Examen d'Analyse 1 (Fonctions réelles d'une variable réelle)

Session 2 / Durée : 03 heures

Documents, calculatrices et toute machine électronique sont interdits. Il sera tenu compte de la rigueur et de la clarté de la rédaction. Une présentation générale soignée sera également appréciée.

EXERCICE 1. (03 pts)

Les questions de cet exercice sont indépendantes.

1. Soient a et b deux nombres réels. Montrer que

$$||a| - |b|| \le |a+b|.$$

2. Soient A et B deux parties non vides et majorées de \mathbb{R} . On définit l'ensemble

$$A + B = \{x + y : x \in A \text{ et } y \in B\}.$$

Montrer que A + B est majorée et $\sup(A + B) = \sup A + \sup B$.

EXERCICE 2. (02 pts)

Déterminer les nombres réels a et b pour que la fonction f définie sur \mathbb{R} par

$$f(x) = (2x-1)^2 \text{ si } x < 1, \ f(x) = a \text{ si } x = 1 \text{ et } f(x) = (x+b)^2 \text{ si } x > 1.$$

soit continue sur \mathbb{R} .

EXERCICE 3. (04 pts)

Calculer les limites suivantes :

$$\lim_{x\to +\infty} \frac{x^2 \ln x}{e^x} \qquad \lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2}\right) \qquad \lim_{x\to 0} \frac{\ln x}{x^2-1}.$$

EXERCICE 4. (04 pts)

- 1. Enoncer le théorème des accroissements finis.
- 2. A l'aide du théorème des accroissements finis, montrer que pour tout x > 0 on a

$$\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}.$$

- 3. En déduire que la fonction f définie sur $]0, +\infty[$ par $f(x)=\left(1+\frac{1}{x}\right)^x$ est monotone.
- 4. Déterminer la limite en l'infini de f.

EXERCICE 5. (04 pts)

- 1. Ecrire le développement limité de $\frac{1}{1+e^x}$ au voisanage de 0 à l'ordre 3.
- 2. Soit f la fonction définie par $f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$.
 - a. Déterminer l'ensemble de définition de f.
 - b. Prouver qu'au voisinage de $+\infty$ la courbe représentative de f admet une asymptote dont on donnera l'équation et préciser la position de la courbe par rapport à cette asymptote.

EXERCICE 6. (03 pts)

Les questions de cet exercice sont indépendantes.

- 1. Ecrire la définition de " la suite $(u_n)_{n\geq 0}$ admet $-\infty$ pour limite.
- 2. Soient $l \in \mathbb{R}$ et $(u_n)_{n \geq 0}$ une suite numérique telle que $\lim_{n \to +\infty} u_{2n} = l$ et $\lim_{n \to +\infty} u_{2n+1} = l$.

Montrer que $(u_n)_{n>0}$ converge vers l.