclusion
 References

Conditional Variance

Introduction

Conditional Variance Identifiability Condition - Forward

14 / 32

Hamed Vaheb Identifiability of ANMs November 3, 2022

Conditional Variance Identifiability Condition - Forward

$$\bullet \ X_j = f_j(X_{Pa(j)}) + \varepsilon_j$$

$$Var(X_2) = \underbrace{(E[Var(X_2|X_1)])}_{\sigma_2^2} + \underbrace{(Var(E[X_2|X_1]))}_{\beta_1^2 \sigma_1^2} > \sigma_1^2 = Var(X_1)$$

Hamed Vaheb

Introduction

Conditional Variance Identifiability Condition - Forward

- $\bullet \ X_j = f_j(X_{Pa(j)}) + \varepsilon_j$
- $Var(X_2) = \underbrace{(E[Var(X_2|X_1)])}_{\sigma_2^2} + \underbrace{(Var(E[X_2|X_1]))}_{\beta_1^2 \sigma_1^2} > \sigma_1^2 = Var(X_1)$

Theorem

Let P(X) be generated from an ANM with DAG G and true ordering π . Suppose that causal minimality holds. Then, DAG G is uniquely identifiable if for any node $j = \pi_m \in V, k \in De(j)$,

• Forward stepwise selection:

$$Var(X_j|X_{\pi_1},...,X_{\pi_{m-1}}) < Var(X_k|X_{\pi_1},...,X_{\pi_{m-1}})$$

 $\sigma_i^2 < \sigma_k^2 + \mathbb{E}[Var(\mathbb{E}[X_k|X_{Pa(k)}]|X_{\pi_1},...,X_{\pi_{m-1}})]$

Hamed Vaheb Identifiability of ANMs November 3, 2022 14 / 32

Introduction

Conditional Variance Identifiability Condition - Forward

- $\bullet X_j = f_j(X_{Pa(j)}) + \varepsilon_j$
- $Var(X_2) = \underbrace{(E[Var(X_2|X_1)])}_{\sigma_2^2} + \underbrace{(Var(E[X_2|X_1]))}_{\beta_1^2 \sigma_1^2} > \sigma_1^2 = Var(X_1)$
- Step 1: $k \in De(\pi_1) = V \setminus \{\pi_1\}$ $Var(X_{\pi_1}) = \sigma_{\pi_1}^2 < \sigma_k^2 + var(E[X_k|X_{Pa(K)}]) = var(X_k)$

Theorem

Let P(X) be generated from an ANM with DAG G and true ordering π . Suppose that causal minimality holds. Then, DAG G is uniquely identifiable if for any node $j=\pi_m\in V, k\in De(j)$,

• Forward stepwise selection:

$$Var(X_j|X_{\pi_1},...,X_{\pi_{m-1}}) < Var(X_k|X_{\pi_1},...,X_{\pi_{m-1}})$$

 $\sigma_i^2 < \sigma_k^2 + \mathbb{E}[Var(\mathbb{E}[X_k|X_{Pa(k)}]|X_{\pi_1},...,X_{\pi_{m-1}})]$

Hamed Vaheb Identifiability of ANMs November 3, 2022 14 / 32

Introduction

Conditional Variance Identifiability Condition - Backward

$$\bullet X_j = f_j(X_{Pa(j)}) + \varepsilon_j$$

$$\bullet \ \mathbb{E}[Var(X_1|X_2)] = \underbrace{Var(X_1)}_{\sigma_1^2} - \underbrace{Var(\mathbb{E}[X_1|X_2])}_{\underbrace{\frac{\beta_1^2 \sigma_1^4}{\beta_1^2 \sigma_1^2 + \sigma_2^2}} < \underbrace{\mathbb{E}[Var(X_2|X_1)]}_{\sigma_2^2}$$

• Step 1: $\ell \in An(\pi_p) = V \setminus \{\pi_p\}$

$$Var(X_{\pi_p}|X_{V\setminus \pi_p}) = \sigma_{\pi_p}^2 > \sigma_{\ell}^2 - E[Var(E[X_{\ell}|X_{V\setminus \pi_p}]|X_{Pa(\ell)})] = Var(X_{\ell}|X_{V\setminus \ell})$$

