Натуральная дедукция (естественный вывод) для логики предикатов

Математическая логика и теория алгоритмов

Алексей Романов 2 ноября 2024 г.

ТЕИМ

Правила для логики высказываний

• Для \wedge : $\frac{A \quad B}{A \wedge B} \ \wedge I \qquad \qquad \frac{A \wedge B}{A} \ \wedge E \qquad \frac{A \wedge B}{B} \ \wedge E$ • Для \rightarrow :

 $\begin{array}{c}
A \\
\vdots \\
B \\
A \to B
\end{array} \to I \qquad \begin{array}{c}
A \to B \quad A \\
B
\end{array} \to E$

• Для ¬ и ⊥:

• Остальные:

 $\frac{A}{A}$

2/15

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E \ \mathsf{u} \ \frac{A(t)}{\exists x \ A(x)} \ \exists I.$ Здесь t любой терм без свободных переменных (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E$ и $\frac{A(t)}{\exists x \ A(x)} \ \exists I$. Здесь t — любой терм без свободных переменных (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Пояснения к правилам

• Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного а*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.

Пояснения к правилам

- Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного a*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.
- Смысл правила $\exists E$: мы временно даём название a тому объекту, существование которого утверждается. Правило немного аналогично $\vee E$.
- Удобно помечать подвывод, вводящий параметр, этим параметром.
- Есть упрощённые варианты $\forall I$ и $\exists E$ без подвыводов, но для них существенно сложнее сформулировать точные условия и доказать корректность и полноту. Мы их в этом курсе не рассматриваем.

$$orall x(P(x) o Q(x)) dash \exists x P(x) o \exists x Q(x)$$

$$\begin{array}{c|c} 1 & \forall x(P(x) o Q(x)) & \text{Дано} \\ \vdots & \vdots & \\ n & \exists x P(x) o \exists x Q(x) \end{array}$$

$$orall x(P(x) o Q(x)) dash \exists x P(x) o \exists x Q(x)$$

1 $orall x(P(x) o Q(x))$ Дано

2 $orall \exists x P(x)$ Дано

 \vdots \vdots \vdots $\exists x Q(x)$ \Rightarrow I, 2-(n-1)

$$\forall x(P(x) \rightarrow Q(x)) \vdash \exists x P(x) \rightarrow \exists x Q(x)$$

1 $\forall x(P(x) \rightarrow Q(x))$ Дано

2 $\exists x P(x)$ Дано

3 $\Rightarrow P(a)$ Дано

 \vdots $\Rightarrow x Q(x)$ Дано

 $\exists x Q(x)$ $\Rightarrow I, 2-(n-1)$

n

$$orall x(P(x)
ightarrow Q(x)) dash \exists x P(x)
ightarrow \exists x Q(x)$$

1 $| \forall x (P(x)
ightarrow Q(x)) |$ Дано

2 $| \exists x P(x) |$ Дано

4 $| P(a) |$ Дано

4 $| P(a)
ightarrow Q(a) |$ $\forall E, 1$

5 $| Q(a) |$ $\Rightarrow E, 3, 4$
 $n-2 | \exists x Q(x) |$ $\exists x Q(x) |$ $\exists E, 2, 3-(n-2)$

 \Rightarrow I, 2-(n - 1)

 $\exists x P(x) \rightarrow \exists x Q(x)$

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a₁?

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a_1 ? Да, так как подвыводы независимы. Но незачем.

Пример 3 в линейной записи

1	$\forall x \ P(x) \land Q(x)$		Дано
2	a_1	произв. <i>а</i> ₁	
3		$P(a_1) \wedge Q(a_1)$	∀E, 1
<i>k</i> – 1		$P(a_1)$	∧E, 3
k	a ₂	произв. <i>а</i> ₂	
k		$P(a_2) \wedge Q(a_2)$	∀E, 1
n – 3		$Q(a_2)$	∧E, <i>k</i>
n – 2	$\forall x P(x)$		\forall I, 2-($k-1$)
n-1	$\forall x \ Q(x)$		\forall I, <i>k</i> −(<i>n</i> − 3)
n	(∀	$\forall x P(x)) \wedge (\forall x Q(x))$	∧I, $n - 2$, $n - 1$

или

Пример 3 в линейной записи

n $(\forall x P(x)) \land (\forall x Q(x))$ \land I, n-2, n-1 появилась после 5 и 6, иначе в них нельзя использовать a_1 .

