Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Linguagens Formais e Autómatos

Exame intercalar

(Ano Lectivo de 2012/13)

5 de Abril de 2013

1. Sobre o alfabeto $A = \{a, b, c\}$, considere os autómatos finitos

e sejam L_1 e L_2 as linguagens por eles reconhecidas, respetivamente.

- [1,5] (a) Seja $L_3 = \{w \in A^* : w \in L_1 \cap L_2 \land |w| \leq 3\}$. Represente L_3 por extenso. Note que por extenso entende-se a apresentação uma a uma de todas as palavras da linguagem.
- [2,0] (b) Obtenha um autómato finito equivalente a M_1 sem transições- λ . Diga, justificando, qual o método utilizado para obter o seu resultado.
- [2,5] (c) Obtenha um autómato finito que reconheça a linguagem $L_4 = L_1 \cap L_2$. Apresente os passos intermédios que usou para chegar ao resultado.
- [2,0] (d) Obtenha uma gramática regular que represente a linguagem $L_5 = L_1 \cdot L_2$. Apresente os passos intermédios que usou para chegar ao resultado.
- [2,5] (e) Obtenha uma expressão regular que represente a linguagem $L_6 = L_1^* \cup L_2^*$. Apresente os passos intermédios que usou para chegar ao resultado.
 - 2. Sobre o alfabeto $A = \{a, b\}$, considere as expressões regulares $e_7 = (ab|ba)^*b$ e $e_8 = b(aabb)^*$ e sejam L_7 e L_8 as linguagens por elas representadas, respetivamente.
- [2,0] (a) Obtenha uma autómato finito, não generalizado, que reconheça a linguagem L_7 . Apresente os passos intermédios que usou para chegar ao resultado.
- [2,0] (b) Mostre que $L_8 \subset L_7$. (Note que se trata do subconjunto em sentido estrito (\subset) e não em sentido lato (\subseteq).)
 - 3. Considerando que o alfabeto de entrada é o conjunto $A = \{a, b, c\}$ e o de saída o conjunto $Z = \{0, 1\}$, pretende-se construir uma máquina de Moore ou de Mealy em que a resposta v à entrada u seja dada por

$$v_i = \begin{cases} 1 & \text{se } u_i = b \land u_{i-1} = a \\ 1 & \text{se } u_i = c \land u_{i-1} \neq b \\ 0 & \text{restantes casos} \end{cases}$$

sendo u a palavra à entrada, v a palavra à saída e u_i e v_i , com $i=1,\cdots$, os símbolos nas posições i.

- [1,0] (a) Qual deve ser a resposta da máquina às entradas bcabc e aabbcc?
- [2,5] (b) Projete a máquina (de Moore ou de Mealy) pretendida.

continua no verso

- 4. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem $L_9 = \{(ab)^n x^n : n > 0 \land x \neq a\}$.
- $[\ 2,0\]\quad \ (a)\ \ \, \mbox{Usando}$ o teorema da repetição mostre que L_9 não é regular.

O teorema da repetição (pumping lemma) diz que, se L é uma linguagem regular, existe um número p>0 tal que se u é uma palavra qualquer de L com $|u|\geq p$, então pode-se escrever u=xyz, satisfazendo as condições |y|>0, $|xy|\leq p$ e $xy^iz\in L$, para qualquer $i\geq 0$.