5 Fig. 5.1 shows a string stretched between two fixed points P and Q.

Fig. 5.1

A vibrator is attached near end P of the string. End Q is fixed to a wall. The vibrator has a frequency of $50\,\text{Hz}$ and causes a transverse wave to travel along the string at a speed of $40\,\text{m}\,\text{s}^{-1}$.

(a) (i) Calculate the wavelength of the transverse wave on the string.

	wavelength = m [2]
(ii)	Explain how this arrangement may produce a stationary wave on the string.
	[2]

(b) The stationary wave produced on PQ at one instant of time *t* is shown on Fig. 5.2. Each point on the string is at its maximum displacement.

Fig. 5.2 (not to scale)

(i) On Fig. 5.2, label all the nodes with the letter **N** and all the antinodes with the letter **A**. [2]

(ii)	your answer in (a)(i) to calculate the length of string PQ.
	length = m [1]
(iii)	On Fig. 5.2, draw the stationary wave at time ($t + 5.0 \mathrm{ms}$). Explain your answer.
	ro1
	[3]