CMPE 257: Machine Learning

Team Spartans:

Rishikesh Andhare

Jack Kalavadia

Rutvik Moradiya

Pramatha Nadig

Bike Sharing Demand Prediction

Importing all dataasets

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn as sns
from warnings import filterwarnings
filterwarnings('ignore')
pd.options.display.max_columns = None
pd.options.display.max_rows = None
pd.options.display.float_format = '{:.6f}'.format
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_sc
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve, precisio
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import tree
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, Stratified
import pydotplus
from IPython.display import Image
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
from sklearn.metrics import accuracy_score
# import various functions from statsmodels
import statsmodels
import statsmodels.api as sm
from collections import Counter
```

```
plt.rcParams['figure.figsize'] = [15,8]
```

datasetUrl1 = 'https://drive.google.com/file/d/10wKdg9HnqQ_o9UZatlAsTMfiIpg8NtMq
datasetUrl1 = 'https://drive.google.com/uc?id=' + datasetUrl1.split('/')[-1]
data1 = pd.read_csv(datasetUrl1)
data1.head(5)

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathe
0	1	2011- 01-01	1	0	1	0	0	6	0	
1	2	2011- 01-01	1	0	1	1	0	6	0	
2	3	2011- 01-01	1	0	1	2	0	6	0	
3	4	2011-	1	0	1	3	0	6	0	

datasetUrl2 = 'https://drive.google.com/file/d/1yVL1fUAfZ5ktpPbaAAF8zQrLlBAicgN7
datasetUrl2 = 'https://drive.google.com/uc?id=' + datasetUrl2.split('/')[-1]
data2 = pd.read_csv(datasetUrl2, encoding_errors='ignore')
data2.head(5)

	Date	Rented Bike Count	Hour	Temperature(C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)
0	01/12/2017	254	0	-5.200000	37	2.200000	2000
1	01/12/2017	204	1	-5.500000	38	0.800000	2000
2	01/12/2017	173	2	-6.000000	39	1.000000	2000
3	01/12/2017	107	3	-6.200000	40	0.900000	2000
4	01/12/2017	78	4	-6.000000	36	2.300000	2000

data1.dtypes

instant int64 object dteday season int64 int64 γr int64 mnth hr int64 holiday int64 weekday int64 workingday int64 weathersit int64 float64 temp atemp float64 float64 hum float64 windspeed casual int64 int64 registered int64 cnt

dtype: object

data2.dtypes

object Date Rented Bike Count int64 Hour int64 Temperature(C) float64 Humidity(%) int64 Wind speed (m/s) float64 Visibility (10m) int64 Dew point temperature(C) float64 Solar Radiation (MJ/m2) float64 Rainfall(mm) float64 Snowfall (cm) float64 Seasons object Holiday object Functioning Day object dtype: object

data2.rename(columns = {'Temperature(C)':'temp','Wind speed (m/s)':'windspeed','

data2.head()

	dteday	cnt	hr	temp	hum	windspeed	Visibility (10m)	Dew point temperature(C)	sc
0	01/12/2017	254	0	-5.200000	37	2.200000	2000	-17.600000	
1	01/12/2017	204	1	-5.500000	38	0.800000	2000	-17.600000	
2	01/12/2017	173	2	-6.000000	39	1.000000	2000	-17.700000	

Data Preparation and wrangling

```
data1.workingday.replace( (1, 0),('Yes', 'No'), inplace=True)

data2.holiday.replace(('Holiday', 'No Holiday'), (1, 0), inplace=True)

data1.season.replace( (1,2,3,4),('Winter', 'Autumn','Summer','Spring'), inplace=
data2.head()
```

	dteday	cnt	hr	temp	hum	windspeed	Visibility (10m)	Dew point temperature(C)	sc
0	01/12/2017	254	0	-5.200000	37	2.200000	2000	-17.600000	
1	01/12/2017	204	1	-5.500000	38	0.800000	2000	-17.600000	
2	01/12/2017	173	2	-6.000000	39	1.000000	2000	-17.700000	
3	01/12/2017	107	3	-6.200000	40	0.900000	2000	-17.600000	
4	01/12/2017	78	4	-6.000000	36	2.300000	2000	-18.600000	

data1=data1.drop(['instant'],axis=1)

data1.head()

	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	
0	2011- 01-01	Winter	0	1	0	0	6	No	1	0.24
1	2011- 01-01	Winter	0	1	1	0	6	No	1	0.22
2	2011- 01-01	Winter	0	1	2	0	6	No	1	0.22

data2.head()

	dteday	cnt	hr	temp	hum	windspeed	Visibility (10m)	Dew point temperature(C)	sc
0	01/12/2017	254	0	-5.200000	37	2.200000	2000	-17.600000	
1	01/12/2017	204	1	-5.500000	38	0.800000	2000	-17.600000	
2	01/12/2017	173	2	-6.000000	39	1.000000	2000	-17.700000	
3	01/12/2017	107	3	-6.200000	40	0.900000	2000	-17.600000	
4	01/12/2017	78	4	-6.000000	36	2.300000	2000	-18.600000	

data1.dteday.head()

- 0 2011-01-01
- 1 2011-01-01
- 2 2011-01-01
- 3 2011-01-01
- 4 2011-01-01

Name: dteday, dtype: object

