The Hasse Norm Principle (Rachel Newton)

Ross Paterson

June 23, 2019

Lecture 1:

1 The Hasse Principle

Let k be a number field throughout, X/k a variety. Note that $X(k) \subset \prod_{v \in M_k} X(k_v)$, so that $X(k) \neq \emptyset \Rightarrow X(k_v) \neq \emptyset$. If the reverse implication holds in some family of varieties we say that "the Hasse principle holds" for that family.

Theorem 1.1 (Hasse-Minkowski). The Hasse principle holds for quadratic forms.

Example 1 (Selmer). Let $X: 3x^3 + 4y^3 + 5z^3 = 0 \subset \mathbb{P}^2$. Then $X(\mathbb{R}) \neq \emptyset$ and $X(\mathbb{Q}_p) \neq \emptyset$ for all p, but $X(\mathbb{Q}) = \emptyset$ so the Hasse principle fails here.

1.1 The Hasse Norm Principle

If L/k is a finite extension we have a commutative diagram

$$L^{\times} \longrightarrow \mathbb{A}_{L}^{\times}$$

$$\downarrow^{N_{L/k}} \quad \downarrow^{N_{L/k}}$$

$$k^{\times} \longrightarrow \mathbb{A}_{L}^{\times}$$

where the norm map on the ideles is $(x_w)_w \mapsto \prod_{w|v} N_{L_w/k_v}(x_w)$.

Definition 1.2. The Knot Group the Knot group is

$$\kappa(L/k) := \frac{k^{\times} \cap N_{L/k} \mathbb{A}_{L}^{\times}}{N_{L/k} L^{\times}}$$

i.e. this is the group of local norms modulo the global ones. If $\kappa(L/k) = 1$ then we say that the Hasse norm principle (HNP) holds.

Example 2. Let N/k be the normal closure of L/k, the Hasse norm principle holds for L/k if

- (i) N = L and Gal(L/K) is cyclic (Hasse's norm theorem)
- (ii) [L:k] is prime (Bartels)

$$(iii) \ [L:k] = n \ and \ \mathrm{Gal}(N/k) = \begin{cases} D_n & (\mathrm{Bartels}) \\ S_n & (\mathrm{Kunyavskii} \ \& \ \mathrm{Voskrensenski}) \\ A_n & \mathrm{Macedo} \end{cases}$$

Example 3 (Hasse). $L = \mathbb{Q}(\sqrt{13}, \sqrt{-3})/\mathbb{Q}$. Then $3 \in N_{L/\mathbb{Q}} \mathbb{A}_L^{\times} \setminus N_{L/\mathbb{Q}} L^{\times}$ and the HNP fails.

Theorem 1.3 (6, Tate). Let L/k be Galois with Gal(L/k) = G then

$$\kappa(L/k)^{\vee} := \operatorname{Hom}(\kappa(L/k), \mathbb{Q}/\mathbb{Z}) = \ker(H^3(G, \mathbb{Z}) \to \prod_v H^3(G_v, \mathbb{Z}))$$

where $G_v = \operatorname{Gal}(L_v/k_v)$

Corollary 1.4 (Hasse's Norm Theorem). If L/k is cyclic then the HNP holds.

Proof. G is finite cyclic means that
$$H^3(G,\mathbb{Z})=H^1(G,\mathbb{Z})=\mathrm{Hom}(G,\mathbb{Z})=0.$$

2 Connections to Geometry: Arithmetic of Tori

Let \overline{k} be a fixed algebraic closure of k.

Definition 2.1. An algebraic torus T/k is an algebraic group over k such that

$$T \times_k \overline{k} \cong_{\overline{k}} (\mathbb{G}_m, \overline{k})^n$$

for some $n \in \mathbb{Z}_{>0}$, where $\mathbb{G}_m = \operatorname{spec}(k[t, t^{-1}])$ is the general multiplicative group, an algebraic group in \mathbb{A}^2 with defining equation xy = 1.

Note that $T \times_k \overline{k} \cong_{\overline{k}} (\mathbb{G}_{m,\overline{k}})^n$ means that $T(\overline{k}) \cong (\overline{k}^{\times})^n$. We call T split if $T \cong_k (\mathbb{G}_{m,k})^n$ for some $n \in \mathbb{Z}_{>0}$.

Example 4. $S := R_{\mathbb{C}/\mathbb{R}}\mathbb{G}_m$ (Weil restriction) is a torus, which is an exercise on the exercise sheet. S is a variety over \mathbb{R} defined by

$$(x_0 + x_1 i)(y_0 + y_1 i) = 1$$

i.e.

$$\begin{cases} x_0 y_0 - x_1 y_1 &= 1\\ x_0 y_1 + x_1 y_0 &= 0 \end{cases}$$

so
$$S(\mathbb{R}) = \mathbb{G}_m(\mathbb{C}) = \mathbb{C}^{\times}$$
.

