Byczko Maciej Maziec Michał Pomarański Maciej	Prowadzący: dr inż. Ewa Frączek	Numer ćwiczenia 6
Grupa nr. C	Temat ćwiczenia: Drgania i Fale	Ocena:
Tydzień parzysty Godzina 11:15-13:00	Data wykonania: 1 kwietnia 2020	

1 Zadania do zrobienia

1.1 Zadanie z drgań

1.1.1 Polecenie

Zad.3(P) Ile wynosi stosunek energii kinetycznej do potencjalnej ciała wykonującego drgania harmoniczne kosinusoidalne dla chwili czasu $t=\frac{T}{6}$, jeżeli faza początkowa wynosi zero?

Ile będzie wynosił ten sam stosunek energii dla drgania harmonicznego sinusoidalnego?

1.1.2 Rozwiązanie

Wzory:
$$E_k(t) = \frac{1}{2}mv^2(t) \Leftrightarrow E_k(t) = \frac{1}{2}m[x_0\omega_0\sin(\omega_0t + \phi)]^2$$

$$E_p(t) = \frac{1}{2}kx^2(t) \Leftrightarrow E_p(t) = \frac{1}{2}k[x_0\cos(\omega_0t + \phi)]^2$$
Obliczenia:
$$\frac{E_k(t)}{E_p(t)} = \frac{\frac{1}{2}m[x_0\omega_0\sin(\omega_0t)]^2}{\frac{1}{2}k[x_0\cos(\omega_0t)]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{mx_0^2\omega_0^2[\sin(\frac{2\pi}{T}*\frac{T}{6})]^2}{kx_0^2[\cos(\frac{2\pi}{T}*\frac{T}{6})]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{m\omega_0^2[\sin(\frac{\pi}{3})]^2}{k[\cos(\frac{\pi}{3})]^2}$$

$$\frac{E_k(t)}{E_p(t)} = \frac{k}{k}*[\tan(\frac{\pi}{3})]^2 = 3$$
parmonicznogo sinusoidalnogo stosunok bodzio wyne

Dla drgania harmonicznego sinusoidalnego stosunek będzie wynosił tyle samo ponieważ x_0 się skróci w obydwu przypadkach.

1.2 Zadanie z fal

1.2.1 Polecenie

Zad.9. Wartości amplitud wymuszonych drgań harmonicznych są równe dla dwóch częstości siły wymuszającej: ω_1 =400 $\frac{rad}{s}$ oraz ω_2 =600 $\frac{rad}{s}$. Wyznacz częstość ω_{rez} , dla której amplituda drgań wymuszonych osiągnie maksymalną wartość.

1.3 Rozwiązanie

Wzory: Obliczenia: