EXPLANATION OF SAT SOLVER	EXPLANATION OF BOOLEAN EXPRESSIONS
GRAPHS	PROBLEM STATEMENT AND HYPOTHESIS AND PROCEDURE
CONCLUSION AND OTHER MISCELLANEOUS STUFF	MORE GRAPHICS
EXPLANATION OF SUDOKU SOLVER	GRAPHICS

Solve time as a function of the perceived difficulty for variously symmetric Sudoku puzzles. The lines are the best fit to the data sets.

Number of recursions (calls to *satr*) as a function of the perceived difficulty for variously symmetric Sudoku puzzles. The lines are the best fit to the data sets.

The flow chart of my program.

Boolean Expression for Sudoku

$$\begin{pmatrix} \bigcap_{r=1}^9 \bigcap_{n=1}^9 \bigcap_{c=1}^9 S_{rcn} \\ \bigcap_{g=9}^9 \bigcap_{g=9}^9 S_{rcn} \\ \bigcap_{c=1}^9 \bigcap_{n=1}^9 \bigcap_{r=1}^9 S_{rcn} \end{pmatrix} \bigwedge \quad \text{Rule for columns}$$

$$\begin{pmatrix} \bigcap_{r=1}^9 \bigcap_{c=1}^9 \bigcap_{n=1}^9 S_{rcn} \\ \bigcap_{r=1}^2 \bigcap_{c=1}^2 \bigcap_{n=1}^9 S_{rcn} \\ \bigcap_{i=0}^2 \bigcap_{j=0}^9 \bigcap_{n=1}^9 \bigcap_{r=1}^3 S_{r+3i,c+3j,n} \end{pmatrix} \quad \text{Rule for 3x3 boxes}$$

$$\begin{pmatrix} \bigcap_{i=0}^9 \bigcap_{j=0}^9 \bigcap_{n=1}^9 \bigcap_{r=1}^9 S_{r-1} \\ \bigcap_{i=0}^2 \bigcap_{j=0}^9 \bigcap_{n=1}^9 S_{r-1} \\ \bigcap_{r=1}^9 \bigcap_{r=1}^9 S_{r-1} \\ \bigcap_{i=0}^9 \bigcap_{j=0}^9 \bigcap_{n=1}^9 S_{r-1} \\ \bigcap_{r=1}^9 \bigcap_{r=1}^9 S_{r-1} \\ \bigcap_{i=0}^9 \bigcap_{j=0}^9 \bigcap_{n=1}^9 S_{r-1} \\ \bigcap_{i=0}^9 \bigcap_{j=0}^9 \bigcap_{n=1}^9 S_{r-1} \\ \bigcap_{i=0}^9 S_{r-1}$$

The Boolean variable S_{rcn} corresponds to whether the cell in row r and column c is equal to n.

Materials: None, other than computer.

A Sudoku puzzle. NOT!

Boolean Expressions

- A *Boolean* variable can equal either FALSE (0) or TRUE (1).
- Boolean variables use binary operators, such as OR (v), AND (Λ), and NOT (\neg).

Radon Rosborough
Grade 8, Summit Charter Middle School
Boulder, Colorado

8			3					4
					9	7		
		7	8				6	
6		2					7	
				5				
	1					8		9
	<u>1</u>				1	8 2		
		3	5					
2					7			6

A diagonally symmetric Sudoku puzzle.

- Materials & Data
- Include program notes
- New figures
- Explain expression
- Maybe table explaining test cases?

Number of calls to *simplify* as a function of the perceived difficulty for variously symmetric Sudoku puzzles. The lines are the best fit to the data sets.

Number of calls to *deduce* as a function of the perceived difficulty for variously symmetric Sudoku puzzles. The lines are the best fit to the data sets.

reduce (deMorgan's Law):

NOT
$$(x OR y) = NOT x AND NOT y$$

NOT $(x AND y) = NOT x OR NOT y$

NOT (x AND NOT (x OR y)) = (NOT x) OR x OR y

simplify:

If y is TRUE, then

x AND (y OR z) = x AND (TRUE OR z) = x AND TRUE = x

deduce

x AND (NOT x) AND (NOT y)

y must be FALSE x must be both FALSE and TRUE --> contradiction

x AND (y OR z)

x must be TRUE y and z can be either, as long as at least one is TRUE

x AND (y OR z) = TRUE AND (y OR z) = y OR z