

自适应 5 路 RGBCW I2C 调光线性 LED 驱动器

主要特点

- 专利技术的六态反馈输出给前级,自适应匹配 灯电压
- 五路线性调光
- I2C 控制智能调光, 支持五路同时工作
- 80 挡输出恒流, CW 通道满电流 1~80mA, RGB 通道非并联模式满电流 0.2~16mA, RGB 通道并联模式满电流 0.4~32mA
- 内置 300V MOSFET, 适合 500V 以内灯珠
- 线路简单,电源系统成本低
- CW 模拟调光范围 0.1%~100%, 斩波调光范围 0.8%~100%, 模拟与斩波混合调光范围 0.0008%~100%
- RGB 模拟及斩波调光范围 0.1%~100%
- 过热保护 (OTP)
- 输入过压保护(OVP)
- 封装类型 SOP-8

典型应用

- 球泡灯、筒灯等(14W 以内)
- 彩灯应用

典型应用电路

产品描述

KP18057是一款5通道RGBCW线性恒流LED驱动芯片,采用线性恒流技术,通过I2C设定LED灯串的驱动电流。主要应用于高PF值、调光调色或彩灯、无频闪的场合。其提供逻辑信号反馈给前级,自适应匹配灯电压,大大降低线性恒流损耗,提高系统效率。KP18057支持低功耗待机模式,在待机模式下芯片自身工作电流降至最低。

KP18057支持I2C调光,CW通道采用模拟、斩波调光方式,模拟调光共1024阶,最低调光深度0.1%,调光全程无频闪;斩波调光共128阶,最低调光深度0.8%,其中斩波调光频率可设置500Hz,1kHz,2kHz,4kHz;可支持模拟、斩波混合调光,最低调光深度0.0008%。RGB通道,可设置模拟调光或者斩波调光,都是1024阶,最低调光深度0.1%,其中斩波调光频率可设置500Hz,1kHz,2kHz,4kHz。

KP18057 集成有高精度 OTP 及输入过压保护 (OVP)功能,可由 I2C 设置 OTP 及 OVP 保护阈值,保障了系统的安全可靠性。

管脚封装

ESSOP-10L

产品标记

管脚功能描述

管脚	名称	I/O ⁽¹⁾	描述		
1	LEDR	Р	LED 负端,RGB 通道 R		
2	LFB	0	逻辑反馈信号输出。OVP/STB/H/K/L/FS 六态输出,反馈 LED 电压状态		
3	CLK	I/O	I2C 通讯接口,时钟信号		
4	DATA	I/O	I2C 通讯接口,数据信号		
5	VDD	Р	低压供电管脚		
6	VIN	Р	高压供电(LFB 模块),监测输出电压并平衡 LED 负载		
7	LEDW	Р	LED 负端,CW 通道 W		

自适应5路RGBCWI2C调光线性LED驱动器

8	LEDC	Р	LED 负端,CW 通道 C	
9	LEDB	Р	LED 负端,RGB 通道 B	
10	LEDG	Р	LED 负端,RGB 通道 G	
EP	GND	Р	芯片的参考地,同时有利于散热	

Confidential Confi

极限参数(2)

参数	数值	单位
VIN 电压	-0.3 to 500	V
VDD 电压	-0.3 to 40	V
LEDx(x=R, G, B, C, W)电压	-0.3 to 300	٧
LFB 电压	-0.3 to 18	V
CLK, DATA 电压	-0.3 to 6	>
P _{Dmax} 耗散功率 @ T _A =50°C(ESSOP-10L) ⁽³⁾	1.5	W
θ _{JA} 封装热阻结到环境 (ESSOP-10L) ⁽³⁾	65	°C/W
芯片工作结温	150	°C
储藏温度	-65 to 150	°C
管脚温度 (焊接 10 秒)	260	°C
ESD 能力 (HBM 人体模型, VIN 及 LEDx 除外)	2	kV
ESD 能力 (HBM 人体模型, VIN)	2	kV
70		

- (2) 超出列表中"极限参数"可能会对芯片造成永久性损坏。极限参数仅用作标识应力等级,在超出推荐工作条件的情况下芯片可能无法正常工作。过度暴露在超出推荐工作条件下,可能会影响芯片的可靠性。
- (3) 最大耗散功率 P_{Dmax}= (T_{Jmax}-T_A)/θ_{JA}, 环境温度升高时最大耗散功率会随之降低。

推荐工作条件

参数	数值	单位
工作结温范围	-40 to 125	°C

电气参数 (环境温度为 25℃,除非另有说明)

符号	参数 ⁽⁴⁾	测试条件	最小	典型	最大	单位
供电部分(V	DD 管脚)		•	•		
VDD_on	VDD 开启电压。			10		V
VDD_off	VDD 关断电压阈值。			7		V
IVDD_OP	工作时 VDD 电流。			750	×	μA
I _{VDD_STB}	待机时 VDD 电流			140		μA
Vin 管脚部分)			X)	
I _{VIN_OP}	工作时 VIN 电流。		X	50		μA
I _{VIN} _STB	待机时 VIN 电流			50		μA
V _{OVP_EN}	前级过压保护阈值,I2C 设置,分挡可调		\mathcal{O}	440		V
$V_{\text{OVP_EX}}$	过压保护恢复阈值,I2C 设置,分挡可调	<u> </u>		429		V
V _{OVP_EN1}	前级过压保护阈值 1, I2C 设置,分挡可调	all a		245		V
V _{OVP_EN2}	前级过压保护阈值 2, I2C 设置,分挡可调	(0)		390		V
V _{OVP_EN4}	前级过压保护阈值 4, I2C 设置, 分挡可调	5		490		V
k FS	快速启动结束点阈值系数, I2C 设置,分挡可调。快速启动结束点阈值 VFS_EX = kFS * VOVP_EN。			75%		
K FS_HYS	再次进入快速启动的电压迟滞 5%, V _{FS_EX} = V _{FS_EX} * (1- k _{FS_HYS})。			5%		
K CLP	待机时钳位电压系数,I2C 设置,分挡可调 。 待机时钳位 电压 Volp_En= kolp * Vovp_En			86%		
KCLP_HYS	待机时钳位电压迟滞; V _{CLP_EX} =V _{CLP_EN} * (1- k _{CLP_HYS})			1%		
IVINBL_MAX	最大 VIN 平衡电流,I2C 设置 分挡可调。			0.75		mA
LFB 输出电				I	I	
V_{FS_LFB}	快速启动状态电压。			14		V
V_{L_LFB}	Low 状态电压。			9		V
V_{K_LFB}	Keep 状态电压。			4		V
V _{H_LFB}	High 状态电压。			2		٧

KP18057

自适应5路RGBCWI2C调光线性LED驱动器

DVP 状态电压。					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1		V
Standby 状态电压。前级未接 LFB 时,LFB 为 0V,进入 STB 状态。				0.1	V
DTP 状态下温度每升高 20 ℃,输出电流下降百分 七。			40	•	%
第一挡OTP。			95	X	°C
第二挡OTP。			100		$^{\circ}$ C
第三挡OTP。			105		$^{\circ}$
第四挡OTP。	100%	X	110		$^{\circ}$
第五挡OTP。	120 饭直	1	120		$^{\circ}$
第六挡OTP。			130		$^{\circ}$
第七挡OTP。	<u> </u>		140		$^{\circ}$ C
第八挡OTP。	46.		150		$^{\circ}$ C
(5通道相同)	(0)				
MOSFET耐压。	,	300			V
X	, ,			100	Ω
ED负端最低维持电压	在40mA电流测试			4	V
CW最大电流设定范围	I2C设定100%灰阶电流	1		80	mA
RGB最大电流设定范围(非并 联模式)	I2C设定100%灰阶电流	0.2		16	mA
RGB最大电流设定范围(并联 莫式)	I2C设定100%灰阶电流	1		80	mA
最小调光duty(RGB通道及CW 通道模拟调光)			0.1%		
最小调光duty(CW通道斩波调 光)			0.8%		
RGB通道最小调光步长			1/102 3		
CW通道模拟调光最小调光步 长			1/102		
CW通道斩波调光最小调光步 长			1/127		
		•			
DATA,CLK上拉电源电压。			3.3		V
	FB 时,LFB 为 OV,进入 STB 状态。 OTP 状态下温度每升高 OC,输出电流下降百分比。 第一挡OTP。 第二挡OTP。 第三挡OTP。 第二挡OTP。 第二挡OTP。 第二挡OTP。 第二挡OTP。 第二挡OTP。 第二档OTP。 第二点OTP。	FB 时, LFB 为 0V, 进入 ITB 状态。 I	FB 时, LFB 为 0V, 进入	FB 时、LFB 为 0V, 进入 STB 状态。 DTP 状态 下温度 毎 升 高 0 ℃ 、 输出电流下降百分 2 0 0 ℃ 、 输出电流下降百分 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FB 时, LFB 为 0V, 进入 10.1 11 11 11 11 11 11

