无线局域网产品使用的 SMS4 密码算法

本算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法都采用 32 轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

1. 术语说明

1.1 字与字节

用 Z_2^e 表示 e-比特的向量集, Z_2^{32} 中的元素称为字, Z_2^8 中的元素称为字节。

1.2 S 盒

S 盒为固定的 8 比特输入 8 比特输出的置换,记为 Sbox(.)。

1.3 基本运算

在本算法中采用了以下基本运算:

⊕ 32 比特异或

<<< i 32 比特循环左移 i 位

1.4 密钥及密钥参量

加密密钥长度为 128 比特,表示为MK=(MK₀, MK₁, MK₂, MK₃),其中MK_i(i=0,1,2,3)为字。

轮密钥表示为 $(rk_0, rk_1, ..., rk_{31})$, 其中 rk_i (i=0,...,31)为字。轮密钥由加密密钥生成。

 $FK=(FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK=(CK_0, CK_1, ..., CK_{31})$ 为固定参数,用于密钥扩展算法,其中 $FK_i(i=0,...,3)$ 、 $CK_i(i=0,...,31)$ 为字。

2. 轮函数 F

本算法采用非线性迭代结构,以字为单位进行加密运算,称一次迭代运算为一轮变换。 设输入为 $(X_0,X_1,X_2,X_3)\in (Z_2^{32})^4$,轮密钥为 $rk\in Z_2^{32}$,则轮函数 F 为:

$$F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk)$$

2.1 合成置换 T

T: $Z_2^{32} \to Z_2^{32}$, 是一个可逆变换, 由非线性变换 τ 和线性变换 L 复合而成,即 T(.)=L(τ(.))。

2.1.1 非线性变换 τ

τ由4个并行的S 盒构成。

设输入为
$$A=(a_0,a_1,a_2,a_3)\in (Z_2^8)^4$$
,输出为 $B=(b_0,b_1,b_2,b_3)\in (Z_2^8)^4$,则

$$(b_0, b_1, b_2, b_3) = \tau(A) = (Sbox(a_0), Sbox(a_1), Sbox(a_2), Sbox(a_3))$$

2.1.2 线性变换 L

非线性变换 τ 的输出是线性变换 L 的输入。设输入为 $B \in Z_2^{32}$,输出为 $C \in Z_2^{32}$,则 $C = L(B) = B \oplus (B <<< 2) \oplus (B <<< 10) \oplus (B <<< 18) \oplus (B <<< 24)$

2.2 S盒

S 盒中数据均采用 16 进制表示。

	~	,血,效用"分水",10 经明况不														
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	d6	90	e9	fe	cc	e1	3d	b7	16	b6	14	c2	28	fb	2c	05
1	2b	67	9a	76	2a	be	04	c3	aa	44	13	26	49	86	06	99
2	9c	42	50	f4	91	ef	98	7a	33	54	0b	43	ed	cf	ac	62
3	e4	b3	1c	a9	c9	08	e8	95	80	df	94	fa	75	8f	3f	a6
4	47	07	a7	fc	f3	73	17	ba	83	59	3c	19	e6	85	4f	a8
5	68	6b	81	b2	71	64	da	8b	f8	eb	0f	4b	70	56	9d	35
6	1e	24	0e	5e	63	58	d1	a2	25	22	7c	3b	01	21	78	87
7	d4	00	46	57	9f	d3	27	52	4c	36	02	e7	a0	c4	c8	9e
8	ea	bf	8a	d2	40	c7	38	b5	a3	f7	f2	ce	f9	61	15	al
9	e0	ae	5d	a4	9b	34	1a	55	ad	93	32	30	f5	8c	b1	e3
a	1d	f6	e2	2e	82	66	ca	60	c0	29	23	ab	0d	53	4e	6f
b	d5	db	37	45	de	fd	8e	2f	03	ff	6a	72	6d	6c	5b	51
c	8d	1b	af	92	bb	dd	bc	7f	11	d9	5c	41	1f	10	5a	d8
d	0a	c1	31	88	a5	cd	7b	bd	2d	74	d0	12	b8	e5	b4	b0
e	89	69	97	4a	0c	96	77	7e	65	b9	f1	09	c5	6e	c6	84
f	18	f0	7d	ec	3a	dc	4d	20	79	ee	5f	3e	d7	cb	39	48

例: 输入'ef', 则经 S 盒后的值为表中第 e 行和第 f 列的值, Sbox('ef')= '84'。

3. 加/解密算法

定义反序变换 R 为:

$$R(A_0, A_1, A_2, A_3) = (A_3, A_2, A_1, A_0), A_i \in \mathbb{Z}_2^{32}, i = 0,1,2,3$$

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in Z_2^{32}, i = 0,1,2,...,31$ 。则本算法的加密变换为:

