SUPPLEMENTAL APPENDIX

Structural Change and Cross-Country Growth Empirics

World Bank Economic Review

by

Markus Eberhardt¹ and Francis Teal

Contents

S1	Time-series properties of the data	2
S2	Cross-section dependence in the data	3
S3	Monte Carlo Simulations	4
	33.1 Data Generating Process	. 4
	3.2 Overview of results	. 6
	3.3 Detailed results	. 7
S4	Additional tables and figures	8
Re	ferences	13
Li	t of Tables	
	Second generation panel unit root tests	. 2
	Cross-section correlation analysis	. 3
	Simulation results	. 7
	Pooled regression models (HC-augmented)	. 8
	Heterogeneous Manufacturing models (HC-augmented)	. 9
	Aggregate & PWT data: Pooled models (HC-augmented)	. 10
	Aggregate & PWT data: Heterogeneous models with HC	. 11
	Alternative dynamic panel estimators	. 12
Li	t of Figures	
	Box plots — Simulation results	. 6

¹Corresponding author: School of Economics, University of Nottingham, Room C6, Sir Clive Granger Building, University Park, Nottingham NG7 2RD, UK. Email: markus.eberhardt@nottingham.ac.uk, Website: http://sites.google.com/site/medevecon

S1 Time-series properties of the data

Table 1: Second generation panel unit root tests

Panel (A): Agriculture data

		I	^y ariables	in level	ls			Variables in growth rates					
	log VA	A pw	log La	bour	log Ca	p pw		VA j	pw	Labo	our	Cap	pw
lags	Ztbar	p	Ztbar	p	Ztbar	p	lags	Ztbar	p	Ztbar	p	Ztbar	p
0	-0.93	0.18	7.88	1.00	7.14	1.00	0	-16.11	0.00	1.01	0.84	-1.63	0.05
1	-1.25	0.11	5.94	1.00	3.03	1.00	1	-10.88	0.00	2.66	1.00	-1.10	0.14
2	2.23	0.99	7.65	1.00	4.78	1.00	2	-5.82	0.00	5.94	1.00	3.49	1.00
3	4.18	1.00	9.18	1.00	4.80	1.00	3	-2.09	0.02	6.64	1.00	4.48	1.00
	Land	pw						Land	pw				
lags	Ztbar	p					lags	Ztbar	p				
0	9.15	1.00					0	-10.40	0.00				
1	6.34	1.00					1	-3.05	0.00				
2	5.48	1.00					2	-0.17	0.43				
3	3 3.42 1.00						3	2.65	1.00				

PANEL (B): MANUFACTURING DATA

		I	⁷ ariables	in leve	ls			Variables in growth rates					
	log VA	A pw	log La	bour	log Ca	p pw		VA j	ow	Labo	our	Cap	pw
lags	Ztbar	p	Ztbar	p	Ztbar	p	lags	Ztbar	p	Ztbar	p	Ztbar	p
0	0.57	0.72	2.05	0.98	1.61	0.95	0	-18.64	0.00	-11.52	0.00	-9.27	0.00
1	1.69	0.95	1.12	0.87	0.28	0.61	1	-9.58	0.00	-7.76	0.00	-5.71	0.00
2	1.68	0.95	3.52	1.00	1.62	0.95	2	-4.61	0.00	-4.36	0.00	-2.94	0.00
3	3.00	1.00	3.08	1.00	2.75	1.00	3	-1.50	0.07	-0.81	0.21	0.23	0.59

Panel (C): Aggregated data

		I	^y ariables	in leve	ls			Variables in growth rates						
	log VA	A pw	log La	bour	log Cap pw			VA pw		Labour		Cap pw		
lags	Ztbar	p	Ztbar	p	Ztbar	p	lags	Ztbar	p	Ztbar	p	Ztbar	p	
0	2.29	0.99	5.90	1.00	6.41	1.00	0	-15.30	0.00	-5.25	0.00	-4.01	0.00	
1	2.28	0.99	3.84	1.00	3.00	1.00	1	-9.45	0.00	-2.38	0.01	-1.78	0.04	
2	4.43	1.00	4.76	1.00	3.51	1.00	2	-3.90	0.00	-0.52	0.30	0.49	0.69	
3	4.89	1.00	4.75	1.00	3.77	1.00	3	-1.24	0.11	1.87	0.97	2.89	1.00	

PANEL (D): PENN WORLD TABLE DATA

-		I	/ariables	in leve	ls			rates					
	log VA	A pw	log La	bour	log Cap pw			VA j	ow	Labo	our	Cap	pw
lags	Ztbar	p	Ztbar	p	Ztbar	p	lags	Ztbar	p	Ztbar	p	Ztbar	p
0	5.05	1.00	-2.57	0.01	2.27	0.99	0	-14.49	0.00	0.46	0.68	-4.73	0.00
1	5.81	1.00	5.78	1.00	5.26	1.00	1	-7.32	0.00	-2.91	0.00	-3.19	0.00
2	6.10	1.00	6.93	1.00	6.26	1.00	2	-4.99	0.00	1.06	0.86	-2.48	0.01
3	7.62	1.00	6.26	1.00	6.74	1.00	3	-1.78	0.04	1.52	0.94	-1.20	0.12

Notes: We report test statistics and p-values for the Pesaran (2007) CIPS panel unit root test of the variables in our four datasets. In all cases we use N = 40, n = 918 for the levels data. 'Lags' refers to the augmentation with lagged dependent variables (Augmented Dickey-Fuller test).

S2 Cross-section dependence in the data

Table 2: Cross-section correlation analysis

		Variable	es in level	S		Variabl	es in FD)
Agriculture	$ar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)	$ar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)
log VA pw	0.33	0.51	42.42	0.00	0.05	0.23	6.32	0.00
log Labour	0.00	0.80	0.94	0.35	0.07	0.56	8.55	0.00
log Capital pw	0.41	0.71	51.52	0.00	0.08	0.41	8.86	0.00
log Land pw	0.02	0.67	3.57	0.00	0.02	0.29	2.91	0.00
Manufacturing	$ar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)	 $ar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)
log VA pw	0.39	0.59	49.87	0.00	0.05	0.22	6.19	0.00
log Labour	0.15	0.62	18.98	0.00	0.14	0.26	17.31	0.00
log Capital pw	0.59	0.76	74.15	0.00	0.07	0.22	8.01	0.00
Aggregated	$\bar{ ho}$	$ ar{ ho} $	CD	(p)	$\bar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)
log VA pw	0.55	0.67	69.67	0.00	0.08	0.23	10.18	0.00
log Labour	0.04	0.71	5.50	0.00	0.07	0.32	7.93	0.00
log Capital pw	0.76	0.85	94.70	0.00	0.07	0.29	7.78	0.00
PWT	$\bar{ ho}$	$ ar{ ho} $	CD	(p)	 $\bar{ ho}$	$ ar{ ho} $	CD	(<i>p</i>)
log VA pw	0.58	0.72	72.20	0.00	0.14	0.24	17.08	0.00
log Labour	0.94	0.94	114.37	0.00	0.05	0.39	6.21	0.00
log Capital pw	0.70	0.88	87.01	0.00	0.26	0.37	31.57	0.00

Notes: We report the average correlation coefficient across the N(N-1) variable series $\bar{\rho}$, as well as the average absolute correlation coefficient $|\bar{\rho}|$. CD is the formal cross-section correlation tests introduced by Pesaran (2004). Under the H_0 of cross-section independence its statistics is asymptotically standard normal. We use our regression sample N=40, n=918 for the levels data. The same sample is used for the first difference data (n=884) with the exception of the PWT analysis: here we are forced to drop the series for CYP to be able to compute correlation coefficients.

S3 Monte Carlo Simulations

S3.1 **Data Generating Process**

We run M = 1,000 replications of the following DGP for N = 50 cross-section elements and T = 30time periods. Our basic setup for the DGP closely follows that of Kapetanios, Pesaran, and Yamagata (2011), albeit with a single rather than two regressors. For notational simplicity we do not identify the different sectors (agriculture and manufacturing) in the following, but all processes and variables are created independently across sectors, unless otherwise indicated.

$$y_{it} = \beta_i x_{it} + u_{it} \qquad u_{it} = \alpha_i + \lambda_{i1}^y f_{1t} + \lambda_{i2}^y f_{2t} + \varepsilon_{it}$$
 (1)

$$x_{it} = a_{i1} + a_{i2}d_t + \lambda_{i1}^x f_{1t} + \lambda_{i3}^x f_{3t} + v_{it}$$
 (2)

for i = 1, ..., N unless indicated below and t = 1, ..., T.

The common deterministic trend term (d_t) and individual-specific errors for the x-equation are zero-mean independent AR(1) processes defined as

$$d_t = 0.5d_{t-1} + v_{dt} v_{dt} \sim N(0, 0.75) t = -48, \dots, 1, \dots, T d_{-49} = 0$$

$$v_{it} = \rho_{vi}v_{i,t-1} + v_{it} v_{it} \sim N(0, (1 - \rho_{vi}^2)) t = -48, \dots, 1, \dots, T v_{i,-49} = 0$$

where $\rho_{vi} \sim U[0.05, 0.95]$. The common factors are nonstationary processes

$$f_{jt} = \mu_j + f_{j,t-1} + v_{ft}$$
 $j = 1,2,3$ $v_{ft} \sim N(0,1)$ $t = -49,...,1,...,T$ (3)
 $\mu_i^a = \{0.01, 0.008, 0.005\}, \ \mu_i^m = \{0.015, 0.012, 0.01\}$ $f_{j,-50} = 0$

where we deviate from the Kapetanios et al. (2011) setup by including drift terms. Unless indicated the sets of common factors differ between sectors.

Innovations to y are generated as a mix of heterogeneous AR(1) and MA(1) errors

$$\varepsilon_{it} = \rho_{i\varepsilon}\varepsilon_{i,t-1} + \sigma_i\sqrt{1 - \rho_{i\varepsilon}^2}\omega_{it} \qquad i = 1, \dots, N_1 \qquad t = -48, \dots, 0, \dots, T
\varepsilon_{it} = \frac{\sigma_i}{\sqrt{1 + \theta_{i\varepsilon}^2}}(\omega_{it} + \theta_{i\varepsilon}\omega_{i,t-1}) \qquad i = N_1 + 1, \dots, N \qquad t = -48, \dots, 0, \dots, T$$

where N_1 is the nearest integer to N/2 and $\omega_{it} \sim N(0,1)$, $\sigma_i^2 \sim U[0.5, 1.5]$, $\rho_{i\varepsilon} \sim U[0.05, 0.95]$, and $\theta_{i\varepsilon} \sim U[0,1]$. ρ_{vi} , $\rho_{i\varepsilon}$, $\theta_{i\varepsilon}$ and σ_i do not change across replications. Initial values are set to zero and the first 50 observations are discarded for all of the above.

Regarding parameter values, $\alpha_i \sim N(2,1)$ and a_{i1} , $a_{i2} \sim \text{iid}N(0.5,0.5)$ do not change across replications. To begin with TFP levels α_i are specified to be the same across sectors. The slope coefficient β can vary across countries and across sectors (see below). In case of cross-country heterogeneity we have $\beta_i = \beta + \eta_i$ with $\eta_i \sim N(0,0.04)$. If the mean of the slope coefficient β is the same across sectors we specify $\beta = 0.5$, otherwise $\beta^a = 0.5$ and $\beta^m = 0.3$ for agriculture and manufacturing respectively.

For the factor loadings may be heterogeneous and are distributed

$$\lambda_{i1}^{x} \sim N(0.5, 0.5)$$
 and $\lambda_{i3}^{x} \sim N(0.5, 0.5)$ (4)

$$\lambda_{i1}^{x} \sim N(0.5, 0.5)$$
 and $\lambda_{i3}^{x} \sim N(0.5, 0.5)$ (4) $\lambda_{i1}^{y} \sim N(1, 0.2)$ and $\lambda_{i2}^{y} \sim N(1, 0.2)$ (5)

The above represents our basis DGP for the simulations carried out. We investigate the following ten models (the focus is on those marked with stars):

