MATH 644

CHAPTER 5

SECTION 5.4: LAURENT SERIES

Contents

Laurent Series	2
Types of Singularities	٤
Meromorphic Functions	Ę

Created by: Pierre-Olivier Parisé Spring 2023

LAURENT SERIES

THEOREM 1. Suppose f is analytic on $A = \{z : r < |z - a| < R\}$. Then there is a unique sequence $(a_n) \subset \mathbb{C}$ so that

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n,$$

where the series converges uniformly and absolutely on compact subsets of A. Moreover,

$$a_n = \frac{1}{2\pi i} \int_{C_s} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta,$$

where C_s is the circle centered at a with radius s, r < s < R, oriented counter-clockwise.

Proof.

DEFINITION 2. A function f has an **isolated singularity** at b if f is analytic in $\{z:0<|z-b|<\varepsilon\}$ for some $\varepsilon>0$ and f(b) is not defined.

Let
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-b)^n$$
.

① Removable singularity.

② Zero of order n_0 .

3 Pole of order n_0 .

4 Essential singularity.

DEFINITION 3. A zero or pole is called **simple** if the order is 1.

EXAMPLE 4. Find the singularities of the following functions. If it is a zero or a pole, give the order.

- (a) $f(z) = e^{-1/z}$.
- **(b)** $f(z) = \frac{e^z}{z^2}$.

DEFINITION 5. If f is analytic in $\{z : |z| > R\}$, then f(1/z) has an isolated singularity at 0 and we say that f has an **isolated singularity at** ∞ .

Notes:

- ① The type of singularities at ∞ are based on the Laurent expansion of f(1/z) at 0.
- ② Given the Laurent expansion of $f(1/z) = \sum_{n=-\infty}^{\infty} b_n z^n$ around z = 0, the Laurent expansion of f(z) at ∞ is given by

$$\sum_{n=-\infty}^{\infty} a_n z^n$$

with $a_n = b_{-n}, n \in \mathbb{Z}$.

③ An essential singularity at ∞ is therefore characterized by $a_n \neq 0$ for infinitely many positive integers n.

MEROMORPHIC FUNCTIONS

DEFINITION 6. If f is analytic in a region Ω except for isolated poles in Ω then we say that f is **meromorphic in** Ω . A meromorphic function in \mathbb{C} is sometimes just called meromorphic.

Facts:

- (1) If f is meromorphic in Ω and not identically 0, then 1/f is meromorphic in Ω .
- ② A complex number $b \in \Omega$ is a zero of order k of a meromorphic function $f \not\equiv 0$ in Ω if and only if $b \in \Omega$ is a pole of order k of the meromorphic function 1/f.
- ③ If f and g are two meromorphic function in Ω with $g \not\equiv 0$ and if b is a zero of order k and a zero of order m for f and g respectively, then the order of the zero/pole of f/g is |k-m|.

THEOREM 7. If f is analytic in $U = \{z : 0 < |z - b| < \delta\}$ for some $b \in \mathbb{C}$ and $\delta > 0$, then if b is an essential singularity for f, then f(U) is dense in \mathbb{C} .

Proof.