An amazing title

An amazing author

Abstract

An amazing abstract.

1 Introduction

Event-related potentials (ERP) measure neural activity in response to specific events (e.g. motor or cognitive stimuli) and are regarded as a powerful, noninvasive way to explore human brain activity (Luck 2014).

2 Methods

Let $i=1,\dots,N$ be the unit in our amazing dataset, Y_i be the outcome variable of interest for unit i in this amazing application and let X_i be the preditor of interest for unit i.

A linear regression model assumes that

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{1}$$

In the linear regression model of Equation 1, ε_i are independent and identically distributed Normal variables.

Figure 1 is an example of a figure included by saving an image in a folder within this repo.

Human Brain Anatomy

Figure 1: An amazing figure caption. Image Credit: www.hopkinsmedicine.org

Table 1: Mean bill length, bill depth and flipper length by species in millimeters, in the palmerpenguins dataset. When computing the mean of a variable, missing values were not considered.

Species	Bill length (mm)	Bill depth (mm)	Flipper length (mm)
Adelie	38.8	18.3	190.0
Chinstrap	48.8	18.4	195.8
Gentoo	47.5	15.0	217.2

3 Results

3.1 Descriptive results

Table 1 is an example of a figure included by copy/pasting the image address on the web.

4 Discussion

The results reported in Section 3 suggest that...(migliavada2022?)

References

Luck, Steven J. 2014. An Introduction to the Event-Related Potential Technique. MIT press.