Ludwig-Maximilians-Universität München Institut für Statistik

Projekt im Rahmen des statistischen Consultings

Internationaler Waffenhandel: Die Anwendung neuer Verfahren der statistischen Netzwerkanalyse

Eine Netzwerkanalyse des internationalen Kleinwaffenhandels 1992 - 2011 Kooperation mit dem Lehrstuhl für empirische Politikforschung

Autor:

Felix Loewe loewe.felix@gmail.com

Projekt partner:

Prof. Dr. Paul W. Thurner

Betreuer:

Prof. Dr. Göran Kauermann

Abstract

Dieser Bericht behandelt die Analyse der NISAT database of transfers of small arms, light weapons, and their ammunition, parts and accessories. Die Netzwerkdaten stellen das internationale Kleinwaffenhandelsnetzwerk im Zeitraum 1992 bis 2011 dar.

Nachdem die Datengrundlage besprochen wird, erfolgt eine deskriptive Analyse des Handelsnetzwerkes anhand Zeitreihen von Netzwerkstatistiken. Im zweiten Teil wird der Querschnitt des Netzwerkes Jahr für Jahr anhand von ERGMs modelliert, um charakteristische Strukturen des Netzwerkes aufzudecken. Der Fokus liegt hierbei auf der Selektion interner Netzwerkstatistiken sowie externer Kovariablen.

 ${\bf Schlagw\"{o}rter} \quad \textit{Netzwerkanalyse} - \textit{Waffenhandel} - \textit{Kleinwaffen} - \textit{ERGMs}$

Inhaltsverzeichnis

1	Einf	ührung	4
	1.1	Wiederholung der Graphentheorie	4
		1.1.1 Graph	4
		1.1.2 Adjazenzmatrix	5
	1.2	Datengrundlage	5
2	Des	kriptive Analyse	7
	2.1	Degree Sequenz	7
	2.2	Handelswerte	8
	2.3	Top-Akteure	9
	2.4	Netzwerkmaßzahlen	11
	2.5	Visualisierungen	12
3	ERC	GM .	18
	3.1	Theorie	18
	3.2	exogene Kovariablen	18
	3.3	endogene Statistiken	18
	3.4	geschätzte Modelle	18
4	Anh	ang	21
1 :-	torati	urvorzoichnis	25

1 Einführung

Was ist das Besondere an der statistischen Analyse von Netzwerken? Erstens stellen sie durch ihre Abhängigkeitsstruktur relationale Daten dar. Gewöhnliche Datensätze mit i=1,...,N Beobachtungen werden zumeist mit der Annahme analysiert, dass die n Beobachtungen unabhängig voneinander beobachtet werden. Bei Netzwerkdaten ist das nicht der Fall. Hier stehen die Beobachtungen, oft genannt Akteure des Netzwerkes, in Beziehung zueinander. Besteht eine Beziehung zwischen den Beobachtungen, können diese nicht mehr als unabhängig angesehen werden. In ähnlicher Sichtweise wird auch eine nichtbestehende Beziehungen nicht ignoriert, sondern so angesehen, dass individuenspezifische oder netzwerkspezifische Effekte diese verursacht haben können.

Das Bestehen oder Nicht-Bestehen einer Beziehung ist die Netzwerkstruktur (Abhängigkeitsstruktur), die zusätzlich zu den Daten eines gewöhnlichen Datensatzes besteht. Die Abhängigkeitsstruktur wird durch die Adjazenzmatrix $Y_{ij} \in N \times N$ ausgedrückt.

Bei der Analyse des Waffenhandels wird aus der Beziehung ein Handel und aus den Akteuren die liefernden und belieferten Länder.

Die Arbeit ist wie folgt aufgebaut. Im ersten Kapitel erfolgt eine kurze Wiederholung der Begriffe aus der Graphentheorie. Netzwerkspezifische Begriffe sowie deskriptive Maßzahlen werden theoretisch eingeführt. Darauf folgt eine Erläuterung der Datengrundlage der NISAT Datenbank mit den daraus resultierenden Möglichkeiten und Einschränkungen. Im dritten Abschnitt wird der Datensatz deskriptiv analysiert. Im vierten Abschnitt erfolgt die Modellierung per ERGMs.

1.1 Wiederholung der Graphentheorie

Um Netzwerkdaten statistisch analysieren zu können, muss die Abhängigkeitsstruktur der Daten adäquat modelliert werden. Eine grundlegende mathematische Theorie, die verwendet wird, um *relationale Daten* zu beschreiben, ist die Graphentheorie. Die Notation der graphentheoretischen Begriffe orientiert sich an [3].

1.1.1 Graph

Ein Graph G = (V, E) ist die mathematische Beschreibung eines Netzwerkes.

Er besteht aus einer Knotenmenge V und einer Kantenmenge E. Ein Knoten v repräsentiert einen Akteur des Netzwerkes. Eine Kante e verbindet zwei Akteure und kennzeichnet eine Beziehung zwischen ihnen.

