DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Análisis de Variable Real. Curso 20-21.

Los números reales. Propiedades de cuerpo y orden. Hoja 2

- 25 Utilizando las propiedades algebraicas del cuerpo IK probar que si a,b representan elementos de IK se tiene
- $i) (-1) \cdot (-1) = 1$
- $ii) -a = (-1) \cdot a$
- iii) (a + b) = (-a) + (-b)
- iv) $(-a) \cdot (-b) = a \cdot b$
- v) 1/(-a) = -(1/a)
- vi) (a/b) = (-a)/b = a/(-b) si $b \neq 0$.
- vii) Si $a \cdot a = a$ entonces a = 0 ó a = 1.
- **26** Resolver las siguientes ecuaciones en \mathbb{R} , justificando cada paso refiriendose a propiedades conocidas o teoremas:
 - *i*) 2x + 5 = 8
- *ii*) $x^2 = 2x$
- iii) (x-1)(x+2) = 0
- **27** i) Demostrar que la ecuación $x^2 = 2$ no la satisface ningún número racional.
- ii) Si $p \in \mathbb{N}$ es un número primo, la ecuación $x^2 = p$ no la satisface ningún número racional.
- iii) Demostrar que $\sqrt{2} + \sqrt{3}$ no es racional.
- iv) Probar que \sqrt{n} no es racional para cualquier $n \in \mathbb{N}$ que no sea cuadrado perfecto.
- **28** Demostrar que si $r \in \mathbb{Q}$, $r \neq 0$ y $x \in \mathbb{R} \setminus \mathbb{Q}$ entonces r + x y rx son irracionales.
- **29** Si $a \in \mathbb{R}$ y a > 0 demostrar que
- i) Si a > 1 entonces $1 < a < a^2 < a^3 < ... < a^n, n \in \mathbb{N}$.
- ii) Si 0 < a < 1 entonces $1 > a > a^2 > a^3 > \ldots > a^n$, $n \in \mathbb{N}$. $\partial_{\alpha} Qu\acute{e}$ pasa si a < 0?.
- **30** Sean $a, b \in \mathbb{R}$, a > 0, b > 0 y $n \in \mathbb{N}$.
- i) Probar que a < b si y sólo si $a^n < b^n$.
- ii) Probar que si a < b entonces $\sqrt[n]{a} < \sqrt[n]{b}$.
- iii) Si a > 1 probar que $\sqrt[n]{a} < a$.
- iv) Si 0 < a < 1 probar que $\sqrt[n]{a} > a$.
- v) $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$.
- **31** Probar que si $a, b \in \mathbb{R}$ con 0 < a < b entonces $a < \sqrt{ab} < b$.
- **32** Probar por inducción que para todo $n \ge 1$ se verifica la siguiente desigualdad:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$

33 Demuestra que para todos $n \in \mathbb{N}$ y $a_1, \ldots, a_n \in \mathbb{R}$ se tiene

$$|a_1+\ldots+a_n| \le |a_1|+\ldots+|a_n|$$

34 Demuestra la designaldad de Bernoulli: para todo x > -1 se tiene

$$(1+x)^n \ge 1 + nx, \quad n \in \mathbb{N}$$

Demuestra también la desiqualdad de Bernoulli generalizada:

$$(1+x_1)(1+x_2)\dots(1+x_n) \ge 1+x_1+x_2+\dots+x_n$$

donde $x_1, x_2,..., x_n$ son números reales, todos ellos del mismo signo y verificando $x_k > -1$ para todo k.

35 Si a_1, \ldots, a_n son positivos probar que

$$\left(a_1 + a_2 + \ldots + a_n\right) \left(\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}\right) \ge n^2$$

36 Demostrar por inducción en el número de elementos, que todo conjunto finito de \mathbb{R} se puede ordenar de manera creciente.

Concluir que todo conjunto finito posee un elemento **máximo** (pertenece al conjunto y es mayor que todos los elementos del conjunto) y un elemento **mínimo** (pertenece al conjunto y es menor que todos los elementos del conjunto).

37 Supongamos que una sucesión de números verifica

$$a_{n+1} = ka_n$$
, $a_1 \ dado$, $n = 1, 2 \dots (k \in \mathbb{R})$.

Encuentra y demuestra por inducción una expresión general para a_n .

38 Si

$$a_{n+2} = \frac{a_{n+1} + a_n}{2}$$
, $a_1, a_2 \ dados$, $n = 1, 2 \dots$

con $0 < a_1, a_2 < 2$, probar que $0 < a_n < 2$ para todo $n \in \mathbb{N}$.

- **39** Sean $a, b \in \mathbb{R}$ y supongamos que se tiene que $a \leq b + \varepsilon$ para todo $\varepsilon > 0$. Probar que se tiene $a \leq b$.
- **40** Sean $a, b \in \mathbb{R}$ con $b \neq 0$. Probar que se tiene i) $|a| = \sqrt{a^2}$ ii) |a/b| = |a|/|b|
- **41** Probar que $|x a| < \varepsilon$ si y sólo si $a \varepsilon < x < a + \varepsilon$.
- **42** Si a < x < b y a < y < b entonces |x y| < b a. Interpreta geométricamente este resultado.
- 43 Encuentra todos los números reales que verifican

$$i) \ x^2 < 2x, \quad ii) \ x^2 > 3x+4, \quad iii) \ 1 < x^2 < 4, \quad iv) \ \tfrac{1}{x} < x, \quad v) \ \tfrac{1}{x} < x^2, \quad vi) \ |x-1|-|x-2| = 0, \\ vii) \ |x|+|x-1| = 1, \quad viii) \ |4x-5| < 13, \quad ix) \ |x^2-1| = 3, \quad x) \ |x-1| > |x+1|, \quad xi) \ |x|+|x+1| < 2.$$

44 Demostrar que

$$|z+w| \le |z| + |w|, \qquad |zw| = |z||w|, \qquad z, w \in \mathbb{C}$$

45 Demostrar que si $z \in \mathbb{C} \setminus \{0\}$ entonces

$$z \frac{\bar{z}}{|z|^2} = 1$$

y que por tanto el inverso de z es $\frac{\overline{z}}{|z|^2}$. Dibuja el inverso y escribelo en términos de las partes real e imaginaria de z.

Probar que en forma polar, si $z = re^{i\theta}$ entonces $\bar{z} = re^{-i\theta}$ y $z^{-1} = \frac{1}{r}e^{-i\theta}$.

46 Probar que la exponencial compleja verifica

$$\begin{split} e^z e^w &= e^{z+w}, \quad z, w \in \mathcal{C} \\ \cos(x) &= \frac{e^{ix} + e^{-ix}}{2}, \quad \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}, \qquad x \in \mathbb{R} \\ e^{\bar{z}} &= \overline{e^z}, \quad z \in \mathcal{C} \end{split}$$

47 Calcular las raices complejas de la unidad: $z \in \mathbb{C}$ tales que $z^n = 1$ con $n = 2, 3, 4 \dots$ y dibujarlas.