4주차 수리통제 발표(2.6-2.7)

2.5 이산형 확률분포

이산형 확률변수 정리

포아송분포의 이항근사

포아송분포

연속형 확률변수의 정의

확률 변수 X가 임의의 실수 x에 대하여 P(X=x) = 0 을 만족하면 연속형 확률 변수라고 한다

2.6.1 균일분포

균일분포

확률변수 X가 실구간 (a, b)상에 균일(uniform)하게 분포되어 있을 때 그의 확률밀도함수

X ~ U(a, b)의 확률밀도함수

$$f(x,a,b) = \begin{cases} \frac{1}{b-a} & (a < x < b) \\ 0 & \text{otherwise} \end{cases}$$

2.6.1 균일분포

균일분포

확률변수 X가 실구간 (a, b)상에 균일(uniform)하게 분포되어 있을 때 그의 확률분포함수

X ~ U(a, b)의 확률분포함수

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

$$F(x; a, b) = \begin{cases} 0 & (x < a) \\ \frac{x - a}{b - a} & (a \le x < b) \\ 1 & (b \le x) \end{cases}$$

2.6.1 균일분포

균일분포

기댓값과 분산

$$E(x) = \frac{a+b}{2} \qquad Var(x) = \frac{(b-a)^2}{12}$$

2.6.2 지수분포

지수분포

포아송 확률과정을 고려했을 때, 특정한 사건 A가 일어나고 다음에 또 다시 같은 사건이 일어날 때까지 걸리는 시간 W는 음이 아닌 값을 가지는 연속형 확률변수

다음 사건 발생까지 걸리는 시간 W

사건A 사건B

확률분포함수

F(w) = P(W <= w)

= 1 - P[X=0]

= 1 - P[구간[0,w)에서 사건 A가 일어나지 않음]

 $= 1 - \exp(-\lambda w)$

포아송 분포

단위시간안에 어떤 사건이 얼 마나 발생할 것인지

2.6.2 지수분포

지수분포

포아송 확률과정을 고려했을 때, 특정한 사건 A가 일어나고 다음에 또 다시 같은 사건이 일어날 때까지 걸리는 시간 W는 음이 아닌 값을 가지는 연속형 확률변수

다음 사건 발생까지 걸리는 시간 W

M

확률분포함수

$$F_X(x) = P[X \le x] = \int_0^x \lambda e^{-\lambda x} dy = 1 - e^{-\lambda x}$$

포아송 분포

단위시간안에 어떤 사건이 얼 마나 발생할 것인지

2.6.2 지수분포

지수분포

포아송 확률과정을 고려했을 때, 특정한 사건 A가 일어나고 다음에 또 다시 같은 사건이 일어날 때까지 걸리는 시간 W는 음이 아닌 값을 가지는 연속형 확률변수

책 표기: X~EXP(θ)

$$\Theta = 1 / \lambda$$

포아송 분포

단위시간안에 어떤 사건이 얼 마나 발생할 것인지

2.6.2 지수분포

지수분포

$$E(X) = \int_0^\infty x \, \lambda \, e^{-\lambda x} dx = \frac{1}{\lambda} = \theta$$

$$E(X^2) = \int_0^\infty x^2 \, \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2} = 2\theta^2$$

$$Var(X) = E(X^2) - E(X)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} = \theta^2$$

2.6.2 지수분포

지수분포

X~EXP(θ)이면, 양의 실수 a와 t에 대해서,

$$P(X>a+t \mid X>a) = P(X>t)$$

2.6.3 정규분포

정규분포

정규분포 = 가우시안 분포

확률밀도함수

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty < x < \infty)$$

정규분포를 따르는 확률변수를 표준화하면 평균이 0이고 분산이 1인 표준정규분포를 따름

$$X{\sim}N(\mu,\!\sigma^2)$$

$$Z = \frac{X - \mu}{\sigma}$$

$$Z{\sim}N(0,1)$$

2.6.3 정규분포

표준정규분포 $Z{\sim}N(0,1)$

확률밀도함수

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} (-\infty < z < \infty)$$

 $X \sim N(\mu, \sigma^2)$ 의 확률분포함수

2.6.3 정규분포

班路 智學學 智慧語

$$\Phi(x) = P(Z \le x)$$

$$= \int_{-\infty}^{x} \phi(t) dt$$

 $\Phi(x) = 1 - \Phi(-x)$: 辑题的 $\Phi(x)$ 0 어(대해대칭이기 때문

 $X \times N(u, 6^2)$ 이면 X의 對題的作 $F(x) = \overline{D}\left(\frac{x-u}{6}\right)$

2.6.3 정규분포

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

누적 정규분포표

2.6.4 이변량 정규분포

이변량 정규분포

2개의 가우시안 확률변수가 결합되어 나타내는 이변량 정규분포

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}} \exp\left\{\frac{-1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2} - 2\rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right) + \left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]\right\}$$

$$\mu_{X} = E[X]$$

$$\mu_{Y} = E[Y]$$

$$\rho = \frac{E[(X - \mu_{X})(Y - \mu_{Y})]}{\sigma_{X}\sigma_{Y}}$$

2.6.4 이변량 정규분포

이변량 정규분포

2개의 가우시안 확률변수가 결합되어 나타내는 이변량 정규분포

$$(X,Y) \sim BVN(M_X, M_Y, 6x, 6Y, P)$$

 $E(X) = M_X \qquad E(Y) = M_Y$
 $Var(X) = 6x^2 \qquad Var(Y) = 6y^2 \qquad Cov(X,Y) = P6x6Y$

2.6.5 감마분포

감마분포

지수분포에서 첫번째 사건이 아닌 r번째 사건이 일어날 때까지의 대기시간에 대한 분포

$$\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx , r > 0$$

 $X \sim Gam(k, \theta)$

2.6.5 감마분포

감마분포

지수분포에서 첫번째 사건이 아닌 r번째 사건이 일어날 때까지의 대기시간에 대한 분포

감마분포의 성질

1.
$$\Gamma(r) = (r-1)\Gamma(r-1)$$

$$2.\Gamma(1) = 1$$

3.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$4. \Gamma(r+1) = r!$$
, r 은 자연수

5.
$$\Gamma(r+1) = r\Gamma(r)$$
 , $r>0$

1.
$$\Gamma(1) = \int_0^\infty x^{1-1} e^{-x} dx = \int_0^\infty e^{-x} dx = 1$$

$$\therefore \Gamma(1) = 1$$

2.
$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty x^{-\frac{1}{2}} e^{-x} dx = \int_0^\infty u^{-1} e^{-u^2} 2u \cdot du$$
 (치환적분)
$$= 2 \cdot \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

$$\therefore \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

3.
$$\Gamma(\alpha+1) = \int_0^\infty x^\alpha e^{-x} dx$$
$$= \left[-x^\alpha e^{-x} \right]_0^\infty + \int_0^\infty \alpha x^{\alpha-1} e^{-x} dx$$
$$= \alpha \int_0^\infty x^{\alpha-1} e^{-x} dx$$
$$= \alpha \Gamma(\alpha) \quad E, \alpha > 0$$

4.
$$\Gamma(n+1) = n\Gamma(n)$$

 $= n(n-1)\Gamma(n-1)$
 $= n(n-1)(n-2)\Gamma(n-2)$
 $=$
 $= n(n-1)(n-2) (1)\Gamma(1)$
 $= n!$ 단, n 은 자연수
 $\therefore \Gamma(n+1) = n!$

 $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$

2.6.5 감마분3

$$X \sim Gamma(lpha,eta)$$

$$f_X(x) = rac{1}{eta^lpha \Gamma(lpha)} x^{lpha - 1} e^{-rac{x}{eta}}, \quad (x, lpha, eta > 0)$$

