Betweenness and Weighted Degree vs Popularity- Change

In [4]:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('NeTags_popularity_change/full-weighted-indegree-graph-stats.cs

df.head()
```

Out[4]:

	ld	Label	timeset	0	1	componentnumber	Weighted Degree	Eccentricity	closnes
0	react- hooks	react- hooks	NaN	1	190600.0	0	3049	6	
1	swiftui	swiftui	NaN	13	113100.0	0	1440	6	
2	laravel- 5.8	laravel- 5.8	NaN	4	96800.0	0	1390	6	
3	angular7	angular7	NaN	1	74150.0	0	5637	6	
4	angular8	angular8	NaN	1	69500.0	0	980	5	

In [6]:

```
class colors = plt.cm.rainbow(np.linspace(0,1,len(df['0'].unique())))
2
   color_dict = {group:color for group, color in zip(df['0'].unique(), class_colors
3
   colors = [color dict[group] for group in df['0'].values]
4
5
6
   x = np.log10(df['1'].values)
7
   y = np.log10(df['betweenesscentrality'].values+1)
8
   # Plot
   plt.figure(figsize=(15,10))
10
11
   plt.scatter(x, y, c=colors, alpha=1)
12
   plt.xlabel('Change(log)')
13
   plt.ylabel('Betweeness Centrality(log)')
14 plt.show()
```


In [7]:

```
class colors = plt.cm.rainbow(np.linspace(0,1,len(df['0'].unique())))
 2
   color_dict = {group:color for group, color in zip(df['0'].unique(), class_colors
 3
   colors = [color dict[group] for group in df['0'].values]
 4
5
   x = np.log10(df['1'].values-100)
6
7
   y = np.log10(df['betweenesscentrality'].values+1)
8
   # Plot
   plt.figure(figsize=(15,10))
10
11
   plt.scatter(x, y, c=colors, alpha=1)
   plt.xlabel('Change(log)')
12
13
   plt.ylabel('Betweeness Centrality(log)')
14 plt.show()
```

/Users/skenderi/.conda/envs/dl/lib/python3.6/site-packages/ipykernel_l auncher.py:6: RuntimeWarning: invalid value encountered in log10


```
In [ ]:
1
```

Weighted-Degree vs Popularity-Change

In [8]:

```
1
   class colors = plt.cm.rainbow(np.linspace(0,1,len(df['0'].unique())))
   color dict = {group:color for group, color in zip(df['0'].unique(), class colors
 2
 3
4
   colors = [color dict[group] for group in df['0'].values]
5
6
   x = np.log10(df['1'].values-100)
7
   y = np.log10(df['Weighted Degree'].values+1)
8
   # Plot
9
   plt.figure(figsize=(15,10))
10
   plt.scatter(x, y, c=colors, alpha=1)
11
   plt.xlabel('Change(log)')
12
   plt.ylabel('Weighted Degree(log)')
13
14
   plt.show()
```

/Users/skenderi/.conda/envs/dl/lib/python3.6/site-packages/ipykernel_l auncher.py:6: RuntimeWarning: invalid value encountered in log10


```
In [ ]:
```

1