HW4: All about Attention

Jiafeng Chen Yufeng Ling Francisco Rivera

April 5, 2019

1 Introduction

In this writeup we consider natural language inference—given a premise and a hypothesis, can we determine the entailment and contradiction relationship between them. The key to the model is the attention architecture, which serves to decompose the problem into aligned subphrases. Not only does this design make training parellelizable, it also significantly reduces the number of parameters while delivering state-of-the-art results.

2 Problem Description

In this writeup, we consider the problem of natural language inference. Let

$$\mathbf{a} = (a_1, \dots, a_{\ell_a}) \tag{1}$$

be the premise of length ℓ_a and let

$$\boldsymbol{b} = (b_1, \dots, b_{\ell_b}) \tag{2}$$

be the hypothesis of length ℓ_b . Each $a_i, b_j \in \mathbb{R}^d$ is a word embedding vector of dimension d. Our goal is to, given the input pair a, b, predict the relationship $y \in \{y_1, \dots, y_C\}$ where C is the number of output classes.

3 Model and Algorithms

3.1 Decomposable Attention Model

This section follows the architecture of Parikh et al. (2016).

3.1.1 Vanilla model

We first look at the most basic approach that is the foundation of this architecture. We start by setting the inputs \overline{a} , \overline{b} to be the premise and hypothesis a, b themselves. We generate attention weight matrix by softmaxing over

$$e_{ij} := F'(\overline{a}_i, \overline{b}_j) = F(\overline{a}_i)^{\mathsf{T}} F(\overline{b}_j). \tag{3}$$

Note that we made the simplification of setting F' to be the dot product of \overline{a}_i and \overline{b}_j through the same feed-forward neural network, which reduces the number of operations from $O(\ell_a \times \ell_b)$ to $O(\ell_a + \ell_b)$. The attended phrases are then

$$\beta_{i} := \sum_{j=1}^{\ell_{b}} \frac{\exp(e_{ij})}{\sum_{k=1}^{\ell_{b}} \exp(e_{ik})} \overline{b}_{j},$$

$$\alpha_{j} := \sum_{i=1}^{\ell_{b}} \frac{\exp(e_{ij})}{\sum_{k=1}^{\ell_{a}} \exp(e_{kj})} \overline{a}_{i}.$$

$$(4)$$

A key implementation detail is that we need to apply masking to the $\{e_{ij}\}$ matrix before softmaxing to avoid putting attention on padding.

Next, we compare the aligned attended phrases to the original ones by concatenating them and applying a feed-forward neural network *G*.

$$\mathbf{v}_{1,i} := G([\overline{a}_i, \beta_i]) \quad \forall i \in [1, \dots, \ell_a],$$

$$\mathbf{v}_{2,j} := G([\overline{b}_j, \alpha_j]) \quad \forall j \in [1, \dots, \ell_b].$$
(5)

We then apply sum-over-time pooling, with padding masked out, to generate the penultimate vectors

$$\mathbf{v}_1 = \sum_{i=1}^{\ell_a} \mathbf{v}_{1,i}, \qquad \mathbf{v}_2 = \sum_{j=1}^{\ell_b} \mathbf{v}_{2,j}.$$
 (6)

Finally, we apply a feed-forward neural network H to the concatenated vectors to generate the unnormalized predictions for each class

$$\widehat{y} = H([\mathbf{v}_1, \mathbf{v}_2]) \in \mathbb{R}^C. \tag{7}$$

The prediction is $\hat{y} = \arg \max_i \hat{y}_i$. In the training of this model, we use the multiclass cross-entrophy loss as the loss function.

$$L(\theta_F, \theta_G, \theta_H) = \frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} y_c^{(n)} \log \frac{\exp(\hat{y}_c)}{\sum_{c'=1}^{C} \exp(\hat{y}_{c'})}.$$
 (8)

3.1.2 Intra-Sentence Attention

We can improve the model by incorporating intra-sentence attention. Instead of having $(\bar{a}, \bar{b}) = (a, b)$, we add self-attention to the input. We let the unnormalized attention weights be

$$f_{ij} = F_{\text{intra}}(a_i)^{\mathsf{T}} F_{\text{intra}}(a_j), \tag{9}$$

where F_{intra} is a feed-forward network. We then create the self-aligned phrases

$$a_i' = \sum_{j=1}^{\ell_a} \frac{\exp(f_{ij} + d_{i-j})}{\sum_{k=1}^{\ell_a} \exp(f_{ik} + d_{i-k})} a_j.$$
 (10)

In the above equation, $d_{i-j} \in \mathbb{R}$ is the bias term based on distance, which is shared throughout sentences. Moreover, we bucket the terms such that all distances greater than 10 have the same bias. In the end, we use $\bar{a}_i = [a_i, a_i']$ and $\bar{b}_j = [b_j, b_j']$ as inputs.

