Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Удмуртский государственный университет» Институт естественных наук Кафедра географии, картографии и геоинформатики

Математическая картография: методические указания по выполнению лабораторных работ

УДК 528-17(075) ББК 26.172p30 М34

Рекомендовано к изданию Учебно-методическим советом УдГУ

Рецензент: канд. геогр. наук, доцент, каф. природопользования института естественных наук, ФГБОУ ВО «УдГУ» **А.В. Семакина**.

Составители: Копанев Н.И., Копанева И.М., Рублева Е.А.

М34 Математическая картография: методические указания по выполнению лабораторных работ : [Электрон. ресурс] / сост. Н.И. Копанев, И.М. Копанева, Е.А. Рублева. — Ижевск : Удмуртский университет, 2024. — 76 с.

Методические указания состоят из двух частей, краткая теоретическая с подборкой формул для конкретных вычислений картографических проекций и аналитического определения характеристик проекций, примеры вычислений по определению размеров рамок трапеций для создания математической основы топографических карт, создания картографических сеток основных проекций, примеры расчетно-графических работ с подробными указаниями к самостоятельной работе.

Предназначены для студентов бакалавриата направления 05.03.03 «Картография и геоинформатика».

Электронная версия учебно-методического пособия размещена на сайте библиотеки УдГУ http://lib.udsu.ru .

УДК 528.235 ББК 26.17

© Копанев Н.И., Копанева И.М., Рублева Е.А., сост.,2024 © ФГБОУ ВО «Удмуртский государственный университет», 2024

ПРЕДИСЛОВИЕ

Настоящие методические указания по курсу «Математическая картография» предназначены для студентов очного отделения направления «Картография и геоинформатика».

Математическая картография является дисциплиной, изучающей вопросы отображения картографируемой поверхности (Земли и других планет, небесной сферы) на плоскости в целях создания различных карт и решения теоретических и практических задач, возникающих в картографии, геодезии, астрономии, аэронавигации, морской навигации, проектировании и строительстве и т. п.

Основными задачами математической картографии являются:

- изучение различных классов картографических проекций, их рациональное применение;
- совершенствование методов получения проекций и изыскания проекций применительно к современным картографическим производственным заданиям;
- изучение способов и средств использования картографических сеток для измерений на картах;
- решение задач математического характера, возникающих при составлении карт (выбор проекции для заданной территории, определение масштабов, выбор компановки, расчет и построение картографической сетки).

1. ПРОГРАММА КУРСА

Введение

Предмет и задачи математической картографии, ее связь с другими дисциплинами. Современное состояние математической картографии и перспективы ее развития.

Общая теория картографических проекций

Основные понятия об изображении поверхности эллипсоида вращения и шара на плоскости. Картографическая проекция. Системы координат и связь между ними. Эллипс искажений. Условие ортогональности сетки. Вывод формулы азимута в проекции.

Вывод общей формулы масштаба длин; масштаба по меридианам и параллелям. Исследование масштаба длин на экстремум, максимальные и минимальные масштабы. Главные направления. Эллипс искажений. Связь масштабов по меридианам и параллелям с экстремальными. Максимальное искажение углов.

Равноугольное и равновеликое изображение поверхности эллипсоида на плоскости.

Изображение поверхности эллипсоида на шаре. Общие положения способы изображения, практическое значение.

Классификация проекций по характеру искажений, положения полюса системы координат, виду нормальной сетки меридианов и параллелей.

Цилиндрические проекции

Основные положения, общие формулы, вид сетки. Равноугольные, равновеликие, равнопромежуточные нормальные цилиндрические проекции; анализ искажений, применение.

Локсодромия и ее изображение в равноугольных цилиндрических проекциях. Использование этих проекций для морских навигационных карт, изображение ортодромии.

Косые и поперечные проекции; принцип их получения, определения полюса, общие формулы, частные случаи. Применение равноугольных косых цилиндрических проекций для аэронавигационных карт.

Перспективно-цилиндрические проекции; способ их получения, общие формулы, частные случаи, анализ искажений, применение.

Конические проекции

Основные положения, общие формулы, вид нормальной сетки. Равноугольные, равновеликие, равнопромежуточные нормальные конические проекции. Применение проекций.

Способы определения параметров проекций; проекции с одной и двумя главными параллелями, анализ искажений. Проекции Ф. Н. Красовского и В. В. Каврайского.

Азимутальные и перспективно-азимутальные проекции

Основные положения, общие формулы, вид нормальной сетки. Равноугольные, равновеликие, равнопромежуточные азимутальные проекции, анализ искажений, применение проекций.

Способы получения перспективных проекций; классификация проекций в зависимости от положения точки проектирования. Стереографические, ортографические, гномонические проекции, их свойства. Применение внешней проекции с позитивным изображением как математической основы космического снимка.

Псевдоцилиндрические проекции

Вид нормальной сетки и общие формулы псевдо-цилиндрических проекций, проекция Бонна, формулы, искажения; применение проекции.

Вид нормальной сетки, общие формулы псевдоазимутальных проекций.

Поликонические проекции

Вид нормальной сетки, общие формулы поликонических проекций. простая поликоническая проекция, ее формулы, анализ искажений и применение. Простая поликоническая проекция для узкой меридианной зоны.

Равноугольная поликоническая проекция Лагранжа.

Способ получения поликонических проекций для карт мира по эскизам сеток меридианов и параллелей.

Проекции номенклатурных карт масштаба 1 : 2 500 000, 1 : 1 000 000 и крупнее

Особенности проекций, применяемых для создания карт мира масштаба 1: 2 500 000.

Видоизмененная простая поликоническая проекция для международной карты мира 1 : 1 000 000.

Математическая основа топографических карт в РФ и в некоторых зарубежных странах. Вывод формулы проекции Гаусса-Крюгера.

Выбор и методы изыскания картографических проекций

Основные положения по выбору проекций, связанные с конкретным заданием. Установление требований к проекциям, обоснование выбора проекций. Исследование и разработка

вариантов проекций, их анализ. Выбор компоновки карты, расчет рамок. Заключение по выбору проекций.

Прямая и обратная задача математической картографии. Постановка и решение проблемы изыскания наилучших картографических проекций. Проекция Чебышева.

Цифровизация в математической картографии

Вычисления картографических проекций при помощи ЭВМ. Преобразование картографических проекций. Применение средств цифровизации при создании математической основы карт, с последующей привязкой к растру выбранных из «Атласа учителя» соответственно выбранной проекции и масштабу, с использованием ГИС-технологий.

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ КУРСА

Дисциплину «Математическая картография» студенты направления подготовки «Картография и геоинформатика» изучают на III курсе.

В соответствии с учебным планом:

- лекций16 часов,
- лабораторных занятий32 часа.

Изучение курса завершается экзаменом.

Все задания по лабораторным работам выполняются студентами в программе EXEL с расчётами, с построением графиков искажений и построения картографической сетки.

Вычисления и построения линий положения: локсодромии и ортодромии отобразить:

- на нормальной равноугольной цилиндрической проекции;
 - на нормальной равноугольной конической проекции.

Выполненные лабораторные работы сдаются преподавателю для проверки, оценка за контрольную работу учитывается на промежуточной аттестации и экзамене.

Примерная тематика рефератов

- 1. Картографические проекции географических карт СССР и России.
- 2. Картографические проекции географических карт мира, полушарий, океанов, континентов.
- 3. Преобразования картографических изображений из одной проекции в другую.
- 4. Современная электронная картометрия учет искажений в проекциях.

- 5. Проекции топографических карт.
- 6. Проекции навигационных карт.
- 7. Изыскания идеальных проекций.
- 8. Выбор картографических проекций.

3. ОБРАЗЕЦ ОФОРМЛЕНИЯ ЛАБОРАТОРНЫХ РАБОТ

	_	
\ /	I	` 🔪 /
v	/ 1 1	v

Нап	равление	«Картог	рафия	и геоина	рорматика»
			F		

группа

Лабораторная работа 1, задание 1.1.

Вычисление радиуса кривизны меридиана M и радиуса кривизны 1-ого вертикала N (нормали) по формулам»

Вариант № 1

Выполнил:

Проверил:

Ижевск 2023 г.

4. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ЛАБОРАТОРНЫХ РАБОТ

4.1. Вывод общей формулы частного масштаба. Масштабы по меридианам и параллелям

Частный масштаб длин по формуле

$$\mu = ds'/ds.$$
 [1]

Из элементарного сфероидического треугольника рис. 1, рис. 2. [2, 3].

Рис. 1. Элементарный сфероидический треугольник [2, 3]

Рис. 2. Изображение азимута в проекции [2, 3]

$$ds' = (dx^2 + dy^2)^{0.5}$$
 $ds = (ds^2m + ds^2n)^{0.5}$
 $\mu = ds'/ds$ — частный масштаб длин.

В этом треугольнике бесконечно малая дуга меридиана

$$dsm = M*d\varphi \tag{1}$$

где M — радиус кривизны меридиана, бесконечно малая дуга параллели.

$$dsn = r * d\lambda \tag{2}$$

где r — радиус кривизны параллели, или

$$r = N * cos \varphi \tag{3}$$

Вычисляется радиус кривизны меридиана M и радиус кривизны 1-ого вертикала N (нормали) по формулам (4) [2, 3].

$$M = (a * (1 - e^{2})) / ((1 - e^{2} (\sin \varphi)^{2})^{3/2});$$

$$N = a / ((1 - e^{2} * (\sin \varphi)^{2}))^{1/2});$$
(4).

Где первый эксцентриситет эллипсоида вращения — е, второй эксцентриситет эллипсоида вращения — е', a и b — соответственно большая и малая полуоси эллипсоида вращения

e =
$$((a^2 - b^2)/a^2)^{0.5}$$

e' = $((a^2 - b^2)/b^2)^{0.5}$ (5).

Определяем µ (где µ – масштаб)

$$\mu^2 = (dx^2 + dy^2) / (((M)^* d\varphi)^2 + (r^2)^* d\lambda^2)$$
 (6).

или
$$\mu^2 = (e^*d\varphi^2 + 2^*f^*d\varphi^*d\lambda + g^*d\lambda^2)/(((M)^*d\varphi)^2 + (r^2)^*d\lambda^2$$
 (7).

Введем в уравнение (7) вспомогательную функцию $u = d\phi / d\lambda$ разделив числитель на знаменатель на λ^{2} , тогда

$$\mu^2 = (e^*u^2 + 2^*f^*u + g) \setminus (M^{2*}u^2 + r^2)$$
 (8)

Общие уравнения картографических проекций

$$x = f1(\varphi, \lambda),$$

$$y = f2(\varphi, \lambda).$$
(9)

Получив на основании формул первые дифференциалы (10)

$$dx = x\varphi d\varphi + x\lambda d\lambda$$

$$dy = y\varphi d\varphi + y\lambda d\lambda$$
(11)

$$d^{2}s' = dx^{2} + dy^{2} = (x^{2}\varphi) (d\varphi)^{2} + 2*x\varphi*x\lambda*d\varphi*d\lambda + (x^{2}\lambda)*$$
$$(d\lambda)^{2} + (y^{2}\varphi)*(d\varphi)^{2} + 2*y\varphi*y\lambda*d\varphi*d\lambda + (y^{2}\lambda)*(d\lambda)^{2} =$$
$$e^{*}(d\varphi)^{2} + 2*f*d\varphi*d\lambda + g*d\lambda^{2}.$$
 (12)

Используются коэффициенты Гаусса: [2, 3]

$$\begin{aligned} \mathbf{e} &= \mathbf{x}^2 \varphi - \mathbf{y}^2 \varphi , & f &= \mathbf{x} \varphi * \mathbf{x} \lambda + \mathbf{y} \varphi * \mathbf{y} \lambda \\ g &= \mathbf{x}^2 \lambda - \mathbf{y}^2 \lambda & h &= (e * g - f^2)^{0.5} = \mathbf{x} \varphi * \mathbf{y} \lambda + \mathbf{x} \lambda * \mathbf{y} \varphi. \end{aligned}$$

Частные масштабы т и п вычисляются:

для эллипсоида

$$m=e^{0.5}/\,M\quad n=g^{0.5}\,/\,r=g^{0.5}\,/\,N*cos\,\phi~(13),$$

для шара

$$\mathbf{m} = e^{0.5} / R \qquad \mathbf{n} = g^{0.5} / R^* \cos \varphi$$
 (14).
$$\mu^2 = (e^* u^2 + 2^* f^* u + g) / ((M^2)^* u^2 + r^2)$$

Значение и из элементарного сфероидического треугольника

$$tg a = dsn / dsm = r*d\lambda / M*d\varphi = r / M*u$$
 (15)

$$u = r * ctg \ a / M. \tag{16}.$$

4.2. Общие формулы проекций

Данные представлены в табличном формате табл. 1.

