빅오, 세타오, 스몰오, 세타오 등등...

김지훈(@super-fishz)

박오, 세타오, 스몰오, 세타오 등등...

asymptotic notation

박오, 세타오, 스몰오, 세타오 등등...

asymptotic notation

- asymptotic notation MIT Open course 1h
- 어떤 함수의 증가 양상을 다른 함수와 비교로 표현하는 수론과 해석학의 방법
- 알고리즘의 복잡도를 단순화 할때도 사용 (feat, wikipidia)
- 에드문트 란다우 아저씨가 만듬
 - 1877년에 태어난 독일 수학자 아저씨임

- 종류
 - small o
 - 대문자 O
 - 대문자 오메가(Ω)
 - 대문자 세타(Θ)
 - 소문자 오메가(ω)

Notation	Name ^[18]	Description	Formal Definition	Limit Definition ^{[19][20][21][18][13]}
f(n)=o(g(n))	Small O; Small Oh	f is dominated by g asymptotically	$orall k > 0 \; \exists n_0 \; orall n > n_0 \; f(n) < k \cdot g(n)$	$\lim_{n o\infty}rac{f(n)}{g(n)}=0$
f(n)=O(g(n))	Big O; Big Oh; Big Omicron	$\left f ight $ is bounded above by g (up to constant factor) asymptotically	$\exists k>0\; \exists n_0\; orall n>n_0\; f(n) \leq k\cdot g(n)$	$\limsup_{n o\infty}rac{ f(n) }{g(n)}<\infty$
$f(n) = \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$egin{aligned} \exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ orall n > n_0 \ k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n) \end{aligned}$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ (Knuth version)
$f(n) \sim g(n)$	On the order of	f is equal to g asymptotically	$\left orall arepsilon > 0 \; \exists n_0 \; orall n > n_0 \; \left rac{f(n)}{g(n)} - 1 ight < arepsilon$	$\lim_{n o\infty}rac{f(n)}{g(n)}=1$
$f(n) = \Omega(g(n))$	Big Omega in number theory (Hardy-Littlewood)	$\left f ight $ is not dominated by g asymptotically	$\exists k>0\; orall n_0\; \exists n>n_0\; f(n) \geq k\cdot g(n)$	$\left \limsup_{n o\infty}\left rac{f(n)}{g(n)} ight >0$
$f(n) = \Omega(g(n))$	Big Omega in complexity theory (Knuth)	f is bounded below by g asymptotically	$\exists k>0\; \exists n_0\; orall n>n_0\; f(n)\geq k\cdot g(n)$	$\liminf_{n o\infty}rac{f(n)}{g(n)}>0$
$f(n) = \omega(g(n))$	Small Omega	f dominates g asymptotically	$orall k>0 \; \exists n_0 \; orall n>n_0 \; f(n) >k\cdot g(n) $	$\left \lim_{n o\infty}\left rac{f(n)}{g(n)} ight =\infty$

꿋

열린결말

이걸 왜 이야기하는가?

이걸 왜 이야기하는가?

내가 짠 함수가 얼만큼 자원을 소모하는지 파악하기위해

이걸 왜 이야기하는가?

내가 짠 함수가 얼만큼 **자원**을 소모하는지 파악하기위해 자원

자원

시간 자원 - 실행단계의 수

공간 자원 - 기억 위치의 수

이걸 왜 이야기하는가?

내가 짠 함수가 얼만큼 **자원**을 소모하는지 파악하기위해

- 종류
 - 소문자 o
 - 대문자 O
 - 대문자 오메가(Ω)
 - 소문자 오메가(ω)
 - 대문자 세타(Θ)

Big O

- 점근 상한
- n이 충분히 클때, 최악의 경우를 나타냄
- 입력받은 n의 품질이 최악의 경우일때
 - Big O 의 표기법으로 표기하는게 옳음 image referecne

Big Omega (Ω)

- 점근 하한
- n이 충분히 클때, 최선의 경우를 나타냄
- 최소한 이만큼은 걸린다. image referecne

Big Theta (Θ)