KP18057

自适应5路RGBCWI2C调光线性LED驱动器

VDATA_L_falling	DATA低电平电压阈值。			0.7		V
VDATA_H_rising	DATA高电平电压阈值。			1.8		V
R _{Pull_Up_DATA}	DATA 上拉电阻。			100		kΩ
R _{DSON_DATA}	DATA下拉等效电阻。				100	Ω
V _{CLK_L_falling}	CLK低电平电压阈值。			0.7		V
VCLK_H_rising	CLK高电平电压阈值。			1.8	×	V
R _{Pull_Up_CLK}	CLK上拉电阻。			100		kΩ
f _{DATA}	DATA信号频率范围。			200		kHz
f _{CLK}	CLK信号频率范围。		Ç	200		kHz
T _{Low}	CLK低电平时间。		1.5			μs
T _{High}	CLK高电平时间。		1.5			μs
T _{Blank}	噪声消除时间。	O		100		ns
T _{Delay_CLK_F}	CLK下降沿到有效输出时间。	·O.			100	ns
T _{B_Start}	起始条件建立时间。		250			ns
T _{HD_Start}	起始条件保持时间。		250			ns
T _{B_Data}	数据建立时间。	5	0			ns
T _{HD_Data}	数据保持时间。		250			ns
Tr	输入上升时间。				150	ns
T _f	输入下降时间。				150	ns
T _{B_Stop}	停止状态建立时间。		250			ns

备注4: 参数取决于设计,批量生产制造时通过功能性测试。

功能描述

KP18057 是一款自适应 5 通道 RGBCW 线性恒流调光 LED 驱动芯片,采用线性恒流技术,通过 I2C 设定灯电流。其根据 LED-端的电压给前级反馈逻辑信号,自适应调整输出电压,使系统工作在最合适的电压下,以提高效率。其 STB/OVP/H/K/L/FS 六态逻辑反馈信号,既保证了系统的稳定性,又方便与前级的通讯。 KP18057 通过 I2C 调光,支持共 1024 阶灰度值设置。CW 采用模拟调光、斩波调光方式,模拟调光深度可达 0.1%,斩波调光深度可达 0.8%,可支持模拟、斩波混合调光,最低调光深度达 0.0008%; RGB 可设置模拟调光或者斩波调光,调光深度可以达到 0.1%,并保证高精度和一致性。KP18057 集成有高精度分挡设置 OTP功能,保障了系统的安全可靠性。

● 系统启动

系统上电并检测系统无异常后,进入待机状态,LFB输出FS(前级快速启动)。此后开始读取I2C接口数据信号。当快速启动结束,VIN大于快速启动电压退出阈值时,LFB状态变为STB,VIN保持在待机钳位电压。接收到I2C退出待机指令后进入启动状态,LFB先后输出Keep、Low,前级输出电压开始升高,输出电流开始缓变上升。当所有有效通道输出灰度值与I2C设置的灰度之差小于16时,系统进入稳态工作。

● 自适应 LFB 控制

KP18057 根据 LEDx 端电压给前级提供逻辑信号,LEDx 为任意有效通道 LED 端电压。逻辑信号 H High)、K(Keep)、L(Low)分别表征前级电压偏高、适中或偏低,FS(Fast Start)表征前级需要处于快速启动模式,STB(Standby)代表进入待机模式,OVP 代表输入电压过高。通过该反馈逻辑信号,LEDx 端最终输出电压会在合适的范围。LFB电压来自于 VIN 管脚,不受 VDD 电压影响。

