Politecnico di Milano Scuola di Ingegneria Industriale e dell'Informazione

APPLIED STATISTICS February 15th, 2023

©All rights reserved. Note: data may be simulated and should not be considered outside of the scope of the present exam.

Problem n.2

The shapefile Milan contains the current NILs (Nuclei d'Identità Locale, i.e. the neighbourhoods) in the city of Milano (source: Comune di Milano) The neighborhoods are univocally defined by an ID_NIL (a number, to be used as ID variable), or NIL (the extended neighborhood name). For each NIL, the number n of public establishments such as bars, restaurants, pubs, etc., where serving is the primary activity (source: Comune di Milano) is reported. Moreover, the standardized variable n_per_area was created dividing, for each NIL, the variable n by the variable Shape_Area measuring the area.

- a) By making use of a contiguity-based spatial weight of order 1 (W1), able to consider both common sides and common vertices, report the *minimum* and *maximum* number of neighborhoods and the *sparsity percentage* (i.e., the percentage of non-zero values).
- b) According to **W1**, what is the number of Neighbors associated to the highest frequency? Report both this number as well as the associated highest frequency.
- c) Based on W1, focus now on the variable n_per_area and build the LISA Cluster Map and Significance Map. Comment on them.
 - Moreover, report the NILs identified as outliers for a p-value≤ 0.05 when testing spatial autocorrelation. How would you explain their outlyingness?
- d) Report the Moran's I and, among the NILs with a positive spatial autocorrelation, report the one with the highest $z_j \overline{z}$.

Figure 1: Dark green areas represent usable public green spaces, light green areas represent non-usable green spaces, while pink areas indicate developing zones.

In addition, the file revenues.txt collects the average daily revenues (revenue [k \in]) in 2023 of 70 minimarkets located in Milan. For each minimarket i, the dataset also reports its UTM coordinates s_i and the resident population in the neighborhood (population(s_i)). For i = 1, ..., 70, consider the following model:

$$revenue(s_i) = a_0 + a_1 \cdot population(s_i) + \delta(s_i)$$

with $\delta(s_i)$ a stationary residual (spherical without nugget, with initial parameters 500 and 1000 for the sill and range, respectively).

- g) Estimate via generalized least squares the parameters a_0 , a_1 of the model, and briefly detail the implementation choices and procedure, reporting also the relevant R code. Report the estimated values for the variogram.
- h) Provide a kriging prediction $revenue^*(s_0)$ of the revenues at a shop located in the Brera district at location $s_0 = (514703.8, 5035569.3)$, for which $population(s_0) = 6054.468$, briefly detailing the implementation choices.