

Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d+1)-partite graphs

Gennaro Auricchio a , Federico Bassetti b , Stefano Gualandi a , Marco Veneroni a

(a) Università degli Studi di Pavia, Dipartimento di Matematica "F.Casorati", (b) Politecnico di Milano, Dipartimento di Ingegneria Matematica gennaro.auricchio01@universitadipavia.it, stefano.gualandi@unipv.it, marco.veneroni@unipv.it, federico.bassetti@polimi.it

Abstract

TASK: To compute the distance between two d-dimensional histograms having n bins. For instance, images are 2-dimensional histograms with n bins (pixels)

PROBLEM: The mathematical tool used to compute this distance requires the solution of an optimization problem with up to n^2 variables

IDEA: To exploit the structure of the cost function in order to reduce the number of variables of the optimization problem

1. Kantorovich-Wasserstein distance

The Kantorovich-Wasserstein distance is a metric between probability distributions or d-dimensional histograms.

Figure 1: Left: transport map π (green dots) between 1D-histograms (red and blue dots) with n=5 bins. Right: bipartite graph associated to constrained optimization problem used to compute the Kantorovich-Wasserstein distance for 2D-histograms with n=9 bins

The idea of the Kantorovich-Wasserstein distance is to find the optimal way to map a probability μ to a probability ν where moving a unit mass from x to y costs $c_{x,y}$. Figure 1 (left).

Whenever the cost is $c_{x,y} = ||x-y||_2^2$, one gets the Wasserstein distance of order 2

$$W_2(\mu,\nu) := \min \sum_{x} \sum_{y} c_{x,y} \pi_{x,y}$$

where the minimum is over all the probability measures π with marginals ν and μ , i.e.

$$\sum_x \pi_{x,y} =
u_y, \quad ext{ and } \quad \sum_y \pi_{x,y} = \mu_x.$$

The computation of W_2 distances between histograms with n bins requires the solution of a constrained optimization problem.

Indeed, the standard approach to compute W_2 distances between 2D histograms with n bins is to solve the corresponding uncapacitated min cost flow problem [2] on a bipartite graph, with 2n nodes (2 times the number of bins) and n^2 arcs (one for all the possible costs $c_{x,y}$). See Figure 1 (right).

The solution of this problem requires $O(n^3 \log(n))$ time, which for large n is computationally too heavy.

2. Our contribution

In [1] we propose a novel approach for computing the W_2 distance that exploits the structure of the cost function to reduce the number of arcs.

Figure 2: 3–partite graph reformulation for the computation of W_2

Since the cost function is separable, $c_{x,y} = (x_1 - y_1)^2 + (x_2 - y_2)^2$, it can be computed as the concatenation of the costs along the two main directions: $(x_1, x_2) \to (y_1, x_2)$ and $(y_1, x_2) \to (y_1, y_2)$. See Figure 2.

CONTRIBUTION: We prove that the W_2 distance between d-dimensional histograms can be computed as a flow problem on a (d+1)-partite graph, with (d+1)n nodes and $dn^{1+\frac{1}{d}}$ arcs.

- ullet Our method requires $dn^{1+\frac{1}{d}}$ arcs while the standard bipartite graph method requires n^2 .
- The method can be adapted to any cost function that is separable, *i.e.* can be written as a sum of independent contributions.
- The method provides an exact solution.

3. Numerical Results

As problem instances, we use the gray scale images proposed by the DOTMark benchmark, and a set of d-dimensional histograms obtained by biomedical data measured by flow cytometry.

Table 1: Comparison on Flow Cytometry data with increasing value of d.

			Bipartite Graph			(d+1)-partite Graph			
N	d	n	V	A	Runtime	V	A	Runtime	
16	2	256	512	65 536	0.024 (0.01)	768	8 192	0.003 (0.00)	
	3	4 096	8 192	16777216	38.2 (14.0)	16384	196 608	0.12 (0.02)	
	4	65 536		out-of-memory			4 194 304	4.8 (0.84)	
32	2	1 024	2048	1 048 756	0.71 (0.14)	3072	65 536	0.04 (0.01)	
	3	32 768		out-of-m	131 072 3	3 145 728	5.23 (0.69)		

Figure 3: DOTmark benchmark: Classic, Microscopy, and Shapes images.

