

行测模块刷题

数学运算100题

目录

第一章	和差倍分应用题	1
第二章	浓度问题	2
第三章	利润问题	3
第四章	工程问题	4
第五章	行程问题	5
第六章	几何问题	7
第七章	排列组合	9
第八章	概率问题	10
第九章	容斥问题	11
第十章	植树问题	13
第十一章	章 星期问题	14
第十二章	章 年龄问题	15
第十三章	章 杂项问题	16

第一章 和差倍分应用题

	1. 设 a、b 均为正整数	数,且有等式 11a+7b=1	32 成立,则 a 的值为	()
	A. 6	B. 4	C. 3	D. 5
	2. 某地遭受重大自然	灾害后, A 公司立即组织	?捐款救灾。已知该公司	有 100 名员工捐款,
捐款	太额有 300 元、500 元	和 2000 元三种,捐款总	总额为 36000 元,则捐款	次 500 元的员工数是
()			
	A. 11 人	B. 12 人	C. 13 人	D. 14 人
	3.20 人乘飞机从甲市	前往乙市,总费用为27	7000元。每张机票的全位	介票单价为 2000 元,
		还有九折票和五折票两和		
之夕	卜,还包括 170 元的税	费。则购买九折票的乘		
	A. 两者一样多		B. 买九折票的多1人 D. 买九折票的多4人	
	C. 买全价票的多 2 人			
		司运送 400 箱玻璃。双		
		村且运输公司需赔偿损失	₹60 元。最终玻璃厂向过	运输公司共支付 9750
元,	7 14 1 2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		a a = tota	and the
		B. 28 箱		
	5. 从飞机的窗口问外	望去,小苏看见部分海上	岛、部分日云以及个天日	的一片海域。具甲日
굸궏	5去了窗口画面的一半	,它遮住了全部海岛的	<u>1</u> , 因此海岛只占窗口画	$\overline{\text{Im}}$ 的 $\frac{1}{4}$ 。请问:被白
云证	途住的那部分海洋占窗	口画面的几分之几? ()	
	A. $\frac{5}{12}$	B. $\frac{1}{2}$	C. $\frac{1}{4}$	D. $\frac{7}{16}$
	6. 张先生比李先生大	8岁,张先生的年龄是	小王年龄的3倍,9年前	前李先生的年龄是小
王年	F龄的 4 倍。则几年后	张先生的年龄是小王年	龄的 2 倍? ()	
	A. 10	В. 13	C. 16	D. 19
	7. 某企业共有职工 10	00 多人,其中生产人员	与非生产人员的人数之	上比为 4: 5, 而研发
与非		为3:5,已知生产人员	员不能同时担任研发人员	员,则该企业不在生
产禾		工有多少人? ()		
	A. 20			
		产某玩具 560 件,用 A、		
		扩大生产规模后该玩具	以的日产量翻了一番,仍	i然用 A、B 两种型号
的组	氏箱装箱,则每日需要)	
	A. 70 只	B. 75 只	C. 77 只	D. 98 只
	9. 2014 年父亲、母亲	的年龄之和是年龄之差	的 23 倍,年龄之差是/	L子年龄的 1 , 5年后
母弟	 兵和儿子的年龄都是平	方数。问 2014 年父亲的	的年龄是多少()(年龄都按整数计算)
	A. 36	B. 40	C. 44	D. 48
	10.2016年小明与小月	夫的年龄之和是年龄之差	差的9倍,两人年龄之和	介于 50 到 60 之间,
小明	目比小庆大,小东的年龄	令是小明与小庆年龄之差	É的 2倍,问小明年龄是	小东年龄的3倍时,
小明	月多少岁 ()			
	A. 24	B. 27	C. 30	D. 36

第二章 浓度问题

1. 某种鸡尾酒的酒	盾精浓度为 20%,由 A	种酒、B种酒和酒精浓	度(酒精重量÷酒水总重
量)10%的C种酒按1:	3: 1 的比例(重量	:比)调制成。已知 B 种	酒的酒精浓度是 A 种酒的
一半,则 A 种酒的酒精	情浓度是 ()		
A. 36%	В. 30%	C. 24%	D. 18%
2. 现有浓度为 15%	6和30%的盐水若干,	如要配出 600 克浓度为	25%的盐水,则分别需要
浓度 15%和 30%的盐水	多少克?()		
A. 100、300	B. 200, 400	C. 300, 600	D. 400, 800
3. 千禧锻造厂要制	造一批一定比例的領	易铁金属合金,第一次加	1入适量的金属铁后,此时
金属锡的含量占总重量	量的4%,第二次加入	司样多的金属铁后, 金属	锡的含量占总含量的 3%。
如果第三次再加入同样	羊多的金属铁后,此 时	寸金属锡的含量占总重量	量的百分比是 ()
A. 2. 5%	B. 2.4%	C. 2. 7%	D. 2.8%
4. 有 A、B、C 三和	 浓度不同的溶液,	安 A 与 B 的质量比为 5:	3 混合,得到的溶液浓度
为13.75%; 按A与B的	勺质量比为 3:5 混合	,得到的溶液浓度为16	6.25%; 按 A、B、C 的质量
比为 1: 2: 5 混合, 得	身到的溶液浓度为31	. 25%。问溶液 C 的浓度:	为多少 ()
A. 35%	B. 40%	C. 45%	D. 50%
5. 有 A、B、C 三和	中浓度不同的盐溶液。	若取等量的A、B两种	盐溶液混合,则得浓度为
17%的盐溶液; 若取等	量的 B、C 两种盐溶液	返混合,则得浓度为 23%	的盐溶液;若取等量的 A、
B、C 三种盐溶液混合,	得到浓度为18%的盐	盐溶液。则 B 种盐溶液的	的浓度是 ()
A. 21%	В. 22%	C. 26%	D. 37%

第三章 利润问题

	□啡机打八折销售,利润 ↑是多少元? ()		七折出售,利润为 50 元。
	B. 240		D 200
			了尽快销完,决定五折处理
			,这使得商店的实际利润率
	一半,那么这批商品的进		
A. 1800		C. 2500	D. 3000
			按照 50%的利润定价销售该
			北第一阶段多一半; 第三阶
			商品的利润率为20%。则第
三阶段的商品在第一	一阶段定价的基础上打了		
A. 四折	B. 五折	C. 六折	D. 七五折
4. 某件商品如果	! 打九折销售,利润是原	(价销售时的 2 ;如果打	丁八折后再降价 50 元销售,
	.1 >>===================================		~ /
利润定原价销售的价	\int_{4}^{1} 。该商品如果打八八 f		
A. 240	В. 300	C. 360	D. 480
5. 某商场举行负	L销活动,规定:一次购	物不超过 100 元的,	不给优惠;超过100元而不
超过 300 元的,一律	19 折优惠;超过 300 元	的,其中300元以内	部分仍按9折优惠,超过部
分按8折优惠。小王	三两次购物分别用 90.9	元和 295.6 元,现小	李决定一次性购买小王两次
购买的同样的物品,	那么小李应付款()	
A. 362. 32 元		B. 352.4 元	
C. 352. 4 元或 36	68.32 元	B. 352. 4 元 D. 368. 32 元或	376.4元
6. 某超市购入 8			售额为 1620 元;第二天售
			倍, 第四天以进价的八折销
			未卖出。问该超市购买桃子
花了多少钱?	, , , , , , , , , , , , , , , , , , , ,		
	B. 2400 元	C. 2800 元	D. 3040 元
			、女士打七折,方案二为不
			女士一同前来就餐,方案一
的总价比方案二的总		- 1141111111111111111111111111111111111	1 4 114 2 1 4 1 4 2 1 4 1 4 1 4 1 4 1 4
	B. 低 6. 25%	C. 高 6. 25%	D. 高 12. 5%
			后,A股票上涨8%,B股票
			入A、B两只股票时的投资
比例为:	及水关田,八皿州1000		/ M D 1/1/10X W 11 11 11 11 11 11 11 11 11 11 11 11 1
A. 5:4	B. 4:3	C.3:2	D. 2:1
			10人参观),无其他票价
	- 八宗 母派 10 元, 図, - 班共有 58 人逛 A 公园,		
A. 350	B. 360	C. 380	D. 390
			元。按规定,一次性劳务费
	華位邀頃作一次字本派 等要扣缴 20%的税,则李		
旭过 000 儿的即分布	」女1μ级 ム∪スルロム恍, 则字	秋汉川儿朋力 分页 疋	
A. 2200 元	B. 2000 元		D. 1900 元

第四章 工程问题

1. 某检修工作由	李和王二人负责,两人	如一同工作4天,剩一	下工作量李需要6天,或王
需要3天完成。现李和	和王共同工作了5天,则	剩下的工作李单独检	诊修还需几天完成? ()
A. 2	В. 3	C. 4	D. 5
2. A 工程队的效图	率是 B 工程队的 2 倍, 其	某工程交给两队共同完	完成需要6天。如果两队的
工作效率均提高一倍	, 且 B 队中途休息了一	天,问要保证工程按	原来的时间完成,A 队中途
最多可以休息几天()		
A. 4	В. 3	C. 2	D. 1
3. 工厂有 5 条效	率不同的生产线。某个	生产项目如果任选3多	条生产线一起加工,最快需
要6天整,最慢需要	12 天整; 5 条生产线-	一起加工,则需要5天	、整。问如果所有生产线的
产能都扩大一倍,任	选2条生产线一起加工	最多需要多少天完成	? ()
A. 11	В. 13	C. 15	D. 30
4. 某件刺绣产品	,需要效率相当的三名	绣工8天才能完成;	绣品完成 50%时,一人有事
提前离开,绣品由剩	下的两人继续完成;绣	品完成 75%时,又有一	一人离开,绣品由最后剩下
的那个人做完。那么	,完成该件绣品一共用	了 ()	
A. 10 天	B. 11 天	C.12 天	D. 13 天
5. 甲、乙、丙三	个工厂每天共可以生产	防水布2万平方米。	现有一批救灾物资要生产,
如果将防水布生产任	务交给甲、乙联合或乙	、丙联合或甲、丙联	合完成,分别需要24、30
和40天。如果三个工	1厂联合完成生产任务,	且每个工厂每天的产	产能各增加1万平方米,问
可以比在不增加产能	的情况下提前几天完成	? ()	
A. 6	В. 8	C. 10	D. 12
			师傅每天生产 150 个甲配
件或75个乙配件;很	 弟每天生产 60 个甲配	件或 24 个乙配件, 师	币徒决定合作生产,并进行
合理分工,则他们工	作 15 天后最多能生产设	该种产品的套数为()
A. 900	В. 950	C. 1000	D. 1050
7. 一项工程,甲	单独完成需要 60 天,乙	乙单独完成需要 30 天	,丙单独完成需要 15 天,
如果按照甲、乙、丙			
	的顺序交替进行,那么	需要多少天才能完成	?
A. 25	的顺序交替进行,那么 B. 26	需要多少天才能完成 C.27	? D. 28
	В. 26	C. 27	
8. 甲、乙二人单	В. 26	C. 27 甲工作效率提高 20%,	D. 28 则可提前 2 天完工;如果
8. 甲、乙二人单	B. 26 独去做一件工作,如果	C. 27 甲工作效率提高 20%,	D. 28 则可提前 2 天完工;如果
8. 甲、乙二人单 乙工作效率降低 25%, A. 3 天	B. 26 独去做一件工作,如果 则要延后 2 天完工。 B. 4 天	C. 27 甲工作效率提高 20%, 若二人合作几天能完度 C. 5 天	D. 28 则可提前 2 天完工;如果 成?
8. 甲、乙二人单 乙工作效率降低 25%, A. 3 天 9. 在一块草场上	B. 26 独去做一件工作,如果 则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若	C. 27 甲工作效率提高 20%, 若二人合作几天能完度 C. 5 天 干只羊。如果只有羊	D. 28 则可提前 2 天完工;如果 或? D. 6 天
8. 甲、乙二人单元 乙工作效率降低 25%, A. 3 天 9. 在一块草场上二 一天牛吃,第二天羊口	B. 26 独去做一件工作,如果 则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若	C. 27 甲工作效率提高 20%, 若二人合作几天能完成 C. 5 天 干只羊。如果只有羊 数天吃完;如果第一元	D. 28 则可提前 2 天完工;如果 成? D. 6 天 吃草,够吃 16 天;如果第 天羊吃,第二天牛吃,这样
8. 甲、乙二人单元 乙工作效率降低 25%, A. 3 天 9. 在一块草场上的 一天牛吃,第二天羊的 交替,那么比上次轮的 A. 8	B. 26 独去做一件工作,如果 则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若 吃,这样交替,正好整 流的做法多吃半天;牛 B. 7	C. 27 甲工作效率提高 20%, 若二人合作几天能完成 C. 5 天 干只羊。如果只有羊 数天吃完;如果第一分 单独吃能够吃(C. 6	D. 28 则可提前 2 天完工;如果 成? D. 6 天 吃草,够吃 16 天;如果第 天羊吃,第二天牛吃,这样)天。 D. 5
8. 甲、乙二人单元 乙工作效率降低 25%, A. 3 天 9. 在一块草场上 一天牛吃,第二天羊口交替,那么比上次轮 A. 8 10. 某新型建材生	B. 26 独去做一件工作,如果则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若吃,这样交替,正好整 流的做法多吃半天;牛 B. 7 E产车间计划生产 480 个	C. 27 甲工作效率提高 20%, 苦二人合作几天能完成 C. 5 天 干只羊。如果只有羊 数天吃完;如果第一分 单独吃能够吃(C. 6 全球,当生产任务完	D. 28 则可提前 2 天完工;如果 成? D. 6 天 吃草,够吃 16 天;如果第 天羊吃,第二天牛吃,这样)天。 D. 5 成一半时,暂时停止生产,
8. 甲、乙二人单元 乙工作效率降低 25%, A. 3 天 9. 在一块草场上之 一天牛吃,第二天羊口交替,那么比上次轮的 A. 8 10. 某新型建材生 对器械进行维修清理	B. 26 独去做一件工作,如果则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若吃,这样交替,正好整流的做法多吃半天;牛 B. 7 E产车间计划生产 480 个	C. 27 甲工作效率提高 20%, 若二人合作几天能完成 C. 5 天 干只羊。如果只有羊 数天吃完;如果第一分 单独吃能够吃(C. 6 全球,当生产任务完 上产后工作效率提高了	D. 28 则可提前 2 天完工;如果 成? D. 6 天 吃草,够吃 16 天;如果第 天羊吃,第二天牛吃,这样)天。 D. 5 成一半时,暂时停止生产, ~三分之一,结果完成任务
8. 甲、乙二人单元 乙工作效率降低 25%, A. 3 天 9. 在一块草场上之 一天牛吃,第二天羊口交替,那么比上次轮的 A. 8 10. 某新型建材生 对器械进行维修清理	B. 26 独去做一件工作,如果则要延后 2 天完工。 B. 4 天 老李养了若干头牛和若吃,这样交替,正好整 流的做法多吃半天;牛 B. 7 E产车间计划生产 480 个	C. 27 甲工作效率提高 20%, 若二人合作几天能完成 C. 5 天 干只羊。如果只有羊 数天吃完;如果第一分 单独吃能够吃(C. 6 全球,当生产任务完 上产后工作效率提高了	D. 28 则可提前 2 天完工;如果 成? D. 6 天 吃草,够吃 16 天;如果第 天羊吃,第二天牛吃,这样)天。 D. 5 成一半时,暂时停止生产, ~三分之一,结果完成任务

