EE4152 Digital Communications

A/Prof Li Kwok Hung EEE-S1-B1b-62 Ext-5028 Ekhli@ntu.edu.sg EEE, NTU

Content (Location: NTULearn > Content)

- Digital Communication Principles
- Information Theory
- Error Correcting Coding
- Optimum Signal Processing

Relevant Information

- This course builds upon material covered in EE3002/IM3002 (Communication Principles)
- Mathematical tools used in this subject include Fourier series, Fourier transform, probability theory, convolution and correlation.

Textbook & References

- B P Lathi and Z Ding,
- Modern Digital and Analog Systems, 4/Ed, Oxford University Press, 2010
- S Haykin and M Moher, Communication Systems, 5/Ed, John Wiley, 2010.
- J G Proakis and M Salehi, Communication Systems Engineering, 2/Ed, Prentice-Hall, 2002

Assessment Components

- **CA** Assignment (10%) <~wk 5>
- CA Quiz #1 (10%) <wk 6>, covering lecture topics in wks 1-5
- **CA** Project Report (10%) <~wks 7-8>
- CA Quiz #2 (10%) <wk 11>, covering lecture topics in wks 6-10
- **Exam (60%)**

Digital Communication Principles

- Sampling Theorem & Aliasing
- Line Coding Schemes
- Autocorrelation and Power Spectral Density (PSD)
- Intersymbol Interference (ISI) and Pulse Shaping

Rectangular Function

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & |t| \le T/2 \\ 0 & \text{otherwise} \end{cases}$$

 $\leftrightarrow T \operatorname{sinc}(fT)$

$$\sqcap$$
 $\Pi(t/T)$ \sqcap See pp. 70 (Lathi)

Triangular Function

$$\Delta\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{|t|}{T} & |t| \le T \\ 0 & \text{otherwise} \end{cases}$$

$$\leftrightarrow T \operatorname{sinc}^{2}(fT)$$

$$\leftarrow T \operatorname{sinc}^{2}(fT)$$

$$\wedge$$
 ∆($t/2T$) \Leftrightarrow See pp. 70 (Lathi)

Sinc Function

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

where zero crossings are at $x = \pm 1, \pm 2, \pm 3, \cdots$

 $sinc(x) = sin(x)/x \Leftrightarrow See pp. 70 (Lathi)$

Fourier Series

If $g_p(t)$ is a periodic function with period T_0 , then it can be represented as

$$g_p(t) = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi n f_0 t}$$

where $f_0 = 1/T_0$ and

$$C_n = \frac{1}{T_0} \int_{T_0} g_p(t) e^{-j2\pi n f_0 t}$$
 $n = 0, \pm 1, \pm 2, ...$

Fourier Transform

Given that a time function g(t) with finite energy

$$\int_{-\infty}^{\infty} \left| g(t) \right|^2 dt < \infty$$

the Fourier transform pair is given by

$$G(f) = F[g(t)] = \int_{-\infty}^{\infty} g(t) e^{-j2\pi ft} dt$$

$$g(t) = F^{-1}[G(f)] = \int_{-\infty}^{\infty} G(f) e^{j2\pi ft} df$$

Sampling Theorem & Aliasing

Introduction

- Analog signals can be digitized through sampling and quantization.
- The sampling rate must be fast enough so that the analog signal can be reconstructed from the samples with acceptable accuracy.
- What is the appropriate sampling rate?

Band-Limited Signal

$$G(f)$$
 is zero for $|f| > B$

Sampling Theorem

- A signal band-limited to *B* Hz can be reconstructed without any error from its samples taken uniformly at a sampling rate *greater than* or *equal to 2B* samples per second.
- The sampling frequency is $f_s \ge 2B$ Hz.
- The sampling interval is $T_s \le 1/(2B)$ s.

Sampled Signal & its Fourier Transform

Proof:

- Consider a signal g(t) band-limited to B Hz.
- Multiplying g(t) by a unit impulse train yields the sampled signal

$$\overline{g}(t) = g(t) \times \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

Exercise

Find the Fourier series representation of the *periodic* unit impulse train

$$\delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

Answer:

$$\delta_{T_s}(t) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j2\pi n f_s t}, \qquad f_s = 1/T_s$$

Proof: (...)

