[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기강의자료(2020.10.13 화요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 3] Divide-and-Conquer Techniques and Sorting Techniques

Master Theorem 1

• Let a, b, and c be nonnegative constants. The solution to the recurrence T(1) = 1, and T(n) = aT(n/c) + bn, for n > 1 for n a power of c is

- ② $T(n) = O(n \log n)$, if a = c,
- $(3) T(n) = O(n^{\log a}), if a > c.$

Prove this by induction!

- Avoid divided-and-conquer if, for example,
 - An instance of size n is divided into two or more instances each almost of size n.
 - An instance of size n is divided into almost n instance of size n/c, where
 c is a constant.

The divide-and-conquer strategy often leads to efficient algorithms, although not always!

Master Theorem 2

Theorem If
$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$
 for $a \ge 1, b \ge 1$, and $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d, \\ O(n^d) & \text{if } a < b^d, \\ O(n^{\log ba}) & \text{if } a > b^d. \end{cases}$$

A: the rate of subproblem proliferation

(Apply by = 532 subproblem = 2957 = 373 = 273 = 273 = 253 = 2

Finding the Closest Pair of 2D Points

Problem

Given n points in the plane, find the pair that is closest together.

Notation

$$P = \{ p_1, p_2, \dots, p_n \}, \text{ where } p_i = (x_i, y_i)$$
$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Given a 2D point set P, find a pair of points $p_i, p_j \in P$ that minimizes $d(p_i, p_j)$.

Naïve algorithm

- Compute the distance between each pair of points and take the minimum $\rightarrow O(n^2)$ - time

Applying the Divide-and-Conquer Strategy [Shamos and Hoey]

- Simple assumption for an easy explanation
 - No two points in P have the same x-coordinate or the same ycoordinate.

General idea

[Preprocessing]

- Build a list P_x in which all the points in P have been sorted by increasing xcoordinate $\rightarrow O(n \log n)$
- Build another list P_y in which all the points in P have been sorted by increasing y-coordinate $\rightarrow O(n \log n)$

[Recursion for P with |P| = n]

- [Divide] Partition P into two subsets Q and $R \rightarrow O(n)$
- [Conquer] Find the closest pairs in Q and R, respectively $\rightarrow 2T(n/2)$
- [Combine] Use this information to get the closest pair in $P \rightarrow O(n)$

✓ Time-complexity

- The stage [Divide]: Partition P into two subsets Q and R.
 - Create Q and R, where
 - Q: the set of points in the first ceil(n/2) positions of the list P_x (the "left half"), and
 - R: the set of points in the final floor(n/2) positions of the list P_x (the "right half").
 - Furthermore, create $Q_{x_i} Q_{y_i} R_{x_i}$ and $R_{y'}$ where
 - Q_x consisting of the points in Q sorted by increasing x-coordinate,
 - Q_y consisting of the points in Q sorted by increasing y-coordinate,
 - R_x consisting of the points in R sorted by increasing x-coordinate, and
 - R_v consisting of the points in R sorted by increasing y-coordinate.
 - \checkmark Can be done in O(n).
- The stage [Conquer]: Find the closest pairs in Q and R, respectively.
 - Recursively determine a closest pair (q_0^*, q_1^*) of points in Q.
 - Recursively determine a closest pair (r_0^*, r_1^*) of points in R.
 - ✓ Can be done in 2T(n/2).

- The stage [Combine]: Use the obtained info. to get the closest pair in P.
 - Question: Are there points $q \in Q$ and $r \in R$ for which $d(q,r) < \delta$?
 - ✓ How can we answer this question in *linear time*?
 - **[Fact 1]** (Why?)
 - If there exists $q \in Q$ and $r \in R$ for which $d(q,r) < \delta$, then each of q and r lies within a distance δ of L.
 - [Fact 2]
 - There exist $q \in Q$ and $r \in R$ for which $d(q,r) < \delta$ if and only if there exist $s, s' \in S$ for which $d(s,s') < \delta$.

 x^* : the x-coordinate of the rightmost point in Q

 $\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))$

[Fact 3]

- If $s, s' \in S$ have the property that $d(s, s') < \delta$, then s and s' are within 15 positions of each other in the sorted list S_y .
 - \checkmark S_y : the list consisting of the points in S sorted by increasing y-coordinate.
 - Each box contains at most one point of S.
 (Why?)
 - If two points in S are at least 16 positions apart in S_v , ...