第五章 行程问题

到达滑雪场,游玩 4 个小时后按原路以原速返回。骑行社团离开学校 5.5 小时后,辅生大客车以 40 公里/小时的速度沿相同路线迎接骑行社团,则大客车出发后与骑行社团,要的时长是(A.30 分钟 B.40 分钟 C.50 分钟 D.60 分钟 2.甲乙两地之间高速公路设有 4 个服务区,从甲地驾车以 90 千米时速行驶并在等务区休息 10 分钟需要 4 小时 20 分钟到达乙地。若从乙地驾车以时速 120 千米并在每区休息 5 分钟,到达甲地需要的时间是多少?(A.2 小时 45 分钟 B.3 小时 5 分钟	相遇需 每个服务 钟后, 速 20%
要的时长是() A. 30 分钟 B. 40 分钟 C. 50 分钟 D. 60 分钟 2. 甲乙两地之间高速公路设有 4 个服务区,从甲地驾车以 90 千米时速行驶并在5 多区休息 10 分钟需要 4 小时 20 分钟到达乙地。若从乙地驾车以时速 120 千米并在每区休息 5 分钟,到达甲地需要的时间是多少?()	每个服 个服务 钟后, 速 20%
A. 30 分钟 B. 40 分钟 C. 50 分钟 D. 60 分钟 2. 甲乙两地之间高速公路设有 4 个服务区,从甲地驾车以 90 千米时速行驶并在5 务区休息 10 分钟需要 4 小时 20 分钟到达乙地。若从乙地驾车以时速 120 千米并在每区休息 5 分钟,到达甲地需要的时间是多少? ()	个服务 钟后, 速 20%
2. 甲乙两地之间高速公路设有 4 个服务区,从甲地驾车以 90 千米时速行驶并在 务区休息 10 分钟需要 4 小时 20 分钟到达乙地。若从乙地驾车以时速 120 千米并在每区休息 5 分钟,到达甲地需要的时间是多少? ()	个服务 钟后, 速 20%
务区休息 10 分钟需要 4 小时 20 分钟到达乙地。若从乙地驾车以时速 120 千米并在每区休息 5 分钟,到达甲地需要的时间是多少? ()	个服务 钟后, 速 20%
区休息 5 分钟, 到达甲地需要的时间是多少? ()	钟后, 速 20%
	速 20%
A. 2 小时 45 分钟 B. 3 小时 5 分钟	速 20%
	速 20%
C. 3 小时 25 分钟 D. 4 小时 20 分钟	速 20%
3. 小王和小李从甲地去往相距 15km 的乙地调研。两人同时出发且速度相同。15 分	
小王发现遗漏了重要文件遂立即原路原速返回,小李则继续前行;小王取到文件后提	速度为
追赶小李,在小李到达乙地时刚好追上,假设小王取文件的时间忽略不计,则小李的流	
() km/h.	
A. 4 B. 4. 5 C. 5 D. 6	
4. 小张家距离工厂 15 千米,乘坐班车 20 分钟可到工厂。一天,他错过班车,改	乘出租
车上班。出租车出发时间比班车晚4分钟,送小张到工厂后出租车马上原路返回,在	距离工
厂 1.875 千米处与班车相遇。如果班车和出租车都是匀速运动且不计上下车时间,那	
比班车早多少分钟到达工厂?()	
A. 3 B. 4 C. 5 D. 6	
5. A 地到 B 地的道路是下坡路。小周早上 6:00 从 A 地出发匀速骑车前往 B 地,7	:00 时
到达两地正中间的 C 地。到达 B 地后, 小周立即匀速骑车返回, 在 10:00 时又途经 C:	
后小周的速度在此前速度的基础上增加1米/秒。最后在11:30回到A地。问A、Bi	两地间
的距离在以下哪个范围内? ()	
A. 40~50 公里 B. 大于 50 公里	
C. 小于 30 公里 D. 30~40 公里	
6. 学校运动会 4×400 米比赛, 甲班最后一名选手起跑时, 乙班最后一名选手已经	圣跑出
20米。已知甲班选手跑8步的路程乙班选手只需要跑5步,但乙班选手跑2步的时间	可甲班
选手能跑 4 步,则当甲班选手跑到终点时,乙班选手距离终点()米	
A. 30 B. 40 C. 50 D. 60	
7. 环形跑道长 400 米, 老张、小王、小刘从同一地点同向出发, 围绕跑道分别慢;	走、跑
步和骑自行车。已知三人的速度分别是1米/秒、3米/秒和6米/秒,问小王第3次	迢越老
张时,小刘已经超越了小王多少次? ()	
A. 3 B. 4 C. 5 D. 6	
8. 甲车从 A 地开往 B 地, 乙车从 B 地开往 A 地。上午八点整, 两车同时出发, 相向]而行,
相遇后继续向前。甲车又行驶了2小时到达B地,乙车又行使了4.5小时到达A地。	甲乙两
车到达目的地后都立即返回,则在返程途中两车再次相遇时间为()	
A. 14 点整 B. 15 点整 C. 16 点整 D. 17 点整	
9. A、B 两地相距 180 千米, 甲、乙两车同时从 A、B 两地出发, 相向而行, 并连	卖往返
于甲、乙两地。甲车每小时行35千米,乙车每小时行28千米。则两车第三次相遇时	
地()千米	
A. 40 千米 B. 50 千米 C. 140 千米 D. 130 千米	
A 40 千米	

10. 甲、乙二人绕着圆形操场跑道散步,甲顺时针走,乙逆时针走,两人在跑道 A 处同时出发,甲每分钟走 90 米,乙每分钟走 60 米,当甲、乙两人在跑道 B 处相遇时,乙加快了速度,甲在原地停留 4 分钟后保持原来的速度继续往前走,最后甲、乙二人仍在 A 处相遇。已知该操场的周长为 1800 米,那么相遇后,乙的速度变为每分钟()米。

A. 70

B. 80

C. 90

D. 100

第六章 几何问题

- 1. 老王围着边长为50米的正六边形的草地跑步,他从某个角点出发,跑了500米之后, 距离出发点相距有多远()
 - A. $50\sqrt{2}$
- B. $50\sqrt{3}$
- C. 50 $(\sqrt{2} + 1)$ D. 50 $(\sqrt{3} 1)$
- 2. 如图所示, 甲和乙在面积为 54 π 的半圆形游泳池内游泳, 他们分别从位置 A 和 B 同 时出发,沿直线同时游到位置 C。若甲的速度为乙的 2 倍,则原来甲、乙两人相距()

- A. $9\sqrt{2}$
- B. 15
- C. $9\sqrt{3}$
- D. 18
- 3. 一块等边三角形的地, 其边长为 2a, 现打算在这块地上修建一个圆形花圃, 那么花 圃的最大面积有多少(
 - A. $a^2\pi$

- B. $\frac{1}{3}a^2\pi$ D. $\frac{1}{8}a^2\pi$
- 4. 如图,在长方形 ABCD 中,已知三角形 ABE、三角形 ADF 与四边形 AECF 的面积相等, 则三角形 AEF 与三角形 CEF 的面积之比是 ()

- A. 5: 1
- B. 5: 2
- C. 5: 3
- D. 6: 1
- 5. 某水渠长 100 米, 截面为等腰梯形, 其中渠面宽 2 米, 渠底宽 1 米, 渠深 2 米。因突 降暴雨,水深由1米涨至1.8米。则水渠水量增加了()
 - A. 112 立方米
- B. 136 立方米
- C. 272 立方米
- D. 324 立方米
- 6. 下图是一个棱长为 4 厘米的正方体,分别在前、后、左、右、上、下各面的中心位置 挖去一个棱长1厘米的小正方体小孔,把这些洞都打穿,这现在表面积为多少平方厘米?

- A. 110
- B. 120
- C. 126
- D. 130
- 7. 过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长

方体的体积比为多	少? ()			
A. 1:8	B. 1:6	C. 1:4	D. 1:3	
8. 一个圆柱和	圆锥的体积相等,[圆柱的高与圆锥的高之比是 4:	9,圆锥的底面积是	륃 20
平方厘米,圆柱的	底面积是多少平方点	厘米?()		
A. 15	В. 45	C. 20	D. 60	

第七章 排列组合

	1. 在 7×7 的队列中,	先随机给一个队员带上	红绶带,再给另一个队	员带上蓝绶带, 要
求戴	两种颜色授带的这两位	立队员不在同一行也不在	E同一列。问有多少种戴	戏法? ()
1	A. 1048	В. 1375	C. 1764	D. 1858
4	2. 田径世锦赛男子 4×	100 米接力,每队可报	6 名选手参赛, 唯一一	个起跑最快的跑第
一棒	,第四棒可有2个人说	^达 ,则可排出的组合数有	()	
I	A. 6	В. 12	C. 24	D. 48
	3. 从甲地到乙地含首属	尼两站共有 15 个公交站	,在这些公交站上共有。	4条公交线路运行。
其中,	, A 公交车线路从第 1	站到第6站,B公交车	线路为第3站到第10站	b, C 公交车线路为
第75	站到第 12 站,D 公交3	车线路为第 10 站到第 1	5站。小张要从甲地到	乙地,要在这些公
交线	路中换乘,不在两站之	自步行也不往反方向乘	· 华坐,每条公交线路只坐	一次,则共有多少
种不	同的换乘方式? ()		
I	A. 72	В. 64	C. 52	D. 48
4	4. 从单词"equation"	中选取 5 个不同字母排	‡成一排,含有"qu"(其中"qu"相连且
	不变)的不同排列共有		.,,,,,	
1	A. 120	B. 480	C. 720	D. 840
į	5. 某兴趣组有男女生名	A 5 名,他们都准备了表	· 演节目。 现在需要选出	4 名学生各自表演
			不能由男生连续表演节	
	安排有多少种? (
I	A. 3600	В. 3000	C. 2400	D. 1200
(6.5 个小朋友站成一圈	,一共有多少种不同的]站法? ()	
	A. 120	В. 60	C. 30	D. 24
,	7. 某家电维修公司的耶	识工每人每天最多完成	5次修理任务。维修工	小张上个月工作了
			成的修理任务次数有多	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1	A. 190	B. 210	C. 380	D. 400
8	8. 农科院派出 6 名科技	支 人员支援甲、乙、丙三	至个县农业发展,每个县	分配 2 人。其中精
			人。有2人同时精通农	
			丙县因无条件发展渔业	
			家支援,问有多少种不同	
-	A. 4	B. 8	C. 15	D. 20
(9. 某自驾游车队由 6 報	两车组成,车队的行车师	原序有如下要求: 甲车不	能排在第一位,7.
			一车辆均不得超车或并	
	共有 () 种豆			
	A. 36	B. 42	C. 48	D. 54
			工。现抽调2名来自不	
	活动,问有多少种不同		/ - I/I/I	
	A. 146	B. 159	C. 179	D. 286

第八章 概率问题

1. 小王从编号分别为 1、2、3、4、5 的 5 本书中随机抽出 3 本,那么,这 3 本书的编号恰好为相邻三个整数的概率为()				
A. $\frac{1}{2}$	B. $\frac{2}{5}$	C. $\frac{3}{10}$	D. $\frac{3}{5}$	
2. 某驾校甲、	乙、丙三位学员在科目	目二考试中能通过的概率	分别为 $\frac{2}{3}$, $\frac{1}{2}$, $\frac{2}{5}$, 那么	,这
三位学员中恰好有	了两位学员通过科目二 ^类	芳试的概率为 ()		
A. $\frac{2}{5}$	B. $\frac{3}{4}$	C. $\frac{1}{2}$	D. $\frac{2}{3}$	
型的标准,只能通发现第二辆比第一	过前后两辆车进行对比	型、标准型三种旅游车限 2。为此,小李采取的策略 是不是,就乘坐最后一辆。	各是:不乘坐第一辆,	如果
A. $\frac{1}{2}$	B. $\frac{1}{3}$	C. $\frac{1}{4}$	D. $\frac{1}{5}$	
	《参加七局四胜的飞镖比 小张已经赢1局,最终	比赛,两人水平相当,每月 冬小李获胜的概率是(司赢的概率都是 50%。)	如果
A. $\frac{1}{2}$	B. $\frac{3}{4}$	C. $\frac{5}{8}$	D. $\frac{11}{16}$	
5. 某次考试小对的概率为多少?		小宁全对的概率为70%,	那么这次考试只有一	人全
A. 0. 24	В. 0. 38	C. 0. 56	D. 0. 94	

第九章 容斥问题

1. 一个班级有 50 名学生参与选课, 其中选了 A 课程的有 31 人, 选了 B 课程的有 24 人,
两门课程都未选择的有 6 人,同时选了 A、B 两门课程的有多少人?
A. 7 B. 11 C. 18 D. 25
2. 某年级有学生 100 名, 某次测验中数学满分的有 62 人, 英语满分的有 34 人, 两门课
程都得满分的有 11 人,那么两门课程都没有得满分的有()人。
A. 26 B. 15 C. 96 D. 89
3. 某单位乒乓球、羽毛球、篮球三个兴趣小组共有72人参加。已知同时参加3个小组
的人数为 0, 只参加羽毛球小组的人数是只参加乒乓球小组人数的 4 倍, 只参加篮球小组的
有11人,同时参加两个小组的人数与只参加1个小组的人数相同,参加乒乓球小组但未参
加篮球小组的人中有一半参加羽毛球小组。问参加包括篮球在内的两个小组的有:
A. 32 人 B. 31 人 C. 25 人 D. 24 人
4. 某市 2012 年从国内外引进各类优秀人才 800 名,其中经济类人才 285 人,非经济类
不具有博士学位的人才 190人,国外引进的非经济类人才 164人,国内引进的具有博士学位
的 201 人。根据以上陈述,可以得出 ()
A. 国内引进的具有博士学位的经济类人才少于 40 人
B. 国内引进的具有博士学位的经济类人才多于 40 人
C. 国外引进的具有博士学位的经济类人才少于 40 人
D. 国外引进的具有博士学位的经济类人才多于 40 人
5. 某机关开展红色教育月活动,三个时间段分别安排了三场讲座。该机关共有 139 人,
有42人报名参加第一场讲座,51人报名参加第二场讲座,88人报名参加第三场讲座,三场
讲座都报名的有12人,只报名参加两场讲座的有30人。问没有报名参加其中任何一场讲座
的有多少人?
A. 12 B. 14 C. 24 D. 28
6. 一社区居委会为丰富居民的业余生活,专门设立了多个俱乐部邀请居民自愿参加。统
计结果如下:22 人参加棋类俱乐部、27 人参加了音乐俱乐部、50 人参加了戏剧俱乐部、10
人参加了棋类和音乐俱乐部、14人参加了音乐与戏剧俱乐部、10人参加了戏剧和棋类俱乐
部、8人参加这三个俱乐部。那么参与活动的居民人数是()。
A. 57 B. 68 C. 73 D. 84
7. 某高校做有关碎片化学习的问卷调查,问卷回收率为90%,在调查对象中有180人会
利用网络课程进行学习,200人利用书本进行学习,100人利用移动设备进行碎片化学习,
同时使用三种方式学习的有50人,同时使用两种方式学习的有20人,不存在三种方式学习
都不用的人,那么,这次共发放了多少份问卷?
A. 370 B. 380 C. 390 D. 400
8. 某专业有学生 50 人,现开设有甲、乙、丙三门必修课。有 40 人选修甲课程,36 人
选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有
26 人,兼选乙、丙两门课程的有 24 人,甲、乙、丙三门课程均选的有 20 人,问三门课程
均未选的有多少人?
A. 1 人 B. 2 人 C. 3 人 D. 4 人
9. 某医院统计某天求诊的病人,内科 150 人,外科 90 人,内外科都求诊的 20 人,这天
一共有多少病人:
A. 240 B. 220 C. 200 D. 170
10. 某单位有 107 名职工为灾区捐献了物资,其中 78 人捐献农物,77 人捐献食品。该
10. 水干点 1.10. 石机工/3人区 捐献 1. 70 火 , 发干 10 人 捐献 区别。 区

单位既捐献衣物,又捐献食品的职工有多少人?

A. 48

B. 50

C. 52

D. 54

第十章 植树问题

1. 某公路的一	侧从一端到另一端每隔	鬲3米植一棵树,一共挖	了 49 个坑。现在要改成每
隔4米植一棵树,	那么可以不重新挖的坑	亢共有 () 个。	
A. 8	В. 9	C. 11	D. 13
2. 为加强治安	防控,现计划在一段	L 形的围墙(如下图)_	上安装治安摄像头,其中 A
点到 B 点长度为 75	50米,B点到C点长度	E为 1350 米。按要求 ABG	三个位置必须安装一个摄
像头,且相邻两个	摄像头之间的距离要保	持一致,则整段围墙至	少需要安装())个摄像
头。			
Α			
В	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
A. 14	В. 15	C. 16	D. 17
3. 某机构计划	在一块边长为18米的	正方形空地开展活动,氰	需要在空地四边每隔2米插
上一面彩旗, 若该	空地的四个角都需要撬	盾上彩旗,那么一共需要	() 面彩旗。
A. 32	В. 36	C. 44	D. 48
4. 一圆形广场	一圈长 1000 米,每隔	50米安装一个路灯,每	隔 10 米种植一棵树, 但是
有路灯的地方不能	植树。植树按照5棵棉	唇桐树、4 棵银杏树、3 t	果杨柳树的顺序依次种植,
则广场一共种()棵银杏树。		
A. 18	В. 21	C. 27	D. 35
5. 某公园举办	春节花展,在周长 400)米的中心区布置了环形	花槽,并在花槽上每隔 16
米挂一只灯笼,不	久后元宵灯会临近,公	园决定增加并挪动一些	灯笼, 但仍保持灯笼间距相
等。已知加入新灯	笼后, 共有 5 只旧灯笼	没有移动,则调整后的灯	「笼间距最大为()米。
A. 12	В. 10	C. 8	D. 5

A. 星期四

第十一章 星期问题

C. 星期六

D. 星期日

1. 已知今天是星期五,那么过50天后是星期几?

