LA-DM II előadás

2024.05.15. Lászlóffy András Bércesné Dr. Novák Ágnes előadásai nyomán

Összefüggő gráf éleinek száma

Definíció: Ha egy gráfban bármely két pont között van út, akkor a gráfot összefüggőnek (öf.) nevezzük.

Tétel: Az n pontú összefüggő gráfnak legalább n-1 éle van.

Bizonyítás: teljes indukcióval.

Ha a Gnpontú öf. gráfnak van levele (1 fokú csúcsa)

ightarrow ezt törölve a hozzá tartozó éllel épp n-1 pontú és n-2 élű öf. gráfot kapunk, indukciós feltétel teljesül.

 ezt a lépést ismételjük, amíg el nem jutunk az 1 pontú és 0 élű gráfhoz Ha valamely, m pontú gráfnál nincs levél, akkor a legkisebb fokszám legalább 2 (hisz a gráf összefüggő). Ennek fokainak száma legalább 2m, élek száma legalább m (fele a fokszámok összegének), ami nagyobb, mintm-1.

1

2

Összefüggő gráf – kör

Definíció: Az olyan <u>összeftiggő</u> gráfokat, melyekben minden pont foka 2, **kör**nek nevezzük.

Tétel: Ha egy gráfban minden pont foka legal ább 2, akkor a gráfban van

Bizonyítás: leghos szabb út móds zer:

- · L út a G gráfegy leghos szabb útja, ennek egy végpontja v
- v-re illeszkedik egy másik él is, de ez benne van a leghoss zabb útban, különben nem ez lenne a leghoss zabb
- ez csak úgy lehet, ha v az út másik végpontja is, azaz kör. Megj.: hurokél is kör, 1 pont ami 2 fokú.

Mikor van kör a gráfban?

 $\mathbf{T\acute{e}tel}$: Ha egy n pontú gráfnak legalább n éle van, akkor van benne kör.

Bizonyítás: teljes indukcióval • n = 1-re hurokél, igaz.

- G: n + 1 csúcsú és n + 1 élű gráf
 - ha van levél, ezt törölve élével együtt
 - indukciós feltevés teljesül visszavesszük a törölt csúcsot, de ez tartalmazza a fenti részgráfot, amiben van kör, fgy G-ben is van kör
- G-ben nincs levél, ekkor minden pont foka legalább 2 → előző tétel szerint G-ben van kör

4

Fa = fagráf

Def.: Összefüggő körmentes gráfot fagráfnak (fának) nevezzük

Tétel: Az n pontú fagráf éleinek száma n-1

Biz: fenti tételekből közvetlenül (HF)

Tétel: Egy összefüggő gráfa.cs.a. fa, ha bármely két

pontjaközött pontosan egy út van.

Tétel: Az n pontú n-1 élű ös szefüggő gráf fa

Fa - Prüfer-kód

Fa kódolása számsorozattal

n csúcsú fa $\rightarrow n-2$ szám, kölcsönös megfeleltetés mindig a legkisebb levelet töröljük, szomszédját leírjuk

5

3

Fa – visszaállítás Prüfer-kódból

Prüfer-kód: 744171 → 6 szám, 8 csúcs

Hiányzó" számok": 2, 3, 5, 6, 8

Állítsuk vissza a táblázatot: Törölt csás 2 3 5 4 6 7 1 Prüfer-kóda alul+8 (csúcsok száma) Szomszéd 7 4 4 1 7 1 8

Felső sort kell visszaállítani, balról jobbra választjuk a legkisebb "hiányzó számot". Ha egy szám nem szerepel többször az alsó sorban, hozzávesszik a "hiányzó számokhoz".

A táblázat oszlopai a fában a szomszédok.

Izomorfak? Sőt!

Fa – Prüfer-kód egyértelműsége

- Fa → Prüfer-kód egyértelmű, adott recept alapján készíthető csak el
- Prüfer-kód → fa
 - n − 1 él, n csúcs, eddig jó
 - körmentes? Indirekt módon bizonyítjuk

de: a nem lehet alul \blacksquare helyen \rightarrow ellentmondás

Tehát: n pont, n-1 él, körmentes \rightarrow fa

8

Részgráf

7

Az R gráf a G részgráfja, ha R megkapható G-ből pontok és élek elhagyásával.

Feszítő részgráf: R tartalmazza G minden pontját. Csak éleket hagyunk el.

