Signale und Systeme 2

FS 24 Prof. Dr. Heinz Mathis Autoren: Simone Stitz, Laurin Heitzer

 $\begin{tabular}{ll} Version: \\ 1.0.20240604 \\ \underline{https://github.com/P4ntomime/signale-und-systeme-2} \end{tabular}$

Inhaltsverzeichnis

rme	-			1.11 Approximation facil besset (8. 328)	•
1.1	Grundtypen (S. 291)	2		1.12 Gegenüberstellung der Filter-Approximationen	4
1.2	Frequenzgang H(jimg omega) – Übertragungsfunktion H(s)	2		1.13 Standard-Filtertypen – Überblick	4
1.3	Approximation im Frequnezbereich	2		1.14 Vorgehen Filter dimensionieren / auslegen	4
1.4	Ideales Tiefpassfilter (S. 297)	2		1.15 Nomogramme (S. 393)	
1.5	Amplitudengang mit char. Funktion K(Omega2)	2			
1.6	Approximation mittels kritisch-gedämpfter Filter (S. 299)	2	2	Filter-Umwandlungen mittels Frequnenztransformation	
1.0					
	Approximation nach Butterworth (S. 303)			2.1 Transformation: Tiefpass – Hochpass (S. 344)	
1.7		2		 2.1 Transformation: Tiefpass – Hochpass (S. 344) 2.2 Transformation: Tiefpass – Bandpass (S. 348) 	
1.7 1.8	Approximation nach Butterworth (S. 303)	2 3			
1.7 1.8 1.9	Approximation nach Butterworth (S. 303)	2 3 3		2.2 Transformation: Tiefpass – Bandpass (S. 348)	

1 Filter

1.1 Grundtypen (S. 291)

Filter sind mehrheitlich frequnezselektive, lineare Netzwerke, welche gewisse Frequenzbereiche übertragen und andere dämpfen. Die fünf frequnezselektiven Grundtypen sind:

 Tiefpass (TP) • Hochpass (HP) • Bandpass (BP)

Allpass

• Bandsperre, Notch (BS)

1.2 Frequenzgang $H(j\omega)$ – Übertragungsfunktion H(s) (s. 294)

Für den Frequnezgang $H(j\omega)$ und die Übertragungsfunktion H(s) gelten die folgenden Zu-

$$|H(\mathrm{j}\omega)|^2 = H(\mathrm{j}\omega) \cdot H^*(\mathrm{j}\omega) = H(\mathrm{j}\omega) \cdot H(-\mathrm{j}\omega) = H(s) \cdot H(-s) \Big|_{s=\mathrm{j}\omega}$$

$$H(s) \cdot H(-s) = |H(j\omega)|^2 \Big|_{\omega^2 = -s^2}$$

Hinweis: $|H(j\omega)|^2$ ist immer eine Funktion in ω^2 , da der Amplitudengang eine gerade Funktion ist!

Da in der Praxis **jeweils nur** H(s) **interessant** ist, muss H(s) aus $|H(j\omega)|^2$ 'isoliert' werden. Dies ist durch den folgenden Zusammenhang möglich.

$$\underbrace{\frac{N(s)}{D(s)} \cdot \underbrace{\frac{N(-s)}{D(-s)}}_{H(s)} = |H(j\omega)|^2 \Big|_{\omega^2 = -s^2}}_{\omega^2 = -s^2}$$

Hinweis: D(s) muss aus Stabilitätsgründen ein Hurwitz-Polynom sein!

1.3 Approximation im Frequnezbereich

Die wichtigste Aufgabe der Filtertheorie ist die Bestimmung der Übertragungsfunktion, die einen vorgegebenen Frequenzgang gewährleistet. Zuerst soll der Amplitudengang $|H(j\omega)|$ im Frequezzbereich approximiert werden. Der vorgeschriebene Phasengang wird dann allenfalls mit zusätzlichen Allpass-Filtern erreicht.

