Лекция 7. Логические функции двух переменных. Композиции логических функций. Эквивалентные логические функции

Некоторые из логических функций двух переменных (см. таблицу 2 лекции 2) имеют специальные названия и обозначения:

а) $f_{2,0}(x_1, x_2) \equiv 0 - \kappa$ онстанта ноль.

Таблица 1

x_1	x_2	$f_{2,0}(x_1,x_2)$	
0	0	0	
0	1	0	
1	0	0	
1	1	0	

b) $f_{2,1}(x_1,x_2)=x_1\wedge x_2-$ конъюнкция x_1 и x_2 (читается " x_1 и x_2 "). Отметим, что $x_1\wedge x_2=\min\{x_1,x_2\}$. Конъюнкцию часто называют логическим умножением и обозначают также $x_1\cdot x_2$ или x_1x_2 .

Замечание 1 (расширенная интерпретация конъюнкции). Если 0 – ложь и 1 – истина, то конъюнкцию можно интерпретировать так:

- а) ложь и ложь ложь,
- б) ложь и истина ложь,
- в) истина и ложь ложь,
- г) истина и истина истина.

Таблица 2

x_1	x_2	$f_{2,1}(x_1,x_2)$
0	0	0
0	1	0
1	0	0
1	1	1

c) $f_{2,6}(x_1,x_2) = x_1 \oplus x_2$ — сложение по mod 2:

$$x_1 \oplus x_2 = \begin{cases} x_1 + x_2 & (x_1 + x_2 < 2), \\ 0 & (x_1 + x_2 = 2). \end{cases}$$

Замечание 2. Здесь и далее второй индекс функции (ее номер среди функций двух переменных) соответствует двоичному числу, образованному значениями этой функции на наборах значений аргументов, расположенных в лексикографическом порядке. Так, $6 = 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$.

Таблица 3

x_1	x_2	$f_{2,6}(x_1,x_2)$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

d) $f_{2,7}(x_1,x_2)=x_1\vee x_2-\partial u$ зъюнкция x_1 и x_2 (читается: x_1 или x_2). Отметим, что $x_1\vee x_2=\max\{x_1,x_2\}$. Дизъюнкцию часто называют логическим сложением и обозначают также x_1+x_2 .

Замечание 3 (расширенная интерпретация дизъюнкции). Если 0 – ложь и 1 – истина, то дизъюнкцию можно интерпретировать так:

- а) ложь или ложь ложь,
- б) ложь или истина истина,
- в) истина или ложь истина,
- г) истина или истина истина.

Таблица 4

x_1	x_2	$f_{2,7}(x_1,x_2)$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

е) $i=9: f_{2,9}(x_1,x_2)=x_1\sim x_2$ — эквиваленция (равная 1, если x_1 и x_2 равны между собой, и 0 в противном случае).

Таблица 7

x_1	x_2	$f_{2,9}(x_1,x_2)$
0	0	1
0	1	0
1	0	0
1	1	1

Замечание 4 (расширенная интерпретация эквиваленции). Если 0 – ложь и 1 – истина, то эквиваленцию можно интерпретировать так:

- а) ложь равносильна лжи истина,
- б) ложь равносильна истине ложь,
- в) истина равносильна лжи ложь,
- г) истина равносильна истине истина.

f) $i=13: f_{2,13}(x_1,x_2)=x_1\to x_2-$ импликация x_1 и x_2 (читается: из x_1 следует x_2). Эту функцию часто называют логическим следованием.

Таблица 8

x_1	x_2	$f_{2,13}(x_1,x_2)$	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Замечание 5 (расширенная интерпретация импликации). Если 0 – ложь и 1 – истина, то импликацию можно интерпретировать так:

- а) из лжи может следовать ложь истина,
- б) из лжи может следовать истина истина,
- в) из истины может следовать ложь ложь,
- г) из истины может следовать истина истина.
- g) $f_{2,15}(x_1,x_2) = 1 \kappa$ онстанта единица.

