Algorithmes d'optimisation

Pr. Faouzia Benabbou (faouzia.benabbou@univh2c.ma)

Département de mathématiques et Informatique

Master Data Science & Big Data

2024-2025

Plan du Module: Algorithmes d'optimisation

Les algorithmes d'optimisation

- **Définition**. L'optimisation combinatoire est une branche de l'optimisation qui consiste à trouver une solution optimale parmi un **ensemble fini** de solutions possibles, pour un problème donné.
- L'espace de recherche est fini mais souvent il es très grand (exponentiel ou factoriel).
- De nombreux problèmes d'optimisation combinatoire sont **NP-difficiles**, ce qui signifie qu'ils sont très difficiles à résoudre pour des problèmes de grande taille en un temps raisonnable.
- Le temps de calcul nécessaire pour résoudre un problème NPdifficiles peut, dans le pire des cas, croître de manière exponentielle si la taille du problème est grande.

- Exemples de problèmes combinatoires.
- 1. Le problème du voyageur de commerce (TSP).
 - Un voyageur de commerce doit visiter n villes données en passant par chaque ville exactement une fois.
 - Il commence par une ville quelconque et termine en retournant à la ville de départ.
 - Les distances entre les villes étant connues, la question que l'on se pose est de savoir quel chemin il faut choisir pour minimiser la distance totale parcourue

- Exemples.
- 2. Le problème de sac à dos (Knapsack).
 - Étant donné plusieurs objets possédant chacun un poids et une valeur
 - Sachant que le sac a un poids maximum quels objets faut-il mettre dans le sac de manière à maximiser la valeur totale sans dépasser le poids maximal autorisé pour le sac ?.

Exemples.

3. Le problème d'emploi du temps (Scheduling).

• l'objectif est de trouver la meilleure allocation possible de ressources (ex: salles, professeurs, étudiants) sur un certain nombre de périodes d temps tout en respectant des contraintes.

- Exemples.
- 4. Le problème de coloriage.
 - Le problème de coloration de graphes consiste à attribuer une couleur à chaque sommet d'un graphe de manière à ce que deux sommets adjacents (reliés par une arête) n'aient pas la même couleur.

Exemples.

5. Le problème de sudoku.

• Le but du Sudoku est de remplir une grille de 9x9 cases avec des chiffres, afin que chaque ligne, chaque colonne et section de 3x3 cases contienne l'ensemble des chiffres de 1 à 9.

3	9				2			
		7			4	8		
		4		5		1	9	6
6	7	2	1				8	4
	3	1	9	4				
	4		7			6	1	
9	2		4		3	5	6	
		3	5		1	4		9
				6	9			_

10

Méthodes d'optimisation combinatoire

Méthodes d'optimisation combinatoire

- Méthodes exactes
 - **Définition.** Les méthodes combinatoires exactes sont des techniques algorithmiques conçues pour résoudre des problèmes d'optimisation en explorant de manière **exhaustive** l'ensemble, souvent très vaste mais fini, des solutions possibles, afin de garantir une solution **globale** (exacte).
 - Elles sont souvent utilisées lorsque les méthodes approchées ne suffisent pas pour répondre à certaines exigences de résolution.
 - ✓ La garantit de Qualité de la solution :les méthodes exactes trouvent l'optimum global.
 - ✓ **La Preuve** de l'optimalité: Fournissent une borne inférieure/supérieure qui encadre la solution

- Méthodes exactes. Parmi les méthodes exactes utilisées en optimisation combinatoire on trouve:
 - Méthodes de Programmation linéaire en nombres entiers PLNE
 - ✓ Branch and Bound,
 - ✓ Branch and Cut,
 - ✓ Cutting Planes
 - ✓ Branch and Price
 - Méthodes de Programmation dynamique
 - Méthodes de Programmation par contraintes (Constraint Programming)

- Méthodes exactes. Branch and Bound
 - La méthode Branch and Bound (Séparation et Évaluation) se base sur la transformation d'un problème linéaire en nombres entiers (PLNE) en une série de **problèmes linéaires continus** par la technique de relaxation.
 - Ces problèmes linéaires continu sont alors résolu à l'aide d'un algorithme standard pour les PL (comme le **simplexe**).
 - **Définition.** Une relaxation d'un problème (P) est un nouveau problème (P_0) construit à partir de (P) et auquel on a retiré au moins une contrainte.

