

Resumo

Sistemas Complexos

- Definição de um Sistema Complexo
- Sistemas Complexos e Inteligência Artificial
- · Reducionismo x Holismo
- Auto-organização e comportamento emergente
- · Exemplo: Escalamento metabólico
- Referências Bibliográficas para Sistemas Complexos
- Extensões para Sistemas Complexos

2

Definição de um sistema complexo

- Um sistema no qual grandes redes de componentes sem controle central e com regras de operação simples levam a um comportamento coletivo complexo, processamento sofisticado de informação e adaptação via aprendizado ou evolução (Mitchell, 2011).
- O estudo de sistemas complexos representa um novo ramo de atuação científica que investiga como as relações entre partes sustenta o comportamento coletivo do sistema e como o sistema interage e estabelece relações com o ambiente.

3

Definição de um sistema complexo

- Um sistema é complexo quando ele não pode ser apropriadamente descrito "em poucas palavras" ou "em poucos bits".
- Os modelos matemáticos de sistemas complexos são geralmente fundamentados em mecânica estatística, teoria de informação, dinâmica não-linear e teoria de grafos.
- A funcionalidade de um sistema complexo está intrinsecamente vinculada às relações estabelecidas entre as partes e não apenas ao papel individual das partes que o constituem.

4

Sistemas complexos e Inteligência Artificial

- Promovem o estudo do surgimento de consciência e de inteligência a partir de elementos simples.
- Permitem entender inteligência como um comportamento emergente.
- Sustentam o estudo de sistemas autônomos em interação, que podem levar a comportamentos globais complexos a partir de agentes mais simples:
 - Robótica coletiva;
 - · Sistemas multiagentes;
 - Sistemas distribuídos.

Reducionismo x Holismo

- Reducionismo: Fundamentado na estratégia de particionar sistemas de elevada complexidade em sub-sistemas cada vez menores e mais simples, até que seja possível resolver cada um dos sub-sistemas ou enquanto o custo-benefício do particionamento se mostrar compensador.
- A solução para o sistema completo vai consistir então na combinação/agregação das soluções dos sub-sistemas.
- Modelo predominante na ciência, mas que vem encontrando mais e mais dificuldade em tratar problemas de interesse prático. As novas tendências são denominadas de network science.

(

Reducionismo x Holismo

- · Holismo: visão sistêmica.
- O holismo está fundamentado em qualquer ponto de vista segundo o qual as propriedades dos elementos constituintes de um todo são determinadas pelas relações que eles sustentam com outros elementos.
- Neste caso, um elemento em um sistema holístico não pode existir isolado do todo. Exemplo: O significado de uma palavra em um texto depende de seu relacionamento com outras palavras do texto.
- Referência: Oshry, B. Seeing Systems: Unlocking the Mysteries of Organizational Life, ReadHowYouWant, 2012.

7

Auto-organização e comportamento emergente

- Auto-organização: Fenômeno derivado da interação de múltiplos agentes, caracterizado pela presença de realimentação positiva, realimentação negativa e interação local
- Comportamento emergente em sistemas complexos: O todo é mais do que a soma das partes. É a essência do holismo.
- A interação (local) diz muito acerca do comportamento do sistema como um todo, inviabilizando abordagens reducionistas.
- · Leitura relevante:
 - Kauffman, S. At home in the universe: The search for the laws of selforganization and complexity, Oxford University Press, 1995.

8

Exemplo: Escalamento metabólico

- Teoria de escalamento metabólico em animais:
 - Enquanto a superfície de um animal escala, aproximadamente, de acordo com o quadrado de seu tamanho, seu volume escala pelo cubo do tamanho
 - Se a taxa metabólica (watts) aumentasse de acordo com a massa dos animais, os animais grandes superaqueceriam!

9

Exemplo: Escalamento metabólico

- Teoria de escalamento metabólico em animais:
 - O metabolismo, porém, cresce de forma sublinear com a massa do animal, com um expoente de 3/4
 - O denominador 4, porém, não tinha nenhuma explicação!
 - Usando as ideias de Sistemas Complexos, foi desenvolvida a teoria de escalamento metabólico, que afirma que o sistema circulatório aproximaria uma quarta dimensão e, daí, vem a origem do denominador4
 - Essa mesma ideia também é aplicada para além de indivíduos, para cidades – estimação do gasto de recursos que uma cidade terial

Referências Bibliográficas para Sistemas Complexos

- Holland, J. Hidden Order: How Adaptation Builds Complexity, Basic Books, 1996.
- Johnson, N. Simply Complexity: A clear guide to complexity theory, Oneworld Publications, 2010.
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, 1992.
- Mitchell, M. Complexity: A Guided Tour, Oxford University Press, 2011.
- Waldrop, M.M. Complexity: The Emerging Science at the Edge of Order and Chaos, Simon & Schuster, 1993.
- Wolfram, S. A New Kind of Science, Wolfram Media Inc., 2002.

12

Extensões para sistemas complexos

- Interdependência de sistemas complexos (Gao, J., Duldyrev, S.V., Stanley, H.E. & Havlin, S. Networks formed from interdependent networks, Nature Physics, vol. 8, no. 1, pp. 40-48, 2012.)
- Sistemas de sistemas (SoS, System of Systems) (Jamshidi, M. System-of-Systems Engineering - A Definition, IEEE SMC, 2005. / Gorod, A., Sauser, B. & Boardman, J. Systemof-Systems Engineering Management: A Review of Modern History and a Path Forward, IEEE Systems Journal, vol. 2, no. 4, pp. 484-499, 2008.)
- Cyberphysical systems (Lee, E.A. "Cyber Physical Systems: Design Challenges", University of California, Berkeley Technical Report No. UCB/EECS-2008-8, 2008.)

Resumo

Redes Complexas

- Introdução
 - Contextualização
 - Histórico
 - Onde estão presentes?
- · Redes aleatórias
- · Redes small world
- Redes livres de escala (scale-free)
- Distribuição em lei de potência
- · Métodos de Crescimento
- · Propriedades estruturais
- · Referências Bibliográficas para Redes Complexas

14

Introdução

Contextualização

- Em diversos ramos da ciência, é comum a formulação de problemas valendo-se de estruturas em redes (grafos).
- Essa abordagem contrapõe-se às abordagens mais reducionistas, uma vez que ela considera não apenas as partes formantes como também as interações dessas partes.
- Capaz de explicar o surgimento de efeitos advindos de comportamento emergente.

15

Introdução

Histórico

- · Início das pesquisas no meio do século passado.
- Pesquisa com Redes Complexas vem ganhando força com o aumento do poder de processamento, o que permite a análise de dados de redes reais.
- Pesquisa inicial de redes reais pautava-se pelos modelos aleatórios (Erdös & Rényi, 1959).
- Modelos mais realistas aparecem com as redes small world (Watts & Strogatz, 1998).
- Proposta das redes scale-free (Barabási & Albert, 1999).

16

Introdução

Onde estão presentes?

- Ciências Sociais: redes de interação social, redes de relações entre palavras de uma língua, redes de colaboração científica, redes de contato sexual.
- Ciências Econômicas: sistema de interação de consumidores com produtores, rede de fornecedores para a síntese de produtos de alta tecnologia e alto valor agregado.
- Ciências Biológicas: na ecologia, em redes tróficas e redes sociais intra e inter-específicas, na genética, em redes de interações gênicas, e na medicina, na dispersão de doenças infecciosas, em redes metabólicas e em redes neurais reais.

Introdução

Onde estão presentes?

- Como exemplo de redes de interações sociais, temos o experimento de Stanley Milgram (6 níveis de distância).
- As redes de relações entre palavras de uma língua envolvem tanto as palavras com as quais outras palavras se relacionam (como elas se conectam em uma frase), como a rede de palavras em um dicionário;
- Redes de citações foram as primeiras a serem estudadas nesse contexto de redes complexas (Newman, 2001a,b);
- A rede neural do verme Caenorhabditis elegans é livre de escala e forma uma rede mundo pequeno (small world).

19

Introdução

O experimento de Milgram

- O efeito de mundo pequeno ganha atenção a partir do trabalho de Milgram (1967), que realizou um experimento no qual um conjunto de pessoas deveria enviar cartas a seus conhecidos e estes a seus contatos, recursivamente, até que estas cartas chegassem a um conjunto de indivíduos alvos.
- Muitas das cartas se perderam, porém aquelas que chegaram a seu destino passaram, em média, pela mão de seis pessoas, uma distância pequena quando comparada à quantidade de pessoas existentes no planeta e à pequena quantidade de conexões sociais entre essas pessoas.

20

Introdução

O experimento de Milgram

- No experimento de Milgram (1967), os envolvidos possuíam apenas informações como primeiros nomes, cidades em que residem e emprego dos destinatários.
- Logo, cada pessoa podia repassar a carta a outro indivíduo que ela imaginava estar mais próximo do alvo, sem qualquer conhecimento mais profundo sobre a topologia da rede social.
- Mesmo assim, os participantes foram capazes de encontrar caminhos eficientes, conectando as pessoas de origem e de destino.

21

Introdução

Onde estão presentes?

- Ciências Exatas: representação de redes elétricas, backbone da Internet, links entre páginas na Web, representação de circuitos integrados, modelagem de mecânica estatística, organização de redes peer-to-peer, redes de preferências em um sistema de recomendação, rede ferroviária e redes de dependência entre softwares.
- Uma área de destaque no estudo de redes complexas é a Física.

Redes small world

Modelo de Watts-Strogatz

- <u>Início</u>: a rede é iniciada como um anel com N vértices, cada qual conectado a seus K vizinhos mais próximos.
- Aleatoriedade: cada aresta do grafo original é reconectada com probabilidade p, sem a possibilidade da criação de laços ou multiarestas. A reconexão de uma aresta é feita ao desligá-la de um de seus extremos, contectando-a a um vértice selecionado aleatoriamente da rede.
- Pode-se observar que, quando p = 0, a rede final mantém-se como um anel ordenado, enquanto que quando p = 1, a rede torna-se plenamente aleatória.

27

Redes livres de escala (scale-free)

Em busca de redes que reflitam a realidade

- Modelos anteriores, como o modelo de grafo aleatório de Erdös & Rényi e o modelo de redes small-world de Wattz & Strogatz, propunham formas de geração de grafos em que a quantidade de vértices no sistema era definida a priori, sendo permitida a criação apenas de novas ligações no decorrer do tempo.
- Apesar de suprir algumas das características comuns às redes complexas, esses modelos mostraram-se insuficientes para explicar a origem de tais sistemas. Em ambos os casos, por exemplo, a distribuição de graus segue uma distribuição de Poisson.

28

Redes livres de escala (scale-free)

Em busca de redes que reflitam a realidade

- Através da análise das redes reais, é possível observar que, em geral, elas não são fechadas a novos nós.
- Em redes de interação social é comum o aparecimento de novos membros – através do nascimento ou da mudança de pessoas, por exemplo –, assim como de tempos em tempos surgem novas espécies em redes biológicas, alterando sua estrutura de relações.
- Também é possível verificar que, em algumas redes, para cada nova relação criada há uma probabilidade maior de que o nó que a receba seja um nó altamente conectado. Tal característica pode ser vista na rede de citações científicas, onde artigos já bastante citados apresentam maior probabilidade de receber novas citações.

Distribuição em lei de potência

 Ao contrário do que ocorre em um grafo aleatório, onde espera-se uma distribuição de graus binomial ou de Poisson, nas redes complexas a distribuição de graus se dá segundo a seguinte equação:

$$p(k) \propto k^{-\gamma}$$

sendo k o grau do nó e γ uma constante positiva.

• Essa distribuição é chamada de lei de potência.

37

Distribuição em lei de potência

- Apesar de serem esparsas, redes complexas apresentam baixa distância média entre seus nós.
- Essa distância é proporcional a log(N), onde N é o número de nós na rede, em oposição à relação linear esperada entre o diâmetro da rede e N.
- Essa propriedade é chamada de propriedade de mundo pequeno (ou *small world*).
- Essas redes também apresentam um alto agrupamento (clusterização) e seus nós formam comunidades.

