

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-072668
 (43)Date of publication of application : 12.03.2002

(51)Int.CI.

G03G 15/08
 C08K 3/02
 C08K 3/18
 C08K 7/16
 C08L 25/04
 C08L 31/02
 C08L 33/00
 C08L 83/04

(21)Application number : 2000-266584

(22)Date of filing : 04.09.2000

(71)Applicant :

CANON INC

(72)Inventor :

OTAKE SATOSHI
 OKAMOTO NAOKI
 GOSEKI YASUHIDE
 FUJISHIMA KENJI
 SHIMAMURA MASAYOSHI
 SAIKI KAZUNORI

(54) DEVELOPER CARRIER AND DEVELOPING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a developer carrier where toner is prevented from being excessively electrified and the electrified amount of the toner is kept high, on which the fusion of toner is hardly caused, where the lowering of image density, a white stripe and blotch caused by the excessive electrification and the fusion of the toner are effectively prevented and by which a stable image is obtained even in the case of long-term service under various kinds of environment, and a developing device having the developer carrier.

SOLUTION: This developer carrier used in the developing device where a latent image formed on an electrostatic latent image carrier is developed to be a visible image with developer carried and fed by the developer carrier 14 has at least a base substance and a resin layer 13 formed on the surface of the base substance. Binding resin used in the resin layer has the copolymer of at least a vinyl polymerized monomer and sulfonic acid containing acrylamid monomer in the developer carrier and the developing device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-72668

(P2002-72668A)

(43)公開日 平成14年3月12日 (2002.3.12)

(51)Int.Cl.
G 0 3 G 15/08

識別記号
5 0 1

F I
G 0 3 G 15/08

テマコート(参考)
5 0 1 D 2 H 0 7 7

C 0 8 K 3/02
3/18
7/16

C 0 8 K 3/02
3/18
7/16

5 0 1 C 4 J 0 0 2

審査請求 未請求 請求項の数16 O L (全 18 頁) 最終頁に続く

(21)出願番号 特願2000-266584(P2000-266584)

(22)出願日 平成12年9月4日 (2000.9.4)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 大竹 智

東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内

(72)発明者 岡本 直樹

東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内

(74)代理人 100077698

弁理士 吉田 勝広 (外1名)

最終頁に続く

(54)【発明の名称】 現像剤担持体及び現像装置

(57)【要約】 (修正有)

【課題】 トナーの過剰帶電を防止し、且つ、トナーの帶電量を高めに保持させ、現像剤担持体上へのトナー融着が発生しにくく、これらによって引き起こされる画像濃度の低下、白筋及びブロッヂ等の発生が有効に防止され、しかも、種々の環境下における長期耐久においても安定な画像が得られ現像剤担持体、及び該現像剤担持体を有する現像装置の提供。

【解決手段】 静電潜像担持体上に形成された潜像を現像剤担持体14により担持搬送された現像剤により現像し、可視像化する現像装置に用いられる現像剤担持体であって、少なくとも基体及び基体表面に形成された樹脂層13を有し、樹脂層に用いられている結着樹脂に、少なくともビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体を有する現像剤担持体、及び現像装置。

【特許請求の範囲】

【請求項1】 静電潜像担持体上に形成された潜像を現像剤担持体により担持搬送された現像剤により現像し、可視像化する現像装置に用いられる現像剤担持体であって、少なくとも基体及び基体表面に形成された樹脂層を有し、該樹脂層に用いられている結着樹脂に、少なくともビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体が含有されていることを特徴とする現像剤担持体。

【請求項2】 前記共重合体は、ビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合比(重量%)が、98:2~80:20であり、且つ、重量平均分子量M_wが2,000~50,000の共重合体である請求項1に記載の現像剤担持体。

【請求項3】 前記共重合体が、ビニル系重合性单量体と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体である請求項1又は2に記載の現像剤担持体。

【請求項4】 前記樹脂層が、導電性微粉末及び/又は固体潤滑剤を含有した導電性樹脂層である請求項1~3のいずれか1項に記載の現像剤担持体。

【請求項5】 前記導電性樹脂層中に、更に個数平均粒径が0.3~30μmの樹脂層表面に凹凸を形成するための粒子が含有されている請求項4に記載の現像剤担持体。

【請求項6】 前記樹脂層表面に凹凸を形成するための粒子の形状が球状であり、且つ、真密度が3g/cm³以下である請求項5に記載の現像剤担持体。

【請求項7】 前記樹脂層表面に凹凸を形成するための粒子が、導電性の球状粒子である請求項5又は6に記載の現像剤担持体。

【請求項8】 前記導電性樹脂層に用いられている結着樹脂は、少なくとも、シリコーン樹脂、スチレン系樹脂及びアクリル系樹脂のいずれかを含有している請求項4~7のいずれか1項に記載の現像剤担持体。

【請求項9】 現像容器内に収容された現像剤を現像剤担持体上に担持し、該現像剤担持体上に現像剤層厚規制部材により現像剤の薄層を形成しながら、現像剤を潜像担持体と対向する現像領域へと搬送し、該現像領域で、潜像担持体上の潜像を現像剤により現像して可視像化する現像装置において、上記現像剤担持体は、少なくとも基体及び基体表面に形成された樹脂層を有し、該樹脂層に用いられている結着樹脂に、少なくともビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体が含有されていることを特徴とする現像装置。

【請求項10】 前記共重合体は、ビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合比(重量%)が、98:2~80:20であり、且つ、重量平均分子量M_wが2,000~50,000の共重合体である請求項9に記載の現像装置。

【請求項11】 前記共重合体が、ビニル系重合性单量体と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体である請求項9又は10に記載の現像装置。

【請求項12】 前記樹脂層が、導電性微粉末及び/又は固体潤滑剤を含有した導電性樹脂層である請求項9~11のいずれか1項に記載の現像装置。

【請求項13】 前記導電性樹脂層中に、更に個数平均粒径が0.3~30μmの樹脂層表面に凹凸を形成するための粒子が含有されている請求項12に記載の現像装置。

【請求項14】 前記樹脂層表面に凹凸を形成するための粒子の形状が球状であり、且つ、真密度が3g/cm³以下である請求項13に記載の現像装置。

【請求項15】 前記樹脂層表面に凹凸を形成するための粒子が、導電性の球状粒子である請求項13又は14に記載の現像装置。

【請求項16】 前記導電性樹脂層に用いられている結着樹脂は、少なくとも、シリコーン樹脂、スチレン系樹脂及びアクリル系樹脂のいずれかを含有している請求項12~15のいずれか1項に記載の現像装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、電子写真法、静電記録法及び磁気記録法等に用いられる静電潜像担持体上に形成された潜像を現像剤により現像して顕像化するための現像装置及び現像剤担持体に関する。

【0002】

【従来の技術】 従来、例えば、静電潜像担持体としての感光ドラム表面に形成された静電潜像を、一成分系現像剤であるトナーによって顕像化する現像装置としては、トナー粒子相互の摩擦、現像剤担持体としての現像スリーブとトナー粒子との摩擦、及び現像スリーブ上のトナー塗布量を規制する部材(現像剤層厚規制部材)とトナー粒子との摩擦等により、トナー粒子に正或いは負の電荷を与え、この帯電されたトナーを現像スリーブ上に極めて薄く塗布し、感光ドラムと現像スリーブとが対向している現像領域に搬送して、該現像領域において、トナーを感光ドラム表面の静電潜像に飛翔及び付着させ、感光ドラム上の静電潜像をトナー像として顕像化する方式のものがある。

【0003】 上述したような従来の現像装置に用いられる現像剤担持体は、例えば、金属、合金又は金属化合物を円筒状に成形し、その表面を、電解、プラスト及びヤスリ等で所定の表面粗度になるように処理したものが用いられている。しかしながら、このような現像剤担持体を使用した場合には、現像剤層厚規制部材によって現像剤担持体表面に形成される現像剤層において、現像剤担持体の表面近傍に存在する現像剤が非常に高い電荷を有する結果、現像剤担持体表面に鏡映力によって強烈に引

きつけられてしまい、トナーと現像剤担持体との摩擦機会が持てなくなり、トナーが好適な電荷を持てなくなることが生じる。このため、このような状況下で画像を形成すると、充分な現像及び転写が行われず、画像濃度ムラや文字飛び散り等の多い画像となることが起こる。

【0004】一方、近年では、省エネのために要求される現像剤の低温定着化や高精細画像形成を実現すべく、トナーの小粒径化が望まれている。そして、このような小粒径のトナーを用いる機種において上記したような従来の現像剤担持体を使用すると、下記に説明するように、充分に現像剤の低温定着化及び高精細画像の形成を実現させることが困難になる場合があった。例えば、現像剤の低温定着化を目的として、現像剤のガラス転移温度 T_g をより低めに設定したり、現像剤中にワックス等の低融点物質を多めに添加したりすることが行なわれるが、これらの現像剤は、電子写真装置等の装置本体の昇温等に影響されて、現像剤担持体上に融着し易く、その結果、形成される画像に、画像濃度の低下、白筋或いはプロッチ等を生じる場合がある。

【0005】又、特開平01-112253号公報や特開平02-284158号公報等には、高画質化及び高精細化のために、粒径の小さいトナーを用いることが提案されている。このような粒径の小さいトナーでは、単位重量当たりの表面積が大きくなるために表面電荷が大きくなり易く、所謂チャージアップ現象によりトナーが現像剤担持体に固着し、その結果、新たに現像剤担持体上に供給されてきた現像剤が帶電されにくくなり、現像剤の帶電量が不均一となり易い。現像剤の帶電量が不均一となると、画像上にスリープゴーストが発生し易く、特に得られる画像がベタ画像やハーフトーン画像等である場合においては、スジ状画像やモヤ状画像等のある不均質な画像となり易い。

