МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 5

3 дисципліни: "Дискретна математика"

Виконав студент групи КН 113 Карабін Я. В.

Викладач: Мельникова Н. І.

Тема роботи

Знаходження найкоротшого маршруту за алгоритмом Дейкстри. Плоскі планарні графи

Мета роботи: набуття практичних вмінь та навичок з використання алгоритму Дейкстри.

Короткі теоретичні відомості

Задача про найкоротший ланцюг. Алгоритм Дейкстри.

Дано п-вершинний граф G=(V,E), у якому виділено пару вершин $v_0,v^*\in V$, і кожне ребро зважене числом $w(e)\geq 0$. Нехай $X=\{x\}$ — множина усіх простих ланцюгів, що з'єднують v_0 з v^* , $x=(V_x,E_x)$. Цільова функція $F(x)=\sum_{e\in E_x}w(e)\to min$. Потрібно знайти найкоротший ланцюг, тобто $x_0\in X$: $F(x_0)=\min_{x\in X}F(x)$.

Перед описом **алгоритму Дейкстри** подамо визначення термінів "k-а найближча вершина" і "дерево найближчих вершин". Перше з цих понять визначається індуктивно так.

1-й крок індукції. Нехай зафіксовано вершину x_0 , E_1 — множина усіх ребер $e \in E$, інцидентних v_0 . Серед ребер $e \in E_1$ вибираємо ребро $e(1) = (v_0, v_1)$, що має мінімальну вагу, тобто $w(e(1)) = \min_{e \in E_1} w(e)$. Тоді v_1 називаємо першою найближчою вершиною (НВ), число w(e(1)) позначаємо $l(1) = l(v_1)$ і називаємо відстанню до цієї НВ. Позначимо $V1 = \{v0, v1\}$ — множину найближчих вершин.

2-й крок індукції. Позначимо E_2 — множину усіх ребер $e=(v',v''), e\in E$, таких що $v'\in V_1,\ v''\in (V\setminus V_1)$. Найближчим вершинам $v\in V_1$ приписано відстані l(v) до кореня v_0 , причому $l(v_0)=0$. Введемо позначення: $\overline{V_1}$ — множина таких вершин $v''\in (V\setminus V_1)$, що \exists ребра виду e=(v,v''), де $v\in V_1$. Для всіх ребер $e\in E_2$ знаходимо таке ребро $e_2=(v',v_2)$, що величина $l(v')+w(e_2)$ найменша. Тоді v_2 називається другою найближчою вершиною, а ребра $e_1,\ e_2$ утворюють зростаюче дерево для виділених найближчих вершин $D_2=\{e_1,e_2\}$.

(s+1)-й крок індукції. Нехай у результаті s кроків виділено множину найближчих вершин $V_S = \{v_0, v_1, ..., v_S\}$ і відповідне їй зростаюче дерево $D_S = \{e_1, e_2, \dots, e_S\}$ $e_2, ..., e_s$ }... Для кожної вершини $v \in Vs$ обчислена відстань l(v) від кореня v_0 до v; $\overline{V_s}$ – множина вершин $v \in (V \backslash Vs)$, для яких існують ребра вигляду $e = (v_r, v)$, де $v_r \in V_s$ Vs, $v \in (V \setminus Vs)$. На кроці s+1 для кожної вершини $v_r \in Vs$ обчислюємо відстань до вершини $v_r : L(s+1)(v_r) = l(v_r) + \min_{v^* \in \overline{V_c}} w(v_r, v^*)$, де min береться по всіх ребрах e = (v_r,v^*) , $v^* \in \overline{V_S}$, після чого знаходимо min серед величин $L(s+1)(v_r)$. Нехай цей min досягнуто для вершин v_{r0} і відповідної їй $v^* \in \overline{V_s}$, що назвемо v_{s+1} . Тоді вершину v_{s+1} називаємо (s+1) –ю HB, одержуємо множину $V_{s+1} = V_s$ Y v_{s+1} . і зростаюче дерево $D_{s+1} = D_s \ Y \ (v_{r0} \ , v_{s+1}). \ (s+1)$ –й крок завершується перевіркою: чи ϵ чергова НВ v_{s+1} відзначеною вершиною, що повинна бути за умовою задачі зв'язано найкоротшим ланцюгом з вершиною v_0 . Якщо так, то довжина шуканого ланцюга дорівнює $l(v_{s+1}) = l(v_{r0}) + w(v_{r0}, v_{s+1});$ шуканий при ЦЬОМУ ланцюг відновлюється з ребер зростаючого дерева D_{s+1} . У противному випадку випливає перехід до кроку s+2.

