

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

BLOKUJÍCÍ SPÍNANÝ ZDROJ 600 W S EXPERIMENTÁLNÍ SAMOKMITAJÍCÍ TOPOLOGIÍ

EXPERIMENTAL 600 W SELF-OSCILLATING FLYBACK SWITCHING POWER SUPPLY

DIPLOMOVÁ PRÁCE

MASTER'S THESIS

AUTOR PRÁCE

Bc. Slavomír Darida

AUTHOR

VEDOUCÍ PRÁCE

Ing. Jan Martiš

SUPERVISOR

BRNO 2016

Diplomová práce

magisterský navazující studijní obor Silnoproudá elektrotechnika a výkonová elektronika

Ústav výkonové elektrotechniky a elektroniky

Student:Bc. Slavomír DaridaID: 146803Ročník:2Akademický rok: 2015/16

NÁZEV TÉMATU:

Blokující spínaný zdroj 600 W s experimentální samokmitající topologií

POKYNY PRO VYPRACOVÁNÍ:

- 1. Analyzujte různé principy používané u samokmitajícího měniče buzení tranzistoru, zpětná vazba, startování apod.
- 2. Vyberte druh zapojení pro navrhovaný zdroj, navrhněte schéma zapojení.
- 3. Dimenzujte silové součástky (včetně vinutých prvků) a navrhněte desku plošných spojů pro zdroj.
- 4. Zdroj realizujte, oživte a proveďte ověřovací měření.

DOPORUČENÁ LITERATURA:

PATOČKA, Miroslav. Magnetické jevy a obvody ve výkonové elektronice, měřicí technice a silnoproudé elektrotechnice.

Termín zadání: 21.9.2015 Termín odevzdání: 24.5.2016

Vedoucí práce: Ing. Jan Martiš Konzultant diplomové práce:

Ing. Ondřej Vítek, Ph.D., předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č 40/2009 Sh

Abstrakt

Samokmitající blokující měniče jsou s oblibou využívány zejména pro jejich jednoduchost, robustnost a nízkou cenu. Běžně se využívají v oblasti malých výkonů například jako zdroje pro nabíjení mobilních telefonů. Tato práce se zaměřuje na použití podobné koncepce k vytvoření samokmitajícího blokujícího měniče o výkonu 600 W.

Abstract

Self-oscillating flyback converters are popular circuits due to their simplicity, robustness and low cost of components. They are generally used as low power devices. Mobile phone charger is good example of application. Realization of 600 W self-oscillating flyback converter is main goal of this thesis.

Klíčová slova

samokmitající měnič; blokující; experimentální; návrh; realizace

Key words

self-ocillating converter; flyback; experimental; design; realization

Bibliografická citace

DARIDA, S. Blokující spínaný zdroj 600 W s experimentální samokmitající topologií. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2016. 55 s. Vedoucí diplomové práce Ing. Jan Martiš.

Prohlášení

Prohlašuji, že svou diplomovou práci na téma Blokující spínaný zdroj 600 W s experimentální samokmitající topologií jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

trestněprávních důsledků vyplývajících z ustar	novení § 152 trestního zákona č. 140/1961 Sb.
V Brně dne	Podpis autora
Poděkování	
Děkuji vedoucímu diplomové práce pedagogickou a odbornou pomoc a další cenno	Ing. Janu Martišovi za účinnou metodickou, é rady při zpracování mé diplomové práce.
V Brně dne	Podpis autora

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

OBSAH

OBSAH	6
SEZNAM OBRÁZKŮ	7
SEZNAM TABULEK	9
SEZNAM SYMBOLŮ A ZKRATEK	
ÚVOD	
1 JEDNOČINNÝ BLOKUJÍCÍ MĚNIČ	
1.1 Princip	
2 SAMOKMITAJÍCÍ JEDNOČINNÝ BLOKUJÍCÍ MĚNIČ	
2.1 POUŽÍVANÉ PRINCIPY ŘÍZENÍ	
2.1.1 STARTOVACÍ OBVOD	
2.1.2 ZPĚTNÁ VAZBA	
2.2 VOLBA MĚNIČE	
3 NÁVRH JEDNOČINNÉHO BLOKUJÍCÍHO MĚNIČE	24
3.1 PARAMETRY MĚNIČE	24
3.2 USMĚRŇOVAČ	24
3.3 SILOVÁ ČÁST MĚNIČE	25
3.3.1 IMPULZNÍ TRANSFORMÁTOR	
3.3.2 Primární část měniče	
3.4 ŘÍDÍCÍ OBVOD MĚNIČE	
3.5 TEORETICKÁ ÚČINNOST MĚNIČE	
3.6 NÁVRH DESKY PLOŠNÝCH SPOJŮ	
4 REALIZACE	37
4.1 Oživení	
4.2 VÝSLEDKY MĚŘENÍ	
4.3 ZMĚŘENÁ ÚČINNOST MĚNIČE	
5 ZÁVĚR	
6 SEZNAM LITERATURY	
7 ΦΡΊΙ ΛΗΥ	10

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

	,	0
		71/11
SEZNAM	UBKA	ZKU

Obrázek 1: Principiální schéma jednočinného blokujícího měniče [2]14
Obrázek 2: Průběhy veličin jednočinného blokujícího měniče [2]15
Obrázek 3: Dvou-spínačové zapojení [2]16
Obrázek 4: Zapojení s rekuperačním vinutím a bezindukční smyčkou [6]17
Obrázek 5: Blokové schéma řídícího obvodu [5]18
Obrázek 6: Startovací obvod [5]19
Obrázek 7:Vybraná topologie samokmitajícího blokujícího měniče [1]20
Obrázek 8: Zjednodušené schéma [1]21
Obrázek 9:Průběhy veličin vybraného samokmitajícího blokujícího měniče [1]23
Obrázek 10: ETD 491726
Obrázek 11: Průběh proudu na kondenzátoru C _{5,6} 31
Obrázek 12: Průběhy důležitých veličin pro nastavení řídícího obvodu v situaci maximálního d minimálního zatížení měniče. [1]33
Obrázek 13: Výsledná dvouvrstvá deska plošných spojů
Obrázek 14: Impulzní transformátor37
Obrázek 15: Řez impulzním transformátorem38
Obrázek 16: Tlumivka výstupního filtru38
Obrázek 17: Samokmitající blokující měnič 600 W39
Obrázek 18: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napět na bočníku R_s (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 10 A40
Obrázek 19: Detail zapínacího děje tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) o napětí na bočníku R_s (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 10 A
Obrázek 20:Detail vypínacího děje tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) o napětí na bočníku Rs (3) při jmenovitém vstupním napětí a výstupních parametreck 60 V 10 A42
Obrázek 21: Detail průběhů napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) o napětí na sekundárních diodách (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 4 A42
Obrázek 22: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napět na sekundárním vinutí (3) při vstupním napětí 144 V ~ a výstupních parametrech 60 V 2 A 0 před zapůsobením napěťové regulace
Obrázek 23: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napět na sekundárním vinutí (3) při vstupním napětí 144 V~ a výstupních parametrech 60 V 2 A při zapůsobení napěťové regulace43

Ø

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Obrázek 24: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napět na sekundárních diodách (3) při vstupním napětí 100 V~ a výstupních parametrech 60 V 1 A s obvodem pro omezení strmosti4	1
Obrázek 25: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napět na sekundárních diodách (3) při vstupním napětí 100 V~ a výstupních parametrech 60 V 1 A bez obvodu pro omezení strmosti44	4
Obrázek 26: Finální schéma zapojení	3
Obrázek 27: Horní strana DPS49)
Obrázek 28: Rozmístění součástek na horní straně DPS50)
Obrázek 29: Spodní strana DPS5	l
Obrázek 30: Rozmístění součástek na spodní straně DPS52	2
Obrázek 31: Experimentální samokmitající blokující zdroj 600 W5.	3

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

SEZNA	1 /	TAD	TIT	TV
DEVINA		IAB	UI.	ÆK

Tabulka 1: Parametry ETD 4917	26
Tabulka 2: Měření účinnosti samokmitajícího blokujícího měniče	
Tabulka 3: Měření účinnosti blokujícího měniče s "klasickým" řízením	45
Tabulka 4: Seznam součástek	54

10

SEZNAM SYMBOLŮ A ZKRATEK

A_L	Součinitel indukčnosti jádra	$[H/N^2]$
B_{max}	Maximální magnetická indukce v jádře	[T]
C_B	Kapacita blokovacího kondenzátoru	[F]
C_F	Kapacita výstupního LC filtru	[F]
C_g	Ekvivalentní vnitřní kapacita tranzistor S_1 přepočítaná z hodnoty náboje	[F]
C_n	Kapacita nabíjecího kondenzátoru vstupního usměrňovače	[F]
C_{SI}	Kapacita absorbující energii parazitního napěťového překmitu	[F]
d_{Cu}	Průměr vodiče	[m]
d_{Cu1}	Průměr vodiče primárního vinutí impulzního transformátoru	[m]
d_{Cu2}	Průměr vodiče sekundárního vinutí impulzního transformátoru	[m]
f_s	Frekvence spínání hlavního tranzistoru	[Hz]
f	Frekvence sítě	[Hz]
f_{mez}	Mezní frekvence pro daný průměr vodiče	[Hz]
Н	Intenzita magnetického pole ve vzduchové mezeře	[A/m]
h_o	Výška okna jádra impulzního transformátoru	[m]
i_1	Okamžitá hodnota proudu primárního vinutí	[A]
I _{1Stř}	Střední hodnota proudu primárního vinutí	[A]
I_{1Ef}	Efektivní hodnota proudu primárního vinutí	[A]
I_{1max}	Maximální hodnota proudu primárního vinutí	[A]
i_2	Okamžitá hodnota proudu sekundárního vinutí	[A]
I _{2Stř}	Střední hodnota proudu sekundárního vinutí	[A]
I_{2Ef}	Efektivní hodnota proudu sekundárního vinutí	[A]
I_{2max}	Maximální hodnota proudu sekundárního vinutí	[A]
I_d	Střední hodnota proudu meziobvodu	[A]
I_{dEf}	Efektivní hodnota proudu meziobvodu	[A]
I_{dmax}	Špičková hodnota proudu meziobvodu	[A]
$I_{DSt\check{r}}$	Střední hodnota proudu diodou vstupního usměrňovače	[A]
I_{DEf}	Efektivní hodnota proudu diodou vstupního usměrňovače	[A]
i_e	Poruchový proud	[A]
i_{emax}	Maximální poruchový proud	[A]
i_{emin}	Minimální poruchový proud	[A]
I_k	Katodový proud TL431	[A]
I_{kmax}	Maximální katodový proud TL431	[A]
I_{kmin}	Minimální katodový proud TL431	[A]
I_p	Špičková hodnota proudu z pohledu kondenzátoru C_7	[A]
I_{ref}	Proudová reference TL431	[A]
I_z	Výstupní proud měniče	[A]
k_{pCu}	Činitel plnění vysokofrekvenčního lankového vodiče	[-]
l_j	Efektivní délka siločáry jádra impulzního transformátoru	[m]
ĺ	Délka vzduchové mezery jádra impulzního transformátoru	[m]

