Здесь будет титульный лист.

РЕФЕРАТ

Здесь будет реферат.

СОДЕРЖАНИЕ

Вв	едение	4
1	Теоретическая часть	5
	1.1 Формулы	5
2	Вторая глава	7
3	Третья глава	8
Сп	исок использованных источников	Ç

введение

Здесь будет введение. [1]

1 Теоретическая часть

1.1 Формулы

Скорость при равноускоренном движении (1.1) TODO [2, c. 96].

$$\vec{v}(t) = \vec{v_0} + \vec{a}t \tag{1.1}$$

где $\vec{v}(t)$ – вектор скорости тела в момент времени t;

 $\vec{v_0}$ – вектор начальной скорости тела;

 \vec{a} – вектор ускорения тела;

t — момент времени.

Причём вектор $\vec{v}(t)$ должен быть сонаправлен вектору $\vec{v_0}$, а вектор \vec{a} противонаправлен. Для того чтобы выяснить, при каких t сонаправленность векторов $\vec{v}(t)$ и $\vec{v_0}$ в уравнении (1.1) соблюдается, достаточно увидеть, что длина вектора $\vec{v_0}$ должна быть больше длине вектора $\vec{a}t$ и получить неравенство для t (1.2).

$$t < \frac{|\vec{v_0}|}{|\vec{a}|} \tag{1.2}$$

А для остальных $t, \, \vec{v}(t)$ следует принять нулю. Тогда получится система (1.3).

$$\vec{v}(t) = \begin{cases} \vec{v_0} + \vec{a}t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(1.3)

Проекции на ось абцисс (1.4) и ординат (1.5):

$$v_x(t) = \begin{cases} v_{0_x} + a_x t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
 (1.4)

где $v_x(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось X; v_{0_x} – проекция вектора начальной скорости тела $\vec{v_0}$ на ось X; a_x – проекция вектора ускорения тела \vec{a} на ось X.

$$v_y(t) = \begin{cases} v_{0y} + a_y t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$

$$(1.5)$$

где $v_y(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось Y; v_{0y} – проекция вектора начальной скорости тела $\vec{v_0}$ на ось Y; a_y – проекция вектора ускорения тела \vec{a} на ось Y.

Теперь найдём формулу для траектории движения тела. Формуле, соответвующей (1.1), только для траектории, соответствует (1.6):

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2} \tag{1.6}$$

где $\vec{r}(t)$ – радиус-вектор положения тела в момент времени t; $\vec{r_0}$ – радиус-вектор начального положения тела.

Исходя из (1.3), уравнение для траектории с учётом того, что вектор скорости должен быть противонаправлен вектору ускорения, будет (1.7):

$$\vec{r}(t) = \begin{cases} \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ \vec{r_0}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(1.7)

Соответствующие проекции на оси абцисс (1.8) и ординат (1.9):

$$x(t) = \begin{cases} x_0 + v_{0x}t + \frac{a_x t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ x_0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(1.8)

где x(t) – координата положения тела $\vec{r}(t)$ в момент времени t на ось X; x_0 – координата начального положения тела $\vec{v_0}$ на ось X.

$$r_{y}(t) = \begin{cases} y_{0} + v_{0y}t + \frac{a_{y}t^{2}}{2}, & 0 \leqslant t < \frac{|\vec{v_{0}}|}{|\vec{a}|}, \\ y_{0}, & t \geqslant \frac{|\vec{v_{0}}|}{|\vec{a}|}. \end{cases}$$
(1.9)

где y(t) – координата положения тела $\vec{r}(t)$ в момент времени t на ось Y; y_0 – координата начального положения тела $\vec{v_0}$ на ось Y.

Формулы (1.8) и (1.9) являются ключевыми в этой работе.

2 Вторая глава

Здесь будет вторая глава

3 Третья глава

Здесь будет третья глава

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Здесь будет список использованных источников.
- 2. Роуэлл, Г. Физика : учебное издание / Г. Роуэлл, С. Герберт. Москва : Просвещение, 1994.-576 с. ISBN 5-09-002920-2.