PAT-NO:

JP02002262487A

DOCUMENT-IDENTIFIER: JP 2002262487 A

TITLE:

POWER GENERATION SYSTEM AND ROTARY

ELECTRIC MACHINE

PUBN-DATE:

September 13, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

KIN, KOUCHIYUU INABA, HIROMI

N/A

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI LTD

N/A

APPL-NO:

JP2001053421

APPL-DATE:

February 28, 2001

INT-CL (IPC): H02K001/27, H02K001/22 , H02K001/28 ,

H02K016/02 , H02K021/14

ABSTRACT:

PROBLEM TO BE SOLVED: To enable the weak field system of the field flux of a permanent magnet.

SOLUTION: The rotor of a permanent magnet rotary electric machine is divided to enable relative motion.

COPYRIGHT: (C) 2002, JPO

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-262487 (P2002-262487A)

(43)公開日 平成14年9月13日(2002.9.13)

				(20) 2401	IH 1//4** 1 0	/110	_ (2002.0.)	,	
(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)			
H 0 2 K	1/27	5 0 1	H 0 2 K	1/27	501	A !	5 H O O 2		
	1/22			1/22		A 5H621			
	1/28			1/28		A :	5 H 6 2 2		
	16/02		1	16/02					
21/14				21/14			G		
	·				請求項の数19	OL	(全 12]	頁)	
(21)出願番	→	特願2001-53421(P2001-53421)	(71)出願人	0000051	08			#Probambio	
				株式会社	土日立製作所				
(22)出願日		平成13年2月28日(2001.2.28)		東京都	千代田区神田駿河	可台四	丁目6番地	1	
			(72)発明者	(72)発明者 金 弘中					
				茨城県	日立市大みか町台	七丁目	1番1号	株	
				式会社	3立製作所日立研	开究所	内		
			(72)発明者	稻葉	美				
				茨城県[日立市大みか町十	七丁目	1番1号	株	
				式会社日	日立製作所日立研	开究所	内		
			(74)代理人	1000750	96				
				弁理士	作田 康夫				
							最終頁に終	虎く	
			1						

(54)【発明の名称】 発電システム及び回転電機

(57)【要約】

【課題】永久磁石の磁束の弱め界磁を可能とする。 【解決手段】永久磁石回転電機の回転子を分割し相対運動可能とする。

【特許請求の範囲】

【請求項1】一次巻線を有する固定子と界磁用磁石とシ ャフトとを有する回転子からなる回転電機において、 前記界磁用磁石は、回転方向に順次異なった極性の磁極 が並んでいる第1の界磁用磁石と回転方向に順次異なっ た極性の磁極が並んでいる第2の界磁用磁石を有し、一 方の界磁用磁石が他方の界磁用磁石に対して軸方向と回 転方向に変位する機構を有することを特徴とする回転電 機。

用磁石が他方の界磁用磁石に対して軸方向と回転方向に 変位する機構を用いて、第1の界磁用磁石と第2の界磁 用磁石との合成磁界が変化することを特徴とする回転電 機。

【請求項3】回転電機は、一次巻線を有する固定子と界 磁用磁石とシャフトとを有する回転子を有し、前記界磁 用磁石は、回転方向に順次異なった極性の磁極が並んで いる第1の界磁用磁石と回転方向に順次異なった極性の 磁極が並んでいる第2の界磁用磁石を有し、一方の界磁 用磁石が他方の界磁用磁石に対して軸方向と回転方向に 20 変位する機構を有し、第1の界磁用磁石と第2の界磁用 磁石との合成磁界が変化する回転電機と、前記回転電機 の電力を制御する電力変換器と、熱機関とを有する発電 システム。

【請求項4】回転電機は、一次巻線を有する固定子と界 磁用磁石とシャフトとを有する回転子を有し、前記界磁 用磁石は、回転方向に順次異なった極性の磁極が並んで いる第1の界磁用磁石と回転方向に順次異なった極性の 磁極が並んでいる第2の界磁用磁石を有し、一方の界磁 用磁石が他方の界磁用磁石に対して軸方向と回転方向に 30 変位する機構を有し、第1の界磁用磁石と第2の界磁用 磁石との合成磁界が変化する回転電機と、圧縮機とター ビンを備えて、前記回転電機の電力を制御する電力変換 器と、燃焼器と、熱交換器とを有するタービン発電シス

