TABLE 2. VISCOSITY CHANGE RELATIVE TO NEAT PP AT HIGH STRESS/LOW-MODERATE SHEAR RATE

		Particle size			Viscosity at			Λ	Viscosity at	
	·	(mesh/ microns)						-	2007	
Stress (Pa)			721	3822	6154	7809	353	3012	3822	6154
A. NEAT PP	. PP	-	2441	2100	1348	1049	1025	870	781	372
B. AMOI	AMORPHOUS SOLIDS									
A1	Natural Al-Si	800	-1%	-14%	-23%	-38%	%0	-10%	-25%	+4%
A2	Natural Al-Si	800	%0	-22%	-18%	-16%	+14%	4%	%- -8%	+27%
A3	Opal	800	:	1	-	1	1	:	1	:
A4	Synthetic Al-Si	800	+3%	+4%	-7%	-21%	+12%	4%	-1%	+22%
A5	Carbon	1200	+1%	+5%	+2%	-13%	+12%	+4%	-3%	+16%
C. AMOR	C. AMORPHOUS/CRYSTAL	ALLINE								
A1	Natural Al-Si 90%/10%	325	-3%	-19%	%9-	%6-	%6+	-11%	-32%	:
A 1	Natural Al-Si 50%/50%	325	-2%	-3%	%0	+5%	+1%	-16%	-24%	%8+
A 1	Natural Al-Si 10%/90%	325	-2%	-4%	-1%	1	+2%	-16%	-21%	+13%
D. PART	D. PARTICLE SIZE									
A1	Natural Al-Si	270	1	1	-		1	:	:	:
A1	Natural Al-Si	325	-2%.	%8-	%9 +	4%	-1%	-19%	-24%	:
A1	Natural Al-Si	800	-1%	-14%	-23%	-38%	%0	-10%	-25%	+4%
Al	Natural Al-Si	30-45	-2%	-10%	+3%	-2%	%8 +	-1%	-5%	+19%
Al	Natural Al-Si	15-30	-3%	-3%	+10%	4%	+1%	-13%	-23%	1
A1	Natural Al-Si	9-15	-1%	-3%	+10%	-4%	%/+	-13%	-23%	1
A1	Natural Al-Si	5-9	-2%	-18%	-7%	-11%	%7-	-10%	-10%	+18%
A1	Natural Al-Si	2-7	-2%	-12%	+2%	+10%	-3%	%6-	-11%	+10%
A1	Natural Al-Si	4	+1%	-7%	-14%	-14%	+4%	%6 -	-17%	+1%

E. CONCE	E. CONCENTRATION (WT PERCENT)	PERCENT	(J							
Al	Natural Al-Si (0.4%)	800	%0	-2%	-10%	1	+4%	%9-	-11%	+21%
A1	Natural Al-Si (0.75%)	800	-1%	-14%	-23%	-38%	%0	-10%	-25%	+4%
A1	Natural Al-Si (0.75%)	325	-3%	-19%	-7%	%9-	%9+	-11%	-31%	:
Al	Natural Al-Si (1.5%)	325	-1%	-11%	%9-	%8-	+5%	-7%	-12%	%8-
F. CRYST	F. CRYSTALLINE COMPOSITION	NOILISC								
CI	Calcite	800	% 5+	+4%	+4%	-3%	+2%	%8-	-11%	+38%
	(carbonate)									
C2	Apatite	800	%£+	+7%	%9-	-2%	%6+	%8-	-18%	%8+
	(phosphate)									
<u>ප</u>	Bentonite (clav)	800	+5%	+4%	-12%	-25%	+18%	+12%	+5%	+42%
2	Talc (Mg	800	+5%	+1%	+4%	+2%	+10%	4%	4%	+56%
	silicate)									
CS	Copper	1200	+5%	+4%	+33%	+37%	+1%	%0	%0	+23%
92	Lead oxide	1200	+1%	+2%	%61 +	+27%	-2%	-5%	%9-	%9 +
C7	Quartz	800	%1-	+1%	%5+	%9 +	+11%	-1%	-1%	%6-
G. MILLI	G. MILLING METHOD									
A2A	Natural Al-Si	008	%0	-22%	%81-	-16%	+14%	4%	%8-	+27%
A2B	Natural Al-Si	008	%/+	-1%	% 5+	%9 +	+13%	%8 +	+5%	+35%
A1A	Natural Al-Si	325	-5%	%8-	%9 +	-4%	-1%	-19%	-24%	;
A1C	Natural Al-Si	325	-3%	-19%	%9-	%6-	%9 +	-11%	-31%	1