

6th Sem (Regular) CDCS-3002 (CSE.IT)

SPRING END SEMESTER EXAMINATION-2016

6th Semester B. Tech & B. Tech Dual Degree

COMPILER DESIGN

CS-3002

(Regular-2013 Admitted Batch)

Full Marks: 60

Time: 3 Hours

Answer any SIX questions including Question No. I which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

1. Answer all the following questions.

 $[2 \times 10]$

- a) What is a basic block, explain with an example.
- b) The attributes of three arithmetic operators in some programming language are given below (All the operators have their usual meaning and binary in nature)

Operator	Precedence	Associativity
+	High	Left
_	Medium	Right
*	Low	Left

What will be the value of the expression 2-5+1-7*3?

- c) Find all the viable prefixes for the grammar $S \rightarrow aSb|ab$.
- d) Is the following grammar ambiguous? Justify your answer.

 $S \rightarrow aSb|aS| \varepsilon$

e)	Construct the DAG for the following expression	n
	x+x*(y-z)+(y-z)*w	

- f) Define synthesized and inherited attributes.
- g) Find out whether the following SDD is L-attributed.

 Production

 Semantic Rules $A \rightarrow LM$ L.i=f(A.i); M.i=f(L.s); A.s=f(M.s)
- h) Explain the following terms Tokens, Patterns and Lexemes
- i) Explain constant folding with an example.
- j) In the context of compiler design, what do you mean by reduction in strength?
- 2. a) Three address statements of a program are given below [2+2]
 - 1. f=1
 - 2. i=2
 - 3. if (i>x) goto 9
 - 4. t1 = f * i
 - 5. f=t1
 - 6. t2=i+1
 - 7. i=t2
 - 8. goto 3
 - (i) Construct the flow graph of the above code
 - (ii) Identify the loops in your flow graph.
 - b) Show that the following grammar is LL(1) but not SLR(1). [4

$$S \rightarrow AaAb|BbBa$$

 $A \rightarrow \mathcal{E}$
 $B \rightarrow \mathcal{E}$

3. a) Translate the statement x=(a+b) * -c/d into

[2+2]

- i) Quadruples
- ii) Triples

- b) Consider the following Syntax Directed Translation Scheme [4] with non terminals

 $\{S, A\}$ and terminals $\{a, b\}$

$$S \rightarrow aA \{print 1\}$$

$$S \rightarrow a \{print 2\}$$

 $A \rightarrow Sb$ {print 3}

Using the above SDT, write the output printed by a bottom up parser for the input aab.

4. a) Consider the following grammar

[4

$$S \rightarrow aTA$$

$$T \rightarrow bT \mid \mathcal{E}$$

$$A \rightarrow cA \mid d$$

Write down the procedures for the non terminals of the grammar to make a recursive descent parser.

Show that the following grammar is LR(I) but not LALR(I).

14

$$S \rightarrow Aa \mid bAc \mid BC \mid bBa$$

$$A \rightarrow d$$

$$B \rightarrow d$$

5. a) Construct the DAG for the following basic block and apply local common sub-expressions and dead code eliminations on it. Assume that a and b are live whereas c and e are not live on exit from the block.

[4

$$a = b + c$$

$$b = b - d$$

$$c = c + d$$

$$e = b + c$$

b) Construct SLR parsing table for the grammar: $S \rightarrow cAd$, $A \rightarrow ab \mid a$. Parse the string cabd using the table.

[4

[4

[4

```
int i, x[20];
i = 0;
 while (i < 20)
    x[i] = i;
       i ++:
```

b) Consider the following SDD. Construct annotated parse tree and dependency graph for the input string 7+8.

Production	Semantic Rules
A→BA`	A.inh=B.val
	A.val=A'.syn
$A' \rightarrow +BA_1'$	A ₁ '.inh=A'.inh+B.va
	$A'.syn=A_1'.syn$
A'→ε	A'.syn=A'.inh
B→digit	B.val=digit.lexval

7. a) Explain error recovery strategy in LR parsing with example.

b) Construct LL(1) parsing table for the following grammar

$$E' \rightarrow +TE' | \varepsilon$$

 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \varepsilon$

$$F \rightarrow (E) | id.$$

8. Write short notes on any two of the following

 $[4 \times 2]$

- Symbol Table Management
- b) Handle pruning
- c) Code generation