

#### **INF201**

### Algorithmique et Programmation Fonctionnelle

Cours 11: Structures arborescentes

Année 2019 - 2020





### Plan

Généralités sur les arbres

Arbres Binaires

Arbres Binaires de Recherche

# A propos d'arbres (0) Motivation

Représenter une "collection" d'éléments de même type ?

## A propos d'arbres (0)

Représenter une "collection" d'éléments de même type ?

### La notion de liste (ou séquence)

- permet d'implémenter des séquences, des ensembles, des multi-ensembles
- chaque élément a (au plus) un précédent et un suivant
   notion d'ordre total

### A propos d'arbres (0)

Motivation

Représenter une "collection" d'éléments de même type ?

### La notion de liste (ou séquence)

- permet d'implémenter des séquences, des ensembles, des multi-ensembles
- chaque élément a (au plus) un précédent et un suivant
   notion d'ordre total

### Représenter une classification d'espèces (ex : des "êtres vivants") ?

- "être vivant" = différentes espèces mammifère, insecte, oiseau, etc
- ► chaque espèce est-elle même divisée en "sous-espèces"
  - oiseau = rapace, passereaux, etc.
  - mammifères = rongeurs, canidés, etc.
  - ▶ insectes = coléoptères, diptères, etc.

### A propos d'arbres (0)

Motivation

Représenter une "collection" d'éléments de même type ?

### La notion de liste (ou séquence)

- permet d'implémenter des séquences, des ensembles, des multi-ensembles
- chaque élément a (au plus) un précédent et un suivant
   notion d'ordre total

### Représenter une classification d'espèces (ex : des "êtres vivants") ?

- "être vivant" = différentes espèces mammifère, insecte, oiseau, etc
- ► chaque espèce est-elle même divisée en "sous-espèces"
  - oiseau = rapace, passereaux, etc.
  - mammifères = rongeurs, canidés, etc.
  - insectes = coléoptères, diptères, etc.

 $\rightarrow$  notion d'ordre partiel ( $\neq$  structure de liste)

### A propos d'arbres (1)

intuition

#### Classification d'espèces :



#### Remarque

- noeuds avec étiquette, répétition possible d'étiquette
- noeud "racine", noeuds sans/avec "sous-arbres", noeud "père"
- structure hiérarchique
  - notion de niveau dans l'arbre
  - partition des noeuds en sous-arbres disjoints

2/32

### A propos d'arbres (2)

intuition

Intérêt : fournir une notion de hiérarchie (ordre partiel) (contrairement aux listes = structure séquentielle, ordre total)

- facilite l'accès aux données
   (ex : système de fichiers, répertoires et sous-répertoires)
- permet de structurer l'information
   (ex : document HTML, organigramme, table des matières, etc.)
- permet de représenter des niveaux d'imbrications (parenthésage), ou des priorités (expressions arithmétiques)
- etc.



### Arbres Définitions

### Arbre (étiqueté)

Un arbre est une structure récursive qui est :

- soit vide
- soit un noeud auquel est associé :
  - une étiquette
  - des fils : une séquence d'arbres (évent. vide)
- → permet de stocker des éléments (les étiquettes) de même type



#### **Arbres**

un peu de vocabulaire

#### Vocabulaire

- ► Le noeud "le plus haut" est la racine
- La donnée associée à un noeud est son étiquette ( ou label, ou élément)
- Les (sous-)arbres associés à un noeud sont ses fils, noeud père
- Un noeud sans fils est une feuille
- ▶ le chemin au noeud n1 est une séquence de noeuds père → fils allant de la racine à n1
- niveau d'un noeud : longueur (en nombre de noeud) du chemin à ce noeud
- hauteur (ou profondeur) d'un arbre : le niveau d'un noeud de niveau maximal
- taille d'un arbre : le nombre de noeuds qu'il contient

