基礎 徹底 演習 問題プリント

ベクトル③

[55]

 \angle AOB = 60°, \angle BOC = \angle COA = 45°, OA = 2, OB = 3, OC = $\sqrt{2}$ である四面体OABC があり、点 C から平面 OAB に垂線 CH を引く。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とする。

(1) $\vec{a} \cdot \vec{b} = \boxed{\mathcal{P}}$, $\vec{b} \cdot \vec{c} = \boxed{\mathbf{1}}$, $\vec{c} \cdot \vec{a} = \boxed{\mathbf{5}}$ であり、 $\triangle OAB$ の面積を S とすると、

$$S = \frac{\boxed{\text{I}}\sqrt{\boxed{\text{J}}}}{\boxed{\text{J}}}$$
 である。

(2) H は平面 OAB 上にあるから $\overrightarrow{OH} = s\overrightarrow{a} + t\overrightarrow{b}$ (s, t は実数) とおける。CH \perp OA,

$$CH \perp OB$$
 より、 $s = \frac{1}{7}$ 、 $t = \frac{1}{7}$ であり、 $|\overrightarrow{OH}| = \frac{1}{7}$ である。

(3) 四面体 OABC の体積を Vとすると、 $V = \frac{\sqrt{\boxed{\ t}}}{\boxed{\ y}}$ である。

ア	1	ウ	エ	オ	カ	+	ク	ケ	コ	サ	シ	ス	セ	ソ

年 組 番 名前