Transition path theory: diagnosing random systems

Gage Bonner

MSN Tech Talk April 18, 2024

Rosenstiel School of Marine and Atmospheric Science

(these slides have some embedded images removed for copyright purposes)

Random Systems

Definition

A process is random when identical conditions can lead to different outcomes.

Intrinsic: That's just how it is, and we like it that way. E.g. Quantum mechanics (some interpretations).

Parameterized ignorance: Something is going on under the hood, but it's difficult or impossible to take it into account. E.g. flipping a coin. (but, see Diaconis et al., 2007)

Existential dread: Maybe there's no such thing as "identical conditions" in the first place? E.g. (possibly) everything.

Why we care about randomness: Random processes provide a tool to model arbitrarily complicated phenomenon without having to "really" know what's going on.

Why we care about TPT: it's a measurement and diagnostic tool that acts on random processes.

Markov Chains: Background I

Definition

A discrete time Markov Chain is a sequence of random variables $\{X_n\}_{n\geq 0}$ such that $P(X_{n+1}=x_{n+1}|X_1=x_1,X_2=x_2\dots X_n=x_n)$ is equal to $P(X_{n+1}=x_{n+1}|X_n=x_n)$. This is the "Markov property" or "memorylessness.".

Idea: A Markov chain is when something is happening randomly and what happens *next* only depends on what is happening *now*.

A Markov chain is a good model for everything.

Well, okay, not everything, but a lot.

Markov Chains: Background II

https://en.wikipedia.org/wiki/Snakes_and_ladders

Figure: The board game *Snakes and Ladders* is a discrete-time Markov chain on the location of the player's piece, $\{1, 2 \dots 100\}$.

Example: The probability of landing on square 10 if you are at square 8 is 1/6 regardless of how you ended up at square 8.

Markov Chains: Background III

What kinds of things do we calculate?

Distributions: What are the chances of being in a particular state after a set amount of time?

Long-term behavior: Where do things "settle" after a long time?

First passage: When does the first visit to a state tend to happen?

Problems:

Paths: It's not entirely clear how individual trajectories "actually" travel between a given initial and final states, or at least it might be hard to simulate.

Rare events: What if the behavior you're interested in is very unlikely to happen?

Enter TPT.

Transition Path Theory: Background

Definition

Let \mathbb{A} and \mathbb{B} be some non-intersecting subsets of the state space of a Markov chain. We will call \mathbb{A} the source and \mathbb{B} the target.

Definition

A trajectory through a Markov chain $(X_n, X_{n+1} \dots X_{n+\ell})$ is called reactive if $X_n \in \mathbb{A}$, $X_{n+\ell} \in \mathbb{B}$ and \mathbb{A} and \mathbb{B} are not visited at any other time.

Definition

Transition Path Theory is a framework which allows us to calculate various statistics related to reactive trajectories.

Transition Path Theory: Reactive Trajectories

Figure: Schematic of paths through a Markov chain with reactive trajectories highlighed in red.

Basic quantities (see Helfmann et al., 2020 for a detailed review) are

- The reactive density, showing where reactive trajectories spend the most time.
- The forward current, showing where reactive trajectories "flow."
- The transition time, t^{AB} .

Transition Path Theory: Summary

Punchline: If we have a Markov chain, we can apply TPT to see how trajectories move from a given source to a given target in the chain.

Applications:

- Markov Decision Processes
- Ocean drifters
- Molecular dynamics
- Extreme weather events
- many more ...

Application 1: MDPs

See notebook.

Application 2: Sargassum I

Figure: Rafts of Sargassum floating in the Carribean Sea.

Observation: Since 2011, islands in the Caribbean Sea and beaches in South

Florida were inundated with abnormally large quantities ${\it Sargassum}$

Problem: To understand the transport of *Sargassum* by the ocean.

Application 2: Sargassum II

Figure: Sargassum transport in the North Atlantic [Bonner et al., 2023].

Application 3: Molecular dynamics

Figure 5 of Lorpaiboon et al., 2022

Figure: Overdamped Langevin dynamics. (a) Traditional TPT, (b) TPT with intermediate states [Lorpaiboon et al., 2022].

Application 4: Rare weather events

Figure 4 of Finkel et al., 2023

Figure: Sudden stratospheric warming. [Finkel et al., 2023].

Summary

TPT: A number of applications across diverse fields.

Computation: The basic statistics are easily calculated in a fast and efficient manner.

https://github.com/70Gage70/TPTApplications

References

- Gage Bonner, FJ Beron-Vera, and MJ Olascoaga. Improving the stability of temporal statistics in transition path theory with sparse data. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 33(6), 2023.
- Persi Diaconis, Susan Holmes, and Richard Montgomery. Dynamical bias in the coin toss. *SIAM review*, 49(2):211–235, 2007.
- Justin Finkel, Edwin P Gerber, Dorian S Abbot, and Jonathan Weare. Revealing the statistics of extreme events hidden in short weather forecast data. *AGU Advances*, 4(2):e2023AV000881, 2023.
- Luzie Helfmann, Enric Ribera Borrell, Christof Schütte, and Péter Koltai. Extending transition path theory: Periodically driven and finite-time dynamics. *Journal of nonlinear science*, 30(6):3321–3366, 2020.
- Chatipat Lorpaiboon, Jonathan Weare, and Aaron R Dinner. Augmented transition path theory for sequences of events. *The Journal of Chemical Physics*, 157(9), 2022.