REALISER UNE ETUDE DE MOULAGE

SOMMAIRE

Ce document présente des informations organisées comme suit :

SITUATION DE DEPART

METHODE DE TRAVAIL

COULEURS CONVENTIONNELLES

SUREPAISSEURS D'USINAGE

ORDRE DE REMMOULAGE

CRITERES DE CHOIX DU PLAN DE JOINT

RECHERCHE DES 6 POSITIONS

COMPARATIF SUR 2 POSITIONS

PORTEES: COTES ET DEPOUILLE

JEUX DES NOYAUX

DIMENSIONS DES CHASSIS

EXEMPLE D'ETUDE DE MOULAGE

ETUDE DE MOULAGE DONNEE PAR UN FONDEUR

SITUATION DE DEPART

La fabrication d'une pièce moulée répond à l'organisation type suivante :

On voit que l'étude moulage faite par le fondeur est au centre de la fabrication. Si cette pièce est usinée par la suite, l'usineur utilisera lui aussi l'étude de moulage pour tenir compte des surépaisseurs d'usinage prévues par le fondeur, de la dépouille ...

Souvent, le fondeur donne au modeleur des indications succinctes voire tout simplement le plan de la pièce. Il est donc nécessaire que le modeleur sache lui aussi faire cette étude de moulage. Pour cela il lui faut connaître au minimum la classe de l'outillage et/ou le nombre de pièces à produire ainsi que le type de moulage : manuel ou mécanique.

La méthode proposée s'applique à un travail fait sur des plans papier. Cependant, la démarche reste valable pour des documents informatiques, notamment en ce qui concerne la recherche du plan de joint.

METHODE DE TRAVAIL

La méthode de travail proposée suit, dans l'ordre, les étapes suivantes

COULEURS CONVENTIONNELLES

Le tracé d'une étude de moulage doit respecter certaines conventions :

Surépaisseurs d'usinage En ROUGE et à l'échelle du plan	
Joints de moulage trait fort et symboles en BLEU	→
<u>Démontabilités de l'outillage</u> En ROUGE avec un trait de Jupiter	*
Etanchéités des noyaux Des cercles NOIRS	
Ordre de remmoulage des noyaux Respecter les COULEURS	1 2 3 4 5
Armatures (moule et noyaux) En NOIR	
<u>Tirages d'air (moule et noyaux)</u> En VERT CLAIR	
Sable du moule Hachures NOIRES	

SUREPAISSEURS D'USINAGE

Quand prévoir une surépaisseur

- Les trous de petit diamètre (par rapport à la pièce)
- **2** Les filetages
- 3 Les cotes tolérancées

- **4** Les ajustements
- **6** Les tolérances de forme et de position
- **6** Les états de surface < 25

SUREPAISSEURS D'USINAGE

<u>Valeurs</u>

cote ou s'applique la surépaisseur	Plus grande dimension de la pièce									
	de 0 à 100	de 101 à 160	de 161 à 250	de 251 à 630	de 631 à 1600	de 1600 à 4000				
de 0 à 16	2,5	2,5	2,5	4	4 ,5	5,5				
de 17 à 25	3	3	3	4	4,5	5,5				
de 26 à 40	3	3	3	4	4,5	6				
de 41 à 63	3	3	3	4,5	5	6				
de 64 à 100	3,5	3,5	3,5	4,5	5	6				
de 101 à 160		3,5	3,5	5	5	6,5				
de 161 à 250			4	5	5,5	7				
de 251 à 400				5,5	6	7				
de 401 à 630				6	6,5	8				
de 631 à 1000					7,5	8,5				
de 1001 à 1600					9	10				
de 1601 à 2500						11,5				
de 2501 à 4000						13,5				

Exemple

ORDRE DE REMMOULAGE

Le moulage de certaines pièces aboutit à des noyaux dont les formes posent des difficultés de remmoulage que l' on peut classer en deux catégories :

- Impossibilité de remmoulage des noyaux dans le moule.
- Instabilité des noyaux avant la fermeture du moule.

L'étude de moulage doit :

- Définir des noyaux dont la forme permet leur remmoulage (non traité dans ce document).
- Indiquer clairement l'ordre de mise en place des noyaux dans le moule.

Le noyau de gauche est bien moins stable que celui de droite, on doit donc le remmouler en dernier

Le noyau de gauche ne peut pas être remmoulé après celui de droite, on doit donc le remmouler en premier

Solution compatible avec le nombre de pièces à mouler

MOULAGE UNITAIRE

MOULAGE EN SERIE

On cherchera toujours la simplicité :

Prévoir obligatoirement <u>un seul</u> plan de joint :

Mais suivant la forme et la taille de la pièce, il est possible de prévoir plusieurs plans de joint :

Le plan de joint évite toutes les contre-dépouilles

<u>OUI</u>

Le travail du modeleur et du fondeur est le plus simple possible.

