Лекція 14. Теорема Лагранжа для скінченних груп.

Нехай H – підгрупа групи G, g – фіксований елемент у G. Лівим суміжним класом групи G за підгрупою H (з представником g) називаємо множину елементів вигляду gh, де h пробігає всі елементи підгрупи H. Цю множину позначатимемо через gH. Аналогічно визначаємо правий суміжний клас Hg групи G за підгрупою H.

Далі наведено приклади суміжних класів:

1) нехай $G = S_3$ – група підстановок з трьох елементів. Кількість елементів у вказаній групі дорівнює 6. Позначимо елементи цієї групи так: $e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$,

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, c = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Два числа i та j в нижньому рядку підстановки складають інверсію, якщо i > j, але число i знаходиться раніше від j. Підстановку називають парною, якщо загальна кількість інверсій в її нижньому рядку парна, і непарною в протилежному випадку. Зауважимо, що означення парності підстановки не залежить від форми запису цієї підстановки. Множина парних підстановок $H = \{e, a, f\}$ є підгрупою групи S_3 . Разом з тим множина непарних підстановок $K = \{b, c, d\}$ підгрупу групи S_3 не утворює.

Таблиця Келі виконання операції композиції підстановок для групи S_3 наведена в табл. 10. З цієї таблиці видно, що операція у вказаній групі не є комутативною, бо скажімо $a \circ b = d$, але $b \circ a = c$, тобто композиції $a \circ b$ та $b \circ a$ не співпадають.

0	e	a	b	С	d	f
e	e	a	b	c	d	f
a	а	f	d	b	c	e
b	b	C	e	a	f	d
С	С	d	f	e	а	b
d	d	b	а	f	e	С
f	f	e	c	d	b	а

Табл. 10. Таблиця Келі групи підстановок S_3 .

Ліві суміжні класи групи підстановок з трьох елементів за підгрупою H парних підстановок мають такий вигляд:

$$eH=\{e, a, f\},$$
 $aH=\{e, a, f\},$ $fH=\{e, a, f\},$ $bH=\{b, c, d\},$ $cH=\{b, c, d\},$ $dH=\{b, c, d\}.$

Праві суміжні класи групи підстановок з трьох елементів за підгрупою H парних підстановок мають наведений далі вигляд:

$$He=\{e, a, f\},\$$
 $Ha=\{e, a, f\},\$ $Ha^2=\{e, a, f\},\$ $Hb=\{b, c, d\},\$ $Hc=\{b, c, d\},\$ $Hd=\{b, c, d\}.$

Як бачимо, у даному прикладі eH = He, aH = Ha, bH = Hb, cH = Hc, dH = Hd, fH = Hf, тобто ліві суміжні класи співпадають з відповідними правими суміжними класами.

Проте таке співпадіння не завжди має місце, як показує такий приклад:

- 2) нехай $G = S_3$, $H_1 = \{e, b\}$. Лівий суміжний клас, породжений елементом d, складається з двох елементів: $dH_1 = \{de, db\} = \{d, a\}$. Правий суміжний клас виглядає так $H_1d = \{ed, bd\} = \{d, f\}$. Як бачимо, в цьому випадку відповідні суміжні класи є різними: $dH_1 \neq H_1d$.
- 3) нехай $G = \mathbf{Z}$, H підгрупа цілих чисел, кратних числу 5. Суміжний клас, утворений числом 1, ϵ множиною $1 + 5\mathbf{Z} = \{1, 1\pm 5, 1\pm 2\cdot 5, ...\}$. Це всі цілі числа, які при діленні на 5 дають остачу 1.

Очевидно, що існує тільки 5 різних класів групи \mathbb{Z} за підгрупою 5 \mathbb{Z} , а саме: 5 \mathbb{Z} , 1 + 5 \mathbb{Z} , 2 + 5 \mathbb{Z} , 3 + 5 \mathbb{Z} , 4 + 5 \mathbb{Z} .

Зафіксуємо деяку підгрупу H групи G і розглянемо всі можливі ліві суміжні класи за цією підгрупою, утворені елементами групи G. Перш за все ясно, що кожний елемент $g \in G$ належить до деякого класу , а саме, до класу gH, бо $g=ge\in gH$.

Далі, якщо підгрупа H скінченна і має n елементів, то кожен суміжний клас також має n елементів. Дійсно, якщо $h_1 \neq h_2$, то $gh_1 \neq gh_2$, бо за законом скорочення із $gh_1 = gh_2$ отримуємо $h_1 = h_2$.

Для нескінченної підгрупи ці міркування означають, що множини gH та H рівнопотужні. Тоді й ліві суміжні класи рівнопотужні.

Усе раніше сказане справедливе й для правих суміжних класів.

