USULAN PERENCANAAN SAFETY STOCK & FORECASTING DEMAND DENGAN METODE TIME SERIES PRODUKSI KERAN AIR DI PT KAYU PERKASA RAYA

Ihsan Andika Lubis *)

Jurusan Teknik Industri, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus Undip Tembalang, Semarang, Indonesia 50275

Abstrak

Penelitian ini memiliki tiga tujuan. Pertama, penelitian ini bertujuan untuk menganalisis masalah yang terjadi pada bagian perencanaan dan pengendalian produksi di PT Kayu Perkasa Raya divisi produksi keran air. Kedua, merancang usulan perbaikan metode peramalan jumlah produksi keran air. Ketiga, memeberi usulan kepada PT Kayu Perkasa Raya mengenai jumlah safety stock yang dapat diterapkan oleh perusahaan. Penelitian ini menggunakan Metode Time Series untuk melakukan peramalan permintaan. Dalam hal ini, Metode Time Series digunakan ialah Double Moving Average, Double Exponential Smoothing, Holt Winter's, dan juga Classical Decomposition. Setelah dilakukan pemilihan metode peramalan yang menghasilkan error terkecil, kemudian dilakukan perhitungan jumlah safety stock yang dapat diterapkan oleh PT Kayu Perkasa Raya. Metode yang digunakan untuk menghitung nilai error metode peramalan adalah Mean Absolute Percentage Error (MAPE). MAPE dipilih karena hasil kesalahan peramalan ditinjau sebagai persentase error yang terjadi dibandingkan keadaan sebenarnya. Pada kasus ini, diketahui bahwa Classical Multiplikatif Decomposition memiliki nilai MAPE terendah yakni sebesar 10%. Usulan safety stock yang dapat diterapkan oleh perusahaan disesuiakan dengan tingkat pelayanan yang diinginkan. Jumlah safety stock yang diusulkan dalam penelitian ini tersedia dari tingkat pelayanan 90 s/d 99 %.

Kata kunci: Metode Time Series; Nilai Error Metode Peramalan; Peramalan Permintaan; Tingkat Pelayanan; Usulan Safety Stock

Abstract

[Safety stock & forecasting demand design using time series method for production tap water in PT Kayu Perkasa Raya] This study has three objectives. First, this study aims to analyze the problems that occur in the planning and control of production in PT Kayu Perkasa Raya tap water production division. Second, to design proposed improvement method of forecasting the production of tap water. Third, to propose to PT Kayu Perkasa Raya regarding the amount of safety stock that can be applied by the company. This study uses the Time Series Method to forecast demand. In this case, the Time Series method used is Double Moving Average, Double Exponential Smoothing, Holt Winter's, and also Classical Decomposition. After the selection of forecasting methods that resulted in the smallest error, then calculated the number of safety stock that can be applied by PT Kayu Perkasa Raya. The method used to calculate the error value of the forecasting method is Mean Absolute Percentage Error (MAPE). MAPE is selected because the forecast error results are reviewed as the percentage of errors that occur compared to the actual situation. In this case, it is known that Classical Multiplicative Decomposition has the lowest MAPE value of 10%. Proposed safety stock that can be applied by the company adjusted with the desired level of service. The number of safety stocks proposed in this study is available from the service level of 90 to 99%.

Keywords: Time Series Method; Error Value Forecasting Method; Demand Forecasting; Service Level; Proposed Safety Stock

E-mail: ihsanandikalubis@gmail.com

^{*)} Penulis Korespondensi.

1. PENDAHULUAN

Indonesia adalah salah satu negara dengan jumlah penduduk terbesar didunia. Dalam situs resminya Badan Pusat Statistik (BPS) menyebutkan bahwa jumlah penduduk Indonesia pada tahun 2010 mencapai 237 juta jiwa dengan rata laju pertumbuhan penduduk 1,49% per tahun (www.bps.go.id, 2017). Besarnya jumlah penduduk Indonesia tersebut perlu didukung dengan ketersediaan perumahan sebagai salah satu kebutuhan dasar utama. Kesenjangan antara kebutuhan dan ketersediaan tempat tinggal (backlog) di Indonesia pada tahun 2014 diperkirakan mencapai sekitar 17,2 juta unit. Angka ini diproyeksikan dari angka 13,6 juta unit pada tahun 2010 dan 4,3 juta unit pada tahun 2000 (berdasarkan sensus BPS yang diadakan setiap 10 tahun sekali). Keadaan ini menjadikan Indonesia sebagai pasar yang sangat strategis akan produk sanitary, termasuk keran air.

