Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

Факультет программной инженерии и компьютерной техники

Отчет по лабораторной работе №4

по дисциплине «Компьютерная сеть»

Тема «Основы администрирования маршрутизируемых компьютерных сетей»

Выполнила:

студентка гр. № Р33212

нефкеЦ нК

Санкт-Петербург

Оглавление

Цель работы	3
Вариант	3
- Этап 1. Настройка виртуальных машин	
Этап 2. Ознакомление с используемыми командами Linux	5
Этап 3. Выполнение общей части задания	6
Этап 4. Выполнение задания по варианту	6
Общая часть задания (для топологии из V1)	ε
Вариант с IPv4	11
Вариант с IPv6	13
Вывод	15
Список использованной литературы	15

Цель работы

Изучение основных методов настройки маршрутизируемых компьютерных сетей на примере сети, состоящей из компьютеров под управлением ОС Linux.

Вариант

$$V1 = 1 + (N \mod 5) = 1 + (8 \mod 5) = 4$$

Рисунок 1. Топология сети и схема прохождения трафика для варианта 4

$$V2 = 6 + (N \mod 5) = 6 + (8 \mod 5) = 9$$

Рисунок 2. Топология сети и схема прохождения трафика для варианта 9

Этап 1. Настройка виртуальных машин

Рисунок 3. Подробная информация о созданной виртуальной машине

Рисунок 4. Настройка внутренней сети для сетевого адаптера

Этап 2. Ознакомление с используемыми командами Linux

> ір а # вывод списка интерфейсов и адресов

```
yang@ubuntu:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
0
1ink/ether 08:00:27:e4:ad:f0 brd ff:ff:ff:ff:
    inet6 fe80::a00:27ff:fee4:adf0/64 scope link
        valid_lft forever preferred_lft forever
```

- > ip ro # вывод системной таблицы маршрутизации.
- > ip rule # вывод правил выбора таблиц маршрутизации

```
yang@ubuntu:~$ ip rule
O: from all lookup local
32766: from all lookup main
32767: from all lookup default
```

> iptables -nvL # вывести на экран все правила в цепочках таблицы фильтрации (filter)

```
ang@ubuntu:~$ sudo iptables –nvL
[sudo] password for yang:
Chain INPUT (policy ACCEPT O packets, O bytes)
pkts bytes target
                      prot opt in
                                                                    destination
                                               source
Chain FORWARD (policy ACCEPT O packets, O bytes)
pkts bytes target
                      prot opt in
                                               source
                                                                    destination
Chain OUTPUT (policy ACCEPT O packets, O bytes)
                                                                    destination
pkts bytes target
                     prot opt in
                                               source
```

Этап 3. Выполнение общей части задания

Включить маршрутизацию на каждом компьютере в сети. Выполнить настройку сетевых интерфейсов всех компьютеров сети. Настроить таблицы маршрутизации таким образом, чтобы каждый компьютер мог осуществлять взаимодействие с любым другим компьютером. Топология сети должна при этом быть выбрана в соответствии с вариантом V1, т.е. взаимодействие компьютеров должно осуществляться по соответствующим маршрутам этого варианта. Настроить простейшие правила фильтрации запрещённых пакетов. Проверку сетевой доступности следует осуществить при помощи утилиты ping, а корректность маршрутов – с помощью tracert.

Этап 4. Выполнение задания по варианту

Общая часть задания (для топологии из V1)

1. На всех адаптерах всех компьютеров в топологии, представленной в варианте, настроить IPv4-адреса (и IPv6, если необходимо). IPv4-адрес выбирается следующим образом:

A.B.X.Y/M,

где A – количество букв в имени студента; В – количество букв в фамилии студента; X, Y – числа, выбираемые студентом самостоятельно; М – маска подсети (выбирается максимально длинная маска для обеспечения связности в сети). IPv6-адрес формируется из IPv4-адреса в соответствии с нотацией перевода адресов из IPv4 в IPv6. Например:

IPv4: 10.10.12.11

IPv6: 0:0:0:0:0:ffff:a0a:c0b (или иначе: "::ffff:10.10.12.11").