3.2 Latent Variable Mixture Model

One way to try to get increased performance out of the Decomposable Attention Model model is to ensemble multiple copies of the model with different weights. In particular, we explore two variants, one with an "exact" ensemble where every model is queried by the ensemble to get a marginal likelihood, and one where we use an inference network and an ELBO to simplify the training step.

3.2.1 Exact Ensemble Model

For our ensemble, we will use *K* vanilla decomposable attention models. Each one of these models gives us a distribution over the classes,

$$p(y \mid a, b; \theta_k).$$

We introduce a uniform discrete latent variable which represents which model to listen to,

$$c \sim \text{Unif}(1,\ldots,K)$$
.

Then, the marginal likelihood will be given by marginalizing over c, giving us

$$p(y \mid a, b; \theta) = \sum_{c=1}^{K} p(y \mid a, b; \theta_c).$$

The *K* models can be trained simultaneously through backprop using this equation for the ensemble likelihood.

3.2.2 Latent Variable Mixture Model

A problem with the above model is that training time scales linearly with K. Because we are propagating gradients through all K models for every training example, training it takes K times as long as training an individual model. We wish for each model $c \in \{1, ..., K\}$ to specialize in some of the problems. To this end, we create an inference network $q(c \mid y, a, b)$. This network follows a similar architecture to the aligned attention vanilla model, except it outputs weights for each of the K models rather than the 4 labels. We sample from the distribution output by the inference network in order to avoid evaluating all models, using the ELBO,

$$\log p(y \mid \boldsymbol{a}, \boldsymbol{b}; \theta) \ge E_{c \sim q(c \mid \boldsymbol{y}, \boldsymbol{a}, \boldsymbol{b})} \log p(y \mid \boldsymbol{a}, \boldsymbol{b}; \theta_c) - \text{KL}(q(c \mid \boldsymbol{y}, \boldsymbol{a}, \boldsymbol{b}) \mid\mid p(c))$$

where the KL term can be evaluated analytically and penalizes our inference network diverging from a uniform choice of model. The random variable c is discrete so we cannot employ the reparameterization trick to differentiate the expectation,

so instead we use REINFORCE, giving us the gradient to update on as,

$$= \nabla E_{c \sim q(c|y,a,b)} \log p(y \mid a,b;\theta_c)$$

$$= E_{c \sim q(c|y,a,b)} \left[\nabla \log p(y \mid a,b;\theta_c) + \log p(y \mid a,b;\theta_c) \nabla \log q(c \mid y,a,b) \right]$$

When testing, we can enumerate through the models as in the exact ensemble model.

4 Experiments

model name	specifications
Vanilla	100 embedding, 100 hidden, no dropout
Intra-Attn	Bi-directional LSTM, 100 embedding, 100 hidden, no dropout

Table 1: Both models used only one layer in the decoder and trained with Adam and learning rate 10^{-3} over 10 epochs. For Seq2Seq, decrease in validation loss flattened at epoch 8. For Seq2SeqAttn, training stopped at epoch 7 after loss starting going up.

	Validation loss	Validation accuracy
model name		
Vanilla	0.612	74.44%
Intra-Attn	0.745	62.06%
Exact-Ensemble	0.650	71.65%
VAE Ensemble	0.839	60.01%

Table 2: Performance metrics for different models

References

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decomposable attention model for natural language inference. *arXiv preprint arXiv:1606.01933*.