Table 2: Comparison on 32×32 images. The runtime (in secs) is given as "Mean (StdDev)". The gap to the optimum opt is computed as $\frac{UB-opt}{opt} \cdot 100$, where UB is the upper bound computed by Sinkhorn's algorithm. Each row reports the averages over 45 instances.

	EMD[4]		Sinkhorn [3]				3-partite
		λ =	= 1	$\lambda = 1.$.5		
Image Class	Runtime	Runtime	Gap	Runtime	Gap	Runtime	Runtime
Classic	24.0 (3.3)	6.0 (0.5)	17.3%	8.9 (0.7) 9	.1%	0.54 (0.05)	0.07 (0.01)
Microscopy	35.0 (3.3)	3.5 (1.0)	2.4%	5.3 (1.4) 1	.2%	0.55 (0.03)	0.08 (0.01)
Shapes	25.2 (5.3)	1.6 (1.1)	5.6%	2.5 (1.6) 3	3.0%	0.50 (0.07)	0.05 (0.01)
Improved Sinkhorn [5]							3-nartite

		3-partite					
	$\lambda =$	1	$\lambda = 1$.25	$\lambda = 1$		
Image Class	Runtime	Gap	Runtime	Gap	Runtime	Gap	Runtime
CauchyDensity	0.22 (0.15)	2.8%	0.33 (0.23)	2.0%	0.41 (0.28)	1.5%	0.07 (0.01)
Classic	0.20 (0.01)	17.3%	0.31 (0.02)	12.4%	0.39 (0.03)	9.1%	0.07 (0.01)
GRFmoderate	0.19 (0.01)	12.6%	0.29 (0.02)	9.0%	0.37 (0.03)	6.6%	0.07 (0.01)
GRFrough	0.19 (0.01)	58.7%	0.29 (0.01)	42.1%	0.38 (0.02)	31.0%	0.05 (0.01)
GRFsmooth	0.20 (0.02)	4.3%	0.30 (0.04)	3.1%	0.38 (0.04)	2.2%	0.08 (0.01)
LogGRF	0.22 (0.05)	1.3%	0.32 (0.08)	0.9%	0.40 (0.13)	0.7%	0.08 (0.01)
LogitGRF	0.22 (0.02)	4.7%	0.33 (0.03)	3.3%	0.42 (0.04)	2.5%	0.07 (0.02)
Microscopy	0.18 (0.03)	2.4%	0.27 (0.04)	1.7%	0.34 (0.05)	1.2%	0.08 (0.02)
Shapes	0.11 (0.04)	5.6%	0.16 (0.06)	4.0%	0.20 (0.07)	3.0%	0.05 (0.01)
WhiteNoise	0.18 (0.01)	76.3%	0.28 (0.01)	53.8%	0.37 (0.02)	39.2%	0.04 (0.00)

oio E Dogootti C Cualandi and M Vanavani Camputina Kantavaviah Wa

- [1] G. Auricchio, F. Bassetti, S. Gualandi, and M. Veneroni. Computing Kantorovich-Wasserstein distances on d-dimensional histograms using (d+1)-partite graphs. arXiv preprint arXiv:1805.07416, 2018.
- [2] F. Bassetti, S. Gualandi, and M. Veneroni. On the computation of Kantorovich-Wasserstein distances between 2D-histograms by uncapacitated minimum cost flows. *arXiv preprint arXiv:1804.00445*, 2018.

References

- [3] M. Cuturi. Sinkhorn distances: Lightspeed computation of Optimal Transport. In *Advances in Neural Information Processing Systems*, pages 2292–2300, 2013.
- [4] Y. Rubner, C. Tomasi, and L.J. Guibas. A metric for distributions with applications to image databases. In Sixth International Conference on Computer Vision, pages 59–66. IEEE, 1998.
- [5] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. *ACM Transactions on Graphics (TOG)*, 34(4):66, 2015.