Banco de Dados I

Engenharia Reversa e Normalização

O que é Engenharia Reversa

Conceito

- A Engenharia Reversa é o processo de descobrir os princípios tecnológicos de um dispositivo/objeto ou de um sistema com a análise de suas estrutura, função e operação.
- Diretamente falando a Engenharia Reversa geralmente é a arte de desmontar para saber como funciona.

Aplicação

- A Engenharia reversa consiste em usar a criatividade para, a partir de uma solução pronta, retirar todos os possíveis conceitos novos ali empregados.
- É o processo de análise de um artefato (um aparelho, um componente elétrico, um programa de computador, etc.) e dos detalhes de seu funcionamento, geralmente com a intenção de construir um novo aparelho ou programa que faça a mesma coisa, sem realmente copiar alguma coisa do original.
- Objetivamente a engenharia reversa consiste em, por exemplo, desmontar uma máquina para descobrir como ela funciona.

Exemplo

Jerry Can (Latas Jerry)

- Criado pelos Alemães na Segunda Guerra Mundial
- Copiada pelas forças britânicas e americanas

Exemplo

 Enquanto a Apple não divulga oficialmente as especificações de hardware do iPhone, entusiastas do novo telefone examinam o hardware através de técnicas de engenharia reversa, para descobrir suas especificações e características.

Fonte: http://www.pdaexpert.net/noticias/computacao-movel/especificacoes-de-hardware-do-iphone-descobertas/

Engenharia Reversa

- A Engenharia Reversa utiliza o processo de normalização para os objetivos seguintes:
 - Reagrupar informações de forma a eliminar redundâncias de dados que possam existir nos arquivos;
 - Reagrupar informações de uma forma que permita a obtenção de um modelo ER.

Normalização

- Conjunto de regras que ajudam na definição de bancos de dados que não contenham redundância desnecessária e que permitam o fácil acesso às informações
- Há diferentes níveis de normalização, de acordo com as condições atendidas
- A hierarquia entre as formas normais indica que uma tabela só pode estar numa forma mais avançada se, além de atender as condições necessárias, já estiver na forma normal imediatamente anterior
 - (Ex: só pode estar em 2FN se já estiver em 1FN)

Níveis de Normalização

Normalização

- A finalidade das regras de normalização é evitar anomalias de atualização no banco de dados
 - Anomalias de inserção
 - Evitar a repetição desnecessária de dados (redundância)
 - Anomalias de alteração
 - Evitar inconsistências e reduzir o esforço para a atualização dos dados
 - Anomalias de exclusão
 - Evitar a perda de informações associadas a um dado registro

Antes

Depois

Sem anomalias

Exemplo de Anomalias

• Considere uma única tabela <u>Vendas</u> para representar as informações sobre os negócios de uma loja de CDs:

NOME_CLIENTE	COD_CD	MUSICA	CANTOR	PRECO	DATA_COMPRA
Alice Nóbrega	215621	Bem que se quis	Marisa Monte	R\$ 20,00	21/08/2008
		***			•••

Exemplo de Anomalias

- Caso fosse preciso registrar a compra de 5 CDs iguais para um mesmo cliente, as seguintes anomalias seriam observadas:
 - Anomalia de inserção
 - Redundância em todas as colunas (5 linhas iguais na tabela)
 - Anomalia de alteração
 - A mudança no preço do CD deveria ser feita em todas as linhas correspondentes da tabela
 - Anomalia de exclusão
 - Só haveria registro dos CDs que fossem comprados; se a única venda de um CD fosse apagada, não haveria mais informações sobre aquele CD

Dependência transitiva

Dependência Funcional Transitiva

Um atributo A tem *dependência funcional transitiva* da chave primária, se ele possui *dependência funcional* em relação a um atributo B que possua *dependência funcional* dessa chave.

Ex: Entidade PEDIDO

• endereço, telefone e nome do vendedor são dependentes transitivos de código do pedido.

