

Lecture 8.3 - Supervised Learning Neural Networks - Losses

Erik Bekkers

(Bishop 5.2.0)

Slide credits: Patrick Forré and Rianne van den Berg

Network Training

- Dataset: inputs $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$ $\mathbf{x}_n \in \mathbb{R}^D$
- Use a probabilistic interpretation of the network outputs to choose
 - 1. Number of outputs
 - 2. Output activation function
 - 3. Loss function!

Network Training: Regression

- Data: inputs $\mathbf{X} = (\mathbf{x}_1,...,\mathbf{x}_N)^T$, and targets $\mathbf{t} = (t_1,...,t_N)^T$ X GIR
- Assume target distribution: $p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}(t \mid g(\mathbf{x}, \mathbf{w}), \beta^{-1})$
- Single target —> Single output unit: $y(\mathbf{x}, \mathbf{w}) = h^{(L)}(a^{\text{out}})$
- Targets are real valued: identity output activation function:

$$y(\mathbf{x}, \mathbf{w}) = h^{(L)}(a^{\text{out}}) = a^{\text{out}}$$

Maximum Likelihood/minimum negative log likelihood:

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 - \frac{N}{2} \ln \beta + \frac{N}{2} \ln 2\pi$$

Equivalently:
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$

Network Training: Binary Classification

- Pata: inputs $\mathbf{X}=(\mathbf{x}_1,...,\mathbf{x}_N)^T$, and targets $\mathbf{t}=(t_1,...,t_N)^T$ $\underbrace{\mathbf{X}}_{\mathbf{n}} \in \mathbb{R}^p \qquad \text{ww}$
- Assume target distribution: $y(\mathbf{x}, \mathbf{w}) = p(t = 1 | \mathbf{x})$ $p(t | \mathbf{x}, \mathbf{w}) = y(\mathbf{x}, \mathbf{w}) \cdot (1 y(\mathbf{x}, \mathbf{w})) \cdot t$
 - Single target —> Single output unit: $y(\mathbf{x}, \mathbf{w}) = h^{(L)}(a^{\text{out}})$
 - Targets are binary: sigmoid output activation function:

$$\mathsf{pot}(\mathbf{x}, \mathbf{w}) = h^{(L)}(a^{\mathrm{out}}) = \sigma(a^{\mathrm{out}}) \quad \boldsymbol{\varepsilon} \quad \mathsf{vol}$$

Maximum Likelihood/minimum negative log likelihood:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \epsilon_n \ln y(\underline{x}_n, \underline{w}) + (1-\epsilon_n) \ln(1-y(\underline{x}_n, \underline{w}))$$

Machine Learning 1

Network Training: Classification with K classes

- Assume target distribution: $p(\mathbf{t}_n|\mathbf{x}_n,\mathbf{w}) = \prod_{k=1}^{K} y_k(\mathbf{x}_n,\mathbf{w})^{t_nk}$ $y_k(\mathbf{x},\mathbf{w}) = p(\mathcal{C}_k|\mathbf{x})$
- K targets —> K output units: $y_k(\mathbf{x}, \mathbf{w}) = h^{(L)}(a_k^{\text{out}})$ $(C_k \mid \mathbf{x}) = \mathbf{y}_k (\mathbf{x}, \mathbf{w}) = \mathbf{y}_k$ Categorical targets: softmax output activation function
 - $y_k(\mathbf{x}, \mathbf{w}) = h^{(L)}(\mathbf{a}^{\text{out}}) = \frac{\exp(a_k^{\text{out}})}{\sum_{i=1}^K \exp(a_i^{\text{out}})}$
 - Maximum Likelihood/minimum negative log likelihood:

$$E(\mathbf{w}) = -\sum_{h=1}^{N} \sum_{k=1}^{K} b_{nk} l_{n} U_{k} (X_{n}, W)$$

Losses overview

To minimize

- Regression
 - Assume Gaussian target distribution
 - NN makes prediction for the mean
 - Output activation is identity
- Binary classification
 - Assume Bernoulli target distribution
 - NN makes prediction for probability for class 1
 - Output activation is logistic sigmoid
- Multi-class classification
 - Assume generalized Bernoulli target distribution
 - NN makes prediction for probability for each class
 - Output activation is soft max function

Least squares errors

Cross-entropy loss

(Multi-class) Cross-entropy loss

Machine Learning 1