

Механико-математический факультет

Алгебра, 1 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1	Система линейных уравнений	2
	1.1 Матрица. Основные понятия	. 2
	1.2 Система линейных (алгебраческих) уравнений	. 3
	1.3 Элементарные преобразования над СЛУ	. 4
	1.4 Элементарные преобразования над матрицами	
	1.5 Решение СЛУ методом Гауса	
2	Векторные пространства	10
_	2.1 Аксиомы элементов векторного пространства	
	2.2 Следствия	
	2.3 Векторные подпространства	
	1	
	2.5 Линейная оболочка множества S	
	2.6 Базис	. 17
3	Ранг	19
	3.1 Рангом системы векторного простанства	. 19
	3.2 Ранг матрицы	. 19
4	Возвращаемся к системе линейных уравнений	22
	4.1 Фундаментальная система решений	
	4.2 Неоднородная СЛУ	
5	Операции над матрицами	27
6	Линейные отображения	29
	6.1 Изоморфизм	. 29
	6.2 Линейные отображение и матрицы	
	6.3 Операции над линейными отображениями	
	6.4 Свойства операций над матрицами	
	6.5 Свойства операции транспонирования	
	6.6 О ранге и операциях над матрицами	
7	Перестановки	38
8	Определители n-го порядка	39
	8.1 Свойства определителей	
	8.2 Элементарные матрицы	
	8.3 Разложение определителя по строке	. 47

1 Система линейных уравнений

1.1 Матрица. Основные понятия

Определение. Матрица A размера $m \times n$ это прямоугольная таблица с m строками и n столбцами

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} - элемент матрицы и индексы:

- \bullet i номер строками
- \bullet j номер столбца

 $M_{m \times n}(\mathbb{R})$ - Множество всех матриц размера $m \times n$ с элементами из \mathbb{R}

Матрица $m \times 1$ называется столбцом:

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Если $A=(a_{ij})$ - крадратная, $a_{ij}=0 \ \forall i\neq j,$ то A называется диальнольной.

$$A = \begin{pmatrix} a_{11} & & & & 0 \\ & a_{22} & & & \\ & & \ddots & & \\ 0 & & & a_{nn} \end{pmatrix}$$

Если A - диальнольная и $a_{ij}=1,$ то A называется единичной.

$$A = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix}$$

Если A - квадратная, то

$$ullet$$
 $A = \begin{pmatrix} a_{11} & & & \\ & \ddots & & \\ & & a_{nn} \end{pmatrix}$ главная диагональ

Определение. Если A - размера $m \times n, \, a_{ij} = 0 \,\, \forall i,j, \, {
m To} \,\, A$ называется нулевой.

1.2 Система линейных (алгебраческих) уравнений

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

где $a_{ij},b\in\mathbb{R},x_1,...,x_n$ - неизвестные.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} \\ \vdots \\ b_n \end{pmatrix}$$

A - матрица коэфициентов, a_{ij} называется коэфициентом СЛУ.

B - столбец свобоных членов, b_j - свободный член.

Определение. Расширенная матрица (A|B). Набор чисел $x_1^0,...,x_n^0 \in \mathbb{R}$ называется решением системы (*), если подстановка этих чисел вместо неизвестных в (*) дает тождество в каждом уравнении. $(x_i^0 \longleftrightarrow x)$

Решить систему - это найти все решения системы. Любое конткретное решение называется частным.

Определение. Если СЛУ имеет решение, то она называется совместной, иначе несовместной.

Определение. Совместная система, имеющая одно решение, называется определенной, иначе неопределенной (более одного решения).

1.3 Элементарные преобразования над СЛУ

- 1. Прибавить к одному уравнению другое уравнение, умноженное на число $\lambda \in \mathbb{R}$
- 2. Поменять местами два уравнения
- 3. Умножить уравнение на ненулевое число $\mu \in \mathbb{R}$

Утверждение. Эти преобразования обратимы.

Определение. Две системы линеных уравнений называются эквивалентными, если их множества решений совпадают.

Утверждение. Если одна СЛУ получена из другой СЛУ с помощью конечного числа элементарных преобразований, то эти системы эквивалентны.

Доказательство.

 \Longrightarrow (Не Куликова) AX=B - исходная система, $\tilde{A}X=\tilde{B}$ преобразованная система.

Пусть $z_1,...,z_n$ некотороое решение AX=B. Будем рассматривать $\tilde{A}X=\tilde{B},$ в ней ЭП II типа умножают строку на μ , имеем:

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i$$
 в $AX = B$
$$\mu a_{i1}x_1 + \dots + \mu a_{in}x_n = \mu b_i$$
 в $\tilde{A}X = \tilde{B}$

Выносим μ из второго уравнения:

$$\mu(a_{i1}x_1 + \dots + a_{in}x_n) = \mu b_i$$

Получаем, что $z_1,...,z_n$ решение для $\tilde{A}X=\tilde{B}$. Для III типа ЭП очевидно. Теперь рассмотрим I тип, будем к і-ой строчке прибавлять ј-ую к коэфициентом λ , получаем:

$$(a_{i1} + \lambda a_{j1})x_1 + \dots + (a_{in} + \lambda a_{jn})x_n =$$

$$= a_{i1}x_1 + \lambda a_{j1}x_1 + \dots + a_{in}x_n + \lambda a_{jn}x_n =$$

$$= a_{i1}x_1 + \dots + a_{in}x_n + \lambda(a_{j1}x_1 + \dots + a_{jn}x_n) = b_i + \lambda b_j$$

Таким образом, любое решение старой СЛУ - это и решение новой, то есть множество решений не уменьшилось. (со столбцами все тоже самое)

Мораль в том, что мы можем работать с расширенной матрицей (A|B).

1.4 Элементарные преобразования над матрицами

Элементарные преобразования над строками:

$$A = egin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_i} \end{pmatrix}, \; \mathrm{гдe} \; \overline{a_i} - \mathrm{строкa}$$

- $\ni \Pi 1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_i}$
- $\ni \Pi 2: \overline{a_i} \longleftrightarrow \overline{a_j}$
- $\ni \Pi 3: \overline{a_i} \to \mu \overline{a_i}, \ \mu \neq 0$

Определение. Лидер строки (ведущий элемент) - это 1-й ненулевой элемент слева.

Пример:
$$(0,0,\underbrace{3}_{\text{лидер}},4,5,0,0,7)$$

Определение. Матрица A размера $m \times n$ называется ступенчатой, если

- 1. Номера лидеров ненулевых строк строго возрастают с увеличением номера строки.
- 2. Все нулевые строки стоят внизу (в конце).

Теорема. Любую матрица A размера $m \times n$ за конечное число элементарных преобразований над строками можно привести к ступенчатому виду.

Доказательство. Индукция по n:

Если A - нулевая, то A - ступенчатого вида. Если $A \neq 0$: найдем первый ненулевой столбец (начиная слева). Пусть j - номер первого ненулевого столбца. Пусть $a_{ij} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 \\ \vdots & \vdots \\ & & a_{ij} \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

Меняем 1-ю и i-ю строку местами и получаем, что a_{ij} стал лидером первой строки. Считаем, что сразу $a_{1j} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 & a_{ij} & * \\ \vdots & \vdots & * & * \\ & & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \end{pmatrix}$$

Вычитаем из кажкой k-й строки, начиная со 2-ой, 1-ю строку, умноженную на число $\frac{a_{kj}}{a_{1j}}$. Получает вид:

$$\tilde{A} = \begin{pmatrix} 0 & 0 & & * & \\ \vdots & \vdots & & * & * \\ & & & \vdots & \\ \vdots & \vdots & & \vdots & \\ 0 & 0 & & \vdots & \end{pmatrix}$$

К правой части матрицы применяем индукцию и проводим матрицу к ступенчатому виду.

Замечание. Этот метод называется методом Гауса.

1.5 Решение СЛУ методом Гауса

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Элементарные преобразования над $AX = B \iff$ элементарные преобразования над (A|B).

СЛУ AX = B ступенчатая $\Longrightarrow (A|B)$ имеет ступенчатый вид.

Утверждение. Решение СЛУ ступенчаного вида.

Пусть AX = B - ступенчатая

$$(A|B) = \begin{pmatrix} a_{11} & & & & b_{1} \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & & a_{sn} & b_{s} \\ & & & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & b_{\widetilde{s}} \end{pmatrix}$$

 \widetilde{s} - ненулевые строки расширенной матрицы

s - число ненулевых строк

$$\widetilde{s} = \begin{bmatrix} s \\ s+1 \end{bmatrix}$$

1 случай: $\widetilde{s} \neq s$ ($\widetilde{s} = s + 1$)

Рассмотрим последнюю ненулевую строку:

$$\begin{pmatrix} a_{11} & & & & b_1 \\ & a_{22} & & & \vdots \\ & & \ddots & & \vdots \\ & & a_{sn} & b_s \\ 0 & \cdots & \cdots & 0 & b_{s+1} \end{pmatrix}$$

 $0x_1 + ... + 0x_n = b_{s+1} \Longrightarrow$ решение у этого уравнения нет \Longrightarrow СЛУ не имеет решения, т.е. несовместнаю.

Далее $\widetilde{s} = s$

Заметим, что $\widetilde{s} = s \le n$ (n-количество столбцов)

2 случай: $\widetilde{s} = s = n$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ & \ddots & \vdots \\ a_{nn}x_n = b_n \end{cases}$$

Такая СЛУ называются строго треугольной

Из n-го уравнения однозначно находится $x_n = \frac{b_n}{a_{nn}}$ Подставляем во все оставшиеся уравнения $x_n = \frac{b_n}{a_{nn}} \Longrightarrow$ исключаем x_n . Получаем строго треугольную систему с меньшим количество неизвестных.

Далее из (n-1)-го уравнения находим x_{n-1} и т.д. \Longrightarrow СЛУ имеет единственное решение т.е. является определенной.

3 случай: $\widetilde{s} < n$

$$\begin{pmatrix} 0 & 0 & |a_{1k_1} & * & \cdots & * & * \\ 0 & 0 & 0 & |a_{2k_2} & * & \cdots & * & * \\ & & & \ddots & & & \vdots \end{pmatrix}$$

 $a_{1k_1},...,a_{sk_s}$ - лидеры;

 $x_{k_1},...,x_{k_s}$ - главные неизвестные (неизвестные соответствуют лидерам) Оставшиеся неизвестные назовем свободными.

Перекинем в правую часть СЛУ слагаемые, соответствующие свободным неизвестным \Longrightarrow получаем относительно главных неизвестных строго треугольную СЛУ.

Как в случае 2 однозначно выражается главные неизвестные через свободные \Longrightarrow с точностью до нумерации получаем:

$$\begin{cases} x_1 = c_{1,s+1}x_{s+1} + \dots + c_{1n}x_n + d_1 \\ \vdots \\ x_s = c_{s,s+1}x_{s+1} + \dots + c_{sn}x_n + d_s \end{cases}$$

Это выражение называется общим решением системы. Подставляя вместо свободных неизвестных конкретное число из \mathbb{R} , получаем значение для главных.

⇒ получаем все решения СЛУ

Если СЛУ имеет > 1 решения - такая СЛУ называется неопределенной.

