```
In [1]:
                1 import numpy as np
In [5]:
                1 import pandas as pd
 In [6]:
                1 import matplotlib.pyplot as plt
 In [7]:
                   import seaborn as sns
 In [9]:
                   df=pd.read csv('aerofit treadmill.csv')
In [10]:
                1 df
    Out[10]:
                    Product Age Gender Education MaritalStatus Usage Fitness Income Miles
                                                                                         112
                 0
                      KP281
                              18
                                    Male
                                                14
                                                          Single
                                                                     3
                                                                                 29562
                      KP281
                              19
                                                                                 31836
                                                                                          75
                 1
                                    Male
                                                15
                                                          Single
                                                                     2
                                                                             3
                      KP281
                                                                                 30699
                 2
                              19
                                  Female
                                                14
                                                        Partnered
                                                                     4
                                                                             3
                                                                                          66
                 3
                      KP281
                              19
                                    Male
                                                12
                                                          Single
                                                                     3
                                                                             3
                                                                                 32973
                                                                                          85
                      KP281
                              20
                                    Male
                                                13
                                                        Partnered
                                                                                 35247
                                                                                          47
                                                                                           ...
                                                                                 83416
                175
                      KP781
                              40
                                    Male
                                                21
                                                          Single
                                                                     6
                                                                             5
                                                                                         200
                      KP781
                              42
                                                          Single
                                                                                 89641
                                                                                         200
                176
                                    Male
                                                18
                                                                     5
                      KP781
                                                16
                                                          Single
                                                                     5
                                                                             5
                                                                                 90886
                                                                                         160
                177
                              45
                                    Male
                178
                      KP781
                              47
                                    Male
                                                18
                                                        Partnered
                                                                                104581
                                                                                         120
                                                                     4
                179
                      KP781
                              48
                                    Male
                                                18
                                                        Partnered
                                                                     4
                                                                                 95508
                                                                                         180
               180 rows × 9 columns
```

1 ### dataset has 180 records and 9 features

```
1 df.info()
In [12]:
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 180 entries, 0 to 179
             Data columns (total 9 columns):
                  Column
                                Non-Null Count Dtype
                                 -----
                  Product
                                 180 non-null
                                                 object
                                 180 non-null
                                                 int64
              1
                  Age
                  Gender
                                 180 non-null
                                                 object
                  Education
                                 180 non-null
                                                 int64
                  MaritalStatus 180 non-null
                                                 object
                                 180 non-null
                  Usage
                                                 int64
              6
                  Fitness
                                 180 non-null
                                                 int64
                  Income
                                 180 non-null
                                                 int64
                  Miles
                                 180 non-null
                                                 int64
             dtypes: int64(6), object(3)
             memory usage: 12.8+ KB
```

3 features have categorical data; one feature (Fitness) which is a rating on a scale of 1 to 5 is also a ### categorical variable with numerical ratings; rest of the features have integer data types

```
1 df.isna().sum()
In [31]:
    Out[31]: Product
                               0
                               0
             Age
             Gender
             Education
                               0
             MaritalStatus
                               0
             Usage
             Fitness
                               0
             Income
                               0
             Miles
                               0
             dtype: int64
```

1 ### No "NA"s / "NaN" in the data set

In [14]: | 1 | df.describe()

Out[14]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In [15]: ▶

1 df.describe(include='object')

Out[15]:

	Product	Gender	MaritalStatus
count	180	180	180
unique	3	2	2
top	KP281	Male	Partnered
freq	80	104	107

df.describe()

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

mean and median do not show major significant difference for any of the numerical features (Age, Education, Usage, Fitness, Income, Miles)

```
In [22]:
              1 products=df['Product'].value_counts()
              1 products.index
In [23]:
   Out[23]: Index(['KP281', 'KP481', 'KP781'], dtype='object', name='Product')
              1 products.values
In [24]:
   Out[24]: array([80, 60, 40], dtype=int64)
In [29]:
              1 products
   Out[29]: Product
             KP281
                      80
             KP481
                      60
             KP781
                      40
             Name: count, dtype: int64
```


