Compensadores de adelanto en el dominio de la frecuencia

CONTROL AUTOMÁTICO

ESCUELA DE ELECTRÓNICA

II SEMESTRE 2020

ING. LUIS MIGUEL ESQUIVEL SANCHO

Contenido

- Introducción
- Estrategia
- Ecuaciones del compensador de adelanto
- Cálculo de un compensador de adelanto para corrección simultánea del margen de fase y del ancho de banda
- Ejemplos y ejercicios

Introducción

 Los métodos corrientes de diseño implican realizar iteraciones o probar varios compensadores, evaluar sus resultados y seleccionar el más adecuado.

Se pueden establecer ecuaciones para la ganancia y fase que deben ser aportadas por los compensadores a una frecuencia particular y luego resolver los sistemas de ecuaciones para obtener de un solo paso el compensador de adelanto requerido.

Estrategia

- Según la estrategia de cálculo, el compensador de adelanto es el último en ser calculado después de haber corregido el error de estado estacionario.
- Para corregir el ancho de banda y el margen de fase en un solo paso, se tienen que satisfacer dos condiciones: un adelanto de fase y una ganancia a una frecuencia específica
- Ya que existe interacción entre los diferentes parámetros: polo, cero y atenuación o ganancia, existirá solamente un compensador de adelanto que pueda satisfacer simultáneamente tales condiciones

Estrategia

- En el enfoque de la respuesta en frecuencia, especificamos el desempeño de la respuesta transitoria en una forma indirecta.
- La respuesta transitoria se especifica en términos del margen de fase, el margen de ganancia y la magnitud del pico de resonancia, que ofrecen una estimación a grandes rasgos del amortiguamiento del sistema.
- La frecuencia de cruce de ganancia, la frecuencia de resonancia y el ancho de banda, que ofrecen una estimación a grandes rasgos de la velocidad de la respuesta transitoria y las constantes de error estático, que aportan la precisión en estado estable.

Estrategia

- En el enfoque de la respuesta en frecuencia, especificamos el desempeño de la respuesta transitoria en una forma indirecta.
- La respuesta transitoria se especifica en términos del margen de fase, el margen de ganancia y la magnitud del pico de resonancia, que ofrecen una estimación a grandes rasgos del amortiguamiento del sistema.
- La frecuencia de cruce de ganancia, la frecuencia de resonancia y el ancho de banda, que ofrecen una estimación a grandes rasgos de la velocidad de la respuesta transitoria y las constantes de error estático, que aportan la precisión en estado estable.

Corrección del ancho de banda

El ancho de banda se pude corregir utilizando:

Una ganancia estática

Aumenta o disminuye el ancho de banda; aunque afecta el margen de ganancia.

Un compensador de adelanto

Puede aumentar el ancho de banda; además aumenta en margen de ganancia

Una combinación de ganancia estática + compensador de adelanto

 Utilizada si el compensador de adelanto escogido no es capaz de llevar el ancho de banda al valor deseado

Corrección del margen de fase

El margen de fase se corrige con un compensador de adelanto

- El compensador de adelanto utilizado tiene ganancia mitad $(20 \log_{10} \left(\frac{b}{a}\right) [dB])$ a la frecuencia media. Efectos:
 - La frecuencia de cruce de ganancia se desplaza hacia valores mayores (derecha)
 - El ancho de banda aumenta
 - o En margen de fase cambia, usualmente empeora
- Se debe de utilizar un compensador cuyo aumento de fase a la frecuencia media sea:
 - $\phi_{m\acute{a}x} > Aumento de fase deseado + pérdida de fase debida al compensador + margen de seguridad$

Resumen de fórmulas del compensador de adelanto

$$\lim_{s \to j\omega} K_{LEAD}(s) = \lim_{s \to j\omega} \left(\frac{b}{a}\right) \frac{(s+a)}{(s+b)} = K_{LEAD}(j\omega) = \left(\frac{b}{a}\right) \frac{a}{b} \frac{(1+j\frac{\omega}{a})}{(1+j\frac{\omega}{b})}$$

$$\phi_{\text{max}} = \left(90^0 - 2 * \tan^{-1} \sqrt{\frac{a}{b}}\right)$$

$$\omega_m = b\sqrt{\frac{a}{b}} = \sqrt{a \cdot b}$$

$$b = \frac{\omega_m}{\sqrt{a/b}}$$

Gráficas de Bode del compensador de adelanto

Gráficas de $\phi_{máx}$

Ecuaciones (1)

• Partimos del compensador de adelanto de primer orden con ganancia unitaria a $\omega=0$

$$K_{LEAD}(j\omega) = \alpha \frac{(j\omega + z)}{(j\omega + p)} = (\alpha \frac{z}{p}) \frac{\left[1 + j\frac{\omega}{z}\right]}{\left[1 + j\frac{\omega}{p}\right]} = \frac{(1 + j\omega\alpha\tau)}{(1 + j\omega\tau)}; \quad \alpha > 1$$

• Con $\tau = 1/p$ y $\alpha = p/z$

$$\varphi(\omega) = \tan^{-1}(\alpha\omega\tau) - \tan^{-1}(\omega\tau)$$

Ecuaciones (2)

La ecuación del ángulo puede reescribirse, utilizando identidades trigonométricas generales,
 como:

$$\varphi(\omega) = \tan^{-1} \frac{\alpha \omega \tau - \omega \tau}{1 + \alpha (\omega \tau)^2}$$

• Evaluando a la frecuencia de cruce de ganancia ω_c la tangente p es:

$$p = \tan(\varphi(\omega_c)) = \frac{\alpha \omega_c \tau - \omega_c \tau}{1 + \alpha(\omega_c \tau)^2}$$

• Y la magnitud M (en dB) del compensador, expresada como número real c es:

$$M = 20\log_{10}\left(\frac{1 + (\alpha\omega_c\tau)^2}{1 + (\omega_c\tau)^2}\right)^{1/2} \longrightarrow c = 10^{\frac{M}{10}} = \frac{1 + (\alpha\omega_c\tau)^2}{1 + (\omega_c\tau)^2}$$

Ecuaciones (3)

• Despejando $\omega_c \tau$ de ambas ecuaciones anteriores y resolviendo las ecuaciones simultaneas:

$$(p^{2}-c+1)\alpha^{2}+(2*p^{2}*c)\alpha+(p^{2}*c^{2}+c^{2}-c)=0$$

• Luego resolviendo para α con la condición:

$$c > p^2 + 1$$

• Sustituyendo el valor de lpha obtenemos au

$$\tau = \frac{1}{\omega_c} \times \sqrt{\frac{1 - c}{c - \alpha^2}}$$

Cálculo del compensador de adelanto con ganancia unidad (1)

a) Defina la frecuencia de cruce de ganancia ω_c requerida, que garantice que se cumple la especificación de ancho de banda BW (BW se lee entre $-6 \, \mathrm{dB} \, \mathrm{y} - 7.5 \, \mathrm{dB}$).

b) Defina el margen de fase deseado MF a la frecuencia de cruce de ganancia requerida, según la especificación de sobreimpulso.

$$MF = 100 \cdot \zeta$$

Cálculo del compensador de adelanto con ganancia unidad (2)

- c) Determine la fase φ_m , $(\varphi_m > 0)$, que desea aumentar y tomando en cuenta que existe incertidumbre en la lectura del gráfico, sobrecompense con un pequeño margen de seguridad (3° ó 4°, dependiendo de la gráfica).
 - Si el ángulo requerido es > 70°, puede ser necesario usar hasta un compensador doble.

$$\varphi_m = MF_{deseado} - MF_{\omega_C} + MSeg$$

d) Luego haga

$$p = \tan(\varphi_m)$$

Cálculo del compensador de adelanto con ganancia unidad (3)

- e) Encuentre el margen de ganancia MG en dB (MG > 0) a la frecuencia ω_c para que la curva de magnitud cruce por cero a esta frecuencia
- f) Luego encuentre la ganancia c, en números reales, que debe ser aportada por el compensador de adelanto a la frecuencia de cruce de ganancia definida ω_c

$$c = 10^{\frac{MG_{\omega_c}}{10}}$$

g) Garantice, para un compensador de orden 1, que las raíces sean finitas verificando que:

$$c > p^2 + 1$$

Cálculo del compensador de adelanto con ganancia unidad (4)

h) Resuelva para α y tome el valor positivo, (ya que α es una ganancia), como solución de:

$$(p^2-c+1)\alpha^2 + (2*p^2*c)\alpha + (p^2*c^2+c^2-c) = 0$$

i) Encuentre la constante de tiempo τ :

$$\tau = \frac{1}{\omega_c} \times \sqrt{\frac{1 - c}{c - \alpha^2}}$$

e) Escriba el compensador de adelanto como:

$$K_{LEAD}(s) = \alpha \frac{(s + \frac{1}{\alpha \tau})}{(s + \frac{1}{\tau})}; \quad \alpha > 1$$

Formulas básicas

$$\omega_n \ge \frac{1.8}{t_r}$$
 $t_{S2\%} \ge \frac{4}{\zeta \omega_n}$

$$\zeta \cong \frac{MF}{100}, \text{MF} \le 60^{\circ} \quad \omega_n \cong BW$$

$$\zeta = \sqrt{\frac{\left(\frac{\ln M}{\pi}\right)^2}{1 + \left(\frac{\ln M}{\pi}\right)^2}}$$

Tipo de sistema	0	1	2
Coeficiente	K _P	K _V	K _a
e _{SS}	$e_{SS} = \frac{A}{1 + K_P}$	$e_{SS} = \frac{A}{K_V}$	$e_{SS} = \frac{A}{K_a}$