Primeira Forma Normal (1FN)

- Conceito: Uma variável de relação (tabela) está em 1FN se, e somente se, em todo valor válido dessa variável de relação, cada tupla contém exatamente um valor para cada atributo;
- Os atributos devem ser atômicos (indivisíveis), não podem conter tabelas aninhadas;
- Atributos compostos ou multivalorados devem ser representados por novas linhas ou novas tabelas.

Exemplo – 1FN

- Exemplo: Tabela Controle de Faltas numa Escola
- A tabela abaixo não está na 1 FN

COD_TURMA	ALUNO	PROFESSOR	SALA	CAPACIDADE	QTE_FALTAS
BD1032	Alice Luna Juliano Camargo Márcio Andrade	Bruno Pereira	101	50	02 00 04
•••	***	•••	•••		•••

 Os atributos Aluno e Qte_Faltas não são atômicos (há mais de um valor para cada registro)

Solução

 Construir uma única tabela com redundância de dados

Cria-se uma tabela na qual os dados das linhas externas à tabela aninhada são repetidos para cada linha da tabela aninhada.

Construir uma tabela para cada tabela aninhada

Cria-se uma tabela referente a própria tabela que está sendo normalizada e uma tabela para cada tabela aninhada.

Exemplo – 1FN

• A tabela abaixo está na 1FN (atributos atômicos)

COD_TURMA	ALUNO	PROFESSOR	SALA	CAPACIDADE	QTE_FALTAS
BD1032	Alice Luna	Bruno Pereira	101	50	02
BD1032	Juliano Camargo	Bruno Pereira	101	50	00
BD1032	Márcio Andrade	Bruno Pereira	101	50	04
•••	***	•••		•••	•••

Obtenção da 1FN

Os atributos não contém valores nulos

Do ponto de vista prático, não há restrições quanto à existência de valores nulos em coluna de uma tabela. Valores nulos desconhecidos são comuns, porém valores nulos inaplicáveis podem indicar irregularidades no modelo conceitual e talvez mereçam tabelas distintas, gerando uma especialização.

Obtenção da 1FN

- Passos para obtenção da 1FN em uma tabela
 - 1. Escolher a chave primária definir as chaves candidatas da tabela.
 - 2. Transformar os atributos compostos em atômicos.
 - 3. Eliminar os atributos multivalorados, gerando uma tabela para cada um dos conjuntos de itens repetitivos. A chave primária de cada tabela será a concatenação da chave da tabela original com um atributo da nova tabela que identifique cada linha de forma única.
 - Cada item repetitivo dará origem a uma linha nesta nova tabela.
- O próximo passo é observar se ela está também na 2FN

Segunda Forma Normal (2FN)

- Conceito 1: uma variável de relação está em 2FN se, e somente se, ela está em 1FN e todo atributo não-chave é irredutivelmente dependente da chave primária
- Conceito 2: uma variável de relação está em 2FN se, e somente se, ela está em 1FN e, para tabelas com chave primária composta, cada coluna não-chave depende de toda a chave, e não de apenas uma parte dela
- Dica: tabelas em 1FN e com Chave Primária simples estão automaticamente em 2FN

Exemplo - 2FN

- A tabela abaixo está na 1FN mas não está na 2FN
 - Considere a chave composta (Cod_Turma, Nome)

COD_TURMA	ALUNO	PROFESSOR	SALA	CAPACIDADE	QTE_FALTAS
BD1032	Alice Luna	Bruno Pereira	101	50	02
BD1032	Juliano Camargo	Bruno Pereira	101	50	00
BD1032	Márcio Andrade	Bruno Pereira	101	50	04
•••	***	•••	•••	•••	•••

 Os atributos Professor, Sala e Capacidade dependem apenas de Cod_Turma (repetição para todos os alunos da turma)

Exemplo - 2FN

• As tabelas abaixo estão em 2FN

COD_TURMA	ALUNO	QTE_FALTAS
BD1032	Alice Luna	02
BD1032	Juliano Camargo	00
BD1032	Márcio Andrade	04
•••	•••	•••

COD_TURMA	PROFESSOR	SALA	CAPACIDADE
BD1032	Bruno Pereira	101	50
LG1512	Marina Lucena	101	50
JV8796	Ana Barbosa	101	50
***	•••	•••	•••

Processo para obtenção da 2FN

- 1) Identificar as colunas que n\u00e3o participam da chave prim\u00e1ria da tabela.
- 2) Para cada uma das colunas identificadas, analisar se existe dependência parcial da chave primária.

