

Urban Sprawl: Low density, auto-dependent development

Impacts:

- Traffic congestion
- Higher carbon emissions
- Increased air pollution,
- Loss of valuable wildlife habitat
- Negative health impacts: Tied to obesity and respiratory problems

Urban Sprawl: Low density, auto-dependent development

Impacts:

- Traffic congestion
- Higher carbon emissions and increased air pollution
- Loss of valuable wildlife habitat
- Negative health impacts: Tied to obesity and respiratory problems

Urban Sprawl: How to Measure

- Land Surveys:
 - Expensive
 - Produced infrequently
 - Subject to measurement problems
- Satellite imagery:
 - High resolution
 - Global scale
 - Flexibility

Urban Sprawl: How to Measure

- Land Surveys:
 - Expensive
 - Produced infrequently
 - Subject to measurement problems
- Satellite imagery:
 - High resolution
 - Global scale
 - Flexibility

Project Goal: Develop a model that can detect urban areas using satellite images

Workflow

Data Collection

Collected and cleaned satellite images using Google Earth Engine

Model Development

Develop a CNN model that can identify urban and non urban areas

Measure Urban Sprawl

Compare urban development in Seattle and Las Vegas over time

Apply classifier to satellite images of Seattle and Las Vegas

Satellite Data

- Data: 27000 Sentinel-2 labeled satellite images from the German Research Institute of Artificial Intelligence
- Two Overall Categories, 10 subcategories
- Urban: Industrial, Residential, Highway
- Non Urban: Annual Crop, Permanent Crop, River, Sea/Lake, Vegetation,
 Pasture, Forest.

Model and Performance

Model: CNN using transfer learning with the fastai library

Predicting 10 Categories Accuracy: 0.94

Examples of Errors:

Predicted: Vegetation Actual: Permanent Crop

Predicted: Pasture Actual: Annual Crop

Model Performance

Predicting 2 Categories Accuracy (urban vs not urban): 0.99

Urban Recall: 0.98

Urban Precision: 0.98

Model Application

Model Application

Model Application

Model prediction: Urban (Residential)

Urban sprawl in Seattle

Seattle: 1984

- 108% growth in developed area
- 77% growth in population
- Ratio = 1.4: 1

Urban sprawl in Las Vegas

Las Vegas: 1984

Las Vegas: 2020

- 634% growth in developed area
- 409% growth in population
- Ratio = 1.6:1

Conclusion

- Developed a CNN model that can identify satellite images as urban and not urban with high accuracy.
- Can apply that model to satellite images of Seattle
- Developed a simpler and faster model to look at urban sprawl over time
 in Seattle and Las Vegas

Thanks! Questions?

julia12358@gmail.com

Future Plans

- Improve visualization of the urban areas in Seattle.
- Look at other cities, like Austin, Las Vegas, etc.

Urban Sprawl: Low density, auto-dependent development

- Economic impacts: Traffic congestion, increased economic disparity
- Environmental impacts: Higher carbon emissions, increased air pollution, loss of valuable wildlife habitat
- Health impacts: Tied to obesity and respiratory problems

Urban Sprawl: Low density, auto-dependent development

- Economic impacts: Traffic congestion, increased economic disparity
- Environmental impacts: Higher carbon emissions, increased air pollution, loss of valuable wildlife habitat
- Health impacts: Tied to obesity and respiratory problems

Urban Sprawl: Low density, auto-dependent development

- Economic impacts: Traffic congestion, increased economic disparity
- Environmental impacts: Higher carbon emissions, increased air pollution, loss of valuable wildlife habitat
- Health impacts: Tied to obesity and respiratory problems

Seattle Urban Sprawl: 1984-2018

Las Vegas Urban Sprawl: 1984-2018

Satellite Data

Band	Spatial Resolution m	Central Wavelength nm
B01 - Aerosols	60	443
B02 - Blue	10	490
B03 - Green	10	560
B04 - Red	10	665
B05 - Red edge 1	20	705
B06 - Red edge 2	20	740
B07 - Red edge 3	20	783
B08 - NIR	10	842
B08A - Red edge 4	20	865
B09 - Water vapor	60	945
B10 - Cirrus	60	1375
B11 - SWIR 1	20	1610
B12 - SWIR 2	20	2190

Satellite Data

Band	Spatial Resolution m	Central Wavelength nm
B01 - Aerosols	60	443
B02 - Blue	10	490
B03 - Green	10	560
B04 - Red	10	665
B05 - Red edge 1	20	705
B06 - Red edge 2	20	740
B07 - Red edge 3	20	783
B08 - NIR	10	842
B08A - Red edge 4	20	865
B09 - Water vapor	60	945
B10 - Cirrus	60	1375
B11 - SWIR 1	20	1610
B12 - SWIR 2	20	2190

Permanent Crop