● I2C 调光

KP18057 通过 I2C 设定 5 路灯电流最大值及调光 灰度。调光灰度由数字信号给定,没有扰动问题,可以保证调光的稳定性、调光精度和调光深度。

CW 通道支持模拟调光和斩波调光,通过 I2C 设定,其中模拟调光深度为 1/1023,斩波调光深度为 1/128, 斩波调光频率有 500Hz、 1kHz、 2kHz、 4kHz 共四挡选择,两通道间不错相; 可以模拟调光、斩波调光组合调光,此时调光深度为 (1/1023)*(1/128),ILED 电流幅值及占空比随 I2C 信号变化。CW 通道电流挡位可通过 I2C 设置成 1-80mA。

RGB 通道可以通过 I2C 设置为模拟调光或者斩波调光,斩波调光频率有 500Hz, 1kHz, 2kHz, 4kHz 其 4 挡可选择,调光深度均为 1/1023, 三通道间错相 120°。不支持模拟调光、斩波调光的组合。

RGB 通道可以通过 I2C 配置成并联模式或非并联模式,并联模式时的电流挡位在 0.4-32mA,非并联模式时电流挡位在 0.2-16mA。

● I2C 设置

KP18057 集成 I2C 通讯模块,CLK 和 DATA 脚分别为通讯的时钟和数据输入引脚,用户可以通过CLK,DATA 来控制调光及工作模式。该 I2C 通讯协议主要包括起始(START)、停止(STOP)、数据传输及应答控制。如下图 1 所示。

(1) I2C 起始和停止控制

KP18057 的 CLK 和 DATA 都为高时,系统处于空闲状态,当 CLK 为高电平而 DATA 为下降沿时,I2C 开始传输,此为起始条件。当 CLK 为高而DATA 为上升沿时,为停止条件。在正常的传输过程中,当 CLK 信号为高电平时,DATA 信号不能改变状态,即不能有上升或下降沿出现。当 CLK信号为低电平时,DATA 信号可以改变状态,切换到需要的数据。如下图 2 所示。

图 2—I2C 起始和停止状态

(2) I2C 数据传输控制

I2C 通讯协议是串行的位传输协议,每个时钟脉冲 传输一位数据(Bit)。CLK 为高电平时, DATA 信 号必须保持稳定,只有当 CLK 信号为低电平时, DATA 信号才能切换状态。当 CLK 下降沿时,数 据写入寄存器(缓存器)。每完成 8 Bit 数据(一 个字节 Byte)的传输,在第 9 个时钟, KP18057 内部产生应答信号 ACK 给外部控制的主机。ACK 信号会将 DATA 管脚置 "0"。即芯片每完成一个 有效字节(Byte, 8 Bit)的数据传输就会产生一个 对应的额外应答信号。如下图 3 所示。为了防止信 号干扰,芯片在读入 DATA 信号时,CLK 上升沿 经过去噪声延时后的 DATA_IN 信号才是有效的读 读入的 DATA 信号先锁存到寄存器(缓存 同样的,锁存信号 DATA_LATCH 在 CLK 下降沿经过去噪声延时产生。该去噪声延时时间为 200ns。根据这个设计要求,数据建立时间 TB DATA、数据保持时间 THD DATA 都必须大于 250ns,推荐低电平时间 TLow和高电平时间 THigh 都 大于 1.5us。

图 3-I2C 数据传输时序

(3) I2C 数据传输字节单元

节单元由 8 个数据位 KP18057 的基本字 (Bit7~Bit0)组成, 包括 7 个有效数据位 (Bit7~Bit1) 和 ♪奇偶校验位(BitO)。奇偶校 验位根据前 7 分 Bit (Bit7~Bit1) 中 "1"的个数为 奇数或者偶数确定,奇数为"1",偶数为"0"。 奇偶校验的目的是防止错误传输。KP18057 根据 奇偶校验的结果决定是否输出 ACK 信号及是否将 果奇偶校验错误, KP18057 不输出 ACK 信号, 外 部控制主机如果没有收到对应字节的 ACK 信号, 下一个字节则重新发送该字节,相应的,KP18057 会舍弃该字节, 不会装载到锁存寄存器, 同时当前 字节地址也保持不变,等待主机重新发送。如果奇 偶校验正确,在第 9 个 CLK 信号时, KP18057 输 出 ACK 信号,将 DATA 置为"0",同时将有效数 据位装载到锁存寄存器,字节地址加一。当最后一 个字节(Byte22)传输完后一次性装载所有更新数 据。KP18057每个字节对应的控制信息如下表:

字节编号	字节功能
顺序	
Byte0	工作模式设置,寻址开始地址
Byte1	LED _{minH/L} 阈值及其缓变设置,软动
	态时间设置
Byte2	RGB 并联模式设置,R、G、B、
	C、W通道使能设置
Byte3	LEDR 最大输出电流设置

Byte4	LEDG 最大输出电流设置		
Byte5	LEDB 最大输出电流设置		
Byte6	LEDC 最大输出电流设置		
Byte7	LEDW 最大输出电流设置		
Byte8	LEDR 电流设置高 5 位		
Byte9	LEDR 电流设置低 5 位		
Byte10	LEDG 电流设置高 5 位		
Byte11	LEDG 电流设置低 5 位		
Byte12	LEDB 电流设置高 5 位		
Byte13	LEDB 电流设置低 5 位		
Byte14	LEDC 电流设置高 5 位		
Byte15	LEDC 电流设置低 5 位		
Byte16	LEDW 电流设置高 5 位		
Byte17	LEDW 电流设置低 5 位		
Byte18	LEDC 斩波模式电流设置 7 位		
Byte19	LEDW 斩波模式电流设置 7 位		
Byte20	RGB 调光模式设置、斩波频率设		
	置,快速启动结束阈值设置		
Byte21	Tst 设置,待机钳位电压阈值设置		
Byte22	I _{VINBL} 、OTP、 OVP 阈值设定		
μ			

Byte0 最高位 Bit7 为 NC,紧接 I2C 起始信号后。寻址开始地址为下一个 Byte 数据传输对应的字节,其后的数据传输中以该地址对应字节为起点,直到最后一个字节 Byte22 或停止信号。Byte22 数据传输完以后,如果主机给停止信号,终止本次传输;如果主机不给停止信号,则重新从寻址开始地址字节传输数据。停止本次通信后,下一次传输信号需重新设置寻址开始地址,依此往复。

KP18057 各字节具体设置如下:

	Byte0			
Bit 序号	默认值	功能		
Bit7	0	NC		
Bit6	0	工作模式设定 0: 待机模式 1: 非待机模式		

Bit5~Bit1	00000	寻址开始字节地址 00000: Byte1 00001: Byte2 00010: Byte3 00100: Byte5 00101: Byte6
		00101: Byte0 00110: Byte7 10101: Byte22
Bit0		奇偶校验位
Byte1: LE		
Bit	默认值(功能
	*	LED _{minH/L} 缓变设置
Bit6	1	0: LED _{minH/L} 上升无缓变
Бію		1: LED _{minH/L} 上升缓变,
		由 Byte1 Bit5~4 设置
		电流动态缓变时间设置
		(LED _{minH/L} 缓变时间与 4 挡电流动态缓变时间
10		对应,即 25ms /50ms
		/100ms /200ms,; 下
		00: 电流动态缓变时间
		32ms,LED _{minH/L} 上升缓
D:#E D:#4	40	变时间 25ms
Bit5~Bit4	10	01: 电流动态缓变时间
		64ms,LED _{minH/L} 上升缓
		变时间 50ms
		10: 电流动态缓变时间
		128ms,LED _{minH/L} 上升
		缓变时间 100ms
		11: 电流动态缓变时间
		256ms,LED _{minH/L} 上升 经亦时间 200ms
		缓变时间 200ms LED _{min} 阈值设置(稳态
		值)
		000: LED _{minL} =3V,
		LED _{minH} =7V, Vstart=5V
		001: LED _{minL} =4V,
Bit3~Bit1	001	LED _{minH} =8V, Vstart=6V
		010: LED _{minL} =5V,
		LED _{minH} =9V, Vstart=7V
		011: LED _{minL} =6V,
		LED _{minH} =10V, Vstart=8V
		100: LED _{minL} =8V,
		100. LLDIIIIL-0V,

