057.Online Game 選擇角色(1分)

問題描述:

相信大家都有玩過 Online Game 的經驗,現在讓我們把 [選擇角色] 這個 功能寫成程式吧! 要求:

- 1. 首先這支程式要先能輸入一個整數 (請參考課本範例)。
- 2. 接著請用 switch 選擇,輸入不同數字會顯示不同的訊息, 1 代表"Person"、 2 代表 "Fairy"、 3 代表"Dwarf",

輸出結果範例如下:

輸入說明:

隨意輸入 1 \sim 3 數字。

輸出說明:

輸出所對應代表人物。

輸入範例:	輸出範例:
1	Person
2	Fairy
3	Dwarf

058.Online Game 選擇性別(1分)

問題描述:

相信大家都有玩過 Online Game 的經驗,現在讓我們把[選擇性別]這個功能寫成程式吧!要求:

- 1. 首先這支程式要先能輸入一個整數。
- 2. 接著請用 if 判斷這個整數,輸入不同數字會顯示不同的訊息,E 代表 ByeBye,M 代表 Male,F 代表 Female,輸出 結果範例如下:

輸入說明:

每一次輸入一個英文字,分別為 E、M 或 F。

輸出說明:

輸出數值所對應的訊息。

輸入範例:	輸出範例:
Е	ByeBye
М	Male
F	Female

059.判斷基數偶數(1分)

問題描述:

試寫一個程式,判斷使用者輸入的數值為奇數或是偶數。

輸入說明:

輸入一個整數

輸出說明:

輸出奇數或偶數

輸入範例:	輸出範例:
3	odd
6	even

060.成績判斷(1分)

問題描述:

試寫一個程式,輸入學生的成績,成績在 90~100 分之間為 A;成績在 80~89 分為 B;範圍在 70~79 分為 C;而範圍落在 60~69 為 D;未滿 60 為 E。

輸入說明:

輸入一正整數,介於0~100之間。

輸出說明:

輸出成績等級。

輸入範例:	輸出範例:
85	В
105	error
30	E

061.比較數字大小(1分)

問題描述:

試寫一個程式,比較三個使用者輸入的數字大小。

輸入說明:

輸入三個相異的整數。

輸出說明:

輸出格式如範例。

輸入範例:	輸出範例:
1 2 3	3>2>1

062.判斷輸入變數的形式(1分)

問題描述:

判斷輸入變數的形式

輸入說明:

可輸入整數 浮點數 字元 字串

輸出說明:

判斷輸入的是哪種形式 以 int float char string 分別表示

輸入範例:	輸出範例:
354	int
5566.78	float
р	char
#	char
anjhtftf	string

063.標準體重計算(1分)

問題描述:

已知男生標準體重=(身高-80)*0.7;女生標準體重=(身高-70)*0.6;試寫一個程式可以計算男生女生的標準體重。

輸入說明:

輸入兩個數值,依序代表為身高及性別(1代表男性;2代表女性)。

輸出說明:

輸出標準體重。

輸入範例:	輸出範例:
172 1	64.399999999999
165 2	57.0

064.計算 MVP 數值(1 分)

問題描述:

試寫一個程式,讓使用者可以輸入籃球員的平均得分,籃板,助攻及抄截、失誤等數值。並依(得分*1+助攻*2+籃板*2+抄截*2)—(失誤*2)的公式取得此籃球員 MVP 數值。大於 45 分以上為 A 級球員,35~44 分為 B 級球員,25~34 之間為 C 級球員,低於 25 分為 D 級球員。

輸入說明:

每一組需要輸入五個正整數,依序分別代表:平均得分、籃板數、 助攻數、抄截數、失誤數。

輸出說明:

以 MVP 數值對應球員等級。

輸入範例:	輸出範例:
20 12 15 6 3	А

065.利用振幅和頻率計算波(1分)

問題描述:

在這個問題中,根據所給的振幅 (Amplitude) 及頻率 (Frequency) ,你的程式要產生這樣的波。

輸入說明:

輸入的第一列有一個整數 n ,代表有幾組測試資料。接下來每組測試資料有 2 列,各有 1 個正整數(A 、 F), A 代表振幅(A<=9), F 代表頻率。 第一列以及各組測試資料間皆有一空白行。請參考 Sample input 。

輸出說明:

每組測試資料請輸出 F 個波,每個波振幅的水平高度為 A 。波本身是以其 " 高度 " 的內容所組成。每個波之間以一空白行分隔開來。 測試資料間也以一空白行分開。 請參考 Sample Output 。

Sample Input:	Sample Output:
2	1
	22
2	1
3	
3	1
2	22
	1
	1
	22
	1
	1
	22
	333
	22
	1
	1
	22
	333
	22
	1

066.The 3n + 1 problem(2分)

問題描述:

考慮以下的演算法:

- 1. 輸入 n
- 2. 印出 n
- 3. 如果 n=1 結束
- 4. 如果 n 是奇數 那麼 n=3*n+1
- 5. 否則 n=n/2
- 6. GOTO 2

例如輸入 22, 得到的數列: 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

據推測此演算法對任何整數而言會終止(當列印出 1 的時候)。雖然此演算法很簡單,但以上的推測是否真實卻無法知道。 然而對所有的 n(0 < n < 1,000,000) 來說,以上的推測已經被驗證是正確的。

給一個輸入 n,透過以上的演算法我們可以得到一個數列(1 作為結尾)。此數列的長度稱為 n 的 cycle-length 。上面提到的例子,22 的 cycle length 為 16 。

問題來了:對任 2 個整數 i , j 我們想要知道介於 i , j (包含 i , j)之間的數所產生的數列中最大的 cycle length 是多少。

輸入說明:

輸入可能包含了好幾列測試資料,每一列有一對整數資料 i , j 。 0<i , j < 1,000,000

輸出說明:

對每一對輸入 i , j 你應該要輸出 i , j 和介於 i , j 之間的數所產生的數列中最大的 cycle length 。

Sample Input:	Sample Output:
1 10	1 10 20
10 1	10 1 20
100 200	100 200 125
201 210	201 210 89
900 1000	900 1000 174

067. 貨船載貨最大數(1分)

問題描述 :

一艘貨船最大載重量為 W,最多可以裝載 Y 個貨櫃,現在有 N 個貨櫃需要裝到貨船上,貨櫃編號為 X_0 、 X_1 ~ X_{n-1} ,每個貨櫃的重量單位分別為 K_0 、 K_1 ~ K_{n-1} ,在不超過最大載重量 W 下,及裝載剛好 Y 個貨櫃,如何裝載才能裝載最大的貨櫃重量到貨船上,請求其解。

輸入說明 :

15 ,4 ,9,1,2,3,4,5,6,7,8,9

輸入資料以逗號隔開

第一筆資料為貨船最大載重量(W) 15

第二筆資料為最多裝載幾個貨櫃(Y) 4

第三筆資料為現在有幾個貨櫃(N) 9

第四筆以後資料為貨櫃重量:1,2,3,4,5,6,7,8,9

輸出說明 :

k2 k3 k4 k5

表示貨櫃 k2,k3,k4,k5 可滿足條件

Sample Input:	Sample Output:
15 ,4 ,9,1,2,3,4,5,6,7,8,9	k2,k3,k4,k5

068.Flush(2分)

問題描述 :

在撲克牌遊戲中,我們把單一張命名為單張,兩張數字一樣的命名為胚,兩對數字一樣的牌稱為兔胚,三張一樣的稱為三條, 三條加一個胚我們稱為葫蘆,四張一樣再加 1 個單張我們稱為鐵支,數字連續的 5 張牌稱為順,數字連續的 5 張且花色一樣稱 為同花順。

