MA - moyorcha
def Sentin ungen /white noise
$(v_t)_{t=-\infty}^{\infty}$ ~ t . wyw
econ: $E(u_4) = 0$ Vor $(u_4) = 3^2$, $(ou)(u_4, u_5) = 0$ $u_{pu} = 7^2$
mepuren.
1) Ut u n's à l'angua morgé xapo Johncer. GARCH(2,3) - racin. Carpeour é any
koo menue.
oup. (ye)~ MA(q) moving average
yt = y + ut + 2, ut -2 + 2, ut -2 + + 2, ut
$age(u_{\ell}) - \delta.$ ugu.
entrépas nombre payer densex trynol.
Reg. yth Soulburd koul-lo npreyeccol wongt obert npreden mense feekum MA(q)
Feerman 17 x (q)

 $=2\cdot (a_{1}(u_{+1},u_{+-1})+6\cos(u_{+-2},u_{+-2})=23\frac{2}{4}+63\frac{2}{4}=1$

 $L x_t = x_{t-1}$ $L x_t = x_{t-2}$

np. Eun (ye) - cronywhapmin upoyece,

ro racticet absoluppens usuchtion op mes

hay-cor

(PA(F = partial ACF)

4 = plove (ye, yek) yel, yez, yez, yez, yez

$$y_{np} \quad y_{t} = 2 + u_{t} + 2u_{t-1} + 3u_{t-2} \quad u_{t} = 2u_{t} + 2u_{t-1} + 3u_{t-2} \quad u_{t} = 2u_{t} + 2u_{t} + 2u_{t-1} + 3u_{t-2} \quad u_{t} = 2u_{t} + 2u_{t} +$$

$$\begin{cases}
\gamma_{2} = (\gamma_{2}) & \uparrow (\gamma_{2}) & \uparrow (0) \\
\gamma_{1} = (\gamma_{2}) & \uparrow (\gamma_{2}) & \uparrow (0) \\
\gamma_{2} = (\gamma_{2}) & \uparrow (\gamma_{2}) & \uparrow (0) \\
\gamma_{1} = (\gamma_{2}) & \uparrow (\gamma_{2}) & \uparrow (0) \\
\downarrow (\gamma_{1}) & \gamma_{2} & \downarrow (0) \\
\downarrow (\gamma_{1}) & \gamma_{2} & \downarrow (0)
\end{cases} = \frac{\det \left(\gamma_{1} + \gamma_{2} +$$

