Fast Approximate All Pairwise CoSimRanks via Random Projection

Renchi Yang and Xiaokui Xiao

Problem Definition

- Given a graph G with n nodes and m edges
 - \circ A length-i random walk W_u starts from u
 - At each step, navigates to an out-neighbor of current node
 - At i-th step, stops at the current node x
 - $\circ \mathbf{P}^{i}[u,x]$ is length-i random walk probability from u to x

Problem Definition

- Given a graph G with n nodes and m edges
 - o The probability of two length-i random walks W_u , W_v ending at the same node is $\sum_{x \in G} \mathbf{P}^i[u,x] \cdot \mathbf{P}^i[v,x]$

The CoSimRank is then

$$s(u,v) = \sum_{i=0}^{\infty} c^i \cdot \mathbf{P}^i[u] \cdot \mathbf{P}^i[v]$$

o Approximate all pairwise CoSimRank query: for every node pair (u, v) $|s(u, v) - s'(u, v)| \le \epsilon$

Applications

- In natural language processing
 - synonym expansion
 - lexicon extraction
 - linguistically-informed statistical tool in Cistern project
- In knowledge graph mining
 - modelling entity relatedness
- In social network analysis
 - similarity measure of users

Existing Solutions

- Matrix form of CoSimRank: $\mathbf{S} = \sum_{i=0}^{\infty} c^i \cdot \mathbf{P}^i \cdot (\mathbf{P}^i)^T$
- PowerMethod
 - solves the equation by iterative matrix multiplications
 - Time complexity: $O(n^3 \cdot \ln(1/\epsilon))$
- Co-Simmate
 - reuses the results from previous iterations to reduce repeated operations
 - Time complexity: $O(n^3 \cdot \log(\ln(\frac{1}{\epsilon})))$
- F-CoSim is designed for dynamic graphs
 - Time complexity: $O(n^3 \cdot \ln(1/\epsilon))$

Our Solution

Matrix form of CoSimRank:

- Time complexity: from $O(n^3)$ to $O(n^2d)$
- Dimensionality reduction over Pⁱ is computationally costly

Our Solution

Our Solution

- Summary:
 - We do not need to compute ${\bf P}^i$ and its low-dimensional approximation with paying $O(n^3)$ cost
 - For all Pⁱ, we can just find the low-dimensional approximation Q of P
 - $lue{}$ Dimensionality reduction over $lue{}$ is fast as it has only m entries

Our solution: Random Projection

Johnson–Lindenstrauss lemma

Lemma 2 ((Preservation of inner products [10]). Let $\delta, p_f \in (0,1)$ and $d \geq \frac{2\ln(1/p_f')}{\delta - \ln(1+\delta)}$. Let \mathbf{T} be an $n \times d$ matrix, where each entry is sampled i.i.d. from a Gaussian $\mathcal{N}(0,1)$. Given any two vectors $\mathbf{z}_i, \mathbf{z}_i \in \mathbb{R}^n$, we define $\mathbf{x}_i = \frac{1}{\sqrt{d}} \cdot \mathbf{z}_i \mathbf{T}$, $\mathbf{x}_j = \frac{1}{\sqrt{d}} \cdot \mathbf{z}_j \mathbf{T}$. Then, we have

$$\mathbb{P}\left[\left|\mathbf{x}_{i}\cdot\mathbf{x}_{j}^{\top}-\mathbf{z}_{i}\cdot\mathbf{z}_{j}^{\top}\right|\leq\delta\cdot||\mathbf{z}_{i}||\cdot||\mathbf{z}_{j}||\right]\geq1-p_{f}'.$$
(6)

- Apply random projection to P
 - Find an approximate dimension d to ensure ϵ absolute error
 - Generate a random matrix $\mathbf{T} \in \mathbb{R}^{n \times d}$ and compute $\mathbf{Q} = \frac{1}{\sqrt{d}} \cdot \mathbf{PT}$

