习题讨论课04答案: 无穷大量与无穷小量

★号(越)多表示题目(越)难

一、无穷大量与无穷小量,大 O 和小 o 的计算

【有界量】

 $x \to a$ 时, f(x) 是有界量, 如果存在常数 M 以及 a 的去心邻域 V 使得 $\forall x \in V \cap D_f$, 都有 $|f(x)| \leq M$ 。

【无穷大量】

 $\lim_{x\to a}f(x)=+\infty$: 对任意 M>0, 存在 a 的去心邻域 V 使得 $\forall x\in V\cap D_f,$ 都有 f(x)>M 。

$$\lim_{x \to a} f(x) = -\infty : \lim_{x \to a} (-f(x)) = +\infty .$$

【无穷小量】

 $\lim_{x \to a} f(x) = 0 .$

【大O和小o,阶的比较】

 $x \to a$ 时, f(x) = O(g(x)): 存在 M > 0 和 a 的去心邻域 V 使得 $\forall x \in V$, $|f(x)| \le M|g(x)|$, f 受控于 g。

 $x \to a$ 时, f(x) 与 g(x) 同阶: f(x) = O(g(x)) 且 g(x) = O(f(x)), 即存在 M>0 和 a 的去心邻域 V 使得 $\forall x \in V$, $\frac{1}{M}|g(x)| \leq |f(x)| \leq M|g(x)|$ 。

 $x \to a$ 时, f(x) = o(g(x)): $\forall \varepsilon > 0$, 存在 a 的去心邻域 V_{ε} 使得 $\forall x \in V_{\varepsilon}$, $|f(x)| \le \varepsilon |g(x)|$, 即 f 相对于 g 而言很小。

 $x \to a$ 时, f(x) 与 g(x) 等价: $x \to a$ 时, f(x) = g(x) + o(g(x)), 即 $\forall \varepsilon > 0$, 存在 a 的去心邻域 V_{ε} 使得 $\forall x \in V_{\varepsilon}$, $|f(x) - g(x)| \le \varepsilon |g(x)|$ 。

【联系】

$$\lim_{\substack{x\to a\\x\to a}} f(x) = 0 \Longleftrightarrow x\to a \ \text{时}, \ f(x) = o(1).$$

$$\lim_{\substack{x\to a\\x\to a}} f(x) = A \in \mathbb{R} \Longleftrightarrow x\to a \ \text{时}, \ f(x) = A + o(1).$$

$$\lim_{\substack{x\to a\\x\to a}} f(x) = \infty \Longleftrightarrow x\to a \ \text{H}, \ \frac{1}{f(x)} = o(1).$$

$$x\to a \ \text{H}, \ f(x) \not\in A \in \mathbb{R} \Longrightarrow f(x) = O(1), x\to a.$$

$$\lim_{\substack{x\to a\\x\to a}} f(x) = A \in \mathbb{R} \Longrightarrow f(x) = O(1), x\to 0.$$
 无穷小量都是有界量,无穷大量都不是有界量。

例 1(O 和 o 的运算性质).

$$\begin{split} O(f) + O(f) &= O(f), \quad O(f)O(g) = O(fg), \\ o(f) + o(f) &= o(f), \quad O(f)o(g) = o(fg). \\ o(f) &= O(f). \end{split}$$

这里的等式的含义是: 等号左边的运算结果是等号右边集合中的一个对象。

证明. (1) 设 $g_1, g_2 \in O(f)$. 则存在常数 M_1, M_2 以及 a 的去心邻域 W 使得 $\forall x \in W$,

$$|g_1(x)| \le M_1|f(x)|, \quad |g_2(x)| \le M_2|f(x)|.$$

于是

$$|g_1(x) + g_2(x)| \le |g_1(x)| + |g_2(x)| \le M_1 |f(x)| + M_2 |f(x)| = (M_1 + M_2)|g(x)|.$$

Fig. $g_1 + g_2 = O(f).$

(2) 设 $u \in O(f)$, $v \in o(g)$. 则存在常数 M 以及 a 的去心邻域 W_1 使得 $\forall x \in W_1$,

$$|u(x)| \leq M|f(x)|.$$

对任意 $\varepsilon > 0$,存在 a 的去心邻域 W_2 使得 $\forall x \in W_2$,

$$|v(x)| \le \varepsilon |g(x)|.$$

于是对任意 $x \in W_1 \cap W_2$,

$$|u(x)v(x)| \le M|f(x)| \cdot \varepsilon|g(x)| \le M\varepsilon|f(x)g(x)|.$$

所以
$$uv = o(fg)$$
.