Лема 1. Усякі два суміжні класи за однією і тією ж підгрупою або не перетинаються або співпадають.

Доведення. Щоб довести лему, треба довести таке: із $g_1H \cap g_2H \neq \emptyset$ випливає $g_1H = g_2H$. Нехай $g_0 \in g_1H \cap g_2H$, тобто $g_0 = g_1h_1 = g_2h_2$, де $h_1, h_2 \in H$. Тоді

 $g_1H \subseteq g_2H$. Це випливає з низки рівностей, які справедливі для будь-якого $h \in H$: $g_1h = g_1(h_1(h_1)^{-1})h = g_0h' = g_2h_2h' = g_2h'' \in g_2H$.

Аналогічно можна довести, що $g_2H\subseteq g_1H$. Тоді отримуємо, що дійсно $g_1H=g_2H$.

Теорема 5 (**Лагранж**). Кількість елементів будь-якої підгрупи H скінченої групи $G \in$ дільником кількості елементів групи.

Доведення. Кожен елемент $g \in G$ належить принаймні до одного класу, а саме до класу gH. Тому суміжні класи утворюють покриття групи. За доведеною лемою бачимо, що група ϵ об'єднанням суміжних класів, які не перетинаються. Кількість класів позначатимемо через j і назвемо індексом підгрупи H у групі G. Оскільки всі класи мають однакову кількість елементів, то n = j m, де n -кількість елементів групи G, а m -кількість елементів підгрупи H. Теорему доведено.

Наслідок 2. а) Група простого порядку не має жодних підгруп, крім тривіальних.

- b) Порядок елемента скінченої групи ділить порядок групи.
- с) Група простого порядку завжди циклічна.

Доведення. а) Випливає з того, що просте число p має лише два можливих дільники: числа 1 та p.

- b) Розглянемо циклічну підгрупу, породжену якимось елементом групи. Кількість елементів цієї підгрупи дорівнює порядку елемента. Далі застосовуємо теорему 5.
- с) Візьмемо довільний елемент групи простого порядку, який не дорівнює нейтральному елементу цієї групи. У циклічний підгрупі, породженій вказаним елементом, є більше, ніж один елемент. Тоді застосовуємо наслідок 2 а.

Не слід думати, що для будь-якого дільника m кількості елементів групи завжди у цій групі існує підгрупа з кількістю елементів m. Так, у групі A_4 (підгрупа парних підстановок групи S_4), яка має 12 елементів, не існує підгруп з 6 елементів.

Підгрупа H групи G називається нормальною підгрупою, якщо gH = Hg для всіх $g \in G$. Остання умова означає, що відповідні ліві й праві суміжні класи за нормальною підгрупою співпадають. Сукупність суміжних класів за нормальною підгрупою утворює групу. Операція множення суміжних класів визначається за допомогою рівності $g_1H \bullet g_2H = (g_1 \ g_2)H$. Ця група називається

фактор-групою групи G за нормальною підгрупою H і позначається G/H. Нормальність потрібна для того, щоб показати коректність визначення добутку суміжних класів (тобто незалежність результату від вибору представників g_1 , g_2 суміжних класів).

Зрозуміло, що у випадку абелевої групи кожна підгрупа є нормальною. Таку ситуацію, зокрема, маємо коли беремо як групу $G = \mathbb{Z}$ множину цілих чисел відносно додавання, а як підгрупу H підмножину цілих чисел, кратних числу 5. Як зауважено раніше, існує 5 різних класів групи \mathbb{Z} за підгрупою 5 \mathbb{Z} , тобто фактор-група $\mathbb{Z}/5\mathbb{Z}$ складається з 5 елементів, а саме: $\overline{0}=5\mathbb{Z}$, $\overline{1}=1+5\mathbb{Z}$, $\overline{2}=2+5\mathbb{Z}$, $\overline{3}=3+5\mathbb{Z}$, $\overline{4}=4+5\mathbb{Z}$. Таблиця Келі для цієї групи цілих чисел за модулем числа 5 наведена в табл. 9.

Розглянемо також приклад неабелевої групи $G = S_n$ підстановок з n елементів (n — довільне натуральне число не менше, ніж 3) відносно операції композиції підстановок. Як підгрупу беремо множину парних підстановок $H = A_n$. Тоді фактор-група S_n / A_n складається з двох класів: парні підстановки $\overline{p} = pH$ та непарні підстановки $\overline{n} = nH$. В якості n можна взяти довільну парну підстановку (наприклад, тотожну), а в якості n — довільну непарну підстановку. Таблиця Келі для цієї групи показана в табл. 11.

Табл. 11.

•	\overline{p}	\overline{n}	
\overline{p}	\overline{p}	\overline{n}	
\overline{n}	\overline{n}	\overline{p}	