

University of Extremadura Faculty of Science

Physics degree Degree Final Project

Developement of a FIWARE-based application for tree species monitoring (dendrometry)

Javier Fernández Aparicio jfernandil@alumnos.unex.es

July 2020

Co	Contents						
Αŀ	ostrac	et		2			
1	Intro	oduction					
	ometry, a formal definition	3					
	1.2 Hardware						
		1.2.1	Arduino, multipurpose microcontroller	4			
		1.2.2	LoRa [®] (Long Range)	4			
		1.2.3	Raspberry Pi, a powerful microcomputer	6			
		1.2.4	Dragino shields/hats	6			
	1.3	Softwa	are	7			
		1.3.1	FIWARE	7			
2	description	8					
2.1 Hardware							
		2.1.1	Nodes	8			
			2.1.1.1 Linear Potentiometer	9			
			2.1.1.2 Signal conditioning	10			
		2.1.2	Gateway	10			
			2.1.2.1 Raspberry Pi 3 B+	10			
			2.1.2.2 Dragino HAT	13			
	2.2	Softwa	are	15			
Re	References 1						

Abstract

This document gives a detailed description of this project, which is focused on researching possibles low-cost alternatives for wireless dendrometry systems. Currently there exist a lot of expensive and professional systems in the market, that's because this project is intended to reduce costs and increase the versatility, scalability and accessibility.

In order to reach these objetives the project will be supported over free software such as FIWARE[1] or free hardware such as Arduino[2] and Raspberry Pi[3].

1 Introduction

This project arises itself from a direct interaction with professionals inside forestal sector. The original idea was to give technical coverage for particular necessities which professionals in this sector had to face off with. At this point is easy to notice this solution will need to be a distributed solution, due high samples dispersion. As can be seen, there are even remote techniques to predict this sample density/dispersion using remote methods which predicts between 157-170 indviduals per hectare[4] (depending on the used model). So according to this and sample size determination theories, to get a great resolution could be necessary a big size for samples and the necessity of a big wireless network of distributed devices, since each device will correspond with an individual.

This is more or less, the definition of the IoT (Internet of Things) concept; according to the abstract in [5] IoT concept comes from an earlier concept called M2M (Machine-to-Machine) communications. However, also according to [5, p. 1(71)] there is not an official definition for IoT concept, but according to [6, p. 2(920)]

"based on the traditional information carriers including the Internet, telecommunication network and so on, Internet of Things (IoT) is a network that interconnects ordinary physical objects with the identifiable addresses so that provides intelligent services."

This, at least, covers a little part what this project is intended to do: "Interconnect ordinary physical objects with the identifiable adresses" to provide intelligent services. These physical objects are in this case ordinary dendrometers.

Over the years there have existed analog and manual dendrometers, thus data acquisition had to follow a manual process in the same way. This could turn out bothering because the big size for this statistical population, <code>¿as/like? it was exposed ¿before/above?</code>. So it was traditionally necessary to go there and as part of the field work, take individual by individual the whole sample data.

1.1 Dendrometry, a formal definition

The GEMET (General Multilingual Environmental Thesaurus) adopts the definition for *dendrometry* from [7]:

"The measuring of the diameter of standing trees from the ground with a dendrometer that can also be used to measure tree heights."

This one is a bit wide definition because nowadays most dendrometry researches are focused on stem diameter; however, at this point could be interesting to extend this project to include also a sensor to heights measurement.¹

A lot of comercial dendrometry systems are available in the market, nevertheless more than single and manual dendrometers those are complex and professional distributed systems, consequently ¿like/as? has been already said, one of the most important objectives in this project is to research about the possibility to get lower the costs of the whole system, because those professional systems are still expensive. So this is intended to get a cheaper system and make it accessible to everyone who wants to monitorize one or more trees growth.

There are quite a few types of dendrometers but according to [8] "It is possible to define two broad categories of dendrometer: those that contact the stem and those that do not". This project is focused on the former kind, so for this project is being developed a "contact dendrometer" based on a linear potentiometer.

