

Faglig kontakt under eksamen: Nikolai Ushakov 45128897

ST1201/ST6201 STATISTISKE METODER

Fredag 14. desember 2012 Tid: kl. 09:00–13:00

Tillatte hjelpemidler:

Statistiske tabeller og formler, Tapir forlag, K.Rottman. Matematisk formelsamling, Ett gult ark (A4 med stempel) med egne håndskrevne formler og notater, Gyldig kalkulator.

Sensur: 11. januar 2013

Oppgave 1

La $X_1, ..., X_{100}$ være et tilfeldig utvalg fra normalfordeling med ukjent forventningsverdi μ og varians $\sigma^2 = 25$. Hypotesen $H_0: \mu = 0$ er testet mot $H_1: \mu > 0$ (H_0 forkastes for store verdier av \bar{X}). I $\mu = 1$ er styrken av testen $1 - \beta(1) = 0.5$.

- a) Hva er signifikansnivået α lik?
- b) Finn styrken $1 \beta(2)$ i $\mu = 2$.

Oppgave 2

To uavhengige tilfeldige utvalg av størrelser n=200 og m=240 er tatt fra normalfordelinger med ukjente forventningsverdier μ_X , μ_Y og kjente varianser $\sigma_X^2=1$ og $\sigma_Y^2=1.2$. $H_0: \mu_X=\mu_Y$ er testet mot $H_1: \mu_X \neq \mu_Y$.

a) Finn P-verdien for testen hvis de observerte gjennomsnittsverdiene er $\bar{x} = 2.1$ og $\bar{y} = 2.0$.

ST1201/ST6201 Side 2 av 3

Oppgave 3

Følgende resultat er velkjent.

A. Hvis en tilfeldig vektor (X, Y) har en todimensjonal normalfordeling, og X og Y ikke er korrelerte (korrelasjon er $\rho(X, Y) = 0$), så vil X og Y være uavhengige.

Betrakt følgende eksempel. La X og T være uavhengige stokastiske variabler der X er standard normalfordelt og T tar to verdier, -1 og 1, hver med sannsynlighet 1/2. La Y = TX.

- a) Vis at Y er normalfordelt og derfor begge to komponenter av todimensjonal tilfeldig vektor (X, Y) er normalfordelte.
- b) Vis at $\rho(X,Y)=0$ men at X og Y ikke er uavhengige.
- c) Forklar hvorfor eksemplet i denne oppgave ikke strider mot uttalelse A.

Oppgave 4

En forsker vil gjerne finne ut (ved bruk av variansanalyse (ANOVA)) om en kvinnes navn påvirker hennes vekt. Data (vekt til 12 kvinner) er gitt i tabellen.

Anna	Elsa	Julia
67	53	63
48	61	69
50	72	51
52	75	54

- a) Vis ANOVA tabell (uten "P-verdi"-søyle).
- b) Test om det er signifikante forskjeller i forventet vekt for kvinner med de ulike navnene. Signifikansnivå er $\alpha = 0.05$.

Oppgave 5

Data i tabellen angir 16 uavhengige observasjoner fra en kontinuerlig, symmetrisk (rundt ukjent forventningsverdi μ) fordeling. Vi ønsker å teste hypotesen $H_0: \mu = 0.5$ mot $H_1: \mu > 0.5$ på to ulike måter. Benytt signifikansnivå $\alpha = 0.05$ for begge testene.

ST1201/ST6201 Side 3 av 3

0.57	0.84	0.61	0.39	0.42	0.71	0.28	0.32
0.63	0.51	0.48	0.82	0.69	0.77	0.53	0.56

a) Utfør den gitte hypotesetesten ved å bruke tegntesten for store utvalg (large-sample sign test) og konkluder.

b) Benytt nå Wilcoxons fortegn-rang test for store utvalg (the large-sample Wilcoxon signed rank test) til å teste hypotesen. Hva blir konklusjonen for denne testen?