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

L_F	Indukčnost výstupního LC filtru	[H]
L_{s2}	Indukčnost pomocného vinutí v řídícím obvodu	[H]
L_{σ}	Rozptylová indukčnost impulzního transformátoru	[H]
N_1	Počet závitů primárního vinutí	[-]
N_2	Počet závitů sekundárního vinutí	[-]
N_{F_L}	Počet závitů indukčnosti výstupního LC filtru	[-]
N_{SI}	Počet závitů pomocného rekuperačního vinutí	[-]
N_{S2}	Počet závitů pomocného vinutí v řídícím obvodu	[-]
n_v	Počet vrstev vinutí	[-]
P_{dmax}	Maximální příkon měniče s 1 % rezervou	[W]
p_{s1}	Převod mezi primárním a pomocným vinutím v řídícím obvodu	[-]
P_z	Výstupní výkon měniče	[W]
P_{ZD1}	Ztrátový výkon na zenerově diodě ZD1	[W]
$Q_{\mathcal{S}}$	Náboj řídící elektrody tranzistoru S_I	[C]
$R_{DS(on)}$	Odpor hlavního tranzistoru v sepnutém stavu	$[\Omega]$
S_{Cu1}	Průřez vodiče primárního vinutí impulzního transformátoru	$[m^2]$
S_{Cu2}	Průřez vodiče sekundárního vinutí impulzního transformátoru	$[m^2]$
S_j	Průřez jádra impulzního transformátoru	$[m^2]$
S_{max}	Maximální střída	[-]
T	Spínací perioda	[s]
t_d	Doba demagnetizace jádra impulzního transformátoru	[s]
t_n	Doba nabíjecího intervalu nabíjecího kondenzátoru vstupního usměrňovače	[s]
$t_{o\!f\!f}$	Vypínací doba hlavního tranzistoru	[s]
t_{ON}	Doba zapnutí hlavního tranzistoru (magnetizace jádra)	[s]
t_{on}	Zapínací doba hlavního tranzistoru	[s]
U_1	Napětí primárního vinutí	[V]
U_2	Napětí sekundárního vinutí	[V]
U_{AC}	Síťové napětí	[V]
U_{CEmax}	Závěrné napětí hlavního tranzistoru	[V]
U_d	Napětí meziobvodu	[V]
U_{Dka}	Napětí na diodě sekundárního jednocestného usměrňovače	[V]
U_{DSmax}	Závěrné napětí hlavního tranzistoru	[V]
U_f	Úbytek napětí na fotodiodě optočlenu	[V]
U_g	Napětí řídící elektrody tranzistoru S_I	[V]
U_m	Maximální hodnota meziobvodového napětí	[V]
$U_{\it ref}$	Napěťová reference TL431	[V]
U_o	Výstupní napětí pomocného vinutí	[V]
U_p	Prahové napětí	[V]
U_{Qbe}	Napětí báze-emitor tranzistoru Q_I	[V]
U_t	Transformační napětí mezi primárem a sekundárem	[V]
U_z	Výstupní napětí měniče	[V]
${U_z}^*$	Snímané výstupní napětí	[V]

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

$\overline{V_j}$	Efektivní objem jádra impulzního transformátoru	[V]
$W_{\sigma max}$	Energie uložená v indukčnosti transformátoru při vypnutí hlavního	[J]
W_{O}	Šířka okna jádra impulzního transformátoru	[m]
β	Proudový zesilovací činitel	[-]
δ	Relativní pokles napětí	[-]
δ_{Cu}	Hloubka vniku	[m]
ΔI_F	Zvlněný proudu kondenzátorem C_7	[A]
ΔP_{celk}	Celkový ztrátový výkon hlavního tranzistoru	[W]
$\varDelta P_{o\!f\!f}$	Ztrátový výkon při vypnutí hlavního tranzistoru	[W]
ΔP_{on}	Ztrátový výkon při zapnutí hlavního tranzistoru	[W]
ΔP_R	Ztrátový výkon RC-členu při kritickém tlumení	[W]
ΔP_{trans}	Ztrátový výkon transilu	[W]
ΔP_{usm}	Ztrátový výkon vstupního usměrňovače	[W]
ΔP_{v}	Ztrátový výkon vedením hlavního tranzistoru	[W]
Δt	Doba vybíjecího nabíjecího kondenzátoru vstupního usměrňovače	[s]
ΔU	Pokles napětí	[V]
ΔU_2	Zvlnění napětí na kondenzátoru C_7	[V]
ΔU_z	Zvlnění výstupního napětí	[V]
$ ho_{Cu}$	Měrný odpor mědi	$[\Omega m]$
σ	Proudová hustota ve vinutí	$[A/m^2]$
CCM	Continuous Conduction Mode	
DCM	Discontinuous Conduction Mode	
GO	Galvanické oddělení	
NP	Naněťová reference	

Napěťová reference NR

PFM Frekvenční modulace pulzů

9

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Úvod

Samokmitající měniče se využívají jako jednoduché a levné napájecí zdroje. Obvody, které nesou architekturu samokmitajících měničů tvoří například zdroje pro nabíječky mobilních telefonů nebo zdroje pro napájení zařízení zpracovávající data. Jedná se tedy především o nízko výkonové aplikace (do 100 W).

Blokující měniče se běžně také neprovozují při vyšších výkonech (do 300 W) díky překmitu, který je u těchto měničů charakteristický. Existují však způsoby jak tento jev potlačit a provozovat tento měnič při vyšších výkonech.

Při spojení těchto dvou topologií je návrh silové části měniče shodný s osvědčenými a s hojně využívanými postupy. K návrhu řídící části se přistupuje metodou "cut and try", proto je návrh časově náročný a nevede vždy k optimálnímu řešení.

Účelem této práce je realizace a ověření funkčnosti spínaného zdroje o výkonu 600 W.

1 JEDNOČINNÝ BLOKUJÍCÍ MĚNIČ

1.1 Princip

Jednočinný blokující měnič (flyback converter) je v základním principiálním zapojení vyobrazen na obrázku 1. Obrázek 2 vyobrazuje časové průběhy veličin vyznačených ve schématu zapojení. Tento typ měniče, se vyznačuje přenosem energie z primární strany na sekundární stranu při vypnutém spínaném prvku (tranzistor S_I). Impulzní transformátor T zastává funkci akumulátoru energie [2].

Princip změny vstupní energie je následující: V první fázi je předpokladem sepnutý stav tranzistoru S_I . Na primárním vynutí N_I se nachází meziobvodové usměrněné napětí U_d , které je výstupem z usměrňovače nebo z akumulátoru. V době sepnutí t_{ON} tranzistoru S_I dochází k magnetizaci jádra impulzního transformátoru T proudem i_I . Proud i_I je integrálem meziobvodového usměrněného napětí U_d (obrázek 2) s konstantou úměrnosti $1/L_I$. Na sekundární stranu se transformuje napětí u_2 . Dioda D je vůči tomuto napětí orientována v závěrném směru a nedovolí průtok proudu sekundárním vinutím. Energie je dodávána do zátěže R_z vybíjením kondenzátoru C [2].

Ve druhé fázi magnetický tok v jádře vyvolá demagnetizační proud i_2 skrze diodu D. Kondenzátor C je demagnetizačním proudem i_2 nabíjen. Proud i_2 je integrálem napětí u_2 s konstantou úměrnosti $1/L_2$ a má klesající charakter. Toto napětí se po zanedbání úbytku na diodě rovná výstupnímu. Při dostatečně velké hodnotě kapacity kondenzátoru C lze považovat výstupní usměrněné napětí U_z za konstantní. Na primární stranu je toto napětí s převodem přetransformováno jako záporné. Napětí na hlavním tranzistoru je tedy v době jeho vypnutí součtem napětí meziobvodu a přetransformovaného napětí ze sekundární strany. Velikost jeho závěrného napětí je však nutno volit také s ohledem na překmit vznikající vlivem rozptylové indukčnosti transformátoru [2].

Impulzní transformátor T z hlediska negativních vlivů vykazuje parazitní rozptylovou indukčnost, jež představuje ve schématu L_{σ} . Tato indukčnost způsobuje značný překmit při vypínání tranzistoru S_I . Z tohoto důvodu je nutné řádně tranzistor S_I dimenzovat nebo přistoupit k opatření, které bude efekt parazitní rozptylové indukčnosti eliminovat. Tento problém bude dále podrobněji popsán v kapitole 1.2.

Obrázek 1: Principiální schéma jednočinného blokujícího měniče [2]

Obrázek 2: Průběhy veličin jednočinného blokujícího měniče [2]

1.2 Problematika překmitu

Napěťový překmit, který je vyznačen na obrázku 2, způsobuje parazitní rozptylová indukčnost L_{σ} impulzního transformátoru T (obrázek 1). Jelikož nelze zajistit, aby činitel vazby transformátoru k=1, nelze parazitní indukčnost L_{σ} odstranit. Při vypínacím ději, kdy je kladné výstupní napětí U_z (předpoklad zanedbání napěťového úbytku sekundárního jednocestného usměrňovače D) přetransformováno na primární stranu s převodem transformátoru v podobě záporného napětí, vzniká zvýšené napěťové namáhání tranzistoru S_I . Pokud není tento parazitní

jev nikterak ošetřen, je nutné náležitě přihlédnout k dimenzování a zajistit, aby výsledný součet napětí nepřesáhl maximální závěrné napětí tranzistoru S_I . Tranzistory, jež disponují vysokou hodnotou závěrného napětí, však vykazují většinou větší odpor v sepnutém stavu, což při vyšších proudech znamená velké výkonové ztráty [2].

Energie uložená v indukčnosti transformátoru při vypínání lze vyčíslit následovně:

$$W_{\sigma \max} = \frac{1}{2} \cdot L_{\sigma} \cdot I_{\mu 1 \max} \tag{1.2-1}$$

Při zvolení jedno-spínačového zapojení (stejně jako na obrázku 1), lze energii přeměnit v teplo. Přeměnu lze realizovat pomocí transilu nebo RC-členem, který se zapojí paralelně k tranzistoru S_I nebo k primárnímu vinutí N_I . Řešení však není optimální vzhledem k nemalým výkonovým ztrátám, jež při přeměně energie v teplo vzniknou. Dalším negativem je růst těchto ztrát s frekvencí a s výkonem [2].

Výkonové ztráty RC-členu při kritickém tlumení:

$$\Delta P_R = f \cdot 2 \cdot W_C = f \cdot C \cdot \left(U_d + U_z \cdot \frac{N_1}{N_2} \right)^2 \tag{1.2-2}$$

Výkonové ztráty s použitím transilu:

$$\Delta P_{trans} = f \cdot W_{\sigma} = \frac{1}{2} \cdot f \cdot L_{\sigma} \cdot I_{\mu 1 \,\text{max}}^2$$
(1.2-3)

Problém lze vyřešit také zvolením dvou-spínačového zapojení (obrázek 3). V tomto zapojení dochází k namáhání tranzistorů při vypnutí pouze stejnosměrným napětím U_d . Záchytné diody D_0 vytvářejí přepěťovou ochranu oběma tranzistorům a energii W_{σ} , naakumulovanou v indukčnosti transformátoru při vypnutí, směrují do stejnosměrného meziobvodu. Jelikož diody nedovolí, aby napětí na v sérii zapojených tranzistorech přesáhlo velikost $2U_d$, je maximální střída takto zapojeného měniče omezena na $s_{max} = 0,5$. Nevýhodou tohoto řešení je složitější buzení horního tranzistoru, které je potřeba galvanicky oddělit [2].