¹ This project is already considered extensive enough.

1.2 Hardware

1.2.1 Arduino, multipurpose microcontroller

It's not difficult to justify the use of such an interesting platform as Arduino. The adaptability is one of its strengths, therefore; it is able to acquire and process certain data coming from a set of sensors and manage it to send this via any plugged wireless network interface.

Due circumstances exposed in introduction section is needed an accessible and multipurpose platform to be the basis for the device design itself, this is to say the core part of the dendrometer is an Arduino microcontroller.

Since the idea is to produce a low-cost device in order to distribute a high number of them, it must be a simple design; that's because it consist only of three parts,

- Linear potentiometer: which is the sensor itself due is directly in contact with the stem. In order to improve data acquisition it will be necessary to use a High Input Impedance Amplifier.
- Arduino microcontroller: this is the core part for the device, it will be responsible for acquire linear potentiometer data and send it to a gateway through LoRa interface.
- LoRa interface: similar to other existing wireless interfaces, it is necessary to forward the sensor data to a concentrator (gateway). Usually and due its complexity these kind of interfaces are integrated circuits which are mounted on a PCB in order to obtain a pluggable card/shield.

1.2.2 LoRa® (Long Range)

LoRa is a "long-range, low-power, low-bitrate, wireless telecommunications system"[9]. This is because some devices inside IoT paradigm tend to be economical and low-resources devices, in order to get them distributed/scattered, as it has been pointed. So this low availability (of resources) along with their tendency to be distributed/scattered causes the necessity for a low-power consumption and a long-range telecommunication.

In a more general sense, there is a wider concept to include all these kind of technologies which fullfil the IoT communication requirements, this is the "Low-Power Wide Area Networks" (LPWAN), so as

claimed by [9]

"Colloquially speaking, an LPWAN is supposed to be to the IoT what WiFi was to consumer networking: offering radio coverage over a (very) large area by way of base stations and adapting transmission rates, transmission power, modulation, duty cycles, etc., such that end-devices incur a very low energy consumption due to their being connected."

It is important to note that when talking about "low-power consumption", in many cases it is actually meaning battery-powered devices, for example.

By other hand, LoRa can commonly refer to two distinct layers; a physical layer (LoRa itself) and a MAC layer protocol (LoRaWAN). The former one (the physical layer), is a proprietary technology developed by Semtech. So this does mean this layer is not fully open; LoRaWAN, however, is a protocol built to use LoRa physical layer, It is intended to sensor networks, wherein those sensors exchange packages with some server with a "low data rate and relatively long time intervals (one transmission per hour or even days)."[9, p. 9]. This particularly means that LoRaWAN protocol is perfect for the purpose of this project.

In comparison with other common telecommunication technologies, LoRa uses lower bandwidth, but it reaches longer distances:

Figure 1: Bandwidth vs range plot for two of the most used telecommunication systems and LoRa.

1.2.3 Raspberry Pi, a powerful microcomputer

As in the case of Arduino, Raspberry Pi provides a powerful platform, however in the case of a Raspberry Pi this platform is slightly more complex than for an Arduino.² From the hardware point of view, Raspberry Pi implements a better one than Arduino, this also has an impact on a higher cost; however, this hardware allows a Raspberry Pi to support a whole operating system; that's because this devices are usually called *single-board computers*.

A few of interesting hardware specs are for instance, a *Broadcom BCM2837B0*, *Cortex-A53 (ARMv8)* 64-bit SoC @ 1.4GHz as its CPU, 1GB LPDDR2 SDRAM, Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps) or even an *Extended 40-pin GPIO header* among others.[10]

The role for Raspberry Pi in this project is to act like a gateway, receiving all the data from different nodes. So in order to perform this task correctly it is necessary to provide a LoRa interface, which is also embebed (as in Arduino) in a separate pluggable shield/card/hat.