Таблица 1

Данные для вычисления сетки основных проекций

Название проекций							
ЦИЛИН	ЦИЛИНДРИЧЕСКАЯ ПРОЕКЦИЯ						
	$x = f(\varphi),$ $y =$	$\beta * \lambda$,					
РАВНОУГОЛЬ-	РАВНОВЕЛИ-	РАВНОПРОМЕ-					
НАЯ	КАЯ	ЖУТОЧНАЯ					
m=n или	p=m*n=1 или	m =1 или n=1 или					
$dx / M* d\phi = \beta / r$	$p=\beta*dx/M*r*d\phi=1$	$m=dx/R*d\phi=1$					
$dx = \beta * M * d\phi / r$	$dx = M*r*d\varphi / \beta$	$dx = R*d\varphi$					
где r=N*cosφ							
	Общие формулы						
$x = \beta * \lg U / mod$	$x = (R^2) * \sin \varphi / \beta$	$x = R*\phi$					
$y=\beta*\lambda$	$y = \beta * \lambda$	$y = R* \lambda$					
КОН	ИЧЕСКАЯ ПРОЕ	КЦИЯ					
ho =	$= f(C, \varphi), \qquad \delta = \varphi$	a * λ					
x = c	$q - \rho * \cos \delta, y = \rho$	*sin δ					
где а и	и С – параметры про	оекции.					
РАВНОУГОЛЬ-	РАВНОВЕЛИ-	РАВНОПРОМЕЖУ-					
НАЯ	КАЯ	КАНРОТ					
m=n или	р=1 или	m=1 или n=1 или					
$-d\rho /M*d\varphi = a*\rho / r$	$-a*d\rho/M*d\varphi=1$	$m=-d\rho/M*d\phi=1$					
$ln\rho = lnC$ - $a \int M^*$	$\rho * d\rho = -M * r * d\varphi$	$d ho = -M*d\phi$					
Cφ / r	/a	$ \rho = -s + C $					
$\int (M^* d\phi / N\cos\phi)$	$\rho^2 = -(2/a) \int M^* r^*$	Полюс отобразится					
= lnU	$d\phi=C-2*S/a$	дугой окружности					
$U=(tg~(45~^{o}+\phi/2))/$	Полюс отобра-	радиусом					
$(tg^e (45 ^o + \psi/2)) -$	зится не точкой,						

1 экцентриситет	а полярной дугой	
sinΨ=e*sinφ	$\rho = C$ -s	
$\ln \rho = \ln C - a * \ln U$		
$ \rho = C / U^a $		
	Общие формулы	
$ \rho = C/U^a $	$\rho^2 = 2(c-S)$	$x = q - \rho * cos \delta,$
$\delta = a * \lambda$	$\delta = a * \lambda$	$y = \rho *sin \delta$
$x = q - \rho * cos \delta,$	$x = q - \rho * cos \delta,$	$\rho = C$ - s $\delta = a * \lambda$
$y = \rho *sin \delta$	$y = \rho *sin \delta$	
	АЗИМУТАЛЬНІ	SIE r
$ \rho = f1(\varphi) $	$\delta = \lambda$ $\mu I =$	$d\rho/R*dz = \rho*z/R$
$x = \rho * cos \delta,$	$y = \rho *sin \delta $ μ	$2 = \rho/R * \sin z$
	$p=\mu 1*\mu 2$	
РАВНОУГОЛЬ-	РАВНОВЕЛИ-	РАВНОПРОМЕЖУ-
КАН	КАЯ	ТОЧНАЯ
$\mu 1 = \mu 2$	p=1	m=1 или n=1
	Общие формулы	
$d\rho/R*dz = \rho/R*sin z$	$(d\rho/R*dz)*(\rho/\sin$	$\mu I = d\rho/R * dz = 1$
$d\rho/\rho = dz/\sin z$	z)=1	$\rho = R^*z + C$
$ln \rho = ln \ tg(z/2)$	$\rho \ d\rho = R^2 * \sin z \ dz$	$x = \rho * cos \delta$
$\rho = C^* tg (z/2)$	проинтегрировав	$y = \rho *sin \delta$
$x = \rho * cos \delta$	$\rho^2/2 = C - R^2 * \cos z$	$\rho = R*z + C$
$y = \rho *sin \delta$	$x = \rho * cos \delta$	$x = \rho * cos \delta$
$\rho = 2*R* tg(z/2)$	$y = \rho *sin \delta$	$y = \rho *sin \delta$
$\delta = a$	$\rho = 2*R* \sin(z/2)$	$\rho = R*z$
	$\delta = a$	$\delta = a$

5. ПОСТРОЕНИЕ КАРТОГРАФИЧЕСКИХ СЕТОК НОРМАЛЬНЫХ ПРОЕКЦИЙ. ОБЩИЕ УКАЗАНИЯ

Цель. Изучить аналитические способы построения картографических сеток нормальных цилиндрических, азимутальных и конических проекций, уметь строить их по уравнениям картографических проекций и научиться переносить элементы картографического изображения по построенным картографическим сеткам.

Используемые программы:

EXEL. GIS MfpInfo.

Задание:

- 1. При построении картографических сеток используем параметры земного эллипсоида ГСК-2011.
- 2. При замене эллипсоида шаром, что для карт мелких масштабов не принципиально, в вычислениях следует учитывать, что значение радиуса земного шара:
- $R=6\ 371\ 120\ м$ используется в картографических проекциях, произвольных по характеру искажений;
- R' = 6 378 245 м используется в картографических проекциях, равноугольных по характеру искажений;
- R"= 6 371 116 м используется в картографических проекциях, равновеликих по характеру искажений;
- R'" = 6 367 558 м используется в картографических проекциях, равнопромежуточных по меридианам.

Все расстояния на карте x, y и ρ , выраженные в масштабе карты, определяются c точностью до 0, 1 мм; углы δ – c точностью до секунд.

Число $\pi = 3,1416$.

Необходимо помнить

О переводе градусов в «РАДИАНЫ».

О переводе длин в одни единицы измерения (например, значений параметров выбранного земного эллипсоида или радиуса Земли R из метров в сантиметры или мм).

6. ЛАБОРАТОРНАЯ РАБОТА № 1

6.1. Вычисление радиуса кривизны меридиана *m* и радиус кривизны 1-ого вертикала (*n* - нормали) по формулам

- 1.1. Выбрать эллипсоид для выполнения работы табл. 2.
- 1.2. Определить, в каких странах используется выбранный эллипсоид и в каком году получены его параметры.
 - 1.3. Определить не достающие параметры эллипсоида.
 - 1.4. Вычислить радиус кривизны меридиана M.
- 1.5. Вычислить радиус кривизны 1-ого вертикала (N- нормали).

Таблица 2 Параметры эллипсоидов

	$M = 1:100\ 000$								
Ва-	Эллипсоид	а	b	c	e^{2}				
ри-									
ант									
1	Красов-	6 378 245	6 356 863	1:298,3					
	ского								
2	Бесселя	6 377 397	6 356 079	1:299,2					
3	Хейфорда	6 378 388	6 356 912	1:297,0					
4	Кларка II	6 378 249	6 356 515	1:293,5					
5	Кларка I	6 378 206	6 356 584	1:295,0					
6	Эри	6 377 491	6 356 185	1:299,3					
7	Эвереста	6 377 276	6 356 075	1:300,8					
8	ПЗ-90.11	6378 36,0	6356	1:298,25784	0,006				
			751,36		694				
					3662				
9	Система	6378 136,5	6356	1:298,256415	0,006				
	координат		751,758	1	694				
	ГСК 2011				3981				

Определить, в каком году введены в использование и в каких странах используются выбранные эллипсоиды.

6.2. Вычисление размеров рамки трапеции

ДАНО:

Пусть m — масштаб выбранной карты, для которой надо рассчитать размеры одного листа трапеции. Сторона «с» — это отрезок меридиана, соответствует западной и восточной сторонам рамки трапеции и равны по значению. Стороны «а и b» — это отрезки параллелей, соответствуют южной и северной сторонам рамки трапеции (рис. 3, рис. 4).

Рис. 3. Рисунок листа трапеции масштаба 1:50 000

Рис. 4. Сферическая трапеция

$$c=d\ B=30$$
 — дуга AA ;
$$a=d\ L=20$$
 — дуга A B;
$$b=d\ L=20$$
 — дуга AB.
Где $r=B\ K$ — радиус северной параллели, $r=N$ *(cosB);
$$N=BO, \quad b=r$$
 *(d L);
$$r=B'K'-$$
 радиус южной параллели, $r'=N1$ *(cosB1);
$$N_1=B'O', \quad a=r'$$
 *(dL).
$$a=(N_1*(cosB_1)*(d\ L))/m*\rho$$

$$b=(N*(cosB)*(d\ L))/m*\rho$$

$$c=M*(dB)/m*(p``),$$
 где d L, dB, ρ — выражены в секундах.

M – средний радиус кривизны меридиана берется по значению широты в средней точки трапеции или вычисляется:

$$M = \frac{a \times (1 - e^{*2})}{(1 - e^{*2} \times \sin^{*2} \varphi)};$$

N — радиус кривизны вертикала или нормаль, берётся из таблиц по широте или вычисляется:

$$N = \frac{a}{(1 - e^{*2} \times \sin^{*2} \varphi)^{1/2}}$$

 ρ = 206265`` — значение 1 радиана в секундах.

ОПРЕДЕЛИТЬ:

Необходимо вычислить площадь трапеции на плоскости в квадратных: см, м, км, га.

ДАННЫЕ ОФОРМИТЬ ПО ПРЕДЛОЖЕННОЙ СХЕ- МЕ: Данные для эллипсоида взять ГСК-2011, вычислив предварительно значение е — первый эксцентриситет заданного эллипсоида.

Определить номенклатуру и разграфку листа карты масштаба $1:1\,000\,000$, по которому определить номенклатуру и разграфку листов карты в масштабе $1:100\,000$ и $1:50\,000$.

Построить в программе EXEL рамку трапеций по координатам точки $\phi = 48^{\circ}18'$, $\lambda = 24^{\circ}30'$ в масштабе 1:100000, в масштабе 1:100000 и 1:50000. Отобразить листы трапеций схематично рис. 5, рис. 6, рис. 7.

	Номенклату	pa M - 35
	Масштаб 1 :	1 000 000
ф 48°		φ 52°
λ 24°		λ 30°
ф 48°		ф 48°
λ 24°		λ 30°

Рис. 5. Разграфка и номенклатура листа карты масштаба 1 : 1 000 000

		Номен	клатура М -	35 - 120		Масшта	61:1000	000 разгр	рафка для	масштаба	1:1000	00	52
52°												30°	
24°	1	2	3	4	5	6	7	8	9	10	11	12	30°
51°													
50°													
19°													
8°40′ 8°20′	120												
48°												144	48
	24	° 30′											
24°			25°		26°		27°		28°		29°		30

Рис. 6. Разграфка листа карты масштаба 1 : 1 000 000 для листов карт масштаба 1 : 100 000

Рис. 7. Разграфка листа карты масштаба 1 : 100 000 для листов карты масштаба 1 : 50 000

Данные для определения размеров рамок трапеций по вариантами и образец заполнения вычислений указаны в табл. 2.

