Pushing the boundaries of weather and climate research

The Author

October 21st, 201

netherlands

Science center

by SURF & NWO

Outline

Introduction

Motivation

2

Introduction

Question

How do we model this relationship?

Solution?

Ordinary Least Squares Regression

Solution?

Ordinary Least Squares Regression

$$y_t = \beta_0 + \beta_1 x_t + \epsilon_t$$

Results of performing an OLS regression

	Estimate	Std. Error	t value	p value	
β_0	1.595	0.526	3.028	0.0028	**
β_1	1.044	0.065	-16.2	< 2e16	***

Multiple R-squared: 0.5698, Adjusted R-squared: 0.5676

Results of performing an OLS regression

	Estimate	Std. Error	t value	p value	
β_0	1.595	0.526	3.028	0.0028	**
β_1	1.044	0.065	-16.2	< 2e16	***

Multiple R-squared: 0.5698, Adjusted R-squared: 0.5676

no

no

They were independent random walks

$$y_t - \beta_0 + \beta_1 x_t = \epsilon_t$$

8

nonstationary

8

$$y_t - \beta_0 + \beta_1 x_t = \epsilon_t$$

stationary

$$y_t - \beta_0 + \beta_1 x_t = \epsilon_t$$

nonstationary \neq stationary

$$y_t - \beta_0 + \beta_1 x_t = \epsilon_t$$

8

however ...

What if ...

$$y_t - \beta_0 + \beta_1 x_t = \epsilon_t$$

Shortcomings

· Nonlinearity in economic processes

Shortcomings

Nonlinearity in economic processes

Example

The Cobb Douglas production function

$$y = \phi x_1^{\alpha} x_2^{\beta}$$

where y is the total production, x_1 is labour input and x_2 is capital input.

Shortcomings

- Nonlinearity in economic processes
- Relationship unchanged over an extended period of time

Nonlinear cointegration model

$$y_t = f(x_t) + \text{error}$$

- y_t, x_t nonstationary
- f nonlinear
- stationary error

Question

What is *f*?

Parametric

Parametric

Misspecification

Parametric

Non-Parametric

Misspecification

Parametric

Misspecification

Non-Parametric

· Let the data speak for itself

Nonlinear + Nonstationary

Stationary Nonstationary
Linear – –
Nonlinear – ✓

Nonstationary + Nonparametric = ?

Nonstationary + Nonparametric = wandering +

Nonstationary + Nonparametric = wandering + local behaviour

Nonstationary + Nonparametric = Difficult

Nonstationary + Nonparametric = Reduced rate of convergence

Nonstationary + Nonparametric = New techniques required

Local Time

Definition (Local Time)

Local Time

Definition (Local Time)

Kernel Regression

the Nadaray-Watson Kernel Estimator:

$$\hat{f}(x) = \frac{\sum_{t=1}^{n} y_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

where

$$K_h(x) = \frac{1}{h}K(x/h)$$

Kernel Regression

the Nadaray-Watson Kernel Estimator:

$$\hat{f}(x) = \frac{\sum_{t=1}^{n} y_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

where

$$K_h(x) = \frac{1}{h}K(x/h)$$

Note

The Equation

$$y_t = f(x_t) + u_t$$

•
$$x_t = \sum_{j=1}^t \epsilon_j, \quad \epsilon_j \sim iid(0,1)$$

- Nonparametric estimator of f: NW Kernel Estimator.
- $u_t = ?$

Previous work

 Wang, Phillips (2009): error process as a martingale difference sequence

Previous work

- Wang, Phillips (2009): error process as a martingale difference sequence
- We consider the error process as a linear process

Linear Process

Definition (Linear Process)

Linear Process

Definition (Linear Process)

linear aggregation of random shocks

$$y_t = f(x_t) + u_t$$

Recall the kernel estimator:

$$\hat{f}(x) = \frac{\sum_{t=1}^{n} y_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

$$\hat{f}(x) - f(x) = \frac{\sum_{t=1}^{n} u_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)} + \frac{\sum_{t=1}^{n} (f(x_t) - f(x)) K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

$$\hat{f}(x) - f(x) = \frac{\sum_{t=1}^{n} u_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)} + \frac{\sum_{t=1}^{n} (f(x_t) - f(x)) K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

$$\hat{f}(x) - f(x) = \frac{\sum_{t=1}^{n} u_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)} + \frac{\sum_{t=1}^{n} (f(x_t) - f(x)) K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

$$\hat{f}(x) - f(x) = \frac{\sum_{t=1}^{n} u_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)} + \frac{\sum_{t=1}^{n} (f(x_t) - f(x)) K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

$$\hat{f}(x) - f(x) = \frac{\sum_{t=1}^{n} u_t K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)} + \frac{\sum_{t=1}^{n} (f(x_t) - f(x)) K_h(x_t - x)}{\sum_{t=1}^{n} K_h(x_t - x)}$$