- (1) Cross-country homogeneity (β) and no factors. We set all λ_i to zero such that x and y are stationary and cross-sectionally independent; technology is the same across countries and sectors.
- (2) As Model (1) but now we have heterogeneous β across countries.
- (3) As Model (2) but with substantially larger heterogeneity in TFP levels across countries.
- (4) ★ As Model (2) but with TFP levels in manufacturing are now 1.5 times those in agriculture. We keep this feature for the remainder of setups.
- (5) This sees the introduction of common factors (f_{2t} and f_{3t}) albeit with homogeneous factor loadings across countries. Both factors and loadings are independent across sectors. The absence of f_{1t} means there is no endogeneity problem.
- (6) ★ As Model (5) but now we have factor loading heterogeneity across countries.
- (7) As Model (6) but with factor-overlap between x and y equations: f_{1t} is contained in both of these, inducing endogeneity in a sectoral regression.
- (8) \bigstar As Model (7) but slope coefficients now differ across countries and sectors for the latter we specify $\beta_i^m = 1 \beta_i^a$.
- (9) As Model (8) except we now have independent slope coefficients across sectors with means $\beta^m = 0.3$ and $\beta^a = 0.5$.
- (10) \bigstar As Model (9) but we now have the same factor f_{1t} contained in y and x-equations of both sectors, although with differential (and independent) factor loadings.

Models (1) to (4) analyse a homogeneous parameter world without common factors, where aggregation should lead to no problems for estimation. Models (5) to (7) show what happens when factors are introduced. Models (8) and (9) introduce parameter heterogeneity across sectors and Model (10) adds factor-overlap between sectors (on top of overlap across variables within sector).

S3.2 Overview of results

Figure 1: Box plots — Simulation results

Notes: We present box plots for the M=1,000 estimates using various estimators under 4 DGP setups. In all cases the true coefficient is subtracted from the estimates, such that the plots are centred around zero. The estimators are as follows: 'CMG Agri' and 'CMG Manu' — Pesaran (2006) CMG regressions on the *sector-level* data; Weighted — this is *not* an estimator but the weighted average $\beta^a s_i^a + \beta^m s_i^m$ with β^j the mean sectoral slope coefficient and s_j the sectoral share of total output; the remaining four estimators use the aggregated data: OLS — pooled OLS with T-1 year dummies; 2FE — OLS with country and time dummies; FD — OLS with variables in first differences (incl. time dummies); CMG — Pesaran (2006) CMG. We omit the results for the Pesaran and Smith (1995) MG estimator as these are very imprecise and would counter the readability of the graphs. The MC setups are described in detail in Section S3.1 of the Appendix.

