Gráfút hossza, gráfcsúcsok távolsága, nemnegatív és konzervatív hosszfüggvény, triviális és pontos (r,l)-felső becslés, <u>élmenti javítás</u>. Dijkstra-algoritmus működése, Ford-algoritmus <u>helyessége</u> és lépésszáma. Legrövidebb utak fájának létezése.

• Def: Adott G (ir) gráf és $l: E(G) \to \mathbb{R}$ hosszfüggvény esetén egy P út hossza a P éleinek összhossza: $l(P) = \sum_{e \in E(P)} l(e)$.

Az u és v csúcsok távolsága a legrövidebb uv-út hossza: $dist_l(u,v) := \min\{l(P) : P \ uv$ -út} ($\nexists uv$ -út $\Rightarrow dist_l(u,v) = \infty$.) Az l hosszfüggvénye nemnegatív, ha $l(e) \geq 0$ teljesül minden e élre. Az l hosszvüggvény konzervatív, ha G-ben \nexists negatív összhosszú ir. kör.

Cél: Legrövidebb út keresése irányított/irányítatlan gráfban.

Megf: Ha l(e) = 1 a G minden e élére, akkor l(P) a P élszáma. Ezért a BFS-fa minden gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből elérhető csúcsba tartalmaz egy legrövidebb utat a gyökérből, azaz a szélességi bejárás tekinthető egy legrövidebb utat kereső algoritmusnak is.

Def: Adott G (ir) gráf, $l: E(G) \to \mathbb{R}$ hosszfüggvény és $r \in V(G)$. (r, l)-felső becslés olyan $f: V(G) \to \mathbb{R}$ függvény, ami felülről becsli minden csúcs r-től mért távolságát: $dist_l(r, v) \ge f(v) \forall v \in V(G)$.

Triviális
$$(r, l)$$
-felső becslés: $f(v) = \begin{cases} 0 & v = r \\ \infty & v \neq r \end{cases}$

Pontos (r, l)-felső becslés: $f(v) = dist_l(r, l) \ \forall v \in V(G)$.

• Adott G = (V, E) irányított gráf és egy $l : E \to \mathbb{R}$ élhosszfv. Egy G-beli irányított út hossza az út éleinek összhossza, $dist_l(n, v)$ pedig az irányított uv-utak közül a legrövidebb hosszát jelöli.

Az l hosszfv konzervatív ha nincs G-ben negatív összhosszúságú irányított kör.

Adott G = (V, E) irányított gráf $r \in v$ és egy $l : E \to R$ élhosszfv. Az $f : v \to R$ függvényt (r, l)-felső becslésnek nevezzük, ha f(r) = 0 és $f(v) \le dist_l(r, v)$ teljesül G minden v csúcsára. Az e = uv élmenti javítás esetén a f(v) értéket a $min\{f(v), f(u) + l(uv)\}$ értékkel helyettesíthetjük.

- (1) Ha l konzervatív akkor tetsz. (r,l)-f. b. élmenti javítása (r,l)-fb-t ad.
- (2) Ha az f(r,l) felső becsléshez nincs érdemi élmenti javítás, akkor $f(v) = dist_l(r,v) \ \forall v \in V$.
- Az elméleti javítás

Def: Tfh f egy (r, l)-felső becslés és $uv \in E(G)$. Az f uv-elméleti javítása az az f', amire $f'(z) = \begin{cases} f(z) & z \neq v \\ \min\{f(v), f(u) + l(uv)\} & z = v \end{cases}$

Megf: Tfh az $l: E(G) \to \mathbb{R}$ hosszfüggvény konzervatív és f(r) = 0.

Ekkor (1) Az f(r, l)-felső becslés élmenti javítása mindig (r, l)-felső becslést ad.

Biz: Azt kell megmutatni, hogy van olyan rv-út, aminek a hossza legfeljebb f(u) + l(uv). Ha egy legrövidebb ru-utat kiegészítünk az uv éllel, akkor olyan rv-élsorozatot kapunk, aminek az összhossza $dist_l(r,u) + l(uv) \le f(u) + l(uv)$. "Könnyen" látható, hogy az élhosszfüggvény konzervativitása miatt ha van x összhosszúságú rv-élsorozat, akkor van legfeljebb x összhosszúságú xv-út is. Ezek szerint van legfeljebb f(u) + l(u,v) hosszúságú xv-út is, azaz az érdemi élmenti javítás után szintén (r,l)-felső becslést kapunk. \square

(2) f(r,l)-felső becslés (pontosan) \iff (f-en \nexists érdemi élmenti javítás).

