FNCE 926 Empirical Methods in CF

Lecture 7 – Natural Experiment [P2]

Professor Todd Gormley

Announcements & Informal Survey

- Exercise #3 is due
- Please fill out informal survey
 - Helps me figure out what changes I can make to improve the course for the second half and for future years
 - For example, what topic should I have spent more time on? What topic did you find the most interesting? Is there too much, or too little work? Etc.

Background readings

- Roberts and Whited
 - □ *Sections 2.2, 4*
- Angrist and Pischke
 - □ Section 5.2

Outline for Today

- Quick review of last lecture
- Continue to discuss natural experiments
 - How to handle multiple events
 - Triple differences
 - Common robustness tests that can be used to test whether internal validity is likely to hold
- Student presentations of "NE #1" papers

Quick Review[Part 1]

- Natural experiment provides random
 variation in x that allows causal inference
 - Can be used in IV, regression discontinuity, but most often associated with "treatment" effects
- Two types of simple differences
 - Post-treatment comparison of treated & untreated
 - Pre- and post-treatment comparison of treated

Quick Review [Part 2]

■ Difference-in-differences is estimated with...

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

- □ Compares <u>change</u> in *y* pre- versus post-treatment for treated to <u>change</u> in *y* for untreated
- Requires "parallel trends" assumption
- Let's test your ability to identify a violation of the necessary assumptions for simple diffs and diff-in-diffs...

Quick Review [Part 3]

- Suppose Spain exits the Euro. And, Ann compares profitability of Spanish firms after the exit to profitability before...
- What is necessary for the comparison to have any causal interpretation?
 - **Answer** = We must assume profitability after Spain's exit would have been same as profitability prior to exit absent exit... Highly implausible

Quick Review [Part 4]

- Now, suppose Bob compares profitability of Spanish firms after the exit to profitability of German firms after exit...
- What is necessary for the comparison to have any causal interpretation?
 - **Answer** = We must assume profitability of Spanish firm would have been same as profitability of German firms absent exit... Again, this is highly implausible

Quick Review [Part 5]

- Lastly, suppose Charlie compares <u>change</u> in profitability of Spanish firms after exit to <u>change</u> in profitability of German firms
- What is necessary for the comparison to have any causal interpretation?
 - Answer = We must assume change in profitability of Spanish firm would have been same as change for German firms absent exit... I.e. parallel trends assumption

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
 - Using group means to get an estimate
 - When additional controls are appropriate
- How to handle multiple events
- Falsification tests
- Triple differences

Standard Regression Format

■ Difference-in-differences estimator

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

- $p_t = 1$ if period *t* occurs after treatment and equals zero otherwise
- $d_i = 1$ if unit is in treated group and equals zero otherwise

But, there is another way that just involves comparing four sample means...

Comparing group means approach

To see how we can get the same estimate, β_3 , by just comparing sample means, first calculate expected y under four possible combinations of p and d indicators

Comparing group means approach [P1]

■ Again, the regression is...

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

■ And, the four possible combinations are:

$$E(y | d = 1, p = 1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$$
 What assumption did I $E(y | d = 1, p = 0) = \beta_0 + \beta_2$ make in doing this? $E(y | d = 0, p = 1) = \beta_0 + \beta_1$ Answer: $E(u | d, p) = 0$; i.e. $E(y | d = 0, p = 0) = \beta_0$ the "experiment" is random

Comparing group means approach [P2]

$$E(y | d = 1, p = 1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$$

$$E(y | d = 1, p = 0) = \beta_0 + \beta_2$$

$$E(y | d = 0, p = 1) = \beta_0 + \beta_1$$

$$E(y | d = 0, p = 0) = \beta_0$$

■ These can be arranged in two-by-two table

	Post-Treatment,	Pre-Treatment,	
	(1)	(2)	
Treatment, (a)	β_0 + β_1 + β_2 + β_3	β_0 + β_2	
Control, (b)	β_0 + β_1	β_0	

Comparing group means approach [P3]

Now take the simple differences

	Post-Treatment,	Pre-Treatment,	D:ff (4) (2)
	(1)	(2)	Difference, (1)-(2)
Treatment, (a)	β_0 + β_1 + β_2 + β_3	β_0 + β_2	β_1 + β_3
Control, (b)	β_0 + β_1	β_0	eta_1
Difference, (a)-(b)	$\beta_2 + \beta_3$	β_2	

Comparing group means approach [P4]

■ Then, take difference-in-differences!