Definition 2.2 (Highbrow definition of Weil Restriction). L/k a finite extension and X/L a variety. $R_{L/k}X$ is the variety over k representing the functor

$$(k\text{-schemes})^{\mathrm{op}} \to \mathrm{sets}$$

 $S \mapsto X(S \times_k L)$

i.e.
$$R_{L/k}X(S) = X(S \times_k L)$$

Definition 2.3 (Lowbrow definition of Weil Restriction). X/L is definted by

$$f(x_1,\ldots,x_n)=\cdots=f_m(x_1,\ldots,x_n)=0$$

choose a basis $\alpha_1, \ldots, \alpha_d$ for L/k and write $x_i := \sum_{j=1}^d y_{i,j} \alpha_j$ and then plug into the f_i to get equations for the variety $R_{L/k}X$ over k.

Example 5. L/k finite. Then the norm one torus $R_{L/k}^1\mathbb{G}_m$ is defined by the exact sequence

$$1 \longrightarrow R_{L/k}^1 \mathbb{G}_m \longrightarrow R_{L/k} \mathbb{G}_m \xrightarrow{N_{L/k}} \mathbb{G}_m \longrightarrow 1. \tag{1}$$

Explicitly, if $\alpha_1, \ldots, \alpha_d$ is a k basis for L, then $T := R^1_{L/k} \mathbb{G}_m$ is the affine variety defined by

$$N_{L/k}\left(\sum_{i=1}^d x_i\alpha_i\right)=1.$$

Definition 2.4. A principal homogeneous space X for T/k is a variety X/k such that T acts simply transitively on X. If $X(k) \neq \emptyset$ then $X \cong_k T$. Thus

$$X \times_k \overline{k} \cong_{\overline{k}} T \times_k \overline{k}$$

X represents a class in $H^1(k,T)$.

We are about to use Galois cohomology, so it is worth mentioning that when we do we are taking the \overline{k} -rational points of the sheaves. Further, it is NOT true that $H^1(k,T)=0$ by hilbert 90 for a torus T. This is because, although $T(\overline{k})=\overline{k}^\times$ as groups, the Galois action is different because the isomorphism is not necessarily over k but in fact some splitting extension L.

Taking Galois cohomology of (1) gives

$$1 \longrightarrow T(k) \longrightarrow L^{\times} \xrightarrow{N_{L/k}} k^{\times} \longrightarrow H^{1}(k,T) \longrightarrow H^{1}(k,R_{L/k}\mathbb{G}_{m})$$

but the right hand side term is 0 by Hilbert 90 (Not quite obviously, so $\mathbb{R}_{L/k}\mathbb{G}_m(\overline{k}) \cong L \otimes \overline{k} \cong \overline{k}^{[L:k]}$ with Galois action on the right hand side component only. Thus $H^1(k, R_{L/K}\mathbb{G}_m) = H^1(k, \overline{k}^{[L:k]}) = 0$ by Hilber 90.). So

$$H^1(k,T) = \frac{k^{\times}}{N_{L/k}L^{\times}}$$

(Note that $T = R^1_{L/k} \mathbb{G}_m$ here)

Exercise 1. Let $c \in k^{\times}$. Then if $T = R^1_{L/k} \mathbb{G}_m$, define

$$T_c: N_{L/k}\left(\sum_{i=1}^d x_i \alpha_i\right) = c.$$

Show that this is a principal homogeneous space for T and its class in $H^1(k,T)$ is given by c.

Definition 2.5. The **Tate-Shaferevich group** of a group scheme A/k is

$$\mathrm{III}(A) = \mathrm{III}^1(A) := \ker \left(H^1(k, A) \to \prod_v H^1(k_v, A) \right)$$

Exercise 2. Show that $\coprod^1(R^1_{L/k}\mathbb{G}_m) = \kappa(L/k)$, so that the HNP holds for L/k if and only if the Hasse principle holds for all principal homogeneous spaces for $R^1\mathbb{G}_m$.

Definition 2.6. Let T/k be a torus, then we define the Galois module of characters to be

$$\widehat{T}:=\mathrm{Hom}(T_{\overline{k}},\mathbb{G}_{m,\overline{k}})$$

which is a Galois module via the natural action of $\operatorname{Gal}(\overline{k},k)$. We also have the **Galois module** of cocharacters

 $\widehat{T}^0 := \operatorname{Hom}(\mathbb{G}_{m} \,_{\overline{k}}, T_{\overline{k}}).$

(Note these are homomorphisms of algebraic groups, so must be algebraic homs). These are both \mathbb{Z} -free modules of finite rank with continuous Galois action.