S3.3 Detailed results

Table 3: Simulation results

		Мор	pr 1				Мор	EI 2	
	mean	median	ste•	ste ⁵		mean	median	ste•	ste
CMG Agri	0.4999	0.4990	0.0318	0.0324	CMG Agri	0.5007	0.4996	0.0425	0.0424
CMG Manu	0.4999	0.4990	0.0318	0.0324	CMG Manu	0.5007	0.4996	0.0425	0.0424
Weighted	0.5000	0.5000	0.0000	0.0324	Weighted	0.5007	0.4998	0.0423	0.0424
POLS	0.5054	0.5064	0.0462	0.0298	POLS	0.5058	0.5065	0.0239	0.0304
2FE	0.5002	0.5004	0.0462	0.0298	2FE	0.5038	0.5007	0.0372	0.0304
FD	0.5002	0.5003	0.0248	0.0220	FD	0.5014	0.5014	0.0392	0.0232
CCEP	0.3000	0.3007	0.0293	0.0237	CCEP	0.5014	0.5014	0.0441 0.0424	0.0262
MG	0.4993	0.4987	0.0292	0.0271	MG	0.5003	0.3001	0.0424	0.0276
CMG	0.4993	0.4987	0.0276	0.0263	CMG	0.5001	0.4993	0.0369	
CIVIG	0.4999			0.0324	CIVIG	0.3007			0.0424
	mean	Mod median	ste•	ste		 mean	Mod median	ste•	ste
CMG Agri	0.4999	0.4990	0.0318	0.0324	CMG Agri	0.4999	0.4990	0.0318	0.0324
CMG Agri	0.4999	0.4990	0.0318	0.0324	CMG Manu	0.4999	0.4990	0.0318	0.0324
				0.0324					0.0324
Weighted	0.5000	0.5000	0.0000	0.1120	Weighted POLS	0.5000	0.5000	0.0000	0.0265
POLS 2FE	0.5310 0.5002		0.1968	0.1128	POLS 2FE	0.5119		0.0593	0.0365
		0.5005	0.0248	0.0226		0.5002	0.5005	0.0248	0.0226
FD	0.5000	0.5007	0.0295	0.0257	FD	0.5000	0.5007	0.0295	0.0257 0.0271
CCEP	0.4996	0.4997	0.0292	0.0271	CCEP	0.4996	0.4997	0.0292	
MG	0.4993	0.4987	0.0276	0.0283	MG	0.4993	0.4987	0.0276	0.0283
CMG	0.4999	0.4990	0.0318	0.0324	CMG	0.4999	0.4990	0.0318	0.0324
		Mod median	ste•	ste			Mod median	ste•	ste
CMG Agri	mean				CMG Agri	mean 0.5005			
	0.4993 0.5000	0.4987	0.0299 0.0311	0.0298			0.5002 0.5004	0.0238	0.0233
CMG Manu		0.5014		0.0321	CMG Manu	0.4994		0.0253	0.0246
Weighted	0.5000	0.5000	0.0000	0.0422	Weighted	0.5000	0.5000	0.0000	0.0107
POLS	0.4936	0.4936	0.0753	0.0432	POLS	0.4558	0.4669	0.1059	0.0197
2FE	0.4563	0.4571	0.0331	0.0266	2FE	0.4382	0.4450	0.0588	0.0176
FD	0.4427	0.4416	0.0418	0.0268	FD	0.4181	0.4224	0.0517	0.0219
CCEP	0.4516	0.4502	0.0327	0.0278	CCEP	0.4231	0.4326	0.0522	0.0186
MG	0.4663	0.4687	0.3257	0.0369	MG	0.4305	0.4333	0.1816	0.0496
CMG	0.4498	0.4497	0.0362	0.0379	CMG	0.4161	0.4226	0.0516	0.0342
		Mod		ste ^b			Mod		24.2
CMC A	mean	median	ste*		CMC A	mean	median	ste*	ste ^b
CMG Agri	0.5000	0.4998	0.0448	0.0436	CMG Agri	0.5009 0.4986	0.5020	0.0528 0.0550	0.0520
CMG Manu	0.4979	0.4972	0.0454	0.0445	CMG Manu		0.4978		0.0528
Weighted	0.5000	0.5000	0.0000	0.0227	Weighted	0.5007	0.4998	0.0289	0.0240
POLS	0.4405	0.4469	0.1212	0.0236	POLS	0.4459	0.4452	0.1299	0.0248
2FE	0.4143	0.4161	0.0700	0.0210	2FE	0.4217	0.4234	0.0807	0.0220
FD	0.4027	0.4011	0.0541	0.0238	FD	0.4106	0.4073	0.0635	0.0245
CCEP	0.3956	0.3987	0.0619	0.0227	CCEP	0.4040	0.4047	0.0702	0.0233
N/II :	0.6759	0.6585	0.2510	0.0782	MG	0.6826	0.6644	0.2532	0.0828
MG									0.0560
CMG	0.3897	0.3928	0.0584	0.0496	CMG	0.3985	0.3976	0.0650	0.0300
	0.3897	0.3928 Mod	EL 9		CMG		Моря	EL 10	
CMG	0.3897 mean	0.3928 Mod median	ste•	ste ^b		mean	Modi median	EL 10 ste•	ste
CMG Agri	0.3897 mean 0.5009	0.3928 Mod median 0.5020	ste• 0.0528	ste ^b	CMG Agri	mean 0.5009	Mode median 0.5020	ste• 0.0528	ste ^b 0.0520
CMG Agri CMG Manu	0.3897 mean 0.5009 0.2961	0.3928 Mod median 0.5020 0.2972	ste• 0.0528 0.0543	ste ^b	CMG Agri CMG Manu	mean 0.5009 0.2961	Mode median 0.5020 0.2972	ste• 0.0528 0.0543	ste
CMG Agri CMG Manu Weighted	0.3897 mean 0.5009 0.2961 0.3924	0.3928 Mod median 0.5020 0.2972 0.3928	ste• 0.0528 0.0543 0.0391	ste ^b 0.0520 0.0526	CMG Agri CMG Manu Weighted	mean 0.5009 0.2961 0.3939	Mode median 0.5020 0.2972 0.3946	ste• 0.0528 0.0543 0.0391	ste ^b 0.0520 0.0526
CMG Agri CMG Manu Weighted POLS	mean 0.5009 0.2961 0.3924 0.3383	0.3928 Mod median 0.5020 0.2972 0.3928 0.3388	ste* 0.0528 0.0543 0.0391 0.1324	ste ^b 0.0520 0.0526 0.0246	CMG Agri CMG Manu Weighted POLS	mean 0.5009 0.2961 0.3939 0.3400	Mode median 0.5020 0.2972 0.3946 0.3415	ste* 0.0528 0.0543 0.0391 0.1322	ste ^b 0.0520 0.0526 0.0246
CMG Agri CMG Manu Weighted POLS 2FE	mean 0.5009 0.2961 0.3924 0.3383 0.3151	0.3928 Mod median 0.5020 0.2972 0.3928 0.3388 0.3127	ste* 0.0528 0.0543 0.0391 0.1324 0.0814	ste ^b 0.0520 0.0526 0.0246 0.0217	CMG Agri CMG Manu Weighted POLS 2FE	mean 0.5009 0.2961 0.3939 0.3400 0.3163	Mode median 0.5020 0.2972 0.3946 0.3415 0.3144	ste* 0.0528 0.0543 0.0391 0.1322 0.0816	ste ^b 0.0520 0.0526 0.0246 0.0217
CMG Agri CMG Manu Weighted POLS 2FE FD	mean 0.5009 0.2961 0.3924 0.3383 0.3151 0.3074	0.3928 Mod median 0.5020 0.2972 0.3928 0.3388 0.3127 0.3053	ste* 0.0528 0.0543 0.0391 0.1324 0.0814 0.0625	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242	CMG Agri CMG Manu Weighted POLS 2FE FD	mean 0.5009 0.2961 0.3939 0.3400 0.3163 0.3086	Mode median 0.5020 0.2972 0.3946 0.3415 0.3144 0.3071	ste* 0.0528 0.0543 0.0391 0.1322 0.0816 0.0626	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242
CMG Agri CMG Manu Weighted POLS 2FE FD CCEP	mean 0.5009 0.2961 0.3924 0.3383 0.3151 0.3074 0.2963	0.3928 Mod median 0.5020 0.2972 0.3928 0.3388 0.3127 0.3053 0.2973	ste* 0.0528 0.0543 0.0391 0.1324 0.0814 0.0625 0.0666	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242 0.0229	CMG Agri CMG Manu Weighted POLS 2FE FD CCEP	mean 0.5009 0.2961 0.3939 0.3400 0.3163 0.3086 0.2976	Model median 0.5020 0.2972 0.3946 0.3415 0.3144 0.3071 0.2986	ste* 0.0528 0.0543 0.0391 0.1322 0.0816 0.0626 0.0667	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242 0.0229
CMG Agri CMG Manu Weighted POLS 2FE FD	mean 0.5009 0.2961 0.3924 0.3383 0.3151 0.3074	0.3928 Mod median 0.5020 0.2972 0.3928 0.3388 0.3127 0.3053	ste* 0.0528 0.0543 0.0391 0.1324 0.0814 0.0625	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242	CMG Agri CMG Manu Weighted POLS 2FE FD	mean 0.5009 0.2961 0.3939 0.3400 0.3163 0.3086	Mode median 0.5020 0.2972 0.3946 0.3415 0.3144 0.3071	ste* 0.0528 0.0543 0.0391 0.1322 0.0816 0.0626	ste ^b 0.0520 0.0526 0.0246 0.0217 0.0242

Notes: See Section S3.1 in the Appendix for details on the estimators and the DGP in each of the experiments. ste $^{\bullet}$ marks the empirical standard error and ste $^{\flat}$ the mean standard error from 1,000 replications. 'CMG Agri' and 'CMG Manu' employ the sector-level data, 'Weighted' calculates the aggregate slope coefficient based on the size (output) and slope of the respective sector, the remaining six estimators use the aggregated data.