	Post-Treatment, (1)	Pre-Treatment, (2)	Difference, (1)-(2)
Treatment, (a)	β_0 + β_1 + β_2 + β_3	β_0 + β_2	β_1 + β_3
Control, (b)	β_0 + β_1	β_0	eta_1
Difference, (a)-(b)	β_2 + β_3	β_2	β_3

This is why they call it the difference-in-differences estimate; regression gives you same estimate as if you took differences in the group averages

Simple difference – Revisited [Part 1]

Useful to look at simple differences

	Post-Treatment, (1)	Pre-Treatment, (2)	Difference, (1)-(2)
Treatment, (a) Control, (b)	$\beta_0 + \beta_1 + \beta_2 + \beta_3$ $\beta_0 + \beta_1$	$\beta_0 + \beta_2$ β_0	$\beta_1+\beta_3$ β_1
Difference, (a)-(b)	$\beta_2 + \beta_3$	β_2	β ₃

1

This was cross-sectional simple difference

When does that simple diff give effect of treatment, β_3 ?

Answer = when β_2 equals zero; i.e. no difference in level of y absent treatment

Simple difference – Revisited [Part 2]

■ Now, look at time-series simple diff...

	Post-Treatment,	Pre-Treatment,	
	(1)	(2)	Difference, (1)-(2)
Treatment, (a)	β_0 + β_1 + β_2 + β_3	β_0 + β_2	β_1 + β_3
Control, (b)	$\beta_0 + \beta_1$	β_0	eta_1
Difference, (a)-(b)	$\beta_2+\beta_3$	β_2	β_3

This was time-series simple difference

When does that simple diff give effect of treatment, β_3 ?

Answer = when β_1 equals zero; i.e. no change in y absent treatment

Why the regression is helpful

- Some papers will just report this simple two-by-two table as their estimate
- But, there are advantages to the regression
 - Can modify it to test timing of treatment [we will talk about this in robustness section]
 - $lue{}$ Can add additional controls, X

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
 - Using group means to get an estimate
 - When additional controls are appropriate
- How to handle multiple events
- Falsification tests
- Triple differences

Adding controls to diff-in-diff

Easy to add controls to regression

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + \Gamma X_{i,t} + u_{i,t}$$

- X is some vector of controls
- \Box Γ is vector of coefficients
- E[y | d,p] in prior proofs just becomes E[y | d,p,X]

From earlier lecture, what type of controls should you NEVER add?

When controls are inappropriate

- Remember! You should never add controls
 that might themselves be affected by treatment
 - Angrist-Pischke call this a "bad control"
 - □ You won't be able to get a consistent estimate of β_3 from estimating the equation

A Pet Peeve of TG – Refined

- If you have a treatment that is truly random, do not put in controls affected by the treatment!
 - I've had many referees force me to add controls that are likely to be affected by the treatment...
 - □ If this happens to you, put in both regressions (with and without controls), and at a minimum, add a caveat as to why adding controls is inappropriate

When controls are appropriate

- Two main reasons to add controls
 - □ Improve precision (i.e. lower standard errors)
 - □ Restore 'random' assignment of treatment

#1 – To improve precision

- Adding controls can soak up some of residual variation (i.e. noise) allowing you to better isolate the treatment effect
 - Should the controls change the estimate?
 - NO! If treatment is truly random, adding controls shouldn't affect actual estimate; they should only help lower the standard errors!
 - □ If adding controls changes estimates, you might have 'bad controls' *or* worse, non-random treatment ⊗

Example – Improving precision

- Suppose you have firm-level panel data
- Some natural experiment 'treats' some firms but not other firms
 - Could just estimate the standard diff-in-diff

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + u_{i,t}$$

□ *Or*, could add fixed effects (like firm and year FE) to get more precise estimate...

Example – Improving precision [Part 2]

■ So, suppose you estimate...

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (d_i \times p_t) + \alpha_i + \delta_t + u_{i,t}$$
Firm fixed effects

Year fixed effects

- □ What meaning does β_1 have now?
- What meaning does β_2 have now?

Example – Improving precision [Part 3]

- Trick question! They have no meaning!
 - p_t is perfectly collinear with year FE [because it doesn't vary across firms]
 - \Box d_i is perfectly collinear with firm FE [because it doesn't vary across time for each firm]
- Stata just randomly drops a couple of the FE
 - The estimates on p_t and d_i are just random intercepts with **no** meaning

Example – Improving precision [Part 4]

■ Instead, you should estimate...

