IN THE CLAIMS:

Please amend the claims as follows:

- 1. (Original) Apparatus for predicting bone fracture risk in an osteoporotic patient, which apparatus comprises a Dual X-ray Absorptiometry scanner for scanning a body area of the patient and producing a Dual X-ray Absorptiometry image of the body area; image analysis means for analysing predetermined aspects of the Dual X-ray Absorptiometry image, the aspects being pre-determined according to the part of the body being scanned, and for generating an image data set from the Dual X-ray Absorptiometry image; and data comparison means comprising a database of comparative data sets from Dual X-ray Absorptiometry images of control subjects, for comparison with the image data set for the Dual X-ray Absorptiometry image of the patient, to thereby predict the risk of bone fracture in the patient.
- 2. (Original) Apparatus according to claim 1 wherein the body part is a proximal femur.
- 3. (Original) Apparatus according to claim 1 or 2 wherein the image analysis means analyses the Dual X-ray Absorptiometry image by analysis of the shape of the body part.
- 4. (Original) Apparatus according to claim 3 wherein the Dual X-ray Absorptiometry image is analysed using an Active Shape Model.
- 5. (Original) Apparatus according to claim 4 wherein the data comparison means compares the Active Shape Model data set generated from the Dual X-ray Absorptiometry image of the patient with the comparative data sets in the database by examining how the location of landmark points deviates from the mean co-ordinates of the comparative data sets.
- 6. (Currently Amended) Apparatus according to any preceding claim 1, wherein the image analysis means analyses the Dual X-ray Absorptiometry image by analysis of the texture of the body part.

- 7. (Original) Apparatus according to claim 6 wherein the analysis of the texture of the body part uses Fourier transforms and Principal Component Analysis.
- 8. (Original) Apparatus according to claim 7 wherein the Dual X-ray Absorptiometry image is digitised and regions of interest identified in the image, from which a power spectrum is obtained from a Fourier transform of each region of interest, and profiles of each region produced, the Principal Component Analysis generating a data set from each profile, which can be compared with the database of comparative data sets.
- 9. (Currently Amended) Apparatus according to any preceding claim 1, wherein the image analysis means uses more than one image analysis method.
- 10. (Original) Apparatus according to claim 9 wherein the image analysis means uses both shape and texture analysis.
- 11. (Original) Apparatus according to claim 10 wherein the image analysis means uses an Active Shape Model and Fourier transforms and Principal Component Analysis.
- 12. (Currently Amended) Apparatus according to any preceding claim 1, for predicting fracture risk in different body parts.
- 13. (Original) Apparatus according to claim 12 for predicting fracture risk in more than one of the proximal femur, wrist, ankle, hand and spine.
- 14. (Currently Amended) Apparatus according to any preceding claim 1, which compares i) the fracture risk prediction value obtained from comparison of the image data set for the Dual X-ray Absorptiometry image of the patient with the database of comparative data sets, with ii) bone mineral density data obtained from the Dual X-ray Absorptiometry image.

- 4 - Docket No: 744591-43

15. (Currently Amended) Apparatus according to any preceding claim 1, for measuring the progression of a disorder which affects the shape or trabecular structure of bone.

- 16. (Original) Apparatus according to claim 15 for measuring the progression of osteoarthritis or Paget's Disease.
- 17. (Currently Amended) Apparatus according to any-preceding claim 1, for measuring non-pathological changes in a subject associated with age, gender, body mass index and/or genetics.
 - 18. (Original) Apparatus substantially as hereinbefore described.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.