Universidade Federal de São Paulo – UNIFESP

Segurança Computacional

Aula 03: Criptografia,
Algoritmos e Criptoanálise
Prof.
Valério Rosset

Criptologia

Criptografia:

- Elemento básico: Confidencialidade
- Também pode garantir: Integridade, autenticidade e Controle de acesso.

Criptoanálise

- Estudo de meios p/quebrar códigos de criptografia
- Toda cifra pode ser quebrada de alguma forma

- Cripto = oculto/escondido +Grafia = escrita
 - Criptografia = arte de escrever oculto, em código

```
Mensagem/
Texto-Puro encriptação Texto-Cifrado decriptação Puro
```


Elementos da criptografia

- Codificação (encriptação)
 - embaralhamento de um conteúdo de forma que fique ininteligível a quem não possui a "chave" para o restaurar.
- Cripto-Algoritimo, Criptosistema ou Cifra:
 - Método utilizado : substituição e transposição
- Chave:
 - elemento combinado ao algoritmo para permitir combinações/variações

Modelo Simplificado de Critografia Convencional

Criptoanálise

- Meios de criptoanálise
 - Força bruta: tentar todas as possibilidades
 - Algotritmo(A) e Texto cifrado (TC)
 - Mensagem conhecida:
 - A, TC e partes de texto puro/claro cifrados (TP)
 - Mensagem escolhida (conhecida e apropriada)
 - A,TC, e mensagem de texto claro cifrada escolhida pelo atacante.
 - Análise matemática e estatística
 - Engenharia social

Eficiência de ataques de força bruta

Key size (bits)		nber of ative keys		equired at 1 /ption/ <i>µ</i> s	Time required at 10 ⁶ decryption/µs
32	2 ³²	= 4.3 x 10 ⁹	$2^{31} \mu s$	= 35.8 minutes	2.15 milliseconds
56	_	= 7.2 x 10 ¹⁶	$2^{55} \mu s$	= 1142 years	10.01 hours
128	_	= 3.4 x 10 ³⁸	$2^{127} \mu s$	= 5.4 x 10 ²⁴ years	5.4 x 10 ¹⁸ years
168	_	= 3.7 x 10 ⁵⁰	$2^{167} \mu s$	= 5.9 x 10 ³⁶ years	5.9 x 10 ³⁰ years
26 characters (permutation)	26!	= 4 x 10 ²⁶		= 6.4 x 10 ¹² years	6.4 x 10 ⁶ years

- Algoritmo computacionalmente seguro
 - Custo de quebrar excede o valor da informação
 - O tempo para quebrar excede a vida útil da informação. (ou do atacante ☺)

Conceitos para bom algoritmo de criptografia

- Confusão
 - transformações na cifra de forma irregular e complexa.

Difusão

pequena mudança na mensagem, grande na cifra

Métodos de Substituição

- Cifra de César:
- Consiste em substituir as letras do texto claro por outras letras através de um deslocamento de n elementos.
- Nesse caso n=3 posições:
 - Claro: a b c d e f g h ... z
 - Cifra: defghijk...c
- Vulnerabilidade: 25 chaves a serem testadas, fácil criptoanálise.

Métodos de Substituição

Cifras monoalfabéticas

 Permutação de caracteres para gerar a chave de substituição: 4 x 10E26 possibilidades de chaves diferentes.

Vulnerabilidade: frequência relativa de letras.

Métodos de Substituição

Frequência relativa do uso de letras (Inglês)

Criptografia *Métodos de Substituição*

Frequência relativa do uso de letras (Português)

Criptografia *Métodos de Substituição*

 UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

P 13.33	H 5.83	F 3.33	B 1.67	C 0.00
Z 11.67	D 5.00	W 3.33	G 1.67	K 0.00
S 8.33	E 5.00	Q 2.50	Y 1.67	L 0.00
U 8.33	V 4.17	T 2.50	I 0.83	N 0.00
O 7.50	X 4.17	A 1.67	J 0.83	R 0.00
M 6.67				

Criptografia *Método de Substituição*

Substituindo as letras mais frequentes:

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta eeteathateea a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

et tat haeee ae th ta
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
eeetat e the t
```

Texto original:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Criptografia *Métodos de Substituição*

- Cifras polialfabéticas
- Usa um conjunto de regras de substituição monoalfabéticas.

Cifra de Vigenère:

 26 cifras de César com deslocamentos de 0 –
 25 . Cada cifra é indicada por uma letra-chave (da chave) que substitui a letra do texto claro: vide tabela.

Criptografia *Tabela de Vigenère*

		Plaintext																									
		a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	w	x	у	z
	а	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z
	b	В	C	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α
	c	С	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В
	d	D	E	F	G	Н	1	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C
	e	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D
	f	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	C	D	E
	g	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F
	h	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G
	i	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н
	j	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	Н	I
	k	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	1	J
Key	1	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K
\times	m	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L
	n	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M
	0	0	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N
	p	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	0
	q	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P
	r	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q
	s	S	T	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R
	t	Т	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	1	J	K	L	M	N	О	P	Q	R	S
	и	U	V	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т
	v	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U
	w	W	X	Y	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	v
	x	X	Y	Z	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W
	у	Y	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	Т	U	V	W	X
	z	Z	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y

Método de Substituição

- Cifrando com palavra-chave : deceptive
- key: decept | vedecept | ve
- plaintext: wearedlsc overedsav
- C-text: Z I CVTWQNG R ZGVT WA V Z
- Sistema de Auto-chave :
- key: decept I veweared I scov
- Plaintext we are discovered savey
- C-text: Z I C VTWQNGK ZE I I G AS XS T

Criptografia *Método de Substituição*

- One-Time Pad
 - Cifra que utiliza chaves tão grandes quanto o texto claro, porém com geração aleatória de chaves.
 - Vantagem: impossível quebrar
 - Desvantagem: dificuldade de gerar chaves puramente aleatórias e também sua distribuição.

Métodos de Transposição

- Mapeamento de texto claro é obtido através de uma permutação de posições.
- Rail Fence:
 - Texto é escrito em uma sequência de diagonais e lido em uma sequência de linhas.
 - Ex:
 - mematrhtgpry
 - etefeteoaat

Criptografia *Métodos de Transposição*

- Rail Fence é trivial
- Permutação de colunas:

attack postponed until two am xyz

```
      Key:
      4 3 1 2 5 6 7

      Plaintext:
      a t t a c k p

      o s t p o n e

      d u n t i l t

      w o a m x y z
```

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

 Mesmo assim a transposição pode ser facilmente reconhecida por análise de frequência.

Métodos de Transposição

- Transposição múltipla (n-vezes: mesma chave):
- Disposição inicial :

```
01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
```

• Primeira permutação

```
03 10 17 24 04 11 18 25 02 09 16 23 01 08 15 22 05 12 19 26 06 13 20 27 07 14 21 28
```

Segunda Permutação

```
17 09 05 27 24 16 12 07 10 02 22 20 03 25 15 13 04 23 19 14 11 01 26 21 18 08 06 28
```

Exercício

- Prática 2:
- 1) Desenvolva um programa em java/C/C+ + que implemente a criptografia de um texto através das cifra de Cesar.
- 2) Desenvolva um programa em java/C/C+ + que implemente a criptografia de um texto através das cifra de Vigenère.