ПЛН20

ΕΝΟΤΗΤΑ 2: ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ

Μάθημα 2.5: Θεωρήματα του Προτασιακού Λογισμού

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Θεωρήματα του Προτασιακού Λογισμού
 - 1. Το Θεώρημα Απαγωγής
 - 2. Το Θεώρημα Αντιθετοαναστροφής
 - 3. Το Θεώρημα Απαγωγής σε Άτοπο
 - 4. Το Θεώρημα Εγκυρότητας
 - 5. Το Θεώρημα Πληρότητας
- 2. Τρία Σημαντικά Τυπικά Θεωρήματα
 - **1.** Το τυπκό Θεώρημα $\vdash φ → φ$
 - **2.** Το τυπικό Θεώρημα $\vdash φ → ¬¬φ$
 - 3. Το τυπικό Θεώρημα $\vdash \neg \neg \varphi \rightarrow \varphi$

Γ.Ασκήσεις

- 1. Ασκήσεις Κατανόησης
- 2. Ερωτήσεις
- 3. Εφαρμογές

Α. Σκοπός του Μαθήματος

Επίπεδο Α

- > Το θεώρημα απαγωγής και η χρήση του
- > Το θεώρημα αντιθετοαναστροφής και η χρήση του
- > Το θέωρημα εγκυρότητας και η χρήση του
- > Το θεώρημα πληρότητας και η χρήση του

Επίπεδο Β

> Το θεώρημα απαγωγής σε άτοπο και η χρήση του

Επίπεδο Γ

> (-)

1. Θεωρήματα του Προτασιακού Λογισμού

- Τα θεωρήματα του Προτασιακού Λογισμού:
 - > Απαγωγή
 - Αντιθετοαναστροφή
 - Απαγωγή σε Άτοπο
- Τροποποιούν την προς απόδειξη τυπική συνεπαγωγή ώστε η τυπική απόδειξη να γίνει πιο εύκολα.
- Τα θεωρήματα:
 - > Εγκυρότητας
 - > Πληρότητας
- > Σχετίζουν τους δύο κόσμους που έχουμε μελετήσει:
 - > Την Προτασιακή Λογική με
 - Τον προτασιακό Λογισμό.

1. Θεωρήματα του Προτασιακού Λογισμού

1. Το Θεώρημα Απαγωγής

Θεώρημα (Απαγωγής):

Av
$$T \cup \{\varphi\} \vdash \psi$$
 τότε $T \vdash \varphi \rightarrow \psi$

Το θεώρημα έχει δύο χρήσεις:

Την ευθεία χρήση:

- ightharpoonup Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \cup \{\varphi\} \vdash \psi$
- ightarrow Τότε από το θεώρημα απαγωγής «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: Τ $\vdash \varphi \to \psi$

Την αντίστροφη χρήση:

- ightharpoonup Για να δείξουμε ότι: $T \vdash \varphi \rightarrow \psi$
- ightharpoonup Από το θεώρημα Απαγωγής αρκεί να δείξουμε ότι: $T \cup \{ \varphi \} \vdash \psi$

1. Θεωρήματα του Προτασιακού Λογισμού

1. Το Θεώρημα Απαγωγής

Παράδειγμα 1:

Να αποδείξετε ότι:

$$\vdash \phi \to (\psi \to (\chi \to \phi)$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\phi \vdash \psi \rightarrow (\chi \rightarrow \phi)$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\phi,\psi\} \vdash \chi \rightarrow \phi$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\phi,\psi,\chi\} \vdash \phi$$

που έχει τυπική απόδειξη:

1. φ Υπόθεση

1. Θεωρήματα του Προτασιακού Λογισμού

1. Το Θεώρημα Απαγωγής

Παράδειγμα 2:

Να αποδείξετε ότι:

$$\vdash (\phi \rightarrow \chi) \rightarrow ((\phi \rightarrow (\chi \rightarrow \psi)) \rightarrow (\phi \rightarrow \psi))$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\phi \rightarrow \chi \vdash (\phi \rightarrow (\chi \rightarrow \psi)) \rightarrow (\phi \rightarrow \psi)$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\phi \rightarrow \chi, \phi \rightarrow (\chi \rightarrow \psi)\} \vdash \phi \rightarrow \psi$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\phi \rightarrow \chi, \phi \rightarrow (\chi \rightarrow \psi), \phi\} \vdash \psi$$

