What are the chances?

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Measuring chance

What's the probability of an event?

$$P(\text{event}) = rac{\# \text{ ways event can happen}}{ and{total } \# \text{ of possible outcomes}}$$

Example: a coin flip

$$P(\text{heads}) = rac{1 \text{ way to get heads}}{2 \text{ possible outcomes}} = rac{1}{2} = 50\%$$

Assigning salespeople

Assigning salespeople

$$P(\mathrm{Brian}) = rac{1}{4} = 25\%$$

Sampling from a DataFrame

```
print(sales_counts)
```

```
name n_sales

0 Amir 178

1 Brian 128

2 Claire 75

3 Damian 69
```

```
sales_counts_sample()
```

```
name n_sales
1 Brian 128
sales_counts.sample()
```

```
name n_sales
2 Claire 75
```

sample() picks a random entry / row

Setting a random seed

```
np.random.seed(10)
sales_counts.sample()

name n_sales
1 Brian 128
```

setting seed for .sample()

```
np.random.seed(10)
sales_counts.sample()
```

```
name n_sales
1 Brian 128
```

```
np.random.seed(10)
sales_counts.sample()
```

```
name n_sales
1 Brian 128
```

A second meeting

Sampling without replacement

A second meeting

$$P(ext{Claire}) = rac{1}{3} = 33\%$$

Sampling twice in Python

```
sales_counts.sample(2)
```



```
name n_sales
1 Brian 128
2 Claire 75
```


Sampling with replacement

with replacement: we take something and we keep it back without replacement: we take something and we keep it

Sampling with replacement

$$P(ext{Claire}) = rac{1}{4} = 25\%$$

Sampling with/without replacement in Python

```
sales_counts.sample(5, replace = True)
```

```
name n_sales

1 Brian 128

2 Claire 75

1 Brian 128

3 Damian 69

0 Amir 178
```

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with Replacement

First pick

Second pick

Amir

Brian

Claire

Damian

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with replacement = each pick is independent

Sampling with Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

First pick

Second pick

Amir

Brian

Damian

Claire

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without replacement → picks become dependent

Sampling without Replacement

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

Discrete distributions

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Rolling the dice

Rolling the dice

Choosing salespeople

Probability distribution

Describes the probability of each possible outcome in a scenario

Expected value: mean of a probability distribution

Expected value of a fair die roll =

$$(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) + (3 \times \frac{1}{6}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.5$$

Visualizing a probability distribution

Probability = area

$$P(ext{die roll}) \leq 2 = ?$$

Probability = area

$$P(\text{die roll}) \le 2 = 1/3$$

Uneven die

Expected value of uneven die roll =

$$(1 \times \frac{1}{6}) + (2 \times 0) + (3 \times \frac{1}{3}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.67$$

Visualizing uneven probabilities

Adding areas

 $P(ext{uneven die roll}) \leq 2 = ?$

Adding areas

$$P(ext{uneven die roll}) \leq 2 = 1/6$$

Discrete probability distributions

Describe probabilities for discrete outcomes

Fair die

Uneven die

Discrete uniform distribution

Sampling from discrete distributions

```
print(die)
```

```
      number
      prob

      0
      1
      0.166667

      1
      2
      0.166667

      2
      3
      0.166667

      4
      5
      0.166667

      5
      6
      0.166667
```

```
np.mean(die['number'])
```

```
3.5
```

```
rolls_10 = die.sample(10, replace = True)
rolls_10
```

```
number
               prob
0
          0.166667
          0.166667
0
          0.166667
          0.166667
          0.166667
0
0
          0.166667
5
          0.166667
5
          0.166667
```

Visualizing a sample

start and num-Hocks

```
rolls_10['number'].hist(bins=np.linspace(1,7,7))
plt.show()
```


Sample distribution vs. theoretical distribution

Sample of 10 rolls

np.mean(rolls_10['number']) = 3.0

Theoretical probability distribution

$$mean(die['number']) = 3.5$$

A bigger sample

Sample of 100 rolls

$$np.mean(rolls_100['number']) = 3.4$$

Theoretical probability distribution

$$mean(die['number']) = 3.5$$

An even bigger sample

Sample of 1000 rolls

$$np.mean(rolls_1000['number']) = 3.48$$

Theoretical probability distribution

$$mean(die['number']) = 3.5$$

Law of large numbers

As the size of your sample increases, the sample mean will approach the expected value.