我們將撲克牌定義成 4~7 分別是黑桃、紅心、磚塊、梅花,與撲克牌數字 1~13 組合成 52 張牌,例如 10 表是黑桃 A~72 表示 磚塊 7 依此類推。

請輸入5張撲克牌,並且判斷此種排為什麼類型的牌形。

輸入說明 :

第一列輸入為5個整數分別由空格分開,表示為5張撲克牌。

輸出說明 :

輸出為一個 0~7 的整數 K,分別表示單張、胚、兔胚、三條、葫蘆、鐵支、順、同花順。

Sample Input:	Sample Output:
90 82 83 81 92	4
Sample Input:	Sample Output:

069.坑洞路面(2分)

問題描述 :

有一個路段因為砂石車經常行駛導致路面坑坑洞洞,由於路面坑洞的關係,下雨天之後就顯得越來越容易積水了,某天雨後, 大華想到路面上觀察坑洞裡的積水,並算出積水量。輸入為路面的高低起伏值,輸出為積水量。例如右圖,灰色地方為路面的 高低起伏,高度分別為 3 2 1 4 2 3 5,藍色部分為積水的區域。

輸入說明 :

第一列輸入為一個正整數 \mathbf{N} ,代表計算的路面寬度有 \mathbf{N} 個單位。

第二列輸入為 N 個正整數,代表路面的高低起伏。

輸出說明 :

輸出為一個正整數,代表積水的區域有多少。

Sample	nput:	Sample Output:
7		6
3 2 1 4 2	35	

070.五子棋攻擊點判斷(2分)

問題描述 :

五子棋,日本稱之為「連珠」。規則相當簡單,首先是輪流落子於棋盤空點處,下後不得移動,其次則是先把五枚或以上己棋 相連成任何橫縱斜方向為勝,可說是老少咸宜的棋奕遊戲。現代的五子棋為了平衡黑白之間的差距,衍生出了一些禁著,然而 與本題無關,在此不作討論。

所謂的攻擊點,就是將棋子置放於其上,使另一方不得不防禦的空位,如下圖左:

上圖左,黑棋若下在 $A \times B \times C \times D$ 任一點,都將形成活三,這些點因而是黑棋的攻擊點;相對地,白棋若下在 E 或 F ,黑棋也不得不防,於是 E 和 F 為白棋的攻擊點。上圖右為攻擊點之其它範例(標記 A 到 E 之空位為黑棋之攻擊點,G 和 F 為白棋之攻擊點)。

請寫一個程式,針對指定的盤面,分別計算黑方與白方各有幾個攻擊點(為簡化問題起見,僅需計算落子後將形成活三之點即可)。

輸入說明 :

在本問題中,input 是一個 15X15 的五子棋盤面,其中黑棋以 1 表示,白棋以 2 表示,空點以 0 表示。

輸出說明 :

output 請輸出黑棋攻擊點的數目以及白棋攻擊點的數目。

Sample Input:	Sample Output:
0000000000000000	5
000000000000000	2
000000000000000	

00000000000000000000000000000000000000		
000001010000000 00000000000000000 00000000	0000000000000000	
00000000000000000000000000000000000000	0000000000000000	
00000000000000000 00000000000000000 000000	000001010000000	
00000000000000000 0000000000000000 000000	0000000000000000	
0000000000000000 000002022100000 0000000000	0000000000000000	
000002022100000 000000000000000 00000000	0000000000000000	
00000000000000 00000000000000 00000000	0000000000000000	
000000000000000	000002022100000	
00000000100000	0000000000000000	
	0000000000000000	
0000000000000	000000000100000	
	0000000000000000	

071. 麻將胡牌判斷(3分)

問題描述 :

