Proof of the Uniform Boundedness Principle

Let X be a Banach space, Y a normed space, and $\{T_n: X \rightarrow Y\}$ a family of bounded linear operators. Suppose:

$$\forall x \in X, \text{ sup_n} \blacksquare T_n x \blacksquare < \infty.$$

We show $\sup_n \blacksquare T_n \blacksquare < \infty$.

1. For each $m \in \blacksquare$, define:

$$E_m = \{ x \in X : \sup_n \blacksquare T_n x \blacksquare \le m \}.$$

- 2. Each E_m is closed (by continuity of T_n and taking supremum).
- 3. ■ $\{m=1\}^{\infty}$ E $_m = X$, so by Baire Category, some E $_m$ has nonempty interior.
- 4. \exists ball B(x■, r) \subseteq E_M $\Rightarrow \forall$ ■h■ \leq r, sup_n ■T_n (x■ + h)■ \leq M.
- 5. Then for any $y \in X$, write $y = x \blacksquare + h$ scaled: $T_n y = T_n(x \blacksquare + h) T_n(x \blacksquare)$. $\Rightarrow \blacksquare T_n y \blacksquare \le 2M \cdot (\blacksquare y \blacksquare / r + 1).$
- 6. Hence sup_n ■T_n■ < ∞.
- See Rudin, Functional Analysis, Theorem 1.14.