Definición 0.0.1. Sea A un anillo, se llama A-módulo a cualquier grupo abeliano (M, +) sobre el que A actúa linealmente, es decir, un grupo M con junto con una operación externa $A \times M \to M$ que cumple que para todo $m, n \in M, a, b \in A$:

- 1. a(m+n) = am + an
- 2. (a+b)m = am + bm
- 3. (ab)m = a(bm)
- 4. $1_A m = m$.

Ejemplo 0.0.2. 1. Si K es un cuerpo, todo K-espacio vectorial es un K-módulo...

2. Si V es un \mathbb{K} -espacio vectorial de dimensión finita y $f:V\to V$ un endomorfismo, entonces V es un $\mathbb{K}[x]$ -módulo via la aplicación

$$\mathbb{K}[x] \times V \to V$$
$$(p(x), v) \mapsto p(f) = a_n f^{(n)} + \dots + a_1 f + a_0$$

siendo
$$p(x) = a_n x^n + \dots + a_1 x + a_0 y f(k) = f \circ \stackrel{k}{\dots} \circ f$$
.

3. Toda A-álgebra B de un anillo A es un A-módulo. B es un anillo luego (B,+) es un grupo abeliano. Por ser A-álgebra, existe un homomorfismo $\varphi:A\to B$, y entonces podemos definir la operación externa de la definición 0.0.1 como $A\times B\to B$ que hace corresponder $(a,b)\mapsto \varphi(a)b$.

Observación 0.0.3. Atendiendo al último ejemplo resulta que dados dos anillos A, B, dar a B estructura de A-álgebra es equivalente a darle estructura de A-módulo junto con la propiedad adicional de que

$$\forall b, b' \in B, \ \forall a \in A \quad a \cdot_{\text{ext}} (bb') = (a \cdot_{\text{ext}} b)b'$$

Definición 0.0.4. . Dado un anillo A y un A-módulo M, diremos que $S \subset M$ es un submódulo de M si es un subgrupo de M cerrado para la multiplicación por elementos de A.

Observación 0.0.5. Si A es un anillo, $\mathfrak{a} \subseteq A$ un ideal, y M un A-módulo entonces el conjunto

$$\mathfrak{a}M := \left\{ \sum_{i=1}^{r} a_i m_i \mid r \in \mathbb{N}, \ a_i \in \mathfrak{a}, \ m_i \in \mathbb{N} \right\}$$

es un submódulo de M.

Definición 0.0.6. . Sean $(A, +, \cdot)$ anillo, M y N A-módulos. Una aplicación f: $M \longrightarrow N$ se dice que es un homomorfismo de A-módulos o, simplemente, que es una aplicación A-lineal si verifica

- i) $\forall m_1, m_2 \in M$ $f(m_1 + m_2) = f(m_1) + f(m_2)$ y
- $ii) \ \forall \ \lambda \in A, \ \forall \ m \in M \quad f(\lambda m) = \lambda f(m).$

Observación 0.0.7. 1. En un A-módulo M se tiene que

$$\forall m \in M \quad 0_A m = 0_M$$
$$\forall \lambda \in A \quad \lambda 0_M = 0_M.$$

Para ver lo primero basta observar que para todo $m \in M$ se tiene que $0_A m + m = (0_A + 1_A)m = 1_A m = m$, es decir, $0_A m = 0_M$. De aquí se desprende también que

$$(-1_A)(1_M) = -1_M = (1_A)(-1_M)$$

puesto que $0_M = 0_A 1_M = (1_A - 1_A) 1_M = 1_A 1_M + (-1_A)(1_M) = 1_M + (-1_A)(1_M)$. También se desprende que, para $\lambda \in A$ y $m \in M$ fijados (arbitrarios), $\lambda 0_M = \lambda (0_A m) = (\lambda 0_A) m = 0_A m = 0_M$; esto es, la segunda propiedad.

2. Dado un homomorfismo de A-módulos, $f: M \longrightarrow N$, se tiene que $\ker(f) := \{x \in M \mid f(x) = 0_N\}$ es un submódulo de M y que $\operatorname{im}(f) := \{y \in N \mid \exists x \in M \text{ tal que } f(x) = y\}$ es un submódulo de N.

0.1 Construcciones con A-módulos

0.1.1 Módulos cociente

Dados $(A, +, \cdot)$ un anillo, M un A-módulo y $N \subset M$ un submódulo. Denotemos para cada $m \in M$ como $[m]_N$ a la clase de m en M/N. Tras esta consideración, se tiene que M/N junto a la aplicación

$$M/N \times M/N \longrightarrow M/N$$

 $([m_1]_N, [m_2]_N) \longmapsto [m_1 + m_2]_N.$

tiene estructura de grupo abeliano. Esto es así puesto que (M, +) es un grupo abeliano y, por lo tanto, todo subgrupo suyo también lo es; es decir, todo subgrupo suyo será normal y el cociente será de nuevo abeliano.

Definición 0.1.1. . Sean $(A, +, \cdot)$ un anillo, M un A-módulo y $N \subseteq M$ un sub-módulo. Definiendo la aplicación

$$\begin{array}{ccc} A\times M/N & \longrightarrow & M/N \\ (\lambda,[m]) & \longmapsto & \lambda[m]_N := [\lambda m]_N \end{array}$$

dotamos a M/N de estructura de A-módulo y lo denominamos m'odulo cociente.

Observación 0.1.2. La aplicación natural

$$\begin{array}{ccc} M & \longrightarrow & M/N \\ m & \longmapsto & [m]_N \end{array}$$

es un homomorfismo de A-módulos.

0.1.2 Anuladores

Definición 0.1.3. Dados A un anillo y M un A-módulo, definimos el anulador de A en M como

$$Anul_A M = \{ \lambda \in A \mid \lambda \cdot m = 0, \forall m \in M \}$$

Observación 0.1.4.~i)

- 1. $Anul_AM$ es un ideal de A.
 - (a) Dados $\lambda_1, \lambda_2 \in Anul_A M$, para cada $m \in M$, $\lambda_1 \cdot m = \lambda_2 \cdot m = 0$. Restando, se obtiene $(\lambda_1 - \lambda_2) \cdot m = 0 \rightarrow \lambda_1 - \lambda_2 \in Anul_A M$
 - (b) Dado $\lambda \in Anul_A M$, para cada $\alpha \in A$ y para cada $m \in M$ se tiene $(\alpha \cdot \lambda) \cdot m = \alpha \cdot (\lambda \cdot m) = \alpha \cdot 0 = 0$, luego $\alpha \cdot \lambda \in Anul_A M$

Por tanto, $A/Anul_AM$ tiene estructura de anillo. Además, podemos ver a M como un $A/Anul_AM$ -módulo mediante la aplicación

$$\begin{array}{cccc} A_{Anul_AM} \times M & \longrightarrow & M \\ (\lambda + Anul_AM) \cdot m & \longmapsto & \lambda \cdot m \end{array}$$

2. Dado un ideal $\mathfrak{a} \subset Anul_AM$, M es un A/\mathfrak{a} -módulo. Los submódulos de M como A/\mathfrak{a} -módulo son los submódulos de M como A-módulo.

0.1.3 Aplicaciones A-lineales

Definición 0.1.5. . Dados M y N dos A-módulos, definimos el conjunto de aplicaciones A-lineales entre M y N

$$\operatorname{Hom}_A(M,N) := \{ f : M \longrightarrow N \mid f \text{ es aplicación } A\text{-lineal} \}$$

Proposición 0.1.6. Dados M y N dos A-módulos, $Hom_A(M, N)$ tiene estructura de A-módulo.

