I. AMENDMENT

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-45. (Canceled)

46. (Currently amended) A dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine containing a pyrrolidine ring, and about 0.05% to about 2% by weight relative to the total weight of the composition of at least one pearlescent or opacyifying opacifying agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, wherein said cationic tertiary paraphenylenediamine containing a pyrrolidine ring corresponds to formula I:

$$R_3$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_2
 R_3
 R_3
 R_2
 R_3
 R_3

in which

n varies from 0 to 4, it being understood that when n is greater than or equal to 2, then the radicals R₁ may be identical or different,

R₁ represents a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C₁-C₆ hydrocarbon chain, it being possible for the chain to contain one or more oxygen, nitrogen, silicon or sulphur atoms or an SO₂ group, and it being possible for the chain to be substituted with one or more hydroxyl or amino radicals; an onium radical Z, the radical R₁ not containing a peroxide bond, or diazo, nitro or nitroso radicals,

R₂ represents an onium radical Z or a radical –X-C=NR₈-NR₉R₁₀ in which X represents an oxygen atom or a radical –NR₁₁ and R₈, R₉, R₁₀ and R₁₁

represent a hydrogen atom, a C₁-C₄ alkyl radical or a C₁-C₄ hydroxyalkyl radical,

R₃ represents a hydrogen atom or a hydroxyl radical.

47. (Canceled)

- 48. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that n is equal to 0.
- 49. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.
- 50. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that R_1 is chosen from chlorine, bromine, C_1 - C_4 alkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 aminoalkyl, C_1 - C_4 alkoxy or C_1 - C_4 hydroxyalkoxy radicals.
- 51. (Previously presented) The composition of claim 50, wherein the cationic tertiary paraphenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 52. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that R₂ represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & R4 \\
 & R5 \\
 & R6 \\
 & Y
\end{array}$$
(II)

a. wherein:

b. D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and

- which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- c. R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or
- d. R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxy-alkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a (C₁-C₆)alkylcarbonyl radical, a thio (-SH) radical, a C₁-C₆ thioalkyl (-R-SH) radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical;
- e. R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical; a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical;
- f. $x ext{ is } 0 ext{ or } 1$,
 - i. (New) when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;

- ii. (New) when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring; and
- g. Y is a counter-ion.
- 53. (Currently amended) The composition of claim [[51]] $\underline{52}$, wherein the cationic tertiary para-phenylenediamine is such that R_2 corresponds to formula II wherein x is equal to 0 and R_4 , R_5 and R_6 separately are preferably chosen from a C_1 - C_6 alkyl radical, a C_1 - C_4 monohydroxyalkyl radical, a C_2 - C_4 polyhydroxyalkyl radical, a $(C_1$ - $C_6)$ alkoxy(C_1 - C_4)alkyl radical, a C_1 - C_6 amidoalkyl radical, a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical, or R_4 with R_5 form together an azetidine ring, a pyrrolidine, piperidine, piperazine or morpholine ring, R_6 being chosen in this case from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a (C_1 - C_6)alkyl radical, a (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6 carbamylalkyl radical; a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl carboxy(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkyl carboxy(C_1 - C_6)alkyl radical.
- (Currently amended) The composition of claim [[51]] 52, wherein the cationic tertiary 54. para-phenylenediamine is such that R₂ corresponds to formula II wherein x is equal to 1 and R₇ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substited with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₄ with R₅ together form an azetidine, pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyl alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical; a (C_1-C_6) alkylcarboxy (C_1-C_6) alkylsilane $(C_1-C_$ C_6)alkyl radical; a (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl radical; an N- (C_1-C_6) alkylcarbamyl (C_1-C_6) alkylcarbamy C₆)alkyl radical.

- 55. (Currently amended) The composition of claim [[51]] <u>52</u>, wherein the cationic tertiary para-phenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 56. (Currently amended) The composition of claim [[51]] $\underline{52}$, wherein the cationic tertiary para-phenylenediamine is such that R_2 is a trialkylammonium radical.
- 57. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

$$\begin{array}{c|c}
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & & \\$$

h. wherein

- i. D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;
- j. the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring;
- k. q is an integer between 0 and 4 inclusive;
- 1. is an integer between 0 and 3 inclusive;
- m. q+o is an integer between 0 and 4;
- n. the radicals R₈, which are identical or different, represent a halogen atom, a
 hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-

- C_6)alkyl radical, an amido radical, a carboxyl radical, a C_1 - C_6 alkylcarbonyl radical, a thio radical, a C_1 - C_6 thioalkyl radical, a $(C_1$ - C_6)alkylthio radical, an amino radical which is mono- or di-substituted with a $(C_1$ - C_6)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido or $(C_1$ - C_6)alkylsulphonyl radical; a C_1 - C_6 monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical; it being understood that the radicals R_8 are carried by a carbon atom;
- o. the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical, it being understood that the radicals R₉ are carried by a nitrogen;
- p. R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;
- q. x is 0 or 1
 - i. (New) when x = 0, the linking arm D is attached to the nitrogen atom,
 - ii. (New) when x = 1, the linking arm D is attached to one of the vertices E, G, J or L; and
- r. Y is a counter-ion.
- 58. (Previously presented) The composition of claim 57, wherein the cationic tertiary paraphenylenediamine is such that the vertices E, G, J and L form an imidazole ring.
- 59. (Previously presented) The composition of claim 57, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.

60. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that R₂ represents an onium radical Z corresponding to formula IV

(IV)

- b. wherein:
- c. D is a single bond or a linear or branched C1-C14 alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which may be substituted with one or more hydroxyl, C1-C6 alkoxy or amino radicals, and which may carry one or more ketone functional groups;
- d. the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;
- e. p is an integer between 0 and 3 inclusive;
- f. m is an integer between 0 and 5 inclusive;
- g. p+m is an integer between 0 and 5;
- h. the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical, it being understood that the radicals R₁₁ are carried by a carbon atom;

- i. the radicals R12, which are identical or different, represent a C1-C6 alkyl radical, a C1-C6 monohydroxyalkyl radical, a C2-C6 polyhydroxyalkyl radical, a tri(C1-C6)alkylsilane(C1-C6)alkyl radical, a (C1-C6)alkoxy(C1-C6)alkyl radical, a C1-C6 carbamylalkyl radical, a (C1-C6)alkylcarboxy(C1-C6)alkyl radical, a benzyl radical, it being understood that the radicals R12 are carried by a nitrogen;
- j. R13 represents a C1-C6 alkyl radical; a C1-C6 monohydroxyalkyl radical; a C2-C6 polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C1-C6 aminoalkyl radical, a C1-C6 aminoalkyl radical whose amine is mono- or disubstituted with a (C1-C6)alkyl, (C1-C6)alkylcarbonyl, amido or (C1-C6)alkylsulphonyl radical; a C1-C6 carboxyalkyl radical; a C1-C6 carbamylalkyl radical; a C1-C6 trifluoroalkyl radical; a tri(C1-C6)alkylsilane(C1-C6)alkyl radical; a C1-C6 sulphonamidoalkyl radical; a (C1-C6)alkylcarboxy(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; an N-(C1-C6)alkylcarbamyl(C1-C6)alkyl radical; an N-(C1-C6)alkylsulphonamido(C1-C6)alkyl radical;

k. x is 0 or 1

- i. (New) when x = 0, the linking arm D is attached to the nitrogen atom,
- ii. (New) when x = 1, the linking arm D is attached to one of the vertices E, G, J, L or M; and
- l. Y is a counter-ion.
- 61. (Previously presented) The composition of claim 60, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 62. (Previously presented) The composition of claim 60, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0 and R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, a (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical and R₁₂ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-

 C_6)alkylsilane(C_1 - C_6)alkyl radical, a (C_1 - C_6)alkyl radical, a C_1 - C_6 carbamylalkyl radical.

- 63. (Previously presented) The composition of claim 60, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 1 and R₁₃ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylcarbonyl radical, an amido radical, a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkylcarbonyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; and R₁₂ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical.
- 64. (Previously presented) The composition of claim 60, wherein the cationic tertiary paraphenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 65. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical -NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 66. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine is such that R₂ is a guanidine radical of formula –X-C=NR₈-NR₉R₁₀, X represents an oxygen atom or a radical –NR₁₁, R₈, R₉, R₁₀ and R₁₁ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 67. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,

- b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
- c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
- d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
- e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- f. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
- h. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
- i. [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
- j. {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- k. 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- 1. 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
- m. 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- n. 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- o. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
- p. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
- q. N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- r. N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- s. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- t. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- u. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride

- v. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyldimethylammonium dichloride
- w. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- x. {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- y. 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- z. 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1-um chloride
- aa. 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- bb. [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- cc. 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- dd. 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- ee. [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- ff. 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- gg. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- hh. 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- ii. 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- jj. 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- kk. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- ll. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- mm. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride nn. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide

- oo. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- pp. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- qq. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- rr. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- ss. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- tt. [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- uu. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- vv. [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- ww. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- xx. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- yy. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- zz. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 68. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride;
 - b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide;
 - c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride;
 - f. [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
 - g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethyl-silanylpropyl)ammonium chloride;
 - h. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - i. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - j. N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - k. N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - l. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- m. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxy-ethyl)dimethylammonium chloride
- n. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- o. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- p. 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- q. 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- r. 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H- imidazol-1-ium chloride
- s. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- t. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- u. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- v. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- w. [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- x. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- y. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- z. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- aa. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- $bb.\ [1-(4-amin ophenyl) pyrrolidin-3-yl] hexyldimethylammonium\ iodide$
- cc. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- dd. [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- ee. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- ff. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- gg. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- hh. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 69. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide

- c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
- d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
- e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- f. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
- h. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride
- i. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- j. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- k. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- 1. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- m. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- n. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- o. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- p. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- q. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- r. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- s. [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- t. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- u. [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- v. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- w. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- x. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- y. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 70. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - b. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- c. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- d. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.
- 71. (Previously presented) The composition of claim 46, wherein the cationic tertiary paraphenylene is chosen from the group consisting of [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.
- 72. (Previously presented) The composition of claim 46, wherein the pearlescent or opacifying agent is an uncoated titanium oxide in powdered form.
- 73. (Previously presented) The composition of claim 72, wherein the pearlescent or opacifying agent is an uncoated titanium oxide in the form of an aqueous dispersion of at least 10% by weight of titanium oxide relative to the total weight of the aqueous dispersion and having a particle size equal to 15 to 60 nanometers.
- 74. (Previously presented) The composition of claim 46, wherein the pearlescent or opacifying agent is a titanium oxide coated with a material chosen from polydimethylsiloxane, polymethylhydrogenosiloxane, perfluoropolymethyl isopropyl ether, silica, teflon, polyester, chitosan, N-lauryl-L-lysine.
- 75. (Previously presented) The composition of claim 46, wherein the titanium oxide has a particle size of between 2 and 500 nanometers.
- 76. (Previously presented) The composition of claim 75, wherein the titanium oxide has a particle size of between 2 and 300 nanometers.
- 77. (Previously presented) The composition of claim 76, wherein the titanium oxide has a particle size of between 2 and 50 nanometers.
- 78. (Currently amended) The composition of claim 46, wherein the cationic tertiary paraphenylenediamine(s) having a pyrrolidine ring represent from about 0.001 to about 10% by weight relative to the total weight of the composition.

- 79. (Currently amended) The composition of claim 78, wherein the cationic tertiary paraphenylenediamine(s) having a pyrrolidine ring represent from <u>about</u> 0.005 to <u>about</u> 6% by weight relative to the total weight of the composition.
- 80. (Canceled)
- 81. (Currently amended) The composition of claim [[80]] 46, wherein the pearlescent or opacifying agent or agents represent from about 0.1% to about 1% by weight relative to the total weight of the composition.
- 82. (Previously presented) The composition of claim 46, further comprising at least one cationic polymer.
- 83. (Previously presented) The composition of claim 46, further comprising at least one thickening polymer.
- 84. (Previously presented) The composition of claim 46, further comprising at least one surfactant chosen from the group consisting of anionic surfactants, amphoteric or zwitterionic surfactants, nonionic surfactants and cationic surfactants.
- 85. (Previously presented) The composition of claim 46, comprising at least one additional oxidation base other than cationic tertiary para-phenylenediamines having a pyrrolidine ring chosen from para-phenylenediamines, bis-phenylalkylenediamines, para-aminophenols, orthoaminophenols, heterocyclic bases and their addition salts.
- 86. (Currently amended) The composition of claim 85, wherein the additional oxidation base(s) are present in a quantity of between <u>about</u> 0.001 to <u>about</u> 20% by weight relative to the total weight of the composition.
- 87. (Currently amended) The composition of claim 86, wherein the additional oxidation base(s) are present in a quantity of between <u>about 0.005</u> and <u>about 6%</u> by weight relative to the total weight of the composition.
- 88. (Previously presented) The composition of claim 46, further comprising at least one coupler chosen from meta-phenylenediamines, meta-aminophenols, meta-diphenols, naphthalene couplers, heterocyclic couplers and their addition salts.

- 89. (Previously presented) The composition of claim 88, wherein the coupler is chosen from 1,3-dihydroxybenzene, 1,3-dihydroxy-2-methylbenzene, 4-chloro-1,3-dihydroxybenzene, 2,4-diamino-1-(β-hydroxyethyloxy)benzene, 2-amino-4-(β-hydroxyethylamino)-1-methoxybenzene, 1,3-diaminobenzene, 1,3-bis(2,4-diaminophenoxy)propane, 3-ureidoaniline, 3-ureido-1-dimethylaminobenzene, sesamol, 1-β-hydroxyethylamino-3,4-methylenedioxybenzene, α-naphthol, 2-methyl-1-naphthol, 6-hydroxyindole, 4-hydroxyindole, 4-hydroxy-N-methylindole, 2-amino-3-hydroxypyridine, 6-hydroxybenzomorpholine, 3,5-diamino-2,6-dimethoxypyridine, 1-N-(β-hydroxyethyl)amino-3,4-methylenedioxybenzene, 2,6-bis(β-hydroxyethylamino)toluene and their addition salts.
- 90. (Currently amended) The composition of claim 89, wherein the coupler(s) are present in a quantity of between <u>about 0.001</u> and <u>about 20%</u> by weight relative to the total weight of the composition.
- 91. (Currently amended) The composition of claim 90, wherein the coupler(s) are present in a quantity of between <u>about</u> 0.005 and <u>about</u> 6% by weight relative to the total weight of the composition.
- 92. (Previously presented) The composition of claim 46, further comprising at least one direct dye.
- 93. (Previously presented) The composition of claim 46, further comprising at least one hydroxylated solvent such as ethanol, propylene glycol, glycerol, polyol monoethers.
- 94. (Previously presented) The composition of claim 46, further comprising an oxidizing agent chosen from hydrogen peroxide, urea peroxide, alkali metal bromates, persalts, peracids and oxidase enzymes.
- 95. (Previously presented) The composition of claim 94, wherein the oxidizing agent is hydrogen peroxide.
- 96. (Currently amended) A method for the oxidation dyeing of keratinous fibres, wherein a dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine containing a pyrrolidine ring, and about 0.05% to about 2% by weight relative to the total weight of the composition of at least one pearlescent or opacyifying

