

219482.SEQUENCE Apr 2004.ST25 SEQUENCE LISTING

<110> Nelson, Edward L. Nelson, Peter J.
<120> A VECTOR FOR POLYNUCLEOTIDE VACCINES
<130> 219482
<140> 09/242,202 <141> 1999-11-01
<150> PCT/US97/14306 <151> 1997-08-14
<150> 60/023,931 <151> 1996-08-14
<160> 37
<170> PatentIn version 3.1
<210> 1 <211> 453 <212> DNA <213> Artificial
<220> <223> Synthetic
<400> 1 ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg 60
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc 120
tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctctccgc 180
ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgtaggt atctcagttc 240
ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 300
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 360
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 420
gttcttgaag tggtggccta actacggcta cac 453
<210> 2 <211> 453 <212> DNA <213> Artificial
<220> <223> Synthetic
<400> 2 gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct 60
ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg 120
gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc 180

acacageeea getto	21948 ggagcg aacgacctac	32.SEQUENCE accgaactga	Apr 2004.ST	25 ccgtgagcat	240
_	gcttcc cgaagggaga				300
	gcgcac gagggagctt				360
_	ccacct ctgacttgag				420
	aaacgc cagcaacgcg				453
-33 3		J			
<210> 3 <211> 209					
<212> DNA <213> Artificia	al				
<220>					
<223> Synthetic	2				
<400> 3 gaattctttc ggact	ttttga aagtgatggt	ggtggccgaa	ggattcgaac	cttcgaagtc	60
gatgacggca gattt	tagagt ctgctccctt	tggccgctcg	ggaaccccac	cacgggtaat	120
gcttttactg gcctg	gctccc ttatcgggaa	gcggggcgca	tcatatcaaa	tgacgcgccg	180
ctgtaaagtg ttacg	gttgag aaagaattc				209
210 4					
<210> 4 <211> 209					
<212> DNA <213> Artificia	al				
<220> <223> Synthetic	C				
<400> 4	cgtaac actttacago	nacacatcat	ttaatataat	acaccccact	60
	caggcc agtaaaagca				120
	aaatct gccgtcatcg				180
		acceguagg	ccegaaceec	Lececededa	209
ccaccacttt caaa	agtccg aaagaattc				203
<210> 5 <211> 6					
<212> DNA <213> Artificia	al				
<220>		j."			
<223> Synthetic	С				
<400> 5 aataaa					6
<210> 6 <211> 6					
<212> DNA <213> Artificia	al	_ =			

<220> <223>	Synthetic	
<400> attaaa	6	6
<210> <211> <212> <213>	7 6 DNA Artificial	
<220> <223>	Synthetic	
<400> agtaaa	7 a	6
<210> <211> <212> <213>	8 6 DNA Artificial	
<220> <223>	Synthetic	
<400> aagaac	8	6
<210> <211> <212> <213>	9 6 DNA Artificial	
<220> <223>	Synthetic	
<400> aataca	9 a	6
<210> <211> <212> <213>	10 227 DNA Artificial	
<220> <223>	Synthetic	
<400> gccttaa	10 naggg ccatatggtg agtggatccc ttgaccccag gcggggatgg ggagacctgt	60
agtcaga	gagcc cccgggcagc acaggccaat gcccgtcctt cccctgcagg atgagtagtg	120
agtgcc	ttctc ctggccctgg aagttgccac tccagtgccc accagccttg tcctaataaa	180
attaag	gttgc atcattttgt ctgactaggt gtcctctata atattat	227

<210> 11

<211> <212> <213>	227 DNA Arti	ficial	213 10				
<220> <223>	Synt	hetic					
<400> ataatat	11 ttat	agaggacacc	tagtcagaac	aaatgatgca	acttaatttt	attaggacaa	60
ggctggt	tggg	cactggagtg	gcaacttcca	gggccaggag	aggcactcac	tactcatcct	120
gcagggg	gaag	gacgggcatt	ggcctgtgct	gcccgggggc	tctgactaca	ggtctcccc	180
atccccg	gcct	ggggtcaagg	catccactca	ccatatggcc	cttaagg		227
<210> <211> <212> <213>	12 252 DNA Arti	ficial					
<220> <223>	Synt	hetic					
<400> cctcggt	12 tacc	tgccatggcg	cggattcttt	atcactgata	agttggtgga	catattatgt	60
ttatcaç	gtga	taaagtgtca	agcatgacaa	agttgcagcc	gaatacagtg	atccgtgccg	120
gccctg	gact	gttgaacgag	gtcggcgtag	acggtctgac	gacacgcaaa	ctggcggaac	180
ggttggg	gggt	gcagcagccg	gcgctttact	ggcacttcag	gaacaagcgg	gcgccttaag	240
ggccata	atgc	cg					252
<210> <211> <212> <213>	13 35 DNA Arti	ificial		•			
<220> <223>	Synt	chetic					
<400> cctcgg1	13 tacc	tgccaccatg	gcgcggattc	tttat			35
<210> <211> <212> <213>	14 38 DNA Arti	ificial					
<220> <223>	Synt	chetic					
<400> cggcata	14 atgg	ccttaaggcg	cccgcttgtt	cctgaagt			38
<210> <211>	15 228						

