第十二章 这些串口与终端调试利器你用过吗

我们对于 UART 应该有着很深的情怀和依赖。想当年我们初学 51 单片机和 C 语言,第一个接触的就是 UART,也就是串口。在后来的日子里,我们的水平在不断提升,所使用的芯片器件也越来越高级、越来越复杂,但是 UART 一直是必不可少的。似乎没有这个接口,我们就会感觉很奇怪,很不顺手。我们使用 UART 来作多芯片之间、芯片与设备之间的通信;使用它来输出 log 以便于我们了解程序的运行状态和定位 bug; 更有高手用它构建 Shell 界面,来实现友好的人机交互。串口太重要的,它几乎就是我们与芯片沟通的首选方案。在可追溯的过去,人们基于电传打字机(Teletypewriter,简称 tty,是不是很看熟)的编码方式发明了 UART,并一直延用致今;在可预见的未来,各种更高端的 CPU、SOC 等芯片依然会保留这一接口。虽然曾几何时,电脑上已经取消了传统 RS232 接口,取而代之的是更强大的 USB接口。但是这一举措,激起了 USB 串口桥接芯片市场的暖浪潮。FT232、CP2102 以及国产的CH341、PL2303 等一系列解决方案层出不穷。一条稳定耐用的 USB 串口调试线和一个方便易用的串口调试软件,成为了硬件和嵌入式研发工程师的必备利器。

本章将介绍一些值得推荐的串口调试软件,它们也是振南在过去十几年的研发经历中曾经使用过的。看完本章,你也许会惊叹:原来串口调试软件也可以这么强大!

1、各平台上的串口调试软件

嵌入式工程师的最终形态一定是游走于多个平台之间,包括 Windows、Linux 以及各种嵌入式操作系统。各平台都有各自比较优秀的串口调试软件。

1.1 Windows

Windows 上的串口软件数不胜数,很多人经常淹没在串口软件的海洋中,下载一个不满意,再下一个不好使,最后感叹:想找个好用的串口软件就这么难!希望振南的推荐可以满足你的使用需求。

1.1.1 STCISP

我用了很多年的 STC 单片机,直到 2008 年我才全部转为使用 STM32 等其它芯片。虽然 STC 单片机已经很多年不用了,但是它的下载烧录软件 STCISP 我还一直在用。因为它内嵌了一个很好的串口工具(感谢姚老师这么贴心的设计)。如图 12.1 所示。

图 12.1 STCISP 软件内嵌的串口工具

到底什么样的串口工具算是好的?其实很简单,主要以实用为主 1、可以支持 ASCII 与 Hex 模式收发; 2、可以选择不少于 4 个串口端口; 3、可以灵活设置串口参数,如波特率、校验位 4、稳定不丢数据,不应有太大的数据延迟。这 4 条是最基本的要求,缺少其一都会影响使用,让人产生反感。

STCISP 功能不多,但是它恰恰符合上述几点。下载地址: www.stcmcudata.com 1.1.2 SSCOM

这个软件估计很多人都在用,也确实很好用。它是由大虾电子网研发并发布的免费软件。 如图 12.2 所示。

图 12.2 大虾电子网发布的 SSCOM 软件

上图所示是它最新版本 5.13.1,它除了基本的功能之外,还有定时发送、文件发送、接收数据到文件、时间戳等功能,可以说很强大。而且最新版本已经支持网络调试,包括TCPServer、TCPClient 和 UDP。还有一个比较有特色的功能就是自动计算校验,支持多种 CRC以及校验和,这对于调试 Modbus 非常方便。而且最难能可贵的是,它的接收框是可以 Shell 交互的。这种功能只有像后面要介绍到的 Xshell 或 SecureCRT 之类的终端软件才有,但是这些软件可都是收费的。所以,SSCOM 基本上可以新老咸宜,易于上手,成为 Windows 平台上流传其广的知名串口工具是有原因的。

SSCOM 是一款非常优秀的免费的专业级的串口工具。下载地址: www.sscom.vip

1.1.3 友善串口调试助手

友善之臂(杭州野芯科技)这个品牌大家有所耳闻,是作 ARM 开发板、相关配件以及 仿真工具的。它也推出了一款串口软件,如图 12.3 所示。

图 12.3 友善之臂发布的串口调试助手

这款软件看似简单,其实功能也比较强大。1、它除了串口调试之外,也可以作网口调试; 2、支持多端口同时调试,如图 12.4 所示; 3、提供几个实用小工具,比如 ASCII 表、校验计算器(支持 CheckSum 与 CRC)。

图 12.4 对多端口的支持

友善串口调试助手也是一款比较实用的串口工具,还有就是它的界面看着比较舒服。 下载地址:https://www.alithon.com/downloads

1.1.4 Xshell

上面振南所介绍的都是一些开源或者免费软件,这里要介绍的 XShell 是商业软件,是由一家名叫 NetSarang 的公司(全名是 NetSarang Computer, Inc.,主要致力于安全终端软件的开发)开发的。既然是商业软件,它的整体品质自然是上述免费软件所不能及的。振南使用