PT Kayu Perkasa Raya ialah salah satu perusahaan nasional yang memproduksi berbagai macam produk berbahan dasar kayu. Namun, perusahaan ini juga memiliki divisi lain, yaitu divisi yang menghasilkan produk berbahan logam serta divisi workshop & otomotive repair. Produk yang menjadi andalan dari perusahaan ini ialah furniture, keran air, stop keran air serta hydrant. Semua komoditi produk yang dihasilkan tersebut dipasarkan untuk pasar domestik maupun ekspor. Terutama untuk produk mebel dan juga hydrant. Produk keran dan stop keran air memiliki proporsi yang lebih besar untuk memenuhi permintaan dalam negeri, khususnya daerah pulau-pulau besar di Indonesia seperti Sumatera, Jawa, Bali, Kalimantan dan Sulawesi. Pada kasus kerja praktik ini, penulis akan lebih fokus pada divisi logam yakni produksi keran air. Divisi produksi keran air ini dipilh karena memiliki keunggunalan diabandingkan produsen keran air lainnya, yaitu menggunakan material kuningan sebagai bahan dasar pembuatan ball dan as valve (komponen keran air).

PT Kayu Perkasa Raya pada divisi pembuatan keran air menentukan target mengenai jumlah produksinya dengan tujuan memenuhi seluruh permintaan akan produk keran air tersebut. Berdasarkan wawancara dengan staff PPIC pada divisi produksi keran air, target tersebut sebesar 3000 pcs untuk keran berbahan plastik dan 2000 pcs keran berbahan timah per hari (PT Kayu Perkasa Raya Divisi Keran Air, 2018). Target tersebut dijadikan sebuah acuan untuk memenuhi permintaan, meskipun notabenenya sifat dari suatu permintaan ialah tidak pasti dan juga selalu dinamis dari waktu ke waktu. Hal ini jelas akan berdampak pada jumlah inventory yang sangat sulit dikendalikan dan juga kejadian overstock maupun stockout sangat sering terjadi. Hal ini jelas menjadi sebuah masalah yang sangat berpengaruh terhadap performansi perusahaan dalam memenuhi permintaan.

Overstock maupun stockout merupakan suatu kondisi yang sebisa mungkin dihindari oleh perusahaan. Penyebab kondisi ini bisa bersumber dari banyak hal, seperti kesalahan penggunaan metode peramalan permintaan, mesin sering breakdown, keterlambatan bahan baku, dll. Berdasarkan hasil studi observasi dan komunikasi dengan mewawancarai staff PPIC didapatkanlah bahwa penyebab dari terjadinya kondisi overstock maupun stockout ialah kurang tepatnya metode peramalan yang digunakan. Hal ini juga dikuatkan dengan nilai error antara hasil peramalan dengan jumlah demand yang ada sangatlah tinggi. Setelah studi pustaka, observasi dan studi komunikasi dengan wawancara dilakukan, maka peneliti dan pihak manajemen sepakat membentuk pertanyaan manajemen yaitu: "Bagaimana cara untuk mengendalikan stock agar tidak menimbulkan overstock dan stockout?" dan "Apa yang harus dilakukan agar keuntungan dan tingkat penjualan perusahaan meningkat ?". Dilain sisi, divisi pembuatan keran air ini juga tidak menerapkan adanya safety stock yang dapat dijadikan buffer apabila terjadi lonjakan permintaan maupun permintaan konstan namun terjadi breakdown serta perawatan pada mesin produksi yang sulit untuk di prediksi. Berdasarkan permasalahan tersebut, penelitian ini bermaksud untuk menganalisis permasalahan yang terjadi pada bagian pengendalian dan perencanaan produksi keran air, merancang ususlan perbaikan metode peramalan jumlah produksi keran air dan menentukan jumlah safety stock yang dapat diterapkan oleh perusahaan.

Metode yang digunakan untuk menjawab masalah overstock dan stockout yang disebabkan oleh metode peramalan yang kurang tepat dalam penelitian ini ialah Metode Time Series. Pada penelitian sebelumnya yang dilakukan oleh Rainy Nafiri pada tahun 2010 dengan judul "Penerapan Metode Peramalan sebagai Dasar Penentuan Tingkat Kebutuhan Safety Stock pada Industri Elektronik", Peramalan dapat digunakan sebagai dasar untuk menentukan safety stock pada produk-produk elektronik sehingga dapat meningkatkan service level dan mengurangi risiko terjadinya overstock maupun stockout dari perusahaan elektronik tersebut. Setalah dilakukan peramalan terhadap permintaan keran air, dilakukan juga perhitungan jumlah safety stock yang dapat diterapkan oleh PT Kayu Perkasa Raya dalam berbagai service level.

