Université Mohammed kheider Biskra Département de Mathématiques $\mathbf{1}^{i\grave{e}me}$ année Master: 2021 - 2022 Module: Distributions et EDP

TD:2

Exercice 1 On pose, pour $\varphi \in D(\mathbb{R})$, $\langle vp_{\overline{x}}^{1}, \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| \geq \varepsilon} \frac{\varphi(x)}{x} dx$

- 1. Montrer que $vp\frac{1}{x}$ est une distribution, d'ordre au plus 1.
- 2. Montrer que $vp\frac{1}{x}est$ exactement d'ordre 1.

Exercice 2 Montrer que l'application $T:D(\mathbb{R})\to\mathbb{C}$ définie par $\langle T, \varphi \rangle = \sum_{n=0}^{\infty} \varphi(n)$ est une distribution d'ordre 0 sur \mathbb{R}

Exercice 3 Montrer que l'application $T:D(\mathbb{R})\to\mathbb{C}$ définie par $< T, \varphi > = \sum_{n=1}^{\infty} \frac{1}{n} \left[\varphi \left(n \right) - \varphi \left(0 \right) \right]$ est une distribution d'ordre infrieur ou égale à 1 sur \mathbb{R} .

Exercice 4 Pour tout $\varphi \in D(\mathbb{R})$, on pose

$$< T, \varphi > = \int \int_{\mathbb{R}^2} e^{-\left(x^2 + y^2\right)} \varphi\left(\sin\left(xy\right)\right) dxdy$$

- 1. Montrer que T est une distribution.
- 2. Quel est le support de T?

Exercice 5 Considérons les fonctions suivantes:
$$H\left(x\right) = \begin{cases} 1, \ si \ |x| < \frac{1}{2} \\ 0, \ si \ |x| \geq \frac{1}{2} \end{cases}, Sign\left(x\right) = \frac{|x|}{x}$$
 Calculer $H'\left(x\right)$, $Sign'\left(x\right)$ dans $D'\left(\mathbb{R}\right)$

1. Montrer que $\ln |x| \in L^1_{loc}(\mathbb{R})$ et calculer $(\ln |x|)'$ dans D'Exercice 6 (\mathbb{R})

2. Soit $x^+ = \max(x,0)$, calculer T'_{x^+} (la distribution associée à x^+)

3. Soit $\varphi \in D(\mathbb{R})$. Calculer $\langle x^2 \delta^{"}, \varphi \rangle$, en déduire une solution de l'equation $x^2T = \delta$.

Exercice 7 Calculer au sens des distributions, et les dérivées successives de la fonction |x|.

Exercice 8 Soient H(x) la fonction d'Heaviside, et δ la distribution de Dirac

- 1. $Calculer\left(H\sin\right)'$ et $\left(H\cos\right)'$ dans $D^{'}\left(\mathbb{R}\right)$ En déduire une solution générale $de\ y'' + y = \delta$
- 2. Montretrer que

 \mathbf{a} $\left(\frac{d}{dx} - \alpha\right) H(x) e^{\alpha x} = \delta.$

b) $\left(\frac{d^2}{dx^2} + \omega^2\right) \frac{H(x)\sin \omega x}{\omega} = \delta.$

Exercice 9 Déterminer les limites, dans $D'(\mathbb{R})$, des suites de distributions suivantes:

1. $T_n = n \left(\delta_{\frac{1}{n}} - \delta_{-\frac{1}{n}} \right)$.

2. $T_n = n^2 \left(\delta_{\frac{1}{n}} + \delta_{-\frac{1}{n}} - 2\delta_0 \right)$

Exercice 10 Soit f_n la fonction définie sur \mathbb{R} par $f_n = \begin{cases} n \ sur \ [0; \frac{1}{n}] \\ 0 \ sinon \end{cases}$

$$f_n = \begin{cases} n \ sur \ [0; \frac{1}{n} \\ 0 \ sinon \end{cases}$$