

NAÏVE BAYES PART-4

LECTURE 34

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

NAÏVE BAYES

- Naïve Bayes formula
 - For classification, naïve Bayes formula works quite well
 - Since we don't require probabilities values to be accurate in absolute term, rather just a reasonably accurate rank ordering of these values
 - For the same reason, we should use the numerator only and drop the denominator which is common for all the classes
- Steps when we have a class of interest
 - User specified cut off value for the class of interest

NAÏVE BAYES

- Steps when we have a class of interest
 - Compute the probabilities $(P_1, P_2, ..., P_p)$ of belonging to class of interest for each predictor's value $(x_1, x_2, ..., x_p)$ taken by the new observation to be classified
 - Compute $P_1 \times P_2 \times ... \times P_p \times P(Class of interest)$
 - Execute previous two steps for all the classes
 - To compute the probability of the new observation belonging to class of interest, divide the value computed in step 2 by the summation of values computed in step 2 for all the classes

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...