Real Analysis Homework 4 score:7

Yueh-Chou Lee

October 24, 2018

1. (Exercise 4.11)

Let f be defined on \mathbb{R}^n and let B(x) denote the open ball $\{y: |x-y| < r\}$ with center x and fixed radius r. Show that the function $g(x) = \sup\{f(y): y \in B(x)\}$ is lsc and that the function $h(x) = \inf\{f(y): y \in B(x)\}$ is use on \mathbb{R}^n . Is the same true for the *closed* ball $\{y: |x-y| \le r\}$?

Proof.

(a) Let x_0 be the limit point of \mathbb{R}^n .

Since $g(x_0) = \sup\{f(y) : y \in B(x_0)\}$, then there will exist $x_1 \in B(x_0)$ such that $f(x_1) > M$ for any $M < g(x_0)$.

Let $\delta = r - |x_0 - x_1| > 0$, then for all $x \in B(x_0, \delta)$, we have $x_1 \in B(x)$.

See the function f in the ball B(x), $f(x_1)$ may not be the superior value, therefore,

$$g(x) = \sup\{f(y) : y \in B(x)\} \ge f(x_1) > M,$$

then

$$\liminf_{x \to x_0} g(x) \ge g(x_0).$$

Hence, g(x) is lsc.

(b) Similarly, let x'_0 be the limit point of \mathbb{R}^n .

Since $h(x'_0) = \inf\{f(y) : y \in B(x'_0)\}$, then there will exist $x'_1 \in B(x'_0)$ such that $f(x'_1) < M'$ for any $M' > h(x'_0)$.

Let $\delta = r - |x_0' - x_1'| > 0$, then for all $x \in B(x_0', \delta)$, we have $x_1' \in B(x)$.

See the function f in the ball B(x), $f(x_1)$ may not be the inferior value, therefore,

$$h(x) = \inf\{f(y) : y \in B(x)\} \le f(x_1') < M',$$

then

$$\limsup_{x \to x_0'} h(x) \le h(x_0').$$

Hence, h(x) is usc.

(c) False!

Let f be a function on \mathbb{R}^1 with f(1) = 1, f(2) = 2 and f(x) = 0 as $x \neq 1$ and $x \neq 2$.

Let r = 1, then g(1) = 2 but $\lim_{x \to 1^{-}} g(x) = 1$, so g is not lsc.

Similarly, let f be a function on \mathbb{R}^1 with f(1) = -1, f(2) = -2 and f(x) = 0 as $x \neq 1$ and $x \neq 2$.

Let r = 1, then h(1) = -2 but $\lim_{x \to 1^-} h(x) = -1$, so h is not usc.

2. (Exercise 4.12)

If $f(x), x \in \mathbb{R}^1$, is continuous at almost every point of an interval [a, b], show that f is measurable on [a, b]. Generalize this to functions defined in \mathbb{R}^n . (For a constructive proof, use the subintervals of a sequence of partitions to define a sequence of simple measurable functions converging to f a.e. in [a, b]. Use Theorem 4.12. See also the proof of Theorem 5.54.)

Proof.

(a) f is measurable on [a, b]:

Note: Part(a) is proved if part(b) has been proved.

Let E be the subset of [a, b] such that $Z = [a, b] \setminus E$ then Z is measure zero.

The set E is also measurable since [a, b] and Z are measurable.

For any α and $+\infty > \alpha > -\infty$, we then have

$$\{x \in [a,b] : f(x) > \alpha\} = \{x \in E : f(x) > \alpha\} \cup \{x \in Z : f(x) > \alpha\}$$

 $\{x \in E : f(x) > \alpha\}$ is measurable since E is measurable and f is continuous on $E \subseteq [a,b]$. Due to $\{x \in Z : f(x) > \alpha\} \subseteq Z$ and Z is measure zero, so $\{x \in Z : f(x) > \alpha\}$ is also measurable (measurable zero).