που έχει τυπική απόδειξη:

- 1. φ Υπόθεση
- 2. φ →χ Υπόθεση
- 3. x MP1,2
- 4. $\phi \rightarrow (\chi \rightarrow \psi)$ Υπόθεση
- 5. $\chi \rightarrow \psi$ MP1,4
- 6. ψ MP3,5

1. Θεωρήματα του Προτασιακού Λογισμού

1. Το Θεώρημα Απαγωγής

Παράδειγμα 3:

Να αποδείξετε ότι:

$$\vdash \neg \neg \phi \rightarrow ((\neg \phi \rightarrow \neg \phi) \rightarrow \phi)$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\neg\neg\phi\vdash(\neg\phi\rightarrow\neg\phi)\rightarrow\varphi$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\neg\neg\varphi, \neg\varphi\rightarrow\neg\varphi\} \vdash \varphi$$

που έχει τυπική απόδειξη:

- 1. ¬¬φ Υπόθεση
- 2. $\neg \neg \phi \rightarrow \phi$ Τυπικό Θεώρημα
- 3. φ MP1,2

Και παραθέτουμε την απόδειξη του τυπικού θεωρήματος: $\vdash \neg \neg \phi \rightarrow \phi$ (Βλέπε τέλος φυλλαδίου)

1. Θεωρήματα του Προτασιακού Λογισμού

2. Το Θεώρημα Αντιθετοαναστροφής

Θεώρημα (Αντιθετοαναστροφής):

T ∪ {
$$\varphi$$
} ⊢ ¬ ψ αν και μόνο αν T ∪ { ψ } ⊢ ¬ φ

Με εφαρμογή του θεωρήματος της αντιθετοαναστροφής μπορούμε να εναλάσσουμε τον προς απόδειξη τύπο με μία από τις υποθέσεις.

ΠΡΟΣΟΧΗ: Η αντιθετοαναστροφή βρίσκει εφαρμογή μόνο αν ο προς απόδειξη τύπος ξεκινά με άρνηση και η άρνηση αυτή δεν αλλοιώνεται από την εφαρμογή του θεωρήματος (μενει «κάγκελο»)

1. Θεωρήματα του Προτασιακού Λογισμού

2. Το Θεώρημα Αντιθετοαναστροφής

Παράδειγμα 1:

Να αποδείξετε ότι:

$$\vdash ((\psi \rightarrow \neg \psi) \rightarrow \neg \chi) \rightarrow (\chi \rightarrow \neg (\psi \rightarrow \neg \psi))$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$(\psi \rightarrow \neg \psi) \rightarrow \neg \chi \vdash \chi \rightarrow \neg (\psi \rightarrow \neg \psi)$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \chi\} \vdash \neg (\psi \rightarrow \neg \psi)$$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

$$\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \psi \rightarrow \neg \psi\} \vdash \neg \chi$$

που έχει τυπική απόδειξη:

- 1. ψ → ¬ψ Υπόθεση
- 2. $(\psi \rightarrow \neg \psi) \rightarrow \neg \chi$ Υπόθεση
- 3. ¬χ MP1,2

1. Θεωρήματα του Προτασιακού Λογισμού

2. Το Θεώρημα Αντιθετοαναστροφής

Παράδειγμα 2:

Να αποδείξετε ότι:

$$\vdash \phi \rightarrow (\neg \psi \rightarrow \neg (\phi \rightarrow \psi))$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\varphi \vdash \neg \psi \rightarrow \neg (\varphi \rightarrow \psi)$$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\{\varphi, \neg\psi\} \vdash \neg(\varphi \rightarrow \psi)$$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

$$\{\varphi, \varphi \rightarrow \psi,\} \vdash \neg \neg \psi$$

που έχει τυπική απόδειξη:

- 1. φ Υπόθεση
- 2. $\phi \rightarrow \psi$ Υπόθεση
- 3. ψ MP1,2
- 4. ψ → ¬¬ψ ΣΑ στο Τυπικό Θεώρημα $\vdash φ → ¬¬φ$ όπου φ:ψ.
- *5.* ¬¬ψ MP3,4

