A sequence <nn> = <n, n, n, n, -- n, N said to be

i) monotonically increasing if no N

ii) monotonically decueously it white Mnti Exn x no N

montonic, if it is either monotonically increasing or montonically decreasing.

eg. <(-1) = <-1, 1, -1, 1, -. > isn't a monotonic sequence.

Honotonic Convergence theorem

A monotonic sequences of neal numbers is convergent iff

series with positive terms.

An infinite service son where an 70 f n.
sequence of partial sums of positive term service is

let Ean be an infinite series of positive terms of let <2n) be a sequence of its positive sums.

Now, sn = a1+a2+ -. + an denotes its nth partial sum.

9170 x 1=1,2,-. X

840, 5n-5n-1=(0,+02+-+0n)-(0,+02+-+0n-1)= 0n70

+n2< n2 F

represent à mue lettre je esneupez

Mow by monotonically convergence theorem, sequence of partial sum converges iff it's bounded above.

If it's not bounded, then it diverges.

Partial sums theorem for somes with positive terms

A series Ean with positive terms converges It sequence of particular partial sums <5n7 is bounded above.

Result positive term could son men converges for men server of diverges to too for r>=1

Proof: - care 1, 0 LTC 1

let < sn? be sequence of portial sum.

$$=\frac{1-\lambda}{1-\lambda_{11}}$$

$$=\frac{1-x}{1-x}-\frac{1-x}{x}$$

> < sn? is bounded above. :. Sequence of pourtial sum is increasing and

bounded above.
Then the senies $\frac{2}{N=0}$ r" converges for $0 \le r \le 1$.

Case 2 st=1, $\leq r^n = \leq r^n$ then, Sn=1. = evode bounded above. :. serves direnges to + 00

case 3:

Every term of <5n> after 1th term is greater than 1 $\sum_{N\geq 0} r^{N} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$

A cusu &u

> < sn> a not bounded

.: Oriven service divorges.

Thus, service & r converges for merc 2 & diverges for x > 1.

MHE INTEURAL TEST)

let Ean be a series with positive terms. Let of be a function that is possitive continuous & devicating on the interval (1,00) such that an=f(n). Them, this series & an and the integral , SHM) dx either both converge on both diverges

Note: The integral test also applies for it the integral test us satisfied of n2 M ton some tinds. N>1

(as convergence on direngence of intinds series is not affected by deleting finite numbers of testms.

so, we use vitegral.

[4] Ala) dx to lest for convengence or direcpence.

for $\beta = 1$, $\leq 3/n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ is called hastmonie.

Theorem.i- the communique of ps/ & divenger of \$61.

Gover: P>0, P # 1. continuous, positive & decuerating them, $f(n) = \frac{1}{N^2}$ is continuous, positive & decuerating them, $f(n) = \frac{1}{N^2}$ is on the interved $(1, \infty)$ on the interved $(1, \infty)$.

Then, $f(n) = \frac{1}{N^2}$ is divided $(1, \infty)$. $= \frac{1}{1+p} \left(\frac{N^{-p}}{b^{-1}} \right)$ $= \frac{1}{1+p} \left(\frac{N^{-p}}{b^{-1}} \right)$ $= \frac{1}{1+p} \left(\frac{N^{-p}}{b^{-1}} \right)$

129 F, 0 F = 9-16 with 6.00M F PL1 129 F PL1 1

Thus, son du converges it p>1 & diverges it ocpc1. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p>1 & diverge if 0 .Hence, by integral test, Case x: p=1them, $\sum_{n=1}^{\infty} \frac{1}{n^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ iet fln) = 1 the function is positive, continuous and decreasing in (1, 00) Int dx = lim (ln x) = lim (lnb - ln 1) = 00 : J. in du diverger. using, integral test $\frac{1}{2}$ $\frac{1}{2}$ diverges. care 3: if PEO if $\rho=0$, $\sum \frac{1}{N}\rho=\sum 1$ low Top = 1 of peos in the = 00 Thus, for p =0, lim 1/2 =0 By, not term test for divergence & top diverges for peop

2> For the convergence of given series. 沙荒坑 > In is a p-service with 1 < 1 (by p-series but) .. The given series diverges (i) \(\frac{1}{2} \) $=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+ =\sum_{n=1}^{\infty}\frac{1}{n^2}$ This is a p-services without first three terms with p>1 .. the given series converger (by p-series text). a) Use integral test to determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converge. fln) is confirmate positive integer + 10, also

fln) is confirmate positive integer + 10, also

fln) = -21 LO. let f(N) = 1/2+1 .. f(n) is decreasing f(x) ond $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ so, by integral lest, I f(n) dn and $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ Now, $\int_{a}^{a} \frac{1}{1} du = \lim_{b \to a} \int_{a}^{b} \frac{1}{1} du = \lim_{$ By integral but, service $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges.

(3 (12) (12) 2

= pr2+1) - 4n2 = -3n2+1) 2 CO # K70 Am) is continuous positive instegers & nra, also f(n) = (n2+1) 2 - 4n2(n2+1) Ju2+1)4 let $f(n) = \frac{2k}{(n^2+1)^2}$

.. f(n) is decreeasing of UZO. Now, (8 1/1) 2 dro

By integral test, secures \(\int \frac{n}{n-1} \) (n7+1)2 converges.

11) \ \sum_{n(1nn)2} let +(n) I n In n)2 that is continuous positive integer it is also, decreasing & 120. so, integral text , find dx and $\sum_{n=2}^{\infty} \frac{1}{n(1nn)^2}$ diverges. Jalln 2) = (m) 5 1 n(1n 2) 2 dr = Living [Thin] b = $\lim_{n\to\infty} \left[\frac{-1}{\ln b} + \frac{1}{\ln 2} \right]$ = 1 since, the integral 2 nilna) du converges, me conclude from the integral test that the service \(\sigma_{\infty} \frac{1}{n \sin_{\infty} \frac{1}{n \sigma_{\infty} \frac{1}{n \sigma_