Corrigé du devoir maison 1.

 $\mathbf{1}^{\circ}) \text{ Par croissances comparées, } \lim_{X \to +\infty} \frac{e^{X}}{X^{k}} = +\infty \text{ donc } \left| \lim_{X \to +\infty} \frac{X^{k}}{e^{X}} = 0 \right|$

Pour tout $x \in \mathbb{R}_+^*$, $f_k(x) = \frac{(\ln(x^2))^k}{e^{\ln(x^2)}}$

Or
$$\lim_{x \to +\infty} \ln(x^2) = +\infty$$
 et $\lim_{X \to +\infty} \frac{X^k}{e^X} = 0$ donc $\lim_{x \to +\infty} \frac{(\ln(x^2))^k}{e^{\ln(x^2)}} = 0$. Ainsi, $\lim_{x \to +\infty} f_k(x) = 0$

Variante: Pour tout $x \in \mathbb{R}_+^*$, $f_k(x) = \frac{2^k}{x} \frac{(\ln(x))^k}{e^{\ln(x)}}$.

Or
$$\lim_{x \to +\infty} \ln(x) = +\infty$$
 et $\lim_{X \to +\infty} \frac{X^k}{e^X} = 0$ donc $\lim_{x \to +\infty} \frac{(\ln(x))^k}{e^{\ln(x)}} = 0$.
Comme de plus $\lim_{x \to +\infty} \frac{2^k}{x} = 0$, par produit, $\lim_{x \to +\infty} f_k(x) = 0$.

On a $\lim_{x\to 0} \frac{1}{x^2} = +\infty$. Par ailleurs $\lim_{x\to 0} \ln(x) = -\infty$.

Si k est pair, $\lim_{x\to 0} (\ln(x))^k = +\infty$.

Si k est impair, $\lim_{x\to 0} (\ln(x))^k = -\infty$.

Par produit, on a donc $\lim_{x\to 0} f_k(x) = -\infty$ si k est pair $\lim_{x\to 0} f_k(x) = -\infty$ si k est impair

2°) **a**) Pour tout $x \in \mathbb{R}_+^*$, $f_1(x) = 2\frac{\ln(x)}{x^2}$.

Par quotient, la fonction f_1 est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$f_1'(x) = 2\frac{\frac{1}{x}x^2 - \ln(x) \cdot 2x}{(x^2)^2} = 2x\frac{1 - 2\ln(x)}{x^4} = 2\frac{1 - 2\ln(x)}{x^3}$$

Pour tout $x \in \mathbb{R}_+^*$, $x^3 > 0$ donc $f_1'(x)$ est du signe de $1 - 2\ln(x)$.

Pour tout $x \in \mathbb{R}_+^*$,

$$1-2\ln(x)>0 \Longleftrightarrow 1>2\ln(x)$$
 $\Longleftrightarrow \frac{1}{2}>\ln(x)$ $\Longleftrightarrow e^{\frac{1}{2}}>x$ par stricte croissance de exp

De même, $1 - 2\ln(x) = 0 \iff x = e^{\frac{1}{2}}$

Calculons:
$$f_1(e^{\frac{1}{2}}) = 2 \frac{\ln\left(e^{\frac{1}{2}}\right)}{\left(e^{\frac{1}{2}}\right)^2} = 2 \frac{\frac{1}{2}}{e} = \frac{1}{e}.$$

D'où le tableau de variation de f_1 :

x	0	$e^{rac{1}{2}}$	$+\infty$
$f_1'(x)$		+ 0	-
f_1	$-\infty$	$\frac{1}{e}$	0

- **b)** $f'_1(1) = 2\frac{1-0}{1^3} = 2$, et $f_1(1) = 0$, donc la tangente à C_1 au point d'abscisse 1 a pour équation : y = 2(x-1) + 0 i.e. y = 2x 2.
- c) Voir le tracé de la courbe à la questions 3c.
- **3°) a)** Lorsque k est impair, k-1 est pair, donc pour tout $x \in \mathbb{R}_+^*$, $(\ln(x))^{k-1} \ge 0$, et comme k-1>0, cette quantité s'annule uniquement pour x=1.

Lorsque k est pair, k-1 est impair, donc pour tout $x \in \mathbb{R}_+^*$, $(\ln(x))^{k-1}$ a même signe que $\ln(x)$: strictement négatif sur]0,1[, nul en 1, et strictement positif sur $]1,+\infty[$.

