Creating a neural network from scratch using numpy to classify 2x2 matrices

Problem Understanding

We have 2x2 matrices where each cell is black (1) or white (0). The possible classifications are:

Solid: All black or all white.

Vertical: Two columns are consistent (e.g., [[1, 0], [1, 0]]).

Horizontal: Two rows are consistent (e.g., [[1, 1], [0, 0]]).

Diagonal: Diagonal patterns (e.g., [[1, 0], [0, 1]]).

The input size is 4 (flattened 2x2 matrix), and the output size is 4 (one-hot encoded classification).

Step-by-Step Plan

Step 2.1: Data Representation

Flatten the 2x2 matrix into a 1D array for simplicity. Each matrix will be represented as [x1, x2, x3, x4].

Step 2.2: Initialize Parameters

We'll use a single hidden layer neural network:

- Input layer: 4 neurons (for the flattened matrix).
- Hidden layer: Choose, say, 8 neurons with ReLU activation.
- Output layer: 4 neurons (Softmax for classification).

Weights and biases are randomly initialized.

Step 2.3: Forward Propagation

- Compute the activation of the hidden layer using Z1 = W1.X + b1 and A1 = ReLU(Z1).
- Compute the output layer using Z2 = W2.A1 + b2 and A2 = Softmax(Z2).

Step 2.4: Loss Function

Use cross-entropy loss:

$$ext{Loss} = -rac{1}{m} \sum_{i=1}^m y_i \log(\hat{y}_i)$$

Step 2.5: Backward Propagation

- Compute gradients for output and hidden layers.
- · Update weights and biases using gradient descent.

Step 2.6: Train the Model

- · Train the network on a set of examples.
- · Monitor loss and accuracy during training.
- First we will import numpy to work with arrays in python

import numpy as np

Creating an Activation Function

This is a ReLU (Rectified Linear Unit) function. It takes a number and:

- If the number is negative, it makes it 0.
- · If it's positive, it keeps it as is.

def relu(x):
 return np.maximum(0,x)

The function relu_derivative(x) computes the derivative of the ReLU (Rectified Linear Unit) activation function.

Explanation:

1. ReLU Activation Function:

The ReLU function is defined as:

f(x)=x if x>0

f(x)= 0 if x≤0

Its derivative is:

f'(x) = 1 if x>0

f'(x)=0 if $x \le 0$

What the function does:

- The expression (x > 0) creates a boolean array where each element is True if the corresponding element of x is greater than 0 and False otherwise.
- .astype(float) converts this boolean array to a float array, where True becomes 1.0 and False becomes 0.0.
- Thus, the function returns 1.0 for elements of x that are greater than 0 and 0.0 for elements less than or equal to 0, which corresponds to the derivative of the ReLU function.

```
def relu_derivative(x):
    return (x > 0).astype(float)
```

Softmax Activation Function

Make the numbers stable

```
1. np.max(x, axis=0, keepdims=True)
```

- We find the biggest number in the list x.
- This helps to keep the math safe and avoid super big numbers (it's called a "stability fix").
- Example: If x = [2, 3, 5], the biggest number is 5.
- 2. x np.max(x, axis=0, keepdims=True)
- Subtract the biggest number from every number in x.
- Example: [2, 3, 5] 5 becomes [-3, -2, 0].
- 3. np.exp(...)
- Now we take the exponential (a fancy math operation) of the adjusted numbers.
- Example: np.exp([-3, -2, 0]) becomes [0.05, 0.14, 1].