B. 星期五

2. 甲、乙、丙三	人均每隔一定时间去一次	欠健身房锻炼。甲每隔	§2天去一次,乙每隔4
天去一次, 丙每7天之	去一次。4月10日三人村	目遇,下一次相遇是哪	天?
A.5月28日	B.6月5日	C.7月24日	D.7月25日
3.2021年7月1	日是中国共产党建党 100) 周年的纪念日,这一	·天是星期四,那么建党
110 周年纪念日是:			
A. 星期一	B. 星期二	C. 星期三	D. 星期四
4. 某物业公司规划	定, 小区大门每2天清洁	一次,消防设施每3升	
5 天养护一次,如果上	述3项工作刚好都在本	周四完成了,那么下-	次3项工作刚好同一天
完成是在()。			
A. 星期一	B. 星期二	C. 星期六	D. 星期日
5. 某超市的食品的	烘货商每2天送货一次,	日用品供货商每5天运	送货一次,办公用品供货
商每10天送货一次。	已知这三家供货商在10	月1日这天同时送货,	那么下次他们同时送货
的日期是()。			
A. 10月10日	B. 10月11日	C.10月16日	D. 10月20日

第十二章 年龄问题

1. 已知今年小明父母的	的年龄之和为 76 岁,小	明和他弟弟的年龄之和	为 18 岁。三年后,
母亲的年龄是小明的三倍,	父亲的年龄是小明弟弟	弟的四倍。问小明今年几	1岁?
A. 11	B. 12	C. 13	D. 14
2. 不到 30 岁的哥哥今	年的年龄正好是弟弟年	龄的5倍,若干年后哥	哥的年龄就是弟弟
的 4 倍,又过了若干年,哥	哥的年龄将是弟弟的3	倍,则今年两兄弟的年	龄差是()岁。
A. 12	В. 13	C. 14	D. 15
3. 有老师和甲、乙、丙	5三个学生,现在老师的	的年龄刚好是这三个学生	E的年龄之和;9年
后,老师的年龄将是甲、Z	」两个学生的年龄之和;	又5年后,老师的年龄	将是甲、丙两个学
生的年龄之和; 再3年后,	老师的年龄将是乙、丙	j两个学生的年龄之和。	那么现在老师的年
龄是()岁。			
A. 36	B. 40	C. 42	D. 45
4.2018年父亲年龄是	女儿年龄的6倍,是母亲	亲年龄的 1.2 倍。已知女	女儿出生当年(按0
岁计算)母亲24岁,则哪	一年父母年龄之和是女	儿的 4 倍?	
A. 2036	В. 2039	C. 2042	D. 2045
5. 哥哥现在的年龄是弟	乌弟当年年龄的 3倍,哥	于哥当年的年龄与弟弟现	l在的年龄相同, 哥
哥与弟弟现在年龄的和是 3	80岁。问哥哥现在多少	岁?	
A. 15	В. 16	C. 18	D. 19

第十三章 杂项问题

	1. 小王将新买的时钟	调准使用,60天后,时	寸 钟走慢了 5 分钟。那么	、, 该时钟平均每天
走慢	10000000000000000000000000000000000000			
	A. 5	B. 10	C. 15	D. 20
	2. 某市民中心广场钟	楼上东、西、南、北四	面各有一个挂钟,则每	日早8点至晚8点,
任意	相邻两个钟的时针互	相垂直的次数是:		
	A. 2	В. 3	C. 4	D. 5
	3. 在数列 2, 3, 5, 8	, 12, 17, 23, ···中,	第 2012 个数被 5 除所律	导余数为:
	A. 1	В. 3	C. 2	D. 4
	4. 某公司组织所有员	工分乘一批大巴去旅游	,要求每辆大巴乘坐员工	二人数不超过35人。
若每	车坐 28 人,则有 1 人	.坐不上车;若开走1辆	这车 ,则所有员工恰好	可平均分乘到各车。
该公	:司共有员工()	人。		
	A. 281	В. 589	C. 841	D. 981
	5. 甲队参加四场篮球	比赛,前两场场均得分	为第三场得分的 3/4,	第四场得72分,是
第三	运场得分的 0.9 倍。问	甲队所有比赛平均每场	得多少分?	
	A. 64	В. 66	C. 68	D. 72
	6. 随着台湾自由行的	开放,农村农民生活质量	量的提高,某一农村的农	区民自发组织若干同
村农	民到台湾旅行,其旅	行费用包括,个人办理:	赴台手续费,在台旅行的	的车费平均每人 503
元,	飞机票平均每人 1998	元,其它费用平均每人	、1199 元。已知这次旅行	亍的总费用是 92000
元,	总的平均费用是 4600	元。问赴台的总人数和	口个人办理赴台手续费分	▶别是多少?
	A. 20人, 700元		B. 21人, 650元	
	C. 20人, 900元		D. 22人,850元	
	7. 某商店 2020 年 3 月	月每天的营业额比前一	天高 X 元,该月 10 号的	的营业额是1号的4
倍,	12 号的营业额为 420	元。问该商店 2020 年	3月的营业额是多少元?	
	A. 16740	В. 18425	C. 24120	D. 31620
	8. 把 1 到 82 这 82 个	自然数都相加起来,但日	由于中间有两个连续的数	数都多加了一次,得
到的]和为 3520,则多加的	第一个数是:		
	A. 55	B. 57	C. 58	D. 60
	9. 某次运动会需组织	长宽相等的方阵。组织	方安排了一个鲜花方阵和	和一个彩旗方阵,两
个方	阵分别入场完毕后又	合成一个方阵,鲜花方际	阵的人恰好组成新方阵 的	的最外圈。已知彩旗
方阵	比鲜花方阵多28人,	则新方阵的总人数为	() 。	
	A. 100	B. 144	C. 196	D. 256
	10. 某学校要将全体运	运动员排成方阵,老师技	安人数粗略估计进行第 一	一次排列,发现多出
99 <i>)</i>	、, 于是又将每行和每	列多加了4人进行排列	l,发现缺少 37 人。问学	学校共有运动员多少
人?				
	A. 256	В. 289	C. 324	D. 361
	11. 有 5 支足球队进行	F单循环比赛, 每场比赛	寒胜者得3分,负者不得	身分, 平局双方各得
1分	。比赛结束后,若5克	支球队的总得分为 25 分	,冠军得12分,则亚军	军得:
	A.5分	B. 6 分	C.7分	D.8分
	12.6 支队伍进行单循	环的足球比赛, 比赛结	东后,战绩如下:	

	胜(场次)	负(场次)
A队	2	3
B队	3	2
C队	2	3
D队	4	1
E队	3	2
F队	?	?

则F队的战绩为(

A.0胜5负

B. 1 胜 4 负 C. 2 胜 3 负 D. 3 胜 2 负

解析

第一章 和差倍分应用题

- 1. D【解析】方法一:已知等式 11a+7b=132,需求解 a 值,可以直接采用代入排除法来计算出 a、b 的数值。A、B、C 三项代入式子中解得 b 均不为正整数,代入 D 项验证求得 b=11,a=5 符合题意。方法二: a、b 均为正整数,且 132=11×12,因为 11a 为 11 的倍数,那么 7b
- 必为 11 的倍数,则 b=11。两边进行同时除以 11,可得 a+7=12,故 a=5。因此,选择 D 选项。
- $2. \ C$ 【解析】本题考查不定方程问题。设三种捐款的人数分别为 x、y、z,可得 x+y+z=100,300x+500y+2000z=36000。联立两式,消去 x,可得 2y+17z=60。由于 60 与 2y 均为偶数,则 17z 为偶数,z 为偶数。当 z=2 时,解得 y=13,符合;当 z 为大于等于 4 的偶数时,解得 y 为负数,不满足条件。故捐款 500 元的员工数是 13 人。因此,选择 C 选项。
- 3. A【解析】本题考查基础应用题。全价为 2000,九折为 1800,五折为 1000,设其分别为 x,y,z 张,可得方程组: x+y+z=20,2000 $x+1800y+1000z+170\times20=27000$ 。求 x 与 y 的关系,应消去 z,可得 5x+4y=18。根据奇偶性可知 x 必然为偶数,当 x=2 时,解得 y=2,即两者一样多。因此,选择 A 选项。
- 4. A【解析】设此次运输中玻璃破损的箱子有 x 箱,则未破损的箱子有 (400-x) 箱,根据题意可得: $30 \times (400-x) 60x = 9750$,可得 x = 25。因此,选择 x = 25。因此,选择 x = 25。
 - 5. 【解析】A
 - 6. D【解析】根据题意,设李先生今年的年龄为 x,则张、李、王三人今年以及九年前

	张	李	王
今年	x+8	x	$\frac{x+8}{3}$
九年前	(x+8) -9	x-9	$(\frac{x+8}{3})$ -9

的年龄可得如下:

由"9年前李先生的年龄

是小王年龄的 4 倍"可得,(x-9)÷($\frac{x+8}{3}$ -9)=4,解得 x=49。则张今年 49+8=57 岁,王

今年 $\frac{49+8}{3}$ = 19 岁。当张先生的年龄是小王年龄的 2 倍时,张先生与小王的年龄差就应该等于小王的年龄,即张-王=王=57-19=38。即小王 38 岁时,张先生的年龄是小王年龄的 2 倍。小王今年 19 岁,38 岁时为 19 年后。因此,选择 D 选项。

- 7. D【解析】由于生产人员与非生产人员的人数之比为 4:5,因此总人数为 9 的倍数,研发与非研发人员的人数之比为 3:5,因此总人数也为 8 的倍数。因此总人数是 8 和 9 的公倍数,因此为 72 的倍数。又因为总人数在 100-200 之间,因此总人数为 144 人。那么生产人员为 $144 \times \frac{4}{9} = 64$ 人,研发人员为 $144 \times \frac{3}{8} = 54$ 人。生产人员不能同时担任研发人员,因此非生产与非研发人员数=144-64-54=26。因此,选择 D 选项。
- 8. B【解析】假设 A、B 型纸箱各能装下 a 件、b 件玩具,根据题意可得: 24a+25b=560, 24a 与 560 均能被 8 整除,则 b 能被 8 整除,当 b=8, a=15, 满足;当 b=16, a 为非整数,排除;当 b=24, a < 0,排除,故可确定 a=15, b=8。要想日产量翻番后,纸箱总数少,则 A 型箱应尽可能多用,假设 A、B 型纸箱各用了 x、y 个,根据题意可得: $15x+8y=560\times2=1120$,

要使 A 型尽量多,则令 B 型为 0 个,则 x=74.....10,即 A 型纸箱至少为 75 只。因此,选择 B 选项。

- 9. D【解析】由 2014 年父母年龄之差是儿子年龄的 $\frac{1}{5}$,可得儿子的年龄是 5 的倍数,而 5 年后儿子的年龄也必然是 5 的倍数,是 5 的倍数且为平方数的只能为 25,则可得到 2014 年儿子的年龄为 20 岁,父母年龄差即 $20 \times \frac{1}{5} = 4$ 岁,年龄和为 $4 \times 23 = 92$ 岁,假设父亲年龄比母亲年龄大,则可得父亲年龄—母亲年龄=4,可得父亲年龄=48,母亲年龄=44 岁,5 年后母亲年龄为 49 岁,是平方数,满足条件。因此,选择 D 选项。
- 10. B【解析】: (小明+小庆): (小明-小庆)=9:1,可得小明:小庆=(9+1): (9-1)=10:8=30:24, 小东(30-24)*2=12 岁, 小明:小东=3:1 年龄差=30-12=18 岁对应 2 份, 小明 3 份对应 27 岁, 因此,选择 B 选项。

第二章 浓度问题

- 1. A【解析】第一步: 判断题型———本题为浓度问题,第二步: 分析解题: 设 B 种酒的浓度为 a%,则 A 种酒的浓度为 2a%; 结合选项可知, a < 20; 所以 2a-20-3 \times (20-a)+20-10,解得, a=18; 所以 A 种酒的浓度为 2a%=36%。故本题选 A。
- 2. B【解析】设需要浓度 15%的盐水 x 克, 那么需要浓度 30%的盐水 (600-x)克,则 15% × x+30%× (600-x)=600×25%,解得 x=200,则 600-x=400。因此 B 项当选。
- 3. D【解析】本题考查基础应用题,用赋值法解题。锡的质量不变,且含量分别占总重量的 4%和 3%,赋值锡为 12。则第一次加入铁后总重量为 $\frac{12}{4\%}$ = 300,第二次加入同样多的铁

后,总重量为 $\frac{12}{3\%}$ = 400,由此可得加入金属铁的重量为 100。第三次加入 100 的金属铁后,

总重量变为 500, 此时金属锡的含量占总重量的 $\frac{12}{500}$ = 2.4%。因此,选择 D 选项

- $4. \, B$ 【解析】本题考查溶液问题,属于溶液混合。a、b 按质量比 5 :3 混合后浓度为 13. 75%,赋值 a、b 质量分别为 5、3,可得 5a+3b= (5+3) ×13. 75%①。同理,可得 3a+5b= (3+5) ×16. 25%②,联立①②,解得 a=10%、b=20%。a、b、c 按质量比 1:2:5 混合后浓度为 31. 25%,赋值 a、b、c 的质量分别为 1、2、5,可得:1×10%+2×20%+5z= (1+2+5) ×31. 25%,解得 z=40%。因此,选择 B 选项。
- 5. C【解析】本题考查溶液问题,属于溶液混合。赋值取出三种溶液的质量都是 1,设 A、B、C 三种溶液的浓度依次为 a,b,c。根据溶质不变,可得方程 $a+b=2\times17\%$ ①、 $b+c=2\times23\%$ ②、 $a+b+c=3\times18\%$ ③,①+②-③得 b=26%。因此,选择 C 选项。

第三章 利润问题

- 1. A【解析】设这台咖啡机原价为 x 元,根据题意可列式: $\frac{0.8x}{1+60\%} = 0.7x 50$,解得 x=250。 因此,选择 A 选项。
- 2. D【解析】理解利润率的含义,是利润在成本上的百分比。设进价 x 元,则预期利润率是 40%,所以收入为 (1+40%) x × 0. 8+0. 5 × (1+40%) x × 0. 2=1. 26 x, 实际利润率为 40% × 0. 5=20%, 1. 26 x= (1+20%) (x+150),得 x=3000. 所以这批商品的进价是 3000 元
- 3. A 【解析】第二阶段利润率为 20%,总的利润率也为 20%,可得第一阶段和第三阶段的混合利润率也为 20%;假设进了 6 件、每件成本 100 元,第一阶段卖 2 件、第二阶段卖 2*(1+50%)=3 件、第三阶段卖 6-2-3=1 件,第一阶段和第二阶段的利润和=(2+1)*100*20%=60元,其中第一阶段利润为 2*100*50%=100元,所以第三阶段利润为 (-40)元,折数=(100-40)/150=40%,因此,选择 A 选项。
- 4.C【解析】本题考查经济利润问题,属于利润率折扣类,用方程法解题。设原价为 x元,成本为 y元,根据打九折利润是原来的 $\frac{2}{3}$,可得 $0.9x-y=\frac{2}{3}(x-y)$ ①;由打八折再降价 50 元利润是原价销售时的 $\frac{1}{4}$,可得 $0.8x-50-y=\frac{1}{4}(x-y)$ ②。联立解方程组得 x=2000,y=1400。该商品打八八折销售的利润是 $2000\times0.88-1400=360$ (元)。因此,选择 C 选项。
- 5. D【解析】本题考查经济利润问题,属于分段计费类。分析第一次购买商品的原价,有两种情况(排除 A、B 选项): (1)不超过 100 元,原价为 90.9 元。(2)超过 100 元,则 9 折后是 90.9 元,原价为 $\frac{90.9}{0.9}$ = 101 (元)。若合并购买,第一次购买的商品应打 8 折,应付 $90.9 \times 0.8 = 72.72$ (元)或 $101 \times 0.8 = 80.8$ (元);第二次购买的商品已享受最低折扣。小李应付款:295.6 + 72.72 = 368.32 (元)或 295.6 + 80.8 = 376.4 (元)。因此,选择 D 选项。
- 6. B【解析】本题考查经济利润问题。设每斤桃子的购入价为 x 元,第一天的单价为 1.8 x 元,第二天为 1.5 x 元,第三天为 1.2 x 元。第四天为 0.8 x 元。可列方程: $\frac{1620}{1.8 x} + \frac{900}{1.5 x} + \frac{360}{1.2 x} + \frac{360}{0.8 x} + \frac{50}{1.2 x} + \frac{300}{1.5 x} + \frac{360}{1.2 x} + \frac{360}{0.8 x} + \frac{360}{1.5 x} + \frac{3$
- 7. C【解析】本题考查经济利润问题,属于最值优化类,采用方程法。设定单价为 x 元,则方案一总价为 $2x+0.7\times2x=3.4x$,方案二总价为 $0.8\times4x=3.2x$ 。第三步,方案一比方案二总价高 $(3.4x-3.2x)\div3.2x=6.25\%$ 。因此,选择 C 选项。
- 8. D【解析】本题考查经济利润问题,属于基础公式类。设买入 A 股票时的投资额为 x 元,则买入 B 股票时的投资额为(30000-x)元。由题意可得 $x \times 8\%-(30000-x) \times 3\%=1300$,解得 x=20000。故在买入 A、B 两只股票时的投资比例为 20000:10000=2:1。因此,选择 D 选项。
- 9. B【解析】本题考查最值优化类问题。个人票每张 10 元,团体票 60 元可供 10 人参观,则 58 人逛公园可以买 6 张团体票,故最少需要花费 360 元。因此,选择 B 选项。
- 10.B【解析】本题考查经济利润问题,属于利润率折扣类。设税前劳务费为<math>x元,根据题意可得 $x-(x-800)\times 20\%=1760$,解得x=2000。因此,选择B选项。

第四章 工程问题

- 1.B【解析】由于剩下的工程李和王的时间比为 <math>6:3 即为 2:1,因此效率比为 1:2。那么 设李的效率为 1,王的效率为 2。工作总量= $4\times(1+2)+6\times1=18$ 。现在二人合作 5 天后工作量还剩余 $18-5\times(1+2)=3$,因此李单独做需要 $3\div1=3$ 天。因此,选择 B 选项。
- 2. A【解析】本题考查工程问题,属于效率类,用赋值法解题。赋值 B 队效率为 1,则 A 队为 2。根据两队共同完成需要 6 天,可得工程总量为(2+1)×6=18。由工作效率均提高一倍,得 B 队效率变为 2,A 队变为 4。设 A 队最多休息 x 天,得到 $18=4\times(6-x)+2\times(6-1)$,解得 x=4。因此,选择 A 选项。
- $3. \ \mathbb{C}$ 【解析】本题考查工程问题,属于时间类,用赋值法解题。赋值总量为 60,则全部五条的效率为 $\frac{60}{5}=12$,最快的三条生产线效率和为 $\frac{60}{6}=10$,得到最慢的两条生产线的效率和

