B = [DP BP] C = [G Mp]

Open aloop system:

Soc : 35 (A, B, C, D)

Input to open-loop system:

where
$$\delta(t) = \begin{cases} 1 & 0 \le t \le 0.01 \\ 0 & t > 0.01 \end{cases}$$

Open-loop system simulation:

- Simulate open-loop system Sol using "Isim" for t=0 to t=10 sec. with At = 0.01 sec.
- Plot w(t) vs. t \(\sigma \text{wind gust disturbance (input)} \)
 Plot y, (t) vs. t \(\sigma \text{aircraft pitch angle (output)} \)

Full order optimal Ha dynamic controller design

$$S = | \text{Hisys}(A,B,C,D) |$$

[Au, Be, Ce, De] = lhiss (a)

$$A_{cL} = \begin{bmatrix} A_p + B_p D_c M_p & B_p C_c \\ B_c M_p & A_c \end{bmatrix}$$

Bec = Dp + Bp DeDz

BcDz

Design Validation:

- · Stability: Eigenvalues: Re (xi (Acc)) < 0 = 8 closed loop system stability guaranteed

Input to closed-loop system:

$$\omega(t) = \begin{bmatrix} 10 \\ 0 \end{bmatrix} S(t)$$

$$\omega_{\text{here}} S(t) = \begin{cases} 1; & 0 \le t \le 0.01 \\ 0; & t > 0.01 \end{cases}$$

Closed - loop system simulation:

- · Simulate closed -loop system Son using "Isim" for to to t=10 sec. with $\Delta t = 0.01$ sec.
- Plot w(t) vs. t wind gust disturbance (input)
 Plot y, (t) vs. t airmaft pikh angle (output)

Problem 3

CODE:

```
% PROBLEM 3
% Clear workspace
close all
clear
clc
% Define the system matrices
Ap = [0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0];
      1.5 -1.5 0 0.0057 1.5 0 0 0;
      -12 12 -0.6 -0.0344 -12 0 0 0;
      -0.825 0.29 0 -0.014 -0.29 0 0 0;
      0 0 0 0 -0.73 2.82940625 0 0;
      0 0 0 0 0 -1.25 0 0;
      0 0 0 0 0 0 -1000 0;
      0 0 0 0 0 0 0 -1000];
Bp = [0 \ 0;
      0.16 0.8;
      -19 -3;
      -0.0115 -0.0087;
      0 0;
      0 0;
      0 0;
      0 0];
Dp = [0 \ 0 \ 0;
      0 0 0;
      0 0 0;
      0 0 0;
      0.1149 0 0;
      4 0 0;
      0 1024 0
     0 0 1024];
Cp = [1 0 0 0 0 0 0 0;
      0 1 0 0 0 0 0 0;
     00000000;
     00000000];
By = [0 \ 0;
      0 0;
      0.01 0;
      0 0.01];
Dy = [0 \ 0 \ 0;
```

```
0 0 0;
      0 0 0;
      0 0 0];
Mp = [1 \ 0 \ 0 \ 0 \ 0 \ -139.020647321 \ 0]
      0 1 0 0 0 0 0 -139.020647321];
Dz = [0 142.857142857 0]
      0 0 142.857142857];
% Lumped system matrices
A = Ap;
B = [Dp Bp];
C = [Cp; Mp];
D = [Dy By; Dz zeros(size(Dz,1), size(By,2))];
% State-space system
Sol = ss(A, B, C, D)
% Define the lumped (disturbance + control) input
t = 0:0.01:10;
w_amplitude = [10; 0; 0];
w_duration = 0.01;
w_impulse = w_amplitude * (t >= 0 & t < w_duration);</pre>
u = zeros(size(Bp,2), size(w_impulse,2));
w = [w_{impulse}; u];
% Simulate the open-loop system response
[y_ol, t_out, x_ol] = lsim(Sol, w', t);
% Plot the results
figure;
sgtitle('Open-Loop System Response');
subplot(2, 1, 1);
plot(t, w(1, :));
legend('Input (Wind Gust Disturbance)');
subplot(2, 1, 2);
plot(t, y_ol(:, 1));
legend('Output (Aircraft Pitch Angle)');
% H∞ controller design
S = ltisys(A, B, C, D);
nz = size(Mp, 1);
nu = size(Bp, 2);
```

```
r = [nz nu];
[gopt, G] = hinflmi(S, r)
% H∞ controller matrices
disp('H∞ controller:')
[Ac, Bc, Cc, Dc] = ltiss(G)
% Closed-loop system matrices
disp('Closed-loop system:')
Acl = [Ap+Bp*Dc*Mp, Bp*Cc; Bc*Mp, Ac]
Bcl = [Dp+Bp*Dc*Dz; Bc*Dz]
Ccl = [Cp+By*Dc*Mp, By*Cc]
Dcl = Dy+By*Dc*Dz
% Closed-loop system
Scl = ss(Acl, Bcl, Ccl, Dcl);
% Verification of designed H∞ controller
disp('H∞ norm:')
hinf norm = hinfnorm(Scl)
disp('Closed-loop poles:')
eig Acl = eig(Acl)
if((hinf_norm < gopt) && all(real(eig_Acl) < 0.0))</pre>
    disp('Verification of H∞ norm and stability constraints successful!')
else
    disp('Verification of H∞ norm and stability constraints failed!')
end
% Define the lumped (disturbance + control) input
t = 0:0.01:10;
w_amplitude = [10; 0; 0];
w_duration = 0.01;
w_impulse = w_amplitude * (t >= 0 & t < w_duration);</pre>
w = w_impulse;
% Simulate the open-loop system response
[y_cl, t_out, x_cl] = lsim(Scl, w', t);
% Plot the results
figure;
sgtitle('Closed-Loop System Response');
subplot(2, 1, 1);
```

```
plot(t, w(1, :));
legend('Input (Wind Gust Disturbance)');
subplot(2, 1, 2);
plot(t, y_cl(:, 1));
legend('Output (Aircraft Pitch Angle)');
```

