TAYLOR'S THEOREM IN NORMED VECTOR SPACES

KB-MATH

Contents

1.	Basic setup	1
2.	Higher order derivatives	2
3.	Basic properties: Chain rule and produt rule	5
4.	The commutativity of higher order derivatives	9
5.	Taylor's Theorem	10
6.	Recovering the co-ordinate based Taylor theorem	11
7.	Sufficient conditions for differentiability	12
8.	Application: Laplacian and Wave Operator	13
8.1.	Motivation	13
8.2.	Trace of a bilinear form	14

1. Basic setup

Let U, V be normed vector spaces and suppose that $X \subset U$ is open. Let $\mathcal{L}(U, V)$ denote the normed vector space of bounded linear maps.

Definition 1.1. We say that $f: X \to V$ is differentiably at $x_0 \in X$ if there exists a bounded linear map $D: U \to V$ and $\epsilon: [0, \infty) \to [0, \infty)$ with $\lim_{r \to 0} \epsilon(r) = 0$ such that

$$||f(x_0 + u) - f(x_0) - Du|| \le \epsilon(||u||)||u||$$

for all u in some open neighbhourhood of 0.

Lemma 1.2. Such a *D* must satisfy

$$Du = \lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t||u||}$$

for each fixed non-zero $u \in U$ and is hence unique.

Proof. For each fixed $u \in U \setminus \{0\}$ and sufficiently small t we have that

$$||f(x_0 + tu) - f(x_0) - D(tu)|| = \epsilon(t||u||)||tu||.$$

Now divide both sides by |t| and use the linearity of D to get the estimate

$$\|\frac{f(x_0 + tu) - f(x_0)}{t} - Du\| \le \epsilon(t\|u\|)\|u\|.$$

The result now follows by letting $t \to 0$.

Given the uniqueness, we can now define $D = Df(x_0) \in \mathcal{L}(U, V)$ to be the derivative of f at x_0 .

Lemma 1.3. If $f: X \to V$ is differentiable at x_0 then it is continuous at x_0 .

Proof. By triangle inequality we have that

$$||f(x_0+u)-f(x_0)|| \le ||f(x_0+u)-f(x_0)-Df(x_0)u|| + ||Df(x_0)u||$$

but both terms on the right hand side converge to zero as $u \to 0$ by the differentiability of f and the boundedness of $Df(x_0)$, respectively.

2. Higher order derivatives

How do we define higher order derivatives in this setting? If $f: X \to V$ is differentiable on X then $Df: X \to \mathcal{L}(U, V)$. Now $\mathcal{L}(U, V)$ is itself a normed vector space (equipped with operator norm) hence the derivative of Df (assuming it exists) is a map

$$D^2 f: X \to \mathcal{L}(U, \mathcal{L}(U, V)).$$

This means that given $u_1, u_2 \in U$ we have that

$$D(Df)(x_0) \in \mathcal{L}(U, \mathcal{L}(U, V))$$

and hence

$$(D(Df)(x_0))u_1 \in \mathcal{L}(U,V)$$

and hence

$$((D(Df)(x_0))u_1)u_2 \in V.$$

We abbreviate this element in V by

$$(D^2f)(x_0)(u_1,u_2)$$

and hence we get a multilinear map

$$(D^2 f)(x_0): U \times U \to V$$

called the second derivative of f.

Let us be more formal for higher derivatives. Let $\mathcal{L}_U(V) = \mathcal{L}(U, V)$ and define recurisively, $\mathcal{L}_U^1(V) = \mathcal{L}(U, V)$ and $\mathcal{L}_U^n(V) = \mathcal{L}(U, \mathcal{L}_U^{n-1}(V))$.

Thus if $\phi \in \mathcal{L}_U^2(V)$ then $\phi(u_1) \in \mathcal{L}(U, V)$ and thus $(\phi(u_1))(u_2) \in V$. We rewrite this as $\phi(u_1)(u_2)$ to avoid lots of parentheses. So for example, if $\phi \in \mathcal{L}_U^n(V)$ then $\phi(u_1)(u_2) \dots (u_n) \in V$, where this expression is processed from left to right (i.e., $\phi(u_1) \cdots (u_k)$ is an element of $\mathcal{L}_U^{n-k}(V)$ and it takes u_{k+1} as an argument).

Observe that $\mathcal{L}_{II}^n(V)$ is naturally a normed-vector space with norm being an operator norm.

Definition 2.1. We define $f: X \to V$ to be n-differentiable at $x_0 \in X$ and we define the n-th derivative (if it exists) $(D^n f)(x_0) \in \mathcal{L}_U^n(V)$ by the following recursive definition:

• If n=1, then $D^1f(x_0)=Df(x_0)$ and 1-differentiable at x_0 means differentiable at x_0 .

• If n > 1, then we say that f is n-differentiable at x_0 if there is an open neighbourhoud $X' \subset X$ containing x_0 such that f is n-1-differentiable for all $x \in X'$ and the map $X' \to \mathcal{L}_U^{n-1}(V)$ given by $x \mapsto D^{n-1}(f)(x)$ is differentiable at x_0 . In this case, we define the n-th derivative

$$(D^n f)(x_0) = D(D^{n-1} f)(x_0) \in \mathcal{L}_U^n(V).$$

We now show that $D^n f(x_0)$ can be naturally realized as a multilinear map $U \times \cdots \times U \to V$, if it exists, and it can be evaluated through iterated directional derivatives. To make this precise it is worth formalizing some notions regarding the continuity of multilinear maps.

Definition 2.2. Given normed vector spaces U_1, \ldots, U_n and V, let $\mathcal{T}(U_1, \ldots, U_n \to V)$ denote the vector space of bounded multilinear maps $T: U_1 \times \cdots \times U_n \to V$, where bounded means that

$$||T|| := \sup\{T(u_1, \dots, u_m) \mid u_i \in U_i \text{ with } ||u_i|| = 1\} < \infty.$$

Moreover, $\|\cdot\|$ is a norm on the space of bounded multilinear maps.

