Problem 5.2.2

Prove by induction that for each natural number n, we have $\sum_{j=0}^{n} 2^{j} = 2^{n+1} - 1$.

Solution

Proof. Proceed with induction. Let $P(n): \sum_{j=0}^{n} 2^{j} = 2^{n+1} - 1$. Consider the base case when n=1. Then

$$\sum_{j=0}^{1} 2^{j} = 2^{2} - 1$$
$$2^{0} + 2^{1} = 2^{2} - 1$$
$$3 = 3.$$

P(1) is true. Assume for some fixed $n \in \mathbb{N}$ that P(n) is true. Then,

$$\sum_{j=0}^{n+1} 2^j = 2^{n+1} + \sum_{j=0}^{n} 2^j$$
$$= 2^{n+1} + 2^{n+1} - 1$$
$$= 2^{(n+1)+1} - 1.$$

Therefore P(n + 1) is true, meaning that for each natural number n, we have

$$\sum_{j=0}^{n} 2^{j} = 2^{n+1} - 1.$$

Problem 5.2.5

Show by induction that for every $n \in \mathbb{N}$ we have: $n \equiv 5 \pmod{3}$ or $n \equiv 6 \pmod{3}$ or $n \equiv 7 \pmod{3}$.

Solution

Proof. Proceed with induction. Let $P(n): (n \equiv 5 \mod 3) \lor (n \equiv 6 \mod 3) \lor (n \equiv 6 \mod 3)$

7 mod 3). By the properties of modular arithmetic, P(n) can be restated as

$$P(n): (n \equiv 0 \bmod 3) \lor (n \equiv 1 \bmod 3) \lor (n \equiv 2 \bmod 3).$$

Consider the base case when n = 1. Then $n \equiv 1 \pmod{3}$, therefore P(1) is true. Assume for a fixed $n \in \mathbb{N}$ that P(n) is true. Consider then three cases.

- 1. If $n \equiv 0 \pmod{3}$, then $n+1 \equiv 1 \pmod{3}$, meaning that P(n+1) is true.
- 2. If $n \equiv 1 \pmod{3}$, then $n+1 \equiv 2 \pmod{3}$, meaning that P(n+1) is true.
- 3. If $n \equiv 2 \pmod{3}$, then $n + 1 \equiv 0 \pmod{3}$, meaning that P(n + 1) is true.

Therefore P(n) implies P(n+1), meaning for every $n \in \mathbb{N}$ we have: $n \equiv 5 \pmod 3$ or $n \equiv 6 \pmod 3$ or $n \equiv 7 \pmod 3$.

Problem 5.2.6

Prove by induction that, for all $n \in \mathbb{N}$, $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$.

Solution

Proof. Proceed with induction. Let $P(n): \sum_{j=0}^n j(j+1) = \frac{1}{3}n(n+1)(n+2)$. Consider the base case n=1. Then

$$\sum_{j=0}^{1} j(j+1) = \frac{1}{3}(1)(1+1)(1+2)$$
$$2 = \frac{1}{3}(6)$$
$$2 = 2.$$

P(1) is true. Assume for some fixed $n \in \mathbb{N}$ that P(n) is true. Then it follows that

$$\begin{split} \sum_{j=0}^{n+1} j(j+1) &= (n+1)(n+2) + \sum_{j=0}^{n} j(j+1) \\ &= (n+1)(n+2) + \frac{1}{3}(n)(n+1)(n+2) \\ &= (\frac{1}{3}n+1)(n+1)(n+2) \\ &= \frac{1}{3}(n+1)(n+2)(n+3). \end{split}$$

Therefore P(n+1) is true, meaning for all $n \in \mathbb{N}$, $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$

Problem 5.3.2

Suppose that $n \geq 3$. Prove that $\left(\frac{n+1}{n}\right)^2 < 2$.