1.2.4 Dragino shields/hats

These shields/expansion cards are necessary because those devices (Arduino and Raspberry Pi) have not the ability to comunicate through LoRa physical layer, that's because they need a physical interface in order to manage those LoRa packages. Both shields are based on the SX1276/SX1278 transceiver. However the Raspberry Pi hat also has a L80 GPS interface (Base on MTK MT3339), meanwhile Arduino has not.

This project is using the following models:

- *LoRa GPS HAT for Raspberry Pi*,[11] which makes use of the extended 40-pin GPIO header to be plugged³
- LoRa Shield for Arduino[13], which is plugged through analog and digital pins.

² There are a lot of Arduino models, and maybe some of them could be able to support, for example, multiple kind of Real Time Operative Systems, but it is not the case of this project, wherein the Arduino role is just to act as a core for the nodes.

³ It is important to note this LoRa HAT is not actually designed to play a gateway role, in fact, this is considered a "Hack where a node-class radio tries to impersonate a gateway"[12],(I'm not sure about this citation (It's a forum)) so this means this hat is designed to be a node-class radio, not a gateway.

1.3 Software

1.3.1 FIWARE

It is defined as "The Open Source Platform for Our Smart Digital Future"[1]; in a deeper sense is "an open source initiative defending an universal set of standards for context data management"[1], which basically means that *FIWARE* is an open source platform where develop IoT and smart solutions. The platform provides a number of software modules called *Generic Enablers*; among all those *Generic Enablers* there is one particularly important called *Orion Context Broker*. In fact, for a solution to be considered as *Powered by FIWARE* it must to use the *Orion Context Broker* at least.

This *Context data* is just a way to name any kind of data coming from any kind of sensor. *Orion Context Broker* is designed to manage this context data through concepts such as *subscriptions* or *entities*, to name but a few; however, all these *Generics Enablers* communicate with each other using the *FIWARE NGSI RESTful API*[14].⁴

⁴ RESTful term comes from the software architectural style REST, which stands for Representational State Transfer

2 Technical description

Like in the Introduction, the most proper way to present this technical description is to difference between software and hardware parts. However, is still interesting to present a simple and general diagram for whole designed solution:

Figure 2: General view of this solution.

2.1 Hardware

2.1.1 Nodes

Nodes are the parts of the system in direct contact with trees themselves (one node per each tree). Most important features in those devices are: low-cost, low-powered, wireless communication and

small size. The following diagram shows a diagram of its most relevant parts:

Figure 3: Diagram for a detailed view of a node.

This diagram shows three different parts:

- A linear potentiometer, ideally an RS Pro Conductive Polymer Potentiometer for Automotive Applications, however, by circumstances is not possible to use it and in order to perform a kind of proof of concept, this project will implement a regular rotary potentiometer.
- A signal conditioning stage, which is needed in order to improve the quality of the voltage signal produced by the potentiometer.
- Arduino + Dragino LoRa Shield; of course it is necessary to schedule data transmission and acquisition, as well as transmit them using the LoRa physical layer and LoRaWAN protocol.
 For this purpose an Arduino-like microcontroller is perfect.

2.1.1.1 Linear Potentiometer

As said, ideally this potentiometer should be a linear potentiometer with $5~k\Omega$ of maximum resistance, however, in order to improve its performance, it's recommended to use it as a voltage divider; also it would be convenient to buffer the resulting output with a high impedance amplifier, that's because the figure 3 includes a signal conditioning stage, which will be described below.

2.1.1.2 Signal conditioning

This stage is focused on improve the signal acquisition, according to this potentiometer specifications, the best way to achieve this objetive is using a high input amplifier, in fact, a single-supply, rail-to-rail operational amplifier is the best option. Here is shown a possible schematics for this stage:

Figure 4: Signal conditioning stage.

