Úvod do teorie grup

Zápisky z přednášky doc. Mgr. Jana Šarocha. Ph.D.

Dominik Doležel

Úvodní informace

- skripta: DRÁPAL, Aleš. Teorie grup: základní aspekty. Praha: Karolinum, 2000.
- email: saroch@karlin.mff.cuni.cz

Značení

Množinou přirozených čísel rozumíme množinu $\mathbb{N}=\{1,2,\dots\}$, pak je $\mathbb{N}_0=\mathbb{N}\cup\{0\}$. Zobrazení skládáme zprava doleva, tj. jsou-li $f:A\to B,\ g:B\to C$ dvě zobrazení, pak $g\circ f=gf:A\to C$, tj. pro $a\in A$ je $(g\circ f)(a)=g(f(a))$. Identické zobrazení z A do A značíme id $_A$ nebo $\mathbf{1}_A$.

Kapitola 1

Operátorové grupy

Definice 1. At Ω je množina. Množina G spolu s:

- (i) binární operací $\cdot: G \times G \to G$ (zapisujeme infixem¹),
- $(ii)\,$ unární operací $^{-1}:G\to G$ (zapisujeme postfixem²),
- (iii) nulární operací, tj. konstantou $1 \in G$,
- (iv) unárními operacemi $\omega \in \Omega : G \to G$ (zapisované prefixem³)

se nazývá Ω -grupou, pokud:

- $(i)\,\cdot$ je asociativní, tj. $\forall a,b,c\in G:(a\cdot b)\cdot c=a\cdot (b\cdot c),$
- (ii) 1 je neutrální prvek vzhledem k operaci \cdot , tj. $\forall a \in G : a \cdot 1 = 1 \cdot a = a$,
- (iii) $\forall a \in G \text{ je } a^{-1} \text{ inverzní prvek } k a, \text{ tj. } a \cdot a^{-1} = a^{-1} \cdot a = 1,$
- $(iv) \ \forall \omega \in \Omega \ \text{je } \omega \ \text{slučitelná s} \ \text{operaci} \cdot, \ \text{tj.} \ \forall a,b \in G : \omega(a \cdot b) = \omega(a) \cdot \omega(b).$

Poznámka 1.

- i. Je-li $\Omega = \emptyset$, pak místo o Ω -grupě hovoříme jen o **grupě**.
- ii. Pro všechna $a, b, c \in G$ platí:

$$(a \cdot b = a \cdot c \implies b = c) \land (b \cdot a = c \cdot a \implies b = c).$$

Dokážeme aplikací a^{-1} :

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot c)$$
$$(a^{-1} \cdot a) \cdot b = (a^{-1} \cdot a) \cdot c$$
$$1 \cdot b = 1 \cdot c.$$

¹mezi argumenty

²za argumentem

³před argumentem, tady $\omega()$

iii. Z předchozího plyne $(a^{-1})^{-1} = a$, neboť

$$a^{-1} \cdot (a^{-1})^{-1} = a^{-1} \cdot a \implies a = (a^{-1})^{-1}$$
.

- iv. Inverzní k $a \in G$ je právě jeden prvek, a sice a^{-1} . Neutrální prvek vzhledem k operaci \cdot je právě jeden, a sice 1. (Sporem předpokládejme, že existuje i $1' \neq 1$, ale zároveň $a \cdot 1 = a \cdot 1' \implies 1 = 1'$, což je spor.)
- v. Symbol \cdot se často nepíše.

Definice 2. At G je Ω -grupa. **Řádem** Ω -grupy G rozumíme mohutnost množiny G, značíme |G| nebo ord G.

Definice 3. Buďte G, H Ω -grupy, $f: G \to H$ zobrazení. Řekneme, že f je **homomorfismus** Ω -grup G, H, jestliže

- (i) $\forall a, b \in G : f(a \cdot b) = f(a) \cdot f(b)$ a
- (ii) $\forall a, b \in G, \forall \omega \in \Omega : f(\omega(a)) = \omega(f(a)).$

Lemma 1. Je-li $f: G \to H$ homomorfismus Ω -grup, pak f(1) = 1 a $\forall a \in G: f(a^{-1}) = (f(a))^{-1}$.

Důkaz. Platí:

$$1 \cdot f(1) = f(1) = f(1 \cdot 1) = f(1) \cdot f(1) \implies f(1) = 1.$$

Dále

$$f(a^{-1}) \cdot f(a) = f(a^{-1} \cdot a) = f(1) = 1,$$

ale taky

$$f(a) \cdot f(a^{-1}) = f(a \cdot a^{-1}) = f(1) = 1,$$

odkud plyne $f(a^{-1}) = (f(a))^{-1}$, jelikož jediný inverzní prvek k f(a) je pouze $(f(a))^{-1}$. \square

Definice 4. At $f: G \to H$ je homomorfismus Ω -grup. Pak f je:

- (i) izomorfismus, jestliže f je bijektivní;
- (ii) endomorfismus (grupy G), jestliže G = H;
- (iii) automorfismus, jestliže je f endomorfismus a izomorfismus.