 $(\alpha: shape\ parameter, \beta: scale\ parameter)$

$$Y \sim EXP(eta) \ f_Y(y) = rac{1}{eta} e^{-rac{1}{eta} y}, \ y \geq 0$$

$$\begin{split} E(X) &= \int_0^\infty \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} \cdot x \, dx \\ &= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^\alpha e^{-\frac{x}{\beta}} dx, \ (t := \frac{x}{\beta} \to dx = \beta dt) \\ &= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty (\beta t)^\alpha e^{-t} \beta \, dt \\ &= \frac{\beta}{\Gamma(\alpha)} \int_0^\infty t^\alpha e^{-t} \, dt \\ &= \beta \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} = \alpha \beta \\ E(X^2) &= \int_0^\infty \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} \cdot x^2 \, dx \\ &= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^{\alpha+1} e^{-\frac{x}{\beta}} dx, \ (t := \frac{x}{\beta} \to dx = \beta dt) \\ &= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty (\beta t)^{\alpha+1} e^{-t} \beta \, dt \\ &= \beta^2 \frac{\Gamma(\alpha+2)}{\Gamma(\alpha)} = \alpha(\alpha+1)\beta^2 \\ Var(X) &= E(X^2) - E(X)^2 \\ &= \alpha(\alpha+1)\beta^2 - \alpha^2 \beta^2 = \alpha \beta^2 \end{split}$$

2.6.5 감마분포

감마분포

지수분포에서 첫번째 사건이 아닌 r번째 사건이 일어날 때까지의 대기시간에 대한 분포

2.6.6 베타분포

베타분포

구간(0,1)상의 연속형 확률변수의 분포를 표현, (베이지안 통계학에서 매우 중요하게 다룸)

베타함수(beta Function)

B(
$$\alpha,\beta$$
) = $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$
(단, $\alpha,\beta>0$ 이다.)

확률변수 X가 다음과 같은 확률밀도함수를 가질 때,

$$f(x) = \begin{cases} \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

X는 베타분포를 가진다.(여기서 α, β 는 양수)

$$X \sim BETA(\alpha, \beta)$$

기댓값 :
$$E(X) = \frac{\alpha}{\alpha + \beta}$$

분산 : $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

2.6.6 베타분포

베타분포

$$\Gamma(\alpha)\Gamma(\beta) = \left(\int_0^\infty x^{\alpha-1}e^{-x}dx\right) \left(\int_0^\infty y^{\beta-1}e^{-y}dy\right)$$

$$x = u^2, \ y = v^2 \supseteq \overline{z} \ \overline{z}$$

$$\Rightarrow \Gamma(\alpha)\Gamma(\beta) = \Gamma(\alpha+\beta) \cdot B(\alpha,\beta)$$
$$\therefore B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

2.6.6 베타분포

베타분포

 베이지안에서

 베타 사전분포
 균일

 분포
 분포

이산확률변수와 연속형 확률변수 정리

2.7,1 누적분포함수를 이용한 방법

확률변수 X가 **이산형**일 경우 (**직 접 대 입**)

$$Y = g(X)$$

$$X \Rightarrow \alpha_{1} \alpha_{2} ...$$

$$Y \Rightarrow q_{1} = g(\alpha_{1}), \quad q_{2} = g(\alpha_{2}) ...$$

$$f_{Y}(q_{3}) = P(Y = q_{7}) = P(g(X) = q_{3})$$

$$= \sum_{\{i:g(\alpha_{7}) = q_{7}\}} P(X = \alpha_{7}) = \sum_{\{i:g(\alpha_{7}) = q_{7}\}} f_{X}(\alpha_{7})$$

2.7,1 누적분포함수를 이용한 방법

확률변수 X가 **연산형**일 경우

吧等基地个X,与垄断外下(水)

Y의与对提的

$$F_{Y}(y) = P(g(X) \leq y) = P(X \in R_y)$$

Y = g(X)의 학급받다. 학교인도함다 $f_X(X)$ $F_Y(Y) = \int_{X_x}^{X_x} f_X(X) dx = F_X(X_x) - F_X(X_x)$

예제 2.39

예체 2.40 (석분함수 이용)

