```
# Importing the necessary libraries
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
from sklearn.model_selection import train_test_split
```

Importing of dataset into the system

```
df1=pd.read_csv('HRDataset_v14.csv')
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 36 columns):

#	Column	Non-Null Count	Dtype
0	Employee_Name	311 non-null	object
1	EmpID	311 non-null	int64
2	MarriedID	311 non-null	int64
3	MaritalStatusID	311 non-null	int64
4	GenderID	311 non-null	int64
5	EmpStatusID	311 non-null	int64
6	DeptID	311 non-null	int64
7	PerfScoreID	311 non-null	int64
8	FromDiversityJobFairID	311 non-null	int64
9	Salary	311 non-null	int64
10	Termd	311 non-null	int64
11	PositionID	311 non-null	int64
12	Position	311 non-null	object
13	State	311 non-null	object
14	Zip	311 non-null	int64
15	DOB	311 non-null	object
16	Sex	311 non-null	object
17	MaritalDesc	311 non-null	object
18	CitizenDesc	311 non-null	object
19	HispanicLatino	311 non-null	object
20	RaceDesc	311 non-null	object
21	DateofHire	311 non-null	object

22	DateofTermination	104 non-null	object
23	TermReason	311 non-null	object
24	EmploymentStatus	311 non-null	object
25	Department	311 non-null	object
26	ManagerName	311 non-null	object
27	ManagerID	303 non-null	float64
28	RecruitmentSource	311 non-null	object
29	PerformanceScore	311 non-null	object
30	EngagementSurvey	311 non-null	float64
31	EmpSatisfaction	311 non-null	int64
32	SpecialProjectsCount	311 non-null	int64
33	LastPerformanceReview_Date	311 non-null	object
34	DaysLateLast30	311 non-null	int64
35	Absences	311 non-null	int64
	63 (64/6) (1.64/4.5)	1 (40)	

dtypes: float64(2), int64(16), object(18)

memory usage: 87.6+ KB

df1.head()

	Employee_Name	EmpID	MarriedID	MaritalStatusID	GenderIC
0	Adinolfi, Wilson K	10026	0	0	1
1	Ait Sidi, Karthikeyan	10084	1	1	1
2	Akinkuolie, Sarah	10196	1	1	С
3	Alagbe,Trina	10088	1	1	C
4	Anderson, Carol	10069	0	2	С
4					>

df1.isnull().sum()

Employee_Name	0
EmpID	0
MarriedID	0
MaritalStatusID	0
GenderID	0
EmpStatusID	0
DeptID	0
PerfScoreID	0
FromDiversityJobFairID	0
Salary	9

Termd PositionID 0 Position 0 State 0 Zip 0 DOB 0 Sex 0 MaritalDesc 0 CitizenDesc 0 HispanicLatino 0 RaceDesc 0 DateofHire 0 DateofTermination 207 TermReason 0 **EmploymentStatus** 0 Department 0 ManagerName 0 ManagerID 8 RecruitmentSource PerformanceScore 0 EngagementSurvey 0 **EmpSatisfaction** SpecialProjectsCount LastPerformanceReview_Date 0 DaysLateLast30 0 Absences 0 dtype: int64

Dropping the Date columns as they are not relevant to prediction

df1.drop(['DateofTermination','DateofHire','DOB','LastPerformanceReview_Date'],axis=1,inplace
df1.head()

	Employee_Name	EmpID	MarriedID	MaritalStatusID	GenderIC
0	Adinolfi, Wilson K	10026	0	0	1
1	Ait Sidi, Karthikeyan	10084	1	1	1

plt.figure(figsize=(18,18))
sns.heatmap(df1.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd750c21f10>

plt.figure(figsize=(20,30))
df1.plot(x='Salary',y='PerfScoreID',kind='scatter')

WARNING:matplotlib.axes._axes:*c* argument looks like a singl <matplotlib.axes._subplots.AxesSubplot at 0x7fd74ed5ce10> <Figure size 1440x2160 with 0 Axes>

df1.plot(x='EngagementSurvey',y='PerfScoreID',kind='scatter')

WARNING:matplotlib.axes._axes:*c* argument looks like a singl <matplotlib.axes._subplots.AxesSubplot at 0x7fd750f4fd90>

df1['ManagerID'] = df1['ManagerID'].replace(np.nan, 39.0)
df1[df1['ManagerName']=='Webster Butler'][['ManagerName','ManagerID']]

ManagerName	ManagerID	1

4 Webster Butler 39.0

df1[['EmpSatisfaction','EmpSatisfaction','SpecialProjectsCount','ManagerID','GenderID','EmpSt

EmpSatisfaction	0
EmpSatisfaction	0
SpecialProjectsCount	0
ManagerID	0
GenderID	0
EmpStatusID	0
Sex	0
EmpStatusID	0
SpecialProjectsCount	0
SpecialProjectsCount	0
dtype: int64	

df1.corr()

EmpID MarriedID MaritalStatusID

Double-click (or enter) to edit


