Algorithms example sheet 2

Exercise 22

```
def f(n):
    if n < 2:
        1
    else:
        f(n-2) + f(n-1)</pre>
```

Say r(n) is the number of recursive calls to compute f(n). Then, r(n) = r(n-2) + r(n-1), where r(0), r(1) = 1, so in fact r(n) is the same as f(n).

Exercise 23

$$\begin{bmatrix} 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Multiplying the right matrices first gives $1 \times 1 + 1 \times 1$, and then 1×2 , for a total of 3 multiplications.

Multiplying the left matrices first gives 1×1 , 1×1 and then $1 \times 1 + 1 \times 1$, for a total of 4 multiplications.

Exercise 33

$$f(n) = f(n/2) + k$$
Let $n = 2^m$, so $m = \log_2 n$.
 $f(n) = f(2^m) = f(2^m/2) + k$
 $= f(2^{m-1}) + k$
 $= (f(2^{m-2}) + k) + k = f(2^{m-2}) + 2k$
 $= (f(2^{m-3}) + k) + 2k = f(2^{m-3}) + 3k$
...
 $= f(2^{m-m}) + mk$
 $= f(1) + mk$
 $\therefore f(n) = k_0 + k \log_2 n$