資料結構與物件導向程式設計 HW2 報告

110550088 李杰穎

June 6, 2022

1 Part 1: Directed Graph

此部分是給定一個有向圖,這個有向圖可能是無環也有可能是有環的,所以我們必須先判 斷給定的圖是否有環。若有環,則我們必須把圖上的強連通分量找出來。若無環,則我們要印 出這張有向圖的拓樸排序。

1.1 Implementation Detail

以下是 Part1.h,內有 Part 1 會用到的所有函數及變數。

Code 1: Part1.h

```
1 #ifndef PART1_H
2 #include "SolverBase.h"
3 #include <algorithm>
4 #include <vector>
5 #include <map>
6 #include <iostream>
7 #include <fstream>
9 using namespace std;
11 class PartI : public SolverBase
13 int n, m, cnt;
14 vector<vector<pair<int, int>>> graph; // Declare an adjacency list to save the graph (pair fisrt:

→ vertex second: weight)

15 vector<vector<pair<int, int>>> rev_graph; // Declare an adjacency list to save the "reverse" graph
   → (pair fisrt: vertex second: weight)
16 map<pair<int, int>, int> scc_graph; // Use map to save edges and theirs weights
17 vector<pair<int, vector<int>>>> scc_vertex; // Save the id of each vertices in every SCC
18 vector<int> order; // Save topological order
vector(int) scc; // Save the id of corresponding SCC of each vertex
```

```
20
21 map<int, int> finish; // Store the status of vertex when traversing
22 bool isAyclic = true; // To store that this graph is acyclic or not
23
24 public:
25
       void read(std::string); // Read input from file
       void solve(); // Main solve function
26
       void write(std::string); // Write output to file
27
       void dfs(int); // DFS
28
       void scc_dfs(int, int); // Run dfs to get SCC
       void scc_revdfs(int); // Run reverse dfs to get SCC
       void kosaraju(); // The main part of Kosaraju's Algorithm
31
       void buildGraph(); // Build coarse graph
32
33
       void buildGraphDFS(int); // Use dfs to build the coarse graph
34 };
35
36 #define PARTI_H
37 #endif
```

以下為 Part 1 的具體實作,其細節我都已經寫在註解中。主要就是先利用 DFS 判斷圖是 否有環,若判斷無環,則根據先前 DFS 的結果輸出 topological ordering。若判斷有環,則會 利用 Kosaraju 演算法來找出強連通分量。

Kosaraju's algorithm 主要演算步驟如下:

- 1. 對有向圖 G 取反圖,得到 G 的反向圖 G^R
- 2. 利用 DFS 找出 G^R 的拓樸排序
- 3. 對 G 按照拓樸排序進行 DFS
- 4. 在同一次 DFS 跑到的點都在同一個強連通分量中

