

Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

September 9, 2013

James S. Baker, Sandi Miller, Tiffany Williams, Michael Meador

Postdoctoral Research Fellow

NASA Glenn Research Center, Cleveland, Ohio

Carbon Nanotubes

SWCNT

Cylindrical structure of sp^2 hybridized carbon atoms

Diameters- 1-50 nm

Lengths- 100nm- ~1 mm

Single-walled (SWCNT) or Multi-walled (MWCNT)

Source: Dai, H. Acc. Chem. Res.,
2002, 35, 1035

MWCNT

Properties:

- High strength and stiffness
- Low density ($\sim 1.6\text{-}2.2 \text{ g/cm}^3$)
- Good thermal and electrical conductivity
- High thermal stability

Project Goal

Improve strength to weight ratio of polymer matrix composite materials

- Reduce vehicle dry weight
 - ✓ Increase payload capacity
 - ✓ Lower fuel consumption

Carbon Nanotube Materials

JSB4371AR 6.0kV 7.8mm x50.0k SE(M) 5/20/2013

1.00μm

Date HV
- 200 kV

100 nm

Carbon Nanotube Yarns

Carbon Nanotube tensile strength ~10-100 GPa

State-of-the-art carbon nanotube yarns ~3 GPa

Failure from slippage of nanotubes/bundles, not breakage of nanotubes

Source: Vilatela,J.; Elliott, J.; Windle, A. *ACS Nano*
2011, 3, 1921-27

Carbon Nanotubes

Nanotube tensile strength~ 10-100 GPa

Inter-tube shear force= 0.5-10 MPa

Ease of sliding leads to poor load transfer between nanotubes

Need to increase inter-nanotube forces to take full advantage of nanotube tensile properties

Source: Filleteer, T.; et al. *Nano Lett.*, 2012, 12, 732

Our Proposed Solutions

Create covalent, inter-tube bonds to prevent tube-tube sliding.

- Chemical modification
- Electron beam irradiation

Increase inter-tube contact and alignment

- Solvent densification
- Stretching

Minimize damage to nanotubes during modification

Electron Beam Crosslinking

Irradiation of carbon nanotubes with high-energy particles can produce inter-shell or inter-nanotube covalent bonds

Filleter, T.; Espinosa, H. *Carbon*, **2013**, 56, 1-11

Espinosa, H.; Filleter, T.; Naraghi, M. *Adv. Mater.*, **2012**, 24, 2805-2823

Pregler, S.; Sinnott, S. *Phys. Rev. B*, **2006**, 73, 224106

Prestressing

Drawing of yarns during spinning leads to improved nanotube packing and alignment

- Apply same principle to sheet material

Chemical Crosslinking

Aryl Diazonium

- Commonly used method for covalent functionalization of nanotubes (*Synlett*, **2004**, 155; *JACS*, **2003**, 1156; *Chem. Mater.*, **2001**, 3823)
- Use of *para*-functional anilines allows introduction of functional groups
- Using a di- or multi-amines should allow crosslinking of tubes

Aryl Diazonium

Epoxide Functional Nanotubes

- Reaction with chloroperbenzoic acid (Prilezhaev reaction) can introduce epoxy rings on the nanotube surface (*JACS*, **2006**, 11322; *ACS Appl. Mater. Interfaces*, **2012**, 2065)

Epoxide Functional Nanotubes

Epoxide rings on nanotubes can react with diamine during resin curing

- covalent attachment of nanotubes to resin matrix

Functionalization Using Nitrenes

Nanotube Crosslinking Through Multifunctional Linkers

Stress vs. Strain Comparison for Various Treatments of Carbon Nanotube Sheet (lot 5333)

Functionalization results in:

- ✓ Higher tensile strength
- ✓ Higher tensile modulus
- ✓ Lower strain at break

Effect of Degree of Functionalization

'PS' indicates 14% prestrained

Optimal degree of functionalization is 5-10 mol% for best strength:weight ratio

Tensile Strength Comparison for Various Treatments of Carbon Nanotube Sheet (lot 5333)

Hydroxyl functional material prepared by reaction with azido ethanol (nitrene route)
E Beam irradiation, 90 min exposure, $2.2 \times 10^{17} \text{ e}^-/\text{cm}^2$ total fluence

Specific Modulus and Specific Strength Comparison for Functional Carbon Nanotube Sheets (lot 5333)

