Theoretical Computer Science Tutorial Week 3

Prof. Andrey Frolov

nnoborie

Agenda

Finite State Automaton (FSA)

- What is a FSA?
- Formal Definition
- Languages accepted by FSAs

Models of computations

- finite automata
- pushdown automata
- Turing machines
- . . .

What is a Finite State Automaton intuitively?

Let's see movies!

Example 1: ba

Example 2: aba

Example 1: "Trap" State

Example 2: "Trap" State

Agenda^l

Finite State Automaton (FSA)

- What is a FSA?
- Formal Definition
- Languages accepted by FSAs

Definition

A (complete) Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of *states*;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a (total) *transition* function.

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

$$Q = \{q_0, q_1, q_2\}$$

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

$$\Sigma = \{a, b\}$$

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

 q_0 is the initial state

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

 $A = \{q_2\}$ is the set of accepting states

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

 $\delta: Q \times \Sigma \to Q$ is a *transition* function

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

$$\delta(q_0,a)=q_1$$

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

$$\delta(q_2,b)=q_0$$

$\delta: Q \times \Sigma \to Q$ is a *transition* function

δ	a	b
q_0	q_1	q_0
q_1	q 2	q_0
q_2	q_2	q_0

The extended transition

Definition

Let $M = \langle Q, \Sigma, q_0, A, \delta \rangle$ be a complete finite state automaton. We define the extended transition function

$$\delta^*: Q \times \Sigma^* \to Q$$

as follows:

- For every $q \in Q$, $\delta^*(q, \epsilon) = q$
- ② For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$,

$$\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$$

The extended transition (Example)

$$\delta^*(q_1, \textcolor{red}{bab}) = \delta(\delta^*(q_1, ba), b) = \\ = \delta(\delta(\delta^*(q_1, b), a), b) = \\ = \delta(\delta(\delta(\delta^*(q_1, e), b), a), b) = \\ = \delta(\delta(\delta(q_1, b), a), b) = \\ = \delta(\delta(q_1, b), a) = \\ = \delta(q_1, b) = q_0$$

The extended transition (Example)

$$\delta^*(q_1, b \textcolor{red}{a} b) = \delta(\delta^*(q_1, ba), b) = \\ = \delta(\delta(\delta^*(q_1, b), a), b) = \\ = \delta(\delta(\delta(\delta^*(q_1, \epsilon), b), a), b) = \\ = \delta(\delta(\delta(q_1, b), a), b) = \\ = \delta(\delta(q_1, b), a), b) = \\ = \delta(q_1, b) = q_0$$
 Intuitively:
$$\delta(q_1, b) = q_0$$

$$\delta(q_1, b) = q_0$$

The extended transition (Example)

$$\delta^*(q_1,bab) = \delta(\delta^*(q_1,ba),b) = \\ = \delta(\delta(\delta^*(q_1,b),a),b) = \\ = \delta(\delta(\delta(\delta^*(q_1,\epsilon),b),a),b) = \\ = \delta(\delta(\delta(q_1,b),a),b) = \\ = \delta(\delta(q_0,a),b) = \\ = \delta(q_1,b) = q_0$$
Intuitively:
$$\delta(q_1,b) = q_0$$

$$\delta(q_1,b) = q_0$$

Agenda

Finite State Automaton (FSA)

- What is a FSA?
- Formal Definition
- Languages accepted by FSAs

Let $M = \langle Q, \Sigma, q_0, A, \delta \rangle$ be a FSA.

Definition

The string $x \in \Sigma^*$ is accepted by M if

$$\delta^*(q_0,x) \in A$$

and it is rejected by M, otherwise.

Definition

The language accepted by M is the set

$$L = \{x \in \Sigma^* \mid x \text{ is accepted by } M\}$$

Example 1: $L = \{ba\}$

Example 2: $L = \{aba\}$

Example 3: $L = \{a, aba\}$

 $A = \{q_1, q_3\}$ is the set of *accepting* states

Example 4:
$$L = \{\epsilon, ba\}$$

 $A = \{q_0, q_2\}$ is the set of accepting states

Example 5: $L = \Sigma^*$, where $\Sigma = \{0, 1\}$

Example 6: $L = \emptyset$, where $\Sigma = \{0, 1\}$

What about finite languages?

 $L = \emptyset$, what else?

Binary Tree

$$L = \{1, 00, 0101\}$$

$$L = \{1, 00, 0101\}$$

What about infinite languages?

$$L = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$$

= $\{a^k b^k \mid k \in \mathbb{N}\}$

is not accepted by any FSA!

Example 1: $L = \{0x \mid x \in \Sigma^*\}$, where $\Sigma = \{0, 1\}$, i.e., $L = \{w \in \Sigma^* \mid w \text{ starts with } 0\}$

Example 2: $L = \{(ab)^k \mid k \in \mathbb{N}\}$, where $\Sigma = \{a, b\}$

Thank you for your attention!