Spolšna topologija

18. oktober 2024

Metrični prostori

0.1 Metrični prostori

Definicija 0.1. *Metrični prostor* je množica X skupaj z preslikavo $d: X \times X \to \mathbb{R}$, za katero velja:

- $d(x, x') = 0 \Leftrightarrow x = x'$,
- d(x, x') = d(x', x),
- $d(x, x'') \le d(x, x') + d(x', x'')$.

Definicija 0.2. Naj bo (X, d) metrični prostor.

- Odprta krogla s središčem v a in polmerom r je množica $K(a,r) = \{x \in X; \ d(a,x) < r\}.$
- Zaprta krogla s središčem v a in polmerom r je množica $K(a,r) = \{x \in X; d(a,x) \le r\}.$
- Okolica točke a je vsaka taka množica, ki vsebuje odprto kroglo K(a, r) za nek r > 0.

Definicija 0.3. Naj bo (X, d) metrični prostor in $A \subset X$.

- Točka $x \in X$ je notranja točka množice A, če obstaja r > 0, da $K(a, r) \subset A$.
- Točka $a \in X$ je zunanja točka množice A, če obstaja r > 0, da $K(a, r) \cap A = \emptyset$.
- Točka $a \in X$ je robna točka množice A, če vsaka njena okolica seka A in A^c .

Množico Int A vseh notranjih točk množice A imenujemo notranjost od A.

Množico ClA vseh točk, za katere obstaja nek r > 0, da K(a,r) seka kot A, tako in A^c , imenujemo zaprtje množice A. Množico ∂A vseh robnih točk množice A imenujemo meja množice A.

Trditev 0.1. Naj bo (X, d) metrični prostor in $A \subset X$. Velja:

- $\partial A = \operatorname{Cl} A \setminus \operatorname{Int} A$.
- $\operatorname{Cl} A = \operatorname{Int} A \cup \partial A$.
- Int $A = \operatorname{Cl} A \setminus \partial A$.

Definicija 0.4. Naj bo (X, d) metrični prostor in $A \subset X$.

- Množica A je odprta v metričnem prostoru X, če je vsaka njena točka notranja.
- Množica A je zaprta v metričnem prostoru X, če vsebuje vse svoje robne točke.

Trditev 0.2. Naj bo (X,d) metrični prostor in $A \subset X$, potem

$$A \ je \ odprta \Leftrightarrow A^c \ je \ zaprt.$$

Izrek 0.3. Naj bo O družina vseh odprtih množic metričnega prostora (X,d). Potem

- $X \in O, \emptyset \in O$.
- $\check{C}e \ je \ A_{\lambda} \in O \ za \ vsak \ \lambda \in \Lambda, \ potem \bigcup_{\lambda \in \Lambda} A_{\lambda} \in O.$
- Če je $n \in \mathbb{N}$ in $A_j \in O$ za vsak j = 1, 2, ..., n, potem $\bigcap_{i=1}^n A_i \in O$.

Trditev 0.4. Vsaka odprta krogla je odprta množica in vsaka zaprta krogla je zaprta množica.

Trditev 0.5. Naj bo (X,d) metrični prostor in $A \subset X$, potem

A je odprta \Leftrightarrow A lahko predstavimo kot unijo odprtih krogel.

Definicija 0.5. Naj bo (X, d) metrični prostor in $A \subset X$. Točka $a \in X$ je stekališče množice A, če vsaka okolica točke a vsebuje neskončno mnogo točk iz množice A.

Trditev 0.6. Naj bo (X,d) metrični prostor in $A \subset X$. Potem

A je zaprta $\Leftrightarrow A$ vsebuje vsa svoja stekališča.

0.2 Zaporedja v metričnih prostorih

Definicija 0.6. Naj bo (X, d) metrični prostor. Zaporedje v metričnem prostoru X je preslikava $\mathbb{N} \to X$.

