Answer to the Q. NO. 2

$\chi_{_{l}}$	X2	Y
35	345	802
43	543	Ø 1
23	456	0

Normalize:

For
$$X_{1}$$
, wear $X_{1} = \frac{35+4-3+23}{3}$

$$= 33.67$$

$$X_{11} = \frac{35 - 33.67}{20} = 0.06.7$$

$$X_{12} = \frac{43 - 33.67}{20} = 0.3165$$

$$X_{13} = \frac{23 - 33.67}{20} = 0.53$$

For
$$X_2$$
,

mean, $M = \frac{345 + 543 + 456}{456} \ge 448$

Range, $S = 543 - 345 = 198$

$$x_{21} = \frac{345 - 448}{193} = -0.52$$

$$\mathcal{X}_{22} = \frac{543 - 448}{198} = 0.48$$

$$\chi_{23} = \frac{456 - 448}{198} = 0.04$$

mean,
$$\mu = \frac{2+1+0}{3} = 1$$

$$y_{11} = \frac{2-1}{2} = 0.5$$

$$y_{12} = \frac{1-1}{9} = 0$$

To we get seat scaled data from [-1<x<1]

•	κ_{l}	×2_	4
	0.067	-0-52	0.5
	0.317	0.48	0
1	-0.53	0.04	-0.5

We can scale this down this data to \$\frac{10.5.05}{0.5} with \$\frac{10.5}{0.5} \times \text{co.5} by with plying each element with 0.5.

1	∞_{l}	XZ	Y
	6.0335	-0.26	0.25
	0.1585	0.24	0
	-0.265	0.02	-0.25

Ane.

Answer to the O. No. 1

XI	χ_2	-	ŷ	`
2 2	3	2		
3	3	3		-
4	4	5		

here,
$$\dot{y}_{0} = h_{0}(0) = O_{0} + \chi_{0}^{2}O_{1} + \chi_{0}(\chi_{0})$$

$$= O_{0} + O_{1}\chi_{1} + O_{2}\chi_{2}$$

$$\hat{y}_{2} = 2 + 10 \times 2 + 0 \times 9$$

= 4

$$y_3' = 2 + 1 \times 3 + 0 \times 3$$

$$\hat{y}_{4} = 2 + 1 \times 4 + 0 \times 4$$

					-
4	x,	X ₂	7) By	3
	2	3]2	4	
	2	4	3	4	
1	3	3	9	5	
	4	4	5	6	

Cost functions
$$T(0) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - \hat{y}_i)^2 \text{, here } m = 4$$

$$= \frac{1}{2 \times 4} \left\{ (4-2)^{2} + (4-3)^{2} + (5-4)^{2} + (6-5)^{2} \right\}$$

$$= \frac{1}{6} \left(4+1+1492 \right) = \frac{1}{6} \left(4+1+1+1 \right) = 666$$

: JOS=1.1667

A