TODO:title Improved Parsing of Unstructured Logs using XYZ

Yang Su, Amos Hebb *University of Toronto*

Abstract

TODO: Abstract Your abstract text goes here. Just a few facts. Whet our appetites. Not more than 200 words, if possible, and preferably closer to 150.

1 Introduction

CLP [1] is a tool capable of compressing unstructured text logs. The CLP implementation of log ingestion TODO:FluffThisUp. This paper presents an implementation of an improved log ingestion process TODO:ProcessName . TODO:ProcessName achieves over TODO:Nx increase in ingestion performance. TODO:ProcessName does so without sacraficing compression ratio, or search performance. TODO:ProcessName's gains come from TODO:PapersGimmick.

2 Design Overview

TODO:DesignOverview

3 Parsing Messages

TODO:ParsingMessages

3.1 Handling Ambiguous Tokens

3.2 Handling Special Cases

TODO:keepOrRemoveThese

4 Evaluation

TODO:Evaluation We explore: 1) Change in compression speed; 2) Change in compression ratio; and 3) Change in resource efficiency

4.1 Experiment Setup

We used the Hadoop-14TB logs [2] were generated by three Hadoop clusters, each containing 48 data nodes, running workloads from the HiBench Benchmark Suite [25] for a month. Note that the dataset generated by a benchmarking tool may be artificially uniform, as benchmarks do not always capture the randomness of real-world deployments. However, this should not affect our claims as we compare CLP with TODO:ProcessName relative to CLP's default log processing on the same dataset.

4.2 Compression Speed

To examine the change in single-node ingestion speed, a 30GB subset of the Hadoop corpus was written to a tempfs RAM disk. The RAM Disk minimizes I/O overhead to fully expose algorithmic differences between the two versions of CLP. We use CLP's default compression level for both tests.

4.3 Compression Ratio

TODO:CompressionRatio The new parser produces a nearly identical output, except for TODO:ABC. To verify that compression ratio was not impacted, the entire 14TB Hadoop corpus was compressed. With the improved parser, a compression ratio of TODO:CompressionRatioImproved was acheived, within TODO:NPercent of the default parser.

4.4 Resource Efficiency

CLP paper asserts "Compression and search are embarrassingly paralelizable". I don't think they actually demonstrate parallel compression, but do have a whole para about whacky IO. We'll need to work out how they measure this, or maybe we just drop the whole section. This feels pretty thin on benchmarking though and I get the feeling DrYuan is big on 'actually running stuff'.

5 incoherent ranting

I have downloaded CLP.

There's a few spots where it reaches out looking for x86 specific binaries, seems like turning most of these off works.

I've managed to get it installed and running on a docker image using ubuntu:latest.

It runs, and when I compress about 2GB logs from my macbook's disk

- 1. it takes about 18 seconds to do heuristic based, roughly 100MB/s, 5x slower than ramdisk in paper.
- 2. I currently just get flaming segmentation faults whenever I try to use schemas.

Acknowledgments

TODO:Scrap this section? It's from the USENIX template. If we get access to the cluster or something may we could praise that, feels awkward to ack the existing paper though.

Availability

HDFS Corpus is available at [2]. The fork of CLP is available at TODO:Repo.

References

- [1] Kirk Rodrigues, Yu Luo, and Ding Yuan. CLP: Efficient and scalable search on compressed text logs. In *15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21)*, pages 183–198, 2021.
- [2] Kirk Rodrigues, Yu Luo, and Ding Yuan. hadoop-14tb-part1, September 2022.