MATH 20510. Analysis in \mathbb{R}^n III (accelerated)

Based on lectures by Prof. Donald Stull Notes taken by Andrew Hah

The University of Chicago – Spring 2025

Any proof or argument that has been filled in, expanded, or written out in detail by me is marked with a \blacksquare . All other material follows the lectures and any errors or omissions are entirely my own.

Contents

1	Measure and Integration	2
2	Fourier Analysis	16
3	Differential Forms	2 5
4	Baire Category	42

1 Measure and Integration

Definition 1.1. A family of sets \mathscr{A} is called a *ring* if, for every $A, B \in \mathscr{A}$,

- (i) $A \cup B \in \mathcal{A}$,
- (ii) $A \setminus B \in \mathscr{A}$.

Definition 1.2. A ring \mathscr{A} is called a σ -ring if for any $\{A_n\}_1^\infty \subseteq \mathscr{A}$,

$$\bigcup_{1}^{\infty} A_n \in \mathscr{A}.$$

Definition 1.3. ϕ is a *set function* on a ring \mathscr{A} if for every $A \in \mathscr{A}$,

$$\phi(A) \in [-\infty, \infty].$$

Definition 1.4. A set function ϕ is additive if for any $A, B \in \mathscr{A}$ such that $A \cap B = \emptyset$,

$$\phi(A \cup B) = \phi(A) + \phi(B).$$

Definition 1.5. A set function ϕ is *countably additive* if for any $\{A_n\} \subseteq \mathscr{A}$ such that $A_i \cap A_j = \emptyset$, $\forall i \neq j$,

$$\phi\left(\bigcup_{1}^{n} A_{n}\right) = \sum_{1}^{n} \phi(A_{n}).$$

Note. In the last two definitions we assume that there are no $A, B \in \mathcal{A}$ such that $\phi(A) = -\infty, \phi(B) = \infty$.

Remark 1.6. If ϕ is an additive set function,

- (i) $\phi(\emptyset) = 0$.
- (ii) If A_1, \ldots, A_n are pairwise disjoint then $\phi(\bigcup_{1}^n A_n) = \sum_{1}^n \phi(A_n)$.
- (iii) $\phi(A_1 \cup A_2) + \phi(A_1 \cap A_2) = \phi(A_1) + \phi(A_2)$.
- (iv) If ϕ is nonnegative and $A_1 \subseteq A_2$ then $\phi(A_1) \leq \phi(A_2)$.
- (v) If $B \subseteq A$ and $|\phi(B)| < \infty$ then $\phi(A \setminus B) = \phi(A) \phi(B)$.

Theorem 1.7. Let ϕ be a countably additive set function on a ring \mathscr{A} . Suppose $\{A_n\} \subseteq \mathscr{A}$ such that $A_1 \subseteq A_2 \subseteq \ldots$ and $A = \bigcup_{1}^{\infty} A_n \in \mathscr{A}$. Then $\phi(A_n) \to \phi(A)$ as $n \to \infty$.

Proof. Set $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$. Note

- (i) $\{B_n\}$ is pairwise disjoint.
- (ii) $A_n = B_1 \cup B_2 \cup \cdots \cup B_n$.
- (iii) $A = \bigcup_{1}^{\infty} B_n$.

Hence $\phi(A_n) = \sum_{1}^{\infty} \phi(B_j), \ \phi(A) = \sum_{1}^{\infty} \phi(B_j)$ and the conclusion follows.

Definition 1.8. An interval $I = \{(a_i, b_i)\}_1^n$ of \mathbb{R}^n is the set of points $x = (x_1, \dots, x_n)$ such that $a_i \leq x_i \leq b_i$ or $a_i < x_i \leq b_i$, etc. where $a_i \leq b_i$.

Note. \emptyset is an interval.

Definition 1.9. If A is the union of a finite number of intervals, we say A is elementary.

We denote the set of elementary sets by \mathscr{E} .

Definition 1.10. If I is an interval of \mathbb{R}^n , we define the volume of I by

$$vol(I) = \prod_{i}^{n} (b_i - a_i).$$

If $A = I_1 \cup I_2 \cup \cdots \cup I_k$ is elementary, and the intervals are disjoint, then

$$\operatorname{vol}(A) = \sum_{1}^{k} \operatorname{vol}(I_j).$$

Remark 1.11.

- (i) \mathscr{E} is a ring, but not a σ -ring.
- (ii) If $A \in \mathcal{E}$, then A can be written as a finite union of disjoint intervals.
- (iii) If $A \in \mathcal{E}$, then vol(A) is well-defined.
- (iv) vol is an additive set function on \mathcal{E} , and vol ≥ 0 .

Definition 1.12. A nonnegative set function ϕ on $\mathscr E$ is regular if $\forall A \in \mathscr E$, $\forall \varepsilon > 0$, \exists open $G \in \mathscr E$, $G \supseteq A$ and closed $F \in \mathscr E$, $F \subseteq A$, such that

$$\phi(G) \le \phi(A) + \varepsilon, \qquad \phi(A) \le \phi(F) + \varepsilon.$$

Note. vol is regular.

Definition 1.13. A countable open cover of $E \subseteq \mathbb{R}^n$ is a collection of open elementary sets $\{A_n\}$ such that $E \subseteq \bigcup_{1}^{\infty} A_n$.

Definition 1.14. The Lebesgue outer measure of $E \subseteq \mathbb{R}^n$ is defined as

$$m^*(E) = \inf \sum_{1}^{\infty} \operatorname{vol}(A_n).$$

where inf is taken over all countable open covers of E.

Remark 1.15.

- (i) $m^*(E)$ is well-defined.
- (ii) $m^*(E) \ge 0$.

(iii) If $E_1 \subseteq E_2$ then $m^*(E_1) \le m^*(E_2)$.

Theorem 1.16.

- (i) If $A \in \mathcal{E}$, then $m^*(A) = \text{vol}(A)$.
- (ii) If $E = \bigcup_{1}^{\infty} E_n$ then $m^*(E) \leq \sum_{1}^{\infty} m^*(E_n)$.

Proof. (i) Let $A \in \mathscr{E}$ and $\varepsilon > 0$. Since vol is regular, \exists open $G \in \mathscr{E}$ such that $A \subseteq G$ and $vol(G) \leq vol(A) + \varepsilon$. Since $G \supseteq A$ and $G \in \mathscr{E}$ is open, $m^*(A) \leq vol(G) \leq vol(A) + \varepsilon$. There also \exists closed $F \in \mathscr{E}$ such that $F \subseteq A$ and $vol(A) \leq vol(F) + \varepsilon$. By definition, \exists collection $\{A_n\}$ of open elementary sets such that $A \subseteq \bigcup A_n$ and $\sum_{1}^{\infty} vol(A_n) \leq m^*(A) + \varepsilon$. Since $F \subseteq \bigcup A_n$ and F is compact, $F \subseteq A_1 \cup \cdots \cup A_N$ from some N.

$$\operatorname{vol}(A) \leq \operatorname{vol}(F) + \varepsilon$$

$$\leq \operatorname{vol}(A_1 \cup \dots \cup A_N) + \varepsilon$$

$$\leq \sum_{1}^{N} \operatorname{vol}(A_n) + \varepsilon$$

$$\leq \sum_{1}^{\infty} \operatorname{vol}(A_n) + \varepsilon$$

$$\leq m^*(A) + \varepsilon + \varepsilon$$

$$= m^*(A) + 2\varepsilon.$$

Since ε was arbitrary, $m^*(A) = \operatorname{vol}(A)$.

Proof. (ii) If $m^*(E_n) = \infty$ for any $n \in \mathbb{N}$, then we are done. Assume not. Let $\varepsilon > 0$. For every $n \in \mathbb{N}$, \exists open cover of E_n , $\{A_{n,k}\}_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} \operatorname{vol}(A_{n,k}) \le m^*(E_n) + \varepsilon/2^n.$$

Then $E \subseteq \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_{n,k}$, and so

$$m^*(E) \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \operatorname{vol}(A_{n,k})$$

$$\le \sum_{n=1}^{\infty} m^*(E_n) + \varepsilon/2^n$$

$$= \sum_{n=1}^{\infty} m^*(E_n) + \sum_{1}^{\infty} \varepsilon/2^n$$

$$= \sum_{1}^{\infty} m^*(E_n) + \varepsilon.$$

Definition 1.17. Let $A, B \subseteq \mathbb{R}^n$.

- (i) $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- (ii) $d(A, B) = m^*(A \triangle B)$.
- (iii) We say $A_n \to A$ if $\lim_{n \to \infty} d(A_n, A) = 0$.

Definition 1.18. If there is a sequence of elementary sets $\{A_n\}$ such that $A_n \to A$ then we say A is *finitely m-measurable* and we write $A \in \mathfrak{M}_F(m)$.

Definition 1.19. If A is the countable union of finitely m-measurable sets, we say that A is m-measurable (Lebesgue measurable) and we write $A \in \mathfrak{M}(m)$.

Theorem 1.20. $\mathfrak{M}(m)$ is a σ -ring and m^* is countably additive on $\mathfrak{M}(m)$.

Definition 1.21. The *Lebesgue measure* is the set function defined on $\mathfrak{M}(m)$ by

$$m(A) = m^*(A), \quad \forall A \in \mathfrak{M}(m).$$

To summarize,

set function	domain	properties
vol	3	≥ 0 , additive, \mathcal{E} -regular.
		$\geq 0, \ m^*(A) = \operatorname{vol}(A) \ \forall A \in \mathcal{E},$
m^*	$\subseteq \mathbb{R}^n$	countably subadditive.
		$\geq 0, \ m(E) = m^*(E) \ \forall E \in \mathcal{M}(m),$
m	$\mathcal{M}(m)$	countably additive(!)

Example 1.22. Fix $n \in \mathbb{N}$.

- (i) If $A \in \mathscr{E}$ then $A \in \mathfrak{M}(m)$ since $m^*(A \triangle A) = m^*(\emptyset) = 0 \implies A \to A$.
- (ii) $\mathbb{R}^n \in \mathfrak{M}(m)$ since $\mathbb{R}^n = \bigcup_{N \in \mathbb{N}} [-N, N]^n \implies m(\mathbb{R}^n) = \infty$.
- (iii) If $A \in \mathfrak{M}(m)$ then $A^c \in \mathfrak{M}(m)$.
- (iv) $\forall x \in \mathbb{R}^n$, $\{x\} \in \mathfrak{M}(m)$ and $m(\{x\}) = 0$.
- (v) $\forall x_1, \dots, x_n \in \mathbb{R}^n$, $\{x_1, \dots, x_n\} \in \mathfrak{M}(m)$ and $m(\{x_1, \dots, x_n\}) = 0 \implies m(\mathbb{Q}^n) = 0$.

Definition 1.23. $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, \infty\}$ is measurable if $\{x \in \mathbb{R}^n : f(x) > a\} \in \mathfrak{M}$, $\forall a \in \mathbb{R}$, i.e. $f^{-1}((a, \infty]) \in \mathfrak{M}$, $\forall a \in \mathbb{R}$.

Example 1.24. f continuous $\implies f$ measurable.

Theorem 1.25. The following are equivalent,

- (i) $\{x: f(x) > a\}$ is measurable $\forall a \in \mathbb{R}$.
- (ii) $\{x: f(x) \geq a\}$ is measurable $\forall a \in \mathbb{R}$.
- (iii) $\{x: f(x) < a\}$ is measurable $\forall a \in \mathbb{R}$.
- (iv) $\{x: f(x) \leq a\}$ is measurable $\forall a \in \mathbb{R}$.

Proof. (i) \Longrightarrow (ii).

$$\{x: f(x) \ge a\} = \bigcap_{n=1}^{\infty} \left\{ x: f(x) > a - \frac{1}{n} \right\}.$$

Theorem 1.26. If f is measurable then |f| is measurable.

Proof. It suffices to show that $\{x: |f(x)| < a\} \in \mathfrak{M}, \forall a \in \mathbb{R}.$

$$\{x: |f(x)| < a\} = \{x: f(x) < a\} \cap \{x: f(x) > -a\}.$$

Theorem 1.27. Suppose $\{f_n\}$ is a sequence of measurable functions. Define

$$g = \sup_{n} f_n$$
 and $h = \limsup_{n \to \infty} f_n$.

Then g, h are measurable.

Proof. $\{x: g(x) > a\} = \bigcup_{n=1}^{\infty} \{x: f_n(x) > a\}$ implies g is measurable. Similarly, inf f_n is measurable. Define $g_n = \sup_{n \ge m} f_n$ and note that g_n is measurable for all m. Since $h = \inf_m g_m$, h is measurable.

Corollary 1.28. If f, g are measurable then $\max\{f, g\}$ and $\min\{f, g\}$ are also measurable.

Corollary 1.29. Define $f^+ = \max\{f, 0\}$, $f^- = -\min\{f, 0\}$. Then if f is measurable, f^+ , f^- are also measurable.