Таблица 5

x_1	x_2	$f_{2,15}(x_1,x_2)$	
0	0	1	
0	1	1	
1	0	1	
1	1	1	

В общем случае число различных логических функций n переменных обозначается $P_2(n)$ (индекс 2, как и выше, означает количество возможных значений каждого аргумента).

Упражнение 1 (д/з). Доказать методом математической индукции, что $P_2(n) = 2^{2^n}$ – число различных двоичных векторов длины 2^n .

Определение 1. Функция, полученная путем применения логической функции $f_0(x_1,\ldots,x_n)$ к значениям логических функций $f_1(x_1,\ldots,x_m),\ldots,f_n(x_1,\ldots,x_m)$, называется композицией логических функций:

$$f(x_1,\ldots,x_m) = f_0(f_1(x_1,\ldots,x_m),\ldots,f_n(x_1,\ldots,x_m)).$$

Используя композиции логических функций, можно получать другие логические функции.

Пример 1. Из $f_{2,7}(x_1,x_2)$ с помощью функции отрицания $f_{1,2}(x)$ получить $f_{1,2}(f_{2,7}(x_1,x_2)) \equiv \bar{f}_{2,7}(x_1,x_2)$.

Решение:

Таблица 1

x_1	x_2	$f_{2,7}(x_1,x_2)$	$f_{1,2}(f_{2,7}(x_1,x_2))$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

], где используется функция отрицания $f_{1,2}(x)$:

Таблица 2

x	$f_{1,2}(x)$
0	1
1	0

Пример 2. Из $f_{2,2}(x_1,x_2)$ и $f_{2,3}(x_1,x_2)$ с помощью функции конъюнкции $f_{2,1}(x_1,x_2)$ получить $f_{2,1}(f_{2,2}(x_1,x_2),f_{2,3}(x_1,x_2)) \equiv f_{2,2}(x_1,x_2) \wedge f_{2,3}(x_1,x_2)$.

Решение:

Таблица 3

x_1	x_2	$f_{2,2}(x_1,x_2)$	$f_{2,3}(x_1,x_2)$	$f_{2,2}(x_1,x_2) \wedge f_{2,3}(x_1,x_2)$
0	0	0	0	0
0	1	0	0	0
1	0	1	1	1
1	1	0	1	0

где используется функ-

ция конъюнкции $f_{2,1}(x_1,x_2)$:

Таблица 4

x_1	x_2	$f_{2,1}(x_1,x_2)$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Упражнение 1 (д/з). Из $f_{2,1}(x_1,x_2)$ и $f_{2,3}(x_1,x_2)$ с помощью функции дизъюнкции $f_{2,7}(x_1,x_2)$ получить $f_{2,7}(f_{2,1}(x_1,x_2),f_{2,3}(x_1,x_2)) \equiv f_{2,1}(x_1,x_2) \vee f_{2,3}(x_1,x_2)$.

Определение 2. Эквивалентными логическими функциями называются функции, имеющие одинаковые таблицы задания. Будем обозначать эквивалентные функции так: $f_1(x_1,\ldots,x_n) \sim f_2(x_1,\ldots,x_n)$.

Пример 3. $\overline{f}_{2,11}(x_1,x_2) \sim f_{2,4}(x_1,x_2)$, как видно из следующей таблицы:

Таблица 5

x_1	x_2	$f_{2,11}(x_1,x_2)$	$\bar{f}_{2,11}(x_1,x_2)$	$f_{2,4}(x_1,x_2)$
0	0	1	0	0
0	1	0	1	1
1	0	1	0	0
1	1	1	0	0

Упражнение 2 (д/з). Доказать: $\bar{f}_{2,2}(x_1,x_2) \sim f_{2,13}(x_1,x_2), f_{2,4}(x_1,x_2) \sim f_{2,5}(x_1,x_2) \wedge f_{2,6}(x_1,x_2).$