Covariate-Powered Empirical Bayes Estimation

Nikos Ignatiadis Stanford University

Joint work with Stefan Wager

October 23, 2019

Causal Inference Group Meeting

This talk

- 1. What is empirical Bayes (EB)?
- 2. What is EB with covariates?
- 3. What is our method and what are its statistical guarantees?

What is empirical Bayes? The setup

- 1. We care about point estimation of parameters corresponding to units i = 1, ..., n.
- Motivated by classical statistical theory, we reduce information about each unit to one number for which we understand the sampling distribution, say:

$$Z_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$
 for all i

3. We look at all parameters μ_i simultaneously: Burden and blessing of multiplicity

Empirical Bayes (Robbins [1956], Efron [2010]) presents a principled approach for **learning from others**.

What is empirical Bayes? The "EB principle"

► "Let us use a mixed model, even if it might not be appropriate" (van Houwelingen, 2014)

What is empirical Bayes? The "EB principle"

- ► "Let us use a mixed model, even if it might not be appropriate" (van Houwelingen, 2014)
- ... to derive procedures with frequentist guarantees.

Example of EB: James-Stein [1961], Efron-Morris [1973]

• Gaussian compound decision problem (known σ^2):

$$Z_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$
 independently for $i = 1, \dots, n$

- "Posit" that $\mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\nu, A)$.
- ▶ The Bayes rule is: $t^*(z) = \mathbb{E}\left[\mu_i \mid Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}\nu$
- ▶ Observe that marginally $Z_i \sim \mathcal{N}\left(\nu, \sigma^2 + A\right)$ so can estimate ν by \bar{Z} and A by \hat{A}_{JS} .
- **E**stimate μ_i by estimated Bayes rule:

$$\hat{\mu}_i^{\mathsf{JS}} = \frac{\widehat{A}_{\mathsf{JS}}}{\sigma^2 + \widehat{A}_{\mathsf{JS}}} Z_i + \frac{\sigma^2}{\sigma^2 + \widehat{A}_{\mathsf{JS}}} \bar{Z}$$

▶ The James-Stein estimator has frequentist guarantees.

JS for predicting batting averages

- Efron and Morris [1975], Brown [2008]
- ▶ For player i, observe AB_i at-bats and H_i hits during first half of season.
- ▶ Goal: Predict batting average in second half of season.
- ▶ $H_i \sim \text{Binomial}(AB_i, p_i)$ where p_i true "skill" of player i.
- ► Then let:

$$Z_i = \arcsin\left(\sqrt{rac{H_i + 1/4}{AB_i + 1/2}}
ight) \sim \mathcal{N}\left(\arcsin(\sqrt{p_i}), rac{1}{4AB_i}
ight)$$

- ▶ Efron and Morris consider 18 players with 45 at-bats.
- ► Can then apply JS with $\sigma^2 = 1/(4 \cdot 45)$ to estimate $\arcsin(\sqrt{p_i})$.
- ▶ Then transform estimates back.

Brown [2008] batting results

Brown [2008] considers around 500 players:

	All batters; $\widehat{\mathit{TSE}}^*$	All batters; \widehat{TSE}_R^*	All batters; $\widehat{\mathit{TWSE}}^*$
\mathcal{P} for estimation	567	567	567
\mathcal{P} for validation	499	499	499
Naive	1	1	1
Group's mean	0.852	0.887	1.120 (0.741 ¹)
EB(MM)	0.593	0.606	0.626
EB(ML)	0.902	0.925	0.607
NP EB	0.508	0.509	0.560
Harmonic prior	0.884	0.905	0.600
James-Stein	0.525	0.540	0.502

Census data/ Small area estimation

Each i could be a:

- state
- commuting zone
- county
- city or town

Other application areas

Genomics:

- ► Gene expression profiling (each *i* is a gene)
- Chemical compound screens (each i is a compound)

AB testing:

- Average treatment effects of multiple experiments or multiple treatment arms of the same experiment (Dimmery, Bakshy and Sekhon [2019])
- Average treatment effects of one experiment on every advertiser

Empirical Bayes with side-information

► Gaussian compound decision problem:

$$Z_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right), i = 1, \ldots, n$$

