AFE4400 and AFE4490 SPO2 Front End Demonstration Kit

Message Communication Protocol v4.0

Message Communication Protocol for AFE4400 / AFE4490 EVM

This document describes the message communication protocol for AFE4400 / AFE4490 EVM. The message communication protocol applies to AFE4400 / AFE4490 EVM with firmware revision 1.4 or higher in conjunction with AFE44x0SPO2EVM GUI version 2.0 or higher.

Command Format

1. Write Register Command

PC to EVM: 0x02 <2 bytes of ASCII addr with MSB first> <6 bytes of ASCII data with MSB first> 0x0D e.g, to write a value of 0x456789 to address 0x12, the message format is

Byte	1	2	3	4	5	6	7	8	9	10
Number										
Description	Write Reg	ASCII	End of							
	Command	addr	addr	data	data	data	data	data	data	packet
		MSB	LSB	MSB					LSB	
Payload	0x02	0x31	0x32	0x34	0x35	0x36	0x37	0x38	0x39	0x0D

2. Read Register Command:

PC to EVM: 0x03 <2 bytes of ASCII addr with MSB first> 0x0D e.g, to read address 0x12, the message format is

Byte	1	2	3	4
Number				
Description	Read Reg	ASCII	ASCII	End of
	Command	addr	addr	packet
		MSB	LSB	
Payload	0x03	0x31	0x32	0x0D

EVM to PC: 0x03 0x02 <3 bytes of raw data with LSB first> 0x03 0x0D e.g, if the data read is 0x456789, the message format is

Byte	1	2	3	4	5	6	7
Number							
Description	Read Reg	Start	Raw	Raw	Raw	End of	End of
	Command	of	data	data	data	data	packet
		data	LSB		MSB		
Payload	0x03	0x02	0x89	0x67	0x45	0x03	0x0D

3. Start Read ADC Register Command:

PC to EVM: 0x01 0x2A <8 ASCII bytes of N packets with MSB first > 0x0D

Example2: to capture 70000 packets, PC sends: "0x01 0x2A 0x30 0x30 0x30 0x31 0x31 0x31 0x37 0x30 0x0D"

For continuous data, PC sends 0 as the number of the packets.

Example: to capture continuous data, PC sends: "0x01 0x2A 0x00 0x00 0x00 0x00 0x0D"

EVM sends N packets with each packet having the following format:

EVM to PC: 0x01 0x02 <18 bytes of 6 channel data with LSB first> 0x03 0x0D

Byte Number	1	2	3	4	5	6	7	8
Description	ADC Reg	Start of	LED2 data	LED2 data	LED2 data	LED2AMB data	LED2AMB data	LED2AMB data
	Command	data	LSB		MSB	LSB		MSB
Payload	0x01	0x02						

Byte Number	9	10	11	12	13	14	15	16
Description	LED1	LED1	LED1	LED1AMB	LED1AMB	LED1AMB	LED2 -	LED2 –
	data	data	data	data	data	data	LED2AMB	LED2AMB
	LSB		MSB	LSB		MSB	data LSB	data
Payload								

Byte Number	17	18	19	20	21	22
Description	LED2 –	LED1 –	LED1 –	LED1 –	End of	End of
	LED2AMB	LED1AMB	LED1AMB	LED1AMB	data	packet
	data MSB	data LSB	data	data MSB		
Payload					0x03	0x0D

The Start Read ADC Register command is issued when the user clicks on the Capture button under ADC Capture & Analysis tab. Depending on the capture mode selected (Finite or Continuous) and the number of samples to capture, the GUI sends the number of data packets to capture. For continuous data, the GUI sends 0 as the number of the packets. Each data packet contains all the 6 ADC result registers along with header and trailer data in the payload.

Note: The Start Read ADC Register Command assumes that the AFE has been configured correctly to read the ADC result registers.

4. Stop Read ADC Register Command:

PC to EVM: 0x06 0x0D

Note: Clear the USB/ COM port buffer before a Start Read ADC Register command is issued.

Byte	1	2
Number		
Description	Stop Read	End of
	ADC Reg	packet
	Command	
Payload	0x06	0x0D

The Stop Read ADC register command is issued when the GUI has received the total number of data packets sent during the Start Read ADC register command.

5. Device Identification Command:

PC to EVM: 0x04 0x0D

Byte	1	2
Number		
Description	Device	End of
	Identification	packet
	Command	
Payload	0x04	0x0D

AFE4400SPO2EVM to PC: 0x04 0x02 0x34 0x34 0x30 0x30 0x03 0x0D

Byte Number	1	2	3	4	5	6	7	8
Description	Device Identification Command	Start of data	ASCII byte	ASCII byte	ASCII byte	ASCII byte	End of data	End of packet
Payload	0x04	0x02	0x34	0x34	0x30	0x30	0x03	0x0D

AFE4490SPO2EVM to PC: 0x04 0x02 0x34 0x34 0x39 0x30 0x03 0x0D

Byte Number	1	2	3	4	5	6	7	8
Description	Device Identification Command	Start of data	ASCII byte	ASCII byte	ASCII byte	ASCII byte	End of data	End of packet
Payload	0x04	0x02	0x34	0x34	0x39	0x30	0x03	0x0D

When the GUI is started, the Device Identification command is issued by the GUI to identify the EVM connected to the PC. The firmware returns the appropriate response mentioned above. The EVM connected to the PC will be listed in the Global settings tab under Device Configuration.

6. Firmware Upgrade Command:

PC to EVM: 0x05 0x0D

After the GUI issues the command, the PC invokes user interactive executable to upgrade the firmware.

Byte	1	2
Number		
Description	Firmware	End of
	Upgrade	packet
	Command	
Payload	0x05	0x0D

The GUI issues the Firmware Upgrade command when the user clicks on **Firmware Upgrade** on the Menu bar. After the GUI issues the command, the PC invokes user interactive executable to upgrade the firmware.

7. Firmware Revision Command:

PC to EVM: 0x07 0x0D

Byte	1	2
Number		
Description	Firmware	End of
	Revision	packet
	Command	
Payload	0x07	0x0D

EVM to PC: 0x07 0x02 FW_MAJOR FW_MINOR 0x03 0x0D

E.g., for rev 1.4, FW_MAJOR 1 FW_MINOR 4

Byte	1	2	3	4	5	6
Number						
Description	Firmware	Start of	ASCII	ASCII	End of	End of
	Revision	data	byte	byte	data	packet
	Command					
Payload	0x07	0x02	0x01	0x04	0x03	0x0D

When the GUI is started, the Firmware revision command is issued to identify the firmware revision. The firmware revision will be listed in the Global settings tab under Device Configuration.

