Mid-term examination

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

- Circuit analysis:
 - Write down the Kirchhoff current law for the output node.
 - Solve the differential equation for the output voltage, $V_{out}(t)$.

- Express the output voltage, $V_{out}(t)$, as a function of the input current, $I_{in}(t)$.

- Properties of semiconductors
 - Answer "Yes" or "No" for the following five statements.
 - 1. Only semiconductors have the band gap.
 - 2. The intrinsic carrier density of silicon increases exponentially as the temperature increases.
 - 3. The relation of $np = n_i^2$ must be valid everywhere for a pn junction at equilibrium.
 - 4. A doping density of 10¹⁰ cm⁻³ is a relatively high doping density.
 - 5. The Einstein relation between the mobility and the diffusion constant holds only at equilibrium, in a rigoruous sense.

- Biased pn junction
 - 1. Where is the p-type region? Where is the n-type region?
 - 2. From two figures below, estimate the bias condition. Is it forward-biased or reverse-biased? What is the applied bias?

Forward-biased pn junction

 The electron density at the boundary between the p-type region and the depletion region is given by

$$n_p = n_{p0} \exp \frac{V}{k_B T/q}$$

- Also, at the end of the p-type region, $n_p = n_{p0}$. (n_{p0} is a constant.)
- The hole density at the boundary between the n-type region and the depletion region is given by

$$p_n = p_{n0} \exp \frac{V}{k_B T/q}$$

- Also, at the end of the n-type region, $p_n = p_{n0}$. (p_{n0} is a constant.)
- Length of p-type region and n-type region is L_p and L_n , respectively.
- Assuming linear variation of n_p and p_n , calculate the diffusion current density.

- Constant voltage model
 - 1. Show explicitly that:
 - For a forward-biased diode, only a small change of the diode
 voltage is required for increasing the diode current by a factor of 10.
 - (You may use $\log 10 \approx 2.3$)
 - 2. When we increase the diode voltage by 0.3 V, what is the increaing ratio of the diode current?

OR gate

- 1. Explain that the following circuit can be seen as an OR gate (approximately).
- 2. Write down expected drawbacks of the circuit.

Small-signal model

- 1. Les us describe the IV characteristic of a pn diode as $I = I_s \left(\exp \frac{V}{k_B T/q} 1 \right)$. A dc bias voltage, V_{dc} , is applied. Then, calculate the equivalent small-signal resistance.
- 2. Now, consdider a device whose IV charactierstic is given as $I = K(V_0V \frac{1}{2}V^2)$. Here, K and V_0 are constants. A dc bias voltage, V_{dc} , is applied. Then, calculate the equivalent small-signal resistance.

- A diode-resistor circuit, $V_{in}(t) = +3 + 0.001 \sin \omega t$
 - 1. Qualitatively explain its inout-output charactersitic.
 - 2. When the (angular) frequency becomes higher, qualitatively describe the behavior of $V_{out}(t)$.

A circuit

- 1. Qualitatively explain its inout-output charactersitic.
- 2. Solve the system exactly. (You may use $I = I_s \exp \frac{V}{k_B T/q}$.)