【請求項5】請求項3から請求項4記載の発電システム において、前記回転電機は、一次巻線を有する固定子と 界磁用磁石とシャフトとを有する回転子とを有し、前記 界磁用磁石は、回転方向に順次異なった極性の磁極が並 んでいる第1の界磁用磁石と回転方向に順次異なった極 40 性の磁極が並んでいる第2の界磁用磁石とを有し、前記 の第1の界磁用磁石と第2の界磁用磁石は前記固定子磁 極に対向しているとともに、前記の第1の界磁用磁石と 第2の界磁用磁石との合成磁界は回転子のトルク方向に 基づいて変化させる機構を有し、このトルク方向に基づ いて変化させる機構は、回転子に発生するトルク方向と 第1の界磁用磁石と第2の界磁用磁石間の磁気作用力と の釣合いにより前記第1の界磁用磁石と第2の界磁用磁 石の同磁極中心が並ばせる方向にする手段と、回転子に

石と第2の界磁用磁石との合成磁界が変化する手段とを 有する回転電機を有する発電システム。

【請求項6】請求項3から請求項5記載の発電システム において、前記回転電機の低速回転時は電動機として働 き、回転子に発生するトルク方向と第1の界磁用磁石と 第2の界磁用磁石間の磁気作用力との釣合いにより前記 第1の界磁用磁石と第2の界磁用磁石の同磁極中心が並 ばせる方向にする手段と、前記回転電機の高速回転時は 発電機として働き、回転子に発生するトルク方向が反対 【請求項2】請求項1の回転電機において、一方の界磁 10 になるに伴い第1の界磁用磁石と第2の界磁用磁石との 合成磁界が変化する手段とを有する回転電機を用いる発 電システム。

> 【請求項7】請求項1から請求項5記載の回転電機にお いて、前記回転電機の一方の界磁用磁石が他方の界磁用 磁石に対して変位する機構は、一方の界磁用磁石はシャ フトに固定し、他方の界磁用磁石はシャフトとは可動自 在にすると共に、シャフトにはボルトのネジ部と他方の 界磁用磁石の内周側にはナット部になりお互いにネジの 機能を持たせたことを特徴とする回転電機。

【請求項8】請求項7記載の回転電機において、前記回 転電機の一方の界磁用磁石が他方の界磁用磁石に対して 変位する機構は、一方の界磁用磁石はシャフトに固定 し、他方の界磁用磁石はシャフトとは可動自在にすると 共に、シャフトにはボルトのネジ部と他方の界磁用磁石 の内周側にはナット部になりお互いにネジの機能を持た せたて接続し、他方の界磁用磁石の側面から離れたとこ ろにはストッパーを設けたことを特徴とする回転電機。 【請求項9】請求項8記載の前記ストッパーは、必要に 応じてシャフトと平行に可変可能な機構を持つことを特 徴とする回転電機。

【請求項10】請求項1から請求項5記載の回転電機に おいて、前記第1の界磁用磁石と第2の界磁用磁石との 合成磁極位置のずれに応じて前記電力変換器を制御する コントローラによる電流供給の進角を補正することを特 徴とする回転電機。

【請求項11】請求項1から請求項5記載の回転電機に おいて、前記第1の界磁用磁石はシャフトに固定し、前 記第2の界磁用磁石はシャフトと可動自在に結合すると 共に、シャフトにはボルトのネジ部と第2の界磁用磁石 の内周側にはナット部になりお互いにネジの機能を持た せて接続し、前記第2の界磁用磁石の軸方向に対する変 位量を検出し、第1の界磁用磁石と第2の界磁用磁石と の合成磁極位置のずれ角に対応させ前記インバータを制 御するコントローラによる電流供給の進角を補正するこ とを特徴とする回転電機。

【請求項12】請求項1から請求項5記載の回転電機に おいて、前記第1の界磁用磁石はシャフトに固定し、前 記第2の界磁用磁石はシャフトと可動自在に結合すると 共に、前記第2の界磁用磁石と前記シャフト間には回転 発生するトルク方向が反対になるに伴い第1の界磁用磁 50 運動と往復運動及び複合運動を案内する支持機構を複数

個備えたことを特徴とする回転電機。

【請求項13】請求項1から請求項5記載の回転電機において、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、かつ前記第2の界磁用磁石の内周側とシャフトの間にはスリーブを介して、前記第2の界磁用磁石と前記スリーブを固定したことを特徴とする回転電機。

