

FIG. 1B PART ONE: TRIGGER REACTION

FIG. 21

>-	ITY ESEC 1D NO:73	AT CXX SOCOAT SCTT CCCCT CTTT GASCCCAAAGGCGGGGT CCT CCT CGT GGACGGCCACCA CCT GGCTT	
<u> </u>	ESED 10 NO:13 ESED 10 NO:23 ESED 10 NO:33		57 57 70
	MAJORITY	A C G G G A G C T T C T T C G C C C T G A G G C C C T C A C C A G C C G G C G G C G G C G G C G C	
	DRAPTAO DRAPTFL DRAPTTR		140 137 140
	MAJORITY	CGCCAAGAGCOT CCT CAAGGCCCT GAAGGAGGACGGGGACXXGGCGGT GXT CGT GGT CTTT GACGCCAAG	
	DNAPTAO DNAPTFL DNAPTTB	6	207 204 210
	MAJORITY	GOCCOCT COT T COGCCACGAGGCCTA CGAGGCCTAGGCGGGCGGGCCGCCCCCCCCCGGGGGGGGG	
	DRAPTAO DRAPTFL DRAPTTR	9	277 274 280
	MAJORITY	CCCGGCAGCT CGCCCT CAT CAAGGAGCT GGT GGACCT CCT GGGGGTT GGGCGCGT CGAGGT CCCGGGCTA	
	BRAPTAD BRAPTFL DKAPTTB		347 344 350

FIG. 2B

	RITY ESEQ ID NO:73	CBABBCCGCACGTXCT GGCCACCCT GGCCCAAGAAGGCGCAAAAGGAGGGGGTACGAGGT GCCCAT CCTC	
140 171 173	CSEQ 10 NO:13 CSEQ 10 NO:23 CSEQ 10 NO:33		417 414 420
	MAJORITY	ACCOCCBACCOCBACCT CTACCAGCT COTTT CCBACCGCAT CGCCST CCT CCACCCCGAGGGGGTACCT CA	
	DRAPTAQ Draptfl Drapttr	. T	487 484 490
	MAJORITY	T CACCCCGGCGT GGCTTT GGGAGAAGT ACGGCCT GAGGCGGCGAGCAGT GGGT GG	
	DRAPTAO DRAPTEL DRAPTTE	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	557 554 560
	MAJORITY	SEGEGACCCCT CCGACAACCT CCCCGGGGT CAAGGGCGAT CGGGGAAGAGACCGCCCCX GAAGCT CCT CXAG	
	DNAPTAG DNAPTEL DNAPTTR	6646	627 624 630
	MAJORITY	GAGT GGGGGGGCT GGAAAACCT CCT CAAGCT GGACCGGGT GAAGCCCGC··· CXT CCGGGAGAGA	
	DRAPTAO DRAPTEL DRAPTTR	66	691 700

FIG. 2C

MAJORITY	MAJORITY ESEC ID NO:73 TCCAG	T CCA G G C C C C C C C C C C C C C C C C	
DNAPTAG DNAPTFL DNAPTTH	[SEG 10 NO:1] [SEG 10 NO:2] [SEG 10 NO:3]		764 781 770
	MAJORITY	GGT GGACTT GGCCAACXGGCGGGGAGCCGGAGGGGCCTTAGGGCCTTTCT GGAGGGCTGGGAGGCTTT	
	DNAPTAG DNAPTEL DNAPTER	A	834 831 840
	MAJORITY	GECAGECT CCT CCA CGAGTT CGG CCT CCT GGAGGCCCCCCCAAGGCCCCT GGAGGAGGCCCCCCT GGCCCCCCCCCC	
	DRAPTAG DRAPTEL DRAPTTB	. т.	904 901 910
	MAJORITY	COCAAGOGGCCTTCGTGGCCTTTCTCCCCCCCCCCCATCTGGCCCCCCCAGCTTCTGGCCTTCTGGCCTTGGC	
	DNAPTAU DNAPTFL DNAPTTN		974 971 980
	MAJORITY	COCCOCCAGGGGGGCGGGGT CCACCGGGGAGCCCCTTTAXGGGCGTXAGGGAGCTXAAGGAGGTG	
	DNAPTEL DNAPTEL DNAPTTR	T. 66. 6T	1044 1041 1050

FIG. 2D

ry esen in 110:73	COGGEXCT CCT CCCCAAGGACCT GCCCGTTTT GCCCCT GAGGGAGGCCCT XGACCT CXT GCCCGGGGGACG	
C SEO ID MO:13 SEO ID MO:23 R SEO ID MO:33	6. T. 6	1120 1120
MAJORITY	ACCCCAT BOT COT CGC ACCT CGT CGA CCCCT CCAACACCACCCCGAGGGGGGT GGCCCGGGGGGTACGG	
DEAPTAC DEAPTEL DEAPTTE		1184 1181 1190
MAJORITY	GGGGGGAGTGGAGGGAGGGGGGGGGGGGGGGGGTGGTXTGGGAGGGGGTGTTGGXGAAGGTXXXGGAG	
DRAPTAG DRAPTEL DRAPTEL		1254 1251 1260
MAJORITY	COCOTTGAGOGGGAGGAGGGCTCOTTTGSCTTTACCAGGAGGTGGAGAAGCCCCCTTTCCCGGGTCCTGG	
DRAPTAG DRAPTEL DRAPTTR	A. G A	1324 1321 1330
MAJORITY	CCCACATGBAGGGACGGGGTXCGGCTGGACGTGGCCTACCTCCAGGCCCTXTCCCTGGAGGTGGCGGA	
DRAPTAO DRAPTEL DRAPTTB	66	1394 1391 1400

