Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

23 e 24 marzo 2023

Proprietà principali della continuità e dei limiti di funzione

Nota. Nel corso del documento, per un insieme X, qualora non specificato, si intenderà sempre un sottoinsieme generico dell'insieme dei numeri reali esteso $\overline{\mathbb{R}}$. Analogamente per f si intenderà sempre una funzione $f: X \to \overline{\mathbb{R}}$.

Proposizione. Dati $f: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X tale che $\forall (x_n) \subseteq X \setminus \{\overline{x}\} \mid x_n \xrightarrow[n \to \infty]{} \overline{x}$ vale che $f(x_n)$ converge. Allora il limite di $f(x_n)$ è sempre lo stesso, indipendentemente dalla scelta di (x_n) .

Dimostrazione. Siano per assurdo $(x_n), (y_n) \subseteq X \setminus \{\overline{x}\}$ due successioni tali che $x_n, y_n \xrightarrow[n \to \infty]{} \overline{x}$ e che $f(x_n) \xrightarrow[n \to \infty]{} L$ e $f(y_n) \xrightarrow[n \to \infty]{} G$ con $L \neq G$. Si costruisce allora la successione $(z_n) \subseteq X \setminus \{\overline{x}\}$ nel seguente modo:

$$z_n = \begin{cases} x_{\frac{n}{2}} & \text{se } n \text{ è pari,} \\ y_{\frac{n-1}{2}} & \text{altrimenti,} \end{cases}$$

ossia unendo le due successioni (x_n) e (y_n) in modo tale che agli indici pari corrispondano gli elementi di x_n e a quelli dispari quelli di y_n .

Si mostra che $z_n \xrightarrow[n \to \infty]{} \overline{x}$. Sia I un intorno di \overline{x} . Allora, dal momento che $(x_n), (y_n) \xrightarrow[n \to \infty]{} \overline{x}$, esistono sicuramente due $n_x, n_y \in \mathbb{N}$ tali che $n \geq n_x \implies x_n \in I$ e $n \geq n_y \implies y_n \in I$. Pertanto, detto $n_k = \max\{n_x, n_y\}, \ n \geq n_k \implies x_n, y_n \in I$, ossia che per $n \geq 2n_k, \ z_n \in I$. Si conclude allora che $(z_n) \xrightarrow[n \to \infty]{} \overline{x}$.

Tuttavia $f(z_n)$ non può convergere a nessun limite, dal momento che le due sottosuccessioni $f(x_n)$ e $f(y_n)$ convergeno a valori distinti ed il limite

deve essere unico. L'esistenza di tale successione contraddice allora l'ipotesi, $\boldsymbol{\ell}$.

Proposizione. Data $(x_n) \subseteq \mathbb{R}$, definisco $f : \mathbb{N} \to \overline{\mathbb{R}}$ tale che $f(n) := x_n$, $\forall n \in \mathbb{N}$. Allora $f(n) \xrightarrow[n \to \infty]{} L \iff x_n \xrightarrow[n \to \infty]{} L$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Allora, poiché $f(n) \xrightarrow[n \to \infty]{} L$, esiste un intorno $J = [a, \infty]$ tale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$. Poiché ∞ è un punto di accumulazione di \mathbb{N} , $A = J \cap \mathbb{N} \setminus \{\infty\}$ non è mai vuoto. Inoltre, poiché $A \subseteq \mathbb{N}$, A ammette un minimo¹, detto m. Vale in particolare che $f(n) \in I$, $\forall n \geq m$, e quindi che $x_n \in I$, $\forall n \geq m$, ossia che $x_n \xrightarrow[n \to \infty]{} L$.

 (\Leftarrow) Sia I un intorno di L. Dal momento che $x_n \xrightarrow[n \to \infty]{} L$, $\exists n_k \in \mathbb{N} \mid n \geq n_k \implies x_n \in I$. Allora, detto $J = [n_k, \infty]$, vale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$, ossia che $f(n) \xrightarrow[n \to \infty]{} L$.

Proposizione. Siano $f:X\to \overline{\mathbb{R}}, \ \overline{x}\in X$ punto di accumulazione di X. Allora sono fatti equivalenti i seguenti:

- (i) $f(x) \xrightarrow[x \to \overline{x}]{} f(\overline{x})$,
- (ii) f è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $f(\overline{x})$. Dal momento che \overline{x} è un punto di accumulazione, si ricava allora da entrambe le ipotesi che esiste un intorno J di $f(\overline{x})$ tale che $f(J \cap X \setminus {\overline{x}}) \subseteq I$, e quindi, per definizione, la tesi. \square

Osservazione. Se \overline{x} è un punto isolato di X, allora f è continua in \overline{x} . Pertanto per rendere la proposizione precedente vera, è necessario ipotizzare che \overline{x} sia un punto di accumulazione (infatti il limite in un punto isolato non esiste per definizione, mentre in tale punto f è continua).