【請求項14】請求項13のスリーブは、鉄より電気抵抗率が高い非磁性体を用いたことを特徴とする回転電機。

【請求項15】請求項1から請求項5記載の回転電機において、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、前記第2の界磁用磁石の前後にはばねを複数個備えて、前記第2の界磁用磁石の回転運動と往復運動及び複合運動を案内する特徴とする回転電機。

【請求項16】請求項1から請求項5記載の回転電機に おいて、前記第1の界磁用磁石はシャフトに固定し、前 記第2の界磁用磁石はシャフトと可動自在に結合すると 共に、前記第1の界磁用磁石と前記第2の界磁用磁石が 20 接する前記第1の界磁用磁石側面に凹部を設け、前記第 2の界磁用磁石には前記スリーブの機能を兼ねた突起部 を設けた構造を特徴とする回転電機。

【請求項17】請求項1から5記載の回転電機において、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、第2の界磁用磁石の側面から離れたところにはストッパーを設け、前記ストッパーは第2の界磁用磁石とシャフトに対して回転運動と往復運動及び複合運動を案内する支持機構を備えたことを特徴とする回転電機。

【請求項18】請求項1から5記載の回転電機において、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、第1の界磁用磁石を有する回転子と前記固定子間のエアギャップより、第2の界磁用磁石を有する回転子と前記固定子間のエアギャップの方が大きくしたことを特徴とする回転電機。

【請求項19】請求項1から5記載の回転電機において、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、前記第2の界磁用磁石の内周側に前記ストッパーと前記ストッパーの可変機構を備えたことを特徴とする回転電機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は永久磁石を界磁に用いた回転電機に係り、特に発電システムの駆動,発電を行う回転電機およびその制御方法に関する。

[0002]

【従来の技術】従来技術による永久磁石回転電機におい 50 の配置レイアウトを示したものである。

て、誘導起電力Eは回転子に配置されている永久磁石が発生する一定磁束Φと回転電機の回転角速度ωによって決定される。つまり、回転電機の回転角速度ω(回転数)が上昇すると、回転電機の誘導起電力は比例して上昇する。

【0003】よって、低速領域で高トルクが得られるが、回転数の可変速範囲が狭いために高速領域の運転は困難であったが、弱め界磁制御技術により高速運転領域を広げる。

10 【0004】また、特開2000-155262では永 久磁石が発生する磁束の弱め界磁方法として、ばねとガ バナを用いて遠心力を利用した機構を用いる。

[0005]

【発明が解決しようとする課題】従来技術で述べた弱め 界磁制御技術により高速運転領域を広げることは、弱め 界磁電流による発熱や効率低下などにより限界がある。 【0006】また、特開2000-155262による 方法では、ばねとガバナの構造が複雑である。

【0007】本発明は、簡単な構造で永久磁石が発生する磁束の弱め界磁が可能な回転電機を提供し、更に、熱機関始動等の低回転領域における高トルク特性と、高回転領域において高出力発電特性が得られる永久磁石形回転電機を備えた発電システムを提供することを目的とする。

[0008]

【課題を解決するための手段】本発明では、一次巻線を有する固定子と界磁用磁石とシャフトとを有する回転子からなる回転電機において、前記界磁用磁石は、回転方向に順次異なった極性の磁極が並んでいる第1の界磁用磁石と回転方向に順次異なった極性の磁極が並んでいる第2の界磁用磁石を有し、一方の界磁用磁石が他方の界磁用磁石に対して軸方向と回転方向に変位する機構を有し、第1の界磁用磁石と第2の界磁用磁石との合成磁界が変化することを特徴とする回転電機を用いる。

【0009】また、本発明では、回転電機と、前記回転電機の電力を制御する電力変換器と、熱機関とを有する発電システムにおいて、前記回転電機は、一次巻線を有する固定子と界磁用磁石とシャフトとを有する回転子を有し、前記界磁用磁石は、回転方向に順次異なった極性の磁極が並んでいる第1の界磁用磁石と回転方向に順次異なった極性の磁極が並んでいる第2の界磁用磁石を有し、一方の界磁用磁石が他方の界磁用磁石に対して軸方向と回転方向に変位する機構を有し、第1の界磁用磁石と第2の界磁用磁石との合成磁界が変化する回転電機を用いる発電システムである。

[0010]

