Les suites

```
Vidéo ■ partie 1. Premières définitions
Vidéo ■ partie 2. Limite
Vidéo ■ partie 3. Exemples remarquables
Vidéo ■ partie 4. Théorèmes de convergence
Vidéo ■ partie 5. Suites récurrentes
Fiche d'exercices ♦ Suites
```

Introduction

L'étude des suites numériques a pour objet la compréhension de l'évolution de séquences de nombres (réels, complexes ...). Ceci permet de modéliser de nombreux phénomènes de la vie quotidienne. Supposons par exemple que l'on place une somme S à un taux annuel de 10%. Si S_n représente la somme que l'on obtiendra après n années, on a

$$S_0 = S$$
 $S_1 = S \times 1, 1$... $S_n = S \times (1, 1)^n$.

Au bout de n=10 ans, on possédera donc $S_{10}=S\times(1,1)^{10}\approx S\times 2,59$: la somme de départ avec les intérêts cumulés.

1. Définitions

1.1. Définition d'une suite

Définition 1.

- Une *suite* est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème terme ou terme général de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geq n_0}$.

Exemple 1.

- $(\sqrt{n})_{n\geq 0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $((-1)^n)_{n\geqslant 0}$ est la suite qui alterne $+1, -1, +1, -1, \dots$
- La suite $(S_n)_{n\geqslant 0}$ de l'introduction définie par $S_n=S\times (1,1)^n$,
- $(F_n)_{n\geqslant 0}$ définie par $F_0=1$, $F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in\mathbb{N}$ (suite de Fibonacci). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.
- $\left(\frac{1}{n^2}\right)_{n\geq 1}$. Les premiers termes sont 1, $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$, ...

Les suites ${f 1}.$ Définitions ${f 2}$

1.2. Suite majorée, minorée, bornée

Définition 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R} \quad \forall n\in\mathbb{N} \quad u_n\leqslant M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geqslant m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

1.3. Suite croissante, décroissante

Définition 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$ $u_{n+1}\geqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}$ $u_{n+1}>u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si $\forall n\in\mathbb{N}$ $u_{n+1}\leqslant u_n$.
- $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante si $\forall n \in \mathbb{N}$ $u_{n+1} < u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est *monotone* si elle est croissante ou décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est *strictement monotone* si elle est strictement croissante ou strictement décroissante.

Voici un exemple d'une suite croissante (mais pas strictement croissante) :

Remarque.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N} \quad u_{n+1}-u_n\geqslant 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n\in\mathbb{N}$ $\frac{u_{n+1}}{u_n}\geqslant 1$.

Exemple 2.

- La suite $(S_n)_{n\geqslant 0}$ de l'introduction est strictement croissante car $S_{n+1}/S_n=1, 1>1$.
- La suite $(u_n)_{n\geqslant 1}$ définie par $u_n=(-1)^n/n$ pour $n\geqslant 1$, n'est ni croissante ni décroissante. Elle est majorée par 1/2 (borne atteinte en n=2), minorée par -1 (borne atteinte en n=1).

Les suites 2. Limites 3

• La suite $\left(\frac{1}{n}\right)_{n\geqslant 1}$ est une suite strictement décroissante. Elle est majorée par 1 (borne atteinte pour n=1), elle est minorée par 0 mais cette valeur n'est jamais atteinte.

Mini-exercices.

- 1. La suite $\left(\frac{n}{n+1}\right)_{n\in\mathbb{N}}$ est-elle monotone? Est-elle bornée?
- 2. La suite $\left(\frac{n\sin(n!)}{1+n^2}\right)_{n\in\mathbb{N}}$ est-elle bornée?
- 3. Réécrire les phrases suivantes en une phrase mathématique. Écrire ensuite la négation mathématique de chacune des phrases. (a) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 7. (b) La suite $(u_n)_{n\in\mathbb{N}}$ est constante. (c) La suite $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang. (d) $(u_n)_{n\in\mathbb{N}}$ n'est pas strictement croissante.
- 4. Est-il vrai qu'une suite croissante est minorée? Majorée?
- 5. Soit x > 0 un réel. Montrer que la suite $\left(\frac{x^n}{n!}\right)_{n \in \mathbb{N}}$ est décroissante à partir d'un certain rang.

2. Limites

2.1. Introduction

Pour un trajet au prix normal de 20 euros on achète une carte d'abonnement de train à 50 euros et on obtient chaque billet à 10 euros. La publicité affirme « 50% de réduction ». Qu'en pensez-vous?

Pour modéliser la situation en termes de suites, on pose pour un entier $n \ge 1$:

$$u_n = 20n$$
$$v_n = 10n + 50$$

 u_n est le prix payé au bout de n achats au tarif plein, et v_n celui au tarif réduit, y compris le prix de l'abonnement. La réduction est donc, en pourcentage :

$$1 - \frac{v_n}{u_n} = \frac{u_n - v_n}{u_n} = \frac{10n - 50}{20n} = 0, 5 - \frac{5}{2n} \xrightarrow[n \to +\infty]{} 0, 5$$

Il faut donc une infinité de trajets pour arriver à 50% de réduction!

2.2. Limite finie, limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Définition 4.

La suite $(u_n)_{n\in\mathbb{N}}$ a pour *limite* $\ell\in\mathbb{R}$ si : pour tout $\epsilon>0$, il existe un entier naturel N tel que si $n\geqslant N$ alors $|u_n-\ell|\leqslant \epsilon$:

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \implies |u_n - \ell| \leqslant \epsilon)$$

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ . Autrement dit : u_n est proche d'aussi près que l'on veut de ℓ , à partir d'un certain rang.

Définition 5.

1. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si:

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \geqslant A)$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \leqslant -A)$$

Remarque.

- 1. On note $\lim_{n\to+\infty} u_n = \ell$ ou parfois $u_n \xrightarrow[n\to+\infty]{} \ell$, et de même pour une limite $\pm\infty$.
- 2. $\lim_{n\to+\infty} u_n = -\infty \iff \lim_{n\to+\infty} -u_n = +\infty$.
- 3. On raccourcit souvent la phrase logique en :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \geqslant N \Longrightarrow |u_n - \ell| \leqslant \epsilon).$$

Noter que N dépend de ϵ et qu'on ne peut pas échanger l'ordre du « pour tout » et du « il existe ».

4. L'inégalité $|u_n - \ell| \le \epsilon$ signifie $\ell - \epsilon \le u_n \le \ell + \epsilon$. On aurait aussi pu définir la limite par la phrase : $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad (n \ge N \implies |u_n - \ell| < \epsilon)$, où l'on a remplacé la dernière inégalité large par une inégalité stricte.

Définition 6.

Une suite $(u_n)_{n\in\mathbb{N}}$ est *convergente* si elle admet une limite *finie*. Elle est *divergente* sinon (c'est-à-dire soit la suite tend vers $\pm \infty$, soit elle n'admet pas de limite).

