Neural Computation

28 September 2023

Linear regression: toy example

- Commute time on bus
 - Want to predict commute time to University
 - Input variables (features)?
 - · Distance to University
 - · Day of the week
 - Output / target?
 - · Commute time

•	D	a	t	a
	u	а	L	a

f	(x)	=	X	w
•			$\boldsymbol{\mathcal{A}}$	<i>v v</i>

Dist (km)	Commu time (mi
2.7	25
4.1	33
1.0	15
5.2	45
2.8	22

• Let d = 1, then:

$$C(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^{i} - x^{i}w)^{2}$$

How important is this factor?

	\boldsymbol{x}	y
	Dist (km)	Commute time (min)
	2.7	25
i	4.1	33
ι	1.0	15
	5.2	45
	2.8	22

• Let d = 1, then:

$$C(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^i - x^i w)^2$$

What shape does this function have?

	$\boldsymbol{\chi}$	У
	Dist (km)	Commute time (min)
	2.7	25
	4.1	33
i	1.0	15
	5.2	45
	2.8	22

• Let d = 1, then:

$$C(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^i - x^i w)^2 = \frac{1}{2n} \sum_{i=1}^{n} \left(\underbrace{x^{i^2} w^2}_{\text{quadratic}} - \underbrace{2y^i x^i w}_{\text{linear}} + \underbrace{y^{i^2}}_{\text{constant}} \right)$$

How can we find the best w?

	$\boldsymbol{\mathcal{X}}$	y
	Dist (km)	Commute time (min)
	2.7	25
	4.1	33
i	1.0	15
	5.2	45
	2.8	22

• Let d = 1, then:

$$C(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^i - x^i w)^2 = \frac{1}{2n} \sum_{i=1}^{n} \left(\underbrace{x^{i^2} w^2}_{\text{quadratic}} - \underbrace{2y^i x^i w}_{\text{linear}} + \underbrace{y^{i^2}}_{\text{constant}} \right)$$

• It then follows that:

$$C'(w) = \frac{1}{2n} \sum_{i=1}^{n} \left(2x^{i^2}w - 2y^i x^i \right) = \frac{1}{n} \sum_{i=1}^{n} x^{i^2}w - \frac{1}{n} \sum_{i=1}^{n} y^i x^i$$

	$\boldsymbol{\chi}$	y
	Dist (km)	Commute time (min)
	2.7	25
i	4.1	33
ι	1.0	15
	5.2	45
	2.8	22

• Let d = 1, then:

$$C(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^i - x^i w)^2 = \frac{1}{2n} \sum_{i=1}^{n} \left(\underbrace{x^{i^2} w^2}_{\text{quadratic}} - \underbrace{2y^i x^i w}_{\text{linear}} + \underbrace{y^{i^2}}_{\text{constant}} \right)$$

It then follows that:

$$C'(w) = \frac{1}{2n} \sum_{i=1}^{n} \left(2x^{i^2}w - 2y^i x^i \right) = \frac{1}{n} \sum_{i=1}^{n} x^{i^2}w - \frac{1}{n} \sum_{i=1}^{n} y^i x^i$$

• According to the first-order optimality condition, we know the optimal w^* satisfies

$$C'(w^*) = 0 \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} x^{i^2} w^* = \frac{1}{n} \sum_{i=1}^{n} y^i x^i$$

It then follows that:

$$w^* = \frac{\sum_{i=1}^n y^i x^i}{\sum_{i=1}^n x^{i^2}}$$

Linear regression: toy example

- Commute time on bus
 - Want to predict commute time to University
 - Input variables (features)?
 - Distance to University
 - Day of the week
 - Output / target?
 - Commute time
 - Data
 - day = 1 if weekday, day = 0 otherwise

Dist (km)	Day	Commute time (min)
2.7	1	25
4.1	1	33
1.0	0	15
5.2	1	45
2.8	0	22

 $f(\mathbf{x}) = w_1 x_1 + \dots + w_d x_d = (w_0 + w_1 + \dots + w_d) {1 \choose \mathbf{x}} = \mathbf{w}^T \mathbf{x}$