Using the Fourier series for the impulse train, we have

$$\overline{g}(t) = g(t) \times \left[\frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j2\pi n f_s t} \right] = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} g(t) e^{j2\pi n f_s t}$$

Taking the Fourier transform yields

Proof: (...)

- In order to reconstruct g(t), we have to recover G(f) from $\overline{G}(f)$
- This is possible if there is no overlap between successive cycles in $\overline{G}(f)$.
- The requirement is $f_s \ge 2B$.
- G(f) can be recovered by passing $\overline{G}(f)$ through a LPF with bandwidth B Hz

Nyquist Rate

- Since $f_s \ge 2B$, the minimum sampling rate is 2B samples per second. It is called the **Nyquist rate** for g(t).
- Accordingly, the **Nyquist interval** for g(t) is 1/2B.

Reconstruction Filter

The transfer function of the LPF is

$$H(f) = T_s \operatorname{rect}\left(\frac{f}{2B}\right)$$

Exercise

Find the impulse response of

$$H(f) = T_s \operatorname{rect}\left(\frac{f}{2B}\right)$$

Answer:

$$h(t) = F^{-1}[H(f)] = 2BT_s \operatorname{sinc}(2Bt)$$

Reconstruction of g(t)

If
$$T_s = 1/2B$$
, then

$$h(t) = \operatorname{sinc}(2Bt)$$

Interpolation Formula

$$g(t) = \overline{g}(t) \otimes h(t)$$

$$= \sum_{k} g(kT_s) \delta(t - kT_s) \otimes h(t)$$

$$= \sum_{k} g(kT_s) h(t - kT_s)$$

$$= \sum_{k} g(kT_s) \operatorname{sinc}[2B(t - kT_s)]$$

$$= \sum_{k} g(kT_s) \operatorname{sinc}(2Bt - k)$$

Weighted Sum of Sinc Functions

Example

Find a signal g(t) that is band-limited to B Hz and whose samples are g(0) = 1 and $g(\pm T_s) = g(\pm 2T_s) = g(\pm 3T_s) = ... = 0$ where the sampling interval T_s is the Nyquist interval for g(t), i.e., $T_s = 1/2B$.

Substituting the sampled values into

$$g(t) = \sum_{k} g(kT_s) \operatorname{sinc}(2Bt - k)$$

we have g(t) = sinc (2Bt).

Undersampling

■ If a signal is undersampled (sampled at a rate below the Nyquist rate), the spectrum of $\overline{G}(f)$ becomes

Undersampling (...)

- Because of the overlapping tails, it is not possible to exactly recover g(t) from $\overline{g}(t)$.
- If the sampled signal $\overline{g}(t)$ is passed through a LPF with bw $f_s/2$, the output will be a distorted version of g(t).

Distortion

There are two types of distortion:

- (1) lost tail
- (2) aliasing or tail inversion

Solution to Aliasing

- Aliasing can be eliminated by cutting the tail of G(f) beyond $|f| > f_s/2$ before the signal is sampled.
- However, the distortion due to lost tail remains.
- In this way, the energy associated with distortion is reduced by half.

Exercise

Let $g(t) = 2a/(t^2 + a^2)$. Find the essential bw B such that the energy beyond which is equal to 1% of the total energy and also determine its Nyquist sampling rate.

Answer:

Practical/Natural Sampling

- Sampling a signal g(t) by impulses is of theoretical interest only. In practice, sampling is accomplished by a train of pulses of finite width.
- Is it possible to recover g(t) from the sampled signal?
- The answer is positive and it will be demonstrated in tutorial problems.

Time-Division Multiplexing (TDM)

Because a pulse-modulated signal occupies only a small part of the channel time, several pulse-modulated signals can share the same channel on a time basis.

TDM of Two Signals

Line Coding

Introduction

- A digital signal is needed to map into electrical pulses or waveforms before transmitting over a channel. This process is called line coding.
- There are many ways of assigning waveforms to digital data.
- We shall restrict our discussion to the case of binary data.

