Estadística II Tercero del grado en Matemáticas, UAM, 2019-2020

Ejercicio 1. (3 puntos) El vector $\mathbb{X} = (X_1, X_2, X_3)^{\mathsf{T}}$ sigue una normal multidimensional $\mathcal{N}(\mathbf{m}, V)$, de parámetros

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{y} \qquad V = \begin{pmatrix} 3 & a & 1/2 \\ a & 2 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Aquí, a es un cierto número real.

- a) ¿Para qué valores de a es V una matriz definida positiva?
- b) Definimos el vector $\mathbb{Y} = (Y_1, Y_2)^{\mathsf{T}}$ mediante $Y_1 = X_1 + 2X_2$ e $Y_2 = X_1 X_2$. ¿Qué valor debe tomar a para que Y_1 e Y_2 sean independientes? Justifica bien todos los pasos que te lleven a la respuesta.
- c) En este apartado, tomamos a=2. Determina la distribución de $(X_1,X_2)^{\mathsf{T}}$ condicionando a que $X_3=1/2$.

Ejercicio 2. (3 puntos) Una cierta característica en una población tiene cuatro niveles, que designamos por C_1 , C_2 , C_3 y C_4 .

En una muestra de 81 individuos de la población se han encontrado 9, 17, 20 y 35, respectivamente, de cada nivel.

Se desea contrastar un modelo teórico que asigna probabilidades p^3 , $3p^2(1-p)$, $3p(1-p)^2$ y $(1-p)^3$, respectivamente, a cada categoría. Aquí $p \in (0,1)$.

Escribe las conclusiones que obtienes (sobre el modelo y la muestra) argumentando con el p-valor.

Ejercicio 3. a) (2 puntos) Una fábrica de automóviles quiere averiguar si la preferencia de modelo tiene relación con el sexo de los clientes. Se toman dos muestras aleatorias de 100 hombres y 100 mujeres y se observan las siguientes preferencias con respecto a dos modelos de automóvil A y B:

	Modelo		
Sexo	A	В	
Mujer	12	88	
Hombre	24	76	

¿Son homogéneas las preferencias entre hombres y mujeres, al nivel de significación 5%?

b) (1 punto) Una fábrica de automóviles quiso averiguar si la preferencia de modelo tenía relación con el sexo de los clientes. Se tomaron dos muestras aleatorias de 100 hombres y 100 mujeres y se observaron las siguientes preferencias con respecto a dos modelos de automóvil A y B:

	Modelo			
Sexo	A	В		
Mujer	•	•		
Hombre	32	68		

Como ves, se han perdido los datos correspondientes a las mujeres. Pero se sabe que la hipótesis de homogeneidad se rechazó, pues el p-valor del test estaba entre 4% y 5%. ¿Cuántas mujeres preferían el modelo A?

Ejercicio 4. (1 punto) Se dispone de una muestra de tamaño dos: (x_1, x_2) , donde $x_1 = -1$ y de x_2 se sabe que es un número mayor que 1. Para contrastar la hipótesis de que es una muestra aleatoria de tamaño 2 de una normal estándar, se calcula el valor del estadístico de Kolmogorov–Smirnov, obteniéndose un valor de 0.4192.

¿Cuánto vale x_2 ?

1. Percentiles de la χ^2 con n grados de libertad $(n=1,\ldots,6)$

n	1	2	3	4	5	6
$\chi^2_{\{n;0.1\%\}}$	10.828	13.816	16.266	18.467	20.515	22.458
$\chi^{2}_{\{n;1\%\}}$	6.635	9.210	11.345	13.277	15.086	16.812
$\chi^{2}_{\{n;4\%\}}$	4.218	6.438	8.311	10.026	11.644	13.198
$\chi^{2}_{\{n;5\%\}}$	3.841	5.991	7.815	9.488	11.070	12.592
$\chi^2_{\{n;10\%\}}$	2.706	4.605	6.251	7.779	9.236	10.645

2. Algunos valores de la función $\Phi(x)$

		1.1				
$\Phi(x)$	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332
	1.6 0.9452	1.7	_	-		

3. Percentiles de la función de distribución de Kolmogorov-Smirnov

n\a	0.001	0.01	0.02	0.05	0.1	0.15	0.2
1		0.99500	0.99000	0.97500	0.95000	0.92500	0.90000
2	0.97764	0.92930	0.90000	0.84189	0.77639	0.72614	0.68377
3	0.92063	0.82900	0.78456	0.70760	0.63604	0.59582	0.56481
4	0.85046	0.73421	0.68887	0.62394	0.56522	0.52476	0.49265
5	0.78137	0.66855	0.62718	0.56327	0.50945	0.47439	0.44697
6	0.72479	0.61660	0.57741	0.51926	0.46799	0.43526	0.41035
7	0.67930	0.57580	0.53844	0.48343	0.43607	0.40497	0.38145
8	0.64098	0.54180	0.50654	0.45427	0.40962	0.38062	0.35828
9	0.60846	0.51330	0.47960	0.43001	0.38746	0.36006	0.33907
10	0.58042	0.48895	0.45662	0.40925	0.36866	0.34250	0.32257
11	0.55588	0.46770	0.43670	0.39122	0.35242	0.32734	0.30826
12	0.53422	0.44905	0.41918	0.37543	0.33815	0.31408	0.29573
13	0.51490	0.43246	0.40362	0.36143	0.32548	0.30233	0.28466
14	0.49753	0.41760	0.38970	0.34890	0.31417	0.29181	0.27477
15	0.48182	0.40420	0.37713	0.33760	0.30397	0.28233	0.26585
16	0.46750	0.39200	0.36571	0.32733	0.29471	0.27372	0.25774
17	0.45440	0.38085	0.35528	0.31796	0.28627	0.26587	0.25035
18	0.44234	0.37063	0.34569	0.30936	0.27851	0.25867	0.24356
19	0.43119	0.36116	0.33685	0.30142	0.27135	0.25202	0.23731
20	0.42085	0.35240	0.32866	0.29407	0.26473	0.24587	0.23152
25	0.37843	0.31656	0.30349	0.26404	0.23767	0.22074	0.20786
30	0.34672	0.28988	0.27704	0.24170	0.21756	0.20207	0.19029
35	0.32187	0.26898	0.25649	0.22424	0.20184	0.18748	0.17655
40	0.30169	0.25188	0.23993	0.21017	0.18939	0.17610	0.16601
45	0.28482	0.23780	0.22621	0.19842	0.17881	0.16626	0.15673
50	0.27051	0.22585	0.21460	0.18845	0.16982	0.15790	0.14886
	1.94947	1.62762	1.51743	1.35810	1.22385	1.13795	1.07275
OVER 50	—— √ n						<u>-</u>