 This is what some call the generalized difference-in-differences estimator

Generalized Difference-in-differences

- Advantage of generalized differences-indifferences is that it can improve precision and provide better fit of model
 - It doesn't assume all firms in treatment (or untreated) group have same average *y*; it allows intercept to vary for each firm
 - □ It doesn't assume that common change in *y* around event is a simple change in level; it allows common change in *y* to vary by year

Generalized D-i-D – Example [Part 1]

■ To see how Generalized D-i-D can be helpful, consider the example from last week

Generalized D-i-D – Example [Part 2]

Year dummies will better fit actual trend

When controls are appropriate

- Two main reasons to add controls
 - □ Improve precision (i.e. lower standard errors)
 - Restore 'random' assignment of treatment

#2 – Restore randomness of treatment

Suppose the following is true...

- I.e. treatment isn't random
- Observations of certain characteristic,
 e.g. high x, are more likely to be treated
- **And,** firms with this characteristic are likely to have differential trend in outcome *y*
- Adding control for x could restore 'randomness'; i.e. being treated is random after controlling for x!

And, nonrandomness is
problematic for
identification

Restoring randomness – Example

- Natural experiment is change in regulation
 - □ Firms affected by regulation is random, except that it is more likely to hit firms that are larger
 - □ *And*, we think larger firms might have different trend in outcome *y* afterwards for other reasons
 - □ <u>And</u>, firm size is not going to be affected by the change in regulation in any way
- If all true, adding size as control would be an appropriate and desirable thing to do

Controls continued...

- In prior example, suppose size is potentially effected by the change in regulation...
 - What would be another approach that won't run afoul of the 'bad control' problem?
 - **Answer:** Use firm size in year <u>prior</u> to treatment <u>and</u> it's interaction with post-treatment dummy
 - This will control for non-random assignment (based on size) and differential trend (based on size)

Restoring randomness – Caution!

- In practice, don't often see use of controls to restore randomness
 - Requires assumption that non-random assignment isn't also correlated with unobservable variables...
 - So, not that plausible unless there are very specific reasons for non-randomness
- But, regression discontinuity is one example of this; we'll see it next week

One last note... be careful about SEs

- Again, if have multiple pre- and post-treatment periods, need to be careful with standard errors
 - □ Either cluster SEs at level of each unit
 - Or, collapse data down to one pre- and one posttreatment observation for each cross-section
- We will discuss more about standard errors in lecture on "standard errors"

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
- How to handle multiple events
 - Why they are useful
 - □ Two similar estimation approaches
- Falsification tests
- Triple differences

Motivating example...

- Gormley and Matsa (2011) looked at firms' responses to increased left-tail risk
 - Used discovery that workers were exposed to harmful chemical as exogenous increase in risk
 - One discovery occurred in 2000; a chemical heavily used by firms producing semiconductors was found to be harmful
- Can you think of any concerns about parallel trends assumption of this setting?

Motivating Example – Answer

- **Answer:** Yes... This coincides with bursting of technology bubble; technology firms might arguably trend differently after 2000 for this reasons unrelated to chemical
 - How might multiple treatment events, occurring at different times (which is what Gormley and Matsa used), help?

Multiple treatment events

- Sometimes, the natural experiment is repeated a multiple points in times for multiple groups of observations
 - E.g. U.S. states make a particular regulatory change at different points in time
- These settings are particularly useful in mitigating concerns about violation of parallel trends assumption...

How multiple events are helpful

- Can show that effect of treatment is similar across different time periods
- Can show effect of treatment isn't driven by a particular set of treated firms
 - I.e. now the "identification police" would need to come up with story as to why parallel trends is violated for <u>each</u> unique event

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
- How to handle multiple events
 - Why they are useful
 - □ Two similar estimation approaches
- Falsification tests
- Triple differences

Estimation with Multiple Events

- Estimating model with multiple events is still relatively easy to do
 - Use approach of Bertrand and Mullainathan (JPE 2003)
 - Or, used "stacked" approach of Gormley and Matsa (RFS 2011)

Multiple Events – Approach #1 [P1]

Just estimate the following estimation

$$y_{ict} = \beta d_{ict} + p_t + m_c + u_{ict}$$

- y_{ict} is outcome for unit i (e.g. firm) in period t (e.g. year) and cohort c, where "cohort" indexes the different sets of firms <u>treated</u> by each event
 - E.g. different firms might be affected by a change in regulation at different points in time; firms <u>affected</u> at one point in time are a 'cohort'

