Kako se lotiš: Uvod v funkcionalno analizo

Patrik Žnidaršič

24. januar 2025

Zahvala Matiji Fajfarju za skrbno urejene zapiske z vaj.

1 Normirani prostori

Vektorski prostor X nad poljem $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ je NORMIRAN, če ima definirano normo, torej preslikavo $\|\cdot\|: X \to [0, \infty)$ z naslednjimi lastnostmi:

- $||x|| = 0 \Leftrightarrow x = 0$ za vsak $x \in X$,
- $\|\lambda x\| = |\lambda| x$ za vsak $\lambda \in \mathbb{F}$ in $x \in X$,
- $||x+y|| \le ||x|| + ||y||$ za vsaka $x, y \in \mathbb{F}$.

Prostor je Banachov, če je normiran in pol
n za metriko, porojeno z normo, d(x,y) = ||x-y||.

Poznamo nekaj standardnih primerov normiranih prostorov:

• Za $1 \le p < \infty$ je

$$l^{p} = \left\{ (x_{n})_{n} \in \mathbb{C}^{\mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_{n}|^{p} < \infty \right\},$$

opremljen z normo

$$\|(x_n)_n\|_p = \left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^p$$

Banachov prostor.

• Prostor

$$l^{\infty} = \left\{ (x_n)_n \in \mathbb{C}^{\mathbb{N}} \mid \sup_n |x_n| < \infty \right\},$$

opremljen z normo

$$\|(x_n)_n\|_{\infty} = \sup_n |x_n|,$$

Banachov prostor.

• Imamo tudi nekaj standardnih podprostorov l^{∞} ;

$$c = \{(x_n)_n \in l^{\infty} \mid (x_n)_n \text{ je konvergentno zaporedje}\}$$

$$c_0 = \{(x_n)_n \in l^{\infty} \mid \lim x_n = 0\}$$

$$c_{00} = \{(x_n)_n \in l^{\infty} \mid \operatorname{rep}(x_n)_n \text{ je konstantno enak } 0\}$$

Prva dva prostora sta Banachova, zadnji pa ni. Njegovo zaprtje glede na l^p -normo je l^p , glede na l^{∞} -normo pa je c_0 .

Pri dokazovanju dejstev o l^p prostorih prideta prav sledeči neenakosti.

Trditev 1.1 (Hölderjeva neenakost). Če za $1 < p, q < \infty$ velja $p^{-1} + q^{-1} = 1$, potem za poljubna $x \in l^p$ ter $y \in l^q$ velja

$$\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_p ||y||_q.$$

Trditev 1.2 (Minkowski). Če je $1 \le p < \infty$ ter $x, y \in l^p$, potem velja $||x + y||_p = ||x||_p + ||y||_p$.

Slednja trditev je seveda le trikotniška neenakost za $\|\cdot\|_p$. Ker med drugim obravnavamo Banachove prostore, marsikaj delamo z zaporedji, in se je vredno spomniti naslednjega dejstva iz topologije: (topološki) podprostor je zaprt natanko tedaj, ko ima vsako konvergentno zaporedje z elementi iz tega podprostora tudi limito v tem podprostoru. Iz tega lahko enostavno pokažemo naslednjo trditev.

Trditev 1.3. Naj bo Y vektorski podprostor v normiranem prostoru X. Če je Y poln, je zaprt v X. Če je X Banachov, je Y Banachov natanko tedaj, ko je zaprt v X.

Ĉe imamo normiran prostor X in zaprt podprostor $Y \subseteq X$, lahko tvorimo kvocient X/Y, ki ga opremimo z normo

$$||x + Y|| = \inf\{||x + y|| \mid y \in Y\}.$$

Potem je X Banachov natanko tedaj, ko sta X/Y in Y Banachova. Kvocientna preslikava $q:X\to X/Y$ je omejena z $\|q\|\le 1$, hkrati pa je surjektivna in odprta. Če je X še Banachov in $T:X\to Y$ omejen operator, potem je $\tilde T:X/\ker T\to Y$, definiran s $\tilde T(x+\ker T)=Tx$, tudi omejen in velja $\left\|\tilde T\right\|=\|T\|$.