A = 6

B = 2

M = 30

2. На всех компьютерах настроить таблицы маршрутизации таким образом, чтобы обеспечивалась полная сетевая доступность (каждый компьютер должен "пинговался" с каждого другого компьютера). Computer 1:

```
root@ubuntu:/home/yang# ip link set ethO up
 root@ubuntu:/home/yang# ip a add 6.2.13.1/30 dev ethO
root@ubuntu:/home/yang# ip –6 a add fc00::6.2.13.1/126 dev eth0
root@ubuntu:/home/yang# ip link set eth1 up
 oot@ubuntu:/home/yang# ip a add 6.2.12.1/30 dev eth1
 oot@ubuntu:/home/yang# ip –6 a add fc00::6.2.12.1/126 dev eth1
root@ubuntu:/home/yang# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
     inet 127.0.0.1/8 scope host lo
  valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
         valid_lft forever preferred_lft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
     link/ether 08:00:27:e4:ad:f0 brd ff:ff:ff:ff:ff
     inet 6.2.13.1/30 scope global eth0
valid_lft forever preferred_lft forever
inet6 fc00::602:d01/126 scope global
         valid_lft forever preferred_lft forever
     inet6 fe80::a00:27ff:fee4:adf0/64 scope link
valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
     link/ether 08:00:27:9a:53:6c brd ff:ff:ff:ff:ff
     inet 6.2.12.1/30 scope global eth1
     valid_lft forever preferred_lft forever
inet6 fc00::602:c01/126 scope global
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe9a:536c/64 scope link
         valid_lft forever preferred_lft forever
```

```
root@ubuntu2:/home/yang2# ip link set eth0 up
root@ubuntu2:/home/yang2# ip a add 6.2.12.2/30 dev eth0
root@ubuntu2:/home/yang2# ip –6 a add fc00::6.2.12.2/126 dev eth0
root@ubuntu2:/home/yang2# ip link set eth1 up
 oot@ubuntu2:/home/yang2# ip a add 6.2.23.1/30 dev eth1
oot@ubuntu2:/home/yang2# ip –6 a add fc00::6.2.23.1/126 dev eth1
 oot@ubuntu2:/home/yang2# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
      link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
     inet 127.0.0.1/8 scope host lo
   valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
          valid_lft forever preferred_lft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
      link/ether 08:00:27:a6:6c:cc brd ff:ff:ff:ff:ff
      inet 6.2.12.2/30 scope global eth0
          valid_lft forever preferred_lft forever
     inet6 fc00::602:c02/126 scope global
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fea6:6ccc/64 scope link
valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
      link/ether 08:00:27:75:ad:ba brd ff:ff:ff:ff:ff
inet 6.2.23.1/30 scope global eth1
     valid_lft forever preferred_lft forever
inet6 fc00::602:1701/126 scope global
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe75:adba/64 scope link
          valid_lft forever preferred_lft forever
```

Computer 3:

```
root@ubuntu3:/home/yang3# ip –6 a add fc00::6.2.34.1/126 dev eth1
root@ubuntu3:/home/yang3# ip link set eth2 up
root@ubuntu3:/home/yang3# ip a add 6.2.23.2/30 dev eth2
root@ubuntu3:/home/yang3# ip –6 a add fc00::6.2.23.2/126 dev eth2
```

```
oot@ubuntu3:/home/yang3# ip a add 6.2.13.2/30 dev eth0
root@ubuntu3:/home/yang3# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
     inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
     inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
     link/ether 08:00:27:f1:f4:16 brd ff:ff:ff:ff:ff
     inet 6.2.13.2/30 scope global eth0
     valid_lft forever preferred_lft forever
inet6 fc00::602:d02/126 scope global
        valid_lft forever preferred_lft forever
     inet6 fe80::a00:27ff:fef1:f416/64 scope link
        valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
     link/ether 08:00:27:e7:79:79 brd ff:ff:ff:ff:ff
     inet 6.2.34.1/30 scope global eth1
        valid_lft forever preferred_lft forever
    inet6 fc00::602:2201/126 scope global
  valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fee7:7979/64 scope link
        valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
     link/ether 08:00:27:c0:92:18 brd ff:ff:ff:ff:ff
    inet 6.2.23.2/30 scope global eth2
valid_lft forever preferred_lft forever
inet6 fc00::602:1702/126 scope global
     valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fec0:9218/64 scope link
valid_lft forever preferred_lft forever
```

```
root@ubuntu4:/home/yang4# ip link set etho up
root@ubuntu4:/home/yang4# ip a add 6.2.34.2/30 dev eth0
root@ubuntu4:/home/yang4# ip –6 a add fc00::6.2.34.2/126 dev eth0
root@ubuntu4:/home/yang4# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
link/loopback 00:00:00:00:00 brd 00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 100
0
link/ether 08:00:27:98:86:86 brd ff:ff:ff:ff
inet 6.2.34.2/30 scope global eth0
valid_lft forever preferred_lft forever
inet6 fc00::602:2202/126 scope global
valid_lft forever preferred_lft forever
inet6 fe80::a00:27ff:fe98:8686/64 scope link
valid_lft forever preferred_lft forever
```

