

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Mixed-Criticality Systems

William Fornaciari william.fornaciari@polimi.it

Complex embedded systems

Modern cyber-physical systems are complex and contain several embedded computing nodes

 Example: a modern car contains more than 50 computing systems, from simple microcontrollers to multi-core Linux systems.

Complex embedded systems

Problems

Development and production costs

→ Designing and building multiple unit requires multiple design processes and replicated software and hardware components

Resource under-utilization

→ At any time instance, many systems are often in idle and their computational capabilities are wasted

Fault-tolerance

- → Critical systems require fault-tolerant (FT) techniques and sometimes hardware replication and voting strategies.
- → Multiple critical systems require multiple FT implementations.

Complex embedded systems

Problems

System interoperability

- → Which communication medium and protocol to use to enable multiple units to exchange information?
- → How to synchronize the distributed system?
- → The complexity of both increases exponentially with the increasing number of systems.
- → The problem is much more complex than intra-system communication and synchronization.

Systems' Consolidation

Possible solution

 Consolidate multiple systems onto a single powerful platform that performs all the required tasks.

Example

→ We decide to consolidate the "Steering", "Wipers", and "Infotainment" computers into a single computational platform (This is not a realistic example, but it is for the sake of simplicity and for demonstration purposes in the next slides)

Systems' Consolidation

Advantages

- Lower design costs
- Better optimization of Power and Energy consumption
- Improved reliability of the overall system,
- Lower maintenance costs
- Reduced external bus congestion

Disadvantages

- Increased shared resource contention inside the computing node
- Large integration effort required
- Different applications may have different criticality levels.
 - How to manage them?

Mixed-Criticality Systems

Levels

- A mixed-criticality system is a system running tasks with different criticality levels.
 - → Example: Automotive Safety Integrity Level (ASIL) ISO 26262

Level	Impact of failure	Required failure rate
ASIL-D	Fatal / Survival uncertain	10 ⁻⁷ - 10 ⁻⁸ /h
ASIL-C	Fatal / Survival uncertain	10 ⁻⁶ - 10 ⁻⁷ / h *
ASIL-B	Severe injury - Controllable	10 ⁻⁶ - 10 ⁻⁷ / h
ASIL-A	Slight injury - Controllable	10 ⁻⁵ - 10 ⁻⁶ /h
QM (Quality Management)	No Effect	none

^{*} Additional fault-tolerance techniques mandatory compared to ASIL-B

Mixed-Criticality Systems

Back to the car example

Mixed-(Time) Criticality systems

Real-time requirements

- How to guarantee real-time requirements in mixed-criticality systems?
- Our example of mixed-criticality system contains:
 - → Steering Strictly hard real-time
 - → Wipers Possibly hard real-time
 - → Infotainment Soft real-time / Not real-time
- Trivial solution
 - → Consider all the tasks with the maximum level of assurance, i.e. considering them hard real-time.

Unfeasible: it may require too large computational power and/or it may be impossible to compute the WCET for Infotainment tasks

Task model

Mixed-criticaly task model

- To manage such tasks, mixed-criticality task model and scheduling algorithms has to be be used
- In the previous slides we have seen a task has many properties, including the WCET C_i
- In mixed-criticality systems, in addition to the previous metrics, we have:
 - → A criticality level χ_i:
 - It can be expressed in many form, e.g. ASIL levels $\chi_i = \{D, C, B, A, GM\}$
 - → A set of WCET (not a single value) for each criticality level

Task model

Example

Task	X,	WCET
Steering	D	$C_i(QM) = 2$, $C_i(A) = 5$, $C_i(B) = 7$, $C_i(C) = 8$, $C_i(D) = 10$
Wipers	A	$C_{i}(QM) = 5, C_{i}(A) = 7$
Infotainment	QM	$C_{i}(QM) = 100$

- Each task has as many WCETs as the value of its criticality level
 - → Tasks with QM have one WCET value,
 - → Tasks with A have two WCET values, and so on
- Only C_i(D) is assumed to be a non-underestimated WCET, while other WCETs are possibly unsafe, thus only D tasks are guaranteed to be scheduled

Traditional mode-switch concept

Behaviour

- When a task overrides one of its WCET, a system mode switch occurs
- The system mode M can assume the same values of the criticality levels
- If the system is in the criticality mode m, i.e. M=m, all tasks with criticality level lower than M are not scheduled and dropped
- This allows tasks with higher criticality levels to have more time to execute and complete within their deadline

Traditional mode-switch concept

Traditional mode-switch concept

Strategies

- Different strategies exist to decide when to switch back to normal mode QM
 - → Example: as soon as the system is in idle
- Important: ASIL-D tasks are always scheduled and cannot be dropped: no task can overrun its C_i(D)
- The WCET values C_i(x) shoud be designed such that...
 - → The ASIL-D tasks are executed in any condition
 - → Mode switches occur very rarely, to minimize the disruption to other tasks

Scheduling mixed-criticality systems

Scheduling algorithms

- Many scheduling techniques have been developed in the last years
- The problem is non-trivial and no optimal algorithms exist
- The most famous one is a modified version of EDF called the EDF-VD (Virtual Deadlines)
- Further reading
 - https://www-users.cs.york.ac.uk/burns/review.pdf

Questions?

Contacts

William Fornaciari
DEIB Politecnico di Milano
Building 20, 1st flloor
william.fornaciari@polimi.it

HEAPLab

DEIB Politecnico di Milano Building 21, Floor 1 Phone: 9613 / 9623

http://heaplab.deib.polimi.it/

Slides credits:

→ Federico Reghenzani <federico.reghenzani@polimi.it>