Armazenamento e Indexação (respostas dos exercícios) Banco de Dados: Teoria e Prática

André Santanchè Instituto de Computação – UNICAMP Setembro de 2019

Questão 1

- ■Para cada item abaixo, liste suas vantagens e desvantagens como opção de tecnologia para armazenamento de dados num SGBD. Dê exemplos de dados que se adequariam à tecnologia.
 - a) Memória RAM
 - b) Disco Magnético
 - c) Fita Magnética

Questão 1 Resposta

- a) Memória RAM: rápida/cara. Pequena quantidade de dados, índices, dados temporários etc.
- b) Disco Magnético: relativamente barato/relativamente lento. Grande quantidade de dados, dados institucionais, logs, etc.
- c) Fita Magnética: baixo custo/lenta. Dados de backup, dados históricos, logs, etc.

Dado o arquivo a seguir, proponha uma função hash para posicionar os registros conforme k.

Id	Is a		
STC223	Plesiosaurus gurgitis	St. Croix	
MNHN 1912.20b	Triceratops horridus	Lance Creek	
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
FMNH PR2081	Tyrannosaurus rex	Hell Creek	
MNHN 1912.20	Triceratops calicornis	Lance Creek	
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	

Exercí	ício 1	k	parte num.	soma díg.	soma díg. (pos.)		
		STC223	223	7	7		
	ld	MNHN 1912.20b	1912	13	4	jin Place	
		SIPB R 90	90	9	9		1
	FMNH PR2081	FMNH PR2081	2081	11	2	Creek	2
		MNHN 1912.20	1912	13	4		3
	MNHN 1912.20k	MNHN A.	8592	24	6	ce Creek	4
	MNHN 1912.20	C. 8592				ce Creek	5
	MNHN A. C. 859	Plesiosa	urus dol	ichodeirı	us Lym	ne Regis	6
	STC223	Plesiosa	Plesiosaurus gurgitis S		St.	St. Croix	
							8
	SIPB R 90	Plesiosa	urus dol	ichodeirı	us Lym	ne Regis	9

- ■Nas aulas anteriores, discutimos sobre redundância de informação e seus potenciais problemas. Índices são estruturas que introduzem redundância no banco de dados. Descreva o impacto da introdução deste tipo de redundância em termos de:
 - a) Consistência dos dados
 - b) Velocidade de leitura
 - c) Velocidade de gravação

- ■Consistência dos dados: sem impacto desde que o SGBD controle corretamente as alterações no índice e não permita acesso direto ao índice pelo usuário.
- Velocidade de leitura: Aumenta a velocidade.
- Velocidade de gravação: Dimunui a velocidade.

- ■Em uma relação com 5 atributos, qual o número máximo possível de índices primários e secundários ao mesmo tempo? Justifique.
 - □índices primários: 1
 - □ índices secundários: todas as possíveis combinações entre atributos

Exercício para Casa 1

- Considere a relação Aluno(ra, curso, idade) que armazene estes dados para todos os alunos da Unicamp. Para cada uma das questões a seguir, defina qual o tipo de índice mais indicado.
 - a) select * from Aluno where ra=5.
 - b) select * from Aluno where idade<70.
 - c) select * from Aluno where idade>27 and B<30.
 - d) select avg(idade) from Aluno.
 - e) select idade, count(*) from aluno where curso="Computação" group by idade

Exercício para Casa 1

- a) hash
- b) indiferente (é necessário um table scan)
- c) árvore B (preferencialmente com agrupamento)
- d) indiferente (resposta esperada). Resposta alternativa (ponto extra): uma árvore B sem agrupamento conteria todos os valores de idade do banco e poderia ser usada para calcular a média sem precisar ler os registros.
- e) Árvore B com índice curso+idade. Mapa de bits.

Agradecimentos

■ Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides. Página do Celso:

http://dainf.ct.utfpr.edu.br/~gomesjr/

- Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.
- Luana Loubet Borges pelos exercícios.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link: http://creativecommons.org/licenses/by-nc-sa/3.0/

■ Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/ Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/