OUTPUT:

```
Sol =
  A =
                        x2
                                  xЗ
                                             x4
                                                       x5
                                                                  x6
                                                                            x7
                                                                                       x8
             x1
             0
                        0
                                   1
                                              0
                                                        0
                                                                   0
                                                                             0
                                                                                        0
   x1
   x2
            1.5
                      -1.5
                                    0
                                        0.0057
                                                      1.5
                                                                   0
                                                                             0
                                                                                        0
                                                                                        0
   хЗ
            -12
                        12
                                -0.6 -0.0344
                                                      -12
                                                                   0
                                                                             0
         -0.825
                      0.29
                                        -0.014
                                                    -0.29
                                                                                        0
   x4
                                    0
                                                                   0
                                                                             0
                                    0
                                                    -0.73
                                                              2.829
                                                                                        0
   x5
               0
                         0
                                              0
                                                                             0
               0
                         0
                                    0
                                              0
                                                        0
                                                              -1.25
                                                                             0
                                                                                        0
   x6
               0
                         0
                                    0
                                              0
                                                         0
                                                                         -1000
                                                                                        0
                                                                   0
   x7
               0
                         0
                                    0
                                              0
                                                         0
                                                                   0
                                                                                    -1000
   x8
                                                                              0
  B =
                        u2
             u1
                                  u3
                                             u4
                                                       u5
   x1
               0
                         0
                                    0
                                              0
                                                         0
               0
                         0
                                    0
                                                      0.8
   x2
                                           0.16
                                            -19
               0
                         0
                                    0
   xЗ
                                                       -3
               0
                         0
                                    0
                                       -0.0115
                                                 -0.0087
   x4
   x5
         0.1149
                         0
                                    0
                                              0
                                                         0
               4
                         0
                                    0
                                              0
                                                         0
   х6
   x7
               0
                      1024
                                    0
                                              0
                                                         0
   x8
               0
                                1024
                                              0
                                                         0
  C =
          x1
                 x2
                        хЗ
                               x4
                                      x5
                                             x6
                                                    x7
                                                           x8
   у1
           1
                  0
                         0
                                0
                                       0
                                              0
                                                     0
                                                            0
   у2
           0
                  1
                         0
                                0
                                       0
                                              0
                                                     0
                                                            0
                  0
                         0
                                0
                                       0
                                              0
                                                     0
                                                            0
   уЗ
           0
   у4
           0
                  0
                         0
                                0
                                       0
                                              0
                                                     0
                                                            0
   у5
           1
                  0
                         0
                                0
                                       0
                                              0
                                                  -139
                                                            0
   у6
           0
                  1
                         0
                                0
                                       0
                                              0
                                                     0
                                                       -139
  D =
                   u2
                           u3
                                    u4
                                            u5
           u1
            0
                     0
                             0
                                     0
                                             0
   у1
   y2
            0
                     0
                             0
                                     0
                                             0
            0
                     0
                             0
                                  0.01
                                             0
   уЗ
                                          0.01
   у4
            0
                     0
                             0
                                     0
            0
   у5
                142.9
                             0
                                     0
                                             0
   у6
                     0
                       142.9
                                     0
                                             0
```