Corollary 1.30. If $\{f_n\}$ is a sequence of measurable functions such that f_n converges to f pointwise, then f is measurable.

Theorem 1.31. $f, g : \mathbb{R}^n \to \mathbb{R}$ measurable, $F : \mathbb{R}^2 \to \mathbb{R}$ continuous, and h(x) = F(f(x), g(x)). Then h is measurable. In particular, this tells us that f + g and fg are measurable.

Definition 1.32. A function $f: \mathbb{R}^n \to \mathbb{R}$ is *simple* if range(f) is a finite set.

Example 1.33. Let $E \subseteq \mathbb{R}^n$. The characteristic function of E is

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose f is simple, so range(f) = $\{c_1, \ldots, c_m\}$. Let $E_i = \{x : f(x) = c_i\}$. Then

$$f = \sum_{1}^{m} \chi_{E_i} c_i.$$

Theorem 1.34. $f: \mathbb{R}^n \to \mathbb{R}$. There exists a sequence $\{f_n\}$ of simple functions such that $f_n \to f$ pointwise.

- (i) If f is measurable, $\{f_n\}$ can be chosen to be measurable.
- (ii) If $f \geq 0$ then $\{f_n\}$ can be chosen to be monotonically increasing.

Proof. If $f \geq 0$, define the sets

$$E_{n,i} = \left\{ x : \frac{i-1}{2^n} \le f(x) < \frac{i}{2^n} \right\}, \quad n \ge 1, i = 1, \dots, n2^n,$$

and

$$F_n = \{x \mid f(x) \ge n\}, \quad n \ge 1.$$

Let

$$f_n = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \chi_{E_{n,i}} + n \chi_{F_n}.$$

We see that f_n is measurable. Fix $x \in \mathbb{R}^n$, let $\varepsilon > 0$, and let $N \in \mathbb{N}$ such that N > f(x) and $2^{-N} < \varepsilon$. Let $n \geq N$. Note that $x \in E_{n,i}$ for some i. Since $f_n(x) = \frac{i-1}{2^n}$ and $f(x) \geq f_n(x)$, $f(x) - f_n(x) \leq \frac{1}{2^n} < \varepsilon$. Thus $f_n \to f$ pointwise. We now show $\{f_n\}$ is monotonically increasing.

- (i) Case 1: $x \in F_n$. Then $f(x) \ge n$ and $f_n(x) = n$. If $x \in F_{n+1}$, then $f_{n+1}(x) = n+1 > n = f_n(x)$. If $x \notin F_{n+1}$ then $x \in \text{some } E_{n+1,i}$. Then $\frac{i-1}{2^{n+1}} \ge n \implies f_{n+1}(x) \ge n = f_n(x)$.
- (ii) Case 2: $x \in E_{n,i}$ for some i. Then $f_n(x) = \frac{i-1}{2^n}$. Then there is some j such that $x \in E_{n+1,j} = \{x : \frac{j-1}{2^{n+1}} \le f(x) \le \frac{j}{2^{n+1}} \}$. Because $\frac{i-1}{2^n} \le f(x)$, we have $\frac{j-1}{2^{n+1}} \ge \frac{i-1}{2^n}$ so $f_{n+1}(x) = \frac{j-1}{2^{n+1}} \ge \frac{i-1}{2^n} = f_n(x)$.

Thus in both cases, $\{f_n\}$ is monotonically increasing. We next consider the general case. Given f, we write $f^+(x) = \max\{f(x), 0\}$ and $f^- = -\min\{f(x), 0\}$ so that $f = f^+ - f^-$ and $f^+, f^- \ge 0$. By the previous part, there exist two sequences of nonnegative measurable simple functions $f_n^+ \to f^+$ and $f_n^- \to f^-$ each converging pointwise. Define $f_n(x) = f_n^+(x) - f_n^-(x)$. Then f_n is simple and measurable since it is the difference of two simple measurable functions, and converges pointwise.

Definition 1.35. (Lebesgue Integration) Suppose $g = \sum_{i=1}^{k} c_i \chi_{E_i}$, $c_i > 0$ is measurable and $E \in \mathfrak{M}$. Define

$$I_E(g) = \sum_{1}^{k} c_i m(E_i \cap E).$$

Let f be a nonnegative measurable function, $E \in \mathfrak{M}$. Define

$$\int_{E} f dm = \sup I_{E}(g),$$

where sup is taken over all measurable simple functions g such that $0 \le g \le f$.

Remark 1.36.

- (i) $\int_E f dm$ is the Lebesgue integral of f over E.
- (ii) It can take value ∞ .
- (iii) If f is measurable, simple, and nonnegative, then

$$\int_{E} f dm = I_{E}(f).$$

Proof. of remark (iii). Suppose for the sake of contradiction that there exists g simple, nonnegative, and measurable such that $0 \le g \le f$ and $I_E(g) > I_E(f)$. Then

$$g = \sum_{1}^{k} c_i \chi_{E_i}, \quad f = \sum_{1}^{k} d_j \chi_{F_j},$$

and

$$I_E(g) = \sum_{1}^{k} c_i m(E_i \cap E) > I_E(f) = \sum_{1}^{k} d_j m(F_j \cap E).$$

Let $H_{i,j} = E_i \cap F_j$. Since $g \leq f, \forall i, E_i \subseteq \bigcup F_j$. Hence

$$g = \sum_{i=1}^{k} \sum_{j=1}^{k} c_i \chi_{E_i \cap F_j}$$
$$= \sum_{n=1}^{M} c_n \chi_{H_n}.$$

Note that for every n, \exists unique $F_j \supseteq H_n$. This implies $c_n \leq d_j$, which is a contradiction.

Definition 1.37. Let f be measurable, and consider $\int_E f^+ dm$ and $\int_E f^- dm$. If at least one is finite, define

$$\int_{E} f dm = \int_{E} f^{+} dm - \int_{E} f^{-} dm.$$

If both $\int_E f^+ dm$ and $\int_E f^- dm$ are finite, we say that f is *integrable* on E and write $f \in \mathcal{L}$ on E.

Remark 1.38.

- (i) If $a \le f(x) \le b$ for all $x \in E \in \mathfrak{M}$ and $m(E) < \infty$, then $am(E) \le \int_E f dm \le bm(E)$.
- (ii) If f is bounded on $E \in \mathfrak{M}$ and $m(E) < \infty$, then $f \in \mathscr{L}$ on E.
- (iii) If $f, g \in \mathcal{L}$ on E and $f(x) \leq g(x)$ for all $x \in E$, then $\int_E f dm \leq \int_E g dm$.
- (iv) If $f \in \mathcal{L}$ on $E \in \mathfrak{M}$ and $c \in \mathbb{R}$ then $cf \in \mathcal{L}$ on E and $\int_E cfdm = c \int_E fdm$.
- (v) If m(E) = 0 then $\int_E f dm = 0$.

- (vi) If $f \in \mathcal{L}$ on $E, A \in \mathfrak{M}, A \subseteq E$, then $f \in \mathcal{L}$ on A.
- (vii) If f is Riemann integrable on [a, b] then $f \in \mathcal{L}$ on [a, b] and the values of the integrals agree.

Proof. of remark (i). Assume $a \geq 0$. $\int_E f dm = \sup \int_E g dm$ where sup is taken over all simple measurable g such that $0 \leq g \leq f$. Let g = a on E. Then $\int_E f dm \geq \int_E g dm = am(E)$. Let g be a measurable simple function such that $0 \leq g \leq f$. Then $g = \sum_1^k c_i \chi_{E_i}$ for distinct c_i 's and measurable E_i that are disjoint. Since $g \leq f \leq b$, $c_i \leq b$ for all i. So

$$\int_{E} gdm = \sum_{1}^{k} c_{i} m(E_{i} \cap E)$$

$$\leq b \sum_{1}^{k} m(E_{i} \cap E)$$

$$\leq b m(E).$$

Hence, $\int_E f dm \leq bm(E)$.

Theorem 1.39.

(i) Suppose f is nonnegative and measurable. For $A \in \mathfrak{M}$ define

$$\phi(A) = \int_A f dm.$$

Then ϕ is countably additive on \mathfrak{M} .

(ii) The same conclusion holds if $f \in \mathcal{L}$.

Proof. To prove (ii), it suffices to apply (i) to f^+ and f^- . Suppose $\{A_n\}$ is a sequence of measurable sets which are pairwise disjoint. Let $A = \bigcup A_n$.

Step 1 (Characteristic functions). Suppose $f = \chi_E$ for some $E \in \mathfrak{M}$. Then

$$\phi(A) = \int_{A} f dm$$

$$= m(A \cap E)$$

$$= m\left(\left(\bigcup_{1}^{\infty} A_{n}\right) \cap E\right)$$

$$= m\left(\bigcup_{1}^{\infty} (A_{n} \cap E)\right)$$

$$= \sum_{1}^{\infty} m(A_{n} \cap E)$$

$$= \sum_{1}^{\infty} \int_{A_n} f dm$$
$$= \sum_{1}^{\infty} \phi(A_n).$$

Step 2 (Simple functions). Suppose f is simple, measurable, and nonnegative, i.e., $f = \sum_{i=1}^{k} c_i \chi_{E_i}$ for disjoint E_i 's in \mathfrak{M} . Then

$$\phi(A) = \int_{A} f dm$$

$$= \sum_{1}^{k} c_{i} m(E_{i} \cap A)$$

$$= \sum_{1}^{k} c_{i} \int_{A} \chi_{E_{i}} dm$$

$$= \sum_{1}^{k} c_{i} \sum_{1}^{\infty} \int_{A_{n}} \chi_{E_{i}} dm$$

$$= \sum_{1}^{\infty} \sum_{1}^{k} \int_{A_{n}} c_{i} \chi_{E_{i}} dm$$

$$= \sum_{1}^{\infty} \int_{A_{n}} f dm$$

$$= \sum_{1}^{\infty} \phi(A_{n}).$$

Step 3. Let g be a measurable simple function such that $0 \le g \le f$. Then

$$\int_{A} gdm = \sum_{1}^{\infty} \int_{A_{n}} gdm$$

$$\leq \sum_{1}^{\infty} \int_{A_{n}} fdm$$

$$= \sum_{1}^{\infty} \phi(A_{n}).$$

Hence $\phi(A) = \int_A f dm \le \sum_{1}^{\infty} \phi(A_n)$.

If $\phi(A_n) = \infty$ for any n, then we are done. Thus assume $\phi(A_n) < \infty$ for every n. Let $\varepsilon > 0$, and choose measurable simple g such that $0 \le g \le f$ and $\int_{A_1} g dm \ge \int_{A_1} f dm - \varepsilon, \ldots, \int_{A_n} g dm \ge \int_{A_n} f dm - \varepsilon$. Hence

$$\phi(A_1 \cup \cdots \cup A_n) \ge \phi(A_1) + \cdots + \phi(A_n) - n\varepsilon.$$

Since ε was arbitrary, $\forall n, \ \phi(A_1 \cup \cdots \cup A_n) \ge \phi(A_1) + \cdots + \phi(A_n)$.

Corollary 1.40. If $A, B \in \mathfrak{M}$, $m(A \setminus B) = 0$, and $B \subseteq A$, then

$$\int_{A} f dm = \int_{B} f dm$$

for every $f \in \mathcal{L}$.

Theorem 1.41. If $f \in \mathcal{L}$ on E, then $|f| \in \mathcal{L}$ on E and $|\int_E f dm| \leq \int_E |f| dm$.

Proof. Let $A = \{x \in E \mid f(x) \ge 0\}$ and $B = \{x \in E \mid f(x) < 0\}$. Note that $E = A \sqcup B$ and $A, B \in \mathfrak{M}$. Then

$$\int_{E} |f| dm = \int_{A} |f| dm + \int_{B} |f| dm = \int_{E} f^{+} dm + \int_{E} f^{-} dm < \infty.$$

Thus $|f| \in \mathcal{L}$. Since $f \leq |f|$ and $-f \leq |f|$, $\int_E f dm \leq \int_E f dm \leq \int_E |f| dm$, and $\int_E -f dm = -\int_E f dm \leq \int_E |f| dm$, so

$$\left| \int_{E} f dm \right| \leq \int_{E} |f| dm. \qquad \Box$$

Theorem 1.42. (Lebesgue's monotone convergence theorem). Let $E \in \mathfrak{M}$ and $\{f_n\}$ a sequence of measurable functions such that

$$0 \le f_1(x) \le f_2(x) \le \dots \quad \forall (x \in E).$$

Define $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in E$. Then

$$\int_{E} f_{n} dm \to \int_{E} f dm \quad as \ n \to \infty.$$

Proof. Since $\{f_n\}$ is a monotone sequence of nonnegative measurable functions, $\{\int_E f_n dm\}$ is a monotone sequence of extended real numbers. Thus there must exist $\alpha \in \mathbb{R} \cup \{\pm \infty\}$ such that $\alpha = \lim_{n \to \infty} \int_E f_n dm$. Since $f_n \leq f$ for every n, $\alpha \leq \int_E f dm$. Let 0 < c < 1 and g be a simple, measurable function such that $0 \leq g \leq f$. For every $n \geq 1$, define

$$E_n = \{ x \in E \mid f_n(x) \ge cg(x) \}.$$

Since $\{f_n\}$ is increasing, $E_1 \subseteq E_2 \subseteq \ldots$ Since $f_n \to f$ pointwise, $E = \bigcup_{1}^{\infty} E_n$. For every $n, cg \leq f_n$ on E_n , so

$$c\int_{E_n} gdm = \int_{E_n} cgdm \le \int_{E_n} f_n dm.$$

As $n \to \infty$,

$$\int_{E_n} g dm \to \int_E g dm.$$

Therefore, $\alpha \geq c \int_E g dm$. Since c < 1 was arbitrary, $\alpha \geq \int_E g dm$. By definition of integration, $\alpha \geq \int_E f dm$.

