Gedächtnislosigkeit

Satz 105 (Gedächtnislosigkeit)

Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich \mathbb{R}^+ ist genau dann exponential verteilt, wenn für alle x, y > 0 gilt, dass

$$\Pr[X > x + y \mid X > y] = \Pr[X > x].$$
 (*)

Beweis:

Sei X exponentialverteilt mit Parameter λ . Dann gilt

$$\Pr[X > x + y \mid X > y] = \frac{\Pr[X > x + y, X > y]}{\Pr[X > y]}$$

$$= \frac{\Pr[X > x + y]}{\Pr[X > y]}$$

$$= \frac{e^{-\lambda(x+y)}}{e^{-\lambda y}} = e^{-\lambda x} = \Pr[X > x].$$

Sei umgekehrt X eine kontinuierliche Zufallsvariable, die die Gleichung (*) erfüllt. Wir definieren $q(x) := \Pr[X > x]$. Für x, y > 0 gilt

$$\begin{split} g(x+y) &= \Pr[X > x+y] \\ &= \Pr[X > x+y \mid X > y] \cdot \Pr[X > y] \\ &= \Pr[X > x] \cdot \Pr[X > y] = g(x)g(y) \,. \end{split}$$

Daraus folgt durch wiederholte Anwendung

$$g(1) = g\Big(\underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n-\text{mal}}\Big) = \left(g\Big(\frac{1}{n}\Big)\right)^n \text{ für alle } n \in \mathbb{N}$$

und somit insbesondere auch $g(1/n) = (g(1))^{1/n}$.

Da X nur positive Werte annimmt, muss es ein $n \in \mathbb{N}$ geben mit g(1/n) > 0. Wegen $0 < g(1) \le 1$ muss es daher auch ein $\lambda \ge 0$ geben mit $g(1) = e^{-\lambda}$.

Nun gilt für beliebige $p, q \in \mathbb{N}$

$$g(p/q) = g(1/q)^p = g(1)^{p/q},$$

und somit $g(r) = e^{-\lambda r}$ für alle $r \in \mathbb{Q}^+$.

Aufgrund der Stetigkeit folgt daraus

$$g(x) = e^{-\lambda x} .$$

Beispiel 106

Über das Cäsium-Isotop $^{134}_{55}$ Cs ist bekannt, dass es eine mittlere Lebensdauer von ungefähr 3,03 Jahren oder $1,55\cdot 10^6$ Minuten besitzt. Die Zufallsvariable X messe die Lebenszeit eines bestimmten $^{134}_{55}$ Cs-Atoms. X ist exponentialverteilt mit dem Parameter

$$\lambda = \frac{1}{\mathbb{E}[X]} = \frac{1}{1,55 \cdot 10^6} \approx 0,645 \cdot 10^{-6} \ \left[\frac{1}{\text{min}} \right]$$

Da λ den Kehrwert einer Zeit als Einheit besitzt, spricht man von der Zerfallsrate. Auch bei anderen Anwendungen ist es üblich, λ als Rate einzuführen.

2.3.2 Exponentialverteilung als Grenzwert der geometrischen Verteilung

Erinnerung: Die Poisson-Verteilung lässt sich als Grenzwert der Binomialverteilung darstellen.

Wir betrachten eine Folge geometrisch verteilter Zufallsvariablen X_n mit Parameter $p_n = \lambda/n$. Für ein beliebiges $k \in \mathbb{N}$ ist die Wahrscheinlichkeit, dass $X_n \leq k \cdot n$, gleich

$$\Pr[X_n \le kn] = \sum_{i=1}^{kn} (1 - p_n)^{i-1} \cdot p_n = p_n \cdot \sum_{i=0}^{kn-1} (1 - p_n)^i$$
$$= p_n \cdot \frac{1 - (1 - p_n)^{kn}}{p_n} = 1 - \left(1 - \frac{\lambda}{n}\right)^{kn}.$$