By the above, we know that $\{x \in E : f(x) > \alpha\}$ and $\{x \in Z : f(x) > \alpha\}$ are measurable, therefore, $\{x \in [a,b] : f(x) > \alpha\}$ is also measurable.

Hence, f is measurable on the interval [a, b].

(b) Generalize:

Assume f(x) is continuous at almost every point of an interval I where $x \in \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^1$.

Let E be the subset of $I \subseteq \mathbb{R}^n$ such that $Z = I \setminus E$ then Z is measure zero.

The set E is also measurable since I and Z are measurable.

For any α and $+\infty > \alpha > -\infty$, we then have

$${x \in I : f(x) > \alpha} = {x \in E : f(x) > \alpha} \cup {x \in Z : f(x) > \alpha}$$

 $\{x \in E : f(x) > \alpha\}$ is measurable since E is measurable and f is continuous on $E \subseteq I$.

Due to $\{x \in Z : f(x) > \alpha\} \subseteq Z$ and Z is measure zero, so $\{x \in Z : f(x) > \alpha\}$ is also measurable (measurable zero).

By the above, we know that $\{x \in E : f(x) > \alpha\}$ and $\{x \in Z : f(x) > \alpha\}$ are measurable, therefore, $\{x \in I : f(x) > \alpha\}$ is also measurable.

Hence, f is measurable on the interval $I \subseteq \mathbb{R}^n$.

3. (Exercise 4.14)

Let f(x,y) be as in Exercise 13. Show that given $\epsilon > 0$, there exists a closed $F \subset E$ with $|E - F| < \epsilon$ such that f(x,y) converges uniformly for $x \in F$ to f(x) as $y \to 0$. (Follow the proof of Egorov's theorem, using the sets $E_{\epsilon,1/m}$ defined in Exercise 13 in place of the sets E_m in the proof of Lemma 4.18.)

Proof.

By Exercise 4.13 and the hint, let

$$E_{\epsilon,\frac{1}{m}} = \{x \in E : |f(x,y) - f(x)| \le \epsilon \text{ for all } y < \frac{1}{m}\}$$

for $m \in \mathbb{Z}^+$.

By Exercise 4.13, we also know that $\lim_{y\to 0} f(x,y)$, so there exists $M'\in\mathbb{Z}^+$ such that for y<1/M',

we have $|f(x,y) - f(x)| \le \epsilon$, then $E_{\epsilon,1/m} \nearrow E$.

By Lemma 3.26, since $E_{\epsilon,1/m} \nearrow E$, then $|E_{\epsilon,1/m}| \to |E|$.

Follow the proof of Egorov's Theorem, for any $\epsilon > 0$, there exists $M \in \mathbb{Z}^+$ such that $|E - E_{\epsilon,1/M}| < \epsilon 2^{-m-1}$.

By Egorov's Theorem, since $E_{\epsilon,1/M}$ is measure, there exists a closed set F_m such that $F_m \subseteq E_{\epsilon,1/M}$ and $|E_{\epsilon,1/M} - F_m| < \epsilon 2^{-m-1}$. Hence

$$|E - F_m| \le |E - E_{\epsilon, 1/M}| + |E_{\epsilon, 1/M} - F_m| < \epsilon 2^{-m}$$

Let $F = \bigcap_{m} F_m$, then

$$|E - F| \le |E - \bigcap_{m=1}^{\infty} F_m| \le |\bigcup_{m=1}^{\infty} (E - F_m)| \le \sum_{m=1}^{\infty} |E - F_m| < \sum_{m=1}^{\infty} \epsilon 2^{-m} < \epsilon$$

and also f(x,y) converges uniformly to f(x) on F as $y \to 0$.

4. (Exercise 4.15)

Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable E with $|E| < +\infty$. If $|f_k(x)| \le M_x < +\infty$ for all k for each $x \in E$, show that given $\epsilon > 0$, there is closed $F \subset E$ and a finite M such that $|E - F| < \epsilon$ and $|f_k(x)| \le M$ for all k and all $k \in F$.

Proof.

Let $\epsilon > 0$ and $f(x) = \sup_{k \in \mathbb{N}} f_k(x)$.

