

Exercises of Conversion and operation in number system Lecture: Ngeth Youdarith E-mail: youdarith.ngeth@cadt.edu.kh

1. Convert	each	of	the	following	binary	numbers	to	octal,	decimal,	and
hexadec	imal fo	rma	its.							

```
(111011101)_2

(10101010111)_2

(111100000)_2
```

2. Convert each of the following octal numbers to binary, decimal, and hexadecimal formats.

(3754)₈ (7777)₈ (247)₈

3. Convert each of the following decimal numbers to binary, octal, and hexadecimal formats.

 $(3479)_{10}$ $(642)_{10}$ $(555)_{10}$

4. Convert each of the following hexadecimal numbers to binary, octal, and decimal formats.

(4FB2)₁₆ (88BAE)₁₆ (DC4)₁₆ 5. Perform each of the addition operations indicated below.

$$(1001011)_2 + (11101)_2$$

 $(4556)_8 + (1245)_8$
 $(BCD)_{16} + (A34)_{16}$

6. Form the two's complement of each of the following binary numbers.

```
(111011101110)<sub>2</sub>
(111111111000100)<sub>2</sub>
(100000000)<sub>2</sub>
(1010101010111)<sub>2</sub>
```

7. Perform each of the subtraction operations indicated below using addition and the two's complement of the subtrahend.

```
(100101)_2 - (11011)_2

(1101011)_2 - (111010)_2

(1110111)_2 - (10110111)_2
```

Review Questions:

1.	perform the follow	ring binary additions:
	(a) 1101+1010	(b) 10111+01101
2.	perform the follow	ring binary subtractions:
	(a) 11101-0100	(b) 1001-0111
3.	perform the indica	ted binary operation:
	(a) 110×111	(b) 1100 ÷ 011
4.	determine the 1's	complement of each binary number:
	(a) 11010	(b) 001101
5.	determine the 2's	complement of each binary number:
	(a) 10111	(b) 010001
6.	subtract the hexade	ecimal numbers:
	(a) $75_{(16)}$ - $21_{(16)}$	(b) $94_{(16)} - 5C_{(16)}$
7.	add the hexadecim	al numbers directly:
	(a) $18_{(16)} + 34_{(16)}$	(b) $3F_{(16)} + 2A_{(16)}$
8.	multiply the follow	ving pairs of binary numbers:
	(a) 101.101×110.0	010
	(b) 0.1101×0.101	1
9.	perform the follow	ving divisions:
	(a) 10110.1101 ÷ 1	.1
	(b) 1111111 ÷ 1001	