On va pouvoir parler de *la* limite, si elle existe, car il y a unicité de la limite :

Proposition 1.

Si une suite est convergente, sa limite est unique.

Démonstration. On procède par l'absurde. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente ayant deux limites $\ell\neq\ell'$. Choisissons $\epsilon>0$ tel que $\epsilon<\frac{|\ell-\ell'|}{2}$.

Comme $\lim_{n\to+\infty} u_n = \ell$, il existe N_1 tel que $n \geqslant N_1$ implique $|u_n - \ell| < \epsilon$.

De même $\lim_{n\to+\infty} u_n = \ell'$, il existe N_2 tel que $n \geqslant N_2$ implique $|u_n - \ell'| < \epsilon$.

Notons $N = \max(N_1, N_2)$, on a alors pour ce N:

$$|u_N - \ell| < \epsilon$$
 et $|u_N - \ell'| < \epsilon$

2. Limites 5 LES SUITES

Donc $|\ell-\ell'| = |\ell-u_N+u_N-\ell'| \le |\ell-u_N| + |u_N-\ell'|$ d'après l'inégalité triangulaire. On en tire $|\ell-\ell'| \le \epsilon + \epsilon = 2\epsilon < |\ell-\ell'|$. On vient d'aboutir à l'inégalité $|\ell - \ell'| < |\ell - \ell'|$ qui est impossible. Bilan : notre hypothèse de départ est fausse et donc $\ell = \ell'$.

2.3. Propriétés des limites

Proposition 2.

1. $\lim_{n \to +\infty} u_n = \ell \iff \lim_{n \to +\infty} (u_n - \ell) = 0 \iff \lim_{n \to +\infty} |u_n - \ell| = 0,$ 2. $\lim_{n \to +\infty} u_n = \ell \implies \lim_{n \to +\infty} |u_n| = |\ell|.$

Démonstration. Cela résulte directement de la définition.

Proposition 3 (Opérations sur les limites).

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. $Si \lim_{n \to +\infty} u_n = \ell$, où $\ell \in \mathbb{R}$, alors pour $\lambda \in \mathbb{R}$ on a $\lim_{n \to +\infty} \lambda u_n = \lambda \ell$.
- 2. $Si \lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, où $\ell, \ell' \in \mathbb{R}$, alors

$$\lim_{n\to+\infty} (u_n + v_n) = \ell + \ell'$$

$$\lim_{n\to+\infty} (u_n \times v_n) = \ell \times \ell'$$

3. Si $\lim_{n\to+\infty} u_n = \ell$ où $\ell \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ alors $u_n \neq 0$ pour n assez grand et $\lim_{n\to+\infty} \frac{1}{u_n} = \frac{1}{\ell}$.

Nous ferons la preuve dans la section suivante.

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 3.

Si $u_n \to \ell$ avec $\ell \neq \pm 1$, alors

$$u_n(1-3u_n) - \frac{1}{u_n^2-1} \xrightarrow[n \to +\infty]{} \ell(1-3\ell) - \frac{1}{\ell^2-1}.$$

Proposition 4 (Opérations sur les limites infinies).

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}v_n=+\infty$.

- 1. $\lim_{n\to+\infty} \frac{1}{\nu_n} = 0$ 2. $Si(u_n)_{n\in\mathbb{N}}$ est minorée alors $\lim_{n\to+\infty} (u_n + \nu_n) = +\infty$.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est minorée par un nombre $\lambda > 0$ alors $\lim_{n\to+\infty} (u_n \times v_n) = +\infty$.
- 4. Si $\lim_{n\to+\infty} u_n = 0$ et $u_n > 0$ pour n assez grand alors $\lim_{n\to+\infty} \frac{1}{u_n} = +\infty$.

Exemple 4.

La suite (\sqrt{n}) tend vers $+\infty$, donc la suite $(\frac{1}{\sqrt{n}})$ tend vers 0.

2.4. Des preuves!

Nous n'allons pas tout prouver mais seulement quelques résultats importants. Les autres se démontrent de manière tout à fait semblable.

Commençons par prouver un résultat assez facile (le premier point de la proposition 4):

«
$$Si$$
 $\lim u_n = +\infty$ alors $\lim \frac{1}{u_n} = 0$. »

Démonstration. Fixons $\epsilon > 0$. Comme $\lim_{n \to +\infty} u_n = +\infty$, il existe un entier naturel N tel que $n \ge N$ implique $u_n \ge \frac{1}{\epsilon}$. On obtient alors $0 \le \frac{1}{u_n} \le \epsilon$ pour $n \ge N$. On a donc montré que $\lim_{n \to +\infty} \frac{1}{u_n} = 0$.

Afin de prouver que la limite d'un produit est le produit des limites nous aurons besoin d'un peu de travail.

Toute suite convergente est bornée.

Les suites 2. Limites 6

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers le réel ℓ . En appliquant la définition de limite (définition 4) avec $\epsilon = 1$, on obtient qu'il existe un entier naturel N tel que pour $n \ge N$ on ait $|u_n - \ell| \le 1$, et donc pour $n \ge N$ on a

$$|u_n| = |\ell + (u_n - \ell)| \le |\ell| + |u_n - \ell| \le |\ell| + 1.$$

Donc si on pose

$$M = \max(|u_0|, |u_1|, \cdots, |u_{N-1}|, |\ell| + 1)$$

on a alors $\forall n \in \mathbb{N} \ |u_n| \leq M$.

Proposition 6.

Si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to+\infty} v_n = 0$ alors $\lim_{n\to+\infty} (u_n \times v_n) = 0$.

Exemple 5.

Si $(u_n)_{n\geqslant 1}$ est la suite donnée par $u_n=\cos(n)$ et $(v_n)_{n\geqslant 1}$ est celle donnée par $v_n=\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_nv_n)=0$.

Démonstration. La suite $(u_n)_{n\in\mathbb{N}}$ est bornée, on peut donc trouver un réel M>0 tel que pour tout entier naturel n on ait $|u_n|\leqslant M$. Fixons $\epsilon>0$. On applique la définition de limite (définition 4) à la suite $(v_n)_{n\in\mathbb{N}}$ pour $\epsilon'=\frac{\epsilon}{M}$. Il existe donc un entier naturel N tel que $n\geqslant N$ implique $|v_n|\leqslant \epsilon'$. Mais alors pour $n\geqslant N$ on a :

$$|u_n v_n| = |u_n||v_n| \leqslant M \times \epsilon' = \epsilon.$$

On a bien montré que $\lim_{n\to+\infty} (u_n \times v_n) = 0$.

Prouvons maintenant la formule concernant le produit de deux limites (voir proposition 3).

