PROJECT REPORT

Natural Disasters Intensity Analysis and Classification using Artificial Intelligence

submittedby

PNT2022TMID49204

5. Sandhiya (922219106018)

5.Mahima (922219106013)

T.Kiyalika (922219106012)

R.Ishwarya (922219106008

TABLE OF CONTENTS

1.	INTR	ODUCTION	4
	a.	PROJECT OVERVIEW	
	b.	PURPOSE	
2.	LITER	RATURE SURVEY	5
	a.	EXISTING PROBLEM	
	b.	REFERENCES	
	c.	PROBLEM STATEMENT DEFINITION	
3.	IDEA	TION AND PROPOSEDSOLUTION	7
	a.	EMPATHY MAP CANVAS	
	b.	IDEATION & BRAINSTORMING	
	c.	PROPOSED SOLUTION	
	d.	PROBLEM SOLUTION FIT	
4.	REQU	IREMENT ANALYSIS	11
	a.	FUNCTIONAL REQUIREMENTS	
	b.	NON FUNCTIONAL REQUIREMENTS	
5.	PROJ	ECT DESIGN	14
	a.	DATA FLOW DIAGRAM	
	b.	SOLUTION & TECHNICAL ARCHITECTURE	

	c.	USER STORIES	
6.	PROJE	ECT PLANNING AND SCHEDULING	18
	a.	SPRINT PLANNING AND ESTIMATION	
	b.	SPRINT DELIVERY SCHEDULE	
7.	CODI	NG & SOLUTIONING	20
8.	TEST	ING	22
	a.	TEST CASES	
	b.	USER ACCEPTANCE TESTING	
		i. DEFECT ANALYSIS	
		ii. TEST CASE ANALYSIS	
9.	RESUL	LTS	25
	a.	PERFORMANCE METRICS	
10.	ADVAI	NTAGES &DISADVANTAGES	26
	a.	ADVANTAGES	
	b.	DISADVANTAGES	
11.	CONC	LUSION	27
12.	FUTUI	RE SCOPE	28
ΑP	PENDI	ΣΧ	29
	SOUR	CE CODE	
	GITH	UB	
	PROJ	ECTDEM	
	0		

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still facesissues due to the complex and imbalanced structures of images. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with thePre-trained model and the type of disaster is identified and showcased on the OpenCV window.

1.2 PURPOSE

Disaster management plays an integral role in **keeping communities safe**. It involves coordinating the resources, such as pollution control systems, and responsibilities, such as following best practice policies, needed to prevent, prepare for, respond to, and recover from emergencies. Natural disasters generally constitute an emergency since they require immediate intervention due to their **high impact on human health and safety**; they affect the normal functioning of working infrastructure, interrupting normal day activities and representing a risk

for residents and workers in affected areas.

CHAPTER2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

Many researchers have attempted to use different deep learning methods for detection of natural disasters. However, the detection of natural disasters by using deeplearning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrenceand the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

2.2 REFERENCES

- 1. Mignan, A.; Broccardo, M. Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations. Seism.Res. Lett. 2020, 91, 2330–2342. [CrossRef]
- 2. Tonini, M.; D'Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P.A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The

Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [CrossRef]

- 3. Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machinelearning models. *Geosci. Front.* 2021, 12, 101075. [CrossRef]
 - 4. Schlemper, J.; Caballero, J.; Hajnal, V.; Price, A.N.; Rueckert, D. A deep

cascade of convolutional neural networks for dynamic MR image reconstruction. IEEETrans. Med. Imaging 2017, 37, 491–503. [CrossRef] [PubMed]