1.3.1 Toleranzschema (Stempel und Matritze) - Filterspezifikation

Die Anforderungen an ein Filter werden häufig im Toleranzschema beschrieben. Dieses steht jeweils 'auf dem Kopf'.

- Im Durchlassbereich (DB) bestimmt der Stempel die maximal zulässige Dämpfung A_{max}
- Im Sperrbereich (SB) bestimmt die Matritze die minimal nötige **Dämpfung**

$$A_{\rm dB}(\omega) = 10 \cdot \log \left(\frac{1}{|H(\omega)|^2} \right) = -20 \cdot \log (|H(\omega)|) \implies \text{Dämpfung!}$$

1.3.2 Frequenznormierung

Um möglist kompakte Tabellen zu haben, wird auf Frequenzen normiert. Grundsätzlich kann auf eine beliebige Frequenz normiert werden. Allerdings gilt grundsätzlich:

- **HP / TP:** Normierung bezüglich **Grenzfrequenz** des Durchlassbereichs $\omega_r = \omega_D$
- BP / BS: Normierung bezüglich der Mittenfrequenz $\omega_r = \omega_m$

Normierte Grössen

$$S = \frac{s}{\omega_r}$$

$$\frac{\omega}{\omega_r}$$

Hinweis: Zur Entnormierung wird jeweils S in der normierter Funktion durch $\frac{s}{\omega_n}$ er-

1.4 Ideales Tiefpassfilter (s. 297)

Akausale Impulsantwort h(t)

- DB: keine Dämpfung
- SB: kein Ausgangssignal
- → Ideales Tierpass ist physikaltisch nicht realisierbar. → Approximationen

1.5 Amplitudengang mit char. Funktion $K(\Omega^2)$

Um Wurzelausdrücke zu vermeiden, wird der folgenden Ansatz verwendet

$$|H(j\Omega)|^2 = \frac{1}{1 + K(\Omega^2)}$$

Im Fall des (idealen) Tiefpasses gilt füt die charakteristische Funktion $K(\Omega^2)$ Durchlassbereich (DB) $0 \le K(\Omega^2) \ll 1$ für 0 ≤ Ω < 1 $\Rightarrow |H(j\Omega)|^2 \approx 1$ $K(\Omega^2) \gg 1$ $\Rightarrow |H(i\Omega)|^2 \approx 0$ Sperrbereich (SB) $f \ddot{u} r \Omega > 1$

1.6 Approximation mittels kritisch-gedämpfter Filter (s. 299)

Tiefpassfilter n. Ordnung mit kritischer Dämpfung haben jeweilen einen n-fachen Pol auf der **negativen** σ -Achse.

- Impuls- und Sprungantwort können nicht oszillieren
- Geringe Flankensteilheit im Übergangsbereich

Die Übertragungsfunktion H(s) ergibt sich als:

$$H(s) = \frac{1}{\left(1 + \frac{s}{\omega_c}\right)^n}$$

Ordnung des Filters

3 dB-Punkt jedes der n Teilfilter

Will man bei der Kreisfrequenz ω_D eine Dämpfung von α dB haben, so muss ω_c (der nidentischen Teilfilter) gewählt werden als

$$\omega_c = \frac{\omega_D}{\sqrt{10^{\frac{\alpha}{10 \cdot n}} - 1}}$$

1.6.1 Eigenschaten kritisch-gedämpfte Filter

- Alle Pole am gleichen Ort auf negativer σ -Achse \Rightarrow Allpolfilter
- Für Ω = 0 ist für sämtliche n: |H(0)| = H_{max} = 1
 Für Ω = 1 ist für sämtliche n: |H(j)| = H_{max}/√2 = 1/√2 → 3 dB Dämpfung
- Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{\Omega^n} \Rightarrow -n \cdot 20 \, \text{dB/ Dekade}$ Amplitudengang bei $\Omega = 0$ maximal flach, da alle Ableitungen = 0 sind
- Amplitudengang ist streng-monoton fallend → keine Welligkeit
- Pole verschieben sich bei höherer Ordnung in Richtung imaginäre Achse
- Gruppenlaufzeit konstant bis ω_D

