Mobile and Ubiquitous Computing 2022-2023

Definitions, Ubiquitous and Pervasive Computing Overview

Evolution

- Hardware evolution
- Ubiquity of devices
- Ubiquity nightmare
- Invisible computing
- Some examples

Specifications

Ring Size

We are planning to provide 6 different sizes for Ring and will contact you to inquire which size you desire

Goal/Requirements and Challenges

- Goal: invisible computing
- Requirements common to other areas:
 - Scalability in the large
 - Performance
 - Availability
- Requirements specific to CMU:
 - Support Variability
 - Deal with Resource Constraints
 - Provide Constant Access to Devices
 - Support Localized Scalability

Security

Basic Definitions

- Distinction from classical distributed systems
- Fundamental concepts
- Mobile computing
- Ubiquitous computing
- Pervasive computing
- Localized scalability
- Smart spaces

Mobile Computing

- Mobile computing is a computer science and engineering domain that deals with:
 - computing and communication software and hardware aspects
 - related to the use of mobile devices (e.g smartphones, tablets, laptops, etc.)
- This domain includes several areas:
 - We are concerned with **software** (hardware and network protocols are out of the scope in this course):
 - Middleware, sensors, distributed support, application support.
- Thus, in the scope of this course, we refer to mobile and ubiquitous computing to:
 - designate all system-level software issues related to the architectural design of solutions, including applications, middleware and operating systems,
 - which allow a **mobile** device to run mobile applications efficiently, while being scalable, secure, and energy efficient.

Ubiquitous Computing

- Sometimes also designated as pervasive computing.
- Hardware evolution has created a large number of devices with a large variety in sizes, characteristics, processing power, etc. (e.g. tablets, laptops, smart-watches, etc.):
 - thus contributing to the ubiquity of computing and communication devices in the world
- Specifically, ubiquitous computing is a computer science and engineering domain that deals with:
 - all computing and communication software and hardware aspects
 - related to the use of ubiquitous devices
- Given that most of such ubiquitous devices are mobile, it is clear that there is an overlap between these two fundamental concepts, but:
 - in some cases, we may be in presence of an ubiquitous system in which the devices are not mobile
 - thus, we can have an ubiquitous system that is not mobile and, on the other way around, a mobile system which is not ubiquitous

Examples of Ubiquitous Environments

SMART CITY

Pervasive Computing

- In the literature, sometimes there is no distinction between ubiquitous and pervasive computing.
- Pervasive computing implies the embedding of computing devices into everyday analog objects:
 - e.g. the smart-mug that changes its color according to the temperature of the liquid it contains.
- One could be in a pervasive computing environment which is not ubiquitous:
 - unless, there are several "stupid" objects, with increased embedded computing capabilities, all over.

Pervasive Computing Examples

Mobile, Ubiquitous, and Pervasive Computing

- The concepts underlying mobile, ubiquitous and pervasive computing are mostly related to the properties of:
 - mobility (i.e., devices can be easily moved from one place to another by the user),
 - ubiquity (i.e., devices are everywhere), and
 - pervasiveness (i.e., "stupid" everyday objects with embedded computing devices), respectively.
- The most interesting scenarios are those in which a mix of these properties exist.

- The challenges being addressed, previously mentioned, apply to all such cases as they all share a common view:
 - "information at your fingertips anywhere, anytime".

Localized Scalability and Smart Spaces

- It is the equivalent to the concept of scalability when applied to classic distributed systems:
 - the difference is that we are concerned with the large number of devices that may co-exist in a confined/small space (e.g., in a room)
- Localized scalability means that a system must scale in the local space:
 - i.e., it must be able to handle a growing amount of devices and the resulting interaction
- Such a room is also called a smart-space:
 - its "smartness" results from the existence of a large number of computing devices that, while being invisible, perform the work needed

Joseph Marie Jacquard (1752-1834)

Example: Jacquard (1/2)

Welcome to Project Jacquard - https://www.youtube.com/watch?v=qObSFfdfe7I

Example: Jacquard (2/2)

Levi's® Commuter™ x Jacquard by Google Trucker Jacket - https://www.youtube.com/watch?v=yJ-lcdMfziw