Für alle Tests: Signifikanzniveau 1 –  $\alpha$  = 95%

Die Ergebnisse dieser Übungen werden diesmal durch die Teilnehmer präsentiert, also müssen Sie alle Aktivitäten ausreichend dokumentieren! (Es gibt keine Musterlösung)

### **Fehlertypen**

In einem Produktionsprozess erwarten Sie aus Erfahrung eine typische Verteilung von vier möglichen Fehlertypen. Nach Durchführung von Veränderungen an der Linie wollen Sie überprüfen, ob diese Fehlerverteilung noch Bestand hat.

Ihnen liegen die folgenden Werte vor:

|            | Systemfehler | Mech. Fehler | Elektr. Fehler | Operator-<br>fehler |
|------------|--------------|--------------|----------------|---------------------|
| Erwartet   | 70           | 10           | 10             | 10                  |
| Beobachtet | 119          | 25           | 13             | 15                  |

Überprüfen Sie mit einem geeigneten statistischen Testverfahren, ob und ggf. wie sich die Veränderungen auf die Fehlerhäufigkeiten ausgewirkt haben. Wie lauten die Nullhypothese und die Alternativhypothese für diesen Test?

### **Fehlertypen**

 $H_0: \chi^2_{emp.} < \chi^2_{krit.}$ 

Die Verteilung folgt dem erwarteten Verlauf

 $H_1: \chi^2_{emp.} \geq \chi^2_{krit.}$ 

Die Verteilung folgt nicht dem erwarteten Verlauf

### **Fehlertypen**

|              | Systemfehler | Mech.Fehler | Elektr.Fehler | Operatorfehler |
|--------------|--------------|-------------|---------------|----------------|
| Erwartet [%] | 70 %         | 10 %        | 10 %          | 10 %           |
| Erwartet     | 120,4        | 17,2        | 17,2          | 17,2           |
| Beobachtet   | 119          | 25          | 13            | 15             |
| $\chi^2$     | 0,0163       | 3,5372      | 1,0256        | 0,2814         |

$$\chi^2_{emp.} = 0,0163 + 3,5372 + 1,0256 + 0,2814 = 4,8605$$

$$\chi^2_{krit.} = 7,8147$$

$$\chi^2_{emp.} < \chi^2_{krit.}$$
: Es gilt die Nullhypothese

#### **Standorte**

Ein Unternehmen produziert mit vergleichbaren Prozessen in drei verschiedenen Werken. Es liegen Fehlerdaten für verschiedene Fehlertypen für die drei Werke vor. Gibt es einen signifikanten Unterschied zwischen den Werken?

| Fehler | Montage | Funktion | Transport |
|--------|---------|----------|-----------|
| Werk 1 | 195     | 340      | 65        |
| Werk 2 | 220     | 320      | 160       |
| Werk 3 | 385     | 180      | 135       |

#### **Standorte**

 $H_0: \chi^2_{emp.} < \chi^2_{krit.}$ 

 $H_1: \chi^2_{emp.} \geq \chi^2_{krit.}$ 

Fehlerniveau

Die Werke arbeiten mit gleichem Fehlerniveau

Die Werke arbeiten mit unterschiedlichem

### **Standorte**

| Ausgangsdat | en         |          |           |      |
|-------------|------------|----------|-----------|------|
| Fehler      | Montage    | Funktion | Transport | ZS   |
| Werk 1      | 195        | 340      | 65        | 600  |
| Werk 2      | 220        | 320      | 160       | 700  |
| Werk 3      | 385        | 180      | 135       | 700  |
| SS          | 800        | 840      | 360       | 2000 |
| Erwartungsw | rerte      |          |           |      |
| Fehler      | Montage    | Funktion | Transport |      |
| Werk 1      | 240        | 252      | 108       |      |
| Werk 2      | 280        | 294      | 126       |      |
| Werk 3      | 280        | 294      | 126       |      |
| χ^2-Anteil  | Montage    | Funktion | Transport |      |
| Werk 1      | 8,4375     | 30,7302  | 17,1204   |      |
| Werk 2      | 12,8571    | 2,2993   | 9,1746    |      |
| Werk 3      | 39,3750    | 44,2041  | 0,6429    |      |
| χ^2         | Krit. Wert | df       |           |      |
| 164,8410    | 9,488      | 4        |           |      |