Плоскі і планарні графи

Плоским графом називається граф, вершини якого ϵ точками площини, а ребра — безперервними лініями без самоперетинань, що з'єднують відповідні вершини так, що ніякі два ребра не мають спільних точок крім інцидентної їм обом вершини. Граф називається *планарним*, якщо він ϵ ізоморфним плоскому графу.

Гранню *плоского* графа називається максимальна по включенню множина точок площини, кожна пара яких може бути з'єднана жордановою кривою, що не перетинає ребра графа. Границею грані будемо вважати множину вершин і ребер, що належать цій грані.

Алгоритм γ укладання графа G являє собою процес послідовного приєднання до деякого укладеного підграфа \tilde{G} графа G нового ланцюга, обидва кінці якого належать \tilde{G} . При цьому в якості початкового плоского графа \tilde{G} вибирається будь-який простий

цикл графа G. Процес продовжується доти, поки не буде побудовано плоский граф, ізоморфний графові G, або приєднання деякого ланцюга виявиться неможливим. В останньому випадку граф G не ε планарним.

Нехай побудоване деяке укладання підграфа \tilde{G} графа G.

Сегментом S відносно \tilde{G} будемо називати підграф графа G одного з наступних виглядів:

- ребро $e \in E$, e = (u, v), таке, що $e \notin \tilde{E}$, $u, v \in \tilde{V}$, $\tilde{G} = (\tilde{V}, \tilde{E})$;
- зв'язний компонент графа $G \tilde{G}$, доповнений всіма ребрами графа G, інцидентними вершинам узятого компонента, і кінцями цих ребер.

Вершину v сегмента S відносно G будемо називати κ онтактною, якщо $v \in \tilde{V}$.

Припустимою гранню для сегмента S відносно \tilde{G} називається грань Γ графа \tilde{G} , що містить усі контактні вершини сегмента S. Через $\Gamma(S)$ будемо позначати множину припустимих граней для S.

Назвемо α — ланцюгом простий ланцюг L сегмента S, що містить дві різні контактні вершини і не містить інших контактних вершин.

ІНДИВІДУАЛЬНІ ЗАВДАННЯ. ДОДАТОК 1 Варіант №12

1. За допомогою алгоритму Дейксти знайти найкоротший шлях у графі поміж парою вершин V_0 і V^* .

2. За допомогою *γ*- алгоритму зробити укладку графа у площині, або довести, що вона неможлива.

Розв'язки

Рис. 1. Кістякове дерево для знаходження найкоротшого шляху від джерела, до кожної вершини графа

Далі наведена таблиця відстаней від джерела до решти вершин:

V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9	V_{10}	V_{11}	V_{12}	V_{13}	V_{14}
1	4	12	19	19	4	3	4	6	14	18	7	6	11

V ₁₅	V ₁₆	V ₁₇	V ₁₈	V ₁₉	V_{20}	V ₂₁	V ₂₂	V ₂₃	V ₂₄	V ₂₅	V ₂₆	V ₂₇	V ₂₈
11	15	17	11	8	9	14	17	22	13	9	11	14	21

Найкоротша відстань від джерела до останньої вершини: $l(V_{29}) = l(V^*) = 22$.

2. Вибираємо найдовший цикл, і поступово приєднуємо утворені ланцюги.

Крок 1: Приєднання першого ланцюга

Рис. 2. Успішна укладка графа у площині

Додаток 2

Написати програму, яка реалізує алгоритм Дейкстри знаходження найкоротшого шляху між парою вершин у графі. Протестувати розроблену програму на графі згідно свого варіанту.

Представимо даний граф у текстовому файлі "Graph", вказавши кількість вершин, номери з'єднаних ребер та їх ваги відповідно.