Solution

Proof. Proceed with induction. Let $P(n): \left(\frac{n+1}{n}\right)^2 < 2$. Consider the base case when n=3. Then $\left(\frac{3+1}{3}\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9} < 2$. Therefore P(3) is true. Assume for a fixed $n \in \mathbb{N} \geq 3$ that P(n) is true. Then

$$\left(\frac{n+2}{n+1}\right)^2 = \left(\frac{n+2}{n+1}\right)^2 \left(\frac{n+1}{n}\right)^2 \left(\frac{n}{n+1}\right)^2
< 2 \cdot \left(\frac{n+2}{n+1}\right)^2 \left(\frac{n}{n+1}\right)^2
= 2 \cdot \left(\frac{n^2(n+2)^2}{(n+1)^4}\right)
= 2 \cdot \left(\frac{n^4 + 4n^3 + 4n^2}{n^4 + 4n^3 + 6n^2 + 4n + 1}\right)$$
(*)

Note that $n^4 + 4n^3 + 4n^2 \le n^4 + 4n^3 + 4n^2 + a$ when $a \ge 0$. Let $a = 2n^2 + 4n + 1$. Since n is positive, $2n^2 + 4n + 1$ will always be greater than or equal to zero. Therefore $a \ge 0$. This means that

$$n^{4} + 4n^{3} + 4n^{2} \le n^{4} + 4n^{3} + 4n^{2} + a$$

$$n^{4} + 4n^{3} + 4n^{2} \le n^{4} + 4n^{3} + 4n^{2} + 2n^{2} + 4n + 1$$

$$\frac{n^{4} + 4n^{3} + 4n^{2}}{n^{4} + 4n^{3} + 4n^{2} + 2n^{2} + 4n + 1} \le 1.$$

Therefore returning back to (*),

$$\left(\frac{n+2}{n+1}\right)^{2} < 2 \cdot \left(\frac{n^{4} + 4n^{3} + 4n^{2}}{n^{4} + 4n^{3} + 6n^{2} + 4n + 1}\right)$$

$$< 2 \cdot 1$$

$$< 2.$$

Therefore P(n+1) is true, meaning that for all $n \geq 3$, $\left(\frac{n+1}{n}\right)^2 < 2$.

Problem 5.3.3

Consider the following result. For every natural number $n \geq 2$,

$$\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\ldots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}.$$

- (a) If the statement is written in the form $\forall n \in \mathbb{N} \geq 2, P(n)$, what is the proposition P(n)?
- (b) Rewrite the statement using Π -notation.
- (c) Prove the result by induction.

Solution

Part A

$$P(n): \left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\dots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}.$$

Part B

$$P(n): \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}.$$

Part C

Proof. Proceed with induction. Let $P(n): \prod_{i=2}^n \left(1-\frac{1}{i^2}\right) = \frac{n+1}{2n}$. Consider the base case when n=2. Then

$$\prod_{i=2}^{2} \left(1 - \frac{1}{i^2} \right) = \frac{2+1}{2(2)}$$
$$\left(1 - \frac{1}{4} \right) = \frac{3}{4}$$
$$\frac{3}{4} = \frac{3}{4}$$

P(2) is true. Assume for some fixed $n \in \mathbb{N} \geq 2$ that P(n) is true. Then

$$\begin{split} \prod_{i=2}^{n+1} \left(1 - \frac{1}{i^2} \right) &= \left(1 - \frac{1}{(n+1)^2} \right) \cdot \prod_{i=2}^n \left(1 - \frac{1}{i^2} \right) \\ &= \frac{(n+1)^2 - 1}{(n+1)^2} \cdot \frac{n+1}{2n} \\ &= \frac{n^2 + 2n + 1 - 1}{2n(n+1)} \\ &= \frac{n(n+2)}{2n(n+1)} \\ &= \frac{n+2}{2(n+1)}. \end{split}$$

Therefore
$$P(n+1)$$
 is true, meaning $\forall n \in \mathbb{N} \geq 2, \prod_{i=2}^n \left(1-\frac{1}{i^2}\right) = \frac{n+1}{2n}$.

