Chapter 10

Planning Life Tests

William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Copyright 1998-2001 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

July 18, 2002 12h 25min

Planning Life Tests Chapter 10 Objectives

- Explain the basic ideas behind planning a life test.
- Use simulation to anticipate the results, analysis, and precision for a proposed test plan.
- Explain large-sample approximate methods to assess precision of future results from a reliability study.
- Compute sample size needed to achieve a degree of precision.
- Assess tradeoffs between sample size and length of a study.
- Illustrate the use of simulation to calibrate the easier-to-use large-sample approximate methods.

Basic Ideas in Test Planning

- The enormous cost of reliability studies makes it essential to do careful planning. Frequently asked questions include:
 - ► How many units do I need to test in order to estimate the .1 quantile of life?
 - ▶ How long do I need to run the life test?

Clearly, more test units and more time will buy more information and thus more precision in estimation.

• To anticipate the results from a test plan and to respond to the questions above, it is necessary to have some **planning** information about the life distribution to be estimated.

Engineering Planning Values and Assumed Distribution for Planning an Insulation Life Test

Want to estimate $t_{.1}$ of the life distribution of a newly developed insulation. Tests are run at higher than usual volts/thickness to cause failures to occur more quickly.

Information (planning values) from engineering

- Expect about 20% failures in the 1000 hour test and about 12% failures in the first 500 hours of the test.
- Willing to assume a Weibull distribution to describe failuretime.
- Equivalent information for **planning values**: $\eta^{\square} = 6464$ hours (or $\mu^{\square} = \log(6464) = 8.774$), $\beta^{\square} = .8037$ (or $\sigma^{\square} = 1/\beta^{\square} = 1.244$).

Starting point: Use simulated data to assess precision.

Weibull Probability Paper Showing the Insulation Life cdf Corresponding to the Test Planning Values $\eta^{\Box}=6464$ and $\beta^{\Box}=.8037$

Simulation as a Tool for Test Planning

- Use assumed model and planning values of model parameters to simulate data from the proposed study.
- Analyze the data perhaps under different assumed models.
- Assess precision provided.
- Simulate many times to assess actual sample-to-sample differences.
- Repeat with different sample sizes to gauge needs.
- Repeat with different input planning values to assess sensitivity to these inputs.

Any surprises?

ML Estimates from 50 Simulated Samples of Size $n=20,\,t_c=400$ from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

ML Estimates from 50 Simulated Samples of Size $n=80,\,t_c=400$ from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

ML Estimates from 50 Simulated Samples of Size $n=20,\,t_c=1000$ from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

ML Estimates from 50 Simulated Samples of Size

$$n=80,\,t_c=1000$$
 from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

Simulations of Insulation Life Tests

- ML estimates obtained from 50 simulated samples of size $n=20,\,80,\,$ from a Weibull distribution with $\mu^\square=8.774,\,\sigma^\square=1.244\,(\beta^\square=.8037).$
- The vertical lines at $t_c = 400$, 1000 hours (shown with the thicker line) indicates the censoring time (end of the test).
- The horizontal line is drawn at p = .1 so to provide a better visualization of the distribution of estimates of $t_{.1}$.
- Results at $t_c = 400$ and n = 20 are highly variable.

Trade-offs Between Test Length and Sample Size

Geometric average \widehat{R} factor from 50 simulated exponential samples $(\theta = 5)$ for combinations of sample size n and test length t_c (conditional on $r \ge 1$ failures)

Test Length t_c	Sample Size n	
	20	80
400	12.9 (2)	2.84 (8)
1000	4.53 (4)	2.14 (16)

Numbers within parenthesis are the expected number of failures at each test condition.

Assessing the Variability of the Estimates

ullet For positive quantile t_p an approximate 100(1-lpha)% confidence interval is given by

$$[t_p, \quad \tilde{t_p}] = [\hat{t_p}/\hat{R}, \quad \hat{t_p}\hat{R}]$$

where $\widehat{R}=\exp\left[z_{(1-\alpha/2)}\widehat{\mathrm{se}}_{\log(\widehat{t}_p)}\right]$. The factor $\widehat{R}>1$ is an indication of the width of the interval and can be used to assess the variability in the estimates \widehat{t}_p .