Since each f_k is measurable, then f is measurable and $f(x) \leq M_x$ for all $x \in E$.

Since f is measurable on E, by Lusin's Theorem, then for all $\epsilon > 0$, there will exist a closed $F \subseteq E$ such that $|E - F| < \epsilon$ and f is continuous relative to F.

Since $|E| < \infty$ and F is closed, we can find a compact set $F^* \subseteq F$ such that $|E - F^*| < \epsilon$.

Since f is continuous relative to F and F^* , hence, f will have the maximum, so there will exist a constant M such that $f(x) \leq M$ for all $x \in F^* \subseteq F \subseteq E$.

5. (Exercise 4.16)

Prove that $f_k \xrightarrow{m} f$ on E if and only if give $\epsilon > 0$, there exists K such that $|\{|f - f_k| > \epsilon\}| < \epsilon$ if k > K. Give an analogous Cauchy criterion.

Proof.

 (\Rightarrow)

By definition, since $f_k \stackrel{m}{\to} f$, then for all $\epsilon, \delta > 0$, there will exist $K \in \mathbb{N}$ such that $|\{x \in E : |f(x) - f_k(x)| > \delta\}| < \epsilon$ for all k > K.

Take $\delta = \epsilon$, then $|\{x \in E : |f(x) - f_k(x)| > \epsilon\}| < \epsilon$ if k > K.

 (\Leftarrow)

Given $\delta, \epsilon > 0$, then there will exist $K_{\delta}, K_{\epsilon} \in \mathbb{N}$ such that $|\{x \in E : |f(x) - f_k(x)| > \delta\}| < \delta$ for all $k > K_{\delta}$ and $|\{x \in E : |f(x) - f_k(x)| > \epsilon\}| < \epsilon$ for all $k > K_{\epsilon}$. Let $\eta = \min\{\delta, \epsilon\}$ and take $K = \max\{K_{\delta}, K_{\epsilon}\}$, we then have

$${x \in E : |f(x) - f_k(x)| > \epsilon} \subseteq {x \in E : |f(x) - f_k(x)| > \eta}$$

That is

$$|\{x \in E : |f(x) - f_k(x)| > \epsilon\}| \le |\{x \in E : |f(x) - f_k(x)| > \eta\}| < \eta \le \delta.$$

Hence,

$$f_k \stackrel{m}{\to} f$$
 on E .

(Cauchy criterion)

By the course's note, we know the Cauchy criterion is:

 $f_k \xrightarrow{m} f$ if and only if for all $\epsilon, \delta > 0$ there exists $K \in \mathbb{N}$ such that $|\{x \in E : |f_k(x) - f_l(x)| > \delta\}| < \epsilon$ for all k, l > K.

6. (Exercise 4.17)

Suppose that $f_k \stackrel{m}{\to}$ and $g_k \stackrel{m}{\to} g$ on E. Show that $f_k + g_k \stackrel{m}{\to} f + g$ on E and, if $|E| < +\infty$, that $f_k g_k \stackrel{m}{\to} f g$ on E. If, in addition, $g_k \to g$ on E, $g \ne 0$ a.e., and $|E| < +\infty$, show that $f_k/g_k \stackrel{m}{\to} f/g$ on E. (For the product $f_k g_k$, write $f_k g_k - f g = (f_k - f)(g_k - g) + f(g_k - g) + g(f_k - f)$. Consider each term separately, using the fact that a function that is finite on E, $|E| < +\infty$ is bounded outside a subset of E with small measure.)

Proof.

(a)
$$f_k + g_k \xrightarrow{m} f + g$$
 on E :

Since $f_k \stackrel{m}{\to}$ on E, then for all $\epsilon > 0$ there will exist $M_1 \in \mathbb{N}$ such that $|\{x \in E : |f_k(x) - f(x)| > \epsilon/2\}| < \epsilon/2$ for all $k \ge M_1$. Similarly, since $g_k \stackrel{m}{\to} g$ on E, then for all $\epsilon > 0$ there will exist $M_2 \in \mathbb{N}$ such that $|\{x \in E : |g_k(x) - g(x)| > \epsilon/2\}| < \epsilon/2$ for all $k \ge M_2$.