«
$$Si \quad \lim u_n = \ell \quad et \quad \lim v_n = \ell' \quad alors \quad \lim u_n v_n = \ell \ell'$$
. »

Démonstration de la formule concernant le produit de deux limites. Le principe est d'écrire :

$$u_n v_n - \ell \ell' = (u_n - \ell) v_n + \ell (v_n - \ell')$$

D'après la proposition 6, la suite de terme général $\ell(\nu_n - \ell')$ tend vers 0. Par la même proposition il en est de même de la suite de terme général $(u_n - \ell)\nu_n$, car la suite convergente $(\nu_n)_{n \in \mathbb{N}}$ est bornée. On conclut que $\lim_{n \to +\infty} (u_n \nu_n - \ell \ell') = 0$, ce qui équivaut à $\lim_{n \to +\infty} u_n \nu_n = \ell \ell'$.

2.5. Formes indéterminées

Dans certaines situations, on ne peut rien dire à priori sur la limite, il faut faire une étude au cas par cas.

Exemple 6.

1. « $+\infty-\infty$ » Cela signifie que si $u_n \to +\infty$ et $v_n \to -\infty$ il faut faire faire l'étude en fonction de chaque suite pour déterminer $\lim (u_n + v_n)$ comme le prouve les exemples suivants.

$$\lim_{n \to +\infty} (e^n - \ln(n)) = +\infty$$

$$\lim_{n \to +\infty} (n - n^2) = -\infty$$

$$\lim_{n \to +\infty} \left(\left(n + \frac{1}{n} \right) - n \right) = 0$$

Les suites 2. Limites 7

2. « $0 \times \infty$ »

$$\lim_{n \to +\infty} \frac{1}{\ln n} \times e^n = +\infty$$

$$\lim_{n \to +\infty} \frac{1}{n} \times \ln n = 0$$

$$\lim_{n \to +\infty} \frac{1}{n} \times (n+1) = 1$$

3. «
$$\frac{\infty}{\infty}$$
», « $\frac{0}{0}$ », « 1^{∞} », ...

2.6. Limite et inégalités

Proposition 7.

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}$, $u_n\leqslant v_n$. Alors

$$\lim_{n\to+\infty}u_n\leqslant\lim_{n\to+\infty}v_n$$

- 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n\in\mathbb{N},\ v_n\geqslant u_n$. Alors $\lim_{n\to+\infty}v_n=+\infty$.
- 3. Théorème des « gendarmes » : si $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont trois suites telles que

$$\forall n \in \mathbb{N} \quad u_n \leqslant v_n \leqslant w_n$$

et $\lim_{n\to+\infty} u_n = \ell = \lim_{n\to+\infty} w_n$, alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty} v_n = \ell$.

Remarque.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que : $\forall n\in\mathbb{N}, u_n\geqslant 0$. Alors $\lim_{n\to+\infty}u_n\geqslant 0$.
- 2. Attention, si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que : $\forall n\in\mathbb{N}, u_n>0$, on ne peut affirmer que la limite est strictement positive mais seulement que $\lim_{n\to+\infty}u_n\geqslant 0$. Par exemple la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\frac{1}{n+1}$ est à termes strictement positifs, mais converge vers zéro.

Démonstration de la proposition 7.

1. En posant $w_n = v_n - u_n$, on se ramène à montrer que si une suite $(w_n)_{n \in \mathbb{N}}$ vérifie $\forall n \in \mathbb{N}, w_n \geqslant 0$ et converge, alors $\lim_{n \to +\infty} w_n \geqslant 0$. On procède par l'absurde en supposant que $\ell = \lim_{n \to +\infty} w_n < 0$. En prenant $\epsilon = |\frac{\ell}{2}|$ dans la définition de limite (définition 4), on obtient qu'il existe un entier naturel N tel que $n \geqslant N$ implique $|w_n - \ell| < \epsilon = -\frac{\ell}{2}$. En particulier on a pour $n \geqslant N$ que $w_n < \ell - \frac{\ell}{2} = \frac{\ell}{2} < 0$, une contradiction.

- 2. Laissé en exercice.
- 3. En soustrayant la suite $(u_n)_{n\in\mathbb{N}}$, on se ramène à montrer l'énoncé suivant : si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites telles que : $\forall n\in\mathbb{N}$, $0\leqslant u_n\leqslant v_n$ et $\lim_{n\to+\infty}v_n=0$, alors (u_n) converge et $\lim_{n\to+\infty}u_n=0$. Soit $\epsilon>0$ et N un entier naturel tel que $n\geqslant N$ implique $|v_n|<\epsilon$. Comme $|u_n|=u_n\leqslant v_n=|v_n|$, on a donc : $n\geqslant N$ implique $|u_n|<\epsilon$. On a bien montré que $\lim_{n\to+\infty}u_n=0$.

Exemple 7 (Exemple d'application du théorème des « gendarmes »).

Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général :

$$u_n = 2 + \frac{(-1)^n}{1 + n + n^2}$$

Mini-exercices.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{2n+1}{n+2}$. En utilisant la définition de la limite montrer que $\lim_{n\to+\infty}u_n=2$. Trouver explicitement un rang à partir duquel 1,999 $\leqslant u_n \leqslant 2,001$.
- 2. Déterminer la limite ℓ de la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général : $\frac{n+\cos n}{n-\sin n}$ et trouver un entier N tel que si $n\geqslant N$, on ait $|u_n - \ell| \le 10^{-2}$.
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $(-1)^n e^n$ admet-elle une limite? Et la suite de terme général $\frac{1}{u_n}$?
- 4. Déterminer la limite de la suite $(u_n)_{n\geqslant 1}$ de terme général $\sqrt{n+1}-\sqrt{n}$. Idem avec $v_n=\frac{\cos n}{\sin n+\ln n}$. Idem avec

3. Exemples remarquables

3.1. Suite géométrique

Proposition 8 (Suite géométrique).

On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n=a^n$.

- Si a = 1, on a pour tout n ∈ N : u_n = 1.
 Si a > 1, alors lim_{n→+∞} u_n = +∞.
 Si -1 < a < 1, alors lim_{n→+∞} u_n = 0.
 Si a ≤ -1, la suite (u_n)_{n∈N} diverge.

Démonstration.

- 1. est évident.
- 2. Écrivons a=1+b avec b>0. Alors le binôme de Newton s'écrit $a^n=(1+b)^n=1+nb+\binom{n}{2}b^2+\cdots+\binom{n}{k}b^k+\cdots+b^n$. Tous les termes sont positifs, donc pour tout entier naturel n on $a:a^n\geqslant 1+nb$. Or $\lim_{n\to+\infty}(1+nb)=+\infty$ car b > 0. On en déduit que $\lim_{n \to +\infty} a^n = +\infty$.
- 3. Si a=0, le résultat est clair. Sinon, on pose $b=|\frac{1}{a}|$. Alors b>1 et d'après le point précédent $\lim_{n\to+\infty}b^n=+\infty$. Comme pour tout entier naturel n on $a:|a|^n=\frac{1}{b^n}$, on en déduit que $\lim_{n\to+\infty}|a|^n=0$, et donc aussi $\lim_{n\to+\infty}a^n=0$.
- 4. Supposons par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ . De $a^2\geqslant 1$, on déduit que pour tout entier naturel n, on a $a^{2n} \ge 1$. En passant à la limite, il vient $\ell \ge 1$. Comme de plus pour tout entier naturel n on a $a^{2n+1} \leqslant a \leqslant -1$, il vient en passant de nouveau à la limite $\ell \leqslant -1$. Mais comme on a déjà $\ell \geqslant 1$, on obtient une contradiction, et donc (u_n) ne converge pas.

