CSCI 4022 Fall 2021 Principal Component Analysis

Opening Example: Find the eigenvalue/eigenvector pairs for $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$

Why Reduce Dimension

- 1. Discover hidden correlations/topics/concepts
- 2. Remove redundant/noisy features
- 3. Interpretation and visualization is easier and more intuitive in fewer dimensions
- 4. Easier to store, process and analyze data in fewer dimensions

Definition: (λ, v) is an eigenpair of a matrix A if $Av = \lambda v$ and $v \neq 0$. So... $(A - \lambda I)v = 0$ and since |v| = 1, $|A - \lambda I| = 0$.

(pen-and-paper) Algorithm: Write down the determinant $|A - \lambda I|$ (a polynomial) and solving for its roots.

Then, we can set up and solve the linear system $Av = \lambda v$ (with the restriction that |v| = 1) to find the associated eigenvector.

Eigenvalues

A common step in dimension reduction is finding eigenvalues and eigenvectors of a symmetric $n \times n$ matrix. So we need an algorithm for that.

Question: What does it mean for (λ, v) to be an eigenpair of a matrix A?

Eigenvalues

A common step in dimension reduction is finding eigenvalues and eigenvectors of a symmetric $n \times n$ matrix. So we need an algorithm for that.

Question: What does it mean for (λ, v) to be an eigenpair of a matrix A?

Answer: It means $A {m v} = \lambda {m v}$ and $v \neq 0$

- 1. So... $(A \lambda I)v = 0$
- 2. Since we insist on unit eigenvectors, |v|=1
- 3. Result: $|A \lambda I| = 0$ (linear algebra fact)

Eigenvalues

A common step in dimension reduction is finding eigenvalues and eigenvectors of a symmetric $n \times n$ matrix. So we need an algorithm for that.

Question: What does it mean for (λ, v) to be an eigenpair of a matrix A?

Answer: It means $A {m v} = \lambda {m v}$ and $v \neq 0$

- 1. So... $(A \lambda I)v = 0$
- 2. Since we insist on unit eigenvectors, |v|=1
- 3. Result: $|A \lambda I| = 0$ (linear algebra fact)

(pen-and-paper) Algorithm: So solving for eigenvalues amounts to writing down the determinant $|A - \lambda I|$ (a polynomial) and solving for its roots.

Then, we can set up and solve the linear system $Av = \lambda v$ (with the restriction that |v| = 1) to find the associated eigenvector.

Example: Find the eigenvalue/eigenvector pairs for
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

Step 1: Characteristic Polynomial.

(-29)2 + 52=1 52=1/5

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \qquad \begin{bmatrix} 3 & +29 \\ 2 & 6 \end{bmatrix}$$

Example: Find the eigenvalue/eigenvector pairs for
$$A=\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$
 Step 1: Characteristic Polynomial.

$$=\begin{bmatrix} 2 & 6 \end{bmatrix}$$

(γ-८)(λ-₹)

 $0 = \lambda^2 - 9\lambda + 14 \implies \lambda = 2,7$

x=-2/v5 (1/w) 2//5) (V)=(

$$|A - \lambda I| = |\begin{bmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix}| = det \begin{bmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{bmatrix}$$

$$= (3 - \lambda)(6 - \lambda) - 2 \cdot 2 \implies \begin{cases} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{cases}$$

$$\stackrel{\circ}{\Longrightarrow}$$

x = -25

Fall 2021

Example: Find the eigenvalue/eigenvector pairs for $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$

Step 2: Eigenvectors. Using $\lambda_1 = 7$, we find v_2 via $A = \begin{bmatrix} 2 & 0 \end{bmatrix}$ Suppose $v_1 = [x, y]^T$. $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 7 \begin{bmatrix} x \\ y \end{bmatrix} \implies \begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix} = \begin{bmatrix} 7x \\ 7y \end{bmatrix}$