1 ### KP281 is the highest selling product followed by KP481 and KP781

```
In [34]: N 1 genders.index
Out[34]: Index(['Male', 'Female'], dtype='object', name='Gender')
In [35]: N 1 genders.values
Out[35]: array([104, 76], dtype=int64)
In [36]: N 1 sns.barplot(x=genders.index,y=genders.values)
Out[36]: <Axes: xlabel='Gender'>
```



```
1 ### 104 Males and 76 Females in the dataset
```

```
1 education
In [39]:
   Out[39]: Education
                  85
            16
                  55
            14
            18
                  23
            15
                   5
                   5
            13
            12
                   3
                   3
            21
            20
            Name: count, dtype: int64
          1 ### 85 people have 16 years of education; 55 have 14 years of education; 23 have 18 years of education
```

```
In [40]: ► sns.barplot(x=education.index,y=education.values)
```

Out[40]: <Axes: xlabel='Education'>

- ### people with 16 years education are highest (85 people), followed by people with 14 years education (55
- 2 ### people) and people with 18 years education (23 people); people with less than 14 years education and
- ### more than 18 years education are relatively very less.

Out[49]: <Axes: xlabel='Product', ylabel='Income'>

- 1 ### The above box plot shows that higher income people go for KP781., medium income people go for KP481,
- 2 ### Medium to lower income people go for KP281

```
1 sns.boxplot(data=df,x='Product',y='Age')
In [50]:
```

Out[50]: <Axes: xlabel='Product', ylabel='Age'>

- ### Younger people (age ~24 to ~30) have affinity towards KP781.
 ### Age group is more wider for people who prefer KP481 and KP281

Out[52]: <Axes: xlabel='Product', ylabel='Education'>

1 ### more educated (16 years and more) people are preferring KP781

Out[53]: <Axes: xlabel='Product', ylabel='Fitness'>

1 ### more fitness conscious people are freferring KP781

Out[54]: <Axes: xlabel='Product', ylabel='Usage'>

1 ### people who use the product more (4 times a week or more) have preferred KP781

Out[55]: <Axes: xlabel='Product', ylabel='Miles'>

1 ### people who walk (run) more ~150 miles or more have preferred KP781

Out[58]: <Axes: xlabel='Gender', ylabel='Income'>

Out[59]: <Axes: xlabel='Gender', ylabel='Education'>

Out[60]: <Axes: xlabel='Gender', ylabel='Fitness'>

1 ### Women are less conscious about fitness compared to men

Out[61]: <Axes: xlabel='Gender', ylabel='Age'>

Out[62]: <Axes: xlabel='Gender', ylabel='Usage'>

1 ### women have less usage compared to men

Out[63]: <Axes: xlabel='Gender', ylabel='Miles'>

1 ### data shows men walk (run) more miles compared to women

In [72]: ▶ 1 pd.crosstab(df['Product'], df['Gender'])

Out[72]:

Gender	remale	waie
Product		
KP281	40	40
KP481	29	31
KP781	7	33

Out[79]:

Product	KP281	KP481	KP781
Age			
18	1	0	0
19	3	1	0
20	2	3	0
21	4	3	0
22	4	0	3
23	8	7	3
24	5	3	4
25	7	11	7
26	7	3	2
27	3	1	3
28	6	0	3
29	3	1	2
30	2	2	3
31	2	3	1
32	2	2	0
33	2	5	1
34	2	3	1
35	3	4	1
36	1	0	0
37	1	1	0
38	4	2	1
39	1	0	0
40	1	3	1
41	1	0	0
42	0	0	1
43	1	0	0
44	1	0	0
45	0	1	1

```
Product KP281 KP481 KP781
                 Age
                  46
                         1
                               0
                                     0
                  47
                         1
                               0
                                     1
                  48
                         0
                                     1
                  50
                         1
                               0
                                     0
In [74]:
              1 pd.crosstab(df['Product'], df['Education'])
   Out[74]:
              Education 12 13 14 15 16 18 20 21
               Product
                KP281
                       2
                                4 39
                                      2
                          3 30
                                          0
                                             0
                KP481
                          2 23 1 31 2
                KP781
                       0 0 2 0 15 19 1 3
In [75]:
              1 pd.crosstab(df['Product'], df['MaritalStatus'])
   Out[75]:
              MaritalStatus Partnered Single
                 Product
                                    32
                  KP281
                              48
                  KP481
                              36
                                    24
                  KP781
                              23
                                    17
In [77]:
              pd.crosstab(df['Product'], df['Usage'])
   Out[77]:
               Usage 2 3 4 5 6 7
              Product
               KP281 19 37 22 2 0 0
               KP481 14 31 12 3 0 0
               KP781 0 1 18 12 7 2
```