Таблица 2 Данные для выполнения работы и образец оформления работы

	M = 1 : 50 000, 1 : 100 000								
В	Широта	а (см)	b (см)	c	Ко-	Ко-	Р (пло-		
a	и долгота	а (м)	b (м)	(см)	op-	op-	щадь)		
p	точки			С	ди-	ди-	см^2 м^2		
И	на задан-			(см)	наты	наты	км^2		
a	ной тра-				пря-	пря-	га^2		
н	пеции				мо-	мо-			
Т	11024111				угол	угол			
1					ьной	ьной			
					сет-	сет-			
					ки	ки			
					Х (м,	У (ь,			
					см)	см)			
1	φю 49°20'								
	λε 37 °11'								
2	φю 45 °20'								
	λε 39°20'								

3	φю 43°20			
	λε 40°39'			
4	φю 51°20'			
	λε 41 °52'			
5	φю 57°20'			
	λε 42 °13'			
6	φю 65° 20'			
	λε 43 °07'			
7	φю 61° 40'			
	λε 44°36'			
8	φю 69° 40'			
	λε 45 °44'			
9	φю 71° 40'			
	λε 46 °51'			
10	φю 77° 40'			
	λε 47 °51'			
11	φю 85° 30'			
	λε 48 °05'			
12	φю 83° 30'			
	λε 49°11'			
13	φю 37° 30'			
	λε 50°17'			
14	φю 31° 30′			
	λε 51 °21'			
15	φю 29° 30′			
	λε 52°38'			
16	φю 25° 30'			
	λε 53 °44'			
17	φю 19°30'			
	λε 54°59'			

	1	,	1	1	
18	φю 17°30'				
	λε 55 °02'				
19	φю 13° 40'				
	λε 56°19'				
20	φю 9° 10'				
	λε 57°23'				
21	φю 36° 10'				
	λε 58°34'				
22	φю 86 °10'				
	λε 59°48'				
23	φю 50 ° 10'				
	λε 60° 51'				
24	φю 62° 05'				
	λε 61° 01'				
25	φю 70 °10'				
	λε 62°18'				
26	φю 41° 50'				
	λε 63° 21'				
27	φю 37 °50'				
	λε 64°35'				
28	φю 55 °50'				
	λε 65° 49'				
29	φю 59 °50'			 	
	λε 66 °54'			 	
30	φю 71 °50'			 	
	λε 67 ° 08'				
	Пообмони		a day ar		

Необходимо учесть разграфку листа карты для данных масштабов.

7. ЛАБОРАТОРНАЯ РАБОТА № 2

7.1. Нормальная равноугольная цилиндрическая проекция с одной главной параллелью

Вычислить искажения углов, площадей, построить графики искажений, данные в таблице 23.

1. Вычислить координаты X, У и построить сетку нормальной равноугольной цилиндрической проекции Меркатора для территории, ограниченной меридианами с долготами λ_3 ; λ_B и параллелями с широтами ϕ_{IO} ; ϕ_C (рис.3). Частота картографической сетки $\Delta \phi = \Delta \lambda$. Главный масштаб 1: M_o . Параметр проекции найти под условием, что на заданной главной параллели с широтой ϕ_K частный масштаб равен единице. Данные в таблице 3.

Таблица 3 **Формирование и оформление данных в EXCEL**

4	A	В	
1	Нормальная равноугольная цили	индрическая проекци	18
2			0
3	Дано		
4	а - больш полуось эллипсоида	6378136,5	
5	долгота зап λ	10	
6	долготоа вос λ	30	
7	широта юг ф	25	
8	широта сев ф	45	
9	Масштаб М	15000000	
10	$\Delta \lambda = \Delta \phi$	5	
11	Эксцентриситет е	0,08181931	0
12	e*e =	0,00669439949	
13	ω условие равноугольн	0	
14	p=n^2	1	
15	$m = n = \beta / r$		
16	β = r средн	0,006694398	

		1 "
17	Найти	
18	е число Эйлера	2,718281829
19	mod	0,434294482
20	ψ = e*sin ϕ e - экцентриситет	
21	φκ средн параллель	35
22	m	
23	n	
24	β	
25	ρ в секундах	206264,8
26	ρ в градусах	57,2957795
27	r	
28	lgU	
29	$A = \beta MM / mod$	
30	В = β мм / ρ (в градусах)	
31	X = A * Ig U	
32	$Y = B * (\lambda - \lambda O)$	
	$J = (tg (45 + \phi/2)) / (tg ^e (45 + \phi/2))$	
4 5	sin ψ = e*sin φ e - эксцентрис	итет

2. Формулы для вычисления:

$$x = \beta*lgU/mod,$$

где
$$\beta$$
 – const для $\phi_k = 0.5*(\phi_c + \phi_{io})$,

где mod = ln e, e - const, в данном случае «е» – число Эй-лера:

$$e = 2,7182818285$$
, M (mod) = $lg e = 0.4342944819$,

При вычислении параметра U, в знаменателе используется «е» — 1-ый эксцентриситет эллипсоида:

$$U = \frac{tg(45^{\circ} + \varphi/2)}{tg^{e} * (45 + \psi/2)};$$

 $\lg U$ – изометрическая широта, где $\sin \psi = \mathrm{e} \sin \varphi$.

3. Определение $\lg U$ в EXEL табл. 4.

Оформление и определение $\lg U$ (синим цветом выделена главная параллель)

φ	φк	ψ в градусах	U числитель	U знамен	U	lg U
25		1,981587652	1,56968558	1,00283431	1,56524917	0,194583482
30		2,344604872	1,73205081	1,00335468	1,72625975	0,237106145
35	35	2,689857603	1,92098213	1,00384996	1,91361478	0,281854516
40		3,014715629	2,14450692	1,00431634	2,13529028	0,329456924
45		3,316698723	2,41421356	1,00038781	2,41327766	0,382607293

4.Вычисление координаты X, и искажения по параллелям, и площадям.

$$x = \frac{\beta}{\text{mod}} \lg U$$
$$y = (\beta \cdot \lambda^{\circ}) / \rho^{\circ},$$

где $\rho^{\circ} = 57.3^{\circ}$, или ρ (в секундах) = $20\overline{62}65$ (секунд)

$$x_{\text{пр.}} = xi - x_{\text{ю.}}$$

$$m=n=\beta \ / \ r, \ \beta=rk=const \ для \ главной параллели, \\ p=m^2, \ \omega=0.$$

5. Определим вспомогательные коэффициенты А и В

$$A = \beta_{MM}/mod$$
, где $mod = 0.434294$

$$B = \beta_{MM}/\rho^{\circ}$$
, где $\rho^{\circ} = 57,2957795$ ".

6. Вычисление координаты X, масштабов длин и площадей для каждой параллели табл. 5.

Таблица 5

Определение координаты X и параметров искажений

X=A*Ig U	Хпр=Xi-X ₁	r	n=m=rk/r	p=n**2
58,5866638	0	5784014	0,90429	0,817740631
71,3897082	12,80304	5528256	0,946126	0,895154238
84,8628855	26,27622	5230426	1	1
99,1953777	40,60871	4892707	1,069025	1,142814492
115,198292	56,61163	4518908	1,157454	1,339698643

По вычисленным параметрам строятся графики искажений масштабов (по параллелям и меридианам и по площадям).

7. Построение графика искажений (рис. 8).

Рис. 8. Голубой цвет – искажения масштабов m и n, красный цвет – искажения площадей

8. Вычисление Ү (табл. 6).

Таблица 6 Определение параметров для вычисления **Y**

φ	N	β(в мм) = N*с	osφ*1000/M	A=βмм/mod	В = βмм/ ρ (в градусах)	
25	6381952,968	144,600342		332,954591	2,523752064	
30	6383480,43	138,206405		318,232009	2,412156824	
35	6385171,69	130,760661		301,087549	2,28220407	
40	6386975,691	122,317681		281,646869	2,134846266	
50	6390701,58	102,696595		236,467648	1,792393711	

9. Вычисление Ү (табл. 7).

Таблица 7 Вычисление приведенных значений ${f Y}$

λ	λi - λ1	Y cm = $B^*(\lambda i - \lambda 1)$	
10	0	0	
15	5	11,41102035	
20	10	22,8220407	
25	15	34,23306105	
30	20	45,6440814	

10. Формирование данных для создания картографической сетки (табл. 8).

Таблица 8 Оформление координат для построения точек картографической сетки проекции

Υ	Χ
0,0000	0
11,4110	0
22,8220	0
34,2330	0
45,6440	0
0,0000	12,803
11,4110	12,803
22,8220	12,803
34,2330	12,803
45,6440	12,803
0,0000	26,2762
11,4110	26,2762
22,8220	26,2762
34,2330	26,2762
45,6440	26,2762
0,0000	40,6087
11,4110	40,6087
22,8220	40,6087
34,2330	40,6087
45,6440	40,6087
0,0000	56,6116
11,4110	56,6116
22,8220	56,6116
34,2330	56,6116
45,6440	56,6116

Графические построения подтверждают верность аналитических вычислений (увеличение расстояний между параллелями на север) (рис. 9).

Рис. 9. Картографическая сетка нормальной равноугольной цилиндрической проекции Меркатора с 1 главной параллелью, Главная параллель выделена красным цветом

При работе на сфере или эллипсоиде выбирают соответствующие параметры:

Для сферы:

$$m = n = \sec \varphi$$
; $p = \sec^2 \varphi$; $\omega = 0$.

Для эллипсоида:

$$m=n=\beta\!\!/\,r$$
 ; где $\beta=r_k$; $p=m^2;\,\omega=0.$

8. ЛАБОРАТОРНАЯ РАБОТА № 3

8.1. Нормальная равноугольная коническая проекция с 1 главной параллелью

1. Пример оформление данных (табл. 9).

Таблица 9

Оформление данных

_		•		
Дата				
ФИС) студента	В	ариант №	
3			градусы	радианы
4	φю		30	0,523599
5	φε		50	0,872665
6	λз		0	0
7	λε		20	0,349066
8	Δφ=Δλ	ì	5	0,087266
9	φk		40	0,698132
10	ρ_o		57,2957795"	57,29578
11	Mo		15 000 000	
12	е(э)		2,718281829	
13	а		6378245	
14	b		6356863	
15	e		0,08181337	
16	ρ		206265	
17	M(mod	1)	0,434294482	
18	в		5 230 514	
19	вмм		348,7009333	
20	A		802,9135708	

Продолжение таблицы 9

	-
В	6,085979393
N	6387083,06
$ ho^{\circ}$	57,3
	N

 $\alpha = sin(\phi k)$ – средняя параллель;

 $e(\mathfrak{I})$ – число Эйлера – const;

е – эксцентриситет эллипсоида;

U – изометрическая широта;

 $M \pmod{= lge}$.

$$C = (r cpeд * (U ^ q)) / q$$

C-const.

Главная параллель для заданной территории вычисляется:

$$\varphi_0 = (\varphi c + \varphi \omega) / 2$$

2. Вычисление промежуточных данных.

Вычисляются параметры для всех широт:

N – нормаль, r – радиусы параллелей, lgr и lgU (аналогично вычислениям картографической сетки цилиндрической проекции).

3. Определение параметров проекции с 1 главной параллелью.

Определение параметров проекции в табл. 10.

$$\alpha = \sin(\varphi_0)$$
.

$$r_{KM} = r_M *1000/M_o,$$

$$C = r \cdot 0 \cdot_{1_{M \cdot M}} * U_1^{\alpha} / \alpha \cdot 0$$

 $\label{eq: Tаблица 10}$ Определение параметров проекции – C и α

	φ _o =40°
lg r	6,68955653
lg U	0,3294572
α	0,64278761
φ_o	0,6981317
градусы(φ₀)	40
αlg U	0,211771
Uª	1,62843716
гмм	326,185965
Смм	826,359031

4. Вычисление полярных координат ρ , δ и вычисление искажений параметров масштаба n, p в табл. 11.

$$\begin{split} \delta &= \,\, \alpha^* \, \boldsymbol{\lambda} \,\,, \\ \rho &= C/U^\alpha; \\ n &= \alpha^* \rho \,/\, r \,\,; \\ p &= n^2. \end{split}$$

Таблица 11 Вычисление полярных координат ρ, δ и масштабов n, p

φ	30	35	40	45	50
формулы	30	3	40	42	30
lg∪	0,2371064	0,2818548	0,329457	0,3807179	0,436704
Uª	1,4203947	1,5176539	1,628437	1,7567936	1,90857
ρ=C/U ^a	581,78129	544,49768	507,4553	470,37912	432,9728
гкм=гм*1000/M₀	368,75841	348,79948	326,186	301,08998	273,7025
n=αρ/r	1,0141106	1,0034314	1	1,0041977	1,016832
p=n²	1,0284203	1,0068747	1	1,008413	1,033948

5. Построения графиков искажений n, p по таблице 11 на puc. 10.

Рис. 10. Искажения масштабов n, m- голубой цвет, искажения площадей p- красный цвет.

6. Вычисление прямоугольных координат X, У.

Поскольку сетка проекции симметрична относительно осевого меридиана, то координаты X, У вычисляются для части точек, т. е. для меридианов с долготами 25°, 30°, 35° постоянная q выбирается из условия, $q > \rho_{10}$.

