Package 'Homework1'

November 13, 2013

Type Package	
Title Homework1 for advanced statistical computing	
Version 1.0	
Date 2013-11-13	
Author Stephen Cristiano	
Maintainer <scristia@jhsph.edu></scristia@jhsph.edu>	
Description fast linear regression, fast mulvariate normal density	
License GPL	
R topics documented:	
dmvnorm	1 2
Index	4
inuc.	
dmvnorm multivariate normal density	_
dmvnorm multivariate normal density	_
dmvnorm multivariate normal density Description	
dmvnorm multivariate normal density Description Quickly evaluate multivariate normal density.	
dmvnorm multivariate normal density Description Quickly evaluate multivariate normal density. Usage dmvnorm(x, mu, S, log = TRUE)	_
dmvnorm multivariate normal density Description Quickly evaluate multivariate normal density. Usage	
dmvnorm multivariate normal density Description Quickly evaluate multivariate normal density. Usage dmvnorm(x, mu, S, log = TRUE) Arguments	
dmvnorm multivariate normal density Description Quickly evaluate multivariate normal density. Usage dmvnorm(x, mu, S, log = TRUE) Arguments x	

2 fastlm

Details

Uses cholesky transformation with backwards/forwards substitution to find coefficient estimates and covariance of beta_hat.

Author(s)

Stephen Cristiano

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
\mbox{\tt \#\#} 
 The function is currently defined as
function (x, mu, S, log = TRUE)
    if (!is.matrix(x))
        x <- matrix(x, nrow = 1, ncol = ncol(S))</pre>
    k \leftarrow ncol(S)
    U <- try(chol(S), silent = TRUE)
    if (class(U) == "try-error")
        stop("S is not positive definite")
    d <- diag(U)</pre>
    logd <- sum(log(d))</pre>
    b \leftarrow crossprod(forwardsolve(t(U), t(x - mu)))
    if (is.matrix(b))
        b <- diag(b)
    logf <- -k/2 * log(2 * pi) - logd - 0.5 * b
    if (log)
        return(logf)
    else return(exp(logf))
  }
```

fastlm

Fast linear model

Description

~fast~ linear regression

Usage

```
fastlm(X, y, na.rm = FALSE)
```

Arguments

```
Х
у
na.rm
```

fastlm 3

Details

Uses Cholesky transormation.

Note

works pretty well.

Author(s)

Stephen Cristiano

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (X, y, na.rm = FALSE)
    if (na.rm) {
        if (any(is.na(X))) {
             inx <- which(is.na(rowSums(X)))</pre>
             X <- X[-inx, , drop = FALSE]</pre>
             y \leftarrow y[-inx]
        }
        if (any(is.na(y))) {
             iny <- which(is.na(y))</pre>
             y \leftarrow y[-iny]
             X <- X[-iny, , drop = FALSE]</pre>
        }
    }
    n <- nrow(X)</pre>
    p <- ncol(X)
    U <- chol(t(X) %*% X)
    b \leftarrow backsolve(U, forwardsolve(t(U), t(X) %*% y))
    sigma2 <- 1/(n - p) * (t(y) %*% y - t(b) %*% t(X) %*% y)
    s2 <- diag(as.numeric(sigma2), p)</pre>
    var.b <- backsolve(U, forwardsolve(t(U), s2))</pre>
    return(list(coefficients = b, vcov = var.b))
```

Index

```
*Topic \textasciitildekwd1
dmvnorm, 1
fastlm, 2
*Topic \textasciitildekwd2
dmvnorm, 1
fastlm, 2

dmvnorm, 1
fastlm, 2
```