A Model implementations

Listing 1: Decomposable Attention

```
from namedtensor import ntorch
    from namedtensor.nn import nn as nnn
4
    class FeedFwd(nnn.Module):
5
       def __init__(self, d_in, d_out, name_in, name_out,
                   dropout_p=.2, hidden_n=200):
 6
 7
           super().__init__()
8
           self.w1 = nnn.Linear(d_in, hidden_n).spec(name_in, "hidden")
           self.w2 = nnn.Linear(hidden_n, d_out).spec("hidden", name_out)
9
10
           self.drop = nnn.Dropout(p=dropout_p)
11
12
       def forward(self, x):
13
           x = ntorch.relu(self.w1(x))
14
           x = self.drop(ntorch.relu(self.w2(x)))
15
           return x
16
17
18
    class DecompAttn(nnn.Module):
       def __init__(
19
               self,
20
21
               TEXT,
22
               LABEL,
               embed_dim=200,
23
24
               input_dim=None,
25
               dropout=0.2):
           super().__init__()
26
27
28
           padding_idx = TEXT.vocab.stoi['<pad>']
29
           self.padding_idx = padding_idx
30
           original_embed_dim = TEXT.vocab.vectors.size('embedding')
31
           num_classes = len(LABEL.vocab)
32
33
           self.embed_dim = embed_dim
34
35
           # this doesn't get updated
36
           self.embed = nnn.Embedding(TEXT.vocab.vectors.size('word'), embed_dim,
37
                                    padding_idx=padding_idx) \
38
               .from_pretrained(TEXT.vocab.vectors.values)
39
           # self.embed.weight.requires_grad = True
40
41
42
           # project the unchanged embedding into something smaller
43
           self.embed_proj = nnn.Linear(original_embed_dim, embed_dim, bias=False) \
               .spec('embedding', 'embedding')
```

```
45
46
            if input_dim is None:
47
                input_dim = embed_dim
48
49
            self.attn_w = FeedFwd(input_dim, embed_dim,
50
                                 'embedding', 'attnembedding', dropout_p=dropout)
51
52
            self.match_w = FeedFwd(input_dim * 2, embed_dim,
                                  embedding', 'matchembedding', dropout_p=dropout)
53
            self.classifier_w = FeedFwd(embed_dim * 2, num_classes,
54
55
                                      'matchembedding', 'classes', dropout_p=0)
56
57
        def process_input(self, sentence, seqlen_dim):
58
            return self.embed_proj(self.embed(sentence))
59
            # return self.embed(sentence)
60
61
        def forward(self, hypothesis, premise, debug=False):
62
            attn_w, match_w, classifier_w = (
                self.attn_w, self.match_w, self.classifier_w)
63
64
            premise = premise.rename('seqlen', 'premseqlen')
65
            hypothesis = hypothesis.rename('seqlen', 'hypseqlen')
66
            premise_mask = (premise != self.padding_idx).float()
67
68
            hypothesis_mask = (hypothesis != self.padding_idx).float()
69
70
            log_mask = (1 - premise_mask * hypothesis_mask) * (-1e3)
71
72
            # Embedding the premise and the hypothesis
            premise_embed = self.process_input(premise, 'premseqlen')
73
74
            hypothesis_embed = self.process_input(hypothesis, 'hypseqlen')
75
76
            # Attend
77
            premise_keys = (attn_w(premise_embed))
78
            hypothesis_keys = (attn_w(hypothesis_embed))
79
80
            log_alignments = (
81
                ntorch.dot('attnembedding', premise_keys, hypothesis_keys)
82
                 + log_mask)
83
84
            premise_attns = (log_alignments).softmax(
85
                'hypseqlen').dot('hypseqlen', hypothesis_embed)
            hypothesis_attns = (log_alignments).softmax(
86
87
                'premseglen').dot('premseglen', premise_embed)
88
            premise_concat = ntorch.cat(
89
                [premise_embed, premise_mask * premise_attns], 'embedding')
90
            hypothesis_concat = ntorch.cat(
91
                [hypothesis_embed, hypothesis_mask * hypothesis_attns], 'embedding')
92
93
            # Compare
94
            compare_premise = premise_mask * match_w(premise_concat)
95
            compare_hypothesis = hypothesis_mask * match_w(hypothesis_concat)
96
97
            # Aggregate
            result_vec = ntorch.cat([
98
99
                compare_premise.sum('premseqlen'),
100
                compare_hypothesis.sum('hypseqlen')],
101
                'matchembedding')
102
            if debug:
103
```

```
104
                return classifier_w(result_vec), log_alignments
105
            return classifier_w(result_vec)
106
107
108
     class DecompAttnWithIntraAttn(DecompAttn):
        def __init__(
109
110
                self,
                TEXT,
111
                LABEL,
112
                intra_dropout=.2,
113
114
                embed_dim=200,
                max_distance=10,
115
116
                **kwargs):
            super().__init__(TEXT, LABEL, embed_dim=embed_dim,
117
                input_dim=2 * embed_dim, **kwargs)
118
119
            self.max_distance = max_distance
            self.distance_embed = nnn.Embedding(num_embeddings=max_distance + 1,
120
121
                                              embedding_dim=1)
122
123
            self.intra_attn_w = FeedFwd(embed_dim, embed_dim,
124
                'embedding', 'embedding', dropout_p=intra_dropout)
125
126
        def process_input(self, sentence, seqlen_dim):
127
            embedded = super().process_input(sentence, seqlen_dim)
128
            other_dim = seqlen_dim + "2"
129
            other_embedded = embedded.rename(seqlen_dim, other_dim)
130
131
            embedded_mask = (sentence != self.padding_idx).float()
            embedded_mask = embedded_mask * \
132
                embedded_mask.rename(seqlen_dim, other_dim)
133
134
135
            distances = (
136
                (ntorch.arange(embedded.size(seqlen_dim), names=seqlen_dim,
                    device=embedded.values.device) -
137
                 ntorch.arange(embedded.size(seqlen_dim), names=other_dim,
                     device=embedded.values.device))
138
                .abs().clamp(max=self.max_distance))
            d_mat = self.distance_embed(distances)[{'embedding': 0}]
139
140
141
            f_embedded = self.intra_attn_w(embedded)
142
            f_embedded_other = f_embedded.rename(seqlen_dim, other_dim)
143
144
            log_alignments = (
145
                f_embedded.dot("embedding", f_embedded_other)
146
                + d_mat + (1 - embedded_mask) * (-1e3))
147
148
            embedded_attns = log_alignments.softmax(
149
                other_dim).dot(other_dim, other_embedded)
            return ntorch.cat([embedded, embedded_attns], "embedding")
150
```

