الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعب: آداب وفلسفة + لغات أجنبية

المدة: 02 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (06 نقاط)

.3 متتالية هندسية حدّها الأول $v_0 = 2$ وأساسها

 v_n عبّر عن v_n بدلالة -1

 (v_n) الفرق $v_{n+1}-v_n$ ، ثمّ استنتج اتجاه تغیّر المتتالیة (v_n)

 $S_n = V_0 + V_1 + \cdots + V_{n-1}$: من أجل كل عدد طبيعي غير معدوم -2

أ) احسب بدلالة n المجموع S_n

 $S_n = 80$ بعيّن قيمة العدد الطبيعي n بحيث:

ج) أثبت بالتراجع أنّه، من أجل كل عدد طبيعي n، العدد $1-3^n$ يقبل القسمة على 2.

التمرين الثاني: (06 نقاط)

1− هل العددان 2013 و 718 متو افقان بتر دید 7 ؟

-2 أ) عيّن باقى القسمة الإقليدية للعدد 4^6 على -2

 $.4^{6n} - 1 = 0$ [7] : استنتج أنّه، من أجل كل عدد طبيعي ا

-3 عين باقى القسمة الإقليدية لكل من العددين 2013 و 718 على -3

ب) بيّن أنّه، من أجل كل عدد طبيعي n، العدد $2013 + 3 \times 718^{6n}$ يقبل القسمة على 7.

4- أ) تحقّق أنّ: [7]1- = 1434.

ب) عين الأعداد الطبيعية n، الأصغر من 25، بحيث: $[7] \equiv 1434^{2n}$.

التمرين الثالث: (08 نقاط)

في الشّكل المقابل، المنحنى (C) هو التمثيل البياني للدالة f المعرّفة على \mathbb{R} كما يلي:

$$f(x) = x^3 - 4 x^2 + 4 x$$

والمستقيم (Δ) هو مماس للمنحنى (C) عند مبدأ المعلم y=g(x) حيث: (Δ) هو معادلة له.

I) بقراءة بيانية، عين:

- . عدد نقط تقاطع المنحنى (C) مع حامل محور الفو اصل -1
 - \mathbb{R} على المارة f(x) على -2
 - f(x) = g(x) : all lhad the second of f(x) = g(x)
 - II) باستعمال عبارة الدالة f:
 - -1 أ) احسب نهاية الدالة f عند ∞ وعند
 - ب) احسب f'(x)، ثمّ ادرس إشارتها.
 - ج) شكّل جدول تغير ات الدالة f.
 - (x) = x عدد حقیقی (x) = x غدد حقیقی (x) = x
- ب) عيّن إحداثيات نقط تقاطع المنحنى (C) مع حامل محور
 - الفو اصل.
 - g(x) = 4x بيّن أنّ: -3
 - (Δ) عين فو اصل نقط تقاطع (C) مع
 - $\frac{4}{3}$ بيّن أنّ، (C) يقبل نقطة انعطاف فاصلتها –4
- 5- عين بيانيا، مجموعة قيم الوسيط الحقيقي m، التي من أجلها تقبل المعادلة f(x)=m ثلاثة حلول متمايزة.

الموضوع الثاتي

التمرين الأول: (06 نقاط)

 $u_0 + u_1 + u_2 + u_3 = 34$: بحيث وأساسها وأساسها الأول u_0 وأساسها الأول الأول متتالية حسابية حدّها الأول

 u_0 احسب-1

 $u_n = 5n + 1$ ، n عدد طبیعی عدم أجل كل عدد أنّه، من أجل

 $u_{n+1} + u_n - 8n = 4033$: بحيث: $u_{n+1} + u_n - 8n = 4033$: الطبيعي $u_{n+1} + u_n - 8n = 4033$

 $S = u_0 + u_1 + u_2 + \dots + u_{2013}$:= -4

 $v_n = 2u_n + 1$ المنتالية العددية (v_n) معرقة على $\mathbb N$ بالعبارة: (v_n)

أ) ادرس اتجاه تغيّر المتتالية (v_n) .

 $S' = V_0 + V_1 + V_2 + \dots + V_{2013}$: (ب)

التمرين الثاني: (06 نقاط)

. $b\equiv 6[7]$ و $a\equiv 2[7]$ و معددان صحیحان حیث: $a\equiv 2[7]$

a+b على a+b على a+b على a+b على a+b

 a^2+3b^2 على a^2-2 على على -2

b = -1[7]: تحقّق أنّ: b = -1[7].

