6. Mechanical

6.1 Joint composition and the definition of the angle

This robot has a total of 28 joints in two arms of 6 flexibility, two legs of 6 flexibility, and the head of 3 flexibility and the body part of 1 flexibility. It is rotation flexibility altogether and a leg, an arm, and the waist are serial links. The name of a joint and flexibility distribution have become as it is shown in Fig. 6.1-1 and Table 6.1-1. in addition, [] of the joint name of front Naka -- an inside numerical value -- the order from 1 -- the machine from a root -- structural connection ranking is shown. Moreover, the joint angle which determines a robot's posture is defined by Fig. 6.1-2, 6.1-3, the link parameter of Table 6.1-2, the joint coordinate system, and DH parameter, and all joint instructions to a robot should follow this definition.

Fig. 6. 1-1 Joint name

Table 6.1-1 Joint name

Joint name	Flexibility	Device ID
HEAD_JOINT[1]	Head torsion	22
HEAD_JOINT[2]	Head pitch	22
HEAD_JOINT[3]	Head roll	22
BODY_JOINT[1]	Waist pitch	21
RLEG_JOINT[1]	Right hip joint torsion	1
RLEG_JOINT[2]	Right hip joint roll	2
RLEG_JOINT[3]	Right hip joint pitch	3
RLEG_JOINT[4]	Right knee	4
RLEG_JOINT[5]	Right Ankle pitch	5
RLEG_JOINT[6]	Right Ankle roll	6
RARM_JOINT[1]	Right shoulder Pitch	7
RARM_JOINT[2]	Right shoulder roll	8
RARM_JOINT[3]	Right shoulder torsion	9
RARM_JOINT[4]	Right elbow	10
RARM_JOINT[5]	Right fingers open/close	23
RARM_JOINT[6]	Right hand torsion	23
LLEG_JOINT[1]	Left hip joint torsion	11
LLEG_JOINT[2]	Left hip joint roll	12
LLEG_JOINT[3]	Left hip joint pitch	13
LLEG_JOINT[4]	Left knee	14
LLEG_JOINT[5]	Left Ankle pitch	15
LLEG_JOINT[6]	Left Ankle roll	16
LARM_JOINT[1]	Left shoulder Pitch	17
LARM_JOINT[2]	Left shoulder roll	18
LARM_JOINT[3]	Left shoulder torsion	19
LARM_JOINT[4]	Left elbow	20
LARM_JOINT[5]	Left fingers open/close	23
LARM_JOINT[6]	Left hand torsion	23

Fig.6.1-2 The parameter definition of the link length

Fig.6.1-3 DH parameter definition coordinate (θ [i]=0 Posture)

Table. 6. 1-2 DH Parameter (theta[i] =0 is the posture of Fig. 6. 1-3

<u>Table.</u>	6.1-2 DH Parame	<u>ter (theta[i] =0</u>	is the posture of	<u>Fig. 6. 1-3</u>
	a[I-1]	α [I−1]	d[i]	θ [i]
	(m)	(deg)	(m)	(deg)
CHEST	-BODY_LINK2	0	BODY_LINK1	0
HEAD_JOINT[1]	0	0	HEAD_LINK1	0
HEAD_JOINT[2]	HEAD_LINK2	-90	0	0
ARM_JOINT[0]	0	-90	(*)ARM_LINK1	0
ARM_JOINT[1]	0	0	0	θ [1]
ARM_JOINT[2]	0	90	0	θ [2]+90
ARM_JOINT[3]	0	90	ARM_LINK2	θ [3]+90
ARM_JOINT[4]	0	90	0	θ [4]
BODY_JOINT[1]	0	90	0	0
LEG_JOINT[0]	-WAIST_LINK2	-90	-WAIST_LINK1	90
LEG_JOINT[1]	(*)LEG_LINK1	0	0	θ [1]
LEG_JOINT[2]	0	90	0	heta [2]+90
LEG_JOINT[3]	0	90	0	θ [3]
LEG_JOINT[4]	-LEG_LINK2	0	0	θ [4]
LEG_JOINT[5]	-LEG_LINK3	0	0	θ [5]
LEG_JOINT[6]	0	-90	0	θ [6]
	(*)Please give as	a negative value at	t the time of a righ	t half the body.
	WAIST	->	CHEST	
ARM_LINK1	0.111	m		
ARM_LINK2	0.111	m		
ARM_LINK3	0.171	m		
LEG_LINK1	0.039	m		
LEG_LINK2	0.105	m		
LEG_LINK3	0.105	m		
LEG_LINK4	0.040	m		
BODY_LINK1	0.125	m		
BODY_LINK2	0.035	m		
HEAD_LINK1	0.103	m		
HEAD_LINK2	0.015	m		
WAIST_LINK1	0.055	m		
WAIST_LINK2	0.035	m		

6. 2 Mass Property

mass property of the necessary link is in the attached sheet to simulate the dynamics of the robot. Mass property is defined in the link unit that it belongs to the degree of each joint freedom in accordance with the joint coordinate of the DH parameter .A link for example to belong to joint_1 in case as a ground plan becomes link_1, and mass property of link_1 by the coordinate of joint_1 is defined as it.