Και παραθέτουμε την απόδειξη του τυπικού θεωρήματος: $\vdash \phi \rightarrow \neg \neg \phi$ (Βλέπε τέλος φυλλαδίου)

1. Θεωρήματα του Προτασιακού Λογισμού

3. Το Θεώρημα Απαγωγής σε Άτοπο

Θεώρημα (Απαγωγής σε Άτοπο):

Aν $T \cup \{\varphi\}$ είναι αντιφατικό τότε $T \vdash \neg \varphi$

Το θεώρημα έχει δύο χρήσεις:

Την ευθεία χρήση:

- ightharpoonup Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: Τ $\cup \{\varphi\}$ είναι αντιφατικό
- ightharpoonup Τότε από το θεώρημα απαγωγής σε άτοπο «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: Τ $\vdash \neg \varphi$

Την αντίστροφη χρήση:

- ightharpoonup Για να δείξουμε ότι: $T \vdash \neg \varphi$
- ightharpoonup Από το θεώρημα απαγωγής σε άτοπο αρκεί να δείξουμε ότι: $T \cup \{ \varphi \}$ είναι αντιφατικό.

1. Θεωρήματα του Προτασιακού Λογισμού

3. Το Θεώρημα Απαγωγής σε Άτοπο

Ορισμοί:

- Αντιφατικό Σύνολο Τύπων (Τυπικός Ορισμός)
 - Ένα σύνολο τύπων Τ καλείται αντιφατικό αν υπάρχει ένας τύπος ψ τέτοιος ώστε να ισχύει:
 - \succ T $\vdash \neg \psi$ (o $\neg \psi$ έπεται με τυπική απόδειξη από τις υποθέσεις του T)
 - ightharpoonup Τ $\vdash \psi$ (ο ψ έπεται με τυπική απόδειξη από τις υποθέσεις του Τ)
 - Δηλαδή να συνεπάγεται τυπικά κάποιος τύπος και η άρνησή του από τις υποθέσεις του Τ.
- Συνεπές Σύνολο Τύπων (Τυπικός Ορισμός)
- > Ένα σύνολο τύπων Τ καλέιται συνεπές αν δεν είναι αντιφατικό
 - Δηλαδή δεν υπάρχει τύπος ψ τέτοιος ώστε:
 - ightharpoonup Τ $\vdash \neg \psi$ (ο $\neg \psi$ έπεται με τυπική απόδειξη από τις υποθέσεις του Τ)
 - ightharpoonup Τ $\vdash \psi$ (ο ψ έπεται με τυπική απόδειξη από τις υποθέσεις του Τ)
- > Με βάση τα παραπάνω σχετίζοντας Πρ.Λογική με Πρ.Λογισμό
- > ΣΥΝΕΠΕΣ==ΙΚΑΝΟΠΟΙΗΣΙΜΟ και ΑΝΤΙΦΑΤΙΚΟ == ΜΗ ΙΚΑΝΟΠΟΙΗΣΙΜΟ

1. Θεωρήματα του Προτασιακού Λογισμού

3. Το Θεώρημα Απαγωγής σε Άτοπο

Παράδειγμα 1:

Να αποδείξετε ότι:

$$\vdash \phi \rightarrow \neg \neg \phi$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

Από το θεώρημα Απαγωγής σε Ατοπο αρκεί να δείξω ότι το σύνολο τύπων:

$$T={\{\varphi, \neg \varphi\}}$$
 είναι αντιφατικό

Πράγματι θεωρώ τον τύπο φ.

Ισχύει Τ Η φ. Πράγματι έχει τυπική απόδειξη:

1. φ Υπόθεση

Ισχύει Τ Η ¬ φ. Πράγματι έχει τυπική απόδειξη:

1. ¬ φ Υπόθεση

Συνεπώς το σύνολο τύπων είναι αντιφατικό.

