Конспект по матанализу за 4-й семестр.

Автор: Эмиль

18 апреля 2019 г.

Это конспект по матанализу за 4-й семестр. Любые предложения и сообщения об ошибках приветствуются, писать автору: t.me/buraindo

1 Поверхность

1.1 Поверхность

 $\overrightarrow{r} = \overrightarrow{r}(t)$ - кривая - отображение промежутка $< \alpha, \beta > \rightarrow R^3$ (или R^2). $\overrightarrow{r}=\overrightarrow{r}(u,v)$ - поверхность - отображение области $\Omega\subset R^2\to R^3(x,y,z)$. Записывается $\overrightarrow{r} = (x(u, v), y(u, v), z(u, v)).$

Для всех рассуждений будем предполагать, что x,y,z имеют непрерывные производные, а так же $rank\begin{bmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} = 2.$ Если ранг равен 2, то поверхность назовем "хорошей", иначе, если ранг

равен 1, то "плохой".

И тогда будем говорить, что $\overrightarrow{r}(t)$ - гладкая.

 $\Omega \to \overrightarrow{r}(\Omega)$ - образ.

Если Ω отображается на свой образ $\overrightarrow{r}(\Omega)$ взаимно-однозначно, то $\overrightarrow{r}(\Omega)$ - простая поверхность.

ПРИМЕР:

 $\overline{z = x^2 + y^2}$ - параболоид, тогда $\overrightarrow{r} = (x, y, x^2 + y^2)$.

В общем виде это задание будет выглядеть так:

$$\overrightarrow{r} = (x, y, f(x, y))$$

1.2 Край поверхности

Пусть Ω - ограниченная область, $\overrightarrow{\Omega}$ - замыкание = $\Omega \cup \partial \Omega$ (область плюс её граница).

Рассмотрим теперь $\partial\Omega$ - границу Ω :

 $\partial\Omega:(u(t),v(t))$ - какая-то линия.

 $\overrightarrow{r}(u,v)=\overrightarrow{r}(u(t),v(t))$ - кривая, **край** поверхности, являющийся образом $\partial\Omega$.

Будем обозначать за Σ саму поверхность $\overrightarrow{r}(u,v)$, а за $\partial \Sigma$ её край - $\overrightarrow{r}(u(t),v(t))$.

1.3 Почти простая поверхность

Определение: будем называть поверхность $\Omega \to \overrightarrow{r}(u,v)$ почти простой, если найдется такая исчерпывающая последовательность Ω_n , для которой каждая $\Omega_n \to \overrightarrow{r}(u,v)$ - простая поверхность.

Например, сфера и конус - не простые поверхности, но их можно немного изменить, чтобы они стали почти простыми:

Сфера:

Вырежем из северного и южного полюсов сферы кружочки, а затем разрежем её от одного кружочка до другого. Этим действием мы немного изменили промежутки принимаемых углами φ и θ значений в сферических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le \varphi \le 2\pi - \frac{1}{n}$$

$$\frac{1}{n} \le \theta \le \pi - \frac{1}{n}$$

И теперь новая поверхность является простой. Конус:

Вырежем вершину конуса и разрежем его по вертикали. Этим действием мы немного изменили промежутки допустимых значений для радиуса r и угла φ в цилиндрических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le r \le n$$

$$\frac{1}{n} \le \theta \le 2\pi - \frac{1}{n}$$

И теперь новая поверхность является простой.

1.4 Функции, задающие одну и ту же поверхность

Пусть даны Ω и Ω' , а так же соответствия u=u(u',v'),v=v(u',v').

Кроме того, пусть якобиан $\begin{bmatrix} u_{u'} & u_{v'} \\ v_{u'} & v_{v'} \end{bmatrix}$ не равен 0 (то есть, существует обратная функция).

Это значит, что Ω отображается на Ω' взаимно-однозначно.

В таком случае будем считать, что

$$\overrightarrow{r}(u,v) = \overrightarrow{r}(u(u',v'),v(u',v')) = \overrightarrow{\varrho}(u',v') - \Sigma$$

(задают одну и ту же поверхность).

1.5 Координатные кривые

Зафиксируем одну из координат, например, $u = u_0$, и будем менять v от $\alpha(u_0)$ до $\beta(u_0)$. Получим кривую $\overrightarrow{r}(u_0,v)$.

Аналогично, если зафиксировать $v = v_0$, то зададим кривую $\overrightarrow{r}(u, v_0)$.

Эти две кривые называются координатными кривыми.

1.6 Нормаль

Теперь рассмотрим \overrightarrow{r}_u , \overrightarrow{r}_v - касательные к кривой. Пусть $A=\begin{bmatrix}x_u&y_u&z_u\\x_v&y_v&z_v\end{bmatrix}$, тогда если rankA=2, то векторное произведение $\overrightarrow{r}_u\times\overrightarrow{r}_v\neq 0$.

Результат этого векторного произведения $\overrightarrow{r}_u \times \overrightarrow{r}_v = \overrightarrow{n}$ является вектором **нормали** к поверхности Σ .

Убедимся, что нормаль не зависит от параметризации кривой:

Дано взаимно-однозначное отображение $\Omega \iff \Omega'$ и $\overrightarrow{r}(u,v) = \overrightarrow{\varrho}(u',v')$.

Посчитаем $\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}$: Вспомним, что $\overrightarrow{\varrho}(u',v') = \overrightarrow{r}(u(u',v'),v(u',v'))$, это значит, что

$$\overrightarrow{\varrho}_{u'} = \overrightarrow{r}_u \frac{\partial u}{\partial u'} + \overrightarrow{r}_v \frac{\partial v}{\partial u'},$$

$$\overrightarrow{\varrho}_{v'} = \overrightarrow{r}_u \frac{\partial u}{\partial v'} + \overrightarrow{r}_v \frac{\partial v}{\partial v'}$$

Перемножим, учитывая, что векторное произведение коллинеарных векторов равно нулю:

$$\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'} = (\overrightarrow{r}_u \times \overrightarrow{r}_v) \frac{\partial u}{\partial u'} \frac{\partial v}{\partial v'} + (\overrightarrow{r}_v \times \overrightarrow{r}_u) \frac{\partial v}{\partial u'} \frac{\partial u}{\partial v'} =$$

$$=(\overrightarrow{r}_u\times\overrightarrow{r}_v)(\frac{\partial u}{\partial u'}\frac{\partial v}{\partial v'}-\frac{\partial v}{\partial u'}\frac{\partial u}{\partial v'})(\text{поменяли знак})=(\overrightarrow{r}_u\times\overrightarrow{r}_v)\begin{bmatrix}u_{u'}&u_{v'}\\v_{u'}&v_{v'}\end{bmatrix}$$

Но этот якобиан не равен нулю!

Это значит, что получили тот же вектор нормали, у которого могла измениться лишь длина или направление, что и требовалось доказать.

1.7 Площадь поверхности

Даны $\Omega, \overrightarrow{r} = \overrightarrow{r}(u, v).$

Найдем дифференциал этого вектора:

$$d\overrightarrow{r} = \overrightarrow{r}_{u}du + \overrightarrow{r}_{v}dv$$

$$d\overrightarrow{r}^2 = |d\overrightarrow{r}|^2 = \overrightarrow{r}_u^2 du^2 + 2\overrightarrow{r}_u \overrightarrow{r}_v du dv + \overrightarrow{r}_v^2 dv^2$$

Обозначим $E = \overrightarrow{r}_{u}^{2}, F = \overrightarrow{r}_{u} \overrightarrow{r}_{v}, G = \overrightarrow{r}_{v}^{2}$

 $d\overrightarrow{r}^2$ называется первой квадратичной формой поверхности и для неё справедливо свойство:

 $d\overrightarrow{r}^2 > 0$ (положительно определена)ю

Для того, чтобы это выполнялось (для нашей формы $ax^2 + 2bxy + cy^2$), нужно:

$$\begin{cases} a > 0 \\ c > 0 \\ ac - b^2 > 0 \end{cases}$$

В нашем случае второго дифференциала вектора \overrightarrow{r} это значит, что требуется выполнение следующих условий:

$$\begin{cases} E > 0 \\ G > 0 \\ EG - F^2 > 0 \end{cases}$$

Первые два условия очевидны, проверим третье:

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\sin\varphi \ (\varphi \neq 0)$$

$$\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\cos\varphi$$

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}|^{2} + (\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v})^{2} = |\overrightarrow{r}_{u}|^{2}|\overrightarrow{r}_{v}|^{2}$$

Заметим, что правая часть это EG, а второе слагаемое в левой части это

Тогда $|\overrightarrow{r}_u \times \overrightarrow{r}_v|^2 = EG - F^2 > 0$, так как $\overrightarrow{r}_u \times \overrightarrow{r}_v \neq 0$, что и требовалось доказать.

Площадь поверхности

 $\overline{S(\Sigma)} = \iint_{\Omega} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ du dv$ - площадь поверхности.

Свойства площади:

1) Не зависит от параметризации.

Пусть дали две параметризации:

$$\overrightarrow{r}(u,v) = \overrightarrow{\varrho}(u',v')$$

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| \ du'dv'$$

Вспомним, что $|\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| = |(\overrightarrow{r}_u \times \overrightarrow{r}_v)| |I(\frac{u,v}{u',v'})|.$ Подставим это в интеграл:

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| |I| du' dv' = \iint_{\Omega} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| du dv$$

Получили то же самое.

2) Рассмотрим случай, когда сама поверхность - плоскость. Сможем ли по той же формуле посчитать площадь? Проверим это, площадь это $\iint_{\Omega} du dv$.

Теперь посчитаем $S(\Omega)$:

 Σ задается при помощи $\overrightarrow{r} = (x, y, 0)$.

Тогда $\overrightarrow{r}_x = (1, 0, 0)$

 $\overrightarrow{r}_y = (0, 1, 0).$

$$A \overrightarrow{r}_{x} \times \overrightarrow{r}_{y} = \begin{bmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \overrightarrow{k}, \Rightarrow |\overrightarrow{r}_{x} \times \overrightarrow{r}_{y}| = 1.$$

Тогда $S(\Sigma) = \iint_{\Omega} |\overrightarrow{r}_x \times \overrightarrow{r}_y| \ du dv = \iint_{\Omega} du dv$, что и требовалось доказать.

3) Площадь аддитивна по отношению к поверхности. (Площадь поверхности, составленной из гладких кусков, равно сумме площадей).

4)
$$z = f(x, y)$$
.

$$\overrightarrow{r} = (x, y, f(x, y)).$$

$$\overrightarrow{r}_x = (1, 0, f_x).$$

$$\overrightarrow{r}_y = (0, 1, f_y).$$

$$\overrightarrow{r}_y = (0, 1, f_y)$$

$$\overrightarrow{r}_x \times \overrightarrow{r}_y = \begin{bmatrix} i & j & k \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = i(-f_x) - jf_y + \overrightarrow{k}.$$

$$|\overrightarrow{r}_x \times \overrightarrow{r}_y| = \sqrt{EG - F} = \sqrt{f_x^2 + f_y^2 + 1}$$

примеры:

1) Посчитать площадь:

$$x^2 + y^2 + z^2 - R^2$$
,

где $z \geq 0$.

Это половина сферы, которую вырезает цилиндр:

$$x^{2} + y^{2} = Rx, \Rightarrow x^{2} - Rx + \frac{x^{2}}{4} + y^{2} = (\frac{R}{2})^{2}, \Rightarrow (x - \frac{R}{2})^{2} + y^{2} = (\frac{R}{2})^{2}$$

Это выглядит так:

Перейдем в сферические координаты:

 $x = R\cos\varphi\sin\theta$

 $\begin{cases} y = R\sin\varphi\sin\theta \end{cases}$

Зададим поверхность:

$$\overrightarrow{r} = (R\cos\varphi\sin\theta, R\sin\varphi\sin\theta, R\cos\theta)$$

Посчитаем частные производные по φ и θ :

 $\overrightarrow{r}_{\varphi} = (-R\sin\varphi\sin\theta, R\cos\varphi\sin\theta, 0)$ $\overrightarrow{r}_{\theta} = (R\cos\varphi\cos\theta, R\sin\varphi\cos\theta, -R\sin\theta)$

Теперь посчитаем E, F, G:

 $E = \overrightarrow{r}_{\varphi}^{2} = R^{2} \sin^{2} \varphi \sin^{2} \theta + R^{2} \cos^{2} \varphi \sin^{2} \theta = R^{2} \sin^{2} \theta.$ $F = \overrightarrow{r}_{\theta}^{2} = R^{2} \cos^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \theta = R^{2}.$

F = 0 (если раскрыть скобки, то и правда получится 0).

$$\sqrt{EG - F^2} = R^2 \sin \theta.$$

Тогда $S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{?} \sin \theta \ d\theta.$

Осталось вычислить верхний предел интегрирования для θ , для этого нужно подставить сферические координаты в уравнение цилиндра:

 $R^2 \cos^2 \varphi \sin^2 \theta + R^2 \sin^2 \varphi \sin^2 \theta = R^2 \cos \varphi \sin \theta.$

Отсюда либо $\sin \theta = 0$, либо $\sin \theta = \cos \varphi$.

Первое нас не интересует, а вот второе можно решить и получить ответ: $\theta = \frac{\pi}{2} - \varphi$.

Тогда $S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{\frac{\pi}{2} - \varphi} \sin \theta \ d\theta = R^2(\pi - 2).$

2) Посчитать площадь поверхности:

 $z=x^2+y^2$. Этот параболоид бесконечен, поэтому чтобы было, что считать, вырежем из него кусок $x^2 + y^2 = R^2$ и найдем площадь.

Вот как это выглядит:

Для этого перейдем к цилиндрическим координатам:

$$\begin{cases} x = \varrho \cos \varphi \\ y = \varrho \sin \varphi \\ z = \varrho^2 \end{cases}.$$

Зададим поверхность:

 $\overrightarrow{r} = (\rho \cos \varphi, \rho \sin \varphi, \rho^2).$

Посчитаем частные производные по ϱ и φ .

 $\overrightarrow{r}_{\varrho} = (\cos \varphi, \sin \varphi, 2\varrho).$

 $\overrightarrow{r}_{\varphi} = (-\varrho \sin \varphi, \varrho \cos \varphi, 0).$

Теперь посчитаем E, F, G:

$$E = \overrightarrow{r}_{\varrho}^{2} = 1 + 4\varrho^{2}$$

$$F = \overrightarrow{r}_{\varrho}^{2} = \varrho^{2}.$$

 $E=\overrightarrow{r}_{\rho}^{2}=1+4\varrho^{2}.$ $F=\overrightarrow{r}_{\varphi}^{2}=\varrho^{2}.$ F=0 (если раскрыть скобки, то и правда получится 0). $\sqrt{EG - F^2} = \varrho\sqrt{1 + 4\varrho^2}$

$$S(\Sigma) = \iint_{\Omega} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{R} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho$$

Важная информация про почти простые поверхности:

Утверждение: если Σ - почти простая, а Ω_n - искомая исчерпывающая последовательность, то:

$$S(\Sigma) = \iint_{\Omega} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv = \lim_{n \to \infty} \iint_{\Omega_{n}} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv$$

2 Поверхностные интегралы

2.1 Поверхностный интеграл первого рода

Пусть Σ - простая и гладкая поверхность. Дана F(x,y,z) - непрерывная функция, определенная на Σ .

Поверхностным интегралом I рода от функции F по поверхности Σ называется:

$$\iint_{\Omega} F(x(u,v),y(u,v),z(u,v)) |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv = \iint_{\Sigma} F(x,y,z) ds(d\sigma)$$

Свойства поверхностного интеграла I рода:

- 1) Не зависит от параметризации поверхности (доказывается так же, как независимость площади поверхности от параметризации).
- 2) Аддитивность и линейность.
- 3) Можно дать физическую интерпретацию:

Если $F(x, y, z) \ge 0$, и это плотность слоя, "намазанного" на поверхность, то $\iint Fd\sigma$ - масса слоя.

Вместо $d\sigma$ можно написать $\sqrt{EG-F^2}\ dudv$.

2.2 Поверхностный интеграл второго рода

Пусть Σ - двусторонняя (бывают односторонние поверхности, например, лист Мёбиуса и бутылка Клейна (Кляйна)). Выберем сторону (это означает, выберем, куда "смотрит" нормаль).

У нас есть поверхностный интеграл $\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) d\sigma$, где $\overrightarrow{F} = (P(x, y, z), Q(x, y, z), R(x, y, z)).$

Если поменять сторону, то поменяется знак за счёт смены направления вектора нормали на противоположное.

Отсюда вытекает свойство:

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = -\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0^-) \ d\sigma$$

Как считать поверхностный интеграл второго ро-2.3да

Рассмотрим $(\overrightarrow{F}, \overrightarrow{n}_0) = \overrightarrow{F} \frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{|\overrightarrow{r}_u \times \overrightarrow{r}_v|} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ dudv = (\overrightarrow{F} \cdot \overrightarrow{r}_u \cdot \overrightarrow{r}_v) \ dudv$ (смешанное произведение).

Посчитаем его:

$$\begin{bmatrix} R & Q & R \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} \ dudv =$$

$$= (P\frac{\partial(y,z)}{\partial(u,v)} + Q\frac{\partial(z,x)}{\partial(u,v)} \text{(поменяли знак)} + R\frac{\partial(x,y)}{\partial(u,v)}) \ dudv$$

Рассмотрим $PI(\frac{y,z}{u,v})$ dudv:

Если угол между вектором нормали и осью x острый, то I > 0, иначе I < 0.

Тогда для острого угла $\iint PI \ dudv = \iint_{D_{yz}} P(x(y,z),y,z) \ dydz$. А для тупого угла $\iint PI \ dudv = -\iint_{D_{yz}} P(x(y,z),y,z) \ dydz$. Аналогично и другие слагаемые, тогда запишем сумму: $P \frac{\partial(y,z)}{\partial(u,v)} \ dudv + Q \frac{\partial(z,x)}{\partial(u,v)} \ dudv + R \frac{\partial(x,y)}{\partial(u,v)} \ dudv = P \ dydz + Q \ dzdx + R \ dxdy$. Торда

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = \iint_{\Sigma} P \ dydz + Q \ dzdx + R \ dxdy$$

ПРИМЕР

Дан $\iint_{\Sigma} x \; dy dz$, и вырезан прямоугольник z+y-x=1, верхняя сторона.

Посчитаем:

 $\iint_{\Sigma} x \ dy dz = -\iint_{\Sigma} (z + y - 1) \ dy dz$ (так как угол между нормалью и отсутствующей осью (в данном случае ось x) тупой).

$$-\iint (z+y-1) \ dydz = -\int_0^1 dy \int_0^{1-y} (z+(y-1)) \ dz = \frac{1}{6}$$

3 Теория поля

 $\Omega \subset \mathbb{R}^3$.

I. Скалярное поле.

Если $\forall M \in \Omega \ \exists f(M)$ - число, тогда у нас на области Ω задано скалярное поле f(M) = f(x,y,z).

Дифференцируемость.

Определение: будем называть f(M) дифференцируемым в точке M_0 , если существует такой вектор \overrightarrow{c} , что

$$\triangle f(M_0) = \triangle \overrightarrow{r} \cdot \overrightarrow{c} + o(||\overrightarrow{MM_0}||)$$

$$\overrightarrow{c} = gradf(M_0) = (\frac{\partial f(M_0)}{\partial x}, \frac{\partial f(M_0)}{\partial y}, \frac{\partial f(M_0)}{\partial z})$$

Гуманитарии могут делать так:

 $\sin x + \cos x = (\sin + \cos)x.$

Мы сделаем так для градиента, но осознанно и опираясь на законы:

$$(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})f$$

Обозначим теперь $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ за ∇ (произносится "набла").

Это символический вектор, его координаты это вроде числа, но на самом деле, эта набла - целиком оператор и применяется к чему-то.

Тогда
$$(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = \nabla f.$$

$$\overrightarrow{c} = \nabla f$$
, тогда

$$\triangle f = \triangle \overrightarrow{r} \cdot \nabla f = (\triangle \overrightarrow{r} \cdot \nabla) f + o(||\overrightarrow{MM_0}||)$$

Производная по направлению.

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} \frac{f(M_0 + t\overrightarrow{l_0}) - f(M_0)}{\partial t}$$

Здесь t>0, а $\overrightarrow{l_0}$ - орт направления.

Заметим, что числитель - приращение, так что можно переписать в виде:

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} t \to 0 \frac{(t \overrightarrow{l_0} \cdot \nabla + o(t))}{\partial t} = (\overrightarrow{l_0} \cdot \nabla) f$$

II. Векторное поле.

Если $\forall M \in \Omega \ \exists \overrightarrow{a}(M) = (P(x,y,z), Q(x,y,z), R(x,y,z)),$ тогда на области Ω задано векторное поле $\overrightarrow{a}(M) = (P(x,y,z), Q(x,y,z), R(x,y,z)).$

Дифференцируемость.

Определение: будем называть $\overrightarrow{a}(M)$ дифференцируемым в точке M_0 , если его приращение можно представить в виде:

$$\triangle \overrightarrow{a}(M) = \overrightarrow{a}(M) - \overrightarrow{a}(M_0) = L(\overrightarrow{r}) + o(||\overrightarrow{r}||)$$

Тогда

$$\triangle \overrightarrow{a}(M) = (\triangle \overrightarrow{r} \cdot \nabla) \overrightarrow{a} + o(||\overrightarrow{r}||)$$

Производная по направлению.

 $\overrightarrow{\frac{\partial f}{\partial l}} = (\overrightarrow{l_0} \cdot \nabla) f$ - для скалярного поля. В случае векторного поля:

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a}$$

$$\overrightarrow{d} = y\overrightarrow{i} + (xy + yz)\overrightarrow{j} + xyz\overrightarrow{k}$$

$$\overrightarrow{l} = (1, 1, 1), \overrightarrow{l_0} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla)\overrightarrow{a}$$

1)
$$(\overrightarrow{l_0} \cdot \nabla)\overrightarrow{a} = \frac{1}{\sqrt{3}} \frac{\partial}{\partial x} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial y} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}$$
, и все это нужно применить к вектору \overrightarrow{a}

$$\overrightarrow{a}.$$
2) $(\overrightarrow{l_0} \cdot \nabla)\overrightarrow{a}$ - рассмотрим результат покоординатно: $(\overrightarrow{l_0} \cdot \nabla)a_x = (\frac{1}{\sqrt{2}}\frac{\partial}{\partial x}, \frac{1}{\sqrt{2}}\frac{\partial}{\partial x}, \frac{1}{\sqrt{2}}\frac{\partial}{\partial x})y = \frac{1}{\sqrt{2}}$

$$(\overrightarrow{l_0} \cdot \nabla)a_x = (\frac{1}{\sqrt{3}}\frac{\partial}{\partial x}, \frac{1}{\sqrt{3}}\frac{\partial}{\partial y}, \frac{1}{\sqrt{3}}\frac{\partial}{\partial z})y = \frac{1}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla)a_y = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z})(xy + yz) = \frac{2y + x + z}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla)a_y = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z})(xy + yz) = \frac{2y + x + z}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla)a_z = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z})(xy) = \frac{yz + xz + xy}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla) \overrightarrow{d} = \frac{1}{\sqrt{3}} \overrightarrow{i} + \frac{2y + x + z}{\sqrt{3}} \overrightarrow{j} + \frac{yz + xz + xy}{\sqrt{3}} \overrightarrow{k}.$$

Пусть дано поле $\overrightarrow{a} = \overrightarrow{a}(M) = (P, Q, R)$.

Определение: дивергенция поля:

$$div \overrightarrow{d} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Определение: ротор векторного поля:

$$rot \overrightarrow{d} = det \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix} = \overrightarrow{i} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) + \overrightarrow{j} (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) + \overrightarrow{k} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$

Упростим формулы для div и rot:

 $div \overrightarrow{a} = (\nabla \cdot \overrightarrow{a})$ (скалярное произведение). $rot \overrightarrow{a} = (\nabla \times \overrightarrow{a})$ (векторное произведение)

Действия с ∇:

1)

$$\nabla(c_1 f_1 + c_2 f_2) = c_1 \nabla f_1 + c_2 \nabla f_2$$

2) Посчитаем $\nabla(f_1f_2)$:

$$\frac{\partial}{\partial x}(f_1 f_2) = \frac{\partial f_1}{\partial x} f_2 + \frac{\partial f_2}{\partial x} f_1$$

$$\frac{\partial}{\partial y}(f_1 f_2) = \frac{\partial f_1}{\partial y} f_2 + \frac{\partial f_2}{\partial y} f_1$$

$$\frac{\partial}{\partial z}(f_1 f_2) = \frac{\partial f_1}{\partial z} f_2 + \frac{\partial f_2}{\partial z} f_1$$

Будем иметь ввиду, что ∇ действует на поле, когда пишем следующим образом:

$$\nabla(\overset{\downarrow}{f_1}f_2)$$

Здесь ∇ действует на поле f_1 .

Тогда
$$\nabla(f_1f_2) = \nabla(\stackrel{\downarrow}{f_1}f_2) + \nabla(f_1\stackrel{\downarrow}{f_2}) = f_1\nabla f_2 + f_2\nabla f_1.$$

3) Посчитаем $\nabla(\overrightarrow{a_1}\times \overrightarrow{a_2})$:

Формально это смешанное произведение, тогда

$$\nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) + \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla \times \overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla \times \overrightarrow{a_2})$$

- 4) $grad f = \nabla f$
- 5) $grad(f_1f_2) = f_1grad f_2 + f_2grad f_1$ 6) $div \overrightarrow{d} = \nabla \cdot \overrightarrow{d}$
- 7) $rot \overrightarrow{a} = \nabla \times \overrightarrow{a}$

8)
$$div(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) + \nabla(f \cdot \overrightarrow{a}) = \overrightarrow{a}\nabla f + f\nabla \overrightarrow{a} = \overrightarrow{a}grad f + fdiv \overrightarrow{a}$$

$$a \operatorname{grad} f + f \operatorname{aiv} a$$

$$9) \operatorname{div}(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) + \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla \times \overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla \times \overrightarrow{a_2}) = \overrightarrow{a_2}\operatorname{rot}\overrightarrow{a_1} - \overrightarrow{a_1}\operatorname{rot}\overrightarrow{a_2}$$

$$10) \ rot(f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) + \nabla \times (f\overrightarrow{a}) = (\nabla f) \times \overrightarrow{a} + f(\nabla \times \overrightarrow{a}) = grad \ f \times \overrightarrow{a} + f \ rot \ \overrightarrow{a}$$

$$11) \ rot(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} + \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} (\nabla \overrightarrow{a_1}) + \overrightarrow{a_1} (\nabla \overrightarrow{a_2}) - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} div \overrightarrow{a_1} + \overrightarrow{a_1} div \overrightarrow{a_2} - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2}$$

12)
$$\operatorname{div}(\operatorname{grad} f) = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2})f = \nabla^2 f = \Delta f.$$

 \triangle - оператор Лапласа, $\triangle = \nabla^2$.

- 13) $div(rot \overrightarrow{a}) = \nabla \cdot (\nabla \times \overrightarrow{a}) = 0.$
- 14) $rot(qrad\ f) = \nabla \times (\nabla \cdot f) = 0.$

Экскурс в физику - физический смысл ротора

Пусть дали твердое тело, оно вращается вокруг какой то оси, пусть по часовой стрелке:

 $|\overrightarrow{v}| = PM(\text{радиус}) \cdot \omega.$

Вектор $\overrightarrow{\omega} \times \overrightarrow{r}$ параллелен \overrightarrow{v} (1)

 $|\overrightarrow{v}| = \omega \cdot |\overrightarrow{r}| \sin \varphi = |\overrightarrow{\omega}| |\overrightarrow{r}| \sin(\pi - \varphi)$ (2) Из (1) и (2) следует, что $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$.

Посчитаем $rot(\overrightarrow{v})$: $rot(\overrightarrow{v}) = rot(\overrightarrow{\omega} \times \overrightarrow{r}) = \overrightarrow{\omega} div \overrightarrow{r} - \overrightarrow{r} div \overrightarrow{\omega} + (\overrightarrow{r} \nabla) \overrightarrow{\omega} - (\overrightarrow{\omega} \nabla) \overrightarrow{r}$.

