CSC 483/583: FINAL REVIEW OUTLINE

MIHAI SURDEANU

Before we begin:

- The final exam will be Monday 12/14 from 6PM to 8PM, in this room (Gould Simpson 906).
- The exam will be open book. You are welcome to bring any text-books, notes, etc.
- You are allowed (and recommended!) a simple, self-contained hand-calculator. You can also bring a tablet or laptop with PDFs of the slides, textbook, and your notes, as long as it is **not** connected to the Internet. Internet-connected devices are **not allowed** under any circumstances.

Topics to know for the final:

- 1. Lecture 6: Vector space model
 - A. Feast of famine for Boolean queries
 - B. Jaccard coefficient: where else is this useful? Limitations
 - C. tf-idf
 - D. Vector space model
 - E. Cosine similarity
 - F. Different ways of encoding: term frequency, document frequency, normalization
- 2. Lecture 7: Complete search system
 - 1. Exact top K retrieval using min heap
 - 2. Inexact top K retrieval: document at a time, term at a time, cluster pruning
- 3. Lecture 8: Evaluation
 - A. Unranked evaluation: Precision, Recall, F score
 - B. Accuracy. Why is Accuracy not a good measure?

Date: Fall 2015.

- C. Ranked evaluation: P@1, precision-recall curve, mean average precision (MAP), mean reciprocal rank (MRR)
- D. Inter-annotator agreement: Kappa measure
- E. Real-world evaluations: A/B testing
- F. Result summaries, static or dynamic
- G. Criteria for good dynamic summaries
- 4. Lecture 9: Relevance feedback & query expansion
 - A. Centroid
 - B. Rocchio algorithm theoretical version and the SMART implementation
 - C. Query expansion using global resources
 - D. Query expansion at search engines
- 5. Lecture 11: Probabilistic information retrieval
 - A. Basic probability theory:
 - What is probability?
 - What is conditional probability?
 - Chain rule, partition rule, Bayes' rule, law of total probability (partition rule), odds
 - Ability to construct and interpret contingency tables, and probability trees
 - Independent events; detect if two events are truly independent from data
 - B. Probability ranking principle
 - C. Binary independence model: how to derive the ranking function for terms; the formula for c_t , with smoothing; BIM after simplifying assumptions
 - D. Okapi BM25 formula, what the weights mean
- 6. Lecture 12: Language models for IR
 - A. How to compute P(q|d), smoothing
 - B. n-gram language models (see lecture discussion)
- 7. Lecture 13: Text classification and naive Bayes
 - A. Why is text classification useful for IR

- B. How to compute P(c|d), smoothing
- C. Multinomial vs. Bernoulli naive Bayes
- D. Positional-dependent NB (see HW4)
- E. n-gram NB (see lecture discussion)
- F. The three ways of messing up the implementation of naive Bayes
- G. The two independence assumptions in naive Bayes
- H. Evaluating classification
- I. Feature selection: frequency thresholding, mutual information, not Chi-square
- 8. Lecture 14: Vector space classification
 - A. Rocchio: algorithm, limitations
 - B. kNN: implementation, probabilistic kNN
- 9. Lecture 16: Flat clustering
 - A. Classification vs. clustering
 - B. Applications of clustering in IR
 - C. K-means: algorithm, RSS, convergence proof, time complexity, how to initialize, K-means++ $\,$
 - D. Clustering evaluation: purity, Rand index, F measure
 - E. How to choose number of clusters
- 10. Lecture 21: Link analysis
 - A. Anchor text: what it is, how to index, how to search
 - B. Google bombs
 - C. PageRank: random walk problem, how to construct the probability matrix, teleportation probability, how to compute the steady state vector using the power method, issues
 - D. HITS: not required