<u>NON</u>

Le travail du modeleur et du fondeur est plus complexe car pour mouler la pièce, il faut soit :

- -prévoir un noyau
- -prévoir un plan de joint supplémentaire.

Solution avec un seul plan de joint

OUI

Le moulage de la pièce est simple et peut se faire :

- -en unitaire (à la main).
- -en série (sur machines à mouler).

Solution obligatoire sur machines à mouler.

NON

Solution réservée au moulage unitaire de pièces assez grosses.

Le modèle doit être démontable pour permettre son extraction du moule.

Le plan de joint est plan

OUI

Le travail du modeleur et du fondeur est le plus simple possible.

Le plan de joint est décroché, le travail du modeleur et du fondeur est plus complexe. Il faut soit :

- -prévoir une cale de joint (moulage unitaire).
- -prévoir un noyau (moulage en série).

Le plan de joint passe par une face plane de la pièce

NON

Le modèle doit être en deux parties, le travail du modeleur est donc plus complexe.

OUI

Le travail du modeleur et du fondeur est le plus simple possible.

La précision de la pièce sera maximum.

La pièce risque de présenter des <u>variations</u> dues au jeu des châssis.

Solution avec les noyaux les plus simples (forme et/ou nombre) ou solution sans noyau

OUI

Le travail du modeleur et du fondeur est le plus simple possible.

<u>NON</u>

Le travail du modeleur et du fondeur est rendu plus complexe par :

- -des noyaux aux formes tourmentées
- -un nombre de noyaux plus élevé

Noyau instable

-une mauvaise stabilité des noyaux dans le moule

Les parties usinées sont en majorité verticales ou situées dans le bas de l'empreinte

OUI

En flottant à la surface du métal liquide, les impuretés se retrouvent dans le haut du moule. Pour obtenir des surfaces usinées saines, on à intérêt à les placer dans le bas de l'empreinte.

NON

Les parties usinées situées dans le haut de l'empreinte risquent d'être défectueuses par la présence d'impuretés contenues dans le métal.

Les formes cylindriques creuses sont en majorité en position verticale

NON

La pièce peut être défectueuse ou incomplète car pendant le remplissage du moule, le métal se refroidit :

- -risque de non soudure des deux veines : reprise.
- -risque de manque de métal : manque.

Ces risques sont importants quand $\emptyset >>$ Ep.

La déformation due à la dépouille est la plus faible (hauteur de démoulage la plus faible)

OUI NON

La déformation due à la dépouille est la plus faible La déformation due à la dépouille est la plus importante

Les bavures de la pièce seront faciles à éliminer

Le métal s'infiltre (presque) toujours entre le dessous et le dessus formant ainsi des toiles. Ces <u>bavures</u> doivent être éliminées au parachèvement. Plus le contour de la pièce au niveau du plan de joint est simple, plus le parachèvement est facile et rapide (ces bavures retrouvent aussi autour des portées de noyau).

Les parties de moule fragiles sont en majorité dans le dessous

La partie fragile est stable, "posée" dans le dessous.

stable, "posée" dans le dessous. La partie fragile $(H \ge L)$ risque de tomber dans l'empreinte.

Solution compatible avec les châssis disponibles : type, hauteur, largeur et longueur

<u>OUI</u>

NON

Les problèmes suivants peuvent apparaître :

- -① moule trop fragile
- -2 hauteur de la descente insuffisante
- -3 hauteur de la descente excessive
- © consommation de sable excessive

PORTEES: COTES ET DEPOUILLE

JEUX DES NOYAUX

Cote noyau en

DIMENSIONS DES CHASSIS

Châssis pour moulage main

ur	Largeur ou diamètre										
Longueur	315	400	500	630	800	100	1250	1600	2000		
Lor	Hauteur										
315	100										
400	125	125									
500	125	125	125								
630	125	160	160	160							
800	160	160	160	160	160						
1000	160	160	160	200	200	200					
1250	160	200	200	200	200	200	200				
1600	200	200	200	200	200	250	250	250			
2000	200	200	200	250	250	250	250	250	250		

Châssis pour moulage mécanique (et main)

ur	Largeur ou diamètre												
Longueur	250	280	315	355	400	450	500	560	630	710	800	900	1000
Lor	Hauteur												
250	100												
280	100	100											
315	100	100	100										
355	100	125	125	125									
400	125	125	125	125	125								
450	125	125	125	125	125	125							
500	125	125	125	125	125	125	125						
560	125	125	125	125	125	160	160	160					
630	125	125	125	160	160	160	160	160	160				
710	125	125	160	160	160	160	160	160	160	160			
800	160	160	160	160	160	160	160	160	160	160	160		
900	160	160	160	160	160	160	160	160	200	200	200	200	
1000	160	160	160	160	160	160	160	160	200	200	200	200	200

EXEMPLE D'ETUDE DE MOULAGE

Portées : hauteur 25 et dépouille -6° Surépaisseurs : 3

Chassis machine $315 \times 315 \times 100$