Master Theorn:

If $f(n) \in O(n^d)$ or $f(n) = C + n^d$ where d > 0on successence T(n) = a T(n/b) + f(n) then $T(n) \in \left\{O(n^d) \mid \text{if } a < b^d \right\}$ $\left\{O(n^d \log_b a) \mid \text{if } a > b^d \right\}$ $\left\{O(n^{\log_b a}) \mid \text{if } a > b^d \right\}$

1)
$$T(n) = 8T(n/2) + 1000n^2$$

11 $T(n) = aT(n/b) + f(n)$
 $a = 8$
 $b = 3$
 $f(n) = cn^4$
 $= 10000n^2$
 $c = 10000 \cdot d = 2$

Since

 $a > b$

i.e. $8 > 3^2$

master theorem care 3

 $T(n) = 0 \cdot (n^{10} \cdot 3^{10})$
 $T(n) = 0 \cdot (n^{10})$

3)
$$T(n) = \partial T(n/2) + n^2$$

$$a = \partial b = \partial C = 1 \quad d = \partial$$
Since
$$a < b^d$$

$$2 < \partial^2$$

(ase 0)
$$T(n) = O(n^d)$$

$$T(n) = O(n^d)$$

3)
$$T(m) = \partial T(\sqrt{2}) + 10 m$$
 $a = \partial b = \partial c = 10$
 $d = 1$
Since

Since
$$a = b^d$$
 $a = b^d$

case (a)

i.e
$$T(n) = O(n^d \log n)$$

$$T(n) = O(n \log n)$$