Single cell RNA analysis on PBMCs of COVID-19

WANG, Han- Yi 115513659

Outline

- Background
 - Importance of scRNA analysis on COVID-19 PBMCs
 - Dataset
- Method
- Results
- Conclusion

1. Background

258, 164, 425

Number of confirmed cases

5, 166, 192

Number of confirmed deaths

scRNA analysis on PBMCs - Importance

- PBMCs major immune cells in the human body
- Provides a better understanding of immune response
- Aid in vaccine development or other therapy

Dataset - Peripheral Blood Mononuclear Cells of COVID-19

- Extracted 2 healthy and 2 hospitalized samples from a dataset of 48 samples, including hospitalized, infected, exposed, and healthy controls
- Instrumentation: Illumina NovaSeq 6000; Raw seqdata processed by 10x Genomics Cell Ranger

2. Method – scRNA Pipeline

Dimension Celltype **Quality Control** Clustering **Prediction** Reduction Cell filtering Feature selection Louvain Differential gene Gene filtering PCA analysis **UMAP** Mitochondiral **Evaluation: Ingest** filtering Doublet removal

1. Quality Control

Basic filtering

 Cells with fewer than 500 genes & genes expressed in less than 10 cells are removed

Mitochondiral filtering

High percentage of mitochondrial gene indicates apoptosis

Doublet removal

- Extremely high number of total counts in cells might be doublets
- Remove by doublet simulation –
 Scrublet python package

Before filtering

After filtering – better linear relationship between total counts and genes expressed

2. Dimension Reduction

- Normalization and logaritmization
- Feature selection: top 2000 variable genes
 - Define genes which provide a good separation of the cell clusters
- PCA
 - Performed on top variable genes
 - Top 25 PCs are extracted retain most information

PCA variance ratio graph

- UMAP based on neighborhood graph
 - Node: Each node is a cell
 - Edges: Build connection between
 K nearest neighbors
 - Visualizes cell differences across samples: Healthy - outer, COVID
 - inner

3. Clustering – Graph based clustering

- Louvian Graph based clustering algorithm
 - Computation of neighborhood graph (done in UMAP)
 - Clustering of neighborhood graph
 - Clusters cell groups that maximizes the connections within the group
- Resolution parameter
 - Defines the detailedness of the clusters
 - Low: identify major cell types of PBMCs (this project=0.2)
 - High: detailed PBMC subpopulation analysis

4. Celltype Prediction

- Identify marker gene in each cluster by differential gene analysis
- Match marker gene with cell type
- Rename the clusters by identified cell types

Cell Type	Gene Markers
CD4 T cells	CD3E, CD3D, IL7R
FCGR3A+ Monocytes	LYZ, CST3, FCGR3A
CD14+ Monocytes	LYZ, CST3,CD14
CD8 T cells	CD3E, CD8A
NK cells	NKG7, GNLY
B cells	CD79A, MS4A1
Conventional Dendritic Cells	CST3, FCER1A
Plasmacytoid Dendritic Cells	IL3RA, ITM2C

Gene markers and its correpsonding cell types

T-test

 Compute the ranking for highly differential genes in each cluster

0 vs. rest

4 vs. rest

160

120

1 vs. rest

5 vs. rest

250

225

200

175

2 vs. rest

6 vs. rest

200

175

125

3 vs. rest

7 vs. rest

175 -

150 -

125

100

100 -

80

3. Results & Evaluation

Celltype Annotation by Marker Gene

- Decrease of T cells in COVID individuals (blue & red)
- Increase in CD14+ monocyte in patient covid_2 (green)
- CD4 T cell
- FCGR3A+ monocyte
- CD14+ monocyte
- CD8 T cell
- NK cell
- - "
- Convntional DCs
- Plasmacytoid DCs

- Results align with most COVID scRNA analysis: Decreased in T cells population in COVID individuals
 - T cells are essential in virus clearance
 - Patients with a larger decrease in T cells has a more severe disease status
- Increase in CD14+ monocytes in covid_2 patient
 - CD14+ monocytes are responsible for phagocytosis of foreign substances
 - Past analysis demonstrated a positive correlation between expansion of CD14+ monocytes and disease severity
 - Patient covid_2 might be in a more severe disease status

2. Evaluation - Celltype Annotation by Ingest

- Dataset is not labelled
- Ingest python package: projects labels of reference data to unlabelled data

Transffered annotation from known reference PBMC dataset

Mannual annotation by differential gene analysis

4. Conclusion

- Highlights the major populations of PBMCs
- Provides an insight to pathogenesis of COVID-19
- Future improvements
 - Better quality control: sex filtering, removal of batch effect and dropouts
 - More detailed analysis of subpopulations of PBMC
 - Indicate potential cellular components for targeted therapy or vaccine development