Outline

A software package for exact linear system identification

Ivan Markovsky, Jan C. Willems, and Bart De Moor

K.U.Leuven, ESAT-SISTA

SISTA

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Algorithms for exact identification

Software packag

System identification: $w_d \mapsto \widehat{\mathscr{B}} \in \mathscr{M}$

Notation

- $\mathbf{w}_{d} = (\mathbf{u}_{d}, \mathbf{y}_{d})$ given data, in this talk a vector time series
- $\widehat{\mathscr{B}}$ to be found model for w_d , in this talk an LTI system
- \mathcal{M} model class, in this talk the set of LTI systems \mathcal{L}

System identification

- defines a mapping $w_d \mapsto \mathscr{B}$
- · derives effective algorithms that realize the mapping, and
- develops efficient software that implements the algorithms

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Exact identification: two points of view

Find the true data generating system

- assume that $w_d \in \bar{\mathcal{B}} \in \mathcal{L}$
- find back $\bar{\mathscr{B}}$ from w_d (and an upper bound of the order)
- this is possible provided $\bar{\mathscr{B}}$ is controllable and an input component of $w_{\rm d}$ is persistently exciting

Find the least complex LTI system that fits w_d

- no assumption about w_d
- find $\widehat{\mathscr{B}} \in \mathscr{L}$ with minimal # of inputs and order, s.t. $w_d \in \widehat{\mathscr{B}}$
- $\widehat{\mathscr{B}}$ —most powerful unfalsified model (MPUM) for w_d in \mathscr{L}

SISTA

SISTA

Exact identification: not a practical SYSID problem

w_d can always be fitted exactly

- take all variables as inputs
- for finite $w_{d} \in (\mathbb{R}^{w})^{T}$, take the order sufficiently large

Of interest are a nontrivial solutions, i.e., we want

 \mathscr{M} to be a set of bounded complexity LTI systems $\mathscr{L}_{\mathfrak{m},n_{\text{max}}}$, # of inputs $\leq \mathfrak{m}$ and order $\leq n_{\text{max}}$.

However,

- $\textit{w}_d \in \bar{\mathscr{B}} \in \mathscr{L}_{m,n_{\text{max}}}$ is a too restrictive assumption alternatively
 - the MPUM generically does not exist in $\mathcal{L}_{\mathbf{m},\mathbf{n}_{\text{max}}}$

Introduction: exact and approximate identification

Algorithms for exact identification

Software packag

Approximate identification: suboptimal methods

exact identification is more than an academic problem

it leads to suboptimal approximate identification methods

an exact ID method can be used for approximate SYSID by

MATLAB does this substitution automatically where necessary

Approximate identification: optimization point of view

- the model need not fit the data exactly
- choose a distance measure $M(w_d, \mathcal{B})$ between w_d and \mathcal{B}
- minimize $M(w_d, \mathcal{B})$ over all models in \mathcal{M}

Computing $M(w_d, \mathcal{B})$ is equivalent to

- finding the "best" approximation of w_d in \mathcal{B} ,
- smoothing or filtering (if causality is imposed) w_d by \mathscr{B} ,
- projecting w_d on \mathscr{B} .

 $M(w_d, \mathcal{B})$ can be computed in various ways: smoothing, spectral factorization, Cholesky factorization, . . .

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software packag

LTI model representations

• Kernel representation (parameter $R(z) := \sum_{i=0}^{1} R_i z^i$)

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_1 w(t+1) = 0$$

• Impulse response represent (parameter $h: \mathbb{Z} \to \mathbb{R}^{p \times m}$)

$$w = \operatorname{col}(u, y), \qquad y(t) = \sum_{\tau = -\infty}^{t} h(\tau)u(t - \tau)$$

Input/state/output representation (parameter (A, B, C, D))

$$w = \operatorname{col}(u, y),$$
 $x(t+1) = Ax(t) + Bu(t)$
 $y(t) = Cx(t) + Du(t)$

p := dim(y) = row dim(R) is the # of outputs m := dim(u) is the # of inputs, 1 := degree(R) is the lag

Algorithms for exact identification

- 1. $W_d \mapsto R(z)$
- 2. $w_d \mapsto \text{impulse response } H$
- 3. $W_d \mapsto (A, B, C, D)$

(possibly balanced)

- 3.1 $w_d \mapsto R(\xi) \mapsto (A, B, C, D)$ or $w_d \mapsto H \mapsto (A, B, C, D)$
- 3.2 $W_d \mapsto \mathcal{O}_{1,max+1}(A,C) \mapsto (A,B,C,D)$
- 3.3 $W_d \mapsto (X_d(1), \dots, X_d(n_{max} + m + 1)) \mapsto (A, B, C, D)$

Various ways to implement the mapping $w_d \mapsto (A, B, C, D)$.

