| ECE 35, | Fall 2024 |                           | Your sequence number |  |
|---------|-----------|---------------------------|----------------------|--|
|         |           | Last name                 |                      |  |
| Quiz 1  | / 12      | First + middle<br>name(s) |                      |  |
|         | / 12      | PID                       |                      |  |

## Instructions:

- Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit
- (1) (1 point) How can you connect an ammeter to measure  $i_a$ , which is the current through resistor  $R_1$ ? **Redraw** the circuit so that it shows how to connect the ammeter. Do not forget to indicate the red and black terminals.



(2) (2 points) What is the current  $i_a$ ?



- (3) (4 points) In the problem below, the voltmeter is ideal.
  - (a) What is the reading *X* of the <u>voltmeter</u>?
  - (b) What is the power  $P_1$  supplied by the independent source?
  - (c) What is the power  $P_2$  supplied by the dependent source?

| X     |  |
|-------|--|
| $P_1$ |  |
| $P_2$ |  |



- (4) (5 points) For this problem, you can use any analysis method you like. To maximize your opportunity for partial credit, lay out your equations first before solving.

  Hint: Think carefully about your analysis method.
  - (a) What is the current  $i_a$  in the circuit on the <u>left</u>?

 $i_a$ 

- (b) What is the <u>node</u> voltage  $v_x$  in the circuit on the <u>right</u>? This is the same circuit as the one on the left, just with the ground added.
- $v_x$
- (c) What is the  $\underline{\mathsf{mesh}}$  current  $i_x$  in the circuit on the  $\underline{\mathsf{right}}$ ?









## **ECE35 Equation Sheet**

**Basics**: 
$$i \triangleq \frac{dq}{dt}$$
  $v_{ab} \triangleq \frac{dw}{dq}$   $R = \rho \frac{l}{A}$ 

Capacitors: 
$$C = \epsilon \cdot \frac{A}{d}$$
  $Q = C \cdot v$   $w_C = \frac{1}{2}Cv^2$ 

Inductors: 
$$L = \mu \cdot \frac{N^2 A}{l}$$
  $B \sim i$   $w_L = \frac{1}{2} L i^2$ 

AC power: 
$$p(t) = \frac{1}{2}V_m I_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_m I_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

**Trigonometry**: 
$$sin(-\alpha) = -sin(\alpha)$$
  $cos(-\alpha) = cos(\alpha)$ 

$$sin(\pi - \alpha) = sin(\alpha)$$
  $cos(\pi - \alpha) = -cos(\alpha)$ 

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
  $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$ 

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
  $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$ 

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
  $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$ 

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha) \cdot \cos(\alpha) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): \quad 0 \quad \frac{\sqrt{3}}{3} \qquad 1 \quad \sqrt{3} \quad \infty$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$