Turn the numbers into probabilities

```
1. np.sum(exp_x, axis=0, keepdims=True)
```

- Add up all the new numbers.
- Example: [0.05, 0.14, 1] adds up to 1.19.
- 2. exp_x / np.sum(...)
- Divide each number by the total to make them into probabilities.
- Example:
 - 0.05 / 1.19 ≈ 0.04
 - 0.14 / 1.19 ≈ 0.12
 - 1 / 1.19 ≈ 0.84.
- Now you have probabilities: [0.04, 0.12, 0.84].

```
def softmax(x):
    exp_x = np.exp(x - np.max(x, axis=0, keepdims=True)) # Stability fix
    return exp_x / np.sum(exp_x, axis=0, keepdims=True)
```

LOSS FUNCTION

1.Get the number of samples

- We're counting how many examples (or data points) we're working with.
- y_true.shape[1]: The shape gives the dimensions of y_true.
 - If y_true is a matrix, the second number (1) tells us how many samples we have.
- Example: If y_true is a matrix with shape (3, 5), it means there are 5 samples.

2.Calculate the loss

- np.log(y_pred)
- Take the natural logarithm of each predicted probability in y_pred.
- This step is important for how cross-entropy works mathematically.
- 2. y_true * np.log(y_pred)
- Multiply the true labels (y_true) with the logarithm of the predicted probabilities (np.log(y_pred)).
- This ensures we only consider the predictions for the correct labels.
- Example: If y_true = [1, 0, 0] and y_pred = [0.7, 0.2, 0.1], only 0.7 (the probability of the correct label) is used.
- 3. np.sum(...)

- Add up all the values from the previous step for all samples.
- Example: If you have predictions for 3 samples, you'll sum the contributions from all 3.
- 4. (negative sign)
- Cross-entropy involves taking the negative of the sum. This makes the loss a positive value.
- 5. / m
- Divide by the number of samples (m) to get the average loss per sample.

```
def cross_entropy_loss(y_true, y_pred):
    m = y_true.shape[1]
    return -np.sum(y_true * np.log(y_pred)) / m
```

v Initialization

1. Define the function

- We're defining a function called initialize_parameters. It takes three inputs:
 - input_size: How many features go into the network (number of input neurons).
 - hidden_size: How many neurons are in the hidden layer.
 - output size: How many outputs the network produces (number of output neurons).

2. Set a random seed

- np.random.seed(42)
- Setting a random seed ensures that the random numbers generated are always the same every time you run the code. This helps with
 reproducibility, so results don't vary randomly.

3. Initialize weights and biases

Weights for Layer 1 (W1)

```
W1 = np.random.randn(hidden_size, input_size) * 0.01
```

- np.random.randn(hidden_size, input_size) generates a random matrix of size hidden_size x input_size with values from a standard normal distribution (mean = 0, standard deviation = 1).
- Multiplying by 0.01 scales these values down to make them small. This helps the network start learning without large gradients that might destabilize training.
- Example: If hidden_size = 3 and input_size = 2, then W1 will be a 3×2 matrix.

Biases for Layer 1 (b1)

```
b1 = np.zeros((hidden size, 1))
```

- np.zeros((hidden_size, 1)) creates a matrix of zeros with hidden_size x 1 dimensions.
- Biases are initialized to zero because they don't need random starting values.

Similarly we do it for layer 2 (weight and biase)

```
W2 = np.random.randn(output_size, hidden_size) * 0.01
```

```
b2 = np.zeros((output_size, 1))
```

```
def initialize_parameters(input_size, hidden_size, output_size):
    np.random.seed(42)
    W1 = np.random.randn(hidden_size, input_size) * 0.01
    b1 = np.zeros((hidden_size, 1))
    W2 = np.random.randn(output_size, hidden_size) * 0.01
    b2 = np.zeros((output_size, 1))
    return W1, b1, W2, b2
```

Forward Propagation

- Z1 = np.dot(W1, X) + b1: Multiply inputs (X) by weights (W1) and add biases (b1). This gives the first hidden layer's signals.
- A1 = relu(Z1): Apply ReLU to make these signals cleaner.
- Z2 = np.dot(W2, A1) + b2: Multiply hidden layer signals (A1) by weights (W2) and add biases (b2). This gives the final layer's signals.
- A2 = softmax(Z2): Apply Softmax to turn final signals into probabilities for classification.

```
def forward_propagation(X, W1, b1, W2, b2):
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = softmax(Z2)
    return Z1, A1, Z2, A2
```

