7. cvičení k předmětu NMAI058 Lineární Algebra 2 (LS 19/20)

(Řešená verze)

Úloha 1: Vlastní vektor matice $A \in \mathbb{R}^{n \times n}$ reprezentuje směr, který se při lineárním zobrazení f(x) = Ax zobrazí opět na ten samý směr (může se změnit pouze velikost a/nebo orientace vektoru). Pro vlastní vektor v matice A tedy platí, že přímka span $\{v\}$ se při zobrazení f zobrazí do sebe sama. Příslušné vlastní číslo matice pak představuje škálování v tomto invariantním směru. (Viz také Příklady 10.2 a 10.6 ve skriptech.)

Následující matice reprezentují zobrazení v rovině. Nalezněte jejich geometrickou interpretaci (zvětšení, otočení, zkosení apod.) a z ní vypozorujte vlastní čísla a k nim příslušné vlastní vektory.

$$a) \ A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Řešení:

Lineární zobrazení f(x) = Ax odpovídá dvojnásobnému zvětšení vektoru x, tedy

$$f((x_1, x_2)^T) = 2(x_1, x_2)^T.$$

Libovolný nenulový vektor $x \in \mathbb{R}^2 \setminus \{(0,0)\}$ je proto vlastním vektorem matice A – zobrazení f ho dvakrát prodlouží, ale nezmění jeho směr. Vlastním číslem matice A je $\lambda = 2$ odpovídající škálování vektoru x při zobrazení f.

$$b) B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Řešení:

Lineární zobrazení f(x) = Bx odpovídá dvojnásobnému zvětšení vektoru x v první souřadnici, tedy

$$f((x_1, x_2)^T) = (2x_1, x_2)^T.$$

Vektory na ose x_1 se dvojnásobně prodlouží a nezmění svůj směr – každý vektor ve tvaru $(\alpha, 0)$ pro $\alpha \in \mathbb{R} \setminus \{0\}$ je tedy vlastním vektorem matice B s příslušným vlastním číslem $\lambda_1 = 2$.

Vektory na ose x_2 se při zobrazení f nezmění, proto také každý vektor $(0,\alpha)$ pro $\alpha \in \mathbb{R} \setminus \{0\}$ je vlastním vektorem B a odpovídá vlastnímu číslu $\lambda_2 = 1$. Vektory mimo osy při zobrazení f mění směr.

$$c) C = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

Řešení:

Lineární zobrazení f(x) = Cx odpovídá zkosení a zároveň zvětšení, pro zobrazení platí

$$f((x_1, x_2)^T) = (2x_1 + x_2, 2x_2)^T.$$

Vlastní vektory matice C jsou všechny nenulové vektory $(\alpha,0)$ ležící na ose x_1 , protože tyto vektory při zobrazení f směr nemění. Tyto vektory zobrazení dvojnásobně prodlužuje, protože platí

$$f((\alpha, 0)^T) = (2\alpha, 0)^T = 2(\alpha, 0)^T,$$

příslušné vlastní číslo je tedy $\lambda = 2$.

$$d) D = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Řešení:

Lineární zobrazení f(x)=Dx odpovídá kolmé (ortogonální) projekci na osu 1. a 3. kvadrantu (tedy přímku $x_1=x_2$), platí

$$f((x_1, x_2)^T) = \frac{1}{2}(x_1 + x_2, x_1 + x_2)^T.$$

Nenulové vektory ležící na této ose se při projekci f zobrazí samy na sebe, jsou tedy vlastními vektory matice D. Nemění se ani velikost a orientace těchto vektorů, odpovídající vlastní číslo je proto $\lambda_1 = 1$.

 v_1 Cv_1

Dalšími vlastními vektory jsou všechny nenulové vektory kolmé na osu 1. a 3. kvadrantu, t.j. vektory ve tvaru $(-\alpha, \alpha)$ pro $\alpha \in \mathbb{R} \setminus \{0\}$. Tyto vektory se při projekci f zobrazí do počátku (0,0), odpovídající vlastní číslo je $\lambda_2 = 0$ (vektory se škálují na 0-násobek původní délky). Můžeme snadno ověřit, že podmínka z definice vlastního čísla a vlastního vektoru je splněna i pro tento případ:

$$Dx = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -\alpha \\ \alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \cdot x.$$