Hány feszítőfája van az alábbi gráfnak?

9 10

Síkgráfok

 \mathbf{Def} .: Egy gráf síkgráf = síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a gráf csúcsiaban metszik egymást

Alábbiak közül melyik síkgráf?

Fáry-Wagner-tétel: Minden síkgráf lerajzolható egyenes szakaszokkal.

Játék – rajzoljunk egyszerű, összefüggő síkgráfot

Pontok száma: p=8Élek száma: e = 13Tartományok száma (végtelen tartománnyal együtt): t = 7Euler poliéder tétel: p - e + t = 2

Euler poliéder tétel

Tétel: A G összefüggő egyszerű sikgráf pontjainak (p), éleinek (e) és területeinek (végtelen területet is beleértve) (t) száma között fennáll az alábbi összefüggés: p-e+t=2

Biz.: konstruktív, pontról pontra megrajzolom a gráfot

- 1 csúcs, 0 él, 1 tartomány √
- 2 csúcs, 1 él, 1 tartomány √

Teljes indukció, TFH. G-re teljesül, ehhez

- 1. új csúcsot veszek fel, ekkor kell egy új él is, hogy összefüggő maradjon $\rightarrow p'=p+1, e'=e+1, t'=t, \\ p'-e'+t'=p+1-(e+1)+t=p-e+t=2$
- 2. új élet veszek fel meglévő csúcsok között $\rightarrow p' = p, e' = e + 1, t' = t + 1, p' e' + t' = 2$ (HF)

Euler poliéder tétel következményei

Tétel 1: Ha egy ös szefü ggő, egyszerű síkgráf pontjainak száma leg alább 3, akkor $e \le 3p - 6$.

Tétel 2: Ha a G egyszerű síkgráf, akkor minimális fokszáma leg feljebb 5.

Tétel 3: Ha az összefűggő síkgráf pontjainak száma legalább 3, és nincs 3 hosszú köre, akkor $e \le 2p-4$.

13

14

Euler poliéder tétel – Következmény 1

Tétel 1: Ha egy ös szefű ggő, egyszerű síkgráf pontjainak száma legalább 3, akkor $e \le 3p-6$.

Biz: egyszerű gráf, ezért minden területet legalább 3 él határol

 $3t \le 2e$ (lehet több, mint 3), egy él 2 területet határol.

Síkgráf: p - e + t = 2

 $p - e + \frac{2e}{3} \ge 2 \Rightarrow e \le 3p - 6$

K₅ Kuratowski-gráf

Alkalmazzuk az előbbi következményt Tétel 1: $e \le 3p - 6$

 K_5 -ben e = 10, p = 5, azaz

 $10 \le 3 \cdot 5 - 6 = 9$ ellentmondás!

Tehát K5 nem rajzolható síkba

15

16

Euler poliéder tétel – Következmény 2

Tétel 2: Ha a G egyszerű síkgráf, akkor minimális fokszáma leg feljebb 5. **Biz**: Indirekt bizonyítás, TFH. minimális fokszám 6 is lehet. $e \le 3p-6 \to 2e \le 6p-12$

Fokszámok összege = élek kétszerese (kézfogási tétel) Azaz a min. fokszám és pontok számának szorzatára

 $6p \le 2e$

A kettő egyszerre nem teljesülhet, ezzel a tételt bizonyítottuk.

Euler poliéder tétel – Következmény 3

Tétel 3: Ha az összefűggő síkgráfpontjainak száma legalább 3, és nincs 3 hosszú köre, akkor $e \le 2p-4$.

Biz: Minden tartomán yt legalább 4 él határol.

 $4t \le 2e$

Beírva Eulerpoliéder tételébe

$$p - e + t = 2 \rightarrow p - e + \frac{e}{2} \ge 2$$

$$e \le 2p - 4$$

17

Ismétlés: páros gráfok

Valamely gráf páros, ha csúcsai két diszjunkt osztályba sorolhatók, és az egy osztályba tartozó csúcsok között nincsen él.