Obrázek 3: Dvou-spínačové zapojení [2]

Na obrázku 4 je znázorněno další možné řešení. Součástí primární strany je pomocné rekuperační vinutí N_{s1} , které má stejný počet závitů jako primární vinutí N_1 . Vinutí jsou zapojena proti sobě tak, aby v součtu bylo jejich napětí nulové. Mezi jejich konce je připojen kondenzátor C_{s1} , který je díky zapojení vinutí N_1 a N_{s1} trvale nabit na napětí meziobvodu U_d . Velikost napětí na tranzistoru v době jeho vypnutí bude součtem napětí meziobvodu, stejného napětí, které se nachází na kondenzátoru C_{s1} a napětí na diodě D_{s1} , jež lze vůči jeho velikosti zanedbat. Ve smyčce rozptylová indukčnost L_{σ} , kondenzátor C_{s1} a dioda D_{s1} teče proud, který tekl tranzistorem v době jeho sepnutí. Klesne-li tento proud na nulovou hodnotu, dojde k uzavření diody. V tuto chvíli se na tranzistoru nachází součet napětí meziobvodu U_d a napětí přetransformované ze sekundárního vinutí N_2 na primární vinutí N_1 . Hlavní funkcí kondenzátoru C_{s1} je tedy absorbovat energii překmitu a nedovolit, aby se na hlavním tranzistoru objevilo vyšší napětí než $2U_d$ (při dostatečné kapacitě se jeho napětí při absorbování energie překmitu zvýší jen nepatrně). Při opětovném sepnutí tranzistoru se část energie naakumulovaná v kondenzátoru C_{s1} přesune do pomocného vinutí N_{s1} . Dochází tedy k pozitivnímu jevu, kdy se pomocné vinutí N_{s1} účastní přenosu užitečného výkonu. Pomocné vinutí N_{sl} má samozřejmě také svou rozptylovou indukčnost. Její energie je však vrácena do meziobvodu skrze diodu D_{s1} [6].

Červeně na obrázku 4 je vyobrazena smyčka, která musí být bezindukční. Parazitní indukčnost této smyčky vytváří překmit na tranzistoru. Nevýhodou tohoto zapojení je, že prvky jako kondenzátor C_{s1} spolu s rozptylovou indukčností vinutí N_1 a N_{s1} , tvoří rezonanční obvod. Pokud by došlo k rezonanci tohoto obvodu, bylo by způsobeno velké proudové namáhání všech jeho prvků. Rezonanční kmitočet lze upravit změnou kapacity kondenzátoru C_{s1} a nebo změnou vazby vinutí N_{s1} [6].

Hlavní výhodou zapojení je bezeztrátový přenos energie překmitu, přičemž je zde energie využívána také k přenosu užitečného výkonu. Další výhodou je to, že se skládá pouze z jednoho tranzistoru, který má řídící elektrodu připojenu na zem [6].

Obrázek 4: Zapojení s rekuperačním vinutím a bezindukční smyčkou [6]

2 SAMOKMITAJÍCÍ JEDNOČINNÝ BLOKUJÍCÍ MĚNIČ

Tento typ blokujícího měniče je často označován jako ringing choke converter (RCC). Označení samokmitající znamená, že je řízení hlavního spínaného tranzistoru a zároveň i celý řídící obvod vytvořen jen pomocí několika diskrétních součástek. Výhodou oproti dnes běžně používaným blokujícím měničům s PWM drivery je malý počet obvodových prvků, vyšší robustnost obvodu a nízká cena. Tento typ měniče se používá především pro aplikace malých výkonů [1].

2.1 Používané principy řízení

Samokmitající měnič jako celek lze z hlediska funkce rozdělit do několika základních bloků (obrázek 5).

Obrázek 5: Blokové schéma řídícího obvodu [5]

2.1.1 Startovací obvod

Startovací obvod poskytuje prvotní energii (pocházející z meziobvodu) spínanému prvku S_I , který po sepnutí poskytuje prvotní energii pro rozběh regulační části měniče skrze impulzní transformátor v době vypnutí tranzistoru S_I .

V případě MOSFET tranzistoru je tento obvod v nejjednodušším případě vytvořen startovacím rezistorem, skrze který je tranzistoru předána prvotní energie k sepnutí. Je-li spínaným prvkem NPN bipolární tranzistor, startovací obvod navíc obsahuje startovací kondenzátor. Tento kondenzátor před vytvořením oscilací naplňuje Barkhausenovu podmínku stability oscilací upravením fáze bázového proudu tranzistoru S_I . Po vytvoření oscilací není startovací kapacitor dále potřebný. Je tomu tak díky hysterezi jádra impulsního transformátoru a rezonanci jeho vinutí s parazitními kapacitami tohoto transformátoru, kdy vzniklý zpětnovazební bázový proud řídí kolektorový proud přirozeně [3].

Dalším možným řešením startovacího obvodu je obvod na obrázku 6.

Obrázek 6: Startovací obvod [5]

Obvod pracuje následujícím způsobem. Po přivedení napětí U_d je kapacitor C_{st} nabíjen přes rezistor R_{stl} . Dosáhne-li napětí na kapacitoru C_{st} hodnoty odpovídající prahovému napětí diody D_{st} , je tato dioda sepnuta. Je-li spínaný prvek S_l MOSFET tranzistor, dochází k nabíjení jeho vnitřní kapacity C_{iss} . Nabije-li se kapacita C_{iss} na hodnotu prahového napětí, tranzistor je sepnut. Pro bipolární tranzistor platí výše popsaný princip. Výhodou tohoto zapojení je to, že nedochází k interakcím řídícího signálu ze zpětné vazby se startovacím obvodem, protože jednosměrně vodívá dioda D_{st} tento stav nedovolí [5].

2.1.2 Zpětná vazba

Hlavní funkcí zpětné vazby v případě měničů je upravovat změnu výstupních parametrů dle požadovaných hodnot skrze změnu spínání hlavního tranzistoru. Samokmitající měniče jsou řízeny převážně na základě informace snímače výstupního napětí, používají se však i snímače proudu.

Výstupní napětí je u všech spínaných měničů funkcí vstupního napětí, zvolené střídy, proudu zátěží a hodnot obvodových prvků. Hlavním požadavkem v případě DC-DC měničů je konstantní výstupní napětí. Přesněji se musí výstupní napětí nacházet v určitém dovoleném rozsahu hodnot. V obvodu měniče se však vyskytují rušivé jevy, jejichž zdrojem bývá především předřadný usměrňovač a zátěž. Usměrněné napětí U_d může obsahovat druhé harmonické. Zátěž se stává problematická hlavně při náhlém odlehčení [7].

Aby dosáhlo výstupní napětí konstantní hodnoty za všech okolností, nelze jednoduše nastavit hodnotu střídy na jednu hodnotu. Vytvářeny jsou tedy obvody, které využívají zpětnou vazbu k automatickému nastavení střídy tak, aby bylo dosaženo požadovaného výstupního napětí s vysokou přesností, bez ohledu na vnější vlivy.

Zpětnou vazbu tvoří v prvé řadě snímač, který získává informaci o výstupní veličině. Nejčastěji se používá snímač napětí (odporový dělič) zapojen na sekundární straně měniče. Informace o výstupním napětí je dále porovnána s referenční hodnotou napětí (blok NR). Napěťová reference, zastávající funkci PI regulátoru, je nejčastěji tvořena integrovaným obvodem TL431. TL431 je využíván především kvůli přesnému vnitřnímu zdroji konstantního

Vysoké učení technické v Brně

napětí 2,5 V. Informace o napětí výstupu je porovnávána právě s touto referencí. Pokud dojde k vychýlení výstupního napětí, výstupem TL431 je informace o této výchylce v podobě poruchového proudu i_e . V případě řešení řídících obvodů na primární straně je nutné před dalším zpracováním poruchový signál galvanicky oddělit například optočlenem (blok GO).

Blok PFM představuje frekvenční modulaci pulzů. Na základě informace o výstupu měniče je skrze modulátor ovládáno spínání tranzistoru S_I . Frekvenční modulátor je realizován NPN bipolárním tranzistorem.

Nedílnou součástí řídícího obvodu je také pomocné vinutí, které napájí řídící obvod, dodává energii k sepnutí hlavního tranzistoru a slouží také zároveň k detekci zániku proudu sekundárním vinutím.

2.2 Volba měniče

Vybraná topologie je vyobrazena na obrázku 7. Jedná se o topologii s jednoduchým startovacím obvodem, kdy je hlavním spínaným prvkem tranzistor MOSFET, který bude pro spínání vyšších výkonů klíčový. Napěťový dělič snímá výstupní napětí a TL431 jej porovnává se svou napěťovou referencí. Zpětná vazba dále obsahuje optočlen OC_I , který přivádí galvanicky oddělenou informaci o výstupním napětí z TL431 na primární stranu ve formě poruchového proudu i_e . Velikost tohoto proudu ovlivňuje spínání MOSFET tranzistoru skrze NPN bipolární tranzistor Q_I .

Obrázek 7: Vybraná topologie samokmitajícího blokujícího měniče [1]

Princip činnosti samokmitajícího měniče v tomto provedení bude rozdělen do 11 časových úseků a bude popsán v ustáleném stavu, kdy lze provést řadu zjednodušení a učinit tak popis jednodušší. Zanedbána bude rozptylová indukčnost transformátoru T, což umožní odebrat zenerovu diodu ZD_I chránící tranzistor S_I vůči napěťovým překmitům. Proud i_e bude v ustáleném režimu konstantní. Prvky optočlen OC_I , TL431, výstupní LC filtr, dělič napětí $(R_{DI} \text{ a } R_{D2})$, R_A a R_B jsou nahrazeny zdrojem konstantního proudu i_e . Kapacita mezi řídící elektrodou a elektrodou "drain" (tranzistor S_I) je také zanedbána, díky čemuž lze považovat kapacitu mezi řídící elektrodou a elektrodou "source" za vstupní kapacitu C_{iss} a kapacitu mezi elektrodou "drain" a "source" za výstupní kapacitu C_{oss} . Kapacity C_I a C_2 respektují následující nerovnici: $C_I >> C_2$. Zvlnění napětí U_{SO2} je tedy větší než zvlnění napětí U_{O2} . Zátěže R_{zI} a R_{z2} následující nerovnici: $R_{z2} << R_{zS2}$. Předpokladem je také $R_{ST}C_{iss} >> T_s$, tedy časová konstanta $R_{ST}C_{iss}$ je daleko větší než spínací perioda T_s , proto lze rezistor R_{ST} vyloučit. V poslední řadě jsou idealizovány diody D_I a D_2 . Zjednodušené schéma je vyobrazeno na obrázku 8. Na obrázku 9 jsou znázorněny průběhy veličin [1].

Obrázek 8: Zjednodušené schéma [1]

V první fázi dochází k vypínání tranzistoru S_I , jelikož je jeho vnitřní kapacita C_{iss} vybíjena sepnutým tranzistorem Q_I . Napětí U_{DS} narůstá a v čase t_0 dosahuje maximální hodnoty $U_d + (N_I/N_2)U_0$, přičemž se diody D_I a D_2 otevřou. Proud i_I je v důsledku zanedbání rozptylové indukčnosti okamžitě komutován do výstupních jednocestných usměrňovačů. Podmínka $C_I >> C_2$ způsobuje, že napětí U_{02} je konstantní a napětí U_{S02} narůstající, což má za následek strmější

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

pokles proudu i_{S2} oproti i_2 . Jelikož je dioda D_2 otevřena, nachází se na rezistoru R_1 záporné napětí, jehož velikost je rovna součtu U_{GS} a U_{CST} (napětí na rezistoru R_S je zanedbatelné). Rezistorem R_1 teče tedy proud i_z , který vybíjí kapacity C_{iss} a C_{ST} . Ve stejné chvíli je tranzistor Q_1 vypnut a poruchový proud i_e teče skrze rezistory R_F , R_S a skrze zátěž R_{zS2} .

V čase t_1 klesne napětí U_{GS} na menší hodnotu než napětí U_{Qbe} a přechod báze-kolektor tranzistoru Q_1 se tak stane propustný. Proud i_e je rozdělen mezi rezistor R_z a bázi tranzistoru Q_1 . Napětí U_{Qce} je záporné a proud i_{Qce} teče z emitoru do kolektoru. Kapacitor C_{ST} je vybíjen součtem proudů i_{Qce} a i_{Qbc} , dochází tak k exponenciálnímu nárůstu napětí U_{Qbe} . V čase t_2 je vzrůstající napětí U_{SO2} rovno napětí na pomocném vinutí U_{S2} a dioda D_2 je uzavřena. Kapacitor C_{ST} je nyní vybíjen skrze vinutí N_{S2} .

V čase t_3 je transformátor T plně demagnetizován. Napětí U_{DS} tranzistoru S_I má vyšší hodnotu než vstupní napětí U_d a jeho vnitřní výstupní kapacita C_{oss} je rezonančně vybíjena skrze impedanci primárního vinutí L_I . Primární napětí U_I klesá a způsobuje tak i s převodem pokles napětí U_{S2} na pomocném vinutí. Klesá i napětí U_Z a proud i_z na rezistoru R_I , přičemž v čase t_A dosáhne tento proud nulové hodnoty. Dále proud i_Z teče v opačném směru a začne tak nabíjet kapacity C_{ST} a C_{iss} . Nadále vzrůstající napětí U_{GS} vede ke zvýšení napětí mezi kolektorem a emitorem U_{Qce} , čímž se stává přechod mezi bází a kolektorem nevodivý a tranzistor Q_I je vypnut. Hodnota proudu i_Z dále narůstá. V čase t_S je napětí napříč vinutími transformátoru T rovno nule. Ve stejném čase je kapacita C_{oss} stále vybíjena a dochází ke změně polarity napětí na všech vinutích transformátoru T. Jelikož proud i_Z s narůstající hodnotou součtu napětí U_{S2} a U_{S02} taktéž narůstá, zvyšuje se i hodnota U_{GS} , které dále vybíjí kapacitu C_{oss} a zvyšuje součet U_{S2} a U_{S02} . Tato pozitivní zpětná vazba trvá do doby t_S , ve které U_{GS} dosahuje dostatečné hodnoty napětí, kdy dochází k otevírání tranzistoru S_I . Napětí U_{GS} dále vzrůstá a proud i_Z začíná téci kapacitou C_{iss} .

V čase t_7 dosahuje napětí U_{GS} hodnoty, při které tranzistor S_I pracuje ve svém ohmickém regionu a je plně otevřen. V tuto chvíli začíná tranzistorem S_I téci pracovní proud i_{SI} . Tento proud narůstá se strmostí U_d/L_I . Napěťový úbytek na snímacím rezistoru R_S narůstá se stejnou strmostí. Dochází také k nárůstu potenciálu elektrody "source" a řídící elektrody tranzistoru S_I a báze tranzistoru Q_I . V čase t_8 napětí U_{Qbe} dosáhne prahového napětí a tranzistor Q_I začíná vést. U_{Qbe} dále narůstá se zvyšujícím se úbytkem na odporu R_S a zvyšující se bázový proud i_{Qbe} způsobuje nárůst proudu i_{Qce} . V čase t_9 je proud i_{Qce} roven proudu i_z a kapacita C_{iss} se začíná vybíjet. Klesající napětí U_{GS} způsobuje vypínání tranzistoru S_I , přičemž je při poklesu U_{GS} pod úroveň prahového napětí v čase t_{I0} plně vypnut. Výstupní kapacita C_{oss} se začíná nabíjet a napětí U_{DS} začíná narůstat až do hodnoty, kdy se rovná $U_d + (N_I/N_2)U_0$. Dochází k otevření diod D_I a D_2 a k zavření tranzistoru Q_I . Cyklus se dále opakuje [1].

Obrázek 9:Průběhy veličin vybraného samokmitajícího blokujícího měniče [1]

3 NÁVRH JEDNOČINNÉHO BLOKUJÍCÍHO MĚNIČE

Schéma měniče je znázorněno na obrázku 26 v přílohách umístěných na konci diplomové práce. Vlivem značného navýšení prvků je zde rozdílné značení oproti obrázku 7.

3.1 Parametry měniče

Výstupní výkon: $P_z = 600 \text{ W}$ Výstupní napětí: $U_z = 60 \text{ V}$ Výstupní proud: $I_z = 10 \text{ A}$ Spínací frekvence: $f_s = 120 \text{ kHz}$ Napájecí napětí: $U_{AC} = 230 \text{ V}$ Usměrněné napětí: $U_d = 300 \text{ V}$

3.2 Usměrňovač

K usměrnění jednofázové sítě je použit standardní dvoucestný můstkový usměrňovač s nabíjecím kondenzátorem. Nabíjecí kondenzátor zde pracuje v režimu špičkového detektoru. Po dobu nabíjecího intervalu t_n je kondenzátor nabíjen na amplitudu fázového napětí. V době vybíjecího intervalu Δt se kondenzátor vybíjí proudem I_d , který je roven střední hodnotě proudu, jež teče primárním vinutím [4].

Doba nabíjecího intervalu t_n je dána vzorcem:

$$t_n = \frac{\arccos(1-\delta)}{2\pi \cdot f} = \frac{\arccos(1-0.1)}{2\pi \cdot 50} = 1,436ms$$
 (3.2-1)

Kde T je perioda a δ relativní pokles napětí, který je dán v intervalu (0,05;0,2). Z daného intervalu je volena hodnota $\delta=0,1$. Relativní pokles napětí je vyjádřen jako poměr poklesu napětí a maximální hodnoty meziobvodového napětí $(230 \cdot \sqrt{2})$.

$$\delta = \frac{\Delta U}{U_m} \to \Delta U = \delta \cdot U_m = 0.1 \cdot 325 = 32.5V \tag{3.2-2}$$

Doba vybíjecího intervalu lze vyjádřit následovně:

$$\Delta t = \frac{T}{2} - t_n = \frac{1}{2 \cdot 50} - 1,436 \cdot 10^{-3} = 8,564 ms$$
 (3.2-3)

Proud kondenzátorem lze určit ze základní rovnice.

$$i(t) = C \cdot \frac{du(t)}{dt} \Rightarrow I_d = C \cdot \frac{\Delta U}{\Delta t}$$
 (3.2-4)

Střední hodnota odebíraného proudu I_d je závislá na velikosti napětí meziobvodu a velikosti příkonu, který bude pro tento případ uvažován s 10 % rezervou.

$$I_d = \frac{P_z \cdot 1,1}{U_d} = \frac{600 \cdot 1,1}{300} = 2,2A \tag{3.2-5}$$

Výsledná kapacita nabíjecího kondenzátoru lze po upravení rovnice 3.2-4 vyjádřit jako:

$$C_1 = \frac{\Delta t \cdot I_d}{\Delta U} = \frac{8,564 \cdot 10^{-3} \cdot 2,2}{32.5} = 579,7 \,\mu\text{F}$$
(3.2-6)

Použit bude elektrolytický kondenzátor 560 μ F s maximálním napětím 400 V. Pro omezení nabíjecího proudu při spuštění měniče, je zaveden do obvodu NTC termistor R_0 . Termistor se postupně s dobou chodu měniče vlivem průtoku proudu zahřeje a jeho odpor klesne.

Aby bylo možno bezpečně provozovat diody v dvoucestném můstkovém usměrňovači, musí být dioda dimenzována dle střední, efektivní a špičkové hodnoty proudu [4].

Střední hodnota proudu diodou:

$$I_{DSF} = \frac{I_d}{2} = \frac{2.2}{2} = 1.1A$$
 (3.2-7)

Efektivní hodnota odebíraného proudu:

$$\begin{split} I_{dEf} &= 2\pi \cdot f \cdot C_n \cdot U_m \cdot \sqrt{t_n \cdot f - \frac{1}{4\pi} \cdot \sin(4\pi \cdot f \cdot t_n)} = \\ &= 2\pi \cdot 50 \cdot 579, 7 \cdot 10^{-6} \cdot 325 \cdot \sqrt{1,436 \cdot 10^{-3} \cdot 50 - \frac{1}{4\pi} \cdot \sin(4\pi \cdot 50 \cdot 1,436 \cdot 10^{-3})} = 5,7A \end{split}$$

Efektivní hodnota proudu diodou:

$$I_{DEf} = \frac{I_{dEf}}{\sqrt{2}} = \frac{5,724}{\sqrt{2}} = 4A \tag{3.2-9}$$

Špičková hodnota odebíraného proudu:

$$I_{d \max} = 2\pi \cdot f \cdot C \cdot U_m \cdot \sin(2\pi \cdot f \cdot t_n) + I_d =$$

$$= 2\pi \cdot 50 \cdot 579, 7 \cdot 10^{-6} \cdot 325 \cdot \sin(2\pi \cdot 50 \cdot 1,436 \cdot 10^{-3}) + 2,2 = 28A$$
(3.2-10)

Špičková hodnota proudu na diodě bude odpovídat odebíranému špičkovému proudu. Hodnota závěrného napětí diody by měla být alespoň 400 V.

Pro orientační výpočet ztrát na usměrňovači je použito pravoúhlé proložení charakteristik diod.

$$\Delta P_{usm} = 2 \cdot U_p \cdot I_{1Sir} = 2 \cdot 1 \cdot 2, 2 = 4,4W \tag{3.2-11}$$

3.3 Silová část měniče

3.3.1 Impulzní transformátor

Návrh transformátoru bude probíhat v režimu, který je na hranici přerušovaného a spojitého spřaženého toku, neboli v režimu na hranici přerušovaných a spojitých proudů (CCM/DCM). To také znamená, že bude měnič řízen proměnlivou frekvencí spínání výkonového tranzistoru S_I .

Napětí meziobvodu, které je získáno usměrněním síťového napětí 230 V, bude mít hodnotu přibližně 300 V. Vzhledem k použitému řešení primární strany dle obrázku 4, musí být hodnota závěrného napětí $U_{DSmax} > 2U_d$, tedy více než 600 V. V rámci dostupných zdrojů je vybrán SiC

25

MOSFET CMF10120D se závěrným napětím 1200 V. Spínací frekvence je volena 120 kHz, frekvence se při snížení výkonu bude zvyšovat, protože přenášená energie bude menší. Při snížení výstupního napětí, vlivem například přetížení, bude frekvence klesat, protože přenášená energie bude větší.

Dále je nutno zvolit maximální indukci v jádře B_{max} . Pro vybraný materiál jádra CF297 je maximální indukce v jádře při 100 °C 0,41 T. Vzhledem ke spínací frekvenci a s ohledem na hysterezní ztráty v jádře je zvolena hodnota 0,18 T. Hodnota maximální střídy $s_{max} = 0,35$.

Vinutí impulzního transformátoru bude navinuto na jádro ETD 4917.

