Bài giảng chương 7: Giá trị riêng và vector riêng

TS. Nguyễn Bích Vân nbvan@math.ac.vn

21st May 2021

"Tạm dừng đến trường, không dừng học."

7.1. Giá trị riêng và vector riêng

Đinh nghĩa 7.1

Cho A là 1 ma trận vuông cấp n. Số (thực) λ được gọi là một **giá trị riêng (eigenvalue)** của A, nếu tồn taị vector $\mathbf{x} \neq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n$ sao cho $A\mathbf{x} = \lambda \mathbf{x}$.

Khi đó x được gọi là một **vector riêng(eigenvector)** của A, tương ứng với giá trị riêng λ .

Chú ý 7.1

Vector riêng phải khác vector không. Bởi vì hiển nhiên $A\mathbf{0} = \lambda \mathbf{0}$ với $\forall \lambda \in \mathbb{R}$.

Giá tri riêng có thể bằng 0 (xem Ví du 7.1)

Ví du 7.1

Cho ma trận
$$A=\begin{bmatrix}1&-2&1\\0&0&0\\0&1&1\end{bmatrix}$$
 . Chứng minh rằng $\mathbf{x}_1=\begin{bmatrix}-3\\-1\\1\end{bmatrix}$,

 $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ là các vector riêng của A. Tìm các giá trị riêng tương ứng của chúng.

Giải:
$$A\mathbf{x}_1 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix} = 0\mathbf{x}_1 \implies \mathbf{x}_1$$

là 1 vector riêng của A tương ứng với giá trị riêng $\lambda_1=0$.

$$A\mathbf{x}_2 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1\mathbf{x}_2 \implies \mathbf{x}_2 \text{ là 1 vector}$$

riêng của A tương ứng với giá trị riêng $\lambda_2 = 1$.

Đinh lý 7.1

Nếu A là một ma trận vuông cấp n, thì tập hợp

$$\mathbb{R}_{\lambda}^{n}(A) = \{ \mathbf{x} \in \mathbb{R}^{n} | A\mathbf{x} = \lambda \mathbf{x} \}$$

là một không gian con của \mathbb{R}^n . Không gian con này được gọi là không gian riêng (eigenspace) của A tương ứng với giá tri riêng λ .

Chứng minh.

Vì
$$A\mathbf{0} = \lambda \mathbf{0} \implies \mathbf{0} \in \mathbb{R}^n_{\lambda}(A) \implies \mathbb{R}^n_{\lambda}(A) \neq \emptyset$$
.
Giả sử $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_{\lambda}(A), c \in \mathbb{R}$. Khi đó $A\mathbf{x} = \lambda \mathbf{x}, A\mathbf{y} = \lambda \mathbf{y} \implies$
 $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \lambda \mathbf{x} + \lambda \mathbf{y} = \lambda(\mathbf{x} + \mathbf{y}) \implies \mathbf{x} + \mathbf{y} \in \mathbb{R}^n_{\lambda}(A)$.
 $A(c\mathbf{x}) = cA\mathbf{x} = c\lambda \mathbf{x} = \lambda(c\mathbf{x}) \implies c\mathbf{x} \in \mathbb{R}^n_{\lambda}(A)$.

Vậy $\mathbb{R}^n_{\lambda}(A)$ là 1 không gian con của \mathbb{R}^n .

Cách tìm giá trị riêng, các vector riêng và không gian riêng tương ứng

Ta thấy $A\mathbf{x} = \lambda\mathbf{x} \Leftrightarrow A\mathbf{x} = \lambda I_n\mathbf{x} \Leftrightarrow (\lambda I_n - A)\mathbf{x} = \mathbf{0}$. Hệ phương trình tuyến tính trên có nghiệm không tầm thường $\mathbf{x} \neq \mathbf{0} \Leftrightarrow |\lambda I_n - A| = 0$. Dễ thấy rằng $|\lambda I_n - A|$ là 1 đa thức bậc n với biến λ . Đa thức này

được gọi là **đa thức đặc trưng (characteristic polynomial**) của A và được kí hiệu là $\chi_A(\lambda)$.

Như vậy, ta có

Định lý 7.2

Cho A là 1 ma trân vuông cấp n. Khi đó:

- Các giá trị riêng của A là các nghiệm (thực) của phương trình $|\lambda I_n A| = 0$.
- **②** Không gian riêng của A tương ứng với giá trị riêng λ là tập nghiêm của hệ thuần nhất $(\lambda I_n A)\mathbf{x} = 0$.
- **3** Các vector riêng của A tương ứng với giá trị riêng λ là các nghiệm không tầm thường của hệ thuần nhất $(\lambda I_n A)\mathbf{x} = 0$.

