

Training In The Sky

Machine Learning Operations

Damian Konrad Kowalczyk, PhD
Applied Scientist, Cloud + Al Division
Microsoft Corporation

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

source: <u>Hidden Technical Debt in Machine Learning Systems (nips.cc)</u>

science meets engineering: MLOps on Azure

Today

Introduction to Azure Machine Learning

- Provision an Azure Machine Learning workspace.
- Use tools and interfaces to work with Azure Machine Learning.
- Run code-based experiments in an Azure Machine Learning workspace.

Train a machine learning model with Azure Machine Learning

- Use a ScriptRunConfig to run a model training script as an Azure Machine Learning experiment.
- Create reusable, parameterized training scripts.
- Register trained models.

Part of: Build and operate machine learning solutions with Azure Machine Learning

Azure Machine Learning

- Scalable on-demand compute for machine learning workloads.
- Data storage and connectivity to ingest data from a wide range sources.
- Machine learning workflow orchestration to automate model training, deployment, and management processes.
- Model registration and management, so you can track multiple versions of models and the data on which they were trained.
- Metrics and monitoring for training experiments, datasets, and published services.
- Model deployment for real-time and batch inferencing.

Azure ML Workspace

Azure ML Workspace as Azure Resources

Azure ML SDK (Python)

pip install azureml-sdk azureml-widgets

```
for compute_name in ws.compute_targets:
    compute = ws.compute_targets[compute_name]
    print(compute.name, ":", compute.type)
```

```
ws.write_config(path='.azureml')
{
"subscription_id": "1234567-abcde-890-fgh...",
"resource_group": "aml-resources",
"workspace_name": "aml-workspace"
}
```

```
from azureml.core import Workspace
ws = Workspace.from_config()
```

Azure ML from VS Code

Azure Machine Learning Experiments

Running an Experiment: ScriptRunConfig

```
(experiment.py)
from azureml.core import Experiment
import pandas as pd
# Create an Azure ML experiment in your workspace
experiment = Experiment(workspace = ws, name = 'my-experiment')
# Start logging data from the experiment
run = experiment.start logging()
# load the dataset and count the rows
data = pd.read csv('data.csv')
row count = (len(data))
# Log the row count
run.log('observations', row count)
run.upload file(name='outputs/sample.csv',
path or stream='./sample.csv')
# Complete the experiment
run.complete()
```

Training a simple model

(script)

```
from azureml.core import Run
import pandas as pd
import numpy as np
import joblib
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
# Get the experiment run context
run = Run.get context()
# Prepare the dataset
diabetes = pd.read csv('data.csv')
X, y = diabetes[['Feature1', 'Feature2', 'Feature3']].values, diabetes['Label'].values
X train, X test, y train, y test = train test split(X, y, test size=0.30)
# Train a logistic regression model
reg = 0.1
model = LogisticRegression(C=1/reg, solver="liblinear").fit(X_train, y_train)
# calculate accuracy
y hat = model.predict(X test)
acc = np.average(y_hat == y_test)
run.log('Accuracy', np.float(acc))
# Save the trained model
os.makedirs('outputs', exist_ok=True)
joblib.dump(value=model, filename='outputs/model.pkl')
run.complete()
```

Training a simple model

(experiment)

```
from azureml.core import Experiment, ScriptRunConfig, Environment
from azureml.core.conda dependencies import CondaDependencies
# Create a Python environment for the experiment
sklearn env = Environment("sklearn-env")
# Ensure the required packages are installed
packages = CondaDependencies.create(conda packages=['scikit-learn','pip'],
                                    pip packages=['azureml-defaults'])
sklearn env.python.conda dependencies = packages
# Create a script config
script config = ScriptRunConfig(source directory='training folder',
                                script='training.py',
                                environment=sklearn env)
# Submit the experiment
experiment = Experiment(workspace=ws, name='training-experiment')
run = experiment.submit(config=script config)
run.wait for completion()
```

Parametrized scripts

```
# Get the experiment run context
run = Run.get_context()

# Set regularization hyperparameter
parser = argparse.ArgumentParser()
parser.add_argument('--reg-rate', type=float, dest='reg_rate', default=0.01)
args = parser.parse_args()
reg = args.reg_rate
```

Instrument your experiment script

...and pass the argument in the runner script

Registering models

tag and upload the model binary to AML model registry

then lookup and download registered models with the Model API

```
from azureml.core import Model

for model in Model.list(ws):
    # Get model name and auto-generated version
    print(model.name, 'version:', model.version)
```

To Do

1. Exercise - Create a workspace - Learn | Microsoft Docs

2. Exercise - Run experiments - Learn | Microsoft Docs

3. Exercise - Training and registering a model - Learn | Microsoft Docs

- 4. Knowledge check 1 Learn | Microsoft Docs
- 5. Knowledge check 2 Learn | Microsoft Docs

Resources

<u>Build and operate machine learning solutions with Azure</u>
 <u>Machine Learning</u>

Detailed How-To Guides:

- Create workspaces in the portal Azure Machine Learning | Microsoft Docs
- Set up Visual Studio Code extension (preview) Azure Machine Learning | Microsoft Docs
- Connect to compute instance in Visual Studio Code (preview) Azure Machine Learning | Microsoft Docs
- Configure a training run Azure Machine Learning | Microsoft Docs
- Track, monitor, and analyze runs Azure Machine Learning | Microsoft Docs