• For an unrestricted quantile y_p an approximate $100(1-\alpha)\%$ confidence interval is given by

$$[y_p, \quad \widetilde{y_p}] = [\widehat{y_p} - \widehat{D}, \quad \widehat{y_p} + \widehat{D}]$$

where $\widehat{D}=z_{(1-\alpha/2)}\widehat{\operatorname{se}}_{\widehat{y}_p}$. The half-width \widehat{D} is an indication of the width of the interval and can be use to assess the variability in the estimates \widehat{y}_p .

Simulations of Insulation Life Tests-Continued

Some important points about the effect that sample size will have on our ability to make inferences:

- For the $t_c = 400$ and n = 5 simulation
 - ▶ Enormous amount of variability in the ML estimates.
 - ► For several of the simulated data sets, no ML estimates exist because all units were censored.
- Increasing the experiment length to $t_c = 1000$ and the sample size to n = 80 provides
 - ► A more stable estimation process.
 - ► A substantial improvement in precision.

Needed sample size giving approximatley a 50% chance of having a confidence interval factor for the 0.1 quantile that is less than R weibull Distribution with eta= 6464 and beta= 0.804

Test censored at 1000 Time Units with 20 expected percent failing

Motivation for Use of Large-Sample Approximations of Test Plan Properties

Asymptotic methods provide:

- Simple expressions giving precision of a specified estimator as a function of sample size.
- Simple expressions giving needed sample size as a function of specified precision of a specified estimator.
- Simple tables or graphs that will allow easy assessments of tradeoffs in test planning decisions like sample size and test length.
- Can be fine tuned with simulation evaluation.

Asymptotic Variances

Under certain regularity conditions the following results hold asymptotically (large sample)

ullet $\widehat{ heta}$ $\stackrel{.}{\sim}$ MVN $(heta, \Sigma_{\widehat{ heta}})$, where $\Sigma_{\widehat{ heta}} = I_{ heta}^{-1}$, and

$$I_{\theta} = \mathbb{E}\left[-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta \partial \theta'}\right] = \sum_{i=1}^n \mathbb{E}\left[-\frac{\partial^2 \mathcal{L}_i(\theta)}{\partial \theta \partial \theta'}\right].$$

• For a scalar $g = g(\widehat{\theta}) \stackrel{.}{\sim} NOR[g(\theta), Avar(\widehat{g})]$, where

$$\operatorname{Avar}(\widehat{g}) = \left[\frac{\partial g(\theta)}{\partial \theta}\right]' \Sigma_{\widehat{\theta}} \left[\frac{\partial g(\theta)}{\partial \theta}\right].$$

• When $g(\theta)$ is **positive** for all θ , then $\log[g(\widehat{\theta})] \stackrel{.}{\sim} \mathsf{NOR}\{\log[g(\theta)], \mathsf{Avar}[\log(\widehat{g})]\}$, where

$$\operatorname{Avar}[\log(\widehat{g})] = \left(\frac{1}{g}\right)^2 \operatorname{Avar}(\widehat{g}).$$

Asymptotic Approximate Standard Errors for a Function of the Parameters $g(\theta)$

Given an assumed model, parameter values (but not sample size), one can compute scaled asymptotic variances.

• The variance factors $V_{\widehat{g}} = n \operatorname{Avar}(\widehat{g})$ and $V_{\log(\widehat{g})} = n \operatorname{Avar}[\log(\widehat{g})]$ may depend on the actual value of θ but they do **not** depend on n.

To compute these variance factors one uses planning values for θ (denoted by θ^{\square}) as discussed later.

ullet The asymptotic standard error for \widehat{g} and $\log(\widehat{g})$ are

$$\operatorname{Ase}(\widehat{g}) = \frac{1}{\sqrt{n}} \sqrt{\mathsf{V}_{\widehat{g}}}$$
$$\operatorname{Ase}[\log(\widehat{g})] = \frac{1}{\sqrt{n}} \sqrt{\mathsf{V}_{\log(\widehat{g})}}.$$

Easy to choose n to control Ase.

