PHYS20672 Complex Variables and Vector Spaces: Examples 1

Some of these examples are copied from the exercises in the notes, but have been included here for completeness.

- 1. Confirm that a vector in Cartesian coordinates, $\mathbf{v} = (v_x, v_y, v_z)^T$, satisfy the definition of a vector space with addition and scalar multiplication defined in the usual way.
- 2. Consider the set of real 2×2 matrices of the form,

$$a = \begin{pmatrix} \alpha & \beta \\ \delta & \gamma \end{pmatrix}$$

where $\alpha, \beta, \delta, \gamma \in \mathbb{R}$. Show that these matrices form a vector space over the real numbers.

- 3. Show that the set of all real functions on [0, L], $f:[0, L] \to \mathbb{R}$, form a vector space.
- 4. Are the following three vectors linearly independent: $\mathbf{a} = (2, 3, -1)^T$, $\mathbf{b} = (0, 1, 2)^T$, $\mathbf{c} = (0, 0, -5)^T$? [Hint: Write $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0}$ and prove that the only solution is $\alpha = \beta = \gamma = 0$.]. Find the decomposition of $(2, -3, 1)^T$ in the basis $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$.
- 5. Consider the set of all polynomials of degree not exceeding 3, that is functions of the form $f(x) = \sum_{n=0}^{3} \alpha_n x^n$, where $\alpha_n \in \mathbb{C}$.
 - (i) Prove that these polynomials form a complex vector space. [Hint: You can regard 0 as a polynomial of degree zero.]
 - (ii) Write down the additive inverse of the vector $1 + ix + (2 + 3i)x^3$.
 - (iii) Find a basis for the space and hence determine its dimension.
 - (iv) What changes if only odd functions of x are considered?
 - (v) Why is the set of strictly cubic polynomials not a vector space?
- 6. If $\{e_i\}$ is a basis of V_N , prove that for any $u \in V_N$, the coefficients u_i in the expansion $u = \sum_{i=1}^N u_i e_i$ are unique.
- 7. For the vector space consisting of real all 2×2 matrices, show that

$$\boldsymbol{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \boldsymbol{e}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \boldsymbol{e}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \boldsymbol{e}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \tag{1}$$

are linearly independent, and can therefore be used as a basis.

- 8. Given a vector space V_N and the components x_i of the vector \boldsymbol{x} in a fixed basis, the 1-norm is defined as $\|\boldsymbol{x}\|_1 \equiv \sum_{i=1}^n |x_i|$. Show that the 1-norm satisfies the conditions for a norm.
- 9. Consider the vector space V of all functions $f(x):[0,L]\to\mathbb{R}$. Define the supremum norm as $\max_{x\in[0,L]}|f(x)|$. Show that this is a norm.
- 10. Show that the sequence $a_n = (n^2 1)/n^2$ is Cauchy.
- 11. Show that the sequence $a_n = n!/n^n$ is Cauchy. Hint you may want to use Stirling's formula $n! \approx \sqrt{2\pi n} (n/e)^n$ which is valid for large n.