Anti-HIV Drug Design

Group Members:

- 1. ED15B001 Adarsh
- 2. CY16C016 Hruday

Fig. 18 The Human Immunodeficiency Virus

- First clinically observed in USA in 1981
- Causes AIDS, a condition in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive
- Most commonly spread via sexual contact
- Also transferred from infected mother to baby during pregnancy, by using infected needles & through blood transfusions

Fig: The HIV Virus

✓ HIV/AIDS Statistics

- Approximately 36.7 million people living with HIV/AIDS at the end of 2016. Of these, around 2.1 million were children(<15 years)
- Around 5000 new cases reported everyday
- Only 60% of people infected know their statuses; remaining 40% don't even have access to HIV testing services
- 1 million people died from AIDS-related illnesses in 2016

Source: UNAIDS Foundation

Riv Spread Map

Source: UNAIDS

HIV Cell Structure

Ref: https://viralzone.expasy.org/7?outline=all_by_species

HIV Replication Life Cycle

Existing Treatment Methods

Antiretroviral Therapy

- Entry Inhibitors: Block entry of HIV into immune cells. Ex: Enfuvirtide
- **Nucleoside RT Inhibitors:** Block the reverse transcriptase proteins that HIV needs to multiply. Ex: Abacavir, Didanosine
- Non-Nucleoside RT Inhibitors: Bind to and disable the reverse transcriptase proteins that HIV needs to multiply. Ex: Delavirdine, Efavirenz
- Integrase Inhibitors: Block the enzyme that HIV needs to infect immune cells with its genetic material. Ex: Dolutegravir, Raltegravir
- Protease Inhibitors: Inhibit HIV Protease, that HIV needs to make copies of itself. Ex: Saquinavir, Darunavir

「☐☐☐ Target Molecule

HIV Protease

- Essential for life cycle replication of HIV
- Cleaves newly formed polyproteins at the appropriate locations to create mature components of an infectious HIV Virion
- Without effective HIV Protease, HIV Virions remain non-infectious

Fig: HIV protease dimer(green & blue) with active site marked in red

| ■ | Target Molecule - Active Site

Fig:

Schematic representation of HIV Protease and detail of the active site, with protonated Asp-25(A), and Ala6 peptide as substrate

X

Action of HIV Protease

Ref: Agnieszka Krzeminska, Vicent Moliner, Katarzyna Swiderek, "Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease", Journal of the American Chemical Society-2016

Methods of Drug Development

Lead Compound: Darunavir

- Darunavir was chosen as a base molecule from which analogues were constructed
- The docking of Darunavir was studied and possible analogues were designed considering gaps between the drug & the target as well as potential new interactions

Fig: Structure of Darunavir

Interactions

- 2 Hydrogen Bonds
- No Pi-Pi Stacking

Docking Score:

-65.69

Analogue 1

Docking Study

Interactions

- 2 Hydrogen Bonds
- No Pi-Pi Stacking

Docking Score: -41.24

Analogue 2

Docking Study

Interactions

- 1 Hydrogen Bond
- No Pi-Pi Stacking

Docking Score: -4.44

Analogue 3

Docking Study

Interactions

- 3 Hydrogen Bonds
- No Pi-Pi Stacking

Docking Score:

-56.84

Analogue 4

Docking Study

Interactions

- 2 Hydrogen Bonds
- No Pi-Pi Stacking

Docking Score:

-53.23

Analogue 5

Docking Study

Interactions

- 3 Hydrogen Bonds
- No Pi-Pi Stacking

Docking Score:

-59.14

Synthesis of Drug Molecule

Ref: US 7700645, Patent for preparation of amorphous Darunavir

- Darunavir is extensively metabolized by CYP enzymes, primarily CYP3A
- The terminal elimination half-life of darunavir is approximately 15 hours
- Around 48% Darunavir excreted unchanged from the human body

Ref:Marc Vermeir, Sophie Lachau-Durand et al,"Absorption, Metabolism, and Excretion of Darunavir, a New Protease Inhibitor", Drug Metabolism & Disposition April 2009

Conclusions

- HIV infection mechanism was studied & target HIV Protease was identified
- HIV Protease action was reviewed
- Mechanism of inhibition of Darunavir was examined
- Analogues of Darunavir were designed & their interactions were investigated

THANK YOU