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 7 \begin{bmatrix} x \\ y \end{bmatrix} \implies \begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix} = \begin{bmatrix} 7x \\ 7y \end{bmatrix}$$

Both rows of this system suggest that y=2x, so we combine with $x^2+y^2=1$ to get

$$v = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \qquad \left(\frac{7}{2} \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \right) \qquad + \qquad \left(\frac{7}{2} \begin{bmatrix} 1/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right)$$

Example: Find the eigenvalue/eigenvector pairs for $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$ Final Result: The matrix A has eigenpairs of $(\lambda, \boldsymbol{v})$ of $(7, [1/\sqrt{5}, 2/\sqrt{5}]^T)$ and $(2, [2/\sqrt{5}, -1/\sqrt{5}]^T)$

In practice, this is pretty awful for huge matrices, for a few reasons!

- 1. We often only care about *largest* eigenvalues, just like for PageRank or H/A.
- 2. But solving a characteristic polynomial finds *all* the eigenvalues, and it's hard to guarantee we find the largest.
- 3. Determinants are very computationally expensive

On the other hand... we need more than just one eigenvalue. We want **some** of the largest, but maybe not the full eigenspace. We can use power iteration, but **generalized power iteration** to iteratively and sequentially find eigenvalues from largest-to-smallest

Computational Eigenvalues

Idea: Find the largest eigenvalue via power iteration. Then somehow *remove* it from the matrix, so now the *second highest* has become the highest. Repeat power iteration!

Recall: Power Iteration

Computational Eigenvalues

Idea: Find the largest eigenvalue via power iteration. Then somehow *remove* it from the matrix, so now the *second highest* has become the highest. Repeat power iteration!

Recall: Power Iteration

Let A be a symmetric $n \times n$ matrix, whose eigenstuff we want to find. Start with some

2. Then our final x is the *principal* eigenvector of A, x_1 , and we can solve for the associated eigenvalue λ_1 via:

$$Ax = \lambda x$$
 $\Rightarrow x^T Ax = x^T \Delta x \Rightarrow \lambda = x^T Ax$

Note: the matrix/vector norm used there is the Frobenius norm:

$$||\underline{A_F||} = \sqrt{\sum_{i,j} A_{i,j}^2}$$

Computational Eigenvalues $1 = x = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}$

How do we remove an eigenvalue to set up finding the second-biggest?

$$A_2 = A - \lambda_1 x_1 x_1^T$$

Computational Eigenvalues

How do we remove an eigenvalue to set up finding the second-biggest?

Process: Set

$$A_2 = A - \lambda_1 \underbrace{x_1 x_1^T}_{\text{matrix with (i,j) component } x_i x_j}$$

...and then do power method!

- 1. Iterate exactly the same way that led you to x_1 to find x_2 , the eigenvector associated with the second-largest eigenvalue.
- 2. Solve for the second eigenvalue the same way too, as: $\lambda_2 = x_2^T A x_2$
- 3. and continue until you found them all (or however many you wanted), updating the matrix as

$$A_{k+1} = A_k - \lambda_k x_k x_k^T$$

Computational Eigenvalues $A':eury(7,2) \Rightarrow A_2 eury(2,5)$

How do we remove an eigenvalue to set up finding the second-biggest?

Process: Set

$$A_2 = A - \lambda_1 \underbrace{x_1 x_1^T}_{\text{matrix with (i,j) component } x_i x_j} \text{ "renow the e.va.}$$

...and then do power method!

- 1. Iterate exactly the same way that led you to x_1 to find x_2 , the eigenvector associated with the second-largest eigenvalue.
- 2. Solve for the second eigenvalue the same way too, as: $\lambda_2 = x_2^T A x_2$
- 3. and continue until you found them all (or however many you wanted), updating the matrix as

$$A_{k+1} = A_k - \lambda_k x_k x_k^T$$

Theory for Power Iteration

Can we convince ourselves that $A_2 = A - \lambda_1 x_1 x_1^T$ "removes" the eigenvector x_1 from A? What does that even mean?

