1 矩阵的秩

Definition 1 (矩阵的秩). $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{r}(\mathbf{A})$ 是 \mathbf{A} 的秩,下列定义等价:

- 1. r(A) 是 A 的列向量组的秩(极大线性无关组的向量个数)。
- 2. r(A) 是 A 的列空间的维数。
- 3. r(A) 是 A 的行向量组的秩, 也是行空间的维数。
- 4. r(A) 是 A 的非零子式的最高阶数。
- 5. $r(\mathbf{A}) = n \dim(\text{null}(\mathbf{A}))$.

Theorem 1 (秩的性质). 设 $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, 则有下列性质:

- 1. 初等变换不改变矩阵的秩, 因此与可逆矩阵相乘不改变矩阵的秩。
- 2. $r(\mathbf{A}) \leq \min(m, n)$.
- 3. $r(\mathbf{A}) = r(\mathbf{A}^{\top})$.
- 4. $r(\mathbf{AB}) \leq \min(r(\mathbf{A}), r(\mathbf{B}))$.
- 5. $r(\mathbf{AB}) \ge r(\mathbf{A}) + r(\mathbf{B}) n_{\circ}$
- 6. $r(\mathbf{A}\mathbf{A}^{\top}) = r(\mathbf{A}^{\top}\mathbf{A}) = r(\mathbf{A}).$
- 7. (看列空间) $r([\mathbf{A} \ \mathbf{AB}]) = r(\mathbf{A})$ 。
- 8. (看行空间) $r\left(\begin{bmatrix} \mathbf{A} \\ \mathbf{B}\mathbf{A} \end{bmatrix}\right) = r(\mathbf{A})$ 。

9.
$$r\left(\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix}\right) = r(\mathbf{A}) + r(\mathbf{B})$$
.

10. A 是方阵时,设 A* 是 A 的伴随矩阵 (即 AA* = |A|E),则有

$$\mathbf{r}(\mathbf{A}^*) = \begin{cases} n & \text{若}\mathbf{r}(\mathbf{A}) = n \\ 1 & \text{若}\mathbf{r}(\mathbf{A}) = n - 1 \\ 0 & \text{若}\mathbf{r}(\mathbf{A}) < n - 1 \end{cases}$$

一些证明如下:

Definition 2 (零空间). 设 $\mathbf{A} \in \mathbb{R}^{m \times n}$, 矩阵 \mathbf{A} 的零空间定义为 $\operatorname{null}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}\}$. 其构成一个 \mathbb{R} 上的线性空间。

Definition 3 (列空间). 设 $\mathbf{A} \in \mathbb{R}^{m \times n}$, 矩阵 \mathbf{A} 的列空间即列向量张成的线性空间,也即 \mathbf{A} 作为 $\mathbb{R}^n \to \mathbb{R}^m$ 的线性变换时的值域空间,定义为 $\mathbf{R}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^m | \mathbf{x} = \mathbf{A}\mathbf{y}, \mathbf{y} \in \mathbb{R}^n \}$. 其构成一个 \mathbb{R} 上的线性空间。

Theorem 2 (线性代数基本定理(Rank-nullity theorem). 设 $\mathbf{A} \in \mathbb{R}^{m \times n}$, 则有:

$$\dim(\operatorname{null}(\mathbf{A})) + \dim(\mathsf{R}(\mathbf{A})) = n.$$

证明. 设 dim_A 是 null(\mathbf{A}) 的维数,我们取 null(\mathbf{A}) 的一组基 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\mathsf{dim}_A}$,将其补充为 \mathbb{R}^n 的一组基 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\mathsf{dim}_A}, \mathbf{v}_{\mathsf{dim}_A+1}, \cdots, \mathbf{v}_n$ 。

则 $\mathbf{Av}_{\mathsf{dim}_A+1}, \mathbf{Av}_{\mathsf{dim}_A+2}, \cdots, \mathbf{Av}_n$ 线性无关,且 $\mathbf{Av}_{\mathsf{dim}_A+1}, \mathbf{Av}_{\mathsf{dim}_A+2}, \cdots, \mathbf{Av}_n$ 可以生成 $\mathsf{R}(\mathbf{A})$ 。故 $\mathsf{dim}(\mathsf{R}(\mathbf{A})) = n - \mathsf{dim}(\mathsf{null}(\mathbf{A}))$,故结论成立。