Sample size	Mean
10	3.00
100	3.40
1000	3.48

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

Continuous distributions

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Waiting for the bus

Continuous uniform distribution

Continuous uniform distribution

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \le {
m wait\ time} \le 7) = 3 imes 1/12 = 3/12$$

Uniform distribution in Python

 $P(\text{wait time} \leq 7)$

from scipy.stats import uniform
uniform.cdf(7, 0, 12)

"Greater than" probabilities

$$P(\text{wait time} \ge 7) = 1 - P(\text{wait time} \le 7)$$

from scipy.stats import uniform
1 - uniform.cdf(7, 0, 12)

$P(4 \leq ext{wait time} \leq 7)$

$P(4 \leq \text{wait time} \leq 7)$

$$P(4 \leq \text{wait time} \leq 7)$$

from scipy.stats import uniform prob. <=4 where space is from 0 to 12 uniform.cdf(7, 0, 12) - uniform.cdf(4, 0, 12)

Total area = 1

$$P(0 \le \text{wait time} \le 12) = ?$$

Total area = 1

$$P(0 \le {
m outcome} \le 12) = 12 \times 1/12 = 1$$

Generating random numbers according to uniform distribution

```
from scipy.stats import uniform
uniform.rvs(0, 5, size=10)
```

```
array([1.89740094, 4.70673196, 0.33224683, 1.0137103 , 2.31641255, 3.49969897, 0.29688598, 0.92057234, 4.71086658, 1.56815855])
```

generates 10 randoms numbers between 0 to 5

Other continuous distributions

Other continuous distributions

Other special types of distributions

Normal distribution

Exponential distribution

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

The binomial distribution

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui Content Developer, DataCamp

Coin flipping

Binary outcomes

Success Failure

Win Loss

A single flip

```
binom.rvs(# of coins, probability of heads/success, size=# of trials)
```

```
1 = \text{head}, 0 = \text{tails}
```

```
from scipy.stats import binom
binom.rvs(1, 0.5, size=1)
```

```
array([1])
```


One flip many times

```
binom.rvs(1, 0.5, size=8)
```

```
array([0, 1, 1, 0, 1, 0, 1, 1])
```

binom.rvs(1, 0.5, size = 8)

Flip 1 coin with 50% chance of success 8 times

Many flips one time

```
binom.rvs(8, 0.5, size=1)
```

array([5])

binom.rvs(
$$8$$
, 0.5 , size = 1)

Flip 8 coins with 50% chance of success 1 time

Many flips many times

```
binom.rvs(3, 0.5, size=10)
```

```
array([0, 3, 2, 1, 3, 0, 2, 2, 0, 0])
```

$$binom.rvs(3, 0.5, size = 10)$$

Flip 3 coins with 50% chance of success 10 times

•

Other probabilities

```
binom.rvs(3, 0.25, size=10)
```


Binomial distribution

Probability distribution of the number of successes in a sequence of independent trials

E.g. Number of heads in a sequence of coin flips

Described by n and p

- n: total number of trials
- p: probability of success

binom.rvs(n=10, p=0.5, size=20)

What's the probability of 7 heads?

```
P(\text{heads} = 7)
```

```
# binom.pmf(num heads, num trials, prob of heads)
binom.pmf(7, 10, 0.5)
```

What's the probability of 7 or fewer heads?

 $P(\text{heads} \leq 7)$

rango

binom.cdf(7, 10, 0.5)

What's the probability of more than 7 heads?

P(heads > 7)

```
1 - binom.cdf(7, 10, 0.5)
```

Expected value

Expected value = $n \times p$

Expected number of heads out of 10 flips =10 imes0.5=5

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Probabilities of second trial are altered due to outcome of the first

If trials are not independent, the binomial distribution does not apply!

Let's practice!

INTRODUCTION TO STATISTICS IN PYTHON

