TODOp

- 1. Find how garrett made charts in his manuscript
- 2. Make charts better or change input data
- 3. Do comparisons of Cl species with F species
 - (a) Garrett seems to have started doing that in lagrangian hi res mass frac.ipynb, but he doesn't include measured Cl data.

cfs2canteraPD

- 1. Get injected_species from netj_file
- 2. Get conc_cutoff from netj_file (inject conc)
- 3. Make it run PFRTP-Garrett and cfs_post if needed

cfs_post

- 1. Make trajectory selection faster
- 2. Make it run PFRTP-Garrett if needed

PFRTP-Garrett

- 1. Make interactive widget to choose run conditions
- 2. Fix thing with flame temperature estimate
- 3. Temperatures shouldn't go down then back up

Instructions

- 1. Run netj_generate.ipynb to generate input files from lists of run conditions
- 2. Run cfs_batchrun.ipynb to send the generated .netj files to CFS and run the simulations
- 3. Run PFRTP-Garrett.ipynb to use Cantera to perform the same simulations.
- 4. Run cfs_post.ipynb, and select .netj files.
- 5. Run cfs2canteraPD.ipynb to generate path diagrams using Cantera.

Problems

- 1. There are many many .ipynb files in Modeling_GPD, many of which are near duplicates of each other, scattered across folders. It is difficult to tell which ones are the most up to date and which ones are obsolete.
- 2. Residence Time column from cantera has no duplicate times. CFS will have 3-7 rows of identical times
- 3. Cantera increases time steps constantly, CFS has variable time steps
- 4. Concentrations of non-major species in cantera are around 1e-100, in CFS they are around 1e-15
 - (a) Produces problems for reaction path diagrams because cantera can't tell which is the major species
 - (b) Concentrations are all 0 until injection, then they all instantly increase
 - i. This is probably because the transient solution solves from the injection point and then tries to work backwards to the flame. Injecting at the flame may fix this.
- 5. CF3Or has 15 reactions, CF2s has 74, CF4 15, C2F6 6. C2F6 behavior in path diagrams may be caused by incomplete reactions
 - (a) C2F6 may just not have that many reactions because it is a larger molecule, and the C-C bond is the most likely to break
- 6. Several reactions are "ambiguous" and cantera will use the designated default reaction
 - (a) Default reaction may not be conducive for simulating ${\rm C2F6}$
- $7.\ \,$ Some reactions are not parsed (they may just not be relevant)

Notes

- 1. CF4 will never be destroyed at temps below 1200K, 100% DE for temps 1600 C
- 2. Higher values of MAXIT seem to produce more residence time steps

Table 1: Files, Folders, and Descriptions

File	Folder	Description
flow_convert.ipynb	PFAS_Modeling/	Converts liters per minute to kilograms per second for air and for CH4 using cantera
${\it netj_generate.ipynb}$	PFAS_Modeling/	Takes a set of varying run conditions and produces netj files to do all iterations
$cfs_batchrun.ipynb$	PFAS_Modeling/	Uses CFS batch method to run generated netj files, prompts user for inputs to determine simulation duration
PFRTP-Garrett.ipynb	PFAS_Modeling/Pseudo_PFR	Uses a PFR simulation in Cantera to make similar results as CFS
$cfs_post.ipynb$	PFAS_Modeling/	Runs CFS in GUI mode to automate post-processing of vtk files to include species concentration
cfs2canteraPD.ipynb	PFAS_Modeling/	Converts vtk to csv data, then produces a path diagram using Cantera for a specified trajectory, residence time, and threshold.
pfr.ipynb	PFAS_Modeling/	Example PFR that came with Cantera
pfr2.ipynb	PFAS_Modeling/	Example Cantera PFR that includes heat loss
vtk2csv.py	PFAS_Modeling/	Stand alone script for converting a specific vtk to a csv
lagrangian hi res mass frac.ipynb	L:/Lab/AMCD_PFAS_Incineration/ Modeling_GPD/Cantera/PFR DE S Curves/	Makes plots of multiple species DE% vs Temperature
eulerian <injectant>.ipynb</injectant>	L:/Lab/AMCD_PFAS_Incineration/ Modeling_GPD/Cantera/influent concentration/	Make multidimensional color plots for conc. vs Temperature vs DE%. Also absolute and relative yield vs conc.
paths <sr>.ipynb</sr>	L:/Lab/AMCD_PFAS_Incineration/ Modeling_GPD/Cantera/paths/	Makes path diagrams for several species at specified SR
T99.ipynb	L:/Lab/AMCD_PFAS_Incineration/ Modeling_GPD/Cantera/T99/	Makes T99 plots of multiple species
lagrangian.ipynb	L:/Lab/AMCD_PFAS_Incineration/ Modeling_GPD/Cantera/PFR DE S Curves/archive/	Makes plots of species DE vs Temperature. Plots from this script don't look the same as plots in the doc, so it is probably outdated.

