

Chương 03 Tâng mạng

MẠNG MÁY TÍNH

Tháng 09/2011

Mục tiêu

☐ Thiết lập kết nối giữa 2 host để truyền dữ liệu từ host - host

Application

Presentation

Session

Transport

Network

Data link

Physical

Tâng mạng vs tầng vận chuyển

- Tầng mạng: cung cấp kết nối logic giữa các host
- Tầng vận chuyển: cung cấp kết nối logic giữa các tiến trình
 - Dựa trên, mở rộng dịch vụ của tầng mạng

<u>Ví dụ:</u>

A gởi B 1 bức thư qua đường bưu điện

- processes = A, B
- o app messages = bức thư
- hosts = nhà của A, nhà của B
- transport protocol ???
- o network-layer protocol????

Nội dung

- ☐Giới thiệu
- □Định tuyến chuyển tiếp
- ☐ Giao thức IP
- ☐ Giao thức ICMP
- ☐ Giao thức NAT

Nhắc lại

giới thiệu - 1

- □ Thực hiện chuyển các segment từ host gởi đến host nhận
- ☐ Tại host gởi:
 - Nhận các segment từ transport layer
 - Đóng gói thành các packet
- ☐ Tại host nhận:
 - Nhận các packet từ data link layer
 - Chuyển các segment lên transport layer
- ☐ Tai các router:
 - Dựa vào thông tin đích đến để chuyển các packet đến host nhân
 - Định tuyến: quyết định gói tin đi đường nào
 - Chuyển tiếp: chuyển gói tin từ interface nhận ra interface gởi

giới thiệu - 2

- ☐ Tầng mạng cung cấp 2 loại dịch vụ
 - Hướng kết nối (Connection)
 - Virtual Circuit
 - Trước khi truyền dữ liệu, 2 host phải thiết lập kết nối
 - Hướng không kết nối (Connectionless)
 - Datagram Network
 - Không cần thiết lập kết nối trước khi gởi
- Trong 1 kiến trúc mạng: chỉ hỗ trợ duy nhất 1 loại dịch vụ

Virtual circuit (VC) network - 1

- ☐ Thiết lập, quản lý, duy trì mỗi kết nối khi truyền dữ liệu
 - 1 đường đi ảo khi truyền dữ liệu
 - Số hiệu VC (VC number)
 - Khác nhau trên mỗi link
 - Mỗi gói tin có một virtual circuit identifier (VC ID)
 - Các router duy trì trạng thái kết nối đi qua
 - bảng chuyển đổi VC ID
 - Thay thế thông tin VD ID của gói tin đi ngang qua router
- ☐ Thông tin định tuyến: Virtual Circuit number (VC ID)
- ☐ Dùng trong ATM, X.25, Frame-Relay,...

Virtual circuit (VC) network - 2

Virtual circuit network - 3

VC number

Cổng vào	VC# vào	Cổng ra	VC# ra
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
	•••		

Routers duy trì thông tin về trạng thái kết nối!

Datagram network - 1

- ☐ Không thiết lập kết nối trước khi truyền dữ liệu
 - Router không cần quản lý trạng thái kết nối
- ☐ Thông tin định tuyến: địa chỉ đích đến
 - Mỗi router duy trì một bảng định tuyến
- □ Dùng trong Internet

Datagram network - 2

Destination Network	Subnetmask	Out Interface	Next hop
210.245.10.0	255.255.255.0	3	
210.245.15.0	255.255.255.0	1	
210.245.15.192	255.255.255.192	2	
•••			

Nội dung

- ☐ Giới thiệu
- □Định tuyến chuyển tiếp
- ☐ Giao thức IP
- ☐ Giao thức ICMP
- ☐ Giao thức NAT

Định tuyến - Chuyển tiếp - 1

□Định tuyến:

- Quyết định "lộ trình" mà gói tin di chuyển từ host nguồn đến host đích đến
- Sử dụng thông tin toàn cục

□Chuyển tiếp:

- Di chuyển gói tin từ cổng vào đến cổng ra
- Sử dụng thông tin cục bộ

Định tuyến - Chuyển tiếp - 2

Vạch ra lộ trình đi: NVCừ → NTMKhai

Định tuyến - 1

- □Được thực hiện bởi các bộ định tuyến.
 - VD: router
- □ Dùng bảng định tuyến (routing/forwarding table)
 - destination/subnetmask
 - Out interface
 - next hop
 - chi phí
 - Hop count
 - Delay
 - Bandwidth
 - •

Ví dụ - định tuyến

Destination Network	Subnet mask	Next hop	Out Interface
210.245.10.0	255.255.255.0	192.168.3.2	3
210.245.15.0	255.255.255.0	192.168.1.2	1
210.245.15.192	255.255.255.192	192.168.2.2	2

