z/OS V2.5 IBM Education Assistant

Solution Name: Certificate failure diagnostics and extended master secret support

Solution Element(s): System SSL

July 2021

Agenda

- Trademarks
- Objectives
- Certificate failure diagnostics
 - Overview
 - Usage & Invocation
 - Interactions & Dependencies
 - Upgrade & Coexistence Considerations
 - Installation & Configuration
- Extended Master Secret (EMS)
 - Overview
 - Usage & Invocation
 - Interactions & Dependencies
 - Upgrade & Coexistence Considerations
 - Installation & Configuration
- Summary
- Appendix

Trademarks

- See url http://www.ibm.com/legal/copytrade.shtml for a list of trademarks.
- Additional Trademarks:
 - None

Objectives

- At the end of this presentation, you will understand the following enhancements from System SSL:
 - Certificate failure diagnostics
 - An overview of the new certificate diagnostics features
 - How to enable and collect certificate diagnostics
 - What sort of failures and errors can the certificate diagnostics capture
 - What data is collected and provided by the diagnostics
 - Extended master secret support provided by System SSL
 - An overview of extended master secret support
 - What benefits the extended master secret support provides
 - Understand how these enhancements affect installation, migration and coexistence

Certificate Failure Diagnostics

© 2021 IBM Corporation Page 5

Overview

- Who (Audience)
 - System Programmers that want diagnostic aids that help identify and resolve certificate validation failures that occur within System SSL
- What (Solution)
 - Enhance the certificate validation and handshake processes to collect diagnostic information during execution
 - Implement mechanisms to provide this diagnostic information to exploiters
 - New callback routine
 - Update gsk_validate_certificate_mode() API with new optional output parameter
- Wow (Benefit / Value, Need Addressed)
 - Reduce the need for recreates and other time-consuming debugging activities by providing a first failure data capture during normal execution
 - New diagnostic information provides better insight to the cause of failure rather than just a return code
 - Collected diagnostics are provided directly to exploiting applications allowing them to fold this information into their own diagnostic mechanisms

- System SSL has enhanced the certificate validation and handshake processes to now collect diagnostic information during execution as a first failure data capture
- This diagnostic information is provided to exploiting applications that use one of the two new certificate diagnostic features
 - SSLV3/TLS applications can obtain certificate diagnostic information about the <u>peer</u> certificate by implementing the new GSK_CERT_DIAGNOSTIC_CALLBACK routine
 - This routine is provided the peer's certificate diagnostic information that was collected during the processing of the handshake CERTIFICATE message (gsk_secure_socket_init() API)
 - Applications that call the gsk_validate_certificate_mode() API directly can obtain this
 diagnostic information with a new optional parameter

 SSLV3/TLS applications looking to exploit the gsk_cert_diagnostic_callback simply need to implement their own callback routine using the provided function prototype:

 Then set the GSK_CERT_DIAGNOSTIC_CALLBACK with gsk_attribute_set_callback():

- The callback routine will automatically be called whenever a certificate validation occurs depending on the setting of the GSK_CERT_DIAG_INFO attribute
- GSK_CERT_DIAG_INFO can be one of the following values:
 - GSK_CERT_DIAG_INFO_FAILURE_ONLY
 - GSK_CERT_DIAG_INFO_SUCCESS_ONLY
 - GSK_CERT_DIAG_INFO_SUCCESS_OR_FAILURE
- By default, the callback routine is only called on validation failures
- The value for this attribute is set with either the GSK_CERT_DIAG_INFO environment variable or with the gsk_attribute_set_enum() routine

Attribute	Description	Values	Comments
GSK_CERT_DIAG_INFO (New)	Specifies the circumstances in which the <code>gsk_cert_diagnostic_callback</code> routine should be called.	 FAILURE – callback will only be called if the certificate validation fails for the peer SUCCESS – callback will only be called if the certificate validation is successful for the peer BOTH – callback will be called for both peer certificate validation successes and failures gsk_attribute_[sg]et_enum() allowed settings: GSK_CERT_DIAG_INFO_FAILURE_ONLY GSK_CERT_DIAG_INFO_SUCCESS_ONLY GSK_CERT_DIAG_INFO_SUCCESS_OR_FAILURE 	Default: FAILURE

