

Extraordinario de septiembre

Fecha:	Nombre:	Estrada Chimborazo, Cristofer A.	

Tiempo: 80 minutos

Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{a}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ $\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{2} \ge x \end{cases}$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- 4. Dado el triángulo de vértices A=(-2,-1), B=(0,-3) y C=(2,1) que es (2 puntos) acutángulo. Calcula:
 - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante" (2 puntos) ladora":
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Fidalgo	Chesa.	Jorge	

Tiempo: 80 minutos Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{2}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{2}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- 4. Dado el triángulo de vértices A=(-2,-1), B=(0,-3) y C=(2,1) que es (2 puntos) acutángulo. Calcula:
 - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula dora": (2 puntos)
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Fuentes De La	Cal Rubén
recha.	_ 140IIIDI e•	. ruemes de da	Oai, Huben

Tiempo: 80 minutos

Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{2}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula d'acceptation de la calcula "sin usar la calcula" "sin usar la calcula "sin usar la calcula" "sin usar la calcula "sin usar la calcula" "s
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Gracia E	Bardají,	Sofía	
--------	---------	----------	----------	-------	--

Tiempo: 80 minutos Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante": (2 puntos)
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Tiempo: 80 minutos

Departamento de Matemáticas 1º Bachillerato

Tipo: A

Extraordinario de septiembre

Fecha:	Nombre:	Gracia Gonzalvo,	Alba

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- 4. Dado el triángulo de vértices A=(-2,-1), B=(0,-3) y C=(2,1) que es (2 puntos) acutángulo. Calcula:
 - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula dora": (2 puntos)
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha: Nombre:	_ Lünser, Florian
----------------	-------------------

Tiempo: 80 minutos Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ $\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases}$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante" (2 puntos) ladora":
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Nevado Cros, Eva	
Tiempo: 80 mi	nutos		Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{2}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante" (2 puntos) ladora":
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Roca Jordán, Jorge	
Tiempo: 80 minu	ıtos		Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{2}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{2}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula dora": (2 puntos)
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Ruesca Herrera, Roberto	_

Tiempo: 80 minutos Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{2}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante" (2 puntos) ladora":
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha:	Nombre:	Ruiz Gutiérrez, Andrea ₋	
Tiempo: 80 min	nutos		Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ $\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases}$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- 4. Dado el triángulo de vértices A=(-2,-1), B=(0,-3) y C=(2,1) que es (2 puntos) acutángulo. Calcula:
 - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula "ladora": (2 puntos)
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

Extraordinario de septiembre

Fecha: Nombre: Serrano Lasheras, Ada	rián
--------------------------------------	------

Tiempo: 80 minutos Tipo: A

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{1}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$
- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$
- 3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

- - (a) la longitud de sus lados (b) sus ángulos
- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcula "cuadrante" (2 puntos) ladora":
 - (a) $\cos \alpha$ (b) $\tan \alpha$ (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11ºC. ¿Es fiable la estimación obtenida?

(1 punto)

- 7. Dos máquinas se usan para producir tornillos. La máquina A produce el 70 % de todos los tornillos. El 2 % de todos los tornillos producidos por la máquina A son defectuosos, mientras que el 3 % de los producidos por la máquina B son defectuosos. Se selecciona un tornillo al azar de entre todos los producidos. Calcular:
 - (a) La probabilidad de que sea defectuoso

(1 punto)

- (b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.
- (1 punto)
- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

(b) Calcula la probabilidad de que enceste al menos 1

- (1 punto)
- (c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros
- (1 punto)

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

(b)
$$q^{-1}(x)$$
. Es decir, la inversa de q

(1 punto)

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

- (a) Dominio de f(x)
- (b) Asíntotas verticales, horizontales y oblicuas, en caso que existan