Derek Sikorski

Advisors: Roy Gal, Brian Lemaux (NOIRLab), Ben Forrest (UC Davis), and the C3VO Collaboration

What is the "Environment?"

Galaxies Evolve

Galaxies Evolve

Galaxies Evolve

Environment Matters

In the local universe, find redder galaxies are:

- → more massive
- \rightarrow in overdense regions

Does this change at higher redshifts?

Quenching

Quenching

<u>In situ</u>

In situ

Quenching

Ex situ

"Mass Quenching"

"Environmental Quenching"

<u>In situ</u>

"Mass Quenching"

• Stellar Winds

In situ

- Stellar Winds
- Supernovae

In situ

- Stellar Winds
- Supernovae
- AGN Feedback

In situ

- Stellar Winds
- Supernovae
- AGN Feedback
- Dark Matter Halo

Ex situ

"Environmental Quenching"

• Satellite Quenching

Ex situ

"Environmental Quenching"

• Satellite Quenching

• Mergers

In situ

- "Mass Quenching"
- Stellar Winds
- Supernovae
- AGN Feedback
- Dark Matter Halo

Ex situ

- "Environmental Quenching"
 - Satellite Quenching

Mergers

In situ

- "Mass Quenching"
- Stellar Winds
- Supernovae
- AGN Feedback
- Dark Matter Halo

Ex situ

- "Environmental Quenching"
 - Satellite Quenching

• Mergers

Effects in the Stellar Mass Function (SMF)

- The SMF is a number density of galaxies as function of mass
- Gives information about star formation history
- Different SMF shapes for different populations informs us about different histories

The Local SMF

The SMF at Higher Redshifts

- SMFs for $0.55 \le z \le 1.3$
 - \rightarrow Lookback time of ~5.6-9.0 Gyr

- Find that overdense regions either:
 - Lack low-mass galaxies
 - Have excess of high-mass galaxies

Hyperion: A Giant in the COSMOS field

- An overdense region with a collection of highly-overdense "peaks"
- First realized in Cucciati et al., 2018
- Since has been studied extensively
- Data comparable to superclusters at z < 1

Goals of the Study

Goals of the Study

1. Identify a data set

Goals of the Study

1. Identify a data set

2. Create a map of the environment

Goals of the Study

1. Identify a data set

2. Create a map of the environment

3. Identify Hyperion and a separate field sample

Goals of the Study

1. Identify a data set

2. Create a map of the environment

3. Identify Hyperion and a separate field sample

4. Compare SMFs of different overdensity thresholds of Hyperion and the field sample

<u>Data</u>

- 1. COSMOS2020 photometry
- \rightarrow SED fitting providing stellar mass, photo-zs, etc.

<u>Data</u>

1. COSMOS2020 photometry

<u>Data</u>

1. COSMOS2020 photometry

3. HST grism spectroscopy \rightarrow 580 usable redshifts in range $2 \le z_{\rm spec} \le 3$

Mapping the Environment

• Need a 3D map of log(1 + δ_{gal})

- Use MC process and subset of data to map of "voxels" with associated overdensity
- Can use this to:
 - Identify proto-structures
 - Assign a log(1 + δ_{gal}) to each galaxy

Mapping the Environment

- Easier to write in terms of n_{sig}
- \rightarrow Number of standard deviations above the mean log(1 + δ_{gal}) at a given redshift

Defining Hyperion

Conditions to be a proto-structure

- 1. Contiguous voxels with $n_{sig} \ge 2$ 2. Contains some voxels with $n_{sig} \ge 4$ 3. Total mass of log(M/M $_{\odot}$) ≥ 13

Defining Hyperion

Conditions to be a proto-structure

- 1. Contiguous voxels with $n_{sig} \ge 2$ 2. Contains some voxels with $n_{sig} \ge 4$
- 3. Total mass of $log(M/M_{\odot}) \ge 13^{\circ}$

Properties of Hyperion:

- \rightarrow Total Mass: $\log(M/M_{\odot}) \sim 15.71$
- \rightarrow Volume: $V \sim 9.6 \times 10^4 \text{ cMpc}^3$

Defining a Comparison Field

Want a sample with limited exposure to environmental effects

Defining a Comparison Field

Want a sample with limited exposure to environmental effects

Account for Photometric Redshift Uncertainties

- Despite abundance of spectroscopic redshifts, the data is dominated by photo-zs
- Accounting for redshift uncertainty is difficult. Redshift affects
 - If the galaxy is in Hyperion
 - What region of Hyperion does the galaxy land in
 - What is the stellar mass of the galaxy

Account for Photometric Redshift Uncertainties

- Use a Monte Carlo process to account for redshift uncertainties
- Make 100 mock catalogs which incorporate photometric uncertainties
- Each iteration, refit SEDs based on the new redshift
- Reconstruct the SMF for each MC iteration

SMFs

Median combine the SMFs

- Compare 5 SMFs:
 - The combined field sample
 - Three different overdensity thresholds of Hyperion
 - The COSMOS2020 field for $2.0 \le z \le 2.5$ (Weaver et al., 2023)

SMFs

Normalized SMFs

There is an abundance of massive galaxies in the most overdense regions

Could mean:

- Galaxies form at earlier epochs in these regions
- Galaxies experience enhanced SFRs in overdense regions
- Mergers are more frequent and driving up stellar mass

What I've Done

- Helped to analyze *HST* data to give new insight into Hyperion
- Generate an updated map of Hyperion
- Perform an MC on the data and refit the SEDs to get new physical parameters
- Constructed SMFs for Hyperion and a field sample

What I Found

- Overdense regions appear to have a higher ratio of high-to-low mass galaxies
- Given the lookback time of ~11 Gyrs, this could imply early and rapid growth of stellar mass of these galaxies
- Separate this into star forming and quenched populations to study further

Bonus Slides

The Pain of Grism Spectroscopy

- ~2500 sources examined by-eye by the group
- In total, ~700 hours of work for classification

The Pain of Grism Spectroscopy

• Cross-match with best ground-based spectra to derive reliability

Map
$$log(1 + \delta_{gal})$$
 with the Voronoi Monte Carlo (VMC) algorithm

- The VMC cookbook:
- 1. Make overlapping redshift slices

- The VMC cookbook:
- 1. Make overlapping redshift slices
- 2. Partition each slice into a Voronoi Tessellation map
 - a. Inverse Area ~ Density

- The VMC cookbook:
- 1. Make overlapping redshift slices
- 2. Partition each slice into a Voronoi Tessellation map
- 3. Repeat 100 times, redrawing redshifts each time

- The VMC cookbook:
- 1. Make overlapping redshift slices
- 2. Partition each slice into a Voronoi Tessellation map
- 3. Repeat 100 times
- 4. Left with 3D grid of log(1 + δ_{gal}) values

Mapping the Environment

Find mean and standard deviation of log(1 + δ_{gal}) in each redshift slice

- Find mean and standard deviation of $log(1 + \delta_{gal})$ in each redshift slice
- Fit with higher-order polynomial

- Find mean and standard deviation of $log(1 + \delta_{gal})$ in each redshift slice
- Fit with higher-order polynomial
- Represent any voxel with one value

$$\log(1 + \delta_{\text{gal}}) = \mu_{\delta}(z) + n_{\sigma} \cdot \sigma_{\delta}(z)$$

Mapping the Environment

- Find mean and standard deviation of $log(1 + \delta_{gal})$ in each redshift slice
- Fit with higher-order polynomial
- Represent any voxel with one value

$$\log(1 + \delta_{\text{gal}}) = \mu_{\delta}(z) + n_{\sigma} \cdot \sigma_{\delta}(z)$$

 $\rightarrow n_{\sigma}$ is our proxy for environment

Accounting for Redshift Errors

Limit the COSMOS2020 photometry

- $\leq 5\sigma$ away from $2 \leq z \leq 3$
- Either $[3.6] \le 25.0$ or $[4.5] \le 25.0$
- Have all three statistics for confidence interval

Accounting for Redshift Errors

Limit the COSMOS2020 photometry

- $\leq 5\sigma$ away from $2 \leq z \leq 3$
- Either $[3.6] \le 25.0$ or $[4.5] \le 25.0$
- Have all three statistics for confidence interval

Why at z ~ 2.5?

Other High-z Studies

Other High-z Studies

