EE754 - Ondas Guiadas

Henrique Koji Miyamoto

1 Teoria e Aplicações de Linhas de Transmissão

Para transmissão eficiente ponto a ponto de potência ou informação, a energia deve ser direcionada ou guiada. Para isso, estudaremos a propagação de ondas eletromagnéticas no modo TEM (transverse electromagnetic, i.e., **B**, **H** e a direção de propagação são perpendiculares entre si no guia de onda). Exemplos de guias de ondas: linha de transmissão de placas paralelas, par de fios, cabo coaxial.

Comprimento elétrico É a razão entre a maior dimensão de um condutor e o comprimento da onda que o atravessa:

$$L_e = \frac{L}{\lambda}$$

Abaixo de determinado valor, não é possível mais tratar o problema com Teoria de Circuitos, pois as distorções não são mais desprezíveis. Nesse caso, é necessário um tratamento com Teoria Eletromagnética.

1.1 Ondas TEM em linha de transmissão de placas paralelas

Considere uma onda TEM polarizada na direção y e que se propaga na direção z por uma linha de transmissão de placas paralelas. Para campos com variação harmônica, a equação de onda na região do dielétrico sem fonte é a equação homogênea de Helmholtz (de ondas planas):

$$\nabla^2 \mathbf{E} + k_c^2 \mathbf{E} = 0,$$

cuja solução é

$$\mathbf{E} = E_y \hat{\mathbf{y}} = E_0 e^{-\gamma z} \hat{\mathbf{y}}$$
$$\mathbf{H} = H_x \hat{\mathbf{x}} = -\frac{E_0}{n} e^{-\gamma z} \hat{\mathbf{x}}.$$

Os parâmetros γ e η são, respectivamente, a constante de propagação e a impedância intrínseca do meio dielétrico. Desprezando efeitos de borda e assumindo meio sem perdas, temos:

$$\gamma = j\beta = j\omega\sqrt{\mu\epsilon}, \qquad \eta = \sqrt{\frac{\mu}{\epsilon}}$$

Figura 1: Linha de transmissão de placas paralelas.

Usando as condições de contorno entre dielétrico e condutor perfeito, temos:

• Em y = 0 e y = d:

$$E_t = 0 \text{ e } H_n = 0,$$

pois $E_x = E_z = 0$ e $H_y = 0$.

• Em y = 0 (lower plate), $\hat{\mathbf{n}} = \hat{\mathbf{y}}$:

$$\hat{\mathbf{y}} \cdot \mathbf{D} = \rho_{sl} \Rightarrow \rho_{sl} = \epsilon E_y$$

$$\hat{\mathbf{y}} \times \mathbf{H} = \mathbf{J}_{sl} \Rightarrow \mathbf{J}_{sl} = -H_x \hat{\mathbf{z}}$$

• Analogamente, em y = d (upper plate), $\hat{\mathbf{n}} = -\hat{\mathbf{y}}$:

$$-\hat{\mathbf{y}} \cdot \mathbf{D} = \rho_{su} \Rightarrow \rho_{su} = -\epsilon E_y$$

$$-\hat{\mathbf{y}} \times \mathbf{H} = \mathbf{J}_{su} \Rightarrow \mathbf{J}_{su} = H_x \hat{\mathbf{z}}$$

As cargas e correntes superficiais nos condutores variam senoidalmente, pois a variação de E_y e H_x é também harmônica.

As equações de Maxwell na forma fasorial

$$\nabla \times \mathbf{E} = -i\omega \mu \mathbf{H}$$

$$\nabla \times \mathbf{H} = j\omega \epsilon \mathbf{E}$$

reduzem-se a

$$\frac{d}{dz}E_y = j\omega\mu H_x, \quad \frac{d}{dz}H_x = j\omega\epsilon E_y.$$

Integrando-as e usando as definições

$$V(z) = -\int_0^d E_y dy, \quad I(z) = \int_0^w J_{su}(z) dx$$

é possível deduzir expressões para a indutância por unidade de comprimento e capacitância por unidade de comprimento:

$$L = \mu \frac{d}{w} \text{ (H/m)} \quad C = \epsilon \frac{w}{d} \text{ (C/m)}$$

e obter um par de equações de linhas de transmissão com variação temporal harmônica:

$$\frac{d^2}{dz^2}V(z) = -\omega^2 LCV(z)$$

$$\frac{d^2}{dz^2}I(z) = -\omega^2 LCI(z)$$

cujas soluções são

$$\boxed{V(z) = V_0 e^{-j\beta z}} \boxed{I(z) = I_0 e^{-j\beta z}}$$

A constante de fase é

$$\beta = \omega \sqrt{LC} = \omega \sqrt{\mu \epsilon} \text{ (rad/m)}$$

A impedância característica da linha é

$$Z_0 = \frac{V_0}{I_0} = \sqrt{LC} = \frac{d}{w}\eta$$

A velocidade de propagação ao longo da linha é

$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\epsilon}}$$

1.1.1 Linhas de transmissão com perdas

Causas de perdas em linhas de transmissão: o meio dielétrico tem tangente de perdas não nula e as placas não são condutores perfeitos. Modelamos esses efeitos através de uma condutância G por unidade de comprimento entre as placas e de uma resistência R por unidade de comprimento das duas placas.

A condutância por unidade de comprimento é dada por

$$G = \sigma \frac{w}{d} \text{ (S/m)}$$

A resistência por unidade de comprimento é dada por¹

$$R = 2\left(\frac{R_s}{w}\right) = \frac{2}{w}\sqrt{\frac{\pi f \mu_c}{\sigma_c}} \ (\Omega/\mathrm{m})$$

Figura 2: Circuito equivalente de um trecho de linha de transmissão de comprimento Δz .

1.2 Equações gerais de linhas de transmissão

A seguir, apresentamos a representação circuital para linhas de transmissão.

Aplicando as leis de Kirchhoff das tensões e das correntes e fazendo o limite $\Delta z \to 0$, obtemos as equaçõs gerais de linhas de transmissão²:

$$\begin{split} &-\frac{\partial}{\partial z}v(z,t)=Ri(z,t)+L\frac{\partial}{\partial }i(z,t)\\ &-\frac{\partial}{\partial z}i(z,t)=Gv(z,t)+C\frac{\partial}{\partial }v(z,t) \end{split}$$

Para dependência temporal harmônica, podemos usar notação fasorial com referência cossenoidal

$$v(z,t) = \Re[V(z)e^{j\omega t}], \quad i(z,t) = \Re[I(z)e^{j\omega t}]$$

e obter equaçõs de linhas de transmissão com variação temporal harmônica:

$$-\frac{d}{dz}V(z) = (R + j\omega L)I(z)$$
$$-\frac{d}{dz}I(z) = (G + j\omega C)V(z)$$

1.2.1 Características de onda em linha de transmissão infinita

As equaçõs de linhas de transmissão com variação temporal harmônica acopladas podem ser combinadas e resolvidas para V(z) e I(z), obtendo:

$$\frac{d^2}{dz^2}V(z) = \gamma^2 V(z)$$

$$\frac{d^2}{dz^2}I(z) = \gamma^2 I(z)$$

em que a constante de propagação γ é formada por uma constante de atenuação real α (Np/m)³ e uma constante de fase β imaginária (rad/m):

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \text{ (m}^{-1}$$

As soluções dessas equações são

$$V(z) = V^+(z) + V^-(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = I^{+}(z) + I^{-}(z) = I_{0}^{+}e^{-\gamma z} + I_{0}^{-}e^{\gamma z}$$

Em uma linha de transmissão semi-infinita com a fonte à esquerda, não há reflexão, portanto consideramos apenas os termos $V^+(z)$ e $I^+(z)$.

A razão entre tensão e corrente é constante ao longo de uma linha infinitamente longa e é definida como impedância característica:

$$Z_0 = \frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}, \ (\Omega)$$

As grandezas γ e Z_0 são propriedades características de uma linha de transmissão e dependem de R, L, G, C, ω , mas não de z. O caso é análogo ao de ondas planas.

 $^{^1\}mathrm{A}$ demonstração desse resultado está em [1], p. 433-434.

 $^{^2\}mathrm{Tamb\'{e}m}$ conhecidas como equações do telegrafista.