Proposizione. Siano $f: X \to \mathbb{R}$ e \overline{x} punto di accumulazione di X. Siano $L \in \overline{\mathbb{R}}$ e $\tilde{f}: X \cup \{\overline{x}\} \to \overline{\mathbb{R}}$ tale che:

$$\tilde{f}(x) = \begin{cases} L & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti.} \end{cases}$$

 $^{^1\}mathrm{Non}$ è in realtà necessario che si consideri il minimo di tale insieme, occorre semplicemente che A sia non vuoto.

Allora $f(x) \xrightarrow[x \to \overline{x}]{} L \iff \tilde{f}$ è continua in \overline{x} .

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Si ricava allora dalle ipotesi che esiste sempre un intorno J di \overline{x} tale che $f(\underbrace{J\cap X\setminus\{\overline{x}\}}_A)\subseteq I$. Dal momento che $\overline{x}\notin A$, si

deduce che $f(J \cap X \setminus \{\overline{x}\}) = \tilde{f}(J \cap X \setminus \{\overline{x}\}) \subseteq I$, ossia che \tilde{f} è continua in \overline{x} .

 (\Leftarrow) Sia I un intorno di L. Poiché \tilde{f} è continua in \overline{x} , esiste un intorno J di \overline{x} tale che $\tilde{f}(\underline{J\cap (X\cup \{\overline{x}\})\setminus \{\overline{x}\}})\subseteq I$. Poiché $\overline{x}\notin A$ e \overline{x} è punto di

accumulazione, si deduce che $I \supseteq \tilde{f}(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) = f(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) \supseteq f(J \cap X \setminus \{\overline{x}\})$, e quindi che $f(x) \xrightarrow[x \to \overline{x}]{} L$.

Osservazione. Tutte le funzioni elementari (e.g. $\sin(x)$, $\cos(x)$, $\exp(x)$, $\ln(x)$, |x|, x^a) sono funzioni continue nel loro insieme di definizione.

Proposizione. Siano $f: X \to Y \subseteq \overline{\mathbb{R}}$ e $g: Y \to \overline{\mathbb{R}}$ e sia $\overline{x} \in X$. Sia f continua in \overline{x} e sia g continua in $f(\overline{x})$. Allora $g \circ f$ è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $z=g(f(\overline{x}))$. Allora, poiché g è continua in $f(\overline{x})$, $\exists J$ intorno di $f(\overline{x}) \mid g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$. Tuttavia, poiché f è continua in \overline{x} , $\exists K$ intorno di $\overline{x} \mid f(K \cap X \setminus \{\overline{x}\}) \subseteq J$, da cui si conclude che $g(f(K \cap X \setminus \{\overline{x}\})) \subseteq I$, dacché $\forall x \in K \cap X \setminus \{\overline{x}\}$, o $f(x) = f(\overline{x})$, e quindi g(f(x)) = z chiaramente appartiene a I, o altrimenti $f(x) \in J \cap Y \setminus \{f(\overline{x})\} \implies g(f(x)) \in g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$.

Teorema. Sia $f: X \to Y \subseteq \overline{\mathbb{R}}$, sia \overline{x} punto di accumulazione di X tale che $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$. Se \overline{y} è un punto di accumulazione di Y e $g: Y \to \overline{\mathbb{R}}$ è tale che $\overline{y} \in Y \implies g$ continua in \overline{y} e $g(y) \xrightarrow[y \to \overline{y}]{} \overline{z}$, allora $g(f(x)) \xrightarrow[x \to \overline{x}]{} \overline{z}$.

Dimostrazione. Siano $\tilde{f}:X\cup\{\overline{x}\},\ \tilde{g}:Y\cup\{\overline{y}\}$ due funzioni costruite nel seguente modo:

$$\tilde{f}(x) = \begin{cases} \overline{y} & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti,} \end{cases}$$
 $\tilde{g}(y) = \begin{cases} \overline{z} & \text{se } y = \overline{y}, \\ g(y) & \text{altrimenti.} \end{cases}$

Poiché $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$ e \overline{x} è un punto di accumulazione di X, per una proposizione precedente, \tilde{f} è continua in \overline{x} . Analogamente \tilde{g} è continua in \overline{y} .