Obrázek 10: ETD 4917

Tabulka 1: Parametry ETD 4917		
Materiál	CF297	
Efektivní objem	$V_j = 24000 \text{ mm}^3$	
Efektivní délka	$l_j = 114 \text{ mm}$	
Efektivní průřez	$S_j = 211 \text{ mm}^2$	
Výška okna	$h_o = 32,7 \text{ mm}$	
Šířka okna	$w_o = 8.3 \text{ mm}$	

3.3.1.1 Určení počtu vodičů

Na základě známých parametrů lze nyní vypočítat počet závitů primárního a sekundárního vinutí.

$$N_1 = \frac{U_d \cdot s_{\text{max}}}{f_s \cdot S_s \cdot B_{\text{max}}} = \frac{300 \cdot 0.35}{120 \cdot 10^3 \cdot 211 \cdot 10^{-6} \cdot 0.18} = 23$$
(3.3.1.1-1)

$$N_2 = N_1 \cdot \frac{U_2}{U_1} \cdot \frac{1 - s_{\text{max}}}{s_{\text{max}}} = 23 \cdot \frac{60}{300} \cdot \frac{1 - 0.35}{0.35} = 9$$
(3.3.1.1-2)

Primární strana vinutí bude mít rozkmit 2Ud, u pomocného vinutí N_{s2} je zvolen napěťový rozkmit 50 V. Převod mezi těmito vinutími bude následující.

$$p_{s2} = \frac{U_{s2}}{2 \cdot U_d} = \frac{50}{600} = 0,0833 \tag{3.3.1.1-3}$$

Počet závitů pomocného rekuperačního vinutí bude stejný jako počet vodičů primárního vinutí.

$$N_{\rm S1} = N_1 = 23 \tag{3.3.1.1-4}$$

Počet závitů pomocného vinutí (řídící obvod):

$$N_{s2} = N_1 \cdot p_2 = 23 \cdot 0,0833 = 2$$
 (3.3.1.1-5)

3.3.1.2 Dimenzování vodičů

Střední hodnota proudu primárním vinutím je rovna střední hodnotě odebíraného proudu I_d .

$$I_{1Spr} = I_d = 2,2A \tag{3.3.1.2-1a}$$

Efektivní hodnota primárního proudu pro tvar trojúhelníkových pulzů bude následující.

$$I_{1Ef} = \frac{2 \cdot I_{1Si^{\circ}}}{\sqrt{3 \cdot s_{\text{max}}}} = \frac{2 \cdot 2.2}{\sqrt{3 \cdot 0.35}} = 4.3A$$
 (3.3.1.2-2a)

Požadovaný průřez mědi primárního vinutí je vypočten pro hodnotu proudové hustoty $\sigma = 3 \text{ A/mm}^2$.

$$S_{Cul}^* = \frac{I_{1Ef}}{\sigma} = \frac{4,3}{3} = 1,43mm^2$$
 (3.3.1.2-3a)

Z důvodu minimalizace elektromagnetického rozměru jádra byla zvolena vyšší spínací frekvence 120 kHz. Při takovéto frekvenci je nutné brát v úvahu skinefekt. Hloubka vniku by neměla klesnout pod mezní hodnotu, která je rovna polovině průměru vodiče.

$$d_{Cu} = \sqrt{\frac{S_{Cul}^* \cdot 4}{\pi}} = \sqrt{\frac{1,43 \cdot 10^{-6} \cdot 4}{\pi}} = 1,35mm$$
(3.3.1.2-4a)

$$\delta_{Cu} = \sqrt{\frac{2 \cdot \rho_{Cu}}{\omega \cdot \mu_0}} = \sqrt{\frac{2 \cdot 1,8 \cdot 10^{-8}}{2\pi \cdot 120 \cdot 10^3 \cdot 4\pi \cdot 10^{-7}}} = 0,20mm$$
(3.3.1.2-5a)

$$2\delta_{Cu} \ge d_{Cu} \to 0,40 \text{mm} \ge 1,35 \text{mm}$$
 (3.3.1.2-6a)

Z rovnice 3.3.1.2-6a plyne, že podmínka není splněna. Mezní frekvence pro tento průměr lze určit z následující rovnice.

$$f_{mez} = \frac{8 \cdot \rho_{Cu}}{2\pi \cdot \mu_0 \cdot d_{Cu}^2} = \frac{8 \cdot 1,8 \cdot 10^{-8}}{2\pi \cdot \mu_0 \cdot (1,35 \cdot 10^{-3})^2} = 10kHz$$
(3.3.1.2-7a)

Problém lze vyřešit použitím vodiče v provedení vysokofrekvenčního lanka. Vybrané lanko má také zvýšenou izolaci. Nevýhodou tohoto vodiče je nízký činitel plnění, který je přibližně 0,4. Průměr vodiče při daném činiteli plnění je určen v rovnici 3.3.1.2-8a.

$$d_{Cul}^* = \sqrt{\frac{S_{Cul}^* \cdot 4}{k_{pCu} \cdot \pi}} = \sqrt{\frac{1,43 \cdot 10^{-6} \cdot 4}{0,4 \cdot \pi}} = 2,13mm$$
(3.3.1.2-8a)

Jádro, umístěné v kostře, bude mít pro vinutí k dispozici výšku okna $h_0 = 32,7$ mm. Uvažována je rezerva 1,7 mm. Počet vrstev primárního vinutí:

$$n_{v1} = \frac{N_1 \cdot d_{Cu1}^*}{h_0} = \frac{23 \cdot 2,13}{31} = 1,58$$
 (3.3.1.2-9a)

Vytvořeny budou dvě vrstvy, přičemž průměr vodiče v jedné vrstvě bude následující:

$$d_{Cu1} = \frac{h_0}{N_1} = \frac{31}{23} = 1,35mm \tag{3.3.1.2-10a}$$

Průřez čisté mědi v obou vrstvách:

$$S_{Cu1} = 2 \cdot \frac{\pi \cdot d_{Cu1}^2 \cdot k_{pCu}}{4} = 2 \cdot \frac{\pi \cdot 1,35^2 \cdot 0,4}{4} = 1,15 \text{mm}^2$$
(3.3.1.2-11a)

Střední hodnota proudu sekundárním vinutím je rovna výstupnímu proudu I_z . Efektivní hodnota sekundárního proudu je následující:

$$I_{2Ef} = \frac{2 \cdot I_z}{\sqrt{3 \cdot (1 - s_{\text{max}})}} = \frac{2 \cdot 10}{\sqrt{3 \cdot (1 - 0.35)}} = 14.32A$$
 (3.3.1.2-2b)

Požadovaný průřez mědi sekundárního vinutí je vypočten opět pro hodnotu proudové hustoty $\sigma = 3 \text{ A/mm}^2$.

$$S_{Cu2}^* = \frac{I_{2Ef}}{\sigma} = \frac{14,32}{3} = 4,77 mm^2$$
 (3.3.1.2-3b)

Kontrola hloubky vniku:

$$d_{Cu} = \sqrt{\frac{S_{Cu2}^* \cdot 4}{\pi}} = \sqrt{\frac{4,77 \cdot 10^{-6} \cdot 4}{\pi}} = 2,46mm$$
(3.3.1.2-4b)

$$2\delta_{Cu} \ge d_{Cu} \to 2.0, 20 \ge 2,46$$
 (3.3.1.2-6b)

Z rovnice 3.3.1.2-6b plyne, že podmínka opět není splněna. Mezní frekvence pro tento průměr je následující.

$$f_{mez} = \frac{8 \cdot \rho_{Cu}}{2\pi \cdot \mu_0 \cdot d_{Cu}^2} = \frac{8 \cdot 1.8 \cdot 10^{-8}}{2\pi \cdot \mu_0 \cdot (2.46 \cdot 10^{-3})^2} = 3kHz$$
(3.3.1.2-7b)

Průměr vysokofrekvenčního vodiče při daném činiteli plnění je určen v rovnici 3.3.1.2-8b.

$$d_{Cu2}^{*} = \sqrt{\frac{S_{Cu2} \cdot 4}{k_{pCu} \cdot \pi}} = \sqrt{\frac{4,77 \cdot 10^{-6} \cdot 4}{0,4 \cdot \pi}} = 3,90 \text{mm}$$
(3.3.1.2-8b)

Počet vrstev sekundárního vinutí:

$$n_{v2} = \frac{N_2 \cdot d_{Cu2}^*}{h_0} = \frac{9 \cdot 3.9}{31} = 1.13$$
 (3.3.1.2-9b)

Vytvořena bude tedy jedna vrstva o průměru vodiče:

$$d_{Cu2} = \frac{h_0}{N_2} = \frac{31}{9} = 3,44mm \tag{3.3.1.2-10b}$$

Průřez čisté mědi ve vrstvě sekundárního vinutí:

$$S_{Cu2} = \frac{\pi \cdot d_{Cu2}^{2} \cdot k_{pCu}}{4} = \frac{\pi \cdot 3,44^{2} \cdot 0,4}{4} = 3,72mm^{2}$$
(3.3.1.2-11b)

Požadovaná hodnota průřezu primárního vinutí S_{Cul}^* a výsledná navržená hodnota průřezu S_{Cul} se liší přibližně o 0,3 mm². U sekundárního vinutí se hodnoty liší o 1 mm². Vzhledem k tomu, že zvolená proudová hustota je poměrně nízká, jsou tyto rozdíly akceptovatelné.

V ideálním případě proud, který poteče rekuperačním vinutím, odpovídá výkonu, vytvořeném v době vypnutí hlavního tranzistoru na rozptylové indukčnosti impulzního transformátoru. Maximální hodnota tohoto výkonu může být přibližně desetina výkonu měniče. V tomto případě tedy 60 W. Hodnota proudu rekuperačním vinutím:

$$I_{S_1} = \frac{P_{\sigma}}{U_{A}} = \frac{60}{300} = 0.2A$$
 (3.3.1.2-1c)

Ve skutečnosti bude proud zvlněn vlivem parazitní impedance transformátoru. Rekuperační vinutí bude vinuto vysokofrekvenčním lankem 10×0.1 mm s vnějším průměrem 0.5 mm.

Pomocné vinutí N_{S2} bude vinuto stejným vodičem.

3.3.1.3 Kontrola zaplnění okna jádra

Maximální možná využitelná šířka jádra je $w_0 = 8,3$ mm. Primární vinutí ve dvou vrstvách zabírá svým průměrem $2 \times 1,35$ mm. Sekundární vinutí zabírá 3,44 mm. Pomocná vinutí budou vinuta ve stejné vrstvě, která zaujme 0,5 mm šířky jádra. Všechna vinutí zaujmou přibližně 6,64 mm šířky jádra.

29

3.3.1.4 Návrh vzduchové mezery

Návrh je možné provést dle Hopkinsonova zákona, který nabývá tvaru:

$$H \cdot l = i_1 \cdot N_1$$
 (3.3.1.4-1a)

lze dále upravit:

$$\frac{B}{\mu_0} \cdot l = i_1 \cdot N_1 \tag{3.3.1.4-1b}$$

Velikost vzduchové mezery l bude navrhována tak, že při maximální hodnotě primárního proudu I_{lmax} bude dosažena maximální magnetická indukce B_{max} . Předpokladem je také lineární magnetický obvod, kdy má magnetická indukce stejný tvar průběhu jako proud ve vinutí.

$$I_{1\text{max}} = \frac{2 \cdot I_{1S\tilde{n}}}{s_{\text{max}}} = \frac{2 \cdot 2.2}{0.35} = 12.6A \tag{3.3.1.4-2}$$

$$l = \frac{I_{1\text{max}} \cdot N_1 \cdot \mu_0}{B_{\text{max}}} = \frac{12.6 \cdot 23 \cdot 4\pi \cdot 10^{-7}}{0.18} = 2.02 \text{mm}$$
(3.3.1.4-1c)

3.3.1.5 Orientační ztráty transformátoru

Orientační hodnoty ztrát primárního a sekundárního vinutí při střední délce závitu $l_{Cu} \approx 8$ cm:

$$\Delta P_{Cu1} = \rho_{Cu} \cdot \frac{N_1 \cdot l_{Cu}}{S_{Cu1}} \cdot I_{1Ef}^2 = 1,8 \cdot 10^{-8} \cdot \frac{23 \cdot 0.08}{1,15 \cdot 10^{-6}} \cdot 4,3^2 = 0,5W$$
(3.3.1.5-1a)

$$\Delta P_{Cu2} = \rho_{Cu} \cdot \frac{N_2 \cdot l_{Cu}}{S_{Cu2}} \cdot I_{2Ef}^2 = 1,8 \cdot 10^{-8} \frac{9 \cdot 0,08}{3,72 \cdot 10^{-6}} \cdot 14,32^2 = 0,7W$$
(3.3.1.5-1b)

Ztráty v jádře dle dokumentace jádra budou přibližně 2 W.

