Title	Dat aset Na me	Dataset URL	Im ag e	Clas ses	Split	Met hod Nam e	Accu racy of the mod el	Rese arch Ques tion	Pros and Cons	Cita tio n
Autom atic Pixel- Level Pavem ent Crack Detecti on Using Inform ation of Multi- Scale Neighb orhood s	Crack Fores t Datas et (CFD)	https://github.com/cuili meng/CrackForest- dataset	ima ges	2 — Crack / Non- Crack	60% Train / 40% Test	PGM+ SVM	F1 = 88%,Pr ecision =91%, Recall =86%	How to detect cracks at pixel level using multi- scale info?	.Accur ate, lightw eight . Small datase t, lightin g sensiti ve	1
Autom ated Pavem ent Crack Segme ntation Using U-Net- Based Convol utional Neural Networ k	Crack 500 Datas et	https://github.com/yhlle o/Crack500	604 0 ima ges (37 92 trai n/ 224 8 test)	2 — Crack / Non- Crack	U-Net (ResNet-34 encoder + SCSE + One- cycle LR)	U-Net (ResN et-34 encod er + SCSE + One- cycle LR)	F1 = 95.55 %, Precisi on = 96.6%, Recall = 94.5%	How can U- Net + transfe r learni ng impro ve pixel- level crack segme ntatio n accura cy?	.High F1 accura cy .Uses transfe r learnin g & SCSE .Limite d datase t size .Sensit ive to lightin g/nois e	2
Asphalt Pavem ent Crack Detecti on Based on CNN and Infrare d Thermo graphy	IR- Crack	https://github.com/lfang yu09/IR-Crack-detection	448 ima ges	2 (crac k/no n- crack)	train:85.27% ,test:14.73%	CNN segme ntatio n model s: FPN, DeepL abv3, UNet- VGG19 , UNet- ResNe t101,	FPN: ~97% (visible & fusion) , DeepL abv3: ~96% (fusion), Infrare d images	Can CNN combi ned with IRT impro ve accura cy and efficie ncy of pavem ent	Fusion image s with FPN give accura te, efficie nt crack detecti on, while infrare	3

						UNet,	: 85-	crack	d-only	
						PSPNe	90%	detecti	image	
						t, FCN	30%	on	s are	
						t, FCN		under	less	
								variou	accura	
								S	te and	
								conditi	some	
								ons?	model	
									s are	
									resour	
									ce-	
									heavy.	
Α	Germ	https://link.springer.com	509	Crack	Test set	MTM	Precisi		Pros:	4
potenti	an	/article/10.1007/s11760-	ima	/	from 6 non-	(Multi	on		Adapti	
al crack	Asph	021-02055-8	ges	Non-	overlapping	ple	82%,		ve,	
region	alt			crack	crops per	Thresh	Recall		noise	
metho	Pave				image	olding	81%,		reduct	
d to	ment					Metho	F1		ion	
detect	Distre					d).	83%		Cons:	
crack	SS								Thicke	
using	(Gap)								r	
image									cracks	
process									may	
ing of									be	
multipl									missed	
е									,	
thresho									sensiti	
lding									ve to	
J									lightin	
									g	
	l					ĺ	ĺ			l

1. D. Ai, G. Jiang, L. Siew Kei and C. Li, "Automatic Pixel-Level Pavement Crack Detection Using Information of Multi-Scale Neighborhoods," in IEEE Access, vol. 6, pp. 24452-24463, 2018, doi: 10.1109/ACCESS.2018.2829347.

keywords: {Roads;Probability;Support vector machines;Signal processing algorithms;Robustness;Topology;Surface cracks;Pavement crack detection;probability map;multi-scale neighborhoods;probabilistic generative mode;support vector machine},

2. S. L. H. Lau, E. K. P. Chong, X. Yang and X. Wang, "Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network," in IEEE Access, vol. 8, pp. 114892-114899, 2020, doi: 10.1109/ACCESS.2020.3003638.

keywords: {Convolutional neural networks;Image segmentation;Network architecture;Training;Deep learning;Feature extraction;Convolutional neural network;deep learning;fully convolutional network;pavement crack segmentation;U-Net},

3. F. Liu, J. Liu and L. Wang, "Asphalt Pavement Crack Detection Based on Convolutional Neural Network and Infrared Thermography," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22145-22155, Nov. 2022, doi: 10.1109/TITS.2022.3142393.

keywords: {Computational modeling;Image segmentation;Complexity theory;Cameras;Measurement;Convolutional neural networks;Asphalt;Crack detection;convolutional neural network;infrared thermography;asphalt pavement},

4. Chen, C., Seo, H., Jun, C. et al. A potential crack region method to detect crack using image processing of multiple thresholding. SIViP 16, 1673–1681 (2022). https://doi.org/10.1007/s11760-021-02123-w