2a. Number Systems

Chapter 2 of textbook by John F Wakerly

- The materials in this chapter are not covered in the pre-recorded lectures.
- Students are required to do self-study for this topic.
- Essential concepts will be discussed in Tutorial 1.

Quick links to sections

- 1. Common Number Systems
- 2. Position-value system
- 3. Conversion from base-N to base-10
- 4. Conversion from base-10 to base-N
- 5. Explanation of conversion
- 6. Conversion between binary, octal and hex
- 7. Exercise

Common Number Systems

Decimal - base 10
 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 Examples of decimal numbers: 48₁₀, 915₁₀, 607₁₀, 23₁₀

Binary - base 2
 2 symbols: 0, 1
 Examples of binary numbers:
 10110₂, 111000010₂, 101011111₂

The subscript 10 or 2 shows the base or radix

Octal - base 8
8 symbols: 0, 1, 2, 3, 4, 5, 6, 7
e.g. 417₈, 26₈, 530₈

Hexadecimal - base 16

16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F e.g. F019₁₆, 43127C₁₆, 85₁₆, BEAD₁₆

Refer to Table 2-1 on next page:

$$1011_2 = 11_{10} = 13_8 = B_{16}$$

Table 2.1 Binary, decimal, octal and hex

Binary	Decimal	Octal	3-Bit String	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10		8	1000
1011 ₂	= 11 ₁₀	= 13 ₈	=	B ₁₆	1001 1010
1011	11	13		В	1011
1100	12	14	_	С	1100
1101	13	15		D	1101
1110	14	16	_	Е	1110
1111	15	17	_	F	1111

- The number of symbols is equal to the base (or radix)
- Octal base 8, it has 8 symbols
- Hexadecimal base 16, it has 16 symbols
- Binary base 2, it has only 2 symbols
- The lower the base, the larger number of digits is required to represent a given value
- Thus 11₁₀ requires 2 digits in base 10 and base 8, 4 digits in base 2, but only 1 digit in base 16:

$$11_{10} = 13_8 = 1011_2 = B_{16}$$

- The binary system is the most commonly used in digital systems
- However, writing a long string of 0's and 1's is error-prone
- Hexadecimal is a shorthand to write binary numbers

Examples:

$$1011_2 = B_{16} = 0xB$$

0x also signifies a Hex number

$$1100 \ 0001 \ 1001 \ 1010_2 = 0xC19A$$

$$C \quad 1 \quad 9 \quad A$$

Position-value system

- Each digit carries a weight.
- The LSD carries the least weight. The MSD carries the most weight.

MSD: most significant digit

LSD: least significant digit

- The weight (expressed in decimal) carried by a base-N digit of position p (p=0, 1, 2, ...) is given by N^P (i.e. N raised to the power of p; or N multiplied by itself for p-number of times)
- The corresponding weights of a base-N number are thus

$$N^3 N^2 N^1 N^0 N^{-1} N^{-2} N^{-3}$$

• Note that $N^0 = 1$ for $N \neq 0$

The weights of a Decimal number

$$10^3 \ 10^2 \ 10^1 \ 1 \cdot 10^{-1} \ 10^{-2} \ 10^{-3}$$

The weights of a Binary number

The weights of a Binary number

$$2^3$$
 2^2 2^1 1.2⁻¹ 2^{-2} 2^{-3}

Binary point

The weights of an Octal number

$$8^3$$
 8^2 8^1 1.8⁻¹ 8^{-2} 8^{-3}

Cotal point

The weights of a Hex number

$$16^3 \ 16^2 \ 16^1 \ 1.16^{-1} \ 16^{-2} \ 16^{-3}$$

4-bit binary system

	Weights				Decimal
	2 ³ =8	2 ² =4	2 ¹ =2	2 ⁰ =1	equivalent
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
	0	1	0	0	4
	0	1	0	1	5
1	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	8
	1	0	0	1	9
	1	0	1	0	10
	1	0	1	1	11
	1	1	0	0	12
	1	1	0	1	13
5	1	1	1	0	14
1	1	1	1	1	15

2 ²	+	2 ⁰	=	5 ₁₀
-----------------------	---	-----------------------	---	------------------------

$$2^3 + 2^2 + 2^1 = 14_{10}$$

Conversion from base-N to base-10:

- 1. Multiply each digit of the base-N number by its positional weight.
- 2. Sum together the products obtained in step 1.

Examples

$$100.001_2 = (1 \times 2^2) + (1 \times 2^{-3}) = 4.125_{10}$$

$$5.7_8 = (5 \times 8^0) + (7 \times 8^{-1}) = 5.875_{10}$$

$$AF.2_{16} = (10 \times 16^{1}) + (15 \times 16^{0}) + (2 \times 16^{-1})$$
$$= 175.125_{10}$$

Conversion from base-10 to base-N:

- 1. Divide the base-10 number repeatedly by N until a quotient of 0 is obtained.
- 2. Write down the remainder after each division.
- 3. The first remainder is the LSD and the last remainder is the MSD of the base-N number. The rest of the remainders fall sequentially between the LSD and the MSD.

Examples: conversion from decimal to base-N

Convert

- 13 to binary
- 25 to octal
- 59 to hex
- 5.3 to binary (repeat division for integer, repeat multiplication for fraction)
- Octal and Hex numbers are usually used as "short form" for binary numbers.

