2017/2/22 Meeting Preparation

Kyu Hyun Kim

1. Answer for comments

- 1) Consistent?
 - Even if using different Γ , estimated $\hat{\beta}$ would converge to real value through iteration.
- 2) How to making new convex object function?
 - First estimating equation from (Tsiatis(1990))

$$W_n(\beta) = \sum_{i=1}^n w_i(\beta) \Delta_i [X_i - \frac{\sum_{j=1}^n X_j I[e_j(\beta) \ge e_i(\beta)]}{\sum_{j=1}^n I[e_j(\beta) \ge e_i(\beta)]}] = 0$$

- Typically, solution for $W_n(\beta) = 0$ is not exist. Therefore we have to find generalized solution which is the β that satisfies $\min ||W_n(\beta)||$.
- Use Gehan weight function $(\sum_{i=1}^n I[e_j(\beta) \ge e_i(\beta)])$ as a $w_i(\beta)$ to make $W_n(\beta)$ monotone function

$$W_n(\beta) = \sum_{i=1}^n \sum_{j=1}^n \Delta_i (X_i - X_j) I[e_j(\beta) - e_i(\beta) \ge 0]$$

- : $e_j(\beta) - e_i(\beta) = (\log(T_j) - X_j\beta) - (\log(T_i) - X_i\beta)$, new objective function has same generalized solution with $W_i(\beta)$

$$O_n(\beta) = \sum_{i=1}^n \sum_{j=1}^n \Delta_i(e_j - e_i) I[e_j(\beta) - e_i(\beta) \ge 0]$$

- Find β minimizing $O_n(\beta)$

2. Applying induced smoothing method to Quantile residual life model fitting estimating equation (Kim et al.(2012))
Estimating Equation

$$S(\beta) = \sum_{i=1}^{n} w_i I[Z_i > t_0] X_i \psi_\tau \{ \log(Z_i - t_0) - X_i^T \beta \} = 0$$

Using induced smoothing

$$\begin{split} \bar{S}(\beta) &= E_z[S(\beta + \Gamma^{\frac{1}{2}}Z)] \\ &= E_Z[\sum_{i=1}^n w_i I[Z_i > t_0] X_i \psi_\tau \{\log(Z_i - t_0) - X_i^T(\beta + \Gamma^{\frac{1}{2}}Z)\}] \\ &= E_Z[\sum_{i=1}^n w_i I[Z_i > t_0] X_i (\tau - I\{\log(Z_i - t_0) - X_i^T(\beta + \Gamma^{\frac{1}{2}}Z) \le 0\})] \\ &= \sum_{i=1}^n w_i I[Z_i > t_0] X_i (\tau - E_z[I\{\log(Z_i - t_0) - X_i^T(\beta + \Gamma^{\frac{1}{2}}Z) \le 0\}]) \\ &= \sum_{i=1}^n w_i I[Z_i > t_0] X_i (\tau - P[X_i^T \Gamma^{\frac{1}{2}}Z \ge \log(Z_i - t_0) - X_i^T \beta]) \\ &= \sum_{i=1}^n w_i I[Z_i > t_0] X_i (\tau - P[Z \ge \frac{\log(Z_i - t_0) - X_i^T \beta}{\sqrt{X_i^T \Gamma X_i}}]) \\ &= \sum_{i=1}^n w_i I[Z_i > t_0] X_i (\tau - 1 + \Phi(\frac{\log(Z_i - t_0) - X_i^T \beta}{\sqrt{X_i^T \Gamma X_i}})) \end{split}$$