- Fluido Substância que pode escoar. Quando se movem, os fluídos deformam-se continuamente. A razão de poderem escoar está ligado ao facto de não suportarem forças tangenciais (que estão ligadas à viscosidade).
- Podem ser gases ou líquidos, dependendo das forças de coesão entre as moléculas.

- À escala macroscópica, as propriedades dos fluídos (pressão, volume, densidade, etc) variam de uma forma contínua ao longo deles.
- Podem ser considerados meios contínuos.
- Pode usar-se o cálculo diferencial e integral para a análise dos fluídos.
 - i. Em repouso Hidrostática
 - ii. Em movimento Hidrodinâmica

- Pressão
- Num fluído em repouso (ou em movimento de corpo rígido), não existem forças tangenciais e, por isso, as forças resultantes são perpendiculares às superfícies.
- ullet O vetor \hat{n} é perpendicular à superfície e aponta para fora do volume definido por ela.
- As forças de pressão exercidas pelo fluído numa superfície são compressivas e perpendiculares à superfície em cada ponto.
- A pressão é definida por meio da relação:

$$d\vec{F} = -Pd\vec{S} = -P\vec{n}dS$$

• A tensão sobre um elemento de superfície em qualquer ponto de um fluido em repouso é proporcional ao vetor \hat{n} normal desse elemento, mas independente da sua direção. Ou seja:

$$\tau_i^{\vec{n}} = \sigma_{ij} n_i = -P n_i$$

- Qualquer direção de um fluído é uma direção principal do tensor das tensões.
- ullet Como já foi referido antes, a pressão hidrostática define-se a partir das componente de σ_{ij} como a média das suas componentes diagonais:

$$P = -\frac{\sigma_{ii}}{3}$$

• Unidades de pressão:

Unidade	Pascal (Pa)	Bar (bar)	Atmosfera técnica (at)	Atmosfera padrão (atm)	Torr (Torr)	Libras-força por quadrado de polegada (lbf/in²)
1 Pa	≡ 1 N/m ²	10 ⁻⁵	1.0197×10 ⁻⁵	9.8692×10 ⁻⁶	7.5006×10 ⁻³	0.000145038
		≡ 100 kPa				
1 bar	10 ⁵	10 ⁶ dyn/cm2	1.0197	0.98692	750.06	14.50377377
1 at	98066.5	0.980665	≡ 1 kgf/cm ²	0.967841105	735.5592401	14.22334331
1 atm	≡ 101325	≡ 1.01325	1.0332	1	760	14.69594878
					1 Torr	
1 Torr	133.3223684	0.001333224	0.00135951	1/760 ≈ 0.001315789	≈ 1 mmHg	0.019336775
1 lbf/in ²	6894.757293	0.068947573	0.070306958	0.068045964	51.71493257	≡ 1 lbf/in ²

• A massa volúmica de um fluido é definida por:

 $\rho = \frac{am}{dV}$

• Vem expressa em kg/m³. Depende de temperatura ou pressão.

• Se $\rho = \text{constante} \ (\rho = \frac{M}{V})$, então o fluído é incompressível (boa aproximação para líquidos e gases em condições normais de pressão e temperatura).

Líquido (a 25ºC, 1 bar)	Massa volúmica (kg/m³)	Gás	Massa volúmica (kg/m³)		
Água destilada (4ºC, 1 bar)	1000	Atmosfera terrestre	1.2		
Água do mar	1030	Ar (padrão, 0 °C e 1 atm)	1.23		
Gasolina	680	Ar (a 100 °C e 1 atm)	0.95		
Álcool Etílico	789	Dióxido de Carbono	1.83		
Mercúrio	13600	Hélio	0.166		
Óleo SAE 30	912	Hidrogénio	0.0838		
Acetona	0.787	Metano (gás natural)	0.667		
Ácido sulfúrico	1840	Azoto	1.16		
Água oxigenada	1450	Oxigénio	1.33		
Meio interestelar (Considerando 90% H, 10% He; T variável): 10^{-25} – 10^{-15}					

Massa volúmica do ar a temperaturas diferentes

T em °C	Massa volúmica (kg/m³) (a 1 atm)
-10	1.342
-5	1.316
0	1.293
5	1.269
10	1.247
15	1.225
20	1.204
25	1.184
30	1.165