例 2. (★)证明: 若

$$f(x) + o(f(x)) = Bg(x) + o(g(x)), \quad x \to a,$$

则

$$f(x) = Bg(x) + o(g(x)), \quad x \to a.$$

特别地, 若 B=1, 则 "f 与 g 等价" 当且仅当"g 与 f 等价"。

证明. (1) 设
$$f(x) + o(f(x)) = Bg(x) + o(g(x)), \quad x \to a.$$

因此对任意 $0<\varepsilon<\frac{1}{2}$,存在 a 的去心邻域 V_{ε} ,使得 $\forall x\in V_{\varepsilon}$, $|o(f(x))|\leq \varepsilon |f(x)|$, $|o(g(x))|\leq \varepsilon |g(x)|$. 于是

$$|f(x)| = |Bg(x) + o(g(x)) - o(f(x))| \le |B||g(x)| + \frac{1}{2}|g(x)| + \frac{1}{2}|f(x)|,$$

从而

$$|f(x)| \le (2|B|+1)|g(x)|.$$

因此

$$|f(x) - Bg(x)| \le \varepsilon |g(x)| + \varepsilon |f(x)| \le \varepsilon (2|B| + 2)|g(x)|.$$

 $\mathbb{P} f(x) = Bg(x) + o(g(x)), \quad x \to a.$

(2) 若
$$f(x) = g(x) + o(g(x))$$
,则 $f = f + 0 = f + o(f)$,于是由(1)知, $g(x) = f(x) + o(f(x))$.

例 3 (反函数的渐近表达式). 设 f 有连续的反函数, $f(x) = Ax + Bx^k + o(x^k)$ ($A \neq 0$, k > 1, $x \to 0$),求 f 的反函数 f^{-1} 在自变量 $y \to 0$ 时的渐近表达式。

证明. $y=f(x)=Ax+Bx^k+o(x^k)=Ax+o(Ax), x\to 0$,于是从而由例2的 结论知

$$x = \frac{1}{A}y + o(y), \quad y \to 0.$$

记 $x = \frac{1}{A}y + yu(y)$. 则

$$\begin{split} y &= A\left(\frac{1}{A}y + yu(y)\right) + B(\frac{1}{A}y + yu(y))^k + o\left(\left(\frac{1}{A}y + yu(y)\right)^k\right) \\ &= y + Ayu(y) + \frac{B}{A^k}y^k + o(y^k) \end{split}$$

因此

$$u(y) = -\frac{B}{A^{k+1}}y^{k-1} + o(y^{k-1}),$$

从而

$$x = \frac{1}{A}y - \frac{B}{A^{k+1}}y^k + o(y^k).$$

例 4 (有理指数幂函数的渐近展开,Newton的方法,广义二项式展开). 对正有理数 $\frac{m}{n}$,在 $x\to 0$ 时,把 $(1+x)^{\frac{m}{n}}$ 做渐近展开。

