Cyber Attack Attribution using Malware Artifacts

University of Houston

Team Members

Michael Tran

mhtran4@uh.edu

Alec Davila

andavil2l@uh.edu

Kevin Chen

ckchen2@uh.edu

Tu Van

tnnguyen66@uh.edu

Attribution

<u>Definition:</u> The action of regarding something as being caused by a person or thing.

Applications:

- Authorship attribution in disputed works
- Plagiarism detection
- Author profiling
- Stylistic inconsistency detection in collaborative work
- Malware attribution

Project Overview

- Attribute malicious PE executables to their respective malware families
- Assumptions:
 - Non-generic malware families are written by a single author or group of authors
 - Infeasible to derive "real" ground truth without claim of ownership
 - Family attribution is best proxy for ground truth
- Commonly cited features of malware for attribution analysis:
 - Static features PE header information, printable strings, opcodes, etc.
 - Dynamic features network traffic, file system changes, API calls, etc.
 - Hybrid analysis

Static Features - VirusTotal

- One year's worth of samples spanning Feb 2018 - Feb 2019 collected using VirusTotal API
- 80,000 reports generated so far
- Projected to be around 100,000 total reports
- VirusTotal reports returned on Windows executables uses a combination of different tools such as ExifTool, sigcheck, TrID, etc.

Dynamic Features - Cuckoo

- Trial run on ~1,500 samples gathered from Feb 2019
- 2 minutes per sample
- Many more features than VirusTotal including API calls, network traffic information, manipulated registries, behavioral descriptions, etc.

Sample VirusTotal Report

```
"pe-resource-types": {
    "FILES": 1,
    "RT HTML": 1,
    "IMG": 3,
    "RT ICON": 16,
    "JS": 2,
    "RT MANIFEST": 1,
    "RT BITMAP": 3,
    "RT VERSION": 1,
    "CSS": 1,
    "RT GROUP ICON": 2
"imports": {
    "WININET.dll": [
        "InternetConnectW",
        "InternetCrackUrlW",
        "InternetCloseHandle",
        "HttpSendRequestW",
        "InternetOpenW",
        "HttpOpenRequestW"
    "GDI32.dll": [
        "GetDeviceCaps".
        "DeleteDC",
        "CreateFontIndirectW".
```

```
"Endgame": {
    "detected": true,
    "version": "3.0.8",
    "result": "malicious (high confidence)",
    "update": "20190322"
"SUPERAntiSpyware": {
    "detected": true,
    "version": "5.6.0.1032",
    "result": "PUP.PlayTech/Variant",
    "update": "20190321"
"AhnLab-V3": {
    "detected": false,
    "version": "3.15.0.23609",
    "result": null,
    "update": "20190323"
"ZoneAlarm": {
```

"detected": false,

"version": "1.0",

"update": "20190323"

"result": null,

- Basic static features including PE resource, library imports, etc.
- Discrepancy in engine classification

```
"Antiy-AVL": {
    "detected": true,
    "version": "3.0.0.1",
    "result": "GrayWare[AdWare]/Win32.PlayTech.a",
    "update": "20190323"
},
"Kingsoft": {
    "detected": false,
    "version": "2013.8.14.323",
    "result": null,
    "update": "20190323"
},
"Microsoft": {
    "detected": true,
    "version": "1.1.15800.1",
    "result": "PUA:Win32/Playtech",
    "update": "20190323"
```

Sample VirusTotal Report

```
"magic": "PE32 executable for MS Windows (GUI) Intel 80386 32-bit",
"sigcheck": {
   "product": "IESettings",
   "verified": "Signed",
   "description": "IESettings",
   "file version": " 4, 2, 0, 19",
   "signing date": "10:50 PM 2/23/2019",
   "x509": [
            "name": "GlobalSign CodeSigning CA - SHA256 - G3",
           "algorithm": "sha256RSA",
           "valid from": "12:00 AM 6/15/2016",
           "valid to": "12:00 AM 6/15/2024",
           "serial number": "48 1B 6A 07 26 D2 E8 3F 26 02 D4 82 5A CD",
           "cert issuer": "GlobalSign",
           "thumbprint": "090D03435EB2A8364F79B78CB173D35E8EB63558",
           "valid usage": "Code Signing, 0.5.5.7.3.9"
       },
           "name": "Cloud Installer",
           "algorithm": "sha256RSA",
           "valid from": "11:36 PM 7/26/2017",
           "valid to": "11:36 PM 8/26/2019",
           "serial number": "1A A0 48 89 F3 75 02 18 6E 69 3B BF",
           "cert issuer": "GlobalSign CodeSigning CA - SHA256 - G3",
           "thumbprint": "F04D0D19560828B694DD69F7EDB7CD498BABEDC7".
            "valid usage": "Code Signing"
```

Sample Cuckoo Report

```
"markcount": 3,
"families": [].
"description": "Creates a slightly modified copy of itself",
"severity": 3,
"marks": [
        "type": "generic",
       "description": "Possibly a polymorphic version of itself", -
        "file": {
            "yara": [],
            "sha1": "ab967d05608b41b83e88bd6cbfacc52f5ad9f638",
            "name": "49d2989a485d112a mrsys.exe",
            "filepath": "C:\\Users\\sandy\\AppData\\Roaming\\mrsys.exe",
            "type": "PE32 executable (GUI) Intel 80386, for MS Windows",
            "sha256": "49d2989a485d112a84cb5f57f4023c618356dead1847cfd889a13c1a25ec129e",
            "urls": [
                "http://don.service-master.eu/gate.php",
                "http://www.ibsensoftware.com/",
```

- Example of Cuckoo event descriptions and process information
- JSON formatting convenient for data extraction
- ~ 40MB of data per file with a much larger variation in size across samples

Sample Cuckoo Report

```
"status": 403,
     "src": "192.168.56.101",
     "resp": {
         "path": "/opt/cuckoo/storage/analyses/78/network/f12266072605c17a027b5d5b4748649999749395",
         "shal": "f12266072605c17a027b5d5b4748649999749395",
         "md5": "fb5d6c52840f3c4609217ea428de4c90"
     "shal": "f12266072605c17a027b5d5b4748649999749395",
     "protocol": "http",
     "dst": "13.32.168.182",
     "req": {
         "path": "/opt/cuckoo/storage/analyses/78/network/d3618aae46a0423c9b13<u>d4386268dfb3ec7f51fc",</u>
         "sha1": "d3618aae46a0423c9b13d4386268dfb3ec7f51fc",
         "md5": "7c0d3cd296ff27d299c291e9671193f6"
     "request": "POST http://one.mountaincanvas.pw/installer.php?affId=1462&instId=803&ho trackingid=HOS
7d5d2c9ca4102300e73c3e6a49f&v=3&kid=hgmrb21ag2ggnrmgav6 HTTP/1.1\r\nHost: one.mountaincanvas.pw\r\nConne
encoded\r\nContent-Length: 146".
     "uri": "http://one.mountaincanvas.pw/installer.php?affId=1462&instId=803&ho trackingid=H03556423205
4102300e73c3e6a49f&v=3&kid=hgmrb21ag2ggnrmgav6",
     "response": "HTTP/1.1 403 Forbidden\r\nServer: CloudFront\r\nDate: Sun, 24 Mar 2019 23:09:06 GMT\r\
t\r\nVia: 1.1 da94bfa4529bf05a5b62b3f058727c6c.cloudfront.net (CloudFront)\r\nX-Amz-Cf-Id: qW0vrT8e0t8j
     "host": "one.mountaincanvas.pw",
     "dport": 80,
     "path": "/opt/cuckoo/storage/analyses/78/network/f12266072605c17a027b5d5b4748649999749395",
     "sport": 49189,
     "method": "POST",
     "md5": "fb5d6c52840f3c4609217ea428de4c90"
```

- Example of network traffic information
- Some interesting features worth exploring include dport, sport, dip, host, uri

Gathering and Labeling Samples

VirusShare

Free and unrestricted

"repository of malware
samples to provide
security researchers,
incident responders,
forensic analysts, and
the morbidly curious
access to samples of live
malicious code."