Example 6. It is an exercise to show that:

- (a) $\widehat{\mathbb{G}_{m,k}} = \mathbb{Z}$,
- (b) If F/L/k is a tower of number fields with F/k Galois and $\operatorname{Gal}(F/k) = G \ge H = \operatorname{Gal}(F/L)$ then

$$\widehat{R_{L/k}\mathbb{G}_m} = \mathbb{Z}[G/H]$$

Now taking characters in the sequence defining $R^1_{L/k}\mathbb{G}_m$, namely (1), gives

$$0 \longrightarrow \mathbb{Z} \overset{N_{L/k}}{\Longrightarrow} \mathbb{Z}[G/H] \overset{\widehat{N_{L/k}}\mathbb{G}_m}{\longrightarrow} 0$$

where the $N_{L/k}$ is given by $1 \mapsto \sum_{g \in G/H} g$

We have one more exercise, in response to the question about why $R^1_{L/k}\mathbb{G}_m$ is even a torus:

Exercise 3. (a) Show that if T/L is a torus then $R_{L/k}T$ is a torus.

(b) Show that $R_{L/k}^1 \mathbb{G}_m$ is a torus.

Lecture 2:

Aside: Let $L = \frac{k[X]}{f(X)}$ be a separable field extension. Note that

$$L \otimes_k k_v = \frac{k_v[X]}{f_1(X) \dots f_r(X)} = \prod_{i=1}^r \frac{k_v[X]}{f_i(X)} = \prod_{v \mid v} L_v$$

and we have an injection $L \to L_w$, which has a dense subset. Applying the norm map on $L \otimes_k k_v$ we get a commutative diagram

$$L \otimes_{k} k_{v} \xrightarrow{N_{L/k}} k \otimes_{k} k_{v}$$

$$\parallel \qquad \qquad \parallel$$

$$\prod_{w|v} L_{w}^{\prod N_{L_{w}/K_{v}}} k_{v}$$

Now, from last time take $c \in k^{\times}$ and recall the associated norm torus $T_c : N_{L/k}(\sum_i x_i \alpha_i) = c$ for α_i forming a k basis of L. Then

$$[T_c] = 0 \in H^1(k, T) \iff T_c(k) \neq \emptyset$$

$$\iff c \in N_{L/k} L^{\times}$$

$$[T_c] = 0 \in H^1(k_v, T) \iff T_c(k_v) \neq \emptyset$$

$$\iff c \in N_{L/k} (L \otimes_k k_v)$$

$$\iff c \in \prod_{w \mid v} N_{L_w/k_v} L_w^{\times}$$

The New Lecture: Continuing the lecture proper, recall from last the modules of characters and cocharacters:

$$\widehat{T} = \operatorname{Hom}(T_{\overline{k}}, \mathbb{G}_{m,\overline{k}})$$

$$\widehat{T}^{\circ} = \operatorname{Hom}(\mathbb{G}_{m,\overline{k}}, T_{\overline{k}})$$

where Hom is the homomorphisms that are regular maps of varieties that are also group homomorphisms. Note that $\operatorname{Gal}(\overline{k}/k)$ acts on \widehat{T} and \widehat{T}° by

$$(g \cdot \varphi)(x) = g\varphi(g^{-1}x)$$

Exercise 4 (17). Show that there is a perfect pairing of Galois modules

$$\widehat{T} \otimes \widehat{T}^{\circ} \xrightarrow{\theta} \mathbb{Z}.$$

and hence $\widehat{T}^{\circ} = \operatorname{Hom}(\widehat{T}, \mathbb{Z})$ as Galois modules.

Lemma 2.7 (18). Let T/k be split by a finite Galois extension L/k (i.e. under base change to L it becomes \mathbb{G}_m^n for some n), denote $G := \operatorname{Gal}(L/k)$. Then

$$\widehat{T}^{\circ} \otimes L^{\times} \cong T(L)$$

 $as\ G{\text{-}}modules.$

Proof. L/k splits T means that $T_L = \mathbb{G}^n_{m,L}$ for some $n \in \mathbb{Z}_{>0}$. This in turn tells us that $\operatorname{Gal}(\overline{k}/L)$ acts trivially on \widehat{T} and on \widehat{T}° , so all cocharacters are defined over L. Then

why?

$$\widehat{T}^{\circ} \otimes L^{\times} \to^{f} T(L)$$
$$\varphi \otimes \alpha \mapsto \varphi(\alpha)$$

is a G-homomorphism. $\widehat{T}^{\circ} \cong \mathbb{Z}^n$ as a group and $T(L) \cong (L^{\times})^n$ as a group. Therefore f is an isomorphism.

