Aarón Josué Meza Torres B74787

Relacione las capas — Link, Network y Transport— con las garantías que cada capa podría proporcionar a las capas superiores.

Garantía	Сара
Best effort delivery	Red (Network)
Reliable delivery	Transporte (Transport)
In-order delivery	Transporte (Transport)
Byte-stream abstraction	Transporte (Transport)
Point-to-point link abstraction	Enlace (Data Link)

Suponga que dos extremos de la red tienen un tiempo de ida y vuelta (round-trip time) de 100 milisegundos, y que el remitente transmite cinco paquetes en cada ida y vuelta. ¿Cuál será la tasa de transmisión del remitente para este tiempo de ida y vuelta, suponiendo que los paquetes son de 1500 bytes? De su respuesta en bytes por segundo.

RTT (round-trip time): 100 ms = 0.1 s

Paquetes por ida y vuelta: 5 Tamaño de paquetes: 1500 bytes

Bytes por ida y vuelta: 5 * 1500 = 7500 por round-trip

Tasa de transmisión: 7500 / 0.1 = 75000 bytes por segundo

La subred de la Fig. 1-12(b) fue diseñada para resistir una guerra nuclear. ¿Cuántas bombas serían necesarias para dividir los nodos en dos conjuntos desconectados? Suponga que cada bomba elimina un nodo y todos los enlaces conectados a él.

Se necesitan al menos 3 bombas para dividir la subred en dos conjuntos desconectados. En la figura 2 se muestra un ejemplo de cuáles nodos eliminar y en la figura 3 el resultado de su eliminación.

Figura 1. Estructura de un sistema telefónico

Figura 2. Nodos por eliminar

Figura 3. Resultado de los conjuntos desconectados