Para identificar a dependência parcial de uma coluna em relação à chave, deve-se indagar:

Para que o valor da coluna seja determinado, quais as partes da chave que devem ser conhecidas?

- 3) Para as colunas dependentes parcialmente da chave:
 - *Criar* novas tabelas que herdarão a chave parcial e todos os atributos que dependem dessa chave parcial. Essa chave parcial será a *chave primária* da tabela.
 - *Excluir* da tabela original todas as colunas com dependência parcial da chave.

Obtenção da 2FN

- Passos para obtenção da 2FN em uma tabela
 - Deixá-la em 1FN
 - Identificar os atributos que não fazem parte da chave primária da tabela
 - Para cada um desses atributos, analisar se seu valor é determinado por parte ou pela totalidade da chave
 - Criar novas tabelas para os atributos parcialmente dependentes, incluindo a parte da chave correspondente, e retirá-los da tabela original

Terceira Forma Normal (3FN)

- Conceito 1: uma variável de relação está em 3FN se, e somente se, ela está em 2FN e todo atributo não-chave é dependente de forma não transitiva da chave primária
- Conceito 2: uma variável de relação está em 3FN se, e somente se, ela está em 2FN e todo atributo não-chave depende apenas da chave, e não de outros atributos nãochave
- Dica: tabelas em 2FN e com nenhum ou um atributo além da chave estão automaticamente em 3FN

Exemplo – 3FN

• A tabela abaixo está em 2FN, mas não está em 3FN

COD_TURMA	PROFESSOR	SALA	CAPACIDADE
BD1032	Bruno Pereira	101	50
LG1512	Marina Lucena	101	50
JV8796	Ana Barbosa	101	50
•••	•••		***

• O atributo Capacidade depende do atributo Sala, e não da chave Cod_Turma

Processo para obtenção da 3FN

- 1) Identificar as colunas que não participam da chave primária da tabela.
- 2) Para cada uma das colunas identificadas, analisar se existe dependência transitiva da chave primária.

Para identificar a dependência transitiva de uma coluna deve-se indagar:

Qual outra coluna não pertencente à chave poderia determinar o valor da coluna em análise?

- 3) Para as colunas dependentes transitivamente da chave:
 - *Criar* novas tabelas que herdarão as colunas com dependência transitiva e também a coluna determinante da transitividade. Essa coluna será a *chave primária* da tabela criada.
 - Excluir da tabela original todas as colunas com dependência transitiva,
 mantendo a coluna determinante da transitividade.

Excluir também as colunas derivadas de outras.

Obtenção da 3FN

- Passos para obtenção da 3FN em uma tabela
 - Deixá-la em 2FN
 - Identificar os atributos que não participam da chave primária da tabela
 - Para cada um desses atributos, analisar se seu valor é determinado por algum outro atributo não pertencente à chave primária
 - Criar novas tabelas para os atributos que não dependem exclusivamente da chave, incluindo o atributo determinante correspondente, e retirá-los da tabela original

Exemplo - 3FN

• As tabelas abaixo estão em 3FN

COD_TURMA	ALUNO	QTE_FALTAS
BD1032	Alice Luna	02
BD1032	Juliano Camargo	00
BD1032	Márcio Andrade	04
•••	•••	•••

COD_TURMA	PROFESSOR	SALA
BD1032	Bruno Pereira	101
LG1512	Marina Lucena	101
JV8796	Ana Barbosa	101
•••	•••	

SALA	CAPACIDADE
101	50
201	40
301	50

Regras Gerais - Normalização

- 1FN: Eliminar atributos multivalorados ou compostos
- 2FN: Eliminar atributos que dependem apenas de parte da chave primária composta
- 3FN: Eliminar atributos que dependem de atributos não-chave

Observação

- Aumentar o nível de normalização contribui para melhorar a qualidade do projeto do banco de dados
- Geralmente normalizamos até a 3ºFN.

