Machine Learning - Classification

Data Tools and Techniques

- Basic Data Manipulation and Analysis
 Performing well-defined computations or asking well-defined questions ("queries")
- Data Mining
 Looking for patterns in data
- Machine Learning
 Using data to build models and make predictions
- Data Visualization
 Graphical depiction of data
- Data Collection and Preparation

Regression

- Supervised machine learning
- Training data, each example:
 - Set of predictor values "independent variables"
 - Numerical output value "dependent variable"
- Model is function from predictors to output
 - Use model to predict output value for new predictor values
- Example
 - Predictors: mother height, father height, current age
 - Output: height

Classification

- Supervised machine learning
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value "label"
- Model is method from feature values to label
 - Use model to predict label for new feature values
- Example
 - Feature values: age, gender, income, profession
 - Label: buyer, non-buyer

Other Examples

Medical diagnosis

- Feature values: age, gender, history, symptom1-severity, symptom2-severity, test-result1, test-result2
- Label: disease

Email spam detection

- Feature values: sender-domain, length, #images, keyword₁, keyword₂, ..., keyword_n
- Label: spam or not-spam

Credit card fraud detection

- Feature values: user, location, item, price
- Label: fraud or okay

Algorithms for Classification

Despite similarity of problem statement to regression, non-numerical nature of classification leads to completely different approaches

- K-nearest neighbors
- Decision trees
- Naïve Bayes
- Deep neural networks
- ... and others

K-Nearest Neighbors (KNN)

For any pair of data items i_1 and i_2 , from their feature values compute $distance(i_1, i_2)$

Example:

```
Features - gender, profession, age, income, postal-code
person<sub>1</sub> = (male, teacher, 47, $25K, 94305)
person<sub>2</sub> = (female, teacher, 43, $28K, 94309)
distance(person<sub>1</sub>, person<sub>2</sub>)
```

distance() can be defined as inverse of similarity()

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) person₂ = (female, teacher, 43, \$28K, 94309)

Remember training data has labels

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item i: In the labeled data find the K closest items to i, assign most frequent label

person₃ = (female, doctor, 40, \$40K, 95123)

KNN Example

- City temperatures France and Germany
- Features: longitude, latitude
- Distance is Euclidean distance
 distance([o₁,a₁],[o₂,a₂]) = sqrt((o₁-o₂)² + (a₁-a₂)²)
 actual distance in x-y plane
- Labels: frigid, cold, cool, warm, hot

```
Nice (7.27, 43.72) cool
Toulouse (1.45, 43.62) warm
Frankfurt (8.68, 50.1) cold
.....
```

Predict temperature category from longitude and latitude

KNN Example

KNN Summary

To classify a new item *i*: find K closest items to *i* in the labeled data, assign most frequent label

- No hidden complicated math!
- Once distance function is defined, rest is easy
- Though not necessarily efficient
 Real examples often have thousands of features
 - Medical diagnosis: symptoms (yes/no), test results
 - Email spam detection: words (frequency)

Database of labeled items might be enormous

"Regression" Using KNN

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign most frequent label

person₃ = (female, doctor, 40, \$40K, 95123)

"Regression" Using KNN

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) \$250 person₂ = (female, teacher, 43, \$28K, 94309) \$100

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign average value of labels

person₃ = (female, doctor, 40, \$40K, 95123)

Regression Using KNN - Example

Decision Trees

- Use the training data to construct a decision tree
- Use the decision tree to classify new data

Decision Trees

New data item to classify: Navigate tree based on feature values

Decision Trees

Primary challenge is building good decision trees from training data

- Which features and feature values to use at each choice point
- HUGE number of possible trees even with small number of features and values

Common approach: "forest" of many trees, combine the results

Still impossible to consider all trees

Naive Bayes

Given new data item *i*, based on *i*'s feature values and the training data, compute the probability of each possible label. Pick highest one.

Efficiency relies on conditional independence assumption:

Given any two features F_1 , F_2 and a label L, the probability that $F_1=v_1$ for an item with label L is independent of the probability that $F_2=v_2$ for that item

Examples:

gender and age? income and postal code?

Naive Bayes

Given new data item *i*, based on *i*'s feature values and the training data, compute the probability of each possible label. Pick highest one.

Efficiency relies on conditional independence assumption:

Conditional independence assumption often doesn't hold, which is why the approach is "naive"

lbel L, the h label L is $_2$ = v_2 for that

item.

