Discrete Mathematics: Lecture 20

argument (proposition), building arguments, predicate logic, quantifiers, WFFs

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Notes by Prof. Liangfeng Zhang

Argument

DEFINITION: An **argument** (论证) is a sequence of propositions

- Conclusion(结论): the final proposition
- **Premises**(假设): all the other propositions
- Valid(有效): the truth of premises implies that of the conclusion
- **Proof**(证明): a valid argument that establishes the truth of a conclusion

EXAMPLE: a valid argument, a proof

- If $\{2^{-n}\}$ is convergent, then $\{2^{-n}\}$ has a convergent subsequence.
- $\{2^{-n}\}$ is convergent.
- $\{2^{-n}\}$ has a convergent subsequence.

Argument Form

DEFINITION: An **argument form**(论证形式) is a sequence of formulas.

- Valid(有效): no matter which propositions are substituted for the propositional variables, the truth of conclusion follows from the truth of premises
 - Rules of inference(推理规则): valid argument forms (relatively simple)

EXAMPLE: a valid argument form and an invalid argument form

```
premises p \to q p: \{(-1)^n\} is convergent. q: \{(-1)^n\} has a convergent subsequence. q p \to q: \text{If } \{(-1)^n\} is convergent, then \{(-1)^n\} has a convergent subsequence. p \to q \neg p: \{(-1)^n\} is not convergent. \neg q: \{(-1)^n\} does not have a convergent subsequence. \neg q: \{(-1)^n\} does not have a convergent subsequence. \neg q: \{(-1)^n\} The truth of \neg p and p \to q does not imply that of \neg q invalid p \to q does not imply that of \neg q
```

QUESTION: Given the premises P_1, \dots, P_n , show a conclusion Q, that is, show that $P_1 \wedge \dots \wedge P_n \Rightarrow Q$.

Name	Operations
Premise	Introduce the given formulas P_1, \dots, P_n in the
	process of constructing proofs.
Conclusion	Quote the <u>intermediate formula</u> that have
	been deducted.
Rule of replacement	Replace a formula with a <u>logically</u>
	<u>equivalent</u> formula.
Rules of Inference	Deduct a new formula with a <u>tautological</u>
	implication.
Rule of substitution	Deduct a formula from a <u>tautology</u> .

Review: Tautological Implications

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \wedge (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

EXAMPLE: Show that the premises 1, 2, 3, and 4 lead to conclusion 5.

- 1. "It is not sunny this afternoon and it is colder than yesterday," $\neg P \land 9$
- 2. "We will go swimming only if it is sunny," $r \rightarrow r$
- 3. "If we do not go swimming, then we will take a canoe trip," $\neg r \rightarrow S$
- 4. "If we take a canoe trip, then we will be home by sunset" $\int \rightarrow t$
- 5. "We will be home by sunset."

Translating the premises and the conclusion into formulas. Let

- p: "It is sunny this afternoon"
- q: "It is colder than yesterday"
- r: "We will go swimming"
- s: "We will take a canoe trip"
- t: "We will be home by sunset"
 - The premises are $\neg p \land q, r \rightarrow p, \neg r \rightarrow s$, and $s \rightarrow t$.
 - The conclusion is *t*.
- Question: $?(\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t) \Rightarrow t$
 - Can be proven with truth table. 32 rows!

EXAMPLE: Show that the premises 1, 2, 3, and 4 lead to conclusion 5.

- 1. "It is not sunny this afternoon and it is colder than yesterday,"
- 2. "We will go swimming only if it is sunny,"
- 3. "If we do not go swimming, then we will take a canoe trip,"
- 4. "If we take a canoe trip, then we will be home by sunset"
- 5. "We will be home by sunset."

```
Show that (\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t) \Rightarrow t
       ¬p ∧ q Premise (主体)
 (1)
                        Simplification using (1) P \land 9 \Rightarrow P
 (2) \neg p
                                                   7P((r>p)=)7r
 (3) 	 r \to p
                        Premise
                        Modus tollens using (2) and (3)
 (4)
       \neg r
 (5)
     \neg r \rightarrow s
                        Premise
                                                 7r/(7r-)5)=)5
                                                        5/(s+t)=)t
                        Modus ponens using (4) and (5)
 (6)
              S
                        Premise
 (7)
     s \rightarrow t
 (8)
              t
                        Modus ponens using (6) and (7)
```

EXAMPLE: Show that $(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$

(1)	$P \vee Q$	Premise

(2)
$$\neg P \rightarrow Q$$
 Rule of replacement applied to (1)

(3)
$$Q \rightarrow S$$
 Premise

(4)
$$\neg P \rightarrow S$$
 Hypothetical syllogism applied to (2) and (3)

(5)
$$\neg S \rightarrow P$$
 Rule of replacement applied to (4)

(6)
$$P \to R$$
 Premise

(7)
$$\neg S \rightarrow R$$
 Hypothetical syllogism applied to (5) and (6)

(8)
$$S \vee R$$
 Rule of replacement applied to (7)

Limitation of Propositional Logic

EXAMPLE: What is the underlying tautological implication in the following proof?

- If 1/3 is a rational number, then 1/3 is a real number.
- 1/3 is a rational number.
- 1/3 is a real number.
 - $q \rightarrow r$:"If 1/3 is a rational number, then 1/3 is a real number.
 - q:"1/3 is a rational number"
 - r:"1/3 is a real number"
 - What is the underlying tautological implication?
 - $(q \to r) \land q \Rightarrow r$
 - YES. This is a tautological implication.

Limitation of Propositional Logic

EXAMPLE: What is the underlying tautological implication in the following proof?

