Activité 5.2 – Représenter les molécules organiques

Objectifs:

Connaître les quatre représentations des molécules organiques.

Contexte : Les molécules organiques sont composées de chaînes carbonées, auxquelles sont ajoutés des atomes d'hydrogène, d'oxygène ou d'azote le plus souvent.

→ Comment représenter les molécules organiques ?

1 - La formule brute

Document 1 - Formule brute

Elle précise séparément le nombre d'éléments présents dans la molécule.

▶ Exemples : Le butane C₄H₁₀, l'éthanol C₂H₆O ou l'acide carbonique CH₂O₃ Elle permet de calculer facilement les **masses molaires** et de vérifier si deux molécules sont **isomères**. Par contre elle **ne permet pas** de déterminer la géométrie d'une molécule.

Deux molécules sont **isomères** si elles ont la même formule brute, mais un agencement des atomes différents.

 \blacktriangleright Exemples : Le glucose et le fructose sont isomères de formules brutes $C_6H_{12}O_6$, mais ce ne sont pas les mêmes molécules car leur géométries sont différentes.

L'oxybenzone est une molécule utilisée pour protéger des UVA et B issu du soleil. Sa formule brute est $C_{14}H_{12}O_3$.

1 — Indiquer le nombre d'é benzone.	lément d'hydrogène, d'oxygène et de	carbone dans la molécule d'oxy-
	tilisé dans le corps humain pour for- ation avec un modèle moléculaire est couleur suivant :	
• Blanc : hydrogène.	• Noir : carbone.	
• Rouge : oxygène.	• Bleu : azote.	0000
2 - Donner la formule brut	e de l'alanine	
2 — Camatan las listas a l		. him le hammanlana
ompter les haisons de	e chaque carbone et vérifier qu'ils ont	dien ia donne valence.

Document 2 - Formule développée

Elle représente tous les éléments chimiques et toutes les liaisons dans le même plan, ce qui permet de **préciser la géométrie d'une molécule**.

• Exemples :

Document 3 – Formule semi-développée

Comme la formule développée, elle représente tous les éléments chimiques, mais elle ne détaille pas les liaisons des éléments hydrogènes.

• Exemples :

$$HO-CH_2-CH_3$$
 $Cl-CH_2-SiH_3$

éthanol

chlorométhylsilane

Document 4 - Formule topologique

Elle représente les liaisons carbone-carbone C—C par des segments formant des angles. Chacune des extrémités d'un segment représente un carbone, sauf si un autre élément chimique y est attaché. Les éléments carbones et les hydrogènes qui sont attachés aux carbones ne sont pas représentés. Tous les autres éléments chimiques sont représentés normalement.

• Exemples :

4 - Donner la formule brute, semi-développée et développée du paracétamol.																					
							• • • •					• • •	 	• • •	 	 	 	 	 		