2.1.2 Gateway

2.1.2.1 Raspberry Pi 3 B+

This model of Raspberry Pi is able to run almost every GNU/Linux distribution ported to ARM architecture, Raspberry Pi OS, formerly known as Raspbian,[15] is in fact a Debian port to ARM architecture. After a little researching, it is possible to conclude that there is not other operative system which improves the performance of Raspberry Pi OS in a Raspberry Pi. Due this former argument this project is going to use Raspberry Pi OS.

One of the most interesting features of Raspberry Pi is precisely that OS is installed and run from a microSD card, so the hardware is loading the operative system from this microSD card to the RAM

directly, which improves notably the system load times, and increments its portability.

Raspberry Pi foundation provides the *Raspberry Pi Imager* to perform the installation in a microSD card.⁵ This tool allows the reader to choose between three different versions of Raspberry Pi OS. Recommended, Lite and Full version. Lite version is the same than Recommended version but without graphical user interface (GUI or Desktop Environment), meanwhile Full version is the same than Recommended version but with a few extra applications.

This project is using the Recommended version for Raspberry Pi OS, nevertheless, the project does not require absolutely the desktop environment, so to maximize the available free space in the SD card, is better to install the Lite version instead of the Recommended version.

Figure 5: Raspberry Pi Imager showing different options to install Raspberry Pi OS in a microSD card.

Even so, independently of the installed version, the reader will be able to disable the graphical environment using the console based raspi-config application [16].

One of the first and most important configurations is the internet access; this can be done via two different ways, using the ethernet port (which does not require any extra configuration, just tu plug the cable) or using the WiFi interface, which can be configured using also raspi-config [17]. Due to its versatility, there are multiple setup that could fulfil the requirements of this projects:

• **PoE** (Power-over-Ethernet); this is not actually a suitable option because Raspberry Pi does not

⁵ There are many ways to perform the Raspberry Pi OS installation in a microSD card, this document leaves it to readers to use their preferred method. However, this document also considers the *Raspberry Pi Imager* method as the best one.

support PoE by itself, it needs a separate HAT which is using the GPIO connector, so this makes impossible to use it along the LoRa HAT. Apparently there are hacks to reduce this HAT size, but they also use pins in the GPIO connector [18]. Besides, this method only works with up to 100m cables, so it would be necessary to have a power source and internet access point within a 100m radius.

- **WiFi** and battery powered; this setup implies also the existence of a relatively close power source, because the access point used to provide that wireless network connection should work also with mains power. Probably the WiFi radio is not enough to make it the difference between this setup and the next one suggested.
- Simple **ethernet** and mains power, this setup is similar to the previous one exposed, but omitting the WiFi limitations/configurations, the access point and the Raspberry Pi should be practically both at the same location.
- **GSM module** and battery or mains powered; this document consider this the ideal setup. This setup doesn't require a conventional access point because the internet access is granted through a GSM module, in a similar way than a mobile phone. This would be the ideal way because it minimizes the resources needed, which is crucial in an environment where those probably won't be available —in the middle of the forest.

Furthermore, this is apparently possible through two different options:

- Itead Raspberry Pi GSM Board (SIM800). This is not the most interesting way, because though GPIO pins comes through this does mean the HAT supports stacking, and even if that does, doesn't mean every other HAT would.
- USB GSM module. This is apparently the most promising option. These kind of GSM modules are in general compliant with GNU/Linux systems and using a regular SIM card, they would be eventually able to provide an internet access point. Of course, this also will to increment the size of the whole device.

It is important to note the necessity of a stable internet connection; **COMPLETE**

Another configuration that must be done is the Secure Shell (ssh) service; which according to Raspberry Pi documentation can be done from terminal using systemd [19].

So generating a pair of keys and configuring properly the ssh access; it will probably be necessary to paste the *.pub key content into /.ssh/authorized_keys file (located in the local folder in the Raspberry Pi); and give it the right permissions (700), after this the reader should be able to connect through ssh service.