 $\rho_{10} = 580$ мм можно выбрать q = 585 мм.

$$x = q - \rho^* (\cos \delta), y = \rho^* (\sin \delta).$$

При вычислении прямоугольных координат для каждой параллели надо брать соответствующий радиус р из табл. 11.

Вычисление координаты Ү (табл. 12).

Таблица 12 **Вычисление координат по оси У**

	.		
λ	10	15	20
формулы		5	0
λ- λcp	0	5	10
		-5	-10
$\delta = \alpha(\lambda - \lambda cp)$		3,213	6,42787
υ-α(λ-λερ)	0	938	61
		-	-
		3,21394	6,427876

Вычисление координаты Х (табл. 13).

Таблица 13

	q		585					
	λ	o°	5°	10°	15°	20°		
	φ							
	δ	-6,42788	-3,213938048	0	3,213938	6,4278		
рад	ианы	-0,11219	-0,056093801	0	0,0560938	0,1121		
C	οεδ	0,993714	0,998427155	1	0,9984272	0,9937		
5	inδ	-0,11195	-0,056064389	0	0,0560644	0,1119		
30°	X	6,876039	4,133762939	3,2187113	4,1337629	6,8760		
30	Υ	-65,1318	-32,61721241	0	32,617212	65,131		
35°	X	43,92527	41,35873378	40,502323	41,358734	43,925		
33	Υ	-60,9578	-30,52692948	0	30,526929	60,957		
40°	X	80,7348	78,34286991	77,544722	78,34287	80,73		
40	Υ	-56,8108	-28,45017007	0	28,45017	56,810		
45°	X	117,5779	115,3607107	114,62088	115,36071	117,57		
45	Υ	-52,6601	-26,37151805	0	26,371518	52,660		
50°	X	154,7491	152,7082006	152,0272	152,7082	154,74		
50	Υ	-48,4724	-24,27435534	0	24,274355	48,472		

По вычисленным прямоугольным координатам строится сетка проекции с учетом ее симметричности относительно осевого меридиана (рис. 11).

Рис. 11. Картографическая сетка нормальной равноугольной конической проекции

8.2. Нормальная равноугольная коническая проекция с 2 главными параллелями

Вычислить координаты и построить сетку нормальной равноугольной конической проекции для территории, ограниченной меридианами λ_3 , λ_B и параллелями ϕ_{10} , ϕ_c (рис. 12). Частота сетки $\Delta \phi = \Delta \lambda$, главный масштаб 1 : M_o . (территория и масштаб те же, что и в задании 2). Параметры проекции α и С найти из условия, что *на двух главных параллелях* с широтами ϕ_1 и ϕ_2 частные масштабы длин равны единице.

Формулы для вычисления полярных координат:

$$x = q - \rho *(\cos \delta), y = \rho * (\sin \delta), \rho = C/U^{\alpha}, \delta = \alpha * \lambda,$$

 $\alpha = \sin \varphi 0, C = r_1 * U_1^{\alpha}/\alpha$

$$q = const$$
, $m = n = \alpha * \rho/r$, $p = n^2$, $\omega = 0$.

Построение картографической сетки (рис.12.)

Рис. 12. Картографическая сетка нормальной равноугольной конической проекции с двумя главными параллелями

Пример и порядок вычисления

1. Образец оформление данных представлены в 8.1.

Данные те же, что при построении нормальной равноугольной картографической проекции с 1 главной параллелью. 2. Особенности вычисления основных параметров проекции (табл. 14).

Вычисляется параметр α (альфа) по формулам:

$$\alpha = (lg \ r1 - lg \ r2) / (lg \ U1 - lg U2).$$

3. Вычисление параметра С:

$$C = r1 * U1^{\alpha} / \alpha = r2 * U2^{\alpha} / \alpha$$

Таблица 14

3. Вычисление основных параметров для картографической сетки

	ф	30	50
Log r		2,14052817	2,0115560
Log U		0,237106145	0,43670406
α (альфа)		0,646159709	
α * Log U		1,1154395	0,28218057
(U)^ α		1,423011592	1,91505198
f MM]	138,2064055	102,696595
Смм	_	304,3664193	304,366419

Допустимые расхождения в значениях C – единицы шестой значащей цифры C ср = 304,366419.

4. Определение дополнительных параметров для вычисления X, Y (табл. 15, 16).

Таблица 15 **Определение параметров N, r, logr**

N	φ	r(в мм) = N*cosφ*1000/M	Logr (в мм)
6380635,314	20	149,895898	2,1757897
6383480,433	30	138,2064055	2,1405282
6386975,691	40	122,3176809	2,0874892
6390701,58	50	102,6965948	2,0115560
6394208,72	60	79,92760899	1,9026968

Таблица 16 Определение параметров у, ф, U, logU.

фи фк	ф в градусах	U числитель	U знамен	U	log U
20	1,603565959	1,428148007	1,002292842	1,42488098	0,153778589
30	2,344604872	1,732050808	1,003354683	1,726259753	0,237106145
40	3,014715629	2,144506921	1,00431634	2,135290282	0,329456924
50	3,593496049	2,747477419	1,005148145	2,733405452	0,436704056
60	4,063246456	3,732050808	1,005824147	3,710440656	0,56942549

5. Вычисление полярных координат ρ и δ в табл. 17.

Таблица 17

Вычисление параметра р и параметров искажений – n, m

ф, Формулы	20	30	40	50	60
log U	0,15377859	0,23710615	0,3294569	0,43670406	0,5694255
U^a	1,25708756	1,42301159	1,6326075	1,91505198	2,3331347
$\rho = C / (U^{\alpha})$	242,120302	213,888925	186,42963	158,933764	130,45386
$r_{MM} = r_{(M)} * 1$	149,895898	138,206405	122,31768	102,696595	79,927609
$n = \alpha * \rho / r$	1,04371358	1	0,9848398	1	1,0546297
$p = n^2$	1,08933803	1	0,9699094	1	1,1122437

Построение графика искажений по параметрам: m, n, p (рис. 13).

Рис. 13. График искажений соответствует вычислениям:

- голубой цвет искажения масштаба n;
- красный цвет искажения площадей р.

Вычисление полярной координаты δ (табл.18).

Таблица 18

Вычисление полярной координаты δ.

λвградусах	40	50	60	70	80
Формулы			λ-λ ср		
	-20	-10	0	10	20
δ = α *(λ- λ cp)	-12,9231942	-6,461597095	0	6,461597095	12,92319419
в градусах					

6. Вычисления прямоугольных координат X, Y (табл. 19).

Поскольку сетка проекции симметрична относительно осевого меридиана, то координаты X, У вычисляются для приведенных точек, т. е. для меридианов с долготами -20°, - 10° , 0° , 10° , 20. Постоянная q выбирается из условия, $q > \rho_{10}$.

Таблица 19

q = const			Вычисление коор	динат по осям	ХиҮ		
243 мм	λ		40	50	60	70	80
	λ - λcp		-20	-10	0	10	20
	δ=	α*(λ - λc μ	-12,92319419	-6,46159709	0	6,461597095	12,92319419
	cosδ		0,974670739	0,99364751	1	0,993647508	0,974670739
	sinδ		-0,223644696	-0,11253724	0	0,11253724	0,223644696
траниі	ф а 14					траниі	ца 17
	20	Х	7,012426436	2,41776554	0,879698199		7,012426436
		Υ	-54,1489212	-27,2475505	0	27,24755045	54,1489212
	30	Х	34,52872356	30,469803	29,11107523	30,46980297	34,52872356
		Υ	-47,83512348	-24,0704692	0	24,07046921	47,83512348
	40	Χ	61,29249156	57,7546596	56,57036679	57,75465959	61,29249156
		Υ	-41,69399858	-20,9802763	0	20,98027633	41,69399858
	50	Х	88,09191066	85,0758614	84,06623592	85,07586143	88,09191066
		Υ	-35,54469329	-17,8859671	0	17,88596711	35,54469329
	60	Х	115,8504422	113,37485	112,5461424	113,3748495	115,8504422
		Υ	-29,17531328	-14,6809171	0	14,68091705	29,17531328

По вычисленным прямоугольным координатам строится сетка проекции с учетом ее симметричности относительно осевого меридиана.

7. Формирование каталога координат для построения проекции и построение сетки проекции (табл. 20).

Таблица 20 **Формирование данных для построения** картографической сетки

У	X
-54,1489	7,0124
-27,2475	2,4177
0	0,8796
27,2475	2,4177
54,1489	7,0124
-47,8351	34,5287
-24,0704	30,7698
0	29,111
24,0704	30,7698
47,8351	34,5287
-41,6939	61,2924
-20,9802	57,7546
0	56,5703
20,9802	57,7546
41,6939	61,2924
-35,5446	88,0919
-17,8859	85,0758
0	84,0662
17,8859	85,0758
35,5446	88,0919
-29,1753	115,8504
-14,6809	113,3748

По точкам строится картографическая сетка рис. 14.

Рис. 14. Картографическая сетка нормальной равноугольной конической проекции с 2 главными параллелями: $\phi 1 = 40^{\circ}$, $\phi 2 = 60^{\circ}$

9. ЛАБОРАТОРНАЯ РАБОТА № 4

ПОСТРОЕНИЕ ЛОКСОДРОМИИ И ОРТОДРОМИИ (ЛИНИИ ПОЛОЖЕНИЯ)

На картографических сетках равноугольной цилиндрической и равноугольной конической проекции построить локсодромию и ортодромию, проходящие через две заданные точки A и B.

 ${\it Локсодромия}$ — линия, пересекающая все меридианы под постоянным углом.

Ортодромия — кратчайшее расстояние между двумя точками на поверхности шара.

Выполнение работы включает следующие этапы.

Исходные данные:

 φA , λA — координаты точки A;

 φB , λB — координаты точки В;

R – средний радиус кривизны, который выбирается из картографических таблиц (прил.) по значению фср. или вычисляется по формуле:

$$R = \sqrt{M * N}$$

Этапы построение локсодромии:

- 1. Построить на картографической сетке равноугольной цилиндрической проекции (из задания 2) точки А и В по географическим координатам, приведенным в табл. 9, с использованием линейного интерполирования.
- 2. Построить на сетке цилиндрической проекции локсодромию, которая изображается прямой линией, соединившей точки A и B.

- 3. Определить графически широты точек, в которых локсодромия пересекает меридианы, расположенные между точками A и B.
- 4. Построить на сетке равноугольной конической проекции (из задания 3) точки A и B, а затем точки пересечения локсодромии с промежуточными меридианами.
- 5. Построить локсодромию на сетке конической проекции, соединив все точки, нанесенные на эту сетку, плавной кривой (локсодромия на сетке конической проекции должна быть обращена выпуклой стороной к экватору).

9.1. Построение локсодромии и ортодромии на конической проекции

Вычисление и построения точек локсодромии и промежуточных точек ортодромии для конических проекций.

Дано: Точки локсодромии табл. 21:

Таблица 21 Исходные данные для вычисления локсодромии

	градусы	радианы	
φα	33	0,575958653	
λα	2	0,034906585	
φb	47,5	0,829031395	
λb	19	0,331612558	

Широты, под которыми линия ортодромии пересечет меридианы 5° , 10° , 15° в.д., вычисляют:

$$tg\phi\ i\ ^\circ=tg(\ ((\phi^\circ A)\ ^*\ cosec\beta^\circ ^*sin\ [(\beta^\circ-\lambda^\circ\ A)+\lambda^\circ\ i])$$
 $ctg\ \beta=ctg\ \phi^\circ A^*\ tg\ \phi^\circ B^*\ ^*cosec(\lambda^\circ\ B-\lambda^\circ\ A)-ctg\ (\lambda^\circ\ B-\lambda^\circ A)$ $\lambda\ i-$ долгота промежуточных меридианов (табл. 22).

Таблица 22

Вычисление про				
λi	5	10	15	
формулы	,	10	15	
tg φa	0	,64940759	3	
cosec B	2	,67110870	6	
<i>β-λα+λi</i>	0,43608403	0,52335	0,61061695	
β-λα+λi(<i>в</i> °)	24,9857744	29,98577	34,9857744	градусы
sin[(β-λα+λi)]	0,42239323	0,499785	0,57337304	в радианах
в радианах tgфi	0,73269946	0,866946	0,99459482	
в градусах tgфi	36,2302132	40,92353	44,8447336	

Полученны три пары координат для ортодромии:

 $\phi 1 = 36,2302^{\circ}$ с.ш., $\lambda 1 = 5^{\circ}$ в.д.;

 $\phi 2 = 40,9235^{\circ}$ с.ш., $\lambda 2 = 10^{\circ}$ в.д.;

 $\phi 3 = 44,8447^{\circ}$ с.ш., $\lambda 3 = 15^{\circ}$ в.д.