试用版来为大家介绍。

说实话,关于 Xshell 这一节还真不太好写,因为它过于强大,我甚至不知从何说起。

Xshell 严格意义上讲,并不是一款串口调试软件,或者说并不是一款仅用于串口调试的软件。串口只是它所支持的一个端口而已。除此之外,它还支持 SSH、TELNET、SFTP 等多种协议连接方式,甚至支持 JS、Python 等脚本,从而可以实现一些自动执行的任务。

振南来介绍几个比较出彩的功能。

1)多窗口排列

很多时候我们需要同时调试多台设备,那就需要多个调试终端。最典型的应用就是通信设备的收发,一发一收,一发多收,多发多收等等。Xshell 的多窗口排列可以满足这个需求。如图 12.5 所示。

图 12.5 对多端口的支持

大家看到图,就明白什么意思了。

2)按钮定制

Xshell 定制按钮的功能很强大,如图 12.6。

图 12.6 定制按钮可实现多种操作

图 12.7 定制按钮的效果

这样只要鼠标一按,即可执行预设好的操作,而不再需要手工输入命令。而且这些定制好的按钮还可以导出为模版,让大家共享。这样 Xshell 一跃就成为了项目专属的调试工具了。3)关键词高亮

你是否有过这样的困扰,调试的时候 log 一大堆,你所关注的信息被淹没在大量的无用 log 之中。可能你就只想看某个变量的值,或者某个字符串。然而串口软件又不支持文本搜

索,我们只能把 log 拷贝到记事本,然后搜索。Xshell 的关键词高亮功能可以完美解决这一问题。而且它还支持正则表达式,我们可以理解为智能的字符串匹配。比如高亮显示所有以 temprature 开始,以℃结束的字符串;又比如高亮显示所有以 3-4-4 格式显示的数字,即电话号码。如图 12.8 所示。

图 12.8 使用 Xshell 的正则式高亮显示 log 中的所有电话号码

关于正则表达式,振南会在其它章节进行专门的讲解(正则表达式是非常有用的东西)。 当然,你也可以直接在 log 上右键查找,这样更方便。如图 12.9 所示。

图 12.9 直接对 log 进行搜索(支持正则式)

最后再说一点,大型软件往往不乏彩蛋, Xshell 中可以通过 SSH 登录一些开源的游戏服务器,直接玩游戏,比如字符版的贪吃蛇。如图 12.10。

图 12.10 直接对 log 进行搜索(支持正则式)

服务器地址 ssh sshtron.zachlatta.com,工作之余休闲一下。

Xshell 是商业软件,鼓励大家去申请试用版来进行体验。如果是项目或公司使用,一定要收费哦。

1.1.5 SecureCRT

SecureCRT 与 Xshell 是同量级的商业软件(出自 Vandyke 公司,它主要从事网络安全相关软件的开发),应该说他们是竞争关系(仅代表振南个人观点)。在功能上也很相似,如图 12.11。

图 12.11 SecureCRT 软件界面

1.1.6 PuTTY

PuTTY 比 Xshell 与 SecureCRT 要古老,所以一些比较老的工程师会用得比较多,可以说它是多协议(包括串口,而且我猜它是首先支持串口的,从它名字中的 TTY 可以看出来)调试终端软件的鼻祖。如图 12.12 所示。

图 12.12 PuTTY 软件界面

有些人可能会问: "串口调试、网口调试,甚至是 telnet 我都了解,这些终端软件好像都支持 SSH,这个我不太了解,振南老师能不能介绍一下?"这里我只说 SSH 是非常重要的,它是安全远程调试的主要手段,振南会在相关章节进行专门的介绍。

PuTTY 主要由 Simon Tatham 维护,现在已经迭代到 0.78 版本。

官网是 www.putty.be 大家可以去下载。还有一点,PuTTY 经过多年的发展,现在已经 覆盖 MacOS、Linux 等平台了。

印象中,PuTTY 还有一个增强版 MTPuTTY(Multi-Tabbed PuTTY),可以支持多标签, 类似于 Xshell 和 SecureCRT。如图 12.13。

图 12.13 MTPuTTY 软件界面

1.1.6 MobaXterm (MobaXVT)

MobaXterm 是与 Xshell、SecureCRT 类似的全功能终端软件。功能也非常强大,只是好像不太有名(或许只是我孤陋寡闻)。

图 12.14 MobaXterm 的软件界面

这个软件是由法国图卢兹的 Mobatek 公司研发出品的,它除了 MobaXterm 还有一个 MobaShell,大家也可以下载试用版体验一下。它的串口调试和终端相关的功能,振南就不 赘述了。值得一说的是它的 SSH-browser 与 Remote edition 功能。它可以以 SSH 方式登录远