Page 4

219482.SEQUENCE Apr 2004.ST25	
<212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 15 gccttaaggg ccatatggtg agtggatgcc ttgaccccag gcggggatgg gggagacctg	60
tagtcagagć ccccgggcag cacaggccaa tgcccgtcct tcccctgcag gatgagtagt	120
gagtgcctct cctggccctg gaagttgcca ctccagtgcc caccagcctt gtcctaataa	180
aattaagttg catcattttg tctgactagg tgtcctctat aatattat	228
<210> 16 <211> 1425 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 16 tgccatggcg cggattcttt atcactgata agttggtgga catattatgt ttatcagtga	60
taaagtgtca agcatgacaa agttgcagcc gaatacagtg atccgtgccg gccctggact	120
gttgaacgag gtcggcgtag acggtctgac gacacgcaaa ctggcggaac ggttgggggt	180
gcagcagccg gcgctttact ggcacttcag gaacaagcgg gcgccttaag ggccatatgg	240
tgagtggatg ccttgacccc aggcggggat gggggagacc tgtagtcaga gcccccgggc	300
agcacaggcc aatgcccgtc cttcccctgc agtgagtagt gactgcccgg gtgggatccc	360
tgtgacccct ccccagtgcc tctcctggcc ctggaagttg ccactccagt gcccaccagc	420
cttgtcctaa taaaattaag ttgcatcatt ttgtctgact aggtgtcctc tataatatta	480
taagcttgat atcgaattct ttctcaacgt aacactttac agcggcgcgt catttgatat	540
gatgcgcccc gcttcccgat aagggagcag gccagtaaaa gcattacccg tggtggggtt	600
cccgagcggc caaagggagc agactctaaa tctgccgtca tcgacttcga aggttcgaat	660
ccttcccca ccaccatcac tttcaaaagt ccgaaagaat tcctgcagcc cgtgtagccg	720
tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc	780
ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga	840
cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc	900
agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagca ttgagaaagc	960
gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca	1020
ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg	1080
tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta	1140

tggaaaaacg ccagcaacgc	21948	2.SEQUENCE	Apr 2004.ST	25 tgagagaga	1200
gtgagggaga gacagagact					1260
					1320
gcaatttcac ttatgatacc					1380
gatgcccctc aactggccct				cctgcagagg	1425
atcaagacag cacgtggacc	tcgcacagcc	tctccacag	grace		1423
<210> 17 <211> 719 <212> DNA <213> Artificial					
<220> <223> Synthetic				-	
<400> 17 atgagcaagg gcgaggaact	gttcactggc	gtggtcccaa	ttctcgtgga	actggatggc	60
gatgtgaatg ggcacaaatt	ttctgtcagc	ggagagggtg	aaggtgatgc	cacatacgga	120
aagctcaccc tgaaattcat	ctgcaccact	ggaaagctcc	ctgtgccatg	gccaacactg	180
gtcactacct tcacctatgg	cgtgcagtgc	ttttccagat	acccagacca	tatgaacgag	240
catgactttt tcaagagcgc	catgcccgag	ggctatgtgc	aggagagaac	catctttttc	300
aaagatgacg ggaactacaa	gacccgcgct	gaagtcaagt	tcgaaggtga	caccctggtg	360
aatagaatcg agttgaaggg	cattgacttt	aaggaagatg	gaaacattct	cggccacaag	420
ctggaataca actataactc	ccacaatgtg	tacatcatgg	ccgacaagca	aaagaatggc	480
atcaaggtca acttcaagat	cagacacaac	attgaggatg	gatccgtgca	gctggccgac	540
cattatcaac agaacactcc	aatcggcgac	cgccctgtgc	tcctcccaga	caacaattac	600
ctgtccaccc agtctgccct	gtctaaagat	cccaacgaaa	agagagacca	catggtcctg	660
ctggagtttg tgaccgctgc	tgggatcaca	catggcatgg	acgagctgta	caagtgagc	719
<210> 18 <211> 1911 <212> DNA <213> Artificial			·		
<220> <223> Synthetic					
<400> 18 tatgagcaag ggcgaggaac	tgttcactgg	cgtggtccca	attctcgtgg	aactggatgg	60
cgatgtgaat gggcacaaat	tttctgtcag	cggagagggt	gaaggtgatg	ccacatacgg	120
aaagctcacc ctgaaattca	tctgcaccac	tggaaagctc	cctgtgccat	ggccaacact	180
ggtcactacc ttcacctatg	gcgtgcagtg	cttttccaga	tacccagacc	atatgaagca	240
gcatgacttt ttcaagagcg	ccatgcccga	gggctatgtg Page	caggagagaa 6	ccatctttt	300

-

caaagatgac	gggaactaca	agacccgcgc	tgaagtcaag	ttcgaaggtg	acaccctggt	360
gaatagaatc	gagttgaagg	gcattgactt	taaggaagat	ggaaacattc	tcggccacaa	420
gctggaatac	aactataact	cccacaatgt	gtacatcatg	gccgacaagc	aaaagaatgg	480
catcaaggtc	aacttcaaga	tcagacacaa	cattgaggat	ggatccgtgc	agctggccga	540
ccattatcaa	cagaacactc	caatcggcga	cggccctgtg	ctcctcccag	acaaccatta	600
cctgtccacc	cagtctgccc	gtctaaagat	cccaacgaaa	agagagacca	catggtcctg	660
ctggagtttg	tgaccgctgc	tgggatcaca	catggcatgg	acgagctgta	caagtgagcc	720
atatggtgag	tggatgcctt	gaccccaggc	ggggatgggg	gagacctgta	gtcagagccc	780
ccgggcagca	caggccaatg	cccgtccttc	ccctgcagtg	agtagtgact	gcccgggtgg	840
gatccctgtg	acccctcccc	agtgcctctc	ctggccctgg	aagttgccac	tccagtgccc	900
accagccttg	tcctaataaa	attaagttgc	atcattttgt	ctgactaggt	gtcctctata	960
atattataag	cttgatatcg	aattctttct	caacgtaaca	ctttacagcg	gcgcgtcatt	1020
tgatatgatg	cgccccgctt	cccgataagg	gagcaggcca	gtaaaagcat	tacccgtggt	1080
ggggttcccg	agcggccaaa	gggagcagac	tctaaatctg	ccgtcatcga	cttcgaaggt	1140
tcgaatcctt	ccccaccac	catcactttc	aaaagtccga.	aagaattcct	gcagcccgtg	1200
tagccgtagt	taggccacca	cttcaagaac	tctgtagcac	cgcctacata	cctcgctctg	1260
ctaatcctgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgtcttac	cgggttggac	1320
tcaagacgat	agttaccgga	taaggcgcag	cggtcgggct	gaacgggggg	ttcgtgcaca	1380
cagcccagct	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagcattga	1440
gaaagcgcca	cgcttcccga	agggagaaag	gcggacaggt	atccggtaag	cggcagggtc	1500
ggaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	cctggtatct	ttatagtcct	1560
gtcgggtttc	gccacctctg	acttgagcgt	cgatttttgt	gatgctcgtc	aggggggcgg	1620
agcctatgga	aaaacgccag	caacgcggcc	gggggatccg	gagagctcac	tctagatgag	1680
agagcagtga	gggagagaca	gagactcgaa	tttccggagc	tatttcagtt	ttcttttccg	1740
ttttgtgcaa	tttcacttat	gataccggcc	aatgcttggt	tgctattttg	gaaactcccc	1800
ttaggggatg	cccctcaact	ggccctataa	agggccagcc	tgagctgcag	aggattcctg	1860
cagaggatca	agacagcacg	tggacctcgc	acagcctctc	ccacaggtac	С	1911

