

Выравнивание последовательностей. Выбор оптимальной модели эволюции нуклеотидов

Интерфейс MEGA

- ▶ ALIGN выравнивание последовательностей
- ▶ DATA загрузка и редактирование данных
- MODELS выбор оптимальной модели эволюции нуклеотидов
- ▶ DISTANCE расчёт матрицы расстояний по выравниванию
- ► PHYLOGENY построение филогенетического дерева

Выравнивание последовательностей

Откройте файл CoV_task.fa для выравнивания.

- 1. DATA
- 2. Open File/Session
- 3. Выберите файл
- 4. Analyze or Align File? Align

Алгоритм MUSCLE

MUSCLE

- ► Align DNA
- ► Align Codons

Select all sequences

MUSCLE

- ► Align DNA
- ► Align Codons

Select all sequences

Option		Setting				
GAP PENALTIES						
Gap Open	V	-400.00				
Gap Extend	V	0.00				
MEMORY/ITERATIONS						
Max Memory in MB	V	2048				
Max Iterations	¥	16				
ADVANCED OPTIONS						
Cluster Method (Iterations 1,2)	¥	UPGMA				
Cluster Method (Other Iterations)	V	UPGMA				
Min Diag Length (Lambda)	V	24				

Задание 1. Выполните выравнивание последовательностей с помощью алгоритма MUSCLE. Какова длина полученного выравнивания (порядковый номер последней колонки нуклеотидов, Site)?

Задание 1. Выполните выравнивание последовательностей с помощью алгоритма MUSCLE. Какова длина полученного выравнивания (порядковый номер последней колонки нуклеотидов, Site)?

5256 Сохраните полученное выранивание в формате fasta: Data/Export Alignment/FASTA format

Расчёт матрицы расстояний

- Выбор файла с выравниванием
- Настройка импорта данных

Compute Pairwise Distance

lh.

DISTANCE

 Уточнение в выравнивании белок кодирующая последовательность или нет (выбор таблицы генетического кода)

Расчёт матрицы расстояний

Несоответствие наблюдаемого и действительного расстояния

Несоответствие наблюдаемого и действительного расстояния

Несоответствие наблюдаемого и действительного расстояния

Lemey, 2009

Способы расчёта расстояний

- \blacktriangleright No. of differences (n_d)
- ightharpoonup p.distance $p = n_d/L$
- ▶ Jukes-Cantor distance (JC69): $d = -\frac{3}{4}log_e(1 \frac{4}{3}p)$
- ► Kimura 2-parameter distance (K80): $d = -0.5log_e(w_1) 0.25log_e(w_2)$ $w_1 = 1 2P Q$ $w_2 = 1 2Q$

Задание 2. Рассчитайте матрицу попарных расстояний для получившегося выравнивания. Какое максимальное расстояние между последовательностями (No. of differences)?

Способы расчёта расстояний

- \triangleright No. of differences (n_d)
- ightharpoonup p.distance $p = n_d/L$
- ▶ Jukes-Cantor distance (JC69): $d = -\frac{3}{4}log_e(1 \frac{4}{3}p)$
- ► Kimura 2-parameter distance (K80): $d = -0.5log_e(w_1) 0.25log_e(w_2)$ $w_1 = 1 - 2P - Q$ $w_2 = 1 - 2Q$

Задание 2. Рассчитайте матрицу попарных расстояний для получившегося выравнивания. Какое максимальное расстояние между последовательностями (No. of differences)?

Обрезать или не обрезать выравнивание?

Gblocks

Gblocks Server					
Paste an alignment in NBRF/PIR or FASTA format:					
Or upload an alignment file:					
Choose File all_seq3_align.fas					
Type of sequence:					
DNA Protein Codons					
Options for a less stringent selection:					
Allow smaller final blocks					
Allow gap positions within the final blocks					
Allow less strict flanking positions					
Options for a more stringent selection:					
☐ Do not allow many contiguous nonconserved positions					
Get Blocks Clear					

Задание 3. Обрежьте выравнивание с наиболее щадящими настройками.

Перед загрузкой на сервер Gblocks сохраните выравнивание в формате fasta: File/Export alignment/FASTA format

Processed file: input.fasta Number of sequences: 34

Alignment assumed to be: DNA

New number of positions: 2462 (selected positions are underlined in blue)

Сохраните обрезанное выравнивание (Cured alignment in FASTA Format).

Задание 3. Обрежьте выравнивание с наиболее щадящими настройками.

Перед загрузкой на сервер Gblocks сохраните выравнивание в формате fasta: File/Export alignment/FASTA format

Processed file: input.fasta Number of sequences: 34

Alignment assumed to be: DNA

New number of positions: 2462 (selected positions are underlined in blue)

Сохраните обрезанное выравнивание (Cured alignment in FASTA Format).

Задание 4. Повторите процедуру выравнивания для исходного файла, изменив значение Gap Open penalty на -200. Сравните длины выравниваний до и после обрезки Gblocks

Задание 4. Повторите процедуру выравнивания для исходного файла, изменив значение Gap Open penalty на -200. Сравните длины выравниваний до и после обрезки Gblocks

6291, 2120

Форматы выравниваний

FASTA

>A
ATGAAATATACACTTTTATTTT->B
ATGTTGGTGATATTGTTAATGTTA
>C
ATGTTTTTGATACTTTTAATTTCC

CLUSTAL

CLUSTAL O(1.2.4) multiple sequence alignment

- A ATGAAATATACACTTTTATTTT--B ATGTTGGTGATATTGTTAATGTTA C ATGTTTTTGATACTTTTAATTTCC

PHYLIP

PHYLIP
3 24
A ATGAAATATACACTTTTATTTT-B ATGTTGGTGATATTGTTAATGTTA
C ATGTTTTTGATACTTTTAATTTCC

NEXUS

end:

```
begin data;
dimensions ntax=3 nchar=24;
format interleave datatype=DNA missing=N gap=-;
matrix
A ATGAAATATACACTTTTATTTT--
B ATGTTGGTGATATTGTTAATGTTA
C ATGTTTTTGATACTTTTTTTTTCC
```

Модели эволюции нуклеотидов

Модель	Частоты	Частоты пере-	Свободные
	нуклеотидов	ходов	параметры
JC69	равные	равные	0
K80	равные	$Ts \neq Tv$	1
T92	$AT \neq GC$	$Ts \neq Tv$	2
F81	неравные	равные	3
F84	неравные	$Ts \neq Tv$	4
GTR	неравные	неравны для	8
		всех переходов	

Транзиции (Ts) — A-G или C-T. **Трансверзии** (Tv) — A-T, A-C, G-C, G-T.

- +G различные частоты замен для сайтов
- +І доля инвариантных сайтов

Марковские цепи и выбор модели эволюции

Частоты переходов

Частоты нуклеотидов

Выбор оптимальной модели эволюции

Find best DNA/protein model

Просмотр оптимальных параметров

Запустите подбор модели, не меняя настройки по умолчанию. Используйте обрезанное выравнивание ДНК, которое было получено без модификации настроек, его длина 2462.

- ► Model название модели
- ▶ Parameters общее число параметров
- ▶ ВІС, АІС информационные критерии
- ▶ InL правдоподобие
- ► (+G)/(+I) различия в частотах замен между сайтами и доля инвариантных сайтов
- ▶ R Ts/Tv
- ► f(N) частоты нуклеотидов
- ► f(NN) частоты переходов

Гамма (G) распределение

Задание 5. Какая модель наилучшая?

Гамма (G) распределение

Задание 5. Какая модель наилучшая?

GTR+G+I

Задание 6. Откройте последовательности из файла DBY_intron 7_part.fasta. Постройте выравнивание с помощью алгоритма muscle (учтите, что даны последовательности интронов). Обрежьте его в Gblocks при щадящих настройках. Подберите модель эволюции нуклеотидов.

Задание 6. Откройте последовательности из файла DBY_intron 7_part.fasta. Постройте выравнивание с помощью алгоритма muscle (учтите, что даны последовательности интронов). Обрежьте его в Gblocks при щадящих настройках. Подберите модель эволюции нуклеотидов.

T92+G