

Stroke Predictor

University of Minnesota Data Visualization and Analytics Boot Camp
Team 2 — Janice Courtois, Alex Norgren, Tom Pankratz, Rachel Rautenberg

June 9, 2022

Team 2

Team 2 members all work at Mayo Clinic.

Janice Courtois

- Works in Healthcare Technology Management
- Lives on horse ranch
- Travels often to visit kids & grandson

Alex Norgren

Tom Pankratz

- 19 years at Mayo Clinic
- Manages a digital experimentation team
- Dad of 4

Rachel Rautenberg

- Holds MHA
- 14 years at Mayo
- Mom of 4
- Enjoys the chaos

Topic: Stroke mortality

Goal of project & questions?

Brainstorming possible factors

Factors we landed on

Health-related:

- Smoking
- Obesity
- Access to healthy foods
- Access to exercise opportunities
- Primary care availability
- Availability of mental health providers

Social-related:

- College education
- Unemployment
- Income
- Violent crime rate
- Air pollution
- Length and type of commute to work
- Urban vs. rural

Source data

Stroke Mortality Data Among US Adults (35+) by State/Territory and County (2018)

County Health Rankings (2018)

Data exploration and integration

- Cleaning
- Preprocessing
- Merging in PostgreSQL

Target: Stroke mortality dataset

Python notebook file

Features: Health rankings datasets

Python notebook file

Datasets merge via PosgreSQL

Python notebook file

PostgreSQL post-join view

Analysis

- Machine learning model exploration
- Training and testing
- Model choice
- Model importances
- Model output and usage

Machine learning model exploration

Machine learning model exploration

```
print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
 Mean Absolute Error: 9.381482041587901
     Mean Squared Error: 147.05343147069945
     Root Mean Squared Error: 12.12655892950261
[16] # Optimize / tune
     from sklearn.model selection import GridSearchCV
     random forest tuning = RandomForestRegressor(random state = 1)
     param grid = {
        'n_estimators': [10, 20, 50],
        'max features': ['auto', 'sqrt', 'log2'],
        'max depth' : [5,10,15],
        'criterion' :['squared_error', 'absolute error']
     g search = GridSearchCV(estimator=random forest tuning, param grid=param grid, cv=5, n jobs = 1, verbose = 0)
     g_search.fit(X_train, y_train)
     print(g search.best params )
     {'criterion': 'absolute error', 'max depth': 15, 'max features': 'sqrt', 'n estimators': 50}
     # Test with tuned parameters
     regressor = RandomForestRegressor(n estimators=50, criterion='absolute error', max depth=15, max features='sqrt', random state=0)
     regressor.fit(X train, y train)
     y pred = regressor.predict(X test)
     print('Mean Absolute Error:', metrics.mean absolute error(y test, y pred))
     print('Mean Squared Error:', metrics.mean squared error(y test, y pred))
     print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, y pred)))
     Mean Absolute Error: 9.1944404536862
     Mean Squared Error: 142.1976518204159
     Root Mean Squared Error: 11.924665690090263
```

Training and testing

Model choice

Model importances

Model importances: Top 5

Model output and usage

Question: Could we input variations of the feature data to determine what sort of effect it would have on stroke mortality?

The stroke predictor web input form

Enter any combination of health and social factor values below to predict effect on Stroke Mortality

Features data maps dashboard

Factors that could correlate with Stroke Mortality rates

Result of analysis

- Results following model inputs
- Recommendation for future analysis
- What could we have done differently?

Results

Percent Smokers appeared to have the largest impact on stroke mortality, but beyond that, it was difficult to determine impacts from the other features. It was less a matter of machine learning model choice, and more a matter of the choice of features/factors.

Recommendations

Choose features/factors that have already been determined by the health care community to have a larger impact on predicting stroke mortality, as a starting point.