Hormone	Stimulus	Pathway	Response	Feedback
Thyroxine	Decreased metabolic rate Decreased body temperature	Detected by hypothalamus → TRH release → anterior pituitary → TSH release → thyroid → Thyroxine release	Increased rate of cell metabolism Increased body temp Body-wide effects on metabolism and growth	Rising thyroxine level inhibits release of TSH and TRH from pituitary and hypothalamus (negative feedback)
Cortisol	Long term stress Injury and Inflammation	Detected by hypothalamus → CRH release → anterior pituitary → ACTH release → adrenal cortex→ Cortisol release	Immune suppression Mobilisation of glucose Tissue repair	Rising cortisol level inhibits release of CRH from hypothalamus and ACTH from pituitary (negative feedback
Aldosterone	Increased Potassium/decreased sodium Decrease in Blood pressure	Detected by nephrons →chemical messaging →adrenal cortex→Aldosterone release (major pathway) Detected by hypothalamus → CRH release →anterior pituitary →ACTH release →adrenal cortex →Aldosterone release (minor pathway)	Increased sodium and water reabsorption from kidneys Increased blood volume and pressure	Increased blood pressure and sodium concentration inhibits further release of angiotensin from nephrons. (-)
Growth Hormone	Naturally secreted during childhood and adolescence – interacts with sex hormones Also secreted in response to vigorous exercise, fasting.	Hypothalamus stimulated → GHRF release →anterior pituitary → Growth Hormone release	Muscle and Bone development Tissue growth Increases blood glucose by decreasing liver uptake of glucose and increasing gluconeogenesis Lipolysis (fat breakdown and release into blood)	Changing hormone levels after puberty decrease growth hormone release Rising blood sugar and lipids negative feedback to hypothalamus and pituitary (-)
ADH (Anti Diuretic Hormone)	Water concentration of blood decreases (salt concentration increases)	Detected by osmoreceptors in hypothalamus → ADH travels down nerves → posterior pituitary → ADH release	Increased Permeability of distal convoluted tubule and collecting duct → increased water reabsorption into blood → water balance in blood is restored	Increasing water concentration of blood (decreasing salt concentration) inhibits further ADH release. (-)
Oxytocin	Onset of labour Infant suckling Sexual stimulation	Detected by hypothalamus → Oxytocin travels down nerves → posterior pituitary → Oxytocin release	Uterine contractions during labour Milk release during lactation Psychological bonding response	Positive feedback during labour – contractions stimulate further oxytocin release (+)
Insulin	Rising blood glucose levels Parasympathetic NS stimulation of pancreas	Detected by beta cells in pancreas → beta cells release insulin → insulin travels in blood to all body tissues	Lowering of blood glucose due to: Uptake of glucose by body cells Increased glycogenesis in liver	Falling blood glucose levels inhibit insulin release (-)
Glucagon	Falling blood glucose levels Sympathetic NS stimulation of pancreas	Detected by alpha cells in pancreas →alpha cells release glucagon → glucagon in bloodstream	Raising of blood glucose due to: Breakdown of glycogen and fat in the liver Breakdown of fat in other tissues	Rising blood glucose levels inhibit glucagon release (-)
Thymosin	Released by Thymus gland during childhood and adolescence		Activates and creates T-lymphocytes involved in cell mediated immunity	
Adrenalin	Released in response to fear, anger and acute stress	Detected by senses → processed by cerebral cortex → nerve impulses sent via hypothalamus and sympathetic nerve fibres → adrenal medulla → adrenalin release → adrenalin travels in blood to body tissues	HR increase, BP increase Bronchioles dilate Liver converts glycogen to glucose and releases glucose into blood Blood directed to muscles, away from gut/kidneys Decreased digestion, decreased urine output Increased metabolic rate	Rising adrenaline levels have no feedback effect. Once stimulus has gone, process stops and no further adrenaline is released from adrenal medulla.