### Exemple



- racine : 100
- étiquettes: 100, 30, 74, 28, 45, 70, 12, 8, 7, 10, 84, 32, 45
- ▶ feuilles : 45, 70, 12, 8, 7, 10, 45, 32
- ▶ fils du noeud 30 : 45, 70, 12
- ▶ 100 est le père de 30
- ▶ 100 est au niveau 1, 7 est au niveau 3
- la hauteur de l'arbre est 4
- ► [100;30;12] est le chemin au noeud d'étiquette 12

### Plan

Généralités sur les arbres

Arbres Binaires

Arbres Binaires de Recherche

Définition et exemple

Un arbre est un arbre binaire si chaque noeud a *au plus* deux fils Formellement :

$$\textit{Abin}(\textit{Elt}) = \{\textit{Vide}\} \cup \{\textit{Noeud}(\textit{Ag},\textit{e},\textit{Ad}) \mid \textit{e} \in \textit{Elt} \land \textit{Ag}, \textit{Ad} \in \textit{Abin}(\textit{Elt})\}$$

Définition et exemple

Un arbre est un arbre binaire si chaque noeud a *au plus* deux fils Formellement :

$$\textit{Abin}(\textit{Elt}) = \{\textit{Vide}\} \cup \{\textit{Noeud}(\textit{Ag},\textit{e},\textit{Ad}) \mid \textit{e} \in \textit{Elt} \land \textit{Ag}, \textit{Ad} \in \textit{Abin}(\textit{Elt})\}$$

**Exemple :** Arbre binaire sur des entiers  $Abin(\mathbb{N}) = \{Vide\} \cup \{Noeud(Ag, e, Ar) \mid e \in \mathbb{N} \land Ag, Ad \in Abin(\mathbb{N})\}$ 

Définition et exemple

Un arbre est un arbre binaire si chaque noeud a *au plus* deux fils Formellement :

$$\textit{Abin}(\textit{Elt}) = \{\textit{Vide}\} \cup \{\textit{Noeud}(\textit{Ag}, \textit{e}, \textit{Ad}) \mid \textit{e} \in \textit{Elt} \land \textit{Ag}, \textit{Ad} \in \textit{Abin}(\textit{Elt})\}$$

**Exemple:** Arbre binaire sur des entiers

$$Abin(\mathbb{N}) = \{ Vide \} \cup \{ Noeud(Ag, e, Ar) \mid e \in \mathbb{N} \land Ag, Ad \in Abin(\mathbb{N}) \}$$







Un peu de vocabulaire

#### Vocabulaire

- Le premier (resp. second) fils est appelé fils gauche (resp. fils droit)
- ▶ Un arbre binaire a est complet ssi taille(a) =  $2^{\text{hauteur}(a)} 1$



# Arbres binaires d'entiers En OCami

Définir le type arbre\_binaire ?

### Arbres binaires d'entiers

#### En OCaml

Définir le type arbre\_binaire ? c'est un type somme, récursif, avec deux constructeurs :

- ► le constructeur Vide : l'arbre vide Vide € arbre\_binaire
- le constructeur Noeud : ajout d'un noeud racine à partir d'une étiquette, d'un fils gauche et d'un fils droit

Noeud  $\in$  etiq  $\times$  arbre\_binaire  $\times$  arbre\_binaire

### Arbres binaires d'entiers

#### En OCaml

Définir le type arbre\_binaire ? c'est un type somme, récursif, avec deux constructeurs :

- ► le constructeur Vide : l'arbre vide Vide € arbre\_binaire
- le constructeur Noeud : ajout d'un noeud racine à partir d'une étiquette, d'un fils gauche et d'un fils droit

Noeud ∈ etiq × arbre\_binaire × arbre\_binaire

```
En OCaml:
```

```
type etiq = ... (* un type quelconque *)
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

#### ou

```
type arbre_binaire =
   | Vide
   | Noeud of arbre_binaire * etiq * arbre_binaire
```











### Fonctions sur les arbres binaires ?

Ecrire une fonction qui prend un (des) arbre(s) en paramètres ?