S4 Additional tables and figures

Table 4: Pooled regression models (HC-augmented)

				Panel (A	A): Unrestri	CTED RETUR	NS TO SCAL	E		
		1	Agriculture	e			M	lanufacturii	ng	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	POLS	2FE	CCEP	CCEP ^b	FD	POLS	2FE	CCEP	CCEP ^b	FD
log labour	-0.079	-0.151	-0.457	-0.557	-0.085	0.005	0.029	0.121	-0.048	0.162
	[11.71]**	[4.35]**	[1.54]	[1.46]	[1.46]	[0.62]	[0.88]	[1.91]	[0.47]	[4.62]**
log capital pw	0.471	0.671	0.554	0.676	0.595	0.692	0.851	0.533	0.446	0.654
	[61.84]**	[27.20]**	[4.51]**	[4.32]**	[12.60]**	[44.38]**	[22.14]**	[8.00]**	[4.52]**	[14.56]**
log land pw	0.018 [1.17]	-0.020 [0.48]	-0.154 [0.56]	-0.174 [0.50]	0.111 [1.14]					
Education	0.241	0.087	0.007	-0.068	0.101	0.226	-0.006	0.152	-0.017	0.095
	[9.95]**	[3.12]**	[0.07]	[0.40]	[1.30]	[11.91]**	[0.21]	[2.04]*	[0.16]	[1.53]
Education ²	-0.010	-0.007	-0.003	0.005	-0.006	-0.009	0.002	-0.006	-0.004	-0.005
	[4.73]**	[4.15]**	[0.49]	[0.50]	[1.23]	[6.22]**	[1.39]	[1.32]	[0.66]	[1.10]
Implied RS [†] Implied β_L [‡]	CRS 0.529	CRS 0.329	CRS 0.446	CRS 0.324	IRS 0.321	CRS 0.308	CRS 0.149	CRS 0.467		IRS 0.508
Mean Education Returns to Edu $[t$ -statistic] $^{\flat}$	5.82 13.3% [15.71]**	5.82 0.7% [0.50]	5.82 -2.9% [0.68]	5.82 -0.7% [0.11]	5.94 3.0% [0.78]	5.82 12.3% [19.88]**	5.82 1.9% [1.30]	5.82 8.5% [3.11]**	5.82 -6.6% [1.56]	5.94 4.1% [1.54]
\hat{e} integrated ^{\sharp} CD test p -value ^{\sharp} R-squared	I(1)	I(1)	I(0)	I(1)/I(0)	I(0)	I(1)	I(1)	I(0)	I(0)	I(0)
	0.11	0.09	0.14	0.21	0.00	0.87	0.18	0.58	0.84	0.00
	0.91	0.57	1.00	1.00	-	0.91	0.57	1.00	1.00	-
Observations	830	830	830	775	793	860	860	860	775	817

			I	PANEL (B):	Constant b	RETURNS TO S	CALE IMPO	SED		
			Agricultur	e			M	anufacturi	ng	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	POLS	2F E	CCEP	CCEP ^b	FD	POLS	2F E	CCEP	CCEP ^b	FD
log capital pw	0.502	0.720	0.592	0.709	0.611	0.695	0.839	0.472	0.463	0.558
	[59.09]**	[33.18]**	[5.32]**	[5.08]**	[13.29]**	[49.18]**	[24.30]**	[8.87]**	[5.59]**	[13.85]**
log land pw	0.014 [0.71]	0.078 [2.23]*	0.144 [0.99]	0.122 [0.69]	0.124 [1.27]					
Education	0.278	0.069	-0.003	-0.031	0.107	0.226	0.014	0.234	0.036	0.220
	[11.54]**	[2.48]*	[0.03]	[0.23]	[1.38]	[11.80]**	[0.71]	[3.67]**	[0.38]	[3.91]**
Education ²	-0.012	-0.005	0.000	0.002	-0.006	-0.009	0.001	-0.010	-0.007	-0.010
	[6.17]**	[3.19]**	[0.06]	[0.28]	[1.26]	[6.11]**	[0.98]	[2.55]*	[1.22]	[2.41]*
Implied β_L^{\ddagger}	0.498	0.202	0.408	0.291	0.389	0.305	0.162	0.528	0.537	0.443
Mean Education	5.82	5.82	5.82	5.82	5.94	5.82	5.82	5.82	5.82	5.94
Returns to Edu	13.9%	0.8%	-0.7%	-0.3%	3.4%	12.3%	2.7%	11.7%	-4.3%	10.5%
[t-statistic]♠	[16.25]**	[0.52]	[0.18]	[0.07]	[0.90]	[20.20]**	[2.30]*	[5.25]**	[1.18]	[4.62]**
ê integrated [‡]	I(1)	I(1)	I(0)	I(1)/I(0)	I(0)	I(1)	I(1)	I(0)	I(1)/I(0)	I(0)
CD test <i>p</i> -value [‡]	0.29	0.23	0.07	0.23	0.00	0.88	0.04	0.08	0.02	0.00
R-squared	0.91	0.57	1.00	1.00	-	0.91	0.57	1.00	1.00	817
Observations	830	830	830	775	793	860	860	860	775	

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (\bar{E}) as $\hat{\beta}_E + 2\hat{\beta}_{E2}\bar{E}$ where $\hat{\beta}_E$ and $\hat{\beta}_{E2}$ are the coefficients on the levels and squared education terms respectively. \spadesuit computed via the delta-method. For more details see Notes of Table 1 of the main text.

Table 5: Heterogeneous Manufacturing models (HC-augmented)

	Panel (A): Unres	TRICTED	Panel	(B): CRS 11	MPOSED
	[1] MG	[2] FDMG	[3] CMG	[4] MG	[5] FDMG	[6] CMG
log labour	-0.305 [1.20]	-0.293 [1.50]	0.097 [0.62]			
log capital pw	0.059	0.144	0.426 [3.73]**	0.352 [3.25]**	0.347 [3.66]**	0.386 [3.95]**
Education	-0.478 [1.02]	0.237	1.248 [2.66]*	-0.228 [0.62]	0.085	0.668 [2.43]*
Education squared	0.050	0.011	-0.098 [2.67]*	0.005	-0.019 [0.67]	-0.042 [1.95]
country trend/drift	0.016 [1.55]	0.020 [2.44]*	[=]	0.008 [1.16]	0.013 [2.23]*	[]
reject CRS (10%) Implied β_L^{\ddagger}	38% n/a	8% 0.857	38% 0.574	0.648	0.653	0.614
Mean Education Returns to Edu [t-statistic] ^b	5.82 -6.3% [1.01]	5.91 -1.3% [0.25]	5.82 10.9% [1.89]	5.87 -6.2% [1.00]	5.94 -2.1% [0.47]	5.87 11.9% [1.70]
sign. trends (10%)	15	9		17	7	
\hat{e} integrated [‡] CD-test $(p)^{\sharp}$	I(0) 0.00	I(0) 0.00	I(0) 0.71	I(0) 0.00	I(0) 0.00	I(0) 0.27
Obs (N)	775 (37)	732 (37)	775 (37)	775 (37)	732 (37)	775 (37)

