:: Praktikum Statistika menggunakan R :: 03. Inferensi Statistika : Penaksiran

Inferensi Statistika: Penaksiran

MA2181 Analisis Data / MA2081 Statistika Dasar / MA2082 Biostatistika

Kelompok Keilmuan Statistika

Laboratorium Statistika dan Komputasi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

TUJUAN

niari prosed

Mempelajari prosedur penaksiran titik dan selang untuk rataan dan variansi. 2

Melakukan penaksiran selang untuk rataan dan variansi pada beberapa contoh masalah.

Sifat Penaksir

1. Tak Bias

Misalkan θ^* penaksir tak bias bagi suatu parameter θ . Penaksir tersebut dikatakan tak bias jika $E[\theta^*] = \theta$

2. Variansi Minimum

Apabila terdapat dua buah penaksir tak bias, penaksir dengan variansi terkecil dikatakan penaksir tak bias bervariansi minimum.

3. Konsisten

Misalkan θ_n^* penaksir bagi θ yang diperoleh dari sampel acak berukuran n. Penaksir θ_n^* tersebut dikatakan konsisten bagi θ apabila untuk setiap $\varepsilon>0$ berlaku

$$\lim_{n\to\infty} P(|\theta_n^* - \theta| < \varepsilon) = 1$$

4. Statistik cukup

Statistik $Y=u(x_1,x_2,...,x_n)$ dikatakan cukup secara statistik bagi parameter θ jika fungsi kepadatan peluang bersyarat $P(x_1,x_2,...,x_n|Y=t,\theta)$ tidak bergantung pada θ .

Jenis Penaksiran

1. Penaksiran Titik

Untuk mencari nilai tunggal dari suatu parameter melalui pendekatan metode tertentu.

2. Penaksiran Selang

Untuk mencari nilai sesungguhnya dari suatu parameter, dengan semua nilai yang mungkin dari parameter tersebut berada pada kisaran selang tertentu.

Penaksiran Rataan $(1 - \alpha)\%$

1 POPULASI

1. Kasus variansi populasi diketahui

$$\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

Dengan \bar{x} rataan sampel berukuran n dan $z_{\frac{\alpha}{2}}$ nilai tabel normal baku dengan luas $\frac{\alpha}{2}$ di kanan

```
#Perhitungan manual
z.alpha = qnorm(1-alpha/2)
sem = sigma/sgrt(n)
E = z.alpha*sem
#Batas Bawah
LB = xbar - E
#Batas Atas
UB = xbar + E
#Selang Kepercayaan
B = xbar + c(-E,E)
#Perhitungan otomatis
#Package TeachingDemos
Library(TeachingDemos)
z.test(x, sd=sigma)
```


Penaksiran Rataan $(1 - \alpha)\%$

1 POPULASI

2. Kasus variansi populasi tidak diketahui

Variansi sampel s^2 digunakan untuk menaksir variansi populasi

$$\bar{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

Dengan

 \bar{x} rataan sampel berukuran n dan $t_{\frac{\alpha}{2},(n-1)}$ nilai tabel t (student-t), derajat kebebasan (n-1).

```
#Perhitungan manual
t.alpha = qt(1-alpha/2,df=n-1)
sem = S/sqrt(n)
E = t.alpha*sem

#Batas Bawah
LB = xbar - E
#Batas Atas
UB = xbar + E

#Selang Kepercayaan
B = xbar + c(-E,E)

#Perhitungan otomatis
t.test(x)
```


Contoh Soal 1

• Tiga belas botol yang serupa masing-masing berisi cairan asam sulfat sebanyak: 9.8, 10.2, 10.4, 9.8, 10, 10.2, 9.6, 11.2, 10.30, 11.6, 10.60, 9.00, 9.20 liter. Carilah selang kepercayaan 95% untuk rataan isi botol tersebut bila distribusinya dianggap hampir normal.

This Photo by Unknown Author is licensed under CC BY-SA-NC

Prosedur R Contoh Soal 1

(Penaksiran Selang Rataan variansi populasi tidak diketahui)

```
> #Input Data
> x=c(9.8,10.2,10.4,9.8,10,10.2,9.6,
> 11.2,10.30,11.6,10.60,9.00,9.20)
> xbar = mean(x)
> S=sd(x)
> n=length(x)
> alpha=0.05
```

```
> #Perhitungan manual
> t.alpha = qt(1-alpha/2,df=n-1)
> sem = S/sqrt(n)
> E = t.alpha*sem

> #lower bound
> LB = xbar-E

> #upper bound
> UB = xbar+E

> #bound
> B = xbar+c(-E,E)
> B
[1] 9.708569 10.583739
```

```
> #Perhitungan Otomatis
> t.test(x)

One Sample t-test

data: x
t = 50.519, df = 12, p-value =
2.374e-15
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    9.708569 10.583739
sample estimates:
mean of x
10.14615
```