2. TINJAUAN PUSTAKA

Peramalan

Peramalan (forecasting) merupakan permintaan akan produk dan jasa diwaktu mendatang dan bagian-bagiannya adalah sangat penting dalam perencanaan dan pengawasan produksi (Makridakis dkk, 2010). Peramalan yang baik adalah esensial untuk efisiensi operasi-operasi manufacturing dan produksi jasa. Proses ini dilakukan dengan menggunakan data masa lalu dan menempatkannya ke masa yang akan datang dengan

suatu bentuk model matematis yang biasa disebut metode kuantitatif. Bisa juga merupakan prediksi intuisi yang bersifat subjektif atau metode kualitatif. atau bisa juga dengan menggunakan kombinasi antara intuisi dengan model matematis yang disesuaikan dengan pertimbangan yang baik dari seorang manajer.

Pada umumnya ada 3 jenis peramalan, yaitu sebagai berikut (Hartini, 2011):

- a. Peramalan Ekonomi, berkaitan dengan siklus bisnis dengan memprediksi tingkat inflasi, suplai uang dan indikator ekonomi dan keuangan lainnya
- b. Peramalan Teknologi, berkaitan dengan tingkat kemajuan teknologi yang akanmelahirkan peralatan atau produk baru
- c. Peramalan Permintaan berkaitan dengan permintaan produk.

Sedangkan berdasarkan horizon masa depan Peramalan biasanya diklasifikasikan menjadi beberapa periode (Hakim, 2008):

- Peramalan jangka pendek; meliputi jangka waktu kurang dari tiga bulan sampai dengan satu tahun. Ditujukan untuk merencanakan pembelian bahan baku, jadwal kerja, tenaga kerja, dan tingkat produksi.
- Peramalan jangka menengah; meliputi jangka waktu bulanan sampai dengan tiga tahun. Ditujukan untuk merencanakan penjualan, anggaran produksi dan kas.
- Peramalan jangka panjang; meliputi jangka waktu tiga tahun atau lebih. Ditujukan untuk merencanakan produk baru, pembelanjaan modal, pengembangan lokasi atau fasilitas, serta penelitian dan pengembangan (R&D).

Berikut tujuh tahapan dalam peramalan (Hakim, 2008):

- a. Mendefinisikan Tujuan Peramalan
- b. Membuat diagram pencar (Plot Data)
- c. Memilih model peramalan yang tepat
- d. Melakukan Peramalan
- e. Menghitung kesalahan ramalan (forecast error)
- Memilih Metode Peramalan dengan kesalahan yang terkecil.
- g. Melakukan Validasi

Metode Time Series

Suatu deret berkala (*Time Series*) merupakan suatu himpunan observasi dimana variabel yang digunakan diukur dalam urutan periode waktu, misalnya tahunan, bulanan, triwulanan, dan sebagainya. Tujuan dari metode deret berkala adalah untuk menemukan pola data secara historis dan mengekstrapolasikan pola tersebut untuk masa yang akan datang. Peramalan didasarkan pada nilai variabel yang telah lalu dan atau peramalan kesalahan masa lalu. Beberapa metode dalam analisis deret waktu antara lain (Hartini, 2011):

- Moving Average
- Exponential Smoothing
- Metode Dekomposisi

- Metode Holt Winter (Holt's Winter Method)
- Fourier Series
- Box Jenkins-ARIMA

Metode Kausal

Model kausal terdiri atas teknik-teknik peramalan yang menggunakan informasi atas satu atau beberapa faktor (variable) untuk memprediksi faktor lainnya dengan memanfaatkan pengetahuan atas hubungan antara variabel-variabel tersebut. Berikut merupan beberapa metode pada model kausal (Hendra, 2009):

1. Ekonometri

Metode ini didasarkan atas peramalan system persamaan regresi yang diestimasikan secara simultan baik untuk peramalan jangka pendek maupun jangka jangka panjang serta ketepatan peramalan degan metode ini sangat baik.

2. Regresi & korelasi

Metode ini pada penetapan suatu persamaan estimasi menggunakan Teknik "least square". Hubungan yang ada pertama-tama dianalisis secara statistic. Ketepatan peramalan dengan menggunakan metode ini sangat baik untuk peramalan jangka pendek, sedangkan untuk peramalan jangka panjang ternyata ketepatannya kurang begitu baik.

3. Input-output

Metode ini dipergunakan untuk menyusun proyeksi trend ekonomi jangka panjang. model ini banyak digunakan untuk peramalan penjualan perusahaan, penjualan sector industry dan sub sector industry, produksi dari sector dan sub sector industry. Data yang dibutuhkan untuk penggunaan metode ini adalah data tahunan selama sekitar sepuluh hingga lima belas tahun.