程服务器并浏览文件,这样便于我们对文件进行远程编辑和管理。当然,如果用来作代码开发,还是 VScode 或 codeserver 更合适一些。(关于这两个软件振南会在专门的章节进行介绍)

1.1.7 COMTool

COMTool 是我在写一章的时候才发现的一款终端调试软件,可以用优雅来形容它。官方的自我介绍是:这是一个由 Python 编写的多平台的串行调试工具。字越少,事越大,它确实是很强大的软件。

大家可以在 GitHub 上可以找到它的项目 https://github.com/Neutree/COMTool 项目 README.MD 中的一张图足以诠释它的强大。如图 12.15。

图 12.15 COMTool 开源项目中对其功能特性的完整描述

它几乎支持所有的主流平台,只要你的平台支持 Python 就可以使用;支持多种协议和接口,如串口、网口、SSH,而且还支持二次开发,可以自己开发协议插件;它还支持数据图形化,只要你按照它的协议格式收发数据,就可以将其画成折现图,如图 12.16 所示。

图 12.16 COMTool 的数据图形化效果图

不知道你有没有注意到,Xshell、SecureCRT 和 PuTTY 这些软件,其实是终端软件,而非纯粹的串口调试工具,它们是无法发送和接收十六进制数据的,也就是说我们不能使用它们来调试 Modbus 这类二进制的协议。但是 COMTool 却可以,如图 12.17。

图 12.17 COMTool 对串口十六进制的支持

可以看到,它包含4大功能:收发、协议、终端和图表。每项功能都很实用,大家可以 自体验。

就像以前说的 Windows 上的串口软件数不胜数。除了上面所介绍的这几款软件,其实 还有很多的串口软件也很优秀,限于篇幅就不再继续介绍了。关于这些软件更详细的内容大 家可以自行百度。

1.2 Linux

Windows

★ macOS

近些年 Linux 有逆袭之势。基于开源 CPU 架构, 比如 MIPS、RiskV 等, 在 Wintel 之外, 已经出现了很多的新兴生态体系,比如龙芯+UOS 生态、麒麟+鸿蒙生态等等。人们已经不再 被 X86 64 架构禁锢,而开始望向了移动便捷、可穿戴、万物互联、智能 AI 的可期未来,或 许这些"未来"已经到来了。Linux再一次成为宠儿,它不再是生僻的、高端的、不亲民的 OS,而是在我们身边越来越多得被用到。家里机顶盒、智能插座、故事机等等,基本上都 有 Linux 的身影。微软有没有为它一直秉持的闭源策略感到后悔?无论怎样, Linux 变得越来 越主流,很多的消费类软件在发布 Windows、MacOS、Android 等版本的同时,还会专门发 布一个 Linux 版本, 甚至还会区分 X86 和 ARM 平台。如图 12.18 和 12.19 所示。

iOS

∆ Linux

Android

向日葵 for Linux 允许控制本机 控制远程设备 支持Ubuntu、Deepin、CentOS、麒麟等系统 123 456 789 @ 了解向日葵助力国产适配计划 > Q RETE ****** △ 立即下载 TARRE 开启本机无人信守 V 11.0.1.44968 (2022.02)

图 12.19 向日葵发布的 Linux 版本的安装包

可以看到, Windows 现在只是众多平台中的一个而已。 所以, 现在很多工程师, 尤其是 作嵌入式 Linux 的,都会在 Linux 上涉及到串口调试的问题、所以振南才设置这一切,来汇 总介绍一下 Linux 上比较优秀的串口调试软件。

首先是一个坏消息和一个好消息,坏消息是 Xshell 没有 Linux 版本,好消息是 SecureCRT 有。大家可以去搜索相关的安装使用教程,振南就不在这里赘述了。下面主要是介绍一些小的开源软件(在 Linux 上搞闭源软件总感觉怪怪的)。

1.2.1 CuteCom

振南直接引用 CuteCom 网站上的介绍: CuteCom 是一个图形化的串口终端,就像是minicom 或者是 Windows 上的超级终端,但是我不想与它们相比,据我所知,超级终端简直就是一个垃圾。经历近期的努力,它已经可以跑在 Linux、FreeBSD 和 MacOS 上了(我理解作者也不需要太怎么努力,因为这些系统本质上都是 Unix 系统或与之兼容)。它主要是给硬件工程师或者想要跟设备对话的任何人。它是免费的,并遵循 GPL 许可。它是使用 Qt library 开发的,请关注 sourceforge 上的项目页面。我真是不喜欢这种翻译体口吻,感觉怪怪的,但这是此软件的作者 Trolltech 亲自所述,有纪念意义。这里附上它的网站地址https://cutecom.sourceforge.net/

