Stat Mech Exam Question – Nov 2019

Consider a simple model of two-state protein folding either in aqueous solution (left) or inside the confined space of a folding chaperone like GroEL (right):

Presume the protein is in equilibrium between the native state (N) and the unfolded state (U). We'll make a simple one-dimensional model to illustrate the effect of confinement by a molecular chaperone on folding equilibria.

In both cases, the native state (N) is compact—let's assume that it has a onedimensional width of a, where every microstate has energy $-\epsilon$.

For simplicity, we'll assume that every microstate in the unfolded state has energy 0. In aqueous solution, we'll presume the width of the unfolded state is b; for real proteins, the radius of gyration—a measure of the compactness of the protein—of the unfolded state is $b \sim 2.5a$. Inside the chaperone, however, the unfolded protein cannot expand quite so much—let's presume that the unfolded state in the chaperone has $c \sim 1.5a$ simply because of the confinement effect.

- (a) What is the free energy of unfolding $\Delta F_{N\to U}^{\rm aq} = F_U^{\rm aq} F_N^{\rm aq}$ in aqueous solution?
- (b) What is the free energy of unfolding $\Delta F_{N\to U}^{\rm ch}=F_U^{\rm chch}-F_N$ in the confinement of the chaperone?
- (c) What is the native state stabilization free energy $\Delta \Delta F = F_{N \to U}^{\rm ch} F_{N \to U}^{\rm aq}$ provided by confinement within the chaperone at 300 K?
- (d) If only 50% of the protein is folded in aqueous solution at equilibrium, how much does this shift the equilibrium in the presence of confinement within the chaperone in terms of percent folded?

Stat Mech Exam Question – Nov 2019 – Solution

(a)

$$\Delta F_{N \to U}^{\rm aq} = F_U^{\rm aq} - F_N^{\rm aq} \tag{1}$$

$$= [0 - k_B T \ln b] - [-\epsilon - k_B T \ln a]$$
 (2)

$$= \epsilon - k_B T \ln \frac{b}{a}$$

$$= \epsilon - k_B T \ln \frac{2.5a}{a}$$
(3)

$$= \epsilon - k_B T \ln \frac{2.5a}{a} \tag{4}$$

$$= \epsilon - k_B T \ln 2.5 \tag{5}$$

(6)

(b)

$$\Delta F_{N \to U}^{\text{aq}} = F_U^{\text{aq}} - F_N^{\text{aq}}
= [0 - k_B T \ln c] - [-\epsilon - k_B T \ln a]$$
(8)

$$= [0 - k_B T \ln c] - [-\epsilon - k_B T \ln a] \tag{8}$$

$$= \epsilon - k_B T \ln \frac{c}{a} \tag{9}$$

$$= \epsilon - k_B T \ln \frac{c}{a}$$

$$= \epsilon - k_B T \ln \frac{1.5a}{a}$$

$$= \epsilon - k_B T \ln \frac{1.5a}{a}$$

$$(10)$$

$$= \epsilon - k_B T \ln 1.5 \tag{11}$$

(12)

(c)

$$\Delta \Delta F = F_{N \to U}^{\text{ch}} - F_{N \to U}^{\text{aq}} \tag{13}$$

$$= [\epsilon - k_B T \ln 1.5] - [\epsilon - k_B T \ln 2.5]$$
 (14)

$$= k_B T \ln \frac{2.5}{1.5} \tag{15}$$

$$\sim (0.6 \text{ kcal/mol}) \ln 1.7 \tag{16}$$

$$\sim 0.3 \text{ kcal/mol}$$
 (17)

(d) 50% unfolded in a queous solution implies $\Delta F_{N\to U}^{\rm aq}=0$ kcal/mol, so $\Delta F_{N\to U}^{\rm ch}=0.3$ kcal/mol. To compute the percent folded in the chaper one, we know $f_U/f_N=0$ $e^{-\Delta F_{N\to U}^{\text{ch}'}/k_BT}$, so $f_U/f_N = e^{-0.3/0.6} = 0.6$, where $f_N + f_U = 1$. That gives us

$$(1 - f_N)/f_N = 0.6 (18)$$

$$1 - f_N = 0.6 f_N (19)$$

$$f_N = 1/1.6 = 0.625 \tag{20}$$

so the increase is from 50% to 62.5%, which is an increase of 12.5%.