Định tuyến - 2

- ☐ Router định tuyến một gói tin như thế nào?
 - Dùng địa chỉ đích đến và bảng định tuyến
 - Thực hiện:
 - Tìm record thích hợp trong bảng định tuyến
 - Tính địa chỉ đường mạng giữa địa chỉ đích đến với subnetmask của từng record
 - So sánh destination network với địa chỉ đường mạng vừa tính
 - Gởi gói tin theo thông tin của record tìm được
- ☐ VD: R1 nhận gói tin có destination 210.245.10.5
 - **255.255.255.192**
 - Net: 210.245.10.0 → không có record thoả
 - **255.255.255.0**
 - Net: 210.245.10.0 → record số 1 thoả

→ gói tin chuyển ra interface số 3 và nơi nhận gói tin tiếp theo là 192.168.3.2

Bảng định tuyến

- ☐ Xây dựng bảng định tuyến:
 - Tĩnh (static): con người tự thiết lập
 - Động (dynamic): học
 - Distance Vector:
 - Gởi theo định kỳ
 - Gởi toàn bộ bảng định tuyến
 - VD: RIP, IGRP, ...
 - Link State:
 - Gởi khi có thay đổi
 - Gởi tình trạng kết nối
 - VD: OSPF, ISIS, ...

Static route

- ☐ Biết: Sơ đồ mạng
- ☐ Xây dựng:
 - Vẽ "đường đi" tối ưu
- ☐ Khi có thay đổi:
 - Tự cập nhật bằng tay

Dynamic route

- ☐ Biết: không
- ☐ Xây dựng:
 - Sử dụng các giao thức định tuyến
 - Thông qua các gói tin "thu thập" thông tin
 - Thành phần:
 - Gởi và nhận thông tin từ các router khác
 - Tính đường đi tối ưu
 - Phản ứng khi có thay đổi
- ☐ Khi thay đổi
 - Cập nhật tự động

Static route - Ví du - 1

Yêu cầu: cấu hình thông tin định tuyến cho R1 và R2 để các máy trong LAN1 có thể liên lạc với các máy trong LAN2

Tại router R1:

Destination network	Out interface	Next hop
192.168.8.0/24	E1	172.29.50.8

Tại router R2:

Destination network	Out interface	Next hop
192.168.7.0/24	E1	172.29.50.7
Khoa Công nghệ thông tin - Đại học Khoa học tự nhiên TP Hồ Chí Minh		

Static route – ví du 2

Trong có thể liên lạc với nhau và có thể truy cập Internet

Khoa Công nghệ thông tin - Đại học Khoa học tự nhiên TP Hồ Chí Minh

Static route – ví du 2

Tại router R1:

Destination network	Out interface	Next hop
172.29.90.0/24	E1	172.29.60.2
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0/0	E1	172.29.60.5

Tại router R2:

Destination network	Out interface	Next hop
172.29.70.0/24	E1	172.29.60.1
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0/0	E1	172.29.60.5

R1: N3, **N4** – 0 hop

R2	
N2, N4	0 hop
N3	1 hop

R2	
N2, N4	0 hop
N3, N1	1 hop

R1	
N3, N4	0 hop
N2	1 hop
N1	2 hops

R3	
N1, N2	0 hop
N4	1 hop
N3	2 hops

Trong có thể liên lạc với nhau và có thể truy cập Internet

Khoa Công nghệ thông tin - Đại học Khoa học tự nhiên TP Hồ Chí Minh


```
Rl#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

El - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route
```

Gateway of last resort is not set

```
172.29.0.0/24 is subnetted, 5 subnets

172.29.50.0 [110/2] via 172.29.60.4, 00:00:15, FastEthernet0/0

172.29.60.0 is directly connected, FastEthernet0/0

172.29.70.0 is directly connected, FastEthernet0/1

172.29.80.0 [110/2] via 172.29.60.3, 00:00:15, FastEthernet0/0

172.29.90.0 [110/2] via 172.29.60.2, 00:00:46, FastEthernet0/0
```


Nội dung

- ☐ Giới thiệu
- □Định tuyến chuyển tiếp
- ☐ Giao thức IP
- ☐ Giao thức ICMP
- ☐ Giao thức NAT

- ☐ Giao thức được định tuyến (routed protocol):
 - qui định cách thức đóng gói dữ liệu truyền trên đường truyền

VD: IP (IPv4, IPv6), IPSec,...

