课程编号: 100172003

北京理工大学 2018-2019 学年第一学期

2017 级概率与数理统计试题 (A卷)

座号_		班	级		学号			世夕		
(本记 不交出	卷共8页 页草稿纸	, 八个ブ	、题,满分	分 100 分	_ 寸 寸 - ; 最后-	·页空白统	氏为草稿	纸,可排	斯下,考	试结束后
题号		=	Ξ	四	五	六	七	八	总分	核分
得分										
签名										
附表:										
Φ(1.64	5)=0.95, (D(2)=0.97	772, Φ(1.	96)=0.97	5, Φ(2.8	3)=0.997	, Ф(1.0	4) = 0.85	08, Ф(4	.96) = 1,
$t_{0.05}(24$) = 1.7109,	$t_{0.025}(24$	·) = 2.063	9, $t_{0.05}(2)$	25) = 1.70	81, t _{0.025}	(25) = 2.	0595, _A	$\chi^2_{0.95}(24) =$	13.848,
$\chi^2_{0.05}(24$	4) = 36.415	$5, \chi^2_{0.95}$	25)=14.61	1, $\chi^2_{0.05}$	25)=37.6	52				
	空题(12	<u>Д</u> , Г	得分	-	7					
、 快	工处 (12		14.71							
1. 已知	1事件 A, B	3 满足 P(AB) = P($\overline{A}\cap \overline{B})$,	记 P(A)=	<i>p</i> ,则 <i>P</i>	P(B) =			•
2. 一射	手对同一	目标独立	立重复地	进行四次	次射击,	若至少命	中一次	的概率)	与 $\frac{80}{81}$,则	该射手进
	次射击的				·				01	
	机变量X					. ,	` -	•	a=	·
	i机变量 <i>X</i>					•	•			·
	机变量 X 7 服从 参数									———· 〔独立,则
	ax(X,Y)≠								—J 1 165	1.7五二, 火
7. 设 <i>X</i>	<i>, Y</i> 是两 [.]	个相互独	立的随机	几变量,	且都服从	N(1,2)	则 <i>E</i> [$(X-Y)^2$]=	
8. 掷一	·枚均匀的	骰子 420)次,则	得到的点	(数之和)	大于 154	0 的概率	近似为		· · ·
9. 设 <i>X</i>	X_1, X_2, \cdots, X_n	Y _n 为总体	$N(\mu,\sigma^2)$)的一个	样本,其	Ç 中 <i>μ</i> ∈ <i>l</i>	$R, \sigma > 0$	未知,	\bar{X} , S^2 分 \S	別是样本均
值和	样本方差,	,则σ的	置信水平	·为1-α	的置信区	间为		<u> </u>		
10. 设总	总体X服力	从正态分	布 N(μ,	l),其中	μ∈ R未给	Π, X_1, X	X_2, \dots, X_9	为来自身	总体X的	样本,考虑
假设	检验问题	$\{H_0: \mu=$: 0; H ₁ :	u=1,若	检验的抗	巨绝域由	$D = \{(X$	X_1, \dots, X_9	$):3 \overline{X} \geq$	· 1.96}确定,
则该	检验犯第	了 一类错 ;	吴的概率	为	, 敎[2第二类	错误的机	既率为_		·

二、(10分) 得分

口袋中有1个白球、1个黑球。从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率:

1. 取到第n次,试验没有结束; 2. 取到第n次,试验恰好结束.

三、(10分) 得分

- 1. 设随机变量 X 服从二项分布 b(3, 0.5), $Y=(X-1)^2$, 求 Y 的分布律.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}}, & x > 0\\ 0, & 其它 \end{cases}$$

求(1) X 的分布函数 F(x); (2) P(X > 2).

四、(16分)

得分

1. 设随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} 3x, & 0 < x < 1, & 0 < y < x \\ 0, & \sharp : \exists$$

求: (1) X 和 Y 的边缘密度 $f_X(x)$ 和 $f_Y(y)$: (2) Z = X + Y 的概率密度 $f_Z(z)$.

2. 设随机变量 X 与 Y 相互独立而且同分布, 其中随机变量 X 的分布律为

$$P\{X=1\}=p, P\{X=0\}=1-p,$$

其中 0<p<1. 再设随机变量

$$Z = \begin{cases} 1 & X+Y$$
 角数
$$0 & X+Y$$
 为奇数

(1) 求随机变量(X, Z)的联合分布律; (2)问p取什么值时,随机变量X与Z相互独立?

