Course Syllabus

Course Title	Artificial Intelligence for Chemistry	CRN (Course Reference Number)	EE6310
Subtitle	-	Credit hour (Lecture hours – Lab hours – Credit hours)	3-0-3
Course	Lecture ■ Discussion □ Laborat	ory □ Practicum □	
Format	Blended □ Online □ (Add)		
Course	Machine learning is accelerating the pace of research in chemical science, enabling the		
Description	rapid discovery of new materials and innovative characterization. In this course, students		
	will learn the basics of deep learning, and will be exposed to some of the successful		
	machine learning models in the chemical science field, the application of which extends		
	to chemistry, catalysis, and materials science. The course materials are designed to be		
	practical and friendly for engineers without a computer science background. This course		
	implement flipped learning. The students will watch the lectures before the class, and the		
	students will work on problem set and the problem set will be discussed together. The		
	course also will also include working on project involving developing a neural network		
	model.		

P1. Course Information

Instructor	Prof. Geun Ho Gu	Office	Smart Park D6-410
Office Hours	TDD	Office Telephone	061-330-9689
Office Hours	TBD	E-mail	ggu@kentech.ac.kr
Discipline	Chemistry, Al		Undergraduate level chemistry
Target Audience	Graduate students with	Prerequisite	Undergraduate level linear algebra
	engineering back grounds	Trerequisite	Undergraduate level differential
	3 3 3		equation
Course Reading & Resources			
Required Materials	- Lecture notes are provided		
	- Deep Learning from scratch by Saito Goki, O'Reilly		
Other	- Andrew Ng's machine learning class lectures on Youtube		
Recommended	(https://www.youtube.com/playlist?list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN)		
Materials	- Andrew Ng's deep neural networks lectures on Youtube		
(optional)	(https://www.youtube.com/playlist?list=PLpFsSf5Dm-pd5d3rjNtIXUHT-v7bdaEle)		
Course Access	This is an offline course. Learning materials will be available online.		
Technical &	If you need any technical/academic assistance at any time during the cours		any time during the course, please
	contact your instructor and/or course TA		
Academic Support	- Instructor: Prof. Geun Ho Gu		

P2. Course Objectives

Course	Through this course you will:	
Learning	- Learn basic python	
Objectives	- Understand the basic algorithms of machine learning	
	- Apply machine learning models to practical problems	
Course	To meet the objectives, you will:	
Learning	- Watch lecture before the class	
Activities	- Work on problem set before the class, and come to class prepared to discuss	
	- Develop a machine learning model for the topic of your choice	
	- Give a professional presentation of the developed machine learning model	

P3. Topic Outline/Schedule

Important note: Refer to the course calendar for specific dates and times. Activity and assignment details will be explained in detail within each week's corresponding learning module. If you have any questions, please contact your instructor.

	Overview		
	02/26	Offline Lecture Digital chemistry. Mathematics review.	
Wk1	02/20	Discussion Python basics 1.	
	02/29	Read Chapter 1 of S. Goki.	
Wk2	03/04	Discussion Python basics 2.	
	03/07	Discussion Python basics 3.	
Wk3	03/11	Discussion Python basics 4.	
	03/14	Discussion Python basics 5.	
Wk4	03/18	Discussion Perceptron 1.	
	03/10	Read Chapter 2 of S. Goki.	
	03/21	Discussion Perceptron 2.	
Wk5	03/25	Discussion Perceptron 3.	
	03/28	Discussion Neural Network 1.	
	03,20	Read Chapter 3 of S. Goki.	
Wk6	04/01	Discussion Neural Network 2.	
	04/02	Discussion Neural Network 3.	(04/04보강)
Wk7	04/08	Discussion Neural Network Training 1.	
	0 1,00	Read Chapter 4 of S. Goki.	
	04/11	Discussion Neural Network Training 2.	
	04/14	Project proposal due	
Wk8	04/15	1-on-1 meeting Project proposal Discussion	
	04/16	Discussion Neural Network Training 3.	(04/18보강)
Wk9	04/22	Discussion Backpropagation 1.	
	0 1, LL	Read Chapter 5 of S. Goki.	
	04/23	Discussion Backpropagation 2.	(04/25보강)
Wk10	04/29	Discussion Backpropagation 3.	
	05/02	Discussion Learning Techniques 1.	
	05,02	Read Chapter 6 of S. Goki.	
Wk11	05/06	어린이날 대체 공휴일	
	05/09	Discussion Learning Techniques 2.	
Wk12	05/13	Discussion Learning Techniques 3.	
	05/16	Discussion Convolutional Neural Network 1.	
		Read Chapter 7 of S. Goki.	
Wk13	05/20	Discussion Convolutional Neural Network 2.	
	05/23	Discussion Convolutional Neural Network 3.	
	05/27	Discussion Graph Convolutional Neural Network 1.	

	05/30	Discussion Graph Convolutional Neural Network 2.	
Wk15	06/03	Discussion Graph Convolutional Neural Network 3.	
	06/06	현충일 공휴일	
Wk16	06/10	Project presentation 1	
	06/13	Project presentation 2	

P4. Grading Policy

Graded Course Activities

Activity	Percentage
Attendance (replaced as the problem set submission)	35
Participation	35
Class project proposal	10
Class project presentation	20
Total	100%