Дополнительно вычисляются: Х и У

- 1. х, у для двух точек для начальной и конечной точки локсодромии,
- 2. х, у для трёх точек для промежуточных точек ортодромии.
- 3. Координаты пяти точек добавляются в общий каталог координат.
- 4. Для соответствующих параллелей взять из таблиц У по всем 5 точкам.

Дополняется каталог и наносятся на картографическую сетку, на которой строится ортодромия — прямая линия и локсодромия по точкам которой строится плавная кривая (см. рис. 14).

9.2. Построение локсодромии и ортодромии на цилиндрической проекции

Строится аналогично, как для конической проекции.

Расположение локсодромия и ортодромия на цилиндрической проекции рис. 15.

Рис. 15.Нормальная равноугольная проекция Меркатора с 2 главными параллелями $\phi 1 = 40^{\circ}, \, \phi 2 = 60^{\circ}$

Данные для выполнения заданий даны в табл. 23. Каждый студент выполняет вариант, номер которого совпадает с номером студента в списке ведомости.

Таблица 23 **Данные для выполнения заданий**

$N_{\underline{0}}$	φю	φс	λ_3	$\lambda_{\scriptscriptstyle B}$	Δφ	Mo	То	чка А		Точі	ка
					=					В	
					Δλ		φ		λ	φ	λ
1	20°	60°	40°	80°	10°	1:30 000 00	00	25°	58°	41°	74°
2	30°	50°	0°	20°	5°	1:15 000 00	00	33°	47,5°	2,5°	19°
3	40°	56°	20°	36°	4°	1:10 000 00	00	42°	54°	21°	33°
4	30°	70°	0°	40°	10°	1:25 000 00	00	37°	69°	5°	35,5°
5	60°	76°	24°	40°	4°	1:8 000 000)	62,5°	74°	27°	37,5°
6	20°	40°	20°	40°	5°	1:12 000 00	00	21°	37°	24°	38,5°

7	35°	55°	100°	120°	5°	1:15 000 000	39,5°	54,5°	102°	118°
8	40°	80°	20°	60°	10°	1:30 000 000	47°	77°	26°	51°
9	20°	36°	12°	28°	4°	1:10 000 000	23°	33°	15°	27°
10	40°	60°	50°	70°	5°	1:12 500 000	44°	51°	54°	68°
11	10°	50°	40°	80°	10°	1:25 000 000	12°	43°	48°	77°
12	50°	70°	40°	60°	5°	1:15 000 000	51°	69°	44°	58°
13	5°	45°	5°	45°	10°	1:35 000 000	8°	44°	14°	37°
14	15°	55°	15°	55°	10°	1:25 000 000	17°	51°	20°	52°
15	25°	45°	40°	60°	5°	1:10 000 000	27°	42°	43°	58°
16	45°	85°	30°	70°	10°	1:20 000 000	47°	83°	3°	68°
17	55°	75°	10°	30°	5°	1:35 000 000	57°	72°	13°	29°
18	36°	52°	56°	72°	4°	1:40 000 000	38°	51	57	71
19	0°	40°	25°	65°	10°	1:15 000 000	7°	83°	27°	63°
20	20°	36°	40°	56°	4°	1:25 000 000	22	34	43°	55
21	30°	50°	20°	40°	5°	1:12 000 000	33	49	22°	38
22	40°	56°	16°	32°	4°	1:10 000 000	41	55°	18°	31
23	10°	50°	30°	70°	10°	1:30 000 000	15	55°	33°	78
24	50°	70°	40°	60°	5°	1:15 000 000	52	568	41°	58
25	60°	76°	24°	40°	4°	1:20 000 000	62	74	26°	38
26	35°	55°	100°	120°	5°	1:15 000 000	36	53	23	123
27	40°	80°	20°	60°	10°	1:30 000 000	47	72	25°	56
28	20°	36°	12°	28°	4°	1:10 000 000	23	35	15	26
29	40°	60°	50°	70°	5°	1:12 500 000	44	57	52	68
30	10°	50°	40°	80°	10°	1:25 000 000	4	48	48°	75
31	50°	70°	40°	60°	5°	1:15 000 000	52	68	43	51

9.3. Вычисление длин линий по формулам

Вычислить теоретические значения длин линий по формулам.

Вычисление длины ортодромии (на шаре)
$$\cos\sigma = \sin\varphi_A \cdot \sin\varphi_B + \cos\varphi_A \cdot \cos\varphi_B \cdot \cos(\lambda_B - \lambda_A)$$

$$\sigma(M) = \frac{\sigma^{\circ}}{\rho^{\circ}} \cdot R(M)$$

Перевести σ в градусы, а затем в метры.

9.4. Вычисление длины локсодромии (на шаре) s

Сначала вычисляем азимут локсодромии $\alpha_{noкc}$:

$$tg\alpha_{\scriptscriptstyle DOKC} = \frac{(\lambda_B - \lambda_A)'}{D_B' - D_A'}$$

где D' — меридиональные части, которые выбираются из картографических таблиц по широтам точек A и B.

Найти олокс

Длина локсодромии на шаре вычисляется по формуле:

$$s(M) = \frac{\varphi_B - \varphi_A}{\rho} \cdot R(M) \cdot \sec \alpha_{NOKC}$$

Контроль вычислений: $\sigma < s$.

9.5. Измерить длину линий на сетках обеих проекций

- 1. Измерения в конической проекции.
- Т. к. в конической проекции искажения длин невелики, то измеряем длину линии в масштабе карты (с точностью до $0.5 \, \text{мм}$) и вычисляем ее длину с учетом масштаба.

$$s_{u3M(M)} = \frac{s_{u3M(MM)} \cdot M_o}{1000}$$

Расхождение между вычисленной и измеренной длиной линии не должно превосходить $\pm~2\%$ от теоретического значения.

2. Измерения в цилиндрической проекции.

В проекции Меркатора в отличие от конической проекции искажения длин достигают значительных величин. Поэтому ими нельзя пренебрегать и нужно учитывать при измерениях. С этой целью измеряемую линию разбиваем на отрезки, которые расположены приблизительно симметрично относительно соответствующей параллели (рис. 15). На рисунке приведен пример разбиения линии локсодромии.

Измерение длин линий в цилиндрической проекции проводится двумя способами: с помощью таблицы и с помощью переменного масштаба.

Рис. 15. Разбиения линии локсодромии на отрезки

9.6. Измерения с использованием таблицы

Отрезки Δs_i измеряем и полученные значения заносим в табл. 24.

		n_i	
i	$\Delta s_i(MM)$	ко	Δs_{i}
		лич	$\frac{\Delta s_i}{m}(MM)$
		ОТ	n_{i}
		резков	

Окончательно имеем:

$$s_{u3M(M)} = \frac{s_{u3M(MM)} \cdot M_o}{1000} M$$

Если расхождение с вычисленной длиной составляет $15 \ \kappa m$, то оно находится в пределах допустимого.

а. Измерения с помощью переменного масштаба

Для построения переменного масштаба, используем данные с рис. 15, которые внесём в табл. 25.

Таблица 25 Данные для построения переменного масштаба

φ	10°	16°	22°	28°	34°	40°	46°
n	0,897	0,919	0,952	1,00	1,065	1,152	1,27
<i>1см</i> – <i>n</i>	0,90	0,92	0,95	1,00	1,06	1,15	1,27
СМ							

Левую часть переменного масштаба разбиваем на дополнительные деления для удобства измерений. Окончательный вид переменного масштаба представлен на рис. 16 б.

Рис. 16. Переменный масштаб

Измерения длины линии производим с помощью переменного масштаба, прикладывая измеряемый отрезок Δs_i к соответствующей части переменного масштаба (у данной параллели). Длины отрезков получаем сразу в километрах (рис. 17).

Рис.17. Измерение отрезков Δs_i в км

Измерения записываем в виде суммы:

$$S_{u_{3M}} = \sum_{i=1}^{n} \Delta S_i \kappa M$$

Длина ортодромии измеряется так же, т. е. с помощью переменного масштаба. Расхождения между измеренными и вычисленными значениями длины локсодромии допускаются в пределах $\pm 2\%$.

10. ЛАБОРАТОРНАЯ РАБОТА № 5

10.1. Поперечная внешняя перспективно-азимутальная проекция с позитивным изображением (проекция идеального космического снимка)

Вычислить прямоугольные координаты, масштабы и искажения проекции идеального космического снимка Луны при условии, что космический аппарат осуществляет съемку с заданной высоты H, в масштабе $1:M_o$, координаты под спутниковой точки $\phi_o = \lambda_o = 0^\circ$. Поверхность Луны принять за шар радиуса R = 1738 км.

Формулы для вычисления:

$$X = \frac{HR \sin Z \cos a}{D - R \cos Z}; \quad \text{где } D = R + H,$$

$$Y = \frac{HR \sin Z \sin a}{D - R \cos Z}, \quad \mu_1 = \frac{H(D \cos Z - R)}{(D - R \cos Z)^2},$$

$$\mu_2 = \frac{H}{D - R \cos Z}, \quad p = \mu_1 \, \mu_2, \quad \sin \omega / 2 = \frac{\mu_2 - \mu_1}{\mu_2 + \mu_1}. \quad (5.1)$$

Поскольку широта под спутниковой точки $\phi_0 = 0^\circ$, то вычисляемая проекция является поперечной. Сетки поперечных проекций симметричны относительно осевого меридиана и экватора, и поэтому для ее построения достаточно вычислить координаты $\frac{1}{4}$ части точек.

Пример и порядок вычисления

Пусть
$$H = 70$$
 км, $1: M_o = 1: 10\ 000\ 000, \Delta \phi = \Delta \lambda = 4^\circ$.

1. Перевод линейных величин H, R, D в масштаб карты; H $_{\text{ин}} = (H_{\text{м}} * 1000) / M_{\text{o}}, \;\; R_{\text{мм}} = (R_{\text{м}} * 1000) / M_{\text{o}}$

$$H_{\text{ии}} = (70\ 000*1000) / 10\ 000\ 000 = 7_{\text{мм}}$$

 $R_{\text{мм}} = 173.8_{\text{мм}}, \ D = R + H = 180.8_{\text{мм}}$

В дальнейшем, во всех формулах H, R, D надо брать в масштабе карты и в мм.

2. Определение зенитного расстояния и радиуса граничного альмукантарата p_{rp} .

$$\cos Z_o = \frac{R}{R+H}, \quad \cos Z_o = \frac{173.8}{180.8} = 0.9612832,$$

$$Z_o = 15.9955 \circ p_{re} = \frac{HR \sin Z_o}{1}$$

$$Z_{o} = 15,9955 \,^{\circ}, \, p_{rp} = \frac{HR \sin Z_{o}}{D - R \cos Z_{o}},$$

$$p_{rp} = \frac{7*173.8*\sin 15.9955^{\circ}}{180.8 - 173.8*\cos 15.9955^{\circ}} = 244,19 \text{ mm}$$

3. Переход от географических координат к координатам поперечной системы в табл. 26.

Прежде всего, надо определить количество меридианов и параллелей. Для этого координаты центральной точки ϕ_0 = λ_0 = 0° последовательно увеличивают на заданную частоту сетки, до тех пор пока $\phi \leq Z_o$, $\lambda \leq Z_o$. Например, для рассматриваемого случая меридианы будут иметь следующие долготы: 0° , 4° , 8° , 12° , а параллели следующие широты: 0° , 4° , 8° , 12° .

Затем осуществляют переход от географических координат ϕ и λ к координатам поперечной системы Z и а по формулам:

$$\cos Z = \cos \phi \cos \lambda$$
, $\sin Z \cos a = \sin \phi$,
 $\sin Z \sin a = \cos \phi \sin \lambda$.

Если при вычислении координата Z окажется больше Z_{0} , то координаты таких точек вычислять не надо, т. к. они находятся вне зоны видимости.

Если Вы обратите внимание на повторяемость значений соз Z для различных точек, то сможете сократить объем вычислений величин μ_1 , μ_2 , p, $\dot{\omega}$.

