Examen ianuarie 2022

Indicaţii:

• În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f;
- un simbol de constantă c.

Partea I. Probleme cu rezolvare clasică

(P1) [1,5 puncte] Fie A, E astfel încât $A \subseteq E$, A este cel mult numărabilă, iar E nu este cel mult numărabilă. Arătați că $E \setminus A$ nu este cel mult numărabilă.

(P2) [1,5 puncte] Să se definească, folosind Principiul recursiei pe formule, funcția Var ce asociază fiecărei formule din logica propozițională mulțimea variabilelor sale.

(P3) [1,5 puncte] Fie LP logica propozițională. Pentru orice $k \in \mathbb{N}$, definim evaluarea $e_k : V \to \{0,1\}$ astfel: pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) := \begin{cases} 0, & \text{dacă } n = k; \\ 1, & \text{dacă } n \neq k. \end{cases}$$

Notăm $\mathcal{E} := \{e_k \mid k \in \mathbb{N}\}$. Să se arate că nu există $\Sigma \subseteq Form$ astfel încât $Mod(\Sigma) = \mathcal{E}$.

(P4) [1,5 puncte] Fie Γ , Δ mulțimi de formule ale logicii propoziționale astfel încât Δ este finită și $Mod(\Gamma) = Mod(\Delta)$. Să se arate că există o submulțime finită Σ a lui Γ astfel încât $Mod(\Gamma) = Mod(\Sigma)$.

(P5) [1,5 puncte] Fie \mathcal{L} un limbaj de ordinul I și Γ o mulțime de \mathcal{L} -enunțuri. Să se arate că pentru orice teorie T cu $\Gamma \subseteq T$ avem $Th(\Gamma) \subseteq T$.

(P6) [1,5 puncte] Fie \mathcal{L} un limbaj de ordinul I, ψ o \mathcal{L} -formulă și $z \in V$. Să se arate că $\forall z \psi \models \psi$.

Partea II. Probleme de tip grilă

(P7) [1 răspuns corect] Fie următoarea formulă:

