Tema 4.3: Seguridad

Sistemas Distribuidos

2022-2023

Introducción

Los sistemas distribuidos son más vulnerables a ataques:

- La red es accesible por terceros
- Múltiples nodos ⇒ Más puertas que guardar

La seguridad del sistema es igual a la del eslabón más débil

Amenazas

- Interceptación (acceso para lectura). Rompe la confidencialidad.
- Interrupción (eliminación). Rompe la disponibilidad.
- **Modificación** (acceso para escritura). Rompe la *integridad* y la *autenticidad*.
- Fabricación (creación). Puede romper diferentes aspectos.

Políticas de seguridad

Antes de abordar los aspectos técnicos, es necesario definir una *política* que determine cosas como:

- ¿Qué servicios, datos o recursos estarán protegidos?
- ¿Qué aplicaciones tendrán permitido su acceso?
- ¿Qué tipo de acceso estará permitido? (lectura, escritura, creación)
- ¿Qué usuarios tendrán permitida cada tipo de acceso?
- etc.

Una vez definida la *política* se puede pensar qué *mecanismos* usar para hacerla valer.

Mecanismos de seguridad

- **Criptografía**. Permite cifrar la información para hacerla incomprensible al usuario no autorizado.
- Control de acceso. Permite limitar qué usuarios o entidades tienen acceso a qué recursos.
- Autenticación. Permite verificar la identidad de usuarios o entidades.
- Auditoría. Permite registrar y almacenar todas las incidencias de seguridad.

Nos centraremos seguidamente en la criptografía.

Criptografía

En los orígenes

En la actualidad

La clave

- No es lo mismo que una contraseña (key \neq password)
- Los algoritmos criptográficos garantizan que la clave no puede obtenerse a partir del mensaje cifrado, ni aún teniendo la versión sin cifrar.
- Si el algoritmo criptográfico es seguro, la única forma de encontrar la clave es la fuerza bruta.
 - Es decir: probar una a una todas las claves posibles

Tipos de criptografía

- Simétrica (clave compartida o clave única):
 - Se usa la misma clave para cifrar y descifrar
 - (Clave y Clave' son la misma).
 - Ejemplos: DES, AES, Blowfish, RC4
- Asimétrica (pareja de claves privada/pública):
 - Hay dos claves, emparentadas matemáticamente. Lo que una cifra, la otra lo descifra
 - (Clave y Clave' se generan a la vez con un algoritmo específico)
 - Ejemplos: RSA, ElGamal

Hash criptográfico

- Es un tipo de *función hash*. Estas funciones convierten una secuencia de bytes de longitud arbitraria en otra de tamaño fijo.
- No es un sistema de cifrado pues no permite recuperar la información (picadora de carne).
- Tiene muchos usos:
 - Verificar la integridad
 - Simplificar otras operaciones (al reducir el volumen de datos)
 - Evitar guardar contraseñas
 - o etc.

Propiedades de un hash criptográfico

Es una función $hash\ H()$ que cumple:

- ullet Dado un valor h no es posible encontrar un mensaje m' tal que h=H(m')
- Resistencia débil a la colisión, conocidos m y h=H(m) no es posible encontrar otro m^\prime tal que $h=H(m^\prime)$
- Resistencia fuerte a la colisión no es posible generar dos valores m y m^\prime tales que $H(m)=H(m^\prime)$

Ejemplos: MD5, SHA

Criptografía de clave simétrica

Orientada a bloques.

- \circ El mensaje M se divide en bloques de n bits.
- Cada bloque se cifra usando el mismo algoritmo, que involucra a la clave.
- El método suele ser "barajar los bytes" en una serie de pasos.