Pour tout $x \in \mathbb{R}_{+}^{*}$,

$$k-2\ln(x)>0 \iff k>2\ln(x)$$

$$\iff \frac{k}{2}>\ln(x)$$

$$\iff e^{\frac{k}{2}}>x \text{ par stricte croissance de exp}$$

De même,
$$k - 2\ln(x) = 0 \iff x = e^{\frac{k}{2}}$$

On en tire les tableaux de signes suivants :

Pour k impair :

x	0		1		$e^{rac{k}{2}}$		$+\infty$
$g_k(x)$		+	0	+	0	_	

Pour k pair :

x	C)	1		$e^{rac{k}{2}}$		$+\infty$
$(\ln(x))^{k-1}$		_	0	+		+	
$k-2\ln(x)$		+		+	0	_	
$g_k(x)$		_	0	+	0	_	

b) Par produit et quotient, $f_k: x \mapsto 2^k \frac{(\ln(x))^k}{x^2}$ est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$f'_k(x) = 2^k \frac{k^{\frac{1}{x}} (\ln(x))^{k-1} x^2 - (\ln(x))^k \cdot 2x}{(x^2)^2} = 2^k x^{\frac{k}{x}} \frac{(\ln(x))^{k-1} - 2(\ln(x))^k}{x^4} = 2^k \frac{g_k(x)}{x^3}$$

Comme $x^3 > 0$ sur \mathbb{R}_+^* , g_k et f_k' ont même signe.

Calculons:
$$f_k\left(e^{\frac{k}{2}}\right) = 2^k \frac{\left(\ln\left(e^{\frac{k}{2}}\right)\right)^k}{\left(e^{\frac{k}{2}}\right)^2} = 2^k \frac{\left(\frac{k}{2}\right)^k}{e^k} = \frac{k^k}{e^k} \text{ et } f_k(1) = 0.$$

On en déduit le tableau de variation de f_k .

Pour k impair :

1						
x	0	1		$e^{rac{k}{2}}$	$+\infty$	
$f'_k(x)$		+ 0	+	0	_	
$f_k(x)$	$-\infty$	0-		$ ightharpoonup rac{k^k}{e^k}$	0	

Pour k pair :

x	0	1	$e^{rac{k}{2}}$	$+\infty$
$f'_k(x)$	_	0	+ 0	_
$f_k(x)$	$+\infty$	0	$\frac{k^k}{e^k}$	0

c) Tracé des courbes C_1 et C_2 :

$$\text{Remarque}: f_2\left(e^{\frac{1}{2}}\right) = \frac{\left(2\ln\left(e^{\frac{1}{2}}\right)\right)^2}{\left(e^{\frac{1}{2}}\right)^2} = \frac{\left(2\frac{1}{2}\right)^2}{e} = \frac{1}{e}.$$

4°) On peut commencer par chercher les points d'intersection de C_1 et C_2 . On sait déjà que les points A(1,0) et $B\left(e^{\frac{1}{2}},\frac{1}{e}\right)$ appartiennent à la fois à C_1 et C_2 . Vérifions qu'il n'y en a pas d'autres (regarder le dessin des courbes ne suffit pas!).

On résout alors, pour $x \in \mathbb{R}_+^*$,

$$f_1(x) = f_2(x) \iff 2\ln(x) = 4(\ln(x))^2$$

$$\iff \ln(x) - 2(\ln(x))^2 = 0$$

$$\iff \ln(x) (1 - 2\ln(x)) = 0$$

$$\iff x = 1 \text{ ou } x = e^{\frac{1}{2}}$$

Les points A et B sont donc les seuls points d'intersection de C_1 et C_2 .

Vérifions que ces points sont sur toutes les courbes \mathcal{C}_k : pour tout $k \in \mathbb{N}^*, f_k(1) = 0$ et

$$f_k(e^{\frac{1}{2}}) = \frac{\left(2\ln\left(e^{\frac{1}{2}}\right)\right)^k}{\left(e^{\frac{1}{2}}\right)^2} = \frac{1^k}{e} = \frac{1}{e}$$

Ainsi il y a bien exactement deux points communs à toutes les courbes C_k , ce sont les points A et B.