<u>opacifying</u> agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, is applied to the fibres in the presence of an oxidizing agent.

97. (Currently amended) A multicompartment device wherein the first compartment contains a dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine containing a pyrrolidine ring, and about 0.05% to about 2% by weight relative to the total weight of the composition of at least one pearlescent or opacyifying opacifying agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, and a second compartment contains an oxidizing agent.

98. (Canceled)

99. (New) A dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary para-phenylenediamine containing a pyrrolidine ring, and about 0.05% to about 10% by weight relative to the total weight of the composition of at least one pearlescent or opacifying agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, wherein said cationic tertiary paraphenylenediamine containing a pyrrolidine ring corresponds to formula I:

$$R_3$$
 R_2
 $(R_1)_n$
 (I)

in which

n varies from 0 to 4, it being understood that when n is greater than or equal to 2, then the radicals R_1 may be identical or different,

R₁ represents a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C₁-C₆ hydrocarbon chain, it being possible for the chain to contain one or more oxygen, nitrogen, silicon or sulphur atoms or an SO₂ group, and it being possible for the chain to be substituted with one or more hydroxyl or amino

radicals; an onium radical Z, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals,

R₂ represents an onium radical Z or a radical –X-C=NR₈-NR₉R₁₀ in which X represents an oxygen atom or a radical –NR₁₁ and R₈, R₉, R₁₀ and R₁₁ represent a hydrogen atom, a C₁-C₄ alkyl radical or a C₁-C₄ hydroxyalkyl radical,

R₃ represents a hydrogen atom or a hydroxyl radical.

- 100. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 0.
- 101. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that n is equal to 1 and R_1 is chosen from the group consisting of a halogen atom; a saturated or unsaturated, aliphatic or alicylic, C_1 - C_6 hydrocarbon chain; it being possible for one or more carbon atoms to be replaced by an oxygen, nitrogen, silicon or sulphur atom, or by an SO_2 group, the radical R_1 not containing a peroxide bond, or diazo, nitro or nitroso radicals.
- 102. (New) The composition of claim 99, wherein the cationic tertiary paraphenylenediamine is such that R₁ is chosen from chlorine, bromine, C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, C₁-C₄ aminoalkyl, C₁-C₄ alkoxy or C₁-C₄ hydroxyalkoxy radicals.
- 103. (New) The composition of claim 102, wherein the cationic tertiary paraphenylenediamine is such that R₁ is chosen from a methyl, hydroxymethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, methoxy, isopropyloxy or 2-hydroxyethoxy radical.
- 104. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula (II)

$$\begin{array}{c|c}
 & R4 \\
 & R5 \\
 & R6 \\
 & Y
\end{array}$$
(II)

a. wherein:

- b. D is a single bond of a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals and which may carry one or more ketone functional groups;
- c. R₄, R₅ and R₆, taken separately, represent a C₁-C₁₅ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ amidoalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with a C₁-C₄ alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; or
- d. R₄, R₅ and R₆ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated carbon ring which may contain one or more heteroatoms, it being possible for the cationic ring to be substituted with a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxy-alkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a (C₁-C₆)alkylcarbonyl radical, a thio (-SH) radical, a C₁-C₆ thioalkyl (-R-SH) radical, a (C₁-C₆)alkylthio radical, an amino radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical;
- e. R₇ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;
- f. x is 0 or 1,

