

体的命题。

10.2命题变元和命题公式 离散数学

- 简单命题/命题常元: 确指的或具
- •命题变元:以"真""假"为其变域的变元,称为命题变元。
- T 和 F 称为命题常元。
- 原子公式: 单个命题变元和命题 常元。

命题公式的定义

- (1) 单个原子公式是命题公式。
- (2) 如果A和B是命题公式,则
- $(\neg A), (A \land B), (A \lor B), (A \rightarrow B),$
- $(A \leftrightarrow B)$ 是命题公式。
- (3) 只有有限步应用条款(1)和(2)生成的公式才是命题公式。

这种定义叫归纳定义,也叫递归定义。由这种定义产生的公式叫合式

公式。

• 构造真值表 $(P \lor Q) \rightarrow \neg R$

P	Q	R	P\Q	$\neg R$	$(P \lor Q) \rightarrow \neg R$
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

公式赋值

定义 设 $P_1, P_2, ..., P_n$ 是出现在公式A中的全部命题变元,给 $P_1, P_2, ..., P_n$ 各指定一个真值,称为对A的一个赋值或指派. 若使A为1,则称这组值为A的成真赋值;若使A为0,则称这组值为A的成假赋值.

例: 含n个命题变元的公式有几个赋值? 如 000,010,101,110是¬($P \rightarrow Q$) \leftrightarrow R的成真赋值 001,011,100,111是成假赋值.

公式类型

设 $A(P_1, P_2, ...P_n)$ 为任一命题公式,

- (1) 若A在其各种赋值下的取值均为真,则称A是 重言式或永真式
- (2) 若A在其各种赋值下的取值均为假,则称A是 矛盾式或永假式
- (3) 若A不是永真式,也不是永假式,则称A为偶然式
- (4) 若A至少存在一组赋值是成真赋值,则称A为可满足式

定义1

如果 $A \leftrightarrow B$ 是重言式, $A \hookrightarrow B$ 对任何指派都有相同的真值。记为 $A \supset B$,叫做逻辑恒等式(等价重言式)或记为A = B

定义2

蕴涵式 $P \rightarrow Q$ 若为永真,则称为<mark>蕴涵重</mark>言式,记为: $P \Rightarrow Q$ (永真蕴含)

• $P \leftrightarrow Q = P \land Q \lor \neg P \land \neg Q$

P	Q	¬ P	¬ Q	P∧Q	¬ P∧¬ Q	P↔Q	$\begin{array}{ c c c } P \land Q \lor \neg P \land \\ \neg Q \end{array}$
0	0	1	1	0	1	1	1
0	1	1	0	0	0	0	0
1	0	0	1	0	0	0	0
1	1	0	0	1	0	1	1

蕴涵 (蕴含) 重言式

- (1) 真值表法
- (2) 推理法
- (a) 假定前件是真, 若能推出后件是真, 则此蕴含式是真。肯定前件法
- (b) 假定后件是假, 若能推出前件是假, 则此蕴含式是真。 否定后件法

例 (方法一)

证: $\neg Q \land (P \rightarrow Q) \Box \neg P$ 证 $\neg Q \land (P \rightarrow Q) \rightarrow \neg P$ 永真

P	Q	¬ Q	P→Q	¬Q^(P→Q)	₇ P	$_{7}Q\wedge(P\rightarrow Q)\rightarrow_{7}P$
0	0	1	1	1	1	1
0	1	0	1	0	1	1
1	0	1	0	0	0	1
1	1	0	1	0	0	1

例 (方法二)

证明: $\neg Q \land (P \rightarrow Q) \Box \neg P$

法 1: 设 $_{1}Q \land (P \rightarrow Q)$ 是真,则 $_{1}Q$,P $\rightarrow Q$ 是真。

所以, Q是假, P是假。因而 P是真。故

- 假。
- (ii) 若Q是假,则 $P \rightarrow Q$ 是假,所以 $Q \land (P \rightarrow Q)$ 是假。

故 $\neg Q \land (P \rightarrow Q) \quad \Box \quad \neg P$ 。

命题逻辑的基本等式

离散数学

交換律
$$A \lor B = B \lor A$$
, $A \land B = B \land A$, $A \leftrightarrow B = B \leftrightarrow A$ 结合律 $(A \lor B) \lor C = A \lor (B \lor C)$ $(A \land B) \land C = A \land (B \land C)$ 分配律 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ $\lor \forall A \land (B \lor C) = (A \land B) \lor (A \land C)$ $\land \forall A \lor (B \lor C) = (A \land B) \lor (A \land C)$ $\land \forall A \lor (B \lor C) = (A \land B) \lor (A \land C)$ $\land \forall A \lor (B \lor C) = (A \land B) \lor (A \land C)$