3.3.2 Primární část měniče

Na primární straně je hlavní snahou vytvoření bezindukční smyčky (viz obrázek 4). Aby došlo k vytvoření této smyčky, je nutné přemostit nabíjecí elektrolytické kondenzátory blokovacím foliovým polypropylenovým kondenzátorem C_2 , který je bezindukční. Kondenzátor C_4 bude stejného typu. Oba kondenzátory budou nabity na meziobvodové napětí U_d , jejich maximální napětí bude 400 V. Kapacita kondenzátorů je zvolena na hodnotu 1 μ F.

Hlavní spínaný tranzistor S_I musí mít závěrné napětí větší než $2U_d$. Proudově bude tranzistor dimenzován na stejnou střední, efektivní a špičkovou hodnotu proudu jako primární vinutí impulzního transformátoru ($I_{Stř} = 2,2$ A, $I_{Ef} = 4,3$ A, $I_{max} = 12,6$ A).

Z dostupných zdrojů je vybrán MOSFET tranzistor CMF10120D. Parametry tranzistoru jsou následující: závěrné napětí 1200 V, maximální trvalý proud při teplotě 100 °C 13 A, maximální špičková hodnota proudu 49 A, odpor mezi elektrodami "drain" a "source" v sepnutém stavu $180 \text{ m}\Omega$ při teplotě 100 °C.

Na základě znalosti předchozích parametrů je možné určit ztráty vedením a ztráty přepínací.

Ztráty vedením jsou závislé na druhé mocnině efektivní hodnoty proudu a na odporu v sepnutém stavu.

$$\Delta P_{v} = R_{DS(an)} \cdot I_{1Ef}^{2} = 180 \cdot 10^{-3} \cdot 4.3^{2} = 3.3W$$
(3.3.2-1)

Pro výpočet ztrát přepínacích je dále nutno znát dobu vypnutí. Zapínací ztráty se v režimu CCM/DCM neuvažují. Magnetizační proud je v době zapínání zanedbatelně malý, jelikož pulz narůstá z nulové hodnoty vzhledem k rychlosti zapnutí tranzistoru velmi dlouhou dobu. Pro tranzistor CMF10120D platí doba vypnutí $t_{off} = 21$ ns.

V době vypnutí se na tranzistoru nachází napětí $2U_d$ a špičková hodnota proudu.

$$\Delta P_{off} = \frac{1}{4} \cdot f \cdot 2 \cdot U_d \cdot I_{1 \text{max}} \cdot t_{off} =$$

$$= \frac{1}{4} \cdot 120 \cdot 10^3 \cdot 2 \cdot 300 \cdot 12,6 \cdot 21 \cdot 10^{-9} = 4,8W$$
(3.3.2-2)

Celkové ztráty tranzistoru jsou rovny součtu ztrát vedením a ztrát přepínacích.

$$\Delta P_{S1} = \Delta P_{v} + \Delta P_{off} = 3.3 + 4.8 = 8.1W \tag{3.3.2-3}$$

Dioda D_6 musí být dimenzována na špičkovou hodnotu primárního proudu. Tento proud diodou poteče v okamžiku vypnutí tranzistoru S_I .

3.3.3 Sekundární část měniče

Sekundární část měniče se skládá z jednocestného usměrňovače a z výstupního filtru. Dioda jednocestného usměrňovače musí být dimenzována na střední hodnotu proudu $I_z = 10$ A, efektivní hodnotu proudu $I_{2Ef} = 14,32$ A a špičkovou hodnotu proudu:

$$I_{2 \text{max}} = I_{1 \text{max}} \cdot \frac{N_1}{N_2} = 12,6 \cdot \frac{24}{9} = 33,6A$$
 (3.3.3-1)

Napěťově bude dioda dimenzována na závěrné napětí, které bude součtem výstupního napětí a napětí přetransformovaného z primárního vinutí.

$$U_{Dka} = U_z + U_d \cdot \frac{N_2}{N_1} = 60 + 300 \cdot \frac{9}{24} = 172,5V$$
 (3.3.3-2)

Použity budou dvě diody SiC IDH16S60 paralelně pro omezení zatížení. Výkonová ztráta bude orientačně 15 W.

Obrázek 11: Průběh proudu na kondenzátoru C_{5,6}

32

Průběh proudu kondenzátorem bude výsledkem rozdílu proudu i_2 a proudu I_d . Výsledný proud je vyobrazen na obrázku 11. Na základě průběhu lze určit kapacitu kondenzátoru. Zvolená hodnota zvlnění napětí $\Delta U_2 = 2.5 \text{ V}$ (peak to peak).

$$C_{5,6} = I_p \cdot \frac{0,457}{2 \cdot \Delta U_2 \cdot f_s} = 23,6 \cdot \frac{0,457}{2 \cdot 2,5 \cdot 120 \cdot 10^3} = 17,98 \mu F$$
(3.3.3-3)

Použity budou dva fóliové kondenzátory 10 μF paralelně s maximálním napětím 100 V.

Za kondenzátorem následuje dolní propust 2. řádu, která plní funkci LC filtru s útlumem 40 dB/dek. Hodnota kapacity kondenzátoru C₇ je volena 10 μF, zvlnění výstupního napětí 50 mV (peak to peak) a mezní frekvence $1/10 f_s$. Hodnota indukčnosti tlumivky L_F :

$$L_F = \frac{1}{4\pi^2 \cdot \left(\frac{f_s}{10}\right)^2 \cdot C_7} = \frac{1}{4\pi^2 \cdot \left(\frac{120 \cdot 10^3}{10}\right)^2 \cdot 10 \cdot 10^{-6}} = 17.6 \mu H$$
(3.3.3-4)

Špičkové napětí trojúhelníkovitého tvaru na tlumivce bude mít hodnotu 1,25 V. Zvlnění proudu v polovině periody je následující:

$$\Delta I_F = \frac{\Delta U_2}{4 \cdot f_s \cdot L_F} = \frac{2.5}{4 \cdot 120 \cdot 10^3 \cdot 17.6 \cdot 10^{-6}} = 0.3A$$
 (3.3.3-5)

Tlumivka bude namotána na toroidní železoprachové jádro ljf T72-26A. Hodnota součinitele indukčnosti $A_L = 90 \text{ nH/N}^2$. Na základě jednotky součinitele indukčnosti lze určit počet závitů:

$$N_{L_F} = \sqrt{\frac{L_F}{A_I}} = \sqrt{\frac{17.6 \cdot 10^{-6}}{90 \cdot 10^{-9}}} = 14$$
 (3.3.3-6)

Vinutí bude namotáno lakovaným vodičem o průměru 1,8 mm. Výkonová ztráta na tlumivce bude přibližně 0,7 W.

3.4 Řídící obvod měniče

Napěťový dělič na výstupní části sekundárního vinutí, který slouží ke snímání výstupního napětí obvodem TL431, se dimenzuje následujícím způsobem:

$$U_z^* = U_{ref} \cdot \left(1 + \frac{R_1}{R_2}\right) + R_1 \cdot I_{ref}$$
(3.4-1)

Kde U_z^* je snímané výstupní napětí 60 V, U_{ref} je vnitřní reference TL431 2,5 V, rezistory R_I a R₂ představují napěťový dělič a proud I_{ref} je referenční napětí TL431 4 μA. Hodnoty $R_1 = 100 \text{ k}\Omega$ a $R_2 = 3.9 \text{ k}\Omega + 1 \text{ k}\Omega$ se jeví jako nejvhodnější. Přičemž odpor R_2 obsahuje navíc nastavitelný trimr 1 k Ω . Jelikož TL431 pracuje s maximálním napětím $U_z^* = 36$ V je nutné jej ošetřit regulátorem napětí. Regulátor bude udržovat na TL431 maximální napětí 12 V. Skládá se z rezistoru $R_2 = 3.3$ kΩ, kondenzátoru $C_8 = 220$ nF a zenerovy diody Z_{D2} (BZV55C12).

K dosažení dobré regulace výstupního napětí je nutné vhodně nastavit "regulační okno", které je ohraničeno minimální a maximální hodnotou zatížení měniče. Tyto mezní hodnoty představují součin poruchového proudu i_e a odporu R_8 . Poruchový proud je výstupní informace o výstupním napětí z napěťového regulátoru (integrovaný obvod TL431), která je od sekundární části měniče oddělena optočlenem a převedena na část primární.

Vysoké učení technické v Brně

Obrázek 12: Průběhy důležitých veličin pro nastavení řídícího obvodu v situaci maximálního a minimálního zatížení měniče. [1]

V první fázi je nutno zvolit maximální katodový proud I_{kmax} , který teče do TL431. Tento proud může být volen na základě vlastností TL431 v rozsahu 1 mA $< I_k < 100$ mA. Volba proudu je také závislá na použitém optočlenu, protože jeho proudový zesilovací činitel β (katalogový údaj CTR – current trasfer ratio) určuje hodnotu proudu na výstupu optočlenu. Zvolená hodnota $I_{kmax} = 10$ mA a hodnota $\beta = 0.5$ pro optočlen PC817B.

$$i_{e \max} = \beta \cdot I_{k \max} = 0.5 \cdot 10 \cdot 10^{-3} = 5mA$$
 (3.4-2)

V další fázi lze určit hodnoty odporů R_S a R_S , které tvoří napěťový dělič a odpor R_S . Tyto rezistory spolu udržují poruchový proud i_e v oblasti "regulačního okna". Snímací rezistor R_S lze navrhnout tak, aby plnil navíc funkci proudového omezení. Pokud je zvolena hodnota jeho napětí 0,6 V, v okamžiku kdy jím poteče maximální špičkový proud, dojde v tomto okamžiku k sepnutí tranzistoru Q_I . Velikost rezistoru R_S :

$$R_{\rm S} = \frac{U_{\rm Rs}}{I_{\rm 1max}} = \frac{0.6}{12.6} = 0.048\Omega \tag{3.4-3}$$

Rezistor R_8 je volen tak, aby splňoval podmínku:

$$i_{e \max} \cdot (R_8 + R_S) \le U_p$$
 (3.4-4)
 $0,005 \cdot (75 + 0,048) \le 0,6$
 $0,375V \le 0,6V$

Velikost rezistoru R_5 je volena dle podmínky:

$$R_{5} < \frac{U_{z} - U_{f} - U_{KAmin}}{I_{k \max}}$$

$$R_{5} < \frac{60 - 1.6 - 12}{0.01}$$

$$R_{5} < 4640\Omega$$
(3.4-5)

podmínky:

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

Dolní hranice "regulačního okna", která je závislá na velikosti i_{emin} , lze stanovit na základě

$$i_{e \min} \cdot (R_8 + R_S) + I_{1 \max} \cdot R_S > U_p$$

$$0.003 \cdot (75 + 0.048) + 12.6 \cdot 0.048 > 0.6V$$

$$0.83V > 0.6V$$
(3.4-6)

Dolní hranice i_{emin} je limitována také hodnotou I_{kmin} , která je omezena výše zmíněným rozsahem daným vlastnostmi TL431. Po přepočtení přes proudový zesilovací činitel optočlenu je $I_{kmin} = 6$ mA.