30	(7,8) 1
(0,1) 6	(8,9) 1
(1,2) 1	(9,10) 2
(2,3) 1	(10,11) 7
(3,4) 3	(12,13) 7
(4,5) 3	(13,14) 1
(6,7) 8	(14,15) 2

```
(15,16) 3
                                            (6,12) 5
(16,17)7
                                            (7,13) 1
(18,19)7
                                            (8,14) 7
(19,20) 3
                                            (9,15)4
(20,21) 8
                                            (10,16) 1
(21,22) 1
                                            (11,17) 3
(22,23)5
                                            (12,18)5
(24,25)4
                                            (13,19) 1
(25,26)7
                                            (14,20) 7
(26,27) 3
                                            (15,21) 4
(27,28) 3
                                            (16,22) 2
(28,29)6
                                            (17,23) 8
(0,6)4
                                            (18,24) 8
(1,7) 2
                                            (19,25) 2
(2,8) 3
                                            (20,26) 1
(3,9)4
                                            (21,27) 3
(4,10) 5
                                            (22,28) 3
(5,11) 4
                                            (23,29)7
```

Програмна реалізація:

```
#include <bits/stdc++.h>
using namespace std;
ifstream fin("Graph.txt");
int V;
int minDistance(int dist[], bool sptSet[])
      // Ініціалізація мінімального значення
      int min = INT MAX, min index;
      for (int v = 0; v < V; v++)
             if (sptSet[v] == false && dist[v] <= min)</pre>
                    min = dist[v], min_index = v;
      return min_index;
}
// Виведення масиву найкоротших відстаней від джерела до решти вершин
int printSolution(int dist[])
      printf("Vertex \t\t Distance from Source\n");
      for (int i = 0; i < V; i++)</pre>
             printf("%d \t\t %d\n", i, dist[i]);
}
```

```
// Функція, що реалізує алгоритм найкоротшого шляху від джерела до вершини
// за допомогою алгоритму Дейкстри з матриці суміжності
void Dejkstra(int** Matrix_cost, int sorce)
       int dist[V];
       bool sptSet[V];
       for (int i = 0; i < V; i++)</pre>
              dist[i] = INT_MAX, sptSet[i] = false;
       dist[sorce] = 0;
       // Знайти найкоротший шлях до кожної вершини
       for (int count = 0; count < V - 1; count++) {</pre>
              int u;
              u = minDistance(dist, sptSet);
              sptSet[u] = true;
              for (int v = 0; v < V; v++)
                    if (!sptSet[v] && Matrix cost[u][v] && dist[u] != INT MAX
                           && dist[u] + Matrix_cost[u][v] < dist[v]) {
                           dist[v] = dist[u] + Matrix_cost[u][v];
                    }
       printSolution(dist);
}
int main()
       char c;
       int Vertexs_number, vertex1, vertex2, cost;
       if (!fin.is open()) {
              cout << "File is not found!";</pre>
              exit(EXIT SUCCESS);
       fin >> Vertexs_number;
       V = Vertexs number;
       int** Matrix_cost = new int* [V];
       for (int i = 0; i < V; i++)
              *(Matrix_cost + i) = new int[V];
       for (int i = 0; i < Vertexs_number; i++) {</pre>
              for (int j = 0; j < Vertexs_number; j++) {</pre>
                    Matrix_cost[i][j] = 0;
              }
       }
       while (!fin.eof()) {
             fin >> c >> vertex1 >> c >> vertex2 >> c >> cost;
              vertex1; vertex2;
              if (vertex1 > vertex2) swap(vertex1, vertex2);
              for (int i = 0; i < Vertexs_number; i++) {</pre>
                    for (int j = i + 1; j < Vertexs_number; j++) {</pre>
                           if (i == vertex1 && j == vertex2) {
                                  Matrix_cost[i][j] = cost;
                                  Matrix cost[j][i] = cost;
                                  break;
                           }
                    }
```

```
}
}
Dejkstra(Matrix_cost, 0);

for (int i = 0; i < V; i++) {
         delete Matrix_cost[i];
}
delete Matrix_cost;
}</pre>
```

Результат виконання програми

```
"C:\Users\Admin\Desktop\New folder\-шёъЁхЄър\diskretlab5\bin\Debug\diskretlab5.exe"
Vertex
                    Distance from Source
0
1
                    6
2
                    7
3
                    8
4
                    11
5
                    14
6
                    4
7
                    8
8
                    9
9
                    10
10
                    12
11
                    18
12
                    9
13
                    9
14
                    10
15
                    12
16
                    13
17
                    20
18
                    14
19
                    10
20
                    13
21
                    16
22
                    15
23
                    20
24
                    16
25
                    12
26
                    14
27
                    17
28
                    18
29
                    24
```

Process returned 0 (0x0) $\,$ execution time : 0.069 s Press any key to continue.

Програма виводить на екран номери вершин і відстань від джерела до кожної з них відповідно.

Висновки

Ми набули практичних вмінь та навичок з використання алгоритму Дейкстри. Також ми навчилися робити гамма-укладку графа та виявляти чи граф всетаки планарний, тобто чи можна його зобразити на площині без перетину ребер.