1. Θεωρήματα του Προτασιακού Λογισμού

3. Το Θεώρημα Απαγωγής σε Άτοπο

Παράδειγμα 2:

Να αποδείξετε ότι:

$$\{\chi \to \neg \psi, \varphi\} \mid -\chi \to \neg (\varphi \to \psi)$$

Απάντηση:

Από το θεώρημα απαγωγής αρκεί να δείξουμε ότι:

$$\{\chi \rightarrow \neg \psi, \varphi, \chi\} \mid \neg (\varphi \rightarrow \psi)$$

Από το θεώρημα απαγωγής σε άτοπο αρκεί να δείξουμε ότι το σύνολο τύπων:

$$\{\chi \to \neg \psi, \, \varphi, \, \chi, \, \varphi \to \psi\}$$
 είναι αντιφατικό.

Για να δείξουμε ότι είναι αντιφατικό θεωρούμε τον τύπο ψ.

Ισχύει ότι $\{\chi \to \neg \psi, \, \phi, \, \phi \to \psi, \, \chi \, \} \mid$ - ψ με την τυπική απόδειξη:

- 1. φ Υπόθεση
- 2. $\phi \rightarrow \psi Υπόθεση$
- 3. ψ MP1,2

Ισχύει ότι $\{\chi \to \neg \psi, \, \phi, \, \phi \to \psi, \, \chi \,\} \mid$ - $\neg \psi$ με την τυπική απόδειξη:

- 1. χ Υπόθεση
- 2. $\chi \rightarrow \neg \psi$ Υπόθεση
- 3. $\neg \psi$ MP1,2

Συνεπώς το σύνολο τύπων είναι αντιφατικό.

1. Θεωρήματα του Προτασιακού Λογισμού

4. Το Θεώρημα Εγκυρότητας

Θεώρημα (Εγκυρότητας):

Av
$$T \vdash \varphi$$
 tóte $T \vDash \varphi$

Το θεώρημα έχει δύο χρήσεις:

Την ευθεία χρήση:

- ightharpoonup Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: Τ $\vdash \varphi$
- ightarrow Τότε από το θεώρημα εγκυρότητας «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: Τ $Dash \varphi$

Την αντίστροφη χρήση:

- ightharpoonup Για να δείξουμε ότι: $T \vDash \varphi$
- ightharpoonup Από το θεώρημα εγκυρότητας αρκεί να δείξουμε ότι: $T \vdash \varphi$

1. Θεωρήματα του Προτασιακού Λογισμού

4. Το Θεώρημα Εγκυρότητας

Παράδειγμα 1:

Να αποδείξετε ότι:

$$\{\varphi, \varphi \to (\psi \to \chi), \varphi \to \psi\} \models \chi$$

Απάντηση:

Από το θεώρημα Εγκυρότητας αρκεί να δείξω:

$$\{\varphi, \varphi \to (\psi \to \chi), \varphi \to \psi\} \vdash \chi$$

Που έχει τυπική απόδειξη:

- 1. φ Υπόθεση
- 2. $\phi \rightarrow \psi$ Υπόθεση
- 3. $\phi \rightarrow (\psi \rightarrow \chi)$ Υπόθεση
- 4. ψ MP1,2
- 5. $\psi \rightarrow \chi$ MP1,3
- 6. χ MP4,5

1. Θεωρήματα του Προτασιακού Λογισμού

5. Το Θεώρημα Πληρότητας

Θεώρημα (Πληρότητας):

Av
$$T \vDash \varphi$$
 tóte $T \vdash \varphi$

Το θεώρημα έχει δύο χρήσεις:

Την ευθεία χρήση:

- ightharpoonup Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \models \varphi$
- ightharpoonup Τότε από το θεώρημα πληρότητας «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: Τ $\vdash \varphi$

Την αντίστροφη χρήση:

- ightharpoonup Για να δείξουμε ότι: $T \vdash \varphi$
- ightharpoonup Από το θεώρημα πληρότητας αρκεί να δείξουμε ότι: $T \vDash \varphi$

1. Θεωρήματα του Προτασιακού Λογισμού

5. Το Θεώρημα Πληρότητας

Παράδειγμα 1:

Να αποδείξετε ότι:

$$\{p \land q, q \rightarrow \neg r\} \vdash \neg r$$

Απάντηση:

Από το θεώρημα Πληρότητας αρκεί να δείξω:

$$\{p \land q, q \rightarrow \neg r\} \models \neg r$$

Εξετάζουμε σε ποιες αποτιμήσεις αληθεύουν οι τύποι του συνόλου τύπων:

- Ο 1^{ος} τύπος αληθεύει όταν p Λ q = Α, δηλαδή όταν p=Α και q=Α
- O $2^{\circ\varsigma}$ τύπος αληθεύει όταν $q \to \neg r = A$, άρα έχω: $A \to \neg r = A$, άρα πρέπει $r = \Psi$
- Άρα το σύνολο τύπων ικανοποιείται στην αποτίμηση p=A,q=A,r=Ψ Στην (μοναδική) αποτίμηση που ικανοποιούνται οι τύποι του συνόλου τύπων έχω ότι ο προς απόδειξη τύπος είναι:
- $\neg r = \neg \Psi = A$

Άρα ισχύει η ταυτολογική συνεπαγωγή.

1. Θεωρήματα του Προτασιακού Λογισμού

Τα Θεωρήματα Εγκυρότητας - Πληρότητας

Τα θεωρήματα εγκυρότητας-πληρότητας (μαζί)

Σε συνδυασμό τα θεωρήματα εγκυρότητας-πληρότητας κάνουν ισοδύναμους τους κόσμους του προτασιακού λογισμού. Π.χ. έχουμε ότι:

⊢ φ αν και μόνο αν ⊨ φ δηλαδή (φ είναι τυπικό θεώρημα) αν και μόνο αν (φ είναι ταυτολογία)

2. Τρία Σημαντικά Τυπικά Θεωρήματα

1. Το τυπικό Θεώρημα $\vdash \varphi \rightarrow \varphi$

Απόδειξη 1 (χωρίς Θεωρήματα Προτασιακού Λογισμού)

$$\vdash \phi \rightarrow \phi$$

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$ ΣA στο AΣ1 όπου $\phi:\phi, \psi:\phi \rightarrow \phi$
- 2. $(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$ SA sto AS2 óttou ϕ : ϕ , ψ : $\phi \rightarrow \phi$, χ : ϕ
- 3. $(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi) \text{ MP1,2}$
- 4. ϕ →(ϕ → ϕ) ΣA στο AΣ1 όπου ϕ : ψ , ψ : ϕ
- 5. $\phi \rightarrow \phi$ MP3,4

Απόδειξη 2 (με Θεωρήματα Προτασιακού Λογισμού)

$$\vdash \phi \rightarrow \phi$$

Από το θεώρημα απαγωγής αρκεί να δείξω:

που έχει τυπική απόδειξη:

1. φ Υπόθεση

2. Τρία Σημαντικά Τυπικά Θεωρήματα

2. Το τυπικό Θεώρημα $\vdash \phi \rightarrow \neg \neg \phi$

Απόδειξη:

$$\vdash \phi \rightarrow \neg \neg \phi$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\varphi \vdash \neg \neg \varphi$$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

$$\neg \varphi \vdash \neg \varphi$$

που έχει τυπική απόδειξη:

2. Τρία Σημαντικά Τυπικά Θεωρήματα

3. Το τυπικό Θεώρημα $\vdash \neg \neg \phi \rightarrow \phi$

Απόδειξη:

$$\vdash \neg \neg \phi \rightarrow \phi$$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

$$\neg\neg\phi$$
 $\vdash \varphi$

που έχει τυπική απόδειξη:

- 1. ¬¬φ Υπόθεση
- 2. $\neg\neg\phi\rightarrow(\neg\phi\rightarrow\neg\neg\phi)$ ΣΑ στο ΑΣ1 όπου ϕ : $\neg\neg\phi$, ψ : $\neg\phi$
- 3. $\neg \phi \rightarrow \neg \neg \phi$ MP1,2
- 4. $(\neg \phi \rightarrow \neg \neg \phi) \rightarrow ((\neg \phi \rightarrow \neg \phi) \rightarrow \phi)$ SA sto AS3 óptou ϕ : $\neg \phi$, ψ : ϕ
- 5. $(\neg \phi \rightarrow \neg \phi) \rightarrow \phi$ MP3,4
- 6. $\neg φ \rightarrow \neg φ$ ΣΑ στο Τυπικό Θεώρημα $\vdash φ \rightarrow φ$ όπου φ: $\neg φ$
- 7. φ MP6,5