Prueba. En primer lugar, definamos para cada $\lambda \in A$ y cada $f \in \text{Hom}_A(M,N)$ la aplicación

$$\lambda f: M \longrightarrow N$$
 $m \longmapsto \lambda(f(m))$

y veamos de nuevo que $\lambda f \in \operatorname{Hom}_A(M,N)$, de forma que

$$A \times \operatorname{Hom}_A(M, N) \longrightarrow \operatorname{Hom}_A(M, N)$$

 $(\lambda, f) \longmapsto \lambda f$

esté bien definida. Sean $m, m_1, m_2 \in M$ y $\mu \in A$:

$$(\lambda f)(m_1 + m_2) = \lambda (f(m_1 + m_2)) =$$

$$= \lambda (f(m_1) + f(m_2)) =$$

$$= \lambda (f(m_1)) + \lambda (f(m_2)) = (\lambda f)(m_1) + (\lambda f)(m_2).$$

$$(\lambda f)(\mu m) = \lambda(f(\mu m)) = \lambda(\mu(f(m))) = (\lambda \mu)(f(m)) =$$
$$= (\mu \lambda)(f(m)) = \mu(\lambda(f(m))) = (\mu(\lambda f))(m).$$

Ahora, dadas $f, g \in \text{Hom}_A(M, N)$ definamos la aplicación

$$f+g: M \longrightarrow N$$

 $m \longmapsto f(m) + g(m)$

Veamos que $f + g \in \text{Hom}_A(M, N)$. Dados $m, m_1, m_2 \in M$ y $\lambda \in A$ arbitrarios, tenemos efectivamente

$$(f+g)(m_1+m_2) = f(m_1+m_2) + g(m_1+m_2) =$$

= $f(m_1) + f(m_2) + g(m_1) + g(m_2) = (f+g)(m_1) + (f+g)(m_2).$

$$(f+g)(\lambda m) = f(\lambda m) + g(\lambda m) = \lambda f(m) + \lambda g(m) =$$

= $\lambda (f(m) + g(m)) = \lambda ((f+g)(m)) = (\lambda (f+g))(m).$

Así,

$$+: \operatorname{Hom}_A(M,N) \times \operatorname{Hom}_A(M,N) \longrightarrow \operatorname{Hom}_A(M,N)$$

 $(f,g) \longmapsto f+g,$

está bien definida y dota a $\operatorname{Hom}_A(M,N)$ de estructura de grupo abeliano.

Comprobemos por último que el producto exterior cumple los cuatro axiomas de la definición de A-módulo. Sean $m \in M$, $f, g \in \text{Hom}_A(M, N)$ y $\lambda, \mu \in A$ arbitrarios:

i)
$$(\lambda(f+g))(m) = \lambda((f+g)(m)) = \lambda(f(m)+g(m)) = \lambda(f(m)) + \lambda(g(m)) = (\lambda f)(m) + (\lambda g)(m) = (\lambda f + \lambda g)(m),$$

$$ii) \ ((\lambda+\mu)f)(m) = (\lambda+\mu)(f(m)) = \lambda(f(m)) + \mu(f(m)) = (\lambda f)(m) + (\mu f)(m) = (\lambda f + \mu f)(m),$$

$$iii)$$
 $((\lambda \mu)f)(m) = (\lambda \mu)(f(m)) = \lambda(\mu(f(m))) = \lambda((\mu f)(m)) = (\lambda(\mu f))(m)$ y

$$iv)$$
 $(1_A f)(m) = 1_A (f(m)) = f(m).$

0.1.4 Pullbacks

Dados M_1 , M_2 y N A-módulos y dada $\varphi \in \operatorname{Hom}_A(M_1, M_2)$, podemos definir

$$\varphi^*: Hom_A(M_2, N) \longrightarrow Hom_A(M_1, N)$$

 $g \longmapsto g \circ \varphi$

que resulta ser un homomorfismo de A-módulos y se denota $\varphi^* = Hom_A(\varphi_{_})$. Análogamente, dados M, N_1 y N_2 A-módulos y dada $\psi \in Hom_A(N_1, N_2)$,

$$\psi^*: Hom_A(M, N_1) \longrightarrow Hom_A(M, N_2)$$

 $g \longmapsto \psi \circ g$

es un homomorfismo de A-módulos.

Nótese que si tenemos M_1 , M_2 y M_3 A-módulos y $\varphi \in Hom_A(M_1, M_2)$ y $\psi \in Hom_A(M_2, M_3)$, entonces $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$

0.1.5 Suma directa

Definición 0.1.7. . Sean $(A, +, \cdot)$ un anillo conmutativo unitario y $\{M_i\}_{i \in I}$ una familia no vacía de A-módulos. Definimos el conjunto

$$\bigoplus_{i \in I} M_i := \left\{ (m_i)_{i \in I} \in \prod_{i \in I} M_i \mid m_i = 0_{M_i}, \forall i \in I \setminus F, F \subseteq I \text{ finito} \right\}$$

y lo llamamos suma directa de los A-módulos $\{M_i\}_{i\in I}$.

Proposición 0.1.8. Sean A un anillo y una familia $\{M_i\}_{i\in I}$ de A-módulos. Entonces $\bigoplus_{i\in I} M_i$ con la suma por coordenadas y el producto por escalares por coordenadas es un A-módulo.

- Observación 0.1.9. 1. Para cada $j \in I$, tenemos definida $p_j : \bigoplus_{i \in I} M_i \to M_j$, la proyección a cada M_j . No es más que la restricción a $\bigoplus_{i \in I} M_i$ de la proyección Π_j definida sobre el producto cartesiano $\Pi_{i \in I} M_i$. p_j es un homomorfismo de A-módulos.
 - 2. Para cada $j \in I$, la inclusión $q_j : M_j \hookrightarrow \bigoplus_{i \in I} M_i$ es homomorfismo de anillos.

i)

ii)

iii) Para cada $x=(x_i)\in \bigoplus_{i\in I} M_i$, existe un número finito de índices $i_1,...,i_r$ tal que $x_{i_r}\neq 0$. Entonces, expresamos $x=\sum_{i\in i_1,...i_r}q_i(x_i)$.

Notación. Dado A un anillo, I un conjunto no vacío, denotamos $A^{(I)} = \bigoplus_{i \in I} A_i$, donde para cada $i \in I$, $A_i = A$. $A^{(I)}$ es un submódulo de $A^I = \prod_{i \in I} A_i$, con $A_i = A$ para cada $i \in I$.

0.2 A-módulos libres

Definición 0.2.1. . Dado un homomorfismo de A-módulos, $f: M \to N$, se dice que es un isomorfismo de A-módulos si existe $g: N \to M$ homomorfismo de A-módulos tal que $g \circ f = Id_M$ y $f \circ g = Id_N$, es decir, una inversa de f.

Observación 0.2.2. $f:M\longrightarrow N$ es isomorfismo de A-módulos si, y sólo si, es inyectivo y sobreyectivo. Esto significa que es suficiente que f sea biyectivo como A-aplicación.

7

Lema 0.2.3. Sean $M_i: i \in I$ un conjunto de A-módulos y sea N otro A-módulo. Un homomorfismo $\Phi: \bigoplus_{i \in I} M_i \to N$ viene unívocamente determinado por los homomorfismos $\Phi \circ q_i: M_i \to N$. Análogamente, los homomorfismos $\Phi: N \to \bigoplus_{i \in I} M_i$ vienen unívocamente determinados por los homomorfismos $p_i \circ \Phi: N \to M_i$.

Prueba. Sea $\Phi: \bigoplus_{i\in I} M_i \to N$ un homomorfismo de A-módulos. Para cada $i\in I$, $\Phi \circ q_i$ es una composición de homomorfismos, luego es un homomorfismo de anillos.

