

第四章 分离性公理

4.1 T_0 , T_1 , $T_2(Hausdorff)$ 空间

T_0 空间:

设X是一个拓扑空间, $\forall x,y\in X$, $x\neq y$, $\exists U_x$, $s.t.y\notin U_x$ 或 $\exists U_y$, $s.t.x\notin U_y$

命题4.1.1: 设X 是 T_0 空间 $\iff x,y \in X, x \neq y, 则 <math>\overline{\{x\}} \neq \overline{\{y\}}$.

T_1 空间:

设X是一个拓扑空间, $\forall x,y\in X$, $x\neq y$, $\exists U_x$, $s.t.y\notin U_x$.

 $易知T_1空间是T_0的, 反之不然$

例子: $X = 0, 1, \mathcal{J} = \{\emptyset, \{0\}, A\}$

命题4.1.2:

设X是拓扑空间,则以下条件等价:

- (1) X是 T_1 的
- (2) X的单点集是闭集
- (3) X的有限子集是闭集

命题4.1.3:

设 X 是 T_1 的, 则 x 是 $A \subset X$ 的聚点 $\iff \forall U_x, U_x \cap A$ 是无限集。

命题4.1.4:

设 X 是 T_1 的,则有限个点构成的序列 $\{x_i\}_{i\geq 1}\in X$ 收敛于 $x\in X\iff \exists N, s.t. \forall i\geq N, x_i=x.$

$T_2(Hausdorff)$ 空间:

设 X 是一个拓扑空间, $\forall x, y \in X$, $x \neq y$, $\exists U_x, U_y, s.t.U_x \cap U_y = \emptyset$.

易知 T_2 空间是 T_1 的,反之不然

例子: 无限多个点的有限补空间。

命题4.1.5:

 T_2 空间收敛序列只有一个收敛点。

命题4.1.6:

收敛序列极限点唯一的第一可数空间是 T_2 的。

4.2 正则, 正规, T_3 , T_4 空间

集合领域:

设 X 是拓扑空间, $A,U\subset X$, $A\subset int(U)$, 则称 U 是 A 的领域。

正则空间:

设 X 是拓扑空间, $x\in X$, 闭集 $A\subset X$, $x\notin A$, $\exists U_x,U_A$, $s.t.U_x\cap U_A=\varnothing$, 则称 X 正则。

命题4.2.1:

设 X 是拓扑空间, X 正则 $\Longleftrightarrow \ \forall x \in X$ 和 x 的开领域 U , $\exists x$ 的开领域 V , s.t. $\overline{V} = U$.

正规空间:

设 X 是拓扑空间,闭集 $A,B\subset X$, $A\cap B=\varnothing$, $\exists U_A,U_B,s.t.U_A\cap U_B=\varnothing$, 则称 X 正 规。

正规非正则的例子:

$$X = \{1, 2, 3\},\$$
 $\mathcal{J} = \{\varnothing, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$

命题4.2.1:

设 X 是拓扑空间, X 正规 $\iff \forall$ 闭集 $A\subset X$ 和 A 的开领域 U, $\exists A$ 的开领域 V, s.t. $\overline{V}=U$.

正则且正规非 T_0 的例子:

$$X = \{1, 2, 3\}, \mathcal{J} = \{\varnothing, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$$

 T_2 非正则,非正规的例子:

 $\mathbb R$ 的通常拓扑 $\mathcal J$

$$K = \{rac{1}{n}: n \in \mathbb{Z}_+\} \ \mathcal{J}_1 = \{G-E: G \in \mathcal{J}, E \in K\}$$

 $(\mathbb{R},\mathcal{J}_1)$ 为例子。

 T_3 空间: 正则且 T_1

 T_4 空间: 正规且 T_2

命题4.2.2: 度量空间是 T_4 的

4.3 Uryshon引理和Tietze扩张定理

Uryshon引理:

设 X 是一个拓扑空间, [a,b] 是闭区间, 则 X 正规 \iff X 中任意两个不交闭集 A,B, 存在 连续的 $f:X\to [a,b]$, 使得 $f|_A=a,f|_B=b$.

命题4.3.1:

设 $X \in T_4$ 的, $C \in X$ 的连通子集, |C| > 1, 则 $C \in T$ 是不可数集。

引理:

设 X 是一个正规空间,A 是 X 的一个闭子集, λ 是一个正实数,则对于任何一个连续映射: g: $A \to [-\lambda, +\lambda]$,存在着一个连续映射: $g^*: X \to [-\frac{1}{3}\lambda, +\frac{1}{3}\lambda]$,使得对于任何的 $a \in A$,有 $|g(a)-g^*(a)| \leq \frac{2}{3}\lambda$

Tietze扩张定理:

设 X 是一个拓扑空间, [a,b] 是闭区间, 则 X 正规 \iff X 中不交闭集 A, 连续的 $f:A\to [a,b]$, 有一个连续映射 $g:X\to [a,b]$ 是 f 的扩张。

4.4 完全正则空间, Tychonoff空间

完全正则空间:

设 X 是拓扑空间, $x\in X$, 闭集 $B\subset X$, $x\notin B$, 存在一个连续映射 $f:X\to [0,1]$, 使得 f(x)=0, $f|_B=1$, 则称 X 是完全正则空间。

Tychonoff**空间**: 完全正则的 T_1 空间

命题4.1.1: 完全正则空间是正则的。

Tychonoff空间是 T_3 的。 T_4 空间是Tychonoff的。

命题4.1.2: 正则且正规的空间是完全正则空间。

Tychonoff定理: 正则的Lindeliof空间是正规的。

4.5 分离性公理的性质

性质4.5.1: 都有拓扑不变性

性质4.5.2: 除了正规和 T_4 都有遗传性质,这两个有闭子空间遗传性质。

性质4.5.3: 除了正规和 T_4 都有可积性质

4.6 可度量化空间

Hilbert空间H的子空间 l^2 :

$$l^2\stackrel{\Delta}{=\!\!\!=} \{\{a_n\}_{n\geq 1}: a_n\in \mathbb{R}, orall m, \sum_{n=1}^m a_n^2 <\infty\}$$

- l^2 是度量空间
- *l*² 可分
- l² 完备

Uryshon嵌入定理:

设 X 是第二可数的 T_3 空间, 则 X 可嵌入拓扑 l^2 .