```
X = df1[['MaritalStatusID','FromDiversityJobFairID','Salary','SpecialProjectsCount','EmpSatis
y = df1['PerfScoreID']
```

X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=0)

Logistic Regression model

```
from sklearn.base import ClassifierMixin
from sklearn.metrics.cluster import entropy
RandomForestClassifier
regressor = DecisionTreeClassifier(criterion='entropy', random_state=0)
```

```
regressor.fit(X train, y train)
#Running a logistic regression model
# Training the model
from sklearn.linear_model import LogisticRegression
model logr = LogisticRegression()
model logr.fit(X train,y train)
     LogisticRegression()
y predict log = model logr.predict(X test)
# Finding accuracy, precision, recall and confusion matrix
print(accuracy score(y test,y predict log))
print(classification_report(y_test,y_predict_log))
     0.8191489361702128
                                recall f1-score
                   precision
                                                    support
                1
                        0.00
                                  0.00
                                             0.00
                                                          3
                2
                        0.00
                                  0.00
                                             0.00
                                                          3
                3
                        0.82
                                  1.00
                                             0.90
                                                         77
                4
                        0.00
                                  0.00
                                             0.00
                                                         11
                                             0.82
                                                         94
         accuracy
        macro avg
                        0.20
                                  0.25
                                             0.23
                                                         94
     weighted avg
                        0.67
                                  0.82
                                             0.74
                                                         94
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318: Undefin
       warn prf(average, modifier, msg start, len(result))
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318: Undefin
       _warn_prf(average, modifier, msg_start, len(result))
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318: Undefin
       warn prf(average, modifier, msg start, len(result))
confusion_matrix(y_test,y_predict_log)
     array([[ 0, 0, 3,
                          01,
```

```
[0, 0, 3, 0],
[0, 0, 77, 0],
[0, 0, 11, 0]
```

Finding the confusion matrix for different classes

```
# Finding accuracy, precision, recall and confusion matrix when all classes are considered
print(accuracy score(y test,y pred))
print(classification report(y test,y pred))
```

0.6914893617021277

	precision	recall	f1-score	support
4	0.50	0.67	0.57	2
1	0.50	0.67	0.57	3
2	0.12	0.33	0.18	3
3	0.85	0.79	0.82	77
4	0.10	0.09	0.10	11
accuracy			0.69	94
macro avg	0.39	0.47	0.42	94
weighted avg	0.73	0.69	0.71	94

```
confusion_matrix(y_test,y_pred)
```

Decision tree visual representation

```
clf = DecisionTreeClassifier(max_depth=5, random_state=0)
model = clf.fit(X_train,y_train)
text_representation = tree.export_text(clf)
print(text_representation)
     --- feature_7 <= 3.00
         |--- feature 4 <= 2.50
             |--- feature 2 <= 71156.50
             | |--- class: 1
             |--- feature_2 > 71156.50
             | |--- class: 2
         --- feature_4 > 2.50
             |--- feature_7 <= 1.96
                |--- class: 1
             --- feature_7 > 1.96
                |--- feature 7 <= 2.65
                     |--- feature_6 <= 8.00
                       |--- class: 3
                     |--- feature_6 > 8.00
                     | |--- class: 2
                 |--- feature_7 > 2.65
                     |--- feature_2 <= 65706.00
                         |--- class: 3
                     |--- feature 2 > 65706.00
                    | |--- class: 1
      --- feature 7 > 3.00
         |--- feature 4 <= 2.50
             |--- feature 7 <= 3.67
```

```
|--- class: 1
   --- feature_7 > 3.67
      |--- class: 2
--- feature_4 > 2.50
   |--- feature_7 <= 3.90
       |--- feature 0 <= 3.50
          |--- feature_2 <= 53784.50
              |--- class: 3
           --- feature 2 > 53784.50
              |--- class: 3
       |--- feature 0 > 3.50
          |--- feature 4 <= 4.50
              |--- class: 3
           --- feature 4 > 4.50
              |--- class: 4
   --- feature_7 > 3.90
       |--- feature 5 <= 11.50
          |--- feature_2 <= 62731.50
              |--- class: 3
           |--- feature 2 > 62731.50
             |--- class: 3
       |--- feature 5 > 11.50
          |--- feature 5 <= 16.50
              |--- class: 3
           --- feature 5 > 16.50
              |--- class: 3
```


SVM model Trainign

print(accuracy_score(y_test,y_pred))

0.6914893617021277

Colab paid products - Cancel contracts here

✓ 2s completed at 18:25