

BC556 ... BC559 General Purpose PNP Transistors Universal-PNP-Transistoren

 $I_c = -100 \text{ mA}$ $h_{FE} \sim 120/200/400$

Pb

5000

 $V_{CEO} = -30 ... -65 V$ $P_{tot} = 500 mW$

Signalverarbeitung,

Schalten, Verstärken

Besonderheiten

Standardausführung 1)

Universell anwendbar

Konfliktmineralien 1)

Typische Anwendungen

 $T_{jmax} = 150$ °C

Version 2018-02-01

Typical ApplicationsSignal processing,
Switching, Amplification
Commercial grade ¹)

Features

General Purpose Three current gain groups Compliant to RoHS, REACH, Conflict Minerals ¹)

Mechanical Data 1)

(1) Taped in ammo pack 4000 (Raster 2.54)

(2) On request: in bulk (Raster 1.27, suffix "BK")

Weight approx.

Case material
Solder & assembly conditions

0.18 g UL 94V-0 260°C/10s (1) Gegurtet in Ammo-Pack (Raster 2.54)

Drei Stromverstärkungsklassen

Konform zu RoHS, REACH,

Mechanische Daten 1)

(2) Auf Anfrage: Schüttgut (Raster 1.27, Suffix "BK")

Gewicht ca. Gehäusematerial Löt- und Einbaubedingungen

MSL N/A

Current gain groups			Recommended complementary NPN transistors			
Stromverstärkungsgruppen			Empfohlene komplementäre NPN-Transistoren			
BC556A	BC556B	BC556C	BC546 BC549			
BC557A	BC557B	BC557C				
BC558A	BC558B	BC558C				
BC559A	BC559B	BC559C				

Maximum ratings ²) Grenzwerte ²)

			BC556	BC557	BC558/559
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	E-B short	- V _{CES}	80 V	50 V	30 V
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	B open	- V _{CEO}	65 V	45 V	30 V
Emitter-Base-voltage – Emitter-Basis-Spannung	E open	- V _{CBO}	80 V	50 V	30 V
Emitter-Base-voltage – Emitter-Basis-Spannung	C open	- V _{EBO}		5 V	
Power dissipation – Verlustleistung		P_{tot}		500 mW ³)	
Collector current – Kollektorstrom	DC	- I _C		100 mA	
Peak Collector current – Kollektor-Spitzenstrom		- I _{CM}		200 mA	
Peak Base current – Basis-Spitzenstrom		- I _{BM}		200 mA	
Peak Emitter current – Emitter-Spitzenstrom		I_{EM}		200 mA	
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T _j Ts		-55+150°C -55+150°C	

¹ Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches

² $T_A = 25$ °C, unless otherwise specified – $T_A = 25$ °C, wenn nicht anders angegeben

Valid, if leads are kept at ambient temperature at a distance of 2 mm from case Gültig wenn die Anschlussdrähte in 2 mm Abstand vom Gehäuse auf Umgebungstemperatur gehalten werden

Characteristics Kennwerte

DC current gain – Kollektor-Basis-Stromverhältnis ¹)	$T_j = 25$ °C	Min.	Тур.	Mess
DC current gain Kolloktor Pacie Stromyorhältnis 1)			1 % P.	Max.
DC current gain - Rollektor-basis-strontivernaturis)				
- $V_{\text{CE}} = ~5 \text{ V}$ - $I_{\text{C}} = 10 \ \mu\text{A}$ Group A Group B Group C	h _{FE}	- - -	90 150 270	- - -
- I_c = 2 mA Group A Group B Group C	h _{FE}	110 200 420	_ _ _	220 450 800
- I_{C} = 100 mA	h _{FE}	- - -	120 200 400	- - -
Collector-Emitter cutoff current – Kollektor-Emitter-Reststro	m			
$ - V_{CE} = \begin{array}{c} 80 \text{ V} & BC556 \\ 50 \text{ V} & B-E \text{ short} & BC557 \\ 30 \text{ V} & BC558 \text{ /} \end{array} $	- I _{CES}	_	0.2 nA	15 nA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- I _{CES}	_	_	4 μΑ
Collector-Emitter saturation voltage – Kollektor-Emitter-Sätt	igungsspg. 1)			
$ \begin{array}{lll} \text{- } I_{\text{C}} = 10 \text{ mA} & \text{- } I_{\text{B}} = 0.5 \text{ mA} \\ \text{- } I_{\text{C}} = 100 \text{ mA} & \text{- } I_{\text{B}} = 5 \text{ mA} \end{array} $	- V _{CEsat}	_ _	80 mV 250 mV	300 mV 650 mV
Base-Emitter saturation voltage – Basis-Emitter-Sättigungss	pannung ¹)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- V _{BEsat}	<u>-</u>	700 mV 900 mV	- -
Base-Emitter-voltage – Basis-Emitter-Spannung ¹)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- V _{BE}	600 mV –	660 mV –	750 mV 820 mV
Gain-Bandwidth Product – Transitfrequenz				
- V_{CE} = 5 V, - I_{C} = 10 mA, f = 100 MHz		-	150 MHz	-
Collector-Base Capacitance – Kollektor-Basis-Kapazität				
- V_{CB} = 10 V , I_E = i_e = 0, f = 1 MHz		-	3.5 pF	6 pF
Emitter-Base Capacitance – Emitter-Basis-Kapazität				
- V_{EB} = 0.5 V, I_C = i_c = 0, f = 1 MHz		-	10 pF	-
Noise figure – Rauschzahl	ı			
$-$ V _{CE} = 5 V, $-$ I _C = 200 μA, R _G = 2 kΩ BC556 BC558 f = 1 kHz, Δf = 200 Hz BC559		- -	2 dB 1 dB	10 dB 4 dB
Thermal resistance junction to ambient Wärmewiderstand Sperrschicht – Umgebung		< 200 K/W ²)		

Disclaimer: See data book page 2 or website Haftungssauschluss: Siehe Datenbuch Seite 2 oder Internet

2 http://www.diotec.com/ © Diotec Semiconductor AG

Tested with pulses t_p = 300 μ s, duty cycle \leq 2% - Gemessen mit Impulsen t_p = 300 μ s, Schaltverhältnis \leq 2% Valid, if leads are kept at ambient temperature at a distance of 2 mm from case Gültig wenn die Anschlussdrähte in 2 mm Abstand vom Gehäuse auf Umgebungstemperatur gehalten werden