

compétences bâtimentinserti rmationterti ervice emploi accueil Orientation industrie dévelop certification métiel professionnel compétences bâtimentinserti ervice emploi accueil orientation industrie dévelop certification certification certification industrie dévelop certification

Algorithmique Partie 2

Les tableaux Les structures de données

⇒ introduction

Problème :

On veut faire le même traitement sur un grand nombre de variables.

Remarques :

- Les noms des variables ne sont pas dynamiques (l'algo ne peut pas modifier le nom d'une variable).
- Il serait bien qu'une structure de données portant un nom unique puisse conserver plusieurs valeurs du même type.

⇒ introduction

Exemple :

Saisir une suite de notes, puis afficher la moyenne.

⇒ Nécessité de conserver les notes en mémoire

```
note1,note2, ...: réel
moyenne : réel
constante NBR_NOTE ← 10
saisir(note1)
saisir(note2)
...

moyenne ← ( note1 + note2 + .... ) / NBR_NOTE
afficher(moyenne)
```

Problèmes:

- Il y a autant de variables que de notes à saisir
- Le nombre de notes est fixé
- On saisit toujours le même nombre de notes

⇒ introduction

 Variable contenant une collection de valeurs du même type

notes

0	1	2	3	4	5	6	7	
13	80	12	19	14	10	16	11	

- Remarque :
 - > appeler cette variable tabNotes plutôt que notes
 - Il faut pouvoir accéder aux éléments individuellement : notion d'indice
 - En général l'indice d'un tableau démarre à 0
 - Le nombre d'éléments est fixé par déclaration

⇒ Déclaration

 La déclaration d'un tableau indique son nom, sa taille et le type de ses éléments :

variable tabNom : tableau [dim] : type

Mot clé

Nom du tableau

Mot clé

Taille du tableau : Constante entière Type des éléments du tableau

Exemple:

variable tabNotes : tableau[30] : réel

02/05/2016

5

Attention : vous pouvez trouver dans la littérature la dimension sous forme de 2 valeurs; l'indice min et l'indice Max : ex tabl[1,10] à ne pas confondre avec un tableau à 2 dimension (voir ci après)

⇒ Utilisation

Accès en lecture :

afficher(tabl[4])

le contenu du tableau à l'indice 4 est affiché à l'écran

Accès en écriture :

saisir(tabl[5])

la valeur entrée par l'utilisateur est enregistrée dans le tableau à l'indice 5

OU

 $idx \leftarrow 3$

 $tabl[idx] \leftarrow 18$

la valeur 18 est placée dans le tableau à l'indice 3

⇒ Initialisation

 Un tableau peut être initialisé (donner les valeurs de ses éléments) en une seule instruction :

variable tabNotes : tableau[30] : réel

tabNotes = {12,5; 14,0; 5,5; 18,0}

Ceci est équivalent aux 4 instructions :

tabNotes[0] ← 12,5

tabNotes[1] ← 14,0

 $tabNotes[2] \leftarrow 5,5$

tabNotes[3] \leftarrow 18,0

⇒ Plusieurs dimensions

- Un tableau peut avoir plusieurs dimensions.
- Il n'y a pas de limite.
- A chaque dimension doit correspondre un indice.

Exemple: tableau à 2 dimension

variable tabNotes : tableau[2,6] : réel

	0	1	2	3	4	5
0	13	80	12	19	14	10
1	19	7	13	10	16	14

affiche(tabNotes[1,2]) affiche la valeur 13

Les structure de données les agrégats

 Il est souvent intéressant de pouvoir regrouper sous une même appellation des données de nature différentes.

on parle alors d'agrégat, d'enregistrement ou de structure

- Un agrégat possède un identifiant définissant un nouveau type de donnée.
- Chaque donnée ou champ qui le constitue à lui aussi son propre identifiant et type.
- L'accès à un champ se fait par: nomDeLaDonnée.nomDuChamp

Les structure de données les agrégats

Exemple :

AGREGAT **Personne**

CHAINE nom

CHAINE prenom

ENTIER age

FIN_AGREGAT

- Utilisation
 - déclaration d'une variable :

pers1: Personne

carnetAdr : tableau[100] : Personne

accès aux champs :

```
pers1.nom = "Dupond"
```

si (carnetAdr[1].age > 18) alors ...

Les structure de données structures dynamiques

- Il est souvent intéressant de gérer de façon dynamique les données en mémire.
- Exemple, lors de la lecture d'informations dans un fichiers. Leur nombre est inconnu.
- Plusieurs structures existent :
 - Les piles
 - Les files
 - Les listes chaînées
 - Les arbres

Les structure de données

structures dynamiques : les piles (files)

- Une pile est décrite par un ensemble d'éléments de même type.
- Il existe <u>3 opérations</u> pour gérer une pile :
 - Deposer un élément
 - Enlever un élément
 - Vider tous les éléments
- Fonctionne suivant 2 modes :
 - FIFO (First In First Out)
 - LIFO (Last In First Out) appelée FILE

Les structure de données

structures dynamiques : les chaînes

 Les listes chaînées peuvent se représenter physiquement sous forme d'un double vecteur : le premier contenant les éléments, le second les pointeurs sur les éléments :

Les structure de données structures dynamiques : les chaînes

- Opérations possibles sur une liste chaînée :
- L'accès à un élément particulier de la liste : celui-ci n'est pas réalisé par l'intermédiaire d'un indice mais par rapport à un autre élément de la liste grâce aux fonctions : « Premier » qui ramène le premier élément de la liste et « Suivant » qui permet d'avancer dans la liste et de ramener élément.
- L'insertion d'un élément dans la liste.
- La suppression d'un élément de la liste.
- Le test déterminant si la liste est vide.

Les structure de données structures dynamiques : les arbres

- C'est un ensemble d'éléments organisés de façon hiérarchique.
- Permettent de représenter <u>un très grand</u> <u>nombre de situations</u> et de phénomènes.
- A l'image d'un <u>arbre généalogique</u>, on appelle
 - racine : l'entrée de l'arbre
 - nœuds : l'embranchement vers d'autres nœuds
- On parcours l'arbre en suivant cette hiérarchie

Les structure de données

structures dynamiques : arbre binaire

- Un arbre binaire est un arbre dont chaque nœud ne possède que 2 branches.
- Utilisé dans les algorithme de tri
- 3 parcours possibles :

préordre : + * 4 3 * 5 2

postordre : 4 3 * 5 2 * +

• **inordre** : 4 * 3 + 5 * 2

Algorithmique ⇒ partie 2

bâtimentinsertion mation tertion tertion tertion tervice emploi accueil orientation industrie dévelop certification métiel professionnel compétences bâtiment insertion tervice emploi accueil orientation industrie dévelop certification certification

Fin de la deuxième partie