Evidence-Informed Policy

POLSCI 4SS3

Winter 2023

Policy

 Policy is an umbrella term to describe government programs or operations at different levels

• Examples:

- How long should form 57B be?
- Should we get help from private clinics to clear surgey backlogs?
- Should the education budget increase?
- When should the next federal election be held?

Evidence-Informed

- Of course we want to base policy on evidence!
- But there is no objective evidence when it comes to human behavior
- We say evidence-informed because the best we can do is try to prove ourselves wrong, but we cannot base policy on evidence the same way medicine does

Two approaches

- 1. Evidence as insight
- 2. Evidence as evaluation

How can you determine if a policy works?

Example

The lady tasting tea

A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first added to the cup

How do you evaluate this claim?

An experiment

- Suppose we have eight milk tea cups
- 4 milk first, 4 tea first
- We arrange them in random order
- Lady knows there are 4 of each, but not which ones

Results

	True Order		
Lady's Guesses	Tea First	Milk First	
Tea First	3	1	
Milk First	1	3	

- She gets it right \(6/8\) times
- What can we conclude?

Problem

- How does "being able to discriminate" look like?
- Same for policy, we don't know how the world where the policy works look like
- But we do know how a person without the ability to discriminate milk/tea order looks like
- This lets us make probability statements about this hypothetical world of no effect

A person with no ability

Count	Possible combinations	Total
0	XXXX	
1	XXXO, XXOX, XOXX, OXXX	
2	xxoo, xoxo, xoox, oxox, ooxx,	
	OXXO	
3	xooo, oxoo, ooxo, ooox	
4	0000	

A person with no ability

Count	Possible combinations	Total	
0	XXXX	\(1 \times 1 = 1\)	
1	XXXO, XXOX, XOXX, OXXX	\(4 \times 4 = 16\)	
2	xxoo, xoxo, xoox, oxox, ooxx, oxxo	\(6 \times 6 = 36\)	
3	x000, 0x00, 00x0, 000x	\(4 \times 4 = 16\)	
4	0000	\(1 \times 1 = 1\)	

p-values

- If the lady is not able to discriminate milk-tea order, the chance of observing 6/8 correct guesses or better is 24%
- We can translate this to general statements about policies or experiments
- If the null hypothesis of no effect is true...
- ... the **p-value** is the probability of observing a result *equal* or more extreme than what is originally observed
- Smaller p-values give more evidence **against** the null, which helps us make a case for the policy having an effect

Diagnosing hypothesis tests

- A convention in the social sciences is to claim that something with \(p < 0.05\) is statistically significant¹
- Committing to a significance level implies accepting that sometimes we will get \(p < 0.05\) by chance
- This is a false positive result
- A good answer strategy as a controlled false positive rate (more in the lab!)

Next Two Weeks Field Experiments

Focus on: Research design alternatives

Break time!

Lab