

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Parametrikus görbék és felületek pontos offsetelése

SZAKDOLGOZAT

Készítette Sandle Nátán Konzulens Salvi Péter

Tartalomjegyzék

1.	Bev	vezetés	1
	1.1.	CAD/CAM	1
	1.2.	Racionális görbék/felületek	1
	1.3.	Kontrollpont-alapú reprezentáció	1
	1.4.	Parametrikus sebesség	1
2.	\mathbf{PH}	Görbék	2
	2.1.	PH síkgörbék	2
		2.1.1. Alapok	
		2.1.2. Reprezentáció komplex számokkal	2
		2.1.3. Interpoláció	2
	2.2.	PH térgörbék	
		2.2.1. Alapok	
		2.2.2. Reprezentáció kvaterniókkal	2
		2.2.3. Interpoláció	2
3.	PN	felületek	3
4.	\mathbf{PN}	interpoláció C^1 folytonossággal	4
	4.1.	Feladat	4
		Duális reprezentáció	
	4.3.	Izotróp tér	5
	4.4.	Coons-patch	5
	4.5.	Folyamat	5
5.	Implementációs részletek		
	5.1.	Polinom osztály	6
		Megjelenítés	
6.	Ere	dmények	7

HALLGATÓI NYILATKOZAT

Alulírott Sandle Nátán, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2025-04-27	
	C 11 M. / 4 /
	Sandle Nátán hallgató

Bevezetés

- 1.1. CAD/CAM
- 1.2. Racionális görbék/felületek
- 1.3. Kontrollpont-alapú reprezentáció
- 1.4. Parametrikus sebesség

PH Görbék

- 2.1. PH síkgörbék
- 2.1.1. Alapok
- 2.1.2. Reprezentáció komplex számokkal
- 2.1.3. Interpoláció
- 2.2. PH térgörbék
- 2.2.1. Alapok
- 2.2.2. Reprezentáció kvaterniókkal
- 2.2.3. Interpoláció

PN felületek

PN interpoláció C^1 folytonosság-gal

4.1. Feladat

4.2. Duális reprezentáció

Egy olyan $\mathbf{x}(\mathbf{s})$ racionális felületet keresünk, melynek egységhosszúságú normálvektorait leíró $\mathbf{n}(\mathbf{s})$ függvény szintén racionális. Kézenfekfő lehet "fordítva gondolkozni": először konstruálni egy garantáltan racionális $\mathbf{n}(\mathbf{s})$ -t, majd ebből meghatározni $\mathbf{x}(\mathbf{s})$ -t. Felületünket a szokásos (x,y,z) koordináták helyett reprezentálhatjuk az úgynevezett "duális térben", (n_x,n_y,n_z,h) koordinátákkal. Ezek a koordináták a felület egy pontja helyett a felület egy érintősíkját írják le.

Legyen \mathbf{p} a felület egy pontja, \mathbf{n} pedig a felület normálvektora ebben a pontban. Az ennek megfelelő pont a duális térben (\mathbf{n}, h) , ahol:

$$\mathbf{p} \cdot \mathbf{n} = h$$

Ha feltételezzük, hogy \mathbf{n} egység hosszúságú, akkor h nem más, mint az érintősík távolsága az origótól. A $h(\mathbf{s})$ függvényt a felület support függvényének hívjuk.

A mi módszerünkben $\mathbf{n}(\mathbf{s})$ -t és $h(\mathbf{s})$ -t fogjuk ismerni, ezekből kell kiszámolnunk $\mathbf{x}(\mathbf{s})$ -t. Ehhez először fel kell írnunk néhány azonosságot.

x(s) parciális deriváltjai párhuzamosak az érintősíkkal

$$\frac{d\mathbf{x}}{d\mathbf{s}}\mathbf{n} = \mathbf{0}$$

Így $h(\mathbf{s})$ deriváltja

$$\frac{dh}{d\mathbf{s}} = \frac{d}{d\mathbf{s}} \mathbf{x}^T \cdot \mathbf{n} = \mathbf{x}^T \cdot \frac{d\mathbf{n}}{d\mathbf{s}}$$

Mivel $\mathbf{n}(\mathbf{s})$ egységhossúságú, egy gömbfelületet ír le. Parciális deriváltjai merőlegesek rá

$$\frac{d}{d\mathbf{s}}\mathbf{n} \cdot \mathbf{n} = 2\frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{n} = \frac{d}{d\mathbf{s}} \mathbf{1}$$
$$\Rightarrow \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{n} = \mathbf{0}$$

 $h{\bf n}$ egy pont az érintősíkon, $\frac{d{\bf n}}{du}$ és $\frac{d{\bf n}}{dv}$ pedig az érintősíkkal párhuzamos vektorok. Így ${\bf x}$ -et ki tudjuk fejezni az alábbi módon

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$

Szorozva $\frac{d\mathbf{n}}{d\mathbf{s}}^T$ -al

$$\frac{dh}{d\mathbf{s}}^{T} = \frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$
$$\mathbf{r} = \left(\frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}}\right)^{-1} \frac{dh}{d\mathbf{s}}^{T}$$

Tehát

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \left(\frac{d\mathbf{n}}{d\mathbf{s}}^T \frac{d\mathbf{n}}{d\mathbf{s}} \right)^{-1} \frac{dh}{d\mathbf{s}}^T$$

4.3. Izotróp tér

Az egységhosszúságú normálvektor előírásával \mathbb{R}^4 -et leszűkítettük \mathcal{B} -re, az úgynevezett Blaschke hengerre. Ahhoz, hogy

4.4. Coons-patch

4.5. Folyamat

Implementációs részletek

- 5.1. Polinom osztály
- 5.2. Megjelenítés

Eredmények