Consider Triangle Inequality, we then have

$$\{x \in E : |(f_k(x) - f(x)) + (g_k(x) - g(x))| < \epsilon\} \subseteq \{x \in E : |f_k(x) - f(x)| < \epsilon/2\}$$
$$\cup \{x \in E : |g_k(x) - g(x)| < \epsilon/2\}.$$

So

$$\begin{aligned} |\{x \in E : |(f_k(x) - f(x)) + (g_k(x) - g(x))| < \epsilon\}| &= |\{x \in E : |(f_k(x) + g_k(x)) - (f(x) + g(x))| < \epsilon\}| \\ &\leq \frac{|\{x \in E : |f_k(x) - f(x)| < \epsilon/2\}|}{+ |\{x \in E : |g_k(x) - g(x)| < \epsilon/2\}|} \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

Take $k > M = \max\{M_1, M_2\}$, then we will have

$$f_k + g_k \stackrel{m}{\to} f + g \text{ on } E$$

(b) $f_k g_k \stackrel{m}{\to} fg$ on E:

Follow the hint, since $|E| < +\infty$, we can re-write $f_k g_k - fg$ as

$$(f_k - f)(g_k - g) + f(g_k - g) + g(f_k - f)$$

Since $f_k \stackrel{m}{\to}$ on E, then for all $\epsilon > 0$ there will exist $M_3 \in \mathbb{N}$ such that

 $|\{x \in E : |f_k(x) - f(x)| > \sqrt{\epsilon}\}| < \epsilon/2 \text{ for all } k \ge M_3.$

Similarly, since $g_k \xrightarrow{m} g$ on E, then for all $\epsilon > 0$ there will exist $M_4 \in \mathbb{N}$ such that

 $|\{x \in E : |g_k(x) - g(x)| > \sqrt{\epsilon}\}| < \epsilon/2 \text{ for all } k \ge M_4.$

Take $k > M = \max\{M_3, M_4\}$, we then have

$$|\{|x \in E : (f_k(x) - f(x))(g_k(x) - g(x))| > \epsilon\}| \le |\{x \in E : |f_k(x) - f(x)| > \sqrt{\epsilon}\}| + |\{x \in E : |g_k(x) - g(x)| > \sqrt{\epsilon}\}| < \epsilon$$

Hence, $(f_k - f)(g_k - g) \stackrel{m}{\rightarrow} 0$.

Following, we will show that $f(g_k - g) \stackrel{m}{\to} 0$ and $g(f_k - f) \stackrel{m}{\to} 0$.

By Exercise 4.15, for the sequence of measurable function $\{f\}$, there is a closed $F \subseteq E$ and a finite n such that $|E - F| < \epsilon/2$ and $|f(x)| \le n$ for all $x \in F$.

Since $g_k \stackrel{m}{\to} g$ on E, then for all $\epsilon > 0$ there will exist $M_5 \in \mathbb{N}$ such that

$$|\{x \in E : |g_k(x) - g(x)| > \epsilon/n\}| < \epsilon/2 \text{ for all } k \ge M_5.$$

So

$$|\{x \in E : |f(g_k - g)| > \epsilon\}| = |\{x \in F : |f(g_k - g)| > \epsilon\}| + |\{x \in E \setminus F : |f(g_k - g)| > \epsilon\}|$$

$$\leq |\{x \in F : |g_k - g| > \epsilon/M\}| + |E \setminus F|$$

$$< \epsilon/2 + \epsilon/2 = \epsilon$$

for all $k > M_5$.

Therefore, $f(g_k - g) \stackrel{m}{\to} 0$.

Similarly, $g(f_k - f) \stackrel{m}{\to} 0$.

Hence, by above all, we will know that $f_k g_k - fg \stackrel{m}{\to} 0$, that is

$$f_k g_k \stackrel{m}{\to} fg$$
 on E .

