Please check the examination details bel	ow before entering yo	our candidate information
Candidate surname	Othe	r names
Centre Number Candidate N Pearson Edexcel Inter		GCSE
Time 2 hours	Paper reference	4PM1/01
Further Pure Mat PAPER 1	hematic	S
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The I	nth.	term	of	an	arithmetic	series	is	a	where
	1110 /	ι ι ι ι ι	CIIII	$\mathbf{o}_{\mathbf{I}}$	an	arrunnence	SCIICS	13	α_n	WITCIC

$$a_{10} + a_{11} + a_{12} = 129$$
 and $a_{19} + a_{20} + a_{21} = 237$

Find a_1	(4)

(Total for Question 1 is 4 marks)

2	The point A has coordinates $(-5, 3)$, the point B has coordinates $(4, 0)$ and the point C has coordinates $(-1, 5)$.	
	The line l passes through C and is perpendicular to AB .	
	(a) Find an equation of l . Give your answer in the form $ax + by + c = 0$ where a , b and c are integers.	(4)
	The line l intersects AB at the point D .	
	(b) Show that the coordinates of D are $(-2, 2)$.	(3)
	(c) Show that l is not the perpendicular bisector of AB .	(2)
	(d) Find the value of $\tan \angle ABC$. Give your answer in its simplest form.	(4)

Question 2 continued	

Č			C		≺		⋖
	2	≺	?	ς	?	ς	2
		<	\rangle	⋖			
V	٦,	2	S		S		5
	Κ	>					
Α	2	١,	2	5	2		S
					>		
V	Κ	2	٩	2	۲		
	K	S	1				
×	.)	≺	>		2		
V			١		١		
		>			⟨		2
$^{\wedge}$	Ż	1	7	5	7	١	
			b	€			
C	Х	2	۲	2	9		
	ď	1					
×			>				
V		2	S	2	5	1	
		\rangle		∍	≺		3
	ĸ/	/	/	1			
	Э	≺	\geq				
V	Κ	2	١	2	8		
	×	>		>	⟨		
		Κ		ς	2	5	
		₹	S				
C	×	>	(ς		2
\triangle	Z	>	0		7		
			>				
V	٩	2	١	2	١	2	S
		>		þ			
A	2	\leq	2	1	2		
16	۹	è	ij.		S		
4	٤	۵	K.				
<u> </u>		5		>	<		
M	Š	ij	ľ	<	>		
W	S	4	8				
C	₹	7					2
	2	7	2				
兲	5		Þ				
М	ď	2	2	2	Ś	2	S
	Ζ	5	₹	\rangle	⋖		S
æ	è	9	ĸ	ς	2		
ж		S	ð				
S	3	7	2	2	ς		
Gi)	ú	è	ĺ	>		S	
X	2	7	R	ς	2	ς	
				<			
w	崗	É	ę	2			
a			n	>			
		Ξ	2				
◁		Ş		>	ς	2	S
ě	ú	í	a	3	>	S	
Ž	j	Ż	j	3	5	ζ	3
Ž	j	Ż	j	?	5	5	?
Ž	j	Ź	į	3	8	5	?
Ž	j			3	3	3	
				3	3	3	?
				3	3	3	3
				3	3	3	3
				3	>		3
				?	\ \ \	\ \ \	
				?			<
				> > >	\ \ \		< < < < < <
				?	\ \ \ \		
				?	\ \ \		
					\ \ \		3
							\ \ \ \

Question 2 continued

Question 2 continued	
	(Total for Question 2 is 13 marks)

3 Curve C has equation $y = \frac{ax+3}{1-2x}$ where $x \neq \frac{1}{2}$ and a is a constant.

The asymptote to C that is parallel to the x-axis has equation y = 4

(a) Find the value of a

(2)

(b) Write down the equation of the asymptote to C that is parallel to the y-axis.

(1)

- (c) Find the coordinates of the point where C crosses
 - (i) the x-axis,
- (ii) the y-axis.

(2)

(d) Using the axes below, sketch C, showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(4)

4 $f(x) = x^3 + px^2 + qx + 6$ where p and q are constants.

Given that (x - 1) is a factor of f(x) and that when f(x) is divided by (x + 1) the remainder is 8

- (a) (i) show that p = -2
 - (ii) find the value of q

(6)

(b) Hence, solve the equation f(x) = 0

(3)

Ougstion 4 continue	a.d			
Question 4 continue	ea			
		(Total for Qu	estion 4 is 9 m	arks)

5 Given that k is a non-zero constant

curve C has equation
$$kx^2 - xy + (k+1)x = 1$$

straight line *l* has equation
$$y = \frac{k}{2}x + 1$$

The point A is the only point that lies on both C and l.

(a) Find the value of k

(6)

(b) Hence, find the coordinates of A.

(2)

- Given that $(8+3x)^{\frac{1}{3}}$ can be expressed in the form $p(1+qx)^{\frac{1}{3}}$ where p and q are constants.
 - (a) find the value of p and the value of q

(2)

(b) Hence, expand $(8 + 3x)^{\frac{1}{3}}$ in ascending powers of x up to and including the term in x^2 , expressing each coefficient as an exact fraction in its lowest terms.

(3)

Using the expansion found in part (b) with a suitable value of x

(c) show that $\sqrt[3]{9} \approx \frac{599}{288}$

(2)

 	 ••••	 	 	 	 	 ••••	 •••	 	••••	 	 	 	 	 •••	 	 	 	 								

(a) Complete the table of values for

$$y = 0.5^{\left(\frac{x}{3} + 1\right)} + 2$$

giving each value to 2 decimal places where appropriate.

