## 科 学 譯 叢

# 关於物种与物种形成問題的討論

(第二十一集)

科学出版社



#### 科 学 譯 叢

# 关於物种与物种形成問題的討論

(第二十一集)

B. H. 苏卡切夫等著 俞 志 隆 等 譯

科 学 出 版 社 1957年6月



# 目 录

| 論植物界的种内关系B. H. 苏卡切夫(1)                               |
|------------------------------------------------------|
| 繁殖过盛与生存斗争·························· II. H. 高里涅維奇(22) |
| 在伊・烏・米丘林著作中的遺傳性和形态形成問題及其                             |
| 在苏联生物学中的發展···················                        |
| 举协备米和内关系的基此問題                                        |

### 論植物界的种內关系\*

#### B. H. 苏卡切夫

(原文載於"莫斯科自然科学研究者协会公报,生物学之部",1956年第2期)

机体的相互关系問題,如同机体对环境的相互关系問題一样,都屬於最重要的生物学問題之列。同时,这二个問題之間又是紧紧相联的。它們的意义远远超越於生物学范圍,因为人类的实踐活动,多方面与植物界有关,这就不能不考虑到机体在自然的、野生的,以及栽培的情况。

生物羣落学是論述植物与动物在自然的和栽培社会的学說,有研究机体在其共同生存下的相互关系的主要任务,是作为多方面利用自然界中机体的理論基础,例如,应用在森林学、艸地学、狩獵業中,以及作为对它們的培育与繁殖(作物栽培学、园艺学、蔬菜栽培学、造林学、动物飼养学等等)的理論基础。

这一問題的巨大的理論意义还在於它与巨大的普通生物学問題、进化理論与物种形成問題有密切联系。从达尔文时代起,机体的任何形式的相互关系的作用,在解决机体的进化問題时,就受到人們的注意。

自然,我所指的不是人类社会的关系,因为人类社会完全服从於 其他規律,而是另一类知識的研究对象,亦即是一类人类科学的知 識。

下面我仅就植物机体的相互关系加以論述。这些关系已被很好 地研究。同时,植物界与动物界相互关系的最一般規律,其間有着很 多共同之点。

<sup>\* 1955</sup>年12月24日在莫斯科自然科学工作者协会150週年科学年会全体会議上的报告。

虽然,無論是机体的种間关系,或是种內关系都具有理論的与实 踐的意义,但近来对种內关系問題却引起特別注意,並且圍繞此一問 題有着意見的尖銳斗爭。本文也就此問題加以闡述。

首先,应当确定本文所指的"种内关系"的概念。

关於种內相互关系是指从它們的分类等級与相互从屬的观点来看,可以說是比物种更小的分类單位的关系。触及种內关系問題的哲学家們对这个問題有时具有这样的态度对待这一問題,自然,他們也有自己的意义。但在本文中,我不預备触及这些关系,而仅仅論述一个种的植物有机体在其共同居住在任何面积上,当它們之間有着直接或間接联系情况下的关系問題。

这些联系或屬於机体一者对另一者的有利影响,即屬於所謂"互助";或屬於对其相互不利的影响,即屬於生存斗爭。正是生存斗爭,或机体由於生活資料的竞爭引起了最大的注意。还在达尔文时代,在其"物种起源"問世不久,就圍繞着生存斗爭問題进行了意見的斗爭,繼达尔文及后来之全部时間,意見的斗爭有着不同程度的紧張,迄至近十年来,在我国以及許多外国,特別在人民民主国家中格外尖銳。

种内生存斗爭問題的討論,从1947年李森科在刊物上宣称"自然界不存在种內竞爭,在科学上也沒法發明它",和他"否認物种內部各个体的种內斗爭与互助,並承認种間斗爭与竞爭,以及不同种間的互助"之后显得特別尖銳。后者亦即李森科所得出的認为在自然界存在种間生存斗爭与互助的結論,自然,也沒有任何新鮮之处。这种說法还在350年前也許还要更早些就已被人写过而知道了。但李森科的有机体間不存在种內生存斗爭的断言,自然地产生了很大的反响。他还加紧地給予並不同意这些的人們以馬尔薩斯主义的責难。極为沉重的責难不仅扔給了任何进步的学者,同时也扔給了每个純朴正直的人。

因此,从1947年起,圍繞着种內关系問題就燃燒起尖銳的論战。 但在著名的1948年的全苏列宁农業科学院会議以后就靜寂了,1952 年后却又重新更强烈地爆發起来。这样的紧張局面繼續着直到現在。 在1953年的自己論文中,我对我和我的工作人員的关於25年以上在植物中間生存斗争的实驗研究工作作了总結,我力求考虑到在文献上关於这个問題的已知意見,並对李森科及其附和者的观点加以分析与批判。虽然,从發表上述論文时起总共也只不过过去了大約三年的时間,但我完全認为重新回返到这个問題上来是合理的、为什么?

- 1. 从 1948 年起到 1953 年,在我国文献中关於生存斗爭問題写得極少。但种內竞爭与互助問題仍处於封鎖之下。 1953 年初,其暗室之門始稍稍开啓,虽然直至今日尚未敞开。但無論是口头上的討論,或是文献上的討論,以及积累不仅关於理論上的言論的新材料,同时对於特別有价值的实驗新材料方面畢竟都还是开头。 因此,回返到这个問題上来,並在新材料的照耀下进行分析是有必要的。
- 2. 在 1953 年,我在自己的論文中,看起来虽已簡要地但充分明显地闡明了这一問題的現狀,並指明李森科观点的科学上的不正确性与生产上的有害性。許多其他作者也坚决地發表了这种意念。但是看起来这是不足的。因此,这方面进一步的工作是必要的。

我們看到李森科及其在思想上接近的人繼續發表宣傳自己論点於刊物上,並倔强地無視批判他們观点的言論。要特別指出的是 II. II. A. 哈里富曼刊載在 1955 年"哲学問題"杂誌第 5 期在这方面的論文,在該文中,他們把生存斗爭問題也不过看成同物种与物种形成問題一样对这个問題的討論不加任何考虑。在科学文献中,人們通常总是坚持着自己的观点来分析在这个問題方面已有的不同意見,並指明这些文献所提供的事实在邏輯上的毫無根据和不适合性。無論仅是在上述的普列森特与哈里富曼的論文中,或是在最近时期为衞护李森科观点而写的其他論文中,这个不要坚持自己观点的要求並未得到遵守,而任何反对意見,特別在引証事实上並未做好,仅仅是繼續自己先前断言的無根据的重复。这自然易於使李森科及他的維护者便於完成任务,但並未使他們的言論增添說服力,同时,这是对这一重要問題討論方式的特征。

近代的哲学家們也开始对这个生物学問題进行了写作,並企圖 为这一問題奠定哲学基础。然而在他們的論文中,哲学的論文比生 物学的論文要少,虽然生物学不是他們的專業。这会造成什么样的 結果呢?讓我在下面說明。

誠然,在哲学家們之中越来越多的出現了無条件的承認真理,而 主要是李森科观念的辯証唯物主义特征,应当回返过来,这是必須 的。他們开始着对他进行批判,虽然还是畏縮地、局部地。

对哲学家們的言論拒不重視是不可能的,因为我們苏維埃生物 学家摒棄一切唯心主义的与形而上学的观念,因而不能不站在严格 的辯証唯物主义的立場上。任何在这方面的不同观点要同时並存在 我們苏联是不可能的。我們希望尽可能深刻的运用唯物主义的辯証 方法到所有我們的科学工作中去,並渴望哲学家們在这方面給以更 多的帮助。

3. 如果說我去年發表的关於生存斗爭的問題,主要是努力确定除了种間斗爭以外也存在着种間斗爭的事实,闡明它的規律及其在植物社会生活中的地位,有意識的坚持种內斗爭在植物的物种形成与进化方面的作用的話,那末今日我認为有必要再講講种內斗爭的作用,虽然是簡要的。

然而,在闡述这些以前,我还認为有必要回忆一下达尔文是怎样理解生存斗争的,因为我显然也如大多数我們的生物学家一样,像达尔文那样理解的。大家知道,达尔文理解生存斗争是广义的,且含有某种隐喻之意。他把这些情况列入生存斗争之内,第一,有机体在繁殖过盛情况下争夺生活資料相互竞争,由於这样,因此在一定情况下,生活資料也就显現不足。第二,寄生物与一般有机体,它們的营养物的防御斗爭,在此情况下,不可能有繁殖过盛。第三,是防御不良气候与土壤条件的斗爭,这里同样也沒有繁殖过盛。

特別着重指出这点是重要的,即达尔文把这种情况列为生存斗 爭之列;即当有机体相互間进行竞賽,企圖避免对於它們的一般危險 时,例如当动物逃避猛兽或植物防御寄生物、或防御艸食动物作为它 們的营养物,或免受更强大的其他植物种,由於它們在社会中因水湿、矿質及陽光而引起的竞争的損害。所有这些情况,在机体間的竞争中都据有地位,而达尔文把所有这些情况都归之於生存斗爭之列。从此很明显地,不仅是种內生存斗爭,同时任何种間生存斗爭与种內竞爭的联系是不可分割的,有繁殖过盛或無繁殖过盛是沒有区别的。

还在不久以前,种內無生存斗爭观点的拥护者諷刺的声称:要知道餓狼追逐冤子,倒並不彼此吞食。像这样被餓狼吞食的冤子也不是互相有害的。只是狼才吃冤子。可惜,这种諷刺是自己的事業所完成的。某些人忘記了包含在达尔文的生存斗爭概念中的意义。但达尔文把这些情况归入生存斗爭之列,自然是完全正确的,此中特別明显地指出从自然选擇产生的作用。

可惜,参与生存斗爭討論的人都忘記了生存斗爭的这种最重要形式。例如,哲学家 Г. В. 普拉托諾夫在責难我的时候。就忽略了我所肯定的,他的责难是"似乎种内斗爭是物种进一步發展的必要条件,是物种前进进化的必要条件"(第122頁)。虽然他不正确地引用了我的話,因为我写的是"种内竞爭也同种間竞爭一样,除了在特別的不良物理条件下的生存斗爭外,是物种进一步發展的必要条件,是物种前进进化的必要条件。"但也在这样割裂的狀态下,实际上已回答了达尔文的观念是正确的,这一观念我往后还要說到。

U. II. 施馬尔高贊院士很好地描述了这种生存斗爭类型的特性。他写道: "只有在这样的情况下,当一个种的一定数量的个体遭受到同样的危險时(完全均等——非生物的与生物的),同样的在自己的生存中受到限制或在自己的繁殖中受到限制,免於这种危險或克服限制的某些个体就有可能在自然选擇中保留下来。此处常具有竞争因素存在於同种个体之間为保存生命的斗爭,为繁殖的斗爭,存在於为爭取食料的斗爭,与敌人与寄生物的斗爭,与恶劣的气候条件的斗爭<sup>1)</sup>,以及与飢餓及病害的斗爭之中。"

<sup>1)</sup> 此处还应加上"土壤"。

我曾頗詳尽的敍述了生存斗爭的这一方面,因为它不仅是 热中 於發現任何有利於李森科观点的哲学家們經常忘記,同时某些反对 並坚持自然界中存在种內斗爭的学者也常忘了这点。除了对这种生 存斗爭类型的視界以外,也許也可以促进如何在自然界中观察时,和 特別在植物生存斗爭的实驗研究时,大大注意於在自然的或人工的 植物社会中研究处於繁殖过盛情况下的一个物种个体間的斗爭。

这还曾經引起了反对者認为种內竞爭只存在於繁殖过盛的情况下,並开始把馬尔薩斯分子的帽子扣向每个承認在自然界有繁殖过盛的人,無視於有机体的繁殖过盛是真实存在於自然界的事实。这种繁殖过盛易於在自然界見到。他們为了反駁,其实也只是引証馬克思列宁主义的經典著作,也許是各自作了不同的解釋,同时忽略了馬克思对达尔文揭示动物界与植物界中"几何級数"的繁殖,因而給予"馬尔薩斯理論以自然历史的反駁"1)的肯定言論,同样,恩格斯也肯定地指出,"人們侭可不必需要馬尔薩斯的眼鏡,而看出自然界中的生存斗爭2)"。虽然在文献中早已記載了很多种內生存斗爭的事实,而自古以来的林学家、蔬菜栽培家、园艺家实践者在其密播与移植方面的經济措施、在間苗方面、在照料植物方面以及其他实践措施都是根据由於生活資料所引起的植物竞爭的認識而进行的,但从李森科論点發表后,生物学家又从新採取了研究有机体个体間在自然界与实驗中的相互关系。

在"植物学杂誌",在"莫斯科自然研究者协会公报,生物学部分"以及在1952年后的某些其他刊物中出現了不少的論文,肯定地証实机体中間与繁殖过盛联系的种內竞爭存在的精确观察。在这方面,特別富有兴趣的是 10. II. 別洛維奇(1953)的論文。虽然早就知道在条播中的植株,密播的植株或是种植的植株,边緣的总發育得比中間的好,中間的帶有頹丧的样子,但 10. II. 別洛維奇很好地在大区中分析了这种現象。他的丰富的、極精确而原始的研究材料光輝的闡明

<sup>1)</sup> 馬克思: 剩余价值論, 第二卷第一部分, 1936。

<sup>2)</sup> 恩格斯:反杜林論,三联版,第78頁。

了种内竞争的存在。

也有很多模范的著作不少是富有兴趣的,这些著作閘明了在 叢播中橡树發育的研究。虽然树种叢播法原理的作者李森科断定这种树种播种法的科学基础就是种内無竞争的理論,但分析叢中橡树的 發育显然指出叢中的幼年橡树無論是其地上部分或是地下部分有着强烈的竞争。但同时它們在一定方面显出相互間的有利影响,亦即在它們之間也有互助因素。这在 C. H. 卡拉金娜 (1953) 的論文中闡述得特別明显。

李森科及他的战友繼續解釋純林立木的自疏作用,或如林学家所說的林分的自疏作用不是由於立木个体因年龄的增長,扩大了对生存地盤的需求,对水分、对矿質食料与陽光的需求,因此产生了更强烈的繁殖过盛、相互压迫与在具体环境条件下个体中間較弱者死亡所引起的結果,而解釋成为立木由於年龄的增長,要求極少量的树数来維持林冠必要的郁閉度,因此它們逐漸地局部死亡。近年来,在文献中曾不止一次地指出林冠保持过多的立木的某些部分死亡的能力是选擇的結果,这是不可能的,因为大家了解死亡了的树木是不能把死亡的能力依靠遺傳傳遞下去的,因为它們沒有后代。

IO. II. 別洛維奇, C. H. 卡拉金娜及許多其他学者都指出这一自疏过程是由於生活資料的竞爭, 愈弱的个体愈受挤压而死亡的 結果的解釋早就为林学家与植物学家所接受, 是正确的。 在我国森林或我国森林栽培中对立木的这一自疏过程, 基於唯物主义事实的 其他解釋至今尚未有过。

近来注意到有害的根部分泌物在种内关系中可能起有作用。在这方面, G. 格鲁姆 (1955) 的工作極有兴味,虽然他的工作的主要部分是描述通过植物的气体、液体与固体分泌物("Колинов") 对植物的种間影响,但作者也触及种内的这些影响。 如巴巴达克斯与布朗桑特 (Пападакие и Бронзарта) 对亞麻的著作所指出了的,他指出有根据認为根系的加寬加深的趋向並不經常决定於找寻新的根部营养泉源的必然性,但在这种情况下,根部有毒物質的分泌物具有作用。在

一定土壤区域受毒的根,就避入新的、未中毒的地区。在这方面很有 兴趣的是龐尼尔(Боннер) 及他的同事对 美洲 銀 膠 菊 (Parthehium argentatum) 的 研 究。 在 其密 栽中,發現到中間植株的發育次於边 緣的植株。 精确的研究不仅表明由於根的分泌物使之無辜死亡,同 时作者还甚至成功地分出中毒土壤的毒質。他們用肉桂酸鑑定这种 毒素,指出这种毒素对銀膠菊的幼苗是有毒的。

目前还有不少关於在植物种內关系中根部分泌物的作用的可靠事实。但並不排斥它們的作用在立木自疏的某些情况中也許有这种或那种程度的中毒的可能性。这方面的研究工作是極为令人滿意的。正是在自疏时並非全部个体平均遭受抑制,而它們之間有着分化,还不能說缺乏这些有毒分泌物是有利的。發育强盛的个体分化也許是許多生長着的立木对本来的根部分泌物不同的敏感性的結果。但正是在立木的人工稀疏情况下,照例那些被压迫的立木,这些立木原是靠近伐除的立木的,很快地由於这种处理受到調节並改进自己的生長,由此証实自疏作用多半乃是由於水分、矿質或陽光的竞争的結果。

上列事实所闡明了的这些或別的,李森科与他的追随者总是 顧問地不加重視。 在反駁他們的言論中,他們至今未能提出任何新的見解或事实,而顧問地、但無根据地繼續重复自己非科学的、目的論的解釋。然而,他們的論点也由此未能变得令人更信服。

近来,李森科以及某些他的追随者,企圖在树种根部連生的事实中認为是种内無竞争的証据。这是显然的誤解。在靠近生長的某些树种根部的連生事实是早所熟知的。近来对此事实引起了重視。从植物羣落学的观点看来,这种現象值得留心研究。在个别情况下,显然,某些个体佔了便宜,亦即在此处可以說是种内互助,人們知道种内互助是李森科所否認的。但根部連生經常导致这种情况,即如果合生的兩株树或数株树中,一者較强大有力,而别的較弱时,那未前者將更强烈地利用后者,因而产生更大的压迫,亦即乔木的根部連生也是种内竞争的一种場合。無論如何,这种根部連生現象認为是植

物社会中生長着的植株的特別專化的有利特性,是决不可能的。

从死亡或树幹被砍伐的树木有时保留着生活的根系。被鄰近还 在生長的树所利用,致鄰近还在生長的树根与前者根合生在一起的 事实中認为有与承認种內生存斗爭相矛盾的某种本性存在,这是 毫 無根据的。李森科及他的同伴关於这点的全部議論仍然帶有某种目 的論的烙印。

至於所謂繁殖过盛性,如果在动物界常常見到,那末,可以說在 植物界是一回平常的事。

这种現象基本上是生命物質的連續展示。B. II. 維尔納德斯基(Bephagernii)院士对此曾有很好的論述。虽然繁殖过盛既有关於植物界,也有美於动物界,但在植物界中繁殖过盛由於到处的大片植被而引起,这些地方只有植物可以有效地生長,在这些地区它們不至於被人类或自然界的自發力量所毀灭。瀏覽一下由地球上植被总合形成的整个社会中植物的發展情况已經可以了解在它們之中存在繁殖过盛,並在植物之間由於生活資料而引起竞争。因为实际上單一組成的植物社会無論在陆上或在水中几乎都是沒有的,特別是如果考虑一下微生物的話,那末必須說繁殖过盛性並非地球表面某一植物种所具有,而是整个植物界。但是这並不排除也可在多物种組成的社会中經常見到一个植物种的繁殖过盛現象,並由此产生种内生存斗争的存在。这种情况特別在个別的同型同境罩落中亦即在植物社会的構成部分中据有地位。

每一整个植物社会是最紧張的种間生存斗争的場所。而因为任何种間竞争,如我們所見到了的,都伴随着种內竞争,因此植物的种内竞争具有几乎非常广泛普遍的分佈。

可惜我們的哲学家至今尚未能理解这种几乎普遍的、至少在植物界中是普遍分佈的种內生存斗爭。如哲学家 II. H. 諾文斯基写道: "虽然种內斗爭的个別事实可能存在,但它們在生物界的联系和关系的系統中所能佔有的只是最不显著的地位,因此,首先它們只是种內个体間極不相同关系的局部情况。"他更写道:"从为数不多的某些 种內斗爭的事实本身看来,並不帶有必然性的特点,只是由於各种偶然情况的凑合而引起,因此对於确定在物种范圍內个体間的重要关系也就不具有意义了。"(諾文斯基,1955) 如此写法只可能是不了解自然界的人才会这样,他們从来也沒有用生物学家的眼光例如来看看森林或是艸原。

作为反对植物种內有竞争的反駁意見之一在不久以后就开始了 对这一課題的討論,會經提出了那种在植物机体中,据說为了种間生 存斗爭具有特殊的适应,而对於种內生存斗爭,他們却無适应性的見 解。 如果种內生存斗爭存在的話,那末对於它們也就应有特殊的器 官或适应。

虽然,我已論述了这一点,但因为这种異議仍然迫使我重复自己的意見。須知应当記得对种間生存斗爭的适应和与不良生活条件斗爭的适应是在进化过程中作为旨在保存物种的适应而作出的,因为种間斗爭可能引致、实际上也常常引致物种的死亡。但种內竞爭只是地区上植物过度丰富的定居——借助於自然的或借助於播种,或借助於定植——的結果,而照例並不引起参加种內竞爭所有个体的死亡,或抑制它們的繁殖。因此,种內竞爭並不威胁物种的生存。在种內竞爭中生活过来的不是那些有防御其他个体侵略的特殊适应的个体,如同这种特殊适应在种間斗爭情况下經常具有地位一样,而只是那些或者是在一定环境条件下具有更有利的个体的生理特点的个体,或者是处於这些小环境条件中,具有更好利用生活資料可能的个体。因此,机体不可能作出專門的种內竞爭的器官或适应是可以理解的。