```
\texttt{f:arbre\_bin} \rightarrow ... \rightarrow ...
```

#### avec

```
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

#### Fonctions sur les arbres binaires ?

Ecrire une fonction qui prend un (des) arbre(s) en paramètres ?

$$f:arbre\_bin \rightarrow ... \rightarrow ...$$

#### avec

```
type arbre_binaire =
   | Vide
   | Noeud of etiq * arbre_binaire * arbre_binaire
```

Le type arbre\_binaire est un type récursif ...

- → les fonctions sur les arbres sont des fonctions récursives
  - Cas de base : l'arbre est vide

$$f(Vide) = ...$$

Cas récursif : l'arbre est non vide

```
f (Noeud (e, fg, fd)) = ...
  (* appels recursifs sur fg et/ou fd *)
```

#### Terminaison?

### Fonctions sur les arbres binaires ?

Ecrire une fonction qui prend un (des) arbre(s) en paramètres ?

$$f:arbre\_bin \rightarrow ... \rightarrow ...$$

#### avec

```
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

Le type arbre\_binaire est un type récursif ...

- → les fonctions sur les arbres sont des fonctions récursives
  - Cas de base : l'arbre est vide

$$f(Vide) = ...$$

Cas récursif : l'arbre est non vide

```
f (Noeud (e, fg, fd)) = ...
    (* appels recursifs sur fg et/ou fd *)
```

#### Terminaison?

```
appels récursifs sur des sous-arbres "plus petits" (mesure = taille de l'arbre)
```

### Quelques fonctions (classiques) sur les arbres

```
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

Taille: fonction qui calcule le nombre de noeuds d'un arbre binaire.

### Quelques fonctions (classiques) sur les arbres

```
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

#### Taille: fonction qui calcule le nombre de noeuds d'un arbre binaire.

```
let rec taille (a:arbre_binaire):int= match a with | \mbox{ Vide} \rightarrow 0 \\ | \mbox{ Noeud} (\_, a1, a2) \rightarrow 1 + (taille a1) + (taille a2)
```

### Quelques fonctions (classiques) sur les arbres

```
type arbre_binaire =
    | Vide
    | Noeud of etiq * arbre_binaire * arbre_binaire
```

#### Taille: fonction qui calcule le nombre de noeuds d'un arbre binaire.

```
let rec taille (a:arbre_binaire):int= match a with | \mbox{ Vide} \rightarrow 0 \\ | \mbox{ Noeud} (\_, a1, a2) \rightarrow 1 + (taille a1) + (taille a2)
```

#### Exercices

Définir les fonctions suivantes :

- ▶ somme : renvoie la somme des éléments d'un arbre (d'entiers)
- hauteur : renvoie la hauteur d'un arbre (d'entiers)
- maximum : renvoie l'élément maximal d'un arbre (d'entiers)

... et polymorphisme

→ On peut paramétrer un arbre binaire par le type de ses éléments

```
\label{eq:type-alpha} \begin{tabular}{l} \begin{t
```

# Permet de définir plusieurs types "arbres binaires": int arbre\_binaire, char arbre\_binaire, string arbre\_binaire,...

**DEMO:** Définition d'arbres binaires

### Arbres Binaires Polymorphes

Quelques fonctions

#### Appartient:

existence d'un élément de type  $\alpha$  dans un  $\alpha$  arbre\_binaire ?

### Arbres Binaires Polymorphes

Quelques fonctions

#### Appartient:

existence d'un élément de type  $\alpha$  dans un  $\alpha$  arbre\_binaire ?