Như vây, để tìm giá tri riêng, vector riêng và không gian riêng của ma trân A vuông cấp n ta thực hiện các bước sau:

- Viết đa thức đặc trưng $\chi_A(\lambda) = |\lambda I_n A|$
- Tìm tất cả các nghiệm thực của đa thức đặc trưng. Chúng chính là tất cả các giá tri riêng của A.
- 3 Với mỗi giá trị riêng λ_i , giải hệ thuần nhất $(\lambda_i I_n A)\mathbf{x} = \mathbf{0}$ để tìm các vector riêng và không gian riêng tương ứng.

Dinh nghĩa 7.2

Nếu λ_i là nghiêm bôi k của $\chi_A(\lambda)$, thì ta nói λ_i là giá tri riêng bôi k của A.

Ví du 7.2

Tìm tất cả các giá trị riêng, vector riêng và cơ sở của không gian riêng tương ứng của ma trận sau $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$

$$\begin{array}{l} \textbf{Giải: } \text{Da thức đặc trưng của } A \text{ là } \chi_A(\lambda) = |\lambda I_2 - A| = \\ \det(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}) = \det(\begin{bmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{bmatrix}) = \\ (\lambda - 2)(\lambda + 5) + 12 = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) \; \chi_A(\lambda) \; \text{có 2} \\ \text{nghiệm thực là } \lambda_1 = -1, \lambda_2 = -2. \end{array}$$

Với $\lambda_1 = -1$: xét hệ phương trình $((-1)I_2 - A)\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{vmatrix} -3 & 12 \\ -1 & 4 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}.$ $\mathsf{Ta}\ \mathsf{co}\ \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix} \xrightarrow{R_1 - 3R_2 \to R_1} \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{R_2 \to R_1} \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix}.$ Hê phương trình mới là $x_1 - 4x_2 = 0$. Đặt $x_2 = t \implies x_1 = 4t$. Vậy không gian riêng của A tương ứng với giá trị riêng $\lambda_1=-1$ là $\mathbb{R}^2_{-1}(A)=\{\left|egin{array}{c}4t\\t\end{array}
ight||t\in\mathbb{R}\}=\{t\left[egin{array}{c}4\\1\end{array}
ight]|t\in\mathbb{R}\}.$ Do đó 1 cơ sở của \mathbb{R}^2_{-1} là $\left\{ \begin{vmatrix} 4\\1 \end{vmatrix} \right\}$. Các vector riêng của A tương ứng với giá trị riêng $\lambda_1 = -1$ có dạng $egin{bmatrix} 4t \ t \end{bmatrix}, t
eq 0.$

Với $\lambda_2 = -2$: xét hệ phương trình

$$((-2)I_2 - A)\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ Ta có}$$

$$\begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \xrightarrow{R_1 - 4R_2 \to R_1} \xrightarrow{R_1 \leftrightarrow R_2} \xrightarrow{R_1 \to R_1} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}.$$

Hệ phương trình mới : $x_1 - 3x_2 = 0$. Đặt $x_2 = t \implies x_1 = 3t$. Vậy không gian riêng của A tương ứng với giá trị riêng $\lambda_2=-2$ là

$$\mathbb{R}^2_{-2}(A)=\{egin{bmatrix}3t\t\end{bmatrix}|t\in R\}=\{tegin{bmatrix}3\1\end{bmatrix}|t\in\mathbb{R}\}.$$
 Do đó 1 cơ sở của \mathbb{R}^2_{-1}

là $\left\{ \begin{vmatrix} 3 \\ 1 \end{vmatrix} \right\}$. Các vector riêng của A tương ứng với giá trị riêng

$$\lambda_2 = -2$$
 có dạng $egin{bmatrix} 3t \ t \end{bmatrix}, t
eq 0.$

Các giá tri riêng của 1 ma trân tam giác

Đinh lý 7.3

Nếu A là một ma trận tam giác, thì các giá trị riêng của nó chính là các hê số trên đường chéo chính.

Chứng minh.

Giả sử A là một ma trân tam giác trên:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 2 \end{bmatrix} \implies |\lambda I_n - A| = 0$$

Gla Sti A la một mà trận tam giác tren:
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \implies |\lambda I_n - A| = \begin{bmatrix} \lambda - a_{11} & -a_{12} & \dots & -a_{1n} \\ 0 & \lambda - a_{22} & \dots & -a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda - a_{nn} \end{bmatrix} = (\lambda - a_{11})(\lambda - a_{22})...(\lambda - a_{nn}).$$

Viên tết sử các giá trị viêng gửa A là

Vậy tất cả các giá trị riêng của A là

$$\lambda_1 = a_{11}, \lambda_2 = a_{22}, ..., \lambda_n = a_{nn}.$$

Ví du 7.3

Tìm tất cả các giá trị riêng của

Giải: a) A là ma trân tam giác dưới, nên các giá tri riêng của nó là $\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = -3$.