Continuous-time state-space model.

Minimization of gamma:

Solver for linear objective minimization under LMI constraints

Iterations : Best objective value so far

1 2 3 4 5 6 7 8 9 10 11	3650.305369 679.874263 415.718365 196.917091 124.993308 124.993308 39.263120 32.197975 21.790789
13 14 15 16 17 18 19 20 21 22 23 24	4.993262 4.993262 2.508027 1.610124 1.610124 1.224387 1.224387 1.003425 1.003425 1.003425

```
25
                       0.941879
                       0.941879
   26
   27
                       0.941879
   28
                       0.912216
   29
                       0.912216
   30
                       0.912216
   31
                       0.896765
   32
                       0.896765
   33
                       0.896765
                  new lower bound:
                                     0.820170
   34
                       0.896765
   35
                       0.887844
   36
                       0.887844
   37
                       0.887844
                  new lower bound:
                                     0.867568
   38
                       0.884997
   39
                       0.883333
* switching to QR
                       0.883333
   40
                                      0.877811
                  new lower bound:
Result: feasible solution of required accuracy
         best objective value: 0.883333
         quaranteed absolute accuracy: 5.52e-03
         f-radius saturation: 0.458\% of R = 1.00e+08
Optimal Hinf performance: 8.823e-01
qopt = 0.8823
G = 10 \times 10
  77.0684 -206.4493 -45.4703 -89.5611 -35.5194 -12.4998 106.3172
         3.8637 7.0000
-220.1100 183.7132
                      2.3812 116.5260 57.5111 1.5305 -226.7402
4.7605 -1.7312
                       0
 397.2066 -510.2170
                    -63.3345 -269.2750 -121.1621 -18.7382 432.1665
5.0789 -3.3582
                      0
                                                 0.7772
   5.7829 -3.5433
                                        1.2446
                      1.5761 -4.9621
                                                           7.5619
1.3169 3.6942
                       0
 293.4949 -341.9114
                    -33.2695 -188.0955 -88.9407 -10.9885 313.4063
1.8555 1.3533
                       0
  -7.7820 8.1529
                     0.3504
                               4.6494
                                         2.2216
                                                 0.1100
                                                          -8.8267
0.2847 - 0.0942
                      0
-263.0885 307.1698
                     29.7766 169.0752
                                        79.4155
                                                 9.7083 -282.4749
0.6617 -0.6630
                      0
 -60.3310 101.1714
                               48.7081
                                                 4.7857 -70.3890
                     16.6276
                                        21.1076
0.5497
       -0.2233
                      0
-102.4696 -63.6786
                    -48.4705
                               1.8408
                                        11.4945 -12.2981 -80.1751
0.1321
      -0.0537
                      0
        0
                 0
                          Ω
                                   0
                                            0
                                                      0
         0
               -Inf
H∞ controller:
Ac = 7 \times 7
  77.0684 -206.4493 -45.4703 -89.5611 -35.5194 -12.4998 106.3172
