## Logica e Reti Logiche

(Episodio 13: Blocchi funzionali combinatori)

Francesco Pasquale

22 maggio 2023

Nell'Episodio 11 abbiamo vistro come costruire un piccolo circuito, il Full-Adder, che esegue una semplice funzione: prende in input tre bit (due bit più un bit di riporto "in entrata") e restituisce in output due bit: la somma e il riporto "in uscita". Abbiamo visto come questo semplice blocchetto funzionale può essere poi messo in serie per ottenere, per esempio, un circuito che esegue la somma di numeri a 32 bit.

In questo episodio costruiamo due *blocchi funzionali*, DECODER e MULTIPLEXER, che sono così generali da poter essere usati in diverse circostanze. Per esempio, se presi della "taglia" opportuna, possono essere usati per implementare qualunque funzione Booleana.

## 1 Decoder

**Definizione 1.1** (Decoder). Un DECODER  $n:2^n$  è un circuito con n input, diciamo  $x_0, x_1, \ldots, x_{n-1}$ , e  $2^n$  output, diciamo  $y_0, y_1, \ldots, y_{2^n-1}$ , tale che per ogni  $i = 0, 1, \ldots, 2^n-1$ 

$$y_i = \begin{cases} 1 & \text{se } (i)_{10} = (x_{n-1} \cdots x_1 x_0)_2 \\ 0 & \text{altrimenti} \end{cases}$$

In altre parole il circuito decodifica la sequenza di bit in input ponendo a 1 l'output  $y_i$  il cui indice  $i \in \{0, 1, ..., 2^n - 1\}$  è il numero intero rappresentato in binario dagli n bit in input. Per esempio, se i due bit in input di un DECODER 2:4 sono  $(x_1, x_0) = (1, 0)$ , i quattro bit in output devono essere  $(y_3, y_2, y_1, y_0) = (0, 1, 0, 0)$ .

Si noti che in un decoder, qualunque sia la sequenza di bit in input, uno e uno solo degli ouput avrà valore 1.

Come costruiamo un tale circuito? Vediamo.

Se n = 1 abbiamo un solo input  $x_0$  e due output  $y_1, y_0$ ;  $y_0$  deve essere 1 quando  $x_0 = 0$  mentre  $y_1$  deve essere 1 quando  $x_0 = 1$ :



Figura 1: Decoder 1:2

Se n=2 abbiamo due input  $x_0, x_1$  e quattro output  $y_3, y_2, y_1, y_0$ 



Figura 2: Decoder 2:4

A questo punto dovrebbe essere chiaro come la costruzione si generalizza a un DECODER  $n:2^n$  per qualunque n.

Esercizio 1. Progettare un Decoder 3:8 e disegnarne lo schema.

## **Esercizio 2.** Quante porte logiche servono per costruire un DECODER $n:2^n$ ?

Una volta costruito il nostro *blocco funzionale* DECODER, possiamo immaginare di averlo a disposizione come le porte logiche AND, OR, e NOT e usarlo per costruire circuiti più complessi. A questo scopo, possiamo disegnare un DECODER 2:4 in questo modo.



Si osservi che se abbiamo un DECODER  $n:2^n$  e una porta OR (con abbastanza ingressi) possiamo implementare qualunque funzione Booleana di n variabili. Per esempio,  $y=x_0x_1+\bar{x}_0\bar{x}_1$  si può implementare così



Esercizio 3. Costruire un circuito che implementi la seguente tabella di verità

| p | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| q | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| r | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| s | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| ? | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |

**Esercizio 4.** Progettare un circuito che prenda in input 4 bit, che rappresentano un numero in codifica binaria, e restituisca 1 se il numero in input è divisibile per *tre* e 0 altrimenti.