Sample Size Determination for Positive Functions of the Parameters

• When $g(\theta) > 0$ for all θ , an approximate $100(1 - \alpha)\%$ confidence interval for $\log[g(\theta)]$ is

$$\left[\log(g), \log(g)\right] = \log(\widehat{g}) \pm (1/\sqrt{n}) z_{(1-\alpha/2)} \sqrt{\widehat{V}_{\log(\widehat{g})}} = \log(\widehat{g}) \pm \log(R).$$

Exponentiation yields a confidence interval for g

$$[g, \quad \tilde{g}] = [\hat{g}/R, \quad \hat{g}R]$$

$$R = \exp\left[(1/\sqrt{n})z_{(1-\alpha/2)}\sqrt{\widehat{V}_{\log(\widehat{g})}}\right] = \widetilde{g}/\widehat{g} = \widehat{g}/\underline{\widehat{g}} = \sqrt{\widetilde{g}/\underline{\widehat{g}}}.$$

• Replace $\widehat{\mathsf{V}}_{\log(\widehat{g})}$ with $\mathsf{V}_{\log(\widehat{g})}^\square$ and solve for n to compute the needed sample size giving

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{g})}^{\square}}{[\mathsf{log}(R_T)]^2}.$$

Sample Size Determination for Positive Functions of the Parameters-Continued

Test plans with a sample size of

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{g})}^{\square}}{[\mathsf{log}(R_T)]^2}.$$

provides confidence intervals for $g(\theta)$ with the following characteristics:

- In repeated samples approximately $100(1-\alpha)\%$ of the intervals will contain $g(\theta)$.
- In repeated samples $\widehat{\mathsf{V}}_{\log(\widehat{g})}$ is random and if $\widehat{\mathsf{V}}_{\log(\widehat{g})} > \mathsf{V}_{\log(\widehat{g})}^{\square}$ then the ratio $R = \widetilde{g}/\widetilde{g}$ will be greater than $[R_T]^2$.
- The ratio $R=\tilde{g}/\underline{g}$ will be greater than $[R_T]^2$ with a probability of order .5.

Sample Size Needed to Estimate the Mean of an Exponential Distribution Used to Describe Insulation Life

- Need a test plan that will estimate the mean life of insulation specimens at highly-accelerated (i.e., higher than usual voltage to get failure information quickly) conditions.
- Desire a 95% confidence interval with endpoints that are approximately 50% away from the estimated mean (so $R_T=1.5$).
- Can assume an exponential distribution with a mean $\theta^{\square} = 1000$ hours.
- Simultaneous testing of all units; must terminate test at 500 hours.

Sample Size Needed to Estimate the Mean of an Exponential Distribution Used to Describe Insulation Life-Continued

• ML estimate of the exponential mean is $\widehat{\theta}=TTT/r$, where TTT is the total time on test and r is the number of failures. It follows that

$$V_{\widehat{\theta}} = n \operatorname{Avar}(\widehat{\theta}) = \frac{n}{\operatorname{E}\left[-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2}\right]} = \frac{\theta^2}{1 - \exp\left(-\frac{t_c}{\theta}\right)}$$

from which

$$V_{\log(\widehat{\theta})}^{\square} = \frac{V_{\widehat{\theta}}^{\square}}{[\theta^{\square}]^2} = \frac{1}{1 - \exp\left(-\frac{500}{1000}\right)} = 2.5415.$$

Thus the number of needed specimens is

$$n = \frac{z_{(1-\alpha/2)}^2 V_{\log(\widehat{\theta})}^{\square}}{[\log(R_T)]^2} = \frac{(1.96)^2 2.5415}{[\log(1.5)]^2} \approx 60.$$

Location-Scale Distributions and Single Right Censoring Asymptotic Variance-Covariance

Here we specialize the computation of sample sizes to situations in which

- log(T) is location-scale Φ with parameters (μ, σ) .
- ullet When the data are Type I singly right censored at t_c . In this case,

$$\frac{n}{\sigma^{2}} \Sigma_{(\widehat{\mu}, \widehat{\sigma})} = \frac{1}{\sigma^{2}} \begin{bmatrix} V_{\widehat{\mu}} & V_{(\widehat{\mu}, \widehat{\sigma})} \\ V_{(\widehat{\mu}, \widehat{\sigma})} & V_{\widehat{\sigma}} \end{bmatrix} = \begin{bmatrix} \frac{\sigma^{2}}{n} I_{(\mu, \sigma)} \end{bmatrix}^{-1} = \begin{bmatrix} f_{11} & f_{12} \\ f_{12} & f_{22} \end{bmatrix}^{-1} \\
= \left(\frac{1}{f_{11} f_{22} - f_{12}^{2}} \right) \begin{bmatrix} f_{22} & -f_{12} \\ -f_{12} & f_{11} \end{bmatrix}$$

where the f_{ij} values depend only on Φ and the standardized censoring time $\zeta_c = [\log(t_c) - \mu]/\sigma$ [or equivalently, the proportion failing by t_c , $\Phi(\zeta_c)$].