Die Anzahl der Knoten $N_V = |V|$ wird üblicherweise als kleiner unendlich vorausgesetzt. Häufig benennt man die Knoten eines Netzwerkes einfach nach ihrem ihren Index $i = 1, ..., N_V$

Eine Kante ist ein Element der Menge E. Eine Kante $\{i,j\}$ beschreibt die Verbindung zwischen Knoten i und j.

1 Einführung

Man unterschiedet zwischen gerichteten und ungerichteten Graphen. Ein ungerichteter Graph setzt eine symmetrische Beziehung zwischen den Akteuren voraus. Akteur i steht also zu Akteur j in der gleichen Beziehung wie j zu i (z.B. Arbeitskollege). Bei einem gerichteten Graphen hingegen ist die Richtung der Beziehung entscheidend. Dies ist in unserem Datensatz der Fall. Wir unterschieden zwischen Exporteur und Importeur eines Handels. Die Kante $\{i, j\}$ ist hier also von der Kante $\{j, i\}$ zu unterscheiden.

Per Definition enthält ein Graph weder Schleifen noch multiple Kanten. Von einer Schleife spricht man, wenn eine Kante $\{i,j\}$ den Gleichen Anfangs- und Endpunkt besitzt (i=j). Von einer multiplen Kante spricht man, falls zwischen zwei Knoten mehrere Verbindungen bestehen. Enthält ein Netzwerk solche Eigenschaften spricht man von einem Multigraphen ansonsten von einem einfachen Graphen.

Betrachtet man die Anzahl der möglichen Kanten eines Graphen, die später als Benchmark dafür auftaucht, wie dicht ein Graph sein kann, so wird ersichtlich, dass diese Anzahl für einen einfachen ungerichteten Graphen kleiner ist als die Anzahl der möglichen Kanten einer komplizierteren Graphenart. Für einen einfachen ungerichteten Graphen ist sie gegeben durch $V_H(V_H-1)/2$.

Ein gerichteter Graph kann logischerweise maximal die doppelte Anzahl an Kanten enthalten.

1.1.2 Adjazenzmatrix

+Ein Graph ist vollständig bestimmt durch seine Adjazenzmatrix $A_{ij} \in |V| \times |V|$, wobei $a_{ij} = 1$ falls zwischen Knoten i und Knoten j eine Kante besteht und Null sonst.

+Bei gerichteten Graphen besteht ein Unterschied zwischen der Kante (i, j) und der Kante (j, i). Die Adjazenzmatrix ist dann nicht symmetrisch.

1.2 Datengrundlage

Die Datengrundlage für das Kleinwaffenhandelsnetzwerk ist die NISAT (Norwegian Initiative on Small Arms Transfers) Datenbank. Das Peace Research Institute Oslo (PRIO) ist der Auftraggeber dieser Datenbank. Die Datenbank enthält Daten über den legalen und illegalen Handel von Kleinwaffen. Der abgedeckte Zeitraum beträgt die Jahre 1992 bis 2011. Berichtet wird hierin von insgesamt 239 Ländern und 109522 Waffentransaktionen.

Es folgt eine genauere Beschreibung der Datenbank. Die Daten liegen in der Form einer gerichteten Kanten-Liste vor. Das bedeutet jede Zeile im Datensatz entspricht einem Handel zwischen einem exportierenden und einem importierenden Land. Zusätzliche Attribute sind die Correlates of War Codes der jeweiligen Länder, der monetäre Wert des Handels in US Dollar, der gehandelte Waffentyp, die berichtende Datenquelle sowie das Jahr in dem der Handel stattgefunden hat. Bei der Analyse dieser Daten erkennt man schnell folgende Probleme: Da nach Waffentypen unterschieden wird, existieren in den einzelnen Jahren multiple Kanten. Das bedeutet zwischen 2 Ländern werden im gleichen Jahr mehrere Handel in der gleichen Richtung aufgeführt. Diese wurden für die weitere Analyse zusammengefasst indem der Wert der Lieferungen schlicht addiert wurde. Der Datensatz enthält Schleifen. Das heißt manche Länder liefern Waffen an sich selbst. Da

1 Einführung

es hierfür keine sinnvolle inhaltliche Erklärung gibt wurden die entsprechenden Beobachtungen gelöscht. Eine Liste der gelöschten Kanten befindet sich im Anhang.

2.1 Degree Sequenz

Abbildung 2.1: Boxplot für In- und Out-Degree in den Jahren 1992-2011

Eine erste nützliche Analyse um die Struktur des Netzwerkes zu erfassen, ist die Betrachtung der Knoten-Degrees. Im Falle eines gerichteten Netzwerkes unterschiedet man zwischen In-Degree und Out-Degree. Inhaltlich interpretiert entspricht dies den Anzahlen der Importe und Exporte eines Landes pro Jahr. Hierzu betrachten wir Abbildung 2.1. Sie zeigt zu jedem im Datensatz enthaltenen Jahr je einen Boxplot der In-Degrees und Out-Degrees aller Länder. Innerhalb der farblich gekennzeichneten Box liegen jeweils die mittleren 50 Prozent der entsprechenden Daten. Der mittlere schwarze Strich in jeder Box kennzeichnet den Median, und damit den Wert, unter dem genau die Hälfte aller Werte liegt.