 $\overrightarrow{\omega}$ зависит только от времени, следовательно, везде, где дифференцируем $\overrightarrow{\omega}$, будут нули:

 $div \overrightarrow{\omega} = 0, (\overrightarrow{r} \nabla) \overrightarrow{\omega} = 0.$

Тогда $rot \overrightarrow{v} = \overrightarrow{\omega} div \overrightarrow{r} - (\overrightarrow{\omega} \nabla) \overrightarrow{r} = 3\overrightarrow{\omega} - \overrightarrow{\omega} = 2\overrightarrow{\omega}$.

Таким образом, физический смысл ротора: удвоенная мгновенная угловая скорость, отсюда и его названия (ротор, вихрь).

Интегральные характеристики векторного 4 поля

Дано векторное поле $\overrightarrow{a} = \overrightarrow{a}(M)$ в Ω , а так же l - простой кусочногладкий замкнутый контур из Ω .

Циркуляция 4.1

Определение: **циркуляцией** векторного поля по замкнутому контуру lназывается следующий интеграл второго рода:

$$\coprod = \int_{l} \overrightarrow{a} d\overrightarrow{r} = \int_{l} Pdx + Qdy + Rdz$$

4.2 Поток

Дана поверхность Σ .

<u>Определение:</u> **потоком** векторного поля по поверхности Σ называется следующий интеграл второго рода:

$$\prod = \iint_{\Sigma} \overrightarrow{a} \, \overrightarrow{n_0} ds$$

Приведем к привычному виду:

$$\prod = \iint_{\Sigma} \overrightarrow{d} \overrightarrow{n_0} ds = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

Физический смысл потока

Пусть есть $\overrightarrow{d} = \overrightarrow{v}$ - поле скоростей. Жидкость движется по какому-то пути, а затем мы ставим на этом пути решетку:

И сколько жидкости проходит через решетку за единицу времени? Возьмем в нашей решетке маленький кусок, из-за пренебрежимо малой величины можем считать его плоским. Тогда за единицу времени жидкость займет объем цилиндра с площадью основания, равной площади куска, и высотой, равной проекции \overrightarrow{v} на ось вращения. Посчитаем этот объем:

$$V_{\mathrm{II}} = S \cdot |\overrightarrow{v}_{\mathrm{np}.\overrightarrow{n_0}}| = ds \overrightarrow{a} \overrightarrow{n_0} = d \prod$$

И поток будет равен приближенной сумме объемов по всем кусочкам, то есть интегралу.

Теорема Гаусса-Остроградского 5

Пусть есть ограниченная область $\Omega \subset \mathbb{R}^3$

Граница этой области - $\partial\Omega$ - кусочно-гладкая.

 \overrightarrow{n} - внешняя нормаль.

 $\overrightarrow{a} = \overrightarrow{a}(M), M \in \overrightarrow{\Omega}, \overrightarrow{a}$ непрерывно дифференцируемо в каждой точке. Утверждение (теорема Остроградского-Гаусса): выполняется равенство:

$$\iint_{\partial\Omega} \overrightarrow{d} \overrightarrow{n_0} ds = \iiint_{\Omega} div \overrightarrow{d} dx dy dz$$

Доказательство:

Предположим, что Ω односвязна и элементарна по всем координатам.

Посчитаем одно из слагаемых, например, интеграл по $\frac{\partial P}{\partial x}$:

$$\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$$

$$=\iint_{D_{\text{cur}}}P(\psi_2(y,z),y,z)dydz-\iint_{D_{\text{cur}}}P(\psi_1(y,z),y,z)dydz=$$

 $\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$ $= \iint_{D_{yz}} P(\psi_2(y,z),y,z) dy dz - \iint_{D_{yz}} P(\psi_1(y,z),y,z) dy dz =$ $= \iint_{\Sigma_1} P(x,y,z) dy dz + \iint_{\Sigma_2} P(x,y,z) dy dz + 0$ (интеграл по боковой поверхности равен нулю).

Здесь Σ_1 образована функцией $x=\psi_1(y,z),\; \Sigma_2$ образована функцией $x = \psi_2(y, z).$

Тогда эта сумма - интеграл по всей границе (три слагаемых это интеграл по верхней части, нижней части и боковой поверхности), а значит, она равна

$$\iint_{\partial\Omega} P(x,y,z) dy dz$$

Аналогично доказывается для Q и для R.

5.1 Следствие из теоремы Остроградского-Гаусса

Возьмем непрерывно дифференцируемое векторное поле $\overrightarrow{a}=(P,Q,R)$ в открытой области $\Omega.$

Возьмем из этой области точку M_0 и окружим ее сферой $S(M_0)$.

Обозначим за $V(M_0)$ шар, ограниченный сферой $S, V \subset \Omega$.

Запишем для сферы и шара формулу Остроградского-Гаусса:

$$\iint_{S(M_0)} \overrightarrow{d} \, \overrightarrow{n_0} ds = \iiint_{V(M_0)} div \, \overrightarrow{d} \, dV = I$$

Утверждение: для какой-то точки $\stackrel{\sim}{M} \in V(M_0)$ выполняется равенство:

$$I = div \overrightarrow{a}(\tilde{M}) \cdot \mathbf{V}$$

V - объем шара. Отсюда выразим дивергенцию:

$$div \overrightarrow{a}(\widetilde{M}) = \frac{\iint_{S(M_0)} \overrightarrow{a} \overrightarrow{n_0} ds}{\mathbf{V}}$$

Полученную формулу принято называть средней плотностью источников (или стоков).

Какой в этом смысл:

Представим, что где-то через шар протекает жидкость. В нормальной ситуации вытекает жидкости ровно столько, сколько втекает, дивергенция равна нулю. Но если внутри шара есть источник/сток, тогда втекать будет меньше/больше, чем вытекать. Именно это и регулирует числитель в формуле дивергенции, полученной выше.

6 Теорема Стокса

Дано:

Простая и гладкая $(\overrightarrow{r}_u \times \overrightarrow{r}_v \neq \overrightarrow{0})$ поверхность $\overrightarrow{r} = \overrightarrow{r}(u,v) = \Sigma$. Плоскость $\Omega \subset R^2 \to R^3, (u,v) \in \Omega, \Omega$ - ограничена.

 $\partial\Omega = \{u(t), v(t)\}, \alpha \le t \le \beta.$

 $\overrightarrow{r}(t)=\overrightarrow{r}(u(t),v(t))$ - граница поверхности, $\partial \Sigma.$

Теорема (Стокса):

Утверждение: имеет место формула:

$$\int_{\partial \Sigma} \overrightarrow{d} \, d\overrightarrow{r} = \iint_{\Sigma} rot \, \overrightarrow{d} \cdot \overrightarrow{n_0} ds$$

Доказательство:

 $\widehat{1}$) Сведем $\int_{\partial\Sigma} \overrightarrow{d} d\overrightarrow{r}$ к интегралу по контуру $\partial\Omega$:

$$\int_{\partial \Sigma} \overrightarrow{d} d\overrightarrow{r} = \int_{\alpha}^{\beta} \overrightarrow{d} (\overrightarrow{r}(u(t), v(t))) \cdot (\overrightarrow{r}_{u}u_{t}dt + \overrightarrow{r}_{v}v_{t}dt) =$$

$$= \int_{\partial \Omega} \overrightarrow{d} (\overrightarrow{r}(u, v)) (\overrightarrow{r}_{u}du + \overrightarrow{r}_{v}dv) = I_{1}$$

2) Сведем $\iint_{\Sigma} rot \overrightarrow{d} \cdot \overrightarrow{n_0} ds$ к интегралу по области Ω :

$$\iint_{\Sigma} rot \overrightarrow{a} \cdot \overrightarrow{n_0} ds = \iint_{\Omega} rot \overrightarrow{a} \cdot (\frac{(\overrightarrow{r_u} \times \overrightarrow{r_v})}{|\overrightarrow{r_u} \times \overrightarrow{r_v}|} |\overrightarrow{r_u} \times \overrightarrow{r_v}|) du dv =$$

$$= \iint_{\Omega} rot \overrightarrow{a} \cdot (\overrightarrow{r_u} \times \overrightarrow{r_v}) du dv = I_2$$

Рассмотрим подынтегральное выражение, оно представляет собой смешанное произведение, попробуем представить его в виде $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$, чтобы применить формулу Грина в обратную сторону:

$$rot \overrightarrow{a} \cdot (\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}) = rot \overrightarrow{a} \cdot \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} = \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} \times (\nabla \times \overrightarrow{a}) =$$

$$= \overrightarrow{r}_{u} \cdot \nabla(\overrightarrow{r}_{v} \cdot \overrightarrow{a}) - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} = (\overrightarrow{r}_{u} \cdot \nabla)(\overrightarrow{r}_{v} \cdot \overrightarrow{a}) - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} =$$

$$= \overrightarrow{r}_{v}(\overrightarrow{r}_{u} \cdot \nabla) \overrightarrow{a} - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} = \overrightarrow{r}_{v}(x_{u} \frac{\partial \overrightarrow{a}}{\partial x} + y_{u} \frac{\partial \overrightarrow{a}}{\partial y} + z_{u} \frac{\partial \overrightarrow{a}}{\partial z}) -$$

$$- \overrightarrow{r}_{u}(x_{v} \frac{\partial \overrightarrow{a}}{\partial x} + y_{v} \frac{\partial \overrightarrow{a}}{\partial y} + z_{v} \frac{\partial \overrightarrow{a}}{\partial z}) =$$

$$= \overrightarrow{r}_{v} \overrightarrow{a}_{u} - \overrightarrow{r}_{u} \overrightarrow{a}_{v} = \overrightarrow{r}_{v} \overrightarrow{a}_{u} - \overrightarrow{r}_{u} \overrightarrow{a}_{v} + \overrightarrow{r}_{uv} \overrightarrow{a}_{uv} - \overrightarrow{r}_{uv} \overrightarrow{a}_{uv} =$$

$$\frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_{v}) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_{u})$$

Получили как раз, что хотели, осталось подставить в I_2 :

$$I_2 = \iint_{\Omega} (\frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_v) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_u)) du dv$$

Тогда по формуле Грина для этого интеграла:

$$I_2 = \int_{\partial\Omega} \overrightarrow{a} \overrightarrow{r}_u du + \overrightarrow{a} \overrightarrow{r}_v dv = I_1$$

Таким образом, получили тот же интеграл, следовательно, формула верна и теорема доказана.

6.1Следствие из теоремы Стокса

Дан интеграл $I = \int_{AB} P dx + Q dy + R dz$.

Утверждение: чтобы этот интеграл не зависел от пути интегрирования, необходимо и достаточно, чтобы выполнялось условие $rot \overrightarrow{d} = 0$.

Доказательство:

1) Пусть l_1 и l_2 - какие-то два пути из A в B, и пусть эти кривые не пересекаются.

Тогда $I = \int_{l_1} - \int_{l_2} = \int_{l}.$ l - контур, получаемый, если пойти из A в B по кривой l_1 , а затем обратно из B в A по l_2 .

Тогда $I=\int_{l}\overrightarrow{a}d\overrightarrow{r'}=\iint_{\Sigma}rot\overrightarrow{a}\cdot\overrightarrow{n}_{0}ds$ - по теореме Стокса. Следовательно, если $rot\overrightarrow{a}=0$, то $I=0=\int_{l_{1}}-\int_{l_{2}}\Rightarrow\int_{l_{1}}=\int_{l_{2}}$, что и требовалось доказать.

2) Пусть теперь $\int_{l_1}=\int_{l_2}$, тогда $\int_l=0=\int\!\!\int_\Sigma (rot\,\overrightarrow{a}\cdot\overrightarrow{n}_0)ds$, следовательно, скалярное произведение равно нулю, но нормаль не может быть равна нулю, поэтому равен нулю ротор, что и требовалось доказать.

ПРИМЕРЫ:

 $\overrightarrow{1)}$ $\overrightarrow{a} = -\overrightarrow{y}$ $\overrightarrow{i} + x$ $\overrightarrow{j} + z$ \overrightarrow{k} . Найти циркуляцию вдоль поля, если $L: \overrightarrow{r}(t) = a \cos t$ $\overrightarrow{i} + a \sin t$ $\overrightarrow{j} + bt$ \overrightarrow{k} , A(a,0,0), $B(a,0,2\pi b)$.

Это выглядит примерно так, закрашены две области, которые нас интересуют:

Тогда $\int_{L} \overrightarrow{a} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} ds$.

Посчитаем ротор, он равен 2k'.

Как видно на картинке выше, нас интересуют две области, на которые и делится Σ . $\Sigma = \Sigma_1 \cup \Sigma_2$.

Рассмотрим по очереди каждую из этих областей:

$$\Sigma_1: x^2 + y^2 = a^2, \overrightarrow{n} = (x, y, 0), rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 0.$$

$$\Sigma_2: z=2\pi b, x^2+y^2 \leq a^2, \overrightarrow{n}=\overrightarrow{k}=\overrightarrow{n}_0, rot \overrightarrow{a}\cdot \overrightarrow{n}_0=2.$$
 Тогда $\int_L \overrightarrow{a} d\overrightarrow{r}=\iint_\Sigma rot \overrightarrow{a} \overrightarrow{n}_0 ds=\iint_{\Sigma_2} 2ds=2\pi a^2.$

Тогда
$$\int_{L} \overrightarrow{d} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{d} \overrightarrow{n}_{0} ds = \iint_{\Sigma_{2}} 2ds = 2\pi a^{2}.$$

2) $\overrightarrow{a} = y\overrightarrow{i} + z\overrightarrow{j} + x\overrightarrow{k}$. Дан куб, ребро имеет длину = 1. Найти циркуляцию вдоль доманой $C_1CDABB_1A_1D_1$.

Замкнем ломаную, добавив отрезок D_1C_1 . $L = L_1 \cup D_1C_1$.

За поверхность возьмем грани $\overrightarrow{ABB_1A_1}(\Sigma_1), A_1D_1DA(\Sigma_2)$ и $C_1CDD_1(\Sigma_3)$. Посчитаем ротор, он равен $-\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k}$.

