Contents

1	Introduction heading 1	1
	1.1 Labelled Heading 2	1
	1.2 A 3rd heading 2	1
	1.3 Arabidopsis thaliana	2
2	This ones a list set or something	2
3	Now for a table	3
\mathbf{A}	Gene Lists	3
	A.1 Arabidopsis thaliana	3
\mathbf{B}	Matlab Scripts	3
	B.1 MLP Class	4
Re	eferences	4

1 Introduction heading 1

A basic template. For example,

Bioinformatics is interpreting signals from biological systems as information to understand aspects of the system [1].

1.1 Labelled Heading 2

A section with a label in the heading.

1.2 A 3rd heading 2

Linking back to the previous section 1.1.

Despite the broad variety of gene prediction software systems . . . as their published performance using plant data is almost always restricted to the model plant *Arabidopsis thaliana*[2].

1.3 Arabidopsis thaliana

Arabidopsis thaliana (A. thaliana), commonly water-cress, is the most extensively used model plant organism in plant biology research, largely due to the early adoption of the species as a model organism in the early 1980s[3].

Figure 1: A. thaliana

Unlike the plant in figure 1, next we have an equation 1. Note, the α parameter controls the transition gradient of the output curve

$$f(x) = \frac{1}{(1 + e^{-\alpha x})}\tag{1}$$

2 This ones a list set or something

Listing 1: A single RNA-Seq read

3 Now for a table

The top 10 performing models from the A. thaliana experimental data validation results for all high-complexity genes are shown in table 1, displaying the models' metrics, and

Model	Accuracy	STD	Sensitivity	STD	Specificity	STD	Inf.	STD
1	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
2	0.945	0.131	0.920	0.228	0.980	0.042	0.899	0.238
3	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
4	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
5	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
6	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
7	0.945	0.131	0.918	0.228	0.980	0.042	0.899	0.238
8	0.945	0.131	0.918	0.228	0.981	0.042	0.899	0.238
9	0.944	0.131	0.918	0.228	0.981	0.042	0.899	0.238
_10	0.944	0.131	0.917	0.228	0.981	0.042	0.899	0.238

Table 1: Top 10 model metrics - high-complexity

A Gene Lists

A.1 Arabidopsis thaliana

Heres 2

Table 2: Actinidia chinensis gene lists

A. thaliana Training	A. thaliana Simulated	A. thaliana Validation
AT1G01320	AT1G55860	AT3G48190
AT1G02080 AT1G03060	AT1G13280 AT1G07480	AT3G50380 AT3G50590
AT1G05570	AT1G22140	AT3G59100

B Matlab Scripts

B.1 MLP Class

```
% MLP
%
% 1+ hidden-layer perceptron model.
% Can handle as many hidden layers as needed.
%
% Usage:
%
% Create a MLP with the contructor:
%
% myMLP = MLP([layer-sizes], learning-rate, bias, activation-function, alpha)
```

References

Control bib title

- [1] J. Pevsner, Bioinformatics and functional genomics. John Wiley & Sons, 2015.
- [2] H. Xie, B. Dain, D. R. Becker, and R. E. Drake, "Current methods of gene prediction, their strengths and weaknesses," *Rehabilitation Counseling Bulletin*, vol. 40, no. 4, pp. 230–239, 1997, doi: 10.1093/nar/gkf543.
- [3] D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, "Arabidopsis thaliana: a model plant for genome analysis," *Science*, vol. 282, no. 5389, pp. 662–682, 1998.