Devoir surveillé n°16

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

- 1. On montre par récurrence que $AB^k = B^kA$ commutent pour tout $k \in \mathbb{N}$. En posant $S_n = \sum_{k=0}^n \frac{B^k}{k!}$, $AS_n = S_nA$ pour tout $n \in \mathbb{N}$. Les applications $X \in \mathcal{M}_n(\mathbb{K}) \mapsto AX$ et $X \in \mathcal{M}_n(\mathbb{K}) \mapsto AX$ sont linéaires et $\mathcal{M}_n(\mathbb{K})$ est de dimension finie donc ces applications sont continues. Ainsi $\lim_{n \to +\infty} AS_n = A(\lim_{n \to +\infty} S_n) = Ae^B$ et $\lim_{n \to +\infty} S_nA = (\lim_{n \to +\infty} S_nA = e^BA$. On en déduit que $Ae^B = e^BA$.
- 2. L'application $(X, Y) \in \mathcal{M}_n(\mathbb{K})^2 \mapsto XY$ est bilinéaire et $\mathcal{M}_n(\mathbb{K})$ est de dimension finie. De plus, les applications f_{A+B} et f_{-B} sont de classe \mathcal{C}^1 sur \mathbb{R} . On en déduit que $g = f_{A+B}f_{-B}$ est de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\forall t \in \mathbb{R}, \ g'(t) = f'_{A+B}(t)f_{-B}(t) + f_{A+B}(t)f'_{-B}(t) = (A+B)e^{t(A+B)}e^{-tB} - e^{t(A+B)}Be^{-tB}$$

Comme A et B commutent, t(A + B) et B commutent pour tout $t \in \mathbb{R}$ et, d'après la question précédente, $e^{t(A+B)}$ et B commutent également. Ainsi

$$\forall t \in \mathbb{R}, \ g'(t) = (A + B)e^{t(A+B)}e^{-tB} - Be^{t(A+B)}e^{-tB} = Ag(t)$$

De plus, $g(0) = I_n = f_A(0)$ donc f_A et g sont solutions du même problème de Cauchy linéaire $\begin{cases} X' = AX \\ X(0) = I_n \end{cases}$. Par unicité de la solution d'un problème de Cauchy, $g = f_A$. Ainsi,

$$\forall t \in \mathbb{R}. \ e^{t(A+B)}e^{-tB} = e^{tA}$$

En choisissant A = 0 qui commute avec toute matrice B, on obtient $e^{tB}e^{-tB} = I_n$. Ainsi e^{-tB} est inversible d'inverse e^{tB} . En multipliant l'égalité $e^{t(A+B)}e^{-tB} = e^{tA}$ à droite par e^{tB} , on obtient bien $e^{t(A+B)} = e^{tA}e^{tB}$.

3. On suppose que $f_{A+B}(t) = f_A(t)f_B(t)$ pour tout $t \in \mathbb{R}$. Pour les mêmes raisons qu'à la question précédente, f_Af_B est de classe \mathcal{C}^1 sur \mathbb{R} et on obtient en dérivant :

$$\forall t \in \mathbb{R}, (A + B)e^{t(A+B)} = Ae^{tA}e^{tB} + e^{tA}Be^{tB}$$

Pour $M \in \mathcal{M}_n(\mathbb{K})$, l'application $X \in \mathcal{M}_n(\mathbb{K}) \mapsto MX$ est linéaire donc si $f : \mathbb{R} \mapsto \mathcal{M}_n(\mathbb{K})$ est de classe \mathcal{C}^1 , Mf l'est également et sa dérivée est Mf'. Les applications $(A + B)f_{A+B}$, Af_A et Bf_B sont donc de classe \mathcal{C}^1 et en dérivant la dernière relation, on obtient :

$$\forall t \in \mathbb{R}, \ (A+B)^2 e^{t(A+B)} = A^2 e^{tA} e^{tB} + A e^{tA} B e^{tB} + A e^{tA} B e^{tB} + e^{tA} B^2 e^{tB} = A^2 e^{tA} + 2A e^{tA} B e^{tB} + B^2 e^{tB}$$

En évaluant en 0, on obtient :

$$(A + B)^2 = A^2 + 2AB + B^2$$

ou encore

$$A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$$

1

ou encore BA = AB i.e. A et B commutent.

4. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Par inégalité triangulaire et homogénéité de la norme

$$\|e^{A}\| = \left\| \sum_{k=0}^{+\infty} \frac{A^k}{k!} \right\| \le \sum_{k=0}^{+\infty} \left\| \frac{A^k}{k!} \right\| = \sum_{k=0}^{+\infty} \frac{\|A^k\|}{k!}$$

A l'aide des propriétés ?? et ??, on prouve aisément par récurrence que $\|A^k\| \le \|A\|^k$ pour tout $k \in \mathbb{N}$. Ainsi

$$\|e^{\mathbf{A}}\| \le \sum_{k=0}^{+\infty} \frac{\|\mathbf{A}\|^k}{k!} = e^{\|\mathbf{A}\|}$$

5. Comme A est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$, il existe $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure telles que $A = PTP^{-1}$. D'après un résultat admis dans l'énoncé, $e^A = Pe^TP^{-1}$. Comme le déterminant est un invariant de similitude, $det(e^A) = det(e^T)$. En notant $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de T, e^P est encore triangulaire supérieure et ses coefficients diagonaux sont $e^{\lambda_1}, \ldots, e^{\lambda_n}$. Ainsi

$$\det(e^{\mathrm{T}}) = \prod_{i=1}^{n} e^{\lambda_i} = \exp\left(\sum_{i=1}^{n} \lambda_i\right) = e^{\operatorname{tr}(\mathrm{T})}$$

Comme la trace est également un invariant de similitude, tr(T) = tr(A), ce qui permet de conclure.

6. D'après la propriété ??,

$$\|\mathbf{X}_k\| \le \left\| \exp\left(\frac{1}{k}\mathbf{A}\right) \right\| \left\| \exp\left(\frac{1}{k}\mathbf{B}\right) \right\|$$

puis avec la question 4,

$$\|\mathbf{X}_k\| \le \exp\left(\frac{\|\mathbf{A}\|}{k}\right) \exp\left(\frac{\|\mathbf{A}\|}{k}\right) = \exp\left(\frac{\|\mathbf{A}\| + \|\mathbf{B}\|}{k}\right)$$

La question 4 donne aussi

$$\|\mathbf{Y}_k\| \le \exp\left(\frac{\|\mathbf{A} + \mathbf{B}\|}{k}\right)$$

Par inégalité triangulaire et croissance de l'exponentielle, on obtien

$$\|\mathbf{Y}_k\| \le \exp\left(\frac{\|\mathbf{A}\| + \|\mathbf{B}\|}{k}\right)$$

7. Pour $A \in \mathcal{M}_n(\mathbb{K})$, f_A est de classe \mathcal{C}^2 sur \mathbb{R} donc, par opérations $h = f_A f_B - f_{A+B}$ est de classe \mathcal{C}^2 sur \mathbb{R} . D'après la formule de Taylor-Young

$$h(t) = h(0) + h'(0) + O(t^2)$$

De plus, $h(0) = 0_n$ et pour tout $t \in \mathbb{R}$, $h'(t) = Ae^{tA}e^{tB} + e^{tA}Be^{tB} - (A + B)e^{t(A+B)}$ donc $h'(0) = 0_n$. Ainsi $h(t) = \mathcal{O}(t^2)$.

On en déduit que $X_k - Y_k = h(1/k) = \mathcal{O}(1/k^2)$.

8. Par télescopage,

$$\sum_{i=0}^{k-1} X_k^i (X_k - Y_k) Y_k^{k-1-i} = \sum_{i=0}^{k-1} X_k^{i+1} Y_k^{k-(i+1)} - X_k^i Y_k^{k-i} = X_k^k Y_k^0 - X_k^0 Y_k^k = X_k^k - Y_k^k$$

On en déduit que

$$\begin{split} \|X_k^k - Y_k^k\| &\leq \sum_{i=0}^{k-1} \left\| X_k^i (X_k - Y_k) Y_k^{k-1-i} \right\| & \text{par inégalité triangulaire} \\ &\leq \sum_{i=0}^{k-1} \|X_k\|^i \|X_k - Y_k\| \|Y_k\|^{k-i} \\ &\leq \|X_k - Y_k\| \sum_{i=0}^{k-1} \exp\left(\frac{\|A\| + \|B\|}{k}\right)^{i+k-i} & \text{d'après la question } \mathbf{6} \\ &= k \|X_k - Y_k\| \exp(\|A\| + \|B\|) \end{split}$$

D'après la question précédente, $X_k^k - Y_k^k = O(1/k)$. Notamment, $\lim_{k \to +\infty} X_k^k - Y_k^k = 0$. Or pour tout $k \in \mathbb{N}^*$, $Y_k^k = \exp(A + B)$ donc

$$\lim_{k \to +\infty} \exp\left(\frac{1}{k}A\right) \exp\left(\frac{1}{k}B\right) = \exp(A + B)$$

9. D'après la question 5,

$$\begin{split} \mathcal{A}_{\mathrm{SL}_n(\mathbb{R})} &= \{ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mid \forall t \in \mathbb{R}, \; \det(\exp(t\mathbf{M})) = 1 \} \\ &= \left\{ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mid \forall t \in \mathbb{R}, \; e^{\mathrm{tr}(t\mathbf{M})} = 1 \right\} \\ &= \{ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mid \forall t \in \mathbb{R}, \; t \, \mathrm{tr}(\mathbf{M}) = 0 \} \\ &= \{ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mid \mathrm{tr}(\mathbf{M}) = 0 \} \end{split}$$

10. Montrons d'abord que pour $M \in \mathcal{M}_n(\mathbb{R})$, $(e^M)^T = e^{M^T}$. Posons $S_n = \sum_{k=0}^n \frac{M^k}{k!}$ de sorte que $\lim_{n \to +\infty} S_n = e^M$. La transposition est linéaire sur $\mathcal{M}_n(\mathbb{R})$ donc continue sur $\mathcal{M}_n(\mathbb{R})$ puisque $\mathcal{M}_n(\mathbb{R})$ est de dimension finie. Ainsi $\lim_{n \to +\infty} S_n^T = (e^M)^T$ par caractérisation séquentielle de la continuité. Mais par propriétés de la transposition,

$$\mathbf{S}_{n}^{\mathsf{T}} = \sum_{k=0}^{n} \frac{(\mathbf{M}^{k})^{\mathsf{T}}}{k!} = \sum_{k=0}^{n} \frac{(\mathbf{M}^{\mathsf{T}})^{k}}{k!} \xrightarrow[n \to +\infty]{} e^{\mathbf{M}^{\mathsf{T}}}$$

Par unicité de la limite, $(e^{M})^{T} = e^{M^{T}}$.

Soit maitenant $M \in \mathcal{A}_n(\mathbb{R})$. Alors, pour tout $t \in \mathbb{R}$,

$$e^{t\mathbf{M}}(e^{t\mathbf{M}})^{\mathsf{T}} = e^{t\mathbf{M}}e^{t\mathbf{M}^{\mathsf{T}}} = e^{t\mathbf{M}}e^{-t\mathbf{M}} = \mathbf{I}_n$$

donc $e^{tM} \in O_n(\mathbb{R})$ de sorte que $M \in \mathcal{A}_{O_n(\mathbb{R})}$.

Réciproquement, soit $M \in \mathcal{A}_{O_n(\mathbb{R})}$. Alors, pour tout $t \in \mathbb{R}$, $e^{tM} \in O_n(\mathbb{R})$ i.e.

$$\forall t \in \mathbb{R}, \ e^{tM}(e^{tM})^{\mathsf{T}} = \mathbf{I}_n$$

et donc, comme précédemment

$$\forall t \in \mathbb{R}, \ e^{tM}e^{tM^{\top}} = I_n$$

Pra bilinéarité de la multiplication matricielle, $t\mapsto e^{t\mathrm{M}}e^{t\mathrm{M}^{\mathsf{T}}}$ est de classe \mathcal{C}^1 et on obtient en dérivant la relation précédente :

$$\forall t \in \mathbb{R}, \ Me^{tM}e^{tM^{T}} + e^{tM}M^{T}e^{tM^{T}} = 0$$

En évaluant en t = 0, on a $M + M^{T} = 0$ i.e. $M \in \mathcal{A}_{n}(\mathbb{R})$.

Par double inclusion, $\mathcal{A}_{O_n(\mathbb{R})} = \mathcal{A}_n(\mathbb{R})$.

11. Pour tout $t \in \mathbb{R}$, $e^{t \cdot 0} = I_n \in G$ donc $0 \in \mathcal{A}_G$.

Soient $(A, B) \in \mathcal{A}_G^2$ et $(\lambda, \mu, t) \in \mathbb{R}^3$. Par définition de \mathcal{A}_G , pour tout $k \in \mathbb{N}^*$, $e^{t\lambda A/k} \in G$ et $e^{t\mu B/k} \in G$. Comme G est un sous-groupe de $GL_n(\mathbb{R})$, $(e^{t\lambda A/k}e^{t\mu B/k})^k \in G$ pour tout $k \in \mathbb{N}^*$. D'après la partie précédente

$$\exp(t\lambda A + t\mu B) = \lim_{k \to +\infty} (e^{t\lambda A/k} e^{t\mu B/k})^k$$

Comme G est fermé, $\exp(t\lambda A + t\mu B) \in G$ par caractérisation séquentielle des fermés. On en déduit que $\lambda A + \mu B \in \mathcal{A}_G$. En conclusion, \mathcal{A}_G est bien un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

12. Soit $t \in \mathbb{R}$. Alors $e^{-tA} = (e^{tA})^{-1}$ et, d'après un résultat admis dans l'énoncé.

$$\forall s \in \mathbb{R}, \exp(su(t)) = \exp(e^{tA}(sB)e^{-tA}) = e^{tA}e^{sB}e^{-tA}$$

Comme A et B appartiennent à \mathcal{A}_G , e^{tA} , e^{sB} et e^{-tA} appartiennent à G. Puisque G est un sous-groupe de $GL_n(\mathbb{R})$, $e^{su(t)} \in G$ pour tout $s \in \mathbb{R}$ i.e. $u(t) \in \mathcal{A}_G$.

