A Book of Abstract Algebra (2nd Edition)

Set given in question is $(\sin^2 x, \cos^2 x, \cos 2x)$. Here observe that, $\cos^2 x = 1 - \sin^2 x$ $\cos 2x = 1 - 2\sin^2 x$ 1 is not in given set of basis. So $\sin^2 x$ and $\cos^2 x$ are independent vectors. But, $\cos 2x = \cos^2 x - \sin^2 x$ In other words, $\cos 2x$ is linear combination of other vectors. Hence only $\sin^2 x$ and $\cos^2 x$ are independent. consequently dumension of given subspace is 2 Comment **Step 3** of 3 As $\sin^2 x$ and $\cos^2 x$ are linearly independent and $\cos 2x$ is not, one possible set of basis is $(\sin^2 x, \cos^2 x)$ Comment