b)B là ma trân đường chéo, nên các giá tri riêng của nó là $\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 0, \lambda_4 = -4, \lambda_5 = 3.$

Giá trị riêng và vector riêng của ánh xạ tuyến tính

Dinh nghĩa 7.3

Cho $T:V\to V$ là 1 ánh xạ tuyến tính. Số thực λ được gọi là 1 giá trị riêng của T, nếu $\exists \mathbf{x}\in V, \mathbf{x}\neq \mathbf{0}$ sao cho $T(\mathbf{x})=\lambda \mathbf{x}$. Khi đó vector \mathbf{x} được gọi là vector riêng của T tương ứng với giá trị riêng λ .

Không gian riêng của T tương ứng với giá trị riêng λ là $V_{\lambda}(T) = \{ \mathbf{x} \in V | T(x) = \lambda \mathbf{x} \}$

Dinh lý 7.4

Cho $T: \mathbb{R}^n \to \mathbb{R}^n$ là ánh xạ tuyến tính có ma trận chuẩn tắc là A. Khi đó các giá trị riêng và vector riêng của T chính là các giá trị riêng, vector riêng và không gian riêng tương ứng của A.

Chứng minh.

 λ là 1 giá trị riêng của T khi và chỉ khi $\exists \mathbf{x} \in \mathbb{R}^n$ sao cho $T(x) = \lambda \mathbf{x}$, mà $T(x) = A\mathbf{x}$, do đó $A\mathbf{x} = \lambda \mathbf{x}$

Ví du 7.4

Cho T: $\mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 3y, 3x + y, -2z). Tim các giá tri riêng, vector riêng và không gian riêng tương ứng của T.

Giải: Ma trận chuẩn tắc của T là $\begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

 Θ thức đặc trưng của A là

$$\chi_{A}(\lambda) = |\lambda I_{3} - A| = \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 2) \begin{vmatrix} \lambda - 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} = (\lambda + 2)((\lambda - 1)^{2} - 9) = (\lambda + 2)^{2}(\lambda - 4)$$
Vậy T có các giá trị riêng $\lambda_{1} = -2$ (bội 2) và $\lambda_{2} = 4$ (bội 1).

Với $\lambda_1 = -2$: xét hệ phương trình

$$((-2)I_3 - A)\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} -3 & -3 & 0 \\ -3 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & 0 \\ -3 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1 \to R_2, -1/3} \xrightarrow{R_1 \to R_1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hê phương trình mới $x_1 + x_2 = 0$. Đặt

 $x_2 = s, x_3 = t \implies x_1 = -t$. Các vector riêng của T tương ứng với giá tri riêng $\lambda_1 = -2$ có dang

$$\begin{bmatrix} -s \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, s^2 + t^2 \neq 0.$$

1 cơ sở của không gian riêng của T tương ứng với giá trị riêng

$$\lambda_1 = -2 ext{ là } \{ egin{bmatrix} -1 \ 1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \}$$

Với
$$\lambda_2=$$
 4: xét hệ phương trình

$$(4I_3 - A)\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} 3 & -3 & 0 \\ -3 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} 3 & -3 & 0 \\ -3 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} \xrightarrow{R_2 + R_1 \to R_2; \frac{1}{3}R_1 \to R_1; 1/6R_3 \to R_3; R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$x_1 - x_2 = 0$$
 (7.1)
 $x_3 = 0$ (7.2)

Các vector riêng của A tương ứng với giá trị riêng $\lambda_2 = 4$ là

$$\begin{bmatrix} s \\ s \\ 0 \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, s \neq 0.$$

1 cơ sở của không gian riêng của T tương ứng với giá trị riêng

$$\lambda_2 = 4 \text{ là } \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

7.2. Chéo hóa ma trân

Dinh nghĩa 7.4

Ma trận A vuông cấp n được gọi là **ma trận chéo hóa được** (diagonalizable matrix), nếu nó đồng dạng với 1 ma trận đường chéo, tức là tồn tại 1 ma trận đường chéo D và 1 ma trận khả nghich P sao cho $P^{-1}AP = D$.

Đinh lý 7.5

Các ma trân đồng dang có cùng các giá tri riêng.

Chứng minh.

Giả sử B đồng dạng với A. Khi đó tồn tại ma trận P khả nghịch sao cho $B = P^{-1}AP$. Do đó

$$\chi_B(\lambda) = |\lambda I_n - B| = |\lambda I_n - P^{-1}AP| = |P^{-1}\lambda I_n P - P^{-1}AP| = |P^{-1}||\lambda I_n - A||P| = |P^{-1}||P||\lambda I_n - A| = |\lambda I_n - A| = \chi_A(\lambda)$$

Vì các giá trị riêng là các nghiệm của đa thức đặc trưng nên ta suy ra điều phải chứng minh.

