Statistical Learning

Boosting

Spring 2024

Boosting

- AdaBoost
- · Training error bound
- · Gradient boosting

AdaBoost

Boosting

Consider producing a sequence of learners:

$$F_T(x) = \sum_{t=1}^{T} f_t(x)$$

• How to train each $f_t(x)$? At the t-th iteration, given previously estimated f_1, \ldots, f_{t-1} , we estimate a new function h(x) to minimize the loss:

$$\min_{h} \sum_{i=1}^{n} L(y_i, \sum_{k=1}^{t-1} f_k(x_i) + h(x_i))$$

• Instead of using the entire h(x), we only use a small "fraction" of it, and add $\alpha_t h(x)$ to the current model. Then proceed to the next iteration.

Boosting

- Boosting is an additive model, but its different from **generalized** additive model, in which each weak learner only involves one variable, and we fit p of such functions. In boosting, each $f_t(x)$ can be very flexible, and we may fit a large number of functions.
- Boosting is also different from random forests, another additive model. In random forests, each tree is generated independently, so they can't borrow information from each other.
- AdaBoost (Freund and Schapire, 1997) is a special case of this framework with Exponential loss for classification.
- For this setting, we use labels $y_i \in \{-1, 1\}$.

AdaBoost: algorithm

- 1. Initiate subject weights $w_i^{(1)}=1/n,\,i=1,2,\ldots,n.$
- 2. For t = 1 to T, repeat (a) (d)
 - (a) Fit a classifier $f_t(x) \in \{-1, 1\}$ to the training data, with individual weights $w_i^{(t)}$.
 - (b) Compute the training error at t

$$\epsilon_t = \sum_i w_i^{(t)} \mathbf{1} \{ y_i \neq f_t(x_i) \}$$

(c) Compute

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

...

AdaBoost: algorithm

- 2. continued
 - (d) Update weights

$$w_i^{(t+1)} = \frac{w_i^{(t)}}{Z_t} \exp[-\alpha_t y_i f_t(x_i)],$$

where Z_t is a normalization factor to keep $w_i^{(t+1)}$ a distribution:

$$Z_t = \sum_{i=1}^n w_i^{(t)} \exp[-\alpha_t y_i f_t(x_i)],$$

3. Output the final model

$$F_T(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

And the classification rule: $sign(F_T(x))$

- · Let's look at an example with the following data
- At each iteration, we build a tree model $f_t(x)$ with just one split
- · The final model is stacked with all tree models

- At the first iteration, the tree splits at 0.25 for X_1
- This makes the three positive cases on the right hand side to increase their weights

- At the second iteration, the tree splits at 0.65 for X_2
- This further adjusts the weights, along with calculating α_t at each step

- At the third iteration, the tree splits at 0.85 for X_1
- This produces the final model:

$$F_3(x) = 0.4236 \cdot f_1(x) + 0.6496 \cdot f_2(x) + 0.9229 \cdot f_3(x)$$

AdaBoost: intuition

- · At the initial step, we treat all subjects with equal weight
- Learn a classifier $f_t(x)$ and inspect which subjects got mis-classified
- Put more weights on the mis-classified subjects for the next iteration
- Add $\alpha_t f_t(x)$ to the existing model and train the next iteration using the updated weights

AdaBoost: intuition

- Why α_t is choosing this way $\alpha_t = \frac{1}{2}\log\frac{1-\epsilon_t}{\epsilon_t}$?
- Why the weak classifier is chosen to minimize the weighted error?
- What can we say about the performance of the final model $F_T(x)$?

Training Error Bound

The Subject Weights

· Let's start with analyzing the weight after the final iteration:

$$w_i^{(T+1)} = \frac{1}{Z_T} w_i^{(T)} \exp[-\alpha_t y_i f_T(x_i)]$$

• Note that for $w_i^{(T)}$, we can also further back-track it into T-1.

$$\mathbf{w_i^{(T)}} = \frac{1}{Z_{T-1}} w_i^{(T-1)} \exp[-\alpha_t y_i f_{T-1}(x_i)]$$

· Hence, we can track this all the way back to the first iteration

The Subject Weights

· This gives

$$w_i^{(T+1)} = \frac{1}{Z_1 \cdots Z_T} w_i^{(1)} \prod_{t=1}^T \exp[-\alpha_t y_i f_t(x_i)]$$
$$= \frac{1}{Z_1 \cdots Z_T} \frac{1}{n} \prod_{t=1}^T \exp[-\alpha_t y_i f_t(x_i)]$$
$$= \frac{1}{Z_1 \cdots Z_T} \frac{1}{n} \exp\left[-y_i \sum_{t=1}^T \alpha_t f_t(x_i)\right]$$

• Note that $\sum_{t=1}^{T} \alpha_t f_t(x_i)$ is just the final model at the T-th iteration, i.e., $F_T(x_i)$.