СЛУ
$$\widetilde{s} \neq s \qquad \qquad \widetilde{s} = s$$
 несовместна
$$\widetilde{s} = s = n \qquad \qquad \widetilde{s} = s \leq n$$
 определенна неопределенна

Алгоритм. $AX = B \longmapsto (A|B) \sim (A_c|B_c) \longmapsto A_cX = B_c$

Определение. Матрица A имеет улучшенный ступенчатый вид, если выполнены следующие условия:

- 1. A ступенчатого вида
- 2. Все лидеры равны 1
- 3. В каждом столбце, где есть лидер $\neq 0$, все элементы равны 0

Утверждение. Любую матрицу A можно привести к улучшенному ступенчатому виду с помощью элементарных преобразований.

Рассмотрим последний лидер a_{sk_s} . Если $a_{sk_s} \neq 1$, то s-ю строку делим на a_{sk_s} и получаем, что $\widetilde{a_{sk_s}} = 1$.

Далее из всех строк вычитаем первую, умноженную на $a_{ik_s} \Longrightarrow \widetilde{a_{ik_s}} = 0$ и т.д.

Определение. СЛУ AX = B называется однородной, если B = 0, т.е. все свободные члены нулевые.

Утверждение. Однородная система всегда совместна.

Доказательство. AX=0 всегда имеет решение $x_1=0,...,x_n=0$ (тривиальное решение)

Следствие. Однородная СЛУ, в которой число уравнений < числа неизвестных, имеет нетривиальное решение.

Доказательство. (в обозначениях из метода Гаусса)

Т.к. система совместна (т.к. B=0), то $s=\widetilde{s}$

С другой стороны $s=\overline{s}\leq$ число исходных уравнений < n \Longrightarrow $s=\widetilde{s}<$ n \Longrightarrow СЛУ неопределенна \Longrightarrow \exists более одного решения \Longrightarrow \exists нетривиальное решение.

2 Векторные пространства

2.1 Аксиомы элементов векторного пространства

Мы рассматриваем векторные пространства над полем \mathbb{R} .

Определение. Векторным пространством над \mathbb{R} называют множество элементов V, на котором введены операции сложения и умножения на числа из \mathbb{R} :

1.
$$\forall x, y \in V \Longrightarrow x + y = z \in V$$

2.
$$\forall \lambda \in \mathbb{R}, \forall x \in V \Longrightarrow \lambda x = w \in V$$

Удовлетворяет следующими свойствами:

1.
$$x + y = y + x$$
 (коммутативность)

2.
$$(x + y) + z = x + (y + z)$$
 (ассоциативность)

- 3. $\exists \, 0 \in V : \forall x \in V : x + 0 = 0 + x = x$ (нейтральный элемент относильно сложения)
- 4. $\forall x \in V : \exists \, x' : x + x' = 0 \; ($ противоположный элемент)
- 5. $\forall \lambda \in \mathbb{R}, \forall x,y \in V: \lambda(x+y) = \lambda x + \lambda y$ (дистрибутивность умножения отностильно сложения)
- 6. $\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : (\lambda + \mu)x = \lambda x + \mu x$ (дистрибутивность сложения отностильно умножения)

7.
$$\forall \lambda, \mu \in \mathbb{R}, \forall x \in V : \lambda(\mu x) = (\lambda \mu) x$$
 (ассоциативность умножения)

8.
$$\forall x \in V : 1 \cdot x = x$$
 (нейтральный элемент относильно умножения)

Определение. Любой элемент векторного пространства называется вектором.

Примеры векторных пространств:

- 1. V^2 Геометрические векторы на плоскости.
- 2. V^3 Геометрические векторы в пространстве.
- 3. $\mathbb{R}^n = \{(a_1, ..., a_n) | a_i \in \mathbb{R} \}$ арифметические векторы.

"+":
$$(a_1,...,a_n)+(b_1,...,b_n)=(a_1+b_1,...,a_n+b_n)$$
" \times ": $(a_1,...,a_n) imes\lambda=(a_1\lambda,...,a_n\lambda)$

Упражнение. Проверьте, что \mathbb{R}^n (арифметическое пространство строк) с этими операциями является векторным пространством.

2.2 Следствия

1. нулевой вектор единственный

Доказательство. Пусть существует два $\overline{0}_1, \overline{0}_2 \in V$, тогда:

$$\overline{0}_2 = \overline{0}_1 + \overline{0}_2 = \overline{0}_2 + \overline{0}_1 = \overline{0}_1$$

2. $\forall x \in V$ противоположный вектор единственный

Доказательство. Пусть существует два x_1, x_2 - различные противоположные к вектору x, тогда:

$$\overline{0} + x_2 = (x_1 + x) + x_2 = x_1 + (x + x_2) = x_1 + \overline{0}$$

3. $\forall \lambda \in \mathbb{R} : \lambda \cdot \overline{0} = \overline{0}$

Доказательство.

$$\lambda\cdot\overline{0}=\lambda\cdot(\overline{0}+\overline{0})=\lambda\cdot\overline{0}+\lambda\cdot\overline{0}$$

Прибавим к обе им частям уравнения $\lambda\cdot\overline{0}=\lambda\cdot\overline{0}+\lambda\cdot\overline{0}$ противоположный к $\lambda\cdot\overline{0}$, тогда:

$$\lambda \cdot \overline{0} + (-\lambda \cdot \overline{0}) = \lambda \cdot \overline{0} + \lambda \cdot \overline{0} + (-\lambda \cdot \overline{0})$$
$$\overline{0} = \lambda \cdot \overline{0}$$

4.
$$\lambda \cdot (-x) = -\lambda \cdot x$$

5.
$$\lambda \cdot (x - y) = \lambda x - \lambda y$$

6.
$$(-1) \cdot x = -x$$

7.
$$(\lambda - \mu) \cdot x = \lambda x - \mu x$$

2.3 Векторные подпространства

Определение. Подмножество $U\subseteq V$ называется векторным подпространством, если:

1.
$$x, y \in U \Longrightarrow x + y \in U$$

2.
$$\forall \lambda \in \mathbb{R}, \forall x \in U \Longrightarrow \lambda \cdot x \in U$$

3.
$$U \neq \emptyset$$

Замечание. 3 условие заменить на условие: $0 \in U$

⇐ очевидно.

$$\Longrightarrow$$
 если $U \neq \varnothing$, то $\exists x \in U \Longrightarrow$ по $2.: (-1) \cdot x \in U \Longrightarrow -x \in U \Longrightarrow x + (-x) \in U \Longrightarrow 0 \in U$

Утверждение. Любое векторное подпространство векторного пространства V само является векторным пространством относительно операций векторного пространства V.

Доказательство. Надо проверить определение. 1 и 2 свойство из операций векторного пространства означают, что в U заданы операции сложения и умножения на вещественное число. Проверка аксиом векторного пространства: 1,2,5,6,7,8 - выполнены для всех векторов из V, а значит и для всех векторов из U.

3,4 доказательство как в замечании:

$$\forall x \in U, \ \exists \ (-x) = (-1) \cdot x \in U, \ \overline{0} \in U, \ \mathrm{t.k.} \ U \neq \varnothing$$

Примеры.

- 1. V^3, U множество всех векторов из $V^3,$ параллельные фиксированной плоскости.
- 2. $\mathbb{R}^n, U = \{(a_1, ..., a_n) | a_{2i} = 0\}$ векторное подпространство $\widetilde{U} = \{(a_1, ..., a_n) | a_{2i} = 1\}$ не векторное подпространство, т.к. множество не замкнуто относительно сложения и умножения.
- 3. В любом векторном простанстве V есть такие подпространства, состоящие только из нулевого вектора. (тривиальное или несобственное подпространство) (Остальное называется собственными)

2.4 Линейная зависимость системы векторов

V - векторное пространство над полем $\mathbb R$

Определение. Линейной комбинацией векторов $v_1, ..., v_n \in V$ с коэфициентами $\lambda_1, ..., \lambda_n \in \mathbb{R}$ называется выражение вида:

$$\lambda_1 x_1 + \cdots + \lambda_n x_n$$

Говорят, что вектора $w \in V$ линейно выражаются через $(v_1,...,v_n)$, если $\exists \lambda_1,...,\lambda_n \in \mathbb{R} : w = \lambda_1 x_1 + \cdots + \lambda_n x_n$

Определение. Линейная комбинация $\lambda_1 x_1 + \cdots + \lambda_n x_n$ называется тривиальной, если $\lambda_1 = 0, ..., \lambda_n = 0$. Иначе нетривиальной.

Определение. Система векторов $v_1, ..., v_n$ называется линейно зависимой (ЛЗ), если \exists нетривиальная линейная комбинация равная 0, (т.е. $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все равные 0) такая что $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$. Иначе система называется линейно независимой (ЛНЗ), т.е. из любого такого равенства $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$ $\Longrightarrow (\lambda_1, ..., \lambda_n) = 0$.

Примеры. $V^2, v_1 = i + j, v_2 = 2i, v_3 = 3i$ -линейно зависимая система, т.к.

$$1 \cdot (i+j) + (-\frac{1}{2}) \cdot (-\frac{1}{3}) \cdot (3i) = 0$$

$$1 \cdot v_1 + \left(-\frac{1}{2}\right) \cdot v_2 + \left(-\frac{1}{3}\right) \cdot v_3 = 0$$

Свойства.

- 1. Система из одного вектора V_1 ЛЗ $\Longleftrightarrow V_1 = 0$
- 2. Система из 2-х векторов v_1 и v_2 ЛЗ \iff они пропорциональные, т.е. $v_1 = \lambda v_2$ $v_2 = \mu v_1$.

Пример. \mathbb{R}^n

Система $\underbrace{(1,0,0,...,0)}_{e_1},\underbrace{(0,1,0,...,0)}_{e_2},...,\underbrace{(0,0,0,...,1)}_{e_n}$ линейно независимая $\lambda_1e_1+\cdots+\lambda_ne_n=(0,...,0) \stackrel{e_2}{\Longleftrightarrow} (\lambda_1,...,\lambda_n)=0 \stackrel{e_n}{\Longleftrightarrow} \text{ЛНЗ}$

Лемма 1. (Критерий линейной зависимости) Система векторов $v_1, ..., v_n \in V$, n > 1 - линейно зависимы \iff хотя бы один вектор линейно выражается через оставшиеся.

Доказательство.

- \Longrightarrow По определению ЛЗ $\exists \lambda_1, ..., \lambda_n \in \mathbb{R}$ не все нулевые: $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$. Без ограничения общности можем считать, что $\lambda_1 \neq 0$, тогда $v_1 = \frac{1}{\lambda_1}(-\lambda_2 v_2 \cdots \lambda_n v_n)$

Замечание. В лемме 1 нельзя «хотя бы один» заменить на «любой»! Пусть $v_1 \neq 0, v_2 = 0$ и v_1, v_2 - ЛЗ, т.к. $0 \cdot v_1 + 1 \cdot v_2 = 0$

Лемма 2. Пусть $v_1, ..., v_n \in V$ - ЛНЗ, тогда $w \in V$ линейно выражается через $v_1, ..., v_n \iff (w, v_1, ..., v_n)$ - ЛЗ.

Доказательство.

- $\Longrightarrow \exists \mu_1,...,\mu_n \in \mathbb{R} : w = \mu_1 v_1 + \cdots + \mu_n v_n \Longrightarrow$ по критерию ЛЗ система $\{w,v_1,...,v_n\}$ ЛЗ.
- ш Пусть система ЛЗ $\exists \lambda_0,...,\lambda_n \in \mathbb{R}$ не все нули, так что $\lambda_0 w + \lambda_1 v_1 + \cdots + \lambda_n v_n = 0,$ тогда:
 - 1. $\lambda_0=0$, то $\lambda_1v_1+\cdots+\lambda_nv_n=0$ нетривиальная линейная комбинация
 - 2. $\lambda_0 \neq 0 \Longrightarrow w = (-\frac{\lambda_1}{\lambda_0})v_1 + \cdots + (-\frac{\lambda_n}{\lambda_0})v_n$

Лемма 3. Пусть вектор w линейно выражается через $v_1, ..., v_k$. Тогда это выражение единственное.