Điều kiện cần và đủ để ma trận chéo hóa được

Định lý 7.6

Ma trận A vuông cấp n chéo hóa được khi và chỉ khi nó có n vector riêng đôc lập tuyến tính.

Các bước để chéo hóa ma trận vuông cấp n:

- 1 Tìm tất cả các giá trị riêng của A.
- ② Với mỗi giá trị riêng bội k của A, tìm k vector riêng độc lập tuyến tính. Nếu không thể tìm được, ta kết luận A không chéo hóa được. Nếu tìm được, gọi tất cả các vector riêng độc lập tuyến tính mà ta tìm được là $\mathbf{p}_1, p_2, ..., \mathbf{p}_n$, trong đó p_i tương ứng với giá trị riêng λ_i . Lưu ý rằng các giá trị riêng có thể bằng nhau.
- **3** Lấy ma trận P là ma trận có các vector cột $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$. Khi

$$\vec{\text{df}} \ P^{-1}AP = D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Chú ý

Khi chéo hóa ma trận, ta không cần tìm P^{-1} .

Cho
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$
. Tìm 1 ma trận P khả nghịch và 1 ma trận đường chéo D sao cho $P^{-1}AP = D$.

Giải: Đa thức đặc trưng của A là

$$\chi_{A}(\lambda) = |\lambda I_{3} - A| = \begin{vmatrix} \lambda - 1 & 1 & 1 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} \xrightarrow{R_{1} + R_{2} \to R_{1}}$$

$$\begin{vmatrix} \lambda - 2 & \lambda - 2 & 0 \\ -1 & \lambda - 3 & -1 \\ 3 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2) \begin{vmatrix} \lambda - 3 & -1 \\ -1 & \lambda + 1 \end{vmatrix} - (\lambda - 2) \begin{vmatrix} \lambda - 3 & -1 \\ -1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda^{2} - \lambda - 6) = (\lambda - 2)(\lambda + 2)(\lambda - 3).$$

$$V_{3}^{2}y \text{ A c\'{o} c\'{a}c gi\'{a} tri ri\`{e}ng: } \lambda_{1} = 2, \lambda_{2} = -2, \lambda_{3} = 3.$$

$$\begin{array}{c} \text{V\'oi } \lambda_1 = 2 \colon 2I_3 - A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 3 & -1 & 3 \end{bmatrix} \xrightarrow{R_2 + R_1 \to R_2; R_3 - 3R_1 \to R_3} \\ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & -4 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3; -1/4R_2 \to R_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 - R_2 \to R_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \end{array}$$

Vậy hệ phương trình $(2\mathit{I}_3-A)\mathbf{x}=\mathbf{0}$ tương đương với

$$x_1 + x_3 = 0$$
 (7.3)
 $x_2 = 0$ (7.4)

$$x_2 = 0 (7.4)$$

Do đó $x_2=0, x_3=t, x_1=-t$. Lấy t=1 ta được vector riêng $\mathbf{p}_1=egin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

Tương tư như trên:

Với
$$\lambda_2 = -2$$
:

$$-2I_3 - A = \begin{bmatrix} -3 & 1 & 1 \\ -1 & -5 & -1 \\ 3 & -1 & -1 \end{bmatrix} \xrightarrow{\text{phép khử Gauss-Jordan}} \begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 1/4 \\ 0 & 0 & 0 \end{bmatrix}, \text{ ta}$$
 có $x_3 = 4t, x_2 = -t, x_1 = t$. Lấy $t = 1$ ta được vector riêng

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$

Với
$$\lambda_3=3$$
:
$$3I_3-A=\begin{bmatrix}2&1&1\\-1&0&-1\\3&-1&4\end{bmatrix} \xrightarrow{\text{phép khử Gauss-Jordan}} \begin{bmatrix}1&0&1\\0&1&-1\\0&0&0\end{bmatrix}. \text{ Ta}$$
 chọn được vector riêng $\mathbf{p}_3=\begin{bmatrix}-1\\1\\1\end{bmatrix}.$
$$\text{Lấy } P=\begin{bmatrix}-1&1&-1\\0&-1&1\\1&4&1\end{bmatrix} \implies P^{-1}AP=\begin{bmatrix}2&0&0\\0&-2&0\\0&0&3\end{bmatrix}$$

Ví du 7.6

Chứng minh rằng ma trận sau không chéo hóa được $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Giải: Vì ma trận A là ma trận tam giác trên, nên các giá trị riêng của nó chính là các hệ số trên đường chéo chính. Như vậy, A chỉ có 1 giá trị riêng $\lambda_1=1$ (bội 2).

