Identifiability

Nithya Dev

BS2018

For the general case of Gauss-Markov theorem, i.e, we take only GM setup without non-singular X'X and any \vec{c} .

Then $\vec{c}'\hat{\vec{\beta}}$ is the unique BLUE of $\vec{c}'\vec{\beta}$.

Consider a system of equations with GM setup.

$$y_{1} = \beta_{1} + \beta_{2} + \beta_{3} + \epsilon_{1}$$

$$\vdots$$

$$y_{5} = \beta_{1} + \beta_{2} + \beta_{3} + \epsilon_{5}$$

$$y_{6} = \beta_{1} + \beta_{2} + 2\beta_{3} + \epsilon_{6}$$

$$\vdots$$

$$y_{9} = \beta_{1} + \beta_{2} + 2\beta_{3} + \epsilon_{9}$$

So, how do we estimate β_1 and β_3 ?

We can see that we can't estimate β_1 from this setup because it is bundled with β_2 . So, everywhere it occurs as $\beta_1 + \beta_2$. So we can't extricate β_1 separately.

For β_3 we can substract y_1 from y_6 and get an unbiased estimator (not claiming to be the best).

Suppose we have an accurate data such that

$$y_{1} = \beta_{1} + \beta_{2} + \beta_{3}$$

$$\vdots$$

$$y_{5} = \beta_{1} + \beta_{2} + \beta_{3}$$

$$y_{6} = \beta_{1} + \beta_{2} + 2\beta_{3}$$

$$\vdots$$

$$y_{9} = \beta_{1} + \beta_{2} + 2\beta_{3}$$

From this, we can find β_3 but still can't get the value of β_1 .

So we generally say that the term β_1 is not **identifiable** from this setup.

Now to frame this identifiability in a mathematical condition:

Consider the above setup where

and

$$\beta_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \qquad \beta_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

So the condition of identifiability in this case reduces to checking whether $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ belongs to row space of X.