Sehingga diperoleh taksiran selang rataan isi botol asam sulfat dengan tingkat signifikansi 5% atau SK 95% adalah

9,
$$7086 < \mu < 10, 5837$$

Penaksiran Selang Selisih Rataan $(1 - \alpha)\%$

2 POPULASI

1. Kasus variansi populasi 1 dan populasi 2 diketahui

$$(\bar{x}_1 - \bar{x}_2) - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

dengan n_1 dan n_2 ukuran sampel dari populasi 1 dan populasi 2, berturut-turut.

```
#Kasus variansi populasi 1 dan populasi 2 diketahui #Input x1, x2  #data dalam vector xbar1 = mean(x1) #rataan x1 xbar2 = mean(x2) #rataan x2 sigma1, sigma2 #variansi populasi (\sigma_1^2, \sigma_2^2) n1 = length(x1) #banyaknya observasi x1 n2 = length(x2) #banyaknya observasi x2 alpha #tingkat signifikansi
```

```
#Perhitungan Manual
xbar=xbar1-xbar2
z.alpha=qnorm(1-alpha/2)
sem = sqrt((sigma1/n1)+(sigma2/n2))
E = z.alpha*sem

#Batas Bawah
LB = xbar-E

#Batas Atas
UB = xbar+E

#Selang Kepercayaan
B = xbar + c(-E,E)
```


Penaksiran Selang Selisih Rataan $(1 - \alpha)$ %

2 POPULASI

2. Kasus variansi dari populasi 1 dan populasi 2 tidak diketahui dan dianggap sama ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)

$$(\bar{x}_1 - \bar{x}_2) - t_{\frac{\alpha}{2},\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + t_{\frac{\alpha}{2},\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$\hat{\sigma}^2 = s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

dengan s_1^2 dan s_2^2 variansi sampel dari populasi 1 dan 2, berturut-turut dan derajat kebebasan (ν) :

$$\nu = n_1 + n_2 - 2$$

Penaksiran Selang Selisih Rataan $(1 - \alpha)\%$

2 POPULASI

2. Kasus variansi dari populasi 1 dan populasi 2 tidak diketahui dan dianggap sama $(\sigma_1^2 = \sigma_2^2 = \sigma^2)$

```
#Kasus variansi populasi 1 dan populasi 2 diketahui
#Input
                #data dalam vector
x1, x2
xbar1 = mean(x1) #rataan x1
xbar2 = mean(x2) #rataan x2
s1 = var(x1)
                #variansi x1
s2 = var(x2) #variansi x2
n1 = length(x1)
                #banyaknya observasi x1
n2 = length(x2)
                #banyaknya observasi x2
                #tingkat signifikansi
alpha
```

```
#Perhitungan Manual
xbar=xbar1-xbar2
df=n1+n2-2
t.alpha=qt(1-alpha/2,df)
Sp = (((n1-1)*s1)+((n2-1)*s2))/(df)
sem = sqrt((1/n1)+(1/n2))
E = t.alpha*sqrt(Sp)*sem
#Batas Bawah
LB = xbar-E
#Batas Atas
UB = xbar + E
#Selang Kepercayaan
B = xbar + c(-E, E)
#Perhitungan Otomatis
t.test(x1,x2,alt="two.sided",var.equal
= TRUE)
```


Penaksiran Selang Selisih Rataan $(1-\alpha)$ %

2 POPULASI

3. Kasus variansi dari populasi 1 dan populasi 2 tidak diketahui dan tidak dianggap sama ($\sigma_1^2 \neq \sigma_2^2$)

Selang kepercayaannya adalah

$$(\bar{x}_1 - \bar{x}_2) - t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

dengan s_1^2 dan s_2^2 adalah taksiran untuk σ_1^2 dan σ_2^2 , berturut-turut, dan ν derajat kebebasan yang diperoleh dari:

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

Penaksiran Selang Selisih Rataan $(1 - \alpha)$ %

2 POPULASI

3. Kasus variansi dari populasi 1 dan populasi 2 tidak diketahui dan tidak dianggap sama ($\sigma_1^2 \neq \sigma_2^2$)

```
#Perhitungan Manual
xbar=xbar1-xbar2
df=((s1/n1)+(s2/n2))^2
(((1/(n1-1))*(s1/n1)^2)+((1/(n2-1))*(s2/n2)^2))
t.alpha=qt(1-alpha/2,df)
sem = sqrt((s1/n1)+(s2/n2))
E = t.alpha*sem
#Batas Bawah
LB = xbar - E
#Batas Atas
UB = xbar + E
#Selang Kepercayaan
B = xbar + c(-E,E)
#Perhitungan Otomatis
t.test(x1,x2,alt="two.sided")
```


Penaksiran Selang Selisih Rataan $(1 - \alpha)\%$

2 POPULASI

4. Kasus Data Berpasangan

Ciri-cirinya adalah:

setiap anggota sampel populasi memiliki perlakuan tertentu yang diamati dan setiap data dari suatu perlakuan berpasangan satu-satu dengan data dari perlakuan lain.