VirusTotal

~ 70 AntiVirus engines deployed to classify and label malware based on family

AVClass

Extracts family classification from each VirusTotal engine and assigns to each sample a malware family based on plurality voting

Data Extraction

- From ~15,000 samples of our dataset,
 we prune out all samples where there
 are less than 3 samples per class label
 - Left with 12,364 Samples
- Data is split out for training/testing/validation by 80/10/10
- We ensure that each split has at least one of each class in it
- Plans to increase pruning threshold when we finish gathering samples

Top Extracted Classes

- Found dominant classes in our samples: downloadguide, fareit, istartsurf
- Many sparse classes with 3-4 samples

Proof of Concept - Results

- Our current POC application extracts features from Static VT and runs it through a standard classifier
 - Features: trid, pe-resource-list
 - Classifier: NB
- 332 Distinct Classes/Families
- 60% Accuracy

Proof of Concept - Features Extracted

classification	hash	trid	pe_resource_list
emotent	0023397c9133	Win32 Dynamic Link Library (generic)	6b1e4ec9d89888370de6c023cf6c
zamg	00234b2ed9b	Win32 Executable MS Visual C++ (generic)	af536bca0a3facd36874643033798
uniblue	002656a01eed	Win32 Executable MS Visual C++ (generic)	f4724f68448073e0465a65c8b2040
downloadguide	0036f96361d8	Win32 Executable MS Visual C++ (generic)	abcb0193ed76d190556c3748136k
speedingupmypc	006ee1a621a3	Win32 Executable Delphi generic	91d89ac0b1bbaefe1506d0225bf6
coins	009984f522ec	Win32 Dynamic Link Library (generic)	539dc26a14b6277e87348594ab7c
softcnapp	00d344db47fa	Win32 Executable MS Visual C++ (generic)	f59f62e7843b3ff992cf769a3c608a
crypmod	0199f54551e3	Win32 Executable MS Visual C++ (generic)	b9470bdd2fdda587cfff0253565b
istartsurf	022a6339f2a8	Win32 Executable (generic)	4c3dbfd9423c428190bede1659a9
zenpak	02c4184f38fc2	Win32 Executable MS Visual C++ (generic)	da23a6f22ad564ad14e6b6127694
chapak	0308db8bed4	Win64 Executable (generic)	cea464faec611ad26c8a6fe32645e
prepscram	0342c4e817b4	Win64 Executable (generic)	96a296d224f285c67bee93c30f8a
autoit	05463f06155d	Win32 Executable MS Visual C++ (generic)	9803deebb424e82f73c26dc00c0b
vbkryjetor	05b45ebea3f2	Win32 Executable Microsoft Visual Basic 6	a3ed1d9f3fe6092528f5b385649a
vittalia	0610729d92ea	Win32 Executable MS Visual C++ (generic)	7b99f0e5e7a3db2de9f02622f1ac
ursu	062bdd8a42c	Win32 Executable (generic)	2313003b1ba00596efd2dd9d5e5

Issues Encountered

- Gathering binaries
- Obtaining ground truth
- Hardware
 - Limited ability to perform dynamic analysis on representative sample
- Feature selection
 - Obfuscation
 - Variability in reports

Next Steps

- Focus analysis efforts on VirusTotal reports
- Extract more features from JSON data
- Feature selection
 - Determine feature frequency across all samples
 - Choose deterministic, high frequency features using measures such as mutual information, chi-squared, information gain, etc.
- Assess different classification models
 - Naive Bayes, SVM, Random Forest
- Explore options for large-scale, distributed dynamic analysis
 - Stratified random sampling

Sponsors

Matthew Elder William La Cholter

Johns Hopkins University Applied Physics Laboratory

References

AVClass

https://github.com/malicialab/avclass

Saed Alrabaee, Paria Shirani, Mourad Debbabi, Lingyu Wang. (2017) On the Feasibility of Malware Authorship Attribution. arXiv:1701.02711 [cs.CR].

Shalaginov Andrii, Banin Sergii, Dehghantanha Ali, Franke Katrin. Machine Learning Aided Static Malware Analysis: A Survey and Tutorial. (2018) arXiv:1808.01201v1 [cs.CR].

Sihwail Rami, Omar Khairuddin and Ariffin K.A.Z. (2018) A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis. In International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 4-2. (pp. 1662-1671)

VirusShare.com

https://virusshare.com/

VirusTotal.com

https://virustotal.com/