1.7 Approximation nach Butterworth (S. 303)

Die charakteristische Funktion wird bei der Butterworth-Approximation als $K(\Omega^2) = (\Omega^2)^n = \Omega^{2n}$ gewählt. Der Amplitudengang $|H(j\Omega)|$ folgt somit der Gleichung

$$|H(j\Omega)| = \frac{1}{\sqrt{1 + \Omega^{2n}}}$$

1.7.1 Eigenschaften der Butterworth-Approximation (s. 303)

- - Für $\Omega=0$ ist für sämtliche n: $|H(0)|=H_{\max}=1$ Für $\Omega=1$ ist für sämtliche n: $|H(j)|=\frac{H_{\max}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow 3\,\mathrm{dB}$ Dämpfung Amplitudengang bei $\Omega=0$ maximal flach, da alle Ableitungen = 0 sind
- Sperrbereich
 - Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{\Omega^n} \Rightarrow -n \cdot 20$ dB/ Dekade
- - Amplitudengang ist streng-monoton fallend ⇒ keine Welligkeit

1.7.2 Bestimmung von H(s) **aus** $|H(j\Omega)|$ (s. 304)

$$|H(\mathrm{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)}\Big|_{\Omega^2=-S^2} = \frac{1}{1+(-S^2)^n} = H(S)\cdot H(-S) = \frac{1}{D(S)}\cdot \frac{1}{D(-S)}$$

kann der folgende Teil isoliert betrachtet werden (D(S) ist ein Hurwitz-Polynom):

$$D(S) \cdot D(-S) = 1 + (-S^2)^n$$

Mit dem Ansatz

$$D(S) = \prod_{j=1}^{t} (S^2 + a_j \cdot S + b_j) \prod_{j=2t+1}^{n} (S - c_j)$$

wird das Produkt $D(S) \cdot D(-S)$ bestimmt. Anschliessend wird ein Koeffizientenvergleich durchgeführt.

1.7.3 Bestimmung der Pol-Lage (S. 307)

Der Zusammenhang aus Abschnitt 1.7.2 kann für die Bestimmung der Pole auf Null gesetzt

 $D(S) \cdot D(-S) = 1 + (-S^2)^n \stackrel{!}{=} 0$

Durch Auflösen der Gleichung nach S kommen die Pole auf dem Einheitskreis zu liegen.

- Abstand zwischen den Polen: $\frac{\pi}{n}$
- Ordnung *n* gerade: keine reellen Pole
- Ordnung n ungerade: zwei reelle Pole bei ± 1
- Für Nennerpolynom $D(S) = \frac{1}{H(S)}$ müssen nur Pole in der linken Halbebene berücksichtigt werden!

Beispiel: Butterworth 2. Ordnung – H(s) und Pol-Lage bestimmen

Ansatz:
$$H(S) \cdot H(-S) = \frac{1}{D(s)} \cdot \frac{1}{H(s)} = \frac{1}{1 + (-S^2)^n}$$

Für die Ordnung n = 2 ergibt sich das Nennerpolynom zu:

$$D(S) \cdot D(-S) = 1 + S^4 \quad \Leftrightarrow \quad S^4 = -1 \quad \Leftrightarrow \quad e^{j\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$

Aufgelöst nach S liegen die Nullstellen auf dem Einheitskreis mit Abstand $\frac{\pi}{4}$ verteilt.

$$P_{1} = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} \qquad P_{2} = -\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$$

$$P_{4} = \frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}} \qquad P_{3} = -\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$$

 \Rightarrow Für die Übertragungsfunktion H(s) sind nur die Nullstellen in der linken Halbebene relevant!

