Systemy komputerowe

Lista zadań nr 4 Na ćwiczenia 26 marca 2025

Każde zadanie warte jest 1 punkt.

Zadanie 1. Dla programu z zadania 6 z listy 3, ułóż równania definiujące zbiory $RD_{\circ}(l)$ oraz $RD_{\circ}(l)$, dla $l \in \{1,...,9\}$. Następnie sprawdź, że zbiory wyliczone w tamtym zadaniu spełniają te równania.

Wskazówka: Slajdy 27-31 z pliku slides1.pdf.

Zadanie 2. Rozwiąż równania z poprzedniego zadania posługując się algorytmem stałopunktowym. Porównaj otrzymane rozwiązanie z tym otrzymanym w zadaniu 6 z listy 3.

Wskazówka: Slajdy 32-33 z pliku slides1.pdf.

Zadanie 3.

- 1. W równaniach opisujących zbiory $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$ z poprzednich zadań wskaż wystąpienia funkcji $kill_{RD}(.)$ oraz $gen_{_{RD}}(.)$.
- 2. Do języka wprowadzamy instrukcję read(x) przypisującą do zmiennej x wartość przeczytaną z wejścia. Jak należy zdefiniować $kill_{RD}(read(x))$ oraz $gen_{RD}(read(x))$?
- 3. Załóżmy, że kompilator otrzymuje na wejściu programy w postaci grafu przepływu sterowania i potrzebuje obliczyć zbiory $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$. W jaki sposób można to zautomatyzować?

Wskazówka: Slajdy 17-19 z pliku slides2.pdf.

Zadanie 4. Rozważmy poniższy program. Dla każdej instrukcji $l \in \{1,...,5\}$, ułóż równania dla zbiorów $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$. Wylicz ich rozwiązanie za pomocą algorytmu stałopunktowego. Porównaj otrzymane rozwiązanie z wartościami zbiorów $RD_{\circ}(l)$ oraz $RD_{\bullet}(l)$ które mogą pojawić się w faktycznym wykonaniu tego programu i wyciągnij wnioski.

$$[x := 1]^{1}$$
 $if [x > 0]^{2} then$
 $[y := 1]^{3}$
 $else$
 $[y := -1]^{4}$
 end
 $[z := y]^{5}$

Wskazówka: Slajdy 16, 24-26 z pliku slides1.pdf.

Zadanie 5. Zdefiniuj analizę zmiennych żywych (ang. *live variable analysis*). Dla programu z zadania 1. przeprowadź tę analizę w sposób formalny, tzn. zdefiniuj układ równań na zbiorach i rozwiaż go.

Wskazówka: Slajdy 32-37 z pliku slides2.pdf oraz r. 2.1.4 z "Principles of Program Analysis". W definicji funkcji kill/gen napis FV(a) oznacza zbiór wszystkich zmiennych występujących w wyrażeniu a.

Zadanie 6. Niech (L, \ll) będzie porządkiem częściowym¹ spełniającym warunek łańcuchów wstępujących oraz posiadającym najmniejszy element \bot . Niech f:L \rightarrow L będzie funkcją monotoniczną. Pokaż, że funkcja f ma najmniejszy punkt stały w sensie porządku \ll .

Wskazówka: Slajdy 31-37 z pliku slides1.pdf.

Zadanie 7. Wykorzystaj poprzednie zadanie by pokazać, że algorytm stałopunktowy z wykładu ma własność stopu i że rzeczywiście oblicza rozwiązanie układów równań na zbiorach. W tym celu zdefiniuj porządek częściowy, spełniający odpowiednie warunki.

¹ Czyli ≪ jest relacją binarną na zbiorze L, która jest zwrotna, słabo antysymetryczna i przechodnia.