Université de M'sila Faculté : MI

Examen (S1)

Date: 11/01/2023 Durée: 01^h:30

Département : Informatique

que Structure Machine 1
(A) ممنوع استخدام الآلة الحاسبة والهاتف النقال

Nom et Prénom :	Groupe :
1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	Orvupc •

Exercice 1: $(7.5 \text{ Pts} = 4.5 (3 (0.75 \times 4) + 0.75 + 0.75) + 2 (1+1) + 1)$

1) Faire les conversions suivantes :

10	2	8	16
37,625			
$8^3 + 2^4 + 2^3 + 8^{-1}$			
		76,5	
			3B,8

$$D5C_{(16)} = \dots (Gray)$$

- 2) Effectuer en BCD puis en Excédant-3 l'opération suivante : 123₍₈₎ + 34₍₁₆₎
- 3) Trouver la représentation hexadécimale en ASCII du : MACHINE2

Rappel : le code du caractère $\mathbf{0}$ est $(48)_{10}$, le code du caractère \mathbf{A} est $(65)_{10}$, le code du caractère \mathbf{a} est $(97)_{10}$

Exercice 2:
$$(4.5 \text{ Pts} = 2.25 (0.75 \times 3) + 2.25 (1.5 + 0.75))$$

1) Trouver les valeurs Décimales, SVA, CR (Cà1) et CV (Cà2) pour les cas suivants (sur 9 bits) :

Décimal	SVA	CR (Cà1)	CV (Cà2)
+23			
		111100011	
			111010010

2) Effectuer sur 7 bits en C1 les opérations suivantes puis donner les résultats en décimal :

$$-3A_{(16)} + 36_{(8)}$$
 /// $+47_{(8)} + 2B_{(16)}$

Exercice 3: (4 pts = 2 (1+1) + 2 (1+1))

Prenant la notation de la virgule flottante simple précision (32 bits) du standard ANSI / IEEE 754

1) Donner la représentation en ANSI / IEEE 754 (S.P) des nombres suivants :

$$-37.625 \times 2^{-109}_{(10)}$$
 /// $+62.5 \times 2^{-133}_{(10)}$

2) Donner sous la forme $\pm M \times 2^{Er}$ les valeurs de X et de Y qui correspondant aux représentations hexadécimales suivantes : $\mathbf{X} = 92\mathbf{D}00000_{(16)}$, $\mathbf{Y} = 80200000_{(16)}$ (M et 2^{Er} sont **décimaux**)

Exercice 4: (4 pts = 1+1+1+1)

$$F(A,B,C) = AB + B (A\overline{C} + \overline{A}C)$$

- 1. Dresser la table de vérité de F
- 2. Trouver les deux formes canoniques de F
- 3. Simplifier **F** algébriquement
- 4. Tracer le logigramme de F (simplifiée) à l'aide des portes NANDs

Corrigé type d'Examen Structure Machine 1 (2022/2023) (A)

Exercice 1: $(7.5 \text{ Pts} = 4.5 (3 (0.75 \times 4) + 0.75 + 0.75) + 2 (1+1) + 1)$

1) Faire les conversions suivantes :

10	2	8	16
37,625	100101.101	45.5	25.A
$8^3 + 2^4 + 2^3 + 8^{-1}$	1000011000,001	1030.1	218.2
62.625	111110.101	76,5	3E.A
59.5	00111011.1000	73.4	3B,8

3) la représentation hexadécimale en ASCII du : MACHINE2

4D 41 43 48 49 4E 45 32

Exercice 2: $(4.5 \text{ Pts} = 2.25 (0.75 \times 3) + 2.25 (1.5 + 0.75))$

1) Trouver les valeurs Décimales, SVA, CR (Cà1) et CV (Cà2) pour les cas suivants (sur 9 bits) :

Décimal	SVA	CR (Cà1)	CV (Cà2)
+23	000010111	000010111	000010111
-28	100011100	111100011	111100100
-46	100101110	111010001	111010010