Betrachtet man zuerst die Boxplots zum In-Degree, so stellt man fest, dass die breite der Box über die Jahre zunimmt. Im Jahr 1992 reicht sie lediglich von zwei bis acht, während sie sich im Jahr 2011 von drei bis 21 erstreckt. Auch der Median steigt über diesen Zeitraum von drei auf zehn. Daraus lässt sich schließen, dass die mittlere Anzahl Importpartner eines einzelnen Landes über die Zeit größer geworden ist. Auffallend sind

in allein Jahren einige mit Kreisen markierte Ausreißer die aus bis zu 67 verschiedenen Ländern im gleichen Jahr Waffen beziehen.

Bei den Boxplots zum Out-Degree fallen sofort die eher kleinen Boxen auf. Übereinstimmend in allen Jahren exportieren mindestens 25 Prozent der Länder überhaupt keine Waffen, und 50 Prozent der Länder an höchstens 2 andere Staaten. Allerdings gibt auch in allen Jahren eine recht große Anzahl von Ausreißern mit hohem Out-Degree mit bis zu 150 belieferten Staaten.

Die Betrachtung der Degrees legt nahe, dass der Kleinwaffenhandel von einigen wenigen Akteuren dominiert wird, während die große Masse der restlichen Staaten eher einen geringen Einfluss auf die Geschehnisse hat. Diesen wichtigen Akteuren wenden wir uns in Abschnitt 2.3 zu.

2.2 Handelswerte

Abbildung 2.2: Vergleich der 1% teuersten Waffenkäufe mit den 99% billigsten

Betrachtet man die Gewichte der Kanten, in diesem Fall die monetären Handelswerte, so fällt einem ein deutliches Ungleichgewicht auf. Wie Abbildung 2.2 zeigt ist die Summe der 1% teuersten Waffenhandel über alle Jahre hinweg ähnlich der Summe der 99% billigsten. Einige wenige große Waffentransaktionen wiegen also alle restlichen in ihrem monetären und damit wohl auch quantitativen Gewicht auf. Dies sollte bei einer späteren Modellierung des Netzwerkes berücksichtigt werden. Die Kanten unterscheiden sich stark in ihrem Gewicht und können nicht als homogen angesehen werden.

2.3 Top-Akteure

In Abschnitt 2.1 wurde anhand der Degree-Verteilungen gezeigt, dass der Kleinwaffenhandel von einigen wenigen Nationen dominiert wird, die sich deutlich von der großen Masse der restlichen Akteure abheben. Diese sollen in diesem Abschnitt ermittelt werden. Hierzu werden diejenigen Nationen aufgelistet, die über den Zeitraum von 20 Jahren das größte Import- und Exportvolumen, gemessen am Geldwert der gehandelten Waffen, aufweisen. Die Top-Exporteure sind in Tabelle 2.1 zu sehen.

Platz	Land	Exportvolumen [Mrd.]
1	United States of America	9.2
2	Italy	7.9
3	Germany (Federal Republic)	4.6
4	Brazil	3.7
5	Austria	2.7
6	United Kingdom	2
7	Belgium	1.8
8	Switzerland	1.5
9	Russia / USSR (Former)	1.4
10	Czech Republic	1.4

Tabelle 2.1: Top-Exporteure des Netzwerks

Es ist ersichtlich, dass die Vereinigten Staaten von Amerika mit 9.2 Milliarden Dollar am meisten Waffen exportiert. Italien steht mit circa 8 Milliarden Dollar Exportvolumen an zweiter Stelle. Dies erscheint ungewöhnlich über den Zeitraum von 1992 – 2011. Deutschland exportiert mit circa 5 Milliarden Dollar gehandelten Waffen am drittmeisten. Auf dem vierten und fünften Platz folgen die Länder Brasilien und Österreich mit exportierten Waffen, die circa 4 und 3 Milliarden Dollar wert sind. Ab dem sechsten Platz erfolgen nur noch unwesentliche Verringerungen des Exportvolumens im Bereich von 2 bis 1 Milliarde Dollar. Hierin befinden sich Nationen wie Großbritannien, Belgien, die Schweiz, Russland und die tschechische Republik.

Nun folgt eine Auflistung der Top-Importeure des Kleinwaffenhandelsnetzwerkes (siehe Tabelle 2.2).

