

Game Development project by Daniel B.

Project & Portfolio Game of

ABOUT

This project is a simulation of the Game of Life concept by the famous mathemetician John Conway, inspired by the polymath John von Neumann. The algorithm illustrates a cellular automaton system base on a set of rules. This project consists of 3 main elements for implementing the Game of Life: Conway's algorithm, QuadTrees, and Windows Forms.

Conway's Algorithm A cell with 2 or

- 3 live neighbors survives. A dead cell with
- 3 live neighbors becomes alive. All other live cells
- die.

QuadTrees

The region quadtree

represents a partition of space in two dimensions by decomposing the region into four equal quadrants,

Windows Forms

A free and opensource graphical (GUI) class library included as a part of Microsoft .NET, .NET Framework or Mono Framework,

BACKGROUND

A mathematician active in the theory of finite groups,

knot theory, number theory, combinatorial game theory and coding theory.

In late 1940, John von Neumann defined life as a creation, which can reproduce itself and simulate a

"The Game of Life"

Turing machine. Motivated by questions in mathematical logic & simulation games, John Conway began doing experiments with a variety of different two-dimensional cellular automaton rules. The game made its first public appearance in 1970, Theoretically, the Game of Life has the power of a universal Turing machine.

Common Patterns

The Game of Life

Uses & Types

Quadtrees may be classified

Region QuadTree

Quadtrees, particularly the region quadtree, have lent themselves well to uses such as:

they represent,

according to the type of data

 Image Processing Mesh Generation Spatial Indexing Collision Detection

- etc.

🖳 Lexicon

Pattem

order to toggle its state to dead

File > Import > Yes > Confirm > Insert

FEATURES

101: (p5) Found by Achim Flammenkamp in August 1994. The name *** *** suggested by Bill Gosper, noting that the {phase} shown below displays the period in binary.

Description

Select any cell on the grid in

or alive

Randomize

Settings

Conway's Game of Life

Play

Open