为 12-10=2。利用扩大一倍,得到现在的两条生产线效率和为 4,则时间为 $\frac{60}{4}=15$ (天)。 因此,选择 C 选项。

- $4. \, D$ 【解析】设每名绣工的效率为 1,则工程总量= $3 \times 1 \times 8 = 24$ 。此项工程分成三个阶段。第一阶段三名绣工做 $50\% \times 24 = 12$,需要 $12 \div 3 = 4$ 天;第二阶段两名绣工做 $(75\% 50\%) \times 24 = 6$,需要 $6 \div 2 = 3$ 天;第三阶段一名绣工做 $(1 75\%) \times 24 = 6$,需要 $6 \div 1 = 6$ 天。完成该件绣品一共用了 4 + 3 + 6 = 13 天。因此,选择 D 选项。
- 5. D【解析】本题考查工程问题,属于时间类。赋值总量为 120 (24、30、40 的公倍数),可得甲乙、乙丙、甲丙联合效率分别为 5、4、3,则甲乙丙联合效率为 $\frac{3+4+5}{2}$ = 6,甲乙丙三个工厂联合共需 120÷6=20 (天)。已知甲乙丙三个工厂每天可以生产防水布 2 万平方米,则实际生产防水布总量为 20×2=40 (万平方米);由于每个工厂每天的产能各增加 1 万平方米,增加后每天产能为 2+1×3=5 (万平方米),则增加后需要 40÷5=8 (天),比在不增加产能的情况下提前 20-8=12 (天)。因此,选择 D 选项。
- 6. D【解析】本题考查工程问题,属于条件类。由于每套产品由甲乙配件各 1 个组成,要使该产品套数最多,则甲乙配件应尽量多且数量相等。由题意可知师傅生产甲、乙的效率比为 2:1,徒弟生产甲、乙的效率比为 2:5:1,徒弟生产甲的效率较高,故由徒弟生产甲配件,师傅生产乙配件。徒弟 15 天均生产甲配件,共生产 15×60=900(个),师傅若生产同样多的乙配件需要 900÷75=12(天),可以配成 900 套。由于师傅生产甲、乙的效率比为 2:1,故剩余 3 天可以生产 1 天甲配件和 2 天乙配件,共可以生产 150 套。他们工作15 天后最多能生产该产品的套数为 900+150=1050(套)。因此,选择 D 选项。
- 7. C【解析】本题考查工程问题。赋值工程总量为 60(60、30、15 的公倍数),那么甲的效率为 1,乙的效率为 2,丙的效率为 4,甲、乙、丙的顺序交替进行,三天一个周期完成 1+2+4=7,需要 $60\div7=8\cdots$ 4,即 8 个周期后还剩 4 个工作量,剩的 4 个工作量需要甲做 1 天,乙做 1 天,丙再做 1 天才能完成。需要 $8\times3+3=27$ (天)。因此,选择 C 选项。
- 8. B【解析】本题考查工程问题。根据题意可知,提升效率前后甲的效率之比为 1: 1. 2=5: 6。工作总量相同时,效率与时间成反比,所以时间之比为 6: 5,时间相差 1 份,实际上工作提前 2 天完工,所以甲提升效率前、后完成时间分别为 12 天、10 天。同理,降低效率前后乙的效率之比为 1: 0. 75=4: 3,所以时间之比为 3: 4,时间相差 1 份,实际上工作提前 2 天完工,所以乙降低效率前、后完成时间分别为 6 天、8 天。第三步,甲、乙效率不变时需要的时间分别为 12 天、6 天,赋值工作总量为 12(12、6 的公倍数),则甲的效率为 12 \div 12=1,乙的效率为 12 \div 6=2,合作需要 12/(1+2)=4(天)。因此,选择 B 选项。

回起点教育 QI DIAN EDUCATION

9. A【解析】本题考查工程问题。由题意可知,第一种以牛开始的轮流方式,每个周期效率是"牛+羊";第二种以羊开始的轮流方式每个周期的效率是"羊+牛",由于两种方式每个周期的效率是相同的,但完成的天数差半天,故在周期轮流的时候肯定不会恰好轮流整数个"牛+羊"的周期(否则将会是一样的天数)。因此,第一种方式最后剩余量需牛吃一天;第二种方式比第一种多吃半天,故最后剩余量需羊吃一天,牛再吃半天。根据剩余量相同可列,牛=羊+0.5牛,推知牛=2羊。第三步,赋值羊每天的食量为1,则牛每天的食量为2。羊单独吃总量可够吃16天即总量为16,够牛单独吃16÷2=8(天)。因此,选择A选项。

 $10. \, \text{A}$ 【解析】本题考查工程问题。设机器维修清理前每小时生产 3x 个建材,那么维修清理后每小时生产 4x 个建材。维修清理花费 20 分钟,最后又提前 40 分钟完成,后一半任务的实际用时比原来少 1 小时。可列方程: $\frac{240}{3x} - \frac{240}{4x} = 1$,解得 x = 20,那么机器维修清理后每小时生产 $20 \times 4 = 80$ (个)建材。因此,选择 4 选项。

第五章 行程问题

- 1.C【解析】本题考查行程问题,属于相遇追及类。行程问题基本公式 $S=V\times T$,所以学校到滑雪场的距离= $20\times 2=40$ (公里),在游玩 4 小时后返回,则此时距离开学校已经过了 6 个小时,而大客车在 5.5 小时后去接社团,则在社团返回学校之前,大客车已经走了半个小时(30 分钟),即走了 $40\times 0.5=20$ (公里),剩下的 20 公里为大客车和社团的相遇过程。根据相遇公式 $S=(V_1+V_2)\times T$,则 $20=(40+20)\times T$,解得相遇时间 $T=\frac{1}{3}$ 小时
- =20 分钟,所以大客车出发后与社团相遇的时间为 30+20=50 (分钟)。因此,选择 C 选项 2. B【解析】本题考查行程问题,属于基本行程类,用比例法解题。甲经过每个服务区 都休息 10 分钟,所以 4 个服务区共休息 40 分钟,甲共耗时 4 小时 20 分钟,即 260 分钟,那么实际驾车时间为 260—40=220 (分钟)。根据路程相同时,时间与速度成反比,甲乙速度之比为 90:120=3:4,那么甲乙实际驾车时间之比为 4:3,所以乙驾车用时为 220×3÷4=165 (分钟)。乙经过每个服务区休息 5 分钟,4 个服务区共休息 20 分钟,那么乙共耗时 165+20=185 (分钟),即 3 小时 5 分钟。因此,选择 B 选项
- 3. C【解析】本题考查行程问题。小王取文件往返共用 $15\times2=30$ (分钟),小王提速 20%,提速后小王与小李的速度之比为 6:5,那么走完全程用时之比为 5:6,时间差 1 份是 30 分钟,故小李走全程用时为 180 分钟,即 3 小时,那么小李的速度为 $15\div3=5$ (公里/小时)。因此,选择 C 选项。
- 4. B【解析】本题考查行程问题,属于相遇追及类。相遇时,S 出租车=15+1.875=16.875 (千米),S 班车=15-1.875=13.125 (千米);由 V 班车= $\frac{15}{20}$ =0.75 (千米/分钟),得 T 班车= $\frac{13.125}{0.75}$ =17.5 (分钟)。根据出租车出发时间比班车晚 4 分钟,得 t 出租车=17.5 -4=13.5 (分钟),故 V 出租车= $\frac{16.875}{13.5}$ =1.25 (千米/分钟)。小张乘坐出租车到达所用时间为 $\frac{15}{1.25}$ =12 (分钟),比班车少用的时间为 20-12=8 (分钟);由于出租车出发时间比班车晚 4 分钟,则早 8-4=4 (分钟)到达。因此,选择 B 选项。
- 5. A【解析】本题考查行程问题,属于基本行程类。C 为中点,分析行程图。A→C 段,6: 00-7:00,速度为 v_1 ,C→B 段,7: 00-8:00,速度为 v_1 : 前后半段 AC、CB 均以 v_1 行驶 1 小时;B→C 段,8: 00-10:00,速度为 v_2 ,C→A 段,10: 00-11:30,速度为 v_3 : 前半段 BC 以 v_2 行驶 2 小时,后半段以 v_3 行驶 1.5 小时。速度单位换算,1 米/秒=3.6 公里/小时,由距离 BC=CA 可得: $2v_2$ =1.5 (v_2 +3.6),解得 v_2 =10.8。若速度没有发生改变,则返回需要 2×2 =4 (小时),故全程为 4×10.8 =43.2 (公里)。因此,选择 A 选项。
- 6. D【解析】本题考查行程问题,属于基本行程类。甲跑 8 步的路程乙只跑 5 步,甲、乙步幅之比为 5:8;乙跑 2 步的时间甲跑 4 步,甲、乙步频之比为 4:2,所以甲乙速度之比为 V 甲:V 乙=(5×4):(8×2)=20:16=5:4,故路程之比为 5:4(时间一定,速度与路程成正比)。甲跑 400 米,则乙跑了 $400\times\frac{4}{5}=320$ (米),乙距离终点 400-20-320=60(米)。因此,选择 D 选项。
- 7. B【解析】本题考查行程问题,属于相遇追及类。小王每超越老张一次,即多跑一圈 400 米。设小王第 3 次超越老张时用时为 t 秒,根据追及问题公式,超越 3 次时 $3\times400=(3-1)$ t ,解得 t=600。同理,根据第二次超越可得 $(6-3)\times600=1800$ (米), $1800\div400$

- =4.5(圈),即小刘超越小王4圈。因此,选择B选项。
- 8. D【解析】本题考查行程问题,属于相遇追及类,用方程法解题。设甲、乙两车的速度为 v1、v2,两车第一次相遇所用时间为 t 小时。根据题意可列方程: v_1 t=4. $5v_2$, v_2 t=2 v_1 ,解得 t=3。即两车第一次相遇需要 3 小时,两车第二次相遇时,实际两车走了三个全程,需要时间为 9 小时。故第二次相遇时间为 17 点整。因此,选择 D 选项。
- 9. C【解析】第三次相遇,共走了 $180\times5=900$. (35+28) t=900, t=900/63=100/7, 甲车 $=35\times100/7/=500$. 500-180-180=140. 因此,选择 C 选项。10. C【解析】本题考查行程问题。 甲、乙在 B 处相遇,根据 $S=(v_1+v_2)\times t$ 代入数据: $1800=(90+60)\times t$,解得 t=12 (分钟),则甲走了 $90\times12=1080$ 米,乙走了 $60\times12=720$ 米。要回到 A 处:甲要再走 720 米,用时 $720\div90=8$ 分钟,加上原地停留的 4 分钟,共用时 8+4=12 分钟,故乙加速后再走 1080 米也需用时 12 分钟,加速后的速度为每分钟 $1080\div12=90$ 米。因此,选择 C 选项。

第六章 几何问题

1. B【解析】 正六边形的边长为 50 米,则周长为 300 米,假设老王从 A 点顺时针跑,500 米后应在 B 点,此时与出发点的距离为 AB,做 CD 垂直于 AB, \triangle BCD 是一个三个角分别为 30°、60°、90°的直角三角形。在直角三角形中,30°角对应的边等于斜边的一半,则 CD=25 米,根据勾股定理可计算得 BD 为 $25\sqrt{3}$ 米,因此边 AB 应为 $50\sqrt{3}$ 米。因此,选择 B 选项。

 $2.\,\mathrm{D}$ 【解析】本题考查几何问题,属于平面几何类。半圆面积为 $54\,\pi$,即 $\frac{1}{2}\pi\mathrm{r}^2=54\pi$,解得半径 $\mathrm{r}=6\sqrt{3}$ (米),直径 AD= $12\sqrt{3}$ (米); A、B 同时出发同时到达位置 C,可知甲乙两人所用时间相同,甲的速度是乙的 2 倍,可知 AC=2BC(时间一定,速度与路程成正比),即 BC= $6\sqrt{3}$ (米)。由于 AC 为半圆直径,于是 \triangle ABC 为直角三角形,根据勾股定理得,AB= $\sqrt{AC^2-BC^2}=\sqrt{144\times3-36\times3}=\sqrt{324}=18$ (米)。因此,选择 D 选项

3. 【解析】B

4. A【解析】本题考查几何问题,属于平面几何类。由于三角形 ABE、三角形 ADF 与四边形 AECF 的面积相等,则三者各占长方形 ABCD 面积的 $\frac{1}{2}$ 。连接辅助线 AC(如图),可知三

角形 ACD 的面积为长方形的1/2。

三角形 ADF 与三角形 ACD 的高相同,都为 AD,则底边之比等于面积之比,即 FD:CD= $\frac{1}{3}$ S_{ABCD}: $\frac{1}{2}$ S_{ABCD} = 2:3,所以 CF= $\frac{1}{3}$ CD,同理可得 CE= $\frac{1}{3}$ BC,因此三角形 CEF 的面积为 $\frac{1}{2}$ × $\frac{1}{3}$ CD× $\frac{1}{3}$ BC = $\frac{1}{18}$ × CD× BC = $\frac{1}{18}$ S_{ABCD}, 所以 S_{$\triangle AEF$} = S_{$\underline{DDE RAECF$} - S_{$\triangle CEF$} = $\frac{1}{3}$ S_{ABCD} - $\frac{1}{18}$ S_{ABCD} = $\frac{5}{18}$ S_{ABCD},故三角形 AEF 与三角形 CEF 的面积之比为 $\frac{5}{18}$: $\frac{1}{18}$ = 5:1。因此,选择 A 选项。

5.B【解析】本题考查几何问题,属于立体几何类。

由题意可知,AB=1,

CD=2,可推知 $EF=\frac{AB+CD}{2}=1.5$,那么 $EM=\frac{1.5-1}{2}=0.25$ 。根据公AEM 与公AGN 相似,可知 $\frac{EM}{GN}=\frac{AM}{AN}$,

即 $\frac{0.25}{GN} = \frac{1}{1.8}$,解得 GN=0.45,则 GH=1+0.45+0.45=1.9。水渠水量增加了 $\frac{1.5+1.9}{2} \times 0.8 \times 100 = 136$ (立方米)。因此,选择 B 选项

6.B【解析】

大正方体的表面还剩的面积为: 4×4×6-1×1

×6=90 平方厘米; 六个小孔的表面积为 1×1×6×6-1×1×6=30 平方厘米; 因此所求的表面积为 90+30=120 平方厘米; 此图的表面积为 120 平方厘米. 此题可先求出大正方体还剩下的表面积,然后求出一个小正方体的表面积就能求得六个小孔的表面积,由此即可解决问题. 因此,选择 B 选项

- 7. B【解析】本题考查几何问题,属于立体几何类。设长方体底面面积为 S,高为 h,则四棱锥的高为 $\frac{h}{2}$,根据公式可得长方体的体积为 Sh,四棱锥的体积为 $\frac{1}{3}$ ×S× $\frac{h}{2}$ = $\frac{Sh}{6}$ 。四棱锥与长方体的体积之比为 $\frac{Sh}{6}$: Sh = 1:6。因此,选择 B 选项。
- 8. A【解析】设圆柱与圆锥的体积为 V,圆柱的高为 4h,圆锥的高为 9h,圆锥的底面积为: $V\div\frac{1}{3}\div 9h$,= $3V\div 9h$,= $V\div 3h$,=20(平方厘米),圆锥的体积是: $\frac{1}{3}\times 20\times 9h$ =60h(平方厘米),圆柱的底面积为: $60h\div 4h$ =15(平方厘米);因此,选择 A 选项。

第七章 排列组合

- 1.C【解析】本题考查排列组合,属于基础排列组合。根据 7×7 的队列知,共有 7×7 =49 (人),则选出一人戴红绶带有 $C_{49}^{1}=49$ (种)情况。要使所选出 1 人不在同一行也不 在同一列,可知戴蓝绶带人选有 $6\times6=36$ (人),故从中选出一人戴蓝绶带共有 $C_{36}^1=36$ (种) 情况。总的戴法为 49×36=1764(种)情况。因此,选择 C 选项
- 2.C【解析】本题考查排列组合问题,属于基础排列组合。第一棒为起跑最快选手,则 只有 1 种; 而第四棒从 2 个人中选择 1 个, 有 $C_2^1 = 2$ (种); 第二、第三棒由剩余 4 人中任 意 2 人担任,有 $A_4^2 = 12$ (种)。分步排列组合,则可排出的组合数有 $1 \times 2 \times 12 = 24$ (种)。 因此,选择 C 选项
 - 3.D【解析】本题考查排列组合问题,属于其他排列组合。公交车运营路线整理如图所

$$A \to \begin{cases} B \to D \\ B \to C \to D \end{cases}$$

示,换乘方案可分以下两类:

 $A \rightarrow \begin{cases} B \rightarrow D \\ B \rightarrow C \rightarrow D \end{cases}$ 。分阶段分析: (1) 第一阶段: A—B 过 程乘车方式有4种。(2)第二阶段:①B-D乘车方案有1种;②B-C-D乘车方案有4× 3=12(种)。其中,坐B线路第10站换乘C又在第10站换乘D显然不合常理,合理的乘车 方案只有11种。

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	Α	Α	A	Α	A									
		В	В	В	В	В	В	В	В					
		1				С	С	С	С	С	C			
									D	D	D	D	D	D

总的乘车方案数为 4×(1+11)=48(种)。因此,选择 D 选项

- 4.B【解析】由题意知本题是一个分步计数问题, 当选取 5 个字母时从其它 6 个字母中 选 3 个,再与"qu"全排列 $C_6^3A_4^4 = 480$,=480 即选 5 个数字排列有 480 种 故选 B.
- 5. C【解析】若有 1 个男生、3 个女生表演节目,情况数为 $C_5^1 \times C_5^2 \times A_4^4 = 5 \times 10 \times 24 =$ 1200种;若有2个男生、2个女生表演节目,先排女生,然后2个男生在女生的空中间排, 情况数为 $C_5^2 \times C_5^2 \times A_2^2 \times A_3^2 = 10 \times 10 \times 2 \times 6 = 1200$ 种;若有3个男生、1个女生表演节目,则 一定会出现男生连续表演的情况,排除。故总的情况数为1200+1200=2400种。因此,选择 C选项。
- 6. D【解析】为了更方便地说明这个问题,我们先将 5 个小朋友编为 1-5 号。然后让他 们按顺序站成一圈,这样就形成了一个圆排列。之后分别以1、2、3、4、5号作为开头将这 个圆排列打开,就可以得到5种排列:12345,23451,34512,45123,51234。这就是说,这 个圆排列对应了5个排列。因此,要求圆排列数,只需要求出排列数再除以5就可以了,即 这些小朋友一共有 $A_4^5/5=A_4^4=24$ 种不同的站法,选择 D。
- 7.B【解析】本题考查排列组合问题。根据"每人每天最多完成5次",则小张20天最 多完成 20×5=100(次)任务。题干中说共完成修理任务 98次,则必有一天或两天共少完 成 2 次,分情况讨论: (1)有一天少完成 2 次,情况数为: C_{20}^{1} =20 (种); (2)如果有两 天共少完成 2 次,即一天少完成一次,情况数为 C_{20}^2 =190(种)。总情况数有 20+190=210(种)。 因此, 选择 B 选项

- 8. A【解析】本题考查排列组合问题中的基础排列组合。由题可知,精通渔业有 2 人,只精通农业和只精通牧业各 1 人,同时精通农业和牧业有 2 人。由于丙不需要渔业专家,所以 2 名渔业专家分到甲乙两个县,共 A_2^2 =2 种;并且甲乙每个县三种专业都需要,所以甲乙接下来各需要一名农业牧业都精通的专家,共 A_2^2 =2 种;剩下的两名专家直接进入丙县工作,只有 1 种方式。所以可能的排法共有 2×2×1=4 种。因此,选择 A 选项。
- 9. B【解析】本题考查基础排列组合问题。根据题意,分情况讨论,按要求甲不能排在第一位,若丙排在第一位,乙在最后一位,则除乙丙二人外其余 4 人全排列,可能的情况数为 $A_4^4=24$ (种),若丙排在第二位,则可能的情况数为 $C_3^1\times A_3^3=18$ (种),分类用加法,则总的情况数为 24+18=42(种)。因此,选择 B 选项。
- 10. B【解析】本题考查排列组合问题。设 3 个科室分别为 A、B、C 科室,那么挑两个科室、每个科室挑 1 人的情况如下:①从 A、B 里挑,有 $7\times9=63$ (种)方式;②从 B、C 里挑,有 $9\times6=54$ (种)方式;③从 A、C 里挑,有 $7\times6=42$ (种)方式。第三步,共有 63+54+42=159(种)方式。因此,选择 B 选项。

第八章 概率问题

- 1.C【解析】概率= $\frac{满足条件的数}{总数}$ 。从 5 本书中随机抽出 3 本,总数为 $C_5^3=10$ 。这 3 本书的编号恰好为相邻三个整数即 123,234,345 三种情况,满足条件的数为 3。故概率为: $\frac{3}{10}$ 。因此,选择 C 选项。
- 2. A【解析】本题考查概率问题,属于分类分步型。恰好两位学员通过,可分为三种情况: ①甲乙通过丙未通过: $\frac{2}{3} \times \frac{1}{2} \times \frac{3}{5} = \frac{1}{5}$; ②甲丙通过乙未通过: $\frac{2}{3} \times \frac{1}{2} \times \frac{2}{5} = \frac{2}{15}$;
- ③乙丙通过甲未通过: $\frac{1}{3} \times \frac{1}{2} \times \frac{2}{5} = \frac{1}{15}$ 。恰好有两位学员通过科目二考试的概率为 $\frac{1}{5} + \frac{2}{15} + \frac{1}{15} = \frac{2}{5}$ 。因此,选择 A 选项。
- 3. A【解析】设标准型、舒适型、豪华型三种旅游车的代号分别为 A、B、C。则三辆车依次通过的顺序有 ABC、ACB、BAC、BCA、CAB、CBA 六种。按照小李的策略,第一辆车不坐,如果第二辆车比第一辆豪华就坐,则 ACB、BCA 两种情况可以坐到豪华车;反之坐最后一辆,则 BAC 一种情况可以坐到豪华车。共有 6 种情况,其中有 3 种情况可以坐到豪华车,故可以坐到豪华车的概率 $\frac{-3}{6} = \frac{1}{2}$ 。因此,选择 A 选项。

4.D【解析】本题考查概率问题,属于分类分步型。小李获胜的情况数如下表所示:

	前三局	第四局	第五局	第六局	第七局	概率
情况一	小李嬴 2 局,小张 嬴 1 局	小李贏	小李嬴	/	/	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
情况二		小李贏	小张赢	小李嬴	1	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
情况三		小张赢	小李嬴	小李嬴	/	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
情况四		小李赢	小张赢	小张赢	小李贏	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$
情况五		小张赢	小张嬴	小李嬴	小李羸	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$
情况六		小张赢	小李嬴	小张赢	小李贏	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$

」故小李最终获胜的概率是 $\frac{1}{4} + \frac{1}{8} + \frac$

 $\frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{11}{16}$ 。因此,选择 D 选项。

5. B【解析】本题考查概率问题中的分类分步型。根据题意可知小明做对小宁做错的概率是 80% ×30%=24%; 小宁做对小明做错的概率是 70% ×20%=14%。故只一个人全对的概率为 24%+14%=38%。因此,选择 B 选项。

第九章 容斥问题

- 1.B【解析】本题考查容斥原理中的二集合容斥原理,用公式法解题。设同时选了 A、B两门课程的有 x 人,根据二集合容斥原理公式可列方程: 50-6=31+24-x,解得 x=11 (人)。因此,选择 B 选项。
- 2.B【解析】本题考查容斥问题。设两门课程都没有得满分的有 x 人,根据二者容斥公式可得:62+34-11+x=100,解得 x=15,即两门课程都没有得满分的有 15 人。因此,选择 B 选项。
- 3. B【解析】本题考查容斥原理。设只参加乒乓球小组人数为 x,则只参加羽毛球小组的人数为 4x,只参加一个小组和同时参加两个小组的人数都为 x+4x+11=5x+11。由总人数=只参加一个小组人数+同时参加两个小组人数+同时参加三个小组人数,有 2× (5x+11)=72,解得 x=5,只参加一个小组的为 36 人,同时参加两个小组的也为 36 人。如图所示,篮球之外的乒乓球小组人数=只参加乒乓球小组人数+同时参加乒乓球、羽毛球人数=只参加乒乓球人数×2=10,则同时参加乒乓球、羽毛球人数为 5。那么参加包括篮球在内的两个小组的阴

影部分有 36-5=31 (人)。

因此,选择 B 选项。

- 4. A【解析】本题考查容斥原理。根据两集合容斥原理公式可列:201+285-国内博士经济=800-(国外非经济+国内非博士非经济),转化得:国内博士经济=(国外非经济+国内非博士非经济)-314。国外非经济人才164人,非经济类不具有博士学位的人才190人,则可知国内非博士非经济人才小于190人,则(国外非经济+国内非博士非经济)<164+190=354,国内博士经济<354-314=40。因此,选择A选项。
- 5. A【解析】本题考查容斥原理,用公式法解题。设没有报名参加其中任何一场讲座的有 x 人。根据三集合非标准型容斥原理公式,可列方程 $42+51+88-30-2\times12=139-x$,解得 x=12。(或者使用尾数法解题)因此,选择 A 选项。
- 6. C【解析】本题考查容斥原理,属于三集合容斥。根据三集合容斥原理的标准公式有总人数=22+27+50-10-14-10+8=73,或可用尾数法,尾数为3。因此,选择C选项。
- 7. D【解析】本题考查容斥问题,属于三集合容斥类。根据三集合容斥类问题非标准型公式:总数=A+B+C-满足两种情况的 $-2\times$ 满足三种条件,可知回收的问卷数= $180+200+100-20-2\times50=360$ (份)。根据问卷回收率为 90%,则发放的问卷数应该是 $360\div90\%=400$ (份)。因此,选择 D 选项。
- 8. B【解析】本题考查容斥问题,属于三集合容斥类。设三门课程均未选有 x 人,根据三集合标准公式,可得 50-x=40+36+30-28-26-24+20,解得 x=2。因此,选择 B 选项。
- 9. B【解析】本题考查容斥原理,属于二集合容斥类,用公式法解题。设这天一共有 x 个病人,根据二集合公式可列方程: 150+90-20=x,解得 x=220,即这天一共有 x=220,即这天一共有 x=220,因此,选择 x=220,因此,选择 x=220,因此,选择 x=220,因此,
- 10. A【解析】本题考查容斥问题,属于二集合容斥类。设既捐献衣物又捐献食品的有 x 人,根据二集合容斥公式可得:107=78+77-x,解得 x=48(尾数为 8)。因此,选择 A 选项。

第十章 植树问题

- 1.D【解析】本题考查植树问题。挖了 49 个坑,说明这条路长 $3\times48=144$ (米)。那么每隔 4 米植一棵树,间隔 12 米处的坑不需要重挖,有 $144\div12+1=13$ (个)。因此,选择 D 选项。
- 2. B【解析】本题考查植树问题。要想安装的摄像头少则间距尽可能大,因为要求间距相等,则间距应为 750 和 1350 的最大公约数,即 150,故选择 150 米作为间距。道路总长 750+1350=2100(米),根据直线单侧植树公式,棵数=总长÷间距+1,可知需要安装摄像头 2100÷150+1=15(个)。因此,选择 B 选项。
- 3. B【解析】本题考查植树问题。由于间隔 2 米是边长 18 的约数,可以直接视为在整个正方形四边进行环形植树,根据环形植树的公式,插旗面数=总长÷间隔长=18×4÷2=36 (面)。因此,选择 B 选项。
- $4. \ C$ 【解析】本题考查植树问题。每隔 50 米安装一个路灯,1000 米圆形广场可以安装 $1000\div50=20$ (个),每隔 10 米种植一棵树,1000 米圆形广场可以种植 $1000\div10=100$ (棵)。由于有路灯的地方不能植树,故在 50、100、150、…、1000(50 与 10 的公倍数)处不能种树,共有 $1000\div50=20$ (处)。一共种树 100-20=80(棵),三种树种植周期为 5+4+3=12(棵), $80\div12=6$ …8,剩余 8 棵刚好种植 5 棵梧桐树和 3 棵银杏树,则一共种植银杏树 $6\times4+3=27$ (棵)。因此,选择 C 选项。
- 5. B【解析】本题考查植树问题。根据题意,5面没有移动的灯笼把花槽分成5段,每段长为400÷5=80(米)。设增加一些灯笼后间距为x米,原间距是16米。没有移动的灯笼间距为两次加入灯笼间距的最小公倍数,则16与x的最小公倍数为80。观察选项,只有B、D选项两个数字与16的最小公倍数为80。题目要求间隔最大,则增加灯笼后的间距为10米。因此,选择B选项。

第十一章 星期问题

- 1. C【解析】本题考查星期日期问题。一周 7 天,周期为 7,50÷7=7······1,即经过了 7 周余 1 天,星期五后一天是星期六。因此,选择 C 选项。
- 2. C【解析】本题考查星期日期问题,需要结合最小公倍数知识点解题。每隔 2 天,每隔 4 天,相当于每 3 天,每 5 天,计算 3,5,7 的最小公倍数为 105,即 105 天后再次相遇,4 月还有 20 天,5 月有 31 天,6 月有 30 天,截止到 6 月底共计 20+31+30=81 (天),还 差 105-81=24 (天),即 7 月 24 日。因此,选择 C 选项。
- 3. B【解析】本题考查星期日期问题。每经过一个平年,星期往后推一天,每经过一个 闰年,星期往后推两天,从 21 年到 31 年,共 8 个平年,2 个闰年,因此需要在星期四的基础上往后推 12 天,12÷7=1…5,星期四再过五天是星期二。因此,选择 B 选项。
- 4. C【解析】本题考查星期日期问题,结合最小公倍数相关知识解题。每2天清洁一次,每3天检查一次,每5天养护一次,那么2、3、5的最小公倍数是30,即30天后三项工作再次同时进行。30÷7=4······2,故下一次刚好同一天完成是在星期四+2=星期六。因此,选择C选项。
- 5. B【解析】本题考查星期日期问题。三类商品的送货周期分别为 2、5、10 天,则下次同时送货周期应为 2、5、10 的最小公倍数即 10 天,即下次三家供货商同时送货是在 10 天后,即 10 月 1 日+10 天=10 月 11 日。因此,选择 B 选项。

第十二章 年龄问题

- 1. A【解析】本题考查年龄问题,用代入排除法解题。A 选项: 小明今年 11 岁,则弟弟今年 7 岁,三年后,小明 14 岁,弟弟 10 岁,此时母亲是小明的 3 倍为 42 岁,父亲是弟弟的 4 倍为 40 岁,父母年龄之和为 82 岁。今年父母年龄之和为 76 岁,三年后年龄和应该加 6,正好为 82 岁,满足题意。因此,选择 A 选项。
- 2. A【解析】本题考查年龄问题,使用代入排除法求解。根据"哥哥今年的年龄正好是弟弟年龄的5倍",即哥哥年龄=弟弟年龄×5,两人年龄差=弟弟年龄×4,可知年龄差是4的倍数,只有A选项符合。因此,选择A选项。
- 3.B【解析】本题考查年龄问题。设老师的年龄为 m,甲的年龄为 x,乙的年龄为 y,丙的年龄为 z,则 $m=x+y+z; m+9=x+9+y+9, m=x+y+9, m\le z=9; m+14=x+14+z+14,$ 那么 y=14; m+17=y+17+z+17, 那么 x=17, 则 m=17+14+9=40.

因此,选择 B 选项。

- 4.8【解析】本题考查年龄问题,用方程法解题。2018 年,父亲年龄是女儿的 6 倍,是母亲的 1.2 倍,设女儿年龄为 x 岁,则父亲为 6x 岁,母亲为 5x 岁。女儿与母亲年龄差为 5x-x=24,则 x=6,故 2018 年女儿 6 岁,父亲 36 岁,母亲 30 岁。设(2018 年的) t 年后父母年龄之和是女儿的四倍,则有(36+t)+(30+t)= $4\times$ (6+t),解得 t=21。因此,在 2018 年+21=2039 年,父母年龄之和是女儿的 4 倍。因此,选择 8 选项。
- 5. C【解析】本题考查年龄问题,用方程法解题。设哥哥当年年龄为 x、弟弟当年年龄为 y,根据题意,可得哥哥现在的年龄为 3y,弟弟现在年龄为 x。由两人现在年龄和为 30 岁得: 3y+x=30; 由年龄差不变,得 3y-x=x-y,联立解得 x=12,y=6。故哥哥现在年龄为 $3\times6=18$ (岁)。因此,选择 C 选项。

第十三章 杂项问题

- 1. A【解析】本题考查钟表问题。60 天后走慢了 5 分钟,即 300 秒,因此,每天走慢 300 ÷60=5 秒。因此,选择 A 选项。
- 2. A【解析】本题考查钟表问题。四个钟分别在钟楼的东西南北四个方向,所以相邻的两个钟所在的面是垂直的,要想时针垂直,只需要当前面的时针垂直于相邻钟表所在的面即可,即当前面的时针为水平方向即可,即早上9点,下午3点两个时刻,当前面挂钟的时针与相邻面垂直,即两个面上挂钟的时针相互垂直。因此,选择A选项。
- 3. B【解析】本题考查余数问题。观察数列可知 3=2+1, 5=2+1+2, 8=2+1+2+3, 12=2+1+2+3+4, 由此可推出该数列的第 2012 项应为 $2+1+2+3+4+\cdots+2011=2+(1+2+3+4+5)+(6+7+8+9+10)+\cdots+(2006+2007+2008+2009+2010)+2011$ 。因为连续 5 个自然数的和一定为 5 的倍数,则所求余数等于 2+2011 被 5 除的余数,(2+2011)÷ $5=402\cdots3$ 。因此,选择 B 选项。
- $4. \, \text{C}$ 【解析】本题考查余数问题,用代入排除法解题。根据每车坐 28 人,则有 1 人坐不上车,可知选项数据—1 可被 28 整除,无法排除选项,考虑代入另一个条件,若开走一辆空车,则所有员工恰好可平均分。代入 A 选项,(281—1)÷28=10(辆),开走一辆还有 10-1=9(辆),281 不能被 9 整除,即无法平均分,排除;代入 B 选项,(589—1)÷28=21(辆),开走一辆还有 21-1=20(辆),589 不能被 20 整除,即无法平均分,排除;代入 C 选项,(841—1)÷28=30(辆),开走一辆还有 30-1=29(辆),841÷29=29(人),29<35,完全符合题意。因此,选择 C 选项。
- $5. \ C \mathbb{I}$ 【解析】本题考查平均数问题。第四场为 $72 \,$ 分,且是第三场的 $0.9 \,$ 倍,则第三场得分为 $72 \div 0.9 = 80 \,$ (分)。前两场场均得分为第三场的 $\frac{3}{4}$,即 $80 \times \frac{3}{4} = 60 \,$ (分)。四场比赛的平均得分为 $\frac{60 \times 2 + 80 + 72}{4} = 68 \,$ (分)。因此,选择 C 选项。
- 6. C【解析】本题考查平均数问题。总人数=总费用÷总平均费用=92000÷4600=20 (人); 个人办理赴台手续费=4600-(503+1998+1199)=900(元)。因此,选择 C 选项。
- 7. A【解析】本题考查数列问题。设 2020 年 3 月 1 日的营业额为 y 元,那么 3 月 10 日的营业额为 y+9X,可列方程: y+9X=4y,可得 y=3X,则 3 月 12 日的营业额为 y+11X=14X=420,解得 X=30,y=90。那么 3 月 31 日的营业额为 y+30X=990,3 月的营业额为 90+120+……+990=(90+990)×31÷2=16740(或用尾数法,尾数为 40)。

因此,选择 A 选项。

- 8. C【解析】本题考查数列问题。设多加的两个连续的数分别为 x、x+1,根据等差数列求和公式: Sn=(首项+末项 $) \times$ 项数÷2,可列式: $(1+82) \times 82/2+x+x+1=3520$,解得 x=58。因此,选择 C 选项。
- 9. A【解析】本题考查方阵问题,用代入排除法解题。代入 A 选项,即总人数为 100 人,根据公式总数=最外层每边人数²,可得最外层每边人数为 10 人,又根据最外层人数=4×最外层每边人数-4,可得最外层人数=4×10-4=36(人),即鲜花方阵的人数为 36 人,可得彩旗方阵的人数=100-36=64(人),两者差 64-36=28(人),且 36、64 均为平方数,可构成方阵,满足题意。因此,选择 A 选项。
- 10. C【解析】本题考查方阵问题。设原方阵为 n 阶方阵,即每行每列都有 n 人,则运动员总数为 n^2+99 ,每行每列多加了 4 人后少 37 人,运动员总数为 $(n+4)^2-37$,利用人数相等列方程 $n^2+99=(n+4)^2-37$,解得 n=15,学校共有运动员 $n^2+99=324$ (人)。

因此,选择 C 选项。

- 11. A【解析】本题考查比赛问题。5 只足球队进行单循环比赛,共比赛 C_5^2 =10 场,10 场比赛,有输赢一场共 3 分,平一场共 2 分,总分为 25 分即 5 胜 5 平;每人打 4 场比赛,冠军得 12 分,只能是赢 4 场;亚军最多赢一场,两场平,一场输给冠军;故亚军得分 3+1+1=5 分。因此,选择 A 选项。
- 12. B【解析】本题考查比赛问题。6 支队伍进行单循环比赛,共比赛 $C_6^2=15$ (场),每场均有胜负,则胜、负各 15 场,故 F 队胜 15-2-3-2-4-3=1(场),负 15-3-2-3-1-2=4(场)。因此,选择 B 第一章 和差倍分应用题
- 1. D【解析】方法一:已知等式 11a+7b=132,需求解 a 值,可以直接采用代入排除法来计算出 a、b 的数值。A、B、C 三项代入式子中解得 b 均不为正整数,代入 D 项验证求得 b=11,

a=5 符合题意。方法二: a、b 均为正整数,且 132=11×12,因为 11a 为 11 的倍数,那么 7b 必为 11 的倍数,则 b=11。两边进行同时除以 11,可得 a+7=12,故 a=5。因此,选择 D 选项。

- 2. C【解析】本题考查不定方程问题。设三种捐款的人数分别为 x、y、z,可得 x+y+z=100,300x+500y+2000z=36000。联立两式,消去 x,可得 2y+17z=60。由于 60 与 2y 均为偶数,则 17z 为偶数,z 为偶数。当 z=2 时,解得 y=13,符合;当 z 为大于等于 4 的偶数时,解得 y 为负数,不满足条件。故捐款 500 元的员工数是 13 人。因此,选择 C 选项。
- 3. A【解析】本题考查基础应用题。全价为 2000,九折为 1800,五折为 1000,设其分别为 x,y,z 张,可得方程组: x+y+z=20,2000 $x+1800y+1000z+170\times20=27000$ 。求 x 与 y 的关系,应消去 z,可得 5x+4y=18。根据奇偶性可知 x 必然为偶数,当 x=2 时,解得 y=2,即两者一样多。因此,选择 A 选项。
- 4. A【解析】设此次运输中玻璃破损的箱子有 x 箱,则未破损的箱子有 (400-x) 箱,根据题意可得: $30 \times (400-x) 60x = 9750$,可得 x = 25。因此,选择 x = 25。因此,选择 x = 25。
 - 5. 【解析】A
 - 6. D【解析】根据题意,设李先生今年的年龄为 x,则张、李、王三人今年以及九年前

	张	李	王
今年	x+8	x	$\frac{x+8}{3}$
九年前	(x+8) -9	x-9	$(\frac{x+8}{3})$ -9

的年龄可得如下:

由"9年前李先生的年龄

是小王年龄的 4 倍"可得,(x-9)÷($\frac{x+8}{3}$ -9)=4,解得 x=49。则张今年 49+8=57 岁,王

今年 $\frac{49+8}{3}$ = 19 岁。当张先生的年龄是小王年龄的 2 倍时,张先生与小王的年龄差就应该等于小王的年龄,即张-王=王=57-19=38。即小王 38 岁时,张先生的年龄是小王年龄的 2 倍。小王今年 19 岁,38 岁时为 19 年后。因此,选择 D 选项。

- 7. D【解析】由于生产人员与非生产人员的人数之比为 4:5,因此总人数为 9 的倍数,研发与非研发人员的人数之比为 3:5,因此总人数也为 8 的倍数。因此总人数是 8 和 9 的公倍数,因此为 72 的倍数。又因为总人数在 100-200 之间,因此总人数为 144 人。那么生产人员为 $144 \times \frac{4}{9} = 64$ 人,研发人员为 $144 \times \frac{3}{8} = 54$ 人。生产人员不能同时担任研发人员,因此非生产与非研发人员数=144-64-54=26。因此,选择 D 选项。
 - 8.B【解析】假设 A、B 型纸箱各能装下 a 件、b 件玩具,根据题意可得: 24a+25b=560,

回起点教育 QI DIAN EDUCATION

24a 与 560 均能被 8 整除,则 b 能被 8 整除,当 b=8,a=15,满足;当 b=16,a 为非整数,排除;当 b=24,a<0,排除,故可确定 a=15,b=8。要想日产量翻番后,纸箱总数少,则 A 型箱应尽可能多用,假设 A、B 型纸箱各用了 x、y 个,根据题意可得:15x+8y=560×2=1120,要使 A 型尽量多,则令 B 型为 0 个,则 x=74.....10,即 A 型纸箱至少为 75 只。因此,选择 B 选项。

- 9. D【解析】由 2014 年父母年龄之差是儿子年龄的 $\frac{1}{5}$,可得儿子的年龄是 5 的倍数,而 5 年后儿子的年龄也必然是 5 的倍数,是 5 的倍数且为平方数的只能为 25,则可得到 2014 年儿子的年龄为 20 岁,父母年龄差即 $20 \times \frac{1}{5} = 4$ 岁,年龄和为 $4 \times 23 = 92$ 岁,假设父亲年龄比母亲年龄大,则可得父亲年龄一母亲年龄=4,可得父亲年龄=48,母亲年龄=44 岁,5 年后母亲年龄为 49 岁,是平方数,满足条件。因此,选择 D 选项。
- 10. B【解析】:(小明+小庆):(小明-小庆)=9:1,可得小明:小庆=(9+1):(9-1)=10:8=30:24, 小东(30-24)*2=12 岁,小明:小东=3:1 年龄差=30-12=18 岁对应 2 份,小明 3 份对应 27 岁,因此,选择 B 选项。

第二章 浓度问题

- 1. A【解析】第一步: 判断题型———本题为浓度问题,第二步: 分析解题: 设 B 种酒的浓度为 a%,则 A 种酒的浓度为 2a%; 结合选项可知, a < 20; 所以 2a-20-3 \times (20-a)+20-10,解得, a=18; 所以 A 种酒的浓度为 2a%=36%。故本题选 A。
- 2. B【解析】设需要浓度 15%的盐水 x 克, 那么需要浓度 30%的盐水 (600-x)克,则 15% × x+30%× (600-x)=600×25%,解得 x=200,则 600-x=400。因此 B 项当选。
- 3. D【解析】本题考查基础应用题,用赋值法解题。锡的质量不变,且含量分别占总重量的 4%和 3%,赋值锡为 12。则第一次加入铁后总重量为 $\frac{12}{4\%}$ = 300,第二次加入同样多的铁

后,总重量为 $\frac{12}{3\%}$ = 400,由此可得加入金属铁的重量为 100。第三次加入 100 的金属铁后,

总重量变为 500, 此时金属锡的含量占总重量的 $\frac{12}{500}$ = 2.4%。因此,选择 D 选项

- $4. \, B$ 【解析】本题考查溶液问题,属于溶液混合。a、b 按质量比 5 :3 混合后浓度为 13. 75%,赋值 a、b 质量分别为 5、3,可得 5a+3b= (5+3) ×13. 75%①。同理,可得 3a+5b= (3+5) ×16. 25%②,联立①②,解得 a=10%、b=20%。a、b、c 按质量比 1:2:5 混合后浓度为 31. 25%,赋值 a、b、c 的质量分别为 1、2、5,可得:1×10%+2×20%+5z= (1+2+5) ×31. 25%,解得 z=40%。因此,选择 B 选项。
- 5. C【解析】本题考查溶液问题,属于溶液混合。赋值取出三种溶液的质量都是 1,设 A、B、C 三种溶液的浓度依次为 a,b,c。根据溶质不变,可得方程 $a+b=2\times17\%$ ①、 $b+c=2\times23\%$ ②、 $a+b+c=3\times18\%$ ③,①+②-③得 b=26%。因此,选择 C 选项。

第三章 利润问题

- 1. A【解析】设这台咖啡机原价为 x 元,根据题意可列式: $\frac{0.8x}{1+60\%} = 0.7x 50$,解得 x=250。 因此,选择 A 选项。
- 2. D【解析】理解利润率的含义,是利润在成本上的百分比。设进价 x 元,则预期利润率是 40%,所以收入为 (1+40%) x × 0. 8+0. 5× (1+40%) x × 0. 2=1. 26x, 实际利润率为 40% × 0. 5=20%,1. 26x=(1+20%) (x+150),得 x=3000. 所以这批商品的进价是 3000 元
- 3. A 【解析】第二阶段利润率为 20%,总的利润率也为 20%,可得第一阶段和第三阶段的混合利润率也为 20%;假设进了 6 件、每件成本 100 元,第一阶段卖 2 件、第二阶段卖 2*(1+50%)=3 件、第三阶段卖 6-2-3=1 件,第一阶段和第二阶段的利润和=(2+1)*100*20%=60元,其中第一阶段利润为 2*100*50%=100元,所以第三阶段利润为 (-40)元,折数=(100-40)/150=40%,因此,选择 A 选项。
- 4.C【解析】本题考查经济利润问题,属于利润率折扣类,用方程法解题。设原价为 x元,成本为 y元,根据打九折利润是原来的 $\frac{2}{3}$,可得 $0.9x-y=\frac{2}{3}(x-y)$ ①;由打八折再降价 50 元利润是原价销售时的 $\frac{1}{4}$,可得 $0.8x-50-y=\frac{1}{4}(x-y)$ ②。联立解方程组得 x=2000,y=1400。该商品打八八折销售的利润是 $2000\times0.88-1400=360$ (元)。因此,选择 C 选项。
- 5. D【解析】本题考查经济利润问题,属于分段计费类。分析第一次购买商品的原价,有两种情况(排除 A、B 选项): (1)不超过 100 元,原价为 90.9 元。(2)超过 100 元,则 9 折后是 90.9 元,原价为 $\frac{90.9}{0.9}$ = 101 (元)。若合并购买,第一次购买的商品应打 8 折,应付 $90.9 \times 0.8 = 72.72$ (元)或 $101 \times 0.8 = 80.8$ (元);第二次购买的商品已享受最低折扣。小李应付款:295.6 + 72.72 = 368.32 (元)或 295.6 + 80.8 = 376.4 (元)。因此,选择 D 选项。
- 6. B【解析】本题考查经济利润问题。设每斤桃子的购入价为 x 元,第一天的单价为 1.8 x 元,第二天为 1.5 x 元,第三天为 1.2 x 元。第四天为 0.8 x 元。可列方程: $\frac{1620}{1.8 x} + \frac{900}{1.5 x} + \frac{360}{1.2 x} + \frac{360}{0.8 x} + \frac{50}{1.2 x} + \frac{300}{1.5 x} + \frac{360}{1.2 x} + \frac{360}{0.8 x} + \frac{360}{1.5 x} + \frac{3$
- 7. C【解析】本题考查经济利润问题,属于最值优化类,采用方程法。设定单价为 x 元,则方案一总价为 2x+0. $7\times 2x=3$. 4x,方案二总价为 0. $8\times 4x=3$. 2x。第三步,方案一比方案二总价高(3. 4x-3. 2x)÷3. 2x=6. 25%。因此,选择 C 选项。
- 8. D【解析】本题考查经济利润问题,属于基础公式类。设买入 A 股票时的投资额为 x 元,则买入 B 股票时的投资额为(30000-x)元。由题意可得 $x \times 8\%-(30000-x) \times 3\%=1300$,解得 x=20000。故在买入 A、B 两只股票时的投资比例为 20000:10000=2:1。因此,选择 D 选项。
- 9. B【解析】本题考查最值优化类问题。个人票每张 10 元,团体票 60 元可供 10 人参观,则 58 人逛公园可以买 6 张团体票,故最少需要花费 360 元。因此,选择 B 选项。
- 10.B【解析】本题考查经济利润问题,属于利润率折扣类。设税前劳务费为<math>x元,根据题意可得 $x-(x-800)\times 20\%=1760$,解得x=2000。因此,选择B选项。

第四章 工程问题

- 1.B【解析】由于剩下的工程李和王的时间比为 6:3 即为 2:1,因此效率比为 1:2。那么设李的效率为 1,王的效率为 2。工作总量=4× <math>(1+2)+6×1=18。现在二人合作 5 天后工作量还剩余 18-5× (1+2)=3,因此李单独做需要 $3\div1=3$ 天。因此,选择 B 选项。
- 2. A【解析】本题考查工程问题,属于效率类,用赋值法解题。赋值 B 队效率为 1,则 A 队为 2。根据两队共同完成需要 6 天,可得工程总量为(2+1)×6=18。由工作效率均提高一倍,得 B 队效率变为 2, A 队变为 4。设 A 队最多休息 x 天,得到 $18=4\times(6-x)+2\times(6-1)$,解得 x=4。因此,选择 A 选项。
- 3. C【解析】本题考查工程问题,属于时间类,用赋值法解题。赋值总量为 60,则全部五条的效率为 $\frac{60}{5}$ = 12,最快的三条生产线效率和为 $\frac{60}{6}$ = 10,得到最慢的两条生产线的效率和

为 12-10=2。利用扩大一倍,得到现在的两条生产线效率和为 4,则时间为 $\frac{60}{4}=15$ (天)。 因此,选择 C 选项。

- $4. \, D$ 【解析】设每名绣工的效率为 1,则工程总量= $3 \times 1 \times 8 = 24$ 。此项工程分成三个阶段。第一阶段三名绣工做 $50\% \times 24 = 12$,需要 $12 \div 3 = 4$ 天;第二阶段两名绣工做 $(75\% 50\%) \times 24 = 6$,需要 $6 \div 2 = 3$ 天;第三阶段一名绣工做 $(1 75\%) \times 24 = 6$,需要 $6 \div 1 = 6$ 天。完成该件绣品一共用了 4 + 3 + 6 = 13 天。因此,选择 D 选项。
- 5. D【解析】本题考查工程问题,属于时间类。赋值总量为 120 (24、30、40 的公倍数),可得甲乙、乙丙、甲丙联合效率分别为 5、4、3,则甲乙丙联合效率为 $\frac{3+4+5}{2}$ = 6,甲乙丙三个工厂联合共需 120÷6=20 (天)。已知甲乙丙三个工厂每天可以生产防水布 2 万平方米,则实际生产防水布总量为 20×2=40 (万平方米);由于每个工厂每天的产能各增加 1 万平方米,增加后每天产能为 2+1×3=5 (万平方米),则增加后需要 40÷5=8 (天),比在不增加产能的情况下提前 20-8=12 (天)。因此,选择 D 选项。
- 6. D【解析】本题考查工程问题,属于条件类。由于每套产品由甲乙配件各 1 个组成,要使该产品套数最多,则甲乙配件应尽量多且数量相等。由题意可知师傅生产甲、乙的效率比为 2:1,徒弟生产甲、乙的效率比为 2:5:1,徒弟生产甲的效率较高,故由徒弟生产甲配件,师傅生产乙配件。徒弟 15 天均生产甲配件,共生产 15×60=900(个),师傅若生产同样多的乙配件需要 900÷75=12(天),可以配成 900 套。由于师傅生产甲、乙的效率比为 2:1,故剩余 3 天可以生产 1 天甲配件和 2 天乙配件,共可以生产 150 套。他们工作15 天后最多能生产该产品的套数为 900+150=1050(套)。因此,选择 D 选项。
- 7. C【解析】本题考查工程问题。赋值工程总量为 60(60、30、15 的公倍数),那么甲的效率为 1,乙的效率为 2,丙的效率为 4,甲、乙、丙的顺序交替进行,三天一个周期完成 1+2+4=7,需要 $60\div7=8\cdots$ 4,即 8 个周期后还剩 4 个工作量,剩的 4 个工作量需要甲做 1 天,乙做 1 天,丙再做 1 天才能完成。需要 $8\times3+3=27$ (天)。因此,选择 C 选项。
- 8. B【解析】本题考查工程问题。根据题意可知,提升效率前后甲的效率之比为 1: 1. 2=5: 6。工作总量相同时,效率与时间成反比,所以时间之比为 6: 5,时间相差 1 份,实际上工作提前 2 天完工,所以甲提升效率前、后完成时间分别为 12 天、10 天。同理,降低效率前后乙的效率之比为 1: 0. 75=4: 3,所以时间之比为 3: 4,时间相差 1 份,实际上工作提前 2 天完工,所以乙降低效率前、后完成时间分别为 6 天、8 天。第三步,甲、乙效率不变时需要的时间分别为 12 天、6 天,赋值工作总量为 12(12、6 的公倍数),则甲的效率为 12 \div 12=1,乙的效率为 12 \div 6=2,合作需要 12/(1+2)=4(天)。因此,选择 B 选项。