```
let rec appartient (elt:\alpha) (a:\alpha arbre_binaire):bool = match a with | Vide \rightarrow false | Noeud (e,ag,ad) \rightarrow (e=elt) || appartient elt ag || appartient elt ad
```

#### Liste des éléments d'un arbre :

Etant donné un  $\alpha$  arbre\_binaire, renvoie la  $\alpha$  liste de ses éléments

### Arbres Binaires Polymorphes

Quelques fonctions

#### Appartient:

```
existence d'un élément de type \alpha dans un \alpha arbre_binaire ?
```

```
let rec appartient (elt:\alpha) (a:\alpha arbre_binaire):bool = match a with | Vide \rightarrow false | Noeud (e,ag,ad) \rightarrow (e=elt) || appartient elt ag || appartient elt ad
```

#### Liste des éléments d'un arbre :

Etant donné un  $\alpha$  arbre\_binaire, renvoie la  $\alpha$  liste de ses éléments

```
let rec liste_elem (a:\alpha arbre_binaire):\alpha list= match a with  | \mbox{Vide} \rightarrow [] \\ | \mbox{Noeud (elt,ag,ad)} \rightarrow (\mbox{liste_elem ag})@(\mbox{elt::(liste_elem ad)})
```

# Arbres Binaires Polymorphes Exercices

#### Exercices: Définir les fonctions suivantes

- ▶ taille: nombre de noeuds d'un arbre binaire
- ▶ feuilles: liste des feuilles d'un arbre binaire
- est\_complet: indique si un arbre binaire est un arbre "complet"
- miroir: image miroir d'un arbre binaire





### Arbres binaires et ordre supérieur

On peut identifier plusieurs "schémas de fonction" sur les arbres :

### Arbres binaires et ordre supérieur

On peut identifier plusieurs "schémas de fonction" sur les arbres :

- produire un nouvel arbre en appliquant une fonction à chaque noeud (~ opérateur map)
  - ▶ incrémenter toutes les étiquettes
  - remplacer chaque étiquette par la somme cumulée des étiquettes de ses fils

```
map (f : \alpha \rightarrow \beta) (a : \alpha arbre_binaire) : \beta arbre_binaire = ...
```

# Arbres binaires et ordre supérieur

On peut identifier plusieurs "schémas de fonction" sur les arbres :

- produire un nouvel arbre en appliquant une fonction à chaque noeud (~ opérateur map)
  - ▶ incrémenter toutes les étiquettes
  - remplacer chaque étiquette par la somme cumulée des étiquettes de ses fils

```
map (f : \alpha \rightarrow \beta) (a : \alpha arbre_binaire) : \beta arbre_binaire = ...
```

- ▶ produire un résultat en "accumulant" une valeur lors d'un parcours complet de tous les noeuds d'un arbre (~ opérateur fold)
  - nombre de noeuds, nombre de feuilles
  - liste des étiquettes

```
fold (f:\alpha \to \beta \to \beta \to \beta) (acc:\beta) (a:\alpha arbre_binaire) : \beta =
```

# Arbres binaires et ordre supérieur

On peut identifier plusieurs "schémas de fonction" sur les arbres :

- produire un nouvel arbre en appliquant une fonction à chaque noeud (~ opérateur map)
  - ▶ incrémenter toutes les étiquettes
  - remplacer chaque étiquette par la somme cumulée des étiquettes de ses fils

```
map (f : \alpha \to \beta) (a : \alpha arbre_binaire) : \beta arbre_binaire = ...
```

- ▶ produire un résultat en "accumulant" une valeur lors d'un parcours complet de tous les noeuds d'un arbre (~ opérateur fold)
  - nombre de noeuds, nombre de feuilles
  - liste des étiquettes

```
fold (f:\alpha \to \beta \to \beta \to \beta) (acc:\beta) (a:\alpha arbre_binaire) : \beta =
```

Différents ordres de parcours possibles d'un noeud Noeud (elt, ag, ad)

- ▶ traiter elt, puis parcourir ag, puis parcourir ad → parcours prefixé
- ▶ parcourir ag, puis traiter elt, puis parcourir ad → parcours infixé
- ▶ parcourir ag, puis parcourir ad, puis traiter elt → parcours postfixé

# Exemple d'opérateur "fold"

fold\_gauche\_droite\_racine:
applique une fonction f

- ▶ à la racine
- et aux résultats obtenus (récursivement) sur les fils droit et gauche

# Exemple d'opérateur "fold"