 $^{^3}$ Conversão de Np/m para dB/m: $\alpha_{dB/m}=20(\log e)\alpha_{Np/m}\approx (8,686)\alpha_{Np/m}.$

Casos especiais:

1. Linhas de transmissão sem perdas (R = G = 0):

Constante de propagação: $\alpha = 0$, $\beta = \omega \sqrt{LC} \rightarrow \gamma = j\omega \sqrt{LC}$

Velocidade de fase: $u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$

Impedância característica: $R_0 = \sqrt{\frac{L}{C}}, \ X_0 = 0 \rightarrow Z_0 = \sqrt{\frac{L}{C}}$

2. Linhas de transmissão de baixas perdas $(R \ll \omega L, G \ll \omega C)$:

Constante de propagação: $\alpha \approx \frac{1}{2} \left(R \sqrt{\frac{C}{L}} + G \sqrt{\frac{L}{C}} \right) \approx \frac{R}{2R_0}^4$, $\beta \approx \omega \sqrt{LC}$

Velocidade de fase: $u_p = \frac{\omega}{\beta} \approx \frac{1}{\sqrt{LC}}$

Impedância característica: $R_0 \approx \sqrt{\frac{L}{C}}, \ X_0 \approx -\sqrt{\frac{L}{C}} \frac{1}{2\omega} \left(\frac{R}{L} - \frac{G}{C}\right) \approx 0$

3. Linhas de transmissão sem distorção $\left(\frac{R}{L}=\frac{G}{C}\right)^5$:

Constante de propagação: $\alpha = R\sqrt{\frac{C}{L}} \neq 0, \ \beta = \omega\sqrt{LC}$

Velocidade de propagação: $u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$

Impedância característica: $R_0 = \sqrt{\frac{L}{C}}, \ X_0 = 0$

Exceto pela constante de atenuação não nula, a linha sem distorção se comporta igual à linha sem perdas. Para evitar distorção, diferentes frequências de um sinal devem viajar à mesma velocidade ($u_p = \text{cte.}$), o que é satisfeito nos casos 1 e 3, e aproximadamente no caso 2. No caso geral, uma linha tem perdas e sofre dispersão.

1.2.2 Parâmetros de linhas de transmissão

As propriedades elétricas de uma linha de transmissão, em uma determinada frequência, são completamente caracterizadas pelos parâmetros R, L, G, C. Podemos relacioná-los como

$$\frac{G}{C} = \frac{\sigma}{\epsilon}, \quad LC = \mu \epsilon$$

A segunda relação diz que a velocidade de propagação em uma linha de transmissão de parâmetros L, C é a mesma de uma onda plana não guiada no dielétrico da linha.

A Tabela 1 apresenta os parâmetros distribuídos para linhas de transmissão dos tipos linha bifilar e cabo coaxial.

Tabela 1: Parêmtros distribuídos.

Parâmetro	Linha bifilar	Cabo coaxial
$R (\Omega/\mathrm{m})$	$\frac{R_s}{\pi a}$	$\frac{\frac{R_s}{2\pi}\left(\frac{1}{a} + \frac{1}{b}\right)}{\frac{\pi}{2\pi}\ln\left(\frac{b}{a}\right)}$
L (H/m)	$\frac{\mu}{\pi} \cosh - 1 \left(\frac{D}{2a} \right)$	$\frac{2\mu}{2\pi}\ln\left(\frac{b}{a}\right)$
G (S/m)	$\frac{\pi\sigma}{\cosh-1(D/2a)}$	
C (F/m)	$\frac{\pi\epsilon}{\cosh^{-1}(D/2a)}$	$\frac{\ln(b/a)}{2\pi\epsilon}$ $\frac{1}{\ln(b/a)}$

Nota: $R_s = \sqrt{\pi f \mu_c / \sigma_c}$

1.2.3 Constante de atenuação a partir de relações de potência

A constante de atenuação pode ser obtida como

$$\alpha = \Re[\gamma] = \Re[\sqrt{(R + j\omega L)(G + j\omega C)}]$$

Alternativamente, pode ser obtida a partir de uma relação de potências. A potência média propagada pela linha de transmissão é

$$P(z) = \frac{1}{2}\Re[V(z)I^*(z)] = \frac{1}{2}\Re\left[V_0e^{-(\alpha+j\beta)z}\frac{V_0}{Z_0^*}e^{-(\alpha-j\beta)z}\right] = \frac{V_0^2}{2|Z_0|^2}R_0e^{-2\alpha z}$$

Da lei de conservação de energia, a taxa de diminuição de P(z) com a distância deve ser igual à potência disspiada média por unidade de comprimento P_L , logo

$$-\frac{\partial}{\partial z}P(z) = P_L(z) = 2\alpha P(z) \Rightarrow \boxed{\alpha = \frac{P_L(z)}{2P(z)} \text{ (Np/m)}}$$

⁴Pois $\frac{R}{L} \gg \frac{G}{C}$.

 $^{^5}$ Para obter a relação, deve-se diminuir C ou aumentar L. O segundo é mais conveniente e possível através da pupinização.