Orientada a flujo de bytes

- Se genera una secuencia pseudo-aleatoria de bytes.
- Para ello se usa la clave.
- Cada byte del mensaje se "mezcla" con un byte de esa secuencia (p.ej: usando XOR)

Ventajas e inconvenientes

En la criptografía de clave simétrica:

- El tipo de operaciones que usa son muy rápidas de ejecutar
- Se pueden (y suelen) implementar en hardware ⇒ más velocidad
- Es el mecanismo de cifrado más eficiente

Pero...¿cómo comunicar la clave compartida?

Se requiere un canal seguro.

Criptografía de clave asimétrica

- ullet Usa dos claves K_s y K_p , generadas a la vez mediante un cierto algoritmo
- El mecanismo de generación garantiza que:
- Lo que una cifra, la otra lo descifra.

Es decir, si:

- E(m,k) es la función que cifra el mensaje m con la clave k
- D(m',k') la que descifra el mensaje m' con la clave k'

Entonces se cumple:

- $D(E(M, K_p), K_s) == M$
- $D(E(M, K_s), K_p) == M$

Criptografía de clave asimétrica

Uso:

- A las claves K_s, K_p se les asigna arbitrariamente un rol:
 - \circ Una de ellas será **privada** (digamos K_s) y jamás se comunica a nadie
 - \circ La otra será **pública** (digamos K_p) y se comunica a todo el mundo

 K_p puede comunicarse por cualquier canal, seguro o inseguro (email, página web...)

Un atacante puede entonces tener acceso a K_p , pero nunca a K_s .

Uso para cifrado

- Para uso particular (la misma persona cifra y descifra):
 - \circ Se cifra un archivo con K_p
 - \circ Sólo quien tenga K_s podrá descifrarlo.
 - \circ No importa que otras personas tengan K_p , no pueden usarla para descifrar.

Pero...¿Y si quiero enviar un archivo cifrado a alguien?

¿Con qué clave lo cifro?

Envío de mensajes cifrados

- El mensaje se cifra con la K_p del destinatario
- ullet Que podrá descifrarlo usando su propia K_s

Por tanto:

- ullet Para poder enviar mensajes a X necesito la K_p de X
- Pero puedo obtenerla fácilmente (es pública!)

 $\mbox{\ensuremath{\&}}$ Se te ocurre algún riesgo si X me la transmite por canal inseguro?

Volveremos sobre esto

Uso para firma digital

Si cifro un archivo con mi $\,K_s\,$

- No estoy protegiendo su confidencialidad
- Ya que cualquiera que tenga mi K_p puede descifrarlo
- Pero sí tiene una garantía de autenticidad,
- pues sólo el propietario de K_s ha podido cifrarlo

En lugar de cifrar el archivo completo, basta firmar su hash criptográfico que es más corto.

Esto se denomina firma digital

Verificación de la firma digital

La firma digital de un archivo M es un hash del archivo, H(M), cifrado con una clave privada K_s .

$$Firma = E(H(M), K_s)$$

Dado el archivo M y su Firma ¿cómo se verifica que la firma es correcta?

- ullet Se requiere K_p (pareja de K_s)
- Se verifica que se cumpla:

$$D(\text{Firma}, K_p) == H(M)$$

Comunicación de la clave pública

- Para cifrar mensajes necesito la clave pública del destinatario
- Para verificar firmas digitales necesito la clave pública del firmante
- Análogamente, para que otros puedan enviarme mensajes cifrados o verificar mis firmas, necesitarán *mi clave pública*.

¿Cómo difundir K_p ? ¿Existe algún riesgo si se usa un canal inseguro?

Ej: email, página web, twitter, foro público

Comunicación de la claves pública

Sí existe un riesgo si las K_p se difunden por canal inseguro

- Pero no es un riesgo de confidencialidad (no importa que otros conozcan mi K_p)
- Es un riesgo de integridad
- ullet Alguien podría modificar mi K_p
- ¿Y entonces...?