- 5. Tang, C.; Zhu, Q.; Wu, W.; Huang, W.; Hong, C.; Niu, X. PLANET: Improved convolutional neural networks with image enhancement for image classification. Math.Probl. Eng. 2020, 2020. [CrossRef]
- 6. Ashiquzzaman, A.; Oh, S.M.; Lee, D.; Lee, J.; Kim, J. Context-aware deep convolutional neural network application for fire and smoke detection in virtual environment for surveillance video analysis. In Smart Trends in Computing and Communications, Proceedings of the SmartCom 2020, Paris, France, 29–31 December 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 459–467.
- 7. Li, T.; Zhao, E.; Zhang, J.; Hu, C. Detection of Wildfire Smoke Images Basedon a Densely Dilated Convolutional Network. Electronics 2019, 8, 1131. [CrossRef]
- 8. Mangalathu, S.; Burton, H.V. Deep learning-based classification of earthquake-impacted buildings using textual damage descriptions. Int. J. Disaster Risk Reduct. 2019, 36, 101111. [CrossRef]

2.3 PROBLEM STATEMENT DEFINITION

"IMD (Indian Meteorology department) is responsible to issue warnings for the rainfall and CWC (Central Water Commission) keeps a record of water reservoirs, however there is a lack of collation of data issued from both these departments. This prevents us from determining the impact/seriousness and due to which there are timeswhere adequate forewarnings are not provided. There are several High rainfall areas, low lying areas or flood prone areas. Currently there are limitations that these areas cannot be alerted before the critical situation because of the data unavailability or unavailability of simulation models which can calculate and predict the data. There is a requirement of data on the area likely to be inundated(depth) by release of water from reservoirs. 3D models may help in calculation of such data.a) Adequate forewarning forthe area where floods are

likely to occur. b) Low lying areas may be alerted about the release of accurate quantity of water from the reservoirs and thus evacuation/shifting of the people can be planned. c) It will help the Response forces to deploy their resources accordingly d) Prediction of release of water based on rainfall in catchment area and dissemination of an information to the affected public through mobile and other mediums."

IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description		
	Desklaw Chahamant (Desklam to ba	To all agifush a making lidia at an and the		
1.	Problem Statement (Problem to be solved)	To classify the natural disaster and the effect		
	30.104)	based on the webcam image given as input		
		using Artificial Intelligence.		
2.	Idea / Solution description	The classification is done by deep learning		
		techniques such as Convolutional		
		NeuralNetwork (CNN) and		
		Machine Learning Techniques.		
3.	Novelty / Uniqueness	It is based on the satellite and multispectral		
		image and the classification using		
		Multilayered Deep Convolutional Neural		
		Networks.		
4.	Social Impact / Customer Satisfaction	The people can easily identify the type of natural		
		disaster and its effect on the environment		
		whichleads to the earlier identification		
		and reduced damage in the ecosystem.		
5.	Business Model (Revenue Model)	We build a system that classifies the natural		
		diasater and its intensity and it is		
		believed that the website is useful for		
		all people and also thewebsite works for		
		a long time effectively.		
6.	Scalability of the Solution	The website will be made available for all the		
		people who needs to classify the type of		
		natural disaster. The machine learning and		
		deep learning algorithms that are being		
		used made it easier for the classification		
		and intensity analysis.		

3.4 PROBLEM SOLUTION FIT

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement(Epic)	Sub Requirement (Story / Sub-Task)
FR - 1	User Registration	 Registering via Google Accounts Registering via Product's own usermanagementsystem
FR - 2	User Authentication	Verification through OTP Verification through EmailLink

FR - 3	Designation of Region	Ease of selection of necessaryareasto bemonitored
		Versatile and Flexible operations ondesignatedareas
FR - 4	Analysis of Required Phenomenon	Simple and easy analysis on thespecificphenomenonto be observed
FR - 5	Accumulation of required Data	Fast and Efficient data gathering capabilities regarding past eventanalysis and future prediction

FR - 6	Organizing Unstructured data	Processing of raw and clustered data into clearandrefined data which is useful foranalysis and prediction
		tasks

FR - 7	Algorithm selection	The freedom to choose fromseveralclasses ofalgorithm to be used in the process
		Customization of algorithm to suit theneeds of aspecific purpose
FR - 8	Prediction and analysis ofdata	Accurate results of the analysisprovided by theprocess
		Advanced visualization techniques to helpvisualizethe processed data for effective observation
FR - 9	Report generation	Restructuring of obtained results intoclearanddetailedreportfor future studies

4.2 NON-FUNCTIONAL REQUIREMENTS

NFR No.	Non- Functional Requirement	Description
NFR - 1	Usability	It is well suitedfor fields requiring diverse application of processes with efficiency, precision and ease.