Với
$$\lambda_1=1$$
: Xét $1I_2-A=\begin{bmatrix}0&-2\\0&0\end{bmatrix}\overset{-1/2R_1\to R_1}{\longrightarrow}\begin{bmatrix}0&1\\0&0\end{bmatrix}$.

Do đó hệ phương trình $(1I_2 - A)\mathbf{x} = \mathbf{0}$ tương đương với $x_2 = 0$.

Như vậy, $x_1 = t, x_2 = 0$. Vậy

$$\mathbb{R}^{2}_{-1}(A) = \left\{ \begin{bmatrix} t \\ 0 \end{bmatrix} | t \in \mathbb{R} \right\} = span\left(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \right) \implies dim\left(\mathbb{R}^{2}_{-1}(A)\right) = 1.$$

Do đó ta không thể tìm được 2 vector riêng của A mà độc lập tuyến tính. Vậy A không chéo hóa được.

Dinh lý 7.7

Cho A là 1 ma trận vuông cấp n. Khi đó các vector riêng của A tương ứng với các giá trị riêng khác nhau độc lập tuyến tính.

Giải: Giả sử $\mathbf{v}_1,...,\mathbf{v}_k$ là các vector riêng của A tương ứng với các giá trị riêng khác nhau $\lambda_1,\lambda_2,...,\lambda_k$. Giả sử chúng phụ thuộc tuyến tính. Bằng cách đánh số lại các vector, ta có thể giả sử $\mathbf{v}_1,...,\mathbf{v}_m,m\leq k$ là 1 cơ sở của $span(\{\mathbf{v}_1,...,\mathbf{v}_k\})$. Khi đó \mathbf{v}_{m+1} có thể viết dưới dạng:

$$\mathbf{v}_{m+1} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m. \tag{7.5}$$

Nhân cả 2 vế của (7.5) với λ_{m+1} , ta có:

$$\lambda_{m+1}\mathbf{v}_{m+1} = c_1\lambda_{m+1}\mathbf{v}_1 + \dots + c_m\lambda_{m+1}\mathbf{v}_m.$$
 (7.6)

Mặt khác, từ (7.5) ta cũng có

$$A\mathbf{v}_{m+1} = c_1 A\mathbf{v}_1 + \ldots + c_m A\mathbf{v}_m \Leftarrow \lambda_{m+1} \mathbf{v}_{m+1} = c_1 \lambda_1 \mathbf{v}_1 + \ldots + c_m \lambda_m \mathbf{v}_m$$

Lấy phương trình (7.6) trừ đi (7.7) ta được:

$$\mathbf{0} = c_1(\lambda_{m+1} - \lambda_1)\mathbf{v}_1 + \dots + c_m(\lambda_{m+1} - \lambda_m)\mathbf{v}_m.$$

Vì $\mathbf{v}_1,...,\mathbf{v}_m$ độc lập tuyến tính nên ta suy ra $c_1(\lambda_{m+1}-\lambda_1)=...=c_m(\lambda_{m+1}-\lambda_m)=0$. Vì $\lambda_1,...,\lambda_{m+1}$ khác nhau, nên ta có $c_1=...=c_m=0$. Do đó theo (7.5) $\mathbf{v}_{m+1}=0$, mâu thuẫn với giả thiết \mathbf{v}_{m+1} là 1 vector riêng của $A.\square$

Vấn đề: Cho $T: \mathbb{R}^n \to \mathbb{R}^n$. Có tồn tại 1 cơ sở B của \mathbb{R}^n sao cho ma trận của T đối với cơ sở B là ma trận đường chéo? Cách giải:

- 1 Tìm ma trận chuẩn tắc A của T.
- Xét xem A có chéo hóa được hay không. Giả sử A chéo hóa được, khi đó n vector riêng độc lập tuyến tính của A tạo thành cơ sở B cần tìm. Ma trận của T đối với cơ sở B là ma trận đường chéo với các giá trị trên đường chéo chính là các giá trị riêng tương ứng của A.

Nếu A không chéo hóa được, thì ta kết luận không tồn tại 1 cơ sở B để ma trận của T đối với B là ma trận đường chéo.

Ví du 7.7

Xét ánh xa T được cho trong Ví du 7.4:

$$T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (x + 3y, 3x + y, -2z).$$

Tìm 1 cơ sở B của \mathbb{R}^3 sao cho ma trận của T đối với B là 1 ma trận đường chéo.