Notes: All averaged coefficients presented are robust means across i. \flat The returns to education and associated t-statistics are based on a two-step procedure: first the country-specific mean education value (\bar{E}_i) is used to compute $\hat{\beta}_{i,E} + 2\hat{\beta}_{i,E2}\bar{E}_i$ to yield the country-specific returns to education. The reported value then represents the robust mean of these N country estimates, s.t. the t-statistic should be interpreted in the same fashion as that for the regressors, namely as a test whether the average parameter is statistically different from zero, following Pesaran and Smith (1995). For other details see Notes for Tables 2 (main text) and 4 (above).

Table 6: Aggregate & PWT data: Pooled models (HC-augmented)

			Pan	el (A): Unr	ESTRICTED R	ETURNS		
		Aggregat	ed data			Penn World	d Table data	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	POLS	2F E	CCEP	FD	POLS	2FE	CCEP	FD
log labour	-0.001	-0.058	0.566	0.083	0.040	-0.064	-0.193	-0.032
	[0.14]	[1.97]*	[4.13]**	[2.50]*	[8.99]**	[3.27]**	[1.49]	[1.11]
log capital pw	0.662	0.782	0.677	0.766	0.725	0.680	0.601	0.676
	[97.95]**	[31.50]**	[7.25]**	[25.24]**	[72.79]**	[24.79]**	[9.12]**	[18.96]**
Education	0.243	-0.004	0.086	0.065	0.041	0.043	0.032	0.103
	[16.97]**	[0.15]	[1.24]	[1.22]	[3.42]**	[2.86]**	[0.80]	[3.41]**
Education squared	-0.010	0.003	-0.007	-0.003	-0.001	-0.002	-0.002	-0.006
	[8.05]**	[1.82]	[1.57]	[0.77]	[1.77]	[2.97]**	[0.83]	[2.94]**
Implied RS [†] Implied β_L [‡]	CRS	DRS	CRS	CRS	CRS	DRS	CRS	CRS
	0.337	0.160	0.890	0.318	0.315	0.256	0.206	0.292
Mean Education Returns to Edu [t-statistic]	5.824	5.824	5.824	5.885	5.822	5.822	5.822	5.883
	12.9%	2.5%	1.0%	3.4%	2.4%	1.9%	0.9%	3.3%
	[22.35]**	[1.68]	[0.37]	[1.40]	[6.82]**	[2.02]*	[0.56]	[2.26]*
\hat{e} integrated $^{\natural}$ CD test p -value $^{\sharp}$	I(1)	I(1)	I(0)	I(0)	I(1)	I(1)	I(0)	I(1)/I(0)
	0.00	0.02	0.59	0.00	0.34	0.22	0.01	0.00
R-squared Observations	0.98 775	0.02 0.87 775	1.00 775	732	0.97 769	0.22 0.78 769	1.00 769	- 726

		Р.	anel (B):	Constant f	RETURNS TO S	CALE IMPO	SED	
		Aggregat	ed data			Penn World	d Table data	
	[1] POLS	[2] 2FE	[3] CCEP	[4] FD	[5] POLS	[6] 2FE	[7] CCEP	[8] FD
log capital pw	0.662 [102.10]**	0.798 [35.45]**	0.485 [7.03]**	0.744 [25.48]**	0.694 [73.08]**	0.706 [27.73]**	0.611 [10.05]**	0.691 [21.13]**
Education	0.243 [16.98]**	-0.016 [0.62]	0.210 [3.00]**	0.111 [2.21]*	0.043 [3.30]**	0.037 [2.44]*	0.016 [0.48]	0.092 [3.22]**
Education squared	-0.010 [8.17]**	0.004 [2.75]**	-0.013 [2.92]**	-0.005 [1.37]	-0.001 [0.97]	-0.002 [2.12]*	-0.002 [0.95]	-0.006 [2.79]**
Constant	1.586 [21.62]**				1.843 [20.44]**			
Implied β_L^{\ddagger}	0.338	0.203	0.515	0.256	0.306	0.294	0.390	0.309
Mean Education Returns to Edu [t-statistic] ^b	5.824 12.9% [22.41]**	5.824 2.6% [1.68]	5.824 6.5% [2.56]**	5.885 5.8% [2.56]**	5.822 3.3% [8.62]**	5.824 2.0% [1.99]*	5.824 -0.6% [0.42]	5.883 2.7% [1.98]*
ê integrated [‡] CD test <i>p</i> -value [‡] R-squared	I(1) 0.00 0.98	I(1) 0.00 0.86	I(0) 0.65 1.00	I(0) 0.00	I(1) 0.25 0.97	I(1) 0.57 0.78	I(0) 0.02 1.00	I(0) 0.00
Observations	775	775	775	732	769	769	769	726

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (\bar{E}) as $\hat{\beta}_E + 2\hat{\beta}_{E2}\bar{E}$ where $\hat{\beta}_E$ and $\hat{\beta}_{E2}$ are the coefficients on the levels and squared education terms respectively. \flat computed via the delta-method. For more details see Notes for Tables 3 (in the main text) and (for the education variables) 4 above.

