Gentry Atkinson CS5318: Spring 2019 Homework #3

1) Correctly parenthesize the following lambda expression and find its set of free variables. $\lambda x . x \lambda y . y \lambda z . z \lambda w . w z y x$

$$(\lambda \ x \ . \ x \ (\lambda \ y \ . \ y(\ \lambda \ z \ . \ z \ (\lambda \ w \ . \ w))))) \ z \ y \ x$$
 Free variables: z, y, x

2) Perform the following substitutions.

$$((\lambda x . gxx) \lambda f . fx)$$

3)Draw the abstract syntax tree of the following lambda expression and identify its innermost and outermost beta-redices.

 $(\lambda x y z . (add x (sub y z))) 6 12 ((\lambda u v . u 4 v) mod 3)$

Innermost: 4 mod 3, sub 6 12

Outermost: add 6 11

4) Use both normal order reduction and applicative order reduction to reduce the following lambda expressions. Reach a normal form representation if possible.

=>paq

5) Constants in the pure lambda calculus can be defined as functions. For example, T for the "true" constant and F for the "false" constant can be defined as follows:

$$T = \lambda x . \lambda y . x$$
$$F = \lambda x . \lambda y . y$$

Prove that the following function:

AND = $\lambda x \cdot \lambda y \cdot x y F$ is the logical "and" function.

x	Υ	X AND Y	λ x . λ y . x y F
Т	Т	Т	(λ x . λ y .xyF) T T
			TTF
			(λ x . λ y . x)TF
			Т
Т	F	F	(λ x . λ y .xyF) TF
			TFF
			(λ x . λ y . x)TF
			F
F	Т	F	(λ x . λ y .xyF) FT
			FTF
			(λ x . λ y . y)FT
			F
F	F	F	(λ x . λ y .xyF) FT
			FFF
			(λ x . λ y . y)FF
			F