From excel: marginal probabilities (Gender based)

Two way Continger Count of Product	Column Labels			75 H-22	ownership of give	65
				gende	er (marginal prob	alitity)
Row Labels	Female	Male	Row Total	Female Owners	Male Owners	proportion of owners (overall)
KP281	40	40	80	0.22	0.22	0.44
KP481	29	31	60	0.16	0.17	0.33
KP781	7	33	40	0.04	0.18	0.22
Column Total	76	104	180	0.42	0.58	1.00
marginal probability of Column Total	0.42	0.58	1.00			

From Excel: Row relative and Column relative frequencies (probabilities)

Count of Product	Column Labels			proportion of ownership of given product & ge						
Row Labels	Female	Male	Row Total	Female Owners	Male Owners	proportion of owners (overall)				
KP281	40	40	80	0.50	0.50	0.44				
KP481	29	31	60	0.48	0.52	0.33				
KP781	7	33	40	0.18	0.83	0.22				
Column Total	76	104	180	0.42	0.58	1.00				
proportion of Gender who own KP281	0.53	0.38	0.44							
proportion of Gender who own KP481	0.38	0.30	0.33							
proportion of Gender who own KP781	0.09	0.32	0.22							

From Excel: marginal probabilities (Education based)

Count of Product Column Labels (Education in years)										prop	ortion (owners	100000 1000000	given pr probabi		& Educa	ation (ı	marginal
Row Labels	12	13	14	15	16	18	20	21	Row Total	12	13	14	15	16	18	20	21	Row Total
KP281	2	3	30	4	39	2			80	0.01	0.02	0.17	0.02	0.22	0.01	0.00	0.00	0.4
KP481	1	2	23	1	31	2			60	0.01	0.01	0.13	0.01	0.17	0.01	0.00	0.00	0.3
KP781			2		15	19	1	3	40	0.00	0.00	0.01	0.00	0.08	0.11	0.01	0.02	0.2
Column Total	3	5	55	5	85	23	1	3	180	0.02	0.03	0.31	0.03	0.47	0.13	0.01	0.02	1.0
Marginal probalility of Column Totals	0.02	0.03	0.31	0.03	0.47	0.13	0.01	0.02	1.00									

From Excel: Row relative and Column relative frequencies (probabilities)

Count of Product	Column Labe	I-							1	proportion		E -i		Falorania	_			
	F						T. T.											
Row Labels	12	13	14	15	16	18	20	21	Row Total	12	13	14	15	16	18	20		ow Total
KP281	2	3	30	4	39	2			80	0.03	0.04	0.38	0.05	0.49	0.03	0.00	0.00	0.44
KP481	1	2	23	1	31	2			60	0.02	0.03	0.38	0.02	0.52	0.03	0.00	0.00	0.33
KP781	8		2		15	19	1	3	40	0.00	0.00	0.05	0.00	0.38	0.48	0.03	0.08	0.22
Column Total	3	5	55	5	85	23	1	3	180	0.02	0.03	0.31	0.03	0.47	0.13	0.01	0.02	1.00
proportion of ownership of given product under each education level	0.67	0.60	0.55	0.80	0.46	0.09	0.00	0.00	0.44									
proportion of ownership of given product under each education level	0.33	0.40	0.42	0.20	0.36	0.09	0.00	0.00	0.33									
proportion of ownership of given product under each education level	0.00	0.00	0.04	0.00	0.18	0.83	1.00	1.00	0.22									

From Excel: marginal probabilities (Marital status based)

Two-way Continger	cy Table:						
Count of Product	Column Labels			proportion ownership of give product & Marital Status			
Row Labels	Partnered	Single	Row Total	Partnered	Single	Row Total	
KP281	48	32	80	0.27	0.18	0.44	
KP481	36	24	60	0.20	0.13	0.33	
KP781	23	17	40	0.13	0.09	0.22	
Column Total	107	73	180	0.59	0.41	1.00	
Marginal probability (column Total)	0.59	0.41	1.00				