13. Par opérations, u est de classe \mathcal{C}^1 sur \mathbb{R} et notamment dérivable en 0. Comme u est à valeurs dans le sous-espace vectoriel \mathcal{A}_G ,

$$\forall t \in \mathbb{R}^*, \ \frac{u(t) - u(0)}{t} \in \mathcal{A}_{G}$$

De plus, \mathcal{A}_G est fermé en tant que sous-espace vectoriel de dimension finie donc

$$u'(0) = \lim_{t \to 0} \frac{u(t) - u(0)}{t} \in \mathcal{A}_{G}$$

Or pout tout $t \in \mathbb{R}$,

$$u'(t) = Ae^{tA}Be^{-tA} - e^{tA}BAe^{-tA}$$

donc u'(0) = AB - BA = [A, B]. Finalement, $[A, B] \in \mathcal{A}_G$.

14. Soit $M \in \mathcal{A}_G$. Posons $\gamma : t \in \mathbb{R} \mapsto e^{tM}$. Alors γ est à valeurs dans G, dérivable, $\gamma(0) = I_n$ et $\gamma'(0) = M$ donc $M \in \mathcal{F}_{I_n}(G)$.

15. M est trigonalisable dans $\mathcal{M}_n(\mathbb{C})$. Il existe donc $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ triangulaire telles que $M = PTP^{-1}$. Par conséquent

$$\forall t \in \mathbb{R}, \ \delta_{\mathbf{M}}(t) = \det(\mathbf{P}(\mathbf{I}_n + t\mathbf{T})\mathbf{P}^{-1}) = \det(\mathbf{I}_n + t\mathbf{T})$$

Notons $\lambda_1, \dots, \lambda_n$ les coefficients diagonaux de T. Alors

$$\forall t \in \mathbb{R}, \ \delta_{M}(t) = \prod_{j=1}^{n} (1 + t\lambda_{j}) = 1 + t \sum_{j=1}^{n} \lambda_{j} + o(t)$$

Ainsi δ_M est dérivable en 0 et

$$\delta'_{\mathbf{M}}(0) = \sum_{j=1}^{n} \lambda_j = \operatorname{tr}(\mathbf{T}) = \operatorname{tr}(\mathbf{M})$$

16. Notons γ_M : $t \in \mathbb{R} \mapsto I_n + tM$ de sorte que $\delta_M = \det \circ \gamma_M$. D'après l'énoncé, det est différentiable en tout point et γ est évidemment dérivable sur \mathbb{R} donc on peut écrire par composition

$$tr(M) = \delta'_{M}(0) = d \det(\gamma_{M}(0)) \cdot \gamma'_{M}(0) = d \det(I_{n}) \cdot M$$

Ceci signifie que $d \det(I_n)$ est bien l'application «trace».

17. On a toujours $\mathcal{A}_G \subset \mathcal{T}_{I_n}(G)$ d'après la question 14.

Soit $M \in \mathcal{T}_n(\operatorname{SL}_n(\mathbb{R}))$. Il existe alors $\varepsilon > 0$ et $\gamma] - \varepsilon$, $\varepsilon[\to \operatorname{SL}_n(\mathbb{R})$ dérivable telle que $\gamma(0) = \operatorname{I}_n$ et $\gamma'(0) = M$. Notamment, pour tout $t \in \mathbb{R}$, $\det(\gamma(t)) = 1$. L'application $\det \circ \gamma$ est dérivable puisque det est différentiable en tout point et γ est dérivable sur \mathbb{R} . Notamment, $(\det \circ \gamma)'(0) = 0$ ou encore $\det(\gamma(0)) \cdot \gamma'(0) = 0$ i.e. $\operatorname{tr}(M) = 0$. On en déduit avec la question $\mathbf{9}$ que $\mathcal{T}_n(\operatorname{SL}_n(\mathbb{R})) \subset \mathcal{A}_{\operatorname{SL}_n(\mathbb{R})}$. Par double inclusion, $\mathcal{T}_n(\operatorname{SL}_n(\mathbb{R})) = \mathcal{A}_{\operatorname{SL}_n(\mathbb{R})}$. Soit $M \in \mathcal{T}_n(\mathbb{R})$. Il existe alors $\varepsilon > 0$ et $\gamma] - \varepsilon$, $\varepsilon[\to O_n(\mathbb{R})$ dérivable telle que $\gamma(0) = \operatorname{I}_n$ et $\gamma'(0) = M$. Notamment, pour tout $t \in \mathbb{R}$, $\gamma(t)\gamma(t)^T = \operatorname{I}_n$. La multiplication matricielle est bilinéaire, la transposition est linéaire et $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, ce qui permet d'affirmer que $\varphi : t \mapsto \gamma(t)\gamma(t)^T$ est dérivable sur \mathbb{R} . De plus,

$$\forall t \in \mathbb{R}, \ \varphi'(t) = \gamma'(t)\gamma(t)^{\mathsf{T}} + \gamma(t)\gamma'(t)^{\mathsf{T}} = 0$$

Notamment

$$\gamma'(0)\gamma(0)^{T} + \gamma(0)\gamma'(0)^{T} = 0$$

ou encore $M+M^{\top}=0$. On en déduit avec la question $\mathbf{10}$ que $\mathcal{T}_n(\mathrm{O}_n(\mathbb{R}))\subset\mathcal{A}_{\mathrm{SL}_n(\mathbb{R})}$. Par double inclusion, $\mathcal{T}_n(\mathrm{O}_n(\mathbb{R}))=\mathcal{A}_{\mathrm{O}_n(\mathbb{R})}$.