Доказательство.

1. Пусть выражается единственно. Допустим, $v_1, ..., v_k$ - ЛЗ $\Longrightarrow \exists \{\lambda_1, ..., \lambda_k\}$ не все нулевые, т.ч. $\lambda_1 v_1 + \cdots + \lambda_k v_k = 0$ Тогда если $w = \mu_1 v_1 + \cdots + \mu_k v_k$, то $w + 0 = (\mu_1 + \lambda_1) v_1 + \cdots + (\mu_k + \lambda_k) v_k$ другое разложение, противоречие.

2. Пусть $v_1, ..., v_k$ - ЛНЗ. Допустим, что существует два разложения:

$$w=\mu_1v_1+\cdots+\mu_kv_k$$
 $w=\widetilde{\lambda_1}v_1+\cdots+\widetilde{\mu_k}v_k$ $\Longrightarrow \{v_1,..,v_k\}$ - ЛЗ \Longrightarrow противоречие.

Лемма 4.

- 1. Если какая-то подсистема векторов ЛЗ, то вся система ЛЗ.
- 2. Если система векторов ЛНЗ, то любая подсистема ЛНЗ.

Доказательство.

- 1. Пусть подсистема $v_1,...,v_k$ системы $v_1,...,v_k,...,v_m$ ЛЗ $\Longrightarrow \exists \lambda_1,...,\lambda_k$ не все равные нулю, т.ч. $\lambda_1 v_1 + \cdots + \lambda_k v_k = 0$ Положим $\lambda_{k+1} = 0,...,\lambda_m = 0$ Тогда $\lambda_1 v_1,...,\lambda_k v_k,...,\lambda_m v_m = 0$ нетривиальная ЛК $\Longrightarrow \{v_1,...,v_k,v_{k+1},...,v_m\}$ ЛЗ.
- 2. Следует из 1.

Лемма 5. (ОЛЛЗ)

Пусть $v_1,...,v_k\in V,w_1,...,w_m\in V$, причем каждый w_i линейно выражается через $v_1,...,v_k$, тогда, если m>k, то $\{w_1,...,w_m\}$ - ЛЗ.

Доказательство. Пусть

$$\begin{cases} w_1 = c_{11}v_1 + \dots + c_{1k}v_k \\ w_2 = c_{21}v_1 + \dots + c_{2k}v_k \\ \vdots \\ w_m = c_{m1}v_1 + \dots + c_{mk}v_k \end{cases}$$
 где $c_{ij} \in \mathbb{R}$

Докажем, что \exists нетривиальная ЛК $w_1,...,w_m=0$ Для произвольных $\lambda_1,...,\lambda_m$ рассмотрим выражение:

$$\lambda_1 w_1 + \dots + \lambda_m w_m = \\ = \lambda_1 (c_{11} v_1 + \dots + c_{1k} v_k) + \dots + \lambda_m (c_{m1} v_1 + \dots + c_{mk} v_k) = \\ = (\lambda_1 c_{11} + \dots + \lambda_m c_{m1}) v_1 + \dots + (\lambda_1 c_{1k} + \dots + \lambda_m c_{mk}) v_k$$

Рассмотрим СЛУ с неизвестными $\lambda_1, ..., \lambda_m$ из k уравнений:

$$\begin{cases} c_{11}\lambda_1 + \dots + c_{m1}\lambda_m = 0 \\ \vdots \\ c_{1k}\lambda_1 + \dots + c_{mk}\lambda_m = 0 \end{cases}$$

Т.к. m>k и это ОСЛУ в которой число уравнений < числа неизвестных, то эта система имеет нетривиальное решение

$$\lambda_1,...,\lambda_m\Longrightarrow \lambda_1w_1+\cdots+\lambda_mw_m=0$$
 - это нетривиальная ЛК
$$\Longrightarrow w_1,...,w_m$$
 - ЛЗ.

2.5 Линейная оболочка множества S

V - векторное простанство над \mathbb{R} $S\subseteq V, S\neq\varnothing$

Утверждение. Множество всех ЛК $\lambda_1 s_1 + \cdots + \lambda_k s_k$, $\lambda_i \in \mathbb{R}$, $s_i \in S$ образует векторное подпространство в пространстве V.

$$\square$$
 Доказательство. \square /з.

Определение. Такое векторное подпространство называется линейная оболочка множества S, обозначается $\langle S \rangle$.

Примеры.

1.
$$\mathbb{R}^3$$
, $S = \{(1,0,0), (0,1,0)\}; \quad \langle S \rangle = \{(\lambda,\mu,0) \mid \lambda,\mu \in \mathbb{R}\}$

2.
$$V^3$$
, $S = \{i, j, i+j\}$

Определение. Если $V = \langle S \rangle$, то S называется порождающим множеством векторного простанства V. Говорят векторное пространство V порождается множеством S.

Определение. Если \exists конечное множество S, т.ч. $V = \langle S \rangle$, то V называется конечномерным (конечнопорожденным), иначе бесконечномерным.

Пример.
$$\mathbb{R}^n = \langle (1, 0, ..., 0), ..., (0, ..., 0, 1) \rangle$$

Лемма. (Переформулировка ОЛЛЗ) Пусть векторное пространство V пораждается k векторами. Тогда любые m>k векторов из V - ЛЗ.

2.6 Базис

V- конечномерное векторное простанство над $\mathbb R$

Определение. 1 Система векторов $\{e_1,...,e_n\}\subseteq V$ называется бизисом векторного пространства V, если:

1.
$$\{e_1, ..., e_n\}$$
 - ЛНЗ

2.
$$V = \langle e_1, ..., e_n \rangle$$
, r.e. $\forall x \in V, \exists x_1, ..., x_n \in \mathbb{R} : x = x_1 e_1 + \cdots + x_n e_n$

Эти числа $x_1,...,x_n$ - называются координатами вектора x в базисе $\{e_1,...,e_n\}$

Определение. 2 Система векторов $\{e_1, ..., e_n\} \subseteq V$ называется базисом векторного простанства V, если любой вектор $x \in V$ выражается через $\{e_1, ..., e_n\}$ единственным образом.

Утверждение. (Опр 1)
$$\iff$$
 (Опр 2)

Теорема. Всякое конечномерное векторное пространство над \mathbb{R} обладает базисом. Более того, из любого конечного порожденного множества можно выбрать базис.

Доказательство. Пусть S- какое-то порожденное множество векторного пространства V.

Если S - ЛНЗ, то S - базис

Если S - ЛЗ, то по критерию о ЛЗ один из векторов S_1 множества S линейно выражается через остальные.

Тогда $S_1 = S \setminus \{s_1\}$ - конечное пораждащее множество. ч.т.д.

Т.к. S - конечное, это процесс прервется и мы получим ЛНЗ порожденную систему. \Box

Теорема. В любом базисе конечномерного векторного пространства V над \mathbb{R} одно и тоже число векторов.

Доказательство. Пусть есть два базиса $\{e_1,...,e_m\}$ и $\{f_1,...,f_m\}$ векторного пространства V. Тогда каждый вектор f_i выражается через $e_1,...,e_m$.

По ОЛЛЗ:
$$\{f_1,...,f_m\}$$
 - ЛЗ $\Longrightarrow \{f_1,...,f_m\}$ - не базис \Longrightarrow противоречие. \square

Определение. Число векторов в базисе конечномерного векторного пространства V, называется размерностью векторного простанства и обозначается: dimV

Примеры.

- 1. $dimV^2 = 2$
- 2. $dim\mathbb{R}^n = n$

Замечание. Если V=0, то dim V=0 (базис систоит из \varnothing)

Пусть V- векторное пространство над $\mathbb{R},\ dim V=n,\ S\subseteq V$ Любые m>n векторов в S - ЛЗ. (из ОЛЛЗ)

 \implies в S \exists максимальная ЛНЗ подсистема (т.е. ничего нельзя добавить к этой подсистеме без нарушения ЛНЗ)

Лемма 6. Пусть V - n-мерное векторное пространство над \mathbb{R} , $S \subseteq V$. Тогда максимальная ЛНЗ система векторов из S образует базис в лин. оболочке $\langle S \rangle$

Доказательство. Пусть $\{s_1,...,s_k\}$ максимальная (по включению) ЛНЗ система в $S\Longrightarrow \forall s\in S\setminus \{s_1,...,s_k\}\Longrightarrow \{s,s_1,...,s_k\}-\Pi$ З.

По Лемме (2). $\Longrightarrow s = \lambda_1 s_1 + \dots + \lambda_k s_k$

Докажем, что $\{s_1,...,s_k\}$ базис в $\langle S \rangle$.

- 1. ЛНЗ (очевидно)
- 2. $\forall x \in \langle S \rangle : x = x_1 s_1 + \dots + x_k s_k$

По определению линейной оболочки x линейно выражается через вектора из S А каждый вектор из S линейно выражается через $\{s_1,...,s_k\}$

Теорема. Пусть V конечномерное векторное пространство над \mathbb{R} , тогда:

- 1. Любая максимальная ЛНЗ система векторов из V базис V.
- 2. Любую ЛНЗ систему векторов из V можно дополнить до базиса векторного пространства V.

Доказательство.

- 1. По лемме (6). S = V
- 2. Пусть S ЛНЗ система векторов из V

Если $V = \langle S \rangle$, тогда S- базис.

Если $V \neq \langle S \rangle$, то $\exists s_1 \in V \setminus \langle S \rangle$

 $\Longrightarrow s_1$ линейно невыражается через $S \Longrightarrow (\Pi$ о лемме 2.) $S_1 = S \cup \{s_1\}$ - ЛНЗ.

 \Longrightarrow Если $V = \langle S \rangle$, то S_1 базис, иначе $\exists S_2 \in V \setminus \langle S_1 \rangle$, и т.д.

Этот процесс прервется на конечном шаге, т.к. пространство V- конечное. (Если $dimV \neq n$, то $\not\exists$ ЛНЗ системы с числом векторов > n)

Следствие. Пусть V конечномерное векторное пространство над $\mathbb R$

- 1. Любой ненулевой вектор можно дополнить до базиса.
- 2. Любые n ЛНЗ вектора в n-мерном пространстве V образуют базис.

3 Ранг

3.1 Рангом системы векторного простанства

Определение. Рангом системы векторного простанства $S\subseteq V$ называется $\dim\langle S\rangle$

A - матрица $m \times n$

$$A = \begin{pmatrix} \vdots \\ \vdots \\ \mathbb{R}^n \end{pmatrix} = \begin{pmatrix} \cdot \cdot \cdot \cdot \\ \mathbb{R}^m \end{pmatrix}$$

Определение. Рангом матрицы A называется ранг системы ее строк, т.е. максимальное число ЛНЗ строк матрицы.

3.2 Ранг матрицы

Определение. Ранг системы $\{s_1,...,s_n\}$ - векторов называется $dim\langle s_1,...,s_n\rangle$.

