Universidad Industrial de Santander - Escuela de Física Introducción a la Física (Asorey-Sarmiento-Pinilla)

Guía 04: Velocidad, Aceleración y Energía 2014

Modalidad de Entrega

- Modalidad de trabajo: grupal, en grupos con un mínimo de dos (2) y un máximo de tres (3) personas por grupo. No se admitirán trabajos individuales ni de grupos con más de tres integrantes.
- El trabajo será entregado utilizando el enlace dispuesta para tal fin en el blog de la materia, teniendo en cuenta lo siguiente:
 - la resolución de al menos uno de los ejercicios (a elección de cada grupo) deberá ser entregada en un pdf obtenido utilizando MEX.
 - la resolución del resto de los ejercicios puede ser realizada "a mano", pero todas las hojas deberán ser escaneadas
 - se conformará un único archivo zip o rar, nombrándolo con los apellidos de los autores del trabajo en orden alfabético, separados por guiones, por ejemplo: *janeway-kirk-picard.zip*, o *cuadrado-gutierrez-yepes.rar*. Este archivo contendrá el pdf obtenido en MEX, y las hojas escaneadas, y constituye el único entregable de este trabajo, que deberá ser subido al blog.
- Para esta entrega, valen todas las indicaciones dadas para la entrega de la guía 3.
- El cumplimiento de todas las indicaciones será tenido en cuenta.
- Fecha límite de entrega: Lunes 14/Julio/2014 a las 23:59:59.

Cinemática

Resuelva los siguientes ejercicios, recuerde siempre utilizar notación vectorial al resolver los ejercicios.

- 1) Una barca, que lleva una velocidad de $3\,\mathrm{m\,s^{-1}}$, cruza un río perpendicularmente a la dirección del agua. El río fluye a $5\,\mathrm{m\,s^{-1}}$ y su cauce tiene 60 metros de ancho. Hallar el ángulo y la distancia desviada. Determina la velocidad resultante, el tiempo empleado en cruzar el río y la distancia recorrida.
- 2) El vector de posición de un cuerpo viene dado por:

$$\vec{r} = (t^2 + 4t + 1)\hat{i} + (1 - 5t)\hat{j} \tag{1}$$

donde t representa al tiempo y los vectores unitarios $\hat{i} = (1,0)$ y $\hat{j} = (0,1)$ son los de la base canónica de \mathbb{R}^2 . Obtener:

- 1) la ecuación de la trayectoria, $\vec{r}(t) = (x(t), y(t))$;
- 2) la velocidad y aceleración medias del cuerpo entre los instantes $t_1 = 2$ s y $t_2 = 4$ s;
- 3) la velocidad y aceleración medias del cuerpo entre los instantes $t_3 = 4$ s y $t_4 = 6$ s;

- 3) Un avión vuela desde su campamento base al lago A una distancia 280 km en dirección 20° al norte del oriente. Después de lanzar abastecimientos, vuela al lago B que esta 190 km y 30° al oeste del norte del lago A. Entonces:
 - 1) determine gráficamente la distancia;
 - 2) determine analíticamente el desplazamiento;
 - determine gráfica y analíticamente la posición del lago B respecto al campamento base.
- 4) Una bola de golf es golpeada desde un *tee* en el borde de un risco. Se conoce la evolución en el tiempo *t* de las coordenadas de los vectores posición de la pelota, que siguen las siguientes expresiones:

$$x(t) = 18t$$

 $y(t) = t - 49t^{2}$. (2)

Entonces:

- 1) escriba una expresión vectorial para la posición de la bola como función del tiempo, utilizando para ello los vectores unitarios \hat{i} y \hat{j} ;
- 2) calcule el desplazamiento entre t = 1 s y t = 5 s;
- 3) calcule la velocidad media en mismo intervalo de tiempo;
- 4) calcule la aceleración en el mismo intervalo tiempo;
- 5) Un cuerpo se mueve con rapidez inicial de $|\vec{v}| = 3 \,\mathrm{m \, s^{-1}}$, y con una aceleración constante $|\vec{a}| = 4 \,\mathrm{m \, s^{-2}}$. En este caso, se sabe que el vector aceleración es paralelo al vector velocidad, y ambos tienen el mismo sentido. ¿Cuál es la rapidez del cuerpo y la distancia recorrida luego de transcurrido un tiempo de 7 s?
- 6) Resuelva ahora el problema anterior, sólo que suponiendo que la aceleración es paralela a la velocidad, pero tienen sentidos opuestos.
- 7) Escriba para los dos problemas anteriores, la expresión del desplazamiento como función del tiempo.
- 8) Un auto parte del reposo con una aceleración de $|\vec{a}| = 1$ m s⁻², la cuál se mantiene constante durante 1 s. Transcurrido ese tiempo, se apaga el motor y el auto desacelera, debido a la fricción, durante 10 s con una desaceleración promedio $|\vec{a}| = -5$ cm s⁻². Entonces se aplican los frenos y el auto se detiene luego de otros 5 s adicionales. Calcular la distancia total recorrida por el auto. Hacer los gráficos de x(t), $|\vec{v}(t)|$ y $|\vec{a}(t)|$ como función del tiempo t.

Energía

9) Energía potencial gravitatoria

1) La energía potencial gravitatoria entre dos cuerpos de masas m_1 y m_2 separados por una distancia r está dada por:

$$E_g = -\frac{G m_1 m_2}{r}.$$

De esta forma, la energía potencial gravitatoria de un cuerpo de masa m sobre la superficie de un planeta de masa M y radio R es:

$$E_g = -\frac{GMm}{R}$$
.

Verifique que al elevar ese cuerpo a una altura h sobre la superficie del planeta, la variación de la energía potencial gravitatoria es:

$$\Delta E_g = -GMm \left(\frac{1}{R+h} - \frac{1}{R} \right).$$

2) Calcule la variación de energía potencial gravitatoria para un astronauta de masa $m=70\,\mathrm{kg}$, que originalmente se encontraba sobre la superficie terrestre $(h=0)\,\mathrm{y}$ luego a una altura de $h=370\,\mathrm{km}$, correspondiente a la órbita media de la estación espacial internacional (ISS). Luego, compare ese valor con el que hubiera obtenido utilizando la expresión aproximada $\Delta E_g=mg\,h$, donde g corresponde al valor de la aceleración de la gravedad sobre la superficie terrestre, $g=9,81\,\mathrm{m\,s^{-2}}$. ¿Cuál es la diferencia porcentual obtenida al utilizar la fórmula aproximada?

10) **Pesos**.

A partir de la definición de la aceleración de la gravedad $g \equiv |\vec{g}|$ sobre la superficie de un cuerpo de masa M y radio R,

$$g=\frac{GM}{R^2},$$

- 1) calcule el valor de g y determine cuál es el peso de un cuerpo de masa $m=70\,\mathrm{kg}$ en la Tierra, el Sol, Júpiter, Marte y la Luna (use los datos para M y R reproducidos al final de esta guía).
- 2) Repita las cuentas realizadas en clase y, utilizando la segunda Ley de Newton $\vec{F} = m\vec{a}$ verifique que el peso de un cuerpo de masa m como función de la altura h sobre la superficie del cuerpo de masa M y radio R es:

$$|\vec{F}_p(h)| = m \left(\frac{GM}{(R+h)^2} \right) = mg(h).$$

Observe que a partir de esta expresión, el módulo de la fuerza peso depende de la altura sobre la superficie del cuerpo de masa M, y se puede expresar en general como $F_p(h) = mg(h)$. En este caso, la dirección de la fuerza peso es radial, y el sentido hacia el centro del objeto de masa M.

3) Obtenga a que altura h_2 sobre la superficie el peso de un cuerpo vale la mitad respecto a su peso sobre la superficie (h = 0).

11) Rebotes.

Una pelota de goma de masa $m = 2.0 \,\mathrm{kg}$ es lanzada hacia arriba en forma vertical. La rapidez inicial es de $v = 5 \,\mathrm{m \, s^{-1}}$.

- 1) Calcule la altura máxima que alcanza la pelota en su trayectoria;
- 2) suponiendo que no hay pérdidas de energía debidas al rozamiento, calcule la rapidez al momento del impacto y la altura alcanzada luego del rebote.
- 3) Suponga que, a diferencia del punto anterior, como consecuencia del rebote un 20% de la energía mecánica se transforma en calor y sonido. Calcule la altura que alcanzará la pelota luego de tres choques contra el piso.