Routing protocol	Routed protocol
Tạo bảng định tuyến	Đóng gói gói tin tại tầng mạng

- □ Version (4)
 - version của IP
- ☐ Header Length (4):
 - Chiều dài IP header (byte)
- ☐ Type of service (8)
 - Çhứa định thông tin ưu tiên
 - Ít sử dung
- ☐ Total length (16)
 - Tổng chiều dài của datagram (tính cả header) (byte)
- ☐ Identifier (16):
 - Khi một gói tin IP bị chia nhỏ ra thành nhiều đoạn, thì mỗi đoạn được gán cùng số ID
 - Dùng khi tổng hợp

☐ Flag (3)

- DF
 - Don't fragment, không chia nhỏ
- MF
 - More fragment, còn gói tin nhỏ tiếp
 - Khi 1 gói tin bị chia nhỏ, tất cả các gói nhỏ (trừ gói tin cuối cùng), bit này được bật lên
- ☐ Fragment offset (13)
 - Vị trí gói nhỏ trong gói tin ban đầu
- ☐ Time to live TTL (8)
 - Thời gian sống của gói tin (hop count)
 - Giảm mỗi khi gói tin đến 1 router mới
 - Khi hop count =0 thì gói tin bị loại bỏ

- ☐ Protocol (8)
 - Chỉ ra nghi thức nào ở tầng transport mà gói tin đang sử dụng
 - VD: TCP = 6, UDP = 17
- ☐ Internet (Header) checksum (16)
 - Kiểm trà tính đúng đắn nội dung của IP header
 - Không theo cách kiểm tra tuần tự
- ☐ Source and destination addr (32)
 - Địa chỉ IP của bên gửi và bên nhận
- ☐ Options (32)
 - Có thể dài đến 40 bytes
 - Dùng cho các tính năng mở rộng của IP
 - Vd: source routing, security, record route, ...
- □ Data:
 - Dữ liệu ở tầng transport gởi xuống

Nội dung

- ☐ Giới thiệu
- □ Định tuyến chuyển tiếp
- ☐ Giao thức IP
- ☐ Giao thức ICMP
- **□** NAT

Giao thức ICMP

- ☐ ICMP (Internet Control Message Protocol)
- □Được sử dụng bởi các host và router để trao đổi thông tin ở tầng mạng
 - Báo lỗi:
 - Mang, host, protocol, port ... không vươn đến được
 - Báo mạng bị tắt nghẽn
 - Báo timeout
 - Echo request/reply (ping)

Gói tin ICMP

Thông điệp ICMP được đóng gói trong gói tin IP

Protocol = 1

IP header

Source, Destination Address, TTL, ...

ICMP MSG

Message type, Code, Checksum,
Data

0	8	3 1	6	32
	Type	Code	Checksum	
		Uns	ısed	
		Do	ıta	

ICMP Type	Code	Description
0	0	echo reply
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench (congestion control)
8	0	echo request
9	0	router advertisement
10	0	router discovery
11	0	TTL expired
12	O Khoa Công nghệ thôn	IP header bad g tin - Đại học khoa học tự nhiên TP Hồ Chí Minh

☐ Không đến được đích:

- Nguyên nhân: liên kết mạng bị đứt, đích đến không tìm thấy, ...
- Type = 3
- Code:
 - 0: unreachable network
 - 1: unreachable host
 - 2: unreachable protocol
 - 3: unreachable port
 - 4: không được phép fragment
 - 5:source route bị sai

□Quá han:

- Nguyên nhân:
 - TTL = 0 trước khi đến đích
 - Quá hạn thời gian tái lắp ghép các fragment
- Type = 11
- Code:
 - 0: TTL
 - 1: hết thời gian tái lắp ghép

Giao thức ICMP

- ☐ Các trường hợp GỞI ICMP msg:
 - Datagram không đạt đến đích
 - Time out
 - Error xuất hiện trong header
 - Router/host bị tắt nghên
- ☐ Các trường hợp KHÔNG gởi ICMP msg:
 - Bản thân ICMP msg có lỗi
 - Broadcast, multicast (gói DL định tuyến)
 - Những fragment khác với fragment đầu tiên

Nội dung

- ☐ Giới thiệu
- □Định tuyến chuyển tiếp
- ☐ Giao thức IP
- ☐ Giao thức ICMP
- **□** NAT

Nhắc lại

□Địa chỉ IP:

- Kích thước: 32 bits → không gian: 2³² địa chỉ
 - 0.x.x.x/8, 127.0.0.0/8, lớp D, lớp E; không dùng
 - Số lượng node trên Internet "khổng lồ"
 - → Giải quyết:
 - dùng địa chỉ private trong mạng LAN
 - Dùng địa chỉ public khi giao tiếp bên ngoài Internet

☐Gởi dữ liệu giữa 2 host

- Địa chỉ host gởi
- Địa chỉ host nhận

Đặt vấn đề

NAT

NAT – giới thiệu

- □ NAT = Network Address Translation
- □RFC 1631, 1918, 2663
- ☐ Chức năng: "thay đổi" địa chỉ
 - Incoming: thay đổi thông tin đích đến S: 210.64.72.14
 - Outgoing: that D: 192.168.1.3 n nquôn

