

Espressioni regolari e proprietà dei linguaggi regolari

a.a. 2018-2019

Proprietà dei linguaggi regolari

Le pù importanti proprietà dei linguaggi regolari

Proprietà Pumping.

Ogni linguaggio regolare soddisfa una proprietà caratteristica, chiamata pumping. In presenza di un falso linguaggio regolare, l'uso di tale proprietà permette di ottenere una contraddizione.

Proprietà di chiusura.

Operazioni che applicate a linguaggi regolari forniscono linguaggi regolari, cioè operazioni rispetto alle quali la classe dei linguaggi regolari è chiusa.

Proprietà Pumping

Sia *L* un linguaggio regolare e sia *n* il numero di stati di un automa deterministico a stati finiti che lo riconosce.

Si consideri una stringa w di lunghezza m, maggiore o uguale a n accettata dall'automa, se esiste, cioè una stringa di L.

Poiché m ≥ n, durante l'esame della stringa almeno uno stato deve occorrere due volte.

Possiamo scrivere w come la concatenazione delle tre stringhe:

$$x = a_1 a_2 \dots a_i$$
 $y = a_{i+1} a_{i+2} \dots a_j$ $z = a_{j+1} a_{j+2} \dots a_m$
 $w = xyz$

Quindi tutte le stringhe $xy^kz \in L$, per ogni $k \ge 0$.

Pumping Lemma

Teorema

Sia *L* un linguaggio regolare.

Allora \exists n, che dipende solo dal linguaggio, tale che \forall w \in L, $|w| \ge n$, w si può scrivere come la concatenazione di tre sottostringhe xyz tali che:

$$y \neq \varepsilon$$

 $|xy| \le n$
 $\forall k \ge 0, xy^k z \in L$

Proprietà di chiusura

Siano *L* e *M* due linguaggi regolari. Allora i seguenti linguaggi sono regolari:

Unione: $L \cup M$

Concatenazione: L.M

Chiusura: L*

Complemento: \overline{L}

Differenza: L - M

Inversione: $L^R = \{w^R \mid w \in L\}$

Intersezione: $L \cap M$

Proprietà di chiusura

La chiusura rispetto a unione, concatenazione e chiusura di Kleene discende direttamente dalla definizione di espressione regolare.

La chiusura rispetto alle operazioni di complemento, differenza, inversione e intersezione può essere facilmente provata ad esempio dimostrando che, dati due automi a stati finiti deterministici che riconoscano i linguaggi *L* e *M*, rispettivamente, è possibile costruire automi a stati finiti che riconoscano:

$$\overline{L}$$

$$L - M$$

$$L^{R} = \{ w^{R} \mid w \in L \}$$

$$L \cap M$$

Proprietà di chiusura II

Teorema

I linguaggi regolari sono chiusi per riflessione, complementazione e intersezione.

Useremo gli automi finiti: dati due automi a stati finiti (deterministici) M_1 e M_2 , che riconoscono rispettivamente L_1 e L_2 si possono costruire facilmente automi che riconoscano:

$$L_1^R$$
, $\sum^* - L_1$, $L_1 \cap L_2$

La chiusura per intersezione può anche essere provata, dopo la chiusura per complementazione, usando la legge di De Morgan: $L_1 \cap L_2 = \sum^* - ((\sum^* - L_1) \cup (\sum^* - L_2)).$

Chiusura per riflessione

Supponiamo, senza perdita di generalità, M deterministico con L(M) = L

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

Costruiamo $M_R = \langle Q_R, \Sigma, \delta_R, q_R, F_R \rangle$ in modo che: $L(M_R) = L^R$

$$Q_R = Q \cup \{q_R\}, q_R \notin Q$$

 $F_R = \{q_0\}$

$$\delta_R(q_R, \epsilon) = F$$

 $\forall q \in Q: q \in \delta_R(p, a) \text{ se } \delta(q, a) = p$

Chiusura per riflessione II

Esempio:

Chiusura per complemento

Sia $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ deterministico con L(M) = L e tale che **tutte** le transizioni dagli stati siano definite

$$L(M_c) = \sum^* - L$$

Costruiamo $M_c = \langle Q_c, \Sigma, \delta_c, q_c, F_c \rangle$ in modo che:

$$Q_c = Q$$
 $F_c = Q - F$
 $q_c = q_0$
 $\forall q \in Q: \delta_c(q, a) = \delta(q, a)$

N.B.: l'automa M deve essere completato con lo stato di errore e la funzione di transizione definita totale su $Q \times \Sigma$

Chiusura per complemento II

bba
$$\in L((a|b)^* - (ab^*a | bab | ba^*))$$

L'automa costruito non riconosce il linguaggio complemento perché nell'automa di partenza manca lo stato d'errore.

Chiusura per complemento III

Chiusura per intersezione

Supponiamo, senza perdita di generalità, M_1 e M_2 deterministici con $L(M_1) = L_1$ e $L(M_2) = L_2$

$$M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, F_1 \rangle$$
 $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, F_2 \rangle$

Costruiamo M = $\langle Q, \Sigma, \delta, q_0, F \rangle$ in modo che: $L(M) = L_1 \cap L_2$

$$Q = Q_1 \times Q_2$$

$$\sum = \sum_1 \cap \sum_2$$

$$q_0 = \langle q_1, q_2 \rangle$$

$$F = F_1 \times F_2$$

$$\delta(\langle q,p\rangle, a) = \langle \delta_1(q,a), \delta_2(p,a)\rangle$$
 se $\delta_1(q,a)$ e $\delta_2(p,a)$ sono entrambe definite $\delta(\langle q,p\rangle, a)$ indefinita se $\delta_1(q,a)$ o $\delta_2(p,a)$ non è definita

M viene chiamato automa prodotto

Chiusura per intersezione II

Chiusura per differenza

Basta osservare che, se L e M sono linguaggi (e quindi insiemi):

$$L - M = L \cap \overline{M}$$

La chiusura per differenza discende immediatamente da quelle per in intersezione e complemento.

Esercizi

• Costruire un automa che riconosca il complemento del linguaggio riconosciuto dal seguente automa:

• Costruire un automa che riconosca il linguaggio inverso del linguaggio riconosciuto dal seguente automa:

Esercizi

• Costruire un automa che riconosca l'intersezione dei linguaggi riconosciuti dai seguenti automi:

Esercizi

- Fornire un'espressione regolare che denoti il linguaggio
 L = {w | w ∈ a*b* e |w| = 2i+1, i ≥ 0}.
 e costruire un automa che lo riconosca.
- Costruire automi che riconoscano rispettivamente l'intersezione, l'unione, la concatenazione, l'inversione, la differenza, il complemento e la chiusura dei linguaggi riconosciuti dai seguenti automi:

