Redes Neurais e Deep Learning

INTRODUÇÃO À VISÃO COMPUTACIONAL

Zenilton K. G. Patrocínio Jr zenilton@pucminas.br

David Marr: abordagem precursora (1970-80s)

David Marr: abordagem precursora (1970-80s)

Visão Sistema de processamento de informação

David Marr: abordagem precursora (1970-80s)

Visão Sistema de processamento de informação

Níveis de análise:

- Computacional: o que o sistema faz

- Algorítmico : como o sistema faz

- Físico : a forma como o sistema é realizado fisicamente

David Marr: abordagem precursora (1970-80s)

Visão Sistema de processamento de informação

Níveis de análise:

- Computacional: o que o sistema faz

- Algorítmico : como o sistema faz

- Físico : a forma como o sistema é realizado fisicamente

Estágios da Visão

David Marr: abordagem precursora (1970-80s)

Visão Sistema de processamento de informação

Níveis de análise:

- Computacional: o que o sistema faz

- Algorítmico : como o sistema faz

- Físico : a forma como o sistema é realizado fisicamente

Estágios da Visão

edge image

3-D model

David Marr: abordagem precursora (1970-80s)

Visão Sistema de processamento de informação

Níveis de análise:

- Computacional: o que o sistema faz

- Algorítmico : como o sistema faz

- Físico : a forma como o sistema é realizado fisicamente

Estágios da Visão

PASCAL Visual Object Challenge (20 object categories)

[Everingham et al. 2006-2012]

PASCAL Visual Object Challenge (20 object categories)

[Everingham et al. 2006-2012]

www.image-net.org

22K categories and 14M images

- Animals
 Plants
 Structures
 - Bird Tree Artifact Scenes
 - Invertebrate
 Materials
 Structures

- Person
- Fish
 Mammal
 Food
 Tools
 Appliances
 Geological Formations
 - Sport Activities

Visão Computacional – Aprendizagem Profunda

IMAGENET Large Scale Visual Recognition Challenge

Classificação de Imagem – Tarefa Fundamental

Dada uma imagem, como por exemplo:

Classificação de Imagem – Tarefa Fundamental

Dada uma imagem, como por exemplo:

E assumindo um conjunto de rótulos (ou classes) discretos

Por exemplo: cachorro, gato, caminhão, avião, ...

Classificação de Imagem – Tarefa Fundamental

Dada uma imagem, como por exemplo:

E assumindo um conjunto de rótulos (ou classes) discretos

Por exemplo: cachorro, gato, caminhão, avião, ...

Problema: "Gap" Semântico

Imagens são representadas como matrizes 3D de números, geralmente, inteiros entre 0 e 255

Problema: "Gap" Semântico

Imagens são representadas como matrizes 3D de números, geralmente, inteiros entre 0 e 255

Por exemplo, para uma imagem de dimensões 300 por 100 em 3 canais de cor temos:

 $300 \times 100 \times 3 = 90,000 \text{ números}$

Problema: "Gap" Semântico

Imagens são representadas como matrizes 3D de números, geralmente, inteiros entre 0 e 255

Por exemplo, para uma imagem de dimensões 300 por 100 em 3 canais de cor temos:

 $300 \times 100 \times 3 = 90,000 \text{ números}$

Dasafios: Variação de Ponto de Vista

Dasafios: Variação de Iluminação

Desafios: Deformação

Desafios: Oclusão

Desafios: Separação do Fundo

Desafios: Variação Intraclasse

Classificação usando Regras ou Restrições

Abordagem Baseada em Dados

1. Reune-se um conjunto de imagens com seus rótulos

Exemplo de conjunto de treinamento

Abordagem Baseada em Dados

- 1. Reune-se um conjunto de imagens com seus rótulos
- 2. Usa-se de método de Aprendizado de Máquina para treinar um classificador

Exemplo de conjunto de treinamento

Classificador

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

Abordagem Baseada em Dados

- 1. Reune-se um conjunto de imagens com seus rótulos
- 2. Usa-se de método de Aprendizado de Máquina para treinar um classificador
- 3. Avalia-se o classificador com um conjunto separado de imagens de teste

Exemplo de conjunto de treinamento

Classificador

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

Classificador

```
def train(train_images, train_labels):
 # build a model for images -> labels...
  return model
def predict(model, test_images):
 # predict test_labels using the model...
  return test_labels
```

Classificador

```
def train(train_images, train_labels):
  # build a model for images -> labels...
  return model
def predict(model, test_images):
 # predict test_labels using the model...
  return test_labels
```

Lembrar de todas as imagens de treinamento e seus rótulos

Classificador

```
def train(train_images, train_labels):
  # build a model for images -> labels...
  return model
def predict(model, test_images):
 # predict test_labels using the model..
  return test_labels
```

Lembrar de todas as imagens de treinamento e seus rótulos

Predizer o rótulo a partir da imagem de treinamento mais similar

Como avaliar a similaridade entre imagens?

Como avaliar a similaridade entre imagens?

Uso de distância

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Exemplo com Distância L1

Imagem de teste

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Exemplo com Distância L1

Imagem de teste

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

Imagem de treino

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_{p} (I_1^p - I_2^p)^2}$$

Exemplo com Distância L1

Imagem de teste

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

Imagem de treino

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Exemplo com Distância L1

Imagem de teste

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

Imagem de treino

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

Valor abs. diferenças por pixel

46	12	14	1
 82	13	39	33
12	10	0	30
2	32	22	108

Como avaliar a similaridade entre imagens?

Uso de distância

Distância L1:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Distância L2:
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Exemplo com Distância L1

Imagem de teste

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

Imagem de treino

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

Valor abs. diferenças por pixel

$$= \begin{array}{|c|c|c|c|c|c|}\hline 46 & 12 & 14 & 1 \\ \hline 82 & 13 & 39 & 33 \\ \hline 12 & 10 & 0 & 30 \\ \hline 2 & 32 & 22 & 108 \\ \hline \end{array}$$

Exemplo – Dataset CIFAR-10

10 classes50.000 imagens para treino10.000 imagens para teste

Exemplo – Dataset CIFAR-10

10 classes50.000 imagens para treino

Exemplos dos vizinhos mais próximos para cada imagem teste (primeira coluna)

- Raramente utilizado sobre as imagens "brutas"
- Pode apresentar acurácia ruim durante os testes
- Distâncias entre imagens inteiras podem ser pouco intuitivas

- Raramente utilizado sobre as imagens "brutas"
- Pode apresentar acurácia ruim durante os testes
- Distâncias entre imagens inteiras podem ser pouco intuitivas

(as 3 imagens mais a direita possuem a mesma distância L2 em relação a primeira)