- When the diagnostic callback routine is called, it is provided the peer's certificate validation diagnostic information within the gsk_diag_summary
- The gsk_diag_summary provides the following information:
 - CMS & SSL Return Codes
 - A brief description (text) of the failure encountered
 - List of the certificate sources used during validation
 - Certificate details of each certificate in the certificate chain
 - SubjectDN, IssuerDN, SerialNum, etc.
 - Source that the certificate was found (Handshake, kdb file, SAF keyring, etc.)
 - Index of the failing certificate (within the certificate chain)
- In addition to the gsk_diag_summary, the routine is also provided an untranslated diagnostic string

- Diagnostic Callback Example Scenarios:
 - Expired Certificate
 - Missing Root CA
 - Revoked Certificate
 - Unsupported Elliptic Curve

N.B. The following examples use output taken from internal applications. The output
and formatting of the diagnostic data shown are a result of our implementation of a
sample diagnostic callback routine in order to demonstrate the data provided by the
diagnostics.

Example: Server's End Certificate is Expired

=======================================			
Certificate Diagnostics			
	Summary Overview		
SSL Return Code CMS Return Code Descriptive Text	401 0x03353022 Certificate is expired		
Certificate Chain			
Certificate Count Failing Cert Index	1 1		
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	1 CN=End,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US Od Handshake		

Example: Client is Missing Server's Root Certificate

Certificate Diagnostics			
Summary Overview			
SSL Return Code CMS Return Code Descriptive Text 	8 0x0335302f Self-signed certificate not found in trusted key source		
Certificate Chain			
	3		

+	
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	1 CN=End,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US Od Handshake
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	2 CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Oc Handshake
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	3 CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Ob Handshake

Diagnostic String

SSLRetCode= 8 CMSRetCode= 0x0335302f Description= Self-signed certificate no
t found in trusted key source SubjectDN= <CN=Root, OU=SSL, O=IBM, L=POK, ST=NY, C

=US> IssuerDN= <CN=Root, OU=SSL, O=IBM, L=POK, ST=NY, C=US> SerialNumber= 0b Cert
ificateSource= Handshake TrustedSource= /home/certs/ex2.kdb

Example: Client Using Revoked Certificate

| Certificate Diagnostics |
| Summary Overview |
SSL Return Code	431
CMS Return Code	0x03353041
Descriptive Text	Using CDP HTTP CRL, certificate is revoked
Certificate Chain	
Certificate Count	3
Failing Cert Index	1

+	1 CN=End,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US Od Handshake
+	2 CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Oc /home/certs/ex3.kdb
+	3 CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Ob /home/certs/ex3.kdb

Diagnostic String

SSLRetCode= 431 CMSRetCode= 0x03353041 Description= Using CDP HTTP CRL, cert
ificate is revoked SubjectDN= <CN=End,OU=SSL,O=IBM,L=POK,ST=NY,C=US> IssuerD
N= <CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US> SerialNumber= 0d CertificateSource
= Handshake TrustedSource= /home/certs/ex3.kdb

Example: Server Using Elliptic Curve not Supported by GSK_CLIENT_ECURVE_LIST

+	
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	1 CN=End,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US Od Handshake
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	2 CN=Int,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Oc Handshake
Certificate Index SubjectDN IssuerDN Serial Number Cert Source	3 CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US CN=Root,OU=SSL,O=IBM,L=POK,ST=NY,C=US Ob /home/certs/ex4.kdb

Diagnostic String

SSLRetCode= 405 **CMSRetCode=** 0x00000000 **Description=** Elliptic curve type (sec p192r1) is not supported by the local GSK_CLIENT_ECURVE_LIST **SubjectDN=** <CN= End, OU=SSL, O=IBM, L=POK, ST=NY, C=US> **IssuerDN=** <CN=Int, OU=SSL, O=IBM, L=POK, ST=NY, C=US> **SerialNumber=** Od **CertificateSource=** Handshake **TrustedSource=** /home/c erts/ex4.kdb

Usage & Invocation – gsk_validate_certificate_mode() API

 Certificate diagnostics are also available to callers of the gsk_validate_certificate_mode() API through a new optional parameter

```
gsk_status gsk_validate_certificate_mode (
    gskdb_data_sources *
                                          data sources,
    x509_certificate *
                                          subject_certificate,
    gsk boolean
                                          accept_root,
    gsk_int32 *
                                          issuer_record_id,
    GSKCMS_CERT_VALIDATION_MODE
                                          validation mode,
    gsk_uint32
                                          arg count
    [,GSKCMS_CERT_VALIDATE_KEYRING_ROOT validate_root]
    [,GSKCMS_REVOCATION_SECURITY_LEVEL
                                          security_level]
                                          max_source_rev_ext_loc_values]
    [,gsk_int32
    [,gsk_int32
                                          max_validation_rev_ext_loc_values]
    [,x509_diag_summary *
                                          diag summary]
    . . . )
```