ب) استنتج باقي القسمة الإقليدية لكلّ من العددين b^{2013} و b^{1434} على 7.

 $(a+b)^n + n \equiv 0$ [7] بحيث: $(a+b)^n + n \equiv 0$ الأعداد الطبيعية $(a+b)^n + n \equiv 0$

التمرين الثالث: (08 نقاط)

المنحنى البياني $f(x) = \frac{2x-1}{2x-4}$ المنحنى البياني $f(x) = \frac{2x-1}{2x-4}$ المنحنى البياني الممثّل لها في المستوى المنسوب إلى المعلم المتعامد المتجانس $(C;\vec{i},\vec{j})$.

$$f(x)=1+\frac{3}{2x-4}$$
 ، $]-\infty;2[\cup]2;+\infty[$ من أجل كل x من أجل كل x من أجل كل x من أجل كل x من أجل كل x

$$(C)$$
 النقطة $A\left(1;-\frac{1}{2}\right)$ تنتمي إلى -2

-3 احسب نهایات الدالة f عند أطراف مجالي مجموعة تعریفها.

ب) استنتج أنّ (C) يقبل مستقيمين مقاربين يطلب تعيين معادلة لكلّ منهما.

f'(x) ، ثمّ شكّل جدول تغيّرات الدالة f'(x)

 $-\frac{3}{2}$ جِدِ فو اصل نقط المنحنى (C)، التي يكون معامل توجيه المماس عندها يساوي -5

-6 جد إحداثيات نقط تقاطع (C) مع كل من حامل محور الفواصل وحامل محور التراتيب.

. الممثلة أدناه. (C_3) ، (C_2) ، (C_1) من بين المنحنيات (C_3) ، الممثلة أدناه. -7

الشعبة/السلك (*): آداب وفلسفة+لغات أجنبية المدة: ساعتان و نصف

اختبار مادة: الرياضيات

العلامة		7 4 504 4 4 4
مجموع	مجزأة	عناصر الإجابة
		الموضوع الأول
		التمرين الأول: (06ن)
2.5	1	$v_n = v_0 q^n$ (أي $v_n = v_0 q^n$ (أي (1)
	0.5+1	$v_{n+1}-v_n=0$ بما أن: $v_{n+1}-v_n>0$ فإن $v_{n+1}-v_n=2.3^{n+1}-2.3^n=4.3^n$ بما أن:
3.5	1+0.5	$S_n = 3^n - 1$: ومنه $S_n = 2\frac{1 - 3^n}{1 - 3} = 3^n - 1$: أي $S_n = v_0 \frac{1 - q^n}{1 - q}$ ومنه $S_n = v_0 \frac{1 - q^n}{1 - q}$
	2×0.5	\dots ب $S_n=80$ أي $S_n=81$ ، $S_n=80$ ومنه $S_n=80$ ومنه
	0.75+0.25	n=0 التحقق من أجل $n=0$ ثم التوريث $n=0$
		التمرين الثاني: (06ن)
1,	1	1. العددان متوافقان بترديد $7 \times 185 \times 7 = 710 - 2013$ (تقبل أي طريقة صحيحة)
1.25	0.5	$4^6 \equiv 1$ (7) الباقي $4^6 \equiv 1$ الباقي 1
	0.75	$4^{6n} - 1 \equiv 0[7]$ (ب
1.5	2×0.5	$$ $2013 = 4[7]$ $e^{-7.18} = 4[7]$ (i.3)
	0.5	$3 \times 718^{6n} + 2013 \equiv 0[7]$ ومنه: $3 \times 718^{6n} + 2013 \equiv 3 \times 4^{6n} + 4[7]$ (ب
2.25	0.5	-4. أ) التحقق من أن -1 $= -1$ $= -1$ التحقق من أن -1 $= -1$ $= -1$ $= -1$ التحقق من أن
	2×0.5	n = 6[7] و $n = 6[7]$ أو $n = 6[7]$ أو $n = 6[7]$
	0.75	$\dots n \in \{6, 13, 20\}$
		التمرين الثالث: (80ن)
1.5	0.5	عدد نقط تقاطع (C_t) مع محور الفواصل هو (C_t) عدد نقط تقاطع عدد نقط تقاطع عدد نقط تقاطع ((C_t)
30.01 Animotouse	0.5	$(x) \ge 0$ فإن $(x) \ge 0$ فإن $(x) \le 0$ فإن $(x) \le 0$ فإن $(x) \ge 0$ فإن $(x) \ge 0$ فإن $(x) \ge 0$ فإن $(x) \ge 0$
	0.5	f(x)=g(x) عدد حلول المعادلة : $g(x)=g(x)$ هو حلان (3
3	2×0.5	$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to -\infty} f(x) = -\infty \text{(i (II)}$
9000	1+0.5	$f'(x) = 3x^2 - 8x + 4 : f'(x)$
		$x \in \left[\frac{2}{3}; 2\right[f'(x) < 0 \ g \ x \in \left[-\infty; \frac{2}{3}\right] \cup \left[2; +\infty\right[f'(x) \ge 0 \ : f'(x) \right]$ إشارة $f'(x) < 0$
	0.5	ج_) جدول تغير ات الدالة f :