承認种內竞爭的存在不仅不与米丘林学說相矛盾,同时不可避免地会从米丘林学說得出种內有竞爭的結論。米丘林学說的基本原理是机体与环境,精确点說是机体与其生存条件,是二者的統一,亦即机体与其生存条件之間有相互联系,有相互制約性。 当某一植物种的个体为其他个体例如同种的个体所包圍时,那末这些后来的个体使得該个体周圍的环境改变,改变了光照、空气湿度、水与矿物营

养的条件,因此,这些改变作用於它或为負的,或为正的,亦即在此情况下,立刻产生那些相互关系:或可能是竞争,或为"互助"。实际上在动物界也同样發生。

因此,我重复一下,承認种內竞争的存在在任何程度上决不至於 与米丘林原理相割裂,米丘林原理需要它們;相反,米丘林原理却与 否認在自然界存在这种竞争和"互助"相矛盾。

討論机体相互关系的我們的哲学家是多少远离真实地理解存在於自然界的这些关系! 也可以哲学家 I. B. 普拉托諾夫 (1954) 对此的議論为証。例如他写过: "在有机界發展的基础上,可能有这样的矛盾,它規定着生命的特具的主要本性的改变,並使之区別於非生物。也就是生物学的新陈代謝的改变。但大家知道新陈代謝首先並非进行於一个物种的机体之間,而进行於机体与其周圍的非生物界之間,以及不同物种的机体之間。"他进一步指出,在少有的情况下,亦即当动物或植物机体發育的最初阶段,或直接依靠母体来营养,或依靠母体貯积的营养物實来营养,I. B. 普拉托諾夫写道: "因此,同种个体間的新陈代謝所具有的情况迅速地促进不生变異,而巩固遗傳性"他进一步作了补充: "不是例外,在种内关系的个别情况中辈竟还能引起該物种个别个体新陈代謝类型的改变"。"由此可見,种内关系虽然可以在新有机体类型發生过程中起有一定作用,但不仅絕不是根本的,同时也絕不是这种新性形成多大重要的因素。"(普拉托諾夫,1954)

这些議論实际上全都是不正确的。

首先,应当指出現今常常論及物种形成的主要过程为生物学的新陈代謝的改变。基本上这是正确的,但实际上絲毫不能說明这一过程的动力观念。須知新陈代謝不仅随年龄而轉变,同时也随某些有机体,特別是植物机体而轉变,甚至在一年的不同季节而改变。因此,在个体發育期間,並在一定的环境条件的情况下,証明新陈代謝机制类型的改变才是正确的。但这种机制类型的改变不可能是新种出现的标准。因为在物种范圍內的不同变种也可能具有新陈代謝

机制的不同类型。实际上,在估計新陈代謝机制改变的程度以确定 物种时,我們可能只好按照形态学的、生理学的与生态学的变異来考 虑它們。因此,想把关於进化动力的任何問題的情况搞清楚,要是只 說它与新陈代謝的改变有联系是徒然無益的。

但 I. B. 普拉托諾夫話中的这些不确切地方,作为一个哲学家来 說是危險可怕的。比別人更糟糕。普拉托諾夫根据某些人对进化过 程动力的爭論,竭力設法来証实种內关系不可能或只可能很少是植 物新性形成出現的原因。但生物学家中誰也不会認为机体的变異性 因素、它們的类型形成不屬於种內关系。种內关系,精确点說就是种 內竞爭、个体間的竞爭,是物种形成的重要因素之一,但这完全不就 是类型形成。

Γ. B. 普拉托諾夫不仅远离个体間的机体相互关系的理解,同时 也远离公正精确的引証作者的話,借此进行論爭,此可於下文見之。

他指出我在某些場合下,把种內竞爭的特点描述为不可逃避的 禍害,他写道: "作者(即苏卡切夫)完全沒有說明"不可逃避的祸害" 以怎样的方式可以促进物种的繁荣。"(着重点是普拉托諾夫加的) (順便說說,我沒有在自己著作的这一部分中討論到繁荣)。

他更写道:"常見於自然界的現象不能描述为不可逃避的禍害。" 进一步說: "……如果已經把种內斗爭描述为'禍害',那末它也决不 是不可避免的,而只不过是有最低限度的可能"。但实际上,我所指的 由於繁殖过盛的种內竞爭如下所写:"种內斗爭只是由於某一物种在 一定的局限的地区中由於产生極多的种子的結果而开始發生。为了 物种的生存,种內竞爭不是必要的;种內竞爭对於那些遭遇繁殖过盛 情况的个体有害。 这是不可避免的禍害,它是由於几何級数繁殖的 結果而产生。但种內斗爭照例說来並不引起参加斗爭的全部个体的 死亡,也就因此並不威胁物种的生存"。显然,我所說的不正就是 Γ. B. 普拉托諾夫所認为的。

自然,在反对自然界存在种内生存斗爭上, Γ. B. 普拉托諾夫目 前並未盲目跟随李森科是很好的; 他是承認它的。 但只从 Γ. B. 普 拉托諾夫文中所已作出的引証与我的文字相比拟,以及从上述解釋与从他的对此問題的其他議論(此处限於篇幅不列举)看来可見作为哲学家的普拉托諾夫是如何远离他所研究現象的理解。

問題在於自然界机体間是否有种內斗爭或是沒有,这不是一个純科学的、学院式的問題。这个問題正如我所說过的,具有特別的实踐意义。普拉托諾夫的不正确的解答引致我国国民經济巨大的为害。举一个还不算远的例子。李森科和他的追随者在建立护田林帶时曾宣傳所謂树种的叢播培育法,据李森科及其追随者的話来說,是基於种內無竞爭的理論的,而在許多年內应用此法並未获得肯定的結果,却化費了我們的国民經济不下於数百万盧布。

幸而大多数我們的农艺实踐家、园艺实踐家和蔬菜栽培实踐家們都有着健康的思想,且基於自己生产的經驗並不追随这个 臆造的种內無竞争的理論,他們並繼續考虑到自己的整个科学活动。

然而讀者可能会向我發出問題。你的以"有机体的种內与种間相互关系"为題的报告,你只說到有机体間的生存斗爭与互助,难道沒有中性的相互影响?須知李森科写过:"……个体的种內相互关系,能不接近於斗爭概念或互助概念,因为所有这些相互关系都只是在於保証物种的生存。"

对此問題我已作了解答,即毫無区別的相互关系是完全不可能的。不然,这些相互关系我們也不能确定。对此应当加以补充,須知机体的相互关系,如果它們是有的話,得归結於直接的或常是間接的(通过在中間的)新陈代謝或能。自然这种新陈代謝对处於与环境一定的关系之下的个体就改变了这种关系,对相互关系上它們也就不可能因此毫無区別。这种新陈代謝还能引致不同的个体由於自己的个体特征或小环境特性开始按不同方向發展:某一較好,其他較坏。这就引起它們的压迫,而常至於死亡。对於个別的个体,这种新陈代謝与能的改变是遭致灭亡的,但整个种羣由於这一过程却佔了便宜,因此,这对於物种是有利的,决定它們使能更好地适应环境,使物种發展处於前进中。

如果承認在自然界既存在种內竞爭也存在种間竞爭,那末問題就产生在怎样从它們产生愈来愈紧張的大量牺牲者。达尔文肯定地說,种內竞爭更是殘酷。然而已經有二十五年多了,苏联学者曾指出达尔文在这方面是不正确的。看来問題是愈复杂了。实驗說明可能有三种情况:(1)二个或数个种(成对种 Партнеров, 如格魯姆所称)在混合播种时較單純播种时發育好。这种情况与达尔文的观点相符,但見得較少;(2)从二个成对种,一个对混播感应较好,而另一者对單純播种感应較好,这是最常見的情况;(3)二个种对混播感应都比一个种播种差。这种情况見得不多且最可能是根部分泌对二个成对种有不利的联系。

从仅經指出的全部情况看来,我想,正确的理解种內与种間关系 对於植物羣落学以及对於很多国民經济部門显然具有何等重大的意 义。但从达尔文时代起,特別热心於討論如我在开头所已說过的这 些关系对於物种形成、对於进化論的意义。

实际上,在現代的苏联学者中,显然沒有任何人否認自然选擇对 於机体进化的意义,但也在理解与評价选擇的意义,与关於自然选擇 在机体生存斗爭中的作用以及它的各种形式上都未有統一的論点。

在研究这个进化論的最重要問題之一时,我們首先要推向进化 的适应性特点的問題、适应性产生的原因問題。

当然,决不能否認在自然界中适应的变異性是广泛的。 农艺家 与林学家的日常試驗看到在自然界中机体遭遇到新的环境条件通常 都对新环境起了适合的适应的变異。

这个有机体对环境的惊奇适应性是一个謎,經常非常有兴味地 吸引着人类。他們企圖解答这个長期被宗教以目的論立場所佔据的 謎。企圖繼續解答这个問題,虽然也有学者作了解答,但畢竟長久地 帶着目的論的特点。

只有达尔文才科学的闡明这个現象。这方面应該承認是他的主要功績。 季米里亞捷夫与其他学者站在唯物主义的原則上,坚决地拒絕了对这种現象的任何目的論的解釋,並理解到在現代的科学水

平上对於闡明这一进化特征的唯一道路主要是由於机体生存斗爭的 結果而产生的自然选擇学說。他們拒絕了任何認为在环境影响下机 体的合理性变異是永远奠基於生物中,以及認为是从头开始的特性 的趋势。一般認为达尔文学說的主要評价也就在於他有可能闡明进 化的适应性特点,沒有採用任何內在的力量。

实际上,近十年来甚至更早些,李森科就說到他發展了米丘林的 論点,他着重指出在环境影响下生物适应性地变異的能力。 他認定 普遍的合理性的表現是固有的本性。

自然,这个問題不仅是生物学的問題,也是哲学問題。因此这个問題的决定性言論应当屬於我們用辯証唯物主义立場来研究生物学的哲学問題的哲学家。

实际上,我們的哲学家們在李森科声明之后並非慢吞吞地發表自己的意見,最完整的表現於 B. M. 卡加諾夫 (1955) 紀念米丘林的論文中。他的論文的很大部分是放在这个基本原理上: "現代米丘林-巴甫洛夫学說的解答生物界的合理性問題的原理是建立在承認与証明机体有适合的遺傳的变異性的真实可能上。" (第327頁) 因此之故,他試問道: "但是机体的这种对环境的合理的适应性是怎样建立起来的,它是否是决定於'机体本性'的不定变異的偶然結果,抑或是环境对机体作用的有規律的、适合的結果?"

作为对这个問題的回答,卡加諾夫引用米丘林选集中的文句: "自然界轉变着生物有机体的構造,使它們适应於环境条件"。由此他 作出結論,米丘林認为在环境的影响下,合理的、适应的变異能力是 生物界所普遍固有的本性。

正如我在上面所說过的,对环境适应性的、合理的变異性实际上是广泛存在於自然界的。 站在达尔文立場的唯物主义学者,根据达尔文主义的基本原理闡明了它的存在,即机体与所有它們的反应在一起的特性有历史性的解釋,即只有自然选擇才能在現代的科学水平上唯一的、不帶目的論色彩、真实地科学的解釋机体对环境的适应的反应能力。机体的适应性变異的特性本身在环境作用影响下建立

起来且只有在自然选擇的过程中建立起来对於机体类型才是最为有利的反应。从李森科的意見中可以理解他不是站在这些立場上的。 無論如何从他近来所写的其他結論中决不是这样做的。

B. M. 卡加諾夫也在自己的論文中認为他在这方面与李森科一 致是有理由的。

但是沒有任何根据認为米丘林是站在这样的目的論的立場的。 B. M. 卡加諾夫所引証的米丘林著作中的話並非真的如此想。米丘林是知道一般的唯物主义的立場的,决不可能怀疑他所說的自然界改变生活有机体的結構,使它們适应於环境条件,所指的不是別的,正是自然选擇。

我已触及关於对环境的适应的、适合的变異性特点的問題(虽然,它也並不直接屬於机体相互关系問題的),以确定自然选擇的作用,因之,也得以确定种內生存斗爭在机体进化中的作用。

由此可見,考虑这个問題的全部,我們应当說只有自然选擇才能确定进化过程、适应性过程、前进过程的主要方向。

在現代的我們的知識情况下不承認这个原理,我們就不可避免 地会远离科学的道路,轉到站在目的論的立場。

从上所述,也很显然,所有被研究的机体相互关系都是具体地在 自然界观察到的事实。自然,应当正确地依靠观察与实驗来研究並 認識自然。但是从它們所得到的解釋与結論,它們的概括,为了在方 法学上的正确,应当基於唯一的正确的哲学,辯証唯物主义的哲学。

因此,如果**哲**学的討論,虽然就外表看来似乎是肯定可靠的,但 並非基於真实的观察事实,那末無論如何他們是站不住脚的。

我在上面已經指出,由於我們的哲学家常不知道或不理解机体相互关系問題的事实方面,引致不正确的甚至是有害的判断。 我不得不对此作再一次的敍述。

关於生存斗爭及其在机体进化中的作用的討論,在 U. II. 普列森特与 II. A. 哈里夫曼(1955)的論文中特別加以指出。我們認为如下: "在探討物种和物种形成問題之时,米丘林生物学首先完全和澈底地

把有机界發展的学說,从由馬尔薩斯的兵器庫中偷取来的,按其实質是反科学的,达尔文所同意的,基於繁殖过盛所产生的种内竞争公式中解救出来。今天,於理論和实踐上都証明了,与达尔文的見解相反,由繁殖过盛理論中所提出的种內竞爭不仅仅不是进化的基本动力,而且在物种存在的常規上也不存在有种內竞爭,乃因竞爭对該种是有害的,对其敌人則是有利的。我們記得,以后,当达尔文以唯物主义的拥护者出現於生物学中时,他本人也已除却了后面这种說法,並且証明說,种的个体沒有也不可能有一个特有的对自己有害,对其敌人有利的特征。

达尔文由馬尔薩斯的公式中所得到的,就实質講,作为該种存在 的最冗長的罪惡的个体繁殖事实上是为了物种的幸福,是物种的保 存和繁荣的基本和决定性手段之一"(第1610頁)。

在这段引文中任何一个原理都是不正确的, 並証实了对自然界中如何發生这些过程的無知与不理解。

第一,自然界中种內竞爭与繁殖过盛的观念並非从馬尔薩斯的 倉庫中剽窃得来,关於这点,很多人在馬尔薩斯以前已經說过(富蘭 格林 Franklin,德康多尔 De-Candolle 及其他等人)。宁可較正确 地說,馬尔薩斯的关於繁殖过盛与生存斗爭的思想是採自关於自然 界这一現象的著作,並不合規律地帶入於人类社会中。

第二,从引文得出結論,即达尔文的种內竞爭公式是从繁殖过盛 出發的。如同我在上面所已指出了的,达尔文認为种內竞爭不必与 某一物种的繁殖过盛性有联系。

第三·有人从理論上与实驗上証明由於繁殖过盛产生的种內竞爭不仅不是进化的主要动力,同时在物种生存的常規上,不可能有这种竞爭,因为这种竞爭对該种有害而对敌人有利。这种說法是不正論的。但这种理論上的与实驗上的是誰証明了的?我不知道。引証已被証实,在科学著作中已被一般接受的許多著作中所沒有,在 II. II. 普列森特与 II. A. 哈里夫曼的論文中也沒有 如果所指的是李森科的关於可克薩盖茲、橡树叢播法等等的論文,那末在文献中已經指出,这

些工作在公正的加以研究时,恰恰說明存在生存斗爭。

第四,是的,达尔文說过物种的个体不可能沒有一个物种所特有的特性,这个特性对它有害。而只对敌人有利。而在这点上他是对的。但須知問題是关於种內斗爭,那末对於它們重要的不是物种所特有的特性,而是在这些或其他特性的个体差異,引致具有特性的个体使在具体的条件下添增生活力並生活着。

第五,从哪里可以了解达尔文的个体繁殖是某一物种生存的最 冗長的罪惡? 达尔文和他以后的很多学者不止一次地肯定了物种的 过多繁殖、特别是在种間生存斗爭中不大稳定的物种的过多繁殖是 在这种生存斗爭中有利於它們的特性之一,使它們易於逃避敌人,获 得較好的居住地位。这些就使得有更大的机会达到最适者生存。

最后,由於上述引文而开始的特殊的反对意見,是認为所有被分析的不正确的原理都是米丘林生物学的成就。大家知道米丘林从来 也沒有写过类似的話。

也許說多了些,上述兩位作者的所有这些特殊言論都是与他們在論文开头所提出的問題"根据达尔文的見解,进化的动力是怎样的?"有着联系。他們写道:"通常認为进化的动力,照达尔文的意見,乃是适者生存"(第137頁)。他們更写道:"这不完全对,因为达尔文虽也會說过"适者生存",但他也說过在竞爭的斗爭中所保留下的种的类型的生存。而——他說——这就意味着極端偏离於常态的种的类型在生存中具有决定性的优越性,而中間类型由於它們对生活条件的适应力不大,由於它們处於中間狀态,由於这一点,它們从兩方面受到竞爭的压迫而死亡了"。

多 自然界中机体相互关系的真实过程能不能成为难以理解的实例!看来,作者們只是根据了达尔文在其著作中所作出的性狀分歧的圖式。但須知圖式是闡明生存斗爭与决定它的自然选擇的概括結論。但在自然界,这一过程确是如此进行的。 机体处於一定的具体的环境条件,亦即土壤、气候与同种或别种影响於环境的机体的存在等环境条件进行着具体的生存斗争,特别是为更好的利用环境的竞

爭。但在竞賽的斗爭中如何才能保存个体呢?那些在該具体条件下斗爭的个体更为有力,亦即更适应於該具体条件。这些个体压迫、抑制、排挤不大有力、适应差的个体。如果是拥有單个物种的社会(同型同境羣落 Спнузна);那末任何分类范疇都屬於一个物种;如果是拥有多个物种的社会,那末胜利者与被战胜者可能都屬於不同物种。

因此,把"最适者生存"的公式与"在竞争的斗争中所保留下的种的类型的生存"公式对立起来,只有不懂得、不观察、不研究自然界中机体的相互关系才会如此。这二个公式所說的是同一現象。

U. II. 普列森特与 II. A. 哈里夫曼在被分析的論文中是如此歪曲 了关於进化动力的問題的原理,以致甚至於"哲学問題"杂誌編輯部 对这一論文作出必要的註釋来配合,以致編輯部不根据馬克思主义 对达尔文主义的态度来解釋它們。我敢於論述刊載在哲学杂誌上的 这一論文是因为它是生物学哲学方面論文中最新的,也因为李森科 的观点繼續为他的思想上的同伴所坚持,無視於对他們的批評。

我的报告不可能全面的来闡明这个在机体共同居住情况下的机体相互关系的大問題。我的必要任务更是有限。我要竭力指明,第一,虽然这些关系的解释与新的科学資料相符合,並要求一定的确定甚至是某些修改,但基本上它是正确的;第二,如果以达尔文的意思来理解生存斗爭与互助,那末它們在种間关系的情况下有,在种内关系的情况下也有;第三,自然界中植物界与动物界前进进化的主要动力是以所有形式出現的机体間的生存斗爭,因为生存斗爭类型引起个体的竞爭与竞赛,因之,自然选擇也是最适者生存的結果;第四,如果在达尔文理論中,自然选擇是生存斗爭的結果,且更有一些問題要求作进一步的研究与补充的話,那末在現代的科学水平情况下它畢竟还是唯一的科学理論,滿意地闡明进化的适应的、前进过程。直到現在所有其他的这一过程的原理的解釋曾經是而現在还是或为神学的或为目的論的。

此处所分析的問題是复杂的。生物学家很需要哲学家的帮助。 但直到現在刊載在"哲学杂誌"上的論文是不能使生物学家滿意的。 为了研究生物学上的哲学問題,应当很深入地加以准备,既在哲学方面,也在生物学方面。膚淺的知識,無論是哲学領域內,無論是生物学領域內都是不足的。然而,今天的科学过於分化了,大大的專門化了。要求哲学家們有对於討論一般生物学的問題有必要的生物学知識是困难的。解决这种困难的唯一出路就是生物学家和哲学家集体的共同的来研究这些問題。

#### 摘 要

作者在本文中对研究植物界中的种内关系这一問題的許多著作,多数是哲学家們——Γ. B. 普拉托諾夫、И. И. 諾文斯基、B. M. 卡加諾夫、И. И. 普列森特及他人所写的且为 1952 年后所發表的論文作了批判性的評論。

作者所得之主要結論如下所述。

达尔文所作的同种植物間关系的解釋,虽然在种內竞爭並不經 常更剧烈於不同种之間的竞爭这一观念上需要作某些修改,但其理 論的其余部分是正确的。

对此論題的近著的分析——包括上述哲学家們的著作——給与李森科院士及他的支持者反对承認共存的同种植物之間存在生存斗爭的異議加上不可靠的証据。他們摒棄达尔文的基本理論,即在植物界以及动物界的前进进化的动力,在自然情况下是处於各种生存斗爭形式的机体之間的生存斗爭,在生存斗爭形式中表現自己,因为所有生存斗爭形式必包含於物种之內,亦即自然选擇是最适者生存的結果,保留下来的也是强者。在科学的現代水平上,只有科学的理論才能給进化的适应的、前进的过程以满意的解釋。所有到現在为止所提出的其他对此过程的解釋过去是現在还是神学的或目的論的。

#### 参考文献

- [1] Бядлович Ю. П. (別洛維奇), 1953. К вопросу о внутривидовых и межвидовых взаимоотношениях. Вюлл. МОИП, сер. биол., т. VIII (2).
- [2] Катанов В. М. (卡加諾夫), 1955. Некоторые философско-теоретические вопросы мичуринского учения. Журн. Общ. биол., т. XVI, вып. 5.
- [3] Карандина С. Н. (卡尔拉金娜), 1953. Рост селицев дуба в зависимости. от поличества выселиных в лушку желудей. Сообщ. Ин-та леса АИ СССР, вып. 1.
- [4] Новинский И. И. (諸文斯基), 1955. О философских основах биологической теории вида. Вопр. филос., № 4.
- [5] Платонов Г. В. (普拉托諾夫), 1954. Некоторые философские вопросы дискуссии о виде и видообразо вании. Вопр. филос., №. 6.
- [6] Презент И. И. и Халифман И. А. (普烈森特与哈里夫曼), 1955. Некоторые вопросы теории биологического вида и видообразования. Вопр. филос., Кн. 5.
- [7] Сукачев В. Н. (杰卡切夫), 1952. О внутривидовых и межвидовых взаимоотношениях среди растенай. Бот. жури., №. 2.
- [8] Сукачев В. Н. (苏卡切夫), 1953. О внутривидовых и межвидовых взаимоотношениях среди растенай. Сообщ. Ин-та леса АН СССР, вып. 1.
- [9] Шмальгаузен И. И. (施馬尔高贊), 1946. "Ракторы Эволюции."
- [10] Grümmer G. (格魯姆), 1955. Die gegenseitige Beeinflüssung höheren Pflanzen-Allelopathie, Jena.