Contoh: setiap data berat badan sebelum konsumsi obat dengan data berat badan setelah konsumsi obat

 $(D = X_{setelah} - X_{sebelum}$ atau $D = X_{sebelum} - X_{setelah})$, yang menyerupai selang kepercayaan untuk kasus satu populasi dengan variansi tidak diketahui, yaitu:

$$\overline{d} - t_{\frac{\alpha}{2},(n-1)} \frac{s_d}{\sqrt{n}} < \mu_d < \overline{d} + t_{\frac{\alpha}{2},(n-1)} \frac{s_d}{\sqrt{n}}$$

dengan \bar{d} dan s_d adalah rataan dan simpangan baku dari selisih n pasangan data.

```
#Input
x1, x2
d = x1 - x2
dbar = mean(d)
sd = sd(d)
n = length(d)
df = n-1
#Perhitungan Manual
t.alpha=qt(1-alpha/2,df)
sem = sd/sqrt(n)
E = t.alpha*sem
#Batas Bawah
LB = dbar - E
#Batas Atas
UB = dbar + E
#Selang Kepercayaan
B = dbar + c(-E, E)
#Perhitungan Otomatis
t.test(x1,x2, paired = T)
```


Contoh Soal 2

16 botol yang serupa masingmasing berisi cairan asam sulfat dan 16 botol lainnya berisi Natrium Sulfat. Carilah selang kepercayaan 95% untuk selisih rataan isi botol asam sulfat dan Natrium Sulfat tersebut bila distribusinya dianggap hampir normal. Variansi kedua populasi tidak diketahui dan dianggap sama.

Asam Sulfat	Natrium Sulfat
9,8	9,5
10,2	11,2
10,4	8,0
9,8	7,0
10	9,3
10,2	8,7
9,6	10
11,2	10,2
10,3	9,4
11,6	8,7
9,4	9,2
9,2	8,2
9,6	7,8
10,6	10
9	8,7
9,2	7,9

Prosedur R Contoh Soal 2

(Penaksiran Selang Selisih Rataan Dua Populasi dengan variansi populasi tidak diketahui dan dianggap sama)

```
> #Input Data
> library(readx1)
> mydata <- read_excel("DATA PENAKSIRAN.xlsx",
sheet = "contoh")
> x1<-mydata$AsamSulfat
> x2<-mydata$NatriumSulfat
> xbar1<-mean(x1)
> xbar2<-mean(x2)
> s1<-var(x1)
> s2<-var(x2)
> n1<-length(x1)
> n2<-length(x2)
> alpha<-0.05</pre>
```

```
> #Perhitungan manual
> xbar=xbar1-xbar2
> df=n1+n2-2
> t.alpha=qt(1-alpha/2,df)
> Sp = (((n1-1)*s1)+((n2-1)*s2))/(df)
> sem = sqrt((1/n1)+(1/n2))
> E = t.alpha*sqrt(Sp)*sem
> #Batas Bawah
> LB = xbar-E
> #Batas Atas
> UB = xbar+E
> #Selang Kepercayaan
> B = xbar + c(-E,E)
> B
[11 0.358202 1.679298
```

```
> #Perhitungan Otomatis
> t.test(x1,x2,alternative =
"two.sided",var.equal = T )

Two Sample t-test

data: x1 and x2
t = 3.1498, df = 30, p-value = 0.003685
alternative hypothesis: true difference in
means is not equal to 0
95 percent confidence interval:
    0.358202 1.679298
sample estimates:
mean of x mean of y
    10.00625 8.98750
```

Sehingga diperoleh taksiran selang selisih rataan isi botol Asam sulfat dan Natrium sulfat dengan tingkat signifikansi 5% atau SK 95% adalah