Computer 3:

```
root@ubuntu3:/home/yang3# sysctl –w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
root@ubuntu3:/home/yang3# sysctl –w "net.ipv4.conf.all.rp_filter=0"
net.ipv4.conf.all.rp_filter = 0
root@ubuntu3:/home/yang3# echo "net.ipv6.conf.all.forwarding=1" >> /etc/sysctl.conf
root@ubuntu3:/home/yang3# sysctl –p /etc/sysctl.conf
net.ipv6.conf.all.forwarding = 1
```

Computer 1:

```
root@ubuntu:/home/yang# ip ro add 6.2.34.2 via 6.2.13.2
root@ubuntu:/home/yang# ip –6 ro a fc00::6.2.34.2/126 via fc00::6.2.13.2
```

```
root@ubuntu2:/home/yang2# ip ro add 6.2.34.2 via 6.2.23.2
root@ubuntu2:/home/yang2# ip –6 ro a fc00::6.2.34.2/126 via fc00::6.2.23.2
```

Computer 4:

```
root@ubuntu4:/home/yang4# ip ro add 6.2.13.1 via 6.2.34.1
root@ubuntu4:/home/yang4# ip –6 ro a fc00::6.2.13.1/126 via fc00::6.2.34.1
root@ubuntu4:/home/yang4# ip ro add 6.2.23.2 via 6.2.34.1
root@ubuntu4:/home/yang4# ip –6 ro add a fc00::6.2.23.2/126 via fc00::6.2.34.1
```

3. Изучить Linux-утилиту nc (или её аналоги: netcat, ncat, pnetcat). Запустить её в режиме клиента на машине A и в режиме сервера – на машине Б, используя для передачи произвольный порт (машины A и Б должны быть максимально удалены друг от друга). Передать в виде текстового сообщение свое имя от Б к A.

- 4. Изучить назначение Linux-утилиты iptables (например, тут: www.kmax.name/linux/iptables-v-primerax) и создать на компьютерах A и/или Б простейший Firewall (межсетевой экран) с помощью этой утилиты следующим образом:
 - Запретить передачу только тех пакетов, которые отправлены на TCP-порт, заданный в настройках утилиты nc.

```
root@ubuntu3:/home/yang3# nc -l 1111 Ягооt@ubuntu:/home/yang# nc 6.2.13.2 1111
ЯН Цзяфэн ЯН Цзяфэн
гооt@ubuntu3:/home/yang3# nc -l 1111 ^C
гооt@ubuntu3:/home/yang3# nc -l 1111 / root@ubuntu:/home/yang# iptables -A OUTPUT -p tcp --destination-port 1111 -j DROP
гооt@ubuntu3:/home/yang3# nc -l 1111
ЯН Цзяфэн
гооt@ubuntu3:/home/yang3# ^C
гооt@ubuntu3:/home/yang3# iptables -D OUTPUT -p tcp --destination-port 1111 -j DROP
гооt@ubuntu:/home/yang# iptables -D OUTPUT -p tcp --destination-port 1111 -j DROP
гооt@ubuntu:/home/yang# nc 6.2.13.2 1111
ЯН Цзяфэн
^C
```