以下就是 Part 1 實作的所有程式碼,程式碼的解釋部分我已經寫在註解。

Code 2: Part1.cpp

```
#include "Part1.h"
з using namespace std;
5 bool operator<(const pair<int, int>& a, const pair<int, int>& b){
       return (a.first < b.first) || (a.first == b.first && a.second < b.second);</pre>
6
7
9 void PartI::read(string file) {
10
       cout << "Part I reading..." << endl;</pre>
11
       ifstream ifs(file); // Use input file stream to read input from file
       ifs >> n >> m; // Get # of vertices n and # of edges m
12
       // Resize the vector
13
       graph.resize(n);
14
15
       rev_graph.resize(n);
```

```
16
       scc.resize(n);
17
       int u, v, w;
18
       // Build graph
19
20
       for(int i=0;i<m;i++){</pre>
           ifs >> u >> v >> w;
21
           graph[u].push_back({v, 1});
22
           rev_graph[v].push_back({u, 1});
23
24
25
       // Close the ifstream
26
       ifs.close();
27
       // Because we need to traverse from smallest index to the largest, thus we need to sort the
28
   \hookrightarrow adj. List
29
       for(int i=0;i<n;i++){</pre>
           sort(graph[i].begin(), graph[i].end());
30
31
32 }
33
34 void PartI::solve() {
       cout << "Part I solving..." << endl;</pre>
35
36
       for(int i=0;i<n;i++){</pre>
37
            // Run DFS for not yet traversed vertex
38
           if(finish[i] == 0){
                dfs(i);
39
           }
40
41
       }
42
       if(isAyclic){
43
           // If is acylic, then reverse the order to get real topological ordering
44
45
           reverse(order.begin(), order.end());
46
           return;
47
       }
48
49 }
50
void PartI::write(string file) {
       cout << "Part I writing..." << endl;</pre>
52
       ofstream ofs(file); // use output filestream to write output to file
53
54
       if(isAyclic){
55
            // Write the topological ordering to file
           for(auto i: order){
56
57
               ofs << i << " ";
58
           ofs << endl;
59
60
           // After writing the to the file, directly exit the function
           return:
61
62
       }
63
       // If not ayclic, then run Kosaraju's algorithtm to find SCC
64
       kosaraju();
       // After running Kosaraju's algorithtm, vertex will have a label which indicates that which SCC
65
   \hookrightarrow it belongs to.
66
       // This information will save in vector<int> scc.
67
       // cnt is # of SCC in the given graph.
68
       scc_vertex.resize(cnt, {1e9, {}}); // scc_vertex will save the minimum index and every vertex
   \hookrightarrow in each SCC.
       // Iterate all vertices in the graph.
69
70
       for(int i=0;i<n;i++){</pre>
71
           int u = scc[i];
```

```
scc_vertex[u].first = min(scc_vertex[u].first, i);
73
           scc_vertex[u].second.push_back(i);
74
       }
       sort(scc_vertex.begin(), scc_vertex.end()); // Sort the SCCs based on the minimum index.
75
76
77
       // Relabel the vertices to match the new index value of every SCC
       for(int i=0;i<cnt;i++){</pre>
78
79
           for(auto j: scc_vertex[i].second){
                scc[j] = i;
80
81
82
       }
83
       // Build coarse graph
84
85
       buildGraph();
       // After running the above function, we will get the coarse graph and save as map.
86
87
88
       ofs << cnt << " " << scc_graph.size() << endl; // Output the # of vertcies and edges
89
90
       // Because map will sort by key, we don't need to sort the map.
91
       for(auto i: scc_graph){
           ofs << i.first.first << " " << i.first.second << " " << i.second << endl;
92
93
94
        // Close output filestream
95
       ofs.close();
96
97
       return;
98 }
99
void PartI::dfs(int v){
       // Back edge, cyclic
101
       if(finish[v] == 1){
   isAyclic = false;
102
103
           return;
104
       }
105
106
107
       // forward edge or cross edge
108
       if(finish[v] == 2){
           return;
109
       }
10
11
       // mark 1
12
       finish[v] = 1;
13
       for(auto i: graph[v]){
114
           dfs(i.first);
115
16
       }
17
       // mark 2
118
119
       finish[v] = 2;
120
       order.push_back(v);
121 }
122
void PartI::scc_revdfs(int v){
124
       // DFS runs on reverse graph
125
       finish[v] = 1;
126
       for(auto i: rev_graph[v]){
           if(finish[i.first] == 0){
127
                scc_revdfs(i.first);
128
129
130
       }
```

```
131
        order.push_back(v);
132 }
133
void PartI::scc_dfs(int cur, int s){
135
       // DFS runs on graph and lable the vertices
136
       scc[cur] = s;
       for(auto i: graph[cur]){
137
           int u = i.first;
138
            if(scc[u] == -1){
139
40
                scc_dfs(u, s);
141
142
       }
143 }
144
void PartI::kosaraju(){
       order.clear(); // Clear the original order
146
       finish.clear(); // Clear the vector
147
148
       scc.resize(n); // Resize the vector that store vertex belongs to SCC
149
       fill(scc.begin(), scc.end(), -1); // Fill the vector with -1
150
       for(int i=0;i<n;i++){</pre>
            if(finish[i] == 0){ // If not yet traversed, then run DFS on reverse graph.}
151
52
                scc_revdfs(i);
53
54
       }
       cnt = 0; // Store the # of SCC
55
       reverse(order.begin(), order.end());
156
157
       // Use topological ordering of reverse graph to get SCC
       for(auto i: order){
159
            if(scc[i] == -1){ // Not in any SCC
                scc_dfs(i, cnt); // Run DFS
160
161
                cnt ++;
162
        }
163
64 }
165
66 void PartI::buildGraphDFS(int v){
67
       finish[v] = 1;
68
        for(auto\ i:\ graph[v]) \{\ //\ Iterate\ all\ edges\ that\ connect\ to\ vertex\ v
169
            int u = i.first;
170
            if(scc[v] != scc[u]){
                scc\_graph[\{scc[v], scc[u]\}] ++; // If two vertices belongs to different SCC, then this
171
   \hookrightarrow edge will appear in coarse graph and weight will plus 1
172
            if(finish[u] == 0){ // If not yet visited, then run DFS
173
                buildGraphDFS(u);
174
175
       }
176
177 }
178
void PartI::buildGraph(){
180
       finish.clear(); // Clear the vector that records visited vertices
       for(int i=0;i<n;i++){</pre>
181
182
            if(finish[i] == 0){
183
                buildGraphDFS(i);
184
185
       }
186 }
```

