KEY

Section 1: Algebra

1.1
$$3-i, 3, 3+i$$

1.3
$$H = \{\pm 1, \pm i\}; G/H \cong G$$

1.6 Any two linearly independent vectors satisfying the conditions: x - z + t = 0; 2x + 3y - z + 2t = 0

1.8 $\lambda = 0$ with multiplicity n - 1 and $\lambda = n$ with multiplicity 1

1.9
$$T^*(A) = M^*A$$

1.10

$$\begin{bmatrix} \frac{1+\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} \end{bmatrix}$$

Section 2: Analysis

2.8
$$6\pi i z_0$$

2.9 a.
$$2\pi i$$
; b. π

Section 3: Topology

3.5 a. open; b. closed

Section 4: Calculus & Differential Equations

4.1
$$\left(\frac{x}{\sqrt{x^2+16y^2}}, \frac{4y}{\sqrt{x^2+16y^2}}\right)$$

4.2
$$\sqrt{3}x + 2y - 4 = 0$$

4.3
$$4\pi$$
.

4.4
$$4\pi \int_0^a r^2 \varphi(r) \ dr$$

$$\int_{-2}^{1} \int_{-y}^{\sqrt{2-y}} f(x,y) \ dxdy + \int_{1}^{2} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} f(x,y) \ dxdy$$

4.7
$$\lambda = 0$$
 and $u = constant; \lambda = 4n^2\pi^2$ and $u_n = A\cos 2n\pi x + B\sin 2n\pi x$, for $n \in \mathbb{N}$

4.8
$$\frac{1}{y^2} = cx^2 - x^4$$

$$x(t) = Ae^{3t} + Be^{2t}$$

 $y(t) = Ae^{3t} + 2Be^{2t}$

4.10
$$y = A \cos x + B \sin x$$
, or, equivalently, $y = c \sin(x - d)$.

Section 5: Miscellaneous

5.1
$$\frac{\pi}{\sqrt{ab-h^2}}$$
 5.2 7π

5.3 b,c **5.4**
$$\frac{1}{2}N\phi(N)$$

5.9 8!
$$\binom{9}{6} = 8! \, \binom{9}{3} = 3,386,880$$

$$r\binom{n}{r} = n\binom{n-1}{r-1}$$

Note: Accept any correct equivalent form of the answers.