```
fold_gauche_droite_racine:
applique une fonction f
```

- à la racine
- et aux résultats obtenus (récursivement) sur les fils droit et gauche

```
let rec fold_gdr (f:\alpha \to \beta \to \beta \to \beta) (acc:\beta) (a:\alpha arbre_binaire):\beta= match a with 
| Vide \to acc 
| Noeud (elt, ag, ad) \to let rg = fold_gdr f acc ag and rd = fold_gdr f acc ad in f elt rg rd
```

# Exemple d'opérateur "fold"

```
fold_gauche_droite_racine:
applique une fonction f
```

- à la racine
- et aux résultats obtenus (récursivement) sur les fils droit et gauche

```
let rec fold_gdr (f:\alpha \to \beta \to \beta \to \beta) (acc:\beta) (a:\alpha arbre_binaire):\beta= match a with 
| Vide \to acc 
| Noeud (elt, ag, ad) \to let rg = fold_gdr f acc ag and rd = fold_gdr f acc ad in f elt rg rd
```

#### En utilisant la fonction fold\_gdr, redéfinir les fonctions suivantes :

- ► taille
- ▶ hauteur
- ▶ miroir

#### Exercice: fonction chemins

- ightarrow Déterminer l'ensemble des **plus longs chemins** dans un arbre ? Pour s'aider :
  - Comment représenter un ensemble de chemins ?
  - Définir une fonction ajouter\_a\_tous qui ajoute un élément en tête de chaque chemin de cet ensemble

```
chemin = Seq(Elt)
```

## Ajout à tous

- Spécification:
  - ▶ Profil:  $ajout\_a\_tous : Elt * Seq(Seq(Elt)) \rightarrow Seq(Seq(Elt))$
  - ► Sémantique :
    - ajout\_a\_tous (n, [ch1;...;chn]) = [n::ch1; ...; n::chn]
- ► Implémentation:

```
chemin = Seq(Elt)
```

## Ajout à tous

- Spécification:
  - Profil: ajout\_a\_tous : Elt \* Seq(Seq(Elt)) → Seq(Seq(Elt))
  - Sémantique :

```
ajout_a_tous (n, [ch1;...;chn]) = [n::ch1; ...; n::chn]
```

- ► Implémentation:

  - 1. ajout\_a\_tous (n,[]) = []
    2. ajout\_a\_tous (n,c::cs) = (n::c) :: (ajout\_a\_tous (n,cs))

```
chemin = Seq(Elt)
```

## Ajout à tous

- Spécification:
  - Profil: ajout\_a\_tous : Elt \* Seq(Seq(Elt)) → Seq(Seq(Elt))
  - Sémantique :
    - ajout\_a\_tous (n, [ch1;...;chn]) = [n::ch1; ...; n::chn]
- ► Implémentation:
  - 1.  $ajout_a_tous(n,[]) = []$
  - 2. ajout\_a\_tous  $(n,c::cs) = (n::c) :: (ajout_a_tous (n,cs))$

#### **Chemins Maximaux**

- Spécification
  - Profil: Chemins : Abin(Elt) → Seg(Chemins)
  - ► Sémantique : chemins (a) est l'ensemble des chemins maximaux de a.
- ► Implémentation :

