Report: Sentiment Analysis and Similarity of Amazon Reviews

Prepared by: Veli Nhlapo

Student Number: *VN25020017671*

Course: *Data Science*

Date: **10 September 2025**

Introduction

This report explores customer product reviews from the Amazon dataset. The main goal was to apply **Natural Language Processing (NLP)** techniques to analyze the sentiment of reviews and to measure the similarity between them. We used the **spaCy** library with the **en_core_web_md** model and integrated the **spacytextblob** pipeline for sentiment scoring.

Dataset Overview

The dataset is titled *Datafiniti Amazon Consumer Reviews of Amazon Products* (*May 2019*). It contains 24 columns with product details, brand information, and customer reviews.

For this analysis, we focused only on the **reviews.text** column, which stores the main body of customer feedback. Before processing, we dropped missing values (**NaN**).

A sample of the dataset is shown below:

Example review: "I order 3 of them and one of the item is bad quality."

Another review: "Bulk is always the less expensive way to go for products."

Approach

1.Analysis

We used spacytextblob, which provides a polarity score for each review:

- Polarity > 0 → Positive
- Polarity < 0 → Negative
- Polarity = 0 → Neutral

This rule was applied to all reviews to categorize their sentiment.

2. Similarity Analysis

We also used the vector embeddings from **en_core_web_md** to measure **cosine similarity** between reviews. This allowed us to see how closely related two reviews are in meaning.

Results

Sentiment Analysis

We tested the system on five randomly selected reviews. The results were:

"Awesome tablet. I was amazed how fast it is. And the software is very user friendly" \rightarrow Positive

"They don't last. Used in electronics (like computer mice, computer keyboards). Energizer or Duracell last easily 3x longer. Not worth the savings." \rightarrow Positive (misclassified, should be Negative)

"Thx." \rightarrow Neutral

"Kids love it, easy to use, great quality. Bought this for the grandkids and it has a 2-year warranty." \rightarrow Positive

"The kids feature is great. My 18-month-old takes it with her everywhere. Very kid friendly." \rightarrow Positive

Observation:

Most reviews were identified as **Positive**, which reflects Amazon's general review trend. However, one clearly negative review was misclassified as Positive, showing a limitation of the sentiment model.

Similarity Analysis

We compared two reviews using spaCy embeddings:

Review 1: "I order 3 of them and one of the item is bad quality."

Review 2: "Bulk is always the less expensive way to go for products."

The similarity score was 0.95, indicating the reviews are semantically very close, even though the wording differs.

Observation:

High similarity scores can group reviews that discuss the same product features (e.g., quality and price).

Challenges and Limitations

- **Misclassifications**: Some negative reviews were labeled Positive due to the simplistic polarity thresholding.
- Model differences: If en_core_web_sm was used instead of en_core_web_md, similarity results would be weaker since the small model does not include word vectors.
- Processing speed: The dataset is large, and analyzing all reviews may take time.

Conclusion

This project showed that:

- Sentiment Analysis revealed a strong bias toward positive reviews, with occasional misclassifications.
- Similarity Analysis helped identify closely related reviews, even when worded differently.

Future Improvements

- > Use transformer-based models such as BERT or RoBERTa for more accurate sentiment classification.
- > Perform a balanced analysis by including more negative and neutral reviews.
- > Extend similarity analysis to cluster reviews by product or feature.