<210> 19 <211> 69 <212> PRT <213> Artificial

<220> <223> Synthetic

<400> 19

Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly 1 5 10 15

Ala Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu 20 25 30

Asp Asp Lys Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser 40 45

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val 50 60

Val Phe Gly Ile Leu

20 <210>

287

<211><212> PRT

Artificial <213>

<220>

Synthetic <223>

<400>

Pro Ala Pro Gly Ala Gly Gly Met Val His His Arg His Arg Ser Ser 1 10 15

Ser Thr Arg Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser

Glu Glu Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly 35 40 45

Ser Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu 50 60

Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp 65 70 75 80

Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu 85 90 95

Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro 100 105 110

Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly 115 120 125 Page 8

Ala Thr Leu Glu Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val 130 135 140

Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr 145 150 155 160

Leu Thr Pro Gln Gly Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln
165 170 175

Pro Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro 180 185 190

Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro Lys Leu Ser Pro 195 200 205

Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val 210 215 220

Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala Ala Pro Gln Pro 225 230 235 240

His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp Asn Leu Tyr Tyr Trp 245 250 255

Asp Asp Pro Pro Glu Arg Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr 260 265 270

Pro Thr Ala Glu Asn Pro Glu Tyr Leu Gly Leu Asp Val Pro Val 275 280 285

<210> 21

<211> 22 <212> PR

<212> PRT <213> Artificial

<220>

<223> Synthetic

<400> 21

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Leu Gly Val
1 5 10 15

val Phe Gly Ile Leu Ile 20

<210> 22 <211> 2125

Page 9

219482.SEQUENCE Apr 2004.ST25 **Artificial** <213> <220> <223> Synthetic <400> gccaccatgg cccctgacct ctcctacatg cccatctgga agtttccaga tgaggagggc gcatgccagc cttgccccat caactgcacc cactcctgtg tggacctgga tgacaagggc tgccccgccg agcagagac cagccctctg acgtccatca tctctgcggt ggttggcatt

60 120

180

240 ctgctggtcg tggtcttggg ggtggtcttt gggatcctca tcaagcgacg gcagcagaag 300 atcacatgtc cagaccctgc cccgggcgct gggggcatgg tccaccacag gcaccgcagc tcatctacca ggagtggcgg tggggacctg acactagggc tggagccctc tgaagaggag 360 420 gccccaggt ctccactggc accctccgaa ggggctggct ccgatgtatt tgatggtgac 480 ctgggaatgg gggcagccaa ggggctgcaa agcctcccca cacatgaccc cagccctcta 540 caqcqqtaca qtqaqqaccc cacaqtaccc ctgccctctg agactgatgg ctacgttgcc 600 cccctgacct gcagccccca gcctgaatat gtgaaccagc cagatgttcg gccccagccc 660 ccttcgcccc gagagggccc tctgcctgct gcccgacctg ctggtgccac tctggaaagg 720 cccaagactc tctccccagg gaagaatggg gtcgtcaaag acgtttttgc ctttgggggt 780 gccgtggaga accccgagac ttgacacccc agggaggagc tgcccctcag ccccaccctc 840 ctcctqcctt caqcccaqcc ttcgacaacc tctattactg ggaccaggac ccaccagagc ggggggctcc acccagcacc ttcaaaggga cacctacggc agagaaccca gagtacctgg 900 960 gtctggacgt gccagtgtga agccttaagg gccatatggt gagtggatgc cttgacccca 1020 ggcggggatg ggggagacct gtagtcagag cccccgggca gcacaggcca atgcccgtcc ttcccctgca gtgagtagtg actgcccggg tgggatccct gtgacccctc cccagtgcct 1080 1140 ctcctggccc tggaagttgc cactccagtg cccaccagcc ttgtcctaat aaaattaagt 1200 tgcatcattt tgtctgacta ggtgtcctct ataatattat aagcttgata tcgaattctt 1260 tctcaacgta acactttaca gcggcgcgtc atttgatatg atgcgccccg cttcccgata agggagcagg ccagtaaaag cattacccgt ggtggggttc ccgagcggcc aaagggagca 1320 gactctaaat ctgccgtcat cgacttcgaa ggttcgaatc cttcccccac caccatcact ttcaaaagtc cgaaagaatt cctgcagccc gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga

1380 1440 1500 1560 1620 1680 1740 aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt

Page 10

ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag	1800
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg	1860
gccgggggat ccggagagct cactctagat gagagagcag tgagggagag acagagactc	1920
gaatttccgg agctatttca gttttctttt ccgttttgtg caatttcact tatgataccg	1980
gccaatgctt ggttgctatt ttggaaactc cccttagggg atgcccctca actggcccta	2040
taaagggcca gcctgagctg cagaggattc ctgcagagga tcaagacagc acgtggacct	2100
cgcacagcct ctcccacagg tacct	2125
<210> 23 <211> 27 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 23 gtctgccacc atggcctact cccctgc	27
<210> 24 <211> 36 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 24 ttctttggtg acctacctct tcggaattgc cgagtc	36
<210> 25 <211> 1242 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 25 atggaggagc cgcagtcaga tcctagcgtc gagccccctc tgagtcagga aacattttca	60
gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc ccaagcaatg	120
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca	180
gatgaagctc ccagaatgcc agaggctgct ccccgcgtgg cccctgcacc agcagctcct	240
acaccggcgg cccctgcacc agccccctcc tggcccctgt catcttctgt cccttcccag	300
aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag	360
tctgccacca tggcctactc ccctgcgtct gtgacttgca cgtactcccc tgccctcaac	420

	2194	82.SEQUENCE	Apr 2004.ST	2.5	
aagatgtttt gcca	actggc caagacctg	c cctgtgcagc	tgtgggttga	ttccacaccc	480
ccgcccggca cccg	gcgtccg cgccatggc	c atctacaagc	agtcacagca	catgacggag	540
gttgtgaggc gctg	occcca ccatgagcg	c tgctcagata	gcgatggtct	ggcccctcct	600
cagcgtctta tccg	gagtgga aggaaattt	g cgtgtggagt	atttggatga	cagaaacact	660
tttcgacata gtgt	ggtggt gccctatga	g ccgcctgagg	ttggctctga	ctgtaccacc	720
atccactaca acta	catgtg taacagttc	c tgcatgggcg	gcatgaaccg	gaggcccatc	780
ctcaccatca tcac	actgga agactccag	t ggtaatctac	tgggacggaa	cagctttgag	840
gtgcgtgttt gtgc	ctgtcc tgggagaga	c cggcgcacag	aggaagagaa	tctccgcaag	900
aaaggggagc ctca	accacga gctgccccc	a gggagcacta	agcgagcact	gcccaacaac	960
accagctcct ctcc	ccagcc aaagaagaa	a ccactggatg	gagaatattt	cacccttcag	1020
atccgtgggc gtga	agcgctt cgagatgtt	c tttggtgacc	tacctcttcg	gaattgccga	1080
gtcttccgag agct	gaatga ggccttgga	a ctcaaggatg	cccaggctgg	gaaggagcca	1140
ggggggagca gggc	tcactc cagccacct	g aagtccaaaa	agggtcagtc	tacctcccgc	1200
cataaaaaac tcat	gttcaa gacagaagg	g cctgactcag	ac		1242
<210> 26 <211> 608 <212> DNA <213> Artifici <220> <223> Syntheti					
<400> 26 ctcgggcgc gttg	gctggcg tttttccat	a ggctccgccc	ccctgacgag	catcacaaaa	60
	cagagg tggcgaaac				120
	cctcgtg cgctctcct				180
	ttcggga agcgtggcg				240
	gttcgc tccaagctg				300
accgctgcgc ctta	atccggt aactatcgt	c ttgagtccaa	cccggtaaga	cacgacttat	360
cgccactggc agca	agccact ggtaacagg	a ttagcagagc	gaggtatgta	ggcggtgcta	420
cagagttctt gaag	gtggtgg cctaactac	g gctacactag	aaggacagta	tttggtatct	480
gcgctctgct gaag	gccagtt accttcgga	a aaagagttgg	tagctcttga	tccggcaaac	540
aaaccaccgc tggt	tagcggt ggtttttt	g tttgcaagca	gcagattacg	cgcagaaaaa	600
aaggatct					608
<210> 27					

219482.SEQUENCE Apr 2004.ST25	
<212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 27 ggtacctgcc accatggcgc ggattcttta tcactgataa gttggtggac atattatgtt	60
tatcagtgat aaagtgtcaa gcatgacaaa gttgcagccg aatacagtga tccgtgccgg	120
ccctggactg ttgaacgagg tcggcgtaga cggtctgacg acacgcaaac tggcggaacg	180
gttgggggtg cagcagccgg cgctttactg gcacttcagg aacaagcggg cgccttaagg	240
gccatatggt gagtggatgc cttgacccca ggcggggatg ggggagacct gtagtcagag	300
cccccgggca gcacaggcca atgcccgtcc ttcccctgca ggatgagtag tgagtgcctc	360
tcctggccct ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaagtt	420
gcatcatttt gtctgactag gtgtcctcta taatattata agcttgatat cgaattcttt	480
cggacttttg aaagtgatgg tggtggggga aggattcgaa ccttcgaagt cgatgacggc	540
agatttagag tctgctccct ttggccgctc gggaacccca ccacgggtaa tgcttttact	600
ggcctgctcc cttatcggga agcggggcgc atcatatcaa atgacgcgcc gctgtaaagt	660
gttacgttga gaaagaattc ctgcagcccg ccgcgttgct ggcgtttttc cataggctcc	720
gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag	780
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga	840
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc	900
aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg	960
tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt	1020
ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca	1080
gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca	1140
ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag	1200
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca	1260
agcagcagat tacgcgcaga aaaaaaggat ctgggggatc cggagagctc actctagatg	1320
agagagcagt gagggagaga cagagactcg aatttccgga gctatttcag ttttctttc	1380
cgttttgtgc aatttcactt atgataccgg ccaatgcttg gttgctattt tggaaactcc	1440
ccttagggga tgcccctcaa ctggccctat aaagggccag cctgagctgc agaggattcc	1500
tgcagaggat caagacagca cgtggacctc gcacagcctc tcccaca	1547