Multiple Events – Approach #1 [P2]

 d_{ict} = indicator on whether cohort c is affected by time t; this is the interaction between *treatment* & *post*

Time period fixed effects;they will control
for *post* dummy in
each event

Cohort fixed effects; they are the control for the *treatment* dummy in each event

Multiple Events – Approach #1 [P3]

- Intuition of this approach...
 - Every untreated observation at a particular point in time acts as control for treated observations in that time period
 - E.g. a firm treated in 1999 by some event will act as a control for a firm treated in 1994 until itself becomes treated in 1999
 - \Box β will capture <u>average</u> treatment effect across the multiple events

Multiple Events – Approach #2 [P1]

Now, think of running generalized diff-indiff for just one of the multiple events...

$$y_{it} = \beta(d_i \times p_t) + \alpha_i + \delta_t + u_{it}$$

- d_i = indicator for unit i (e.g. firm) being a treated firm in that particular event
- p_t = indicator for treatment having occurred by period t (e.g. year)
- Unit i and period t FE control for the independent effects of d_i and p_t

Multiple Events – Approach #2 [P2]

- But, contrary to standard difference-indifference, your sample is...
 - Restricted to a small window around event;
 e.g. 5 years pre- and post- event
 - And, drops any observations that are treated by <u>another</u> event
 - □ I.e. your sample starts only with previously untreated observations, and if a 'control' observation later gets treated by a different event, those post-event observations are dropped

Multiple Events – Approach #2 [P3]

- Now, create a similar sample for <u>each</u> "event" being analyzed
- Then, "stack" the samples into one dataset and create a variable that identifies the event (i.e. 'cohort') each observation belongs to
 - **Note:** some observation units will appear multiple times in the data [e.g. firm 123 might be a control in event year 1999 but a treated firm in a later event in 2005]

Multiple Events – Approach #2 [P4]

■ Then, estimate the following on the stacked dataset you've created

 d_{ict} = indicator on whether cohort c is affected by time t; this is the interaction between *treatment* & *post*

Time-cohort period fixed effects;they control for *post*dummy in each event
(i.e. for each 'stack')

Unit-cohort FE; they control for the *treatment* dummy in each cohort (i.e. in each 'stack')

Multiple Events – Approach #2 [P5]

- This approach has same intuition of the first approach, but has a couple advantages
 - Can more easily isolate a particular window of interest around each event
 - Prior approach compared all pre- versus posttreatment observations against each other
 - □ Can more easily extend this into a tripledifference type specification [more on that later]

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
- How to handle multiple events
- Falsification tests
- Triple differences

Falsification Tests for D-i-D

- Can never directly test underlying identification assumption, but can do some falsification tests to support its validity
 - #1 Compare pre-treatment observables
 - #2 Check that timing of observed change in y coincides with timing of event [i.e. no pre-trend]
 - #3 Check for treatment reversal
 - #4 Check variables that shouldn't be affected
 - #5 Add a triple-difference

#1 – Pre-treatment comparison [Part 1]

- Idea is that experiment 'randomly' treats some subset of observations
 - □ If true, then ex-ante characteristics of 'treated' observations should be similar to ex-ante characteristics of 'untreated' observations
 - Showing treated and untreated observations are comparable in dimensions thought to affect *y* can help ensure assignment was random

#1 – Pre-treatment comparison [Part 2]

- If find ex-ante difference in some variable z, is difference-in-difference is invalid?
 - Arr Answer = Not necessarily.
 - We need some story as to why units are expected to have differential trend in *y* after treatment (for reasons unrelated to treatment) that is correlated with *z* for this to actually be a problem for identification
 - And, even with this story, we could just control for z and it's interaction with time
 - But, what would be the lingering concern?

