\\

5

10

15

20

25

1. (Amended) An enhancement mode metal-oxide-compound semiconductor field effect transistor comprising:

a compound semiconductor wafer structure having an upper surface;

a stoichiometric Ga₂O₃ gate oxide layer positioned on upper surface of said compound semiconductor wafer structure;

a stable refractory metal gate electrode positioned on upper surface of said stoichiometric Ga₂O₃ gate oxide layer;

source and drain ion implants self-aligned to the gate electrode; and source and drain ohmic contacts positioned on ion implanted source and drain areas[.],

wherein the refractory metal gate electrode comprises a refractory metal selected from the group consisting of W, WN or WSi or combinations thereof.

- 2. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the stoichiometric Ga₂O₃ gate oxide layer forms an atomically abrupt interface with the upper surface of the compound semiconductor wafer structure.
- 3. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the stoichiometric Ga₂O₃ gate oxide layer has a thickness of 20 200 Å.
- 4. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the Ga₂O₃ gate oxide layer protects the upper surface of the compound semiconductor wafer structure.
- 5. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the refractory metal gate electrode comprises a refractory metal which is stable in presence of a Ga₂O₃ gate oxide layer at an elevated temperature of 700 °C and above.

PLEASE CANCEL CLAIM 6 WITHOUT PREJUDICE

- 7. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the source and drain ion implants comprise Sisaid enhancement mode metal-oxide-compound semiconductor field effect transistor being an n-channel device.
- 8. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the source and drain ion implants comprise and Be/F, said enhancement mode metal-oxide-compound semiconductor field effect transistor being a p-channel device.

10

15

- 9. (Amended) An enhancement mode metal-oxide-compound semiconductor field effect transistor [as claimed in claim 1] comprising:
- a compound semiconductor wafer structure having an upper surface; a stoichiometric Ga₂O₃ gate oxide layer positioned on upper surface of said compound semiconductor wafer structure;
- a stable refractory metal gate electrode positioned on upper surface of said stoichiometric Ga₂O₃ gate oxide layer;

source and drain ion implants self-aligned to the gate electrode; and
source and drain ohmic contacts positioned on ion implanted source and drain areas,
wherein dielectric spacers are positioned on sidewalls of the stable refractory gate
metal electrode.

20

10. (Amended) An enhancement mode metal-oxide-compound semiconductor field effect transistor [as claimed in claim 1] <u>comprising</u>:

25.

a compound semiconductor wafer structure having an upper surface; a stoichiometric Ga₂O₃ gate oxide layer positioned on upper surface of said compound semiconductor wafer structure;

a stable refractory metal gate electrode positioned on upper surface of said stoichiometric Ga₂O₃ gate oxide layer;

30

source and drain ion implants self-aligned to the gate electrode; and
source and drain ohmic contacts positioned on ion implanted source and drain areas,
wherein the compound semiconductor wafer structure comprises a wider band gap
spacer layer and a narrower band gap channel layer.

17.
18. (Amended) An enhancement mode metal-oxide-compound semiconductor field effect transistor [as claimed in claim 1] comprising:

a compound semiconductor wafer structure having an upper surface; a stoichiometric Ga₂O₃ gate oxide layer positioned on upper surface of said compound semiconductor wafer structure;

a stable refractory metal gate electrode positioned on upper surface of said stoichiometric Ga₂O₃ gate oxide layer;

source and drain ion implants self-aligned to the gate electrode; and source and drain ohmic contacts positioned on ion implanted source and drain areas, wherein the compound semiconductor wafer structure comprises a Al_xGa_{1-x}As, In_yGa_{1-y}As, or In_zGa_{1-z}P layer, said layer being positioned on upper surface of a compound semiconductor substrate.

/15

5

10

19. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 18 wherein the compound semiconductor substrate includes a GaAs based semiconductor wafer.

PATENT GE04270

BEST AVAILABLE COPY

- 11. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 10 wherein the wider band gap spacer layer is positioned between the gate oxide layer and the narrower band gap channel layer.
- 12. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 11 wherein the wider band gap spacer layer has a thickness of between 3 200 Å.
- 13. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 11 wherein the wider band gap spacer layer comprises either Al_xGa_{1-x}As or In_zGa_{1-z}P or a combination thereof.
 - 14. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 13 wherein the narrower band gap channel layer has a thickness of 10 300 Å.
 - 15. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 10 wherein the narrower band gap channel layer is positioned between the wider band gap spacer layer and a buffer layer.
 - 16. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 15 wherein the narrower band gap channel layer comprises In_yGa_{1-y}As.
- 25 17. An enhancement mode metal-oxide-compound semiconductor field effect transistor as claimed in claim 1 wherein the upper surface of the compound semiconductor wafer structure comprises GaAs.