Location-Scale Distributions and Single Right Censoring Fisher Information Elements

The f_{ij} values are defined as:

$$f_{11} = f_{11}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \mu^2} \right]$$

$$f_{22} = f_{22}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \sigma^2} \right]$$

$$f_{12} = f_{12}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \mu \partial \sigma} \right]$$

The f_{ij} values are available from tables or algorithm LSINF for the SEV (Weibull), normal (lognormal), and logistic (loglogistic) distributions.

For a single fixed censoring time, the asymptotic variance-covariance factors $\frac{1}{\sigma^2}V_{\widehat{\mu}}$, $\frac{1}{\sigma^2}V_{\widehat{\sigma}}$, and $\frac{1}{\sigma^2}V_{(\widehat{\mu},\widehat{\sigma})}$ are easily tabulated as a function of ζ_c .

Table of Information Matrix Elements and Variance Factors

Table C.20 provides for the normal/lognormal distributions, as functions of the standardized censoring time ζ_c :

- $100\Phi(\zeta_c)$, the percentage in the population failing by the standardized censoring time.
- Fisher information matrix elements f_{11}, f_{22} , and f_{12} .
- The asymptotic variance-covariance factors $\frac{1}{\sigma^2}V_{\widehat{\mu}}$, $\frac{1}{\sigma^2}V_{\widehat{\sigma}}$, and $\frac{1}{\sigma^2}V_{(\widehat{\mu},\widehat{\sigma})}$.
- Asymptotic correlation $\rho_{(\widehat{\mu},\widehat{\sigma})}$ between $\widehat{\mu}$ and $\widehat{\sigma}$.
- The σ -known asymptotic variance factor $\frac{1}{\sigma^2} V_{\widehat{\mu}|\sigma} = n \operatorname{Avar}(\widehat{\mu})$, and the μ -known factor $\frac{1}{\sigma^2} V_{\widehat{\sigma}|\mu} = n \operatorname{Avar}(\widehat{\sigma})$.

Large-Sample Asymptotic Variance for Estimators of Functions of Location-Scale Parameters

It is straightforward to compute asymptotic variance factors for functions of parameters. For example, when $\hat{g} = g(\hat{\mu}, \hat{\sigma})$

$$\operatorname{Avar}(\widehat{g}) = \left[\frac{\partial g}{\partial \mu}\right]^2 \operatorname{Avar}(\widehat{\mu}) + \left[\frac{\partial g}{\partial \sigma}\right]^2 \operatorname{Avar}(\widehat{\sigma}) + 2\left[\frac{\partial g}{\partial \mu}\right] \left[\frac{\partial g}{\partial \sigma}\right] \operatorname{Acov}(\widehat{\mu}, \widehat{\sigma})$$

$$\operatorname{Avar}[\log(\widehat{g})] = \left(\frac{1}{g}\right)^2 \operatorname{Avar}(\widehat{g}).$$

Thus

$$V_{\widehat{g}} = \left[\frac{\partial g}{\partial \mu}\right]^{2} V_{\widehat{\mu}} + \left[\frac{\partial g}{\partial \sigma}\right]^{2} V_{\widehat{\sigma}} + 2\left[\frac{\partial g}{\partial \mu}\right] \left[\frac{\partial g}{\partial \sigma}\right] V_{(\widehat{\mu},\widehat{\sigma})}$$

$$V_{\log(\widehat{g})} = \left(\frac{1}{g}\right)^{2} V_{\widehat{g}}; \quad V_{\exp(\widehat{g})} = \exp(2g) V_{\widehat{g}}$$

Sample Size to Estimate a Quantile of T when log(T) is Location-Scale (μ, σ)

- Let $g(\theta) = t_p$ be the p quantile of T. Then $\log(t_p) = \mu + \Phi^{-1}(p)\sigma$, where $\Phi^{-1}(p)$ is the p quantile of the standardized random variable $Z = [\log(T) \mu]/\sigma$.
- \bullet From the previous results, n is given by