Тогда
$$\int_{L} = \iint_{\Sigma_1} + \iint_{\Sigma_2} + \iint_{\Sigma_3}$$

$$\Sigma_1: \overrightarrow{n} = -\overrightarrow{i}, rot \overrightarrow{d} \cdot \overrightarrow{n}_0 = 1, \iint_{\Sigma_1} = \iint ds = 1$$

Тогда
$$\int_{L} = \iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} + \iint_{\Sigma_{3}}$$
. Рассмотрим каждую их областей:
$$\Sigma_{1} : \overrightarrow{n} = -\overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = 1, \iint_{\Sigma_{1}} = \iint ds = 1.$$

$$\Sigma_{2} : \overrightarrow{n} = \overrightarrow{j}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = -1, \iint_{\Sigma_{2}} = \iint ds = -1.$$

$$\Sigma_3: \overrightarrow{n} = \overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = -1, \iint_{\Sigma_2} = \iint ds = -1$$

 $\Sigma_3: \overrightarrow{n}=\overrightarrow{i}, rot \overrightarrow{a}\cdot \overrightarrow{n}_0=-1, \iint_{\Sigma_3}=\iint ds=-1.$ Сложим, получим, что $\int_L=-1.$ Осталось посчитать $\int_{D_1C_1}ydx+zdy+$ xdz = I.

$$D_1C_1: x=1, z=1$$
, тогда $dx=0, dz=0$

$$D_1C_1: x=1, z=1$$
, тогда $dx=0, dz=0$.
Отсюда $I=\int_0^1 z dy=1$. Тогда $\int_{L_1}=\int_L-\int_{D_1C_1}=-2$.

6.2 Примечание к следствию из теоремы Стокса

Определение: область называется линейно-односвязной, если на любой

простой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в этой области.

<u>Утверждение:</u> следствие выполняется только если область, в которой работаем - линейно-односвязна. Пример, подтверждающий это:

Дана кривая AB и поле $\overrightarrow{a}=(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2},z)$. При этом $rot \overrightarrow{a}=0$. Искомое задание кривой:

$$l: \begin{cases} x^2 + y^2 = a^2 \\ z = a \end{cases}$$

Посчитаем интеграл $\int_{AB} \overrightarrow{d} d\overrightarrow{r}$:

$$\int_{AB} \overrightarrow{d} d\overrightarrow{r} = \int_{l} -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy + z dz = I$$

Параметризуем кривую:

$$\begin{cases} z = a \\ x = a \cos t \\ y = a \sin t \end{cases}$$

Тогда $I = \int_0^{2\pi} (\frac{a^2 \sin^2 t}{a^2} + \frac{a^2 \cos^2 t}{a^2}) dt + 0$ (так как dz = 0, ведь z - константа).

$$I = \int_0^{2\pi} (\sin^2 t + \cos^2 t) dt = \int_0^{2\pi} dt = 2\pi \neq 0$$

Что и требовалось доказать, ведь при x=0,y=0 у нас поле не определено, тогда область не является линейно-односвязной.

6.3 Линейно в поверхностно односвязные области

<u>Определение:</u> область называется линейно-односвязной, если на любой простой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в этой области.

<u>Определение:</u> область G называется поверхностно-односвязной, если для любой простой замкнутой поверхности, ограничивающей некую область Ω , все точки Ω принадлежат G.

шар является примером по-

верхностно односвязной области.

- шар, у которого внутри вы-

резан шар поменьше является примером поверхностно-неодносвязной области, ведь если взять шар радиусом больше, чем радиус вырезанного шара, но меньше, чем радиус искомого шара, то в нем будут точки из вырезанного шара, которые не принадлежат искомому шару.

7 Потенциальное поле

Дано векторное поле $\overrightarrow{a} = \overrightarrow{a}(M)$.

Определение: будем называть \overrightarrow{a} потенциальным, если $\exists U=U(x,y,z)$ такая, что $gradU=\overrightarrow{a}$.

Важно: $\overrightarrow{a} = \overrightarrow{\nabla} U$.

Определение: U - скалярный потенциал векторного поля.

Теорема: для того, чтобы \overrightarrow{a} было потенциальным, необходимо и (в случае линейной неодносвязности области, в которой задано поле) достаточно, чтобы $rot \overrightarrow{a} = \overrightarrow{0}$.

Доказательство:

1) Необходимость. Если $\exists U$, то $rot \overrightarrow{a} = rot \ grad \ U = \overrightarrow{\nabla} \times \overrightarrow{\nabla} U = \overrightarrow{0}$. То есть, если поле потенциально (есть скалярный потенциал), то ротор равен нулю.

2) Достаточность.

 $rot \overrightarrow{a} = 0$, область (пусть будет g) - линейно-односвязна.

Тогда по теореме Стокса $\int_{AB} \overrightarrow{d} \overrightarrow{d} \overrightarrow{r}$ не зависит от пути интегрирования. Теперь просто попробуем найти скалярный потенциал.

Возьмем некую функцию $\tilde{U}(\tilde{x},\tilde{y},\tilde{z})$ и точку $\tilde{M}=(\tilde{x},\tilde{y},\tilde{z}).$

Выберем их такими, что $\tilde{U}=\int_{M_0}^{\tilde{M}}\overrightarrow{a}\,d\overrightarrow{r}.$

Теперь докажем, что \tilde{U} - скалярный потенциал поля \overrightarrow{a} : Пусть точка $M_1=(\tilde{x}+\triangle x,\tilde{y},\tilde{z}).$

Найдем производную \tilde{U} :

$$\triangle \widetilde{U} = \widetilde{U}(\widetilde{x} + \triangle x, \widetilde{y}, \widetilde{z}) - \widetilde{U}(\widetilde{x}, \widetilde{y}, \widetilde{z}) = \int_{M_0}^{M_1} - \int_{M_0}^{\widetilde{M}} = I$$

Оба интеграла из разности не зависят от пути интегрирования, тогда: Выберем путь $\stackrel{\sim}{M_0M}$ свободно, пусть будет каким угодно.

Путь
$$M_0M_1 = M_0\tilde{M} \cup \tilde{M}M_1$$
.

 MM_1 - отрезок, параллельный оси x.

Это выглядит так:

Тогда $I=\int_{\widetilde{M}}^{M_1}Pdx+Qdy+Rdz$. Но dy=0, dz=0, так как меняется только x. Тогда $I=\int_{\widetilde{M}}^{M_1}Pdx=\int_{\widetilde{x}}^{\widetilde{x}+\triangle x}P(x,\widetilde{y},\widetilde{z})=P(\widetilde{x}+\theta\bigtriangleup x,\widetilde{y},\widetilde{z})\bigtriangleup x$ (по теореме о среднем), где $0<\theta<1$.

Тогда
$$\frac{\partial \widetilde{U}}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta \widetilde{U}}{\Delta x} = \lim_{\Delta x \to 0} P(\widetilde{x} + \theta \Delta x, \widetilde{y}, \widetilde{z}) = P(\widetilde{x}, \widetilde{y}, \widetilde{z}).$$

Аналогично получится и для y и z. Тогда $grad\tilde{U}=\overrightarrow{d},$ значит, \tilde{U} - скалярный потенциал, то есть мы нашли искомую функцию, что и требовалось

Важно: если U - скалярный потенциал, то U + c, где c = const - тоже скалярный потенциал.

ПРИМЕР:

 $\overrightarrow{d} = (y+z)\overrightarrow{i} + (x+z)\overrightarrow{j} + (x+y)\overrightarrow{k}$. Задача: убедиться, что данное поле является потенциальным и найти его потенциал.

Решение:

- 1) $rot \vec{a} = \vec{0}$ (здесь нужно вычислить определитель матрицы), следовательно, поле потенциальное.
- 2) $U=\int_{(0,0,0)}^{(x_0,y_0,z_0)}(y+z)dx+(x+z)dy+(x+y)dz=\int_{l_1}+\int_{l_2}+\int_{l_3}$. Выберем путь, по которому будем двигаться из точки (0,0,0) в точку (x_0,y_0,z_0) : самый хороший путь - это двигаться вдоль координатных осей:

Тогда посчитаем каждый из трех интегралов:

- а) $x=0,y=0,\Rightarrow dx=0, dy=0.\ 0\leq z\leq z_0.$ Тогда $\int_{l_1}=0dz=0.$ b) $z=z_0,y=0,\Rightarrow dz=0, dy=0.\ 0\leq x\leq x_0.$ Тогда $\int_{l_2}=\int_0^{x_0}z_0x=z_0x_0.$ c) $x=x_0,z=z_0,\Rightarrow dz=0, dx=0.\ 0\leq y\leq y_0.$ Тогда $\int_{l_3}=\int_0^{y_0}(x_0+z_0)=0.$ $x_0y_0 + z_0y_0$.

Сложим три интеграла, получим, что U = xy + xz + yz, что и будет ответом.

Соленоидальное поле 8

Дано \overrightarrow{a} - векторное поле, заданное на g - поверхностно-односвязной области.

<u>Определение:</u> векторное поле будем называть соленоидальным, если его поток через любую простую, кусочно-гладкую, замкнутую поверхность равен нулю:

$$\iint_{S} \overrightarrow{a} \overrightarrow{n_0} ds = 0$$

<u>Теорема 1:</u> для того, чтобы поле было соленоидальным, необходимо и достаточно, чтобы выполнялось условие:

$$div \overrightarrow{a} = 0$$

Доказательство:

1)

$$\iint_{S} \overrightarrow{d} \overrightarrow{n_0} ds = \iiint_{V} div \overrightarrow{d} dV = 0, \Rightarrow div \overrightarrow{d} = 0$$

2)

$$div\overrightarrow{a}=0,\Rightarrow \iint_{S}\overrightarrow{a}\overrightarrow{n_{0}}ds=0,\Rightarrow\overrightarrow{a}$$
 — соленоидальное

<u>Определение:</u> \overrightarrow{H} будем называть векторным потенциалом поля \overrightarrow{a} , если $\overrightarrow{rotH} = \overrightarrow{a}$.

Важно: если \overrightarrow{H} - векторный потенциал, то $\overrightarrow{H_1} = \overrightarrow{H} + gradU$ (где U - какая-то скалярная функция) - тоже векторный потенциал. Доказательство:

$$rot\overrightarrow{H_1} = rot(\overrightarrow{H} + qradU) = rot\overrightarrow{H} + rot \ qradU = 0 = rot\overrightarrow{H} = \overrightarrow{a}$$

<u>Теорема 2:</u> для того, чтобы поле было соленоидальным, необходимо и достаточно, чтобы существовал векторный потенциал.

Доказательство:

1)

$$div \overrightarrow{d} = div \ rot \overrightarrow{H} = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \times \overrightarrow{H} = 0$$

А по теореме 1, если дивергенция равна нулю, то поле соленоидальное.

 \overline{a} - соленоидальное.

Будем искать \overrightarrow{H} в виде $\overrightarrow{H}=(H_x,H_y,0).$

$$rot\overrightarrow{H} = -\overrightarrow{i}\frac{\partial H_y}{\partial x} + \overrightarrow{j}\frac{\partial H_x}{\partial z} + \overrightarrow{k}(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}) = P\overrightarrow{i} + Q\overrightarrow{j} + R\overrightarrow{k}$$

Отсюда

$$\frac{\partial H_y}{\partial z} = -P, \Rightarrow H_y = -\int P dz + \varphi(x,y) \; (\varphi(x,y)$$
 - произвольная функция). $\frac{\partial H_x}{\partial z} = Q, \Rightarrow H_x = \int Q dz + \psi(x,y) \; (\psi(x,y)$ - произвольная функция).

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = R, \Rightarrow -\int P_x dz + \varphi_x(x, y) - \int Q_y dz + \psi_y(x, y)$$

Таким образом, мы нашли \overrightarrow{H} .

ПРИМЕР:

$$\overrightarrow{d} = 2z\overrightarrow{i} + 3y^2\overrightarrow{k} = (2z, 0, 3y^2).$$

Найти векторный потенциал. Решение:

$$H_x = \int 0 + \psi(x, y).$$

$$H_y = -\int 2zdz + \varphi(x,y) = -z^2 + \varphi(x,y).$$

$$H_y = 0$$

$$-0 + \varphi_x - 0 - \psi_y = 3y^2$$
$$\varphi_x - \psi_y = 3y^2$$

Обе функции произвольные, поэтому, пусть $\varphi \equiv 0, \psi = -y^3$. Тогда, ответ: $\overrightarrow{H} = (-y^3, -z^2, 0)$.

9 Интегралы с параметрами

Дальше (похоже, до конца семестра) мы будем заниматься интегралами с параметрами.

10 Равномерная сходимость семейства функций

10.1 Определение равномерной сходимости

Дана функция f(x,y) - на первый взгляд, функция двух переменных, однако, $x \in X$ - аргумент, а $y \in Y$ - число, параметр.

Например, если Y = N (натуральные числа), то $f(x, n) = f_n(x)$ - функциональная последовательность.

Возьмем некую точку y_0 - точку сгущения Y (по сути, точка сгущения \sim предельная точка множества).

Тогда функцию $\varphi(x)$, такую, что:

$$\forall x \in X \ f(x,y)_{y \to y_0} \to \varphi(x)$$

будем называть **поточечным** пределом функции f.

Определение: f(x,y) сходится равномерно на X при $y \to y_0$, если:

 $\overline{1) \ f(x,y)_{y\to y_0}} \to \varphi(x) \forall x \ (\text{сходится поточечно}).$

2)

$$\forall \varepsilon > 0 \ \exists \delta > 0 : 0 < |y - y_0| < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon \ \forall x$$

ПРИМЕР:

 $\overline{f(x,y)} = \frac{3x+y}{x+y}; Y = (0;1), y_0 = 0$. Выяснить, сходится ли равномерно функция на множестве X, если X:

1) X = (1, 2).

Найдем поточечный предел f:

$$\lim_{y \to y_0} f = \frac{3x}{x} = 3 = \varphi(x)$$

Подставим поточечный предел в определение:

$$|f(x,y) - \varphi(x)| = \left|\frac{3x+y}{x+y} - 3\right| = \frac{2y}{x+y} < \varepsilon \quad \forall x \in (1,2)$$
$$\frac{2y}{x+y} < \frac{2y}{1+y} < \frac{2y}{1} < \varepsilon$$

Тогда возьмем $\delta=\frac{\varepsilon}{2},$ значит, мы нашли $\delta,$ удовлетворяющую условию, значит, f равномерно сходится на X.

2)
$$X = (0, 1)$$
.

Докажем, что нет равномерной сходимости на этом множестве. Для этого докажем отрицание определения равномерной сходимости:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0; \exists y_\delta \in U_\delta(y_0); \exists x_\delta \Rightarrow |f(x_\delta, y_\delta) - \varphi(x_\delta)| \ge \varepsilon_0$$

Пусть $\delta_n = \frac{1}{n}, y_n = \frac{1}{n+1}, x_n = \frac{1}{n+1}$. Тогда $\frac{2y}{x+y} = 1 = \varepsilon_0$. То есть мы нашли ε_0 , а значит, доказали отрицание, а значит, f не сходится равномерно на данном X.

10.2Признаки равномерной сходимости

1) Запишем очевидное неравенство:

Пусть $|f(x,y) - \varphi(x)| < \varepsilon \ \forall x \in X$. Тогда

$$|f(x,y) - \varphi(x)| \le \sup_{x \in X} |f(x,y) - \varphi(x)| = g(y)$$

Утверждение: семейство функций сходится равномерно к $\varphi(x)$ на множестве X тогда и только тогда, когда:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; y \in \overset{\circ}{U_{\delta}}(y_0) \Rightarrow |g(y)| < \varepsilon$$

Например, $sup_{x\in(1;2)}\frac{2y}{x+y}=\frac{2y}{1+y}<\varepsilon.$ Но $sup_{x\in(0;1)}\frac{2y}{x+y}=2$ - не стремится к нулю.

2) Теорема (признак Коши):

Для того, чтобы семейство функций равномерно сходилось на X при $y \to y_0$, необходимо и достаточно, чтобы выполнялось условие:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall y', y'' \in U_{\delta}(y_{0}) \Rightarrow |f(x, y') - f(x, y'')| < \varepsilon \ \forall x \in X$$

Доказательство:

 $I. \Rightarrow$

Если семейство функций сходится равномерно, то

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \overset{\circ}{U_{\delta}}(y_0) : |f(x,y) - \varphi(x)| < \frac{\varepsilon}{2}$$

Возьмем две точки из $\overset{o}{U_{\delta}}(y_0)$ - $y^{'}$ и $y^{''}$. Тогда $|f(x,y^{'})-\varphi(x)|<\frac{\varepsilon}{2},$

$$|f(x,y'') - \varphi(x)| < \frac{\varepsilon}{2},$$

$$|f(x,y') - f(x,y'')| \le |f(x,y') - \varphi(x)| + |f(x,y'') - \varphi(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Доказано.

 $II. \Leftarrow$

Теперь дано условие Коши.

Возьмем $x \in X$ и зафиксируем его. Тогда для фиксированного x выполняется:

$$|f(x, y') - f(x, y'')| < \varepsilon \Rightarrow |g(y') - g(y'')| < \varepsilon$$

Отсюда следует, что у функции g есть предел при $y \to y_0$.

Получается, что для каждого такого фиксированного $x \in X$

$$\exists \lim_{y \to y_0} f(x, y) = \varphi(x).$$

Осталось доказать вторую часть определения равномерной сходимости:

Для этого в выражении $|f(x,y') - \bar{f}(x,y'')| < \frac{\varepsilon}{2}$ перейдем к пределу:

Пусть $y \to y_0$, тогда $|f(x,y') - \varphi(x)| \le \frac{\varepsilon}{2} < \varepsilon$, что и требовалось доказать. Теорема доказана.

3) Обозначим за \mapsto равномерную сходимость.

<u>Утверждение</u>: для того, чтобы f(x,y) сходилась равномерно к $\varphi(x)$ на множестве X и при $y \to y_0$, необходимо и достаточно, чтобы выполнялось условие:

$$\forall y_n \to y_0 \ f(x, y_n) = f_n(x)_{n \to \infty} \mapsto \varphi(x) \ \forall x \in X$$

Здесь y_n - последовательность из Y.

Доказательство:

 $I. \Rightarrow$

Если f равномерно сходится, то это значит, что:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \overset{\circ}{U_{\delta}}(y_0) \ |f(x,y) - \varphi(x)| < \varepsilon$$

Возьмем последовательность $y_n \to y_0$ и по δ , которую мы нашли, найдем n_0 , такой, что:

$$\forall n \geq n_0 \ y_n \in \overset{\circ}{U_{\delta}}(y_0)$$

А это означает, что $\forall x \ |f(x,y_n)-\varphi(x)|<\varepsilon$, что и требовалось доказать. $II.\Leftarrow$

Теперь дано: $\forall y_n \to y_0 \ f(x, y_n) = f_n(x)_{n \to \infty} \mapsto \varphi(x)$.

Докажем от противного, что $f(x,y)\mapsto \varphi(x)$.

Пусть f сходится, но не равномерно, тогда снова попытаемся доказать отрицание:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0; \exists y_\delta \in U_\delta(y_0); \exists x_\delta \Rightarrow |f(x_\delta, y_\delta) - \varphi(x_\delta)| \ge \varepsilon_0$$

Поскольку мы наложили условия на x_δ и y_δ , то можем взять какие-то последовательности $x_n,y_n,$ а δ_n взять равное $\frac{1}{n}.$ Тогда:

$$|f(x_n, y_n) - \varphi(x_n)| \ge \varepsilon_0$$

Но это противоречит условию, ведь по условию f_n равномерно сходится к φ . Теорема доказана.

Следствие:

Пусть f(x,y) непрерывна по x на множестве X, а так же эти $f(x,y) \mapsto$ $\varphi(x)$ при $y \to y_0$ на X.

Тогда $\varphi(x)$ непрерывна на X.

4) Утверждение: если рассматривать f(x,y) на прямоугольнике $[a;b] \times$ [c;d] как функцию двух переменных и предположить, что она на нем непрерывна, то

$$f(x,y)_{y\to y_0}\mapsto \varphi_{y_0}(x)$$

Здесь $y_0 \in [c; d]$.

Доказательство:

Данный прямоугольник - компактное множество. А если функция непрерывна на компакте равномерно непрерывна:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x', x'' : |x' - x''| < \delta; \forall y', y'' : |y' - y''| < \delta \Rightarrow$$
$$\Rightarrow |f(x', y') - f(x'', y'')| < \varepsilon$$

Возьмем $x^{'} = x^{''} = x, y^{''} = y_0, y^{'} = y.$

Тогда $|f(x,y)-f(x,y_0)|<\varepsilon$, но $f(x,y_0)=\varphi_{y_0}(x)$, тогда:

$$|f(x,y) - \varphi_{y_0}(x)| < \varepsilon \ \forall x \in [a;b]$$

Но это и означает равномерную сходимость (по определению), что и требовалось доказать.

11 Интеграл с переменным верхним пределом

Дана f(x,y) - интегрируемая по $x \in [a;b] \ \forall y \in Y$.

Тогда рассмотрим интеграл:

 $I(y) = \int_a^b f(x,y) dx$ - собственный интеграл с параметром y.

Свойства:

1) Теорема 1: если $f(x,y) \mapsto \varphi(x)$ при $y \to y_0$, то

$$\lim_{y \to y_0} I(y) = \int_a^b \varphi(x) dx$$

Эта теорема дает нам возможность менять местами знаки предела и интеграла в случае, когда f равномерно сходится:

$$\lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \lim_{y \to y_0} f(x,y) dx$$

Доказательство

Оценим $|I(y) - \int_a^b \varphi(x) dx|$:

$$|I(y) - \int_a^b \varphi(x)dx| |\int_a^b f(x,y)dx - \int_a^b \varphi(x)dx| =$$

$$= |\int_a^b (f(x,y) - \varphi(x)) dx| \le \int_a^b |(f(x,y) - \varphi(x))| dx$$

Ho $f(x,y) \mapsto \varphi(x) \Rightarrow |f(x,y) - \varphi(x)| < \varepsilon$. Пусть $\varepsilon = \frac{\varepsilon}{b-a}$:

$$\int_{a}^{b} |(f(x,y) - \varphi(x))| dx < \int_{a}^{b} \frac{\varepsilon}{b - a} dx = \varepsilon$$

Значит, $\lim_{y\to y_0}I(y)=\int_a^b \varphi(x)dx$, что и требовалось доказать. Следствия:

- а) Если f непрерывна на прямоугольнике $[a;b] \times [c;d]$, то можно переставить знаки интегрирования и предела местами.
- b) Если в точке y_0 f(x,y) непрерывна, то из того, что $f(x,y)\mapsto \varphi(x)$ следует, что:

$$\lim_{y \to y_0} I(y) = \int_a^b f(x, y_0) dx = I(y_0)$$

Отсюда следует, что I непрерывен в точке y_0 (по определению непрерывности в точке).

2) <u>Теорема 2</u>: если f(x,y) непрерывна относительно x и y на прямоугольнике $[a;b] \times [c;d]$, то $I(y) = \int_a^b f(x,y) dx$ можно интегрировать по y:

$$\exists \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy$$

Это повторные интегралы для двойного интеграла $\iint_{[a;b]\times[c;d]} f(x,y) dx dy$. Другими словами,

$$\iint_{[a;b]\times[c;d]} f(x,y)dxdy = \int_c^d dy \int_a^b f(x,y) = \int_a^b dx \int_c^d f(x,y)dydx$$

3) Теорема 3:

Пусть f(x,y) непрерывна по x на [a;b] для любых y из [c;d], а $f_y'(x,y)$ непрерывна по x и y на прямоугольнике $[a;b]\times [c;d]$. Тогда существует $I_y'(y)$ $\forall y\in [c;d]$:

$$I_{y}^{'}(y) = \int_{a}^{b} f_{y}^{'}(x,y)dx$$

То есть, другими словами, можно поменять дифференцирование и интегрирование местами:

 $(\int f)^{'}=\int f^{'}$ - это называется правило Лейбница.

Доказательство:

$$I'_{y}(y_0) = \lim_{\Delta y \to 0} \frac{\Delta I(y_0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{I(y_0 + \Delta y) - I(y_0)}{\Delta y} = ?$$

Распишем $\frac{\triangle I(y_0)}{\triangle y}$:

$$\frac{\triangle I(y_0)}{\triangle y} = \frac{\int_a^b f(x,y_0 + \triangle y) dx - \int_a^b f(x,y_0) dx}{\triangle y} =$$

$$= \int_a^b \frac{f(x,y_0 + \triangle y) - f(x,y_0)}{\triangle y} dx = \int_a^b \frac{f_y'(x,y_0 + \theta \triangle y) \triangle y dx}{\triangle y} =$$

$$= \int_a^b f_y'(x,y_0 + \theta \triangle y) dx, \ 0 < \theta < 1 \text{(по теореме о среднем)}$$

Тогда $I_y^{'}(y_0)=\lim_{\triangle y\to 0}\int_a^bf_y^{'}(x,y_0+\theta\triangle y)dx=\int_a^b\lim_{\triangle y\to 0}f_y^{'}(x,y_0+\theta\triangle y)dx=$

 $=\int_{a}^{b}f_{y}'(x,y_{0})dx$, что и требовалось доказать.

Замечание:

Если пределы интегрирования зависят от y, вот таким образом:

$$I(y) = \int_{u(y)}^{v(y)} f(x, y) dx = F(y, u, v)$$

Тогда
$$\frac{dF}{dy} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial u}\frac{du}{dy} + \frac{\partial F}{\partial v}\frac{dv}{dy} = \int_{u}^{v} f'(x,y)dx + f(v,y)v_y^{'} - f(u,y)u_y^{'}$$
.

Это следует из теоремы Барроу (по словам некоторых, самой великой теоремы матанализа, а значит надо учить):

Теорема Барроу:

$$\left(\int_{a}^{x} f(t)dt\right)'_{x} = f(x)$$

$$\left(\int_{a}^{b} f(t)dt\right)'_{x} = f(-x)$$

ПРИМЕРЫ (здесь их много, 5 штук): 1) $I(y) = \int_0^1 \ln(x^2 + y^2) dx; \ y \in (0;1].$

Посчитаем этот интеграл

$$\int_0^1 \ln(x^2 + y^2) dx = x \ln(x^2 + y^2)|_0^1 - 2 \int \frac{x dx}{x^2 + y^2} = \ln(1 + y^2) - 2 + y \arctan \frac{1}{y}$$

Хотим узнать, как эта функция ведет себя в нуле, устремим y к нулю, тогда $I(y) \to 0$, то есть, 0 - точка устранимого разрыва.

Тогда
$$I(y) = \begin{cases} \ln(1+y^2) - 2 + y \arctan \frac{1}{y}, y \neq 0 \\ -2, y = 0 \end{cases}$$

Значит, I(y) непрерывна на [0;1].

Теперь проверим дифференцируемость:

 $y \neq 0, y \in [\delta; 1]$. Тогда на прямоугольнике $[0; 1] \times [\delta; 1]$ функция $\ln(x^2 + y^2)$ непрерывна по y, а функция $\frac{2y}{x^2 + y^2}$ непрерывна по x и по y.

Тогда $I_y'(y) = \int_0^1 \frac{2y}{x^2 + y^2}$, рассмотрим её поведение в нуле: $y_0 = 0$.

$$I_{y}^{'}(y) = \frac{2y}{x^{2} + y^{2}} + \arctan \frac{1}{y} - \frac{y}{1 + y^{2}} = \frac{y}{1 + y^{2}} + \arctan \frac{1}{y}$$

Очевидно, эта функция не непрерывна в нуле, устремим y к нулю, тогда $I_u'(0) \to \frac{\pi}{2}$.