Platz	Land	Importvolumen [Mrd.]
1	United States of America	16
2	Germany (Federal Republic)	2.3
2	France	2.3
4	Canada	1.9
5	United Kingdom	1.8
6	Saudi Arabia	1.7
7	Belgium	1.2
8	Spain	1.2
9	Australia	1.2
10	Turkey	1

Tabelle 2.2: Top-Importeure des Netzwerks

Erneut steht Nord-Amerika an erster Stelle. Die Nation gibt circa 16 Milliarden Dollar für den Import von Kleinwaffen aus. Deutschland und Frankreich teilen sich mit 2.3

Milliarden Dollar Importvolumen den zweiten Platz am Kleinwaffenimport. Auf der vierten Stelle befindet sich Kanada mit einem Importvolumen von circa 2 Milliarden Dollar. Großbritannien verwendet 1.8 Milliarden Dollar, um Waffen zu exportieren, und Saudi Arabien 1.7 Milliarden Dollar. Auf dem siebten, achten, neunten und zehnten Platz sehen wir ähnliche Exportausgaben von circa 1.2 bis 1 Milliarde Dollar. Dies sind die Länder Belgien, Spanien, Australien und Türkei.

Anschließend interessiert, ob sich die Zusammensetzung der Top-Exporteure/Importeure über die Jahre verändert. Hierfür betrachten wir Abbildung 2.3. In der ersten Grafik sind die Handelsvolumen in Millionen US Dollar der fünf Top-Exporteure über den Zeitraum 1992-2011 dargestellt. Die USA ist in fast allen Jahren der Waffenexporteur mit den höchsten monetären Volumen. Sie wird nur in wenigen Jahren von Italien übertroffen. Deutschland, Brasilien und Österreich exportieren in allen Jahren deutlich weniger Waffenwert als die USA. Auffällig ist ein relativ konstanter Verlauf der Zeitreihen im Zeitraum von 19ir2 bis ca 2001, während danach bei allen Ländern ein kräftiger Anstieg der Handelswerte feststellbar ist. Deutschland, Brasilien und vor allem Italien zeigen allerdings ab circa 2008 wiederum einen abfallenden Trend. Die zweite und die dritte Grafik aus Abbildung 2.3 zeigt die Handelsvolumen der Top-Importeure. Die USA ist hier unangefochten an der Spitze. Sie importiert Kleinwaffen im Wert zwischen circa 400 und 1600 Millionen US Dollar pro Jahr während die restlichen Akteure höchstens Kleinwaffen im Wert von circa 250 Millionen Dollar pro Jahr importieren. Ähnlich wie bei den Exportzeitreihen ist auch hier ein relativ konstanter Verlauf bis circa 2001 zu beobachten während die Ausgaben in den nachfolgenden Jahren kontinuierlich ansteigen. Die USA verringerte ihre Importausgaben ab dem Jahr 2007 jedoch wieder deutlich.

Eine andere Methode, um zentrale Akteure des Netzwerkes zu identifizieren ist sich die Degree-Sequenz der Netzwerkknoten zu betrachten. Welche Knoten (Länder) besitzen sowohl einen hohen In-Degree als auch einen hohen Out-Degree und können somit als zentrale Akteure des Handelsnetzwerkes identifiziert werden? Abbildung 2.4 zeigt hierzu das Gesamte Netzwerk in den Jahren 1992 und 2011. Jeder Punkt stellt ein am Waffenhandel beteiligtes Land dar. Ein Pfeil zwischen den beiden Ländern symbolisiert einen Handel. Länder die aus mindestens 30 anderen Ländern Waffen beziehen sind grün, Länder die in mindestens 30 andere Länder Waffen liefern sind blau, und Akteure die beide Bedingungen erfüllen sind rot eingefärbt. Man erkennt, dass die Anzahl der "großen Akteure" auf dem Kleinwaffenmarkt über die Zeit deutlich zugenommen hat. Die beiden Tabellen 2.3 und 2.4listen diese für das Jahr 1992 und das Jahr 2011 auf:

Land	In-Degree	Out-Degree
Switzerland	32	76
United States of America	43	105
Germany (Federal Republic)	47	118
Spain	36	62
Sweden	38	33

Tabelle 2.3: Zentrale Akteure des Netzwerkes 1992

Land	In-Degree	Out-Degree
Switzerland	41	103
United States	63	145
Finland	34	70
Italy	39	114
France	41	82
Poland	32	34
Czech Republic	37	105
Germany	50	115
United Kongdom	44	95
Norway	32	39
Spain	37	91
Canada	49	78
Austria	41	108
South Africa	34	32
Belgium	31	64
Australia	39	51