EE/IM4152 – Digital Communications

On-Off Signaling

- \blacksquare '1' is transmitted by a pulse p(t).
- '0' is transmitted by no pulse.
- Pulses can be return-to-zero (RZ), as shown in Fig. (a), or nonreturn-tozero (NRZ), as shown in Fig. (d).

Polar Signaling

- \blacksquare '1' is transmitted by a pulse p(t).
- \bullet '0' is transmitted by a pulse -p(t).
- Pulses can be RZ (see Fig. (b)) or NRZ (see Fig. (e)).

Bipolar Signaling

- '0' is encoded by no pulse.
- '1' is encoded by a pulse p(t) or -p(t), depending on whether the previous '1' is encoded by -p(t) or p(t).
- Pulses representing consecutive 1's are alternate in sign, as shown in Fig. (c).

Regenerative Repeaters

- The repeaters are used at regularly spaced intervals along a digital transmission path to detect the incoming signal and regenerate new clean pulses for further transmission along the path.
- This process periodically eliminates the accumulation of noise and signal distortion along the path.

Example

Desirable Properties of Line codes

- Transmission bandwidth (bw) should be as small as possible.
- The transmitted power should be as small as possible for a given bw and a specific detection error probability.
- It is nice that the line code can **detect** or even **correct errors**.

Desirable Properties of Line codes (...)

- It is desirable to have zero PSD at f = 0 (dc component) because ac coupling and transformers are used at the repeaters.
- It should be possible to extract timing information from the signal.
- It should be possible to transmit a digital signal correctly regardless of the data pattern (i.e., transparent).

(c) **PAM signal**

$$h(t) = p(t)$$

$$S_{y}(f) = |P(f)|^{2} S_{x}(f)$$

(d) Relationship among x(t), y(t) and p(t)

and p(t)
EE/IM4152 - Digital Communications

PSD of Line Codes

- The pulse train y(t) is constructed from a basic pulse p(t) every T_b sec with relative strength a_k for the pulse starting at $t = kT_b$.
- The k-th pulse of y(t) is $a_k p(t kT_b)$, where the elements of the data sequence $\{a_k\}$ are arbitrary and random.

PSD of Line Codes (...)

■ We can find the PSD of y(t) using the time-autocorrelation approach.

$$\Re_{y}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} y(t) y(t - \tau) dt \longleftrightarrow S_{y}(f)$$

■ However, if the pulse p(t) changes, we have to derive the PSD all over again.

PSD of Line Codes (...)

- The difficulty can be avoided by considering an impulse signal x(t) that uses a unit impulse for the basic pulse p(t), where the strength of the k-th impulse is a_{k} .
- If x(t) is applied to the input of a filter with impulse response h(t) = p(t), then the output will be y(t).
- The desired PSD is $S_y(f) = |P(f)|^2 S_x(f)$.

$\mathcal{R}_{\mathsf{X}}(\tau)$ and $S_{\mathsf{X}}(f)$

- $\mathfrak{R}_{\chi}(\tau)$ is the time-autocorrelation function of the impulse train $\chi(t)$.
- $\blacksquare \ \mathcal{R}_{\mathsf{X}}(\tau) \leftrightarrow \mathcal{S}_{\mathsf{X}}(f)$
- To obtain $\mathcal{R}_{x}(\tau)$, we replace the impulses of x(t) by the rectangular pulses with width ε . The height of the k-th pulse is h_{k} .

Deriving $\mathcal{R}_{\mathsf{x}}(\tau)$

- The k-th impulse should have the strength or area a_k , i.e., $\varepsilon h_k = a_k$
- If we denote the rectangular pulse train by $\hat{x}(t)$, then

$$\Re_{\hat{x}}(\tau) = \Re_{\hat{x}}(-\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \hat{x}(t) \, \hat{x}(t - \tau) \, dt$$

 $\blacksquare \mathcal{R}_{\mathsf{x}}(\tau)$ can be obtained by letting $\varepsilon \to 0$.

