THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 7

ame: _	CHA	N CHO	KIT,	David	Studer	nt No.: _	1159	175546	_
lass:		MATHI			_				
_									
in ble	acaden e to br	nic work, a	and of to	are of Univ he disciplin licy and re olicy/acade	nary guide egulations	elines and , as cont	l proced ained in	ures applic	a-
Si	ignatur	e			Date	9		,	
• Ple Fa	ease go ilure to	to the class comply w	s indica ill resul	ted by your t in a 2-po using a bl	registere oint dedu	d course o	the fina	l score.	•
-		ll only be	awarded	l for answe	rs with su	ifficient ju	ıstificati	ons.	
• Al	1 quest	ions in Pa	ert A a	along with l with * ar	some sele	ected que	estions in		will
r inte	rnal use	e only:		+	X = =		- A.	Ž.	-
Ī	1)							Ī
	2	2			1	1			
									7

Total

Part A

1. Evaluate the following indefinite integrals.

(a)
$$\int (x^{\sqrt{2}} + \sqrt{2}^x) dx$$

(b)
$$\int \left(\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} \right) dx$$

(a)
$$\int (x^{\sqrt{2}} + \sqrt{2}^x) dx$$

$$= \left(\frac{1}{\sqrt{2}+1}\right) x^{\frac{1}{2}+1} + \frac{1}{\frac{1}{2} \ln 2} \sqrt{2}^{x} + Constant$$

$$= \left(\frac{1}{\sqrt{z+1}}\right) x^{\sqrt{z+1}} + \frac{1}{\frac{1}{z} \ln z} \sqrt{z} + Constant$$

$$= \left(\sqrt{z-1}\right) x^{\sqrt{z+1}} + \frac{2\sqrt{z}}{\ln z} + Constant$$

(b)
$$\int \left(\chi^{\frac{1}{3}} + \chi^{-\frac{1}{3}}\right) d\chi$$

$$= \frac{3}{4} \chi^{\frac{4}{3}} + \frac{3}{2} \chi^{\frac{2}{3}} + \text{Constant} /$$

2. Evaluate the following indefinite integrals.

(a)
$$\int (2x-3)^{1510} dx$$

(b)
$$\int x\sqrt{x+1}\,dx$$

(a) Let
$$g u = 2x-3$$

$$du = 2dx$$

! We have
$$\frac{1}{2}\int u^{1510} du$$

$$= \frac{1}{2} \left(\frac{u^{(51)}}{1511} \right) + Constant$$

$$= \frac{(2x-3)^{(01)}}{3022} + constant$$

(b) Let
$$u = xt$$
 du $= xt$

$$= \int (u^{\frac{3}{2}} - \sqrt{u}) du$$

4

Part B

3. A particle is moving on the xy-plane and its position at time t is

$$\bar{r}(t) = (x(t), y(t)) = (e^{-t}\cos t, e^{-t}\sin t) \quad \text{ for } t \ge 0.$$

- (a) Find the velocity and acceleration of the particle at $t = \frac{\pi}{4}$.
- (b) Find the position of the particle in the long run, i.e., $\lim_{t\to\infty} \vec{r}(t)$.

(a) Use costy =
$$\vec{r}'(t) = (-e^{-t}\cos t + e^{-t}(-sht), -e^{-t}\sinh t + e^{-t}ast)$$

= $(-e^{-t}(ast+sht), e^{-t}(ast-sht))$

Acadevation= 7"(t)

$$= \left(e^{-t}(\cos t + \sinh t) - e^{-t}(\cos t - \sinh t)\right)$$

$$-e^{-t}(\cos t - \sinh t) - e^{-t}(\cos t + \sinh t)$$

$$= \left(2e^{-t} \operatorname{sht}, -2e^{-t} \operatorname{cost}\right) /$$

$$(b) = (b)^2 + (b) = (0,0)$$

- Sketch a graph of a twice-differentiable function f: (0,∞) → ℝ which satisfies the followings:
 - f(1) = 5 and f(2) = 3
 - $\lim_{x\to 0^+} f(x) = -\infty$ (DNE) and $\lim_{x\to \infty} f(x) = 1$
 - f'(x) > 0 over (0, 1) and f'(x) < 0 over $(1, \infty)$
 - f''(x) < 0 over (0,2) and f''(x) > 0 over $(2,\infty)$

On your graph, label any local maximum(s), local maximum(s), point of inflection(s) and asymptote(s) (if any).

6

5. A new cylindrical container will be built in a factory to store hazardous chemicals. The capacity of the container should be 3200 m³. Due to the safety regulation, the radius of the base of the container must be at least 6 m and at most 10 m. It is known that the building cost of the container is directly proportional to the total surface area (including both the top and bottom).

Find the <u>base radius</u> of the container that minimizes the building cost (correct to 4 decimal places).

Volume:
$$r^{\frac{1}{10}}h = \frac{3700}{700^{\frac{3700}{1000}}}$$

Total surface avea (A):
$$r^2 \pi \times 2 + 2r\pi h$$
:
$$= 2r^2 \pi t + 2r\pi \cdot \frac{3200}{\pi r^2}$$

$$= 2r^2 \pi t + \frac{6400}{r}$$

$$= 4r\pi t + \left(-\frac{6400}{r^2}\right)$$

$$= 4r\left(\pi t - \frac{1600}{r^3}\right)$$

$$\frac{dA}{dr} = 0 : r = 0 \quad \text{(rejected)}$$
or
$$\tau_0 - \frac{(600)}{r^3} = 0$$

$$r = \sqrt{\frac{(600)}{70}}$$

0