# Analyse der Effizienzverluste von Wechselrichtern in PV-Portfolios durch Auswertung von Betriebsdaten

David Daßler<sup>1</sup>, Stephanie Malik<sup>1</sup>, Dharm Patel, Andreas Dietrich<sup>2</sup>, Jan Spihola<sup>2</sup>, Kai Kaufmann<sup>3</sup>, Carsten Hennig<sup>4</sup>, Robert Klengel<sup>1</sup>, Carola Klute<sup>1</sup>, Matthias Ebert<sup>1</sup>

1 Fraunhofer IMWS, Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen, Walter-Hülse-Straße 1, 06120 Halle 2 DiSUN, Deutsche Solarservice GmbH, Mielestraße 2, 14542 Werder (Havel)

3 DENKweit GmbH, Blücherstraße 26, 06120 Halle

4 saferay holding GmbH, Rosenthaler Str. 34-35, 10178 Berlin





#### MOTIVATION UND ZIELSTELLUNG

- Ertragseinbußen in PV-Systemen → Ursachenanalyse zur Fehlerdiagnose am PV-Generator und Wechselrichter
- Langfristige Verschlechterung der Wechselrichter-Effizienz (=  $P_{AC}/P_{DC}$ ) über die Betriebszeit bisher wenig erforscht → jährliche Degradation der Wechselrichter-Effizienz in %/a wenig bekannt
- Physikalische Modelle berücksichtigen keine Software-Algorithmen, keine internen Steuerungsprozesse und kein dynamisches MPP-Tracking → Einsatz von Künstlichen Neuronalen Netzen (KNN)
- Ziel: Datengetriebene Analyse der Wechselrichter-Effizienz mittels Betriebsdaten und KNN (Maschinelles Lernen)

#### **Monitoring-Daten**

- 1. Datenvorverarbeitung
- 2. Modellierung Künstliche **Neuronale Netze (→ SOLL)** 
  - 3. IST-/SOLL-Vergleich

Vorgehensweise

#### 1. DATENVORVERARBEITUNG

■ **Datensatz:** PV-System bestehend aus 9 Zentralwechselrichtern (jeweils 630 kW Nennleistung) in moderatem Klima, installiert in Deutschland, 12 Jahre Betriebsdaten (2012 bis 2023) in minütlicher Auflösung

### Erstellung des Trainingsdatensatzes:

- Zeiträume ohne Nachtwerte (Elevation der Sonne > 0°)
- Betriebsdaten ohne Fehlermeldungen und Abregeln
- Klare und bewölkte (leicht und komplett) Bestrahlungszustände (basierend auf einer Klassifizierung der Bestrahlungsstärke [1] nach dem Bewölkungsgrad: klar, leicht bewölkt, bewölkt, variabel)

3. IST-/SOLL-VERGLEICH

Bestimmung der Effizienzkurve durch die jeweiligen Mediane (Breite: rund 10 kW)



Jährliche Übersicht der vorhergesagten und gemessenen Werte der Wechselrichter-Effizienz eines Wechselrichters in Bezug zur jeweiligen Ausgangsleistung

# 2. MODELLIERUNG MITTELS KÜNSTLICHER NEURONALER NETZE

Tah 1. Datencatz und Genauigkeit der Modellierung

| Tab. 1: Datensatz und Genauigkeit der Modeillerung            |                                                                                 |                                                |
|---------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|
| Training                                                      | Eingangsgrößen:                                                                 | Ausgangsgrößen:                                |
|                                                               | <ul> <li>Bestrahlungsstärke (geneigte</li> </ul>                                | <ul><li>DC-Strom (I<sub>DC</sub>)</li></ul>    |
|                                                               | Ebene)                                                                          | <ul><li>DC-Spannung (V<sub>DC</sub>)</li></ul> |
|                                                               | <ul> <li>Umgebungstemperatur</li> </ul>                                         | <ul><li>DC-Leistung (P<sub>DC</sub>)</li></ul> |
|                                                               | <ul> <li>Sonnenposition (Azimut,<br/>Elevation)</li> </ul>                      | <ul><li>AC-Leistung (P<sub>AC</sub>)</li></ul> |
|                                                               | Lievationi                                                                      | <ul><li>Wechselrichter-Effizienz</li></ul>     |
| Zeitraum: 2014 (1 Jahr, nach Inbetriebnahme), 1-min Auflösung |                                                                                 | onahme), 1-min Auflösung                       |
| Ergebnis                                                      | $1 \sum_{i=1}^{N}  x_i - \hat{x}_i $ MAPE (Training):                           |                                                |
|                                                               | $MAPE [\%] = \frac{1}{N} \sum_{i} \left  \frac{x_i - \hat{x}_i}{x} \right  100$ | I                                              |



2023 - High

600

700

300

pro Jahr

Regression

Anstieg lin.



AC-Leistung [kW]

100

200

Gemessene Wechselrichter-Effizienzen 2014 & 2023 in Bezug zur jeweiligen Ausgangsleistung; kategorisiert nach verschiedenen Spannungsebenen:

500



Durchschnittliche jährliche Degradation des PV-Generators von  $P_{DC}$  (links) und  $V_{DC}$ (rechts) für einen Wechselrichters über die Betriebslaufzeit

# **S**CHLUSSFOLGERUNGEN

- Langfristige Verluste: Schleichende Abnahme der Wechselrichter-Effizienz um 2 %-Punkte bzw. 4 %rel. nach zehn Jahren, besonders im Bereich P<sub>AC</sub> bis 300 kW
- **Spannungsebenen:** Effizienzverluste treten in verschiedenen Spannungsebenen auf, mit einer Verschiebung zu niedrigeren Werten
- **Generator-Seite:** Hohe Verluste der P<sub>DC</sub> von bis zu 12% (geringer als die Effizienzverluste), während die V<sub>DC</sub> weitgehend stabil bleibt
- → Detaillierte, datengestützte Auswertungen von Betriebsdaten sind wichtig für die Optimierungen der Fehlererkennung!

[1] Tina, G.M., et al. Analysis of forecast errors for irradiance on the horizontal plane. The International Renewable Energy Congress IREC. DOI: 10.1016/j.enconman.2012.05.031

## **Besonderes Dankeschön:**