```
pd.to_datetime(data1.dteday.head()).dt.month,
pd.to_datetime(data1.dteday.head()).dt.day,
pd.to_datetime(data1.dteday.head()).dt.year
```

- 0 2011
- 1 2011
- 2 2011
- 3 2011
- 4 2011

Name: dteday, dtype: int64

data2.head()

	dteday	cnt	hr	temp	hum	windspeed	Visibility (10m)	Dew point temperature(C)	sc
0	01/12/2017	254	0	-5.200000	37	2.200000	2000	-17.600000	
1	01/12/2017	204	1	-5.500000	38	0.800000	2000	-17.600000	
2	01/12/2017	173	2	-6.000000	39	1.000000	2000	-17.700000	
3	01/12/2017	107	3	-6.200000	40	0.900000	2000	-17.600000	
4	01/12/2017	78	4	-6.000000	36	2.300000	2000	-18.600000	

df = data1.merge(data2, on = ['cnt','hr','temp','hum','windspeed','dteday','holi

df.head()

	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weather
0	2011- 01-01	Winter	0.000000	1.000000	0	0	6.000000	No	1.00
1	2011- 01-01	Winter	0.000000	1.000000	1	0	6.000000	No	1.000
2	2011- 01-01	Winter	0.000000	1.000000	2	0	6.000000	No	1.00
3	2011- 01-01	Winter	0.000000	1.000000	3	0	6.000000	No	1.000
4	2011- 01-01	Winter	0.000000	1.000000	4	0	6.000000	No	1.00

df=df.drop(['registered','atemp','yr','mnth','weekday','Visibility (10m)','Dew p

df.head()

	dteday	season	hr	holiday	workingday	temp	hum	windspeed	cnt
0	2011- 01-01	Winter	0	0	No	0.240000	0.810000	0.000000	16
1	2011- 01-01	Winter	1	0	No	0.220000	0.800000	0.000000	40
2	2011- 01-01	Winter	2	0	No	0.220000	0.800000	0.000000	32
•	2011-	147 .	_	2	N.I.	0.040000	0.750000	0.000000	40

```
pd.to_datetime(data1.dteday.head()).dt.month,
pd.to_datetime(data1.dteday.head()).dt.day,
pd.to_datetime(data1.dteday.head()).dt.year
```

- 0 2011
- 1 2011
- 2 2011
- 3 2011
- 4 2011

Name: dteday, dtype: int64

df["month"]=pd.to_datetime(df.dteday).dt.month

df["day"]=pd.to_datetime(df.dteday).dt.day
df["year"]=pd.to_datetime(df.dteday).dt.year

df.head()

	dteday	season	hr	holiday	workingday	temp	hum	windspeed	cnt
0	2011- 01-01	Winter	0	0	No	0.240000	0.810000	0.000000	16
1	2011- 01-01	Winter	1	0	No	0.220000	0.800000	0.000000	40
2	2011- 01-01	Winter	2	0	No	0.220000	0.800000	0.000000	32

df=df.drop(['dteday'],axis=1)

df.dtypes

season	object
	_
hr	int64
holiday	int64
workingday	object
temp	float64
hum	float64
windspeed	float64
cnt	int64
month	int64
day	int64
year	int64
dtype: object	

df.to_csv("dataset3.csv",index=False)

▼ Remove Insignificant variables

```
df_cat = df.select_dtypes(include=[np.object])
df_cat.head()
```

	season	workingday
0	Winter	No
1	Winter	No
2	Winter	No
3	Winter	No
4	Winter	No

cols = list(df.columns)

sns.countplot(x='workingday',data=df_cat)

<Axes: xlabel='workingday', ylabel='count'>

sns.countplot(x='season',data=df_cat)

<Axes: xlabel='season', ylabel='count'>


```
sns.heatmap(df.corr(),annot = True,color = 'r')
plt.show()
```


Variables Distribution

```
df.drop('cnt', axis = 1).hist(color = "b")

# adjust the subplots
plt.tight_layout()
```

```
# display the plot
plt.show()
print('Skewness:')

df.drop('cnt', axis = 1).skew()
```


Skewness:

-0.007103 hr holiday 5.008592 temp 1.625359 hum 1.159319 windspeed 1.990985 -0.009671 month day 0.010786 0.650560 year

dtype: float64

Missing Values

Total = df.isnull().sum().sort_values(ascending=False)
Percent = (df.isnull().sum()*100/df.isnull().count()).sort_values(ascending=Fals missing_data = pd.concat([Total, Percent], axis = 1, keys = ['Total', 'Percentag missing_data

	Total	Percentage of Missing Values
season	0	0.000000
hr	0	0.000000
holiday	0	0.000000
workingday	0	0.000000
temp	0	0.000000
hum	0	0.000000
windspeed	0	0.000000
cnt	0	0.000000
month	0	0.000000
day	0	0.000000
year	0	0.000000

▼ Ploting variable Based on boxplots