Definition 2.8 (19). Let T/k be a torus, split by L/k finite Galois with G = Gal(L/k). Define more Sha's by

$$\mathrm{III}^{2}(G,\widehat{T}) := \ker \left(H^{2}(G,\widehat{T}) \to \prod_{v} H^{2}(G_{v},\widehat{T}) \right)$$
$$\mathrm{III}^{2}_{w}(G,\widehat{T}) := \ker \left(H^{2}(G,\widehat{T}) \to \prod_{g \in G} H^{2}(\langle g \rangle,\widehat{T}) \right)$$

Theorem 2.9 (20). Let T be as in definition 2.8. Then there is a canonical isomorphism

$$\coprod^{1}(T) \cong \operatorname{Hom}(\coprod^{2}(G,\widehat{T}), \mathbb{Q}/\mathbb{Z})$$

Recall Theorem 1.3, which tells us a similar thing. In fact, Theorem 1.3 follows from Theorem 2.9 once you have shown that for $T = R_{L/k}^1 \mathbb{G}_m$ and L/k Galois,

$$\mathrm{III}^2(G,\widehat{T}) = \ker\left(H^3(G,\mathbb{Z}) \to \prod_v H^3(G,\mathbb{Z})\right).$$

This is an exercise.

3 Tate Cohomology of Finite Groups

G a finite group, A a G-module. The Tate Cohomology groups are

$$\widehat{H}^{n}(G,A) = \begin{cases} H^{n}(G,A) & n \ge 1\\ \frac{A^{G}}{N_{G}A} & n = 0\\ \frac{\{a \in A \mid N_{G}a = 0\}}{\langle g \cdot a - a \mid a \in A, g \in G \rangle} & n = -1\\ H_{-n-1}(G,A) & n < -1 \end{cases}$$

where $N_G = \sum_{g \in G} g$.

Definition 3.1 (Cup Products). for all $m, n \in \mathbb{Z}$ and all G-modules A, B we have a $\operatorname{\it cup\ product}$ $\operatorname{\it map}$

$$\cup: \widehat{H}^m(G,A) \otimes \widehat{H}^n(G,B) \to \widehat{H}^{m+n}(G,A \otimes B)$$

which for m=n=0 is given by the natural map $A^G\otimes B^G\to (A\otimes B)^G$ induced by tensor product.

Theorem 3.2 (Duality). Let A be a G-module which is \mathbb{Z} -free. Then

$$\widehat{H}^n(G,A)\otimes\widehat{H}^{-n}(G,\operatorname{Hom}(A,\mathbb{Z}))$$

$$\downarrow^{\cup}_{\bigvee}$$
 $\widehat{H}^0(G,A\otimes\operatorname{Hom}(A,\mathbb{Z}))$

$$\downarrow^{(a\otimes \varphi\mapsto \varphi(a))}$$
 $\widehat{H}^0(G,\mathbb{Z})$
 \parallel
 $\mathbb{Z}/|G|\mathbb{Z}$

is a perfect pairing. Hence

$$\widehat{H}^{-n}(G, \operatorname{Hom}(A, \mathbb{Z})) \cong \operatorname{Hom}(\widehat{H}^{n}(G, A), \mathbb{Z}/|G|\mathbb{Z})$$

 $\cong \operatorname{Hom}(\widehat{H}^{n}(G, A), \mathbb{Q}/\mathbb{Z})$

where the last step is because cohomology is |G|-torsion anyways.

Proof of Theorem 2.9.

$$1 \longrightarrow L^{\times} \longrightarrow \mathbb{A}_{L}^{\times} \longrightarrow C_{L} \longrightarrow 1$$

is an exact sequence, and taking $\operatorname{Tor}^{\mathbb{Z}}$ gives us

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(C_{L},\widehat{T}^{\circ}) \longrightarrow \widehat{T}^{\circ} \otimes L^{\times} \longrightarrow \widehat{T}^{\circ} \otimes \mathbb{A}_{L}^{\times} \longrightarrow \widehat{T}^{\circ} \otimes C_{L} \longrightarrow 0$$

So in particular

$$\widehat{T}^{\circ} \otimes C_L = \frac{T(\mathbb{A}_L)}{T(L)} =: C_L(T).$$

Then we take Tate cohomology

$$\widehat{H}^0(G, T(L)) \xrightarrow{\alpha} \widehat{H}^0(G, T(\mathbb{A}_L)) \xrightarrow{\beta} \widehat{H}^0(G, C_L(T))$$

$$\widehat{H}^1(G, T(L)) \xrightarrow{\gamma} \widehat{H}^1(G, T(\mathbb{A}_L))$$

Now, it is an exercise to show that $H^1(G, T(L)) = H^1(k, T)$.

Furthermore, for all $r \in \mathbb{Z}$, $\widehat{H}^r(G, T(\mathbb{A}_L)) \cong \bigoplus_v \widehat{H}^r(G_v, T(L_v))$ via the restriction and corestriction maps (and the surjections/injections between L_v^{\times} and \mathbb{A}_L^{\times}). So $\mathbb{H}^1(T) = \ker(\delta) = \operatorname{im}(\gamma) \cong \operatorname{coker}(\beta)$.