 $0,3582 < \mu < 1,6793$

Penaksiran Selang Variansi $(1 - \alpha)\%$

1 POPULASI

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},(n-1)}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},(n-1)}}$$

dengan s^2 variansi sampel berukuran n serta $\chi^2_{\frac{\alpha}{2},(n-1)}$ dan $\chi^2_{1-\frac{\alpha}{2},(n-1)}$ nilai tabel khikuadrat, derajat kebebasan (n-1), dengan $P\left(\chi^2>\chi^2_{\frac{\alpha}{2},(n-1)}\right)=\frac{\alpha}{2}$

```
#Variansi satu populasi
#Input
                 #data
S = var(x) #variansi data
n = length(x) #banyak observasi data
                #tingkat signifikansi
alpha
#Perhitungan manual
khi.alpha1 = qchisq(1-alpha/2,n-1)
khi.alpha2 = qchisq(alpha/2,n-1)
#Batas Bawah
LB = (n-1)*S/khi.alpha1
#Batas Atas
UB = (n-1)*S/khi.alpha2
#Selang Kepercayaan
B = C(LB,UB)
#Perhitungan Otomatis
library(TeachingDemos)
sigma.test(x, sigma=sqrt(S))
```


Penaksiran Selang Variansi $(1 - \alpha)\%$

2 POPULASI

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{\frac{\alpha}{2},(\nu_1,\nu_2)}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} f_{\frac{\alpha}{2},(\nu_2,\nu_1)}$$

dengan $f_{\frac{\alpha}{2},(\nu_1,\nu_2)}$ dan $f_{\frac{\alpha}{2},(\nu_2,\nu_1)}$ nilai tabel F, derajat kebebasan $\nu_1=n_1-1$ dan $\nu_2=n_2-1$, dengan luas $\frac{\alpha}{2}$ di kanan.

```
#Variansi satu populasi
                 #data
x1, x2
S1 = var(x1) #variansi x1
S2 = var(x2) #variansi x2
n1 = length(x1)
                 #banyak observasi x1
n2 = length(x2)
                 #banyak observasi x1
alpha
                 #tingkat signifikansi
#Perhitungan manual
F.alpha1=qf(1-alpha/2, n1-1, n2-1)
F.alpha2=qf(1-alpha/2,n2-1,n1-1)
E = S1/S2
#Batas Bawah
LB=E/F.alpha1
#Batas Atas
UB=E*F.alpha2
#Selang Kepercayaan
B=c(LB,UB)
#Perhitungan Otomatis
Var.test(x1,x2)
```


Contoh Soal 3

Tiga belas botol yang serupa masing-masing berisi cairan asam sulfat sebanyak 9.8, 10.2, 10.4, 9.8, 10, 10.2, 9.6, 11.2, 10.30, 11.6, 10.60, 9.00, 9.20 liter. Carilah selang kepercayaan 95% untuk **variansi** isi botol tersebut bila distribusinya dianggap hampir normal.

This Photo by Unknown Author is licensed under CC BY-SA-NC

Prosedur R Contoh Soal 3

(Penaksiran Selang Variansi untuk 1 populasi)

```
> #Variansi satu populasi
> x = c(9.8,10.2,10.4,9.8,10,10.2,9.6,
    11.2,10.30,11.6,10.60,9.00,9.20)
> n=length(x)
> S=var(x)
> alpha=0.05
> #Perhitungan manual
> khi.alpha1=qchisq(1-alpha/2,n-1)
                                             data: x
> khi.alpha2=qchisq(alpha/2,n-1)
> #Batas Bawah
                                             0.8914
> LB=(n-1)*S/khi.alpha1
> #Batas Atas
> UB=(n-1)*S/khi.alpha2
> #Selang Kepercayaan
> B=c(LB,UB)
                                             var of x
> B
[1] 0.2696318 1.4288397
                                             0.524359
```

```
> #Perhitungan Otomatis
> library(TeachingDemos)
> sigma.test(x,sigma=sqrt(S))
    One sample Chi-squared test for
    variance
X-squared = 12, df = 12, p-value =
alternative hypothesis: true variance
is not equal to 0.524359
95 percent confidence interval:
0.2696318 1.4288397
sample estimates:
```

Sehingga diperoleh taksiran selang variansi isi botol Asam sulfat dengan tingkat signifikansi 5% atau SK 95% adalah

Tim Penyusun

Dr. Utriweni MukhaiyarDosen KK Statistika
Kepala Laboratorium Statistika dan Komputasi Statistika

Fatia Amalia, S.Si Asisten KK Statistika

Pengajar Semester I – 2020/2021

Dr. Udjianna S. Pasaribu Dosen KK Statistika, MA2181 Analisis Data

Dr. Rr. Kurnia Novita SariDosen KK Statistika, MA2181 Analisis Data

Dr. Sandy VantikaDosen KK Statistika,
MA2181 Analisis Data / MA2081 Statistika Dasar

Dr. Sapto Wahyu IndratnoDosen KK Statistika, MA2082 Biostatistika

Yuli Sri Afrianti, S.Si., MT, MBA.

Dosen KK Statistika,

MA2181 Analisis Data / MA2081 Statistika Dasar

Dr. Utriweni MukhaiyarDosen KK Statistika, MA2082 Biostatistika

Selamat Praktikum!

