Aluno: Raphael Henrique Braga Leivas

Código fonte LaTeX desse arquivo pode ser visto em meu GitHub pessoal:

https://github.com/RaphaelLeivas/latex/tree/main/ListaCEII

Aceito sugestões de melhoria do código :)

Problema P11.19

11.19 A impedância Z no circuito trifásico equilibrado da Figura P11.19 é $100 - j75 \Omega$.

Determine

- a) IAB, IBC e ICA,
- b) IaA, IbB e IcC,
- c) I_{ba}, I_{cb} e I_{ac}.

(a)

Observe que a carga Z_{AB} está em paralelo com a fonte de tensão V_{ab} . Portanto, a queda de tensão na carga Z_{AB} é V_{ab} . Note que o mesmo se aplica para todas as cargas com suas respectivas fontes de tensão. Assim,

$$I_{AB} = \frac{V_{ab}}{Z_{AB}} = \frac{13200/0^{\circ}}{100 - j75} = 105.6/36.86^{\circ} \text{ A}$$

$$I_{BC} = \frac{V_{bc}}{Z_{BC}} = \frac{13200/120^{\circ}}{100 - j75} = 105.6/156.87^{\circ} \text{ A}$$

$$I_{CA} = \frac{V_{ca}}{Z_{CA}} = \frac{13200/-120^{\circ}}{100 - j75} = 105.6/-83.13^{\circ} \text{ A}$$

(b)

Aplicando análise nodal no nó (A), temos

$$I_{aA} + I_{AB} + I_{CA} = 0$$

Note que, da maneira que foi definido no item (a), a corrente I_{CA} vai do nó C para o A, a corrente I_{AB} vai do nó A para o B. Logo, I_{CA} e I_{aA} entram nó (A), enquanto I_{AB} sai do nó. Corrigindo a equação nodal, temos

$$I_{aA}=I_{AB}-I_{CA}$$

$$I_{aA}=105.6\underline{/36.86^\circ}-105.6\underline{/-83.13^\circ}$$

$$I_{aA}=84.49+j63.345-(12.63-j104.84)=71.65+j168.485$$

$$I_{aA}=183/66.96^\circ \text{ A}$$

Aplicamos exatamente o mesmo raciocínio para as demais correntes de fase. Nó (B):

$$I_{bB} = I_{BC} - I_{AB}$$

$$I_{bB} = 105.6/156.87^{\circ} - 105.6/36.86^{\circ}$$

Extrapolando o resultado de I_{aA} ,

$$I_{bB} = 105.6\sqrt{3}/156.87 + 30^{\circ} \text{ A}$$

$$I_{bB} = 183/186.87^{\circ} \text{ A}$$

Por último, vamos para o nó (C):

$$I_{cC} = I_{CA} - I_{BC}$$

$$I_{cC} = 105.6 / -83.13^{\circ} - 105.6 / 156.87^{\circ}$$

$$I_{cC} = 105.6 \sqrt{3} / -83.13 + 30^{\circ} \text{ A}$$

$$I_{cC} = 183 / -53.13^{\circ} \text{ A}$$

(c)

Usamos a relação entre corrente de fase e corrente de linha.

$$I_{ba} = \frac{1}{\sqrt{3}} I_{aA} / 66.96 - 30^{\circ} = 105.1 / 36.96^{\circ} \text{ A}$$

$$I_{cb} = \frac{1}{\sqrt{3}} I_{bB} / 186.87 - 30^{\circ} = 105.1 / 156.87^{\circ} \text{ A}$$

$$I_{ac} = \frac{1}{\sqrt{3}} I_{cC} / -53.13 - 30^{\circ} = 105.1 / -83.13^{\circ} \text{ A}$$