- 9. Ряд Тейлора. Розклад функції в степеневий ряд. Єдиність розкладу. Необхідна та достатня умови розкладу функції в ряд Тейлора. Ряди Маклорена для основних елементарних функцій e^x , $\sin x$, $\cos x$, shx, chx, $\ln(1+x)$.
 - **0** *Тейлорів ряд*. Нехай функція f(x) в деякому околі точки x_0 має похідні всіх порядків. Степеневий ряд:

$$f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \ldots = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

називають Тейлоровим рядом функції f(x) із центром у точці x_0 .

Частковою сумою Тейлорового ряду є *Тейлорів многочлен*:

$$\tilde{P}_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!} (x - x_{0})^{k} \Leftrightarrow f(x) = \tilde{P}_{n}(x) + R_{n}(x),$$

де $R_n(x)$ — залишок ряду.

Якщо функція f(x) є сумою степеневого ряду $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, то кажуть, що вона розвивається за степенями $(x-x_0)$.

 Критерій збіжності Тейлорового ряду. Тейлорів ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

збігається до функції f(x) в інтервалі збіжності I тоді й лише тоді, коли в цьому інтервалі функція f(x) має похідні всіх порядків та

$$\forall x \in I : \lim_{n \to \infty} R_n(x) = 0.$$

3 *Теорема єдиності*. Якщо функція f(x) розвивається у степеневий ряд

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n,$$

в околі точки x_0 , то це розвинення єдине і одержаний ряд є Тейлоровим рядом функції f(x) із центром у точці x_0 .

Ф Достатня умова збіжності Тейлорового ряду. Якщо функція ї її похідні будь-якого порядку обмежені в околі точки x_0 однією і тією самою сталою K, то Тейлорів ряд функції f(x) збігається до функції f(x) для будь-якого x з цього околу.

12.7. Тейлорові розвинення деяких елементарних функцій з центром у точці $x\,=\,0$

$$\bullet e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad x \in \mathbb{R}$$

$$\Theta \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!},$$

 $x \in \mathbb{R}$

10. Ряди Маклорена для $(1+x)^{\alpha}$, arcsin x, arc tgx.

$$\textbf{6} \ (1+x)^{\alpha} = 1 + \frac{\alpha}{1!} x + \frac{\alpha(\alpha-1)}{2!} x^2 + \ldots + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n + \ldots, \\ \left|x\right| < 1$$

Докажем формулу (64.7). Пусть $f(x) = (1+x)^{\alpha}$, где $\alpha \in \mathbb{R}$.

Имеем:

a)
$$f'(x) = \alpha(1+x)^{\alpha-1}$$
, $f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$, ..., $f^{(n)}(x) = \alpha(\alpha-1) \dots (\alpha-(n-1))(1+x)^{\alpha-n}$, ..., $n \in \mathbb{N}$; 6) $f(0) = 1$, $f'(0) = \alpha$, $f''(0) = \alpha(\alpha-1)$, ...,

6)
$$f(0) = 1$$
, $f'(0) = \alpha$, $f''(0) = \alpha(\alpha - 1)$, ...,

 $f^{(n)}(0) = \alpha(\alpha - 1) \dots (\alpha - n + 1), \dots;$

B)
$$(1+x)^{\alpha} \sim 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots$$

$$\dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!}x^n + \dots;$$

$$r$$
) $R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left|\frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(n-1))\cdot(n+1)!}{n!\cdot\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(n-1))(\alpha-n)}\right|=\lim_{n\to\infty}\left|\frac{n+1}{\alpha-n}\right|=1$, т. е. составленный для функции $(1+x)^{\alpha}$ ряд сходится

в интервале (-1; 1).

Можно показать, что и в данном случае, т.е. при $x \in (-1, 1)$, остаточный член $R_n(x)$ стремится к нулю при $n \to \infty$.

Ряд (64.7) называется биномиальным. Если $\alpha = n \in \mathbb{N}$, то все члены ряда с (n+1)-го номера равны 0, так как содержат множитель $\alpha - n = n - n = 0$. В этом случае ряд (64.7) представляет собой известную формулу бинома Ньютона:

$$(1+x)^n = 1 + \frac{n}{1!}x + \frac{n(n-1)}{2!}x^2 + \ldots + \frac{n(n-1)\ldots 1}{n!}x^n.$$

$$\arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$
 (64.11)

$$\cdots + \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \cdot \frac{x^{2n+1}}{2n+1} + \dots, \qquad x \in [-1;1], (64.12)$$

Докажем формулу (64.12). Пусть $f(x) = \arcsin x$.