Definicija 0.7. Naj bo (X, d) metrični prostor. Pravimo, da zaporedje $(a_n)_n$ v X konvergira proti $a \in X$, če

$$\forall \epsilon > 0 . \exists n_0 \in \mathbb{N} . \forall n \in \mathbb{N} . n \geq n_0 \Rightarrow d(a_n, a) < \epsilon.$$

V tem primeru a imenujemo limita zaporedja.

Definicija 0.8. Naj bo (X,d) metrični prostor. Pravimo, da zaporedje $(a_n)_n$ v X izpolnjuje Cauchyjev pogoj, če

$$\forall \epsilon > 0 . \exists n_0 \in \mathbb{N} . \forall n, m \in \mathbb{N} . n, m > n_0 \Rightarrow d(a_n, a_m) < \epsilon.$$

Izrek 0.7. Vsako konvergentno zaporedje v metričnem prostoru (X, d) izpolnjuje Cauchyjev pogoj.

Definicija 0.9. Pravimo, da je metrični prostor (X, d) poln, ce je vsako Cauchyjevo zaporedje iz X tudi konvergentno v X.

Izrek 0.8. Naj bo C[a,b] z običajno (supremum) metriko. Tedaj

 $(f_n)_n \ v \ C[a,b] \ konvergira \ proti \ f \in C[a,b] \Leftrightarrow (f_n)_n \ enakomerno \ konvergira \ proti \ f \ na \ [a,b].$

Izrek 0.9. Metrični prostor $(C[a,b],d_{\infty})$ je poln metrični prostor.

0.3 Preslikave med metričnimi prostori

Naj bosta (X,d) in (X',d') metrična prostora. Naj bo $D \subset X, D \neq \emptyset$. Obravnamo preslikave $f:D \to X'$.

Definicija 0.10. Preslikava $f: D \to X'$ je zvezna v točki $a \in X$, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . d(x, a) < \delta \Rightarrow d'(f(x), f(a)) < \epsilon.$$

Izrek 0.10. Preslikava $f: D \to X'$ je zvezna v točki $a \in D$ natanko tedaj, ko za vsako zaporedje $(x_n)_n$ v D, ki konvergira proti $a \in D$, zaporedje $(f(x_n))_n$ v X' konvergira proti $f(a) \in X'$.

Definicija 0.11. Pravimo, da je preslikava $f: D \to X'$ je zvezna, če je zvezna v vsaki točki iz D.

Izrek 0.11. Dana je preslikava $f: D \to X'$. Preslikava f je zvezna natanko tedaj, ko praslika vsake odprte množice v X' je odprta v D.

Definicija 0.12. Preslikava $f: D \to X'$ je enakomerno zvezna, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x, x' \in D . d(x, x') < \delta \Rightarrow d'(f(x), f(x')) < \epsilon.$$

Definicija 0.13. Preslikava $f: D \to X'$ je C-lipschitzova, če

$$\forall x, x' \in D \cdot d'(f(x), f(x')) < Cd(x, x').$$

Trditev 0.12. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\Rightarrow f$ je enakomerno zvezna $\Rightarrow f$ je zvezna.

1 Prostori in preslikave

1.1 Topološki prostori

Definicija 1.1. Naj bo X množica. Topologija na množici X je družina $\mathcal{T} \subseteq P(X)$, ki zadošča naslednjim pogojem:

- (T0) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- (T1) Poljubna unija elementov \mathcal{T} je element \mathcal{T} .
- (T2) Poljuben končen presek elementov \mathcal{T} je element \mathcal{T} .

Elemente \mathcal{T} razglasimo za odprte množice v X.

Opomba. Aksiom (T2) zadošča preveriti za poljubne dve množice in uporabit indukcijo.

Definicija 1.2. Topološki prostor je množica X z neko topologijo \mathcal{T} . Pišemo: (X, \mathcal{T}) .

Primer (Topologija iz metrike). Naj bo (X, d) metrični prostor. Definiramo $\mathcal{T}_d = \{\text{vse možne unije odprtih krogel}\}$. \mathcal{T}_d je topologija, ki je porojena (inducirana) z metriko d.

Definicija 1.3. Topološki prostor je *metrizabilen*, če je porojen z neko metriko.

