# Modelo Predictivo de Puntuación de Vinos

iBienvenidos! En esta presentación, exploraremos un modelo predictivo que utiliza características de los vinos para predecir su puntuación en catas a ciegas.





# Definición del Problema y Objetivos

### El Desafío

Predecir la puntuación que un vino obtendría en una cata a ciegas de expertos, en base a características al alcance de todos.

### **Objetivo Principal**

Desarrollar un modelo que pueda ayudar a los consumidores a evaluar la calidad potencial de los vinos que tienen a su alcance.

# Contextualización técnica

#### **Dataset**

Dataset de Kaggle (webscrapping a Wine Enthusiast):

+80.000 registros

### Selección

Registros de vinos españoles:

3. 455 registros

#### Data columns (total 15 columns): Column Non-Null Count Dtype title 3455 non-null object vintage 3455 non-null object 3455 non-null object winery variety 3455 non-null object country 3455 non-null object description 3455 non-null object designation 2868 non-null object points 3455 non-null int64 price 3356 non-null float64 province 3455 non-null object 10 region 1 3453 non-null object 11 region 2 0 non-null object

14 taster twitter handle 3455 non-null object

3455 non-null

3455 non-null

**Variables** 

12 taster name

13 taster photo

object

object

# Preprocesamiento y Exploración de los Datos

1 1. Limpieza de Datos
Eliminar valores faltantes,
corregir errores,
transformar datos
categóricos.

2. Análisis Exploratorio

> Identificar patrones, correlaciones, distribución de variables.

3. Selección de Variables

Identificar las variables más relevantes para la predicción de la puntuación del vino.



# 1. Limpieza de Datos

- Limpieza:
- Manejo de valores faltantes mediante eliminación si faltaba precio.
- Transformaciones:
- Creación de nuevas categorías: tipo de vino, denominación de origen y crianza.
- One-hot encoding para las variables categóricas tipo de vino y crianza.
- OrdinalEncoder para las variables categóricas bodega, variedad de uva y denominación.
- StandarScaler a las variables numéricas precio y año.
- Análisis Exploratorio:
- Distribución por año de cosecha y clasificación.





# 2. Análisis Exploratorio

Correlación entre variables predictoras y puntuación.



# 3. Selección de Variables

7 Variable objetivo:

"Points"

Características con pocas categorías únicas

**OneHotEncoder:** 

'style', 'aging\_1'

2 Características con muchas categorías únicas

**OrdinalEncoder:** 

'winery', 'variety', 'denominacion'

4 Variables numéricas

**StandarScaler:** 

'price', 'vintage'

# 3. Selección de Variables



# Selección y Entrenamiento del Modelo



### Modelos de Machine Learning

Implementación de diversos algoritmos:

- KNN y SVR para regresión
- LightGBM y XGBRegressor
- Random Forest y Random Tree
- Linear Regressor y Keras



### Selección de Variables

Técnicas de selección implementadas:

- SelectKBest para variables relevantes
- PCA para reducción dimensional
- KMeans para agrupamiento



#### Proceso de Entrenamiento

Optimización mediante:

- RandomizedSearchCV para búsqueda
- Pipeline para procesamiento
- Ajuste específico de parámetros



# Pipeline del modelo final

## **Pipeline del Modelo Final:**

### 1. **Preprocesamiento:**

### Transformación Categórica:

- Variables con muchas categorías (winery, variety, denominacion) codificadas mediante OrdinalEncoder.
- Variables con pocas categorías (style, aging\_1) codificadas mediante OneHotEncoder.

### Transformación Numérica:

Variables continuas (price, vintage) escaladas mediante
 StandardScaler.

#### 2. Escalado Global:

• Uso de RobustScaler para mitigar el impacto de valores atípicos.

### 3. Selección de Características:

SelectKBest con f\_regression como función de evaluación,
 seleccionando las 14 características más relevantes.

## 4. Modelo de Regresión:

• Algoritmo: RandomForestRegressor

### Parámetros del Modelo:

- Profundidad máxima: 11 (max\_depth=11).
- Número de estimadores: 121 (n estimators=121).
- Número máximo de características a considerar en cada división: sqrt (max\_features='sqrt').
- Semilla para reproducibilidad: 63 (random\_state=63).







# Evaluación del Rendimiento del Modelo



#### **Error**

Diferencia entre las predicciones y los valores reales.





# Aplicación del Modelo a Nuevos Vinos

### Paso 1

Recopilación de datos sobre las características del nuevo vino.

Paso 2

Introducción de los datos al modelo predictivo a través de la app de streamlit.

Paso 3

Obtención de la puntuación predicha para el nuevo vino.





# Limitaciones y Mejoras

### Limitaciones

Desequilibrio en las Clases: Pocas observaciones para categorías como "Clásico".

Imputación de Valores Faltantes: Podría haber introducido sesgos en ciertas variables clave.

## Mejoras

Ampliar el conjunto de datos de entrenamiento.

#### **Posibles Direcciones**

Integración de análisis técnico para mejorar la precisión.