CLAIMS

- 1. A method for forming a capacitor comprising: providing a non-oxide electrode; oxidizing an upper surface of said non-oxide electrode; depositing a high dielectric constant oxide dielectric material on the oxidized surface of said non-oxide electrode; and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 2. A method as claimed in claim 1 wherein the oxidation of said upper surface of said non-oxide electrode is carried out in an atmosphere containing an oxidizing gas selected from the group consisting of O_2 , O_3 , H_2O , and N_2O .
- 3. A method as claimed in claim 1 wherein the oxidation of said upper surface of said non-oxide electrode is carried out at a temperature in the range of from about 250° to about 700°C.
- 4. A method as claimed in claim 1 wherein said non-oxide electrode is selected from the group consisting of TiN, TaN, WN, and W.
- 5. A method as claimed in claim 1 wherein said high dielectric constant oxide dielectric material is selected from the group consisting of Al_2O_3 , Ta_2O_5 and $Ba_xSr_{(1-x)}TiO_3$.
- 6. A method as claimed in claim 1 wherein the oxidation of said upper surface of said non-oxide electrode is performed in an oxide dielectric deposition chamber under oxidizing conditions prior to the deposition of said high dielectric constant oxide dielectric material.

- 7. A method as claimed in claim 1 wherein the oxidation of said upper surface of said non-oxide electrode comprises oxidizing using an O_3 gas plasma.
- 8. A method as claimed in claim 7 wherein the oxidation is carried out at a temperature in the range of from about 250° to about 500°C.
- 9. A method for forming a capacitor comprising: providing a non-oxide electrode selected from the group consisting of TiN, TaN, WN, and W, oxidizing an upper surface of said non-oxide electrode, depositing a high dielectric constant oxide dielectric material on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 10. A method as claimed in claim 9 wherein said high dielectric constant oxide dielectric material is selected from the group consisting of Al_2O_3 , Ta_2O_5 and $Ba_xSr_{(1-x)}TiO_3$.
- 11. A method as claimed in claim 9 wherein the oxidation of said upper surface of said non-oxide electrode is carried out in an atmosphere containing an oxidizing gas selected from the group consisting of O₂, O₃, H₂O, and N₂O.
- 12. A method as claimed in claim 9 wherein the oxidation of said upper surface of said non-oxide electrode is carried out at a temperature in the range of from about 250° to about 700°C.
- 13. A method as claimed in claim 9 wherein the oxidation of said upper surface of said non-oxide electrode is performed in an oxide dielectric deposition chamber under oxidizing conditions prior to the deposition of said high dielectric constant oxide dielectric material.

- 14. A method as claimed in claim 9 wherein the oxidation of said upper surface of said non-oxide electrode comprises oxidizing using an O₃ gas plasma.
- 15. A method as claimed in claim 14 wherein the oxidation is carried out at a temperature in the range of from about 250° to about 500°C.
- 16. A method for forming a capacitor comprising: providing a non-oxide electrode selected from the group consisting of TiN, TaN, WN, and W, oxidizing an upper surface of said non-oxide electrode, depositing a high dielectric constant oxide dielectric material selected from the group consisting of Al₂O₃, Ta₂O₅ and Ba_xSr_(1-x)TiO₃ on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 17. A method as claimed in claim 16 wherein the oxidation of said upper surface of said non-oxide electrode is carried out in an atmosphere containing an oxidizing gas selected from the group consisting of O_2 , O_3 , H_2O , and N_2O .
- 18. A method as claimed in claim 16 wherein the oxidation of said upper surface of said non-oxide electrode is carried out at a temperature in the range of from about 250° to about 700°C.
- 19. A method as claimed in claim 16 wherein the oxidation of said upper surface of said non-oxide electrode is performed in an oxide dielectric deposition chamber under oxidizing conditions prior to the deposition of said high dielectric constant oxide dielectric material.
- 20. A method as claimed in claim 16 wherein the oxidation of said upper surface of said non-oxide electrode comprises oxidizing using an O₃ gas plasma.

