Sampling Distribution Models

November 18, 2013

Jason Bryer epsy530.bryer.org

Sampling About Evolution

According to a Gallup poll, 43% believe in evolution. Assume this is true of all Americans.

- If many surveys were done of 1007 Americans, we could calculate the sample proportion for each.
- The histogram shows the distribution of a simulation of 2000 sample proportions.
- The distribution of all possible sample proportions from samples with the same sample size is called the sampling distribution.

Sampling Distributions

Sampling Distribution for Proportions

- · Symmetric
- Unimodal
- · Centered at p
- The sampling distribution follows the Normal model.

What does the sampling distribution tell us?

• The sampling distribution allows us to make statements about where we think the corresponding population parameter is and how precise these statements are likely to be.

Sampling Distribution for Smoking

18% of US adults smoke. How much would we expect the proportion of smokers in a sample of size 1000 to vary from sample to sample?

- A histogram was drawn to display the results of asimulation.
- The mean is 0.18 = the population proportion.
- The standard deviation was calculated as 0.0122.
- Normal: 68-95-99.7 rule works.
- 95% of all proportions are within 0.0244 of the mean.
- This is very close to the true value: 95.41%

Mean and Standard Deviation

Sampling Distribution for Proportions

- Mean = p
- Standard Deviation: $\sigma(\hat{p}) = \frac{\sqrt{npq}}{n} = \sqrt{\frac{pq}{n}}$

The Normal Model for Evolution

Population: p = 0.43, n = 1007. Sampling Distribution:

- Mean = 0.43
- $\sigma(\hat{p}) = \sqrt{\frac{(0.43)(0.57)}{1007}} \approx 0.0156$

Smokers Revisited

$$p = 0.18, n = 1000$$

- * Standard deviation = $\sigma(\hat{p}) = \sqrt{\frac{(0.18)(0.82)}{1000}} \approx 0.0121$
- · Standard deviation from simulation: 0.0122

The sample-to-sample standard deviation is called the standard error or sampling variability.

• The standard error is not an error, since no error has been made.

When Does the Normal Model Work?

- Success Failure Condition: $np \ge 10$, $nq \ge 10$ There must be at least 10 expected successes and failures.
- · Independent trials: Check for the Randomization Condition.
- 10% Condition: Sample size less than 10% of the population size

Understanding Health Risks

22% of US women have a BMI that is above the 25 healthy mark. Only 31 of the 200 randomly chosen women from a large college had a BMI above 25. Is this proportion unusually small?

- Success Failure Condition: $np \ge 10$, $nq \ge 10$ There must be at least 10 expected successes and failures.
- Independent trials: Check for the Randomization Condition.
- 10% Condition: Sample size less than 10% of the population size

- Randomization Condition: Yes, the women were randomly chosen.
- 10% Condition: For a large college, this is ok.
- Success Failure Condition: $31 \ge 10$, $169 \ge 10$
- · Yes, the Normal model can be used.

Understanding Health Risks

$$n = 200, p = 0.22, x = 31$$

$$\hat{p} = \frac{31}{200} = 0.155$$

•
$$p = 0.22$$

•
$$SD(\hat{p}) = \sqrt{\frac{(0.22)(0.78)}{200}} \approx 0.029$$

$$\cdot z = \frac{0.155 - 0.22}{0.029} \approx -2.24$$

• 68-95-99.7 Rule: Values 2 SD below the mean occur less than 2.5% of the time. Perhaps this college has a higher proportion of healthy women, or women who lie about their weight.

Enough Lefty Seats?

13% of all people are left handed.

- · A 200-seat auditorium has 15 lefty seats.
- · What is the probability that there will not be enough lefty seats for a class of 90 students?

Plan: 15/90 \approx 0.167, Want $P(\hat{p}) > 0.167$) Model:

- · Independence Assumption: With respect to lefties, the students are independent.
- 10% Condition: This is out of all people.
- Success/Failure Condition: $15 \ge 10$, $75 \ge 10$

Enough Lefty Seats?

Model:

- p = 0.13
- $SD(\hat{p}) = \sqrt{\frac{(0.13)(0.87)}{90}} \approx 0.035$ Show:
- · Plot
- Mechanics: $z = \frac{0.167 0.13}{0.035} \approx 1.06$ $P(\hat{p}) > 0.167) = P(z > 1.06) \approx 0.1446$
- Conclusion: There is about a 14.5% chance that there will not be enough seats for the left handed students in the class.

The Sampling Distribution for Others

- There is a sampling distribution for any statistic, but the Normal model may not fit.
- Below are histograms showing results of simulations of sampling distributions.