12) Resortes

La energía potencial elástica está dada por:

$$E_e = \frac{1}{2}k(\Delta x)^2$$

donde k es la constante elástica del resorte y Δx representa a la variación de la longitud del resorte en condiciones de compresión o expansión. Imagine entonces que usted debe diseñar el sistema de protección de resortes de un ascensor en un edificio $(h=50,0\,\mathrm{m})$, y que los mismos pueden comprimirse un máximo de $0,5\,\mathrm{m}$. Sabiendo que la masa del ascensor y su carga es de $m=600\,\mathrm{kg}$,

- 1) calcule la constante *k* del resorte;
- 2) si el ascensor tiene un freno de seguridad capaz de transformar el 20% de la energía cinética, calcule el k del resorte necesario en este caso;
- 3) Rehaga los cálculos anteriores pero suponiendo que en lugar de un único gran resorte se disponen cuatro resortes más pequeños.

13) Velocidad de escape

Se define como *velocidad de escape* a aquella velocidad v_c para la cual un cuerpo de masa m (cuerpo A) puede escapar de la atracción gravitatoria de otro cuerpo (cuerpo B).

Imaginemos que el cuerpo B es un planeta de radio R y masa M, y colocamos al cuerpo A sobre su superficie. Entonces,

- 1) Obtenga una expresión para el cálculo de la velocidad de escape, y muestre que la misma es una propiedad inherente del planeta.
- 2) Grafique la dependencia de la velocidad de escape como función:
 - del radio *R* del planeta.
 - de la masa *M* del planeta.
- 3) Calcule el valor de la velocidad de escape sobre la superficie de
 - 1) el planeta Tierra,
 - 2) la Luna,
 - 3) el planeta Marte,
 - 4) el Sol.
- 4) Luego, verifique que la expresión para el R de un objeto de masa M para que la velocidad de escape sobre su superficie sea igual a la velocidad de la luz c,

$$R_c = \frac{2GM}{c^2}.$$

Con esta expresión, calcule el valor del radio crítico R_c para la Tierra, el Sol, y un objeto con masa $M=10M_{\rm Sol}$.

14) Impacto.

La extinción de los dinosaurios al final del período Jurásico es atribuida al impacto de un cometa o meteorito de dimensiones considerables. Imagine entonces que un cometa esférico de radio $r=5\,\mathrm{km}$ y densidad media $d=5\,\mathrm{g\,cm^{-3}}$ se acerca a la Tierra desde el infinito. Entonces,

- 1) Calcule la masa m_c del cometa.
- 2) Calcule la energía cinética y la velocidad al momento del impacto.
- 3) Exprese la energía liberada en el impacto en megatones, teniendo en cuenta que $1\,\mathrm{Mton} = 4,184 \times 10^{15}\,\mathrm{J}.$
- 4) Si debido a la interacción atmosférica el satélite se divide en dos partes de masas $m_1 = 0.7 m_c$ y $m_2 = 0.3 m_c$. Calcule la energía cinética y la velocidad de cada parte al momento del impacto. ¿Dependerá el resultado de la altura a la cual el cometa se parta? Justifique.

15) El Principito

El Principito ($m=40 \,\mathrm{kg}$) vive en un planeta pequeño, el asteroide B612. Supongamos que posee un radio $R=1 \,\mathrm{km}$ con una densidad igual a la de la Tierra ($d=5,5 \,\mathrm{g}\,\mathrm{cm}^{-3}$). Calcule

- 1) el valor de g y el peso del Principito en B612;
- 2) si en la Tierra el Principito logra subir a una silla de $h=0.5\,\mathrm{m}$ de un salto, a que altura llegará con el mismo salto sobre la superficie de B612.
- 3) la velocidad máxima a la cual el Principito puede caminar sin riesgo de abandonar el planeta para siempre