		LED _{minH} =12V,
		Vstart=10V
		101: LED _{minL} =10V,
		LED _{minH} =14V,
		Vstart=12V
		110: LED _{minL} =12V,
		LED _{minH} =16V,
		Vstart=14V
		111: LED _{minL} =14V,
		LED _{minH} =18V,
		Vstart=16V
Bit0		奇偶校验位
Byte2: R	GB 并联模式	设置,R、G、B、C、W
	通道位	使能设置
Bit7	0	NC
		RGB 通道并联模式设置
Bit6	0	0: 非并联工作模式
		1: 并联工作模式
		R通道使能设置
Bit5	1	0: R通道 Disable
		1: R通道 Enable
		G通道使能设置
D:#4	_	
Bit4	1	0: G通道 Disable
		1: G通道 Enable
		B通道使能设置
Bit3	1	0: B 通道 Disable
		1: B 通道 Enable
		C通道使能设置
Bit2	1	0: C通道 Disable
		1: C通道 Enable
		W通道使能设置
Bit1	1	0: W 通道 Disable
		1: W通道 Enable
Bit0	X	奇偶校验位
E	Byte3: LED	R 最大电流设置
	111	LEDR 最大电流设定;
• .		非并联模式时 0.2mA/
I. N	•	挡,最大挡位 16mA。
1111		0000000: 0.2mA
		0000001: 0.4mA
	004/005	0000010: 0.6mA
Bit7~Bit1	3it1 0011000	4004440 45.0 4
		1001110: 15.8mA
		1001111: 16mA
		1010000: 16mA
		1111111: 16mA
		并联模式时 0.4mA/挡,

		最大挡位 32mA。 0000000: 0.4mA 0000001: 0.8mA 0000010: 1.2mA	
		1001110: 31.6mA 1001111: 32mA 1010000: 32mA	
		1111111: 32mA	
Bit0		奇偶校验位	
Byte4: LEDG 最大电流设置			
Bit7~Bit1	0011000	LEDG 最大电流设定: 非并联模式时 0.2mA/ 挡,最大挡位 16mA。 0000000: 0.2mA 0000001: 0.4mA 0000010: 0.6mA 1001110: 15.8mA 1001111: 16mA 1010000: 16mA 1111111: 16mA 并联模式时 0.4mA/挡,最大挡位 32mA。 0000000: 0.4mA 0000001: 0.8mA 0000001: 1.2mA 1001110: 31.6mA 1001111: 32mA 1010000: 32mA 	
Bit0		奇偶校验位	
Byte5: LEDB 最大电流设置			
Bit7~Bit1	0011000	LEDB 最大电流设定; 非 并 联 模 式 时 0.2mA/ 挡,最大挡位 16mA。 0000000: 0.2mA 0000001: 0.4mA 0000010: 0.6mA 1001110: 15.8mA 1010000: 16mA	

自适应5路RGBCWI2C调光线性LED驱动器

		1111111: 16mA 并联模式时 0.4mA/挡, 最大挡位 32mA。 0000000: 0.4mA 0000001: 0.8mA 0000010: 1.2mA 1001110: 31.6mA 1001111: 32mA 1010000: 32mA
		 1111111: 32mA
Bit0		奇偶校验位
E	Byte6: LED	C最大电流设置
Bit7~Bit1	0010101	LEDC 最大电流设定, 1mA/挡 0000000: 1mA 0000001: 2mA 0000010: 3mA 1001110: 79mA 1001111: 80mA 1010000: 80mA
Bit0		奇偶校验位
		W最大电流设置
Bit7~Bit1	0010101	LEDW 最大电流设定, 1mA/挡 00000000: 1mA 0000001: 2mA 0000010: 3mA 1001110: 79mA 1001111: 80mA 1010000: 80mA 1111111: 80mA
Bit0		奇偶校验位
Byte8	与 Byte9 共	同设定 LEDR 的灰度)
Bit7~Bit6	00	NC
D'15 D'14	t	
Bit5~Bit1	00000	LEDR 灰度设定高 5 位
Bit5~Bit1	00000	LEDR 灰度设定高 5 位 奇偶校验位