软件的界面如图 12.20 所示。

图 12.20 CuteCom 软件的界面

没什么可说的, 中规中矩, 功能够用。

唯一一点要说的是,如果使用 USB 串口的话,需要先安装驱动,然后会产生/dev/ttyUSB0 这样的设备号。一般的 Linux 都已经支持 CH341、PL2303 和 CP2102。如果是不常用的桥接芯片,那就需要自行编译驱动了。

还有就是 Linux 下这些软件的安装大家都知道,就不赘述了。

1.2.2 minicom

讲到这里,你是否有一个疑问:"我的 Linux 没有桌面(不接显示器,或者硬件上根本没有 HDMI 或者 VGA 之类的显示接口),只是通过串口或者 SSH 来进行开发,这个时候我

怎么调试串口呢?"这个时候 minicom 可以满足你的需求, 它是一个纯字符界面的串口调试 软件。它在操作上,不像其它软件那样比较直观易用,但它的定位就是这样。如图 12.21 所 示。

图 12.21 minicom 的串口相关设置界面

其实建议大家一定要接受和熟悉命令行方式,在嵌入式这方面实际上很多情况下并没有 良好的图形界面, 串口或 SSH 是主要的设备对话手段。曾几何时, 振南在开发单片机项目的 时候,喜欢先开发或移植一个 Shell,以方便单片机运行时对其进行实时的调试和参数观察。 有没有比较好用的开源 Shell 方案? TinyShell 了解一下。另外有很多人在剥离 RT-Thread 的 MSH 为自己所用,也是不错的方案,只是门槛有些高。关于 Shell 振南会在相应章节进行详 细讲解。

很多跨平台的软件, 其实都在 Windows 那一节讲过了, 所以这里主要针对 Linux 下特有 的一些软件进行介绍。CuteCom 与 minicom 算是比较典型的。其它还有很多小软件, 比如 kermit、cu、picocom 等等,大家可以自行尝试。

1.3 MacOS

说到 MacOS 不得不说一下 Unix 与当今三大操作系统的衍生关系和发展历史。如图 12.22。

最初都用C语言编的

图 12.22 Unix 与当今三大操作系统的衍生关系和发展历史

可以看到,Windows、MacOS 和 Linux 都是继承了 Unix 的衣钵而发展起来的,只不过前两者都是闭源的,而 Linux 是开源的。这使得这三种操作系统在很多概念上是相通的。 Windows 因为在商业上发力较早,而且价格合适,从而快速占领了图形化桌面操作系统的大半江山。MacOS 与之是同时期的,难道 MacOS 不够好?其实并不是,恰恰相反,MacOS 不管从界面互相友好度、流畅性(MacOS 需要更高的硬件配置)还是实际工作效率、生产力(尤其是音视频编辑)等方面,几乎都足以甩 Windows 一个赛道。那为什么 MacOS 没有得到普及,这是因为它的定位:面向高端人群的奢侈品。这不光从 Mac 电脑可以看出来,苹果几乎所有的产品,似乎都透露着一股高大上而优雅的气息。真是贫穷限制了我们对市场的认知。

试想,手捧一台价格过万的 MacBook,去开发嵌入式,作串口调试,是不是有点舍不得?但是这并不妨碍人们去开始 Macos 下的串口工具。因为振南没有 MacBook,而且尝试在 Vmware 中去虚拟安装也失败了,所以这一节中介绍的软件我并没有条件去亲测,也就无法去挖掘这些软件的亮点。我只能截取网络上的一些资料来进行讲解。

1.3.1 coolTerm

coolTerm 是一个图形界面的串口工具,Windows 与 Linux 下也有相应的版本,使用起来很简单。

点击主界面工具栏的 Option 选项,选择端口和波特率,如图 12.23 所示。

Serial Port Options				
Port: wchusbserial1410 🗘				
Baudrate: 9600 🗘				
Data Bits: 8				
Parity: none				
Stop Bits: 1				
Flow Control: CTS				
DTR				
XON				
✓ Software Supported Flow Control				
✓ Block Keystrokes while flow is halted				
Initial Line States when Port opens:				
ODTR On DTR Off				
RTS On RTS Off				
Re-Scan Serial Ports				
ite-scan serial Forts				
Cancel				

图 12.23 coolTerm 中设置端口与波特率等参数

回到主界面点击工具栏的 Connect 即可,如图 12.24 所示。

图 12.24 coolTerm 的串口终端界面

1.3.2 友善串口调试助手

吃不吃惊,意不意外,友善串口助手竟然有 MacOS 版本。我也一直以为它不支持 macOS,最近才发现它真的有 Mac 的版本。如图 12.25。

图 12.25 MacOS 下的友善串口助手界面

前面已有介绍,这里不再赘述。

1.3.3 Volt+ (伏特加)

这个软件也是国人开发的跨平台串口工具,挺有意思,功能很强大。它拥有统计功能、支持条形图、直方图、频域图显示。不仅支持二维调试、还支持三维调试。伏特加还有开放性的特点,用户可以添加自定义控件,通过图形化界面的方式在线修改程序参数,查看数据结果。自定义控件的源码是开源的,用户可以根据需要自己编写自定义控件。如图 12.26 所示。