NFR - 2	Security	It provides a distinct and secure encryption layer to the system interface for additional security standards.		
NFR - 3	Reliability	The product is robust and iscapable of execution of processes even in the most difficult and unpredictable environments.		
NFR - 4	Performance	The product boasts a high precision and efficient working capacity which helps in escalating its performance to the highest degree.		
NFR - 5	Availability	Despite the complexity and degree of difficulty in its operation, the product is equipped with all-round maintenance andreadily available technical services whichprovides the necessary support any individual requires in their duties.		
NFR - 6	Scalability	The product also possess enoughroom forthe improvement of its specifications to upgrade its capabilities according to the needsof the user and theirorganization		

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data entersand leaves the system, what changes the information, and where datais stored.

5.2 USER STORIES

User Type	Functional Requiremen t(Epic)	User StoryNum ber (USN)	User Story /Task	Accepta n cecriteri a	Priority	Release
End use r (Custome r)	Registration	USN - 1	As a user, Iam able toregister with theProduct using my valid emailaddre ss	I should be ableto register with my account credentials	High	Sprint - 1
End User (Custome r)	Authentication	USN - 2	As a user, I am able to login into the system with my credentials	It should ensure smooth login capabilities withoutdelay	High	Sprint - 1
End Use r (Custome r)	Designation ofRegion	USN - 3	I can select the regionof interest to be monitored and analyzed	I mustbe able tochoose certain specifi cplaces without error	High	Sprint - 1
End Use r (Custome	Analysis of Required Phenomenon	USN - 4	I am able to monitor certain factors that influence the actions of the phenomenon	It should consider and monitormostof the factors involved in the action	High	Sprint - 2
End Use r (Custome r)	Accumulation of required Data	USN - 5	I am able togather data regarding past eventsand a detailed report on past	It shouldallow the storage of dataofpast events for certain extent	Med ium	Sprint - 2

			analysis			
End Use r (Custome r)	Organizing Unstructured data	USN - 6	I am able to organizeand restructure the raw data into refineddata	It should ensureeasy and efficient processing methods	Low	Sprint - 3

End Use r (Custome r)	Algorith mselecti on	USN-7	I am ableto choose the required Algorithmfo ra specific analysis	It mustprovide various options for the algorithm to be used	High	Sprint - 2
End Use r (Custome r)	Prediction and analysis of data	USN - 8	I am able to easily predict and visualize thedata	It shouldallow easy to use prediction and visualization techniques	High	Sprint - 3
End Use r (Custome r)	Report generation	USN - 9	I am able to generatea clear and detailed report on the analysis	Report generation must be fast and efficient andshouldnot be complex	Med ium	Sprint - 4

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional	User	User story / Task	Story	Priorit	Team members
	Requireme	story		points	У	
	nt(Epic)	Number				
Sprint - 1	Registration	USN - 1	As a user, Registering into the product usinga valid email address	5	High	Selva Sathish T
Sprin †- 2	Registration	U5N - 2	As a user, Registering into the product usinga valid username andpassword	3	Mediu m	Nawin Kumar P
Sprint - 1	Authenticatio n	USN - 3	As a user , I adept to logginginto the system with credentials	4	High	Selva Sathish T
Sprin t- 2	Authenticatio n	USN - 4	As a user , I adept to logging into the systemwith O	2	High	Nawin Kumar P
Sprin t- 1	Designation ofRegion	USN - 5	selecting the region of interest to be monitored and analysed	3	High	Kiruba Karan A Selva

