5004 Homework 2

RONG Shuo

November 7, 2024

Question 1:

1. For each of the following functions $f(x_1, x_2)$, find all critical points (i.e, all x_1, x_2 such that $\nabla f(x_1, x_2) = \mathbf{0}).$

(a)
$$f(x_1, x_2) = (4x_1^2 - x_2)^2$$

(b)
$$f(x_1, x_2) = 2x_2^3 - 6x_2^2 + 3x_1^2x_2$$

(c)
$$f(x_1, x_2) = (x_1 - 2x_2)^4 + 64x_1x_2$$

(a)
$$f(x_1, x_2) = (4x_1^2 - x_2)^2$$

(b) $f(x_1, x_2) = 2x_2^3 - 6x_2^2 + 3x_1^2x_2$
(c) $f(x_1, x_2) = (x_1 - 2x_2)^4 + 64x_1x_2$
(d) $f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 + x_1 - x_2$

Answer:

(a)

$$\frac{\partial f}{\partial x_1} = 2(4x_1^2 - x_2)(8x_1) = 16x_1(4x_1^2 - x_2)$$
$$\frac{\partial f}{\partial x_2} = 2(4x_1^2 - x_2)(-1) = -2(4x_1^2 - x_2)$$

set the gradient to 0:

$$16x_1(4x_1^2 - x_2) = 0 (1)$$

$$-2(4x_1^2 - x_2) = 0 (2)$$

if $x_1 = 0$, from (2) we can get that $x_2 = 0$ if $x_1 \neq 0$, from equation (1), we know:

$$4x_1^2 = x_2$$

this satisfied $(x_1, x_2) = (0, 0)$ Thus, we can conclude that the critical points are:

$$(x_1, x_2) = (x_1, 4x_1^2) \forall x_1 \in \mathbb{R}.$$

(b)

$$\frac{\partial f}{\partial x_1} = 6x_1x_2$$

$$\frac{\partial f}{\partial x_2} = 6x_2^2 - 12x_2 + 3x_1^2$$

set the gradient to 0:

$$6x_1x_2 = 0$$
$$6x_2^2 - 12x_2 + 3x_1^2 = 0$$

if $x_1 = 0$,

$$6x_2^2 - 12x_2 = 06x_2(x_2 - 2) = 0$$

we can conclude that $(x_1, x_2) = (0, 0)$, or $(x_1, x_2) = (0, 2)$. if $x_2 = 0$,

$$3x_1^2 = 0x_1 = 0$$

This gives $(x_1, x_2) = (0, 0)$

In conclusion, the critical points is (0,0) and (0,2) (c)

$$\frac{f}{\partial x_1} = 4(x_1 - 2x_2)^3 + 64x_2$$
$$\frac{f}{\partial x_2} = -8(x_1 - 2x_2)^3 + 64x_1$$

set the gradient to 0:

$$4(x_1 - 2x_2)^3 + 64x_2 = 0$$
$$(x_1 - 2x_2)^2 = -16x_2$$
$$-8(x_1 - 2x_2)^3 + 64x_1 = 0$$
$$(x_1 - 2x_2)^3 = 8x_1$$

$$(x_1 - 2x_2)^2 = -16x_2$$
$$(x_1 - 2x_2)^3 = 8x_1$$

Question 2:

- 2. Find the gradient of the following functions, where the space \mathbb{R} and $\mathbb{R}^{n\times n}$ are equipped with the standard inner product.
- (a) $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_2^2$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $(\lambda > 0)$ are given.
- (b) $f(\mathbf{X}) = \mathbf{b}^T \mathbf{X} \mathbf{c}$, where $\mathbf{X} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$
- (c) $f(\mathbf{X}) = \mathbf{b} \mathbf{X}^T \mathbf{X} c$, where $\mathbf{X} \in \mathbf{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$

Answer:

Question 3:

3. Let $\{x_i, y_i\}_{i=1}^N$ be given with $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$. Assume N < n. Consider the ridge regression

$$\text{minimize}_{\boldsymbol{a} \in \mathbb{R}^N} \sum_{i=1}^N (\langle \boldsymbol{\alpha}, \boldsymbol{x}_i \rangle - y_i)^2 + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b=0 for simplicity.

(a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^{N} c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \cdots, c_N]^T \in \mathbb{R}^N$.

(hint: similar to the proof of the representer theorem.)

(b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation as N < n.

Answer:

Question 4:

- 4. Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.
- (a) Prove that x is a global minimizer of f if and only if Ax = -b.
- (b) Prove that f is bounded below over \mathbb{R}^n if and only if $\mathbf{b} \in \{\mathbf{A}\mathbf{y} : \mathbf{y} \in \mathbb{R}^n\}$.

Answer:

Question 5:

5. We consider the following optimization problem:

$$\operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \log \left(\sum_{i=1}^m \exp(\boldsymbol{a}_i^T \boldsymbol{x} + b_i) \right)$$
(3)

where $\boldsymbol{a}_1, \cdots \boldsymbol{a}_m \in \mathbb{R}^n$ and $b_1, \cdots b_m \in \mathbb{R}$ are given.

- (a) Find the gradient of f(x).
- (b) If we use gradient descent to solve Problem (1), will it converge to the global minimizer? Please justify your answer.

Answer