Και παραθέτουμε την τυπική απόδειξη του τυπικού θεωρήματος Η φ → φ

Δ. Ασκήσεις Ερωτήσεις 1

Θεωρούμε το αξιωματικό σύστημα του Προτασιακού Λογισμού. Ποιες από τις παρακάτω δηλώσεις είναι σωστές και ποιες όχι;

- 1. Ο τύπος $\neg\neg\phi\to(\neg\phi\to\phi)$ προκύπτει άμεσα από το αξιωματικό σχήμα ΑΣ1 με συντακτική αντικατάσταση.
- 2. Ο τύπος $(\neg\neg\phi\to\neg(\psi\to\chi))\to((\neg\neg\phi\to(\psi\to\chi))\to\neg\phi)$ προκύπτει άμεσα από το αξιωματικό σχήμα ΑΣ3 με συντακτική αντικατάσταση.
- 3. Το $|- \varphi \rightarrow \neg \neg \varphi$ προκύπτει άμεσα από το $\varphi |- \neg \neg \varphi$ με εφαρμογή του Θεωρήματος της Απαγωγής.
- 4. Το $\varphi \mid \neg \neg \varphi$ προκύπτει άμεσα από το $\neg \varphi \mid \neg \varphi$ με εφαρμογή του Θεωρήματος της Αντιθετοαναστροφής.

Δ. Ασκήσεις Ερωτήσεις 2

Το Θεώρημα της Αντιθετοαναστροφής εξασφαλίζει ότι για κάθε υποσύνολο προτασιακών τύπων T και για αυθαίρετα επιλεγμένους προτασιακούς τύπους φ και ψ , ισχύει ότι

$$T \cup \{\varphi\} \mid_{\neg \sqcap \land} \neg \psi$$
 αν και μόνο αν $T \cup \{\psi\} \mid_{\neg \sqcap \land} \neg \varphi$.

Είναι σωστό ότι οι παρακάτω δηλώσεις προκύπτουν άμεσα από το Θεώρημα της Αντιθετοαναστροφής με συντακτική αντικατάσταση χωρίς τη χρήση άλλων θεωρημάτων ή προτάσεων;

- 1. $T \cup \{ \varphi \} \mid_{\neg \sqcap \land} \psi$ av kai µóvo av $T \cup \{ \neg \psi \} \mid_{\neg \sqcap \land} \neg \varphi$.
- 2. $T \cup \{ \varphi \} \mid \neg_{\Pi \wedge} \neg(\neg \psi)$ av kai µóvo av $T \cup \{ \neg \psi \} \mid \neg_{\Pi \wedge} \neg \varphi$.
- 3. $\neg \varphi \mid_{\neg \sqcap \land} \neg \psi$ αν και μόνο αν $\psi \mid_{\neg \sqcap \land} \varphi$.
- 4. $\neg \varphi \models \neg \psi$ av kai µóvo av $\psi \models \neg (\neg \varphi)$.

Δ. Ασκήσεις Εφαρμογή 1

Δείξτε τα παρακάτω:

$$(\alpha) \qquad \phi \quad | - (\phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \theta) \rightarrow ((\theta \rightarrow \xi) \rightarrow \xi))$$

$$(\beta) \qquad [\neg (\phi \to \chi) \to ((\phi \to (\chi \to \psi)) \to (\phi \to \psi))]$$

Επιτρέπεται η χρήση γνωστών θεωρημάτων εκτός των θεωρημάτων Εγκυρότητας και Πληρότητας

Δ. Ασκήσεις Εφαρμογή 2

Χρησιμοποιώντας οποιοδήποτε από τα θεωρήματα Απαγωγής, Αντιθετοαναστροφής, Απαγωγής σε Άτοπο ή συνδυασμό τους, να αποδειχθεί το τυπικό θεώρημα:

$$|-\neg(\psi\rightarrow\varphi)\rightarrow\neg\varphi|$$

Δ. Ασκήσεις Εφαρμογή 3

Να αποδείξετε με δύο τρόπους το αντίστροφο του θεωρήματος απαγωγής.

- (α) Με χρήση των θεωρημάτων εγκυρότητας-πληρότητας
- (β) Χωρίς χρήση των θεωρημάτων εγκυρότητας-πληρότητας