Theorem 1.43. Let $f = f_1 + f_2$, $f_1, f_2 \in \mathcal{L}$ on $E \in \mathfrak{M}$. Then $f \in \mathcal{L}$ on E and $\int_E f dm = \int_E f_1 dm + \int_E f_2 dm$.

Proof. If f_1, f_2 are simple measurable functions, then the conclusion is immediate. Assume that $f_1, f_2 \geq 0$. Choose a monotonically increasing sequence of nonnegative measurable simple functions $\{g_n\}$ and $\{h_n\}$ converging to f_1 and f_2 respectively. Let $s_n = g_n + h_n$. Then $\forall n$,

$$\int_{E} s_n dm = \int_{E} g_n dm + \int_{E} h_n dm.$$

Note. $\{s_n\}$ is a monotonically increasing sequence of simple nonnegative measurable functions converging to f. By the monotone convergence theorem,

$$\int_E f dm = \lim_{n \to \infty} \int_E s_n dm = \lim_{n \to \infty} \int_E g_n dm + \int_E h_n dm = \int_E f_1 dm + \int_E f_2 dm.$$

Now assume $f_1 \ge 0, f_2 < 0$. Define

$$A = \{x \in E \mid f(x) \ge 0\}$$
 and $B = \{x \in E \mid f(x) < 0\}.$

Note that both A and B are measurable. Since $f, f_1, -f_2 \ge 0$ on A and $f_1 = f + (-f_2)$,

$$\int_A f_1 dm = \int_A f dm + \int_A -f_2 dm = \int_A f dm - \int_A f_2 dm,$$

i.e., $\int_A f dm = \int_A f_1 dm + \int_A f_2 dm$. Since $-f, f_1, -f_2 \ge 0$ on B,

$$\int_{B} -f_2 dm = \int_{B} -f dm + \int_{B} f_1 dm,$$

i.e., $\int_B f dm = \int_B f_1 dm + \int_B f_2 dm$. Hence,

$$\begin{split} \int_{E=A\sqcup B}fdm &= \int_{A}fdm + \int_{B}fdm \\ &= \int_{A}f_{1}dm + \int_{A}f_{2}dm + \int_{B}f_{1}dm + \int_{B}f_{2}dm \\ &= \int_{E}f_{1}dm + \int_{E}f_{2}dm. \end{split}$$

Let

$$E_1 = \{x \in E \mid f_1(x) \ge 0, f_2(x) \ge 0\},$$

$$E_2 = \{x \in E \mid f_1(x) \ge 0, f_2(x) < 0\},$$

$$E_3 = \{x \in E \mid f_1(x) < 0, f_2(x) \ge 0\},$$

$$E_4 = \{x \in E \mid f_1(x) < 0, f_2(x) < 0\}.$$

Apply what we've proven to all four sets and we get the generalized conclusion. \Box

Lemma 1.44. (Fatou's lemma) $E \in \mathfrak{M}$, $\{f_n\}$ nonnegative measurable functions. Let $f = \liminf_{n \to \infty} f_n$. Then

$$\int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_n dm.$$

Proof. For every $n \geq 1$, define

$$g_n = \inf_{m > n} f_n.$$

Note. the g_n 's are measurable on E, and

- (i) $0 \le g_1 \le g_2 \le \dots$
- (ii) $g_n \leq f_n, \forall n$.
- (iii) $\lim_{n\to\infty} g_n(x) = f(x), \forall x \in E.$

By the monotone convergence theorem,

$$\lim_{n\to\infty} \int_E g_n dm = \int_E f dm.$$

By property (ii),

$$\int_{E} g_n dm \le \int_{E} f_n dm \quad \forall n.$$

Together, these two imply the conclusion.

Theorem 1.45. (Dominated convergence theorem) Suppose $E \in \mathfrak{M}$, $\{f_n\}$ measurable on E such that $f_n \to f$ pointwise on E. Suppose $\exists g \in \mathscr{L}$ on E such that $|f_n(x)| \leq g(x)$ for all $x \in E$. Then

$$\int_{E} f dm = \lim_{n \to \infty} \int_{E} f_n dm.$$

Proof. Note $f_n \in \mathcal{L}$ on E for all n and $f \in \mathcal{L}$ on E. Since $f_n + g \ge 0$ for all n, applying Fatou's Lemma gives

$$\int_{E} (f+g)dm \le \liminf_{n \to \infty} \int_{E} (f_n+g)dm.$$

Then

$$\begin{split} \int_E f dm + \int_E g dm & \leq \liminf_{n \to \infty} \left(\int_E f_n dm + \int_E g dm \right) \\ & = \left(\liminf_{n \to \infty} \int_E f_n dm \right) + \int_E g dm. \end{split}$$

Thus

$$\int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_n dm.$$

Since $g - f_n \ge 0$, we apply Fatou's Lemma to get

$$\int_{E} (g - f) dm \le \liminf_{n \to \infty} \left(\int_{E} (g - f_n) dm \right).$$

By the same logic as above, we see that

$$-\int_{E} f dm \le \liminf_{n \to \infty} -\int_{E} f_n dm.$$

We conclude that

$$\int_{E} f \ge \limsup_{n \to \infty} \int_{E} f_n dm.$$

Thus,

$$\int_{E} f dm = \lim_{n \to \infty} \int_{E} f_n dm.$$

Lemma 1.46. Nonmeasurable sets exist (assuming Axiom of Choice).

Proof. For every $a \in [-1, 1]$ define $\tilde{a} = \{c \in [-1, 1] : a - c \in \mathbb{Q}\}.$

Claim 1. If $\tilde{a} \cap \tilde{b} \neq \emptyset$ then $\tilde{a} = \tilde{b}$.

Suppose $c \in \tilde{a} \cap \tilde{b}$. Then $a - c \in \mathbb{Q}$, $b - c \in \mathbb{Q}$, and therefore $a - b, b - a \in \mathbb{Q}$. Let $d \in \tilde{a}$, so $a - d \in \mathbb{Q}$. Then a - d = (a - b) + (b - d) so $b - d \in \mathbb{Q}$, i.e., $d \in \tilde{b}$ and the claim follows.

Note. $[-1,1] = \bigcup_{a \in [-1,1]} \tilde{a}$. Let V be a set that contains exactly one element from every distinct \tilde{a} (Axiom of Choice). Let r_1, r_2, \ldots be an enumeration of $\mathbb{Q} \cap [-2,2]$.

Claim 2. $[-1,1] \subseteq \bigcup_{k=1}^{\infty} V + r_k$.

Let $d \in [-1, 1]$, so $d \in \tilde{a}$ for some a. Let $c \in V$ s.t. $c \in \tilde{a}$. Then $c - d \in \mathbb{Q} \cap [-2, 2]$ so $c - d = r_k$ for some k. Hence, $d \in V + r_k$.

By Claim 2,

$$2 = m^*([-1, 1]) \le m^*\left(\bigcup_{1}^{\infty} V + r_k\right) \le \sum_{1}^{\infty} m^*(V + r_k) = \sum_{1}^{\infty} m^*(V).$$

Thus $m^*(V) > 0$.

Claim 3. $V + r_1, V + r_2, \ldots$ are disjoint.

Suppose for the sake of contradiction that $d \in (V + r_k) \cap (V + r_\ell)$. Then $d = v + r_k$, $v \in V$ and $d = v' + r_\ell$, $v' \in V$. In particular, $v - v' \in \mathbb{Q}$. By Claim 1, $v, v' \in \tilde{a}$. This is a contradiction.

For any $n \in \mathbb{N}$,

$$\bigcup_{k=1}^{n} V + r_k \subseteq [-3, 3].$$

Hence,

$$m^* \left(\bigcup_{1}^{\infty} V + r_k \right) \le 6.$$

Let $n \in \mathbb{N}$ such that $nm^*(V) > 6$. Then

$$m^* \left(\bigcup_{1}^{n} V + r_k \right) < \sum_{1}^{n} m^* (V + r_k),$$

which implies that $V+r_1,V+r_2,\ldots$ cannot all be measurable. Hence, V is not measurable.

Definition 1.47. Let $E\in\mathfrak{M},\,f$ measurable. We write $f\in\mathscr{L}^2$ on E if

$$\int_{E} |f|^2 dm < \infty.$$

Remark 1.48. $f \in \mathcal{L}$ on $E(\mathcal{L}^1)$ if $\int_E |f| dm < \infty$.

Example 1.49.

- $\begin{array}{ll} \text{(i)} \ E=(0,1],\, f(x)=x^{-1/2}. \ \text{Then} \ f\in \mathscr{L}^1, f\notin \mathscr{L}^2.\\ \text{(ii)} \ E=(1,\infty),\, f(x)=\frac{1}{x}. \ \text{Then} \ f\notin \mathscr{L}^1, f\in \mathscr{L}^2. \end{array}$

Theorem 1.50. If $m(E) < \infty$, then $f \in \mathcal{L}^2 \implies f \in \mathcal{L}^1$.

2 Fourier Analysis

Recall. Let $f: \mathbb{R} \to \mathbb{C}$. We can decompose f into its real and imaginary components,

$$f = f_{RE} + i f_{IM}$$

where $f_{RE}, f_{IM} : \mathbb{R} \to \mathbb{R}$.

We say $f \in \mathcal{R}$ (Riemann integrable) if $f_{RE}, f_{IM} \in \mathcal{R}$ and

$$\int_{-\infty}^{\infty} f dx = \int_{-\infty}^{\infty} f_{RE} dx + i \int_{-\infty}^{\infty} f_{IM} dx.$$

Definition 2.1. A trigonometric polynomial is a function

$$f(x) = a_0 + \sum_{1}^{N} a_n \cos(nx) + b_n \sin(nx),$$

where $a_0, \ldots, a_N, b_1, \ldots, b_N \in \mathbb{C}$.

Note. Using Euler's formula, we can equivalently write this as

$$f(x) = \sum_{-N}^{N} c_n e^{inx},$$

where $c_{-N}, \ldots, c_N \in \mathbb{C}$.

We discuss 2π -periodic functions defined on intervals [a,b] of length 2π .

Definition 2.2. Let $f \in \mathcal{R}$ on $[a, a+2\pi]$, $n \in \mathbb{Z}$. The *n*-th Fourier coefficient of f is

$$\hat{f}(n) = \frac{1}{2\pi} \int_{a}^{a+2\pi} f(x)e^{-inx} dx.$$

Definition 2.3. The Fourier series of f is given (formally) by

$$f \sim \sum_{-\infty}^{\infty} \hat{f}(n)e^{inx}.$$

Definition 2.4. The N-th partial sum of f is

$$s_N(f) = \sum_{-N}^{N} \hat{f}(n)e^{inx}.$$

Note. If $n \in \mathbb{Z} - \{0\}$, e^{inx} is the derivative of $\frac{e^{inx}}{in}$ (which is 2π -periodic). Therefore,

$$\frac{1}{2\pi} \int_{a}^{a+2\pi} e^{inx} dx = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n \neq 0. \end{cases}$$

Example 2.5. Suppose $f(x) = \sum_{-N}^{N} c_n e^{inx}$. Let $|m| \leq N$. Then

$$\hat{f}(m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{-N}^{N} c_n e^{inx} \right) e^{-imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{-N}^{N} c_n e^{ix(n-m)} \right) dx$$

$$= \frac{1}{2\pi} \sum_{-N}^{N} c_n \int_{-\pi}^{\pi} e^{ix(n-m)} dx$$

$$= \frac{1}{2\pi} (c_m 2\pi)$$

$$= c_m.$$

Note. If |m| > N then $\hat{f}(m) = 0$. Hence, $f(x) = \sum_{-\infty}^{\infty} \hat{f}(n)e^{inx} = \sum_{-N}^{N} \hat{f}(n)e^{inx} = s_N(f)$.

Question. In what sense does $s_N(f) \to f$ as $N \to \infty$?

