

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	85V
R _{DS(on)}	4.7mΩ
I_{D}	60A

100% Avalanche Tested

CRSM053N08N

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSM053N08N	-	DFN5X6	Tape&Reel	N/A	N/A	5000pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	85	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I_{D}	90	Α
T _C = 25°C (Package limit)	₁ D	60	
T _C = 100°C (Silicon limit)		57	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	$\mathbf{I}_{D\;pulse}$	240	Α
Avalanche energy, single pulse (L=0.3mH, Rg=25 Ω) ^[1]	E _{AS}	126	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	79	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	1.58	°C/W
Thermal resistance, junction – ambient(min. footprint)	R _{thJA}	47	° C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Symbol	Value			Unit	Test Condition	
- rai ailletei	Syllibol	min.	typ.	max.	Oilit	lest Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	85	97	-	V	V_{GS} =0V, I_D =250uA	
Gate threshold voltage	V _{GS(th)}	2	3	4	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
Zero gate voltage drain	Ţ		0.05	4		V _{DS} =80V,V _{GS} =0V	
current	I_{DSS}	-	0.05	1	μΑ	T _j =25°C	
		-	-	5		T _j =125°C	
Gate-source leakage current	I_{GSS}	-	10	100	nA	V_{GS} =±20V, V_{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	4.7	5.6	mΩ	$V_{GS} = 10V, I_D = 30A$	
Transconductance	g _{fs}	-	84.2	-	S	$V_{DS}=5V,I_{D}=50A$	

Dynamic Characteristic

Input Capacitance	C _{iss}	-	3086	-		
Output Capacitance	C_{oss}	-	1057	-	pF	V_{GS} =0V, V_{DS} =40V, f =1MHz
Reverse Transfer Capacitance	C _{rss}	-	26	-		
Gate Total Charge	\mathbf{Q}_{G}	-	55	-		
Gate-Source charge	Q_{gs}	-	15	-	nC	V_{GS} =10V, V_{DS} =40V, I_{D} =50A, f=1MHz
Gate-Drain charge	Q_{gd}	-	13	-		
Turn-on delay time	$t_{d(on)}$	-	20.1	-		
Rise time	t _r	-	38.9	-	ne	$V_{GS}=10V$, $V_{DD}=40V$ $R_{G_ext}=3.0\Omega$
Turn-off delay time	$t_{d(off)}$	-	45.1	-	ns	
Fall time	t _f	-	22.8	-		
Gate resistance	R_{G}	-	3.3	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

SkyMOS1 N-MOSFET 85V, $4.7m\Omega$, 60A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition
	Symbol	min.	typ.	max.	Oilit	rest condition
Body Diode Forward Voltage	V_{SD}	1	0.95	1.4	V	V _{GS} =0V,I _{SD} =50A
Body Diode Reverse Recovery Time	t _{rr}	-	54	-	ns	I _F =30A,
Body Diode Reverse Recovery Charge	Q _{rr}	-	250	-	nC	I _F =30A, dI/dt=300A/us;

Typical Performance Characteristics

V_{DS} (V)

Fig 2: Transfer Characteristics 140 $V_{DS}=5V$ 120 100 **(∀)** 80 60 125°C 25°C 40 20 0 2 3 4 5 6 7 8 $V_{GS}(V)$

Fig 3: Rds(on) vs Drain Current and Gate Voltage 7.0 6.0 R_{DS(on)} (mΩ) $V_{GS}=10V$ 5.0 4.0 3.0 2.0 40 50 70 10 20 30 60 I_D (A)

Fig 5: Rds(on) vs. Temperature 1.8 V_{GS}=10V I_D=30A 1.6 C - Capacitance (PF) R_{DS(on)}_Normalized 1.4 1.2 1.0 0.8 0.6 0.4 25 100 150 Tj - Junction Temperature (°C)

△△ 華潤

Fig 7: Gate Charge Characteristics

Fig 9: Power Dissipation

Fig 11: Safe Operating Area

Fig 8: Body-diode Forward Characteristics

Fig 10: Drain Current Derating

华润微电子(重庆)有限公司

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Cumbal	Dimensions	In Millimeters	Dimensions	In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	0.80	1.20	0.031	0.047	
A1	0.00	0.05	0.000	0.002	
b	0.30	0.51	0.012	0.020	
С	0.15	0.35	0.006	0.014	
D	4.80	5.40	0.189	0.213	
е	1.27	7 BSC	0.050 BSC		
E	5.66	6.06	0.223	0.239	
G	0.30	0.71	0.012	0.028	
Н	5.90	6.35	0.232	0.250	
J	3.32	3.92	0.131	0.154	
K	3.61	4.25	0.142	0.167	
L1	0.05	0.25	0.002	0.010	
L2	0.00	0.15	0.000	0.006	
R	0.2	5 REF	0.010	REF	
θ	0°	12°	0°	12°	

SkyMOS1 N-MOSFET 85V, 4.7mΩ, 60A

Revision History

Revison	Date	Major changes
1.0	2018-12-3	Release of formal version.
2.0	2019-6-25	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