证明. 记 $(1+x)^{\frac{m}{n}}=1+u(x)$,则 $x\to 0$ 时, $u(x)\to 0$ 是无穷小量。在恒等式

$$(1+x)^m = (1+u(x))^n$$

两边用二项式展开

$$1 + mx + o(x) = 1 + nu(x) + o(u(x)),$$

所以 $u(x) + o(u(x)) = \frac{m}{n}x + o(x)$, 于是由上例结论得到

$$u(x) = \frac{m}{n}x + o(x), \quad x \to 0.$$

记 $u(x) = \frac{m}{n}x + xv(x)$,则 v(x) 是无穷小量,

$$(1+x)^m = \left(1 + \frac{m}{n}x + xv(x)\right)^n$$

两边展开得到

$$1 + mx + \frac{m(m-1)}{2}x^2 + o\left(x^2\right) = \left(1 + \frac{m}{n}x\right)^n + n\left(1 + \frac{m}{n}x\right)^{n-1}xv(x) + o(x^2)$$
$$= 1 + mx + \frac{n(n-1)}{2}\frac{m^2}{n^2}x^2 + nv(x) + o\left(x^2\right),$$

于是

$$v(x) = \frac{\frac{m}{n} \left(\frac{m}{n} - 1\right)}{2} x^2 + o\left(x^2\right),$$

所以

$$(1+x)^{\frac{m}{n}} = 1 + \frac{m}{n}x + \frac{\frac{m}{n}(\frac{m}{n}-1)}{2}x^2 + o(x^2).$$

牛顿曾用类似办法得到了广义二项式(对有理数 μ)

$$(1+x)^{\mu} = 1 + \mu x + \frac{\mu(\mu-1)}{2}x^2 + \frac{\mu(\mu-1)(\mu-2)}{3!}x^3 + \cdots$$

当 $\frac{m}{n} = -1$ 时, 广义二项式可以如下得到

$$\frac{1}{1-x} = (1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots$$

事实上,

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^N + \frac{x^{N+1}}{1-x} = 1 + x + x^2 + \dots + x^N + O\left(x^{N+1}\right), \quad x \to 0.$$

例 5 (**幂函数的渐近展开**, \bigstar). 设 α 为实数,在 $x \to 0$ 时,把 $(1+x)^{\alpha}$ 做渐近展开。

解. 我们已知 $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$,即 $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1-\alpha x}{x} = 0$. 设 $u(x) = \frac{(1+x)^{\alpha}-1-\alpha x}{x}$. 则 $u(x) = o(1), x\to 0$.

$$(1+2x)^{\alpha} = \left[(1+x)^2 - x^2 \right]^{\alpha} = \left((1+x)^{\alpha} \right)^2 \left(1 - \frac{x^2}{(1+x)^2} \right)^{\alpha}.$$

所以

 $1 + \alpha \cdot 2x + 2xu(2x) = (1 + \alpha x + xu(x))^{2}$

$$\left(1 - \frac{\alpha x^2}{(1+x)^2} - \frac{x^2}{(1+x)^2} u \left(-\frac{x^2}{(1+x)^2}\right)\right)$$

$$= (1 + 2\alpha x + 2xu(x) + \alpha^2 x^2 + o(x^2))(1 - \alpha x^2 + o(x^2))$$

$$= 1 + 2\alpha x + 2xu(x) + \alpha(\alpha - 1)x^2 + o(x^2), \quad x \to 0.$$

所以

$$u(2x) - u(x) - \frac{\alpha(\alpha - 1)x}{2} = o(x), \quad x \to 0.$$

猜测 $u(x) = Ax^{\beta} + o(x^{\beta})$,代入得到

$$A(2x)^{\beta} + o(x^{\beta}) - Ax^{\beta} - o(x^{\beta}) = \frac{\alpha(\alpha - 1)x}{2} + o(x),$$

即

$$(2^{\beta} - 1)Ax^{\beta} + o(x^{\beta}) = \frac{\alpha(\alpha - 1)x}{2} + o(x).$$

两边比较,得到 $\beta = 1$, $A = \frac{\alpha(\alpha - 1)}{2}$.

$$u(x) = \frac{\alpha(\alpha - 1)x}{2} + o(x),$$

从而

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + o(x^2).$$

图 1: 用 GeoGebra CAS 推导 $(1+x)^{\alpha}$ 的渐近展开

上述计算表明: 若 $(1+x)^{\alpha} = 1 + \alpha x + xu(x)$, 则

$$0 = (1+2x)^{\alpha} - ((1+x)^{\alpha})^{2} \left(1 - \frac{x^{2}}{(1+x)^{2}}\right)^{\alpha}$$
$$= x[2u(2x) - 2u(x) - \alpha(\alpha - 1)x + o(x)].$$

 $\mathbb{U} u(2x) - u(x) - \frac{\alpha(\alpha - 1)}{2}x = o(x).$

如果希望得到更进一步展开,那么应该使用数学软件来协助我们进行这些 常规但繁琐的计算。

例 6 (指数函数、对数函数、三角函数、反三角的渐近展开, \star).