Global Class Field Theory: $H^2(G, C_L) = \mathbb{Z}/|G|\mathbb{Z}$ with a canonical generator $u_{L/k}$ and for all $r \in \mathbb{Z}$, and all \mathbb{Z} -free modules M

$$\widehat{H}^r(G, M) \cong \widehat{H}^{r+2}(G, M \otimes C_L)$$

 $\chi \mapsto \chi \cup u_{L/k}$

(This is just Tates theorem for class formations).

Local Class Field Theory: $H^2(G_v, L_v^{\times}) = \mathbb{Z}/|G_v|\mathbb{Z}$ with canonical generator, and for all $r \in \mathbb{Z}$ and all \mathbb{Z} -free modules M we again have

$$\widehat{H}^r(G_v, M) \cong \widehat{H}^{r+2}(G_v, M \otimes L_v)$$

 $\chi \mapsto \chi \cup \text{canonical generator}$

(again this is just Tates theorem for class formations.)

Continuing with the Proof: Putting this together gives us

$$\mathrm{III}^1(T) = \mathrm{coker}(\oplus_v H^{-2}(G_v, \widehat{T}^\circ) \to ``\beta'' \ \widehat{H}^{-2}(G, \widehat{T}^\circ))$$

This is using all of the above, in particular we are using the cup product isomorphism in reverse. and duality for Tate cohomology gives

$$\operatorname{Hom}(\operatorname{III}^1(T),\mathbb{Q}/\mathbb{Z}) = \ker(H^2(G,\widehat{T}) \to \oplus_v H^2(G_v,\widehat{T}))$$

Lecture 3:

We will start by defining weak approximation.

Definition 3.3. We say that **weak approximation** holds for a variety X if the rational points X(k) are dense in $\prod_v A(k_v)$ (the topology on the product is the product topology)

Definition 3.4. Let T/k be a torus. The **defect of weak approximation** for T is

$$A(T) := \frac{\prod_{v} T(k_v)}{\overline{T(k)}}$$

where $\overline{T(k)}$ is the closure in the product topology.

Exercise 5 (23). Let $T = R_{L/k}^1 \mathbb{G}_m$ with L/k Galois. Show that

$$A(T) = \frac{T(\mathbb{A}_k)}{T(k)N_{L/k}T(\mathbb{A}_L)}$$

Theorem 3.5 (24, Voskresenski). Let T be as in $Ex\ 5$ and G = Gal(L/k). Then we have an exact sequence

$$0 \longrightarrow A(T) \longrightarrow \operatorname{Hom}(H^3(G,\mathbb{Z}),\mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{III}^1(T) \longrightarrow 0$$

Corollary 3.6. If T is as above and $H^3(G,\mathbb{Z}) = 0$ then the HNP holds for L/k and weak approximation holds for T.

Proof. Recall the exact sequence from the proof of Theorem 2.9:

In the proof of Theorem 2.9 we showed that $III^1(T) = im(\gamma)$. Consider

$$\begin{split} \widehat{H}^0(G,T(L)) & \xrightarrow{\quad \alpha \quad } \widehat{H}^0(G,T(\mathbb{A}_L)) \\ & \parallel \qquad \qquad \parallel \\ & T(k)/N_{L/k}T(L) \qquad T(\mathbb{A}_k)/N_{L/k}T(\mathbb{A}_L) \end{split}$$

We obtain a short exact sequence

$$0 \longrightarrow \tfrac{T(\mathbb{A}_k)}{T(k)N_{L/k}T(\mathbb{A}_L)} \overset{\beta}{\longrightarrow} \widehat{H}^0(G,C_L(T)) \longrightarrow \coprod^1(T) \longrightarrow 0$$

By exercise 5 the injective term is A(T). Further we see that the middle term is, as in the proof of Theorem 2.9, is $\operatorname{Hom}(\widehat{H}^2(G,\widehat{T}),\mathbb{Q}/\mathbb{Z})$ Now it remains to show that $\widehat{H}^2(G,\widehat{T})=H^3(G,\mathbb{Z})$ (an easy exercise)

Theorem 3.7 (Colliot-Thélène & Sansuc). T/k split by a finite Galois extension L/k with Gal(L/k) = G then

$$0 \longrightarrow A(T) \longrightarrow \operatorname{Hom}(\operatorname{III}^2_w(G,\widehat{T}),\mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{III}^1(T) \longrightarrow 0$$

is exact.

4 The First Obstruction to the HNP

Definition 4.1. Let F/L/k be a tower of number fields where F/k is Galois. The **first obstruction** to the HNP corresponding to this tower is

$$\mathscr{F}(F/L/k) = \frac{N_{L/k} \mathbb{A}_L^{\times} \cap k^{\times}}{(N_{F/k} \mathbb{A}_K^{\times} \cap k^{\times}) N_{L/kL^{\times}}}$$

Remark 4.2. 1. The knot group $\kappa(L/k)$ surjects onto $\mathscr{F}(F/L/k)$, so if this first obstruction is nontrivial then so is the knot group and L/k does not satisfy HNP.