【0006】これに対し、特開平01-277256号公報及び特開平03-36570号公報等に、このような過剰な電荷を有する現像剤の発生や、現像剤担持体への現像剤の強固な付着を防止するため、樹脂中に、カーボンやグラファイトの如き導電性物質や固体潤滑剤等の粉末を分散させた樹脂組成物からなる被膜（樹脂層）を現像剤担持体上に形成する方法が提案されている。かかる方法を用いることによって、上記した現象が大幅に軽減されることが認められる。しかしながら、この方法では、上記に挙げた粉末を多量に添加した場合には、チャージアップやスリープゴーストに対しては良好となるものの、被膜の表面が削れ易くなり、耐久を進めていった場合、現像剤担持体の表面粗さが不均一となり、トナーへの帶電が不均一となり易い。一方、逆に、粉末の添加量が少量であると、チャージアップやスリープゴーストの発生を抑制する効果が十分に得られないという問題が残る。

【0007】特開平02-304468号公報において

は、樹脂被覆層中に固体潤滑剤及びカーボンの如き導電性微粉末、更に球状粒子を分散させた導電性樹脂層を金属基材上に設けた現像スリープが提案されている。この現像スリープでは、現像スリープ被覆層表面の形状が均一化し、更に耐久における表面粗さの変化も少ないとから、スリープ上のトナーコーティングが安定化するためトナーの帶電が均一化し、この結果、スリープゴーストの発生、画像濃度の劣化、ベタ画像等におけるスジ・ムラ等の発生が抑制されて、画質がより安定化する。しかしながら、この現像スリープにおいても耐摩耗性は完全ではなく、更なる長期における耐久においては、導電性被覆層に摩耗が生じ、その場合にはトナーの帶電が不安定となり、画像不良の原因となる。又、前記したような低温定着トナーを用いた場合には、摩耗に起因して、トナーによるスリープ汚染及び融着が発生する可能性があり、これまた画像不良の原因となり易い。

【0008】又、特開平08-240981号公報においては、導電性被覆層中に分散した球状粒子を導電性球状粒子として、更に耐摩耗性を向上させ、現像スリープ表面の形状を更に安定させると共に、トナーの帶電を更に向上させ、且つ、導電性被覆層である樹脂層が多少摩耗した際にも、トナーによるスリープ汚染及び融着を抑制することのできる表面層を有する現像スリープが提案されている。しかしながら、更に長期に渡っての優れた現像特性、及び、スリープゴーストや、スジ・ムラ等が抑制された画像性が良好で、いかなる環境下においても幅広い現像ラチチュードを有する現像スリープの開発が望まれている。

【0009】
【発明が解決しようとする課題】従って、本発明の目的は、現像装置中で生じるトナーの過剰帶電を防止し、且つ、トナーの帶電量を高めに保持させ、又、現像剤担持体上へのトナー融着が発生しにくく、これらのことによって引き起こされる画像濃度の低下、白筋及びプロッチ等の発生を有效地に防止し得る現像剤担持体、及び該現像剤担持体を有する現像装置を提供することにある。又、本発明の目的は、特に粒径の小さいトナーを用いた場合に現れる、現像剤担持体表面でのトナーの不均一な帶電を抑制し、トナーに適正な帶電量を与えることのできる現像剤担持体、及び該現像剤担持体を有する現像装置を提供することにある。又、本発明の目的は、常温常湿の環境下においては勿論のこと、高温高湿度或いは低湿度の厳しい環境下においても良好な画像が得られる現像剤担持体、及び該現像剤担持体を有する現像装置を提供することにある。又、本発明の目的は、耐摩耗性に優れた現像剤担持体（現像スリープ）を提供することによって、あらゆる環境下における長期耐久においても、安定な画像が得られる現像剤担持体、及び該現像剤担持体を有する現像装置を提供することにある。

50 【0010】

【課題を解決するための手段】上記目的は、以下の本発明によって達成される。即ち、本発明は、静電潜像担持体上に形成された潜像を現像剤担持体により担持搬送された現像剤により現像し、可視像化する現像装置に用いられる現像剤担持体であって、少なくとも基体及び基体表面に形成された樹脂層を有し、該樹脂層に用いられている結着樹脂に、少なくともビニル系重合性単量体とスルホン酸含有アクリルアミド系単量体との共重合体が含有されていることを特徴とする現像剤担持体である。

【0011】又、本発明は、現像容器内に収容された現像剤を現像剤担持体上に担持し、該現像剤担持体上に現像剤層厚規制部材により現像剤の薄層を形成しながら、現像剤を潜像担持体と対向する現像領域へと搬送し、該現像領域で、潜像担持体上の潜像を現像剤により現像して可視像化する現像装置において、上記現像剤担持体を用いたことを特徴とする現像装置である。

【0012】更に、本発明の好ましい形態としては、ビニル系重合性単量体とスルホン酸含有アクリルアミド系単量体との共重合比（重量%）が、98:2～80:20であり、且つ、重量平均分子量M_wが2,000～50,000の共重合体であることが挙げられる。より好ましい形態としては、上記共重合体が、ビニル系重合性単量体と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体であることが挙げられる。導電性樹脂層に用いられている結着樹脂に、シリコーン樹脂、スチレン系樹脂及びアクリル系樹脂のいずれかの樹脂が含有された形態が挙げられる。

【0013】更に、本発明の好ましい形態としては、前記樹脂層が、導電性微粉末及び／又は固体潤滑剤を含有した導電性樹脂層であることが挙げられ、中でも、該導電性樹脂層に、更に個数平均粒径が0.3～30μmの樹脂層表面に凹凸を形成するための粒子が含有されている形態が挙げられる。又、該樹脂層表面に凹凸を形成するための粒子の形状が球状であり、且つ、真密度が3g/cm³以下であるもの、或いは、樹脂層表面に凹凸を形成するための粒子が、導電性の球状粒子であるものであることが好ましい。

【0014】

【発明の実施の形態】以下、好ましい実施の形態を挙げて、本発明を詳細に説明する。本発明者らは、上記した従来技術の課題について鋭意検討を行った結果、現像剤担持体表面に形成する樹脂層を構成する結着樹脂中に、少なくともビニル系重合性単量体とスルホン酸含有アクリルアミド系単量体との共重合体を含有させることにより、現像剤を迅速に帯電させ、且つ、高めに保持できることが可能であるにもかかわらず、トナーによる現像スリーブの汚染が生じ難く、又、高湿環境においても高い帯電量が得られ、低湿環境においても帯電過剰となることのない現像剤担持体を得ることが可能となることを知見して本発明に至った。

【0015】本発明において使用する上記共重合体は、ビニル系重合性単量体とスルホン酸含有アクリルアミド系単量体との比が98:2～80:20の共重合体であり、且つ、重量平均分子量が2,000～50,000の重合体であることが好ましい。共重合体におけるスルホン酸含有アクリルアミド系単量体の割合が2重量%より少なくなると、トナーに対して正電荷を誘起させる能力に劣る傾向にある。一方、共重合体におけるスルホン酸含有アクリルアミド系単量体の割合が20重量よりも多くなると、耐湿性等の環境安定性の悪化や、被膜特性の低下等が生じるので好ましくない。又、使用する重合体の重量平均分子量が2,000よりも少なくなると、低分子量成分が多過ぎるため、トナーがスリーブに付着又は固着し易くなったり、樹脂層の帯電付与性が低下する。一方、重合体の重量平均分子量が50,000よりも大きくなると、樹脂層を形成する他の樹脂との相溶性が悪化し、環境変動や経時により安定した帯電性が得られなくなる。又、分子量が高過ぎると、溶媒中における樹脂粘度が高くなつて塗工不良を生じたり、顔料類を添加した場合には分散不良の原因となり、被覆する樹脂層の組成が不均一になつてトナー帯電が安定せず、更に、樹脂被覆層の表面粗さが安定せず、耐摩耗性が減少する等の原因となる。

【0016】本発明において上記共重合体を製造するのに用いることのできるビニル系重合性単量体としては、例えば、スチレン、α-メチルスチレン、メチル（メタ）アクリレート、エチル（メタ）アクリレート、プロピル（メタ）アクリレート、n-ブチル（メタ）アクリレート、iso-ブチルメタクリレート、シクロヘキシル（メタ）アクリレート、ジメチル（アミノ）エチルメタクリレート、ジエチル（アミノ）メタクリレート、ヒドロキシエチル（メタ）アクリレート、（メタ）アクリル酸、酢酸ビニル及びプロピオン酸ビニル等が挙げられる。これらは単独で、若しくは、2種以上を混合して使用することができる。好ましい組み合わせとしては、スチレンとアクリル酸エステル又はメタクリル酸エステルとの組み合わせが挙げられる。尚、一般に、トナー用結着剤樹脂のガラス転移点は、70°C以下乃至60°C以下である場合が多いので、上記ビニル系重合性モノマーを使用するに際しては、基体を被覆して形成した樹脂層表面へのトナーの付着を避ける上で、65°C以上、好ましくは70°C以上、更に好ましくは90°C以上のガラス転移点を有する被覆膜（樹脂層）が形成されるように、適宜に材料を選択して被覆用の重合体とするのが好ましい。

【0017】又、上記に挙げたようなビニル系重合性単量体と共重合させるスルホン酸含有アクリルアミド系単量体としては、例えば、2-アクリルアミドプロパンスルホン酸、2-アクリルアミド-n-ブタンスルホン酸、2-アクリルアミド-n-ヘキサンスルホン酸、2

