Week 8 - Lecture 39

Suffices to show that:

$$\exists \mu, \mu' \in [0, 1]^K$$
 s.t.

$$\max \left\{ R_{\tau}(\pi, \nu), R_{\tau}(\pi, \nu') \right\} \geq C \sqrt{KT}$$

$$M_i = \begin{cases} \Delta & i=1 \\ 0 & i\neq 1 \end{cases}$$

 \leftarrow For this bandit instance arm 1 is optimal

$$R_{\tau}(\pi, v) = (T - E[N, (T)]) \triangle$$

$$\exists i \neq 1$$
 S.t. $\mathbb{E}[N_{i}(T)] \leq \frac{T - \mathbb{E}[N_{i}(T)]}{K - 1}$
(should be at least one arm like this) $\leq \frac{T}{K - 1}$ (upper - bounding)

Construct
$$\mu' \in [0,1]^K$$
 as
$$\mu'_j = \left\{ \begin{array}{ll} \mu_j & j \neq i \\ 2\Delta & j = i \end{array} \right. \left[\begin{array}{ll} \mu_j = (\Delta,0,0,0,0,0,0) \\ \mu'_j = (\Delta,0,0,2\Delta,0,0) \end{array} \right]$$

The two instances differ only in the ith arm, the optimal arms are different for both cases.

Now the task is to set \triangle s.t. the algorithm cannot distinguish between the two instances.

Expected Regret for 2nd bandit instance

$$R_{\tau}(\pi, \nu') = E'[N_{1}(\tau)] \triangle + \underbrace{S}_{j \neq i, 1} E'[N_{j}(\tau)] 2 \triangle$$
regret due to regret for other arm 1 arms

 $\mathcal{R}_{\tau}(\pi, \nu') \geq \Delta \mathbb{E}[N, (\tau)]$

Let
$$\triangle = \sqrt{\frac{1}{\mathbb{E}[N_i(T)]}} > \sqrt{\frac{K-1}{T}}$$

Then we expect

$$\mathbb{E}\left[N_{1}(T)\right] \approx \mathbb{E}\left[N_{1}(T)\right]$$

Consider that:

1)
$$\mathbb{E}[N_{1}(T)] < T/2$$
 $R_{T}(T, v) = (T - \mathbb{E}[N_{1}(T)]) \triangle$
 $\geq \frac{T}{2} \triangle \geq \frac{1}{2} \sqrt{T(K-1)}$

2) $\mathbb{E}[N_{1}(T)] \geq T/2$
 $R_{T}(T, v') \geq \triangle \mathbb{E}'[N_{1}(T)]$
 $\approx \triangle \mathbb{E}[N_{1}(T)] \geq \frac{1}{2} \sqrt{T(K-1)}$

Some Definitions from Information Theory

$$P = (P_1, P_2, \dots P_K)$$

$$H(P) = \sum_{i=1}^{K} P_i \log \frac{1}{P_i}$$

$$P_i$$

$$Entropy$$

Amount of information contained is inversely proportional to its probability.

Hence while encoding something:

-> code frequent events with smarrer come -> code rare events with larger code Entropy gives the length of code for information

Let P&Q are defined on same prob. space. Then;

Then:
$$D(P||Q) = \sum_{i=1}^{K} P_i \log \frac{P_i}{q_i} \quad \text{an discreet r.v.}$$

$$= -H(P) + \underset{i=1}{\overset{K}{\leq}} P_i \log \frac{1}{q_i} > 0$$

Suppose message is generated by Pi but wrongly interpreted as from Qi, then the length anigned to the message would be $\underset{i=1}{\overset{K}{\sum}} P_i \log \frac{1}{q_i}$,

but that would be wrong, and -H(P) is the best that could have been done.

K-L Divergence is not transitive, hence not a true metric, but measures divergence between 2 probability distributions.

$$D(PIIQ) = \left\{ \int_{\omega} \log \left(\frac{dP}{dQ}(\omega) \right) dp(\omega) \right. \text{ if } p < < Q \right.$$

[defined for continous r.v.]

Let
$$P \sim N(\mu_1, \sigma^2)$$

 $Q \sim N(\mu_2, \sigma^2)$
 $D(P,Q) = (\mu_1 - \mu_2)^2$
 $2 \sigma^2$

Theorem: Let P&Q be probability measures on the same measurable space $(-\Sigma, F)$.

Let $A \in F$ be an arbitrary event. Then, $P(A) + Q(A') \ge \frac{1}{2} \exp(-D(PIIQ))$ where $A' = S\Sigma \setminus A$