レポート問題

以下の中から5題以上問題を選んで解答し、レポートとして提出せよ.

1. $\{\xi_i\}_{i=1}^{\infty}$ を平均ベクトル 0, 共分散行列 I(単位行列) の正規分布に従う \mathbb{R}^d 値独立確率変数列とする. $\{e_i\}_{i=1}^{\infty}$ を $L^2([0,1],\mathbb{R})$ の完全正規直交系とし,

$$X_n(t,\omega) = \sum_{i=1}^n \xi_i(\omega) \int_0^t e_i(u) du$$

と定める. 各 t に対して, $\lim_{n\to\infty} X_n(t,\omega)$ が概収束することを示せ. その極限の確率過程を X(t) とおくと X(t) の連続修正は 0 から出発する標準ブラウン運動であることを示せ.

- 2. 講義ノートの系 1.22 を証明せよ.
- 3. \mathcal{F}_t -停止時間 σ_n, σ, τ (n = 1, 2, ...) について次を示せ.
 - (1) $\sigma \vee \tau (= \max(\sigma, \tau)), \sigma \wedge \tau (= \min(\sigma, \tau))$ は停止時間である.
 - (2) 任意の ω について $\sigma(\omega) \leq \tau(\omega)$ ならば $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.
 - (3) $\mathcal{F}_{\tau \wedge \sigma} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.
 - (4) $\{\tau < \sigma\}, \{\tau \le \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}.$
 - (5) $\{\mathcal{F}_t\}$ が右連続とする. $\sigma_{n+1}(\omega) \leq \sigma_n(\omega) \ (n=1,2,\ldots,\forall \omega\in\Omega)$ とし、 $\sigma(\omega)=\lim_{n\to\infty}\sigma_n(\omega)$ とおく. $\sigma(\omega)=\lim_{n\to\infty}\sigma_n(\omega)$ とおく. $\sigma(\omega)=\lim_{n\to\infty}\sigma_n(\omega)$
- 4. $(M_n, \mathcal{F}_n)_{n=0}^{\infty}$ を非負マルチンゲールとする. マルチンゲールの収束定理により, $M_{\infty}(\omega) := \lim_{n \to \infty} M_n(\omega)$ は概収束することに注意する. $P\left(\{\inf_{n \geq 1} M_n > 0\} \triangle \{M_{\infty} > 0\}\right) = 0$ を示せ. ただし, 集合 A, B に対し $A \triangle B = (A \setminus B) \cup (B \setminus A)$ である.
- 5. X_t を F_t -劣マルチンゲールとする. τ を F_t -停止時間とする時, $X_t^{\tau} (= X_{\tau \wedge t})$ は F_t -劣マルチンゲールとなる. これを以下に従って示せ.
 - (1) $\tau \wedge t$ は \mathcal{F}_{t} -停止時間であることを示せ.
 - (2) $s < t, A \in \mathcal{F}_s$ のとき, $E[X_{\tau \wedge t}; A] \geq E[X_{\tau \wedge s}; A]$ を示せばよい.

$$E[X_{\tau \wedge t}; A] = E[X_{\tau \wedge t}; A \cap \{\tau < s\}] + E[X_{\tau \wedge t}; A \cap \{\tau > s\}] =: I_1 + I_2.$$

 $I_1 = E[X_{\tau \wedge s}; A \cap \{\tau \leq s\}]$ なので, $I_2 \geq E[X_{\tau \wedge s}; A \cap \{\tau > s\}]$ を示せばよい. Doob の Optional sampling theorem を用いて, これを証明し, 当初の主張を示せ.

- 6. (後ろ向きマルチンゲールの一様可積分性と収束定理) $(X_n, \mathcal{F}_n)_{n=0}^{\infty}$ を後ろ向き劣マルチンゲールとする. すなわち、
 - (a) $\mathcal{F}_n \supset \mathcal{F}_{n+1}$ $(n \ge 1)$,
 - (b) X_n は \mathcal{F}_n -適合かつ $X_n \in L^1$,
 - (c) $E[X_n | \mathcal{F}_{n+1}] \ge X_{n+1}$ $(n \ge 1)$.

さらに、 $\inf_n E[X_n] > -\infty$ を仮定する. このとき、 $\{X_n\}$ は一様可積分であり、 $P(\lim_{n\to\infty} X_n$ は収束する) = 1 が示せる. これを以下に従い示せ、以下 $\varepsilon > 0$ 、c > 0 とする.

- (1) $N \in \mathbb{N}$ が存在して、任意の $n \geq N$ に対して、 $0 \leq E[X_N] E[X_n] \leq \varepsilon$ を示せ.
- (2) $N \in (1)$ のものとし, $n \ge N$ とする.

$$E[|X_n|; |X_n| \ge c] = E[X_n; X_n \ge c] + E[-X_n; X_n \le -c]$$

$$= E[X_n; X_n \ge c] + E[X_n; X_n > -c] - E[X_n]$$

$$\le E[X_N; X_n \ge c] + E[X_N; X_n > -c] - E[X_n]$$

が成り立つことを確かめよ. さらに、この式を利用して

$$E[|X_n|;|X_n| \ge c] \le E[|X_N|;|X_n| \ge c] + \varepsilon.$$

を示せ.

- (3) $(X_n^+, \{\mathcal{F}_n\}_n)$ も後ろ向き劣マルチンゲールであることを示せ、ただし、 $X_n^+ = \max(X_n, 0)$.
- (4)

$$P(|X_n| \ge c) \le \frac{1}{c} E[|X_n|] = \frac{1}{c} E[2X_n^+ - X_n]$$

を確かめ

$$P(|X_n| \ge c) \le \frac{1}{c} \left(2E[X_0^+] - \inf_n E[X_n] \right)$$

を示せ.

- (5) 以上を用いて, $\{X_n\}$ は一様可積分であることを示せ.
- (6) Doob の横断数の評価定理を用いて $\lim_{n\to\infty} X_n$ は概収束することを示せ.
- 7. $\{M_t\}_{t\geq 0}$ は $M_0=0$ となる \mathcal{F}_t -有界連続マルチンゲールで $\sup_{t\geq 0,\omega}|M_t(\omega)|\leq C_0<\infty$ とする. $[0,\infty)$ の分割 $\Delta=\{0=t_0< t_1<\dots< t_n<\dots\uparrow\infty\}$ に対し, $|\Delta|=\sup_{i\geq 1}|t_i-t_{i-1}|,\ Q_t(\Delta)=\sum_{i=1}^{\infty}(M_{t_i\wedge t}-M_{t_{i-1}\wedge t})^2$ とおく.
 - (1) $\{Q_t(\Delta) M_t^2\} \in \mathcal{M}_2^c(\mathcal{F}_t)$ および $E[Q_t(\Delta)^2] \le 6C_0^4$ $(t \ge 0)$ を示せ.
 - (2) Δ' を Δ の細分とする. 任意の T > 0 に対して

$$E\left[\max_{0 \le t \le T} |Q_t(\Delta) - Q_t(\Delta')|^2\right] \le 4E\left[\max_{|u-v| \le |\Delta|, 0 \le u, v \le T} |M_u - M_v|^4\right]^{1/2} E\left[Q_T(\Delta')^2\right]^{1/2}$$

$$\le 4\sqrt{6}C_0^2 E\left[\max_{|u-v| \le |\Delta|, 0 \le u, v \le T} |M_u - M_v|^4\right]^{1/2}$$

を示せ.

8. $M=(M_t), N=(N_t)$ をそれぞれ 2 乗可積分 \mathcal{F}_{t^-} 連続マルチンゲールで $M_0=N_0=0$ とする. さらに $\{M_t; t\geq 0\}$ と $\{N_t; t\geq 0\}$ は独立とする. このとき $\langle M,N\rangle_t=0$ を示せ.

- 9. (B_t^1, B_t^2) $(0 \le t \le 1)$ を 2 次元ブラウン運動とする. $\mathcal{P}_m = \{\tau_k^m\}_{k=0}^{2^m} \tau_k^m = k2^{-m}$ という [0,1] の分割を考える.
 - (1) $I^m=\sum_{k=1}^{2^m}B^1_{\tau^m_{k-1}}(B^1_{\tau^m_k}-B^1_{\tau^m_{k-1}})$ とおく. $\sum_{m=1}^\infty\|I^{m+1}-I^m\|_{L^2}<\infty$ を示すことにより $\lim_{m\to\infty}I^m$ は L^2 収束および概収束することを示せ.
 - $(2) \ J_l^{m,i,j} = \sum_{k=1}^l \left\{ (B_{\tau_k^m}^i B_{\tau_{k-1}^m}^i) (B_{\tau_k^m}^j B_{\tau_{k-1}^m}^j) \delta_{i,j} 2^{-m} \right\} \ (i,j=1,2) \ \text{とおく. Doob} \ \mathcal{O}$ 不等式を用いて $E[\max_{1 \leq l \leq 2^m} |J_l^{i,j,n}|^2]$ を評価し L^2 収束,概収束の意味で

$$\max_{t \in [0,1]} \left| \left(\sum_{k=1}^{\lfloor 2^m t \rfloor} (B^i_{\tau^m_k} - B^i_{\tau^m_{k-1}}) (B^j_{\tau^m_k} - B^j_{\tau^m_{k-1}}) \right) - \delta_{i,j} t \right| \to 0$$

を示せ. ただし, $\lfloor x \rfloor = \max\{n \in \mathbb{Z} \mid n \leq x\}$.

- 10. A(t) $(t \ge 0)$ は教義単調増加連続関数で A(0) = 0, $\lim_{t\to\infty} A(t) = \infty$ とする. $A^{-1}(t)$ を A(t) の逆関数とする. μ_A を 写像 $A^{-1}:[0,\infty)\to[0,\infty)$ によるルベーグ測度 m_L の像測度とする.
 - (1) 区間 [a,b], (a,b], [a,b) について $\mu_A([a,b]) = \mu_A((a,b]) = \mu_A([a,b]) = A(b) A(a)$ を示せ.
 - (2) $[0,\infty)$ 上の任意の有界ボレル可測関数 φ と t>0 について、

$$\int_{[0,t]} \varphi(s) d\mu_A(s) = \int_{[0,A(t)]} \varphi(A^{-1}(u)) dm_L(u)$$

を示せ.

(3) t>0, 自然数 $n\in\mathbb{N}$ に対し.

$$\psi_n(t) = \frac{\int_{(t-1/n)^+}^t \varphi(s) d\mu_A(s)}{A(t) - A((t-1/n)^+)}$$

 $\psi_n(0)=0$ 、とおく、ただし、 $(t-1/n)^+=t-1/n$ $(t\geq 1/n)$ 、 $(t-1/n)^+=0$ (t<1/n) である. $\mu_A(N)=0$ となるボレル集合 N が存在し、任意の $t\in N^c$ に対し

任意の
$$t \in N^c$$
 に対し, $\lim_{n \to \infty} \psi_n(t) = \varphi(t)$ (*)

となることを次に従い示せ.

(i) 任意の $u \ge 0$ に対し,

$$\psi_n(A^{-1}(u)) = \frac{\int_A^u \left(\left(A^{-1}(u) - \frac{1}{n}\right)^+ \right) \varphi(A^{-1}(v)) dm_L(v)}{u - A\left(\left(A^{-1}(u) - \frac{1}{n}\right)^+ \right)}$$

を示せ.

- (ii) $m_L(N)=0$ となるボレル集合 N_L が存在して、任意の $u\in N_L^c$ に対して $\lim_{n\to\infty}\psi_n(A^{-1}(u))=\varphi(A^{-1}(u))$ となることを示せ、また、このことから(*)を証明せよ.
- 11. 上記問題の結果を連続マルチンゲール $M_t(\omega)$ の 2 次変分過程 $A_t(\omega) = \langle M \rangle_t(\omega)$ の場合に適用し、単過程が $\mathcal{L}^2(\mu_A)$ で dense であることを証明しよう.

- (1) $f \in \mathcal{L}_2([0,T]; M)$ に対して, $f_n(t,\omega) = (-n) \vee f(t,\omega) \wedge n$ とおくと, $\lim_{n\to\infty} \|f_n f\|_{\mathcal{L}_2(M)} = 0$ を示せ. これにより, f が有界確率過程の場合 \mathcal{L}_0 の元で近似できることが示せれば十分.
- (2) $f \in \mathcal{L}_2(M)$ が有界とする. $A_t(\omega) = \langle M \rangle_t(\omega) + t$ とおき, $f_n(t,\omega)$ を $f_n(0,\omega) = 0$,

$$f_n(t,\omega) = \frac{\int_{(t-1/n)^+}^t f(s,\omega) dA_s(\omega)}{A_t(\omega) - A_{(t-1/n)^+}}$$
 $t > 0$

と定める. f_n は \mathcal{F}_{t} -適合有界発展的可測過程であることを示せ.

- (3) \mathcal{L}_0 は $\mathcal{L}_2(M)$ で稠密であることを示せ.
- 12. σ を \mathcal{F}_t -停止時間とする. $1_{[0,\sigma]}(t)$ が \mathcal{L}_0 に属すためには、次が成立することと同値であることを示せ: 発散する教義単調増加な正数列 $\{s_i\}_{i=1}^N$ が存在して $(N\in\mathbb{N}$ または $N=\infty$),
 - (a) $\{\sigma(\omega) \mid \omega \in \Omega, \sigma(\omega) > 0\} = \{s_i\}_{i=1}^N$,
 - (b) $\{\sigma \leq s_{i+1}\} \in \mathcal{F}_{s_i}$.

また、 \mathcal{F}_t -停止時間 σ と $[0,\infty)$ の分割 $\Delta=\{0=t_0< t_1<\cdots< t_n<\cdots\uparrow\infty\}$ に対して $\sigma_{\Delta}(\omega)=\inf\{t\geq 0\,|\,\sigma(\omega)< t,t\in\Delta\}$ と定めると $\{1_{[0,\sigma_{\Delta}]}(t)\}_{t\geq 0}\in\mathcal{L}_0$ となることを示せ.

13. 実数値確率変数の族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ がガウス型確率変数系であるとは、次が成立する時に言う.

 $m = (m_{\lambda}), (m_{\lambda} \in \mathbb{R}), C = (C_{\lambda,\mu})_{\lambda,\mu \in \Lambda} \quad (C_{\lambda,\mu} \in \mathbb{R}, C_{\lambda,\mu} = C_{\mu,\lambda}, \mu, \lambda \in \Lambda)$ が存在して任意の $\lambda = \{\lambda_1, \ldots, \lambda_n\} \subset \Lambda \quad (\lambda_i \neq \lambda_j \text{ if } i \neq j) \geq (t_i)_{i=1}^n \in \mathbb{R}^n \text{ に対して}$

$$E\left[e^{\sqrt{-1}\sum_{i=1}^{n}t_{i}X_{\lambda_{i}}}\right] = \exp\left(\sqrt{-1}\sum_{i=1}^{n}t_{i}m_{\lambda_{i}} - \frac{1}{2}\sum_{i,j=1}^{n}C_{\lambda_{1},\lambda_{j}}t_{i}t_{j}\right). \tag{1}$$

このとき, 以下を示せ.

- (1) X_{λ} は平均 m_{λ} , 分散 $C_{\lambda,\lambda}$ の正規分布に従う. したがって、特に、 $C_{\lambda,\lambda} \geq 0$. ただし、ここでは、定数も 分散 0 の正規分布と考えることにする. また、 $C(X_{\lambda},X_{\mu})=C_{\lambda,\mu}$ ここで、 $C(X_{\lambda},X_{\mu})$ は X_{λ},X_{μ} の共分散を表す.
- (2) $\lambda=\{\lambda_1,\ldots,\lambda_n\}\subset\Lambda$ $(\lambda_i\neq\lambda_j \text{ if } i\neq j)$ に対して、n 次対称行列 $C_\lambda=(C_{\lambda_i,\lambda_j})_{i,j}$ は非負値であることを示せ、また、この行列が正定値の時、確率変数 $X_\lambda={}^t(X_{\lambda_1},\ldots,X_{\lambda_n})$ の分布の密度関数を求めよ.
- (3) $\Lambda_1, \Lambda_2 \subset \Lambda$ とし、 $\Lambda_1 \cap \Lambda_2 = \emptyset$ とする。 $\{X_{\lambda}\}_{{\lambda} \in \Lambda_1}$ と $\{X_{\lambda}\}_{{\lambda} \in \Lambda_2}$ が独立であることと $C_{{\lambda}, \mu} = 0$ (${\lambda} \in \Lambda_1, {\mu} \in \Lambda_2$) となることは同値であることを示せ。
- 14. 実数値確率変数の族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ が次の性質を満たすとする.

任意の $\lambda = \{\lambda_1, \dots, \lambda_n\} \subset \Lambda$ $(\lambda_i \neq \lambda_j \text{ if } i \neq j)$ と $(t_i)_{i=1}^n \in \mathbb{R}^n$ に対して, $\sum_{i=1}^n t_i X_{\lambda_i}$ は 1 次元正 規分布に従う. ただし, 定数も 分散 0 の正規分布と考えることにする.

この性質は, $\{X_{\lambda}\}_{\lambda}$ がガウス型確率変数系であることと同値であることを示せ.

15. $B(t,\omega)$ $(t\geq 0)$ を 1 次元ブラウン運動で $B(0,\omega)=0$ とする. ほとんどすべての ω について $\lim_{t\to\infty}\frac{B(t,\omega)}{t}=0$ となることを大数の強法則を用いて示せ.

16. $B(t,\omega)$ を 0 から出発する 1 次元ブラウン運動とする.任意の $a<\frac{1}{2}$ について $E[e^{a\|B\|^2}]<\infty$ である.ただし $\|B\|=\max_{0\leq t\leq 1}|B(t,\omega)|$.これをマルチンゲール不等式 (p>1)

$$E\left[\left(\max_{0\leq s\leq t}|B_t|\right)^p\right]\leq \left(\frac{p}{p-1}\right)^p E[|B_t|^p]$$

を用いて示せ.

- (注) $M_t(\omega) = \max_{0 \le s \le t} B_s(\omega)$ とおくと任意の t について M_t の分布と $|B_t|$ の分布は等しい.これは Paul Lévy による.このことを用いれば上記の指数可積分性は簡単にわかる.
- 17. $M_t = (M_t^1, \dots, M_t^n)$ を n 次元 \mathcal{F}_t -局所連続マルチンゲールとする。 すなわち, $M^i \in \mathcal{M}^{c,loc}(\mathcal{F}_t)$ $(1 \leq i \leq n)$ とする。 $\langle M \rangle_t = \sum_{i=1}^n \langle M^i \rangle_t$ と書く。 $p \geq 2$ に対し $C_p = \left\{ \left(\frac{p}{p-1} \right)^p \frac{p(p-1)}{2} \right\}^{\frac{p}{2}}$ とおくと

$$E\left[\max_{0\leq s\leq t}|M_s|^p\right]\leq C_p E[\langle M\rangle_t^{p/2}] \qquad (*)$$

となることを次にしたがって示せ、ただし、 $|M_s| = \left(\sum_{i=1}^n (M_s^i)^2\right)^{1/2}$ である.

(1) $\tau_N = \inf\{t>0 \mid |M_t| + \langle M \rangle_t \geq N\}$ とおく. $X_t^{N,\varepsilon} = \left(\varepsilon + |M_t^{\tau_N}|^2\right)^{1/2}, \ X_t^N = |M_t^{\tau_N}|$ とおく. $X_t^{N,\varepsilon}$ は非負劣マルチンゲールであることを示せ. また

$$E\left[\max_{0\leq s\leq t}|X_s^N|^p\right]\leq \left(\frac{p}{p-1}\right)^pE\left[|X_t^N|^p\right]$$

を示せ.

(2) X_t^N に対し Itô の公式を用い、

$$(X_t^N)^p = p \sum_{i=1}^n \int_0^{t \wedge \tau_N} |M_s|^{p-2} M_s^i dM_s^i + \frac{p}{2} \int_0^{t \wedge \tau_N} |M_s|^{p-2} d\langle M \rangle_s$$
$$\frac{p(p-2)}{2} \sum_{1 \le i, j \le n} \int_0^{t \wedge \tau_N} |M_s|^{p-4} M_s^i M_s^j d\langle M^i, M^j \rangle_s$$

を示せ. またこの有界変動部分を A_t と書くと

$$A_t \leq \frac{p(p-1)}{2} \int_0^{t \wedge \tau_N} |M_s|^{p-2} d\langle M \rangle_s$$

を示せ.

- (3) (*) を示せ.
- 18. B_t を d 次元標準ブラウン運動とする. $f(s,\omega) = \left(f_j^i(s,\omega)\right)_{1 \leq i \leq n, 1 \leq j \leq d} \in \mathcal{L}_{2,loc}(B)$ とする.

$$M_t^i = \sum_{i=1}^d \int_0^t f_j^i(s,\omega) dB_s^j(\omega) \quad 1 \le i \le n.$$

とおく. $p \ge 2$ に対して, f に依存しない定数 C_p が存在して

$$E\left[\max_{0 \le s \le t} |M_s|^p\right] \le C_p E\left[\left(\int_0^t |f(s,\omega)|^2 ds\right)^{p/2}\right]$$

となることを示せ.

- 19. $B_t = (B_t^j)_{1 \leq j \leq d}$ を d 次元 \mathcal{F}_t ブラウン運動とする. $\tau_k^m = k2^{-m}$ $(m \in \mathbb{N}, 0 \leq k \leq 2^m)$ とする. C を 正定数とする. d 次正方行列に値を取る確率変数 $f_j^{m,k}$, $g^{m,k}$ を次を満たすように取る. 以下, I は d 次正方行列の単位行列行列とし $A = (a_{i,j})$ について $|A| = \{\sum_{i,j} |a_{i,j}|^2\}^{1/2}$ とおく.
 - $f_i^{m,k}, g^{m,k}$ は $\mathcal{F}_{\tau_k^m}$ 可測.
 - すべての m,k,j について $P\left(|f_j^{m,k}| \leq C, |g^{m,k}| \leq C\right) = 1.$

さらに d次正方行列 $Y^m_{\tau^m_{k-1},t}$ $(\tau^m_{k-1} \le t \le \tau^m_k), X^m_t$ $(0 \le t \le 1)$ を次で定める. 積は行列の関である.

$$\begin{split} Y^m_{\tau^m_{k-1},t} &= I + \sum_{j=1}^d f^{m,k-1}_j B^j_{\tau^m_{k-1},t} + g^{m,k-1}(t-\tau^m_{k-1}) \quad (\tau^m_{k-1} \leq t \leq \tau^m_k) \\ X^m_t &= Y^m_{\tau^m_{k-1},t} Y^m_{\tau^m_{k-2},\tau^m_{k-1}} \cdots Y^m_{0,\tau^m_1} \quad (\tau^m_{k-1} \leq t \leq \tau^m_k). \end{split}$$

 $p \ge 1$ とする. C, d, p にのみ依存する定数 C' が存在して

$$E\left[\max_{0\le t\le 1}|X_t^m|^p\right]\le C'$$

となることを示せ.

- 20. B_t を 0 から出発する 1 次元ブラウン運動とする. $a \neq 0$ に対して a への first hitting time $\sigma_a(\omega) = \inf\{t \geq 0 \mid B_t(\omega) = a\}$ とする. ただし, $\{t \geq 0 \mid B_t(\omega) = a\} = \emptyset$ ならば $\sigma_a(\omega) = \infty$ と定める.
 - (1) $f(t,x)=e^{-\lambda t+\sqrt{2\lambda}x}$ ($\lambda\geq 0$) とおく、 $f(t,B_t)$ に Itô の公式を適用し, $\lambda>0$ に対して $E[e^{-\lambda\sigma_a}]=e^{-\sqrt{2\lambda}a}$ を示せ.
 - (2) $P(\sigma_a < \infty) = 1$ を示せ.
 - (3) $E[\sigma_a] = \infty$ を示せ.
- 21. B_t を 0 から出発する 1 次元ブラウン運動とする. a>0 とし B_t-t の -a への first hitting time $\tau_a(\omega)=\inf\{t\geq 0\mid B_t(\omega)-t\leq -a\}$ を考える.
 - (1) $P(\tau_a < \infty) = 1$ を示せ.
 - (2) $g(t,x)=e^{-\lambda t-\left(\sqrt{1+2\lambda}-1\right)x}$ $(\lambda\geq -\frac{1}{2})$ とおく. $g(t,B_t-t)$ に Itô の公式を適用して

$$E\left[e^{-\lambda(t\wedge\tau_a)-\left(\sqrt{1+2\lambda}-1\right)\left(B_{t\wedge\tau_a}-\left(t\wedge\tau_a\right)\right)}\right]=1$$

を示せ.

(3) (2) の式を用いて $\lambda \ge -\frac{1}{2}$ のとき

$$E[e^{-\lambda \tau_a}] = e^{-\left(\sqrt{1+2\lambda} - 1\right)a}$$

を示せ. また任意の $\varepsilon>0$ に対して $E[e^{\left(\frac{1}{2}+\varepsilon\right) au_a}]=\infty$ を示せ.

22. $t \ge 0, x \in \mathbb{R}, n = 0, 1, \ldots,$ に対して

$$H_n(t,x) = \frac{(-t)^n}{n!} e^{\frac{x^2}{2t}} \frac{\partial^n}{\partial x^n} \left(e^{-\frac{x^2}{2t}} \right)$$

とおく. 以下を示せ.

(1)
$$\frac{\partial}{\partial t}H_n(t,x) + \frac{1}{2}\Delta H_n(t,x) = 0$$
. ただし $\Delta = \frac{\partial^2}{\partial x^2}$ である.

(2)
$$\frac{\partial}{\partial x}H_n(t,x) = H_{n-1}(t,x)$$

(3)
$$H_1(t,x) = x, H_0(t,x) = 1.$$

(4)
$$\int_0^t H_{n-1}(s, B_s) dB_s = H_n(t, B_t).$$
 ただし B_t は 1 次元 Brown 運動である.

(5) 以上の結果を用いて n, m > 0 に対して

$$\int_{\mathbb{R}} H_n(t,x) H_m(t,x) \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx = \delta_{n,m} \frac{t^n}{n!}$$

を示せ. ただし $\delta_{n,m}=1$ (n=m のとき), $\delta_{n,m}=0$ $(n\neq m$ のとき) である.

23. $a \in \mathbb{R}, c \in \mathbb{R} \ (c \neq 0)$ に対して 1 次元確率微分方程式

$$dX_t = -aX_t dt + cdB_t, \ X_0 = \xi$$

を考える. ただし ξ は実数の定数である. X_t の期待値, 分散および $E[X_tX_s]$ を計算せよ.

24. B_t を 1 次元 \mathcal{F}_{t^-} ブラウン運動とする. $f(t,\omega),g(t,\omega)$ を \mathcal{F}_{t^-} 連続確率過程とし、ある正数 K が存在し $\sup_{t,\omega} (|f(t,\omega)| + |g(t,\omega)|) \leq K$ とする.

$$X_t = \int_0^t f(s, w) dB_s(w), \quad Y_t = \int_0^t g(s, w) dB_s(w)$$

とおく. $\Delta_n=\{0=t_0^n< t_1^n<\dots t_{N_n}^n=t\}$ を [0,t] の分割で $\lim_{n\to\infty}|\Delta_n|=0$ とする.

$$\lim_{n \to \infty} \sum_{i=0}^{N_n-1} X_{\frac{t_i^n + t_{i+1}^n}{2}} \left(Y_{t_{i+1}^n} - Y_{t_i^n} \right) = \int_0^t X_s \circ dY_s$$

が確率収束の意味で成立することを示せ.

25. B_t を d-次元ブラウン運動とする. $\sigma \in C_b^1(\mathbb{R}^n, L(\mathbb{R}^d, \mathbb{R}^n)), b \in C_b^1(\mathbb{R}^n, \mathbb{R}^n)$ とする. 確率微分方程式

$$X_t = x + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds \quad x \in \mathbb{R}^n, 0 \le t \le T$$

の解を考える. 積分は Ifo 積分である. X^N_t $(N\in\mathbb{N})$ を次のように定める (これを X の Euler-Maruyama 近似解と言う). まず $X^N_0=x$ とおき,

$$X_t^N = X_{2^{-N}kT}^N + \sigma \left(X_{2^{-N}kT}^N \right) \left(B_t - B_{2^{-N}kT} \right) + b \left(X_{2^{-N}kT}^N \right) \left(t - 2^{-N}kT \right)$$
$$2^{-N}kT < t \le 2^{-N}(k+1)T \quad (0 \le k \le 2^N - 1).$$

 $(1) 2^{-N}kT \le t < 2^{-N}(k+1)T$ のとき, $\varphi_N(t) = 2^{-N}kT$ と定める. X^N は

$$X_t^N = x + \int_0^t \sigma\left(X_{\varphi_N(s)}^N\right) dB_s + \int_0^t b(X_{\varphi_N(s)}^N) ds \quad x \in \mathbb{R}^n, 0 \le t \le T$$

を満たすことを示せ.

(2) $x \in C([0,T],\mathbb{R}^n)$ に対して $|x|_t = \max_{0 \le t \le t} |x_s|$ とおく.

$$E\left[\left|\int_0^{\cdot} \left(\sigma\left(X_{\varphi_N(s)}^N\right) - \sigma\left(X_{\varphi_{N-1}(s)}^N\right)\right) dB_s\right|_T^2\right] \leq \frac{C_T}{2^N}$$

を示せ.

(3)

$$E[|X^N - X^{N-1}|_t^2] \le C \int_0^t E[|X^N - X^{N-1}|_s] ds + \frac{C_T'}{2^N} \qquad 0 \le t \le T$$

を示すことにより

$$E[|X^N - X^{N-1}|_t^2] \le C_T'' 2^{-N}$$

を示せ.

(4) $\lim_{N\to\infty}X_t^N$ は確率 1 の ω に対して一様収束の位相で収束することを示せ. 極限 X_t は、冒頭にあげた確率微分方程式の解となることを示せ. また

$$E[|X^N - X|_T^2] \le C_T'''2^{-N}$$

を示せ.

26. 確率空間 $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ 上の \mathcal{F}_t -ブラウン $B_t(\omega) = (B_t^1(\omega), \cdots, B_t^d(\omega))$ $(0 \leq t \leq T)$ を考える. $f_i^i(t,\omega), g^i(t,\omega)$ を \mathcal{F}_t -有界発展的可測過程とし semimartingale を

$$X_t^i(\omega) = \sum_{j=1}^d \int_0^t f_j^i(s,\omega) dB_s^j(\omega) + \int_0^t g^i(s,\omega) ds, \qquad 1 \le i \le n$$

と定める. $X_t(\omega) = \sum_{i=1}^n X_t^i(\omega) e_i$ ($\{e_i\}$ は \mathbb{R}^n の標準的な基底) とおき, 帰納的に

$$X_{s,t}^{1}(\omega) = X_{t}(\omega) - X_{s}(\omega)$$
$$X_{st}^{k+1}(\omega) = \int_{s}^{t} X_{su}^{k}(\omega) \otimes odX_{u}(\omega)$$

と定める.

P-a.s. ω に対して、 $\mathbb{X}_{st}^k(\omega)$ は s,t の連続関数であり、任意の $k,0<\alpha<1/2$ に対して

$$P\left(\left\{\omega \mid \exists C_k(\omega), 0 \leq \forall s \leq \forall t \leq T, |\mathbb{X}_{st}^k(\omega)| \leq C_k(\omega)(t-s)^{\alpha k}\right\}\right) = 1.$$

となることを示せ.

27. (右連続な filtration に適合したマルチンゲールのサンプルパスが càdlàg であること) 実数列 $\{x_n\}_{n=1}^N$ と 2 つの実数 a < b を考える. $\{1, \ldots, N\}$ の元の増大列

$$n_1 < m_1 < n_2 < m_2 < \dots < n_k < m_k$$

で $x_{n_i} < a, x_{m_i} > b$ $(1 \le i \le k)$ を満たすもののうち、最大の k を $\{x_n\}_{n=1}^N$ の [a,b] の上向き 横断回数と言い $U\left(\{x_n\}_{n=1}^N; [a,b]\right)$ と書く、 $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ を通常の条件を満たす確率空間とする、 $\{M_t; 0 \le t \le 1\}$ を \mathcal{F}_t マルチンゲールとする、 $\{M_t\}_{t\in [0,1]\cap \mathbb{Q}}$ に対して、

 $U\left(\{M_t\}_{t\in[0,1]\cap\mathbb{Q}};[a,b]\right)=\sup\left\{U\left(\{M_t\}_{t\in A};[a,b]\right)\mid A$ は \mathbb{Q} のすべての有限集合を動く $\}$ と定める. ただし, $\{M_t\}_{t\in A}$ は t が小さい順番に並んでいるものとする.

$$E\left[U\left(\{M_t\}_{t\in[0,1]\cap\mathbb{Q}};[a,b]\right)\right] \le \frac{E[(M_1-a)^-]}{b-a}$$

を示せ. ただし, $x^- = \max(-x, 0)$ である. また,

$$\Omega' = \bigcap_{a < b, a, b \in \mathbb{O}} \{ U\left(\{M_t\}_{t \in [0,1] \cap \mathbb{O}}; [a,b] \right) < \infty \}$$

とおくと, $P(\Omega') = 1$ となることを示せ.

(2) $\omega \in \Omega'$ とする. 任意の $t \in [0,1]$ について

$$M_{t+}(\omega) := \lim_{s \in [0,1] \cap \mathbb{Q}) \downarrow t} M_s(\omega)$$

$$M_{t-}(\omega) := \lim_{s \in [0,1] \cap \mathbb{Q} \cap t} M_s(\omega)$$

が存在することを示せ. さらに, $M_{t+}(\omega)$ は $(\omega \notin \Omega'$ については, 0 などと定義する) $\{M_t\}$ の右連続かつ左極限を持つ修正であることを示せ.

28. (多次元版連続修正定理)

 $I=[0,1]^d~(d\in\mathbb{N})$ とおく. 実数値確率変数の族 $X(x,\omega)$ を考える. $C>0,~\alpha>0,~\beta>0$ が存在して

$$E[|X(x) - X(y)|^{\alpha}] \le C|x - y|^{d + \beta} \qquad x, y \in I$$

を満たすとする. このとき, $X(x,\omega)$ は連続な修正を持つ. これを以下に従って示せ.

(1) $I_n = \{\left(\frac{k_1}{2^n}, \dots, \frac{k_d}{2^n}\right) \mid k_i = 0, \dots, 2^n, 1 \leq i \leq d\}$ とおく、 $x = \left(\frac{k_1}{2^n}, \dots, \frac{k_d}{2^n}\right), x' = \left(\frac{k'_1}{2^n}, \dots, \frac{k'_d}{2^n}\right) \in I_n$ について、 $k_i \neq k'_i$ となる i が 1 個のみで、かつ $|k_i - k'_i| = 1$ のとき、x, x' は隣接していると言い、 $x \sim x'$ と書くことにする、 $0 < \gamma < \frac{\beta}{\alpha}$ とする.

$$A_n = \left\{ \ x \sim y \ \texttt{となるある} \ x, y \in I_n \ \texttt{に対して} \ |X(x,\omega) - X(y,\omega)| > \frac{1}{2^{n\gamma}} \ \right\}$$

とおく. $\sum_{n=1}^{\infty} P(A_n) < \infty$ を示せ.

(2) 格子点上の値 $X(x,\omega)$ $(x \in I_n)$ を用いて「区分的線形」に I 上の関数に以下のように拡張する. $x=(x_1,\ldots,x_d)$ が、 $\frac{k_i}{2^n} \leq x_i \leq \frac{k_i+1}{2^n}$ $(1 \leq i \leq d)$ を満たすとする. 簡単のため、 $x_i^- = \frac{k_i}{2^n}$ 、 $x_i^+ = \frac{k_i+1}{2^n}$ と書くことにする.

$$X_n(x,\omega) = \sum_{\sigma_i = +} \left\{ \prod_{i=1}^d 2^n \left(\frac{1}{2^n} - |x_i - x_i^{\sigma_i}| \right) \right\} X((x_1^{\sigma_1}, \dots, x_d^{\sigma_d}), \omega)$$

と定めると $X_n(x,\omega)$ は I 上の連続関数であり、任意の $\omega \in \Omega'(:=\liminf_{n\to\infty}A_n^c)$ に対して、 $\tilde{X}(x,\omega):=\lim_{n\to\infty}X_n(x,\omega)$ は I 上一様収束し、 $\tilde{X}(x,\omega)$ は $X(x,\omega)$ の連続修正であることを示せ.

(3) 講義ノートの定理 5.3 の条件の下での初期値をx とする解を $X(t,x,\omega)$ とする.

$$E[|X(t,x) - X(s,x)|^p + |X(t,x) - X(t,y)|^p] \le C(p,T,R) \left(|t-s|^{\frac{p}{2}} + |x-y|^p \right)$$

 $0 \le \forall s, \forall t \le T, \quad \forall x, \forall y \text{ with } |x|, |y| \le R$

を示し、上記の結果を用いて、 $X(t,x,\omega)$ は $(t,x) \in [0,\infty) \times \mathbb{R}^n$ に関して、連続な修正を持つことを示せ、C(p,T,R) は 定数である.

29. 問題 28 で確率過程 $X=X(t,\omega)$ に対して定数 $\alpha>0,\beta>0,C>0$ が存在して $E[|X(t)-X(s)|^{\alpha}]\leq C|t-s|^{1+\beta}$ $0\leq s\leq t\leq T$ が成立するならば連続修正 $\tilde{X}(t,\omega)$ が存在することを示した. 次に述べる Garsia-Rodemich-Rumsey の定理を用いて、この連続修正 $\tilde{X}(t,\omega)$ について、任意の $0<\gamma<\frac{\beta}{\alpha}$ に対して

$$P\left(\left\{\sup_{0 \le s < t \le T} \frac{|\tilde{X}(t,\omega) - \tilde{X}(s,\omega)|}{|t - s|^{\gamma}} < \infty\right\}\right) = 1$$

となることを証明せよ.

定理 (Garsia-Rodemich-Rumsey) $p=p(\xi), \Phi=\Phi(\xi)$ ($\xi\geq 0$) は狭義単調増加で $p(0)=\Phi(0)=0,$ $\lim_{x\to\infty}\Phi(x)=+\infty$ とする. T>0 とする. $x\in C([0,T]\to\mathbb{R}^d)$ について

$$B := \iint_{[0,T]^2} \Phi\left(\frac{|x(t) - x(s)|}{p(|t - s|)}\right) ds dt$$

を仮定する. このとき

$$|x(t) - x(s)| \le 8 \int_0^{t-s} \Phi^{-1} \left(\frac{4B}{u^2}\right) dp(u).$$

- (注) 上記定理の証明については、例えば、D.Stroock, Probability Theory, An analytic view, Cambridge University Press を参照.
- 30. 確率空間 (Ω, \mathcal{F}, P) 上の実数値確率変数の族 $X(x, \omega)$ $(x \in \mathbb{R}^n)$ が連続な修正を持つとする.

$$\Omega' = \left\{ \omega \in \Omega \;\middle|\; \mathsf{tべて} \mathcal{O} \; x \in \mathbb{R}^n \; \mathsf{について極限} \; \lim_{y (\in \mathbb{R}^n \cap \mathbb{Q}^n) \to x} X(y, \omega) \; \text{が存在する} \;\right\}$$

とおくと, $P(\Omega') = 1$ であり,

$$\tilde{X}(x,\omega) = \begin{cases} \lim_{y \in \mathbb{R}^n \cap \mathbb{Q}^n) \to x} X(y,\omega) & \omega \in \Omega' \\ 0 & \omega \notin \Omega' \end{cases}$$

とおくと $\tilde{X}(x,\omega)$ は $X(x,\omega)$ の連続修正であることを示せ.

31. (Wiener functional へのブラウン運動の代入)

講義ノートの Wiener 空間 $(W_0^d, \overline{\mathcal{B}(W_0^d)}^\mu, \sigma(\{w_s; s \leq t\} \cup \mathcal{N}), \mu)$ を考える. W_0^d の元を w と書いている. f(t,w) は $L(\mathbb{R}^d,\mathbb{R})$ 値 $\sigma(\{w_s; s \leq t\})$ 発展的可測過程とする.

$$I(t,w) = \int_0^t f(s,w)dw_s$$

と定める. I(t,w) は μ -a.s. な w にのみ意味があることに注意せよ. $B_t(\omega)$ を通常の条件を満たす確率空間 $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ 上の d 次元 \mathcal{F}_t ブラウン運動とする. $I(t, B(\omega))$ は well-defined であること, $f(s, B(\omega))$ は \mathcal{F}_t 発展的可測過程であることを示せ. また

$$I(t, B(\omega)) = \int_0^t f(s, B(\omega)) dB_s(\omega) \quad P\text{-}a.s.\omega$$

を示せ.

32. (確率積分のパラメータへの確率変数の代入)

 $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ は通常の条件を満たすとし、 $B_t(\omega)$ は d 次元 \mathcal{F}_t -ブラウン運動とする. (n, d) 行列値 確率過程 $\{f(t, x, \omega)\}_{t \in [0, T], 0 < t < T, x \in \mathbb{R}^m}$ は 次を満たすとする.

- (i) 任意のxに対し、 $\{f(t,x,\omega)\}_{t\in[0,T]}$ は \mathcal{F}_t 発展的可測過程である.
- (ii) 任意の (t,ω) について, $x \mapsto f(t,x,\omega)$ は連続.
- (iii) 任意の x に対して, $P\left(\int_0^T |f(t,x,\omega)|^2 dt < \infty\right) = 1$.

n 次元確率過程を $I(t,x,\omega)=\int_0^t f(s,x,\omega)dB_s(\omega)$ $(0\leq t\leq T)$ と定める. t を固定する. $I(t,x,\omega)$ は x に関する連続修正 $\tilde{I}(t,x,\omega)$ が存在するとする. $\xi(\omega)$ を \mathcal{F}_0 可測な確率変数とする. 以下を示せ.

(1) $\{f(t,\xi(\omega),\omega)\}_{0\leq t\leq T}$ は \mathcal{F}_t -発展的可測であること, および

$$P\left(\int_0^T |f(t,\xi(\omega),\omega)|^2 dt < \infty\right) = 1$$

を示せ.

(2) $\hat{I}(t,x,\omega)$ も $I(t,x,\omega)$ の x に関する連続修正とする. $P\left(\tilde{I}(t,\xi(\omega),\omega)=\hat{I}(t,\xi(\omega),\omega)\right)=1$ を示せ.

(3)

$$P\left(\tilde{I}(t,\xi(\omega),\omega) = \int_0^t f(s,\xi(\omega),\omega))dB_s(\omega)\right) = 1$$

を示せ.

(4) 定理 5.3 の条件の下での初期値 x の解 $X(t,x,\omega)$ で (t,x) に関して連続な物を考える. $\xi(\omega)$ を \mathcal{F}_0 可測な確率変数とすると $X(t,\xi(\omega),\omega)$ は初期値を $\xi(\omega)$ とする解となることを示せ.

ヒント: $\mathbb{R}^n = \bigcup_{k=1}^\infty V_{k,N}$ のように互いに交わりの無いボレル可測集合に分割し、おのおの一つの要素 $v_{k,N} \in V_{k,N}$ を取る. ただし、すべての、k,N について $\sup\{|x-y| \mid x,y \in V_{k,N}\} \leq \frac{1}{N}$ とする. $f_N(t,\xi(\omega),\omega) = \sum_{k=1}^\infty f(t,v_{k,N},\omega) 1_{V_{k,N}}(\xi(\omega))$ と定めると $\lim_{N \to \infty} f_N(t,\xi(\omega),\omega) = f(t,\xi(\omega),\omega)$ となることに注意せよ.