Western New England University College of Engineering ECE Department Wave Transmission and Reception EE 457/557 Fall 2023 Design Project #3 Due: November 21, 2023

Name: Satya Surya Lakshmi Vasuki Siva Srinivas Nittala

References: id - #620094

Mail - sn620094@wne.edu

Design Project #3

Element	Score	Max
Design		400
HFSS		400
Tables		100
Presentation		100
Overall		1000

- 1. Design a pyramidal horn antenna with a gain of 25 dB at 14 GHz. The horn is fed by a WR 62 waveguide.
 - Determine a value for the aperture efficiency (ε_{ap}).
 - Determine a value for the dimensions of the horn $(A, B, and R_P)$.
 - Determine a value for the E-Plane beamwidth (BW_{EP}) at a frequency of 14 GHz.
 - Determine a value for the H-Plane beamwidth (BW_{HP}) at a frequency of 14 GHz.
- 2. Simulate the horn using HFSS.
 - Plot (polar plot in dB) the E-Plane and H-Plane radiation pattern.
 - Determine a value for the gain (G) at a frequency of 14 GHz.
 - Determine a value for the E-Plane beamwidth (BW_{EP}) at a frequency of 14 GHz.
 - Determine a value for the H-Plane beamwidth (BW_{HP}) at a frequency of 14 GHz.
 - Plot $|S_{11}|$ over the range of -40 to 0 dB. Employ a frequency range of 12.5 to 15.5 GHz.
- 3. Complete the following tables (Table 1 and Table 2).

Table 1 Summary of the pyramidal horn antenna design parameters.

$\boldsymbol{\varepsilon}_{ap}$	%
A	mm
В	mm
R_P	mm

Table 2 Summary of the calculated and simulated response (at a frequency of 14 GHz) for the pyramidal horn antenna.

Parameter	MATLAB	HFSS	
G			W/W
G			dB
BW_{EP}			0
BW_{HP}			0

Pyramidal Horn Antenna

By: Satya Surya Lakshmi Vasuki Siva Srinivas Nittala

Student Id: 620094

Horn Antenna fed by WR-62 Waveguide

Table 1 Design Parameters

Parameters		
$arepsilon_{ap}$	51.7991	%
Α	166.8913	mm
В	133.6655	mm
R_p	392.2487	mm

Table 2 Summary at 14 GHz

Parameter	MATLAB	HFSS	
G	316.2277	330.9405	W/W
G	25.0000	25.1975	dB
BW_{EP}	8.6415	8.5243	o
BW_{HP}	10.0177	9.9433	o

Properties 中 × Value Unit Evaluated V... Type Name 15.7988 15.7988mm Design mm a 7.8994mm 7.8994 Design mm 2.54 2.54mm Design a+2*t 20.8788mm Design aw b+2*t 12.9794mm Design bw 166.8913 166.8913mm Design Aap mm 133.6658mm Design 133,6658 Вар mm 392.2487mm Design Rp 392.2487 171.9713mm Design Aap+2*t Aapw 138.7458mm Design Bap+2*t Bapw 0.5*a 7.8994mm Design

Appendices

- HFSS
- Matlab

```
>> Iterations = 1.0000
                                      >> EE457 Horn Analysis
                                                                            B =
                                                                                                             >> EE457 Horn Analysis
Iterations =
                                      >> Iterations = 2.0000
                                                                                                             >> Iterations = 4.0000
                                                                             133.6729
 1
                                      Iterations =
                                                                                                             Iterations =
                                                                            >> e_ap
>> A
A =
                                                                                                                   4
                                            2
                                                                            e_ap =
 168.1807
                                                                              51.7991
                                                                                                             >> A
                                      >> A
>> B
                                                                            >> EE457 Horn Analysis
                                                                                                             A =
B =
                                      A =
                                                                            >> Iterations = 3.0000
 134.7190
                                                                                                               166.8913
                                                                            Iterations =
                                        166.8999
>> Lambda
Unrecognized function or variable 'Lambda'.
                                                                                                             >> B
                                                                                 3
                                      >> B
Did you mean:
>> lambda
                                                                           >> A
lambda =
                                                                           A =
  21.4286
                                                                                                             B =
                                                                             166.8913
>> Eap =51.0000
                                                                                                                133.6658
Eap =
                                                                           >> B
   51
                                                                                                             >> e_ap
                                                                            B =
                                                                             133.6599
                                                                                                             e ap =
                                                                            >> e_ap
                                                                                                                 51.7991
                                                                            e_ap =
                                                                              51.7992
```

```
>> Iterations = 5.0000
Iterations =
    5
>> A
A =
 166.8913
>> B
B =
 133.6655
>> e_ap
e_ap =
```

51.7991