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

$$\frac{ \frac{ }{\exists x \forall y \; P(x,y)} \underset{\forall a \text{ Ann } \exists E}{\exists x \forall y \; P(x,y)} \underset{\exists x \; P(x,a_1)}{\exists a \; P(x,a_1)} \underset{\exists E \; a_2; \; \forall y \; P(a_2,y) \; \vdash}{\exists x \; P(x,y)} }$$

Пример 4 в линейной записи

• Доказываем $\exists x \forall y \; P(x,y) \vdash \forall y \exists x \; P(x,y)$ в линейной записи:

Построение контрмодели

- Если формулу или секвенцию доказать не получается, можно предположить, что она неверна и попробовать построить контрмодель.
- Для дерева с вынесенными посылками выбираем вершину, а для линейной записи — строку, на которых застряли.
- Все видимые посылки должны быть истинны, а сама выбранная формула ложна.
- Значения предикатов должны быть заданы на всех параметрах этих формул (если они все без параметров, то на одном параметре a_1).
- Может понадобиться добавить ещё параметры.

Функциональные символы

- Пусть в сигнатуре есть функциональные символы или константы
- Тогда в правилах ∀Е и ∃I можно использовать не только параметры, а произвольные термы, построенные из них:

Функциональные символы

- Пусть в сигнатуре есть функциональные символы или константы
- Тогда в правилах $\forall E$ и $\exists I$ можно использовать не только параметры, а произвольные термы, построенные из них: $f(a_1)$, $a_3 + 0$ и так далее.
- Но без свободных переменных x, y, ...
- Простой пример: докажем $\forall x \ P(x) \vdash \forall x \ P(f(x))$:

Функциональные символы

- Пусть в сигнатуре есть функциональные символы или константы
- Тогда в правилах $\forall E$ и $\exists I$ можно использовать не только параметры, а произвольные термы, построенные из них: $f(a_1)$, $a_3 + 0$ и так далее.
- Но без свободных переменных *x*, *y*, ...
- Простой пример: докажем $\forall x \ P(x) \vdash \forall x \ P(f(x))$:

1	$\forall x P(x)$			Дано	
2	а	произв. <i>а</i>	_		
n – 1		P(f(a))		∀E, 1	
n	$\forall x \ P(f(x))$			∀I, 2-(<i>n</i> − 1)	

Равенство

 Для равенства вводятся новые правила введения и исключения:

Равенство

- Для равенства вводятся новые правила введения и исключения:
- $\frac{t=s}{t=t} = I$ $\frac{t=s}{A[s]} = E$ $\frac{s=t}{A[s]} = E$
- t и s опять же термы без свободных переменных.
- A[t] формула, содержащая терм t, A[s]

Равенство

- Для равенства вводятся новые правила введения и исключения:
- $\frac{t=s}{t=t} = I$ $\frac{t=s}{A[s]} = E$ $\frac{s=t}{A[s]} = E$
- t и s опять же термы без свободных переменных.
- A[t] формула, содержащая терм t, A[s] та же формула с заменой t на s.
- Не обязательно заменять все вхождения t.
- Вместо правил можно было бы ввести аксиомы: $\forall x \; x = x \; \text{и} \; \forall x \forall y \; (x = y \land A[x] \rightarrow A[y]).$

Пример доказательства с равенством

• Докажем симметричность равенства $\forall x \forall y \ (x = y \to y = x)$:

Пример доказательства с равенством

• Докажем симметричность равенства $\forall x \forall y \ (x = y \to y = x)$:

• Подчёркиванием в = E выделено заменяемое вхождение терма.

Дополнительное чтение

- Непейвода, 11.2.5 и 11.4.
- Гладкий, глава 10 (менее удобная система записи).
- Много дополнительных задач с решениями на английском можно найти в этом документе.