Giải: Từ Ví dụ 7.4 ta tìm được 3 vector riêng độc lập tuyến tính

của
$$T$$
 là: $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$. Chúng tạo thành cơ sở B cần tìm. Ma

trận của
$$T$$
 đối với cơ sở B là
$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

7.3. Chéo hóa trực giao

Đinh lý 7.8

Nếu A là 1 ma trân vuông cấp n, đối xứng, thì:

- A chéo hóa được.
- 2 Tất cả các nghiệm của đa thức đặc trưng của A đều là số thực.
- 3 Nếu λ là 1 giá trị riêng bội k của A, thì $\dim(\mathbb{R}^n_{\lambda}(A)) = k$ (tức là A có k vector riêng độc lập tuyến tính tương ứng với λ).

Ma trận trực giao

Định nghĩa 7.5

1 ma trận P vuông cấp n được gọi là ma trận trực giao, nếu $PP^T = P^TP = I_n$ (tức là $P^T = P^{-1}$.)

Định lý 7.9

Ma trận P vuông cấp n trực giao \Leftrightarrow các vector cột của P tạo thành 1 cơ sở trực chuẩn của \mathbb{R}^n .

Chứng minh: Gọi $\mathbf{p}_1,...,\mathbf{p}_n$ là các vector cột của P, trong đó

$$\mathbf{p}_i = \begin{bmatrix} p_{1i} \\ p_{2i} \\ \dots \\ p_{ni} \end{bmatrix}.$$

Ta có

$$P^{T}P = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{n1} \\ p_{12} & p_{22} & \cdots & p_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ p_{1n} & p_{2n} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{1} & \mathbf{p}_{12} & \cdots & \mathbf{p}_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{1} \cdot \mathbf{p}_{1} & \mathbf{p}_{1} \cdot \mathbf{p}_{2} & \cdots & \mathbf{p}_{1} \cdot \mathbf{p}_{n} \\ \mathbf{p}_{2} \cdot \mathbf{p}_{1} & \mathbf{p}_{2} \cdot \mathbf{p}_{2} & \cdots & \mathbf{p}_{2} \cdot \mathbf{p}_{n} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{p}_{n} \cdot \mathbf{p}_{1} & p_{n} \cdot \mathbf{p}_{2} & \cdots & \mathbf{p}_{n} \cdot \mathbf{p}_{n} \end{bmatrix}$$
(7.8)

-Nếu $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$ là 1 cơ sở trưc chuẩn của \mathbb{R}^n , thì chúng độc lập tuyến tính $\implies rank(P) = n \implies det(P) \neq 0 \implies P$ khả nghịch. Hơn nữa, $\mathbf{p}_i.\mathbf{p}_i = 0, i \neq j, \mathbf{p}_i.\mathbf{p}_i = 1$. Do đó theo (7.8) $P^TP = I_n \implies P^TPP^{-1} = I_nP^{-1} \implies P^T = P^{-1}.$ -Ngược lại, nếu P là ma trận trực giao thì $P^TP = I_n$. Theo (7.8) ta suy ra $\mathbf{p}_i.\mathbf{p}_i = 0, i \neq j, \mathbf{p}_i.\mathbf{p}_i = 1$. Như vậy, $\{\mathbf{p}_1, p_2, ..., \mathbf{p}_n\}$ là 1 tập trực chuẩn. Do đó chúng tạo thành 1 cơ sở trực chuẩn của \mathbb{R}^n . Vây P là 1 ma trân trực giao. \square

Ví du 7.8

Chứng minh rằng ma trận P sau đây trực giao:

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ -\frac{2}{3\sqrt{5}} & -\frac{4}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \end{bmatrix}$$

Giải: Các vector cột của P là

$$\begin{aligned} \mathbf{p}_1 &= \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{\sqrt{5}} \\ -\frac{2}{3\sqrt{5}} \end{bmatrix}, \mathbf{p}_2 &= \begin{bmatrix} \frac{2}{3} \\ \frac{1}{\sqrt{5}} \\ -\frac{4}{3\sqrt{5}} \end{bmatrix}, \mathbf{p}_3 &= \begin{bmatrix} \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{bmatrix}. \\ \text{Ta có } \mathbf{p}_1.\mathbf{p}_2 &= \frac{1}{3} \times \frac{2}{3} - \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} + (-\frac{2}{3\sqrt{5}})(-\frac{4}{3\sqrt{5}}) &= \frac{2}{9} - \frac{2}{5} + \frac{8}{45} &= 0. \\ \mathbf{p}_1.\mathbf{p}_3 &= \frac{1}{3} \times \frac{2}{3} - \frac{2}{\sqrt{5}} \times 0 - \frac{2}{3\sqrt{5}} \times \frac{5}{3\sqrt{5}} &= \frac{2}{9} \frac{10}{45} &= 0. \\ \mathbf{p}_2.\mathbf{p}_3 &= \frac{2}{3} \times \frac{2}{3} + \frac{1}{\sqrt{5}} \times 0 - \frac{4}{3\sqrt{5}} \times \frac{5}{3\sqrt{5}} &= \frac{4}{9} - \frac{20}{45} &= 0. \end{aligned}$$

$$\begin{aligned} \mathbf{p}_{1}.\mathbf{p}_{1} &= (\frac{1}{3})^{2} + (-\frac{2}{\sqrt{5}})^{2} + (-\frac{2}{3\sqrt{5}})^{2} = \frac{1}{9} + \frac{4}{5} + \frac{4}{45} = 1. \\ \mathbf{p}_{2}.\mathbf{p}_{2} &= (\frac{2}{3})^{2} + (\frac{1}{\sqrt{5}})^{2} + (-\frac{4}{3\sqrt{5}})^{2} = \frac{4}{9} + \frac{1}{5} + \frac{16}{45} = 1. \\ \mathbf{p}_{3}.\mathbf{p}_{3} &= (\frac{2}{3})^{2} + 0^{2} + (\frac{5}{3\sqrt{5}})^{2} = \frac{4}{9} + \frac{25}{45} = 1. \\ \text{Vây } \{\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}\} \text{ là 1 cơ sở trưc chuẩn của } \mathbb{R}^{3}. \end{aligned}$$

Định lý 7.10

Nếu A là 1 ma trận vuông cấp n đối xứng, $\mathbf{x}_1, \mathbf{x}_2$ là 2 vector riêng của A tương ứng lần lượt với các giá trị riêng λ_1, λ_2 , trong đó $\lambda_1 \neq \lambda_2$. Khi đó $\mathbf{x}_1, \mathbf{x}_2$ trực giao với nhau.

Chứng minh: Theo giả thiết ta có $A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1, A\mathbf{x}_2 = \lambda_2 \mathbf{x}_2$.

Giả sử
$$\mathbf{x}_1=\begin{bmatrix}x_{11}\\x_{21}\\...\\x_{n1}\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}x_{12}\\x_{22}\\...\\x_{n2}\end{bmatrix}$$
 . Khi đó $\mathbf{x}_1.\mathbf{x}_2=$

$$x_{11}x_{12} + x_{21}x_{22} + \dots + x_{n1}x_{n2} = \begin{bmatrix} x_{11} & x_{21} & \dots & x_{n1} \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{22} \\ \dots \\ x_{n2} \end{bmatrix} = \mathbf{x}_{1}^{T}\mathbf{x}_{2}.$$

$$\lambda_{1}(\mathbf{x}_{1}.\mathbf{x}_{2}) = (\lambda_{1}\mathbf{x}_{1}).\mathbf{x}_{2} = (A\mathbf{x}_{1}).\mathbf{x}_{2} = (A\mathbf{x}_{1})^{T}\mathbf{x}_{2} = x_{1}^{T}(A^{T}\mathbf{x}_{2}) \stackrel{A^{T}=A}{=} \mathbf{x}_{1}^{T}(A\mathbf{x}_{2}) = \mathbf{x}_{1}^{T}(\lambda_{2}\mathbf{x}_{2}) = \lambda_{2}(\mathbf{x}_{1}^{T}\mathbf{x}_{2}) = \lambda_{2}(\mathbf{x}_{1}.\mathbf{x}_{2}) \Longrightarrow (\lambda_{1} - \lambda_{2})(\mathbf{x}_{1}.\mathbf{x}_{2}) = 0, \text{ mà } \lambda_{1} \neq \lambda_{2}, \text{ nên } \mathbf{x}_{1}.\mathbf{x}_{2} = 0. \square$$

Đinh nghĩa 7.6

Ta nói ma trận A vuông cấp n **chéo hóa trực giao được (orthogonally diagonalizable)** nếu tồn tại 1 ma trận trực giao P và 1 ma trân đường chéo D sao cho $P^TAP = D$.

Định lý 7.11

Cho A là 1 ma trận vuông cấp n. Khi đó ma trận A chéo hóa trực giao được khi và chỉ khi A đối xứng.