▶ We know (Jiang and Cun-Hui Zhang [2009], Brown and Greenshtein [2009]) how to estimate (μ_1, \ldots, μ_n) such that:

$$\mathbb{E}\left[\|\mu-\hat{\mu}\|^2
ight]$$
 is small

Empirical Bayes with side-information

► Gaussian compound decision problem:

$$Z_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right), i = 1, \ldots, n$$

▶ We know (Jiang and Cun-Hui Zhang [2009], Brown and Greenshtein [2009]) how to estimate (μ_1, \ldots, μ_n) such that:

$$\mathbb{E}\left[\left\|\mu-\hat{\mu}
ight\|^2
ight]$$
 is small

▶ What if we have side-information (covariates) X_i for each i, that may or may not be informative about μ_i ?

Examples of side-information

- Batting: pitcher or non-pitcher, salary, team
- Genes: Ontologies
- ► AB tests: Percentage change in auxiliary metrics (Coey and Cunningham [2019])

Fay-Herriot model

- Census bureau in 1974
- ▶ Want to estimate per-capita income μ_i in small areas based on sample average Z_i .
- Covariates X_i: Per-capita income of whole county, value of owner-occupied housing, average adjusted gross income from older IRS returns
- ► Model:

$$\mu_i \mid X_i \sim \mathcal{N}\left(X_i^{\top} \beta, A\right)$$

$$Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$

- Estimate β , A through method of moments
- ► Fay III, Robert E., and Roger A. Herriot. "Estimates of income for small places: an application of James-Stein procedures to census data." (JASA 1979)

Desiderata for a covariate-powered method

- 1. Analysis that allows for any black-box ML method, rather than tailored to specific predictor, e.g., linear regression as in Green and Strawderman (1991), Tan (2016), Kou and Yang (2017).
- 2. When covariates are non-informative: Come with similar guarantees as methods that do not use covariates.
- 3. When covariates are informative: Take advantage of additional information!

EB model with covariates

For a function $m(\cdot): \mathcal{X} \to \mathbb{R}$ and $A, \sigma^2 > 0$:

$$X_i \sim \mathbb{P}^X$$

 $\mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right)$
 $Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$

EB model with covariates

For a function $m(\cdot): \mathcal{X} \to \mathbb{R}$ and $A, \sigma^2 > 0$:

$$X_i \sim \mathbb{P}^X$$

 $\mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right)$
 $Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$

$$\mathbb{E}_{m,A}\left[\mu_i \mid X_i = x, \ Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}m(x)$$

EB model with covariates

For a function $m(\cdot): \mathcal{X} \to \mathbb{R}$ and $A, \sigma^2 > 0$:

$$\begin{aligned} & X_i \sim \mathbb{P}^X \\ & \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right) \\ & Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right) \end{aligned}$$

$$\mathbb{E}_{m,A}\left[\mu_i \mid X_i = x, \ Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}m(x)$$

Goals: First understand EB shrinkage when model is true, then consider misspecification (for example deterministic μ_i).

$$X_i \sim \mathbb{P}^X, \quad \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right), \quad Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$

$$\mathbb{E}_{m,A}\left[\mu_i \mid X_i = x, Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}m(x)$$

$$X_i \sim \mathbb{P}^X, \quad \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right), \quad Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$

$$\mathbb{E}_{m,A}\left[\mu_i \mid X_i = x, \ Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}m(x)$$

If
$$A = 0$$
: $\mathbb{E}_{m,A}[\mu_i \mid X_i = x, Z_i = z] = m(x)$

$$X_i \sim \mathbb{P}^X, \quad \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right), \quad Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$

$$\mathbb{E}_{m,A}\left[\mu_i \mid X_i = x, Z_i = z\right] = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}m(x)$$

If
$$A \gg \sigma^2$$
: $\mathbb{E}_{m,A} [\mu_i \mid X_i = x, Z_i = z] \approx z$

$$X_{i} \sim \mathbb{P}^{X}, \quad \mu_{i} \mid X_{i} \sim \mathcal{N}\left(m(X_{i}), A\right), \quad Z_{i} \mid \mu_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$$
$$\mathbb{E}_{m,A}\left[\mu_{i} \mid X_{i} = x, Z_{i} = z\right] = \frac{A}{\sigma^{2} + A}z + \frac{\sigma^{2}}{\sigma^{2} + A}m(x)$$