18. Soit *u* l'endomorphisme canoniquement associé à A. On a donc $\chi_u = \chi_A = (X - \alpha)(X - \beta)^2$. Puisque $\alpha \neq \beta$, $(X - \alpha) \wedge (X - \beta)^2 = 1$ donc, d'après le lemme des noyaux

$$\operatorname{Ker} \chi_u(u) = \operatorname{Ker} (u - \alpha \operatorname{Id}_{\mathbb{C}^3}) \oplus \operatorname{Ker} (u - \alpha \operatorname{Id}_{\mathbb{C}^3})^2$$

D'après le théorème de Cayley-Hamilton, $\chi_u(u) = 0$ donc $\mathbb{C}^3 = F \oplus G$ avec $F = \operatorname{Ker}(u - \alpha \operatorname{Id}_{\mathbb{C}^3})$ et $G = \operatorname{Ker}(u - \alpha \operatorname{Id}_{\mathbb{C}^3})^2$. On sait que la dimension d'un sous-espace propre est inférieure ou égale à la multiplicité de la valeur propre associée donc dim F = 1 puis dim G = 2. On se donne un vecteur non nul e_1 de F. Comme G est stable par u, on peut considérer l'endomorphisme u_G de G induit par G est triangulaire. De plus, G est trigonalisable. Il existe une base G dans laquelle la matrice G de G est triangulaire. De plus, G annule G donc G est l'unique valeur propre de G. Les coefficients diagonaux de G sont donc égaux à G. Comme G est G0 est une base de G0 et la matrice de G1 dans cette base est bien de la forme voulue.

On a donc $S = \begin{pmatrix} \beta & a \\ 0 & \beta \end{pmatrix} = \beta I_2 + aN$ avec $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Comme $N^2 = 0$, la formule du binôme donne $S^n = \beta^n I_2 + na\beta^{n-1}N$ pour $n \ge 1$. Finalement, $T^0 = I_2$ et, pour $n \ge 1$,

$$\mathbf{T}^n = \begin{pmatrix} \alpha^n & 0 & 0 \\ 0 & \beta^n & n\alpha\beta^{n-1} \\ 0 & 0 & \beta^n \end{pmatrix}$$

Or

$$\sum_{n=0}^{+\infty} \frac{t^n \alpha^n}{n!} = e^{t\alpha} \qquad \qquad \sum_{n=0}^{+\infty} \frac{t^n \beta^n}{n!} = e^{t\beta} \qquad \qquad \sum_{n=1}^{+\infty} n a \frac{t^n \beta^{n-1}}{n!} = at \sum_{n=0}^{+\infty} \frac{t^n \beta^n}{n!} = at e^{t\beta}$$

On en déduit que

$$e^{tT} = \sum_{n=0}^{+\infty} \frac{t^n T^n}{n!} = \begin{pmatrix} e^{t\alpha} & 0 & 0\\ 0 & e^{t\beta} & ate^{t\beta}\\ 0 & 0 & e^{t\beta} \end{pmatrix}$$

Il est alors clair que $\lim_{t\to +\infty} e^{tT} = 0$ si et seulement si $\text{Re}(\alpha) < 0$ et $\text{Re}(\beta) < 0$.

Il existe $P \in GL_3(\mathbb{C})$ telle que $A = PTP^{-1}$. On a alors $e^{tA} = Pe^{tT}P^{-1}$ et $e^{tT} = P^{-1}e^{tA}P$. Comme $\mathcal{M}_3(\mathbb{C})$ est de dimension finie, les endomorphismes $X \in \mathcal{M}_3(\mathbb{C}) \mapsto PXP^{-1}$ et $X \in \mathcal{M}_3(\mathbb{C}) \mapsto P^{-1}XP$ sont continus. On en déduit que $e^{tA} \xrightarrow[t \to +\infty]{} 0$ si et seulement si $e^{tT} \xrightarrow[t \to +\infty]{} 0$.

Finalement, $\lim_{t \to +\infty} e^{tA} = 0$ si et seulement si $Re(\alpha) < 0$ et $Re(\beta) < 0$.