Proof: Suppose (λ, x) is an eigenpair of matrix A, and $x \neq x_1$ (the principal eigenvector).

Claim:
$$(\lambda, x)$$
 is an eigenpair of A_2 . Show $A_2 \times A_2 \times$

Proof:
$$A_{2}x = A_{1}x_{1}x_{1}^{T}$$
 $x_{2} = A_{2}x_{1} + A_{1}x_{1}$ $x_{1}^{T}x_{2} = A_{2}x_{1} + A_{1}x_{1} + A_{2}x_{2} = A_{2}x_{2} + A_{1}x_{1} + A_{2}x_{2} = A_{2}x_{2} + A_{2}x_{1} + A_{2}x_{2} = A_{2}x_{1} + A_{2}x_{2} + A_{2}x_{1} + A_{2}x_{2} + A_{2}x_{2} + A_{2}x_{1} + A_{2}x_{2} + A_{2}$

Claim: x_1 is also an eigenvector of A_2 , but its corresponding eigenvalue is 0. A_1

Proof:
$$A_2x_1 = (A - \lambda_1x_1x_1^T)x_1 = (Ax_1 - \lambda_1x_1^T)x_1 = (Ax_1 - \lambda_1x_1x_1^T)x_1 = (Ax_1 - \lambda_1x_1^T)x_1 = (Ax_1 - \lambda$$

Principal Component Analysis

So what can we do with an eigendecomposition of a matrix? Just about anything!

Big idea (PCA): Take a data set of tuples (generally in high-dimensional space) and find the directions (or axes) along which the tuples line up best.

Example 1: x_1 is the most "important" direction to describe a data point here.

also known as the vectorized direction $\left[1,0\right]$

Principal Component Analysis

So what can we do with an eigendecomposition of a matrix? Just about anything!

Big idea (PCA): Take a data set of tuples (generally in high-dimensional space) and find the directions (or axes) along which the tuples line up best.

Example 1: x_1 is the most "important" direction to describe a data point here.

also known as the vectorized direction [1,0]

Example 2: What about here?

Principal Component Analysis

So what can we do with an eigendecomposition of a matrix? Just about anything!

Big idea (PCA): Take a data set of tuples (generally in high-dimensional space) and find the directions (or axes) along which the tuples line up best.

Example 1: x_1 is the most "important" direction to describe a data point here.

also known as the vectorized direction [1,0]

Example 2: What about here?

Now the direction of [1,1] is most "important"

The goal: Figure out how we compute which direction(s) are the most important.

These are the *principal components*

PCA overview

Game plan:

- 1. Line up the data point tuples as rows of a matrix M ($n \times D$, where n = # data and D = # dimensions)
- 2. Find the eigenpairs of \widehat{MM}^T or M^TM (What are the sizes?)
- 3. Principal eigenvector, v_1 , is the axis along which the points are spread out the most (highest variance)
- 4. The second eigenvector, v_2 (associated with the second-largest eigenvalue), is the axis along which the variance of the points' distances from the first axis (v_1) is greatest Note that this is always an orthogonal direction, since they're eigenvectors!
- 5. ... and so on...

PCA is Data Mining

- 1. High-dimensional data can be replaced by its projection onto only the most important axes (the principal components)
- 2. Those correspond to the largest eigenvalues
- 3. So the original data can be summarized by / approximated by data with fewer dimensions only keep what matters!

We'll walk through a stylized and simplistic example to illustrate how PCA is done.

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3). **Step 1**:

1. Construct M, and M^TM (or MM^T , whichever is smaller)

Solution:

Theorem: For any real matrix A, A^TA is symmetric.

We'll walk through a stylized and simplistic example to illustrate how PCA is done.

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3). Step 1:

1. Construct M, and M^TM (or MM^T , whichever is smaller)

Solution:

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix}; \quad M^{T}M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 30 & 28 \\ 28 & 30 \\ 4 & 3 \end{bmatrix}$$

Theorem: For any real matrix A, A^TA is symmetric A in A

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3).

