Decision Properties of Regular Languages

General Discussion of "Properties"

The Pumping Lemma

Membership, Emptiness, Etc.

Properties of Language Classes

- A language class is a set of languages.
 - We have one example: the regular languages.
 - We'll see many more in this class.
- Language classes have two important kinds of properties:
 - 1. Decision properties.
 - 2. Closure properties.

Representation of Languages

- Representations can be formal or informal.
- Example (formal): represent a language by a RE or DFA defining it.
- Example: (informal): a logical or prose statement about its strings:
 - ◆ {0ⁿ1ⁿ | n is a nonnegative integer}
 - "The set of strings consisting of some number of 0's followed by the same number of 1's."

Decision Properties

- ◆A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?

Subtle Point: Representation Matters

- ◆You might imagine that the language is described informally, so if my description is "the empty language" then yes, otherwise no.
- But the representation is a DFA (or a RE that you will convert to a DFA).
- \bullet Can you tell if L(A) = \emptyset for DFA A?

Why Decision Properties?

- When we talked about protocols represented as DFA's, we noted that important properties of a good protocol were related to the language of the DFA.
- Example: "Does the protocol terminate?"
 = "Is the language finite?"
- ◆Example: "Can the protocol fail?" = "Is the language nonempty?"

Why Decision Properties – (2)

- We might want a "smallest" representation for a language, e.g., a minimum-state DFA or a shortest RE.
- If you can't decide "Are these two languages the same?"
 - I.e., do two DFA's define the same language?

You can't find a "smallest."

Closure Properties

- ◆ A *closure property* of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- Example: the regular languages are obviously closed under union, concatenation, and (Kleene) closure.
 - Use the RE representation of languages.

Why Closure Properties?

- Helps construct representations.
- Helps show (informally described) languages not to be in the class.

Example: Use of Closure Property

- We can easily prove $L_1 = \{0^n1^n \mid n \ge 0\}$ is not a regular language.
- ◆L₂ = the set of strings with an = number of 0's and 1's isn't either, but that fact is trickier to prove.
- ◆Regular languages are closed under ∩.
- ◆ If L₂ were regular, then L₂ \cap L($\mathbf{0}^*\mathbf{1}^*$) = L₁ would be, but it isn't.

The Membership Question

- Our first decision property is the question: "is string w in regular language L?"
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w.

What if the Regular Language Is not Represented by a DFA?

There is a circle of conversions from one form to another:

The Emptiness Problem

- Given a regular language, does the language contain any string at all.
- Assume representation is DFA.
- Construct the transition graph.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

The Infiniteness Problem

- Is a given regular language infinite?
- Start with a DFA for the language.
- ◆Key idea: if the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length n or less.

Proof of Key Idea

- ◆ If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- Because there are at least n+1 states along the path.

Proof - (2)

Then xy^iz is in the language for all $i \ge 0$.

Since y is not ϵ , we see an infinite number of strings in L.

Infiniteness - Continued

- We do not yet have an algorithm.
- ◆There are an infinite number of strings of length > n, and we can't test them all.
- ◆Second key idea: if there is a string of length ≥ n (= number of states) in L, then there is a string of length between n and 2n-1.

Proof of 2nd Key Idea

- Remember:
- X
- We can choose y to be the first cycle on the path.
- ♦ So $|xy| \le n$; in particular, $1 \le |y| \le n$.
- Thus, if w is of length 2n or more, there is a shorter string in L that is still of length at least n.
- Keep shortening to reach [n, 2n-1].

Completion of Infiniteness Algorithm

- Test for membership all strings of length between n and 2n-1.
 - If any are accepted, then infinite, else finite.
- A terrible algorithm.
- Better: find cycles between the start state and a final state.

Finding Cycles

- Eliminate states not reachable from the start state.
- Eliminate states that do not reach a final state.
- 3. Test if the remaining transition graph has any cycles.

The Pumping Lemma

- We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
- ◆ Called the *pumping lemma for regular languages*.

Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

For every string w in L of length > n

We can write w = xyz such that:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. For all $i \ge 0$, xy^iz is in L.

Labels along first cycle on path labeled w

Number of

Example: Use of Pumping Lemma

- ◆We have claimed {0^k1^k | k ≥ 1} is not a regular language.
- Suppose it were. Then there would be an associated n for the pumping lemma.
- Let $w = 0^n 1^n$. We can write w = xyz, where x and y consist of 0's, and $y \neq \epsilon$.
- But then xyyz would be in L, and this string has more 0's than 1's.

