

Small data case

IP[y]: Notebook iris example (unsaved changes)

IP[y]: Notebook iris example (autosaved)

IP[y]: Notebook iris example (unsaved changes)

$IP[y]: \begin{tabular}{ll} Notebook & iris example (unsaved changes) \\ \end{tabular}$

IP[y]: Notebook iris example (autosaved)

IP[y]: Notebook iris example (unsaved changes)

IP[y]: Notebook iris example (autosaved)

predictions = model.predict(iris.data)

IP[y]: Notebook iris example (autosaved)

In []: from sklearn.metrics import confusion_matrix
 confusion = confusion_matrix (iris.target, predictions)
 pd.DataFrame (confusion, columns=iris.target_names, index=iris.target_names)

Apache Spark case

client

yarn
hdfs

client

hadoop cluster

yarn hdfs

client

hadoop cluster

client

hadoop cluster

client

hadoop cluster

client

driver

Cell Toolser: Name

IP[y]: Notebook iris example (a. based)

hadoop cluster

client

hadoop cluster

client

client

client

client

b_rdd = a_rdd.map (....) c_rdd = b_rdd.reduce (....) e_rdd = c_rdd.join (a_rdd)

client

hadoop cluster

client

hadoop cluster

hadoop cluster

client

hadoop cluster

a_rdd = sc.parallelize (a_list)

hadoop cluster

a_rdd = sc.parallelize (a_list)

hadoop cluster

a_rdd = sc.parallelize (a_list)

client

hadoop cluster

a_rdd.saveAsTextFile ("test.csv")

client

hadoop cluster

a_rdd.saveAsTextFile ("test.csv")

Apache Spark in Large Scale Machine Learning

LSML issues

- Too much samples to classify
- Training data does not fit in memory
- Too much training samples
- Too much models to train

Why not MLLib?

- MLLib is less stable
- too few algorithms comparing to scikit-learn
- ML pipelines are not so mature than in scikit-learn
 - e. g. there is no simple way to use logistic regression for feature selection
- MLLib python API falls behind Java/Scala API
- MLLib is actively developed and may be feasible choice in near future

Spark + scikit-learn = ?

- Parallel training
 - meta-parameter grid search
 - parallel one-vs-rest for multi-class models
 - same features but different targets
 - parallel bagging and ensembles
 - parallel learning for multi-step classification
- Parallel prediction

driver

worker worker worker

driver

dataset

worker

worker

worker

model 1

driver

worker

worker

worker

dataset driver

model 1

model 2

worker

worker

worker

driver

worker worker worker

Storage

dataset

driver

model 1

worker worker

Storage

dataset

driver

model 1

model 2

worker

worker

worker

Storage

dataset

driver

model 1 model 2 model 3 worker worker worker Storage dataset

driver

Storage

dataset

driver

Storage

dataset

driver

