

Low power consumption, Low dropout voltage,

With CE function ME6215 Series

General Description

ME6215 series are highly precise, low power consumption, high voltage, positive voltage regulators manufactured using CMOS and laser trimming technologies .The series provides large currents with a significantly small dropout voltage. The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin. The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption. The ME6215 series can operate with up to 18V input.

Features

- Highly Accurate: ±2%
- Output voltage range: 1.5V~5.0V
- Low power consumption: 6uA(TYP.)
- Large output current: 300mA (V_{IN}=3.8V,V_{OUT}=2.8V)
- Input voltage: up to 18V
- Dropout voltage:
 - 0.16V at 100mA and 0.32V at 200mA
- CE Pin Function : Active High
- Short-circuit Current: 25mA(TYP.)
- Excellent Input Stability
- Be available to regulator and reference voltage

Applications

- Battery powered equipment
- Communication tools
- Mobile phones
- Portable games
- Portable AV systems
- Cameras, Video systems
- Reference voltage sources

Packages

• 5-pin SOT23-5

Typical Application

Selection Guide

product series	product description
ME6215C28M5G	V _{OUT} =2.8V
ME6215C30M5G	V _{OUT} =3.0V
ME6215C33M5G	V _{OUT} =3.3V

V02 <u>www.microne.com.cn</u> Page 2 of 7

Pin Configuration

Pin Assignment

Pin Num	Symbol	Function		
SOT23-5	Symbol	Function		
1	V _{IN}	Power Input		
2	V _{SS}	Ground		
3	CE	ON / OFF Control		
4	NC	No Connect		
5	V _{OUT}	Output		

Block Diagram

V02 <u>www.microne.com.cn</u> Page 3 of 7

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage		V_{IN}	18	V
Output Current		I _{OUT}	580	mA
Output Voltage		V _{OUT}	Vss-0.3 \sim V $_{\text{IN}}$ +0.3	V
CE Pin Voltage		V_{CE}	Vss-0.3 \sim V $_{\text{IN}}$ +0.3	V
Power Dissipation	SOT23-5	P_D	250	mW
Operating Temperature Range		T _{OPR}	-40~+125	$^{\circ}$ C
Storage Temperature Range		T _{STG}	-40~+150	$^{\circ}$ C
Lead Temperature			260°C, 4sec	

Electrical Characteristics

 $(V_{IN}=V_{OUT}+1V, V_{CE}=V_{IN}, C_{IN}=C_{OUT}=1uF, Ta=25^{O}C, unless otherwise noted)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I_{OUT} =10mA, V_{IN} = V_{OUT} +1 V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Input Voltage	V _{IN}		2.8		18	V
Maximum Output Current	I _{OUTMAX}	V _{IN} = V _{OUT} +1V		300	350	mA
Load Regulation	ΔV_OUT	V _{IN} = V _{OUT} +1V , 1mA≤I _{OUT} ≤100mA		4		mV
Dropout Voltage	V_{DIF1}	I _{OUT} =100mA		160		mV
(Note 1)	V_{DIF2}	I _{OUT} =200mA		320		mV
Supply Current	I _{SS}	V _{IN} = V _{OUT} +1V		6		μA
Stand-by Current	I _{CEL}	V _{CE} =0V		0		μA
Line Regulation	ΔV_{OUT}	$I_{OUT} = 30 \text{mA}$ $V_{OUT} + 1 \text{V} \leq V_{IN} \leq 18 \text{V}$		30		mV
CE "High" Voltage	VCEH	Start up	1.3			V
CE "Low" Voltage	VCEL	Shut down			0.8	V
Short-circuit Current	I _{SHORT}	$V_{IN} = V_{OUT} + 1V$, $V_{CE} = V_{IN}$, $V_{OUT} = 0V$		25	50	mA
Over Current Protection	I _{limit}	V _{IN} = 3.8V		580	750	mA

Note:

1. V_{OUT} (T): Specified Output Voltage

2.V_{OUT} (E): Effective Output Voltage (le. The output voltage when "V_{OUT} (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value.)

3.V_{DIF}: V_{IN1} –V_{OUT} (E)'

 V_{IN1} : The input voltage when $V_{\text{OUT}}(E)$ ' appears as input voltage is gradually decreased.

 V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized lout $\{V_{OUT}(T)+1.0V\}$ is input.

V02 <u>www.microne.com.cn</u> Page 4 of 7

Type Characteristics (ME6215C28)

(1) Output Voltage VS. Output Current (V_{IN}=V_{OUT}+1, **Ta = 25 °C**)

(3) Dropout Voltage VS. Output Current

 $(V_{IN}=V_{OUT}+1V,Ta = 25 \text{ }^{\circ}C)$

(2) Output Voltage VS. Input Voltage $(V_{IN}=V_{OUT}+1, I_{OUT}=10$ mA ,**Ta = 25** °C)

(4) Supply Current VS. Input Voltage

(Ta = 25 °C)

(5) Output Voltage VS. Temperature (V_{IN}=V_{OUT}+1V, I_{OUT} =10mA)

Packaging Information

Packaging Type: SOT23-5

DIM	Millimeters		Inches		
DIM	Min	Max	Min	Max	
A	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30°	00	30 ⁰	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
 described herein whose related industrial properties, patents, or other rights belong to third parties.
 The application circuit examples explain typical applications of the products, and do not guarantee the
 success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.