收 X의 韓嬰婚仆(汉) 일때, Y=X²의鳞鴠蚜

$$F_{Y}(y) = P(Y \subseteq y)$$

$$= P(X^{2} \subseteq y)$$

$$= P(-\sqrt{y} \subseteq X \subseteq \sqrt{y})$$

$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

* XNN(0,1) 이라면

$$f_{x}(y) = f_{x}(-y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}}$$

 $f_{y}(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, y>0$

YE GAM (之,2), 本能力 10 升的間壁

2.7,1 누적분포함수를 이용한 방법

व्यात्रा २.५० (५० सिक्स के ०५)

收X의 蟾児龄fx(汉) 兒叫, Y=X²의 鳍兜蚧

$$F_{Y}(y) = P(Y \subseteq y)$$

$$= P(X^{2} \subseteq y)$$

$$= P(-\sqrt{y} \subseteq X \subseteq \sqrt{y})$$

$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

* X~N(0,1) 이라면

$$f_{x}(\sqrt{y}) = f_{x}(-\sqrt{y}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}}$$

$$f_{y}(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, y>0$$

YE GAM (之,2), 本能力 10 升的間壁

2.7,1 누적분포함수를 이용한 방법

독립인 두 韓島 변수 X라Y가 U(0,1)분포

돌행 두 배병 나 XLY >- U(0.1) 발표
$$Z - X + Y = U$$
 학생인 다 나는 $Y = U = V$ ($X + Y = U = V$) $Y = V = V$ ($X + Y = V = V$) $Y = V = V$

2.7.2 결합변환

정리 2.24

이산형 확률벡터 X의 확률밀도함수를 f(x)라고 했을 때, Y = g(X)가 1:1 변환이면 확률벡터 Y의 결합 확률밀도함수는

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = f_{\mathbf{X}}(x_1, x_2, \dots, x_n)$$

이다. 단, x_1, x_2, \dots, x_n 는 y = g(x)의 해로서 y_1, y_2, \dots, y_n 에 의존함.

2.7.2 결합변환

X1, X2의 결합 확률밀도함수

(x_1, x_2)	(0,0)	(0,1)	(1,0)	(1,1)
$f_{X_1, X_2}(x_1, x_2)$	1/4	1/4	1/4	1/4

$$Y_1 = g_1(X_1, X_2) = X_1 + X_2$$
와 $Y_2 = g_2(X_1, X_2) = X_1 X_2$ 의 결합확률밀도함수 구하기

$$\begin{split} f_{Y_1,\ Y_2}(0,0) &= f_{X_1,\ X_2}(0,0) = 1/4 \\ f_{Y_1,\ Y_2}(1,0) &= f_{X_1,\ X_2}(0,1) + f_{X_1,\ X_2}(1,0) = 1/2 \\ f_{Y_1,\ Y_2}(2,1) &= f_{X_1,\ X_2}(1,1) = 1/4 \end{split}$$

2.7.2 결합변환

(x_1, x_2, x_3)	(0,0,0)	(0,0,1)	(0,1,1)	(1,0,1)	(1,1,0)	(1,1,1)
$f_{X_1, X_2, X_3}(x_1, x_2, x_3)$	3/8	1/8	1/8	1/8	1/8	1/8

$$Y_1 = g_1(X_1, X_2, X_3) = X_1 + X_2 + X_3$$

 $Y_2 = g_1(X_1, X_2, X_3) = |X_3 - X_2|$

$$\begin{split} &f_{Y_{l},\,Y_{2}}(0,0) = f_{X_{l},\,X_{P}X_{3}}(0,0,0) = 3/8 \\ &f_{Y_{l},\,Y_{2}}(1,1) = f_{X_{l},\,X_{P}X_{3}}(0,0,1) = 1/8 \\ &f_{Y_{l},\,Y_{2}}(2,0) = f_{X_{l},\,X_{P}X_{3}}(0,1,1) = 1/8 \\ &f_{Y_{l},\,Y_{2}}(2,1) = f_{X_{l},\,X_{P}X_{3}}(1,0,1) + f_{X_{l},\,X_{P}X_{2}}(1,1,0) = 2/8 \\ &f_{Y_{l},\,Y_{3}}(3,0) = f_{X_{l},\,X_{P}X_{3}}(1,1,1) = 1/8 \end{split}$$