We have that
$$M^TM=\begin{bmatrix}1&2&3&4\\2&1&4&3\end{bmatrix}\begin{bmatrix}1&2\\2&1\\3&4\\4&3\end{bmatrix}=\begin{bmatrix}30&28\\28&30\end{bmatrix}$$

Step 2:

2. Find the eigenpairs for A^TA .

Solution:

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3).

We have that
$$M^TM=\begin{bmatrix}1&2&3&4\\2&1&4&3\end{bmatrix}\begin{bmatrix}1&2\\2&1\\3&4\\4&3\end{bmatrix}=\begin{bmatrix}30&28\\28&30\end{bmatrix}$$

Step 2:

2. Find the eigenpairs for A^TA .

Solution:

$$|M^T M - \lambda I| = |\begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix}| = (30 - \lambda)^2 - 28^2$$

which has eigenvalues of $\lambda_1 = 58$, $\lambda_2 = 2$.

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3).

We have that $\lambda_1=58,\,\lambda_2=2$

Step 2b:

2b. Find the eigenvectors for A^TA .

Solution:

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3).

We have that $\lambda_1=58,\,\lambda_2=2$

Step 2b:

2b. Find the eigenvectors for A^TA .

Solution: For $\lambda_1 = 58$:

$$M^T M v_1 = \begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \stackrel{\heartsuit}{=} 58 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Example: Consider the set of data points (1,2), (2,1), (3,4), (4,3).

We have that $\lambda_1=58,\,\lambda_2=2$

Step 2b:

2b. Find the eigenvectors for A^TA .

Solution: For $\lambda_1 = 58$:

$$M^T M v_1 = \begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \stackrel{\heartsuit}{=} 58 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

so $30v_1+28v_2=58v_1$, which has solution of $v_1=v_2$ and normalizes to $\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}$

Similarly,
$$v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

The Rotation

So we have the eigenpairs of M^TM .

Step 3:

3. Step 3. Construct E, the matrix whose *columns* are made up of the eigenvectors.

Solution:

The Rotation

So we have the eigenpairs of M^TM .

Step 3:

3. Step 3. Construct E, the matrix whose *columns* are made up of the eigenvectors.

Solution:

$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

The Rotation

So we have the eigenpairs of M^TM .

Step 3:

3. Step 3. Construct E, the matrix whose *columns* are made up of the eigenvectors.

Solution:

$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Definition: Any matrix - such as E - whose columns are made up of **orthonormal vectors** represents a **rotation** or **reflection** in a Euclidean space.

Example:
$$T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is the 2-D matrix that rotates clockwise by θ

Rotations

How does that work?

Example: Example: Consider the row vector x = [0,1] in \mathbb{R}^2 . What is the matrix T that will rotate it clockwise by 90° ? Perform this transformation xT to find the resulting rotated vector.

Solution:

Rotations

How does that work?

Example: Example: Consider the row vector x = [0,1] in \mathbb{R}^2 . What is the matrix T that will rotate it clockwise by 90° ? Perform this transformation xT to find the resulting rotated vector.

Solution:

$$T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

so $xT = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ And $\begin{bmatrix} 1, 0 \end{bmatrix}$ is indeed what we expect if we were to rotate $\begin{bmatrix} 0, 1 \end{bmatrix}$ clockwise by 90° . Hooray!

Example, cont'd: Our rotation matrix is
$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Rotations

How does that work?

Example: Example: Consider the row vector x = [0,1] in \mathbb{R}^2 . What is the matrix T that will rotate it clockwise by 90° ? Perform this transformation xT to find the resulting rotated vector.

Solution:

$$T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

so $xT = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ And $\begin{bmatrix} 1, 0 \end{bmatrix}$ is indeed what we expect if we were to rotate $\begin{bmatrix} 0, 1 \end{bmatrix}$ clockwise by 90° . Hooray!

Example, cont'd: Our rotation matrix is $E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$, so expect it

will rotate our original data points by 45° (since $\cos^{-1}(1/\sqrt{2})=\pi/4.)$

So we have the *rotation* represented by
$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Step 4:

4. Rotate the original data points M by E. This puts them into a new frame of reference:

Solution:

So we have the *rotation* represented by
$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Step 4:

4. Rotate the original data points M by E. This puts them into a new frame of reference:

Solution:

$$ME = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \\ 7/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

So we have the *rotation* represented by
$$E = \begin{bmatrix} \uparrow & \uparrow \\ v_1 & v_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Step 4:

4. Rotate the original data points M by E. This puts them into a new frame of reference:

Solution:

$$ME = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$0 \qquad 0$$

$$(3/\sqrt{2}, -1/\sqrt{2}) \qquad (7/\sqrt{2}, -1/\sqrt{2})$$

$$(3/\sqrt{2}, 1/\sqrt{2}) \qquad (7/\sqrt{2}, 1/\sqrt{2})$$

$$0 \qquad 0$$

$$(3/\sqrt{2}, -1/\sqrt{2}) \qquad (7/\sqrt{2}, -1/\sqrt{2})$$

Upshot: The rows of ME give the coordinates in the eigenvector basis (along the principal components) of the corresponding rows (data points) in M.

$$ME = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \\ 7/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \text{ rotates } M \text{ into a new frame of reference.}$$

$$ME = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \\ 7/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

The rows of ME give the coordinates in the **eigenvector** basis (along the principal components) of the corresponding rows (data points) in M.

In other words, if we took $3/\sqrt{2}x_1 + 1/\sqrt{2}x_2$, we'd have a new location for datum #1.

Interpretation: The components in ME give the distance to each data point along the eigenvectors.

...and reduce

So we have the *projection* represented by ME... but let's not use all of it! **Step 5**:

5. To get a reduced dimension representation of our data in M, can take only the eigenvectors associated with the k largest eigenvalues of M^TM (or MM^T).

Put them in a narrower matrix, E_k .

Then ME_k is a reduced-dimension representation of M, in the directions of the

$$(3/\sqrt{2}, 1/\sqrt{2}) \qquad (7/\sqrt{2}, 1/\sqrt{2})$$

 $(3/\sqrt{2},-1/\sqrt{2}) \qquad (7/\sqrt{2},-1/\sqrt{2})$

Back to the running **example**: There are only D=2 dimensions, so the only reducing we can do is to d=1. So take the principal eigenvector and reduce:

do is to
$$d=1$$
. So take the principal eigenvector and reduce:
$$ME_1 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} \\ 3/\sqrt{2} \\ 7/\sqrt{2} \\ 7/\sqrt{2} \end{bmatrix} \dots \text{ is an } \textit{approximation of } M \text{ with less columns! How } M$$

close is it?

Why bother?

There are two algorithms we've seen that PCA plays well with:

1. Dimension reduction that encourages orthonormal axes for the principal components helps with multiple linear regression (and logistic variants).

TL;DR: if feature/columns are similar/dependent, then MLR inference fails due to $\hat{\beta} \propto (X^T X)^{-1}$, which is singular if columns of X are identical to one another.

2. Clustering is more numerically stable with lower dimension... it also visualizes better! See also: multidimensional scaling.

TL;DR: in too many dimensions, distances tend to all look similar.

One thing to note: our "approximation" of M was a truncated $rotation\ ME \to ME_1$. It might make sense to rotate that approximation back into the original units of M, since ME_1 has been rotated into the frame of references of that original largest component. That way, we can actually directly compare M to it's lower-dimensional representation! (We do this next time!)

Acknowledgments

Next time: singular matrix decompositions

Some material is adapted/adopted from Mining of Massive Data Sets, by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University) http://www.mmds.org

Special thanks to Tony Wong for sharing his original adaptation and adoption of slide material.