Die Übertragungsfunktion H(s) ergibt sich aus

$$H(s) = \frac{1}{D(s)} = \frac{1}{(S - P_2) \cdot (S - P_3)} = \frac{1}{S^2 + \sqrt{2}S + 1}$$

Alternativ kann die Übertragungsfunktion H(S) auch mittels folgendem Ansatz für D(S)und anschliessendem Koeffizientenvergleich von $D(S) \cdot D(-S)$ bestimmt werden.

Ansatz:
$$D(S) = S^2 + a_1 S + b_1$$

Koeffizientenvergleich: $D(S) \cdot D(-S) = S^4 + (2b_1 - a_1^2)S + b_1^2 \stackrel{!}{=} S^4 + 1$

$$\Rightarrow a_1 = \sqrt{2} \text{ und } b_1 = 1 \quad \Rightarrow S^2 + \sqrt{2}S + 1 \quad \Rightarrow H(s) = \frac{1}{D(s)} = \frac{1}{S^2 + \sqrt{2}S + 1}$$

1.7.4 Bestimmung der Filterordnung (S. 308)

Aus dem Toleranzschema lassen sich für die 'Ecken' die folgenden beiden Bedingungen aufstellen:

$$A(\Omega_D) = 10 \cdot \log_{10}(1 + \Omega_D^{2n}) = A_{\text{max}}$$

$$A(\Omega_S) = 10 \cdot \log_{10}(1 + \Omega_S^{2n}) = A_{\min}$$

Mittels Umformungen und aufgelöst nach n ergibt sich die Filter-Ordnung als [.] bedeutet 'aufrunden auf ganze Zahl'

$$n = \left\lceil \frac{\log_{10} \left(\frac{10^{A_{\min}/10} - 1}{10^{A_{\max}/10} - 1} \right)}{2 \cdot \log_{10} \left(\frac{\Omega_S}{\Omega_D} \right)} \right\rceil$$

 \rightarrow Alternativ kann die Ordnung n auch mit dem Nomogramm bestimmt werden

1.8 Approximation nach Tschebyscheff-I (S. 310)

Die charakteristische Funktion wird bei der Tschebyscheff-I als

 $K(\Omega^2) = e^2 \cdot C_n^2(\Omega)$ gewählt.

Der Amplitudengang $|H(j\Omega)|$ folgt somit der Gleichung

$$|H(\mathrm{j}\Omega)| = \frac{1}{\sqrt{1 + e^2 \cdot C_n^2(\Omega)}}$$

Rippelfaktor (Konstante) $C_n(\Omega)$ Tschebyscheff-Polynom erster Art der Ornung n

Das Tschebyscheff-Polynom $C_n(\Omega)$ ist im Durchlassbereich und im Sperrbereich **unter**schiedlich definiert!

Duchlassbereich ($|\Omega| \le 1$)

Sperrbereich ($|\Omega| \ge 1$)

$$C_n(\Omega) = \cos(n \cdot \arccos(\Omega))$$

 $C_n(\Omega) = \cosh(n \cdot \operatorname{arccosh}(\Omega))$

Für die Ordnung $n \ge 2$ lässt sich das Tschebyscheff-Polynom $C_n(\Omega)$ mittels Rekursionsformel berechnen

$$C_n(\Omega) = 2\Omega C_{n-1}(\Omega) - C_{n-2}(\Omega) \qquad C_0(\Omega) = 1 \qquad C_1(\Omega)$$

Zwischen dem Rippelfaktor e und der maximalen Dämpfung A_{\max} gilt der Zusammenhang:

$$A_{\text{max}} = 10 \cdot \log_{10}(1 + e^2) \quad \Leftrightarrow \quad e = \sqrt{10^{\frac{A_{\text{max}}}{10}} - 1}$$

1.8.1 Eigenschaften der Tschebyscheff-I-Approximation (S. 311)

Im Durchlassbereich schwankt das Tschebyscheff-Polynom in den Grenzen ±1. Im **Sperrbereich** nimmt C_n monoton mit Ω zu.