Wegen $\lim_{n\to\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda}$ gilt daher für die Zufallsvariablen $Y_n := \frac{1}{n} X_n$, dass

$$\lim_{n \to \infty} \Pr[Y_n \le t] = \lim_{n \to \infty} \Pr[X_n \le t \cdot n]$$

$$= \lim_{n \to \infty} \left[1 - \left(1 - \frac{\lambda}{n} \right)^{tn} \right]$$

$$= 1 - e^{-\lambda t}.$$

Die Folge Y_n der (skalierten) geometrisch verteilten Zufallsvariablen geht also für $n \to \infty$ in eine exponentialverteilte Zufallsvariable mit Parameter λ über.

3. Mehrere kontinuierliche Zufallsvariablen

3.1 Mehrdimensionale Dichten

Beobachtung

Zu zwei kontinuierlichen Zufallsvariablen X, Y wird der zugrunde liegende gemeinsame Wahrscheinlichkeitsraum über \mathbb{R}^2 durch eine integrierbare (gemeinsame) Dichtefunktion $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}_0^+$ mit

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d} x \, \mathrm{d} y = 1$$

beschrieben. Für ein Ereignis $A \subseteq \mathbb{R}^2$ (das aus abzählbar vielen geschlossenen oder offenen Bereichen gebildet sein muss) gilt

$$\Pr[A] = \int_A f_{X,Y}(x,y) \, \mathrm{d} \, x \, \mathrm{d} \, y.$$

Unter einem Bereich ${\cal B}$ verstehen wir dabei Mengen der Art

$$B = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\} \quad \text{mit } a, b, c, d \in \mathbb{R}.$$

Dabei können die einzelnen Intervallgrenzen auch "offen" bzw. $\pm \infty$ sein.

Analog zum eindimensionalen Fall ordnen wir der Dichte $f_{X,Y}$ eine (gemeinsame) Verteilung $F_{X,Y}: \mathbb{R}^2 \to [0,1]$ zu:

$$F_{X,Y}(x,y) = \Pr[X \le x, Y \le y] = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) \, \mathrm{d} u \, \mathrm{d} v.$$

3.2 Randverteilungen und Unabhängigkeit

Definition 107

Sei f_{XY} die gemeinsame Dichte der Zufallsvariablen X und Y. Die Randverteilung der Variablen X ist gegeben durch

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x \left[\int_{-\infty}^\infty f_{X,Y}(u,v) \, \mathrm{d} \, v \right] \, \mathrm{d} \, u.$$

Analog nennen wir

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, v) \, \mathrm{d} v$$

die Randdichte von X. Entsprechende Definitionen gelten symmetrisch für Y.

Definition 108

Zwei kontinuierliche Zufallsvariablen X und Y heißen unabhängig, wenn

$$\Pr[X \leq x, Y \leq y] = \Pr[X \leq x] \cdot \Pr[Y \leq y]$$

für alle $x, y \in \mathbb{R}$ gilt.

Dies ist gleichbedeutend mit

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y).$$

Differentiation ergibt

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y).$$

Für mehrere Zufallsvariablen X_1, \ldots, X_n gilt analog: X_1, \ldots, X_n sind genau dann unabhängig, wenn

$$F_{X_1,...,X_n}(x_1,...,x_n) = F_{X_1}(x_1) \cdot ... \cdot F_{X_n}(x_n)$$

bzw.

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \cdot ... \cdot f_{X_n}(x_n)$$

für alle $x_1, \ldots, x_n \in \mathbb{R}$.

3.3 Warteprobleme mit der Exponentialverteilung

Warten auf mehrere Ereignisse

Satz 109

Die Zufallsvariablen X_1, \ldots, X_n seien unabhängig und exponentialverteilt mit den Parametern $\lambda_1, \ldots, \lambda_n$. Dann ist auch $X := \min\{X_1, \ldots, X_n\}$ exponentialverteilt mit dem Parameter $\lambda_1 + \ldots + \lambda_n$.

