Deena ¶

20104016

libraries

```
In [1]: import numpy as np
import pandas as pd
```

importing data set

```
In [2]: df=pd.read_csv("4_drug200.csv")
df

Age Sex BP Cholesterol Na to K Drug
```

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

mean median mode()

```
In [3]: df.mean()
```

Out[3]: Age 44.315000 Na_to_K 16.084485 dtype: float64

In [5]: df.mode()

Out[5]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	47.0	М	HIGH	HIGH	12.006	drugY
1	NaN	NaN	NaN	NaN	18.295	NaN

describe ()

```
In [6]: df.describe()
```

Out[6]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

sum()

cumsum ()

```
In [8]: df.cumsum()
```

Out[8]:

	Age	Sex	
0	23	F	_
1	70	FM	
2	117	FMM	
3	145	FMMF	
4	206	FMMFF	
195	8732	${\bf FMMFFFFMMMFMMFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOR
196	8748	${\sf FMMFFFFMMMFMMFFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOR
197	8800	${\sf FMMFFFFMMMFMMFFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOR
198	8823	${\sf FMMFFFFMMMFMMFFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOF
199	8863	${\sf FMMFFFFMMMFMMFFFMFMFMMFMMMFMFFMMFF}$	HIGHLOWLOWNOR

200 rows × 6 columns

min() and min()

```
In [9]: df.min()
 Out[9]: Age
                            15
                             F
          Sex
          ΒP
                          HIGH
          Cholesterol
                          HIGH
          Na_to_K
                         6.269
          Drug
                         drugA
          dtype: object
In [10]: df.max()
Out[10]: Age
                             74
                              Μ
          Sex
          BP
                         NORMAL
          Cholesterol
                         NORMAL
          Na_to_K
                         38.247
          Drug
                          drugY
          dtype: object
```

count()

Covariance

pearsonr and spearmanr

```
In [14]: from scipy.stats import pearsonr
    from scipy.stats import spearmanr

In [15]: pearsonr(df['Age'],df['Na_to_K'])
Out[15]: (-0.06311949726772592, 0.3745756399034559)

In [16]: spearmanr(df['Age'],df['Na_to_K'])
Out[16]: SpearmanrResult(correlation=-0.047273882688479915, pvalue=0.5062200581387418)
```