Probleme NP-complete

- > Algoritmi nedeterministi (reamintire)
- > Clasele Psi NP
- \triangleright Probleme \mathcal{NP} -dificile si \mathcal{NP} -complete
- \triangleright Exemple de probleme \mathcal{NP} -complete

Algoritmi nedeterministi (reamintire)

Activitatea unui algoritm nedeterminist se desfășoară în două etape: într-o primă etapă "se ghicește" o anumită structură S și în etapa a doua se verifică dacă S satisface o condiția de rezolvare a problemei. Putem adăuga "puteri magice de ghicire" unui limbaj de programare adăugându-i o funcție de forma:

random(N) – care întoarce un număr aleatoriu din mulțimea $\{0, 1, \ldots, n-1\}$.

Pentru a ști dacă verificarea s-a terminat cu succes sau nu adăugă și două instrucțiuni de terminare:

success – care semnalează terminarea verificării (și a a algoritmului) cu succes, și

failure – care semnalează terminarea verificării (și a a algoritmului) fără succes.

Această definiție a algoritmilor nedeterminiști este strâns legată de rezolvarea problemelor de decizie. Reamintim că, în general, orice problemă poate fi redusă la rezolvarea unei probleme de decizie.

Problema rezolvata de un algoritm nedeterminist

Spunem ca un algoritm nedeterminst A rezolva o problema P daca:

- \Rightarrow pentru orice instanta p a lui P, exista o conguratie <A; σ_p astfel incat σ_p include structuri date ce descrie p;
- \Rightarrow exista o executia lui A din conguratia initiala <A; σ_p > care se termina intr-o conguratie < . ; σ'> ; si σ' include structuri de date ce descriu P(p).

Probleme de decizie (reamintire)

> formalizare

 \Rightarrow instanta: A, B \subseteq A, x \in A

 \Rightarrow intrebare: $x \in B$?

> exemplu: problema rucsacului

⇒ instanta

• o multime de obiecte O,

• fiecare object are o marime $w(o) \in Z_+$ si o valoare $p(o) \in Z_+$

• restrictie: $M \in \mathbb{Z}_+$

• scop $K \in \mathbb{Z}_+$

⇒ intrebare

• exista O' \subseteq O a.i. $\sum_{o \in O'} w(o) \le M \text{ si } \sum_{o \in O'} p(o) \ge K$?

Algoritm nedeterminist pentru rucsac 0/1

```
procedure rucsacND(O, s, v, M, K, x)
begin
   /* ghiceste */
   for each o \in O do
      x[o] \leftarrow random(2)
   /* verifica */
   wGhicit ← vGhicit ← 0
   for each o \in O do
      wGhicit \leftarrow wGhicit + x[o]*w[o]
      pGhicit \leftarrow pGhicit + x[o]*p[o]
   if (wGhicit ≤ M and pGhicit ≥ K)
   then success
   else failure
end
```

Clasele Psi NP

- \triangleright P = clasa problemelor care pot fi rezolvate de algoritmi deterministi in timp polinomial
- $\triangleright \mathcal{NP}$ = clasa problemelor care pot fi rezolvate de algoritmi NEdeterministi in timp polinomial
- \triangleright E usor de vazut ca $P \subseteq \mathcal{N}P$
- \blacktriangleright Intrebarea e se pune daca $\mathcal{P} \subseteq \mathcal{NP}$ sau $\mathcal{P} = \mathcal{NP}$?
- Este una dintre cele mai celebre probleme nerezolvate (rezolvarea ei este premiata cu 1 milion de dolari)
- > Deocamdata putem demonstra doar

Teorema

Daca P este in \mathcal{NP} , atunci exista polinoamele p(n) si q(n) si un algoritm determinist care rezolva P in timpul O(p(n)2^{q(n)}).

In ipoteza ca $\mathcal{P} \subset \mathcal{NP}$, care sunt problemele ce candideaza a fi in \mathcal{P} si nu in \mathcal{NP} ?

Probleme NP-complete

- ➤ P este problema \mathcal{NP} -dificila daca pentru orice problema Q din \mathcal{NP} are loc Q \propto P.
- ➤ P este problema *NP*-completa daca:
 - \Rightarrow P este in \mathcal{NP} si
 - \Rightarrow P este \mathcal{NP} -dificila

SAT - enunt

- > Problema satisfiabilitatii (SAT)
 - \Rightarrow instanta: o formula F din calculul propozitional in forma normala conjuctiva si in care apar variabile din $\{x_0, ..., x_{n-1}\}$
 - ⇒ intrebare: exista o atribuire a variabilelor pentru care F este satisfacuta?

Teorema (Steven Cook, 1971) SAT este *NP*-completa.

SAT - demonstratie

- algoritm nedeterminist care rezolva SAT:
 - 1. ghiceste o atribuire pentru variabile
 - 2. calculeaza valoarea formulei
 - 3. daca formula este satisfacuta intoarce success; altfel intoarce failure.

SAT - demonstratie (cont.)

- \triangleright (\forall P in \mathcal{NP}) P \propto SAT
 - ⇒ fie A care rezolva P
 - ⇒ Se considera variabilele:
 - B_{ijt} = valoarea bitului j din locatia i la momentul t
 - S_{kt} ⇔ instructiunea de eticheta k se executa la momentul t
 - ⇒ asociem lui A pentru intrarea x formula
 - $F(A, x) = F1 \wedge F2 \wedge F3 \wedge F4 \wedge F5 \wedge F6$ unde
 - F1 starea initiala
 - F2 prima instructiune care se executa
 - F3 dupa t pasi se executa exact o instructiune
 - F4 calculul instructiunii urmatoare
 - F5 schimbarea memoriei
 - F6 terminarea cu succes

SAT - demonstratie (cont.)

```
1: if (x > 2)
```

2: then
$$y \leftarrow x*x$$

3: else
$$y \leftarrow x*x*x$$

4: success

- ➤ locatia 0 memoreaza 2, locatia 1 memoreaza x, locatia 2 memoreaza y
- \triangleright starea initiala pentru x = 3

$$F_1 = B_{0,0,0} \land \neg B_{0,1,0} \land B_{1,0,0} \land B_{1,1,0}$$

> prima instructiune care se executa

$$F_2 = S_{1,0} \land \neg S_{2,0} \land \neg S_{3,0} \land \neg S_{4,0}$$

> dupa t pasi se executa exact o instructiune

$$F_3 = G_0 \land G_1 \land G_2$$

$$G_t = G_{1,t} \oplus G_{2,t} \oplus G_{3,t} \oplus G_{4,t}$$

$$G_{2,t} = \neg S_{1,t} \land S_{2,t} \land \neg S_{3,t} \land \neg S_{4,t}$$

....

> etc

Problema U

- > Formulare
 - ⇒ Instanta
 - un program A, o intrare x, un intreg k > 0
 - ⇒ Intrebare
 - programul A cu intrarea x se termina cu raspunsul DA in ≤ k pasi?
- \triangleright \mathcal{U} este in \mathcal{NP}
 - ⇒ construim un algoritm U care simuleaza k pasi ai lui A si se termina cu DA daca si numai daca A se termina cu DA in cei k pasi
- \triangleright \mathcal{U} este in \mathcal{NP} -dificila
 - \Rightarrow daca Q este in \mathcal{NP} , atunci exista un alg. nedet. A care rezolva Q
 - \Rightarrow transformam o instanta $q \in Q$ de dimensiune n intr-o instanta $(A, q, T_A(n))$

Exemple de probleme NP-complete

- > SAT
- > 3SAT
- > Rucsac 0/1
- > Submultime de suma data
- ➤ V-acoperire (VA)
 - \Rightarrow instanta: un graf $G = (V, E), K \in Z_+$
 - ⇒ intrebare: exista o V-acoperire V' a.i. #V' ≤ K?
- Circuit Hamiltonian intr-un digraf (CHD)
 - \Rightarrow instanta: un digraf D = (V, A)
 - ⇒ intrebare: exista un circuit Hamiltonian?
- ➤ Circuit Hamiltonian intr-un graf (CHG)

Exemple de probleme NP-complete (continuare I)

- Comis voiajor (CV)
 - ⇒ instanta: un graf ponderat $G = (V, E, c), c(\{i,j\}) \in Z_+, K$ $\in Z_+$
 - ⇒ intrebare: exista un circuit Hamiltonian de cost ≤ K?
- ➤ Planificare procesoare (PP)
 - ⇒ instanta: o multime P de programe, m procesoare, un timp de executie t(p) pentru fiecare program p, un termen D
 - ⇒ intrebare: exista o planificare a procesoarelor pentru P a.i. orice program sa fie executat in termenul D?

Exemple de probleme MP-complete (continuare II)

➤ Congruente patratice (CP)

- \Rightarrow instanta: a, b, c \in Z₊
- \Rightarrow intrebare: exista 0 < x < c a.i. x^2 mod b = a?
- > Ecuatii diofantice patratice
 - \Rightarrow instanta: a, b, c \in Z₊
 - \Rightarrow intrebare: exista x, y \in Z₊ a.i. ax² + by = c?

Cum se arata NP-completitudinea

> reducere

daca P este in \mathcal{NP} , Q este \mathcal{NP} -completa si Q \propto P

atunci P este \mathcal{NP} -completa

- ⇒ exemplu: SAT ∝ 3SAT
 - $c = u_1$ $c' = (u_1 \lor y_1 \lor y_2) \land (u_1 \lor y_1' \lor y_2) \land (u_1 \lor y_1 \lor y_2') \land (u_1 \lor y_1' \lor y_2')$
 - $c = u_1 \vee u_2$ $c' = (u_1 \vee u_2 \vee y_1) \wedge (u_1 \vee u_2 \vee y_1')$
 - $c = u_1 \vee u_2 \vee u_3 \vee u_4$ $c' = (u_1 \vee u_2 \vee y_1) \wedge (u_3 \vee u_4 \vee y_1')$

⇒3SAT ∝ VA

⇒ VA ∝ CHG

Cum se arata MP-completitudinea (cont.)

> restrictia

daca Q este \mathcal{NP} -completa si Q este caz special al lui P atunci P este \mathcal{NP} -completa

⇒ exemplu: CHG caz special al lui CHD

Alte clase

- ➤ PSPACE = clasa problemelor care sunt rezolvate de algoritmi deterministi in timp nelimitat si utilizand spatiu polinomial
- ➤ NPSPACE = clasa problemelor care sunt rezolvate de algoritmi NEdeterministi in timp nelimitat si utilizand spatiu polinomial
- > PSPACE = NPSPACE (Savitch, 1970)
- > problema co-P:
 - ⇒ aceleasi instante ca P dar raspunde DA daca P raspunde NU si raspunde NU daca P raspunde DA
- \triangleright co- \mathcal{NP} = clasa problemelor co-P cu P in \mathcal{NP}

Alte clase

- > P(x) o formula booleana care depinde de variabila booleana x
- Cuantificator universal : $\forall \forall x P(x)$ inseamna "pentru orice $x \in \{0,1\}$, P(x) este adevarat"
- ➤ Cuantificator existential : $\forall \exists x P(x)$ inseamna "exista $x \in \{0,1\}$, P(x) este adevarat"
- Formula booleana quantificata complet (fully quantified Boolean formula) = o formula prefixata cu cuantificator un $(\forall x)$ sau $(\exists x)$ pentru fiecare variabila x
- > Exemple:

```
\forall x(x \lor \underline{x})
\forall x \forall y (x \lor y)
\forall x \exists y ((x \land y) \lor (\underline{x} \land \underline{y}))
\exists z \forall x \exists y ((x \land y \land z) \lor (\underline{x} \land y \land z))
```

> o formula booleana quantificata complet este adevarata sau falsa

- > TQBF(True Quantified Boolean Formulas)
 - ⇒ instanta: o formula booleana quantificata complet F
 - ⇒ intrebare: este F adevarata?
- > TQBF este PSPACE completa
 - ⇒ TQBF este in PSPACE

$$F = Q_1Q_2 ... Q_n \Phi(x_1, x_2, ..., x_n)$$

construim un algoritm recursiv val(F) astfel:

daca F nu are cuantificatori (si deci nici variabile), intoarce valoarea lui F

altfel

$$A = val(Q_2 ... Q_n \Phi(0, x_2, ..., x_n))$$

$$B = val(Q_2 ... Q_n \Phi(1, x_2, ..., x_n))$$

daca $Q_1 = (\exists x_1)$, atunci intoarce A v B

daca $Q_1 = (\forall x_1)$, atunci intoarce A \land B

- spatiul ocupat de val(): O(n + log n)
- timpul: O(2ⁿ)
- ⇒ (∀P in PSPACE) P ∝ TQBF
 - $\Phi_{c1, c2, t} = true$ daca si numai daca din configuratia c1 se poate ajunge in configuratia c2 in cel mult t pasi
 - pentru un P in PSPACE data:
 - c1 = starea initiala
 - c2 = starea finala
 - t = timpul dat de algritmul care rezolva P (exponential, marginit de un T)

• cum poate fi calculata $\Phi_{c1, c2, t}$ in timp polinomial?

$$t = 1$$
, trivial

t > 1 :
$$\Phi_{c1, c2, t} = (\exists m) \Phi_{c1, m, \lceil t/2 \rceil} \wedge \Phi_{m, c2, \lceil t/2 \rceil}$$

din pacate timpul este exponential pentru formula de mai sus

$$\Phi_{c1, c2, t} = (\exists m)(\forall (c3, c4) \in \{(c1, m), (m, c2)\}) \Phi_{c3, c4, \lceil t/2 \rceil}
= (\exists m) p(m, c1, c2, c3, c4) \Rightarrow \Phi_{c3, c4, \lceil t/2 \rceil}
= (\exists m) p(m, c1, c2, c3, c4) v \Phi_{c3, c4, \lceil t/2 \rceil}$$

Bibliografie suplimentara

➤ An Annotated List of Selected NP-complete Problems

http://www.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html