1.3 Características de onda em linhas de transmissão finitas

Em linhas de transmissão infinitas, não há ondas refletidas. Isso também é verdade para linhas casadas. A condição de máxima transferência de potência para uma dada fonte ocorre quando a impedância da carga é o complexo conjugado da impedância da fonte (casamento de impedância). Mas na terminologia de linhas de transmissão, uma linha está casada quando a impedância da carga é igual à impedância característica da linha, i.e.

$$Z_L = Z_0.$$

Figura 3: Representação geral de uma linha de transmissão.

No caso geral, as ondas de tensão e corrente são

$$V(z = \ell) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$
$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

A impedância na carga é

$$\left(\frac{V}{I}\right)_{z=\ell} = \frac{V_L}{I_L} = Z_L$$

Podemos escrever as equações de onda como

$$V_L = V_0^+ e^{-\gamma \ell} + V_0^- e^{\gamma \ell}$$

$$I_L = \frac{{V_0^+}^+}{Z_0}^+ e^{-\gamma \ell} + \frac{{V_0^-}}{Z_0} e^{\gamma z}$$

Resolvendo para V_0^+ e $V_0^?$, temos:

$$V_0^+ = \frac{1}{2}(V_L + I_L Z_0)e^{\gamma \ell}$$

$$V_0^- = \frac{1}{2}(V_L - I_L Z_0)e^{-\gamma \ell}$$

Substituindo \mathbb{Z}_L nas equações acima:

$$V(z) = \frac{I_L}{2} [(Z_L + Z_0)e^{\gamma(\ell - z)} + (Z_L - Z_0)e^{-\gamma(\ell - z)}]$$

$$I(z) = \frac{I_L}{2Z_0} [(Z_L + Z_0)e^{\gamma(\ell - z)} - (Z_L - Z_0)e^{-\gamma(\ell - z)}]$$

Substituindo z'=l-z, i.e., tomando a carga como referência:

$$V(z') = \frac{I_L}{2} [(Z_L + Z_0)e^{\gamma z'} + (Z_L - Z_0)e^{-\gamma z'}]$$

$$I(z') = \frac{I_L}{2Z_0} [(Z_L + Z_0)e^{\gamma z'} - (Z_L - Z_0)e^{-\gamma z'}]$$

Usando funções hiperbólicas⁶, podemos escrever

$$V(z') = I_L(Z_L \cosh \gamma z' + Z_0 \sinh \gamma z')$$

$$I(z') = \frac{I_L}{Z_0} (Z_L \sinh \gamma z' + Z_0 \cosh \gamma z')$$

 $^{^{6}}e^{x} + e^{-x} = 2\cosh x \ e^{x} - e^{-x} = 2\sinh x.$

que permitem encontrar corrente e tensão em qualquer ponto da linha de transmissão. A impedância em z' é

$$Z(z') = \frac{V(z')}{I(z')} \Rightarrow \boxed{Z(z') = Z_0 \frac{Z_L + Z_0 \tanh \gamma z'}{Z_0 + Z_L \tanh \gamma z'}}$$

Em $z' = \ell$ ou z = 0, a fonte vê uma impedância de entrada Z_i tal que

$$Z_i = (Z)_{z'=\ell} = Z_0 \frac{Z_L + Z_0 \tanh \gamma \ell}{Z_0 + Z_L \tanh \gamma \ell}$$

A potência média fornecida pelo gerador aos terminais de entrada é

$$(P_{av})_i = \frac{1}{2} \Re[V_i I_i^*]_{z'=\ell}$$

A potência média fornecida à carga é

$$(P_{av})_L = \frac{1}{2}\Re[V_L I_L^*]_{z'=0} = \frac{1}{2}|I_L|^2 R_L$$

Para linhas sem perdas, pela conservação de energia, $(P_{av})_i = (P_{av})_L$. Quando a linha está casada, i.e., $Z_L = Z_0$, temos $Z_i = Z_0$ e $Z(z') = Z_0$, $\forall z$. As expressões para tensão e corrente se reduzem a

$$V(z) = V_i e^{-\gamma z}, \quad I(z) = I_i e^{-\gamma z}$$

que são as mesmas equações para linha de transmissão infinita. Portanto, uma linha de transmissão finita casada tem mesmo comportamento que uma linha infinita.

1.3.1 Linhas de transmissão como elementos de circuito

Linhas de transmissão não servem apenas como guias de onda, mas também podem ser usadas como elementos de circuito em frequências ultra-altas (UHF - *ultrahigh frequencies*): de 300MHz a 3GHz.