• Запретить приём только тех пакетов, которые отправлены с UDPпорта утилиты nc.

```
root@ubuntu3:/home/yang3# nc -1 2345

ЯН ЦЗЯФЭН
root@ubuntu3:/home/yang3# iptables -A INPUT -p udp --source-port 2345 -j DROP

C root@ubuntu3:/home/yang3# nc -1 -u 2345

root@ubuntu3:/home/yang3# nc -1 -u 2345

RH ЦЗЯФЭН
root@ubuntu3:/home/yang2# nc 6.2.23.2 2345
root@ubuntu2:/home/yang2# nc -p 2345 -u 6.2.23.2 2345
RH ЦЗЯФЭН
root@ubuntu2:/home/yang2# nc -p 2345 -u 6.2.23.2 2345
RH ЦЗЯФЭН
root@ubuntu2:/home/yang2# nc -p 2226 -u 6.2.23.2 2345
RH ЦЗЯФЭН
root@ubuntu2:/home/yang2# nc -p 2226 -u 6.2.23.2 2345
RH ЦЗЯФЭН
root@ubuntu2:/home/yang2# nc -p 2226 -u 6.2.23.2 2345
```

• Запретить передачу только тех пакетов, которые отправлены с ІРадреса компьютера А.

```
root@ubuntu3:/home/yang3# iptables -A OUTPUT -s 6.2.23.2 -j DROP root@ubuntu3:/home/yang3# ping 6.2.23.1
PING 6.2.23.1 (6.2.23.1) 56(84) bytes of data.
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
ping: sendmsg: Operation not permitted
^C
--- 6.2.23.1 ping statistics ---
3 packets transmitted, O received, 100% packet loss, time 2000ms

root@ubuntu3:/home/yang3# iptables -D OUTPUT -s 6.2.23.2 -j DROP
root@ubuntu3:/home/yang3# ping 6.2.23.1
PING 6.2.23.1 (6.2.23.1) 56(84) bytes of data.
64 bytes from 6.2.23.1: icmp_seq=1 ttl=64 time=0.792 ms
64 bytes from 6.2.23.1: icmp_seq=2 ttl=64 time=0.491 ms
64 bytes from 6.2.23.1: icmp_seq=2 ttl=64 time=0.549 ms
^C
--- 6.2.23.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.491/0.610/0.792/0.133 ms
```

• Запретить приём только тех пакетов, которые отправлены на IРадрес компьютера Б.

○ Запретить приём и передачу ICMP-пакетов, размер которых превышает 1000 байт, а поле TTL при этом меньше 10.

```
The content of the co
```

Вариант с IPv4

Computer 4:

```
root@ubuntu4:/home/yang4# ip link set eth0 up
root@ubuntu4:/home/yang4# ip a add 6.2.34.2/30 dev eth0
root@ubuntu4:/home/yang4# ip ro add 6.2.0.1 via 6.2.34.1
root@ubuntu4:/home/yang4# sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
root@ubuntu4:/home/yang4# sysctl -w net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
root@ubuntu4:/home/yang4# sysctl -w net.ipv4.conf.eth0.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
```

Computer 3:

```
root@ubuntu3:/home/yang3# ip link set eth0 up
root@ubuntu3:/home/yang3# ip link set eth1 up
root@ubuntu3:/home/yang3# ip link set eth2 up
root@ubuntu3:/home/yang3# ip a add 6.2.13.2/30 dev eth0
root@ubuntu3:/home/yang3# ip a add 6.2.23.2/30 dev eth1
root@ubuntu3:/home/yang3# ip a add 6.2.23.2/30 dev eth1
root@ubuntu3:/home/yang3# ip a add 6.2.34.1/30 dev eth2
root@ubuntu3:/home/yang3# iptables -t mangle -A PREROUTING -p icmp --icmp-type ping -d 6.2.0.1 -j MA
RK --set-mark 0x432134
root@ubuntu3:/home/yang3# iptables -t mangle -A PREROUTING -p icmp --icmp-type pong -d 6.2.0.1 -j MA
RK --set-mark 0x431234
root@ubuntu3:/home/yang3# ip ro add table 432134 default via 6.2.23.1 dev eth1
root@ubuntu3:/home/yang3# ip rule add fumark 0x432134 table 432134
root@ubuntu3:/home/yang3# ip ro add table 431234 default via 6.2.13.1 dev eth0
root@ubuntu3:/home/yang3# ip ro add table 431234 default via 6.2.13.1 dev eth0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.eth0.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.eth1.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.eth1.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.eth2.rp_filter=0
net.ipv4.conf.eth2.rp_filter = 0
root@ubuntu3:/home/yang3# sysctl -w net.ipv4.conf.eth2.rp_filter=0
net.ipv4.conf.eth2.rp_filter = 0
```

Computer 2:

```
root@ubuntu2:/home/yang2# ip link set eth0 up
root@ubuntu2:/home/yang2# ip link set eth1 up
root@ubuntu2:/home/yang2# ip a add 6.2.12.2/30 dev eth0
RTNETLINK answers: File exists
root@ubuntu2:/home/yang2# ip a add 6.2.12.2/30 dev eth1
root@ubuntu2:/home/yang2# ip a del 6.2.12.2/30 dev eth1
root@ubuntu2:/home/yang2# ip a add 6.2.23.1/30 dev eth1
RTNETLINK answersers: File exists
 oot@ubuntu2:/home/yang2# iptables –t nat –A PREROUTING –p icmp –s 6.2.34.2 –d 6.2.0.1 –j DNAT ––to
6.2.34.2
 oot@ubuntu2:/home/yang2# iptables –t nat –A PREROUTING –p icmp –s 6.2.34.2 –d 6.2.34.2 –j SNAT ––to
6.2.0.1
[19316.689669] x_tables: ip_tables: SNAT target: used from hooks PREROUTING, but only usable from IN
PUT/POSTROUTING
iptables: Invalid argument. Run `dmesg' for more information.
root@ubuntu2:/home/yang2# iptables –t nat –A PostROUTING –p icmp –s 6.2.34.2 –d 6.2.34.2 –j SNAT ––1
 6.2.0.1
iptables: No chain/target/match by that name.
 oot@ubuntu2:/home/yang2# iptables -t nat -A POSTROUTING -p icmp -s 6.2.34.2 -d 6.2.34.2 -j SNAT --
o 6.2.0.1
 oot@ubuntu2:/home/yang2# iptables –t mangle –A PREROUTING –p icmp –i eth1 –d 6.2.0.1 –j MARK ––set°
mark 0x432134
 oot@ubuntu2:/home/yang2# iptables –t mangle –A PREROUTING –p icmp –i eth0 –d 6.2.0.1 –j MARK ––set
mark 0x431234
 oot@ubuntu2:/home/yang2# ip ro add table 432134 default via 6.2.12.1 dev eth0
 oot@ubuntu2:/home/yang2# ip rule add fwmark 0x432134 table 432134°
 oot@ubuntu2:/home/yang2# ip ro add table 431234 default via 6.2.23.2 dev eth1
 oot@ubuntu2:/home/yang2# ip rule add fwmark 0x431234 table 431234°
 oot@ubuntu2:/home/yang2# sysctl –w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
 oot@ubuntu2:/home/yang2# sysctl –w net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
root@ubuntu2:/home/yang2# sysctl –w net.ipv4.conf.eth0.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
  oot@ubuntu2:/home/yang2# sysctl –w net.ipv4.conf.eth1.rp_filter=0
 et.ipv4.conf.eth1.rp_filter = 0
```

Computer1:

```
root@ubuntu:/home/yang# ip link set eth0 up
root@ubuntu:/home/yang# ip link set eth1 up
root@ubuntu:/home/yang# ip a add 6.2.12.1/30 dev eth0
root@ubuntu:/home/yang# ip a add 6.2.13.1/30 dev eth1
root@ubuntu:/home/yang# ip a add 6.2.13.1/30 dev eth1
root@ubuntu:/home/yang# iptables —t mangle —A PREROUTING —p icmp —s 6.2.0.1 —j MARK ——set—mark 0x432
134
root@ubuntu:/home/yang# ip tables —t mangle —A PREROUTING —p icmp —s 6.2.0.1 —j MARK ——set—mark 0x431
234
root@ubuntu:/home/yang# ip ro add table 432134 default via 6.2.13.2 dev eth1
root@ubuntu:/home/yang# ip rule add fwmark 0x432134
root@ubuntu:/home/yang# ip ro add table 431234 default via 6.2.12.2 dev eth0
root@ubuntu:/home/yang# ip rule add fwmark 0x431234
root@ubuntu:/home/yang# sysctl —w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
root@ubuntu:/home/yang# sysctl —w net.ipv4.conf.all.rpfilter=0
sysctl: cannot stat /proc/sys/net/ipv4/conf/all/rpfilter: Нет такого файла или каталога
root@ubuntu:/home/yang# sysctl —w net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.all.rp_filter = 0
root@ubuntu:/home/yang# sysctl —w net.ipv4.conf.eth0.rp_filter=0
net.ipv4.conf.eth0.rp_filter = 0
root@ubuntu:/home/yang# sysctl —w net.ipv4.conf.eth1.rp_filter=0
net.ipv4.conf.eth1.rp_filter = 0
```

