编译原理HW3 习题答案

3.8

- a) 消除习题3.1文法的左递归
- b) 为a)的文法构建预测分析器

题目3.1文法:

- $S \rightarrow (L) \mid a$
- $L \rightarrow L, S \mid S$

不管有多少 A 产生式,都可以用下面的技术消除直接左递归。首先把 A 产生式组合在一起:

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

其中 β 。都不以A开始, α 。都非空,然后用

$$A \rightarrow \beta_1 A' + \beta_2 A' + \cdots + \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \varepsilon$$

代替 A 产生式。这些产生式和前面的产生式产生一样的串集,但是不再有左递归。这个过程可删除直接左递归,但不能消除两步或多步推导形成的左递归。例如,考虑文法

参考课本第五十页,消除左递归的办法可得新的非左递归文法:

- $S \rightarrow (L) \mid a$
- $L \rightarrow SL^1$
- $L^1 \rightarrow ,SL^1|\varepsilon$

备注:就仅消除左递归而言答案不止一种,但 是这可能导致第二题分析器构建具有二义性。

```
if ( lookahead == t )
                                                                         lookahead = nextToken();
3.8
                                                               else
                                                                         error();
a) 消除习题3.1文法的左递归
                                                     void S() {
b) 为a)的文法构建预测分析器
                                                               if ( lookahead == '(' ) {
                                                                         match('(');
                                                                        L();
                                                                         match(')');
 A) 中答案, 由此构建预测
                                                               } else if ( lookahead == 'a' ) {
                                                                        match('a');
 分析器. 这里应提供伪代码.
                                                               } else {
                                                                         error();
 参考书本57页
 • S \rightarrow (L) \mid a
                                                     }
 • L \rightarrow SL^1
                                                    void L() {
 • L^1 \rightarrow SL^1 | \varepsilon
                                                               S();
                                                               L1();
Note:注意函数L1()并不唯一.
     First(L^1) = \{ \setminus, , \varepsilon \}
     Follow(L^1) = \{ \} 
                                                                            void L1() {
                                                                                      if ( lookahead == ',' ) {
                                  void L1() {
                                                                                                 match(',');
                                            if ( lookahead == ',' ) {
                                                                                                 S();
                                                      match(',');
                                                                                                 L1();
                                                      S();
                                                                                      } else if ( lookahead == ')' ) {
                                                      L1();
                                            } else {
                                                                                                 return;
                                                      return;
                                                                                      } else {
                                                                                                 error();
```

void match (terminal t) {

3.10 构建下列文法的LL(1)分析表

$$\begin{array}{c} D \rightarrow TL \\ T \rightarrow int \mid real \\ L \rightarrow id R \\ R \rightarrow ,id R \mid \varepsilon \end{array}$$

首先先计算First和Follow集合

$$First$$
集合:
 $First(D) = First(T) = \{int, real\}$
 $First(L) = \{id\}$
 $First(R) = \{\setminus,, \varepsilon\}$

Follow集合: $Follow(D) = Follow(L) = Follow(R) = \{\$\}$ $Follow(T) = \{id\}$

所以LL(1)文法分析表为:

	int	real	id	,	\$
D	$D \to TL$	$D \to TL$			
T	$T \rightarrow int$	$T \rightarrow real$			
L			$L \rightarrow id R$		
R				$R \rightarrow , id R$	$R \rightarrow \varepsilon$

3.12

下面的文法是否为LL(1)文法

```
S \to AB \mid PQx
A \to xy
B \to bc
P \to dP \mid \epsilon
Q \to aQ \mid \epsilon
```

 $First(AB) = \{x\}$ $First(PQx) = \{d, a, x\}$ $First(AB) \cap First(PQx) \neq \Phi$ 所以该文法不是LL(1)文法

3.16

- (a) 用习题3.1的文法构造 (a, (a,a))的最右推导,说出每个右句型的句柄
- (b) 给出对应 (a)的移进规约分析器的步骤
- (c) 对照(b)的移进规约,给出自下而上构造分析树的步骤

附:3.1的文法:

S→(L)|a L→L, S|S

(a) 构造最右推导,并说出每个右句型的句柄

对于 $S \Rightarrow (a, (a, a))$, 最右推导如下:

$$S \Rightarrow_{rm} \underbrace{(L)}_{(\underline{L},\underline{S})}$$

$$\Rightarrow_{rm} \underbrace{(L,\underline{(L)})}_{rm}$$

$$\Rightarrow_{rm} \underbrace{(L,\underline{(L,\underline{S})})}_{rm}$$

$$\Rightarrow_{rm} \underbrace{(L,(\underline{L},\underline{a}))}_{rm}$$

$$\Rightarrow_{rm} \underbrace{(L,(\underline{a},a))}_{rm}$$

$$\Rightarrow_{rm} \underbrace{(S,(a,a))}_{rm}$$

$$\Rightarrow_{rm} \underbrace{(a,(a,a))}_{rm}$$

(b) 给出移进-归约分析器的分析步骤

栈	输入	动作
\$	(a,(a,a))\$	移进
\$(a,(a,a))\$	移进
(a	,(a,a))\$	按 $S o a$ 归约
S(S)	,(a,a))\$	按 $L o S$ 归约
\$(L	,(a,a))\$	移进
\$(L,	(a,a))\$	移进
\$(L,((a,a)	移进
L, (a)	,a))\$	按 $S ightarrow a$ 归约
L,(S)	,a))\$	按 $L o S$ 归约
\$(L,(L	,a))\$	移进
(L,(L,	a))\$	移进
L, (L, a)))\$	按 $S o a$ 归约
(L,(L,S))))\$	按 $L o L, S$ 归约
\$(L,(L))\$	移进
\$(L,(L))\$	按 $S o (L)$ 归约
\$(L,S))\$	按 $L o L, S$ 归约
\$(L)\$	移进
\$(L)	\$	按 $S o (L)$ 归约
\$S	\$	接受