Tabelle 2.4: Zentrale Akteure des Netzwerkes 2011

2.4 Netzwerkmaßzahlen

Als zweites erfolgt eine Darstellung grundlegender deskriptiver Netzwerkmaßzahlen, um das Kleinwaffenhandelsnetzwerk zu beschreiben. Die Maßzahlen werden für jedes Jahr berechnet und als Zeitreihe dargestellt, um die zeitliche Entwicklung des Netzwerkes zu visualisieren. Abbildung 2.5 zeigt die zeitliche Entwicklung von Handelswert, Knotenanzahl, Kantenanzahl und Dichte des Netzwerkes. Betrachtet man zuerst die Zeitreihe der Handelswerte so stellt man fest, dass diese in den Jahren 1992 bis 2001 relativ konstant zwischen 1.5 und 2.5 Milliarden US Dollar verweilt, nach 2001 jedoch bis auf ca 4.5 Milliarden im Jahr 2008 ansteigt und anschließend auf diesem Level konstant bleibt. Die Zeitreihe der Anzahl der am Waffenhandel beteiligten Nationen steigt recht gleichmäßig zwischen Jahren 1992 und 2011. Lediglich zwischen 1993 und 1994 ist ein außergewöhnlich starker Anstieg von 170 auf 187 zu beobachten. Im Jahr 1997 ist die Anzahl der am Waffenhandel beteiligten Nationen auffallend von 186 auf 176 gesunken. Allerdings stellt sich gleich im Folgejahr wieder die ursprüngliche Anzahl ein. Das Maximum der Zeitreihe liegt mit 212 Nationen im Jahr 2008. Auch die Anzahl der Netzwerkkanten die der Anzahl der vollzogenen Waffentransaktionen zeigt einen regelmäßig steigenden Trend von ca 3000 im Jahr 1992 bis ca 7000 im Jahr 2011. Auch hier erkennen wir einen sprunghaften Anstieg zwischen 1993 und 1994 sowie ein einknicken im Jahr 1996. Die Dichte des Netzwerkes steigt in den Jahren 1992-1997 rasch von ca 0.04 auf 0.065 und stagniert anschließend auf einem Level zwischen 0.065 und 0.055.

2.5 Visualisierungen

In diesem Abschnitt wird versucht durch verschiedene Visualisierungen des Netzwerkes einen Überblick über mögliche Strukturen und Zusammenhänge des Kleinwaffenhandels zu erhalten. Da das Netzwerk recht groß ist erscheint es ratsam, die Länder in Gruppen aufzuteilen. Hierdurch erreicht man eine bessere Übersichtlichkeit der Grafiken. Dies geschieht mit Hilfe des R-Pakets countrycode [1]. Mit Hilfe der im Datensatz gegeben Correlates of War Country Codes und Zuordnungen der Vereinten Nationen weist dieses Paket jedem Land einen Kontinent und eine Region zu. In den beiden Grafiken 2.6 und 2.7 ist die Größe der Knoten proportional zum jeweiligen Degree (In-Degree + Out-Degree) gewählt. Die Breite der Kanten wiederum ist proportional zum monetären Wert der Handelsströme zwischen zwei Kontinenten beziehungsweise Regionen gewählt. Die Positionierung der Knoten wurde zur besseren Vergleichbarkeit der Jahre untereinander fixiert.

In Abbildung 2.6 erkennt man, dass Europa durchgängig mit dem größten Kreis markiert ist, also an mehr Handelsaktionen als die anderen Kontinente beteiligt ist. Amerika und Asien folgen auf den nächsten beiden Plätzen. Die Dicke der Kanten und damit der Geldfluss zwischen den Kontinenten variiert stark zwischen den Jahren. Hier ist kein gleichbleibendes Muster zu erkennen.

In Abbildung 2.7 zeigt sich ein ähnliches Bild. Die europäischen Regionen und Nordamerika scheinen die aktivsten Handelspartner zu sein, während immer wieder auch zwischen eher weniger aktiven Regionen große Geldsummen fließen und hier auch wieder kein konstantes Muster zu erkennen ist.

Abbildung 2.3: Zeitreihen der Handelswerte der Top-Exporteure/Importeure

Abbildung 2.4: Netzwerk im Wandel der Zeit

Abbildung 2.5: Deskriptive Maßzahlen des Kleinwaffenhandelsnetzwerkes 1992-2011

Abbildung 2.6: Handelsströme zwischen den Kontinenten von 1992-2011

Abbildung 2.7: Handelsströme zwischen den Regionen von 1992-2011

3 ERGM

3.1 Theorie

3.2 exogene Kovariablen

Es stehen folgende zusätzliche Daten zu Verfügung:

- Polity: Demokratiescore zwischen 0 und 10. Die Differenz zweier Länder wird als Kantenattribut verwendet.
- GDP: Bruttoinlandsprodukt der Länder in internationaler Dollar
- Conflict: Interne und externe Konflikte. Knotenattribut mit Score zwischen 0-10
- CINC: (Composite Index of National Capability) statistisches Mas für nationale Macht zwischen 0 und 1.
- Alliance: binäres Kantenattribut; Besteht ein militärisches Bündnis (1:Ja, 0:Nein)
- DirectCont: binäres Kantenattribut; Besteht ein direkte Grenze (1:Ja, 0:Nein)

3.3 endogene Statistiken

3.4 geschätzte Modelle

Als erster Versuch habe ich ein Modell gefitten, dass in ?? als Basismodell vorgeschlagen wird. Dieses Modell hat degeneriert. Deswegen habe ich versucht die Statistiken die für das Degenerieren verantwortlich sind zu finden, indem ich jede Statistik in einem seperaten Modell einzeln geschätzt und die Performance via mcmc.diagnostics überprüft habe (Tabelle 3.1.

ERGM TERM	MCMC Diagnose
edges	konvergiert
mutual	konvergiert
gwidegree(decay, fixed = T)	konvergiert nur mit decay nahe eins
gwidegree(decay, fixed = T)	degeneriert
gwdsp(fixed = T)	Konvergenz fraglich, lange Rechenzeit
gwesp(fixed = T)	Konvergenz fraglich, lange Rechenzeit
ctriple	$\operatorname{degeneriert}$

Tabelle 3.1: ERGM-Terms und ihre MCMC Diagnose

3 ERGM

Als Ersatz für die Statistiken deren Modell nicht konvergiert ist habe ich die Statistiken aus Tabelle 3.2 versucht:

ERGM TERM	MCMC Diagnose
ostar(2)	degeneriert
dsp(1)	konvergiert
esp(1)	konvergiert

Tabelle 3.2: Ersatz für ERGM Terms

Fasst man danach die Statistiken in ein Modell zusammen, so führt das zu extrem langer Rechenzeit. Deswegen schätze ich die Parameter der Statistiken wiederum in einzelnen Modellen der Form formular = (edge + ERGM TERM). Dies geschieht für alle im Datensatz vorhandenen Modelle und man erhält folgende Zeitreihen (Abbildung 3.1):

Abbildung 3.1: Zeitreihen der Parameterwerte

Als nächstes schätze ich das Modell aus meiner Vorgängerarbeit von Christian Schmidt und Christoph Jansen [2]: (Ergebnisse beispielhaft am Jahr 1991)

- endogene Statistiken: edges + gwodegree(1, fixed=F) + idegree(1) + dsp(0) + esp(0)
- exogene Kantenattribute: edgecov(Alliance) + edgecov(DirectCont) + edgecov(Polity)
- exogene Knotenattribute: nodeicov(GDP) + nodeocov(GDP) + nodeicov(CINC) + nodeocov(CINC) + nodeicov(Conflict))

3 ERGM

Probleme:

- endogene statistiken: Modell mit den Statistiken von Schmidt degeneriert!
- exogene Attribute:
 - ERGM kann mit fehlenden Werten nicht umgehen. Wir haben deswegen nach Absprache mit Christian alle fehlenden Werte auf 0 gesetzt.
 - Der Datensatz Conflict enthält teilweise mehrere Konflikte pro Jahr und Land.
 ERGM kann nur einen Wert verwenden. Nach Absprache mit Christian haben wir das Maximum (ßchwerster Konflikt") genommen.

Wir haben nun die exogenen Variablen wie Christian aufgenommen und zusätzlich alle endogenen Statistiken von denen wir wissen, dass sie funktionieren. Wir erhalten folgendes Modell:

- endogene Statistiken: edges + mutual + idegree(1) + esp(1) + dsp(1)
- Kantenattribute: edgecov(Alliance) + edgecov(DirectCont) + edgecov(Polity)
- Knotenattribute: nodeicov(GDP) + nodeocov(GDP) + nodeicov(CINC) + nodeocov(CINC) + nodeicov(Conflict))

Tabelle 3.3: summary of model fit

ergm-term	Estimate	Std.Error	p-Value
edges	-2.026e+00	7.044e-02	< 1e-04 ***
mutual	4.320e+00	9.790e-02	< 1e-04 ***
idegree1	4.906e+00	8.307e-01	< 1e-04 ***
esp1	-4.767e-01	3.730e-01	0.20128
dsp1	-1.922e-01	3.941e-02	< 1e-04 ***
${\it edgecov.} AAlliance[[1]]$	-1.507e-02	1.882e-02	0.42315
${\bf edgecov. ADirectCont}[[1]]$	3.943e-01	1.379e-01	0.00425 **
edgecov. APolity[[1]]	-3.201e-02	4.101e-03	< 1e-04 ***
$nodeicov.ext_gdp$	-2.683e-05	4.064e-05	0.50912
${\rm nodeocov.ext_gdp}$	-6.482e-05	4.159e-05	0.11915
$nodeicov.ext_cinc$	-2.677e+00	5.948e+00	0.65268
${\bf nodeocov.ext_cinc}$	-1.103e+01	$5.956 e{+00}$	0.06406 .
${\color{red} nodeicov.ext_conflict}$	-2.008e-03	1.976e-02	0.91906