Na maiorira dos casos, as linhas de transmissão são curtas e as perdas podem ser ignoradas:

$$\gamma = j\beta, \quad Z_0 = R_0, \quad \tanh(\gamma \ell) = \tanh(j\beta \ell) = j\tan(\beta \ell)$$

$$Z_i = R_0 \frac{Z_L + jR_0 \tan \beta \ell}{R_0 + jZ_L \tan \beta \ell}$$

Casos especiais:

1. Terminação em circuito aberto $(Z_L \to \infty)$:

$$Z_{i} = jX_{io} = -\frac{jR_{0}}{\tan \beta \ell} = -jR_{0} \cot \beta \ell$$
$$\beta \ell \ll 1 \Rightarrow Z_{i} = jX_{io} \approx -j\frac{R_{0}}{\beta \ell} = -j\frac{\sqrt{L/C}}{\omega \sqrt{LC}\ell} = -j\frac{1}{\omega C\ell}$$

Figura 4: Reatância de entrada para terminação em aberto.

2. Terminação em curto-circuito ($Z_L = 0$):

$$Z_i = jX_{is} = jR_0 \tan \beta \ell$$

$$\beta \ell \ll 1 \Rightarrow Z_i = jX_{is} \approx -jR_0 \beta \ell = j\sqrt{L/C}\omega \sqrt{LC}\ell = j\omega L\ell$$

Figura 5: Reatância de entrada para terminação em curto-circuito.

3. Seção de quarto de onda $(\ell = \lambda/4, \ \beta \ell = \pi/2)$: Quando o o comprimento da linha é um múltiplo ímpar de $\lambda/4$, i.e., $\ell = (2n-1)\lambda/4$, temos⁷:

$$\beta \ell = \frac{2\pi}{\lambda} (2n - 1) \frac{\lambda}{4} = (2n - 1) \frac{\pi}{2}$$
$$\tan \beta \ell = \tan \left[(2n - 1) \frac{\pi}{2} \right] \to \pm \infty$$
$$Z_i = \frac{R_0^2}{Z_L}$$

4. Seção de meia onda $(\ell = \lambda/2, \ \beta \ell = \pi)$: Quando o comprimento da linha é um múltiplo inteiro de $\lambda/2, \ \ell = n\lambda/2,$ temos:

$$\beta \ell = \frac{2\pi}{\lambda} \left(\frac{n\lambda}{2} \right) = n\pi$$
$$\tan \beta \ell = 0$$
$$Z_i = Z_L$$

Podemos determinar os parâmetros da linha de transmissão medindo a impedância de entrada da linha para condições de aberto e curto na carga:

$$Z_L \to \infty : \quad Z_{io} = Z_0 \coth \gamma \ell$$

$$Z_L = 0 : \quad Z_{is} = Z_0 \tanh \gamma \ell$$

$$Z_0 = \sqrt{Z_{io}Z_{is}}, \quad \gamma = \ell^{-1} \tanh^{-1} \sqrt{Z_{is}/Z_{io}}$$

Linhas de transmissão com perdas e terminação em curto-circuito: Para $\ell=\frac{n\lambda}{2},\ \beta\ell=n\pi,\ \sin\beta\ell=0$:

$$Z_{is} = Z_0 \tanh \alpha \ell \approx Z_0 \alpha \ell \rightarrow$$
 pequeno, mas não-nulo

Para $\ell = (2n-1)\frac{\lambda}{4}, \ \beta\ell = (2n-1)\frac{\pi}{2}, \ \cos\beta\ell = 0$:

$$Z_{is} = \frac{Z_0}{\tanh \alpha \ell} \approx \frac{Z_0}{\alpha \ell} \rightarrow \text{grande, mas não infinito}$$

Essa é a condição de circuito ressoante paralelo. É um filtro passa-baixa, e podemos determinar o fator de qualidade Q achando a largura de banda de meia-potência $\Delta f = f_2 - f_1$, em que f_i são frequências em que a potência cai à metade do máximo, ou a tensão cai para $\frac{1}{\sqrt{2}}$ do máximo. Seja $f = f_0 + \delta f$, então:

$$\beta \ell = \frac{2\pi (f_0 + \delta f)}{u_p} \ell = \left[(2n - 1)\frac{\pi}{2} \right] + \left[(2n - 1)\frac{\pi}{2} \left(\frac{\delta f}{f_0} \right) \right]$$

$$\cos \beta \ell \approx -\frac{n\pi}{2} \left(\frac{\delta f}{f_0} \right), \ \sin \beta \ell \approx 1$$