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

$$W_d \mapsto H$$

Assuming $(u_d, y_d) \in \mathcal{B}$, \mathcal{B} controllable, and u_d persist. exciting, there is G, such that $H = \mathcal{H}_t(y_d)G$.

 $w_d \mapsto H$ reduces to the problem of finding a particular G.

$$\left[\begin{array}{c} \mathcal{H}_{l+t}(u_{\mathrm{d}}) \\ \hline \mathcal{H}_{l+t}(y_{\mathrm{d}}) \end{array} \right] \mathbf{G} = \left[\begin{array}{c} \mathbf{0} \\ \begin{bmatrix} l \\ 0 \end{bmatrix} \\ \hline \mathbf{0} \\ H \end{array} \right] \begin{array}{c} \leftarrow \quad \textit{I} \text{ zero samples} \\ \leftarrow \quad \textit{t} \text{ samples long impulse} \\ \hline \leftarrow \quad \textit{I} \text{ zero samples} \\ \leftarrow \quad \textit{t} \text{ samples impulse response} \end{array} \right]$$

Block algorithm $w_d \mapsto H$

- 1. Solve the system of equations in blue for G.
- 2. Substitute G in the equations in red \rightsquigarrow H.

 $W_d \mapsto R(z)$

The difference equation representation

$$R_0 w_d(t) + R_1 w_d(t+1) + \dots + R_l w_d(t+l) = 0$$
, for $t = 1, \dots, T-l$

is equivalent to the linear system of equations

$$\underbrace{\begin{bmatrix} R_0 & R_1 & \cdots & R_I \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} w_d(1) & w_d(2) & \cdots & w_d(T-I) \\ w_d(2) & w_d(3) & \cdots & w_d(T-I+1) \\ \vdots & \vdots & & \vdots \\ w_d(I+1) & w_d(I+2) & \cdots & w_d(T) \end{bmatrix}}_{\mathscr{H}_{l+1}(w_d)} = 0.$$

Finding R, requires to compute the left kernel of $\mathcal{H}_{l+1}(w_d)$.

SISTA

Introduction: exact and approximate identification

Introduction: exact and approximate identification

Algorithms for exact identification

Simulation example $w_d \mapsto H$

Simulation setup

- \mathcal{B} is of order n=4, lag l=2, with m=2 inputs, and p=2outputs
- w_d is a trajectory of \mathscr{B} with length T = 500

Compared algorithms

- the block algorithm
- an iterative refinement of the block algorithm
- the function impulse from the Identification Toolbox

Approximation error $e = ||H - \hat{H}||_F$ and execution time

	method	error, e	time, sec.
Ì	block algorithm	10^{-14}	0.293

Possible paths to go

- $w_d \mapsto H(0:21_{max}) \text{ or } R(z) \xrightarrow{\text{realization}} (A,B,C,D)$
- $W_d \mapsto \mathscr{O}_{1_{\max}+1}(A,C) \xrightarrow{(1)} (A,B,C,D)$
- $w_d \mapsto (x_d(1), \dots, x_d(n_{\mathsf{max}} + m + 1)) \xrightarrow{(2)} (A, B, C, D)$

(1) and (2) are easy

$$\mathscr{O}_{1_{max}+1}(A,C)\mapsto (A,C) \quad \text{and} \quad (\textit{u}_d,\textit{y}_d,A,C)\mapsto (B,C,\textit{x}_{ini}) \quad \text{(1)}$$

$$\begin{bmatrix} x_d(2) & \cdots & x_d(n_{\text{max}} + m + 1) \\ y_d(1) & \cdots & y_d(n_{\text{max}} + m) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_d(1) & \cdots & x_d(n_{\text{max}} + m) \\ u_d(1) & \cdots & u_d(n_{\text{max}} + m) \end{bmatrix}$$
 (2)

