Discrete Kernels

Kernels for Sequences

Similarity between sequences of different lengths

ACGGTTCAA

ATATCGCGGGAA

Count Kernel

Inner product between symbol counts

	A	\mathbf{C}	G	T
ACGGTTCAA	3	2	2	2
ATATCGCGGGAA	4	2	4	2

- Extension: Spectrum kernels (Leslie et al., 2002)
 - Counts the number of k-mers (k-grams) efficiently

Motivations for graph analysis

Existing methods assume "tables"

Serial Num	Name	Age	Sex	Address	
0001	00	40	Male	Tokyo	
0002	××	31	Female	Osaka	

- Structured data beyond this framework
- → New methods for analysis

AQFERTL		IVNEYS	Y	I	VYLEGCT	P. knowlesi
AQFERTL	L	IVNEYS	Y	I	VYLEGCT	P. simiovale
	П					
AQFERTL	L	IVNEYS	Y	I	VYLEGCT	P. v./chesson
AQFERTL	L	IVNEYS	Н	I	VYLEGCT	P. simium
AQFERTL	L	IVNEYS	н	I	VYLEGCT	P.v./Africa
AQFERTL	L	IVNEYS	н	I	VYLEGCT	P.v./Thai-1090
AQFERTL	L	IVNEYS	н	I	VYLEGCT	P.v./Thai-115
AQFERTL	L	IVNEYS	н	I	VYLEGCT	P.v./N.Korea
AQFERTL	L	IVNEYS	н	I	VYLEGCT	P.v./Vietnam
	П		П			
3.0EDD#1	ļ.	IVNEYS	ш	ſν	l	D /C-1 1 1
AQFERTL	_			Ĭv.		P.v./Salvador-1
AQFERTL		IVNEYS	H	11.		P.v./Salvador-2
AQFERTL		IVNEYS	H	V		P.v./Brazil-1
AQFERTL	L	IVNEYS	H	V		P.v./Brazil-2
AQFERTL			H		VYLEGCT	P.v./Honduras-1
AQFERTL	L	IVNEYS	H	V	VYLEGCT	P.v./Honduras-2
AQFERTL	L	IVNEYS	н	V	VYLEGCT	P.v./Panama

Graph Structures in Biology

 DNA Sequence Compounds ÅŤŤÁ **RNA** UA CG CG Н U

Graph Kernels

(Kashima, Tsuda, Inokuchi, ICML 2003)

- Going to define the kernel function
- K(G,G')

Both vertex and edges are labeled

G'

Label path

Sequence of vertex and edge labels

$$h = (A, e, A, d, D, a, B, c, D)$$

- Generated by random walking
- Uniform initial, transition, terminal

probabilities

Path-probability vector

Label path $m{h}$	Probability $p(\boldsymbol{h} G)$
AaA	0.001
:	:
AcDbE	0.00003
:	:
AeAdDaBcD	0.0000007
•	

Kernel definition

Kernels for paths

$$K(\mathbf{h}, \mathbf{h}') = \begin{cases} 0 & (|\mathbf{h}| \neq |\mathbf{h}'|) \\ k_v(h_1, h'_1) k_e(h_2, h'_2) \cdots k_v(h_\ell, h'_\ell) & (|\mathbf{h}| = |\mathbf{h}'|) \end{cases}$$

- Take expectation over all possible paths!
- Marginalized kernels for graphs

$$K(G,G') = \sum_{h} \sum_{h'} p(h|G)p(h'|G')K(h,h')$$

Classification of Protein 3D structures

- Graphs for protein 3D structures
 - Node: Secondary structure elements
 - Edge: Distance of two elements
- Calculate the similarity by graph kernels

Biological Networks

- Protein-protein physical interaction
- Metabolic networks
- Gene regulatory networks
- Network induced from sequence similarity

- Thousands of nodes (genes/proteins)
- 100000s of edges (interactions)

Physical Interaction Network

- Undirected graphs of proteins
- Edge exists if two proteins physically interact
 - Docking (Key Keyhole)
- Interacting proteins tend to have the same biologic

Metabolic Network

Diffusion kernels (Kondor and Lafferty, 2002)

- Function prediction by SVM using a network
 - Kernels are needed!
- Define closeness of two nodes

Definition of Diffusion Kernel

- A: Adjacency matrix,
- D: Diagonal matrix of Degrees
- L = D-A: Graph Laplacian Matrix
- Diffusion kernel matrix $K = \exp(-\beta L)$ β $\qquad : \text{Diffusion paramater}$
- Matrix exponential, not elementwise exponential

Computation of Matrix Exponential

• Definitior $\exp(A) = \lim_{s \to \infty} (I + \frac{A}{s})^s$

Eigen-decomposition

$$A = \sum_{i=1}^n \lambda_i oldsymbol{v}_i oldsymbol{v}_i^ op$$

$$\exp(A) = \sum_{i=1}^{n} \exp(\lambda_i) \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

Adjacency Matrix and Degree Matrix

Graph Laplacian Matrix L

Actual Values of Diffusion Kernels

Closeness from the "central node"