Metode Perhitungan Error

Jumlah kesalahan peramalan bukan merupakan suatu ukuran yang tepat untuk mmenentukan seberapa efektif metode peramalan yang digunakan tetapi hanya merupakan ukuran bias atau selisih bias yang dihasilkan. Jumlah kesalahan yang dihasilkan akan mendekati nilai nol pada metode-metode peramalan regresi. Untuk menghindari masalah dimana nilai kesalahan peramalan positif menetralkan nilaikesalahan peramalan negatif maka beberapa alternatif metode kesalahan peramalan yang banyak digunakan adalah sebagai berikut (Hartini, 2011):

- *Mean Square Error* (MSE)
- Mean Absolute Deviation (MAD)
- *Mean Forecast Error* (MFE)
- Mean Absolute Percentage Error (MAPE)

Safety Stock

Pengertian persediaan pengaman (*safety stock*) menurut Freddy Rangkuty (2004:10) adalah persediaan tambahan yang diadakan untuk melindungi atau menjaga

kemungkinan terjadinya kekurangan bahan (*Stockout*). Sedangkan pengertian menurut Sofjan Assauri (2004:186) sama halnya dengan pengertian Freddy Rangkuty yaitu persediaan tambahan yang diadakan untuk melindungi atau menjaga kemungkinan terjadi kekurangan bahan (*Stockout*) Sedangkan pengertian menurut Fien Zulfikarijah (2010:96) *Safety stock* merupakan persediaan yang digunakan dengan tujuan supaya tidak terjadi stock out (kehabisan stock). Berikut merupakan persamaan perhitungan *safety stock*:

$$Safety\ stock\ =\ Z\ x\ \sigma_{Demand}\ x\ \sqrt{m} \qquad \qquad (1)$$

Tujuan safety stock adalah untuk meminimalkan terjadinya stock out dan mengurangi penambahan biaya penyimpanan dan biaya stockout total, biaya penyimpanan disini akan bertambah seiring dengan adanya penmbahan yang berasal dari reorder point oleh karena adanya safety stock. Keuntungan adanya safety stock adalah pada saat jumlah permintaan mengalami lonjakan, maka persediaan pengaman dapat digunakan untuk menutup permitaan tersebut.

3. METODE PENELITIAN Pengumpulan Data

Proses pengumpulan data dilakukan di Divisi produksi pembuatan keran air PT Kayu Perkasa Raya dari tanggal 2 Januari – 2 Februari 2018. Pengumpulan data dilakukan dengan observasi secara langsung dan juga wawancara kepada manajer dan karyawan yang terkait yakni staff PPIC dan juga maintenance. Data yang dikumpulkan merupakan data primer dan sekunder yang akan dijeaskan sebagai berikut:

1. Data primer

Wawancara, merupakan salah satu metode yang dapat digunakan untuk mengumpulkan data primer. Data yang didapatkan dari hasil wawancara dengan karyawan yang terkait ialah mengenai data leadtime manufacture maupun leadtime pengiriman bahan baku untuk produksi keran air. Selain itu data untuk mengidentifikasi permasalan yang ada dalam proses produksi keran air juga didapatkan melalui studi komunikasi dengan wawancara.

2. Data Sekunder

Data sekunder merupakan data yang diperoleh tanpa harus mengamati objek penelitian secara langsung. Sumber data sekunder ialah dari dokumen atau arsip maupun database perusahaan. Data sekunder yang diperlukan dalam penelitian kerja praktik ini ialah data demand produk keran air selama 1 tahun yang lalu (Januari – Desember tahun 2017). Data ini digunakan sebagai inputan dalam melakukan forecasting demand keran air selama 6 bulan kedepan.

Pengolahan data

Tujuan dari pengolahan data ialah mendapatkan suatu hasil yang dapat digunakan untuk menjawab pertanyaan-

pertanyaan penelitian yang muncul pada kerja praktik di PT Kayu Perkasa Raya. Pada kasus ini, tahap awal pengolahan datanya ialah melakukan peramalan permintaan produk keran air di PT Kayu Perkasa Raya pada masa yang akan datang dengan metode yang sesuai dan mempertimbangkan pola data *demand* di masa lalu.