Az ábrán az A halmazhoz tartozó csúcsok között nincsen él, és hasonlóan a B halmazhoz tartozó csúcsok között sincsen él

A megengedett élek két különböző osztályhoz tartozó csúcsot kötnek össze, egy A-belit egy B- Euler poliéder tétel – Következmény 3 alkalmazás páros gráfokra (min. 4 hosszú körök)

 $G_{2,3}$ síkba rajzolható (HF) e = 6, p = 5 $e \le 2p - 4 \rightarrow 6 \le 2 \cdot 5 - 4 \checkmark$ $K_{3,3}$: pl. három ház, közművek: villany, víz, gáz e = 9, p = 6 $e \le 2p - 4 \rightarrow 9 \le 2 \cdot 6 - 4 = 8$ ellentmondás

Köv.: K_{3,3} Kuratowski-gráf nem rajzolható síkba

19 20

Kuratowski-tétel

Tétel: Valamely gráf a.cs.a. síkgráf, ha nem tartalmaz K_5 -tel vagy $K_{3,3}$ mal homeomorf részgráfot.

Homeomorf:

- · élet új csúccsal "megszakíthatok"
- 2 fokszámú csúcsokat"törölhetek" az élek összevonásával

P1.:

Példa – Petersen gráf

Köv.: a Petersen-gráf nem síkgráf.

22 21

Poliéder

Def.: A poliéder olyan test, amelynek oldallapjai sokszögek.

Tétel: Poliéderekre teljesül az Euler poliéder tétel, p - e + t = 2 (lásd később)

Szabályos testek: oldallapok szabályos sokszögek

térszögletek (csúcsok) egybevágóak

Hány szabályos test van?

Szabályos (platóni) testek

- Egy csúcsból kiinduló élek száma legyen legyen k
- Egy oldal szabályos n-szög
- Összesen t oldal
- Fokszámok összege pk = 2e $> 1 \rightarrow 2n + 2k - kn > 0$ $\frac{1}{kn} > 1 \rightarrow 2n + 2n$ (n-2)(k-2) < 4

Szabályos (platóni) testek

(n-2)(k-2) < 4

Ez csak úgy lehet, ha a szorzótényezők az alábbiak egyike:

١.	1	×	1
2.	1	×	2

3. 1 × 3 4. 2 × 1 5. 3 × 1

n-2	k-2	n	k	е	t	р	
1	1	3	3	6	4	4	tetraéder
1	2	3	4	12	8	6	oktaéder
1	3	3	5	30	20	12	ikozaéder
2	1	4	3	12	6	8	hexaéder
3	1	5	3	30	12	20	dodekaéder

Szabályos (platóni) testek – síkba rajzolhatóak?

25

26

28

Síkba és gömbre rajzolható gráfok

• Sztereografikus projekció

Sztereografikus projekció, videó

http://www.youtube.com/watch?v=Utj1qsrBLdE

27

Térkép, gráf színezése – pl. vármegyék

5 színnel kiszínezhető

Térkép, gráf színezése – pl. vármegyék

Térkép, gráf színezése – pl. vármegyék

 Tartományok színezése bal oldalt ekvivalens a jobb oldali gráf csúcsainak színezésével

Gráf színezése

 $\bf A$ csúcsokhoz színeket rendelünk úgy, hogy szomszédos csúcsok nem lehetnek azonos színűek.

32

Gráf színezése – kromatikus szám

 $\begin{tabular}{l} \textbf{Def.:} $\chi(G)$ a gráfú.n. kromatikus száma az a szám, ahány szín legalább kell a G gráfcsúcsainak kiszínezéséhez, hogy a szomszédok más színűek legyenek. \end{tabular}$

Az azonos színű pontok halmazát színosztálynak nevezzük

Tétel: Legalább egy élet tartalmazó gráf a.cs.a páros, ha kromatikus száma 2.

Biz: ábra alapján triviális

31

Kör kromatikus száma

 ${\bf T\acute{e}tel}:$ páros hosszú körök kromatikus száma 2, páratlan hosszú körök kromatikus száma 3.

Kérdés: Van-e páros gráf a dián?

Tétel: az n pontú teljes gráf kromatikus száma n.

33 34

- -

Petersen gráf kromatikus száma

A Petersen-gráf nevezetes speciális gráf:

10 csúcs, 15 él, 3 reguláris (minden csúcs fokszáma 3)

Julius Petersen -1898-ban konstruálta

Hresnel gráf kromatikus száma 2

35 36

Négyszíntétel

Ötszíntételt bizonyítjuk – táblánál

Tétel: Ha G síkbarajzolható gráf, akkor $\chi(G) \le 4$.

Érdekességek:

- George Guthrie fog almazta meg
- Möebius sikertelenül próbálta bizonyítani 1840-ben
- Haaken és Appel számítógép segítségével bizonyították 1976-ban