Геометрия и топология. Факты 2 сем.

Кабашный Иван (@keba4ok)

(по материалам лекций Фоминых Е. А., практик, а также других источников)

26 марта 2021 г.

Основные (по моему мнению) факты по топологии.

Содержание

1	Аф	Аффинные пространства.	
	1.1	Начальные определения и свойства.	3
	1.2	Материальные точки	3
	1.3	Аффинные подпространства и оболочки.	3
	1.4	Базисы и отображения	4

1 Аффинные пространства.

1.1 Начальные определения и свойства.

Определение 1. Аффинное пространство - тройка $(X, \vec{X}, +)$, состоящая из непустого множества точек, векторного пространства над \mathbb{R} (присоединённое) и операцией $+: X \times \vec{X} \to X$ откладывания вектора.

Налагаемые условия - для любых точек $x, y \in X$ существует единственный вектор $v \in \vec{X}$ такой, что x + v = y (\vec{xy}), а также ассоциативность откладывания вектора.

Определение 2. *Начало отсчёта* аффинного пространства - произвольная фиксированная точка $o \in X$.

Лемма 1. Начало отсчёта $o \in X$ задаёт биекцию $\varphi_o : X \to \vec{X}$ по правилу:

$$\varphi_o(x) = \vec{ox} \ \forall x \in X.$$

Такая биекция называется векторизацией аффинного пространства.

Определение 3. Линейная комбинация $\sum t_i p_i$ точек с коэффициентами относительно начала отсчёта $o \in X$ - вектор $v = \sum t_i o \vec{p}_i$, или точка p = o + v. Комбинация называется барицентрической, если сумма коэффициентов равна единице, и сбалансированной, если сумма коэффициентов равна нулю.

Теорема 1. Барицентрическая комбинация точек - точка, не зависящая от начала отсчёта. Сбалансированная комбинация точек - вектор, не зависящий от начала отсчёта.

1.2 Материальные точки.

Определение 4. Пусть x — некоторая точка аффинного пространства и m — ненулевое число. Mamepuaльной точкой <math>(x,m) называется пара: точка x с вещественным числом m, причем число m называется maccoй материальной точки (x,m), а точка x — носителем этой материальной точки.

Определение 5. *Центром масс* системы материальных точек (x_i, m_i) называется такая точка z (притом единственная), для которой имеет место равенство

$$m_1 \cdot z\vec{x}_1 + \ldots + m_n \cdot z\vec{x}_n = 0.$$

1.3 Аффинные подпространства и оболочки.

Определение 6. Множество $Y \subset X$ - аффинное подпространство, если существуют такие линейное подпространство $V \subset \vec{X}$ и точка $p \in Y$, что Y = p + V. V называется направлением Y. Определение подпространства не зависит от выбора точки в нём.

Определение 7. $Pазмерность \dim X$ афинного пространства есть размерность его присоединённого векторного пространства.

Определение 8. Параллельный перенос на вектор $v \in \vec{X}$ - отображение $T_v : X \to X$, заданное равенством $T_v(x) = x + v$.

Определение 9. Аффинные подпространства одинаковой размерности *параллельны*, если их направления совпадают.

Определение 10. *Прямая* - аффинное подпространство размерности 1, *гиперплоскость* в X - аффинное подпространство размерности $\sim X-1$.

Утверждение 1. Две различные гиперплоскости не пересекаются тогда и только тогда, когда они параллельны.

Определение 11. *Суммой аффинных подпространств* называется наименьшее аффинное подпространство, их содержащее.

Теорема 2. Пересечение любого набора аффинных подпространств - либо пустое мноежство, либо аффинное подпространство.

Определение 12. $A\phi\phi$ инная оболочка Aff A непустого множества $A \subset X$ - пересечение всех аффинных подпространств, содержащих A. Как следствие, это - наименьшее аффинное подпространство, содержащее A.

Теорема 3. Aff(A) - множество всех барицентрических комбинаций точек из A.

Определение 13. Точки p_1, \ldots, p_k аффинно зависимы, если существуют такие коэффициенты $t_i \in \mathbb{R}$, не все равные нулю, что $\sum t_i = 0$ и $\sum t_i p_i = 0$. Если такой комбинации нет, то точки аффинно независимы.

Теорема 4. (Переформулировки аффинной независимости.) Для $p_1, \ldots, p_k \in X$ следующие свойства эквивалентны:

- они аффинно независимы;
- векторы p_1p_i , $i \in \{2, 3, ..., k\}$, линейно независимы;
- dim Aff $(p_1, ..., p_k) = k 1$;
- каждая точка из $Aff(p_1, ..., p_k)$ единственным образом представляется в виде барицентрической комбинации p_i .

1.4 Базисы и отображения.

Определение 14. $A\phi\phi$ инный базис - набор n+1 точке в X, пространстве размерности n, являющийся аффинно независимым. Или же, это - точке $o \in X$ и базис e_0, \ldots, e_n пространства \vec{X} .

Определение 15. Каждая точка однозначно записывается в виде барицентрической комбинации $\sum_{i=0}^{n} t_{i}e_{i}$, а числа t_{i} называют барицентрическими координатами этой точки.

Определение 16. (Говно-определение). Отображение $F: X \to Y$ называется аффинным, если отображение \tilde{F}_p линейно для некоторой точки $p \in X$. Отображение $\tilde{F}_p: \vec{X} \to \vec{Y}$ индуцируется из любого отображения $F: X \to Y$ посредством формулы $\forall v \in \vec{X}$ $\tilde{F}_p(v) = \overline{F(p)F(q)}$, где q = p + v.

Определение 17. Отображение \tilde{F} называется линейной частью аффинного отображения F .

Определение 18. (Нормальное определение.) Отображение $F: X \to Y$ называется $a\phi\phi un$ ным, если существует такое линейное $L: \vec{X} \to \vec{Y}$, что для любых $q, p \in X$, $\overrightarrow{F(p)F(q)} = L(\vec{pq})$.

Теорема 5. Пусть $x \in X$, $y \in Y$, $L : \vec{X} \to \vec{Y}$ линейно. Тогда существует единственное аффинное отображение $F : X \to Y$ такое, что $\tilde{F} = L$ и F(x) = y.

Лемма 2. Пусть p_1, \ldots, p_n - аффинно независимые точки в аффинном пространстве X, q_1, \ldots, q_n - точки в аффинном пространстве Y. Тогда существует такое аффинное отображение $F: X \to Y$, что $F(p_i) = q_i \ \forall i$. Кроме того, если $\dim X = n-1$, то такое отображение единственно.

Лемма 3. Аффинное отображение сохраняет барицентрические комбинации.

Пемма 4. Композиция аффинных отображений - аффинное отображение. При этом линейная часть композиции - композиция линейных частей.

Утверждение 2. Образ и прообраз аффинного подпространства - аффинное подпространство. Образы (прообразы) параллельных подпространств параллельны.

Теорема 6. Параллельный перенос - аффинное отображение, его линейная часть тождественна. Верно также и обратное.

Определение 19. Аффинное отображение $F: X \to X$ такое, что $\tilde{F} = k$ id для некоторого $k \in \mathbb{R} \setminus \{0,1\}$, называется *гомотетии* \tilde{F} , а k называют *коэффициентом растяжения* гомотетии F. Такое отображение имеет ровно одну неподвижную точку, называемую центром.

Теорема 7. (Основная теорема аффинной геометрии.) Пусть X, Y - аффинные пространства, $\dim X \geq 2$. Пусть $F: X \to Y$ - инъективное отображение, и для любой прямой $l \subset X$ её образ F(l) - тоже прямая. Тогда F - аффинное отображение.