COLOR

❖ 학습목표

- 색상, 명도, 채도의 정의를 명확히 이해한다.
- RGB, CMY, HSV 컬러 모델의 차이점을 이해한다.
- 컬러 프로파일과 컬러처리 시스템의 필요성을 이해한다.
- RGB 컬러모드와 인덱스 컬러모드의 차이점을 이해한다.

컬러처리

❖ 전자기파

- 주파수, 파장
- 가시광선의 파장: 390nm 720nm

색상, 명도, 채도

❖ 색상: 우세주파수의 색

❖ 명도: 파형 아래의 면적

❖ 채도: Ed - Ew

• 채도 증가: Ed 증가 또는 Ew 감소

• Ew 감소: 명도 저하, 색상 인식이 어려움

눈의 구조

❖ 홍채: 빛의 양을 조절

❖ 수정체: 초점거리 조절

❖ 막대세포: 명암인식, 어두운 환경에 반응

❖ 원추세포: 색상인식, 밝은 환경에 반응

컬러 매칭

- ❖ 580 nm 황색 = 적색 광원(0.25) + 녹색광원(0.13) + 청색광원 (0.0)
- ❖ 500nm 근처에서 적색광원은 음의 값
 - G, B를 합성한 색상에서 적색 성분을 빼야 함.
 - 현실적으로 불가능

CIE 컬러 모델

❖ Commission Inernationale d'Eclairage

- 가상의 삼원색, 수학적으로 유도, 모두 양의 함수
- Y = 명도. X, Z가 색을 결정

CIE 정규화

❖ x+y+z = 1이 되도록 x, y, z를 설정

$$x = X / (X + Y + Z)$$
 $y = Y / (X + Y + Z)$ $z = Z / (X + Y + Z)$

- ❖ x, y가 결정되면 z는 자동으로 결정됨: x, y의 함수로서 색을 표현
 - CIE 색 범위
 - 순색(단일 파장): 경계선, 내부색: 순색의 혼합, 보색: 예. A와 B

색 범위(Color Gamut)

색 온도(Color Temperature)

❖ 가열된 물체의 온도에 의한 색 표현

1200 K	촛불	6000 K	밝은 대낮 태양
2800 K	전구, 일출과 일몰	7000 K	약간 흐린 하늘
3000 K	스튜디오 램프	8000 K	흐린 하늘
5000 K	평균 태양광	10,000 K	매우 흐린 하늘

RGB 컬러모델

- ❖ 삼중 자극이론(Tri-Stimulus Theory)
 - 원추세포는 파장 630nm(빨강), 530 nm(녹색), 450nm(청색)에 가장 민감하게 반응

RGB 컬러모델

❖ 가산모델

- 빛의 합성(예: 모니터)
- R+G = Y, G+B = C, B+R = M
- RGB의 보색은 CMY

CMY 컬러모델

❖ 감산모델

- 물감의 합성 (예: 프린터)
- W G(Complement of Magenta) = R + B = Magenta
- (W G) R(Complement of Cyan) = Blue
- (W G R) B(Complement of Yellow) = Black

CMY 컬러모델

- ❖ RGB는 CMY의 합성으로 표현
- \star C+M+Y = Black cf. R+G+B
- ❖ 물감의 삼원색은 CMY. 빨강노랑파랑이 아님.

CMYK 컬러모델

❖ K for Chromatic (회색농도)

- C = 120, M = 80, Y = 200
- C = 40, M = 0, Y = 120, K = 80

❖ 장점

- 잉크 건조시간, 잉크 비용
- 정밀한 회색농도를 표현(완벽한 보색차단)

HSV 컬러모델

❖ RGB 모델의 단점

• 직관적이지 않다. 보라색 = R, G, B 각각 얼마?