2. If HNP holds for F/k then $N_{F/k}\mathbb{A}_F^{\times} \cap k^{\times} = N_{F/k}F^{\times}$, and so $\mathscr{F}(F/L/k) = \kappa(L/k)$.

Proposition 4.3 (29, Drakonkhurst & Platonov). For F/L/k as above, let G = Gal(F/k) and H = Gal(F/L). Consider the commutative diagram

$$\begin{split} \widehat{H}^0(H,C_F) & \xrightarrow{\psi_1} \widehat{H}^0(G,C_F) \\ \varphi & \downarrow 1 & \varphi_2 \\ \widehat{H}^0(H,\mathbb{A}_F^\times) & \xrightarrow{\psi_2} \widehat{H}^0(G,\mathbb{A}_F^\times) \end{split}$$

where the φ_i are induced by the natural surjection $\mathbb{A}_F^{\times}C_F$ and the ψ_i are $\operatorname{Cor}_H^G = N_{L/k}$, then

$$\frac{\ker \psi_1}{\varphi_1(\ker \psi_2)} \cong \mathscr{F}(F/L/k)$$

Recall that class field theory gives isomorphisms

$$\frac{C_k}{N_{F/k}C_F} = \widehat{H}^0(G, C_F) \cong \widehat{H}^{-2}(G, \mathbb{Z}) = H_1(G, \mathbb{Z}) = G^{\mathrm{ab}}$$

and

$$\widehat{H}^0(G, \mathbb{A}_F^{\times}) = \bigoplus_{v \in M_k} \widehat{H}^0(G_v, F_v^{\times}) \cong \bigoplus_{v \in M_k} \widehat{H}^{-2}(G_v, \mathbb{Z}) \cong \bigoplus_{v \in M_k} \frac{G_v}{[G_v, G_v]}$$

and similarly for H. Now the diagram of Proposition 4.3 looks like

There is something subtle going on with the bottom map, note that seperate places above a fixed place are conjugate. We give a concrete description: Write G as a disjoint union of its $H - G_v$ double cosets: $G = \bigcup_{i=1}^{r_v} Hx_iG_v$ where x_i are the double coset representatives. Then

$$\{x_1, \dots x_{r_n}\} \leftrightarrow \{w \mid v\}$$

is a 1:1 correspondence. Now, $H_w = x_i G_v x_i^{-1} \cap H$. If $h \in H_w = x_i G_v x_i^{-1} \cap H$ then $\psi_2(h) = x_i^{-1} h x_i \in \frac{G_v}{[G_v, G_v]}$. Hence

$$\mathscr{F}(F/L/k) = \frac{\ker \psi_1}{\varphi_1 \ker \psi_2}$$

is looking far more computable! The top part is easy, $\ker \psi_1 = H \cap [G, G]$, so if $H \cap [G, G] = [H, H]$ then the first obstruction $\mathscr{F}(F/L/k) = 1$.

Let ψ_2^v denote the restriction of ψ_2 to $\bigoplus_{w|v} \frac{H_w}{[H_w, H_w]}$.

Lemma 4.4 (Drakokhurst & Platonov). If $G_{v_2} \subset G_{v_1}$ then $\varphi_1(\ker \psi_2^{v_2}) \subset \varphi_1(\ker \psi_2^{v_1})$.

Proof. This is an exercise, a hint is: Let $G = \bigcup_{i=1}^r Hx_iG_{v_1}$. Now write $Hx_iG_{v_1} = \bigcup_{j=1}^{s_i} Hx_i\gamma_{ij}G_{v_2}$ for $\gamma_{ij} \in G_{v_1}$. So $G = \bigcup_{i=1}^r \bigcup_{j=1}^{s_i} Hx_i\gamma_{ij}G_{v_2}$

Let ψ_2^{nr} denote the restriction of ψ_2 to $\bigoplus_{v \text{ unram} \in F/k} \bigoplus_{w \mid v} \frac{H_w}{[H_w, H_w]}$. Let ψ_2^r denote the restriction to the remaining (ramified) places $\bigoplus_{v \text{ ram} \in F/k} \bigoplus_{w \mid v} \frac{H_w}{[H_w, H_w]}$.

Note that $\varphi_1(\ker \psi_2) = \varphi_1(\ker \psi_2^r)\varphi_1(\ker \psi_2^{\text{nr}}).$

Corollary 4.5 (31). Computing $\mathcal{F}(F/L/k)$ is a finite calculation.

Proof. Lemma 4.4, the fact that finitely many places are ramified in F/k and the fact that G has finitely many cyclic subgroups.

Lecture 4: We have broken our computation of $\mathcal{F}(F/L/k)$ into finitely many peices.

Now we will look at the unramified part from the end of the last lecture.