39

Métodos de Crescimento

Modelo Livre de Escala (Modelo BA)

- Mecanismo proposto por Barabási & Albert, em seu artigo "Emergence of scalling in random networks", de 1999.
- Principais modelos anteriores (o grafo aleatório de Erdös & Rényi e as redes small world de Wattz & Strogatz) explicavam parcialmente as propriedades de redes complexas.
- Modelos anteriores apresentavam número fixo de nós, alterando apenas a forma como esses estabelecem ligações.

40

Métodos de Crescimento

Modelo Livre de Escala (Modelo BA)

- O modelo pode ser dividido em duas etapas:
 - Crescimento: a rede deve ser iniciada com uma quantidade m_0 de nós, sendo um novo nó adicionado a cada passo. Junto do nó são adicionadas $m\ (m \le m_0)$ arestas
 - Conexão preferencial (preferential attachment): cada nova aresta deve ligar o novo nó a um nó i existente na rede, escolhido com probabilidade

$$p(i) = \frac{k_i}{\sum k}$$

LBiC

Métodos de Crescimento

Variantes do Modelo Livre de Escala

- Adição e remoção de arestas: possibilidade de adição ou remoção de uma ligação não necessariamente relacionada com o nó adicionado.
- Fitness: sugere que, em alguns casos, a distribuição de graus é devida à qualidade intrínseca dos nós:
 - Influência multiplicativa;
 - Influência aditiva importante em modelos que permitam que vértices sejam criados sem arestas.
- Envelhecimento de vértices: atratividade de um nó depende também de sua idade.

Métodos de Crescimento

Modelo de Crescimento Proteômico

- Pode ser dividido nas seguintes etapas (Solé et al., 2002):
 - Início: rede é iniciada com um conjunto pré-existente de vértices e arestas;
 - Crescimento: a cada passo um nó é duplicado;
 - Remoção: as arestas do novo nó são removidas com probabilidade δ ;
 - Adição: novas arestas são criadas a partir do novo nó com probabilidade a.
- Utiliza a ideia de preferential attachment de forma indireta: quanto maior o grau de um nó, maior a chance de ter uma aresta duplicada.

Métodos de Crescimento

Modelo "good gets richer"

 Cada nó possui uma fitness η_μ sendo que a cada aresta criada os nós relacionados são escolhidos com probabilidade proporcional a esse fitness, segundo a sequinte equação:

 Apenas algumas distribuições de fitness levarão a uma rede livre de escala: uma distribuição de fitness em lei da potência é uma forma trivial de obter redes com características livres de escala

49

Métodos de Crescimento

Modelo Connecting Nearest Neighbors (CNN)

- Modelo baseado em redes sociais: os nós têm maior probabilidade de conectar-se aos nós que se relacionam com seus vizinhos.
- O modelo pode ser descrito da seguinte forma:
 - As arestas podem ser conectadas por uma aresta real ou por uma aresta potencial;
 - Dois nós são conectados por arestas potenciais se não há arestas reais entre os nós, mas há um vizinho em comum com o qual os dois nós se conectem por uma aresta real.

51

Métodos de Crescimento

Modelo Connecting Nearest Neighbors (CNN)

- Passo a passo, o modelo pode ser explicado da seguinte forma:
 - A rede começa com um único vértice;
 - A cada passo, deve-se criar um novo vértice com probabilidade 1 - u, sendo esse vértice ligado a um outro vértice escolhido aleatoriamente;
 - Com probabilidade u uma aresta potencial é convertida em uma aresta real.

52

Métodos de Crescimento

Modelo Connecting Nearest Neighbors (CNN)

- Redes geradas por esse modelo apresentam alto grau de clusterização.
- É possível verificar a ocorrência de preferential attachment nesse modelo: nós com mais vizinhos diretos (a uma aresta de distância) costumam possuir mais vizinhos a duas arestas de distância.
- O valor do expoente y da lei de potência é determinado pelo valor de u.