HSV(Hue, Saturation, Value)

- 또는 HSB(Hue, Saturation, Brightness)
- 색상(Hue), 채도(Saturation), 명도(Value, Brightness)
- 화가의 직관
 - 셰이드 = 어떤 색상에 흑색을 섞음. 채도와 명도를 동시에 낮춤.
 - 틴트 = 어떤 색상에 백색을 섞음. 채도는 낮추고 명도는 높임.

HSV 컬러모델

❖ 육각뿔

Н	S	V	색
0	1.0	1.0	Red
120	1.0	1.0	Green
240	1.0	1.0	Blue
	0.0	1.0	White
		0.0	Black
90	0.5	0.25	

HSV 컬러모델

❖ 대화상자 예시, 적색 단면 예시

HSV 컬러모델의 변형

❖ 원뿔형 HSV

• 색상을 둥글게 배치

* HLS

• 명도 범위를 2배로 확장

YUV

❖ 컬러 TV의 흑백 TV 호환성

- Y = 0.213R + 0.715G + 0.072G
- Y' = 0.299R + 0.587G + 0.114B 명도
- U = 0.492 (B Y') V = 0.877 (R Y') 색(색상, 채도)

❖ 디지털 TV

- Y'CbCr
- Cb = (B Y')/1.772 + 0.5 Cr= (R Y')/0.402 + 0.5

❖ NTSC TV 표준

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- I는 주황-청색(Orange -Blue), Q는 자주-녹색(Purple-Green)축
- Y, I, Q 순서대로 민감도가 낮아짐

CIE L*a*b*

❖ 웨버의 법칙

- 자극이 강할수록 상대적 감도는 낮아짐
- 절대 명도 I일 때, 인지된 명도는 Log (I)에 비례

❖ CIE 모델의 문제점

• 인지된 색차가 그림의 거리에 비례하지 않음

CIE L*a*b*

- ❖ CIE의 변형
 - 인지 컬러모델(Perceptual Color Model)
 - 인지된 색차가 맵상의 거리에 비례하도록
- ❖ CIE XYZ와 CIE L*a*b*와의 비교

CIE L*a*b*

❖ CIE XYZ를 변형

- L*: 명도(Luminance)
- a*: 녹색에서 적색, b*: 청색에서 황색.
- a*,b* 합성에 의해 중간색 표현

CIE L*a*b*

• 컬러인쇄, cf. CIE L*u*v*: 컬러모니터

CMS(Color Management System)

❖ 컬러 호환성

- 컬러모델, 장비특성에 따른 오차를 최소화
- 개별 장비의 컬러모델, 장비특성을 프로필 형태로 나타냄
- 장비에 무관한 컬러공간으로 사상

프로필 연결공간

- ❖ 일종의 세계어에 해당
 - 장비 프로필 정보를 감안
 - sRGB(Standard RGB) 또는 CIE L*a*b*으로 사상

RGB 컬러모드

❖ 프레임 버퍼 내용이 색을 결정

- 용량에 따라 색 종류가 결정됨
- 하이컬러, 풀컬러, 트루컬러, ...

❖ 예: 3 비트 평면

인덱스 컬러모드

❖ 컬러 번역기

- 프레임 버퍼 내용은 CLUT의 인덱스
- 실제 컬러는 CLUT의 우측 칼럼에 의해 결정

컬러 보기표

- ❖ 한 화면에 보일 수 있는 컬러는 여전히 8가지
- ❖ 그 컬러가 어디서 왔는가의 문제

프레임버퍼 (RGB)	보기표 (R)	보기표 (G)	보기표 (G)
000(0)	00011100	11000000	10010011
001(1)	11001001	00010100	01011100
010(2)	10010000	10010011	00010101
011(3)	00110001	00111001	00110000
100(4)	11110101	01010011	11001111
101(5)	01011000	10110100	10110101
110(6)	00100011	01010101	01011100
111(7)	10111100	11111100	11111001

팔레트

컬러 인덱스 모드

- ❖ 유사한 토운의 표현에 유리
- ❖ PNG, BMP, TGA, TIFF
 - 파일 내부에 팔레트 정보를 포함