Recíprocamente, dados $\Phi_i: M_i \to N$ homomorfismo de A-módulos, para cada $i \in I$, definimos $\Phi: \bigoplus_{i \in I} M_i \to N$ de la siguiente forma:

Para cada $\omega \in \bigoplus_{i \in I} M_i$, existen unos únicos $i_1, ..., i_r$, todos ellos distintos, tales que $\omega = q_{i_1}(\omega_{i_1}) + \cdots + q_{i_r}(\omega_{i_r})$. Entonces, ponemos $\Phi(\omega) = \Phi_{i_1}(\omega_{i_1}) + \ldots + \Phi_{i_r}(\omega_{i_r})$. En el caso en el que ω sea 0, ponemos $\Phi(\omega) = 0$. Φ es un homomorfismo de anillos que cumple $\Phi \circ q_i = \Phi_i$, para cada $i \in I$.

Notación. Denotamos al Φ de la demostración anterior como $\bigoplus_{i \in I} \Phi_i$

Definición 0.2.4. Se dice que M es un A-m'odulo libre si $M \cong A^{(I)}$ para cierto conjunto I.

Proposición 0.2.5. M es un A-módulo libre si y solo si existe $B := \{m_i\}_{i \in I} \subseteq M$ tal que para cada $x \in M$ existe $F \subseteq I$ cumpliendo que x se puede expresar de forma única como

$$x = \sum_{\substack{j \in F \\ \lambda_j \in A}} \lambda_j m_j$$

. Si dos subconjuntos B y B' cumplen lo anterior, entonces tienen el mismo cardinal.

Prueba. $(2 \Rightarrow 1)$ Supongamos que existe $\phi: A^{(I)} \to M$ un isomorfismo de Amódulos, para cierto conjunto de índices I. Sea, para cada $i \in I$, $m_i := \phi(e_i)$,
donde $e_i = (\delta_{ij})_i \in A^{(I)}$. El conjunto $\{m_i, i \in I\}$ es el que buscamos.

Para cada $m \in M$, por ser ϕ sobreyectiva, existe un $\underline{x} \in A^{(I)}$ tal que $\phi(\underline{x}) = m$. A su vez, existen $i_1, ..., i_r \in I$ tales que $\underline{x} = q_{i_1}(x_{i_1}) + ... + q_{i_r}(x_{i_r}) = x_{i_1}q_{i_1}(1_A) + ... + x_{i_r}q_{i_r}(1_A)$. Por tanto, $\phi(\underline{x}) = x_{i_1}\phi(e_{i_1}) + ... + x_{i_r}\phi(e_{i_r}) = x_{i_1}m_{i_1} + ... + x_{i_1}m_{i_r} = m$. Hemos escrito m como una combinación lineal de elementos $m_i : i \in I$

La unicidad es clara porque estamos usando un isomorfismo, pero podemos detallarlo. Si un elemento tiene dos representaciones en los m_i , al restarlas obtengo una combinación lineal nula de un conjunto de los m_i , basta entonces comprobar que, si una combinación lineal de cualquier subconjunto de los m_i es nula, sus coeficientes son nulos también:

$$0_M = \lambda_{i_1} m_{i_1} + \dots + \lambda_{i_r} m_{i_r} = \Phi(\lambda_{i_1} e_{i_1} + \dots + \lambda_{i_r} e_{i_r})$$

$$\iff \lambda_{i_1} e_{i_1} + \dots + \lambda_{i_r} e_{i_r} = 0_{A^{(I)}} \iff \lambda_{i_j} = 0_A \quad (1)$$

 $\forall j \in \{1, \dots, r\}$, lo que concluye la prueba.

 $(1 \Rightarrow 2)$ En primer lugar, para cada $i \in I$ definimos las aplicaciones

$$\varphi_i: A \longrightarrow M$$

$$1_A \longmapsto m_i.$$

Para cada $i \in I$ y cada $\lambda \in A$ se verifica $\varphi_i(\lambda) = \lambda m_i$. De esta forma, φ_i es un homomorfismo de A-módulos entre A y M para cada $i \in I$ y, por el lema previo, $\varphi := \bigoplus_{i \in I} \varphi_i : A^{(I)} \longrightarrow M$ es a su vez un homomorfismo de A-módulos.

Todo $x \in M$ admite una representación única como combinación lineal finita de elementos de B. Sean las aplicaciones $\psi_i : M \to A$ dadas por $x = \sum_{j \in F} \lambda_j m_j \mapsto \lambda_i$, donde $F \subset I$ finito. Para cada $i \in I$, ψ_i es un homomorfismo de A-módulos y, de forma análoga, la aplicación $\psi : M \longrightarrow A^I$ que verifica $p_i \circ \psi = \psi_i$, es un homomorfismo de A-módulos y es único. Más aún, para cada $x \in M$ existe $F \subseteq I$ finito de forma que, $\psi_i(x) = 0_A$ si $i \in I \setminus F$; es decir, $\psi(M) \subseteq A^{(I)}$.

Por último, es claro por definición de los homomorfismos que $\varphi \circ \psi = Id_M$ y $\psi \circ \varphi = Id_{A^{(I)}}$.

Veamos que todas las bases tienen un mismo cardinal. Si $M \cong A^{(I)}$, sean \mathfrak{m} un ideal maximal de A y $\{m_i, i \in I\}$ una base de M. $\mathfrak{m}M$ es un submódulo de M y, como $\mathfrak{m} \subset \operatorname{Ann}_A\binom{M}{\mathfrak{m}M}$, $M_{\mathfrak{m}M}$ tiene estructura de $M_{\mathfrak{m}}$ -espacio vectorial.

Tomemos $M = A^{(I)}$ y veamos que $A^{(I)}$ $\mathfrak{m}_{A^{(I)}} \cong (A/\mathfrak{m})^{(I)}$, que es un A/\mathfrak{m} -espacio vectorial de dimensión #(I).

En primer lugar, definamos para cada $i \in I$ las siguientes aplicaciones

$$\tau_i: A \longrightarrow \left(\stackrel{A}{\not}_{\mathfrak{m}} \right)^{(I)}$$

$$1_A \longmapsto \tau_i(1_A) = (a_j + \mathfrak{m})_{j \in I} := \left\{ \begin{array}{l} a_j + \mathfrak{m} = \mathfrak{m} & \text{si } i \neq j \\ a_j + \mathfrak{m} = 1 + \mathfrak{m} & \text{si } i = j \end{array} \right.$$

Se comprueba que, para cada $i \in I$, τ_i es homomorfismo de A-módulos y, por lo tanto, $\bigoplus_{i \in I} \tau_i : A^{(I)} \longrightarrow \left(\stackrel{A}{\nearrow}_{\mathfrak{m}} \right)^{(I)}$ es también un homomorfismo de A-módulos.

9

Además, $\bigoplus_{i\in I} \tau_i$ es sobreyectivo y $\ker \bigoplus_{i\in I} \tau_i = \mathfrak{m} A^{(I)}$. Así, por el primer teorema de isomorfía, $\bigoplus_{i\in I} \tau_i$ induce un isomorfismo de $A_{\mathfrak{m}}$ -módulos, $\widehat{\bigoplus_{i\in I} \tau_i}$: $A^{(I)} \longrightarrow \left(A_{\mathfrak{m}}\right)^{(I)}$

Ahora, dados dos conjuntos de índices no vacíos I y J, supongamos que existe un isomorfismo de A-módulos $\Phi:A^{(I)}\longrightarrow A^{(J)}$. Por ser así, en concreto se tiene que $\Phi(\mathfrak{m}A^{(I)})=\mathfrak{m}A^{(J)}$ y Φ induce otro isomorfismo de $A_{\mathfrak{m}}$ -módulos, $\widehat{\Phi}:A^{(I)}\longrightarrow A^{(J)}\longrightarrow A^{(J)}$ De esta forma, resulta que $A_{\mathfrak{m}}(I)\cong A_{\mathfrak{m}}(I)\cong A_{\mathfrak{m}}(I)$ y H(I)=H(I).

Definición 0.2.6. A cualquier conjunto B que cumpla la proposición anterior se le llama base del A-módulo libre M, y a su cardinal se le llama $rango\ de\ M$.

Corolario 0.2.7. Sea M es un A-módulo libre, es decir, existe un conjunto I tal que $M \cong A^{(I)}$, y sea N otro A-módulo. Dados $n_i : i \in I \subset N$, existe un único homomorfismo de A-módulos $f : M \to N$ tal que $f(m_i) = n_i$ para cada $i \in I$, donde $m_i : i \in I$ es una base de M.

0.3 Sucesiones exactas

Definición 0.3.1. Una sucesión de homomorfismos de A-módulos

$$\dots \longrightarrow M_{i-1} \xrightarrow{\Phi_{i-1}} M_i \xrightarrow{\Phi_i} M_{i+1} \longrightarrow \dots$$

se dice exacta si $ker(\Phi_{i+1}) = im(\Phi_i)$, donde para cada i, M_i es un A-módulo y $\Phi_i: M_i \to M_{i+1}$ es un homomorfismo de A-módulos.

Definición 0.3.2. Decimos que una sucesión de homomorfismos de A-módulos es corta si es de la forma

$$0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$$

Observación 0.3.3. Una sucesión corta es exacta si y sólo si $f: M_1 \to M_2$ es inyectiva, $g: M_2 \to M_3$ es suprayectiva y im(f) = ker(g)

Ejemplo 0.3.4. 1. Dados $N \subset M$ A-módulos,

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/_N \longrightarrow 0$$

es una sucesión corta exacta.

2. Dados M y N A-módulos,

$$0 \longrightarrow M \xrightarrow{q_M} M \oplus N \xrightarrow{p_N} N \longrightarrow 0$$

es una también una sucesión corta exacta.

Observación 0.3.5. Toda sucesión de homomorfismos de A-módulos se puede descomponer en varias sucesiones cortas.

Definición 0.3.6. Dado M un A-módulo, un subconjunto $S \subset M$ es un sistema de generadores de M si para cada $x \in M$ existen $\{s_1, ..., s_n\} \subset S$ tales que

$$x = \lambda_1 s_1 + \dots + \lambda_n s_n$$

con $\lambda_i \in A$ para cada $i \in \{1, ..., n\}$.

Es decir, el menor submódulo de M que contiene a S es el propio M.

Definición 0.3.7. Dado un conjunto de A-módulos ζ , una aplicación $\lambda: \zeta \to \mathbb{N}$ se dice aditiva si para cada M, M' y $M'' \in \zeta$ y para cada sucesión corta y exacta

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

se verifica $\lambda(M) = \lambda(M') + \lambda(M'')$.

Ejemplo 0.3.8. Dado K cuerpo, los K-módulos son los K-espacios vectoriales. Tomando ζ como los K-espacios vectoriales de dimensión finita,

$$\begin{array}{ccc} \zeta & \longrightarrow & \mathbb{N} \\ M & \longmapsto & dim(M) \end{array}$$

es una aplicación aditiva.

Proposición 0.3.9. Sea

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

una sucesión corta y exacta de A-módulos. Son equivalentes:

- i) Existe $\pi: M \longrightarrow M'$ homomorfismo de A-módulos tal que $\pi \circ f = 1_{M'}$
- ii) Existe $\sigma: M'' \longrightarrow M$ homomorfismo de A-módulos tal que $g \circ \sigma = 1_{M''}$
- iii) $M \cong M' \oplus M''$ vía f y g, es decir, existe $\Phi : M \longrightarrow M' \oplus M''$ isomorfismo de A-módulos tal que los diagramas son conmutativos.

En tal caso, se dice que la sucesión corta es escindida.

 $Prueba.\ (1 \Rightarrow 2)$ Dado $m'' \in M''$, por ser g sobreyectiva existe $m \in M$ tal que q(m) = m''. Considero

$$m^* := m - f \circ \tau(m) \in M$$

y afirmo que m^* no depende de la elección hecha de $m \in M$ de forma que g(m) = m''. Supongamos que existe otro $m_1 \in M$ tal que $g(m_1) = m''$. Por ser así,

$$g(m - m_1) = g(m) - g(m_1) = 0_{M''}.$$

Como $\ker(g) = \operatorname{im}(f)$, existe $m' \in M'$ tal que $f(m') = m - m_1$. Dado que por hipótesis $\tau \circ f = \operatorname{id}_{M'}$, tenemos

$$m - m_1 = f(m') = f \circ \tau(m - m_1) = f \circ \tau(m) - f \circ \tau(m_1)$$

У

$$m - f \circ \tau(m) = m_1 - f \circ \tau(m_1).$$

Vemos así que m^* no depende del $m \in M$ escogido con tal de que se tenga g(m) = m''.

Por esto que acabamos de ver, la aplicación

$$\begin{array}{cccc} \sigma: & M'' & \longrightarrow & M \\ & m'' & \longmapsto & m^* = m - f \circ \tau(m) \end{array},$$

donde m verifica g(m) = m'', está bien definida. Además, para cada $m'' \in M''$,

$$g \circ \sigma(m'') = g(\sigma(m'')) = g(m - f \circ \tau(m)) = g(m) = m'',$$

es decir, $q \circ \sigma = \mathrm{id}_{M''}$.

Falta por comprobar que σ es homomorfismo de A-módulos. Sean $\lambda, \mu \in A$ y $m_1'', m_2'' \in M''$ arbitrarios. Usamos que f, g y τ son homomorfismos de A-módulos. en primer lugar, es claro que, si $m_1, m_2 \in M$ verifican $g(m_i) = m_i''$, entonces $g(\lambda m_1) = \lambda m_1'', g(\mu m_2) = \mu m_2''$ y $g(\lambda m_1 + \mu m_2) = \lambda m_1'' + \mu m_2''$. Teniendo esto en cuenta,

$$\sigma(\lambda m_1'' + \mu m_2'') = (\lambda m_1 + \mu m_2) - f \circ \tau(\lambda m_1 + \mu m_2) =$$

$$= \lambda m_1 - f \circ \tau(\lambda m_1) + \mu m_2 - f \circ \tau(\mu m_2) = \sigma(\lambda m_1'') + \sigma(\mu m_2'')$$

como queríamos.

 $(2 \Rightarrow 1)$ Partiendo ahora de la existencia de $\sigma: M'' \longrightarrow M$ verificando $g \circ \sigma = \mathrm{id}_{M''}$, buscamos definir $\tau: M \longrightarrow M'$ cumpliendo $\tau \circ f = \mathrm{id}_M'$. Dado $m \in M$,

 $m - \sigma(g(m)) \in \ker(g) = im(f)$ y, como antes, existe $m' \in M'$ tal que $f(m') = m - \sigma(g(m))$ único por la inyectividad de f. Así, la aplicación

$$\begin{array}{ccccc} \tau: & M & \longrightarrow & M' \\ & m & \longmapsto & m' \end{array},$$

donde m' es el único elemento en M' tal que $f(m') = m - \sigma(g(m))$, está bien definida. Además, es claro que para cada $m' \in M'$ se cumple $\tau \circ f(m') = m'$. La comprobación de que τ es homomorfismo de A-módulos es análoga al caso anterior.