Biz: \Rightarrow : Ha f pontos, akkor biztosan nincs rajta érdemi élmenti javítás: ha volna, akkor egy felső becslés a pontos érték alá csökkenne, így az élmenti javítás nem (r,l)-felső becslést eredményezne. \Leftarrow : Legyen $v \in V(G)$ tetsz, és legyen P egy legrövidebbb rv-út. A P egyik éle mentén sincs érdemi élmenti javítás, ezért P minden u csúcsára pontos a felső becslés: $f(u) = dist_l(r,u)$. Ez igaz az út utolsó csúcsára, a tetszőlegesen választott v-re is. \square

- Dijkstra algoritmus működése:
 - Input: G = (V, E) irányított gráf, $l: E \to \mathbb{R}^+$ nemnegatív hosszfüggvény, $r \in V$ gyökér
 - **Output**: $dist_l(r, v)$ minden $v \in V$ -re.
 - Működés: Kezdetben $U_0 = \emptyset, f(r) = 0$ és $f(v) = \infty$, ha $v \neq r$.

Az algoritmus i-dik fázisában (i = 1, 2, ..., |v|) a következő történik.

1. Legyen u_i az v csúcs a $v \setminus u_{i-1}$ halmazból, amelyre f(r) minimális és legyen $u_{i-1} \cup u_i$.

2. Végezzünk élmenti javításokat minden u_i -ből kivezető $u_i x$ élen.

Az output a |v|-dik fázik utáni f függvény. Szokás megjelölni a végső f(v) értékeket beállító éleket. Ha az output az f(r, l)-felső becslés, akkor

- (1) $f(u_i) \le f(u_{i+1}) \ \forall 1 \le u$ -re.
- $(2) f(u_i) \le f(u_2) \le \dots \le (u_n)$
- (3) élmentijavítás nem változhat f-n.
- A Dijkstra-algoritmus helyesen működik, azaz $dist_l(r, v) = f(v) \forall v \in V$ teljesül. Az algoritmus során megjelölt élek egy legrövidebb utak fáját alkotják G-ben: az r gyökérből minden r-ből elérhető csúcshoz vezet olyan legrövidebb út is ami csak megjelölt éleket tartalmaz.
- A Dijkstra-algoritmus lépésszáma legfeljebb. $konst \cdot (n^2 + m)$, ahol $n = |v| \ m = |E|$.
- Dijkstra-algoritmus: Input: $G = (V, E), l : E \to \mathbb{R}_+, r \in V$. Output: $dist_l(r, v) \forall v \in V$ Működés: $U_0 := \emptyset, f_0$ a triviális. (r, \overline{l}) -felső becslés.

Az *i*-dik fázis:

- 1. Legyen $U_i := U_{i-1} \cup \{u_i\}$, ahol u_i olyan csúcs a $V \setminus U_{i-1}$ halmazból, amelyre $f_{i-1}(v)$ minimális.
- 2. $f_i: f_{i-1}$ élmenti javítása minden U_i -ből kivezető $u_i x$ élen. Output: $f_{|V|}$. Megjelöljük a végső $f_{|V|}(V)$ értékeket beállító éleket.

Megf: Ha a v-be vezet megjelölt él, akkor vezet r-ből v-be megjelölt éleken út, és ennek hozza megegyezik $f_{|V|}(v)$ -vel.

Biz: $f_{|V|}(r) = 0$, és a megjelölt élek mentén haladva az $f_{|V|}$ érték az élhosszal növekszik.

• Dijkstra helyessége

Megf: Tfh u_1, u_2, \ldots, u_n a G csúcsainak sorrendje a Dijkstra-algoritmus végrehajtása után.

(1) Ekkor $f_{|V|}(u_i) \leq f_{|V|}(u_{i+1})$ teljesül $\forall 1 \leq i \leq n$.

Biz: Az *i*-dik fázisban $f_i(u_i) \leq f_i(u_{i+1})$ teljesült az u_i választása miatt. Ezek után $f_i(u_i)$ már nem változott: $f_{|V|}(u_i) = f_i(u_i)$. Ugyan $f_i(u_{i+1})$ még csökkenhetett, de csak az u_iu_{i+1} él mentén történt javítás miatt, hiszen az (i+1)-dik fázisban u_{i+1} bekerült az U_i halmazba, és a hozzá tartozó (r,l)-fb már nem csökken tovább. Ekkor $f_{i+1}(u_{i+1}) = \min\{f_i(u_{i+1}), f_i(u_i) + l(u_iu_{i+1})\} \geq f_i(u_i)$, mivel $l(u_iu_{i+1}) > 0$. Ezért $f_{|V|}(u_i) = f_i(u_i) \leq f_{i+1}(u_{i+1}) = f_{|V|}(u_{i+1})$

- (2) $f_{|V|}(u_1) \le f_{|V|}(u_2) \le \dots \le f_{|V|}(u_n)$
- (3) A Dijsktra-algoritmus outputjaként kaptt $f_{|V|}$ -n élmenti javítás nem tud változtatni.