麻將是一種於東亞與東南亞地區(尤其是華人社區)廣泛流行的四人牌戲,多以鬥快湊合特定牌組為取勝目標。

麻將的牌張主要分「筒」(餅)、「索」(條)、「萬」三門,每門有三十六隻牌,其中序數從「一」至「九」的牌各四張(故三門合共 108 隻牌),另加七種番子牌,包括「東、南、西、北」四種「風牌」各四張及「中、發、白」三種「箭牌/三元牌」各四張(合共 28 張),總共 136 隻。此外還有「花牌」,其功能及數目視乎地區而異,由於與本題無關,故不在此贅述。

當麻將玩家將牌凑成了一定的组合,獲得勝利,就稱為「胡牌」。基本上,手牌可以組合成順子(三張花色相同且連續的牌)、刻子(三張牌花色相同且大小相同),這些每三張一組所組合完成的牌,叫做「面子」。一副牌只要湊成5組面子以及1組對子(兩張相同的牌),就可以胡牌,在本題中,不考慮槓子(四張牌花色相同且大小相同)。

	面子	
順子	刻子	對子
萬萬萬		東東

請寫一個程式, 偵測輸入之牌型是否為胡牌(5組面子+1組對子)。

輸入說明 :

input 資料為 17 張牌,每一張牌用一個數字代表,如下所示:

索:一索~九索:0~8

萬:一萬~九萬:9~17

筒:一筒~九筒:18~26

字: 東南西北中發白 對應 27~33

因此若一副牌為

則輸入為:567910111920202020212727313131

輸出說明 :

判斷 input data 是否胡牌,是則回傳 $\mathbf{1}$,否則回傳 $\mathbf{0}$

Sample Input:	Sample Output:
5 6 7 9 10 11 19 20 20 20 21	1
27 27 33 33 33	

072. 圍棋棋型比對(1分)

問題描述 :

圍棋是在東亞盛行的一種 two-player perfect information game,目前已有數千年的歷史。圍棋使用 19 路(縱橫各 19 條線)的棋盤,由對局雙方輪流落子於線與線的交點。先下者持黑棋,後下者持白棋,右圖是圍棋進行中的盤面。

所謂的棋型,像指某區域中棋子在棋盤上的分布狀況。棋型是圍棋知識的濃縮,可以幫助人類棋手在對奕時快速排除無用的著 手。一般業餘高段棋士,腦海中所記憶的棋型至少在一萬種以上。

棋型比對,指的是對於給定的盤面以及棋型,找尋盤面上是否有某一塊區域與給定的棋型完全相符。

輸入說明 :

在本問題中,input 是 9X9 的盤面以及 3X3 的棋型,黑子以 1 表示,白子以 2 表示,空點以 0 表示,如下圖:

輸出說明 :

output 是棋型在此盤面中出現的次數。在本問題中,不需要對棋型作旋轉或換色的動作。

Sample Input:	Sample Output:
00000000	0
00000000	
000010000	
00000000	
000010000	
002012000	
000021200	
000001200	
00000000	
0 2 0	
1 0 1	
0 0 0	

073. 圍棋棋型旋轉比對(1分)

問題描述 :

圍棋是在東亞盛行的一種 two-player perfect information game,目前已有數千年的歷史。圍棋使用 19 路(縱橫各 19 條線)的棋盤,由對局雙方輪流落子於線與線的交點。先下者持黑棋,後下者持白棋,右圖是圍棋進行中的盤面。

所謂的棋型,像指某區域中棋子在棋盤上的分布狀況。棋型是圍棋知識的濃縮,可以幫助人類棋手在對奕時快速排除無用的著 手。一般業餘高段棋士,腦海中所記憶的棋型至少在一萬種以上。

在電腦圍棋領域中,棋型的表達方式一般而言是將下一步要下的空點置中,然後配合周圍的棋子分布狀態,形成一完整的棋型, 右圖為一個 3X3 棋型的範例。

棋型比對,指的是對於給定的盤面以及棋型,找尋盤面上是否有某一塊區域與給定的棋型完全相符。然而,同樣的棋型,由於 方向的不同,一個棋型經過旋轉、翻轉後最多會有八種不同的形式,但是他們其實都是同一個棋型,如下圖:

