FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

Grupo F Grado Ingeniería Informática Convocatoria de febrero 2017

Duración: 3 horas

Responde a cada pregunta en hojas separadas. Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas

Lee detenidamente los enunciados antes de contestar

Nombre	D.N.I.		Grupo	
--------	--------	--	-------	--

- a) Calcula el equivalente de Thevenin del circuito mostrado entre los puntos A y B
 (1.5 puntos)
- b) ¿Cómo cambiaría la resistencia Thevenin y la tensión Thevenin si la fuente de corriente fuera una fuente de tensión? (1 puntos)

2.- Calcula y representa la característica de transferencia del siguiente circuito para cualquier valor de tensión de entrada v_i. **(1.5 puntos)**

$$V_{v} = 0.6 V$$

3.- Construye la tabla de verdad de la siguiente puerta lógica (A y B son entradas, F es la salida) **(1 puntos)**

- 4.- Para el circuito de la imagen calcula:
- a) La función de transferencia (1.5 puntos)
- b) El módulo y el argumento de la función de transferencia (1 punto)
- c) El valor de la salida para la entrada $v_i(t) = 9\cos(30t) + 9\cos(3000t + \pi/2)$ V

(1 punto)

5.- Calcule la corriente que circula por el transistor

(1.5 puntos)

Datos: k = 2 mA/V²; V_T =1 V

Región lineal u óhmica:

$$I_{D} = \frac{k}{2} \left[2(V_{GS} - V_{T})V_{DS} - V_{DS}^{2} \right]$$

Región de saturación:

$$I_D = \frac{k}{2} (V_{GS} - V_T)^2$$