(俞志隆譯自"莫斯科科协公报,生物学之部" 1956 年第2期;著者: В. Н. Сука св; 原題: О внутривидовых отношениях в растительном мире; 原文出版者: 莫斯科大学出版社)

## 繁殖过盛与生存斗争

#### II. H. 高里湼維奇

(原文載於苏联"哲学問題"1956年第4期)

机体与外界环境之間存在着不同种类的相互联系。由於外界环境因素在机体中有着或多或少紧密的相互关系,可將之区别为二大类: 机体生命活动的源泉与机体生命活动的条件。 机体生命活动的源泉是指被有机体为形成軀体及新陈代謝所同化与必需的物質和能。机体生命活动的条件是那些促进或阻碍机体正常的生理过程的自然因子或因素,並且这些因子或因素的有利影响或不良影响随其絕对的与相对的数值的变动而变动。

高等植物生命活动的源泉是土壤水分、土壤溶液中的矿質、大气的 CO<sub>2</sub>、大气的氧及太陽能。

机体生命活动的条件是大气、土壤或水的温度(依机体所居住的 这些基質为何种而定)、大气与土壤湿度、气团移动(風)、大气压力或 水压、光的狀况、土壤結構与密度等等。

某些外界环境因素,本是机体生命活动的源泉,在一定情况下变为同一机体生命活动的条件。更有进者,某些外界环境因素对某一机体为生命活动的泉源,而对另一机体仅为生命活动的条件。最后,外界环境因素中間还有像大气温度这样的因素,它仅可能是生命活动的条件,永不可能是机体的生命活动泉源。生命活动的泉源被机体吸收了,消化了或者是同化了;生命活动的条件不能被机体吸收,也就是不能被机体所同化。机体对生命活动的条件只是适应。

我們把繁殖过盛看作在一定条件、地点与时間下完成於自然界的相对的現象,我們專門应用繁殖过盛的概念作为自然科学的概念,

把它应用於动物界与植物界的現象,亦即应用这一概念为生物学的 涵义,但不能应用为社会的意义,这种意义,它並不具有。我們絕对 摒棄在社会上散播这一概念,像馬尔薩斯主义者所做的那样,也一样 的摒棄把这一概念散播到整个自然界。下连我們將主要局限於植物 界来談繁殖过盛与生存斗爭。

繁殖过盛是居住的局部情况;它与定居密度有密切关系,这取决於單位面积上生物的数量、个体的大小以及对生命活动源泉的吸收强度等。

繁殖过盛也是任一动物种或植物种在該地区与該时間內由於在該地区与該时間內生命活动源泉的不足而引起的过剩。这种过剩或繁殖过盛的特征是未屆衰老的机体,由於生命活动源泉的不足而死亡,生命活动源泉的不足是由於其他机体的吸收而引致的。繁殖过盛与利用共同生命活动源泉的机体之間的生存斗爭,是兩个相互联系的現象。生命活动源泉的斗爭發端於当某一机体的生命活动源泉的吸收开始在数量上被其他机体限制吸收这些生命活动源泉至它們最大限度的需求量的时候。但这种生命活动源泉的限制吸收还不能引致个别机体的死亡,生命活动源泉的斗爭並不轉变为生存斗爭,而在此时的定居情况下,机体吸收生命活动源泉虽也被限制,不能达到最大限度的需求量,但尚未由於不足而死亡,这就不出現繁殖过盛。

生命活动源泉的不足可由下列原因而产生:

- (1) 由於利用相同生命活动的源泉的机体数量增大的結果,且 这些机体不一定是一个种:它們也可以来自不同屬、科、目、綱及門;
- (2) 由於个別的个体生長量的增長及其对生命活动源泉需求量 的提高的結果;
- (3) 由於机体比其自然的恢复或补充, 更强的吸收生命活动的源泉。

繁殖过盛仅能产生於利用相同生命活动源泉的机体中間。

作为自然界的現象,繁殖过盛是有各种各样形式的。 兩类最重要的机体类率:高等植物与动物中的繁殖过盛形式間的差别 是最为

重要的。

高等植物中間的繁殖过盛,其間生存斗爭的尖銳化主要是由於 在該气候帶中或当地的生命活动源泉呈現为最受限制,即最低的时 候發生。

在水湿足够之区,繁殖过盛主要是由於植物对光的尖銳斗爭而产生,因为該处植物多半感到光的不足。在缺乏水分之区,就可看到植物对水分的斗爭最为尖銳。

植物生長的区域相补性(Зональная сопряженность)是由於許多因子作用於植物生長的結果——产生了在不同气候帶中植物地上部分(叶、莖、幹)与地下部分(根)比例的显著差別。

在沙漠与半沙漠地区,其特点是空气与土壤的干燥以及光的充足,植物的地上部分,其大小比其地下部分小数倍,以至於表现为分散的、稀疏的直立植物。

在具有足够水湿的气候帶,植物的地上部分与地下部分的比例 則呈反比例:在水湿足量地区的地上部分一般大大超过於其地下部 分的大小。树冠紧密,由其叶片組成7—15 層的树冠。

为了避免对上述的植物生長的区域相补規律性的形而上学的解 釋起見,我們指出二个决定它們的主要原因。

植物生長由三个时期組成:(1)細胞分裂;(2)細胞延長;(3)細胞分化,並自細胞形成組織。前二时期,实使植物細胞增長增寬;在第三时期,生長就停止了。

促进細胞分裂与延長的必要条件是在受水与溶解其中的物質完 全飽和时足够的、可能的膨压。

在沙漠与半沙漠中,頂端生長点(分生組織)的足度的水飽和性 由於大气相对湿度的低下以及土壤中水分少量的貯藏总是稀見的。

因之,在沙漠与半沙漠中,沒有使細胞迅速分裂与延長——使植物迅速長高的必要条件。除此之外,充足的陽光,可以促进自幼年細胞形成組織,很快地使細胞延長終止,从而抑制了植物的向高生長。

在有足够水分狀况的地区,較之缺乏水湿之地更有利於植物地

上部分的生長。 这种狀况决定於植物的密立与相互間的遮蔭, 这也 促进植物的向高生長的加强, 因为在細胞延長之末的生長的 第三 个 时期, 微弱的光照使之迟迟到来。

沙漠区域的植物根系与潮湿区域植物根系相比, 其强 烈發育的原因之一是前一情况在形成地上部分中, 耗費了較小部分的植物 所已制成的有机質, 而对於根則遺留下較多的有机質之故。

由於植物生長的区域相补的特性,植物中間繁殖过盛現象,如在 足够潮湿的情况下,多半系呈植物地上部分的繁殖过盛而出現,如在 潮湿不足时,則多半系呈根系的繁殖过盛狀況而出現。

在介於足够潮湿地区与潮湿不足地区的气候帶中,生長的区域 相补性系呈上述情况間的过渡类型而呈現:这些地区可能同时發生 地上部分与地下部分的繁殖过盛,或先是植物一个部分的繁殖过盛, 而后是植物另一个部分的交替的繁殖过盛。

由於共同区域的潮湿或光照程度条件的地方性漏差,引致植物生長的区域相补性的相应改变,因而也引致植物繁殖过盛表現类型的改变。例如,松树的生長的相补性,在足量潮湿区域的深層干沙中,趋向於根的較强發育,而地上部分的發育較弱,相反,在半沙漠地区,在利用当地水溝使之潮湿的西方,植物生長的相补性則具有向北轉移的特征。

植物中間繁殖过盛發生的發端时机是营养生長时期的开头——幼芽出現,幼芽舒放並形成叶子、莖、小枝及枝条的生長。

在某些区中間,單位面积的自然农地上(艸地、森林、艸原)在一年的营养生長时期的开头有这样数量的植物幼苗,和繼續营养生長的多年生植物,这些植物由於生命活动源泉的限制,不能保存,而实际上,在整个营养生長时期中就不能保存。

在营养生長过程中,在植物生長及植物中間相互影响过程中,經常發生相对的(暫时的、局部的意思)繁殖过盛,自植物間为爭取生命活动源泉的斗爭,轉变为生存斗爭,因而导致部分植物的死亡。

由此可見,植物中間在营养生長时期的相对的繁殖过盛。不仅由

於植物生長与發育的結果而經常發生,也由於部分植物与整<sup>華植物</sup>的死亡而經常消灭。

更概括地說:相对的繁殖过盛(仅指此处而言)——这不是堆积,不是靜止狀态,而是相互影响着的机体在利用一个或数个对它們說来是共同的生命活动源泉的經常改变着的关系;由於这种被称为生存斗爭的相互影响的結果,部分机体被夺去了生命活动的源泉而死亡,不能完成該种机体發育的完全的生命週期,沒有活到由於老年而自然死亡。相对的繁殖过盛是能动的現象,但不是毫不間断的增長。这种現象是互相矛盾的,是与其他因子相互交織的。其矛盾性在於它們本身也帶有因机体死亡率提高而引起的消灭現象。 Ф. 恩格斯把繁殖过盛描述为:"自然界如此浪費地所产生的胚种之不可胜計的巨量与一般能够到达成熟地步的小量中間底矛盾"(Ф. 恩格斯:"反杜林論",原文本65—66頁,1953;中文本78頁,三联出版)。

以森林为实証說明。森林中树木数量的改变,从幼林出現时起直至衰老来临止,在極大多数情况下,仅是由於相对繁殖过盛並由这种繁殖过盛而引起的純粹的生存斗争的結果所致,而非物种 遮蔽的偶然情况(吞倂)所致。

必須区別植物中間的二种繁殖过盛形式: 死亡的与变动的。 繁殖过盛的变动形式区别於死亡形式者在於其死亡並非整个社会的个体,而只是其部分。

植物中間純粹的死亡的繁殖过盛,可發生於社会中每一个体的發育条件完全一致的面积上,如土壤的物理特性、化学組成、潮湿情况完全一致;土壤的表面均匀;植物分佈得絕对匀等;它們的光照一样;植物的遺傳特性沒有一些極微細的个体差異等等。

如果在这样的条件下,幼年植物据有的單位面积远比其在成年 狀态所佔有的面积为大,則在一定的植物發育时期会不可避免地由 於繁殖过盛未完成其完全的發育生命圈而致这些植物全部死亡,因 为沒有一株植物不具有超过其他植物获得胜利的机会。

在自然条件下这种繁殖过盛形式的可能性是很少的。产生死亡

形式的繁殖过盛的最有利情况是在农業中。但农業可以运用各种措施,不使产生繁殖过盛。

至於变动形式的繁殖过盛,可作为特征的是植物在其發育过程中的分化:由於生命活动源泉沒有保証,个体死亡,由於生命活动源泉沒有保証,个体死亡,由於生命活动源泉得不到保証,个体的生長与發育受影响。

应当指出,相互影响着的植物須知就是个体間为生命活动源泉的斗爭,同时,彼此抵御以免不良的生命活动条件的影响。

自然界中,同种与不同种个体之間直接与間接的相互影响是極 为多方面的,是非常多样的。机体間相互影响現象的若干部分可以 用生存斗爭这个共同名称結合在一起。

就其特点来說, 生存斗争現象是不一样的。

可以指出,相互影响着的机体間的生存斗爭現象有三大类。 第一类生存斗爭現象是同种与不同种的个別机体間由於繁殖过盛时共同生命活动源泉而引起的斗爭。 这类生存斗爭現象的特征是某部分机体控制了某种生命活动源泉,而同样利用这些生命活动源泉的 別的机体,获得生命活动源泉的量很少,由於这样的結果,机体的發育生命圈,因数量不足或別的生命活动源泉量不足,进行停止,产生不正常的現象並早死:它們並未活至老年,而由於虚弱而死亡,由於飢餓而死亡,均由於破坏有机体生理机能的正常方向而引致。

第二类生存斗爭現象是个体間的斗爭,这些个体是以生命活动源泉作为食料的。也有被前面的个体作为食料的个体,換言之,二者的关系是被吞食与吞食的个体之間的关系。

第三类生存斗爭現象是寄生現象。

为夺取共同生命活动源泉的种内斗争,如同种間斗爭一样,系借某种或某些种的所有个体所共有的一般的吸收生命活动源泉的器官之助而实現,沒有这些器官,任何一个个体是决不能生存的。除了为生存要依靠一定的生命活动源泉的本性与吸收这些生命活动源泉的器官以外,对这类生存斗爭並不需要任何别的器官、适应或本性。在

全部生物种内,特别是树木中,这类器官就是吸收太陽能与 CO<sub>2</sub> 的叶,和吸收来自土壤的水分与矿質的根。

在林分中, 並非每樣树, 也不是每片叶子都处於相同的光照条件。林分的密度、叶的光照程度与树叶吸收 CO<sub>2</sub> 的数量都是紧紧相連的因素。

处於惡劣光照条件下的树木,吸收 CO<sub>2</sub> 量少,由此,其地上部分变成軟弱,而根部則强烈地落后於生長。 光与水的滿足更惡劣树木的生長就落后。而归根到底,被压抑的树木在形成叶子与呼吸上每年的有机質消耗量不能以同化作用来补偿时,树木就瀕於死亡。

这些植物生理学中所熟知的最起碼的真理,却被种內無斗爭学 說的拥护者所忘怀了。

这种观点,特别表現在 B. Г. 聶斯切罗夫(Hecrepon) **著的 1954 年** 第二版的"林学概論"教科書中, B. Г. 聶斯切罗夫拒絕已經制定了的 林学的概念与原理,提出种內無斗爭的个人的論証。

他写道:"到現在为止,在林学教科書中一般总是把树木的稀疏 現象簡單地解釋为繁殖过盛,森林的过度茂密並由於陽光温度、水分 与食料从此引起种內斗爭。其結果之一表現为胜利者获得了生活的 权利,而別的——被战胜而死亡。(温度是生命活动的条件,植物不 会因温度而进行生存斗爭。——本文作者)

但在这样解釋时,忘記了树木本性遺傳的(?!)变異性和忽略了 树木增長条件的个体特点"(B. Γ. 晶斯切罗夫"林学概論"第41、42 頁,1954年)。

树木的个体特点与其增長的自然小条件的差異恰好正是树木在 其發育过程中分化与变动的繁殖过盛类型下生存斗爭的必备条件 (关於这点,誰也不会忘記)。如果树木不具有个体特点,而生長的条 件到处却是完全一样,那末只可能是死亡类型的繁殖过盛。

B. I. 聶斯切罗夫更使最重要的辯証法原理处於怀疑的境况:自然界現象的相互联系,相互影响。他写道:"树林稀疏的原因被認为是一者对另一者的相互影响,特别是,这被認为是由繁殖过盛而引起

的种内生存斗争的类型"(同上,第42頁)。

树林稀疏的原因,自然,也可因人类进行森林料护而落叶,也可因森林昆虫的襲击而掉落,也可因木材真菌病害而稀疏,也可因恶劣的气象条件而引致。但当这些条件不存在或当它們的影响不显著时,一树对另一树则經常不可避免地相互影响,具有由於生命活动源泉而引起的生存斗爭形式,其中也包括种内生存斗爭,与树木的个体特点及其生長的小条件相結合引致森林中树木的分化,且是無数树木死亡的原因。

B. I. 聶斯切罗夫在"林学概論"中宣称繁殖过盛、生存斗爭、和一树对另一树在一起相互影响的种內斗爭都不存在,但又逃避闡明森林中这类重要的在生長范圍內树木数量有規律的縮減現象。

他並不闡明这种現象,並不揭示其原因,而只是簡單地断定"一公頃地上在其生命开始之初,有50万至100万株树,幼林时一公頃为一万株,而至成林則仅500株了——这不是繁殖过盛,而是正常現象,正常的立木密度,沒有它也就不能成为森林"(同上,第42頁)。但問題是为什么在一公頃地上从50万株至100万株的树苗,經50—100年却只留下500株成年的树,B.Г. 聶斯切罗夫避不作答,因此,显然可見,他否認由於繁殖过盛引起的生存斗爭,他無論如何也不能解釋这个問題。

1948 年以前, B. Г. 聶斯切罗夫承認种內斗爭, 从1949年至1954年("林学概論"第一与第二版), 他坚决站在否認种內斗爭的立場上, 而在1956年的第一期"哲学問題"杂誌上所發表的論文中, 叉重新承認了种內斗爭在自然界据有地位。就这样三次的無原則的交替論点, 使 B. Г. 聶斯切罗夫本人的看法轉变而为辯証法科学的思想, 他宣称: "承認种內斗爭与承認互助, 否認它們与进一步揭露类型联系的多样性, 都可認为是生物科学自低級水平到高級水平的發展历史鏈索的連續环节"("哲学問題"1956年第1期, 第145頁)。

令人难解的只是在 B. F. 聶斯切罗夫的科学著作中怎么出现 这个"进一步揭露类型联系的多样性"的高級阶段。可能, 他在論文中

所列举的植物相互关系的事实是指个体間的相互关系和与环境間的相互关系。但这些事实在"林学概論"(1949年,1954年)中他还一再提及来否認种內斗爭。这些或类似的事实,在 Γ. Φ. 莫洛佐夫(Морозов, 1914年)的"关於森林的学說"以及 М. Е. 特卡欽科(Ткаченко) 著的"林学概論"中也提到过。因此,В. Г. 聶斯切罗夫所应用的"生物科学發展的历史鏈索的連續环节"納入这样一个公式中一一承認种內斗爭,否認种內斗爭而后又从新可羞的承認。这个公式,也許表現深刻的主观感受,决非标誌着科学發展自低級水平到高級水平,而是迅速的退化,某些学者表現为原則性的不稳定。

注意一下 B. Г. 聶斯切罗夫在"哲学問題" 1956 年第一期發表的論文。在該文中, B. Г. 聶斯切罗夫並未提及他所作出的进化論,却希望授意別人,这种进化論是不应該作的。他写道: "二中擇一的爭論——种內斗爭与种內互助的有無爭論是已經不合时代要求了"(第145頁)。这个爭論可以認为已經过时,如果 B. Г. 聶斯切罗夫的所有附和者都說"种內斗爭与种內互 助是 存在的", ——而聶斯切罗夫自己也声明他在"林学概論"中对种內关系解釋的錯誤的話。但 H. H. 普列森特与 II. A. 哈里夫曼("哲学問題" 1955 年第 5 期,第 163頁)繼續断定在理論上与实驗上証实种內斗爭的不可能性。

每一机体都是統一的。所有机体的統一只是一种方式: 机体的所有各部相互間有生理的联系。虽然所有机体的統一同是一种方式,但在不同类型的机体的統一帶有不同的特点。不同机体的統一表現在器官与組織的或多或少的分化与專門化上。但統一也表現在同类器官的复合性,它們的相互联系性,表現在調节能力上,或表現於器官的唯一性、不变性与不可恢复性;表現在平行性,也表現在同

类器官复合性情况下,生理过程的局部分离性,或在器官唯一性情况下生理过程的完整性与不可分性;表現在物質轉化的速度,迅速的反应等等。

树木的統一就是如此,树木的个别部分的死亡由於它們同类器 官的复合性,与由於平行性与制約於其同一生理过程中局部分离性 的解剖構造的結果,並不引起整棵树的生長停止与死亡。

当树木的器官或部分長期失去完成它固有的生理机能的可能时,它們就死亡。例如,遮光的叶片表現出由於光的不足不能同化碳素而至於凋落。 繼此之后,無叶的枝条就停止上升与下降的水流的 週轉,它就皱縮,虽然,接近它的莖部組織,繼續着水流与有机物質的循环,但最后由於树木的輪导組織解剖構造的特性,干縮着的枝条却並不凋落。