row	Reporter_Name	Partner_Name	Year	Value	PRIO_Weapons_Code
328	Albania	Albania	2005	3366.00	223
346	Albania	Albania	2006	13355.00	223
4143	Australia	Australia	2004	586143.00	210
4161	Australia	Australia	2004	13241.00	223
4183	Australia	Australia	2004	721.00	227
4211	Australia	Australia	2004	4693884.00	260
4224	Australia	Australia	2004	48697.00	417
4257	Australia	Australia	2005	15054.00	210
4318	Australia	Australia	2005	3180066.00	260
4329	Australia	Australia	2005	639.00	417
4362	Australia	Australia	2006	42325.00	210
4396	Australia	Australia	2006	31458.00	227
4422	Australia	Australia	2006	2473903.00	260
4435	Australia	Australia	2006	682288.00	417
4466	Australia	Australia	2007	1431868.00	210
4528	Australia	Australia	2007	4132772.00	260
4579	Australia	Australia	2008	869812.00	210
4641	Australia	Australia	2008	2870285.00	260
4653	Australia	Australia	2008	6652.00	417
4692	Australia	Australia	2009	37710.00	210
4731	Australia	Australia	2009	8857.00	227
4758	Australia	Australia	2009	857590.00	260
4804	Australia	Australia	2010	19084.00	210
4839	Australia	Australia	2010	13162.00	227
4866	Australia	Australia	2010	580277.00	260
4876	Australia	Australia	2010	1836.00	417
4915	Australia	Australia	2011	283630.00	210
4955	Australia	Australia	2011	33770.00	227
4985	Australia	Australia	2011	4529308.00	260
9934	Belgium	Belgium	2010	1056327.00	223
9951	Belgium	Belgium	2010	27087.00	227
11189	Bosnia-Herzegovina	Bosnia-Herzegovina	2003	94087.00	417
13542	Bulgaria	Bulgaria	2011	472000.00	200
15412	Canada	Canada	2002	2397.00	227
15434	Canada	Canada	2002	823.00	260
15455	Canada	Canada	2002	91030.00	417
15567	Canada	Canada	2003	13484.00	260

	~ ,	~ .			
15586	Canada	Canada	2003	194230.00	417
15626	Canada	Canada	2004	11122.00	210
15698	Canada	Canada	2004	7179.00	260
15721	Canada	Canada	2004	221463.00	417
15848	Canada	Canada	2005	32756.00	417
15937	Canada	Canada	2006	7181.00	227
15967	Canada	Canada	2006	1616.00	260
15997	Canada	Canada	2006	355640.00	417
16085	Canada	Canada	2007	13454.00	227
16146	Canada	Canada	2007	208218.00	417
16178	Canada	Canada	2007	12.00	418
16201	Canada	Canada	2008	1000.00	210
16242	Canada	Canada	2008	60664.00	227
16268	Canada	Canada	2008	250.00	260
16292	Canada	Canada	2008	35525.00	417
16383	Canada	Canada	2009	23435.00	227
16408	Canada	Canada	2009	45762.00	260
16428	Canada	Canada	2009	24582.00	417
16509	Canada	Canada	2010	34898.00	223
16532	Canada	Canada	2010	78136.00	227
16566	Canada	Canada	2010	9716.00	260
16593	Canada	Canada	2010	938822.00	417
16691	Canada	Canada	2011	19734.00	227
16722	Canada	Canada	2011	6694.00	260
16745	Canada	Canada	2011	11456.00	417
16780	Canada	Canada	2011	10.00	418
21855	Cyprus	Cyprus	2001	157920.00	418
21957	Cyprus	Cyprus	2003	606.00	418
24043	Czech Republic	Czech Republic	2004	133060.00	200
28760	Estonia	Estonia	2007	5085.00	417
32299	France	France	2000	43412.00	223
32350	France	France	2000	361290.00	417
32375	France	France	2000	619970.00	418
32398	France	France	2001	89525.00	223
32424	France	France	2001	6714.00	227
32453	France	France	2001	82811.00	417
32473	France	France	2001	125337.00	418
32501	France	France	2002	16244.00	223
32525	France	France	2002	11601.00	227
32557	France	France	2002	11601.00	417
32577	France	France	2002	475712.00	418
32606	France	France	2003	2723.00	223
32632	France	France	2003	2723.00	227
32662	France	France	2003	1078653.00	417
32683	France	France	2003	1070481.00	418