```
chemin = Seq(Elt)
```

# Ajout à tous

- Spécification:
  - Profil: ajout\_a\_tous : Elt \* Seq(Seq(Elt)) → Seq(Seq(Elt))
  - Sémantique :
    - ajout\_a\_tous (n, [ch1;...;chn]) = [n::ch1; ...; n::chn]
- Implémentation:
  - 1.  $a_{jout}_a_{tous}(n,[]) = []$
  - 2. ajout\_a\_tous  $(n,c::cs) = (n::c) :: (ajout_a_tous (n,cs))$

#### **Chemins Maximaux**

- Spécification
  - Profil: Chemins : Abin(Elt) → Seq(Chemins)
  - ► Sémantique : chemins(a) est l'ensemble des chemins maximaux de a.
- Implémentation :
  - 1. chemins (Vide) = [[]]: Seq(Chemins) = Seq(Seq(Elt))
  - 2. chemins (Noeud (Ag,e,Ad)) = ajouter\_a\_tous (e, chemins(g)
    @ chemins(d))

# Plan

Généralités sur les arbres

Arbres Binaires

Arbres Binaires de Recherche

## Motivation : Recherche d'un élément dans un ensemble E

# Solution 1 : E est représenté par une liste

```
let rec appartient (elt:'a) (l:\alpha list):bool = match l with 
 [] \rightarrow false 
 |e::lprime \rightarrow (e=elt) || (appartient elt lprime)
```

Si elt  $\notin E$ : exécution de appartient = parcours de toute la liste (|1| comparaisons).

## Motivation : Recherche d'un élément dans un ensemble E

# Solution 1 : E est représenté par une liste

```
let rec appartient (elt:'a) (l:\alpha list):bool = match l with 
 [] \rightarrow false 
 |e::lprime \rightarrow (e=elt) || (appartient elt lprime)
```

Si elt  $\notin E$ : exécution de appartient = parcours de toute la liste (|1| comparaisons).

# Solution 2 : E (ordonné) est représenté par une liste croissante

```
let rec appartient (elt:'a) (l:\alpha list):bool = match l with |[] \rightarrow \text{false} |e::lprime \rightarrow (e=elt) || (e<elt) && (appartient elt lprime)
```

Si elt  $\notin E$ : exécution de appartient = parcours de toute la liste (|1| comparaisons).

ightarrow Peut-on réduire ce nombre de comparaisons  $\ref{eq:comparaisons}$ 

# Représenter l'ensemble E par un arbre ?

Retour sur la fonction appartient ...



- Le nombre de comparaison depend encore de la taille de l'arbre (nombre total d'éléments)
- ightarrow optimisation possible :

<sup>&</sup>quot;ranger" ces éléments dans l'arbre en fonction de leur valeurs relatives ?

### Arbre Binaire de Recherche : définition

# Définition: Arbre Binaire de Recherche (ABR)

Soit (Elt, <) un ensemble totalement ordonné et soit A un arbre binaire dont les éléments/étiquettes sont de type Elt ( $A \in Abin(Elt)$ ).

 ${\cal A}$  est un ABR ssi, pour tout noeud <code>n=Noeud(elt,ag,ad)</code>, avec <code>e</code> l'étiquette/élément associé à <code>n</code>, et <code>ag</code> (resp. <code>ad</code>) le fils gauche (resp. droit) de <code>n</code>, nous avons :

- 1. e est supérieur ou égal à tous les éléments de ag ;
- 2. e est strictement inférieur à tous les éléments de ad ;
- 3. ag et ad sont des ABR

#### Exercice: un arbre binaire est-il un ABR?

Définir la fonction est\_abr qui vérifie si un arbre binaire est bien un ABR.

# Arbre Binaire de Recherche

exemple et contre-exemple

# Un arbre qui est un ABR:



# Un arbre qui n'est PAS un ABR :



# Retour sur la fonction appartient

On peut maintenant exploiter les propriétés des ABR ...

#### Recherche d'un élément dans un ABR :

Un seul des deux sous-arbres est parcouru à chaque appel récursif

→ l'exécution de la fonction appartient ne nécessite plus de parcourir l'ensemble des noeuds de l'arbre

