VE216 Recitation Class 4

Fourier Series & Fourier Transform

MA, Anlin

UM-SJTU Joint Institute

June 2023

Table of Contents

Fourier Series

Pourier Transform

3 LTI Systems

FS Expressions

Linearity tells us that, if

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 (Synthesis Equation)

where

$$c_k=rac{1}{T_0}\int_{T_0}x(t)e^{-jk\omega_0t}dt$$
 (Analysis Equation)
$$c_0=rac{1}{T_0}\int_{T_0}x(t)dt$$

Then

$$y(t) = \sum_{k=-\infty}^{\infty} H(k\omega_0) c_k e^{jk\omega_0 t}$$

Real Forms of FS

$$x(t) = c_0 + 2\sum_{k=1}^{\infty} \mid c_k \mid cos(k\omega_0 t + \angle c_k)$$
 (Combined Trigonometric Form)
$$x(t) = c_0 + 2\sum_{k=1}^{\infty} Re(c_k) \cdot cos(k\omega_0 t) - Im(c_k) \cdot sin(k\omega_0 t)$$
 (Trigonometric Form)

Common Signals (Provided in Exam)

Table of Fourier Series for Common Signals					
Name	Waveform	c_0	$c_k, k \neq 0$	Comments	
Sawtooth	X_0	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$		
Impulse train	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{T_0}$	$\frac{X_0}{T_0}$		
Rectangular wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{TX_0}{T_0}$	$\frac{TX_0}{T_0}\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$	$\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$	
Square wave	$\begin{array}{c c} & & & \\ & X_0 & & \\ X_0 & & \\ & X_0 & \\ & X_0 & \\ & & X_0$	0	$-j\frac{2X_0}{\pi k}$	$c_k = 0, k \text{ even}$	
Triangular wave sine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$c_k = 0, k$ even	

Gibbs Phenomenon

 $Overshoot/Undershoot\ near\ discontinuity$

FS Properties

- ullet Hermitian Symmetry: $\mathsf{x}(\mathsf{t})$ Real $o c_{-k} = c_k^*$ (Also hold for systems)
 - \rightarrow x(t) Real & Even: c_k Real & Even
 - ightharpoonup x(t) Real & Odd: c_k Purely imaginary & Odd
- Amplitude: $y(t)=ax(t) \rightarrow \omega^{'}=\omega_0, \ c_k^{'}=ac_k$
- Time: $y(t)=x(at+b) \rightarrow \omega' = a\omega_0, \ c'_k = c_k \cdot e^{jk\omega_0 b}$
- Conjugation: $y(t)=[x(t)]^* \rightarrow \omega^{'}=\omega_0, \ c_k^{'}=c_{-k}^*$
- Differentiation: $y(t) = \frac{d}{dt}x(t) \rightarrow \omega' = \omega_0, \ c_k' = jk\omega_0 \cdot c_k$
- Parseval's Relation: $P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{-\infty}^{\infty} |c_k|^2$

Spectra

- Power Density Spectrum: $|c_k|^2$ vs. $k\omega$
- Magnitude Spectrum: $|c_k|$ vs. $k\omega$
- Phase Spectrum: $\angle c_k$ vs. $k\omega$

Table of Contents

Fourier Series

2 Fourier Transform

3 LTI Systems

FT Expressions

For aperiodic signals:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

For periodic signals:

$$x(t) = \sum_{n = -\infty}^{\infty} f(t - nT) = \sum_{n = -\infty}^{\infty} F(\omega) e^{-j\omega nT}$$
$$= \sum_{k = -\infty}^{\infty} c_k e^{jk\omega_0 t} = \sum_{k = -\infty}^{\infty} c_k 2\pi \delta(\omega - k\omega_0)$$

Exercises

•
$$x(t)=\delta(t)$$

•
$$x(t) = \sum_{-\infty}^{\infty} \delta(t - 3n)$$

Common FT Pairs (Provided in Exam)

Table of Fourier transform pairs

MA, Anlin (UM-SJTU Joint Institute)

