

RecSys Challenge 2015: ensemble learning with categorical features Peter Romov, Evgeny Sokolov

Problem statement

- Logs from e-commerce website: collection of <u>sessions</u>
- Session
 - sequence of <u>clicks</u> on the item pages
 - could end with or without <u>purchase</u>
- Click
 - Timestamp
 - ItemID (≈54k unique IDs)
 - CategoryID (≈350 unique IDs)
- Purchase
 - set of bought items with price and quantity
- Known purchases for the train-set, need to predict on the test-set

Problem statement

Clicks from session
$$\boldsymbol{s}$$
 $c(s) = (c_1(s), \dots, c_{n(s)}(s))$

Purchase (actual)
$$y(s) = \begin{cases} \emptyset & -\text{no purchase} \\ \{i_1, \dots, i_{m(s)}\} & \text{(bought items)} - \text{otherwise} \end{cases}$$

Purchase (predicted) $h(s) \approx y(s)$

Evaluation measure:

$$Q(h, S_{\text{test}}) = \sum_{\substack{s \in S_{\text{test}}: |h(s)| > 0}} \begin{cases} \frac{|S_{\text{test}}^b|}{|S_{\text{test}}|} + J(y(s), h(s)), & \text{if } y(s) \neq \emptyset \\ -\frac{|S_{\text{test}}^b|}{|S_{\text{test}}|}, & \text{otherwise} \end{cases}$$

where
$$J(y(s),h(s)) = \frac{|y(s)\cap h(s)|}{|y(s)\cup h(s)|} \quad - \text{Jaccard distance between two sets}$$

 $S_{test} - \text{all sessions from test-set} \\ S_{test}^{b} - \text{sessions from test-set with purchase}$

Problem statement

First observations (from the task):

- the task is uncommon (set prediction with specific loss function)
- evaluation measure could be rewritten

$$Q(h, S_{\text{test}}) = \underbrace{\frac{|S_{\text{test}}^b|}{|S_{\text{test}}|}}_{\text{purchase score}} (\text{TP} - \text{FP}) + \underbrace{\sum_{s \in S_{\text{test}}} J(y(s), h(s))}_{\text{Jaccard score}},$$

- the original problem can be divided into two well-known binary classification problems;
 - 1. predict purchase given session $P(y(s) \neq \emptyset|s)$ optimize Purchase score
 - 2. predict bought items given session with purchase optimize Jaccard score $P(i \in y(s)|s, y(s) \neq \emptyset)$

Solution schema

- Two-stage prediction
 - Two binary classification models learned on the train-set
 - Both classifiers require thresholds
 - Set up thresholds to optimize Purchase score and Jaccard score using hold-out subsample of the train-set

Some relationships from data

Next observations (from the data):

- Buying rate strongly depends on time features
- Buying rate varies highly between categorical features

Buying rate — fraction of buyer sessions in some subset of sessions

Feature extraction

- Purchase classifier: features from session (sequence of clicks)
- Bought item classifier: features from pair session+itemID
 - Observation: bought item is a clicked item

- We use two types of features
 - Numerical: real number, e.g. seconds between two clicks
 - Categorical: element of the unordered set of values (levels), e.g. ItemID

Feature extraction: session

- 1. Start/end of the session (month, day, hour, etc.) [numerical + categorical with few levels]
- 2. Number of clicks, unique items, categories, item-category pairs [numerical]
- 3. Top 10 items and categories by the number of clicks [categorical with ≈50k levels]
- 4. ID of the first/last item clicked at least *k* times [categorical with ≈50k levels]
- Click counts for 100 items and 50 categories that were most popular in the whole training set [sparse numerical]

Feature extraction: session+ItemID

- 1. All session features
- 2. ItemID[categorical with ≈50k levels]
- 3. Timestamp of the first/last click on the item (month, day, hour, etc.) [numerical + categorical with few levels]
- 4. Number of clicks in the session for the given item [numerical]
- 5. Total duration (by analogy with dwell time) of the clicks on the item [numerical]

Classification method

- GBM and similar ensemble learning techniques
 - useful with numerical features
 - one-hot encoding of categorical features doesn't perform well
- Matrix decompositions, FM
 - useful with categorical features
 - hard to incorporate numerical features because of rough (bi-linear) model
- We used our internal learning algorithm: MatrixNet
 - GBM with oblivious decision trees
 - trees properly handle categorical features (multi-split decision trees)
 - SVD-like decompositions for new feature value combinations

Classification method

Oblivious decision tree with categorical features

Classification method: speed

- Training classifiers
 - GB with 10k trees for each classifier
 - ≈12 hours to train both models on 150 machines
- Making predictions
 - We made 4000 predictions per second per thread

Threshold optimization

$$Q(h, S_{\text{valid}}) = \underbrace{\frac{|S_{\text{valid}}^b|}{|S_{\text{valid}}|}}_{\text{purchase score}} (\text{TP} - \text{FP}) + \underbrace{\sum_{s \in S_{\text{valid}}}}_{\text{Jaccard score}} J(y(s), h(s)),$$

We optimized thresholds using validation set (10% hold-out from train-set)

- 1) Maximize Jaccard score
- Maximize Purchase+Jaccard scores using fixed bought item threshold

Final results

- Leaderboard: 63102 (1st place)
- Purchase detection on validation (10% hold-out):
 - 16% precision
 - 77% recall
 - AUC 0.85
- Purchased item detection on validation:
 - Jaccard measure 0.765
- Features / datasets used to learn classifiers / evaluation process can be reproduced, see our code¹

Summary / Questions?

1. Observations from the problem statement

The task is complex but decomposable into two well-known: binary classification of sessions and (session, ItemID)-pairs

2. Observations from the data (user click sessions)

- > Features from sessions and (session, ItemID)-pairs
- Easy to develop many meaningful categorical features

3. The algorithm

- > Gradient boosting on trees with categorical features
- No sophisticated mixtures of Machine Learning techniques: one algorithm to work with many numerical and categorical features