PABLO

MECH 161 – INTRODUCTION TO COMPUTER AIDED DESIGN (CAD) I

WEEK 3 – CONCEPT DEVELOPMENT AND PROTOTYPING

What is EngineeringDesign?

Conceptualization of Design

- Conceptualization is a process that involves coming up with clear, and concise definitions.
- A concept is an idea conceived in the mind, that gives a solution to a problem which so far has been solved in an unsatisfactory way.

Conceptualization of a Design

Clarify the problem; to develop a general understanding of the

problem.

- Search externally; to find existing solutions to the problem.
- Search internally; using of personal and team knowledge and creativity to generate solution concepts.
- Explore Systematically; This aims at navigating the space of possibilities by organizing and synthesizing the ideas generated.
- □ **Reflect on the Results and the Process**; This helps in selecting the right concept for development.

TOPIC: Design and Construct a Chair for UENR Students with an Attached Table

□ CONCEPTS:

□ Concept 1

Concept 2

Concept 3

Concept Evaluation

Which design should I choose? Which design is "best"?

Concept evaluation is the process of ranking concepts to determine their relative merits.

This requires

- a ranked set of criteria on which each concept is rated
- a method by which to rank concepts against the reference with respect to the criteria that is both effective and efficient

Weighted Decision Matrix

A weighted decision matrix is a tool used to compare alternatives with respect to multiple criteria of different levels of importance

		Concept 1		Concept 2		Concept 3	
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score
Criteria 1	0.3	2	0.6	3	0.9	4	1.2
Criteria 2	0.4	4	1.6	3	1.2	2	0.8
Criteria 3	0.3	3	0.9	4	1.2	4	1.2

Total	1.0	3.1	3.3	3.2	
Rank		3	1	2	

Weighted Decision Matrix – Example, the Chair

Criteria	Weight	Concept 1		Concept 2		Concept 3	
		Rating	Score	Rating	Score	Rating	Score
Durability							
Material							
Cost							
Aesthetics							
Total	1.0						
Rank							

Concept Refinement

The concept refinement process consist of taking selected ideas from the concept and refining them to be realistic representations of the product

Concept Refinement Process may involve

- Modification of the selected concept
- Creating of a 3D model
- □ This process is Iterative

Prototyping

- Here's my design; how well does it work?
- A prototype is a experimental process or version of a product that a design team typically creates during the design process to transform ideas into tangible forms, from paper to digital.

The goal of a prototype is to test the flow of a design solution and gather feedback on it—from both internal and external partiesbefore constructing the final product. This helps to **reduce cost** of **production**.

PABLO

Prototypina

Reasons for Prototyping

- Have a solid foundation from which to imagine towards improvements—giving all stakeholders a clear picture of the potential benefits, risks and costs associated with where a prototype might lead.
- Can adapt changes early—thereby avoiding commitment to a single, falsely-ideal version, getting stuck and later incurring heavy costs due to oversights.

Show the prototype to your users so they can give you their feedback to help pinpoint which elements/variants work best and whether an overhaul is required.

Reasons for Prototyping

Have a tool to experiment with associated parts of the **users' needs** and problems—therefore, you can get insights into less-obvious areas of the users' world (e.g., you notice them using it for additional purposes or spot unforeseen accessibility issues such as challenges to mobile use).

- Provide a sense of ownership to all concerned stakeholders—therefore
 fostering emotional investment in the product's ultimate success.
- Improve time-to-market by minimizing the number of errors to correct before product release.

Types of Prototyping

Low-Fidelity Prototyping

High-Fidelity Prototyping

□ Fidelity refers to **how close** a prototype is to the final product.

Thus, the level of detail and functionality you include in your prototype.
Usually, this will depend on your product's development stage.

Low-Fidelity Prototyping

Low-fidelity prototyping is a quick, simple way of developing a design idea into a somewhat more tangible representation of a software product.

- The goal of a low-fidelity prototype is to outline a product's flow and test the usefulness and usability of its functionality. Thus, low-fidelity prototypes are not as visually refined as high-fidelity prototypes. Examples of lowfidelity prototypes include
 - sketches
 - paper prototypes

Examples of Low-Fidelity Prototyping

High-Fidelity Prototyping

High-fidelity prototypes are more advanced than their low-fidelity counterparts.

- They are more aesthetically pleasing, and their function is closer to that of the final product.
- You'll typically create high-fidelity prototypes further along in the design process, once a team has a firm grasp of what they want the finished product to embody.
- High-fidelity prototypes are sometimes better for usability testing than low-fidelity prototypes. Examples of high-fidelity prototypes include
 - interactive prototypes
 - digital prototypes
 - coded prototypes

Examples High-Fidelity Prototyping

Low-Fidelity vs High-fidelity Prototyping

Low-Fidelity vs High-fidelity Prototyping

Questions

