Experimento 4 Circuitos Combinacionais : Comparador de Palavras

Isaac Lopes, 12/0120801 Lucas Mafra Chagas, 12/0126443 Marcelo Giordano Martins Costa de Oliveira, 12/0037301

¹Dep. Ciência da Computação – Universidade de Brasília (UnB) CiC 116351 - Circuistos Digitais - Turma C

{giordano.marcelo, chagas.lucas.mafra, isaaclopinho}@gmail.com

Abstract. Write here a short summary of the report in English. This corresponds to the Experiment 7 report on combinational circuits, specifically the multiplexers.

Resumo. Escreva aqui um pequeno resumo do relatório. Este corresponde ao relatório do Experimento 7 sobre circuitos combinacionais, especificamente os multiplexadores.

1. Objetivos

Os objetivos do presente relatório são de usar o sistema Quartus II para a implementação de circuitos com comparadores de palavras binárias com as técnicas utilizadas em relatórios passados de simplificação e montagem.

2. Materiais

• software Quartus-II v13.0

3. Introdução

Um comparador é um circuito combinatório operativo. Ele permite comparar grandezas de dois números binarios. Um comprimento de uma palavra binária é o número de bits que a compõem.

Um comparador tem como saída 1 se os comprimentos forem iguais, caso contrário a saída sera 0. Ele também pode possuir três saídas:

• se A=B

- se A < B
- se A > B

Para uma boa realização de um circuito combinacional é necessário seguir alguns passos, como os mostrados abaixo:

- (a) Descrever sistema;
- (b) Elaborar tabela da verdade;
- (c) Obter funções booleanas a partir da tabela verdade;
- (d) Simplificar funções booleanas obtidas;
- (e) Elaborar diagrama lógico.

Dessa maneira ,fica mais intuitivo a realização da montagem e análise do circuito.

4. Procedimentos

Parte 1:

- (i) Usando apenas portas NAND de DUAS entradas, projetar um comparador de palavras de 3 bits, completar a tabela verdade para Ai e Bi e obtenher a equação para Zi;
- (ii) Minimizar a função obtida anteriormente;
- (iii) Fazer um diagrama lógico parcial. Implementar e verificar se o resultado combina com o resultado da tabela verdade;
- (iv) Fazer um diagrama lógico total e implementar;
- (v) Comentar os resultados obtidos.

Parte 2:

- (i) Elaborar a tabela verdade parcial e obter as funções booleanas parciais do circuito Comparador de 1 bit;
- (ii) Fazer uma tabela verdade parcial e obter funções parciais;
- (iii) Minimizar a função obtida anteriormente;
- (iv) Fazer o diagrama lógico parcial. Implementar e verificar se o resultado combina com o resultado da tabela verdade;
- (v) Fazer o diagrama lógico total de acordo com a figura abaixo e implementar;
- (vi) Comente os resultados obtidos.

4.1. Multiplexador de 4 entradas

Descrever o experimento realizado. Sempre que colocar uma figura deve-se explicar o que se pretende que o leitor veja, ou uma análise logo após a figura.

A Figura ?? apresenta um exemplo de como usar e citar uma figura.

Aqui temos um exemplo de como citar uma URL na bibliografia [?]. Aqui temos um exemplo de como criar um hiperlink. Veja aqui um exemplo de vídeo.

Sempre identifique no site do vídeo:

- o experimento: Experimento 7;
- semestre: 2016-2;
- a disciplina: CiC 116351 Circuitos Digitais Turma B;
- a universidade: Universidade de Brasília (UnB);
- os nomes dos componentes do grupo.

É apresentado acima como fazer uma listagem não numerada.

4.2. Demultiplexador

Este é outro item do experimento. Aqui temos um exemplo de como construir e citar uma tabela, conforme mostrado na Tabela 1.

Table 1. Expected values of the obtained circuits' attributes.

	Phase 1			Phase 2			
Experiment	n_g	n_l	n_t	n_g	n_l	n_t	t(s)
1 bit full adder	8.16	3.8	47.6	5.03	3.0	25.93	99.13
2 bit full adder	18.06	5.16	107.13	11.06	4.9	60.06	709.56
2 bit multiplier	14.2	4.03	74.33	7.7	2.2	37.53	357.76
7 segment decoder	47.53	5.83	270.46	32.86	5.0	176.4	740.63
Karnaugh 1 bit full adder	19.0	6.0	102.0	5.03	3.0	24.8	130.73

Aqui devemos colocar uma apresentação e análise da tabela, explicando ao leitor o que se pretende mostrar.

5. Análise dos Resultados

Faça uma análise crítica dos resultados obtidos nos experimentos. Esta análise pode ser feita item a item ou de uma forma geral.

Dica: Use pesquisa na Internet para tirar as dúvidas sobre edição em LATEX.

6. Conclusão

Foi estudado nesse relatório o uso de comparadores de bits, bem como o uso da ferramenta Quartus II para a implementação de circuitos. Foram usados métodos conhecidos da síntese de circuitos combinacionais já vistos em aulas teóricas. Pode-se afirmar que, com a semelhança dos resultados nas tabelas verdades com as tabelas do Quartus II que foi um experimento de bastante sucesso.

Auto-Avaliação

- 1. b 2. d
- 3. d
- 4. b
- 5. b