3 A student investigated the damping of a rotational pendulum using the apparatus shown.

When the metal rod is rotated through an angle and released, the rod performs angular oscillations about a vertical axis through the wire. The plastic sheets dampen the oscillations as they move through the air.

(a) The relationship between the maximum displacement angle θ and number of oscillations n is given by

$$\theta = \theta_0 e^{-\lambda n}$$

where θ_0 is the initial displacement angle and λ is a constant.

Explain why a graph of $\ln \theta$ against *n* could be used to determine a value for λ .

(2)

(b) The student displaced the metal rod by a large angle.

He recorded the maximum displacement angle every 10 oscillations.

n	<i>θ</i> /°	
10	124	
20	82	
30	55	
40	37	
50	25	
60	16	

(i) Plot a graph of $\ln \theta$ against n on the grid opposite. Use the additional column for your processed data.

(5)

(ii) Determine the value of λ from the graph.

Deduce whether this claim is correct.

(3)

(iii)	The student	claimed	that the	initial	displacement	angle	was	greater	than	180°

(3)