FIG. 2E

)

MAJORITY	MAJORITY ESEC 10 NO:77	GGABAT CCGCCCCCCCCCCGAGGAGGTCTT CCGCCT GGCCGGCCACCCTT CAACCT CAACT CCGGGAC	
DNAPTAU DNAPTFL DRAPTTN	[SED 10 NO:1] [SED 10 NO:2] [SED 10 NO:3]	8. 6	1464 1461 1470
	MAJORITY	CAGETGGAAAGGGTGCTCTTTGACGAGCTXGGGCTTCCCGCCATCGGCAAGACGAGAGAGAGAGCAAGC	
	DHAPTAO DHAPTEL DHAPTTH		1534 1531 1540
	MAJORITY	BET CCA CCA GC GC CC CC CC CC CC CC CC X CC X	
	DRAPTAG DRAPTEL DRAPTTH		1604 1601 1610
	MAJORITY	CC 66 6 A B CT CA C CA A G CA CA CA CA CA CA T X 6 A C C C C C C C C C C C C C C C C C C	
	DRAPTEL DRAPTEL DRAPTER	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	1674 1671 1680
	MAJORITY	COCCTOCACACCOCOTTCAACCAOACOCCACOOCCACOGOCAGOCTTAGTAGCTCCCACCCCAACCTGC	٠
	DRAPTAG DRAPTFL DRAPTTR		1744 1741 1750

FIG. 2F

	1814 1811 1820		1884 1881 1890		1954 1951 1960		2024 2021 2030		2094 2091 2100
A GAA CAT CCCCGT CCCCACCCCXCT GGGCCAGAGGAT CCGCGGGCCTT CGT GGCCGAGGGGGKT GGGT		GTT GOT GOCCCT GGACTAT AGCCACATAGAGCT CCGGGT CCT GGCCCACCT CT CCGGGGGACGAGAGCT G	A	AT CCGGGT GTT CCAGGAGGGGGAGGACAT CCACACCCAGGCGGCCAGCT GGAT GTT CGGCGT CCCCCGG	6	AGGCCOT GOACCCCT GAT GCGCCGGCCGCCCAAGACCAT CAACTT CGGGCT CCT CTAGGGCAT GT CCGC	A. 6.6.	CCACCECCT CT CCCAGGAGCTT GCCAT CCCCT ACGAGGGGGGGGT GCCCTT CATT GAGGGCT ACTT CCAG	
MAJORITY ESEC ID NO:73	CSEG 1D NO: 13 ESEG 1D NO: 27 ESEG 10 NO: 33	#AJORITY	ONAPTAO DRAPTFL DRAPTTR	MAJORITY	DNAPTAD DNAPTEL DNAPTTH	MAJORITY	DKAPTAO DKAPTFL DKAPTTH	MAJORITY	ONAPTAO ONAPTEL ORAPTTH
MAJORITY	DNAPTAO DNAPTEL DRAPTTH								

FIG. 20

MAJORITY ESED ID NO:71 AGETT	I O COTT COCCAAGOT GOOG C COT G CATT GACAAGA C C CT G CAGG G A G G G G G G G G G G G G TA G G TA G G A G A
[SEO ID NO:1] [SEO ID NO:2] [SEO ID NO:3]	2164 A
MAJORITY	CCCT CTT CGGCCGCCGGCGGT A CGT GCCCGA CCT CAACGCCCGGGT GAAGAGCGT GCGGGAGGGGGGGGGG
DKAPTAO DRAPTFL DRAPTTR	C. 2234 T. T. T. T. C. 2234
MAJORITY	GCGCATGGCCTTCAACATGGCGGTCCAGGGCACCGCGGGGCGTCATGAAGCTGGCGATGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTG
DRAPTAQ DRAPTEL DRAPTER	2304
MAJORITY	TI COCCOBBOTX CABBAAAT COBCCCACCACGAT BOT ACABOT CCACCACCACCT BOT CCT CCACCCC
ONAPTAG DNAPTEL DNAPTTR	2374 ff
MAJORITY	SCAAAGAGGGGGGGGGGGGGGGGGGTTT GGCCAAGGAGGTCATGGAGGGGGGTCTATCCCCTGGCGGT
DRAPTAQ DRAPTEL DRAPTTR	. A A

FIG. 2H

66. 2496

16. CH

MAJORITY	MAJORITY ESED ID NO:83	MX A ML PLFEPKGRULL V DGHHLAY RTFFALKGLTT SRGEPV QA VY GFAKSLLKALKEDG. DA V X V Y FDAK	
TAO PRO TEL PRO TTM PRO	CSEQ 10 NO: 47 CSEQ 10 NO: 57 CSEQ 10 NO: 67		689 70
	MAJORITY	APSFRHEAYEAYKAGRAPT PEDF PROLAL! KEL V DL L GLXRL E V P GY E A D D V L AT L AKKAEKE GY E V R! L	
	TAO PRO TEL PRO TTR PRO		138 140
	MAJORITY	TADROLYOLLSDRIAVLHPEGYLI TPAWLWEKYGLRPEOWVDYRALXGOPSONLPGVKGI GEKTAXKLLX	
	TAO PRO TFL PRO TTM PRO		209 208 210
	MAJORITY	EWGSLENLLKHLBRVKP·XXREK!XAHMEDLXLSXXLSXVRTOLPLEVDFAXRREPOREG1RAFLERLEF	
	TAO PRO TFL PRO TTH PRO	A	278 277 280
	MAJORITY	GSLL HEFGLLEXPKALEEAPWPPPEGAFUGFULSRPEPMWAELLALAAARXGRUHRAXDPLXGLRDLKEU	
	TAG PRO TFL PRO TTR PRO	S	348 347 350

FIG. 3B

MAJORITY ESEQ ID RO:83	RGLLAKDLAVLALBEGLOLXPGDDPMLLAYLLDPSNTTPEGVARRYGGEWTEDAGEBALLSERLFXNLXX
[SEO 10 NO:4] [SEO 10 NO:5] [SEO 10 NO:6]	S 6. P A WG 418 II A OT. KE 417 S V HR. LK 420
MAJORITY	RLEGEERLLWLYXEVEKPLSRVLAHMEATGVRLDVAYLQALSLEVAEE! RRLEEEVFRLAGHPFNLNSRD
TAG PRO TFL PRO	K
MAJORITY	OLERVLFDELGLPAI OKTEKTOKRSTSAAVLEALREAHPI VEKI LOYRELTKLKHTYI DPLPXLVHPRTG
TAG PRO TFL PRO	SS D. 1 SS
MAJORITY	RLHTRFNOTATATGRLSSSDPNLDNI PVRTPLGDRI RRAFVAEEGWXLVALDYSOI ELRVLAHLSGDENL
180 PRO 1FL PRO 178 PRO	628 627 627 630
MAJORITY	I RVF DE GRDI HT OT A SWMF GV PPE A V OPL MR RAAKTI NF GVL Y GMSAHRL SOELAI PY E E AVAFIERY FO
TAO PRO TFL PRO TTR PRO	698 6 6 6 6 6 6

7 UI

MAJORITY	[SEQ ID NO:8]	MAJORITY ESEO ID NO:83 SFPKVRAWI EKTLEEGRRGGYVETLFGRRRYVPDLKARVKSVREAAERMAFNMPVQGTAADLMKLAMVKL	
TAO PRO TFL PRO TTM PRO	[SED 10 NO: 4] [SED 10 NO: 5] [SED 10 NO: 5]	[SEO ID NO: 4]	85 75 75 75
	MAJORITY FPRLXI	FPRLXEMGARMILQVHDELVLEAPKXRAEXVAALAKEVMEGVYPLAVPLEVEVGXGEDWLSAKEX	
	TAO PRO TFL PRO	B. C.	833 831 835

Genes for Wild-Type and Pol(-) DNAPTfl

Cleavage

Cleavage

Sites

Cleavage

B Substrate Strand

Copy of Copy

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 108

FIG. 12A

ruz. izb

FIG. 13B

15 nt

Substrate RNA (46 nt)

5' A A GCUUGCA UGCCUGCA GGUCGA CUCUA GA GGA UCCCC 3' 3' CGTA CGGA CGT CCA GCT GA GA T CT CCT A GG 5'

30-0

FIG. 13A

j

1 2 3 4 5 6 7

FIG. 17

}

FIG. 18

FIG. 19A

Ban II Sst I Asp 718 Ava I Kpn I Kpn I Kpn I Sma I FeeR I Sma I Sm	Sal I BspM I BspM I Sph	TCCGCTCACAATTCCACAACATACGA 228 AGGCCAGTGATAGGTGTTGTATGCT48 Reverse206
CGCCAGGGTTTTCCCAGTCACGACGT GCGGTCCAAAAGGGTCAGTGCTGCA	Sal I Bet I Acc I Hinc II Hinc II AGAGTCGACCTGCAGGCA ATCTCAGCTGGACGTCGTGCAGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT	TCCGCTCACAATTCCACAC AGGCGAGTGTTAAGGTGTG ——48 Reverse ——48 206

FIG. 22A

FIG. 22B

FIG. 24

20nt MARKER ->

FIG. 25B

FIG. 25A

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

(_
ι	~

5'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG 76) 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCCTGAAAGGTGTTCCCC	SISSEMBLY CALCACA A CALCACATA CALCACATA CALCACA CALCACACA CALCACA CALCACACA CALCACA CALCACACA CALCACACA CALCACACA CALCACACA CALCACA CALCACA CALCACACA CALCACA CALCACA CALCACA
.100.8-1 (SEQ ID NO:	,

5.GGCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGALIIICCACAAGGG	77) 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC
1	
16-1	NOI
	o o

