Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016

Name:			
Matr. Nr.:			
Unterschrift:			

Klausurergebnis				
Aufgabe 1 (15 Punkte)	Aufgabe 2 (15 Punkte)			
Aufgabe 3 (10 Punkte)	Aufgabe 4 (15 Punkte)			
Aufgabe 5 (15 Punkte)	Aufgabe 6 (15 Punkte)			
Aufgabe 7 (15 Punkte)				
Gesamt (100 Punkte)	Note			

Bearbeitungshinweise:

- Die Bearbeitungsdauer der Klausur beträgt 120 Minuten.
- Überprüfen Sie bitte sofort nach Erhalt die Vollständigkeit der Unterlagen (13 Seiten).
- Bitte lassen Sie die Klausur zusammengeheftet.
- Schreiben Sie bitte auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.
- Falls notwendig, dann benutzen Sie die Rückseite des jeweiligen Aufgabenblatts für Notizen und Entwürfe.
- Geben Sie die Zwischenschritte Ihrer Berechnungen an.
- Gegeben Sie alle Ergebnisse auf 5 Stellen hinter dem Komma gerundet an.

Viel Erfolg!

Name:				Mat	r. Nr.:	
	l. (15 Punk nd die Ereig		B und C sov	vie die Wał	nrscheinlichkeiten	
					$Pr[A \cap B] = Pr[A \cap C] =$	0, 0.15.
Berechnen	Sie die folge	enden Wa	hrscheinlichl	keiten:		
a) $Pr[\overline{I}]$	B]:					
b) Pr [E	$B \cap C$]:					

Name:	Matr. Nr.:	
c) $Pr[C]$:		
d) $D_m[A \cup D \cup C]$.		
d) $Pr[A \cup B \cup C]$:		

Name:	Matr. Nr.:
Aufgabe 2. (15 Punkte)	
der anderen Seite des Flusses Ke Liebesbrief per Flaschenpost zuko	rliebt. Sein Schatz heißt Julia Flottebiene und wohnt auf ocher. Aus diesem Grund beschließt Romeo, Julia einen ommen zu lassen. Aus Erfahrung mit anderen Liebschaften mit einer Wahrscheinlichkeit von 65% in den Fluten der nt erreicht.
· · · · · · · · · · · · · · · · · · ·	nlichkeit, dass Romeo genau drei Flaschen versenden muss, eine Liebesbotschaft in Händen hält?
b) Mit welcher Wahrscheinlich eine Nachricht durch die st	nkeit müssen höchstens drei Flaschen versandt werden, bis ürmische Kocher gelangt?

:			_	/latr. Nr.:		
Wieviele l	Flaschen mu	ss Romeo im	Mittel send	en, bis eine	Flasche ihr	Ziel erreicht?
						: Matr. Nr.: Wieviele Flaschen muss Romeo im Mittel senden, bis eine Flasche ihr

Name:				Matr. Nr	.:	
Aufgabe 3. (1	0 Punkte)					
Gegeben ist die Varianz $\sigma^2 = 2$	normalverte .25. Berechne	ilte Zufa en Sie di	allsvariable ie folgende	e X mit dem E Wahrscheinlic	Erwa chke	artungswert $\mu = 4$ und der it:
		-	$Pr[-3 \le 1]$	$X \leq 5$].		
Folgende Werte	könnten sicl	n als hil	freich erwe	eisen:		
	$\Phi(0.66666) \\ \Phi(1.33333)$	= 0.7 $= 0.9$	747505 908788	$\Phi(2.33333)$ $\Phi(4.66666)$	=	0.990185 0.999998