 5°) a) Soit les fonctions u et v dérivables, suivantes.

$$\forall x \in [1, e], \qquad u(x) = \ln(x) \qquad \qquad u'(x) = \frac{1}{x}$$
$$v(x) = -\frac{1}{x} \qquad \qquad v'(x) = \frac{1}{x^2}$$

$$I_{1} = \int_{1}^{e} \frac{\ln(x)}{x^{2}} dx = \left[-\frac{1}{x} \ln(x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \frac{-1}{x} dx$$
$$= -\frac{1}{e} + 0 + \int_{1}^{e} \frac{1}{x^{2}} dx$$
$$= -\frac{1}{e} + \left[-\frac{1}{x} \right]_{1}^{e} = -\frac{1}{e} + -\frac{1}{e} + 1$$
$$I_{1} = 1 - \frac{2}{e}$$

b) Soit les fonctions w et v dérivables, suivantes.

$$\forall x \in [1, e], \qquad w(x) = (\ln(x))^{k+1} \qquad \qquad u'(x) = (k+1)\frac{1}{x}(\ln(x))^k$$
$$v(x) = -\frac{1}{x} \qquad \qquad v'(x) = \frac{1}{x^2}$$

Par intégration par parties :

$$I_{k+1} = \left[-\frac{1}{x} (\ln(x))^{k+1} \right]_1^e - \int_1^e \frac{k+1}{x} (\ln(x))^k \frac{-1}{x} dx$$
$$= -\frac{1}{e} + 0 + (k+1) \int_1^e \frac{(\ln(x))^k}{x^2} dx$$
$$I_{k+1} = -\frac{1}{e} + (k+1)I_k$$

c) Posons, pour tout $k \in \mathbb{N}^*$, $\mathcal{P}_k : \frac{I_k}{k!} = 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right)$.

•
$$\frac{I_1}{1!} = I_1 = 1 - \frac{2}{e}$$
.
Et pour $k = 1, 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right) = 1 - \frac{1}{e} \left(1 + \frac{1}{1!} \right) = 1 - \frac{2}{e}$.
Ainsi \mathcal{P}_1 est vraie.

• Supposons \mathcal{P}_k vraie pour un $k \in \mathbb{N}^*$. D'après la question précédente,

$$\frac{I_{k+1}}{(k+1)!} = -\frac{1}{e} \frac{1}{(k+1)!} + \frac{(k+1)}{(k+1)!} I_k$$
Or $\frac{(k+1)}{(k+1)!} I_k = \frac{1}{k!} I_k = 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right)$ par hypothèse de récurrence. Ainsi :
$$\frac{I_{k+1}}{(k+1)!} = -\frac{1}{e} \frac{1}{(k+1)!} + 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right)$$

$$= 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} + \frac{1}{(k+1)!} \right)$$

Ainsi \mathcal{P}_{k+1} est vraie.

• Conclusion: pour tout $k \in \mathbb{N}^*$, $\frac{I_k}{k!} = 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right)$.

d) Soit $k \in \mathbb{N}^*$.

Comme l
n est croissante, pour tout $x \in [1,e]$, $\ln(1) \le \ln(x) \le \ln(e)$ i.e. $0 \le \ln(x) \le 1$, d'où $0 \le (\ln(x))^k \le 1$.

Par ailleurs, pour tout $x \in [1, e]$, $0 \le \frac{1}{x^2}$, donc, par produit, $0 \le \frac{(\ln(x))^k}{x^2} \le \frac{1}{x^2}$. Par croissance de l'intégrale sur [1, e],

$$\int_{1}^{e} 0 \, \mathrm{d}x \le \int_{1}^{e} \frac{(\ln(x))^{k}}{x^{2}} \, \mathrm{d}x \le \int_{1}^{e} \frac{1}{x^{2}} \, \mathrm{d}x$$

Or
$$\int_{1}^{e} 0 \, dx = 0$$
 et $\int_{1}^{e} \frac{1}{x^{2}} \, dx = \left[-\frac{1}{x} \right]_{1}^{e} = -\frac{1}{e} + 1 \le 1$.

On a bien : $0 \le I_k \le 1$.

e) On a donc, pour tout $k \in \mathbb{N}^*$, $0 \le \frac{I_k}{k!} \le \frac{1}{k!}$; comme $\lim_{k \to +\infty} \frac{1}{k!} = 0$, d'après le théorème des gendarmes, $\lim_{k \to +\infty} \frac{I_k}{k!} = 0$.

Or, d'après la question c, pour tout $k \in \mathbb{N}^*$, $1 + \frac{1}{1!} + \dots + \frac{1}{k!} = e - e \frac{I_k}{k!}$.

Donc
$$\lim_{k \to +\infty} \left(1 + \frac{1}{1!} + \dots + \frac{1}{k!} \right) = e$$
.