<210> 28 <211> 1807 <212> DNA

Artificial <213>

<220>

<223> Synthetic

<400>

ggtacctgcc accatggcgc ggattcttta tcactgataa gttggtggac atattatgtt 60 120 tatcagtgat aaagtgtcaa gcatgacaaa gttgcagccg aatacagtga tccgtgccgg 180 ccctggactg ttgaacgagg tcggcgtaga cggtctgacg acacgcaaac tggcggaacg gttgggggtg cagcagccgg cgctttactg gcacttcagg aacaagcggg cgccttaagg 240 300 qccatatggt gagtggatgc cttgacccca ggcggggatg ggggagacct gtagtcagag 360 ccccgggca gcacaggcca atgcccgtcc ttcccctgca ggatgagtag tgagtgcctc 420 tcctgqccct ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaagtt gcatcatttt gtctgactag gtgtcctcta taatattata agcttgatat cgaattcttt 480 540 cggacttttg aaagtgatgg tggtggggga aggattcgaa ccttcgaagt cgatgacggc 600 agatttagag tctgctccct ttggccgctc gggaacccca ccacgggtaa tgcttttact 660 ggcctgctcc cttatcggga agcggggcgc atcatatcaa atgacgcgcc gctgtaaagt 720 gttacgttga gaaagaattc ctgcagcccg ccgcgttgct ggcgtttttc cataggctcc 780 gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 840 gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 900 ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 960 aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 1020 tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 1080 1140 gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 1200 ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 1260 ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctggggggatc cggagagctc ccaacgcgtt 1320 1380 ggatgcatgg atgagggaaa ggaggtaaga tctgtaatga ataagcagga actttgaaga 1440 ctcagtgact cagtgagtaa taaagactca gtgacttctg atcctgtcct aactgccact 1500 ccttgttgtc ccaagaaagc ggcttcctgc tctctgagga ggaccccttc cctggaaggt 1560 aaaactaagg atgtcagcag agaaattttt ccaccattgg tgcttggtca aagaggaaac 1620 tgatgagctc actctagatg agagagcagt gagggagaga cagagactcg aatttccgga 1680 gctatttcag ttttctttc cgttttgtgc aatttcactt atgataccgg ccaatgcttg 1740 gttgctattt tggaaactcc ccttagggga tgcccctcaa ctggccctat aaagggccag Page 14

		•	•		
cctgagctgc agaggattcc	tgcagaggat	caagacagca	cgtggacctc	gcacagcctc	1800
tcccaca					1807
<210> 29 <211> 2308 <212> DNA <213> Artificial					
<220> <223> Synthetic					
<400> 29 ggtacctgcc accatggcga	agggcgagga	actgttcact	ggcgtggtcc	caattctcgt	60
ggaactggat ggcgatgtga	atgggcacaa	attttctgtc	agcggagagg	gtgaaggtga	120
tgccacatac ggaaagctca	ccctgaaatt	catctgcacc	actggaaagc	tccctgtgcc	180
atggccaaca ctggtcacta	ccttcaccta	tggcgtgcag	tgcttttcca	gatacccaga	240
ccatatgaag cagcatgact	ttttcaagag	cgccatgccc	gagggctatg	tgcaggagag	300
aaccatcttt ttcaaagatg	acgggaacta	caagacccgc	gctgaagtca	agttcgaagg	360
tgacaccctg gtgaatagaa	tcgagttgaa	gggcattgac	tttaaggaag	atggaaacat	420
tctcggccac aagctggaat	acaactataa	ctcccacaat	gtgtacatca	tggccgacaa	480
gcaaaagaat ggcatcaagg	tcaacttcaa	gatcagacac	aacattgagg	atggatccgt	540
gcagctggcc gaccattatc	aacagaacac	tccaatcggc	gacggccctg	tgctcctccc	600
agacaaccat tacctgtcca	cccagtctgc	cctgtctaaa	gatcccaacg	aaaagagaga	660
ccacatggtc ctgctggagt	ttgtgaccgc	tgctgggatc	acacatggca	tggacgagct	720
gtacaagtga gcgccttaag	ggccatatgg	tgagtggatg	ccttgacccc	aggcggggat	780
gggggagacc tgtagtcaga	gcccccgggc	agcacaggcc	aatgcccgtc	cttcccctgc	840
aggatgagta gtgagtgcct	ctcctggccc	tggaagttgc	cactccagtg	cccaccagcc	900
ttgtcctaat aaaattaagt	tgcatcattt	tgtctgacta	ggtgtcctct	ataatattat	960
aagcttgata tcgaattctt	tcggactttt	gaaagtgatg	gtggtggggg	aaggattcga	1020
accttcgaag tcgatgacgg	cagatttaga	gtctgctccc	tttggccgct	cgggaacccc	1080
accacgggta atgcttttac	tggcctgctc	ccttatcggg	aagcggggcg	catcatatca	1140
aatgacgcgc cgctgtaaag	tgttacgttg	agaaagaatt	cctgcagccc	gccgcgttgc	1200
tggcgttttt ccataggctc	cgccccctg	acgagcatca	caaaaatcga	cgctcaagtc	1260
agaggtggcg aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	1320
tcgtgcgctc tcctgttccg	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	1380
cgggaagcgt ggcgctttct	caatgctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	1440

219482.SEQUENCE Apr 2004.ST25 ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat	1500
ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag	
ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt	
ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc	
cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta	
gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctgggggat	
ccggagagct cccaacgcgt tggatgcatg gatgagggaa aggaggtaag atctgtaatg	
aataagcagg aactttgaag actcagtgac tcagtgagta ataaagactc agtgacttct	
gatcctgtcc taactgccac tccttgttgt cccaagaaag cggcttcctg ctctctgagg	1980
aggacccctt ccctggaagg taaaactaag gatgtcagca gagaaatttt tccaccattg	2040
gtgcttggtc aaagaggaaa ctgatgagct cactctagat gagagagcag tgagggagag	2100
acagagactc gaatttccgg agctatttca gttttctttt ccgttttgtg caatttcact	2160
tatgataccg gccaatgctt ggttgctatt ttggaaactc cccttagggg atgcccctca	2220
actggcccta taaagggcca gcctgagctg cagaggattc ctgcagagga tcaagacagc	2280
acgtggacct cgcacagcct ctcccaca	2308
<210> 30 <211> 12 <212> DNA <213> Artificial <220> <223> Synthetic	
<400> 30 gccaccatgg cc	12
<210> 31 <211> 11 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 31 gccttaaggg c	11
<210> 32 <211> 14 <212> DNA/RNA <213> Artificial	
<220> <223> Synthetic	
<400> 32	