Examples:

gender and age? income and

Nevertheless the approach works very well in practice

Naïve Bayes Example

Predict temperature category for a country based on whether the country has coastline and whether it is in the EU

country	coastline	EU	tempAvg	category
Albania	yes	no	15.18	hot
Andorra	no	no	9.60	warm
Belarus	no	no	5.95	cool
Belgium	yes	yes	9.65	warm
Bosnia and Herzegov	no	no	9.60	warm
Bulgaria	yes	yes	10.44	warm
Croatia	yes	yes	10.87	warm
Czech Republic	no	yes	7.86	cool
Denmark	yes	yes	7.63	cool
Estonia	yes	yes	4.59	cold
Finland	yes	yes	3.49	cold
Germany	yes	yes	7.87	cool
Greece	yes	yes	16.90	hot
Hungary	no	yes	9.60	warm
Ireland	VAS	VAS	9.30	warm

Naive Bayes Preparation

Step 1: Compute fraction (probability) of items in each category

cold	.18
cool	.38
warm	.24
hot	.20

Naive Bayes Preparation

Step 2: For each category, compute fraction of items in that category for each feature and value

	coastline=yes	.83
cold	coastline=no	.17
(.18)	EU=yes	.67
	EU=no	.33
_	coastline=yes	.69
cool (.38)	coastline=no	.31
	EU=yes	.77
	EU=no	.23

	coastline=yes	.5
warm	coastline=no	.5
(.24)	EU=yes	.5
	EU=no	.5
	coastline=yes	1.0
hot (.20)	coastline=no	.0
	EU=yes	.71
	EU=no	.29

New item: France, coastline=yes, EU=yes

category	prob.	coastline=yes	EU=yes	product
cold	.18	.83	.67	.10
cool	.38	.69	.77	.20
warm	.24	.5	.5	.06
hot	.20	1.0	.71	.14

New item: France, coastline=yes, EU=yes

category	prob.	coastline=yes	EU=yes	product
cold	.18	.83	.67	.10
cool	.38	.69	.77	.20
warm	.24	.5	.5	.06
hot	.20	1.0	.71	.14

New item: Serbia, coastline=no, EU=no

category	prob.	coastline=no	EU=no	product
cold	.18	.17	.33	.01
cool	.38	.31	.23	.03
warm	.24	.5	.5	.06
hot	.20	.0	.29	.00

New item: Serbia, coastline=no, EU=no

category	prob.	coastline=no	EU=no	product
cold	.18	.17	.33	.01
cool	.38	.31	.23	.03
warm	.24	.5	.5	.06
hot	.20	.0	.29	.00

New item: Austria, coastline=no, EU=yes

category	prob.	coastline=no	EU=yes	product
cold	.18	.17	.67	.02
cool	.38	.31	.77	.09
warm	.24	.5	.5	.06
hot	.20	.0	.71	.0

New item: Austria, coastline=no, EU=yes

category	prob.	coastline=no	EU=yes	product
cold	.18	.17	.67	.02
cool	.38	.31	.77	.09
warm	.24	.5	.5	.06
hot	.20	.0	.71	.0

New item: Austria, coastline=no, EU=yes

For Many presentations of Naïve Bayes times prod include an additional normalization ures in the step so the final products are probabilities that sum to 1.0. The ca choice of label is unchanged, so we've uct omitted that step for simplicity. .38 .09 .31 .77 cool .24 .5 .06 warm .20 .0 .71 .0 hot

Your Turn: World Cup Data

Predict whether team ends in group or knockout stage based on number of yellow cards per game and number of red cards per game

team	games	stage	yellowCards	redCards	yellowPerGame	yellows	redPerGame	reds
Algeria	3	group	4	2	1.33	low	0.67	high
Argentina	5	knockout	7	0	1.40	low	0.00	none
Australia	3	group	7	2	2.33	high	0.67	high
Brazil	5	knockout	7	2	1.40	low	0.40	high
Cameroon	3	group	5	0	1.67	medium	0.00	none
Chile	4	knockout	13	1	3.25	high	0.25	medium
Denmark	3	group	6	0	2.00	medium	0.00	none
England	4	knockout	6	0	1.50	medium	0.00	none
Germany	6	knockout	8	1	1.33	low	0.17	medium
Ghana	5	knockout	11	0	2.20	high	0.00	none
Greece	3	group	5	0	1.67	medium	0.00	none
Honduras	3	group	7	0	2.33	high	0.00	none
Italy	3	group	5	0	1.67	medium	0.00	none
Ivory Coast	3	group	5	0	1.67	medium	0.00	none
Japan	4	knockout	7	0	1.75	medium	0.00	none
Mexico	4	knockout	9	0	2.25	high	0.00	none
Netherlands	6	knockout	15	n	2.50	high	0.00	none

Your Turn

group (.5)	yellows=low	.20
	yellows=medium	.47
	yellows=high	.33
	reds=none	.60
	reds=medium	.27
	reds=high	.13

knockout (.5)	yellows=low	.33
	yellows=medium	.34
	yellows=high	.33
	reds=none	.67
	reds=medium	.27
	reds=high	.06

- 1. France: yellows=medium, reds=medium group or knockout?
- 2. USA: yellows=high, reds=none group or knockout?

