

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод наложения теней в дополненной реальности на основе информации о глубине точек кадра

Студент: Малышев Иван Алексеевич, ИУ7-81Б

Научный руководитель: Кивва Кирилл Андреевич

Дополненная реальность

Пример: виртуальный объект не отбрасывает тень с учетом внешнего освещения

Пример: тень, отбрасываемая виртуальным объектом, не учитывает геометрию окружения

Цель и задачи

• Цель: разработка метода наложения теней в дополненной реальности.

Задачи:

- провести анализ предметной области наложения теней, обзор существующих методов наложения теней в дополненной реальности на основе информации о глубине точек кадра и привести результаты сравнительного анализа;
- разработать и описать собственный метод наложения теней в дополненной реальности на основе информации о глубине точек кадра, который будет вычислять положения источников света только в начале сессии или при необходимости;
- разработать программное обеспечение, реализующее описанный метод, и проверить его работоспособность;
- провести исследование результатов разработанного метода при проецировании теней от виртуального объекта на различные поверхности; выполнить сравнение результатов работы реализованного метода с результатами, полученными с помощью существующих аналогов.

Существующие методы

	Восстановление нескольких ИС	Работа метода в помещени и	Работа метода вне помещени я	Динамическ ая смена окружения	Возможность не пересчитывать положение ИС без необходимости
Метод на основе анализа контуров теней ИС	+	+	_	+	_
Метод на основе построения теневых объемов	_	_	+	+	_
Метод с использованием сверточных нейронных сетей и трассировки теневых лучей	+	+	_	+	_

Постановка задачи

Источники света:

- Статичны
- Являются точечными
- Имеют белое свечение

Поверхность:

- Не прозрачна
- Не отражает свет

Карта глубины

Данные о глубине точек кадра

- Структурированный свет
- Стереокамера
- Время полета (ToF)
- Лидар (LiDAR)

Метод наложения теней в дополненной реальности

Поиск областей с источниками света

Построение гистограммы и поиск пикселей, соответствующие областям источников света

Поиск контуров источников света

Вычисление центроидов источников света Описание контуров прямоуголь никами

Поиск трехмерного положения источников света

Координаты источника света в сферических координатах:

$$\theta = 2\pi \times \frac{x_{pixel}}{width}$$

$$\varphi = \pi \times \frac{height - y_{pixel}}{height}$$

r = средняя глубина в прямоугольнике без учета нулевых значений

 θ — азимут источника света, ϕ — зенит источника света, r — радиус источника света, width — ширина панорамы окружения в пикселях, height — высота панорамы окружения в пикселях

Построение геометрии окружения

Получение формы тени виртуального объекта на трехмерной геометрии окружения

Схема структуры разработанного приложения

Исследование

Плоская поверхность

Неровная поверхность

Поверхность с наличием объектов или препятствий

Тип поверхности	Средняя оценка правдоподобности		
Плоская поверхность	4.6 / 5		
Неровная поверхность	4.2 / 5		
Поверхность с наличием объектов или препятствий	3.8 / 5		

Сравнение с аналогами

Заключение

В ходе выполнения работы были выполнены все задачи:

- Проведен анализ предметной области наложения теней, обзор существующих методов наложения теней в дополненной реальности на основе информации о глубине точек кадра и привести результаты сравнительного анализа;
- Разработан и описан собственный метод наложения теней в дополненной реальности на основе информации о глубине точек кадра, который будет вычислять положения источников света только в начале сессии или при необходимости;
- Разработано программное обеспечение, реализующее описанный метод, и проверена его работоспособность;
- Проведено исследование результатов разработанного метода при проецировании теней от виртуального объекта на различные поверхности; выполнено сравнение результатов работы реализованного метода с результатами, полученными с помощью существующих аналогов.

Цель работы достигнута: был разработан метод наложения теней в дополненной реальности на основе информации о глубине точек кадра.

Дальнейшее развитие

- Реализация автоматического определения ориентации камеры в пространстве
- Определение типа источника света по характеру свечения (точечный, направленный и т. д.).