14

23

<400> 33 gccaccatgg cccggtggta ccg

<210> 34 <211> 22 <212> DNA <213> Artificial <220> <223> Synthetic <400> 34

gccttaaggg ccggaattcc cg 22

<210> 35 <211> 1210 <212> PRT <213> Homo sapiens <400> 35

gcccgccrcc augg

33 23

DNA

Artificial

Synthetic

<210>

<211> <212>

<213> <220> <223>

Met Arg Pro Ser Gly Thr Ala Gly Ala Ala Leu Leu Ala Leu Leu Ala 1 5 10 15

Ala Leu Cys Pro Ala Ser Arg Ala Leu Glu Glu Lys Lys Val Cys Gln 20 25 30

Gly Thr Ser Asn Lys Leu Thr Gln Leu Gly Thr Phe Glu Asp His Phe 35 40 45

Leu Ser Leu Gln Arg Met Phe Asn Asn Cys Glu Val Val Leu Gly Asn 50 55 60

Leu Glu Ile Thr Tyr Val Gln Arg Asn Tyr Asp Leu Ser Phe Leu Lys 65 70 75 80

Thr Ile Gln Glu Val Ala Gly Tyr Val Leu Ile Ala Leu Asn Thr Val 85 90 95

Glu Arg Ile Pro Leu Glu Asn Leu Gln Ile Ile Arg Gly Asn Met Tyr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn Page 17 Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Gln Glu Ile Leu 130 140 His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu 145 150 155 160 Ser Ile Gln Trp Arg Asp Ile Val Ser Ser Asp Phe Leu Ser Asn Met 165 170 175 Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro 180 185 190 Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gln
195 200 205 Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg 210 215 220 Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys Ala Ala Gly Cys 230 235 240 Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg Lys Phe Arg Asp 245 250 255 Glu Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met Leu Tyr Asn Pro 260 265 270 Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys Tyr Ser Phe Gly 275 280 285 Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val Val Thr Asp His 290 295 300 Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu 305 310 315 320 Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro Cys Arg Lys Val Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn 340 345 350Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp 355 360 365

219482.SEQUENCE Apr 2004.ST25 Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr 370 375 380 Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu 385 390 395 400 Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn Arg Thr Asp 405 410 415 Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg Thr Lys Gln 420 425 430 His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr Ser Leu 435 440 445 Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile Ile Ser 450 460 Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys Lys Leu 465 470 475 480 Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg Gly Glu 485 490 495 Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu Cys Ser Pro 500 505 510 Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser Cys Arg Asn 515 520 525 Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Asn Leu Leu Glu Gly 530 540 Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln Cys His Pro 545 550 555 560 Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly Arg Gly Pro 565 570 575 Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro His Cys Val 580 585 590 Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr Leu Val Trp 595 600 605 Lys Tyr Ala Asp Ala Gly His Val Cys His Leu Cys His Pro Asn Cys 610 620

Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu Gly Cys Pro Thr Asn Gly 625 630 635 640 Pro Lys Ile Pro Ser Ile Ala Thr Gly Met Val Gly Ala Leu Leu Leu 645 650 655 Leu Leu Val Val Ala Leu Gly Ile Gly Leu Phe Met Arg Arg Arg His 660 665 670 Ile Val Arg Lys Arg Thr Leu Arg Arg Leu Leu Gln Glu Arg Glu Leu 675 680 685 Val Glu Pro Leu Thr Pro Ser Gly Glu Ala Pro Asn Gln Ala Leu Leu 690 695 700 Arg Ile Leu Lys Glu Thr Glu Phe Lys Lys Ile Lys Val Leu Gly Ser 705 710 715 720 Gly Ala Phe Gly Thr Val Tyr Lys Gly Leu Trp Ile Pro Glu Gly Glu 725 730 735 Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu Arg Glu Ala Thr Ser 740 745 750 Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Ser 755 760 765 Val Asp Asn Pro His Val Cys Arg Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Ile Thr Gln Leu Met Pro Phe Gly Cys Leu Leu Asp 785 790 795 800 Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser Gln Tyr Leu Leu Asn 805 810 815 Trp Cys Val Gln Ile Ala Lys Gly Met Asn Tyr Leu Glu Asp Arg Arg 820 825 830 Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Thr Pro 835 840 845 Gln His Val Lys Ile Thr Asp Phe Gly Leu Ala Lys Leu Leu Gly Ala 850 855 860 Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys Val Pro Ile Lys Trp 865 870 875 880 Page 20

- Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr Thr His Gln Ser Asp 885 890 895
- val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ser 900 910
- Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile Ser Ser Ile Leu Glu 915 920 925
- Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr 930 935 940
- Met Ile Met Val Lys Cys Trp Met Ile Asp Ala Asp Ser Arg Pro Lys 945 950 955 960
- Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met Ala Arg Asp Pro Gln 965 970 975
- Arg Tyr Leu Val Ile Gln Gly Asp Glu Arg Met His Leu Pro Ser Pro 980 985 990
- Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp Glu Glu Asp Met Asp 995 1000 1005
- Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro Gln Gln Gly Phe 1010 1015 1020
- Phe Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu Ser Ser Leu 1025 1030 1035
- Ser Ala Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp Arg Asn 1040 1045 1050
- Gly Leu Gln Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Gln Arg 1055 1060 1065
- Tyr Ser Ser Asp Pro Thr Gly Ala Leu Thr Glu Asp Ser Ile Asp 1070 1080
- Asp Thr Phe Leu Pro Val Pro Glu Tyr Ile Asn Gln Ser Val Pro 1085 1090 1095
- Lys Arg Pro Ala Gly Ser Val Gln Asn Pro Val Tyr His Asn Gln 1100 1110
- Pro Leu Asn Pro Ala Pro Ser Arg Asp Pro His Tyr Gln Asp Pro Page 21