Méthodes exactes. Branch and Bound

Exemple. Soit le problème suivant :

Problème linéaire en nombres entièrs
$$\begin{cases} max \ x + y \\ x \le 2.5 \\ y \le 2.5 \\ (x,y) \in \mathbb{N}^2 \end{cases}$$

On peut passer d'un problème PLNE à un problème linéaire continue en relaxant les contraintes, le domaine de recherche devint l'ensemble des réels et **non les entiers uniquement**.

Problème Linéaire
$$\begin{cases} max \ x + y \\ x \le 2.5 \\ y \le 2.5 \\ (x, y) \in \mathbb{R}^2 \end{cases}$$

Méthodes exactes. Branch and Bound

Exemple. Soit le problème $\begin{cases} max \ x + y \\ x \le 2.5 \\ y \le 2.5 \end{cases}$

- Méthodes exactes. Branch and Bound(B&B)
 - Branch and Bound repose sur deux idées principales :
 - ✓ **Branch** (ramification) : au lieu de résoudre le problème original directement, on le divise en sous-problèmes plus simples.
 - o les sous-problèmes forment un **arbre de recherche**, dans lequel chaque nœud représente une solution.
 - ✓ **Bound (bornes)**: Une **borne** est une **estimation optimiste** de la meilleure solution que peut contenir un sous-problème (nœud) de l'arbre Branch and Bound. Elle est typiquement obtenue par la résolution d'une **relaxation** du sous-problème (PLNE en PL).

- Méthodes exactes. Branch and Bound(B&B)
 - Une borne est une estimation fiable de la meilleure solution possible pour un sous-problème donné.
 - ✓ Dans un problème de maximisation, on cherche à augmenter la valeur de la fonction objective, on utilise une borne supérieure
 - ✓ Si cette borne est plus petite que la meilleure valeur connue, on peut éliminer ce sous-problème.
 - ✓ Dans un problème de minimisation, on cherche à diminuer la valeur de la fonction objective.
 - ✓ On utilise une borne inférieure, si cette borne est plus grande que la meilleure solution admissible actuelle, on élague.

Algorithme 15. Branch and Bound(maximisation)

1. initialisation:

if x_0 est disponible alors $\mathbf{U_opt} = f(x_0)$, $x* = x_0$

Sinon $U_{opt} \leftarrow -\infty$. (valeur actuelle de la meilleure solution entière trouvée).

$$\mathbf{x}_{-}\mathbf{opt} \leftarrow \emptyset$$
, $\mathbf{k} = 0$

Liste \leftarrow {P₀}. liste des sous-problèmes actifs à explorer.

2. Tant que Liste $\neq \emptyset$

- a) Sélectionner un sous-problème P_k dans Liste (selon une stratégie, largeur d'abord, profondeur d'abord, etc.)
- b) Si P_k est **irréalisable** :

Retirer P (Élagage par irréalisabilité)

- c) Sinon Calculer le maximum global par simplexe x^* de la relaxation du problème $P_k: R(P_k)$, $U^*=f(x^*)$
- d) si $U^* \leq U_{opt}$:

Retirer P (Élagage par domination)

e) Sinon si x^* est entière et $U^* > U_{opt}$:

$$U_{opt} \leftarrow U^*, x_{opt} \leftarrow x^*$$

Retirer P (Élagage par solution entière)

f) Sinon (x^* non entière et $U^* > U_opt$):

Choisir une variable fractionnaire x_i^*

Créer deux sous-problèmes:

- P_{k1} avec contrainte $x_i \le [x_i^*]$
- P_{k2} avec contrainte $x_i \ge [x_i^*]$

Ajouter P_{k1} et P_{k2} à Liste

Algorithme 15. Branch and Bound

1. intialisation : Problème d'optimisation (minimisation) avec variables entières

if x0 est disponible alors $L_{opt} = f(x0)$, x* = x0

Sinon L_opt $\leftarrow +\infty$.

 $\mathbf{x}_{\mathbf{opt}} \leftarrow \emptyset, k=0$

Liste $\leftarrow \{P_0\}$. liste des sous-problèmes actifs à explorer.