3.2. Série géométrique

Proposition 9 (Série géométrique).

Soit a un réel, $a \neq 1$. En notant $\sum_{k=0}^{n} a^k = 1 + a + a^2 + \cdots + a^n$, on a:

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

Démonstration. En multipliant par 1-a on fait apparaître une somme télescopique (presque tous les termes s'annulent):

$$(1-a)(1+a+a^2+\cdots+a^n) = (1+a+a^2+\cdots+a^n) - (a+a^2+\cdots+a^{n+1}) = 1-a^{n+1}.$$

Remarque.

Si $a \in]-1,1[$ et $(u_n)_{n \in \mathbb{N}}$ est la suite de terme général : $u_n = \sum_{k=0}^n a^k$, alors $\lim_{n \to +\infty} u_n = \frac{1}{1-a}$. De manière plus frappante, on peut écrire :

$$1 + a + a^2 + a^3 + \dots = \frac{1}{1 - a}$$

Enfin, ces formules sont aussi valables si $a \in \mathbb{C} \setminus \{1\}$. Si a = 1, alors $1 + a + a^2 + \cdots + a^n = n + 1$.

Exemple 8.

L'exemple précédent avec $a = \frac{1}{2}$ donne

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$

 $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2.$ Cette formule était difficilement concevable avant l'avènement du calcul infinitésimal et a été popularisée sous le nom du paradoxe de Zénon. On tire une flèche à 2 mètres d'une cible. Elle met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n'atteint jamais sa cible!

L'explication est bien donnée par l'égalité ci-dessus : la somme d'une infinité de termes peut bien être une valeur finie!! Par exemple si la flèche va à une vitesse de 1 m/s, alors elle parcoure la première moitié en 1 s, le moitié de la distance restante en $\frac{1}{2}$ s, etc. Elle parcoure bien toute la distance en $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$ secondes!

3.3. Suites telles que $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$

Théorème 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On suppose qu'il existe un réel ℓ tel que pour tout entier naturel n (ou seulement à partir d'un certain rang) on ait :

$$\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1.$$

Alors $\lim_{n\to+\infty} u_n = 0$.

Démonstration. On suppose que la propriété $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$ est vraie pour tout entier naturel n (la preuve dans le cas où cette propriété n'est vraie qu'à partir d'un certain rang n'est pas très différente). On écrit

$$\frac{u_n}{u_0} = \frac{u_1}{u_0} \times \frac{u_2}{u_1} \times \frac{u_3}{u_2} \times \dots \times \frac{u_n}{u_{n-1}}$$

ce dont on déduit

$$\left|\frac{u_n}{u_0}\right| < \ell \times \ell \times \ell \times \cdots \times \ell = \ell^n$$

et donc $|u_n| < |u_0|\ell^n$. Comme $\ell < 1$, on a $\lim_{n \to +\infty} \ell^n = 0$. On conclut que $\lim_{n \to +\infty} u_n = 0$.

Corollaire 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls.

$$Si \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 0$$
, alors $\lim_{n \to +\infty} u_n = 0$.

Exemple 9.

Soit $a \in \mathbb{R}$. Alors $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

Démonstration. Si a=0, le résultat est évident. Supposons $a\neq 0$, et posons $u_n=\frac{a^n}{n!}$. Alors

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1}.$$

Pour conclure, on peut ou bien directement utiliser le corollaire : comme $\lim \frac{u_{n+1}}{u_n} = 0$ (car a est fixe), on a $\lim u_n = 0$. Ou bien, comme $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$, on déduit par le théorème que pour $n \geqslant N > 2|a|$ on a :

$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{|a|}{n+1} \leqslant \frac{|a|}{N+1} < \frac{|a|}{N} < \frac{1}{2} = \ell$$

et donc $\lim_{n\to+\infty} u_n = 0$.

Remarque.

- 1. Avec les notations du théorème, si on a pour tout entier naturel n à partir d'un certain rang : $\left|\frac{u_{n+1}}{u_n}\right| > \ell > 1$, alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge. En effet, il suffit d'appliquer le théorème à la suite de terme général $\frac{1}{|u_n|}$ pour voir que $\lim_{n \to +\infty} |u_n| = +\infty$.
- 2. Toujours avec les notations du théorème, si $\ell=1$ on ne peut rien dire.

Exemple 10.

Pour un nombre réel a, a > 0, calculer $\lim_{n \to +\infty} \sqrt[n]{a}$.

On va montrer que $\lim_{n\to+\infty} \sqrt[n]{a} = 1$. Si a=1, c'est clair. Supposons a>1. Écrivons a=1+h, avec h>0. Comme

$$\left(1 + \frac{h}{n}\right)^n \geqslant 1 + n\frac{h}{n} = 1 + h = a$$

(voir la preuve de la proposition 8) on a en appliquant la fonction racine *n*-ème, $\sqrt[n]{\cdot}$:

$$1+\frac{h}{n}\geqslant \sqrt[n]{a}\geqslant 1.$$

On peut conclure grâce au théorème « des gendarmes » que $\lim_{n\to+\infty} \sqrt[n]{a}=1$. Enfin, si a<1, on applique le cas précédent à $b=\frac{1}{a}>1$.

3.4. Approximation des réels par des décimaux

Proposition 10.

Soit $a \in \mathbb{R}$. Posons

$$u_n = \frac{E(10^n a)}{10^n}.$$

Alors u_n est une approximation décimale de a à 10^{-n} près, en particulier $\lim_{n\to+\infty} u_n = a$.

Exemple 11.

 $\pi = 3,14159265...$

$$u_0 = \frac{E(10^0 \pi)}{10^0} = E(\pi) = 3$$

$$u_1 = \frac{E(10^1 \pi)}{10^1} = \frac{E(31,415...)}{10} = 3, 1$$

$$u_2 = \frac{E(10^2 \pi)}{10^2} = \frac{E(314,15...)}{100} = 3, 14$$

$$u_3 = 3, 141$$

Démonstration. D'après la définition de la partie entière, on a

$$E(10^n a) \leq 10^n a < E(10^n a) + 1$$

donc

$$u_n \leqslant a < u_n + \frac{1}{10^n}$$

ou encore

$$0\leqslant a-u_n<\frac{1}{10^n}.$$

Or la suite de terme général $\frac{1}{10^n}$ est une suite géométrique de raison $\frac{1}{10}$, donc elle tend vers 0. On en déduit que $\lim_{n\to+\infty}u_n=a$.

