Azzolini Riccardo 2020-09-23

Preliminari

1 Alfabeti e stringhe

Un alfabeto Σ è un insieme finito e non vuoto di simboli, dove un simbolo è un "oggetto qualunque": può essere un carattere, una sequenza di caratteri (come ad esempio una parola chiave di un linguaggio di programmazione), ecc.

Una **stringa** (o **parola**) su Σ è una qualunque sequenza finita di simboli di Σ (si considerano solo sequenze finite perché quelle infinite non potrebbero essere analizzate, trattate per intero, dunque risulterebbe impossibile assegnarvi un significato). In particolare, è una stringa anche la sequenza vuota, composta da zero simboli di Σ , che prende il nome di **stringa vuota** e viene indicata con ϵ .

Per convenzione, si indicheranno

• i simboli di Σ con le lettere latine minuscole della parte iniziale dell'alfabeto, eventualmente indiciate:

$$a, b, c, \ldots, a_0, a_1, \ldots, a_n, \ldots$$

(ma, in alcuni esempi, si indicheranno invece i simboli con delle parole aventi un significato intuitivo nel contesto di tali esempi);

• le stringhe su Σ con le lettere latine minuscole della parte finale dell'alfabeto, oppure con le lettere greche minuscole, eventualmente indiciate:

$$u, v, w, x, y, z, \alpha, \beta, \gamma, \delta, \dots, \alpha_0, \alpha_1, \dots, \alpha_n, \dots$$

Se $a_1, \ldots, a_n \in \Sigma$ (con $n \ge 0$), si scrive

$$w = a_1 \dots a_n$$

per indicare la stringa costituita da n simboli di Σ che ha a_i come i-esimo simbolo della sequenza (per i = 1, ..., n). Come caso particolare, se n = 0 si ha $w = \epsilon$.

Data una stringa w, si indica con |w| la sua **lunghezza**, definita come il numero di occorrenze di simboli di Σ in w. La lunghezza della stringa vuota è $|\epsilon| = 0$.

1.1 Esempi di stringhe

Sia $\Sigma = \{0,1\}$. I seguenti sono alcuni esempi di stringhe su Σ , con le rispettive lunghezze:

w	w
ϵ	0
0	1
1	1
00	2
11	2
01	2
10	2
010011	6

2 Concatenazione di stringhe

Date due stringhe α e β su Σ , la **concatenazione** di α con β , indicata con $\alpha\beta$, è la stringa costituita dai simboli di α seguiti dai simboli di β . Ad esempio, considerando ancora l'alfabeto $\Sigma = \{0,1\}$, date $\alpha = 01$ e $\beta = 11$ si ha $\alpha\beta = 0111$.

Formalmente, la concatenazione è un operatore binario sulle stringhe, in quanto "prende" due stringhe e produce come risultato una nuova stringa. Si osserva che ϵ è l'elemento neutro di tale operatore: per ogni stringa α , $\epsilon\alpha=\alpha\epsilon=\alpha$.

3 Prefissi e postfissi

Siano α e β due stringhe su Σ .

- β è un **prefisso** di α se esiste una stringa γ tale che $\alpha = \beta \gamma$ (cioè, informalmente, se i simboli di β costituiscono la parte iniziale di α).
- β è un **postfisso** di α se esiste una stringa γ tale che $\alpha = \gamma \beta$ (ovvero se i simboli di β costituiscono la parte finale di α).

Si osserva che la stringa vuota, essendo l'elemento neutro della concatenazione,

$$\alpha\epsilon=\epsilon\alpha=\alpha$$

è sia un prefisso sia un postfisso di α .

4 Insiemi di stringhe

• La **potenza** k-esima dell'alfabeto Σ (con $k \geq 0$), indicata con Σ^k , è l'insieme delle stringhe di lunghezza k su Σ :

$$\Sigma^k = \{ w \mid w$$
è una stringa su Σ e $|w| = k \}$

• L'insieme di tutte le stringhe su Σ , indicato con Σ^* (che si legge "sigma star"), è definito come:

$$\Sigma^* = \bigcup_{k \ge 0} \Sigma^k$$

Si osserva che tale insieme è sempre infinito, perché contiene le stringhe di tutte le infinite lunghezze possibili. Ad esempio, anche nel caso estremo di un alfabeto composto da un unico simbolo, $\Sigma = \{a\}$, si ha $\Sigma^* = \{\epsilon, a, aa, aaa, ...\}$.

• L'insieme di tutte le stringhe non vuote su Σ , indicato con Σ^+ (che si legge "sigma più"), è:

$$\Sigma^{+} = \bigcup_{k>1} \Sigma^{k} = \{ w \in \Sigma^{*} \mid |w| > 0 \}$$

Si osserva dunque che $\Sigma^* = \Sigma^+ \cup \{\epsilon\}.$

• Un **linguaggio** sull'alfabeto Σ è un qualunque insieme di stringhe su Σ , cioè un qualunque insieme $L \subseteq \Sigma^*$. Si osserva che un linguaggio può essere finito o infinito.

4.1 Esempi

Dato l'alfabeto $\Sigma = \{0, 1\}$, si hanno:

$$\Sigma^{0} = \{\epsilon\} \quad \Sigma^{1} = \{0, 1\} \quad \Sigma^{2} = \{00, 01, 10, 11\} \quad \dots$$
$$\Sigma^{*} = \{\epsilon, 0, 1, 00, 01, 10, 11, \dots\}$$
$$\Sigma^{+} = \{0, 1, 00, 01, 10, 11, \dots\}$$

Alcuni esempi di linguaggi su Σ sono allora:

- $L_1 = {\epsilon}$, il linguaggio formato solo dalla stringa vuota;
- $L_2 = \emptyset$, il linguaggio vuoto, che non comprende alcuna stringa;
- $L_3 = \Sigma^*$, il linguaggio infinito formato da tutte le stringhe su Σ ;
- $L_4 = \{w \in \Sigma^* \mid w \text{ termina con } 0\}$, il linguaggio infinito formato dalle stringhe che terminano con 0 (ovvero il linguaggio dei numeri naturali pari, se si interpretano le stringhe su Σ come rappresentazioni binarie dei numeri naturali).