Beweis:

Der allgemeine Fall folgt mittels Induktion aus dem für n=2. Für die Verteilungsfunktion F_X gilt:

$$1 - F_X(t) = \Pr[X > t] = \Pr[\min\{X_1, X_2\} > t]$$

$$= \Pr[X_1 > t, X_2 > t]$$

$$= \Pr[X_1 > t] \cdot \Pr[X_2 > t]$$

$$= e^{-\lambda_1 t} \cdot e^{-\lambda_2 t} = e^{-(\lambda_1 + \lambda_2)t}.$$

Anschaulich besagt Satz 109, dass sich die Raten addieren, wenn man auf das erste Eintreten eines Ereignisses aus mehreren unabhängigen Ereignissen wartet. Wenn beispielsweise ein Atom die Zerfallsrate λ besitzt, so erhalten wir bei n Atomen die Zerfallsrate $n\lambda$ (wie uns auch die Intuition sagt).

Poisson-Prozess

Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt:

Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen Zeitspanne binomialverteilt.

Im Grenzwert $n\to\infty$, wobei wir die Trefferwahrscheinlichkeit mit $p_n=\lambda/n$ ansetzen, konvergiert die geometrische Verteilung gegen die Exponentialverteilung und die Binomialverteilung gegen die Poisson-Verteilung. Im Grenzwert $n\to\infty$ erwarten wir deshalb die folgende Aussage:

Wenn man Ereignisse zählt, deren zeitlicher Abstand exponentialverteilt ist, so ist die Anzahl dieser Ereignisse in einer festen Zeitspanne Poisson-verteilt.

Seien $T_1, T_2 \dots$ unabhängige exponentialverteilte Zufallsvariablen mit Parameter λ . Die Zufallsvariable T_i modelliert die Zeit, die zwischen Treffer i-1 und i vergeht.

Für den Zeitpunkt t > 0 definieren wir

$$X(t) := \max\{n \in \mathbb{N} \mid T_1 + \ldots + T_n \le t\}.$$

X(t) gibt also an, wie viele Treffer sich bis zur Zeit t (von Zeit Null ab) ereignet haben. Es gilt:

Fakt 110

Seien T_1, T_2, \ldots unabhängige Zufallsvariablen und sei X(t) für t > 0 wie oben definiert. Dann gilt: X(t) ist genau dann Poisson-verteilt mit Parameter $t\lambda$, wenn es sich bei T_1, T_2, \ldots um exponentialverteilte Zufallsvariablen mit Parameter λ handelt. Zum Zufallsexperiment, das durch T_1, T_2, \ldots definiert ist, erhalten wir für jeden Wert t>0 eine Zufallsvariable X(t). Hierbei können wir t als Zeit interpretieren und X(t)als Verhalten des Experiments zur Zeit t. Eine solche Familie $(X(t))_{t>0}$ von Zufallsvariablen nennt man allgemein einen stochastischen Prozess. Der hier betrachtete Prozess, bei dem T_1, T_2, \ldots unabhängige, exponentialverteilte Zufallsvariablen sind, heißt Poisson-Prozess und stellt ein fundamentales und zugleich praktisch sehr bedeutsames Beispiel für einen stochastischen Prozess dar.

Beispiel 111

Wir betrachten eine Menge von Jobs, die auf einem Prozessor sequentiell abgearbeitet werden. Die Laufzeiten der Jobs seien unabhängig und exponentialverteilt mit Parameter $\lambda=1/30[1/s]$. Jeder Job benötigt also im Mittel 30s.

Gemäß Fakt 110 ist die Anzahl von Jobs, die in einer Minute vollständig ausgeführt werden, Poisson-verteilt mit Parameter $t\lambda = 60 \cdot (1/30) = 2$.

Die Wahrscheinlichkeit, dass in einer Minute höchstens ein Job abgearbeitet wird, beträgt in diesem Fall $(t\lambda=2)$

$$e^{-t\lambda} + t\lambda e^{-t\lambda} \approx 0.406$$
.