2.7.2 결합변환

정리 2.25/n개의 확률변수에 대한 결합변환의 분포이론

n개의 연속형 확률변수로 구성되어 있는 확률벡터 $X=(X_1,\,X_2,\,\cdots,\,X_n)$ 에 대하여 $Y_i=g_i(X)$, $i=1,\,2,\,\cdots,\,n$ 이라는 결합변환된 확률변수들을 고려하자. X는 결합 확률밀도함수 $f_X(x_1,\,x_2,\,\cdots,\,x_n)$ 를 갖는데 전체영역 A상에서 이 확률밀도함수는 양(> 0)의 값을 가진다. 또, $(g_1,\,\cdots,\,g_n)$ 은 A상에 정의된 1:1 변환이며 유일해 $x_i=h_i(y_1,\,\cdots,y_n), i=1,\,\cdots,n$ 을 갖는다고 가정한다. 이제 자코비안 J가 변환의 범위에서 0이 아니면, 확률벡터 Y의 결합 확률밀도함수는

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = f_{\mathbf{X}}(h_1(y_1, \dots, y_n), \dots, h_n(y_1, \dots, y_n)) |J|$$

$$J = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

2.7.2 결합변환

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = f_{\mathbf{X}}(h_1(y_1, \dots, y_n), \dots, h_n(y_1, \dots, y_n)) |J|$$

X, X2 H2 \\ 1.

野り カニ12 外盤地介

* 建計時型に対け f(x, x2)=exp(-x,-x2), x,>0, x2>0.

* 君對出於到 异始个 Y1= X1 & Y2=X1 +X2

$$(y_1, y_2) = g(x_1, x_2)$$
 of $\frac{202b}{12}$ $x_1 = h_1(y_1, y_2) = y_1$
 $x_2 = h_2(y_1, y_2) = y_2 - y_1$

$$J = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = 1$$

* 望합婚婴动

$$f_{Y_1, Y_2}(y_1, y_2) = f_{X_1, X_2}(y_1, (2-y_1)) = \exp(-y_2)$$
(Tt., $0 < y_1 < y_2 < \infty$)

* Y, 4160 产生饮意见至的分

$$f_{Y_2}(y_2) = \int_0^{y_2} \exp(-y_2) dy_1 = y_2 \exp(-y_2), y_2 > 0$$

2.7.2 결합변환

합성곱 형식

서로 독립인 두 확률 변수 X, Y의 합 Z = X+Y의 분포는 다음의 정리를 활용하면 쉽게 구할 수 있음

정리 2.26

서로 독립인 두 확률변수 X, Y의 확률밀도함수가 각각 $f_X(x)$, $f_Y(y)$ 일 때, 두 변수의 합 Z = X + Y의 확률밀도함수는 다음과 같이 주어진다.

(1) 두 변수
$$X$$
, Y 가 이산형인 경우: $f_Z(z) = \sum_{\mathsf{R} \in \mathcal{X}} f_X(x) f_Y(z-x)$

(2) 두 변수
$$X$$
, Y 가 연속형인 경우: $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$

2.7.2 결합변혼

이용기대값정의 E[E(YIX)] = E(Y)

P(Z
$$\leq$$
 Z) = $\int_{-\infty}^{\infty} P(X+Y \leq Z \mid X=x) f_{X}(x) dx$
= $\int_{-\infty}^{\infty} P(X+Y \leq Z) f_{X}(x) dx$
= $\int_{-\infty}^{\infty} F_{Y}(Z-x) f_{X}(x) dx$
 $f(Z) = \frac{dF_{Z}(Z)}{dZ}$
= $\frac{d}{dZ} \left[\int_{-\infty}^{\infty} F_{Y}(Z-x) f_{X}(x) dx \right]$
= $\int_{-\infty}^{\infty} \frac{dF_{Y}(Z-x)}{dZ} f_{X}(x) dx$
= $\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(Z-x) dx$