

Description

The VSM12P03 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a load switch or in PWM applications.

General Features

• $V_{DS} = -30V, I_{D} = -12A$

 $R_{DS(ON)}$ < 25m Ω @ V_{GS} =-4.5V

 $R_{DS(ON)}$ < 15m Ω @ V_{GS} =-10V

- High Power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- PWM applications
- Load switch
- Power management

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM12P03-S8	VSM12P03	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-30	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous (T _C =25°ℂ)	1	-12	A	
Drain Current-Continuous (T _C =100℃)	I _D	-8.4		
Drain Current-Pulsed (Note 1)	I _{DM}	-48	Α	
Maximum Power Dissipation (T _C =25°ℂ)	В	3	10/	
Maximum Power Dissipation (T _C =100°ℂ)	P _D	-30 ±20 -12 -8.4 -48	W	
Single pulse avalanche energy (Note 5)	E _{AS}	231	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	41.67	°C/W
--	-----------------	-------	------

Electrical Characteristics (T_A=25[°]Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·			•		
Drain-Source Breakdown Voltage	0 22 2 1		-30	-33	-	V
Zero Gate Voltage Drain Current			-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·			•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.5	-3	V
Drain-Source On-State Resistance	-	V _{GS} =-10V, I _D =-10A	-	11.5	15	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-7A	-	18	25	mΩ
Forward Transconductance	g _{FS}	V _{DS} =-10V,I _D =-10A	-	20	-	S
Dynamic Characteristics (Note4)					l	
Input Capacitance	C _{lss}	- V _{DS} =-15V,V _{GS} =0V, - F=1.0MHz	-	1750	-	PF
Output Capacitance	Coss		-	215	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	180	-	PF
Switching Characteristics (Note 4)	·			•		
Turn-on Delay Time	t _{d(on)}		-	9	-	nS
Turn-on Rise Time	t _r	V _{DD} =-15V, ID=-10A,	-	8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =1 Ω	-	28	-	nS
Turn-Off Fall Time	t _f]	-	10	-	nS
Total Gate Charge	Qg		-	24	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-15V,I _D =-10A,V _{GS} =-10V	-	3.5	-	nC
Gate-Drain Charge	Q_{gd}	1		6	-	nC
Drain-Source Diode Characteristics	·	•				
Diode Forward Current (Note 2)	Is		-	-	-12	Α
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-12A	-	-	-1.2	V

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-15V,V_G=10V,L=0.5mH,Rg=25 Ω , I_{AS}=-34A

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

T_J-Junction Temperature(°C)

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Vgs Gate-Source Voltage (V)

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

 T_J -Junction Temperature($^{\circ}$ C)

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Is- Reverse Drain Current (A)

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance