Fitting a Kaplan-Meier estimator

SURVIVAL ANALYSIS IN PYTHON

Shae WangSenior Data Scientist

What is the Kaplan-Meier estimator?

A non-parametric statistic that estimates the survival function of time-to-event data.

- Also known as
 - the product-limit estimator
 - the K-M estimator
- Non-parametric: constructs a survival curve from collected data and does not assume underlying distribution

The mathematical intuition

Definitions:

- t_i : a duration time
- d_i : number of events that happened at time t_i
- n_i : number of individuals known to have survived up to time t_i

Survival function S(t) is estimated with:

$$S(t) = \prod_{i:t_i \leq t} \left(1 - rac{d_i}{n_i}
ight)$$

Why is it called the product-limit estimator?

Suppose we have events at 3 times: 1, 2, 3

Survival rate for t=2:

$$S(t=2)=\left(1-rac{d_1}{n_1}
ight)*\left(1-rac{d_2}{n_2}
ight)$$

Survival rate for t=3:

$$S(t=3) = S(t=2) * \left(1 - \frac{d_3}{n_3}\right)$$

The survival rate at time t is equal to the product of the percentage chance of surviving at time t and each prior time.

Assumptions to keep in mind

- Unambiguous events: the event of interest happens at a clearly specified time.
- Survival probabilities are comparable in all subjects: individuals' survival probabilities do
 not depend on when they entered the study.
- Censorship is non-informative: censored observations have the same survival prospects as observations that continue to be followed.

Kaplan-Meier estimator with lifelines

```
from lifelines import KaplanMeierFitter
```

KaplanMeierFitter: a class of the lifelines library

```
kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)
```


The mortgage problem example

DataFrame name: mortgage_df

id	duration	paid_off
1	25	0
2	17	1
3	5	0
•••	•••	•••
100	30	1

The mortgage problem example

DataFrame name: mortgage_df

id	duration	paid_off
1	25	0
2	17	1
3	5	0
•••	•••	•••
100	30	1

from lifelines import KaplanMeierFitter

```
<lifelines.KaplanMeierFitter:"KM_estimate",
fitted with 100 total observations,
18 right-censored observations>
```

Using the Kaplan-Meier estimator

What is the median length of an outstanding mortgage?

```
print(mortgage_kmf.median_survival_time_)
4.0
```

What is the probability of a mortgage being outstanding every year after initiation?

```
print(mortgage_kmf.survival_function_)
```

```
KM_estimate
timeline
0.0     1.000000
1.0     0.983267
2.0     0.950933
3.0     0.892328
```


Using the Kaplan-Meier estimator

What is the probability that a mortgage is not paid off by year 34 after initiation?

mortgage_kmf.predict(34)

0.037998

Benefits and limitations

Benefits

- Intuitive interpretation of survival probabilities.
- Flexible to use on any time-to-event data.
- Usually the first model to attempt on timeto-event data.

Limitations

- Survival curve is not smooth.
- If 50% of more of the data is censored,
 .median_survival_time_ cannot be calculated.
- Not effective for analyzing the effect of covariates on the survival function.

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

Visualizing your Kaplan-Meier model

SURVIVAL ANALYSIS IN PYTHON

Shae WangSenior Data Scientist

Toy data with n=5:

duration	observed
2	1
5	0
3	1
5	1
2	0

Step 1: Arrange data in increasing order. If tied, censored data comes after uncensored data.

Step 3: For each
$$t_i$$
, multiply $\left(1-\frac{d_i}{n_i}\right)$ with $\left(1-\frac{d_{i-1}}{n_{i-1}}\right)$, $\left(1-\frac{d_{i-2}}{n_{i-2}}\right)$, ..., $\left(1-\frac{d_0}{n_0}\right)$

Step 1: Arrange durations in increasing order. If tied, censored data comes after uncensored data.

duration		
2		
5+		
3		
5		
2+		

Use "+" sign to denote censored data: 2, 5+, 3, 5, 2+

Step 1: Arrange durations in increasing order. If tied, censored data comes after uncensored data.

 t_i

2, 2+

3

5, 5+

Step 2: For each t_i , calculate d_i , n_i , and $\left(1-rac{d_i}{n_i}
ight)$

 t_i

2, 2+

3

5, 5+

t_i	d_i
2, 2+	1
3	1
5, 5+	1

t_i	d_i	n_i
2, 2+	1	5
3	1	3
5, 5+	1	2

t_i	d_i	n_i	$\left(1-rac{d_i}{n_i} ight)$
2, 2+	1	5	4/5
3	1	3	2/3
5, 5+	1	2	1/2

Step 3: For each t_i , multiply $\left(1-rac{d_i}{n_i}
ight)$ with $\left(1-rac{d_{i-1}}{n_{i-1}}
ight)$, $\left(1-rac{d_{i-2}}{n_{i-2}}
ight)$, ..., $\left(1-rac{d_0}{n_0}
ight)$

t_i	d_i	n_i	$\left(1-rac{d_i}{n_i} ight)$	$S(t_i)$
2, 2+	1	5	4/5	4/5 = 0.8
3	1	3	2/3	4/5 · 2/3 = 0.53
5, 5+	1	2	1/2	4/5 · 2/3 · 1/2 = 0.27

t_i	d_i	n_i	$\left(1-rac{d_i}{n_i} ight)$	$S(t_i)$
2, 2+	1	5	4/5	0.8
3	1	3	2/3	0.53
5, 5+	1	2	1/2	0.27

Interpreting the survival curve

- The survival probabilities at each time between 0 and 5.
- Common misconception: If the curve goes to 0, no subjects survived.
- The curve will drop to zero if the last observation is not censored (true event duration is known).

Plotting the Kaplan-Meier survival curve

```
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt

kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)

kmf.survival_function_.plot()
plt.show()
```


The mortgage problem example

DataFrame name: mortgage_df

id	duration	paid_off
1	25	0
2	17	1
3	5	0
•••	•••	•••
100	30	1

```
from lifelines import KaplanMeierFitter
from matplotlib import pyplot as plt
```

```
mortgage_kmf.survival_function_.plot()
```

The mortgage problem example

plt.show()

Survival curve confidence interval

```
mortgage_kmf.plot_survival_function()
plt.show()
```


Why is the confidence interval useful?

- A way to quantify how uncertain we are about each point estimate of survival probabilities
- A wide confidence interval means we are less certain, often due to small sample size
- A narrow confidence interval means we are more certain, often due to large sample size

Ways to plot the Kaplan-Meier survival curve

Plot survival function point estimates as a continuous line.

```
kmf.survival_function_.plot()
plt.show()
```


Plot survival function as a stepped line without the confidence interval.

```
kmf.plot(ci_show=False)
plt.show()
```


Ways to plot the Kaplan-Meier survival curve

Plot survival function as a stepped line with the confidence interval.

```
kmf.plot()
plt.show()
```


Another way...

```
kmf.plot_survival_function()
plt.show()
```

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

Applying survival analysis to groups

SURVIVAL ANALYSIS IN PYTHON

Shae WangSenior Data Scientist

The mortgage problem

DataFrame name: mortgage_df

id	property type	duration	paid_off
1	house	25	0
2	apartment	17	1
3	apartment	5	0
•••	•••	•••	•••
100	house	30	1

Property type: the type of home that's financed by the mortgage (either house or apartment)

Is there a difference in time to payoff for house versus apartment mortgages?

Comparing groups' survival distributions

We are often interested in assessing whether there are differences in survival (or event/survival probabilities) among different groups of subjects.