Dal momento che vale che $\tilde{f}(\overline{x}) = \overline{y}$, per la proposizione precedente $\tilde{g} \circ \tilde{f}$ è continua in \overline{x} , e dunque $\lim_{x \to \overline{x}} \tilde{g}(\tilde{f}(x)) = \tilde{g}(\tilde{f}(\overline{x})) = \overline{z}$.

Si consideri adesso la funzione $\widetilde{g \circ f} : X \to \overline{\mathbb{R}}$ definita nel seguente modo:

$$\widetilde{g \circ f}(x) = \begin{cases} \overline{z} & \text{se } x = \overline{x}, \\ g(f(x)) & \text{altrimenti.} \end{cases}$$

Si mostra che $\widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f}$. Se $x = \overline{x}$, chiaramente $\widetilde{g \circ f}(x) = \overline{z} = \widetilde{g}(\widetilde{f}(\overline{x}))$. Se $x \neq \overline{x}$, si considera il caso in cui $\widetilde{f}(x) = f(x)$ è uguale a \overline{y} ed il caso in cui non vi è uguale.

Se $\tilde{f}(x) \neq \overline{y}$, $\tilde{g}(\tilde{f}(x)) = \tilde{g}(f(x)) = g(f(x)) = g(f(x))$. Se invece $\tilde{f}(x) = \overline{y}$, $\overline{y} \in Y$, e quindi g è continua in \overline{y} , da cui necessariamente deriva che $g(\overline{y}) = \overline{z}$. Allora $g \circ f(x) = g(f(x)) = g(\overline{y}) = \overline{z} = \tilde{g}(\tilde{f}(\overline{x}))$.

Si conclude allora che $\widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f}$, e quindi che $\widetilde{g \circ f}$ è continua in \overline{x} . Pertanto, dalla proposizione precedente, $g(f(x)) \xrightarrow[x \to \overline{x}]{\overline{x}} \overline{z}$.

Esercizio 1. Mostrare che tutte le ipotesi della proposizione precedente sono necessarie, fornendo alcuni controesempi.

Proposizione. Date $f_1, f_2: X \to \mathbb{R}$ continue in \overline{x} . Allora:

- (i) $f_1 + f_2$ è continua in \overline{x} ,
- (ii) f_1f_2 è continua in \overline{x} .

Dimostrazione. Si dimostrano i due punti separatamente.

- (i) Sia $f := f_1 + f_2$. Poiché f_1, f_2 sono continue in $\overline{x}, \forall \varepsilon > 0, \exists \delta > 0 \mid |x \overline{x}| < \delta \implies |f_1(x) f_1(\overline{x})|, |f_2(x) f_2(\overline{x})| \le \varepsilon$ (per ogni $\varepsilon > 0$, si prende $\delta = \min\{\delta_1, \delta_2\}$, ossia il minimo delle semilunghezze degli intorni di \overline{x}). Allora $|f(x) f(\overline{x})| \le |f_1(x) f_1(\overline{x})| + |f_2(x) f_2(\overline{x})| \le 2\varepsilon$. Si conclude dunque che $\forall \varepsilon > 0, \exists \delta > 0 \mid |f(x) f(\overline{x})| \le 2\varepsilon$, e quindi, poiché $2\varepsilon \xrightarrow[\varepsilon \to 0]{} 0$, che f è continua in \overline{x} .
- (ii) Dal momento che f_1, f_2 sono continue in $\overline{x}, \forall \varepsilon > 0$, $\exists \delta > 0$ tale che $|x \overline{x}| < \delta \implies |f_1(x) f_1(\overline{x})| < \varepsilon, |f_2(x) f_2(\overline{x})| < \varepsilon$ (vale lo stesso ragionamento del punto (i)). Allora $f_1(x) = f_1(\overline{x}) + e_1$ e $f_2(x) = f_2(\overline{x}) + e_2$, con $|e_1|, |e_2| < \varepsilon$. Dunque $f_1(x)f_2(x) = f_1(\overline{x})f_2(\overline{x}) + e_2$