这种情况也产生在相互合生的树木,甚至要是它們联合生長以至由此产生了合生机体的新的有机統一。H. A. 尼基建科(HIRRITCHEO)在其論文"櫟树在寫种时的若干發育特性"("农業生物学"杂誌,1951年第3期)中所列的事实指明櫟树根的連生並不能挽救处於惡劣光照条件下的枝幹免於干縮,免於死亡。但嫁接在其他机体的根部,却仍繼續活着。

从我自己在阿斯特拉汗省对掘出的根的亲身观察中,我可以肯定,在水湿不足的条件下,根的連生不能产生。1955年.在沃洛果达省的达尔文禁止採伐区的松根中,曾發現少量的根的連生情况,但並無根据从連生的根形成統一的机体。

但如果在某些情况下,树木根部的連生可以具有很多特性的話,那末,树木数量与記載在生長过程表中林分年龄的增大的变 異是 具有规律性的,且無論何时誰也不能駁斥树木根部的連生与否,在生存斗爭中的关系受同一物質因素——它們的生命活动源泉的保証——所調节。

留下未解决的問題是在根的連生情况下,为何經常产生二株或 数株树联合而为完整的統一体。 根的連生由於輻射方向及切線方向的韌皮纖維及导管的微弱侵入很少能在相当范圍內引起从一树至另一树的物質週轉。此外,根的連生面积与每株被連生树的根的总表面积之比,实际上是很小的数量。因此,在鄰树根的連生情况下,它們的有机的統一,大多数情况是不能發生的。这些树木間統一的情况以另一种方式較为常見——机械的、並且一般是相当弱的:很少看到树根翻轉引起与其他树木的根在一起的情况。

因此之故,根的連生所賦予的巨大意义是过於夸大的,必須指出自然界中的相反現象:从一株乔木、灌木或艸本植物由於营养分裂形成数棵乔木、灌木或艸本植物,数种新的統一。特別是从白樺、櫟与其他树椿的树椿上生出来的幼枝。 構成統一的枝条,在从树椿上形成以后,由於树椿腐朽毁坏,消失个体間的联系,每一个体便形成自己的根系,由此产生了数个独立的内部統一的机体,这些机体对森林中树木的相互影响都服从於自己的發育的共同規律。

与土壤相鄰接的冷杉的下部枝条,具有生根的能力,当它們开始 發育成乔木狀后,最后,从前固着於母树的枝条便死亡腐爛,母树与 子树之間的任何联系也都中止。

树木的連生現象与树木的分离現象,任何新的因素,並不引起植物的生存斗争。

M. 與力山斯基 (Ольшанский) 院士於 1952 年 1 月 8 日在"在社会主义农業"报所發表的論文中写道:"大量試驗性的与生产性的資料也支持了李森科院士的所謂森林树种自疏本性这个观念的正确性。这一本性就是一个森林树种的密生苗以所有自己大量的个体与另一个树种作对抗斗争,而同时相互之間沒有斗争"。

"树种自疏的本性"——这是掩护种内無斗爭学說的唯心主义本質的遮羞布。

事实上,"树种自疎"的概念究系何意?本概念絕对沒有任何意义,它是完全無意义的,因为不能解釋这种"自疎作用"是怎样产生起

来的。

要知道, M. 奥力山斯基借着排斥林分中立木稀疏(死亡)可能的特点之助,而肯定"自疏作用"的概念不是偶然的,虽然,树木成長並成密林,但它們对光,对水分与矿物鹽类也应全部够用,因为按照M. 奥力山斯基院士权威的声明,它們是"相互間沒有斗爭"的。

M. 奥力山斯基院士写道:"自疎作用是因为在生長的范圍內, 已配置好的茂密的幼树为了維持必要的树冠(枝条)密集程度,要求 比它們实际上具有的这些树木数量要小些而产生的。"(着重点是我 加的——高里涅維奇)

問題就来了:如果要求比它們实际上所具有的这些树木 数量 要小,那末是不是树木数量比要求大,就是表示它們中間有繁殖过盛,而这就是 M. 奥力山斯基所称的正常的树木死亡,是不是这种树木的死亡是由於繁殖过盛而产生的种内生存斗争(对光、水湿、矿質的斗争)的結果?

大家知道,人們不是經常的能达到他們所需求的。 人們有意識 地控制自己的活动所得的成就情况尚且如此,那末非生命物体—树木—它們不知道它們該期望些怎样的目的,無法控制自己的生長、發育与完成 M. 奥力山斯基为它們所提出的生活机能,或任何其他目的。即使是种內無斗爭学說也要求証据。無論何人——既非奥力山斯基,也非李森科——都不能养成树木的"本性",照他們的意見,来維持必要的树冠的密集,如果在这方面將不受自然界物質因子的作用的話。像"需要树冠的密集",或"要求比这些树木数量少些",此类事情只是密林中随着树木死亡現象而来。但随之而来的現象可能有有意識本質的目的,但后来的現象無論何时决不可能是前一現象的原因。 要求維持必要的树冠密度的树木数,不可能是森林中树木死亡的原因。

"……就是应用黑格尔的'內部的目的'——即並非为有意地行动着的第三者,如先知之明,納入於自然之中底目的,而是存在於事物本身必然性中底目的,——就是这个方法,也会使那些沒有充分哲

学素养的人,来不断地無思虑地把自觉的有意的行动,归於自然。" (恩格斯:"反杜林論"第63頁。中文譯本,第75頁,三联版)

M. 奥力山斯基强迫森林有意識地,故意地进行"自疎作用",同时,"取消"密林中光線充足的树木与由於缺乏光線而死亡的树木这兩者之間在实际上存在的因果联系,而用目的論的观点来理解。

李森科很早就在护林育林会議上宣称:"必須着重指出,树羣中个别树木的自疎作用或死亡不是因为树林已是拥挤,而是为了它們在最近的將来不發生拥挤"(参閱"林業經济"杂誌 1956 年第 3 期,第 49 頁)。 表达自然界現象的目的論观点很难更明显而肯定了!

种內無斗爭学說的拥护者底类似立場应由遭受到严峻批判的李森科的"自然选擇与种內斗爭"論文来負責,这一論文一开始就犯了錯誤,並以实驗的——理論的根据認为繁殖过盛在自然界的不可能性。

借着包含在这一論文中的不正确的結論,李森科应用了不正确的方法学的試驗設計的結果,並利用形而上学的概念,帶来了虛伪的推論与論断。

李森科試驗的主要的方法学缺陷是暗中替换研究材料。

繁殖过盛及其后果——部分个体的死亡——产生於植物生長与 發育的过程中並呈現於整个营养生長时期。由於营养生長停止,植 物吸收生命活动的源泉也就停止,同时,也停止(撤消)繁殖过盛与生 存斗爭。

为了确証在橡膠艸叢播之中,是否填有繁殖过盛与生存斗爭,本来就应該从萌芽起直至营养生長要求多次的变量的統計的重复,並要求具有足够的試驗精确性,制定对播种作有系統的全面观察:精确地度量光与水湿的保証,每株植物依据其在叢中的地位的生長与發育情况,确定叢中植物的死亡数及其原因(光約不足,水湿的不足,害虫的毁灭)。

研究的方法应当就是如此。

可是李森科却用已經停止营养生長的橡膠艸植株,从量定每叢

中根的重量与数量(見李森科論文,表1及表2)兩方面来秤量与統 計根的方法,代替了上述的正确方法。借助於已經停止营养生長后 的每叢中橡膠艸的一次观察,是不可能确証叢播在营养生長期所發 生了的。这就是暗中替換研究材料,而暗中替換並不是偶然的。

如果李森科不會暗中替換研究材料,他被迫的进行对叢播 中植物死亡的真实現象的观察,死亡佔原始植株 数量的 90%, 並寻求其死亡的原因的話,那末,他就会被迫發覚在一个植物种內有繁殖过盛与生存斗爭。而暗中替換研究材料,却使他有可能把叢播中植物的死亡作为轟动一时的"自疎作用"1) 的依靠。

李森科对"自疎作用"的引証,指出他对待自己的試驗組織是接近於偏执的观点的。他摒弃在获得統計材料中公認的应遵守的科学規則:表1及表2所列之統計材料的可靠性,既不足以証实相关系数,也不能指示試驗的精确性。况且,李森科所作出的叢中的統計数量与叢与叢間的距离是不相配的,这就有根据肯定有部分受試的叢从統計工作中排除出去。显然,"有目的的挑选"帮助了李森科达到了在繼后的統計序列中討論的严整性。因此,表1及表2的材料不能取得任何信任。

但甚至如此明显的服从於早先决定了的目的論的結論的研究方法也沒給予李森科所期望获得的結果,而分析構成的統計序列,李森科不得不屡次重复的提出: "……最初看来,可能認为这些数字不是說明沒有种內竞爭,而是相反的,說明有种內竞爭"("农業生物学"第542頁。中譯本第559頁,科学出版社)。"总而言之,这些数字似乎完全証实种內竞爭。"(同上,第543頁。中譯本,第560頁,科学出版社)

"但是,从以上兩表中列举的'可克薩蓋茲'橡膠 帅根 重量的 数字,所推論出的关於有种內竞爭的結論,是極其不正确的"。这是李森

<sup>1) &</sup>quot;观察操膠草植株自萌芽至於成年,在整个时期中易於見到發生着个体数量的減少,發生着自疏作用"(李森科"於業生物学",第543—544頁,国营农業書籍出版局,第4版,1948年。着重点是我加的——高里湼維奇)。

科所断定的。为什么?

"实踐表明: 当数百粒种子播种在同一叢中(在一位置上)的时候,比同样数量的种子一粒一粒地均匀分佈在同样面积的栽培地之行中时,所获得的根的产量更高。"接着的結論是: "由此可知,实踐說明,在这种情形下不但一些'可克薩盖茲'橡膠艸檶株沒有被另一些植株所压迫,而且它們在各堆中(各叢中)生長得更好。否則要用什么來解釋叢播的單位面积根产量和單位面积种子产量,比在条播时更高呢?"(同上,第544頁。中譯本,第561頁,科学出版社)

很显然,李森科向自己提出了疑問,忘記了他在第536頁—587 頁上所写的:"实踐表明,如果用条播法播种'可克薩蓋茲'橡膠艸种子,使每一粒种子單独地排成一行(一条),而不是100—200粒种子成堆地、成叢地播种,那末,这种植物非常雅於出苗。結果,在田間条件下,栽培的植株常常非常稀疏,以致所产生的种子数目还不如当初播种的那么多。"

由此可見,实踐表明(甚至在李森科的解釋中)只有一个原因: 在条播下,可克薩盖茲橡膠艸的产量低是由於可克薩盖茲橡膠艸的 种子細小,沒有能力萌芽所致。

李森科走上了比較条播与叢播的植株的道路,但只局限於一仍是一个反对科学的客观性的錯誤——用种子作这兩种方法的播种,而逃避了与用根插播种的"可克薩盖茲"橡膠艸(表2),在条播与叢播时相对照。李森科摒棄与根插植株相对照的原因是很明显的:用根插的可克薩蓋茲橡膠艸的条播植株,这种种植方法並不影响於成活率,並不減产,而高於叢播。

李森科論文的标題为"自然选擇与种內竞爭"。这原是意料到的 事,即包含在标題內的概念內容將完全揭露在論文之中。 但难道就 能理解李森科所写的这样的"种內竞爭"?

"可是,仅仅根据第4欄的数字,仍然不能說植株之間有竞争。要知道,平均重量的降低可以这样来解釋:稠密地挤在一叢中的植株越多,相互压迫(不是竞争)就越厉害,更正确地說,每一棵植株所分

到的养料就越少,每一棵植株的根平均产量因而也就越低。

但是如果每一棵植株的根重量是接近於該叢中一棵植株的根平均重量(虽然是相对地接近),那末上述的解釋就可以接受。但事实上,一叢中各植株的根,就其大小来說在一切情形下是非常不同的。……。因此,第4欄的数字(表1——高里湼維奇)也沒有說明在这里的确發生了各植株之相互压迫,沒有說明这里有竞爭(一些植株压倒另一些植株);也許相互压迫和竞爭都沒有,而只是每棵植株在植株数不同的各叢中發育的情况不同"(同上,第542頁。中譯本,第559—560頁,科学出版社)。

从此可見,生命活动源泉的斗爭正好就是由於繁殖过盛引起的种間与种內生存斗爭的实質,李森科把"种內竞爭"分隔开来,他認为本来只不过是"相互压迫"("分得的养料少"),並随意确定它們存在的条件:是叢中所有植株的同样大小。对照"相互压迫"与生存斗爭("竞爭")指出李森科認为"相互压迫"与"竞爭"無共同之处,其实实际上,由於生存斗爭而产生的任何类型的生存斗爭,都不可避免地与参加生存斗爭的一切个体或儿平一切个体有不同程度的压迫的联系,这种不同程度的压迫,是由於它們的生命活动源泉不能很好保証的結果而产生。

上文所引証的"植株發育情况不同",与"竞爭"也無共同之处。 由此可見,生存斗爭("竞爭")在李森科的解釋中是沒有任何內容的, 在自然界中沒有型式,变为形而上学的概念,干脆地不知道是怎样的 方式产生"一植株压迫另一植株",而由於繁殖过盛而产生的生存斗 爭的真正結果——叢中植株的死亡,却被李森科确定称之为"自疎作 用"。

同时,李森科認为植物的种間斗爭也是沒有具体內容的,因为他 否認繁殖过盛与植物对光与水湿的生存斗爭。

繁殖过盛是調节自然界中机体数量的因素之一。这也是吞食的 因素。它們之間存在着一定的相互联系。这种相互联系的特点就 是:在消費者中間当生命活动源泉丰富之时,就不可能發生繁殖过盛。

要求一定食料种类的机体数量的增長,决定於生命活动源泉的丰富,如果不是經常不可避免地走向絕对的,那末,一定相对的早就縮減食料的丰富貯藏量。此后,在食料儲量与机体的需求間的比就变为不利於消費者时,就开始繁殖过盛和部分机体由於生命活动源泉的不足而死亡,以后,在生命活动源泉与消費者及新的發育圈之間又恢复平衡(相称)。由於这样的結果,繁殖过盛是相对的,並經常有邁期性:它时而脫离生物学現象的鏈索,时而重新作为調节机体数量的因素之一。

在作为猛兽食料的艸食动物与寄生生物中間,作为机体数量的調节者更常見的是受吞食的影响。艸食动物中間的繁殖过盛可在冬季产生,其时饲料储量非常少。但这样的現象,如蝗虫襲击,可以在艸食动物与昆虫之間引起普遍的繁殖过盛,甚至在繁茂的植被的瞬間。

巨大的猛兽由於繁殖过盛而死亡,常較其他动物更为頻繁。

由於自然界中繁殖过盛也和吞食一样是相互联系的現象,不可能在其他生物学現象的鏈索中不留痕跡。由繁殖过盛产生的生存斗爭及被吞食的机体与吞食它們的机体間为生活的斗爭,是二个同样重要的(但不是統一的)自然选擇的因素。机体在繁殖过盛下免於吞食並保留自己的生命——如果脫离於偶然的原因——是由於在死亡面前有着某种特長之故。在巩固这些特長中,由於它們强力的累积引致机体类型的变異,並是自然选擇的实質。

本文的任务並不在於研究生物进化的全部因素,或所有最重要的因素,只是在於回答李森科及其拥护者,不顧这些因素的客观存在 並作用於生物界。

(俞志隆譯自"哲学問題" 1956 年第 4 期,183—192 頁; 著者: П. Н. Голиневи; 原題: Переналедение и борьба за существование;原文出版者; 苏联科学院出版社)

## 在伊·烏·米丘林著作中的遺傳性和形态 形成問題及其在苏联生物学中的發展\*

## JI. B. 阿尔諾里季

(原文載於苏联"动物学杂誌"1956年第35卷第4期)

無論从內容,或者从米丘林自己沒有將他对我們美心的問題的 見解加以总結这一点看来,本文标題中所提出的課題是非常难以解 决的。然而在他的許多著作、目記中的观察記录、个別艸稿和沒有完 成韵論文中都有关於双亲特性傳遞及有机体变異性問題的發言和論 述。曾經不止一次地有人企圖总結米丘林的理論見解,但是他們有 些不是生物学家,而有些在闡述我們美心的問題时,与其說是在米丘 林自己論述的基础上,毋宁說是按照作者个人的見解,企圖向前發展 这一学派。

来丘林極其充分而又多方面地研討了有机体和它所居住环境的 关系、它們的規律性問題,特別是研討了人类利用它們的实际方法。 米丘林非常注意居住环境在双亲將其特征傳遞給后代中的作用。但 是他很少具体論述有机界进化的一般問題,特別是美於物种形成的 問題。 美於有机体生物性美系的資料則儿乎完全沒有,而这种美系 在理解动物的进化上是具有特別重大的意义的。

在这篇論文中,我們將在米丘林对我們关心的这一領域發言的 基础上,尽力地評述他的观点,並且將特別注意对动物分类学家非常 重要的那些問題。

<sup>\*</sup> 本文曾經在 1955 年 11 月 2 日在苏联科学院动物研究所紀念米丘林誕生 100 周年 的学术会議上报告过。这次会議上所作的其他报告将在本刊以后几期刊出。

在十月革命以前,米丘林还沒有熟悉馬克思主义經典作家的著作,但实际上他却是一个自發的辯証唯物主义者。这一点可以从他对理論与实踐相互联系的理解上、从他对有机体与其生存条件的关系是辯証統一的見解中看出来(虽然他自己沒有表述过这一原理)。

米丘林写道:"整个有机体的每一器官、每一特性、每一肢体、所有内在和外在的各个部分都决定於其生存的外界情况。""他接着又說。机体構造的某些特征,仅是某种外界情况所固有,随着外界情况的变化,这些特征就会消失或減弱。

米丘林的一般进化观念是非常复杂的,因为他对生物学的許多 基本問題說得很少,而且是断断續續的,同时他几乎沒有一个地方說 到,在他的观点形成时,他自己对各学派进行的斗爭的关系。我們几 乎沒有在一个地方看到他說过达尔文主义或拉馬克主义,而只在个 別情况下提到过达尔文、赫克尔和季米里亞捷夫。然而,米丘林他認 为自己是一个达尔文主义者,而且在許多現在論米丘林的著作中都 完全正确地指出了,他非常熟悉各种自然科学經典作家的著作,首先 是达尔文的著作。在他自己的理論体系中,他基本上是批判地接受 了达尔文主义的合理方面,同时有机地結合了拉馬克主义中的唯物 主义方面。

米丘林是一个进化論者,同时作为一个辯証唯物主义者,他將进 化理解为不断的运动和發展。"生命是不断前进的。任何生物,只要 它停留在一个形态和一个地方,那么他就会不可避免地遭到灭亡" (第4卷,第400頁)。所有各种各样的生物,都是从少数原始类型發 生的,而每一种类型,只有在具备它生存的条件时,才能暫时存在。 "地球上的所有生物……都服从於生存的一般規律。所有有机体都 經过出生、生活和死亡。当然,植物界的所有类型(各个屬、物种和变种)的存在也都是服从於这一規律的。不仅各个屬的每一变种、而且 它們的各个种以及整个的科都是在它生存的某些环境条件下發生

<sup>1)</sup> 米丘林著作集, 1948年, 第1卷, 第590 頁。

的,然而只有当这些条件由於虽則是緩慢,然而經常变化,但終归沒有超出該种植物需要范圍之外时,才能繁殖和發展。一旦超出了这范圍,每一植物类型的發育便开始延緩,患病,最后終於死亡,或者,在較好的情况下,就根本轉变为另一个种。"(第3卷,第150頁)。当然,这里的轉变是理解为进化的意义的,而从米丘林著作的多次指示中,可以得出有机体进化性变異速度緩慢的結論,例如:"自然仅仅是很緩慢地改变着生物的結構,使之适应环境条件,这种变化必須經过好几千年才能剛剛察觉出来。"(60年工作总結,第132頁)1)

不論从上述的引文中,或者从許多其他的添述中都可以得出結 論:米丘林对於具有有別於所有其他类似有机体类型的質的 規定性 的物种的真实性沒有發生过怀疑。而其他从科到变种的分类学范疇 在他看来也有着真实的意义。但是应当注意到,米丘林沒有專門討 論过这个問題。

按照米丘林的見解,有机界發展的基本运动因素是怎样的呢?是什么引起了进化一往直前的进程的呢?从以上的引文中可以毫不怀疑地得出結論:有机界中全部变異的基础就是为了保証有机体的生存,使它們的机能和構造适应不断变化的生存条件的必要性,换句話說,就是有机体对环境条件的适应。这种适应在於有机体不断适合於新發生的条件,这种条件是永远不会長时期停留不变的,也永远不会完全重复的。因此不可避免地要承認适应的繼續性,它是沿着一条上升的線發展的,这也就是說,不可避免地要承認有机体类型在它們历史發展中的进化过程和不重复性。所有这些在米丘林給生命所下的定义中非常具体地表明了:"生命是所有生物的不停的前进运动,这种运动表現在它們的形式和內容由於經常变化看的外界环境条件的影响而發生的变異"(第1卷,第681頁)

米丘林断言有机体类型在每一物种、变种或品种的發展史中,甚至在不同年代同一对亲体的后代中的不重复性,这一原則性的意义

<sup>1)</sup> 这里和以下的引交都是根据国家圖書联合 出版 社——国家宪業出版社 1949 年的版本。

鮮明地貫串在米丘林的全部著作中。当然,問題是在於其全部特征 的完全不重复性,而不是在於重現类似双亲或祖先的能力,而在个別 的部分,后代是和它們相似的。相反的,米丘林認为虽則后代中部分 再現双亲的特点是必然的定則,但是他断然地着重指出,同一类型在 有机体类型的不同进化阶段中的不重复性,这再一次地証明,他对發 展的理解是辯証的。

我們現在摘要引述米丘林著作中关於上述問題的文字。"……假如我們使兩种植物杂交而获得了具有某些混合特性的杂种,那么在另一个时候,即使我們多次重复地在这一对植物內进行杂交,我們也永远不能得到同样構造的杂种。甚至从杂交获得的同一果实中的种子、产生的树苗也是相互完全不同的品种。自然,如我們所看到的,在他創造新有机体的新类型时,給予了無穷多的不同样式,但永远也不容重复。"(60年工作总結,第83—84頁)

对造物主来說,"……几乎全部变異类型都可以达到,但是不能 絲毫不錯地重复同一类型,因为所有类型只出現一次便消失了,正如 寓言中的慧星一样,一去不复返了……"(第3卷,第452頁)。

"所有生物类型都是暫时的現象,並且永远完全不能重复。"(第4卷,第400頁)

每一个分类学家都清楚地知道,在同一个地方,不論他採集怎样一大堆的个体,他永远也不能在其中找到兩个完全一样的个体,尤其是比較在不同年代所採集的个体是这样。

在任何有机类型的历史發展中,过去的进化阶段都不可能發生完全的重复,因此,就这方面說来,所有上述引文(类似的例子还可以补充很多),都明显地証实了进化的不可逆性。

以上我們可以确定,根据米丘林的見解,有机界进化發展的主要 动力因素乃是可以看作辯証統一的有机体与环境的矛盾。由此,毫 無疑問地可以得出結論,外界环境在自然界形态形成的过程中(当 然,也包括物种形成)有着头等的决定性意义,这在米丘林著作中的 每一个地方都被着重指出过。 米丘林在他的理論見解中总是根据实驗的結果,根据对有机体 發展的視察的,自然,对双亲特性傳遞給后代的現象就不可能不予以 最集中的注意,尤其是,在这上面建立了他的全部实踐活动。在植物 生活領域內的初步研究就已經使他成为一个忠实的唯物主义者,魏 斯曼-摩尔根主义的坚决反对者了。

所有有机类型,都是从胚胎(配子)或者植物性的發育而来的(按照米丘林的意見,兩者並沒有原則性的区別),在其个体發育中都是建立在先天获得性質基础上的;但是每一次,在每一个新的个体發育时,这些遺傳性質都受到环境的影响,环境在某一方面改变着它們,或者产生了在过去發育中所沒有的新特性。

特性的傳遞和外界环境作用的意义,根据米丘林的見解,可以用 下列引文作为說明:

"雌雄亲本杂交是可以遗傳的: 1)給予胚胎的絕大多数只是自己或亲本本身性質或特性。而外界环境条件,首先是对某些胚胎有利於(它們的發展),而另一些胚胎的發育則停滯或者完全消灭;其次,部分先天遺傳性在外界条件影响下几乎經常是根据当时环境条件或多或少地改变着,也就是說,在不同年代中是不一样的。最后証明了,杂种的复杂結構只有 1/10 是視亲本为轉移的,而 9/10 是外界环境的影响。"(第3卷,第449—451頁)

以后米丘林更假定,后裔構造只有 1/100 是視遺傳性为轉移,而 其余的則是由於外界环境,並且認为,对环境影响的这种更大的着重 是前进了一步(第4卷,第447頁)。

从以上引証的摘录中已經表明了米丘林关於在某些环境条件下,后代才可能实現某些傳遞給它的先天潛能的概念。 在許多情况下在后裔配子中存在着获自父系和母系祖先的特征(一般是不同質的),因此这些特征有着对立的性質。但是每一个特征在其發生中是和一定的环境条件相联系的;如果特征不和一定机能相联系,或者,在任何情况下,不和机能的活动特征相关联,那么这种特征在有机体中就不会存在。 所以某一特征,只在条件对它的出現有利时它才出

現,而相反地,如果条件对它的出現不利,它就不出現。这就是特征的优性和劣性。任何固定的、必然的优性或劣性是不存在的,而这就是米丘林的見解与摩尔根派遗傳学者的見解根本不同的地方。但是环境对特征出現的影响根本不限於促进或延迟出現;先天遺傳的潛能不仅可以出現或不出現——它們也可能在环境的影响下以变化的狀态出現,而最后,由於亲本特征的融合或相互作用,也可以轉变为新的特征,或者在环境影响下,从新發生。

米丘林在他自己进行的全部实驗基础上,認为在多年植物杂交时,杂交后代不可能規律地分离为各种亲本型,这已經由以上的原因說明是不能实現的,因而駁斥了孟德尔主义的一条基本原理的普遍性。

然而应当注意,米丘林虽則坚决反对孟德尔定律的普遍性,但是並不反对在某些具体情况下孟德尔分离律的根本存在。他認为,在很多年內發育着的、开始进入成熟以前的多年生植物的杂种不可能按照孟德尔法則分离;他承認,一年生的种类或者在"純粹地方性物种"杂交的条件下,它們具有較大程度的遺傳同一性时可能呈現孟德尔法則。下面的發言特出地說明了这一关系;"地方性純粹果树种的杂种和它們的祖先的特性不可能有很大的差異,而一年生的野生植物和蔬菜,在它們發育的胚后期,在相当程度上缺乏外界因素的長期影响,因此在黑麦、燕麦、豌豆、黍子等等純种間的杂种中'因子分离現象'我認为是完全可能的。这里,当然,在很多細节上孟德尔定律是适合的。"(60年工作总結,第85頁)

在另一篇著作中,他重新談到孟德尔定律並再度着重指出不可能承認它們的普遍性意义。

一般,米丘林在应用摩尔根派遺傳学家的术語时,总是添加了自己的内容。例如,在应用"基因"这个术語时,是标示着遺傳的潛能,而不是指的摩尔根派的內容而言。根据他的"著作集"第3卷第542頁的文章就可以作出判断,米丘林的"基因"和摩尔根主义者的基因的不同点在於:它不是与环境条件無关,一代一代遺傳的不变的因

子,而是从屬於外界环境,尽可能快实現的特征或特性,視有机体發育条件为轉移作为特征而出現,或者,假如条件对它的出現不利时,便停留於劣性狀态。基因可以在条件作用下变化或者从新發生。我們認为,米丘林在应用这个术語时是接受当时的"智慣",虽然他連一分鐘也沒有打算承認在有机体中存在着遺傳性的特殊攜帶者,在这方面应用"基因"这一术語是不必要的。

虽然在如此多的地方,米丘林把外界条件引导到个体發育中的个体形成过程中,然而他並沒有把个体發育和系統發育分开。他在自己的实驗中發現了这样的事实,这些事实証明,在植物的个体發育中可以看到該品种或类型历史形成中一般契机的重复。米丘林正确地估价了这些观察並正确地理解了它們的生物学精神和意义。在米丘林較早的一种著作中,他研究了上述的現象,称它們为"返祖性表現",但是,毫無疑問,这是指的一种生物学規律的表現。

以后,米丘林更直接地指出,他所观察到的現象是生物学規律的表現:"根据外貌来选擇一年生或二年生杂种和單純的葡萄树苗时得知,一般所有植物种在幼年成長时,注意到有机体所有各部分結構,在幼年时都有着特有的、傾向於它們野生祖先类型的特性。这种傾向乃是所謂生物發生律的表現之一,根据这个規律,所有有机体在胚胎和幼体發育中完成这一类型的全部变化,而这些变化也是它这一屬过去某时候曾經通过的。"(60年工作总結。第471頁)。

必須指出,米丘林是第一个指出生物發生律在植物界中的作用的人。下面,当我們討論到杂交及其进化意义的問題时,我們还將重新談到生物發生律。

根据米丘林的意見,生物界进化的基本动力是,第一,有机体在外界条件作用影响下的适应变異,第二,在很長的世代系列中,由於打开了"有机体——环境" 辯証統一的矛盾,保持获得特性和机能的能力,也就是遺傳性;当我們研究了这些动力以后,我們將回到这个問題:在自然界是怎样实現有机界进步發展的过程的,以及自然界中变異的合理性是以怎样的方式發生的?

大家都知道,在米丘林的同时代人中,大多数是下述兩个主要学派的拥护者。第一派的代表認为,个体不定变異是自然界中形态形成的基础,其中自然选擇合理地建立了适应特征和特性。第二派的代表認为,形态形成的基础是:在外界环境作用下發生的适应性的定向变異。在这种情况下,不可避免的就要承認羣体变異的基本意义,因为所有的个体在該因素影响下都是向同一方向变化的。米丘林在这些方面沒有进行專門的分析,但是对照他在这方面發表的許多意見就必然得出結論,就是他否認个体不定变異对进化的存在意义。他認为,由外界条件作用所引起的有机体的变異,通常是定向而且最适当的,虽则不否認不适应特征出現的可能。根据米丘林的意見,变異的定向性是完全适当的,但是不一定所有屬於一个类型的个体,甚至同一对亲本的后代,都会产生完全一式的結果。他經常着重地指出,一对亲本的后代中,永远也看不到完全的相似,这不只是由於發育条件不完全相同,而且也因为从双亲所获得的遺傳胚具有不同的特性。

从承認在外界条件影响下产生的变異的最适当性这一点而發生的最重要問題之一就是这些变異的合理性問題。 在环境影响下,有机体变異的必然合理性,也就是說,在承認最适当性和合理性同等重要的条件下,我們無意中就应当承認合理性是生物基本的、最原始的特性,这在方法論上是不正确的。 所以將适当性比較正确地了解为合理性只是在它發展的某一水平上以及在一定条件下,活質具有适应性反应能力范圍內才是这样。有机体对外界作用的适应性反应(也就是一般說的合理性)也是發展的产物,是在进化过程中發生的特性,它是和窄机結構的高級程度密切联系着的。 在人工創造的实驗条件下,有机体的适应性反应有着極相当的合理性,或者,从物种是生存在自然界的、对它是天然的生存条件(物种是在其中形成的)下的观点来說,是根本不合理的。米丘林在若干著作中指出,在培养影响下,在植物和家畜体內發生的許多变異的不合理性,这些生物从它們生存的自然条件的观点来看是畸形,如果沒有人的帮助,它們就不能生存。

"必須記住,——米丘林說,——任何栽培品种的苹果、梨子等等都是人类培育並为了它極为肥大的大部分果皮而培植的,这就使当时种子的發育遭到損害,对自然界来說这是一种畸形的个体而且按自然的規律不可避免地要死亡,……它(指自然——作者)設法創造稳固的、能够使后代延續的,能够使自己的优点完善的並繼續發展和完善化的有机体;……假使喜欢某种畸形倾向,那就必須人工地維持它,否則自然就会竭力把这些个体从生活中排除掉或者改造它們。"(第3卷,第552頁)因此,从生存的观点来看,以前的物种是在自然条件下形成的,那么在栽培品种中所發生的变異便是不合理的。有机体通常只在造成它的特性的那种狀况下才有适应性的反应(也就是一般說来是合理的)。此外,有机体可以不止一种方式,而是各种各样地适应性地反应現存条件,为了自然选擇的工作而自己創造条件。

在米丘林看来,选擇是推动进化的主要因素之一,这不仅从上述引証說明自然种和人工培育类型的相互关系,以及从他的許多其他原理都可以看得出来。在这里选擇是作为消灭对物种进化不利类型的有力因素而出現。然而在机能長期缺乏或者極度衰弱的情况下,它們的單純萎縮作用也被列为借助自然选擇,消灭有害或不需要的、無机能的特性或器官一道。而相反地,在个体發育中,器官的發育是在提高了的工作負担影响下加速着选擇的作用。

来丘林認为,只能用对有益特征的选擇来解釋有机界的全部多样性,在它們發生的基础上用适应性变異的方法来解釋是不可能的。 米丘林的这一意見是奠基在他非常熟悉的、野生果树遺傳特点的稳定性上,这种野生果树,甚至用最高水平的农業技术,用大量播种並繼之以选擇优良者的方法也非常难以获得有价值的倾向。这里我們接触到了一个最重要的生物学規律,这一規律是米丘林最初科学地奠定並表述出来的,——也就是接触到了他的固定遺傳性方法的概念以及削弱它們对有机体适应新生存条件过程的意义。米丘林确定,"野生純种",特別是分佈在狹小区域內的,有着最大的遺傳稳定 性,同时当这些种正常繁殖的时候,最难使它們在生理型和形态型上出現某些重大的动搖。他將这种困难和物种遺傳特点的"純度"联系起来,这些种的無穷世代發育在差不多是同样的条件下,因而失掉很大部分的可塑性。由於气候及周圍环境其他条件不一致的影响,其中發生的那些微小变異,一旦發生,又重新迅速地为选擇所平衡,因为条件的平均性質又重新恢复了。条件变化是不定期地走向一定的方面,当然会引起野生种遺傳性的变異,但是这种变異是極其緩慢的,必須經过数千年才能看得出来(根据米丘林的說法)。根据这一概念,动物中極端特化类型很小的进化可塑性和大量的进化"絕境",以及当生存条件巨大的和地質上迅速的变異使得物种乃至整个类萃趋於死亡,也成为比較可以理解的了。在这里,有机体所利用的外界基本条件的極度縮小,使得杂交产生的配子遺傳性的多質性降低,同时也就增大了有机体的遺傳稳定性。

为了使有机体获得較迅速發育的可能性,並且变得更适於对新条件的馴化,必須增加杂交亲本遺傳基础的多样性。 这种多样性無論通过具有最不同的遺傳性結構、也就是屬於不同的各种类型 个体的杂交,或者是通过一种类型,而在極端不同条件下培育的代表的杂交都可以达到。通过这些个体的杂交,遺傳性的多样性使得它的稳定性大大削弱,也就是現今採用的称呼:"遺傳性的动搖"。由於杂交而获得的杂种具有極高的改变遺傳性的能力,因而在其机能和形态特征的改造上,完成了显著的飞罐。杂交个体彼此之間距离愈远,后代为了适应所發生的可能性也就愈大——当然,是在一定范圍之內,——而因此所产生的遺傳性变異也愈深刻。我們提起米丘林这一个非常著名的發現是为了指出,他所以給予杂交在进化过程,特別是物种形成总的进程中如此巨大意义的緣故。他認为,种間的、甚至屬間的杂交在現代丰富的有机界中起着一种首要的作用。

在研究了屬間杂交問題以后,米丘林說道:"……要知道,种間和 屬間杂交的这种方式,主要是通过外界环境巨大因素的作用,在自然 界中,只有經过过去的数百万年才可能發生新的植物类型,因此到如 今它才能拥有如此大量的多种多样的植物种。"把这一段引文和其他类似意見比較一下,就可以毫無疑問地認为,米丘林是深信杂交在有机界进化中的独特作用的。必須立即加以說明的是:动物学家要發現这一观点要困难得多,因为大家都知道,由於精神生理的隔离以及絕大多数杂种的不育性,不同物种間杂种的获得具有極大的困难。然而,当然,沒有理由完全否認杂交可作为动物界中物种形成方式之一,因为已經有足够多的,不仅由人工获得,而且也有自然發生的(例如魚类)种間甚至屬間性杂种能育性的例子。可能,能够在相当大距离間活潑运动的动物,由於各种不同的条件配子已經达到了多样性,在这种条件下發生了物种种羣的各种不同的个体。寄生虫更换宿主,發育时期营养的不同类型等等都是屬於这一类的現象。

米丘林所确定的多年生植物幼年杂种特征是逐漸形成的以及遺傳类型是按杂交品种"年老"程度而巩固的事实是非常重要的。杂种有机体愈年幼,未来成熟有机体的特征和特性在其中显现愈少,而它也就更容易在甚至短时的外界因素作用影响下發生变異。随着杂种有机体的發育,它的遺傳特点也日益固定,在生殖器官成熟以后,它对外界作用已經比以前稳定得多了。年幼杂种类型的情况也是这样:杂交后头几代它最不稳定,假如發育是在类似的条件下进行,那么随着每一个新的世代,逐漸获得了日益固定的遺傳性,也就是說与外界作用的关系日益稳定。在这里,我們再一次地看到米丘林对个体發育与系統發育的統一的辯証的理解,这对正确地估价进化的方式是很重要的。

米丘林在自己的著作中,談到形态形成的突变方式。然而他对 突变的真正理解添加了另外的內容。根据米丘林的意見,突变是突 然出現的、对於完全新的、以前从来沒有过的生存条件的适应,这种 适应或者是發生在直接剧烈的环境作用之下,或者是双亲的特性組 合,而这些特性是双亲以前从来沒有过的。作为第一种类型突变的 例子,他观察了一种樱桃品种新特征出現的情况,当时它發生了以前 从来沒有过的以根部旁枝繁殖的特性。然而米丘林認为物种形成的 突变方式假如有时是可能的,那么在任何情况下是非常稀少的,这已 經由他的广泛的工作实践所証明了。

还应当記住,米丘林在自己的著作中,奠定了李森科拟訂的有机体阶段發育理論的基础。以上研究过的、确定有机体对外界作用的不同关系的生物發生律現象,对这一問題有着直接的关系。此外,米丘林在他自己的許多著作中指出,为了从幼年植物品种不同發育时期的实生苗或插条中获得理想的結果,就必須採取通过营养、光照等不同作用方式。他常常应用来說明"阶段不成熟"或"阶段成熟"的植物,的确,他更經常地注意到临近結实的时候和以后的时期。

在給我們提出的、可以說明米丘林对遺傳性和形态形成 現象的 观点性質的資料和見解作总結时,我們希望注意,在这一类企圖中不 可避免地会有主观理解这位科学家个别言論的时候,这是因为,米丘 林本人沒有就我們关心的問題將他自己的观点加以綜合,而他所闡 明的偶而有若干矛盾性質,这反映研究者随着事实积累的程度在其 观点中的逐漸变化以及对以前的原理的过高估价。

現在簡要地敍述一下上面对某些主要原理的全部評論。

- 1. 有机界的發展是在有机体中發生的适应性变異的遺傳基础上 进行的,这是由於發現了"有机体与其居住环境"辯証統一的矛盾的 結果。
- 2. 有机界的發展是前进的过程,其中每一較后阶段总是高於前一阶段,有机体在其發展的历史中,永远不会重复同一阶段,这就是說进化是不可逆的。
- 3. 在形态形成中,个体在其中进行个体發育的那个环境起着主导作用;从双亲遗留下的遗傳性的实現,也就是,其中某一种成为显性,是为外界环境調节着的,环境改变着傳遞的特征或者重新改造了它們。然而生物發生律的出現指出了有机体保存着系統發育中發生的、而又反映了有机体与环境基本关系的基本構造特点,这种关系比在种、屬、而經常是科的領域中可能关系的部分变異要广闊。
  - 4. 物种形成的基本因素是种間和部分的屬間杂交結合着自然选

擇的作用,还有在机能提高或減弱的影响下有机体特性的發展或衰弱。

5. 形态形成(和物种形成)的速度和可能性决定於遗傳性对外界作用关系的稳定程度。在这方面,可以拟出一个代表着不同遺傳稳定性程度的系列,这一系列的开端可以列上有着最大遺傳稳定性的"純种",而在末端則是年幼的种間杂种。

6. 在自然条件中,沒有利用人工杂交或营养杂交,进化过程进行 得極慢,只有实現了种間或屬間杂交才發生迅速的、突然的变異。

7. 种是实在的、質上不同於其他种的形态。 其他分类学范畴也 是实在的。

在我們开始研究今日生物学理論基础方面的原理时,我們首先 应当提到下列的方向:它可以称作米丘林观念的直接發展,或者他的 理論遺产在实踐上的补充。在这一方向上,毫無疑問,为了选种和定 向培育粮谷經济和园艺中的杂种类型,在远緣的种間和團間杂交方 面,我們有着巨大的成就,而在动物飼养方面,也有着巨大的成功。 在很多情况下,米丘林的方向获得了进一步的創造性的發展。最主 要的成就之一就是李森科制定的有机体發育阶段性的理論,它給与 了巨大的实踐效果,他还發展了有机体种內和种間关系質的差異的 观点。並反对种內关系在进化过程中的主导作用,还有將变种理解 为沒有越出它的質的特点范圍的物种存在形式等等。

然而,我們不能不指出与進一步鑽研米丘林学說的若干生物学 思潮的錯誤。这个就首先联系到,有机体与其居住环境相互作用的 問題。有机体本身从某些生物学家的視野中消失了,他們將唯一的 形态形成因素的作用归之於外界,而且几乎仅仅是無生物的环境,而 沒有給在活質或有机体中起作用的規律的出現留下地位。假使停留 在这一,視点,把活質看作一团特殊的完全無生气的物体,而外界环境 从这物体"自行"塑造类型,那么在有机体中存在的合理性,它的全部 适应似乎都是外界环境工作的产物。这样一来,無机环境,不必借助 於有机体本身,好像不管它而变成了有机体中合理性的創造者,也就 是說,具有"最高意識"或者其他类似非物質力量的特点。

多种多样生存着的有机体类型,为了自己的發展,以成百的方式利用着差不多是同一的、無机环境的自然資源;在我們看来,活質不是"不活动的一团",而是自然界的一部分,它按照自己內部的規律而發展着,有着作为物質运动特殊类型的生命。將有机体和它的居住环境的关系作辯証統一的了解,正是由於存在着生物与無生物之間的对立,这种对立表現在为了生活必須不断地实現自己的机能,也就是在不断改变着的外界情况中按照自己的規律而进行着的新陈代謝。由於打破了这些矛盾,因而發生了同化着外物(無生物与生物)的生物的發展但这是按照着自己特有的規律,而不是簡單的方式將外物归倂於自己。沒有对立的辯証統一,有机体和它居住的环境的統一就会变为数学函数;实际上,某些生物学家就有着这种傾向。

其次,在方法学上錯誤地發展了將种羣当作不可分的"綜合"有 机体的概念。这一观点的反对者提出了种羣变动規律性具有非物質 的性質,因为互不相屬的有机体的同一种的不同个体,甚至是近亲, 假如不允許在种羣各个成員間精神交通的可能性,或者存在着支配 它們生命的非物質的原始的話,就不会以某些特殊器官联結起来成 为一个統一整体,也不能对外界作用有所反应,而且还想像是一个有 机体的各部分。

最后,在各种各样現今生活着的物种的形态形成中,生物因素的作用只給予了極渺小的地位,我們認为这也是錯誤的。 对於动物学家来說,生物关系(無論如何,在和我們最近的地質时代),甚至比非生物关系更重要些,而且,显然的,正是它們在形态形成中起着主要的作用。当然,对有机体說来,即使是它們馴化的生物关系也是外在的,而在这一方面,它們和非生物关系在原則上沒有区別。但是必須認填地考虑,像拟态、保护色及第二性征等等这些特征形成的方式,以及它們的發生伴随着一定發展水平的高級神經活动。这里应当記起巴甫洛夫学說中的某些契机,它們为理解这些特性的發生提供了基础。

在这一方面,在动物学家面前摆着的还是剛剛为研究触及到的一个領域。

在实际的、观察自然界的实驗基础上,我們深信,企圖把非进化系列的、从一个种突变为另一个种方式的物种形成理論推广到整个自然界,是为时过早,並且在原則上是錯誤的;应該考虑到,这些观察都仅仅是在人工培育所創造的物种上进行的,尤其是,对"物种"的这种独特的理解直到現在还沒有公認的标准。按照某些植物分类学家的說法,植物种是变种的同义語。这样地理解物种,那么,所有問題都將有另一种情况。

力圖完全恢复新达尔文主义权利的流派的錯誤不会比上述意見 少,新达尔文主义出發於个体的不定变異,因此將进化奠基在种內关 系上,也就是在同一种不同个体間的竞爭上,因为小的个体特殊性只 有在有着完全类似要求而它們又不可能完全得到滿足,也就是在繁 殖过剩的情况下才可能是有益的。

在結束我們簡略的論述时,我們希望再一次回忆一下,米丘林曾經指出过,由人工培育栽培植物杂交品种所得到的实驗結果,不能直接臘用於所有自然环境情况中。構成自然动植物区系綜合体的絕大多数物种都是屬於純粹的地方式种(按米丘林的术語),在它們的遺傳稳定性与恆定性上和人工获得的杂种距离很远。这些物种的适应性过程,也就是它們的进化,进行得很慢,同时为自然选擇打开了广闊的活动場所;在自然条件下,自然选擇应当在形态形成中起着头等的作用,它加速和調整着有机体的适应性变異。

(苏联科学院动物研究所)

(刘后貽譯自苏联"动物学杂誌" 1956 年第 35 卷第 4 期, 第 481—491 頁; 著者: Л. В. Ариольди; 原題: Вопросы наследственности и формообразования в работах И. В. Митурина и их развитие в советской биологии; 原文出版者: 苏联科学院出版社)

## 关於魚类种內关系的某些問題

## O. A. 克留察烈娃

(原文載於苏联"动物学杂誌", 1956年第35卷第2期)

我国生物学的各种刊物所进行的关於物种形成問題的討論,非 常注意有机体种內关系及其对有机界历史發展的作用这一問題。

根据所發表的論文,可以把涉及这一問題的各种論点分为三类。 有一部分人,严格地遵循了达尔文的論点,認为种內斗爭是历史 發展的主导因素,認为种內的各种矛盾使适应的个体得以生存,通过 不断的性狀分离而产生新种。

另一种說法是: 种內个体沒有任何生存竞爭, 沒有任何矛盾, 从 而認为种內关系对历史發展沒有任何影响。

还有一部分人認为,种內关系是决定有机体和环境矛盾統一的各种关系的一个方面。按这一观点的說法,种內关系不能脫离和間关系和非生物环境而存在。他們把种內的相互关系,以及种的其它特性都看做种借以保存种的适应形式,这一点和达尔文主义是不同的。主張这一論点的人,把种內殘食現象也看做适应,說是这种适应能保証种在他所适应的条件中得以保存。最近在魚类学方面,对种內殘食的意义出現了各种不同的論点。尼科里斯基(Г. В. Никольский, 1949, 1953)和克雷然諾夫斯基(С. Г. Крыжановский, 1953),認为魚类吞食自己的幼魚是一种适应,这种适应調剂着种羣个体的数量,其目的是保存种。

莫甫倉 (В. А. Мовчан, 1953)\* 用另一說法解釋这一現象。他利

<sup>\*</sup> 莫甫倉的論文發表苏联"食業生物学"杂誌,1953 年第 3 期,業已譯出,發表在 "关 於种內种間問題的研究"第二集,17—30 頁,科学出版社。

用生物化学分析所进行的研究实驗証明: 历次实驗用同种魚肉 飼养的兇猛魚,永远比食用原来食物和挨餓的魚,在組織里所含的水分要多些,蛋白質要少些,因而他得出一个結論: "魚如果用同种个体的魚肉来喂养,其蛋白質含量不但不增加,反而要消耗組織蛋白。" 他又說: "同种个体的蛋白質是不能被吸收的,於是食用同种个体魚肉的魚便不能用它来建造自己的軀体。 用兇猛魚所进行的这些实驗,正証明了米丘林生物学的一項原理,即有机体不能用同种的其它个体来生長和發育。"

本文的目的就是研究文献內所見到的兇猛魚类种內殘食的一些 材料(我們並不妄圖对記載殘食現象的文献作一个全面的分析),本 文的目的还在於說明这一現象在自然界中存在的普遍性,並闡明其 生物学意义。

在研究魚类吞食相似个体的各种事实时,我們將按着分类系統 来敍述这些材料,因为这些魚都屬於不同的分类組羣。

首先,我們不能同意莫甫倉的說法,即認为似乎存在一条公認的米丘林生物学原理,說是同种的有机体不能借助同种其它个体生長、發育。在自然界中有着大量的事实,所証明的与此恰好相反;这些事实証明:魚类殘食本种个体这一現象在海洋魚类范圍內是相当普遍的。所記載的有刺鯊(Squalus acanthias)殘食本种个体的各种事实。鯡形目(Clupeiformes)有大麻哈魚(Oncorhynchus),河鮭(Salmo trutta),条鳅(Nemachilus)和胡瓜魚(Osmerus eperlanus);灯籠魚目(Scopeliformes)有龙头魚(Harpodon nehereus)——这种魚是印度洋的主要漁業对象;狗魚目(Esociformes)有普通狗魚(Esocilucius)和黑龙江狗魚;鯉形目(Cypriniformes)有別拉魚(Rooseveteilla serrasalmo piraya)、Astyanax、海馬(Hippocampus brevirostris)、黑龙江平头海馬、粗鳞鯿魚(Blicca bjoerkna)、咸海鰮魚(Barbus schlegelii)和鲶魚;鱂形目(Cyprinodontiformes)有庫別魚(Lebistes reticulatus,millions fish, Гуппн)、食蚁魚(Gambusia affinis)等;鱈目(Gadiformes)有鱈屬(Gadus gadus)、寬突鱈(Eleginus navaga)、江鳕魚

(Lota lota); 鱸形目(Perciformes) 有白鱸魚(Lucioperca lucioperca)、普通鱸魚和巴尔喀什鱸、以及中国鱸,包括鱖魚(Siniperea chuatsi)和大耳鱸魚。

上述材料虽未完全列出具有种內殘食現象的各种魚类,然而我們可以附定,具有种內个体殘食現象者,不少於8个目、12个科。

鯡形目吞食本种个体的代表有远东鮭魚类——駝背鱒 (O. Gorbuscha)、大麻哈魚(O. keta)、紅鱒(O. nerka)、銀鱒 (O. kisutsch) 和大鱗鱒(O. tschawytscha),以及虹鮭(Salmo irrideus Gibbons)、河鮭(Salmo trutta L. morpha fario L.)、紅点鮭(Salvelinus)和胡瓜魚(Osmerus eperlanus)。

根据謝姆科 (Cenno) 的材料 (1948 年),勘察加西部沿岸一帶的各种鮭魚和成年的紅点鮭都具有非常显著的种內殘食現象,同时一岁的仔魚所食用的魚类食物,虽然其用量不大,絕大部分都是本种的幼体。

大家都知道:远东鮭类大麻哈魚产卵后死去的体軀,可做本种幼魚的食物。冬季这些屍体在冷水中並不分解,一直保存到次春。春季由魚卵形成的幼魚需要食物,而此时河中活飼料却非常之少,於是幼魚便都奔向成魚的屍体。另外,分解了的屍体也能增加水中的营养物;这样又使無脊椎动物有所增加,而某些無脊椎动物又是幼魚的食物。目前在漁業实踐中,正利用大麻哈魚的幼魚能利用成魚屍体进行正常的生長和發育这一能力,他們利用产卵后死去的成魚的肉追飼所飼养的幼魚。

至於虹鮭,科尔聶里烏斯 (Корпелиус, W. O. Cornelius, 1933 年) 把其中一种 (虹鮭 Salmo irrideus Gibbons) 的幼魚認为是其成魚的 天然飼料。由於研究了該种鮭所吸收的各种食物,科尔耐里烏斯測定 出:在7°С 时,該种魚体重增加和所吸收食物的比例为6%—7.6%。

河鮭幼魚的种內殘食現象,我們找到了恩格尔(Энгер, Enger, 1936年)所記載的材料。他根据藍培尔特(Ламперт, Lampert, 1900年)的說法,指出該种魚对种內殘食現象的傾向。

根据謝姆科的材料 (1948年),一週岁的紅点鮭 (Salvelinus malma)在养魚池飼养条件下,非常喜欢吃掉本种的幼魚。根据 1946年的統計,在大河中游卡雷买泉的产卵生長养育池里,110条成年的斑鳅吃掉了 80 余条兩週岁的紅点鮭。

除了上述(紅点鮭 S. malma)之外,普通条鮭(Salvelinus alpinus) 也具有种內殘食現象。叶席波尉(В. К. Есиповый, 1915)曾經防定諾 沃捷美尔斯克(Новоземельский)紅点鮭和达瓦江魚(Даватчан)具有种 內殘食現象,后者系普通斑鰍之一种湖生类型 (Salvelinus alpinus erythrinus Georgi),产於貝加尔湖流域內的福罗利赫 (Фролиха) 湖, 有时在貝加尔湖內和魏齐穆(Витим)系各湖內亦可見到。

我們在近期的著作中,看到許多証据証明这一論点。 我們見到下列各位贊成胡瓜魚以本种幼魚 为食: 愛林巴島木 (Эрепбаум, Е. Ehrenbaum, 1894)和斯德尔(Штадель, Stadel, 1936)——他們指的是易北河 (Эльба); 魏烈尔 (Виллер, А. Willer 1926)——他指的是东普鲁士的池沼; 謝里果 (Селиго, А. Seligo, 1913)和宏替非利德喀斯 (Хьютфельд-Касс, Н. Huitfeld-Kass, 1917)——他們指的是西普魯士的湖泊; 庫琪納(Е. С. Кучина)她指的是依里門湖 (Ильмень)和 无尔霍夫湖(Волхова); 埃斯凱萊尼(V. Jääskeläinen, 1921)——他指的是剩多芽湖; 瑪瑞 (Марре, G. Marre 1931)——指的是波罗的海庫尔斯灣少粘土区 1)。 瑪瑞指出, 胡瓜魚体重增加能反映出它由吃 浮游生物的营养方式轉变为另一种营养方式,尤其是以本种幼魚为食的营养方式。

我們从里高那里 (Punen T. V. Rillay, 1953) 找到了龙头魚 (Harpodon nehereus) 的种内殘食現象的材料, 这种魚屬於灯籠魚目

<sup>1)</sup> 愛林巴烏木、謝里喜、宏替非利德喀斯、庫琪納和埃斯凱萊尼的材料均引自鵝列尔的著作(1926年)。

(Scopeliformes)。里离專門研究过这种魚的营养方式,因为它是孟加拉灣北部捕魚的一种主要对象。 會經研究过1,048 条魚腸子(Кишечник),均取自馬特拉(Матла)河,历时10个月,由3月到12月。他肯定龙头魚食物的主要成分之一是本种幼魚,幼魚仅次於小蝦,在該种魚食物中佔第二位,佔食物的17.5%。 龙头魚以4、5、6月吞食本种幼魚的数量为最多。

龙头魚食物中幼魚在各个月份中在体积上所佔的比例(按%計) 如下所示(根据里离的材料, 1953)。

> 月 份 III IV V VI VII VIII IX X XI XII 估食物的% — 33.9 46.6 41.7 4.7 12.7 10.5 12.3 5.0 12.0

可是,在龙头魚終年食物中佔比重最大的是小蝦,平均佔60.3%。 里离提出这样一种說法,認为只有当池沼中可供食用的 蝦类 数 量減少时,該种魚才改为食用本种幼魚,同时他还指出:"腸內小蝦佔 的比例大和种內殘食現象弱化,有着相关的联系。"

有許多文献記載狗魚的营养情况,其中也介紹了狗魚种內殘食 現象的一些材料。有些材料介紹了頓河上游和皮桥尔河上游,伏尔加(雷宾水庫,卡馬河和伏尔加河三角洲)和鄂畢-額尔齐斯河流域的 狗魚食用本种个体的情形。

佛尔杜納托娃 (К. Р. Фортунатова, 1949) 研究了伏尔加三角洲 下游兇猛魚类的营养狀況,举出了狗魚吞食本种幼魚的一些材料。 她曾指出:兇猛魚类,由於一年絕大部分时間主要地以他們棲居地方 富有的魚类为食物,所以絕大多数兇猛魚类的特点之一,就是沒有敏 銳的选擇能力。在六月,当狗魚因逃避捕捉而大量地聚集在河的兩 岸时,其幼魚受各种兇猛魚类吞食为最甚,其中也包括狗魚本身的吞 食。

这位作者还举出了很有趣的材料,介紹 1937—1947 年狗魚幼魚 佔成魚食物比重增長的情况。由於里海水位降低,河口前綠变淺,河 水变淡,於是为河口魚的繁殖便創造了良好的条件,因而增加了这些 魚的数量,其中也包括狗魚。这一点表現在兇猛魚食物的成分上。狗 魚幼魚在各种兇猛魚,其中包括狗魚本身的食物中,比前些年佔的比重有了显著的增加。伏尔加三角洲狗魚食用幼魚(根据 K. P. 佛尔杜納托娃)的材料: 1937年佔1.4%, 1946年佔7.5%, 1947年佔14%。

頓河上游狗魚食物中,幼魚在重量上佔3.8%(根据費德洛夫的 材料 A. B. Федров, 1952)。

这位作者接受奚門資(IIImem)的看法,認为狗魚是狗魚的第二位的食物。皮桥尔河上游在多水和少水的年月,由於肥育区域的变化,狗魚吞食本种幼魚的量,随着整个食物的成分而变化。在少水的年月里,生有水生植物的迴流和江灣面积縮小,狗魚不得不到水速較急的礫石地帶,在狗魚經常食物中,無脊椎动物佔的比重減少,而其魚类食物的比重却增加起来。多水年月,狗魚在植物中攝取食物,在其食物中整个魚类食物佔的比重降低,然而吞食本种魚的比重增加,即种內殘食現象加剧(見尼科里斯基,格洛姆契夫斯卡婭,莫洛佐娃,畢庫烈娃,1947)。

E. H. 和 B. II. 捷普洛夫(1953年)也會指出,狗魚吞食本种幼魚 因池沼水文情况而發生的这种变化。这兩位作者把狗魚看做狗魚經 常食物中佔第二位的食物;他們还指出,狗魚吞食狗魚在季节上的变 化,是由於这种食物相当的多,而且在一定季节很容易取得的綠故。 E. H. 和 B. II. 捷普洛夫指出:皮桥尔河狗魚食用本种幼魚隨其本身大 小的增長而愈加頻繁起来。在表 1 我們列举了这些材料。

| -2- |   |
|-----|---|
| -   | ш |
|     |   |

|                |         |         | 1       | 7       | 1     |
|----------------|---------|---------|---------|---------|-------|
| 長度(按厘米計)       | 25—50   | 51-65   | 66—75   | 76—85   | 85以上  |
| 体重(按公斤計)       | 0.1-1.0 | 1.1-2.0 | 2.1-3.0 | 3.4-4.0 | 4.0以上 |
| 含有狗魚的胃的数量(按%計) | 2.8     | 2.3     | 4.7     | 12.5    | 3.3   |

皮桥尔河狗魚的种內殘食現象不那么經常,一方面是因 为 該 种个体数量並不太多,另一方面也是因为他們有着足够的食物。 根据

E. H. 捷普洛娃和 B. II. 捷普洛夫兩氏的材料, 狗魚在含有食物的胃里仅佔 2%, 而在阿斯特拉汗禁漁区的比例却为 14%, 在依里門禁漁区是 5% (根据捷普洛娃和捷普洛夫, 1953) 1)。

Ю. А. 科茲明(Козбинн, 1952),就卡馬河 (р. Кама) 和該河由維 賽拉到秋少娃的捕魚区,會指出:成年的狗魚吃魚是 根据 池沼 中魚 的情况而轉移的;在湖泊里的狗魚和鱸魚,狗魚吃其幼魚。1946 年 和 1947 年狗魚胃中發現本种幼魚的 次 数 佔 6 %, 1949 年佔 1 %。

A. II. 叶菲莫娃 (Eфимова, 1946) 就鄂畢-額尔齐斯河流域,會指出:在充滿食物的狗魚胃內,找到該种幼魚的胃佔 11.6%。 可是,在8月,即当狗魚食慾正旺时,在某些河床,这一比值可增到 20%。

根据 M. II. 薩里达烏的材料, 鄂畢-額尔齐斯流域狗魚食物的主要組成部分是: 斜齿鯿魚 (Rutilus rutilus), 鱸魚 (Perca fluviatilis), 斜齿鯿魚和鱥魚 (Leuciscus idus)的幼魚, 以及狗魚本身(引自叶菲莫娃, 1946 年)。

И. И. 瑪科維耶娃 (Макковеева, 1953) 研究了兇猛魚幼魚的营养,她根据雷宾水庫的情况指出,狗魚由最初的發育阶段,当体長只有 4.5 cm 时起,便开始用本种个体充当食物。

E. C. 查都里斯卡婭 (Задульская, 1956) 研究了同一池沼內兇猛 魚的营养和在食物上的相互关系,她根据 1617 个狗魚胃的解剖指 出,雷宾水庫狗魚食物中遇到狗魚幼魚的頻率平均是 6.8%,如以重 量計本种幼魚平均佔 3.8%。她还写道:产过卵的狗魚在旺食时,食 婪地奔寻食物,在这个阶段甚至常把本种的公魚吃掉。 E. C. 查都里 斯卡婭認为:某种幼魚在食物中佔的比重,是随着不同年代該种魚的 产量不同而变化;她認为 1949 年狗魚胃內含的狗魚 比較多 (在 6、7 月佔所吃下的魚的 19.5%),和当年狗魚产量大是分不开的。

碩尔茨(C. Scholz, 1932)对狗魚的各种飼料进行了实驗性的研究。实驗証明:狗魚虽然偏好某几种飼料,嫌棄某些飼料,然而在絕

<sup>1)</sup> 根据 M. II. 列塞特厄科夫 (PemernukoB) 的材料。

大多数的情况下,狗魚都非常喜欢吃本种的个体,而且在食物中佔大多数的是瘦魚。这位作者为了测定狗魚消化各种飼料的强度,曾进行过一系列的实驗。他用3条食用淡水鮭魚肉的年幼的狗魚(I,II,III)进行了实驗。另一組实驗(IV,V,VI)讓狗魚吃本种魚肉。

我們根据碩尔茨的材料計算过狗魚消化所吃下的淡水鮭和狗魚的速度。正如表 2 所示,狗魚消化狗魚肉的速度快於消化淡水鮭的肉。实驗 VI, 在某种程度上說也包括实驗 V, 在消化淡水鮭速度上看到相差無几的現象, 前者是因为囫圇吞下了体大的食物, 后者是由於实驗是在温度較低的情况下进行的。比較狗魚消化淡水鮭和狗魚的速度,沒有給我提供任何根据得出这样的結論, 即認为魚类很难消化同种的蛋白。

