Дискретная математика. Лекция 11.03.

С. В. Ткаченко

11.03.2022

Две формулы A и B называются pавносильными, если они принимают одинаковые значения на одном и том же списке переменных $X_1, X_2, ..., X_n$, входящих в A и B.

Обозначение $A \equiv B$.

Основные равносильности формул

Для любых формул A,B,C справедливы следующие равносильности

1. Коммутативность	2. Ассоциативность
a) $A \vee B \equiv B \vee A$,	a) $A \vee (B \vee C) \equiv (A \vee B) \vee C$,
$6) A \wedge B \equiv B \wedge A.$	$ (6) A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C. $
3. Дистрибутивность	4. Равносильность де Моргана
a) $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$,	a) $\overline{(A \vee B)} \equiv \overline{A} \wedge \overline{B}$,
$6) \ A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C).$	$6) \ \overline{(A \wedge B)} \equiv \overline{A} \vee \overline{B}.$
5. Идемпотентность	6. Формулы поглощения
a) $A \vee A \equiv A$,	a) $A \vee (A \wedge B) \equiv A$,
6) $A \wedge A \equiv A$.	$6) A \wedge (A \vee B) \equiv A.$
7. Равносильность тождества	8. Формулы констант
a) $A \vee \Pi \equiv A$,	a) $A \vee H \equiv H$,
$6) A \wedge \mathbf{H} \equiv A.$	$6) A \wedge \Pi \equiv \Pi.$
9. Формулы дополнения	10. Закон инволюции (снятие
a) $A \vee \overline{A} \equiv \Pi$, 6) $A \wedge \overline{A} \equiv \Pi$,	двойного отрицания)
в) $\overline{\mathbf{M}} \equiv \mathbf{\Pi}$, г) $\overline{\mathbf{\Pi}} \equiv \mathbf{M}$.	$ \overline{\overline{A}} \equiv A $
11. Формулы расщепления	
a) $A \equiv (A \wedge B) \vee (A \wedge \overline{B}),$	
$6) A \equiv (A \vee B) \wedge (A \vee \overline{B})$	

Замена логических операций

$A \to B \equiv \overline{A} \vee B$	$A \to B \equiv \overline{A \wedge \overline{B}}$
$\overline{ \mid A \sim B \equiv (A \wedge B) \vee (\overline{A} \wedge \overline{B}) }$	$ A \sim B \equiv (A \vee \overline{B}) \wedge (\overline{A} \vee B) $
$A \oplus B \equiv (\overline{A} \wedge B) \vee (A \wedge \overline{B})$	$\mid A \oplus B \equiv (A \vee B) \wedge (\overline{A} \vee \overline{B}) \mid$
$A \vee B \equiv \overline{A} \to B$	$A \vee B \equiv \overline{(\overline{A} \wedge \overline{B})}$
$\overline{ \mid A \wedge B \equiv \overline{(A \to \overline{B})} }$	$A \wedge B \equiv \overline{(\overline{A} \vee \overline{B})}$
$\overline{ A B \equiv \overline{(A \wedge B)} }$	$A \downarrow B \equiv \overline{(A \lor B)}$

Пусть $X_1,...,X_n$ - все входящие в формулу А элементарные высказывание. Формула

$$A^*(X_1,...,X_n) \equiv \overline{A}(\overline{X}_1,...,\overline{X}_n)$$

называется двойственной к формуле A.

Пример

1.
$$A=X\vee Y; A^*(X,Y)\equiv \overline{A}(\overline{X},\overline{Y})\equiv \overline{(\overline{X}\vee\overline{Y})}\equiv \overline{\overline{X}}\wedge \overline{\overline{Y}}\equiv X\wedge Y.$$
 Дизъюнкция (\vee) двойственна конъюнкции (\wedge), и наоборот.

Пусть формула A зависит от списка переменных $X_1, ..., X_n$.

Формула A называется тождественно-истинной (или тавтологией), если на всех оценках списка переменных $X_1,...,X_n$ она принимает значение V. Пример. $V \setminus \overline{X}$.

Формула A называется выполнимой, если она хотя бы на одной оценке списка переменных $X_1,...,X_n$ она принимает значение H. $\mathbf{\Pi} pumep.$ $\overline{X} \wedge Y$.

Формула A называется mождественно-ложной, если на всех оценках списка переменных $X_1,...,X_n$ она принимает значение Π . $\mathbf{\Pi} pumep.\ X \wedge \overline{X}.$

Формула A называется onposep жимой, если хотя бы на одной оценке списка переменных $X_1,...,X_n$ она принимает значение Π . $\Pi pumep.\ X\vee Y.$

Утверждение 1.

- 1. A тавтология $\Leftrightarrow A$ не является опровержимой.
- $2. \ A$ тождественно-ложна $\Leftrightarrow A$ не является выполнимой.
- 3. A тавтология $\Leftrightarrow \overline{A}$ тождественно-ложна.
- 4. A тождественно-ложна $\Leftrightarrow \overline{A}$ тавтология.
- 5. $A \sim B$ тавтология $\Leftrightarrow A \equiv B$.

Некоторые тавтологии (A, B, C - произвольные формулы)

$A \vee \overline{A}$	$A \rightarrow A$
$\ \ A \to (B \to A)$	$\mid A \to (B \to (A \land B))$
$ \mid (A \wedge B) \to A $	$\mid A \to (A \vee B)$
$A \land B \rightarrow B$	$\mid B \to (A \vee B)$
$\overline{\mid (\overline{B} \to \overline{A}) \to ((\overline{B} \to A) \to B)}$	$ \mid ((A \to B) \to A) \to A $
	$\mid (A \to (B \to C)) \to ((A \to B) \to (A \to C))$

Формулу называют элементарной дизъюнкцией, если она является дизъюнкцией переменных или отрицаний переменных.

Пример.

$$\overline{A_1(X,Y)} = \overline{Y}; A_2(X,Y,Z) = Z; A_3(X,Y,Z) = X \vee Y; A_4(X,Y,Z) = \overline{Z} \vee \overline{Y} \vee X.$$

Формула находится в контонктивной нормальной форме (КНФ), если она является конъюнкцией элементарных дизъюнкций.

Пример.

$$\begin{split} A_1(X,Y) &= Y; A_2(X,Y) = (Y) \land (X); \\ A_3(X,Y,Z) &= (\overline{Y} \lor \overline{X} \lor Z); \\ A_4(X,Y,Z) &= \overline{Z} \land (\overline{Y} \lor X); \\ A_5(X,Y,Z) &= (\overline{X} \lor \overline{Z} \lor \overline{Y}) \land (X \lor \overline{Y}) \land Z. \end{split}$$

Пусть формула A зависит от n переменных. Формула A находится в $\mathbf{C}\mathcal{\mathbf{\Box}}\mathbf{H}\mathbf{\Phi}$ относительно этих переменных, если выполняются следующие условия:

- а) A находится в ДНФ (дизъюнкция элементарных конъюнкций);
- б) в ней нет двух одинаковых дизъюнктивных членов (т.е. элементарных конъюнкций);
- в) каждый дизъюнктивный член (элементарная конъюнкция) формулы A является n-членной конъюнкцией, причем на i-ом месте $(1 \le i \le n)$ этой конъюнкции обязательно стоит либо переменная X_i , либо ее отрицание \overline{X}_i .

Пример. Пусть (X_1, X_2, X_3) - список переменных.

$$A(X_1, X_2, X_3) = X_1 \wedge \overline{X}_2 \wedge X_3;$$

$$B(X_1, X_2, X_3) = (\overline{X}_1 \wedge X_2 \wedge X_3) \vee (X_1 \wedge \overline{X}_2 \wedge \overline{X}_3) \vee (X_1 \wedge X_2 \wedge X_3);$$

$$C(X_1, X_2, X_3) = (\overline{X}_2 \wedge X_3) \vee (\overline{X}_3 \wedge X_1 \wedge X_2);$$

$$C(X_1, X_2, X_3) = (\overline{X}_2 \wedge X_3) \vee (\overline{X}_3 \wedge X_1 \wedge X_2)$$

A и B - СДНФ, C - не является СДНФ.

 Φ ормула A находится в **СКНФ** относительно списка переменных, если выполняются следующие условия:

- а) A находится в КН Φ (конъюнкция элементарных дизъюнкций);
- б) в ней нет двух одинаковых конъюнктивных членов (т.е. элементарных дизъюнкций);
- в) каждый конъюнктивный член (элементарная дизъюнкция) формулы Aявляется n-членной дизъюнкцией, причем на i-ом месте $(1 \le i \le n)$ этой дизъюнкции обязательно стоит либо переменная X_i , либо ее отрицание \overline{X}_i . **Пример.** Пусть (X_1, X_2, X_3) - список переменных.

$$A(X_1,X_2,X_3) = \overline{X}_1 \vee \overline{X}_2 \vee X_3; B(X_1,X_2,X_3) = (X_1 \vee X_2 \vee X_3) \wedge (X_1 \vee \overline{X}_2 \vee \overline{X}_3) \wedge (X_1 \vee \overline{X}_2 \vee X_3); C(X_1,X_2,X_3) = (\overline{X}_1 \vee X_3 \vee X_2) \wedge (\overline{X}_1);$$

A и B - СКНФ, C - не является СКНФ.