07 Branch and Bound for Integer Programming

Sang Jin Kweon (권상진)

School of Management Engineering UNIST

Office hours: after class (or by APPT.)

Email: sjkweon@unist.ac.kr

Tel: +82 (52) 217-3146

Web:

http://or.unist.ac.kr

Seungok Woo (우승옥)

• Email: wso1017@unist.ac.kr

Office Hours: by APPT.

Acknowledgement

Classification of Integer Linear Programs

1. Integer Linear Program (ILP)

maximize
$$z = \sum_{j=1}^{n} c_j x_j$$
,

subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$
, $i = 1, ..., m$,

$$x_j \ge 0$$
, integer, $j = 1, ..., n$.

2. Mixed-Integer Linear Program (MILP)

maximize
$$z = \sum_{j=1}^{n} c_j x_j + \sum_{k=1}^{p} d_k y_k$$
,

subject to
$$\sum_{j=1}^{n} a_{ij} x_j + \sum_{k=1}^{p} g_{ik} y_k = b_i, \quad i = 1, ..., m,$$

$$x_j \ge 0$$
, integer, $j = 1, ..., n$,

$$y_k \ge 0$$
, $k = 1, ..., p$.

3. 0-1 Integer Linear Program (0-1 ILP)

maximize
$$z = \sum_{j=1}^{n} c_j x_j$$
,

subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$
, $i = 1, ..., m$,

$$x_{j} \in \{0, 1\},$$
 $j = 1, ..., n.$

4. 0-1 Mixed-Integer Linear Program (0-1 MILP)

maximize
$$z = \sum_{j=1}^{n} c_j x_j + \sum_{k=1}^{p} d_k y_k$$
,

$$y_k \ge 0$$
, $k = 1, ..., p$.

Graphical Solution to Integer Linear Programs with Two Variables

Example:

maximize
$$z = 2x_1 + 3x_2$$
 subject to $2x_1 + x_2 \le 10$ (1) $x_1 + 3x_2 \le 9$ (2)

Case 1 (LP): $x_1, x_2 \ge 0$.

Unique solution:
$$x_1^* = \frac{21}{5}$$
 $z^* = \frac{66}{5} = 13.2$ (A) $x_2^* = \frac{8}{5}$

Case 2 (ILP): $x_1, x_2 \ge 0$, integer.

Unique solution:
$$x_1^* = 3$$
 $z^* = 12$ (B) $x_2^* = 2$

Case 3 (MILP): $x_1 \ge 0$; $x_2 \ge 0$, integer.

Two solutions:
$$x_1^* = 3$$
 and $x_1^* = \frac{9}{2}$ $z^* = 12$ (B) and (C) $x_2^* = 2$ $x_2^* = 1$

Branch and Bound

☐ Branch and Bound (BB) is a general method for finding optimal solutions to problems, typically discrete problems.

■ A branch-and-bound algorithm searches the entire space of candidate solutions, with one extra trick: it throws out large parts of the search space by using previous estimates on the quantity being optimized.

☐ The method is due to Ailsa Land and Alison Doig, who wrote the original paper in 1960:

"An automatic method of solving discrete programming problems."

Branch and Bound

- ☐ Typically we can view a branch-and-bound algorithm as a tree search.
- At any node of the tree, the algorithm must make a finite decision and set one of the unbound variables.
- For example, suppose a binary integer programming model where each variable is only 0 or 1 valued. Then at a node where the variable x is on-tap, the algorithm must decide whether or not x = 0 or x = 1 is the right choice. In a brute-force search, both choices would be examined.

Branch and Bound

- ☐ In the BB case, the algorithm tries to avoid searches that are "useless."
- Imagine that the algorithm can prove that setting x=0 will lead to a value for the optimization quantity of at most A, while setting x=1 will lead to a value for this quantity of at least B.
- If A < B in a maximization problem, then there is no reason to even consider setting x to 0. The upper bound on A and a lower bound on B allows the algorithm to safely avoid searching a whole chunk of the space: all those cases where x would be set to 0. This is the power of the method.

Reference: https://rjlipton.wordpress.com/2012/12/19/branch-and-bound-why-does-it-work/

```
Maximize 3x_1+5x_2

Subject to 2x_1+4x_2 \leq 25

x_1 \leq 8

2x_2 \leq 10

x_1, x_2: integers

x_1, x_2 \geq 0
```

Maximize
$$3x_1 + 5x_2$$

Subject to $2x_1 + 4x_2 \le 25$
 $x_1 \le 8$
 $2x_2 \le 10$

$$x_1, x_2$$
: integers LP Relaxation

$$x_1, \qquad x_2 \ge 0$$

(i.e., we allow x_1 and x_2 to have real values)

Optimal Solution with LP Relaxation:

$$x_1^* = 8$$
, $x_2^* = 9/4$
 $z^* = 141/4$

We stop here because the solutions in Nodes 3A and 3B are dominated by the Solution in Node 1A.

Optimal Solution exists at Node 1A.

What about **the computational complexity**?

Acknowledgement