1.2 Discussion

1.2.1 Time Complexity

此演算法時間複雜度的來源主要是多次 DFS,而一次 DFS 的時間複雜度為 O(V+E),其中 V 為點的數量、E 為邊的數量。而 Kosaraju 演算法的複雜度也只是 2 次 DFS。其中還有用 map 維護 finish,其插入和查詢的總時間複雜度為 $O(V\log V)$ 。故總時間複雜度應為 $O(V+V\log V+E)$ 。

1.2.2 Your Discovery

在本次作業中,我發現可以僅需要一次 DFS 就可以得到 topological ordering,且 DFS 的 起始點不一定要是入度為 0 的點,從任一點開始,只要 traverse 所有點,就可以得到正確的 topological ordering。

1.2.3 Which is the better algorithm in which condition

事實上,其實有另一個演算法可以計算強連通分量,此演算法即為 Tarjan 演算法。Tarjan 演算法雖然在時間複雜度上與 Kosaraju 演算法相同,但其常數部分差了一倍。Tarjan 演算法只需要一次 DFS 即可以找到強連通分量。但 Tarjan 演算法實作上比較麻煩,故在本次作業中,我仍採用 Kosaraju 演算法。

1.2.4 Encountered Problems

一開始在寫作業時沒有很理解 read 函數中 string 引數所代表的意義,後來查看 main.cpp 後才發現原來是檔名,於是想到可以用 C++ 內建的 fstream 來開啟檔案,並利用與 cin, cout 相同的方式來將變數輸入進來,也可以將變數輸出到檔案中。

2 Part 2: Shortest Path

在此部分中,我們需要實作兩種圖上最短路演算法,分別為 Dijkstra 演算法及 Bellman-Ford 演算法。

Dijsktra 演算法僅能處理無負邊權的圖,而 Bellman-Ford 演算法可以處理負邊權的圖,也可以偵測出圖上的負環。

在本次作業中,Dijkstra 演算法的部分我們會將輸入的邊權取絕對值,使圖上不會出現負邊權的情況。

2.1 Implementation Detail

以下為 Part2.h,有本部分會用到的函數及變數。

Code 3: Part2.h

```
1 #ifndef PARTII_H
2 #include "SolverBase.h"
3 #include <iostream>
4 #include <fstream>
5 #include <algorithm>
6 #include <vector>
7 #include <queue>
9 using namespace std;
10
11 class PartII : public SolverBase
12 {
       int n, m; // # of vertices and edges
13
       bool hasNegCyc = false; // has negative cycle in the graph or not
14
      vector<vector<pair<int, int>>> adj; // Declare an adjacency list to save the graph (pair fisrt:
15
       vector<vector<pair<int, int>>> abs_adj; // Declare an adjacency list to save the graph (pair
16

    fisrt: vertex second: abs(weight))

      vector<int> d, abs_d; // The shortest distance from node 0 to every other vertices
17
18 public:
19
       void read(std::string); // Read input from file
       void solve(); // Main solve fucntion
20
       void write(std::string); // Write the output to file
21
22
       void dijkstra(int); // Dijkstra's Algorithm
23
       bool bellmanFord(int); // Bellman-Ford's Algorithm
24 };
25
26 #define PARTII_H
27 #endif
```

以下就是 Part 2 的所有程式碼,解釋的部分已放在註解中。

Code 4: Part2.cpp

```
1 #include "Part2.h"
2
3 #define INF 1e9
5 using namespace std;
7 void PartII::read(string file) {
       cout << "Part II reading..." << endl;</pre>
8
       ifstream ifs(file); // Decalre a input filestream to get input from file
9
      ifs >> n >> m; // input # of vertices and edges
10
       // Resize the vectors
11
       d.resize(n);
12
       abs_d.resize(n);
       adj.resize(n);
14
```

```
15
       abs_adj.resize(n);
16
       // Build graph from input
17
       int u, v, w;
18
19
       for(int i=0;i<m;i++){</pre>
20
           ifs >> u >> v >> w;
           adj[u].push_back({v, w});
21
22
           abs_adj[u].push_back({v, abs(w)});
23
24
25
       ifs.close();
26 }
27 void PartII::solve() {
28
       cout << "Part II solving..." << endl;</pre>
29
       dijkstra(0); // Run from Dijkstra's algorithm from node 0
30
31
       // Run Bellman-Ford algorithm from node 0.
       // And if function return false, it means there is negative cycle in the graph
32
33
       hasNegCyc = !bellmanFord(0);
34 }
35
36 void PartII::write(string file) {
37
       cout << "Part II writing..." << endl;</pre>
38
       ofstream ofs(file);
       ofs << abs_d[n-1] << endl; // Output the Dijkstra algorithm's output
39
40
41
       if(hasNegCyc){
42
           ofs << "Negative loop detected!" << endl; // If has negative cycle, then output "Negative

→ Loop detected!"

       } else {
43
           ofs << d[n-1] << endl; // Otherwise, output the Bellman-Ford algorithm's output
44
45
46
       ofs.close(); // Close output file stream
47
48 }
49
50
51 void PartII::dijkstra(int src){
       fill(abs_d.begin(), abs_d.end(), INF); // Fill the distance vector w/ INF value
52
53
       abs_d[src] = 0; // The distance from node 0 to node 0 is 0
54
       // Use priority_queue to get the vertex with the smallest distance from node 0 in every step
55
       priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; // first:
56
   57
58
       // Push the initial node 0 to pq
       pq.push({0, 0});
59
60
61
       // If pq is not empty, keep running the relax process
62
       while(!pq.empty()){
           auto edge = pq.top();
63
64
           pq.pop();
65
           int u = edge.second;
66
           for(auto i: abs_adj[u]){
               int v = i.first;
67
               int w = i.second;
68
               int alt = abs_d[u] + w; // Alternate path's distance
69
70
71
               // If alternate distance less than current distance save in distance vector
```

```
if(alt < abs_d[v]){</pre>
                                         // Update the distance in distance vector
73
                    abs_d[v] = alt;
74
                     pq.push({alt, v}); // Update the new distance to pq
75
76
77
        }
78 }
79
80 bool PartII::bellmanFord(int src){
81
        fill(d.begin(), d.end(), INF); // Fill the distance vector w/ INF value
82
       d[src] = 0; // The distance from node 0 to node 0 is 0
83
        // Run n-1 times of relaxation process
84
85
        for(int i=0;i<n-1;i++){</pre>
86
            for(int u=0;u<n;u++){</pre>
                for(auto k: adj[u]){
87
88
                    int v = k.first;
                     int w = k.second;
89
                    int alt = d[u] + w;
91
                    // If alternate distance less than current distance save in distance vector
92
                    if(d[u] != INF && alt < d[v]){</pre>
93
                         d[v] = alt; // Update the distance in distance vector
95
                }
96
97
            }
98
       }
100
       for(int u=0;u<n;u++){</pre>
101
            for(auto k: adj[u]){
102
                int v = k.first;
03
                int w = k.second;
04
                int alt = d[u] + w;
05
                if(d[u] != INF \&\& alt < d[v]){
106
                    // If there still have edge that can be relaxed in nth times of relaxation process.
107
                    // Then there exists a negative cycle
                    return false;
109
10
                }
11
            }
112
        }
113
114
        return true;
115 }
```

2.2 Discussion

2.2.1 Time Complexity

以 Dijkstra 演算法來說,一般來說其時間複雜度為 $O(V^2)$,其中 V 為點的數量。但因為我在本次作業中使用 priority_queue 來加速取出最小值的過程,而 priority_queue 本質上是一個 Binary Heap,所以 Dijsktra 演算法的時間複雜度降至 $O((E+V)\log V)$ 。

至於 Bellman-Ford 演算法,其時間複雜度即為 $O(E \cdot V)$ 。

2.2.2 Your Discovery

在實作 Dijkstra 演算法中的 relaxation process 時,雖然實際上我們要做的應該是去更新 priority_queue 中的已存在的節點,但實際上,我們只要把更小的值推進去就好,因為 priority_queue 永遠會把較小的值拿出來,等到較大值拿出來時,這個較大的值也不會對 distance vector 產生更新。

2.2.3 How to find path of the shortest path?

我們可以在程式中額外宣告一個 parent 陣列,此陣列是要記錄最短路徑中,每一個節點的前一個節點為何,我們只需要在 relaxing 的時候更新這個陣列即可。跑完兩種演算法後,我們從終點 backtracking 回到起點,最後就可以找到最短路徑了。

2.2.4 How Bellman-Ford Algorithm detect negative cycle?

因為在圖中,我們可以發現最短路徑最多就經過 V-1 條邊,所以我們對所有邊 relaxing V-1 次必定能找到最短路徑。但如果圖內有 negative loop 則此張圖就沒有最短路徑,因為我們可以透過重複經過此 negative loop 來使最短距離越來越小。而 Bellman-Ford 演算法即是在跑完 V-1 迭代過程後再額外跑一次迭代,如果有任何一條邊可以被 relaxing 到,則此圖中就有 negative loop。

2.2.5 Which is the better algorithm in which condition?

如上所述 Dijkstra 演算法無法處理有負邊的情況,也無法判斷是否有負環。而 Bellman-Ford 演算法可以處理負邊也可以處理負環。但 Dijkstra 演算法的整體複雜度較佳,故如果確定 圖上沒有負邊,則我們應該優先考慮使用 Dijkstra 演算法,但如果不確定是否有負邊,則我們應該使用 Bellman-Ford 演算法。