Biz: Tegyük fel, hogy $u_i u_j \in E(G)$ a G egy tetszőleges éle. Ha i > j, akkor (2) miatt $f_{|V|}(u_i) \ge f_{|V|}(u_j)$, ezért az $u_i u_j$ mentén történő javítás nem tudja $f_{|V|}(u_j)$ -t csökkenteni, hisz $l(u_i u_j)$ pozitív. Ha pedig i < j, akkor az i-dik fázisban megrörtént az $u_i u_j$ mentén történő javítás, és ezt követően $f(u_i)$ nem váltorott, azaz $f_{|V|}(u_i) = f_i(u_i)$. A másik (r, l)-felső becslés pedig csak tovább csökkenhetett a késpbbi émj-ok során $f_{|V|}(u_j) \le f_i(u_j)$. Ezért az $u_i u_j$ él mentén sem az i-dik fázisban, sem később nincs érdemi javítás. \square

Tétel: A Dijsktra-algoritmus helyesen működik, azaz G minden csúcsára igaz, hogy $dist(r, v) = f_{|V|}(v)$.

Biz: A Dijsktra-algoritmus az f_0 triviális (r,l)-felső becslésből indul ki, és élmenti javításokat alkalmaz. Így minden f_i (speciálisan $f_{|V|}$ is) (r,l)-felső becslés lesz. A fenti (3)-as megfigyelés miatt $f_{|V|}$ -n nem végezhető érdemi élmenti javítás. Ezért egy korábbi (2)-es megfigyelés miatt $f_{|V|}$ pontos (r,l)-felső becslés, azaz $f_{|V|}(v) = dist_l(r,v) \forall v \in V(G)$. \square

- Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszüggvény esetén hibás eredményt ad. Azonban konzervatív hosszüffvény esetén is igaz, hogy
 - -(r, l)-fb élmenti javítása (r, l)-fb-t eredményez, ill.
 - ha egy (r, l)-fb-ben nem végezhető erdemi élmenti javítás, akkor pontos.

konzervatív hosszfüggvény esetén is hasonló startégiát követünk: Élmenti javításokat végzünk a triviális (r, l)-fb-en, míg van érdemi javítás.

Ford-algoritmus:

Input: G = (V, E) irányított, $l: E \to \mathbb{R}$ konzervatív hosszfüggvény, $r \in V$ gyökérpont.

Output: $dist_l(r, l)$ minden $v \in V$

<u>Működés:</u> Legyen $E = \{e_1, e_2, \dots, e_m\}$. Kezdetben legy f(r) = 0 és $v \neq r$ esetén $f(v) = \infty$, Az *i*-dik fázis $i = 1, 2, \dots, n-1$ esetén abból áll, hogy elvégezzük az e_1, e_2, \dots, e_m élek menti javításokat. A végén az OUTPUT: $dist_l(r, v) = f(v)$ minden v-re. $(dist_l(r, v) = f_{n-1}(v) \forall v \in V)$

Állítás: Ha *l* konzervatív, akkor $dist_l(v)$ $v \in V$ -re.

Biz: $f_1(v) = dist_l(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út. $f_2(v) = dist_l(r, v)$ ha $\exists \le 2$ -élű legrövidebb rv-út. ... $f_{n-1}(v) = dist_l(r, v)$ ha $\exists \le (n-1)$ -élű legrövidebb rv-út. Tehát $f_{n-1}(v) = dist_l(r, v) \forall v \in V$. \square

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az *i*-dik fázis után be lehet fejezni, hisz nincs érdemi élmenti javítás, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkozják.

Biz: A Dijkstra esethez hasonló. Tetszőleges v csúcsból visszafelé követve a végső értékeket beállító éleket $f_{n-1}(v)$ hosszúságú rv-utat találunk. \square

"Lépésszámanalízis": Ha a |V(G)| = n és |E(G)| = m, akkor minden fázisban $\leq m$ élmenti javítás, ami $konst \cdot m$ lépés. Ez összesen $\leq konst \cdot (n-1) \cdot m \leq konst \cdot n^3$ lépés, az algoritmus hatékony.