Proposition 2.3. There is a canonical isometric isomorphism

$$\mathcal{L}(U_1, \mathcal{T}(U_2, \dots, U_n \to V)) \cong \mathcal{T}(U_1, \dots U_n \to V)$$

given by

$$\phi \mapsto ((u_1, \dots, u_n) \mapsto \phi(u_1)(u_2, \dots, u_n)).$$

Proof. That is bijective and linear is clear. Let us show that it is an isometry. Let $\phi: U_1 \to T \in \mathcal{T}(U_2,\ldots,U_n \to V)$ be a bounded linear map. Thus for all unit vectors $u_1 \in U_1,\ldots,u_n \in U_n$ we have that

$$\|\phi(u_1)(u_2,\ldots,u_n)\| \le \|\phi(u_1)\| \le \|\phi\|,$$

where the first inequality uses the definition of the norm of a multilinear map while the second uses the definition of a the norm of a linear map. This $(u_1, \ldots, u_2) \mapsto \phi(u_1)(u_2, \ldots, u_n)$ is indeed a bounded multilinear map of norm at most $\|\phi\|$. To show the norm of this multilinear map is equal to $\|\phi\|$, take unit vector $u_1 \in U_1$ such that $\|\phi(u_1)\| \geq (1 - \epsilon)\|\phi\|$ and now take unit vectors u_2, \ldots, u_n such that $\|\phi(u_1)(u_2, \ldots, u_n)\| \geq (1 - \epsilon)\|\phi(u_1)\|$. Thus $\|\phi(u_1)(u_2, \ldots, u_n)\| \geq (1 - \epsilon)^2\|\phi\|$.

In other words, the norm ||T|| is equal to the operator norm on $\mathcal{L}(U_1, \mathcal{T}(U_2, \dots, U_n \to V))$. Letting

$$\mathcal{T}_n(U,V) = \mathcal{T}(U_1 \times \cdots \times U_n \to V),$$

we can apply this recursively to get.

Corollary 2.4. We have an isometric isomorphism

$$\mathcal{T}_n(U,V) \cong \mathcal{L}_U^n(V).$$

In this isomorphism, the element $\phi \in \mathcal{L}_{U}^{n}(V)$ corresponds to $T \in \mathcal{T}_{n}(U,V)$ given by

$$T(u_1,\ldots,u_n)=\phi(u_1)(u_2)\cdots(u_n)$$

and the operator norm $\|\phi\|$ is equal to the norm $\|T\|$ on the space of bounded multilinear maps.

Proof. We prove this by induction on n. For n=1 this map is the identity map and $\mathcal{T}_1(U,V) = \mathcal{L}(U,V) = \mathcal{L}_U^1(V)$ and so this mapping $T \mapsto \phi$ is indeed an isomorphism as it is the identity map. Now we let $\iota_k : \mathcal{L}_U^k(V) \to \mathcal{T}_k(U,V)$ by given by

$$\iota_k(\phi)(u_1,\ldots u_n) = \phi(u_1)(u_2)\cdots(u_k).$$

By induction hypothesis, ι_{n-1} is an isometric isomorphism, where n > 1. Thus we have an isometric isomorphism $\mathcal{L}(U, \mathcal{L}_U^{n-1}(V)) \to \mathcal{L}(U, \mathcal{T}_{n-1}(U, V))$ which maps ϕ to $\iota_{n-1} \circ \phi$. But by the proposition above, we have an isometric isomorphism $\mathcal{L}(U, \mathcal{T}_{n-1}(U, V)) \to \mathcal{T}_n(U, V)$ which maps φ to the multilinear map

$$(u_1,\ldots,u_n)\mapsto \varphi(u_1)(u_1,\ldots,u_n).$$

Composing these two isometric isomorphisms, we have an isometric isomorphism mapping $\phi \in \mathcal{L}(U, \mathcal{L}_U^{n-1}(V))$ to the element $T \in \mathcal{T}_n(U, V)$ given by

$$T(u_1, ..., u_n) = ((\iota_{n-1} \circ \phi)(u_1))(u_2, ..., u_n)$$

$$= \iota_{n-1}(\phi(u_1))(u_2, ..., u_n)$$

$$= \phi(u_1)(u_2) ... (u_n)$$

$$= (\iota_n(\phi))(u_1, ..., u_n).$$

Thus we have shown that the mapping $\phi \mapsto \iota_n(\phi)$ is an isomorphism

$$\mathcal{L}(U, \mathcal{L}_U^{n-1}(V)) \to \mathcal{L}(U, \mathcal{T}_{n-1}(U, V)).$$

But by definition, $\mathcal{L}(U, \mathcal{L}_U^{n-1}(V)) = \mathcal{L}_U^n(V)$.

From now on, we identify $\mathcal{L}_U^n(V)$ with the space of bounded multilinear maps as in the Corollary above. Hence the nth derivative $D^n f(x_0)$ may be recursively defined as bounded multilinear map as follows:

The first derivative is $D^1 f = Df$ (which makes sense since $\mathcal{T}(U \to V) = \mathcal{L}(U, V)$) and

$$D^{(n+1)}f(x_0)(u_1,\ldots,u_{n+1}) = [(D(D^n f))(x_0)u_1](u_2,\ldots,u_{n+1})$$

if it exists (and if, of course, $D^n f$ exists on X).

The next proposition shows that the n-the derivative is a multilinear form that gives iterated direction derivatives. We let

$$(\partial_u f)(x_0) = \lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t||u||}$$

assuming that this limit exists.

Proposition 2.5. Suppose that $f: X \to V$ is *n*-times differentiable to x_0 . Then

$$D_n f(x_0)(u_1, \dots, u_n) = (\partial_{u_1} \cdots \partial_{u_n} f)(x_0).$$

More precisely, for k < n the iterated limits $(\partial_{u_1} \cdots \partial_{u_k} f)(x)$ exists for all x in some open subset of X, while for k = n it exists for $x = x_0$ and equals the expression given.