2. Tant que Liste $\neq \emptyset$

- a) Sélectionner un sous-problème P_k dans Liste (selon une stratégie, largeur d'abord, profondeur d'abord, etc.)
- b) Si P_k est **irréalisable** :

Retirer P_k (Élagage par irréalisabilité)

- c) Sinon Calculer le maximum global x^* de la relaxation $R(P_k)$, $L^*=f(x^*)$
- d) si $L^* \ge L$ opt:

Retirer P_k (Élagage par domination)

e) Sinon si **x* est entière et L* <L_opt**:

$$L_{opt} \leftarrow L^*, x_{opt} \leftarrow x^*$$

Retirer P_k (Élagage par solution entière)

f) Sinon (**x* non entière et** L* <L_opt :

Choisir une variable fractionnaire x_i^*

Créer deux sous-problèmes:

- P_{k1} avec contrainte $x_i \le [x_i^*]$
- P_{k2} avec contrainte $x_i \ge [x_i^*]$

Ajouter P_{k1} et P_{k2} à Liste

Méthodes exactes. Branch and Bound(B&B)

Cas	Minimisation
x* irréalisable	Élagage par irréalisabilité
x* entière et L* <l_opt< th=""><td>Mise à jour de la solution optimale (meilleure borne supérieure), élagage</td></l_opt<>	Mise à jour de la solution optimale (meilleure borne supérieure), élagage
x*fractionnaire et L* <l_opt< th=""><th>Sous-problème prometteur : on le divise en deux sous-problèmes (branching)</th></l_opt<>	Sous-problème prometteur : on le divise en deux sous-problèmes (branching)
L*\geq L_opt	Élagage par domination (le sous- problème ne peut pas améliorer la solution actuelle)

Méthodes exactes. Branch and Bound(B&B)

Cas	Maximisation
x* irréalisable	Élagage par irréalisabilité
x* entière et U*>U_opt	Mise à jour de la solution optimale (meilleure borne supérieure), élagage
x* fractionnaire et U*>U_opt	Sous-problème prometteur : on le divise en deux sous-problèmes (branching)
U*≤U_opt	Élagage par domination (le sous- problème ne peut pas améliorer la solution actuelle)

Méthodes exactes. Branch and Bound(B&B)

Exemple.
$$P_0 = \begin{cases} min \ x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \\ x_1, x_2 \in \mathbb{N} \end{cases}$$

Méthodes exactes. Branch and Bound(B&B)

Itération 0.

1.Initialisation.

$$L=\{P_0\}, x_opt, U_opt=+\infty.$$

2. Résoudre la relaxation de P₀.

$$R(P_0) = \begin{cases} min \ x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Méthodes exactes. Branch and Bound(B&B)

Itération 0.

2.Résoudre la relaxation de P₀.

$$R(P_0) = \begin{cases} min \ x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Méthode graphique pour résoudre $R(P_0)$

Méthodes exactes. Branch and Bound(B&B)

Itération 0.

2. Résoudre la relaxation de P0.

$$R(P_0) = \begin{cases} min \ x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

- ✓ La solution optimale de $R(P_0)$ est : (1.50, 2.50)
- ✓ La borne de P_0 est : $U^* = -3.5$.
- ✓ Solution n'est pas admissible pour P_0 , car ce ne sont pas des entiers
- ✓ la solution du problème relaxé nous donne une borne inférieure pour la valeur optimale du problème P_0 qui est Z_0 .
- ✓ En ajoutant les contraintes d'intégrités on ne pourra pas faire mieux que cette valeur.
- ✓ On a U*< U_opt (étape f), on va brancher.

Méthode graphique pour résoudre $R(P_0)$

- Méthodes exactes. Branch and Bound(B&B)
 Itération 0.
- 3. Choisir une variable fractionnaire : $x_2 = 2.50$
- ✓ On va donc de brancher sur x_2 . $x_2 \le 2$ et $x_2 \ge 3$
- ✓ Le choix de 2 et 3, c'est un arrondi de 2.5.de x₂ de x_op.
- ✓ On obtient deux sous problèmes P_{01} et P_{02} .

$$R(P_0) = \begin{cases} min \ x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$
x_op.

$$L=\{P_{01}, P_{02}\}$$

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 0.</u>
- 3. Choisir une variable fractionnaire : $x_2 = 2.50$

$$\mathsf{R}(\mathsf{P}_0) = \begin{cases} \min x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Méthodes exactes. Branch and Bound(B&B)

Itération 1.

