Symbols, Patterns and Signals: Evaluation

Dr. Iván Palomares Carrascosa, Office 319 Magg's House Email: i.palomares@bristol.ac.uk

In this lecture...

- Evaluating classifiers: accuracy
- True and False Positive rates
- ROC Curve

Evaluating and tuning classifiers

	Predicted positive	Predicted negative	
Positive	true positives	false negatives	Pos
examples	TP	FN	
Negative	false positives	true negatives	Neg
examples	FP	TN	
	PPos	PNeg	N

Normally, classifiers are evaluated by "recording" N predictions on a test set in a confusion matrix, and calculating their accuracy = (TP+TN)/N

∘ error = 1 − accuracy = (FP+FN)/N

However, this assumes positives and negatives as equally important

- profit of an extra true positive = profit of an extra true negative = +1/N
- cost of an extra false positive = cost of an extra false negative = -1/N

Imbalanced misclassification costs

Medical diagnosis

- the cost of a false negative (patient wrongly classified as healthy) is often <u>much higher than the cost of a false positive</u> (patient wrongly classified as having disease)
- so good performance in predicting disease (positive class) is more important than good performance in predicting healthy condition (negative class)

Imbalanced misclassification costs

Spam email filtering

- the cost of a false positive (non-spam wrongly classified as spam) is often much <u>higher than the cost of a false negative</u> (spam wrongly classified as non-spam)
- so good performance in predicting non-spam (negative class) is more important than good performance in predicting spam (positive class)

True and false positive rates

True positive rate (sensitivity, recall): tpr = TP/Pos = TP/(TP+FN)

proportion of positives correctly predicted

False positive rate (fall-out): fpr = FP/Neg = FP/(FP+TN)

- proportion of negatives incorrectly predicted as positive
- = 1 true negative rate TN/(FP+TN)

ROC graphs plot true positive rate against false positive rate

ROC = Receiver Operating Characteristic

	Predicted positive	Predicted negative		
Positive examples	TP	FN	Pos	
Negative examples	FP	TN	Neg	
	PPos	PNeg	N	

ROC plot for classifiers

In order to choose the best classifier, we need to take cost factors into

account

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)

	P. Diabetic	P. Not Diabetic
Is Diabetic	4	0
Is not Diabetic	4	0

tpr = 4/(4+0) = 1

fpr = 4/(4+0) = 1

	P. Diabetic	P. Not Diabetic
Is Diabetic	4	0
Is not Diabetic	4	0

$$tpr = 4/(4+0) = 1$$

$$fpr = 4/(4+0) = 1$$

	P. Diabetic	P. Not Diabetic
Is Diabetic	4	0
ls not Diabetic	3	1

tpr = 1

fpr = 0.75

	P. Diabetic	P. Not Diabetic
Is Diabetic	4	0
Is not Diabetic	4	0

$$fpr = 4/(4+0) = 1$$

	P. Diabetic	P. Not Diabetic
Is Diabetic	4	0
ls not Diabetic	3	1

$$fpr = 0.75$$

The ROC graph summarises all the confusion matrices that each threshold (classifier configuration) produced

Cost ratio

- 1 extra true positive increases tpr with 1/Pos
- 1 extra false positive increases fpr with 1/Neg
- If these are worth the same, then all ROC points on a line with slope Neg/Pos are equally good

More generally, if a extra true positives are worth one extra false positive, and if there are b negatives to every positive, then all ROC points on a line with slope c = a*b are equally good

c is called cost ratio and indicates relative importance of tpr and fpr

- c>1: low fpr more important than high tpr
- c<1: high tpr more important than low fpr

The ROC convex hull

- The slope of each line segment is the cost ratio under which the two classifiers at the end points are equally good
 - higher cost ratio ⇒ left one better,
 - lower cost ratio ⇒ right one better
 - classifiers under the convex hull are sub-optimal

Selecting the optimal classifier

For c=1, C4.5 is optimal

Selecting the optimal classifier

For c=1/4, SVM is optimal

ROC analysis for Bayesian classifiers

Remembering maximum likelihood decision rule:

• if
$$\frac{p(x \mid +)}{p(x \mid -)} \ge 1$$
 then class + else class -

We can take class distribution into account by using the maximum a posteriori decision rule:

• if
$$\frac{p(x \mid +)}{p(x \mid -)} \ge \frac{P(-)}{P(+)}$$
 then class + else class -

Or we can refrain from setting a specific threshold, i.e. instead of only using the likelihood ratio, let's "play with different thresholds"

 preferable for naïve Bayes classifier, which <u>makes unrealistic independence</u> <u>assumptions</u>, leading to uncalibrated probability estimates

From likelihood ratios to ROC curves

Impractical method:

- consider all possible thresholds on likelihood ratio
 - in fact, only k+1 for k instances
- construct one confusion matrix for each threshold
- plot in ROC space (each matrix leads to one (fpr,tpr) point)

Practical method:

- assuming ratio threshold of 1, rank test instances predicted as positive on decreasing likelihood ratio
- starting in (0,0), if the next instance in the ranking is [+] move
 1/Pos up, if it is [-] move 1/Neg to the right
 - make diagonal move in case of ties

From likelihood ratios to ROC curves

Practical method illustrated

${\rm Inst} \#$	Class	\mathbf{Score}	Inst#	Class	\mathbf{Score}
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	15	\mathbf{n}	.36
6	\mathbf{p}	.54	16	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

From likelihood ratios to ROC curves

Practical method illustrated

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	15	\mathbf{n}	.36
6	\mathbf{p}	.54	16	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

Some example ROC curves

Good separation between classes, convex

Fairly poor separation, mostly convex

Reasonable separation, mostly convex

Poor separation, large and small concavities

The AUC metric for evaluating rankers

The Area Under ROC Curve (AUC) assesses the ranking in terms of separation of the classes: the bigger AUC, the better

- all the [+] "show up" before the [-] ⇔ AUC=1
- random ordering

 AUC=0.5 (but not vice versa)
- all the [-] before the [+] ⇔ AUC=0

AUC is very frequently used tool to **COMPARE CLASSIFIERS**