01RAD - přednáška 13, 3.12.2024

Potlačení kolinearity

- získání dalších dat
- změna formulace modelu
 - někdy pomůže centrování proměnných
 - vynechání proměnných (může vést k vychýleným odhadům)
- velké rozptyly odhadů
 - Gauss-Markov říká, že OLS je BLUE parametru $oldsymbol{eta}$
 - tzn. zmenšené rozptylu $\widehat{oldsymbol{eta}}$ je možné jen použitím nelineárních nebo vychýlených odhadů

Hřebenová regrese (Ridge regression)

- zůstaneme u standardizovaného modelu, tzn. uvažujeme X*, Y*
- pro jednoduchost značení budeme používat X, Y a předpokládat h(X) = m
- ullet hřebenová regrese uměle se zvedne diagonála $oldsymbol{X}^Toldsymbol{X}$ a tím se potlačí kolinearita

• uvažujme $\mathbf{X}^T \mathbf{X} + \delta \mathbf{I}_m$, kde $\delta > 0$ je malé

- $m{X}^Tm{X}$ je symetrická, tzn. ex. OG matice $m{Q}$ taková, že $m{X}^Tm{X} = m{Q}m{S}^2m{Q}^T$,

kde \mathbf{S}^2 je diagonální matice, mající na diagonále vlastní čísla, λ_i , matice $\mathbf{X}^T\mathbf{X}$

- protože $h(oldsymbol{X}^Toldsymbol{X})=m$, je $oldsymbol{X}^Toldsymbol{X}$ PD a $\lambda_i>0$, $orall i\in\widehat{m}$

- $m{X}^Tm{X} + \deltam{I}_m = m{Q}(m{S}^2 + \deltam{I}_m)m{Q}^T$ to je ale regulární matice

odtud plyne

tzn. čísla na diagonále
$$\boldsymbol{S}^2 + \delta \boldsymbol{I}_m$$
 isou vlastní čísla matice $\boldsymbol{X}^T \boldsymbol{X} + \delta \boldsymbol{I}_m$

 $(\boldsymbol{X}^T\boldsymbol{X} + \delta \boldsymbol{I}_m)\boldsymbol{Q} = \boldsymbol{Q}(\boldsymbol{S}^2 + \delta \boldsymbol{I}_m)$

- tzn. čísla na diagonále $\mathbf{S}^2 + \delta \mathbf{I}_m$ jsou vlastní čísla matice $\mathbf{X}^T \mathbf{X} + \delta \mathbf{I}_m$ neboli $\mathbf{X}^T \mathbf{X} + \delta \mathbf{I}_m$ je regulární a má vlastní čísla $\lambda_i + \delta$
- ullet jejich velikost i poměry lze měnit volbou δ hlavní myšlenka HR
- místo odhadu $\widehat{\boldsymbol{\beta}}^{LS} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$ budeme studovat odhad

$$\widehat{oldsymbol{eta}}^{R,\delta} = (oldsymbol{X}^Toldsymbol{X} + \deltaoldsymbol{I}_m)^{-1}oldsymbol{X}^Toldsymbol{Y}$$

VĚTA 6.3

Vychýlení odhadu $\widehat{\beta}^{R,\delta}$ je

$$extit{bias}(\widehat{oldsymbol{eta}}^{R,\delta}) = -\delta(oldsymbol{X}^{ au}oldsymbol{X} + \deltaoldsymbol{I}_m)^{-1}oldsymbol{eta}.$$

Pro střední kvadratickou chybu odhadu $\widehat{\beta}^{R,\delta}$ platí

$$MSE(\widehat{\boldsymbol{\beta}}^{R,\delta}) = (\boldsymbol{X}^T\boldsymbol{X} + \delta\boldsymbol{I}_m)^{-1} \left[\sigma^2 \boldsymbol{X}^T\boldsymbol{X} + \delta^2 \boldsymbol{\beta} \boldsymbol{\beta}^T \right] (\boldsymbol{X}^T\boldsymbol{X} + \delta\boldsymbol{I}_m)^{-1}.$$

Důkaz.

VĚTA 6.4

Ve standardizovaném modelu s plnou hodností pro $0<\delta<\frac{2\sigma^2}{\|\pmb{\beta}\|^2}$ platí, že

$$\operatorname{\mathsf{Cov}}\widehat{eta}^{LS} - \mathit{MSE}(\widehat{eta}^{R,\delta})$$
 je PD matice.

Poznámka 6.7

- ukázali jsme E $\|\widehat{\boldsymbol{\beta}}\|^2 > \|\boldsymbol{\beta}\|^2$ $(+\sigma^2 \mathrm{tr}(\boldsymbol{X}^T \boldsymbol{X})^{-1})$
- ullet můžeme se snažit \widehat{eta} nějak zkrátit (za cenu ztráty nestrannosti)
- jiná interpretace hřebenového odhadu:
 - hledejme $oldsymbol{eta}$, které pro dané δ minimalizuje

$$\varphi(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \delta\|\boldsymbol{\beta}\|^2$$

- dá se ukázat, že řešením je $\widehat{oldsymbol{eta}}^{R,\delta}$

VĚTA 6.5

Nechť PSQ^T je singulární rozklad matice X. Potom platí

$$\mathsf{Cov}(\widehat{\boldsymbol{\beta}}^{R,\delta}) = \sigma^2 \sum_{i=1}^m \left(\frac{s_i}{s_i^2 + \delta}\right)^2 \boldsymbol{q}_i \boldsymbol{q}_i^T = \sigma^2 \sum_{i=1}^m \frac{\lambda_i}{(\lambda_i + \delta)^2} \boldsymbol{q}_i \boldsymbol{q}_i^T.$$

Důkaz.

Poznámka 6.8

- pokud je \boldsymbol{X} špatně podmíněná, bude min. jedno s_i^2 malé, tedy $\frac{1}{s_i^2}$ vystupující ve $\text{Var}(\widehat{\beta}_j^{LS})$ bude velké
- ale $\frac{s_i^2}{(s_i^2 + \delta)^2}$ může být zase malé!

Volba parametru δ

- 1) Hřebenová stopa (ridge trace):
 - vypočítají se $\widehat{oldsymbol{eta}}^{R,\delta}$ pro různé hodnoty δ
 - vykreslí se graf jednotlivých složek $\widehat{\beta}^{R,\delta}$ v závislosti na δ
 - doporučuje se volit takové δ , pro které se grafy "stabilizují" (subjekivní)
- 2) Harmonic mean estimator: $\hat{\delta} = \frac{ms_n^2}{\|\hat{\beta}\|^2}$,

kde $\widehat{\beta}$ a s_n^2 jsou klasické (OLS) odhady parametrů β, σ^2

Poznámka 6.9

- ullet existuje spousta dalších metod pro odhad δ , vlastnosti většinou zkoumány jen pomocí simulačních studií
- pokud nemáme nějakou apriorní informaci o β, použití hřebenové regrese nezaručí zlepšení OLS

PŘÍKLAD 6.1 (Data Cement)

```
XX <- cbind(scale(x1),scale(x2),scale(x3),scale(x4))
kappa(XX,exact = TRUE)

## 37.10634

ridge <- lm.ridge(scale(y) ~ XX, lambda = seq(0,0.3,0.001))
plot(ridge)

select(ridge)

## modified HKB estimator is 0.08499604

## modified L-W estimator is 0.05830686

## mallest value of GCV at 0.3</pre>
```