3.4 Summen von Zufallsvariablen

Satz 112

Seien X und Y unabhängige kontinuierliche Zufallsvariablen. Für die Dichte von Z:=X+Y gilt

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(z - x) dx.$$

Beweis:

Nach Definition der Verteilungsfunktion gilt

$$F_Z(t) = \Pr[Z \le t] = \Pr[X + Y \le t] = \int_{A(t)} f_{X,Y}(x,y) \,\mathrm{d}\, x \mathrm{d}\, y$$

wobei $A(t) = \{(x, y) \in \mathbb{R}^2 \mid x + y \le t\}.$

Aus der Unabhängigkeit von X und Y folgt

$$F_Z(t) = \int_{A(t)} f_X(x) \cdot f_Y(y) \, \mathrm{d} x \, \mathrm{d} y$$
$$= \int_{-\infty}^{\infty} f_X(x) \cdot \left(\int_{-\infty}^{t-x} f_Y(y) \, \mathrm{d} y \right) \, \mathrm{d} x.$$

Mittels der Substitution z := x + y, d z = dy ergibt sich

$$\int_{-\infty}^{t-x} f_Y(y) \, \mathrm{d} y = \int_{-\infty}^t f_Y(z-x) \, \mathrm{d} z$$

und somit

$$F_Z(t) = \int_{-\infty}^t \left(\int_{-\infty}^\infty f_X(x) f_Y(z-x) \, \mathrm{d} \, x \right) \, \mathrm{d} \, z \,.$$

Satz 113 (Additivität der Normalverteilung)

Die Zufallsvariablen X_1, \ldots, X_n seien unabhängig und normalverteilt mit den Parametern μ_i, σ_i ($1 \le i \le n$). Es gilt: Die Zufallsvariable

$$Z := a_1 X_1 + \ldots + a_n X_n$$

ist normalverteilt mit Erwartungswert $\mu = a_1 \mu_1 + \ldots + a_n \mu_n$ und Varianz $\sigma^2 = a_1^2 \sigma_1^2 + \ldots + a_n^2 \sigma_n^2$.

Beweis:

Wir beweisen zunächst den Fall n=2 und $a_1=a_2=1$. Nach Satz 112 gilt für $Z:=X_1+X_2$, dass

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X_1}(z - y) \cdot f_{X_2}(y) \, \mathrm{d}y$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2} \underbrace{\left(\frac{(z - y - \mu_1)^2}{\sigma_1^2} + \frac{(y - \mu_2)^2}{\sigma_2^2}\right)}_{=:v}\right) \, \mathrm{d}y.$$

Wir setzen

$$\mu := \mu_1 + \mu_2$$

$$\sigma^2 := \sigma_1^2 + \sigma_2^2$$

$$v_1 := (z - \mu)/\sigma$$

$$v_2^2 := v - v_1^2$$

Damit ergibt sich unmittelbar

$$v_2^2 = \frac{(z - y - \mu_1)^2}{\sigma_1^2} + \frac{(y - \mu_2)^2}{\sigma_2^2} - \frac{(z - \mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2},$$

woraus wir

$$v_2 = \frac{y\sigma_1^2 - \mu_2\sigma_1^2 + y\sigma_2^2 - z\sigma_2^2 + \mu_1\sigma_2^2}{\sigma_1\sigma_2\sigma}$$

ermitteln.

Damit folgt für die gesuchte Dichte

$$f_Z(z) = \frac{1}{2\pi \cdot \sigma_1 \cdot \sigma_2} \cdot \exp\left(-\frac{v_1^2}{2}\right) \cdot \int_{-\infty}^{\infty} \exp\left(-\frac{v_2^2}{2}\right) dy.$$

Wir substituieren noch

$$t := v_2 \text{ und } dt = \frac{\sigma}{\sigma_1 \sigma_2} dy$$

und erhalten

$$f_Z(z) = \frac{1}{2\pi \cdot \sigma} \cdot \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right) \cdot \int_{-\infty}^{\infty} \exp\left(-\frac{t^2}{2}\right) dt.$$

Mit Lemma 99 folgt, dass $f_Z(z) = \varphi(z; \mu, \sigma)$ ist.

Daraus erhalten wir die Behauptung für n=2, denn den Fall $Z:=a_1X_1+a_2X_2$ für beliebige Werte $a_1, a_2 \in \mathbb{R}$ können wir leicht mit Hilfe von Satz 100 auf den soeben bewiesenen Fall reduzieren. Durch Induktion kann die Aussage auf beliebige Werte $n \in \mathbb{N}$ verallgemeinert werden.

3.5 Momenterzeugende Funktionen für kontinuierliche Zufallsvariablen

Für diskrete Zufallsvariablen X haben wir die momenterzeugende Funktion

$$M_X(s) = \mathbb{E}[e^{Xs}]$$

eingeführt. Diese Definition kann man unmittelbar auf kontinuierliche Zufallsvariablen übertragen. Die für $M_X(s)$ gezeigten Eigenschaften bleiben dabei erhalten.

Beispiel 114

Für eine auf [a, b] gleichverteilte Zufallsvariable U gilt

$$M_U(t) = \mathbb{E}[e^{tX}] = \int_a^b e^{tx} \cdot \frac{1}{b-a} \, dx$$
$$= \left[\frac{e^{tx}}{t(b-a)}\right]_a^b$$
$$= \frac{e^{tb} - e^{ta}}{t(b-a)}.$$

Beispiel (Forts.)

Für eine standardnormalverteilte Zufallsvariable $N \sim \mathcal{N}(0,1)$ gilt

$$M_N(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{t\xi} e^{-\xi^2/2} d\xi$$
$$= e^{t^2/2} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-(t-\xi)^2/2} d\xi$$
$$= e^{t^2/2}.$$

Beispiel (Forts.)

Daraus ergibt sich für $Y \sim \mathcal{N}(\mu, \sigma^2)$ wegen $\frac{Y-\mu}{\sigma} \sim \mathcal{N}(0, 1)$

$$M_Y(t) = \mathbb{E}[e^{tY}]$$

$$= e^{t\mu} \cdot \mathbb{E}[e^{(t\sigma) \cdot \frac{Y-\mu}{\sigma}}]$$

$$= e^{t\mu} \cdot M_N(t\sigma)$$

$$= e^{t\mu + (t\sigma)^2/2}.$$

Weiterer Beweis von Satz 113:

Beweis:

Gemäß dem vorhergehenden Beispiel gilt

$$M_{X_i}(t) = e^{t\mu_i + (t\sigma_i)^2/2}$$
.

Wegen der Unabhängigkeit der X_i folgt

$$M_Z(t) = \mathbb{E}[e^{t(a_1X_1 + \dots + a_nX_n)}] = \prod_{i=1}^n \mathbb{E}[e^{(a_it)X_i}]$$

$$= \prod_{i=1}^n M_{X_i}(a_it)$$

$$= \prod_{i=1}^n e^{a_it\mu_i + (a_it\sigma_i)^2/2}$$

$$= e^{t\mu + (t\sigma)^2/2},$$

 $\text{mit } \mu = a_1\mu_1 + \dots + a_n\mu_n \text{ und } \sigma^2 = a_1^2\sigma_1^2 + \dots + a_n^2\sigma_n^2.$

4. Zentraler Grenzwertsatz

Satz 115 (Zentraler Grenzwertsatz)

Die Zufallsvariablen X_1, \ldots, X_n besitzen jeweils dieselbe Verteilung und seien unabhängig. Erwartungswert und Varianz von X_i existieren für $i=1,\ldots,n$ und seien mit μ bzw. σ^2 bezeichnet ($\sigma^2 > 0$).

