What End Users Need from the Ontology Community

- Experience from NCPI, FDA, and COVID-19 Ontologies Harmonization effort.

Asiyah Yu Lin, DATA scholar @ NHGRI/NIH
WSBO2021
July 15, 2021

End users: which ontology do I use?

- End user:
 - developer, domain expert, project manager
 - non-ontologist, not involved in ontology development
- MONDO, DO, HPO? Or SNOMED CT, MeSH...
- PubChem or ChEBI?
- OBI or BAO?

FDA GSRS Use Case

Which disease ontology to use for annotating clinicaltrial.gov data?

By Alex Welsh and Larry Callahan (FDA)

FDA's Global Substance Registration System

Home of the Unique Ingredient Identifier (UNII)

- Substance: Any matter of defined composition that has discrete existence, whose origin may be biological, mineral or chemical. (ISO 11238)
- International collaborative.
- NCATS: GINAS
- ~300K substance to clinical trial relationships via "intervention" in clinicaltrials.gov

Global Substance Registration System - GSRS

The main goal of the GSRS software is to assist agencies in registering and documenting information about substances found in medicines. The Global Ingredient Archival System provides a common identifier for all of the substances used in medicinal products, utilizing a consistent definition of substances globally, including active substances under clinical investigation, consistent with the ISO 11238 standard.

Search Substances

Q

Mapping to Clinical Trial enables links from application to trials

Substance Hierarchy

@ GEFITINIB

{ACTIVE MOIETY}

S65743JHBS

Application Count:

CDER GSRS: 134

Product Count:

Active: 18

Inactive: 0

Clinical Trial Count:

<u>329</u>

Adverse Event Count:

7659

Substance Hierarchy

▶ € NAZARTINIB

KE7K32EME8

{ACTIVE MOIETY}

Application Count:

CDER GSRS: 5

Product Count:

Active: 0

Inactive: 0

Clinical Trial Count:

9

Adverse Event Count:

<u>17</u>

Linking conditions to substance and trials is challenging!

Edit	+	NCT03178552	A Study to Evaluate Efficacy and Safety of Multip Participants With Non-Small Cell Lung Cancer (N
Edit	+	NCT03061812	Study Comparing Rovalpituzumab Tesirine Vers Metastatic Small Cell Lung Cancer With High Le First Disease Progression During or Following Fi (3)
Edit	+	NCT03289962	A Study of RO7198457 as a Single Agent and in With Locally Advanced or Metastatic Tumors (2)
Edit	+	NCT04292119	Lorlatinib Combinations in Lung Cancer (4)
Edit	+	NCT03917381	GEN1046 Safety Trial in Patients With Malignant
Edit	+	NCT01034514	4D-CT-based Ventilation Imaging for Adaptive Fu
Edit	+	NCT01029678	Concomitant Radio-chemotherapy in the Elderly

Possible solutions

- Make use of ClinicalTrials.gov strategies to categorize trials by condition, inside the GSRS.
- Use NLP strategies to classify raw clinical trial conditions text into a **broad** set of organ::disease terms for easier searching and faceting.

ClinicalTrials.gov

Terms	Search Results*	Entire Database**
Synonyms		
Pulmonary Neoplasm	8,499 studies	8,499 studies
Lung Cancer	7,755 studies	7,755 studies
Lung Neoplasm	7,081 studies	7,081 studies
Lung carcinoma	1,270 studies	1,270 studies
lung tumors	90 studies	90 studies
Carcinoma of the Lung	48 studies	48 studies
Cancer of the Lung	41 studies	41 studies
Neoplasm of lung	35 studies	35 studies
CARCINOMA OF LUNG	26 studies	26 studies

NCPI Use Case

Which ontology to use for disease hierarchy in facet search display?

What is NCPI?

The NIH Cloud Platform Interoperability (NCPI) effort aims to establish and implement guidelines and technical standards to empower end-user analyses across participating NIH cloud platforms, to facilitate the realization of a trans-NIH, federated data ecosystem.

