Group	C_FB (pF)	C_IN (pF)	Noise (uVrms)	DC Gain (dB)	Settling time (ns)	BW_CL (MHz)	GBW (MHz)	BW_OL (kHz)	I_SLEW (mA)	gm (mS)
1	0.23	2.34	994.09	88.78	10.00	62.26	622.62	22.65	0.39	7.82
2	0.23	2.34	994.09	86.84	10.00	60.74	607.45	27.63	0.38	7.63
3	0.23	2.34	994.09	86.84	9.09	65.30	652.96	29.69	0.41	8.21
4	0.23	2.34	994.09	85.26	9.09	63.89	638.95	34.87	0.40	8.03
5	0.23	2.34	994.09	85.26	8.33	68.29	682.88	37.27	0.43	8.58
6	0.23	2.34	994.09	83.92	8.33	66.97	669.70	42.65	0.42	8.42
7	0.23	2.34	994.09	83.92	7.69	71.22	712.16	45.35	0.45	8.95
8	0.23	2.34	994.09	88.78	7.69	61.98	619.82	22.55	0.39	7.79
9	0.23	2.34	994.09	88.78	7.14	65.88	658.76	23.96	0.41	8.28
10	0.23	2.34	994.09	86.84	7.14	65.04	650.35	29.58	0.41	8.17
11	0.23	2.34	994.09	86.84	6.67	68.81	688.12	31.29	0.43	8.65
12	0.23	2.34	994.09	85.26	6.67	67.97	679.75	37.10	0.43	8.54
13	0.23	2.34	994.09	85.26	6.25	71.64	716.43	39.10	0.45	9.00
14	0.23	2.34	994.09	83.92	6.25	70.81	708.08	45.09	0.44	8.90
15	0.37	3.73	789.63	85.26	10.00	55.81	558.09	30.46	0.44	8.77
16	0.37	3.73	789.63	83.92	10.00	54.78	547.81	34.89	0.43	8.61
17	0.37	3.73	789.63	83.92	9.09	59.20	591.98	37.70	0.46	9.30
18	0.37	3.73	789.63	82.76	9.09	58.20	581.98	42.36	0.46	9.14
19	0.37	3.73	789.63	82.76	8.33	62.46	624.56	45.46	0.49	9.81
20	0.37	3.73	789.63	81.74	8.33	61.48	614.76	50.34	0.48	9.66
21	0.37	3.73	789.63	81.74	7.69	65.59	655.90	53.71	0.52	10.30
22	0.37	3.73	789.63	85.26	7.69	61.98	619.82	33.83	0.49	9.74
23	0.37	3.73	789.63	85.26	7.14	65.88	658.76	35.95	0.52	10.35
24	0.37	3.73	789.63	83.92	7.14	65.04	650.35	41.42	0.51	10.22
25	0.37	3.73	789.63	83.92	6.67	68.81	688.12	43.82	0.54	10.81
26	0.37	3.73	789.63	82.76	6.67	67.97	679.75	49.48	0.53	10.68
27	0.37	3.73	789.63	82.76	6.25	71.64	716.43	52.15	0.56	11.25
28	0.37	3.73	789.63	81.74	6.25	70.81	708.08	57.99	0.56	11.12
29	0.12	1.16	1404.19	85.26	6.25	97.19	971.92	53.05	0.46	9.16
30	0.12	1.16	1404.19	85.26	10.00	59.36	593.60	32.40	0.28	5.59
31	0.12	1.16	1404.19	83.92	10.00	58.09	580.86	36.99	0.27	5.47
32	0.12	1.16	1404.19	85.26	9.09	62.60	625.97	34.16	0.29	5.90
33	0.12	1.16	1404.19	83.92	9.09	61.39	613.89	39.09	0.29	5.79

Noise:	This is the maximum noise you can allow for the SNR spec. You can have less, of course, but it'll require more C (and probably more current).			
Slew current:	This is calculated assuming a 0.5 V single-ended, linearly settling voltage step at the output.			
gm:	This is a quick estimate based on the required speed and load capacitance.			
	You can see see that for and B = 1 and low gm/id, the bias current for speed can be more stringent than for slew specifications.			

Notes:

These targets are derived from first order system-level numerical calculations.

So PDK parasitics, non-dominant effects or circuit architecture choices (e.g. B > 1) are not taken into account.

These are very good starting points, but some margin will need to be applied and/or clever circuit design will be needed to get closer to the specifications and overcome the effects that are not taken into account. Also, don't forget about stability!