

AO4290A

100V Channel AlphaSGT™

General Description

- Trench Power AlphaSGT[™] technology
- Low R_{DS(ON)}
- Logic Driven
- RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{ll} V_{DS} & 100V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 15.5A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 6.4 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 7.6 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Applications

- Synchronous Rectification for Quick Charger 3.0
- Synchronous Rectification for AC/DC adapter and DC/DC brick power

Orderable Part Number Package Type		Form	Minimum Order Quantity
AO4290A	SO-8	Tape & Reel	3000

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V_{DS}	100	V		
Gate-Source Voltage		V_{GS}	±20	V		
Continuous Drain	T _A =25°C		15.5			
Current	T _A =70°C	'D	12	A		
Pulsed Drain Current ^Ĉ		I _{DM}	62			
Avalanche Current ^C		I _{AS}	44	A		
Avalanche energy L=0.1mH ^C		E _{AS}	97	mJ		
V _{DS} Spike	10µs	V _{SPIKE}	120	V		
	T _A =25°C	P _D	3.1	W		
Power Dissipation ^B	T _A =70°C	' D	2.0	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics						
Parameter		Symbol	Symbol Typ Max		Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	31	40	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	59	75	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
I _{DSS} Zero Gate Voltag	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V			1	μA
DSS	Zero Gate Voltage Brain Gunent	T _J =	:55°C		5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.3	1.75	2.3	V
		V _{GS} =10V, I _D =15.5A		5.3	6.4	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J =1	25°C	9.5	11.5	11152
		V_{GS} =4.5V, I_{D} =13.5A		6.1	7.6	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V, I_{D}=15.5A$		90		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.68	1	V
Is	Maximum Body-Diode Continuous Cur	rent			4	Α
DYNAMI	CPARAMETERS			•	-	-
C _{iss}	Input Capacitance			4525		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =50V, f=1MHz		345		pF
C_{rss}	Reverse Transfer Capacitance			22.5		pF
R_g	Gate resistance	f=1MHz	0.5	1.1	1.8	Ω
SWITCH	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			65	95	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =15.5	54	30	45	nC
Q_{gs}	Gate Source Charge	V _{GS} -10 V, V _{DS} -30 V, I _D -13.		10		nC
Q_{gd}	Gate Drain Charge			9		nC
t _{D(on)}	Turn-On DelayTime			10		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =3.2	25Ω,	6		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		52		ns
t _f	Turn-Off Fall Time			10		ns
t _{rr}	Body Diode Reverse Recovery Time	I_F =15.5A, di/dt=500A/ μ s		32		ns
Q _{rr}	Body Diode Reverse Recovery Charge	_e I _F =15.5A, di/dt=500A/μs	_	162		nC

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

 $\label{eq:ldot} {\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

(Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