```
df_num = df.select_dtypes(include=[np.number])
fig, ax = plt.subplots(2, 3, figsize=(15, 8))

for variable, subplot in zip(df_num.columns, ax.flatten()):
    z = sns.boxplot(x = df_num[variable], ax=subplot,color='red', orient = "h",w
    z.set_xlabel(variable, fontsize = 20)
```



```
lower = df_num.temp.quantile(0.25)
upper = df_num.temp.quantile(0.75)

IQR = upper - lower

# print the IQR
print(IQR)
df_num = df_num[~((df_num.temp < (lower - 1.5 * IQR)) |(df_num.temp > (upper + 1))
```

```
lower = df_num.hum.quantile(0.25)

upper = df_num.hum.quantile(0.75)

IQR = upper - lower

print(IQR)

df_num = df_num[~((df_num.hum < (lower - 1.5 * IQR)) |(df_num.hum > (upper + 1.5)
```

0.37

3.24

```
fig, ax = plt.subplots(2, 3, figsize=(15, 8))
for variable, subplot in zip(df_num.columns, ax.flatten()):
    z = sns.boxplot(x = df_num[variable], ax=subplot,color='red', orient = "h",w
    z.set_xlabel(variable, fontsize = 20)
```


▼ Mock Encode

```
df_target = df['cnt']
df_feature = df.drop(['cnt', 'holiday'], axis = 1)
df_num = df_feature.select_dtypes(include = [np.number])
df_num.head()
```

	hr	temp	hum	windspeed	month	day	year
0	0	0.240000	0.810000	0.000000	1	1	2011
1	1	0.220000	0.800000	0.000000	1	1	2011
2	2	0.220000	0.800000	0.000000	1	1	2011
3	3	0.240000	0.750000	0.000000	1	1	2011
4	4	0.240000	0.750000	0.000000	1	1	2011

```
df_cat = df_feature.select_dtypes(include = [np.object])
df_cat.columns
dummy_var = pd.get_dummies(data = df_cat, drop_first = True)
```

Data Scaling And Train_Test Spliting

Before employing diverse classification methods to forecast student admission outcomes, let's divide the dataset into training and testing sets.

```
target = df['holiday']X_scaler = StandardScaler()
num_scaled = X_scaler.fit_transform(df_num)

df_num_scaled = pd.DataFrame(num_scaled, columns = df_num.columns)
```

```
X = pd.concat([df_num, dummy_var], axis = 1)
#X.drop("Sold",axis = 1,inplace = True)
X.head()
```

	hr	temp	hum	windspeed	month	day	year	season_Spring	season_St
0	0	0.240000	0.810000	0.000000	1	1	2011	0	
1	1	0.220000	0.800000	0.000000	1	1	2011	0	
2	2	0.220000	0.800000	0.000000	1	1	2011	0	
3	3	0.240000	0.750000	0.000000	1	1	2011	0	
4	4	0.240000	0.750000	0.000000	1	1	2011	0	

```
X = sm.add_constant(X)

X_train, X_test, y_train, y_test = train_test_split(X, target, random_state = 10

y_train = np.round(y_train).astype(int)

y_test = np.round(y_test).astype(int)

print('X_train', X_train.shape)

print('y_train', y_train.shape)

print('X_test', X_test.shape)

print('y_test', y_test.shape)

X_train (20911, 12)
 y_train (20911,)
 X_test (5228, 12)
 y_test (5228,)
```

Decision Tree for Classification

```
decision_tree_classifier = DecisionTreeClassifier(criterion = 'gini', random_sta
decision_tree = decision_tree_classifier.fit(X_train, y_train)

!pip install -q graphviz
```

▼ Finding Gini Scores

Making a full decision tree model using 'entropy'.

import pydotplus
from sklearn import tree
from IPython.display import Image
from sklearn.tree import export_graphviz

```
decision_tree = DecisionTreeClassifier(max_leaf_nodes=6,criterion='gini')

decision_tree = decision_tree.fit(X_train,y_train.astype(int))

labels = X_train.columns

dot_data = tree.plot_tree(decision_tree,filled = True,feature_names=X_train.columns)
```


▼ Train Set Performance Evaluation:

Obtaining performance metrics on the training set using a decision tree model.

```
def get_train_report(model):
    train_pred = model.predict(X_train)
    return(classification_report(y_train, train_pred))
```

```
train_report = get_train_report(decision_tree)
print(train_report)
```

	precision	recall	f1-score	support
0 1	0.97 0.75	1.00 0.08	0.98 0.14	20158 753
accuracy macro avg weighted avg	0.86 0.96	0.54 0.97	0.97 0.56 0.95	20911 20911 20911

```
def get_test_report(model):
    test_pred = model.predict(X_test)
    report = classification_report(y_test, test_pred)
    #print(report)
    return(report, test_pred)
```

```
test_report_dt, y_pred_dt= get_test_report(decision_tree)
```

```
print('y_pred:', y_pred_dt)
```

```
y_pred: [0 0 0 ... 0 0 0]
```

<pre>print(test_report_dt)</pre>	
----------------------------------	--

	precision	recall	f1-score	support
0 1	0.97 0.74	1.00 0.08	0.98 0.14	5049 179
accuracy macro avg weighted avg	0.85 0.96	0.54 0.97	0.97 0.56 0.95	5228 5228 5228

▼ Hyperparameter Tuning to Mitigate Overfitting:

1. Hyperparameter Grid and Model Initialization:

Defining hyperparameters for decision tree tuning to address overfitting. Initializing a decision tree model with specified hyperparameters.

2. Model Training and Performance Evaluation:

Training the decision tree model on the training data. Assessing model performance on both the training and test datasets.