-220.1100 183.7132 2.3812 116.5260 57.5111
                                                 1.5305 -226.7402
 397.2066 -510.2170 -63.3345 -269.2750 -121.1621 -18.7382 432.1665
   5.7829 -3.5433
                     1.5761 -4.9621
                                        1.2446
                                                 0.7772
 293.4949 -341.9114 -33.2695 -188.0955 -88.9407 -10.9885 313.4063
                                        2.2216
  -7.7820 8.1529
                     0.3504
                             4.6494
                                                 0.1100
                                                          -8.8267
```

```
-263.0885 307.1698 29.7766 169.0752 79.4155 9.7083 -282.4749
Bc = 7 \times 2
  -2.3242 3.8637
  4.7605 -1.7312
  -5.0789 -3.3582
  1.3169 3.6942
  -1.8555 1.3533
 -0.2847 -0.0942
 0.6617 -0.6630
Cc = 2 \times 7
-60.3310 101.1714 16.6276 48.7081 21.1076 4.7857 -70.3890
-102.4696 -63.6786 -48.4705 1.8408 11.4945 -12.2981 -80.1751
Dc = 2 \times 2
 0.5497 -0.2233
  0.1321 -0.0537
Closed-loop system:
Acl = 15 \times 15
10^{3} \times
0.0109 \quad -0.0916 \quad -0.0348 \quad -0.0361 \quad 0.0093 \quad 0.0126 \quad -0.0091 \quad -0.0754
 -0.0228 0.0164 -0.0006 -0.0000 -0.0120 0 1.5070 -
0.6121 1.4537 -1.7312 -0.1705 -0.9310 -0.4355 -0.0540 1.5779
0.0004 \qquad 0.0016 \quad -0.0006 \qquad 0.0002 \quad -0.0006 \quad -0.0003 \qquad 0.0001 \qquad 0.0015
     0 0 0 0 0 -0.0007 0.0028 0 0 0 0 0 0
           0 0 0
                 0
0
      0
                           0
                                  0 -0.0013
                                              0
                                  0
                           0
      0
0 -1.0000
0 0
0.5371 0.0771 -0.2064 -0.0455 -0.0896 -0.0355 -0.0125 0.1063
0.0048 -0.0017 0
                                  0 0 -0.6618
                           0
0.2407 -0.2201 0.1837 0.0024 0.1165 0.0575 0.0015 -0.2267
Bcl = 15 \times 3
10^{3} \times
         0 0
      0
      0 0.0277 -0.0112
      0 -1.5486 0.6290
0 -0.0011 0.0004
  0.0001 0 0
0.0040 0 0
0 1.0240 0
         0 1.0240
      0
      0 -0.3320
                0.5520
      0 0.6801 -0.2473
  = 4×15
1.0000 0 0
0 0 0
0 1.0000 0
Ccl = 4 \times 15
                          0 0
                                        0
0
0
                                                 0
0
0
                    0
                           0
                                          0
                           0
                    0
                                          0 -0.7642
0.3104 -0.6033 1.0117 0.1663 0.4871 0.2111 0.0479 -0.7039
```

```
0.0013 -0.0005
                             0
                                                   0 0 -0.1836
0.0746 \quad -1.0247 \quad -0.6368 \quad -0.4847 \quad 0.0184 \quad 0.1149 \quad -0.1230 \quad -0.8018
Dcl = 4 \times 3
         0
                    0
                               0
                    0
         0
                               0
              0.7852
         0
                        -0.3190
              0.1887
                        -0.0766
H∞ norm:
hinf norm = 0.8813
Closed-loop poles:
eig Acl = 15 \times 1 complex
10<sup>3</sup> ×
  -0.1048 + 0.0000i
  -0.0311 + 0.0301i
  -0.0311 - 0.0301i
  -0.0016 + 0.0038i
  -0.0016 - 0.0038i
  -0.0036 + 0.0011i
  -0.0036 - 0.0011i
  -0.0035 + 0.0000i
  -0.0000 + 0.0000i
  -0.0000 - 0.0000i
```

Verification of ${\tt H}^\infty$ norm and stability constraints successful!

Closed-Loop System Response

SCREENSHOT:

