Drowsiness Detection

Advanced Mobile Computing Class

Team 5: Do II Yoon, Hyun Seok Oh, Hyunik Kim, Phil Goo Kang

Table of Contents

- 1. Introduction
- 2. Schedule
- 3. Development Process

Introduction

- Driving is a common task done by countless people everyday.
- A big portion of accidents on road is caused by fatigued, drowsy drivers.

Characteristics to Drowsy Driving

- Researchers found several characteristics linked to drowsy driving [1][2]:
 - Occur late at night (0:00 am-7:00 am) or during mid-afternoon (2:00 pm-4:00 pm)
 - Occur on high-speed roadways
 - Driver is often alone
 - Change in eye blink duration

Possibility of Sensing & Detecting Drowsiness from Driver

- By carefully observing drivers' seat:
 - Drive-aid smartphone applications are prevalent among drivers (ex. Google Maps, T-map)
 - Phones are attached in the place where they don't impede drivers' vision, faced towards drivers at the same time
 - → Possible to use front cameras, proximity sensors

Schedule and Role

	Advance Mobile Computing Project Schedule		3월				4월			
		1	2	3	4	1	2	3	4	1
Oh	Hyun Seok									
1	Discuess Idea & Make Presentation									
2	Setup Development Environment									
3	Read research paper about drowsyness									
4	Create setting page where user can designate the person to call									
5	Utilize android phone call api to make phone call automatically									
7	Work on middle presentation									
6	Detect unanswered phone, reattempt phone call									
8	Testing and debuging									
9	Work on final presentation									
Kaı	ng Phil Goo									
1	Discuess Idea & Make Presentation									
2	Setup Development Environment									
3	Read research paper about drowsyness									
4	Use android accelerometer to create a scale to determine type of movement									
5	Use accelerometer and use scale to detect movement is driving									
8	Work on middle presentation									
6	Utalize phone GPS sensor to detect current location									
7	Juxtapose google's map with current GPS location to detect on highway									
9	Testing and debuging									
10	Work on final presentation									

Schedule and Role

Advance Mobile Computing Project Schedule		3월				4월				
		1	2	3	4	1	2	3	4	1
You	on Do II									
1	Discuess Idea & Make Presentation	0.								
2	Setup Development Environment									
3	Read research paper about drowsyness									
4	Use android system thread to poll the current time									
5	Create a class that uses mic sensor to detect people talking									
6	The mic class must be able to ignore music, radio audio	I								
7	Work on middle presentation									
8	Use the custom class to detect if user is alone in the car									
9	Testing and debuging									
10	Work on final presentation									
Kin	ı Hyun İk									5
1	Discuess Idea & Make Presentation									
2	Setup Development Environment									
3	Read research paper about drowsyness									
4	Create a polling system the turns the camera sensor on to capture eyes									
5	Use a image processing system to find eye's in the video stream if camera									
7	Work on middle presentation									
6	Count number of blinks per time period T and determine drowsy level									
8	Testing and debuging									
9	Work on final presentation									

After-detection & UI

Designated Peer calling

- Call the peer when driver is classified as drowsy
 - Drowsiness Detector is not implemented, so currently press button to call
- Can save peer phone number in setting
- TODO: Android api cannot detect whether outgoing call is rejected or not responded, so should find ways to detour this
- UI design
 - Two tabs(Fragments), one for camera preview and other for settings

- Tensorflow Lite on detector module
 - Separate background thread for drowsiness detection
 - CNN module on sliding window input
 - Just for testing the system, not in work, model will change in the future
 - RNN or LSTM is almost impossible in TF Lite currently
 - Easiest and lightweight deep-learning framework for mobile inference.
- Attached other modules
 (Accelerometer, Location) to a whole system
 - Aim to attach audio and eye blinking data to the system

Eye Detection

- Used OpenCV Library to extract features from the front camera
- LBP classifier is used to detect face
- Haar classifier is used to detect eyes from the face
- Several Challenges:
 - Current detection causes too much overhead
 - Orientation Issue (Default: Landscape mode)
 - People wearing glasses

[1/2]

- Utilize smartphone native android accelerometer API
- Created background service (thread) to continually retrieve accelerometer sensor data
- Different types of sensor options:
 - TYPE_ACCELEROMETER: add options like offset and angle
 - TYPE_ACCELEROMETER_UNCALIBRATED: actual raw hardware value
 - TYPE_LINEAR_ACCELERATION: applies gravity and rotation calculations then returns value

- Energy Efficiency:
 - Constantly using sensor drains battery very quickly
 - Use a polling method to reduce power drain (ex 10s)
 - TODO: Need additional research for best performance level
- Sensor options:
 - Android OS collects hardware sensor data via different types of algorithms
 - As mentioned before current test show TYPE_LINEAR_ACCELERATION as best option
 - TODO: Need to check for other types of data cleaning (preprocessing)

Integrating Location Tracker

- Two methods of user location tracking is available:
 - GPS: Global Positioning System
 - LBS: Networking based locating service
- Because user is inside of a car, we will be using both methods to improve accuracy
- Location tracking API only allows polling method to retrieve data
- We are testing using 1s as polling interval but through test we will try to configure best option
- TODO: Need to integrate both accelerometer and location tracking sensor data to help determine drowsing

Integrating Speaker Detection

Integrating Speaker Detection

- Use the MediaRecorder API to get audio data stream
- Pass the audio segments to the Speech Detector module