图 12.26 Volt+软件界面

其实 MacOS 与 Linux 是有比较高的兼容度的,所以很多 Linux 下的工具在 MacOS 都能使用,比如 minicom、picocom 等。

1.4 iOS 与安卓

在 2011 年前后我曾经用过 2 年的 iphone,但是在此之后,我个人就不再使用 iphone 了,不是因为价格问题,而是我觉得 iphone 可以让人赏心悦目,但是用在我这样的技术狂的手上,有些限制我的发挥。我认为 iOS 系统相对比较封闭 1、它不能使用扩展存在卡; 2、很多第三方的蓝牙、USB 设备都支持得不好; 3、特立独行的接口有些不太方便。

我经常需要到现场调试设备或者在路上干一些专业的事情。我又是一个懒人,不喜欢带电脑、背书包,而喜欢两手空空,想走就走。所以我的手机就成为了主要的调试工具。曾几何时,我身边的人都开始感叹我用的手机越来越大,不理解我为啥用那么大的手机,手机不就是要小巧方便吗?其它他们不了解个中原由。

还记得《深入浅出 Bootloaer》这一章中讲到的蓝牙串口+手机进行远程调试吗?这一度是我常用的工作方式。其它方式还有诸如手机向日葵+远程主机调试代码、花生壳+手机 JuiceSSH 登录远程 Linux 系统进行大型软件的编译等等。我希望我坐在咖啡馆、呆在家里、或者在火车上就把事情千里之外的事情给作了,人肉到现场是不得以而为之的下下策。产生

这种想法,真得不要怪我懒,而是以前冒着大雪、风雨、严寒、酷暑去现场调试,苦怕了。为了输入一个指令,去爬几十米高的梯子;为了查看设备状态,钻到密不透风的机箱里去;为了设置参数,跑到脚下就是万丈深渊的竖井里去;旁边就是暖暖的空调房,却非要因为那不足 2 米的串口线蹲在设备旁调试,不想再冒这个险,受这个苦了。所以从 2016 年后我研发的产品,一律带有蓝牙、WIFI 或以太网接口,在嵌入式软件上一律都有强大的 Bootloader 系统以及高度可配置的设计,支持 OTA、支持总线自动化烧录等。设计开发的时候,每多想一步,到调试时我们就可能与恶劣环境远离一步,或者在艰苦环境下少留一分。

1.4.1 基于 USB 的串口调试软件

现在我们的手机基本上都已经统一为Type-C接口了,就连iphone 也已经放弃了Lighting,向 Type-C 屈服了。随之而来的,淘宝上开始出现很多 Type-C 接口的 USB-TTL 串口模块或转接线。如图 12.27。

图 12.27 Type-C 接口的 USB-TTL 转接线与手机相连

Type-C 只是一种接口形式,它兼容 USB,但是它不仅仅是 USB,它还可以支持 DP、HDMI、音频等等协议。但是我们使用 TTL 串口转接线确实是使用了 USB 协议,就像是以前的 micro-USB 或者 USB 一样。我们使用这些老接口的串口调试线,配上接口转换器,一样可以接到手机上使用。

有了调试线,我们就只缺一款 APP 了。

1、USB 串口调试助手

这款软件有很多人在用,被人们称为 USB 调试宝。它几乎支持市面上所有的 USB 串口桥接芯片,如 FTDI 的 FT232、Prolific PL2303、Silabs 的 CP2102 和沁恒的 CH34X 等。如图 12.28。

图 12.28 USB 串口调试助手

2、Serial USB Terminal

安卓下的 USB 串口调试 APP 似乎不太多。除了上面介绍的 USB 调试宝,其它的 APP 都不太成气候(其实我自己在手机上并不用 USB 串口调试,而是用蓝牙串口比较多)。 Serial USB Terminal 算是一款比较好用的软件,详细的介绍如图 12.29。

图 12.29 Serial USB Terminal 软件界面

这些软件都是安卓平台下的,至于 iOS 振南就不赘述了,硬件工程师应该远离 iphone (仅代表振南个人观点)。

1.4.2 基于蓝牙的串口调试软件 这方面的 APP 比较多,如图 12.30。

蓝牙串口(BlueSPP)

