K 10/20

ЭЛЕКТРИЧЕСКИЙ ТОК

Электрический ток

$$[I]=A$$
 $I o$ скаляр направление тока o от + к -

4 Упорядоченное движение тока

v o скорость упорядоченного движения электронов ($\sim rac{{\cal M}{\cal M}}{c}$) $v_{{\scriptscriptstyle nons}}=3\cdot 10^8rac{{\cal M}}{c}$

Электрический ток в металлах

Мандельштам и Папалекси (1913г):

→ определили знак зарядов

Стюарт и Толмен (1916г): измерили удельный заряд

Итог: это электрон!

раскрутили, а потом резко остановили

примечание

- Электрический ток \longrightarrow это упорядоченное движение заряженных частиц
- ullet Сила тока \longrightarrow это отношение заряда, прошедшего определенный промежуток за минимальное количество времени, к длительности этого промежутка

ЗАКОН OMA. ЗАВИСИМОСТЬ R(t°)

(3) Закон Ома

$$R=rac{U}{I} \Rightarrow [R]=rac{B}{A}=O_M$$

 $R=rac{U}{I} \Rightarrow [R]=rac{B}{A}=O$ м (свойство проводника влять на I в цепи)

Ho R
eq f(U,I) $\boxed{R = rac{
ho l}{S}}$ ho - удельное сопротивление ${rac{l = 1}{S}}$ S = 1 M

(4) Зависимость R(t°). Сверхпроводимость

$$R=f(\rho,l,S,t^\circ)$$

$$R=R_0(1+lpha t^\circ)$$
, где $lpha$ - температ. коэф. сопротивления

• для металлов lpha > 0

• для электролитов lpha < 0• для чистых металлов $lpha=rac{1}{273}$

Сверхпроводимость открыл Камерлинг-Оннес (1911г, голл.), а объяснил Ландау (1957г)

Применение:

Получен 1*I*, 1м./полей, передача I без Q_{nomerb}

примечание