Theorem

Let P(X) be generated from an ANM with DAG G and true ordering π . Suppose that causal minimality holds. Then, DAG G is uniquely identifiable if for any node $j=\pi_m\in V, \ell\in An(j)$,

• Backward Stepwise Selection:

$$\begin{aligned} & \textit{Var}(X_{\ell}|X_{\pi_m},...,X_{\pi_p} \setminus X_{\ell}) < \textit{Var}(X_{\pi_{m-1}}|X_{\pi_m},...,X_{\pi_p} \setminus X_{\ell}) \\ & \sigma_i^2 > \sigma_\ell^2 - \mathbb{E}[\textit{Var}(\mathbb{E}[X_{\ell}|X_{\pi_m},...,X_{\pi_p} \setminus X_{\ell}]|X_{\textit{Pa}(\ell)})] \end{aligned}$$

Hamed Vaheb Identifiability of ANMs November 3, 2022 15 / 32

Outline

Introduction

- Introduction
- Identifiability Conditions
 - Prior Conditions
 - Conditional Variance
- Algorithms
 - Ordering Estimation Algorithms
 - Uncertainty Scoring Algorithm
- Implementation
 - Simulated Data
 - Real Multivariate Data: Mathematics Marks
- 5 Conclusion

Ordering Estimation Algorithms

Introduction

Ordering Estimation (Forward)

Algorithm 1: Ordering estimation using the forward stepwise selection

Input: n i.i.d. samples from an ANM, $X^{1:n}$

Output: Estimated ordering, $\widehat{\pi} = (\widehat{\pi}_1, ..., \widehat{\pi}_p)$

Set
$$\widehat{\pi}_0 = \emptyset$$

for
$$m = \{1, 2, \cdots, p\}$$
 do

Set
$$S = {\{\widehat{\pi}_0, ..., \widehat{\pi}_{m-1}\}}$$

for
$$j \in \{1, 2, \cdots, p\} \setminus S$$
 do

Estimate the conditional variance of X_j given X_S , $\widehat{\sigma}_{j|S}^2$

end

The *m*-th element of the ordering $\widehat{\pi}_m = \arg\min_j \widehat{\sigma}_{j|S}^2$

end

Ordering Estimation (Bakward)

Algorithm 2: Ordering estimation using the backward stepwise selection

Input: n i.i.d. samples from an ANM, $X^{1:n}$

Output: Estimated ordering, $\widehat{\pi} = (\widehat{\pi}_1, ..., \widehat{\pi}_p)$

Set
$$S = \{1, 2, \dots, p\}$$

for
$$m = \{p, p - 1, \dots, 1\}$$
 do

for
$$j \in S$$
 do

Estimate the conditional variance X_j given $X_{S\setminus j}$, $\widehat{\sigma}^2_{j|S\setminus j}$

end

The *m*-th element of the ordering $\widehat{\pi}_m = \arg\max_j \widehat{\sigma}_{j|S\setminus j}^2$

Update
$$S = S \setminus \pi_m$$

end

Uncertainty Scoring Algorithm

Steps

Introduction

Goal:

- Identification ≡ Ordering
- Construct causal graph
- Element-wise ordering estimation from the initial (π_1) using conditional variances
- Parent estimation using the conditional independence relationships

Algorithm 3: Uncertainty Scoring (US) algorithm

Input: n i.i.d. samples from an ANM, $X^{1:n}$

Output: Estimated directed acyclic graph, $\widehat{G} = (V, \widehat{E})$

Step (1): Ordering Estimation

Estimate the ordering $\hat{\pi}$ using Algorithm 1

Step (2): Parents Estimation

for
$$m = \{2, \cdots, p\}$$
 do

for
$$j = \{1, \cdots, m-1\}$$
 do

Perform a conditional independence test between $\widehat{\pi}_m$ and $\widehat{\pi}_j$ given

$$\{\widehat{\pi}_1, ..., \widehat{\pi}_{m-1}\} \setminus \widehat{\pi}_j$$

If dependent, include $\widehat{\pi}_j$ into $\widehat{\operatorname{Pa}}(\widehat{\pi}_m)$

end

end

Estimate the edge set $\widehat{E}:=\cup_{m\in\{2,3,\ldots,p\}}\cup_{k\in\widehat{\operatorname{Pa}}(\widehat{\pi}_m)}(k,\widehat{\pi}_m)$

