1 Transmission Lines

Métrica da linha	Expressão	Simplificação
Onda de tensão	$V(x) = Ae^{-\gamma x} + Be^{\gamma x}$	
Onda de corrente	$I(x) = \frac{A}{Z_0}e^{-\gamma x} + \frac{B}{Z_0}e^{\gamma x}$	
Impedância característica	$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$	$R = 0, G = 0 \implies Z_0 = \frac{L}{C}$
Constante de propagação	$\gamma = \alpha + j\beta$	
Coeficiente de transmissão	$\Gamma = \frac{Be^{j\gamma x}}{Ae^{-\gamma x}} = \frac{B}{a}e^{2\gamma x}$	$\Gamma(x) = \Gamma_0 e^{2\gamma x} = \Gamma(0)e^{2\gamma x}$
Impedância de entrada	$Z_{IN}(x) = \frac{V(x)}{I(x)} = Z_0 \frac{e^{\gamma x} + \Gamma_0 e^{\gamma x}}{e^{\gamma x} - \Gamma_0 e^{\gamma x}}$	$Z_{IN}(0) = Z_L = Z_0 \frac{1 + \Gamma_0}{1 - \Gamma_0}$
Coeficiente de transmissão	$\Gamma_0 = \frac{Z_L - Z_0}{Z_L + Z_0}$	
Efeito Pelicular	$\delta = \frac{1}{2\pi} \sqrt{\frac{\rho}{f\mu_r}}$	
Frequência de Ressonãncia de um LC	$f_R = rac{1}{2\pi\sqrt{LC}}$	