ECE 65: Components & Circuits Lab

Lecture 13

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) introduction

Reference notes: sections 4.1,4.2

Sedra & Smith (7th Ed): sections 5.1-5.3

Saharnaz Baghdadchi

Course map

4. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Digital Gates

The structure of NMOS and PMOS

The thickness and capacitance of the oxide layer: tox 1 Cox

Cut-off region

No inversion layer $(v_{GS} < V_{tn})$

No current will flow.

In cut-off region, $V_{ov} < 0$.

Overdrive Voltage: V_{OV} = v_{GS} – V_{tn}

A channel is formed $(v_{GS} \ge V_{tn})$

If we apply a $\underline{small}\ v_{DS}$ between drain and source, current will flow in the channel.

$$i_D = \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn}) v_{DS}$$

$$i_D = \mu_n C_{ox} \frac{W}{L} V_{OV} v_{DS}$$

 μ_n is the mobility of electrons.

The values of μ_n , C_{ox} , and $\frac{W}{L}$ will be given to you.

A channel is formed $(v_{GS} \ge V_{tn})$

$$i_D = \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn}) v_{DS}$$

$$i_D = \mu_n C_{ox} \frac{W}{L} V_{OV} v_{DS}$$

For <u>small</u> v_{DS} , MOSFET acts like a resistor with its conductivity controlled by V_{OV} (or v_{GS}).

$$i_D = g_{DS} v_{DS}$$

Where
$$g_{DS} = \mu_n C_{ox} \frac{W}{L} V_{OV}$$

Triode region

As v_{DS} is increased, the channel becomes narrower near the drain.

$$i_D = \mu_n C_{ox} \frac{W}{L} (V_{OV} \ v_{DS} - 0.5 v_{DS}^2)$$

For small v_{DS} ,

$$i_D = \mu_n C_{ox} \frac{W}{L} (V_{OV} \ v_{DS} - 0.5 v_{DS}^2) \approx \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{tn}) \ v_{DS}$$

Saturation region

When v_{DS} is increased further such

that $v_{DS} = V_{OV}$, the channel depth

becomes zero at the drain (Channel

"pinched off").

$$i_D = 0.5 \,\mu_n C_{ox} \frac{W}{L} \,V_{OV}^2$$

For a given v_{GS} (or V_{OV})

Vos=Vov the edge of saturation

Channel-Length Modulation

As v_{DS} increases beyond V_{OV} , the pinch-off point moves "slightly" away from the drain: Channel-length Modulation

$$i_D = 0.5 \ \mu_n C_{ox} \frac{W}{L} \ V_{OV}^2 \ (1 + \lambda v_{DS})$$

$$\lambda = \frac{1}{V_A}$$
Triode
Saturation
$$V_{OV}$$

$$V_{OV}$$

$$V_{OV}$$

$$V_{OV}$$

MOS Circuit symbols and conventions

$$\begin{array}{c|c}
i_{G} = 0 \\
G & \downarrow & i_{D} \\
\downarrow & \downarrow & \downarrow \\
v_{DS} \\
\downarrow & \downarrow & \downarrow \\
S & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
S & \downarrow & \downarrow & \downarrow \\
\end{array}$$

NMOS (
$$V_{OV} = v_{GS} - V_{tn}$$
)