Perhitungan peramalan pada penelitian ini selain menggunakan perhitungan manual juga menggunakan bantuan software minitab. Output dari software ini juga akan menampilkan grafik peramalan dan nilai MAPE. Selanjutnya metode tersebut akan dibandingkan untuk menentukan mana yang memiliki error terkecil (terbaik). Metode yang terbaik tersebut akan diuji validasi terlebih dahulu untuk mengetahui apakah ada nilai error yang out of control. Jika ada, maka dapat dilakukan pengendalian pada periode yang keluar dari batas kendali. Namun jika tidak diketahui penyebab keluarnya error dari batas kendali pada periode tertentu, maka metode terebut diganti dengan metode yang memiliki error terkecil kedua. Kemudian, metode yang terpilih tersebut akan dibandingkan lagi dengan metode peramalan yang selama ini digunakan oleh perusahaan. Dengan membandingkan nilai error kedua metode tersebut, akan dapat diketahui metode mana yang dapat meramalkan permintaan dimasa yang akan datang secara dekat dengan permintaan aslinya. Dengan begitu perusahaan dapat menyesuaikan proses produksi keran air dengan hasil peramalan tersebut untuk memenuhi demand yang akan datang dan harapannya service level akan meningkat. Selain itu, data leadtime yang telah didapatkan akan digunakan untuk menghitung safety stock yang efisien bagi perusahaan PT Kayu Perkasa Raya. Tingkat safety stock ini juga tergantung seberapa besar service level yang diinginkan oleh perusahaan.

4. HASIL DAN PEMBAHASAN

Agregasi

Sebelum melakukan proses peramalan permintaan, perlu dilakukan agregasi data penjualan keran air selama 12 periode sebelumnya (Januari s/d Desember 2017) agar mempermudah peramalan. Hal ini dilakukan karena terdapat empat jenis keran yang ingin diprediksi permintaannya di 12 periode selanjutnya (Januari s/d Desember 2018), yakni Keran *Chrome*, Hitam, Kuningan dan PVC. Setelah dilakukan agregasi data, selanjutnya adalah menghitung nilai *error* dari metode peramlaan yang digunakan oleh PT Kayu Perkasa Raya. Berikut merupakan hasil perhitungan nilai *error* dengan menggunakan metode MAPE.

Tabel 1. Nilai MAPE Metode Perusahaan

Periode	Sales (DZ)	Target/Forecast Method Exist Error (DZ)		PE	
Jan-17	4510	10000	5490	121.729	
Feb-17	4946	10000	5054	102.184	
Mar-17	4375	10000	5625	128.571	
Apr-17	4559	10000	5441	119.346	
May- 17	4939	10000	5061	102.47	
Jun-17	2834	10000	7166	252.858	
Jul-17	6240	10000	3760	60.2564	
Aug- 17	8980	10000	1020	11.3586	
Sep-17	7629	10000	2371	31.0788	
Oct-17	6337	10000	3663	57.8034	
Nov- 17	9274	10000	726	7.82834	
Dec-17	3150	10000	6850	217.46	
Total	67773	120,000	52,227	1,213	
			MAPE	101.079	

Pada tabel tersebut terlihat juga bahwa nilai MAPE forecast method exist sebesar 101,079%. Error ini sangat besar untuk digunakan acuan dalam meramalkan demand dimasa yang akan datang. Langkah selanjutnya adalah membuat plot data dari data agregasi untuk melihat bentuk dari pola data. Hal ini dilakukan untuk mengetahui Metode Time Series apa yang sesuai dengan pola data permintaan keran air. Berikut merupakan grafik yang menunjukkan pola data agregasi permintaan keran air di PT Kayu Perkasa Raya:

Gambar 1. Plot Data Keran Air Satuan Agregat

Pada plot data penjualan agregat tersebut dapat dilihat bahwa bentuknya ialah cenderung seasonal (musiman), oleh karena itu, metode *forecasting* yang digunakan pada laporan ini ialah metode yang memperhitungkan adanya trend, musim dan juga randomness. Metode tersebut ialah *Double Moving Average, Double Exponential Smoothing, Holt Winter's*, dan juga *Classical Decomposition*. Dari metode-metode tersebut akan dibandingkan nilai errornya dan metode

yang akan terpilih ialah metode dengan nilai error terkecil.

Berikut merupakan hasil dari peramalan dengan berbagai Metode Time Series:

• Double Moving Average (DMA)

Metode pertama yang akan digunakan untuk melakukan *forecast demand* ialah *Double Moving Average* dengan nilai T = 3. Perhitungan pada metode ini dilakukan secara manual menggunakan excel dengan pendekatan nilai T = 3. Nilai MAPE pada metode ini sebesar 54.813%.

Gambar 2. Grafik Peramalan Metode DMA

• Double Exponensial Smoothing

Metode selanjutnya yang akan digunakan untuk melakukan forecast demand ialah Double Exponential Smoothing. Namun pada metode ini diperlukan suatu parameter yang nilainya diantara 0 hingga 1. Parameter itu disebut alpha yang mana jika data aktual permintaan sangat bergejolak atau tidak stabil dari waktu ke waktu maka nilai alpha yang dipilih semakin mendekati 1. Nilai MAPE pada metode ini ialah 39%. Berikut merupakan output perhitungan peramalan dengan menggunakan software minitab.