回起点教育 QI DIAN EDUCATION

9. A【解析】本题考查工程问题。由题意可知,第一种以牛开始的轮流方式,每个周期效率是"牛+羊";第二种以羊开始的轮流方式每个周期的效率是"羊+牛",由于两种方式每个周期的效率是相同的,但完成的天数差半天,故在周期轮流的时候肯定不会恰好轮流整数个"牛+羊"的周期(否则将会是一样的天数)。因此,第一种方式最后剩余量需牛吃一天;第二种方式比第一种多吃半天,故最后剩余量需羊吃一天,牛再吃半天。根据剩余量相同可列,牛=羊+0.5牛,推知牛=2羊。第三步,赋值羊每天的食量为1,则牛每天的食量为2。羊单独吃总量可够吃16天即总量为16,够牛单独吃16÷2=8(天)。因此,选择A选项。

 $10. \, \text{A}$ 【解析】本题考查工程问题。设机器维修清理前每小时生产 3x 个建材,那么维修清理后每小时生产 4x 个建材。维修清理花费 20 分钟,最后又提前 40 分钟完成,后一半任务的实际用时比原来少 1 小时。可列方程: $\frac{240}{3x} - \frac{240}{4x} = 1$,解得 x = 20,那么机器维修清理后每小时生产 $20 \times 4 = 80$ (个)建材。因此,选择 4 选项。

第五章 行程问题

- 1.C【解析】本题考查行程问题,属于相遇追及类。行程问题基本公式 $S=V\times T$,所以学校到滑雪场的距离= $20\times 2=40$ (公里),在游玩 4 小时后返回,则此时距离开学校已经过了 6 个小时,而大客车在 5.5 小时后去接社团,则在社团返回学校之前,大客车已经走了半个小时(30 分钟),即走了 $40\times 0.5=20$ (公里),剩下的 20 公里为大客车和社团的相遇过程。根据相遇公式 $S=(V_1+V_2)\times T$,则 $20=(40+20)\times T$,解得相遇时间 $T=\frac{1}{3}$ 小时
- =20 分钟,所以大客车出发后与社团相遇的时间为 30+20=50 (分钟)。因此,选择 C 选项 2. B【解析】本题考查行程问题,属于基本行程类,用比例法解题。甲经过每个服务区 都休息 10 分钟,所以 4 个服务区共休息 40 分钟,甲共耗时 4 小时 20 分钟,即 260 分钟,那么实际驾车时间为 260—40=220 (分钟)。根据路程相同时,时间与速度成反比,甲乙速度之比为 90:120=3:4,那么甲乙实际驾车时间之比为 4:3,所以乙驾车用时为 220×3÷4=165 (分钟)。乙经过每个服务区休息 5 分钟,4 个服务区共休息 20 分钟,那么乙共耗时 165+20=185 (分钟),即 3 小时 5 分钟。因此,选择 B 选项
- 3. C【解析】本题考查行程问题。小王取文件往返共用 $15\times2=30$ (分钟),小王提速 20%,提速后小王与小李的速度之比为 6:5,那么走完全程用时之比为 5:6,时间差 1 份是 30 分钟,故小李走全程用时为 180 分钟,即 3 小时,那么小李的速度为 $15\div3=5$ (公里/小时)。因此,选择 C 选项。
- 4. B【解析】本题考查行程问题,属于相遇追及类。相遇时,S 出租车=15+1.875=16.875 (千米),S 班车=15-1.875=13.125 (千米);由 V 班车= $\frac{15}{20}$ =0.75 (千米/分钟),得 T 班车= $\frac{13.125}{0.75}$ =17.5 (分钟)。根据出租车出发时间比班车晚 4 分钟,得 t 出租车=17.5 -4=13.5 (分钟),故 V 出租车= $\frac{16.875}{13.5}$ =1.25 (千米/分钟)。小张乘坐出租车到达所用时间为 $\frac{15}{1.25}$ =12 (分钟),比班车少用的时间为 20-12=8 (分钟);由于出租车出发时间比班车晚 4 分钟,则早 8-4=4 (分钟)到达。因此,选择 B 选项。
- 5. A【解析】本题考查行程问题,属于基本行程类。C 为中点,分析行程图。A→C 段,6: 00-7:00,速度为 v_1 ,C→B 段,7: 00-8:00,速度为 v_1 : 前后半段 AC、CB 均以 v_1 行驶 1 小时;B→C 段,8: 00-10:00,速度为 v_2 ,C→A 段,10: 00-11:30,速度为 v_3 : 前半段 BC 以 v_2 行驶 2 小时,后半段以 v_3 行驶 1.5 小时。速度单位换算,1 米/秒=3.6 公里/小时,由距离 BC=CA 可得: $2v_2$ =1.5 (v_2 +3.6),解得 v_2 =10.8。若速度没有发生改变,则返回需要 2×2 =4 (小时),故全程为 4×10.8 =43.2 (公里)。因此,选择 A 选项。
- 6. D【解析】本题考查行程问题,属于基本行程类。甲跑 8 步的路程乙只跑 5 步,甲、乙步幅之比为 5:8;乙跑 2 步的时间甲跑 4 步,甲、乙步频之比为 4:2,所以甲乙速度之比为 V 甲:V 乙=(5×4):(8×2)=20:16=5:4,故路程之比为 5:4(时间一定,速度与路程成正比)。甲跑 400 米,则乙跑了 $400\times\frac{4}{5}=320$ (米),乙距离终点 400-20-320=60(米)。因此,选择 D 选项。
- 7. B【解析】本题考查行程问题,属于相遇追及类。小王每超越老张一次,即多跑一圈 400 米。设小王第 3 次超越老张时用时为 t 秒,根据追及问题公式,超越 3 次时 $3\times400=(3-1)$ t ,解得 t=600。同理,根据第二次超越可得 $(6-3)\times600=1800$ (米), $1800\div400$

- =4.5(圈),即小刘超越小王4圈。因此,选择B选项。
- 8. D【解析】本题考查行程问题,属于相遇追及类,用方程法解题。设甲、乙两车的速度为 v1、v2,两车第一次相遇所用时间为 t 小时。根据题意可列方程: $v_1t=4.5v_2$, $v_2t=2v_1$,解得 t=3。即两车第一次相遇需要 3 小时,两车第二次相遇时,实际两车走了三个全程,需要时间为 9 小时。故第二次相遇时间为 17 点整。因此,选择 D 选项。
- 9. C【解析】第三次相遇,共走了 $180\times5=900$. (35+28) t=900, t=900/63=100/7, 甲车 $=35\times100/7/=500$. 500-180-180=140. 因此,选择 C 选项。10. C【解析】本题考查行程问题。 甲、乙在 B 处相遇,根据 $S=(v_1+v_2)\times t$ 代入数据: $1800=(90+60)\times t$,解得 t=12 (分钟),则甲走了 $90\times12=1080$ 米,乙走了 $60\times12=720$ 米。要回到 A 处:甲要再走 720 米,用时 $720\div90=8$ 分钟,加上原地停留的 4 分钟,共用时 8+4=12 分钟,故乙加速后再走 1080 米也需用时 12 分钟,加速后的速度为每分钟 $1080\div12=90$ 米。因此,选择 C 选项。

第六章 几何问题

1. B【解析】 正六边形的边长为 50 米,则周长为 300 米,假设老王从 A 点顺时针跑,500 米后应在 B 点,此时与出发点的距离为 AB,做 CD 垂直于 AB, \triangle BCD 是一个三个角分别为 30°、60°、90°的直角三角形。在直角三角形中,30°角对应的边等于斜边的一半,则 CD=25 米,根据勾股定理可计算得 BD 为 $25\sqrt{3}$ 米,因此边 AB 应为 $50\sqrt{3}$ 米。因此,选择 B 选项。

 $2.\,\mathrm{D}$ 【解析】本题考查几何问题,属于平面几何类。半圆面积为 $54\,\pi$,即 $\frac{1}{2}\pi\mathrm{r}^2=54\pi$,解得半径 $\mathrm{r}=6\sqrt{3}$ (米),直径 AD= $12\sqrt{3}$ (米); A、B 同时出发同时到达位置 C,可知甲乙两人所用时间相同,甲的速度是乙的 2 倍,可知 AC=2BC(时间一定,速度与路程成正比),即 BC= $6\sqrt{3}$ (米)。由于 AC 为半圆直径,于是 \triangle ABC 为直角三角形,根据勾股定理得,AB= $\sqrt{AC^2-BC^2}=\sqrt{144\times3-36\times3}=\sqrt{324}=18$ (米)。因此,选择 D 选项

3. 【解析】B

4. A【解析】本题考查几何问题,属于平面几何类。由于三角形 ABE、三角形 ADF 与四边形 AECF 的面积相等,则三者各占长方形 ABCD 面积的 $\frac{1}{2}$ 。连接辅助线 AC(如图),可知三

角形 ACD 的面积为长方形的1/2。

三角形 ADF 与三角形 ACD 的高相同,都为 AD,则底边之比等于面积之比,即 FD:CD= $\frac{1}{3}$ S_{ABCD}: $\frac{1}{2}$ S_{ABCD} = 2:3,所以 CF= $\frac{1}{3}$ CD,同理可得 CE= $\frac{1}{3}$ BC,因此三角形 CEF 的面积为 $\frac{1}{2}$ × $\frac{1}{3}$ CD× $\frac{1}{3}$ BC = $\frac{1}{18}$ × CD× BC = $\frac{1}{18}$ S_{ABCD}, 所以 S_{$\triangle AEF$} = S_{\underline{D} $\underline}$

5.B【解析】本题考查几何问题,属于立体几何类。

由题意可知,AB=1,

CD=2,可推知 $EF=\frac{AB+CD}{2}=1.5$,那么 $EM=\frac{1.5-1}{2}=0.25$ 。根据公AEM 与公AGN 相似,可知 $\frac{EM}{GN}=\frac{AM}{AN}$,

即 $\frac{0.25}{GN} = \frac{1}{1.8}$,解得 GN=0.45,则 GH=1+0.45+0.45=1.9。水渠水量增加了 $\frac{1.5+1.9}{2} \times 0.8 \times 100 = 136$ (立方米)。因此,选择 B 选项

6.B【解析】

大正方体的表面还剩的面积为: 4×4×6-1×1

×6=90 平方厘米; 六个小孔的表面积为 1×1×6×6-1×1×6=30 平方厘米; 因此所求的表面积为 90+30=120 平方厘米; 此图的表面积为 120 平方厘米. 此题可先求出大正方体还剩下的表面积,然后求出一个小正方体的表面积就能求得六个小孔的表面积,由此即可解决问题. 因此,选择 B 选项

- 7. B【解析】本题考查几何问题,属于立体几何类。设长方体底面面积为 S,高为 h,则四棱锥的高为 $\frac{h}{2}$,根据公式可得长方体的体积为 Sh,四棱锥的体积为 $\frac{1}{3}$ ×S× $\frac{h}{2}$ = $\frac{Sh}{6}$ 。四棱锥与长方体的体积之比为 $\frac{Sh}{6}$: Sh = 1:6。因此,选择 B 选项。
- 8. A【解析】设圆柱与圆锥的体积为 V,圆柱的高为 4h,圆锥的高为 9h,圆锥的底面积为: $V\div\frac{1}{3}\div 9h$,= $3V\div 9h$,= $V\div 3h$,=20(平方厘米),圆锥的体积是: $\frac{1}{3}\times 20\times 9h$ =60h(平方厘米),圆柱的底面积为: $60h\div 4h$ =15(平方厘米);因此,选择 A 选项。

第七章 排列组合

- 1.C【解析】本题考查排列组合,属于基础排列组合。根据 7×7 的队列知,共有 7×7 =49 (人),则选出一人戴红绶带有 $C_{49}^{1}=49$ (种)情况。要使所选出 1 人不在同一行也不 在同一列,可知戴蓝绶带人选有 $6\times6=36$ (人),故从中选出一人戴蓝绶带共有 $C_{36}^1=36$ (种) 情况。总的戴法为 49×36=1764(种)情况。因此,选择 C 选项
- 2.C【解析】本题考查排列组合问题,属于基础排列组合。第一棒为起跑最快选手,则 只有 1 种; 而第四棒从 2 个人中选择 1 个, 有 $C_2^1 = 2$ (种); 第二、第三棒由剩余 4 人中任 意 2 人担任,有 $A_4^2 = 12$ (种)。分步排列组合,则可排出的组合数有 $1 \times 2 \times 12 = 24$ (种)。 因此,选择 C 选项
 - 3.D【解析】本题考查排列组合问题,属于其他排列组合。公交车运营路线整理如图所

$$A \to \begin{cases} B \to D \\ B \to C \to D \end{cases}$$

示,换乘方案可分以下两类:

 $A \rightarrow \begin{cases} B \rightarrow D \\ B \rightarrow C \rightarrow D \end{cases}$ 。分阶段分析: (1) 第一阶段: A—B 过 程乘车方式有4种。(2)第二阶段:①B-D乘车方案有1种;②B-C-D乘车方案有4× 3=12(种)。其中,坐B线路第10站换乘C又在第10站换乘D显然不合常理,合理的乘车 方案只有11种。

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	Α	Α	A	Α	A									
		В	В	В	В	В	В	В	В					
		-1				С	С	С	С	С	C			
									D	D	D	D	D	D

总的乘车方案数为 4×(1+11)=48(种)。因此,选择 D 选项

- 4.B【解析】由题意知本题是一个分步计数问题, 当选取 5 个字母时从其它 6 个字母中 选 3 个,再与"qu"全排列 $C_6^3A_4^4 = 480$,=480 即选 5 个数字排列有 480 种 故选 B.
- 5. C【解析】若有 1 个男生、3 个女生表演节目,情况数为 $C_5^1 \times C_5^2 \times A_4^4 = 5 \times 10 \times 24 =$ 1200种;若有2个男生、2个女生表演节目,先排女生,然后2个男生在女生的空中间排, 情况数为 $C_5^2 \times C_5^2 \times A_2^2 \times A_3^2 = 10 \times 10 \times 2 \times 6 = 1200$ 种;若有3个男生、1个女生表演节目,则 一定会出现男生连续表演的情况,排除。故总的情况数为1200+1200=2400种。因此,选择 C选项。
- 6. D【解析】为了更方便地说明这个问题,我们先将 5 个小朋友编为 1-5 号。然后让他 们按顺序站成一圈,这样就形成了一个圆排列。之后分别以1、2、3、4、5号作为开头将这 个圆排列打开,就可以得到5种排列:12345,23451,34512,45123,51234。这就是说,这 个圆排列对应了5个排列。因此,要求圆排列数,只需要求出排列数再除以5就可以了,即 这些小朋友一共有 $A_4^5/5=A_4^4=24$ 种不同的站法,选择 D。
- 7.B【解析】本题考查排列组合问题。根据"每人每天最多完成5次",则小张20天最 多完成 20×5=100(次)任务。题干中说共完成修理任务 98次,则必有一天或两天共少完 成 2 次,分情况讨论: (1)有一天少完成 2 次,情况数为: C_{20}^{1} =20 (种); (2)如果有两 天共少完成 2 次,即一天少完成一次,情况数为 C_{20}^2 =190(种)。总情况数有 20+190=210(种)。 因此, 选择 B 选项

- 8. A【解析】本题考查排列组合问题中的基础排列组合。由题可知,精通渔业有 2 人,只精通农业和只精通牧业各 1 人,同时精通农业和牧业有 2 人。由于丙不需要渔业专家,所以 2 名渔业专家分到甲乙两个县,共 A_2^2 =2 种;并且甲乙每个县三种专业都需要,所以甲乙接下来各需要一名农业牧业都精通的专家,共 A_2^2 =2 种;剩下的两名专家直接进入丙县工作,只有 1 种方式。所以可能的排法共有 2×2×1=4 种。因此,选择 A 选项。
- 9. B【解析】本题考查基础排列组合问题。根据题意,分情况讨论,按要求甲不能排在第一位,若丙排在第一位,乙在最后一位,则除乙丙二人外其余 4 人全排列,可能的情况数为 $A_4^4=24$ (种),若丙排在第二位,则可能的情况数为 $C_3^1\times A_3^3=18$ (种),分类用加法,则总的情况数为 24+18=42(种)。因此,选择 B 选项。
- 10. B【解析】本题考查排列组合问题。设 3 个科室分别为 A、B、C 科室,那么挑两个科室、每个科室挑 1 人的情况如下:①从 A、B 里挑,有 $7\times9=63$ (种)方式;②从 B、C 里挑,有 $9\times6=54$ (种)方式;③从 A、C 里挑,有 $7\times6=42$ (种)方式。第三步,共有 63+54+42=159(种)方式。因此,选择 B 选项。

