Numerical Methods, project A, Number 31

Krzysztof Rudnicki Student number: 307585 Advisor: dr Adam Krzemieniowski

October 27, 2021

Contents

1	Intr	roduction	2	
2	Pro	oblem 1 - Finding machine epsilion		
	2.1		3 3	
	0.0	2.1.1 Definition of machine epsilion		
	2.2	Solution	3	
	0.0	2.2.1 Matlab code	3	
	2.3	Discussion of the result	4	
3	Pro	Problem 2 - Solving a system of n linear equations - indicated		
	met	hod	5	
	3.1	Problem	5	
	3.2		5	
	3.3		5	
4	Pro	Problem 3 - Solving a system of n linear equations - iterative		
		prithm	6	
	4.1	Problem	6	
	4.2		6	
	4.3		6	
5	Pro	blem 4 - QR method of finding eigenvalues	7	
	5.1	Problem	7	
	5.2	Solution	7	
	J	Discussion of the result	7	

Introduction

Problem 1 - Finding machine epsilion

2.1 Problem

Write a program finding macheps in the MATLAB environment

2.1.1 Definition of machine epsilion

Machine epsilion is the maximal possible relative error of the floating-point representation. (Tatjewski, p.14) Machine epsilion is equal to 2^{-t} where t is number of bits in the mantissa. In our case when we use IEEE Standard 754, mantissa is 53 bits long with first bit omitted as it is always equal to '1', so we technically work with 52 bits mantissa which makes the machine epsilion equal to: $2^{-52} = 2.220446e-16$

2.2 Solution

2.2.1 Matlab code

```
macheps = 1;
while 1.0 + macheps / 2 > 1.0
macheps = macheps/2;
end
```

Code above shifts macheps one bit to the right each iteration (by dividing by 2), it ends when we run out of mantissa bits which renders us unable to save smaller number. Due to underflow the value of macheps becomes 0 and therefore 1.0 > (macheps / 2) > 1.0 will become false.

```
1 format long
```

Display calculated macheps:

 $2.220446049250313e{-16}$

Display actual eps:

 $2.220446049250313e{-16}$

Display 2^{-52} :

 $2.220446049250313e{-16}$

Display difference between calculated macheps and actual eps: 0 Display difference between 2^{-52} and actual eps: 0 Display difference between calculated macheps and 2^{-52} : 0 As expected they are all equal to eachother.

2.3 Discussion of the result

Problem 2 - Solving a system of n linear equations - indicated method

- 3.1 Problem
- 3.2 Solution
- 3.3 Discussion of the result

Problem 3 - Solving a system of n linear equations - iterative algorithm

- 4.1 Problem
- 4.2 Solution
- 4.3 Discussion of the result

Problem 4 - QR method of finding eigenvalues

- 5.1 Problem
- 5.2 Solution
- 5.3 Discussion of the result

Bibliography

[1] Piotr Tatjewski (2014) Numerical Methods, Oficyna Wydawnicza Politechniki Warszawskiej