Bit7~Bit6	00	NC	
Bit5~Bit1	00000	LEDR 灰度设定低 5 位	
Bit0		奇偶校验位	
Byte10 (与 Byte11 ‡	共同设定 LEDG 的灰度)	
Bit7~Bit6	00	NC	
Bit5~Bit1	00000	LEDG 灰度设定高 5 位	
Bit0		奇偶校验位	
	By	yte11	
Bit7~Bit6	00	NC O	
Bit5~Bit1	00000	LEDG 灰度设定低 5 位	
Bit0	\$	奇偶校验位	
Byte12	与 Byte13 ‡	中间设定 LEDB 的灰度)	
Bit7~Bit6	00	NC	
Bit5~Bit1	00000	LEDB 灰度设定高 5 位	
Bit0		奇偶校验位	
40	By	yte13	
Bit7~Bit6	00	NC	
Bit5~Bit1	00000	LEDB 灰度设定低 5 位	
Bit0		奇偶校验位	
Byte14 (与 Byte15	共同设定 LEDC 的灰度)	
Bit7~6	00	NC	
Bit5~Bit1	00000	LEDC 灰度设定高 5 位	
Bit0		奇偶校验位	
	Ву	yte15	
Bit7~Bit6	00	NC	
Bit5~Bit1	00000	LEDC 灰度设定低 5 位	
Bit0		奇偶校验位	
Byte16 (与 Byte17 #	に同设定 LEDW 的灰度)	
Bit7~Bit6	00	NC	
Bit5~Bit1	00000 LEDW 灰度设定高 5		
Bit0		奇偶校验位	
Byte17			
Bit7-6	00	NC	
Bit5~Bit1 00000 Bit0		LEDW 灰度设定低 5 位	
		奇偶校验位	

Byte18: LEDC 斩波调光灰度			
Bit7~Bit1	1111111	LEDC 斩波调光灰度 0000000: 0/127 0000001: 1/127 1111110: 126/127 1111111: 127/127	
Bit0		奇偶校验位	
В	yte19: LED	W新波调光灰度	
Bit7~Bit1	1111111	LEDW 斩波调光灰度 0000000: 0/127 0000001: 1/127 1111110: 126/127 1111111: 127/127	
Bit0		奇偶校验位	
Byte20: I		式设置、斩波频率设置,	
		结束阈值设置 [
Bit7	0	NC	
Bit6	1	RGB 调光模式设置 1: 斩波调光模式 0: 模拟调光模式	
Bit5~Bit4	10	RGBCW 斩波频率设定 00: 4kHz 01: 2kHz 10: 1kHz 11: 500Hz	
Bit3~Bit1	101	快速充电结束阈值比例 kfs 设定 000 : 66%(Vfs_ex =66%*Vovp_en) 001 : 68%(Vfs_ex =68%*Vovp_en) 111: 80%(Vfs_ex =80%*Vovp_en)	
Bit0		奇偶校验位	
Byte21:	Tst 设置,	待机钳位电压阈值设置	
Bit7	0	NC	
Bit6~Bit5	00	T _{ST} (DIM ON 时 I _{ST} 维持 时间)设定 00: 1ms 01: 2ms 10: 4ms 11: 8ms	
Bit4~Bit1 1011 待机钳位电压		待机钳位电压比例 k _{CLP}	