Cvičení 1. Ať $f: G \to H$ je homomorfismus Ω -grup. Ukažte, že f je izomorfismus právě tehdy, když existuje homomorfismus $g: H \to G$ tak, že $f \circ g = \mathrm{id}_G$ a $g \circ f = \mathrm{id}_H$.

Lemma 2. (i) At $f: G \to H$, $g: H \to K$ jsou homomorfismy Ω -grup. Pak $g \circ f$ je homomorfismus.

(ii) Je-li $f: G \to H$ homomorfismus, pak $f^{-1}: H \to G$ je opět homomorfismus.

Důkaz. (i) Snadné.

(ii) f^{-1} je jistě bijekce, ověříme jen, že f^{-1} je homomorfismus. Počítejme

$$f(f^{-1}(a) \cdot f^{-1}(b)) = f(f^{-1}(a)) \cdot f(f^{-1}(b)) = a \cdot b.$$

Na tuto rovnost aplikujeme f^{-1} :

$$f^{-1}(a) \cdot f^{-1}(b) = f^{-1}(a \cdot b).$$

Ať $\omega \in \Omega$, $a \in H$ jsou libovolná. Pak

$$f\left(\omega\left(f^{-1}(a)\right)\right) = \omega\left(f\left(f^{-1}(a)\right)\right) = \omega(a).$$

Opět aplikujeme f^{-1} :

$$\omega\left(f^{-1}(a)\right) = f^{-1}\left(\omega(a)\right),\,$$

což jsme chtěli dokázat.

Definice 5. Pokud je v Ω -grupě G operace · komutativní, tj.

$$\forall a, b \in G : a \cdot b = b \cdot a$$
,

potom nazýváme G komutativní (též abelovskou) Ω -grupou.

Příklad 1. 1. $\Omega = \emptyset$:

- $(\mathbb{Z}, +, -, 0)$ je abelovská grupa
- X je množina, $S(X) = \{\sigma: X \to X, \sigma \text{ bijekce}\}$ s operacemi o (skládání zobrazení), $^{-1}$ (inverzní zobrazení), 1 (identické zobrazení) S(x) je abelovská právě tehdy, když |X| < 3. Je-li $X = \{1, 2, \ldots, n\}, n \in \mathbb{N}$, pak $S(X) := S_n^{-4}$.
- R je okruh, pak (R,+,-,0) je abelovská grupa, $(R^*,\cdot,^{-1},1)$, kde $R^*=\{r\in R,\exists s\in R,r\cdot s=s\cdot r=1\}$ je grupa invertibilních prvků
- $n \in \mathbb{N}, T$ je těleso, $M_n(T)$ je okruh matic $n \times n$ nad tělesem T $(M_n(T))^* = \{A \in M_n(T), \det(A) \neq 0\} := GL_n(T)^5$
- At G=(V,E) je neorientovaný graf. Pak $Aut(G)=\{f:V\to V,f \text{ automorfismus grafu }G\}$. Speciálně pro graf $C_n,\ n\in\mathbb{N}\smallsetminus\{1,2\}$ platí $Aut(C_n):=D_{2n}=D_n\leq S_n$.
- 2. $\Omega \neq \emptyset$:

T je (komutativní) těleso, V je vektorový prostor nad T. Pak (V, +, -, 0) je abelovská grupa, $\Omega = \{ \cdot t : V \to V, t \in T \}$. V je Ω -grupa.

Obecněji: R je okruh, M je (pravý) modul nad R. Například je-li $M = N_{2\times 3}(T)$, pak

 $^{^4}$ symetrická grupa na nprv
cích

⁵zobecněná lineární grupa

 $\left(M,+,-,\begin{pmatrix}0&0&0\\0&0&0\end{pmatrix}\right)$ je abelovská grupa. Je-li $R=M_3(T),\,M$ je pravý R modul, pakMje $\Omega\text{-grupa}.$

Definice 6. At G je Ω -grupa, $A \subseteq G$. Pak A nazveme Ω -podgrupou Ω -grupy G, píšeme $A \leq G$, pokud:

- (i) $1 \in A$,
- (ii) $\forall a, b \in A : a \cdot b \in A \text{ a } a^{-1} \in A$,
- (iii) $\forall a \in A : \forall \omega \in \Omega : \omega(a) \in A$.

Důsledek 1. At G je Ω -grupa. Množina Aut(G) všech automorfismů Ω -grupy G tvoří spolu s operacemi \circ , $^{-1}$, id $_G$ grupu. Platí $Aut(G) \leq S(G)$.

Důsledek 2. At G je Ω -grupa, $\omega \in \Omega$. Pak $\omega : G \to G$ je endomorfismus grupy G (tj. \emptyset -grupy G). Mj. platí, že $\omega(1) = 1$, $\omega(a^{-1}) = (\omega(a))^{-1} \forall a \in G$.

 $D\mathring{u}kaz$. Plyne ihned z 1.

Poznámka 2. Často je přímo $\Omega \subseteq End(G) = \{f : G \to G, f \text{ je endomorfismus grupy } G\}.$

Lemma 3. At G je grupa, $g \in G$ libovolné. Označme $\alpha_G : G \to G$ takové, že $\forall a \in G : \alpha_G(a) = gag^{-1}$. Pak je $\alpha_g \in Aut(G)$ a nazývá se vnitřní automorfismus určený prvkem g.