Table of Fourier transform pairs				
f(t)	$F(\omega)$			
$\delta(t)$	1			
1	$2\pi\delta(\omega) = \delta\!\left(\frac{\omega}{2\pi}\right)$			
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$			
sgn(t)	$rac{2}{j\omega}$			
$e^{\imath \omega_0 t}$	$2\pi \delta(\omega-\omega_0)$			
$\cos \omega_0 t$	$\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$			
$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega-\omega_0)-\frac{\pi}{j}\delta(\omega+\omega_0)$			
e^{-bt^2}	$\sqrt{\pi/b} \mathrm{e}^{-\omega^2/(4b)}$			
$\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$	$\sum_{k=-\infty}^{\infty} \omega_0 \delta(\omega - k\omega_0)$			

f(t)	$F(\omega)$
$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$
$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$
$\operatorname{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
$\frac{\omega_0}{2\pi}\operatorname{sinc}\!\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$
$\operatorname{sinc}^2(t)$	$\operatorname{tri}\left(\frac{\omega}{2\pi}\right)$
$e^{-at}u(t)$	$\frac{1}{j\omega + a}$
$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(j\omega+a)^n}$
$\frac{j}{\pi t}$	$\operatorname{sgn}(\omega)$

b is a real positive number throughout. a is a real or complex number throughout, with positive real part.

Important FT Properties

- Time Shift: $f(t-t_0) \longleftrightarrow e^{-j\omega t_0} F(\omega)$
- Time Differentiation: $\frac{d}{dt}f(t)\longleftrightarrow j\omega F(\omega)$
- Time Convolution: $f_1(t) * f_2(t) \longleftrightarrow F_1(\omega) \cdot F_2(\omega)$
- Time Multiplication: $f_1(t) \cdot f_2(t) \longleftrightarrow \frac{1}{2\pi} F_1(\omega) * F_2(\omega)$
 - $f(t) \cdot \delta(t-t_0) = f(t_0) \cdot \delta(t-t_0)$
 - $f(t) * \delta(t t_0) = f(t t_0)$
- Time Integral: $\int_{-\infty}^{t} f(\tau) d\tau \longleftrightarrow \frac{1}{j\omega} F(\omega) + \pi F(0) \delta(\omega)$
- Parseval's Relation E= $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$

FT Properties (Provided in Exam)

Properties of the Continuous-Time Fourier Transform	
---	--

Troperties	i die Condiduous-Time Pourier	Hansioini	
	Time	Fourier	
Synthesis, Analysis	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$	
Eigenfunction	$h(t) * e^{j\omega_0 t} = H(\omega_0)e^{j\omega_0 t}$	$H(\omega)2\pi\delta(\omega - \omega_0)$ = $H(\omega_0)2\pi\delta(\omega - \omega_0)$	
Linearity	$a_1f_1(t) + a_2f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$	
Time transformation	$f(at + b), a \neq 0$	$\frac{1}{ a }e^{j\omega b/a}F(\omega/a)$	
Time shift	$f(t - \tau)$	$F(\omega)e^{-j\omega\tau}$	
Time reversal	f(-t)	$F(-\omega)$	
Time-scaling	$f(at), a \neq 0$	$\frac{1}{ a }F(\frac{\omega}{a})$	
Convolution	$f_1(t) * f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$	
Time-domain Multiplication	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega) * F_2(\omega)$	
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$	
Modulation (cosine)	$f(t) \cos(\omega_0 t)$	$\frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$	
Time. Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$	
Freq. Differentiation	$(-jt)^n f(t)$	$\frac{d^n}{d\omega^n}F(\omega)$	
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$	
Conjugation	$f^*(t)$	$F^*(-\omega)$	
Duality	F(t)	$2\pi f(-\omega)$	
Relation to Laplace	$F(\omega) = F(s) _{s=j\omega}$, if ROC includes $j\omega$ axis		
Parseval's Theorem	$\int_{-\infty}^{\infty} f_1(t)f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega)F_2^*(\omega) d\omega$		
Parseval/Rayleigh Theorem	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$		
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$		

Table of Contents

Fourier Series

Pourier Transform

3 LTI Systems

Filters & THD

Lowpass/ Highpass/ Bandpass Filter

$$\begin{split} \textit{THD} &= 1 - \frac{\text{Average Power in First Hoarmonic/ Fundamental}}{\text{Average Signal Power}} \\ &= 1 - \frac{2 \mid c_1 \mid^2}{\sum_{-\infty}^{\infty} \mid c_k \mid^2} \end{split}$$

Common LTI Systems

- RLC Circuit
- $cos(\omega t)$
- $rect(\omega)$ (lowpass filter)

Skill

Partial Fraction:

$$\frac{(s+1)(s-3)}{(s-2)^2(s-1)} =$$