**Esercizio 5.** Progettare un "encoder", ossia un circuito che esegue l'operazione inversa del decoder: un ENCODER  $2^n$ :n prende in input  $2^n$  bit,  $x_0, \ldots, x_{2^n-1}$ , di cui assumiamo che uno solo sia 1 e tutti gli altri siano 0, e restituisce in output n bit,  $y_0, \ldots y_{n-1}$ , che rappresentano la codifica binaria dell'indice  $i \in \{0, \ldots, 2^n - 1\}$  tale che  $x_i = 1$ .

## 2 Multiplexer

**Definizione 2.1** (Multiplexer). Un MULTIPLEXER  $2^n$ :1 è un circuito con  $2^n + n$  input, diciamo  $x_0, x_1, \ldots, x_{2^n} - 1$  e  $s_0, \ldots, s_{n-1}$ , e un output, y, tale che

$$y = x_{(s_{n-1}...s_1,s_0)_2}$$

In altre parole, fra le variabili in input  $x_0, \ldots, x_{2^n-1}$ , il circuito dà in output il bit contenuto nella variabile il cui indice è codificato in binario dalle variabili di selezione  $s_0, \ldots s_{n-1}$ . Per esempio, in un MULTIPLEXER 4:1, se gli input sono  $(x_3, x_2, x_1, x_0) = (0, 1, 1, 0)$  e  $(s_1, s_0) = (1, 0)$ , il circuito darà in output y = 1, perche  $(s_1 s_0)_2 = (10)_2 = (2)_{10}$  e  $x_2 = 1$ . Come costruiamo un circuito che risponda a queste specifiche?

Se n = 1, abbiamo soltanto due variabili in input  $x_1, x_0$  e una variabile di selezione  $s_0$ . Chiaramente possiamo procedere come abbiamo fatto per il decoder e scrivere la tabella di verità con i tre input e un output e poi costruire il circuito.

Esercizio 6. Scrivere la tabella di verità di un Multiplexer 2:1 e progettare il circuito.

Possiamo anche ragionare più ad altro livello e osservare che, quando  $s_0 = 0$  dobbiamo avere  $y = x_0$  e quando  $s_0 = 1$  dobbiamo avere  $y = x_1$ . Quindi possiamo costruire il circuito così



Figura 3: Multiplexer 2:1

Si noti che il multiplexer implementa un "if": if  $s_0$  then  $x_1$  else  $x_0$ .

Esercizio 7. Costruire un MULTIPLEXER 2:1, usando un DECODER 1:2 due porte AND e una porta OR.

Esercizio 8. Costruire un MULTIPLEXER 4:1 usando solo porte logiche elementari, ragionando come nel caso 2:1. Quante porte AND usate?

Possiamo costruire un MULTIPLEXER 4:1 anche usando un DECODER 2:4, quattro porte AND e una porta OR, come in Figura 4



Figura 4: Multiplexer 4:1

Il simbolo con cui in genere si indica un multiplexer è questo qui



Con un MULTIPLEXER  $2^n$ :1 si può implementare una qualunque funzione con n variabili, associando agli input di selezione  $s_0, \ldots, s_{n-1}$  del multiplexer le variabili della funzione, e agli input  $x_0, \ldots, x_{2^n-1}$  del multiplexer i valori Booleani che la funzione assume nelle righe corrispondenti della tabella di verità. Per esempio, la funzione  $y = ab + \bar{a}\bar{b}$  si può implementare così

Esercizio 9. Implementare con un multiplexer la tabella di verità dell'Esercizio 3.

**Esercizio 10.** Costruire un circuito che implementi la seguente funzione Booleana  $f: \{0,1\}^3 \to \{0,1\}$ 

$$f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$$

Esercizio 11. Costruire un Multiplexer 8:1 usando due Multiplexer 4:1 e un Multiplexer 2:1.

Esercizio 12. Si consideri la seguente funzione Booleana:

$$y = bc + \overline{a}\overline{b}\overline{c} + b\overline{c} \tag{1}$$

- 1. Implementare la funzione in (1) usando soltanto un Multiplexer 4:1
- 2. Implementare la funzione in (1) usando un MULTIPLEXER 2:1, una porta OR e una porta NOT.

5