- i. (New) when x = 0, then the linking arm is attached to the nitrogen atom carrying the radicals R_4 to R_6 ;
- ii. (New) when x = 1, then two of the radicals R_4 to R_6 form, together with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered saturated ring and D is linked to the carbon atom of the saturated ring; and
- g. Y is a counter-ion.
- 105. (New) The composition of claim 104, wherein the cationic tertiary paraphenylenediamine is such that R₂ corresponds to formula II wherein x is equal to 0 and R₄, R₅ and R₆ separately are preferably chosen from a C₁-C₆ alkyl radical, a C₁-C₄ monohydroxyalkyl radical, a C₂-C₄ polyhydroxyalkyl radical, a (C₁-C₆)alkoxy(C₁-C₄)alkyl radical, a C₁-C₆ amidoalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, or R₄ with R₅ form together an azetidine ring, a pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, an aminoalkyl radical which is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl carboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical.
- 106. (New) The composition of claim 104, wherein the cationic tertiary paraphenylenediamine is such that R₂ corresponds to formula II wherein x is equal to 1 and R₇ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-Ć₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is monoor di-substited with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₄ with R₅ together form an azetidine, pyrrolidine, piperidine, piperazine or morpholine ring, R₆ being chosen in this case from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyl alkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C₁-C₆)alkylsilane(C

 C_6)alkyl radical; a (C_1 - C_6)alkylcarbonyl(C_1 - C_6)alkyl radical; an N-(C_1 - C_6)alkyl radical.

- 107. (New) The composition of claim 104, wherein the cationic tertiary paraphenylenediamine is such that D is a single bond or an alkylene chain which may be substituted.
- 108. (New) The composition of claim 104, wherein the cationic tertiary paraphenylenediamine is such that R_2 is a trialkylammonium radical.
- 109. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents the onium radical Z corresponding to formula III

$$\begin{array}{c|c}
 & & & & & & \\
\hline
 & & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & &$$

- h. wherein
- i. D is a single bond or a linear or branched C₁-C₁₄ alkylene chain which may contain one or more heteroatoms chosen from oxygen, sulphur or nitrogen, and which may be substituted with one or more hydroxyl, C₁-C₆ alkoxy or amino radicals, and which may carry one or more ketone functional groups;
- j. the vertices E, G, J, L, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a pyrrole, pyrazole, imidazole, triazole, oxazole, isooxazole, thiazole, isothiazole ring;
- k. q is an integer between 0 and 4 inclusive;
- 1. is an integer between 0 and 3 inclusive;
- m. q+o is an integer between 0 and 4;

25604500.1

- n. the radicals R₈, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ monohydroxyalkyl radical or a C₂-C₆ polyhydroxyalkyl radical; it being understood that the radicals R₈ are carried by a carbon atom;
- o. the radicals R₉, which are identical or different, represent a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, a benzyl radical, it being understood that the radicals R₉ are carried by a nitrogen;
- p. R₁₀ represents a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkyl radical;
- q. x is 0 or 1
 - i. (New) when x = 0, the linking arm D is attached to the nitrogen atom,
 - ii. (New) when x = 1, the linking arm D is attached to one of the vertices E, G, J or L; and
- r. Y is a counter-ion.
- 110. (New) The composition of claim 109, wherein the cationic tertiary paraphenylenediamine is such that the vertices E, G, J and L form an imidazole ring.

- 111. (New) The composition of claim 109, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0, D is a single bond or an alkylene chain which may be substituted.
- 112. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that R₂ represents an onium radical Z corresponding to formula IV

- b. wherein:
- c. D is a single bond or a linear or branched C1-C14 alkylene chain which may contain one or more heteroatoms chosen from an oxygen, sulphur or nitrogen atom, and which may be substituted with one or more hydroxyl, C1-C6 alkoxy or amino radicals, and which may carry one or more ketone functional groups;
- d. the vertices E, G, J, L and M, which are identical or different, represent a carbon, oxygen, sulphur or nitrogen atom to form a ring chosen from the pyridine, pyrimidine, pyrazine, triazine and pyridazine rings;
- e. p is an integer between 0 and 3 inclusive;
- f. m is an integer between 0 and 5 inclusive;
- g. p+m is an integer between 0 and 5;
- h. the radicals R₁₁, which are identical or different, represent a halogen atom, a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a carboxyl radical, a C₁-C₆ alkylcarbonyl radical, a thio radical, a C₁-C₆ thioalkyl radical, a (C₁-C₆)alkylthio radical, an amino radical which is substituted with a (C₁-C₆)alkyl, (C₁-