Za linearen operator $T: X \to Y$ definiramo normo z

$$||T|| = \inf\{C > 0 \mid \forall x. \, ||Tx|| \le C \, ||x||\},$$

če ta infimum obstaja. Izkaže se

$$\|T\| = \sup_{\|x\|=1} \|Tx\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| < 1} \|Tx\| \,.$$

Potem z B(X,Y) označimo množico vseh omejenih operatorjev med X in Y. Operatorska norma je submultiplikativna. Če je Y Banachov, je tudi B(X,Y) Banachov; obratno velja le, če je dim $X \ge 1$.

1.1 Dualni prostor

Če je X normiran prostor, je $X^* = B(X, \mathbb{F})$ njegov dualni prostor. Ta je vedno Banachov. V splošnem je dualni prostor težko določiti, vemo pa naslednje:

- $c_0^* \cong l^1$,
- $(l^1)^* \cong l^\infty$
- $(l^p)^* \cong l^q \text{ za } p^{-1} + q^{-1} = 1$,
- $(l^2)^* \cong l^2$.

Tukaj \cong označuje izometrično izomorfnost.

Za normiran prostor X in $f \in X^*$ lahko definiramo $\hat{x}(f) = f(x)$. Potem je $\hat{x} \in X^{**}$ in velja $\|\hat{x}\| = \|x\|$.

Če je $A: X \to Y$ omejen linearen operator, lahko za $f \in Y^*$ definiramo adjungirani operator (v smislu Banachovih prostorov) $A^*f = f \circ A$. Tudi ta je omejen z $||A^*|| = ||A||$.

2 Temeljni izreki

2.1 Hahn-Banachov izrek

Imamo več njih. Pick your poison.

Izrek 2.1 (realni Hahn-Banach). Naj bo $Y \leq X$ vektorski prostor in $p: X \to \mathbb{R}$ sublinearni funkcional. Naj bo $f: Y \to \mathbb{R}$ tak linearni funkcional, da za vsak $y \in Y$ velja $f(y) \leq p(y)$. Tedaj obstaja linearni funkcional $F: X \to \mathbb{R}$, da je $F|_Y = f$ in $F(x) \leq p(x)$ za vsak $x \in X$.

Izrek 2.2 (kompleksni Hahn-Banach). Naj bo X vektorski prostor nad \mathbb{F} , $Y \leq X$ in p polnorma na X. Če je $f: Y \to \mathbb{F}$ linearni funkcional, da za vse $y \in Y$ velja $|f(y)| \leq p(y)$, potem obstaja linearni funkcional $F: X \to \mathbb{F}$, za katerega je $F|_Y = f$ in $|F(X)| \leq p(x)$ za vsak $x \in X$.

Izrek 2.3 (Hahn-Banachov izrek za normirane prostore). Naj bo $Y \leq X$ podprostor normiranega prostora X in $f: Y \to \mathbb{F}$ omejen. Tedaj obstaja $f: X \to \mathbb{F}$, da je $F|_Y = f$ ter $\|F\| = \|f\|$.

2.2 Bairov izrek

Izrek 2.4 (Baire). Naj bo (X, d) poln metričen prostor in $(U_n)_n$ števna družina odprtih gostih množic v X. Tedaj je presek $\bigcap_n U_n$ gost v X.

Posledica 2.5. Naj bo X poln metrični prostor in $(A_n)_n$ zaporedje zaprtih množic, da je $X = \bigcup_n A_n$. Tedaj obstaja $m \in \mathbb{N}$, da je $\mathring{A}_m \neq \emptyset$.

Kot posledico imamo tudi dejstvo, da noben neskončnorazsežen Banachov prostor nima števne algebraične baze. Iz tega npr. sledi, da $\mathbb{F}[X]$ ni Banachov v nobeni normi, ker ima vedno števno bazo.

2.3 Izrek o odprti preslikavi

Izrek 2.6 (o odprti preslikavi). Naj bo T omejen surjektiven linearen operator med Banachovima prostoroma X in Y. Tedaj je T odprta preslikava.

Posledica 2.7. Naj bo T omejen linearen bijektiven operator med Banachovima prostoroma. Potem je njegov inverz tudi omejen.