【発明の実施の形態】以下に本発明の実施形態について 説明する。

【0011】図1は本実施例の永久磁石形同期回転電機の配置レイアウトを示したものである。

【0012】熱機関を有する発電システムは様々である が、その一例として、タービン発電システムの実施例を 示したのが図1である。

【0013】図1において、回転電機2と直接又は間接 に取り付けられた圧縮機90とタービン91を備えて、 前記回転電機の電力を制御する電力変換器4と、燃焼器 92と、熱交換器93からなるタービン発電システムで ある。ここに、吸入空気はフィルター96を通して回転 電機2を貫いて圧縮機90に至るようになっているが、 回転電機2.圧縮機90の間から空気を吸入する構造で 10 も良い。また、排熱回収装置94を取り付けることで、 発電システム全体の効率を上げる構造になっている。

【0014】この様な構成とすることで、本実施例の永 久磁石形回転電機 2 はタービン 9 1 を始動することがで きる。タービンの始動はタービンを速度ゼロから自律速 度まで上げる時、前記回転電機は電動機として運転され る。タービンの特徴は、静止時の抵抗トルクがゼロでな く、この抵抗トルクは回転開始と共に急速に増加し、定 格速度(Ng)の15~20%あたりで減少し、定格速 度の30~40%でゼロになることである。前記自律速 20 度とはタービンの正常運転速度の約半分であり、それを 越えた場合にはタービンがもはや始動装置の補助(電動 機のトルク)を必要としないで完全駆動系となるような 速度であり、発電機として運転される。

【0015】図2は図1の回転電機の回転子同磁極中心 がずれた場合の概略を示す。固定子鉄心10には電機子 巻線11がスロット内に巻装されており、内部に冷媒が 流れる冷却路12をもったハウジング13に結合されて いる。

22に固定した第1回転子20Aとシャフト22と分離 した第2回転子20Bからなる。勿論、永久磁石埋め込 み型回転子のみならず、表面磁石型回転子でも良い。

【0017】第1回転子20Aには、永久磁石21Aが 回転方向に順次異なった極性の磁極が並んでいる。同じ く、第2回転子20Bには、永久磁石21Bが回転方向 に順次異なった極性の磁極が並んでいる。第1の界磁用 磁石と第2回転子の2つの回転子を同一軸上に配置した 界磁用磁石は固定子磁極に対向している。

Bとなり、それに当たるシャフトにはボルトのネジ部2 3Aとなり、お互いにネジの機能を持たせると、第2回 転子20Bはシャフトに対して回転しながら軸方向に移 動可能である。

【0019】また、第2回転子20日が固定子の中心か ら所定の変位以上はみ出さないように前記第2回転子2 0Bの側面から離れたところにはストッパー24を設け る。さらに、サーボ機構であるストッパー駆動用アクチ ュエータ25を設けて、前記ストッパー24をシャフト と平行に左右に移動可能にすれば、第1の界磁用磁石と 50 【0029】図5に永久磁石形同期回転電機の回転角速

第2の界磁用磁石との磁極中心がずれる値を変えること が出来る。結果的には、電機子巻線11がスロット内に 巻装されている固定子に対して、第1の界磁用磁石と第 2の界磁用磁石からなる全体の有効磁束量を制御可能で ある。

【0020】上記の構造にすることで、トルクの方向に 応じて永久磁石の有効磁束量を変化することについて述

【0021】基本的に固定子には電機子巻線と回転子に は永久磁石を用いる回転電機において、電動機として働 く時と、発電機として働く時の回転子の回転方向が同じ であれば、電動機として働く時と、発電機として働く時 の回転子が受けるトルクの方向は反対になる。

【0022】また、同じ電動機と働く時、回転子の回転 方向が反対になれば、トルク方向も反対になる。同じ く、同じ発電機と働く時、回転子の回転方向が反対にな れば、トルク方向も反対になる。

【0023】上記に説明した回転方向とトルク方向によ る基本理論を本発明の実施形態に係る回転電機に適用す ると以下の通りである。

【0024】タービン始動等のように低回転領域におい て電動機として働く時は、図3に示すように、第1回転 子20Aと第2回転子20Bの同磁極の中心が揃うよう にして、固定子磁極と対向する永久磁石による有効磁束 量を最大にして、高トルク特性が得られる。

【0025】次に発電機として働く時は、図2に示すよ うに回転子の回転方向が同じであると、回転子が受ける トルク方向は電動機として働く時と反対になり、シャフ ト22に対して第2回転子20日はボルトのネジ部から 【0016】永久磁石埋め込み型回転子20はシャフト 30 ナット部が外れるように第1回転子20Aと第2回転子 20 Bの間の間隔が広がりながら同磁極の中心がずれ て、固定子磁極と対向する永久磁石による有効磁束量を 少なくすることになり、言い換えると弱め界磁効果があ り、高回転領域において高出力発電特性が得られる。

