Лабораторна робота №2

Розпізнавання візуальних образів за допомогою нейронної мережі

Мета роботи: Здобути навички програмної реалізації машинного навчання на базі нейронних мереж.

<u>Завдання:</u> Розробити програму для машинного навчання в задачі класифікації візуальних образів на прикладі чорно-білих образів літер абетки.

Вступ

Відомо, що візуальні образи у засобах графічного відображення цифрової інформації представляються у вигляді набору точок («пікселів»), яким відповідають чисельні значення кольору записані в клітинки матриці. Кількість стовпців та рядків матриці визначає роздільну здатність зображення, а саме кількістю пікселів, які припадають на один дюйм (ріхеl per inch, PPI). Від роздільної здатності залежить якість зображень та точність побудови нейронної мережі.

На рис. 1 представлено приклад первинного двовимірного чорно-білого зображення.

Рисунок 1 – Приклад первинного зображення

За умовою чорні пікселі будуть мати значення «+1», а білі — «-1» відповідно. Запишемо рис. 1 у вигляді матриці значень (див. рис. 2).

Рисунок 2 – Значення пікселів первинного зображення

Для зручності розрахунків представимо матрицю у вигляді вектора послідовно об'єднавши значення з п'яти рядків (див. рис. 3).

$$[-1, +1, -1, +1]$$

Рисунок 3 – Вектор значень пікселів первинного зображення

Ідея машинного навчання в задачі класифікації візуальних образів міститься в побудові вагової моделі для пікселів первинного зображення для подальшої класифікації модифікованих (пошкоджених тощо) зображень.

Нехай за умовою необхідно побудувати нейронну мережу для класифікації трьох візуальних образів. На рис. 4 зображені вектори для трьох первинних візуальних образів.

Рисунок 4 – Вектори трьох первинних образів

Кожен вектор відображає значення нейронів зі значення -1 чи +1. Сукупність нейронів кожного вектора образу представляється у вигляді матриці нейронів після перемноження транспонованої копії вектора на власне вектор.

На рис. 5 зображено процес побудови матриці нейронів.

-1							+1	-1	+1	-1
+1	×	-1	+1	-1	+1	=	-1	+1	-1	+1
-1		•					+1	-1	+1	-1
+1							-1	+1	-1	+1

Рисунок 5 – Приклад значень нейронів для першого образу

Так само розрахуємо матриці значень нейронів для інших двох класів (див. рис. 6-7).

+1					+1	-1	+1	+1		
-1	×	+1	-1	+1	+1	=	-1	+1	-1	-1
+1							+1	-1	+1	+1
+1							+1	-1	+1	+1

Рисунок 6 – Приклад значень нейронів для другого образу

-1							+1	-1	+1	+1
+1	×	-1	+1	-1	-1	=	-1	+1	-1	-1
-1							+1	-1	+1	+1
-1							+1	-1	+1	+1

Рисунок 7 – Приклад значень нейронів для третього образу

Побудуємо нейронну мережу в матричному вигляді як суму матриць для трьох образів (див. рис. 8). За визначенням матриця є симетричною.

+3	-3	+3	+1
-3	+3	-3	-1
+3	-3	+3	+1
+1	-1	+1	+3

Рисунок 8 – Нейронна мережа для трьох образів

Тестування мережі

На рис. 9 показано модифіковане зображення другого первинного образу.

Рисунок 9 – Модифікований первинний образ

На рис. 10 запишемо векторне представлення значень пікселів модифікованого образу.

Рисунок 10 – Вектор значень пікселів модифікованого образу

Розпізнавання модифікованого зображення виконується в декілька ітерацій. На першій ітерації матриця нейронної мережі перемножується з вектором модифікованого образу (див. рис. 11).

+3	-3	+3	+1		+1		8
-3	+3	-3	-1	×	-1		-2
+3	-3	+3	+1		+1		10
+1	-1	+1	+3		-1		0

Рисунок 11 – Результат першої ітерації

Оскільки значення результату перемноження мають відмінні значення від заданих за умовою -1 та +1 необхідно застосувати до них функцію активації y. Існують різні функції активації, у тому числі порогова функція, яка дорівнює +1 при $x \ge 0$ та -1 при x < 0.

На рис. 12 запишемо вихід функції активації для чотирьох нейронів.

Рисунок 12 – Вихід функції активації

Повторюємо перемноження матриці та векторів до умови однаковості виходів функції активації на поточній та попреденій ітераціях, в результаті чого вважається що нейронна мережа зупинилася на локальному оптимумі (див. рис. 13).

+3	-3	+3	+1		+1		+10		+1
-3	+3	-3	-1	×	-1	=	-10	\rightarrow	-1
+3	-3	+3	+1		+1		+10		+1
+1	-1	+1	+3		+1		+6		+1

Рисунок 13 – Результат другої ітерації

Зі значень виходів функції активації, отриманих на другій та першій ітераціях, бачимо, що вони однакові та модифікований вектор схожий на вектор другого первинного образу з трьох, за допомогою яких була побудована нейронна мережа.

Завдання Підготуйте первині образи для трьох літер з вказаними порядковими номерами.

1	Арабська абетка	11	Арабська абетка	21	Українська абетка
	(1-3)		(7-9)		(4-6)
2	Вірменська абетка	12	Російська абетка	22	Російська абетка
	(1-3)		(7-9)		(4-6)
3	Гебрейська абетка	13	Гебрейська абетка	23	Грецька абетка
	(1-3)		(7-9)		(4-6)
4	Тайська абетка	14	Грецька абетка	24	Латинська абетка
	(1-3)		(7-9)		(4-6)
5	Грузинська абетка	15	Грузинська абетка	25	Хангиль абетка
	(1-3)		(7-9)		(4-6)
6	Українська абетка	16	Латинська абетка	26	Вірменська абетка
	(1-3)		(7-9)		(4-6)
7	Російська абетка	17	Вірменська абетка	27	Гебрейська абетка
	(1-3)		(7-9)		(4-6)
8	Грецька абетка	18	Тайська абетка	28	Арабська абетка
	(1-3)		(7-9)		(4-6)
9	Латинська абетка	19	Українська абетка	29	Тайська абетка
	(1-3)		(7-9)		(4-6)
10	Хангиль абетка	20	Хангиль абетка	30	Грузинська абетка
	(1-3)		(7-9)		(4-6)

Зміст протоколу виконаної роботи:

- 1. титульний аркуш;
- 2. мета роботи;
- 3. інформація про варіант;
- 4. графік залежності точності класифікації від роздільної здатності;
- 5. графік залежності точності класифікації від кількості первинних образів для кожної букви;

- 6. побудовані нейронні мережі;
- 7. висновки по роботі;
- 8. код програми.