- 1. If x is an integer, which of the following MUST be an integer?
 - I. 5*x*

- II. $\frac{x}{5}$
- III. x 5

- a) I only
- b) III only
- c) I and II only d) I and III only e) none of these

- 2. Solve for *x*: $\frac{53}{x} = \frac{\frac{53}{y}}{R}$
- a) y R b) $\frac{1}{yR}$ c) $\frac{R}{y}$ d) $\frac{y}{R}$

- e) none of these
- 3. If $\frac{x+y}{x} = 3$ and $\frac{y+R}{R} = 5$, what is the value of $\frac{R}{x}$?

 a) $\frac{1}{2}$ b) 2 c) $\frac{5}{3}$ d) $\frac{3}{5}$

- e) none of these
- 4. Nine points are equally spaced on a circumference (40 degrees apart). How many different line segments can be drawn which connect any two of these nine points?
- a) 72
- b) 63
- c) 54
- d) 48
- e) none of these
- 5. The measure of a positive acute angle is (4x + 41) degrees. Find the SUM of all possible INTEGER values of x.
- a) 21
- b) 23
- c) 25
- d) 27
- e) none of these
- 6. If 360 gallons of an 18% acid solution are mixed with 360 gallons of a 10% acid solution, the result will be a 14% acid solution. How many ADDITIONAL gallons of the 18% acid solution should be added to this new 14% solution to create a 15% acid solution.
- a) 200
- b) 240
- c) 300
- d) 360
- e) none of these

- 7. Simplify: $\frac{(27a^3b^6)^{\frac{1}{3}}}{(81a^8b^{-4})^{\frac{1}{4}}}$.

 a) $\frac{b}{a}$ b) $\frac{b^3}{a}$ c) $\frac{a}{b}$ d) $\frac{a}{b^3}$ e) none of these

- 8. For all real $x \neq 0.5$, $\frac{5x^2 + 4x 3}{2x 1} = ax + b + \frac{R}{2x 1}$. Find a + b + R.
- a) 4

- e) none of these
- 9. The area of a right triangle is x square units. The ratio of the legs is 1.875 to 1. The perimeter is 30. Find *x*.
- a) 34.5
- b) 34.25
- c) 34
- d) 33.75
- e) none of these
- 10. The vertices of a rectangle are (4, 3), (-2, 3), (-2, -8), and (4, -8). Find the probability that a point randomly selected from inside this rectangle will be in the first quadrant.

- b) $\frac{2}{11}$ c) $\frac{3}{16}$ d) $\frac{7}{66}$
- e) none of these
- 11. Find a + b where $x^a y^b = \sqrt{x^3 y^2} \left(\sqrt[4]{xy^3} \right)$ and x and y are both positive. a) 3 b) 3.25 c) 3.5 d) 3.75

- d) 3.75
- e) none of these
- 12. Find a + b + c where a, b, and c are positive integers and $2\sqrt{84} + \sqrt{\frac{3}{7}} 2\sqrt{\frac{7}{3}} = \frac{a\sqrt{b}}{c}$.

Assume that the expression $\frac{a\sqrt{b}}{c}$ is fully reduced and is in simplest radical form.

- a) 115
- b) 116
- c) 117
- d) 118
- e) none of these

13. Find bc where $-1 \pm \sqrt{-3}$ are the two solutions of $x^2 = bx + c$.										
a) 2	c) -2	c) 8	d) -8	e) none of these						
14. The distances passed over by a certain pendulum bob in succeeding swings form a geometric										
	progression 24 inches, 20.4 inches, 17.34 inches, The total distance traversed by this bob									
	rest is x inches. Fin			•						
a) 158	b) 158.5	c) 159	d) 159.5	e) none of these						
15. Find the sum	of all the positive i	ntegers which are	multiples of three a	and which satisfy the						
inequality $136 \le 3$	-		1	·						
a) 90274	b) 90272	c) 90270	d) 90268	e) none of these						
16. How many po	ositive integers BE	TWEEN 3000 and	5000 can be forme	d by using the 7 digits:						
• •	d 6 if each digit mu			•						
a) 360	b) 320	c) 280	d) 240	e) none of these						
17. A housing de	velopment has 24 3	3-bedroom homes a	and 12 4-bedroom l	nomes. If 3 of these						
	lom to be redecorat			vill be 3-bedroom						
homes? Round your final answer to the nearest hundredth.										
a) .20	b) .28	c) .33	d) .38	e) none of these						
10 5' 1 1	h c •		$(x 2)^{12}$							
18. Find $a + b - c$ where $ax^b y^c$ is term number nine of $\left(\frac{x}{2} - 2y\right)^{12}$. Hint: The first two terms										
$(r)^{12}$ $(r)^{11}$										
of this binomial expression are $_{12}C_0\left(\frac{x}{2}\right)^{12}(-2y)^0$ and $_{12}C_1\left(\frac{x}{2}\right)^{11}(-2y)^1$.										
a) 7916	b) 7796	c) 228	d) 216	e) none of these						
,	,	,	,	,						

19.	Find	the x co	ordinate	e of the centro	oid of the r	region in the first quadrant bounded by
<i>y</i> =	\sqrt{x} ,	x = 1,	x = 9,	and the positi	ve <i>x</i> -axis.	Round your final answer to the nearest 0.001
unit	•					

- a) 5.585
- b) 5.584
- c) 5.583
- d) 5.582
- e) none of these

20. If 10,
$$a$$
, b , c , 20, ... is a harmonic progression, find $a + b + c$.

- a) $\frac{856}{23}$
- b) $\frac{855}{23}$
- c) $\frac{855}{21}$
- d) $\frac{856}{21}$
- e) none of these
- 21. The surface area of the sphere $x^2 + y^2 + z^2 = 100$ which is included between the planes z = 2 and z = 10 is x square units. Find x. Round your final answer to the nearest 0.001 unit.
- a) 502.655
- b) 502.654
- c) 502.653
- d) 502.652
- e) none of these
- 22. Find the distance from the point (4, 1, -2) to the line having parametric equations $\begin{cases} x = 2T + 2 \\ y = 2T \end{cases}$. Round your final answer to the nearest 0.001 unit. z = T 3
- a) 0.747
- b) 0.746
- c) 0.745
- d) 0.744
- e) none of these
- 23. $F(x) = \frac{d}{dx} \int_{x}^{\pi} \sqrt{3}y^{\sqrt{2}} dy$. Find $F(\sqrt{6})$. Round your final answer to the nearest 0.001 unit.
- a) -6.149
- b) 6.149
- c) -6.148
- d) 6.148
- e) none of these
- 24. The horizontal axis is marked in degrees. Find a + b + c where one period of the sinusoid $y = a + b \sin c(x 45^\circ)$ begins at $(45^\circ, 11)$ and ends at $(135^\circ, 11)$ with horizontal tangent lines at $(67.5^\circ, 16)$ and $(112.5^\circ, 6)$.
- a) 21.5
- b) 21
- c) 20.5
- d) 20
- e) none of these

Solutions

- 1. D
- 2. E
- 3. A
- 4. E
- 5. B
- 6. B
- 7. B
- 8. C
- 9. D
- 10. B
- 11. C
- 12. A
- 13. C
- 14. E
- 15. C
- 16. D
- 17. B
- 18. A
- 19. A
- 20. D
- 21. A
- 22. C
- 23. A
- 24. D