Durchlassbereich

- Für $\Omega = 0$ ist für **un**gerade $n: |H(0)| = H_{\text{max}} = 1$
- Für $\Omega = 0$ ist für gerade n: $|H(0)| = \frac{1}{\sqrt{1+e^2}}$
- Für $\Omega = 1$ ist für sämtliche n: $|H(j)| = \frac{1}{\sqrt{1+e^2}} \Rightarrow$ nicht 3 dB Dämpfung Aus der Anzahl Extremalstellen und Endpunkte des Amplitudengangs im **Durchlassbereich** $(0 \le \Omega \le 1)$ lässt sich die **Ordnung** n bestimmen. Ordnung = Summe aller Extremalstellen plus beide Endpunkte minus 1
- Sperrbereich
 - Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{e \cdot C_n(\Omega)} \Rightarrow -n \cdot 20$ dB/ Dekade bzw. $-n \cdot 6.02 \, \text{dB/Oktave}$
 - Fixe Ordnung n: Je grösser der Rippelfaktor e, desto steiler der Abfall in den Sperr-
 - Fixer Rippelfaktor e: Je grösser die Ordnung n, desto steiler der Abfall in den Sperrbereich

1.8.2 Pol-Lagen (S. 313)

• Die Pole liegen auf einer Ellipse

- Allpolfilter
- Je näher die Pole an der jω-Achse liegen, desto mehr Rippel gibt es im Phasengang

1.8.3 Filterordnung (8. 316)

→ Nomgramme!

1.9 Approximation nach Tschebyscheff-II (S. 319)

Inverses Tschebyscheff-Filter

Die charakteristische Funktion wird bei der Tschebyscheff-II-Approximation als $K(\Omega^2) = e^2 \cdot C_n^2(\Omega)$ gewählt.

Der Amplitudengang $|H(j\Omega)|$ folgt somit der Gleichung

$$|H(\mathrm{j}\Omega)| = \frac{1}{\sqrt{1 + \frac{1}{e^2 C_n^2 \left(\frac{1}{\Omega}\right)}}}$$

Rippelfaktor (Konstante) $C_n(\Omega)$ Tschebyscheff-Polynom erster Art der Ornung n

1.9.1 Pol-Lagen (S. 321)

• Kein Allpolfilter

- Gerade Ordnung n: n Pole und n Nullstellen
- Ungerade Ordnung n: n Pole und n-1 Null-

1.9.2 Filterordnung (S. 319)

Die Filterordnung berechnet sich identisch wie bei der Tschebyscheff-I-Approximation!

→ Gleiches Nomogramm wie für Tschebyscheff-I

1.10 Approximation nach Cauer (S. 322)

Kombination von Tschebyscheff-I und Tschebyscheff-II

Daher spricht man auch von Complete-Chebyshev- oder Chebyshev-Cauer-Filtern (CC-Filter).

1.10.1 Pol-Lagen (S. 325)

• Kein Allpolfilter

- Gerade Ordnung n: n Pole und n Nullstellen
- Ungerade Ordnung n: n Pole und n − 1 Nullstellen

Pole auf jω-Achse ausserhalb vom Einheitskreis

1.10.2 Filterordnung (S. 326)

$$n = \left[\frac{K \left(\left(\frac{\Omega_D}{\Omega_S} \right)^2 \right) K \left(1 - \frac{A_{\max/10} - 1}{A_{\min/10} - 1} \right)}{K \left(1 - \left(\frac{\Omega_D}{\Omega_S} \right)^2 \right) K \left(\frac{A_{\max/10} - 1}{A_{\min/10} - 1} \right)} \right]$$

$$\operatorname{mit} K(k) = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k \sin^{2}(\theta)}} d\theta$$

→ Nomogramm!

1.11 Approximation nach Bessel (S. 328)

Bessel-Filter liefern eine möglichst lineare Phase, d.h. eine konstante Gruppenlaufzeit.