```
\rightarrow on peut montrer que si l'ABR a est équilibré : nbre de comparaisons effectuées par appartient = \log_2 |a|
```

# Une exécution de appartient

### Cherchons l'élément 9 dans l'arbre suivant :



# Parcours d'un ABR

Encore un algorithme de tri ...

Etant donné un ABR, comment produire la **liste ordonné** de ses éléments ?  $\hookrightarrow$  parcours de l'arbre

## Parcours d'un ABR Encore un algorithme de tri ...

Etant donné un ABR, comment produire la **liste ordonné** de ses éléments ? → parcours de l'arbre

Lorsque l'on atteint le noeud Noeud (elt, ag, ad), il y a plusieurs choix possibles pour poursuivre le parcours :

- placer elt dans la liste, puis parcourir ag, puis ad: parcours préfixé
- parcourir ag, placer elt dans la liste, parcourir ad: parcours infixé
- parcourir ag, puis ad, puis placer elt dans la liste: parcours postfixé

→ pour un ABR, le parcours infixé va produire une liste ordonnée :

```
let rec tri (a:'a abin):'a list=
match a with
   | Vide → []
   | Node (elt, ag, ad) → (tri ag) @ (elt::(tri ad))
```

#### Insertion dans un ABR

Insertion en tant que feuille (le plus simple)

But: insérer un élément elt dans un ABR a

- préserver les propriétés de l'ABR
- ▶ insérer l'élément en tant que nouvelle feuille

### **Exemple :** Insertion de deux éléments



Idée : distinguer deux cas

- ▶ a est vide, en insérant elt on obtient Noeud (elt, Vide, Vide)
- ▶ a est non vide, donc de la forme Noeud (e,ag,ad), alors
  - ▶ si elt <= e, alors elt doit être inséré dans ag
  - si elt > e, alors elt doit être inséré dans ad

#### Insertion dans un ABR

Insertion en tant que racine

But: insérer un élément elt dans un ABR a

- préserver les propriétés de l'ABR
- ▶ inserérer l'élément comme nouvelle racine de a

### Exemple : Insertion de deux éléments



Idée: procéder en 2 étapes

- "couper" l'arbre en deux ABR ag et ad tels que :
  - g contient tous les noeuds étiquetés par des éléments plus petits que elt
  - d contient tous les noeuds étiquetés par des éléments plus grands que elt
- ► construire l'ABR Noeud (elt,ag,ad)

## ABR: Mise en oeuvre de l'insertion

## Exercice: insertion en tant que feuille

Définir la fonction OCaml insertion qui insère un élément dans un ABR en tant que feuille

### Exercice: insertion en tant que racine

Définir les fonctions :

- partition qui partitionne un ABR en 2 ABR par rapport à un élément
- insertion qui insère un élément dans un ABR en tant que racine, en utilisant partition

#### Exercice: création d'un ABR

Définir deux fonctions creation\_abr qui, étant donnée une liste d'éléments, crée un ABR contenant ces éléments en utilisant les deux méthodes d'insertion.

# Supprimer un élément dans un ABR

#### Supprimer un élément elt d'un ABR consiste à :

- Identifier le sous-arbre Noeud (elt, ag, ad) où la suppression doit avoir lieu
- Supprimer le plus grand élément max de ag
   → On obtient un ABR agprime
- 3. Construire l'ABR Noeud (max, agprime, ad)



# ABR : Mise en oeuvre de la supression

# Exercice: suppression dans un ABR

Définir les fonctions :

- supp\_max qui supprime le plus grand élément d'un ABR et renvoie cet élément max et le nouvel ABR obtenu
- ▶ suppression qui supprime un élément dans un ABR

# Conclusion (du chapitre sur les arbres)

- notion d'arbre :
  - représentation d'une relation de "hiérarchie" entre les éléments d'un type
  - nombreuses applications (recherche, tri, etc.)
- ► Type de données doublement récursif
- Deux classes importantes d'arbres :
  - les arbres binaires
  - les arbres binaires de recherche (ABR)
  - il en existe beaucoup d'autres . . .
- Exemples de fonctions sur les arbres :
  - recherche d'un élément
  - parcours (différents mode de parcours)
  - modification (insertion et suppression de noeuds)
  - ordre supérieur (équivalent de map et fold sur les listes)
  - etc.