Определение. Рангом матрица $A \ m \times n$ называется ранг системы её строк.

$$A = \begin{pmatrix} A_{k} \\ \vdots \\ A_{m} \end{pmatrix}$$

Определение. Две системы векторов $\{v_1,...,v_n\}$ $\{w_1,...,w_n\}$ называются эквивалентными, если каждый вектор v_i линейно выражается через $\{w_1,...,w_n\}$, а w_i через $\{v_1, ..., v_n\}$.

Это условная эквивалентность: $\langle v_1, ..., v_n \rangle = \langle w_1, ..., w_n \rangle$

Утверждение. При элементарных преобразованиях над строками, ранг матрицы A не изменяется.

Доказательство.

т.е. система строк A эквивалентна системы строк $\widetilde{A} \Longrightarrow rkA = rk\widetilde{A}$.

Утверждение. При элементарных преобразованиях над столбцами, ранг матрицы A не изменяется.

Предложение 1.

Ранг матрицы A равен числу ненулевых строк матрицы струпенчатого вида, к которому можно привести матрицу A с помощью элементарных преобразований строк.

Доказательство.
$$A \stackrel{\ni\Pi \text{ строк}}{\longrightarrow} A_{\text{ст}} \Longrightarrow rkA = rkA_{\text{ст}}$$

Очевидно, что $rkA_{\rm cr} \leq s$. Достаточно доказать, что ненулевые строки ЛНЗ. Рассмотрим ЛК:

$$\lambda_1(0,...,0,a_{i_11},*,...,*) + \lambda_2(0,...,0,a_{i_22},*,...,*) + \cdots + \lambda_s(0,...,0,a_{i_ss},*,...,*) = (0,...,0)$$

$$(0,...,0,\lambda_1 a_{i_11},...,\lambda_1 a_{i_21} + \lambda_2 a_{i_22},...) = (0,...,0) \Longrightarrow \lambda_1 \underbrace{a_{i_11}}_{\text{лидер}} = 0 \Longrightarrow \lambda_1 = 0$$

$$\lambda_1 a_{i_2 1} + \lambda_2 \underbrace{a_{i_2 2}}_{\text{типер}} = 0 \Longrightarrow \lambda_2 = 0$$
 и т.д.

Получаем, что $\lambda_1=0,...,\lambda_s=0\Longrightarrow$ это ЛК - ЛНЗ.

Предложение 2. Ранг системы столбцов не изменяется при элементарных преобразованиях над строками.

Доказательство.
$$A \stackrel{\ni\Pi \text{ строк}}{\longrightarrow} \widetilde{A}$$
. Пусть $A = (a_{ij}) = \underbrace{(A_1,...,A_n)}_{\text{столбиы } A} \widetilde{A} = (\widetilde{a_{ij}}) =$

 $(\widetilde{A_1},...,\widetilde{A_n})$. Докажем, что если для некоторого числа $\lambda_1,...,\lambda_n \in \mathbb{R}$ выполнено: $\lambda_1 A_1 + \cdots + \lambda_n A_n = 0$, то для этих же чисел $\lambda_1 \widetilde{A_1} + \cdots + \lambda_n \widetilde{A_n} = 0$ (Верно и обратное, т.к. ЭП обратимы, т.е. если для каких-то чисел $\lambda_i \in \mathbb{R} : \sum \lambda_i \widetilde{A_1} = 0$, то $\sum \lambda_i A_i = 0$).

Дано:
$$\lambda_1 A_1 + \dots + \lambda_n A_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{cases} \lambda_1 a_{11} + \lambda_2 a_{12} + \dots + \lambda_n a_{1n} = 0 \\ \vdots \\ \lambda_1 a_{m1} + \lambda_2 a_{m2} + \dots + \lambda_n a_{mn} = 0 \end{cases} \Longrightarrow \lambda_1, \dots, \lambda_m - \text{решение ОСЛУ } AX = 0.$$

Т.к. при ЭП над уравнениями множество решений не меняется, поэтому $\lambda_1,...,\lambda_n$ - это решение ОСЛУ $\widetilde{A}X=0\Longrightarrow \lambda_1\widetilde{A_1}+\cdots+\lambda_n\widetilde{A_n}=0$ Отсюда получаем, что если $A_{i_1},...,A_{i_s}$ - максимальная ЛНЗ система столбцов в

A, то $\widetilde{A}_{i_1},...,\widetilde{A}_{i_s}$ - максимальная ЛНЗ система столбцов в $\widetilde{A}\Longrightarrow rk\{\widetilde{A}_1,...,\widetilde{A}_n\}=rk\{A_1,...,A_n\}.$

Определение. Пусть $A=(a_{ij})$ - матрица $m\times n$, тогда $B=(b_{ij})$ матрица $n\times m$ называется транспонированной к матрице A, если $b_{ij}=a_{ji}$, где $i=\overline{1,m}; j=\overline{1,n}$ Обозначаем $B=A^T$

Пример.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Следствие. Ранг системы строк матрицы A (=рангу матрицы A) не изменяется при элементарных преобразованиях над столбцами.

Доказательство. Предложение 2 применяем к A^T

Теорема 1. Ранг системы строк матрицы A совпадает с рангом системы столбцов матрицы A.

ступенчатому виду с помощью $\Theta\Pi$ над строками. $A_{\rm ct}$ имеет вид:

$$\left(\begin{array}{ccc} \Omega :_{\underline{1}} \underline{t} & & \\ \Omega :_{z^{2}} & * & \\ \vdots & & \\ \Omega & \underline{0} :_{\underline{s}^{s}} & \end{array}\right)$$

$$a_{i_11} \neq 0, ..., a_{i_ss} \neq 0$$

Используем i_1 -столбец, вычитая этот столбец из оставшихся с подходящими коэфициентами, получаем:

$$\begin{pmatrix}
\begin{bmatrix}
\Omega_{i_1} & 000 & 0 \\
\Omega_{i_2} & \boxed{*** \cdots *} \\
0 & \boxed{\vdots} \\
0 & \boxed{\vdots}
\end{pmatrix}$$

Далее используем i_2 -столбец, обнуляем все элементы правее a_{i_22} . В итоге получаем:

$$\begin{pmatrix} a_{i_1,1} & & 0 \\ & \ddots & \\ 0 & & a_{i_ss} \end{pmatrix}$$

Очев, что у такой матрицы ранг системы строк = рангу системы столбцов.

4 Возвращаемся к системе линейных уравнений

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} (AX = B)$$

Теорема. (Кронекера-Копелли)

- 1. (Критерий совместимости СЛУ) СЛУ AX = B совместна $\iff rk(A|B) = rkA$
- 2. (Критерий определенности СЛУ) Совместная СЛУ AX = B - определенна $\iff rk(A|B) = rkA = n$
- 3. (Критерий существования нетривиального решения у однородной СЛУ) ОСЛУ AX = 0 имеет нетривиальное решение $\iff rkA < n$

Однородная СЛУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$
 (AX = 0)

Утверждение. ОСЛУ всегда совместна, т.к. есть тривиальное решение.

Свойства.

1. Если
$$X^0=\begin{pmatrix}x_1^0\\\vdots\\x_n^0\end{pmatrix};\quad\widetilde{X}^0=\begin{pmatrix}\widetilde{x}_1^0\\\vdots\\\widetilde{x}_n^0\end{pmatrix}$$
 - решение ОСЛУ, тогда $X^0+\widetilde{X}^0=\begin{pmatrix}X_1^0+\widetilde{X}_1^0\\\vdots\\X_n^0+\widetilde{X}_n^0\end{pmatrix}$

2. Если
$$X^0=\begin{pmatrix}x_1^0\\\vdots\\x_n^0\end{pmatrix}$$
 - решение ОСЛУ $AX=0$, то $\lambda X^0=\begin{pmatrix}\lambda x_1^0\\\vdots\\\lambda x_n^0\end{pmatrix}$ - решение.

Доказательство. Д/з

Следствие. Множество всех решений ОСЛУ является векторным подпространством в \mathbb{R}^n . Будем говорить, что это пространство над ОСЛУ.

Замечание. Если \exists решение ОСЛУ над \mathbb{R} , то \exists бесконечно много решений.

Теорема 2. Пространство решений ОСЛУ AX = 0 имеет базис из n - r векторов, где n - число неизвестных, а r = rkA.

4.1 Фундаментальная система решений

Определение. Любой базис пространства решений ОСЛУ называется Фундаментальной Системой Решений ОСЛУ (ФСР).

Доказательство. (Теоремы 2.)

Решение СЛУ методом Гаусса: приводим её к ступенчатому виду (число ступенек r=rkA), главные неизвестные выражаем через свободные.

$$\begin{cases} x_1 = c_{1,1}x_{r+1} + \dots + c_{1,n-r}x_n \\ \vdots \\ x_r = c_{r,1}x_{r+1} + \dots + c_{r,n-r}x_n \end{cases}$$

Определим n-r частных решений приравнивая одно из $x_1, ..., x_n$ к 1, а остальные к 0.

$$F_{1} = \begin{pmatrix} c_{11} \\ \vdots \\ c_{r1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad F_{2} = \begin{pmatrix} c_{12} \\ \vdots \\ c_{r2} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, ..., \quad F_{n-r} = \begin{pmatrix} c_{1,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Докажем, что $F_1,...,F_{n-r}$ - базис пространства ренений ОСЛУ

1. $F_1, ..., F_{n-r}$ - ЛНЗ?

Рассмотрим ЛК
$$\lambda_1 F_1 + \dots + \lambda_{n-r} F_{n-r} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Longrightarrow \frac{\begin{pmatrix} * \\ \vdots \\ * \\ \hline \lambda_1 \\ \vdots \\ \lambda_{n-r} \end{pmatrix}}{\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}} \Longrightarrow \lambda_1 = 0, ..., \lambda_{n-r} = 0$$

2. Надо доказать, что любое решение выражено через $F_1, ..., F_{n-r}$

$$X^{0} = \begin{pmatrix} c_{11} \\ \vdots \\ c_{r1} \\ \mu_{r+1} \\ \vdots \\ \mu_{n} \end{pmatrix} = \mu_{r+1}F_{1} + \dots + \mu_{n}F_{n-r}$$

Пример. Найти ФСР ОСЛУ

$$\begin{cases} x_1 + x_2 + 3x_3 + 5x_4 - x_5 = 0 \\ x_1 + 2x_2 + x_3 + x_4 + x_5 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 3 & 5 & -1 \\ 1 & 2 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 5 & -1 \\ 0 & 1 & -2 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 5 & 9 & -3 \\ 0 & 1 & -2 & -4 & 2 \end{pmatrix}$$

где x_1, x_2 - главные, x_3, x_4, x_5 - свободные

$$\begin{cases} x_1 = -5x_3 - 9x_4 + 3x_5 \\ x_2 = 2x_3 + 4x_4 - 2x_5 \end{cases} \quad x_3, x_4, x_5 \in \mathbb{R}$$
 - произвольные

$$F_1 = egin{pmatrix} -5 \ 2 \ 1 \ 0 \ 0 \end{pmatrix}, \quad F_2 = egin{pmatrix} -9 \ 4 \ 0 \ 1 \ 0 \end{pmatrix}, \quad F_3 = egin{pmatrix} 3 \ -3 \ 0 \ 0 \ 1 \end{pmatrix}$$
 - три частных решения ОСЛУ

Проверим, что $\{F_1, F_2, F_3\}$ - базис пространства решений ОСЛУ

$$\begin{pmatrix} * \\ * \\ \hline \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \lambda_1 F_1 + \lambda_2 F_2 + \lambda_3 F_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \lambda_{1,2,3} = 0 \Longrightarrow F_1, F_2, F_3 - \text{ЛН3}.$$

Проверим, что $\{F_1, F_2, F_3\}$ порождает пространство решений. Возьмем произвольные числа μ_3, μ_4, μ_5 и приравняем $x_3 = \mu_3, x_4 = \mu_4, x_5 = \mu_5$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5\mu_3 - 9\mu_4 + 3\mu_5 \\ 2\mu_3 + 4\mu_4 - 2\mu_5 \\ \mu_3 \\ \mu_4 \\ \mu_5 \end{pmatrix} = \mu_3 \begin{pmatrix} -5 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu_4 \begin{pmatrix} -9 \\ 4 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \mu_5 \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Такой базис называется нормальный ФСР.