Problem 5.3.4

Recall the geometric series formula from calculus: if $r \neq 1$ is constant, and $n \in \mathbb{N}_0$, then

$$\sum_{k=0}^{k} r^n = \frac{1 - r^{n-1}}{1 - r} \tag{*}$$

- (a) Explain why the given proof by induction is incorrect.
- (b) Provide a correct proof of (*).

Part A

The given proof is incorrect as it starts with P(n+1). P(n+1) is the goal of the proof, therefore attempting to prove $P(n) \implies P(n+1)$ by starting with P(n+1) is incorrect.

Part B

Proof. Proceed with induction. Let $P(n): \sum_{k=0}^n r^k = \frac{1-r^{n-1}}{1-r}$. Consider the base case when n=0. Then $\sum_{k=0}^0 r^k = r^0 = 1 = \frac{1-r^{0+1}}{1-r}$, meaning P(0) is true. Assume

for some fixed $n \in \mathbb{N}_0$ that P(n) is true. Then

$$\sum_{k=0}^{n+1} r^k = r^{n+1} + \sum_{k=0}^{n} r^k$$

$$= r^{n+1} + \frac{1 - r^{n-1}}{1 - r}$$

$$= \frac{r^{n+1} - r^{n-2}}{1 - r} + \frac{1 - r^{n-1}}{1 - r}$$

$$= \frac{1 - r^{n-2}}{1 - r}.$$

Therefore P(n+1) is true, meaning if $r \neq 1$ is constant, and $n \in \mathbb{N}_0$, then $\sum_{k=0}^{k} r^n = \frac{1-r^{n-1}}{1-r}$ is true.

Problem 5.3.8

Prove that if $A \subseteq \mathbb{R}$ is a *finite* set, then A is well-ordered.

Solution

Proof that any finite subset of the real numbers contains a minimum element, hence any finite subset of A will contain a minimum element, meaning A is well-ordered.

Proof. Proof via induction that any finite subset of the real numbers has a minimum element. Let $X_n \subseteq \mathbb{R}$ such that it is finite and contains $n \in \mathbb{N}$ elements. Consider the base case of X_1 . Then $\exists a \in \mathbb{R}$ such that $X_1 = \{a\}$. It is obvious then that X_1 contains a minimum element since $a \leq a$. Assume for a fixed $n \in \mathbb{N}$ that X_n has a minimum element p. Consider the set X_{n+1} . There exists $q \in \mathbb{R} \neq p$ such that $X_{n+1} = \{q\} \cup X_n$. There are now two cases.

(q < p): If q is smaller than p, then the minimum element of X_{n+1} will be q since it is smaller than the minimum element of X_n .

(q > p): If q is greater than or equal to p, then the minimum element of X_{n+1} will be p since p is smaller than q.

In both cases, X_{n+1} will have a minimum element. Therefore all finite subsets of the real numbers contain a minimum element.

Problem 5.4.1

Define a sequence $(b_n)_{n=1}^{\infty}$ as follows:

$$\begin{cases} b_n = b_{n-1} + b_{n-2} \\ b_1 = 3, b_2 = 6 \end{cases}.$$

Prove: $\forall n \in \mathbb{N}, b_n$ is divisible by 3.

Solution

Proof. Proceed with strong induction. Consider the base cases where n=1 and n=2. Then $b_1=3=3(1)$ which is divisible by 3 and $b_2=6=3(2)$ which is divisible by 3. Fix $n \in \mathbb{N}_{\geq 2}$ and assume that b_k is divisible by 3 for all $k \in \mathbb{N}, 1 \leq k \leq n$. Then

$$b_{n+1} = b_n + b_{n-1}$$
.

By the induction hypothesis, b_n and b_{n-1} are both divisible by 3. Therefore there exists integers a, b such that $b_n = 3a$ and $b_{n-1} = 3b$. Therefore

$$b_{n+1} = b_n + b_{n-1}$$

= $3a + 3b$
= $3(a + b)$.

Since $a + b \in \mathbb{Z}$, then b_{n+1} is divisible by 3. By strong induction we see that b_n is divisible by 3 for all $n \in \mathbb{N}$.