Quá trình chéo hóa trực giao 1 ma trận đối xứng

Cho A là 1 ma trận vuông cấp n đối xứng. Để tìm 1 ma trận trực giao P và 1 ma trận đường chéo D sao cho $P^TAP = D$, ta thực hiện các bước:

- 1 Tìm tất cả các giá trị riêng của A và bội của chúng.
- 2 Với mỗi giá trị riêng bội 1, ta tìm 1 vector riêng tương ứng với nó và chuẩn hóa.
- ③ Với mỗi giá trị riêng bội $k \ge 2$: ta tìm tập hợp gồm k vector riêng độc lập tuyến tính tương ứng với giá trị riêng đó. Dùng quá trình trưc chuẩn hóa Gram-Schmidt để biến chúng thành 1 tập trực chuẩn.
- Gọi tất cả các vector riêng ta tìm được ở bước 2 và bước 3 là p₁, p₂, ..., p_n,trong đó p_i tương ứng với giá trị riêng λ_i. Gọi P là ma trận với các vector cột p₁, p₂, ..., p_n. Khi đó

$$P^{T}AP = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Ví du 7.9

Tìm 1 ma trân trưc giao P và 1 ma trân đường chéo D sao cho $P^{T}AP = D$

$$A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{bmatrix}$$

Giải: Đa thức đặc trưng của A là

$$\chi_{A}(\lambda) = |\lambda I_{3} - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda + 1 & -4 \\ 2 & -4 & \lambda + 1 \end{vmatrix} \xrightarrow{R_{2} + R_{3} \to R_{2}}
\begin{vmatrix} \lambda - 2 & -2 & 2 \\ 0 & \lambda - 3 & \lambda - 3 \\ 2 & -4 & \lambda + 1 \end{vmatrix} = (\lambda - 3) \begin{vmatrix} \lambda - 2 & 2 \\ 2 & \lambda + 1 \end{vmatrix} - (\lambda - 3) \begin{vmatrix} \lambda - 2 & 2 \\ 2 & \lambda + 1 \end{vmatrix} = (\lambda - 3)^{2} (\lambda + 6).$$

$$\lambda A = (\lambda - 3)^{2} (\lambda + 3) = (\lambda - 3)^{2} (\lambda + 6).$$

Vậy A có 2 giấ trị riêng : $\lambda_1 = 3$ (bội 2) và $\lambda_2 = -6$ (bội 1).

Với
$$\lambda_1=3$$
:
$$3I_3-A=\begin{bmatrix}1&-2&2\\-2&4&-4\\2&-4&4\end{bmatrix}\xrightarrow{R_2+2R_1\to R_2;R_3-2R_1\to R_3}\begin{bmatrix}1&-2&2\\0&0&0\\0&0&0\end{bmatrix}.$$
 Do

đó hệ phương trình $(3I_3 - A)\mathbf{x} = \mathbf{0}$ tương đương với $x_1 - 2x_2 + 2x_3 = 0$. Đặt $x_2 = s, x_3 = t \implies x_1 = 2s - 2t$. Như vây, các vector riêng tương ứng với giá tri riêng $\lambda_1 = 3$ có dang

$$\begin{bmatrix} 2s - 2t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, s^2 + t^2 \neq 0.$$
Chọn $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}.$

Quá trình trưc chuẩn hóa Gram-Schmidt:

$$\begin{aligned} \mathbf{w}_1 &= \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \\ \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} - \frac{-4}{5} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 4/5 \\ 1 \end{bmatrix}. \\ \mathbf{p}_1 &= \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \end{bmatrix} \\ \mathbf{p}_2 &= \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} = \begin{bmatrix} -\frac{2}{3\sqrt{5}} \\ \frac{4}{3\sqrt{5}} \\ \frac{3\sqrt{5}}{3\sqrt{5}} \end{bmatrix} \end{aligned}$$

Tương tư như trên: Với

$$\lambda_2 = -6: -6\emph{I}_3 - \emph{A} = \begin{bmatrix} -8 & -2 & 2 \\ -2 & -5 & -4 \\ 2 & -4 & -5 \end{bmatrix} \xrightarrow{\text{phép khử Gauss}} \begin{bmatrix} 1 & \frac{5}{2} & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hê thuần nhất $(-6I_3 - A)\mathbf{x} = \mathbf{0}$ tương đương với

$$x_1 + \frac{5}{2}x_2 + 2x_3 = 0 (7.9)$$

$$x_2 + x_3 = 0 (7.10)$$

Đặt
$$x_3=2t \implies x_2=-2t, x_1=t$$
. Lấy $t=1$, ta được vector riêng $\mathbf{v}_3=\begin{bmatrix}1\\-2\\2\end{bmatrix}$. Lấy $\mathbf{p}_3=\frac{\mathbf{v}_3}{\|\mathbf{v}_3\|}=\begin{bmatrix}1/3\\-2/3\\2/3\end{bmatrix}$

$$P = \begin{bmatrix} 2/\sqrt{5} & -\frac{2}{3\sqrt{5}} & 1/3 \\ 1/\sqrt{5} & \frac{4}{3\sqrt{5}} & -2/3 \\ 0 & \frac{5}{3\sqrt{5}} & 2/3 \end{bmatrix} \implies P \text{ trực giao và}$$

$$P^{T}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -6 \end{bmatrix} = D.$$