Example 1: Creating a pair of ssh keys.

```
1
       $ ssh-keygen
2
       Generating public/private rsa key pair.
3
       Enter file in which to save the key (/home/wyre/.ssh/id rsa):
4
       Enter passphrase (empty for no passphrase):
5
       Enter same passphrase again:
6
       Your identification has been saved in /home/wyre/.ssh/id_rsa
7
       Your public key has been saved in /home/wyre/.ssh/id_rsa.pub
8
       The key fingerprint is:
       SHA256:vkNRk/Fo8iGGo0pYlwb2L3vf3TgOfm11MmZW+BipXgQ wyre@DESKTOP-AFG84JJ
9
10
       The key's randomart image is:
       +---[RSA 3072]----+
11
12
                  .0
13
       | . o . . +oE
14
         . = 0 +.+... 0 |
15
       | 0 0 0 0.= . = . |
16
       |...o.S...o=|
17
       | . . 0 .. . 0 +|
18
         . . ... .. * +.|
19
             . ..+ 0+00
20
                0.00+0.
21
       +----[SHA256]----+
```

Once is available the remote control for Raspberry Pi through ssh, is possible to manage it completely from the command line, even upgrade the system and compile the required controller to get properly working the LoRa transceiver.

2.1.2.2 Dragino HAT

Gateways doesn't need actually a diagram or detailed description because there are multiple devices which could play this role. These must be generic devices due LoRaWAN protocol versatility. Lo-RaWAN is a cloud-based medium access control (MAC) layer protocol, but actually acts as a network layer protocol for managing communication between gateways and nodes, similar to a routing protocol. So it is possible for any device which implements hardware for a LoRa physical layer, to act as a gateway.

Nevertheless, there are important considerations about the said above, for example, nodes are not actually associated with an specific gateway. Instead, data transmitted by a node is typically received by multiple gateways. Each gateway will forward the received packets from the end-node to de cloud-based network server. Besides, this project is using a Raspberry Pi 3B+ with a Dragino Hat which mounts a SX1276 LoRa **transceiver**[20]; this is so important because means, according to Semtech, this transceiver is not intended to play a gateway role, but a end-node role.

A transceiver, by definition, is a device that is able to both, transmit and receive (in fact, the word itself is a mix between both, **trans**miter and receiver) that is what a node must be able to do; i.e. transmit the sensor data (context) and receive data to perform operations with its actuators.

Nevertheless, LoRaWAN specification varies from region to region "based on the different regional spectrum allocations and regulatory requirements"[21, p. 12]. In fact, for Europe, and again as reported by [21, p. 13]

"LoRaWAN defines ten channels, eight of which are multi data rate from 250bps to 5.5 kbps, a single high data rate LoRa channel at 11kbps, and a single FSK channel at 50kbps."

Here is the important point. This Dragino HAT for the Raspberry Pi, mounts an SX1276 transceiver, which is known as node-class transceiver, so in conclusion, **this Dragino LoRa GPS HAT is not LoRaWAN compliant**. The main reason the SX1276 transceiver is not suitable to work as a gateway is that **it is actually a single channel transceiver**. Despite all of this, there still exist the possibility of use it as a gateway, because it is technically possible.

Dragino foresees this and provides a dual channel controller. The most important thing about this dual channel controller, is not the possibility to use the transceiver in a dual channel mode, but to use it as a gateway in the physical sense.⁶

⁶ This of course means Raspberry

2.2 Software

References

- [1] FIWARE Foundation, e.V. (2020). FIWARE Home,
 [Online]. Available: https://www.fiware.org/(visited on 05/2020).
- [2] Arduino company. (2020). Arduino,

 [Online]. Available: https://www.arduino.cc/(visited on 05/2020).
- [3] Raspberry Pi Foundation. (2020). Raspberry Pi, [Online]. Available: https://www.raspberrypi.org/(visited on 05/2020).
- [4] J. Mohammadi, S. Shataee, and M. Babanezhad, "Estimation of forest stand volume, tree density and biodiversity using Landsat ETM + Data, comparison of linear and regression tree analyses",

Biophysical Chemistry - BIOPHYS CHEM, vol. 7, pp. 299–304, Dec. 2011. DOI: 10.1016/j.proenv.2011.07.052.

