

Kryptographie: Einführung

Symmetrische und asymmetrische Systeme Verschlüsselung und Authentikation Schlüsselverteilung und Schlüssellängen

Kriterien zur Einteilung von Kryptosystemen

- Kryptographische Basisbausteine
 - Konzelationssysteme
 - Authentikationssysteme
 - Hashfunktionen
 - Pseudozufallszahlengeneratoren
- Schlüsselbeziehung Sender-Empfänger
 - Symmetrische Systeme
 - Asymmetrische Systeme

- Blockchiffre: Operiert auf Blöcken von Zeichen
- Stromchiffren: Operiert auf einzelnen Zeichen
- Längentreue
- Erreichbare Sicherheit

Anwendungsfall x Schlüsselbeziehung

	Konzelation (Verschlüsselung)	Authentikation
symmetrische	One-time-pad, DES, Triple-DES, AES, IDEA, A5/1 (GSM), A5/2 (GSM) GnuPG/PGP WPA2 IPSec SSL/TLS	Symmetrische Authentikationscodes, CCM, A3 (GSM), SecurID WPA2 IPSec SSL/TLS
asymmetrische	RSA, ElGamal, McEliece, GnuPG/PGP HBCI SSL/TLS	RSA, ElGamal, DSA, GMR, GnuPG/PGP HBCI SSL/TLS

Algorithmus

Anwendung

Erreichbare Sicherheit

- Sicherheit
 - (informations) theoretisch sicher
 - kryptographisch stark (beweisbar)
 - gegen aktive Angriffe
 - gegen passive Angriffe
 - wohluntersucht (praktisch sicher)
 - Chaos
 - Zahlentheorie
 - geheim gehaltene
- Kerckhoffs-Prinzip
 - Die Sicherheit eines kryptographischen Verfahrens soll von der Geheimhaltung des kryptographischen Schlüssels abhängen.
 - Geht zurück auf Auguste Kerckhoffs: La Cryptographie militaire, 1883

komplexitätstheoretisch sicher

Angriffsarten und Sicherheitskriterien

Was kennt der Angreifer, was kann er wählen oder verändern?

- Adaptively:
 - Der Angreifer kann in Abhängigkeit vorheriger gewählter Nachrichten neue Nachrichten wählen
- Non-adaptively:
 - Der Angreifer muss alle Nachrichten zu Beginn wählen, kann also nicht abhängig vom Verschlüsselungsergebnis, weitere Nachrichten wählen.

Angriffsarten und Sicherheitskriterien

- Was wird durch den Angriff erreicht?
 oder: Brechen = Fälschen | Entschlüsseln
 - Vollständiges Brechen: Finden des Schlüssels
 - Universelles Brechen: Finden eines zum Schlüssel äquivalenten Verfahrens
 - Nachrichtenbezogenes Brechen: Brechen für einzelne
 Nachrichten, ohne den Schlüssel selbst in Erfahrung zu bringen
 - selektives Brechen: für einen bestimmten vom Angreifer abgefangene Nachricht
 - existenzielles Brechen: für irgendeine Nachricht
 - Aufwand/Kosten:
 - Einmalige Kosten, jeder Schlüssel effizient knackbar
 - Jeder Angriff verursacht Kosten beim Angreifer

Hashfunktionen

- Abbildung h: X -> Y
 - Einwegfunktion (auch: Falltürfunktion)
 - Umkehrfunktion nicht effizient berechenbar

- Hashfunktionen sind verkürzend:
 - Beliebig lange Inputs werden auf Output bestimmter Länge

abgebildet (z.B. MD5: 128 Bit)

- Kollision:
 - h(x1) = h(x2) mit x1 != x2

- Kryptographische Hashfunktionen sind kollisionsresistent:
 - nicht mit vertretbarem Aufwand möglich, eine Kollision gezielt herbeizuführen, z.B. Finden eines x2 zu einem gegebenen h(x1)

Symmetrische Verschlüsselung

Undurchsichtiger Kasten mit Schloss. Es gibt zwei gleiche Schlüssel.