The Subject Weights

· Noticing that the weights sum up to 1, we have

$$1 = \sum_{i=1}^{n} w_i^{(T+1)} = \frac{1}{Z_1 \cdots Z_T} \frac{1}{n} \sum_{i=1}^{n} \exp \left\{ -y_i F_T(x_i) \right\}$$

or

$$Z_1 \cdots Z_T = \frac{1}{n} \sum_{i=1}^n \exp\left\{-y_i F_T(x_i)\right\}$$

· On the right-hand side, it is the exponential loss.

The Exponential Loss

- Let's check some facts:
 - Correctly classified: $\operatorname{sign}(y) = \operatorname{sign}(f(x))$ and $1 > \exp[-yf(x)] > 0$
 - Incorrectly classified: $\operatorname{sign}(y) = -\operatorname{sign}(f(x))$ and $\exp[-yf(x)] > 1$
- Hence, the exponential loss is larger than 0/1 loss:

$$Z_1 \cdots Z_T$$

$$= \frac{1}{n} \sum_{i=1}^n \exp\left\{-y_i F_T(x_i)\right\}$$

$$> \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{y_i \neq F_T(x_i)\}$$

The Z_t 's

- On the other hand, we can further break down each Z_t
- Notice that $f_t(x_i)$ is a classification model with output 1 or -1, this either matches or not matches y_i :

$$Z_{t} = \sum_{i=1}^{n} w_{i}^{(t)} \exp[-\alpha_{t} y_{i} f_{t}(x_{i})]$$

$$= \sum_{y_{i} = f_{t}(x_{i})} w_{i}^{(t)} \exp[-\alpha_{t}] + \sum_{y_{i} \neq f_{t}(x_{i})} w_{i}^{(t)} \exp[\alpha_{t}]$$

$$= \exp[-\alpha_{t}] \sum_{y_{i} = f_{t}(x_{i})} w_{i}^{(t)} + \exp[\alpha_{t}] \sum_{y_{i} \neq f_{t}(x_{i})} w_{i}^{(t)}$$

The Z_t 's

· By our definition,

$$\epsilon_t = \sum_i w_i^{(t)} \mathbf{1} \{ y_i \neq f_t(x_i) \}$$

is the proportion of weights for mis-classified samples.

· Hence,

$$Z_t = (1 - \epsilon_t) \exp[-\alpha_t] + \epsilon_t \exp[\alpha_t]$$

• Since we want to minimize $Z_1\cdots Z_t$, we can simply minimize Z_t by choosing α_t

The Z_t 's

• Take a derivative with respect to α_t , we have

$$-(1 - \epsilon_t) \exp[-\alpha_t] + \epsilon_t \exp[\alpha_t] = 0$$

· This gives

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

And plug this back into Z_t

$$Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

• Since $\epsilon_t(1-\epsilon_t)$ can only attain maximum of 1/4, Z_t must be smaller than 1. And $Z_1 \cdots Z_t$ should converge to 0.

The Training Error

• Alternatively, if we let $\gamma_t = \frac{1}{2} - \epsilon_t$ as the improvement from a random model

$$Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$
$$= \sqrt{1 - 4\gamma_t^2}$$
$$\leq \exp\left[-2\gamma_t^2\right]$$

The last equation uses the Taylor expansion that

$$\exp\left[-4\gamma_t^2\right] = 1 - 4\gamma_t^2 + \cdots$$

The Training Error

Hence, the AdaBoost training error is bounded above by

Training Error
$$= \sum_{i=1}^{n} \mathbf{1} \big\{ y_i \neq \operatorname{sign}(F_T(x_i)) \big\}$$

$$< \sum_{i=1}^{n} \exp \big[-y_i F_T(x_i) \big]$$

$$= Z_1 \cdots Z_T$$

$$\leq \exp \big[-2 \sum_{t=1}^{T} \gamma_t^2 \big]$$

$$\to 0$$

as long as $f_t(x)$ at each iteration t is better than random guess.

Remarks

- The Adaboost outputs a classifier $F_T(x)$ with small testing error? No. We need to tune T. Careful! — You can easily overfit.
- The training error of $F_T(x)$ decreases w.r.t. T? No. Its only the upper bound of 0/1 training error
 - After each iteration, Adaboost decreases a particular upper bound of the 0/1 training error. So in a long run, the training error is going to zero, but not necessarily monotonically.
- In practice, a classification tree model is used as the weak learner.