表 2

| 实 驗序 号 | 进行实<br>驗的狗<br>魚的体<br>重<br>(按克計) | 被吃掉的魚<br>及其体重<br>(按克計) | 食物重<br>量与体<br>重之百<br>分 比 | 溫 度<br>(C) | 实驗繼續时間 (按小)时計) | 在实驗时間內被消化的魚类<br>食物的数<br>读(按克計) | 消 化速 度 (每小时) 以克計) |
|--------|---------------------------------|------------------------|--------------------------|------------|----------------|--------------------------------|-------------------|
| I      | 19.0                            | 河鮭 1.110               | () I                     | 16.0       | 2              | 0.125                          | 0.062             |
| n.     | 18.9                            | 河鮭 1.489               | 6-8.0                    | 16.0       | 6              | 0.219                          | 0.036             |
| III    | 26.9                            | 河魚 2.431               |                          | 16.0       | 10             | 0.616                          | 0.062             |
| IV     | 62.0                            | 狗魚 9.4                 | 15.0                     | 16.5       | 48             | 5.5                            | 0.114             |
| V      | 62.0                            | 粉魚12.2                 | 19.6                     | 14.0       | 96             | 9.5                            | 0.099             |
| VI     | 55.6                            | 狗魚17.2                 | 30.0                     | 16.5       | 156            | 9.8                            | 0.063             |

至於黑龙江狗魚 (Esox reicherti Dybowski) 在文献中亦有許多記載,說明它以本种幼魚为食(李寨夫, Jinmen, 1950年;洛維茨卡婭, Ловицкая, 1941等)。

至於鯉形目在文件中找到食用本种个体者 計有: Characi-noidei 亞目 Serrasalmoninae 亞科的代表, 別拉魚 [Roosevetiella

serrasalmo piraya], Astyanax, 頓河上游海馬 [Aspius aspius (L.)], 黑龙江流域平头海馬 [Pseudaspius leptocephalus (Pallas)], 伏尔加三角洲的粗鳞鯿魚 [Blicca bjoerkna (L.)], 咸海鰮魚 (Barbus braehycephalus Kessler),以及普通鲶魚 (Silurus glanis L.)。

別拉魚(Rooseveltilla serrasalmo piraya)是南美淡水中最可怕的 兇猛魚,它甚至捕食体驅龐大的动物。它吃本种个体,尤其是已落網 者和上鉤者(尼格尔斯基 Никольский, 1954)。

布萊德尔(Бредер, С. М. Breder, 1943)在养魚缸內看到了 astyanax 魚的种內殘食現象,該魚缸大小是 2×1 呎,內养 18 条魚, 其大小为 34—50 毫米。这些魚是由一对雌雄魚一次产出,这对雌雄魚是 1940 年由墨西哥运来的。 魚卵是 1942 年 5 月孵出的,幼魚於 7 月 16 日迁入此魚缸內。这一魚羣虽然貪食,然而却很平安地生長着,直到 11 月 1 日为止,这时几条体大的忽然吃掉了所有体形較小的同种个体。 問題还不在於食物不足,这些魚每天都有人喂,11 月 1 日的早晨也是如此。因而,布萊德尔認为:該种的个体如在一定的年龄不能長到一定大小,則可能被同胎的魚吃掉。該魚缸內 Astyanax 的体軀大小如表 3 所示。

| 体形大小(按毫米計) | 尾 数 | 体形大小(按毫米計) | 尾数     |
|------------|-----|------------|--------|
| 34—35      | : 6 | 42-43      | 2      |
| 36—37      | 3   | 44—45      | 2      |
| 38—39      | 2   | 50—51      | 1      |
| 40—41      | . 2 |            | 1 × 10 |

表 3

布萊德尔还提出一种推論,認为 173 天內沒長到 34 毫米的个体 大概要被其它个体当作食物吃掉。

在布萊德尔的書里,我們还找到了另一些材料。記載着同一屬另

一种代表(Astyanax ruberrimus Eigenmann)的种内殘食現象(根据 1924 年在巴拿馬的現察)。

鯉科(Cyprinidae)的其它种內也可以見到种內殘食現象。

种內殘食現象对頓河上游的海馬的营养,也有着一定的意义。 A. B. 費多罗夫 (1952 年) 証明:海馬食物中遇到本种个体的頻率是 3.8%,而吃掉的海馬数量佔所吃掉的魚的总数之 1.7%。关於黑龙 江的平头海馬, M. H. 李賽夫 (1950) 曾写道: "在河床和河川的天然 水路里海馬有时食用本种幼魚"。

查貝林 (Е. Забелип, 1915) 在伏尔加三角洲看到粗鳞艑魚轉入 食用本种和斜齿鯿魚(Rutilus rutilus) 之幼魚的过渡过程。他認为, 这种性質的营养是偶然的,是被迫的,这是因为沒有或者缺少普通食 物之故,是由於極小而又易捕捉的幼魚很多之故。

关於咸海鮑魚大家都知道,在阿木-达里亞河由於不能吃到普通 的食物,它便变得吃本种早期的幼魚。

根据佛尔杜納托娃(K. P. Фортунатова, 1949)的材料,伏尔加三角洲下游地区的鲶魚,除了吃其它种魚之外,还吃本种的幼魚,而且 發現本种幼魚的頻率,根据 1947 年 4—11 月的观察,达 7.5%。佛尔杜納托娃指出:鲶魚在8月份食用本种幼魚的現象尤为显著,这时其幼魚在別的兇猛魚的食物中也时常出現。

庫別魚(Lebistes)和食蚊魚(Gambusia affinis)在养魚缸內时常吃掉本种幼魚,根据对这兩种魚进行的观察,可以了解鱂形目(Cyprinodontiformes) Poecilidae 科代表的种內殘食現象。鱈目(Gadiformes)的三种代表都吃本种幼魚,計有:鱈(Gadus morhua)、寬突鱈(Eleginus navaga)和江鱈魚(Lota lota)。

記載鱈屬和內殘食現象的文献是很多的(Ramsay Smith, 1913; Аверинцев, 1927; Броцкая, 1931; Кучина 1932; Владимиров, 1938; Защенин 和 Петрова, 1939; Полутов, 1947 等等)。 关於 鱈屬 营养材料, 掌握得最丰富的是: Л. А. 金克維琪 (Зепкевич) 和 В. А. 布罗 美卡婭 (Броцкая, 1931), В. И. 查采平 (Заценин) 和 Н. С. 彼特罗娃

(Петрова)。B. A. 布罗茨卡婭用苏联魚类 学 学 会 考 查 团 於 1930—1931 年收集的鳕魚, 研究鱈屬的营养, 她曾指出: 鱈的幼魚是鱈魚基本食物来源之一。

B. M. 查采平和 H. C. 彼特罗娃(1939)曾指出幼魚对成年鳕魚食物的巨大意义。遺憾的是,在統計鱈魚营养的数字材料时,他們沒有把食物中的幼魚分开不同的种加以統計,只把鱈屬幼魚籠統 地統計了一下(主要的是鱈和惡鱈 Gadus aeglefinus 的幼魚)。他們还會指出,在近底水層中如果鱈食用的主要食物对象,如鯡魚, Mallotus Villosus(为胡瓜魚科之一种)和 черноглазка 等少有或沒有时,就在这种季节,在这一地帶,鱈魚吞食幼魚現象便最为厉害。

A. H. 普罗巴托夫(1936) 和 B. II. 滿傑費里(1945)記載了美於寬 突鱈(Eleginus navaga)的营养材料。A. H. 普罗巴托夫研究了喀拉 海灣(Kapekaa ryóa)的鱈。他認为,不論海灣或是河里的鳕吃的东西 都很广。这种魚的食物的成分最为复杂,然而多屬於动物,如: 軟体 动物、甲殼类、魚卵以及各种魚,其中也包括本种的魚。

根据 B. II. 滿傑費里的材料, 白海鱈的魚类食物对其营养也有着很大的意义, 因为它平均佔总食物的 28%。 在鳕的胃里时常可以見到比它体形小些的鳕。他在描述鳕捕捉牺牲者时, 曾写道: 鳕在水中追赶, 捕食真是一个灵活的兇猛魚。同时, 体長达 17—20 厘米的鳕时常吃掉体長 9—11 厘米的鳕。

М. И. 馬尔昆 (Маркун, 1936)、Г. В. 尼格尔斯基、Н. А. 格罗姆切夫斯卡婭 (Громчевская)、Г. И. 莫洛佐娃 (Морозова)、В. А. 彼庫列娃 (Пикулева, 1947) 和 А. В. 費德洛夫 (Федров, 1952)都記載了江鱈(Lota lota)吞食本种相似个体的材料。

M. И. 馬尔昆於 1935—1936 的兩个冬季研究了 2036 条卡瑪河 (Kama) 江鱈的食物。發現食物的胃計有 1472 个。 201 条魚的胃里有魚类食物,其中有 2 条的胃里有江鱈。 馬尔昆把卡瑪河江鱈胃內發 見江經这一現象,看成为偶然的。他在同一篇文章里,还引証了喀里瑪河 (Колыма) 江鳕的营养情况: "П. А. 德梁金(Дрягии) 对喀里瑪

河江鱈(in litt)的食物在数量上所进行的观察,是極其有趣的。这里江鳕食物的主要成分是其幼魚,这一点与卡瑪河不同。 德梁金研究 过的魚里,有 39 条的胃里有魚类食物,39 条中最小的一条体長 277 毫米。大江鱈(710毫米長)有的吃掉了 140 条小江鱈,中等的 (475—525 毫米)吃掉的小江鱈大致是 45—61 条。"

A. B. 費德洛夫記載了頓河上游江鱈吃本种个体的兩种情况。他 把江鱈食物中的江鱈看成是他的第三等(偶然的)食物。

多有这种兇猛魚的池沼中,这种魚的殘食現象是很普通的。 根据 F. B. 尼格尔斯基的記載,在皮桥尔海(Печера)上游江鳕胃內發現江鳕的比例佔 20%,而在愛萊琪(Ылыч)河,則佔半数。

E. C. 查都里斯卡婭(1956 年)記載了雷宾水庫(Рыбинское вдхр.) 江鱈种內殘食的材料。雷宾水庫江鱈幼魚在成魚胃中所發現的数量 是不大的, 仅为次要食物。每年平均發現的頻率不超过 0.8%, 如以 重量計此类食物仅佔 0.1%。

通过各地白鱸(Lucioperca lucioperca)記載鱸形目(Perciformes) 种內殘食現象的計有: К. А. 基謝廖維琪(Кпсилёвич)記載伏尔加三角洲; А. В. 费德洛夫(1952)記載頓河流域上游; 奚門資(1934)記載德国各湖泊; Е. С. 查都里斯卡婭(1956)記載雷宾水庫。 对普通鱸和巴尔喀什鱸,以及大耳鱸吞食本种幼魚的現象,亦有所記載。

根据 K. A. 基謝廖維琪的材料, 1922—1923 年在伏尔加三 角洲 сутак 的食物中幼魚佔第二位 (条数的 19.2%—20%) (引自費 德洛夫,1952)。咸海(аральское море)白鱸食物中,本种幼魚仅佔 1% (尼科里斯基,1940)。

A. B. 費德洛夫只記載頓河上游 cygak 食用当年生的本种幼魚 这一情况,而且食用的数量仅佔吃掉的魚的总量之 0.2%。在構成普 通食物的魚感到不足时,奚門資在 cygak 的胃中曾發現过本种幼魚。

E.C.查都里斯卡婭把白鱸食物中之同种魚,看成是次要的,沒有多大意义的食物。成年 cyдax 的胃中每年發現幼魚的平均頻率不超过 1.5%,按重量計幼魚平均仅佔 0.9%。但是,在某些地区,在一定

的季节, судак 食物中本种幼魚所佔的比重会有显著的增加,譬如:高尔洛夫卡(Горловка) 地区 8 月間 судак 食物中發現本种幼魚的次数佔 7.7%,按重量計平均佔 4.6%,而在中宮一帶(Средний двор)能增加到 16.7—17%。雷宾水庫白鱸挨餓的現象是談不到的,这种魚的肥育比例远远大於狗魚和江鮮,这一点間接地証明了上述情况。

記載鱸魚 (Perca fluviatilis) 吃本种幼魚的材料,也是很多的。 Γ. B. 尼格尔斯基 (1953) 在談到吞食本种幼魚对种的生物学意义时, 曾指出:"譬如鱸魚改成食用本种幼魚,就能使这一个种在沒有其它 种魚的池沼中得以生存。这些池沼中的鱸魚,如果食用本种幼魚,可 通过幼魚吃到他們不适应用以营养的食物,尤其是浮游生物。"

К. М. 貝尔(Бер, 1854)曾指出, 邱德湖(Чудское озеро)的鱸魚几乎完全以本种魚为食。Л. П. 薩斑聶夫(Сабанеев, 1919)在指出鱸魚有种內殘食現象的同时,还指出这一現象对限制兇猛魚無限繁殖的良好意义。奚門資(1905)記載了西欧各个池沼的鱸魚以本种幼魚为主要的食物。根据 Л. О. 巴倫(Паллон)的記載,卡列里(Карелпа)許多湖泊的年老的鱸魚魚羣,改食本种相似个体,成为池沼內海洋魚的唯一的代表。

下列各位作者也分別列举了鱸魚吃本种幼魚的各种事实: E. 查別林(Забелин, 1915) 和 B. 傑林节夫(1937)記載了伏尔加河; A. B. 費德洛夫(1952)記載了頓河上游; М. П. 薩里达烏(Сальдау)記載了鄂畢-额尔齐斯流域(引自叶非莫娃, 1946); В. Д. 斯巴諾夫斯卡婭(Спановская)記載了吳清水庫(Учинское вдхр.); Е. С. 查都里斯卡婭(1956)記載了雷宾水庫。記載鱸魚种內殘食現象的有:阿尔諾意德(J. Arnold, 1901)和廖貝尔(К. C. Röper, 1936),他們記載的是布藍金布尔格省1)的池沼,德廖賽拉(W. Dröscher, 1908),記載的是德国的沙里湖(Шалль)。

牛曼(W. Nümann, 1939)指出,宝津湖<sup>2)</sup>(Боденское оз.)的大鱸

<sup>1)</sup> 德国东部之一省。

<sup>2)</sup> 德国之一湖,盛产魚。

魚吃小魚,其中最喜欢吃的是本种的小魚。在宝津湖鱸魚並不是一种經济上有价值的魚,这是因为这种魚長得太慢。吃小魚長大的成年鱸魚,尤其是吃本种幼魚者,一般長得都比較大,而且体重增加的也多。

本文作者於1954年夏季参加莫斯科大学麦賽尔考查团(Мещерская экспедиция),考查团的研究証明:在进行过研究的湖泊中,有一 些湖泊的成年鱸魚选擇本种幼魚,有些湖泊里迴避本种幼魚。大鱸 魚选擇本种幼魚的情况(按百分比計)如表4所示:

表 4

| 31. 2       |                         |       |  |  |
|-------------|-------------------------|-------|--|--|
| 日 期 (1954年) | 在捕获的魚中                  | 在鱸魚腸內 |  |  |
|             | 奧基·洛巴达(Orn Jonara)河床    |       |  |  |
| 23 VI       | 12.4                    | 44.5  |  |  |
| 21 VII      | 11.0                    | 23.7  |  |  |
|             | 叶魯斯林湖 (Лесное оз. Ерус) |       |  |  |
| 30 VI       | 21.3                    | 0.1   |  |  |
| 27 VII      | 45.3                    | 21.3  |  |  |

奥基禁漁区 (Окский заповедник) 許多經过研究的池沼中的鱸魚,都吃本种的幼魚。

如果比較一下吃本种幼魚的鱸魚和池沼中不吃本种幼魚的鱸魚,並看不到前者在生長上有落后的現象,与此相反,它的肥育程度还要大些。

巴尔喀什鱸魚(Perca schrenki Kessler)就其生态学而言,与普通 鱸魚有着極大的区別,它有許多典型的特征,而这些特征都是由它生 存条件的特異性所决定的。这些特点之一就是在营养上表現得極为 显著的种內殘食現象〔多木拉乔夫(Домрачев), 1930;根据 A. II. 查 尼(Занин)的材料;尼科里斯基和叶夫鳩赫夫,1940;根据 В. П. 彼特洛夫和保格洛夫斯基(Покровский);亞金(Жадин, 1948);馬克松諾夫(Максунов),1953)。

NI.Φ. 多木拉乔夫曾指出:大的巴尔喀什鱸魚主要的是吃本种幼魚,而不吃別的种的幼魚;依他看来,这一点說明該湖內此种魚过剩。在34次搜索巴尔喀什鱸魚胃內本种幼魚的过程中,有23次發現有很多的此种食物,有11次發現的量非常之大。

B. A. 馬克松諾夫当巴尔喀什鱸冬季食慾最旺时, 研究了它的食物、於是他写道: "1951 年我們所进行的食物分析說明: 50 个胃中有37 个里發現5—11 厘米長小鱸魚, 在其余的胃里發現有已被消化了的其它魚的遺骸。換句話說, 巴尔喀什鱸按其营养特点而論, 应屬兇猛魚, 屬於种內殘食者"。

Б. Ф. 亞金研究过 2446 条巴尔喀什鱸的食物,他肯定該 和魚 在長到一定的大小之后,主要的营养方式就是种內殘食。本种較小的个体平均佔其胃內內含物之 96.2%。当湖內食物天然 地 感到 缺少时,本种个体就成为巴尔喀什鱸食物的对象,而且数量最多,同时攝取也方便。"大巴尔喀什鱸主要的是吃8—12.5厘米的魚。这么大小的鱸魚相当 2—4岁。可見,大鱸魚吃的基本上是这样一些个体,即已达到性成熟者,甚至已經产过一次卵。这一点也就証明:在这种情况下,在現有的条件下,种內殘食現象並不是一个反面的因素,这种現象,很可能,有助於調剂种內个体的数量。这一点对巴尔喀什鱸是有着巨大的生物学的意义,因为巴尔喀什是一个完全閉塞的湖泊,过量的繁殖种內个体会更加惡化其生活条件,这样終究会引起这一个种的完全衰退"(亞金,1948)。

谷培尔(G. P. Cooper, 1937)研究过米企干州(Мичиган)各池沼的大嘴鱸魚[Aplitis salmoides (Lac.)],他对这一个种的营养和生長速度的特点,以及种內殘食現象,举出了許多很有趣的材料。在他把这些材料造成表格的时候,他考虑到把吃食的魚和被吃掉的有机体按体軀大小加以分类。吃同种魚的鱸魚的食物中,遇到含本种个体

和大一点蝦的食物的頻率平均佔 23%。 根据研究的結果, 谷培尔認为: 营养特点是構成促使鱸魚在生長上产生不同大小的主要因素。 初夏的时候, 大鱸魚借助体大的优越性比小鱸更猛烈地吃 Corixidae 和其它水棲昆虫 而且在小鱸还未長到能吃这种食物之前, 它便几乎將这些昆虫吃得殆尽。 体形大小的区别随着时間的推移, 就足以使得較大的有可能开始进行种内殘食。

卡尔宾(W. F. Carbine, 1945)研究的虽是狗魚生長池中的生長特点,他也遇到了相似的現象。

谷培尔在芬冬納二个水池(Пруды Фентоны)和卡尔鳩拉池(Пруд Кордюрей)观察到一些事实,比較这些事实証实了对大嘴鱸魚种內殘食現象起端的解釋。在卡尔鳩拉池大的水棲昆虫少見,而且大嘴鱸种羣在营养特点上也比較一致。由於这种綠故,鱸魚体形大小上的分歧也就比較小,於是种內殘食現象也不像芬冬納二个水池那样普通,在所捕捉的个体中吃本种个体者仅佔 0.47%(芬冬納二个水池在夏季捕捉时,吃本种个体者各佔 7.5% 和 3.9%)。

种內殘食現象既然是由於吃魚者比被吃者在体軀大小上佔有某些优势而引起的。而且殘食者比不殘食者生長得又快得多。这样,在一个夏季的过程中,体形大小上的分歧便不断地在加大。这种分歧構成种內殘食現象得以繼續的必要条件,而且也是这一現象的結果。芬冬納二水池的吃魚者和被吃者体長平均差值一直在增加,6月5日16.9毫米,6月16日21.2毫米,6月30日46.5毫米。8月24日56.5毫米。这些事实証明:种內殘食現象取决於种羣个体体形大小的差異,而且和这一差異的程度成正比。

殘食本种个体的鱸魚比不殘食者生長得快 通过这一点看来,殘食者需要更多的食物,而且这些食物也更富有营养这一事实是不容置辯的。芬冬納二池每个不殘食本种的鱸魚胃的內含物平均是 0.016 立方厘米,該池殘食本种者每个胃的內含物平均是 0.17 立方厘米 或者說比前者多 10 倍。殘食者胃內內含物之 78% 是大嘴鱸和大一点的蝦。所有的鱸魚,不論殘食本种者或不殘食本种者之生長速度均