FIG. 49A

100.8-1 (SEQ ID NO: 76) TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCTTGCGGGAGGAGCCCAGTCTCT	L.46.16-10 (SEQ ID NO: 77) TACAATACCCCTCCTCGGCCAGCCCTTGTGGGTGAAGA	L.46.16-12 (SEQ ID NO: 78) ATGTTATGGGGAGGTCGGCCGGTCGGGAACACCCCTTTTTT (SEQ ID NO: 78) TACAATACCCCTCCTCGGCCAGCCCTTGTGGGTGAAGA	L19.16-3 (SEQ ID NO: 19) TACAATGCCCCTCCATGACCCCTCCTCGGCCGCCCTTGCGGGGGGGG	L.CEM/251 (SEQ ID NO: 80) ATGTTACGGGGGGGGTCGGGAGGCGGGCGGGGACGCCCACTTTCT (SEQ ID NO: 80) TACAATGCCCCTCCATGACCCTTCCTCGGCCAGCCCTTGCGGGTGAAGA	.8-3 ID NO: 81) TACAATGCCTCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGTGAGAGA
L.100.	L.46.1 (SEQ I	L.46.1 (SEQ I	L19.16 (SEQ I	L.CEM/	L.36.8-3 (SEQ ID

FIG. 49B

FIG. 490

L.100.8-1	200 GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.46.16-10	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGCTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.46.16-12	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.19.16-3	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC
L.CEM/251	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.36.8-3	GAGGCTGGCAGATTGAGCCCTAGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGATCCTCCAAGAGAGGGTCGTGATCGTCCATC

FIG. 49D

HAIRPIN

250 5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACCATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTAGCCAGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAATCGGTCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCAGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGTCACGACCC	5.AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3.TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGAGTGTTCCCTGCTAAACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACTCACAAGGGACGATTTGAGAGTGGTCGTGAACCGGCCACGACCC
5'AGCCTGGGTGTTCCCTGCTAGAC	5'AGCCTGGGTGTTCCCTGCTAGAC	S'AGCCTGGGTGTTCCCTGCTAGAC	5'AGCCTGGGTGTTCCCTGCTAGA(S'AGCCTGGGTGTTCCCTGCTAGA(5'AGCCTGAGTGTTCCCTGCTAAA'
3'TCGGACCCACAAGGGACCATCTG	3'TCGGACCCACAAGGGACGATCTG	3'TCGGACCCACAAGGGACGATCTG	3'TCGGACCCACAAGGGACGATCT(3'TCGGACCCACAAGGGACGATCT(3'TCGGACTCACAAGGGACGATTT
<u> </u>	(22)	78)	(62	80)	81)
L. 100. 8 -1	L. 46.16-10	L. 46.16-12	L. 19.16-3	L. CEM/251	L. 36.8-3
	(SEQ ID NO:	(SFO ID NO:	(SF0 ID NO:	(SEQ ID NO:	(SEQ ID NO:

G. 49E

		000
L. 100. 8 -1 (SEO ID NO: 76)	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAACGAATTTCTGGAGAAGTTATTTCGACGC	TGCC
L. 46.16-10 (SEQ ID NO: 77)	CAGAGTGCCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAACTTTCTGGAGAAGTTATTCGACGG	TGCC ACGG
L. 46.16-12 (SEQ ID NO: 78)	CAGAGTGCCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTGCC GTCTCAATAAAGCTGCGGACGAATTTCTGGAGAAGTTATTCGACGG	TGCC ACGG
L. 19.16-3 (SEQ ID NO: 79)	CAGAGTGCCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCACCGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGACGG	TGCC ACGG
L. CEM/251 (SEQ ID NO: 80)	CAGAGTGACTCCACGCTTGCTTAAAGCCCTCTTCAATAAAGCTGCC GTCTCAGTGAGGTGCGAACGAATTTCGGGAGAAGTTATTTCGACGG	TGCC ACGG
L. 36.8-3 (SEQ ID NO: 81)	CAGAGCGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCGGCGAGGACGAACGAATTTCTGGAGAAGTTATTCGACGG	TGCC

FIG. 49F

HAIRPIN

	320	ر د
L.100.8-1	5'ATTTAGAAGTAGGCCAGIGIGIICCCAICICUCAAGGATCGCCGCGGGAC 3'TAAAATCTTCATCCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGGAC	2 2 3 0 0
L.46,16-10	5'ATTTTAGAAGTAAGCCAGTGTGTTCCCATCTCTCTTCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGGAC	G 3 '
L.46.16-12	5'ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCTCTTCTAGCCGCCGCCTTG 3'TAAAATCTTCATTCGGTCACACAAGGGTAGAGAGGATCGGCGGCGGGAC	G 3,
L.19,16-3	5'ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCTTCTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACACAAGGGTAGAGAGGATCGGCGGGGGGAC	6 3 7 2
L.CEM/251	5'ATTTTAGAAGTAAGCTAGTGTGTGTTCCCATCTCTCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGATCACACACAGGGTAGAGAGGATCGGCGGCGGGAC	G 3'
L.36.8-3	5'ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACACAGGGTAGAGAGGATCGGCGGCGGGAC	G 3'

