Table 1: Name, definition, and $d_{\mathbb{N}^1}$ of the models available for simulation.

$d_{ m hkl}$	$\frac{1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma+2\cos\alpha.\cos\beta.\cos\gamma}{\frac{h^2}{a^2}\sin^2\beta+\frac{l^2}{c^2}\sin^2\gamma-\frac{2kl}{bc}(\cos\alpha-\cos\beta.\cos\gamma)-\frac{2lh}{ca}(\cos\beta-\cos\gamma.\cos\alpha)-\frac{2hk}{ab}(\cos\gamma-\cos\alpha.\cos\beta)}$	$\frac{\sinh y}{\sqrt{a^2 + \frac{k^2}{b^2} + \frac{l^2 \sin^2 y}{c^2} - \frac{2hk \cos y}{ab}}}$	$\frac{1}{\sqrt{\frac{h^2}{\alpha^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}}$	$\frac{1}{\sqrt{3}\left(\frac{h^2+hk+k^2}{a^2}\right)+\frac{l^2}{c^2}}$	$\frac{a}{\sqrt{h^2+k^2+l^2\frac{a^2}{c^2}}}$	$\frac{a}{\sqrt{h^2 + k^2 + l^2}}$
Adjustable parameters	a, b, c α, β, γ	а, b, c γ	a, b, c	а, с	а, с	а
Definition	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	$a \neq b \neq c$ $\alpha = \beta = \pi/2$ $\gamma \neq \pi/2$	$a \neq b \neq c$ $\alpha = \beta = \gamma = \pi/2$	$a = b \neq c$ $\alpha = \beta = \pi/2$ $\gamma = 2\pi/3$	$a = b \neq c$ $\alpha = \beta = \gamma = \pi/2$	$a = b = c$ $\alpha = \beta = \gamma = \pi/2$
Name	Triclinic	Monoclinic	Orthorhombic	Hexagonal	Tetragonal	Cubic

Table 2: Extinction rules available for different lattice types

Lattice type	Extinction rule	Availability
Primitive	None	All
Body centered	h + k + l = 2n + l (odd)	Cubic, Tetragonal, Orthorhombic
Face centered	h, k and I have different parities	Cubic, Orthorhombic
Base centered (c)	h + k = 2n + 1	Orthorhombic
Hexagonal (HCP)	I = 2n+1 (odd) AND h+2k=3n	Hexagonal