Matej Novoselec

FMF Fakulteta za matematiko in fiziko

4. september 2023

Holomorfne funkcije

Izrek (Cauchyjeva formula)

Naj bo D območje, ki zadošča pogojem za Greenovo formulo. Naj bo $f\in \mathcal{O}(D)\cap \mathcal{C}^1(\overline{D})$. Potem za $z\in D$ velja

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} \ d\xi.$$

Holomorfne funkcije

Izrek (Cauchyjeva formula)

Naj bo D območje, ki zadošča pogojem za Greenovo formulo. Naj bo $f\in \mathcal{O}(D)\cap \mathcal{C}^1(\overline{D})$. Potem za $z\in D$ velja

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} \ d\xi.$$

Izrek (Princip maksima za holomorfne funkcije)

Naj bo f kompleksna holomorfna funkcija, definirana na območju D. Naj obstaja $M \in \mathbb{R}$, da za vsak $z \in D$ velja $|f(z)| \leq M$. Če obstaja $z_0 \in D$, da velja $|f(z_0)| = M$, potem je f na D konstantna.

Lastnost povprečne vrednosti

Definicija (Lastnost povprečne vrednosti)

Naj bo h kompleksna zvezna funkcija, definirana na območju D. Pravimo, da ima funkcija h na D lastnost povprečne vrednosti, če za vsak $z_0 \in D$ obstaja $\epsilon_0 > 0$, da je $\overline{\mathbb{D}}(z_0, \epsilon_0) \subseteq D$ in za vsak $0 < \epsilon \le \epsilon_0$ velja

$$h(z_0) = rac{1}{2\pi} \int_0^{2\pi} h(z_0 + \epsilon e^{i\theta}) d\theta.$$

Lastnost povprečne vrednosti

Definicija (Lastnost povprečne vrednosti)

Naj bo h kompleksna zvezna funkcija, definirana na območju D. Pravimo, da ima funkcija h na D **lastnost povprečne vrednosti**, če za vsak $z_0 \in D$ obstaja $\epsilon_0 > 0$, da je $\overline{\mathbb{D}}(z_0, \epsilon_0) \subseteq D$ in za vsak $0 < \epsilon \le \epsilon_0$ velja

$$h(z_0) = rac{1}{2\pi} \int_0^{2\pi} h(z_0 + \epsilon e^{i\theta}) d\theta.$$

Izrek (Princip maksima za funkcije z lastnostjo povprečne vrednosti)

Naj bo h zvezna kompleksna funkcija, definirana na območju D. Naj ima h na D lastnost povprečne vrednosti in naj obstaja $M \in \mathbb{R}$, da velja $|h(z)| \leq M$ za vsak $z \in D$. Če obstaja $z_0 \in D$, da je $|h(z_0)| = M$, potem je funkcija h na D konstantna.

Dirichletov problem za enotski disk

Dirichletov problem za enotski disk

Naj bo h kompleksna zvezna funkcija, definirana na $\partial \mathbb{D}$. Ali obstaja razširitev H, ki je zvezna na $\overline{\mathbb{D}}$ in harmonična na \mathbb{D} ?

Reševanje Dirichletovega problema za enotski disk

Definicija

Poissonovo jedro je funkcija, definirana s predpisom

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$
, kjer je $\theta \in [-\pi, \pi]$ in $0 \le r < 1$.

Reševanje Dirichletovega problema za enotski disk

Definicija

Poissonovo jedro je funkcija, definirana s predpisom

$$P_r(\theta) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\theta}$$
, kjer je $\theta \in [-\pi, \pi]$ in $0 \le r < 1$.

Definicija

Naj bo h zvezna funkcija, definirana na robu enotskega diska. **Poissonov integral** funkcije h, ki ga označimo s \widetilde{h} , je funkcija, definirana na notranjosti enotskega diska s predpisom

$$\widetilde{h}(z) = \int_0^{2\pi} h(e^{i\varphi}) P_r(\theta - \varphi) \; \frac{d\varphi}{2\pi} \; , \; \; z = r e^{i\theta} \in \mathbb{D}.$$

Rešitev Dirichletovega problema za enotski disk

Izrek

Naj bo h zvezna kompleksna funkcija, definirana na $\partial \mathbb{D}$. Rešitev Dirichletovega problema, z robnim pogojem h, za enotski disk obstaja in je na \mathbb{D} definirana kot Poissonov integral funkcije h.

Karakterizacija harmoničnih funkcij

Izrek (Karakterizacija harmoničnih funkcij)

Naj bo h zvezna funkcija, definirana na območju $D\subseteq \mathbb{C}$. Velja, da je h harmonična funkcija natanko tedaj, ko ima na D lastnost povprečne vrednosti.

Karakterizacija harmoničnih funkcij

Izrek (Karakterizacija harmoničnih funkcij)

Naj bo h zvezna funkcija, definirana na območju $D\subseteq\mathbb{C}$. Velja, da je h harmonična funkcija natanko tedaj, ko ima na D lastnost povprečne vrednosti.

Izrek Morera

Naj bo D območje in f kompleksna zvezna funkcija, definirana na D. Denimo, da za vsak zaprt trikotnik $T\subseteq D$ velja

$$\int_{\partial T} f(\xi) \ d\xi = 0.$$

Tedaj je f holomorfna na D.

Izrek (Schwarzov princip zrcaljenja za harmonične funckije)

Naj bo $D\subseteq\mathbb{C}$ območje, simetrično glede na realno os. Označimo $D^+=\{z\in D\mid \mathrm{Im}[z]>0\},\ D^-=\{z\in D\mid \mathrm{Im}[z]<0\}$ in $D^0=\{z\in D\mid \mathrm{Im}[z]=0\}.$ Naj bo u realna zvezna funkcija, definirana na $D^+\cup D^0.$ Naj bo u na D^+ harmonična in naj za vsak $z\in D^0$ velja u(z)=0. Potem obstaja harmonična razširitev funkcije u na D, ki je eksplicitno podana prek zveze $u(\bar{z})=-u(z),\ z\in D.$

Izrek (Schwarzov princip zrcaljenja za harmonične funckije)

Naj bo $D\subseteq\mathbb{C}$ območje, simetrično glede na realno os. Označimo $D^+=\{z\in D\mid \mathrm{Im}[z]>0\},\ D^-=\{z\in D\mid \mathrm{Im}[z]<0\}$ in $D^0=\{z\in D\mid \mathrm{Im}[z]=0\}.$ Naj bo f zvezna funkcija, definirana na $D^+\cup D^0.$ Naj bo f na D^+ holomorfna in naj f na D^0 zavzame realne vrednosti. Potem je funkcija F, definirana s predpisom

$$F(z) = \begin{cases} f(z) , & z \in D^+ \cup D^0 \\ \overline{f(\overline{z})} , & z \in D^- \cup D^0 \end{cases},$$

na območju D holomorfna.