```
tree_param_grid = {'criterion' :'gini',
'max_depth' :5,
'min_samples_split' : 4,
'max_leaf_nodes' : 6,
'random_state' : 10}
```

Train data:					
	precision	recall	f1-score	support	
0	0.97	1.00	0.98	20158	
1	0.75	0.08	0.14	753	
accuracy			0.97	20911	
macro avg	0.86	0.54	0.56	20911	
weighted avg	0.96	0.97	0.95	20911	
Test data:					
('	precision	recall	f1-score	support\n\n	0

▼ Features Importance

FeatureImp(dt_model)

→ 4. Random Forest for Classification Model

Initializing and training a Random Forest classifier with 10 estimators and a random state of 10.

```
rf_classification = RandomForestClassifier(n_estimators = 10, random_state = 10)
rf_model = rf_classification.fit(X_train, y_train)
```

Calculate performance for train set.

```
train_report = get_train_report(rf_model)
print(train_report)
```

	precision	recall	f1-score	support
0 1	1.00 1.00	1.00 0.99	1.00 0.99	20158 753
accuracy macro avg weighted avg	1.00 1.00	0.99 1.00	1.00 1.00 1.00	20911 20911 20911

4.1 Tune the Hyperparameters using GridSearchCV (Random Forest)

Best parameters for random forest classifier: {'criterion': 'gini', 'max_d

recall

precision

f1-score

support\n\n

▼ Features Importance RF Model

('

0

FeatureImp(rf_model)


```
train_report = get_train_report(rf_model)
print(train_report)
```

support	f1-score	recall	precision	
20158 753	0.98 0.00	1.00 0.00	0.96 0.00	0 1
20911 20911 20911	0.96 0.49 0.95	0.50 0.96	0.48 0.93	accuracy macro avg weighted avg

Muller Classifier

Setting up a comparison of various machine learning classifiers, including k-Nearest Neighbors, Support Vector Machines with linear and RBF kernels, Decision Tree, Random Forest, Neural Network, AdaBoost, and Naive Bayes.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

```
from sklearn.model_selection import train_test split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
names = [
    "Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest
    "Neural Net", "AdaBoost", "Naive Bayes"
classifiers = [
    KNeighborsClassifier(2),
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(criterion = rf_grid_model.best_params_.get('criterion')
                                  n_estimators = rf_grid_model.best_params_.get(
                                  max_depth = rf_grid_model.best_params_.get('ma
                                  max_features = rf_grid_model.best_params_.get(
                                  max_leaf_nodes = rf_grid_model.best_params_.ge
                                  min_samples_leaf = rf_grid_model.best_params_.
                                  min_samples_split = rf_grid_model.best_params_
                                  random_state = 10),
   MLPClassifier(alpha=1, max_iter=1000),
    AdaBoostClassifier(),
    GaussianNB()1
from sklearn import metrics
def muller_classification(X_train, X_test, y_train, y_test):
 max_score = 0.0
 max class = ''
 # iterate over classifiers
  metrics_df = pd.DataFrame({
      'Classifier': [],
      'MSE' : [],
```

```
'MAE': [],
    'RSquared': [],
    'Test Accuracy': [],
    'Recall':[],
    'Precision': []
    })
global m_pred
m_pred = \{\}
for name, clf in zip(names, classifiers):
  print(name)
  clf.fit(X_train, y_train)
  y_pred = clf.predict(X_test)
  score = 100.0 * clf.score(X test, y test)
  mean_absolute_error = np.round(metrics.mean_absolute_error(y_test, y_pred),
  mean_squared_error = np.round(metrics.mean_squared_error(y_test, y_pred), 2)
  r_squared = np.round(metrics.r2_score(y_test, y_pred), 2)
  test_acc = metrics.accuracy_score(y_test, y_pred) * 100
  recall = metrics.recall_score(y_test, y_pred, average = 'weighted')
  precision = metrics.precision_score(y_test, y_pred, average = 'weighted')
  new_row = pd.DataFrame({
  'Classifier': name,
  'MSE' : mean_absolute_error,
  'MAE': mean_squared_error,
  'RSquared': r_squared,
  'Test Accuracy': test_acc,
  'Recall': recall,
  'Precision': precision}, index=[0])
  m_pred[name] = {
      'y_pred' : y_pred,
      'y test': y test
  }
  metrics_df = pd.concat([new_row,metrics_df.loc[:]]).reset_index(drop=True)
  print('Classifier = %s, Score (test, accuracy) = %.2f,' %(name, score))
  if score > max_score:
      clf_best = clf
      max score = score
      max_class = name
print('Best Classifier = %s, Score (test, accuracy) = %.2f' %(max_class, max_s
return metrics_df
```