4.2 Неоднородная СЛУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} (AX = B)$$

Рассмотрим соответствующую ОСЛУ

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$
 (AX = 0)

Теорема. Пусть СЛУ AX = B - совместна. X_0 - произвольное частное решение. Тогда множество M всех решений неоднородной СЛУ: AX = B равно сумме частного решения X_0 и множество $M_{\text{одн}}$ всех решений соответствующей осднородной СЛУ: AX = 0

$$M = X_0 + M_{\text{одн}} = \{X_0 + Y | Y \in M_{\text{одн}}\}$$

Доказательство. $X_0 + M_{\text{одн}} \subseteq M$

Рассмотрим произвольное решение ОСЛУ. $Y \in M_{\text{одн}}$

Пусть
$$X_0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ Докажем, что $X_0 + Y = \begin{pmatrix} x_1^0 + y_1 \\ \vdots \\ x_n^0 + y_n \end{pmatrix}$ - решение СЛУ, т.е. $X_0 + Y \in M$
$$AX = Ba_{i1}x_1 + \dots + a_{in} = b_i$$

$$AX = 0a_{i1}x_1 + \dots + a_{in} = 0$$

где $i = \overline{1, n}$.

Проверим, что $X_0 + Y \in M$

$$\underbrace{a_{i1}(x_1^0 + y_1) + \dots + a_{in}(x_{in} + y_n) = b_i}_{b_i(\text{t.k. } X_0 \in M)} + \underbrace{(\underbrace{a_{i1}x_1^0 + \dots + a_{in}x_{in}}_{0(\text{t.k. } Y \in M_{\text{одн}})}) + b_i}_{0(\text{t.k. } Y \in M_{\text{одн}})} = b_i$$

Обратное утверждение: $M \subseteq X_0 + M_{\text{одн}}$

Рассмотрим произвольное решение $Z=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$ - неоднородная СЛУ.

Докажем, что
$$Z-X_0=\begin{pmatrix} z_1-x_1^0\\ \vdots\\ z_n-x_n^0 \end{pmatrix}$$
 - решение однородной СЛУ.

Проверяем

$$a_{i1}(z_1 - x_1^0) + \dots + a_{in}(z_n - x_n^0) = 0$$

$$\underbrace{(a_{i1}z_1 + \dots + a_{in}z_n)}_{b_i(\text{t.k. } Z \in M)} - \underbrace{(a_{i1}x_1^0 + \dots + a_{in}x_n^0)}_{b_i(\text{t.k. } X_0 \in M)} = 0$$

Замечание.

Общее решение ОСЛУ имеет вид вид:

$$X = \mu_1 F_1 + \dots + \mu_s F_s$$

где $F_1, ..., F_s$ - ФСР ОСЛУ, s = n - rkA

Общее решение неоднородной СЛУ:

$$X = X_0 + \mu_1 F_1 + \dots + \mu_s F_s$$

 X_0 - частное решение неоднородной СЛУ

5 Операции над матрицами

 $Mat_{m\times n}(\mathbb{R})$ - множество всех матриц размера $m\times n$ с коэфициентами из \mathbb{R} $A,B\in Mat_{m\times n}(\mathbb{R}), A=(a_{ij}), B=(b_{ij})$

- 1. Сложение матриц A и B называется матрица $C=(c_{ij})$ размера $m\times n,$ у которой $c_{ij}=a_{ij}+b_{ij}.$ Обозначается: C=A+B
- 2. Умножение матриц на число $\lambda \in \mathbb{R}$ Произведение матрицы $A = (a_{ij})$ на λ называется матрица $C = (c_{ij})$ размера $m \times n$, у которой $c_{ij} = \lambda a_{ij}$. Обозначается: $C = \lambda A$

Утверждение. Множество $Mat_{m\times n}(\mathbb{R})$ относительно этих операций сложения и умножения на число, образует векторное пространство над \mathbb{R} .

Доказательство. $A, B \in Mat_{m \times n}(\mathbb{R}) \Longrightarrow A + B, \lambda A \in Mat_{m \times n}(\mathbb{R})$ Надо проверить 8 аксиом

1) коммутативность

$$C = A + B$$
 $c_{ij} = a_{ij} + b_{ij}$
 $\widetilde{C} = B + A$ $\widetilde{c_{ij}} = b_{ij} + a_{ij}$

т.к. сложение вещественных чисел из $\mathbb R$ - коммутативно, то $c_{ij}=\widetilde{c_{ij}}\Longrightarrow C=\widetilde{C}$

$$\implies A + B = B + A$$

Упражнение. Аналогично доказать 2), 5)-8)

- 3) $\exists 0 \in Mat_{m \times n}(\mathbb{R}) \ \forall A \in Mat_{m \times n}(\mathbb{R}) : 0 + A = A$ В качестве 0 берем нулевую матрицу размера $m \times n$
- 4) $\forall A \in Mat_{m \times n}(\mathbb{R}) \ \exists B \in Mat_{m \times n}(\mathbb{R}) : A + B = 0$ В качестве B берем $b_{ij} = -a_{ij}$

Упражнение. $dim M_{m \times n} = m \cdot n$

Доказательство. Достаточно указать базис

$$\{E_{st}\}, s = \overline{1,m}, t = \overline{1,n}$$
 $E_{st} = (a_{ij}), a_{ij} = \begin{cases} 1, i = s, j = t \\ 0, \text{ иначе} \end{cases}$

Упражнение. Проверить, что это базис.

Определение. Матрица E_{st} называется матричной единицей. Базис из всех матричных единиц называется стандартным базисом в пространстве $Mat_{m\times n}(\mathbb{R}).$ $A=\sum a_{st}E_{st}$

3. Умножение матриц

$$A \in Mat_{m \times k}(\mathbb{R}), \ B \in Mat_{k \times n}(\mathbb{R})$$

Произведение матрицы A на матрицу B называется матрица C размера $m \times n,$ у которой $c_{ij} = \sum\limits_{s=1}^k a_{is}b_{sj}.$ Обозначаем C = AB.

Свойство. Произведение матриц не коммутативно.

Пример.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Longrightarrow AB \neq BA$$

Замечание.

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases} \iff \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Примеры.

1. Проекция

$$\varphi: V^3 \to V^2, \varphi: x_1i + x_2j + x_3k \to x_1i + x_2j$$

2. Поворот

 $\varphi: \overset{\,\,{}_{}}{V^2} \to V^2$ Поворот на угол α вокруг точки O

6 Линейные отображения

6.1 Изоморфизм

V,W- векторные пространства над $\mathbb R$

Определение. Отображение $\varphi:V\to W$ называется изоморфизмом векторных пространств, если:

- 1. $\forall a, b \in V : \varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\forall \lambda \in \mathbb{R} \ \forall a \in V : \ \varphi(\lambda a) = \lambda \varphi(a)$
- $3. \ \varphi$ является биекцией.

При этом V,W называется изоморфными. Обозначается $V\cong W$

Утверждение. Любое векторное пространство над \mathbb{R} размерности n изоморфно \mathbb{R}^n .

Доказательство. Фиксируем базис $\{e_1, ..., e_n\}$ - в V.

1. $\forall x \in V$ однозначно раскладывается по базису $x = \sum_{i=1}^{n} x_i e_i$. Зададим отображение $\varphi: V \to \mathbb{R}^n$ по правилу:

$$\varphi: x = x_1 e_1 + \dots + x_n e_n \to (x_1, \dots, x_n)$$

T.к. координаты вектора определены однозначно, то φ инъективно, сюрьективность очевидна $\Longrightarrow \varphi$ - биекция.

 $2. \ \forall x, y \in V$

$$x = \sum_{i=1}^{n} x_i e_i \quad y = \sum_{i=1}^{n} y_i e_i \quad x + y = \sum_{i=1}^{n} (x_i + y_i) e_i$$
$$\varphi(x + y) = (x_1 + y_1, ..., x_n + y_n) = (x_1, ..., x_n) + (y_1, ..., y_n) = \varphi(x) + \varphi(y)$$

3. $\forall \lambda \in \mathbb{R} \ \forall x \in V$

$$\varphi(\lambda x) = \varphi(\sum_{i=1}^{n} \lambda x_i e_i) = (\lambda x_1, ..., \lambda x_n) = \lambda(x_1, ..., x_n) = \lambda \varphi(x)$$

Примеры.

 $1. V^2 \cong \mathbb{R}^2$ $V^3 \cong \mathbb{R}^3$

2. $M_{m \times n}(\mathbb{R}) \cong \mathbb{R}^{mn}$

Упражнение. $V \cong W \iff dimV = dimW; \ V, W-$ конечномерные пространства над \mathbb{R} .

6.2 Линейные отображение и матрицы

Определение. Отображение $\varphi: V \to W$ называется линейным, если

1.
$$\forall a, b \in V \ \varphi(a+b) = \varphi(a) + \varphi(b)$$

2.
$$\forall \lambda \in \mathbb{R}, \forall a \in V \ \varphi(\lambda a) = \lambda \varphi(a)$$

Утверждение. V, W- векторные пространства над \mathbb{R} .

Если $\{e_1,...,e_n\}$ - базис $V,\,(w_1,...,w_n)$ - набор векторов из W.

Тогда $\exists !$ линейное отображение $\varphi: V \to W$, которое $\varphi: e_i \to w_i \ \forall i = \overline{1,n}$.

Доказательство.

1. Пусть $\varphi: V \to W$ - линейное отображение такое, что $\varphi(e_i) = w_i \ \forall i = \overline{1,n}.$ Тогда образ вектора x определяется однозначно по формуле:

$$\varphi(x) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n) = x_1w_1 + \dots + x_nw_n$$

где $x = x_1e_1 + \dots + x_ne_n$

⇒ линейное отображение определяется однозначно.

2. Докажем, что \exists линейное отображение, которое переводит e_i в w_i . Отображение зададим формулой:

$$\varphi: x = x_1e_1 + \dots + x_ne_n \to x_1w_1 + \dots + x_nw_n$$

$$\varphi(a+b) = \varphi((a_1+b_1)e_1 + \dots + (a_n+b_n)e_n) = (a_1+b_1)w_1 + \dots + (a_n+b_n)w_n$$

$$\varphi(a) + \varphi(b) = \varphi(a_1e_1 + \dots + a_ne_n) + \varphi(b_1e_1 + \dots + b_ne_n) =$$

$$= a_1w_1 + \dots + a_nw_n + b_1w_1 + \dots + b_nw_n = w_1(a_1+b_1) + \dots + w_n(a_n+b_n)$$

$$\Longrightarrow \varphi(a+b) = \varphi(a) + \varphi(b)$$
 Проверить, что $\varphi(\lambda a) = \lambda \varphi(a) - \text{Д}3$

Пусть $\varphi:V\to W$ - линейное отображение V- n-мерное, W-m-мерное пространство.