Exercice 1.

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de la proposition 10 est croissante.

Remarque.

- 1. Les u_n sont des nombres décimaux, en particulier ce sont des nombres rationnels.
- 2. Ceci fournit une démonstration de la densité de \mathbb{Q} dans \mathbb{R} . Pour $\epsilon > 0$, et $I =]a \epsilon, a + \epsilon[$, alors pour n assez grand, $u_n \in I \cap \mathbb{Q}$.

Mini-exercices.

- 1. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général 5^n-4^n .
- 2. Soit $v_n = 1 + a + a^2 + \dots + a^n$. Pour quelle valeur de $a \in \mathbb{R}$ la suite $(v_n)_{n \ge 1}$ a pour limite 3 (lorsque $n \to +\infty$)?
- 3. Calculer la limite de $\frac{1+2+2^2+\cdots+2^n}{2^n}$.
- 4. Montrer que la somme des racines n-èmes de l'unité est nulle.
- 5. Montrer que si $\sin(\frac{\theta}{2}) \neq 0$ alors $\frac{1}{2} + \cos(\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \frac{\sin((n+\frac{1}{2})\theta)}{2\sin(\frac{\theta}{2})}$ (penser à $e^{i\theta}$).
- 6. Soit $(u_n)_{n\geqslant 2}$ la suite de terme général $u_n=\ln(1+\frac{1}{2})\times\ln(1+\frac{1}{3})\times\cdots\times\ln(1+\frac{1}{n})$. Déterminer la limite de $\frac{u_{n+1}}{u_n}$. Que peut-on en déduire?
- 7. Déterminer la limite de $\frac{\pi^n}{1\times 3\times 5\times \cdots \times (2n+1)}$ (où $\pi=3,14\ldots$).
- 8. Soit a un réel. Montrer que pour tout $\epsilon > 0$ il existe un couple $(m,n) \in \mathbb{Z} \times \mathbb{N}$ (et même une infinité) tel que $\left|a \frac{m}{2^n}\right| \leq \epsilon$.

4. Théorème de convergence

4.1. Toute suite convergente est bornée

Revenons sur une propriété importante que nous avons déjà démontrée dans la section sur les limites.

Proposition 11.

Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothèse supplémentaire pour obtenir des résultats.

4.2. Suite monotone

Théorème 2.

Toute suite croissante et majorée est convergente.

Remarque.

Et aussi:

- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers +∞.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Démonstration du théorème 2. Notons $A = \{u_n | n \in \mathbb{N}\} \subset \mathbb{R}$. Comme la suite $(u_n)_{n \in \mathbb{N}}$ est majorée, disons par le réel M, l'ensemble A est majoré par M, et de plus il est non vide. Donc d'après le théorème $\mathbb{R}4$ du chapitre sur les réels, l'ensemble A admet une borne supérieure : notons $\ell = \sup A$. Montrons que $\lim_{n \to +\infty} u_n = \ell$. Soit $\epsilon > 0$. Par la caractérisation de la borne supérieure, il existe un élément u_N de A tel que $\ell - \epsilon < u_N \leqslant \ell$. Mais alors pour $n \geqslant N$ on a $\ell - \epsilon < u_N \leqslant \ell$, et donc $|u_n - \ell| \leqslant \epsilon$.

4.3. Deux exemples

La limite $\zeta(2)$

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$.
- Montrons par récurrence que pour tout entier naturel $n \ge 1$ on a $u_n \le 2 \frac{1}{n}$.
 - Pour n = 1, on a $u_1 = 1 \le 1 = 2 \frac{1}{1}$.
 - Fixons $n \geqslant 1$ pour lequel on suppose $u_n \leqslant 2 \frac{1}{n}$. Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2} \leqslant 2 \frac{1}{n} + \frac{1}{(n+1)^2}$. Or $\frac{1}{(n+1)^2} \leqslant \frac{1}{n(n+1)} = \frac{1}{(n+1)^2}$ $\frac{1}{n} - \frac{1}{n+1}$, donc $u_{n+1} \leqslant 2 - \frac{1}{n+1}$, ce qui achève la récurrence.
- Donc la suite $(u_n)_{n\geqslant 1}$ est croissante et majorée par 2 : elle converge.

On note $\zeta(2)$ cette limite, vous montrerez plus tard qu'en fait $\zeta(2) = \frac{\pi^2}{6}$.

Suite harmonique

C'est la suite $(u_n)_{n\geq 1}$ de terme général :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Calculons $\lim_{n\to+\infty} u_n$.

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{n+1}>0$. Minoration de $u_{2^p}-u_{2^{p-1}}$. On a $u_2-u_1=1+\frac{1}{2}-1=\frac{1}{2}$; $u_4-u_2=\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$, et en général :

$$u_{2^{p}} - u_{2^{p-1}} = \underbrace{\frac{1}{2^{p-1} + 1} + \frac{1}{2^{p-1} + 2} + \dots + \frac{1}{2^{p}}}_{2^{p-1} = 2^{p} - 2^{p-1} \text{ termes } \geqslant \frac{1}{2^{p}}} > 2^{p-1} \times \frac{1}{2^{p}} = \frac{1}{2}$$

• $\lim_{n\to+\infty} u_n = +\infty$. En effet

$$u_{2^{p}}-1=u_{2^{p}}-u_{1}=(u_{2}-u_{1})+(u_{4}-u_{2})+\cdots+(u_{2^{p}}-u_{2^{p-1}})\geqslant \frac{p}{2}$$

donc la suite $(u_n)_{n\geqslant 1}$ est croissante mais n'est pas bornée, donc elle tend vers $+\infty$.

4.4. Suites adjacentes

Définition 7.

Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites *adjacentes* si

- (u_n)_{n∈ℕ} est croissante et (v_n)_{n∈ℕ} est décroissante,
 pour tout n ≥ 0, on a u_n ≤ v_n,
- $3. \lim_{n\to+\infty} (v_n u_n) = 0.$

Théorème 3.

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, elles convergent vers la même limite.

Il y a donc deux résultats dans ce théorème, la convergence de (u_n) et (v_n) et en plus l'égalité des limites. Les termes de la suites sont ordonnées ainsi :

$$u_0 \leqslant u_1 \leqslant u_2 \leqslant \cdots \leqslant u_n \leqslant \cdots \leqslant v_n \leqslant \cdots \leqslant v_2 \leqslant v_1 \leqslant v_0$$

Démonstration.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par v_0 , donc elle converge vers une limite ℓ .
- La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 , donc elle converge vers une limite ℓ' .
- Donc $\ell' \ell = \lim_{n \to +\infty} (v_n u_n) = 0$, d'où $\ell' = \ell$.