$$Z_{is} = \frac{Z_0}{\alpha \ell + j\frac{n\pi}{2} \left(\frac{\delta f}{f_0} \right)} \Rightarrow \frac{|Z_{is}|^2}{|Z_{is}|^2_{\max}} = \frac{1}{1 + \left[\frac{n\pi}{2\alpha \ell} \left(\frac{\delta f}{f_0} \right) \right]^2}$$

$$Q = \frac{f_0}{\Delta f} = \frac{\beta}{2\alpha}$$

⁷Análogo ao caso de múltiplos dielétricos na incidência de ondas planas

1.3.2 Linhas com terminação resistiva

Quando a linha de transmissão não está casada, propagam-se uma onda incidente (que vem do gerador) e uma refletida (que vem da carga). Podemos definir o coeficiente de reflexão de tensão como

$$\Gamma(z') = \frac{|V^{-}(z')|}{|V^{+}(z')|} = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma|e^{j\theta_{\Gamma}}$$

de forma que as expressões para ondas de tensão e corrente ficam:

$$V(z') = \frac{I_L}{2} (Z_L + Z_0) e^{\gamma z'} [1 + \Gamma e^{-2\gamma z'}]$$
$$I(z') = \frac{I_L}{2Z_0} (Z_L + Z_0) e^{\gamma z'} [1 - \Gamma e^{-2\gamma z'}]$$

Para linha sem perdas, $\gamma = j\beta$:

$$V(z') = \frac{I_L}{2} (Z_L + Z_0) e^{j\beta z'} [1 + |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')}]$$
$$I(z') = \frac{I_L}{2Z_0} (Z_L + Z_0) e^{j\beta z'} [1 - |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')}]$$

Usando que $V_L = I_L Z_L$, $\cosh j\theta = \cos \theta$ e $\sinh j\theta = j \sin \theta$:

$$V(z') = V_L \cos \beta z' + jI_L R_0 \sin \beta z'$$

$$I(z') = I_L \cos \beta z' + j \frac{V_L}{R_0} \sin \beta z'$$

O coeficiente de reflexão poderia ter sido definido em termos de corrente:

$$\Gamma' = \frac{|I^-(z')|}{|I^+(z')|} = -\frac{|V^-(z')|}{|V^+(z')|} = -\Gamma(z')$$

Podemos definir uma razão de onda estacionária (SWR - standing wave ratio):

$$S = \frac{|V_{\text{max}}|}{|V_{\text{min}}|} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

$$|\Gamma| = \frac{S - 1}{S + 1}$$

Alguns casos: carga casada: $\Gamma=0,\ S=1,\ {\rm curto\text{-}circuito}:\ \Gamma=-1,\ S\to\infty,\ {\rm circuito\ aberto}:\ \Gamma=+1,\ S\to\infty.$ É comum expressar na escala $20\log S$ (dB). Os pontos de $|V_{\rm max}|$ ($|I_{\rm min}|$) ocorrem quando $\theta_\Gamma-2\beta z_M'=-2n\pi$ e de $|V_{\rm min}|$ ($|I_{\rm max}|$), quando $\theta_\Gamma-2\beta z_M'=-(2n+1)\pi$.

Para terminações resistivas,

$$\Gamma = \frac{R_L - R_0}{R_L + R_0} \in \mathbb{R}.$$

Há duas possibilidades:

- 1. $R_L > R_0$: nesse caso, $\Gamma > 0$ e $\theta_{\Gamma} = 0$. O máximo de tensão (mínimo de corrente) ocorre na resistência terminal e outros máximos ocorrem deslocados de $z' = n\lambda/2$.
- 2. $R_L < R_0$: nesse caso, $\Gamma < 0$ e $\theta_{\Gamma} = -\pi$. O mínimo de tensão (máximo de corrente) ocorre na resistência terminal e outros mínimos ocorrem deslocados de $z' = n\lambda/2$.

Para terminação em circuito aberto:

$$|V(z')| = V_L |\cos \beta z'|$$
$$|I(z')| = \frac{V_L}{R_0} |\sin \beta z'|$$

Para terminação em curto-circuito:

$$|V(z')| = I_L R_0 |\sin \beta z'|$$
$$|I(z')| = I_L |\cos \beta z'|$$

Figura 6: Ondas estacionárias de tensão e corrente para terminação resistiva em linhas sem perdas.

Figura 7: Ondas estacionárias de tensão e corrente para terminação em curto/aberto em linhas sem perdas.