由此得到

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2), \quad x \to 0.$$

由此得到

$$ln(1+x) = x - \frac{x^2}{2} + o(x^2), \quad x \to 0.$$

$$w(2x) - w(x) + \frac{x^2}{2} = o(x^2), \quad x \to 0.$$

由此得到

$$\sin x = x - \frac{x^3}{6} + o(x^3), \quad x \to 0.$$

4.

$$\arcsin x = x + \frac{x^3}{6} + o(x^3), \quad x \to 0.$$

$$\arccos x = \frac{\pi}{2} - \arcsin x = \frac{\pi}{2} - x - \frac{x^3}{6} + o(x^3), \quad x \to 0.$$

5. $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4), \quad x \to 0.$

证明. (1) $e^{2x} = (e^x)^2$. 所以

$$1 + 2x + 2xu(2x) = (1 + x + xu(x))^{2} = 1 + 2x + x^{2} + 2xu(x) + x^{2}(2u(x) + u(x)^{2}),$$

于是

$$u(2x) - u(x) - \frac{x}{2} = o(x), \quad x \to 0.$$

由此猜得 $u(x) = \frac{x}{2} + o(x)$.

(2)
$$\ln(1+2x) = 2\ln(1+x) + \ln\left(1 - \frac{x^2}{(1+x)^2}\right)$$
. \pm

$$2x + 2xv(2x) = 2(x + xv(x)) - \frac{x^2}{(1+x)^2} - \frac{x^2}{(1+x)^2}v\left(\frac{x^2}{(1+x)^2}\right)$$

因此

$$v(2x) - v(x) + \frac{x}{2} = o(x), \quad x \to 0.$$

由此猜得 $v(x) = -\frac{x}{2} + o(x)$.

方法2: 利用(1)的结论和例3中关于反函数渐近展开的结论。

$$y = e^x - 1 = x + \frac{x^2}{2} + o(x^2),$$

所以

$$x = \ln(1+y) = y - \frac{1}{2}y^2 + o(y^2).$$

(3) $\sin 2x = 2\sin x \cos x = 2\sin x \left(1 - \sin^2 x\right)^{\frac{1}{2}}$. ± 2

$$2x + 2xw(2x) = 2(x + xw(x)) \left(1 - (x + xw(x))^{2}\right)^{\frac{1}{2}}$$

$$= (2x + 2xw(x)) \left[1 - \frac{1}{2}(x + xw(x))^{2} + o(x^{2})\right]$$

$$= 2x + 2xw(x) - x^{3} + o(x^{3}),$$

从而

$$w(2x) - w(x) + \frac{1}{2}x^2 = o(x^2), \quad x \to 0.$$

由此猜得 $w(x) = -\frac{1}{6}x^2 + o(x^2)$.

(4) 由(3)和反函数渐近展开即可。

(5)

$$\cos x = \sqrt{1 - \sin^2 x} = \left(1 - \left(x - \frac{x^3}{6} + o(x^3)\right)^2\right)^{\frac{1}{2}}$$

$$= 1 + \frac{1}{2}(-1)\left(x - \frac{x^3}{6} + o(x^3)\right)^2 + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2}\left(x + o(x)\right)^4 + o(x^4)$$

$$= 1 - \frac{1}{2}x^2 + \frac{x^4}{6} - \frac{1}{8}x^4 + o(x^4)$$

$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

下面这个习题回答了上例中的那些猜测。

例 7. $(\bigstar \bigstar)$ 设 $\lambda > 1 > |A|, \alpha > 0$, 当 $x \to 0$ 时, f 是无穷小量且满足

$$f(\lambda x) - Af(x) - Bx^{\alpha} = o(x^{\alpha}).$$

证明 $f(x) = \frac{B}{\lambda^{\alpha} - A} x^{\alpha} + o(x^{\alpha}), \quad x \to 0$ 。

