

Buffered H-Bridge

FEATURES

- 1.0-A H-Bridge
- 200-kHz Switching Rate
- Shoot-Through Limited
- TTL Compatible Inputs
- 3.8- to 13.2-V Operating Range
- Surface Mount Packaging

APPLICATIONS

- VCM Driver
- Brushed Motor Driver
- Stepper Motor Driver
- Power Converter
- Optical Disk Drives
- Power Supplies
- High Performance Servo

DESCRIPTION

The Si9986 is an integrated, buffered H-bridge with TTL compatible inputs and the capability of delivering a continuous 1.0 A @ V_{DD} = 12 V (room temperature) at switching rates up to 200 kHz. Internal logic prevents the upper and lower outputs of either half-bridge from being turned on simultaneously. Unique input codes allow both outputs to be forced low (for braking) or forced to a high impedance level.

The Si9986 is available in both standard and lead (Pb)-free, 8-pin SOIC packages, specified to operate over a voltage range of 3.8 V to 13.2 V, and the commercial temperature range of 0 to 70°C (C suffix) and the industrial temperature range of -40 to 85°C (D suffix).

FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE

TRUTH TABLE				
INA	IN _A IN _B OUT _A OUT			
1	0	1	0	
0	1	0	1	
0	0	0	0	
1	1	HiZ	HiZ	

ORDERING INFORMATION				
Part Number	Temperature Range	Package		
Si9986CY-T1	0 to 70°C	Tone and Deal		
Si9986DY-T1	−40 to 85°C	Tape and Reel		
Si9986CY-T1—E3	0 to 70°C	Load Free Tone and Deal		
Si9986DY-T1—E3	−40 to 85°C	Lead Free Tape and Reel		
Si9986CY	0 to 70°C	Bulk (tubes)		
Si9986DY	-40 to 85°C	Duik (tubes)		

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS^a

Voltage on any pin with respect to ground –0.3 V to V_{DD} +0.3 V
Voltage on pins 5, 8 with respect to GND $$
Voltage on pins 1, 4 $$ –0.3 V to GND +1 V $$
Peak Output Current
Storage Temperature
Maximum Junction Temperature (T_J)
$Maximum \ V_{DD} \ \dots \ 15 \ V$

Power Dissipation ^b
θ_{JA}
Operating Temperature Range
Si9986CY 0 to 70°C
Si9986DY40 to 85°C
Notes
 a. Device mounted with all leads soldered or welded to PC board. b. Derate 10 mW/°C above 25°C.

RECOMMENDED OPERATING RANGE

V _{DD}	.2 V
Maximum Junction Temperature (T _J)	5°C

SPECIFICATIONS								
		Test Conditions Unless Otherwise Specified V _{DD} = 3.8 to 13.2 V S _A @ GND, S _B @ GND		Limits C Suffix, 0 to 70°C D Suffix, -40 to 85°C				
Parameter	Symbol			Mina	Турь	Maxa	Unit	
Input				•		1		
Input Voltage High	V _{INH}			2			V	
Input Voltage Low	V _{INL}					1	∃	
Input Current with Input Voltage High	I _{INH}	V _{IN} = 2 V				1		
Input Current with Input Voltage Low	I _{INL}	V _{IN} = 0 V		-1			μΑ	
Output								
Output Voltage High		I _{OUT} = -500 mA	V _{DD} = 10.8 V	10.5	10.7			
	V _{OUTH}		V _{DD} = 4.5 V	4.1	4.3			
		I _{OUT} = -300 mA, V _{DD} = 3.8 V		3.4	3.7			
Output Voltage Low	V _{OUTL}	I _{OUT} = 500 mA	V _{DD} = 10.8 V		0.2	0.3]	
			V _{DD} = 4.5 V		0.2	0.4		
		I _{OUT} = 300 mA, V _{DD} = 3.8 V			0.1	0.4	1	
Output Leakage Current High	I _{OLH}	$IN_A = IN_B \ge 2 \text{ V}, V_{OUT} = V_{DD} = 13.2 \text{ V}$		-10	0			
Output Leakage Current Low	I _{OLL}	V _{OUT} = 0, V _{DD} = 13.2 V			0	10	μA	
Output V Clamp High	V _{CLH}	IN IN COV	I _{OUT} = 100 mA		V _{DD} +0.7		V	
Output V Clamp Low	V _{CLL}	$IN_A = IN_B \ge 2 V$	I _{OUT} = -100 mA		-0.7			
Supply								
V _{DD} Supply Current		IN = 100 kHz, V _{DD} = 5 V			2		mA	
	$IN_A = IN_B = 4.$		5 V, V _{DD} = 5.5 V			300	μΑ	
Dynamic								
Propogation Delay Time	T _{PLH}	- V _{DD} = 5 V			300		nS	
	T _{PHL}				100			

Notes
a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

