《基础物理实验》实验报告

实验	名称			光学基础实验	指导教师_	左战春
姓	名	陈苏	_ 学号	2022K8009906009	组号01-1	号(例:01-1)
实验	日期	2023年 09	月 18 日	实验地点_教学楼 705_	调课/补课 □是 启	戈绩评定

一. 实验内容与实验记录

使用实验设备为: 光学平板,内六角螺丝,六角扳手,He-Ne 激光器,平面铝反射镜 2 个,分束棱镜 2 个,光阑 2 个,平凹透镜 (f = -30mm),平凸透镜 (f = 150mm),偏振片 2 个,一维调整架,分划板。

1. 马赫-曾德尔干涉仪

调整光学元件,使得元件中心位于同一高度(高于台面约140mm)。

固定激光器,2个反射镜和2个光阑。利用光阑定标,反复调整反射镜使得激光与台面平行。在放好2个反射镜和2个光阑后,调整方法为先调整前方反射镜使得激光穿过前方光阑中心,然后调整后方反射镜使得激光穿过后方光阑中心;若此时激光偏离前方光阑中心,再调整前方反射镜使得穿过前方光阑中心;由此往复若干周期,使得激光恰好从2个光阑中心穿过。

在第 2 个反射镜后固定凹透镜(平面朝向激光),调整凹透镜的高度和朝向,使得发散的光斑中心与光阑中心重合。在凹透镜后约120mm固定凸透镜(凸面朝向激光),调整凸透镜的位置,高度和朝向,使得它出射一束平行光,且光束中心与光阑中心重合。

在凸透镜后固定分束棱镜,调整分束棱镜的朝向,使得它出射的两束光相互垂直,且与台面平行。然后在分束棱镜后固定剩下的分束棱镜和 2 个反射镜,使得从分束棱镜出射的两束光重合,此时能在分束棱镜后观察到明显的干涉条纹。

搭建好的光路如图所示。

图 1-1 理论光路图

图 1-2 实物光路图

观察到的干涉条纹如图所示。

图 2-2 马赫-曾德尔干涉图二

2. 马吕斯定律

将两个偏振片固定在光路中,再将光电池固定在偏振片后。旋转偏振片的角度,观察激光以不同强度 出射时的光电流。记录对应于不同角度(每 30°测量一次)的光电流,和对应于光电流极值的偏振片夹角。

图 3 马吕斯定律光路图

表 1 马吕斯定律测量数据表

夹角θ/°	$\cos^2 \theta$	偏振片 1 角度θ ₁ /°	偏振片 2 角度θ ₂ /°	光电流
90	0	0.0	39.0	17.80nA
60	3/4	0.0	70.0	272.2nA
30	1/4	0.0	100.0	0.807μΑ
0	1	0.0	129.5	1.001μΑ
30	1/4	0.0	160.0	0.715μΑ
60	3/4	0.0	190.0	230.4nA
90	0	0.0	220.5	21.55nA

图 4 $\cos^2\theta$ 与光电流的关系

3. 夫琅禾费衍射

将分划板固定在光路中,观察分划板上不同衍射屏对应的衍射图样,光路如图所示。

图 5 夫琅禾费衍射光路图

衍射屏编号	尺寸参数
单缝 DF1	a = 0.08

图 6-1 单缝 DF1 衍射图样

	<u> </u>
双维 SF1	a = 0.08 $d = 0.16$
双缝 SF2	a = 0.08 $d = 0.20$
双维 SF3	a = 0.06 $d = 0.10$

图 6-2 双缝 SF1 衍射图样

图 6-3 双缝 SF2 衍射图样

图 6-4 双缝 SF3 衍射图样

4 维 DF1	$a = 0.06$ $d = 0.1 \times 4$	1 1 1 1 2 13 14 15 16 17
9 缝 DF2	$a = 0.06$ $d = 0.1 \times 9$	图 6-5 4 缝 DF1 衍射图样
光栅 GS1	纵横均为 50 条/mm	

图 6-7 光栅 GS1 衍射图样

光栅 GS2	纵向 50 条/mm	图 6-8 光栅 GS2 衍射图样
双孔 SK1	$\phi = 0.2$ $d = 0.25$	图 6-9 双孔 SK1 衍射图样
双孔 SK2	$\phi = 0.2$ $d = 0.32$	GCM 1505)

图 6-10 双孔 SK2 衍射图样

双孔 SK3	$\phi = 0.2$
	d = 0.4
<i>t.</i> → 1	
矩孔 JK	a = 0.12
	b = 0.2

图 6-11 双孔 SK2 衍射图样

图 6-12 矩孔 JK 衍射图样

二. 实验思考与心得

这次实验学习了光学实验的基本调整方法,了解了马赫-曾德尔干涉仪,马吕斯定律和夫琅禾费衍射的原理和实验思路。同时,加深了对光波动性的理解。