Gambar 3. Grafik Peramalan Metode DES

Classical Multiplikatif Decomposition (CMD) digunakan Metode yang selanjutnya dalam Classical ialah Multiplikatif forecasting ini Decompsition. Pada perhitungan software menggunakan minitab menggunakan panjang musim sebesar 6, yang maksudnya ialah panjang musim yang terlihat pada plot data demand ialah sebesar 6. Nilai MAPE pada metode ini sebesar 10%. Berikut merupakan output perhitungan peramalan dengan menggunakan metode CMD pada software minitab.

Gambar 4. Grafik Peramalan Metode CMD

Classical Additive Decomposition (CAD)
 Metode selanjutnya ialah metode Classical Additive
 Decomposition. Metode ini memiliki kemiripan
 dengan metode sebelumnya yakni Classical
 Multiplikatif Decomposition, namun bedanya ialah
 pada pola musiman yang konstan. Nilai MAPE pada
 metode CAD adalah 14%. Berikut merupakan output
 perhitungan peramalan dengan menggunakan metode
 CAD pada software minitab.

Gambar 5. Grafik Peramalan Metode DAD

Holt Winter's Multiplikatif (HWM)
 Metode peramalan yang digunakan lainnya ialah Holt
 Winter's Multiplikatif. Panjang musim yang
 digunakan pada metode ini ialah 6. Jumlah ini dipilih
 karena terlihat pada plot data agregat bahwa terjadi 2

musim dalam kurun 12 periode. Nilai MAPE pada metode HWM sebesar 35%. Berikut merupakan output perhitungan peramalan metode HWM dengan menggunakan *software minitab*.

Gambar 6. Grafik Peramalan Metode HWM

• Holt Winter's Additive (HWA)

Metode peramalan yang digunakan lainnya ialah Holt Winter's Additive. Panjang musim yang digunakan pada metode ini ialah 6. Jumlah ini dipilih karena terlihat pada plot data agregat bahwa terjadi 2 musim dalam kurun 12 periode. Nilai MAPE pada metode HWA sebesar 35%. Berikut merupakan output perhitungan peramalan metode HWM dengan menggunakan software minitab:

Gambar 7. Grafik Peramalan Metode HWA Berikut merupakan perbandingan nilai MAPE dari beberapa Metode *Time Series* yang digunakan:

Tabel 2. Perbandingan Nilai MAPE

No.	Metode	MAPE (%)
1	Double Moving Average	54.813
2	Double Exponential Smoothing	39
3	Classical Multiplikatif Decomposition	10
4	Classical Additive Decomposition	14
5	Holt Winter's Multiplikatif	35
6	Holt Winter's Additive	45
7	Forecast Method Exist	101,079

Pada tabel yang telah dipaparkan diatas, dapat dilihat bahwa MAPE terkecil ialah pada metode *Classical Multiplikatif Decomposition* dengan MAPE sebesar 10%. Jika dibandingkan dengan nilai MAPE pada metode peramalan yang digunakan oleh perusahaan memiliki selisih yang cukup signifikan yakni sebesar 91,079 %. Dengan hasil tersebut dapat dikatakan bahwa metode *Classical Multiplikatif Decomposition* memiliki accuracy yang lebh tinggi dibandingkan dengan metode peramalan yang digunakan oleh perusahaan.

Uji Validasi

Sebelum dilakukan penentuan hasil ramalan beberapa periode yang akan datang dengan metode peramalan terpilh, maka sebaiknya metode tersebut diuji validitas terlebih dahulu. Validasi dilakukan dengan memetakan error dari metode terpilih dan melihat pergerakan errornya. Apabila nilai error berada pada batas toleransi, maka metode dinyatakan valid. Namun jika terdapat nilai error yang berada di luar batas toleransi, maka harus diketahui apakah lonjakan permintaan baik positif maupun negatif akan terjadi lagi. Pada Tabel 3 dan gambar 8 merupakan tabel dan grafik peta moving range.

Gambar 8. Peta Moving Range (Validasi)

Berdasarkan grafik peta *moving range* diatas, dapat dilihat bahwa tidak ada error yang berada diluar batas toleransi. Sehingga metode yang terpilih yaitu *Classical Multiplikatif Decomposition* dinyatakan valid dan dapat dijadikan acuan untuk melakukan peramalan permintaan untuk beberapa periode kedepan.