El ataque del hombre en el medio: confidencialidad

- 1. A envía su K_{Ap} a B para que B pueda enviarle un mensaje secreto
- 2. C, en medio de la comunicación obtiene K_{Ap}
- 3. Y modifica el mensaje haciéndose pasar por A pero incluyendo K_{Cp}
- 4. B recibe lo que cree K_{Ap} y lo usa para cifrar M
- 5. B envía el resultado de $E(M,K_{Cp})$, C lo intercepta
- 6. Usando K_{Cs} , C descifra el mensaje y obtiene M
- 7. C vuelve a cifrar el mensaje con K_{Ap} y se lo envía a A
- 8. A lo descifra con K_{As} y no nota nada raro

C está leyendo los mensajes secretos para A

El ataque del *hombre en el medio*: autenticidad e integridad

Tras el ataque anterior, C puede $\mathit{suplantar}$ a A

- 1. A escribe un mensaje y lo firma digitalmente con K_{As}
- 2. C intercepta el mensaje, lo descifra con K_{Ap}
- 3. C altera el mensaje para que diga algo completamente diferente
- 4. C firma el nuevo mensaje con su K_{Cs} y se lo envía a B
- 5. B verifica la firma con K_{Cp}
- 6. Ya que B cree que K_{Cp} es la clave pública de A, queda convencido de la autenticidad e integridad del mensaje.
- 7. En cualquier momento ${\cal C}$ puede crear un nuevo mensaje haciéndose pasar por ${\cal A}.$

Certificación

Para evitar el ataque anterior, la copia de K_{Ap} que recibe B debe estar **certificada**, lo que puede ocurrir de dos formas:

- ullet B ha recibido K_{Ap} por un canal seguro, directamente de A
- B ha recibido K_{Ap} por un canal seguro, directamente de otro intermediario D, quien certifica que es auténtica.

Para el segundo caso, además debe darse que:

- ullet B confía en D como certificador
- D ha obtenido K_{Ap} directamente de A o de otro certificador en quien confíe y que se lo haya certificado.

Implementación de la certificación

Un certificado de A emitido por X es la clave pública de A firmada digitalmente por X, es decir:

$$\operatorname{Certificado}_{A,X} = E(H(K_{Ap}),K_{Xs})$$

Confiamos en que X verifica la identidad de A y la validez de K_{Ap} antes de estampar su firma.

Si recibo $\operatorname{Certificado}_{A,X}$ ¿cómo puedo verificar que es válido?

Verificación del certificado

Se validaría igual que una firma digital, es decir, dado K_{Xp} se comprobaría si

$$D(\operatorname{Certificado}_{A,X},K_{Xp}) == K_{Ap}$$

Por tanto

- ullet Para validar un certificado emitido por X necesitamos K_{Xp}
- ¿Cómo obtener K_{Xp} evitando "el hombre de enmedio"?
- ¿A través de otro certificado emitido por Y?
- Entonces necesitaré K_{Yp}
- ¿Cómo lo obtengo? etc...

¿No es esto un problema recursivo? ¿Dónde se acaba?

Certificados-raíz

- ullet Un certificado-raiz es una K_p autofirmada (usando su propia K_x)
- Emitida por un organismo de confianza (FNMT, Verisign)
- Pero que llega a nosotros por canal seguro
- Y por tanto *confiamos* en esa K_p para validar otros certificados.

Los certificados-raíz vienen formando parte del operativo o de cierto software como los navegadores.

Se supone que el soporte de instalación de ese *software* ha llegado por un canal seguro.

Conclusión

- La base matemática y las tecnologías criptográficas son muy maduros, seguros y confiables.
- Los conceptos subyacentes son muy complejos.
- El usuario medio no los entiende, y no da importancia a la seguridad.
 - Aceptar certificados inválidos
 - Caer en phising
 - "password" fue la contraseña más usada (entre las hackeadas) en 2011.
 - En 2019 fue "123456", seguida de "123456789", "qwerty" y "password".
 La cosa no mejora.

El eslabón más débil es el usuario