FIG. 49G

FIG. 50

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64A

FIG. 64B

FIG. 65A

FIG. 65B

FIG. 66

FIG. 67

FIG. 68

FIG. 69

FIG. 70

5' CLEAVAGE SITE

FIG. 71

FIG. 72

FIG. 73

MUTANI Wi 1 2 3

1 2 3 4 M

FIG. 74A

ISOLATE #

M 1 2 3 4 5 M

FIG. 748

FIG. 75

FIG. 76

FIG. 77

FIG. 78

FIG. 79

1 2 3 4 5 6 7 8

FIG. 81

20	100	150
6AGTGTCGTG 6AGTGTCGTG 6AGTGTCGTG 6AGTGTCGTG 6AGTGTCGTA 6AGTGTCGTA	CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC	TTGGAT- <u>A</u> AA TTGGAT-CAA TTGGAT-CAA GTGGAT <u>GI</u> AA TTGGAT- <u>A</u> AA
GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT	CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT	666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC
TCTGGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG	CCCGGGAGAG CCCGGGAGAG CCCGGGAGAG CCCGGGAGAG CCCGGGAGAG	CAGGACGACC CAGGACGACC CAGGACGACC CAGGACGACC CGGGAGGACT
GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG	6ACCCCCCT 6ACCCCCCT 6ICCCCCCT 6ACCCCCCT 6ACCCCCCT	CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC
CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC	CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG	GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA
← 1	51	101
NO:121) NO:122) NO:123) NO:124) NO:125)		
(S S S S S S S S S S		
HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCV2.1 HCV2.1 HCV3.1 HCV4.2	HCV1.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1

Ť.

FIG. 82A

151 CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCCGCAAGA CTGCTAGCCG 200 CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCGCGAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCGCGAGA CTGCTAGCCG CCCGCTCAAT GCCTGGAGAT TTGGGCGTGC CCCGCAAGA CTGCTAGCCG CCCACTCAAT GCCTGGAGAT TTGGGCGTGC CCCGCAAGA CTGCTAGCCG CCCACTCAAT ACCCAGAAAT TTGGGCGTGC CCCGCAAGA CTGCTAGCCG	201 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCCT 250 AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGTGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGCGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGCGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT AGTAGCGTTG GGTCGCGAAA GGCCTTGTGG TACTGCCTGA TAGGGTGCTT	251 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC 282 GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTGCCC CGGGAGGTCT CGTAGACCGT GC GCGAGTACCC CGGGAGGTCT CGTAGACCGT GC
HCV1.1	HCVI.1	HCVI.1
HCV2.1	HCV2.1	HCV2.1
HCV3.1	HCV3.1	HCV3.1
HCV4.2	HCV4.2	HCV4.2
HCV6.1	HCV6.1	HCV6.1

FIG. 82B

FIG. 83

FIG. 84

FIG. 85A

SENSE STRAND

FIG. 86

FIG. 87

1 2 3

1,7,8	0	ER10					1659
09	ACACATGCAA TGTGTACGTT	120 GGGTGAGTAA		180 AATACCGCAT TTATGGCGTA	240 TGCCCAGATG ACGGGTCTAC	300 TGGTCTGAGA ACCAGACTCT	360 GCAGCAGTGG CGTCGTCACC CGTCGTC
50	GGCAGGCCTA CCGTCCGGAT	110 66666AC	AGT <u>GGCGGAC</u> TCACCGCCTG	170 AACGGTAGCT TTGCCATCGA	230 CCATCGGATG GGTAGCCTAC	290 GATCCCTAGC CTAGGGATCG	350 CCTACGGGAG GGATGCCCTC GGATGCCCTC
40	GAACGCTGGC CTTGCGACCG	100	TTTGCTGACG AAACGACTGC	160 AACTACTGGA TTGATGACCT	220 GGGCCTCTTG CCCGGAGAAC	280 CCTAGGCGAC GGATCCGCTG	340 GGTCCAGACT CCAGGTC <u>TGA</u>
30	GGCTCAG GGCTCAGATT CCGAGTCTAA	06	AGCTTGCTTC TCGAACGAAG	150 GGAGGGGGAT CCTCCCCCTA	210 GGGGACCTTC CCCCTGGAAG	270 TAACGGCTCA ATTGCCGAGT	330 ACTGAGACAC TGACTCTGTG
20	AGA GTTTGATCCT AGA GTTTGATCAT TCT CAAACTAGTA	80	AACAGGAAGA TTGTCCTTCT	140 ACTGCCTGAT TGACGGACTA	200 GACCAAAGAG CTGGTTTCTC	260 GTAGGTGGGG CATCCACCCC	320 CCACACTGGA GGTGTGACCT
10	AGA AAATTGA <u>AGA</u> TTTAACTTCT	20	GTCGAACGGT CAGCTTGCCA	130 TGTCTGGGAA ACAGACCCTT	190 AACGTCGCAA TTGCAGCGTT	250 GGATTAGCTA CCTAATCGAT	310 GGATGACCAG CCTACTGGTC

