MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

9 de maio de 2016

Lista 4

L4.1 Complete a demonstração formal do lema 2.21, a primeira parte do teorema 2.20. A saber, primeiro demonstre que, para toda palavra w derivada pela gramática A, uma computação que aceite a palavra w no autômato construído P pode conduzir do estado q_{inicio} para o estado q_{aceita} . Em seguida, demonstre que toda palavra w aceita por uma computação de P admite uma derivação pela gramática A.

Resposta: TODO

L4.2 (Sipser 2.9) Dê uma gramatica livre-do-contexto que gere a linguagem

$$A = \{a^i b^j c^k \mid i = j \text{ ou } j = k \text{ onde } i, j, k \ge 0\}$$

Resposta: A GLC que gera a linguagem $A \notin G = (\{S, S_1, S_2, A, C\}, \{a, b, c\}, R, S)$, onde $S \notin$ a variável inicial e $R \notin$ o conjunto de regras:

$$S \to AS_2 \mid S_1C$$

$$S_1 \to aS_1b \mid \epsilon$$

$$S_2 \to bS_2c \mid \epsilon$$

$$A \to aA \mid \epsilon$$

$$C \to cC \mid \epsilon$$

Sua gramática é ambígua? Por que ou por que não?

Sim, ela é ambígua, pois G gera uma mesma cadeia, digamos w, ambiguamente, ou seja, w tem duas árvores sintáticas distintas. A derivação da cadeia w = abc, por exemplo, produz duas árvores sintáticas diferentes.

L4.3 (Sipser 2.11) Converta a GLC G_4 do exercício 2.1 para um AP equivalente, usando o teorema 2.20.

$$\begin{split} E &\to E + T \mid T \\ T &\to T \times F \mid F \\ F &\to (E) \mid a \end{split}$$

Resposta: TODO

L4.4 (Sipser 2.14) Converta a seguinte GLC numa GLC equivalente na forma normal de Chomsky, usando o procedimento dado no Teorema 2.9.

$$\begin{array}{c|c} A \rightarrow BAB \mid B \mid \epsilon \\ B \rightarrow 00 \mid \epsilon \end{array}$$

Resposta: Seguem os passos de acordo com o teorema.

1. Nova variável inicial

$$S_0 \to A$$

$$A \to BAB \mid B \mid \epsilon$$

$$B \to 00 \mid \epsilon$$

2. Removendo a regra $A \to \epsilon$

$$S_0 \to A \mid \epsilon$$

$$A \to BAB \mid B \mid BB$$

$$B \to 00 \mid \epsilon$$

3. Removendo a regra $B \to \epsilon$

$$S_0 \rightarrow A \mid \epsilon$$

 $A \rightarrow BAB \mid B \mid BB \mid AB \mid BA$
 $B \rightarrow 00$

4. Removendo a regra unitária $A \to B$

$$S_0 \to A \mid \epsilon$$

 $A \to BAB \mid 00 \mid BB \mid AB \mid BA$
 $B \to 00$

5. Removendo a regra unitária $S_0 \to a$

$$S_0 \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA \mid \epsilon$$

 $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$
 $B \rightarrow 00$

6. Simplificando, tomando $X \to AB$ e $Y \to 0$

$$S_0 \rightarrow BX \mid YY \mid BB \mid AB \mid BA \mid \epsilon$$

 $A \rightarrow BX \mid YY \mid BB \mid AB \mid BA$
 $B \rightarrow YY$
 $X \rightarrow AB$
 $Y \rightarrow 0$

L4.5

Resposta: TODO L4.6

a. Teste

Resposta: TODO