Die Zufallsvariablen Y_n seien definiert durch $Y_n := X_1 + \ldots + X_n$ für $n \ge 1$. Dann folgt, dass die Zufallsvariablen

$$Z_n := \frac{Y_n - n\mu}{\sigma\sqrt{n}}$$

asymptotisch standardnormalverteilt sind, also $Z_n \sim \mathcal{N}(0,1)$ für $n \to \infty$.

Etwas formaler ausgedrückt gilt: Die Folge der zu Z_n gehörenden Verteilungsfunktionen F_n hat die Eigenschaft

$$\lim_{n\to\infty}F_n(x)=\Phi(x) \text{ für alle } x\in\mathbb{R}.$$

Wir sagen dazu auch: Die Verteilung von Z_n konvergiert gegen die Standardnormalverteilung für $n \to \infty$.

Dieser Satz ist von großer Bedeutung für die Anwendung der Normalverteilung in der Statistik. Der Satz besagt, dass sich die Verteilung einer Summe beliebiger unabhängiger Zufallsvariablen (mit endlichem Erwartungswert und Varianz) der Normalverteilung umso mehr annähert, je mehr Zufallsvariablen an der Summe beteiligt sind.

Beweis:

Wir betrachten $X_i^* := (X_i - \mu)/\sigma$ für i = 1, ..., n mit $\mathbb{E}[X_i^*] = 0$ und $\mathrm{Var}[X_i^*] = 1$. Damit gilt (gemäß vorhergehendem Beispiel)

$$M_Z(t) = \mathbb{E}[e^{tZ}] = \mathbb{E}[e^{t(X_1^* + \dots + X_n^*)/\sqrt{n}}]$$

= $M_{X_1^*}(t/\sqrt{n}) \cdot \dots \cdot M_{X_n^*}(t/\sqrt{n})$.

Für beliebiges i betrachten wir die Taylorentwicklung von $M_{X_i^*}(t)=:h(t)$ an der Stelle t=0

$$h(t) = h(0) + h'(0) \cdot t + \frac{h''(0)}{2} \cdot t^2 + \mathcal{O}(t^3).$$

Aus der Linearität des Erwartungswerts folgt

$$h'(t) = \mathbb{E}[e^{tX_i^*} \cdot X_i^*] \text{ und } h''(t) = \mathbb{E}[e^{tX_i^*} \cdot (X_i^*)^2].$$

Damit gilt

$$h'(0) = \mathbb{E}[X_i^*] = 0 \text{ und } h''(0) = \mathbb{E}[(X_i^*)^2] = \text{Var}[X] = 1.$$

Durch Einsetzen in die Taylorreihe folgt $h(t)=1+t^2/2+\mathcal{O}(t^3)$, und wir können $M_Z(t)$ umschreiben zu

$$M_Z(t) = \left(1 + rac{t^2}{2n} + \mathcal{O}\left(rac{t^3}{n^{3/2}}
ight)
ight)^n
ightarrow e^{t^2/2} ext{ für } n
ightarrow \infty.$$

Aus der Konvergenz der momenterzeugenden Funktion folgt auch die Konvergenz der Verteilung. Damit ist Z asymptotisch normalverteilt.

Die momenterzeugende Funktion existiert leider nicht bei allen Zufallsvariablen und unser Beweis ist deshalb unvollständig. Man umgeht dieses Problem, indem man statt der momenterzeugenden Funktion die so genannte charakteristische Funktion $ilde{M}_X(t) = \mathbb{E}[e^{\mathrm{i}tX}]$ betrachtet. Für Details verweisen wir auf die einschlägige Literatur.

Der Zentrale Grenzwertsatz hat die folgende intuitive Konsequenz:

Wenn eine Zufallsgröße durch lineare Kombination vieler unabhängiger, identisch verteilter Zufallsgrößen entsteht, so erhält man näherungsweise eine Normalverteilung.

