How to Prevent a Car Loan Default Crisis

By Michael Scognamiglio nyc-mnhtn-ds-080320

Presentation Structure

- → What is this Project about and What is the Business Case?
- → What's the Dataset and Process like?
- → What did you found during EDA and statistical testing?
- → What was the modeling process like?
- → What did you find through Modeling?
- → What's next?

What is this Project Anyway?

- Car Loan Defaults
- America has over \$1 trillion dollars in car loan debt
- Build a model that can accurately flag whether or not a loan is trouble
- Provide Insights through EDA and stat testing what factors should be looked at the closest
- Analyze final model to see if any additional insights can be gleaned

Dataset and Process

- Dataset was obtained from Financial Institutions Data from India
- Compiled into large Kaggle Dataset
- 200,000 rows and 60 initial features
- Initial Steps involved Data Cleaning and Data Exploration
- Major issue was Class imbalance about 5/1

EDA and Statistical Testing Findings

EDA and Statistical Testing Findings

Model Selection

Model	F1 Score	Recall Score
Logistic Regression	.654	.90
KNN	.550	.56
Decision Tree	.660	.93
Random Forest	.550	.66
XGBoost	.550	.65
Voting Classifier	.654	.79

All values are Test set scores.

Recall Score was prioritized as evaluation metric to minimize false negatives (predicted won't default but in reality did default)

Final Model

Decision Tree

.660

.93

Model Conclusions

Model Conclusions

Next Steps

- Final model did a great job of minimizing false negatives.
- However that came at a cost of high Type I Error (false positives).
- For this business case, this was acceptable because false negatives are far worse.
- In the future, I want to explore models that can optimize the ratio of these parameters better.

Any Questions??

Thanks.