Фиксируем базис $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в $V; \mathcal{F} = \{f_1, ..., f_m\}$ - базис в W

$$\varphi(e_1) = w_1 = a_{11}f_1 + \dots + a_{m1}f_m$$

:

$$\varphi(e_n) = w_n = a_{1n}f_1 + \dots + a_{mn}f_m$$

Определение. Матрица A размера $m \times n$, составленая из столбцов координат образов векторов e_i в образе \mathcal{F} , называется матрицей линейного отображения в базисах \mathcal{E} и \mathcal{F}

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$\underbrace{a_{m1}}_{\varphi(e_1)} & \underbrace{a_{mn}}_{\varphi(e_n)}$$

Утверждение. Пусть $\mathcal{E} = \{e_1,...,e_n\}$ - базис в V над \mathbb{R} ; $\mathcal{F} = \{f_1,...,f_n\}$ - базис в W над \mathbb{R} . Тогда:

- Каждому линейному отображению $\varphi: V \to W$ однозначно соответствуют матрица размера $m \times n$ этого линейного отображения в базисах \mathcal{E}, \mathcal{F}
- Любой матрицы A размера $m \times n$ однозначно соответствует линейное отображение $\varphi: V \to W$, для которого A матрица этого линейного отображения в \mathcal{E}, \mathcal{F} .

6.3 Операции над линейными отображениями

Пусть V,W - векторные пространства над $\mathbb R$

1) Сложение линейных отображений.

$$arphi_1:V o W$$
 $arphi_2:V o W$ - два линейных отображения

Зададим отображение по правилу

$$(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x) \ \forall x \in V$$

Утверждение. Отображение $\varphi_1 + \varphi_2 : V \to W$ является линейным отображением.

Доказательство. $\forall a, b \in V$:

$$(\varphi_1+\varphi_2)(a+b)=\varphi_1(a+b)+\varphi_2(a+b)=$$

$$=\varphi_1(a)+\varphi_1(b)+\varphi_2(a)+\varphi_2(b)=(\varphi_1+\varphi_2)(a)+(\varphi_1+\varphi_2)(b)$$
 Аналогично для $(\varphi_1+\varphi_2)(\lambda a)=\lambda(\varphi_1+\varphi_2)(a)$

Фиксируем базисы $\mathcal{E} = \{e_1,...,e_n\}$ - в V и $\mathcal{F} = \{f_1,...,f_n\}$ - в W

 A_1 - матрица линейного отображения φ_1 относильно \mathcal{E} и \mathcal{F} .

 A_2 - матрица линейного отображения φ_2 относильно $\mathcal E$ и $\mathcal F$.

B - матрица линейного отображения $\varphi_1 + \varphi_2$ относильно \mathcal{E} и \mathcal{F} .

Утверждение. $B = A_1 + A_2$

Доказательство. Размеры совпадают

$$\varphi_1(e_i) = a_{1i}f_1 + \dots + a_{mi}f_m$$

$$\varphi_2(e_i) = \widetilde{a_{1i}}f_1 + \dots + \widetilde{a_{mi}}f_m$$

$$(\varphi_1 + \varphi_2)(e_i) = b_{1i}f_1 + \dots + b_{mi}f_m$$

$$(\varphi_1 + \varphi_2)(e_i) = \varphi_1(e_i) + \varphi_2(e_i) = (a_{1i}f_1 + \dots + a_{mi}f_m) + (\widetilde{a_{1i}}f_1 + \dots + \widetilde{a_{mi}}f_m) =$$

$$= (a_{1i} + \widetilde{a_{1i}})f_1 + \dots + (a_{mi} + \widetilde{a_{mi}})f_m$$

Т.к. разложение по базису единственное, то

$$b_{1i} = a_{1i} + \widetilde{a_{1i}}, ..., b_{mi} = a_{mi} + \widetilde{a_{mi}} \Longrightarrow b_{ij} = a_{ij} + \widetilde{a_{ij}} \Longrightarrow B = A_1 + A_2$$

2) Умножение линейного отображение на число.

 $\varphi:V o W$ - линейное отображение, $\mu\in\mathbb{R}$ - произвольное число.

Зададим отображение по правилу: $(\mu\varphi)(x) = \mu\varphi(x) \quad \forall x \in V$

Утверждение. Отображение $\mu \varphi : V \to W$ является линейным (Упражнение)

Доказательство. Аналогично.

Пусть $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в V и $\mathcal{F} = \{f_1, ..., f_n\}$ - базис в W.

A - матрица линейного отображения φ относильно $\mathcal E$ и $\mathcal F$.

B - матрица линейного отображения $\mu \varphi$ относильно $\mathcal E$ и $\mathcal F.$

Утверждение. $B = \mu A$

Доказательство. Видимо дз(

3) Композиция (произведение) линейных отображений. Пусть V, W, U - векторные простанства над $\mathbb R$

$$\varphi: V \to W \quad \psi: W \to U$$

Зададим отображение по правилу:

$$(\psi \circ \varphi)(x) = \psi(\varphi(x)) \ \forall x \in V$$

Утверждение. Отображение $\psi \circ \varphi : V \to U$ является линейным.

Доказательство. $\forall a, b \in V$

1.
$$(\psi \circ \varphi)(a+b) = \psi(\varphi(a+b)) = \psi(\varphi(a) + \varphi(b)) = \psi(\varphi(a)) + \psi(\varphi(b))$$

2. Аналогично для $(\psi \circ \varphi)(\lambda a) = \lambda(\psi \circ \varphi)(a)$

Фиксируем базис: $\mathcal{E} = \{e_1,...,e_n\}$ - базис в V $\mathcal{F} = \{f_1,...,f_m\}$ - базис в W $\mathcal{G} = \{g_1,...,g_k\}$ - базис в U

 $A_{m \times n}$ - матрица линейного отображения φ относительно $\mathcal{E}, \mathcal{F}.$

 $\overset{m \wedge n}{B}$ - матрица линейного отображения ψ относительно \mathcal{F}, \mathcal{G} .

 $C_{k \times n}$ - матрица линейного отображения φ относительно $\mathcal{E}, \mathcal{G}.$

Утверждение. $C = B \cdot A$

Доказательство.

$$\varphi(e_i) = \sum_{s=1}^k a_{si} f_s; \qquad \psi(f_s) = \sum_{t=1}^k b_{ts} g_t$$

По определению матрицы линейного отображения:

$$(\psi \circ \varphi)(e_i) = \sum_{l=1}^k c_{li} g_l \ (*)$$

По определению композиции:

$$(\psi \circ \varphi)(e_i) = \psi(\varphi(e_i)) = \psi(\sum_{s=1}^m a_{si}f_s) = \sum_{s=1}^m a_{si}\psi(f_s) =$$

$$= \sum_{s=1}^m a_{si}(\sum_{t=1}^k b_{ts}g_t) = \sum_{t=1}^k (\sum_{s=1}^m b_{ts}a_{si})g_m \quad (\star)$$

$$\Longrightarrow (\star) = (\star).$$

Т.к. координаты определены однозначно $\Rightarrow c_t = \sum_{s=1}^m b_{ts} a_{si} \Rightarrow C = B \cdot C$

6.4 Свойства операций над матрицами

Предположим, что все размеры матриц согласованы.

- 1. $M_{m \times n}(\mathbb{R})$ векторное пространство над \mathbb{R}
- 2. Ассоциативность A(BC) = (AB)C

Доказательство. A, B, C

Пусть $D_{m\times l}=A(BC), \widetilde{D}_{m\times l}=(AB)C.$ Надо проверить, что $\forall i,j:[D]_{ij}=[\widetilde{D}]_{ij}.$

$$[D]_{ij} = [A(BC)]_{ij} = \sum_{s=1}^{k} [A]_{is} \cdot [BC]_{si} = \sum_{s=1}^{k} [A]_{is} (\sum_{t=1}^{n} [B]_{st} \cdot [C]_{ti}) =$$

$$= \sum_{s=1}^{k} \sum_{t=1}^{n} [A]_{ij} ([B]_{st} \cdot [C]_{ti})$$

$$[\widetilde{D}]_{ij} = [(AB)C]_{ij} = \sum_{t=1}^{n} [AB]_{it} [C]_{tj} = \sum_{t=1}^{n} (\sum_{s=1}^{k} [A]_{is} \cdot [B]_{st}) [C]_{tj} =$$

$$= \sum_{t=1}^{n} \sum_{s=1}^{k} ([A]_{is} \cdot [B]_{st}) \cdot [C]_{tj}$$

По свойствам операций над \mathbb{R} , результаты преобразований равны.

П

$$3. A(B+C) = AB + AC$$

$$4. (B+C)A = BA + CA$$

5.
$$\lambda(AB) = (\lambda A)B = A(\lambda B); \forall \lambda \in \mathbb{R}$$

- 6. $\forall A \in M_{m \times m}(\mathbb{R}), \exists$ единичная матрица $E \in M_{m \times m}(\mathbb{R}) : EA = A$
- 7. $\forall A \in M_{m \times n}(\mathbb{R}) : 0 \cdot A = 0$
- 8. Нет коммутативности: $AB \neq BA$ даже если размеры согласованы

Доказательство. Свойства 3. - 7. упражнение)

6.5 Свойства операции транспонирования

- 1. $(A^T)^T = A$
- 2. $(\lambda A)^T = \lambda A^T$
- 3. $(A+B)^T + A^T + B^T$
- 4. $(AB)^T = B^T A^T$

 \mathcal{A} оказательство. 4. $\underset{m \times k}{A}, \underset{k \times n}{B} \Longrightarrow \underset{n \times k}{B^T}, \underset{k \times m}{A^T}$ (размеры совпадают) Проверим $D = (AB)^T$ и $\widetilde{D} = B^TA^T$ равны.

$$[D]_{ij} = [(AB)^T]_{ij} = [(AB)]_{ji} = \sum_{s=1}^k [A]_{js} [B]_{si}$$

$$[\widetilde{D}]_{ij} = B^T A^T = \sum_{s=1}^k [B]_{is} [A]_{sj} = \sum_{s=1}^k [A]_{js} [B]_{si}$$

6.6 О ранге и операциях над матрицами

Теорема.

 $1. rkA^T = rkA$

2.
$$rk(\lambda A) = \begin{cases} rkA, \text{ если } \lambda \neq 0 \\ 0, \text{ если } \lambda = 0 \end{cases}$$

- 3. $rk(A+B) \le rkA + rkB$
- 4. $rk(AB) \le \min\{rkA, rkB\}$

Доказательство. 1. Следует из того, что ранг системы строк = рангу системы столбцов, и из определения ранга матрицы.

- 2. Очев.
- 3. Пусть $\overline{a_1},...,\overline{a_m}$ строки матрицы $A.\ \overline{b_1},...,\overline{b_m}$ строки матрицы $B.\ \overline{a_1}+\overline{b_1},...,\overline{a_m}+\overline{b_m}$ строки матрицы A+B.

$$rkA = dim\langle \overline{a_1}, ..., \overline{a_m} \rangle, \ rkB = dim\langle \overline{b_1}, ..., \overline{b_m} \rangle$$

 $rk(A+B) = dim\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle$

Заметим, что $(\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle) \subseteq (\langle \overline{a_1}, ..., \overline{a_m}, \overline{b_1}, ..., \overline{b_m} \rangle)$

Лемма. Пусть V векторное пространсво над \mathbb{R} dimV=n U - произвольное подпространство в V. Тогда $dimU \leq n$ Более того, если $U \neq V$, то dimU < n.

