1 Proof of Mutual Exclusion

Lemma 1: $q2 \Longrightarrow in \neq out$

- Initially q2 is false, lemma is true
- Only statement that progresses to q2 is q1 which requires $in \neq out$
- $in \neq out$ cannot become false between q1 and q2
 - Only other statement which can change in or out is p4
 - Since **lemma 2**, p cannot make $in \neq out$

Lemma 2: $p3..4 \Longrightarrow out \neq (in + 1) \mod N$

- Initially holds, as p3..4 is false
- Only statement that progresses to p3..4 is p2 which requires $out \neq (in + 1)$
- out! = (in + 1) mod N cannot become false between p2..p4
- Thus cannot increment in such that in = out
 - Only statement which can change in or out is q3 (out = out + 1)
 - Thus can increment to out + 1, so $(out + 1) \neq (in + 1) \mod N$

Theorem 1: $\sim (p3 \wedge q2)$

- Assume $p3\hat{q}2$
- $q2 \Longrightarrow in! = out \longrightarrow \sim q2 \lor in \neq out$
- $\bullet \ p3 \Longrightarrow out \neq (in+1) \ mod \ N$
- $(\neq q2 \lor in \neq out) \land (\sim p3 \lor out \neq (in + 1) \bmod N$
- If we assume $p3 \wedge q2$, then $\sim q2 = false$ and $\sim p3 = false$
- $(in \neq out) \land (out \neq (in + 1) \bmod N)$
- $in \neq (in + 1) \mod N$
- Therefore theorem holds

2 Proof of Freedom from Starvation

Theorem 2:
$$\Box(p1 \Longrightarrow \Diamond p3) \land \Box(q1 \Longrightarrow \Diamond q2)$$

$$\Box(p1\Longrightarrow\Diamond p3)$$

- From p1, progresses to p2
- To progress to p3, $out \neq (in + 1) \mod N$ must be true
- Intially in = out = 0, so $0 \neq (0+1) \mod N$ is true, thus progresses to p3

$$\Box(q1 \Longrightarrow \Diamond q2)$$

- To progress to q2, $in \neq out$ must be true
- When an item is added, $in \neq out$ will be true and will progress to q2