GOALS

- Given a function f(x), understanding the **inverse of** f, denote by $f^{-1}(x)$.
- Find the derivative of f^{-1} at x = a. Notation: $(f^{-1})'(a)$.

RECALL:

- The domain of a function is the set of all input values.
- The range of a function is the set of all output values.

I. Understanding Inverse Functions

Here is an example of a function f(x)

$$f(3) =$$

$$f(1) = \bigcirc$$

$$f(4) = \bigcup$$

The domain of f is the set $A = \{4, 3, 2, 1\}$

The range of f is the set $B = \{10, 7, 4, 2\}$.

Definition: The *inverse function of* f(x) is a <u>new</u> function, denoted by $\underline{\mathcal{G}}$

The domain of $f^{-1} = \text{Range}$ of

The range of $f^{-1} = Domain$ of f

$$f^{-1}(x) = y \iff \mathcal{X} = f(y)$$

$$\chi \xrightarrow{f} y \qquad \qquad \chi \xrightarrow{f} \chi$$

Using the example of f above, evaluate:

$$f^{-1}(2) =$$

$$f^{-1}(4) = \bigcirc$$

Example 1: If
$$f(1) = 5$$
, $f(3) = 7$, and $f(8) = 3$, find $f^{-1}(7)$, $f^{-1}(5)$, $f^{-1}(3)$.

$$f^{-1}(7) = 3$$

$$f^{-1}(3) = 8$$

Example 2: (a) Let $f(x) = x^3$, without an explicit formula of $f^{-1}(x)$, could you spot the answer for $f^{-1}(8)$?

Let
$$f^{-1}(8) = X$$
. Then by definition of inverse, $f(x) = 8$
 $\Rightarrow x^3 = 8 \Rightarrow x = 2 \Rightarrow f^{-1}(8) = 2$

(b) Let $f(x) = x^3 + x + 1$ without an explicit formula of $f^{-1}(x)$, could you spot the answer for $f^{-1}(3)$?

Let
$$f^{-1}(3) = x$$
. Then, $f(x) = 3$
 $\Rightarrow x^3 + x + 1 = 3 \Rightarrow x^3 + x = 2 \Rightarrow x = 1$

(c) Find the inverse function of $f(x) = x^3$.

Let
$$y = f^{-1}(x)$$

 \Rightarrow By define of inverse function g $f(y) = x$
 \Rightarrow $y^3 = x$ (find y in terms of x)
 \Rightarrow $(y^3)^3 = x^3$ (take cube roots) \Rightarrow $y = x^{1/3} \Rightarrow f^{-1}(x) = x^{1/3}$
on both sides

Remark: The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

0

=) $f^{-1}(3)=1$

$$f^{-1} \rightarrow f^{-1} \circ f(x)$$

Cancellation Equations:

If
$$x$$
 is in the domain of f , then $f^{-1}(f(x)) = \chi_g$ by $f^{-1} \circ f = identify$

If
$$x$$
 is in the domain of f^{-1} , then $f(f^{-1}(x)) = x$, or $f \circ f^{-1} = i dentity$

Fact: Only one-to-one functions have inverses.

One-to-One Functions: A function f is one-to-one if

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$. $f(x_1) = f(x_2)$ $\Rightarrow x_1 = x_2$

constant tunction

In other words, a function is one-to-one if every output comes from ONLY ONE input.

Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

II. The derivative of $f^{-1}(x)$ at x = a. Notation: $(f^{-1})'(a)$

Derivative Notation

Functions	Derivatives (a new function)
f(x)	f'(x)

Example 3: Let $f(x) = x^3$, then inverse function of f is $f^{-1}(x) = \sqrt[3]{x}$.

(a) Evaluate
$$f'(1)$$

$$f(x) = x^3$$

$$\Rightarrow f'(x) = 3x^2 \Rightarrow f'(x) = 3$$

$$\frac{d}{dx} \left[x^n \right] = n x^{n-1} \quad \left(n \text{ any real number} \right)$$

(b) Evaluate
$$(f^{-1})'(1)$$

$$f^{-1}(x) = 3\sqrt{x} = x^{3}$$

$$(f^{-1})^{1}(x) = \frac{1}{3}x^{3-1} = \frac{1}{3}x^{-2/3}$$

$$= (f^{-1})^{1}(1) = \frac{1}{3}$$

There is another way of finding $(f^{-1})'(1)$ in example 3 without knowing the explicit formula of $f^{-1}(x)$.

Theorem: If f is one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} \quad \text{where } a \text{ is a number}$$
 (1)

Example 4: Let $f(x) = x^5 + x^3 + x$, use the formula (1) to find $(f^{-1})'(3)$

$$(f^{-1})'(3) = \frac{1}{f'(3)}$$
Let $f^{-1}(3) = x \Rightarrow f(x) = 3 \Rightarrow x^{5} + x^{3} + x = 3 \Rightarrow x = 1$

$$\Rightarrow (f^{-1})'(3) = \frac{1}{f'(1)}$$

$$f'(x) = 5x^{4} + 3x^{2} + 1$$

$$\Rightarrow f^{-1}(3) = 1$$

$$\Rightarrow f^{-1}(3) = 1$$

Example 5: Let $f(x) = 2x + \cos x$. f is a one-to-one function. Find $(f^{-1})'(1)$.

$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))}$$
Let $f^{-1}(1) = x \implies f(x) = 1 \implies 2x + (08x = 1)$
At $x = 0$ we have $2(0) + (080 = 1)$

$$\Rightarrow f^{-1}(1) = 0 \implies (f^{-1})'(1) = \frac{1}{f'(0)} \qquad f'(x) = 2 - 8inx$$

$$= \frac{1}{2} \qquad f'(0) = 2 - 8in0$$

$$= 2$$

Section 6.1 Exercises, page 406: # 3, 5, 7, 17, 23, 39, 40, 41, 42, 43