M378K: October 1044 2025. The F. Distribution Let Y1 and Y2 be two independent, χ^2 distributed r.v.s. ω / df=1. For both 14 and 12 the poff is fy (y) = 1 = 2.1 (0,00) (y) Define $W = \frac{Y_2}{Y_4}$, i.e., $W = g(Y_1, Y_2)$ where $g(y_1, y_2) = \frac{Y_2}{y_4}$ Goal: Density of w, r.e., fw Start by figuring out the coff tw. $\omega > 0: F_{\omega}(\omega) = \mathbb{P}[\omega \le \omega] = \mathbb{P}[\frac{\gamma_2}{\gamma} \le \omega]$ = P[4 5 w. 4] = \\ \int_{\quad \quad \ $= \int_{0}^{\infty} \int_{0}^{\omega \cdot y_{1}} \frac{1}{1} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2iiy_{1}}} \cdot e^{-\frac{y_{2}}{2}} dy_{2} dy_{4}$ $= \int_{0}^{60} \frac{1}{\sqrt{2\overline{u}y_{1}}} e^{-\frac{y_{1}}{2}} \int_{0}^{\omega \cdot y_{1}} \frac{1}{\sqrt{2\overline{u}y_{2}}} e^{-\frac{y_{2}}{2}} dy_{1} dy_{1}$ $F_{\omega}(\omega) = \int_{0}^{\infty} \frac{1}{\sqrt{2\bar{\iota}y_{1}^{2}}} e^{-\frac{y_{1}}{2}} \cdot F_{\chi_{2}}(\omega y_{1}) dy_{1}$

$$\int_{\omega} (\omega) = \frac{d}{d\omega} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \int_{V_{2}} (\omega y_{1}) dy_{1}$$

$$\int_{\omega} (\omega) = \frac{d}{d\omega} \int_{0}^{\omega} (\omega) \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \int_{V_{2}} (\omega y_{1}) dy_{1} dy_{1}$$

$$\int_{\omega} (\omega) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2\pi y_{1}}} dy_{1}$$

$$\int_{\omega} (\omega) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2\pi y_{1}}} dy_{1}$$

$$\int_{\omega} (\omega) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2\pi y_{1}}} dy_{1}$$

$$\int_{\omega} (\omega) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi y_{1}}} e^{-\frac{y_{1}}{2}} \frac{1}{\sqrt{2\pi$$

M378K Introduction to Mathematical Statistics Problem Set #9

Moment generating functions.

Definition 9.1. The k^{th} moment of a random variable Y taken about the origin is defined as $\mathbb{E}[Y^k]$ provided that the expectation exists. We write

$$\mu_k = \mathbb{E}[Y^k]$$

when there is no ambiguity about the random variable in question.

Remark 9.2. μ_k is also referred to as the k^{th} raw moment.

Remark 9.3. In particular, $\mu_1 = \mu$ happens to be the **mean** of the random variable Y.

Definition 9.4. The k^{th} central moment of a random variable Y is defined as $\mathbb{E}[(Y - \mu)^k]$ provided that the expectation exists. We write

$$\mu_k^c = \mathbb{E}[(Y - \mu)^k]$$

when there is no ambiguity about the random variable in question.

Remark 9.5. μ_k is also referred to as the k^{th} moment of a random variable Y taken about its mean.

Definition 9.6. The moment-generating function (mgf) m_Y for a random variable Y is defined as

$$m_Y(t) = \mathbb{E}[e^{tY}]$$

for all t for which the above expectation exists. In fact, we say that the moment-generating function exists if there exists a positive number b such that $m_Y(t)$ is finite for all t such that $|t| \le b$.

Problem 9.1. How much is $m_Y(0)$?

Step 2.

$$m'_{Y}(0) = \mathbb{E}[Y \in 0.Y] = \mathbb{E}[Y] = \mu_{Y}$$

Step 3.

$$\frac{d}{dt}\left(\frac{d}{dt}m_{Y}(t)\right) = \frac{d^{2}}{dt^{2}}m_{Y}(t) = ?$$

$$= \left[Y^{2}e^{t\cdot Y}\right] = \left[Y^{2}e^{t\cdot Y}\right]$$

 $m_Y''(0) = ?$

Step 4.

$$m_{\gamma}^{11}(0) = \mathbb{E}[\gamma^2]$$
, i.e., the 2^{nd} moment

Step 5. What do you suspect the generalization of the above would be?