第三节 炔烃

主题	知识内容		学习 水平	说明		
乙炔	乙炔的分子结构		В	碳碳叁键官能团、叁键的不饱和性 描述乙炔的空间构型		
	乙炔的物理性质		A			
	乙炔的化学性质		В	(1)官能团与化学性质的关系 (2)乙炔与氢气,溴水,氯化氢的加成反应 (3)乙炔加成产物氯乙烯的性质 反应原理和反应装置		
	乙炔的实验室制法		A		以理州 /	义 <u>心</u> 表且 ————————————————————————————————————
主题 学		学习内	学习内容		学习水平	说明
有机物的结构和性质		不饱和烃的官能团		叁键	В	—————————————————————————————————————

一、结构和同系物

$$1.-C \equiv C - C_n H_{2n-2}(n \geq 2)$$

【思考】含C量比较(烷、烯、炔烃):

烷烃随C原子数递增,C%_____;

烯烃随C原子数递增,C%_____;

炔烃随C原子数递增,C%____。

2.乙炔的分子结构

4个原子在同一直线,键能811.7kJ/mol

其中, 两对共用电子对易断裂

【思考】比较键长:碳碳单键____碳碳双键____碳碳叁键

二、命名与同分异构体

1.命名

a.与烯烃类似,包含C≡C最长 b.由靠近C≡C的一端开始编号

c.表明叁键的位置

2.同分异构体

炔烃异构:碳链异构、位置异构

类别异构: 二烯烃、环烯烃

【练习】书写符合C5H8的所有同分异构体的结构简式

三、乙炔的实验室制法

1.原理

$$CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + CH \equiv CH \uparrow$$

实质:水解反应,化合价不变。

例:写出Li₂C₂、MgC₂、Al₄C₃、CaS、Ca₃P₂与水反应的产物

2.装置: 固液不加热型

- A.不能用启普发生器的原因:
 - (1) 碳化钙与水反应剧烈,不易控制;
 - (2) 反应放出大量的热, 易使启普发生器炸裂;
 - (3) 生成糊状Ca(OH)2, 堵住导管,不能随停随用。

【思考】

① 饱和食盐水能减缓反应速率的原因是什么?

碳化钙与饱和食盐水中的水反应,消耗溶剂后,溶质NaCl在碳化钙表面析出,使反应的接触面积减小,从而使反应速率减小。

② 高中阶段能用启普发生器制备的气体有几种?

B.高中阶段的三团棉花及其作用:

- (1) 制乙炔: 制备的导管口, 防止Ca(OH)2阻塞导管
- (2) KMnO₄制氧气:制备的试管口,防止KMnO₄ 粉末堵塞导管
- (3) 收集NH₃: 收集的试管口,减缓NH₃与空气的对流

四、化学性质

- 1.燃烧:含碳量高,明亮带有浓烟的火焰。
- 2.加成反应: 与H₂, X₂, HX, H₂O, HCN等加成

$$CH \equiv CH + HC1$$
 $\xrightarrow{\text{催化剂}}$ $CH_2 = CHC1$ $nCH_2 = CHC1$ $\xrightarrow{\text{催化剂}}$ $\xrightarrow{\text{CH}_2}$ $\xrightarrow{\text{CH}_2}$

3.聚合——三聚、加聚

例:写出CH₃一C≡CH、甲醛的三聚产物

五、计算

1.恒量问题:

A.总质量一定,以任意比混合

(1) 若生成CO₂为恒量:含C量相等,而最简式不一定相同 例: C₂H₂和C₆H₆,HCHO与CH₃COOH,CH₄和C₁₀H₈O₂(含C量为75%)

- (2) 若生成H₂O为恒量: 含H量相等,而最简式不一定相同
 例: C₂H₂和C₆H₆, C₃H₈O₃与C₇H₈
 - (3) 若生成的CO₂、H₂O均为恒量,则最简式相同

B.总物质的量一定,以任意比混合

- (1) 若生成CO,为恒量: C原子数相等
- (2) 若生成H,O为恒量: H原子数相等
- (3) 若生成CO₂、H₂O均为恒量: C、H原子数均相等,与有无O无 关

2.耗氧量问题

(1) 物质的量相同时,比较 $C_xH_yO_z$ 中x+y/4-z/2

 C_xH_y 、 $C_xH_y(H_2O)_m$ 和 $C_xH_y(CO_2)_n$

【思考】相同物质的量的 C_3H_6 、 C_3H_8O 和 $C_4H_6O_2$ 的耗氧量是否相等?

(2) 质量相同时 比较 C_xH_v 中y/x,y/x越大,耗氧量越大

【思考】将同质量的 CH_4 、 C_3H_8 、 C_2H_4 、 C_2H_2 、 C_6H_6 、 C_8H_{10} 耗氧量按由大到小的顺序排序。

- 例:对于某些只含C、H、O的有机化合物,我们可把他们的分子式写成(C_xO_y)_n(H_2O)_m的形式。由于其燃烧产物只有 CO_2 和 H_2O ,所以燃烧时只有其中的(C_xO_y)_n消耗 O_2 。现有一些上述有机物,它们燃烧时消耗的 O_2 和生成的 CO_2 的体积比是1:2
- 这些有机物分子式 $(C_xO_y)_n(H_2O)_m$ 中的 $x=___,y=___$
- 这些有机物中相对分子质量最小的化合物的结构简式是_____
- 有两种碳原子数相同的上述有机物,若它们的相对分子质量分别为a和b,(a<b),则b-a的值必然是____(填数字)的整数倍。
- 在这些有机物中,有一种化合物它含有一个羧基。取0.185g该化合物恰好能跟25ml0.1mol/L NaOH溶液完全中和。由此可以计算得知该化合物的相对分子质量为______,并可推导出它的结构简式是_____。