1. Sélectionner un sous-problème : P₀₁

$$\begin{array}{c|cccc} P_{01} \\ \hline min x_1 - 2x_2 \\ \text{s.c.} \\ -4x_1 + 6x_2 & \leq & 9 \\ x_1 + x_2 & \leq & 4 \\ x_1, x_2 & \geq & 0 \\ x_1, x_2 & \in & \mathbb{N} \\ x_2 & \leq & 2 \end{array}$$

On trace cette nouvelle contrainte :

- Méthodes exactes. Branch and Bound(B&B)
 Itération 1.
- 2. Résoudre le problème relaxé $R(P_{01})$.

$$(P_{01})$$

$$R(P_{01})$$

$$\min x_1 - 2x_2$$
 sous contraintes
$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

$$x_2 \leq 2$$

$$x_1, x_2 \in \mathbb{N}.$$

$$\min x_1 - 2x_2$$
 sous contraintes

$$\begin{array}{rcl}
-4x_1 + 6x_2 & \leq & 9 \\
x_1 + x_2 & \leq & 4 \\
x_1, x_2 & \geq & 0 \\
x_2 & \leq & 2
\end{array}$$

$$\mathsf{R}(\mathsf{P}_0) = \begin{cases} \min x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

- Méthodes exactes. Branch and Bound(B&B) <u>Itération 1.</u>
- 2. Résoudre le problème relaxé $R(P_{01})$

Le problème P_{01} admet un optimum.

C'est le sommet du polyèdre qui touche la courbe de niveau de f égal à -3,25.

- ✓ Solution optimale : (0.75,2)
- ✓ Borne pour P_{01} : L*= -3,25.
- ✓ L*<L_opt et x₁=0,75 n'est pas entier donc >4 on va brancher

$$\mathsf{R}(\mathsf{P}_0) = \begin{cases} \min x_1 - 2x_2 \\ -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Méthodes exactes. Branch and Bound(B&B)

<u>Itération 1.</u>

- 3. Choisir une variable fractionnaire pour brancher : x1=0.75
- ✓ On va créer deux branches sur $x_1 : x_1 \le 0$ et $x_1 \ge 1$. On obtient deux sous problèmes : P_{011}, P_{012} .
- \checkmark L={ P_{011} , P_{012} , P_{02} }
- ✓ Comme $x1 \ge 0$ et $x1 \le 0$ donc $x_1 = 0$.

P_{011}			P_{012} min $x_1 - 2x_2$			
$\min x_1 -$	$2x_2$					
s.c.			s.c.			
$-4x_1 + 6x_2$	\leq	9	$-4x_1 + 6x_2$	\leq	9	
$x_1 + x_2$	\leq	4	$x_1 + x_2$	\leq	4	
x_1, x_2	\geq	0	x_1, x_2	\geq	0	
x_1, x_2	\in	N	x_1, x_2	\in	\mathbb{N}	
X2	\leq	2	x ₂	\leq	2	
x_1	\leq	0	x_1	\geq	1	

Méthodes exactes. Branch and Bound(B&B)

Itération 1.

3. Choisir une variable fractionnaire pour brancher : $x_1=0.75$

P_{011}			P ₀₁₂			
$min x_1 -$	$2x_2$		$\min x_1 - 2x_2$			
s.c.			s.c.			
$-4x_1 + 6x_2$	\leq	9	$-4x_1 + 6x_2$	\leq	9	
$x_1 + x_2$	\leq	4	$x_1 + x_2$	\leq	4	
x_1, x_2	\geq	0	x_1, x_2	\geq	0	
x_1, x_2	\in	N	x_1, x_2	\in	N	
X2	\leq	2	x ₂	\leq	2	
x_1	\leq	0	<i>x</i> ₁	\geq	1	

$$L=\{\ P_{011},P_{012},\ P_{02}\}$$

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 2.</u>
- 1. Sélectionner un sous-problème : P₀₂

$$P_{02}$$
 $\min x_1 - 2x_2$
s.c.
 $-4x_1 + 6x_2 \leq 9$
 $x_1 + x_2 \leq 4$
 $x_1, x_2 \geq 0$
 $x_1, x_2 \in \mathbb{N}$
 $x_2 \geq 3$

Pour le sous problème P_{02} où on prend $x_2 \ge 3$, n'est pas réalisable aucune solution ne réponds aux contraintes originales. On **élague** cette branche et retire P_{02} de L.