Exercício

 A tabela abaixo representa as vendas numa loja de CDs. Considerando as formas normais vistas (1FN, 2FN e 3FN), indicar quais são atendidas pelo projeto. Caso alguma delas não seja atendida, identifique o problema e proponha as mudanças necessárias.

Chave composta

TABELA VENDAS

CLIENTE	COD_CD	CANTOR	MUSICA	DURACAO	PRECO	DATA_COMPRA
Alice Nóbrega	215621	Marisa Monte	Beija Eu Chocolate	2:20 3:05	R\$ 20,00	0.4 (0.0 (0.0 0.0
J	878650	Tom Jobim	Corcovado Sabiá	2:50 2:10	R\$ 25,00	21/03/2003
***		•••	•••	•••		

Solução – 1FN

- A tabela Vendas não está na 1FN, pois há vários atributos não atômicos
- Para deixá-la em 1FN, é preciso dividir esses atributos em linhas

TABELA VENDAS

CLIENTE	COD_CD	CANTOR	MUSICA	DURACAO	PRECO	DATA_COMPRA
Alice Nóbrega	215621	Marisa Monte	Beija Eu	2:20	R\$ 20,00	21/03/2003
Alice Nóbrega	215621	Marisa Monte	Chocolate	3:05	R\$ 20,00	21/03/2003
Alice Nóbrega	878650	Tom Jobim	Corcovado	2:50	R\$ 25,00	21/03/2003
Alice Nóbrega	878650	Tom Jobim	Sabiá	2:10	R\$ 25,00	21/03/2003
•••	•••	•••	•••	•••	•••	***

Solução – 2FN

- A tabela Vendas não está na 2FN, pois há atributos que dependem apenas de parte da chave primária composta
- Para deixá-la em 2FN, é preciso criar uma nova tabela

TABELA VENDAS

CLIENTE	COD_CD	DATA_COMPRA
Alice Nóbrega	215621	21/03/2003
Alice Nóbrega	878650	21/03/2003
•••		***

TABELA CDs

COD_CD	CANTOR	MUSICA	DURACAO	PRECO
215621	Marisa Monte	Beija Eu	2:20	R\$ 20,00
215621	Marisa Monte	Chocolate	3:05	R\$ 20,00
878650	Tom Jobim	Corcovado	2:50	R\$ 25,00
878650	Tom Jobim	Sabiá	2:10	R\$ 25,00

Solução – 3FN

- A tabela CDs não está na 3FN, pois há atributos que dependem de atributos não-chave
- Para deixá-la em 3FN, é preciso criar uma nova tabela

TABELA CDs

COD_CD	CANTOR	MUSICA	PRECO
215621	Marisa Monte	Beija Eu	R\$ 20,00
215621	Marisa Monte	Chocolate	R\$ 20,00
878650	Tom Jobim	Corcovado	R\$ 25,00
878650	Tom Jobim	Sabiá	R\$ 25,00

TABELA MUSICAS

MUSICA	DURACAO
Beija Eu	2:20
Chocolate	3:05
Corcovado	2:50
Sabiá	2:10

Observação

- Veja que as tabelas Vendas, CDs e Musicas já estão em 3FN, mas ainda apresentam algumas redundâncias desnecessárias
 - Cliente e Data_Compra na tabela Vendas
 - Cod_CD, Cantor e Preco na tabela CDs
- Para resolver esses problemas, seria necessário aplicar outras formas normais

Exercício

• A tabela abaixo representa os pedidos de produtos de software para uma loja e não obedece nenhuma das formas normais vistas (1FN, 2FN e 3FN). Indique os passos para deixá-la em cada uma dessas formas normais.