Aufgabe 4. (15 Punkte) Ein digitales Kommunikationssystem besteht aus einem Sender S und einem Empfänger E . Während eines Intervalls sendet S ein Signal, das als Null interpretiert wird, oder ein Signal das als Eins interpretiert wird. Am Ende des Intervalls analysiert E die Übertragung und ermittelt unter Einsatz einer Fehlerkorrektur, ob eine Null oder Eins übertragen wurde. Betrachten Sie folgende Ereignisse:
$S_0 = S$ sendet eine Null, $E_0 = E$ interpretiert die empfangenen Daten als Null, $S_1 = S$ sendet eine Eins, $E_1 = E$ interpretiert die empfangenen Daten als Eins.
Angenommen, $Pr[E_0 S_0] = 0.99$, $Pr[E_1 S_1] = 0.98$ und $Pr[S_1] = 0.8$.
a) Berechnen Sie $Pr[E_1 S_0]$ und $Pr[E_0 S_1]$.

Matr. Nr.:

Klausur: Wahrscheinlichkeitstheorie und Statistik (HS Aalen), 5.7.2016

Name: _____

ame:	Matr. Nr.:
	Wahrscheinlichkeit einer fehlerhaften Übertragung unter der A empfangenen Daten als Eins interpretiert.
c) Wie hoch ist die V	Vahrscheinlichkeit, dass irgendein Übertragungsfehler auftrat?

Name:		Matr. Nr.:
Aufgabe 5. (15 Gegeben sind dr der Kisten ist wi	ei Kisten, die	mit weißen und schwarzen Kugeln gefüllt sind. Der Inhalt
	Kiste 2:	1 weiße Kugel, 1 schwarze Kugel 2 weiße Kugeln, 1 schwarze Kugel 3 weiße Kugeln, 1 schwarze Kugel
Es wird zuerst e Auswahl erfolgt		gewählt und dann aus der Kiste eine Kugel gezogen. Jede erteilung.
a) Stellen Sie	das Zufallsexp	periment als Entscheidungsbaum dar.
b) Wie hoch i	st die Wahrsch	neinlichkeit, dass eine weiße Kugel gezogen wird.

Name:	Matr. Nr.:
Aufgabe 6. (15 Punkte)	
$10\mbox{-}\mathrm{mal}$ geworfen. Erscheint jede der	zein neues Glückspiel im Programm. Ein Würfel wird Zahlen 1, 2, 3, 4, 5 und 6 mindestens einmal, dann s Einsatzes. Andernfalls geht er leer aus.
a) A_i steht für das Ereignis, dass o $Pr[A_i]$.	die Zahl $i \in \{1, \dots, 6\}$ nicht erscheint. Berechnen Sie
b) Gegeben ist eine beliebige Teili lichkeit, dass keine der Zahlen i	menge $T \subsetneq \{1, \dots, 6\}$. Wie hoch ist die Wahrscheinin T gewürfelt wird?

Name:		Matr. Nr.:				
c) Berechnen Sie die das Spiel fair?	e Wahrscheinlichkeit,	dass der Spieler	das Glücksspiel	gewinnt. Ist		

Name:	Matr. Nr.:
Aufgabe 7. (15 Punkte)	
In der Hochschule Aalen bef soren und n Speicherzellen. anderen Prozessoren eine An dem Prozessor zufällig unter	indet sich ein leistungsfähiger Parallelrechner mit n Prozes-Jeder Prozessor sendet gleichzeitig und unabhängig von den frage an eine Speicherzelle. Die Speicherzelle wird dabei von Gleichverteilung ausgewählt. Jede Speicherzelle kann genaurhält eine Speicherzelle mehr als eine Anfrage, dann ist sientwort zurück.
	ie Zufallsvariable Z_i wie folgt definiert:
$Z_i = \begin{cases} 1\\ 0 \end{cases}$	Die Speicherzelle i erhält genau eine Anfrage, sonst.
Berechnen Sie die Wahr	rscheinlichkeit $Pr[Z_i = 1].$

Name:	Matr. Nr.:
	X steht für die Anzahl der Prozessoren, die auf ihre Anfrage eine erechnen Sie den Erwartungswert von X in Abhängigkeit von X