Cut- Off :
$$V_{OV} < 0$$

$$i_D = 0$$

Triode:
$$V_{OV} \ge 0$$
 and $v_{DS} \le V_{OV}$

$$i_D = 0.5 \, \mu_n C_{ox} \frac{W}{L} (2 \, V_{OV} v_{DS} - v_{DS}^2)$$

Saturation:
$$V_{OV} \ge 0$$
 and $v_{DS} \ge V_{OV}$

$$i_D = 0.5 \, \mu_n C_{ox} \frac{W}{L} \, V_{OV}^2 \, (1 + \lambda v_{DS})$$

PMOS
$$(V_{OV} = v_{SG} - |V_{tp}|)$$

Cut- Off :
$$V_{OV} < 0$$

$$i_D = 0$$

Triode:
$$V_{OV} \ge 0$$
 and $v_{SD} \le V_{OV}$

$$i_D = 0.5 \,\mu_p C_{ox} \frac{W}{L} (2 \,V_{OV} v_{SD} - v_{SD}^2)$$

Saturation:
$$V_{OV} \ge 0$$
 and $v_{SD} \ge V_{OV}$

$$i_D = 0.5 \, \mu_p C_{ox} \frac{W}{L} \, V_{OV}^2 \, (1 + \lambda v_{SD})$$

Lecture 13 reading quiz

For the MOSFET below, $v_{SG} = 5V$, $v_{GD} = 6V$,

$$\mu_p C_{ox} \left(\frac{W}{L}\right)_p = 0.7 \frac{mA}{V^2},$$

 $\left|V_{tp}\right|=2V.$ Find the mode of operation of the MOSFET and the drain current $i_{D}.$

$$V_{SG} = 5V$$
 and $V_{GD} = 6V \longrightarrow V_{DG} = -6V$

$$V_{oV} = V_{SG} - |V_{tp}| = 5 - 2 = 3 \ V > 0$$

Lecture 13 reading quiz

For the MOSFET below, $v_{SG} = 5V$, $v_{GD} = 6V$,

$$\mu_p C_{ox} \left(\frac{W}{L}\right)_p = 0.7 \frac{mA}{V^2},$$

 $|V_{tp}| = 2V$. Find the mode of operation of the MOSFET and the drain current i_D .

$$V_{oV} = 3 V$$

$$V_{SD} = V_{SG} - V_{DG}$$
: $V_{S} - V_{D} = (V_{S} - V_{G}) - (V_{D} - V_{G})$

$$V_{SD} = 5V - (-6V) = 11V > V_{oV}$$

$$i_{D} = \frac{1}{2} P_{\rho} C_{on} \left(\frac{W}{L}\right)_{\rho} V_{ov}^{2} = \frac{1}{2} \times 0.7 \left(\frac{mA}{V^{2}}\right) \times 3^{2} (V^{2}) = 3.15 mA$$

Example.

In the circuit below, $R_D=1k$, and $V_{DD}=12\ V$. Find v_o for $v_i=0$ and

12
$$V$$
. ($\mu_n C_{ox} \frac{W}{L} = 0.5 \text{ mA}/V^2$, $V_{tn} = 2 V$, and $\lambda = 0$)

$$V_{i} = 0$$

$$V_{0S} = 0 \longrightarrow V_{0V} = V_{GS} - V_{En} = -2V < 0 \longrightarrow Mos \text{ is in cut-off}$$

$$in \text{ cut-off}$$

$$V_{\mathbb{D}} = V_{\mathbb{D}} = V_{\mathbb{D}\mathbb{D}} - R_{\mathbb{D}} i_{\mathbb{D}} = V_{\mathbb{D}\mathbb{D}} = 12 \sqrt{2}$$

$$V_{ov} = V_{GS} - V_{tn} = 12V - 2V = 10V > 0 \longrightarrow MOSFET is$$

$$\tilde{l_0} = \frac{1}{2} \int_{n}^{\mu} C_{ox} \frac{W}{L} V_{ov}^2 = \frac{1}{2} k_n V_{ov}^2$$

$$i_{D} = \frac{1}{2} \times 0.5 \left(\frac{M}{V^{2}} \right) \times \left(10 \left(V \right) \right)^{2} = 25 \, \text{mA}$$

$$\longrightarrow V_{DS} = -13V < V_{DD}$$

assumption was not correct.

$$\dot{l}_{O} = \frac{1}{2} \int_{n}^{\infty} Con \frac{W}{L} \left(2 V_{OV} V_{OS} - V_{OS}^{2} \right)$$

$$(1) (_{D}(MA) = \frac{1}{2} \times 0.5 \times (20 \text{ VDs} - \text{VDs}^{2})$$

$$2 i_D(mA) = \frac{12V - Vos}{1(ks)}$$

$$|2(V) - V_{DS}| = 5 V_{DS} - 0.25 V_{DS}$$

$$\rightarrow V_{DS}^{2} - 24V_{DS} + 48 = 0$$

$$V_{DS} = \begin{cases} 2.2 & (V) \\ 21.8 & (V) \\ \end{pmatrix} V_{DO} \times$$

$$V_{DS} = 2.2 \quad \forall \quad \angle V_{ov}$$

$$V_0 = V_{DS} = 2.2 V$$
, $i_D = 9.8 \text{ m A}$

