Functional electronic circuits

Laboratory work 2 «Design of data path functional blocks»

- 1. Develop three types of implementations for device: one-cycle, multi-cycle, pipelined. The device should perform the function according to the variant. The signal interface is presented in Figure 1 and contents such signals as:
 - 1.1. $\mathbf{x} 32$ bit input value;
 - 1.2. **start** signal to start calculation;
 - 1.3. rst reset signal;
 - 1.4. clk clock signal;
 - 1.5. y the 32 bit result value;
 - 1.6. **rdy** the ready signal. It is asserted when the device is ready for computation.

Figure 1 The developing systems

- 2. Develop a testbench of the device and test the device.
- 3. Calculate the calculation time of each implementation.
- 4. Draw a microarchitecture of your device.
- 5. Put results in the report. The report should consist:
 - 5.1. Student Name and Student ID
 - 5.2. The picture with microarchitecture of each implementation
 - 5.3. The timing diagram with simulation results
 - 5.4. Code of the testbench and the device.
- 6. Upload the report by this form: https://forms.yandex.ru/u/64425ea1c09c0201fdb452ec/

Variants

Nº	Device function	Nº	Device function	Nº	Device function
0	$y = x^4 + x$	2	$y = x^3 + x^2$	4	$y = x^4 + x^3$
1	$y = x^2 + x^5$	3	$y = x^5 + x^3$	5	$y = x^2 + x^4$
6	y =	7		8	
9		10		11	