MA211 **Lecture 12: Class Test**

Wed 16 October 2008

Q1. Using that $\cosh(x) = \frac{1}{2} \left(e^{-x} + e^x \right)$ and $\sin(x) = \frac{1}{2} \left(e^{-x} - e^x \right)$ to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

.....

Q2. Write down the general solution to the following differential equations:

(i)
$$25y'' - 20y' + 4y = 0$$
.

(ii)
$$y'' + y' - 12y = 0$$

Q3. Find values of b and c such that $y(x) = \cosh(2x)$ is a solution to the differential equation:

$$y'' + by' + cy = 0.$$

Q1

Using that $\cosh(x) = \frac{1}{2} (e^{-x} + e^x)$ and $\sin(x) = \frac{1}{2} (e^{-x} - e^x)$ to show that

$$\cosh^2 x - \sinh^2 x = 1.$$

Q2 (i)

Write down the general solution to the following differential equation: 25y'' - 20y' + 4y = 0.

Q2 (ii)

Write down the general solution to the following differential equation: y'' + y' - 12y = 0

Q3

Find values of b and c such that $y(x) = \cosh(2x)$ is a solution to the differential equation:

$$y'' + by' + cy = 0.$$