(c) $f_k/g_k \stackrel{m}{\to} f/g$ on E:

Since part(b), it suffices to only show that $1/g_k \stackrel{m}{\to} 1/g$ on E.

 $g \neq 0$ a.e., then 1/g is measurable and finite a.e. in E.

Since $g_k \to g$ on E for sufficiently large k then $g_k \neq 0$ a.e., so that $1/g_k$ is also measurable and finite a.e. in E.

By Theorem 4.21, since $1/g_k \to 1/g$ a.e. on E and $|E| < +\infty$, then $1/g_k \stackrel{m}{\to} 1/g$ on E.

Hence, $f_k/g_k \stackrel{m}{\to} f/g$ on E.

7. (Exercise 4.18)

If f is measurable on E, define $\omega_f(a) = |\{f > a\}|$ for $-\infty < a < +\infty$. If $f_k \nearrow f$, show that $\omega_{f_k} \nearrow \omega_f$. If $f_k \stackrel{m}{\to} f$, show that $\omega_{f_k} \to \omega_f$ at each point of continuity of ω_f . (For the second part, show that if $f_k \stackrel{m}{\to} f$, then $\limsup_{k\to\infty} \omega_{f_k}(a) \le \omega_f(a-\epsilon)$ and $\liminf_{k\to\infty} \omega_{f_k}(a) \le \omega_f(a+\epsilon)$ for every $\epsilon > 0$.)

Proof.

Since
$$\omega_f(a) = \{f > a\} = \bigcup_{i=1}^{\infty} \{f_i > a\}$$
 and $\{f_i > a\} \subseteq \{f_{i+1} > a\}$ for all i , then $\{f_k > a\} = \bigcup_{i=1}^k \{f_i > a\} \nearrow \bigcup_{i=1}^{\infty} \{f_i > a\} = \{f > a\}$

as $k \to \infty$.

Hence, $|\{f_k > a\}| \to |\{f > a\}|$ and $|\{f_k > a\}| \le |\{f_{k+1} > a\}|$ for all k, so $\omega_{f_k} \nearrow \omega_f$. Suppose that $f_k \stackrel{m}{\to} f$.

Let a be a point of continuity of ω_f .

Given any $\epsilon, \eta > 0$, there exists $M_1 > 0$ such that for all $k \geq M_1$, we then have

$$|\{f_k > a\}| \le |\{f_k > a\} - \{f_k > a\} \cap \{f > a - \epsilon\}| + |\{f > a - \epsilon\}|$$

$$\le |\{|f - f_k| > \epsilon\}| + |\{f > a - \epsilon\}|$$

$$\le \eta + |\{f > a - \epsilon\}|.$$

That is $\limsup_{k\to\infty} \omega_{f_k}(a) \leq \omega_f(a-\epsilon)$, and there exists $M_2 > 0$ such that for all $k \geq M_2$, we then

have

$$\begin{split} |\{f > a + \epsilon\}| &\leq |\{f > a + \epsilon\} - \{f > a + \epsilon\} \cap \{f_k > a\}| + |\{f_k > a\}| \\ &\leq |\{|f - f_k| > \epsilon\}| + |\{f_k > a\}| \\ &\leq \eta + |\{f_k > a\}|. \end{split}$$

That is $\liminf_{k\to\infty} \omega_{f_k}(a) \ge \omega_f(a+\epsilon)$. Since ω_f is continuous at a, then we have

$$\limsup_{k \to \infty} \omega_{f_k}(a) \le \lim_{\epsilon \to 0} \omega_f(a - \epsilon) = \omega_f(a) = \lim_{\epsilon \to 0} \omega_f(a + \epsilon) \le \liminf_{k \to \infty} \omega_{f_k}(a).$$

Therefore, $\lim_{k\to\infty} \omega_{f_k}(a) = \omega_f(a)$, so $\omega_{f_k} \to \omega_f$ at each point of contiunity of ω_f .