- 4. Вычисление прямоугольных координат X, Y в масштабе и искажений по формуле (5.1).
- 5. После вычисления прямоугольных координат надо построить и вычертить сетку проекции *с учетом ее симметричности*. Граничный альмукантарат, радиуса р_{гр} построить с помощью возможностей программы EXEL (на бумаге можно построить с помощью циркуля).

Таблица 26 Вычисление координат поперечной системы

	λ	0°	4°	8°	12°
	φ				
φ = 0°	cosZ	1	0.997564	0.990268	0.978148
	sinZcosa	0	0	0	0
	sinZsina	0	0.069756	0.139173	0.207912
φ = 4°	cosZ	0.997564	0.995134	0.987856	0.975765
	sinZcosa	0.069756	0.069756	0.069756	0.069756
	sinZsina	0	0.069586	0.138834	0.207405
φ = 8°	cosZ	0.990268	0.987856	0.980631	0.968628
	sinZcosa	0.139173	0.139173	0.139173	0.139173
	sinZsina	0	0.069078	0.137819	0.205888
φ = 12°	cosZ	0.978148	0.975765	0.968628	0.95677
	sinZcosa	0.207912	0.207912	0.207912	$Z > Z_o$

	sinZsina	0	0.068232	0.136132	$Z ightarrow Z_o$
	λ	0°	4°	8°	12°
	φ	-			1-
φ=0°	X	0	0	0	0
	Y	0	114.32	194.81	234.25
	μ_1	1	0.9429	0.8054	0.6483
	μ_2	1	0.8332	0.4856	0.1831
	p	1	0.7857	0.3911	0.1187
	ώ	0°	7.08°	28.68°	68.96°
φ=4°	X	114,32	108.17	93.15	75.69
	Y	0	107.90	185.39	225.05
	μ_1	0,9429	0.8922	0.7683	0.6243
	μ_2	0,8332	0.6960	0.4052	0.1458
	p	0,7856	0.6210	0.3113	0.0910
	ώ	7,08°	14.19°	36.06°	76.83°
00	V	104.01	105.05	162.22	126.07
φ=8°	X	194.81	185.85	163.33	136.97
	Y	0	92.24	161.74	201.15
	μ_1	0.8054	0.7683	0.6753	0.5621
	μ2	0.4856	0.4052	0.2279	0.0600
	p	0.3911	0.3113	0.1539	0.0337
	ώ	28.68°	36.06°	59.39°	107.66°
		22125	227.5	202.12	
φ=12°	X	234.25	225.6	203.13	-
	Y	0	74.04	133.0	-
	μ_1	0.6483	0.6243	0.5621	-
	μ_2	0.1851	0.1458	0.0600	-
	p	0.1187	0.0910	0.0337	-
	ώ	68.06°	76.83°	107.66°	-

Данные по вариантам представлены в табл. 27.

 Таблица 27

 Данные для выполнения задания по вариантам

Вариант	Высота	Масштаб	Частота
	съемки,	$1:M_{o}$	сетки
	Н км	СМ	$\Delta \phi = \Delta \lambda$
1	80	1:5000000	5°
2	70	1:5 000 000	5°
3	300	1:7500000	10°
4	280	1:7500000	10°
5	85	1:4500000	5°
6	90	1:4500000	5°
7	350	1:8 000 000	10°
8	360	1:8 000 000	10°
9	90	1:4000000	5°
10	80	1:4000000	5°
11	400	1:10 000 000	10°
12	420	1:10 000 000	10°
13	95	1:5 000 000	5°
14	100	1:5 000 000	5°
15	450	1:11 000 000	10°
16	480	1:11 000 000	10°
17	100	1:5 000 000	5°
18	130	1:5 000 000	5°
19	500	1:12 000 000	10°
20	550	1:12 000 000	10°
21	70	1:5 000 000	5°
22	65	1:5 000 000	5°
23	105	1:10 000 000	11°
24	430	1:12 000 000	5°
25	470	1:13 000 000	12°

26	95	1:5000000	4°
27	105	1:5000000	5°
28	110	1:7 000 000	5°
29	230	1:10 000 000	10°
30	340	1:11 000 000	10°

10.2. Задачи на общую теорию картографических проекций

По заданным уравнениям проекции определить:

- 1) ортогональность сетки;
- 2) частные масштабы;
- 3) группу проекций по характеру искажений;
- 4) вид сетки меридианов и параллелей.

Для ознакомления с порядком этого задания решим одну задачу с некоторыми пояснениями. Даны уравнения: $x = R sin \phi$, $y = R \lambda$.

Картографируемая поверхность принимается за шар радиуса R.

Для исследования свойств проекции необходимо сначала определить четыре частные производные $x_{\phi}, \, x_{\lambda}, \, y_{\phi}, \, y_{\lambda}$ и коэффициенты Гаусса.

Для рассматриваемой проекции

$$x_{\phi}=Rcos\phi,\,x_{\lambda}=0,$$

$$y_0 = 0$$
, $y_\lambda = R$.

Коэффициенты Гаусса определяются по формулам:

$$f = x_{\phi} * x_{\lambda} + y_{\phi} * y_{\lambda}, \ e = (x_{\phi})^{2} + (y_{\phi})^{2}, \ g = (x_{\lambda})^{2} + (y_{\lambda})^{2},$$
$$h = x_{\phi} * y_{\lambda} - x_{\lambda} * y_{\phi}, \tag{3.2}$$

Подставим в формулу (3.2) полученные значения частных производных

$$f = 0, \ e = R^2 + cos^2 \phi, \ g = R^2, \ h = R^2 \cos \phi \ .$$

После определения коэффициентов Гаусса можно отвечать на поставленные вопросы, которые оформить по образцу табл. 28.

1. Определить ортогональность сетки.

Условие ортогональности f=0. Исследуемая сетка имеет ортогональную сетку.

В противном случае сетка проекции не ортогональна, и следует определить угол между меридианами и параллелями і:

$$\sin i = \frac{h}{\sqrt{eg}}$$

2. Определение частных масштабов и искажений.

В проекциях с ортогональной сеткой $i=90^\circ$ главные направления совпадают с меридианами и параллелями, а масштабы m и n являются экстремальными. В исследуемой проекции $n=\sec\phi$, $m=\cos\phi$, следовательно a=n,b=m.

Искажения углов $\dot{\omega}$ можно определить по одной из приведенных ниже формул:

$$\sin \acute{\omega}/2 = (a - b)/(a + b)$$
 (3.3)

$$tg(45^{\circ} + \acute{\omega}/4) = \sqrt{\frac{a}{b}}$$
 (3.4)

$$tg\dot{\omega}/2 = \frac{1}{2}\sqrt{\frac{m^2 + n^2}{p} - 2}$$
 (3.5)

Таблица 28

Определение параметров проекции аналитическим способом

	Общие формулы	Рассматривае-
		мая задача
Масштаб длин вдоль меридианов m	$m = \frac{\sqrt{e}}{R}$	m = cos°
Масштаб длин вдоль параллелей п	$n = \frac{\sqrt{g}}{R\cos\varphi}$	$n = \frac{1}{\cos \varphi} = \sec \varphi$
Масштаб площади	$p = \frac{h}{R^2 \cos \varphi}$	p = 1
Угол I между мери- дианами и паралле- лями	$\sin i = \frac{h}{\sqrt{eg}}$	$i = 90^{\circ}$ т. к. $f = 0$
Экстремальные мас- штабы		
Максимальный а	$a = \frac{A+B}{2}$	a = secφ
Минимальный д	$b = \frac{A - B}{2}$	b = cosφ
	$A = \sqrt{m^2 + n^2 + 2mn\sin i}$ $B = \sqrt{m^2 + n^2 - 2mn\sin i}$	

Если m>n, то a=m и b=n, если m<n, то a=n и b=m.

Формула (3.4) применяется в случае равновеликих проекций, формула (3.5) выгодно применять для проекций с не ортогональной сеткой. В остальных случаях применяется формула (3.3).

- 3. Определение группы проекций по характеру искажений.
- 3.1. Условие равноугольности:

f = 0, m = n,

В нашем случае:

f = 0, но $m \ne n$, т. е. проекция не равноугольная.

3.2. Условие равновеликости:

 $h = R^2 \cos \phi$ (для шара) или p = 1.

Исследуемая проекция является равновеликой, т. к. р = 1.

Если проекция не равноугольная и не равновеликая, то она произвольная. Среди произвольных проекций могут быть проекции равнопромежуточные, в которых или в = 1 или a = 1. Если проекция имеет ортогональную сетку то она может быть равнопромежуточной вдоль меридианов m = 1 или равнопромежуточной вдоль параллелей n = 1.

4. Определение вида сетки меридианов и параллелей.

Из общей теории картографических проекций [2, 3, 4] известны уравнения меридианов F_1 (x, y, λ) = 0 и уравнения параллелей F_2 (x, y, ϕ) = 0, поэтому для получения уравнения меридианов из заданных уравнений проекции нужно исключить широту ϕ , а для получения уравнения параллелей – долготу λ .

В нашем случае такого исключения ϕ и λ делать не нужно, т. к. абсцисса $x = R \sin \phi - \phi$ ункция только широты, т. е. уравнение абсцисс является одновременно и уравнением параллелей, а ордината $y = R \lambda - \phi$ ункция только долготы, т. е.

уравнение ординат является одновременно уравнением меридианов. Следовательно, вид сетки будет следующим: параллели — прямые, параллельные оси Y, расстояния между ними изменяются пропорционально разности синусов широт, т. е. уменьшаются от экватора к полюсам; меридианы — прямые, параллельные оси X, расстояния между ними одинаковые (нарисовать схематический чертеж сетки меридианов и параллелей).

<u>Примечание.</u> Если прямоугольные координаты проекции являются функциями и широты, и долготы, то для получения уравнений меридианов их нужно решать совместно и избавиться при этом от широты, а для получения уравнения параллелей – избавиться от долготы. Например, если:

$$x = R \cos \varphi \cos \lambda,$$

 $y = R \cos \varphi \sin \lambda,$

то для исключения широты разделим первое уравнение на второе, тогда:

$$x/y = ctg\lambda$$

и $y = x*tg\lambda$

Это уравнение меридианов, т. е. меридианы – прямые, пересекающиеся в одной точке (полюсе). Для исключения же долготы возведем оба уравнения в квадрат и сложим:

$$x^2 + y^2 = R^2 cos^2 \varphi$$

Это уравнение параллелей, параллели — концентрические окружности, радиус которых изменяется пропорционально косинусу широты, т. е. расстояние между параллелями уменьшается от полюса к экватору (радиус экватора равен R).

5. Симметричность картографической сетки.

Картографическая сетка проекции может быть симметричной относительно осевого меридиана и относительно экватора (рис. 18).

Рис. 18. Симметричность картографической сетки

Условия симметричности сетки относительно осевого меридиана:

$$\begin{cases} y_{\lambda=0} = 0 \\ x(\varphi, \lambda) = x(\varphi, -\lambda) \\ y(\varphi, \lambda) = -y(\varphi, -\lambda) \end{cases}$$

Условия симметричности сетки относительно экватора:

$$x_{\varphi=0} = 0$$

$$x(\varphi, \lambda) = -x(-\varphi, \lambda)$$

$$y(\varphi, \lambda) = y(-\varphi, \lambda)$$

Надо отметить, что сетка будет симметричной при одновременном выполнении всех *тех* условий.

В рассматриваемой проекции картографическая сетка является симметричной как относительно осевого меридиана, так и относительно экватора.

Уравнения меридианов и параллелей в общем случае имеют вид:

 $F_1(x, y, \lambda) = 0$ – уравнение меридианов в проекции;

 $F_2(x, y, \varphi) = 0$ – уравнение параллелей в проекции.

В данном случае:

 $x=R\varphi$ – уравнение параллелей;

 $y=R\lambda$ – уравнение меридианов.

Из уравнений видно, что меридианы и параллели имеют вид равноотстоящих прямых линий.

Итак, в данной проекции: географические полюса изображаются прямыми линиями, картографическая сетка симметрична относительно осевого меридиана и экватора, меридианы и параллели изображаются равноотстоящими прямыми линиями.

Эскиз сетки представлен на рис. 19.

Рис. 19. Эскиз картографической сетки

Данные для выполнения задания 5.2. контрольной работы 5 даны ниже, в табл.28.