- Because $\Re_{\hat{x}}(\tau)$ is an even function of τ , we need to consider only positive τ .
- When $\tau < \varepsilon$ (see Fig. (b)),

$$\Re_{\hat{x}}(\tau) = \lim_{T \to \infty} \frac{1}{T} \sum_{k} h_{k}^{2} \left(\varepsilon - \tau\right) = \lim_{T \to \infty} \frac{1}{T} \sum_{k} a_{k}^{2} \left(\frac{\varepsilon - \tau}{\varepsilon^{2}}\right)$$

$$= \frac{1}{\varepsilon T_{b}} \left(\lim_{T \to \infty} \frac{T_{b}}{T} \sum_{k} a_{k}^{2}\right) \left(1 - \frac{\tau}{\varepsilon}\right) = \frac{R_{0}}{\varepsilon T_{b}} \left(1 - \frac{|\tau|}{\varepsilon}\right)$$

$$= \frac{R_{0}}{\varepsilon T_{b}} \left(1 - \frac{|\tau|}{\varepsilon}\right)$$
See Fig. (d)

Digression

■ Suppose the time interval T contains N pulses, i.e., $N = T/T_b$. Then

$$R_0 = \lim_{T \to \infty} \frac{T_b}{T} \sum_{k} a_k^2$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k^2 = \langle a_k^2 \rangle$$

where $\langle x \rangle$ denotes the **time average** or **mean** of x.

- As we increase the shift τ further, the k-th pulse of $\hat{x}(t-\tau)$ will start overlapping the (k+1)-th pulse of $\hat{x}(t)$ as τ approaches T_b .
- Repeating the earlier steps, we obtain another triangle located at $\tau = T_b$ (see Fig. (d)).

■ The width of the triangle is 2ε and the height is $R_1/\varepsilon T_b$ at $\tau = T_b$, where

$$R_{1} = \lim_{T \to \infty} \frac{T_{b}}{T} \sum_{k} a_{k} a_{k+1}$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_{k} a_{k+1} = \langle a_{k} a_{k+1} \rangle$$

- Similarly, we can obtain a sequence of triangular pulses located at $\tau = 2T_b$, $3T_b$, For the *n*-th pulse centered at nT_b , the height is $R_n/\varepsilon T_b$ and the area of the triangular pulse is R_n/T_b .
- As $\varepsilon \to 0$, the *n*-th pulse becomes an impulse with strength (or area) R_n/T_b (see Fig. (e)).

Deriving $S_x(f)$

Hence,
$$\Re_x(\tau) = \sum_{n=-\infty}^{\infty} \frac{R_n}{T_b} \times \delta(t - nT_b)$$

The PSD is $S_x(f) = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} R_n e^{-j2\pi nfT_b}$

Recognizing that $R_n = R_{-n}$, we have

$$S_x(f) = \frac{1}{T_b} \left(R_0 + 2 \sum_{n=1}^{\infty} R_n \cos 2\pi n f T_b \right)$$

Deriving $S_y(f)$

$$S_{y}(f) = |P(f)|^{2} S_{x}(f)$$

$$= \frac{|P(f)|^{2}}{T_{b}} \left(\sum_{n=-\infty}^{\infty} R_{n} e^{-j2\pi n f T_{b}} \right)$$

$$= \frac{|P(f)|^{2}}{T_{b}} \left(R_{0} + 2 \sum_{n=1}^{\infty} R_{n} \cos 2\pi n f T_{b} \right)$$

Using this result, we are able to find the PSDs of various line codes.

Example - Polar Signaling

 $^{1'}$ → pulse p(t) $^{0'}$ → pulse -p(t)

- a_k is equally likely to be 1 or -1
- $(a_k)^2 = 1$

Find R₀

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k^2$$

Since there are N pulses in the interval T,

$$\sum_{k} a_k^2 = N$$

and

$$R_0 = \lim_{N \to \infty} \frac{1}{N} (N) = 1$$

Find R₁

$$a_k$$
 a_{k+1} $a_k a_{k+1}$
+1 +1 +1
+1 -1 -1
-1 +1 -1
-1 +1

$$R_1 = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k \ a_{k+1}$$

On average, out of N terms,

$$a_k a_{k+1} = 1$$
 for $N/2$ terms
 $a_k a_{k+1} = -1$ for $N/2$ terms

Hence,

$$R_1 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (1) + \frac{N}{2} (-1) \right] = 0$$

EE/IM4152 - Digital Communications

Find R_n and $S_y(f)$

■ Similarly, for n > 1,

$$R_n = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (1) + \frac{N}{2} (-1) \right] = 0$$