To je povezano z naslednjima dejstvoma za linearen operator T med Banachovima prostoroma:

- T je injektiven in ima zaprto zalogo vrednosti natanko tedaj, ko je navzdol omejen, torej ko obstaja C > 0, da za vsak x velja $C ||x|| \le ||Tx||$,
- T ima zaprto zalogo vrednosti natanko tedaj, ko obstaja C > 0, da za vsak x velja

$$||Tx|| \ge C \inf_{z \in \ker T} ||x - z||.$$

2.4 Princip enakomerne omejenosti

Izrek 2.8 (princip enakomerne omejenosti). Naj bo X Banachov, Y normiran prostor in $A \subseteq B(X,Y)$. Če je za vsak $x \in X$ množica $\{\|Ax\| \mid A \in A\}$ omejena, potem je množica $\{\|A\| \mid A \in A\}$ omejena.

2.5 Izrek o zaprtem grafu

Izrek 2.9 (o zaprtem grafu). Naj bo $T: X \to Y$ linearna preslikava, ter X in Y Banachova prostora. Potem je T omejena natanko tedaj, ko je graf Γ_T zaprt $v \ X \times Y$.

Za zaprtost grafa je dovolj preveriti, da za poljubno zaporedje $(x_n)_n$ v X, ki konvergira k x, velja $\lim Tx_n = Tx$.

2.6 Stone-Weierstrass

Izrek 2.10 (Stone-Weierstrass). Naj bo K kompakten Hausdorffov prostor in $A \subseteq \mathcal{C}(K)$ podalgebra, ki loči točke in vsebuje konstante. Tedaj je A gosta v $\mathcal{C}(K)$.

3 Hilbertovi prostori

Prostor je Hilbertov, če je norma porojena s skalarnim produktom, torej predpisom $\langle \cdot, \cdot \rangle$, za katero velja

- $\langle x, x \rangle \ge 0$ (realno in nenegativno),
- $\langle x, x \rangle = 0$ natanko tedaj, ko je x = 0,
- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$,
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Imamo nekaj pomembnih lastnosti:

- Cauchy-Schwarz: $\langle\langle x,y\rangle\rangle \leq ||x||\,||y||;$ enakost velja natanko tedaj, ko sta x in y linearno odvisna,
- paralelogramska enakost: $||x y||^2 + ||x + y||^2 = 2(||x||^2 + ||y||^2)$,
- $\|x+y\| = \|x\| + \|y\|$ natanko tedaj, ko sta x in y linearno odvisna in je $\langle x,y \rangle \geq 0$,
- $x \perp y$ natanko tedaj, ko je $||x + \lambda y|| \ge ||x||$ za vsak $\lambda \in \mathbb{F}$.

Če je H Hilbertov prostor in $M \subseteq H$ zaprt podprostor, potem za vsak $x \in H$ obstaja enolično določen $x_0 \in M$, za katerega velja $d(x,M) = d(x,x_0)$. Pravimo mu PRAVO-KOTNA PROJEKCIJA x NA M, velja $x - x_0 \in M^{\perp}$. Potem lahko definiramo preslikavo $P: H \to M$, ki slika vektor v pravokotno projekcijo, in ima naslednje lastnosti:

- P je linearen operator $H \to M$,
- $||Px|| \le ||x||$,
- $P^2 = P$,
- $\operatorname{im} P = M$, $\ker P = M^{\perp}$,
- $H = M \oplus M^{\perp}$ in $M^{\perp \perp} = M$.

Izrek 3.1 (Riesz). Naj bo H Hilbertov prostor in $f \in H^*$. Tedaj obstaja natanko en $y \in H$, da je $f(x) = \langle x, y \rangle$ in ||f|| = ||y||.

Izrek 3.2. Naj bo H Hilbertov prostor in $K \leq H$ podprostor. Tedaj ima vsak $f \in K^*$ natanko eno Hahn-Banachovo razširitev na H.

Če je H Hilbertov prostor, je $E \subseteq H$ ortogonalen sistem, če je ||e|| = 1 za vsak $e \in E$ ter $e \perp f$ za vsak par $e, f \in E$. Sistem je kompleten, če je maksimalen v množici vseh ortonormiranih sistemov glede na inkluzijo. Imamo tudi naslednjo karakterizacijo.

