

Profesor Horacio A. Coral Enríquez

Guía de Laboratorio No. 6 Proyecto Final

1. DESCRIPCIÓN

En este documento se describen los posibles proyectos finales del laboratorio de control que cada grupo de estudiantes puede desarrollar. Estos proyectos aquí descritos pueden ser combinados o usados como base para idear otro proyecto final con la condición de que se cumplan con los requerimientos de complejidad dados en esta guía y que tenga el visto bueno del docente encargado.

2. REQUERIMIENTOS DE COMPLEJIDAD

El proyecto final seleccionado debe cumplir como mínimo los requerimientos de complejidad que se describen a continuación:

- Realizar control realimentado.
- NO se admite control on/off o control P.
- Las dinámicas dominantes del sistema a controlar deben ser como mínimo de segundo orden.
- La sintonización de los controladores deben ser soportados por técnicas o métodos NO empíricos.

3. PROYECTOS

- Regulación de voltaje de un circuito eléctrico de cuarto orden mediante control por realimentación de estados.
- Control de vibraciones en un sistema masa resorte.
- Control de posición de una barra flexible horizontal.
- Control de posición tipo grúa de una carga.
- Estabilización de un péndulo invertido (Segway).
- Control de posición de una bola sobre una viga.
- Control de nivel de líquido en un sistema de dos tanques en cascada o serie.
- Control de nivel de líquido en un sistema de dos tanques interactuantes.

Figura 1: Control de posición con barra flexible.

Figura 2: Control de posición tipo grúa.

Figura 3: Estabilización de Segway.

Figura 4: Sistema Bola-Viga.

Figura 5: Control de nivel en tanques en serie.

Figura 6: Control de nivel en tanques interactuantes.

4. PROCEDIMIENTO

- 1. Obtención del modelo matemático de la planta:
 - a) Obtener las ecuaciones diferenciales que representan las dinámicas lineales o no lineales del sistema a controlar.
 - b) Obtener la representación del sistema en espacio de estados (En un punto de operación para el caso de sistemas no lineales)(Opcional).
 - c) Obtener la función de transferencia del sistema a controlar (En un punto de operación para el caso de sistemas no lineales).
 - d) Validar cada modelo matemático frente a los datos experimentales obtenidos mediante pruebas en lazo abierto o lazo cerrado según sea el caso.
- 2. Establecer los requerimientos de diseño para el sistema en lazo cerrado.
- 3. Diseñar y validar en simulación el sistema de control.
- 4. Analizar la estabilidad del sistema en lazo abierto y en lazo cerrado.
- 5. Implementar el sistema de control en la planta real:
 - a) Realizar pruebas (por medio de entradas tipo paso o rampa) en el sistema de control diseñado e implementado para verificar que se cumplan los requerimientos deseados.
 - b) Tomar datos experimentales del funcionamiento del sistema real en lazo cerrado y compararlos con el comportamiento del sistema en lazo cerrado obtenido en simulación.
- 6. Analizar el comportamiento y desempeño del sistema de control frente a perturbaciones externas (Opcional).
- 7. Analizar la robustez del sistema de control (Opcional).

5. INFORME

El informe del proyecto final debe usar el formato IEEE y contener los ítems mostrados a continuación:

- Título, Autores y Resumen en español.
- Introducción.
- Desarrollo de la sección PROCEDIMIENTO.
- Conclusiones.
- Bibliografía.

Tener en cuenta las siguientes fechas:

- 1. Fechas de entrega del informe:
 - Para el Grupo 5 (Martes de 11am-1pm): 19 de Noviembre de 2012

- \blacksquare Para el Grupo 6 (Jueves de 11am-1pm): 21 de Noviembre de 2012
- 2. Fechas de sustentación del proyecto final:
 - \blacksquare Para el Grupo 5 (Martes de 11am-1pm): 20 de Noviembre de 2012
 - Para el Grupo 6 (Jueves de 11am-1pm): 22 de Noviembre de 2012

6. EVALUACIÓN

Entregar informe del proyecto según lineamientos dados en la sección 5. La evaluación sería de la siguiente manera:

■ Informe: Valor 3.0.

■ Sustentación: Valor 2.0.

■ Ecuación de evaluación:

Nota = (Informe + Sustentación)