Price Drift Before U.S. Macroeconomic News: Private Information about Public Announcements?

Alexander Kurov, Alessio Sancetta, Georg Strasser, and Marketa Halova Wolfe

解读:王梦涵

2024年11月06日

Motivation

- Macroeconomic news announcements move financial markets.
 - Over half of the cumulative annual equity risk premium is earned on announcement days.
 - The Info is almost instantaneously reflected in prices once released.
- To ensure fairness, no market participant should have access to this info until the official release time.
- However, there is price drift before macroeconomic news.

Question

- Q1: Is there price drift before macroeconomic news?
 - Yes, approximately 30 minutes before the release time
- Q2: If yes, why?
 - Info leakage: organization type and release procedures
 - Superior forecasting that incorporates proprietary data

Contribution

- Literature on macroeconomic announcements
 - Prior1: Doesn' t separate pre- and post-announcement effects
 - Prior2: Concludes the pre-announcement effect negligible.
 - Exception: Hautsch et al. (2011) and Bernile et al. (2016)
 - Ext1: Longer preannouncement interval; More announcements; Recent period
 - Ext2: Explore the information leakage and other possible explanations
- Literature on the data leakage
 - Prior: Most in the context of Company-level news
 - Ext: In the context of macroeconomic news

Data

- Announcements: 30 macroeconomic announcements(23+7)
 - Standardized announcement surprise $S_{m,t}$:

$$S_{m,t} = \frac{A_{m,t} - E_{t-\tau}[A_{m,t}]}{\sigma_m}, \quad \sigma_m = \sqrt{\frac{1}{N_m - 1} \sum_{i=1}^{N_m} (S_{i,m} - \overline{S_m})^2}$$

- $A_{m,t}$: macroeconomic announcement m released at time t
- $E_{t-\tau}[A_{m,t}]$:market' s expectation of the announcement from Bloomberg
- Markets data: Second-by-second transaction data (2008.01.01 to 2014.03.31)
 - Stock:E-mini S&P 500 stock index nearby-contract futures traded on CME
 - Bond: 10-year Treasury note nearby-contract futures traded on CME.

Design

• Time-series Regression: the asset return is a linear function of 3 components

$$R_t = \beta_0 + \sum_{j=1}^{J} \beta_j R_{j,t-1} + \sum_{m=1}^{M} \sum_{k=-1}^{K} \gamma_{m,k} S_{m,t+k} + \epsilon_t$$

- R_t : return from the [t–5min, t– 5sec] time window with announcement at time t
- J = 2 markets, M=30 announcements, K=5
- $S_{m,t+k}$: Standardized announcement m's surprise at time t+k
- $K \in [5,0]$ for preannouncement effect, and k = -1 for postannouncement effect
- If $\gamma_m \equiv \sum_{k=0}^K \gamma_{m,k} \neq 0$, the pre-announcement price drift exists.

Q1:Preannouncement price drift

•
$$\gamma_m \equiv \sum_{k=0}^{K=5} \gamma_{m,k}$$

Announcement	E-Mini S&P 500 $\underline{\gamma_m}$	10-Year Treasury Note 	Joint Test <u>p</u> -Value
ISM Non-Manufacturing Index	0.104 (0.017)***	-0.044 (0.009)***	< 0.001
Pending home sales ISM Manufacturing Index	0.099 (0.018)*** 0.088 (0.019)***	-0.028 (0.008)*** -0.022 (0.008)***	<0.001 <0.001
CB Consumer Confidence Index Existing home sales	0.040 (0.020)* 0.054 (0.021)***	-0.032 (0.008)*** -0.016 (0.007)**	<0.001 0.012
Advance retail sales GDP preliminary	0.003 (0.018) 0.049 (0.030)	-0.019 (0.007)*** -0.031 (0.011)***	0.016 0.018
Initial jobless claims	-0.005 (0.007)	0.008 (0.003)***	0.020
GDP advance Factory orders	0.015 (0.032) -0.043 (0.021)**	-0.035 (0.015)** 0.019 (0.010)*	0.049
Industrial production Trade balance	0.032 (0.018)* -0.016 (0.016)	-0.006 (0.010) 0.010 (0.006)*	0.203 0.219
Construction spending	0.030 (0.019)	-0.009 (0.007)	0.226

• 9 announcements have the pre-announcement price drift, in the "correct"

direction.

Q1:Preannouncement price drift

20 of the 30 announcements have a price impact

- A drift of almost 50% of the total announcement impact
- The drift begins approximately 30 minutes before the official release time.

Q2:Causes of Preannouncement Price Drift-Discussion

- The price drift are based on a broader info set $\Omega_{t-\tau}$ than the info set $\Omega_{t-\delta}$ reflected in $E_{t-\tau}[A_{m,t}]$
- Reason1(Private info): There is info beyond public info in the market
 - Info leakage
 - Proprietary info
- Reason2(Public info): The public info isn't fully captured by the Bloomberg consensus forecast
 - · Unavoidable data imperfections: the calculation of the consensus forecast...
 - Uninformed traders "jumping on the bandwagon"

Q2:Causes of Preannouncement Price Drift-Private Info

- 2 aspects of the release process that may affect Info Leakage
 - Organization type: organizations subject to PFEI guidelines(13); others(7)
 - Release procedures: no prerelease(4);prerelease in "lock-up rooms"(13);prerelease electronically(3)
- Equation:

$$R_t = \beta_0 + \sum_{j=1}^{2} \beta_j R_{j,t-1} + \sum_{k=-1}^{5} \left[\gamma_k \overline{S}_{t+k} + \sum_{i=1}^{3} \delta_{i,k} \overline{X}_{i,t+k} \right] + \epsilon_t$$

- ullet $X_{m,t}^1=\mathbf{1}_{\mathsf{PFEI}\ \mathsf{organization}}, \quad X_{m,t}^2=\mathbf{1}_{\mathsf{prereleased}}, \quad X_{m,t}^3=\mathbf{1}_{\mathsf{embargo}\ \mathsf{only}}$
- $\overline{S}_t = \sum_{m=1}^M \tilde{S}_{m,t} / \sum_{m=1}^M 1(|\tilde{S}_{m,t}| > 0), \tilde{S}_{m,t}$ is sign-adjusted $S_{m,t}$
- $\overline{X}_{i,t} = \sum_{m=1}^{M} [\tilde{S}_{m,t} \mathbf{1}(X_{m,t}^{i} = 1)] / \sum_{m=1}^{M} \mathbf{1}(|\tilde{S}_{m,t}| > 0)$

Q2:Causes of Preannouncement Price Drift-Public Info

E		i S&P 500	10-Year Treasury Note	
Variable	1	2	3	4
SURPRISE	0.028 (0.007)***	0.032 (0.006)***	-0.014 (0.003)***	-0.015 (0.003)***
PFEI	-0.057 (0.013)***	-0.025 (0.008)***	0.017 (0.005)***	0.008 (0.004)**
PRERELEASE	0.040 (0.014)***	NA	-0.011 (0.006)**	NA
EMBARGO_ONLY	NA	0.034 (0.012)***	NA	-0.012 (0.006)**

- Announcements subject to the PFEI are less affected by the drift.
- Prereleasing announcements is associated with a stronger drift,in particular to the least secure release procedure

New ideas

- Different countries have different regulations and supervisory structures.
- This effect may increase with the development of AI
- How to illustrate the harm caused by data leakage?
- Data leakage in other research themes