Linear regression: matrix form

- Let's recall that $C(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y^i \mathbf{x}^{i^T} \mathbf{w})^2$
- Let's consider $\mathbf{x}^{i^T} = (x_1^i, x_2^i, \dots, x_d^i)$

$$X = \begin{pmatrix} \boldsymbol{x}^{1^{T}} \\ \vdots \\ \boldsymbol{x}^{n^{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}, \, \boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}^{1} \\ \vdots \\ \boldsymbol{y}^{n} \end{pmatrix} \in \mathbb{R}^{n} \Longrightarrow X\boldsymbol{w} - \boldsymbol{y} = \begin{pmatrix} \boldsymbol{x}^{1^{T}}\boldsymbol{w} - \boldsymbol{y}^{1} \\ \vdots \\ \boldsymbol{x}^{n^{T}}\boldsymbol{w} - \boldsymbol{y}^{n} \end{pmatrix}$$

Dist (km)	Day	Commute time (min)
x_1	x_2	у
2.7	1	25
4.1	1	33
1.0	0	15
5.2	1	45
2.8	0	22

$$\mathbf{y} = \begin{pmatrix} 25 \\ 33 \\ 15 \\ 45 \\ 22 \end{pmatrix}, X = \begin{pmatrix} 2.7 & 1 \\ 4.1 & 1 \\ 1.0 & 0 \\ 5.2 & 1 \\ 2.8 & 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

Linear regression: matrix form

- Let's recall that $C(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (y^i \mathbf{x}^{i^T} \mathbf{w})^2$
- Let's consider $\mathbf{x}^{i^T} = (x_1^i, x_2^i, \dots, x_d^i)$

$$X = \begin{pmatrix} \boldsymbol{x}^{1^{T}} \\ \vdots \\ \boldsymbol{x}^{n^{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}, \, \boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}^{1} \\ \vdots \\ \boldsymbol{y}^{n} \end{pmatrix} \in \mathbb{R}^{n} \Longrightarrow X\boldsymbol{w} - \boldsymbol{y} = \begin{pmatrix} \boldsymbol{x}^{1^{T}}\boldsymbol{w} - \boldsymbol{y}^{1} \\ \vdots \\ \boldsymbol{x}^{n^{T}}\boldsymbol{w} - \boldsymbol{y}^{n} \end{pmatrix}$$

$$\hat{y} = Xw$$

$$C(\mathbf{w}) = \frac{1}{2n} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) = \frac{1}{2n} (\mathbf{w}^T X^T - \mathbf{y}^T) (X\mathbf{w} - \mathbf{y})$$
$$= \frac{1}{2n} (\mathbf{w}^T X^T X \mathbf{w} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

Dist (km)	Day	Commute time (min)
x_1	x_2	у
2.7	1	25
4.1	1	33
1.0	0	15
5.2	1	45
2.8	0	22

$$\mathbf{y} = \begin{pmatrix} 25 \\ 33 \\ 15 \\ 45 \\ 22 \end{pmatrix}, X = \begin{pmatrix} 2.7 & 1 \\ 4.1 & 1 \\ 1.0 & 0 \\ 5.2 & 1 \\ 2.8 & 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

Linear regression: closed-form solution

• Let's recall the objective function:

$$C(\mathbf{w}) = \frac{1}{2n} \left(\underbrace{\mathbf{w}^T X^T X \mathbf{w}}_{\text{quadratic}} - \underbrace{2\mathbf{w}^T X^T \mathbf{y}}_{\text{linear}} + \underbrace{\mathbf{y}^T \mathbf{y}}_{\text{constant}} \right)$$

• The gradient of C(w) is:

$$\nabla C(\boldsymbol{w}) = \frac{1}{2n} (2X^T X \boldsymbol{w} - 2X^T \boldsymbol{y})$$

• By the first-order optimality condition, we know that optimal w^* satisfies:

$$\nabla C(\mathbf{w}^*) = \frac{1}{n} (X^T X \mathbf{w}^* - X^T \mathbf{y}) = 0 \Longrightarrow X^T X \mathbf{w}^* = X^T \mathbf{y}$$