$$\varphi := (v_1 \vee v_2) \to (v_3 \to \neg v_2)$$

Care dintre următoarele afirmații este adevărată? \square A: $(v_1 \lor v_2 \lor v_3) \land (v_2 \lor \neg v_3)$ este FND a lui φ . \square B: $(v_1 \wedge v_2) \vee (v_1 \wedge v_3) \vee (v_2 \wedge v_3)$ este FND a lui φ . \square C: $(\neg v_1 \land \neg v_2 \land \neg v_3) \lor \neg v_2 \lor v_3$ este FND a lui φ . \square D: $(\neg v_1 \land \neg v_3) \lor (\neg v_3 \land \neg v_2)$ este FND a lui φ . \square E: $(\neg v_1 \land \neg v_2) \lor \neg v_3 \lor \neg v_2$ este FND a lui φ . (P8) [2 răspunsuri corecte] Fie următorul enunț în \mathcal{L} : $\varphi := \exists x \forall y \exists z \forall v (S(x) \to (R(y,z) \lor (\neg S(v) \to T(z))))$ Care dintre următoarele formule sunt forme normale Skolem pentru φ ? \square A: $\forall y \forall v(S(d) \rightarrow (R(y, m(y))) \lor (\neg S(v) \rightarrow T(m(y))))$, unde d este simbol nou de constantă, iar m este simbol nou de operație unară. \square B: $\forall y \forall v(S(l) \rightarrow (R(y,l) \vee (\neg S(l) \rightarrow T(n))))$, unde l și n sunt simboluri noi de constante. \square C: $\forall y \forall v (S(n(y)) \rightarrow (R(y,z)) \lor (\neg S(v) \rightarrow T(l)))$, unde l este simbol nou de constantă, iar n este simbol nou de operație unară. \square D: $\forall y \forall v(S(l) \rightarrow (R(y, n(y)) \lor (\neg S(v) \rightarrow T(n(y)))))$, unde l este simbol nou de constantă, iar n este simbol nou de operație unară. \square E: $\forall y \forall v(S(n(y)) \rightarrow (R(y,l)) \lor (\neg S(v) \rightarrow T(l)))$, unde l este simbol nou de constantă, iar n este simbol nou de operație unară. (P9) [1 răspuns corect] Fie următoarea formulă: $\psi := (v_1 \vee v_2) \rightarrow \neg (\neg v_3 \wedge \neg v_1)$ Care dintre următoarele afirmații este adevărată? \square A: $\neg v_1 \lor \neg v_2 \lor \neg v_3$ este FNC a lui ψ . \square B: $(\neg v_1 \lor \neg v_2 \lor \neg v_3) \land (\neg v_1 \lor v_2 \lor \neg v_3)$ este FNC a lui ψ . \square C: $v_1 \vee \neg v_2 \vee v_3$ este FNC a lui ψ . \square D: $v_1 \lor v_2 \lor \neg v_3$ este FNC a lui ψ . \square E: $\neg v_1 \lor v_2 \lor v_3$ este FNC a lui ψ . (P10) [2 răspunsuri corecte] Fie următoarea mulțime de clauze: $S = \{\{v_0\}, \{\neg v_0, v_1\}, \{\neg v_2\}, \{v_1, v_2\}, \{v_2, \neg v_0\}\}$ Aplicând algoritmul Davis-Putnam pentru intrarea S și alegând succesiv $x_1 := v_0, x_2 := v_1$ $x_3 := v_2$ obtinem: \square A: $U_2 = \emptyset$. \square B: $\mathcal{S}_4 = \emptyset$. \square C: $\{v_0, v_0 \to v_1, \neg v_2, v_1 \lor v_2\} \vDash v_2 \land v_0$. \square D: $U_3 = \{\{v_2\}\}$. \square E: $\{v_0, v_0 \rightarrow v_1, \neg v_2, v_1 \lor v_2\} \vDash \neg v_2 \land v_0$. (P11) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} : $\varphi := \exists x (\forall y S(y) \land \forall y \neg R(x,y)) \rightarrow (\exists x \forall y \neg R(x,y) \lor \exists x T(x))$ Care dintre următoarele afirmații este adevărată?

 \square A: $\forall x \exists y \exists u \forall v((S(y) \land \neg R(x,y)) \rightarrow (\neg R(u,v) \lor T(u)))$ este o formă normală prenex pentru φ .