Exemple 12.

Reprenons l'exemple de $\zeta(2)$. Soient (u_n) et (v_n) les deux suites définies pour $n \geqslant 1$ par

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 et $v_n = u_n + \frac{2}{n+1}$.

Montrons que (u_n) et (v_n) sont deux suites adjacentes :

- 1. (a) (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$.
 - (b) (v_n) est décroissante : (ν_n) est décroissante : $\nu_{n+1} - \nu_n = \frac{1}{(n+1)^2} + \frac{2}{n+2} - \frac{2}{n+1} = \frac{n+2+2(n+1)^2-2(n+1)(n+2)}{(n+2)(n+1)^2} = \frac{-n}{(n+2)(n+1)^2} < 0$
- 2. Pour tout $n \geqslant 1$: $v_n u_n = \frac{2}{n+1} > 0$, donc $u_n \leqslant v_n$.
- 3. Enfin comme $v_n u_n = \frac{2}{n+1}$ alors $\lim (v_n u_n) = 0$.

Les suites (u_n) et (v_n) sont deux suites adjacentes, elles convergent donc vers une même limite finie ℓ . Nous avons en plus l'encadrement $u_n \le \ell \le v_n$ pour tout $n \ge 1$. Ceci fournit des approximations de la limite : par exemple pour $n = 3, 1 + \frac{1}{4} + \frac{1}{9} \le \ell \le 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{2} \text{ donc } 1,3611... \le \ell \le 1,8611...$

Exercice 2.

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}.$$

Montrer que la suite $(u_n)_{n\geqslant 1}$ converge (on pourra considérer la suite $(v_n)_{n\geqslant 1}$ de terme général $v_n=u_n+\frac{1}{n^2}$).

Remarque.

On note $\zeta(3)$ cette limite. On l'appelle aussi constante d'Apéry qui a prouvé en 1978 que $\zeta(3) \notin \mathbb{Q}$.

4.5. Théorème de Bolzano-Weierstrass

Définition 8.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Une *suite extraite* ou *sous-suite* de $(u_n)_{n\in\mathbb{N}}$ est une suite de la forme $(u_{\phi(n)})_{n\in\mathbb{N}}$, où $\phi:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante.

Exemple 13.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$.

- Si on considère $\phi: \mathbb{N} \to \mathbb{N}$ donnée par $\phi(n) = 2n$, alors la suite extraite correspondante a pour terme général $u_{\phi(n)} = (-1)^{2n} = 1$, donc la suite $(u_{\phi(n)})_{n \in \mathbb{N}}$ est constante égale à 1.
- Si on considère $\psi: \mathbb{N} \to \mathbb{N}$ donnée par $\psi(n) = 3n$, alors la suite extraite correspondante a pour terme général $u_{\psi(n)} = (-1)^{3n} = ((-1)^3)^n = (-1)^n$. La suite $(u_{\psi(n)})_{n \in \mathbb{N}}$ est donc égale à $(u_n)_{n \in \mathbb{N}}$.

Proposition 12.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si $\lim_{n\to+\infty}u_n=\ell$, alors pour toute suite extraite $(u_{\phi(n)})_{n\in\mathbb{N}}$ on a $\lim_{n\to+\infty}u_{\phi(n)}=\ell$.

Démonstration. Soit $\epsilon > 0$. D'après la définition de limite (définition 4), il existe un entier naturel N tel que $n \ge N$ implique $|u_n - \ell| < \epsilon$. Comme l'application ϕ est strictement croissante, on montre facilement par récurrence que pour tout n, on a $\phi(n) \ge n$. Ceci implique en particulier que si $n \ge N$, alors aussi $\phi(n) \ge N$, et donc $|u_{\phi(n)} - \ell| < \epsilon$. Donc la définition de limite (définition 4) s'applique aussi à la suite extraite.

Corollaire 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si elle admet une sous-suite divergente, ou bien si elle admet deux sous-suites convergeant vers des limites distinctes, alors elle diverge.

Exemple 14.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors $(u_{2n})_{n\in\mathbb{N}}$ converge vers 1, et $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers -1 (en fait ces deux sous-suites sont constantes). On en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ diverge.

Exercice 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On suppose que les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

Terminons par un résultat théorique très important.

Théorème 4 (Théorème de Bolzano-Weierstrass).

Toute suite bornée admet une sous-suite convergente.

Exemple 15.

- 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors on peut considérer les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=\cos n$. Le théorème affirme qu'il existe une sous-suite convergente, mais il est moins facile de l'expliciter.

Démonstration du théorème 4. On procède par dichotomie. L'ensemble des valeurs de la suite est par hypothèse contenu dans un intervalle [a,b]. Posons $a_0=a,\ b_0=b,\ \phi(0)=0$. Au moins l'un des deux intervalles $\left[a_0,\frac{a_0+b_0}{2}\right]$ ou $\left[\frac{a_0+b_0}{2},b_0\right]$ contient u_n pour une infinité d'indices n. On note $[a_1,b_1]$ un tel intervalle, et on note $\phi(1)$ un entier $\phi(1)>\phi(0)$ tel que $u_{\phi(1)}\in [a_1,b_1]$.

En itérant cette construction, on construit pour tout entier naturel n un intervalle $[a_n,b_n]$, de longueur $\frac{b-a}{2^n}$, et un entier $\phi(n)>\phi(n-1)$ tel que $u_{\phi(n)}\in[a_n,b_n]$. Notons que par construction la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.

Comme de plus $\lim_{n\to+\infty}(b_n-a_n)=\lim_{n\to+\infty}\frac{b-a}{2^n}=0$, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes et donc convergent vers une même limite ℓ . On peut appliquer le théorème « des gendarmes » pour conclure que $\lim_{n\to+\infty}u_{\phi(n)}=\ell$. \square

Mini-exercices.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour $n\geqslant 1$, $u_n=\sqrt{2+u_{n-1}}$. Montrer que cette suite est croissante et majorée par 2. Que peut-on en conclure?
- 2. Soit $(u_n)_{n\geqslant 2}$ la suite définie par $u_n=\frac{\ln 4}{\ln 5}\times\frac{\ln 6}{\ln 7}\times\frac{\ln 8}{\ln 9}\times\cdots\times\frac{\ln (2n)}{\ln (2n+1)}$. Étudier la croissance de la suite. Montrer que la suite (u_n) converge.
- 3. Soit $N\geqslant 1$ un entier et $(u_n)_{n\in\mathbb{N}}$ la suite de terme général $u_n=\cos(\frac{n\pi}{N})$. Montrer que la suite diverge.
- 4. Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot (n!)}$ sont adjacentes. Que peut-on en déduire ?
- 5. Soit $(u_n)_{n\geqslant 1}$ la suite de terme général $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. On considère les deux suites extraites de terme général $v_n=u_{2n}$ et $w_n=u_{2n+1}$. Montrer que les deux suites $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ sont adjacentes. En déduire que la suite

 $(u_n)_{n\geqslant 1}$ converge. 6. Montrer qu'une suite bornée et divergente admet deux sous-suites convergeant vers des valeurs distinctes.