- 19. Soit μ une valeur propre de A de partie réelle maximale i.e. $\operatorname{Re}(\mu) = \alpha$. On montre facilement par récurrence que $\operatorname{A}^n u = \mu^n u$ pour $n \in \mathbb{N}$ puis que $f_A(t)u = e^{tA}u = e^{\mu t}u$ pour tout $t \in \mathbb{R}$. Puisque $\lim_{t \to +\infty} f_A(t) = 0$, $\lim_{t \to +\infty} e^{\mu t}u = 0$. Comme $u \neq 0$, $\lim_{t \to +\infty} e^{\mu t} = 0$ et donc $\alpha = \operatorname{Re}(\mu) < 0$.
- **20.** Comme χ_A est scindé sur \mathbb{C} , $\chi_A = \prod_{\lambda \in Sp(A)} (X \lambda)^{m_\lambda}$. Les polynômes $(X \lambda)^{m_\lambda}$ sont premiers entre eux deux à deux donc, d'après le lemme des noyaux

$$\operatorname{Ker} \chi_{\mathbf{A}}(\mathbf{A}) = \bigoplus_{\lambda \in \operatorname{Sp}(\mathbf{A})} \operatorname{Ker}(\mathbf{A} - \lambda \mathbf{I}_n)^{m_{\lambda}} = \bigoplus_{\lambda \in \operatorname{Sp}(\mathbf{A})} \mathbf{F}_{\lambda}$$

D'après le théorème de Cayley-Hamilton, $\chi_A(A) = 0$ donc $\operatorname{Ker} \chi_A(A) = \mathbb{C}^n$.

21. Soit $\lambda \in \operatorname{Sp}(A)$. Comme u commute avec $(u - \lambda \operatorname{Id}_E)^{m_\lambda}$ ($\mathbb{C}[u]$ est une algèbre commutative), F_λ est stable par u. Notons u_λ l'endomorphisme de F_λ induit par u. Comme $(X - \lambda)^{m_\lambda}$ annule u_λ , λ est l'unique valeur propre de u_λ . u_λ est trigonalisable car \mathbb{C} est algébriquement clos donc il existe une base \mathcal{B}_λ de F_λ dans laquelle la matrice de u est $\lambda I_{d_\lambda} + N_\lambda$ où $d_\lambda = \dim F_\lambda$ et N_λ est triangulaire stricte.

Comme $E = \bigoplus_{\lambda \in Sp(A)} F_{\lambda}$, la concaténation des bases \mathcal{B}_{λ} forme une base \mathcal{B} de E. La matrice de u dans cette base est D + N

où D est la matrice diagonale par blocs avec pour blocs diagonaux $\lambda I_{d_{\lambda}}$ et N est la matrice diagonale par blocs avec pour blocs diagonaux N_{λ} . La matrice A est donc semblable à D + N, d'où l'existence de la matrice P de l'énononcé. La matrice D est bien diagonale et la matrice N est nilpotente car triangulaire stricte. Chaque bloc $\lambda I_{d_{\lambda}}$ commute évidemment avec le bloc N_{λ} donc D et N commutent. Enfin, comme les N_{λ} sont triangulaires strictes,

$$\chi_{A} = \chi_{D+N} = \prod_{\lambda \in Sp(A)} \chi_{\lambda I_{d_{\lambda}} + N_{\lambda}} = \prod_{\lambda \in Sp(A)} \chi_{\lambda I_{d_{\lambda}}} = \chi_{D}$$

Remarque. On a donc $\prod_{\lambda \in Sp(A)} (X - \lambda)^{m_{\lambda}} = \prod_{\lambda \in Sp(A)} (X - \lambda)^{d_{\lambda}}$, ce qui permet de retrouver le résultat connu dim $F_{\lambda} = d_{\lambda} = m_{\lambda}$.

22. Notons q l'indice de nilpotence de N. Comme D et N commutent,

$$\forall t \in \mathbb{R}, \ e^{t(D+N)} = e^{tD}e^{tN}$$

D'une part,

$$e^{tD} = \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_n t})$$

où $\lambda_1, \dots, \lambda_n$ sont les coefficients diagonaux de D i.e. les valeurs propres de A. Donc $e^{tD} = \mathcal{O}(e^{\alpha t})$. D'autre part,

$$e^{tN} \sum_{k=0}^{q-1} \frac{t^k N^k}{k!}$$

donc $e^{tN} = \mathcal{O}(t^{q-1})$. Puisque

$$||e^{t(D+N)}|| = ||e^{tD}e^{tN}|| \le ||e^{tD}|| ||e^{tN}||$$

On en déduit que $e^{t(D+N)} = \mathcal{O}(t^{q-1}e^{\alpha t})$.

Enfin, $e^{tA} = Pe^{t(D+N)}P^{-1}$ donc

$$||e^{tA}|| < ||P|| ||P^{-1}|| ||e^{t(D+N)}||$$

de sorte que $e^{tA} = \mathcal{O}(t^{q-1}e^{\alpha t})$. Toutes les normes sur $\mathcal{M}_n(\mathbb{C})$ étant équivalentes, on a également $\|e^{tA}\|_{\infty} = \mathcal{O}(t^{q-1}e^{\alpha t})$ donc

$$\forall (i, j) \in [1, n]^2, \ v_{i,j}(t) = \mathcal{O}(t^{q-1}e^{\alpha t})$$

Il suffit alors de poser p = q - 1.