Remarks

- We may also roughly calculate the estimated probability
- Consider the (upper bound) exponential loss $\mathsf{E}(\exp\{-yF(x)\})$, which is

$$e^{-F(x)}P(y=1|x) + e^{F(x)}P(y=-1|x)$$

• The best $F^*(x)$ that minimizes this expectation should be

$$-e^{-F^*(x)}P(y=1|x) + e^{F^*(x)}P(y=-1|x) = 0$$

· This leads to

$$F^*(x) = \frac{1}{2} \log \frac{\mathsf{P}(y=1|x)}{\mathsf{P}(y=-1|x)}$$

$$\mathsf{P}(y=1|x) = \frac{e^{2F^*(x)}}{1+e^{2F^*(x)}}$$

R implementation

- Use R package gbm: function gbm
- · Tuning parameters:
 - Specify distribution = "adaboost"
 - n.trees controls the number of iterations T
 - shrinkage: further set a shrinkage factor on each $f_t(x)$. The default is 0.01. The original AdaBoost uses 1, however, can be less stable. A small value of this will require a large number of trees.
 - bag.fraction: each $f_t(x)$ uses a bootstrapped sample. If set to < 1, two different runs will produce slightly different models
 - · cv.folds: number of cross validations
- Other parameters to consider: interaction.depth = 1 means stumps (generalized additive model), > 1 allows interactions

Gradient Boosting

More Generally

In a more general framework, consider additive structure:

$$F_T(x) = \sum_{t=1}^{T} \alpha_t f(x; \boldsymbol{\theta}_t)$$

· Fit model by minimizing the loss function

$$\min_{\{\alpha_t, \boldsymbol{\theta}_t\}_{t=1}^T} \sum_{i=1}^n L(y_i, F_T(x_i))$$

- · We may choose
 - Loss function L, suitable for the problem
 - Base learner $f(x; \theta)$ with parameter θ , such as linear, tree, etc.

Forward Stage-wise Additive Model

- It is difficult to minimize over all $\{\alpha_t, \theta_t\}_{t=1}^T$.
- Instead, we do this in a stage-wise fashion.
- · The algorithm:
 - (1) Set $F_0(x) = 0$
 - (2) For t = 1, ..., T
 - Choose (α_t, θ_t) to minimize the loss

$$\min_{\alpha, \boldsymbol{\theta}} \sum_{i=1}^{n} L(y_i, F_{t-1}(x_i) + \alpha f(x_i; \boldsymbol{\theta}))$$

• Update $F_t(x) = F_{t-1}(x) + \alpha_t f(x; \theta_t)$

Forward Stage-wise Additive Model

- · AdaBoost is forward stage-wise using exponential loss.
- It doesn't pick an optimal $f(x; \theta)$ at each step: the tree model is not optimized, we just need some model that is better than random.
- Only the step size α_t is optimized at each t given the fitted $f(x; \theta_t)$

Forward Stage-wise Additive Model

- · Another example is the forward stage-wise linear regression
- For each step we use a single variable linear model:

$$f(x,j) = \operatorname{sign}(\operatorname{Cor}(X_j, \mathbf{r}))X_j$$

- **r** is the residual, as $r_i = y_i F_{t-1}(x_i)$
- j is the index that has the largest absolute correlation with ${f r}$

An Alternative View

• r_i is in fact the gradient to the squared-error loss:

$$r_{it} \propto -\left[\frac{\partial (y_i - F(x_i))^2}{\partial F(x_i)}\right]_{F(x_i) = F_{t-1}(x_i)}$$

- We then fit the weak leaner $f_t(x)$ to the residuals
- Update the fitted model F_t

An Alternative View

- This can be generalized into any loss function L
- At each iteration t, calculate "pseudo-residuals", i.e., the negative gradient for each observation

$$g_{it} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x_i) = F_{t-1}(x_i)}$$

- Fit $f_t(x, \theta_t)$ to pseudo-residual g_{it} 's
- · Search for a step length

$$\alpha_{t} = \arg\min_{\alpha} \sum_{i=1}^{n} L(y_{i}, F_{t-1}(x_{i}) + \alpha f(x_{i}; \boldsymbol{\theta}_{t}))$$

• Update $F_t(x) = F_{t-1}(x) + \alpha_t f(x; \theta_t)$

Gradient Boosting

 Hence, the only change when modeling different outcomes is to choose the loss function, and derive the pseudo-residuals

Setting	Loss	Negative Gradient
Regression	$\frac{1}{2}(y - f(x))^2$	$y_i - f(x_i)$
Regression	y-f(x)	$sign(y_i - f(x_i))$
Classification	Deviance	$y_i - p(x_i)$

• For gradient boosting using CART as base classifier, we can make it more sophisticated by optimizing α_t at each terminal node

R Implementation

- · Boosting is prone to over-fitting
- Fit a large number of iterations n.trees, then select T using CV or test set.
- It is better to take small steps: shrinkage = 0.01 as default
- Use gbm package by specifying the distribution:
 - "gaussian", "bernoulli", "laplace", "huberized", "multinomial", etc.