1.78M / 2021-05-03 / v7.4.7 安卓版

蓝牙串口app是一款androidbluetoothspp,也叫作蓝牙串口spp,可用于手机蓝牙搜索、调试等等,功能非常强大,欢迎下载使用。蓝牙串口介绍蓝牙串口

点击下载

蓝牙串口助手pro apk

258KB / 2021-07-17 / v0.151 安卓版

蓝牙串口助手pro增强版英文名为

bluetoothspppro。是一个功能强大的蓝牙调试 app。为用户提供了很多便捷的蓝牙管理功能,既可

点击下载

蓝牙串口spp调试助手pro

2.40M / 2017-12-27 / v6.6 安卓版

蓝牙串口调试助手apk软件是一款专为安卓手机设计 的蓝牙串口调试工具,主演用于两个不同设备之间的 数据传输,帮助用户建立完整的通信路径,喜欢的朋

点击下载

蓝牙串口助手最新版本

2.48M / 2021-07-17 / v1.1 安卓版

蓝牙串口助手app为网友们提供了最新版蓝牙窗口调试工具。这个软件可以帮助工程师用户在手机上搜索蓝牙设备、管理蓝牙串口数据。软件功能非常丰富,

点击下载

蓝牙调试宝app最新版

17.63M / 2022-06-01 / v2.1.3 安卓版

蓝牙调试宝帮助安卓开发者在手机上进行蓝牙调试的 工作,让你可以测试各种数据,无需再次开发新的应 用来测试。线上提供很多实用的调试功能,各位开发

点击下载

蓝牙调试器

2.63M / 2021-07-17 / v1.95 安卓版

蓝牙调试器app使用起来很简单,软件能够自定义调试蓝牙,还可以搜索、收藏设备。网友们可以使用本软件进行蓝牙设备的参数值进行挑战,查看实时数据

点击下载

关于这种基于蓝牙的远程无线调试方法,振南在《深入浅出话 Bootloader》一章中已经有过介绍,但是主要偏向于它的文件无线传输相关功能的应用。这里我们对安卓下比较优秀的串品调试软件进行一个汇总。(硬件上我们使用 HC-06 蓝牙 SPP 串口模块,它与手机蓝牙可以直接配对)

下面振南选几款 APP 进行介绍。

1、BlueSPP

它的全名叫蓝牙串口通信助手,整体来说比较实用,基本的功能都有了。1、搜索蓝牙设备并快速添加;2、支持 ASCII 或 HEX 模式;3、支持串口终端以及按钮。如图 12.31 所示。

图 12.31 BlueSPP 软件界面

2、蓝牙串口

这款 APP 功能比较单一,也只有一个界面,即数据收发。如图 12.32。

图 12.32 蓝牙串口软件界面

可以看到它还有一个贴心小设计,就是可以把接收的数据存为 txt 文件,通过 QQ 发送出去。

上面介绍的这两款 APP,从功能上看都比较弱。其实并不是因为它是手机软件而导致其功能单一,有些蓝牙串口 APP 的功能也是非常强大的。真的可以作到,一机在手,调试全有。来看下面这款 APP。

3、 Android 蓝牙串口 Pro

这个 APP 是我用过的最强大的蓝牙串口调试软件。它除了蓝牙搜索配对、数据收发(ASCII 与 HEX 方式)、数据保存、定时发送等基础功能之外,还有图形化地面站、XMODEM 文件发送等高级功能。如图 12.33。

图 12.33 Android 蓝牙串口 Pro 的几个典型工作界面

不过这款 APP 不太好找,振南也是在机缘巧合之下才知道这个软件的。大家可以在bbs.21ic.com 搜索 "Android 蓝牙串口 Pro",即可下载到。

什么?你问 iphone 上可不可以连接蓝牙串口模块来实现无线调试?先不说 iOS 下有没有比较好的蓝牙串口 APP,你可以研究一下,先在 iphone 上搜到蓝牙串口模块,完成配对再说!(iphone 似乎对未在其蓝牙授权列表中的设备进行支持)

2、串口监控的一些方案

我先来说一个桥段:两个工程师在调试串口收发,一个上位机,一个下位机(单片机),它们之间的协议非常简单,如图 **12.34**。

图 12.34 串口收发示意图

看似简单,但是他俩就是调不通,一个人说:"我上位机没收到回应,指令我肯定是下发下去了!"另一个人说:"指令我是收到,但是回应我肯定是发了,你再查查!"公婆之争,没有休止。要确定问题到底在哪一方,最好的办法就是监视他们的串口数据,一目了然。如何监视串口数据?有几种方法。

2.1 硬件方案

纯硬件监视串口的收发,其实是不得以而想出的办法(能用软件解决的问题绝不会去动硬件)。如图 **12.35** 所示。

图 12.35 使用另一个串口的 RXD 来监视串口数据收发

道理很简单,串口的收发其实对于另一个串口来说,都是接收。只要它不同时收发,我们就可以在 RXD 上看到双向的数据。

这应该是最简单粗暴的方法了,但是实际上现场可能不方便接线。

2.2 软件方案

其实有一些软件可以实现串口数据监视,包括 Windows 和 Linux 平台。这样的监视软件,有些人形象的称之为"防扯皮软件",专治像上面这种公婆之争。

振南对几个比较好用的软件进行介绍,同时讲解一下它们的基本使用方法。有人说,我知道一个软件可以对数据进行抓包,Wireshark,没错,这个软件很强大,但是我发现它并不能对串口数据进行抓包和监视,而更多是对网络数据进行抓包,而用于网络协议分析。