 $(2 \Rightarrow 3)$ En primer lugar, como se verifica 2) también tenemos 1); es decir, contamos con las aplicaciones τ y σ verificando las condiciones del enunciado.

Definimos así $\Phi: M' \oplus M'' : \longrightarrow M$ como el único homomorfismo de A-módulos que hace $\Phi \circ q_{M'} = f$ y $\Phi \circ q_{M''}$. Φ está bien definido por la propia contrucción de la suma directa $M' \oplus M''$. Veamos que es sobreyectivo. Sea $m \in M$ y tomemos $m' := \tau(m - \sigma(g(m)))$ y m'' := g(m). De nuevo, $m - \sigma(g(m)) \in \ker(g) = \operatorname{im}(f)$ y existe $m^* \in M'$ tal que $f(m^*) = m - \sigma(g(m))$. Por esto,

$$\Phi(m', m'') = \Phi((m', 0) + (0, m'')) = \Phi \circ q_{M'}(m') + \Phi \circ q_{M''}(m'') =$$

$$= f(\tau(m - \sigma(g(m)))) + \sigma(g(m)) = f \circ \tau \circ f(m^*) + \sigma \circ g(m) =$$

$$= f(m^*) + \sigma \circ g(m) = m - \sigma(g(m)) + \sigma(g(m)) = m.$$

Veamos ahora que Φ es inyectiva. Supongamos que $\Phi(m', m'') = 0_M$, es decir, $f(m') + \sigma(m'') = 0_M$. Aplicando g tenemos que $m'' = g \circ \sigma(m'') = 0_{M''}$. Por su parte, como f es inyectiva, $f(m') = 0_{M'}$ implica $m' = 0_{M'}$.

Por último, si
$$m \in M$$
, $\Phi^{-1}(m) = (m', m'')$, con $m'' = g(m)$. Así, $p_{M''}^{-1} = g$. $(3 \Rightarrow 2)$ Basta tomar $\sigma := \Phi \circ q_{M''}$.

Denotemos por CRing a la categoría de anillos conmutativos unitarios. Dado $A \in \text{Obj}(\text{CRing})$, denotaremos a su vez por Mod_A a la categoría de A-módulos.

Proposición 0.3.10. 1) Sea

$$0 \longrightarrow N' \xrightarrow{f} N \xrightarrow{g} N'' \tag{2}$$

una sucesión de A-módulos y homomorfismos. Entonces (2) es exacta si, y sólo si, para todo $N \in Obi(Mod_A)$ la sucesión

$$0 \longrightarrow Hom_A(M, N') \xrightarrow{Hom_A(M, f)} Hom_A(M, N) \xrightarrow{Hom_A(M, g)} Hom_A(M, N'')$$
 (3)

es también una sucesión exacta.

2) Sea

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$
 (4)

una sucesión de A-módulos y homomorfismos. Entonces (4) es exacta si, y sólo si, para todo $M \in Obj(Mod_A)$ la sucesión

$$0 \longrightarrow Hom_A(M'', N) \stackrel{Hom_A(g, N)}{\longrightarrow} Hom_A(M, N) \stackrel{Hom_A(f, N)}{\longrightarrow} Hom_A(M', N)$$
 (5)

es también una sucesión exacta.

Prueba. Veamos (\Rightarrow) en 1). Denotemos $f_* := \operatorname{Hom}_A(M, f)$ y $g_* := \operatorname{Hom}_A(M, g)$. En primer lugar, por definición de f_* y dado $\varphi \in \operatorname{Hom}_A(M, N')$, si $f \circ \varphi \equiv 0_N$, entonces para toda $x \in M$ se tiene $\varphi(x) = 0$ por la inyectividad de f (si existiera $x \in M$ tal que $\varphi(x) \neq 0_{N'}$, entonces $f(\varphi(x)) \neq 0_N$). Así, vemos que f_* es inyectiva.

Comprobemos ahora que im $(f_*) = \ker(g_*)$. En primer lugar, dado que $g_* \circ f_* = (g \circ f)_*$ y $g \circ f = 0_{N''}$ resulta

$$g_* \circ f_* = 0_{\operatorname{Hom}_A(M, N'')},$$

es decir, $\operatorname{im}(f_*) \subset \ker(g_*)$. Ahora, dado $\psi \in \operatorname{Hom}_A(M, N)$ tal que $g \circ \psi \equiv 0$, se tiene que $\operatorname{im}(\psi) \subset \ker(g) = \operatorname{im}(f)$. Como f es un isomorfismo sobre su imagen, el homomorfismo de A-módulos

$$\varphi:=f^{-1}\circ\psi:\ M\ \longrightarrow\ N'$$

está bien definido. Así, componiendo f por la izquierda tenemos la igualdad $\psi = f \circ \varphi$; de forma equivalente, $\psi \in \operatorname{im}(f_*)$ como queríamos probar.

Probemos ahora (\Rightarrow) en 2). Sea $\psi \in \operatorname{Hom}_A(M'', N)$ tal que $\psi \circ \psi \equiv 0$. Como g es suprayectiva, la suposición anterior implica que $M'' = \operatorname{im}(g) \subset \ker \psi$; es decir, $\psi \equiv 0_{\operatorname{Hom}_A(M'',N)}$ y g^* es inyectiva.

Veamos ahora que $\operatorname{im}(g^*) = \ker(f^*)$. En primer lugar, si $\psi \in \operatorname{im}(g^*)$, existe $\varphi \in \operatorname{Hom}_A(M'', N)$ tal que $\psi = \varphi \circ g$. Por ser esto así, se tiene

$$f^*(\psi) = \psi \circ f = (\varphi \circ g) \circ f = \varphi \circ (g \circ f) = \varphi \circ 0_{\operatorname{Hom}_A(M',M'')} = 0_{\operatorname{Hom}_A(M',N)},$$

es decir, $\operatorname{im}(q^*) \subset \ker(f^*)$.

Ahora, sea $\psi \in \ker(f^*)$, i.e, $\psi \circ f \equiv 0_{\operatorname{Hom}_A(M',N)}$. Por un lado, $\ker(g) = \operatorname{im}(f) \subset \ker(\psi)$. Por otro, como g es sobreyectiva, para todo $x \in M''$ existe $m_x \in M$ tal que $g(m_x) = x$. Podemos definir así la siguiente aplicación

$$\begin{array}{ccc} \varphi & M'' & \longrightarrow & N \\ & x & \longmapsto & \psi(m_x) \end{array}.$$

Veamos que está bien definida. Supongamos que existen $m_x, m_x' \in M$ distintos de forma que $g(m_x) = g(m_x') = x$. Por darse $\ker(g) \subset \ker(\psi)$ y ser g homomorfismo de A-módulos, $m_x - m_x' \in \ker(g) \subset \ker(\psi)$, es decir, $\psi(m_x) = \psi(m_x')$. Tras comprobar que φ es un homomorfismo de A-módulos, tenemos que para cada $x \in M$ se verifica

$$\varphi(g(x)) = \psi(x);$$

es decir, $\psi = \varphi \circ q$.

Ahora vamos a probar las implicaciones (\Leftarrow) tanto en 1) como en 2). Comenzamos con la de 2). Para ver que g es suprayectiva, tomamos en primer lugar $N:=M''/_{\operatorname{im}(g)}$ en (5). Si consideramos la aplicación cociente $c:M'' \longrightarrow N$, se tiene que $g^*(c) = c \circ g = 0_{\operatorname{Hom}_A(M,N)}$; es decir, como g^* es inyectiva, $c \equiv 0_{\operatorname{Hom}_A(M'',N)}$ y $M'' = \operatorname{im}(g)$.

