问题求解(四) SP24 Final 笔试

任课教师: 马骏 陶先平 2024年6月28日

一、逻辑(10′)

使用谓词逻辑表达下列句子(不可使用超过3元的谓词):

- 1. 三人行,则必有我师;
- 2. 如果中国队不败于韩国、或者泰国队未能战胜新加坡、或者不敌泰国队且中国队净胜球不少于泰国队,则中国可晋级十八强.

二、集合与关系(10')

对于集合 N, 一个集合 $I \subset \mathcal{P}(N)$ 是 N 上的理想, 若满足以下条件:

- $\emptyset \in A$;
- 若 $B \subseteq A$ 且 $A \in I$,则 $B \in I$;

定义集合 $A \cap B$ 的对称差 $A \triangle B$ 为 $A \triangle B = (A \cup B) \setminus (A \cap B)$.

- 1. 证明: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- 2. 定义 $R = \{(A, B) \in \mathcal{P}(N) \times \mathcal{P}(N) : A \triangle B \in I\}$, 其中 I 为 N 上的理想. 证明: R 是等价关系.

三、 递归式(12')

下面递归式是否可以用 master theorem 求解?若可以,求解之;若不可以,说明理由.

- 1. T(n) = 6T(n/3) + n;
- 2. T(n) = T(3n/4) + 2;
- 3. $T(n) = 4T(n/5) + n \lg n$;
- 4. $T(n) = 3T(n/3) + n \lg n$.

四、 堆排序(10′)

堆排序如 Figure 1 所示, 其中 BUILD-MAX-HEAP (A) 将 A 变成大根堆, MAX-HEAPIFY (A, u) 假设u 的左、右子树都是大根堆,则它将 u 为根的子树也变成大根堆.

- 1. 简述什么是部分正确性, 什么是完全正确性.
- 2. 假设 BUILD-MAX-HEAP 和 MAX-HEAPIFY 正确, 证明 HEAPSORT 完全正确.

HEAPSORT(A)

- 1 BUILD-MAX-HEAP(A)
- 2 **for** i = A.length **downto** 2
- 3 exchange A[1] with A[i]
- A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)

Figure 1: 堆排序示意图

五、图论(12')

竞赛图是有向图,满足任意两个顶点间有且仅有一条有向边相连(即,对任意 $u,v \in V$, $u \neq v$,要么 $\langle u,v \rangle \in E$,要么 $\langle v,u \rangle \in E$,但不同时成立).证明:任何竞赛图都含有一条哈密尔顿路径.

六、 数论(10′)

设 n 为正整数, 且 $a \in \mathbb{Z}_n^*$, 证明: $f_a(x) = ax \mod n$ 是 $\mathbb{Z}_n^* \to \mathbb{Z}_n^*$ 的排列.

七、布尔代数(12')

对于正整数集 \mathbb{N} , 定义有穷-余有穷代数 $F(\mathbb{N})$ 为

$$F(\mathbb{N}) = \{A \subseteq \mathbb{N} : A \text{ 有穷或 } \mathbb{N} \setminus A \text{ 有穷}\}.$$

证明 $F(\mathbb{N})$ 是布尔代数,

八、 随机算法(12')

已知:对于奇数 n>0, 且 $\frac{n-1}{2}$ 也为奇数,有:

- 若 n 是素数,则对任何 $a \in \{1, ..., n-1\}$ 都有 $a^{n-1} \mod n \in \{-1, 1\}$;
- 若 n 是合数,则对至少一半的 $a \in \{1, ..., n-1\}$ 满足 $a^{n-1} \mod n \notin \{-1, 1\}$;
- 1. 给出一个蒙特卡洛算法, 判断 n 是否为合数 (为合数时输出 accept, 为素数时输出 reject);
- 2. 该算法是 one side error, two side error 还是 unbounded error? 证明你的结论.

九、斯坦纳树(12')

- 1. (题面给出斯坦纳树的形式化描述 ST), 证明 $ST \in NP$.
- 2. (题面给出了 X3C 的定义和归约方式),证明 X3C \leq_P ST 的归约的正确性 $(x \in X3C \iff f(x) \in ST)$.

(详见 http://profs.sci.univr.it/~rrizzi/classes/Complexity/provette/Santuari/steiner.pdf)