2) Effectuer sur 7 bits en C1 les opérations suivantes puis donner les résultats en décimal :

$$-3A_{(16)} + 36_{(8)} \quad /// \quad +47_{(8)} + 2B_{(16)}$$

$$-3A_{(16)} = -0011 \ 1010_{(2)} = 1000101_{(C1)} \quad (sur 7 bits) \qquad +47_{(8)} = 0100111_{(C1)}$$

$$+ 36_{(8)} = +011 \ 110_{(2)} = 0011110_{(C1)} \qquad +2B_{(16)} = 0101011_{(C1)}$$

```
Exercice 3: (4 \text{ pts} = 2 (1+1) + 2 (1+1))
```

Prenant la notation de la virgule flottante simple précision (32 bits) du standard ANSI / IEEE 754

1) Donner la représentation en ANSI / IEEE 754 (S.P) des nombres suivants :

$$-37.625 \times 2^{-109}_{\ \ (10)}$$
 /// $+62.5 \times 2^{-133}_{\ \ (10)}$

$$-37.625\times2^{\text{-}109}_{\text{ }(10)} = -100101.101_{(2)}\times2^{\text{-}109} = -1.00101101_{(2)}\times2^{5}\times2^{\text{-}109} = -1.00101101_{(2)}\times2^{\text{-}104} = -1.00101101_{(2)}\times2^{\text{-}104} = -1.00101101_{(2)}\times2^{\text{-}109} = -1.001011101_{(2)}\times2^{\text{-}109} = -1.00101101_{(2)}\times2^{\text{-}109} = -1.001$$

Le nombre Normalisé

S = 1

f = 00101101

$$Er = -104 \implies Eb = Er + 127 = -104 + 127 = 23_{(10)} = 10111_{(2)}$$

$$+62.5 \times 2^{-133}_{(10)} = +111110.1_{(2)} \times 2^{-133} = +1.111101_{(2)} \times 2^{5} \times 2^{-133} = +1.111101_{(2)} \times 2^{-128}$$

Le nombre Dénormalisé = $+0.011111101 \times 2^{-126}$

S = 0

f = 01111101

 $\mathbf{E}\mathbf{b} = \mathbf{0}$

0 0000000 01111101000000000000000

2) Donner sous la forme $\pm M \times 2^{Er}$ les valeurs de X et de Y qui correspondant aux représentations hexadécimales suivantes : $\mathbf{X} = 92\mathbf{D}00000_{(16)}$, $\mathbf{Y} = 80200000_{(16)}$ (M et 2^{Er} sont **décimaux**)

 $\mathbf{X} = 92\mathbf{D}00000_{(16)} = 10010010110100000000000000000000_{(2)}$

0<Eb<255 => Le nombre X est Normalisé

S = 1 => X < 0

 $Eb = 00100101_{(2)} = 37_{(10)} = Er = Eb - 127 = 37-127 = -90_{(10)}$

 $M = 1.f = 1.101_{(2)} = 1.625_{(10)}$

Donc: $X = -1.101_{(2)} \times 2^{-90} = -1.625_{(10)} \times 2^{-90}$

Eb = 0 et f \neq 0 => Le nombre Y est Dénormalisé

S = 1 => Y < 0

Eb = 0 (et $f \neq 0$) => Er = -126

 $M = 0.f = 0.01_{(2)} = 0.25_{(10)}$

Donc: $\mathbf{Y} = -0.01_{(2)} \times 2^{-126} = -0.25_{(10)} \times 2^{-126}$

Exercice 4: (4 pts = 1+1+1+1)

$$F(A,B,C) = AB + B (A\overline{C} + \overline{A}C)$$

1. La table de vérité de F

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2. Les deux formes canoniques de F

1ère forme : la forme **Disjonctive** (F.D)

$$F(A,B,C) = \overline{A}BC + AB\overline{C} + ABC = \sum (3,6,7)$$

2ème forme : la forme **Conjonctive** (F.C)

$$F(A,B,C) = (A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)(\overline{A}+B+\overline{C}) = \prod (0,1,2,4,5)$$

3. Simplification de F algébriquement :

$$F(A, B, C) = AB + B (A\overline{C} + \overline{A}C)$$

$$= AB + AB\overline{C} + \overline{A}BC$$

$$= AB (1 + \overline{C}) + \overline{A}BC$$

$$= AB + \overline{A}BC$$

$$= B (A + \overline{A}C)$$

$$= B (A + C)$$

$$= AB + BC$$

4. Le logigramme de F (simplifiée) à l'aide des portes NANDs