• If X^TX is invertible, we get $\mathbf{w}^* = (X^TX)^{-1}X^T\mathbf{y}$

Linear regression

- Adding a feature for bias term
 - We can add 1 to get an expanded feature vector

Dist (km)	Day	Commute time (min)		One	Dist (km)	Day	Comm time (n
x_1	x_2	у		x_0	x_1	x_2	у
2.7	1	25	\Longrightarrow	1	2.7	1	25
4.1	1	33		1	4.1	1	33
1.0	0	15		1	1.0	0	15
5.2	1	45		1	5.2	1	45
2.8	0	22		1	2.8	0	22

This allows us to consider the bias in the linear model:

$$f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_d x_d = (w_0 + w_1 + \dots + w_d) {1 \choose \mathbf{x}} = \mathbf{w}^T \overline{\mathbf{x}}$$

• For brevity, we use notation x to represent the extended feature \overline{x} : $f(x) = w^T x$

Linear regression: illustration

Summary: linear regression

- Linear regression (or least square regression)
 - model linear relationship between input and output (task T)
 - Example points (experience E)
 - mean square error as loss function (performance P)
 - closed-form solution (or exact solution)
 - Add 1s-feature to allow for bias

Dist (km)	Day	Commute time (min)
x_1	x_2	у
2.7	1	25
4.1	1	33
1.0	0	15
5.2	1	45
2.8	0	22
	x ₁ 2.7 4.1 1.0 5.2	x_1 x_2 2.7 1 4.1 1 1.0 0 5.2 1

Polynomial regression

Suppose we want to model the following data

- The input-output relationship is nonlinear!
- How about we try to fit a polynomial?
 - This is known as polynomial regression

$$f(x) = w_0 + w_1 x + w_1 (x)^2 \dots, w_M (x)^M$$

where $(x)^i$ denotes i^{th} power of x .

Do we need to derive a whole new regression algorithm?

Remember the 1-feature?

Dist (km)	Day	Commute time (min)	
x_1	x_2	у	
2.7	1	25	
4.1	1	33	
1.0	0	15	
5.2	1	45	
2.8	0	22	

One	Dist (km)	Day	Commute time (min)
x_0	x_1	x_2	у
1	2.7	1	25
1	4.1	1	33
1	1.0	0	15
1	5.2	1	45
1	2.8	0	22

Polynomial regression: feature mappings

• Define the feature map:

$$\phi(x) = \begin{pmatrix} 1 \\ x \\ (x)^2 \\ (x)^3 \end{pmatrix}$$

 Polynomial regression model now becomes a linear model w.r.t. the new features

$$f(x) = \mathbf{w}^T \phi(x) = w_0 + w_1 x + w_2(x)^2 + w_3(x)^3 = \phi(x)^T \mathbf{w}$$

We've transformed a univariate nonlinear problem to a multivariate linear problem!

• The derivations and algorithms so far in this lecture remain the same!

$$X = \begin{pmatrix} \mathbf{x}^{1T} \\ \mathbf{x}^{2T} \\ \vdots \\ \mathbf{x}^{nT} \end{pmatrix} \mapsto \begin{pmatrix} \phi(x^{1})^{T} \\ \phi(x^{2})^{T} \\ \vdots \\ \phi(x^{n})^{T} \end{pmatrix} = \begin{pmatrix} 1 & x^{1} & (x^{1})^{2} & (x^{1})^{3} \\ 1 & x^{2} & (x^{2})^{2} & (x^{2})^{3} \\ \vdots & \vdots & \vdots \\ 1 & x^{n} & (x^{n})^{2} & (x^{n})^{3} \end{pmatrix} = \bar{X}$$

Polynomial regression: fitting polynomials

Polynomial regression: regularisation

- Regularised least squares regression
 - Given dataset $D = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}$ and a regularisation parameter $\lambda > 0$, find a model to minimise:

$$C(\mathbf{w}) = \underbrace{\frac{1}{2n} (\mathbf{w}^T X^T X \mathbf{w} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y})}_{\text{fitting to data}} + \underbrace{\frac{\lambda}{2} ||\mathbf{w}||_2^2}_{\text{regulariser}}$$