Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

Alternating Series and Conditional Convergence

Avinash Iyer

Occidental College

November 1, 2023

Table of Contents

Alternating Series and Conditional Convergence

Avinash Iye

- Alternating Harmonic Series: An Analysis
- 2 Conditional Convergence
- 3 Absolute Convergence
- 4 Recap

Contents

Alternating Series and Conditional Convergence

Alternating Harmonic Series: An Analysis

Alternating Harmonic Series: An Analysis

A Series

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Recap

Conditional Convergence

Absolute Convergence

Recan

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Recap

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1$$

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recan

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2}$$

Conditional Convergence

Absolute Convergence

Lonve

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3}$$

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

Conditional Convergence

Absolute Convergence

Recan

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Absolute Convergence

Consider the following series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

This series appears to be related to the harmonic series, but also very different:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
 Harmonic Series

Absolute Convergence

Lonve

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

20000

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$
$$\ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Recap

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$= \infty$$

Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Recap

Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Recap

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$
$$s_1 = 1$$

Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recan

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

$$s_3 = \frac{5}{6}$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

$$s_3 = \frac{5}{6}$$

$$s_4 = \frac{7}{12}$$

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

Clearly, this sequence does not grow without bound — it is bounded above by 1, and doesn't seem to dip below $\frac{1}{2}$.

Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recan

The alternating harmonic does converge. Courtesy of Wolfram MathWorld, we know that the series converges to the following:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

The alternating harmonic does converge. Courtesy of Wolfram MathWorld, we know that the series converges to the following:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

...or does it?

Rearranging the Alternating Harmonic Series

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional

Absolute Convergence

Secan

Rearrange the series as follows:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence Rearrange the series as follows:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots$$
$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Secan

Rearrange the series as follows:

$$\begin{aligned} 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots \\ &= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots \\ &= \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \\ &= \frac{1}{2} \ln 2 \end{aligned}$$

Contents

Alternating Series and Conditional Convergence

Avinash Iye

- Alternating Harmonic Series: An Analysis
- Conditional Convergence

Absolute Convergence

Recap

- Alternating Harmonic Series: An Analysis
- 2 Conditional Convergence
- 3 Absolute Convergence
- 4 Recap

Introduction to Conditional Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: Ar Analysis

Conditional Convergence

Absolute Convergence

Secan

• We saw that our alternating harmonic series converges to In 2, but should it not converge to In 2 all the time?

Introduction to Conditional Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

 We saw that our alternating harmonic series converges to In 2, but should it not converge to In 2 all the time?

• For example, no matter how we arrange

$$\sum_{n=0}^{\infty} \frac{1}{2^n},$$

The sum should always equal 1.

Introduction to Conditional Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

- We saw that our alternating harmonic series converges to In 2, but should it not converge to In 2 all the time?
- For example, no matter how we arrange

$$\sum_{n=0}^{\infty} \frac{1}{2^n},$$

The sum should always equal 1.

• Maybe we should redefine convergence?

Alternating Series

Alternating Series and Conditional Convergence

Avinash Iyei

Alternatin Harmonic Series: Ar Analysis

Conditional Convergence

Absolute Convergence

Recap

• The answer is that the alternating harmonic series is conditionally convergent.

Alternating Series

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

- The answer is that the alternating harmonic series is conditionally convergent.
- We can always rearrange the terms of the alternating harmonic series to form whatever sum we want.

Alternating Series

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

• The answer is that the alternating harmonic series is conditionally convergent.

- We can always rearrange the terms of the alternating harmonic series to form whatever sum we want.
- In general, alternating series, of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

can be convergent, while at the same time

$$\sum_{n=1}^{\infty} a_n$$

is divergent.

Alternating Series Test

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: Ar Analysis

Conditional Convergence

Absolute Convergence

Recap

• In general, we can find if an alternating series is conditionally convergent as follows:

Alternating Series Test

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recan

- In general, we can find if an alternating series is conditionally convergent as follows:
 - The (absolute value) series terms are strictly positive and decreasing.

$$0 < a_{n+1} < a_n$$

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

- In general, we can find if an alternating series is conditionally convergent as follows:
 - The (absolute value) series terms are strictly positive and decreasing.

$$0 < a_{n+1} < a_n$$

• The series terms tend to zero:

$$\lim_{n\to\infty}a_n=0$$

Applying the Alternating Series Test

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

In the alternating harmonic series, we see that

Applying the Alternating Series Test

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

and

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

ecan

In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

and

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

So the series is *conditionally* convergent.

Contents

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: An Analysis

Conditional

Absolute Convergence Alternating Harmonic Series: An Analysis

2 Conditional Convergence

3 Absolute Convergence

What is Absolute Convergence?

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Convergence

Absolute Convergence

Recap

We know two facts:

What is Absolute Convergence?

Alternating Series and Conditional Convergence

Avinash Iye

Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

We know two facts:

- The alternating harmonic series converges conditionally
- The harmonic series diverges

What is Absolute Convergence?

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: Ar Analysis

Conditional Convergence

Absolute Convergence

Recap

We know two facts:

- The alternating harmonic series converges conditionally
- The harmonic series diverges

We need a stronger term for series convergence — absolute convergence — when a series converges to a single value.

Finding Absolute Convergence

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

If the absolute value of the terms in the series converges, then the series converges absolutely.

Finding Absolute Convergence

Alternating Series and Conditional Convergence

Avinash Iyer

Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

2000

If the absolute value of the terms in the series converges, then the series converges absolutely.

Absolutely Convergent Alternating Series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

converges absolutely. Why?

Finding Absolute Convergence

Alternating Series and Conditional Convergence

Avinash Iyer

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence If the absolute value of the terms in the series converges, then the series converges absolutely.

Absolutely Convergent Alternating Series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

converges absolutely. Why? By the geometric series,

$$\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{2^n} \right| = \sum_{n=0}^{\infty} \frac{1}{2^n}$$

converges.

Contents

Alternating Series and Conditional Convergence

Avinash Iye

Alternatinį Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

- Alternating Harmonic Series: An Analysis
- 2 Conditional Convergence
 - Absolute Convergence
- 4 Recap

What We Have Learned

Alternating Series and Conditional Convergence

Avinash Iye

Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

 The same series can converge to different values depending on the arrangement of terms — known as conditional convergence

What We Have Learned

Alternating Series and Conditional Convergence

Avinash Iye

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

- The same series can converge to different values depending on the arrangement of terms — known as conditional convergence
- We can use the *alternating series test* to find if a series converges conditionally.

What We Have Learned

Alternating Series and Conditional Convergence

Avinash Iye

Alternatin Harmonic Series: An Analysis

Conditional Convergence

Absolute

- The same series can converge to different values depending on the arrangement of terms — known as conditional convergence
- We can use the alternating series test to find if a series converges conditionally.
- However, we would need to use other tools to find if a series is absolutely convergent.

Questions?

Alternating Series and Conditional Convergence

Avinash Iye

Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

Thank you for listening. Any questions?