证明. 猜 $f(x) = Cx^{\beta} + o(x^{\beta})$ ($C \neq 0$)。代入已知条件,得到

$$C\lambda^{\beta}x^{\beta} - ACx^{\beta} + o(x^{\beta}) = Bx^{\alpha} + o(x^{\alpha}),$$

即

$$C(\lambda^{\beta} - A)x^{\beta} + o(x^{\beta}) = Bx^{\alpha} + o(x^{\alpha}).$$

由 f 是无穷小量知 $\beta>0$,所以 $\lambda^{\beta}>1\geq A$,因此 $C(\lambda^{\beta}-A)\neq 0$ 。由例2结论知 $x^{\beta}=\frac{B}{C(\lambda^{\beta}-A)}x^{\alpha}+o(x^{\alpha})$. 从而 $f(x)=Cx^{\beta}+o(x^{\beta})=\frac{B}{\lambda^{\beta}-A}x^{\alpha}+o(x^{\alpha})$. 若 B=0,则 $x^{\beta}=o(x^{\alpha})$,从而 $f(x)=o(x^{\alpha})$, $f(x)=\frac{B}{\lambda^{\alpha}-A}x^{\alpha}+o(x^{\alpha})$. 若 $B\neq 0$,则 $\beta=\alpha$,此时也成立 $f(x)=\frac{B}{\lambda^{\alpha}-A}x^{\alpha}+o(x^{\alpha})$.

找出上述证明中的问题。

正确的证明. 对任意 $\varepsilon > 0$,存在 $\delta > 0$ 使得对任意 $0 < |x| < \delta$,

$$-\varepsilon |x|^{\alpha} < f(\lambda x) - Af(x) - Bx^{\alpha} < \varepsilon |x|^{\alpha},$$

对任意正整数 k, $0 < |\lambda^{-(k-1)}x| \le |x| < \delta$,从而

$$\left|A^{k-1}f\left(\lambda^{-(k-1)}x\right) - A^{k}f\left(\lambda^{-k}x\right) - BA^{k-1}\left(\lambda^{-k}x\right)^{\alpha}\right| < \varepsilon|A|^{k-1}\left|\lambda^{-k}x\right|^{\alpha},$$

相加得到

$$\left| f(x) - A^N f\left(\lambda^{-N} x\right) - \frac{B}{\lambda^{\alpha}} x^{\alpha} \left(1 + \frac{A}{\lambda^{\alpha}} + \dots + \left(\frac{A}{\lambda^{\alpha}} \right)^{N-1} \right) \right|$$

$$\leq \varepsilon |x|^{\alpha} \frac{1}{\lambda^{\alpha}} \left(1 + \frac{|A|}{\lambda^{\alpha}} + \dots + \left(\frac{|A|}{\lambda^{\alpha}} \right)^{N-1} \right),$$

让 $N \to +\infty$ 得到

$$\left| f(x) - \frac{B}{\lambda^{\alpha}} x^{\alpha} \frac{1}{1 - \frac{A}{\lambda^{\alpha}}} \right| \le \frac{1}{\lambda^{\alpha}} \frac{\varepsilon |x|^{\alpha}}{1 - \frac{A}{\lambda^{\alpha}}}.$$

即

$$f(x) = \frac{B}{\lambda^{\alpha} - A} x^{\alpha} + o(x^{\alpha}), \quad x \to 0.$$

你是否能用上述方法求幂指对三角函数更进一步的渐近展开式?

例 8. (★) 求极限 $\lim_{x\to 0} \frac{\tan x - x}{x^3}$.

解法1. 因为
$$x \to 0$$
 时, $\tan x \sim x$,所以 $\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = 0$.