32703	France	France	2004	990720.00	223
32728	France	France	2004	1937735.00	227
32759	France	France	2004	748867.00	417
32784	France	France	2004	1264627.00	418
32898	France	France	2006	79966.00	223
32925	France	France	2006	82722.00	227
32957	France	France	2006	24817.00	417
33016	France	France	2007	55657.00	223
33039	France	France	2007	131821.00	227
33080	France	France	2007	90809.00	417
33106	France	France	2007	29292.00	418
33130	France	France	2008	15382.00	223
33154	France	France	2008	153832.00	227
33183	France	France	2008	21535.00	417
33208	France	France	2008	24613.00	418
33237	France	France	2009	8619.00	223
33261	France	France	2009	20111.00	227
33293	France	France	2009	31603.00	417
33320	France	France	2009	301662.00	418
33406	France	France	2010	8121.00	417
33425	France	France	2010	2706.00	418
33472	France	France	2011	2782.00	227
33501	France	France	2011	11132.00	417
60737	Malaysia	Malaysia	2010	67114.00	418
68357	New Zealand	New Zealand	2008	5021.00	223
68378	New Zealand	New Zealand	2008	4422.00	227
68708	New Zealand	New Zealand	2011	648.00	227
84157	Slovakia	Slovakia	2002	115.00	260
84174	Slovakia	Slovakia	2002	28790.00	417
84230	Slovakia	Slovakia	2003	11114.00	260
84249	Slovakia	Slovakia	2003	37417.00	417
95974	Thailand	Thailand	2007	15078.00	210
96004	Thailand	Thailand	2007	320.00	227
96375	Thailand	Thailand	2011	11096.00	227
101434	United Kingdom	United Kingdom	2000	2663869.00	223
101462	United Kingdom	United Kingdom	2000	1450872.00	227
101507	United Kingdom	United Kingdom	2000	216810.00	418
101542	United Kingdom	United Kingdom	2001	3715829.00	223
101569	United Kingdom	United Kingdom	2001	503356.00	227
101646	United Kingdom	United Kingdom	2002	1602392.00	223
101671	United Kingdom	United Kingdom	2002	1051572.00	227
101702	United Kingdom	United Kingdom	2002	177831.00	417
101718	United Kingdom	United Kingdom	2002	374054.00	418
101752	United Kingdom	United Kingdom	2003	6230061.00	223
101782	United Kingdom	United Kingdom	2003	1625580.00	227

101811	United Kingdom	United Kingdom	2003	15105.00	417
101859	United Kingdom	United Kingdom	2004	8316031.00	223
101883	United Kingdom	United Kingdom	2004	2539407.00	227
101932	United Kingdom	United Kingdom	2004	6603.00	418
101967	United Kingdom	United Kingdom	2005	7487298.00	223
101996	United Kingdom	United Kingdom	2005	2504286.00	227
102027	United Kingdom	United Kingdom	2005	53655.00	417
102045	United Kingdom	United Kingdom	2005	6252.00	418
102085	United Kingdom	United Kingdom	2006	7520540.00	223
102115	United Kingdom	United Kingdom	2006	3570588.00	227
102148	United Kingdom	United Kingdom	2006	49884.00	417
102193	United Kingdom	United Kingdom	2007	7235351.00	223
102222	United Kingdom	United Kingdom	2007	3207893.00	227
102255	United Kingdom	United Kingdom	2007	22582.00	417
102305	United Kingdom	United Kingdom	2008	3432365.00	223
102333	United Kingdom	United Kingdom	2008	983561.00	227
102417	United Kingdom	United Kingdom	2009	3660097.00	223
102442	United Kingdom	United Kingdom	2009	1124347.00	227
102483	United Kingdom	United Kingdom	2009	22303.00	417
102540	United Kingdom	United Kingdom	2010	4121609.00	223
102564	United Kingdom	United Kingdom	2010	732804.00	227
102647	United Kingdom	United Kingdom	2011	4910676.00	223
102670	United Kingdom	United Kingdom	2011	1131532.00	227
102699	United Kingdom	United Kingdom	2011	25154.00	417

Tabelle 4.1: Auflistung der gelöschten Schleifen im Datensatz

Literaturverzeichnis

- [1] Vincent Arel-Bundock. countrycode: Convert Country Names and Country Codes, 2014. R package version 0.18.
- [2] Christoph Jansen and Christian Schmid. Eine statistische Analyse des Netzwerks des internationalen Waffenhandels von 1950-2012. Fakultät für Mathematik, Informatik und Statistik der Ludwig-Maximilians-Universität München, 2014.
- [3] Eric D Kolaczyk and Gabor Csardi. Statistical Analysis of Network Data with R. Springer New York, 2014.

Abbildungsverzeichnis

2.1	Boxplot für In- und Out-Degree in den Jahren 1992-2011	7
2.2	Vergleich der 1% teuersten Waffenkäufe mit den 99% billigsten $\ \ldots \ \ldots$	8
2.3	Zeitreihen der Handelswerte der Top-Exporteure/Importeure	13
2.4	Netzwerk im Wandel der Zeit	14
2.5	Deskriptive Maßzahlen des Kleinwaffenhandelsnetzwerkes 1992-2011 $$	15
2.6	Handelsströme zwischen den Kontinenten von 1992-2011	16
2.7	Handelsströme zwischen den Regionen von 1992-2011	17
3.1	Zeitreihen der Parameterwerte	19

Tabellenverzeichnis

2.1	Top-Exporteure des Netzwerks	9
2.2	Top-Importeure des Netzwerks	ç
2.3	Zentrale Akteure des Netzwerkes 1992	10
2.4	Zentrale Akteure des Netzwerkes 2011	1
3.2	ERGM-Terms und ihre MCMC Diagnose	19
4.1	Auflistung der gelöschten Schleifen im Datensatz	2^{2}

Eidesstattliche Erklärung

im Literaturverzeichnis aufgeführten Quelle	n und Hilfsmittel benutzt habe. Diese Arbeit
wurde noch nicht zu anderen prüfungsreleva	anten Zwecken vorgelegt.
Ort, Datum	$Felix\ Loewe$

Ich erklären hiermit, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die