Schlüsselverteilung für symmetrische Systeme

Schlüsselaustausch:

 A und B tauschen zunächst (offline) jeweils symmetrischen Schlüssel mit Z aus:

Z generiert auf Anforderung einen symmetrischen
 Kommunikationsschlüssel k und verschlüsselt diesen für A und B:

$$K_{AZ}(k) \rightarrow A$$

 $K_{BZ}(k) \rightarrow B$

A und B entschlüsseln k

Kommunikation:

 Sender verschlüsselt Nachricht N mit k: k(N)

Dezentralisierte Variante

- Dezentralisierte Schlüsselverteilung ist möglich
- Ziel: Alle beteiligten Schlüsselverteilzentralen müssen zusammen arbeiten, damit sie den Kommunikationsschlüssel k erfahren
- Überlagerung der Teilschlüssel z.B. mit XOR-Verknüpfung

Asymmetrische Verschlüsselung Zufallszahl z geheimer Bereich Schlüssel-(c,d):=gen(z) generie-Chiffrierschlüssel. rung öffentlich bekannt Dechiffrierschlüssel, geheimgehalten Ver-Schlüsseltext s Ent-**Klartext** Klartext schlüsseschlüssec(x)**X** lung lung s:=enc(x,c) oder x:=dec(s,d) oder Zufalls**x**:=**d**(**s**) s := c(x)zahl r > 100 Bit Vertrauensbereich (indeterministische **Angriffsbereich** des Empfängers Verschlüsselung) Kasten mit Schnappschloss. Es gibt nur einen Schlüssel.

Schlüsselgenerierung

Erzeugung einer Zufallszahl z für die Schlüsselgenerierung:

XOR aus

- z₁, einer im Gerät erzeugten,
- z₂, einer vom Hersteller gelieferten,
- z₃, einer vom Benutzer gelieferten,
- z_n, einer aus Zeitabständen errechneten.

Zertifizierung des öffentlichen Schlüssels

Zertifizierungsstelle (Certification Authority) CA

1. A lässt ihren öffentlichen Chiffrierschlüssel c_A nach Identitätsprüfung eintragen und erhält ein Schlüsselzertifikat $sig_{CA}(A, c_A)$ zurück.

3. B prüft das Schlüsselzertifikat (Signatur von CA) und fragt ggf. bei der CA, ob der Schlüssel noch gültig ist

2. B besorgt sich den öffentlichen Chiffrierschlüssel von A, konkret: $sig_{CA}(A, c_A)$.

c_A(Nachricht an A)

4. B verschlüsselt seine Nachricht mit dem öffentlichen Chiffrierschlüssel von A.

Teilnehmer B

Warum ist die Schlüsselbeglaubigung so wichtig?

Alice hat Schlüsselpaar generiert und will ihn veröffentlichen

Alice <alice@abc.de>

----BEGIN PGP PUBLIC KEY BLOCK---mQGiBDQyJk0RBADVPjcdvwmy0tqsZBt6z4/5M9MYDB
i+dYNnyiSQEBXQcH/RGe2i30LRvRk4asX++JSTylku
8LMOlYorgW+lbmsVNXeQSdmbSAUfd3d9bI/+fGwQcz
6W8lIw2zyQkfDaF7xPI7oVZUY1I7cqEfTvic003bgL
sUZytg1nEfxqifxgukKj01066wVmqlnXcbi2XUebka
L0ViFDNkla2aw590ZW59gf5I0eUBevSmydIaliH9Pm

----END PGP PUBLIC KEY BLOCK

Angreifer:

- hält c_{Alice} zurück (blockiert Verteilung)
- generiert selbst Schlüsselpaar c_{Mask}, d_{Mask} unter falschem Namen
- schickt c_{Mask} an Bert

Bert besitzt jetzt nicht authentischen Schlüssel von Alice

Alice <alice@abc.de>

----BEGIN PGP PUBLIC KEY BLOCK---OTUAoLncfli6Yit0Kqgp/N9h37uopJHbiQCVAw
xBBPLRdmalP22ij0dARxbJLO7u7XOrnyV3b4m0
14ydps/ruj9yaY62BwQNMEoGjAnZGA5t3MMGDF
7ZLp1dmFYYVYPL4xRf0J+MF5ifb8RXaDAl+lP8
CwMBAgAKCRDhQCBhSe8dhOYYAJsEEURK2o+VsA
u64hb02wuFQlwwq1yb+JAD8DBRA0OPtk7V9cne
----END PGP PUBLIC KEY BLOCK----

