FSPL - Assignment 3

冯诗伟 161220039

1 Problem 2.1

 $S\, yntax: < comm > ::= < var >, < var >:= < intexp >, < intexp >$ $S\, emantic: \llbracket v_1, v_2 := e_1, e_2 \rrbracket_{comm} \sigma = \llbracket \sigma | v_1 : \llbracket e_1 \rrbracket_{intexp} \sigma, \, v_2 : \llbracket e_2 \rrbracket_{intexp} \rrbracket \sigma$

2 Problem 2.2

2.1 a

$$Syntax: < comm > ::= repeat < comm > until < boolexp >$$

$$Semantic: \llbracket repeat \ c \ until \ b \rrbracket_{comm} \sigma = Y_{\Sigma \to \Sigma_{\perp}} F$$

$$where \ F \ f \ \sigma = \Big(if \ \neg b \ then \ f \ else \ skip \Big)_{\perp} (\llbracket c \rrbracket_{comm} \sigma)$$

2.2 b

Syntactic sugar: repeat c until $b \stackrel{def}{=} c$; while $\neg b$ do c

2.3 c

For all $\sigma \in \Sigma$, according to the definition in (a),

According to the definition in (b),

$$[\![repeat \ c \ until \ b]\!]_{comm} \sigma = [\![c \ ; \ while \neg b \ do \ c]\!]_{comm} \sigma$$

$$= [\![while \neg b \ do \ c]\!]_{comm} \bot ([\![c]\!]_{comm} \sigma)$$

$$= if \neg ([\![b]\!]_{boolexp} \bot ([\![c]\!]_{comm} \sigma)) then [\![c \ ; \ while \neg b \ do \ c]\!]_{comm} \bot ([\![c]\!]_{comm} \sigma) else ([\![c]\!]_{comm} \sigma)$$

$$= if \neg ([\![b]\!]_{boolexp} \bot ([\![c]\!]_{comm} \sigma)) then (repeat \ c \ until \ b) \bot ([\![c]\!]_{comm} \sigma) else ([\![c]\!]_{comm} \sigma)$$

Therefore, the two definitions are equivalent.

3 PROBLEM 2.3 2

3 Problem 2.3

We can divide σx into three conditions and discuss them respectively.

- (1) When σx is even and $\sigma x < 0$, $\sigma x 2 < 0$.
- So it will never terminates. So when $\sigma x < 0$, $\llbracket \textbf{\textit{while}} \ x \neq 0 \ \textbf{\textit{do}} \ x := x 2 \rrbracket_{comm} \sigma = \bot$.
- (2) When σx is odd, $\sigma x 2$ is always add. But 0 is an even number, so x will never equal 0. So it will never terminates. So when $\sigma x < 0$, $\llbracket \text{while } x \neq 0 \text{ do } x := x 2 \rrbracket_{comm} \sigma = \bot$.
 - (3) When σx is even and $\sigma x \ge 0$, x must be in the form of 2k where $k \ge 0$. Let's do the induction.

When $\sigma x = 0$, it will terminate directly and go to the state $[\sigma | x : 0]$.

Suppose that when $\sigma x = 2k$, it will terminate in the state of $[\sigma | x : 0]$.

[while
$$x \neq 0$$
 do $x := x - 2$] $_{comm}[\sigma | x : 2k + 2] \rightarrow^*$ [while $x \neq 0$ do $x := x - 2$] $_{comm}[\sigma | x : 2k]$

According the induction hypothesis, $[\![\textbf{\textit{while}} \ x \neq 0 \ \textbf{\textit{do}} \ x := x - 2]\!]_{comm} [\sigma | x : 2k]$ will terminate in the state of $[\sigma | x : 0]$. So we can get that $[\![\textbf{\textit{while}} \ x \neq 0 \ \textbf{\textit{do}} \ x := x - 2]\!]_{comm} [\sigma | x : 2k + 2]$ will terminate in the state of $[\sigma | x : 0]$.

Now we come to the conclusion that for all $k \ge 0$, [[while $x \ne 0$ do x := x - 2]] $_{comm}[\sigma | x : 2k]$ will terminate in the state of $[\sigma | x : 0]$.

In conclusion, by combining(1)(2)(3) together we can prove the equation in Problem2.3.

4 Problem 2.4

$$F f \sigma = if \llbracket b \rrbracket_{boolexp} \sigma then f_{\bot}(\llbracket c \rrbracket_{comm} \sigma) else \sigma$$

First we have to prove that F is monotone. Consider two functions f and h, where $f \sqsubseteq h$.