Example 2.6. Let f(x) = x on $[-\pi, \pi]$.

$$\hat{f}(0) = 0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx.$$

For $n \neq 0$,

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx}$$

$$= \frac{1}{2\pi} \left[\frac{x e^{inx}}{in} \right]_{-\pi}^{\pi} + \frac{1}{2\pi i n} \int_{-\pi}^{\pi} e^{-inx} dx$$

$$= \frac{(-1)^{n+1}}{in}.$$

Fourier series of f is

$$\sum_{n \neq 0} \frac{(-1)^{n+1}}{in} e^{inx} = 2\sum_{1}^{\infty} (-1)^{n+1} \frac{\sin(nx)}{n}.$$

In this example, $s_N(f) \to f$ uniformly.

Overview.

- (i) Let f be (Riemann) integrable in $[a, a + 2\pi]$. Does $s_N(f) \to f$ pointwise? NO
- (ii) What about if f is continuous (and periodic)? NO
- (iii) What if $f \in C^1$ (and periodic)? YES

Motivating question. If f is 2π -periodic, when can we prove that $s_N(f) \to f$ pointwise (uniformly)?

Theorem 2.7. Suppose $f \in \mathcal{R}$ on $[0, 2\pi]$, f is 2π -periodic, $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$. Then $f(x) = 0 \ \forall x$ at which f is continuous.

Corollary 2.8. If f is continuous, 2π -periodic, and $\hat{f}(n) = 0 \ \forall n \in \mathbb{Z}$, then f = 0.

Corollary 2.9. If f, g are continuous, 2π -periodic, and $\hat{f}(n) = \hat{g}(n) \ \forall n \in \mathbb{Z}$, then f = g.

Corollary 2.10. Suppose f is continuous, 2π -periodic, and the Fourier series of f converges absolutely, i.e.,

$$\sum_{-\infty}^{\infty} |\hat{f}(n)| < \infty.$$

Then $\lim_{N\to\infty} S_N(f)(x) = f(x)$ uniformly.

Proof. Since $\sum_{-\infty}^{\infty} |\hat{f}(n)| < \infty$, the partial sums $S_N(f)$ converge uniformly. Define

$$g(x) = \sum_{-\infty}^{\infty} \hat{f}(n)e^{inx} = \lim_{N \to \infty} \sum_{-N}^{N} \hat{f}(n)e^{inx}.$$

Since g is the uniform limit of continuous functions, g is continuous. Moreover, $\forall n \in \mathbb{Z}$,

$$\hat{g}(n) = \frac{1}{2\pi} \int_0^{2\pi} g(x) e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{-\infty}^{\infty} \hat{f}(m) e^{imx} \right) e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{-\infty}^{\infty} \hat{f}(m) e^{ix(m-n)} \right) dx$$

$$= \sum_{m=-\infty}^{\infty} \frac{1}{2\pi} \int_0^{2\pi} \hat{f}(m) e^{ix(m-n)} dx$$

$$= \sum_{m=-\infty}^{\infty} \frac{1}{2\pi} \hat{f}(m) \int_0^{2\pi} e^{ix(m-n)} dx$$

$$= \hat{f}(n).$$

Hence f = g.

Lemma 2.11. Suppose f is C^2 and 2π -periodic. Then $\exists c > 0$ such that for all sufficiently large |n|,

$$|\hat{f}(n)| \le \frac{c}{|n|^2},$$

i.e.,
$$|\hat{f}(n)| = O\left(\frac{1}{n^2}\right)$$
.

Proof. By integration by parts (twice),

$$2\pi \hat{f}(n) = \int_0^{2\pi} f(x)e^{-inx}dx$$

$$= f(x) \left[\frac{e^{inx}}{in} \right]_0^{2\pi} + \frac{1}{in} \int_0^{2\pi} f'(x)e^{-inx}dx$$

$$= \frac{1}{in} \left[-f'(x) \frac{e^{-inx}}{in} \right]_0^{2\pi} + \frac{1}{(in)^2} \int_0^{2\pi} f''(x)e^{-inx}dx$$

$$= -\frac{1}{n^2} \int_0^{2\pi} f''(x)e^{-inx}dx.$$

Hence,

$$2\pi \hat{f}(n) = \frac{1}{|n|^2} \left| \int_0^{2\pi} f''(x) e^{-inx} dx \right|. \tag{1}$$

Then

RHS of (1)
$$\leq \frac{1}{|n|^2} \int_0^{2\pi} |f''(x)| |e^{-inx} dx$$

$$= \frac{1}{|n|^2} \int_0^{2\pi} |f''(x)| dx$$

$$\leq \frac{1}{|n|^2} 2\pi c,$$

where $c = \max_{x \in [0,2\pi]} |f''(x)|$. Therefore, $|\hat{f}(n)| \leq \frac{c}{|n|^2}$.

Note. We showed within the above proof that if f is C^1 , $\hat{f}'(n) = in\hat{f}(n)$.

Next question. If f is 2π -periodic and $\int_0^{2\pi} |f|^2 dx$ exists, under what type of convergence does $s_N(f) \to f$?

Theorem 2.12. Let f be a complex valued, 2π -periodic, (Riemann) integrable function. Then

$$\lim_{N \to \infty} \int_0^{2\pi} |f(x) - s_N(f)(x)|^2 dx = 0.$$

Definition 2.13. A vector space over \mathbb{C} is a set V of vectors, operations \cdot , + such that $\forall x, y, z \in V, \forall \lambda_1, \lambda_2 \in \mathbb{C}$,

- (i) $x + y \in V$.
- (ii) x + y = y + x.
- (iii) x + (y + z) = (x + y) + z.
- (iv) $\lambda_1 x \in V$.
- (v) $\lambda_1(x+y) = \lambda_1 x + \lambda_1 y$.
- (vi) $(\lambda_1 + \lambda_2)x = \lambda_1 x + \lambda_2 x$.
- (vii) $\lambda_1(\lambda_2 x) = (\lambda_1 \lambda_2) x$.

In addition, $\exists 0 \in V$ such that $x + 0 = x \ \forall x$. $\forall x \in V, \exists (-x) \in V$ such that x + (-x) = 0. $\exists 1 \in V$ such that $1 \cdot x = x$.

Definition 2.14. An inner product of a vector space V is a map $(\cdot, \cdot): V \times V \to \mathbb{C}$ satisfying

- (i) $(x,y) = \overline{(y,x)}$.
- (ii) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$.
- (iii) $(x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z)$.
- (iv) $(x, x) \ge 0$.

Definition 2.15. Given an inner product (\cdot, \cdot) , we can define a *norm* on V,

$$||x|| = (x,x)^{\frac{1}{2}}.$$

Definition 2.16. We say that x, y are *orthogonal* if (x, y) = 0, and we write $x \perp y$.

Example 2.17. $V = \mathbb{C}, (x, y) = x\overline{y}$.

Example 2.18. $V = \mathbb{R}^n$, $(x, y) = x \cdot y$.

Example 2.19. Let \mathcal{R} be the set of complex-valued, 2π -periodic (Riemann) integrable functions. This is a vector space over \mathbb{C} .

- (i) (f+g)(x) = f(x) + g(x).
- (ii) $(\lambda f)(x) = \lambda f(x)$.

Define the inner product

$$(f,g) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx,$$

so the norm is

$$||f|| = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx\right)^{\frac{1}{2}}.$$

Three properties. Let V be an inner product space.

(i) Pythagorean Theorem. If $x \perp y$ then

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

(ii) Cauchy-Schwarz. For any $x, y \in V$,

$$|(x,y)| \le ||x|| ||y||.$$

(iii) Triangle inequality. For any $x, y \in V$,

$$||x + y|| \le ||x|| + ||y||.$$

Notation. In the rest of this section, we will write $e_n(x) = e^{inx}$. Observation. The family $\{e_n\}_{n\in\mathbb{Z}}$ is *orthonormal*, i.e.,

$$(e_n, e_m) = \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{otherwise.} \end{cases}$$

So $e_n \perp e_m$ if $n \neq m$ and $||e_n|| = 1 \ \forall n \in \mathbb{Z}$. Moreover, $\forall f \in \mathbb{R}, n \in \mathbb{Z}$,

$$(f, e_n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{e_n(x)} dx$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$
$$= \hat{f}(n).$$

Then

$$s_N(f) = \sum_{-N}^{N} \hat{f}(n)e_n$$
$$= \sum_{-N}^{N} (f, e_n)e_n.$$

Note. $\forall |m| \leq N$,

$$(f-s_N(f))\perp e_m.$$

We see this since

$$(f - s_N(f), e_m) = (f, e_m) - (s_N(f), e_m)$$
$$= (f, e_m) - \sum_{-N}^{N} ((f, e_n)e_n, e_m)$$

$$= (f, e_m) - \sum_{-N}^{N} (f, e_m)(e_n, e_m)$$
$$= (f, e_m) - (f, e_m)$$
$$= 0.$$

Corollary 2.20. For every $\{e_n\}_{-N}^N$,

$$(f-s_N(f)) \perp \sum_{-N}^N c_n e_n.$$

Then, $f = f - s_N(f) + s_N(f)$, so by the Pythagorean theorem,

$$||f||^2 = ||f - s_N(f)||^2 + ||s_N(f)||^2.$$

Since $s_N(f) = \sum_{-N}^{N} \hat{f}(n)e_n$,

$$||s_N(f)||^2 = \sum_{-N}^N ||\hat{f}(n)e_n||^2$$
$$= \sum_{-N}^N ||\hat{f}(n)||^2,$$

and thus

$$||f||^2 = ||f - s_N(f)||^2 + \sum_{N=1}^{N} ||\hat{f}(n)||^2.$$
 (2)

Lemma 2.21. (Best approximation) $f \in \mathbb{R}$. Then

$$||f - s_N(f)|| \le \left| ||f - \sum_{-N}^{N} c_n e_n|| \right|$$

for any complex numbers $\{c_n\}_{-N}^N$.

Theorem 2.22. If $f \in \mathbb{R}$ then

$$\lim_{N \to \infty} \int_0^{2\pi} |f - s_N(f)|^2 dx = 0.$$

Proof. Let $f \in \mathbb{R}$ be continuous. By (a version of) the Stone-Weierstrass theorem, $\forall \varepsilon > 0, \exists$ trigonometric polynomial P such that $|f(x) - P(x)| < \varepsilon, \forall x \in [0, 2\pi]$.

$$||f - P|| = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x) - P(x)|^2 dx\right)^{1/2}$$

$$< \left(\frac{1}{2\pi} \int_0^{2\pi} \varepsilon^2 dx\right)^{1/2}$$
$$= \varepsilon.$$

Let M be the degree of P, i.e., $P = \sum_{-M}^{M} c_n e_n$. By the best approximation lemma, $\forall N \geq M$,

$$||f - s_N(f)|| \le ||f - P|| < \varepsilon.$$

Hence, $\forall \varepsilon > 0$, $\exists M$ such that $\forall N \geq M$, $||f - s_N(f)|| < \varepsilon$. Now we drop the condition that f is continuous. For every $\varepsilon > 0$, \exists continuous g such that

(i)
$$\sup_{x \in [0,2\pi]} |g(x)| \le \sup_{x \in [0,2\pi]} |f(x)| = B.$$

(ii)
$$\int_0^{2\pi} |f(x) - g(x)| dx < \varepsilon^2.$$

Then

$$\begin{split} \|f - g\| &= \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x) - g(x)|^2 dx\right)^{1/2} \\ &= \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x) - g(x)| |f(x) - g(x)| dx\right)^{1/2} \\ &\leq \left(\frac{B}{\pi} \int_0^{2\pi} |f(x) - g(x)| dx\right)^{1/2} \\ &< \left(\frac{B}{\pi} \varepsilon^2\right)^{1/2} \\ &= \sqrt{\frac{B}{\pi}} \varepsilon. \end{split}$$

Since g is continuous, \exists trigonometric polynomial P such that $||g-P|| < \varepsilon$. Therefore,

$$\begin{split} \|f-P\| & \leq \|f-g\| + \|g-P\| \\ & < \varepsilon \sqrt{\frac{B}{\pi}} + \varepsilon \\ & = \varepsilon \left(1 + \sqrt{\frac{B}{\pi}}\right). \end{split}$$

By the best approximation lemma, $\forall N \ge \deg(P)$,

$$||f - s_N(f)|| < \varepsilon \left(1 + \sqrt{\frac{B}{\pi}}\right).$$

Corollary 2.23. (Parseval's Identity) $f \in \mathbb{R}$. Then

$$\sum_{-\infty}^{\infty} |\hat{f}(n)|^2 = ||f||^2.$$

Proof. For every n, $||f||^2 \ge \sum_{-N}^N |\hat{f}(n)|^2$ by (2). By the previous theorem, $\forall \varepsilon > 0$, $\exists M$ such that $\forall N \ge M$, $||f - s_N(f)|| < \varepsilon$, so by (2) again,

$$\sum_{-N}^{N} |\hat{f}(n)|^2 \ge ||f||^2 - \varepsilon.$$

Corollary 2.24. (Riemann-Lebesgue) $f \in \mathbb{R}$. Then

$$\lim_{|n| \to \infty} |\hat{f}(n)| = 0.$$

3 Differential Forms

Recall. $f: E \to \mathbb{R}, E \subseteq \mathbb{R}^n$ open, partials $D_1 f, \dots, D_n f$. If the partials are themselves differentiable then the second order derivatives of f are defined by

$$D_{ij}f = D_iD_jf, \quad (i, j = 1, \dots, n).$$

If these functions are continuous in E, we say f is C^2 in E.