Tomemos ahora $N:=M_{\operatorname{im}(f)}$. De nuevo, si consideramos la aplicación cociente $c:M\longrightarrow N$, se tiene que $f^*(c)=c\circ f=0_{\operatorname{Hom}_A(M',N)}$ y $c\in \ker(f^*)$. Por esto último, existe $\varphi\in \operatorname{Hom}_A(M'',N)$ tal que $c=\varphi\circ g$. Si $x\in M$ es tal que g(x)=0, entonces $c(x)=0_N$ y $x\in \operatorname{im}(f)$. Así, $\ker(g)\subset \operatorname{im}(f)$. Para ver que $\ker(g)\supset \operatorname{im}(f)$ basta tomar N:=M'' y observar que

$$g^*(1_{M''}) = g \in \ker(f^*);$$

es decir, $g \circ f = 0_{\operatorname{Hom}_A(M',M'')}$ y se tiene lo que buscábamos.

Comprobemos por último la suficiencia en 1). Para ver que f es inyectiva, tomemos $M:=\ker(f)$ y la inclusión $i:M\longrightarrow N'$, que es inyectiva. Por esta elección, tenemos que

$$f_*(i) = f \circ i = 0_{\operatorname{Hom}_A(M, N')}$$

y, como por hipótesis f_* es inyectiva, $i \equiv 0_{\text{Hom}_A(M,N')}$. Ahora, como i es inyectiva, se tiene que $\text{ker}(f) = \{0_{N'}\}$, es decir, f es inyectiva.

Para ver $\ker(g) = \operatorname{im}(f)$, veamos las dos inclusiones. En primer lugar, tomando $M := N' \text{ y } 1_{N'} \in \operatorname{Hom}_A(M, N')$, se tiene que

$$f_*(1_{N'}) = f \in \text{im}(f_*) = \text{ker}(g_*),$$

es decir, $g \circ f = 0_{\text{Hom}_A(N',N'')}$ y $\ker(g) \supset \text{im}(f)$. Para el otro contenido, definamos de forma análoga al caso anterior $M := \ker(g)$ y consideremos la inclusión $i \in \text{Hom}_A(M,N)$. Por esta elección tenemos que

$$g_*(i) = g \circ i = 0_{\text{Hom}_A(M,N'')},$$

es decir, $i \in \ker(g_*) = \operatorname{im}(f_*)$ y por lo tanto existe $\varphi \in \operatorname{Hom}_A(M, N')$ de forma que $i = f \circ \varphi$. Es por esto que, dado $x \in M$ se verifica

$$x = i(x) = f(\varphi(x)) \in \text{im}(f).$$

Así,
$$\ker(g) \subset \operatorname{im}(f)$$
.

0.4 Módulos proyectivos y módulos inyectivos

Supongamos $M \in \text{Obj}(\text{Mod}_A)$ tal que, siempre que se tenga una sucesión exacta

$$0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N'' \longrightarrow 0,$$

se tuviera que la sucesión

$$0 \longrightarrow \operatorname{Hom}_{A}(M, N') \stackrel{\operatorname{Hom}_{A}(M, f)}{\longrightarrow} \operatorname{Hom}_{A}(M, N) \stackrel{\operatorname{Hom}_{A}(M, g)}{\longrightarrow} \operatorname{Hom}_{A}(M, N'') \longrightarrow 0$$

también es exacta. Por 0.3.10, esto es equivalente a que para cualesquiera $N, N'' \in \text{Obj}(\text{Mod}_A)$ y todo $\varphi \in \text{Hom}_A(M, N')$ existiría $h \in \text{Hom}_A(M, N)$ tal que $g \circ h = \varphi$. Esta observación motiva la siguiente definición.

Definición 0.4.1. Sea $M \in \text{Obj}(\text{Mod}_A)$ tal que para toda $g \in \text{Hom}_A(N, N')$ suprayectiva y toda $\varphi \in \text{Hom}_A(M, N')$ existe $h \in \text{Hom}_A(M, N)$ verificando $g \circ \varphi = h$. En estas condiciones, decimos que M es un A-módulo proyectivo.

Observación 0.4.2. Todo módulo libre es un módulo proyectivo. Sea $A^{(I)}$ un A-módulo libre con sistema de generadores $\{a_i\}_{i\in I}$. Sean también $g\in \operatorname{Hom}_A(N,N')$ suprayectiva y $\varphi\in \operatorname{Hom}_A(A^{(I)},N')$ arbitrarias. Por ser g sobreyectiva, para cada $i\in I$ existe $n_i\in N$ tal que $g(n_i)=\varphi(a_i)$. Es por esto que podemos definir

$$\begin{array}{cccc} h: & A^{(I)} & \longrightarrow & N \\ & a_i & \longmapsto & n_i \end{array}.$$

Por lo ya comentado, h está bien definido. Además, como $\{a_i\}_{i\in I}$ es un sistema de generadores, para cada $x\in A^{(I)}$ existe $F_x\subset I$ finito tal que $x=\sum_{i\in F_x}\lambda_i a_i$, donde $\lambda_i\in A$ para cada $i\in F_x$. Es por esto que tomando $x\in A^{(I)}$ arbitrario se verifica

$$g(h(x)) = g\left(\sum_{i \in F_x} \lambda_i h(a_i)\right) = \sum_{i \in F_x} \lambda_i g(n_i) = \sum_{i \in F_x} \lambda_i \varphi(a_i) = \varphi\left(\sum_{i \in F_x} \lambda_i a_i\right) = \varphi(x).$$

Tenemos así que $g \circ h = \varphi$.

Proposición 0.4.3. M es un A-módulo proyectivo si, y sólo si, M es suma directa de un A-módulo libre.

 $Prueba. \ (\Rightarrow)$ Sabemos que existe $I \subset M$ tal que

$$\begin{array}{cccc} \pi: & A^{(I)} & \longrightarrow & M \\ & e_i & \longmapsto & m_i \end{array}$$

es un homomorfismo bien definido y suprayectivo (basta tomar al propio M como sistema de generadores). Surge así de manera natural la siguiente sucesión exacta

$$0 \to \ker \pi \stackrel{i}{\hookrightarrow} A^{(I)} \stackrel{\pi}{\to} M \to 0.$$

Por hipótesis, M es A-módulo proyectivo, es decir, tomando $\pi \in \operatorname{Hom}_A(A^{(I)}, M)$ suprayectivo y $1_M \in \operatorname{Hom}_A(M, M)$, existe $h \in \operatorname{Hom}_A(M, A^{(I)})$ tal que $\pi \circ h = 1_M$; es decir, por 0.3.9 la sucesión anterior es escindida y $A^{(I)} \cong \ker \pi \oplus M$.

Ahora, supongamos que $N \in \text{Obj}(\text{Mod}_A)$ es tal que, si la sucesión

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M$$

es exacta, entonces la sucesión

$$\operatorname{Hom}_A(M,N) \stackrel{\operatorname{Hom}_A(f,N)}{\longrightarrow} \operatorname{Hom}_A(M',N) \longrightarrow 0$$

también lo es; es decir, para cualquier $\varphi \in \operatorname{Hom}_A(M', N)$, existe $\Phi \in \operatorname{Hom}_A(M, N)$ de forma que $\varphi = \Phi \circ f$. Por ser f inyectiva, podemos interpretar M' como un submódulo de M (entender f como una inclusión) y, por esto, nuestro problema se trata de un problema de extensión.

Esta extensión no va a ser posible en general como muestra el siguiente ejemplo.

Ejemplo 0.4.4. Sea $n \in \mathbb{Z}$ y consideremos $\langle n \rangle \subset \mathbb{Z}$ submódulo. Si definimos la aplicación

$$\begin{array}{ccc} \langle n \rangle & \longrightarrow & \mathbb{Z} \\ n & \longmapsto & 1_{\mathbb{Z}} \\ \lambda n & \longmapsto & \lambda \end{array},$$

se comprueba que no puede extenderse a \mathbb{Z} .