If $A \approx \sigma^2$: Convex combination

$$X_i \sim \mathbb{P}^X, \ \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right), \ Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right),$$

▶ We observe n i.i.d. pairs (X_i, Z_i) , not μ_i .

$$X_i \sim \mathbb{P}^X$$
, $\mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right)$, $Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$,

- We observe n i.i.d. pairs (X_i, Z_i) , not μ_i .
- ▶ The task is to construct a function $\hat{t}_n(\cdot,\cdot): \mathcal{X} \times \mathbb{R} \to \mathbb{R}$ and we will use it to estimate μ_{n+1} by $\hat{t}_n(X_{n+1},Z_{n+1})$ for a future draw $(\mu_{n+1},X_{n+1},Z_{n+1})$.

$$X_i \sim \mathbb{P}^X$$
, $\mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right)$, $Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$,

- ▶ We observe *n* i.i.d. pairs (X_i, Z_i) , not μ_i .
- ▶ The task is to construct a function $\hat{t}_n(\cdot,\cdot): \mathcal{X} \times \mathbb{R} \to \mathbb{R}$ and we will use it to estimate μ_{n+1} by $\hat{t}_n(X_{n+1},Z_{n+1})$ for a future draw $(\mu_{n+1},X_{n+1},Z_{n+1})$.
- ▶ Benchmark in terms of regret. For a function $t: \mathcal{X} \times \mathbb{R} \to \mathbb{R}$ define:

$$L(t; m, A) := \mathbb{E}_{m, A} \left[\left(t(X_{n+1}, Z_{n+1}) - \mu_{n+1} \right)^2 \right] - \frac{A\sigma^2}{A + \sigma^2}$$

$$X_i \sim \mathbb{P}^X$$
, $\mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right)$, $Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$,

- ▶ We observe *n* i.i.d. pairs (X_i, Z_i) , not μ_i .
- ▶ The task is to construct a function $\hat{t}_n(\cdot,\cdot): \mathcal{X} \times \mathbb{R} \to \mathbb{R}$ and we will use it to estimate μ_{n+1} by $\hat{t}_n(X_{n+1},Z_{n+1})$ for a future draw $(\mu_{n+1},X_{n+1},Z_{n+1})$.
- ▶ Benchmark in terms of regret. For a function $t: \mathcal{X} \times \mathbb{R} \to \mathbb{R}$ define:

$$L(t; m, A) := \mathbb{E}_{m, A} \left[\left(t(X_{n+1}, Z_{n+1}) - \mu_{n+1} \right)^2 \right] - \frac{A\sigma^2}{A + \sigma^2}$$

▶ We want $\mathbb{E}\left[L(\hat{t}_n; m, A)\right]$ to be small and close to 0.

▶ A known, $\sigma^2 > 0$ known, regret incurred by not knowing $m(\cdot)$, but only that $m(\cdot) \in \mathcal{C}$.

- ▶ A known, $\sigma^2 > 0$ known, regret incurred by not knowing $m(\cdot)$, but only that $m(\cdot) \in \mathcal{C}$.
- Minimax expected regret:

$$\mathfrak{M}_{n}^{\mathsf{EB}}\left(\mathcal{C};A,\sigma^{2}\right):=\inf_{\hat{t}_{n}}\max_{m\in\mathcal{C}}\left\{\mathbb{E}_{m,A}\left[L(\hat{t}_{n};m,A)\right]\right\}$$

- ▶ A known, $\sigma^2 > 0$ known, regret incurred by not knowing $m(\cdot)$, but only that $m(\cdot) \in \mathcal{C}$.
- Minimax expected regret:

$$\mathfrak{M}_{n}^{\mathsf{EB}}\left(\mathcal{C};A,\sigma^{2}\right):=\inf_{\hat{t}_{n}}\max_{m\in\mathcal{C}}\left\{\mathbb{E}_{m,A}\left[L(\hat{t}_{n};m,A)\right]\right\}$$