الشعبة/السلك (*): آداب وفلسفة+لغات أجنبية

1.5	0.5	$f(x) = x(x-2)^2$ التحقق أن: $f(x) = x(x-2)^2$
	2×0.25	A(2;0) ب) النقاطع مع محور الفواصل $O(0;0)$ و $O(0;0)$
	0.5	g(x)=4x أ) نبيان أن $g(x)=4x$
2	0.75	x=4 واصل نقط نقاطع (C) مع $(X=0)$ ، $(X=0)$ ، $(X=0)$ ، $(X=0)$
	0.75	$x = \frac{4}{3}$ ، $f'(x) = 6x - 8$ (4)
	0.5	
		الموضوع الثاني
		<u>التمرين الأول:</u> (06ن)
2	1.5	$u_0 = 34$ ومنه $u_0 = 34$ ومنه $u_0 = 34$
	0.5	
1	1	
1.	1	$S = \frac{2014}{2}(u_0 + u_{2013})$.4
1	0.5+0.5	اي (v_n) متزايدة تماما. $v_{n+1} - v_n = 10$ (أ. 5)
1	1.	S' = 2S + 2014 (ب $S' = 20276951$ ومنه $S' = 2S + 2014$
		<u>التمرين الثاني:</u> (06ن)
1	1.	$3a+b \equiv 12[7]$ ومنه $3a+b \equiv 12[7]$ ومنه $3a+b \equiv 12[7]$.1
1.5	3×0.5	$a^2 + 3b^2 \equiv 0$ و منه $a^2 + 3b^2 \equiv 7$ ابي $a^2 = 3b^2 \equiv 3$ و $a^2 \equiv 4$
1.5	0.5	$b \equiv -1$ [7] التحقق: $b \equiv -1$ [7] التحقق: (3 أ
	2×0.5	$b^{1434} \equiv 1[7]$ و $b^{2013} \equiv 6[7]$ (ب)
2	2×0.5	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.5	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.5	ائي: $n=7k+6$ مع $n=7k+6$
L		

اختبار مادة: الرياضيات الشعبة/السلك (*): آداب وفلسفة+لغات أجنبية

	1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		التمرين الثالث: (88ن)
0.5	0.5	
0.5	0.5	$A \in (C)$ يذن: $f(1) = -\frac{1}{2}$ (2
		$\lim_{X \to +\infty} f(x) = 1 \lim_{X \to -\infty} f(x) = 1 (3)$
1	4×0.25	$\lim_{x \to 2} f(x) = +\infty \text{g} \lim_{x \to 2} f(x) = -\infty$
0.5	2×0.25	y=1 ، $x=2$ بالمستقيمان المقاربان: $y=1$
1	1	
0.5	2×0.25	من أجل كل $x \neq 2$ $f'(x) < 0$ و منه: f متناقصة تماما
0.5	0.5	جدول التغيرات:
1.5	3×0.5	X = 1 معناه: $X = 3$ معناه: $X = 1$ معناه: $X = 1$ معناه: $X = 1$
		$-rac{3}{2}$ توجد نقطتان من (C) يكون فيهما معامل توجيه المماس يساوي
1	0.5	$E\left(rac{1}{2};0 ight)$ النقاطع مع محور الفواصل: $E\left(rac{1}{2};0 ight)$
	0.5	التقاطع مع محور التراتيب: $F\left(0;\frac{1}{4}\right)$ التقاطع مع محور التراتيب
1	1	C_2 هو C_2 لأن: مثلا f متناقصة وتمر من النقطة C_2 هو C_2 هو النقطة C_2