13₁₀ to binary

$$13 \div 2 = 6 R 1$$

$$6 \div 2 = 3 R 0$$

$$3 \div 2 = 1 R 1$$

$$1 \div 2 = 0 R 1$$

$$13_{10} = 1101_2$$

25₁₀ to octal

$$25 \div 8 = 3 R 1$$

$$3 \div 8 = 0 R 3$$

$$25_{10} = 31_8$$

59₁₀ to hex

$$59 \div 16 = 3 R 11$$

$$3 \div 16 = 0 R 3$$

$$59_{10} = 3B_{16}$$

5.3₁₀ to binary

$$5 \div 2 = 2 R 1$$

$$0.3 \times 2 = 0.6$$

$$2 \div 2 = 1 R 0$$

$$0.6 \times 2 = 1.2$$

$$1 \div 2 = 0 R 1$$

$$0.4 \times 2 = 0.8$$

 $0.2 \times 2 = 0.4$

$$0.8 \times 2 = 1.6$$

$$5_{10} = 101_2$$

$$0.6 \times 2 = 1.2$$

$$5.3_{10} = 101.010011..._{2}$$

Explanation of conversion

e.g. a base-10 number: $d_2 d_1 d_0 \cdot d_{-1} d_{-2} d_{-3}$

It has the value of

$$(d_2 \times 10^2) + (d_1 \times 10^1) + (d_0 \times 10^0)$$
 - integer + $(d_{-1} \times 10^{-1}) + (d_{-2} \times 10^{-2}) + (d_{-3} \times 10^{-3})$ - fraction

It can be represented by the binary number $b_m \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-n}$

which has the value of

$$(b_m \times 2^m) + ... + (b_1 \times 2^1) + (b_0 \times 2^0)$$
 - integer + $(b_{-1} \times 2^{-1}) + (b_{-2} \times 2^{-2}) + ... + (b_{-n} \times 2^{-n})$ - fraction

Explanation of conversion (integer)

$$(d_2 \times 10^2) + (d_1 \times 10^1) + (d_0 \times 10^0)$$

has the same value as

$$(b_m \times 2^m) + ... + (b_1 \times 2^1) + (b_0 \times 2^0)$$
 - integer

Divide by 2, we get

$$(b_m \times 2^{m-1}) + ... + (b_1 \times 2^0) + (b_0 \times 2^{-1})$$

Quotient: integer fraction

We get b_0 which is the remainder.

Explanation of conversion (cont)

Divide the quotient by 2 again, we get

We get b₁ which is the remainder.

Thus by repeated division, the bits b_0 , b_1 , b_2 , ..., b_m are obtained in sequence.

Explanation of conversion (fraction)

$$(d_{-1} \times 10^{-1}) + (d_{-2} \times 10^{-2}) + (d_{-3} \times 10^{-3})$$

has the same value as

$$(b_{-1} \times 2^{-1}) + (b_{-2} \times 2^{-2}) + ... + (b_{-n} \times 2^{-n})$$
 - fraction

Multiply by 2, we get

$$(b_{-1} \times 2^{0})$$
 + $(b_{-2} \times 2^{-1})$ + ... + $(b_{-n} \times 2^{-n+1})$
integer fraction

We get b₋₁ which is the integer.

Explanation of conversion (cont)

Multiply the fraction by 2 again, we get

We get b₋₂ which is the integer.

Thus the bits b_{-1} , b_{-2} , b_{-3} , ..., b_{-n} are obtained in sequence by repeated multiplication

Conversion from hex (octal) to binary

 replace each hex (octal) digit by the corresponding 4-bit (3-bit) binary equivalent

Conversion from binary to hex (octal)

- Starting from the LSB, replace every 4 bits (3 bits) by the corresponding hex (octal) digit
- Pad MSB with 0's if necessary

Each octal digit represents a group of 3 bits.

	Binary			
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

Examples

110 011 1002

 $=634_{8}$

correct:

10 1002

= **24**₈

Wrong!

101 00

 $= 50_{\rm g}$

Each
hexadecimal
digit
represents
4 bits.

Binary				Hex (Dec)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A (10)
1	0	1	1	B (11)
1	1	0	0	C (12)
1	1	0	1	D (13)
1	1	1	0	E (14)
1	1	1	1	F (15)

For some inexplicable reasons, some students are terrified of hexadecimal numbers.

This should not be so. Just treat a hex number as a short form. Each hex digit is simply a group of 4 bits.

Examples:

$$Abc_{16} = 1010 \ 1011 \ 1100_2$$

$$CAFE_{16} = 1100 \ 1010 \ 1111 \ 1110_2$$

$$C130_{16} = 1100\ 0001\ 0011\ 0000_2$$

$$d24_{16} = 1101\ 0010\ 0100_2$$

Both upper case and lower case may be used for the hex digits a-f

A space is usually inserted between every 4 bits to improve readability

More examples:

Binary	Octal	Hex
101010001	521	151
10000001	201	81
11011	33	1B
111001	71	39
11111111	777	1FF
1110111	167	77
10010011	223	93

Addition, subtraction, multiplication, division, signed numbers

 Sections 2.4 to 2.9 of the textbook will be covered in the pre-recorded lectures under the topic of **Digital Arithmetic**

Exercise

1. Convert 1011001111₂ to hexadecimal

2. Convert 19.25_{10} to binary

Work on these before checking the answers on next page

Answers

1. Convert 1011001111 ₂ to Hex 10 1100 1111 = 0010 1100 1111 = 2CF₁₆ 2. Convert 19.25 ₁₀ to binary $19_{10} = 2^4 + 2^1 + 2^0$ = 10011 2 $0.25_{10} = 2^{-2}$ $= 0.01_{2}$ Thus $19.25_{10} = 10011.01_{2}$