▶ We also have the minimax risk in the regression problem where we observe $X_i \sim \mathbb{P}^X$, $Z_i \mid X_i \sim \mathcal{N}\left(m(X_i), A + \sigma^2\right)$ and want to estimate $m(\cdot)$ w.r.t. $L^2(\mathbb{P}^X)$:

$$\mathfrak{M}_{n}^{\mathsf{Reg}}\left(\mathcal{C};A+\sigma^{2}
ight):=\inf_{\hat{m}_{n}}\max_{m\in\mathcal{C}}\mathbb{E}_{m,A}\left[\int\left(\hat{m}_{n}(x)-m(x)\right)^{2}d\mathbb{P}^{X}
ight]$$

- ▶ A known, $\sigma^2 > 0$ known, regret incurred by not knowing $m(\cdot)$, but only that $m(\cdot) \in \mathcal{C}$.
- Minimax expected regret:

$$\mathfrak{M}_{n}^{\mathsf{EB}}\left(\mathcal{C};A,\sigma^{2}\right):=\inf_{\hat{t}_{n}}\max_{m\in\mathcal{C}}\left\{\mathbb{E}_{m,A}\left[L(\hat{t}_{n};m,A)\right]\right\}$$

▶ We also have the minimax risk in the regression problem where we observe $X_i \sim \mathbb{P}^X$, $Z_i \mid X_i \sim \mathcal{N}\left(m(X_i), A + \sigma^2\right)$ and want to estimate $m(\cdot)$ w.r.t. $L^2(\mathbb{P}^X)$:

$$\mathfrak{M}_{n}^{\mathsf{Reg}}\left(\mathcal{C};A+\sigma^{2}
ight):=\inf_{\hat{m}_{n}}\max_{m\in\mathcal{C}}\mathbb{E}_{m,A}\left[\int\left(\hat{m}_{n}(x)-m(x)\right)^{2}d\mathbb{P}^{X}
ight]$$

► Claim: EB Regret often satisfies

$$\mathfrak{M}_{n}^{\mathsf{EB}}\left(\mathcal{C};A,\sigma^{2}\right) \asymp \frac{\sigma^{4}}{\left(\sigma^{2}+A\right)^{2}} \mathfrak{M}_{n}^{\mathsf{Reg}}\left(\mathcal{C};A+\sigma^{2}\right)$$

Minimax results: One example

- $\mathcal{X} = [0,1]^d$ with density f^X such that $\eta \leq f^X(u) \leq 1/\eta$, $\eta > 0$.
- ► Lipschitz class:

$$Lip([0,1]^d, L) := \left\{ m : [0,1]^d \to \mathbb{R} : \left| m(x) - m(x') \right| \le L \left\| x - x' \right\|_2 \right\}$$

► Then (I., Wager 2019):

$$\lim_{n \to \infty} \left| \log \left(\mathfrak{M}_n^{\mathsf{EB}} \left(\mathsf{Lip}([0,1]^d, L); A, \sigma^2 \right) \middle/ \frac{\sigma^4}{(\sigma^2 + A)^2} \cdot \left(\frac{L^d \left(\sigma^2 + A \right)}{n} \right)^{\frac{2}{2+d}} \right) \right|$$

$$\leq C_{\mathsf{Lip}}(d,\eta)$$

Minimax estimator: Known prior variance A

- ▶ Let $\widehat{m}(\cdot)$ achieve the minimax rate for estimating $m(\cdot)$ over \mathcal{C} .
- ► Then the following plug-in estimator achieves the Empirical Bayes minimax benchmark:

$$t_{\widehat{m},A}^*(x,z) = \frac{A}{\sigma^2 + A}z + \frac{\sigma^2}{\sigma^2 + A}\widehat{m}(x)$$

Minimax estimator: Unknown prior variance A

What if A is unknown? Ansatz: Plug-in \widehat{A} , \widehat{m}

$$t_{\widehat{m},\widehat{A}}^*(x,z) = \frac{\widehat{A}}{\sigma^2 + \widehat{A}}z + \frac{\sigma^2}{\sigma^2 + \widehat{A}}\widehat{m}(x)$$

▶ Marginally $Z_i \mid X_i \sim \mathcal{N}\left(m(X_i), \sigma^2 + A\right)$.