Our Solution: RPCS

```
Algorithm 1: RPCS
      Input: An input graph G, c, \epsilon, p_f, \delta.
      Output: S.
  3 if d > n then
  \mathbf{4} \mid \mathbf{Q} \leftarrow \mathbf{P}
           Generate \mathbf{T} \in \mathbb{R}^{n \times d} \sim \mathcal{N}(0, 1);
                                                                                                                                           \triangleright O(nd) time
  7 \mathbf{Q} \leftarrow \frac{1}{\sqrt{d}} \cdot \mathbf{PT};
                                                                                                                                          \triangleright O(md) time
  8 \mathbf{H}^{(1)} \leftarrow \sqrt{c} \cdot \mathbf{Q}; \ \widehat{\mathbf{S}} \leftarrow \mathbf{I} + \mathbf{H}^{(1)} \cdot \mathbf{H}^{(1)\top};
                                                                                                                                         \triangleright O(n^2d) time
 9 for k \leftarrow 2 to t do
10 \mathbf{H}^{(k)} \leftarrow \sqrt{c} \mathbf{P} \cdot \mathbf{H}^{(k-1)};
                                                                                                                                         \triangleright O(md) time
11 \widehat{\mathbf{S}} \leftarrow \widehat{\mathbf{S}} + \mathbf{H}^{(k)} \cdot \mathbf{H}^{(k)\top};
                                                                                                                                         \triangleright O(n^2d) time
12 return S:
```

- If the cost using random projection exceeds that of PowerMethod, switch to PowerMethod
- Running time $\propto \frac{\ln(\frac{c(1-\delta)}{(1-c)\epsilon-c\delta})}{\delta-\ln(1+\delta)}$

•
$$0 < \delta < \frac{1-c}{c} \cdot \epsilon$$

Our Solution: RPCS

Algorithm 2: TernarySearch

```
Input: c, \epsilon.
Output: \delta.

1 \delta_l \leftarrow 0, \delta_u \leftarrow \frac{1-c}{c} \cdot \epsilon;

2 while true do

3 \delta'_l \leftarrow \delta_l + \frac{\delta_u - \delta_l}{3};

4 \delta'_u \leftarrow \delta_u - \frac{\delta_u - \delta_l}{3};

5 if \delta'_u \leq \delta'_l or \delta_u - \delta_l \leq \frac{1-c}{1000c} \cdot \epsilon then break;

6 if f(\delta'_l) < f(\delta'_u) then

7 \delta_l \leftarrow \delta'_l;

8 else

9 \delta_u \leftarrow \delta'_u;

10 \delta \leftarrow \frac{\delta_l + \delta_u}{2};

11 return \delta;
```

Optimize

$$\min_{<\delta<\frac{1-c}{c}\cdot\epsilon} \frac{\ln(\frac{c(1-\delta)}{(1-c)\epsilon-c\delta})}{\delta-\ln(1+\delta)}$$

- Convex function
- Search the minimizer by ternary search algorithm

Our Solution: RPCS

Name	Accuracy	Time Complexity	
PowerMethod [19]	$ s(v_i, v_j) - \hat{s}(v_i, v_j) \le \epsilon, \ \forall v_i, v_j \in V$	$O\left(n^3\ln(rac{1}{\epsilon}) ight)$	
Co-Simmate [31]	$ s(v_i, v_j) - \hat{s}(v_i, v_j) \le \epsilon, \ \forall v_i, v_j \in V$	$O\left(n^3\log_2(\ln(rac{1}{\epsilon})) ight)$	
F-CoSim [32]	$ s(v_i, v_j) - \hat{s}(v_i, v_j) \le \epsilon, \ \forall v_i, v_j \in V$	$O\left(n^3\ln(rac{1}{\epsilon}) ight)$	
RPCS	$\mathbb{P}\left[s(v_i, v_j) - \hat{s}(v_i, v_j) \le \epsilon, \ \forall v_i, v_j \in V\right] \ge 1 - \frac{1}{n}$	$O\left(\min\left\{rac{n^2\ln(n)}{\epsilon^2}\cdot\ln(rac{1}{\epsilon}),n^3\ln(rac{1}{\epsilon}) ight\} ight)$	

Experimental Settings

Name	#Nodes (n)	#Edges (m)	Type
Facebook	4,039	88,234	undirected
as-735	7,716	26,467	undirected
ca-HepPh	12,008	237,010	undirected
email-Enron	36,692	183,831	directed
Twitter	81,306	1,768,149	directed
Google+	107,614	13,673,453	directed

- Compepititors:
 - · PowerMethod,
 - Co-Simmate
- Damping factor c = 0.8
- Varying error threshold ϵ in {1.0, 0.5, 0.2, 0.1, 0.05}
- Intel Xeon 2.60GHz CPU
- 377GB RAM

Experimental Results

- On small graphs, RPCS is 2-9× faster when $\epsilon > 0.1$
- On Twitter, RPCS is by up to three orders of magnitude faster
- On Google+, RPCS is the only viable solution
- Omited if cannot terminate within 2 days or is OOM

THANK YOU

