Ridge Regression

9 questions

1 poin	t	
1. Which	of the following is NOT a valid measure of overfitting?	
0	Sum of parameters (w1+w2++wn)	
0	Sum of squares of parameters (w1^2 + w2^2 + +wn^2)	
0	Range of parameters, i.e., difference between maximum and minimum parameters	
0	Sum of absolute values of parameters (w1 + w2 + + wn)	
1 poin	t	
2. In ridge regression, choosing a large penalty strength λ tends to lead to a model with (choose all that apply):		
	High bias	
	Low bias	
	High variance	
	Low variance	

1 point 0

C

 C

1 point	
value o matrix	e regression using unnormalized features, if you double the of a given feature (i.e., a specific column of the feature), what happens to the estimated coefficients for every other e? They:
0	Double
0	Half
0	Stay the same
0	Impossible to tell from the information provided
validat	nly have a small number of observations, K-fold cross cion provides a better estimate of the generalization error ne validation set method. True False
	cross validation is more computationally intensive than one-out (LOO) cross validation. True False

7.

Assume you have a training dataset consisting of N observations and D features. You use the closed-form solution to fit a multiple linear regression model using ridge regression. To choose the penalty strength λ , you run leave-one-out (LOO) cross validation searching over L values of λ . Let Cost(N,D) be the computational cost of running ridge regression with N data points and D features. Assume the prediction cost is negligible compared to the computational cost of training the model. Which of the following represents the computational cost of your LOO cross validation procedure?

L* N * Cost(N,D)
 L* N * Cost(N-1,D)
 L* D * Cost(N-1,D)
 L* D * Cost(N,D)

L* Cost(N-1,D)

L* Cost(N,D)

1 point

8.

Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. How long will it take to run leave-one-out (LOO) cross-validation for this selection task?

About 3 hoursAbout 3 daysAbout 3 years

About 3 decades

P~....

9.

Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. If you only want to spend about 1 hour to select λ , what value of k should you use for k-fold cross-validation?

O k=6

() k=36

O k=600

O k=3600

Submit Quiz