```
metrics_df = muller_classification(X_train, X_test, y_train, y_test)
metrics_df.head(10)
```

```
Nearest Neighbors
Classifier = Nearest Neighbors, Score (test, accuracy) = 98.16,
Classifier = Linear SVM, Score (test, accuracy) = 96.58,
RBF SVM
Classifier = RBF SVM, Score (test, accuracy) = 96.58,
Decision Tree
Classifier = Decision Tree, Score (test, accuracy) = 96.77,
Random Forest
Classifier = Random Forest, Score (test, accuracy) = 96.58,
Neural Net
Classifier = Neural Net, Score (test, accuracy) = 96.58,
AdaBoost
Classifier = AdaBoost, Score (test, accuracy) = 96.08,
Naive Bayes
Classifier = Naive Bayes, Score (test, accuracy) = 95.70,
Best --> Classifier = Nearest Neighbors, Score (test, accuracy) = 98.16
```

	Classifier	MSE	MAE	RSquared	Test Accuracy	Recall	Precision
0	Naive Bayes	0.040000	0.040000	-0.300000	95.696251	0.956963	0.934118
1	AdaBoost	0.040000	0.040000	-0.190000	96.078806	0.960788	0.933925
2	Neural Net	0.030000	0.030000	-0.040000	96.576129	0.965761	0.932695
3	Random Forest	0.030000	0.030000	-0.040000	96.576129	0.965761	0.932695
4	Decision Tree	0.030000	0.030000	0.020000	96.767406	0.967674	0.961028
5	RBF SVM	0.030000	0.030000	-0.040000	96.576129	0.965761	0.932695
6	Linear SVM	0.030000	0.030000	-0.040000	96.576129	0.965761	0.932695
7	Nearest	U U3UUU	U U3UUU	0.440000	00 16272 <i>1</i>	O 001627	U U0U30U

▼ Muller Loop Regressor

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn import metrics
names = [
    "Linear Regression",
    "MLP Regressor",
    "RandomForest Regressor",
    "Gradient Boosting Regressor",
    "KNeighbors Regressor"
         1
regressors = [
    LinearRegression(),
   MLPRegressor(random_state=1, max_iter=500),
    RandomForestRegressor(max_depth=4, random_state=1),
    GradientBoostingRegressor(random_state=1),
    KNeighborsRegressor(n_neighbors=2)
```

```
def muller_loop(x_train, x_test, y_train, y_test):
  max\_score = 0.0
 max_class = ''
  metrics_df = pd.DataFrame({
      'Regressor': [],
      'MSE' : [],
      'MAE': [],
      'RSquared': [],
      'Test Accuracy': []
  for name, reg in zip(names, regressors):
      req.fit(x train, y train)
      y_pred = reg.predict(x_test)
      score = 100.0 * reg.score(x_test, y_test)
      mean_absolute_error = np.round(metrics.mean_absolute_error(y_test, y_pred)
      mean_squared_error = np.round(metrics.mean_squared_error(y_test, y_pred),
      r_squared = np.round(metrics.r2_score(y_test, y_pred), 2)
      new_row = pd.DataFrame({
      'Regressor': name,
      'MSE' : mean absolute error,
      'MAE': mean_squared_error,
      'RSquared': r_squared,
      'Test Accuracy': score}, index=[0])
      metrics_df = pd.concat([new_row,metrics_df.loc[:]]).reset_index(drop=True)
      print('Regressor = %s, Score (test, accuracy) = %.2f,' %(name, score))
      if score > max_score:
          reg_best = reg
          max score = score
          max_class = name
  print('***** Best Regressor = %s, Score (test, accuracy) = %.2f' %(max_class,
```

```
muller_loop(X_train, X_test, y_train, y_test)
```

```
Regressor = Linear Regression, Score (test, accuracy) = 3.75,
Regressor = MLP Regressor, Score (test, accuracy) = -82.29,
Regressor = RandomForest Regressor, Score (test, accuracy) = 14.01,
Regressor = Gradient Boosting Regressor, Score (test, accuracy) = 23.51,
Regressor = KNeighbors Regressor, Score (test, accuracy) = 63.12,
Best --> Regressor = KNeighbors Regressor, Score (test, accuracy) = 63.12
```

Confusion matrix nd metrics

```
def confMatrix(y_test, y_pred):
    cm = confusion_matrix(y_test, y_pred)
    conf_matrix = pd.DataFrame(data = cm,columns = [f'Predicted:{i}' for i in rang
    return (cm, conf_matrix)

def plot_cm(conf_matrix):
    sns.heatmap(conf_matrix, annot = True, fmt = 'd', cmap = ListedColormap(['lightlinewidths = 0.1, annot_kws = {'size':8})
    plt.xticks(fontsize = 10)
    plt.yticks(fontsize = 10)
    plt.show()
```

```
cm_dt, conf_matrix_dt = confMatrix(y_test, y_pred_dt)
```