- [5] A. Abdul-Qawy, E. Magesh, and S. Tadisetty. (Dec. 2015). The Internet of Things (IoT): An Overview,
 - [Online]. Available: https://www.researchgate.net/publication/32383499 6_The_Internet_of_Things_IoT_An_Overview.
- [6] H.-D. Ma, "Internet of things: Objectives and scientific challenges", J. Comput. Sci. Technol., vol. 26, pp. 919–924, Nov. 2011. DOI: 10.1007/s11390-011-1189-5.
- [7] J. A. Dunster,

Dictionary of natural resource management.

1996,

ISBN: 9780851991481.

- [8] N. Clark, R. Wynne, and D. Schmoldt, "A review of past research on dendrometers", *Forest Science*, vol. 46, pp. 570–576, Nov. 1999.
 - DOI: 10.1016/j.dendro.2009.06.008.
- [9] Augustin, Aloÿs and Yi, Jiazi and Clausen, Thomas Heide and Townsley, William, "A Study of LoRa: Long Range & Low Power Networks for the Internet of Things",

Sensors, vol. 16, p. 1466, Oct. 2016.

DOI: 10.3390/s16091466.

- [10] Raspberry Pi Foundation. (2020). Raspberry Pi 3 B+ Specs,

 [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/(visited on 05/2020).
- [11] Dragino Technology Co., LTD. (2020). LoRa GPS HAT for Raspberry Pi, [Online]. Available: https://www.dragino.com/products/lora/item/106-lora-gps-hat.html (visited on 06/2020).
- [12] The Things Industries. (2020). The Things Network Forum,

 [Online]. Available: https://www.thethingsnetwork.org/forum/t/applicat
 ion-is-not-showing-any-data-but-gateway-shows-traffic/36855/2

 (visited on 06/2020).
- [13] Dragino Technology Co., LTD. (2020). LoRa Shield for Arduino,

 [Online]. Available: https://www.dragino.com/products/lora/item/102-lora-shield.html (visited on 06/2020).
- [14] FIWARE Foundation, e.V. (2020). FIWARE NGSI RESTful API,

 [Online]. Available: http://fiware.github.io/specifications/ngsiv2/

 stable/(visited on 06/2020).
- [15] Raspberry Pi Foundation. (2020). Raspberry Pi OS,

 [Online]. Available: https://www.raspberrypi.org/downloads/raspberry-pi-os/(visited on 05/2020).
- [16] —, (2020). Raspberry Pi OS,
 [Online]. Available: https://www.raspberrypi.org/documentation/configu
 ration/raspi-config.md (visited on 05/2020).
- [17] —, (2020). Setting up a wireless LAN via the command line,

 [Online]. Available: https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md (visited on 05/2020).
- [18] —, (2020). Using PoE with a Raspberry Pi 3 for about two bucks,

 [Online]. Available: https://hackaday.com/2019/09/30/using-poe-with-a-raspberry-pi-3-for-about-two-bucks/ (visited on 05/2020).
- [19] —, (2020). Raspberry Pi Remote Access, Documentation,
 [Online]. Available: https://www.raspberrypi.org/documentation/remote-access/ssh/ (visited on 05/2020).
- [20] S. Corporation. (2020). Semtech SX1276, 137 MHz to 1020 MHz Long Range Low Power Transceiver,

[Online]. Available: https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276 (visited on 06/2020).

[21] LoRa Alliance. (2020). LoRaWANTM, What is it?,

[Online]. Available: https://lora-alliance.org/sites/default/files/
2018-04/what-is-lorawan.pdf (visited on 06/2020).