Listing 2: Exact Ensemble

```
from namedtensor import ntorch
from namedtensor.nn import nn as nnn

class ExactEnsemble(nnn.Module):
    def __init__(self, models):
        super().__init__()
        self.models = nnn.ModuleList(models)
```

Listing 3: VAE Ensemble

```
import torch
    from torch.distributions import Categorical, kl_divergence
    from namedtensor import NamedTensor
5
   from namedtensor import ntorch
6
   from namedtensor.nn import nn as nnn
7
8
    def logsumexp(named_tensor, dim_name):
9
       names = list(named_tensor.shape.keys())
10
       dim_num = names.index(dim_name)
11
       names.pop(dim_num)
       return NamedTensor(torch.logsumexp(named_tensor.values, dim_num, keepdim=False),
12
13
                   names=names)
14
15
   class VAEEnsemble(nnn.Module):
16
       def __init__(self, models, q, num_classes=4):
17
           super().__init__()
18
           self.models = nnn.ModuleList(models)
19
           self.q = q
20
           self.ce_loss = nnn.CrossEntropyLoss(reduction='none').spec('classes')
21
           self.num_classes = num_classes
22
           self.unif = Categorical(torch.ones(len(models),
23
                                            device=next(self.parameters()).device))
24
25
       def forward(self, hypothesis, premise, y=None):
26
           if self.training:
27
               assert(y is not None)
               weights = self.q(hypothesis, premise).softmax('classes')
28
29
               m = Categorical(weights.values)
30
               models = NamedTensor(m.sample(), names=('batch',))
31
               global_log_probs = ntorch.zeros(hypothesis.size('batch'),
32
33
                                             self.num_classes,
                                             names=('batch', 'classes'),
34
                                             device=hypothesis.values.device)
35
36
37
               for i in range(len(self.models)):
                   is_model = models == i
38
39
                   if is_model.sum().item() == 0:
40
                      continue
                   model_batches = is_model.nonzero(names=('batch', 'extra'))[{'extra':
41
                       0}]
42
                   model_hypothesis = hypothesis[{'batch': model_batches}]
43
                   model_premise = premise[{'batch': model_batches}]
44
45
                   log_probs = self.models[i](model_hypothesis, model_premise)
46
47
                   global_log_probs[{'batch': model_batches}] = log_probs
48
```

```
49
                loss = -m.log_prob(models.values) * \
50
                     self.ce\_loss(global\_log\_probs, y).values + \\ \\
51
                     kl_divergence(m, self.unif).sum()
52
53
                return loss.sum()
54
55
            else:
56
                log_preds = ntorch.stack([
57
                    model(hypothesis, premise) for model in self.models
58
                ], 'model')
59
                unnorm_preds = logsumexp(log_preds, 'model')
normalizing_factor = logsumexp(unnorm_preds, 'classes')
60
61
62
                return (unnorm_preds - normalizing_factor)
63
                #return ntorch.log(log_preds.softmax('classes').mean('model'))
```