Theorem 3.1. If $f \in C^2$ in E then

$$D_{ij}f = D_{ji}f, \quad \forall i, j.$$

Definition 3.2. If $f: E \to \mathbb{R}^n$, $E \subseteq \mathbb{R}^n$ open, f is differentiable at $x \in E$, the determinant of (the linear operator) f'(x) is called the *Jacobian of* f at x

$$J_f(x) = \det f'(x).$$

Notation. We may also use $\frac{\partial(y_1,...,y_n)}{\partial(x_1,...,x_n)}$; $f(x_1,...,x_n)=y_1,...,y_n$.

Definition 3.3. Let $k \in \mathbb{N}$. A k-cell in \mathbb{R}^k is the set of points $I^k = \{x = (x_1, \dots, x_k)\}$ such that $a_i \leq x_i \leq b_i$, $\forall i = 1, \dots, k$.

Suppose I^k is a k-cell in \mathbb{R}^k and $f: I^k \to \mathbb{R}$ is continuous. For every $j \leq k$, let I^j be the restriction of I^k to the first j components.

Define $g_k: I^k \to \mathbb{R}$ by $g_k = f$. Define $g_{k-1}: I^{k-1} \to \mathbb{R}$ by

$$g_{k-1}(x_1,\ldots,x_{k-1}) = \int_{a_k}^{b_k} g_k(x_1,\ldots,x_k) dx_k.$$

Since g_k is uniformly continuous on I^k , g_{k-1} is (uniformly) continuous on I^{k-1} . Define $g_{k-2}:I^{k-2}\to\mathbb{R}$ by

$$g_{k-2}(x_1,\ldots,x_{k-2}) = \int_{a_{k-1}}^{b_{k-1}} g_{k-1}(x_1,\ldots,x_{k-1}) dx_{k-1}.$$

We can repeat this process, ultimately arriving at a number

$$g_0 = \int_{a_1}^{b_1} g_1(x_1) dx_1.$$

We say g_0 is the integral of f over I^k and we write

$$\int_{I^k} f(x)dx = g_0.$$

Example 3.4. Let $I^2 = [1, 2] \times [0, 1]$, $f(x_1, x_2) = 2x_1x_2^2$. What is $\int_{I^2} f dx$?

$$g_1(x_1) = \int_0^1 2x_1 x_2^2 dx = \left[\frac{2}{3}x_1 x_2^3\right]_0^1 = \frac{2}{3}x_1,$$

$$\int_{T^2} f dx = g_0 = \int_1^2 g_1(x_1) dx_1 = \int_1^2 \frac{2}{3}x_1 dx_1 = \left[\frac{1}{3}x_1^2\right]_1^2 = 1.$$

Question. Does this depend on the order of integration?

Answer. No (try the other direction in the example above).

Definition 3.5. If $f : \mathbb{R}^k \to \mathbb{R}$, the *support* of f is the closure of the set $\{x \in \mathbb{R}^k : f(x) \neq 0\}$.

If $f: \mathbb{R}^k \to \mathbb{R}$ is continuous with compact support, let I^k be any k-cell containing supp(f). We define

$$\int_{\mathbb{R}^k} f dx = \int_{I^k} f dx.$$

Theorem 3.6. (Change of variables) Let T be a 1-1, C^1 mapping of $E \subseteq \mathbb{R}^n$ open to \mathbb{R}^n . Also assume $J_T(x) \neq 0$ for all $x \in E$. If f is continuous on \mathbb{R}^n with compact support that is contained in T(E), then

$$\int_{\mathbb{R}^n} f(y)dy = \int_{\mathbb{R}^n} f(T(x))|J_T(x)|dx.$$

Definition 3.7. (Informal) A differential 1-form on \mathbb{R}^n is

- (i) An object which can be integrated on any curve in \mathbb{R}^n .
- (ii) A rule assigning a real number to every oriented line segment in \mathbb{R}^n in a "suitable" way.

Definition 3.8. Let $p \in \mathbb{R}^n$. The tangent space to \mathbb{R}^n at p is $T_p\mathbb{R}^n = \{(p, v) : v \in \mathbb{R}^n\}$.

Notation. If α is a 1-form, $p \in \mathbb{R}^n$, write α_p to denote the restriction of α to $T_p\mathbb{R}^n$. $\alpha_p(v)$ is the value α assigns to the (oriented) line segment from p to p + v.

We require that α_p is a linear functional $\forall p \in \mathbb{R}^n$, that is

- (i) $\alpha_p(tv) = t \cdot \alpha_p(v), \forall t \in \mathbb{R}, \forall p, v \in \mathbb{R}^n.$
- (ii) $\alpha_p(v+w) = \alpha_p(v) + \alpha_p(w), \forall p, v, w \in \mathbb{R}^n$.

We denote the projection maps in \mathbb{R}^n by dx_1, \ldots, dx_n , where

$$dx_i(v) = dx_i(v_1, \dots, v_n) = v_i, \quad i = 1, \dots, n.$$

These form a basis for the set of linear functionals. Therefore, for any 1-form α , its restriction α_p can be written as

$$\alpha_n = A_1 dx_1 + A_2 dx_2 + \dots + A_n dx_n$$

$$= A_1(p)dx_1 + \dots + A_n(p)dx_n.$$

Last requirement: $A_i(p)$ must be sufficiently continuous with respect to p.

Definition 3.9. A differential 1-form α on \mathbb{R}^n is a map from every tangent vector (p, v) in \mathbb{R}^n which can be expressed in the form

$$\alpha = f_1 dx_1 + \dots + f_n dx_n,$$

where $f_i: \mathbb{R}^n \to \mathbb{R}$ is C^2 .

Example 3.10. $\alpha = ydx + dz$ on \mathbb{R}^3 . Let $p = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$. Then

$$\alpha((p,v)) = \alpha_p(v)$$
= $f_1(p)dx_1(v) + f_2(p)dx_2(v) + f_3(p)dx_3(v)$
= $2 \cdot 4 + 0 + 1 \cdot 6$
= 14.

Definition 3.11. A curve (1-surface) in \mathbb{R}^n is a C^1 -mapping $\gamma:[a,b]\to\mathbb{R}^n$.

Definition 3.12. Let $\alpha = f_1 dx_1 + \cdots + f_n dx_n$ be a 1-form in \mathbb{R}^n and let $\gamma : [a, b] \to \mathbb{R}^n$ be C^1 .

$$\int_{\gamma} \alpha = \int_{a}^{b} (f_1(\gamma(t))\gamma'_1(t) + \dots + f_n(\gamma(t))\gamma'_n(t))dt.$$

Example 3.13. $\alpha = x^2 dx_1 + dx_2$ on \mathbb{R}^2 . $\gamma(t) = (t, t^2), t \in [0, 1]$. Then $\gamma'_1(t) = 1$, $\gamma'_2(t) = 2t$.

$$\int_{\gamma} \alpha = \int_{0}^{1} (f_1(\gamma(t))\gamma_1'(t) + f_2(\gamma(t))\gamma_2'(t))$$
$$= \int_{a}^{b} (t^2 \cdot 1 + 1 \cdot 2t)dt$$
$$= \frac{4}{3}.$$

Definition 3.14. A 2-surface is a C^1 map $\gamma: I^2 \to \mathbb{R}^n$.

Definition 3.15. (Informal) A 2-form on \mathbb{R}^n is

- (i) An object which can be integrated over any 2-surface.
- (ii) A rule which assigns a real number to every oriented parallelogram in \mathbb{R}^n in a "suitable" way.

Specify an oriented parallelogram in \mathbb{R}^n based at $p \in \mathbb{R}^n$ by giving (v, w). We want every 2-form ω to satisfy the following for every $p \in \mathbb{R}^n$,

- (i) $\omega_p(tv_1, v_2) = \omega_p(v_1, tv_2) = t\omega_p(v_1, v_2)$.
- (ii) $\omega_p(v_1, v_2 + v_3) = \omega_p(v_1, v_2) + \omega_p(v_1, v_3)$ and $\omega_p(v_1 + v_2, v_3) = \omega_p(v_1, v_3) + \omega_p(v_1, v_2)$ $\omega_p(v_2,v_3)$.
- (iii) $\omega_p(v_1, v_2) = -\omega_p(v_2, v_1).$

Basic 2-forms on \mathbb{R}^n . $\forall v, w \in \mathbb{R}^n$,

(i)
$$(dx_1 \wedge dx_2)(v, w) = \det \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$$
.
(ii) $(dx_1 \wedge dx_3)(v, w) = \det \begin{pmatrix} v_1 & w_1 \\ v_3 & w_3 \end{pmatrix}$.
(iii) $(dx_i \wedge dx_j)(v, w) = \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix}$.

(ii)
$$(dx_1 \wedge dx_3)(v, w) = \det \begin{pmatrix} v_1 & w_1 \\ v_3 & w_3 \end{pmatrix}$$

(iii)
$$(dx_i \wedge dx_j)(v, w) = \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix}$$
.

Remark 3.16. If ω_p satisfies (i) - (iii) then ω_p can be expressed as

$$\omega_p = \sum_{i,j} A_{i,j}(p) (dx_i \wedge dx_j),$$

for constant $A_{i,j}$.

Definition 3.17. A 2-form in \mathbb{R}^n is a rule assigning a real number to each oriented parallelogram in \mathbb{R}^n that can be written as

$$\omega = \sum_{i,j} f_{i,j} (dx_i \wedge dx_j),$$

where $f_{i,j}: \mathbb{R}^n \to \mathbb{R}$ is C^2 .

For any $p \in \mathbb{R}^n$, $v, w \in \mathbb{R}^n$

$$\omega_p(v,w) = \sum_{i,j} f_{i,j}(p) (dx_i \wedge dx_j)(v,w).$$

Example 3.18. ω is a 2-form in \mathbb{R}^2 ,

$$\omega = f_{1,1} \underbrace{(dx_1 \wedge dx_1)}_{=0} + f_{1,2}(dx_1 \wedge dx_2) + f_{2,1} \underbrace{(dx_2 \wedge dx_1)}_{=-(dx_1 \wedge dx_2)} + f_{2,2} \underbrace{(dx_2 \wedge dx_2)}_{=0}$$

$$=(f_{1,2}-f_{2,1})(dx_1\wedge dx_2).$$

This implies that every 2-form in \mathbb{R}^2 can be written as $\omega = f(dx_1 \wedge dx_2)$ where f is C^2 .

Definition 3.19. Let $\gamma: I^2 \to \mathbb{R}^3$ be C^1 , and $\omega = f_1(dx_1 \wedge dx_2) + f_2(dx_1 \wedge dx_3) +$ $f_3(dx_2 \wedge dx_3)$ be a 2-form. Then

$$\int_{\gamma} \omega = \int_{I^2} \omega_{\gamma(z)} \left(\frac{\partial \gamma}{\partial x_1}(z), \frac{\partial \gamma}{\partial x_2}(z) \right) dz$$

$$= \int_{I^2} f_1(\gamma(z))(dx_1 \wedge dx_2) \left(\frac{\partial \gamma}{\partial x_1}(z), \frac{\partial \gamma}{\partial x_2}(z) \right)$$

$$+ f_2(\gamma(z))(dx_1 \wedge dx_3) \left(\frac{\partial \gamma}{\partial x_1}(z), \frac{\partial \gamma}{\partial x_2}(z) \right)$$

$$+ f_3(\gamma(z))(dx_2 \wedge dx_3) \left(\frac{\partial \gamma}{\partial x_1}(z), \frac{\partial \gamma}{\partial x_2}(z) \right) dz$$

$$= \int_{I^2} f_1(\gamma(z)) \det \begin{pmatrix} D_1 \gamma_1(z) & D_2 \gamma_1(z) \\ D_1 \gamma_2(z) & D_2 \gamma_2(z) \end{pmatrix}$$

$$+ f_2(\gamma(z)) \det \begin{pmatrix} D_1 \gamma_1(z) & D_2 \gamma_1(z) \\ D_1 \gamma_3(z) & D_2 \gamma_3(z) \end{pmatrix} + f_3(\gamma(z)) \det \begin{pmatrix} D_1 \gamma_2(z) & D_2 \gamma_2(z) \\ D_1 \gamma_3(z) & D_2 \gamma_3(z) \end{pmatrix}$$

Definition 3.20. The integral of a 2-form $\omega = \sum_{i,j} f_{i,j} (dx_i \wedge dx_j)$ over a 2-surface $\gamma : [a,b] \times [c,d] \to \mathbb{R}^n$ (which is C^1) is

$$\int_{\gamma} \omega = \int_{a}^{b} \left(\int_{c}^{d} \omega_{\gamma(t_{1},t_{2})} \left(\frac{\partial \gamma}{\partial t_{1}}, \frac{\partial \gamma}{\partial t_{2}} \right) dt_{2} \right) dt_{1}.$$

Definition 3.21. A k-surface in \mathbb{R}^n is a C^1 map $\gamma: D \to \mathbb{R}^n$ where D is a k-cell.