Dalším krokem je navržení součástí R_7 , C_{ST} a R_{10} . Rezistor R_7 slouží k omezení ztrát fototranzistoru, který je součástí optočlenu. Ztráty optočlenu lze vyjádřit jako:

$$P_{IC1} = U_{CE} \cdot i_{e \max} = (U_o - i_{e \max} \cdot R_7 - U_{Obe}) i_{e \max}$$
 (3.4-7)

Kde U_o je výstupní napětí pomocného vinutí, U_{Qbe} napětí mezi bází a emitorem tranzistoru Q_I . Napětí bude na optočlenu omezeno regulátorem napětí, který je tvořen rezistorem $R_9 = 1$ kΩ, kondenzátorem $C_{II} = 2,2$ nF a zenerovou diodou ZD_3 (BZV55C5).

Kondenzátor C_{ST} blokuje stejnosměrný proud během spouštění měniče, dovoluje tak dodání energie z meziobvodu k prvnímu sepnutí hlavního tranzistoru S_I skrze startovací rezistor R_{ST} . Mimo režim spouštění je kondenzátor neužitečný, protože s vnitřní kapacitou tranzistoru S_I tvoří napěťový dělič. Aby mohl být tranzistor plně otevřen, či zavřen je doporučováno volit kapacitu tohoto kondenzátoru desetinásobně větší než hodnotu vstupní kapacity tranzistoru S_I .

Ekvivalentní vstupní kapacita při otevírání tranzistoru přepočítaná z náboje řídící elektrody $Q_g = 41,7$ nC:

$$C_g = \frac{Q_g}{U_g} = \frac{47.1 \cdot 10^{-9}}{20} = 2.36nF$$
 (3.4-8)

Pokud by byla zvolena kapacita o hodnotě desetinásobně větší, hodnota ztrátového výkonu by při dané frekvenci spínání byla příliš vysoká. Hodnota kapacity je zvolena $C_{ST} = 7,5$ nF. Napětí na řídící elektrodě tranzistoru S_I je také omezeno zenerovou diodou. Rezistor R_{I0} omezuje ztrátu na zenerově diodě ZD_I , která reguluje napětí na řídící elektrodě na 20 V a lze jej vyčíslit následujícím vztahem:

$$R_{10} = \frac{U_m \cdot \frac{N_{S2}}{N_1} - U_{ZD_1}}{P_{ZD_1}} \cdot U_{ZD_1} = \frac{325 \cdot \frac{2}{24} - 20}{0.5} 20 = 283\Omega$$
(3.4-9)

Hodnota tohoto rezistoru je však příliš vysoká, aby docházelo k dostatečně rychlému spínání tranzistoru, je hodnota rezistoru ponížena na 47 Ω . Velikost spouštěcího odporu je volena 2,2 M Ω . Pravidlem volby je nepřekročit ztrátový výkon na odporu o více jak 1 % maximálního výstupního výkonu.

Prvky C_9 , C_{10} a R_4 slouží ke kompenzaci a nastavuje se jimi přesnost řídící smyčky a dynamická odezva na změnu výstupního napětí. Hodnoty těchto prvků jsou určeny experimentálně.

34

35

3.5 Teoretická účinnost měniče

Celkové ztráty měniče jsou orientačně následující:

$$\Delta P_m \approx \Delta P_{usm} + \Delta P_{D6} + \Delta P_{Cu1} + \Delta P_{Cu2} + \Delta P_j + \Delta P_{S1} + \Delta P_{L_F} + \Delta P_{D_1} = 4.4 + 2 + 0.5 + 0.7 + 2 + 8.1 + 0.7 + 15 = 33.4W$$
(3.5-1)

Kde ΔP_{D6} je přibližná výkonová ztráta na diodě D_6 .

Přibližná hodnota účinnosti měniče:

$$\eta_m \approx \frac{P_z}{P_z + \Delta P_m} = \frac{600}{600 + 33.4} = 0.947$$
(3.5-2)

3.6 Návrh desky plošných spojů

Schéma zapojení bylo prostřednictvím programu Eagle, převedeno do režimu návrhu desky plošných spojů. Schéma se mírně liší od původního. Krom navýšení počtu prvků pro dosažení požadovaných hodnot a pro zmírnění zatížení na nich, byl na primární straně přidán obvod tlumící strmost napětí při spínání tranzistoru, který se skládá z prvků C_3 , D_7 , D_8 a L_{F2} .

Navržená deska plošných spojů ve dvouvrstvém provedení je znázorněna na obrázku 13. Jednotlivé vrstvy jsou samostatně vyobrazeny v příloze. Deska se sestává ze dvouvrstvého cuprextitu a byla vytvořena leptáním ve školních podmínkách.

Při dimenzování jednotlivých uzlů byl brán ohled na tloušťku cest vzhledem k jejich zatěžování a také na izolační vzdálenosti s ohledem na velikost napětí mezi cestami. V návrhu je kladen požadavek na bezindukční smyčky tranzistor- C_4 - D_6 - C_2 a také na tranzistor- C_3 - D_7 - C_2 (tlumící článek). Při rozmísťování nebylo možné uspořádat prvky tak, aby byla zajištěna co nejmenší parazitní indukčnost pro obě smyčky zároveň. Upřednostněna byla tedy smyčka tlumícího článku, který omezuje strmost při vypínacím ději hlavního tranzistoru.

Hlavní tranzistor a diody sekundárního jednocestného usměrňovače jsou záměrně umístěny na okraji desky. Jelikož se pro tyto prvky předpokládá větší ztrátový výkon, budou osazeny chladičem.

Řídící obvod se skládá z velké části z SMD součástek, které jsou pro případ nutnosti doladění umístěny na spodní straně desky. Takto je zajištěn snadný přístup a jednoduchá manipulace s nimi.

Obrázek 13: Výsledná dvouvrstvá deska plošných spojů

Zhotovená DPS má rozměry 160×85 mm.

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

37

4 REALIZACE

Před samotným osazením byly vyrobeny vinuté prvky měniče. Impulzní transformátor je znázorněn na obrázku 14 a v řezu na obrázku 15. Vinutí se radiálně směrem od středu skládá z první poloviny primárního vinutí, celého sekundárního vinutí, druhé poloviny primárního vinutí, z pomocného vinutí řídícího obvodu a z rekuperačního vinutí o stejném počtu závitů jako celá primární strana. Primární strana je vinuta dvěma vodiči paralelně (rupalit $20 \times 0,20$ mm). Pro zajištění lepší vazby mezi primární stranou, sekundární stranou a stranou pomocného vinutí, bylo primární vinutí rozděleno na dvě části. Sekundární strana je vinuta vodičem rupalit $512 \times 0,10$ mm se zesílenou izolací. Další izolační vrstva mezi primární a sekundární stranou tedy nebyla nutná. Pomocné vinutí řídícího obvodu je tvořeno pouhými dvěma závity, které byly pro dobrou vazbu s primární stranou co nejvíce rozprostřeny. Rekuperační vinutí je namotáno stejným vodičem jako pomocné řídící vinutí. Tyto vinutí jsou navzájem odizolovány izolační páskou.

Tlumivka výstupního filtru je zachycena na obrázku 16. Vytvořena byla také tlumivka tlumícího obvodu.

Obrázek 15: Řez impulzním transformátorem

Obrázek 16: Tlumivka výstupního filtru

V dalším kroku byla DPS osazena (viz obrázek 17). Hlavní tranzistor byl stejně jako diody sekundárního usměrňovače opatřen chladičem.

Obrázek 17: Samokmitající blokující měnič 600 W

4.1 Oživení

Pro napájení sestaveného měniče posloužil pracovní stůl. Síťové napájení bylo možno plynule nastavovat pomocí autotransformátoru. Požadované průběhy byly snímány osciloskopem, jenž byl napájen galvanicky odděleně.

Sondami osciloskopu byly nejprve snímány průběhy napětí na hlavním tranzistoru. Konkrétně bylo snímáno napětí elektrod "gate"-"source" a "drain"-"source".

Při prvních pokusech se měnič nedařilo zprovoznit. Z průběhů zaznamenávaných na osciloskopu však bylo patrné určité malé kmitání, které by se v případě špatně navrženého zpětnovazebního obvodu ani neobjevilo. Po řadě pokusů o oživení byl také pro začátek odpojen obvod sloužící k omezení strmosti.

Problémem bylo nakonec samotné řešení primární strany. Konkrétně tedy část obvodu s rekuperačním vinutím a "bezindukčním" kondenzátorem. Tento obvod, jak již bylo blíže popsáno v předchozích kapitolách, omezuje napětí mezi elektrodou "drain" a "source" na dvojnásobek napětí meziobvodu. Při rozběhu se začne nabíjet vstupní kapacita tranzistoru skrze startovací rezistor R_{st} a R_{stl} . Takto se na elektrodě "gate" objeví napětí meziobvodu. Použitý hlavní tranzistor se začíná otevírat přibližně při hodnotě 6 V. V tuto chvíli je napětí mezi elektrodou "drain" a "source" omezeno na 12 V. Převodový poměr mezi pomocným budicím a primárním vinutím je 1:12. Rozkmit budicího vinutí je tedy pouze 1 V. Hodnota budicích kmitů tedy není dostatečné velká, aby přivedla hlavní tranzistor do spínacího režimu. Tranzistor tedy kmitá pouze v lineárním režimu, přičemž spotřebovává přivedený výkon v neužitečné teplo a navíc se více neotevře, protože udržuje napětí meziobvodu na stejné hodnotě.

Problém nakonec vyřešil jeden přídavný rezistor R_{ST2} zařazený paralelně k zenerově diodě Z_{D1} tvořící s rezistorem R_{st} a R_{st1} napěťový dělič. Tento rezistor zajišťuje, že se prahové napětí hlavního tranzistoru objeví na elektrodě "gate" při daleko vyšším napětí meziobvodu. Napěťové

omezení mezi elektrodami "drain" a "source" se tak dostane na dostatečně velkou úroveň, aby na pomocném budicím vinutí vznikly kmity, jež dostanou hlavní tranzistor do plnohodnotného spínacího režimu, a celý měnič se tak plně rozběhne.

Po připojení tohoto rezistoru do obvodu byla změna ihned patrná, jelikož se měnič rozkmital okamžitě. Zkoumané průběhy vypadaly velmi slibně, proto ani nedošlo k dalšímu "dolaďování" a přešlo se rovnou k měření. Nutné je také dodat, že během měření byl měnič chráněn předřadným rezistorem. Výstup měniče byl zatížen nastavitelným rezistorem $60~\Omega$, kterým se postupně měnič zatěžoval. Obvod byl také chlazen externím aktivním chladičem.

4.2 Výsledky měření

Obrázek 18. znázorňuje průběhy napětí na hlavním tranzistoru a na bočníku R_s . Na první pohled je patrné, že střída je při spínání měniče přibližně třetinová, což je v souladu s návrhem. Z průběhu napětí na bočníku lze určit velikost vypínacího proudu. Vrchol napětí na bočníku má hodnotu přibližně 750 mV, přičemž odpor bočníku činní 0,05 Ω . Vypínací proud má tedy na základě těchto údajů hodnotu 15 A. Tato hodnota je oproti maximální předpokládané vyšší a mohla by být upravena změnou hodnoty odporu bočníku.