- 21. A method as claimed in claim 20 wherein the oxidation is carried out at a temperature in the range of from about 250° to about 500°C.
- 22. A method for forming a capacitor comprising: providing a non-oxide electrode, in a deposition chamber oxidizing an upper surface of said non-oxide electrode, in the same deposition chamber depositing a high dielectric constant dielectric material on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 23. A method for forming a capacitor comprising: providing a non-oxide electrode, oxidizing an upper surface of said non-oxide electrode at a temperature in the range of from about 250° to about 700°C in an atmosphere containing a gas selected from the group consisting of O₂, O₃, H₂O, and N₂O, depositing a high dielectric constant dielectric material on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 24. A method as claimed in claim 23 wherein said non-oxide electrode is selected from the group consisting of TiN, TaN, WN, and W.
- 25. A method for forming a capacitor comprising: providing a non-oxide electrode, oxidizing an upper surface of said non-oxide electrode in an atmosphere containing a gas plasma generated from a gas selected from the group consisting of O₂, O₃, H₂O, and N₂O, depositing a high dielectric constant dielectric material on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.

- 26. A method as claimed in claim 25 wherein the oxidation of said upper surface of said non-oxide electrode is carried out at a temperature in the range of from about 250° to about 500°C.
- 27. The method of claim 25 wherein said non-oxide electrode is selected from TiN, TaN, WN, and W.
- 28. A method as claimed in claim 25 wherein said high dielectric constant oxide dielectric material is selected from the group consisting of Al_2O_3 , Ta_2O_5 and $Ba_xSr_{(1-x)}TiO_3$.
- 29. A method for forming a capacitor comprising: providing a non-oxide electrode selected from the group consisting of TiN, TaN, WN, and W, oxidizing an upper surface of said non-oxide electrode in an atmosphere containing a gas plasma generated from a gas selected from the group consisting of O₂, O₃, H₂O, and N₂O, depositing a high dielectric constant oxide dielectric material selected from the group consisting of Al₂O₃, Ta₂O₅ and Ba_xSr_(1-x)TiO₃ on the oxidized surface of said non-oxide electrode, and depositing an upper layer electrode on said high dielectric constant oxide dielectric material.
- 30. A capacitor comprising a non-oxide electrode having an oxidized upper surface, a high dielectric constant oxide dielectric material adjacent said oxidized upper surface of said non-oxide electrode, and an upper layer electrode adjacent said high dielectric constant oxide dielectric material.
- 31. A capacitor as claimed in claim 30 wherein said non-oxide electrode is selected from the group consisting of TiN, TaN, WN, and W.

- 32. A capacitor as claimed in claim 30 wherein said high dielectric constant oxide dielectric material is selected from the group consisting of Al_2O_3 , Ta_2O_5 and $Ba_xSr_{(1-x)}TiO_3$.
- 33. A capacitor comprising a non-oxide electrode selected from the group consisting of TiN, TaN, WN, and W, an upper surface of said non-oxide electrode being oxidized, a high dielectric constant oxide dielectric material adjacent said upper surface of said non-oxide electrode, and an upper layer electrode adjacent said high dielectric constant oxide dielectric material.
- 34. A capacitor as claimed in claim 33 wherein said high dielectric constant oxide dielectric material is selected from the group consisting of Al_2O_3 , Ta_2O_5 and $Ba_xSr_{(1-x)}TiO_3$.
- 35. A capacitor comprising a non-oxide electrode having an oxidized upper surface, a high dielectric constant oxide dielectric material is selected from the group consisting of Al₂O₃, Ta₂O₅ and Ba_xSr_(1-x)TiO₃ adjacent said upper surface of said non-oxide electrode, and an upper layer electrode adjacent said high dielectric constant oxide dielectric material.
- 36. A capacitor as claimed in claim 35 wherein said non-oxide electrode is selected from the group consisting of TiN, TaN, WN, and W.

- 37. A capacitor comprising a non-oxide electrode selected from the group consisting of TiN, TaN, WN, and W, an upper surface of said non-oxide electrode having been oxidized with an O₃ gas plasma, a high dielectric constant oxide dielectric material selected from the group consisting of Al₂O₃, Ta₂O₅ and Ba_xSr_(1-x)TiO₃ adjacent to said oxidized upper surface of said non-oxide electrode, and an upper layer electrode adjacent said high dielectric constant oxide dielectric material.
- 38. A method of forming a DRAM cell comprising providing a non-oxide electrode, oxidizing an upper surface of said non-oxide electrode, depositing a layer of a high dielectric constant oxide dielectric material on the oxidized surface of said non-oxide electrode, depositing an upper layer electrode on said layer of said high dielectric constant oxide dielectric material, providing a field effect transistor having a pair of source/drain regions, electrically connecting one of said source/drain regions with said conductive oxide electrode and electrically connecting the other of said source/drain regions with a bit line.