#### **Standorte**

$$\chi^2_{emp.} = 164,84$$

$$\chi^2_{krit.} = 9,49$$

 $\chi^2_{emp.} > \chi^2_{krit.}$ : Es gilt die Alternativhypothese

#### Lackiererei II

In einer Lackiererei sollen für drei verschiedene Lackierungsarten die Trocknungszeiten überprüft werden. Es wurden für jeden Effekt eine Stichprobe von 30 Teilen genommen (*Übung\_ANOVA.xlsx* Datensätze: Standard, Metallic, Perleffekt)

Überprüfen Sie mit einem geeigneten statistischen Testverfahren, ob sich die Trockenzeiten in Abhängigkeit des Lackeffektes signifikant voneinander unterscheiden.

Wie lauten die Nullhypothese und die Alternativhypothese für diesen Test?

Gibt es unter den selben Voraussetzungen einen signifikanten Unterschied bei der Streuung?

#### Lackiererei II

Die Deskriptivstatistik hatten wir bereits in der eingeschränkten Lackierereiaufgabe dargestellt. Die Beschreibung erfolgt hier in vergleichbarer Weise, nur kommt ein dritter Datensatz hinzu.

### Test auf Normalverteilung

Alle p-Werte >  $\alpha$ : Alle Datensätze sind normalverteilt

#### Lackiererei II

### Test auf gleiche Varianz

Bartlett test of homogeneity of variances

data: variable by factor
Bartlett's K-squared = 0.96541, df = 2, p-value = 0.6171

p-Wert >  $\alpha$ : Gleiche Varianz für alle Datensätze

#### Lackiererei II

```
Df Sum Sq Mean Sq F value Pr(>F)

factor 2 527.1 263.55 231.4 <2e-16 ***

Residuals 87 99.1 1.14

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

p-Wert  $< \alpha$ : Mindestens zwei Mittelwerte unterscheiden sich von einander

Es folgt ein paarweiser Vergleich

#### Lackiererei II

Alle p-Werte  $< \alpha$ : Alle Mittelwerte unterscheiden sich voneinander

#### **Unbekannte**

Ihnen liegen vier Datensätze vor (Übung\_ANOVA.xlsx Datensätze: A, B, C, D)

Untersuchen Sie, ob gleiche Mittelwerte bzw. Streuungen vorliegen.

Wie lauten die Nullhypothese und die Alternativhypothese für diese Tests?

#### **Unbekannte**

### Prüfung auf Normalverteilung

```
p-values adjusted by the Holm method:
   unadjusted adjusted
A 0.17225     0.68899
B 0.85636     1.00000
C 0.50947     1.00000
D 0.51793     1.00000
```

Alle p-Werte >  $\alpha$ : Alle Datensätze sind normalverteilt

#### **Unbekannte**

### Prüfung auf gleiche Varianz

Bartlett test of homogeneity of variances

data: variable by factor
Bartlett's K-squared = 4.3747, df = 3, p-value = 0.2237

p-Wert >  $\alpha$ : Alle Datensätze haben gleiche Varianz

#### **Unbekannte**

#### Einfaktorielle ANOVA

p-Wert  $< \alpha$ : Mindestens zwei Verteilungen unterscheiden sich von einander

#### **Unbekannte**

### Paarweiser Vergleich

```
Multiple Comparisons of Means: Tukey Contrasts

Fit: aov.default(formula = variable ~ factor, data = Unbekannte)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 0.03722 0.06340 0.587 0.9358

C - A == 0 -0.14946 0.06340 -2.357 0.0910.

D - A == 0 7.59277 0.06340 119.761 <0.001 ***

C - B == 0 -0.18668 0.06340 -2.945 0.0202 *

D - B == 0 7.55555 0.06340 119.174 <0.001 ***

D - C == 0 7.74223 0.06340 122.119 <0.001 ***
```

p-Wert  $< \alpha$ : D-A, C-B, D-B und D-C unterscheiden sich von einander, bei B-A und C-A kann man von gleichen Mittelwerten ausgehen

### **Unbekannte**

Paarweiser Vergleich

#### 95% family-wise confidence level