5. Suites récurrentes

Les suites récurrentes définies par une fonction forment une catégorie essentielle de suites.

Ce paragraphe est l'aboutissement de notre étude des suites, mais sa lecture nécessite aussi la maîtrise préalable de l'étude de fonctions (voir « Limites et fonctions continues »).

5.1. Suite récurrente définie par une fonction

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Une *suite récurrente* est définie par son premier terme et une relation permettant de calculer les termes de proche en proche :

$$u_0 \in \mathbb{R}$$
 et $u_{n+1} = f(u_n)$ pour $n \ge 0$.

Une suite récurrente est donc définie par deux données : un terme initial u_0 , et une relation de récurrence $u_{n+1} = f(u_n)$. La suite s'écrit ainsi:

$$u_0$$
, $u_1 = f(u_0)$, $u_2 = f(u_1) = f(f(u_0))$, $u_3 = f(u_2) = f(f(f(u_0)))$,...

Le comportement d'une telle suite peut très vite devenir complexe.

Exemple 16.

Soit $f(x) = 1 + \sqrt{x}$. Fixons $u_0 = 2$ et définissons pour $n \ge 0$: $u_{n+1} = f(u_n)$. C'est-à-dire $u_{n+1} = 1 + \sqrt{u_n}$. Alors les premiers termes de la suite sont :

2,
$$1+\sqrt{2}$$
, $1+\sqrt{1+\sqrt{2}}$, $1+\sqrt{1+\sqrt{1+\sqrt{2}}}$, $1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}$,...

Une suite récurrente donnée n'est pas forcément convergente. Lorsqu'elle admet une limite, l'ensemble des valeurs possibles est restreint par le résultat essentiel suivant.

Proposition 13.

Si f est une fonction continue et la suite récurrente (u_n) converge vers ℓ , alors ℓ est une solution de l'équation :

$$f(\ell) = \ell$$

Si on arrive à montrer que la limite existe, cette proposition affirme qu'elle est à chercher parmi les solutions de l'équation $f(\ell) = \ell$.

Une valeur ℓ , vérifiant $f(\ell) = \ell$ est un *point fixe* de f. La preuve est très simple et utilise essentiellement la continuité de la fonction f:

 $D\'{e}monstration$. Lorsque $n \to +\infty$, $u_n \to \ell$ et donc aussi $u_{n+1} \to \ell$. Comme $u_n \to \ell$ et que f est continue alors la suite $(f(u_n)) \to f(\ell)$. La relation $u_{n+1} = f(u_n)$ devient à la limite (lorsque $n \to +\infty$) : $\ell = f(\ell)$.

Nous allons étudier en détail deux cas particuliers, celui ou la fonction est croissante, puis celui ou la fonction est décroissante.

5.2. Cas d'une fonction croissante

Commençons par remarquer que pour une fonction croissante, le comportement de la suite (u_n) définie par récurrence est assez simple :

- Si $u_1 \ge u_0$ alors (u_n) est croissante.
- Si $u_1 \le u_0$ alors (u_n) est décroissante.

La preuve est facile par récurrence : par exemple si $u_1 \geqslant u_0$, alors comme f est croissante on a $u_2 = f(u_1) \geqslant f(u_0) = u_1$. Partant de $u_2 \geqslant u_1$ on en déduit $u_3 \geqslant u_2$,...

Voici le résultat principal :

Proposition 14.

Si $f:[a,b] \to [a,b]$ une fonction continue et **croissante**, alors quelque soit $u_0 \in [a,b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$.

Il y a une hypothèse importante qui est un peu cachée : f va de l'intervalle [a, b] dans lui-même. Dans la pratique, pour appliquer cette proposition, il faut commencer par choisir [a, b] et vérifier que $f([a, b]) \subset [a, b]$.

Démonstration. La preuve est une conséquence des résultats précédents. Par exemple si $u_1 \geqslant u_0$ alors la suite (u_n) est croissante, comme par ailleurs elle est majorée par b, elle converge vers un réel ℓ . Par la proposition 13, on a $f(\ell) = \ell$. Si $u_1 \leqslant u_0$, (u_n) est une décroissante et minorée par a, et la conclusion est la même.

Exemple 17.

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{4}(x^2 - 1)(x - 2) + x$ et $u_0 \in [0, 2]$. Étudions la suite (u_n) définie par récurrence : $u_{n+1} = f(u_n)$ (pour tout $n \ge 0$).

- 1. Étude de *f*
 - (a) f est continue sur \mathbb{R} .
 - (b) f est dérivable sur \mathbb{R} et f'(x) > 0.
 - (c) Sur l'intervalle [0,2], f est strictement croissante.
 - (d) Et comme $f(0) = \frac{1}{2}$ et f(2) = 2 alors $f([0,2]) \subset [0,2]$.
- 2. Graphe de f

Voici comment tracer la suite : on trace le graphe de f et la bissectrice (y=x). On part d'une valeur u_0 (en rouge) sur l'axe des abscisses, la valeur $u_1=f(u_0)$ se lit sur l'axe des ordonnées, mais on reporte la valeur de u_1 sur l'axe des abscisses par symétrie par rapport à la bissectrice. On recommence : $u_2=f(u_1)$ se lit sur l'axe des ordonnées et on le reporte sur l'axe des abscisses, etc. On obtient ainsi une sorte d'escalier, et graphiquement on conjecture que la suite est croissante et tend vers 1. Si on part d'une autre valeur initiale u_0' (en vert), c'est le même principe, mais cette fois on obtient un escalier qui descend.

3. Calcul des points fixes.

Cherchons les valeurs x qui vérifient (f(x) = x), autrement dit (f(x) - x = 0), mais

$$f(x) - x = \frac{1}{4}(x^2 - 1)(x - 2) \tag{1}$$

Donc les points fixes sont les $\{-1,1,2\}$. La limite de (u_n) est donc à chercher parmi ces 3 valeurs.

4. Premier cas : $u_0 = 1$ ou $u_0 = 2$.

Alors $u_1 = f(u_0) = u_0$ et par récurrence la suite (u_n) est constante (et converge donc vers u_0).

