Practice IMC

Seed: 961016

Problem 1 A gardener plants three maple trees, four oaks, and five birch trees in a row. He plants them in random order, each arrangement being equally likely. Let $\frac{m}{n}$ in lowest terms be the probability that no two birch trees are next to one another. Find m + n.

Problem 2 The equation $2000x^6 + 100x^5 + 10x^3 + x - 2 = 0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}{r}$, where m, n and r are integers, m and r are relatively prime, and r > 0. Find m+n+r.

Problem 3 Prove that in the set $\{1, 2, ..., 1989\}$ can be expressed as the disjoint union of subsets $A_i, \{i = 1, 2, ..., 117\}$ such that

- i.) each A_i contains 17 elements
- ii.) the sum of all the elements in each A_i is the same.

Problem 4 Let n > 6 be an integer and a_1, a_2, \dots, a_k be all the natural numbers less than n and relatively prime to n. If

$$a_2 - a_1 = a_3 - a_2 = \dots = a_k - a_{k-1} > 0$$
,

prove that n must be either a prime number or a power of 2.

Problem 5 Fix an integer $b \ge 2$. Let f(1) = 1, f(2) = 2, and for each $n \ge 3$, define f(n) = nf(d), where d is the number of base-b digits of n. For which values of b does

$$\sum_{n=1}^{\infty} \frac{1}{f(n)}$$

converge?