Izrek 3.3. Za ONS $E \subseteq H$ v Hilbertovem prostoru H so naslednje trditve ekvivalentne:

- E je KONS.
- $E^{\perp} = \{0\}.$
- $\overline{\operatorname{Lin} E} = H$,
- $za \ vsak \ x \in H \ velja$

$$x = \sum_{e \in E} \langle x, e \rangle \, e,$$

• Parsevalova enakost: za vsak $x \in H$ velja

$$||x||^2 = \sum_{e \in E} |\langle x, e \rangle|^2.$$

Poljubna KONS-a Hilbertovega prostora imata isto kardinalnost, tako da lahko enolično definiramo dimenzijo. Hilbertova prostora sta izomorfna natanko tedaj, ko imata enako dimenzijo.

3.1 Adjungirani operator

Če je $A: H \to K$ omejen operator, potem operatorju A^* , za katerega velja $\langle Ax, y \rangle = \langle x, A^*y \rangle$, pravimo ADJUNGIRANI OPERATOR. Tak operator vedno obstaja, velja naslednje:

- $I^* = I$ (identiteta),
- $0^* = 0$,
- $(A+B)^* = A^* + B^*$,
- $(\alpha A)^* = \overline{\alpha} A^*$,
- $A^{**} = A$,
- $(BA)^* = A^*B^*$,
- A je obrn
ljiv natanko tedaj, ko je A^* obrn
ljiv,
- če je A obrnljiv, je $(A^*)^{-1} = (A^{-1})^*$,
- $\ker A^* = (\operatorname{im} A)^{\perp}$,
- $(\ker A)^{\perp} = \overline{\operatorname{im} A^*}.$

Pravimo, da je $A \in B(H)$

- SEBI ADJUNGIRAN, če je $A^* = A$,
- NORMALEN, če je $A^*A = AA^*$,
- UNITAREN, če je $A^*A = AA^* = I$. To je natanko tedaj, ko je izomorfizem prostora H.

 \check{C} e je A sebi adjungiran, potem je

$$||A|| = w(A) = \sup_{||x||=1} |\langle Ax, x \rangle|.$$

4 Kompaktni operatorji

Operator $T: X \to Y$ med normiranima prostoroma je kompakten, če slika (zaprto) enotsko kroglo v relativno kompaktno množico, torej množico, katere zaprtje je kompaktno. To je ekvivalentno naslednjima točkama:

- T slika omejene množice v relativno kompaktne množice,
- če je $(x_m)_m$ omejeno zaporedje v X, ima $(Tx_m)_m$ stekališče v Y.

V splošnem je kompaktnost težko dokazati. Poznamo pa naslednja dejstva:

- če je $A \in B(X)$ operator s končnorazsežno sliko, je kompakten,
- K(X), tj. množica vseh kompaktnih operatorjev $X \to X$, je ideal v B(X),
- identiteta $I: X \to X$ je kompaktna natanko tedaj, ko je X končnorazsežen,
- diagonalen operator z diagonalo $(d_n)_n$ je kompakten natanko tedaj, ko je lim $d_n = 0$.

Izrek 4.1. Naj bo $T \in B(H, K)$. Naslednje trditve so ekvivalentne:

- T je kompakten,
- T* je kompakten,
- obstaja zaporedje $(T_n)_n$ v F(H,K), da $T_n \to T$.

Tu je F(H,K) množica operatorjev $H \to K$ končnega ranga.

Naj bo K kompakten Hausdorffov prostor. Pravimo, da je množica $H \subseteq \mathcal{C}(K)$ enakozvezna, če za vsak $x \in K$ in $\varepsilon > 0$ obstaja odprta okolica $U_x \ni x$, da je $|f(y) - f(x)| < \varepsilon$ za vse $y \in U_x$ ter $f \in H$.

Izrek 4.2 (Arzela-Ascoli). Naj bo K kompakten Hausdorffov prostor in $H \subseteq \mathcal{C}(K)$ družina funkcij. Tedaj je H relativno kompaktna natanko tedaj, ko je enakozvezna in po točkah omejena.

5 Spektralna teorija

Za kompleksno Banachovo algebro A in $a \in A$ definiramo RESOLVENTO

$$\rho(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \text{ je obrnljiv v } A \}.$$

Potem je spekter $\sigma(a) = \mathbb{C} \setminus \rho(a)$.