輸入說明 :

在本問題中,input 是兩個 3X3 的棋型,黑子以 1 表示,白子以 2 表示,空點以 0 表示,如下圖:

輸出說明 :

output 是這兩個棋型經過旋轉比對後,是否相同,是則回傳 1,否則回傳 0。

Sample Input:	Sample Output:
0 2 0	1
1 0 1	
0 0 0	
0 1 0	
0 0 2	
0 1 0	

074. 圍棋棋型編碼(1分)

問題描述 :

圍棋是在東亞盛行的一種 two-player perfect information game,目前已有數千年的歷史。圍棋使用 19 路(縱橫各 19 條線)的棋盤,由對局雙方輪流落子於線與線的交點。先下者持黑棋,後下者持白棋,右圖是圍棋進行中的盤面。

所謂的棋型,像指某區域中棋子在棋盤上的分布狀況。棋型是圍棋知識的濃縮,可以幫助人類棋手在對奕時快速排除無用的著 手。一般業餘高段棋士,腦海中所記憶的棋型至少在一萬種以上。

假設我們使用的棋型大小相同,則我們可以將棋型予以編碼,以加快比對之速度。假設我們對於每一種可能的型態(黑子,白子,空點)用兩個位元表示,如下表:

棋子型態	位元值	
空	00	
黑	01	
白	10	

則一個棋型可以如下圖表示:

空 黑 空 白 空 白 空 空 黑

00	01	00	
10	00	10	
00	00	01	

左邊為棋型之原圖,中央為文字表示,参照上表,可以化為最右邊之圖。假設由左到右,由上到下,由低位元至高位元排列每個點的位元值,則上圖之棋型,以 2 進位數字表之,為 01000010001000100 ,以 10 進位數字表之,即為 67748,此數字即代表此棋型。

輸入說明 :

在本問題中,input 是 3X3 的棋型,黑子以 1 表示,白子以 2 表示,空點以 0 表示,如下圖:

輸出說明 :

output 是棋型經過上述方式編碼後所得到的 10 進位數字。

Sample Input:	Sample Output:
0 1 0	67748
202	
0 0 1	

075.解方程(1分)

Problem Description

在資工的離散數學裡,有講"求和算子"這個單元,現在請你試解這個式子

3*2*1+4*3*2+...+(n+1)* *(n-1) ,把 n 代入求得其值,但不能用迴圈的方式來寫。

Input File Format

第一列為要輸入幾個數字,第二列之後為想求之數字。

Output Format

輸出其 n 筆答案

Example

Sample Input: Sample Output:

2

0

1

90

4

076. 盗墓驚魂(1分)

題目說明:

胡八二是個盜墓專家,不過夜路走多了也會遇到鬼,他在某座古墓裡遇上了古人設下的詛咒陷阱,他得跟老鬼玩一個遊戲,這個遊戲是地上有 n 堆錢幣,每堆都各有 pi(1<=pi<=10000) 枚錢幣,一個人每次都只能選某一堆,從中拿走任意數量的錢幣,最少拿一個最多全拿,拿走最後一個錢幣的獲勝,如果胡八二贏的話就能脫離陷阱,一開始是胡八二先拿,現在請你寫一個程式來得知胡八二是贏還是輸。

輸入說明:

輸入含兩列數列,第一列輸入一個正整數 \mathbf{n} ,代表有 \mathbf{n} 堆錢幣。

第二列輸入 n 個正整數,代表各堆錢幣的錢幣個數。

輸出說明:

輸出胡八二贏還是輸,贏的話輸出 yes ,輸的話輸出 no 。

Sample Input	Sample Output
3	yes
122 123 120	
5	yes
1 2 3 4 55	
4	no
1111	
1	yes
1000	
8	yes
50 20 65 78 46 98 123 458	