SISTA

ntroduction: exact and approximate identification

Algorithms for exact identification

Software package

$$W_{\rm d}\mapsto \mathscr{O}_{\rm l_{max}+1}(A,C)$$

- the columns of $\mathcal{O}_{1_{\max}+1}(A,C)$ are lin. indep. free resp. of \mathscr{B}
- under the conditions of FL, such resp. can be computed

$$\begin{bmatrix} \mathscr{H}_t(u_d) \\ \mathscr{H}_t(y_d) \end{bmatrix} G = \begin{bmatrix} 0 \\ Y_0 \end{bmatrix} \quad \leftarrow \quad \text{zero inputs} \\ \leftarrow \quad \text{free responses}$$

(G should be maximal rank)

• once we have a maximal rank matrix of free responses Y₀

$$Y_0 = \mathscr{O}_{1_{\max}+1}(A, C) \underbrace{\begin{bmatrix} x_{\text{ini},1} & \cdots & x_{\text{ini},j} \end{bmatrix}}_{X_{\text{ini}}}$$
 rank revealing factorization

the factorization fixes the basis for 𝒪_{lmax+1}(A, C) and X_{ini}

$\mathscr{O}_{l_{\mathsf{max}}+1}(A,C) \mapsto (A,B,C,D)$

First C and A

Introduction: exact and approximate identification

C is the first block entry of $\mathcal{O}_{1_{max}+1}(A, C)$ and A is given by

$$(\sigma^* \mathscr{O}_{1_{\mathsf{max}}+1}(A,C))A = (\sigma \mathscr{O}_{1_{\mathsf{max}}+1}(A,C))$$
 shift equation

(σ^* removes the last block entry and σ removes the first block entry)

Then D, B, and $x_d(1)$

Once C and A are known, the system of equations

$$y_{\mathrm{d}}(t) = CA^{t} \mathbf{x}_{\mathrm{d}}(\mathbf{1}) + \sum_{\tau=1}^{t-1} CA^{t-1-\tau} \mathbf{B} u_{\mathrm{d}}(\tau) + \mathbf{D} \delta(t+1),$$

is linear in D, B, $x_d(1)$ and can be solved explicitly.

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

$$w_d \mapsto (x_d(1), \dots, x_d(n_{\mathsf{max}} + m + 1))$$

Main idea

If the free resp. are sequential, i.e., if Y_0 is block-Hankel, then X_{ini} is a state sequence of \mathcal{B} .

Computation of sequential free responses

$$\begin{bmatrix} \textit{U}_p \\ \textit{Y}_p \\ \textit{U}_f \end{bmatrix} \textit{G} = \begin{bmatrix} \textit{U}_p \\ \textit{Y}_p \\ 0 \end{bmatrix} \left. \begin{array}{c} \text{sequential ini. conditions} \\ \leftarrow \text{ zero inputs} \end{array} \right.$$

$$\textbf{Y}_f \quad \textbf{G} \quad = \quad \textbf{Y}_0$$

$$Y_0 = \mathscr{O}_{1_{\text{max}}+1}(A, C) ig[x_d(1) \quad \cdots \quad x_d(n_{\text{max}}+m+1) ig]$$
 rank revealing factorization

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Building blocks for the algorithms

Function	Description	
w2r	from data (time series w) to a kernel repr.	
r2pq	from a kernel repr. to an LMF representation	
pq2ss	from an LMF repr. to an I/S/O representation	
uy2h	from data to the impulse response	
h2ss	2ss from the impulse resp. to an I/S/O repr.	
uy2y0	y2y0 from data to sequential free responses	
y02ox	from free responses to an observability	
	matrix and a state sequence	
h2ox	from the impulse response to an observability	
	matrix and a state sequence	
uy02ss	from data and an observability matrix to	
	an I/S/O representation	
uyx2ss	from data and a state seq. to an I/S/O repr.	
hy02xbal	from the impulse response and sequential	
	free responses to a balanced state sequence	

SISTA

Introduction: exact and approximate identification

Algorithms for exact identification

Software package

Thank you

SISTA

Conclusions

- · choice of representation
- decomposition of the identification problem into standard easy to solve subproblems
- various ways to achieve the mapping $w_d \mapsto \mathscr{B}$
- can be used as suboptimal approximate ID methods
- open question:

when w_d is not exact, which choice of representation and computational algorithm gives best approximate system?