х	-6	-5	-4	-3	-2	-1	0
у	4	3.59	3.26				2.5

(2)

(b) On the grid opposite, draw the graph of $y = 0.5^{\left(\frac{x}{3}+1\right)} + 2$ for $-6 \le x \le 0$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation

$$\log_2(2x+2)^3 + x + 3 = 0$$
 in the interval $-6 \le x \le 0$

(6)

Question 7 continued	

Figure 1

Figure 1 shows a badge, shown shaded, made from two identical rectangles, ABCD and DEFG, and a sector DCG of a circle with centre D.

Each rectangle measures x cm by y cm.

The radius of the sector is x cm and the angle CDG is 0.5 radians.

The area of the badge is $50 \, \text{cm}^2$

The perimeter of the badge is Pcm.

(a) Show that

$$P = 2x + \frac{100}{x} \tag{5}$$

Given that x can vary,

(b) use calculus, to find the exact value of x for which P is a minimum. Justify that this value of x gives a minimum value for P

(6)

(c) Find the minimum value of P Give your answer in the form $k\sqrt{2}$, where k is an integer to be found.

(2)

 	• • • • • • • • • • • • • • • • • • • •	 	 •							

S III	
	Question 8 continued
	Question o continueu
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
- 10	

Question 8 continued	

9	9 Giving each value in your solution to 2 decimal places, solve the simultaneous equations			
	$e^{2y} - x + 2 = 0$			
	$\ln(x+3) - 2y - 1 = 0$	(0)		
		(8)		

Diagram **NOT** accurately drawn

Figure 2

The region R, shown shaded in Figure 2, is bounded by the curve with equation $y = x^2 + 1$ and the curve with equation $x^2 + y^2 = 11$

The two curves intersect at the point A and at the point B.

(a) Find the x coordinate of the point A and the x coordinate of the point B.

(4)

The region R is rotated through 360° about the x-axis.

(b) Use algebraic integration to find the volume, to 2 decimal places, of the solid generated.

(5)

	Question 10 continued
AREA	
HIS	
WRITEIN	
NON	
00	
AREA	
A A B	
2	
WRITEIN	
N A	
Ž	
۵	
DO NOT WRITE IN THIS AREA	
SA	
3	
0	

	${\swarrow}$	XXX.
X	XX	
\propto	-	
\propto	X	
		××-
×	\times	
\propto	\times	$\times\!$
\propto	Ż	
×	25	××-
SX	200	822
S	Æ	
S	\sim	
	\approx	KXX.
SS	$\times \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	6XX.
X	55	××.
SS	~	200
X	46	
X	GA.	\mathbb{R}^{\times}
\times	•	®XX.
\times	\sim	
$\times \rangle$	X	
$\times \rangle$	477	
\times	$\Diamond\Diamond$	\sim
\times	*	®×.
$\times \rangle$	73	WX.
\approx	~	€XX.
X	$\propto \sim$	
\approx	Ì	XX.
22	~	5XX.
22	2	××.
82	V	XX.
<<	XX	
(X	W.	500 B
()	XX	XXX.
$\langle \langle \rangle$	X	KXX.
	X	XX.
$\langle \cdot \rangle$	28	KX.
$\langle \rangle$		W.
$\langle \langle \rangle$		KX.
♢	XX	XX.
ÇX.		₩0.
$\langle \times \rangle$	XX	$\times\!\!\times$
$\langle \langle \rangle$	$\times\!\!\times\!\!\times$	$\times\!\!\!\times$
×	$\times\!\!\times$	$\times\!$
$\langle \times$	$\times\!\!\times$	$\times\!$
$\langle \times$	$\times\!\!\times$	$\times\!\!\!\times$
\propto	$\times\!\!\times$	$\times\!$
QX.	$\times\!\!\times$	$\times\!\!\!\times\!$
X	$\times\!\times$	$\times\!\!\times\!\!\!>$
ÇX,	$\times \times$	$\times\!\!\times\!\!\!\times$
X	XX	$\times\!\!\times\!\!\!\times$
X	$\times\!\!\times$	$\times\!\!\times\!\!\!\times$
SX	$\times \times$	XX.
SS	88	XX.
88	88	882
X	$\langle \rangle \langle \rangle$	$\propto \times$
X	$\Diamond \Diamond$	XX.
×	\otimes	$\times\!\!\times$
*	\otimes	\otimes
	$\overset{\circ}{\otimes}$	
	*	
*		
	E C	
	DO.	
	Z	
	Z	
	Z	
	INC. I W	
	INC. I W	
	INC. I W	
	INCH WIKI	
	NOT WELL	
	NOT WELL	
	INCH WIKI	
	NOT WELL	

Question 10 continued

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows triangle \overrightarrow{OAB} with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

M is the midpoint of OA.

N is the point on OB such that ON:NB = 3:1

The lines AN and BM intersect at the point X.

- (a) Find expressions, in terms of **a** and **b**, for
 - (i) \overrightarrow{AN}
- (ii) \overrightarrow{BM}

(3)

(b) Using a vector method, find AX:XN

(7)

	Question 11 continued
l	

Question 11 continued				
	(Total for Question 11 is 10 marks)			
	TOTAL FOR PAPER IS 100 MARKS			