> 【0026】第1回転子20Aと第2回転子20Bの間 の間隔が広がりながら同磁極の中心がずれて、固定子磁 極と対向する永久磁石による有効磁束量が少ない状態の 概略を図4に示す。

【0027】図3と図4の左下にはボルトの頭部61, 【0018】第2回転子20日の内径側はナット部23 40 ボルトのネジ部60とナット部62に関係した図を示す が、ボルトの頭部61は第1回転子20A. ナット部6 2は第2回転子20日に相当するものである。ボルトの ネジ部60(図2内の23Aに相当する)が同じ方向に 回転するとすれば、ナット部62にかかるトルクの方向 によって該ナット部62は締まったり外れたりするよう に、第2回転子20日も回転子のトルク方向によって同 じ動きをする。

> 【0028】本発明の回転電機による誘導起電力の作用 について説明する。

7

度に対する有効磁束、誘導起電力、端子電圧の特性を示 す。

【0030】永久磁石形同期回転電機の誘導起電力Eは 永久磁石が発生する磁束Φと回転電機の回転角速度ωに よって決定される。 つまり図5 (a) に示す様に、回転 子に配置されている永久磁石が発生する磁束Φ1が一定 ならば、回転角速度ω (回転数) が上昇すると、回転電 機の誘導起電力E1は比例して上昇する。しかし、前記 電力変換器4の電源端子電圧や容量の制限があり、回転 電機が発生する誘導起電力もある条件値以下に抑えなけ 10 ればならない。その為永久磁石形同期回転電機では、あ る回転数以上の領域では永久磁石が発生する磁束を減ら す為のいわゆる弱め界磁制御を行わなくてはならない。 【0031】誘導起電力が回転角速度に比例して上昇す る為、弱め界磁制御の電流も大きくしなければならない 故に、1次導体であるコイルに大電流を流す必要があ り、おのずとコイルの発生する熱が増大する。そのた め、高回転領域における回転電機としての効率の低下, 冷却能力を超えた発熱による永久磁石の減磁等が起こり うる可能性がある。

【0032】例えば、図5(a)に示す様に、永久磁石 が発生する磁束Φ1がある回転角速度ω1 (回転数)の ポイントで磁束Φ2に変わると、回転電機の誘導起電力 E1から誘導起電力E2特性に変化することで誘導起電 力の最大値を制限することが可能である。

【0033】図5(b)は同様に回転角速度ω(回転 数)に応じてより細かく磁束Φが変われば、誘導起電力 Eも一定に保つことが可能であることの概略を示す。

【0034】そこで、本発明は回転電機の第1の界磁用 磁石と第2の界磁用磁石に分割した回転子を同一軸上に 30 配置し回転トルクの方向により第1の界磁用磁石と第2 の界磁用磁石の磁極中心を変化させ、タービン始動等の ように低回転領域において電動機として働く時は第1回 転子と第2回転子の同磁極の中心が揃えるようにして、 固定子磁極と対向する永久磁石による有効磁束量を大に して、高トルク特性が得られる。次に発電機として働く 時は、回転子の回転方向が同じであると、回転子が受け るトルク方向は電動機として働く時と反対になり、第1 回転子と第2回転子の同期極の中心がずれて、固定子磁 極と対向する永久磁石による有効磁束量を少なくするこ とになる。言い換えると弱め界磁効果があり、高回転領 域において高出力発電特性が得られる。

【0035】更に、図5(b)に示した特性を得る手段 の実施例の一つとして、前記第1の界磁用磁石はシャフ トに固定し、前記第2の界磁用磁石はシャフトと可動自 在に結合すると共に、シャフトにはボルトのネジ部のネ ジ部と第2の界磁用磁石の内周側にはナット部になりお 互いにネジの機能を持たせて接続し、第2の界磁用磁石 の側面から離れたところにはストッパーを設け、ストッ パーを回転速度に応じてシャフトと平行に可変可能なサ 50 用いて軸方向変位量 A L を測定し、電力変換器のコント