Primer (Trivialna topologija). Naj bo X poljubna množica. Definiramo $\mathcal{T} = \{\emptyset, X\}$. \mathcal{T} je topologija, rečemo ji trivialna topologija.

Trivialna topologija ni metrizabilna, če ima X vsaj 2 elementa, ker v metričnem prostoru z množico z vsaj 2 elementoma vedno lahko najdemo disjunktne odprte krogle.

Primer (Diskretna topologija). Definiramo $\mathcal{T} = P(x)$. \mathcal{T} je topologija, rečemo ji diskretna topologija.

Je metrizabilna, ker inducirana z metriko $d(x,x') = \begin{cases} 0, & x=x' \\ 1, & x \neq x' \end{cases}$. Ker krogle s polmerom manj kot 1 vsebujejo le

središče, sklepamo, da so vse enoelementne množice odprte. Potem so pa vse podmnožice X odprte, saj jih lahko predstavimo kot unije enoelementnih.

Opomba. Topologija poda pojem bližine na implicitni način z pomočjo okolic.

Definicija 1.4. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. Notranjost množice A je največji element topolgije \mathcal{T} , ki je vsebovan v A. Oznaka: Int A.

Opomba. Zakaj je definicija smiselna?

- Pogoj za notranjo točko: $x \in U \subseteq A$, kjer $U \in \mathcal{T}$.
- Int A je unija vseh odprtih množic, ki so vsebovane v A, torej Int $A = \bigcup \{U \in \mathcal{T}; \ U \subseteq A\}$. Sledi, da je Int A največja odprta podmnožica A.

Definicija 1.5. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. Množica A je zaprta, če je $A^c = X - A \in \mathcal{T}$.

Opomba. Lahko topologijo vpeljemo tudi tako, da predpišemo, katere množice so zaprte.

Denimo, da je dana družina Z podmnožic X, za katero velja:

- (T0) $\emptyset \in Z, X \in Z$.
- (T1) Poljuben presek elementov Z je element Z.
- (T2) Poljubena končna unija elementov Z je element Z.

Potem komplementi množic iz Z tvorijo topologijo na X in Z je ravno družina zaprtih množic v tej topologiji.

Primer. Če zahtevamo, da so točke X zaprte množice, potem so tudi končne podmnožice X so zaprte. Torej družina

$$\{\text{končme podmnožice X}\} \cup \{X\}$$

zadošča zahtevam (T1) in (T2). Torej komplementi

$$\mathcal{T} = \{ U \subset X; X - U \text{ končna} \} \cup \{\emptyset\}$$

so topologija na X. Tej topologiji rečemo topologija končnih komplementov \mathcal{T}_{kk} .

Topologija končnih komplementov je najmanjša topologija v kateri vse točke zaprte.

Če je X končna, potem $\mathcal{T}_{kk} = \mathcal{T}_{disk}$ na X.

Definicija 1.6. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. Zaprtje množice A je presek vseh zaprtih množic, ki vsebujejo A. Torej zaprtje množice A je najmanjša zaprta množica v X, ki vsebuje A. Oznaka: $\operatorname{Cl} A = \overline{A}$.

Primer. Velja:

- $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Dokaz. Definicija zaprtja.
- $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Dokaz. Definicija zaprtja in $(\mathbb{N}, \mathcal{T}_{kk})$.

Definicija 1.7. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. Meja množice A je Fr $A = \operatorname{Cl} A - \operatorname{Int} A$.

Opomba. Meja A je vedno zaprta množica, saj Fr $A = \operatorname{Cl} A - \operatorname{Int} A = \operatorname{Cl} A \cap (\operatorname{Int} A)^c$.

1.2 Zvezne preslikave

Definicija 1.8. Naj bosta (X, \mathcal{T}_X) in (Y, \mathcal{T}_Y) topološka prostora. Preslikava $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ je zvezna, če je praslika vsake odprte množice odprta, tj. če iz $V \in \mathcal{T}_Y$ sledi $f^*(V) \in \mathcal{T}_X$.

Primer. Primeri zveznih preslikav.