And, three kinds of mass property show it about the BODY link which is the body trunk of the robot by the difference in the loading thing of the cable mode and the wireless mode. Select and simulate mass property fitted to the configuration of an actual opportunity

6.3 Conversion of a joint angle and speed

Control of a robot's joint angle or speed uses as an instruction value what changed into the increase and decrease (speed) of a value of the pulse count value (position) of the encoder of a joint, or the pulse count value around time the position defined by DH parameter and speed. It is answered to all also of the position of the present joint, and the information on speed by the robot with this value. The incremental encoder is used for an encoder. Therefore, PURISETTO [the counter used as a position instruction value / a joint angle / a known posture] so that it can change into the joint angle absolute value defined by DH parameter (or reverse conversion). PURISETTO [specifically / robot / an automatic starting point return program / a joint angle] automatically. If PURISETTO completion is carried out, a joint angle and speed are convertible for the definition semi- the value of DH parameter by the conversion formula of Table 6.3-1 and 6.3-2 (or reverse conversion).

Table 6.3-1 Conversion of DH parameter definition joint angle and position

instruction value

heta d	DH definition joint angle(deg)
Р	Position instruction value(pulse)
A	Conversion factor(pulse/deg)
Note)	P is 2 bytes of integer with a mark
Conversion type:	$P=A \times \theta d$
Joint name	A(pulse/deg)
RLEGJOINT[1]	209
RLEGJOINT[2]	209
RLEGJOINT[3]	-209
RLEGJOINT[4]	209
RLEGJOINT[5]	209
RLEGJOINT[6]	-209
RARM_JOINT[1]	209
RARM_JOINT[2]	209
RARM_JOINT[3]	-209
RARMJOINT[4]	-209
LLEG_JOINT[1]	209
LLEGJOINT[2]	209
LLEG_JOINT[3]	209
LLEGJOINT[4]	-209
LLEGJOINT[5]	-209
LLEG_JOINT[6]	-209
LARMJOINT[1]	-209
LARMJOINT[2]	209
LARMJOINT[3]	-209
LARM_JOINT[4]	209
BODY_JOINT[1]	209

<u>Table 6.3-2 Conversion of DH parameter definition joint speed</u>
and speed instruction value

ωd	DH definition joint speed (deg/s)
V	Speed instruction value(pulse/ms)
В	Conversion factor(pulse/ms/(deg/s))
note)	V is 2 bytes of integer with a mark
Conversion type:	V=B×ωd
Joint name	B(pulse/ms/(deg/s))
RLEGJOINT[1]	0.209
RLEGJOINT[2]	0.209
RLEGJOINT[3]	-0.209
RLEGJOINT[4]	0.209
RLEGJOINT[5]	0.209
RLEG_JOINT[6]	-0.209
RARM_JOINT[1]	0.209
RARMJOINT[2]	0.209
RARM_JOINT[3]	-0.209
RARMJOINT[4]	-0.209
LLEG_JOINT[1]	0.209
LLEGJOINT[2]	0.209
LLEG_JOINT[3]	0.209
LLEGJOINT[4]	-0.209
LLEGJOINT[5]	-0.209
LLEGJOINT[6]	-0.209
LARMJOINT[1]	-0.209
LARMJOINT[2]	0.209
LARMJOINT[3]	-0.209
LARMJOINT[4]	0.209
BODY_JOINT[1]	0.209

6.4 Joint allowable movement range

The joint movement range (DH parameter angle minimum angle - a maximum angle) that it is permitted after pre- sets joint counter of the robot becomes a table 6.4-1. Software limit of movement range can be set up in the robot. Be sure to set up software limit in less than this movement range by counter value for the prevention of damage and the safety. And, software limit is set up by the maximum and minimum of counter value. Over shoot of the control to the range of a joint angle to use in the actual practical use, and take the inside of 1deg of the maximum-minimum value of the table 6.4-1.

Sample: The utility movement ranges of RLEG_JOINT [1] become -90 - 30deg.

Table 6.4-1 Joint allowable movement range (counter value is value with a thing after the pre-set completion.)

