Практика по алгоритмам #5

1. Задачи

- 1. Пусть есть структура данных, реализующая интерфейс PriorityQueue (Add, DeleteMin). Как расширить эту структуру данных операциями Build, Delete, DecreaseKey, Merge?
- 2. Робот Иван Семеныч пробует пирожки. Содержимое пирожков делится на три типа. Всего пирожков n. Каждый пирожок можно попробовать не более одного раза. Пирожки можно менять местами. Память у робота маленькая, $O(\log n)$ бит. Помогите Ивану Семенычу отсортировать пирожки по типу: сначала первый, потом второй, потом третий. Сортировка должна работать за линейное время.
- 3. Найти отрезок массива, на котором $\min \times \sum$ максимально. $\mathcal{O}(n)$.
 - а) Все числа положительны.
 - b) Числа целые, 32-битные. Решение с использованием минимума на отрезке за $\mathcal{O}(1)$.
 - с) Числа целые, 32-битные. Простое решение.
- 4. Дана обычная бинарная куча, за сколько можно узнать k-й минимум?
 - a) $\mathcal{O}(k \log n)$
 - b) $\mathcal{O}(k^2)$
 - c) $\mathcal{O}(k \log k)$
- 5. Оцените число сравнений, которое сделают
 - а) MergeSort, если в массиве ровно $n=2^k$ элементов.
 - b) **HeapSort**, если в массиве ровно $n = 2^k 1$ элементов.
 - c) QuickSort, если в массиве все элементы различны, а выбирается случайный. Во всех пунктах нужны точные константы.
- 6. Модифицируйте операцию SiftUp для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\mathcal{O}(\log\log n)$ сравнений.
- 7. Модифицируйте операцию SiftDown для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\log_2 n + \mathcal{O}(\log\log n)$ сравнений.
- 8. Дан массив A[1..n] из n различных чисел. Массив не обязательно отсортирован. Требуется найти k ближайших к медиане элементов за линейное время. Решить для двух метрик.
 - а) По позиции в отсортированном массиве.

$$d(x, median) = |pos(x) - pos(median)|,$$

где $\mathsf{pos}(x)$ — позиция элемента x в отсортированном массиве.

b) По значению.

$$d(x, \mathtt{median}) = |x - \mathtt{median}|.$$

2. Домашнее задание

2.1. Обязательная часть

Медианой называется $\lfloor \frac{n}{2} \rfloor$ -я порядковая статистика.

- 1. (2) Придумайте детерминированную структуру данных на основе heap, которая умеет делать Insert(x), DeleteMedian(), все операции за $\mathcal{O}(\log n)$.
- 2. (2) Придумайте детерминированную структуру данных на основе heap: Insert(x), Delete{Median,Min,Max}(), Get{Median,Min,Max}(), все операции за $\mathcal{O}(\log n)$.
- 3. (x) Какое минимальное число сравнений нужно, чтобы построить обычную бинарную кучу? Докажите максимально точную нижнюю оценку. Для простоты вычислений предположим, что в массиве $n=2^k-1$ элементов.
 - (x=2) Хотя бы n-1 сравнений.
 - (x=4) Хотя бы n сравнений для $n \ge 10$.
 - (x=6) Оценка $1.3644 \cdot n + \mathcal{O}(1)$ без строгого доказательства.
 - (x=8) Оценка $1.4999 \cdot n + \mathcal{O}(1)$ без строгого доказательства.
 - Обязательным является только простая часть (x=4).
- 4. (2) Дан массив из n чисел и m чисел $p_1, p_2, \dots p_m$, нужно за $\mathcal{O}(n \log m + m)$ для каждого i найти p_i -ую порядковую статистику.
- 5. (2) Практика.8а.
- 6. (2) Практика.8b.

2.2. Дополнительная часть

- 1. (2) Задача про Insert(x), DeleteMedian() в предположении, что в куче никогда не будет больше n элементов, с использованием $n \times \text{sizeofElem} + \mathcal{O}(1)$ памяти.
- 2. (3) Выбрать на окружности максимальное число непересекающихся отрезков за $\mathcal{O}(n \log n)$.
- 3. (3) Практика.4с.
- 4. (3) Даны m чисел p_1, p_2, \ldots, p_m . Придумайте детерминированную структуру данных на основе heap, которая умеет делать Insert(x) за $\mathcal{O}(m \log n)$, GetStatistic(p_i) за $\mathcal{O}(1)$ и DelStatistic(p_i) за $\mathcal{O}(m \log n)$.
- 5. (3) Практика.3с. (про $\min \times \sum \to \max$, числа могут быть отрицательны)