 $\underbrace{e_1f_2(\overline{x}) + e_2f_1(\overline{x}) + e_1e_2}_{e}. \text{ In particolare, per la disuguaglianza triangolare, } |e| \leq |e_1f_2(\overline{x})| + |e_2f_1(\overline{x})| + |e_1e_2| \leq \underbrace{\varepsilon |f_2(\overline{x})| + \varepsilon |f_1(\overline{x})| + \varepsilon^2}_{\varepsilon'}.$ Poiché $\varepsilon' \xrightarrow[\varepsilon \to 0^+]{} 0$, si conclude che $|f_1(x)f_2(x) - f_1(\overline{x})f_2(\overline{x})| = |e| \leq \varepsilon' \implies f_1(x)f_2(x) \text{ continua in } \overline{x}.$

Proposizione. Date $f_1, f_2: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X. Se $\lim_{x \to \overline{x}} f_1(x) = L_1 \in \mathbb{R}$ e $\lim_{x \to \overline{x}} f_2(x) = L_2 \in \mathbb{R}$, allora valgono i seguenti risultati:

(i)
$$f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} L_1 + L_2$$
,

(ii)
$$f_1(x)f_2(x) \xrightarrow[x \to \overline{x}]{} L_1L_2$$
.

Dimostrazione. Si definiscono preliminarmente le funzioni \tilde{f}_1 , $\tilde{f}_2: X \cup \{\overline{x}\} \to \mathbb{R}$ in modo tale che:

$$\tilde{f}_1(x) = \begin{cases} L_1 & \text{se } x = \overline{x}, \\ f_1(x) & \text{altrimenti,} \end{cases}$$
 $\tilde{f}_2(x) = \begin{cases} L_2 & \text{se } x = \overline{x}, \\ f_2(x) & \text{altrimenti.} \end{cases}$

Si dimostrano allora i due risultati separatamente.

(i) Si definisce $\widetilde{f_1+f_2}:X\cup\{\overline{x}\}\to\overline{\mathbb{R}}$ nel seguente modo:

$$\widetilde{f_1 + f_2}(x) = \begin{cases}
L_1 + L_2 & \text{se } x = \overline{x}, \\
f_1(x) + f_2(x) & \text{altrimenti.}
\end{cases}$$

La somma $L_1 + L_2$ è ben definita dacché sia L_1 che L_2 sono elementi di \mathbb{R} . Poiché da una proposizione precedente \tilde{f}_1 e \tilde{f}_2 sono continue in \overline{x} , $\tilde{f}_1 + \tilde{f}_2$ è continua anch'essa in \overline{x} . È sufficiente allora dimostrare che $f_1 + f_2 = \tilde{f}_1 + \tilde{f}_2$. Se $x \neq \overline{x}$, $f_1 + f_2(x) = f_1(x) + f_2(x) = \tilde{f}_1(x) + \tilde{f}_2(x) = (\tilde{f}_1 + \tilde{f}_2)(x)$. Se invece $x = \overline{x}$, $f_1 + f_2(x) = L_1 + L_2 = \tilde{f}_1(x) + \tilde{f}_2(x) = (\tilde{f}_1 + \tilde{f}_2)(x)$. Quindi $f_1 + f_2 = \tilde{f}_1 + \tilde{f}_2$, e si conclude che $f_1 + f_2$ è dunque continua in \overline{x} , ossia che $(f_1 + f_2)(x) = f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} + L_2$.

(ii) Si definisce, analogamente a prima, $\widetilde{f_1f_2}:X\cup\{\overline{x}\}\to\overline{\mathbb{R}}$ nel seguente modo:

$$\widetilde{f_1f_2}(x) = \begin{cases} L_1L_2 & \text{se } x = \overline{x}, \\ f_1(x)f_2(x) & \text{altrimenti.} \end{cases}$$

Il prodotto L_1L_2 è ben definito dacché sia L_1 che L_2 sono elementi di \mathbb{R} . Poiché da una proposizione precedente \tilde{f}_1 e \tilde{f}_2 sono continue in \overline{x} , $\tilde{f}_1\tilde{f}_2$ è continua anch'essa in \overline{x} . È sufficiente allora dimostrare che $\tilde{f}_1f_2=\tilde{f}_1\tilde{f}_2$. Se $x\neq\overline{x}$, $\tilde{f}_1f_2(x)=f_1(x)f_2(x)=\tilde{f}_1(x)\tilde{f}_2(x)=(\tilde{f}_1\tilde{f}_2)(x)$. Se invece $x=\overline{x}$, $f_1f_2(x)=L_1L_2=\tilde{f}_1(x)\tilde{f}_2(x)=(\tilde{f}_1\tilde{f}_2)(x)$. Quindi $f_1f_2=\tilde{f}_1\tilde{f}_2$, e si conclude che f_1f_2 è dunque continua in \overline{x} , ossia che $(f_1f_2)(x)=f_1(x)f_2(x)\xrightarrow[x\to\overline{x}]{}L_1L_2$.