Hence,
$$S_{y}(f) = \frac{\left|P(f)\right|^{2}}{T_{b}} \left(R_{0} + 2\sum_{n=1}^{\infty} R_{n} \cos 2\pi n f T_{b}\right)$$

$$= \frac{\left|P(f)\right|^{2}}{T_{b}}$$

$$T_{b \in IM4152 - Digital Communications}$$

Special Case

■ If p(t) is a half-width rectangular pulse,

$$p(t) = \operatorname{rect}\left(\frac{t}{T_b/2}\right) = \operatorname{rect}\left(\frac{2t}{T_b}\right)$$

and

$$P(f) = \frac{T_b}{2} \operatorname{sinc}\left(\frac{fT_b}{2}\right)$$

Therefore,

$$S_{y}(f) = \frac{T_{b}}{4} \operatorname{sinc}^{2} \left(\frac{fT_{b}}{2} \right)$$
EE/IM4152 - Digital Communications

PSD of a Polar Signal

Disadvantages

- The bw is $2R_b$ Hz for the information rate R_b pulses per second. (Note that for an information rate of R_b pulses per second, the min. bw is $R_b/2$ Hz)
- Even though we use full-width pulses, the required bw is R_b Hz.
- Not suitable for an AC coupling environment
- No error detection and correction capability

Advantages

Most efficient:

For a given power level, the detectionerror probability for polar signaling is the smallest.

■ Transparent:

Pulses are always present regardless of the bit sequence.

Timing extraction:

Rectification of a polar signal yields a periodic signal for timing extraction.

Achieving a DC Null by Pulse Shaping

- Since $S_y(f) = |P(f)|^2 S_x(f)$, we can force the PSD to have a DC null by selecting P(f) properly.
- Because

$$P(f) = \int_{-\infty}^{\infty} p(t) e^{-j2\pi ft} dt$$

we find the condition:

$$P(0) = \int_{-\infty}^{\infty} p(t) dt$$

Zero area under p(t)

Manchester (Split Phase) Signaling

Example - on-Off Signaling

 $■ '1' \rightarrow pulse p(t) and '0' \rightarrow no pulse$

- a_k is equally likely to be 1 or 0
- $(a_k)^2 = 1 \text{ with probability } 0.5$ = 0 with probability 0.5

Find R₀

$$R_0 = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k^2$$

Since there are N pulses in the interval T,

$$\sum_{k} a_k^2 = N/2$$

and

$$R_0 = \lim_{N \to \infty} \frac{1}{N} (N/2) = 0.5$$

Find R₁

$$a_k$$
 a_{k+1} $a_k a_{k+1}$
1 1 1
1 0 0
0 1 0
0 0

$$R_1 = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k \ a_{k+1}$$

On average, out of N terms,

$$a_k a_{k+1} = 1$$
 for $N/4$ terms
 $a_k a_{k+1} = 0$ for $3N/4$ terms

Hence,

$$R_1 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{4} \times 1 + \frac{3N}{4} \times 0 \right] = \frac{1}{4}$$

EE/IM4152 - Digital Communications

Find R_n and $S_y(f)$

- Similarly, for n > 1, $R_n = \frac{1}{4}$.
- Hence,

$$S_{y}(f) = \frac{|P(f)|^{2}}{T_{b}} \left(\sum_{n=-\infty}^{\infty} R_{n} e^{-j2\pi nfT_{b}} \right)$$

$$= \frac{|P(f)|^{2}}{T_{b}} \left(\frac{1}{2} + \frac{1}{4} \sum_{n=-\infty}^{\infty} e^{-j2\pi nfT_{b}} \right) = \frac{|P(f)|^{2}}{4T_{b}} \left(1 + \sum_{n=-\infty}^{\infty} e^{-j2\pi nfT_{b}} \right)$$

Exercise

Show that

$$\sum_{n=-\infty}^{\infty} e^{-j2\pi n f T_b} = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_b} \right)$$

Special Case

Using the result of the exercise, we have

$$S_{y}(f) = \frac{|P(f)|^{2}}{4T_{b}} \left[1 + \frac{1}{T_{b}} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_{b}} \right) \right]$$

For the case of a half-width rectangular pulse,

$$S_{y}(f) = \frac{T_{b}}{16} \operatorname{sinc}^{2} \left(\frac{fT_{b}}{2} \right) \left[1 + \frac{1}{T_{b}} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_{b}} \right) \right]$$

PSD of On-Off Signals

EE/IM4152 - Digital Communications

Exercise - Noise Immunity

The following two signals have the same noise immunity. 10^{-1}

Show that the signal power of the on-off signal is twice that of the polar signal.

