UC Berkeley EECS Sr Lecturer SOE Dan Garcia

The Beauty and Joy of Computing

Lecture #10 Recursion II

Recursive Drawing

Toby Shachman created this amazing spatial programming language called "Recursive Drawing" that allows you to create drawings (even recursive ones) without typing a line of code. It's a great example of a next-generation interface...

recursivedrawing.com

(Cal) Overview

Recursion

- Factorial Demo
- Fibonacci Demo
- Count Change

Recursion: Factorial

2 3!

3 2!

8 returning 2

10 returning 2

bjc R

Recursion: Demonstrating n!

- Factorial(n) = n!Inductive definition:
 - n! = 1 , n = 0
 - n! = n * (n-1)!, n > 0
- Let's act 4! out...
 - "contractor" model

UC Berkeley "The Beauty and Joy of Computing": Recursion II (4)

(Cal) Order of growth of # of calls of n!

(source: FallingFifth.com)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Recursion: Fibonacci

Recursion: Demonstrating fib(n)

Inductive definition:

$$fib(n) = fib(n-1) + fib(n-2)$$
, $n \ge 2$

- "contractor" model
- fib(5)

n	fib(n)
0	0
1	1
2	1
3	2
4	3
5	5

 $F(n) := \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F(n-1) + F(n-2) & \text{if } n > 1. \end{cases}$

Let's now: trace... (gif from Ybungalobill@wikimedia)

(Cal) Order of growth of # of calls of fib(n)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project. (Wikipedia)

Recursion: Count Change

Counting Change (thanks to BH)

Given coins {50, 25, 10, 5, 1} how many ways are there of making change?

+Count+Change+ amount)+Using+ coins :

amount)

amount = 0

Count Change

report 0

report 1

< 0 or empty? coins

amount

- **5**
 - 2 (N. 5P)
- **10**
 - 4 (D. 2N. N5P. 10P)
- 15
 - 6 (DN. D5P. 3N. 2N5P. 1N10P, 15P)

Using coins

100?

item 1 → of coins

Count Change (amount) Using (all but first of coins)

Call Tree for "Count Change 10 (10 5 1)"

(Cal) "I understood Count Change"

- a) Strongly agree
- b) Agree
- c) Neutral
- d) Disagree
- e) Strongly disagree

www.nilkanth.com/mv-uploads/200508/dactvlfractal107.jpg

- It's important to understand the machine model
- It's often the simplest way to solve many problems
 - Esp if recursive in nature!
- Remember, trust it!
- Recursion is a very powerful idea, often separates good from great (you're great!)

Menger Cube by Dan Garcia

