Input: Noisy and incomplete data tensor \mathcal{Y}_{Ω} , rank r, resolution parameter H	
1: $\mathbf{for} \ \pi \in \mathcal{H} = \{-1, \dots, -\frac{1}{H}, 0, \frac{1}{H}, \dots, 1\} \ \mathbf{do}$	
2: Random initialization of tensor factors $\boldsymbol{A}_k = [\boldsymbol{a}_1^{(k)}, \dots, \boldsymbol{a}_r^{(k)}] \in \mathbb{R}^{d_k \times r}$ for all $k \in [R]$	ζ].
3: while not convergence do	

for $k = 1, \ldots, K$ do 4:Update A_k while holding others fixed: $A_k \leftarrow \arg\min_{A_k \in \mathbb{R}^{d_k \times r}} \sum_{\omega \in \Omega} |\mathcal{Y}(\omega) - \pi| F(\mathcal{Z}(\omega) \operatorname{sgn}(\mathcal{Y}(\omega) - \pi)),$ where $F(\cdot)$ is the large-margin loss, and $\mathcal{Z} = \sum_{s \in [r]} a_s^{(1)} \otimes \cdots \otimes a_s^{(K)}$ is a rank-r tensor.

where
$$F(\cdot)$$
 is the large-margin loss, and $\mathcal{Z} = \sum_{s \in [r]} \boldsymbol{a}_s^{(1)} \otimes \cdots \otimes \boldsymbol{a}_s^{(K)}$ is a rank- r tensor.

6: end for

7: end while

8: Return
$$\mathcal{Z}_{\pi} \leftarrow \sum_{s \in [r]} \boldsymbol{a}_s^{(1)} \otimes \cdots \otimes \boldsymbol{a}_s^{(K)}$$
.

8: Return
$$\mathcal{Z}_{\pi} \leftarrow \sum_{s \in [r]} a_s$$
 ' $\otimes \cdots \otimes a_s$ '.

9: end for

Output: Estimated signal tensor $\hat{\Theta} = \frac{1}{2H+1} \sum_{\pi \in \mathcal{H}} \operatorname{sgn}(\mathcal{Z}_{\pi}).$

Algorithm 1 Nonparametric tensor completion