1.3.3 Linhas com terminação arbitrária

$$Z(z') = Z_0 \frac{1 + \Gamma(z')}{1 - \Gamma(z')}$$

1.3.4 Circuitos de linhas de transmissão

Consideraremos a fonte:

$$\Gamma_g = \frac{Z_g - Z_0}{Z_g + Z_0}$$

$$V(z') = \frac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} \left(\frac{1 + \Gamma e^{-2\gamma z'}}{1 - \Gamma_g \Gamma e^{-2\gamma \ell}} \right)$$

$$I(z') = \frac{V_g}{Z_0 + Z_g} e^{-\gamma z} \left(\frac{1 - \Gamma e^{-2\gamma z'}}{1 - \Gamma_g \Gamma e^{-2\gamma \ell}} \right)$$

1.4 A carta de Smith

A carta de Smith provê um método gráfico para cálculos de parâmetros de linhas de transmissão. Trata-se de uma representação gráfica das funções de resistência e reatância normalizadas no plano de coeficiente de reflexão.

Considere uma linha de transmissão sem perdas, com coeficiente de reflexão

$$\Gamma = \frac{Z_L - R_0}{Z_L + R_0} = |\Gamma| e^{j\theta_{\Gamma}}$$

Normalizamos a impedância com relação a $R_0 = \sqrt{L/C}$:

$$z_L = \frac{Z_L}{R_0} = \frac{R_L + jX_L}{R_0} = r + jx \text{ (adimensional)}$$

Daí, temos:

$$\Gamma = \Gamma_r + j\Gamma_i = \frac{z_L - 1}{z_L + 1} \Rightarrow z_L = r + jx = \frac{1 + \Gamma}{1 - \Gamma} = \frac{1 + \Gamma_r + j\Gamma_i}{1 - \Gamma_r - j\Gamma_i}$$
$$r = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{(1 - \Gamma_r)^2 + \Gamma_i^2}, \ x = \frac{2\Gamma_i}{(1 - \Gamma_r)^2 + \Gamma_i^2}$$

Rearranjando a equação de r, temos uma equação de circunferência:

$$\boxed{\left(\Gamma_r - \frac{r}{1+r}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1+r}\right)^2}$$

Propriedades dos r-círculos:

1. Os centros estão no eixo Γ_r .

- 2. O círculo r=0 tem raio unitário, centro na origem e é o maior deles.
- 3. Tornam-se menores à medida que r aumenta, terminando no ponto (1,0) de circuito aberto.
- 4. Todos passam pelo ponto (1,0).

Rearranjando a equação de x, também temos uma equação de circunferência:

$$\left[(\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{c} \right)^2 = \left(\frac{1}{x} \right)^2 \right]$$

Propriedades dos x-círculos:

- 1. Os centros estão na reta $\Gamma_r = 1$. Para x > 0 (reatância indutiva), estão acima do eixo Γ_r e para x < 0 (reatância capacitiva), estão abaixo do eixo Γ_r .
- 2. O círculo x=0 tende ao eixo Γ_r .
- 3. Tornam-se menores com o aumento de |x|, terminando no ponto (1,0) de circuito aberto.
- 4. Todos passam pelo ponto (1,0).

Em todos os pontos, os r-círculos e x-círculos são ortogonais. O cruzamento de um r-círculo com um x-círculo representa uma impedância de carga normalizada $z_L = r + jx$. O ponto (-1,0) representa um curto-circuito (impedância nula) e o ponto (1,0) representa um aberto (impedância infinita).

Em coordenadas polares, cada ponto é especificado por uma magnitude $|\Gamma|$ e um ângulo θ_{Γ} (com relação à origem dos eixos). Essas coordenadas polares (magnitude e ângulo) dão o coeficiente de reflexão para cada ponto (impedância de carga). Cada círculo $|\Gamma|$ intersecta o eixo x=0 em dois pontos: no ponto com $|\Gamma_r|>1$, temos r=S; no ponto com $|\Gamma_r|<1$, r=1/S.

Figura 8: A carta de Smith.

