## ♀数学外卖—导数应用与微分中值定理

## 许子寒、何山

2024年10月26日

## $\mathbf{A}$

**题目 1** 设函数 f(x) 在 0 的某领域内二阶可导,且  $\lim_{x\to 0} \frac{f(x)}{x^2} = 1$ ,则在 x=0 处()

A. f''(0) = 2;

C. f(x) 取得极小值; D. f(x) 不取得极值.

B. f(x) 取得极大值;

**题目 2** 设函数 f(x) 在点  $x = x_0$  的某一邻域内具有三阶连续导数,且  $f'(x_0) = f''(x_0) = 0$ ,  $f'''(x_0) > 0$ , 则 f(x) 在点  $x = x_0$  处?

A. 有极大值;

C. 有拐点:

B. 有极小值;

D. 无极值, 也无拐点.

\* 设 f(x) 在点  $x = x_0$  的某一邻域内有四阶连续导数,若  $f'(x_0) = f''(x_0) = f'''(x_0) = 0$ ,而  $f''''(x_0) \neq 0$ . 问  $x_0$  是否为极值点?  $(x_0, f(x_0))$  是否为拐点?

**题目 3** 判断命题: 若函数 f(x) 在 (a,b) 内有极值点  $x_0$ ,则该极值点一定是函数 f(x) 单调性的分界点?

**题目 4** 已知函数 f(x) 在 (a,b) 可导,且  $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x) = +\infty$ . 证明: 存在  $\xi\in(a,b)$ , 使得  $f'(\xi) = 0.$ 

**题目 5** 设  $f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$  其中 g(0) = 0, g'(0) = 0, g''(0) = 10. 求 f'(0).

題目 6 证明:  $\arctan x - \frac{1}{2} \arccos \left( \frac{2x}{1+x^2} \right) \equiv \frac{\pi}{4}$ ,  $(x \ge 1)$ .

**题目 7** 设 f(x) 在 [a,b] 连续, (a,b) 可导, a>0. 证明:  $\exists \xi, \eta \in (a,b)$  使得  $f'(\xi)=(a+b)\frac{f'(\eta)}{2n}$ .

**题目 8** 设函数 f(x) 具有连续的二阶导数,且  $\lim_{x\to 0} (1+x+\frac{f(x)}{x})^{\frac{1}{x}}=e^3$ . 求 f(0)、 f'(0)、 f''(0).

**题目 9** 求函数  $f(x) = \tan x$  在 x = 0 处展开到 n = 5 次的 Taylor 公式.

求下列极限:  $(1)\lim_{x\to 0} \frac{x\tan x - \sin^2 x}{x^4}$ .  $(2)\lim_{x\to +\infty} \left| (x^3 - x^2 + \frac{x}{2})e^{\frac{1}{x}} - \sqrt{x^6 - 1} \right|$ 

题目 10 求下列极限

 $(1)\lim_{n\to\infty} n^2(\arctan\frac{a}{n} - \arctan\frac{a}{n+1})$ ,其中  $a\neq 0$  为常数.  $(2)\lim_{n\to\infty} n |\sin(\pi n! e)|$ .

В

**题目 11** 已知函数 f 在 [-1,1] 上有连续的三阶导数,且 f(-1)=0, f(1)=1, f'(0)=0. 证明:  $\exists x_0 \in (-1,1), \notin f'''(x_0) = 3.$ 

**题目 12** 已知函数 f 在 [0,1] 内三阶可导. 证明:  $\exists \xi \in (0,1)$  使得  $f(1) = f(0) + \frac{1}{2}[f'(0) + f'(1)] - \frac{1}{12}f'''(\xi)$ .

**题目 13** 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导, 其中 a>0, 且 f(a)=0. 证明  $\exists \epsilon \in (a,b)$ , 使得  $f(\epsilon) = \frac{b - \epsilon}{a} f'(\epsilon).$ 

**题目 14** 设函数 f(x), g(x) 在 [a,b] 上可导, 且 f(a) = f(b) = 0. 证明  $\exists \epsilon \in (a,b), \ f'(\epsilon) + f(\epsilon)g'(\epsilon) = 0$ .

**题目 15** 设在 [0,1] 上函数 f(x) 具有二阶导数,且 f(x) > 0,f(0) = 2,f(1) = 1,f'(0) = -2. 证明  $\exists \epsilon \in (0,1), \ \notin \ f(\epsilon)f'(\epsilon) + f''(\epsilon) = 0.$ 

**题目 16** 已知函数 f 在 [0,2021] 上连续, 在 (0,2021) 上可导, 且  $f'(x) \neq 0$ , f(0) = 0, f(2021) = 2. 证 明  $\exists \xi, \eta \in (0, 2021)$  且  $\xi \neq \eta$ ,使得  $f'(\eta)[f(\xi) + \xi f'(\xi)] = f'(\xi)[2021f'(\eta) - 1]$ .

**题目 17** (达布定理)若函数 f(x) 在 [a,b] 上可导,且  $f'_{+}(a) \cdot f'_{-}(b) < 0$ ,则  $\exists \xi \in (a,b)$ ,使得  $f'(\xi) = 0$ .

**题目 18** 设函数 f(x) 在 [a,b] 上可导,且存在一点  $c \in [a,b]$  使得 f'(c) = 0.证明存在一点  $\xi \in [a,b]$ ,使 得  $f'(\xi) = (f(\xi) - f(a))(b - a)$ .

感谢参加我们的讲座! 麻烦填写一下反馈问卷, 帮助我们之后更好地开展活动, 谢谢!



外卖讲座反馈问卷

外卖官网: tongjimath.github.io

Bilibili: 一题 \_ 撬动数学