			设定 0000: 64%(V _{CLP_EN} =64%*V _{OVP_EN}) 0001: 66%(V _{CLP_EN} =66%*V _{OVP_EN}) 0010: 68%(V _{CLP_EN} =68%*V _{OVP_EN})		
			1111: 94%(VCLP_EN =94%*V _{OVP} EN)		
	Bit0		奇偶校验位		
В	Byte22(I _{VINBL_MAX} 、OTP 阈值、OVP 阈值电压设				
			定)		
		\$	1vinbl_max设定; 00: 0		
	Bit7~6	10	01: 0.5mA		
		· 0)	10: 0.75mA 11: 1.5mA		
			OTP 挡位设置		
	Bit5~Bit3	111	OTP 扫址 攻直 000: T _{OTP} =95℃		
			000: T _{OTP} =95 € 001: T _{OTP} =100°€		
			000: T _{OTP} =100 ℃		
			000: T _{OTP} =105 € 011: T _{OTP} =110 °C		
4	טוט־טוט		100: T _{OTP} =110 ℃		
			100: T _{OTP} =120 ℃		
			101: 1 _{OTP} =130 ℃ 110: T _{OTP} =140 ℃		
			111: T _{OTP} =150℃		
			OVP 阈值设定		
			00: V _{OVP EN} =245V		
R	Bit2~Bit1	10	01: V _{OVP_EN} =390V		
	5.01		10: V _{OVP} _{EN} =440V		
			11: V _{OVP EN} =490V		
	Bit0		奇偶校验位		

● VIN 过压保护

如果工作中 VIN 过压(前级 Boost 输出过压),则会进入 OVP 保护。

触发条件: VIN 管脚电压 V_{IN}> V_{OVP_EN}。

保护状态: LFB 状态变为 OVP, 前级停止驱动. 退出条件: VIN 管脚电压 V_{IN}< V_{OVP_EX}(2.5%迟滞)。

Byte16	V _{OVP_EN} /V(OVP	V _{OVP_EX} /V(OVP	
Bit2~1	状态触发阈值) 状态退出阈值		
00	245	239	

01	390	380	
10(默认	440	429	
值)			
11	490	478	

● 过温保护

KP18057 内部集成有过热保护功能,保护点阈值 I2C 设定,如下表所示。当芯片内部温度达到 OTP 阈值时,系统降低恒流基准,下降速度为 40%/20℃,直到电流下降到 0。

Byte16 Bit5~3	OTP(℃)
000	95
001	100
010	105
011	110
100	120
101	130
110	140
111	150

应用指南

● 应用注意事项

- 1. 调光模块程序的设计除了遵循 I2C 通讯协议 外,对于 RGB 通道选择模拟调光方式时推荐 采用 Io_max* 灰阶的组合调光方式,相比单 纯采用灰阶调光的方式,可以获得更好的调光 效果、调光线性度及一致性。
- 2. 为防止模块初始化过程芯片误判断 Start 信号导致数据读取错误,建议配置 I2C 程序时在发送数据包前先发送一个启停信号,如图 4 所示。

[33]

● PCB Layout 建议

良好的布局对系统可靠运行非常重要。为获得更好的性能,建议布局时遵守下列要求。

- 1. 尽量减小 SDA 和 SCL 信号的传输回路,避免 PCB 上其他噪声信号对其造成干扰。
- 2. 尽量增大芯片底部 GND 的铺铜,可有效改善 芯片散热,降低芯片温升。

封装尺寸

ESSOP-10L

游 口.	尺寸 (毫米)		尺寸 (英寸)	
符号	最小	最大	最小	最大
Α	1.500	1.700	0.059	0.067
A1	0.000	0.750	0.000	0.030
A2	1.350	1.450	0.053	0.057
A3	0.600	0.700	0.024	0.028
b	0.300	0.500	0.012	0.020
С	0.190	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
D1	3.200	3.400	0.126	0.134
E	3.800	3.950	0.150	0.156
E1	5.800	6.200	0.228	0.244
E2	2.000	2.200	0.079	0.087
е	1.000 (中心到中心)		0.039 (中心到中心)	
h	0.250	0.500	0.010	0.020
L	0.550	0.750	0.022	0.030
L1	0.990	1.100	0.039	0.043
θ	0°	8°	0°	8°

声明

必易微保留在没有通知的情况下对其产品和产品说明书或规格书进行任何修改的权利。客户下单前请获取最新资料。产品 说明书或规格书不用干作任何明示或暗示的保证包括但不限干产品的商用性、目的适用性或不侵犯他人权利等,也不用干 作任何授权包括但不限于对必易微或第三方知识产权的授权。使用者在将必易微的产品整合到应用中时或使用过程中应确 保该具体应用或使用不侵犯他人知识产权或其他权利,因该应用或使用引起纠纷或造成任何损失的,必易微不承担任何法