 NAT server

 S: 192.168.1.X

 S: 192.168.1.X

 224.16.78.67

D: 210.64.72.14

S: 210.64.72.14 D: 192.168.1.3

NAT server: sử dụng bảng chuyển đổi địa chỉ

S: 210.64.72.14 D: 224.16.78.67

192.168.1.0/24

Khoa Công nghệ thông tin - Đại học Khoa học tự nhiên TP Hồ Chí Minh

Internet

NAT – thuật ngữ

NAT – bảng chuyển đổi địa chỉ

- □ Dùng chuyển đổi global <-> local
 - Thông tin cục bộ bên trong (Inside local)
 - Thông tin toàn cục bên trong (Inside global)
- ☐ Thông tin trong bảng chuyển đối
 - Static
 - dynamic

Nat – phân loại

- **□** Static
 - Cổ định: 1 local IP ⇔ 1 global IP
- □ Dynamic
 - n local IP ⇔ m global IP
 - NAT: chọn 1 global IP còn rảnh để NAT
- □ Overloading
 - n local IP ⇔ 1 global IP
 - NAT: <local IP, local port> ⇔ <global IP, global port>
- □ Overlapping
 - Cổ định: <local IP, port> ⇔ <global IP, port>

- ☐ Thứ tự gởi các gói tin như sau:
 - Máy 10.0.0.1 gởi 1 gói tin đến 128.119.40.186, 80 từ ứng dụng 3345
 - Úng dụng <128.119.40.186, 80> gởi lại gói tin phản hồi
 - Máy 10.0.0.3 gởi 1 gói tin đến 158.19.20.16, 80 từ ứng dụng 1234
 - Úng dụng <120.11.40.18, 3345> gởi gói tin truy cập dịch vụ web tại máy 10.0.0.1

Static NAT

- □Cấu hình cố định: 1 local IP ⇔ 1 global IP
 - Số máy kết nối ra ngoài bằng với số địa chỉ IP global
 - Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)

	Global	Local	
	138.76.29.7	10.0.0.1	S: 10.0.0.1, 3345 D: 128.119.40.186, 80
	← / ⊢	38.76.29.7, 3345 .28.119.40.186, 80	10.0.0.1
OS NOO	S: 128.119.40 // D: 138.76.29.	7, 3345 S: 10.0.0.3, 134 D: 158.19.20.16	

Dynamic NAT

- ☐ Cấu hình: n local IP ⇔ m global IP
 - Có m kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)
- □ Ví dụ: 10.0.0.0/24 ⇒ 138.76.29.7 và 138.76.29.8

	Global	Local	
	138.76.29.7	10.0.0.1	
	138.76.29.8	10.0.0.3	
	S: 138.76.2	-	40.00
_	D: 128.119.	.40.186, 80	10.0.0
	S: 128.119.40.186, 80	— 5 —	S: // D:
HO4 MOO	D: 138.76.29.7, 3345	9.8, 1345	
THIN O.	D: 158,19.20 Khoa Công r	0.16, 80 nghệ thông ti// - Đại học	: Khoa học

Overloading NAT

- ☐ Cấu hình: n local IP ⇔ 1 global IP
 - NAT: <local IP, local port> ⇔ <global IP, global port>
 - Có n kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)

	1		
	Global	Local	
	138.76.29.7, 4590	10.0.0.1, 3345	
	138.76.29.7, 3450	10.0.0.3, 1345	
	C 420 76 2	0.7.4500	
	S: 138.76.2 D: 128.119	40.186, 80	0.0.0
	1:	38.76.29.7	-// S
	S: 128.119.40.186, 8 // D: 138.76.29.7, 4590		_/ <u>/</u> _D:
04 hoc 2	S: 138.76.29 D: 158,19.20 Khoa Công r		a ho

Overlaping NAT

- □Cấu hình cố định: <local IP, port> ⇔ <global IP, port>
 - Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)
- Dùng để publish một dịch vụ ra *ngoài*Global Local

 138.76.29.7, 80 10.0.0.1, 80

 10.0.0.4

 10.0.0.4

NAT – mô tả bài toán

192.168.1.0/24

☐ Yêu cầu:

- Các máy tính trong LAN: 192.168.1.0/24 có thể truy cập ra ngoài bằng IP: 172.29.1.1
- Bên ngoài có thể truy cập dịch vụ FTP trên máy 192.168.3.253

NAT – cấu hình trên wins 2k3

- ☐ Chọn card public và private
 - Private: 192.168.1.1
 - Public: 172.29.1.1
- ☐ Chọn dịch vụ để publish (nếu có): Web
 - Local IP: 192.168.1.253
 - Incoming port: 80
 - Outgoing port: 80

Tài liệu tham khảo

☐ Slide của J.F Kurose and K.W. Ross về Computer Networking: A Top Down Approach