与其胃內內含物的多少成正比(G. P. Cooper, 1937)。

Γ. B. 尼科里斯基和 C. Γ. 柯雷然諾夫斯基把魚类改成用本种幼魚为食,看做是生活条件惡化时控制本种个体数量的一种适应形式。在这种情形下,个体的数量减少,每个个体应得的食物数量增多。个体数量减少使得被留下的个体不致亏虚,而且能經受住兇猛魚和动物流行病的侵襲,而这些因素往往把种羣的数量縮減得很低,甚至低於生活条件惡化后尚能取得食物的数量(尼科里斯基,1953)。

种內殘食現象和种間殘食現象有着本質上的不同。种間殘食現象,由於削減种的个体数量,对食物的潛在量利用得不够,並縮狹种的生活范圍。种內殘食現象与此相反,它能更加充分地利用食物的潛在量,並扩大种的生活范圍(尼科里斯基,1953;柯雷然諾夫,1953)。

莫甫倉(B. A. MOBURH)通过实驗研究所取得的实际材料,在他看来証明一条原理,即同种有机体不能用本种个体生長、發育,依我們看来,这一点还不能做为这一自鳴之理的論据。

莫甫倉基本上是用狗魚做的实驗,因而他所选擇的对象对这种实驗說来是不合适的。他犯了一个方法上的錯誤,在研究魚的种內关系时,他把魚的生物学关系和营养的生理方面給隔裂开来。他用狗魚进行实驗,可是狗魚在絕大多数的情况下都是善於埋伏的兇猛魚。它的單独的个体,多屬近岸杂草叢內的棲息者,在池沼各地、零星地等待食物,並迅速地从隐避处向食物扑奔<sup>1)</sup>。小狗魚甚至在他們一生中的第一个夏季也从不結羣,各自分散,这一点和成魚的習性是相近的。

絕大多数池沼中狗魚的种內殘食現象,由於他們生态学的特殊性,在自然界中所佔的地位是一种偶然的,被迫的現象; 只有当幼魚在池沼中的密度已經相当的高,而且对一切兇猛魚說来都成为一种易於攝取的食物时,它才能在狗魚的食物中佔有一定的比重。

發生营养关系的有机体的生物学关系,即消耗者和被消耗者之

間所建立起来的那种关系,应該从生命产物的产生情况,即由生長、 个体数量和化学成分的指数来加以研究。然而,"生物关系和相互發 生关系的有机体之生理狀态又是不可分割的,不仅如此,生理狀态在 極大的程度上还取决於生物关系"[卡尔近金(Карзикии), 1952 年]。

吃本种魚肉的狗魚甚至比沒吃任何食物的狗魚亏耗得很厉害, 这一現象之所以产生可能是实驗进行得不够正确,沒有考虑到这一 个种的生物学的特殊性。莫甫倉在用狗魚做实驗时,除了种的生物 学特殊性之外,还忽略了該种对外界环境的本能的要求,尤其是要求 食物的成分要达到一定的多样化。多食的狗魚在飼喂本种魚的实驗 中,便被人为的改变成單食的魚。

在他选擇其它的典型的多食魚进行实驗时[如 Callichtys fasciatus 和 Heros facetum),也犯了类似的錯誤,把这些魚通过实驗变成反常的單食魚。

在这样选擇实驗对象和这样进行实驗的情况下,把有机 体 之本能要求置之於度外,这样被实驗的个体的生理狀态自然会产生一些相反的反应,其中就包括它們組織內所含有的蛋白質和水的含量。 莫甫倉在比較狗魚經过实驗后的化学分析材料时,曾指出:吃本种魚 肉的狗魚,比吃別的种魚肉的狗魚,甚至比挨餓的狗魚,肉里所含的 水分要多,而蛋白質却少。但是在进行实驗过程中所犯的錯誤,不能 比較这些最終的实驗結果。

根据他在文章里所列的材料,在实驗的 34 天中, 重 701 克的大狗魚吃了許多小狗魚, 共計重量为 214 克。可是, 該魚每晝夜的食物平均是 6.3 克, 即体重的 0.9%。大家都知道, 碩尔夫(C. Scholz, 1932年)曾測定, 兩岁的狗魚每晝夜的食量应該是体重的 2.9%。可是, 經过实驗的这条狗魚是 狠狠地 餓了些时。第二个实驗 用狗魚 体重 336 克, 喂以其它种的魚, 35 天吃了 189 克重的冬穴魚 和鯽魚。此魚晝夜食量是 5.4 克, 即体重之 1.6%, 这一数字已更 加接近正常。按碩尔夫的材料, 二岁的狗魚如果吃魚类食物, 其食物增重系数平均为 3。我們既已知道这条狗魚在实驗过程中增加的体重是 48 克, 那

么我們便可以肯定食物增重系数为 3.7。 可是, 第二种处理的实驗, 与第一种处理不同, 看到了需求食物的正常的定量。

这兩个实驗狗魚的材料不能进行比較,因为其中有一个會經挨 过餓(用本种魚肉喂养),而另一个获得了足够的食物(用冬穴魚和鯽 魚肉喂养),也就是說实驗所利用的有机体处在完全不同的生理狀态 (餓与飽)。因此,由上述实驗結果所得到的实际材料,不允許莫甫倉 做出他已做出的那些理論上的結論。

## 結 論

- 1. 用本种个体充当食物,在魚綱范圍內是相当普遍的。
- 2. 許多种魚改为食用本种幼魚,对該种有很大的生物学意义,因为这是調剂該种个体数量的一种方式。在自然界这一点可見於 屬,江鱈和巴尔喀什鱸。
- 3. 改为食用本种幼魚,能使种在沒有可被消化的食物的池沼中得以生存。譬如,鱸魚和狗魚能生存在許多沒有其它种魚的湖泊中,通过幼魚吸收他們不能直接吃到的食物(浮游动物)。可見,种內殘食現象能促使更加充分的利用食物潛在量,而且常常还能扩大种的生存范圍。这种現象亦可見於远东鮭魚的幼魚吃产卵后死去的成魚的遺骸,这时幼魚虽生在河里但能吃到海里的食物,因为他們的亲本通过本身的肉把这些东西帶到河里。
- 4. 在某一种魚丰产的年代,即当他的幼魚在水池中很多,而且变成一种量多易得的食物时,这种魚的种內殘食現象也比減产的年代發展得严重。丰产的幼魚於是变成該池內所有兇猛魚的主要食物,其中也包括本种成魚(狗魚、鯰魚)。
- 5. 某些种魚食用本种相似个体帶有一种偶然性(cygaix、海馬、粗 鱗騙魚)或被迫性(鮑魚)。
- 6. 在許多情况下(正像谷培尔通过大嘴鱸所观察到的一样),种 內殘食現象只發生在一个种羣的范圍內,結果便維持了該种羣个体 数量和現有的食物取得一致。及早地为种的部分固定适宜的肥育

区,为另一些固定不适宜的地区,这样就引起生長土的分歧。同一种零个体大小上的分歧,逐漸便使得較大者有可能进行种內殘食。种內殘食的强度取决於种內个体大小相差的程度。 普通鱸魚、大嘴鱸魚和胡瓜魚改为食用本种幼魚和他們生長速度的加快是有联系的。这一点証明:这些种魚如果以本种幼魚为食,利用本种的蛋白質是能进行正常的生長和發育的。

7. 我們根据碩尔茨的材料比較了狗魚消化狗魚肉和淡水鮭魚肉的速度,从而証明:狗魚消化狗魚肉甚至比消化淡水鮭魚肉还要快些。可見:消化同种蛋白質的速度不能証明魚类很难消化同种个体構成的食物。

8. 大麻哈魚屬的大麻哈魚 (Oncorhynchus) 早期幼魚在自然狀況 下能以产卵后死去的成魚为食,証明同种个体肉內所含蛋白 實有可 能很容易地加以消化。現在远东漁業工厂便利用鮭魚亲本屍体飼养 所养育的幼魚。

所以,应該承認:在魚綱范圍內散佈極广的吞食本种相似个体这一現象,毫無疑問,对絕大数的种都有着莫大的生物学意义。由於种內殘食現象的存在,它根据食物供应条件控制了种內个体的数量,扩大了种分佈的范圍,於是种便能佔据新水池,虽然那里沒有成年个体能直接吸收的食物。

(姚丹譯 自 苏 联 "动 物 学 杂 誌" 1956 年第 35 卷第 2 期, 275—289 頁; 著者: 0. А. Ключарева; 原題: О некоторых вопросах внутривидовых отношений у рыб; 原文出版者: 苏联科学院出版社)

## 参考文献

- [1] Аверинцев С. В., 1927. Материалы к познанию промысловых рыб и рыболовства Баренцова моря в связи с перспективами дальнейших исследовачий. Тр. Науч. ин-та рыби. хоз-ва, т. II, вып. 3, М.
- [2] Бэр К. М., 1854. Материалы для истории рыболовства в России и придежащих ей морях, Уч. зап. Имп. Академии наук, т. П, вып. 4.
- [3] Владимиров В. Н., 1938. К биологии трески у Новой Земли, Уч. зап. Пермек. гос. ун-та, т. III, вып. 1.
- [4] Домрачев И. Ф., 1930. Отчет о работах Балхашской научно-промысловой экспедиции в 1929 г., Изв. Лен. н.-несл. ихтиол. ин-та, т. XI, вып. 1.
- [5] Есинов В. К., 1935. Материалы по биодогии и промыслу новоземельского гольца (Salvelinus alpinus), Тр. Арктическ. ин-та, т. XVII.
- [6] Ефимова А. И., 1946. Щука (Esox lucius Linne) Объ-Иртышекого бассейта (дисс.), ВНИОРХ, Л.
- [7] Жария Б. Ф., 1948. Балуашский окунь (Perca schrenki Kessler) (дисс.), ЛГУ, Л.
- [8] Забелин Е., 1915. О питании некоторых хищных рыб в дельте Волги, Мат. к позн. русск. рыболовства, т. IV, вып. 4, Пг.
- [9] Задульская Е. С., 1956. Питание и пищевые взанмоотношения хищимх рыб северной части Рыбинского водохранилища. Рыбинское водохранилище, ч. II, изд МОИП, М.
- [10] Заценин В. И. и Петрова Н. С., 1939. Питание промысловых косяков трески в южной части Баренцова моря (по наблюдениям 1934—38 гг.), Тр. ПИНРО, вып. 5, Инщепромиздат, М.—Л.
- [11] Карашкин Г. С., 1952. Основы биологической продуктивности водосмов, Пищепромиздат, М.
- [12] Ключарева О. А., 1956. Интание и инщевые взаимоотношения бентосоядных рыб Рыбинского водохранилища. Рыбинское водохранилище, изд. МОИИ, М.
- [13] Козьмин Ю. А., 1952. К биологии щуки р. Камы и ее поймы на участке от Вишеры до Чусовой, Изв. Естеств.-науч. ин-та при Молотовск. гос. унте, т. XIII, вып. 4—5.
- [14] Крыжановский С. Г., 1953. О видообразовании, Зоол. жури., т. XXXII, вып. 6.
- [15] Кузнецов И. И., 1928. Некоторые наблюдения над размножением амурских и камчатских дососей, Изв. Тихоокеанск. и.-пром. станции, т. И. вып. 3.
- [16] Кучина Е. С., 1932. К вопросу о питании мурманской трески, Сб. и.-пром. работ на Мурмане, Снабтехиздат, М.—Л.
- [17] Лавров С. Д., 1909. К вопросу о питании вожжених рыб, Тр. Об-ва естествопеныт. при Казанск. ун-те, т. XLII, вып. 1, Казань.
- [18] Лишев М Н., 1950. Питание и пищевые отношения хишных рыб бассейна

- Амура, Тр. Амурек. ихтиол. экспедиции 1945—1949 гг., т. І, изд. МОНП, М.
- [19] Ловецкая А. А., 1941. Питание некоторых промысловых рыб бассейна р. Амура, Зоол.-жури., т. XX, вып. 4—5.
- [20] Макковесва И. И., 1953. Характер питания молоди хищиых рыб (щука, окунь и судак) в условиях Рыбинского водохранилища (дисс.), Ярославск. пед. ин-т, Ярославль.
- [21] Максунов В. А., 1953. Сезонные скопления окупя в озере Балхаш, Вопросы ихтиологии, вып. 1, Изд-во АН СССР, М.
- [22] Мантейфель В. П., 1945. Навага Белого моря и ее промысел, Архангельск.
- [23] Маркун М. И., 1936. К систематике и биологии налима р. Камы, Изв. Пермек. биол. ин-та, т. X, вын. 1.
- [24] Материалы по питанию рыб Баренцова моря, под ред. Л. А. Зенкевича, Дока. I сессии ГОИН, № 4, 1931.
- [25] Мовчан В. А., 1953. О внутривидовых отношениях у рыб, Агробиология, № 3.
- [26] Никольский Г. В., 1940. Рыбы Аральского моря, изд. МОНП, М.—1949. О закономерностих внутривидовых отношений у пресноводных рыб, Бюлл. МОПП, № 1.—1953. О биологическом обосновании контингента вылова и о путях управления численностью стада рыб, Очерки по общ. вопросам ихипол., Изд-во АН СССР, М.—Л.—1953а. О закономерностих пищевых отношений у пресноводных рыб, там же.—1953б. О некоторых вопросах проблемы вида, Зоол. жури., т. ХХХИ, вып. 5.—1953в. О некоторых общих вопросах биологии, Вюлл. МОПП, отд. биол., т. LVIII, вып. 2.—1954. Частная ихипология, изд. 2-с, Изд-во «Сов. наука», М.
- [27] Никольский Г. В., Громчевская Н. А., Морозова Г. И. и Пикулева В. А., 1947. Рыбы бассейна Верхией Печоры, М.
- [28] Никольский Г. В. и Евтюхов И. А., 1940. Рыбы равшиного течения р. Или, Бюлл. МОИИ, т. XLIX, вып. 5—6.
- [29] Паллон Л. О., 1929. Рыбы и рыбный промысся озер Онего-Беломорского водораздела, Тр. Олонецк. науч. экспедиции, ч. VIII, вып. 3, Гос. гидрол. ин-т. Л.
- [30] Подутов И. А., 1947. Треска Авачинского задива (дисс.), Петропавловек-Камчатский, Камчатск. отд. ТИНРО.
- [31] Пробатов А. И., 1936. Навата Карской губы, Уч. зап. Пермек. гос. Ун-та, т. И., вын. 3.
- [32] Сабанеев Л. И., 1911. Рыбы России, изд. 2-е, т. І-ІІ, М.
- [33] Семко Р. С., 1948. О биоценотических взаимоотношениях тихоокеанских дососей и гольцов в нерестово-вырастных участках р. Большой (занадное побережье Камчатки), Зоол. журн., т. XXVII, вып. 1.
- [34] Спановская В. Д., 1948. Питание рыб Учинского водохранилища, Зоол. жури., т. XXVII, вып. 1.
- [35] Суворов Е. К., 1948. Основы ичтнодогии, изд. 2-с, Изд-во «Сов. наука», М.
- [36] Теплов В. И. и Теплова Е. Н., 1953. Питание щуки в бассейие Вермей

- Печоры, Вопросы ихтиол., вып. 1, Изд-во АН СССР, М.
- [37] Терентъев В., 1937. Влижине щуки и окуми на запасы промысловых рыб Волго Каспийского района, Рыбн. хоз-во, № 9.
- [38] Федоров А. В., 1952. Питание хищных рыб бассейна верхнего Дона в связи с перспективами и рыбохозяйственного использования (дисс.), Воронежск. гос. ун-т, Воронеж.
- [39] Фортупатова К. Р., 1949. Некоторые данные по биологии питания хищных рыб в дельте р. Волги, Зоол. журн., т.ХХVIII, вып. 5.
- [40] Arnold J., 1901. Über die Fischnahrung in die Binnengewässern, Sonderabdruck aus den Verhandl. des V. Int. Zoologenkongresses zu Berlin.
- [41] Breder C. M., 1943. A note on erratic viciousness in Astyanax mexicanus (Phillipi), Copeia, No. 2, June 30. Published by the American Society of Ichthyologists and Herpetologists.
- [42] Carbine W. F., 1945. Growth potential of the northern pike (Esox lucius), Papers Michigan Acad. Sci., XXX.
- [43] Cooper G. P., 1937. Food habits, rate of growth and cannibalism of young Largemouth Bass (Aplitis salmoides) in state-operated ponds in Michigan during 1935, Transact. of the Amer. Fish. Soc., 66 (1936), Washington.
- [44] Cornelius W. O. 1933. Untersuchungen über die Verwertung natürlicher und künstlicher Nahrung durch Regenbogenforellen verschiedenen Alters und unter ver schiedenen Bedingungen, Zschr. f. Fischerei, Bd. XXXI, Hft. 4.
- [45] Dröscher W., 1908. Der Schaalsee und seine fischereiwirtschaftliche Nutzung, Zschr f. Fischerei, Bd. XIII, Hft. 3-4.
- [46] Enger M., 1936. Zur Monographie der Bachforelle, Zschr. f. Fischerei, Bd. XXXIV, Hft. 3.
- [47] Die Literatur der zehn wichtigsten Nutztische der Nordsee in monographischer Darstel lung, Publ. de circonstance No 3 (Edition allemande I), Conseil permanent int. pour l'exploration de la mer, Aout, Copenhague, 1903.
- [48] Marre G., 1931. Fischereiwissenschaftliche Untersuchungen über die Grundlagen der Stintfischerei im Kurischen Haff, Zschr. f. Fischerei, Bd. XXX, Hft. 3.
- [49] Nümann W., 1939. Untersuchungen über die Biologie einiger Bodenseefische in der Uferregion und den Randgebieten des freien Sees, Zschr. f. Fischerei, Bd. XXXVII, Hft. 5.
- [50] Rillay T. V. R., 1953. The food and feeding habits of the Bombay duck Harpodon nehereus (Ham.) in the river Matlah (Bengal), Proc. Nat. Inst. Sci. India, vol. XIX, No. 3.
- [51] Röper K. C., 1936. Ernährung und Wachstum des Barsches (Perca

- fluviatilis L.) in Gewässern Mecklenburgs und der Mark Brandenburg, Zschr. f. Fischerei, Bd. XXXIV, Hft. 4.
- [52] Schiemenz P., 1905. Uber die Nahrung unserer gewöhnlichen Wildfische Dtsch. Fischerei-Ztg.—1934. Betrachtungen über die wichtigeren Fische unserer Seewirtschaft, Fisch.-Ztg., Bd. 37, Nr. 39.
- [53] Scholz C., 1932. Experimentelle Untersuchungen über die Nahrungsverwertung des ein-und zweisommerigen Hechtes, Zschr. f. Fischerei, Bd. XXX. Hft. 4.
- [54] Stadel O., 1936. Nahrungsuntersuchungen an Elbfischen, Zschr. f. Fischerei, Bd. XXXIV, Hft. I.
- [55] Willer A., 1926. Untersuchungen über den Stint (Osmerus eperlanus L.) in Ostpreussen, Zschr. f. Fischerei, Bd. XXIV, Hft. 4.

## 內 容 提 要

本書一共选譯了苏联科学家的四篇論文,其中苏卡切夫院士的論文是 針对"哲学問題"杂誌上所發表的論文而进行答辯的。另有一篇克留察烈娃 的論文也是反駁李森科学派莫甫倉的有关魚类种內問題的意見,还有一篇 高里湼維奇在"哲学問題"的論文,也是以哲学方面的論点来反駁李森科的 見解;另有阿尔諾里季的論文,他根据遺傳学和形态形成的資料来討論物 种形成的問題。



## 关於物种与物种形成問題的討論

(第二十一集)

ДИСКУССИЯ ПО ПРОБЛЕМАМ ВИДА И ВИДООБРАЗОВАНИЯ вып. XXI

| 原著者                                         | (苏) | B. H. 劣 | 卡 | 切  | た 等        |  |  |
|---------------------------------------------|-----|---------|---|----|------------|--|--|
| 翻譯者                                         | 前   | 芯       |   | 降  | 竹          |  |  |
| 出版者                                         | 科   | 学       | H | 版  | <b>流</b> : |  |  |
| 北 京 朝 陽 門 大 街 117 号<br>北京市番用出版業業業許可証出字第361号 |     |         |   |    |            |  |  |
| 印刷者                                         |     | 京 五.    |   | 五二 |            |  |  |
| 总經售                                         | 新   | 华       |   | 書  | 店          |  |  |
|                                             |     |         |   |    |            |  |  |

1957年6月第一版 1957年6月第一次印制 (京)0001-3,275 寿号: 3837 印張: 3 1/5 开本: 787×1392 1/25 字数: 65,000



58.1221 1477454 尾 美数粉钟与粉钟形成問題的討論(第二十一集) (英) 著卡切夫 CykayeB, B. H. 等著 B274.5.30 登記号1477454



| - | <u> </u> |       |    | _ |  |  |  |  |
|---|----------|-------|----|---|--|--|--|--|
| 1 | 昌平百善印刷厂  |       |    |   |  |  |  |  |
| I | 合订本车     | 合订本车间 |    |   |  |  |  |  |
| - | 拆书       | 索线    | 做壳 | 上 |  |  |  |  |
|   | 粘衬       | 裁切    | 烫字 | 套 |  |  |  |  |
|   | 锯眼       | 起脊    | 校对 | 扫 |  |  |  |  |
|   | 总质检      |       | 核单 |   |  |  |  |  |
|   |          |       |    |   |  |  |  |  |