Таблица 28 Данные для выполнения задания по вариантам

Вари-	Формулы	Bap	Формулы
ант		ант	
1	$x = R \ln tg(45 + \phi/2),$	16	$x = R \cos \varphi \cos \lambda$,
	$y = R \lambda$		$y = R \cos \varphi \sin \lambda$
2	$x = R tg \phi$,	17	$x = R \phi$,
	$y = R \lambda$		$y = R \lambda \cos \phi$
3	$x = 2R \sin(45 - \varphi/2) * \cos \lambda,$	18	$x = R \sin \varphi$,
	$y = 2R \sin(45 - \varphi/2)\sin\lambda$		$y = R \cos \varphi \sin \lambda$

4	$x = 2Rtg(45 - \varphi/2) \cos \lambda,$	19	$x = R \sin \varphi$,
	$y = 2Rtg(45 - \varphi/2) \sin \lambda$		$y = R \lambda \cos \varphi$
5	$x = R (90 - \varphi) \cos \lambda,$	20	$x = 2R tg\phi/2,$
	$y = R(90 - \varphi) \sin \lambda$		$y = R \lambda$
6	$x = R \varphi$	21	$x = 2R tg\varphi$,
	$y = R \cos \varphi \sin$		$y = R \lambda \sin \varphi$
7	$x = R \sin \varphi$,	22	$x = 2R tg\phi/2,$
	$y = R \lambda \sin \varphi$,		$y = R \cos \varphi$
8	$x = R \cos \varphi \cos \lambda$,	23	$x = R \cos \varphi$,
	$y = R \lambda$		$y = R \lambda \cos \varphi$
9	$x = R tg \phi,$	24	$x = 2R tg\varphi/2,$
	$y = R \lambda \sin \varphi$		$y = R \lambda \cos \varphi$
10	$x = R tg\phi$,	25	$x = 2R tg\varphi/2,$
	$y = R \lambda \cos \varphi$		$y = R \lambda \sin \varphi$
11	$x = R \cos \varphi$,	26	$x = R \phi \lambda$,
	$y = R \sin \varphi \sin \lambda$		$y = R \phi \cos \lambda$
12	$x = R tg\phi$,	27	$x = R \phi$,
	$y = R \lambda \cos \varphi$		$y = R \operatorname{ctg} \varphi$,
13	$x = R \varphi$	28	$x = R^{\wedge 2} \cos \varphi$,
	$y = R \lambda$		$y = R \lambda sin\varphi$
14	$x = R^2 \sin \varphi$	29	$x = 2R \cos \varphi$,
	$y = \beta \lambda$		$y = R \lambda$
15	$x = R \phi \cos \lambda$	30	
	$y = R \sin \varphi \sin \lambda$		

Список рекомендуемой литературы

- 1. Астахова И. А. Картография: учебно методическое пособие [текст] / И. А. Астахова. Майкоп: Изд-во МГТУ, 2016.-62 с.
- 2. Бугаевский Л. М. Математическая картография [текст] / Л. М. Бугаевский. М.: Златоуст, 1998. 400 с.
- 3. Вахрамеева Л. А., Бугаевский Л. М., Казакова З. Л. Математическая картография [текст] / Л. А. Вахрамеева, Л. М. Бугаевский, З. Л. Казакова. М.: Недра, 1986. 286 с.
- 4. Гараевская Л. С., Малюсова Н. В. Практическое пособие по картографии [текст] / Л. С. Гараевская, Н. В. Малюсова. М.: Недра, 1990. 204 с.
- 5. Прозоров Г. В. Современные системы картографии: учебное пособие [текст] / Г. В. Прозоров. Изд-во Тюменского гос. нефтегазового ун-та, 2011.-140 с.
- 6. Серапинас Б. Б. Математическая картография [текст] / Б. Б. Серапинас. М.: Изд-во Моск. ун-та, 1988. 142 с.
- 7. Серапинас Б. Б. Основы теории картографических проекций [текст] / Б. Б. Серапинас. М.: Издательский центр «Академия», 2005. 336 с.
- 8. Справочник по картографии [текст] / Под ред Е. И. Халугина. М.: Недра, 1988.-428 с.

ПРИЛОЖЕНИЕ

Величины lg U

φ	lg U	φ	lg U	φ	lg U
0° 0′	0.000 0000	18° 0′	0.137 8405	36° 0′	0.291 1242
30 1 0	0.003 7646 0.007 5295	30	0.141 8071	30	0.295 8032
1 0 30	0.007 3293	19 0 30	0.145 7854 0.149 7758	37 0 30	0.300 5129 0.305 2539
2 0	0.015 0614	20 0	0.153 7787	38 0	0.310 0270
30	0.018 8289	30	0.157 7946	30	0.314 8331
3 0	0.022 5979	21 0	0.161 8236	39 0'	0.319 6729
30	0.026 3686	30	0.165 8664	30	0.324 5473
4 0	0.030 1414	22 0	0.169 9233	40 0	0.329 4572
30	0.033 9165	30	0.173 9946	30	0.334 4035
5 0	0.037 6942	23 0	0.178 0809	41 0	0.339 3870
30	0.041 4748	30	0.182 1825	30	0.344 4088
6 0	0.045 2587	24 0	0.186 2999	42 0	0.349 4698
30	0.049 0461	30	0.190 4334	30	0.354 5710
7 0	0.052 8373	25 0	0.194 5837	43 0	0.359 7135
30	0.056 6326	30	0.198 7510	30	0.364 8983
8 0	0.060 4324	26 0	0.202 9359	44 0	0.370 1266
30	0.064 2368	30	0.207 1389	30	0.375 3994
9 0	0.068 0463	27 0	0.211 3604	45 0	0.380 7179
30	0.071 8612	30	0.215 6009	30	0.386 0833
10 0 30	0.075 6817 0.079 5081	28 0	0.219 8609 0.224 1409	46 0	0.391 4970 0.396 9601
11 0	0.083 3408	29 0	0.224 1409	30 47 0	0.402 4739
30	0.087 1801	30	0.232 7631	30	0.402 4739
12 0	0.091 0264	30 0	0.237 1064	48 0	0.413 6596
30	0.094 8798	30	0.241 4718	30	0.419 3344
13 0'	0.098 7408	31 0	0.245 8599	49 0	0.425 0657
30	0.102 6097	30	0.250 2713	30	0.430 8551
14 0	0.106 4868	32 0	0.254 7066	50 0	0.436 7044
14 0	0.106 4868	32 0	0.254 7066	50 0	0.436 7044
30	0.110 3725	30	0.259 1664	30	0.442 6151
15 0	0.114 2670	33 0	0.263 6513	51 0	0.448 5891
30	0.118 1708	30	0.268 1620	30	0.454 6282
16 0	0.122 0842	34 0	0.272 6990	52 0	0.460 7343
30	0.126 0075	30	0.277 2630	30	0.466 9093
17 0	0.129 9411	35 0			
			0.281 8548		0.473 1553
30	0.133 8853	30	0.286 4749	30	0.479 4744

φ	lg U	φ	lg U	φ	lg U
54° 0′	0.485 8688	67° 0′	0.688 8565	80° 0′	1.055 1792
30	0.492 3408	30	0.698 6474	30.	1.077 5592
55 0	0.498 8929	68 0	0.708 6473	81 0	1.101 1384
30	0.505 5275	30	0.718 8659	30	1.126 0549
56 O	0.512 2473	69 0	0.729 3139	82 0	1.152 4713
30	0.519 0550	30	0.740 0026	30	1.180 5822
57 0	0.525 9534	70 0	0.750 9442	83 0	1.210 6223
30	0.532 9455	30	0.762 1518	30	1.242 8785
58 0	0.540 0344	71 0	0.773 6394	84 0	1.277 7068
30	0.547 2234	30	0.785 4224	30	1.315 5563
59 0	0.554 5159	72 0	0.797 5172	85 0	1.357 0046
30	0.561 9155	30	0.809 9418	30	1.402 8124
60 0	0.569 4259	73 0	0.822 7156	86 0	1.454 0099
30	0.577 0510	30	0.835 8597	30	1.512 0415
61 0	0.584 7952	74 0	0.849 3974	87 0	1.579 0227
30	0.592 6625	30	0.863 3539	30	1.658 2331
62 0	0.600 6578	75 0	0.877 7572	88 0	1.755 1669
30	0.608 7858	30	0.892 6378	30	1.880 1241
63 0	0.617 0516	76 0	0.908 0297	89 0	2.056 2286
30	0.625 4606	30	0.923 9705	30	2.357 2666
64 0	0.634 0185	77 0	0.940 5021	90 0	- 00
30	0.642 7313	30	0.957 6712		
65 0	0.651 6054	78 0	0.975 5303		1
30	0.660 6475	30	0.994 1387		1
66 0	0.669 8649	79 0	1.013 5634		
30	0.679 2652	30	1.033 8811		

Величины N * ctg φ

φ	N ctg φ	φ	N ctg φ	φ	N ctg φ
0° 0′	00	9° 0′	40 273,95	18° 0′	19 636,50
30	730 874,7	30	38 118,36	30	19 068,99
1 10	365 409,8	10 0	36 176,48	19 0	18 530,34
30	243 575,9	30	34 417,76	30	18 018,33
2 0	182 649,8	11 0	32 817,22	20 0	17 530,95
30	146 086,8 121 705,3	12 0	31 354,25	30 21 0	17 066,40 16 623,04
30	104 284,7	30	30 011,63 28 774,92	30	16 199,40
4 0	91 214,64	13 0	27 631,89	22 0	15 794,13
30	81 044,96	30	26 572,15	30	15 406,00
5 0	72 905,53	14 0	25 586,76	23 0	15 033,89
30	66 242,74	30	24 668,02	30	14 676,77
6 0	60 687,17	15 0	23 809,27	24 0	14 333,71
30	55 983,54	30	23 004,71	30	14 033,84
7 0	51 949,22	16 0	22 249,24	25 0	13 686,37
30	48 450,34	30	21 538,41	30	13 380,57
8 0 30	45 386,51 42 680,95	17 0 30	20 868,27 20 235,33	26 0 30	13 085,76 12 801,31
27° 0′			5 555,123	71° 0′	2 202,806
30			5 458,108	30	2 140,583
28 0	12 004.	59 1 50 0	5 362.525	72 0	2 078.720

φ	N ctg φ	φ	N etg φ	φ	N ctg φ
28 0	12 004,59	50 0	5 362,525	72 0	2 078,720
	11 756,23	30	5 268,328	30	2 017,203
29° 0′	11 515,72	51 0	5 175,473	73 0	1 956,021
30	11 282,67	30	5 083,917	30	1 895,162
30 0	11 056,70	52 0	4 993,620	74 0	1 834,618
30	10 837,46	30	4 904,542	30	1 774,367
31 0	10 624,62	53 0	4 816,645	75 0	1 714,40°
30	10 417,87	30	4 729,893	30	1 654,72°
32 0	10 216,93	54 0	4 644,250	76 0	1 595,310
30	10 021,53	30	4 559,683	30	1 536,150
33 0	9 831,401	55 0	4 476,159	77 0	1 477,23
	9 646,317	30	4 393,645	30	1 418,55
34 0	9 466,048	56 0	4 312,111	78 0	1 360,10
30	9 290,384	30	4 231,527	30	1 301,85
35 0	9 119,124	57 0	4 151,866	79 0	1 243,82
30	8 952,079	30	4 073,098	30	1 185,98
36 0	8 789,069	58 0	3 995,197	80 0	1 128,32
30	8 629,928	30	3 918,138	30	1 070,84
37 0	8 474,495	59 0	3 841,895	81 0	1 013,52
30	8 322,619	30	3 766,443		956,37
38 0	8 174,157	60 0	3 691,759	82 0	899,36
30	8 028,973	30	3 617,821	30	842,48
39 0	7 886,937	61 0	3 544,605	83 0	785,74
30	7 747,928	30	3 472,090	30	729,12
40 0	7 611,829	62 0	3 400,256	84 0	672,61
30	7 478,529	30	3 329,082	30	616,20