 Γ другой стороны, $I'_y(0) = \int_0^1 \frac{2y}{x^2 + y^2} dx = 0.$

Получили разные ответы. Это потому, что на самом деле мы не могли здесь пользоваться теоремой, ведь нарушается условие непрерывности $f_y^{'}$ по x и по y. 2) $\int_0^1 \frac{x^b - x^a}{\ln x} dx$, b > a > 0.

$$\frac{x^b - x^a}{\ln x} = \int_a^b x^y dy$$

Тогда $\int_0^1 \frac{x^b - x^a}{\ln x} = \int_0^1 dx \int_a^b x^y dy = \int_0^1 dy \int_a^b x^y dx = \int_a^b \frac{x^{y+1}}{y+1} \Big|_0^1 dy = \int_a^b \frac{1}{y+1} dy$ $\ln \frac{b+1}{a+1}$. С другой стороны,

$$I(a,b) = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx \Rightarrow I_{b}^{'}(a,b) = \int_{0}^{1} x^{b} dx = \frac{x^{b+1}}{b+1} \Big|_{0}^{1} = \frac{1}{b+1}$$

Тогда $\int I_b'(a,b) = \int \frac{db}{b+1} = \ln(b+1) + C$. Найдем C:

$$I(a, a) = \ln(a+1) + C = 0 \Rightarrow C = -\ln(a+1)$$

Отсюда $I(a,b) = \ln(b+1) - \ln(a+1) = \ln\frac{b+1}{a+1}$, получили то же самое. 3) $\int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} dx$. Рассмотрим $\frac{\arctan x}{x}$:

$$\frac{\arctan x}{x} = \int_0^1 \frac{dy}{1+x^2y^2}, \text{ тогда} \int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} dx = \int_0^1 dx \int_0^1 \frac{dy}{(1+x^2y^2)\sqrt{1-x^2}} =$$

$$= \int_0^1 dx \int_0^1 f(x,y)g(x)dy = \int_0^1 dy \int_0^1 f(x,y)g(x)dx = \int_0^1 dy \int_0^1 \frac{dx}{(1+x^2y^2)\sqrt{1-x^2}} =$$

$$= -\int_0^1 dy \int_0^{-\infty} \frac{dt}{t^2(y^2+1)+1} (\text{подстановка Абеля}) = \int_0^1 dy \int_0^{\infty} \frac{dt}{t^2(y^2+1)+1} =$$

$$= \int_0^1 \frac{\arctan (t\sqrt{y^2+1})}{\sqrt{y^2+1}} \Big|_0^{\infty} dy = \int_0^1 \frac{\pi}{2\sqrt{y^2+1}} dy = \frac{\pi}{2} \int_0^1 \frac{dy}{\sqrt{y^2+1}} = \frac{\pi}{2} \ln(1+\sqrt{2})$$

Второй способ:

Найдем I'_{u} :

$$I_{y}' = \int_{0}^{1} \frac{1}{1 + x^{2}y^{2}} \frac{1}{\sqrt{1 - x^{2}}} dx = \frac{\pi}{2} \frac{1}{\sqrt{y^{2} + 1}}$$

Получили производную, осталось найти саму функцию:

$$I(y) = \int I'_y = \frac{\pi}{2} \ln(y + \sqrt{y^2 + 1}) + C$$

Найдем C:

 $I(0) = 0, \Rightarrow C = 0$, а наша цель - I(1).

$$I(1) = \frac{\pi}{2} \ln(1 + \sqrt{2})$$

4)
$$I(a) = \int_0^{\frac{\pi}{2}} \ln(a^2 - \sin^2 t) dt, a > 0.$$

$$I'_{y}(a) = \int_{0}^{\frac{\pi}{2}} \frac{2a}{a^{2} - \sin^{2} t} dt = 2a \int_{0}^{\frac{\pi}{2}} \frac{dt}{a^{2} - \sin^{2} t} = \frac{\pi}{\sqrt{a^{2} - 1}}$$

$$I(a) = \int I'_{y} = \pi \ln(a + \sqrt{a^{2} - 1}) + C$$

С другой стороны, $I(a)=\int_0^{\frac{\pi}{2}}\ln(a^2-\sin^2t)dt=\int_0^{\frac{\pi}{2}}\ln(a^2(1-\frac{1}{a^2}\sin^2t))dt=\pi\ln a+\int_0^{\frac{\pi}{2}}\ln(1-\frac{1}{a^2}\sin^2t)dt$

Устремим $a + \infty$, тогда $\ln(1 - \frac{1}{a^2} \sin^2 t) \to 0$. Выясним, равномерно ли сходится семейство функций:

$$|\ln(1 - \frac{1}{a^2}\sin^2 t)| \le |\ln(1 - \frac{1}{a^2})| < \varepsilon$$

Следовательно, сходимость равномерная.

Тогда $C = I(a) - \pi \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(1 - \frac{1}{a^2} \sin^2 t) dt = \pi \ln \frac{a}{a + \sqrt{a^2 - 1}} + \int_0^{\frac{\pi}{2}} \ln(1 - \frac{1}{a^2} \sin^2 t) dt.$

При $a \to \infty$ первое слагаемое стремится к $\ln \frac{1}{2}$, а второе к нулю, тогда $C = \ln \frac{1}{2}$, а $I(a) = \pi \ln \frac{a + \sqrt{a^2 - 1}}{2}$.

12 Несобственный интеграл

12.1 Определение несобственного интеграла

Возьмем интеграл $\int_a^b f(x)dx$, у которого либо $b=+\infty$, либо $f(x)\to\infty$ при $x\to b-0$.

При этом f(x) интегрируема на [a;c], где a < c < b.

Определение:

Предел $\lim_{c\to b-0} \int_a^c f(x) dx$ будем называть несобственным интегралом. Если этот предел существует, то будем говорить, что интеграл сходится, иначе расходится.

Теперь рассмотрим функцию двух переменных $f(x,y), x \in [a;b], -\infty < b \le +\infty.$

Тогда существует $I(y) = \int_a^b f(x,y) dx = \lim_{c \to b-0} \int_a^c f(x,y) dx$. **ПРИМЕР**:

$$I(y) = \int_0^\infty y e^{-xy} dx = \int_0^\infty e^{-xy} d(xy) = e^{-xy}|_0^\infty = 1$$

То есть,
$$\int_0^\infty = \begin{cases} 0, y = 0 \\ 1, y \neq 0 \end{cases}$$

<u>Определение</u>: будем говорить, что несобственный интеграл сходится равномерно на Y, если:

1) Он сходится.

2)
$$\forall \varepsilon > 0 \; \exists \delta > 0, b - \delta > a, \forall c \; 0 < b - \delta < c < b : |\int_c^b f(x,y) dx| < \varepsilon \; \forall y \in Y.$$

$$\frac{\mathbf{\Pi}\mathbf{P}\mathbf{M}\mathbf{M}\mathbf{E}\mathbf{P}\mathbf{M}}{1)\int_{1}^{\infty}\frac{y^{2}-x^{2}}{(x^{2}+y^{2})^{2}}dx.$$

Оценим этот интеграл:

$$\left| \int_{1}^{\infty} \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}} dx \right| \leq \int_{1}^{\infty} \frac{|y^{2} - x^{2}|}{(x^{2} + y^{2})^{2}} dx \leq \int_{1}^{\infty} \frac{dx}{(x^{2} + y^{2})^{2}} \leq \int_{1}^{\infty} \frac{dx}{x^{2}} < \varepsilon$$

Тогда этот интеграл равномерно сходится.

 $2) \int_0^\infty y e^{-xy} dx.$

Докажем, что этот интеграл не сходится равномерно, для этого докажем отрицание определения:

$$\exists \varepsilon_0 \ \forall \delta \ \exists C_\delta; \exists y_\delta : |\int_{c_\delta}^\infty y_\delta e^{-xy_\delta} dx| \ge \varepsilon_0$$

Пусть $xy_{\delta} = t$:

$$I = \int_{c_{\delta} y_{\delta}}^{\infty} e^{-t} dt = e^{-c_{\delta} y_{\delta}}$$

Отсюда очевидно, что можно найти C_δ и y_δ такие, что $e^{-c_\delta y_\delta} \ge \varepsilon_0$, тогда интеграл не сходится равномерно.

12.2 Признаки равномерной сходимости несобственных интегралов

1) Признак Коши.

<u>Утверждение</u>: для того, чтобы несобственный интеграл $\int_a^b f(x,y)dx$ равномерно сходился на Y, необходимо и достаточно, чтобы:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall c_1, c_2 \ a < b - \delta < c_1, c_2 < b : |\int_{c_1}^{c_2} f(x, y) dx| < \varepsilon \ \forall y \in Y$$

Доказательство:

 $I. \Rightarrow$

Пусть $\int_a^b f(x,y)dx$ сходится равномерно на Y. Тогда по определению:

$$\forall \varepsilon > 0 \ \exists \delta \ \forall c \ a < b - \delta < c < b : |\int_a^b f(x, y) dx| < \frac{\varepsilon}{2}$$

Возьмем два разных c: c_1 и c_2 такие, что $a < b - \delta < c_1, c_2 < b,$ тогда:

$$\left| \int_{c_1}^{c_2} \le \left| \int_{c_1}^{b} \left| + \left| \int_{b}^{c_2} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \right| \right|$$

Что и требовалось доказать.

II. ←

Теперь нам дано, что $\left| \int_{c_1}^{c_2} f(x,y) dx \right| < \frac{\varepsilon}{2}$.

Пусть $c_2 \rightarrow b - 0$, тогда

$$\left| \int_{c_1}^{\infty} f(x, y) dx \right| \le \frac{\varepsilon}{2} < \varepsilon \ \forall y \in Y$$

Что и требовалось доказать.

2) Признак Вейерштрасса:

<u>Утверждение</u>: если существует функция $\varphi(x)$, которая не имеет особых точек кроме b, а так же $\int_a^b \varphi(x)$ сходится, то и интеграл $\int_a^b f(x,y) dx$ сходится равномерно.

Доказательство:

Используем признак Коши, оценим интеграл:

$$\left| \int_{c_1}^{c_2} f(x, y) dx \right| \le \int_{c_1}^{c_2} |f(x, y)| dx \le \int_{c_1}^{c_2} \varphi(x) dx < \varepsilon$$

Тогда по признаку Коши этот интеграл сходится равномерно.

В следующих двух признаках дан интеграл $I=\int_a^b f(x,y)g(x,y)dx,$ а так же некоторые условия.

В доказательстве обоих понадобится следующая выкладка:

Распишем $\int_{c_1}^{c_2} f(x,y)g(x,y)dx$:

$$\int_{c_1}^{c_2} f(x,y)g(x,y)dx = g(c_1,y) \int_{c_1}^{\xi} f(x,y)dx + g(c_2,y) \int_{\xi}^{c_2} f(x,y)dx$$
$$|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| \le |g(c_1,y)| \cdot |\int_{c_1}^{\xi} f(x,y)dx| + |g(c_2,y)| \cdot |\int_{\xi}^{c_2} f(x,y)dx|$$

3) Признак Абеля.

а) g(x,y) монотонна по x.

|g(x,y)| < C

б) $\int_a^b f(x,y)dx$ сходится равномерно на Y.

Утверждение: І сходится равномерно.

Доказательство:

f(x,y)dx сходится равномерно, а $|g(c_1,y)| < C$; $|g(c_2,y)| < C$.

Тогда по признаку Коши:

$$\left| \int_{c_1}^{\xi} f(x, y) dx \right| < \frac{\varepsilon}{2C}; \ \left| \int_{c_2}^{\xi} f(x, y) dx \right| < \frac{\varepsilon}{2C}$$

Отсюда $|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| < \frac{C\varepsilon}{2C} + \frac{C\varepsilon}{2C} = \varepsilon$, что и требовалось доказать. 4) Признак Дирихле.

а) g(x,y) монотонна по x.

 $g(x,y)_{x\to b-0}\mapsto 0.$

6) $\left| \int_a^c f(x,y) dx \right| \le M$.

Утверждение: I сходится равномерно.

Доказательство:

По условию, $\left| \int_a^c f(x,y) dx \right| \leq M$.

Так как g равномерно сходится, то $\begin{cases} |g(c_1,y)| < \frac{\varepsilon}{2M} \\ |g(c_2,y)| < \frac{\varepsilon}{2M} \end{cases}$ Отсюда $|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| < \frac{M\varepsilon}{2M} + \frac{M\varepsilon}{2M} = \varepsilon$, что и требовалось доказать.

ВАЖНО

На лекции мы договорились, что можно не отличать признак Абеля от признака Дирихле при решении задач. Вместо этого можно писать/говорить "по признаку Дирихле-Абеля".

ПРИМЕРЫ:

$$\overline{1) \int_0^\infty \frac{\sin ax}{x} dx}, a \in [\delta; +\infty), \delta > 0$$

$$f(x,a) = \sin ax, g(x) = \frac{1}{x}$$

а) q - монотонна, не зависит от a и равномерно стремится к нулю при $x \to \infty$.

b) Проверим условие $|\int f(x,a)dx| < C$:

$$\left| \int f(x,a)dx \right| = \left| \int \sin ax dx \right| = \left| -\frac{1}{a}\cos ax \right| \le \frac{1}{a} \le \frac{1}{\delta}$$

Оба условия выполнены, следовательно, по признаку Дирихле исходный интеграл сходится равномерно на данном промежутке.

(2) $\int_0^\infty \frac{\sin ax}{x} dx, a \in [0; +\infty)$, докажем, что этот интеграл не сходится рав-

Пусть ax = t, тогда $\int_{\xi_1}^{\xi_2} \frac{\sin ax}{x} dx = \int_{a\xi_1}^{a\xi_2} \frac{\sin t}{t} dt$

Пусть теперь $a=\frac{1}{n}, \xi_1=2\pi n, \xi_2=3\pi n.$ Тогда $\int_{2\pi}^{3\pi} \frac{\sin t}{t} dt \geq \frac{1}{3\pi} \int_{2\pi}^{3\pi} \sin t dt = \frac{2}{3\pi} = \varepsilon_0$ Таким образом, мы доказали отрицание произнака Коши, а значит интеграл не сходится равномерно.

3) $I(a) = \int_0^\infty \frac{\sin x}{x} e^{-ax} dx, a \ge 0.$ а) $\int_0^\infty \frac{\sin x}{x} dx$ сходится, это интеграл Дирихле. b) $|e^{-ax}| \le 1, e^{-ax}$ монотонно не возрастает

Тогда по признаку Абеля интеграл I(a) сходится равномерно на данном промежутке.

