比赛相关算法简介

结合比赛应用,分析应用场景,介绍已有技术

快速灵活机动:从四足机器人主要功能出发

- 四足机器人主要应用场合为己方能量补给和敌方 能量减血,因此快速灵活机动性能非常重要
- 四足机器人为手动操作,遥控器操作简单,快速 灵活,地面适应能力强。

● 最高速度: 3.0 m/s

步态设计: 从使用场景出发, 地形复杂

- 四足机器人活动范围内场地复杂,包含楼梯、斜坡、摆锤等
- 针对地形选择不同步态: walk, trot, bound
- 简化的参数:
 - 3个与预测周期相关的参数
- 和模型预测控制结合:预测周期与支撑相时间、摆动相时间结合
- 设计简单:

Trot行走步态举例

论文:《Towards automatic discovery of agile gaits for quadrupedal robots-StarlETH》

状态估计器: 四足机器人控制基础

• 机器人状态实时反馈:

float p[3]; float vWorld[3];

float vBody[3]; float vRemoter[3];

float rpy[3]; float omegaBody[3];

float omegaWorld[3]; float quat[4];

- 高精度IMU
- 结合概率模型,进行碰撞、踏空检测
- 扩展性能: 触地足端曲线修改
- 论文:

概率检测模型

斜坡适应:

- 斜坡检测: 基于状态估计器的结果
- 斜坡调整:根据图中所示,可以计算出机器 人重心在前进方向的位置变化量:

$$p_1 p_2 = h \tan \theta \quad (1)$$

• 期望得到的俯仰角度 为:

$$\alpha = \arctan \frac{x_f - x_h}{h} \quad (2)$$

为了控制机器人的躯干在斜坡上的运动通过 作用在躯干的虚拟力的大小来实现,应满足 如下:

$$F_{x} = f_{F,x} + f_{H,x} - mg\sin\theta$$

$$F_{z} = f_{F,z} + f_{H,z} - mg\cos\theta$$
(3)

● 相关论文: 《复杂地形环境四足机器人运动控制方法研究与实现》

基于虚拟模型的摆动足轨迹规划:适应台阶

• 相关论文:《复杂地形环境中四足机器人行 走方法研究》

模型预测控制:实现足端最优接触力分配

- 力控的优势:控制足底力,柔顺交互,更好的适应 地形
- 模型预测控制原理:

从当前状态开始,基于控制输入和状态轨迹的约束条件,在有限预测时域中,寻找控制输入的最优序列和对应的状态轨迹。

- 模型预测控制优点:只需要电流传感器和机体自身 IMU便能够较为精确的估计自身状态,控制器根据 这些状态可以预测出系统稳定运行的最优足底力, 实现机器人稳定快速的运动。
- MPC运动演示
- 抗冲击演示
- 相关论文: 《 Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control 》

$$\frac{d}{dt} \begin{bmatrix} \dot{\Theta} \\ \hat{p} \\ \hat{o} \\ \hat{p} \\ -\mathbf{g} \end{bmatrix} = \begin{bmatrix} 0_{3\times3} & 0_{3\times3} & R_{2}(\psi) & 0_{3\times3} & 0_{3\times1} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 1_{3\times3} & 0_{3\times1} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times1} \\ 0_{3} & 0_{3} & 0_{3} & 0_{3} & S_{g} \\ 0_{1\times3} & 0_{1\times3} & 0_{1\times3} & 0_{1\times3} & 0_{1\times1} \end{bmatrix} \begin{bmatrix} \dot{\Theta} \\ \hat{p} \\ \hat{\omega} \\ \hat{p} \\ -\mathbf{g} \end{bmatrix} \\
+ \begin{bmatrix} 0_{3\times3} & \cdots & 0_{3\times3} \\ 0_{3\times3} & \cdots & 0_{3\times3} \\ 0_{3\times3} & \cdots & 0_{3\times3} \\ 0_{3\times3} & \cdots & 0_{3\times3} \end{bmatrix} \begin{bmatrix} f_{1} \\ \vdots \\ f_{n} \end{bmatrix} \\
1_{3\times3} / m & \cdots & 1_{3\times3} / m \\
0_{1\times3} & \cdots & 0_{1\times1} \end{bmatrix} \underbrace{ \begin{bmatrix} f_{1} \\ \vdots \\ f_{n} \end{bmatrix} }_{be(r_{1}, \cdots, r_{n}, \psi)}$$
(12)

其中, $S_g = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, $\mathbf{g} = \begin{bmatrix} 0 & 0 & g \end{bmatrix}^T$,g 表示重力加速度,一般取值为 g = 9.81 m/s。