His Ser Thr Ala Val Gly Asn Pro Glu Tyr Leu Asn Thr Val Gln 1130 1135 1140

Pro Thr Cys Val Asn Ser Thr Phe Asp Ser Pro Ala His Trp Ala 1145 1150 1155

Gln Lys Gly Ser His Gln Ile Ser Leu Asp Asn Pro Asp Tyr Gln 1160 1165 1170

Gln Asp Phe Phe Pro Lys Glu Ala Lys Pro Asn Gly Ile Phe Lys 1175 1180 1185

Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val Ala Pro Gln 1190 1200

Ser Ser Glu Phe Ile Gly Ala 1205 1210

<210> 36

<211> 1255

<212> PRT

<213> Homo sapiens

<400> 36

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Leu Leu 10. 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 110

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro Page 22 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 155 160 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 220 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225 230 235 Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250 255 His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 260 265 270 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300 Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320 Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335 Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu 340 345 350 val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys 355 360 365

219482.SEQUENCE Apr 2004.ST25 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp 370 375 380 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe 385 390 395 400 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro 405 410 415Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg 420 425 430 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu 435 440 445 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly 450 460 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val 465 470 475 480 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr 485 490 495 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
500 505 510 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys 515 520 525 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys 530 540 Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys 545 550 555 560 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys 565 570 575 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp 580 585 590 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu 595 600 605 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln 610 615 620

Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys 635 640 Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser 645 650 655 Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly 660 665 670 Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg 675 680 685 Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly 690 700 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu 705 710 715 720 Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys 725 730 735 Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile 740 745 750 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu 755 760 765 Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg 770 775 780 Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu 785 790 795 800 Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg 805 810 815 Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly 820 825 830 Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala 835 840 845 Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe 850 860 Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp 865 870 875 880 Page 25

- Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg 885 890 895
- Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val 900 905 910
- Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala 915 920 925
- Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro 930 935 940
- Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met 945 950 955 960
- Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe 965 970 975
- Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu 980 985 990
- Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu 995 1000 1005
- Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr 1010 1015 1020
- Leu Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly 1025 1030 1035
- Ala Gly Gly Met Val His His Arg His Arg Ser Ser Thr Arg 1040 1045 1050
- Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu 1055 1060 1065
- Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser 1070 1075 1080
- Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu 1085 1090 1095
- Gln Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser 1100 1105 1110
- Glu Asp Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val Page 26

Ala Pro Leu Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro 1130 1135 1140

Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro 1145 1150 1155

Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Ala Lys Thr Leu 1160 1165 1170

Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly 1175 1180 1185

Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala 1190 1200

Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp 1205 1210 1215

Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala Pro 1220 1230

Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr 1235 1240 1245

Leu Gly Leu Asp Val Pro Val 1250 1255

<210> 37

<211> 1260

<212> PRT

<213> Rattus norvegicus

<400> 37

Met Ile Ile Met Glu Leu Ala Ala Trp Cys Arg Trp Gly Phe Leu Leu $10 \ 15$

Ala Leu Leu Pro Pro Gly Ile Ala Gly Thr Gln Val Cys Thr Gly Thr 20 25 30

Asp Met Lys Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met 35 40 45

Leu Arg His Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu 50 60

Leu Thr Tyr Val Pro Ala Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Page 27 70

65

Gln Glu Val Gln Gly Tyr Met Leu Ile Ala His Asn Gln Val Lys Arg 85 90 95 Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu 100 105 110 Asp Lys Tyr Ala Leu Ala Val Leu Asp Asn Arg Asp Pro Gln Asp Asn 115 120 125 Val Ala Ala Ser Thr Pro Gly Arg Thr Pro Glu Gly Leu Arg Glu Leu 130 135 140 Gln Leu Arg Ser Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Arg 145 150 155 160 Gly Asn Pro Gln Leu Cys Tyr Gln Asp Met Val Leu Trp Lys Asp Val 165 170 175 Phe Arg Lys Asn Asn Gln Leu Ala Pro Val Asp Ile Asp Thr Asn Arg 180 185 190 Ser Arg Ala Cys Pro Pro Cys Ala Pro Ala Cys Lys Asp Asn His Cys 195 200 205 Trp Gly Glu Ser Pro Glu Asp Cys Gln Ile Leu Thr Gly Thr Ile Cys 210 215 220 Thr Ser Gly Cys Ala Arg Cys Lys Gly Arg Leu Pro Thr Asp Cys Cys 225 230 235 240 His Glu Gln Cys Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys 245 250 255 Leu Ala Cys Leu His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys 260 265 270 Pro Ala Leu Val Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met His Asn 275 280 285 Pro Glu Gly Arg Tyr Thr Phe Gly Ala Ser Cys Val Thr Thr Cys Pro 290 295 300 Tyr Asn Tyr Leu Ser Thr Glu Val Gly Ser Cys Thr Leu Val Cys Pro 305 310 315 320

