1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления »
КАФЕЛРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 6

Тема: Построение и программная реализация алгоритмов численного

дифференцирования

Студент: Чаушев Александър

Группа: ИУ7-46Б

Оценка (баллы) _____

Преподаватель: Градов В. М.

Москва. 2020 г.

Цель работы: Получение навыков построения алгоритма вычисления производных от сеточных функций.

Входные данные: Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой:

$$y = \frac{a_0 x}{a_1 + a_2 x}$$

X	y	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Задача: Вычислить первые разностные производные от функции и занести их в столбцы 1- 4 таблицы. В столбец 5 занести вторую разностную производную.

Результат работы программы:

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности.

Краткие теоретические сведения и алгоритм.

В основе численного дифференцирования лежит аппроксимация функции, от которой берется производная, интерполяционным многочленом. Все основные формулы численного дифференцирования могут быть получены при помощи первого интерполяционного многочлена Ньютона.

Полиномиальные формулы:

$$\varphi^{(k)}(x) = k! \left[y(x_0, x_1, \dots, x_k) + \left(\sum_{i=0}^k \xi_i \right) y(x_0, x_1, \dots, x_{k+1}) + \left(\sum_{i>j\geqslant 0}^{i=k+1} \xi_i \xi_j \right) y(x_0, x_1, \dots, x_{k+2}) + \left(\sum_{i>j>l\geqslant 0}^{i=k+2} \xi_i \xi_j \xi_l \right) y(x_0, x_1, \dots, x_{k+3}) + \dots \right].$$

Разложение в ряды Тейлора: Это наиболее универсальный метод построения формул численного дифференцирования заданных порядков точности относительно шага сетки.

$$y_i'' = \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + o(h^2)$$

Формулы Рунге:

Первая формула Рунге: при помощи можно оценить погрешность.

$$\psi(x)h^p = \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1}).$$

Вторая формула Рунге позволяет за счет расчета на двух сетках с отличающимися шагами получить решение с более высокой точностью, чем заявленная теоретическая точность используемой формулы.

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1}).$$

Ответы на контрольные вопросы:

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной у'n в крайнем правом узле xn.

(1)
$$\sqrt{N-1} = \sqrt{N} + \frac{(N-1)h}{1!} \sqrt{n} + \frac{(N-1)^2h^2}{2!} \sqrt{n} + \frac{(N-1)^3h^3}{3!} \sqrt{N} \dots$$

(1) $\sqrt{N-2} = \sqrt{N} + \frac{(N-2)h}{1!} \sqrt{n} + \frac{(N-2)^2h^2}{2!} \sqrt{n} + \frac{(N-2)^3h^3}{3!} \sqrt{N} \dots$
 $\sqrt{N-2} = \sqrt{N} + \frac{(N-2)h}{(N-1)^2} \sqrt{n} + \frac{(N-2)^2h^2}{2!} \sqrt{n} + \frac{(N-2)^3h^3}{3!} \sqrt{N} \dots$
 $\sqrt{N-2} = \sqrt{N-1} + \sqrt{N-1}$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной у''0 в крайнем левом узле x0.

$$Y_{1} = Y_{0} + \frac{h}{1!} Y_{0}' + \frac{h^{2}}{2!} Y_{0}'' + \frac{h^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{2} = Y_{0} + \frac{2h}{1!} Y_{0}' + \frac{kh^{2}}{2!} Y_{0}'' + \frac{kh^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{3} = Y_{0} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{1} = Y_{0} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{1} = Y_{0} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{2} = Y_{0} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{3} = Y_{0} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}'' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}'' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{2!} Y_{0}'' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}'' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}'' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0}' + \frac{(3h)^{2}}{3!} Y_{0}''' + \frac{(3h)^{3}}{3!} Y_{0}''' + \dots$$

$$Y_{4} = Y_{4} + \frac{3h}{1!} Y_{0} + \frac{3h}{1!} Y_{0} + \frac{3h}{1!} Y_{0}'' + \frac{3h}{1!} Y_{0}''' + \frac{3h}{1!} Y_{0}'' + \frac{3h}{1!$$

3. Используя 2-ую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой y'_0 производной в левом крайнем узле

$$y'_0 = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

$$\begin{array}{c}
S2 = \Phi(h) + \frac{\Phi(h) - \Phi(h)}{hP - 1} + O(hP + 1) \\
P(h) = \frac{41 - 40}{h} \\
\Phi(2h) = \frac{42 - 40}{24} - \frac{41 - 40}{24} - \frac{41 - 40}{24} + O(h^2)
\end{array}$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности O(h^3) для первой разностной производной у'0 в крайнем левом узле х0.

$$Y_{1}=Y_{0}+\frac{h}{1!}Y_{0}+\frac{h^{2}}{2!}Y_{0}^{"}+\frac{h^{3}}{3!}Y_{0}^{"}+\frac{h^{4}}{4!}Y_{0}^{"}-\frac{h^{2}}{2!}Y_{0}^{"}+\frac{h^{3}}{3!}Y_{0}^{"}+\frac{(2h)^{3}}{4!}Y_{0}^{"}-\frac{(2h)^{3}}{3!}Y_{0}^{"}+\frac{(2h)^{3}}{4!}Y_{0}^{"}-\frac{(2h)^{3}}{3!}Y_{0}^{"}+\frac{(2h)^{3}}{4!}Y_{0}^{"}-\frac{(2h)^{3}}{3!}Y_{0}^{"}+\frac{(3h)^{4}}{4!}Y_{0}^{"}-\frac{(3h)^{$$