-アクリルアミド-*n*-オクタンスルホン酸、2-アクリルアミド-*n*-ドデカンスルホン酸、2-アクリルアミド-*n*-テトラデカンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-フェニルプロパンスルホン酸、2-アクリルアミド-2, 2, 4-トリメチルベンタンスルホン酸、2-アクリルアミド-2-メチルフェニルエタンスルホン酸、2-アクリルアミド-2-(4-クロロフェニル)プロパンスルホン酸、2-アクリルアミド-2-カルボキシメチルプロパンスルホン酸、2-アクリルアミド-2-(2-ビリジル)プロパンスルホン酸、2-アクリルアミド-1-メチルプロパンスルホン酸、3-アクリルアミド-3-メチルブタンスルホン酸、2-メタクリルアミド-*n*-テカансルホン酸及び2-メタクリルアミド-*n*-テトラデカンスルホン酸等を挙げることができる。これらの中でも特に、2-アクリルアミド-2-メチルプロパンスルホン酸を用いることが好ましい。

【0018】前記ビニル系重合性单量体と、スルホン酸含有アクリルアミド系单量体を共重合させるに際して用いることのできる重合開始剤としては、過酸化物開始剤又はアゾ系開始剤等が挙げられる。中でも、その分解物がカルボキシル基を有し、負帯電性に効果のある過酸化物開始剤を用いることが好ましく、その開始剤をモノマー混合物に対して、0.5~5重量%の範囲で用いることよい。又、その重合法としては、溶液重合、懸濁重合及び塊状重合等いずれの方法を用いることも可能であり、特に限定するものではないが、メタノール、イソプロパノール及びブタノール等の低級アルコールを含む有機溶剤中で、上記モノマー混合物を共重合させる溶液重合法を採用するのが特に好ましい。

【0019】次に、上記のような成分からなる樹脂層を有する本発明の現像剤担持体の他の構成について説明する。本発明の現像剤担持体は、基体表面に、上記した材料で形成された樹脂層を有するが、現像剤担持体に用いられる基体としては、例えば、金属、樹脂、ゴム或いはその複合材で作られた円柱状部材、円筒状部材及びベルト状部材が適用可能である。これらの中でも特に円筒管が好適に用いられる。円筒管としては、例えば、アルミニウム、ステンレン鋼及び真鍮の如き非磁性の金属又は合金を円筒状に成型し、その後、研磨及び研削を施したもののが好適に用いられる。これらの金属円筒管は、画像の均一性をよくするために、高精度に成型或いは加工されて用いられる。例えば、長手方向の真直度は、好ましくは30μm以下、より好ましくは20μm以下がよく、スリーブと感光ドラムとの間隙の振れ、例えば、垂直面に対し均一なスペーサーを介して突き当て、スリーブを回転させた場合の垂直面との間隙の振れも、好ましくは30μm以下、より好ましくは20μm以下であることがよい。

【0020】更に、本発明の現像剤担持体においては、

上記したような基体の表面を被覆して樹脂層を形成するが、該樹脂層の形成に用いられる結着樹脂として、前記したビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体を含有する。ここで、該共重合体に、必要に応じて他の公知の樹脂に含有させて使用してもよい。この際に使用できる樹脂としては、例えば、スチレン系樹脂、ビニル系樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリフェニレンオキサイド樹脂、ポリアミド樹脂、フッ素樹脂、繊維素系樹脂及びアクリル系樹脂等の熱可塑性樹脂、ポリエステル樹脂、アルキッド樹脂、ポリウレタン樹脂、尿素樹脂及びシリコーン樹脂等の熱或いは光硬化性樹脂等を使用することができる。これらの中でも、シリコーン樹脂及びフッ素樹脂のような離型性のあるもの、或いは、ポリエーテルスルホン、ポリカーボネート、ポリフェニレンオキサイド、スチレン系樹脂及びアクリル系樹脂のような機械的性質に優れたもの等を用いることがより好ましい。

【0021】更に、本発明の現像剤担持体を構成する基板表面に被覆する樹脂層に、導電性微粉末及び/又は固体潤滑剤を含有させて導電性樹脂層とすることが好ましい。潤滑性物質は、摩擦帶電付与材であり、該潤滑性物質が分散された樹脂層を基体表面に形成することで、より本発明の効果が促進できる。この際に使用することのできる潤滑性物質としては、例えば、グラファイト、二硫化モリブデン、窒化硼素、雲母、フッ化グラファイト、銀-セレン化ニオブ、塩化カルシウム-グラファイト、滑石及びステアリン酸亜鉛等の脂肪酸金属塩等の固体潤滑剤が挙げられる。これらの中でも特にグラファイトが、被覆樹脂層の導電性を損なわないので好ましく用いられる。これらの固体潤滑剤は、その個数平均粒径が、好ましくは、0.2~20μm程度のもの、より好ましくは1~15μmのものを使用するとよい。

【0022】上記したような固体潤滑剤の添加量としては、結着樹脂100重量部に対して、10~120重量部の範囲であれば、特に好ましい結果を与える。即ち、添加量が120重量部を超えた場合は、被覆した樹脂層の強度の低下及びトナーの帶電量の低下が認められ、一方、10重量部未満では、長期にわたって使用した場合等、本発明の現像剤担持体を構成する樹脂層表面におけるトナー付着を防止する効果が少なくなる傾向がある。

【0023】本発明では、基材表面に形成する樹脂層の体積抵抗を調整するため、固体潤滑剤の他に結着樹脂中に導電性微粒子を分散含有させてもよい。この際に使用する導電性微粒子としては、個数平均粒径が20μm以下のものが好ましい。より好ましくは、10μm以下のものが好ましく、又、表面に凹凸が形成されるのを避けるためには1μm以下のものを使用することが好ましい。

【0024】本発明で使用することのできる導電性微粒

子としては、例えば、ファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック及びチャネルブラック等のカーボンブラック；酸化チタン、酸化スズ、酸化亜鉛、酸化モリブデン、チタン酸カリ、酸化アンチモン及び酸化インジウム等の金属酸化物等；アルミニウム、銅、銀、ニッケル等の金属、グラファイト、金属繊維及び炭素繊維等の無機系充填剤等が挙げられる。上述した導電性微粒子の添加量としては、結着樹脂100重量部に対して100重量部以下の範囲で使用するのが特に好ましい結果を与える。即ち、100重量部を超えると樹脂層の被膜強度の低下、及び、トナーの帶電量の低下が認められる。

【0025】本発明の現像剤担持体の樹脂層の好ましい構成としては、上記に述べた添加物質に加えて、更に、個数平均粒径が0.3～30μmの被覆した樹脂層表面に凹凸を形成するための粒子を樹脂層中に分散させ、現像剤担持体の表面粗さを安定化させ、現像剤担持体上のトナーコート量を最適化することが挙げられる。それにより、前記ビニル系重合性単量体とスルホン酸含有アクリルアミド系単量体との共重合体によって得られる摩擦帶電付与効果を十分に発揮させることが可能となる。該粒子は、現像剤担持体の樹脂層表面に均一な表面粗度を保持させると同時に、樹脂層表面が摩耗した場合でも樹脂層の表面粗度の変化が少なく、且つ、トナー汚染やトナー融着を発生しにくくする効果がある。

【0026】本発明の現像剤担持体を構成する基材表面に被覆された樹脂層表面に凹凸を形成するために用いる上記粒子としては、個数平均径が0.3～30μm、好ましくは2～20μmを用いるとよい。該粒子の個数平均粒径が0.3μm未満では表面に均一な粗さを付与する効果と帶電性能を高める効果が少なく、現像剤への迅速且つ均一な帶電が不十分となると共に、樹脂層の磨耗によるトナーのチャージアップ、トナー汚染及びトナー融着が発生し、ゴーストの悪化、画像濃度低下を生じ易くなるため好ましくない。個数平均粒径が30μmを超える場合には、樹脂層表面の粗さが大きくなり過ぎ、トナーの帶電が十分に行なわれにくくなってしまうと共に、樹脂層の機械的強度が低下してしまうため好ましくない。

【0027】本発明において、前記樹脂層表面に凹凸を形成するための粒子は球状であることが望ましい。ここで言う球状粒子における球状とは、粒子の長径／短径の比が1.0～1.5程度のものを意味しており、本発明において好ましくは、長径／短径の比が1.0～1.2の粒子を使用することが好ましい。球状粒子の長径／短径の比が1.5を超える場合には、樹脂層表面粗さの不均一化が発生し、トナーの迅速且つ均一な帶電化及び導電性樹脂層の強度の点で好ましくない。

【0028】更に好ましくは、球状粒子の真密度は、3g/cm³以下、好ましくは2.7g/cm³以下、より

好ましくは0.9～2.3g/cm³であることがよい。即ち、球状粒子の真密度が3g/cm³を超える場合には、樹脂層中の球状粒子の分散性が不十分となるため、樹脂層表面に均一な粗さを付与しにくくなる。又、塗料の保存安定性がよくないため、ここでも均一表面凹凸を有する摩擦帶電付与部材表面が得にくくなる。球状粒子の真密度が0.9g/cm³より小さい場合にも、樹脂層中の球状粒子の分散性及び保存安定性が不十分となる。