Minimax estimator: Unknown prior variance A

What if A is unknown? Ansatz: Plug-in \widehat{A} , \widehat{m}

$$t_{\widehat{m},\widehat{A}}^*(x,z) = \frac{\widehat{A}}{\sigma^2 + \widehat{A}}z + \frac{\sigma^2}{\sigma^2 + \widehat{A}}\widehat{m}(x)$$

- ▶ Marginally $Z_i \mid X_i \sim \mathcal{N}\left(m(X_i), \sigma^2 + A\right)$.
- ▶ Idea 1: Estimate Var $[Z_i \mid X_i] = \sigma^2 + A$ to get $\widehat{A + \sigma^2}$ and then \widehat{A} .

Minimax estimator: Unknown prior variance A

What if A is unknown? Ansatz: Plug-in \widehat{A} , \widehat{m}

$$t_{\widehat{m},\widehat{A}}^*(x,z) = \frac{\widehat{A}}{\sigma^2 + \widehat{A}}z + \frac{\sigma^2}{\sigma^2 + \widehat{A}}\widehat{m}(x)$$

- ▶ Marginally $Z_i \mid X_i \sim \mathcal{N}\left(m(X_i), \sigma^2 + A\right)$.
- ▶ Idea 1: Estimate Var $[Z_i \mid X_i] = \sigma^2 + A$ to get $\widehat{A + \sigma^2}$ and then \widehat{A} .
- ▶ Idea 2: Say we use (deterministic) $\tilde{m}(\cdot) \neq m(\cdot)$, then even if we knew true A we would not want to use it, instead

$$A_{\tilde{m}} = \mathbb{E}\left[\left(\tilde{m}(X_{n+1}) - Z_{n+1}\right)^{2}\right] - \sigma^{2} = A + \mathbb{E}\left[\left(\tilde{m}(X_{n+1}) - m(X_{n+1})\right)^{2}\right]$$

Sample-split EB

- 1. Form a partition of $\{1, \ldots, n\}$ into two folds l_1 and l_2 .
- 2. Use observations in I_1 , to estimate the regression $m(x) = \mathbb{E}[Z_i \mid X_i = x]$ by $\hat{m}_{I_1}(\cdot)$.
- 3. Use observations in I_2 , to estimate A, through the formula:

$$\hat{A}_{I_2} = \left(\frac{1}{|I_2|} \sum_{i \in I_2} (\hat{m}_{I_1}(X_i) - Z_i)^2 - \sigma^2\right)_{+}$$

4. The estimated denoiser is then $\hat{t}_n^{\mathsf{EBCF}}(\cdot,\cdot) = t_{\hat{m}_h,\hat{\mathcal{A}}_h}^*(\cdot,\cdot)$.

Sample-split EB

- 1. Form a partition of $\{1, \ldots, n\}$ into two folds I_1 and I_2 .
- 2. Use observations in I_1 , to estimate the regression $m(x) = \mathbb{E}[Z_i \mid X_i = x]$ by $\hat{m}_{I_1}(\cdot)$.
- 3. Use observations in I_2 , to estimate A, through the formula:

$$\hat{A}_{I_2} = \left(\frac{1}{|I_2|}\sum_{i\in I_2}(\hat{m}_{I_1}(X_i)-Z_i)^2-\sigma^2\right)_+$$

4. The estimated denoiser is then $\hat{t}_n^{\mathsf{EBCF}}(\cdot,\cdot) = t_{\hat{m}_t,\hat{A}_t}^*(\cdot,\cdot)$.

Still achieves minimax rates without knowledge of $\emph{A}.$

A small simulation

Simulate from:

$$\begin{aligned} & X_i \sim U[0, 1]^{15} \\ & \mu_i \mid X_i \sim \mathcal{N}\left(m(X_i), A\right) \\ & Z_i \mid \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right) \end{aligned}$$

- $m(x) = 10\sin(\pi x_1 x_2) + 20(x_3 1/2)^2 + 10x_4 + 5x_5$ [Friedman (1991)]
- ▶ m̂ cross-validated XGBoost

Empirical Bayes with Cross-Fitting (EBCF)