		DH parame	DH parameter minimum		DH parameter maximum		
Joint name	Flexibility	DH angle	Counter value	DH angle	Counter value	Motor type	Device ID
		(deg)	(Decimal)	(deg)	(Decimal)		
RLEG_JOINT[1]	Right hip torsion	- 91	-19019	31	6479	TYPE-2	1
RLEG_JOINT[2]	Right hip roll	-31	-6479	21	4389	TYPE-3	2
RLEG_JOINT[3]	Right hip pitch	-82	17138	71	-14839	TYPE-2	3
RLEG_JOINT[4]	Right knee	-1	-209	130	27170	TYPE-3	4
RLEG_JOINT[5]	Right ankle pitch	-61	-12749	61	12749	TYPE-3	5
RLEG_JOINT[6]	Right ankle roll	-25	5225	25	-5225	TYPE-2	6
RARM_JOINT[1]	Right shoulder pitch	- 91	-19019	151	31559	TYPE-2	7
RARM_JOINT[2]	Right shoulder roll	-96	-20064	1	209	TYPE-2	8
RARM_JOINT[3]	Right shoulder	- 91	19019	91	-19019	TYPE-2	9
RARM_JOINT[4]	Right elbow	-115	24035	1	-209	TYPE-2	10
LLEG_JOINT[1]	Left hip torsion	-31	-6479	91	19019	TYPE-2	11
LLEG_JOINT[2]	Left hip roll	-21	-4389	31	6479	TYPE-3	12
LLEG_JOINT[3]	Left hip pitch	-82	-17138	71	14839	TYPE-2	13
LLEG_JOINT[4]	Left knee	-1	209	130	-27170	TYPE-3	14
LLEG_JOINT[5]	Left ankle pitch	- 61	12749	61	-12749	TYPE-3	15
LLEG_JOINT[6]	Left ankle roll	-25	5225	25	-5225	TYPE-2	16
LARM_JOINT[1]	Left shoulder pitch	- 91	19019	151	-31559	TYPE-2	17
LARM_JOINT[2]	Left shoulder roll	-1	-209	96	20064	TYPE-2	18
LARM_JOINT[3]	Left shoulder torsion	-91	19019	91	-19019	TYPE-2	19
LARM_JOINT[4]	Left elbow	-115	-24035	1	209	TYPE-2	20
BODY_JOINT[1]	Waist pitch	-1	209	90	-18810	TYPE-3	21
HEAD_JOINT[1]	Head torsion	-60	-	60	_	RC-サ ー ボ	22
HEAD_JOINT[2]	Head pitch	-45	=	15	_	RC-サーボ	22
HEAD_JOINT[3]	Head roll	-15	_	15		RC-サ ー ボ	22
RARM_JOINT[5]	Right fingers	-60	_	60		RC-サ ー ボ	23
RARM_JOINT[6]	Right hand torsion	-90	_	90		RC-サーボ	23
LARM_JOINT[5]	Left fingers	-60	_	60		RC-サーボ	23
LARM_JOINT[6]	Left hand torsion	-90	_	90	_	RC-サ ー ボ	23

^{*} The movement range of these joints may decrease, because of overlap.

6.5 Joint allowable torque

The allowable torque of the joint of the robot shows a table 6.5-1. Be careful not to exceed this value when the back drive operation of the joint by manual in direct acting servo off or the time of the movement of the robot.

Table 6.5-1 Joint Allowable torque

item	m joint Name Flexibility		Joint Permission torque		Motor
			[N·m]		type
<u> </u>		DY LLLY 1	Average	Peak	T/DE 0
1	RLEG_JOINT[1]		1.5	3	TYPE-2
2	RLEG_JOINT[2]		2	4.5	TYPE-3
3	RLEG_JOINT[3]		1.5	3	TYPE-2
4	RLEG_JOINT[4]	_	2	4.5	TYPE-3
5	RLEG_JOINT[5]		2	4.5	TYPE-3
6	RLEG_JOINT[6]		1.5	3	TYPE-2
7		Right shoulder pitch	1.5	3	TYPE-2
8	RARM_JOINT[2]	Right shoulder roll	1.5	3	TYPE-2
9	RARM_JOINT[3]	Right shoulder	1.5	3	TYPE-2
10	RARM_JOINT[4]	Right elbow	1.5	3	TYPE-2
11	LLEG_JOINT[1]	Left hip torsion	1.5	3	TYPE-2
12	LLEG_JOINT[2]	Left hip roll	2	4.5	TYPE-3
13	LLEG_JOINT[3]	Left hip pitch	1.5	3	TYPE-2
14	LLEG_JOINT[4]	Left knee	2	4.5	TYPE-3
15	LLEG_JOINT[5]	Left ankle pitch	2	4.5	TYPE-3
16	LLEG_JOINT[6]	Left ankle roll	1.5	3	TYPE-2
17	LARM_JOINT[1]	Left shoulder pitch	1.5	3	TYPE-2
18	LARM_JOINT[2]	Left shoulder roll	1.5	3	TYPE-2
19	LARM_JOINT[3]	Left shoulder torsion	1.5	3	TYPE-2
20	LARM_JOINT[4]	Left elbow	1.5	3	TYPE-2
21	BODY_JOINT[1]	Waist pitch	2	4.5	TYPE-3
22	HEAD_JOINT[1]	Head torsion	0.87	1.12	RCサーボ
23	HEAD JOINT[2]	Head pitch	0.87	1.12	RCサーボ
24	HEAD JOINT[3]	Head roll	0.87	1.12	RCサーボ
25	RARM_JOINT[5]		0.28	0.36	RCサーボ
26		Right hand torsion	0.28	0.36	RCサーボ
27	LARM_JOINT[5]		0.28	0.36	RCサーボ
28	LARM_JOINT[6]	Left hand torsion	0.28	0.36	RCサーボ