#1 – Pre-treatment comparison [Part 3]

- **Answer** = unobservables!
 - If the treated and control differ ex-ante in observable ways, we worry they might differ in unobservable ways that related to some violation of the parallel trends assumption

#2 – Check for pre-trend [Part 1]

- Similar to last lecture, can just allow effect of treatment to vary by period to nonparametrically map out the timing
 - "Parallel trends" suggest we shouldn't observe any differential trend prior to treatment for the observations that are eventually treated

#2 – Check for pre-trend [Part 2]

Estimate the following:

$$y_{i,t} = \beta_0 + \beta_1 d_i + \beta_2 p_t + \sum_t \gamma_t (d_i \times \lambda_t) + u_{i,t}$$

- \Box d_i and p_t are defined just as before
- λ_t is indicator that equals 1 if event time = t and zero otherwise, where
 - t = 0 is the period treatment occurs
 - t = -1 is period before treatment

#2 – Check for pre-trend [Part 3]

- \neg \forall_t estimates change in y relative to excluded periods; you then plot these in graph
 - Easiest to <u>fully saturate</u> the model (i.e. include λ_t for every period but the very first one); then all estimates γ_t are relative to this period
 - **Can also plot confidence interval for each Y_t**

#2 – Check for pre-trend [Part 4]

■ Something like this is ideal...

#2 – Check for pre-trend [Part 5]

Something like this is very bad

y for treated firms was already going up at faster rate prior to event!

#2 – Check for pre-trend [Part 6]

■ Should we make much of wide confidence intervals in these graphs? E.g.

Answer: Not too much... Each period point estimate might be noisy; diff-in-diff will tell us whether post-average *y* is significantly different then pre-average *y*

#2 – Check for pre-trend [Part 7]

- Another type of pre-trend check done is to do the diff-in-diff in some "random" pretreatment to show no effect
 - □ I'm not a big fan of this... Why?
 - **Answer** #1 It is subject to gaming; researcher might choose a particular pre-period to look at that works
 - Answer #2 Prior approach allows us to see what the timing was and determine whether it is plausible

#3 – Treatment reversal

- In some cases, the "natural experiment" is subsequently reversed
 - E.g. regulation is subsequently undone
- If we expect the reversal should have the opposite effect, it is good to confirm this

#4 – Unaffected variables

- In some cases, theory provides guidance on what variables should be unaffected by the "natural experiment"
 - □ If natural experiment is what we think it is, we should see this in the data... so check

#5 – Add Triple difference

- If theory tells us treatment effect should be larger for one subset of observations, we can check this with triple difference
 - Pre- versus post-treatment
 - Untreated versus treated
 - □ Less sensitive *versus* More sensitive

This is the third difference

Natural Experiment Outline – Part 2

- Difference-in-difference continued...
- How to handle multiple events
- Falsification tests
- Triple differences
 - How to estimate & interpret it
 - Using the popular subsample approach

Diff-in-diff – Regression

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 h_i + \beta_4 (p_t \times h_i) + \beta_5 (d_i \times h_i) + \beta_6 (p_t \times d_i) + \beta_7 (p_t \times d_i \times h_i) + u_{i,t}$$

- $p_t = 1$ if period *t* occurs after treatment and equals zero otherwise
- $d_i = 1$ if unit is in treated group and equals zero otherwise
- $b_i = 1$ if unit is group that is expected to be more sensitive to treatment

Diff-in-diff – Regression [Part 2]

- How to choose and set h_i
 - E.g. If theory says effect is bigger for larger firms; could set $b_i = 1$ if assets of firm in year prior to treatment is above the median size
 - **Note:** Remember to use <u>ex-ante</u> measures to construct indicator if you think underlying variable (that determines sensitivity) might be affected by treatment... Why?
 - □ **Answer** = To avoid bad controls!

Diff-in-diff – Regression [Part 3]

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 h_i + \beta_4 (p_t \times h_i) + \beta_5 (d_i \times h_i) + \beta_6 (p_t \times d_i) + \beta_7 (p_t \times d_i \times h_i) + u_{i,t}$$

- Easy way to check if done correctly...
 - □ Should have 8 coefficients (including constant) to capture the 2×2×2=8 different combinations
 - □ Likewise, a double difference has 4 coefficients (including constant) for the 2×2=4 combinations
- What do β_6 and β_7 capture?

Interpreting the estimates [Part 1]

- β_6 diff-in-diff estimate for the less-sensitive obs.
 - Captures average <u>differential</u> change in *y* from the pre- to post-treatment period for the less sensitive observations in the treatment group relative to the change in *y* for the less sensitive observations in the untreated group

Interpreting the estimates [Part 2]

- β_7 is the triple diff estimate; it tells us how much larger effect is for the more sensitive obs.
 - lacktriangleright lacktr
 - □ What is total treatment effect for these firms?

Tangent – Continuous vs. Indicator?

- lacktriangle Can also do the triple difference replacing b_i with a continuous measure instead of indicator
 - E.g. suppose we expect treatment effect is bigger for larger firms; rather than constructing indicator based on ex-ante size, could just use ex-ante size
 - What are the advantages, disadvantages of this?