Surge la siguiente definición.

Definición 0.4.5. Diremos que $N \in \text{Obj}(\text{Mod}_A)$ es un A-módulo inyectivo si, para cualesquiera $M, M' \in \text{Obj}(\text{Mod}_A)$, $f \in \text{Hom}_A(M', M)$ inyectiva y $\varphi \in \text{Hom}_A(M', N)$, se tiene que existe $\Phi \in \text{Hom}_A(M, N)$ de forma que $\varphi = \Phi \circ f$.

17

0.5 Producto tensorial de módulos

Definición 0.5.1. Sean M, N y P A-módulos. Una aplicación $\Phi: M \times N \longrightarrow P$ se dice A-bilineal si se verfican las siguientes condiciones.

- 1) Para cada $m_1, m_2 \in M, n \in N, \Phi(m_1 + m_2, n) = \Phi(m_1, n) + \Phi(m_2, n)$
- 2) Para cada $m \in M$, $n_1, n_2 \in N$, $\Phi(m, n_1 + n_2) = \Phi(m, n_1) + \Phi(m, n_2)$
- 3) Para cada $m \in M$, $n \in N$, $\lambda \in A$, $\Phi(\lambda m, n) = \Phi(m, \lambda n) = \lambda \Phi(m, n)$

Observación 0.5.2. Análogamente, podemos definir el concepto de aplicaciones multilineales de la siguiente forma. Dados M_1, \ldots, M_r A-módulos,

$$\Phi: M_1 \times \cdots \times M_r \longrightarrow P$$

se dice multilineal si para cada $i \in \{1, ..., r\}$

- $\Phi(m_1, \ldots, m_i + m'_i, \ldots, m_r) = \Phi(m_1, \ldots, m_i, \ldots, m_r) + \Phi(m_1, \ldots, m'_i, \ldots, m_r)$
- $\Phi(m_1,\ldots,\lambda m_i,\ldots,m_r)=\lambda\Phi(m_1,\ldots,m_i,\ldots,m_r)$

Con $\lambda \in A$ y $m_j \in M_j$ para cada $j \in \{1, \dots, r\}$

Observación 0.5.3. Si M,M' son A-módulos, $g:M\to M'$ es suprayectiva, y $N\subset\ker g$, entonces el siguiente diagrama conmuta

Proposición 0.5.4. Dados dos A-módulos M y N, existe un A-módulo $M \otimes_A N$ y una aplicación A-bilineal $\delta: M \times N \to M \otimes_A N$ tal que para cada A-módulo P y para cada $F: M \times N \to P$ A-bilineal, existe una única aplicación A-lineal $f: M \otimes_A N :\to P$ tal que $f \circ \delta = F$.

Además, el par $(\delta, M \otimes_A N)$ es único, en el sentido que de existir otro par (δ', T) que verifique las condiciones del enunciado, se tiene que $T \cong M \otimes_A N$.

Prueba. Para ver la unicidad, supongamos que (δ,T) y (δ',T') cumplen las condiciones de la proposición. Poniendo a T' como P y a δ' como F, el resultado garantiza la existencia de $j:T\to T'$ tal que $\delta'=j\circ\delta$. Intercambiando los roles de T y T', se tiene $j':T'\to T$ tal que $\delta=j'\circ\delta'$. Entonces, cada una de las composiciones $j\circ j'$ y $j'\circ j$ son la identidad, lo cual garantiza que j sea un isomorfismo.

Para la existencia, procedemos como sigue. Consideremos $A^{(M\times N)}$, la suma directa de A tantas veces como elementos tenga $M\times N$. Definimos el siguiente subconjunto de $A^{(M\times N)}$

$$S = \{e_{(m+m',n)} - e_{(m,n)} - e_{(m',n)}, e_{(m,n+n')} - e_{(m,n)} - e_{(m,n')}, e_{(m,\lambda n)} - \lambda e_{(m,n)}, e_{(\lambda m,n)} - \lambda e_{(m,n)}\}$$
con $m, m' \in M, n, n' \in N \text{ y } \lambda \in A.$

Ahora tomamos Σ el submódulo generado por S. Se cumple $\Sigma \subset A^{(M \times N)}$, luego podemos definir el cociente $A^{(M \times N)}/\Sigma$, que es un A-módulo. Entonces, definimos

$$\begin{array}{ccc} M \times N & \stackrel{\delta}{\longrightarrow} & \stackrel{A^{(M \times N)}}{/} \searrow \\ (m,n) & \longmapsto & [e_{(m,n)}] \end{array}$$

Ver que δ es bilineal es trivial por cómo se ha definido S. Por ejemplo, dados $m, m' \in M$, $n \in N$, $\delta(m + m', n) = [e_{(m+m',n)}] = [e_{(m,n)} + e_{(m',n)}] = [e_{(m,n)}] + [e_{(m',n)}] = \delta(m,n) + \delta(m',n)$.

Ponemos $M \otimes_A N = A^{(M \times N)}/\Sigma$. Definimos

$$f_0: A^{M \times N} \longrightarrow P$$
 $e_{(m,n)} \longmapsto F(m,n)$

que está bien definida ya que $\{e_{(m,n)}: (m,n) \in M \times N\}$ es un sistema de generadores de $A^{M\times N}$. Nótese que entonces $\{[e_{(m,n)}]: (m,n) \in M \times N\}$ es un sistema de generadores de $M\otimes_A N$. Por ser F homomorfismo, f_0 es homomorfismo de A-módulos.

Veamos que $\Sigma \subset ker(f_0)$. Com Σ está generado por S, basta ver $S \subset ker(f_0)$. Pero esto es directo por ser F bilineal y la definición de S. Por ejemplo,

$$f_0(e_{(m+m',n)} - e_{(m,n)} - e_{(m',n)}) = F(e_{(m+m',n)} - e_{(m,n)} - e_{(m',n)}) = 0$$

Por tanto, siguiendo la observación anterior a la proposición, podemos definir

$$\tilde{f}_0: \begin{array}{ccc} A^{M \times N} / & \longrightarrow & P \\ & [e_{(m,n)}] & \longmapsto & F(m,n) \end{array}$$

que está bien definida y cumple las condiciones del teorema.

Observación 0.5.5. 1. A las clases $[e_{(m,n)}]$ se les denota $m \otimes_A n$ o simplemente $m \otimes n$.

Todo elemento de $M \otimes_A N$ es suma $\sum_{i=1}^r m_j \otimes n_j$, para ciertos $m_j \in M$, $n_j \in N$ y $r \in \mathbb{N}$, ya que $[\lambda e_{(m,n)}] = [e_{(\lambda m,n)}] = [e_{(m,\lambda n)}]$ por la definición inicial de S.

2. Las aplicaciones bilineales de $M \times N$ en P, $Bil_A(M \times N, P)$ están en correspondencia biyectiva con $Hom_A(M \otimes_A N, P)$.

En particular, si tomamos A como K cuerpo y M y N K-espacios vectoriales,

$$Hom_A(M \otimes_K N, K) = (M \otimes_K N)^* = Bil_K(M \times N, K)$$

Definición 0.5.6. Al A-módulo $M \otimes_A N$ se le llama producto tensorial de M y N.

En particular, si tomamos A como K cuerpo y M y N K-espacios vectoriales,

$$Hom_A(M \otimes_K N, K) = (M \otimes_K N)^* = Bil_K(M \times N, K)$$

3) La construcción del producto tensorial de módulos se puede generalizar. Dados M_1, \ldots, M_r A-módulos, existe un A-módulo $M_1 \otimes_A \cdots \otimes_A M_r$ y

$$\delta: M_1 \times \cdots \times M_r \longrightarrow M_1 \otimes_A \cdots \otimes_A M_r$$

multilineal tal que para cualquier

$$\Phi: M_1 \times \cdots \times, M_r \longrightarrow P$$

A-multilineal, existe una única

$$f: M_1 \otimes_A \cdots \otimes_A M_r \longrightarrow P$$

A-lineal tal que $f \circ \delta = F$

Lema 0.5.7. Sean Z y Z' dos A-módulos. Sea $\{z_i\}_{i\in I}$ un sistema de generadores de Z y sea $\{z_j'\}_{j\in J}$ un sistema de generadores de Z'. Entonces, $\{z_i\otimes z_j:(i,j)\in I\times J\}$ es un sistema de generadores de $Z\otimes_A Z'$.

21

$$M \times N \times P \xrightarrow{F} (M \otimes N) \otimes P$$

$$M \otimes N \otimes P$$

Proposición 0.5.8. Sea A un anillo conmutativo unitario. Se cumple:

1. Dados M, N y P A-módulos,

$$M \otimes_A N \otimes P \stackrel{isom}{\cong} (M \otimes_A N) \otimes_A P$$

- 2. $M \otimes_A N = N \otimes_A M$
- 3. Dados $f: M_1 \to M_2$ y $g: N_1 \to N_2$ A-lineales, existe $f \otimes g: M_1 \otimes_A N_1 \to M_2 \otimes N_2$ A-lineal tal que si tenemos $f': M_2 \to M_3$ y $g': N_2 \to N_3$ homomorfismos de A-módulos,

$$M_1 \otimes_A N_1 \xrightarrow{f \otimes_A g} M_2 \otimes_A N_2 \xrightarrow{f' \otimes_A g'} M_3 \otimes_A N_3$$

se cumple

$$(f' \otimes_A g') \circ (f \otimes_A g) = (f' \circ f) \otimes_A (g' \circ g)$$

- 4. Si B es un A-álgebra, $B \otimes_A M$ es un B-módulo
- 5. Si B y C son A-álgebras, B \otimes_A C es un A-álgebra, un B-módulo y un C-módulo

Prueba. Comprobamos cada cosa.

1. Definimos la aplicación A-trilineal

$$F: M \times N \times P \longrightarrow (M \otimes_A N) \otimes_A P$$
$$(m, n, p) \longmapsto (m \otimes n) \otimes p$$

Existe una única $f: M \otimes_A N \otimes_A P \to (M \otimes_A N) \otimes_A P$ tal que $f(m \otimes n \otimes p) = F(m, n, p) = (m \otimes n) \otimes p$,

Veamos como definir la flecha en sentido contrario. Para cada $p \in P$ definimos la aplicación A-bilineal

$$\Phi_p: M \times N \longrightarrow M \otimes_A N \otimes_A P \\
(m,n) \longmapsto m \otimes n \otimes p$$

Existe una única $\varphi_p: M \otimes_A N \to M \otimes_A N \otimes_A P$ tal que $\varphi_p(m \otimes n) = \Phi_p(m, n) = m \otimes n \otimes p$

Observamos que si $p, p' \in P$, entonces $\varphi_p + \varphi_{p'} = \varphi_{p+p'}$ por unicidad ya que ambas completan el diagrama: $\varphi_p(m \otimes n) + \varphi_{p'}(m \otimes n) = m \otimes n \otimes p + m \otimes n \otimes p' = m \otimes n \otimes (p+p') = \varphi_{p+p'}(m \otimes n)$. Lo mismo ocurre con $\lambda \varphi_p = \varphi_{\lambda p}$.

Sea entonces la aplicación A-bilineal

$$G: (M \otimes_A N) \times P \longrightarrow M \otimes_A N \otimes_A P$$
$$(z,p) \longmapsto \varphi_p(z)$$

Existe una única $g:(M\otimes_A N)\otimes_A P\to M\otimes_A N\otimes_A P$ aplicación A-lineal que hace conmutativo el diagrama siguiente

Veamos entonces que la composición de ambas es la identidad. Para ello solo hace falta ver que deja los generadores de cada A-módulo invariantes. Efectivamente,

Por tanto, $g \circ f = Id_{M \otimes N \otimes P}$

Por otro, $\{m \otimes n : (m, n) \in M \times N\}$ es sistema de generadores de $M \otimes_A N$. Por el lema 0.5.7, $\{(m \otimes n) \otimes p : (m, n, p) \in M \times N \times P\}$ es sistema de generadores

$$M \otimes N \otimes P \xrightarrow{f} (M \otimes N) \times P \xrightarrow{g} M \otimes N \otimes P$$

$$m \otimes n \otimes p \longmapsto (m \otimes n) \otimes p \longmapsto m \otimes n \otimes p$$

de $(M \otimes_A N) \otimes_A P$. Evaluando, $(f \circ g)((m \otimes n) \otimes p) = (m \otimes n) \otimes p)$ y concluimos $f \circ g) = Id_{(M \otimes_A N) \otimes_A P}$

3. Definimos la aplicación A-bilineal $M_1 \times N_1 \to M_2 \times N_2$ dada por $(m_1, n_1) \mapsto f(m_1) \otimes g(n_1)$. Entonces existe una única $M_1 \otimes N_1 \to M_2 \otimes N_2$ lineal que completa el diagrama conmutativo habitual.

Lo mismo sucede con $M_2 \times N_2 \to M_3 \times N_3$, de forma que obtenemos el diagrama

Podemos definir la aplicación A-bilineal $M_1 \times N_1 \to M_3 \otimes N_3$ dada por $(m_1, n_1) \mapsto (f_2 \circ f_1)(m_1) \otimes (g_2 \circ g_1)(n_1)$, y así existe una única aplicación $M_1 \otimes N_1 \to M_3 \otimes N_3$ que cierra el diagrama conmutativo, y por unicidad ha de coincidir con la composición de arriba.

4. Queremos definir un producto externo. Empezamos definiendo para cada $b \in B$ la aplicación A-lineal $\Phi_b : B \times M \to B \otimes M$ dada por $(b', m) \mapsto bb' \otimes m$. Entonces existe una única aplicación lineal del producto tensorial que cierra el diagrama

Se cumple que $\varphi_{b_1+b_2} = \varphi_{b_1} + \varphi_{b_2}$ y que $\varphi_{b_1b_2} = \varphi_{b_1} \circ \varphi_{b_2}$ por la unicidad. De esta forma podemos definir la aplicación

$$\Phi: B \times (B \otimes M) \to B \otimes M \tag{6}$$

$$(b,z) \mapsto \varphi_b(z)$$
 (7)

que está bien definida y con la cual $B\otimes M$ cumple los axiomas de A-módulo.

En estas construcciones se tienen las siguientes propiedades.

- 1) Dados M_1, M_2 y M_3 A-módulos, $M_1 \otimes_A M_2 \otimes M_3 \stackrel{isom}{\cong} (M_1 \otimes_A M_2) \otimes_A M_3 \stackrel{isom}{\cong} M_1 \otimes_A (M_2 \otimes_A M_3)$
- $2) M \otimes_A N = N \otimes_A M$
- 3) Dados $f: M_1' \to M_1$ y $g: M_2' \to M_2$ A-lineales, existe $f \otimes g: M_1' \otimes_A M_2' \to M_1 \otimes M_2$ A-lineal tal que el diagrama es conmutativo.

En particular, si $M \in Obj(Mod_A)$, $M \otimes _$ es un funtor covariante de Mod_A en Mod_A (Véase Apéndice A)