ーボ機構を持たせた回転電機を用いることで可能であ る。

【0036】図6は図1の回転電機の制御ブロック図を 示したものである。

【0037】まず、タービンコントローラ及び単独に設 置しているセンサからの情報(圧縮機圧力,ガス温度, 運転モード、燃料ガススロットル開度etc)、および永 久磁石形同期回転電機2の回転数を基に、運転判断部1 01が永久磁石形同期回転電機2の運転動作を判断して 電流指令値を出力する。運転判断部101から出力され た電流指令値は、現在の永久磁石形同期回転電機2の電 流値との差分に対して非干渉制御等を行っている電流制 御ブロック102に入力する。

【0038】電流制御ブロック102からの出力は回転 座標変換部103で3相の交流に変換され、PWMイン バータ主回路104を介して永久磁石形同期回転電機2 を制御する。また、永久磁石形同期回転電機2の各相の 電流(少なくとも2相の電流)および回転数 (タービン回 転数でもよい。また変速機がある場合にはターピン回転 数の逓倍した値を用いても良い。)を検出し、各相の電 流は2軸変換ブロック105で、2軸電流に変換し、電 流指令値にフィードバックしている。また、回転数、磁 極位置らは検出器106で検出され、磁極位置変換部1 07と速度変換部108を通して各制御ブロックにフィ ードバックされる。

【0039】尚、図6における実施例では、回転電機2 の位置・速度センサ、ならびに回転電機の電流センサが ある場合のものを示したが、これらの一部のセンサを排 除し、センサレスにより回転電機2を駆動するタイプの 制御構成のものでも、同様に実施可能である。

【0040】また、本発明の永久磁石形同期回転電機 は、運転状況に応じて第1回転子と第2回転子の両磁極 中心を揃えたり、ずらせたりすることになるので、前記 第1の界磁用磁石と第2の界磁用磁石との合成磁極位置 のずれに応じて前記電力変換器を制御するコントローラ による電流供給の進角を補正する機能を持つ。

【0041】電流供給の進角を補正する実施例について

【0042】前記第1の界磁用磁石はシャフトに固定 し、前記第2の界磁用磁石はシャフトと可動自在に結合 すると共に、シャフトにはボルトのネジ部と第2の界磁 用磁石の内周側にはナット部になりお互いにネジの機能 を持たせると、第2の界磁用磁石は回転しながら軸方向 に移動する。

【0043】運転状況に応じて第1回転子と第2回転子 の磁極中心が一致したり、ずれたりする場合の回転角と 軸方向変位量の関係を図13に示す。

【0044】図13において、第2回転子の回転角 θ と 軸方向変位量△ Lは比例関係であり、変位測定器 6.4 を ローラにフィードバックされ第1の界磁用磁石と第2の 界磁用磁石との合成磁極位置のずれ角に換算した値とし て、電流供給の進角を補正する最適制御に用いる。

【0045】図7は本発明の他の実施形態をなす回転電 機を示す。

【0046】前記第1回転子20Aはシャフト22に固 定し、前記第2回転子20日はシャフト22と可動自在 に結合すると共に、シャフトの一部にはボルトのネジ部 23Aと第2の界磁用磁石の内周側にスリーブ41を固定 し、かつスリーブ41の内側にナット部23Bを固定し 10 たものを一体化すれば、シャフト22に対して第2回転 子20Bはボルトのネジ部からナット部が外れる方向に 第1回転子20Aと第2回転子20Bの間の間隔が広が りながら回転する。

【0047】第2の界磁用磁石の内周側とシャフト22 間にはわずかな遊びがあることで、回転と共に第2の界 磁用磁石の内周側とシャフト22間に鎖交磁束変化が生 じると、電食等の障害があるが、前記スリーブ41は鉄 より電気抵抗率が高い非磁性体を用いることで、第2の 界磁用磁石の内周側とシャフト22に間には磁気的に も、電気的にも絶縁を行う効果がある。

【0048】前記第2の界磁用磁石と前記シャフト間に は回転運動と往復運動及び複合運動を案内出来るように スリーブ41の内側に支持機構40A,40Bを備え た。

【0049】第2回転子20Bはシャフトの一部にボル トのネジ部23Aを設け、これとお互いにネジの機能を 持たせて、第2の界磁用磁石の側面から離れたところに は移動可能なストッパー24を設ける。ストッパー24 とシャフト間、ストッパーと第2回転子20日の側面間 30 には回転運動と往復運動及び複合運動を案内出来るよう に支持機構42,47を設ける。支持機構42はスラス ト軸受の機能を持ち、支持機構47はラジアル軸受であ りながら回転運動と往復運動及び複合運動を案内する機 能を持つ。