Alternatively, for a given signal power, the polar signal has a bigger noise immunity.

Disadvantages

- Excessive bw $(2R_b)$
- Not suitable for an AC coupling environment
- No error detection and correction capability
- Not transparent (if too many 0 bits)
- For a given value of transmitted power, it has less immunity to noise interference than the polar scheme

Exercise – PSD of Bipolar Signaling

- For the bipolar signaling scheme, '0' \rightarrow no pulse '1' \rightarrow pulse p(t) or -p(t) (alternating)
- Show that $R_0=1/2$, $R_1=-1/4$ and $R_n=0$ for n>1 and, hence,

$$S_y(f) = \frac{|P(f)|^2}{2T_b} [1 - \cos 2\pi f T_b] = \frac{|P(f)|^2}{T_b} \sin^2(\pi f T_b)$$

Exercise (...)

For the case of half-width rectangular pulses,

$$S_{y}(f) = \frac{T_{b}}{4} \operatorname{sinc}^{2} \left(\frac{fT_{b}}{2} \right) \sin^{2} \left(\pi fT_{b} \right)$$

The essential bw of the signal is R_b , which is half that of polar or on-off signaling and twice the minimum requirement.

PSD of Various Signals

Advantages

- DC null
- BW not excessive
- Single-error-detection capability
- Rectification gives a discrete component at the clock frequency

Pulse Shaping

Pulse Shaping

The PSD of digital signals can be controlled by

$$S_{y}(f) = |P(f)|^{2} S_{x}(f)$$
Pulse shape
Line code

Rectangular Pulse

- In our previous study, we used a half-width rectangular pulse for illustration. Its bw is, strictly speaking, infinite.
- For example, the bw of a bipolar signal is infinite but the essential bw is R_b Hz. When it is sent over a channel of bw R_b Hz, a small portion of the spectrum is suppressed.

Pulse Spreading and ISI

■ The consequence of this suppression is pulse spreading. Spreading of a pulse beyond its interval T_b will cause intersymbol interference (ISI).

Rectangular pulse

Pulse spreading after transmission

Band-limited Signal?

- We can try to resolve the problem by using band-limited pulses so that they can be transmitted intact over a bandlimited channel.
- However, band-limited pulses cannot be time-limited.
- Spreading of a pulse beyond its interval T_b will interfere with neighboring pulses and cause ISI.

Solution

- Note that if there is no ISI at the instants of decision making, pulse amplitudes can be detected correctly despite pulse spreading.
- This is possible by choosing a properly shaped band-limited pulse.
- Need to study Nyquist's criteria.

Nyquist's First Criterion

Nyquist achieves zero ISI by choosing the pulse shape as follows:

$$p(t) = \begin{cases} 1 & t = 0 \\ 0 & t = \pm nT_b \end{cases}$$

where $T_b = 1/R_b$ is the separation between successive transmitted pulses and n = 1, 2, 3, ...

An Example

Note that $R_b = 1/T_b$ is the pulse rate.

Exercise

Find the Fourier transform (FT) of

$$p(t) = \operatorname{sinc}(R_b t)$$

Answer:

$$P(f) = \frac{1}{R_b} \operatorname{rect}\left(\frac{f}{R_b}\right)$$

p(t) with Minimum bw

If we restrict the pulse bw to be $R_b/2$, then only one pulse, $sinc(R_bt)$, satisfies the requirements as

Observations

- The bw of the pulse is $R_b/2$, which satisfies the minimum bw requirement for transmission of R_b bit/s.
- p(t) can be generated as an impulse response of an ideal filter of bw $R_b/2$.
- Using this pulse, we can transmit at a rate R_b pulses per second without ISI.