- Dimensional attributes about the subjects
 - i.e. different types of mortgages, different brands of tires
- Different experiment groups
 - i.e. treatment versus control groups
- Different values for the same dimensional attribute
 - i.e. high versus low income households

Types of survival group comparisons

- 1. Are any point estimates or survival statistics different?
- Compare two groups' survival probabilities at a specific time
- Compare total proportion of survived subjects across two groups

Types of survival group comparisons

- 2. Are the underlying distributions different?
- Requires formal hypothesis testing

Types of survival group comparisons

- 3. How much does an attribute affect survival?
- Requires regression-based modeling frameworks

Visualizing group differences

Fitting a Kaplan-Meier survival function to each group and visualize their survival curves sideby-side.

Benefits:

- Simple and straight-forward to use and interpret.
- Non-parametric means it is more flexible for different types of survival distributions.
- Useful illustrative tool for demonstrating differences in survival functions.

Identifying the groups

DataFrame name: mortgage_df

id	property type	duration	paid_off
1	house	25	0
2	apartment	17	1
3	apartment	5	0
•••	•••	•••	•••
100	house	30	1

Create a Boolean mask for each group.

```
house = (mortgage_df["property_type"]=="house")
apt = (mortgage_df["property_type"]=="apartment")
```

If there are only 2 groups, only 1 mask is necessary. The other group could be referenced using negation.

Fitting and plotting survival curves

Create one figure and instantiate a KaplanMeierFitter class.

```
ax = plt.subplot(111)
mortgage_kmf = KaplanMeierFitter()
```

Fit mortgage_kmf to the house group and plot on the figure ax.

Fitting and plotting survival curves

Fit mortgage_kmf to the apartment group and plot on the figure ax .

Visualizing side-by-side

plt.show()

Interpreting groups' survival curves

- Apartment mortgages seem to be paid off faster than house mortgages on average.
- At any given duration, a higher proportion of users pay off apartment mortgages than house mortgages.

Note: if the confidence intervals overlap at some points, it's less likely that there's a real difference between the curves.

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

The log-rank test

SURVIVAL ANALYSIS IN PYTHON

Shae Wang
Senior Data Scientist

Hypothesis testing

- A method of statistical inference
- Null hypothesis H_0 : e.g. California and Nevada residents have the same average income.
- Alternative hypothesis H_1 : e.g. California and Nevada residents have different average income.
- P-value: what's the likelihood that the data would've occurred if the null hypothesis were true?

Log-rank hypothesis testing

ullet Compares survival probabilities S_i between groups at each time t

$$H_0:S_A(t)=S_B(t)$$

$$H_1:S_A(t)
eq S_B(t)$$

• P-value: if $S_A(t)=S_B(t)$, what's the probability of our data occurring?

Multiple survival curves

Running the log-rank test

```
from lifelines.statistics import logrank_test
logrank_test(durations_A, durations_B, event_observed_A, event_observed_B)
```

- .print_summary()
- .p_value
- .test_statistic

Log-rank test example

Does the program change when babies start speaking?

```
t.head(2)
```

```
      id
      duration
      observed

      0
      1
      12
      0

      1
      4
      6
      1
```

```
c.head(2)
```

```
      id
      duration
      observed

      0
      0
      11
      1

      1
      2
      14
      0
```

```
lrt = logrank_test(
    durations_A = t['duration'],
    durations_B = c['duration'],
    event_observed_A = t['observed'],
    event_observed_B = c['observed'])
```

```
lrt.print_summary()
```

```
<lifelines.StatisticalResult: logrank_test>
  null_distribution = chi squared

degrees_of_freedom = 1
        test_name = logrank_test

test_statistic    p -log2(p)
        0.09 0.77     0.38
```

Keep in mind...

- Log-rank test is a non-parametric hypothesis test
- When using lifelines, data must be right-censored (i.e. subject 3)
- Censorship must be non-informative
- For a log-rank test between n>2 groups, use pairwise_logrank_test() or multivariate_logrank_test()

Let's practice!

SURVIVAL ANALYSIS IN PYTHON