13 Свойства несобственных интегралов с параметром

1) Теорема 1:

 Π усть :

- а) f(x,y) интегрируема по x на каждом промежутке вида $[a;b^{'}],$
- b) $f(x,y)_{y\to y_0} \mapsto \varphi(x), \exists \int_a^b \varphi(x) dx$
- c) $\int_a^b f(x,y)dx$ сходится равномерно

Утверждение: допустим предельный переход:

$$\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \varphi(x) dx$$

Доказательство:

а) $\int_a^b f(x,y)dx$ сходится равномерно, тогда

$$\exists b^{'}: |\int_{b^{'}}^{b} f(x,y)dx| < \frac{\varepsilon}{3} \ \forall y \in Y$$

b) $\int_a^b \varphi(x) dx$ сходится, тогда

$$\exists b'': |\int_{b''}^{b} \varphi(x) dx| < \frac{\varepsilon}{3}$$

c) $\left|\int_a^b f(x,y)dx - \int_a^b \varphi(x)dx\right| \le \left|\int_a^{b'} (f(x,y) - \varphi(x))dx\right| + \left|\int_{b'}^b f(x,y)dx\right| + \left|\int_{b'}^b \varphi(x)dx\right| = I$

 $+|\int_{b'}^{b}\varphi(x)dx|=I$ Но так как $f(x,y)\mapsto \varphi(x)$, то $|y-y_0|<\delta\Rightarrow |f(x,y)-\varphi(x)|<rac{arepsilon}{3(b'-a)},$ тогда:

$$I < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon$$

Что и требовалось доказать.

Следствие:

Если f(x,y) непрерывна на $[a;b) \times [c;d]$, то если $\int_a^b f(x,y) dx$ сходится равномерно, то $\lim_{y\to y_0} \int_a^b f(x,y) dx = \int_a^b f(x,y_0) dx$

2) Теорема 2:

Пусть f(x,y) непрерывна на $[a;b) \times [c;d]$, а так же $I(y) = \int_a^b f(x,y) dx$ равномерно сходится.

равномерно сходится. Утверждение: $\exists \int_c^d I(y) dy = \int_c^d dy \int_a^b f(x,y) dx = \int_a^b dx \int_c^d f(x,y) dy$

а) I(y) непрерывна (по теореме 1), тогда $\exists \int_c^d I(y) dy$

b) Если взять какую то точку b', не особую, то интеграл $\int_a^{b'}$ - собственный и по одной из теорем выше:

$$\int_{c}^{d} dy \int_{a}^{b'} f(x, y) dx = \int_{a}^{b'} dx \int_{c}^{d} f(x, y) dy$$

с) Докажем, что $\int_c^d dy \int_a^{b'} f(x,y) dx \to_{b'\to b-0} \int_c^d \int_a^b f(x,y) dx$: Для этого составим разность этих величин:

$$|\int_{c}^{d} dy \int_{a}^{b'} dx - \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx| = |\int_{c}^{d} (\int_{a}^{b'} - \int_{a}^{b})| = |\int_{c}^{d} dy \int_{b'}^{b'}| \le |\int_{c}^{d} dy |\int_{b'}^{b} f(x, y) dx|| = I$$

Вспомним, что у нас $\int_a^b f(x,y)dx$ равномерно сходится, используем это:

$$\forall \varepsilon > 0 \ \exists b_0 \ b' > b_0 : |\int_{b'}^{b} f(x,y) dx| < \frac{\varepsilon}{d-c}$$

Тогда $I < \frac{\varepsilon}{d-c}(d-c) = \varepsilon$, что и требовалось доказать.

3) Теорема 3:

Дано:

- а) f(x,y) непрерывна $[a;b) \times [c;d]$
- b) f(x,y) дифференцируема по y, а f_y^\prime непрерывна на $[a;b)\times [c;d]$
- c) $\int_a^b f(x,c) dx$ сходится d) $\int_a^b f_y dx$ сходится равномерно

 $\overline{I(y)} = \int_a^b f(x,y) dx$ дифференцируема на [c;d], а так же $\frac{dI}{dy} = \int_a^b f_y dx$ Доказательство:

Возьмем какую-то точку y на отрезке [c;d], $F(t)=\int_a^b f_y(x,t)dx,$ $c\leq t\leq y.$ Тогда по теореме 2 мы имеем право интегрировать F(t) на промежутке [c;y]:

$$\begin{split} \int_{c}^{y} F(t)dt &= \int_{c}^{y} dt \int_{a}^{b} f_{y}(x,t)dx = \int_{a}^{b} dx \int_{c}^{y} f_{y}(x,t)dt = \\ &= \int_{a}^{b} dx (f(x,y) - f(x,c)) = \int_{a}^{b} f(x,y)dx - \int_{a}^{b} f(x,c)dx = \int_{a}^{b} f(x,y)dx + c_{0} \end{split}$$

Отсюда $F(y) = \int_a^b f_y(x,y) dx$

С другой стороны, $F(y) = (\int_a^b f(x,y) dx + c_0)'_u$

Значит, $\int_a^b f_y(x,y) dx = (\int_a^b f(x,y) dx)_y'$, что и требовалось доказать.

Пусть:

- а) f(x,y) определена и непрерывна на $[a;b) \times [c;d)$ b) $\int_a^b |f(x,y)| dx$ сходится равномерно на любом $[c';d'] \subset [c;d)$ c) $\int_c^d |f(x,y)| dx$ сходится равномерно на любом $[a';b'] \subset [a;b)$ d) Сходится $\int_a^b dx \int_c^d |f(x,y)| dy$ **или** $\int_c^d dy \int_a^b |f(x,y)| dx$

Утверждение:

Сходятся оба повторных интеграла:

$$\int_{a}^{b} dx \int_{c}^{d} f(x, y) dy$$
$$\int_{c}^{d} dy \int_{a}^{b} f(x, y) dx$$

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx$$

и они равны между собой.

Доказательство:

I. $f \geq 0$, пусть для определенности сходится $\int_a^b dx \int_c^d f(x,y) dy$, тогда $\int_a^b dx \int_{c'}^{d'} f(x,y) dy = \int_{c'}^{d'} dy \int_a^b f(x,y) dx$ по теореме 2. Так как $f \geq 0$, то чем больше промежуток интегрирования, тем больше

сам интеграл, тогда $\int_{c'}^{d'} f(x,y)dy \leq \int_{c}^{d} f(x,y)dy$, тогда

$$\int_{a}^{b} dx \int_{c'}^{d'} f(x, y) dy = \int_{c'}^{d'} dy \int_{a}^{b} f(x, y) dx \le \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy$$

To есть, существует $\int_c^d dy \int_a^b f(x,y) dx$

При этом $\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx \le \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy$. С другой стороны, $\int_{a}^{b} dx \int_{c}^{d} f(x,y) dy \le \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx$.

Отсюда следует, что эти интегралы равны.

II. f любого знака.

Тогда введем две функции:

$$f^{+} = \frac{|f| + f}{2}$$
$$f^{-} = \frac{|f| - f}{2}$$

Отсюда $f = f^+ - f^-$, тогда поскольку каждая из этих функций положительна, то для них выполняется условие I, а значит, и для их линейной комбинации выполняется это же условие.

ПРИМЕРЫ:

Интегралы ниже очень важны, их скорее всего будут спрашивать на экзамене, либо они будут напрашиваться в рубежном тестировании.

1) Интеграл Дирихле.

 $I=\int_0^\infty \frac{\sin x}{x} dx$. Для того, чтобы посчитать этот интеграл, нужно посчитать интеграл с параметром $I(a)=\int_0^\infty \frac{\sin x}{x} e^{-ax} dx, a \geq 0, I(a)$ - непрерыв-

на, а затем устремить параметр a к нулю Пусть $a \ge \delta > 0; I'(a) = -\int_0^\infty \sin x e^{-ax} dx$, тогда этот интеграл сходится

равномерно по признаку Вейерштрасса. Вычислим его:
$$I'(a) = -\int_0^\infty \sin x e^{-ax} dx = -\frac{1}{1+a^2}$$
, тогда $I(a) = -\arctan a + c$. Устремим $a \ \kappa + \infty$, тогда $I(a) \to -\frac{\pi}{2} + c$

С другой стороны $I(a) \to 0$ (если в исходном интеграле устремить a к $+\infty$

Отсюда следует, что $c = \frac{\pi}{2}$

$$I(a) = -\arctan a + \frac{\pi}{2}$$
, устремим $a \to 0, I(0) = I = \frac{\pi}{2}$

Otbet:
$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Ответ: $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$ 2) Интеграл Дирихле с параметром.

 $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$, если a>0, так как можно заменить ax на t и $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$

Если
$$a<0$$
, то $-\int_0^\infty \frac{\sin|ax|}{x} dx = -\frac{\pi}{2}$
Если $a=0$, то $\int_0^\infty \frac{\sin ax}{x} dx = 0$

Если
$$a=0$$
, то $\int_0^{\infty} \frac{\sin ax}{x} dx = 0$

Обобщим это:

$$\int_0^\infty \frac{\sin ax}{x} dx = \frac{\pi}{2} sign(a)$$

3) Интегралы Лапласа.

a)
$$I_1(a) = \int_0^\infty \frac{\cos ax}{1+x^2} dx$$

Это два таких интеграла:
a)
$$I_1(a) = \int_0^\infty \frac{\cos ax}{1+x^2} dx$$

b) $I_2(a) = \int_0^\infty \frac{x \sin ax}{1+x^2} dx$

Первый интеграл сходится равномерно по признаку Вейерштрасса, для любых a.

Второй интеграл сходится равномерно по признаку Дирихле для $a \geq \delta >$

Найдем производную от $I_1(a)$:

 $I_1'(a) = -\int_0^\infty \frac{x \sin ax}{1+x^2} dx = -I_2(a)$, а этот интеграл сходится равномерно, тогда можно брать производную для всех $a \ge \delta > 0$.

Избавимся от x во втором интеграле:

$$\frac{x}{1+x^2} = \frac{1}{x} - \frac{1}{x(1+x^2)}$$

Тогда $\int_0^\infty \frac{x \sin ax}{1+x^2} dx = \int_0^\infty \frac{\sin ax}{x} dx - \int_0^\infty \frac{\sin ax}{x(1+x^2)} dx = \frac{\pi}{2} - \int_0^\infty \frac{\sin ax}{x(1+x^2)} dx$ Отсюда $I_2'(a) = -\int_0^\infty \frac{\cos ax}{1+x^2} = -I_1(a)$, а этот интеграл сходится равномерно, тогда можно брать производную для всех $a \ge \delta > 0$.

Дальше можем найти $I_1''(a)$, она равна $I_1(a)$. Теперь решим диффур, выясним, что $I_1(a) = c_1 e^a + c_2 e^{-a}$.

$$|I_1(a)| \le |\int_0^\infty \frac{dx}{1+x^2}| \le \frac{\pi}{2}, \Rightarrow c_1 = 0, \Rightarrow I_1(a) = c_2 e^{-a}$$

Ho
$$I_1(0) = \int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2} = c_2, \Rightarrow I_1(a) = \frac{\pi}{2}e^{-a}, a \ge \delta > 0$$

Отсюда
$$I_2(a) = -I_1'(a) = \frac{\pi}{2}e^{-a}, a \ge \delta > 0.$$

При
$$a = 0$$
 $I_1 = \frac{\pi}{2}$, $I_2 = 0$.

При
$$a < 0$$
:
$$I_1 = \int_0^\infty \frac{\cos|a|x}{1+x^2} dx = \frac{\pi}{2} e^{-|a|}.$$

$$I_2 = -\frac{\pi}{2} e^{-|a|}.$$

$$I_2 = -\frac{\pi}{2}e^{-|a|}$$

Обобщим это:

$$I_1 = \frac{\pi}{2}e^{-|a|}$$

$$I_2 = \frac{\pi}{2}e^{-|a|}sign(a)$$

4) Интеграл Эйлера-Пуассона.

$$I' = \int_0^\infty e^{-x^2} dx$$

Сделаем замену $x = ty, y \ge 0$

$$I = y \int_0^\infty e^{-t^2 y^2} dt$$

$$e^{-y^2} I = y e^{-y^2} \int_0^\infty e^{-t^2 y^2} dt = \int_0^\infty y e^{-y^2 (1+t^2)} dt$$

Интеграл $\int_0^\infty y e^{-y^2(1+t^2)} dt$ сходится равномерно по признаку Вейерштрасса, кроме того равномерно сходится и интеграл $\int_0^\infty y e^{-y^2(1+t^2)} dy$ Проинтегрируем обе части:

$$I \int_0^\infty e^{-y^2} = \int_0^\infty dy \int_0^\infty y e^{-y^2(1+t^2)} dt = \frac{1}{2} \int_0^\infty dt \int_0^\infty e^{-y^2(1+t^2)} dy^2 =$$

$$= \frac{1}{2} \int_0^\infty \frac{dt}{1+t^2} = \frac{\pi}{4}$$

Заметим, что у нас $I \int_0^\infty e^{-y^2} = I^2$, так как второй множитель - по сути, тот же I, только вместо x стоит y.

Тогда
$$I^2 = \frac{\pi}{4}, \Rightarrow I = \frac{\sqrt{\pi}}{2}.$$

Otbet: $\frac{\sqrt{\pi}}{2}$.

5) Интегралы Френеля.

Это два таких интеграла:

a)
$$I_1 = \int_0^\infty \sin x^2 dx$$

a)
$$I_1 = \int_0^\infty \sin x^2 dx$$

b) $I_2 = \int_0^\infty \cos x^2 dx$

Сделаем замену $x^2=t$, отсюда $x=\sqrt{t}, dx=\frac{1}{2\sqrt{t}}, I_1=\frac{1}{2}\int_0^\infty \frac{\sin t dt}{\sqrt{t}}$ - этот

интеграл сходится по признаку Дирихле-Абеля. $I_2=\frac{1}{2}\int_0^\infty \frac{\cos t dt}{\sqrt{t}}$ - сходится (можно разбить на два интеграла по смежным промежуткам, оба будут сходиться).

Теперь вычислим оба интеграла:

a)
$$I_1(a) = \frac{1}{2} \int_0^\infty \frac{\sin t}{\sqrt{t}} e^{-at} dt, a \ge 0$$

а) $I_1(a)=\frac{1}{2}\int_0^\infty \frac{\sin t}{\sqrt{t}}e^{-at}dt, a\geq 0$ Вычислим этот интеграл, для этого возьмем интеграл Эйлера-Пуассона

и заменим
$$x$$
 на $y\sqrt{t}$:
$$\int_0^\infty e^{-y^2t} \sqrt{t} dy = \frac{\sqrt{\pi}}{2}, \text{ отсюда } \frac{1}{\sqrt{t}} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-y^2t} dy.$$

Тогда $I_1(a) = \frac{1}{\sqrt{\pi}} \int_0^\infty \sin t e^{-at} dt \int_0^\infty e^{-y^2 t} dy = \frac{1}{\sqrt{\pi}} \int_0^\infty dt \int_0^\infty \sin t e^{-t(y^2 + a)} dy$ сходится равномерно по t и по y.

Тогда можно поменять порядок:

$$I_1(a) = \frac{1}{\sqrt{\pi}} \int_0^\infty dy \int_0^\infty \sin t e^{-t(y^2 + a)} dt = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{dy}{1 + (y^2 + a)^2}$$

Тогда
$$I_1 = \lim_{a \to 0} I_1(a) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{dy}{1+y^4}$$

Тогда $I_1=\lim_{a\to 0}I_1(a)=\frac{1}{\sqrt{\pi}}\int_0^\infty\frac{dy}{1+y^4}$ Вольфрамируем, получаем, что $\int_0^\infty\frac{dy}{1+y^4}=\frac{\pi}{2\sqrt{2}}$, тогда

Otbet: $\frac{\sqrt{\pi}}{2\sqrt{2}}$

- b) Считается абсолютно так же. Ответ абсолютно такой же.
- 6) Интегралы Фруллани.

Это интегралы вида $\int_0^\infty \frac{f(ax)-f(bx)}{x} dx, a > 0, b > 0, f(x)$ - непрерывна на $[0;+\infty).$

Рассмотрим три случая:

I. Пусть $\exists \lim_{x\to\infty} f(x) = f(+\infty)$.

$$\int_{\delta}^{\Delta} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx =$$

$$= \int_{a\delta}^{a\Delta} \frac{f(t)}{t} dt - \int_{b\delta}^{b\Delta} \frac{f(t)}{t} dt = I$$

Разобьем каждый интеграл на два: $\int_{a\delta}^{a\Delta} = \int_{a\delta}^{b\delta} + \int_{b\delta}^{a\Delta}$; $\int_{b\delta}^{b\Delta} = \int_{b\delta}^{a\Delta} + \int_{a\Delta}^{b\Delta}$. Тогда $I = \int_{a\delta}^{b\delta} \frac{f(t)}{t} dt - \int_{a\Delta}^{b\Delta} \frac{f(t)}{t} = f(\xi_1) \ln \frac{b}{a} - f(\xi_2) \ln \frac{b}{a}$ (по теореме о сред-

Устремим δ к нулю, тогда $\Delta \to \infty$:

$$I = f(0) \ln \frac{b}{a} - f(+\infty) \ln \frac{b}{a}$$

II. Пусть $\exists \int_A^\infty \frac{f(x)}{x} dx \ \forall A$.

$$\int_{\delta}^{\infty} \frac{f(ax) - f(bx)}{x} dx = \int_{\delta}^{\infty} \frac{f(ax)}{x} dx - \int_{\delta}^{\infty} \frac{f(bx)}{x} dx =$$

$$= \int_{a\delta}^{\infty} \frac{f(t)}{t} dt - \int_{b\delta}^{\infty} \frac{f(t)}{t} dt = \int_{a\delta}^{b\delta} \frac{f(t)}{t} dt = f(\xi) \ln \frac{b}{a}$$

Устремим δ к нулю, тогда $I = f(0) \ln \frac{b}{a}$.

III. Пусть $\exists \int_0^A \frac{f(t)}{t} dt \ \forall A$.

$$\int_0^\Delta \frac{f(ax) - f(bx)}{x} dx = \int_0^\Delta \frac{f(ax)}{x} dx - \int_0^\Delta \frac{f(bx)}{x} dx =$$

$$= \int_0^{a\Delta} \frac{f(t)}{t} dt - \int_0^{b\Delta} \frac{f(t)}{t} dt = \int_{b\Delta}^{a\Delta} \frac{f(t)}{t} dt = f(\xi) \ln \frac{a}{b}$$

Устремим Δ к $+\infty$: $I = f(+\infty) \ln \frac{a}{b} = -f(+\infty) \ln \frac{b}{a}$.

 $\frac{ \mbox{\bf \PiPИМЕРЫ}:}{1) \int_0^\infty \frac{\sin ax - \sin bx}{x} dx.}$ Здесь справедлив второй случай, тогда

Ответ: $f(0) \ln \frac{b}{a} = 0$. 2) $\int_0^\infty \frac{\cos ax - \cos bx}{x} dx$. Здесь также справедлив второй случай, тогда Ответ: $f(0) \ln \frac{b}{a} = \ln \frac{b}{a}$.

Эйлеровы интегралы (гамма и бета функ-14 ции)

I. Гамма функции.

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \ x > 0$$

 $\int_0^\infty = \int_0^1 + \int_1^\infty$ Рассмотрим $\int_0^1 t^{x-1} e^{-t} dt, x \in [a;b], a>0$, тогда $e^{-t} \le 1, t^{x-1}$ - показательная по x, она убывает, тогда $t^{x-1} \le t^{a-1}$, следовательно, $0 < t^{x-1} e^{-t} \le t^{a-1}$.

А интеграл $\int_0^1 t^{a-1} dt$ сходится, тогда $\int_0^1 t^{x-1} e^{-t} dt$ равномерно сходится на

Возьмем второй интеграл и тоже постараемся оценить подынтегральное

 $t^{x-1}e^{-t} \leq t^{b-1}e^{-t}$, а интеграл $\int_1^\infty t^{b-1}e^{-t}dt$ сходится, тогда и интеграл $\int_1^\infty t^{x-1}e^{-t}dt$ сходится равномерно по Вейерштрассу.

Свойства гамма функции.

1) Гамма функция непрерывна $\forall x > 0$.

2) $\Gamma'(x) = \int_0^\infty t^{x-1} e^{-t} \ln t dt$. Докажем это:

Рассмотрим $\int_0^1:|t^{x-1}e^{-t}\ln t|\leq |t^{a-1}\ln t|, |\ln t|<\frac{1}{t^s}\ \forall s>0$, тогда $|t^{a-1}\ln t|\leq t^{a-s-1}$, а интеграл $\int_0^1 t^{a-s-1}$ сходится, тогда и наш интеграл сходится равномерно по Вейерштрассу.

Аналогично, второй интеграл, \int_1^∞ :

 $t^{x-1}e^{-t}\ln t \le t^{b-1}e^{-t}t \le t^be^{-t}$, а интеграл от этого выражения сходится, тогда и наш интеграл сходится равномерно по Вейерштрассу.

Значит, дифференцирование законно.

 $\Gamma''(x)=\int_0^\infty t^{x-1}e^{-t}(\ln t)^2dt>0$, значит, вторая производная выпуклая вниз. Отсюда можем сделать вывод, что первая производная $\Gamma'(x)$ возрастает.

$$\Gamma(1) = \int_0^\infty e^{-t} dt = 1, \ \Gamma(2) = \int_0^\infty t e^{-t} dt = 1.$$

Тогда если соединить эти факты (вторая производная выпукла, а так же в 1 и 2 значение = 1), то выясняется, что между точками 1 и 2 существует глобальный минимум второй производной.

3) Основное свойство гамма функции.

$$\Gamma(x+1) = \int_0^\infty t^x e^{-t} dt = 0 + x \Gamma(x)$$

Таким образом, формулируем основное свойство гамма функции:

$$\Gamma(x+1) = x\Gamma(x)$$

Отсюда $\Gamma(x) = \frac{\Gamma(x+1)}{x}$.

Устремим x к нулю справа: $x \to 0+0$. Тогда $\Gamma(x+1) \sim \Gamma(1)=1$, а $\frac{\Gamma(x+1)}{x} \sim \frac{1}{x}$.

Отсюда же следует, что если $x \to +\infty$, то и $\Gamma(x) \to +\infty$.

4) Благодаря предыдущему свойству мы можем искусственно продолжить гамма функцию на отрицательную область.

Возьмем -1 < x < 0, тогда 0 < x + 1 < 1, $\Gamma(x) = \frac{\Gamma(x+1)}{x}$, аналогично

можем продолжать ее на
$$-2 < x < -1, \cdots, -n < x < -n+1$$
. Пусть $x+1=y, x=y-1, x\to 0$, тогда $\Gamma(y-1)=\frac{\Gamma(y)}{y-1}\sim \frac{1}{y-1}\sim \frac{1}{x}$.

Пусть теперь $x \to -1, y \to +0$, тогда $\Gamma(y-1) = \frac{\Gamma(y)}{-1}^y \sim -\frac{1}{y} = -\frac{1}{x+1}$. Аналогично, далее на промежутках знаки будут меняться. TODO: гра-

фик гамма функции.

II. Бета функции.

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \ x,y > 0$$

 $\int_0^1 = \int_0^{\frac{1}{2}} + \int_{\frac{1}{2}}^1$, оба интеграла сходятся, поэтому и бета функция сходится. Свойства бета функции.

1) Бета функция симметрична относительно параметров:

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
$$t' = 1 - t$$

$$\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \int_{1}^{0} (1-t')^{x-1} t'^{y-1} dt' = \int_{0}^{1} t^{y-1} (1-t)^{x-1} dt = \beta(y,x)$$

2) Основное свойство бета функции.

Для y>1 справедливо $\beta(x,y)=\int_0^1t^{x-1}(1-t)^{y-1}dt=\frac{y-1}{x}\int_0^1t^x(1-t)^{y-2}dt$ Запишем t^x в виде $t^x=t^x-t^{x-1}+t^{x-1}=t^{x-1}-t^{x-1}(1-t),$ тогда

$$\frac{y-1}{x} \int_0^1 t^x (1-t)^{y-2} dt = \frac{y-1}{x} \int_0^1 t^{x-1} (1-t)^{y-2} dt - \frac{y-1}{x} \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{y-1}{x} \beta(x,y-1) - \frac{y-1}{x} \beta(x,y)$$

Тогда $\frac{x+y-1}{x}\beta(x,y)=\frac{y-1}{x}\beta(x,y-1).$ Тогда для y>1 справедливо $\beta(x,y)=\frac{y-1}{x+y-1}\beta(x,y-1).$

В силу симметрии для x > 1 справедливо $\beta(x,y) = \frac{x-1}{x+y-1}\beta(x-1,y)$

3) Еще одно представление бета функции:

Пусть $t = \frac{u}{1+u}, dt = \frac{du}{(1+u)^2}$

$$\beta(x,y) = \int_0^\infty \frac{u^{x-1}du}{(1+u)^{x-1}(1+u)^{y-1}(1+u)^2} = \int_0^\infty \frac{u^{x-1}du}{(1+u)^{x+y}}$$

4) Еще одно представление бета функции:

Разделим интеграл, полученный в прошлом пункте, на сумму двух:

$$\int_0^\infty = \int_0^1 + \int_1^\infty \frac{u^{x-1} du}{(1+u)^{x+y}}$$

Рассмотрим второй интеграл, сделаем замену $u=\frac{1}{t}$, тогда

$$-\int_{1}^{0} \frac{t^{x+y}dt}{t^{x-1}(1+t)^{x+y}t^{2}} = \int_{0}^{1} \frac{u^{y-1}du}{(1+u)^{x+y}}$$

Тогда $\beta(x,y) = \int_0^1 \frac{u^{x-1} + u^{y-1}}{(1+u)^{x+y}} du$ 5) Пусть 0 < x < 1:

$$\beta(x, 1-x) = \int_0^\infty \frac{u^{x-1}du}{1+u} = \frac{\pi}{\sin \pi x}$$

6) Связь гамма и бета функций.

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Заменим t = (1 + u)v, новая переменная интегрирования - v. Тогда

$$\int_0^\infty t^{x-1}e^{-t}dt = \int_0^\infty (1+u)^x v^{x-1}e^{-(1+u)v}dv = (1+u)^x \int_0^\infty v^{x-1}e^{-(1+u)v}dv$$

Вместо x подставим x + y:

$$\Gamma(x+y) = (1+u)^{x+y} \int_0^\infty v^{x+y-1} e^{-(1+u)v} dv$$

Поделим обе части на $(1+u)^{x+y}$:

$$\frac{\Gamma(x+y)}{(1+u)^{x+y}} = \int_0^\infty v^{x+y-1} e^{-(1+u)v} dv$$

Домножим на u^{x-1} и проинтегрируем от 0 до $+\infty$:

$$\beta(x,y)\Gamma(x+y) = \int_0^\infty u^{x-1} du \int_0^\infty v^{x+y-1} e^{-v} e^{-uv} dv = \int_0^\infty e^{-v} v^{x+y-1} dv \int_0^\infty u^{x-1} e^{-uv} du$$

Заменим uv = t:

$$\int_0^\infty \frac{t^{x-1}}{v^x} e^{-t} dt = \frac{1}{v^x} \int_0^\infty t^{x-1} e^{-t} dt = \frac{\Gamma(x)}{v^x}$$

Тогда:

$$\int_{0}^{\infty} e^{-v} v^{x+y-1} dv \int_{0}^{\infty} u^{x-1} e^{-uv} du = \Gamma(x) \int_{0}^{\infty} e^{-v} v^{y-1} dv = \Gamma(x) \Gamma(y)$$

И таким образом,

$$\beta(x,y) = \frac{\Gamma(x) - \Gamma(y)}{\Gamma(x+y)}$$

ПРИМЕРЫ:

Пусть $\sin^2 x = t$: $1) \ \beta(\frac{1}{2}, \frac{1}{2}) = \frac{\Gamma^2(\frac{1}{2})}{\Gamma(1)} = \Gamma^2(\frac{1}{2}) = \pi, \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}.$ $\Gamma(\frac{1}{2}) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt = \int_0^\infty e^{-x^2} \frac{2x dx}{x} = 2 \int_0^\infty e^{-x^2} dx = \sqrt{\pi} \text{ (Интеграл Пуассона)}.$ $2) \ \int_0^{\frac{1}{2}} \sin^{\frac{2}{3}} x \cos^{\frac{1}{3}} x x dx = ?$ $\Pi \text{усть } \sin^2 x = t$:

 $\int_0^{\frac{1}{2}} \sin^{\frac{2}{3}} x \cos^{\frac{1}{3}} x x dx = \int_0^1 \frac{t^{\frac{1}{3}} (1-t)^{\frac{1}{6}} dt}{t^{\frac{1}{2}} (1-t)^{\frac{1}{2}}} = \frac{1}{2} \int_0^1 t^{-\frac{1}{6}} (1-t)^{-\frac{1}{3}} dt = \frac{1}{2} \beta(\frac{5}{6}, \frac{2}{3}).$