【0050】さらに、ばね48を設けることで、支持機 構42はスラスト軸受としてその機能が向上する効果が

【0051】ストッパー24はシャフトと平行に移動可 能なサーボ機構の一例として電磁クラッチについて述べ 40

【0052】電磁クラッチの構成は、ヨーク44にコイ ル46が巻かれて、ストッパー24は可動鉄心の機能を 兼用することで良い。ヨーク44とコイル46は回転電 機のフレーム49、若しくは車体の一部に(図に示せ ず) 固定し、ヨーク44とストッパー24の間にばね4 5を備えて励磁遮断時の復帰装置の機能を持つ。回転電 機のフレーム49とシャフト22の間には軸受50で支 える。

【0053】図7はコイル46に無励磁状態の概略であ 50 【0064】図12は本発明の他の実施形態をなす回転

り、図8はコイル46に励磁状態の概略を示す。

【0054】コイル46を励磁することでヨーク44は 強力な電磁石となり、可動鉄心の機能を兼用するストッ パー24を吸引する。

1.0

【0055】ここに示した電磁クラッチはストッパー2 4をシャフトと平行に可変可能なサーボ機構の一例であ り、油圧アクチュエータ、回転機とボールネジなどによ る直線駆動装置,リニアモータなどを用いることで、よ り細かなストッパーの位置決めが可能である。

【0056】図9は第2回転子20Bの内側に固定され るスリーブ41の一例を示す。

【0057】それらの固定方法の一つとして、第2回転 子20日とスリーブ41からなる2つの部品の接する面 のお互いに凸凹を設けて固定した。また、シャフト22 に固定した第1回転子20Aとシャフト22と分離した 第2回転子20Bの内側違いの概略を示す。

【0058】図10は本発明の他の実施例を示す。

【0059】前記第1の界磁用磁石と前記第2の界磁用 磁石が接する前記第1の界磁用磁石側面に凹部53を設 20 け、前記第2の界磁用磁石には前記スリーブの機能を兼 ねた突起部54を設けた構造である。突起部54はスリ ーブ41と一体ものでも良いし、第2回転子20Bと一 体ものでも良い。よって、スリーブ41の十分なスペー スが確保出来、ばね48,支持機構40A,40B,ナ ット部23Bらを有効に配置することで、第2回転子2 O Bの軸長積厚が薄い回転電機に有効な手法の一つであ る。

【0060】図11は本発明の他の実施例を示す。

【0061】図11に示す基本構成要素は図7と同じで あるが、電磁クラッチに相当する一部を変更した一例で ある。図11はコイル46が励磁状態であり、励磁遮断 時はばね45によりヨーク44とストッパー24は切り 離れる。また、第2回転子20Bにトルクが加わるボル トのネジ部23Aとナット部23Bの相互作用によるネ ジの機能により推力が得られる特性を持つ。よって、ネ ジとトルクの相互関係でストッパー24を押し出す推力 が加われば、コイル46の励磁を遮断するとストッパー 24はヨーク44と切り離れる。ヨーク44はアーム5 2を介してフレーム49、若しくは設備本体の一部に (図に示せず)固定される。

【0062】図11に示す電磁クラッチは、図7,図8 の説明と同じくストッパー24をシャフトと平行に可変 可能なサーボ機構の一例であり、油圧アクチュエータ、 回転機とボールネジなどによる直線駆動装置、リニアモ ータなどを用いることで、より細かなストッパー24の 位置決めが可能である。

【0063】勿論、各図に示した各々の構成要素は様々 な方法で組合わせることが可能であり、用途に合わせて 加えたり、取り外すことは言うまでもない。

電機を示す。

【0065】本発明の回転電機の特徴として、第1回転 子20Aはシャフト22に対してしっかり固定されてい るのに対して、第2回転子20Bはシャフト22に対し て自由度を持つことになる。従って、第2回転子20日 とシャフト22間にはわずかな機械的な寸法の遊びがあ り、大きなトルクや遠心力などが加わると偏心すること もあり得る。よって、第1の界磁用磁石を有する第1回 転子20Aと前記固定子間のエアギャップGap1より 第2の界磁用磁石を有する第2回転子20Bと前記固定 10 子間のエアギャップGap2の方が大きくしたことで、 偏心による第2回転子20Bと前記固定子との機械的な 接続を省く効果がある。