注: 请找出解法1的错误。重要提示: 在进行等价无穷小代换时, 永远使用 f(x) = g(x) + o(g(x)), 而不要简单用 g(x) 代替 f(x)!!!

解法2. 记 $L = \lim_{x \to 0} \frac{\tan x - x}{x^3}$. 则由极限的换元法(复合函数极限)

$$L = \lim_{y \to 0} \frac{\tan(2y) - (2y)}{(2y)^3} = \frac{1}{4} \lim_{y \to 0} \frac{\frac{1}{2} \tan 2y - y}{y^3} = \frac{1}{4} \lim_{x \to 0} \frac{\frac{1}{2} \tan 2x - x}{x^3}.$$

所以

$$4L - L = \lim_{x \to 0} \frac{\frac{1}{2} \tan 2x - \tan x}{x^3}$$

$$= \lim_{x \to 0} \frac{\tan x - \tan x (1 - \tan^2 x)}{x^3 (1 - \tan^2 x)} = \lim_{x \to 0} \frac{\tan^3 x}{x^3 (1 - \tan^2 x)}$$

$$= \left(\lim_{x \to 0} \frac{\tan x}{x}\right)^3 \lim_{x \to 0} \frac{1}{1 - \tan^2 x} = 1,$$

所以
$$L = \frac{1}{3}$$
.

注: 请找出解法2中的错误。模仿解法2, 求极限 $L = \lim_{x \to 0} \frac{1}{x}$. 则

$$\frac{1}{2}L = \lim_{x \to 0} \frac{1}{2x} = \lim_{y \to 0} \frac{1}{y} = L,$$

所以 $L - \frac{L}{2} = 0$,从而 L = 0.

解法 2 基于这样的前提假设: 极限 $L=\lim_{x\to 0}\frac{\tan x-x}{x^3}$ 存在且为有限值。这本身是需要证明的,但是不能靠解法 2 的结论 $L=\frac{1}{3}$ 来解释,否则就是循环论证。

解法3.

$$\begin{split} \frac{\tan x - x}{x^3} &= \frac{\sin x - x \cos x}{x^3 \cos x} \\ &= \frac{x - \frac{x^3}{6} + o(x^3) - x \left(1 - \frac{x^2}{2} + o(x^2)\right)}{x^3 (1 + o(1))} \\ &= \frac{\frac{1}{3}x^3 + o(x^3)}{x^3 + o(x^3)} = \frac{\frac{1}{3} + o(1)}{1 + o(1)} \to \frac{1}{3}, \quad x \to 0. \end{split}$$

注: 在解法3中,分子和分母中都出现了 $\cos x$,却使用了不同形式的渐进展开。为什么?在乘法中,因子的主项决定乘积的主项。但在加减法中,求和项的主项未必决定最终结果的主项,所以需要展开到更高一些的阶数。

解法4. 设 $\tan x = x + u(x)$. 则

$$\sin x = [x + u(x)]\cos x,$$

所以

$$x + o(x) = [x + u(x)][1 + o(1)],$$

展开化简得到

$$u(x) + o(u(x)) = o(x).$$

由此得到

$$u(x) = o(x).$$

故可设
$$u(x) = xv(x)$$
, 其中 $v(x) = o(1)$.

由

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

得到

$$2x + 2xv(2x) = \frac{2x + 2xv(x)}{1 - (x + xv(x))^2},$$

即

$$2x + 2xv(x) = [2x + 2xv(2x)][1 - (x + xv(x))^{2}]$$
$$= 2x + 2xv(2x) - 2x^{3}(1 + v(2x))(1 + v(x))^{2}$$
$$= 2x + 2xv(2x) - 2x^{3} + o(x^{3}),$$

化简得到

$$v(2x) - v(x) - x^2 = o(x^2),$$

从而

$$v(x) = \frac{1}{3}x^2 + o(x^2).$$

因此

$$\tan x = x + \frac{1}{3}x^3 + o(x^3).$$

于是

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \frac{1}{3}.$$

泰勒公式(tan(x),0,10) $\rightarrow x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \frac{17}{315} x^7 + \frac{62}{2835} x^9$

图 2: 用 GeoGebra CAS 计算 tan 的渐近展开式

注:将来我们学习了 Taylor 公式以后,可以更方便地得到很多函数的渐近展开。

例 9. (★★) 求単侧极限
$$\lim_{x\to 1^{\pm}} \frac{\arcsin\frac{2x}{1+x^2} - \frac{\pi}{2}}{x-1}$$
.