TABELA PEDIDOS

NUM_PEDIDO	DATA	FORNECEDOR	CNPJ	ENDERECO	COD_PRODUTO	NOME	QUANT	PRECO
					033A	DOS	04	R\$ 130
003	20/01/03	CasaSoftware	8888	R. Lapa, 77	002M	Corel	01	R\$ 499
					145J	ABC	13	R\$ 256
004	27/01/03	BrasilSoftware	5555	Al. Itú, 49	002M	Corel	02	R\$ 450
					083P	ZAPT	10	R\$ 85
					145J	ABC	50	R\$ 110
		•••		•••				•••

Solução - 1FN

- Para deixar a tabela em 1FN, é preciso dividir os atributos nãoatômicos em linhas
- A chave da tabela é composta por Num_Pedido e Cod_Produto

TABELA PEDIDOS

NUM_PEDIDO	DATA	FORNECEDOR	CNPJ	ENDERECO	COD_PRODUTO	NOME	QUANT	PRECO
003	20/01/03	CasaSoftware	8888	R. Lapa, 77	033A	DOS	04	R\$ 130
003	20/01/03	CasaSoftware	8888	R. Lapa, 77	002M	Corel	01	R\$ 499
003	20/01/03	CasaSoftware	8888	R. Lapa, 77	145J	ABC	13	R\$ 256
004	27/01/03	BrasilSoftware	5555	Al. Itú, 49	002M	Corel	02	R\$ 450
004	27/01/03	BrasilSoftware	5555	Al. Itú, 49	083P	ZAPT	10	R\$ 85
004	27/01/03	BrasilSoftware	5555	Al. Itú, 49	145J	ABC	50	R\$ 110
	•••	•••		•••	•••			

Solução - 2FN

- Para deixar a tabela em 2FN, é preciso criar novas tabelas para os atributos que dependem apenas de parte da chave primária composta
 - Data, Fornecedor, CNPJ e Endereco dependem apenas de Num_Pedido
 - Nome depende apenas de Cod_Produto
 - Quantidade e Preco dependem da chave composta

Solução – 2FN

TABELA PEDIDOS

NUM_PEDIDO	COD_PRODUTO	QUANT	PRECO
003	033A	04	R\$ 130
003	002M	01	R\$ 499
003	145J	13	R\$ 256
004	002M	02	R\$ 450
004	083P	10	R\$ 85
004	145J	50	R\$ 110

TABELA PRODUTOS

COD_PRODUTO	NOME
033A	DOS
002M	Corel
145J	ABC
083P	ZAPT

TABELA DADOS_PEDIDOS

NUM_PEDIDO	DATA	FORNECEDOR	CNPJ	ENDERECO
003	20/01/03	CasaSoftware	8888	R. Lapa, 77
004	27/01/03	BrasilSoftware	5555	Al. Itú, 49

Solução – 3FN

- Para deixar as tabelas em 3FN, é preciso criar novas tabelas para os atributos dependentes de atributos não-chave
 - CNPJ e Endereco dependem de Fornecedor

Solução – 3FN

TABELA PEDIDOS

NUM_PEDIDO	COD_PRODUTO	QUANT	PRECO
003	033A	04	R\$ 130
003	002M	01	R\$ 499
003	145J	13	R\$ 256
004	002M	02	R\$ 450
004	083P	10	R\$ 85
004	145J	50	R\$ 110

TABELA PRODUTOS

COD_PRODUTO	NOME
033A	DOS
002M	Corel
145J	ABC
083P	ZAPT

TABELA DADOS_PEDIDOS

NUM_PEDIDO	DATA	CNPJ
003	20/01/03	8888
004	27/01/03	5555

TABELA FORNECEDORES

CNPJ	FORNECEDOR	ENDERECO
8888	CasaSoftware	R. Lapa, 77
5555	BrasilSoftware	Al. Itú, 49