- Força sobre um elemento de um fluído.
- Elemento de fluído -> pequenas variações dx, dy e dz ao longo de x, y e z.
- A componente da força segundo zz será:

$$dF_z = Pdxdy - \left(P + \frac{\partial P}{\partial z}\right)dxdy \cong -\frac{\partial P}{\partial z}dxdydz = -\frac{\partial P}{\partial z}dV$$

• Repetindo para as componentes x e y da força:

$$dF_x = Pdydz - \left(P + \frac{\partial P}{\partial x}\right)dydz \cong -\frac{\partial P}{\partial x}dV$$

$$dF_y = Pdydz - \left(P + \frac{\partial P}{\partial y}\right)dydz \cong -\frac{\partial P}{\partial y}dV$$

ullet Desta forma dec F, a força sobre o elemento do fluído será:

$$d\vec{F} = -\left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z}\right) dV$$
$$d\vec{F} = -\nabla P \ dV$$

• A força sobre as superfícies de um elemento de fluído será equivalente a uma força de volume a atuar sobre esse elemento, cuja densidade volúmica de força é:

$$\vec{f}_{press\~ao} = \frac{d\vec{F}}{dV} = -\nabla P$$

Mecânica dos Fluidos - Hidrostática

- Estática de fluídos.
- No equilíbrio hidrostático a resultante das forças sobre qualquer ponto do fluído tem que ser nula.

$$\vec{F}_{vol} + \vec{F}_{sup} = 0$$

• Localmente a resultante das forças será:

$$d\vec{F} = \rho \vec{g} dV - \nabla P dV = (\rho \vec{g} - \nabla P) dV$$

$$\vec{f} = \rho \vec{g} - \nabla P$$

Resultante das forças

ullet Como em todos os pontos do fluído a resultante é zero (ec f=0):

$$\nabla P = \rho \vec{g}$$

Equação local do equilíbrio hidrostático. Equação fundamental da hidrostática

Mecânica dos Fluidos - Hidrostática

- Variação da pressão com a altura num fluído em repouso.
- Gravidade segundo o eixo dos yy ($\vec{g} = -g\hat{e}_y = -9.81\hat{e}_y$).

$$\nabla P = -\rho g \hat{e}_{y}$$

• Logo:

$$\frac{\partial P}{\partial x} = 0 \qquad \frac{\partial P}{\partial y} = -\rho g \qquad \frac{\partial P}{\partial z} = 0$$

• Se o fluído é incompressível ($\rho = constante$) e integrando y entre os pontos A e B:

$$P_B - P_A = -\rho g(y_B - y_A)$$

$$P_B = P_A + \rho g h$$

- A pressão num fluído em equilíbrio varia apenas com a distância vertical.
- A pressão é independente da forma do recipiente que contém o fluído.
- A pressão é constante em todos os pontos de um plano horizontal no fluído.
- A pressão aumenta com a profundidade.

Mecânica dos Fluidos - Hidrostática

- Impulsão.
- A resultante das forças sobre o objeto colocado no fluído é a soma do seu peso $\vec{F}_{g,corpo}$ (força de volume) com as forças de pressão $\vec{F}_{pressão}$ na sua superfície. No equilíbrio:

$$\vec{F}_{g,corpo} + \vec{F}_{pressão} = 0$$

- ullet A pressão (e, como tal, $\vec{F}_{press\~ao}$) apenas depende da altura. Não depende dos corpos que compõem a superfície em contacto com o fluído.
- A pressão na superfície submersa do objeto será então a mesma que existiria se o objeto fosse substituído por um volume fluído igual ao volume submerso do objeto.
- Assim, a resultante das forças sobre o corpo será, também, igual à soma das forças de pressão com o peso do fluído <u>deslocado</u> (corresponde ao volume submerso do corpo):

$$\vec{F}_{g,fluido} + \vec{F}_{press\~ao} = 0 \quad \vec{F}_{press\~ao} = -\vec{F}_{g,fluido} \quad \vec{F}_{press\~ao} = \vec{I} = -\int_{V,submerso} \rho_{fluido} \vec{g} dV$$

• Assim, um corpo imerso num fluido sofre uma força ascendente de impulsão (\vec{I}) que é igual ao peso do fluido que ele faz deslocar. Logo:

$$ec{I} = -
ho_{flu{
m i}do}ec{g}V_{submerso}$$
 (em módulo)