469

 \square Положив в формуле (64.7) $\alpha = -\frac{1}{2}$ и заменив x на $(-x^2)$, получим

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{1 \cdot 3}{2 \cdot 4} x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \dots, \quad x \in [-1; 1].$$

$$\int_{0}^{x} \frac{1}{\sqrt{1-t^2}} dt = \int_{0}^{x} dt + \int_{0}^{x} \frac{t^2}{2} dt + \int_{0}^{x} \frac{1 \cdot 3}{2 \cdot 4} t^4 dt + \dots,$$

$$\arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \dots$$

Можно показать, что полученное равенство справедливо при всех $x \in [-1; 1].$

$$\Phi \operatorname{arctg} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1},$$
 $x \in [-1;1]$

Докажем формулу (64.10). Пусть f(x) = arctg x.

 \square Положив в формуле (64.7) $\alpha = -1$ и заменив x на x^2 , получим равенство

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - \ldots + (-1)^n \cdot x^{2n} + \ldots, \quad x \in (-1;1).$$

Тогда

$$\int\limits_0^x \frac{1}{1+t^2}\,dt = \int\limits_0^x 1\,dt - \int\limits_0^x t^2\,dt + \int\limits_0^x t^4\,dt - \ldots + \int\limits_0^x (-1)^n t^{2n}\,dt + \ldots,$$
 или
$$\operatorname{arctg} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \ldots$$

Можно показать, что равенство справедливо и при $x=\pm 1$, т. е. при всех $x\in [-1;1]$.

11. Степеневі ряди з комплексними членами. Основні функції комплексної змінної та їх властивості.

змінної та їх властивості.

13.1. Основні поняття про функції комплексної змінної

Область. Зв'язну відкриту множину точок комплексної площини називають областю.

Область називають однозв'язною, якщо її межа ϵ зв'язною множиною, інакше область називають багатозв'язною.

\Theta *Відкритий круг* радіусом R з центром у точці z_0

 $|z - z_0| < R$

© Межа множини. Точку z називають межовою точкою множини D, якщо будь-який $\overline{\mathbf{n}}$ окіл містить як точки, які належать множині D, так і точки, які $\overline{\mathbf{n}}$ ій не належать.

Сукупність межових точок множини називають **межею** множини D і позначають ∂D .

© Комплексна функція. Якщо кожному комплексному числу z, що належить області D, відповідає одне або кілька комплексних чисел $w \in E$, то кажуть, що в області D означено комплексну функцію

w = f(z) = u(x, y) + iv(x, y), $w \in E, z = x + iy \in D \subset \mathbb{C}$ $u(x,y) = \operatorname{Re} f(z),$ $v(x,y) = \operatorname{Im} f(z)$

Якщо кожному z відповідає одне значення w, то функцію називають однозначною, інакше — багатозначною.

- **Θ** *Границя функції.* Комплексне число A називають *границею функції* w = f(z) в точці z_0 (коли $z \to z_0$), якщо для будь-якого ε -околу точки A можна вказати проколений δ -окіл точки z_0 , такий що, коли $z \in U_\delta(z_0) \setminus \{z_0\}$, то $f(z) \in U_\varepsilon(A)$ і позначають $\lim_{z \to \infty} f(z) = A$.*
- **Ф** Неперервність функції. Нехай функція w=f(z) означена в точці $z=z_0$ і в деякому її околі. Функцію w=f(z) називають неперервною в точці z_0 , якщо $\lim_{z\to z_0} f(z)=f(z_0)$.

Функція f(z) неперервна в області D, якщо вона неперервна в кожній точці цієї області.