 \square B: $\exists x \forall y \exists u \forall v ((S(y) \land \neg R(x, y)) \rightarrow (\neg R(u, v) \lor T(u)))$ este o formă normală prenex pentru φ . \square C: $\forall x \exists y \forall u \exists v ((S(y) \land \neg R(x,y)) \rightarrow (\neg R(u,v) \land T(v)))$ este o formă normală prenex pentru φ . \square D: $\exists x \forall y \exists u \forall v ((S(y) \land \neg R(x, y)) \rightarrow (\neg R(u, v) \land T(v)))$ este o formă normală prenex pentru φ . \square E: $\forall x \exists y \exists u \forall v ((S(y) \land \neg R(x, y)) \rightarrow (\neg R(u, v) \land T(v)))$ este o formă normală prenex pentru φ . (P12) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale: $\varphi := (v_1 \wedge v_2 \wedge v_3) \rightarrow (v_1 \wedge v_3)$ Care dintre următoarele afirmații sunt adevărate? \square A: φ este satisfiabilă. \square B: φ nu este satisfiabilă. \square C: Dacă e este o evaluare astfel încât $e^+(\varphi) = 1$, atunci $e(v_1) = 0$, $e(v_2) = 1$ și $e(v_3) = 0$. \square D: Dacă e este o evaluare astfel încât $e(v_1) = e(v_3) = e(v_2) = 1$, atunci $e^+(\varphi) = 1$. \square E: φ nu este tautologie. (P13) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale: $\theta := (v_1 \rightarrow v_3) \land (v_2 \rightarrow v_3)$ Care dintre următoarele afirmații sunt adevărate? \square A: $e^+(\theta) = e^+((v_1 \wedge v_2) \to v_1)$ pentru orice evaluare e. \square B: $e^+(\theta) = e^+(v_1 \to (\neg v_1 \to (v_2 \land v_3)))$ pentru orice evaluare e. \square C: $e^+(\theta) = e^+((v_1 \vee v_2) \to v_3)$ pentru orice evaluare e. \square D: $e^+(\theta) = e^+((\neg v_1 \land \neg v_2) \lor v_3)$ pentru orice evaluare e. \square E: $e^+(\theta) = e^+((v_1 \wedge v_2 \wedge v_3) \vee (\neg v_1 \vee \neg v_2 \vee \neg v_3))$ pentru orice evaluare e. (P14) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} : $\varphi := \exists x R(x, y) \to (\neg \exists z (f(z) = c) \land \forall v S(v))$ Care dintre următoarele afirmații este adevărată? \square A: $\forall x \exists z \exists v (R(x,y) \to (\neg (f(z)=c) \land S(v)))$ este o formă normală prenex pentru φ . \square B: $\forall x \forall z \forall v (R(x,y) \rightarrow (\neg (f(z)=c) \land S(v)))$ este o formă normală prenex pentru φ . \square C: $\exists x \exists z \forall v (R(x,y) \rightarrow (\neg (f(z)=c) \land S(v)))$ este o formă normală prenex pentru φ . \square D: $\exists x \exists z \forall v (R(x,y) \rightarrow (\neg (f(z)=c) \land R(v)))$ este o formă normală prenex pentru φ . \square E: $\exists x \forall z \forall v (R(x,y) \rightarrow (\neg (f(z)=c) \land S(v)))$ este o formă normală prenex pentru φ . (P15) [2 răspunsuri corecte] Fie $\mathcal{L}_{ar} = (\dot{\mathbf{c}}, \dot{+}, \dot{\mathbf{x}}, \dot{\mathbf{S}}, \dot{\mathbf{0}}), \mathcal{L}_{ar}$ -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, \mathbf{0})$ și $e:V\to\mathbb{N}$ o evaluare arbitrară. Considerăm formulele: $\varphi := \neg (x \dot{<} \dot{0} \lor x = \dot{0}) \text{ si } \psi := \neg (x \dot{<} \dot{2}), \text{ unde } \dot{2} := \dot{S} \dot{S} \dot{0}.$ Care dintre următoarele afirmații sunt adevărate? \square A: $\mathcal{N} \models (\forall x \neg \varphi)[e]$. \square B: $\mathcal{N} \models (\exists x \varphi \rightarrow \exists x \psi)[e]$. $\square \text{ C: } \mathcal{N} \vDash (\neg \varphi \vee \neg \psi))[e_{x \leftarrow 5}]$

(P16) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

 \square D: $\mathcal{N} \not\models (\forall x(\varphi \rightarrow \psi))[e]$.

 $\square \to \mathbb{E} : \mathcal{N} \not\models (\exists x \varphi)[e].$

$$\mathcal{S} = \{C_1 = \{v_1, \neg v_2, v_3\}, C_2 = \{v_2, v_4\}, C_3 = \{\neg v_1, v_4\}, C_4 = \{\neg v_1, v_3\}\}$$

Care dintre următoarele sunt derivări corecte prin rezoluție?

- \square A: $C_5 = \{\neg v_1, v_2\}$ (rezolvent al C_2, C_3) și $C_6 = \{v_2, v_3\}$ (rezolvent al C_4, C_5).
- \square B: $C_5 = \{v_1, \neg v_2, v_3, v_4\}$ (rezolvent al C_1, C_3) şi $C_6 = \{\neg v_2, v_3, v_4\}$ (rezolvent al C_1, C_5).
- \square C: $C_5 = {\neg v_2, v_3}$ (rezolvent al C_1, C_4).
- \square D: $C_5 = \{v_1, v_3, v_4\}$ (rezolvent al C_1, C_2) și $C_6 = \{v_3, v_4\}$ (rezolvent al C_4, C_5).
- \square E: $C_5 = {\neg v_2, v_3}$ (rezolvent al C_1, C_4) și $C_6 = {\neg v_1, \neg v_2, v_3, \neg v_4}$ (rezolvent al C_3, C_5).