Usage & Invocation – gsk_validate_certificate_mode() API

Usage & Invocation – gsk_validate_certificate_mode() API

- System SSL will collect and return certificate diagnostics if a non-NULL value is provided for the diag_summary optional parameter.
- Diagnostics are always collected and returned using this method. (Not determined by GSK_CERT_DIAG_INFO attribute)
- The diagnostics returned consist of:
 - CMS return code
 - A brief description (text) of the failure encountered
 - Copy of each certificate in the chain
 - Index of the failing certificate (within the certificate chain)
 - Index and type of each certificate source
 - Failing revocation source index

Interactions & Dependencies

- Software Dependencies
 - None
- Hardware Dependencies
 - None
- Exploiters
 - AT-TLS (Application Transparent –TLS)
 - IPSec

Interactions & Dependencies

- Certificate Diagnostics: AT-TLS support
- AT-TLS implements the new GSK_CERT_DIAGNOSTIC_CALLBACK callback function
- Whenever System SSL returns an error regarding a certificate received from a remote communication partner:
 - If the AT-TLS trace level includes 2 (Error) for the relevant AT-TLS rule, a certificate diagnostic message will be written to the AT-TLS log via syslogd:

```
EZD2052I TTLS Certificate Diagnostics GRPID:00000004 ENVID: 00000004 CONNID: 00000039 SSLRetCode= 8 CMSRetCode= 0x0335302f Description= Self-signed certificate not found in trusted key source SubjectDN= <CN=TEST Server,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> IssuerDN= <CN=TEST INTERMEDIARY CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> SerialNumber= 67 CertificateSource= Handshake TrustedSource= CLIENTRING
```

If the AT-TLS trace level includes 8 (Event) for the relevant AT-TLS rule, the certificate chain will also be written to syslogd:

```
EZD2053I TTLS Certificate Diagnostics Details GRPID:00000004 ENVID: 00000004 CONNID: 00000039 Certificate=

1 of 3 FailingCert= NO SubjectDN= <CN=TEST Server,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> IssuerDN=

<CN=TEST INTERMEDIARY CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> SerialNumber= 67 CertificateSource=

Handshake

EZD2053I TTLS Certificate Diagnostics Details GRPID:00000004 ENVID: 00000004 CONNID: 00000039 Certificate=

2 of 3 FailingCert= NO SubjectDN= <CN=TEST INTERMEDIARY CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US>

IssuerDN= <CN=TEST ROOT CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> SerialNumber= 23 CertificateSource=

Handshake

EZD2053I TTLS Certificate Diagnostics Details GRPID:00000004 ENVID: 00000004 CONNID: 00000039 Certificate=

3 of 3 FailingCert= YES SubjectDN= <CN=TEST ROOT CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> IssuerDN=

<CN=TEST ROOT CA,OU=MYDEPT,O=MYCOMPANY,L=Raleigh,ST=NC,C=US> SerialNumber= 11 CertificateSource= Handshake

EZD2054I TTLS Certificate Diagnostics Data Sources GRPID:00000004 ENVID: 00000004 CONNID: 00000039 Count= 2

CLIENTRING , Handshake
```

Upgrade & Coexistence Considerations

- To exploit this solution, all systems in the Sysplex must be at the new z/OS level
 - No
- Migration/Toleration/Coexistence
 - None

Installation & Configuration

None

Extended Master Secret

© 2021 IBM Corporation Page 36

Overview

- Who (Audience)
 - Applications performing TLS 1.0, TLS 1.1 and TLS 1.2 handshakes
- What (Solution)
 - Implement the extended master secret (EMS) support as specified by RFC 7627
- Wow (Benefit / Value, Need Addressed)
 - Uses an improved and more secure calculation for the master secret during TLS 1.0, TLS 1.1, and TLS 1.2 handshakes

- System SSL has added EMS support in z/OS 2.5
- EMS support will be available in the future for z/OS 2.3 and 2.4 with new function APAR OA60105
- By default, System SSL will enable EMS support on the client and server with addition of two new environment variables/attributes
 - This results in the negotiation of EMS with the client and server by default
- EMS is only negotiated during TLS 1.0, TLS 1.1, and TLS 1.2 handshakes
 - It does not apply to TLS 1.3 as an EMS-styled calculation is already done within this protocol