O(n)

- [Merge]

- 1. For each s in S_y , compute its distance to each of the next 15 points in S_y .
- 2. Let s, s' be the pair achieving the minimum of these distances.
- 3. Compare d(s, s') with δ .


```
Closest-Pair(P)
   Construct P_x and P_y (O(n \log n) time)
   (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
 Closest-Pair-Rec(P_x, P_v)
   If |P| \leq 3 then
     find closest pair by measuring all pairwise distances
   Endif
                                                                [Divide]
   Construct Q_x, Q_y, R_x, R_y (O(n) time)
   (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
                                                                 [Conquer]
   (r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_\chi, R_\chi)
   \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
   x^* = maximum x-coordinate of a point in set Q
   L = \{(x,y) : x = x^*\}
   S = \text{points in } P \text{ within distance } \delta \text{ of } L.
   Construct S_{\nu} (O(n) time)
   For each point s \in S_{\nu}, compute distance from s
to each of next 15 points in S_{\nu}
                                                                                            [Combine]
    Let s, s' be pair achieving minimum of these distances
       (O(n) \text{ time})
If d(s,s') < \delta then
       Return (s, s')
Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
Return (q_0^*, q_1^*)
    Else
       Return (r_0^*, r_1^*)
    Endif
```


[주제 4] Dynamic Programming

Algorithm Design Techniques

- Divide-and-Conquer Method
- Dynamic Programming Method
- Greedy Method
- Backtracking Method
- Local Search Method
- Branch-and-Bound Method
- Etc.

Dynamic Programming: Overview

- Dynamic programming is both a mathematical optimization method and a computer programming method.
 - A complicated problem is broken down into simpler sub-problems in a recursive manner.
 - Overlapping subproblems: A problem is broken down into subproblems which are reused several times or a recursive algorithm for the problem solves the same subproblem over and over rather than always generating new subproblems.
 - Optimal substructure: A solution to a given optimization problem can be constructed efficiently from optimal solutions of its subproblems.
 - When applicable, the method takes far less time than other methods that don't take advantage of the subproblem overlap like the divideand-conquer technique.

Two Approaches for Recursive Formulation

Often much more efficient!

World Series Odds

Problem

- Dodgers and Yankees are playing the World Series in which either team needs to win n games first.
- Suppose that each team has a 50% chance of winning any game.
- Let P(i,j) be the probability that if Dodgers needs i games to win, and Yankees needs j games, Dodgers will eventually win the Series.
- Ex: P(2, 3) = 11/16
- Compute P(i,j) $(0 \le i, j \le n)$ for an arbitrary n.

A Divide-and-Conquer Approach

Recursive formulation

$$P(i,j) = \begin{cases} 1, & \text{if } i = 0 \text{ and } j > 0 \\ 0, & \text{if } i > 0 \text{ and } j = 0 \end{cases}$$

$$\frac{P(i-1,j) + P(i,j-1)}{2}, & \text{if } i > 0 \text{ and } j > 0$$

- If we solve this recurrence relation in the divide-and-conquer way, ...
 - Let T(n) be the maximum time taken by a call to P(i, j), where i + j = n. Then we can prove that T(n) is exponential!

$$\begin{array}{rcl}
T(1) & = & 1 \\
T(n) & = & 2T(n-1) + c
\end{array}
\right\} \longrightarrow O(2^n)$$

What is the problem of this approach?

A Dynamic Programming Approach

 Instead of computing the same repeatedly, fill in a table as suggested below:

4	1	15/16	13/16	21/32	1/2	
3	1	7/8	11/16	1/2	11/32	
2	1	3/4	1/2	5/16	3/16	
1	1	1/2	1/4	1/8	1/16	
0		0	0	0	0	
\int_{i}	0	1	2	3	4	

	1,	if $i = 0$ and $j > 0$
$P(i,j) = \langle$	0,	if $i > 0$ and $j = 0$
	$\frac{P(i-1,j)+P(i,j-1)}{2},$	if $i > 0$ and $j > 0$

Time Complexity

- For input size (m, n), computing P(m, n) takes O(mn)-time.
- ➤ By far better than the Divide-and-Conquer approach.

Dynamic Programming

- When the divide-and-conquer approach produces an exponential algorithm where the same sub-problems are solved iteratively,
 - 1) Take the recursive relation from the divide-and-conquer algorithm, and
 - 2) replace the recursive calls with table lookups by recording a value in a table entry instead of returning it.

- Three elements to consider in designing a dynamic programming algorithm
 - Recursive relation
 - Optimal substructure
 - Table setup

$$B(i,j) = \begin{cases} B(i-1,j-1) + B(i-1,j), & \text{if } 0 < j < i \\ 1, & \text{if } j = 0 \text{ or } j = i \end{cases}$$

Table fill order

The Manhattan Tourist Problem

Problem:

- Given two street corners in the borough of Manhattan in New York City, find the path between them with the maximum number of attractions, that is, a path of maximum overall weight.
- Assume that a tourist may move either to east or to south only.

A brute force approach

- Search among all paths in the grid for the longest path!
- A greedy approach
 - 다음 강의 주제

Courtesy of [Jones & Pevzner 6.3]

A formal description of this problem

Given a weighted graph (grid) G of size (n, m) with two distinguished vertices, a source (0, 0) and a sink (n, m), find a longest path between them in its weighted graph.

An example grid of size (4, 4)

A possible selection determined by a greedy approach

Basic idea

– How can you use the solutions of smaller problems to build a solution of a problem?

A given optimization problem can be constructed efficiently from optimal solutions of its subproblems.

→ optimal substructure

