Correlation and Regression

- 1. Dashboard
- 2. My courses
- 3. Correlation and Regression
- 4. Correlation and Regression Quiz
- 5. Quiz: Correlation and Regression

Started on Tuesday, June 2, 2020, 11:43 PM

State Finished

Completed on Tuesday, June 2, 2020, 11:57 PM

Time taken 14 mins 7 secs
Grade 80 out of 100

Fit Details

Question 1

Correct

10 points out of 10

You are trying to understand the potential causes of a serious manufacturing defect. You compile historical data and use logistic regression to model the probability of the outcome, **Defective?**, as a function of many variables and their interactions. The whole model test results for this analysis are displayed below. What are the potential conclusions from this output?

Whole Model Test				
Model	-LogLikelihood	DF	ChiSquare	Prob>ChiSq
Difference	30.13607	8	60.27215	<.0001*
Full	212.37582			
Reduced	242.51190			
RSquare (U)	0.1243		
AlCc		443.237		
BIC		478.237		
Observatio	ns (or Sum Wgts)	381		

Training	Definition
0.1243	1-Loglike(model)/Loglike(0)
0.2032	$(1-(L(0)/L(model))^{(2/n)}/(1-L(0)^{(2/n)})$
0.5574	$\sum -Log(\mathbf{p}[j])/n$
0.4358	$\sqrt{\sum (y[j]-\rho[j])^2/n}$
0.3775	$\sum y[j]-\rho[j] /n$
0.3071	∑ (ρ[j]≠ρMax)/n
381	n
	0.1243 0.2032 0.5574 0.4358 0.3775 0.3071

Select one:

- a. The whole logistic model is not significant.
- b. More than 30% of the observations are misclassified by the model.
- c. None of the variables in the model, or their interactions, are significant.
- d. 43.75% of the variation in **Defective?** is explained by the model.

Question 2

Correct

10 points out of 10

Question text

The graph below shows the historical data of the annual death rate by firearms (per 100000) versus the annual average treasury securities interest rate (for one-year constant maturity). What can you conclude from this analysis?

Select one:

- a. Higher interest rates correspond to higher death rates by firearm.
- b. Raising interest rates causes more firearm deaths.
- c. An increase in firearm deaths causes higher taxes.
- d. The correlation between the two variables is negative.

Question **3**

Correct

10 points out of 10

Question text

Which of the following are assumptions for the errors in multiple linear regression?

Select one:
a. equality and constant variance
b. independence, normality, and constant variance
c. independence, normality, and equality
d. independence and heteroscedasticity
e. independence and normality

Question 4

Correct

10 points out of 10

Question text

You fit a multiple linear regression model for **Strength** as a function of **Speed**, **Material**, **Temp**, and all possible two-way interactions. You use variable selection to reduce the model to only the significant terms. Using a p-value cutoff (or significance level) of 0.05, which terms are candidates for removal?

Select one:

a. Material, Temp, and Material*Temp

b. Speed and Material

c. Temp and Material

d. Material*Temp, Speed*Temp, and Temp

e. Speed, Material, and Material*Speed

Question **5**

Correct

10 points out of 10

Question text

You fit a simple linear regression model for a response, **Thickness**, as a function of one predictor, **Speed**. Using the Parameter Estimates table, what is the estimated regression equation?

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	7.1196113	3.493887	2.04	0.0532	
Speed	2.8072394	0.365323	7.68	<.0001*	

Select one:

C a.

 $Speed^{2}-2.807+7.12*Thickness Speed^{2}-2.807+7.12*Thickness$

U k

 $Thickness^{2.807+0.365*SpeedThickness^{2.807+0.365*SpeedThickness}$

U (

 $Speed^{-7.12+3.49*} Thickness Speed^{-7.12+3.49*} Thickness$

d

 $Thickness^{2}-2.807+7.12*Speed Thickness^{2}-2.807+7.12*Speed$

• e

 $Thickness \^{=} 7.12 + 2.807 * Speed Thickness \^{=} 7.12 + 2.807 * Speed$

Question **6**

Correct

10 points out of 10

Question text

What is the range of possible values for the correlation coefficient?

Select one:

- a. 0 to 1
- b. -1 to 1
- c. -infinity to infinity
- d. 0 to 100%
 - e. -2 to +2

Question **7**

Incorrect

0 points out of 10

Question text

The Summary of Fit table, ANOVA table, and residual-by-predicted plot for a multiple linear regression model are shown. What can you conclude about this model?

Summary of Fit				
RSquare	0.041435			
RSquare Adj	0.021464			
Root Mean Square Error	1.188042			
Mean of Response	3.846667			
Observations (or Sum Wgts)	50			
Analysis of Variance				

Analysis of variance

		Juin Oi		
Source	DF	Squares	Mean Square	F Ratio
Model	1	2.928502	2.92850	2.0748
Error	48	67.749275	1.41144	Prob > F
C. Total	49	70.677778		0.1562

Residual by Predicted Plot

Select one:

- a. There is no obvious non-random pattern in the residual plot.
 - b. The model explains less than 10% of the variation in the response.
 - c. The model explains more than 90% of the variation in the response.
 - d. The model explains a significant amount of variation in the response.

Question **8**

Incorrect
0 points out of 10

Question text

The confusion matrix for a logistic regression model is shown. What is the error rate?

Confusion Matrix

Training

Predicted				
Actual	Count			
Outcome	Fail	Pass		
Fail	22	4		
Pass	2	67		

Select one:

a. 22%

C b. 2.1%

c. 4.2%

d. 6.0%

e. 6.3%

Question **9**

Correct

10 points out of 10

Question text

You fit a simple logistic model for **Outcome** (**Good** or **Defective**) as a function of **belt speed**. You model the probability that **Outcome** = **Defective**. The logistic curve for the model and the Parameter Estimates table are shown. Which of the following are correct?

Select one:

- a. As the value of **belt speed** increases, the probability of **Defective** increases.
- b. As the value of **belt speed** increases, the probability of **Good** increases.
- c. **Belt speed** is not a significant predictor of **Outcome**.
- d. There is no relationship between **belt speed** and the probability of **Defective**.

Question 10

Correct

10 points out of 10

Question text

You fit two multiple regression models to the same data, Model A and Model B. The Summary of Fit tables for the two models are shown. Which of the following statements is correct?

Model A - Summary of Fit

RSquare 0.644249 RSquare Adj 0.636838 Root Mean Square Error 1.38959 Mean of Response 19.10668 Observations (or Sum Wgts) 50

Model B - Summary of Fit

RSquare 0.844423
RSquare Adj 0.830594
Root Mean Square Error 0.949075
Mean of Response 19.10668
Observations (or Sum Wgts) 50

Select one:

a. The RSquare Adj for Model B is better than the RSquare Adj for Model A.

b. The mean response for Model B is higher than the mean for Model A.

c. Based on the RSquare Adj and RMSE, Model A is better than Model B.

d. The RMSE for Model A is better than the RMSE for Model B.

Finish review