Computer 1:

root@ubuntu:/home/yang# iptabl Chain PREROUTING (policy ACCER				
	ot in out any any	source 6.2.0.1	destination anywhere	MARK set Ox
432134	2 2			
2 168 MARK icmp 431234	· any any	6.2.0.1	anywhere	MARK set Ox
Chain INPUT (policy ACCEPT 118		<u> </u>	destination	
pkts bytes target prot op	ot III Out	source	uestination	
Chain FORWARD (policy ACCEPT 2 pkts bytes target prot op		ytes) source	destination	
Chain OUTPUT (policy ACCEPT 8 pkts bytes target prot op		tes) source	destination	
Chain POSTROUTING (policy ACCE pkts bytes target prot op		808 bytes) source	destination	

Computer 2:

root@ubuntu2:/home/yar Chain PREROUTING (poli	•	_			
pkts bytes target 2 168 MARK	prot opt in	out	source anywhere	destination 6.2.0.1	MARK set 0×
432134	Tomp ethi	ang	arigurier e	0.2.0.1	HHIKK SEC OX
0 0 MARK	icmp eth0	any	anywhere	6.2.0.1	MARK set 0×
431234					
Chain INPUT (policy AC					
pkts bytes target	prot opt in	out	source	destination	
Chain FORWARD (policy	ACCEPT 2 packets	s, 168 b	oytes)		
pkts bytes target	prot opt in	out	source	destination	
Chain OUTPUT (policy A	ACCEPT 8 packets	, 640 b <u>ս</u>	ytes)		
pkts bytes target	prot opt in	out	source	destination	
Chain POSTROUTING (po)	licy ACCEPT 10 p:	ackets,	808 bytes)		
pkts bytes target	_	out	source	destination	

root@ubuntu3:/home/yang3# iptables –t mangle –L –v Chain PREROUTING (policy ACCEPT 475 packets, 153K bytes)		
pkts bytes target prot opt in out source 2 168 MARK icmp any any anywhere	destination 6.2.0.1	icmp echo–r
equest MARK set 0x432134 0 0 MARK icmp any any anywhere	6.2.0.1	icmp echo–r
eply MARK set 0x431234 Chain INPUT (policy ACCEPT 473 packets, 153K bytes)		
pkts bytes target prot opt in out source	destination	
Chain FORWARD (policy ACCEPT 2 packets, 168 bytes) pkts bytes target prot opt in out source	destination	
Chain OUTPUT (policy ACCEPT 14 packets, 1256 bytes) pkts bytes target prot opt in out source	destination	
Chain POSTROUTING (policy ACCEPT 16 packets, 1424 bytes) pkts bytes target prot opt in out source	destination	

Computer 4:

```
root@ubuntu4:/home/yang4# ping –c 1 6.2.0.1
PING 6.2.0.1 (6.2.0.1) 56(84) bytes of data.
From 6.2.34.1: icmp_seq=1 Redirect Host(New nexthop: 6.2.34.1)
--- 6.2.0.1 ping statistics ---
```

1 packets transmitted, 1 received, 0% packet loss, time Oms rtt min/aug/max/mdev = 4.560/4.560/4.560/0.000 ms

Вариант с IPv6

Computer 4:

```
root@ubuntu4:/home/yang4# ip link set eth0 up
root@ubuntu4:/home/yang4# ip –6 a add fc00::6.2.34.1/126 dev eth0
root@ubuntu4:/home/yang4# ip –6 ro add fc00::6.2.0.0 via fc00::6.2.34.0
root@ubuntu4:/home/yang4# sysctl –w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1
```