Table 7: Aggregate & PWT data: Heterogeneous models with HC

	Panel (A): Unrestricted returns to scale										
	A	ggregated d	ata	Penn World Table data							
	[1] MG	[2] FDMG	[3] CMG	[4] MG	[5] FDMG	[6] CMG					
log labour	-0.066	0.269	-0.428	-1.609	-2.478	-1.324					
	[0.16]	[0.57]	[1.22]	[1.97]	[3.76]**	[2.79]**					
log capital pw	-0.070	-0.021	0.453	0.963	1.245	1.122					
	[0.26]	[0.07]	[2.47]*	$[4.44]^{**}$	[5.99]**	[5.52]**					
Education	0.601	0.637	0.489	0.123	0.004	-0.012					
	[1.29]	[1.75]	[0.98]	[0.52]	[0.02]	[0.05]					
Education squared	-0.089	-0.065	-0.063	-0.002	0.004	-0.001					
•	[1.76]	[1.70]	[1.48]	[0.11]	[0.25]	[0.03]					
country trend/drift	0.005	0.005		0.021	0.008						
•	[0.33]	[0.29]		[2.25]*	[0.77]						
Implied RS [†]	CRS	CRS	CRS	CRS	DRS	DRS					
Implied β_L^{\ddagger}	n/a	n/a	0.547	n/a	n/a	n/a					
reject CRS (10%)	38%	3%	19%	38%	18%	33%					
sign. trends (10%)	44%	32%		44%	10%						
Mean Education	5.72	5.84	5.72	5.72	5.84	5.72					
Returns to edu	<i>-</i> 7.1%	-3.2%	<i>-</i> 11.1%	-4.5%	0.5%	1.3%					
$[t$ -statistic] $^{\flat}$	[1.33]	[0.65]	[1.24]	[1.33]	[0.18]	[0.43]					
\hat{e} integrated ^{\dagger}	I(0)	I(0)	I(0)	I(0)	I(0)	I(0)					
CD-test $(p)^{\sharp}$	7.23(.00)	7.88(.00)	-0.50(.61)	7.59.00)	9.29.00)	0.98(.33)					

	Panel (B): CRS imposed									
	A	ggregated d	ata	Penn	Penn World Table data					
	[1] MG	[2] FDMG	[3] CMG	[4] MG	[5] FDMG	[6] CMG				
log capital pw	0.093 [0.49]	0.151 [0.90]	0.528 [4.90]**	0.779 [5.75]**	1.052 [6.43]**	0.906 [5.86]**				
Education	0.075 [0.18]			0.683 -0.215 1.73] [1.25]		0.089 [0.42]				
Education squared	-0.023 [0.65]	-0.023 [0.89]	-0.075 [1.57]	0.013 [0.82]	0.014 [1.13]	-0.023 [1.16]				
country trend/drift	0.017 [1.96]	0.015 [1.33]		-0.001 [0.21]	-0.010 [2.08]*					
Implied β_L^{\ddagger} sign. trends (10%)	n/a 37%	n/a 32%	0.472	0.221 37%	n/a 34%	0.094				
Mean Education	5.79	5.84	5.79	5.79	5.84	5.79				
Returns to edu	-9.3%	-4.0%	3.2%	-1.4%	0.3%	-0.2%				
$[t$ -statistic] $^{\flat}$	[1.34]	[0.88]	[0.50]	[0.50]	[0.16]	[0.05]				
\hat{e} integrated ^{\dagger} CD-test $(p)^{\sharp}$	I(0) 8.05(.00)	I(0) 8.59(.00)	I(0) 0.11(.92)	I(0) 9.75(.00)	I(0) 10.84(.00)	I(0) 3.12(.00)				

Notes: All averaged coefficients presented are robust means across i. \flat The returns to education and associated t-statistics are based on a two-step procedure: first the country-specific mean education value (\bar{E}_i) is used to compute $\beta_{i,E} + 2\beta_{i,E2}\bar{E}_i$ to yield the country-specific returns to education. The reported value then represents the robust mean of these N country estimates, s.t. the t-statistic should be interpreted in the same fashion as that for the regressors, namely as a test whether the average parameter is statistically different from zero, following Pesaran and Smith (1995). For other details see Notes for Tables 2 (in the main text) and 5 above.

Table 8: Alternative dynamic panel estimators

	Panel (A): Agriculture											
	I	Dynamic F	E		PM	IG			$CPMG^*$		DGMM	SGMM
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
$EC[y_{t-1}]$	-0.293	-0.312	-0.300	-0.460	-0.459	-0.624	-0.466	-0.482	-0.503	-0.455	-1.087	-0.432
-5	[11.80]**	[12.43]**	[11.91]**	[10.63]**	[9.34]**	[14.29]**	[10.44]**	[10.06]**	[9.74]**	[9.34]**	[2.60]**	[5.38]**
capital pw	0.672	0.684	0.582	0.652	0.714	0.036	0.132	0.501	0.464	0.530	1.135	0.776
	[12.47]**	[12.69]**	[7.50]**	[20.16]**	[18.52]**	[0.57]	[3.01]**	[10.78]**	[11.05]**	[10.83]**	[2.85]**	[12.59]**
land pw	0.124	0.121	0.135	0.136	0.367	0.867	0.361	0.247	0.494	0.228	0.083	-0.247
•	[1.30]	[1.29]	[1.45]	[2.90]**	[6.43]**	[8.27]**	[8.05]**	[5.03]**	[8.95]**	[4.73]**	[0.35]	[1.17]
trend(s)†			0.001			0.008	0.012					
			[1.59]			[3.36]**	[12.26]**					
Constant	0.667	0.679	0.896	1.072	0.644	4.273	3.084	1.545	1.402	1.298		0.714
	[5.03]**	[4.75]**	[4.58]**	[10.48]**	[7.53]**	[13.11]**	[10.27]**	[10.38]**	[9.69]**	[9.94]**		[4.21]**
lags [trends]‡	1	2	1 [l-r]	1	2	1 [s-r]	1 [l-r]	1	2	1	i: 2-3	i: 2-3
impl. labour	0.328	0.316	0.418	0.212	-0.081	0.098	0.507	0.253	0.042	0.242	-0.135	0.224
obs	894	857	894	894	857	894	894	894	857	872	857	894