图 3: 用 GeoGebra CAS 计算单侧极限

解. 我们只求
$$\lim_{x\to 1^-} \frac{\arcsin rac{2x}{1+x^2} - rac{\pi}{2}}{x-1}$$
,另一个留作练习。

记 h=1-x, $t=\frac{\pi}{2}-\arcsin\frac{2x}{1+x^2}\in[0,\pi]$,则 $h\to 0^+$ 当且仅当 $x\to 1^-$,

$$\cos t = \sin\left(\frac{\pi}{2} - t\right) = \frac{2x}{1 + x^2} = \frac{2(1 - h)}{1 + (1 - h)^2} = \frac{1}{1 + \frac{h^2}{2(1 - h)}} \to 1.$$
 (*)

于是 $t=\arccos \frac{2(1-h)}{1+(1-h)^2} \rightarrow 0^+$. (*)式两边展开得到

$$1 - \frac{t^2}{2} + o(t^2) = 1 - \frac{h^2}{2 - 2h} + o(h^2) = 1 - \frac{h^2}{2} + o(h^2),$$

所以由例2结论知

$$t^2 = h^2 + o(h^2),$$

从而

$$t = \sqrt{h^2 + o(h^2)} = h\sqrt{1 + o(1)} = h(1 + o(1)),$$

所以

$$\lim_{x\to 1^-}\frac{\arcsin\frac{2x}{1+x^2}-\frac{\pi}{2}}{x-1}=\lim_{h\to 0^+}\frac{-t}{-h}=1.$$

二、极限的综合练习

例 10. 求

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} \right)$$

解. 分离出主项, 然后渐近展开

$$\begin{split} \sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} &= x\sqrt{1 + \frac{2}{x}} - x\sqrt[3]{1 - \frac{1}{x}} \\ &= x\left(1 + \frac{1}{x} + o\left(\frac{1}{x}\right)\right) - x\left(1 - \frac{1}{3x} + o\left(\frac{1}{x}\right)\right) \\ &= \frac{4}{3} + o(1) \to \frac{4}{3}, \quad x \to +\infty. \end{split}$$

例 11. 求 $\lim_{x\to 0} \frac{\sin(\tan x)}{\tan(\sin x)}$.

解.

$$\frac{\sin(\tan x)}{\tan(\sin x)} = \frac{\tan x + o(\tan x)}{\sin x + o(\sin x)} = \frac{x + o(x)}{x + o(x)} \to 1.$$

例 12. 求 $\lim_{x\to+\infty} x^2 \ln\left(\cos\frac{1}{x}\right)$.

解.

$$x^{2} \ln \left(\cos \frac{1}{x}\right) = \frac{\ln \cos t}{t^{2}} = \frac{\ln \left(1 - \frac{t^{2}}{2} + o(t)^{2}\right)}{t^{2}} = \frac{-\frac{t^{2}}{2} + o(t^{2})}{t^{2}} \to -\frac{1}{2}.$$

例 13. 求 $\lim_{x\to 0} (2\sin x + \cos x)^{\frac{1}{x}}$.

解.

$$(2\sin x + \cos x)^{\frac{1}{x}} = \exp\left(\frac{\ln(2\sin x + \cos x)}{x}\right) = \exp\left(\frac{\ln(1 + 2x + o(x))}{x}\right)$$
$$= \exp\left(\frac{2x + o(x)}{x}\right) = \exp(2 + o(1)) \to e^2.$$

例 14. (★) 求 $\lim_{n\to+\infty} e^{-n} \left(1+\frac{1}{n}\right)^{n^2}$.