If we want to predict μ_1, \ldots, μ_n :

- **1.** Form a partition of $\{1, \ldots, n\}$ into two folds I_1 and I_2 .
- 2. Use observations in I_1 , to estimate the regression $m(x) = \mathbb{E}[Z_i \mid X_i = x]$ by $\hat{m}_{I_1}(\cdot)$.
- **3**. Use observations in I_2 , to estimate A, through the formula:

$$\hat{A}_{l_2} = \left(\frac{1}{|l_2|} \sum_{i \in l_2} (\hat{m}_{l_1}(X_i) - Z_i)^2 - \sigma^2\right)_+$$

- **4.** The estimated denoiser is then $\hat{t}_n^{\mathsf{EBCF}}(\cdot,\cdot) = t_{\hat{m}_h,\hat{A}_h}^*(\cdot,\cdot)$.
- 5. Estimate $\hat{\mu}_i^{\mathsf{EBCF}} = t^*_{\hat{m}_{l_1},\hat{A}_{l_2}}(X_i,Z_i)$ for $i \in \mathit{I}_2$
- 6. Repeat with folds I_1 and I_2 flipped.

James-Stein property

Assume indepedence and that:

$$Z_i \mid X_i, \mu_i \sim \mathcal{N}\left(\mu_i, \sigma^2\right)$$

Then if $|I_1|, |I_2| \ge 5$:

James-Stein property

Assume indepedence and that:

$$Z_i \mid X_i, \mu_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

Then if $|I_1|, |I_2| \ge 5$:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[(\mu_{i} - \hat{\mu}_{i}^{\mathsf{EBCF}})^{2} \mid X_{1:n}, \mu_{1:n} \right] < \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[(\mu_{i} - Z_{i})^{2} \mid X_{1:n}, \mu_{1:n} \right] = \sigma^{2}$$

Further misspecification result

Now only assume that (and 4th moment condition on Z_i , bounds on μ_i)

$$\mathbb{E}\left[Z_i \mid \mu_i, X_i\right] = \mu_i, \quad \text{Var}\left[Z_i \mid \mu_i, X_i\right] = \sigma^2$$

Then:

Further misspecification result

Now only assume that (and 4th moment condition on Z_i , bounds on μ_i)

$$\mathbb{E}\left[Z_i \mid \mu_i, X_i\right] = \mu_i, \quad \text{Var}\left[Z_i \mid \mu_i, X_i\right] = \sigma^2$$

Then:

$$\begin{split} \frac{1}{|I_{2}|} \sum_{i \in I_{2}} \mathbb{E} \left[(\mu_{i} - \hat{\mu}_{i}^{\mathsf{EBCF}})^{2} \mid X_{I_{2}}, \mu_{I_{2}} \right] &\leq \sigma^{2} + O\left(\frac{1}{\sqrt{|I_{2}|}}\right) \\ \frac{1}{|I_{2}|} \sum_{i \in I_{2}} \mathbb{E} \left[(\mu_{i} - \hat{\mu}_{i}^{\mathsf{EBCF}})^{2} \mid X_{I_{2}}, \mu_{I_{2}} \right] &\leq \frac{1}{|I_{2}|} \sum_{i \in I_{2}} \mathbb{E} \left[(\mu_{i} - \hat{m}_{I_{1}}(X_{i}))^{2} \mid X_{I_{2}}, \mu_{I_{2}} \right] \\ &+ O\left(\frac{1}{\sqrt{|I_{2}|}}\right) \end{split}$$

Why does this work? SURE

- ► SURE: Stein's Unbiased Risk Estimate (Stein [1981])
- We may write \hat{A}_{I_2} as:

$$\hat{A}_{l_2} = \left(\frac{1}{|l_2|} \sum_{i \in l_2} \left(\hat{m}_{l_1}(X_i) - Z_i\right)^2 - \sigma^2\right)_+ \iff \hat{A}_{l_2} = \underset{A \ge 0}{\operatorname{argmin}} \left\{ \mathsf{SURE}_{l_2}(A) \right\},$$

$$\mathsf{SURE}_{\mathit{I}_{2}}(\mathit{A}) := \frac{1}{|\mathit{I}_{2}|} \sum_{i \in \mathit{I}} \left(\sigma^{2} + \frac{\sigma^{4}}{(\mathit{A} + \sigma^{2})^{2}} (\mathit{Z}_{i} - \hat{\mathit{m}}_{\mathit{I}_{1}}(\mathit{X}_{i}))^{2} - 2 \frac{\sigma^{4}}{\mathit{A} + \sigma^{2}} \right).$$