Theorem 4.6 (Drakokhurst & Platonov).

$$\varphi_1(\ker \psi_2^{\mathrm{nr}}) = \Phi^G(H)/[H,H]$$

where

$$\Phi^G(H) = \langle h_i^{-1} h_2 \mid h_i \in H \text{ and } h_2 \text{ is } G \text{ -conjugate to } h_1 \rangle$$
.

Corollary 4.7. There is a surjection

$$\frac{H\cap [G,G]}{\Phi^G(H)}\to \mathscr{F}(F/L/k)$$

so if $H \cap [G, G] = \Phi^G(H)$ then $\mathscr{F}(F/L/k) = 1$.

Theorem 4.8 (34, Drakokhurst & Platonov). F/L/k and G, H as above. For i = 1, ..., n let $G_i < G$ and $H_i < H \cap G_i$, $L_i = F^{H_i}$ and $k_i = F^{G_i}$.

Suppose that the HNP holds for each L_i/k_i and that

$$\bigoplus_{i=1}^m \mathrm{Cor}_{G_i}^G: \bigoplus_{i=1}^m \widehat{H}^{-3}(G,\mathbb{Z}) \to \widehat{H}^{-3}(G,\mathbb{Z})$$

is surjective. Then

$$N_{F/k}\mathbb{A}_{F}^{\times}\cap k^{\times}\subset N_{L/k}L^{\times}$$

and hence $\mathscr{F}(F/L/k) = \kappa(L/k)$.

Proof. Exercise: Use the identifications

$$\widehat{H}^{-3}(G,\mathbb{Z}) = \widehat{H}^{-1}(G,C_F)$$
$$\widehat{H}^{-3}(G_i,\mathbb{Z}) = \widehat{H}^{-1}(G_i,C_F)$$

Recall that $\operatorname{Hom}(\kappa(L/k), \mathbb{Q}/\mathbb{Z}) = \ker\left(H^2(G, \widehat{T}) \to \prod_v H^2(G_v, \widehat{T})\right)$ where

$$1 \longrightarrow T = R^1_{L/K} \mathbb{G}_m \longrightarrow R_{L/K} \mathbb{G}_m \longrightarrow \mathbb{G}_m \longrightarrow 1$$

Take characters

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}[G/H] \longrightarrow \widehat{T} \longrightarrow 0$$

and we have a commutative diagram:

$$H^{2}(G, \mathbb{Z}) \xrightarrow{\psi_{1}^{\vee}} H^{2}(G, \mathbb{Z}[G/H]) \xrightarrow{\theta} H^{2}(G, \widehat{T}) \longrightarrow H^{3}(G, \mathbb{Z})$$

$$\downarrow^{\varphi_{2}^{\vee}} \qquad \qquad \downarrow^{\varphi_{1}^{\vee}} \qquad \qquad \downarrow^{\varphi_{0}^{\vee}}$$

$$\prod_{v} H^{2}(G_{v}, \mathbb{Z}) \xrightarrow{\psi_{2}^{\vee}} \prod_{v} H^{2}(G_{v}, \mathbb{Z}[G/H]) \longrightarrow \prod_{v} H^{2}(G_{v}, \widehat{T})$$

$$(3)$$

By Shapiro, $H^2(G,\mathbb{Z}[G/H])=H^2(H,\mathbb{Z}),$ and by Mackey & Shapiro

$$H^{2}(G_{v}, \mathbb{Z}[G/H]) = H^{2}(G_{v}, \operatorname{res}_{G_{v}}^{G} \operatorname{Ind}_{H}^{G} \mathbb{Z})$$
$$= H^{2}(G_{v}, \bigoplus_{w|v} \operatorname{Ind}_{H_{w}}^{G_{v}} \mathbb{Z})$$
$$= \bigoplus_{v} H^{2}(H_{w}, \mathbb{Z})$$

So the first square of our diagram is dual to (2): Recall

$$\mathscr{F}(F/L/k) = \frac{\ker \psi_1}{\varphi_1(\ker \psi_2)}$$

so (exercise)

$$\operatorname{Hom}(\mathscr{F}(F/L/k),\mathbb{Q}/\mathbb{Z}) = \frac{(\varphi_1^\vee)^{-1}(\operatorname{im}(\psi_2^\vee))}{\operatorname{im}(\psi_1^\vee)}$$

and so θ induces an injection

$$\operatorname{Hom}(\mathscr{F}(F/L/k),\mathbb{Q}/\mathbb{Z}) \to \ker(\varphi_0^{\vee}) = \operatorname{Hom}(\kappa(L/k),\mathbb{Q}/\mathbb{Z})$$

Theorem 4.9 (35, Macedo). Let p be a prime such that $H^2(G,\mathbb{Z})_{(p)} = 0$ (where we denote by $A_{(p)}$ the p-primary part of an abelian group A). Then

$$\kappa(L/k)_{(p)} = \mathscr{F}(F/L/k)_{(p)}$$

Proof. Exercise.