- C_6)alkylcarbonyl, amido or (C_1 - C_6)alkylsulphonyl radical; a C_1 - C_6 monohydroxyalkyl radical or a C_2 - C_6 polyhydroxyalkyl radical, it being understood that the radicals R_{11} are carried by a carbon atom;
- i. the radicals R12, which are identical or different, represent a C1-C6 alkyl radical, a C1-C6 monohydroxyalkyl radical, a C2-C6 polyhydroxyalkyl radical, a tri(C1-C6)alkylsilane(C1-C6)alkyl radical, a (C1-C6)alkoxy(C1-C6)alkyl radical, a C1-C6 carbamylalkyl radical, a (C1-C6)alkylcarboxy(C1-C6)alkyl radical, a benzyl radical, it being understood that the radicals R12 are carried by a nitrogen;
- j. R13 represents a C1-C6 alkyl radical; a C1-C6 monohydroxyalkyl radical; a C2-C6 polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C1-C6 aminoalkyl radical, a C1-C6 aminoalkyl radical whose amine is mono- or disubstituted with a (C1-C6)alkyl, (C1-C6)alkylcarbonyl, amido or (C1-C6)alkylsulphonyl radical; a C1-C6 carboxyalkyl radical; a C1-C6 carbamylalkyl radical; a C1-C6 trifluoroalkyl radical; a tri(C1-C6)alkylsilane(C1-C6)alkyl radical; a C1-C6 sulphonamidoalkyl radical; a (C1-C6)alkylcarboxy(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; a (C1-C6)alkylsulphonyl(C1-C6)alkyl radical; an N-(C1-C6)alkylcarbamyl(C1-C6)alkyl radical; an N-(C1-C6)alkylsulphonamido(C1-C6)alkyl radical;

k. x is 0 or 1

- i. (New) when x = 0, the linking arm D is attached to the nitrogen atom,
- ii. (New) when x = 1, the linking arm D is attached to one of the vertices E,
- G, J, L or M; and
- l. Y is a counter-ion.
- 113. (New) The composition of claim 112, wherein the vertices E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine and pyrimidine rings.
- 114. (New) The composition of claim 112, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 0 and R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkoxy radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical, an amino radical which is mono- or di-substituted with a

- (C_1-C_6) alkyl, a (C_1-C_6) alkylcarbonyl, amido or (C_1-C_6) alkylsulphonyl radical; a C_1-C_6 monohydroxyalkyl radical or a C_2-C_6 polyhydroxyalkyl radical and R_{12} is chosen from a C_1-C_6 alkyl radical, a C_1-C_6 monohydroxyalkyl radical, a C_2-C_6 polyhydroxyalkyl radical, a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical, a (C_1-C_6) alkoxy (C_1-C_6) alkyl radical, a C_1-C_6 carbamylalkyl radical.
- 115. (New) The composition of claim 112, wherein the cationic tertiary paraphenylenediamine is such that x is equal to 1 and R₁₃ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical, a C₁-C₆ aminoalkyl radical whose amine is mono- or di-substituted with a (C₁-C₆)alkyl radical, a (C₁-C₆)alkylcarbonyl radical, an amido radical, a (C₁-C₆)alkylsulphonyl radical; a C₁-C₆ carbamylalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; an N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; R₁₁ is chosen from a hydroxyl radical, a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a C₁-C₆ alkylcarbonyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, an amido radical, a C₁-C₆ alkylcarbonyl radical, an amino radical which is mono- or di-substituted with a (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido or (C₁-C₆)alkylsulphonyl radical; and R₁₂ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical.
- 116. (New) The composition of claim 112, wherein the cationic tertiary paraphenylenediamine is such that R_{11} , R_{12} and R_{13} are alkyl radicals which may be substituted.
- 117. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that the radical R_2 is the radical of formula -XP(O)(O-) OCH₂CH₂N⁺(CH₃)₃ where X represents an oxygen atom or a radical –NR₁₄, R₁₄ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.
- 118. (New) The composition of claim 99, wherein the cationic tertiary para-phenylenediamine is such that R₂ is a guanidine radical of formula –X-C=NR₈-NR₉R₁₀, X represents an oxygen atom or a radical –NR₁₁, R₈, R₉, R₁₀ and R₁₁ representing a hydrogen, a C₁-C₄ alkyl radical or a hydroxyalkyl radical.

- 119. (New) The composition of claim 99, wherein the cationic tertiary para-phenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride,
 - b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethyl-guanidinium chloride
 - d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - f. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - h. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammonium-hexyl)dimethylammonium dichloride
 - i. [1-(4-Aminophenyl)pyrrolidin-3-yl]oxophosphorylcholine
 - j. {2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
 - k. 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
 - 1. 3-{3-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-ium chloride
 - m. 1-{2-[1-(4-Aminophenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
 - n. 3-{3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
 - o. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethyammonium chloride
 - p. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - q. N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - r. N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
 - s. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride

- t. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxy-ethyl)dimethylammonium chloride
- u. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- v. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyldimethylammonium dichloride
- w. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]oxophosphorylcholine
- x. {2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}trimethylammonium chloride
- y. 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpyrrolidinium chloride
- z. 3-{3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]-propyl}1-methyl-3H-imidazol-1-um chloride
- aa. 1-{2-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yloxy]ethyl}-1-methylpiperidinium chloride
- bb. [1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- cc. 3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- dd. 3-{3-[1-(4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yloxy]propyl}-1-methyl-3H-imidazol-1-um chloride
- ee. [1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
- ff. 3-[1-(5-trimethylsilanylethyl-4-Amino-3-trimethylsilanylethylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- gg. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- hh. 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- ii. 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- jj. 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- kk. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride

- ll. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- mm. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- nn. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- oo. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- pp. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- qq. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
- rr. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- ss. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- tt. [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- uu. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- vv. [1-(4-Aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- ww. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- xx. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- yy. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- zz. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.
- 120. (New) The composition of claim 99, wherein the cationic tertiary para-phenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride;
 - b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide;
 - c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride;
 - f. [1-(4-Aminophenyl)pyrrolidin-3-yl](2-hydroxyethyl)dimethylammonium chloride
 - g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethyl-silanylpropyl)ammonium chloride;
 - h. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - i. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyltetradecylammonium chloride
 - j. N'-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride

- k. N-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]guanidinium chloride
- 1. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
- m. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
- n. [1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropylammonium chloride
- o. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- p. 1'-(4-Amino-3-methylphenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
- q. 3-{[1-(4-Aminophenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H-imidazol-1-ium chloride
- r. 3-{[1-(4-Amino-3-methylphenyl)pyrrolidin-3-ylcarbamoyl]methyl}-1-methyl-3H- imidazol-1-ium chloride
- s. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
- t. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanyl-propyl)-3H-imidazol-1-ium chloride
- u. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
- v. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
- w. [1-(4-Aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
- x. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
- $y. \quad [1-(4-amin ophenyl) pyrrolidin-3-yl] propyldimethylammonium\ methosulphate$
- z. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
- aa. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
- bb. [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
- cc. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
- dd. [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
- ee. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
- ff. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
- gg. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
- hh. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.

- 121. (New) The composition of claim 99, wherein the cationic tertiary para-phenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - b. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyltetradecylammonium bromide
 - c. N'-[1-(4-Aminophenyl)pyrrolidin-3-yl]-N,N-dimethylguanidinium chloride
 - d. N-[1-(4-Aminophenyl)pyrrolidin-3-yl]guanidinium chloride
 - e. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - f. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - g. [1-(4-Aminophenyl)pyrrolidin-3-yl]dimethyl-(3-trimethylsilanylpropyl)ammonium chloride
 - h. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(trimethylammoniumhexyl)dimethylammonium dichloride
 - i. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride
 - j. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - k. 3-[1-(4-Amino-3-methylphenyl)pyrrolidin-3-yl]-1-(3-trimethylsilanylpropyl)-3H-imidazol-1-ium chloride
 - 1. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium chloride
 - m. [1-(4-aminophenyl)pyrrolidin-3-yl]ethyldimethylammonium iodide
 - n. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium iodide,
 - o. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium bromide
 - p. [1-(4-aminophenyl)pyrrolidin-3-yl]propyldimethylammonium methosulphate
 - q. [1-(4-aminophenyl)pyrrolidin-3-yl]butyldimethylammonium iodide
 - r. [1-(4-aminophenyl)pyrrolidin-3-yl]pentyldimethylammonium iodide
 - s. [1-(4-aminophenyl)pyrrolidin-3-yl]hexyldimethylammonium iodide
 - t. [1-(4-aminophenyl)pyrrolidin-3-yl]heptyldimethylammonium iodide
 - u. [1-(4-aminophenyl)pyrrolidin-3-yl]octyldimethylammonium iodide
 - v. [1-(4-aminophenyl)pyrrolidin-3-yl]decyldimethylammonium iodide
 - w. [1-(4-aminophenyl)pyrrolidin-3-yl]hexadecyldimethylammonium iodide
 - x. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium chloride
 - y. [1-(4-aminophenyl)pyrrolidin-3-yl]hydroxyethyldimethylammonium iodide.

- 122. (New) The composition of claim 99, wherein the cationic tertiary para-phenylene is chosen from the group consisting of
 - a. [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride
 - b. 3-[1-(4-Aminophenyl)pyrrolidin-3-yl]-1-methyl-3H-imidazol-1-ium chloride
 - c. [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride
 - d. 1'-(4-Aminophenyl)-1-methyl-[1,3']bipyrrolidinyl-1-ium chloride.
- 123. (New) The composition of claim 99, wherein the cationic tertiary para-phenylene is chosen from the group consisting of [1-(4-Aminophenyl)pyrrolidin-3-yl]trimethylammonium chloride, and [1-(4-Aminophenyl)pyrrolidin-3-yl]-(2-hydroxyethyl)dimethylammonium chloride.
- 124. (New) The composition of claim 99, wherein the pearlescent or opacifying agent is an uncoated titanium oxide in powdered form.
- 125. (New) The composition of claim 124, wherein the pearlescent or opacifying agent is an uncoated titanium oxide in the form of an aqueous dispersion of at least 10% by weight of titanium oxide relative to the total weight of the aqueous dispersion and having a particle size equal to 15 to 60 nanometers.
- 126. (New) The composition of claim 99, wherein the pearlescent or opacifying agent is a titanium oxide coated with a material chosen from polydimethylsiloxane, polymethylhydrogenosiloxane, perfluoropolymethyl isopropyl ether, silica, teflon, polyester, chitosan, N-lauryl-L-lysine.
- 127. (New) The composition of claim 99, wherein the titanium oxide has a particle size of between 2 and 500 nanometers.
- 128. (New) The composition of claim 127, wherein the titanium oxide has a particle size of between 2 and 300 nanometers.
- 129. (New) The composition of claim 127, wherein the titanium oxide has a particle size of between 2 and 50 nanometers.