2.2.1 Ser232Mon

这个是我用过的第一个串口监视软件。当时对 STC 的串口下载协议非常感兴趣,想想如果能知道它的协议,就可以用一个单片机去烧录别一个单片机了,这就实现了离线烧录。所以,我就用 Ser232Mon 对 STC 下载过程中的串口数据进行监视分析(声明:数据监视与分析仅用于个人学习)。它的通信是无加密的,完全明文传输,所以当看到这一收一发的串口数据,协议自然了然于眼前。这就是串口监视的最大意义,我们可以知道串口收发的具体细节,从而有力的支撑串口调试工作。

Ser232Mon 界面简洁,功能够用,是一款比较实用的软件。可惜的是,在现在的 WIN10 时代已经用不起来了,它只支持 WINXP。这导致我想截图一个软件界面都比较困难。

2.2.2 Device Monistoring Studio

这是一个非常强大的工具, 串口监视只是它的一项功能, 它还可以监视 USB、网口等等, 甚至可以作为调试终端。而且它还内置了很多协议, 便于进行协议分析。如图 12.36。

图 12.36 Device Monistoring Studio 的软件界面(显示 CH340 USB 串口)

当然制作如此精良的软件,肯定又是商业软件。没错,它是由英国 HHD 软件公司研发出品的。这个公司与 Netsarang 一样,也有一系列的产品,主要专注于端口监视与调试(真是任何细分领域都有专注者)。如图 12.37。

Explore Our Products & Solutions

图 12.37 HHD 软件公司诸多的软件产品与解决方案

这是振南简单介绍一下使用这个软件进行串口监视的方法。首先,右键要监视的串口, 选择开始监视。如图 **12.38**。

图 12.38 在 Device Monitoring Studio 中右键选择开始监视

接下来会新建一个 Session(会话),类型选择 Generic。如图 12.36 所示。

图 12.39 创建类型为 Generic 的会话

最后选择监视数据的处理方式(是只监视原始数据,还是区分输入与输出,再或者是使用协议进行分析,比如 Modbus),一般我们选择 Data View。如图 12.37 所示。

图 12.40 选择 Data View 作为数据监视的处理方式

我们使用串口助手收发数据,就可以从 Monitoring 软件中看到,它分为 Reads 与 Writes。 如图 12.41。

图 12.41 Monitoring 软件对串口监视数据的显示

而且每一次数据都会有序号和时间戳,方便我们进行串口协议交互的细粒度的分析。

2.2.2 CommMonitor

这也是一款利器,但是个人认为它比 Device Monitoring 要逊色一些,起码在界面 UI 上不如它优雅和专业(以上仅振南个人观点)。来看一下它的界面,如图 12.42。

图 12.42 CommMonitor 的软件界面

CommMonitor 其实是一个商业软件,由 CEIWEI 软件公司研发出品。它是国内为数不多的专注于 Windows 系统驱动开发的几家公司之一。主要业务是串口过滤、TCP/UDP 网络、USB 端口、并口(打印机)端口、Modbus RTU/ASCII 协议、MQTT 协议等一系列底层过滤监控

技术服务 (援引其官网的介绍)。

这个软件的使用非常直观, 所以就不再赘述了, 大家可以自行尝试。

2.2.3 AccessPort

上面介绍的都是商业软件,唯独一个 ser232mon 是免费的,还不能支持 Win10 (振南已经测试过,Win7 也不能支持)。"振南,你这不等于白介绍了吗?用不了啊!"别着急,我再介绍两款软件 AccessPort 和 ComSpy。它们不能算功能强大,但还算好用。最重要的是免费。如图 12.43 所示。

