

# Anomaly Detection in Video Sequence with Appearance-Motion Correspondence

ICCV 2019 Seoul, Korea

Trong-Nguyen Nguyen and Jean Meunier DIRO, University of Montreal, Montreal, QC, Canada

## Anomaly detection



- ► High diversity of possible anomalies
- ⇒ no general definition of anomaly
- ⇒ using only data of normality for training models

#### Proposed network



- $\blacktriangleright$  Input: single frame of size 128 imes 192 imes 3
- ► Groundtruth motion: FlowNet2 [Ilg et al., CVPR2017]

#### Overall ideas

Considering common characteristics of normal events

- ► Learning regular appearance structures
- ⇒ using a convolutional auto-encoder
- ▶ Learning motions associated with these templates
   ⇒ using an U-Net translation model
- ▶ How to combine the two learnings?
   ⇒ sharing the encoding network
- Network depth for various camera distances?⇒ let the network decide by itself using Inception
- ► And, how to estimate score of (ab)normality?
- $\Rightarrow \phi m \rho uting/\phi n/whole/frame/as/\phi ther/works$
- ⇒ looking at the most unusual region

#### Learning appearance templates

- ► Typical problem of single frame reconstruction
- ▶ Objective function on intensity

$$\mathcal{L}_{int}(I,\hat{I}) = \|I - \hat{I}\|_2^2$$

ightharpoonup Constraint on gradient (reduce blur due to  $l_2$  distance)

$$\mathcal{L}_{grad}(oldsymbol{I}, \hat{oldsymbol{I}}) = \sum_{d \in \{x,y\}} \left\| \left| g_d(oldsymbol{I}) 
ight| - \left| g_d(\hat{oldsymbol{I}}) 
ight| 
ight\|_{2}$$

✓ Total loss for appearance stream

$$\mathcal{L}_{appe}(I,\hat{I}) = \mathcal{L}_{int}(I,\hat{I}) + \mathcal{L}_{grad}(I,\hat{I})$$

## Learning associated motions

- ► Typical problem of image translation using U-Net
- ▶ Objective function on optical flow

$$\mathcal{L}_{flow}(F_t,\hat{F}_t) = \|F_t - \hat{F}_t\|_1$$

- ▶ Maybe an additional penalization would be better?
   ⇒ GANs worked well in related studies!
- ► We used conditional GAN
- riangle Condition: a video frame  $oldsymbol{I_t}$
- riangleright Input to classify: an optical flow  $F_t$  or  $\hat{F}_t$

# Frame-level normality score

Considering small image patches

$$egin{aligned} \mathcal{S}_I(P) &= rac{1}{|P|} \sum_{i,j \in P} (I_{i,j} - \hat{I}_{i,j})^2 \ \mathcal{S}_F(P) &= rac{1}{|P|} \sum_{i,j \in P} (F_{i,j} - \hat{F}_{i,j})^2 \end{aligned}$$
  $\mathcal{S}_:$  score function,  $P_:$  patch (set of pixel positions)

► Patch location determined by motion stream

$$ilde{P} \leftarrow \mathop{\mathrm{argmax}}_{P \; ext{slides on frame}} \mathcal{S}_F(P)$$

Score: weighted sum of 2 patches (for 2 streams)  $\mathcal{S} = \log[w_F \mathcal{S}_F(\tilde{P})] + \lambda_{\mathcal{S}} \log[w_I \mathcal{S}_I(\tilde{P})]$ 

where 
$$egin{cases} w_F = \left[rac{1}{n}\sum_{i=1}^n \mathcal{S}_{F_i}( ilde{P}_i)
ight]^{-1} \ w_I = \left[rac{1}{n}\sum_{i=1}^n \mathcal{S}_{I_i}( ilde{P}_i)
ight]^{-1} \end{cases}$$

 $m{n}$ : number of training frames

lackbox (Optional) SSIM between I and  $\hat{I}$   $\Rightarrow$  when we have problem with optical flow

## Experimental results on frame-level anomaly detection

|       | Avenue <sup>†</sup> | Ped2 <sup>†</sup> | Entrance             | Exit           | Belleview <sup>‡</sup> | Traffic-Train <sup>‡</sup> |
|-------|---------------------|-------------------|----------------------|----------------|------------------------|----------------------------|
|       | '                   | Propos            | sed architecture wit | h motion strea | m                      |                            |
| Patch | 0.869               | 0.962             | 61/18                | 17/5           | 0.751                  | 0.490                      |
| SSIM  | 0.694               | 0.799             | 51/14                | 15/4           | 0.830                  | 0.798                      |
|       |                     | Arc               | hitecture without n  | notion stream  |                        |                            |
| Patch | 0.702               | 0.773             | 58/16                | 14/7           | 0.838                  | 0.380                      |
| SSIM  | 0.694               | 0.761             | 48/12                | 14/5           | 0.832                  | 0.808                      |

#### Demonstration of score sequence



# Feature maps



# Outputs during optimization



#### UCSD Ped2 & CUHK Avenue



# Subway datasets



## Traffic-Train & Belleview