- Méthodes exactes. Branch and Bound(B&B)
 Itération 3.
- 1. Sélectionner un sous-problème : P₀₁₁

P ₀₁₁		
min x ₁ -	$2x_2$	
S.C.		
$-4x_1 + 6x_2$	\leq	9
$x_1 + x_2$	\leq	4
x_1, x_2	\geq	0
x_1, x_2	\in	\mathbb{N}
<i>x</i> ₂	\leq	2
x_1	<	0

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 3.</u>
- 2. Résoudre le problème relaxé $R(P_{011})$

 $\mathbf{P_{011}} \qquad \qquad \mathbf{R(P_{011})}$

$$P_{011}$$
 $min x_1 - 2x_2$
s.c.
 $-4x_1 + 6x_2 \leq 9$
 $x_1 + x_2 \leq 4$
 $x_1, x_2 \geq 0$
 $x_1, x_2 \in \mathbb{N}$
 $x_2 \leq 2$
 $x_1 \leq 0$

$$\begin{array}{rcl} \min x_1 - 2x_2 \text{ sous contraintes} \\ -4x_1 + 6x_2 & \leq & 9 \\ x_1 + x_2 & \leq & 4 \\ x_1, x_2 & \geq & 0 \\ x_2 & \leq & 2 \\ x_1 & \leq & 0 \end{array}$$

Méthodes exactes. Branch and Bound(B&B)

Itération 3.

2. Résoudre le problème relaxé $R(P_{011})$

$$R(P_{011})$$

 $\min x_1 - 2x_2$ sous contraintes

$$\begin{array}{rcl}
-4x_1 + 6x_2 & \leq & 9 \\
x_1 + x_2 & \leq & 4 \\
x_1, x_2 & \geq & 0 \\
x_2 & \leq & 2 \\
x_1 & \leq & 0
\end{array}$$

Solution optimale: (0,1.5)

Borne pour P_{011} : L*= -3.

L*< L_opt, x₂=1,5 n'est pas entier, donc on va brancher sur x2.

x1=0, méthode de graphe

Méthodes exactes. Branch and Bound(B&B)

Itération 3.

3. Choisir une variable fractionnaire pour brancher : x₂

On va créer deux branches sur $x_2 : x_2 \le 1$ et $x_2 \ge 2$. On obtient deux sous problèmes :

 $P_{0111}, P_{0112}.$

$$L=\{P_{012}, P_{0111}, P_{0112}\}$$

P_{0111}	P_{0112}
$min x_1 - 2x_2$	$min x_1 - 2x_2$
$-4x_1+6x_2 \leq 9$	$-4x_1+6x_2 \leq 9$
$x_1 + x_2 \leq 4$	$x_1 + x_2 \leq 4$
$x_1, x_2 \geq 0$	$x_1, x_2 \geq 0$
$x_1, x_2 \in \mathbb{N}$	$x_1, x_2 \in \mathbb{N}$
<i>x</i> ₂ ≤2	<i>x</i> ₂ ≤2
<i>x</i> ₁ ≤0	<i>x</i> ₁ ≤0
<i>x</i> ₂ ≤1	$x_2 \ge 2$

- Méthodes exactes. Branch and Bound(B&B)
 Itération 4.
- 1. Sélectionner un sous-problème : On choisit P_{012} .