Definition 3.22. (Informal) A k-form in \mathbb{R}^n , ω , is a rule that assigns a real number to every oriented k-dimensional parallelepiped in \mathbb{R}^n in a "suitable" way.

Specify a k-dimensional oriented parallelepiped in \mathbb{R}^n based at $p \in \mathbb{R}^n$ by giving an ordered list of vectors $v_1, \ldots, v_k \in T_p\mathbb{R}^n$. We require that for any $p \in \mathbb{R}^n$, a k-form ω satisfies

- (i) $\omega_p(v_1,\ldots,tv_i,\ldots,v_k)=t\omega_p(v_1,\ldots,v_i,\ldots,v_k).$
- (ii) $\omega_p(v_1, \dots, v_i + w_i, \dots, v_k) = \omega(v_1, \dots, v_i, \dots, v_k) + \omega_p(v_1, \dots, w_i, \dots, v_k)$.
- (iii) $\omega_p(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega_p(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k).$

Definition 3.23. A multi-index of length k in \mathbb{R}^n is a list $I = (i_1, \ldots, i_k)$ of k integers between 1 and n.

Definition 3.24. Let $I = (i_1, \ldots, i_k)$ be a multi-index. Then $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ is the k-form in \mathbb{R}^n defined by

$$dx_I(v^1, \dots, v^k) = \det \begin{pmatrix} v_{i_1}^1 & v_{i_1}^2 & \dots & v_{i_1}^k \\ v_{i_2}^1 & v_{i_2}^2 & \dots & v_{i_2}^k \\ \vdots & \vdots & \ddots & \vdots \\ v_{i_k}^1 & v_{i_k}^2 & \dots & v_{i_k}^k \end{pmatrix}.$$

Remark 3.25.

(i) If I contains a repeated index, then $dx_I(v^1, ..., v^k) = 0$.

- (ii) For any I, if v^1, \ldots, v^k contains a repeated vector, then $dx_I(v^1, \ldots, v^k) = 0$.
- (iii) If J is obtained from I by swapping a single pair of indices, then $dx_I(v^1, \ldots, v^k) = -dx_J(v^1, \ldots, v^k)$.

Definition 3.26. A differential k-form in \mathbb{R}^n , ω , is a rule assigning a real number to each oriented parallelepiped of the form

$$\omega = \sum_{I} f_{I} dx_{I},$$

where the sum is taken over all multi-indices I of length k and $f_I : \mathbb{R}^n \to \mathbb{R}$ is C^2 . If $p \in \mathbb{R}^n, v^1, \dots, v^k \in \mathbb{R}^n$,

$$\omega_p(v^1,\ldots,v^k) = \sum_I f_I(p) dx_I(v^1,\ldots,v^k).$$

Definition 3.27. Let $\phi: D \to \mathbb{R}^n$ be a k-surface and $\omega = \sum_I f_I dx_I$ be a k-form.

$$\int_{\phi} \omega = \int_{D} \omega_{\phi(u)} \left(\frac{\partial \phi}{\partial u_{1}}, \dots, \frac{\partial \phi}{\partial u_{k}} \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) dx_{I} \left(\frac{\partial \phi}{\partial u_{1}}, \dots, \frac{\partial \phi}{\partial u_{k}} \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) \frac{\partial (x_{i_{1}}, \dots, x_{i_{k}})}{\partial (u_{1}, \dots, u_{k})} du,$$

where $\frac{\partial(x_{i_1},\ldots,x_{i_k})}{\partial(u_1,\ldots,u_k)}$ is the Jacobian of the map $u_1,\ldots,u_k\mapsto\phi_{i_1}(u),\ldots,\phi_{i_k}(u)$.

Definition 3.28. If $I = (i_1, ..., i_k)$ is a multi-index and $i_1 < \cdots < i_k$, we say I is an *increasing multi-index*, and we say that dx_I is a basic k-form.

Remark 3.29. Every k-form can be represented in terms of basic k-forms.

Example 3.30. $dx_1 \wedge dx_5 \wedge dx_3 \wedge dx_2 = -dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5$.

Example 3.31. $dx_1 \wedge dx_3 \wedge dx_5 \wedge dx_2 = dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5$.

Definition 3.32. If $\omega = \sum_{I} a_{I} dx_{I}$ is a k-form, we can convert each multi-index I into an increasing multi-index J, and we say that

$$\omega = \sum_{I} b_{J} dx_{J}$$

is in standard presentation.

Example 3.33.

$$\omega = x_1 dx_2 \wedge dx_1 - x_2 dx_3 \wedge dx_2 + x_3 dx_2 \wedge dx_3 + dx_1 \wedge dx_2$$

= $-x_1 dx_1 \wedge dx_2 + x_2 dx_2 \wedge dx_3 + x_3 dx_2 \wedge dx_3 + dx_1 \wedge dx_2$
= $(1 - x_1) dx_1 \wedge dx_2 + (x_2 + x_3) dx_2 \wedge dx_3$.

The last line is in standard presentation.

Definition 3.34. Suppose $I = (i_1, \ldots, i_p)$ and $J = (j_1, \ldots, j_q)$ are increasing multiindices. The *product* of dx_I and dx_J is the (p+q)-form

$$dx_I \wedge dx_J = dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_p} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_q}.$$

Note. If I and J have an element in common, $dx_I \wedge dx_J = 0$.

Notation. If I and J have no elements in common, we denote the increasing (p+q) length multi-index obtained from rearranging the members of $I \cup J$ in increasing order by [I, J].

$$dx_I \wedge dx_J = (-1)^{\alpha} dx_{[I,J]},$$

where α is the number of swaps needed to convert $I \cup J$ into an increasing multi-index. Suppose ω , λ are p and q-forms respectively in \mathbb{R}^n with standard representations

$$\omega = \sum_{I} b_{I} dx_{I} \quad \lambda = \sum_{J} c_{J} dx_{J}.$$

The product of ω and λ is the (p+q)-form

$$\omega \wedge \lambda = \sum_{I,J} b_I c_I (dx_I \wedge dx_J).$$

Remark 3.35.

- (i) $(\omega_1 + \omega_2) \wedge \lambda = (\omega_1 \wedge \lambda) + (\omega_2 \wedge \lambda)$.
- (ii) $\omega \wedge (\lambda_1 + \lambda_2) = (\omega \wedge \lambda_1) + (\omega \wedge \lambda_2).$
- (iii) $(\omega \wedge \lambda) \wedge \sigma = \omega \wedge (\lambda \wedge \sigma)$.

Definition 3.36. A 0-form is a C^1 function.

Notation. The product of a 0-form f with a k-form $\omega = \sum_I b_I dx_I$ is

$$f\omega = \omega f = \sum_{I} (fb_I) dx_I.$$

Remark 3.37. $f(\omega \wedge \lambda) = f\omega \wedge \lambda = \omega \wedge f\lambda$.

Definition 3.38. (Differentiation of k-forms) Operator which associates a (k+1)-form, $d\omega$, to each k-form, ω .

(i) 0-forms in \mathbb{R}^n . $f: E \to \mathbb{R}$, $E \subseteq \mathbb{R}^n$.

$$df = D_1 f dx_1 + \dots + D_n f dx_n$$
$$= \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

(ii) k-forms in \mathbb{R}^n . Let $\omega = \sum_I b_I dx_I$ be given in standard presentation.

$$d\omega = \sum_{I} (db_I) \wedge dx_I.$$

Example 3.39. Let
$$\omega = \underbrace{x}_{f_1} dx + \underbrace{y^2}_{f_2} dz$$
 be a 1-form in \mathbb{R}^3 .

$$d\omega = (df_1) \wedge dx + (df_2) \wedge dz$$

$$= (1dx + 0dy + 0dz) \wedge dx + (0dx + 2ydy + 0dz) \wedge dz$$

$$= dx \wedge dx + 2ydy \wedge dz$$

$$= 2ydy \wedge dz.$$

Further,

$$d(d\omega) = d(2ydy \wedge dz)$$
$$= (df) \wedge (dy \wedge dz)$$
$$= (2dy) \wedge (dy \wedge dz)$$
$$= 0.$$

Theorem 3.40. (Graded product rule) Let ω be a k-form and λ be an m-form, both of class C^1 . Then

$$d(\omega \wedge \lambda) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge (d\lambda).$$

Proof. It suffices to show this on simple forms $\omega = f dx_I$, $\lambda = g dx_J$, $f, g \in C^1$. Then

$$\omega \wedge \lambda = fgdx_I \wedge dx_J.$$

If I and J have any common indices, then both sides equal 0 and the theorem holds. Now assume that I and J have no common terms. Then

$$d(\omega \wedge \lambda) = d(fgdx_I \wedge dx_J)$$

$$= (-1)^{\alpha} d(fgdx_{[I,J]})$$

$$= (-1)^{\alpha} (fdg + gdf) \wedge dx_{[I,J]}$$

$$= (fdg + gdf) \wedge dx_I \wedge dx_J$$

$$= (-1)^k (fdx_I) \wedge dg \wedge dx_J + df \wedge dx_I \wedge (gdx_J)$$

$$= (-1)^k \omega \wedge (d\lambda) + (d\omega) \wedge \lambda.$$

Theorem 3.41. If ω is a k-form of class C^1 , then

$$d^2(\omega) = 0.$$

Proof.

$$d(dx_I) = 0 = d(1dx_I) = d(1) \wedge dx_I.$$

Let $f \in C^2(E)$, $E \subseteq \mathbb{R}^n$. Then

$$d^{2}f = d\left(\sum_{i=1}^{n} (D_{i}f)(x)dx_{i}\right)$$

$$= \sum_{i=1}^{n} d(D_{i}f) \wedge dx_{i}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} D_{ij}fdx_{j} \wedge dx_{i}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} -D_{ij}fdx_{i} \wedge dx_{j}.$$

Thus $d^2f = 0$. Then, for a k-form $\omega = f dx_I$,

$$d\omega = df \wedge dx_I$$

and

$$d^{2}\omega = d^{2}f \wedge dx_{I} + (-1)df \wedge d(dx_{I})$$
$$= 0 - 0$$
$$= 0.$$

Definition 3.42.

- (i) A k-form ω is closed if $d\omega = 0$.
- (ii) A k-form ω is exact if there exists a (k-1)-form α such that $d(\alpha) = \omega$.

Remark 3.43.

- (i) If ω is a k-form that is of class C^2 then $d^2\omega = 0$ so $d\omega$ is exact.
- (ii) Every exact form is closed $(d(d\omega) = 0)$.

Question. Is the converse of (ii) true?

Answer. No.

Let $E \subseteq \mathbb{R}^n$ open, $V \subseteq \mathbb{R}^m$ open, and $T : E \to V$ be a C^1 function. Let ω be a k-form on V.

Notation. We will say that elements of E are $x \in E$ and elements of V are $y \in V$.

Then we write $\omega = \sum_{I} b_{I}(y) dy$ in standard presentation.

$$T(x) = (t_1(x), \dots, t_m(x)) = (y_1, \dots, y_m) = y.$$

Then

$$dt_i = \sum_{j=1}^n (D_j t_i)(x) dx_j \qquad i \in [m].$$

Note. dt_i is a 1-form on E.