Decision Property: Equivalence

- Given regular languages L and M, is L = M?
- Algorithm involves constructing the product DFA from DFA's for L and M.
- Let these DFA's have sets of states Q and R, respectively.
- Product DFA has set of states Q × R.
 - ◆ I.e., pairs [q, r] with q in Q, r in R.

Product DFA – Continued

- ♦ Start state = $[q_0, r_0]$ (the start states of the DFA's for L, M).
- Transitions: $\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$
 - δ_L , δ_M are the transition functions for the DFA's of L, M.
 - That is, we simulate the two DFA's in the two state components of the product DFA.

Example: Product DFA

Equivalence Algorithm

- ◆Make the final states of the product DFA be those states [q, r] such that exactly one of q and r is a final state of its own DFA.
- Thus, the product accepts w iff w is in exactly one of L and M.

Example: Equivalence

Equivalence Algorithm – (2)

- The product DFA's language is empty iff L = M.
- But we already have an algorithm to test whether the language of a DFA is empty.

Decision Property: Containment

- ◆Given regular languages L and M, is L ⊆ M?
- Algorithm also uses the product automaton.
- ◆How do you define the final states [q, r] of the product so its language is empty iff L

 M?

Answer: q is final; r is not.

Example: Containment

Note: the only final state is unreachable, so containment holds.

The Minimum-State DFA for a Regular Language

- ◆In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA's for equivalence with A.
- But that's a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- ◆ If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

State Minimization – (2)

- Basis: Mark a pair if exactly one is a final state.
- Induction: mark [q, r] if there is some input symbol a such that [δ(q,a), δ(r,a)] is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Transitivity of "Indistinguishable"

- If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
- ◆Proof: The outcome (accept or don't) of p and q on input w is the same, and the outcome of q and r on w is the same, then likewise the outcome of p and r.

Constructing the Minimum-State DFA

- ◆Suppose q₁,...,q_k are indistinguishable states.
- Replace them by one state q.
- Then $\delta(q_1, a),..., \delta(q_k, a)$ are all indistinguishable states.
 - Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a)$ = the representative state for that group.

Example: State Minimization

l r	l h	r	h	
{5} {2,4,6, {2,4,6,8} {2,4,6,	8} {1,3,5,7} 8} {1,3,7,9} 8} {1,3,5,7,9}	r → A B B D C D D D E D	E F G	Here it is with more convenient
{1,3,5,7} {2,4,6, * {1,3,7,9} {2,4,6, * {1,3,5,7,9} {2,4,6,	8} {5}	* F D * G D	С	state names

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

		r	b
→	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	С
*	G	D	G

Start with marks for the pairs with one of the final states F or G. 44

		r	b
→ ¯	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	С
*	G	D	G

Input r gives no help, because the pair [B, D] is not marked.

			İ
		r	b
→ _	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	С
*	G	D	G

```
G F E D C B
A X X X X X X
B X X X X X X
C X X
D X X
E X X
F X
```

But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.

		r	b
→ -	Α	В	\overline{C}
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	С
*	G	D	G

[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].

		r	b
→ ¯	A	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	С
*	G	D	G

[A, B] is marked because of transitions on r to marked pair [B, D].

[D, E] can never be marked, because on both inputs they go to the same state.

Example - Concluded

Replace D and E by H. Result is the minimum-state DFA.

Eliminating Unreachable States

- Unfortunately, combining indistinguishable states could leave us with unreachable states in the "minimum-state" DFA.
- Thus, before or after, remove states that are not reachable from the start state.

Clincher

- We have combined states of the given DFA wherever possible.
- Could there be another, completely unrelated DFA with fewer states?
- No. The proof involves minimizing the DFA we derived with the hypothetical better DFA.

Proof: No Unrelated, Smaller DFA

- Let A be our minimized DFA; let B be a smaller equivalent.
- Consider an automaton with the states of A and B combined.
- Use "distinguishable" in its contrapositive form:
 - If states q and p are indistinguishable, so are $\delta(q, a)$ and $\delta(p, a)$.

Inferring Indistinguishability

Inductive Hypothesis

- Every state q of A is indistinguishable from some state of B.
- Induction is on the length of the shortest string taking you from the start state of A to q.

Proof - (2)

- Basis: Start states of A and B are indistinguishable, because L(A) = L(B).
- ◆Induction: Suppose w = xa is a shortest string getting A to state q.
- By the IH, x gets A to some state r that is indistinguishable from some state p of B.
- Then $\delta(r, a) = q$ is indistinguishable from $\delta(p, a)$.