Ejemplo 1. Descripción

Dado el sistema cuya gráfica de Bode se muestra:

$$G(s)H(s) = \frac{5}{s(s+1)(s+3)}$$
 $H(s) = 1$

• Haga que el margen de fase sea al menos de 45° a la frecuencia de $2 \, rad/s$

Ejemplo 1. Diagrama de Bode

Ejemplo 1. Cálculos

La ganancia requerida a $\omega_c=2~rad/s$ es MG=10.2dB y el margen de fase a 2~rad/s será $=-7^\circ$. Usando 3.125° como margen de seguridad tenemos:

$$\varphi_m = MF_{deseado} - MF_{\omega_C} + MSeg$$

$$c=10^{\frac{M \theta_{\omega_c}}{10}}$$

$$\varphi_m = 45^{\circ} - (-7^{\circ}) + 3.125^{\circ} = 55.125^{\circ}$$

$$p = \tan(\varphi_m)$$

• Con $p = \tan(\varphi_m) = 1.4348$ y $c = 10^{(MG/10)} = 10.4$, se verifica que $(c > p^2 + 1)$, queda entonces:

$$(p^2 - c + 1)\alpha^2 + (2*p^2*c)\alpha + (p^2*c^2 + c^2 - c) = 0$$

$$(-7.3413)\alpha^2 + (42.82)\alpha + (320.424) = 0$$

• Resolviendo para α y tomando la raíz positiva:

$$\alpha = \begin{cases} 10.138 \\ -4.3053 \end{cases}$$

Ejemplo 1. Cálculos

Calculamos la constante de tiempo del polo

$$\tau = \frac{1}{\omega_c} \times \sqrt{\frac{1-c}{c-\alpha^2}} = \frac{1}{2} \times \sqrt{\frac{1-10.4}{10.4-10.138^2}} = 0.1595$$

Y finalmente el compensador de adelanto

$$K_{LEAD}(s) = \alpha \frac{(s + \frac{1}{\alpha \tau})}{(s + \frac{1}{\tau})}; \quad \alpha > 1$$

$$K_{LEAD}(s) = 10.138 \frac{\left(s + \frac{1}{(10.138 * 0.1595)}\right)}{\left(s + \frac{1}{0.1595}\right)} = K_{LEAD}(s) = 10.138 \frac{\left(s + 0.6184\right)}{\left(s + 6.27\right)}$$

Ejemplo 1. Resultados

Ejemplo 1. Análisis

- La frecuencia de cruce de ganancia ω_c es de $2 \, rad/s$ como se pidió; la ganancia requerida de $10.2 \, dB$, fue proporcionada por el compensador de adelanto
- Se cumple el margen de fase pedido más el margen de seguridad; y todo ese adelanto de fase fue proporcionado por el compensador de adelanto a la frecuencia $\omega_c=2\ rad/s$
- En este caso, de casualidad, la combinación de ambas, la ganancia y el adelanto de fase a la frecuencia ω_c , se cumplen a aproximadamente la frecuencia media del compensador.

Ejemplo 2. Descripción

Dado el sistema:

$$G(s)H(s) = \frac{24}{s(s+2)(s+6)}$$
 $H(s) = 1$

Cuya gráfica de bode se muestra en la siguiente figura

Haga que el margen de fase sea al menos de 60° a $3 \, rad/s$

Ejemplo 2. Descripción

Ejemplo 2. Compensador de adelanto

$$MG = 9.6 \, dB @ 3 \, rad/s$$

$$MF' = 7^{\circ} @ 3 rad/s$$

$$\phi_m = 60^{\circ} - 7^{\circ} + 2^{\circ} = 55^{\circ}$$

$$p = 1.428$$

$$c = 9.12$$

Cumple: $c > p^2 + 1$

$$\alpha = \begin{cases} 10.0904 \\ -3.972 \end{cases}$$

$$\tau = 0.0987$$

$$K_{lead}(s) = 10.09 \cdot \frac{(s+1.005)}{(s+10.14)}$$

Ejemplo 2. Resultados

Ejemplo 2. Análisis

- Se logró dimensionar el compensador que produce simultáneamente un margen de fase de $+60^{\circ}$ a la frecuencia escogida de $3 \, rad/s$ (relacionada con el ancho de banda).
- El margen de fase original de 7° fue llevado a +60° por el compensador de adelanto calculado
- El margen de seguridad utilizado de 2° fue suficiente para que el resultado fuese satisfactorio.
- Si se obtienen sin demasiados errores los datos de MF y MG a la frecuencia escogida,
 el cálculo produce directamente un compensador adecuado.

Ejemplo 3. Ejercicio

 Sintetice un compensador de adelanto-atraso para el ejemplo 2 que haga que el sistema tenga una respuesta con:

- Error de estado estacionario menor al 5%
- Tiempo de subida menor a 0.15s

Referencias

[1] Dorf, Richard; Bishop Robert. **"Sistemas de control moderno"**, 10^a Ed., Prentice Hall, España, 2005