3.3.4. Эффект Холла в полупроводниках.

Рябых Владислав и Исыпов Илья, Б05-905

6 ноября 2020 г.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, миллиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1,5 B), образцы легированного германия.

Теория

Суть эффекта холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I.

Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и B появляется разность потенциалов. B самом деле, на электрон, движущийся с скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\Pi} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},\tag{1}$$

где, е - абсолютная величина заряда электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля. В нашем случае сила, обусловленная слагаемым, направлена вдоль оси z:

$$F_B = e|\langle \vec{v_x} \rangle|B.$$

Где $|\langle \vec{v} \rangle|$ — средняя скорость дрейфа электрона по оси x, возникающая под действием внешнего электрического поля.

Под действием силы Электроны отклоняются к грани Б, заряжая ее отрицательно (для простоты рассматриваем только один тип носителей). На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , и накопление электрических зарядов на боковых гранях пластины прекращается. Из условия равновесия $F_B = F_E$ найдём

$$E_z = |\langle v_x \rangle| B. \tag{2}$$

Поле E_z дает вклад в общее поле \vec{E} , в котором движутся электроны. С полем E_z связана разность потенциалов U_{AB} между гранями А и Б:

$$U_{AB} = -E_z l = -|\langle v_x \rangle| B l. \tag{3}$$

В этом и состоит эффект Холла. Второе слагаемое в силе Лоренца (1), с которым связан эффект, часто называют "холловским".

Замечая, что сила тока

$$I = ne|\langle v_x \rangle|l| \cdot a, \tag{4}$$

и объединяя (2) и (4), найдем ЭДС Холла:

$$\mathscr{E}_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a}.$$
 (5)

Константа R_x называется постоянной Холла. Как видно из (5),

$$R_x = \frac{1}{ne} \tag{6}$$

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_x = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2}$$

Если основной вклад в эффект вносит один из носителей, то для постоянной Холла можно пользоваться выражением (6). Измеряя величину R_x , можно с помощью (6) найти концентрацию носителей тока n, а по знаку возникающей между гранями

А и Б разности потенциалов установить характер проводимости - электронный или дырочный

Экспериментальная установка

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром $_2$.

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{7}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

Ход работы

Запишем параметры нашей установки: a=2.2 мм, $L_{35}=3.0$ мм, l=2.5 мм.

Калибровка электромагнита

Определим связь между индукцией B магнитного поля в зазоре электромагнита и током I_M через обмотки магнита.

B, м T л	20	230	395	580	748	860	940	985	1028
I, A	0	0.22	0.40	0.60	0.80	1.00	1.21	1.40	1.52

Таблица 1: результаты измерений

Построим график зависимости B(I), см. рис 2

Рис. 2: график зависимости B(I)

Проведем измерение ЭДС Холла

Для измерения ЭДС Холла вставим образец в зазор выключенного электромагнита и определим напряжение U_0 между холловскими контактами 3 и 4 при минимальном токе через образец($\simeq 0.2$ мА), включим электромагнит и снимем зависимость напряжения U_{34} от тока I.

I, A	0	0.2	0.4	0.6	0.8	1	1.2	1.4
В, мТл	20	230	395	580	748	860	940	985
$U_{I_0=0.26 \text{MA}}, \text{ MKB}$	15	23	32	41	50	56	61	64
$U_{I_0=0.38 \text{MA}}, \text{ MKB}$	18	31	45	59	72	79	86	91
$U_{I_0=0.50 \text{MA}}, \text{ MKB}$	23	40	58	75	92	104	113	120
$U_{I_0=0.62 \text{MA}}, \text{ MKB}$	28	49	71	94	114	131	140	148
$U_{I_0=0.74 \text{MA}}, \text{ MKB}$	32	57	85	111	135	152	168	175
$U_{I_0=0.86 \text{MA}}, \text{ MKB}$	38	67	98	128	154	177	193	204
$U_{I_0=0.99 \text{MA}}, \text{ MKB}$	43	80	112	147	180	203	222	233

Таблица 2: результаты измерений

Построим семейство характеристик U(B), см. рис 3. Заметим, что чем выше сила тока, тем больше k – коэффициент наклона прямой

Рис. 3: семейство характеристик U(B)

Из графика ${\color{blue}3}$ получаем угловые коэффициенты $k(I)=\Delta U/\Delta B$: запишем их в таблицу ${\color{blue}3}$

I_0 , мА	$k, 10^{-6} \frac{B}{T_{\rm JI}}$	$\sigma_k, 10^{-6} \frac{\text{B}}{\text{T}_{\text{II}}}$
0.26	51.7	1.7
0.38	75.6	2.0
0.5	100.2	3.4
0.62	125.2	4.2
0.74	149.1	3.7
0.86	172	5.8
0.99	196.5	6.4

Таблица 3: угловые коэффициенты $k(I) = \Delta U/\Delta B$

Построим график k(I), см. рис. 4

Рис. 4: семейство характеристик U(B)

По графику определим угловой коэффициент, определим величину постоянной холла R_x

$$R_x = -k \cdot a \approx -(7.98 \pm 0.69) \cdot 10^{-4} \frac{\text{M}^3}{\text{K}_{\text{T}}}$$

Рассчитаем концентрацию и носителей в образце:

$$n = \frac{1}{R_x e} = (0.78 \pm 0.21) \cdot 10^{22} \frac{\mathrm{e} \mathrm{g}}{\mathrm{m}^3}$$

Рассчитаем удельную проводимость σ материала образца:

$$\sigma = \frac{TL_{35}}{U_{35}al} = 148.9 \frac{A}{B \cdot M}$$

Вычислим подвижность носителей тока

$$b = \frac{\sigma}{en} = (1548 \pm 350) \frac{\text{cm}^2}{B \cdot c}$$

для сравнения: табличное значение для дырок германия $b=1820 rac{\mathrm{cm}^2}{B \cdot c}$

Выводы

В ходе работы был исследован эффект Холла в полупроводнике-германии. Были определены такие характеристики, как постоянная Холла, концентрация холловских частиц, удельная электрическая проводимость германия и подвижность электроновносителей заряда в нём. Результаты совпали с табличными в пределах погрешности.