Φ	N ctg φ	φ	N ctg φ	φ	N ctg φ
41 0	7 347,924	63 0	3 258,547	85 0	559,887
	7 219,911	30	3 188,634	30	503,657
42 0	7 094,397	64 0	3 119,323	86 0	447,503
30	6 971,290	30	3 050,595	30	391,417
43 0	6 850,502	65 0	2 982,434	87 0	335,391
30	6 731,951	30	2 914,822	30	279,415
44 0	6 615,559	66 0	2 847,743	88 0	223,481
30	6 501,247	30	2 781,179	30	167,582
45 0	6 388,945	67 0	2 715,115	89 0	111,707
30	6 278,583	30	2 649,535	30	55,849
46 0 30	6 170,094 6 063,415	68 0 30	2 584,425 2 519,768	90 0	0
47 0 30	5 958,485 5 855,246	69 0 30	2 455,552 2 391,761		
48 0 30	5 753,642 5 653,816	70 0 30	2 328,382 2 265,402		

Радиусы параллелей r, м

φ	'	φ	'	φ	,
0° 0′	6 378 245	8° 0′	6 316 582	16° 0′	6 132 722
30	6 378 004	30	6 308 647	30	6 117 239
1 0	6 377 280	9 0	6 300 234	17 0	6 101 292
30	6 376 074	30	6 291 345	30	6 084 882
2 0	6 374 385	10 0	6 281 979	18 0	6 068 011
30	6 372 215	30	6 272 138	30	6 050 680
3 0	6 369 562	11 0	6 261 822	19 0	6 032 890
30	6 366 428	30	6 251 031	30	6 014 642
4 0	6 362 812	12 0	6 239 768	20 0	5 995 938
30	6 358 714	30	6 228 032	30	5 976 778
5 0	6 354 135	13 0	6 215 824	21 0	5 957 166
30	6 349 076	30	6 203 145	30	5 937 101
6 0	6 343 536	14 0	6 189 996	22 0	5 916 585
30	6 337 516	30	6 176 379	30	5 895 620
7 0	6 331 017	15 0	6 162 293	23 0	5 874 208
30	6 324 039	30	6 147 740	30	5 852 349
24° 0′	5 830 046	47° 0′	4 357 760	70° 0′	2 187 964
30	5 807 299	30	4 316 940	30	2 135 462
25 0	5 784 112	48 0	4 275 789	71 0	2 082 794
30	5 760 484	30	4 234 309	30	2 029 966

φ	,	φ	,	φ	,
26 0	5 736 419	49 0	4 192 505	72 0	1 976 980
30	5 711 918	30	4 150 378	30	1 923 841
27 0	5 686 982	50 0	4 107 933	73 0	1 870 552
30	5 661 614	30	4 065 171	30	1 817 119
28 0	5 635 815	51 0	4 022 098	74 0	1 763 545
30	5 609 587	30	3 978 715	30	1 709 834
29 0	5 582 932	52 0	3 935 026	75 0	1 655 990
	5 555 852	30	3 891 034	30	1 602 018
30 0	5 528 349	53 0	3 846 744	76 0	1 547 922
30	5 500 426	30	3 802 157	30	1 493 706
31 0	5 472 083	54 0	3 757 278	77 0	1 439 374
30	5 443 324	30	3 712 109	30	1 384 930
32 0	5 414 149	55 0	3 666 654	78 0	1 330 378
30	5 384 562	30	3 620 918	30	1 275 724
33 0	5 354 565	56 0	3 574 902	79 0	1 220 970
30	5 324 159	30	3 528 611	30	1 166 122
34 0	5 293 347	57 0	3 482 047	80 0	1 111 183
30	5 262 132	30	3 435 216	30	1 056 158
35 0	5 230 514	58 0	3 388 120	81 0	1 001 051
30	5 198 498	30	3 340 762	30	945 866
36 0	5 166 085	59 0	3 293 147	82 0	890 608
30	5 133 278	30	3 245 277	30	835 280
37 0	5 100 079	60 0 30	3 197 158	83 0 30	779 888 724 435
30 38 0	5 032 514	61 0	3 100 182	84 0	668 926 613 365
30 39 0	4 998 153 4 963 410	30 62 0	3 051 333 3 002 248 2 952 932	85 0 30	557 756 502 104
30 40 0	4 928 288 4 892 790	30 63 0	2 903 387	86 0	446 413
40 0	4 892 790	63 0	2 903 387	86 0	446 413
30	4 856 916	30	2 853 618	30	390 687
41 0	4 820 671	64 0 30	2 803 629 2 753 423	87 0 30	334 931 279 149
42 0	4 747 078	65 0	2 703 003	88 0	223 345
30	4 709 735	30	2 652 376	30	167 524
43 0	4 672 031	66 0	2 601 542	89 0	111 690
30	4 633 970	30	2 550 508	30	55 847
44 0 30	4 595 553 4 556 784	67 0 30	2 499 276 2 447 851	90 0	0
45 0 30	4 517 666 4 478 202	68 0 30	2 396 237 2 344 437		
46 0 30	4 438 394 4 398 246	69 0 30	2 292 455 2 240 296		

Величины lg r

φ	lg /	φ	l <u>e</u> r	φ	lg r
0° 0′	6.804 7012	26° 0′	6.758 6409	52° 0′	6.594 9476
30	6.804 6848	30	6.756 7819	30	6.590 0651
1 0	6.804 6355	27 0	6.754 8818	53 0	6.585 0932
30	6 804 5533	30	6.752 9402	30	6.580 0300
2 0	6.804 4383	28 0	6.750 9567	54 0	6.574 8733
30	6.804 2904	30	6.748 9309	30	6.569 6207
3 0	6.804 1096	29 0	6.746 8623	55 0	6.564 2700
30	6.803 8958	30	6.744 7507	30	6.558 8186
4 0	6.803 6491	30 0	6.742 5955	56 0	6.553 2641
30	6.803 3693	30	6.740 3963	30	6.547 6037
5 0	6.803 0565	31 0	6.738 1527	57 0	6.541 8347
30	6.802 7105	30	6.735 8642	30	6.535 9540
6 0	6.802 3314	32 0	6.733 5302	58 0	6.529 9587
30	6.801 9191	30	6.731 1504	30	6.523 8455
7 0	6.801 4735	33 0	6.728 7242	59 0	6.517 6111
30	6.800 9945	30	6.726 2510	30	6.511 2518
8 0	6.800 4821	34 0	6.723 7304	60 0	6.504 7640
30	6.799 9362	30	6.721 1617	30	6.498 1438
9 0	6.799 3567	35 0	6.718 5444	61 0	6.491 3871
30	6.798 7435	30	6.715 8779	. 30	6.484 4895
10 0	6.798 0965	36 0	6.713 1616	62 0	6.477 4466
30	6.797 4156	30	6.710 3948	30	6.470 2534
11 0	6.796 7007	37 0	6.707 5769	63 0	6.462 9049
30	6.795 9517	30	6.704 7072	30	6.455 3958
12 0	6.795 1684	38 0	6.701 7850	64 0	6.447 7201
30	6.794 3508	30	6.698 8096	30	6.439 8729
13 0	6.793 4987	39 0	6.695 7802	65 0	6.431 8466
30	6.792 6119	30	6.692 6961	30	6.423 6350
14 0	6.791 6904	40 0	6.689 5565	66 0	6.415 2309
30	6.790 7339	30	6.686 3606	30	6.406 6267
15 0	6.789 7424	41 0	6.683 1075	67 0	6.397 8143
15 0	6.789 7424	41 0	6.683 1075	67 0	6.397 8143
30	6.788 7155	30	6.679 7964	30	6.388 7850
16 0	6.787 6533	42 0	6.676 4264	68 0	6.379 5297
30	6.786 5554	30	6.672 9965	30	6.370 0385
17 0	6.785 4218	43 0	6.669 5057	69 0	6.360 3009
30	6.784 2522	30	6.665 9532	30	
18 0	6.783 0464	44 0	6.662 3378		6.350 3055
30	6 701 9040	20	C CEO CEOE	70 0	6.340 0401

φ	lg r	φ	lg r	φ	lg r
30	6.781 8042	30	6.658 6585	70 0	0.340 0401
19 0	6.780 5254	45 0	6.654 9141	30	6.329 4918
30	6.779 2098	30	6.651 1037	71 0	6.318 6464
20 0	6.777 8571	46 0	6.647 2259	30	6.307 4887
30	6.776 4672	30	6.643 2795	72 0	6.296 0022
21 0	6.775 0397	47 0	6.639 2633	30	6.284 1691
30	6.773 5744	30	6.635 1760	73 0	6.271 9698
22 0	6.772 0711	48 0	6.631 0163	30	6.259 3833
30 23 0	6.770 5295 6.768 9493	30 49 0	6.626 7826 6.622 4736	74 0	6.246 3865
30	6.767 3302	30	6.618 0877	30	6.232 9539
24 0	6.765 6719	50 0	6.613 6233	75 0	6.219 0578
30	6.763 9742	30	6.609 0788	30	6.204 6675
25 0	6.762 2367	51 0	6.604 4526	76 0	6.189 7491
30	6,760 4590	30	6.599 7428	30	6.174 2651
77° 0′ 30 78 0 30	6.158 1735 6.141 4278 6.123 9752 6.105 7567	82° 0′ 30 83 0 30	5.949 6865 5.921 8323 5.892 0323 5.859 9996	87° 0′ 30 88 0 30	5.524 9557 5.445 8363 5.348 9769 5.224 0776
			1		
77° 0′	6.158 1735	82° 0′	5.949 6865	87° 0'	5.524 9557
30	6.141 4278	30	5.921 8323	30	5.445 8363
78 0	6.123 9752	83 0	5.892 0323	88 0	5.348 9769
30	6.105 7567	30	5.859 9996	30	5.224 0776
79 0	6.086 7051	84 0	5.825 3781	89 0	5.048 0144
30	6.066 7440	30	5.787 7190	30	4.747 0013
80 0	6.045 7856	85 0	5.746 4444	90 0	
30	6.023 7289	30	5.700 7938		
81 0	6.000 4562	86 0	5.649 7369		
30	5.975 8297	30	5.591 8294		

Содержание

ПРЕДИСЛОВИЕ	3
1. ПРОГРАММА КУРСА	
2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ	
КУРСА	8
3. ОБРАЗЕЦ ОФОРМЛЕНИЯ ЛАБОРАТОРНЫХ	
РАБОТ	10
4. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ЛАБОРАТОР-	
НЫХ РАБОТ	11
4.1. Вывод общей формулы частного масштаба. Масшта	-
бы по меридианам и параллелям	11
4.2. Общие формулы проекций	14
5. ПОСТРОЕНИЕ КАРТОГРАФИЧЕСКИХ СЕТОК НОР-	
МАЛЬНЫХ ПРОЕКЦИЙ. ОБЩИЕ УКАЗАНИЯ	16
6. ЛАБОРАТОРНАЯ РАБОТА № 1	18
6.1. Вычисление радиуса кривизны меридиана m и радиус	2
кривизны 1-ого вертикала (п - нормали) по формулам	18
6.2. Вычисление размеров рамки трапеции	19
7. ЛАБОРАТОРНАЯ РАБОТА № 2	25
7.1. Нормальная равноугольная цилиндрическая проек-	
ция с одной главной параллелью	25
8. ЛАБОРАТОРНАЯ РАБОТА № 3	31
8.1. Нормальная равноугольная коническая проекция	
с 1 главной параллелью	31
8.2. Нормальная равноугольная коническая проекция	
с 2 главными параллелями	36
9. ЛАБОРАТОРНАЯ РАБОТА № 4	42
9.1. Построение локсодромии и ортодромии на кони-	
ческой проекции	43
9.2. Построение локсодромии и ортодромии на ци-	
линдрической проекции	45

9.3. Вычисление длин линий по формулам	46
9.4. Вычисление длины локсодромии (на шаре) s	47
9.5. Измерить длину линий на сетках обеих проекций	47
9.6. Измерения с использованием таблицы	49
10. ЛАБОРАТОРНАЯ РАБОТА № 5	52
10.1. Поперечная внешняя перспективно-азимутальная	
проекция с позитивным изображением (проекция иде-	
ального космического снимка)	52
10.2. Задачи на общую теорию картографических про-	
екций	57
Список рекомендуемой литературы	66
ПРИЛОЖЕНИЕ	67

Учебное издание

Математическая картография: методические указания по выполнению лабораторных работ

Составители: Копанев Николай Иванович, Копанева Ирина Михайловна, Рублева Елена Алексеевна

Авторская редакция Компьютерная верстка: Т.В. Опарина

Издательский центр «Удмуртский университет» 426034, г. Ижевск, ул. Ломоносова, 4Б, каб. 021 Тел.: + 7 (3412) 916-364, E-mail: editorial@udsu.ru