	Panel (B): Manufacturing											
]	Dynamic F	E		PM	IG			$CPMG^*$	DGMM	SGMM	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
$EC[y_{t-1}]$	-0.196	-0.195	-0.195	-0.219	-0.181	-0.543	-0.214	-0.245	-0.194	-0.272	-2.196	-0.041
	[9.40]**	[9.16]**	[9.31]**	[6.59]**	[5.97]**	[4.04]**	[4.13]**	[7.16]**	[6.45]**	[7.33]**	[0.72]	[0.65]
capital pw	0.711	0.708	0.637	1.016	1.044	0.298	1.379	0.598	1.264	0.505	1.866	-1.515
	[12.96]**	[12.34]**	[6.85]**	[29.64]**	[33.09]**	[5.34]**	[26.80]**	[11.58]**	[22.28]**	[9.47]**	[3.25]**	[0.40]
trend(s)†			0.001			0.001	-0.010					
			[1.00]			[0.24]	[6.77]**					
Constant	0.452	0.456	0.588	-0.212	-0.228	3.493	-0.977	0.225	-0.434	0.372		1.042
	[3.87]**	[3.73]**	[3.29]**	[5.43]**	[4.95]**	[3.87]**	[4.18]**	[5.68]**	[5.77]**	[6.48]**		[1.80]
lags [trends]‡	1	2	1 [l-r]	1	2	1 [s-r]	1 [l-r]	1	2	1	i: 2-3	i: 2-3
impl. labour	0.289	0.292	0.363	-0.016	-0.044	0.702	-0.379	0.402	-0.264	0.495	-0.866	2.515
obs	902	880	902	902	880	902	902	902	880	879	880	902

	Panel (C): Aggregated data											
	1	Dynamic F	E		PM	G			$CPMG^*$	DGMM	SGMM	
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
$EC[y_{t-1}]$	-0.172 [8.59]**	-0.176 [8.39]**	-0.173 [8.59]**	-0.279 [6.89]**	-0.277 [7.25]**	-0.429 [9.55]**	-0.284 [6.72]**	-0.292 [6.98]**	-0.294 [7.38]**	-0.317 [7.48]**	-0.380 [0.71]	-0.243 [4.21]**
capital pw	0.705 [15.25]**	0.709 [14.65]**	0.668 [8.17]**	0.974 [36.86]**	1.015 [37.38]**	0.128 [1.90]	0.899 [21.11]**	0.891 [24.84]**	0.949 [24.92]**	0.905 [27.54]**	0.271 [0.27]	0.896 [22.80]**
trend(s)†			0.000 [0.54]			0.011 [6.07]**	0.004 [2.42]*					
Constant	0.390 [4.96]**	0.393 [4.62]**	0.446 [3.42]**	-0.100 [3.73]**	-0.200 [5.18]**	3.061 [9.30]**	0.082 [4.20]**	-0.062 [2.53]*	-0.169 [4.97]**	-0.145 [4.58]**		0.120 [1.44]
lags [trends]‡ impl. labour obs	1 0.295 879	2 0.292 836	1 [l-r] 0.332 879	1 0.026 879	2 -0.015 836	1 [s-r] 0.872 879	1 [l-r] 0.102 879	1 0.109 879	2 0.051 836	1 0.095 879	i: 2-3 0.729 836	i: 2-3 0.104 879

	Panel (D): Penn World Table data											
	1	Dynamic F	E		PM	1G			$CPMG^*$	DGMM	SGMM	
EC $[y_{t-1}]$	[1] -0.098 [5.82]**	[2] -0.101 [6.01]**	[3] -0.107 [6.22]**	[4] -0.333 [6.70]**	[5] -0.138 [4.37]**	[6] -0.567 [12.63]**	[7] -0.392 [7.88]**	[8] -0.338 [6.63]**	[9] -0.081 [2.56]*	[10] -0.347 [8.24]**	[11] 0.835 [1.07]	[12] 0.031 [0.49]
capital pw	0.538 [8.14]**	0.553 [8.66]**	0.356 [3.44]**	0.923 [130.34]**	0.916 [71.72]**	0.698 [65.10]**	0.652 [67.96]**	0.903 [52.90]**	-0.125 [1.81]	0.731 [86.83]**	0.604 [0.60]	0.863 [1.88]
trend(s)†			0.001 [2.44]*			0.002 [2.57]*	0.006 [19.84]**					
Constant	0.363 [5.38]**	0.360 [5.29]**	0.567 [5.28]**	-0.122 [4.44]**	-0.020 [1.63]	1.085 [13.05]**	0.935 [7.79]**	-0.071 [3.47]**	0.456 [2.99]**	0.504 [8.29]**		0.010 [0.07]
lags [trends]‡ impl. labour obs	1 0.462 914	2 0.447 904	1 [l-r] 0.645 914	1 0.077 914	2 0.084 904	1 [s-r] 0.302 914	1 [l-r] 0.349	1 0.097 914	2 1.125 904	1 0.270 873	i: 2-3 0.396 904	i: 2-3 0.137 914

Notes: All results are based on an unrestricted error correction model specification (ECM), which is equivalent to a first order autoregressive distributed-lag model, ARDL(1,1) (see Hendry, 1995, p.231f). We report the long-run coefficients on capital per worker (and in the agriculture equations also land per worker). EC [y_{t-1}] refers to the Error-Correction term (speed of adjustment parameter) with the exception of Models [11] and [12], where we report the coefficient on y_{t-1} — conceptually, these are the same, however in the latter we do not impose common factor restrictions like in all of the former models. Note that in the PMG and CPMG models the ECM term is heterogeneous across countries, while in the Dynamic FE and GMM models these are common across i. † In model [6] we include heterogeneous trend terms, whereas in [7] a common trend is assumed (i.e. linear TFP is part of cointegrating vector). ‡ 'lags' indicates the lag-length of first differenced RHS variables included, with the exception of Models [11] and [12]: here 'i:' refers to the lags (levels in [11], levels and differences in [12] used as instruments. * In the models in [8] and [9] the cross-section averages are only included for the long-run variables, whereas in the model in [10] cross-section averages for the first-differenced dependent and independent variables (short-run) are also included.

References

- Hendry, D. (1995). Dynamic Econometrics. Oxford University Press.
- Kapetanios, G., Pesaran, M. H., & Yamagata, T. (2011). Panels with Nonstationary Multifactor Error Structures. *Journal of Econometrics*, 160(2), 326-348.
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. (IZA Discussion Paper No. 1240)
- Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. *Econometrica*, 74(4), 967-1012.
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. *Journal of Applied Econometrics*, 22(2), 265-312.
- Pesaran, M. H., & Smith, R. P. (1995). Estimating long-run relationships from dynamic heterogeneous panels. *Journal of Econometrics*, 68(1), 79-113.