对式(12)进行简化表示,可以把动力学变成简便的状态空间形式:

$$\mathcal{K}(t) = A_c(\psi)x(t) + B_c(r_1, L, r_n, \psi)u(t)$$
(13)

$$\min_{x,u} \sum_{i=0}^{N-1} \|x_{i+1} - x_{i+1,ref}\| Q_i + \|u_i\| R_i$$
 (14)

约束
$$x_{i+1} = A_i x_i + B_i u_i, i = 0...k-1$$
 (15)

$$\underline{c}_i \le C_i u_i \le \overline{c}_i, i = 0...k-1 \tag{16}$$

$$D_i u_i = 0, i = 0 \dots k - 1 \tag{17}$$

动作设计和优化:对抗过程使用

• 动作优化:

动作序列优化,节省能源,最优扭矩输出

• 动作展示:

后空翻,前空翻,前跳

电机性能:

序号	内容	参数	序号	内容	参数
1	尺寸	φ94mm×47mm	1	尺寸	φ94mm×52mm
2	重量	550g±20g	2	重量	730g±20g
3	颜色	经典银	3	颜色	经典银
4	材质	7075 铝合金	4	材质	7075 铝合金
5	类型	单级行星结构	5	类型	单级行星结构
6	额定电压	DC 24 V	6	额定电压	DC 36 V
7	额定电流	15 A	7	额定电流	15 A
8	峰值电流	40 A	8	峰值电流	40 A
9	额定扭矩	8 Nm	9	额定扭矩	16 Nm
10	额定转速	200 rpm	10	额定转速	160 rpm
11	输出峰值扭矩	24 NM	11	输出峰值扭矩	48 NM
12	输出峰值速度	300 rpm	12	输出峰值速度	240 rpm
3	减速比	6: 1	13	减速比	6: 1
14	定位精度误差	< 0.15°	14	定位精度误差	< 0.15°
15	抗轴向冲击	800 N	15	抗轴向冲击	1000 N
16	通讯接口	CAN	16	通讯接口	CAN
17	调试接口	USB	17	调试接口	USB
18	电机类型	三相盘式外转子电机	18	电机类型	三相盘式外转子电机
19	级对数	21 对	19	级对数	21 对
20	驱动类型	集成FOC驱动板	20	驱动类型	集成FOC驱动板
21	控制模式	位置控制或力矩控制	21	控制模式	位置控制或力矩控制
22	数据传输频率	1KHZ	22	数据传输频率	1KHZ
23	固件更新模式	CAN在线更新	23	固件更新模式	CAN在线更新
24	极限温度	< 85°C	24	极限温度	< 85°C
25	电流保护	35A, 200MS 自动保护	25	电流保护	40A, 200MS 自动保护
26	轴承	精密交叉滚子轴承	26	轴承	精密交叉滚子轴承
27	寿命	10000H	27	寿命	8000H
28	开源程度	指令开放与源码开放	28	开源程度	指令开放与源码开放
29	质保期	质保一年(不含人为损坏或过载使用)	29	质保期	质保一年(不含人为损坏或过载使用)
30	特点	双绝对式编码器	30	特点	双绝对式编码器

技术优势: 十几年四足研究基础, 大量硕博士成果

- 口 山东大学机器人研究中心于2003年建立,挂靠山东大学控制科学与工程学院,是我国机器人研究和应用的重要单位。中心现有研究人员24人,其中博士生导师5人,教授5人,副教授8人,技术力量雄厚。
- 依托智能无人系统教育部工程研究中心(已通过评审),山东省特种环境作业机器人工程中心,山东省机器人与智能装备协同创新中心等平台,始终致力于智能机器人技术、工业机器人应用、智能空间技术、微小型机器人、机电一体化设备的研究、开发与应用。
- 口 近年来承担国家级项目36项,省部级项目46项,<mark>立项经费超过1.2亿元</mark>。发表SCI/EI论文近300篇,授权发明 专利70余项。

近五年成果总结						
发表论文	SCI收录	287				
及农比又	SCI他引	4787				
4-00+=\A-	发明专利	107				
发明标准	国家标准	7				
지박자	国家级	3				
科技奖励	省部级	18				
松兴 农品	国家级	1				
教学奖励	省部级	5				

2009年 学校基金

2011年 863一期 2012年 重点基金 2015年 863二期 2018年 国防背景预研重大

2010年 第一代样机 2012年 第二代样机 2015年 第三代样机 2016年 电动小四足 2018年 小四足产业化

实验室样机

工程化样机

野外测试

背景预研

YOBOTICS°

山东优宝特 智能机器人有限公司

——用产品改变世界——

电话: 0531-88803716 微信: 15820000319 传真: 0531-67965211

邮箱: chenbin@yobotics.cn 地址: 山东省济南市高新区新泺大街 1166号奥盛大厦3号楼2103室 **YOBOTICS**°