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\log(\widehat{t}_p)}^{\square}}{[\log(R_T)]^2}$$

where $V_{\log(\widehat{t}_p)}^{\square}$ is obtained by evaluating

$$\mathsf{V}_{\mathsf{log}(\widehat{t}_p)} = \left\{ \mathsf{V}_{\widehat{\mu}} + \left[\Phi^{-1}(p) \right]^2 \mathsf{V}_{\widehat{\sigma}} + 2 \left[\Phi^{-1}(p) \right] \mathsf{V}_{(\widehat{\mu}, \widehat{\sigma})} \right\}$$
 at $\boldsymbol{\theta}^{\square} = (\mu^{\square}, \sigma^{\square}), \zeta_c^{\square} = [\mathsf{log}(t_c) - \mu^{\square}] / \sigma^{\square}.$

• Figure 10.5 gives $\frac{1}{\sigma^2} \mathsf{V}_{\mathsf{log}(\widehat{t}_p)}$ as a function of $p_c = \mathsf{Pr}(Z \leq \zeta_c)$ for the Weibull distribution. To obtain n one also needs to specify Φ and a target value R_T for $R = \widetilde{g}/\widehat{g} = \widehat{g}/\underline{g} = \sqrt{\widetilde{g}/\underline{g}}$.

Sample Size Needed to Estimate $t_{.1}$ of a Weibull Distribution Used to Describe Insulation Life

- Again expect about 20% failures in the 1000 hour test and 12% failures in the first 500 hours. Equivalent information: $\mu^{\square} = 8.774$, $\sigma^{\square} = 1.244$ (or $\beta^{\square} = 1/1.244 = .8037$).
- Need a test plan that will estimate the Weibull .1 quantile (so p=.1) such that a 95% confidence interval will have endpoints that are approximately 50% away from the estimated mean (so $R_T=1.5$). For a 1000-hour test, $p_c=.2$.
- By computing from tables and formula or from Figure 10.5, $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)} = 7.28$ so $V_{\log(\hat{t}_p)}^{\square} = 7.28 \times (1.244)^2 = 11.266$.

Thus,
$$n = \frac{z_{(1-\alpha/2)}^2 V_{\log(\hat{t}_{.1})}^{\square}}{[\log(R_T)]^2} = \frac{(1.96)^2 (11.266)}{[\log(1.5)]^2} \approx 263.$$

Variance Factor $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)}$ for ML Estimation of Weibull Distribution Quantiles as a Function of p_c , the Population Proportion Failing by Time t_c and p, the Quantile of Interest (Figure 10.5)

Variance Factor $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)}$ for ML Estimation of Lognormal Distribution Quantiles as a Function of p_c , the Population Proportion Failing by Time t_c and p, the Quantile of Interest (Figure 10.6)

Figures for Sample Sizes to Estimate Weibull, Lognormal, and Loglogistic Quantiles

Figures give plots of the factor $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)}$ for quantile of interest p as a function of $p = \Pr(Z \leq \zeta_c)$ for the Weibull, lognormal, and loglogistic distributions. Close inspection of the plots indicates the following:

- Increasing the length of a life test (increasing the expected proportion of failures) will always reduce the asymptotic variance. After a point, however, the returns are diminishing.
- Estimating quantiles with p large or p small generally results in larger asymptotic variances than quantiles near to the expected proportion failing.

Generalization: Location-Scale Parameters and Multiple Censoring

In some applications, a life test may run in parts, each part having a different censoring time (e.g., testing at two different locations or beginning as lots of units to be tested are received). In this case we need to generalize the single-censoring formula. Assume that a proportion δ_i $(\sum_{i=1}^k \delta_i = 1)$ of data are to be run until right censoring time t_{c_i} or failure (which ever comes first). In this case,

$$\frac{n}{\sigma^2} \Sigma_{\widehat{(\mu,\sigma)}} = \frac{1}{\sigma^2} \begin{bmatrix} V_{\widehat{\mu}} & V_{\widehat{(\mu,\sigma)}} \\ V_{\widehat{(\mu,\sigma)}} & V_{\widehat{\sigma}} \end{bmatrix} = \begin{bmatrix} \frac{\sigma^2}{n} I_{(\mu,\sigma)} \end{bmatrix}^{-1}$$

$$= \left(\frac{1}{J_{11}J_{22} - J_{12}^2} \right) \begin{bmatrix} J_{22} & -J_{12} \\ -J_{12} & J_{11} \end{bmatrix}$$

where $J_{11} = \sum_{i=1}^k \delta_i f_{11}(z_{c_i}), J_{22} = \sum_{i=1}^k \delta_i f_{22}(z_{c_i}),$ and $J_{12} = \sum_{i=1}^k \delta_i f_{12}(z_{c_i})$ where $z_{c_i} = (\log(t_{c_i}) - \mu)/\sigma$.

