HW2

• This is a preview of the published version of the quiz

Started: Jul 25 at 10:02am

Quiz Instructions

Question 1 0 pts

Honor Pledge: Please type your name as a signature in the form.

I avow that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Write down the truth table for these sentences:

1.
$$(B \Rightarrow \neg A) \Rightarrow (B \land A)$$

2.
$$(B \land \neg A) \land (\neg A \Rightarrow B) \land \neg (B \lor A)$$

Question 3 2 pts

KB includes these rules:

- $(B \land D) \Rightarrow A$
- $(C \land E) \Rightarrow D$
- C ∧ ¬F

• E v F • B
The query is A. Use Resolution Algorithm to infer this query from KB. You need to show the main two steps:
 converting to CNF form; applying the resolution inference rule.

 Provide proofs for the following statements The full resolution inference rule (on Slide 37) holds for any k, n≥1. During the lecture, we show the proof for the unit resolution inference rule. You can use a similar approach. Horn clauses are closed under resolution: if you resolve two Horn clauses, you get back a Horn clause. 	Question 4	1 pts
 The full resolution inference rule (on Slide 37) holds for any k, n≥1. During the lecture, we show the proof for the unit resolution inference rule. You can use a similar approach. 		
unit resolution inference rule. You can use a similar approach.	Provide proofs for the following statements	
2. Horn clauses are closed under resolution: if you resolve two Horn clauses, you get back a Horn clause.		r the
	2. Horn clauses are closed under resolution: if you resolve two Horn clauses, you get back a Horn clause.	

Question 5 2 pts

KB includes these rules:

- $(F \land D) \Rightarrow B$
- $(M \land G) \Rightarrow A$
- $A \Rightarrow B$
- $H \Rightarrow G$
- $E \Rightarrow B$
- $M \Rightarrow F$
- $C \Rightarrow H$
- $A \Rightarrow D$
- C
- M

The query is B. Use Forward Chaining with Table to infer this query from KB.

Question 6	1 pts
Consider the following Bayesian network, where $F = having the u$ (f or $\neg f$) and $C = coughing (c or \neg c).$	

We assume that P(f) = 0.8 and P(c|f) = 0.7 and $P(c|\neg f) = 0.2$. Use Bayesian exact inference to obtain the following

 $F \longrightarrow C$

Question 7	1 pts
1. P(¬f c) 2. P(¬f ¬c)	
conditional probabilities:	
PC 1 1 - PC	

Allergy could be another cause of coughing as shown in the following network, where A = having the allergy (a or $\neg a$).

So we assume P(f) = 0.8, P(a) = 0.3, P(c|f,a) = 0.75, $P(c|\neg f,a) = 0.8$, $P(c|f,\neg a) = 0.95$, and $P(c|\neg f,\neg a) = 0.1$. Use Bayesian exact inference to obtain the following conditional probabilities:

- 1. P(a|¬c)
- 2. P(a|c,¬f)

Question 8 1 pts

Consider the same assumption in previous question. In addition, we consider a possible vomiting out of coughing as shown in the following network, where $V = \text{vomiting } (v \text{ or } \neg v)$.

F A

C

↓ V

We assume that P(v|c) = 0.1 and $P(v|\neg c) = 0.2$. Use Bayesian exact inference to obtain the value of $P(f|\neg v)$.

Consider the Bayesian network depicted in previous question. Are the following statements true? Justify your answers.

- 1. $F \perp A \mid V$
- 2. $F \perp V \mid A$

Question 10 1 pts

Consider the HMM depicted in the following network.

$$S_1 \longrightarrow S_2 \longrightarrow S_3 \longrightarrow S_4$$

$$\downarrow$$
 \downarrow \downarrow

$$Z_1 \qquad Z_2 \qquad Z_3 \qquad Z_4$$

Are the following statements true? Justify your conclusions.

- 1. $Z_1 \perp Z_3 \mid S_1$
- $2.\ Z_2 \perp S_4 \mid S_1$
- $3.\ S_1 \perp S_4 \mid S_2$
- 4. $Z_1 \perp S_4 \mid S_2$

Question 11	1 pts
Consider the HMM depicted in previous question. How many probability parameters overal the joint probability of all random variables with and without considering the Bayesian networks cases, respectively?	
All variables are binary All variables are ternary	

Question 12 2 pts

Consider the HMM depicted in previous question. Suppose that we have binary states (labeled s and ¬s) and binary observations (labeled o and ¬o) and the probabilities as in the following tables.

S ₁	Р	P(S		
s	0.	7	'5	
٦S	0.	2	25	
Si	S _{i+}	1	P($S_{i+1} S_i$
s	s		0.9)
s	٦S		0.1	
¬s	s		0.2	2
¬s	ŗ		0.8	3
Si	Zi	F	P(Zi	S _i)
s	0	O).7	
s	P	C).3	
¬s	0	C).4	
¬s	P	C	0.6	

We observe the following sequence: Z_1 =0 and Z_2 = \neg 0. Use the forward algorithm to obtain the following probabilities given that $P(S_1=\neg s|Z_1=0)=0.16$:

- 1. $P(S_2 = \neg s | Z_1 = 0)$
- 2. $P(S_2=\neg s|Z_1=0, Z_2=\neg 0)$

Question 13 1 pts

Download particle filtering demo code in Python from this link: https://github.com/mjl/particle_filter_demo

We use Gaussian distribution $N(\mu, \sigma^2)$ to track the location of an object in 1-dimensional space. We assume the prior position follows N(2,5). Then we have the following four sequential actions:

If you prefer to submit all your image solutions as one file, you can submit it here. Please use word or pdf file format.

Upload	Choose a File		

Not saved

Submit Quiz