特征值和特征向量

特征值和特征向量的定义

• 设 $A \in n$ 阶矩阵, λ 为常数, 存在非零列向量 ξ , 满足:

$$A\boldsymbol{\xi} = \lambda \boldsymbol{\xi}$$

称 λ 为 A 的特征值, ξ 是 A 对应于特征值 λ 的特征向量

特征方程(特征多项式)

•
$$(\lambda E - A)\boldsymbol{\xi} = O \Rightarrow |\lambda E - A| = 0$$

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \end{vmatrix} = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) = 0$$
•
$$\begin{vmatrix} \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

•
$$\lambda^n - (\lambda_1 + \lambda_2 + \dots + \lambda_n)\lambda^{n-1} + \dots + (-1)^n \prod_{i=1}^n \lambda_i = 0$$

$$egin{aligned} egin{aligned} \sum_{i=1}^n \lambda_i &= \sum_{i=1}^n a_{ii} = tr(A) \ \prod_{i=1}^n \lambda_i &= |A| \end{aligned}$$

特征向量

- 若 $oldsymbol{\xi}_1,oldsymbol{\xi}_2$ 是A的属于不同特征值 λ_1,λ_2 的特征向量, $oldsymbol{\xi}_1,oldsymbol{\xi}_2$ 线性无关
- 若 $m{\xi}_1,m{\xi}_2$ 是A的属于不同特征值 λ_1,λ_2 的特征向量, $k_1m{\xi}_1+k_2m{\xi}_2(k_1
 eq 0,k_2
 eq 0)$ 不是A的特征向量
- 若 ξ_1, ξ_2 是 A 的属于同一特征值 λ 的特征向量, $k_1\xi_1+k_2\xi_2$ (k_1,k_2 不同时为 0) 仍 然是 A 属于特征值 λ 的特征向量
- k 重特征值至多有 k 个线性无关的特征向量

特征值

	A	kA	A^k	f(A)	A^{-1}	A^*	$P^{-1}AP$
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	$\frac{1}{\lambda}$	$rac{ A }{\lambda}$	λ
特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$P^{-1}oldsymbol{\xi}$

相似

- 设 A,B 是两个 n 阶方阵, $\exists n$ 阶可逆矩阵 P,s.t. $P^{-1}AP=B$, 称 A 相似于 B, 记作 $A\sim B$
 - \circ 反身性: $A \sim A$
 - \circ 对称性: $A \sim B \Rightarrow B \sim A$
 - \circ 传递性: $A \sim B, B \sim C \Rightarrow A \sim C$

相似矩阵

- $A \sim B \Rightarrow P^{-1}AP = B$
 - $\circ \ r(A) = r(B)$
 - $\circ |A| = |B|$
 - \circ $\lambda_A = \lambda_B$
 - $\circ tr(A) = tr(B)$
 - $|\lambda E A| = |\lambda E B|$
 - \circ A, B 各阶主子式之和分别相等
- $A \sim B$
 - $\circ~A^T \sim B^T$
 - $\circ~A^* \sim B^*$
 - $\circ~A^m \sim B^m$
 - $\circ \ f(A) \sim f(B)$
- $A \sim B$ 且A可逆
 - $\circ A^{-1} \sim B^{-1}$

$$\circ~f(A^{-1}) \sim f(B^{-1})$$

矩阵相似对角化

- 设 A 是 n 阶方阵, $\exists n$ 阶 可逆矩阵 P,s.t. $P^{-1}AP=\Lambda$, 其中 Λ 是对角矩阵, 称 A 可相似对角化, 记作 $A\sim\Lambda$, 称 Λ 为 A 的相似标准型
- n 阶矩阵 A 可相似对角化 \Leftrightarrow A 有 n 个线性无关的特征向量
- n 阶矩阵 A 可相似对角化 \Leftrightarrow A 有 n 个线性无关的特征向量
- n 阶矩阵 A 可相似对角化 \Leftrightarrow 对于每个 k_i 重特征值都有 k_i 个线性无关的特征向量
- $A \neq n$ 个特征值 $\Rightarrow n$ 阶矩阵 A 可相似对角化
- n 阶矩阵 A 为实对称矩阵 $\Rightarrow A$ 可相似对角化

实对称矩阵相似对角化

- n 阶实对称矩阵 A_n 可正交相似对角化
- n 阶实对称矩阵 A 特征值为实数
- n 阶实对称矩阵 A 的不同特征值对应的特征向量互相正交