Table 6: C1, C2, and C3 Chlorinated and Fluorinated Species

Formula	Species Name	Incinerability Index	Formula	Species Name	Incinerability Index
CNCl	Cyanogen Chloride	17-18	C ₃ H ₆ Cl ₂	1,3-Dichloropropane	165
$\mathrm{CH_{3}Cl}$	Chloromethane	29-30	C ₃ H ₅ Cl ₃	1,2,3-Trichloropropane	168-173
$COCl_2$	Phosgene	39-40	$C_2H_4Cl_2$	1,1-Dichloroethane	175-178
$C_2H_3ClO_2$	Methyl Chloroformate	46-50	C ₃ H ₅ ClO	1-Chloro-2,3- epoxypropane	183-186
$C_2H_2Cl_2$	Dichloroethene	54	CHCl ₃ S	Trichloromethanethiol	189-192
C_2H_4FNO	Fluoroacetamide	55-56	C_2Cl_6	Hexachloroethane	202-203
C_2H_3Cl	Vinyl Chloride	60-64	C ₂ H ₅ ClO	Chloromethyl Methyl Ether	218-220
$\mathrm{CH_{2}Cl_{2}}$	Dichloromethane	65-66	$C_2H_4Cl_2O$	bis(Chloromethyl) Ether	222-223
$C_3H_4Cl_2$	1,2-Dichloropropene	89-91	C ₃ Cl ₆	Hexachloropropene	234
CH_3COCl	Acetyl Chloride	92-97			
$C_2H_2Cl_4$	Tetrachloroethane	121 - 125			
C_2H_5Cl	Chloroethane	126			
$C_2H_4Cl_2$	Dichloroethane	131			
C_3H_4ClN	3-Chloropropionitrile	143-144			
$C_3H_6Cl_2O$	1,3-Dichloropropan-2-ol	145-146			
$CHClF_2$	Chlorodifluoromethane	151-153			
$CHCl_2F$	Dichlorofluoromethane	154-157			
C_2HCl_5	Pentachloroethane	154-157			
$C_2H_3Cl_3$	Trichloroethane	158-161			
$CHCl_3$	Chloroform	158-161			

Table 2: Validated Path Diagrams - CFS

	CF4					CH	IF3		C2F6				
		Ports				Ports							
	1	4	6	8	1	4	6	8	1	4	6	8	
27.5 kW									×			×	
45 kW	×	√							×	×		×	

Table 3: Validated Path Diagrams - Cantera

	CF4					CE	IF3		C2F6				
	Ports					Ports				Ports			
	1	4	6	8	1	4	6	8	1	4	6	8	
27.5 kW	×	×	×	×					√	√	√	√	
45 kW	√	√	✓	√					√	√	√	√	

Table 4: CFS Executed Simulations

	CF4					СН	F3		C2F6				
	Ports					Por	rts		Ports				
	1	4	6	8	1	4	6	8	1	4	6	8	
$27.5~\mathrm{kW}$		√							√	√	√	√	
45 kW	√	√			√	√	√		√	√	√	√	

Table 5: Cantera Executed Simulations

	CF4					CH	[F3		C2F6				
	Ports					Po	rts		Ports				
	1	4	6	8	1	4	6	8	1	4	6	8	
$27.5~\mathrm{kW}$	√	√	√	√					√	√	√	√	
$45~\mathrm{kW}$	√	√	√	√					√	√	√	√	

Notes from Bill

- 1. go through these lists and identify any C1, C2, and possibly C3 F and Cl species and their ranking
- 2. (CCl4 (\checkmark , 136-140), CHCl3(\checkmark , 195-196), C2Cl6(\checkmark , 202-203), CF4(\times), CHF3(\times), C2F6(\times)) listed?
- 3. other C1, C2, and C3 chloro or fluorocarbons
- 4. mixed Cl-F species?
 - mainly CFCs
- 5. analyze the fraction of chlorinated species, and number of fluorinated species included
 - Does this mean all chlorinated species, or only those with 1-3 C?
 - \bullet There are 320 total species in the list.

- Chlorinated species account for 113 species. Chlorinated C1-C3 species account for 40 of them.
- Fluorinated species account for 8 species. Only two do not contain 1 to 3 carbons (Sulfur Hexafluoride and Fluoroacetic Acid)
- 6. anything you think notable.
 - $\bullet\,$ It's interesting how the only fluorinated species on the list that aren't CFCs are SF $_6$ and C $_2H_3FO_2$
- 7. Find incinerability index for species

I'd like to begin the introduction of our Cl/F paper with a discussion of the Incinerability Index, and why we chose to study these 6 compounds. The main reasons are their combinations of different molecular structures, bond types, and their available/published kinetics.

As you will see many of the Class 1 species are PAHs with ring structures.

• Most of the PAHs have many carbons, so I'm not sure if they're relevant for the discussion of C1-C3 species

I'm thinking a discussion of these species and bond energies might be a good place to start.