SEM Micrographs of Nanotube Sheet

A. As Received

B. 14% Prestrain, 5 mol% OH

C. 14% Prestrain, 5 mol% OH, 90 min
E Beam

SEM Micrographs of Nanotube Sheet

- A. As Received
- B. 14% Prestrain, 5 mol% OH
- C. 14% Prestrain, 5 mol% OH, 90 min E Beam

Summary

Several methods were examined that resulted in improved tensile properties for the carbon nanotube sheet material

- ✓ Covalent functionalization and crosslinking
- ✓ Electron beam irradiation
- ✓ Uniaxial prestraining

Generally, the methods evaluated resulted in an increase in material tensile strength and modulus and a decrease in strain at failure

Combination of these methods resulted in the largest improvement

14 % prestrain, 5 mol% OH, 90 min E Beam resulted in ~150% increase in specific strength and >10-fold increase in specific modulus over the as-received material

Currently evaluating performance of functional nanotube sheet material in polymer matrix composites

Acknowledgements

- Dr. Michael Meador
- Dr. Sandi Miller
- Dr. Tiffany Williams
- Dr. Francisco Sola-Lopez
- Dr. Marisabel Lebron-Colon
- Dr. Jim Gaier
- Daniel Scheiman, Nate Wilmoth, Linda McCorkle
- Prof. Roberto Uribe (Kent State), NEO Beam electron beam facility
- Fellowship Funding- NASA Postdoctoral Program administrated by Oak Ridge Associated Universities
- Project Funding- NASA Space Technology Game Changing Development Program

SEM Micrographs of Nanotube Sheet

A. As Received

B. 14% Prestrain, 5 mol% OH

C. 14% Prestrain, 5 mol% OH, 90 min
E Beam

AR #5333

AR 5333	Time (min)	Disorder band		G-band location	D/G	A(G-band)	A (D-band)	A_D/A_G
		G band (~ 1570 cm ⁻¹)	D band (~ 1350 cm ⁻¹)					
	0	18286.1	4830.6	1570.8	0.264	674830.0	137498.6	0.204
	20	14534.4	5479.4	1569.7	0.377	528274.4	171094.2	0.323
	90	13998.4	5140.9	1569.2	0.367	488926.5	145357.8	0.297

EtOH functionalized (#5333)

EtOH JSB 11391	Time (min.)	G band (~ 1570 cm ⁻¹)	D band (~1350 cm ⁻¹)	G-band location	D/G	A(G-band)	A (D-band)	A _D /A _G
	0	15330.3	4718.8	1573.8	0.308	598052.7	141972.4	0.237
	90	15606.3	6699.2	1575.8	0.429	557340.1	189818.6	0.341

PrNH₂ Functionalized (#5333)

PrNH ₂ JSB11471	Time (min.)	G band (~1570 cm ⁻¹)	D band (~1350 cm ⁻¹)	G-band location	D/G	A (G-band)	A (D-band)	A _D /A _G
	0	20435.0	5324.6	1572.3	0.261	735678.1	117483.5	0.160
	90	14246.4	7280.9	1572.3	0.511	523149.3	222635.6	0.426

Unfunctionalized 15% Prestrain (#5333)

15% Prestrain JSB11652	Time (min.)	G band (~ 1570 cm ⁻¹)	D band (~1350 cm ⁻¹)	G-band location	D/G	A(G-band)	A (D-band)	A _D /A _G
	0	18113.4	4642.4	1569.8	0.256	667741.2	132089.3	0.198
	90	15015.8	7636.5	1569.3	0.509	532588.3	231963.9	0.436

EtOH 13.5% Prestrain (#5333)

EtOH 13.5% Prestrain JSB11611	Time (min.)	G band (~1570 cm ⁻¹)	D band (~1350 cm ⁻¹)	G-band location	D/G	A(G-band)	A (D-band)	A _D /A _G
	0	19842.3	4546.0	1575.3	0.230	665729.8	116935.8	0.176
	90	12306.5	3960.5	1576.4	0.322	492436.8	159288.9	0.323

AR 4371 (CNT sheets for panel fab)

AR 4371	Time (min.)	G band (~ 1570 cm ⁻¹)	D band (~1350 cm ⁻¹)	G-band location	D/G	A(G-band)	A (D-band)	A _D /A _G
	0	19993.2	2979.7	1573.9	0.149	736802.9	84292.9	0.114
	20	16064.6	4804.8	1566.4	0.299	614848.9	147794.5	0.240
	90	18539.3	6846.4	1569.5	0.369	685277.1	196265.6	0.286