Outline

Introduction

- Introduction
- Identifiability Conditions
 - Prior Conditions
 - Conditional Variance
- Algorithms
 - Ordering Estimation Algorithms
 - Incertainty Scoring Algorithm
- Implementation
 - Simulated Data
 - Real Multivariate Data: Mathematics Marks
- 6 Conclusion

Simulated Data

Introduction

Comparison

- LISTEN: Linear model with heterogenous variance using backward selection
- LINGAM: Non-Gaussian linear model
- GS: Linear model with equal variance
- USF: Uncertainty scoring with forward selection
- USB: Uncertainty scoring with backward selection

 Identifiability Conditions
 Algorithms
 Implementation
 Conclusion
 References

Linear Gaussian with Heterogeneous Variance

Gaussian Polynomial with Heterogeneous and Homogeneous Variance

20-node

(d) Precision: Heterogeneous (e) Recall: Heterogeneous (f) Hamming: Heterogeneous

Hamed Vaheb Identifiability of ANMs November 3, 2022 24 / 32

Identifiability Conditions Algorithms Implementation Conclusion References 000000000

Introduction

ANMs with Gaussian and Non-Gaussian Errors

• Error distributions were sequentially uniform, U(-1,1), Gaussian $\mathcal{N}(0,1/3)$, and half of t-distribution with 10 degrees of freedom

 Identifiability Conditions
 Algorithms
 Implementation
 Conclusion
 References

Real Multivariate Data: Mathematics Marks

Description

Introduction

- Examination marks for 88 students
- Subjects: mechanics, vectors, algebra, analysis, and statistics.
- Multivariate Gaussian
- Bnlearn R package

 Identifiability Conditions
 Algorithms
 Implementation
 Conclusion
 References

 ○○○○○
 ○○○○○
 ○○○○
 ○○○○
 ○○○○

Real Multivariate Data: Mathematics Marks

Introduction

Correlation and Partial Correlation Plots

• The scores for analysis and statistics are conditionally independent of mechanics and vectors, given algebra

◆□▶ ◆□▶ ◆豊▶ ◆豊 ◆ 9へ

27 / 32

Real Multivariate Data: Mathematics Marks

Results

Introduction

Knowledge of analysis and vectors is prerequisite for statistics and mechanics, respectively 4 D > 4 A > 4 B > 4 B >

Identifiability of ANMs

Real Multivariate Data: Mathematics Marks

Outline

Introduction

- Introduction
- Identifiability Conditions
 - Prior Conditions
 - Conditional Variance
- Algorithms
 - Ordering Estimation Algorithms
 - Incertainty Scoring Algorithm
- Implementation
 - Simulated Data
 - Real Multivariate Data: Mathematics Marks
- 5 Conclusion

Conclusion

- Conditional variance is a valid identifiability condition
- It helps to estimate true ordering of a graph
- Uncertainty scoring algorithm: Estimating orders & Finding parents
- Works better on less dense data

References

Introduction

- [1] Clark Glymour, Kun Zhang, and Peter L. Spirtes. "Review of Causal Discovery Methods Based on Graphical Models". In: Frontiers in Genetics 10 (2019).
- [2] Benjamin Kap. The Effect of Noise Level on Causal Identification with Additive Noise Models. Aug. 2021.
- [3] Gunwoong Park. "Identifiability of Additive Noise Models Using Conditional Variances". In: *Journal of Machine Learning Research* 21.75 (2020), pp. 1–34. URL: http://jmlr.org/papers/v21/19-664.html.
- [4] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations and Learning Algorithms*. The MIT Press, 2017. ISBN: 0262037319.

