NTIN071 A&G: CVIČENÍ 1 – DETERMINISTICKÝ KONEČNÝ AUTOMAT, ROZPOZNÁVANÝ JAZYK, REGULÁRNÍ JAZYKY

Cíle výuky: Po absolvování student umí

- používat základní terminologii a notaci z teorie formálních jazyků a automatů
- vysvětlit formální definici konečného deterministického automatu (DFA) a rozpoznávaného jazyka
- popsat jazyk rozpoznávaný daným DFA, pomocí množinového zápisu
- sestrojit (a formálně popsat) DFA rozpoznávající daný jazyk
- dokázat uzavřenost regulárních jazyků na základní množinové operace

Příklady na cvičení (think-pair-share)

Příklad 1 (Konstrukce DFA pro daný jazyk). Sestrojte DFA rozpoznávající daný jazyk.

- (a) $L = \{w \in \{a, b\}^* \mid |w|_a \text{ není dělitelný } 3\}$
- (b) $L = \{w \in \{a, b\}^* \mid 2 \text{ dělí } |w|_a \text{ nebo } 3 \text{ dělí } |w|_b\}$
- (c) $L = \{w \in \{a, b\}^* \mid 2 \text{ dělí } |w|_a \text{ a 3 dělí } |w|_b\}$
- (d) $L = \{w \in \{0,1\}^* \mid w \text{ je binární zápis přirozeného čísla dělitelného 3}\}$

Příklad 2 (Automat zadaný tabulkou). Nakreslete stavový diagram a popište rozpoznávaný jazyk v množinovém zápisu.

(a)
$$\begin{array}{c|cccc}
 & 0 & 1 \\
 & \rightarrow p & q & p \\
 & * q & r & q \\
 & * r & p & r
\end{array}$$

(b)
$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \to p & p & q \\ * q & r & q \\ * r & p & q \end{array}$$

Příklad 3 (Popis jazyka a konstrukce automatu pro danou vlasnost). Sestrojte DFA přijímající právě všechna slova nad abecedou $\Sigma = \{a, b\}$, která splňují danou vlastnost. Popište daný jazyk pomocí množinového zápisu.

- (a) začíná 'abba'
- (b) končí 'abba'
- (c) obsahuje 'abba' nebo 'bab' jako podslovo

Příklad 4 (Regulární jazyky a množinové operace). Mějme dva regulární jazyky, L, L' nad stejnou abecedou. Ukažte, že platí následující:

- (a) $\Sigma^* \setminus L$ je regulární jazyk
- (b) $L \cup L'$ je regulární jazyk
- (c) $L \cap L'$ je regulární jazyk

K procvičení a k zamyšlení

Příklad 5. Sestrojte DFA rozpoznávající daný jazyk.

- (a) $L = \{ w \in \{a, b\}^* \mid |w|_a \text{ je sudý} \}$
- (b) $L = \{w \in \{a,b\}^* \mid |w|_b$ je dělitelný 3}
- (c) $L = \{w \in \{a,b\}^* \mid 2 \text{ nebo } 3 \text{ dělí } |w|_a\}$
- (d) $L = \{w \in \{a, b\}^* \mid 2 \text{ a 3 dělí } |w|_a\}$
- (e) $L = \{w \in \{0,1\}^* \mid w$ je binární zápis přirozeného čísla dělitelného 5}

Příklad 6. Nakreslete stavový diagram a popište rozpoznávaný jazyk v množinovém zápisu.

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow p & p & q \\ q & p & r \\ *r & p & r \end{array}$$

Příklad 7. Sestrojte DFA rozpoznávající jazyk všech slov nad abecedou $\Sigma = \{a, b\}$ splňujících danou vlastnost:

- (a) má alespoň dvě písmena a první písmeno je stejné jako poslední
- (b) má alespoň dvě písmena a první dvojice písmen je stejná jako poslední dvojice písmen

Příklad 8. Co když jsou L, L' regulární jazyky nad různými (ale ne nutně disjunktními) abecedami? Jsou jazyky $\Sigma^* \setminus L, L \cup L', L \cap L'$ nutně také regulární?

Příklad 9. Uměli byste ukázat, že jazyk L^R (tj. slova z L napsaná pozpátku) je regulární kdykoliv je L regulární?