- 130. (New) The composition of claim 99, wherein the cationic tertiary paraphenylenediamine(s) having a pyrrolidine ring represent from about 0.001 to about 10% by weight relative to the total weight of the composition.
- 131. (New) The composition of claim 130, wherein the cationic tertiary paraphenylenediamine(s) having a pyrrolidine ring represent from about 0.005 to about 6% by weight relative to the total weight of the composition.
- 132. (New) The composition of claim 99, wherein the pearlescent or opacifying agent or agents represent from about 0.1% to about 1% by weight relative to the total weight of the composition.
- 133. (New) The composition of claim 99, further comprising at least one cationic polymer.
- 134. (New) The composition of claim 99, further comprising at least one thickening polymer.
- 135. (New) The composition of claim 99, further comprising at least one surfactant chosen from the group consisting of anionic surfactants, amphoteric or zwitterionic surfactants, nonionic surfactants and cationic surfactants.
- 136. (New) The composition of claim 99, comprising at least one additional oxidation base other than cationic tertiary para-phenylenediamines having a pyrrolidine ring chosen from paraphenylenediamines, bis-phenylalkylenediamines, para-aminophenols, ortho-aminophenols, heterocyclic bases and their addition salts.
- 137. (New) The composition of claim 136, wherein the additional oxidation base(s) are present in a quantity of between about 0.001 to about 20% by weight relative to the total weight of the composition.
- 138. (New) The composition of claim 137, wherein the additional oxidation base(s) are present in a quantity of between about 0.005 and about 6% by weight relative to the total weight of the composition.
- 139. (New) The composition of claim 99, further comprising at least one coupler chosen from meta-phenylenediamines, meta-aminophenols, meta-diphenols, naphthalene couplers, heterocyclic couplers and their addition salts.

- 140. (New) The composition of claim 139, wherein the coupler is chosen from 1,3-dihydroxybenzene, 1,3-dihydroxy-2-methylbenzene, 4-chloro-1,3-dihydroxybenzene, 2,4-diamino-1-(β-hydroxyethyloxy)benzene, 2-amino-4-(β-hydroxyethylamino)-1-methoxybenzene, 1,3-diaminobenzene, 1,3-bis(2,4-diaminophenoxy)propane, 3-ureidoaniline, 3-ureido-1-dimethylaminobenzene, sesamol, 1-β-hydroxyethylamino-3,4-methylenedioxybenzene, α-naphthol, 2-methyl-1-naphthol, 6-hydroxyindole, 4-hydroxyindole, 4-hydroxy-N-methylindole, 2-amino-3-hydroxypyridine, 6-hydroxybenzomorpholine, 3,5-diamino-2,6-dimethoxypyridine, 1-N-(β-hydroxyethyl)amino-3,4-methylenedioxybenzene, 2,6-bis(β-hydroxyethylamino)toluene and their addition salts.
- 141. (New) The composition of claim 140, wherein the coupler(s) are present in a quantity of between about 0.001 and about 20% by weight relative to the total weight of the composition.
- 142. (New) The composition of claim 141, wherein the coupler(s) are present in a quantity of between about 0.005 and about 6% by weight relative to the total weight of the composition.
- 143. (New) The composition of claim 99, further comprising at least one direct dye.
- 144. (New) The composition of claim 99, further comprising at least one hydroxylated solvent such as ethanol, propylene glycol, glycerol, polyol monoethers.
- 145. (New) The composition of claim 99, further comprising an oxidizing agent chosen from hydrogen peroxide, urea peroxide, alkali metal bromates, persalts, peracids and oxidase enzymes.
- 146. (New) The composition of claim 145, wherein the oxidizing agent is hydrogen peroxide.
- 147. (New) A method for the oxidation dyeing of keratinous fibres, wherein a dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary paraphenylenediamine containing a pyrrolidine ring, and about 0.05% to about 10% by weight relative to the total weight of the composition of at least one pearlescent or opacifying agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, is applied to the fibres in the presence of an oxidizing agent.
- 148. (New) A multicompartment device wherein the first compartment contains a dyeing composition comprising, in an appropriate dyeing medium, at least one cationic tertiary paraphenylenediamine containing a pyrrolidine ring, and about 0.05% to about 10% by weight

relative to the total weight of the composition of at least one pearlescent or opacifying agent chosen from coated or uncoated titanium oxides, mica-titaniums and micas, and a second compartment contains an oxidizing agent.