MBC 638

Data Analysis and Decision Making

6 of 31

Uses of Hypothesis Testing

Uses of Hypothesis Testing

- Hypothesis testing can tell us:
 - If two sets of data are really different

9 of 31

Uses of Hypothesis Testing

- Hypothesis testing can tell us:
 - If two sets of data are really different
 - If population parameter varies from a standard

10 of 31

Uses of Hypothesis Testing

- Hypothesis testing can tell us:
 - If two sets of data are really different
 - If population parameter varies from a standard
 - Probability of being right or wrong

11 of 31

Uses of Hypothesis Testing

- Hypothesis testing can tell us:
 - If two sets of data are really different
 - If population parameter varies from a standard
 - o Probability of being right or wrong
 - Risk of making an incorrect decision

12 of 31

Writing Hypothesis Statements

Null hypothesis

14 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

15 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

Null hypothesis

Alternative hypothesis

$$H_0$$
: μ or σ = (or \leq , or \geq) a number

$$H_0$$
: μ or σ = (or \leq , or \geq) a number H_a : μ or $\sigma \neq$ (or $<$, or $>$) a number

17 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

$$H_0$$
: μ or σ = (or \leq , or \geq) a number

$$H_a$$
: μ or $\sigma \neq$ (or <, or >) a number

Captures results of interest

18 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

$$H_0$$
: μ or σ = (or \leq , or \geq) a number

$$H_a$$
: μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

20 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

 H_0 : $\mu = 10$

21 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

 H_a : $\mu ≠ 10$

 H_0 : $\mu = 10$

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

 H_a : $\mu ≠ 10$

 H_0 : $\mu = 10$

 H_a : $\mu > 10$

23 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

 H_a : $\mu ≠ 10$

 H_0 : $\mu = 10$

 H_a : $\mu > 10$

There is a difference!

24 of 31

Writing Hypothesis Statements

Null hypothesis

Alternative hypothesis

 H_0 : μ or σ = (or \leq , or \geq) a number

 H_a : μ or $\sigma \neq$ (or <, or >) a number

Captures "other" results

Captures results of interest

Locus of equality condition

 H_a : $\mu \neq 10$

 H_0 : $\mu = 10$

 H_a : $\mu > 10$

There is *no* difference!

There is a difference!

Example: Hank the Handyman's Process

26 of 31

Example: Hank the Handyman's Process

Did we really improve Hank's job ticket process?

27 of 31

Example: Hank the Handyman's Process

Did we really improve Hank's job ticket process?

• H_a : $\mu_1 > \mu_2$

28 of 31

The CLT gives us permission to use the normal distribution when we use population parameters.

29 of 31

The CLT gives us permission to use the normal distribution when we use population parameters.

In this case, we compare mean time for job tickets moving through Hank's system.

Example: Hank the Handyman's Process (cont.)

Did we really improve Hank's job ticket process?

- $H_0: \mu_1 \le \mu_2$
- H_a : $\mu_1 > \mu_2$

31 of 31

Example: Hank the Handyman's Process (cont.)

Did we really improve Hank's job ticket process?

- H_0 : $\mu_1 \le \mu_2$
- H_a : $\mu_1 > \mu_2$