Maskerade-Angriff (2)

Bert will Alice eine Nachricht N

<u>Alice</u> erhält Nachricht N verschlüsselt mit ihrem öff. Schlüssel

- Ohne die Gewissheit über die Echtheit eines öffentlichen Schlüssels funktioniert keine sichere asymmetrische Kryptographie
- Deshalb: Schlüsselzertifizierung

Symmetrische Authentikation

Glasvitrine mit Schloss. Es gibt zwei gleiche Schlüssel.

Challenge-Response-Authentikation

- Frage-Antwort-Verfahren
 - meist basierend auf symmetrischem Authentikationssystem
 - A soll sich vor B authentisieren

Gegenseitige Authentikation

Gegenseitige Authentikation

- Aktiver Angriff auf gegenseitige Authentikation auf der Basis symmetrischer Kryptosysteme
 - Angreifer M maskiert sich als A, kennt K nicht

Digitales Signatursystem

Glasvitrine mit Schloss. Es gibt nur einen Schlüssel.

Zertifizierung des öffentlichen Testschlüssels

Zertifizierungsstelle (Certification Authority) CA

1. A lässt t_A, den Schlüssel zum Testen seiner Signatur, nach Identitätsprüfung eintragen und erhält ein Schlüsselzertifikat sig_{CA}(A, t_A) zurück.

3. B besorgt sich ggf. sig_{CA}(A, t_A), prüft (Signatur von CA) und fragt, ob t_A noch gültig ist.

2. A signiert ihre Nachricht N mit t_A und schickt in manchen Systemen das Zertifikat gleich mit.

 $N, s_A(N), sig_{CA}(A, t_A)$

Teilnehmer B

Schlüssellängen

Beispielrechnung:

- 56 Bit (DES) sind heute unsicher.
- 56 Bit Schlüssellänge → 2^{56} mögliche Schlüssel (ca. $7 \cdot 10^{16}$)
- Ausprobieren eines Schlüssels dauere 1 Nanosekunde (10-9 s)
- Ausprobieren aller Schlüssel dauert dann: $2^{56} \cdot 10^{-9}$ s = 72057594 s = 2,28 Jahre

Symmetrische Systeme:

- Vergrößerung des Schlüssels um 1 Bit bedeutet Verdoppelung des Schlüsselraumes
- Schlüssellängen: 128–256-Bit auf »absehbare Zeit« sicher
- jeder Schlüssel aus Sicht des Angreifers gleichwahrscheinlich

Asymmetrische Systeme:

- meist Vergrößerung des Zahlenbereichs nötig, da nur bestimmte Zahlen (z.B. Primzahlen) Schlüssel sein können
- Schlüssellängen: 1024-4096 Bit, elliptische Kurven: ca. 160 Bit

Vollständiges Durchsuchen (brute-force, exaustive search)

- Angriff über Supercomputer und künftig Quantencomputer
 - betrifft nur komplexitätstheoretisch sichere Systeme
- Schutz gegen Supercomputer
 - Schlüssel ausreichend lang wählen
- Schutz gegen Quantencomputer
 - symmetrisch: Schlüssellänge verdoppeln auf mind. 256 Bit
 - asymmetrisch: [post-quantum cryptography]

	Key	Complexity		
	lengths	Super Computer	Quantum Computer	nach: Bernstein, Buchmann, Dahmen: Post Quantum Cryptography. Springer, 2009
Symm.	128 Bit	2 ¹²⁷	2 ⁶⁴	Grover, 1996
	256 Bit	2 ²⁵⁵	2 ¹²⁸	
Asymm.	1024 Bit	≈ 2 ⁹⁰	≈ 2 ²⁵	Char 1004
	2048 Bit	≈ 2 ¹¹⁷	≈ 2 ²⁸	Shor, 1994