Obrázek 18: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na bočníku R_s (3) při jmenovitém vstupním napětí a výstupních parametrech $60 \ V \ 10 \ A$

Následující dvojce obrázku vyobrazuje detail zapínacího a vypínacího děje hlavního tranzistoru. Třetí sonda snímá průběh napětí na bočníku, který se sestává s rezistorů R_s a R_{sl} . Detail zapínacího děje svědčí o tom, že doba zapnutí hlavního tranzistoru je v řádech stovek nanosekund. Tato skutečnost není v souladu s udávanými hodnotami výrobce tranzistoru a je zapříčiněna samotným principem samokmitajícího měniče. Napětí bočníku vykazuje překmit v řádech stovek milivoltů.

Obrázek 19: Detail zapínacího děje tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na bočníku R_s (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 10 A

Vypínací děj je rychlejší než zapínací. Pro určení přesné vypínací doby je nutné přesně měřit kolektorový proud. Zde je však průběh dosti zkreslen rušením a není proto možné přesně určit okamžik poklesu na nulovou hodnotu. V průběhu napětí mezi "drain" a "source", lze vidět potlačení překmitu, který je natolik charakteristický pro blokující měniče. Obvod s rekuperačním vinutím a "bezindukčním" kondenzátorem omezující tento překmit tedy obstojně plní svoji funkci. V další fázi je energie překmitu tímto obvodem plně absorbována a dochází k uzavření nulové diody, což způsobuje následné zákmity. Napětí na bočníku opět obsahuje zákmity, které jsou oproti zapínacímu ději přibližně trojnásobné.

Obrázek 20:Detail vypínacího děje tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na bočníku Rs (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 10 A

Napětí na diodě sekundárního usměrňovače (obrázek 21) vykazuje v oblasti vypínacího děje pouze nepatrný překmit. V oblasti zapínacího děje je překmit zanedbatelný.

Obrázek 21: Detail průběhů napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na sekundárních diodách (3) při jmenovitém vstupním napětí a výstupních parametrech 60 V 4 A

Následující průběhy (obrázek 21) jsou zaznamenány těsně před zapůsobení napěťového regulačního obvodu. Obrázek 22 poté vyobrazuje stav po rozběhu regulace, kdy je jasně patrné,

prudké omezení šířky pulzů. Při dané zátěži k dosažení požadovaného výstupního napětí postačuje vstupní střídavé napětí 144 V.

Obrázek 22: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na sekundárním vinutí (3) při vstupním napětí 144 V~ a výstupních parametrech 60 V 2 A před zapůsobením napěťové regulace

Obrázek 23: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na sekundárním vinutí (3) při vstupním napětí 144 V~ a výstupních parametrech 60 V 2 A při zapůsobení napěťové regulace

Během počátečních měření byl odpojen obvod pro omezení strmosti. Bylo tedy provedeno měření po připojení tohoto obvodu. Průběhy jsou zaznamenány níže na obrázku 24. S obvodem pro omezení strmosti se znatelně zvýšily ztráty na hlavním tranzistoru. Obvod zde nejspíše zasahoval do samotné funkce samokmitajícího obvodu. Z tohoto důvodu byl tento obvod při všech následujících měření ponechán odpojen.

Obrázek 24: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na sekundárních diodách (3) při vstupním napětí 100 V~ a výstupních parametrech 60 V 1 A s obvodem pro omezení strmosti

Obrázek 25: Průběhy napětí na tranzistoru CMF10120D - napětí G-S (1), napětí D-S (2) a napětí na sekundárních diodách (3) při vstupním napětí 100 V~ a výstupních parametrech 60 V 1 A bez obvodu pro omezení strmosti

4.3 Změřená účinnost měniče

Měření bylo provedeno čistě pro měření účinnosti samotného měniče, proto byl obvod napájen přímo stejnosměrným napětím přivedeným přímo do meziobvodu až za částí usměrňovače, vstupního filtru a NTC termistoru.

Tabulka 2: Měření účinnosti samokmitajícího blokujícího měniče							
Č. m.	U _d [V]	U ₂ [V]	I ₂ [A]	P ₁ [W]	P ₂ [W]	η [%]	
1	301,6	60,72	2,027	139,3	123,08	88,4	
2	293,8	60,72	5,004	332,4	303,87	91,4	
3	283,4	60,72	9,598	632,7	582,80	92,1	

Z naměřených hodnot je patrné, že účinnost je největší při maximálním zatížení měniče. Účinnost 92,1 % je pro samokmitající měnič poměrně dobrá. Samozřejmě se započtením účinnosti usměrňovače účinnost zhotoveného obvodu mírně klesne. Hodnota účinnosti však nemusí být konečná. Vyladěním obvodových prvků měniče by mohla být dále zvýšena. Toto již však není náplní této práce.

Zhotovený blokující samokmitající měnič v porovnání s blokujícím měničem s "klasickým" řídícím obvodem o stejném výkonu dosahuje účinnosti nižší. Měření účinnosti druhého blokujícího měniče je zaznamenáno v tabulce 3. Parametry se mírně liší, ovšem pro hrubé porovnání jsou hodnoty dostačující. Účinnost se liší přibližně o 2 %.

Tabulka 3: Měření účinnosti blokujícího měniče s "klasickým" řízením							
Č. m.	U _d [V]	U ₂ [V]	I ₂ [A]	P ₁ [W]	P ₂ [W]	η [%]	
1	306,0	61,58	10,57	691,3	650,9	94,2	

46

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií

Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

5 ZÁVĚR

Dle návrhu, který byl náplní semestrálního projektu, byl v rámci diplomové práce s menšími úpravami vyroben samokmitající blokující měnič o výkonu 600 W.

V části realizace byla vytvořena DPS, impulzní transformátor, tlumivka výstupního filtru a tlumivka obvodu potlačující strmost. Vše ve školních podmínkách.

V následující etapě byl tento měnič úspěšně oživen a měřením byla ověřena jeho funkční stránka. Výsledky měření ukázali, že je topologie samokmitajících měničů použitelná i pro daleko vyšší výkony. Toto řešení se používá pro aplikace do 100 W (běžně pro aplikace do 20 W). Změřena byla také účinnost měniče, která bez předřadného usměrňovače dosáhla hodnoty 92,1 %. Měnič o stejném výkonu, řešen v provedení s "klasickým" regulačním obvodem, dosáhl účinnosti 94,2 %. Hodnota účinnost samokmitajícího měniče by mohla být dalším "vyladěním" jistě zvýšena, avšak tento úkon nebyl předmětem diplomové práce.

Diplomová práce tedy prokazuje, že je samokmitající blokující měnič o výkonu 600 W realizovatelný a dokáže konkurovat dnes běžně používaným měničům. Mezi jeho hlavní výhody patří jednoduchost, odolnost a nízké výrobní náklady.

47

6 SEZNAM LITERATURY

- IRVING, B.T. a M.M. JOVANOVIC. Analysis and design of self-oscillating flyback converter. In: APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335) [online]. IEEE, 2002, s. 897-903 [cit. 2016-01-03]. DOI: 10.1109/APEC.2002.989350. ISBN 0-7803-7404-5. Dostupné z: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=989350
- PATOČKA, Miroslav. Magnetické jevy a obvody ve výkonové elektronice, měřicí technice a silnoproudé elektrotechnice. 1. vyd. V Brně: VUTIUM, 2011, 564 s. ISBN 978-80-214-4003-6.
- 3. YUEH-RU YANG. Analysis of winding capacitance effects on ringing choke converters. In: 30th Annual Conferenceof IEEE Industrial Electronics Society, 2004. IECON 2004 [online]. IEEE, 2004, s. 1008-1013 [cit. 2016-01-03]. DOI: 10.1109/IECON.2004.1431712. ISBN 0-7803-8730-9. Dostupné z:
 - http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1431712
- 4. PATOČKA, M. Vybrané statě z výkonové elektroniky: Svazek II. Pulzní měniče bez transformátoru[online]. Brno, 2005 [cit. 2016-01-03].
- 5. YIN, Xiangyang. Current-controlled self-oscillating flyback converter with two transistors. USA. 12/935,229. Přihlášeno 3. 2. 2011.
- 6. GROM, M. Experimentální blokující spínaný zdroj 1200 W/ 150 kHz s polovodiči SiC. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2015. 61 s. Vedoucí diplomové práce doc. Ing. Pavel Vorel, Ph.D..
- 7. ERICKSON, Robert W a Dragan MAKSIMOVIĆ. Fundamentals of power electronics. 2nd ed. Norwell, Mass.: Kluwer Academic, 2001, xxi, 883 s.

7 Přílohy

Obrázek 26: Finální schéma zapojení

Obrázek 27: Horní strana DPS

50

Impulzní transformátor

Obrázek 28: Rozmístění součástek na horní straně DPS

53

Obrázek 31: Experimentální samokmitající blokující zdroj 600 W

Tabulka 4: Seznam součástek							
Název	Hodnota	Pouzdro	Poznámka	Počet			
C_1	560u	E10-35	Elektrolytický kond.	1			
\mathbb{C}_2	1u	27,5-13×31,5	Fóliový kondenzátor	1			
C ₃	1n	15×5×18	Fóliový kondenzátor	1			
C ₄	1u	27,5×13×31,5	Fóliový kondenzátor	1			
C ₅ ,C ₆	10u	27,5×13×31,5	Fóliový kondenzátor	2			
C ₇	100u	E5-13	Elektrolytický kond.	1			
C_8, C_{10}	220n	0805	SMD keramický kond.	2			
C 9	-	0805	SMD kond. (neosazen)	1			
C ₁₁	1u/50V	1206	SMD keramický kond.	1			
C_{12}, C_{13}	22n/400V	-	Svitkový kondenzátor	2			
C_X	330n/630V	XC27B21	Fóliový kondenzátor	1			
C_{Y1},C_{Y2},C_{Y3}	10n	Y5V	Keramický kondenzátor	3			
D_1, D_2, D_3, D_4	1N5400	DO201-15	Dioda	4			
D ₅ ,D ₉	IDH16S60C	TO220ACS	SiC Shottkyho dioda	2			
D ₆ ,D ₇ ,D ₈	C4D0512	TO220ACS	Dioda	3			
D_{10}	MURS120T3	SMB	SMD dioda	1			
F ₁	6A	F-003/A	Držák pojistky	1			
L_{F}	-	Toroidní jádro	Tlumivka výst. filtru	1			
L_{F1}	-	Toroidní jádro	Tlumivka vst. filtru	1			
L_{F2}	-	EE jádro	Tlumivka tlum. obvodu	1			
OC_1	PC817B	DIL04	Optočlen	1			
Q_1	BC817	SOT23-BEC	NPN SMD tranzistor	1			
R ₀	1_NTC	1416	NTC termistor	1			
R ₁	100k	R0805	SMD rezistor	1			
R ₂	4,3k	R0805	SMD rezistor	1			
R ₃	3k3	0207/10	Rezistor	1			
R ₄ ,R ₅	1k	R0805	SMD rezistor	2			
R ₆	470R	R0805	SMD rezistor	1			
R ₇	0R	R0805	SMD rezistor	1			
R ₈	75R	R0805	SMD rezistor	1			
R ₉	1k	0207/10	Rezistor	1			
R ₁₀	47R	R0805	SMD rezistor	1			
R_S,R_{S1}	0R1	0411/15	Rezistor	2			
R _{ST} ,R _{ST1}	1M	R1206	SMD rezistor	2			
R _{ST2}	220k	0207/10	Rezistor	1			
S_1	CMF10120D	TO-247-3	SiC MOSFET tranzistor	1			
U_1	TL431	TO92	Napěťový regulátor	1			
Z_{D1}	BZV55C20	DO35	Zenerova dioda	1			
Z_{D2}, Z_{D3}	BZV55C12, 5	SOD80C	SMD Zenerova dioda	2			