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

Sometimes useful features are hidden or missing

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

- Feature selection select subset of features that are independent and predictive
- Dimensionality reduction combine multiple features into one value

```
Replace [salary,bonus,options] with income
Replace [passes,minutes] with passes-per-minute
```

Sometimes useful features are hidden or missing

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

Sometimes useful features are hidden or missing

 Feature engineering - add features from other data or domain knowledge

```
distance-from-coast, elevation (for temperature) average player temperament (for yellow and red cards) product ratings from review site
```

Deep Neural Networks

Neural Networks

- Machine learning method modeled loosely after connected neurons in brain
- Invented decades ago but not successful
- Recent resurgence enabled by:
 - Powerful computing that allows for many layers (making the network "deep")
 - Massive data for effective training

Deep Neural Networks

- = Deep Learning
- Huge breakthrough in effectiveness and reach of machine learning
- Accurate predictions across many domains
- Big plus: automatically identifies features in unstructured data
 - E.g., images, videos, text
 - "Self-supervised learning"

Deep Neural Networks

General idea

- Multiple layers, each layer transforms inputs to provide new features or structures for next layer
- Iterate on training data, checking accuracy and improving network

Reality

- Complex and mysterious, often used without full understanding
- Results not "explainable"

Large Language Models and Generative Al

- Create Deep Neural Network using massive amount of data
 - Text, images, audio, video, computer code, ...
 - Possibly in a given domain
 - > DNN is "large language model" (LLM)
- User issues prompt New field: "prompt engineering"
- System uses LLM to generate newly assembled content related to the prompt
- Probabilistic: repeating prompt generates new content

Example: ChatGPT

You

Write a two-paragraph advertisement for a data science short-course for students at North South University in Dhaka, Bangladesh taught by Jennifer Widom of Stanford University

ChatGPT

Unlock the World of Data Science Excellence with Prof. Jennifer Widom at North South University, Dhaka!

Embark on a transformative learning experience with the Data Science Short Course curated exclusively for students at North South University, and taught by the eminent Professor Jennifer Widom from Stanford University. In this dynamic program, you'll delve into the core principles of data science, machine learning, and analytics, gaining practical skills that are highly sought after in today's tech-driven job market. Professor Widom's expertise, honed through years of groundbreaking research, ensures a rich and engaging educational journey, where theory seamlessly integrates with real-world applications.

Join a community of forward-thinkers and equip yourself with the tools to navigate the data landscape confidently. Whether you're a computer science enthusiast, a business major, or an aspiring data scientist, this course offers a unique opportunity to expand your horizons and elevate your career prospects. Don't miss the chance to learn from one of the brightest minds in the field. Enroll now in Jennifer Widom's Data Science Short Course at North South University and position yourself at the forefront of the data revolution!

#NSUDataScience #JenniferWidomCourse #DataScienceMastery

Example: DALL-E

Bangladeshi students working on data science in the style of van gogh

Generate

Back to Classification: Training and Test

Used training data to create model for making predictions. How do you know whether it's a good model?

> Try it on known data

Confusion Matrix

Full information about results on test data

Prediction

cold cool hot warm 12 5 cold 0 Actual 8 69 12 cool 57 5 16 warm 15 hot 9

Accuracy .718

- Basic accuracy = % correct = Σ(diagonal) / total
- When numbers or ordinal categories, can also incorporate distance

Other Methods You Might Come Across

Logistic Regression

- Typically for two labels only ("binary classifier"), call them 0 and 1, and numeric features
- Recall regression model is function f from input values to numeric output value
- From training data obtain function:

```
f(feature-values) =
probability of output being 1
```


Other Methods You Might Come Across

Support Vector Machine

- Also for binary classification
- Features = multidimensional space
- From training data SVM finds hyper-plane that best divides space according to labels

Classification Summary

- Supervised machine learning
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value label
- Model is "function" from feature values to label
 - Use model to predict label for new feature values

Classification Summary

- Approaches we covered
 - K-nearest neighbors relies on distance (or similarity) function
 - Decision trees
 relies on finding good trees/forests
 - Naïve Bayes relies on conditional independence assumption
 - Deep neural networks
 relies on large data sets and powerful computing

Machine Learning - Classification

