令和 7 年度 第 4 学年 電気電子工学実験実習Ⅲ報告書

ここに実験タイトルを入力

実験日 令和7年 4月 15日

班	学生番号	氏名		
99	4399	1	鮫洲	太郎

共同実験者名

43AA 青物 横男, 43BB 品川 花子

プレレポートの提出		レポートの提出			
予定日	4/14		予定日	4/21	
提出日			提出日		
備考					評価

東京都立産業技術高等専門学校電気電子工学コース

1 目的

本実験の目的は、時間信号と周波数スペクトルの相互関係を理解するとともに、アナログフィルタを 用いた周波数選択によって時間信号が変化する様子を理解することである。

2 原理

2.1 フーリエ級数

周期 T の周期関数 f(t) は、以下のような三角関数の級数で表される:

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi nt}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{2\pi nt}{T}$$
 (1)

各係数は以下のように求められる:

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t)dt \tag{2}$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos \frac{2\pi nt}{T} dt$$
 (3)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin \frac{2\pi nt}{T} dt$$
 (4)

2.2 伝達関数と RC フィルタ

線形システムの動作は伝達関数によって記述され、周波数 f_n に対して次のように定義される:

$$H(f_n) = |H(f_n)|e^{j\theta(f_n)}$$
(5)

RC 低域通過フィルタ(LPF)の伝達関数は、

$$H(f) = \frac{1}{1 + j\frac{f}{f_1}} \tag{6}$$

ただし、 $f_1 = \frac{1}{2\pi RC}$ は遮断周波数である。

RC 高域通過フィルタ(HPF)の伝達関数は、

$$H(f) = \frac{1}{1 + j\frac{f_2}{f}} \tag{7}$$

ただし、 $f_2 = \frac{1}{2\pi RC}$ である。

2.3 離散フーリエ変換(DFT)

時間領域の離散信号 f_n に対して、離散フーリエ変換は以下の式で与えられる:

$$F_k = \sum_{n=0}^{N-1} f_n e^{-j\frac{2\pi kn}{N}} \tag{8}$$

3 実験方法

3.1 時間信号の測定

VirtualBench を用いて、以下の手順で時間信号を測定した:

- 1. 図1に示すとおりに結線した。
- 2. DUT として表 1 に示す LPF を接続した。
- 3. FGEN で正弦波を選択し、 $10\,\mathrm{kHz}$ から $1\,\mathrm{MHz}$ までの周波数、および遮断周波数における入力・出力波形を測定し、数値データとして保存した。
- 4. 各班員が用意した任意波形、および班で用意したガウシアンパルスを FGEN に設定し、それぞれ 測定を行い、数値データとして保存した。
- 5. DUT を表 1 に示す HPF, BPF, BEF へ変更し、同様の手順で測定を繰り返した。
- 6. 測定結果から、各周波数における振幅比(dB)および位相差を計算し、グラフを作成した。
- 7. 任意波形およびガウシアンパルスについては、入力信号と出力信号を同一グラフにプロットし、波形の変化を確認できるようにした。

図 1: 時間信号測定用の実験回路

表 1: 各種 LC フィルタ

フィルタの種類	回路図	素子値の計算 f_c	
LPF		$f_c=150\mathrm{kHz}$	
HPF		$f_c=140\mathrm{kHz}$	
BPF	C_1 C_2 C_2 C_3 C_4 C_5 C_4 C_5 C_7 C_8 C_8 C_9	$f_{c1} = 50 \mathrm{kHz}, f_{c2} = 200 \mathrm{kHz}$	
BEF	C_2 L_1 L_2 L_3 C_1 C_3	$f_{c1} = 100 \mathrm{kHz}, f_{c2} = 140 \mathrm{kHz}$	

3.2 周波数特性の測定

NanoVNA を用いてフィルタの周波数特性を測定した。以下の手順で実施した:

- 1. 図2に示すとおりに結線した。
- 2. ポートを COM3 に設定し、測定周波数範囲を 50 kHz から 1 MHz に設定した。
- 3. キャリブレーション (open, short, load, isolation, through) を行い、「save0」に記録した。
- 4. DUT として各フィルタ (LPF, HPF, BPF, BEF) を接続し、測定データを「s2p」形式で保存した。

図 2: 周波数特性測定用の実験回路

- 4 実験結果
- 4.1 時間信号の特性
- 5 考察

お

6 結論

か

7 謝辞

き

参考文献

[1] 古川 浩洋, ""高専男子学生の体格と運動能力に関する研究"",論文集「高専教育」, p. 151-158, 1998.