Assignment 1
Prove the Kelmon feltering vicursion for the following state space model with initial prior on the state
f(z)= N(zi, ma, 7.) where ex~N(0, Rx) on m ~N(0, Rx)
$Z_4 = A_{t-1} Z_{t-1} + e_t$ (1)
$\chi_{\xi} = C_{+} \chi_{\xi} + \nu_{\xi} \qquad (2)$
· North autory, show the priver f(Ze/Xe) = N(Zi; melt, Pele), the pedicied deristy f(Zet / X1:t) is given by:
+ (Z++1/X1:e)= N(Z++1; At MEH, At PHE AT + Oth)
· Also, show that given f(Zt/X1: t-1)=N(Zi, mt/t-1) Pelt-1), the observation updated decisity f(Zt (X1:t)) is
given by: f(z+/x+:+)=N(z+; m+1+, P++) where Smelt= m+1+-1+K+ (x+-G+m+/+-1)
PHILE (Z-K+C+)PHI-1
Relie (Z-KeC+)Pett-1 Ne = Pett-1Ct (CePete+1Ct the) -1
· The joint posterior of (Ze, Zeta /XI:e) can be given by:
f(Zt, Zt+1/Xit) = N(Zt; male, Pele) · N(Z++1, At Zt, O++1).
f(Zt, Zt+1 /Xit) = N(Zi; mtit, Pett) · N(Zt+1, At Zt, Ot+1). given from (1) => Zt+1 = At Zt + Ct+1, Ct+1 = N(0, Qt+1). [Zt] [Mtit] [Pett Pett At Zt+Ot+1] =N [Zt+1] [At melt], [At Pett At Pett At + Ot+1]
=N Z++1] LAt melt], LAt Pole A+Pol+ A+ + D+++1]
Then we marginalize It out [property f(y)=N(y); ho, Ize), where y= It+1/x1:t] so me have
+ (Zees / Xee) = N / Zee: 4, my +. Zee 1 = 0 (4)
using and stime given when the many and stime given ideconferce of xr given ideconferce of xr given
• $f(z_t x_{t:t-1}) = \frac{f(z_t x_{t:t-1})}{f(x_t x_{t:t-1})} = \frac{f(z_t x_{t:t-1})}{f(x_t x_{t:t-1})} = \frac{f(z_t x_{t:t-1})}{f(x_t x_{t:t-1})} = \frac{f(z_t x_{t:t-1})}{f(x_t x_{t:t-1})}$
+(x+1x1:t-1) + (x+1x1:t-1) + (x+/x1:t-1) (constant
norking) in the numerator: \[(2+7 \ m_{t/t-1} \ 7 \ \ P_{t/t-1} \ C_T \ 7 \)
N(Zt; melt-1, Telt-1) N(xt; Ct molt-2, Rt) = N (Lxt]; L Ct melt-1], LCt76 1-1 Ct76 1-1 Ct76 1-1
In In Inc.

from property f(y,/yz)= N(y); b+ I,2 I22 (ye-hc), In-I,2 I2 I21).
Start with $w \Rightarrow m_{1} _{t-1} + \int P_{t} _{t-1} C_{t}^{T} (C_{t})^{2} (_{t-1} C_{t}^{T} + _{t-1})^{2} (_{t-1} C_{t}^{T} + _{t-1})^{2}$
M+
- m1/4-1 + K+ (x+-C+m+1+-1) and setting 1+ appeal to mt/t
nov for f=> Pt +1 - [Pt +K+(C+Pt++C++Pt)]. C+ Pt++1 =
N4
P+1+-1 - K+ C. P+1+-1 = P+1+-1 (I-1/4-G) on supply 1+ to P+1+.
finally + (Z+/X++) = N(Z+ : m+1+, 7+1+).