Tabel 3. Hasil Uji Validasi

T	Sales	Ramalan	Error	MR	MR
1	4510	3796	714.4	-1312.6	1312.62
2	4946	5544	-598.22	-1312.6	1312.62
3	4375	4854	-478.77	119.45	119.45
4	4559	4822	-263.33	215.44	215.44
5	4939	5087	-147.86	115.47	115.47
6	2834	2789	44.96	192.82	192.82
7	6240	6096	143.93	98.97	98.97
8	8980	8596	383.79	239.86	239.86
9	7629	7301	327.86	-55.93	55.93
10	6337	7065	-728.35	-1056.2	1056.21
11	9274	7283	1991.3	2719.65	2719.65
12	3150	3150 3912 -762.		-2753.5	2753.48
				Total	10192.5
				Rata-Rata	849.377
				UCL	2259.34
				LCL	-2259.3

Setelah dilakukan uji validasi dan ternyata hasilnya dinyatakan valid, maka metode yang terpilih yakni metode *Classical Additive Decomposition* dapat digunakan untuk memprediksi permintaan untuk beberapa periode kedepan. Pada penelititan ini, jumlah periode yang akan di *forecast* ialah 6 bulan yakni dari bulan Januari hingga Juni tahun 2018. Berikut merupakan hasil peramalan untuk 12 bulan kedepan dengan menggunakan metode *Classical Multiplikatif Decomposition*:

Tabel 4. Hasil Peramalan Metode Terpilih

Periode	Forecast	Pembulatan
13	8396.50	8397
14	11648.20	11648
15	9748.50	9749
16	9308.40	9308
17	9478.50	9479
18	5035.30	5035
19	10697.00	10697
20	14700.00	14700
21	12195.00	12195
22	11551.40	11551
23	11674.40	11674
24	6158.50	6159

Disagregasi

Setelah hasil forecast dengan menggunakan metode terpilih telah dihitung maka hasil tersebut masih harus di disagregasi terlebih dahulu karena hasil forecasting tersebut masih dalam satuan agregat. Hasil disagregasi ini nantinya akan kembali ke dalam beberapa jenis keran, yaitu keran chrome, hitam, kuningan dan juga PVC. Berikut merupakan perhitungan disagregasi hasil forecasting dengan metode terpilih:

Tabel 5. Disagregasi Hasil Peramalan

Tabel 5. Disagregasi Hasii Peramaian										
	Forecast	Kran	Kran	Kran	Kran					
t	Agregat	Chrome	Hitam	Kuning	PVC					
	(DZ)	(DZ)	(DZ)	an (DZ)	(DZ)					
13	8397	397	4801	226	2973					
14	11648	551	6660	313	4124					
15	9749	461	5574	262	3451					
16	9308	441	5322	250	3295					
17	9479	449	5419	255	3356					
18	5035	238	2879	135	1783					
19	10697	506	6116	287	3787					
20	14700	696	8405	395	5204					
21	12195	577	6973	328	4317					
22	11551	547	6605	310	4090					
23	11674	553	6675	314	4133					
24	6159	292	3521	165	2180					

Safety stock

Terdapat beberapa hal yang mempengaruhi jumlah safety stock yaitu tingkat penjualan yang dikehendaki oleh perusahaan serta leadtime dari produk yang di produksi. Namun pada kasus ini, perhitungan jumlah safety stock akan bervariasi sesuai dengan service level yang berbeda pula. Serice level yang akan digunakan dimulai dari 90% hingga 99%. Hal ini dilakukan agar perusahaan PT Kayu Perkasa Raya lebih leluasa dalam menentukan service level yang perusahaan inginkan.

Hasil dari perhitungan safety stock dapat dilihat pada Tabel 6. Pada dasarnya safety stock yang disediakan akan memicu adanya biaya tambahan seperti biaya gudang dan juga pekerja yang yang bertanggung jawab mengenai safety stock ini. Oleh karena itu, perlu adanya penyesuaian yang baik antara service level yang ingin dicapai dengan biaya yang ditimbulkan. Safety stock juga dapat digunakan sebagai bahan pertimbangan untuk menentukan jumlah bahan baku yang akan dipesan untuk proses produksi. Jelas hal itu juga berkaitan dengan hasil peramalan yang digunakan sebagai acuan produksi dimasa yang akan datang.

Terdapat hubungan yang cukup erat antara hasil peramalan dengan *safety stock* yang disediakan. Hubungan tersebut berkaitan dengan penentuan jadwal induk produksi, penjadwalan tenaga kerja maupun mesin. Oleh karena itu, perbaikan yang ingin diberikan kepada PT Kayu Perkasa Raya ialah tidak hanya memilih metode dan menentukan jumlah peramalan, namun juga penentuan *safety stock* agar *output* dari produksi kran air dapat memenuhi permintaan pelanggan tetapi tidak memiliki *stock* yang berlebihan.

Tabel 6. Perhitungan *Safety Stock*

Service Level	z -	Std Deviasi Demand			Leadtime (Hari)			Safety stock (DZ)					
		KC	KH	KK	KP	KC	KH	KK	KP	KC	KH	KK	KP
90%	1.28	206.492	1104.222	67.833	869.689	2	2	2	2	374	2001	123	1576
91%	1.34	206.492	1104.222	67.833	869.689	2	2	2	2	392	2094	129	1649
92%	1.41	206.492	1104.222	67.833	869.689	2	2	2	2	410	2194	135	1728
93%	1.48	206.492	1104.222	67.833	869.689	2	2	2	2	431	2305	142	1815
94%	1.55	206.492	1104.222	67.833	869.689	2	2	2	2	454	2428	149	1912
95%	1.64	206.492	1104.222	67.833	869.689	2	2	2	2	480	2569	158	2023
96%	1.75	206.492	1104.222	67.833	869.689	2	2	2	2	511	2734	168	2153
97%	1.88	206.492	1104.222	67.833	869.689	2	2	2	2	549	2937	180	2313
98%	2.05	206.492	1104.222	67.833	869.689	2	2	2	2	600	3207	197	2526
99%	2.33	206.492	1104.222	67.833	869.689	2	2	2	2	679	3633	223	2861

5. KESIMPULAN

Permasalahan perencanaan dan pengendalian prduksi yang tengah dihadapi oleh PT Kayu Perkasa Raya pada divisi produksi kran air ialah terjadinya overstock mauun understock. Hal ini dipicu karena beberapa hal, yakni proses peramalan yang digunakan oleh perusahaan masih bersifat konstan dan tidak adaptif terhadap perubahan permintaan dari waktu ke waktu. Besarnya peramlan yang digunakan oleh perusahaan di setiap periode yaitu 10000 DZ. Selain itu, penyebab terjadinya overstock dan understock ialah kerusakan mesin yang tidak menentu sehingga akan mempengaruhi proses produksi keran air.

Terapat beberapa metode peramalan yang dijadikan alternatif pengganti metode peramalan perusahaan, yakni metode *Double Moving Average, Double Exponential Smoothing, Classical Multiplikatif Decomposition, Classical Additive Decomposition, Holt Winter's Multiplikatif dan Holt Winter's Additive.* Pemilihan metode ini berdasarkan pola data *primary sales* selama 12 periode dari bulan januari hingga desember tahun 2017 yakni musiman (*seasonal*). Parameter pemilihan metode yang terbaik ialah menggunakan metode *Mean Absolute Percentage Error* (MAPE). Metode MAPE digunakan karena hasil kesalahan

peramalan ditinjau sebagai persentase *error* yang terjadi dibandingkan keadaan sebenarnya. Berdasarkan perbandingan nilai MAPE, maka metode yang terpilih ialah metode *Classical Multiplikatif Decomposition* (CMD) dengan MAPE sebesar 10%. Jika dibandingkan dengan metode peramalan dari perusahaan, MAPE-nya sebesar 101,079% maka akurasi metode CMD jauh lebih baik.

Usulan *Safety stock* yang diberikan kepada PT Kayu Perkasa Raya berupa jumlah *safety stock* dalam berbagai service level. Service level tersebut dimulai dari 90-99%. Sehingga, perusahaan dapat menentukan jumlah safety stock sesuai dengan service level yang dikehendaki serta biaya-biaya yang ditimbulkan oleh adanya safety stock. Adanya Safety stock ini akan membantu perusahaan memenuhi permintaan namun juga dengan stock yang tidak berlebihan.

6. DAFTAR PUSTAKA

- Gaspersz, Vincent. (2001). Production Planning and Inventory Control: Berdasarkan Pendekatan Sistem Terintegrasi MRP II dan JIT Menuju Manufacturing 21. Jakarta: PT Gramedia Pustaka Utama.
- Hartini, S. (2011). Teknik Mencapai Produksi Optimal. Bandung: CV Lubuk Agung.
- Kusuma, Hendra. (2009). Manajemen Produksi, Perencanaan dan Pengendalian Produksi. Andi, Yogyakarta.
- Makridakis dkk. (2010). Metode dan Aplikasi Peramalan Jilid 2. Jakarta: Erlangga.
- Nasution, Arman Hakim. (2008). Perencanaan dan Pengendalian Produksi. Edisi Pertama. Cetakan Pertama Yogyakarta: Graha Ilmu.
- Rangkuti, Freddy. (2004). Manajemen Persediaan Aplikasi di Bidang Bisnis. Jakarta : PT. Raja Grafindo Persada.
- Zulfikarijah, F. (2010). Manajemen Operasional. Malang: UMM Press.