五、(18分) 得分

- 1. 设 X 服从均匀分布 U(0, 2), 令 Y=|X-1|. 求:
 - (1) E(Y)和 D(Y); (2) E(XY); (3) X 和 Y 的相关系数 ρ_{XY} .
- 2. 设某种商品每周的需求量 $X \sim U(10,30)$ (单位:千克),经销商进货数量是[10,30]中的某个数。商店每销售 1 千克可获利 500 元,若供大于求,则剩余的每千克产品亏损 100 元:若供不应求,则可从外部调剂供应,此时经调剂的每千克商品仅获利 300 元。问:为了使商店每周的平均利润最大,每周的进货量是多少千克?

得分

设总体 X 服从正态分布 $N(\mu, \sigma^2)$, $X_1, X_2, ..., X_n, X_{n+1}$ 是来自该总体的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, 试问: $\frac{(X_{n+1} - \mu)^2}{\sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2$ 的分布是什么?并给出证明.

七、(12分) 得分

设总体 X 在 $[\theta, 2\theta]$ 上服从均匀分布, $\theta>0$ 未知, $X_1, X_2, ..., X_n$ 是 X 的一个样本, $x_1, x_2, ..., x_n$ 是相应的样本值,求:1. θ 的矩估计;2. θ 的最大似然估计.

八、(14分) 得分

- 1. 叙述自由度为n的 χ^2 分布上 α 分位点的定义.
- 2. 某种零件的长度服从正态分布 $N(\mu,\sigma^2)$, 按规定其方差不得超过 $\sigma_0^2=0.016$. 现从一批零件中随机抽取 25 件测量其长度,得其样本方差为 0.025. 问在显著性水平 $\alpha=0.05$ 下,能否推断这批零件合格?

2017 级概率与数理统计试题(A卷)参考答案

-, 1. 1-p; 2. 2/3; 3. ln2; 4. 3; 5. 0.9772; 6. $1-e^{-3}$, $1-e^{-1}-e^{-2}+e^{-3}$; 7. 4; 8. 0.0228;

9.
$$(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}});$$
 10. 0. 05, 0. 1492;

$$\equiv$$
 (1) $\frac{1}{n+1}$ (2) $\frac{1}{n(n+1)}$

三、1.

Y	0	1	4
P	3/8	1/2	1/8
(r ²			

2. (1)
$$F(x) = \begin{cases} 1 - e^{-\frac{x^2}{2}}, & x > 0 \\ 0, & \text{其它} \end{cases}$$
 (2) e^{-2}

四、1.(1)
$$f_X(x) = \begin{cases} 3x^2, 0 < x < 1 \\ 0,$$
 其他 \end{cases} $f_Y(y) = \begin{cases} \frac{3}{2}(1-y^2), 0 < y < 1 \\ 0,$ 其他.
$$(2) f_Z(z) = \begin{cases} \frac{9}{8}z^2, \ 0 < z < 1 \\ \frac{3}{2} - \frac{3}{8}z^2, 1 \le z < 2 \\ 0,$$
 其他.

2. (1) 随机变量(X, Z)的联合分布律为

Z	o	1
0	p(1-p)	$(1-p)^2$
1	p(1-p)	p^2

(2)
$$p = \frac{1}{2}$$
.

$$\overline{H}$$
, 1. (1) $E(Y) = \frac{1}{2}$. $D(Y) = 1/12$. (2) $E(XY) = \frac{1}{2}$ (3) $\rho_{XY} = 0$ 2. $a = \frac{70}{3}$

$$\overrightarrow{\sigma}^2 + \frac{\left(X_{n+1} - \mu\right)^2}{\sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2 \sim \chi^2(n) .$$

七、(1)
$$\theta$$
 的矩估计为 $\hat{\theta} = \frac{2\bar{X}}{3}$.

(2)
$$\theta$$
 的最大似然估计值为 $\hat{\theta}=x_{(n)}/2=\max_{1\leq i\leq n}x_i/2$.

$$\theta$$
 的最大似然估计量为 $\hat{\theta}=X_{(n)}/2=\max_{1\leq i\leq n}X_i/2$.

八、1. 略

2.
$$H_0: \sigma^2 \le 0.016$$
 ; $H_1: \sigma^2 > 0.016$ 拒绝 $H_0: \sigma^2 \le 0.016$