Notiuni de baza

- alfabet
- secventa
 - lungime
 - secv. vida
- concatenare
 - notatii
- subsecventa
 - prefix
 - sufix

- multimi speciale
- proprietati Σ^*
- limbaj
 - cuvant
- tipuri de limbaje
- specificarea unui limb.
- operatii cu limbaje

Alfabet

• Def:

Alfabet = o multime finitã si nevidã de elemente numite simboluri

• Notatie: Σ

Secventa

Def.

- secventa peste Σ
 - o succesiune finita de simboluri din Σ
- subsecventa
 - o succesiune de simboluri consecutive dintr-o secventa

Lungimea unei secvente

- def:
 - nr. de simboluri din care este formata acea secventa
- notatie
 - | ... |
 - Ex: |abc| = 3

- Secv. vida = secv. de lungime 0
- notatie: ε (unele surse λ)

Concatenare

Dacã

$$x=a_1a_2...a_n$$
 $y=b_1b_2...b_m$
atunci $z=a_1...a_nb_1...b_m$
reprezintã concatenarea secventelor x si y

si se noteaza z = xy

Notatii: $aa...aa = a^n$

(de n ori)

Exemplu: $a^2 = aa$

Secventa

Def.

- secventa peste Σ o succesiune finita de simboluri din Σ
- subsecventa
 o succesiune de simboluri consecutive dintr-o secventa

w2 – subsecventa a lui w1

daca ∃ secventele u, v a.i. w1=u w2 v

Prefix, sufix

Fie x, y, z sunt secvente peste alfabetul Σ

- x este un prefix al secventei xy
- y un sufix al secventei xy
- Prefix: o subsecventa care
 - fie este vida
 - fie incepe cu primul simbol al secventei date
- Sufix: o subsecventa care
 - fie este vida
 - fie se termina cu ultimul simbol al secventei date

Multimi speciale

- $\Sigma^n = \{ w \mid w \text{secventa peste } \Sigma, |w| = n \}$
- $\Sigma^* = \{ w \mid w \text{secventa peste } \Sigma, 0 \le |w| \}$
- $\Sigma^+ = \{ w \mid w \text{secventa peste } \Sigma, 0 < |w| \}$

• $\Sigma^* = \Sigma^+ \cup \{\epsilon\}$

Operatia *

Denumiri:

- Operatia: *, steaua lui Kleene
- Inchiderea lui Kleene

- Σ^* inchiderea alfabetului
 - multimea tuturor secventelor ce se pot obtine folosind secvente din Σ

(Similar pentru limbaje)

Σ^* - proprietati

- \forall $w_1, w_2 \in \Sigma^*$ avem: $w_1 w_2 \in \Sigma^*$
- $\forall w_1, w_2, w_3 \in \Sigma^* \text{ avem: } (w_1 w_2) w_3 = w_1 (w_2 w_3)$
- $\forall w \in \Sigma^*$, $\varepsilon w = w\varepsilon = w$

 $(\Sigma^*,.)$ - monoid

Limbaj, cuvant

- def: (limbaj) $L-limbaj \ peste \ alfabetul \ \Sigma$ $daca \ L \subset \Sigma^*$
- def: (cuvant)

Cuvant al unui limbaj – un element al limbajului

Metode de specificare a unui limbaj

- enumerand elementele
- evidentierea unor proprietati ale elementelor
 - folosind multimi si descrieri matematice

— ...

folosind gramatici, automate, expresii regulare

•

Cateva tipuri de limbaje

teoretice

$$L = \{a^n \mid n \in N\} \quad \text{limbaj peste } \Sigma = \{a\}$$

$$L = \{a^nb^n \mid n \in N\} \quad \text{limbaj peste } \Sigma = \{a,b\}$$

matematice

ex: limbajul reprezentarii zecimale a numerelor naturale

informatice

limbajul identificatorilor

$$\Sigma = \{a, ..., z, A, ..., Z, 0, ..., 9\}$$

$$L = \{a'w' \mid a' \in \{a, ..., z, A, ..., Z, \}, w' \in \Sigma^*\}$$

Operatii cu limbaje (1)

Fie: L1 – limbaj peste Σ_1 L2 – limbaj peste Σ_2 (operatii cu multimi)

• $L_1 \cup L_2$ limbaj peste Σ ales corespunzator;

de exemplu:
$$\Sigma = \Sigma_1 \cup \Sigma_2$$

- $\mathbf{L_1} \cap \mathbf{L_2}$ limbaj peste Σ $(\Sigma = \Sigma_1 \cap \Sigma_2)$
- $\mathbf{L_1} \mathbf{L_2}$ limbaj peste Σ $(\Sigma = \Sigma_1)$
- $\mathbf{L_1} \mathbf{L_2}$ limbaj peste Σ $(\Sigma = \Sigma_1 \cup \Sigma_2)$

(operatii bazate pe concatenare)

- câtul la dreapta: $\mathbf{L_1} / \mathbf{L_2} = \{ w \in \Sigma^* | \exists y \in L_2 : wy \in L_1 \}$
- câtul la stanga: L₁ \ L₂ = { w∈ Σ*| ∃ y∈ L₂: yw∈ L₁}

Operatii cu limbaje (2)

- L limbaj peste un alfabet Σ
- complementara: $\overline{L} = \{x \in \Sigma^* \mid x \notin L\}$
- închiderea reflexivă și tranzitivă:

$$L^* = \bigcup_{n \ge 0} L^n$$
 unde $L^n = LL^{n-1}, L^0 = \{ \epsilon \};$

• închiderea tranzitivă:

$$\mathbf{L}^{+} = \bigcup_{n \ge 1} \mathbf{L}^{n} \quad \text{sau } \mathbf{L}^{+} = \mathbf{L}\mathbf{L}^{*} \qquad , \quad \mathbf{L}^{*} = \mathbf{L}^{+} \bigcup \{ \mathbf{\epsilon} \}$$