LIST OF TABLES

		Page
Table 2.1	Dewpoints observed at 6-hour intervals	
Table 2.2	Maximum average depth (mm) of rainfall in 20–23 May 1927 storm	
Table 2.3	Isohyetal profile computation	
Table 2.4	Evaluation of isohyet labels of Figure 2.16	33
Table 2.5	Chronological distribution of probable maximum precipitation (PMP) for a	
	hypothetical 3 000 km² basin	33
Table 3.1	Computation of orographic precipitation over leg 10 of Blue Canyon, California, test	
	area for the 6-hour period 2 p.m. – 8 p.m., 22 December 1955 (hand computation,	
	using 3 p.m. 22 December 1955 sounding at Oakland, California, as inflow data and	
	assuming a nodal surface of 350 hPa)	44
Table 3.3	Comparison of observed and computed 6-hour precipitation for the period	
	2 p.m. – 8 p.m., 22 December 1955 over Blue Canyon, California, test area	46
Table 3.4	Probable maximum precipitation (mm) for Tennessee River basin above	
	Chattanooga, Tennessee (Schwarz, 1965)	
Table 3.5	Isohyet values (mm) for 6-hour March PMP storm pattern of Figure 3.24	
Table 4.1	Computation of probable maximum precipitation (PMP)	71
Table 5.1	Shape ratios of isohyetal patterns for 53 major rain events in the eastern United	
	States (Hansen and others, 1982)	84
Table 5.2	Sample computation of PMP precipitation estimates for the 7 542 km ² Clinch	
	River basin above Norris Dam, Tennessee. Centre of basin is 36°42′ N 82°54′ W	.101
Table 5.3	Major river basins within the region of the central United States between the	
	Continental Divide and the 103rd meridian used for depth–area relations	.107
Table 5.4	Values of T/C at the centroid of the drainage above Dewey Dam, Johns	
	Creek, Kentucky	.112
Table 5.5	Estimated duration of intense precipitation t for selected total length of precipitation	
	period (Fenn, 1985)	
Table 5.6	Storm intensity factor M for selected durations (Fenn, 1985)	
Table 5.7	PMP of the drainage above Dewey Dam, Johns Creek, Kentucky	
Table 5.8	PMP profile values (accumulative percentage of 1-hour 2.6-km² amount)	
Table 5.9	PMP values of each duration in drainage mean 2.6 km ²	
Table 5.10	Drainage average PMP value for each duration	
Table 5.11	Increments of drainage average PMP value for each duration	.116
Table 5.12	Isohyetal label values (mm) for local-storm PMP, White	
	River, Washington (1 041 km²)	.117
Table 5.13	Coefficients of duration – precipitation depth conversion for each DAD region	
	in California	
Table 5.14	Calculated result of PMP for each duration in Auburn	
Table 5.15	Area-duration-reduction coefficients for Sierra Nevada region (percentage)	
Table 5.16	Coefficient of area reduction and areal mean PMP for Auburn watershed	.120
Table 5.17	Accumulated PMP hydrograph and time-interval hydrograph for the	
	Auburn watershed	
Table 5.18	Results of corrected PMP for different durations for the Wash watershed	
Table 5.19	Results of PMP for the Wash watershed with correction to area size	
Table 5.20	Accumulated PMP hydrograph and time-interval hydrograph for the Wash watershed	
Table 5.21	Percentages of isohyets corresponding to type-C correction	
Table 5.22	Isohyet values for the Wash watershed	.125
Table 5.23	Notable observed depth-area-duration data (mm) for Australia (derived from	
	data in Australian Bureau of Meteorology, 1985)	.127
Table 5.24	Some notable point rainfall totals recorded in Australia (Australian Bureau of	
	Meteorology, 1994, as amended 1996)	
Table 5.25	Initial mean rainfall depths enclosed by ellipses A–H in Figure 5.67	
Table 5.26	Small-area adjustments used in the GSAM (percentage)	.141