Prelab 2

Nolan Anderson

February 31, 2021

Part 1 - Integrator

Figure 1: Integrator in Multisim

 $R = 1k\Omega$, $C = 0.1 \mu F$, f = 1 kHZ

V_{IN} = 2Vpp sinusoidal, triangle, square

- a. Plot the input and output waveforms on the same graph for two complete cycles.
 - See Figures 2-4
- b. Comment on the gain and input-output phase relationship.
 - i. Figure 2 Gain is 1.635 V/v Input is sine and output is gain * cosx
 - ii. Figure 3 Gain is 1.239 V/v On max / min input, output is 0.
 - iii. Figure 4 Gain is 2.472 V/v When input changes direction, output is max / min.
 - iv. Figure 5 Gain is 0.164 V/v Input is out of phase wrt output.
 - v. Figure 6 Gain is 0.133 V/v On max / min input, output is 0.
 - vi. Figure 7 Gain is 0.234 V/v When the input is changing, output is max / min.
- c. Repeat for C = 1 μ F and compare to your results with C = 0.1 μ F.
 - See Figures 5-7

Figure 2: Integrator with sine wave $R = 1k\Omega$, $C = 0.1\mu F$

Figure 3: Integrator with triangle wave $R = 1k\Omega$, $C = 0.1\mu F$

Figure 4: Integrator with square wave $R = 1k\Omega$, $C = 0.1\mu F$

Figure 5: Integrator with sine wave $R = 1k\Omega$, $C = 1\mu F$

Figure 6: Integrator with triangle wave $R = 1k\Omega$, $C = 1\mu F$

Figure 7: Integrator with square wave $R = 1k\Omega$, $C = 1\mu F$

Part 2 - Differentiator

Figure 8: Differentiator in Multisim

 $R = 1k\Omega$, $C = 0.1 \mu F$, f = 1 kHZ

V_{IN} = 2Vpp sinusoidal, triangle, square

- d. Plot the input and output waveforms on the same graph for two complete cycles.
 - See Figures 9-11
- e. Comment on the gain and input-output phase relationship.
 - i. Figure 9 Gain is 0.73 V/v When input is sin, output is gain * cos
 - ii. Figure 10 Gain is 1.07 V/v When input inc / dec, output is damped oscillator.
 - iii. Figure 11 Gain is 5.60 V/v When input changes direction, output is max / min.
 - iv. Figure 12 Gain is 5.41 V/v The input is out of phase with output.
 - v. Figure 13 Gain is 5.18 V/v When input is at a minimum, output is decreasing.
 - vi. Figure 14 Gain is 5.48 V/v Output decreases as a reaction to the input gaining.
- f. Repeat for C = 1 μ F and compare to your results with C = 0.1 μ F.
 - See Figures 12-14

Figure 9: Differentiator with sine wave $R = 1k\Omega$, $C = 0.1\mu F$ Figure 10: Differentiator with triangle wave $R = 1k\Omega$, $C = 0.1\mu F$

Figure 11: Differentiator with square wave $R=1k\Omega, C=0.1\mu F$ Figure 12: Differentiator with sine wave $R=1k\Omega, C=1\mu F$

Figure 13: Differentiator with triangle wave $R = 1k\Omega$, $C = 1\mu F$ Figure 14: Differentiator with square wave $R = 1k\Omega$, $C = 1\mu F$