Computer 3:

```
root@ubuntu3:/home/yang3# ip link set eth0 up
root@ubuntu3:/home/yang3# ip link set eth1 up
root@ubuntu3:/home/yang3# ip link set eth2 up
root@ubuntu3:/home/yang3# ip link set eth2 up
root@ubuntu3:/home/yang3# ip -6 a add fc00::6.2.13.1/127 dev eth0
root@ubuntu3:/home/yang3# ip -6 a add fc00::6.2.23.1/127 dev eth1
root@ubuntu3:/home/yang3# ip -6 a add fc00::6.2.34.0/127 dev eth2
root@ubuntu3:/home/yang3# ip6tables -t mangle -A PREROUTING -p icmpv6 --icmpv6-type ping -d fc00:
2.0.0 -j MARK --set-mark 0x432134
root@ubuntu3:/home/yang3# ip6tables -t mangle -A PREROUTING -p icmpv6 --icmpv6-type pong -d fc00:
2.0.0 -j MARK --set-mark 0x431234
root@ubuntu3:/home/yang3# ip -6 ro add table 432134 default via fc00::6.2.23.0 dev eth1
root@ubuntu3:/home/yang3# ip -6 ro add table 431234 default via fc00::6.2.13.0 dev eth0
RTNETLINK answers: No route to host
root@ubuntu3:/home/yang3# ip -6 ro add table 431234 default via fc00::6.2.13.0 dev eth0
RTNETLINK answers: No route to host
root@ubuntu3:/home/yang3# ip -6 ro add table 431234 default via fc00::6.2.13.0 dev eth0
RTNETLINK answers: No route to host
root@ubuntu3:/home/yang3# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu3:/home/yang3# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu3:/home/yang3# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu3:/home/yang3# sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1
```

```
root@ubuntu2:/home/yang2# ip link set eth0 up
root@ubuntu2:/home/yang2# ip link set eth1 up
root@ubuntu2:/home/yang2# ip -6 a add fc00::6.2.12.1/126 dev eth0
root@ubuntu2:/home/yang2# ip -6 a add fc00::6.2.23.0/126 dev eth1
root@ubuntu2:/home/yang2# ip -6 a add fc00::6.2.33.0/126 dev eth1
root@ubuntu2:/home/yang2# ip6tables -t nat -A PREROUTING -p icmpv6 -s fc00::6.2.34.1 -d fc00::6.2.0.0
0 -j DNAT --to fc00::6.2.34.1
root@ubuntu2:/home/yang2# ip6tables -t nat -A POSTROUTING -p icmpv6 -s fc00::6.2.34.1 -d fc00::6.2.3
4.1 -j SNAT --to fc00::6.2.0.0
root@ubuntu2:/home/yang2# ip6tables -t mangle -A PREROUTING -p icmpv6 -i eth1 -d fc00::6.2.0.0 -j MARK --set-mark 0x432134
root@ubuntu2:/home/yang2# ip6tables -t mangle -A PREROUTING -p icmpv6 -i eth1 -d fc00::6.2.0.0 -j MARK --set-mark 0x431234
root@ubuntu2:/home/yang2# ip -6 ro add table 432134 default via fc00::6.2.12.0 dev eth0
root@ubuntu2:/home/yang2# ip -6 ro add table 432134 table 432134
root@ubuntu2:/home/yang2# ip -6 ro add table 431234 table 431234
root@ubuntu2:/home/yang2# ip -6 ro add table 431234 default via fc00::6.2.23.1 dev eth1
RTNETLINK answers: Invalid argument
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu2:/home/yang2# ip -6 rule add fwmark 0x431234 table 431234
```

Computer 1:

```
root@ubuntu:/home/yang# ip link set eth0 up
root@ubuntu:/home/yang# ip link set eth1 up
root@ubuntu:/home/yang# ip -6 a add fc00::6.2.12.0/126 dev eth0
root@ubuntu:/home/yang# ip -6 a add fc00::6.2.13.0/126 dev eth1
root@ubuntu:/home/yang# ip -6 a add fc00::6.2.13.0/126 dev eth1
root@ubuntu:/home/yang# ip6tables -t mangle -A PREROUTING -p icmpv6 -sfc00::6.2.0.0 -j MARK --set-ma
rk 0x432134
root@ubuntu:/home/yang# ip6tables -t mangle -A PREROUTING -p icmpv6 -sfc00::6.2.0.0 -j MARK --set-ma
rk 0x431234
root@ubuntu:/home/yang# ip -6 ro add table 432134 default via fc00::6.2.13.1 dev eth1
RTNETLINK answers: Invalid argument
root@ubuntu:/home/yang# ip -6 rule add fwmark 0x431234 table 431234
root@ubuntu:/home/yang# sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1
```