【0029】本発明に用いられる球状粒子は、公知の球状粒子が使用可能である。例えば、球状の樹脂粒子、球状の金属酸化物粒子及び球状の炭素化物粒子等が挙げられる。球状の粒子としては、例えば、懸濁重合、分散重合法等による球状の樹脂粒子等が用いられる。これらの中でも、球状の樹脂粒子を用いれば、より少ない添加量で、現像剤担持体表面に好適な表面粗さが得られ、更に均一な表面状態が得られ易いので好ましい。このような球状粒子としては、例えば、ポリアクリレート及びポリメタクリレート等のアクリル系樹脂粒子、ナイロン等のポリアミド系樹脂粒子、ポリエチレン及びポリプロピレン等のポリオレフィン系樹脂粒子、シリコーン系樹脂粒子、フェノール系樹脂粒子、ポリウレタン系樹脂粒子、スチレン系樹脂粒子及びベンゾグアナミン粒子、等々が挙げられる。粉碎法により得られた樹脂粒子に、熱的に或いは物理的な球形化処理を行ってから用いてもよい。

【0030】又、上記に挙げたような球状粒子の表面に無機物を付着或いは固着させて用いてもよい。この際に用いることのできる無機微粉体としては、例えば、SiO₂、SrTiO₃、CeO₂、CrO、Al₂O₃、ZnO及びMgOの如き酸化物、Si₃N₄の如き窒化物、SiCの如き炭化物、CaSO₄、BaSO₄及びCaCO₃の如き硫酸塩、炭酸塩、等々が挙げられる。このような無機微粉末は、カップリング剤により有機処理したもの用いてもよい。

【0031】特に、結着樹脂との密着性を向上させる目的、或いは、粒子に疎水性を与える等々の目的では、カップリング剤により処理した無機微粉末を用いることが好ましい。この際に用いるカップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤及びジルコアルミネートカップリング剤等がある。より具体的には、例えば、シランカップリング剤としては、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、 α -クロロエチルトリクロルシラン、 β -クロロエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレ

ート、ビニルジメチルアセトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、及び、1分子当たり2～12個のシロキサン単位を有し、末端に位置する単位に夫々1個宛の硅素原子に結合した水酸基を含有したジメチルポリシロキサン等が挙げられる。このようなカッブリング剤で処理された無機微粉末が表面に付着或いは固着された球状樹脂粒子等を用いれば、添加させる球状粒子の樹脂層中の分散性が良好となり、形成される樹脂層表面の均一性、耐汚染性、トナーへの帯電付与性及び耐磨耗性等を向上させることができる。

【0032】又、本発明で使用する上記したような構成の球状粒子は、導電性を有するものであることがより好ましい。即ち、球状粒子に導電性を持たせることによって、その導電性のゆえに粒子表面にチャージが蓄積していくくなるので、現像スリーブ表面へのトナー付着の軽減やトナーの帯電付与性を向上させることができる。本発明において好適な球状粒子の導電性としては、体積抵抗値が $10^6 \Omega \cdot \text{cm}$ 以下、より好ましくは $10^3 \sim 10^6 \Omega \cdot \text{cm}$ の粒子であることが好ましい。即ち、球状粒子の体積抵抗が $10^6 \Omega \cdot \text{cm}$ を超えると、摩耗によって樹脂層表面に球状粒子が露出して部分的に絶縁性となるため、これが核となりトナーの汚染や融着が発生し易くなると共に、迅速、且つ、均一な帯電が行われにくくなる恐れがある。

【0033】本発明で好適に用いることができる導電性球状粒子を得る方法としては、以下に述べるような方法が好ましいが必ずしもこれらに限定されるものではない。本発明に用いられる特に好ましい導電性球状粒子を得る方法としては、例えば、球状の樹脂粒子やメソカーボンマイクロビーズを焼成することにより炭素化及び/又は黒鉛化して、低濃度且つ良導電性の球状炭素粒子を得る方法が挙げられる。そして、球状の樹脂粒子に用いられる樹脂材料としては、例えば、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン-ジビニルベンゼン共重合体及びポリアクリロニトリルが挙げられる。又、メソカーボンマイクロビーズは、通常、中ピッチを加熱焼成していく過程で生成する球状結晶を多重のタール、中油及びキノリン等の溶剤で洗浄することによって製造することができる。

【0034】より好ましい導電性球状粒子を得る方法としては、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン-ジビニルベンゼン共重合体及びポリアクリロニトリル等の球状樹脂粒子表面に、メカノケミカル法によってバルクメソフェーズピッチを被覆し、被覆された粒子を酸化性雰囲気下で熱処理した後に焼成して炭素化及び/又

は黒鉛化し、導電性の球状炭素粒子を得る方法が挙げられる。

【0035】上記した方法で得られる導電性の球状炭素粒子は、上記したいずれの方法においても、焼成条件を変化させることによって得られる球状炭素粒子の導電性をある程度は制御することが可能であり、本発明で使用する導電性を有する球状粒子として好ましく使用できる。又、上記の方法で得られる球状炭素粒子は、場合によっては、更に導電性を高めるために、導電性球状粒子の真密度が 3 g/cm^3 を超えない程度の範囲で、導電性の金属及び/又は金属酸化物のめっきを施していくてもよい。

【0036】本発明に好適に用いられる導電性球状粒子を得る他の方法としては、球状の樹脂粒子からなる芯粒子に対して、芯粒子の粒径よりも小さい導電性微粒子を適当な配合比で機械的に混合することによって、ファン・デルワールス力及び静電気力の作用により芯粒子の周囲に均一に導電性微粒子を付着させた後、例えば、機械的衝撃力を付与することによって生ずる局部的温度上昇によって芯粒子表面を軟化させ、芯粒子表面に導電性微粒子を成膜して導電化処理した球状樹脂粒子を得る方法が挙げられる。

【0037】上記の芯粒子には、有機化合物からなる真密度の小さい球形の樹脂粒子を使用することが好ましく、樹脂としては、例えば、PMMA、アクリル樹脂、ポリブタジエン樹脂、ポリスチレン樹脂、ポリエチレン、ポリプロピレン、ポリブタジエン、又はこれらの共重合体、ベンゾグアナミン樹脂、フェノール樹脂、ポリアミド樹脂、ナイロン、フッ素系樹脂、シリコーン樹脂、エポキシ系樹脂及びポリエステル樹脂が挙げられる。芯粒子（母粒子）の表面に成膜する際に使用される導電性微粒子（小粒子）としては、導電性微粒子被膜を均一に設けるために、小粒子の粒径が母粒子の粒径の $1/8$ 以下のものを使用するのが好ましい。

【0038】更に、本発明に用いることのできる導電性球状粒子を得る他の方法としては、球状樹脂粒子中に導電性微粒子を均一に分散させることにより、導電性微粒子が分散された導電性球状粒子を得る方法が挙げられる。球状樹脂粒子中に導電性微粒子を均一に分散させる方法としては、例えば、結着樹脂と導電性微粒子とを混練して導電性微粒子を分散させた後、冷却固化し、所定の粒径に粉碎し、機械的処理及び熱的処理により球形化して導電性球状粒子を得る方法、又は、重合性单量体中に重合開始剤、導電性微粒子及びその他の添加剤を加え、分散機によって均一に分散せしめた单量体組成物を、分散安定剤を含有する水相中に攪拌機によって所定の粒子径になるように懸濁させて重合を行い、導電性微粒子が分散された球状粒子を得る方法が挙げられる。

【0039】上記したような各種の方法で得られる導電性微粒子が分散された導電性球状粒子においても、前記

した芯粒子よりも小さい粒径の導電性微粒子と適当な配合比で機械的に混合して、ファンデルワールス力及び静電気力の作用により導電性球状粒子の周囲に均一に導電性微粒子を付着させた後、例えば、機械的衝撃力を付与することにより生ずる局部的温度上昇により導電性球状粒子の表面を軟化させ、該表面に導電性微粒子を成膜して、更に導電性を高めて使用してもよい。

【0040】本発明において、個数平均粒径の測定には、マルチサイザーII型（コールター製）に100μmアバーチャー（3.0μm以下の粒子は50μmアバーチャー）を取付けて測定を行った。導電性の粒子の測定は、粒度分布計LS-130型（コールター製）にリキッドモジュールを取付けて測定した。

【0041】本発明の現像剤担持体の表面を構成する樹脂層に添加し、導電性を付与する材料としては、一般に公知の導電性微粉末が挙げられる。例えば、銅、ニッケル、銀及びアルミニウム等の金属或いは合金の粉体、酸化アンチモン、酸化インジウム、酸化スズ及び酸化チタン等の金属酸化物、カーボンファイバー、カーボンブラック及びグラファイト等の炭素系の導電性微粉末等が挙げられる。導電性微粉末の添加量は、その現像システムにより異なるが、例えば、ジャンピング現像法において、一成分絶縁性現像剤を用いる場合には、導電性樹脂層の体積抵抗値が、10³Ω·cm以下になるように添加することが好ましい。カーボンブラック、とりわけ導電性のアモルファスカーボンは、特に電気伝導性に優れ、他の物質に比べて、少量の添加で導電性を付与することができ、添加量のコントロールにより、ある程度任意の抵抗値を得ることができるので好適である。

