

Teile und (Be-) Herrsche

Einführung in Bayessche Hierarchische Modelle

IFM Workshop, 28.01.2021

Dr. Sven Thies

AGENDA

1. Theorie

- i. Machine Learning vs. Statistische Modellierung
- ii. Grundlagen der Bayesschen Modellierung
- iii. Pymc3 Ein probabilistisches Programmierframework

2. Praxis

- i. Unsicherheit beherrschen: Bayessche Lineare Modelle
- ii. Informationen teilen: Bayessche Hierarchische Modelle

Machine Learning vs. Statistische Modellierung

Machine Learning vs. Statistische Modellierung

Unterschiedliche Hintergründe bestimmen Weltbild und Herangehensweise

Der Informatiker

Der Statistiker

Machine Learning vs. Statistische Modellierung Data Science Stereotypen

... als Data Scientist

Der Informatiker

Verwendet Python (TF, sklearn)

Große Datensätze sind notwendig

Sorgt sich um Overfitting

Prüft die Vorhersagekraft

Verwendet nichtlineare Modelle

Modelle sind off Black-Box

Strebt nach Automatisierung

Der Statistiker

Quelle: In Anlehnung an "Machine Learning and Statistics: Don't Mind the Gap", Thomas Wiecki, ODSC Europe, 2018

Machine Learning vs. Statistische Modellierung Herangehensweise bei der Modellierung

... als Data Scientist

Der Informatiker

Machine Learning-Ansatz

Der Statistiker

Machine Learning vs. Statistische Modellierung Prozess der Modellierung nach Informatikern

Machine Learning vs. Statistische Modellierung Data Science Stereotypen

... als Data Scientist

Der Informatiker

Verwendet Python (TF, sklearn)

Große Datensätze sind notwendig

Sorgt sich um Overfitting

Prüft die Vorhersagekraft

Verwendet nichtlineare Modelle

Modelle sind oft Black-Box

Strebt nach Automatisierung

Verwendet R

Große Datensätze sind Problem

Sorgt sich um Annahmen

Prüft asymptotisches Verhalten

Verwendet lineare Modelle

Modelle sind verständlich

Strebt nach Erkenntnis

Der Statistiker

Quelle: In Anlehnung an "Machine Learning and Statistics: Don't Mind the Gap", Thomas Wiecki, ODSC Europe, 2018

Machine Learning vs. Statistische Modellierung Herangehensweise bei der Modellierung

... als Data Scientist

Der Informatiker

Der Statistiker

Machine Learning-Ansatz | Inferenz

Inferenz-basierter Ansatz

Machine Learning vs. Statistische Modellierung Prozess der Modellierung nach Statistikern

Mathematische Formulierung des wissenschaftlichen Prozesses: Der Satz von Bayes

Das Posteriori Wissen ist eine Kombination von A-Priori Wissen und Beobachtungen

Posterior Probability

Die Wahrscheinlichkeit, dass die Hypothese wahr ist, nachdem wir die Daten gesehen haben.

Likelihood

Die Wahrscheinlichkeit der beobachteten Daten, angenommen, die Hypothese sei wahr.

Prior Probability

Die Wahrscheinlichkeit, dass die Hypothese Wahr ist (bevor wir die Daten gesehen haben).

 $P(H|D) \propto P(D|H)P(H)$

Alles wird als Verteilung dargestellt

Vorwissen wird genutzt

Prozess der Bayesschen Modellierung

$$P(\mu) \rightarrow \mu \sim N(170,30)$$

$$P(y|\mu) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

$$P(\mu|y) \propto P(y|\mu,\sigma)P(\mu)$$

Bayesian Updating (of believes)

Pymc3 – Ein probabilistisches Programmierframework

Herausforderungen bei der Bayesschen Modellierung

Kernaktivität: Multiplikation von Wahrscheinlichkeitsverteilungen

- → Modelle werden schnell komplex
- → Modelle werden schnell analytisch unlösbar

Pymc3 – Ein probabilistisches Programmierframework

Vereinfachung der Bayesschen Modellierung mit Pymc3

- Leicht zu bedienende API
 - Beliebige Verteilungen kombinieren
 -) Intuitive Modellspezifikation

```
mu = pm.Normal('mu', mu=170, sigma=30)
```

- Starkes Backend für numerische Berechnung
 - MCMC und Variational Inferenz Algorithmen
 - Automatische Algorithmenauswahl
 - Verwendet Theano (Deep Learning Library)

Pymc3 – Ein probabilistisches Programmierframework Grundlegendes Prinzip: Trennung von Modell und Inferenz

Posterior Distribution ist Ausgangspunkt weiterführender Untersuchungen

Praxis