Úloha 2: Určete charakteristický polynom a nalezněte vlastní čísla a odpovídající vlastní vektory následujících matic nad tělesem \mathbb{C} . Jsou vlastní vektory jednoznačné?

$$a) A = \begin{pmatrix} 2 & 6 \\ 6 & -3 \end{pmatrix}$$

Řešení: Charakteristický polynom matice A vzhledem k proměnné λ je polynom

$$p_A(\lambda) = \det(A - \lambda I_n).$$

Jelikož jsou vlastní čísla matice A právě kořeny polynomu $p_A(\lambda)$ (viz Věta 10.8), můžeme charakteristický polynom využít pro jejich výpočet.

Pro zadanou matici A dostaneme charakteristický polynom

$$p_A(\lambda) = \det(A - \lambda I_2) = \det\begin{pmatrix} 2 - \lambda & 6 \\ 6 & -3 - \lambda \end{pmatrix} = (2 - \lambda)(-3 - \lambda) - 6 \cdot 6.$$

Dále můžeme tento polynom upravit a najít jeho kořeny:

$$p_A(\lambda) = (2 - \lambda)(-3 - \lambda) - 6 \cdot 6 = \lambda^2 + \lambda - 42 = (\lambda - 6)(\lambda + 7).$$

Kořeny polynomu, a tedy vlastními čísly matice A, jsou hodnoty $\lambda_1=6$ a $\lambda_2=-7$.

Vlastní vektor příslušný k danému vlastnímu číslu λ najdeme jako bázi jádra matice $A-\lambda I_n$ (viz Věta 10.3). Pro vlastní číslo $\lambda_1=6$ tedy hledáme bázi jádra matice

$$\begin{pmatrix} 2-6 & 6 \\ 6 & -3-6 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ 6 & -9 \end{pmatrix},$$

kterou tvoří např. vektor $x_1 = (3, 2)^T$. Podobně pro $\lambda_2 = -7$ hledáme bázi $\operatorname{Ker}(A - \lambda_2 I_2)$, t.j. bázi jádra matice

$$\begin{pmatrix} 2 - (-7) & 6 \\ 6 & -3 - (-7) \end{pmatrix} = \begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix}.$$

Tu tvoří např. vektor $x_2 = (2, -3)^T$. Matice A má tedy vlastní číslo $\lambda_1 = 6$ s odpovídajícím vlastním vektorem $x_1 = (3, 2)^T$ a vlastní číslo $\lambda_2 = -7$ s odpovídajícím vlastním vektorem $x_2 = (2, -3)^T$. Vlastní vektory nejsou určeny jednoznačně – každý nenulový násobek vlastního vektoru je také vlastním vektorem.

$$b) B = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$$

Řešení: Charakteristický polynom matice B je

$$p_B(\lambda) = \det(B - \lambda I_2) = \det\begin{pmatrix} 0 - \lambda & 1 \\ -2 & 2 - \lambda \end{pmatrix} = -\lambda(2 - \lambda) + 2 = \lambda^2 - 2\lambda + 2.$$

Tento polynom má pouze komplexní kořeny, a to

$$\lambda_{1,2} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = 1 \pm i.$$

Vlastní vektor pro $\lambda_1 = 1 + i$ tvoří bázi jádra matice

$$\begin{pmatrix} 0 - (1+i) & 1 \\ -2 & 2 - (1+i) \end{pmatrix} = \begin{pmatrix} -1-i & 1 \\ -2 & 1-i \end{pmatrix}.$$