- 점근 평균
 - O와 오메가(Ω) 의 평균적인 값 image referecne

스몰(리틀) 시리즈

- o(소문자 알파벳 o)
- 소문자 오메가(ω)

Notation	Name ^[18]	Description	Formal Definition	Limit Definition ^{[19][20][21][18][13]}
f(n)=o(g(n))	Small O; Small Oh	f is dominated by g asymptotically	$orall k > 0 \; \exists n_0 \; orall n > n_0 \; f(n) < k \cdot g(n)$	$\lim_{n o\infty}rac{f(n)}{g(n)}=0$
f(n)=O(g(n))	Big O; Big Oh; Big Omicron	$\left f ight $ is bounded above by g (up to constant factor) asymptotically	$\exists k>0\; \exists n_0\; orall n>n_0\; f(n) \leq k\cdot g(n)$	$\limsup_{n o\infty}rac{ f(n) }{g(n)}<\infty$
$f(n) = \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$egin{aligned} \exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ orall n > n_0 \ k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n) \end{aligned}$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ (Knuth version)
$f(n) \sim g(n)$	On the order of	f is equal to g asymptotically	$\left orall arepsilon > 0 \; \exists n_0 \; orall n > n_0 \; \left rac{f(n)}{g(n)} - 1 ight < arepsilon$	$\lim_{n o\infty}rac{f(n)}{g(n)}=1$
$f(n) = \Omega(g(n))$	Big Omega in number theory (Hardy-Littlewood)	$\left f ight $ is not dominated by g asymptotically	$\exists k>0\; orall n_0\; \exists n>n_0\; f(n) \geq k\cdot g(n)$	$\left \limsup_{n o\infty}\left rac{f(n)}{g(n)} ight >0$
$f(n) = \Omega(g(n))$	Big Omega in complexity theory (Knuth)	f is bounded below by g asymptotically	$\exists k>0\; \exists n_0\; orall n>n_0\; f(n)\geq k\cdot g(n)$	$\liminf_{n o\infty}rac{f(n)}{g(n)}>0$
$f(n) = \omega(g(n))$	Small Omega	f dominates g asymptotically	$orall k>0 \; \exists n_0 \; orall n>n_0 \; f(n) >k\cdot g(n) $	$\left \lim_{n o\infty}\left rac{f(n)}{g(n)} ight =\infty$

표기법	설명	수학적 정의
$f(n) \in O(g(n))$	상한 점근	$\lim_{n o\infty}\left rac{f(n)}{g(n)} ight <\infty$
$f(n) \in o(g(n))$		$\lim_{n o\infty}rac{f(n)}{g(n)}=0$
$f(n)\in\Omega(g(n))$	하한 점근	$\lim_{n o\infty}\left rac{f(n)}{g(n)} ight >0$
$f(n)\in \omega(g(n))$		$\lim_{n o\infty}rac{f(n)}{g(n)}=\infty$
$f(n)\in\Theta(g(n))$	상한/하한 점근	$0<\lim_{n o\infty}\left rac{f(n)}{g(n)} ight <\infty$

스몰(리틀) 시리즈

- 빅 시리즈와 비슷하지만, 더 타이트하게 비교함
 - 타이트하게?
 - 2n 의 시간복잡도를 가지는 함수를...
 - O(n) <- true
 - O(n^2) <- true
 - o(n) <- false
 - o(n^2) <- true

항상 옳은가?

항상 옳은가?

그렇지는 않음

항상 옳은가? -> ㄴㄴ

- 퀵소트
 - O(n^2)
 - Θ(nlogn)
- 상수항이 아주 큰 경우

진짜 끗

Reference

wiki/Analysis*of*algorithms wiki/Computational*complexity*theory mit.edu/courses/electrical-engineering-and-computer-science/ 노랑색 그래프 출처 친절한 한글 설명

http://vaert.tistory.com/117

https://sdoInote.tistory.com/entry/BigOLittleo

알고리즘-c언어-1-2-알고리즘의-평가와-접근적-표기