Код программы:

```
def f(x, a0 = 1, a1 = 2, a2 = 3):
  return a0 * x / (a1 + a2 * x)
def f_derivate(x, a0 = 1, a1 = 2, a2 = 3):
  return a0 * a1 / ((a1 + a2 * x) ** 2)
\# ksi(x) = 1/x
\# eta(y) = 1 / y = (a1 + a2*x) / (a0*x) = a2/a0 + a1/a0 * 1/x = a + b*ksi
\# eta'|y = 1 / (y * y)
\# ksi' | y = 1 / (x * x)
\# eta'|ksi = (a + b*ksi)' = b = a1/a0
def ksi(x, a0 = 1, a1 = 2):
  return (a1 / a0) * x
def eta_y_derivate(y):
  return 1 / (y * y)
def ksi_x_derivate(x):
  return 1 / (x * x)
def left_side_form(y, h):
  y_{len} = len(y)
```

```
result = [None] * y_len
  for i in range(1, y_len):
    result[i] = (y[i] - y[i - 1]) / h
  return result
def right_side_form(y, h):
  y_{en} = len(y)
  result = [None] * y_len
  for i in range(0, y_len - 1):
    result[i] = (y[i + 1] - y[i]) / h
  return result
def central_form(y, h):
  y_{en} = len(y)
  result = [None] * y_len
  for i in range(1, len(y) - 1):
    result[i] = (y[i + 1] - y[i - 1]) / (2 * h)
  return result
def calculate_bound_results(y, h):
  y_{en} = len(y)
  result = [None] * y_len
                 = -(3 * y[0])
                                -4*y[1] + y[2]) / (2*h)
  result[y_len - 1] = (3 * y[y_len - 1] - 4 * y[y_len - 2] + y[y_len - 3]) / (2 * h)
  return result
def runge_left_side(y, h):
  y_{en} = len(y)
  r = 2
  p = 1
  zn = r ** p - 1
  y_h = left_side_form(y, h)
  y_h[0] = (y[1] - y[0]) / h
  y_rh = [None] * y_len
  for i in range(2, y_len):
    y_rh[i] = (y[i] - y[i - 2]) / (r * h)
  for i in range(2):
    y_rh[i] = (y[i + 2] - y[i]) / (r * h)
  result = [None] * y_len
  for i in range(y_len):
    result[i] = y_h[i] + (y_h[i] - y_rh[i]) / zn
  return result
def align_veriable(x, y):
  y_{en} = len(y)
  result = [0] * y_len
  tmp = [ksi(x[i]) for i in range(1, len(x))]
```

```
tmp = right_side_form(tmp, h)
  eta_ksi_derivate = tmp[0]
  for i in range(0, y_len):
    if x[i] == 0:
       result[i] = None
    else:
       result[i] = (ksi_x_derivate(x[i]) / eta_y_derivate(y[i])) * eta_ksi_derivate
  return result
def real_derivate(x):
  return [f_derivate(i) for i in x]
def fill_table(x_start, x_end, step):
  x_table = [float(i) for i in range(x_start, x_end, step)]
  y_table = [f(i) for i in x_table]
  return x_table, y_table
def calculate(x: list, y: list, h: float):
 res = [x, y]
 res.append(real_derivate(x))
 res.append(left_side_form(y, h))
 res.append(right_side_form(y,h))
 res.append(calculate_bound_results(y, h))
 res.append(central_form(y, h))
 res.append(runge_left_side(y, h))
 res.append(align_veriable(x, y))
 return res
def print_table(table):
 print("|{0:^13}|{1:^13}|{2:^13}|{3:^13}|"
       "{4:^13}|{5:^13}|{6:^13}|{7:^13}|"
       "{8:^16}|".format("x", "y", "Real",
                             "Left Side", "Right Side",
                             "Bounds", "Central", "Runge",
                             "Align Variable"))
 # Change None to <->
 for row in table:
  for i in range(len(row)):
   if row[i] == None:
    row[i] = "<->"
 for i in range(len(table[0])):
  print("|{0:^13.3}|{1:^13.3}|{2:^13.3}|{3:^13.3}|"
       "{4:^13.3}|{5:^13.3}|{6:^13.3}|{7:^13.3}|"
       "{8:^16.3}|".format(table[0][i], table[1][i],
                  table[2][i], table[3][i],
                   table[4][i], table[5][i],
```

```
table[6][i], table[7][i],
table[8][i]))
```

```
if __name__ == "__main__":
    h = 1.
    x, y = fill_table(1, 11, 1)
    res_table = calculate(x, y, h)
    print_table(res_table)
```

Результат работы

_				-,										
			Real		Left Side		Right Side		Bounds		Central		Runge	Align Variable
	1.0	0.2	0.08				0.05		0.0636				0.0636	0.08
	2.0	0.25	0.0312		0.05		0.0227				0.0364		0.0821	0.0312
	3.0	0.273	0.0165		0.0227		0.013				0.0179		0.00909	0.0165
	4.0	0.286	0.0102		0.013		0.0084				0.0107		0.00812	0.0102
	5.0	0.294	0.00692		0.0084		0.00588				0.00714		0.00611	0.00692
	6.0	0.3	0.005		0.00588		0.00435				0.00512		0.00462	0.005
	7.0	0.304	0.00378		0.00435		0.00334				0.00385		0.00358	0.00378
	8.0	0.308	0.00296		0.00334		0.00265				0.003		0.00284	0.00296
	9.0	0.31	0.00238		0.00265		0.00216				0.0024		0.00231	0.00238
	10.0	0.312	0.00195	-1	0.00216	-1	<->	-1	0.00191	-1	<->	-1	0.00191	0.00195