Overview: Machine Learning

What is Machine Learning?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." --Tom M. Mitchell

- Closely related to
 - Statistics (fitting models to data and testing them)
 - Data mining / exploratory data analysis (discovering models)
 - Adaptive control theory
 - And of course Al

Abstractions from Observation

Learning is the process of automatically constructing abstractions of the real world from a set of observations and past experiences

Learning Concepts and Words

"tufa"

Recognizing Noisy Input

Classic Recognition Problem

Training examples of a person

Test images

Why Learn?

- Special Approach to Programming
 - To optimize a performance using example data or past experience.
- Not always needed
 - There is no need to "learn" to calculate payroll
- But used when
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech/image recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

Forms of Learning

Learning technique to use depends on:

- Which component of the agent is to be improved.
- What prior knowledge the agent has.
- What representation is used for the data and the component.
- What feedback is available to learn from.

Components to Improve / Learn

- Condition-Action rules
- Inference of world properties from percepts
- World model / results of actions
- Utility world states
- Utility / cost of actions
- Goals (classes of goal states)
- •

Possible Representations

- Propositional / First-Order Logic sentences
- Bayesian networks
- Arithmetic functions, e.g., $eval(s) = \sum_{i} w_i * f_i(s)$
- Neural networks
- •

Types of Learning by Feedback

- Supervised Learning
 - learning a function from input/output pairs
- Reinforcement Learning
 - learning from reward for a sequence of actions
 - Problem: Which of the actions is responsible for low/high reward?
- Unsupervised Learning
 - learning patterns in the input without feedback

-

Supervised Learning in General

Given a training set of example input-output pairs

$$(x_1, y_1), \dots, (x_N, y_N)$$

generated by an unknown function f such that

$$(\forall i) y_i = f(x_i)$$

discover a function h (hypothesis) that approximates f: $(\forall x)h(x) \approx f(x)$

Accuracy of h is measured using a test set of examples. $test set \cap training set = \emptyset$

What are good hypotheses?

Consistent hypothesis is trivial:

$$(\forall i: 1 \le i \le N) h(x_i) = f(x_i)$$

Goal: Generalization $(\forall x)h(x) \approx f(x)$

Objective: Minimize error on the training set and achieve good generalization.

Accuracy of h is measured using a test set of examples: $test set \cap training set = \emptyset$

e.g.,
$$error(h) = \sum_{i} |h(x_i) - y_i|$$

Two common learning problems

- Classification
 - finite set of output values y
 - e.g., sunny/cloudy/rainy, red/blue/green, ...
- Regression
 - output is a number

Classification

Example: Credit scoring
 Differentiating between
 <u>low-risk</u> and <u>high-risk</u>
 customers from their
 income and savings

 Input data is two dimensional, output is binary

Discriminant: IF *income*> θ1 AND *savings*> θ2 THEN <u>low-risk</u> ELSE <u>high-risk</u>

Classification

Training Set:

n cases

ColorShapeSizeBlueSquareSmallRedEllipseSmallRedEllipseLarge

p features (attributes)

Label	
Yes	
Yes	
No	

Test Set:

Blue	Crescent	Small
Yellow	Ring	Small

?		
?		

Classification - Decision Tree

Classification - Decision Tree

Classification - Decision Tree

What is the right Hypothesis?

Hypothesis – Linear Separation

Hypothesis – Linear Separation?

Hypothesis – Quadratic Separation

Problem - Noisy/Mislabeled Data

Avoid: Overfitting

Is the hypothesis underfitting?

More data $\rightarrow \dots$

... → more complex hypothesis

Linear Regression

Example:

Price of a used car

x : car attribute

y: price

• $y = g(x \mid \theta)$ model: g()parameters: $\theta = (w, w_0)$

Polynomial Regression

Example:

Growth of a species

x : age

y: length

• $y = g(x \mid \theta)$ model: g()parameters: $\theta = (w_3, w_2, w_1, w_0)$

Piecewise Linear 2D Regression

Some Regression Applications

- Cost estimation
 - Energy consumption
- Control
 - Angle of steering wheel for robot car
 - Kinematics of a robot arm

Range of Methods

- Methods differ in terms of
 - The form of hypothesis space
 - The way to find best hypothesis given data
- There are many successful approaches
 - Decision trees
 - Support vector machines
 - Neural networks
 - Case-based reasoning

— ...

General Uses

- Prediction of future cases
 Use the rule to predict the output for future inputs
- Knowledge extraction
 The rule is easy to understand
- Compression
 The rule is simpler than the data it explains
- Outlier detection
 Exceptions that are not covered by the rule (e.g. fraud)

Reinforcement Learning

Reinforcement Learning:

Overview

- Characteristics
 - Learning a Policy: A sequence of outputs
 - No supervised output, but a delayed reward
 - Credit assignment problem:
 - Which action led me to winning the game?
- Examples
 - Elevator scheduling
 - Backgammon and Chess
 - Robot control

Unsupervised Learning

Overview

- General characteristics
 - Learning "what normally happens"
 - No output available
- Examples
 - Clustering
 - Dimensionality reduction
 - Abnormality detection
 - Latent/hidden variable estimation

Example: Image Clustering