REMARQUE. On rappelle que pour une application $f: \mathbb{R} \to E$ où E est un \mathbb{K} -espace vectoriel normé de dimension finie et une application $g: \mathbb{R} \to \mathbb{R}$, $f(t) = \mathcal{O}(g(t))$ signifie qu'il existe une constante C tel que $||f(t)|| \le C|g(t)|$ pour t au voisinage de $+\infty$. Les normes sur E étant équivalentes, cette définition ne dépend pas de la norme considérée.

23. Si $\alpha < 0$, alors $\lim_{t \to +\infty} t^p e^{\alpha t} = 0$ par croissance comparées. On en déduit que

$$\forall (i, j) \in [[1, n]]^2, \lim_{t \to +\infty} v_{i,j}(t) = 0$$

Ainsi $\lim_{+\infty} f_{A} = 0$.

Remarque. Il est en fait inutile de raisonner sur les coefficients puisqu'on a montré à la question précédente que $f_A(t) = \mathop{\mathcal{O}}(t^p e^{\alpha t})$.

- 24. Si X = 0, $e^{tA}X = 0$ pour tout $t \in \mathbb{R}$ donc $\lim_{\substack{t \to +\infty \\ t \to +\infty}} e^{tA}X = 0$. Réciproquement, supposons que $\lim_{\substack{t \to +\infty \\ t \to +\infty}} e^{tA}X = 0$ i.e. $\lim_{\substack{t \to +\infty \\ t \to +\infty}} Pe^{tT}P^{-1}X = 0$ en posant T = D + N. Par continuité de la multiplication à gauche par P^{-1} , on a donc $\lim_{\substack{t \to +\infty \\ t \to +\infty}} e^{tT}Y = 0$ avec $Y = P^{-1}X$. Supposons que $Y \neq 0$ et posons $k = \max\{j \in [\![1,n]\!] \mid Y_j \neq 0\}$. Alors $(e^{tT}Y)_k = e^{\lambda_k t}y_k \xrightarrow[t \to +\infty]{} 0$ ce qui est absurde puisque $|e^{\lambda_k t}y_k| = e^{Re(\lambda_k)t}|y_k| \geq |y_k|$ pour $t \geq 0$. Ainsi Y = 0 puis X = PY = 0.
- 25. Les polynômes P_s , P_i et P_n sont premiers entre eux deux à deux (pas de racines communes). De plus, $\chi_A = P_s P_i P_n$, donc, d'après le lemme des noyaux et le théorème de Cayley-Hamilton

$$E = \text{Ker } \chi_A(A) = \text{Ker } P_s(A) \oplus \text{Ker } P_i(A) \oplus \text{Ker } P_n(A) = E_s \oplus E_i \oplus E_n$$

 E_s est stable par u; notons v l'endomorphisme de E_s induit par u. De même, $E_i \oplus E_n$ est stable par u; notons w l'endomorphisme de $E_i \oplus E_n$ induit par u. Soit $X \in E$. Il existe alors $(Y, Z) \in E_s \times (E_i \oplus E_n)$ tel que X = Y + Z. Pour tout $t \in \mathbb{R}$,

$$e^{tA}X = e^{tu}(X) = e^{tv}(Y) + e^{tw}(Z)$$

Comme P_s annule v, v n'a que des valeurs propres de parties réelles strictement négatives donc $\lim_{t\to+\infty}e^{tv}(Y)=0$. Comme w n'a que des valeurs propres de parties réelles positives,

$$\lim_{t \to +\infty} e^{tA}X = 0$$

$$\iff \lim_{t \to +\infty} e^{tw}(Z) = 0$$

$$\iff Z = 0 \qquad \text{d'après la question précédente}$$

$$\iff X \in E_s$$

On a donc bien

$$E_s = \left\{ X \in E \mid \lim_{t \to +\infty} e^{tA} X = 0 \right\}$$

26. On notera u_s , u_i et u_n les endomorphismes respectifs de E_s , E_i et E_n induits par u. Soit $X \in E$. Il existe alors $(X_s, X_i, X_n) \in E_s \times E_i \times E_n$ tel que $X = X_s + X_i + X_n$. Supposons que $X \in E_n$. Alors $X_s = X_i = 0$ puis

$$e^{t\mathbf{A}}\mathbf{X} = e^{tu}(\mathbf{X}) = e^{tu_n}(\mathbf{X}_n)$$

On reprend les calculs de la question 22: on écrit $u_n = v_n + w_n$ où v_n et w_n sont respectivement diagonalisable et nilpotent et commutent (interprétation en termes d'endomorphismes de la question 21). Les valeurs propres de d_n sont toutes imaginaires pures donc $e^{td_n} = \mathcal{O}(1)$. w_n est nilpotent donc $e^{tw_n} = \mathcal{O}(t^p)$ où p+1 est l'indice de nilpotence

de w_n . Ainsi $e^{tu_n}=e^{tv_n}e^{tw_n}=\mathop{\mathcal{O}}_{t\to\pm\infty}\mathcal{O}(t^p)$ puis $e^{t\mathbf{A}}\mathbf{X}=e^{tu_n}(\mathbf{X}_n)=\mathop{\mathcal{O}}_{t\to\pm\infty}\mathcal{O}(t^p)$. On en déduit aisément l'existence d'une constante C telle que

$$\forall t \in \mathbb{R}, \ \|e^{tA}\mathbf{X}\|_{\mathbf{E}} \le \mathbf{C}(1+|t|)^p$$