Backward Propagation

- dZ2: Difference between the robot's guess and the true answer.
- dW2: Adjustments for the final layer weights.
- db2: Adjustments for the final layer biases.
- · dA1: Feedback to the first layer.
- · dZ1: Adjustments for the first layer.
- dW1, db1: Adjustments for the first layer weights and biases.

```
def backward_propagation(X, Y, Z1, A1, A2, W2):
    m = X.shape[1]
    dZ2 = A2 - Y
    dW2 = np.dot(dZ2, A1.T) / m
    db2 = np.sum(dZ2, axis=1, keepdims=True) / m
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = dA1 * relu_derivative(Z1)
    dW1 = np.dot(dZ1, X.T) / m
    db1 = np.sum(dZ1, axis=1, keepdims=True) / m
    return dW1, db1, dW2, db2
```

Parameter updates

```
def update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate):
    W1 -= learning_rate * dW1
    b1 -= learning_rate * db1
    W2 -= learning_rate * dW2
    b2 -= learning_rate * db2
    return W1, b1, W2, b2
```

Training the Model

- initialize_parameters: Give the neurons their starting rules.
- forward_propagation: Make guesses.
- cross_entropy_loss: Measure how wrong the guesses are.
- · backward_propagation: Calculate how to improve.
- update_parameters: Teach the neurons better rules.
- · Repeat for a set number of iterations.

```
def train(X, Y, input_size, hidden_size, output_size, learning_rate, iterations):
    W1, b1, W2, b2 = initialize_parameters(input_size, hidden_size, output_size)
    for i in range(iterations):
        Z1, A1, Z2, A2 = forward_propagation(X, W1, b1, W2, b2)
        loss = cross_entropy_loss(Y, A2)
        dW1, db1, dW2, db2 = backward_propagation(X, Y, Z1, A1, A2, W2)
        W1, b1, W2, b2 = update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate)
        if i % 100 == 0:
```

```
print(f"Iteration {i}, Loss: {loss}")
    return W1, b1, W2, b2
def predict(X, W1, b1, W2, b2):
    _, _, _, A2 = forward_propagation(X, W1, b1, W2, b2)
    predictions = np.argmax(A2, axis=0)
    return predictions
# Example data (flattened 2x2 matrices and labels)
 \textbf{X\_train = np.array}([[1,\ 1,\ 0,\ 0],\ [0,\ 0,\ 1,\ 1],\ [1,\ 0,\ 1,\ 0],\ [0,\ 1,\ 0,\ 1]]). \textbf{T} 
Y_{train} = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]).T
# Hyperparameters
input_size = 4
hidden_size = 8
output_size = 4
learning_rate = 0.1
iterations = 1000
# Train the model
W1, b1, W2, b2 = train(X_train, Y_train, input_size, hidden_size, output_size, learning_rate, iterations)
# User input for prediction
while True:
    print("\nEnter a 2x2 binary matrix (row by row):")
    try:
        user_matrix = []
        for i in range(2):
            row = list(map(int, input(f"Row {i + 1}: ").split()))
            if len(row) != 2 or any(cell not in (0, 1) for cell in row):
                raise ValueError("Each row must contain exactly 2 binary values (0 or 1).")
            user_matrix.extend(row)
        user_matrix = np.array(user_matrix).reshape(-1, 1)
        prediction = predict(user_matrix, W1, b1, W2, b2)
        classes = ["Solid", "Horizontal", "Vertical", "Diagonal"]
        print(f"Prediction: {classes[prediction[0]]}")
    except Exception as e:
        print(f"Error: {e}")
    cont = input("Do you want to try another matrix? (yes/no): ").strip().lower()
    if cont != 'yes':
        break
     Enter a 2x2 binary matrix (row by row):
     Row 1: 0 0
     Row 2: 0 0
     Prediction: Solid
     Do you want to try another matrix? (yes/no):
```