双重否定律 $\neg\neg A=A$ (否定深入) 德摩根律

零律

$$A \lor (A \land B) = A$$

 $A \land (A \lor B) = A$

蕴涵等价式

$$A \rightarrow B = \neg (A \land \neg B)$$

$$= A \lor B$$

等值等价式

$$A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$$

$$= (\neg A \lor B) \land (\neg B \lor A)$$
$$= (A \land B) \lor (\neg A \land \neg B)$$

假言易位 $A \rightarrow B = \neg B \rightarrow \neg A$ 等价否定等值式 $A \leftrightarrow B = \neg A \leftrightarrow \neg B$ 归谬律 $(A \rightarrow B) \land (A \rightarrow \neg B) = \neg A$

特别提示:必须牢记这些等值式,这是继续学习的基础。借助于这些公式,进行等式推理和蕴含推理。

规则(针对重言式)

(1)代入规则

将等式中的命题变元A, B, C等替换成任意命题公式,得到的具体等式称为基本等式的代入实例,代入实例的等式关系不变

(2) 替(置)换规则

设 $\Phi(A)$ 是含公式 A 的命题公式, $\Phi(B)$ 是用公式 B 置换 $\Phi(A)$ 中所有的 A 后得到的命题公式. 若 B=A,则 $\Phi(B)=\Phi(A)$

例如: 已知重言式 $P \leftrightarrow \neg \neg P$,用 $P \land Q$ 代换P,得到 $P \land Q \leftrightarrow \neg \neg (P \land Q)$

已知等式 $A \rightarrow B = \neg A \lor B$,设有公式 $(A \rightarrow B) \rightarrow C$,则必有 $(A \rightarrow B) \rightarrow C = \neg A \lor B \rightarrow C$

例

证明
$$P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$$

证 $P \rightarrow (Q \rightarrow R)$
= $\neg P \lor (\neg Q \lor R)$ (蕴涵等值式,替换规则)
= $(\neg P \lor \neg Q) \lor R$ (结合律,替换规则)
= $\neg (P \land Q) \lor R$ (德摩根律,替换规则)
= $(P \land Q) \rightarrow R$ (蕴涵等值式)

 $(\mathbf{P} \to \mathbf{Q}) \to (\mathbf{Q} \lor \mathbf{R}) \Leftrightarrow \mathbf{P} \lor \mathbf{Q} \lor \mathbf{R}$

证明:

 $(\mathbf{P} \to \mathbf{Q}) \to (\mathbf{Q} \lor \mathbf{R})$

 $\Leftrightarrow (\neg P \lor Q) \rightarrow (Q \lor R)$ 蕴涵等值式和替换

 $\Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$ 蕴涵等值式

 $\Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$ 德摩根和替换规则

 $\Leftrightarrow P \land \neg Q \lor Q \lor R$ 结合律

 $\Leftrightarrow P \lor Q \lor R \land \neg Q \lor Q \lor R$ 零律 替换

 $\Leftrightarrow P \lor Q \lor R$ 分配律和替换规则

- $P \leftrightarrow Q 与 P \land Q \lor \neg P \land \neg Q$
- $(P \rightarrow Q) \land (Q \rightarrow P) = (\neg P \lor Q) \land (P \lor \neg Q)$
- $= \neg P \land (P \lor \neg Q) \lor Q \land (P \lor \neg Q)$
- $=(\neg P \land P \lor \neg P \land \neg Q) \lor (Q \land P \lor Q)$
- $Q \land \neg Q$
- $= P \land Q \lor \neg P \land \neg Q$

• 试将语句"情况并非如此:如果他不来,那么我也不去。"化简。

解设 P: 他来, Q: 我去,则有 $\neg(\neg P \rightarrow \neg Q) \Leftrightarrow \neg(\neg \neg P \lor \neg Q) \Leftrightarrow \neg \neg \neg P \land \neg \neg Q \Leftrightarrow \neg P \land Q$

• 需要掌握:

理解重言式、逻辑等价的定义;

记忆公式;

真值表;

形式化推理;

• 完成下列题(划红√)

```
4. 证明下列等价关系:
(1) P \rightarrow (Q \rightarrow P) \Leftrightarrow \neg P \rightarrow (P \rightarrow \neg Q)
(2) (P \rightarrow Q) \land (R \rightarrow Q) \Leftrightarrow (P \lor R \rightarrow Q)
(3) \neg (P \leftrightarrow Q) \Leftrightarrow (P \lor Q) \land \neg (P \land Q) \Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)
(4) \neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q
```