Omejimo se na algebro B(X) za kompleksen Banachov prostor X. Če je $A \in B(X)$, lahko spekter razdelimo na tri dele:

• točkasti spekter $\sigma_p(A)$ vsebuje lastne vrednosti A,

- zvezni spekter $\sigma_c(A)$ vsebuje tiste λ , za katere je $\lambda I A$ injektiven in njegova slika gosta v X,
- residualni spekter $\sigma_r(A)$ vsebuje tiste λ , za katere je $\lambda I A$ injektiven, a njegova slika ni gosta.

Če je X Hilbertov, lahko nekaj povemo o adjungiranem operatorju. Vemo, da je $\sigma(A^*) = \{\overline{\lambda} \mid \lambda \in \sigma(A)\}$. Če je A normalen, so lastni vektorji med seboj pravokotni in velja $\sigma_r(A) = \emptyset$, če pa je še sebi adjungiran, je $\sigma(A) \subseteq \mathbb{R}$. V splošnem imamo naslednje:

- če je $\lambda \in \sigma_r(A)$, je $\overline{\lambda} \in \sigma_p(A^*)$,
- če je $\lambda \in \sigma_p(A)$, je $\overline{\lambda} \in \sigma_p(A^*) \cup \sigma_r(A^*)$.

Za diagonalen operator $D \in B(l^2)$ z diagonalo $(d_n)_n$ velja naslednje:

- $||D|| = \sup |d_n|$,
- D je sebi adjungiran natanko tedaj, ko so vsi $d_n \in \mathbb{R}$,
- *D* je normalen,
- D je unitaren natanko tedaj, ko velja $|d_n| = 1$ za vse n,
- D je kompakten natanko tedaj, ko $d_n \xrightarrow[n \to \infty]{} 0$,
- $\sigma(D) = \overline{\{d_n \mid n \in \mathbb{N}\}}.$

Če je X Banachov in $K \in K(X)$, potem velja

- če $\lambda \neq 0$, je dim $\ker(K \lambda I) < \infty$,
- $\operatorname{im}(K \lambda I)$ je zaprta v X.
- za vsak $\varepsilon>0$ ima K le končno mnogo linearno neodvisnih lastnih vektorjev za lastne vrednosti λ z $|\lambda|\geq \varepsilon$,
- če dim $X = \infty$, je $0 \in \sigma(K)$,
- če $\lambda \in \sigma(K) \setminus \{0\}$, je λ lastna vrednost K,
- $\sigma(K)$ je kvečjemu števen,
- če je $\sigma(K)$ neskončen in so $(\lambda_n)_n$ lastne vrednosti, velja $\lim \lambda_n = 0$.

Če je X Hilbertov in je K kompakten in sebi adjungiran, potem obstaja zaporedje $(\lambda_n)_n \subseteq \mathbb{R}$ in ONS $(e_n)_n$ (lahko sta končna) z

- $|\lambda_1| \ge |\lambda_2| \ge \cdots$, $\lambda_n \ne 0$ in če je zaporedje neskončno, $\lim \lambda_n = 0$,
- $Ke_n = \lambda_n e_n$,
- če je $\lambda \in \sigma_p(K) \setminus \{0\}$, se λ pojavi v $(\lambda_n)_n$ natanko tolikokrat, kot je dim ker $(K-\lambda I)$,
- $Kx = \sum_{n} \lambda_n \langle x, e_n \rangle e_n$.

5.1 Spekter v kompleksni Banachovi algebri

Naj bo A kompleksna Banachova algebra in $a \in A$. Potem je $\rho(a)$ odprta v \mathbb{C} , torej je $\sigma(a)$ kompakt, saj je vsebovana v B(0, ||a||). Če je $|\lambda| > ||a||$, je potem $\lambda \in \rho(a)$, torej

$$(\lambda - a)^{-1} = \sum_{n=0}^{\infty} \frac{a^n}{\lambda^{n+1}}.$$

Izrek pravi, da je spekter vedno neprazen.

Definiramo lahko SPEKTRALNI RADIJ

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda| = \max_{\lambda \in \sigma(a)} |\lambda|,$$

za katerega Geldandova formula pravi, da je

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \liminf_{n \to \infty} \|a^n\|^{1/n} = \inf_{n \in \mathbb{N}} \|a^n\|^{1/n}.$$

Če je A sebi adjungiran operator na Hilbertovem prostoru, velja $r(A) = \|A\|$.