Knight: Chapter 15

Fluids & Elasticity

(Fluids & Pressure)

Fluids...

- are substances that flow. fluids flow
- take the shape of their container.
- include both gases & liquids.

Gas..

Gos compressible

- is compressible.
- a system in which each molecule moves through space as a free, non-interacting particle until it collides with

- another molecule.
- the walls of the container.

Liquid..

• is incompressible. Incompressible

Volume and density

Mass density...

$$\left(
ho\equivrac{m}{V}
ight)$$
"

What are the SI units?

$$\frac{10009}{m^3} \times \frac{10009}{100cm} = \frac{10009}{m^3}$$

$$[\rho] = \frac{[m]}{[V]} = \frac{\text{kg}}{\text{m}^3}$$

Exercise for student: convert to

$$g/cm^3$$

Some Densities...

Material	Density (kg/m ₃)

Water	1000
Air	1.28
Ice	917
Lead	11,350
Gold	19,320
Sand	2800
You	; ?

i.e.

Calculate the mass of the air in this room?

A piece of glass is broken into two pieces of different size.

How do their densities compare?

$$1 > 3 > 2$$
. $\beta = \frac{M}{V}$
 $1 = 3 = 2$.
 $1 < 3 < 2$.

Pressure

Pressure, *p*, is the magnitude of the force exerted *perpendicular* to a given surface

$$p \equiv \frac{F}{A}$$

• What are the SI units?

$$[n] = \frac{[F]}{} = \frac{N}{} = \mathrm{Pa}$$

$$[A] = [A] = m^2$$

Other units:

$$1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} = 760 \text{ } mm \text{ } Hg = 14.7 \text{ PSI}$$

Way to measure pressure?

Pressure

Two contributions to the pressure in a container of fluid:

1. gravitational

 due to gravity pulling down on the liquid or gas.

2. thermal

• due to the collisions of freely moving gas molecules within the walls, which depends on gas As gravity pulls down, the liquid exerts a force temperature.

Gravity has little effect on the pressure of the gas.