CLASSIFICATION OF NEURO-DEGENERATIVE DISEASES USING SUPPORT VECTOR MACHINES (SVMs)

SYSC 5405 PATTERN CLASSIFICATION & EXPERIMENTAL DESIGN

INSTRUCTOR: ALISTAIR BOYLE

GROUP #5: MO CHEN (101062544), SHIVANGI RAGHAV (101107300)

DATE: NOVEMBER 27TH, 2018

OUTLINE

FRAME WORK

Feature Extraction from time series

Pre-processing

- Noise reduction
- Data Normalization "Normalize" Filter
- Class Imbalance "SMOTE" Filter

Process Adjustments

Feature selection

Parameter adjustments and Training 2 SVM classifiers for the two-class & four-class problems.

Testing and validation of the classifier.

Adoption of Adaboost approach to increase the performance.

Evaluation

EXTRATED FEATURES USING MATLAB

- In time domain
 - Root mean square (RMS)
 - Standard deviation
 - Pearson's Correlation
 - Mean distance & value of local peaks/minimums
- In frequency domain
 - RMS value, Variance
 - Fundamental frequency
 - PSD estimation using FFT

FEATURE SELECTION AND CLASSIFICATION

- "AttributeSelection" in Weka Filters
 - Evaluator "GainRatioAttributeEval"
 - Search method "Ranker"
- Classifier
 - SVM classification Sequential Minimal Optimization (SMO) with Poly Kernel
 - 10-fold Cross-Validation
- Meta Learning
 - Bagging, Boosting (AdaBoostM1)
- Synthetic Minority Over-sampling Technique (SMOTE)
 - To handle unrepresented class problem
 - However, it will change the number of sample data, increasing from 44 to 60, in which each of the four types are represented equally (15 instances per class).

PERFORMANCE MEASUREMENTS

• 2-CLASS PROBLEM: H/D

	Actual positive(H)	Actual negative(D)
Predicted positive (H)	9	2
Predicted negative (D)	2	31

• Accuracy: 90.90 %

4-CLASS PROBLEM: H/ALS/HD/PD

	Actual H	Actual ALS	Actual HD	Actual PD
Predicted H	10	0	1	0
Predicted ALS	0	4	4	0
Predicted HD	6	0	7	2
Predicted PD	1	I	4	4

• Accuracy: 56.82 %

PERFORMANCE MEASUREMENTS AFTER ADABOOSTING

2-CLASS PROBLEM: H/D

	Actual positive(H)	Actual negative(D)
Predicted positive (H)	9	2
Predicted negative (D)	2	31

• Accuracy: 90.90 %

4-CLASS PROBLEM: H/ALS/HD/PD

	Actual H	Actual ALS	Actual HD	Actual PD
Predicted H	9	0	2	0
Predicted ALS	0	4	2	2
Predicted HD	3	0	10	2
Predicted PD	0	Į.	5	4

Accuracy: 61.36 % (An increase of 5%)

OVERALL ANALYSIS:

	Accuracy	Standard Deviation
SMO for H/D	0.856	0.155
SMO + Adaboost for H/D	0.861	0.147
SMO + SMOTE for H/D	0.844	0.126
SMO + SMOTE + Adaboost for H/D	0.846	0.127
SMO for H/ALS/HD/PD	0.570	0.241
SMO + Adaboost for H/ALS/HD/PD	0.590	0.180
SMO + SMOTE for H/ALS/HD/PD	0.655	0.176
SMO + SMOTE + Adaboost for H/ALS/HD/PD	0.660	0.176

REFERENCES:

- [1] MATLAB, Available Online: https://www.mathworks.com/products/matlab.html.
- [2] Weka, Available Online: https://www.cs.waikato.ac.nz/ml/weka/
- [3] https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
- [4] H. Zheng, et. al. "Machine Learning and Statistical Approaches to Supportthe Discrimination of Neuro-degenerative Diseases Based on Gait Analysis". Available online: https://link.springer.com/chapter/10.1007/978-3-642-00179-6 4
- [5] Course Lecture Notes.

Thank you!