► SURE satisfies:

$$\mathbb{E}\left[\mathsf{SURE}_{l_2}(\mathsf{A}) \mid X_{1:n}, \mu_{1:n}\right] = \frac{1}{|\mathit{l}_2|} \sum_{i \in \mathit{l}} \mathbb{E}\left[\left(\mu_i - t^*_{\hat{m}_{l_1}, \mathsf{A}}(X_i, Z_i)\right)^2 \mid X_{1:n}, \mu_{1:n}\right]$$

Heteroskedastic case

- ▶ In heteroskedastic setting, $Var [Z_i | X_i, \mu_i] = \sigma_i^2$.
- ► Then (following Xie, Kou, Brown [2012] in setting without covariates): Consider estimators

$$t_{m,A}^*(X_i,Z_i,\sigma_i) = \frac{A}{\sigma_i^2 + A} Z_i + \frac{\sigma_i^2}{\sigma_i^2 + A} m(x)$$

Pick A again by cross-fitting and SURE:

$$\begin{split} \widehat{A}_{l_2} &= \mathop{\mathsf{argmin}}_{A \geq 0} \left\{ \mathsf{SURE}_{l_2}(A) \right\}, \\ \mathsf{SURE}_{l_2}(A) &:= \frac{1}{|l_2|} \sum_{i \in I_2} \left(\sigma_i^2 + \frac{\sigma_i^4}{(A + \sigma_i^2)^2} (Z_i - \hat{m}_{l_1}(X_i))^2 - 2 \frac{\sigma_i^4}{A + \sigma_i^2} \right) \end{split}$$

MovieLens 20M (Harper and Konstan [2016])

- ▶ 20 million ratings in {0,0.5,...,5} from 138,000 users applied to 27,000 movies.
- ▶ Keep 10% of users, calculate average rating Z_i for each movie based on N_i users.
- \triangleright X_i include N_i , year of release, genres...
- ▶ Posit that $Z_i \mid \mu_i, X_i \sim (\mu_i, \sigma^2/N_i)$.
- "Ground-truth": \widetilde{Z}_i average movie rating based on other 90% of users. Benchmark based on $\sum_{i=1}^n \left(\widetilde{Z}_i \hat{\mu}_i\right)^2/n$.
- Compare: Unbiased estimator Z_i, XGBoost predictor, EB without covariates (SURE) (Xie, Kou and Brown [2012]) and EBCF with XGBoost.

MovieLens results

	All	Sci-Fi
		& Horror
Unbiased	0.098	0.098
XGBoost	0.145	0.183
SURE	0.061	0.064
EBCF	0.055	0.052

MovieLens results

MovieLens results

Future work: Variance modulation

- ▶ So far, the covariates have been modulating the prior mean $\mathbb{E}\left[\mu_i \mid X_i = x\right]$.
- ▶ For differential gene expression studies, often μ_i is the log-fold change of gene expression between two conditions:

$$\mathbb{E}\left[\mu_i \mid X_i = x\right] \approx 0$$

Instead model covariates as modulating:

$$\mathbb{P}\left[\mu_i = 0 \mid X_i = x\right]$$
 or $\text{Var}\left[\mu_i \mid X_i = x\right]$

Conclusion

- As argued in a series of papers by Efron and co-authors,
 Empirical Bayes presents a powerful framework for learning from others.
- ▶ In this work: How can we apply EB in the presence of rich side-information about each unit?
- Such side-information is ubiquitous and may be leveraged also in other setting, e.g., in Multiple Testing (Lei and Fithian [2016], I. and Huber [2017]).
- ► Key ideas: Cross-fitting, Stein's Unbiased Risk estimate

Manuscript: https://arxiv.org/abs/1906.01611 and NeurIPS 2019 Thank you for your attention!