FIG. 88A

480	540	600	660	720	780
TTTGCTCATT	TAATACGGAG	TGTTAAGTCA	CTTGAGTCTC	GAGGAATACC	GTGGGGAGCA
AAACGAGTAA	ATTATGCCTC	ACAATTCAGT	GAACTCAGAG	CTCCTTATGG	CACCCCTCGT
470	530	590	650	710	770
AGTTAATACC	6CAGCCGCGG	GCAGGCGGTT	TACTGGCAAG	TAGAGATCTC	GTGCGAAAGC
TCAATTATGG	CGTCGGCGCC	CGTCCGCCAA	ATGACCGTTC	ATCTCTAGAC	CACGCTTTCG
460	520	580	640	700	760
AAGGGAGTAA	CTCCGTGCCA	TAAAGCGCAC	CTGCATCTGA	GTGAAATGCG	TGACGCTCAG
TTCCCTCATT	GAGGCACGGT	ATTTCGCGTG	GACGTAGACT	CACTTTACGC	ACTGCGAGTC
450	510	570	630	690	750
AGCGGGGAGG	CACCGGCTAA	TTACTGGGCG	AACCTGGGAA	AGGTGTAGCG	GGACGAAGAC
TCGCCCCTCC	GTGGCCGATT	AATGACCCGC	TTGGACCCTT	TCCACATCGC	CCTGCTTCTG
440	500	560	620	680	730 770 780 780 730 730 740 750 760 770 780 770 780 770 780 770 780 770 780 770 780 770 780 770 780 78
AAGTACTTTC	GCAGAAGAAG	TTAATCGGAA	CCCCGGGCTC	GTAGAATTCC	
TTCATGAAAG	CGTCTTCTTC	AATTAGCCTT	GGGGCCCGAG	CATCTTAAGG	
430 TCGGGTTGTA AGCCCAACAT	490 GACGTTACCC CTGCAATGGG	550 GGTGCAAGCG CCACGTTCGC	610 GATGTGAAAT CTACACTTTA	670 GTAGAGGGGG CATCTCCCCC	730 GGTGGCGAAG CCACCGCTTC
	450 AGCGGGGAGG AAGGGAGTAA AGTTAATACC TTTGCTC TCGCCCTCC TTCCCTCATT TCAATTATGG AAACGAG	TCGGGTTGTA AAGTACTTTC AGCGGGAGG AAGGGAGTAA AGTTAATACC TTTGCTCATT AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCCTCATT TCAATTATGG AAACGAGTAA 480 480 480 510 510 520 530 540 540 540 540 540 540 540 540 540 54	TCGGGTTGTA AAGTACTTTC AGCGGGAGG AAGGGAGTAA AGTTAATACC TTTGCTCATT AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCCTCATT TCAATTATGG AAACGAGTAA 490 500 510 520 540 540 540 540 540 540 540 540 540 54	TCGGGTTGTA AAGTACTTTC AGCGGGGGG AAGGGAGTAA AGTTAATACC TTTGCTCATT AGCCCAACAT TCATGAAAG TCGCCCTCC TTCCTCATT TCAATTATGG AAACGAGTAA AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCTCATT TCAATTATGG AAACGAGTAA AGCCCAACAT TCAATTATGG AAACGAGTAA SOO SOO STOOM SOO SOO STOOM SOO SOO SOO SOO SOO SOO SOO SOO SOO	TCGGGTTGTA AAGTACTTTC AGCGGGAGG AAGGGAGTAA AGTTAATACC TTTGCTCATT AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCTCATT TCAATTATGG AAACGAGTAA AGCCCAACAT TTCATGAAAG TCGCCCTCC TTCCTCATT TCAATTATGG AAACGAGTAA 490 510 520 520 530 540 540 550 550 550 550 550 550 550 55