T will transform the k-form ω on E to a k-form ω_T on E. This is called the *pullback* form.

$$\omega_T(x) = \sum_I b_I(T(x)) dt_{i_1} \wedge dt_{i_2} \wedge \cdots \wedge dt_{i_k}.$$

Example 3.44. Let id = $T : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto x = y$, and $\omega(y) = \sum b_I(y) dy_I$. Then $t_i(x) = x_i$ so $dt_i = dx_i$. Thus

$$\omega_T(x) = \sum_I b_I(T(x)) dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

Example 3.45. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$, $(x_1, x_2) \mapsto (x_2, x_1^2, x_1 + x_2)$, and $\omega(y_1, y_2, y_3) = y_1 dy_2 \wedge dy_3$ is a 2-form on \mathbb{R}^3 . Then $dt_1 = dx_2$, $dt_2 = 2x_1 dx_1$, $dt_3 = dx_1 + dx_2$. Thus

$$\omega_T(x_1, x_2) = b_{\{2,3\}}(T(x_1, x_2))dt_2 \wedge dt_3$$

$$= x_2(2x_1dx_1) \wedge (dx_1 + dx_2)$$

$$= 2x_2x_1(dx_1 \wedge dx_1 + dx_1 \wedge dx_2)$$

$$= 2x_2x_1dx_1 \wedge dx_2.$$

Lemma 3.46. Let $f: V \to \mathbb{R}$ be a C^1 function and $f_T = f \circ T$. Then $d(f_T) = (df)_T$. Proof.

$$d(f_T) = \sum_{j=1}^n D_j f_T dx_j$$

$$= \sum_{j=1}^n D_j (f \circ T) dx_j$$

$$= \sum_{i=1}^m \sum_{j=1}^n (D_i f)(T) \cdot (D_j t_i) dx_j$$

$$= \sum_{i=1}^m (D_i f)(T) dt_i$$

$$= (df)_T.$$

Theorem 3.47. Let ω be a k-form and λ be an l-form on V. Then

- (i) $(\omega + \lambda)_T = \omega_T + \lambda_T$ if k = l.
- (ii) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$.
- (iii) $d(\omega_T) = (d\omega)_T$ if ω is of class C^1 and T is of class C^2 .
- (i) Proof.

$$(\omega + \lambda)_T = \left(\sum (b_I + c_I) dy_I\right)_T$$

$$= \sum (b_I + c_I) (T) dt_I$$

$$= \sum b_I(T) dt_I + \sum c_I(T) dt_I$$

$$= \omega_T + \lambda_T.$$

(ii) Proof. Let $\omega = \sum_I b_I(y) dy_I$ and $\lambda = \sum_J c_J(y) dy_J$. Then

$$\omega \wedge \lambda = \left(\sum_{I} b_{I}(y)dy_{I}\right) \wedge \left(\sum_{J} c_{J}(y)dy_{J}\right)$$
$$= \sum_{I,J} b_{I}(y)c_{J}(y)(dy_{I} \wedge dy_{J}).$$

The pullback is

$$(\omega \wedge \lambda)_T = \sum_{I \mid I} b_I(T(x)) c_J(T(x)) dt_{i_1} \wedge \cdots \wedge dt_{i_k} \wedge dt_{j_1} \wedge \cdots \wedge dt_{j_m}.$$

On the other hand,

$$\omega_T \wedge \lambda_T = \left(\sum_I b_I(T(x)) dt_{i_1} \wedge \dots \wedge dt_{i_k}\right) \wedge \left(\sum_J c_J(T(x)) dt_{j_1} \wedge \dots \wedge dt_{j_m}\right)$$
$$= \sum_{I,J} b_I(T(x)) c_J(T(x)) dt_{i_1} \wedge \dots \wedge dt_{i_k} \wedge dt_{j_1} \wedge \dots \wedge dt_{j_m},$$

which shows the conclusion.

(iii) Proof. Rudin, Theorem 10.22.

Theorem 3.48. T is a C^1 map of an open set $E \subseteq \mathbb{R}^n$ into an open set $V \subseteq \mathbb{R}^m$, S is a C^1 map of V into an open set $W \subseteq \mathbb{R}^\ell$, ω is a k-form on W (ω_S is a k-form on V, (ω_S) $_T$ is a k-form on E, ω_{ST} is a k-form on E). Then

$$(\omega_S)_T = \omega_{ST}$$
.

Theorem 3.49. Suppose ω is a k-form on an open set $E \subseteq \mathbb{R}^n$, ϕ is a k-surface in E with parameter domain $D \subseteq \mathbb{R}^k$ and Δ is the trivial k-surface, $\Delta : D \to \mathbb{R}^k$, $\Delta(u) = u$. Then

$$\int_{\phi} \omega = \int_{\Delta} \omega_{\phi}.$$

Proof. It suffices to prove this in the case when

$$\omega = adx_I = adx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

Let ϕ_1, \ldots, ϕ_n denote the components of ϕ . Then $\omega_{\phi} = a(\phi)d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k}$. It suffices to prove

$$d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k} = J(u)du_1 \wedge \dots \wedge du_k, \tag{1}$$

where $J(u) = \frac{\partial(x_{i_1}, \dots, x_{i_k})}{\partial(u_1, \dots, u_k)}$. Assuming (1),

$$\int_{\Delta} \omega_{\phi} = \int_{\Delta} a(\phi) d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k}$$

$$= \int_{\Delta} a(\phi) J(u) du_1 \wedge \dots \wedge du_k$$

$$= \int_{D} a(\phi(u)) J(u) du$$

$$= \int_{\phi} \omega.$$

Let [A] be the $k \times k$ matrix with entries

$$\alpha(p,q) = D_q \phi_{i_n}(u), \qquad p,q = 1, \dots, k.$$

Note. det(A) = J(u).

Since $d\phi_{i_p} = \sum_q \alpha(p,q) du_q$, we have

$$d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k} = \sum \alpha(1, q_1) \dots \alpha(k, q_k) du_{q_1} \wedge \cdots \wedge du_{q_k},$$

where the sum ranges over all $q_1, \ldots, q_k \in \{1, \ldots, k\}$. Rearranging each $duq_1 \wedge \cdots \wedge du_{q_k}$ we get

$$d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k} = \det(A)du_1 \wedge \dots \wedge du_k$$
$$= J(u)du_1 \wedge \dots \wedge du_k.$$

Theorem 3.50. Suppose T is a C^1 map of an open set $E \subseteq \mathbb{R}^n$ into an open set $V \subseteq \mathbb{R}^n$, ϕ is a k-surface in E, ω is a k-form on V. Then

$$\int_{T\phi} \omega = \int_{\phi} \omega_T.$$

Proof. Let D be the parameter domain of ϕ (and therefore of $T\phi$ as well). Let Δ be the trivial k-surface on D, i.e., $\Delta(u) = u$. Then

$$\int_{T\phi} \omega = \int_{\Delta} \omega_{T\phi} = \int_{\Delta} (\omega_T)_{\phi} = \int_{\phi} \omega_T.$$

Definition 3.51. A map f from a vector space X to a vector space Y is called affine if f - f(0) is linear, i.e.,

$$f(x) = f(0) + Ax$$
, $A: X \to Y$ is linear.

Remark 3.52. An affine map $f: \mathbb{R}^k \to \mathbb{R}^n$ is determined by f(0) and $f(e_i)$ for i = 1, ..., k.

Definition 3.53. The k-simplex in \mathbb{R}^k is $Q^k \subseteq \mathbb{R}^k$,

$$Q^k = \{x = (x_1, \dots, x_k) : x_i \ge 0, x_1 + \dots + x_k \le 1\}.$$

Definition 3.54. Let $p_0, p_1, \ldots, p_k \in \mathbb{R}^n$. The oriented affine k-simplex $\sigma = [p_0, p_1, \ldots, p_k]$ is the k-surface in \mathbb{R}^n with parameter domain Q^k given by the affine map

$$\sigma(\alpha_1 e_1 + \dots + \alpha_k e_k) = p_0 + \sum_{1}^{k} \alpha_i (p_i - p_0).$$

Remark 3.55. $\sigma(u) = p_0 + Au$, $u \in Q^k$, where $A \in L(\mathbb{R}^k, \mathbb{R}^n)$. $Ae_i = p_i - p_0$, $\forall 1 \leq i \leq k$.

Remark 3.56. σ is called oriented to emphasize that the order of the points p_0, p_1, \ldots, p_k matters. If $\overline{\sigma} = [p_{i_0}, p_{i_1}, \ldots, p_{i_k}]$ where $\{i_0, i_1, \ldots, i_k\}$ is a permutation of $\{0, 1, \ldots, k\}$, then

$$\overline{\sigma} = s(i_0, i_1, \dots, i_k)\sigma,$$

where $s(i_0, i_1, \ldots, i_k) = (-1)^{\alpha}$, where α is the minimum number of swaps needed to transform $0, 1, \ldots, k$ to i_0, i_1, \ldots, i_k . If $s(i_0, i_1, \ldots, i_k) = 1$, then we say σ and $\overline{\sigma}$ have the same orientation, and if $s(i_0, i_1, \ldots, i_k) = -1$, we say σ and $\overline{\sigma}$ have opposite orientation.

Definition 3.57. An oriented 0-simplex is a point $p \in \mathbb{R}^n$ with a sign attached, and we write $\sigma = +p_0$ or $\sigma = -p_0$. If f is a 0-form, $\sigma = \varepsilon p_0, \varepsilon = \pm 1$,

$$\int_{\sigma} f = \varepsilon f(p_0).$$

Theorem 3.58. If σ is an oriented k-simplex in an open set $E \subseteq \mathbb{R}^n$ and if $\overline{\sigma} = \varepsilon \sigma, \varepsilon = \pm 1$, then $\forall k$ -forms ω on E,

$$\int_{\sigma} \omega = \varepsilon \int_{\overline{\sigma}} \omega.$$

Definition 3.59. An affine k-chain Γ in an open set $E \subseteq \mathbb{R}^n$ is a collection of finitely many oriented affine k-simplexes $\sigma_1, \ldots, \sigma_r$ in E.

Note. The simplexes need not be distinct.

Definition 3.60. If Γ is an an affine k-chain in an open set $E \subseteq \mathbb{R}^n$ and ω is a k-form on E,

$$\int_{\Gamma} \omega = \sum_{1}^{r} \int_{\sigma_{i}} \omega.$$

Notation. This suggests the following notation,

$$\Gamma = \sigma_1 + \dots + \sigma_r = \sum_{i=1}^{r} \sigma_i.$$

Warning. This is *just* notation.

Example 3.61. $\sigma_1 = [p_0, p_1, p_2]$ and $\sigma_2 = [p_1, p_0, p_2]$, i.e., $\sigma_1 = -\sigma_2$. Then

$$\int_{\Gamma} \omega = \int_{\sigma_1} \omega + \int_{\sigma_2} \omega = \int_{\sigma_1} \omega - \int_{\sigma_1} \omega = 0.$$

Definition 3.62. For $k \geq 1$, the *boundary* of an oriented affine k-simplex $\sigma = [p_0, p_1, \dots, p_k]$ is the affine (k-1)-chain

$$\partial \sigma = \sum_{j=0}^{k} (-1)^{j} [p_0, \dots, p_{j-1}, p_{j+1}, \dots, p_k].$$

Example 3.63. $\sigma = [p_0, p_1, p_2].$

$$\partial \sigma = [p_1, p_2] - [p_0, p_2] + [p_0, p_1]$$
$$= [p_1, p_2] + [p_2, p_0] + [p_0, p_1].$$

Example 3.64. $\sigma = [p_0, p_1, p_2, p_3].$

$$\partial \sigma = [p_1, p_2, p_3] - [p_0, p_2, p_3] + [p_0, p_1, p_3] - [p_0, p_1, p_2]$$
$$= [p_1, p_2, p_3] + [p_2, p_0, p_3] + [p_0, p_1, p_3] + [p_1, p_0, p_2].$$

Definition 3.65. Let T be a C^2 map from an open set $E \subseteq \mathbb{R}^n$ into an open set $V \subseteq \mathbb{R}^m$. Let σ be an oriented affine k-simplex in E. The map $\phi = T \circ \sigma$ is a k-surface in V. We call ϕ an oriented k-simplex. A finite collection ψ of oriented k-simplexes ϕ_1, \ldots, ϕ_r of class C^2 in V is called a k-chain of class C^2 in V. If ω is a k-form on V define

$$\int_{\psi} \omega = \sum_{1}^{r} \int_{\phi_{i}} \omega.$$

Notation. $\psi = \sum_{i=1}^{r} \phi_i$.

Notation. If $\Gamma = \sum_{1}^{r} \sigma_i$ is an affine k-chain and $\phi_i = T \circ \sigma_i$, we write $\psi = T \circ \Gamma$.

Definition 3.66. The boundary $\partial \phi$ of an oriented k-simplex $\phi = T\sigma$ is defined to be the (k-1)-chain

$$\partial \phi = T \circ \partial \sigma.$$

Note. If ϕ is C^2 , then so is $\partial \phi$.

Definition 3.67. The boundary of a k-chain $\psi = \sum \phi_i$ is the (k-1)-chain

$$\partial \psi = \sum_{1}^{r} \partial \phi_i.$$

Theorem 3.68. (Stokes' Theorem) If ψ is a k-chain of class C^2 in an open set $V \subseteq \mathbb{R}^m$ and ω is a (k-1)-form of class C^1 on V, then

$$\int_{\psi} d\omega = \int_{\partial \psi} \omega.$$

Remark 3.69.

(i) If k=m=1, this is the fundamental theorem of calculus. $k=1 \implies \omega = f \in C^1$ and $m=1 \implies V \subseteq \mathbb{R}$. $\psi = \sigma = [a,b]$. Then

$$f(b) - f(a) = \int_{\partial \psi} \omega = \int_{\psi} d\omega = \int_{a}^{b} df(x) dx.$$

- (ii) If k = m = 2, this is Green's theorem.
- (iii) If k = m = 3, this is the divergence theorem.
- (iv) If k = 2, m = 3, this is the original Stokes' theorem.

Theorem 3.70. (Baby Stokes) Let $E \subseteq \mathbb{R}^k$ be an open set containing Q^k . Let $\sigma = [0, e_1, \dots, e_k]$. Let λ be a (k-1)-form in E of class C^1 . Then

$$\int_{\sigma} d\lambda = \int_{\partial \sigma} \lambda.$$

Claim. Baby Stokes \implies Stokes.