Macedo was able to use this to prove:

Theorem 4.10 (36, Macedo). Let F/L/k and G, H be as above, with $G \cong A_n$ or S_n and $n \geq 4$, $G \neq A_6, A_7$. Then

$$\kappa(L/k) = \begin{cases} \mathscr{F}(F/L/k) & |H| \in 2\mathbb{Z} \\ \mathscr{F}(F/L/k) \times \kappa(F/k) & |H| \in 2\mathbb{Z} + 1 \end{cases}$$

Sketch proof: For |H| even, first show that there is a subgroup $V_4 \subset G$ such that $|V_4 \cap H| \geq 2$ and

$$\operatorname{Cor}_{V_4}^G: \widehat{H}^{-3}(V_4, \mathbb{Z}) \to \widehat{H}^{-3}(G, \mathbb{Z})$$

is surjective. Now use Theorem 4.8. The case |H| odd is an exercise using the result of exercise 2 on the problem sheet

5 Number Fields with Prescribed Norms

(Joint with C. Frei & D. Loughran) Let k be a number field and G a finite abelian group. Let $\alpha \in k^{\times}$.

Question 1 (37). Does there exist L/k Galois with $\operatorname{Gal}(L/k) \cong G$ such that $\alpha \in N_{L/k}L^{\times}$? It suffices to show that there is some L/k a G-extension such that the HNP holds for L/k and $\alpha \in N_{L/k}\mathbb{A}_L^{\times}$.

We gave a positive answer to Question by counting. We reduce to local conditions via

Theorem 5.1 (Frei&Loughran&Newton). HNP holds for 100% of G-extensions L/k for which $\alpha \in N_{L/k} \mathbb{A}_L^{\times}$, ordered by conudctor.

It is important that we count by conductor here, if we were to instead count by discriminant the result is different.

Corollary 5.2. HNP holds for 100% of G-extensions of k ordered by conductor.

Proof. Take $\alpha = 1$

To prove Theorem 5.1, use Tates result (Theorem 1.3) to give necessary local conditions for the failure of HNP. Count G-extensions L/k satisfying those local conditions and the local conditions given by $\alpha \in N_{L/k} \mathbb{A}_L^{\times}$. Show that this is 0% of G-extensions L/k such that $\alpha \in N_{L/k} \mathbb{A}_L^{\times}$.

5.1 Main Technical Result for Counting

At each place $v \in M_k$ we let Λ_v denote a set of "allowed" sub-G-extensions of k_v (i.e. F/k Galois with $\operatorname{Gal}(F_v/k_v) \subset G$). Let $\Lambda = (\Lambda_v)$ be our allowed conditions,

$$N(k, G \Lambda, B) = \# \{G - \text{extensions } L/k \text{ with conductor } \leq B : L_v \in \Lambda_v \ \forall v \}$$

$$\omega(k, G, \alpha) = \sum_{g \in G \setminus \{1\}} \frac{1}{[k_{|g|} : k]}$$

where |g| is the order of g and $k_d = k(\mu_d, \sqrt[d]{\alpha})$.

Theorem 5.3 (FLN). Let S be a finite set of places of k. For $v \in S$ let Λ_v be a nonempty set of sub-G-extensions of k_v . For $v \notin S$ let $\Lambda_v = \{F/k_v : \text{sub-G-extensions s.t. } \alpha \in N_{F/k_v}F^{\times}\}$ Then

$$N(k, G, \Lambda, B) \sim c_{k,G,\Lambda} B(\log B)^{\omega(k,G,\alpha)-1}$$

as $B \to \infty$. Where c > 0 if there is a sub-G-extension L/k with $L_v \in \Lambda_v$ for all v.

Definition 5.4.

$$N_{loc}(k,G,\alpha,B) = \# \{G\text{-extensions } L/k \text{ with conductor } \leq B \text{ s.t. } \alpha \in N_{L/k} \mathbb{A}_L^{\times} \}$$

 $N_{glob}(k,G,\alpha,B) = \# \{G\text{-extensions } L/k \text{ with conductor } \leq B \text{ s.t. } \alpha \in N_{L/k} L^{\times} \}$

Theorem 5.5 (FLN, 41). $N_{loc}(k, G, \alpha, B) \sim c \cdot B(\log B)^{\omega(k, G, \alpha) - 1}$ for some c > 0.

Proof. Apply Theorem 5.3 with $S = \emptyset$. To show c > 0 need a sub-G-extension with $\alpha \in N_{L/k} \mathbb{A}_L^{\times}$. But we can take the trivial extension! L = k.

Theorem 5.6 (FLN, 42). $N_{glob}(k, G, \alpha, B) \sim c \cdot B(\log B)^{\omega(k, G, \alpha) - 1}$ for some c > 0.

Proof. Theorem 5.5 and Theorem 5.1.

Corollary 5.7 (43). The answer to Question 1 is YES!