Compte rendu de nos Analyses Agribalyse

Mise en Forme et traitement

- Numérisation des données
- Drop DQR > 3
- Matrice de corrélation
- Drop des attributs non pertinents
- Normalisation

Traitement du problème

Supervisé
Problème du score EF:
non concluant au vu de
la répartition des
classes (<0.1)

Problème du **goupe d'aliments** (prédire le groupe d'aliment à partir des attribbuts

Classification sur les groupes d'aliments

Accuracy sur les données test

• KNN(3 voisins): 0.66

• Perceptron: 0.42

• Bagging Tree: 0.65

Conclusion

Le KNN et le Bagging Tree sont assez similaire, on préfère le bagging Tree pour son explicabilité sur la classification.

.

Silo Non

Traitement du problème

Application d'un clustering K-means avec 2 clusters

Analyse des résultats

Moyenne de chaque attribut pour chacun des clusters comparaison de ces moyennes pour avoir les attributs les plus discriminants.

On a vu que les clusters étaient séparés sur le taux d'impact sur l'environnement pour la consommation et l'agriculture

Filtre des ingrédients qui appartiennent au cluster 'polluant" et récupération de leur code CIQUAL

Association des codes CIQUAL

On fait un "jointure" sur le code CIQUAL entre ingrédients et etape.

Récupération des sous groupe d'aliments auxquels appartiennent les ingrédients.

Conclusion

On remarque que les ingrédients qui polluent tout le temps appartiennent aux sous groupes herbes, huiles et graisses végétales et pommes de terre et autres tubercules