- 1. Vse zvezne funkcije v smislu metričnih prostorov so zvezne kot funkcije med porojenimi topologijami.
- 2. Naj bo $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$.
 - 2.1 Naj bo \mathcal{T}_Y trivilna topologija, potem f je vedno zvezna.
 - 2.2 Naj bo \mathcal{T}_X diskretna topologija, potem f je vedno zvezna.
- 3. Naj bosta (X, \mathcal{T}) in (X, \mathcal{T}') topološka prostora. Funkcija id : $X \to X'$ je zvezna natanko tedaj, ko $\mathcal{T}' \subseteq \mathcal{T}$.
- 4. Če je $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ konstanta, tj. $\exists y_0\in Y \ \forall x\in X \ f(x)=y_0$, potem je f zvezna.
- 5. Naj bo $f:(\mathbb{R},\mathcal{T}_{kk})\to(\mathbb{R},\mathcal{T}_{evkl})$. Potem konstante so edine zvezne funkcije.

Dokaz. V (X, \mathcal{T}_{kk}) ni disjunktnih nepraznih odprtih množic, če je X neskončna.

Splošneje. Naj bosta X, Y neskončni množici, d metrika na Y. Naj bo $f: (X, \mathcal{T}_{kk}) \to (Y, \mathcal{T}_d)$. Potem

f je zvezna $\Leftrightarrow f$ je konstanta.

Uvedemo neke oznake in okrajšave:

• Naj bosta $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ topološka prostota. Označimo z $C((X, \mathcal{T}_X), (Y, \mathcal{T}_Y))$ množico vseh zveznih preslikav C(X, Y). Tudi $C(X) = C(X, \mathbb{R})$.

- Prostor X je množica z neko topologijo.
- Preslikava je zvezna funkcija.

Trditev 1.1. Kompozitun preslikav je preslikava.

Dokaz. Definicija zveznosti.

Trditev 1.2. Naj bosta X, Y prostora. Ekvivalentne so izjave za $f: X \to Y$:

- 1. f je zvezna.
- 2. Praslika z f vsake zaprte množice je zaprta.
- 3. $f(\overline{A}) \subseteq \overline{f(A)}$.

Dokaz. (1) \Leftrightarrow (2). $f^*(A^c) = (f^*(A))^c$.

(2) \Leftrightarrow (3). LMN: $A \subseteq f^*(f(A)), f(f^*(B)) \subseteq B$. Monotonost f_*, f^* . STOP: $f^*(B)$ je zaprta $\Leftrightarrow f^*(B) = \overline{f^*(B)}$.

1.3 Homeomorfizmi

Definicija 1.9. Naj bo $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ funkcija. Funkcija f je homeomorfizem, če:

- f je bijekcija.
- f_* je bijekcija med \mathcal{T}_X in \mathcal{T}_Y , tj. $\forall U \in \mathcal{T}_X \cdot f_*(U) \in \mathcal{T}_Y \wedge \forall V \in \mathcal{T}_Y \cdot f^*(V) \in \mathcal{T}_X$.

Opomba. Pogoj $\forall V \in \mathcal{T}_Y . f^*(V) \in \mathcal{T}_X$ je ravno zveznost funkcije f.

Definicija 1.10. Če obstaja homeomorfizem $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$, potem rečemo, da sta prostora X in Y homeomorfina. Oznaka: $X\approx Y$.

Opomba. Homeomorfizem je ekvivalenčna relacija. To pomeni, da lahko dokažemo, da sta dva prostora homeomorfna, če pokažemo, da sta vsak od njih homeomorfen nekemu drugemu.

Definicija 1.11. Funkcija $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je *odprta*, če je slika vsake odprte množice odprta. Funkcija f je zaprta, če je slika vsake zaprte množice zaprta.

Trditev 1.3. Naslednje izjave o funkciji $f: X \to Y$ so ekvivalentne:

- 1. $f: X \to Y$ je homeomorfizem.
- 2. f je bijektivna, f in f^{-1} sta zvezni.
- 3. f je bijektivna, zvezna in odprta.
- 4. f je bijektivna, zvezna in zaprta.