Réciproquement, supposons qu'il existe $p \in \mathbb{N}$ et $C \in \mathbb{R}_+^*$ tels que

$$\forall t \in \mathbb{R}, \|e^{tA}X\|_{E} \leq C(1+|t|)^{p}$$

A nouveau.

$$e^{tA}X = e^{tu}(X) = e^{tu_s}(X_s) + e^{tu_i}(X_i) + e^{tu_n}(X_n)$$

Puisque P_s annule u_s , $Sp(u_s) \subset {\lambda \in Sp(A), Re(\lambda) < 0}$. De même, $Sp(u_i) \subset {\lambda \in Sp(A), Re(\lambda) > 0}$ et $Sp(u_n) \subset {\lambda \in Sp(A), Re(\lambda) = 0}$.

Remarque. On pourrait même prouver les égalités mais ce n'est pas nécessaire pour la suite. Il s'agit essentiellement de remarquer que les valeurs propres de u_s sont toutes de parties réelles strictement négatives, celles de u_i de parties réelles strictement positives et celles de u_n de parties réelles nulles.

Si $E_i = \{0\}$, alors $X_i = 0$. Sinon, E_i possède au moins une valeur propre et on note alors $a = \min_{\lambda \in \operatorname{Sp}(u_i)} \operatorname{Re}(\lambda) > 0$. Pour tout $t \in \mathbb{R}$,

$$e^{-at}e^{tA}X = \exp(t(u_s - a \operatorname{Id}_{E_s}))(X_s) + \exp(t(u_i - a \operatorname{Id}_{E_i}))(X_i) + \exp(t(u_n - a \operatorname{Id}_{E_n}))(X_n)$$

Par croissances comparées, $\lim_{t\to +\infty} e^{-at} e^{t\mathbf{A}} \mathbf{X} = 0$. De plus,

$$\operatorname{Sp}(u_s - a \operatorname{Id}_{\operatorname{E}_s}) = \{\lambda - a, \ \lambda \in \operatorname{Sp}(u_s)\}\$$

donc $u_s - a \operatorname{Id}_{E_s}$ ne possède que des valeurs propres de parties réelles strictement négatives. On en déduit que

$$\lim_{t \to +\infty} \exp(t(u_s - a \operatorname{Id}_{E_s}))(X_s) = 0$$

De même, $u_n-a\operatorname{Id}_{\operatorname{E}_n}$ ne possède que des valeurs propres de parties réelles strictement négatives donc

$$\lim_{t \to +\infty} \exp(t(u_n - a \operatorname{Id}_{\operatorname{E}_n}))(X_n) = 0$$

On en déduit que

$$\lim_{t \to +\infty} \exp(t(u_i - a \operatorname{Id}_{\operatorname{E}_i}))(X_i) = 0$$

Comme $u_i - a \operatorname{Id}_{E_i}$ ne possède que des valeurs propres de parties réelles positives, $X_i = 0$. De la même manière, si $E_s = \{0\}$, alors $X_s = 0$. Sinon, on pose $b = \max_{\lambda \in \operatorname{Sp}(u_s)} \operatorname{Re}(\lambda) < 0$ et on remarque que

$$e^{bt}e^{-t\mathbf{A}}\mathbf{X} = \exp(t(b\operatorname{Id}_{\mathbf{E}_s} - u_s))(\mathbf{X}_s) + \exp(t(b\operatorname{Id}_{\mathbf{E}_i} - u_i))(\mathbf{X}_i) + \exp(t(b\operatorname{Id}_{\mathbf{E}_n} - u_n))(\mathbf{X}_n)$$

A nouveau, $\lim_{t\to +\infty} e^{bt}e^{-tA}X = 0$ par croissances comparéees et $b\operatorname{Id}_{\operatorname{E}_i} - u_i$ et $b\operatorname{Id}_{\operatorname{E}_n} - u_n$ ne possèdent que des valeurs propres de parties réelles strictement négatives donc

$$\lim_{t\to +\infty} \exp(t(b\operatorname{Id}_{\operatorname{E}_i} - u_i))(X_i) = \lim_{t\to +\infty} \exp(t(b\operatorname{Id}_{\operatorname{E}_n} - u_n))(X_n) = 0$$

On en déduit que

$$\lim_{t\to+\infty} \exp(t(b\operatorname{Id}_{\operatorname{E}_S}-u_S))(X_S)=0$$

Comme $b \operatorname{Id}_{E_s} - u_s$ ne possède que des valeurs propres de parties réelles positives, $X_s = 0$.

Finalement, $X_i = X_s = 0$ donc $X = X_n \in E_n$.

On a donc le résultat souhaité par double inclusion.