Proof - (3)

- However, two states of A cannot be indistinguishable from the same state of B, or they would be indistinguishable from each other.
 - Violates transitivity of "indistinguishable."
- Thus, B has at least as many states as A.

Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties

- Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.
- For regular languages, we can use any of its representations to prove a closure property.

Closure Under Union

- ◆If L and M are regular languages, so is L ∪ M.
- Proof: Let L and M be the languages of regular expressions R and S, respectively.
- ♦ Then R+S is a regular expression whose language is $L \cup M$.

Closure Under Concatenation and Kleene Closure

Same idea:

- RS is a regular expression whose language is LM.
- R* is a regular expression whose language is L*.

Closure Under Intersection

- ◆If L and M are regular languages, then so is L ∩ M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection

Closure Under Difference

- ♦ If L and M are regular languages, then so is L M = strings in L but not M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.

Example: Product DFA for Difference

Notice: difference is the empty language

Closure Under Complementation

- The *complement* of a language L (with respect to an alphabet Σ such that Σ^* contains L) is Σ^* L.
- Since Σ* is surely regular, the complement of a regular language is always regular.

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.
- Good application of reversal-closure.

Closure Under Reversal – (2)

- Given language L, L^R is the set of strings whose reversal is in L.
- ightharpoonup Example: L = {0, 01, 100}; L^R = {0, 10, 001}.
- Proof: Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- ◆Basis: If E is a symbol a, ϵ , or \emptyset , then $E^R = E$.
- ◆Induction: If E is
 - F+G, then $E^R = F^R + G^R$.
 - ◆ FG, then E^R = G^RF^R
 - F^* , then $E^R = (F^R)^*$.

Example: Reversal of a RE

- Let $E = 01^* + 10^*$.
- \bullet ER = (01* + 10*)R = (01*)R + (10*)R
- $\bullet = (1^*)^R 0^R + (0^*)^R 1^R$
- \bullet = $(1^R)^*0 + (0^R)^*1$
- \Rightarrow = 1*0 + 0*1.

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- \bullet Example: h(0) = ab; h(1) = ϵ .
- •Extend to strings by $h(a_1...a_n) = h(a_1)...h(a_n)$.
- \rightarrow Example: h(01010) = ababab.

Closure Under Homomorphism

- ◆If L is a regular language, and h is a homomorphism on its alphabet, then h(L) = {h(w) | w is in L} is also a regular language.
- Proof: Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

Example: Closure under Homomorphism

- \bullet Let h(0) = ab; h(1) = ϵ .
- Let L be the language of regular expression 01* + 10*.
- Then h(L) is the language of regular expression $abe^* + \epsilon(ab)^*$.

Note: use parentheses to enforce the proper grouping.

- \bullet ab ϵ * + ϵ (ab)* can be simplified.
- $\bullet \epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
- $\bullet \epsilon$ is the identity under concatenation.
 - That is, $\epsilon E = E \epsilon = E$ for any RE E.
- Thus, $ab\varepsilon^* + \varepsilon(ab)^* = ab\varepsilon + \varepsilon(ab)^* = ab + (ab)^*$.
- Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*.

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Example: Inverse Homomorphism

- \bullet Let h(0) = ab; h(1) = ϵ .
- \bullet Let L = {abab, baba}.
- $h^{-1}(L)$ = the language with two 0's and any number of 1's = L(1*01*01*).

Notice: no string maps to baba; any string with exactly two 0's maps to abab.

Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- ◆Construct a DFA B for h⁻¹(L) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.

Proof - (2)

- ◆The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols h(a).
- Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction

Proof - (3)

- Induction on |w| shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.
- lacktriangle Basis: $W = \epsilon$.
- $\bullet \delta_{B}(q_{0}, \epsilon) = q_{0}$, and $\delta_{A}(q_{0}, h(\epsilon)) = \delta_{A}(q_{0}, \epsilon) = q_{0}$.

Proof - (4)

- ◆Induction: Let w = xa; assume IH for x.
- $\bullet \delta_{B}(q_{0}, w) = \delta_{B}(\delta_{B}(q_{0}, x), a).$
- $\bullet = \delta_B(\delta_A(q_0, h(x)), a)$ by the IH.
- \bullet = δ_A (δ_A (q_0 , h(x)), h(a)) by definition of the DFA B.
- \bullet = $\delta_A(q_0, h(x)h(a))$ by definition of the extended delta.
- $\bullet = \delta_A(q_0, h(w))$ by def. of homomorphism.