【0042】次に、以上に説明した構成を有する本発明の現像剤担持体の表面に担持させる現像剤について説明する。現像剤を構成するトナーは、主として、結着樹脂、離型剤、荷電制御剤及び着色剤等を溶融混練し、固化した後粉碎し、しかし後、分級等をして粒度分布を揃えた着色樹脂微粉体である。トナーに用いられる結着樹脂としては、一般に公知の樹脂が使用可能である。例えば、スチレン、α-メチルスチレン、p-クロルスチレン等のスチレン及びその置換体の単重合体；スチレン-プロピレン共重合体、スチレン-ビニルトルエン共重合体、スチレン-アクリル酸エチル共重合体、スチレン-アクリル酸ブチル共重合体、スチレン-アクリル酸オクチル共重合体、スチレン-ジメチルアミノエチル共重合体、スチレン-メタクリル酸メチル共重合体、スチレン-メタクリル酸エチル共重合体、スチレン-メタクリル酸ブチル共重合体、スチレン-メタクリル酸ジメチルアミノエチル共重合体、スチレン-ビニルメチルエーテル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソブレン共重合体、スチレン-マレイン酸共重合体、スチレン-マレイン酸エステル共重合体等のスチレン系共重合体；ボ

リメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエチレン、ポリプロピレンポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テンペル樹脂、フェノール樹脂、脂肪族又は脂環族炭化水素樹脂及び芳香族系石油樹脂等を、単独或いは混合して使用できる。

【0043】又、トナー中には、着色剤として、上記に挙げたような顔料を含有させることができる。例えば、カーボンブラック、ニグロシン染料、ランブ黒、スチンドラックSM、ファースト・イエローG、ベンジン・イエロー、ビグメント・イエロー、インドファースト・オレンジ、イルガジン・レッド、バラニトロアニリン・レッド、トルイジン・レッド、カーミンFB、バーマント・ボルドーFRR、ビグメント・オレンジR、リソール・レッド2G、レーキ・レッドC、ローダミンFB、ローダミンBレーキ、メチル・バイオレッドBレーキ、フタロシアニン・ブルー、ビグメント・ブルー、ブリリアント・グリーンB、フタロシアニングリーン、オイルイエローGG、ザボン・ファーストイエローCGG、カヤセットY963、カヤセットYG、ザボン・ファーストオレンジRR、オイル・スカーレット、オラゾール・ブラウンB、ザボン・ファーストスカーレットCG及びオイルピンクOP等を使用することができる。

【0044】磁性トナーとするためには、トナー中に磁性粉を含有せしめてもよい。このような磁性粉としては、磁場の中におかれて磁化される物質が用いられ、例えば、鉄、コバルト及びニッケル等の強磁性金属の粉末、又は、マグネタイト、ヘマタイト及びフェライト等の合金や化合物が挙げられる。これらの磁性粉の含有量はトナー重量に対して15～70重量%とすることが好ましい。

【0045】又、トナーには、定着時の離型性向上、定着性向上の目的で、ワックス類を含有させることができる。そのようなワックス類としては、例えば、バラフィンワックス及びその誘導体、マイクロクリスタリンワックス及びその誘導体、フィッシャートロブッシュワックス及びその誘導体、ポリオレフィンワックス及びその誘導体、カルナバワックス及びその誘導体等が挙げられる。ここで、誘導体には、酸化物や、ビニル系モノマーとのブロック共重合物及びグラフト変性物を含む。その他、アルコール、脂肪酸、酸アミド、エステル、ケトン、硬化ヒマシ油及びその誘導体、植物系ワックス、動物系ワックス、鉱物系ワックス及びペトロラクタム等も利用できる。

【0046】更に、必要に応じて、トナー中に荷電制御剤を含有させてもよい。荷電制御剤には、負荷電制御剤及び正荷電制御剤がある。トナーを負帯電性に制御するものとしては下記に挙げる物質がある。例えば、有機金属錯体やキレート化合物が有効であり、モノアゾ金属錯体、アセチルアセトン金属錯体、芳香族ハイドロキシカ

ルボン酸及び芳香族ダイカルボン酸系の金属錯体がある。他には、芳香族ハイドロキシカルボン酸、芳香族モノ及びポリカルボン酸及びその金属塩、無水物、エステル類或いはビスフェノール等のフェノール誘導体類等がある。

【0047】又、トナーを正帯電させるための物質としては下記のようなものがある。例えば、ニグロシン及び脂肪酸金属塩等による変性物、トリブチルベンジルアノニウム-1-ヒドロキシ-4-ナフトスルфон酸塩、テトラブチルアンモニウムテトラフルオロボレート等の四級アンモニウム塩、及びこれらの類似体であるホスホニウム塩等のオニウム塩及びこれらのレーキ顔料(レーキ化剤としては、りんタンクスステン酸、りんモリブデン酸、りんタンクスステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物及びフェロシアン化物等)、高級脂肪酸の金属塩；ジブチルスズオキサイド、ジオクチルスズオキサイド及びジシクロヘキシルスズオキサイド等のジオルガノスズオキサイド；ジブチルスズボレート、ジオクチルスズボレート及びジシクロヘキシルスズボレート等のジオルガノスズボレート類；グアニジン化合物及びイミダゾール化合物が挙げられる。

【0048】トナーには必要に応じて、更に流動性改善等の目的で、無機微粉末の如き粉末を外添してもよい。このような微粉末としては、例えば、シリカ微粉末、アルミナ、チタニア、酸化ゲルマニウム及び酸化ジルコニウム等の金属酸化物；炭化ケイ素及び炭化チタン等の炭化物；窒化ケイ素及び窒化ゲルマニウム等の窒化物等の無機微粉体を用いることができる。更に、これらの微粉体は、有機ケイ素化合物、チタンカップリング剤等で有機処理して用いることができる。この際に用いることのできる有機ケイ素化合物としては、例えば、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフェニルジクロルシラン、ベンジルジメチルクロルシラン、プロムメチルジメチルクロルシラン、 α -クロルエチルトリクロルシラン、 β -クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカブタン、トリメチルシリルメルカブタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、ヘキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン、及び、1分子当たり2~12個のシロキサン単位を有し、末端に位置する単位に夫々1個宛のSiに結合した水酸基を含有するジメチルポリシリコサン等を使用することができる。

【0049】又、未処理の微粉体を窒素含有のシランカ

ップリング剤で処理したものを用いてもよい。特に、ポジトナーの場合に好適である。そのような処理剤の例としては、アミノプロビルトリメトキシシラン、アミノプロビルトリエトキシシラン、ジメチルアミノプロビルトリメトキシシラン、ジエチルアミノプロビルトリメトキシシラン、ジプロビルアミノプロビルトリメトキシシラン、ジブチルアミノプロビルトリメトキシシラン、モノブチルアミノプロビルトリメトキシシラン、ジオクチルアミノプロビルトリメトキシシラン、ジブチルアミノプロビルジメトキシシラン、ジブチルアミノプロビルモノメトキシシラン、ジメチルアミノフェニルトリメトキシシラン、トリメトキシシリル- α -プロビルフェニルアミン、トリメトキシシリル- α -プロビルビペリジン、トリメトキシシリル- α -プロビルモルホリン及びトリメトキシシリル- α -プロビルイミダゾール、等が挙げられる。

【0050】上記に挙げたような各種のシランカップリング剤により無機微粉体を処理する方法としては、例えば、1)スプレー法、2)有機溶媒法、3)水溶液法等がある。スプレー法による処理とは、一般に、ビグメントを攪拌し、ここにカップリング剤の水溶液或いは溶媒液をスプレーし、この後水或いは溶媒を120~130°C程度で除去乾燥する方法である。又、有機溶媒法による処理とは、少量の水と共に加水分解用触媒を含む有機溶媒(例えば、アルコール、ベンゼン或いはハロゲン化炭化水素等)にカップリング剤を溶解し、これにビグメントを浸漬した後、濾過或いは圧搾により固液分離を行って、120~130°C程度で乾燥させるものである。水溶液法とは、0.5%程度のカップリング剤を、一定pHの水或いは水-有機溶媒中で加水分解させ、ここにビグメントを浸漬した後、同様に固液分離を行って乾燥するものである。

【0051】他の有機処理方法を用いたものとして、シリコーンオイルで処理した微粉体を用いることも可能である。この際に用いることのできる好ましいシリコーンオイルとしては、25°Cにおける粘度が、およそ0.5~10,000mm²/s、好ましくは、1~1,000mm²/sのものが挙げられる。このようなものとしては、例えば、メチルハイドロジエンシリコーンオイル、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、クロルフェニルメチルシリコーンオイル、アルキル変性シリコーンオイル、脂肪酸変性シリコーンオイル、ポリオキシアルキレン変性シリコーンオイル及びフッ素変性シリコーンオイル等が挙げられる。又、側鎖に窒素原子を有するシリコーンオイルを用いてもよい。

【0052】特にポジトナーの場合は、シリコーンオイルで有機処理したものを使用することが好ましい。シリコーンオイルによる処理は、例えば、次のようにして行

なうことができる。必要に応じて加熱しながら顔料を激しく攪乱し、これに、上記に挙げたようなシリコーンオイル或いはその溶液をスプレー若しくは気化して吹き付ける方法か、又は、顔料をスラリー状にしておき、これを攪拌しつつシリコーンオイル或いはその溶液を滴下する方法によって容易に処理できる。これらのシリコーンオイルは、1種或いは2種以上の混合物或いは併用や多重処理して用いられる。又、シランカップリング剤による処理と併用しても構わない。

【0053】更に、以上のようにして形成されるトナーは、種々の方法で、球形化処理や表面平滑化処理を施して用いると、転写性が良好となるのでより好ましい。球形化処理や表面平滑化処理する方法としては、攪拌羽根又はブレード等、及びライナー又はケーシング等を有する装置で、例えば、トナーをブレードとライナーの間の微小間隙を通過させる際に、機械的な力により表面を平滑化したりトナーを球形化したりする方法、温水中にトナーを懸濁させて球形化処理する方法、熱気流中にトナーを曝し、球形化する方法等がある。

【0054】又、球状のトナーを作る方法としては、例えば、水中に、トナーの結着樹脂の原料となる単量体を主成分とする混合物を懸濁させ、重合してトナー化する方法がある。一般的な方法としては、例えば、重合性単量体、着色剤、重合開始剤、更に必要に応じて、架橋剤、荷電制御剤、離形剤及びその他の添加剤を均一に溶解又は分散せしめて重合性単量体組成物とした後、この重合性単量体組成物を分散安定剤を含有する連続層、例えば、水相中に適当な攪拌機を用いて適当な粒径に分散し、更に重合反応を行わせ、所望の粒径を有するトナー粒子からなるトナーを得る方法が挙げられる。

【0055】次に、上記したような優れた効果を発揮し得る本発明の現像剤担持体が組み込まれて構成される本発明の現像装置の一例を、図を参照しながら説明する。図1は、本発明の現像装置の一例を示す概略構成図である。図1において、公知のプロセスにより形成された静電潜像を担持する静電潜像担持体、例えば、電子写真感光ドラム7は、矢印B方向に回転される。現像剤担持体としての現像スリーブ14は、ホッパー9によって供給された、例えば、一成分磁性現像剤である磁性トナー10を担持して、矢印A方向に回転することによって、現像スリーブ14と感光ドラム7とが対向している現像部D(現像領域)に、磁性トナー10を搬送する。この現像スリーブ14内には、磁性トナー10を現像スリーブ14上に磁気的に吸引・保持するための磁石11が配置されている。このような現像スリーブ14上に担持された磁性トナー10は、現像スリーブ14との摩擦によって、感光ドラム7上の静電潜像を現像可能にする摩擦帶電電荷を得る。

【0056】又、図1に例示した現像装置では、現像部Dに搬送されていく磁性トナー10の層厚を規制するた

めに、強磁性金属からなる現像剤層厚規制部材である規制ブレード8が、ホッパー9から、現像スリーブ14の表面から約200~300μmのギャップ幅をもって現像スリーブ14に臨むように垂下されている。この結果、現像スリーブ14内の磁石11の磁極N1からの磁力線がブレード8に集中することにより、現像スリーブ14上に磁性トナー10の薄層が形成される。尚、ブレード8としては、非磁性ブレードを使用することもできる。

【0057】本発明においては、上記のようにして現像スリーブ14上に形成される磁性トナー10の薄層の厚みは、現像部Dにおける現像スリーブ14と感光ドラム7との間の最小間隙よりも、更に薄いものであることが好ましい。このようなトナー薄層により静電潜像を現像する方式の現像装置、即ち、非接触型現像装置に、本発明は特に効果的である。しかし、勿論、現像部において、トナー層の厚みが現像スリーブ14と感光ドラム7との間の最小間隙以上の厚みである現像装置、即ち、接触型現像装置にも、本発明の現像剤担持体を適用することができる。以下、説明の煩雑さを避けるため、非接触型の現像装置を例にとって、更に詳細に説明する。

【0058】上記構成を有する本発明に好適な現像スリーブ14では、その表面に担持された磁性トナー10を飛翔させるために、電源15により現像バイアス電圧が印加される。本発明においては、この現像バイアス電圧として直流電圧を使用するときは、静電潜像の画像部(磁性トナー10が付着して可視化される領域)の電位と背景部の電位との間の値の電圧を現像スリーブ14に印加されることが好ましい。一方、現像画像の濃度を高め或いは階調性を向上させるためには、現像スリーブ14に交番バイアス電圧を印加し、現像部Dに向きが交互に反転する振動電界を形成してもよい。この場合には、上記画像部の電位と背景部の電位の間の値を有する直流電圧成分が重畠された交番バイアス電圧を、現像スリーブ14に印加することが好ましい。

【0059】又、高電位部と低電位部とを有する静電潜像の高電位部にトナーを付着させて可視化する、所謂正規現像では、静電潜像の極性と逆極性に帯電するトナーを使用し、一方、静電潜像の低電位部にトナーを付着させて可視化する、所謂反転現像では、トナーは静電潜像の極性と同極性に帯電するトナーを使用することが好ましい。尚、高電位、低電位というのは、絶対値による表現である。いずれにしても磁性トナー10は、現像スリーブ14との摩擦により静電潜像を現像するための極性に帯電される。磁性トナー10に外添したシリカも、現像スリーブ14との摩擦により帯電する。

【0060】

【実施例】以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。先ず、下記の方法によって、実施例及び比較例で使用したビニル系重合性単量体とスル

ホン酸含有アクリルアミド系单量体との共重合体を作製した。<共重合体(a)の製造例>

・メタノール	300 g
・トルエン	100 g
・スチレン	468 g
・2-エチルヘキシルアクリレート	90 g
・2-アクリルアミド-2-メチルプロパン	
スルホン酸	42 g
・ラウロイルバーオキサイド	6 g

【0061】上記原料をフラスコに仕込み、攪拌装置、10

温度測定装置及び窒素導入装置を装着して、窒素雰囲気* 【表1】

表1：ビニル系单量体とスルホン酸含有アクリルアミド系单量体との共重合体

共重合体	原料の单量体組成	重合開始剤	重量平均分子量(Mw)	
(a)	スチレンと2-エチルヘキシルアクリレートとの混合物 93wt%	2-アクリルアミド-2-メチルプロパンスルホン酸 7wt%	ラウロイルバーオキサイド 1	10,000
(b)	82wt%	18wt%	3	3,000
(c)	96wt%	4wt%	0.3	40,000

【0063】<実施例1>

・カーボンブラック	1重量部
・結晶性グラファイト	9重量部
・共重合体(a)	25重量部
・トルエン	65質量部

上記材料に直径1mmのジルコニアビーズをメディア粒子として加え、サンドミルにて2時間分散処理し、フレイを用いてビーズを分離し、塗工液を得た。この塗工液を用いてスプレー法により、NP-6035(キヤノン(株)製)の現像スリーブ表面に塗工層を形成させ、続いて熱風乾燥炉により150°C30分間加熱して硬化させて、スリーブ表面に樹脂層を有する本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。又、下記の方法及び基準で本実施例の現像剤担持体を評価し、その結果を表3及び4に示した。

【0064】評価の際には、下記原材料を用いて作製したトナーを使用した。

・スチレン-アクリル系樹脂(Tg 56°C)	
100質量部	1重量部
・マグネタイト	80質量部
・正電荷制御剤	2質量部

上記の構成材料を溶融混練、粉碎及び分散して得られた重量平均粒径6μmの正帯電トナーに、正帯電性外添剤として、トリメトキシシリル-アーブロビルベンジルアミンでカップリング処理したコロイダルシリカを0.9重量%を外添して、正帯電性一成分系磁性トナーAを得た。

【0065】本実施例の現像剤担持体と、上記のトナーAとを用いて、H/H(高温高湿)、及びN/L(常温

*下65°Cで溶液重合させ、10時間保持して重合反応を終了させた。得られた重合物を減圧乾燥、粉碎して、重量平均分子量10,000の電荷制御樹脂であるビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体(a)を得た。更に、上記の組成を下記の表1に示したように変更することにより、電荷制御樹脂であるビニル系重合性单量体とスルホン酸含有アクリルアミド系单量体との共重合体(b)及び(c)を得た。

【0062】

【表1】

20 低湿)環境下でキヤノン製NP-6035を用いて画像画出しテストを行なった。そして、N/L環境下での評価結果を表3に、及び、H/H環境下での評価結果を表4に、夫々示した。

【0066】

【評価】(1) 画像濃度

反射濃度計RD918(マクベス社製)で、得られた画像のベタ黒部の濃度を測定し、その値で画像濃度の低下を評価した。

【0067】(2) トリボ

30 現像剤担持体上の現像剤のトリボを下記の吸引法で測定した。吸引法によるトリボ値の測定については、先ず、円筒漉紙を有する測定容器を用い、現像剤担持体表面の形状に沿った金属製の吸引口を取付け、画像形成直後(5分以内が好ましい)の現像剤担持体表面上の現像剤層を過不足なく一様に吸引できるように吸引圧を調整し、現像剤を吸引する。そして、この時に吸引された現像剤の電荷Qを、616ディジタルエレクトロメーター(KEITHLEY製)で測定し、質量をMとして、Q/M(mC/kg)により計算してトリボ値を求める。

【0068】(3) 反転カブリ

適性画像におけるベタ白画像の反射率を測定し、更に未使用の転写紙の反射率を測定し、(ベタ白画像の反射率の最悪値-未使用転写紙の反射率の最高値)を反転カブリ濃度とし、更に、両者の画像を目視で観察して、これを合わせて下記の基準で評価した。転写紙としては、127.9g/m²の厚紙を使用し、反射率はTC-6DS(東京電色製)で測定した。

◎：反転カブリ濃度が1.5以下で、違いは殆どわからない。

○：反転カブリ濃度が1.5~2.5で、注意深く見

ないと違いがわからない。

△：反転カブリ濃度が2.5～3.5で、画出しに連れて次第にカブリが認識できるようになる。

△×：反転カブリ濃度が3.5～4.0で、実用レベル下限で、一見してカブリが確認できる。

×：反転カブリ濃度が4.0～5.0で、かなり悪い。

【0069】(4) 画像不良(スジ、ムラ、プロッチ)ベタ黒、ハーフトーン及びライン画像等の各種画像を確認し、更に、その際の現像スリーブ上のスジ、波状ムラ、及びプロッチ(斑点状ムラ)等、スリーブ上でのトナーコート不良状態を目視によって観察し、その結果を参考にして、下記の基準で評価した。