证明. 设 \dim_B 是 $\operatorname{null}(\mathbf{B})$ 的维数, \dim_A 是 $\operatorname{null}(\mathbf{A})$ 的维数, \dim_{AB} 是 $\operatorname{null}(\mathbf{AB})$ 的维数。

设 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\mathsf{dim}_{\mathrm{B}}} \in \mathbb{R}^p$ 是 $\mathsf{null}(\mathbf{B})$ 的一个极大线性无关组,则容易验证 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\mathsf{dim}_{\mathrm{B}}} \in \mathsf{null}(\mathbf{AB})$ 。

我们可以将 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{\mathsf{dim}_B} \in \mathsf{null}(\mathbf{AB})$ 补充为 $\mathsf{null}(\mathbf{AB})$ 中的一个极大线性无关组,设 $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_{\mathsf{dim}_{\mathsf{AB}}-\mathsf{dim}_{\mathsf{B}}}$ 是补充的向量。则其满足:

 $\mathrm{B}\mathbf{w}_1, \mathrm{B}\mathbf{w}_2, \cdots, \mathrm{B}\mathbf{w}_{\mathsf{dim}_{\mathrm{AB}} - \mathsf{dim}_{\mathrm{B}}}$ 线性无关,且 $\mathrm{B}\mathbf{w}_1, \mathrm{B}\mathbf{w}_2, \cdots, \mathrm{B}\mathbf{w}_{\mathsf{dim}_{\mathrm{AB}} - \mathsf{dim}_{\mathrm{B}}} \in \mathsf{null}(\mathbf{A})$ 。 故 $\mathsf{dim}_{\mathrm{AB}} - \mathsf{dim}_{\mathrm{B}}$,即 $n - \mathsf{dim}_{\mathrm{A}} \leq n - \mathsf{dim}_{\mathrm{AB}} + \mathsf{dim}_{\mathrm{B}}$,即 $\mathsf{r}(\mathbf{A}) + \mathsf{r}(\mathbf{B}) - n \leq \mathsf{r}(\mathbf{AB})$ 。

Corollary 2. $\mathfrak{F} \mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{f} \mathbf{r}(\mathbf{A}^{\top} \mathbf{A}) = \mathbf{r}(\mathbf{A})$.

证明. 事实上, $\operatorname{null}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{null}(\mathbf{A})$ 。一方面, $\operatorname{null}(\mathbf{A}) \subset \operatorname{null}(\mathbf{A}^{\top}\mathbf{A})$ 是显然的。另一方面,若 $\mathbf{x} \in \operatorname{null}(\mathbf{A}^{\top}\mathbf{A})$,则 $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{0}$,即 $\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{0}$,即 $\mathbf{A}\mathbf{x} = \mathbf{0}$,即 $\mathbf{x} \in \operatorname{null}(\mathbf{A})$ 。故 $\operatorname{null}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{null}(\mathbf{A})$,故 $\operatorname{r}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{r}(\mathbf{A})$ 。

Theorem 3. A 是 n 阶方阵时, 设 A^* 是 A 的伴随矩阵 (即 $AA^* = |A|E$), 则有

$$\mathbf{r}(\mathbf{A}^*) = \begin{cases} n & \text{若}\mathbf{r}(\mathbf{A}) = n \\ 1 & \text{若}\mathbf{r}(\mathbf{A}) = n - 1 \\ 0 & \text{若}\mathbf{r}(\mathbf{A}) < n - 1 \end{cases}$$

证明. 当 $\mathbf{r}(\mathbf{A}) = n$ 时, \mathbf{A} 可逆, 故 $\mathbf{A}^* = |\mathbf{A}|\mathbf{A}^{-1}$ 可逆, 故 $\mathbf{r}(\mathbf{A}^*) = n$ 。