Vergleich: symmetrische-asymmetrische Systeme

- Wieviele Schlüssel müssen bei n Teilnehmern ausgetauscht werden?
 - symmetrische Systeme:
 - asymmetrische Systeme:
- Typische Schlüssellängen: (bei vergleichbarem Sicherheitsniveau)

symmetrische Systeme: 128–256 Bit

asymmetrische Systeme: 1024–4096 Bit

Elliptische Kurven: ca. 160 Bit

- Performance:
 - symmetrische Systeme ver- bzw. entschlüsseln etwa um den Faktor 100–10.000 schneller
- Asymmetrische Systeme: Geringere Effizienz und größere Schlüssellängen werden aufgewogen durch den stark vereinfachten Schlüsselaustausch

Hybride Kryptosysteme

- Kombiniere
 - einfachen Schlüsselaustausch der asymmetrischen Systeme
 - hohe Verschlüsselungsleistung der symmetrischen Systeme
- Verfahren
 - Asymmetrisches Kryptosystem wird zum Austausch eines symmetrischen Sitzungsschlüssels k (session key) verwendet.
 - Eigentliche Nachricht N wird mit k verschlüsselt.
- Nur sinnvoll, wenn N deutlich länger als wenige Bit ist.

Pretty Good Privacy (PGP) und Gnu Privacy Guard (GnuPG)

```
Deutlicher jedoch nähert sich das Präludium g-moll der
Toccatta mit einem zwischen rahmende Pfeiler
gestell
        ----BEGIN PGP MESSAGE----
        Version: GnuPG v1.4.8 (Darwin)
in des
        Comment: Generated by Gpq Tools - http://www.tomsci.com/gpgtools
eine De
element
        hQIOA2ThYnqS
entdecl
                      ----BEGIN PGP SIGNED MESSAGE----
        wDDhe4Dk9kwa
                      Hash: SHA1
        Q7baKGRNBQhV
        b4ASOc+2ov6U
                      Deutlicher jedoch nähert sich das Präludium g-moll der Toccatta
        /pRli9HAWXjb
                      mit einem zwischen rahmende Pfeiler gestellten, ausgedehnten
        I/9Fh26iPoLJ
                      improvisatorischen Mittelteil, in dessen figurativer Sequenzierung
        hD9HKNS1YYWN
                      Bach mit einer über eine Dezime chromatisch absteigenden Skala die
        aM910fL/9qeu
                      elementare Farbigkeit der enharmonischen Umdeutungen entdeckte.
        DQjn6INv4+qM
                      ----BEGIN PGP SIGNATURE----
        FDw9h8a2qCsO
                      Version: GnuPG v1.4.8 (Darwin)
        kLikFpvstFtC
                      Comment: Generated by Gpg Tools - http://www.tomsci.com/gpgtools
        Odlazaf/RDO0
        JCODyK919jBw
                      iEYEARECAAYFAkjh9yQACqkQ4UAqYUnvHYSahQCfaWrrHl19s4tXeFToa6aQPryw
        WjuTZfGOOGtv
                      TX4AoL717WQHHXPzxVG6SX9fSOAskCzn
        Vaml6/s2j1uf
                      =Ebit
        17kM72jIz83w
                      ----END PGP SIGNATURE----
        f6Y3FnF9DJUkmikiuapooxobiyiapouaniivjbzwyyxwimpypoicfokialovolecu
        yZ6R+PS0q6c=
        = x491
        ----END PGP MESSAGE----
                                                          http://www.pgpi.net
                                                          http://www.gnupg.org
```

27

Key Recovery und Key Escrow

Key Recovery

- Hinterlegung des Entschlüsselungsschlüssels zum Zweck der Entschlüsselbarkeit bei Schlüsselverlust.
- Schwellwertschema: Schlüssel wird in n+k Teile zerlegt. Zur Rekonstruktion werden wenigstens n Teile benötigt.

Key Escrow

- Hinterlegung des Entschlüsselungsschlüssels zum Zweck der Strafverfolgung.
- so dass alle Nachrichten ab einem bestimmten Zeitpunkt entschlüsselt werden können
- so dass Nachrichten auch rückwirkend entschlüsselt werden können

Beachte

- Signaturschlüssel müssen nie hinterlegt werden, da eine Signatur stets testbar bleibt.
- Bei Verlust des Signierschlüssels: neuen erzeugen.

Key Recovery

Visuelle Kryptographie

- Symmetrisches Verfahren
 - Symmetrischer Schlüssel: Sender und Empfänger erzeugen sich Zufallsmuster aus zwei »Basismustern«: ■□
- Visuelle Botschaft:
 - Sender verwendet negiertes Muster für schwarze Bildpunkte
 - Für »weiße« Bildpunkte: keine Veränderung

Sicherheitsfunktionen nach Schichten geordnet

Kommunikations- schicht im OSI- Referenzmodell	Sicherheitsfunktion
Anwendungsschicht	Pretty Good Privacy (PGP), S/MIME (Secure Multipurpose Internet Mail Extensions), Secure Shell (SSH)
Transportschicht	Secure Sockets Layer/Transport Layer Security (SSL/TLS)
Vermittlungsschicht	Authentication Header (AH) zur Integritätssicherung von Datagrammen, Encapsulated Security Payload (ESP) zur Verschlüsselung von Datagrammen
Schichten 1/2	Challenge Handshake Protocol (CHAP, Passwort), Encrypt Control Protocol (ECP), WiFi Protected Access (WPA) 2

Verschlüsselung in Schicht 1/2

- Verschlüsselung nur bis zum nächsten Router (Verbindungsverschlüsselung)
 - Nicht alle Teilstrecken müssen verschlüsselt sein
 - Wenig Kontrolle durch den Endnutzer

Verschlüsselung in Vermittlungsschicht: IPSec

- Transportmodus
 - Verbindungs- und Ende-zu-Ende-Verschlüsselung möglich

Verschlüsselung in Vermittlungsschicht: IPSec

- Transportmodus
 - Verbindungs- und <u>Ende-zu-Ende-Verschlüsselung</u> möglich

Verschlüsselung in Vermittlungsschicht: IPSec

- Tunnelmodus
 - Momentane Hauptanwendung: Virtuelles Privates Netz

Verschlüsselung in Transportschicht: SSL/TLS

- Anwendung:
 - Verschlüsselung von TCP-Verbindungen
 - von Netscape entwickelt
 - in jeden modernen Browser integriert

Vergleich SSL – IPSec

	SSL	IPSec
Komplexität	hoch	gering
Anwendungsnähe	hoch	gering
Für VPNs geeignet?	nein	ja
Für paketorientierte Dienste geeignet?	nein	ja
Für verbindungsorientierte Dienste geeignet?	ja	ja

Verschlüsselung in Anwendungsschicht

• Ende-zu-Ende-Verschlüsselung zwischen Client und Server

Verbindungsverschlüsselung

- Verbindungsverschlüsselung: (meist symmetrische Verschlüsselung)
 - zwischen Netzabschluss und Vermittlungsstelle
 - zwischen Vermittlungsstelle und Vermittlungsstelle
- In Vermittlungsstelle liegt Klartext vor
- Anwendungsgebiete:
 - Virtuelle Private Netze (VPN)
 - Leitungsverschlüsselung in Telekommunikationsnetzen

mögliche Angreifer: Abhörer

Vermittlungsstellen

- Betreiber
- Hersteller (Trojanische Pferde)
- Angestellte

Ende-zu-Ende-Verschlüsselung

- Ende-zu-Ende-Verschlüsselung der Inhalte
 - von Endgerät zu Endgerät
- Anwendungsgebiete:
 - E-Mail-Verschlüsselung
 - Pretty Good Privacy (PGP)
 - Secure Sockets Layer (SSL)
- Adressierungsinformation kann nicht mit verschlüsselt werden

Verbindungs- und Ende-zu-Ende-Verschlüsselung

- Kombination von Verbindungs- und Ende-zu-Ende-Verschlüsselung
 - Ende-zu-Ende-Verschlüsselung allein schützt nicht die Adressierungsdaten vor Außenstehenden
 - zusätzliche Verbindungsverschlüsselung sinnvoll
- Restproblem Verkehrsdaten:
 - Netzbetreiber kann weiterhin feststellen, wer mit wem, wann, wie lange, wo, wieviel Information ausgetauscht hat