【0066】図15は本発明の他の実施形態をなす回転

【0067】本発明の回転電機の特徴として、第2回転 子20 Bの外周側の長さより内周側の長さを短くし、第 2回転子20B内側にストッパー24とサーボ機構25 を備えた構造である。よって、ストッパー24とサーボ 機構25による回転子全体の軸方向長さを押さえる効果 20 がある。

【0068】以上の本発明の説明では、4極機を対象に 述べたが、2極機、又は、6極機以上に適用出来る事は 言うまでもない。一例として、図14には本発明を8極 機に適用した場合の永久磁石形同期回転電機の回転子概 略図を示す。また、回転子においては埋め込み磁石形で も、表面磁石形でも適用出来る事は言うまでもない。

[0069]

【発明の効果】本発明の永久磁石形同期回転電機は第1 るという構成により、固定子磁極と対向する永久磁石に よる有効磁束量を可変出来るという効果があり、熱機関 を有する発電システムの回転電機に適している。

【図面の簡単な説明】

【図1】本発明の一実施形態をなす回転電機とタービン とのレイアウト図を示す。

【図2】図1の回転電機の全体概略を示す。

【図3】図1の回転電機の回転子同磁極中心が揃った場 合概略を示す。

【図4】図1の回転電機の回転子同磁極中心がずれた場 合概略を示す。

【図5】図1の回転電機の回転角速度に対する諸特性を 示す。

【図6】図1の回転電機の制御ブロック図を示す。

【図7】 本発明の他の実施形態をなす回転電機を示す (アクチュエータOFF状態)。

【図8】本発明の他の実施形態をなす回転電機を示す (アクチュエータON状態)。

【図9】本発明の他の実施形態をなす回転電機の回転子 の内側を示す。

【図10】本発明の他の実施形態をなす回転電機の回転 子の内側を示す。

【図11】本発明の他の実施形態をなす回転電機を示す (アクチュエータON状態)。

【図12】本発明の他の実施形態をなす回転電機の回転 子概略図を示す(Gapの差を付ける)。

【図13】本発明の他の実施形態をなす回転電機の軸方 向変位測定の概略図を示す。

【図14】本発明の他の実施形態をなす回転電機の回転 子概略図を示す(8極機に適用した場合)。

【図15】本発明の他の実施形態をなす回転電機の回転 子概略図を示す(ストッパを第2回転子の内側に備え る)。

【符号の説明】

2…回転電機、4…電力変換器、10…固定子鉄心、1 1…電機子巻線、12…冷却水流路、13…ハウジン の界磁用磁石と第2の界磁用磁石の磁極中心を変化させ 30 グ、20…回転子、20A…第1回転子、20B…第2 回転子、21…永久磁石、21A…第1回転子永久磁 石、21B…第2回転子永久磁石、22…シャフト、2 3…ネジ、24…ストッパー、25…ストッパー駆動用 アクチュエータ、90…・圧縮機、91…タービン、1 01…運転判断部、102…電流制御、103…回転座 標変換部、104…PWMインバータ主回路、105… 2軸変換部。

【図4】

【図7】

【図12】

【図8】

【図10】

【図11】

【図15】

【図13】

【図14】

【手続補正書】

【提出日】平成13年7月23日(2001.7.23)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0022

【補正方法】変更

【補正内容】

【0022】また、同じ電動機と<u>して</u>働く時、回転子の 回転方向が反対になれば、トルク方向も反対になる。同 じく、同じ発電機と<u>して</u>働く時、回転子の回転方向が反 対になれば、トルク方向も反対になる。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0035

【補正方法】変更

【補正内容】

【0035】更に、図5(b)に示した特性を得る手段の実施例の一つとして、前記第1の界磁用磁石はシャフトに固定し、前記第2の界磁用磁石はシャフトと可動自在に結合すると共に、シャフトにはボルト<u>のネ</u>ジ部と第2の界磁用磁石の内周<u>側は</u>ナット部になりお互いにネジの機能を持たせて接続し、第2の界磁用磁石の側面から離れたところにはストッパーを設け、ストッパーを回転速度に応じてシャフトと平行に可変可能なサーボ機構を持たせた回転電機を用いることで可能である。

フロントページの続き

Fターム(参考) 5H002 AA05 AA09 AB02 AB07 AB08

ACO3 ACO6 AEO8

5H621 AA03 BB02 GA01 GA04 GA17

HH01 JK02 JK05 JK08 JK17

PP02 PP03 PP10

5H622 AA03 CA02 CA07 CA13 CB03

CB05 CB06 PP11