Bázi jádra najdeme (stejně jako pro reálné matice) pomocí Gaussovy eliminace. Přičtením (-1+i)-násobku 1. řádku k 2. řádku dostaneme:

$$\begin{pmatrix} -1-i & 1 \\ -2 & 1-i \end{pmatrix} \sim \begin{pmatrix} -1-i & 1 \\ -2+(-1-i)(-1+i) & 1-i+1(-1+i) \end{pmatrix} \sim \begin{pmatrix} -1-i & 1 \\ -2+2 & 1-i-1+i \end{pmatrix} \sim \begin{pmatrix} -1-i & 1 \\ 0 & 0 \end{pmatrix}$$

Všechna řešení soustavy $(B - \lambda_1 I_2)x = 0$ jsou ve tvaru (1, 1 + i)p pro $p \in \mathbb{C}$. Hledaným vlastním vektorem je tedy např. vektor $x_1 = (1, 1 + i)^T$. Druhý vlastní vektor x_2 pro $\lambda_2 = 1 - i$ tvoří bázi jádra matice

$$\begin{pmatrix} 0 - (1-i) & 1 \\ -2 & 2 - (1-i) \end{pmatrix} = \begin{pmatrix} -1+i & 1 \\ -2 & 1+i \end{pmatrix},$$

je to např. vektor $x_2 = (1, 1-i)^T$. Matice B má vlastní číslo $\lambda_1 = 1+i$ s odpovídajícím vlastním vektorem $x_1 = (1, 1+i)^T$ a vlastní číslo $\lambda_2 = 1-i$ s odpovídajícím vlastním vektorem $x_2 = (1, 1-i)^T$.

$$c) C = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$

Řešení: Postupujeme obdobně jako u matic 2×2 . Charakteristický polynom matice C vyjádříme pomocí determinantu:

$$p_C(\lambda) = \det(C - \lambda I_3) = \det\begin{pmatrix} 2 - \lambda & -1 & 2 \\ 5 & -3 - \lambda & 3 \\ -1 & 0 & -2 - \lambda \end{pmatrix} =$$

$$= (2 - \lambda)(-3 - \lambda)(-2 - \lambda) + (-1) \cdot 3 \cdot (-1) + 2 \cdot 5 \cdot 0 -$$

$$- 2 \cdot (-3 - \lambda) \cdot (-1) - 3 \cdot 0 \cdot (2 - \lambda) - (-1) \cdot 5 \cdot (-2 - \lambda) = -(\lambda + 1)^3.$$

Matice C má tedy vlastní číslo $\lambda=-1$. Dále najdeme bázi jádra matice

$$\begin{pmatrix} 2 - (-1) & -1 & 2 \\ 5 & -3 - (-1) & 3 \\ -1 & 0 & -2 - (-1) \end{pmatrix} = \begin{pmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{pmatrix},$$

kterou tvoří např. $\{(1,1,-1)^T\}$. Matice C má (trojnásobné) vlastní číslo $\lambda=-1$, kterému přísluší jeden vlastní vektor x=(1,1,-1).

Úloha 3: Určete charakteristický polynom a nalezněte vlastní čísla matice

$$A = \begin{pmatrix} 3 & 2 & 0 & 1 & -2 \\ 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 3 \\ 0 & 5 & 0 & 1 & 0 \\ 4 & 8 & 0 & 7 & -3 \end{pmatrix}.$$

Řešení: Charakteristický polynom matice A opět dostaneme jako determinant

$$p_A(\lambda) = \det(A - \lambda I_5) = \det\begin{pmatrix} 3 - \lambda & 2 & 0 & 1 & -2\\ 0 & 2 - \lambda & 0 & 0 & 0\\ 2 & 0 & 1 - \lambda & 0 & 3\\ 0 & 5 & 0 & 1 - \lambda & 0\\ 4 & 8 & 0 & 7 & -3 - \lambda \end{pmatrix}.$$

Pro vyjádření determinantu této matice je výhodné použít Laplaceův rozvoj, např. podle 2. řádku (obsahuje jediný nenulový prvek), následně podle 4. řádku a nakonec podle 3. sloupce. Tím dostaneme charakteristický polynom

$$p_A(\lambda) = (2 - \lambda)(1 - \lambda)(1 - \lambda) \det \begin{pmatrix} 3 - \lambda & -2 \\ 4 & -3 - \lambda \end{pmatrix} = -(2 - \lambda)(1 - \lambda)^3(1 + \lambda).$$

Vlastní čísla matice A jsou tedy 2, 1 (trojnásobné) a -1.