From Excel: Row relative and Column Relative frequencies (probabilities)

Two-way Contingend					11000				
Count of Product	Column Labels			proportion ownership of given product & Marital Status					
Row Labels	Partnered	Single	Row Total	Partnered	Single	Row Total			
KP281	48	32	80	0.60	0.40	0.44			
KP481	36	24	60	0.60	0.40	0.33			
KP781	23	17	40	0.58	0.43	0.22			
Column Total	107	73	180	0.59	0.41	1.00			
proportion od ownership of KP281 among all products	0.45	0.44	0.44						
proportion od ownership of KP481 among all products	0.34	0.33	0.33						
proportion od ownership of KP781 among all products	0.21	0.23	0.22						

From Excel: marginal probabilities based on Fitness ratings

Count of Product	Column Labels: Fit		proportion ownership of given product & Fitness rating									
Row Labels	1	3	4	5	Row Total	1	2	3	4	5 Ro	w Total	
KP281	1	14	54	9	2	80	0.01	0.08	0.30	0.05	0.01	0.44
KP481	1	12	39	8		60	0.01	0.07	0.22	0.04	0.00	0.33
KP781		2	4	7	29	40	0.00	0.00	0.02	0.04	0.16	0.22
Column Total	2	26	97	24	31	180	0.01	0.14	0.54	0.13	0.17	1.00
marginal probability of Column Total	0.01	0.14	0.54	0.13	0.17	1.00						

From Excel: Row relative and Column relative frequencies (probabilities)

c . (D l .	61 111 5	16	9		ş.			100		1		
Count of Product	Column Labels: Fitn	proportion ownership of given product vs Fitness										
Row Labels	1	2	3	4	5	Row Total	1	2	3	4	5	Row Total
KP281	1	14	54	9	2	80	0.01	0.18	0.68	0.11	0.03	0.44
KP481	1	12	39	8		60	0.02	0.20	0.65	0.13	0.00	0.33
KP781			4	7	29	40	0.00	0.00	0.10	0.18	0.73	0.22
Column Total	2	26	97	24	31	180	0.01	0.14	0.54	0.13	0.17	1.00
proportion of KP281 ownership among all products	0.50	0.54	0.56	0.38	0.06	0.44						
proportion of KP 481 ownership among all products	0.50	0.46	0.40	0.33	0.00	0.33						
proportion of KP781 ownership among all products	0.00	0.00	0.04	0.29	0.94	0.22						

In []: ▶

1

```
In []: N 1
In [83]: N 1 sns.scatterplot(data=df, x='Fitness',y='Miles',hue="Gender")
Out[83]: <Axes: xlabel='Fitness', ylabel='Miles'>
```



```
In [82]: ► sns.scatterplot(data=df, x='Education',y='Miles', hue='Gender')
```

Out[82]: <Axes: xlabel='Education', ylabel='Miles'>

Out[85]: <Axes: xlabel='Product', ylabel='Miles'>

1 ### women have bought KP281 preferrably where as men have preferred better versions of the products

```
In [87]: ► sns.scatterplot(data=df, x='Age',y='Miles',hue='Gender')
```

Out[87]: <Axes: xlabel='Age', ylabel='Miles'>

- 1 ### Younger people have more miles covered compared to older people; predominantly women have lesser
- 2 ### miles covered.

```
1 sns.scatterplot(data=df, x='Income',y='Miles',hue='Gender')
In [88]:
```

Out[88]: <Axes: xlabel='Income', ylabel='Miles'>

- ### interesting to see a dense cluster of lower income and lower miles people and ### a rarely distributed higher income and higher miles people cluster

```
In [89]: ► sns.scatterplot(data=df, x='MaritalStatus',y='Miles',hue='Gender')
```

Out[89]: <Axes: xlabel='MaritalStatus', ylabel='Miles'>

1

- 1 ### Partnered people have more miles covered compared to singles... (little counter intuitive at least for me)
- ### overall: people who have 14 to 18 years of education are more inclined towards fitness and prefer products with more features.

In []: N 1

In []:	H	1	
In [7.	M	4	
ın []:	PI	Т	
In []:	H	1	
In [1.	N	1	
TII [1.	PI		
In []:	H	1	
In []:	M	1	
In []:	M	1	