第八章 概率问题

- 1.C【解析】概率= $\frac{满足条件的数}{总数}$ 。从 5 本书中随机抽出 3 本,总数为 $C_5^3=10$ 。这 3 本书的编号恰好为相邻三个整数即 123,234,345 三种情况,满足条件的数为 3。故概率为: $\frac{3}{10}$ 。因此,选择 C 选项。
- 2. A【解析】本题考查概率问题,属于分类分步型。恰好两位学员通过,可分为三种情况: ①甲乙通过丙未通过: $\frac{2}{3} \times \frac{1}{2} \times \frac{3}{5} = \frac{1}{5}$; ②甲丙通过乙未通过: $\frac{2}{3} \times \frac{1}{2} \times \frac{2}{5} = \frac{2}{15}$;
- ③乙丙通过甲未通过: $\frac{1}{3} \times \frac{1}{2} \times \frac{2}{5} = \frac{1}{15}$ 。恰好有两位学员通过科目二考试的概率为 $\frac{1}{5} + \frac{2}{15} + \frac{1}{15} = \frac{2}{5}$ 。因此,选择 A 选项。
- 3. A【解析】设标准型、舒适型、豪华型三种旅游车的代号分别为 A、B、C。则三辆车依次通过的顺序有 ABC、ACB、BAC、BCA、CAB、CBA 六种。按照小李的策略,第一辆车不坐,如果第二辆车比第一辆豪华就坐,则 ACB、BCA 两种情况可以坐到豪华车;反之坐最后一辆,则 BAC 一种情况可以坐到豪华车。共有 6 种情况,其中有 3 种情况可以坐到豪华车,故可以坐到豪华车的概率 $\frac{-3}{6} = \frac{1}{2}$ 。因此,选择 A 选项。
 - 4.D【解析】本题考查概率问题,属于分类分步型。小李获胜的情况数如下表所示:

	前三局	第四局	第五局	第六局	第七局	概率
情况一	小李嬴 2 局,小张 嬴 1 局	小李贏	小李嬴	1	1	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
情况二		小李赢	小张赢	小李嬴	1	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
情况三		小张赢	小李嬴	小李嬴	/	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
情况四		小李赢	小张赢	小张赢	小李贏	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$
情况五		小张赢	小张嬴	小李嬴	小李贏	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$
情况六		小张赢	小李嬴	小张赢	小李羸	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$

」故小李最终获胜的概率是 $\frac{1}{4} + \frac{1}{8} + \frac$

 $\frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{11}{16}$ 。因此,选择 D 选项。

6. B【解析】本题考查概率问题中的分类分步型。根据题意可知小明做对小宁做错的概率是 80% ×30%=24%; 小宁做对小明做错的概率是 70% ×20%=14%。故只一个人全对的概率为 24%+14%=38%。因此,选择 B 选项。

第九章 容斥问题

- 1.B【解析】本题考查容斥原理中的二集合容斥原理,用公式法解题。设同时选了 A、B两门课程的有 x 人,根据二集合容斥原理公式可列方程: 50-6=31+24-x,解得 x=11 (人)。因此,选择 B 选项。
- 2.B【解析】本题考查容斥问题。设两门课程都没有得满分的有 x 人,根据二者容斥公式可得:62+34-11+x=100,解得 x=15,即两门课程都没有得满分的有 15 人。因此,选择 B 选项。
- 3. B【解析】本题考查容斥原理。设只参加乒乓球小组人数为 x,则只参加羽毛球小组的人数为 4x,只参加一个小组和同时参加两个小组的人数都为 x+4x+11=5x+11。由总人数=只参加一个小组人数+同时参加两个小组人数+同时参加三个小组人数,有 2× (5x+11)=72,解得 x=5,只参加一个小组的为 36 人,同时参加两个小组的也为 36 人。如图所示,篮球之外的乒乓球小组人数=只参加乒乓球小组人数+同时参加乒乓球、羽毛球人数=只参加乒乓球人数×2=10,则同时参加乒乓球、羽毛球人数为 5。那么参加包括篮球在内的两个小组的阴

影部分有 36-5=31 (人)。

因此,选择 B 选项。

- 4. A【解析】本题考查容斥原理。根据两集合容斥原理公式可列:201+285-国内博士经济=800-(国外非经济+国内非博士非经济),转化得:国内博士经济=(国外非经济+国内非博士非经济)-314。国外非经济人才164人,非经济类不具有博士学位的人才190人,则可知国内非博士非经济人才小于190人,则(国外非经济+国内非博士非经济)<164+190=354,国内博士经济<354-314=40。因此,选择A选项。
- 5. A【解析】本题考查容斥原理,用公式法解题。设没有报名参加其中任何一场讲座的有 x 人。根据三集合非标准型容斥原理公式,可列方程 $42+51+88-30-2\times12=139-x$,解得 x=12。(或者使用尾数法解题)因此,选择 A 选项。
- 6. C【解析】本题考查容斥原理,属于三集合容斥。根据三集合容斥原理的标准公式有总人数=22+27+50-10-14-10+8=73,或可用尾数法,尾数为3。因此,选择C选项。
- 7. D【解析】本题考查容斥问题,属于三集合容斥类。根据三集合容斥类问题非标准型公式:总数=A+B+C-满足两种情况的 $-2\times$ 满足三种条件,可知回收的问卷数= $180+200+100-20-2\times50=360$ (份)。根据问卷回收率为 90%,则发放的问卷数应该是 $360\div90\%=400$ (份)。因此,选择 D 选项。
- 8. B【解析】本题考查容斥问题,属于三集合容斥类。设三门课程均未选有 x 人,根据三集合标准公式,可得 50-x=40+36+30-28-26-24+20,解得 x=2。因此,选择 B 选项。
- 9. B【解析】本题考查容斥原理,属于二集合容斥类,用公式法解题。设这天一共有x个病人,根据二集合公式可列方程: 150+90-20=x,解得x=220,即这天一共有x=2200个病人。因此,选择x=2208.
- 10. A【解析】本题考查容斥问题,属于二集合容斥类。设既捐献衣物又捐献食品的有 x 人,根据二集合容斥公式可得: 107=78+77-x,解得 x=48(尾数为 8)。因此,选择 A 选项。

第十章 植树问题

- 1.D【解析】本题考查植树问题。挖了 49 个坑,说明这条路长 $3\times48=144$ (米)。那么每隔 4 米植一棵树,间隔 12 米处的坑不需要重挖,有 $144\div12+1=13$ (个)。因此,选择 D 选项。
- 2. B【解析】本题考查植树问题。要想安装的摄像头少则间距尽可能大,因为要求间距相等,则间距应为 750 和 1350 的最大公约数,即 150,故选择 150 米作为间距。道路总长 750+1350=2100(米),根据直线单侧植树公式,棵数=总长÷间距+1,可知需要安装摄像头 2100÷150+1=15(个)。因此,选择 B 选项。
- 3. B【解析】本题考查植树问题。由于间隔 2 米是边长 18 的约数,可以直接视为在整个正方形四边进行环形植树,根据环形植树的公式,插旗面数=总长÷间隔长=18×4÷2=36 (面)。因此,选择 B 选项。
- $4. \ C$ 【解析】本题考查植树问题。每隔 50 米安装一个路灯,1000 米圆形广场可以安装 $1000\div50=20$ (个),每隔 10 米种植一棵树,1000 米圆形广场可以种植 $1000\div10=100$ (棵)。由于有路灯的地方不能植树,故在 50、100、150、…、1000(50 与 10 的公倍数)处不能种树,共有 $1000\div50=20$ (处)。一共种树 100-20=80(棵),三种树种植周期为 5+4+3=12(棵), $80\div12=6$ …8,剩余 8 棵刚好种植 5 棵梧桐树和 3 棵银杏树,则一共种植银杏树 $6\times4+3=27$ (棵)。因此,选择 C 选项。
- 5. B【解析】本题考查植树问题。根据题意,5面没有移动的灯笼把花槽分成5段,每段长为400÷5=80(米)。设增加一些灯笼后间距为x米,原间距是16米。没有移动的灯笼间距为两次加入灯笼间距的最小公倍数,则16与x的最小公倍数为80。观察选项,只有B、D选项两个数字与16的最小公倍数为80。题目要求间隔最大,则增加灯笼后的间距为10米。因此,选择B选项。

第十一章 星期问题

- 1. C【解析】本题考查星期日期问题。一周 7 天,周期为 7,50÷7=7······1,即经过了 7 周余 1 天,星期五后一天是星期六。因此,选择 C 选项。
- 2. C【解析】本题考查星期日期问题,需要结合最小公倍数知识点解题。每隔 2 天,每隔 4 天,相当于每 3 天,每 5 天,计算 3,5,7 的最小公倍数为 105,即 105 天后再次相遇,4 月还有 20 天,5 月有 31 天,6 月有 30 天,截止到 6 月底共计 20+31+30=81 (天),还 差 105-81=24 (天),即 7 月 24 日。因此,选择 C 选项。
- 3. B【解析】本题考查星期日期问题。每经过一个平年,星期往后推一天,每经过一个 闰年,星期往后推两天,从 21 年到 31 年,共 8 个平年,2 个闰年,因此需要在星期四的基础上往后推 12 天,12÷7=1…5,星期四再过五天是星期二。因此,选择 B 选项。
- 4. C【解析】本题考查星期日期问题,结合最小公倍数相关知识解题。每2天清洁一次,每3天检查一次,每5天养护一次,那么2、3、5的最小公倍数是30,即30天后三项工作再次同时进行。30÷7=4······2,故下一次刚好同一天完成是在星期四+2=星期六。因此,选择C选项。
- 5. B【解析】本题考查星期日期问题。三类商品的送货周期分别为 2、5、10 天,则下次同时送货周期应为 2、5、10 的最小公倍数即 10 天,即下次三家供货商同时送货是在 10 天后,即 10 月 1 日+10 天=10 月 11 日。因此,选择 B 选项。

第十二章 年龄问题

- 1. A【解析】本题考查年龄问题,用代入排除法解题。A 选项: 小明今年 11 岁,则弟弟今年 7 岁,三年后,小明 14 岁,弟弟 10 岁,此时母亲是小明的 3 倍为 42 岁,父亲是弟弟的 4 倍为 40 岁,父母年龄之和为 82 岁。今年父母年龄之和为 76 岁,三年后年龄和应该加 6,正好为 82 岁,满足题意。因此,选择 A 选项。
- 2. A【解析】本题考查年龄问题,使用代入排除法求解。根据"哥哥今年的年龄正好是弟弟年龄的5倍",即哥哥年龄=弟弟年龄×5,两人年龄差=弟弟年龄×4,可知年龄差是4的倍数,只有A选项符合。因此,选择A选项。
- 3.B【解析】本题考查年龄问题。设老师的年龄为 m,甲的年龄为 x,乙的年龄为 y,丙的年龄为 z,则 $m=x+y+z; m+9=x+9+y+9, m=x+y+9, m\le z=9; m+14=x+14+z+14,$ 那么 y=14; m+17=y+17+z+17, 那么 x=17, 则 m=17+14+9=40.

因此,选择 B 选项。

- 4.8【解析】本题考查年龄问题,用方程法解题。2018 年,父亲年龄是女儿的 6 倍,是母亲的 1.2 倍,设女儿年龄为 x 岁,则父亲为 6x 岁,母亲为 5x 岁。女儿与母亲年龄差为 5x-x=24,则 x=6,故 2018 年女儿 6 岁,父亲 36 岁,母亲 30 岁。设(2018 年的) t 年后父母年龄之和是女儿的四倍,则有(36+t)+(30+t)= $4\times$ (6+t),解得 t=21。因此,在 2018 年+21=2039 年,父母年龄之和是女儿的 4 倍。因此,选择 8 选项。
- 5. C【解析】本题考查年龄问题,用方程法解题。设哥哥当年年龄为 x、弟弟当年年龄为 y,根据题意,可得哥哥现在的年龄为 3y,弟弟现在年龄为 x。由两人现在年龄和为 30 岁得: 3y+x=30; 由年龄差不变,得 3y-x=x-y,联立解得 x=12,y=6。故哥哥现在年龄为 $3\times6=18$ (岁)。因此,选择 C 选项。

第十三章 杂项问题

- 1. A【解析】本题考查钟表问题。60 天后走慢了 5 分钟,即 300 秒,因此,每天走慢 300 ÷60=5 秒。因此,选择 A 选项。
- 2. A【解析】本题考查钟表问题。四个钟分别在钟楼的东西南北四个方向,所以相邻的两个钟所在的面是垂直的,要想时针垂直,只需要当前面的时针垂直于相邻钟表所在的面即可,即当前面的时针为水平方向即可,即早上9点,下午3点两个时刻,当前面挂钟的时针与相邻面垂直,即两个面上挂钟的时针相互垂直。因此,选择A选项。
- 3. B【解析】本题考查余数问题。观察数列可知 3=2+1, 5=2+1+2, 8=2+1+2+3, 12=2+1+2+3+4, 由此可推出该数列的第 2012 项应为 $2+1+2+3+4+\cdots+2011=2+(1+2+3+4+5)+(6+7+8+9+10)+\cdots+(2006+2007+2008+2009+2010)+2011$ 。因为连续 5 个自然数的和一定为 5 的倍数,则所求余数等于 2+2011 被 5 除的余数,(2+2011)÷ $5=402\cdots3$ 。因此,选择 B 选项。
- $4. \, \mathrm{C}$ 【解析】本题考查余数问题,用代入排除法解题。根据每车坐 28 人,则有 1 人坐不上车,可知选项数据—1 可被 28 整除,无法排除选项,考虑代入另一个条件,若开走一辆空车,则所有员工恰好可平均分。代入 A 选项,(281—1)÷28=10(辆),开走一辆还有 10-1=9(辆),281 不能被 9 整除,即无法平均分,排除;代入 B 选项,(589—1)÷28=21(辆),开走一辆还有 21-1=20(辆),589 不能被 20 整除,即无法平均分,排除;代入 C 选项,(841—1)÷28=30(辆),开走一辆还有 30-1=29(辆),841÷29=29(人),29<35,完全符合题意。因此,选择 C 选项。
- $5. \ C$ 【解析】本题考查平均数问题。第四场为 72 分,且是第三场的 0.9 倍,则第三场得分为 $72\div0.9=80$ (分)。前两场场均得分为第三场的 $\frac{3}{4}$,即 $80\times\frac{3}{4}=60$ (分)。四场比赛的平均得分为 $\frac{60\times2+80+72}{4}=68$ (分)。因此,选择 C 选项。
- 6. C【解析】本题考查平均数问题。总人数=总费用÷总平均费用=92000÷4600=20 (人); 个人办理赴台手续费=4600-(503+1998+1199)=900(元)。因此,选择 C 选项。
- 7. A【解析】本题考查数列问题。设 2020 年 3 月 1 日的营业额为 y 元,那么 3 月 10 日的营业额为 y+9X,可列方程: y+9X=4y,可得 y=3X,则 3 月 12 日的营业额为 y+11X=14X=420,解得 X=30,y=90。那么 3 月 31 日的营业额为 y+30X=990,3 月的营业额为 90+120+……+990=(90+990)×31÷2=16740(或用尾数法,尾数为 40)。

因此,选择 A 选项。

- 8. C【解析】本题考查数列问题。设多加的两个连续的数分别为 x、x+1,根据等差数列求和公式: Sn=(首项+末项 $) \times$ 项数÷2,可列式: $(1+82) \times 82/2+x+x+1=3520$,解得 x=58。因此,选择 C 选项。
- 9. A【解析】本题考查方阵问题,用代入排除法解题。代入 A 选项,即总人数为 100 人,根据公式总数=最外层每边人数²,可得最外层每边人数为 10 人,又根据最外层人数=4×最外层每边人数-4,可得最外层人数=4×10-4=36(人),即鲜花方阵的人数为 36 人,可得彩旗方阵的人数=100-36=64(人),两者差 64-36=28(人),且 36、64 均为平方数,可构成方阵,满足题意。因此,选择 A 选项。
- 10.0 【解析】本题考查方阵问题。设原方阵为 n 阶方阵,即每行每列都有 n 人,则运动员总数为 n^2+99 ,每行每列多加了 4 人后少 37 人,运动员总数为 $(n+4)^2-37$,利用人数相等列方程 $n^2+99=(n+4)^2-37$,解得 n=15,学校共有运动员 $n^2+99=324$ (人)。

因此,选择 C 选项。

11. A【解析】本题考查比赛问题。5 只足球队进行单循环比赛,共比赛 C_5^2 =10 场,10 场比赛,有输赢一场共 3 分,平一场共 2 分,总分为 25 分即 5 胜 5 平;每人打 4 场比赛,冠军得 12 分,只能是赢 4 场;亚军最多赢一场,两场平,一场输给冠军;故亚军得分 3+1+1=5 分。因此,选择 A 选项。

12. B【解析】本题考查比赛问题。6 支队伍进行单循环比赛,共比赛 $C_6^2=15$ (场),每场均有胜负,则胜、负各 15 场,故 F 队胜 15-2-3-2-4-3=1(场),负 15-3-2-3-1-2=4(场)。因此,选择 B