Proof. We prove this by induction on n, the n = 1 case was proven in Lemma 1.2. Now using the induction hypothesis we get

$$D^{n} f(x_{0})(u_{1}, \dots, u_{n}) = \left(D(D^{n-1} f)\right)(x_{0})(u_{1})(u_{2}, \dots u_{n})$$

$$= \left(\lim_{t \to 0} \frac{1}{t} \left(D^{n-1} f(x_{0} + tu) - D^{n-1} f(x_{0})\right)\right)(u_{2}, \dots, u_{n})$$

$$= \lim_{t \to 0} \frac{1}{t} \left(D^{n-1} f(x_{0} + tu_{1})(u_{2}, \dots, u_{n}) - D^{n-1} f(x_{0})(u_{2}, \dots u_{n})\right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left((\partial_{u_{2}} \cdots \partial_{u_{n}} f)(x_{0} + tu_{1}) - (\partial_{u_{2}} \cdots \partial_{u_{n}} f)(x_{0})\right)$$

$$= (\partial_{1}(\partial_{u_{2}} \cdots \partial_{u_{n}} f))(x_{0})$$

where we were allowed to put (u_2, \ldots, u_n) inside the limit since the convergence takes place with respect to the operator norm (on the space of bounded n-1-multilinear forms), hence pointwise.

Corollary 2.6. If $f: \mathbb{R}^d \to V$ is twice differentiable then

$$D^2 f(x_0)(e_i, e_j) = \partial_i \partial_j f(x_0)$$

where ∂_i is partial differentiation with respect to *i*-th co-ordinate.

3. Basic properties: Chain rule and produt rule

Lemma 3.1. (Chain Rule) Suppose that U, V, W are normed vector spaces with $X \subset U$ and $Y \subset V$ open sets. Suppose $f: X \to Y$ is differentiable at $x_0 \in X$ and $g: Y \to W$ is differentiable at $y_0 = f(x_0) \in Y$. Then $g \circ f: X \to W$ is differentiable at x_0 and

$$D(g \circ f)(x_0) = D(g)(y_0) \circ D(f)(x_0).$$

Proof. We have

$$(g \circ f)(x_0 + u) = g(f(x_0 + u)) = g(f(x_0) + Df(x_0)u + R_1(u))$$

for small enough u, where $||R_1(u)|| \le \epsilon_1(||u||)||u||$ for some $\epsilon_1 : [0, \infty) \to [0, \infty)$ such that $\lim_{r \to \infty} \epsilon(r) = 0$.

Observe that for sufficiently small u we have that $Df(x_0)u$ is sufficiently small (as $Df(x_0)$ is bounded and so $||Df(x_0)u|| \le ||Df(x_0)|| ||u||$). Thus using the differentiability of g at $y_0 = f(x_0)$, we have

$$(g \circ f)(x_0 + u) = g(f(x_0)) + Dg(y_0)(Df(x_0)u + R_1(u)) + R_2(Df(x_0)u + R_1(u)).$$

= $g(f(x_0)) + Dg(y_0)Df(x_0)u + Dg(y_0)R_1(u) + R_2(Df(x_0)u + R_1(u)).$

It thus remains to bound the remainder terms divided by ||u|| converge to 0. By definition $||R_2(v)|| \le \epsilon_2(||v||)||v||$ for ϵ_2 satisfying the same condition as ϵ_1 above. So

$$||R_{2}(Df(x_{0})u + R_{1}(u))|| \leq \epsilon_{2}(||Df(x_{0})u + R_{1}(u)||)||Df(x_{0})u + R_{1}(u)||$$

$$\leq \epsilon_{2}(||Df(x_{0})u + R_{1}(u)||)(||Df(x_{0})|||u|| + ||R_{1}(u)||)$$

$$\leq \epsilon_{2}(||Df(x_{0})u + R_{1}(u)||)(||Df(x_{0})|||u|| + \epsilon_{1}(||u||)||u||)$$

$$= \epsilon_{2}(||Df(x_{0})u + R_{1}(u)||)(||Df(x_{0})|| + \epsilon_{1}(||u||))||u||.$$

The term in front of ||u|| converges to 0 as $u \to 0$, as desired. Finally, the other remainder term is

$$||Df(y_0)R_1(u)|| \le ||Df(y_0)|| ||R_1(u)|| \le ||Df(y_0)||\epsilon_1(||u||) ||u||,$$

as desired. \Box

Remark 3.2. Observe how this proof required the derivative to be a bounded linear map.

Given normed vector spaces U_1, U_2 we will always equip the direct sum with the max norm $||(u_1, u_2)|| = \max\{||u_1||, ||u_2||\}$, which induces the product topology. Note that if $T: U_1 \times \cdots \times U_n \to V$ is a bounded multilinear map, then it is continuous with respect to this topology as can be seen form the inequality

$$||T(u_1,\ldots,u_n)|| \le ||T|| ||u_1|| \cdots ||u_n||.$$

Lemma 3.3. (Product Rule for multilinear maps) Suppose that U_1, \ldots, U_n are normed vector spaces and $T: U_1 \times \cdots \times U_n \to V$ is a bounded multilinear map. Then T is differentiable at each $\vec{x} = (x_1, \ldots, x_n) \in U_1 \times \cdots \times U_n$ with

$$D(T)(\vec{x})(u_1,\ldots,u_n) = T(u_1,x_2,\ldots,x_n) + T(x_1,u_2,x_3,\ldots,x_n) + \cdots + T(x_1,\ldots,x_{n-1},u_n).$$

Moreover, T is in fact smooth (infinitely differentiable). Moreover, $D^{n+1}(T) = 0$.

Proof. Let $\vec{u} = (u_1, \dots, u_n)$. Note that

$$T(\vec{x} + \vec{u}) = T(\vec{x}) + \sum_{i=1}^{n} T(x_1, \dots, x_{i-1}, u_i, x_{i+1}, \dots, x_n) + R$$

where

$$R = \sum_{(y_1, \dots, y_n)} T(y_1, \dots, y_n)$$

where the sum is taken over all (y_1, \ldots, y_n) where at least two of the y_k are equal to u_k and the others are equal to x_j . Thus each a term is at most

$$||T|||y_1|| \cdots ||y_n|| \le K(\vec{x})||u||^2$$

where $K(\vec{x})$ is some constant depending only on T and \vec{x} . This proves that T is differentiable with the derivative as stated.

It remains to prove that T is smooth. For this purpose, let us say that $S: U_1 \times \cdots \times U_n \to W$ is r-partially multilinear if there exists $i_1 < \ldots < i_r$ such that $S(x_1, \ldots, x_n) = \tilde{S}(x_{i_1}, \ldots, x_{i_r})$. In other words, S is multilinear in r of the variables and constant in the others. Thus we see that $DT: U_1 \times \cdots \times U_n \to L(U_1 \times \cdots \times U_n, V)$ is a sum of n-1-partially multilinear maps. By the same argument as above, we get that

$$D(S)(\vec{x})(u_1, \dots u_n) = \tilde{S}(u_{i_1}, x_{i_2}, \dots, x_{i_n}) + \dots + \tilde{S}(x_{i_1}, \dots, u_{i_n}).$$

Letting,

$$S^1_{\vec{x}}(u_1,\ldots,u_n) = \tilde{S}(u_{i_1},x_{i_2},\ldots,x_{i_n})$$

we have that the map

$$\vec{x} \mapsto S^1_{\vec{x}}$$

is an r-1-partially multilinear map $X \to \mathcal{L}(U_1 \times \cdots \times U_n, V)$. Thus we have shown that if $G: U_1 \times \cdots \times U_n \to W$ is a sum of r-partially multilinear maps then it is differentiable and its derivative

$$DG: U_1 \times \cdots \times U_n \to W_2$$

is a sum of r-1-partially multilinear maps, where $W_2 = \mathcal{L}(U_1 \times \cdots \times U_n, W)$. This completes the proof that T is smooth. It also shows that D^nT is 0-partially multilinear, i.e., constant. Thus $D^{n+1}(T) = 0$ as claimed.

Example 3.4. Let $T: \mathbb{R}^n \to \mathbb{R}$ be given by $T(x_1, \dots, x_n) = x_1 \cdots x_n$. This is a bounded multilinear map. By the product rule, its derivative is equal to

$$DT(x_1,\ldots,x_n)(u_1,\ldots u_n) = u_1x_2\cdots x_n + \cdots + x_1x_2\cdots u_n.$$

By representing the derivative as a matrix, we see that DT is the row vector

$$[x_2 \ldots x_n, x_1 x_3 \cdots x_n, \ldots, x_1 \ldots x_{n-1}].$$

Example 3.5. Let $U_i = \mathbb{R}^n$ for $i = 1, \dots n$ and let $T: U_1 \times \dots \times U_n \to \mathbb{R}$ be given by

$$T(x_1,\ldots,x_n)=\det(x_1|\cdots|x_n)$$

where $x_1|\cdots|x_n$ denotes the matrix where the *i*-th column is the column vector $x_i \in \mathbb{R}^n$. This is a multilinear map. Thus, by the product rule, its derivative is

$$T(x_1, \dots, x_n)(u_1, \dots, u_n) = \det(u_1|x_2|\dots|x_n) + \dots + \det(x_1|\dots|x_{n-1}|u_n).$$

In particular, we represent the identity matrix $I = e_1 | \cdots | e_n$ where e_1, \dots, e_n is the standard basis for \mathbb{R}^n . Thus

$$DT(I)(A) = \sum_{i=1}^{n} A_{i,i} = Tr(A)$$

where A is an $n \times n$ matrix.

Lemma 3.6. (General product rule) Suppose that U_1, \ldots, U_n are normed vector spaces and $T: U_1 \times \cdots \times U_n \to V$ is a bounded multilinear map and suppose that $f_i: X \to U_i$ are differentiable at $x_0 \in X$. Then the map

$$H(x) = T(f_1(x), \dots f_n(x))$$

is differentiable at x_0 and has derivative

$$DH(x_0)u = T((Df_1)(x_0)u, f_2(x_0), \dots, f_n(x_0)) + \dots + T(f_1(x_0), f_2(x_0), \dots, Df_n(x_0)u)$$

Proof. The map $F(x) = (f_1(x), \dots, f_n(x))$ has derivative

$$DF(x_0)u = (Df_1(x_0)u, \dots, Df_n(x_0)u)$$

and $H = T \circ F$ hence the derivative is

$$D(H)(x_0)u = D(T)(F(x_0))(DF)(x_0)u$$

= $DT(F(x_0))(Df_1(x_0)u, \dots, Df_n(x_0)u)$

and the result now follows from the product rule for multilinear maps.

Example 3.7. Let $H: \mathbb{R} \to \mathbb{R}$ be given by $H(x) = h_1(x) \cdots h_n(x)$ where $h: \mathbb{R} \to \mathbb{R}$ are differentiable for all $x \in \mathbb{R}$. Thus $H(x) = T(f_1(x), \dots, f_n(x))$ where $T(x_1, \dots, x_n) = x_1 \cdots x_n$ is from Example 3.4, where we computed the derivative already. Thus we have that

$$DH(x)(u) = ((Df_1(x))u)f_2(x)\cdots f_n(x) + \cdots + f_1(x)\cdots f_{n-1}(x)(Df_n(x)u).$$

Now, for $F : \mathbb{R} \to \mathbb{R}$ we have that $DF : \mathbb{R} \to \mathcal{L}(\mathbb{R}, \mathbb{R})$. However, $\mathcal{L}(\mathbb{R}, \mathbb{R})$ is isomorphic to \mathbb{R} where we identity ϕ with $\phi(1)$. Thus for differentiable $F : \mathbb{R} \to \mathbb{R}$ we identify $DF(x) \in \mathcal{L}(\mathbb{R}, \mathbb{R})$ with $F'(x) := DF(x)(1) \in \mathbb{R}$, to get the usual derivative from basic calculus. This means that

$$H'(x) = f_1'(x)f_2(x)\cdots f_n(x) + \cdots + f_1(x)\cdots f_{n-1}(x)f_n'(x)$$

and so we recover the usual product rule from basic calculus.

Proposition 3.8. Suppose that U, V, W are normed vector spaces with $X \subset U$ and $Y \subset V$ open sets. Suppose $f: X \to Y$ is *n*-times differentiable at $x_0 \in X$ and $g: Y \to W$ is *n*-times differentiable at $y_0 = f(x_0) \in Y$. Then $g \circ f$ is *n*-tyimes differentiable at x_0 .

Proof. We prove this by induction on n. The n = 1 case is the chain rule, so fix n > 1 and suppose the result is true for smaller n. Now by the chain rule we have

$$D(f \circ g)(x) = Df(gx) \circ Dg(x)$$

for all x in some open neighbourhood $X' \subset X$ of x_0 . Thus it is enough to show that $D(f \circ g)$ is n-1-times differentiable at x_0 . Now Df is n-1-time differentiable and g is n-times, hence n-1-times, differentiable in a nieghbourhood of y_0 and x_0 respectively. Thus $x \mapsto Df(gx)$ is n-1-time differentiable by the induction hypothesis (i.e., this mapping is $Df \circ g$). Thus we that the have map $h: X'' \to \mathcal{L}(V, W) \times \mathcal{L}(U, W)$ given by

$$h(x) = (Df(gx), Dg(x))$$

is n-1-times differentiable at x_0 , where X'' is an open neighbourhood of x_0 . Now the composition mapping $T: \mathcal{L}(V,W) \times \mathcal{L}(U,V) \to \mathcal{L}(U,W)$ given by $T(\phi,\psi) = \phi \circ \psi$ is a bounded bilinear map (i.e., $||T(\phi,\psi)|| \le ||\phi|| ||\psi||$ so $||T|| \le 1$ is finite) and so by product rule for multilinear maps, it is smooth and hence n-1-time differentiable. Thus by the induction hypothesis $h \circ T$ is also n-1-time differentiable. But $(h \circ T)(x) = Df(g(x)) \circ Dg(x) = D(f \circ g)(x)$, so indeed $D(f \circ g)$ is n-1-times differentiable.

Lemma 3.9. (Mean value inequality) Suppose $f: X \to V$ is differentiable on each point of the segment $x_0 + tu$ for $t \in [0,1]$ and that $t \mapsto Df(x_0 + tu)$ is continuous on [0,1]. Then

$$||f(x_0 + u) - f(x_0)|| \le \sup_{t \in [0,1]} ||Df(x_0 + tu)u||.$$

Proof. We first reduce to the case $V = \mathbb{R}$ as follows. By the Hahn-Banach theorem we have a linear $\phi: V \to \mathbb{R}$ such that $\phi(f(x_0 + u) - f(x_0)) = ||f(x_0 + u) - f(x_0)||$ and $||\phi|| = 1$. So if the theorem is true for $g = \phi \circ f: X \to V$ we must have

$$||f(x_0 + u) - f(x_0)|| = ||g(x_0 + u) - g(x_0)|| \le \sup_{t \in [0,1]} ||Dg(x_0 + tu)u||.$$

But by the chain rule and the fact that $D\phi(x) = \phi$ for all linear ϕ , we have that $Dg = \phi \circ Df$. Hence as $\|\phi\| = 1$ we have that

$$||Dg(x_0 + tu)u|| = ||\phi(Df(x_0 + tu)u)|| \le ||Df(x_0 + tu)u||.$$

We now turn to show that the theorem holds when $V = \mathbb{R}$. Let $h(t) = f(x_0 + tu)$. Note that the classical derivative h'(t) = Dh(t)(1) is continuous, hence we may apply the fundamental theorem of calculus to get

$$||f(x_0+u)-f(x_0)|| = |h(1)-h(0)| \le |\int_0^1 h'(t)dt| \le \sup_{t \in [0,1]} |h'(t)|.$$

But from the chain rule we get

$$h'(t_0) = Dh(t_0)(1)$$

$$= [D(f(x_0 + ut_0)) \circ D(t \mapsto (x_0 + tu))(t_0)] (1)$$

$$= [D(f(x_0 + t_0u)) \circ (t \mapsto tu)] (1)$$

$$= D(f(x_0 + t_0u))u$$

4. The commutativity of higher order derivatives

Theorem 4.1. Suppose that $f: U \to V$ is twice differentiable at x_0 , then $D^2 f(x_0)$ is a symmetric bilinear form, that is

$$D^2 f(x_0)(u_1, u_2) = D^2 f(x_0)(u_2, u_1)$$
 for all $u_1, u_2 \in U$.

Proof. It is sufficient to show this for all small enough $u_1, u_2 \in U$. Let $g(x) = f(x+u_1) - f(x)$. If $L: U \to V$ is the bounded linear map $L = D^2 f(x_0)(u_1)$ then by the mean value inequality applied to g - L we have that

(1)
$$||g(x_0 + u_2) - g(x_0) - L(u_2)|| \le \sup_{t \in [0, 1]} ||Dg(x_0 + tu_2)u_2 - L(u_2)||$$

for all small enough $u_1, u_2 \in U$.

By the definition of differentiability we have that

$$Df(x_0 + u) = Df(x_0) + D^2 f(x_0)(u) + R(u)$$

where $||R(u)|| \le \epsilon(u)||u||$ where $\lim_{u\to 0} \epsilon(u) = 0$. We use this inequality to estimate the upper bound in (1) as follows

$$Dg(x_0 + tu_2)u_2 = Df(x_0 + tu_2 + u_1)u_2 - Df(x_0 + tu_2)u_2$$

$$= D^2 f(x_0)(tu_2 + u_1)u_2 - D^2 f(x_0)(tu_2)u_2 + R(tu_2 + u_1)u_2 - R(tu_2)u_2$$

$$= D^2 f(x_0)(u_1)(u_2) + R(tu_2 + u_1)u_2 - R(tu_2)u_2$$

Hence (1) gives the estimate

$$||g(x_0 + u_2) - g(x_0) - D^2 f(x_0)(u_1, u_2)|| \le \sup_{t \in [0, 1]} ||R(tu_2 + u_1)u_2 - R(tu_2)u_2||$$

$$\le \epsilon_0 (||u_1|| + ||u_2||) (||u_1|| + ||u_2||)^2$$

for some $\lim_{u\to 0} \epsilon_0(||u||) = 0$. In particular, by replacing u_i with su_i for 0 < s < 1 and dividing by s^2 we get the limit

$$D^{2} f(x_{0})(u_{1})(u_{2}) = \lim_{s \to 0} \frac{g(x_{0} + su_{2}) - g(x_{0})}{s^{2}}$$
$$= \lim_{s \to 0} \frac{f(x_{0} + su_{1} + su_{2}) - f(x_{0} + su_{2}) - f(x_{0} + su_{1}) + f(x_{0})}{s^{2}}$$

but this term inside the limit is symmetric in u_1 and u_2 .

We can apply this inductively to get (notice that we don't require $D^n f(x)$ to be defined or continuous on any open set):

Theorem 4.2. Suppose $X \subset U$ is open and that $f: X \to V$ is such that $D^n f(x_0)$ exists at $x_0 \in X$. Then $D^n f(x_0)$ is a symmetric multilinear form.

Proof. We prove by induction and assume that $D^{n-1}f(x)$ exists for all $x \in X$ (by shrinking X if necessary). The base case n=2 is shown above.

We let $\mathcal{S}_k(U,V)$ denote those bounded multilinear maps $T:U^k\to V$ such that $T(u_1,\ldots,u_k)$ is invariant under permutations of the u_i . Note that $\mathcal{S}_k(U,V)$ is closed in $\mathcal{T}_k(U,V)$.

Suppose that $n \geq 3$ and the result is true for n-1. Now observe that for $u_1 \in U$ we have that

$$D(D^{n-1}f)(x_0)(u_1) = \lim_{t \to 0} \frac{1}{t} \left((D^{n-1}f)(x_0 + u_1t) - (D^{n-1})f(x_0) \right)$$

and thus the left hand side is a limit of elements in $S_{n-1}(U,V)$ and thus $D(D^{n-1}f)(x_0)(u_1) \in S_{n-1}(U,V)$. In other words $D^n f(x_0)(u_1, u_2, \ldots, u_n)$ is invariant under permutation of the u_2, \ldots, u_n . It thus remains to show that it is invariant under permuting u_1 and u_2 .

By the case applied to $D^{n-2}f$ we have

$$D^{2}(D^{n-2}f)(x_{0})(u_{1}, u_{2}) = D^{2}(D^{n-2}f)(x_{0})(u_{2}, u_{1}).$$

Thus

$$D^{2}(D^{n-2}f)(x_{0})(u_{1},u_{2})(u_{3},\ldots,u_{n}) = D^{2}(D^{n-2}f)(x_{0})(u_{2},u_{1})(u_{3},\ldots,u_{n}).$$

Finally, the proof is complete as $D^2(D^{n-2}f)(x_0)(u_1, u_2)(u_3, \dots, u_n) = (D^n f)(x_0)(u_1, \dots, u_n)$.

5. Taylor's Theorem

If $h: \mathbb{R} \to \mathbb{R}$ is N times continuously differentiable at $x_0 \in \mathbb{R}$ then the classical Taylor expansion is

$$h(x_0 + u) = h(x_0) + h'(x_0)u + \frac{1}{2!}h^{(2)}(x_0)u^2 + \dots + \frac{1}{N!}h^{(N)}(x_0)u^N + R(u)$$

with error term

$$R(u) = \frac{1}{(N+1)!} \int_0^u t^n h^{(N+1)}(x_0 + t) dt.$$

We now ask how can this be formulated for $f: U \to \mathbb{R}$ where U is an arbitrary vector space? If we define u^n to be the n-tuple (u, \ldots, u) then the expression $Df^n(x_0)u^n$ makes sense, as $Df^n(x_0)$ is a multilinear map. Hence a strategy of deriving a Taylor theorem involves first parametrizing the line segment from x_0 to $x_0 + u$ by defining L(t) = tu and applying the classical Taylor theorem to $h = f \circ L$. To do this we need to compute $D^n(f \circ L)(t_0)$.

Lemma 5.1. Let $L: W \to U$ be a bounded linear map and let $f: U \to V$ be n times differentiable at L(a), where $a \in W$. Then

$$D^n(f \circ L)(a) = D^n f(L(a)) \circ L^n$$

where $L^n(w_1, \ldots, w_n) := (Lw_1, \ldots, Lw_n)$. In other words

$$(D^n(f \circ L))(a)(w_1, \dots, w_n) = (D^n f)(La)(Lw_1, \dots, Lw_n).$$

Remark 5.2. The is a generalization of the standard identity $\frac{d}{dt}(h(bt)) = b^n h^{(n)}(bt)$ from classical differential calculus.

Proof. For n=1 this is the chain rule and the fact that D(L)(a)=L for linear maps L. Now we proceed by induction. Assuming the result is true for n, we now suppose that f is n+1 differentiable at L(a). Thus by Proposition 3.8 $f \circ L$ is n+1 times differentiable at a. We now use Proposition 2.5 (which we can as $f \circ L$ is n+1-times differentiable at a) and the induction hypothesis as follows

$$D^{n+1}(f \circ L)(a)(w_0, w_1, \dots, w_n) = \lim_{t \to 0} t^{-1} \left(D^n(f \circ L)(a + tw_0)(w_1, \dots, w_n) - D^n(f \circ L)(a)(w_1, \dots, w_n) \right)$$

$$= \lim_{t \to 0} t^{-1} \left((D^n f)(L(a + tw_0))(Lw_1, \dots, Lw_n) - (D^n f)(La)(Lw_1, \dots, Lw_n) \right)$$

$$= \lim_{t \to 0} t^{-1} \left((D^n f)(La + tLw_0)(Lw_1, \dots, Lw_n) - (D^n f)(La)(Lw_1, \dots, Lw_n) \right)$$

$$= \left(\lim_{t \to 0} t^{-1} \left((D^n f)(La + tLw_0) - (D^n f)(La) \right) \right) \left(Lw_1, \dots, Lw_n \right)$$

$$= (D(D^n f)(La)(Lw_0)(Lw_1, \dots, Lw_n)$$

$$= (D^{n+1} f)(La)(Lw_0, \dots, Lw_n)$$

which completes the proof.

Theorem 5.3. (Co-ordinate free general Taylor theorem) Suppose $f: X \to \mathbb{R}$ is (n+1) times continuously differentiable and let $x_0 \in X$ and $u \in U$ be such that the line segment $x_0 + tu$ is in X. Then we have that

$$f(x_0 + u) = f(x_0) + \sum_{n=1}^{N} \frac{1}{n!} D^n f(x_0) u^n + R(u)$$

where $u^n = (u, \dots, u) \in U^n$ and

$$R(u) = \frac{1}{(N+1)!} \int_0^1 t^n D^{N+1} f(x_0 + tu) u^{n+1} dt.$$

Proof. By translation invariance of derivatives, it is enough to prove this for $x_0 = 0$. Now write $f(x_0 + tu) - f(x_0) = h(1) - h(0)$ and use Taylor's theorem, where $h = f \circ L$ where $L : \mathbb{R} \to U$ is given by L(t) = tu. The result now follows from the Lemma 5.1

6. Recovering the co-ordinate based Taylor Theorem

To recover the Taylor theorem most often presented in undergraduate vector calculus, one needs to expand $D^n f(x_0)u^n$ as follows. Writing

$$u = \sum_{i} u_i e_i$$

where e_1, \ldots, e_d is a basis for U, we have that

$$D^n f(x_0)(e_{i_1}, \dots, e_{i_n}) = \partial_{i_1} \cdots \partial_{i_n} f(x_0),$$

where ∂_i is partial differentiation with respect to the e_i direction. Hence by multilinearity we get that

$$D^n f(x_0) u = \sum_{i_1, \dots, i_n} \partial_{i_1} \cdots \partial_{i_n} f(x_0) u_{i_1} \dots u_{i_n}.$$

Now by commutativity of derivatives the order of i_1, \ldots, i_n does not matter, hence it pays to express this in terms of partitions as follows. Given $\alpha = (a_1, \ldots, a_d) \in \mathbb{Z}_{>0}^d$ such that $\sum_i a_i = n$ we define

$$D^{\alpha}f(x_0) = \partial_1^{a_1} \cdots \partial_n^{a_d} f(x_0)$$

where ∂_i^k means ∂_i applied k times. Define also

$$u^{\alpha} = \prod_{i} u_i^{a_i}.$$

Then by grouping the terms together we get the expression

$$D^{n} f(x_{0}) u = \sum_{|\alpha|=n} {n \choose \alpha} D^{\alpha} f(x_{0}) u^{\alpha}$$

where $|\alpha| = a_1 + \cdots + a_d$ and

$$\binom{n}{\alpha} = \frac{n!}{a_1! \cdots a_d!}$$

is the multinomial coefficient which counts the number of sequences $\{1, \ldots, d\}^n$ where i appears a_i times. Finally, this means that the Taylor theorem may be written as

$$f(x_0 + u) = f(x_0) + \sum_{n=1}^{N} \sum_{|\alpha|=n} \frac{1}{\alpha!} D^{\alpha} f(x_0) u^{\alpha} + R(x)$$

where

$$\alpha! = a_1! \cdots a_d!$$

7. Sufficient conditions for differentiability

It is all well and good proving abstract theorems about derivatives, but so far we don't have a mechanism for quickly telling whether a certain function is differentiable. Fortunately we have the following criteria.

Proposition 7.1. Suppose that $X \subset \mathbb{R}^d$ is open and $f: X \to V$ has the property that all its partial derivatives exist and are continuous. Then f is continuously differentiable on X.

Proof. The hypothesis says that each limit

$$\partial_i f(x) = \lim_{t \to 0} \frac{f(x + te_i)}{t}$$

exists and is continuous as a function of x. To show differentiability at $x_0 \in X$, we first construct the derivative $D = Df(x_0)$ and then show it satisfies the definition. Without loss of generality, we will use the 1-norm $\|\cdot\| = \|\cdot\|_1$ for convenience. We define D to be the linear map

$$Du = \sum_{i=1}^{n} u_i \partial_i f(x_0)$$

for $u = \sum_i u_i e_i$. To show that D satisfies the definition of the derivative fix $\epsilon > 0$ and find a corresponding $\delta > 0$ such that $\|\partial_i f(x) - \partial_i f(x_0)\| < \epsilon$ for all x such that $\|x - x_0\| < \delta$. Choose u such that each $\|u_i e\| < \frac{1}{d}\delta$ and let $w_i = u_1 + \ldots + u_i$ and $w_0 = 0$ (notice that this ensures each $\|w_i\| < \delta$). We have

$$f(x_0 + u) - f(x_0) = \sum_{i=1}^d f(w_i) - f(w_{i-1})$$

$$= \sum_{i=1}^d f(w_{i-1} + u_i e_i) - f(w_i)$$

$$= \sum_{i=1}^d (u_i \partial_i f(w_{i-1}) + R_i)$$

$$= Du + \sum_{i=1}^d u_i (\partial_i f(w_{i-1}) - \partial_i f(x_0)) + \sum_{i=1}^d R_i$$

where the remainder term R_i satisfies

$$||R_i|| \le \sup_{t \in [0,1]} ||u_i \partial_i f_i(w_{i-1} + tu_i e_i) - u_i \partial_i f_i(w_0)|| \le 2\epsilon ||u_i||$$

by the mean value inequality applied to the function $u \mapsto f(w_{i-1} + ue_i)$. So altogether we have shown that if $||u_i e_i|| < \frac{1}{d}\delta$ then we have

$$||f(x_0 + u) - f(x_0) - Du|| \le 3\epsilon ||u||$$

which verifies differentiability.

This generalizes to higher order differentiability. We will focus on finite dimensional spaces. If U has basis e_1, \ldots, e_d and V has basis b_1, \ldots, b_m then the corresponding standard basis for $\mathcal{L}(U, V)$ is given by $\delta_{i,j}$ for $1 \le i \le m, 1 \le j \le d$ where

$$\delta_{i,j}\left(\sum_{\ell}u_{\ell}e_{\ell}\right)=u_{j}b_{i}.$$

More generally, the space of k-multilinear map $T: U \times \cdots \times U \to V$ has a standard basis where the elements are indexed by i, j_1, \ldots, j_k where such an element maps $(e_{j_1}, \ldots, e_{j_k})$ to b_i but all other tuples in $\{e_1, \ldots, e_k\}^k$ map to 0.

Theorem 7.2. Suppose that $X \subset U = \mathbb{R}^d$ is open and $f: X \to V = \mathbb{R}^m$ has the property that all its *n*-order partial derivatives exist and are continuous. Then f is continuously n times continuously differentiable on X.

Proof. We have shown the n=1 case. Proceeding by induction, suppose that it holds for n. Suppose that $f:X\to\mathbb{R}^m$ has the property that all its n+1-order partial derivatives exist and are continuous. The induction hypothesis says that $D^nf:X\to\mathcal{T}(U,\ldots,U\to V)$ exists and is continuous. But with respect to the standard basis for $\mathcal{T}(U,\ldots,U\to V)$ the coefficients of $D^nf(x_0)$ are n-order partial derivatives of f at x_0 and their partial derivatives are the order (n+1) partial derivatives, which exist and are continuous by hypothesis. Applying the already shown n=1 case establishes the inductive step.

8. APPLICATION: LAPLACIAN AND WAVE OPERATOR

8.1. **Motivation.** The Laplacian of a twice differentiable $f: \mathbb{R}^3 \to \mathbb{R}$ is defined as

$$\triangle f = \partial_1^2 f + \partial_2^2 f + \partial_3^2 f.$$

In elementary courses one shows that

$$(\triangle f) \circ Q = \triangle (f \circ Q)$$

for $Q \in O(3)$. In mathematical physics and PDEs, one is often interested in the wave operator (D'Alembertian) of $f : \mathbb{R}^4 \to \mathbb{R}$ as

$$\Box f = \partial_1^2 f + \partial_2^2 f + \partial_3^2 f - \partial_4^2 f$$

and one shows that it is invariant under Lorentz transformations, i.e., if $L \in O(3,1)$ then

$$\Box(f \circ L) = (\Box f) \circ L.$$

Our aim is to prove these in an elegant and co-ordinate free way in the framework developed here.

8.2. Trace of a bilinear form. Let V be a finite dimensional vector space and suppose that

$$(v_1, v_2) \mapsto \langle v_1, v_2 \rangle$$

is a symmetric, non-degenerate bilinear form $V \times V \to \mathbb{R}$.

Lemma 8.1. If $B: V \times V \to \mathbb{R}$ is a bilinear form, then there exists a unique linear map $L = L_B: V \to V$ such that

$$B(v_1, v_2) = \langle v_1, Lv_2 \rangle.$$

Proof. The map $L_B \mapsto B$ is a well defined linear map $\mathcal{T}(V, V \to \mathbb{R}) \to \mathcal{L}(V \to V)$. It is injective since $\langle -, - \rangle$ is non-degenerate. It is therefore surjective since its domain and codomain have equal dimensions $(\dim V)^2$.

If $Q: V \to V$ is a linear automorphism then we say it is *orthogonal* (with respect to $\langle -, - \rangle$) if

$$\langle Qv_1, Qv_2 \rangle = \langle v_1, v_2 \rangle.$$

Lemma 8.2. If Q is orthogonal then

$$L_{B \circ Q^2} = Q^{-1} L_B Q$$

where $Q^2(v_1, v_2) = (Qv_1, Qv_2)$.

Proof. For each fixed $v_0 \in V$ we have that

$$\langle v_0, L_{B \circ Q^2} v \rangle = (B \circ Q^2)(v_0, v) = B(Qv_0, Qv) = \langle Qv_0, L_B Qv \rangle = \langle v_0, Q^{-1} L_B Qv \rangle.$$

Since this holds for all $v_0 \in V$ and $\langle -, - \rangle$ is non-degenerate, we have the desired equality.

If Tr(L) denote the trace of a linear operator $L: V \to V$ then we obtain the following corollary.

Corollary 8.3. If Q is orthogonal then

$$Tr(L_B) = Tr(L_{B \circ Q^2})$$

To see how this demonstrates the symmetries of the Laplacian and D'Alembertian, we observe the following. First, let $c_1, \ldots, c_n \in \mathbb{R} \setminus \{0\}$ be non-zero real numbers. We now consider on \mathbb{R}^n the symmetric, non-degenerate bilinear form given by

$$\langle v, w \rangle = \sum_{i=1}^{n} c_i v_i w_i.$$

Now fix a twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. For each $x \in \mathbb{R}^n$, we have a unique linear operator $L_{D^2f(x)}$ such that

$$D^2 f(x)(v, w) = \langle L_{D^2 f(x)} v, w \rangle.$$

Let e_1, \ldots, e_n be the standard basis for \mathbb{R}^n . Since

$$\frac{1}{c_i}\langle e_i, e_j \rangle = \delta_{i,j}$$

we compute the trace to be

$$Tr(L_{D^2f(x)}) = \sum_{i=1}^n \frac{1}{c_i} \langle L_{D^2f(x)}e_i, e_i \rangle$$
$$= \sum_{i=1}^n \frac{1}{c_i} D^2 f(x)(e_i, e_i)$$
$$= \sum_{i=1}^n \frac{1}{c_i} \partial_i^2 f.$$

Now observe that for the case $c_1 = \cdots = c_n = 1$ this trace is the Laplacian. While for $c_1 = \cdots = c_{n-1} = 1$, $c_n = -c^2$ this trace is the D'Alembertian for the wave equation with speed c > 0. We know by Lemma 5.1 that if $Q : \mathbb{R}^n \to \mathbb{R}^n$ is all linear transformation then

$$D^2(f \circ Q)(x) = D^2f(Qx) \circ Q^2.$$

Now if Q is orthogonal with respect to our quadratic form, then

$$Tr(L_{D^2(f\circ Q)(x)}) = Tr(L_{D^2f(Qx)})$$

by the corollary above. We have thus shown

Theorem 8.4. If Q is orthogonal with respect to $\langle -, - \rangle$ then

$$Tr(L_{D^2(f \circ Q)(x)}) = Tr(L_{D^2f(Qx)}).$$

In particular, this shows that

$$\triangle(f \circ Q) = (\triangle f) \circ Q$$

for orthogonal linear transformation Q on Euclidean space \mathbb{R}^n . The same holds if for \square in place of \triangle if Q is a Lorentz transformation.