- 5. Deuxième cas : $0 \le u_0 < 1$.
 - Comme $f([0,1]) \subset [0,1]$, la fonction f se restreint sur l'intervalle [0,1] en une fonction $f:[0,1] \to [0,1]$.
 - De plus sur [0,1], $f(x)-x \ge 0$. Cela se déduit de l'étude de f ou directement de l'expression (1).
 - Pour u₀ ∈ [0, 1[, u₁ = f(u₀) ≥ u₀ d'après le point précédent. Comme f est croissante, par récurrence, comme on l'a vu, la suite (u_n) est croissante.
 - La suite (u_n) est croissante et majorée par 1, donc elle converge. Notons ℓ sa limite.
 - D'une part ℓ doit être un point fixe de $f: f(\ell) = \ell$. Donc $\ell \in \{-1, 1, 2\}$.
 - D'autre part la suite (u_n) étant croissante avec $u_0 \ge 0$ et majorée par 1, donc $\ell \in [0,1]$.
 - Conclusion : si $0 \le u_0 < 1$ alors (u_n) converge vers $\ell = 1$.
- 6. Troisième cas : $1 < u_0 < 2$.

La fonction f se restreint en $f:[1,2] \to [1,2]$. Sur l'intervalle [1,2], f est croissante mais cette fois $f(x) \le x$. Donc $u_1 \le u_0$, et la suite (u_n) est décroissante. La suite (u_n) étant minorée par 1, elle converge. Si on note ℓ sa limite alors d'une part $f(\ell) = \ell$, donc $\ell \in \{-1,1,2\}$, et d'autre part $\ell \in [1,2[$. Conclusion : (u_n) converge vers $\ell = 1$.

Le graphe de f joue un rôle très important, il faut le tracer même si on ne le demande pas explicitement. Il permet de se faire une idée très précise du comportement de la suite : Est-elle croissante ? Est-elle positive ? Semble-t-elle converger ? Vers quelle limite ? Ces indications sont essentielles pour savoir ce qu'il faut montrer lors de l'étude de la suite.

5.3. Cas d'une fonction décroissante

Proposition 15.

Soit $f:[a,b] \to [a,b]$ une fonction continue et **décroissante**. Soit $u_0 \in [a,b]$ et la suite récurrente (u_n) définie par $u_{n+1} = f(u_n)$. Alors :

- La sous-suite (u_{2n}) converge vers une limite ℓ vérifiant $f \circ f(\ell) = \ell$.
- La sous-suite (u_{2n+1}) converge vers une limite ℓ' vérifiant $f \circ f(\ell') = \ell'$.

Il se peut (ou pas!) que $\ell = \ell'$.

Démonstration. La preuve se déduit du cas croissant. La fonction f étant décroissante, la fonction $f \circ f$ est croissante. Et on applique la proposition 14 à la fonction $f \circ f$ et à la sous-suite (u_{2n}) définie par récurrence $u_2 = f \circ f(u_0)$, $u_4 = f \circ f(u_2),...$

De même en partant de u_1 et $u_3 = f \circ f(u_1),...$

Exemple 18.

$$f(x) = 1 + \frac{1}{x}$$
, $u_0 > 0$, $u_{n+1} = f(u_n) = 1 + \frac{1}{u_n}$

- 1. Étude de f. La fonction $f:]0, +\infty[\to]0, +\infty[$ est une fonction continue et strictement décroissante.
- 2. Graphe de f.

Le principe pour tracer la suite est le même qu'auparavant : on place u_0 , on trace $u_1 = f(u_0)$ sur l'axe des ordonnées et on le reporte par symétrie sur l'axe des abscisses,... On obtient ainsi une sorte d'escargot, et graphiquement on conjecture que la suite converge vers le point fixe de f. En plus on note que la suite des termes de rang pair semble une suite croissante, alors que la suite des termes de rang impair semble décroissante.

3. Points fixes de $f \circ f$.

$$f \circ f(x) = f(f(x)) = f(1 + \frac{1}{x}) = 1 + \frac{1}{1 + \frac{1}{x}} = 1 + \frac{x}{x+1} = \frac{2x+1}{x+1}$$

Donc

$$f \circ f(x) = x \iff \frac{2x+1}{x+1} = x \iff x^2 - x - 1 = 0 \iff x \in \left\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}$$

Comme la limite doit être positive, le seul point fixe à considérer est $\ell = \frac{1+\sqrt{5}}{2}$.

Attention! Il y a un unique point fixe, mais on ne peut pas conclure à ce stade car f est définie sur $]0,+\infty[$ qui n'est pas un intervalle compact.

4. Premier cas $0 < u_0 \le \ell = \frac{1+\sqrt{5}}{2}$.

Alors, $u_1 = f(u_0) \geqslant f(\ell) = \ell$; et par une étude de $f \circ f(x) - x$, on obtient que : $u_2 = f \circ f(u_0) \geqslant u_0$; $u_1 \geqslant f \circ f(u_1) = u_3$.

Comme $u_2 \geqslant u_0$ et $f \circ f$ est croissante, la suite (u_{2n}) est croissante. De même $u_3 \leqslant u_1$, donc la suite (u_{2n+1}) est décroissante. De plus comme $u_0 \leqslant u_1$, en appliquant f un nombre pair de fois, on obtient que $u_{2n} \leqslant u_{2n+1}$. La situation est donc la suivante :

$$u_0 \leqslant u_2 \leqslant \cdots \leqslant u_{2n} \leqslant \cdots \leqslant u_{2n+1} \leqslant \cdots \leqslant u_3 \leqslant u_1$$

La suite (u_{2n}) est croissante et majorée par u_1 , donc elle converge. Sa limite ne peut être que l'unique point fixe de $f \circ f : \ell = \frac{1+\sqrt{5}}{2}$.

La suite (u_{2n+1}) est décroissante et minorée par u_0 , donc elle converge aussi vers $\ell=\frac{1+\sqrt{5}}{2}$.

On en conclut que la suite (u_n) converge vers $\ell = \frac{1+\sqrt{5}}{2}$.

5. Deuxième cas $u_0 \geqslant \ell = \frac{1+\sqrt{5}}{2}$.

On montre de la même façon que (u_{2n}) est décroissante et converge vers $\frac{1+\sqrt{5}}{2}$, et que (u_{2n+1}) est croissante et converge aussi vers $\frac{1+\sqrt{5}}{2}$.

Mini-exercices.

- Soit f(x) = ½x³+1, u₀ = 0 et pour n ≥ 0 : uₙ+1 = f(uₙ). Étudier en détail la suite (uₙ) : (a) montrer que uₙ ≥ 0; (b) étudier et tracer le graphe de g; (c) tracer les premiers termes de (uₙ); (d) montrer que (uₙ) est croissante; (e) étudier la fonction g(x) = f(x) x; (f) montrer que f admet deux points fixes sur R₊, 0 < ℓ < ℓ'; (g) montrer que f([0,ℓ]) ⊂ [0,ℓ]; (h) en déduire que (uₙ) converge vers ℓ.
- 2. Soit $f(x) = 1 + \sqrt{x}$, $u_0 = 2$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détail la suite (u_n) .
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$. Étudier en détail la suite (u_n) .
- 4. Étudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4}{u_n+2}$.

Auteurs du chapitre

Auteurs: Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin