Launch Turi Create

```
In [2]: import turicreate
```

Load house sales data

```
In [3]: sales = turicreate.SFrame('data.frame_idx')
```

In [4]: sales

_			_		
r١	1.1	-	1 /	1 1	
U	u	L	1 4	+ 1	
			ь.	٠	1 -

id		date		price I	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
7129300	0520 20	014-10-13 00:0	0:00+00:00	221900.0	3.0	1.0	1180.0	5650.0	1.0	0
6414100	0192 20	014-12-09 00:0	0:00+00:00	538000.0	3.0	2.25	2570.0	7242.0	2.0	0
5631500	0400 20	015-02-25 00:0	0:00+00:00	180000.0	2.0	1.0	770.0	10000.0	1.0	0
2487200	0875 20	014-12-09 00:0	0:00+00:00	604000.0	4.0	3.0	1960.0	5000.0	1.0	0
1954400	0510 20	015-02-18 00:0	0:00+00:00	510000.0	3.0	2.0	1680.0	8080.0	1.0	0
7237550	0310 20	014-05-12 00:0	0:00+00:00	1225000.0	4.0	4.5	5420.0	101930.0	1.0	0
1321400	0060 20	014-06-27 00:0	0:00+00:00	257500.0	3.0	2.25	1715.0	6819.0	2.0	0
2008000	0270 20	015-01-15 00:0	0:00+00:00	291850.0	3.0	1.5	1060.0	9711.0	1.0	0
2414600	0126 20	015-04-15 00:0	0:00+00:00	229500.0	3.0	1.0	1780.0	7470.0	1.0	0
3793500	0160 20	015-03-12 00:0	0:00+00:00	323000.0	3.0	2.5	1890.0	6560.0	2.0	0
view	condition	n grade	sqft_above	sqft_baseme	nt yr_built	t yr_renovat	ted zipcode	lat		
0	3	7.0	1180.0	0.0	1955.0		98178	47.5112	3398	
0	3	7.0	2170.0	400.0	1951.0	1991.0	98125	47.7210	2274	
0	3	6.0	770.0	0.0	1933.0	0.0	98028	47.7379	2661	
0	5	7.0	1050.0	910.0	1965.0	0.0	98136	47.520	082	
0	3	8.0	1680.0	0.0	1987.0	0.0	98074	47.6168	1228	
0	3	11.0	3890.0	1530.0	2001.0	0.0	98053	47.6561	1835	
0	3	7.0	1715.0	0.0	1995.0	0.0	98003	47.3097	2002	
0	3	7.0	1060.0	0.0	1963.0	0.0	98198	47.4094	9984	
0	3	7.0	1050.0	730.0	1960.0	0.0	98146	47.5122	9381	
0	3	7.0	1890.0	0.0	2003.0	0.0	98038	47.3684	0673	
lor	ng	sqft_living15	sqft_lot15							

-122.25677536

1340.0

5650.0

-122.3188624	1690.0	7639.0
-122.23319601	2720.0	8062.0
-122.39318505	1360.0	5000.0
-122.04490059	1800.0	7503.0
-122.00528655	4760.0	101930.0
-122.32704857	2238.0	6819.0
-122.31457273	1650.0	9711.0
-122.33659507	1780.0	8113.0
-122.0308176	2390.0	7570.0

[21613 rows x 21 columns]

Note: Only the head of the SFrame is printed.

You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

Explore

Matplot vs Turi Create's visualization

```
In [16]: import matplotlib.pyplot as mt
%matplotlib inline

mt.scatter(x= sales['sqft_living'],y=sales['price'],color="r")
mt.xlabel('sqft_living')
mt.ylabel('price')
mt.title("Matplotlib")
mt.show()
```


Out[40]: <turicreate.visualization._plot.Plot at 0x7ffcfc0a4e48>

In [9]: turicreate.show(sales[1:5000]['sqft_living'],sales[1:5000]['price'])

Materializing X axis SArray

Materializing Y axis SArray

Simple regression model that predicts price from square feet

```
In [10]: training_set, test_set = sales.random_split(.8,seed=0)
```

train simple regression model

```
In [14]: | sqft model = turicreate.linear regression.create(training set, target='price', features=['sqft living'])
      PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
             You can set ``validation set=None`` to disable validation tracking.
      Linear regression:
      Number of examples
                    : 16514
      Number of features
                         : 1
      Number of unpacked features: 1
      Number of coefficients
                        : 2
      Starting Newton Method
      -----+
      | Iteration | Passes | Elapsed Time | Training Max Error | Validation Max Error | Training Root-Mean-Square Error | V
      alidation Root-Mean-Square Error
        -----+
                                 4348106.954938 | 2156445.039134
      | 1
                      0.004584
                                                              263614.586067
                                                                                      2
      49870.196532
        -----+
      SUCCESS: Optimal solution found.
```

Evaluate the quality of our model

Explore model a little further

```
In [61]:
          sqft model.coefficients
Out[61]:
               name
                         index
                                        value
                                                             stderr
                                  -47038.38976785168
                                                       5067.023999281818
             (intercept)
                         None
             sqft living
                         None
                                  282.0689987410828
                                                        2.22552235655865
           [2 rows x 4 columns]
```


Explore other features of the data

```
In [25]: my_features = ['bedrooms','bathrooms','sqft_living','sqft_lot','floors','zipcode']
```

In [26]: sales[my_features].show()

In [41]: turicreate.show(sales['zipcode'],sales['price'])

Materializing X axis SArray

Materializing Y axis SArray

Build a model with these additional features

```
In [99]: | my features_model = turicreate.linear_regression.create(training_set, target='price', features=my_features, validation_set=
      Linear regression:
      Number of examples
                    : 17384
      Number of features
                    : 6
      Number of unpacked features : 6
      Number of coefficients
      Starting Newton Method
      | Iteration | Passes | Elapsed Time | Training Max Error | Training Root-Mean-Square Error |
      | 1
         | 2 | | 0.030429 | 4086543.315840 | 189216.804808
      SUCCESS: Optimal solution found.
```

Compare simple model with more complex one

```
In [100]: print (my_features)
['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']
```

```
In [101]: print (sqft model.evaluate(test set))
          print (my features model.evaluate(test set))
          {'max error': 4142375.992218543, 'rmse': 255189.0815203294}
          {'max error': 3152242.784868988, 'rmse': 180439.07296640595}
```

Apply learned models to make predictions

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.


```
In [104]: print (house1['price'])
        [620000.0, ...]

In [105]: print (sqft_model.predict(house1))
        [629927.2072107471]

In [106]: print (my_features_model.predict(house1))
        [729141.9396819306]
```

Prediction for a second house, a fancier one

```
In [107]: house2 = sales[sales['id']=='1925069082']
```

Out[108]:

[? rows x 21 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

In [109]: print(house2['price'])

[2200000.0, ...]

```
In [110]: print (sqft_model.predict(house2))
        [1261761.7643907724]

In [111]: print (my_features_model.predict(house2))
        [1232266.5096878926]
```

Prediction for a super fancy home

```
In [112]: bill gates = {'bedrooms':[8],
                         'bathrooms':[25],
                         'sqft_living':[50000],
                         'sqft lot':[225000],
                         'floors':[4],
                         'zipcode':['98039'],
                         'condition':[10],
                         'grade':[10],
                         'waterfront':[1],
                         'view':[4],
                         'sqft above':[37500],
                         'sqft_basement':[12500],
                         'yr built':[1994],
                         'yr_renovated':[2010],
                         'lat':[47.627606],
                         'long':[-122.242054],
                         'saft living15':[5000],
                         'sqft lot15':[40000]}
```


Assesment

Selection and summary statistics

```
In [129]: maximum_avg_zip = sales[sales['zipcode']=='98039']
maximum_avg_zip['price'].mean()
```

Out[129]: 2160606.5999999996

Filtering data

Fraction 0.4215518437977143

Building a regression model with several more features

```
In [117]: advanced_features = [
    'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode',
    'condition', # condition of house
    'grade', # measure of quality of construction
    'waterfront', # waterfront property
    'view', # type of view
    'sqft_above', # square feet above ground
    'sqft_basement', # square feet in basement
    'yr_built', # the year built
    'yr_renovated', # the year renovated
    'lat', 'long', # the Lat-Long of the parcel
    'sqft_living15', # average sq.ft. of 15 nearest neighbors
    'sqft_lot15', # average lot size of 15 nearest neighbors
]
```

```
In [118]: new model = turicreate.linear regression.create(training set, target='price', features=advanced features, validation set=No
        Linear regression:
        Number of examples
                         : 17384
        Number of features
                              : 18
        Number of unpacked features : 18
        Number of coefficients
                             : 87
        Starting Newton Method
        | Iteration | Passes | Elapsed Time | Training Max Error | Training Root-Mean-Square Error
        | 1
                | 2
                      0.017172 | 4336058.938762 | 162392.982702
        SUCCESS: Optimal solution found.
In [119]: print("RMSE of the new model is ",new model.evaluate(test set))
        RMSE of the new model is {'max error': 3170363.181382781, 'rmse': 155269.6579279753}
In [120]: print("RMSE difference between my features and advanced features",
             (new model.evaluate(test set)['rmse']-my features model.evaluate(test set)['rmse']))
        RMSE difference between my features and advanced features -25169.415038430656
```