Learning how to Active Learn: A Deep Reinforcement Learning Approach

Presenter: Bonggun Shin

PT date: Oct/01/2018

 Authors: Meng Fang, Yuan Li and Trevor Cohn (University of Melbourne)

Date: 2017

Venue: EMNLP

Motivation

- Low-resource languages
 - Little annotations No deep learning
 - More annotation requires more budget
- Two problems to solve
 - What to annotate? (limited budget) -> Active learning
 - Active learning without a seed set for a basic classifier
 Transfer learning

Active Learning Example

- 1: Pierre Vinken will join the board
- 2: Mr. Vinken is chairman of Elsevier
- 3: Ms. Haag plays Elianti

terminate

- 4: There is no asbestos in our products
- label $\sim \pi(\varphi_0, x_1)$ yes;

 yes; $y_1 = PER PER O O O O$ train $\varphi_1 \mid \varphi_0 x_1 y_1$ label $\sim \pi(\varphi_0, x_2)$ yes; $y_2 = O PER O O O O$ no

 label $\sim \pi(\varphi_1, x_2)$ train $\varphi_1 \mid \varphi_0 x_2 y_2$ label $\sim \pi(\varphi_0, x_3)$ yes; $y_2 = O PER O O O O$ no

 ain $\varphi_2 \mid \varphi_1 x_2 y_2$ label $\sim \pi(\varphi_1, x_3)$...

terminate

- Given a sentence, x_1, AL decides if it asks the annotation for it
 - If Yes: The classifier is updated
 - If No: Ignore that sample

Problem Formulation

- Input: D, a random sequence of sentences, x_1, x_2, ...x_n
- Output: D_I, a subset of D, need to be annotated
- **S**: states
 - g(s_t): input sentence representation
 - Φ(s_t): prediction for the target task
 - C: Confidence of sequential prediction (A measurement how good is it so far)
- A: binary action (select to annotate or ignore)
- R: reward $R(s_{i-1}, a) = Acc(\phi_i) Acc(\phi_{i-1})$ •

- Active learning (AL)
 - Aims to select a small subset of data for annotation
- Reward Estimation, Q
- Policy: π, argmax_action (Q)
- Model: Φ, target task model

AL with Transferred models

Target Domain

little (or no) Annotations
 Using transferred policy (and model),
 It suggests what to annotate

Experimental Configuration

Bilingual		Multilingual		Cold-start		
tgt	src	tgt	src	tgt	src	pre
de	en	de	en,nl,es	de	nl	en
nl	en	nl	en,de,es	nl	de	en
es	en	es	en,de,nl	es	de	en
-	-	_	-	de	es	en
-	-	_	-	nl	es	en
-	-	_	-	es	nl	en

Experiment

Discussion

- Successful MDP formulation for a binary annotation decision problem
- Reduces the annotation burden to as low as 10%.
- Outperform the existing methods