plot_cm(conf_matrix_dt)


```
def calculateMetrics(cm, y_test, y_pred):
 # True Negatives are denoted by 'TN'
 # Actual '0' values which are classified correctly
 TN = cm[0,0]
 # True Positives are denoted by 'TP'
 # Actual '1' values which are classified correctly
 TP = cm[1,1]
 # False Positives are denoted by 'FP'
 # it is the type 1 error
 # Actual '0' values which are classified wrongly as '1'
  FP = cm[0,1]
 # False Negatives are denoted by 'FN'
 # it is the type 2 error
 # Actual '1' values which are classified wrongly as '0'
  FN = cm[1,0]
  precision = TP / (TP+FP)
  recall = TP / (TP+FN)
  specificity = TN / (TN+FP)
  f1_score = 2*((precision*recall))/(precision+recall))
  accuracy = (TN+TP) / (TN+FP+FN+TP)
  acc_table = classification_report(y_test, y_pred)
  print(acc_table)
```

metrics_dt = calculateMetrics(cm_dt, y_test, y_pred_dt)

	precision	recall	f1-score	support
0 1	0.97 0.74	1.00 0.08	0.98 0.14	5049 179
accuracy macro avg weighted avg	0.85 0.96	0.54 0.97	0.97 0.56 0.95	5228 5228 5228

```
def ROC(y_test, y_pred):
    fpr, tpr, thresholds = roc_curve(y_test, y_pred)

plt.plot(fpr, tpr)

plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.plot([0, 1], [0, 1], 'r--')
    plt.title('ROC', fontsize = 15)
    plt.xlabel('False rate 1-Specificity', fontsize = 15)
    plt.ylabel('True rate Sensitivity', fontsize = 15)

plt.text(x = 0.02, y = 0.9, s = ('AUC Score:', round(metrics.roc_auc_score(y_tplt.grid(True)))
```

ROC(y_test,y_pred_dt)

▼ Class Imbalance Handling and Evaluation

class imbalance by using SMOTE for oversampling and RandomUnderSampler for undersampling, followed by storing evaluation metrics (precision, recall, F1 score, and AUC-ROC) for various models.

```
import imblearn
from imblearn.over_sampling import RandomOverSampler, SMOTE
from imblearn.under_sampling import RandomUnderSampler, EditedNearestNeighbours
```

```
counter = Counter(y_train)
print('Before',counter)
smt = SMOTE()

X_train_sm, y_train_sm = smt.fit_resample(X_train, y_train)

counter = Counter(y_train_sm)
print('After',counter)
```

Before Counter({0: 20158, 1: 753}) After Counter({0: 20158, 1: 20158})

```
counter1 = Counter(y_train)
print('Before',counter1)

rus = RandomUnderSampler()

X_train_rus, y_train_rus = rus.fit_resample(X_train, y_train)
counter1 = Counter(y_train_rus)
print('After',counter1)
```

Before Counter({0: 20158, 1: 753}) After Counter({0: 753, 1: 753})

```
model = list()
resample = list()
precision = list()
recall = list()
F1score = list()
AUCROC = list()
def test_eval(clf_model, X_test, y_test, algo=None, sampling=None):
    y_prob=clf_model.predict_proba(X_test)
    y_pred=clf_model.predict(X_test)
    print('Confusion Matrix')
    print('='*60)
    print(confusion_matrix(y_test,y_pred),"\n")
    print('Classification Report')
    print('='*60)
    print(classification_report(y_test,y_pred),"\n")
    print('AUC-ROC')
    print('='*60)
    print(roc_auc_score(y_test, y_prob[:,1]))
    model.append(algo)
    precision.append(precision_score(y_test,y_pred))
    recall.append(recall_score(y_test,y_pred))
    F1score.append(f1_score(y_test,y_pred))
    AUCROC.append(roc_auc_score(y_test, y_prob[:,1]))
    resample.append(sampling)
```

▼ Original Data

```
estimators = [2,10,30,50,100]
max_depth = [i for i in range(5,16,2)]
min_samples_split = [2, 5, 10, 15, 20, 50, 100]
min_samples_leaf = [1, 2, 5]

tree_param_grid = {
   'max_depth' :max_depth,
   'min_samples_split' : min_samples_split,
   'min_samples_leaf' : min_samples_leaf
}
cv = StratifiedKFold(n_splits=5, random_state=100, shuffle=True)
```

```
clf_DT = RandomizedSearchCV(dt_model, tree_param_grid, cv=cv, scoring='roc_auc',
clf_DT.fit(X_train, y_train)
clf_DT.best_estimator_
```

Fitting 5 folds for each of 10 candidates, totalling 50 fits

DecisionTreeClassifier

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=13, max_leaf_nodes=6, min_samples_split=10 random_state=10)

▼ Evaluate Decision Tree Classifier on Test Data

```
test_eval(clf_DT, X_test, y_test, 'Decision Tree', 'actual')
```

Confusion Matrix

[[5044 5] [165 14]]

Classification Report

	precision	recall	f1–score	support	
0 1	0.97 0.74	1.00 0.08	0.98 0.14	5049 179	
accuracy macro avg weighted avg	0.85 0.96	0.54 0.97	0.97 0.56 0.95	5228 5228 5228	