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i) = X_i \oplus T(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus rk_i), i = 0,1,...,31.$$

$$(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32})$$

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。

加密时轮密钥的使用顺序为: $(rk_0, rk_1, ..., rk_{31})$

解密时轮密钥的使用顺序为: $(rk_{31}, rk_{30}, ..., rk_0)$

4. 密钥扩展算法

本算法中加密算法的轮密钥由加密密钥通过密钥扩展算法生成。

加密密钥MK=(MK₀, MK₁, MK₂, MK₃), MK_i $\in \mathbb{Z}_2^{32}$, i=0,1,2,3;

令 $K_i \in \mathbb{Z}_2^{32}$, i = 0,1,...,35, 轮密钥为 $rk_i \in \mathbb{Z}_2^{32}$, i = 0,1,...,31, 则轮密钥生成方法为:

首先, (K₀,K₁,K₂,K₃)=(MK₀⊕FK₀,MK₁⊕FK₁,MK₂⊕FK₂,MK₃⊕FK₃)

然后,对i = 0.1,2,....31:

$$rk_i = K_{i+4} = K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i)$$

说明:

- (1) T 变换与加密算法轮函数中的 T 基本相同,只将其中的线性变换 L 修改为以下 L : L (B) = B \oplus (B <<< 13) \oplus (B <<< 23);
- (2) 系统参数 FK 的取值,采用 16 进制表示为:

 $FK_0=(A3B1BAC6)$, $FK_1=(56AA3350)$, $FK_2=(677D9197)$, $FK_3=(B27022DC)$

(3) 固定参数 CK 的取值方法为:

设 $ck_{i,j}$ 为 CK_i 的第j字节(i=0,1,...,31; j=0,1,2,3),即 CK_i = ($ck_{i,0}$, $ck_{i,1}$, $ck_{i,2}$, $ck_{i,3}$) $\in (\mathbb{Z}_2^8)^4$,则 $ck_{i,i}$ = (4i+j)×7(mod 256)。32 个固定参数 CK_i ,其 16 进制表示为:

00070e15, 1c232a31, 383f464d, 545b6269,

70777e85, 8c939aa1, a8afb6bd, c4cbd2d9,

e0e7eef5, fc030a11, 181f262d, 343b4249,

50575e65, 6c737a81, 888f969d, a4abb2b9,

c0c7ced5, dce3eaf1, f8ff060d, 141b2229,

30373e45, 4c535a61, 686f767d, 848b9299,

a0a7aeb5, bcc3cad1, d8dfe6ed, f4fb0209,

10171e25, 2c333a41, 484f565d, 646b7279

5. 加密实例

以下为本算法 ECB 工作方式的运算实例,用以验证密码算法实现的正确性。其中,数据采用 16 进制表示。

实例一:对一组明文用密钥加密一次

明文: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10 加密密钥: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

```
轮密钥与每轮输出状态:
```

```
rk[0] = f12186f9 \quad X[0] = 27fad345
rk[1] = 41662b61 \quad X[1] = a18b4cb2
rk[2] = 5a6ab19a
                  X[2] = 11c1e22a
rk[3] = 7ba92077 X[3] = cc13e2ee
rk[4] = 367360f4 \quad X[4] = f87c5bd5
rk[5] = 776a0c61
                  X[5] = 33220757
rk[6] = b6bb89b3 X[6] = 77f4c297
rk[7] = 24763151
                   X[7] = 7a96f2eb
rk[8] = a520307c
                   X[8] = 27 dac 07 f
rk[9] = b7584dbd
                   X[9] = 42dd0f19
rk[10] = c30753ed
                   X[10] = b8a5da02
rk[11] = 7ee55b57
                   X[11] = 907127fa
rk[12] = 6988608c
                   X[12] = 8b952b83
rk[13] = 30d895b7
                   X[13] = d42b7c59
rk[14] = 44ba14af
                   X[14] = 2ffc5831
rk[15] = 104495a1
                   X[15] = f69e6888
rk[16] = d120b428
                   X[16] = af2432c4
rk[17] = 73b55fa3
                   X[17] = ed1ec85e
rk[18] = cc874966
                   X[18] = 55a3ba22
rk[19] = 92244439
                  X[19] = 124b18aa
rk[20] = e89e641f
                   X[20] = 6ae7725f
rk[21] = 98ca015a
                   X[21] = f4cba1f9
rk[22] = c7159060
                   X[22] = 1 \operatorname{dcdfa10}
rk[23] = 99e1fd2e
                  X[23] = 2ff60603
rk[24] = b79bd80c
                   X[24] = eff24fdc
rk[25] = 1d2115b0 \quad X[25] = 6fe46b75
rk[26] = 0e228aeb
                  X[26] = 893450ad
rk[27] = f1780c81
                   X[27] = 7b938f4c
rk[28] = 428d3654 \quad X[28] = 536e4246
rk[29] = 62293496
                  X[29] = 86b3e94f
rk[30] = 01cf72e5 X[30] = d206965e
rk[31] = 9124a012 \quad X[31] = 681edf34
```

密文: 68 le df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46

实例二:利用相同加密密钥对一组明文反复加密 1000000 次

明 文: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10 加密密钥: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

密 文: 59 52 98 c7 c6 fd 27 1f 04 02 f8 04 c3 3d 3f 66