Relacje

1. X, Y - zbiory

Def: Relacją dwuargumentową nazywamy podzbiór iloczynu kartezjańskiego $X \times Y$ Zamiast $< x, y > \in R$ piszemy x R y

2. Def: $R \subseteq X \times Y$

Zbiór $D_R = \{x \in X : \exists_{y \in Y} < x, y > \in R\}$ nazywammy dziedziną relacji R Na przykład $R = \{< x, y > \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ to koło

- 3. Jeśli X=Y, to mówimy, że relacja $R\subseteq X^2$ jest **określona** na zbiorze X
- 4. Relacja R jest **pusta** jeśli jest zbiorem pustym **pełna**, jeśli $R = X \times Y$
- 5. Def: Relacja **odwrotna** do relacji $R \subseteq X \times Y$ to relacja $R^{-1} = \{ \langle y, x \rangle \in Y \times X : \langle x, y \rangle \in R \}$
- 6. Def: **Złożeniem** relacji $R \subseteq X \times Y$ oraz relacji $S \subseteq Y \times Z$ nazywamy relację $S \circ R = \{ \langle x, z \rangle \in X \times Z : \exists_{y \in Y} \langle x, y \rangle \in \mathbb{R} \land \langle y, z \rangle \in S \}$
- 7. Def:
 - (a) R jest **zwrotna**, jeśli $\forall_{x \in X} x R x$
 - (b) R jest **symetryczna**, jeśli $\forall_{x,y\in X} x R y \implies y R x$
 - (c) R jest **przechodnia**, jeśli $\forall_{x,y,z,\in X}(x\,R\,y\,\wedge\,y\,R\,z) \implies x\,R\,z$
 - (d) R jest antysymetryczna, jeśli $\forall_{x,y \in X} (x R y \land y R x) \implies x = y$
 - (e) R jest **przeciwzwrotna**, jeśli $\forall_{x \in X} \neg (x R x)$
 - (f) R jest **przeciwsymetryczna**, jeśli $\forall_{x,y \in X} x R y \implies \neg(y R x)$
 - (g) R jest **spójna**, jeśli $\forall_{x,y\in X} x R y \wedge y R x \vee x = y$
- 8. Def: Relację $R \subseteq X^2$ nazywamy relację **równoważności** jeśli R jest zwrotna, symetryczna i przechodnia, na przykład Relacja równości

Relacja równoległości

Relacja pełna $R = X^2$ dla dowolnego zbioru x

Relacja \equiv_n - przystawanie modulo

Relacja $R \subseteq \mathbb{R}^2$, $x R y \iff \exists_{q \in \mathbb{Q}} x + q = y$

Relacja dla par wektorów R taka że < a, b > R < c, d > gdy b - a = d - c

Relacja \iff , relacja $a R b := a \implies b \wedge b \implies a$

9. Def: Niech $\sim \subseteq X \times X$ będzie relacją równoważności i $a \in X$

Zbiór $[a]_{\sim} = \{x \in X : x \sim a\}$ nazywamy klasą **abstrakcji (równoważności)** dla elementu a Element a nazywamy reprezentantem klasy abstrakcji $[a]_{\sim}$

- 10. Własności klas abstrakcji
 - (a) $\forall_{a \in X} a \in [a]_{\sim}$
 - (b) $\forall_{a,b\in X}b\in[a]_{\sim}\implies a\in[b]_{\sim}$
 - (c) $\forall_{a,b\in X}[a]_{\sim} = [b]_{\sim} \iff a \sim b$
 - (d) $\forall_{a,b\in X}([a]_{\sim}=[b]_{\sim})\vee[a]_{\sim}\cap[b]_{\sim}=\emptyset$
 - (e) $\bigcup_{a \in X} [a]_{\sim} = X$
- 11. **Podziałem zbioru** X nazywamy rodzinę $\{A_i : i \in I\}$ taką, że

$$\forall_{i \in I} A_i \neq \emptyset$$

$$\forall_{i,j \in I} (i \neq j \implies A_j \cap A_i = \emptyset)$$

$$\bigcup_{i \in I} A_i = X$$

- (a) Wniosek : Rodzina klas abstrakcji relacji równoważności $\sim\subseteq X^2$ jest podziałem x
- 12. Def: \sim relacja równoważności na X

Zbiór klas abstrakcji relacji \sim nazywamy **zbiorem ilorazowym** i oznaczamy $X_{/\sim}$

13. Twierdzenie: Niech $\{A_i:i\in I\}$ będzie podziałem zbioru X. Wtedy istineje relacja równoważności \sim na X taka, że $X_{/\sim}=\{A_i:i\in I\}$