COMS20017 — Algorithms & Data

30	3	22	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolutions

March 2025 **Majid Mirmehdi**

Lecture MM-08

Next in DDCS

Feature Selection and Extraction

- Signal basics and Fourier Series
- > 1D and 2D Fourier Transform
- Another look at features
- PCA for dimensionality reduction
- Convolutions

Correlation

- We are often interested in the degree of similarity between two sequences in terms of their variation (independent of their absolute values)
- \triangleright Correlation of two sequences u and v of length N

$$\rho = \frac{1}{N\sigma_u \sigma_v} \sum_{i=0}^{N-1} (u_i - \mu_u) (v_i - \mu_v)$$

Division by variance product $\sigma_u \sigma_v$ normalises measure to be independent of absolute value \rightarrow captures similarity in variation (or *structure*).

Note similarity with covariance!

Example: Correlating Coefficient for Two Sequences

$$\rho = \frac{1}{N\sigma_u \sigma_v} \sum_{i=0}^{N-1} (u_i - \mu_u) (v_i - \mu_v)$$

Correlation – shifting similarity

- Sometimes sequences are similar after applying a shift.
- Can be measured with cross-correlation

$$\rho = \frac{1}{N\sigma_u \sigma_v} \sum_{i=0}^{N-1} (u_i - \mu_u)(v_{i-j} - \mu_v)$$

'most likely shift' given by position of maximum value in cross-correlation

Example: Correlating Fish Parts!

Spatial Filtering

We can filter signals and symbols in the spatial/time domain:

- introduce some form of enhancement
 - remove noise/outliers
 - smoothing/averaging out detail
 - sharpening/highlighting detail
- prepare for next stage of processing
 - feature extraction

Filters are also referred to as *kernels* or *masks*.

Spatial Filtering

Many spatial filters are implemented with *convolution* masks.

To do convolution, we need to know about *neighbourhoods*.

Convolution mask is applied to each signal sample and its neighbourhood.

2D signal data

3	2	4	4	2	6
3	4	5	4	3	6
4	2	5	4	3	3
3	0	4	1	2	6
3	2	4	5	2	6

Convolution

$$g(x) = h(x) *f(x)$$

Convolution

$$g(x) = h(x) *f(x)$$

Convolution Kernel h(x)

11

Convolution

- $\triangleright f$ is the signal, h is the convolution filter
 - ►h has an origin

$$\frac{1}{5}$$
 -1 3 -1 Example 1D kerne

➤ Normalization factor (sum of the absolute values of the filter) is also part of the filter!

$$g = f(t) * h(t) = \int_{-\infty}^{\infty} f(t - \tau)h(\tau)d\tau = \int_{-\infty}^{\infty} f(\tau)h(t - \tau)d\tau$$

> The discrete version of convolution is defined as:

$$g(x) = \sum_{m=-s}^{s} f(x-m)h(m) \quad \text{for } s \ge 1$$

2D Spatial Filtering - Connectivity

Determine the connectivity for *neighbourhoods:*

2D signal data

4-connectivity			tiv	ity	8-	8-connectivity.					
3	2	4	4	2	6	3	3 2	4	4	2	6
3	4	5	4	3	6	3	3 4	5	4	3	6
4	2	5	4	3	3		1 2	5	4	3	3
3	0	4	1	2	6	3	3 0	4	1	2	6
3	2	4	5	2	6	3	3 2	4	5	2	6

2D Convolution

The discrete version of 2D convolution is defined as

$$g(x, y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x-m, y-n)h(m, n)$$

Shorthandform

g=f*h

2D Correlation

The discrete version of 2D correlation is defined as

$$g(x, y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x+m, y+n)h(m, n)$$

Correlation=Convolution when kernel is symmetric under 180° rotation, e.g.

Spatial Filtering using 2D Convolution (actually Correlation)

Example: Spatial Low/High Pass Filtering

- 1D: turning the treble/bass knob down on audio equipment!
- ➤ 2D: smooth/sharpen image

. [1	1	1
$\frac{1}{9}$	1	1	1
	1	1	1

	-1	-1	-1
1	-1	8	-1
16	-1	-1	-1

Gaussian Low Pass Filter

Example:

$$\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$$

Example: Edge Features

- Edges occur in images where there is discontinuity (or change) in the intensity function.
- Gradient points in the direction of most rapid change in intensity
- Biggest change derivative has maximum magnitude.

Edge detection: basic concept

- Edge: a boundary between two image regions having distinct characteristics according to some feature (e.g., gray level, color, or texture).
- In grayscale 2D images: a significant variation of the intensity function across a portion of the image.

Edge Measures

Edge direction

$$\phi = \theta - \frac{\pi}{2}$$

Edge magnitude

$$\left\|\nabla f\right\| = \sqrt{\left[\frac{\partial f}{\partial x}\right]^2 + \left[\frac{\partial f}{\partial y}\right]^2}$$

gradient direction

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Sobel Edge Detector

- > 2D gradient measurement in two different directions.
- ➤ Uses these 3x3 convolution masks:

Examples

Histogram of Edge Gradient Directions

Matlab: Sobel Edge Detection

```
% Sobel edge detection
A = imread('romina.gif');
fx = [-1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1]
fy = [1\ 2\ 1;\ 0\ 0\ 0;\ -1\ -2\ -1]
gx = conv2(double(A), double(fx))/8;
gy = conv2(double(A), double(fy))/8;
mag = sqrt((gx).^2+(gy).^2);
ang = \frac{atan(gy./gx)}{}
figure; imagesc(mag); axis off; colormap gray
figure; imagesc(ang); axis off; colormap gray
```

See unit github page for code in Python.

Spatial/Frequency Domain Filtering

Convolution Theorem:

Convolution in the spatial domain is equivalent to multiplication in the frequency domain and vice versa

$$g(x) = f(x) * h(x) \iff G(u) = F(u) H(u)$$

$$g(x) = f(x) h(x)$$
 \iff $G(u) = F(u) * H(u)$

Example: Convolution in SD is Multiplication in FD

Convolution Exercise

$$P = \begin{pmatrix} -1 & 4 & -1 \\ 4 & 10 & 4 \\ -1 & 4 & -1 \end{pmatrix} \qquad Q = \begin{pmatrix} 5 & 3 & 0 & 0 & 7 \\ 3 & 3 & 2 & 1 & 4 \\ 6 & 5 & 1 & 1 & 6 \\ 6 & 3 & 4 & 1 & 4 \\ 4 & 4 & 5 & 0 & 4 \end{pmatrix}$$

Apply convolution filter P to matrix Q at location (2,3).

Well Done for Lasting This Far!

Feature Selection and Extraction

- Signal basics and Fourier Series
- > 1D and 2D Fourier Transform
- Another look at features
- PCA for dimensionality reduction
- Convolutions