Topics in statistics III/IV (MATH3361/4071)

Michaelmas term, 2020-2021

Exercises: Likelihood methods

Lecturer & Author: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

This is out of the scope

Exercise 1. (**) From Fatou-Lesbeque Lemma, prove Monotone Convergence theorem. (Hint: Use $Y \equiv 0$, use $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$)

Solution. Since $0 < X_1 \le ... \le \lim_{n \to \infty} X_n = X$ a.s.. Then $EX_n \le EX$ or $\limsup_{n \to \infty} EX_n \le EX$. From Fatou-Lesbeque Lemma, it is $\liminf_{n \to \infty} EX_n \ge EX$. Also the limit $\lim EX_n$ exists. Then, it is $\lim EX_n = EX$

This is out of the scope

Exercise 2. $(\star\star)$ From Fatou-Lesbeque Lemma, prove Lesbeque Dominant Convergence theorem. (Hint: Use that $-Y \leq -X_n$ and $-Y \leq X_n$, use $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$)

Solution.

Since $|X_n| \leq Y$, it is $-Y \leq -X_n$, and because $X_n \xrightarrow{a.s.} X$ it is $\liminf_{n \to \infty} \mathrm{E}(-X_n) \geq \mathrm{E}(-Y) \iff \lim\sup_{n \to \infty} \mathrm{E}(X_n) \leq \mathrm{E}(Y)$ Since $|X| \leq Y$ it is $|Y| \leq Y$ and because $|Y| \xrightarrow{a.s.} Y$ it is $\lim\inf_{n \to \infty} \mathrm{E}(X_n) > \mathrm{E}(Y)$

Since $|X_n| \le Y$, it is $-Y \le X_n$ and because $X_n \xrightarrow{a.s.} X$ it is $\liminf_{n \to \infty} E(X_n) \ge E(Y)$ So $\lim_{n \to \infty} E(X_n) = E(Y)$

Exercise 3. $(\star\star)$ Let μ be a constant. Show that $X_n \xrightarrow{\mathrm{qm}} \mu$ if and only if $EX_n \to \mu$ and $Var(X_n) \to 0$, both in uni-variate and multivariate case.

Solution. It is $E(X_n - \mu)^2 = Var(X_n) + (EX_n - \mu)^2$. Hence, $E(X_n - \mu)^2 \to 0$. In the multivariate case, it is $E(X_n - \mu)^T(X_n - \mu) = E\sum_{i=1}^d (X_{n,i} - \mu_i)^2 \to 0$ by treating each element separately.

Exercise 4. (**) Consider a sequence of discrete r.v. $\{X_n\}$ with probability $P(X_n = k) = \frac{1}{n}$, for k = 1/n, 2/n, ..., n/n. Show that $X_n \xrightarrow{D} X$ where $X \sim \mathrm{U}(0,1)$. (Hint: Just use the definition.)

Solution. The probability function is $P(X_n \le x) = k/n$ for $k/n \le x \le (k+1)/n$.

Then because |k/n - x| < 1/n, we have $\lim_{n \to \infty} P(X_n \le x) = x$.

Note that $P(X \leq x) = x$ is the distribution function of the Uniform random variable $X \sim \mathrm{U}(0,1)$. So $X_n \xrightarrow{D} \mathrm{U}(0,1)$.

Exercise 5. (\star)

1. Show that

$$E_{\pi}(X - \theta)^{T}(X - \theta) = Var_{\pi}(X) + (E_{\pi}(X) - \theta)^{T}(E_{\pi}(X) - \theta)$$

, where is a constant point, and X is a random variable $X \sim d\pi(\cdot)$.

2. Show that

$$E_{\pi}|X - \theta|^2 = Var_{\pi}(X) + |E_{\pi}(X) - \theta|^2$$

, where is a constant point, X is a random variable $X \sim \mathrm{d}\pi(\cdot)$, and $|X| = \sqrt{X_1^2 + ... X_d^2}$ is the Euclidean norm.

Solution.

1. It is

$$E_{\pi}(X - \theta)^{T}(X - \theta) = E_{\pi}([X - E_{\pi}(X)] + [E_{\pi}(X) - \theta])^{T}([X - E_{\pi}(X)] + [E_{\pi}(X) - \theta]) = \dots$$

$$= E_{\pi}(X - \theta)^{T}(X - \theta) + (E_{\pi}(X) - \theta)^{T}(E_{\pi}(X) - \theta)$$

$$= Var_{\pi}(X) + (E_{\pi}(X) - \theta)^{T}(E_{\pi}(X) - \theta)$$

2. It is

$$E_{\pi}|X - \theta|^2 = E_{\pi}(X - \theta)^T(X - \theta)$$
$$|E_{\pi}(X) - \theta|^2 = (E_{\pi}(X) - \theta)^T(E_{\pi}(X) - \theta)$$

from the definition of the is the Euclidean norm $|X| = \sqrt{X_1^2 + ... X_d^2}$. So the result follows from then previous task.

Exercise 6. Show that

$$\log(1+x) = x + o(x)$$
, as $x \to 0$.

Solution. Let $f(x) = \log(1+x)$. Then $\dot{f}(x) = \frac{1}{1+x}$. The 1st order Taylor expansion of f(x) around 0 is

$$f(x) = f(0) + \frac{1}{1!}\dot{f}(0)(x-0) + o(x)$$
, as, as $x \to 0$

where h = x - 0.

So

$$\log(1+x) = x + o(x)$$
, as $x \to 0$.

Exercise 7. Show that

$$\lim_{n \to \infty} (1 + \frac{1}{n} a_n)^n = \exp(\lim_{n \to \infty} a_n)$$

provided that $\frac{1}{n}a_n \to 0$, as $n \to \infty$.

Hint: From Taylor expansion, it is

$$\log(1+x) = x + o(x)$$
, as $x \to 0$.

Solution.

• It is

$$(1 + \frac{1}{n}a_n)^n = \exp(n\log(1 + \frac{1}{n}a_n))$$
$$= \exp(n(\frac{1}{n}a_n + o(\frac{1}{n}a_n)))$$
$$= \exp(a_n(1 + o(1)))$$

• Then provided that a_n increases slower than n, aka $\frac{1}{n}a_n \to 0$ it is

$$\lim_{n \to \infty} (1 + \frac{1}{n} a_n)^n = \exp(\lim_{n \to \infty} a_n)$$

Exercise 8. It is $X_n \xrightarrow{a.s.} X$ if and only if

for every
$$\epsilon > 0$$
, $P(|X_k - X| < \epsilon, \forall k \ge n) \to 1$, as $n \to \infty$,

Solution. Let $A_{n,\epsilon} = \{|X_k - X| < \epsilon, \forall k \ge n\}$. Then

$$P(\lim_{n\to\infty} X_n = X) = P\{\forall \epsilon > 0, \ \exists n > 0, \ \text{s.t.} \ |X_k - X| < \epsilon, \ \forall k \ge n\} = P\{\cap_{\epsilon > 0} \cup_{\forall n} A_{n,\epsilon}\}$$

So $X_n \xrightarrow{a.s.} X$ is equivalent to $P\{\cap_{\epsilon>0} \cup_{\forall n} A_{n,\epsilon}\} = 1$. Because sets $\cup_{\forall n} A_{n,\epsilon}$ decrease to $\cap_{\epsilon>0} \cup_{\forall n} A_{n,\epsilon}$ as $\epsilon \to 0$, it is

$$P\{\cap_{\epsilon>0} \cup_{\forall n} A_{n,\epsilon}\} = 1 \iff P\{\cup_{\forall n} A_{n,\epsilon}\} = 1, \ \forall \epsilon > 0$$

Because $A_{n,\epsilon}$ increases to $\bigcup_{\forall n} A_{n,\epsilon}$ as $n \to \infty$, it is

$$P\{\bigcup_{\forall n} A_{n,\epsilon}\} = 1 \iff P\{A_{n,\epsilon}\} = 1, \text{ as } n \to \infty, \forall \epsilon > 0$$

Exercise 9. Prove the following relations between different modes of convergence

- 1. $X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X$
- 2. $X_n \xrightarrow{r} X$, for some $r > 0 \implies X_n \xrightarrow{P} X$
- 3. $(\star\star\star)X_n \xrightarrow{P} X \implies X_n \xrightarrow{D} X$

Solution.

1. For any $\epsilon > 0$, then

$$P(|X_n - X| > \epsilon) \ge P(|X_k - X| < \epsilon, \forall k \ge n) \to 1, \text{ as, } n \to \infty$$

from Lemma 6 in the Handout.

2. It is

$$E|X_n - X|^r \ge E(|X_k - X|^r 1(|X_n - X| \ge \epsilon)) \ge \epsilon^r P(|X_n - X| \ge \epsilon) \to 0$$
, as, $n \to \infty$

This is Markov inequality (Prob. I)

3. This is difficult and it can be skipped.

For any
$$\epsilon > 0$$
, $\{X > z + 1\epsilon\}$ and $|X_n - X| < \epsilon$ imply $\{X_n > z\}$. Hence, $\{X_n > z\} \supseteq \{X > z + \epsilon\} \cap \{|X_n - X| < \epsilon\}$. By taking complements, we get $\{X_n \le z\} \subseteq \{X \le z + 1\epsilon\} \cup \{|X_n - X| > \epsilon\}$. So I get $P(X_n \le z) \le P(X \le z + \epsilon) + P(|X_n - X| > \epsilon)$.

In a similar way (by interchanging X and X_n), I get $P(X_n \le z) \ge P(X \le z - \epsilon) + P(|X_n - X| > \epsilon)$.

So as $n \to \infty$

$$P(X \le z - 1\epsilon) \le \lim \inf_{n \to \infty} P(X_n \le z) \le \lim \sup_{n \to \infty} P(X_n \le z) \le P(X \le z + 1\epsilon)$$

¹It is:

⁽a) $\limsup_{n\to\infty} f_n := \lim_{n\to\infty} (\sup_{\forall m\geq n} f_m)$ and $\liminf_{n\to\infty} f_n := \lim_{n\to\infty} (\inf_{\forall m\geq n} f_m)$

⁽b) It is $\liminf_{n\to\infty} f_n \le \limsup_{n\to\infty} f_n$ if both exist.

⁽c) It is $\lim_{n\to\infty} f_n = \lim\inf_{n\to\infty} f_n = \lim\sup_{n\to\infty} f_n$ if $\lim_{n\to\infty} f_n$ exists

As $F_X(x) = P(X \le x)$ is continuous at z, the two ends should converge to $F_X(z) = P(X \le z)$ as $\epsilon \to 0$, which implies that $\lim_{n \to \infty} F_{X_n}(z) = F_X(z)$

Exercise 10. $(\star\star)$ Prove that:

1. if $Z \sim N(0, I)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^Tt)$, where $Z \in \mathbb{R}^d$

2. if $X \sim N(\mu, \Sigma)$ then $\varphi_X(t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$, where $X \in \mathbb{R}^d$

Hint: Assume as known that if $Z \sim N(0,1)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^2)$, where $Z \in \mathbb{R}$

Solution 11.

1. It is

$$\begin{split} \varphi_Z(t) &= \mathrm{E}(\exp(it^T Z)) = \mathrm{E}(\exp(i\sum_{j=1}^d (t_j Z_j))) = \mathrm{E}(\prod_{j=1}^d \exp(it_j Z_j)) = \prod_{j=1}^d \mathrm{E}(\exp(it_j Z_j)) \\ &= \prod_{j=1}^d \varphi_{Z_j}(t) = \prod_{j=1}^d \exp(-\frac{1}{2}t_j^2) = \exp(-\frac{1}{2}\sum_{j=1}^d t_j^2) = \exp(-\frac{1}{2}t^T t) \end{split}$$

2. Assume a matrix L such as $\Sigma = LL^T$. It is $X = \mu + LZ$. Then

$$\varphi_X(t) = \varphi_{\mu+LZ}(t) = e^{it^T \mu} \varphi_Z(L^T t) = e^{it^T \mu} \exp(-\frac{1}{2} (L^T t)^T L^T t)$$
$$= e^{it^T \mu} \exp(-\frac{1}{2} t^T L L^T t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$$