Attribute	Description	Values	Comments
GSK_CLIENT_EXTENDED_MASTER_SECRET (New)	Specifies if the TLS client sends the extended master secret extension to the server. This option is only applicable for TLS V1.0, TLS V1.1, or TLS V1.2 handshakes.	 Environment variable allowed settings: O, OFF, or DISABLED – Does not send the extended master secret extension to the server 1, ON, or ENABLED – Sends the extended master secret extension to the server but does not require the server to support the extension REQUIRED – Sends the extended master secret extension to the server and requires the server to support the extension. If the server does not send the extension, the handshake fails. gsk_attribute_[sg]et_enum() allowed settings (connection or environment): GSK_CLIENT_EXTENDED_MASTER_SECRET_ON GSK_CLIENT_EXTENDED_MASTER_SECRET_OFF GSK_CLIENT_EXTENDED_MASTER_SECRET_OFF GSK_CLIENT_EXTENDED_MASTER_SECRET_REQUIRED 	Default: ON

Attribute	Description	Values	Comments
GSK_SERVER_EXTENDED_MASTER_SECRET (New)	Specifies if the TLS server supports negotiating the extended master secret extension from clients. This option is only applicable for TLS V1.0, TLS V1.1, or TLS V1.2 handshakes.	 Environment variable allowed settings: O, OFF, or DISABLED – Does not support negotiating the extended master secret extension from clients 1, ON, or ENABLED – Supports negotiating the extended master secret extension from clients but does not require the extension REQUIRED – Requires the EMS extension from the client. If a client does not send the extension, the handshake fails. gsk_attribute_[sg]et_enum() allowed settings (connection or environment): GSK_SERVER_EXTENDED_MASTER_SECRET_ON GSK_SERVER_EXTENDED_MASTER_SECRET_OFF GSK_SERVER_EXTENDED_MASTER_SECRET_REQUIRED 	Default: ON

- gsk_attribute_get_enum() Updated to support a new attribute which can be queried to see if the EMS extension has been negotiated on a connection
 - New attribute type: GSK_EXTENDED_MASTER_SECRET_USED
 - GSK_EXTENDED_MASTER_SECRET_USED_ON Indicates that EMS has been negotiated on the connection
 - GSK_EXTENDED_MASTER_SECRET_USED_OFF Indicates EMS has not been negotiated on the connection

Interactions & Dependencies

- Software Dependencies
 - None
- Hardware Dependencies
 - None
- Exploiters
 - AT-TLS (Application Transparent Transport Layer Security)

Upgrade & Coexistence Considerations

- To exploit this solution, all systems in the Sysplex must be at the new z/OS level: Yes (for now)
 - APAR OA60105 provides full EMS negotiation for LPARs running 2.3 and 2.4
 - When the PTFs for OA60105 are applied, then all systems will have the capability to negotiate EMS (full and cached TLS handshakes)
 - 2.3 PTFs (UJ05345, UJ05349, and UJ05361) and 2.4 PTFs (UJ05348, UJ05368, and UJ05370)
- Toleration/coexistence APAR OA60691
 - Allows for cached TLS handshakes to occur on back-level LPARs that negotiate EMS on 2.5
 - Only comes into play when the System SSL server application is enabled for sysplex caching (GSK_SYSPLEX_SIDCACHE=ON)
 - Before IPLing z/OS 2.5, all LPARs in the sysplex must apply the PTFs for coexistence APAR OA60691 to all back-level releases (2.3 and 2.4)
 - If the PTFs are not applied, additional full TLS handshakes may occur which may impact performance
 - Coexistence APAR OA60691 will be marked as IBM.Coexistence.z/OS.V2R5
 - 2.3 PTFs (UJ05161 and UJ05173) and 2.4 PTFs (UJ05162 and UJ05195)

Upgrade & Coexistence Considerations

- Updates in z/OS 2.5
 - Server will now optionally negotiate EMS if the client has sent the extension
 - Client will now send and optionally negotiate EMS if the server supports it
 - Can set GSK_CLIENT_EXTENDED_MASTER_SECRET and GSK_SERVER_EXTENDED_MASTER_SECRET to OFF to turn off negotiating EMS

Installation & Configuration

• None

Summary

- You should now be able to understand the following enhancements from System SSL:
 - Certificate failure diagnostics
 - Extended master secret support
 - Understand how these enhancements affect installation, migration and coexistence

Appendix

• z/OS Cryptographic Services System SSL Programming