For all $\sigma \in \Sigma$, if $[\![b]\!]_{boolexp}\sigma = false$, or if $[\![b]\!]_{boolexp}\sigma = true$ and $([\![c]\!]_{comm}\sigma) = \bot$, it is obvious that $Ff\sigma = Fh\sigma$, which means $Ff\sigma \sqsubseteq Fh\sigma$. If $[\![b]\!]_{boolexp}\sigma = true$ and $([\![c]\!]_{comm}\sigma) \neq \bot$, $Ff\sigma = f_{\bot}([\![c]\!]_{comm}\sigma)$, $Fh\sigma = h_{\bot}([\![c]\!]_{comm}\sigma)$. Because $f \sqsubseteq h$, we have that for all x, $fx \sqsubseteq hx$. So $f_{\bot}([\![c]\!]_{comm}\sigma) \sqsubseteq h_{\bot}([\![c]\!]_{comm}\sigma)$ which means $Ff\sigma \sqsubseteq Fh\sigma$.

Next we have to prove that F is continous. Consider an interesting chain of functions $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ and $g = \sqcup_{n=0}^{\infty} f_n$.

For all $\sigma \in \Sigma$, if $[\![b]\!]_{boolexp}\sigma = false$, or if $[\![b]\!]_{boolexp}\sigma = true$ and $([\![c]\!]_{comm}\sigma) = \bot$, it is obvious that $F(\sqcup_{n=0}^{\infty} f_n)\sigma = (\sqcup_{n=0}^{\infty} Ff_n)\sigma$, which means $F(\sqcup_{n=0}^{\infty} f_n)\sigma \sqsubseteq \sqcup_{n=0}^{\infty} (Ff_n)\sigma$.

If $\llbracket b \rrbracket_{boolexp} \sigma = true$ and $(\llbracket c \rrbracket_{comm} \sigma) \neq \bot$,

$$F(\sqcup_{n=0}^{\infty} f_n)\sigma = Fg\sigma = g(\llbracket c \rrbracket_{comm}\sigma)$$
$$\sqcup_{n=0}^{'\infty} (Ff_n)\sigma = \sqcup_{n=0}^{'\infty} f_n(\llbracket c \rrbracket_{comm}\sigma) \sqsubseteq g(\llbracket c \rrbracket_{comm}\sigma)$$
$$\therefore F(\sqcup_{n=0}^{\infty} f_n)\sigma \sqsubseteq \sqcup_{n=0}^{'\infty} (Ff_n)\sigma$$

In conclusion, *F* in the semantic equation for the *while* command is continous.

5 PROBLEM 2.5 3

5 Problem 2.5

Define a series of commands: w_0, w_1, w_2, \dots

$$w_0 \stackrel{def}{=}$$
 while true do skip
 $w_{i+1} \stackrel{def}{=}$ if b then $(c; w_i)$ else skip

Define the function *F*:

$$F \ f \ \sigma = if \ \llbracket b \rrbracket_{boolexp} \sigma \ then \ f_{\perp}(\llbracket c \rrbracket_{comm} \sigma) \ else \ \sigma$$

$$where \ F \llbracket \ while \ b \ do \ c \rrbracket_{comm} = \llbracket \ while \ b \ do \ c \rrbracket_{comm}$$

For all $\sigma \in \Sigma$, consider the left side of the equation:

[while
$$b$$
 do c]] $_{comm}\sigma = \sqcup_{n=0}^{\infty} [w_n]_{comm}\sigma$
$$= \sqcup_{n=0}^{\infty} F^n \bot \sigma$$

Consider the right side of the equation:

$$[\![\textit{while } b \textit{ do } (c; \textit{if } b \textit{ then } c \textit{ else } \textit{ skip })]\!]_{comm} \sigma = [\![\textit{while } b \textit{ do } (c; w_1)]\!]_{comm} \sigma$$

Suppose while $b \, do \, (c; w_1)$ terminates after while testing b exactly n(>0) times. It indicates that while $b \, do \, (c; w_1)$ terminates after testing $b \, 2n - 2$ or 2n - 1 times because both while and w_1 test b and it can terminates at both places. Therefore we can operate on the equation above:

[[while b do (c; if b then c else skip)]]
$$_{comm}\sigma = [[while b do (c; w_1)]]_{comm}\sigma$$

$$= \sqcup_{n=1}^{\infty} (F^{2n-2} \bot \sigma \sqcup F^{2n-1} \bot \sigma)$$

$$= \sqcup_{n=0}^{\infty} F^n \bot \sigma$$

 \therefore [while b do c]] $_{comm}$ = [while b do $(c; if b then celse skip)]]<math>_{comm}$

6 Problem 2.9

$$for \ v := e_0 \ to \ e_1 \ do \ c \stackrel{def}{=} newvar \ w := e_1 \ in \ newvar \ v := e_0 \ in$$

$$(\textit{while} \ v < w \ do \ (c; v := v + 1)); \ \textit{if} \ v = w \ \textit{then} \ c \ \textit{else} \ \textit{skip}$$

7 Problem 2.10

If c doesn't contain occurrence of **dotwice**,

dotwice
$$c = c$$
; c

If c contaions occurrences of **dotwice**, c =**dotwice** d

dotwice
$$c = dotwice (dotwice d) = dotwice (d; d) = d; d; d; d$$

The right side will eventually contain no occurrence of *dotwice*. If the *d* mentioned above also contains the occurrence of *dotwice*, the length of final result will just explode in an exponential way.