Computer 4:

```
root@ubuntu4:/home/yang4# ping6 –c 1 fc00::6.2.0.0
PING fc00::6.2.0.0(fc00::602:0) 56 data bytes
From fc00::602:2201 icmp_seq=1 Time exceeded: Hop limit
––– fc00::6.2.0.0 ping statistics –––
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time Oms
```

Computer 1:

```
oot@ubuntu:/home/yang# ip6tables –t mangle –L
Chain PREROUTING (policy ACCEPT 4 packets, 280 bytes)
                       prot opt in
pkts bytes target
                                      out
                                               source
                                                                    destination
         O MARK
                       ipv6-icmp
                                                   fc00::602:0
                                                                        anywhere
                                                                                              MARK se
 0x432134
                                                                                              MARK se
   O O MARK
                       ipv6-icmp
                                                   fc00::602:0
                                                                        anywhere
                                    any
                                           anu
 0x431234
                                                                                                      ipv6
Chain INPUT (policy ACCEPT 4 packets, 280 bytes)
                                                                                                      ipv6
pkts bytes target
                      prot opt in
                                       out
                                               source
                                                                    destination
Chain FORWARD (policy ACCEPT O packets, O bytes)
                                                                    destination.
pkts bytes target
                       prot opt in
                                       out
                                               source
Chain OUTPUT (policy ACCEPT 5 packets, 616 bytes)
pkts bytes target
                      prot opt in
                                               source
                                                                    destination
                                       out
Chain POSTROUTING (policy ACCEPT 5 packets, 616 bytes)
                                                                    destination
pkts bytes target
                      prot opt in
                                      out
```

root@ubuntu2:/home/ya Chain PREROUTING (pol pkts bytes target O O MARK	icy ACCEPT 1 packet	s, 72 bytes) out sourc		destination fc00::602:0	MARK se
t 0x432134 0 0 MARK t 0x431234	ipv6–icmp eth1	. any a	nywhere	fc00::602:0	MARK se
Chain INPUT (policy A pkts bytes target		? bytes) out sourc	e	destination	
Chain FORWARD (policy pkts bytes target		O bytes) out sourc	e	destination	
Chain OUTPUT (policy pkts bytes target			e	destination	
Chain POSTROUTING (po pkts bytes target	-	ets, 504 byte out sourc		destination	

Computer 3:

root@ubuntu3:/home/yang3# ip6tables –t mangle –L –v Chain PREROUTING (policy ACCEPT 84 packets, 8048 bytes)		
pkts bytes target prot opt in out source	destination	30000 30
	fc00::602:0	ipv6-ic
mp echo-request MARK set 0x432134	fc00::602:0	inuc in
0 0 MARK ipv6-icmp any any anywhere	1000602.0	ipv6-ic
mp echo–reply MARK set 0x431234		
Chain INPUT (policy ACCEPT 20 packets, 1392 bytes)		
pkts bytes target prot opt in out source	destination	
pres bytes target prot opt in oat source	463(1) 4(10)	
Chain FORWARD (policy ACCEPT 63 packets, 6552 bytes)		
pkts bytes target prot opt in out source	destination	
but all the but obt in our control	300 (11)3 (10)	
Chain OUTPUT (policy ACCEPT 13 packets, 992 bytes)		
pkts bytes target prot opt in out source	destination	
Chain POSTROUTING (policy ACCEPT 76 packets, 7544 bytes)		
pkts bytes target prot opt in out source	destination	

Вывод

Научилась основные методы настройки маршрутизируемых компьютерных сетей на примере сети, состоящей из компьютеров под управлением OC Linux.

Список использованной литературы

- 1 Алиев Т.И., Соснин В.В., Шинкарук Д.Н. Компьютерные сети и телекоммуникации: задания и тесты. СПб: Университет ИТМО, 2018. 112 с.
- 2 Т.И.Алиев СЕТИ ЭВМ И ТЕЛЕКОММУНИКАЦИИ Санкт-Петербург: СПбГУ ИТМО, 2011. 400 с. экз.