FIG. 88B

SB-1

840 AGGTTGTGCC TCCAACACGG	900 TACGGCCGCA ATGCCGGCGT	960 GTGGTTTAAT CACCAAATTA	1020 TTGACATCCA CGGAAGTTTT CAGAGATGAG AACTGTAGGT GCCTTCAAAA GTCTCTACTC	1060 1070 1080 CTGCATGGCT GTCGTCAGCT CGTGTTGTGA GACGTACCGA CAGCAGTCGA GCACAACACT	1140	GCGGTCCGGC CGCCAGGCCG	190 ATG ACGTCAAGTC	ATG ACGTCAAGTC ATG ACGTCAAGTC TAC TGCAGTTCAG
830 GTCGACTTGG CAGCTGAACC	880 TAAGTCGACC GCCTGGGGAG ATTCAGCTGG CGGACCCCTC	950 GGTGGAGCAT CCACCTCGTA	1010 CGGAAGTTTT GCCTTCAAAA	1070 GTCGTCAGCT CAGCAGTCGA	1130	TTTGTTGCCA AAACAACGGT	1190 ATG	ATG GGTGGGG <u>ATG</u> CCACCCCTAC
820 CGTAAACGAT GCATTTGCTA	880 TAAGTCGACC ATTCAGCTGG	940 CCGCACAAGC GGCGTGTTCG	1000 TTGACATCCA AACTGTAGGT	1060 CTGCATGGCT GACGTACCGA	1120 ACCC	<u>ACCC</u> TTATCC TGGGAATAGG	1180	ACTGGAGGAA TGACCTCCTT
810 TAGTCCACGC ATCA GG TGCG	870 GCTAACGCGT CGATTGCGCA	930 TGACGGGGGC ACTGCCCCG	990 TTACCTGGTC AATGGACCAG	1050 GAGACAGGTG CTCTGTCCAC	1110 AACGAGCGCA ACCC	AACGAGCGCA TTGCTCGCGT	1170	CCAGTGATAA GGTCACTATT
800 GATACCCTGG CTATGGGACC	860 GGCTTCCGGA CCGAAGGCCT	920 TCAAATGAAT AGTTTACTTA	980 GCGAAGAACC CGCTTCTTGG	1030 AATGTGCCTT CGGGAACCGT GAGACAGGTG TTACACGGAA GCCCTTGGCA CTCTGTCCAC	1100 GC	AATGTTGGGT TAAGTCCC <u>GC AACGAGCGCA ACCC</u> TTATCC TTTGTTGCCA GCGGTCCGGC TTACAACCCA ATTCAGGGCG TTGCTCGCGT TGGGAATAGG AAACAACGGT CGCCAGGCCG	1160	ATG ACGTCAAGTC CGGGAAGTG CCAGTGATAA ACTGGAGGAA GGTGGGG <u>AIG ACGICAAGIC</u> GCCCTTGAG TT TGACCTCCTT CCACCCTAC TGCAGTTCAGTT
840 830 840 840 840 840 840 840 840 840 840 84	850 850 860 870 CTTGAGGGGT GAACGCGT GAACTCCGCA CCGAAGGCCT CGATTGCGCA	910 920 930 940 950 960 930 940 950 950 960 950 960 960 960 960 960 960 950 960 960 960 960 960 960 960 960 960	990 TCGATGCAAC GCGAAGAACC TTACCTGGTC AGCTACGTTG CGCTTCTTGG AATGGACCAG	1030 AATGTGCCTT TTACACGGAA	1090	AATGTTGGGT TTACAACCCA	1150	CGGGAACTCA GCCCTTGAGT

FIG. 88C

SB-3	0 4		1743	1743		
1260	AAGAGAAGCG TTCTCTTCGC	1320 AGTCTGCAAC TCAGACGTTG	1380 GTGAATACGT CACTTATGCA CACTTATGCA	1440 AGAAGTAGGT TCTTCATCCA	1500 GAAGTCGTAA CTTCAGCATT	
1250	GGCGCATACA CCGCGTATGT	1310 TCCGGATTGG AGGCCTAACC	1370 1380 GAATGCCACG GTGAATACGT CTTACGGT <u>GC CACITAIGCA</u> GC CACTTATGCA	1430 GGGTTGCAAA CCCAACGTTT	1490 TGACTGGGGT ACTGACCCCA	1550 TA
1240	GTGCTACAAT (CACGATGTA)	1300 TGCGTCGTAG ACGCAGCATC	1360 TCGTGGATCA AGCACCTAGT	1420 CCATGGGAGT GGTACCCTCA	1480 TTGTGATTCA AACACTAAGT	1540 ATCACCTCCT TAGTGGAGGA
1230	GGCTACACAC CCGATGTGTG	1290 CCTCATAAAG GGAGTATTTC	1350 TCGCTAGTAA AGCGATCATT	1410 GCCCGTCACA CGGGCAGTGT	1470 SCTTACCACT SGAATGGTGA	1530 CTGCGGTTGG GACGCCAACC
1220	TTACGA <u>TTACGA</u> CCAG AATGCTGGTC	1280 AGCAAGCGGA TCGTTCGCCT	1340 GAAGTCGGAA CTTCAGCCTT	1400 TGTACACACC <u>ACATG</u> TGTGG ACATG	1460 TCGGGAGGGC AGCCCTCCCG	1520 GTAGGGGAAC CATCCCCTTG
	ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG	1270 ACCTCGCGAG TGGAGCGCTC	1330 TCGACTCCAT AGCTGAGGTA	1390 TCCGGGCCT AGGCCCGGA AGGCCCGGA	1450 AGCTTAACCT TCGAATTGGA	1510 CAAGGTAACC GTTCCATTGG

FIG. 88D

AGAGTTTGATCCTGGCTCAG 10 NO:158) 0AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCA 10 NO:159) 0 ~TTTTTATGGAGAGTTTGATCCTGGCTCAGAGTGAACGCTGGCGGCGTGCCTAATACATGCA 10 NO:160) 0TTTTATGGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAATACATGCA	GGCGGACGGG 60 AGTCGAACGGTAACAG——GAAGAAGCTTGCTTCTTT——GCTGACGAGTGGCGGACGGG 62 AGTCGAACGAT——GAAGCTTCTAGCTTGCTAGAAGTGGA——TTAGTGGCGCACGGG 61 AGTCGAGCGAA——CGGACGAGAAGCTTGCTTCTTCTTGATG——TTAGTGCGCGCGGG	TGAGTAA 114 TGAGTAATGTCTGGGA_AACTGCCTGATGGAGGGGGGATAACTACTGGAAACGGTAGCTAATA 114 TGAGTAAGGTATAGTTAATCTGCCCTACACAAGAGGACAACAGTTGGAAACGACTGCTAATA 113 TGAGTAACACGTGGATAACCTACCTATAAGACTGGGATAACTTCGGGAAACCGGAGCTAATA	175 CCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCG-GGCCTCTTG 176 CTCTATACTCCTGCTTAACACAAGTTGAGTAGG-GAAAGTTTTTCG 175 CCGGATAATTTTGAACCGCATGGTTCAAAAGTGAAAGAGGTCTTGCTGTCA	221 CCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGA 221 GTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGA 229 CTTATAGATGGATCCGCGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGA	283 TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACAGGGTCCAGACTCCTA 283 CGCTTAACTGGTCTGAGAGGATGATCAGTCACTGGAACTGAGACAGGTCCAGACTCCTA 291 TACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACGGGTCCAGACTCCTA ACTCCTA
1638 (SEQ ID NO:: E.colirrsE(SEQ IG Cam.jejun5(SEQ IG Stp.aureus(SEQ I	R10 (SEQ ID NO: .colirrsE am.jejunS tp.aureus	ER10 E.colirrsE Cam.jejun5 Stp.aureus	٠ ه ٢	E.colinrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus 1659(COMPL)

