

SF1624 Algebra och geometri **Tentamen** onsdag, 11 januari 2017

Skrivtid: 08:00-11:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst tre poäng.

DEL A

1. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z)

$$kx + ky + z = 3$$

 $2x + ky + z = 2$
 $4x + 3y + 3z = 8$

en entydig lösning, ingen lösning, oändligt många lösningar? (4 p)

- (b) Lös ekvationssystemet för k = 1.
- (2 p)
- **2.** P är det plan i \mathbb{R}^3 som innehåller punkten (1,0,0) och linjen $t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, t i \mathbb{R} .
 - (a) Bestäm en normalvektor och en ekvation till P. (3p)
 - (b) Bestäm ortogonalprojektionen av punkten (2,4,2) på linjen som går genom origo och punkten (0, 1, -1). (3 p)

- 3. Låt $T=\begin{bmatrix}2&-1\\-3&2\end{bmatrix}$ vara övergångsmatrisen från basen $\mathcal V$ till basen $\mathcal W$ av ett delrum U av $\mathbb R^4$.
 - (a) Bestäm övergångsmatrisen från bas \mathcal{W} till bas \mathcal{V} . (3 p)
 - (b) Låt $f: U \to U$ vara en linjär avbildning som uppfyller $[f]_{\mathcal{W}} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$. Bestäm $[f]_{\mathcal{V}}$.

(Med $[f]_{\mathcal{B}}$ menas matrisen för avbildningen f med avseende på basen \mathcal{B} .)

- **4.** En linjär avbildning $L \colon \mathbb{R}^3 \to \mathbb{R}^3$ definieras av formeln $L(\vec{x}) = \vec{e}_3 \times \vec{x}$ för alla vektorer \vec{x} . Här är $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ och med \times menas kryssprodukten.
 - (a) Bestäm standardmatris till $L \colon \mathbb{R}^3 \to \mathbb{R}^3$. (2 p)
 - (b) L transformerar planet $x_3=0$ till sig själv. Beskriv geometrisk hur vektorer i detta plan transformeras. (1 p)
 - (c) Bestäm alla egenvärden och tillhörande egenvektorer till L. (3 \mathbf{p})

DEL C

5. Låt Q vara den kvadratiska form på \mathbb{R}^{2n} som är definierad genom

$$Q(x_1, \dots, x_{2n}) = x_1 x_{2n} + x_2 x_{2n-1} + \dots + x_n x_{n+1}.$$

- (a) Bestäm den symmetriska matrisen som tillhör Q. (2 p)
- (b) Avgör karaktären av Q: positivt/negativt (semi)definit eller indefinit? (4 p)
- **6.** Låt A vara en $n \times n$ -matris. $\operatorname{Col}(A)$ betecknar kolonnrummet av A. Visa:
 - (a) Om $\operatorname{Col}(A^k) = \operatorname{Col}(A^{k+1})$ för något heltal $k \geq 1$, så gäller $\operatorname{Col}(A^k) = \operatorname{Col}(A^{k+l})$ för alla heltal $l \geq 1$. (3 p)
 - (b) Om $A^j = 0$ för något heltal $j \ge 1$ så är $A^n = 0$. (3 p)