Serie 5 Multimedia Processing

Esercizio 1

a)

Con la qualità al massimo cioè 90%

notiamo una differenza di qualità se gli aumentiamo lo smoothing al 50%, diventando più bella da vedere

Invece con una qualità più bassa (50%) senza smoothing otteniamo quest'immagine, il quale confrontandole con quelle precedenti si vede un netto peggioramento di quest'ultima

Invece aumentando lo smoothing al 50% notiamo un leggero miglioramento dell'immagine ma comunque risulta peggiorata rispetto ad una qualità maggiore

b)

Quando si confrontano le due immagini (quella scalata e quella no) notiamo che se si vuole ingrandire l'immagine scalata (fino a raggiungere l'altra) si ha una perdita di qualità notevole

c) La perdita di informazioni porta ad una notevole riduzione di dimensione delle immagini arrivando a perdere anche percentuali rilevanti (se si vuole diminuire la qualità).

building - smoothing 0 best qualita.jpg	8/15/2014 10:25 AM	JPG File	1,798 KB
building.gif	10/26/2018 9:40 AM	GIF File	795 KB
building2 - smoothing 50 best quality.jpg	8/15/2014 10:25 AM	JPG File	1,641 KB
building3 - smoothing 0 low quality 50.jpg	8/15/2014 10:25 AM	JPG File	687 KB
building3 - smoothing 50 low quality 50.jpg	8/15/2014 10:25 AM	JPG File	630 KB
building-scale.JPG	10/26/2018 10:18 AM	JPG File	33 KB
■ building-scale.tif	8/15/2014 10:25 AM	TIF File	1,802 KB

Esercizio 2

a) Usando l'immagine BN.png notiamo subito che l'istogramma ha solo due valori (bianco e nero)

Mentre invece grayscale.png l'istogramma passa per tutta la scala di grigi (con il quale l'immagine è composta)

b) L'immagine building.tiff lavora su tantissimi colori, producendo quello che è l'istogramma in questo caso per notare tutte le tonalità di colore ho cambiato la visualizzazione in RGB al posto di Value

La seconda immagine invece producendo più colori a tinta unica e meno valori bianco e nero notiamo un grafico più colorato

c) L'immagine senza contrasto presenta una scala di grigi chiari fino al bianco, in pratica come vediamo nell'immagine, dove non sono presenti neri o grigi scuri.

Mentre aggiungendo maggior contrasto si nota una gamma di colori maggiore aumentando ancora di più i colori formano una specie di curva. Passando quindi tra tutti i colori

Esercizio 3

L'immagine presenta un grafico con alcuni picchi che specificano la concentrazione di colore

Mentre effettuando un anti-aliasing l'immagine presenta valori più alti nelle posizioni iniziali (quindi nei grigi scuri. Facendo tante volte l'anti-aliasing i valori si riportano alle condizioni iniziali

Esercizio 4

Applicando una soglia tra 236 e 255 sul blu è possibile visualizzare tutti i cubetti in modo anche da avere lo sfondo bianco con i cubetti completamente neri, senza però avere nello sfondo delle sporcizie

Invertiamo i colori in modo da avere lo sfondo nero (perché servirà nella maschera per poterlo cambiare)

Infine inseriamo il colore arancione e applichiamo la maschera, ma purtroppo però la maschera non essendo perfetta contiene della "sporcizia" che rimarrà di colore bianca e quindi non verrà sostituita dall'arancione. Per poter migliorare la situazione è possibile modificare la maschera.