In this case, the asymptotic variance-covariance factors $\frac{1}{\sigma^2}V_{\widehat{\mu}}$, $\frac{1}{\sigma^2}V_{\widehat{\sigma}}$, and $\frac{1}{\sigma^2}V_{(\widehat{\mu},\widehat{\sigma})}$ depend on Φ , the standardized censoring times z_{c_i} , and the proportions $\delta_i, i=1,\ldots k$.

Test Plans to Demonstrate Conformity with a Reliability Standard

Objective: to find a sample size to **demonstrate** with some level of confidence that reliability exceeds a given standard.

ullet The reliability is specified in terms of a quantile, say t_p .

The customer requires demonstration that

$$t_p > t_p^{\dagger}$$

where t_p^{\dagger} is a specified value.

For example, for a component to be installed in a system with a 1-year warranty, a vendor may have to demonstrate that $t_{.01}$ exceeds $24 \times 365 = 8760$ hours.

 Equivalently, in terms of failure probabilities the reliability requirement could be specified as

$$F(t_e) < p^{\dagger}$$
.

For the example, $t_e = 8760$ and $p^{\dagger} = .01$.

Minimum Sample Size Reliability Demonstration Test Plans

- In general the demonstration that $t_p>t_p^\dagger$ is successful at the $100(1-\alpha)\%$ level of confidence if $t_p>t_p^\dagger$.
- Suppose that failure-times are Weibull with a given β . A **minimum sample size** test plan is one that has a particular sample size n (depending on β , α , p and amount of time available for testing).
- ullet The minimum sample size test plan is: Test n units until t_c where n is the smallest integer greater than

$$rac{1}{k^{eta}} imes rac{\log(lpha)}{\log(1-p)}.$$

and $k = t_c/t_p^{\dagger}$.

• If there is zero failures during the test the demonstration is successful.

Minimum Sample Size for a 99% Reliability Demonstration for $t_{.1}$ with Given β

Justification for the Weibull Zero-Failures Test Plan

Suppose that failure-times are Weibull with a given β and zero failures during a test in which n units are tested until t_c . Using the results in Chapter 8, to obtain $100(1-\alpha)\%$ lower bounds for η and t_p are

$$\eta = \left[\frac{2nt_c^{\beta}}{\chi_{(1-\alpha;2)}^2}\right]^{\frac{1}{\beta}} = \left[\frac{nt_c^{\beta}}{-\log(\alpha)}\right]^{\frac{1}{\beta}}$$

$$t_p = \eta \times [-\log(1-p)]^{\frac{1}{\beta}}.$$

 \bullet Using the inequality $t_{p}>t_{p}^{\dagger}$ and solving for the smallest integer n such that

$$n \ge \frac{1}{k^{\beta}} \times \frac{\log(\alpha)}{\log(1-p)}$$

gives the needed minimum sample size, where $k=t_c/t_p^{\dagger}$.

Justification for the Weibull Zero-Failures Test Plan (Continued)

• For tests with k < 1, which implies extrapolation in time, having a specified value of β greater than the true value is conservative (the confidence level is greater than the nominal).

• For tests with k > 1 having a specified value of β less than the true value is conservative (in the sense that the demonstration is still valid).

• When k=1 the value of β does not effect the sample size.

Additional Comments on Zero Failure Test Plans

- The inequality $t_p > t_p^{\dagger}$ can be solved for n, k, β , or α . Zerofailure test plans can be obtained for other failure-time distributions with only one unknown parameter.
- Zero-failure test plans can be obtained for for any distribution.
- The ideas here can be extended to test plans with one or more failures. Such test plans require more units but provide a higher probability of successful demonstration for a given $t_p^{\dagger} > t_p$.

Other Topics in Chapter 10

- Uncertainty in planning values and sensitivity analysis.
- Location-scale distributions and limited test positions.
- Variance factors for location-scale parameters and batch testing.
- Test planning for non-location-scale distributions.
- Sample size to estimate: unrestricted functions of the parameters, the mean of an exponential, the hazard function of a location-scale distribution.