Definizione. (intorno destro e sinistro) Se $\overline{x} \in \mathbb{R}$, si dicono **intorni destri** gli intervalli della forma $[\overline{x}, \overline{x} + \varepsilon]$ con $\varepsilon > 0$. Analogamente, gli **intorni sinistri** sono gli intervalli della forma $[\overline{x} - \varepsilon, \overline{x}]$.

Definizione. (punto di accumulazione destro e sinistro) Sia $\overline{x} \in X$. Si dice che \overline{x} è un **punto di accumulazione destro** di X se $\forall I$ intorno destro di \overline{x} , $I \cap X \setminus \{\overline{x}\} \neq \emptyset$. Analogamente si dice **punto di accumulazione** sinistro di X se è tale per gli intorni sinistri.

Definizione. (limite destro e sinistro) Sia \overline{x} un punto di accumulazione destro di X. Allora $\lim_{x\to \overline{x}^+} f(x) = L \iff \forall I$ intorno di L, $\exists J$ intorno destro di \overline{x} tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq I$. Analogamente si definisce il limite sinistro.

Definizione. (continuità destra e sinistra) Sia $\overline{x} \in X$. Allora f è continua a destra in \overline{x} se e solo se $\forall I$ intorno di $f(\overline{x})$, $\exists J$ intorno destro di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$. Analogamente si definisce la continuità a sinistra di f.

Osservazione. Vi sono chiaramente alcuni collegamenti tra la continuità destra e sinistra e la continuità classica, così come ve ne sono tra il limite destro e sinistro ed il limite classico.

▶ \overline{x} punto di accumulazione destro e sinistro di $X \Longrightarrow \overline{x}$ punto di accumulazione di X (non è però per forza vero il contrario, è sufficiente considerare 0 in $(0,\infty)$),

- ightharpoonup f è continua in $\overline{x} \iff f$ è continua sinistra e destra in \overline{x} ,
- ▶ se \overline{x} è un punto di accumulazione destro e sinistro, $\lim_{x\to \overline{x}} f(x) = L \iff \lim_{x\to \overline{x}^+} f(x) = L$ e $\lim_{x\to \overline{x}^-} f(x) = L$,
- ▶ se \overline{x} è un punto di accumulazione solo destro, $\lim_{x\to \overline{x}} f(x) = L \iff \lim_{x\to \overline{x}^+} f(x) = L$,
- ▶ se \overline{x} è un punto di accumulazione solo sinistro, $\lim_{x\to \overline{x}} f(x) = L \iff \lim_{x\to \overline{x}^-} f(x) = L$.

Proposizione. Sia $f: X \to \overline{\mathbb{R}}$ monotona e sia \overline{x} un punto di accumulazione destro di X. Allora esiste $\lim_{x \to \overline{x}^+} f(x)$. Analogamente esiste da sinistra se \overline{x} è un punto di accumulazione sinistro di X.

Dimostrazione. Senza perdità di generalità, si assuma f crescente (per il caso decrescente è sufficiente considerare g(x)=-f(x)) Si consideri l'insieme:

$$E = \{ f(x) \mid x > \overline{x} \in X \in X \}.$$

Si consideri adesso $L=\inf E$ e un suo intorno I. Se non esistesse un intorno destro J di \overline{x} tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq I$, allora sup I sarebbe un minorante di E maggiore di L, \mathcal{I} . Quindi tale J esiste, da cui la tesi. Analogamente per il caso sinistro.

Esempio. (funzione discontinua in ogni punto di \mathbb{R}) Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita nel seguente modo:

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q}, \\ 0 & \text{altrimenti,} \end{cases}$$

ossia la funzione indicatrice dell'insieme \mathbb{Q} in \mathbb{R} .

Esercizio 2. Mostrare che l'insieme dei punti di discontinuità di una funzione $f: X \to \mathbb{R}$ monotona è al più numerabile.

Teorema. (della permanenza del segno) Data $(x_n) \subseteq \mathbb{R}$ tale che $x_n \xrightarrow[n \to \infty]{} L > 0$, allora (x_n) è strettamente positiva definitivamente. Analogamente, se L < 0, (x_n) è negativa definitivamente.