Die Übertragungsfunktion H(S) lautet

$$H(S) = K \cdot e^{-ST_0}$$

Für die Gruppenlaufzeit folgt somit

$$\tau_g(\Omega) = \frac{-d\theta(\Omega)}{d\Omega} = T_0 = \text{const}$$

Ohne Einschränkung kann in der UTF $T_0 = 1$ und K = 1 gesetzt werden:

$$H(S) = e^{-S} = \frac{1}{e^S} \approx \frac{1}{D(S)}$$

1.11.1 Gruppenlaufzeit $\tau_g(\Omega)$ und Phasenlaufzeit $\tau_p(\Omega)$ (s. 331)

1.12 Gegenüberstellung der Filter-Approximationen

	Krit. Gedämpft	Butterworth	Tschebyscheff 1	Tschebyscheff 2	Cauer	Bessel
Allpolfilter	ja	ja	ja	nein	nein	ja
Pol-Lage	reelle Achse	Halbkreis	Ellipse	LHE	Ellipse	exzentr.
1 01-Lage	<0	LHE	LHE	Line	LHE	Kreis
NS-Lage	-	-	-	jω-Achse	jω-Achse	-
DB	monoton	monoton	wellig	monoton	wellig	monoton
DВ		maximalflach	konst. Rippel		konst. Rippel	
SB	streng	monoton	monoton	wellig	wellig	monoton
ЗВ			Inonoton	konst. Rippel	konst. Rippel	
Phasengang	sehr gut	mittel	schlecht	schlecht	wild	bestmöglich

1.12.1 Frequenzgänge / Lage der Pol- und Nullstellen (S. 334)

1.13 Standard-Filtertypen – Überblick

• kritisch-Gedämpfte Filter

- + Kein Rippel im Durchlass- und Sperrbereich
- + Kein Überschwingen bei Impuls- und Sprungantwort
- Braucht hohe Ordnung für steilen Übergang von Durchlass- zu Sperrbereich
- Kaskadierung von n wirkungsfreien, identischen Filtern 1. Ordnung
- Bei Ω = 1 ⇒ Dämpfung von 3 dB
- Steilheit: $-n \cdot 20 \, \text{dB/ Dekade}$
- Allpolfiler: n Pole am gleichen Ort in der LHE

• Butterworth

- + Kein Rippel im Durchlass- und Sperrbereich
- + Im Durchlassbereich ist der Amplitudengang maximal flach
- Überhöhung in der Gruppenlaufzeit der Grenzfrequenz
- Braucht hohe Ordnung für steilen Übergang von Durchlass- zu Sperrbereich
- Bei Ω = 1 → Dämpfung von 3 dB
- Steilheit: $-n \cdot 20 \, \text{dB/ Dekade}$
- Allpolfiler: Pole auf Einheitskreis mit Abstand $\frac{\pi}{n}$

· Tschebyscheff-I

- + Schon für kleine Ordnungen **relativ steil** im Übergang von Durchlass- und Sperrbereich
- **Rippel** im **Durchlassbereich** (abhängig von Ordnung n)
- Keine konstante Gruppenlaufzeit (wellig)
- Bei Ω = 1 → Dämpfung abhängig von Rippelfaktor e
- Steilheit: $-n \cdot 20 \, \text{dB/Dekade}$
- Allpolfiler: Pole auf einer Ellipse

Tschebyscheff-II

- + Schon für kleine Ordnungen **relativ steil** im Übergang von Durchlass- und Sperrbereich
- Rippel im Sperrbereich (abhängig von Ordnung n)
- Relativ konstante Gruppenlaufzeit
- Bei $\Omega = 1$ \Rightarrow Dämpfung abhängig von Rippelfaktor e
- Steilheit: $-n \cdot 20 \, \text{dB/ Dekade}$
- Kein Allpolfilter

Cauer

- + Steilster Übergang von Durchlass- zu Sperrbereich
- Rippel in Durlassbereich und Sperrbereich (abhängig von Ordnung n)
- Kombination aus Tschebyscheff-I und Tschebyscheff-II
- Kein Allpolfilter