Úloha 4: Najděte nad tělesem \mathbb{Z}_5 všechna vlastní čísla a vlastní vektory matice

$$A = \begin{pmatrix} 4 & 0 & 2 \\ 4 & 1 & 1 \\ 2 & 0 & 4 \end{pmatrix}.$$

 $\mathbf{\check{R}e\check{s}en\acute{t}}:$ Postupujeme obdobně jako v předchozích úlohách. Charakteristický polynom matice A je

$$p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{pmatrix} 4 - \lambda & 0 & 2\\ 4 & 1 - \lambda & 1\\ 2 & 0 & 4 - \lambda \end{pmatrix} = 4\lambda^3 + 4\lambda^2 + 2.$$

Jelikož pracujeme s charakteristickým polynomem v konečném tělese \mathbb{Z}_5 , které obsahuje pouze 5 prvků, můžeme kořeny polynomu efektivně najít prostým dosazením. Snadno ověříme, že platí $p_A(1) = 0$ a $p_A(2) = 0$, tedy vlastní čísla matice A jsou 1 a 2.

Dále najdeme odpovídající vlastní vektory jako bázi $\text{Ker}(A-1I_3)$ a $\text{Ker}(A-2I_3)$, tedy bázi jádra pro matice

$$\begin{pmatrix} 4-1 & 0 & 2 \\ 4 & 1-1 & 1 \\ 2 & 0 & 4-1 \end{pmatrix}, \qquad \begin{pmatrix} 4-2 & 0 & 2 \\ 4 & 1-2 & 1 \\ 2 & 0 & 4-2 \end{pmatrix}.$$

Výpočtem nad \mathbb{Z}_5 zjistíme, že první matici odpovídá báze jádra např. $\{(1,0,1)^T, (0,1,0)^T\}$ a druhé matici báze $\{(1,3,4)^T\}$. Matice A má tedy vlastní vektory $(1,0,1)^T$, $(0,1,0)^T$ příslušné vlastnímu číslu 1 a vlastní vektor $(1,3,4)^T$ příslušný vlastnímu číslu 2.

Úloha 5: Známe tři vlastní čísla matice

$$A = \begin{pmatrix} 10 & 0 & 7 & -7 \\ 4 & 5 & 2 & -2 \\ 16 & 4 & 15 & -8 \\ 30 & 4 & 26 & -19 \end{pmatrix},$$

a to $\lambda_1 = 3$, $\lambda_2 = -4$ a $\lambda_3 = 5$. Dopočítejte zbylé vlastní číslo.

Řešení: K řešení úlohy můžeme využít znalost vztahů mezi součinem vlastních čísel a determinantem matice, respektive mezi součtem vlastních čísel a stopou matice (viz Tvrzení 10.12 ve skriptech):

$$det(A) = \lambda_1 \cdots \lambda_n, \quad trace(A) = \lambda_1 + \cdots + \lambda_n.$$

Výpočet determinantu je pracnější, ale i využití tohoto vztahu vede k řešení. Determinant matice A můžeme spočítat např. Gaussovou eliminací, dostaneme $\det(A) = -420$. Pro zbylé vlastní číslo potom platí

$$\det(A) = -420 = \lambda_1 \lambda_2 \lambda_3 \lambda_4 = 3 \cdot (-4) \cdot 5 \cdot \lambda_4,$$

tedy
$$\lambda_4 = -420/(-60) = 7$$
.

Výhodnější je ale použít vztah mezi součtem vlastních čísel a stopou matice. Stopa matice je součet prvků na diagonále, tedy

trace(A) =
$$\sum_{i=1}^{4} a_{ii} = 10 + 5 + 15 - 19 = 11$$
.

Protože je stopa matice zároveň rovná součtu vlastních čísel, platí pro zbylé vlastní číslo

$$\lambda_4 = 11 - \lambda_1 - \lambda_2 - \lambda_3 = 11 - 3 + 4 - 5 = 7.$$

Úloha 6: Matice A má vlastní čísla $\lambda_1, \ldots, \lambda_n$ a jim odpovídající vlastní vektory x_1, \ldots, x_n . Dokažte, že pak platí (viz Tvrzení 10.13):

a) matice A^2 má vlastní čísla $\lambda_1^2, \ldots, \lambda_n^2$ a vlastní vektory x_1, \ldots, x_n ,

Řešení: Nechť λ_i je vlastní číslo matice A a x_i je jemu příslušný vlastní vektor. Pak podle definice vlastního čísla a vlastního vektoru platí $Ax_i = \lambda_i x_i$.

Chceme ukázat, že λ_i^2 je vlastní číslo matice $A^2 = AA$ s odpovídajícím vlastním vektorem x_i , tedy, že platí rovnost $A^2x_i = \lambda_i^2x_i$. S využitím vztahu $Ax_i = \lambda_i x_i$ dostáváme

$$A^2x_i = (AA)x_i = A(Ax_i) = A(\lambda_i x_i) = \lambda_i (Ax_i) = \lambda_i (\lambda_i x_i) = \lambda_i^2 x_i$$

b) matice αA má vlastní čísla $\alpha \lambda_1, \ldots, \alpha \lambda_n$ a vlastní vektory x_1, \ldots, x_n ,

Řešení: Opět dle předpokladu platí $Ax_i = \lambda_i x_i$. Chceme dokázat, že matice αA má vlastní číslo $\alpha \lambda_i$ a příslušný vlastní vektor x_i , tedy $(\alpha A)x_i = (\alpha \lambda_i)x_i$. Platí:

$$(\alpha A)x_i = \alpha(Ax_i) = \alpha(\lambda_i x_i) = (\alpha \lambda_i)x_i.$$

c) matice $A + \alpha I_n$ má vlastní čísla $\lambda_1 + \alpha, \ldots, \lambda_n + \alpha$ a vlastní vektory x_1, \ldots, x_n ,

Řešení: Opět dle předpokladu platí $Ax_i = \lambda_i x_i$. Chceme dokázat, že pro matici $A + \alpha I_n$ platí rovnost $(A + \alpha I_n)x_i = (\lambda_i + \alpha)x_i$. Podobně jako v předchozích částech dostaneme:

$$(A + \alpha I_n)x_i = Ax_i + (\alpha I_n)x_i = \lambda_i x_i + \alpha x_i = (\lambda_i + \alpha)x_i.$$

d) matice A^T má vlastní čísla $\lambda_1, \ldots, \lambda_n$, ale vlastní vektory obecně jiné.

Řešení: Pro důkaz této části můžeme využít fakt, že vlastní čísla matice A jsou právě kořeny jejího charakteristického polynomu $p_A(\lambda) = \det(A - \lambda I_n)$ (viz Věta 10.8 ve skriptech). Z vlastností determinantu víme, že transpozice matice hodnotu determinantu nemění, tudíž platí

$$\det(A - \lambda I_n) = \det((A - \lambda I_n)^T) = \det(A^T - \lambda I_n).$$

Protože je ale zároveň $\det(A^T - \lambda I_n) = p_{A^T}(\lambda)$ charakteristický polynom matice A^T , má matice A^T stejná vlastní čísla jako matice A.

Vlastní vektory matice a její transpozice mohou být obecně různé, např. matice $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ má vlastní vektory ve tvaru $(\alpha, 0)$ pro $\alpha \in \mathbb{R} \setminus 0$, zatímco matice $A^T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ má vlastní vektory ve tvaru $(0, \alpha)$ pro $\alpha \in \mathbb{R} \setminus 0$.

Úloha 7: Ukažte, že jeden vlastní vektor matice $A \in \mathbb{R}^{n \times n}$ nemůže příslušet různým vlastním číslům.

Rešení: Buď x vlastní vektor matice A. Pro spor předpokládejme, že x přísluší vlastním číslům λ_1, λ_2 , přičemž $\lambda_1 \neq \lambda_2$. Podle definice vlastního čísla a vlastního vektoru platí $Ax = \lambda_1 x$ a zároveň $Ax = \lambda_2 x$. Potom ale dostáváme $\lambda_1 x = \lambda_2 x$, neboli

$$\lambda_1 x - \lambda_2 x = (\lambda_1 - \lambda_2) x = 0.$$

To znamená, že platí $\lambda_1 - \lambda_2 = 0$ nebo x = 0. Vlastní vektor x je z definice nenulový, musí proto platit $\lambda_1 - \lambda_2 = 0$, a tedy $\lambda_1 = \lambda_2$, což je spor s předpokladem $\lambda_1 \neq \lambda_2$.

Další příklady k procvičení

Úloha 8: Určete charakteristický polynom a spočítejte vlastní čísla a odpovídající vlastní vektory následujících matic:

$$a) A = \begin{pmatrix} -8 & -6 \\ 12 & 10 \end{pmatrix}$$

Výsledek: $\lambda_1 = -2 \text{ s vl. vektorem } (1, -1)^T, \ \lambda_2 = 4 \text{ s vl. vektorem } (1, -2)^T$

$$b) B = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$$

Výsledek: $\lambda_1 = 1 + 2i$ s vl. vektorem $(1, 1 - i)^T$, $\lambda_2 = 1 - 2i$ s vl. vektorem $(1, 1 + i)^T$

c)
$$C = \begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$

Výsledek: $\lambda_1 = 1$ s vl. vektorem $(1, 2, 1)^T$, $\lambda_2 = 2$ s vl. vektorem $(1, 1, 0)^T$, $\lambda_3 = 3$ s vl. vektorem $(1, 2, 2)^T$

$$d) \ D = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Výsledek: $\lambda_1 = 2 \text{ s vl. vektorem } (1, 1, 1)^T, \ \lambda_2 = -1 \text{ s vl. vektory } (1, -1, 0)^T \text{ a } (1, 0, -1)^T$

e)
$$E = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
 nad tělesem \mathbb{Z}_5

Výsledek: $\lambda_1 = 2 \text{ s vl. vektorem } (0, 1, 3)^T, \ \lambda_2 = 1 \text{ s vl. vektory } (1, 0, 1)^T \text{ a } (1, 4, 0)^T$

Úloha 9: Najděte hodnoty $a, b \in \mathbb{R}$ tak, aby 1, 2, 3 byla vlastní čísla matice

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & a \\ 1 & -1 & b \end{pmatrix}.$$

Nápověda: Pro zjednodušení využijte znalost vztahu vlastních čísel k dalším charakteristikám matice.

Výsledek: a = 1, b = 2

Úloha 10: Buď b vlastní vektor regulární matice $A \in \mathbb{R}^{n \times n}$. Vyřešte soustavu Ax = b.

Výsledek: $x = \frac{1}{\lambda}b$

Úloha 11: Buďte $a, b, c, d \in \mathbb{R}$ taková, že a + b = c + d. Najděte vlastní čísla matice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Nápověda: Zkuste uhodnout vlastní vektor matice.

Výsledek: $\lambda_1 = a + b, \lambda_2 = a - c$

Úloha 12: Určete, jaká mohou být vlastní čísla matice $A \in \mathbb{R}^{n \times n}$ splňující

a) $A^2 = A$,

Výsledek: $\lambda \in \{0, 1\}$

b) $A^k = 0$ pro nějaké $k \ge 1$.

Výsledek: $\lambda = 0$

Úloha 13: Jaká mohou být vlastní čísla ortogonální matice $Q \in \mathbb{R}^{n \times n}$?

Nápověda: Využijte geometrickou představu a vlastnosti zobrazení s ortogonální maticí.

Výsledek: $|\lambda| = 1$

Úloha 14: Buďte $A,B \in \mathbb{R}^{n \times n}$. Dokažte, že matice AB a BA mají stejná vlastní čísla.