P_{012}		
$min x_1 -$	$2x_2$	- 121
s.c.		
$-4x_1 + 6x_2$	\leq	9
$x_1 + x_2$	\leq	4
x_1, x_2	\geq	0
x_1, x_2	\in	N
x2	\leq	2
x_1	\geq	1

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 4.</u>
- 2. Résoudre le problème relaxé $R(P_{012})$

$$\mathbf{P_{012}} \qquad \qquad \mathbf{R(P_{012})}$$

$$P_{012}$$
 $min x_1 - 2x_2$
s.c.
 $-4x_1 + 6x_2 \leq 9$
 $x_1 + x_2 \leq 4$
 $x_1, x_2 \geq 0$
 $x_1, x_2 \in \mathbb{N}$
 $x_2 \leq 2$
 $x_1 \geq 1$

$$\begin{array}{rcl} \min x_1 - 2x_2 \text{ sous contraintes} \\ -4x_1 + 6x_2 & \leq & 9 \\ x_1 + x_2 & \leq & 4 \\ x_1, x_2 & \geq & 0 \\ x_2 & \leq & 2 \\ x_1 & \geq & 1 \end{array}$$

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 4.</u>
- 2. Résoudre le problème relaxé $R(P_{012})$

$$R(P_{012})$$

$$\min x_1 - 2x_2$$
 sous contraintes

$$\begin{array}{rcl}
-4x_1 + 6x_2 & \leq & 9 \\
x_1 + x_2 & \leq & 4 \\
x_1, x_2 & \geq & 0 \\
x_2 & \leq & 2 \\
x_1 & \geq & 1
\end{array}$$

Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 4.</u>

2. Résoudre le problème relaxé $R(P_{012})$

- ✓ Solution optimale : (1, 2)
- ✓ Borne pour P_{012} : U*= -3.
- ✓ L*<L_opt et x* est entier donc on met à jour :
- ✓ L_opt =L*=-3, et x_opt = (1, 2)
- ✓ Cette solution est admissible pour P_{012} , et nous avons résolu P_{01} et par la même occasion P_{0} mais L n'est pas encore vide: L={ P_{0111} , P_{0112} }

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 5.</u>
- 1. Choisir le problème P_{0111}

$R(P_{0111})$

Optimisation combinatoire

- Méthodes exactes. Branch and Bound(B&B)
 <u>Itération 5.</u>
- 2. Résoudre le problème P₀₁₁₁ Dernière valeur de U_opt est -3.

Solution optimale entière : $x_{opt} = (0,1)$,

Borne de P_{0111} : L*=-2.

On a $L^* > L_{opt}$, Retirer P_{0111} de la liste L car ça n'améliore pas la fonction objective (**Élagage par domination**).

- Méthodes exactes. Branch and Bound(B&B)
 Itération 6.
- 1. Choisir le problème P_{0112}

 \mathbf{P}_{0112}

$$min x_1 - 2x_2$$
 $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{N}$
 $x_2 \le 2$
 $x_1 \le 0$
 $x_2 \ge 2$

- Méthodes exactes. Branch and Bound(B&B)
 Itération 6.
- 2. Résoudre le problème $R(P_{0112})$

P_{0112} $min x_1 - 2x_2$ $-4x_1 + 6x_2 \le 9$ $x_1 + x_2 \le 4$ $x_1, x_2 \ge 0$ $x_1, x_2 \in \mathbb{N}$ $x_2 \le 2$ $x_1 \le 0$ $x_2 \ge 2$

$$R(P_{0112})$$

$$min x_1 - 2x_2
-4x_1 + 6x_2 \le 9
x_1 + x_2 \le 4
x_1, x_2 \ge 0
x_2 \le 2
x_1 \le 0
x_2 \ge 2$$

- ✓ On a $\mathbf{x_1}=\mathbf{0}$, $\mathbf{x_2}=\mathbf{2}$, donc 12<=9 ce qui n'est pas réalisable.
- ✓ donc P_{0112} n'est pas réalisable on le retire de L.
- ✓ L est vide : la solution optimale est L_opt = -3, x_opt= (1, 2)

Méthodes exactes. Branch and Bound(B&B)

Avantages.

- ✓ Garanti une solution optimale car il trouve la solution exacte.
- ✓ Utilise des bornes (supérieures/inférieures) pour éliminer les sousproblèmes non prometteurs réduisant ainsi l'espace de recherche en évitant l'exploration inutile.
- ✓ Applicable à divers problèmes (PLNE, voyageur de commerce, etc.).
- ✓ Performant pour les petits/moyens problèmes

Limites.

- ✓ Complexité exponentielle : Le nombre de nœuds peut exploser avec la taille du problème (*NP-difficile*) il peut devenir Inadapté aux très grands problèmes (milliers de variables).
- ✓ Gourmand en mémoire : Nécessite de stocker l'arbre de recherche, ce qui peut être coûteux.