1.4.1 Cálculos com a carta de Smith para linhas com perdas

Nesse caso,

$$\begin{split} |\Gamma(d)| &= |\Gamma_L| e^{-2\alpha d} \\ z_i &= \frac{1 + |\Gamma| e^{-2\alpha z' + j\phi}}{1 - |\Gamma| e^{-2\alpha z' + j\phi}}, \quad \phi = \theta_\Gamma - 2\beta z' \end{split}$$

Seja P_1 o ponto que representa a carga e P_1' sua projeção na o Γ -círculo unitário. Podemos calcular α e β a partir de:

$$\frac{\overline{OP_1}}{\overline{OP_1'}} = e^{-\alpha \ell}$$

$$\widehat{P_L P_1'} = \frac{\ell}{\lambda} \Rightarrow 2\beta \ell = \frac{4\pi \ell}{\lambda}$$

1.4.2 Carta de Smith com admitâncias

Seja $Y_L=1/Z_L$ a impedância da carga. Então a impedância normalizada é

$$y_L = \frac{1}{z_L} = g + jb$$

Para encontrar o ponto que representa y_L na carta, basta deslocar o ponto z_L de $\lambda/4$, i.e., os pontos z_L e y_L estão diametralmente opostos no $|\Gamma|$ -círculo.

Nesse caso, r-círculos e x-círculos são substituídos por g-círculos e b-círculos e os pontos de curto-circuito e aberto são trocados.

1.5 Casamento de impedância de linhas de transmissão

1.5.1 Casamento de impedância por transformação de quarto de onda

Para casar uma carga resistiva R_L com uma linha de transmissão sem perdas de impedância característica R_0 , podemos inserir um transformador de quarto de onda com impedância característica R'_0 tal que

$$R_0' = \sqrt{R_0 R_L}$$

Esse método é sensível à frequência (assim como os outros) e só funciona para impedância de carga puramente resistiva.

1.5.2 Casamento com toco simples

Consiste em inserir um toco (stub) curto-circuitado em paralelo com a linha para casar impedâncias. Devemos determinar o comprimento do toco ℓ e sua distância em relação à carga d de forma que a impedância entre os terminais do toco seja R_0 .

Devemos ter:

$$Y_i = Y_B + Y_S = Y_0 \Rightarrow 1 = y_B + y_S$$

Mas a admitância do toco é puramente imaginária, i.e. $y_S = jb_s$. Portanto:

$$y_B = 1 + jb + b, \quad y_S = -jb_B$$

Figura 9: Casamento de impedância com toco simples.

Procedimento usando a carta de Smith:

- 1. Encontrar o ponto que representa y_L .
- 2. Desenhar o $|\Gamma|$ -círculo para y_L , que intersecta g=1 em dois pontos: $y_{B1}=1+jb_{B1}$ e $y_{B2}=1+jb_{B2}$ (duas possíveis soluções).
- 3. Determinar os comprimentos d_1 e d_2 entre y_L e os pontos y_{B1} e y_{B2} .
- 4. Determinar os comprimentos de toco ℓ_{B1} e ℓ_{B2} a partir dos ângulos entre o ponto de curto (à direita) e os pontos que representam $-jb_{B1}$ e $-jb_{B2}$.

Figura 10: Construção gráfica para toco simples.

1.5.3 Casamento com toco duplo

O método de toco simples requer que o toco seja inserido em um ponto específico. No método de toco duplo, são usados dois tocos, conforme Figura 11. A distância d_0 é escolhida arbitrariamente e os comprimentos dos tocos são escolhidos de modo a casar impedância.

Os requerimentos são os mesmos do toco simples:

$$Y_i = Y_B = Y_{sB} = Y_0 \Rightarrow y_B = 1 + jb_B, \quad y_{sB} = -jb_B$$

O ponto y_B deve estar no círculo g=1 e o ponto y_A deve estar em um círculo g=1 deslocado de d_0/λ em direção à carga (anti-horário).

Figura 11: Casamento de impedância com toco duplo.

Procedimento usando a carta de Smith:

- 1. Desenhar g = 1, onde y_B deve estar localizado.
- 2. Deslocar esse círculo no sentido anti-horário de d_0/λ . y_A deve estar nesse círculo deslocado.
- 3. Determinar o ponto $y_L = g_L + jb_L$.
- 4. Traçar o círculo $g=g_L$, intersectando a circunferência deslocada em dois pontos y_{A1} e y_{A2} .
- 5. Com compasso, marcar os pontos y_{B1} e y_{B2} , correspondentes a y_{A1} e y_{A2} , respectivamente.
- 6. Determinar os comprimentos ℓ_A a partir do ângulo entre y_A e y_L .
- 7. Determinar os comprimentos ℓ_B a partir do ângulo entre $-jb_B$ e o ponto de curto (à direita).

Figura 12: Construção gráfica para toco duplo.

Referências

[1] CHENG, David K. Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.