Problem Set 2

Group Number:	
Members:	
	7 \ 1
	MON
T/) // () () ()

Problem 1

If R_n is the Riemann sum for $f(x) = 4 + \frac{x^2}{8}$, $0 \le x \le 4$ with n subintervals and taking sample points to be the right end points, then $R_n =$

$$R_{n} = \sum_{i=1}^{n} f(x_{i}) \Delta x \qquad , \quad \alpha = 0, \quad b = 4$$

$$\Delta x = \frac{4-0}{n} = \frac{4}{n} \quad , \quad \chi_{i} = \alpha + i \Delta x = \frac{4i}{n}$$

$$R_{n} = \sum_{i=1}^{n} f(\frac{4i}{n}) \frac{4}{n} = \frac{4}{n} \quad \sum_{i=1}^{n} \left[4 + \frac{16i}{8n^{2}} \right]$$

$$= \frac{4}{n} \left[\frac{2}{4} + \frac{2}{n^{2}} \sum_{i=1}^{n} \right]$$

$$= \frac{4}{n} \left[\frac{4n}{4n} + \frac{2}{n^{2}} \sum_{i=1}^{n} \frac{(n+i)(2n+i)}{63} \right]$$

$$= \frac{4}{n} \left[\frac{4n}{4n} + \frac{4}{3} \frac{(n+i)(2n+i)}{n^{2}} \right]$$

Problem 2

 $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n}\cos\left(1+\frac{i}{n}\right)^2=$

- (A) $\int_{1}^{2} \cos(1+x^2) dx$.
- (B) $\int_{1}^{2} \cos(x^2) dx$.
- (C) $\int_{1}^{2} \cos^{2}(x) dx$.
- (D) $\int_0^1 \cos(x^2) dx$.
- (E) $\int_0^1 \cos(1+x^2) dx$.

First decide what is Ox

 $\Delta x = \frac{1}{n} = \frac{b-a}{a}$

 \Rightarrow b-a=1

According to the options

 $\alpha=1$, b=2or a=0, b=1

If a=1, b=2then $x_i=a+ibx=1+\frac{i}{n}$

So $f(x) = \cos x^2$ So the antegral is $\int \cos x^2 dx$

is it one of the option? Yes.

Suppose $\overline{\mathcal{U}}$ was not the we check the other optimized a=0, b=1 4 So

Problem 3

In the figure shown, regions A and B are bounded by the graph of a function f and the x-axis. If the area of region A is $\frac{1}{6}$ and the area of the region B is $\frac{3}{8}$, then

$$\int_{0}^{4} f(x)dx + \int_{0}^{4} |f(x)|dx =$$

$$\int_{0}^{4} f(x)dx + \int_{0}^{4} |f(x)|dx = A + B$$

$$\int_{0}^{4} f(x)dx = A + B$$

$$\int_{0}^{4}$$