Quiz#3

Quiz #3

Phy-106

The respondent's email address (201370203@gift.edu.pk) was recorded on submission of this form.

The magnitude of electric filed does not depend upon *	1 point
Distance from the charged bodies	
Sign of the charges causing the field	
Magnitude of the charges causing the field	
Force a unit positive charge will experience	

The charge on an isolated conductor always lies *

1 point

- Within the conductor
- At the centre of the conductor
- On the surface of the conductor
- Outside the surface of the conductor

1 point

If the electric field at A and B are E_A and E_B and the distance between them is 'r' as shown in the

figure given below, then

 $E_A \rangle E_B$.

 $E_A \langle E_B$.

Option 1

Option 2

$$E_A = \frac{E_B}{r}$$

 $E_A = \frac{E_B}{r^2}$.

Option 3

option 4

1 point A rod lies along the x-axis with one end at the origin and other at x->∞ it caries a uniform charge λ C/m. Find the electric field at the point x=-a on the x-axis Option 1 Option 2 Option 3 Option 4

Gauss law cannot be used to find which of the following quantity? *	1 point
Electric field intensityElectric flux densityCharge	
None of These	
Find the flux through a spherical Gaussian surface of radius a = 1 m surrounding a charge of 8.85 pC.*	1 point
1X10^-16 Nm^2/C	
1X10^-12 Nm^2/C	
1X10^-8 Nm^2/C	
● 1 Nm^2/C	
Electric flux lines due to an infinite sheet of charge is *	1 point
converging	
o radial	
o uniform and perpendicular to the sheet	
uniform and parallel to the sheet	

4/5/2021 Quiz #3

A Gaussian sphere closes an electric dipole within it. Then the total flux through the sphere is *	1 point
half that due to a single charge	
ouble due to a single charge	
zero	
dependent of the position of the dipole	
Electric intensity due to an infinitely long plane sheet of a conductor at a point close to its surface is *	1 point
independent of r	
proportional to 1/r^2	
proportional to 1/r	
inversely proportional to 1/r	
The electric field intensity at a point situated 4 metres from a point charge is 200 N/C. If the distance is reduced to 2 metres, the field intensity will be *	1 point
○ 400 N/C	
○ 600 N/C	
● 800 N/C	
1200 N/C	

This form was created inside of gift.edu.pk.

Google Forms

4/5/2021 Quiz #3