13.2. Основні елементарні функції комплексної змінної

Показникова функція	$e^z = e^x(\cos y + i\sin y)$
❷ Тригонометричні функції	
$ \Phi \cos z = \frac{e^{iz} + e^{-iz}}{2}; $	$\mathfrak{D} \operatorname{tg} z = \frac{\sin z}{\cos z};$
$ \mathfrak{D}\sin z = \frac{e^{iz} - e^{-iz}}{2i}; $	
9 Гіперболічні функції	
$ \Phi \operatorname{ch} z = \frac{e^z + e^{-z}}{2}; $	$\mathfrak{D} \text{ th } z = \frac{\sinh z}{\cosh z};$
$\mathfrak{D}\operatorname{sh} z = \frac{e^z - e^{-z}}{2};$	
Ологарифмічна функція	$\operatorname{Ln} z = \ln z + i \operatorname{Arg} z$
	$\operatorname{Arg} z = \operatorname{arg} z + 2\pi ki,$
	$\arg z \in (-\pi; \pi], k \in \mathbb{Z}$
⑤ Головне значення логарифма	$\ln z = \ln z + i \arg z$
Узагальнені показникова	$a^z = e^{z \operatorname{Ln} a}, a \neq 0, z^{\alpha} = e^{\alpha \operatorname{Ln} z}$
і <i>степенева</i> функції	
Ә Арксинус	$Arcsin z = -i \operatorname{Ln}(iz + \sqrt{1 - z^2})$
© Арккосинус	$\operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1})$
9 Арктангенс	$\operatorname{Arctg} z = -\frac{i}{2} \operatorname{Ln} \frac{i-z}{i+z}$
Ф Арккотангенс	$\operatorname{Arcctg} z = \frac{i}{2} \operatorname{Ln} \frac{z - i}{z + i}$ $\operatorname{Arsh} z = \operatorname{Ln} (z + \sqrt{z^2 + 1})$
Ф Ареасинус	$\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1})$
Ф Ареакосинус	$\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 - 1})$
В Ареатангенс	$\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \frac{1+z}{1-z}$
® Ареакотангенс	$\operatorname{Arcth} z = \frac{1}{2} \operatorname{Ln} \frac{z+1}{z-1}$

13.3. Властивості основних елементарних функцій

• Властивості показникової функції •	
$\Phi \left e^z \right = e^x, \operatorname{Arg} e^z = y + 2\pi k;$	$\mathbb{Q} e^{z+2\pi ki} = e^z, k \in \mathbb{Z};$
Властивості логарифмічної функції	
$\mathbb{O} \operatorname{Re} \operatorname{Ln} z = \ln z , \operatorname{Im} \operatorname{Ln} z = \operatorname{Arg} z;$	$\mathfrak{D} \operatorname{Ln} 1 = 2\pi ki, k \in \mathbb{Z}$
Властивості тригонометричних функцій [™]	
$\mathbb{O} \operatorname{Re} \sin z = \sin x \operatorname{ch} y,$	$\Im \cos(z + 2\pi k) = \cos z;$
$\operatorname{Im} \sin z = \cos x \operatorname{sh} y;$	$\oplus \sin(z + 2\pi k) = \sin z;$
$2 \operatorname{Re} \cos z = \cos x \operatorname{ch} y$,	$\mathfrak{D} \operatorname{tg}(z + \pi k) = \operatorname{tg} z;$ $k \in \mathbb{Z}$
$\operatorname{Im}\cos z = -\sin x \operatorname{sh} y;$	
Властивості гіперболічних функцій	
$\mathbb{O} \operatorname{Re} \operatorname{sh} z = \operatorname{sh} x \cos y,$	$\mathfrak{D} \operatorname{ch}(z + 2\pi ki) = \operatorname{ch} z;$
$\operatorname{Im} \operatorname{sh} z = \operatorname{ch} x \sin y;$	
$② \operatorname{Re} \operatorname{ch} z = \operatorname{ch} x \cos y,$	$\mathfrak{O} \operatorname{th}(z + \pi ki) = \operatorname{th} z;$ $k \in \mathbb{Z}$
$\operatorname{Im} \operatorname{ch} z = -\operatorname{sh} x \sin y;$	$\textcircled{6} \operatorname{cth}(z + \pi ki) = \operatorname{cth} z$
❸ Співвідношення між тригонометричними і гіперболічними функціями	
	\mathfrak{D} tg $iz = i \operatorname{th} z$, th $iz = i \operatorname{tg} z$;
$\mathfrak{D}\sin iz = i \operatorname{sh} z, \operatorname{sh} iz = i \sin z;$	$\textcircled{4} \operatorname{ctg} iz = -i \operatorname{cth} z, \operatorname{cth} iz = -i \operatorname{ctg} z$