解.

$$e^{-n} \left(1 + \frac{1}{n} \right)^{n^2} = \exp \left(n^2 \ln \left(1 + \frac{1}{n} \right) - n \right)$$
$$= \exp \left(n^2 \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2} \right) \right) - n \right)$$
$$= \exp \left(-\frac{1}{2} + o(1) \right) \to \frac{1}{\sqrt{e}}.$$

例 15. 设 a>0 且 $a\neq 1$. 求参数 p 的值,使得 $\lim_{x\to +\infty}x^p\left(a^{\frac{1}{x}}-a^{\frac{-1}{x+1}}\right)$ 为非零实数,并求这个极限的值。

解法1. 令 $t = \frac{1}{x}$. 则

$$\begin{split} x^p \left(a^{\frac{1}{x}} - a^{\frac{1}{x+1}} \right) \\ &= \frac{1}{t^p} \left(e^{t \ln a} - e^{\frac{t \ln a}{1+t}} \right) \\ &= \frac{1}{t^p} \left(1 + t \ln a + \frac{t^2 (\ln a)^2}{2} + o(t^2) - 1 - \frac{t \ln a}{1+t} - \frac{1}{2} \left(\frac{t \ln a}{1+t} \right)^2 + o(t^2) \right) \\ &= \frac{1}{t^p} \left(t \ln a + \frac{t^2 (\ln a)^2}{2} + o(t^2) - t(1-t) \ln a - \frac{1}{2} \left(t \ln a \right)^2 + o(t^2) \right) \\ &= \frac{\ln a + o(1)}{t^{p-2}}, \end{split}$$

所以 p=2, 并且上述极限为 $\ln a$.

解法2

$$\begin{split} x^p a^{\frac{1}{x+1}} \left(a^{\frac{1}{x} - \frac{1}{x+1}} - 1 \right) &= x^p (1 + o(1)) \left[(\ln a) \left(\frac{1}{x} - \frac{1}{x+1} \right) + o \left(\frac{1}{x} - \frac{1}{x+1} \right) \right] \\ &= (\ln a) \frac{x^p}{x(x+1)} + o \left(\frac{x^p}{x(x+1)} \right) \to \begin{cases} \ln a, & \text{ if } p = 2; \\ 0, & \text{ if } p < 2; \\ \infty, & \text{ if } p > 2. \end{cases} \end{split}$$

例 16. 比较 $(1+\frac{1}{n})^{n+\alpha}$, $\sum_{k=0}^{n} \frac{1}{k!}$ 作为 e 的误差。

图 4: 用 GeoGebra 绘制 $(1 + \frac{1}{n})^{n+\alpha}$ 的渐近展开

解.

$$\left(1 + \frac{1}{n}\right)^{n+\alpha} = \exp\left(\left(n + \alpha\right) \ln\left(1 + \frac{1}{n}\right)\right)$$

$$= \exp\left(\left(n + \alpha\right) \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right)$$

$$= \exp\left(1 + \frac{1}{n}(\alpha - \frac{1}{2}) + o\left(\frac{1}{n}\right)\right)$$

$$= \exp\left(1 + \frac{\alpha - \frac{1}{2}}{n} + o\left(\frac{1}{n}\right)\right)$$

所以当 $\alpha \neq \frac{1}{2}$ 时, $\left(1+\frac{1}{n}\right)^{n+\alpha}-\mathrm{e}$ 与 $\frac{1}{n}$ 同阶。当 $\alpha=\frac{1}{2}$ 时, $\left(1+\frac{1}{n}\right)^{n+\alpha}-\mathrm{e}$ 是 比 $\frac{1}{n}$ 更高阶的无穷小。

因此在形如 $\left(1+\frac{1}{n}\right)^{n+\alpha}$ 的数列中, $\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}$ 是收敛效率最高的一个。 可以证明 $\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}$ 的误差是 $\frac{1}{n^2}$ 阶的,所以它的收敛效率远不如数列 $\sum_{k=0}^{n}\frac{1}{k!}$,后者的误差不超过 $\frac{2}{(n+1)!}$ (见第3次习题课第17题).