MA	cessPort - Monito	COM19 stoped				- 0
文件()) 病根(E) 查看(/) 监控(M) 工具	(T) 操作(O) 報	助(H)		
0	0 2	50)			
Te	rminal Mor	nitor				
a -	g# > = B	E ab				
=	Time	Duration (s)	Process	Port	Result	Data (Hex.)
3	15:27:13.755	0.02079210	mbpollexe	COM19	TIMEOUT	Length: 0, Data:
14	15:27:13.776	0.00557680	mbpoll.exe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 06
15	15:27:13.782	0.00000650	mbpoll.exe	COM19	SUCCESS	Length: 20, Data: 05 FC 00 00 00 00 00 00 00 00 00 00 00 00 00
16	15:27:14.726	0.00003110	mbpoll.exe	COM19	SUCCESS	Purge: TXCLEAR RXCLEAR
17	15:27:14.726	0.00001820	mbpoll.exe	COM19	SUCCESS	Length: 8, Data: 01 03 00 00 00 0A CS CD
18	15:27:14.726	0.02000090	mbpoli.exe	COM19	TIMEOUT	Length: 0, Data:
19	15:27:14.746	0.01390130	mbpollexe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 08
20	15:27:14.760	0.00000510	mbpoli.exe	COM19	SUCCESS	Length: 20, Data: 05 FE 00 00 00 00 00 00 00 00 00 00 00 00 00
21	15:27:15.747	0.00002700	mbpollexe	COM19	SUCCESS	Purge: TXCLEAR RXCLEAR
22	15:27:15.747	0.00003070	mbpollexe	COM19	SUCCESS	Length: 8, Data: 01 03 00 00 00 0A C5 CD
23	15:27:15.748	0.02044200	mbpollexe	COM19	TIMEOUT	Length: 0, Data:
24	15:27:15.768	0.00955230	mbpoll.exe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 0A
25	15:27:15.778	0.00000560	mbpoll.exe	COM19	SUCCESS	Length: 20, Data: 06 00 00 00 00 00 00 00 00 00 00 00 00
26	15:27:16.753	0.00003140	mbpoll.exe	COM19	SUCCESS	Purge: TXCLEAR RXCLEAR
27	15:27:16.753	0.00002390	mbpoliexe	COM19	SUCCESS	Length: 8, Data: 01 03 00 00 00 0A C5 CD
28	15:27:16.753	0.02018580	mbpollexe	COM19	TIMEOUT	Length: 0, Data:
29	15:27:16.773	0.01765730	mbpoll.exe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 0C
50	15:27:16.791	0.00000890	mbpollexe	COM19	SUCCESS	Length: 20, Data: 06 02 00 00 00 00 00 00 00 00 00 00 00 00
31	15:27:17.760	0.00003310	mbpoll.exe	COM19	SUCCESS	Purge: TXCLEAR RXCLEAR
32	15:27:17.760	0.00002190	mbpoli.exe	COM19	SUCCESS	Length: 8, Data: 01 03 00 00 00 0A C5 CD
33	15:27:17.760	0.02008260	mbpoll.exe	COM19	TIMEOUT	Length: 0, Data:
34	15:27:17.780	0.00780900	mbpollexe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 0E
35	15:27:17.788	0.00000770	mbpollexe	COM19	SUCCESS	Length: 20, Data: 06 04 00 00 00 00 00 00 00 00 00 00 00 00
36	15:27:18.767	0.00061680	mbpoll.exe	COM19	SUCCESS	Purge: TXCLEAR RXCLEAR
37	15:27:18.768	0.00002570	mbpoli.exe	COM19	SUCCESS	Length: 8, Data: 01 03 00 00 00 0A C5 CD
38	15:27:18.768	0.01987110	mbpollexe	COM19	TIMEOUT	Length: 0, Data:
39	15:27:18.789	0.02043770	mbpoll.exe	COM19	TIMEOUT	Length: 0, Data:
10	15:27:18.809	0.00367730	mbpollexe	COM19	SUCCESS	Length: 5, Data: 01 03 14 06 10

图 12.43 AccessPort 的软件界面

2.2.3 ComSpy (串口监视精灵)

话不多说,功能很单一,就是串口收发数据监视。如图 12.44。

图 12.44 ComSpy 的软件界面

Windows 上这类软件其实还有不少,上面所介绍的是比较常见的。在 Linux 下也有一些类似的软件,振南在这里仅列举一个,更多的大家可以自行查找。

2.2.4 jpnevulator

jpnevulator 是 Linux 下一个比较有名的串口监视软件,它是开源的,大家可以进入它的项目网站 https://jpnevulator.snarl.nl 来对其进行深入了解。

它的使用是基于命令行的。

首先,需要对 jpnevulator 进行安装,直接 apt install jpnevulator。随后,在 Linux 命令行中输入以下命令:

jpnevulator --ascii --pty=:SerialSent --pass --tty "/dev/ttyS1:SerialReceived" --read 正常的话会显示:

jpnevulator: slave pts device is /dev/pts/2.

命令解析: --pty 会虚拟出一个假的设备/dev/pts/2, --pass 会把/dev/pts/2 上接收到的数据转发到/dev/ttyS1, --read 会读取/dev/pts/2 收到的和/dev/ttyS1 从外部收到的,并显示出来。如图 12.45 所示。

图 12.45 jpnevulator 对 minicom 的串口数据收发进行监视

除了上面这些软件,可能有的人还需要一些串口监视的开发包,以便在自己开发的软件项目中实现串口监视功能。振南可以介绍一个支持二次开发的开源软件 pySerial,需要的可以自行研究。

OK,关于串口调试和终端软件,振南就写这么多。写这一章还是耗费了很多的精力的,振南的一贯风格是事无巨细。其实本文所讲到的很多软件,振南也只是知道,并没有实际去过来。为了能够更系统的、更全面的,针对各个平台的软件进行准确的描述,振南作了大量的实验以及搜索与软件相关的信息。希望大家能够从本文中有所收获,对你的实际项目研发产生益处。