Proof. It suffices to prove Stokes' theorem when $\psi = \phi = \sigma$ where σ is an affine k-simplex. Suppose $\phi = T\sigma$.

$$\int_{\psi} d\omega = \int_{T\sigma} d\omega$$
$$= \int_{\sigma} (d\omega)_{T}$$
$$= \int_{\partial \sigma} \omega_{T}$$

$$= \int_{T\partial\sigma} \omega$$
$$= \int_{\partial\psi} \omega.$$

It suffices to prove Stokes' theorem when $\sigma = [0, e_1, \dots, e_k]$. Let $\psi = T\sigma$, where T is affine. Then

$$\int_{\psi} d\omega = \int_{T\sigma} d\omega$$

$$= \int_{\sigma} (d\omega)_{T}$$

$$= \int_{\partial \sigma} \omega_{T}$$

$$= \int_{T\partial \sigma} \omega$$

$$= \int_{\partial \psi} \omega.$$

Proof of Baby Stokes. If k=1, this follows by FTC. Let $k\geq 2$. Fix $r\in \mathbb{N}$, $1\leq r\leq k,\ f\in C^1(E)$. It suffices to show that the conclusion holds when $\lambda=f(x)dx_1\wedge\cdots\wedge dx_{r-1}\wedge dx_{r+1}\wedge\cdots\wedge dx_k$. By definition,

$$\partial \sigma = [e_1, \dots, e_k] + \sum_{j=1}^k (-1)^j \tau_i,$$

where $\tau_i = [0, e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_k]$. Let $\tau_0 = [e_r, e_1, \dots, e_{r-1}, e_{r+1}, \dots, e_k]$, so $[e_1, \dots, e_k] = (-1)^{r-1} \tau_0$. Note that the domain of $\tau_0, \tau_1, \dots, \tau_k$ is Q^{k-1} . Let $u \in Q^k$. Let $x = (x_1, \dots, x_k) = \tau_0(u)$.

$$x_{j} = \begin{cases} u_{j} & \text{if } 1 \leq j < r, \\ 1 - (u_{1} + \dots + u_{k}) & \text{if } j = r, \\ u_{j-1} & \text{if } r < j \leq k. \end{cases}$$

Let $x = \tau_i(u)$.

$$x_{j} = \begin{cases} u_{j} & \text{if } 1 \leq j < i, \\ 0 & \text{if } j = i, \\ u_{j-1} & \text{if } i < j \leq k. \end{cases}$$

Let J_i be the Jacobian of the map $(u_1, \ldots, u_{k-1}) \mapsto (x_1, \ldots, x_{r-1}, x_{r+1}, \ldots, x_k)$ induced by τ_i . Then,

(i)
$$i = 0, J_0 = 1$$
.

(ii) $i = r, J_r = 1$.

(iii) For all other $i, J_i = 0$.

Hence,

$$\begin{split} \int_{\partial \sigma} \lambda &= \sum \int \lambda \\ &= (-1)^{r-1} \int_{\tau_0} \lambda + (-1)^r \int_{\tau_r} \lambda \\ &= (-1)^{r-1} \left(\int_{\tau_0} \lambda - \int_{\tau_r} \lambda \right) \\ &= (-1)^{r-1} \left[\int_{Q^{k-1}} f(\tau_0(u)) du - \int_{Q^{k-1}} f(\tau_r(u)) du \right] \\ &= (-1)^{r-1} \int_{Q^{k-1}} \left[f(\tau_0(u)) - f(\tau_r(u)) \right] du. \end{split}$$

Since

$$d\lambda = (D_1 f dx_1 \wedge \dots \wedge D_k f dx_k) \wedge dx_1 \wedge \dots \wedge dx_{r-1} \wedge dx_{r+1} \wedge \dots \wedge dx_k$$
$$= D_r f dx_r \wedge dx_1 \wedge dx_{r-1} \wedge dx_{r+1} \wedge \dots \wedge dx_k$$
$$= (-1)^{r-1} D_r f dx_1 \wedge \dots \wedge dx_k,$$

we have

$$\int_{\sigma} d\lambda = (-1)^{r-1} \int_{\sigma} D_r f dx_1 \wedge \dots \wedge dx_k
= (-1)^{r-1} \int_{Q^k} D_r f(x) dx
= (-1)^{r-1} \int_{Q^{k-1}} \left(\int_0^{1-(x_1 + \dots x_{r-1} + x_{r+1} + \dots + x_k)} D_r f(x) dx_r \right) dx_1, \dots, dx_{r-1}, dx_{r+1}, \dots, dx_k
= (-1)^{r-1} \int_{Q^{k-1}} \left[f(\tau_0(x)) - f(\tau_r(x)) \right] dx_1, \dots, dx_{r-1}, dx_{r+1}, \dots, dx_k
= \int_{\partial \sigma} \lambda. \qquad \qquad \Box$$

4 Baire Category

Let X be a metric space with metric d. Let $E \subseteq X$.

Definition 4.1.

- (i) The *interior* of E, E° , is the union of all open subsets of E.
- (ii) The closure of E, \overline{E} , is the intersection of all closed sets containing E.
- (iii) E is dense in X if $\overline{E} = X$.
- (iv) E is nowhere dense if $(\overline{E})^{\circ} = \emptyset$.

Definition 4.2.

- (i) E is of first category (meager) if E is the countable union of nowhere dense sets.
- (ii) If E is not of first category, we say E is of second category.
- (iii) If E^{c} is of first category, we say E is generic (comeager).

Theorem 4.3. (Baire category theorem) Every complete metric space is of second category itself, i.e., cannot be written as a countable union of nowhere dense sets.

Proof. Let X be a complete metric space. Assume for the sake of contradiction that $X = \bigcup_{1}^{\infty} F_n$ where each F_n is nowhere dense. Without loss of generality, we can assume that each F_n is closed by replacing with closures. We will prove that $\exists x \in X$ such that $x \notin \bigcup F_n$. Since F_1 is closed and $F_1 \neq X$, there is an open ball B_1 of radius $r_1 > 0$ such that $\overline{B_1} \subseteq F_1^c$. Since F_2 is closed and nowhere dense, B_1 cannot be entirely contained in F_2 . Since F_2 is closed, there is a ball B_2 of radius $r_2 > 0$ such that $\overline{B_2} \subseteq B_1$ and $\overline{B_2} \subseteq F_2^c$. We can assume $r_2 < r_1/2$. Continuing like this, we obtain a sequence of balls $\{B_n\}$ such that the following conditions hold.

- (i) The radius r_n of B_n goes to 0 as $n \to \infty$.
- (ii) $B_{n+1} \subseteq B_n$.
- (iii) $F_n \cap \overline{B_n} = \emptyset$.

For each $n \in \mathbb{N}$, choose $x_n \in B_n$. Then $\{x_n\}$ is a Cauchy sequence. Since X is complete, $x_n \to x \in X$. By (iii), $x \notin F_n$ for every n, i.e., $x \notin \bigcup F_n$. This is a contradiction.

Corollary 4.4. If X is complete, any generic set of X is dense.

Proof. Assume for the sake of contradiction that $E \subseteq X$ is generic but not dense. Then there is a closed ball \overline{B} such that $\overline{B} \subseteq E^{\mathsf{c}}$. Since E is generic, i.e., E^{c} is of first category, $E^{\mathsf{c}} = \bigcup_{1}^{\infty} F_{n}$ where the F_{n} are nowhere dense. Hence,

$$\overline{B} = \bigcup_{1}^{\infty} (F_n \cap \overline{B}).$$

But \overline{B} is a complete metric space, contradicting the Baire category theorem.

Let X = C([0,1]) be the set of continuous, real-valued functions on [0,1]. Define a metric d on X by

$$d(f,g) = ||f - g|| = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Then X is a complete metric space with d.

Theorem 4.5. The set of $f \in X = C([0,1])$ that are nowhere differentiable is generic.

Proof. Let $\mathcal{D} = \{ f \in X : \exists x \in [0,1] \text{ at which } f \text{ is differentiable} \}$. It suffices to show that \mathcal{D} is of first category. For every $N \in \mathbb{N}$, let E_N be the set of functions $f \in X$ such that $\exists x^* \in [0,1]$ with

$$|f(x) - f(x^*)| \le N|x - x^*| \quad \forall x \in [0, 1].$$
 (1)

Remark. $\mathcal{D} \subseteq \bigcup_{1}^{\infty} E_{N}$.

Lemma 4.6. E_N is closed.

Proof. Let $\{f_n\}$ be a sequence of functions in E_N such that $||f_n - f|| \to 0$. It suffices to show that $f \in E_N$. For every n, let x_n^* be a point such that (1) holds with respect to f_n . Choose a subsequence $\{x_{n_k}^*\}$ such that $x_{n_k}^* \to x^* \in [0, 1]$. Then

$$|f(x) - f(x^*)| = |f(x) - f_{n_k}(x)| + |f_{n_k}(x) - f_{n_k}(x^*)| + |f_{n_k}(x^*) - f(x^*)|.$$

Since $||f_n - f|| \to 0$, $\exists K$ such that $\forall k \ge K$, $\forall x \in [0, 1]$, $|f(x) - f_{n_k}(x)| < \varepsilon/2$. Then $\forall \varepsilon > 0$ for all sufficiently large k,

$$|f(x) - f(x^*)| < \varepsilon + |f_{n_k}(x) - f_{n_k}(x^*)|.$$

Since

$$|f_{n_k}(x) - f_{n_k}(x^*)| = |f_{n_k}(x) - f_{n_k}(x_{n_k}^*)| + |f_{n_k}(x_{n_k}^*) - f_{n_k}(x^*)|$$

$$\leq N(|x - x_{n_k}^*| + |x_{n_k}^* - x^*|).$$

For all sufficiently large k.

$$|f_{n_k}(x) - f_{n_k}(x^*)| \le N|x - x^*| + \varepsilon,$$

i.e.,

$$|f(x) - f(x^*)| < 2\varepsilon + N|x - x^*|.$$

Hence,

$$|f(x) - f(x^*)| \le N|x - x^*|,$$

and $f \in E_N$.

Let $\mathcal{P} \subseteq X$ be the set of piecewise linear functions in C([0,1]). For every M, let $\mathcal{P}_M \subseteq \mathcal{P}$ be the set of piecewise linear functions in \mathcal{P} such that the slope of every line segment in the graph of f is at least M or at most -M.

Note. If M > N, then $\mathcal{P}_M \cap E_N = \emptyset$.

Lemma 4.7. For all M > 0, \mathcal{P}_M is dense in X.

Proof. We first show that $\forall \varepsilon > 0, \forall f \in X, \exists g \in \mathcal{P}$ such that $d(f,g) < \varepsilon$. Since f is continuous on [0,1], it is uniformly continuous, so $\exists \delta > 0$ such that $\forall |x-y| < \delta$, $|f(x) - f(y)| < \varepsilon$. Let $n > 1/\delta$, define as a piecewise linear function such that $\forall k = 0, \ldots, n-1$,

$$g\left(\frac{k}{n}\right) = f\left(\frac{k}{n}\right), g\left(\frac{k+1}{n}\right) = f\left(\frac{k+1}{n}\right).$$

So $g \in \mathcal{P}$ and $d(f,g) < \varepsilon$. We now show that $\exists h \in \mathcal{P}_M$ such that $d(g,h) < \varepsilon$. For k = 0, let $\phi_{\varepsilon}(x) = g(x) + \varepsilon$, $\psi_{\varepsilon}(x) = g(x) - \varepsilon$. Beginning at g(0), travel the line segment of slope M until we intersect ϕ_{ε} . We then travel the line segment of slope -M until we intersect ψ_{ε} . We obtain $h \in \mathcal{P}_M$ such that $\phi_{\varepsilon} \leq h \leq \psi_{\varepsilon}$ on [0, 1/n]. Repeat this process [1/n, 2/n], starting from h(1/n).

By Lemma 4.7, $E_N^{\circ} = \emptyset$ for all N. To see this, let $f \in E_N$, $\varepsilon > 0$, and M > N. Then $\exists h \in \mathcal{P}_M$ such that $d(f,h) < \varepsilon$. But $E_N \cap \mathcal{P}_M = \emptyset$. Hence, there is no open ball containing f which is entirely contained in E_N . By Lemma 4.6, E_N is closed, so E_N is nowhere dense for all N, which implies $\mathcal{D} = \bigcup_{1}^{\infty} (E_N \cap \mathcal{D})$.

Theorem 4.8. Let $\{f_n\}$ be a sequence of continuous real-valued functions on \mathbb{R} , and suppose that $f_n \to f$ pointwise. The set of points at which f is continuous is generic.

Let \mathcal{B} be the set of continuous complex-valued functions on $[-\pi, \pi]$.

Theorem 4.9. The set of $f \in \mathcal{B}$ whose Fourier series diverge on a generic set in $[-\pi, \pi]$ is generic in \mathcal{B} .