FIG. 89A

E.colirrsE Cam.jejun5 Stp.aureus

E.colirrsE Cam.jejun5 Stp.aureus

E.colirrsE Cam.jejun5 Stp.aureus 1659(COMPL) FIG. 89B

530 GTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGCCGTAAAGCGCACGCA	592 GTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGAACTGCATCTGATACTGGCAAGCTT 568 ATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTA 600 TTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGGTCATTGGAAACTGGAAACTT	654 GAGTCTCGTAGAGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAG 630 GAGTGAGGGAGAGGCAGATGGAATTGGTGGTGTAGGGGGTAAAATCCGTAGATATCACCAAGA 662 GAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAGATATGGAGGA	9 N 4 9 9 9	778 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGC 754 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGT 786 TCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGG
E.colirrsE 5	rsE	E.colirrsE 6	colirrsE	E.colirrsE 7
Cam.jejun5 5	un5	Cam.jejun5 6	m.jejun5	Cam.jejun5 7
Stp.aureus 5	eus	Stp-aureus 6	p.aureus	Stp.aureus

FIG. 89C

E.colirrsE Cam.jejun5 Stp.aureus Cam.jejun5 Stp.aureus Cam.jejun5 Stp.aureus Stp.aureus Stp.aureus	840 816 848 900 971 1024 1033	C-CTTGA-GCCGTGCCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCGGGAGTACGGCCGCGGGAGTACGGCCGCGGGAGTACGGCCGCGGGCTAGGTAACTGTAACTGTAACGCCTGGGGAGTACGGTCGCGGTAGGTA
SB-1 E.colirrsE Cam.jejun5 Stp.aureus	1081 1061 1092	GCAACGAGCGCAACCC AATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGG=CC GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCACGTATTTAGTTGCTAACGGTTCGG=CC GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTAAGCTTAGTTGCCATCA=TTAAGT=T

FIG. 89D

ATGACGTCAAGTCAIC 154) 154) GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATC GAGCACTCTAAATAGACTGCCTTCG_TAAGGAGGAGGAGGTGTGGACGACGTCAAGTCATC GGGCACTCTAAATTGACTGCCGGGGAAACCGGAGGAGGTGGGGATGACGTCAAGTCATC	
ID NO:1 ID NO:1 1142 1122 1152	
SB-3 (SEQ SB-4 (SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ	-

ATGG ATGG ATGG ATGG	S6 GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTC 15 GCGAGGTGGAG-CAAATCTATAAAATATGTCCCAGTTCGGATTGTTCTCTGCAACTCGAGAG 76 GCGAGGTCAAGCAAATCCCATAAAGTTGTTCTCAGTTCGGATTGTAGTCTGCAACTCGACTA	28 CATGAAGTCGGAATCGCTAGTAATCGTGGATCAGA-ATGCCACGGTGAATACGTTCCCGGGC 36 CATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGGTGAATACGTTCCCGGGT 38 CATGAAGCTGGAATCGCTAGTAATCGTAGATCAGC-ATGCTACGGTGAATACGTTCCCGGGT
1204 1183 1214	1266 1245 1276	1328 1306 1338
SB-3 SB-4 E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5 Stp.aureus 1743(compl)

FIG. 89E

E.colirrsE Cam.jejun5 Stp.aureus 1743(compl) E.colirrsE	1389 1368 1399 1451	CTTGTACACCCCCCCCCTCACCATGGGAGTGGGTTGCAAAGAAGTAGGTAG
Cam.jejun5 Stp.aureus	1427 A(1461 T	1427 AC===1=AGIIACCGICGAAGGIGGACAATGATTGGGGTGAAGTCGTAACAAGGTAGCCG 1461 TTTAGGAGCTAGCCGTCGAAGGTGGACAATGATTGGGGTGAAGTCGTAACAAGGTAGCCG
E.colirrsE Cam.jejun5	1512 17 1485 T/	TAGGAGAACCTGCGGTTGGATCACCTCCT
Stn aureus	1523 TATC	4TCGGAAGGTGCGGL 66A CALL CL 1 C

FIG. 89F

FIG. 90

FIG. 91A

FIG. 91B

FIG. 92

FIG. 93

FIG. 94