Practical Problems

- The pulse starts at $t = -\infty$. (Impractical)
- The sinc pulse decays at a rate 1/t. (decays too slowly)
- A small error in the transmission rate, sampling rate or sampling instants can add up to a very large value. Note that cumulative interference at any pulse center from all the remaining pulses is of the form $\Sigma(1/n)$. (divergent series)

Exercise

Show that the decay of

$$p(t) = \operatorname{sinc}(R_b t)$$

is proportional to 1/t.

Answer: Control the decay
$$\operatorname{sinc}(R_b t) = \frac{1}{\pi R_b} \left(\frac{1}{t}\right) \sin(\pi R_b t)$$

Better Solution

- To solve the decay problem, we need to relax the requirement of minimum bw and allow $R_b/2 < bw < R_b$. Hopefully, the pulse obtained will decay faster than 1/t.
- Let us derive the requirement of P(f) for $R_b/2 < bw < R_b$.

Derivation (1)

The desired pulse p(t) satisfies

$$p(t) = \begin{cases} 1 & t = 0 \\ 0 & t = \pm nT_b \end{cases}$$

If we sample p(t) every T_b sec, then

$$p(t) \sum_{n=-\infty}^{\infty} \delta(t-nT_b) = \delta(t)$$

$$\frac{1}{T_b} \sum_{n=-\infty}^{\infty} e^{j2\pi nt/T_b}$$

$$\frac{1}{T_b} \sum_{n=-\infty}^{\infty} e^{j2\pi nt/T_b}$$
Digital Communications

Derivation (2)

Taking FT on both sides, we have

$$\frac{1}{T_b} \sum_{n=-\infty}^{\infty} P\left(f - \frac{n}{T_b}\right) = 1$$

or

$$\sum_{b=-\infty}^{\infty} P(f - nR_b) = T_b$$

Thus, the sum of the spectra formed by repeating P(f) every R_b is a constant.

Derivation (3)

Vestigial Spectrum

Roll-Off Factor r

■ Let r be the ratio of the excess bw f_x to the theoretical min. bw $R_b/2$,

Roll-off factor
$$r = \frac{f_x}{R_b/2} = \frac{2f_x}{R_b}$$

■ Then the bw B_T of P(f) in Hz is

$$B_T = \frac{R_b}{2} + r \frac{R_b}{2} = (1+r) \frac{R_b}{2}$$

Family of Pulses
$$P(f) = \begin{cases} \frac{1}{2} \left\{ 1 - \sin \left(\frac{\pi \left[f - (R_b/2) \right]}{2f_x} \right) \right\} & \left| f - \frac{R_b}{2} \right| < f_x \\ 0 & \left| f \right| > \frac{R_b}{2} + f_x \\ 1 & \left| f \right| < \frac{R_b}{2} - f_x \end{cases}$$

satisfies the Nyquist 1st criterion.

Satisfying Nyquist Criterion

Exercise - Raised-Cosine

When r = 1,

$$P(f) = \frac{1}{2} \left(1 + \cos \frac{\pi f}{R_b} \right) \operatorname{rect} \left(\frac{f}{2R_b} \right)$$
$$= \cos^2 \left(\frac{\pi f}{2R_b} \right) \operatorname{rect} \left(\frac{f}{2R_b} \right)$$

Find the time-domain pulse p(t). Answer:

$$p(t) = R_b \frac{\cos \pi R_b t}{1 - 4R_b^2 t^2} \operatorname{sinc}(R_b t)$$

Observations of Raised-Cosine (r = 1)

- \blacksquare bw = R_b Hz
- $p(0) = R_b$
- Zero crossings at T_b , $2T_b$, $3T_b$, ... and at points midways between all the signaling instants
- Decays rapidly, as $1/t^3$
- Relatively insensitive to timing error

Example

For a scheme of pulse transmission using the Nyquist 1st criterion, determine the pulse transmission rate R_b in terms of bw B_T and the roll-off factor r.

Solution:

Since $B_T = (1 + r)R_b/2$, we have $R_b = 2B_T/(1+r)$. Because $0 \le r \le 1$, the pulse transmission rate varies from $2B_T$ to B_T , depending on the choice of r.