		Mercurio	Venus	Tierra	Marte	Júpiter	Saturno	Urano	Neptuno
Imagen							•		1
Símbolo Astronómico		×	0+	Ф	゚゙゙゙゙゙	ਨ	ů	•0	₽
Distancia media al Sol	F A	km 57.909.175 UA 0,38709893	108.208.930 0,72333199	149.597.870	227.936.640 1,52366231	778.412.010 5,20336301	1.426.725.400 9,53707032	2.870.972.200	4.498.252.900 30,06896348
Radio medio	m ₹	2.439,64 0,3825	6.051,59	6.378,15	3.397,00	71.492,68	60.267,14	25.557,25	24.766,36
Superficie/Área	km² :T²	75.000.000	460.000.000	510.000.000	140.000.000	64.000.000.000	43.800.000.000	8.130.000.000	7.700.000.000
Volumen	km³ :T²	-	9,28×10 ¹¹ 0,87	1,083×10 ¹²	1,6318×10 ¹¹ 0,151	1,431×10 ¹⁵	8,27×10 ¹⁴ 763,59	6,834×10 ¹³ 63,086	6,254×10 ¹³ 57,74
Masa	. 12 Kg	3,302×10 ²³ 0,055	4,8690×10 ²⁴ 0,815	5,9742×10 ²⁴	6,4191×10 ²³ 0,107	1,8987×10 ²⁷ 318	5,6851×10 ²⁶ 95	8,6849×10 ²⁵	1,0244×10 ²⁶
Densidad	g/cm ³	5,43	5,24	5,515	3,940	1,33	769,0	1,29	1,76
Gravedad Ecuatorial	m/s ²	3,70	8,87	9,81	3,71	23,12	96'8	8,69	11,00
Velocidad de escape	km/s	4,25	10,36	11,18	5,02	59,54	35,49	21,29	23,71
Periodo de rotación	dias ³	58,646225	-243,0187 ⁴	0,99726968	1,02595675	0,41354	0,44401	-0,718334	0,67125
Velocidad de rotación ecuatorial km/s	km/s	0,0030	0,0018	0,4651	0,2408	12,5720	10,0179	2,5875	2,6869
Periodo orbital	años ³	años ³ 0,2408467	0,61519726	1,0000174	1,8808476	11,862615	29,447498	84,016846	164,79132
Velocidad orbital media	km/s	47,8725	35,0214	29,7859	24,1309	13,0697	9,6724	6,8352	5,4778
Excentricidad ⁵		0,20563069	0,00677323	0,01671022	0,09341233	0,04839266	0,05415060	0,04716771	0,00858587
Inclinación	O	7,00487	3,39471	0,00005	1,85061	1,30530	2,48446	0,76986	1,76917
Inclinación axial	O	0,0	177,3	23,45	25,19	3,12	26,73	97,86	29,58
Temperatura media en superficie	¥	440	730	288 / 293	186 / 268	152	134	92	53
Temperatura media en superficie	O	166.85	456,85	14,85/19,85	-87,15/-5,15	-121,15	-139,15	-197,15	-220,15
Temperatura media del aire ⁶	¥			288		165	135	92	73
Temperatura media del aire ⁶	O			14,85		-108,15	-138,15	-197,15	-200,15
Composición de la Atmósfera		He Na ⁺ P ⁺		78% N ₂ 21% O ₂ 1% Ar	95% CO ₂ 3% N ₂ 1,6% Ar 9	96% CO ₂ 3% N ₂ 0.1% H ₂ O 76% N ₂ 21% O ₂ 1% A1 95% CO ₂ 3% N ₂ 1.6% A1 90% H ₂ 10% He trazas de CH ₄ 96% H ₂ 33% He 0.5% CH ₄ 84% H ₂ 14% He 2% CH ₄ 75% H ₂ 25% He 1% CH ₄	96% H ₂ 3% He 0.5% CH ₄	84% H ₂ 14% He 2% CH ₄	75% H ₂ 25% He 1% CH ₄
Número de lunas conocidas		0	0	-	2	63	61	27	13
Anillos		°N	oN	o _N	No	īS	ïS	īS	iS
Discriminante planetario ⁷		9,1×10 ⁴	1,35×10 ⁶	1,7×10 ⁶	1,8×10 ⁵	6,25×10 ⁵	1,9×10 ⁵	2,9×10 ⁴	2,4×10 ⁴