Propriedades estruturais

- Em termos práticos, a representação do conhecimento empregando modelos de redes complexas permite que propriedades estruturais das redes determinem funcionalidades do sistema.
- Quando as redes apresentam metadinâmica, ou seja, quando nós e conexões são criados e eliminados ao longo do tempo, a emergência de certos tipos de estrutura (topologia da rede) é um resultado de fenômenos de auto-organização.
- Referência relevante: Ruths, J. and Ruths, D. Control profiles of complex networks, Science, vol. 343, pp. 1373-1376, 2014.

5

Propriedades estruturais

- Propriedades estruturais de redes complexas podem ser obtidas a partir do cômputo de índices como (Costa et al. 2007):
 - Distribuição de grau dos nós;
 - Grau de agrupamento ou formação de comunidades;
 - Grau de intermediação:
 - Grau de modularidade;
 - Grau de conectividade.

55

Referências Bibliográficas para Redes Complexas

- Barabási, A.-L. The network takeover, Nature Physics, vol. 8, pp. 14-16, 2012.
- Barabási, A.-L. and Albert, R. Emergence of scaling in random networks. Science, vol. 286, pp. 509–512, 1999.
- Barrat, A., Barthélemy, M. and Vespignani, A. Dynamical processes on complex networks, Cambridge University Press, 2012.
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.U. Complex networks: Structure and dynamics, Physics Reports, vol. 424, no. 4, pp. 175-308, 2006.
- Costa, L. F., Oliveira Jr., O.N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L., Viana, M.P. and Rocha, L.E.C. Analyzing and modelling real-world phenomena with complex networks: A survey of applications, Advances in Physics, vol. 60, no. 3, pp. 329-412, 2011.
- Costa, L. F., Rodrigues, F. A., Travieso, G. and Villas Boas, P. R. Characterization of complex networks: A survey of measurements, Advances in Physics, vol. 56, no. 1, pp. 167-242, 2007.
- Dorogovtsev, S.N. and Mendes, J.F.F. Evolution of networks: From Biological Nets to the Internet and WWW, Oxford University Press, 2014.
- Erdös, P. and Rényi, A. On random graphs. Publicationes Mathematicae (Debrecen), vol. 6, pp. 290–297, 1959.

57

Referências Bibliográficas para Redes Complexas

- Milgram, S. The small world problem. Psychology Today, 1:61-67, 1967.
- Newman, M.E.J. Networks: An Introduction, Oxford University Press, 2010.
- Newman, M.E.J. Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1):016131, 2001a.
- Newman, M.E.J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1):016132, 2001b.
- Newman, M.E.J., Barabási, A.-L., Watts, D.J. The Structure and Dynamics of Networks, Princeton University Press, 2006.
- Newman, M.E.J. The structure and function of complex networks, SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.
- Solé, R.V., Satorras, P.R., Smith, E. and Kepler, T.B. A model of large-scale proteome evolution, Advances in Complex Systems, vol. 5, no. 1, pp. 43–54, 2002.
- Van Mieghem, P. Graph spectra for complex networks, Cambridge University Press, 2011.
- Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small-world' networks, Nature, vol. 393, pp. 440–442, 1998.

5

Leitura Adicional Recomendada

- Barabási, A.-L. "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", Plume Books, 2003.
- Buchanan, M. "Nexus: Small Worlds and the Groundbreaking Theory of Networks", W. W. Norton & Company, 2003.
- Johnson, S. "Emergence: The Connected Lives of Ants, Brains, Cities, and Software", Scribner, 2002.
- Strogatz, S. "Sync: The Emerging Science of Spontaneous Order", Hyperion, 2003.
- Watts, D.J. "Six Degrees: The Science of a Connected Age", W. W. Norton & Company, 2003.
- Watts, D.J. "Small Worlds: The Dynamics of Networks between Order and Randomness", Princeton Studies in Complexity, Princeton University Press, 2003.
- Notas de aula em: http://www.cs.uoi.gr/~tsap/teaching/MACN2006/references.ñtml