Доказательство. Пусть $\{e_1,...,e_m\}$ - базис $U\subseteq V$, т.е. dim U=m ЛНЗ система $\{e_1,...,e_m\}$ можно дополнить до базиса в $V\Longrightarrow m\le n$ Если m=n, то $\{e_1,...,e_m\}$ - базис $V\Longrightarrow V=U$

Применяем лемму и получаем, что

$$dim\langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle \leq dim\langle \overline{a_1}, ..., \overline{a_m}, \overline{b_1}, ..., \overline{b_m} \rangle$$

Т.к. объединение базисов линейной оболочки $\overline{a_1},...,\overline{a_m}$ и $\overline{b_1},...,\overline{b_m}$ является конечной порождающей системой линейной оболочки $\langle \overline{a_1},...,\overline{a_m},\overline{b_1},...,\overline{b_m} \rangle$, а из любой конечной порождающей системы можно выбрать базис, значит:

$$\dim \langle \overline{a_1} + \overline{b_1}, ..., \overline{a_m} + \overline{b_m} \rangle \leq \langle \overline{a_1}, ..., \overline{a_m} \rangle + \langle \overline{b_1}, ..., \overline{b_m} \rangle \Longrightarrow rk(A+B) \leq rkA + rkB$$

4. Докажем, что $rkAB \leq rkA$. Пусть C = AB, A, B

 $A_1,...,A_n$ - столбцы матрицы A

 $B_1,...,B_n$ - столбцы матрицы B

 $C_1,...,C_n$ - столбцы матрицы C

$$C_1 = AB_1 = A_1b_{11} + \dots + A_kb_{k1}$$

$$C_2 = AB_2 = A_1b_{12} + \dots + A_kb_{k2}$$

:

$$C_n = AB_n = A_1b_{1n} + \dots + A_kb_{kn}$$

 $\Longrightarrow \langle C_1, ..., C_n \rangle \subseteq \langle A_1, ..., A_k \rangle \Longrightarrow \dim \langle C_1, ..., C_n \rangle \leq \dim \langle A_1, ..., A_k \rangle \Longrightarrow rkC \leq rkA.$

Докажем, что $rkAB \leq rkB$.

$$rk(AB) = rk(AB)^T = rk(B^TA^T) \le rkB^T = rkB$$

7 Перестановки

Определение. Упорядоченная последовательность $(k_1, ..., k_n)$ чисел 1, 2, ..., n расположенных в некотором порядке называется перестановкой из n элементов.

Пример. (3,1,2) перестановка из 3-х элементов.

Определение. Перестановка (1,2,...,n) называется тривиальной.

Определение. Говорят, что пара элементов k_i и k_j образуют инверсию, если i < j, то $k_i > k_j$.

Определение. Перестановка называется четной (нечетной), если число инверсий в ней четное (нечетное).

Знак переставки $sgn(k_1,...,k_n)=(-1)^s$, где s - число инверсий в перестановке.

Определение. Перемена двух элементов в перестановке называется транспозицией этих элементов.

Утверждение. При транспозиции любых двух элементов четность меняется на противоположную.

Доказательство.

- Транспозиция двух соседних элементов.
 При этом изменяется расположение только этих элементов относительно других ⇒ количество инверсий изменился на 1 ⇒ четность поменяется.
- 2. Общий случай:

$$(..., k_i, ..., k_j, ...) \rightarrow (..., k_j, ..., k_i, ...)$$

Пусть между k_i и k_j (s) элементов.

Перемену k_i и k_j произведем за 2s+1 транспозиций соседних элементов.

Сначала k_i переставим последовательно с каждым из элементов, стоящих между k_i и k_j (это s транспозиций), потом k_i переставим с k_j , затем k_j поставим на i позицию (это еще s транспозиций).

 ${
m T. \kappa.}$ транспозиция соседних элементов меняет четность, то за 2s+1 транспозиций четность изменится.

Следствие. Пусть n > 1. Тогда число четных перестановок из n элементов равно числу нечетных.

Доказательство. Перечислим все четные перестановки и в каждой поменяем местами первые 2 элемента. При этом получим различные нечетные перестановки ⇒ число четных перестановок ≤ числа нечетных. Аналогично в обратную сторону.

Утверждение. Число перестановок из n элементов равно n!

Доказательство. $(k_1,...,k_n)$ для k_1 вариантов - n Пусть выбрали $k_1 \Longrightarrow$ для k_2 вариантов - n-1 и т.д. Получаем всего вариантов: $n\cdot (n-1)\cdot ...\cdot 1=n!$

8 Определители n-го порядка

Определение. Определителем квадратной матрицы $A_{n\times n} = (a_{ij})$ порядка n называется число, которое вычисляется по формуле:

$$|A| = \det A = \sum_{(k_1,\dots,k_n)} sgn(k_1,\dots,k_n) a_{1k_1} a_{2k_2} \dots a_{1n_n}$$

Где $\sum_{(k_1,...,k_n)}$ - сумма по всем перестановкам из n элементов. Эта формула называется формулой полного разложения или полного развертывания определителя.

Пример.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = sgn(1,2)a_{11}a_{22} + sgn(2,1)a_{12}a_{21} = a_{11}a_{22} - a_{12}a_{21}$$

$$A_{n \times n} = \begin{pmatrix}
 & \overline{a_1} \\
 & \overline{a_2} \\
 & \vdots \\
 & \overline{a_n}
\end{pmatrix}$$

Пусть $\overline{a_1}, \overline{a_2}, \dots \overline{a_n}$ - строки матрицы A. Тогда определитель можно рассматривать как функцию от строк $\det A = \det \left(\overline{a_1}, \overline{a_2}, \dots \overline{a_n} \right)$

Определение. Функция $f(v_1, ..., v_n)$, которая векторам $v_1, ..., v_n$ в вектроном простанстве V над \mathbb{R} ставит в соответствие число из \mathbb{R} , то есть $f: V \times \cdots \times V \to \mathbb{R}$ называется полилинейной, если она линейна по каждому аргументу, т.е. для каждого $i = \overline{1, n}$ выполнено:

1.
$$f(v_1, \ldots, v_i + \widetilde{v_i}, \ldots, v_n) = f(v_1, \ldots, v_i, \ldots, v_n) + f(v_1, \ldots, \widetilde{v_i}, \ldots, v_n),$$

 $\forall v_i, \widetilde{v_i} \in V.$

2.
$$f(v_1, \ldots, \lambda v_i, \ldots, v_n) = \lambda f(v_1, \ldots, v_i, \ldots, v_n), \ \forall \lambda \in \mathbb{R}, \ \forall v_i \in V.$$

Определение. Полилинейная функция $f: V \times \cdots \times V \to \mathbb{R}$ называется кососимметричной, если при перестановке любых двух аргументов значение функции умножается на (-1). Кососимметричная функция с двумя одинаковыми аргументами равна нулю.

Пример. Если
$$f$$
 - кососимметричная функция и $v_1 = v_2$, то $f(v_1, v_2, v_3, \dots, v_n) = -f(v_2, v_1, v_3, \dots, v_n) = a \Longrightarrow a = -a \Longrightarrow a = 0.$

8.1 Свойства определителей

Теорема 1. Определитель n-го порядка является кососимметричной полилинейной функцией от строк матрицы.

Доказательство.

$$A = \begin{pmatrix} \overline{a_1} \\ \overline{a_2} \\ \vdots \\ \overline{a_n} \end{pmatrix} = (a_{ij}), \ \overline{a_i} = (a_{i1}, \dots, a_{in})$$

$$\det A = \det \left(\overline{a_1}, \dots \overline{a_n}\right) = \sum_{(k_1, \dots k_n)} sgn(k_1, \dots k_n) a_{1k_1} \dots a_{nk_n}$$

Докажем, что $\det A$ линеен по i-му аргументу.

$$\det A = \sum_{k=1}^{n} a_{ik} u_k$$

где u_k - число не зависящее от элементов строки $\overline{a_i}$

1.
$$\det(\overline{a_1}, \dots, \overline{a_i} + \overline{a_i}', \dots, \overline{a_n}) = \sum_{k=1}^n (a_{ik} + a'_{ik}) u_k = \sum_{k=1}^n a_{ik} u_k + \sum_{k=1}^n a'_{ik} u_k =$$

$$= \det(\overline{a_1}, \dots, \overline{a_i}, \dots, \overline{a_n}) + \det(\overline{a_1}, \dots, \overline{a_i}', \dots, \overline{a_n})$$

2.
$$\det(\overline{a_1}, \dots, \lambda \overline{a_i}, \dots, \overline{a_n}) = \sum_{k=1}^n (\lambda a_{ik}) u_k = \lambda \sum_{k=1}^n a_{ik} u_k = \lambda \det(\overline{a_1}, \dots, \overline{a_i}, \dots, \overline{a_n})$$

Теперь докажем кососимметричность:

$$\det (\overline{a_1}, \dots, \overline{a_j}, \dots, \overline{a_i}, \dots, \overline{a_n}) =$$

$$= \sum_{(k_1 \dots k_i \dots k_j \dots k_n)} sgn(k_1, \dots k_n) a_{1k_1} \dots a_{jk_i} \dots a_{ik_j} \dots a_{nk_n} =$$

$$= \sum_{(k_1 \dots k_i \dots k_j \dots k_n)} sgn(k_1, \dots k_n) a_{1k_1} \dots a_{ik_j} \dots a_{jk_i} \dots a_{nk_n} =$$

$$= -\sum_{(k_1 \dots k_i \dots k_j \dots k_n)} sgn(k_1, \dots k_n) a_{1k_1} \dots a_{ik_i} \dots a_{jk_j} \dots a_{nk_n} =$$

$$= -\det (\overline{a_1}, \dots, \overline{a_i}, \dots, \overline{a_j}, \dots, \overline{a_n})$$

Теорема 2. Пусть $f(A) = f(\overline{a_1}, \dots, \overline{a_n})$ - функция от строк, $A \in M_n(\mathbb{R})$ такие, что:

- 1. f(E) = 1
- 2. f Полилинейная
- 3. f кососимметричная

тогда $f(A) = \det A$.

 \mathcal{A} оказательство. $\overline{e_1} = (1, 0, ..., 0), ..., \overline{e_n} = (0, ..., 0, 1)$ - строки единичной матрицы $E = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} \Longrightarrow \{\overline{e_1}, ..., \overline{e_n}\}$ - базис в векторном пространстве \mathbb{R}^n $\Longrightarrow \overline{e_i} = (a_{i1}, ..., a_{in}) = a_{i1}\overline{e_1} + \dots + a_{in}\overline{e_n}$

$$\implies f(A) = f(\overline{a_1}, ..., \overline{a_n}) = f(\sum_{k=1}^n a_{1k_1} \overline{e_{k_1}} + \dots + a_{nk_n} \overline{e_{k_n}}) =$$

$$= \sum_{k_1=1}^n ... \sum_{k_n=1}^n a_{1k_1} \cdot ... \cdot a_{nk_n} \cdot f(\overline{e_{k_1}}, ..., \overline{e_{k_n}}) =$$

$$\sum_{(k_1, ..., k_n)} f(\overline{e_{k_1}}, ..., \overline{e_{k_n}}) \cdot a_{1k_1} \cdot ... \cdot a_{nk_n}$$

Осталось доказать, что $f(\overline{e_{k_1}},...,\overline{e_{k_n}}) = sgn(k_1,...,k_n)$.