【0070】◎：画像にもスリーブ上にも全く確認できない。

○：スリーブ上で僅かに確認できるが、画像では殆ど確認できない。

○△：数枚～数十枚に1枚程度画像を透かしてみると確認できる。

△○：ハーフトーン画像又はベタ黒画像の1枚目で、且つ、スリーブ周期の1周目に確認できる。

△：ハーフトーン画像又はベタ黒画像で確認できる。実用レベル下限。

△×：ベタ黒画像全体で画像不良が確認できる。実用不可レベル。

×：ベタ白画像上にも確認できる。

【0071】(5) 導電性樹脂層の削れ量(膜削れ)

各環境下で画出し評価した後、現像スリーブを取り外し、レーザー測長器Y-CTF型(真柄計測開発製)で外径を測定した。この測定値と、画出し前の現像スリーブの外径測定値から導電性樹脂層の削れ量を計算し、30点の平均値をとって膜削れ(μm)とした。

【0072】<実施例2>実施例1において、共重合体(a)を共重合体(b)とした以外は実施例1と同様の操作で本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法でトナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0073】<実施例3>実施例1において、共重合体(a)を共重合体(c)とした以外は実施例1と同様の操作で本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法でトナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0074】<実施例4>実施例1と同様の材料を同様の操作で分散させた後、更に、個数平均粒径5μmの導電性球状炭素粒子を5部添加し、直徑3mmのガラスピースを用いて1時間かけて分散し、フルイを用いてビー

ズを分離し、塗工液を得た。次に、実施例1と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。

【0075】更に、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。本実施例で使用した導電性球状炭素粒子は、個数平均粒径5.5μmの球状フェノール樹脂100重量部の表面に、ライカイ機(自動乳鉢、石川工場製)を用いて個数平均粒径1.5μm以下の石炭系バルクメソフェーズピッチ粉末14重量部を均一に被覆し、酸化性雰囲気下で熱安定化処理した後に、2,200℃で焼成することにより黒鉛化して得た。得られた導電性球状炭素粒子はの個数平均粒径は、5μm、真密度1.50g/cm³、体積抵抗は7.5×10⁻²Ω·cm、長径/短径比は1.15であった。

【0076】<実施例5>

・カーボンブラック	1重量部
・結晶性グラファイト	9重量部
・PMMA樹脂	25重量部
・共重合体(a)	5重量部
・トルエン	65質量部

上記材料を用いて実施例1と同様の操作で分散を行った後、同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法でトナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0077】<実施例6>実施例5において、共重合体(a)を共重合体(b)とした以外は実施例5と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法でトナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0078】<実施例7>実施例5において、共重合体(a)を共重合体(c)とした以外は実施例5と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法でトナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0079】<実施例8>実施例5と同様の材料を用い、同様の操作で分散を行った後、個数平均粒径5μmの導電性球状炭素粒子を5部添加し、直徑3mmのガラスピースを用いて1時間分散し、フルイを用いてビーズ

を分離して塗工液を得た。次に、実施例1と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。

【0080】そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。本実施例で使用した導電性球状炭素粒子は、個数平均粒径5.5 μm の球状フェノール樹脂100重量部に、ライカイ機（自動乳鉢、石川工場製）を用いて個数平均粒径1.5 μm 以下の石炭系バルクメソフェーズビッチ粉末14重量部を均一に被覆し、酸化性雰囲気下で熱安定化処理した後に2,200°Cで焼成することにより黒鉛化して得た。得られた導電性球状炭素粒子は、個数平均粒径5 μm 、真密度1.50 g/ cm^3 、体積抵抗 $7.5 \times 10^{-2} \Omega \cdot \text{cm}$ 及び長径/短径比1.15であった。

【0081】<実施例9>実施例8において使用した個数平均粒径5 μm の導電性球状炭素粒子の代わりに、個数平均粒径2 μm の導電性球状炭素粒子を7.5部添加した以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。本実施例で使用した個数平均粒径2 μm の球状炭素粒子は、個数平均粒径2.3 μm の球状フェノール樹脂100部に、ライカイ機（自動乳鉢、石川工場製）を用いて個数平均粒径0.3 μm 以下の石炭系バルクメソフェーズビッチ粉末14部を均一に被覆し、酸化性雰囲気下で熱安定化処理した後に2,200°Cで焼成することにより黒鉛化して得た。得られた導電性球状炭素粒子は、真密度1.52 g/ cm^3 、体積抵抗 $7.2 \times 10^{-2} \Omega \cdot \text{cm}$ 及び長径/短径比が1.12であった。

【0082】<実施例10>実施例8において使用した個数平均粒径5 μm の導電性球状炭素粒子の代わりに、個数平均粒径20 μm の導電性球状炭素粒子を2.5部添加した以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。この個数平均粒径20 μm の球状炭素粒子は、個数平均粒径24 μm の球状フェノール樹脂100部にライカイ機（自動乳鉢、石川工場製）を用いて、個数平均粒径3 μm 以下の石炭系バルクメソフェーズビッチ粉末14部を均一に被覆し、酸化性雰囲気下で熱安定化処理した後に2,200°Cで焼成することにより黒鉛化して得た。得られた導電性球状炭素粒子は、真密度

1.45 g/ cm^3 、体積抵抗 $9.6 \times 10^{-2} \Omega \cdot \text{cm}$ 及び長径/短径比が1.18であった。

【0083】<実施例11>実施例8において使用した個数平均粒径5 μm の導電性球状炭素粒子に代えて、個数平均粒径5 μm のカーボンブラック被覆PMMA粒子を使用した以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。使用した個数平均粒径5 μm のカーボンブラック被覆PMMA粒子は、個数平均粒径4.8 μm の球状PMMA粒子100部にハイブリタイザー（奈良機械製）を用いて、導電性カーボンブラック5部を被覆して得られた導電性の球状PMMA粒子であり、その真密度は1.20 g/ cm^3 、体積抵抗 $6.8 \times 10^{-1} \Omega \cdot \text{cm}$ 及び長径/短径比が1.06であった。

【0084】<実施例12>実施例8において使用した個数平均粒径5 μm の導電性球状炭素粒子に代えて、個数平均粒径5 μm のカーボンブラック分散樹脂粒子を使用した以外は、実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。使用した個数平均粒径5 μm のカーボンブラック樹脂粒子は、下記の材料を用い、混練、粉碎、及び分級を行って、個数平均粒径5.3 μm の導電性樹脂粒子を得た後、ハイブリタイザー（奈良機械製）を用いて球形化処理を行うことによって得た。得られた導電性球状炭素粒子は、真密度1.21 g/ cm^3 、体積抵抗 $5.2 \Omega \cdot \text{cm}$ 及び長径/短径比が1.20であった。

・スチレン-ジメチルアミノエチルメタクリレート
-ジビニルベンゼン共重合体

(共重合比=90:10:0.05)100重量部

・カーボンブラック 25重量部

【0085】<実施例13>実施例8において使用した個数平均粒径5 μm の導電性球状炭素粒子に代えて、個数平均粒径5 μm のPMMA粒子を使用した以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0086】<実施例14>実施例8において使用したPMMA樹脂の代わりにシリコーン樹脂とした以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。

構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0087】<実施例15>実施例8において使用したPMMA樹脂の代わりにスチレンーアクリル樹脂とした以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0088】<実施例16>実施例8において使用したPMMA樹脂の代わりにポリエステル樹脂とした以外は実施例8と同様の操作で樹脂層を形成し、本実施例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-1に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0089】<比較例1>実施例1において、樹脂層を形成しないで、粒径#300のガラスピースを用いて、基体表面をサンドblastしたFBGスリーブを用いた以外は実施例1と同様にして、本比較例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0090】<比較例2>実施例5で使用した共重合体(a)を除くこと以外は実施例5と同様にして樹脂層を形成し、本比較例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0091】<比較例3>実施例14で使用した共重合体(a)及び導電性球状炭素粒子を除くこと以外は実施例14と同様にして樹脂層を形成し、本比較例の現像剤

担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0092】<比較例4>実施例16で使用した共重合体(a)及び導電性球状炭素粒子を除くこと以外は実施例16と同様にして樹脂層を形成し、本比較例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0093】<比較例5>実施例4において、共重合体(a)の代わりに、PMMAを用い、導電性球状炭素粒子に代えてクロルフェノールを含むアゾナフトールのクロム錯体(S)を使用した以外は実施例4と同様にして樹脂層を形成し、本比較例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0094】<比較例6>

実施例5において、共重合体(a)の代わりに、上記4級アンモニウム塩とした以外は実施例4と同様にして樹脂層を形成し、本比較例の現像剤担持体を作成した。得られた現像剤担持体の樹脂層の構成を表2-2に示した。そして、得られた現像剤担持体を使用して、実施例1の場合と同様の方法で、トナーAを供給しながら画像画出しテストを行なって評価し、その結果を表3及び4に示した。