当 $\mathbf{r}(\mathbf{A}) = n-1$ 时,一方面, \mathbf{A} 有 n-1 阶非零主子式,故 \mathbf{A}^* 是非零矩阵,故 $\mathbf{r}(\mathbf{A}^*) \geq 1$ 。另一方面,由 $\mathbf{A}\mathbf{A}^* = |\mathbf{A}|\mathbf{E}$,我们有

$$0 = \mathsf{r}(\mathbf{0}) = \mathsf{r}(|\mathbf{A}|\mathbf{E}) = \mathsf{r}(\mathbf{A}\mathbf{A}^*) \ge \mathsf{r}(\mathbf{A}) + \mathsf{r}(\mathbf{A}^*) - n,$$

于是 $r(\mathbf{A}^*) \le 1$,故 $r(\mathbf{A}^*) = 1$ 。

当 r(A) < n-1 时,A 的 n-1 阶主子式均未 0,故 $A^* = 0$,故 $r(A^*) = 0$ 。

2 秩一矩阵,对角化,奇异值分解, Householder 变换

Definition 4 (秩一矩阵 (rank one matrix)). 设 $\alpha \in \mathbb{R}^{m \times 1}$, $\beta \in \mathbb{R}^{n \times 1}$ 均为非零向量,矩阵 $\alpha \beta^{\top} \in \mathbb{R}^{m \times n}$ 称为秩一矩阵。

Theorem 4 (秩一矩阵的性质). 设 $\alpha \in \mathbb{R}^{m \times 1}$, $\beta \in \mathbb{R}^{n \times 1}$ 均为非零向量,秩一矩阵 $\alpha \beta^{\top}$ 有下列性质:

- 1. $r(\boldsymbol{\alpha}\boldsymbol{\beta}^{\top}) = 1$;
- 2. $(\boldsymbol{\alpha}\boldsymbol{\beta}^{\top})^k = (\boldsymbol{\alpha}^{\top}\boldsymbol{\beta})^{k-1} \cdot \boldsymbol{\alpha}\boldsymbol{\beta}^{\top};$
- $3. \ \alpha eta^{\mathsf{T}}$ 的列空间(作为线性变换的值域)是 \mathbb{R}^m 的一维子空间, 其列向量均为 α 的倍数;
- $4. \ \alpha \beta^{\mathsf{T}}$ 的行空间是 \mathbb{R}^n 的一维子空间, 其行向量均为 β 的倍数;
- 5. $\alpha \beta$ 的核空间是 \mathbb{R}^n 的 n-1 维子空间, 也是 β 的正交空间, 即:

$$\mathsf{Ker}(\boldsymbol{\alpha}\boldsymbol{\beta}^{\top}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \boldsymbol{\alpha}\boldsymbol{\beta}^{\top}\mathbf{x} = (\boldsymbol{\beta}^{\top}\mathbf{x})\boldsymbol{\alpha} = \mathbf{0} \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \boldsymbol{\beta}^{\top}\mathbf{x} = 0 \}$$
(1)

- 6. 当 m = n 时, $\alpha \beta^{\top}$ 有两个特征值: $\alpha^{\top} \beta$ 和 0,特征向量空间分别为 α 张成的空间和 β 的 正交空间。当 $\alpha^{\top} \beta = 0$ 时,退化为一个特征值 0,特征向量空间为 β 的正交空间;
- 7. 当 m = n 且 $\alpha = \beta$ 时, $\alpha \alpha^{\top}$ 是对称矩阵,因此可以对角化。特征值是 $\|\alpha\|_2^2$ 和 0,特征向量空间分别为 α 张成的空间和 α 的正交空间。

秩一矩阵的一个作用在于给出了矩阵空间的一个基表示。设 $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_m$ 是 \mathbb{R}^m 的标准正交基, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ 是 \mathbb{R}^n 的标准正交基,则 $\mathbf{e}_i \mathbf{v}_j^{\top}$ 是 $\mathbb{R}^{m \times n}$ 的一组基。任意矩阵 $\mathbf{A} \in \mathbb{R}^{m \times n}$ 可以表示为 $\mathbf{A} = \sum_{i=1}^m \sum_{j=1}^n a_{ij} \mathbf{e}_i \mathbf{v}_j^{\top}$ 。

同时,秩一矩阵也揭示了对角化的作用。设 $\mathbf{A} \in \mathbb{R}^{n \times n}$, \mathbf{A} 的特征向量 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ 线性无 关, \mathbf{A} 可以对角化为:

设 $\mathbf{A} \in \mathbb{R}^{n \times n}$, 若 \mathbf{A} 的特征向量 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ 线性无关,则 \mathbf{A} 可以对角化为:

$$\begin{aligned} \mathbf{A} &= \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top} \\ &= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^{\top} \\ \mathbf{v}_2^{\top} \\ \vdots \\ \mathbf{v}_n^{\top} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^{\top} \\ \mathbf{v}_2^{\top} \\ \vdots \\ \mathbf{v}_n^{\top} \end{bmatrix} \\ &= \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top} \end{aligned}$$

可见如果我们不做任何努力,我们只能得到一个方阵可以分解为 n^2 个秩一矩阵,但是可对角化的矩阵 **A** 可以表示成 n 个对称的秩一矩阵的和。对于一般的矩阵,我们也能写成一些更少的秩一矩阵的和吗?答案是肯定的,这就是奇异值分解。

Theorem 5 (奇异值分解 (Single Value Decomposition, SVD)). 设 $\mathbf{A} \in \mathbb{R}^{m \times n}$, 则 $\mathbf{A}^{\top} \mathbf{A}$ 是一个对称半正定矩阵,且 $\mathrm{Ker}(\mathbf{A}^{\top} \mathbf{A}) = \mathrm{Ker}(\mathbf{A})$,设 $\mathbf{r}(\mathbf{A}^{\top} \mathbf{A}) = \mathbf{r}(\mathbf{A}) = r$,则 $\mathbf{A}^{\top} \mathbf{A}$ 的秩为有 r 个非零特征值,设为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$,对应的特征向量为 $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r$,令 $\mathbf{v}_i = \frac{1}{\sqrt{\sigma_i}} \mathbf{A} \mathbf{u}_i, i = 1, 2, \cdots, r$,则 \mathbf{A} 有如下分解:

$$\mathbf{A} = \sum_{i=1}^{r} \sqrt{\sigma_i} \mathbf{u}_i \mathbf{v}_i^{\top}$$

$$= \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sqrt{\sigma_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\sigma_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\sigma_r} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^{\top} \\ \mathbf{v}_2^{\top} \\ \vdots \\ \mathbf{v}_r^{\top} \end{bmatrix}$$

$$= \mathbf{H} \mathbf{\Sigma} \mathbf{V}^{\top}$$

其中
$$\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r] \in \mathbb{R}^{m \times r}$$
, $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r] \in \mathbb{R}^{n \times r}$, $\mathbf{\Sigma} = \mathsf{diag}(\sqrt{\sigma_1}, \sqrt{\sigma_2}, \cdots, \sqrt{\sigma_r}) \in \mathbb{R}^{r \times r}$ 。

证明. 只需验证 $\sum_{i=1}^r \sqrt{\sigma_i} \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ 和 **A** 在 $\mathbb{R}^{m \times n}$ 中的基 $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r, \mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ 上一致即可,这 里 $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r$ 是上述定义的 $\mathbf{A}^{\mathsf{T}} \mathbf{A}$ 的特征向量, $\mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ 是为构成 \mathbb{R}^m 的一组基而补充的 向量,注意 $\mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ 实际上构成了 $\mathsf{Ker}(\mathbf{A})$ 的一组基。

接下来讨论 Householder 变换。

Theorem 6 (Householder 变换的性质). 设 $\mathbf{x} \in \mathbb{R}^n$ 为单位向量, $\mathbf{H} = \mathbf{E} - 2\mathbf{x}\mathbf{x}^{\top}$, 则 \mathbf{H} 称为 *Householder* 变换, 具有如下性质:

1. **H** 是对称矩阵,可以对角化,特征值为 1 和 -1,特征向量空间分别为 x 的正交空间和 x 张 成的空间;

- 2. H 是正交矩阵, 即 $\mathbf{H}^{\mathsf{T}}\mathbf{H} = \mathbf{H}\mathbf{H}^{\mathsf{T}} = \mathbf{E}$;
- 3. H 是幂等矩阵, 即 $H^2 = E$;
- 4. H 可以反射 x, 即 Hx = -x。

证明. 直接验证是简单的。