T.K.
$$f(E)=1$$
, to $f(A)=f(\overline{e_1},\overline{e_2},...,\overline{e_n})=sgn(1,2,...,n)(*)$

Меняя любые два аргумента местами, f меняет знак, т.к. f кососимметрична.

Г

С другой стороны, меняя два любые числа перестановки местами, знак перестановки sqn тоже меняет знак.

Любую перестановку можно получить из тривиальной за конечное число транспозиций.

Т.к. (*) верно, то, делая последовательно транспозицию в перестановке, и такую же перемену аргументов у функции f, получим $f(\overline{e_{k_1}},...,\overline{e_{k_n}}) = sgn(k_1,...,k_n)$.

Следствие.

- 1. Если в крадратной матрице A одна из строк равна линейной комбинации остальных, то det A = 0
- 2. Если к строке квадратной матрицы A применить $\Im\Pi 1$ (т.е. к строке прибавить другую, умноженную на число), то определитель не изменится.

Доказательство.

2)
$$det(\overline{a_1},...,\overline{a_i} + \lambda \overline{a_j},...,\overline{a_n}) =$$

$$= det(\overline{a_1},...,\overline{a_i},...,\overline{a_j},...,\overline{a_n}) + \lambda det(\overline{a_1},...,\overline{a_j},...,\overline{a_j},...,\overline{a_n}) =$$

$$= det(\overline{a_1},...,\overline{a_i},...,\overline{a_j},...,\overline{a_n})$$

Определение. Квадратная матрица $A = (a_{ij})$ называется (верхней) треугольной матрицей, если $a_{ij} = 0$ при i > j.

Пример.
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Модно проследить, как влияют ЭП на определитель:

- ЭП $1 = \overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$ det не изменится.
- ЭП2 $\overline{a_i} \to \overline{a_j}$ det не изменится.
- ЭПЗ $\overline{a_i} \to \mu \overline{a_i}, \mu \neq 0$ det умножится на μ .

Утверждение. Определитель верхней треугольной матрицы равен произведению её диальнольных элементов.

Доказательство.
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ & & \ddots & \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Рассмотрим любую не тождественную перестановку $(k_1, ..., k_n)$, где $k_i \neq i$. Тогда найдется такой множитель (i > j) $a_{ij} = 0, \Longrightarrow$ это слагаемое обнулится. \Longrightarrow Во всей сумме останется только тождественная перестановка.

Теорема 3. Определитель при транспонировании не изменяется: $det A = det A^T$

Доказательство. Пусть
$$B = A^T$$
, $a = (a_{ij})$, $B = (b_{ij})$ $det A = \sum_{(l_1,...,l_n)} sgn(l_1,...,l_n)a_{1l_1},...,b_{nl_n}$

$$det A^{T} = det B = \sum_{(k_{1},...,k_{n})} sgn(k_{1},...,k_{n})b_{1k_{1}},...,b_{nk_{n}} =$$

$$= \sum_{(k_{1},...,k_{n})} sgn(k_{1},...,k_{n})a_{k_{1}1},...,a_{k_{n}n} =$$

$$= \sum_{(k_{1},...,k_{n})} sgn(k_{1},...,k_{n})sgn(1,2,...,n)a_{k_{1}1},...,a_{k_{n}n} = (*)$$

Переставим a_{ij} , переупорядочив номера строк, т.е. первые индексы по возрастанию последовательно, меняя два множителя местами:

$$a_{k_11},...,\underbrace{a_{k_ii},...,a_{k_jj}}_{\text{меняем}},...,a_{k_nn}$$

При этом перемене двух множителей местами меняется местами и первые индексы и вторые. При этом:

$$sgn(k_1, ..., k_i, ..., k_j, ..., k_n) \cdot sgn(1, ..., i, ..., j, ..., n) =$$

$$= (-1)^2 sgn(k_1, ..., k_j, ..., k_i, ..., k_n) \cdot sgn(1, ..., i, ..., j, ..., n)$$

$$(*) = \sum_{(l_1, ..., l_n)} sgn(1, 2, ..., n) sgn(l_1, ..., l_n) a_{1l_1}, ..., a_{nl_n} = detA$$

Следствие. Определитель матрицы есть кососимметричная и полилинейная функция столбцов матрицы.

Все свойства определителя, которые верны для строк матрицы, верны и для столбцов.

8.2 Элементарные матрицы

Определение. Матрица, полученная из единичной матрицы E, с помощью одного элементарного преобразования над строками или столбцами, называется элементарной матрицей.

 \ni Π1: $\overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$, $i \neq j$

 $\Im\Pi 2: \overline{a_i} \leftrightarrow \overline{a_j}, \quad i \neq j$

Лемма 1.

1.1 Любые ЭП над строками матрицы A равносильно умножению матрицы A слева на элементарную матрицу, т.е.

 $A\leadsto\widetilde{A}\Longleftrightarrow\widetilde{A}=T\cdot A$ где T - элементарная матрица, такая что $E\leadsto T$

1.2 Любые ЭП над столбцами матрицы A равносильно умножению матрицы A справа на элементарную матрицу.

Доказательство. Непосредственная проверка

Лемма 2. Пусть A - квадратная матрица порядка n, тогда:

- 1. Если $det A \neq 0$, то с помощью $\Im\Pi$ над строками, A привести к E.
- 2. Если det A=0, то с помощью ЭП над строками, в A можно получить нулевую строку

Доказательство. Методом Гаусса любую матрицу можно привести к ступенчатому виду. Ступенчатый вид для квадратной матрицы является верхнетреугольной, т.е.:

$$A \leadsto \widetilde{A} = \begin{pmatrix} \widetilde{a_{11}} & * \\ & \ddots & \\ 0 & & \widetilde{a_{nn}} \end{pmatrix}$$

 $\Longrightarrow det A=\xi\cdot det \widetilde{A},$ где $\xi\neq 0,\ det \widetilde{A}=\widetilde{a_{11}}\cdot\ldots\cdot \widetilde{a_{nn}}$ Итак,

$$det A = 0 \iff det \widetilde{A} = 0 \iff \widetilde{a_{11}} \cdot \dots \cdot \widetilde{a_{nn}} = 0$$

- 1. Если $det A \neq 0$, то $a_{11} \neq 0,...,a_{nn} \neq 0$ лидеры матрицы A $\Longrightarrow \widetilde{A}$ приводится к улучшенному ступенчатому виду обратными ходом Гаусса и этот улучшенный ступенчатый вид совпадает с E
- 2. Если det A=0, то $a_{11}\cdot\ldots\cdot a_{nn}=0\Longrightarrow\exists k:a_{kk}=0$. По определению ступенчатого вида $\forall i>k:\widetilde{a_{ii}}=0\Longrightarrow\widetilde{a_{nn}}=0\Longrightarrow$ последня строка в \widetilde{A} нулевая.

Теорема 4. Пусть A, B - квадратные матрицы порядка n, тогда:

$$detAB = detA \cdot detB$$

Доказательство. Из ассоциативности умножения T(AB) = (TA)B, где T элементарная матрица, получаем, что элементраное преобразование над строками матрицы A соответствует элементарному преобразованию строк матрицы AB.

1 случай. det A=0 (по лемме(1), пункт 2) $\Longrightarrow A\leadsto \widetilde{A}($ с нулевой строкой) $\Longrightarrow \widetilde{A}=\cdot (T_1\cdot ...\cdot T_k)\cdot A,\;$ где T_i - матрицы элементарных преобразований. $\Longrightarrow (T_1\cdot ...\cdot T_k)(AB)=((T_1\cdot ...\cdot T_k)A)B=\widetilde{A}B\Longrightarrow det AB=0,$ т.к. $AB\leadsto \widetilde{A}B$

2 случай. $det A \neq 0$ (по лемме(1), пункт 1) $\Longrightarrow A \leadsto E \Longrightarrow E = (T_1 \cdot ... \cdot T_k)A$, где T_i - матрицы элементарных преобразований.

$$(T_1 \cdot \dots \cdot T_k)(AB) = ((T_1 \cdot \dots \cdot T_k)A)B = EB = B$$

 $\Longrightarrow detAB = c \cdot det((T_1 \cdot \dots \cdot T_k)AB) = c \cdot detB$

Рассмотрим отношение:

$$\frac{detAB}{detA} = (*)$$

Произведем над матрицей A ЭП, которые приведут матрицу $A \leadsto E$, одновременно производим такие же ЭП над AB.

$$(*) = \frac{detEB}{detE} = detB$$

Теорема 5. (Об определителе с углом нулей)

Пусть A - квадратная матрица порядка k

B - квадратная матрица порядка m

C - матрица размера $k \times m$.

Тогда:

$$det \left(\begin{array}{c|c} A & C \\ \hline 0 & B \end{array} \right) (*) = det A \cdot det B$$

Доказательство.

1 случай. det B = 0

(По лемме (2), пункт 2) $B \leadsto \widetilde{B}$ Производя точно такие же ЭП над последними m строками матрицы (*) , получаем нулевую строку

$$\implies det \begin{pmatrix} A & C \\ \hline 0 & B \end{pmatrix} = det A \cdot det B = 0$$

2 случай. det A = 0 Аналогично как в 1 случае, только ЭП над столбцами.

3 случай. $det A \neq 0, det B \neq 0$

Рассмотрим отношение:

$$\frac{\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \det A \cdot \det B}{\det A \cdot \det B}$$

(По лемме (2), пункт 1) $A \leadsto E, \, B \leadsto E$

Преобразуем матрицу A с помощью ЭП над стролбцами, которые приводят $A \leadsto E$, преобразуем B с помощью ЭП над строками, которые приводят $B \leadsto E$. Одновременно преобразуем матрицу (*) с помощью таких же ЭП над строками и столбцами, отношение при этом не изменится. Тогда:

$$\frac{\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}}{\det A \cdot \det B} = \frac{\det \begin{pmatrix} E & C \\ 0 & E \end{pmatrix}}{\det E \cdot \det E} = 1$$

8.3 Разложение определителя по строке

A - матрица размера $m \times n$.

 $i_1, ..., i_k$ - номера некоторого разложения строк в A.

 $j_1, ..., j_t$ - номера некоторого разложения столбцов в A.

Определение. Матрица, состоящая из элементов матрицы A, стоящих на пересечении строк с номерами $i_1,...,i_k$ и столбцов с номерами $j_1,...,j_t$, называется подматрицей матрицы A

$$i_1 \cdots i_s$$

Обозначение: A :

$$j_1 \cdots j_t$$

Определение. Минорами k—ого порядка матрицы A называется определитель квадратной подматрицы порядка k.

Пример.
$$\begin{array}{c|c}
 & 1 & 2 & 3 & 4 \\
\hline
 & 5 & 6 & 7 & 8 \\
\hline
 & 7 & 8 & 7
\end{array}$$

$$\longrightarrow \text{Минор} = \begin{vmatrix} 6 & 8 \\ 7 & 7 \end{vmatrix}$$

Пусть A квадратная матрица порядка n

Определение. Минор порядка (n-1) квадратной матрицы A, полученный вычеркиванием i—ой строки и j—ого столбца, называется дополнительным минором к элементу a_{ij} .

Обозначается: M_{ij}

Определение. Алгебраческое дополнение к элементу a_{ij} - это число:

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}$$

Пример. (к прошлому примеру) $A_{21} = (-1)^{2+1}(-6) = 6$