Dokaz. Očitne implikacije.

Primer. Ali sta prostora $[0,1) \cup \{2\}$ in [0,1] homeomorfna? Ali inverz zvezne bijekcije vedno zvezen?

Trditev 1.4. Nekatere zvezne funkcije so avtomatično zaprte (oz. odprte):

- $f^{zv}: X^{komp} \to Y^{metr}$ je vedno zaprta.
- Projekcija $X \times Y \to X$ je vedno odprta.
- Preslikave $f: \mathbb{R}^n \to \mathbb{R}^n$, ki so gladke in imajo neničelni odvod, so vedno odprte.

Primer. Pokaži, da vsak interval (končen ali neskončen) homeomorfen enemu izmed [0,1], [0,1), (0,1). Pokaži, da intervali [0,1], [0,1), (0,1) niso paroma homeomorfni.

Definicija 1.12. Topološka lastnost je katerakoli lastnost prostora, ki se ohranja pri homeomorfizmih.

Primer. Ali je kompaktnost/omejenost/polnost topološka lastnost?

Upeljamo oznake:

- $B^n := \{ \vec{x} \in \mathbb{R}^n; ||\vec{x}|| \le 1 \}$ je enotska n-krogla.
- $\mathring{B}^n := \{ \vec{x} \in \mathbb{R}^n; ||\vec{x}|| < 1 \}$ je odprta enotska n-krogla.
- $S^{n-1}:=\{\vec{x}\in\mathbb{R}^n;\ ||\vec{x}||=1\}$ je enotska (n-1)-sfera.

Homeomorfizem med (0,1) in \mathbb{R} lahko posplošimo do homeomorfizma med odprto kroglo \mathring{B}^n in \mathbb{R}^n . Navaden homeomorfizem je

$$f: \mathring{B}^n \to \mathbb{R}^n, \ f(\vec{x}) := \frac{\vec{x}}{1 - ||\vec{x}||}, \ f^{-1}(\vec{x}) := \frac{\vec{x}}{1 + ||\vec{x}||},$$

tj, raztegnimo vsak poltrak od 0 do ∞ .

Sfera v \mathbb{R}^n topološko bolj podobna \mathbb{R}^{n-1} kot \mathbb{R}^n .

Naj bo $N=(0,\ldots,0,1)\in\mathbb{R}^n$ severni tečaj sfere. Navaden homeomorfizem med $S^{n-1}-\{N\}$ in \mathbb{R}^{n-1} je

$$f: S^{n-1} - \{N\} \to \mathbb{R}^{n-1}, \ f(x_1, \dots, x_n) = \frac{1}{1 - x_n} (x_1, \dots, x_{n-1}),$$

tj. gledamo presek premic skozi točki N in $T \in S^{n-1}$ z ravnino \mathbb{R}^{n-1} .

Njen inverz je dan z

$$\mathbb{R}^{n-1} \to S^{n-1} - \{N\}, \ g(\vec{x}) = \left(\frac{2\vec{x}}{||\vec{x}||^2 + 1}, \frac{||\vec{x}||^2 - 1}{||\vec{x}||^2 + 1}\right).$$

Bijekcijo f imenujemo $stereografska\ projekcija.$

Sledi, da $S^{n-1} - \{N\} \approx \mathbb{R}^{n-1}$. Jasno je, da bi enak rezultat dobili, če bi iz sfere izrezali katerokoli točko. Sklepamo, da ime vsaka točka S^{n-1} okolico, ki je homeomorfna \mathbb{R}^{n-1} . Pravimo, da je S^{n-1} lokalno homeomorfna prostoru \mathbb{R}^{n-1} .

Definicija 1.13. Prostore, ki so lokalno homeomorfne kakemu evklidskemu prostoru, imenujemo *mnogoterosti*.

2 Dodatek

TODO. Lastnosti uniji in preseka.

TODO. Lastnosti slike in praslike.

TODO. Lastnosti metričnih prostorov (kompaktnost, polnost). Kaj ohranjajo zvezne funkcije med m. prostoroma? (kompaktnost).