【0095】

40 【表2】

表2-1: 現像スリープ表面の樹脂層の構成

実施例	P/B/CA/R比 ¹	粗さRa (μm)	接着樹脂		添加球状粒子 (個数平均粒径)
			共重合体	他の樹脂	
1	1/0.0/2.5/0.0	0.54	(a)	なし	なし
2	1/0.0/2.5/0.0	0.59	(b)	なし	なし
3	1/0.0/2.5/0.0	0.58	(c)	なし	なし
4	1/0.0/2.5/0.5	0.61	(a)	なし	導電性球状炭素粒子 (5 μm)
5	1/2.5/0.5/0.0	0.63	(a)	PMMA	なし
6	1/2.5/0.5/0.0	0.57	(b)	PMMA	なし
7	1/2.5/0.5/0.0	0.61	(c)	PMMA	なし
8	1/2.5/0.5/0.5	0.7	(a)	PMMA	導電性球状炭素粒子 (5 μm)
9	1/2.5/0.5/0.75	0.61	(a)	PMMA	導電性球状炭素粒子 (2 μm)
10	1/2.5/0.5/0.25	1.02	(a)	PMMA	導電性球状炭素粒子 (20 μm)
11	1/2.5/0.5/0.5	0.77	(a)	PMMA	CB被覆PMMA球状粒子 (5 μm)
12	1/2.5/0.5/0.5	0.72	(a)	PMMA	CB分散球状樹脂粒子 (5 μm)
13	1/2.5/0.5/0.5	0.65	(a)	PMMA	PMMA球状粒子 (5 μm)
14	1/2.5/0.5/0.5	0.77	(a)	シリコーン	導電性球状炭素粒子 (5 μm)
15	1/2.5/0.5/0.5	0.74	(a)	St-Ac ²	導電性球状炭素粒子 (5 μm)
16	1/2.5/0.5/0.5	0.72	(a)	ポリエステル	導電性球状炭素粒子 (5 μm)

*1 P:導電性微粉末 (CB:カーボンブラック、GF:結晶性グラファイトでCB/GF=1/9)、

B:他の樹脂、CA:共重合体、R:球状粒子

*2 St-Ac:スチレンーアクリル樹脂

[0096]

* * 【表3】

表2-2: 現像スリープ表面の樹脂層の構成

比較例	P/B/CA/R比 ¹	粗さRa (μm)	接着樹脂		添加粒子
			他の樹脂	共重合体	
1	樹脂層なし、粒径#300のガラスベースを用いてサンドブラスト処理をした Ra=0.55 のもの				
2	1/2.5/0.0/0.0	0.52	PMMA		なし
3	1/2.5/0.0/0.0	0.51	シリコーン		なし
4	1/2.5/0.0/0.0	0.59	ポリエステル		なし
5	1/2.5/0.0/0.5	0.64	PMMA	クロムフューラーを含むアーナフト-クロム媒体	
6	1/2.5/0.0/0.5	0.66	PMMA	第4級アミンの塩化合物	

*1 P:導電性微粉末 (CB:カーボンブラック、GF:結晶性グラファイトでCB/GF=1/9)、

B:他の樹脂、CA:共重合体、R:球状粒子

[0097]

【表4】

表3: N/L環境下での評価結果

		初期(1k後)					耐久(100k後)					
		画像 濃度	反転 カツリ	Q/M (mC/kg)	スジムラ	プロツチ	画像 濃度	反転 カツリ	Q/M (mC/kg)	スジムラ	プロツチ	膜削れ (μm)
実 施 例	1	1.36	○	17.5	◎	○	1.38	◎	17.2	○	◎	-3.1
	2	1.36	○	17.0	○	○	1.37	○	16.1	○△	◎	-3.3
	3	1.34	○	16.8	○	○	1.36	○	15.9	○	◎	-3.6
	4	1.36	○	17.0	◎	◎	1.37	◎	16.0	○	○	-2.0
	5	1.36	○	15.0	◎	◎	1.38	◎	14.4	○	○	-2.3
	6	1.35	○	14.8	○	◎	1.37	◎	14.3	○△	◎	-2.5
	7	1.34	○	14.5	○	◎	1.34	○	14.0	○	◎	-3.1
	8	1.37	◎	15.8	◎	◎	1.39	◎	15.3	◎	◎	-1.6
	9	1.35	○	15.7	◎	◎	1.35	◎	15.2	○	○	-2.0
	10	1.33	○	14.8	○	○	1.32	○	14.4	○	○	-1.9
	11	1.34	○	14.5	○	◎	1.35	○	14.1	○	◎	-2.4
	12	1.32	○	14.2	○	◎	1.34	○	14.4	○	○	-2.5
	13	1.28	△	13.8	○△	○	1.29	○	13.4	○△	○	-3.3
	14	1.36	○	15.1	◎	○	1.38	◎	14.6	◎	◎	-1.9
	15	1.35	○	14.8	◎	◎	1.37	◎	14.5	◎	◎	-2.3
	16	1.27	△	13.5	○△	○	1.29	○	13.5	○△	○	-3.4
比較 例	1	1.25	×	7.6	△	△×	1.19	△	8.5	△×	×	-
	2	1.25	△×	7.8	△	△○	1.17	△	7.2	△	△	-2.9
	3	1.26	△×	7.2	△	△○	1.19	△	6.6	△×	△	-2.6
	4	1.24	△×	7.4	△	△○	1.18	△	6.9	△×	△	-2.8
	5	1.26	△×	7.7	△	△○	1.15	△	7.1	△×	△	-5.7
	6	1.25	△×	7.9	△	△○	1.17	△	7.2	△×	△	-6.5

[0098]

【表5】

表4: H/H環境下での評価結果

	初期(1k後)					耐久(100k後)						
	画像濃度	反転カブリ	Q/M(mC/kg)	スジムラ	プロッヂ	画像濃度	反転カブリ	Q/M(mC/kg)	スジムラ	プロッヂ		
実施例	1	1.33	◎	16.4	○	○	1.34	◎	15.8	○	◎	-3.4
	2	1.32	○	15.9	○△	○	1.34	◎	15.5	○△	◎	-3.6
	3	1.30	○	15.4	○△	○	1.31	◎	14.9	○△	◎	-4.0
	4	1.33	◎	16.0	◎	◎	1.34	◎	15.5	◎	◎	-2.2
	5	1.32	○	14.1	○	◎	1.35	◎	13.7	○	◎	-2.6
	6	1.31	○	13.5	○△	◎	1.32	◎	13.2	○△	◎	-2.9
	7	1.29	○	13.4	○△	◎	1.30	◎	13.1	○△	◎	-3.5
	8	1.34	◎	14.7	◎	◎	1.35	◎	14.3	◎	◎	-2.0
	9	1.32	◎	14.4	◎	◎	1.32	◎	14.0	◎	◎	-2.3
	10	1.30	○	13.6	○	○	1.31	◎	13.2	○	○	-2.2
	11	1.30	○	12.9	○△	◎	1.31	◎	12.3	○△	◎	-2.7
	12	1.28	○	12.9	○△	◎	1.30	◎	12.4	○△	◎	-2.9
	13	1.24	○	12.6	△○	○	1.27	◎	12.2	△○	○	-3.7
	14	1.31	○	14.1	○	◎	1.33	◎	13.8	○	◎	-2.4
	15	1.30	○	13.3	◎	◎	1.31	◎	13.0	◎	◎	-2.6
	16	1.19	△	10.2	○△	○	1.21	○	10.1	△	○△	-5.2
比較例	1	1.07	△×	6.6	△	△	1.03	△	6.1	△×	△×	-
	2	1.10	△	6.4	○△	○△	1.04	○	6	△○	△○	-3.4
	3	1.12	△	6.6	○△	○△	1.07	○	6.2	△○	○△	-3.0
	4	1.09	△	6.5	○△	○△	1.05	○	6.1	△	△○	-3.1
	5	1.11	△	6.9	△○	○△	1.06	○	6.4	△	△○	-6.1
	6	1.10	△	7.1	△○	○△	1.05	○	6.5	△	△○	-6.8

【0099】

【発明の効果】以上説明したように、本発明によれば、従来用いられてきた現像剤担持体よりも耐久性が向上し、良好な画像を長い間提供することができる状態を保持することが可能な現像剤担持体が提供される。更に、本発明によれば、トナーに対する正帯電付与性を安定化させ、しかも、現像剤担持体上の現像剤層を均一化させ、繰り返し複写又は耐久によって現像剤担持体表面の樹脂層の摩耗、及び、トナーによるスリーブ汚染及びスリーブ融着等が生じない高耐久な現像剤担持体が提供され、これにより、画像濃度低下やゴーストの発生、カブリの発生が抑制された高品位な画像を長期に渡り提供することが可能となる。

【図面の簡単な説明】

【図1】本発明の現像剤担持体を使用した現像装置の一例を示す断面図である。

【符号の説明】

- 7: 感光ドラム
- 8: 規制ブレード
- 9: ホッパー
- 10: トナー
- 11: 磁石
- 12: 円筒状基体
- 13: 樹脂層
- 40 14: 現像剤担持体(現像スリーブ)
- 15: 電源
- 16: 搅拌器
- 17: 弹性板
- A: 現像スリーブ14の回転方向
- B: 感光ドラム7の回転方向
- D: 現像領域

【図1】

フロントページの続き

(51) Int.CI. ⁷	識別記号	F I	マーク (参考)
C 0 8 L 25/04		C 0 8 L 25/04	
31/02		31/02	
33/00		33/00	
83/04		83/04	
(72) 発明者 後関 康秀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内		F ターム (参考) 2H077 AA11 AD06 AD13 AD36 AE04 EA13 EA16 FA01 FA13 FA26 FA27	
(72) 発明者 藤島 健司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内		4J002 BB033 BB123 BC002 BC003 BC041 BC081 BF011 BF021 BG002 BG011 BG033 BG041	
(72) 発明者 嶋村 正良 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内		BG051 BG071 CC033 CC193 CK023 CL003 CP032 CP033 DA016 DA026 DA036 DA066	
(72) 発明者 齊木 一紀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内		DA076 DA086 DA096 DE096 DE106 DE126 DE136 DE186 FA046 FA083 FA086 FD116	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.