AUC-ROC

0.8117581776799654

```
clf_DT.fit(X_train_sm, y_train_sm)
clf_DT.best_estimator_
```

Fitting 5 folds for each of 10 candidates, totalling 50 fits

```
DecisionTreeClassifier

DecisionTreeClassifier(max_depth=13, max_leaf_nodes=6, min_samples_leaf=5, min_samples_split=100, random_state=10)
```

```
test_eval(clf_DT, X_test, y_test, 'Decision Tree', 'smote')
```

Confusion Matrix

[[3586 1463] [20 159]]

Classification Report

=========					=====
	precision	recall	f1-score	support	
0 1	0.99 0.10	0.71 0.89	0.83 0.18	5049 179	
accuracy macro avg weighted avg	0.55 0.96	0.80 0.72	0.72 0.50 0.81	5228 5228 5228	

AUC-ROC

0.8315148417021567

Random Under Sampling

```
clf_DT.fit(X_train_rus, y_train_rus)
clf_DT.best_estimator_
```

Fitting 5 folds for each of 10 candidates, totalling 50 fits

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=13, max_leaf_nodes=6, random_state=10)

test_eval(clf_DT, X_test, y_test, 'Decision Tree', 'RandomUnderSampler')

Confusion Matrix

[[2757 2292] [0 179]]

Classification Report

	precision	recall	f1–score	support	
0 1	1.00 0.07	0.55 1.00	0.71 0.14	5049 179	
accuracy macro avg weighted avg	0.54 0.97	0.77 0.56	0.56 0.42 0.69	5228 5228 5228	

AUC-ROC

0.8188650664825492

Random Forest

Fitting 5 folds for each of 20 candidates, totalling 100 fits Confusion Matrix

[[5024 0] [54 150]]

Classification Report

	·				
	precision	recall	f1–score	support	
0 1	0.99 1.00	1.00 0.74	0.99 0.85	5024 204	
accuracy macro avg weighted avg	0.99 0.99	0.87 0.99	0.99 0.92 0.99	5228 5228 5228	

AUC-ROC

0.9993599350568253

SMOTE Resampling and Evaluation

Random Forest Model

```
clf_RF.fit(X_train_sm, y_train_sm)
clf_RF.best_estimator_
```

Fitting 5 folds for each of 20 candidates, totalling 100 fits

RandomForestClassifier
RandomForestClassifier(max_depth=15, n_estimators=30)

```
test_eval(clf_RF, X_test, y_test, 'Random Forest', 'smote')
```

Confusion Matrix

[[4985 64] [14 165]]

Classification Report

	precision	recall	f1–score	support	
0 1	1.00 0.72	0.99 0.92	0.99 0.81	5049 179	
accuracy macro avg weighted avg	0.86 0.99	0.95 0.99	0.99 0.90 0.99	5228 5228 5228	

AUC-ROC

0.9964526412111033

Random Under Sampling

clf_RF.fit(X_train_rus, y_train_rus)
clf_RF.best_estimator_

Fitting 5 folds for each of 20 candidates, totalling 100 fits

RandomForestClassifier
RandomForestClassifier(max_depth=11, min_samples_split=5)

test_eval(clf_RF, X_test, y_test, 'Decision Tree', 'RandomUnderSampler')

Confusion Matrix

[[4579 470] [0 179]]

Classification Report

	precision	recall	f1-score	support	
0 1	1.00 0.28	0.91 1.00	0.95 0.43	5049 179	
accuracy macro avg weighted avg	0.64 0.98	0.95 0.91	0.91 0.69 0.93	5228 5228 5228	

AUC-ROC

0.9900859841707689

Model Comparison

	model	resample	precision	recall	f1-score	AUC-ROC
0	Random Forest	actual	1.000000	0.735294	0.847458	0.999360

HoloViews Data distribution

!pip install -q hvplot

- 3.2/3.2 MB <mark>29.3 MB/s</mark> eta 0:00

```
import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas
import panel as pn
from sklearn.metrics import confusion_matrix, roc_curve
```



```
hv.extension('bokeh')
season_text = pn.widgets.StaticText(name='season', value='')

select_season = pn.widgets.RadioBoxGroup(
    name='season', options=['Winter', 'Summer', 'Autumn', 'Spring'],
    inline=True)

workingday_text = pn.widgets.StaticText(name='workingday', value='')
select_workingday = pn.widgets.RadioBoxGroup(
    name='workingday', options=['Yes','No'],
    inline=True)

select_temp = pn.widgets.IntSlider(name='temp', start= int(min(df['temp'])), end
@pn.depends(select_season, select_workingday, select_temp)

def exp_plot(select_season, select_workingday, select_temp):
    return df[(df.season=select_season) &(df.workingday=select_workingday) & (df
pn.Column(season_text, select_season, workingday_text, select_workingday, select_
```


▼ HoloViews Data Distribution Visualization with Interactive Controls:

Utilization HoloViews and Panel to create an interactive data distribution visualization with widgets for selecting **season**, **working day**, **and temperature**.

```
def hv_roc_curve(y_pred, y_test):
    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_df = pd.DataFrame(zip(fpr, tpr), columns=['Specificity', 'Sensitivity'])
    return roc_df.hvplot(x='Specificity', y = 'Sensitivity')

def upsample(df, n):
    df = resample(df, n_samples=n, replace=True)
    return df

def downsample(df, n):
    df = resample(df, n_samples=n, replace=False)
    return df
```

from sklearn.utils import resample

```
random = pd.concat( [X, df['holiday']], axis = 1)
random = resample(random)
random_tar = random['holiday'].fillna(0)
random.drop(['holiday'], inplace=True, axis=1)
X_train, X_test, y_train, y_test = train_test_split(random, random_tar, random_s
muller_classification(X_train, X_test, y_train, y_test)
```

Linear Regression
Classifier = Linear Regression, Score (test, accuracy) = 98.43,
MLP Regressor
Classifier = MLP Regressor, Score (test, accuracy) = 96.58,
RandomForest Regressor
Classifier = RandomForest Regressor, Score (test, accuracy) = 98.43,
Gradient Boosting Regressor
Classifier = Gradient Boosting Regressor, Score (test, accuracy) = 96.79,
KNeighbors Regressor
Classifier = KNeighbors Regressor, Score (test, accuracy) = 96.58,
Best --> Classifier = Linear Regression, Score (test, accuracy) = 98.43

	Classifier	MSE	MAE	RSquared	Test Accuracy	Recall	Precision
0	KNeighbors Regressor	0.030000	0.030000	-0.040000	96.576129	0.965761	0.932695
1	Gradient Boosting Regressor	0.030000	0.030000	0.030000	96.786534	0.967865	0.959400
2	RandomForest Regressor	0.020000	0.020000	0.530000	98.431523	0.984315	0.984566

```
from sklearn.utils import resample

def exp_plot(event):
    temp_df = pd.concat( [X, df['holiday']], axis = 1)
    temp_df = resample(temp_df)
    temp_target = temp_df['holiday'].fillna(0)
    temp_train_df = temp_df.drop(['holiday'], axis=1)
    X_train_temp, X_test_temp, y_train_temp, y_test_temp = train_test_split(temp_t muller_classification(X_train_temp, X_test_temp, y_train_temp, y_test_temp)

hv.extension('bokeh')

samples_text = pn.widgets.StaticText(name='Select Number of Samples', value='')
select_sample_size = pn.widgets.IntSlider(name='SampleSize', start= 100, end= 50)
button = pn.widgets.Button(name='Run Muller Loop', button_type='primary')
button.on_click(exp_plot)
pn.Column(samples_text, select_sample_size, button)
```

Linear Regression

Classifier = Linear Regression, Score (test, accuracy) = 98.32,

MLP Regressor

Classifier = MLP Regressor, Score (test, accuracy) = 95.94,

RandomForest Regressor

Classifier = RandomForest Regressor, Score (test, accuracy) = 98.05,

Gradient Boosting Regressor

Classifier = Gradient Boosting Regressor, Score (test, accuracy) = 96.08,

KNeighbors Regressor

Classifier = KNeighbors Regressor, Score (test, accuracy) = 95.94,

Best --> Classifier = Linear Regression, Score (test, accuracy) = 98.32

Linear Regression

Classifier = Linear Regression, Score (test, accuracy) = 98.37,

MLP Regressor

Classifier = MLP Regressor, Score (test, accuracy) = 95.91,

RandomForest Regressor

Classifier = RandomForest Regressor, Score (test, accuracy) = 98.14,

Gradient Boosting Regressor

Classifier = Gradient Boosting Regressor, Score (test, accuracy) = 96.02,

KNeighbors Regressor

Classifier = KNeighbors Regressor, Score (test, accuracy) = 95.91,

Best --> Classifier = Linear Regression, Score (test, accuracy) = 98.37 Linear Regression

Classifier = Linear Regression, Score (test, accuracy) = 98.57,

MLP Regressor

Classifier = MLP Regressor, Score (test, accuracy) = 96.58,

RandomForest Regressor

Classifier = RandomForest Regressor, Score (test, accuracy) = 98.30,

Gradient Boosting Regressor

Classifier = Gradient Boosting Regressor, Score (test, accuracy) = 96.61,

KNeighbors Regressor

Classifier = KNeighbors Regressor, Score (test, accuracy) = 96.58,

Best --> Classifier = Linear Regression, Score (test, accuracy) = 98.57

Select Number of Samples:

SampleSize: 160

Run Muller Loop

```
hv.extension('bokeh')
model_text = pn.widgets.StaticText(name='Model', value='')
select_model = pn.widgets.RadioBoxGroup( name='model', options=["Linear Regressi
@pn.depends(select_model)
def plot_conf_roc(select_model):
    y_test = m_pred[select_model]['y_test']
    y_pred = m_pred[select_model]['y_pred']

return hv_roc_curve(y_pred,y_test) + hv_confusion_matrix(y_pred,y_test)
pn.Column(model_text, select_model, plot_conf_roc).embed()
```


Model

○ Linear Regression ○ MLP Regressor ○ RandomForest Regressor ○ Gradient Boosting Regressor ○ KN

