HW 3

Marion Geary

Load Packages

```
library(tidyverse)
library(tidymodels)
library(modeldata)
data("ames")
```

Exploratory Data Analysis

```
ggplot(ames, aes(x=Sale_Price, y=Gr_Liv_Area)) +
  geom_jitter(aes(color=Bldg_Type, alpha=0.5)) +
  labs(x="Sale Price", y="Gross Above-Grade Living Area")
```



```
ggplot(ames, aes(x=log(Sale_Price, base=10), y=log(Gr_Liv_Area, base=10))) +
  geom_jitter(aes(color=Bldg_Type, alpha=0.5)) +
  labs(x="Sale Price (log base 10)", y="Gross Above-Grade Living Area (log base 10)")
```


Through looking at the first graph, we see that there appears to be a relationship between the Sale_Price and the Gr_Liv_Area. In the second graph, we take the log of both variables and see that the relationship becomes even more linear, suggesting that Gr_Liv_Area could be a good predictor for Sale_Price. When we color by Bldg_Type, we see that different building types cluster around different Sale_Price, such as how TwnhsE clusters around higher sale prices while TwoFmCon clusters around lower sale prices.

Data Munging

```
ames <- ames %>% mutate(log_sale_price = log(Sale_Price, base=10))
```

We alter the predictor, Sale_Price to prepare for modeling by taking the logarithm.

Data Spending

```
set.seed(12345)
ames_split <- initial_split(ames, prop=0.8, strata=Sale_Price)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)</pre>
```

Split the data into a test set and a training set. We stratify based on Sale_Price in order to keep the proportions similar in each set.

Feature Engineering

```
ames_recipe <-
  recipe(Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built + Bldg_Type, data = ames_train) %>%
  step_log(Gr_Liv_Area, base = 10) %>%
  step_other(Neighborhood, threshold = 0.01) %>%
  step_dummy(all_nominal_predictors()) %>%
  step_interact( ~ Gr_Liv_Area:starts_with("Bldg_Type_") )
```

We create a recipe to prepare the data for modeling. We use Neighborhood, Gr_Liv_Area, Bldg_Type, and Year_Built to predict Sale_Price. We take the logarithm of Gr_Liv_Area, and turn our categorical variables into dummy variables. We also group the bottom 1% of neighborhoods into one dummy variable rather than have a multiple dummy variables with either one or no data points. This prevents these variables from creating problems for the model or skewing it. We also include an interaction step to reflect how the Gr_Liv_Area impacts the Sale_Price of each category of the Bldg_Type differently.

Create Model Workflow

```
lm_model <- linear_reg() %>% set_engine('lm')
lm_wflow <- workflow() %>%
  add_model(lm_model) %>%
  add_recipe(ames_recipe)
```

We combine our recipe with a linear regression engine to create a workflow.

Fit the Model

```
lm_fit <- fit(lm_wflow, ames_train)</pre>
```

We fit the workflow to our training data to get a model.

Test the Model

```
ames_test_res <-
   predict(lm_fit, new_data = ames_test %>%
   select(-Sale_Price))
ames_test_res <-
   bind_cols(ames_test_res, ames_test
        %>% select(Sale_Price))
ames test res
```

```
## # A tibble: 588 x 2
##
        .pred Sale_Price
##
        <dbl>
                    <int>
    1 182334.
##
                   215000
##
    2 192605.
                   189900
    3 408878.
##
                   538000
    4 78792.
                   141000
##
##
    5 220612.
                   210000
##
    6 146672.
                   149900
##
    7 361537.
                   376162
    8 322939.
                   306000
    9 320809.
                   275000
##
## 10 179904.
                   180000
## # ... with 578 more rows
```

Now that we have a model, we test it on the test data. We use the model to predict Sale_Price. We create a table to compare the predicted outcome with the observed outcome.

Assess Goodness of Fit

Using this result, we assess our model based on how well its predictions compared with the real outcomes. We create the function metric_set() to find the RMSE and R^2 for the model. We see that the R^2 value is 0.765, which shows that the model is a fairly accurate predictor of the Sale_Price. Our model is able to account for 76.5% of variation in Sale_Price. With a RMSE of 40672, we see that our model errs in prediction of Sale_Price by an average of \$40,762. This is a fairly significant number based on the units for Sale_Price and indicates that our model could likely use some refining.