219482.SEQUENCE Apr 2004.ST25 Pro Asn Asn Gln Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu 325 330 335 Lys Cys Ser Lys Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu 340 345 His Leu Arg Gly Ala Arg Ala Ile Thr Ser Asp Asn Val Gln Glu Phe 355 360 365 Asp Gly Cys Lys Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser 370 380 Phe Asp Gly Asp Pro Ser Ser Gly Ile Ala Pro Leu Arg Pro Glu Gln 385 390 395 400 Leu Gln Val Phe Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile 405 410 415 Ser Ala Trp Pro Asp Ser Leu Arg Asp Leu Ser Val Phe Gln Asn Leu 420 425 430 Arg Ile Ile Arg Gly Arg Ile Leu His Asp Gly Ala Tyr Ser Leu Thr 435 440 445 Leu Gln Gly Leu Gly Ile His Ser Leu Gly Leu Arg Ser Leu Arg Glu 450 460 Leu Gly Ser Gly Leu Ala Leu Ile His Arg Asn Ala His Leu Cys Phe 465 470 475 480 Val His Thr Val Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala 485 490 495 Leu Leu His Ser Gly Asn Arg Pro Glu Glu Asp Leu Cys Val Ser Ser 500 505 510 Gly Leu Val Cys Asn Ser Leu Cys Ala His Gly His Cys Trp Gly Pro 515 520 525 Gly Pro Thr Gln Cys Val Asn Cys Ser His Phe Leu Arg Gly Gln Glu 530 535 540 Cys Val Glu Glu Cys Arg Val Trp Lys Gly Leu Pro Arg Glu Tyr Val 545 550 555 560 Ser Asp Lys Arg Cys Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn 565 570 575

Ser Ser Glu Thr Cys Phe Gly Ser Glu Ala Asp Gln Cys Ala Ala Cys 580 585 590 Ala His Tyr Lys Asp Ser Ser Ser Cys Val Ala Arg Cys Pro Ser Gly 595 600 605 Val Lys Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys Tyr Pro Asp Glu 610 620 Glu Gly Ile Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val 625 630 635 640 Asp Leu Asp Glu Arg Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Val 645 650 655 Thr Phe Ile Ile Ala Thr Val Glu Gly Val Leu Leu Phe Leu Ile Leu 660 665 670 Val Val Val Gly Ile Leu Ile Lys Arg Arg Gln Lys Ile Arg 675 680 685 Lys Tyr Thr Met Arg Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro 690 695 700 Leu Thr Pro Ser Gly Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu 705 710 715 720 Lys Glu Thr Glu Leu Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe 725 730 735 Gly Thr Val Tyr Lys Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys 740 745 750 Ile Pro Val Ala Ile Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala 755 760 765 Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln 785 790 795 800 Leu Val Thr Gln Leu Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg 805 810 815 Glu His Arg Gly Arg Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Val 820 825 830 Page 30

- Gln Ile Ala Lys Gly Met Ser Tyr Leu Glu Asp Val Arg Leu Val His 835 840 . 845
- Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Ser Pro Asn His Val 850 860
- Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr 865 870 875 880
- Glu Tyr His Ala Asp Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu 885 890 895
- Glu Ser Ile Leu Arg Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser 900 905 910
- Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr 915 920 925
- Asp Gly Ile Pro Ala Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu 930 940
- Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met 945 950 955 960
- Val Lys Cys Trp Met Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu 965 970 975
- Leu Val Ser Glu Phe Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val 980 985 990
- Val Ile Gln Asn Glu Asp Leu Gly Pro Ser Ser Pro Met Asp Ser Thr 995 1005
- Phe Tyr Arg Ser Leu Leu Glu Asp Asp Asp Met Gly Asp Leu Val 1010 1015 1020
- Asp Ala Glu Glu Tyr Leu Val Pro Gln Gln Gly Phe Phe Ser Pro 1025 1035
- Asp Pro Thr Pro Gly Thr Gly Ser Thr Ala His Arg Arg His Arg 1040 1045 1050
- Ser Ser Ser Thr Arg Ser Gly Gly Gly Glu Leu Thr Leu Gly Leu 1055 1060 1065
- Glu Pro Ser Glu Glu Gly Pro Pro Arg Ser Pro Leu Ala Pro Ser Page 31

219482.SEQUENCE Apr 2004.ST25 .075 1080

	1070					1075	3 .02				1080			
Glu	Gly 1085	Ala	Gly	Ser	Asp	val 1090	Phe	Asp	Gly	Asp	Leu 1095	Ala	Met	Gly
val	Thr 1100	Lys	Gly	Leu	Gln	ser 1105	Leu	Ser	Pro	His	Asp 1110	Leu	Ser	Pro
Leu	Gln 1115	Arg	Tyr	Ser	Glu	Asp 1120	Pro	Thr	Leu	Pro	Leu 1125	Pro	Pro	Glu
Thr	Asp 1130	Gly	Tyr	Val	Ala	Pro 1135	Leu	Ala	Cys	Ser	Pro 1140	Gln	Pro	Glu
Tyr	val 1145	Asn	Gln	Ser	Glu	val 1150	Gln	Pro	Gln	Pro	Pro 1155	Leu	Thr	Pro
Glu	Gly 1160		Leu	Pro	Pro	val 1165	Arg	Pro	Ala	Gly	Ala 1170	Thr	Leu	Glu
Arg	Pro 1175	Lys	Thr	Leu	Ser	Pro 1180	Gly	Lys	Asn	Gly	val 1185	۷al	Lys	Asp
val	Phe 1190	Ala	Phe	Gly	Gly	Ala 1195	val	Glu	Asn	Pro	Glu 1200	Tyr	Leu	val
Pro	Arg 1205	Glu	Gly	Thr	Ala	Ser 1210	Pro	Pro	His	Pro	Ser 1215	Pro	Ala	Phe
Ser	Pro 1220		Phe	Asp	Asn	Leu 1225	Tyr	Tyr	Тгр	Asp	Gln 1230	Asn	Ser	Ser
Glu	Gln 1235	Gly	Pro	Pro	Pro	ser 1240	Asn	Phe	Glu	Gly	Thr 1245	Pro	Thr	Ala
Glu	Asn 1250	Pro	Glu	Tyr	Leu	Gly 1255	Leu	Asp	val	Pro	val 1260			