- The medians seem to be approximately Normal.
- The variances seem somewhat skewed right.
- The minimums are all over the place.
- · In this course, we will focus on the proportions and the means.

Sampling Distribution of the Means

- · For 1 die, the distribution is Uniform.
- For 3 dice, the sampling distribution for the means is closer to Normal.
- For 20 dice, the sampling distribution for the means is very close to normal. The standard deviation is much smaller.

The Central Limit Theorem

The Central Limit Theorem

 The sampling distribution of any mean becomes nearly Normal as the sample size grows.

Requirements

- · Independent
- · Randomly collected sample

The sampling distribution of the means is close to Normal if either:

- Large sample size
- Population close to Normal

Population Distribution and Sampling Distribution of the Means

Population Distribution

- Normal → Normal (any sample size)
- Uniform → Normal (large sample size)
- Bimodal → Normal (larger sample size)
- Skewed → Normal (larger sample size)

Binomial Distributions and the Central Limit Theorem

- · Consider a Bernoulli trial as quantitative:
 - Success = 1
 - Failure = 0
- The mean of many trials is just \hat{p}
- This distribution of a single trial is far from Normal.
- By the Central Limit Theorem, the Binomial distribution is approximately normal for large sample sizes.

Standard Deviation of the Means

- Which would be more unusual: a student who is 6'9" tall in the class or a class that has mean height of 6'9"?
- · The sample means have a smaller standard deviation than the individuals.
- The standard deviation of the sample means goes down by the square root of the sample size:

$$SD(\bar{y}) = \frac{\sigma}{\sqrt{n}}$$

The Sampling Distribution Model for a Mean

When a random sample is drawn from a population with mean μ and standard deviation σ , the sampling distribution has:

- Mean: μ
- Standard Deviation: $SD(\bar{y}) = \frac{\sigma}{\sqrt{n}}$

For large sample size, the distribution is approximately normal regardless of the population the random sample comes from. The larger the sample size, the closer to Normal.

Low BMI Revisited

The 200 college women with the low BMI reported a mean weight of only 140 pounds. For all 18-year-old women, $\mu = 143.74$ and $\sigma = 51.54$. Does the mean weight seem exceptionally low?

- · Randomization Condition: The women were a random sample with weights independent.
- · Sample size Condition: Weights are approximately Normal. 200 is large enough
- $\mu(\bar{y}) = 143.7$
- $SD(\bar{y}) = \frac{\sigma}{\sqrt{n}} = \frac{51.54}{\sqrt{200}} \approx 3.64$
- The 68-95-99.7 rule suggests that the mean is low but not that unusual. Such variability is not extraordinary for samples of this size.

Too Heavy for the Elevator?

Mean weight of US men is 190 lb, thestandard deviation is 59 lb. An elevator has a weight limit of 10 persons or 2500 lb. Find the probability that 10 men in the elevator will overload the weight limit.

- Plan: 10 over 2500 lb same as their mean over 250.
- Model:
 - Independence Assumption: Not random, but probably independent.
 - Sample Size Condition: Weight approx.
 Normal.
- Model: $\mu = 190$, $\sigma = 59$
- By the CLT, the sampling distribution of is approximately Normal:

$$SD(\bar{y}) = \frac{\sigma}{\sqrt{n}} = \frac{59}{\sqrt{10}} \approx 18.66$$

- Mechanics: $z = \frac{\bar{y} \mu}{SD(\bar{y})} = \frac{250 190}{18.66} \approx 3.21$
- $P(\bar{y} > 250) \approx P(z > 3.21) \approx 0.0007$
- Conclusion: There is only a 0.0007 chance that the 10 men will exceed the elevator's weight limit.

Sample Size and Standard Deviation

- $SD(\bar{y}) = \frac{\sigma}{\sqrt{n}}$
- $SD(\hat{p}) = \frac{\sqrt{pq}}{\sqrt{n}}$
- Larger sample size → Smaller standard deviation
- Multiply n by 4 → Divide the standard deviation by 2.
- Need a sample size of 100 to reduce the standard deviation by a factor of 10.

Distribution of the Sample vs. the Sampling Distribution

Don't confuse the distribution of the sample and the sampling distribution.

- If the population's distribution is not Normal, then the sample's distribution will not be normal even if the sample size is very large.
- For large sample sizes, the sampling distribution, which is the distribution of all possible sample means from samples of that size, will be approximately Normal.
- Sampling distributions arise because samples vary. Each random sample will contain different cases and, so, a different value of the statistic.
- Although we can always simulate a sampling distribution, the Central Limit Theorem saves us the trouble for proportions and means. This is especially important when we do not know the population's distribution.

