Math 321 Lecture 24

Yuchong Pan

March 6, 2019

1 Fourier Series (Cont'd)

1.1 Inner Product Spaces

Definition 1. Let V be a vector space over \mathbb{C} (or \mathbb{R}). Say $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ or \mathbb{R} is an **inner product** if it obeys the following properties:

- 1. Conjugate symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$ for all $\mathbf{v}, \mathbf{w} \in V$.
- 2. Linearity in the first coordinate:

$$\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle, \qquad \forall \alpha \in \mathbb{C}, \mathbf{v}, \mathbf{w} \in V,$$
$$\langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w} \rangle = \langle \mathbf{v}_1, \mathbf{w} \rangle + \langle \mathbf{v}_2, \mathbf{w} \rangle, \qquad \forall \mathbf{v}_1, \mathbf{v}_2, \mathbf{w} \in V.$$

3. Positive definiteness: For any $\mathbf{v} \in V$, $\langle \mathbf{v}, \mathbf{v} \rangle$ is a non-negative real number. $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

Examples:

1. \mathbb{R}^n or \mathbb{C}^n . Let $\mathbf{v} = (v_1, \dots, v_n)$ and $\mathbf{w} = (w_1, \dots, w_n)$. Then,

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{j=1}^{n} v_j \overline{w_j} = \text{Euclidean dot product of } \mathbf{v} \text{ and } \mathbf{w}.$$

2. $\ell^2(\mathbb{N}) = \left\{ \mathbf{x} = (x_1, x_2, x_3, \ldots) : x_j \in \mathbb{C}, \sum_{j=1}^{\infty} |x_j|^2 < \infty \right\}$. Define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}.$$

This is well-defined as an absolutely convergent infinite series because

$$\sum_{j=1}^{n} \|x_j \overline{y_j}\| \underbrace{\leq}_{\text{Cauchy-Schwarz}} \left(\sum_{j=1}^{n} |x_j|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |y_j|^2 \right)^{\frac{1}{2}},$$

and let $n \to \infty$.

Math 321 Lecture 24 Yuchong Pan

3. $L_*^2[-\pi,\pi] = \mathcal{C}^{2\pi}$, equipped with the norm

$$||f||_2 = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right]^{\frac{1}{2}}.$$

(Aside: $L^2[0,1] = \left\{ f: \int_0^1 |f(x)|^2 dx < \infty \right\}$.) Define

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx.$$

Facts:

- 1. Every inner product generates a norm on V; $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. Check that this obeys the properties of a norm.
- 2. Every inner product obeys the Cauchy-Swartz inequality

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| \cdot ||\mathbf{w}||.$$
 (Exercise)

3. Note that 2 offers a way to define the notion of "angle" between two vectors \mathbf{v} and \mathbf{w} ; we say that the angle between \mathbf{v} and \mathbf{w} is θ if

$$\cos \theta = \frac{|\langle \mathbf{v}, \mathbf{w} \rangle|}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|}.$$

4. Many identities from Eucliean geometry carry over to an inner product space V.

Math 321 Lecture 24 Yuchong Pan

(a) **Pythagorean theorem:** Suppose $\mathbf{v}, \mathbf{w} \in V$ with $\mathbf{v} \perp \mathbf{w}$ (i.e., $\langle \mathbf{v}, \mathbf{w} \rangle = 0$). Then, $\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$.

(b) Parallelogram law:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2 [\|\mathbf{x}\| + \|\mathbf{y}\|^2],$$

for all \mathbf{x} , \mathbf{y} in an inner product space.

Exercise: Use the parallelogram law to show that if ℓ^p or L^p_* is an inner product space, then p=2.

1.2 Uniform Convergence (or Lackthereof) of Fourier Series

Message:

- 1. If f is merely known to be continuous and 2π -periodic, then it is *not* in general true that $S_n f \xrightarrow{n \to \infty} f$ uniformly (i.e., $\sup_{x \in [-\pi,\pi]} |s_n f(x) f(x)| = ||s_n f f||_{\infty} \xrightarrow{n \to \infty} 0$) or even pointwise.
- 2. Plancherel: $||s_n f f||_2 \xrightarrow{n \to \infty} 0$.

$$\underbrace{\frac{\text{uniform convergence}}{f_n \to f \text{ uniformly} \Leftrightarrow \sup_{x \mid f_n(x) - f(x) \mid}} \Rightarrow \underbrace{\frac{\text{pointwise convergence}}{\text{For every } x, f_n(x) \xrightarrow{n \to \infty} f(x)}}_{\text{For every } x, f_n(x) \xrightarrow{n \to \infty} f(x)$$

$$L^2 \text{ convergence: } \int_{-\pi}^{\pi} |f_n(x) - f(x)|^2 \to 0.$$