Established in late 2019 as a coalition of independently funded NIH IC cloud-based data platforms, with additional support from ODSS

https://anvilproject.org/ncpi

NCPI Dataset Catalog

Search Results

Download TSV 🕁 Copy URL 🔲

Mapping the diseases to MONDO/DO/HPO

- Only look for "exact match" or "equivalent match"
- MESH IDs to DO IDs using <u>DO-MESH mapping file</u> provided by DO(Lynn Schriml), then manually evaluated using manual search on DO.
- MONDO mapping: using DO mapped IDs to find MONDO IDs, then search the disease names for MONDO IDs.
- If neither MONDO or DO, then search HPO. If not HPO, then search NCIT.

Mapping Results:

- 73% (43/59) is mapped to DO IDs
- 78% (46/59) mapped to MONDO IDs (includes all 43 DO IDs)
- HPO only term (2): Venous thrombosis, Left ventricular hypertrophy
- NCIT only term (1): Prostatic Neoplasms, Castration-Resistant
- 17% (10/59) terms are not mapped (non disease terms):
 Arterial Pressure, Blood Pressure, Lipids, Mendelian Conditions,
 Metabolomics, Platelet Aggregation, Population, Reference Values,
 Women's Health, Xenograft Model Antitumor Assays

Decisions for the NCPI dataset catalog

- Remain using the MeSH terms.
- Plan to use MeSH hierarchy.
- Non disease terms can not be covered by any of the candidate ontologies.
- Switch to display as "disease/focus" as the same in dbGaP.

· Arteriosclerosis, Coronary

Previous Indexing:

Coronary Disease (1966-1986)

See Also:

Atherectomy, Coronary

All MeSH Categories
Diseases Category

Cardiovascular Diseases

Heart Diseases

Myocardial Ischemia Coronary Disease

Coronary Artery Disease

All MeSH Categories

Diseases Category

Cardiovascular Diseases

Vascular Diseases

Arterial Occlusive Diseases
Arteriosclerosis

Coronary Artery Disease

All MeSH Categories

<u>Diseases Category</u>

Cardiovascular Diseases

Vascular Diseases

Myocardial Ischemia
Coronary Disease

Coronary Artery Disease

What will end users need?

- A single system encompass MONDO, DO, HPO, MeSH, and NCIT
- Mapping to other standard systems, such as OMOP vocabulary, SNOMED CT, MedDRA, etc.
- Reliable "exact match" and "equivalent match" synced in all relevant ontologies.
- Weighted matches for user's references.
- A unified translator mid-layer to point to this single system.
- Channels to feedback to ontology developers, and more importantly, knowing that end users can provide feedback to ontology community and submit new terms.

COVID-19 Ontology Harmonization Effort

- Ontology of Coronavirus Infectious
 Disease (CIDO) University of Michigan:
 Oliver He and et.al.
- Controlled Vocabulary for COVID-19 (COVoc) – EBI : Zoë May Pendlington and Paola Roncaglia
- 3. COVID-19 Infectious Disease Ontology (IDO-COVID-19) Northwestern University: John Beverley
- 4. Virus Infectious Disease Ontology (VIDO) Northwestern University: John Beverley
- 5. Ontology for collection and analysis of COviD-19 data (CODO) India: Biswanath Dutta and Michael DeBellis
- 6. Homeostasis imbalance process ontology (HOIP) Japan RIKEN: Yuki Yamagata and et.al.
- 7. Medical Action Ontology (MAxO) Jackson Lab: Leigh C. Carmody

Possible solutions

- Ontology harmonization: COVID-19 ontology harmonization as an example.
 - Pro: less ontology mapping, one term for a concept
 - Cons: time consuming, requires higher coordination of ontology developers, may not be realistic
- Ontology mappings: standardized metrics?
- Tools support: enhance end users and developer's interactions.
- Unified interface to interact with end users, build a business service model to respond to end user's request, educational material to lower the entrance bar for users.

Thank You!

asiyah.lin@nih.gov

Acknowledgement: The Office of Data Science Strategy, NIH, provided funding for AYL as a Data and Technology Advancement (DATA) National Service Scholar.