- All rational numbers are real numbers
- 1/3 is a rational number
- 1/3 is a real number
 - p:"All rational numbers are real numbers"
 - q:"1/3 is a rational number"
 - r:"1/3 is a real number"
 - What is the underlying tautological implication?
 - $p \land q \Rightarrow r$?
 - NO. $p \land q \rightarrow r$ is not a tautology.
 - Why is this a proof?
 - We need predicate logic.

周间逻辑

Predicate and Individual

- A predicate is a function from a domain of individuals to $\{T, F\}$
- n-ary predicate $_{n}$ $_{
 m Tightarrow Ti$
 - *I*: "is an integer" // unary
 - G: "is greater than" //binary
- Predicate constant 请词常项: a concrete predicate // I, G
- Predicate variable அன்ற a symbol that represents any predicate

Individual ↑ (in a sentence)

- " $\sqrt{1+2\sqrt{1+3\sqrt{1+\cdots}}}$ is an integer"
- " e^{π} is greater than π^{e} "

 - Individual Variable 个体变项: X, y, Z
 - **Domain**个体域: the set of all individuals in consideration

From Predicates to Propositions

Propositional function $P(x_1, ..., x_n)$, where P is an n-ary predicate

- P(x,y):"x is greater than y"
- P(x, y) gives a proposition when we assign values to x, y
 - $P(e^{\pi}, \pi^e)$ is a proposition (a true proposition)
- P(x, y) is not a proposition

EXAMPLE: p:"Alice's father is a doctor"; q:"Bob's father is a doctor"

- Individuals: Alice's father, Bob's father; Predicate D: "is a doctor"
- p = D(Alice's father), q = D(Bob's father)

Function of Individuals: a map on the domain of individuals

- f(x) = x's father
- p = D(f(Alice)); q = D(f(Bob))

Universal Quantifier

DEFINITION: Let P(x) be a propositional function. The **universal** quantification $ext{exp}$ of P(x) is "P(x) for all x in the domain".

- notation: $\forall x \ P(x)$; read as "for all $x \ P(x)$ " or "for every $x \ P(x)$ "
 - "∀" is called the universal quantifier 全称量词
 - " $\forall x P(x)$ " is true iff P(x) is true for every x in the domain
 - " $\forall x P(x)$ " is false iff there is an x_0 in the domain such that $P(x_0)$ is false

EXAMPLE: P(n): " $n^2 + n + 41$ is a prime"

- When domain = natural numbers, " $\forall nP(n)$ " is "for every natural number n, n^2+n+41 is a prime"
- When domain is $D = \{0,1,\ldots,39\}$, " $\forall nP(n)$ " is "for every $n \in D$, $n^2 + n + 41$ is a prime"

REMARK: If the domain is empty, then " $\forall x P(x)$ " is true for any P.

Existential Quantifier

DEFINITION: Let P(x) be a propositional function. The **existential quantification** P(x) is "there is an x in the domain such that P(x)"

- notation: $\exists x \ P(x)$; read as "for some $x \ P(x)$ " or "there is an x s. t. P(x)"
 - "∃" is called the **existential quantifier**存在量词
 - " $\exists x P(x)$ " is true iff there is an x in the domain such that P(x) is true
 - " $\exists x P(x)$ " is false iff P(x) is false for every x in the domain

EXAMPLE: P(x): " $x^2 - x + 1 = 0$ "

• " $\exists x \ P(x)$ " is false when $D = \mathbb{R}$ and is true when $D = \mathbb{C}$

REMARK: If the domain is empty, then " $\exists x \ P(x)$ " is false for any P.

REMARK: if not stated, the individual can be anything.

Binding Variables and Scope

邦定支量

作用块

DEFINITION: An individual variable x is **bound**_{0\(\pi\)\(\pi\)\) if a quantifier (\forall, \exists) is used on x; otherwise, x is said to be **free**_{0\(\phi\)\(\phi\)}.}

- $\exists x(x+y=1)$
 - x is bound and y is free
- scoperate of a quantifier: the part of a formula to which a quantifier is used
 - the scope of $\exists x \text{ in } \exists x(x+y=1) \text{ is } (x+y=1)$
- Predicate Logic_{谓词逻辑}: the area of logic that deals with predicates and quantifiers (a.k.a. predicate calculus)
 - predicate logic is an extension of propositional logic

Well-Formed Formulas

Elements that may appear in Well-Formed Formulas 合式公式:

- Propositional constants: **T,F**, p, q, r, ...
- Propositional variables: p, q, r, ...
- Logical Connectives: ¬,Λ,V, →, ↔
- Parenthesis: (,)
- Individual constants: a, b, c, ...
- Individual variables: x, y, z, ...
- Predicate constants: *P*, *Q*, *R*, ...
- Predicate variables: *P*, *Q*, *R*, ...
- Quantifiers: ∀,∃
- Functions of individuals: f, g, ...

Well-Formed Formulas

DEFINITON: well-formed formulas 合式公式/formulas

- propositional constants, propositional variables, and propositional functions without connectives are WFFs
- 2) If A is a WFF, then $\neg A$ is also a WFF
- 3) If A, B are WFFs and there is no individual variable x which is bound in one of A, B but free in the other, then $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ are WFFs.
- 4) If A is a WFF with a free individual variable x, then $\forall x \ A, \exists x \ A$ are WFFs.
- 5) WFFs can be constructed with 1)-4).
 - Example: $\forall x \ F(x) \ \lor G(x), \forall x P(y)$ are not WFFs
- Example: $\exists x \ (A(x) \rightarrow \forall y \ B(x,y))$ is a WFF

Precedence: \forall , \exists have higher precedence than \neg , \land , \lor , \rightarrow , \leftrightarrow

• $\forall x P(x) \rightarrow Q(y) \text{ means } (\forall x P(x)) \rightarrow Q(y), \text{ not } \forall x (P(x) \rightarrow Q(y))$