Tangent – Continuous vs. Indicator?

- Advantages
 - Makes better use of variation available in data
 - Provides estimate on magnitude of sensitivity
- Disadvantages
 - Makes linear functional form assumption;
 indicator imposes less structure on the data
 - More easily influenced by outliers

Generalized Triple-Difference

- Similar to diff-in-diff, can add in FE to soak up the various terms and improve precision
- E.g. in firm-level panel regression with firm and year fixed effects, you'd estimate

$$y_{i,t} = \beta_1 (p_t \times h_i) + \beta_2 (p_t \times d_i)$$
$$+ \beta_3 (p_t \times d_i \times h_i) + \delta_t + \alpha_i + u_{i,t}$$

■ The other terms (including the constant) all drop out; they are collinear with the FE

Natural Experiment [P2] – Outline

- Difference-in-difference continued...
- How to handle multiple events
- Falsification tests
- Triple differences
 - How to estimate & interpret it
 - Using the popular subsample approach

Subsample Approach

- Instead of doing full-blown triple-difference, you can also just estimate the double-difference in the two separate subsamples
 - □ Double-difference for low sensitive obs. (i.e. $h_i = 0$)
 - Double-difference for more sensitive obs. (i.e. $h_i = 1$)
- **Note:** the estimates won't directly match the β_2 , $\beta_2 + \beta_3$ effects in prior estimation... Why?

Subsample Approach Differences...

- **Answer** = In subsample approach year FE are allowed to differ by sub-sample
 - □ Therefore, subsample approach is actually controlling for **more** things
 - However, one can easily recover the subsample estimates in one regression (and test the statistical difference) between subsamples by estimating...

Matching Subsample to Combined [P1]

$$y_{i,t} = \beta_2 (p_t \times d_i) + \beta_3 (p_t \times d_i \times h_i) + \delta_t + (\delta_t \times h_i) + \alpha_i + u_{i,t}$$

Year FE interacted with sensitivity indicator

- □ Just add interaction between year FE and indicator for being more sensitivity...
 - This allows for different year FE for each subsample, which is what happened when we estimated the subsamples in two separate regressions

Matching Subsample to Combined [P2]

■ In prior regression...

- $\ \square$ β_2 will equal coefficient from diff-in-diff using just the subsample of less sensitive observations
- \square $\beta_2 + \beta_3$ will equal coefficient from diff-in-diff using just the subsample of more sensitive observations
- \Box t-test on β_3 tells you whether effect for more sensitive subsample is statistically different from that of the less sensitive subsample

Triple Diff – Stacked Regression [Part 1]

- Another advantage of <u>stacked</u> regression approach to multiple events is ability to more easily incorporate a triple diff
 - Can simply run stacked regression in separate subsamples to create triple-diff or run it in one regression as shown previously

Triple Diff – Stacked Regression [Part 2]

- Can't easily do either of these in approach of Bertrand and Mullainathan (2003)
 - Some observations act as both 'control' and 'treated' at different points in sample; not clear how create subsamples in such a setting

External Validity – Final Note

- While randomization ensures internal validity (i.e. causal inferences), external validity might still be an issue
 - Is the experimental setting representative of other settings of interest to researchers?
 - I.e. can we extrapolate the finding to other settings?
 - A careful argument that the setting isn't unique or that the underlying theory (for why you observe what you observe) is likely to apply elsewhere is <u>necessary</u>

Summary of Today [Part 1]

- Diff-in-diff & control variables
 - Don't add controls affected by treatment
 - Controls shouldn't affect estimates, but can help improve precision
- Multiple events are helpful in mitigating concerns about parallel trends assumption

Summary of Today [Part 2]

- Many falsification tests one should do to help assess internal validity
 - □ Ex. #1 Compare ex-ante characteristics
 - □ Ex. #2 Check timing of observed effect
- Triple difference is yet another way to check internal validity and mitigate concerns about identification

In First Half of Next Class

- Regression discontinuity
 - What are they?
 - How are they useful?
 - How do we implement them?
- Related readings... see syllabus

Assign papers for next week...

- Gormley and Matsa (RFS 2011)
 - Risk & CEO agency conflicts
- Becker and Stromberg (RFS 2012)
 - □ Agency conflicts between equity & debt
- Ashwini (JFE 2012)
 - Investor protection laws & corporate policies

Break Time

- Let's take our 10 minute break
- We'll do presentations when we get back