Survey

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_survey.html

Seismic survey

- From the source energy spreads in all directions
 - Direct to geophones
 - Reflected or refracted off earth interfaces.

Seismic survey

- What type of sources and receivers can we use? What kind of information do we want to collect?
- Sources: anything that causes earth particles to move
 - Natural sources, like earthquakes
 - Man-made sources, like explosives, "hammers", shock waves
- Receivers: record ground motion for some time following the source
 - Geophones
 - Seismometers (3 component, broadband)

Natural source: earthquakes

Man-made source: vibroseis truck

Single Source

Group of sources

Man-made source: borehole explosion

Man-made source: in the ocean

Multiple Sources

By Hannes Grobe, Alfred Wegener Institute - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2270335

Man-made source: small-scale

Sledge Hammer Shotgun Blast Weight Drop **Explosives**

Receivers: geophones

Set up the geophone array

Set up the geophone array

Recievers: hydrophone streamer

https://commons.wikimedia.org/w/index.php?curid=1468353

Receivers: seismometer

Smartphone example

- iPhone app: iSeismometer
- Android:

Measure gravitational acceleration

Processing: refraction

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_refraction_dipping_layers.html https://gpg.geosci.xyz/content/seismic/seismic_refraction_irregular_layers.html

Standard refraction scenario

Low velocity zones

No refracted arrival from the top of the second layer

Hidden layers

 Layers that are too thin may not be seen

decreases

Thickness h₂

 Arrival from layer 3 beats that from layer 2

 The red refracted wave has to travel a LONGER distance than if the layer was horizontal.

 Thus the travel time is longer and the slope on the T-X plot is increased.

 The estimated velocity will be SMALLER than the actual velocity

 The blue refracted wave has to travel a SHORTER distance thanif the layer was horizontal.

 Thus the travel time is shorter and the slope on the T-X plot is decreased.

 The estimated velocity will be LARGER than the actual velocity

• So this requires **TWO** shots to be able to interpret

- Depth estimates
 - "Slant" depths can be obtained through the intercept times
 - True depths can be estimated using dip-angle (see GPG)

• Travel time in down-dip direction
$$t_2 = rac{x\sin(heta+\gamma)}{v_1} + rac{2z\cos heta}{v_1} = rac{x}{v_{2d}} + t_i$$

Travel time in up-dip direction

$$t_2'=rac{x\sin(heta-\gamma)}{v_1}+rac{2z'\cos heta}{v_1}=rac{x}{v_{2u}}+t_i'$$

Irregular layers

- What happens when the boundary can no longer be approximated as a plane?
 - Plus-minus method
 - Generalized reciprocal methods
 - Ray tracing
 - Other sophisticated procedures

Processing: reflection

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_reflection_processing.html

Reflection

- Seismic refraction was effective for finding interfaces and velocities
 - As long as velocity increased with depth
 - Only the first arrivals were used
- What if we want to image something much more complicated?
- Impedance contrasts gives reflections
- Generate an image made from normal incidence seismograms

Seismic image with geologic information

Smaller scale seismic reflection

Main uses for seismic reflection

- Hydrocarbon exploration!!!
- General earth structure
 - Whole earth
 - Continental scale (lithoprobe)
 - Regional scales
- Local structure
 - Geotechnical work
 - Environmental work

Let's think

- What precisely is the ideal seismogram?
- How to collect and process seismic data to make these ideal traces?

- Data from a single shot is shown.
 - Seismic surveys consist of many shots
 - Need to convert into a suite of ideal seismograms

Seismic images

- Each trace is an ideal reflection seismogram of a wave that ...
 - Travels vertically downward
 - Reflects off of boundaries
 - And arrives back at the surface along the same vertical path
- Plotting many such traces yields an image in which structure can be observed

Ideal seismogram

Ray travels straight down and back up.

Assumes 0m offset and normal incidence

Seismic reflection acquisition

Survey basics

Collect common shot gathers (CSG)

 Reorder to collect common midpoint (CMP) gathers

A series of six shots and associated receivers that would have reflections from a common point. When the layers are plane and horizontal then this common reflection point lies midway between the source and receiver

Fold

- How times a subsurface point is sampled by pull-along arrays
 - N = number of geophones
 - n = move up number (shot spacing / geophone spacing)

points

- Example:
 - Geophones places every 2 m
 - Source shots every 4 m
 - n = 4/2 = 2

$$fold = \frac{N}{2n}$$

- Example:
 - 8 geophones
 - Move up of 2
 - What is the fold?

•
$$fold = \frac{8}{2*2} = 2$$

Reflection S.

Travel time

 Recall that travel time for a reflected wave is

$$t_{refl} = rac{\sqrt{x^2 + 4h^2}}{v_1}$$

Which is a hyperbola

Normal move-out (NMO) correction

 Imagine recording 6 seismic traces from one source

 Travel time plot will show that arrival time increases as source-receiver distance increases

Let's go through the steps

Normal move-out (NMO)

• Travel time:
$$t=rac{(x^2+4z^2)^{rac{1}{2}}}{v}$$

• Normal move out: $\triangle t = t - t_0$

NMO correction

• Travel time:
$$t^2(x) = t_0^2 + \frac{x^2}{v_{st}^2}$$

 v_{st} is a "stacking" velocity, or sometimes called the Normal Moveout Velocity, v_{nmo}

- For each reflection event, perform velocity analysis to find v_{st}
 - First choose t_0 and a trial velocity v_1
 - Generate the associated travel time hyperbola
 - Sum the energy of the seismic traces and plot this value
 - Repeat with different trial velocities
 - Choose v_{st} as the velocity that yields the largest energy

Semblance analysis: Finding v_{st} and t_o

NMO correction

- Then, using the hyperbola corresponding to v_{st} :
 - Compute the normal moveout for each trace
 - Adjust the reflection time by ΔT
- Stack the normal moveout corrected traces to generate a single trace

Example

Stacking these signals will produce a high quality reflection signal

Summary of CMP processing

CSG → CMP → Zero Offset Trace

CSG = common shot gather CMP = common midpoint gather