Dimostrazione. Senza perdita di generalità si pone L>0. Allora esiste sicuramente un intorno I di L tale che ogni suo elemento è positivo (e.g. $I=[\frac{L}{2},\frac{3L}{2}]$, se $L\in\mathbb{R}$, altrimenti $[a,\infty]$ con a>0 se $L=+\infty$). Dal momento che $x_n\xrightarrow[n\to\infty]{}L$, $\exists n_k\mid n\geq n_k\implies x_n\in I$, ossia, in particolare, $n\geq n_k\implies x_n>0$, da cui la tesi.

Proposizione. Sia $f: X \to \overline{\mathbb{R}}$ e sia \overline{x} un punto di accumulazione di X. Se $\lim_{x \to \overline{x}} f(x) = L > 0$, allora $\exists J$ intorno non vuoto di \overline{x} tale che f(x) > 0 $\forall x \in J \cap X \setminus \{\overline{x}\}.$

Dimostrazione. Analogamente a come visto per il teorema del segno, si pone L>0. Allora esiste sicuramente un intorno I di L tale che ogni suo elemento è positivo. Poiché $\lim_{x\to \overline{x}} f(x) = L>0$, deve esistere un intorno J di \overline{x} tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq I$. In particolare, $J\cap X\setminus\{\overline{x}\}$ non è mai vuoto, dal momento che \overline{x} è un punto di accumulazione di X, e vale che f(x)>0 $\forall x\in J\cap X\setminus\{\overline{x}\}$ (dal momento che $f(x)\in I$, che ha tutti elementi positivi), da cui la tesi.

Teorema. (degli zeri) Dati I = [a, b] e $f : I \to \overline{\mathbb{R}}$ continua tale che f(a)f(b) < 0 (i.e. sono discordi), allora $\exists c \in (a, b) \mid f(c) = 0$.

Dimostrazione. Senza alcuna perdita di generalità si pone f(a) < 0 < f(b) (il caso f(a) > 0 > f(b) è infine dimostrato considerando g(x) = -f(x)). Si definisce allora l'insieme E in modo tale che:

$$E = \{ a \in I \mid f(a) < 0 \}.$$

Si osserva che $E \neq \emptyset$, dacché $a \in E$. Per la completezza dei numeri reali, E ammette un estremo superiore $\overline{x} := \sup E$. Sia $(x_n) \subseteq E$ una successione tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$: poiché f è continua in \overline{x} , $\lim_{x \to \overline{x}} f(x) = f(\overline{x}) \implies f(x_n) \xrightarrow[n \to \infty]{} f(\overline{x})$. Allora, poiché $f(x_n) < 0 \ \forall n \in \mathbb{N}, \ f(\overline{x}) \leq 0$ (se così non fosse $f(x_n)$ dovrebbe essere definitivamente positiva per il teorema della permanenza del segno, ma questo è assurdo dacché $x_n \in E \ \forall n \in \mathbb{N}, \ f$).

Sia ora $(y_n) \in I$ una successione tale che $y_n \xrightarrow[n \to \infty]{} \overline{x}$ e che $y_n > \overline{x} \forall n \in \mathbb{N}$ (questo è sempre possibile dal momento che $\overline{x} \neq b \iff f(\overline{x}) \leq 0$). Allora, poiché $y_n > \overline{x} = \sup E$, y_n non appartiene ad E, e quindi deve valere che $f(y_n) > 0$. Si conclude allora, per il teorema della permanenza del segno, che $f(\overline{x}) \geq 0$, e quindi che $f(\overline{x}) = 0$, da cui la tesi.

Corollario. (dei valori intermedi) Dati I = (a, b) e $f : I \to \mathbb{R}$ continua, allora $y_1, y_2 \in f(I) \Longrightarrow [y_1, y_2] \subseteq f(I)$ (ossia f assume tutti i valori compresi tra y_1 e y_2).

Dimostrazione. Supponiamo $y_1 < y_2$: poiché y_1 , y_2 appartengono già a f(I), è sufficiente mostrare che an che ogni $y \in (y_1, y_2)$ appartiene a f(I). Dal momento che $y_1, y_2 \in f(I)$, $\exists x_1, x_2 \in I \mid f(x_1) = y_1$ e $f(x_2) = y_2$.

Si consideri allora $g: I \to \overline{\mathbb{R}}$ tale che g(x) = f(x) - y. Allora $g(x_1) = y_1 - y < 0$, mentre $g(x_2) = y_2 - y > 0$. Pertanto, per il teorema degli zeri, $\exists \overline{x} \in (x_1, x_2) \mid g(\overline{x}) = 0 \implies f(\overline{x}) = y$. Si conclude allora che anche $y \in f(I)$, da cui la tesi.