SMS Spam Detection Model

MIDS W266 - Summer 2023 Sunny Shin, Raymond Tang, Karsyn Lee

Agenda

- Introduction, Data and Challenges
- Models and Performance
- Conclusion

Introduction

OUR MODEL	Spam Detection Model for SMS						
	Spam -> identity theft, malware, and unwarranted charges on your phone bill						
RELATED	Spam detection most commonly modelled for email - has been a profitable business						
MODELS							
WHY IS THIS	March 2023, (FCC) is cracking down on spam text messages with new rules for telecon						
IMPORTANT	companies - can cost telecom company various fines for each reported SMS						
	 New market for SMS Spam detection from telecom companies that has never existed before 						

Challenges

When comparing to **email** spam detection, which is widely practiced in industry using NLP, **SMS** spam detection raises these new challenges

- Data source
 - Lack of available & recent data due to privacy
- Data characteristics
 - message ambiguity due to short length
 - limited header information
 - presence of emojis and abbreviations

Data

- University of California, Irvine Machine Learning Repository (donated June 2012)
 - 5,574 total instances legitimate(ham) vs. spam
 - User receives ratio 10/90 spam to ham SMS messages data is representative
 - Imbalanced dataset required resampling technique

Models

Features	Baseline	LSTM	CNN	BERT*	BERT-CNN*	BERTweet**	BERTweet-CNN**
Vectorization	Х	Х	Х	Х	Х	Х	X
Logistic Regression	X						
Convolutional Filters			Х		X		X
Pretrained tokenizer	X SpaCy-eng-sm	X Word2Vec	X Word2Vec	X BERT built-in	X BERT built-in	X BERTweet built-in	X BERTweet built-in
Pretrained model				X bert-base-cased	X bert-base-cased	X bertweet-base	X bertweet-base

^{*} The BERT model was pretrained on the Toronto BookCorpus (800M words) and English Wikipedia (2,500M words)

^{**} The BERTweet model however was pretrained on corpus consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related to the COVID-19 pandemic

Performance

Metrics	Baseline*	LSTM	CNN	BERT**		DEDT ONN	BERTweet**		DEDT+ ONN
				Pooler	CLS	BERT-CNN	Pooler	CLS	BERTweet-CNN
Accuracy	0.9425	0.9542	0.9918	0.9061	0.9660	0.9988	0.9624	0.9589	0.9988
Precision	0.9444	0.9191	0.9951	0.8980	0.9620	0.9974	0.9852	0.9763	0.9978
Recall	0.9327	0.9927	0.9879	0.8967	0.9633	1.0000	0.9318	0.9238	1.0000
F1 Score***	0.9385	0.9545	0.9915	0.8936	0.9610	0.9986	0.9566	0.9478	0.9989

^{*} Logistic regression was used as a baseline model for the classification task

$$F1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

^{**} BERT and BERTweet models were trained with both the pooler token and CLS token approaches

^{***} F1 score was a primary performance measurement since it is a more harmonic mean of precision and recall. It's calculated as:

Model Improvement

Conclusion

- BERTweet-CNN model performs the best at the F1 score of 0.9989
- Societal impact:
 - Improvement in user experience improvement
 - Increased trust in SMS communication and importance of communication security
- Limitations:
 - Small number of observations and not recent data
 - Ever-changing environment of texting languages and culture
 - Increased risk of blocking ham SMS messages
- Future state:
 - Further training our model with a larger dataset
 - Data augmentation to fix the imbalance issue
 - Creating spam inbox for SMS messages

Thank You! Questions?