Bessel

- + Flachster Übergang von Durchlass- und Sperrbereich von allen Filtern
- + Konstante Gruppenlaufzeit
- Für steile Filter im Durchlass- und Sperrbereich nicht geeignet
- Allpolfilter: Pole auf exzentrischen Kreisen in LHE

1.14 Vorgehen Filter dimensionieren / auslegen

- 1. Gemäss Anforderungen geeigneten Filtertyp wählen (\Rightarrow 1.13)
- 2. Toleranzschema gemäss Anforderungen erstellen inkl. Normierung (\Rightarrow 1.3.1)
- 3. Ordnung des Filters bestimmen (Formel oder **Nomogramm** \Rightarrow 1.15)
- **4.** Übertragungsfunktion bestimmen (→ Tabelle: Skript S. 397, Anhang 7B)
- 5. Implementierung mit LC-Filtern: Topologie wählen (→ Skript S. 409, Anhang 7C)
- **6. Normierte** Bauteilwerte aus entsprechender Tiefpass-Tabelle herauslesen (Anhang 7C)
- 7. Falls nicht auf $\omega_r = \omega_{3 \, dB}$ normiert wurde: Normierte Werte auf $\Omega_{3 \, dB}$ korrigieren: \Rightarrow Division durch Korrekturfaktor aus Skript S. 401 Tabelle 7.8
- **8.** Komponenten mittels **Entnormierung** bestimmen (\Rightarrow 2.4)
- 9. Entnormierung der Frequenz (→ 1.3.2)
- $\omega_{3 \, \mathrm{dB}} = \mathrm{Korrekturfaktor} \cdot \omega_D = \mathrm{Korrekturfaktor} \cdot 2\pi f_D$
- Frequenztransformation (bzw. Komponenten-Transformation) zu HP, BP oder BS durchführen (⇒ 2)

1.15 Nomogramme (S. 393)

Nomogramme können verwendet werden, um die **Ordnung eines Filters** zu bestimmen.

Benutzung von Nomogrammen

- **1.** P_1 : Verbindung von A_{max} zu A_{min}
- **2.** P_2 : Verlängerung von P_1 bis zum 'Diagramm-Rand'
- **3.** *P*₃: Horizontale Linie vom Rand in Diagramm hinein
- 4. P_4 : Bei $\Omega = \frac{\Omega_S}{\Omega_D} = \frac{\omega_S}{\omega_D} = \frac{f_S}{f_D}$ vertikale Linie ziehen
- **5.** *P*₅: Schnittpunkt: 'hochfahren' zur nächsten Kurve → Ordnung *n* der Kurve ablesen

2 Filter-Umwandlungen mittels Frequeenztransformation

2.1 Transformation: Tiefpass - Hochpass (S. 344)

2.1.1 Bauteiltransformationen: Tiefpass – Hochpass

2.2 Transformation: Tiefpass - Bandpass (S. 348)

2.2.1 Bauteiltransformationen: Tiefpass – Bandpass

2.3 Transformation: Tiefpass - Bandsperre (S. 357)

2.3.1 Bauteiltransformationen: Tiefpass – Bandsperre

2.4 LC-Filter: Entnormierung der Komponenten

 $L = \frac{L_{\text{norm}}}{\omega_r} \cdot R_r$

 $C = \frac{C_{\text{norm}}}{\omega_r \cdot R_r}$

 $R = R_{\text{norm}} \cdot R_r$

 $L_{
m norm}$ $C_{
m norm}$ $R_{
m norm}$

normierter Wert gemäss Anhang 7C normierter Wert gemäss Anhang 7C

 $R_{
m norm}$ normierter Wert gemäss Anhang 7C Frequenz, auf welche normiert wurde (α

Frequenz, auf welche normiert wurde (ω_D oder ω_m gemäss 1.3.2) Tatsächlicher Wert von R_2 gemäss Topologie Skript S. 409