						Sathish T
Sprint - 2	Analysis of Required Phenomen on	USN - 6	Regulating certain factors influencing theactions of the phenomenon	3	High	Sharath B
Sprin t- 2	Accumulation ofrequire dData	USN - 7	Gathering data and detailed report onpastevent analysis	4	Mediu m	Kiruba Karan A Nawin Kumar P

Sprin t-	Organizing Unstruct	USN - 8	Organizing and reorienting the raw	3	Low	Selva Sathish T
4	ureddata		data into a refined			
			data			Sharath B
Sprin t-	AlgoriT hm	USN - 9	Choosing a required	2	High	Selva Sathish T
2	selectio		algorithmfor			Kiruba Karan
	n		specificanalysis			ASharath B
Sprin t-	Prediction and	USN - 10	Predicting and visualizing	6	High	Sharath B Kiruba Karan
3	analysisof		the			A Selva
	data		dataeffective			Sathish T
			ly			Nawin Kumar
						Р
Sprin t-	Report	USN - 11	Generating a clear	3	High	Nawin Kumar P
	genera		anddetailed			Selva Sathish
4	tion		reporton			Т
			productdata			
			analysis			

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Stor	Duration	Sprint Sta	Sprint End Date	Story Points Completed	Sprint Releas
	у		rt	(Planned	(as on	e Date
	Point		Dat)	Planned End	(Actua
	s		e		Date)	l)
Sprint-	12	6 days	24 Oct 2022	29 Oct 2022	12	30 Oct 2022
Sprint-	14	6 days	31 Oct 2022	5 Nov2022	14	6 Nov 2022
Sprint-	6	6 days	07 Nov2022	12 Nov2022	6	8 Nov 2022
Sprint-	6	6 days	14 Nov2022	19 Nov2022	6	20 Nov 2022

CODING & SOLUTIONING

7.1 FEATURE

```
from flask import Flask, render_template, request
import cv2
from tensorflow.keras.models import load_model
import numpy as np
from werkzeug.utils import secure_filename
app=Flask(__name__,template_folder="templates")
model=load_model('disaster.h5')
print("Loaded model from disk")
@app.route('/',methods=['GET'])
def home():
    return render_template("index.html")
@app.route('/home',methods=['GET'])
def back():
   return render_template("index.html")
@app.route('/upload',methods=['GET'])
def index():
    cap=cv2.VideoCapture(0)
    H=None
    W= None
```

```
while True:
        (grabbed, frame) = cap.read()
        if not grabbed:
            break
        if W is None or H is None:
            (H,W)= frame.shape[:2]
        output= frame.copy()
        frame=cv2.cvtColor(frame,cv2.COLOR BGR2RGB)
        frame=cv2.resize(frame, (64,64))
        x=np.expand_dims(frame,axis=0)
        result = np.argmax(model.predict(x),axis=-1)
        index =['Cyclone','Earthquake','Flood','Wildfire']
        output=str(index[result[0]])
        print(result)
        return render_template("output.html",output=output)
        # cv2.putText(output, "activity:{}".format(result),(10,120),cv2.FONT_HERSHEY_PLAIN,1,(0,255,255),1 )
        # cv2.imshow("output",output)
          if cv2.waitKey(2) & 0xFF==ord('x'):
              break
# print("[info] cleaning up....")
# cap.release()
# cv2.destroyAllWindows()
```

```
# return render_template("output.html",output=result)
if __name__=='__main__':
    app.run(host='0.0.0.0',port=8000,debug=False)
```

TESTING

8.1 TEST CASES

Test case ID	Featur e Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_001	UI	Home Page	Verify UI elements inthe HomePage	The Home pagemust be displayed properly	Working as expected	PASS
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly indifferent screensizes	The Home pagemust be displayed properly in allsizes	The UI is not displayed properlyin screen size 2560 × 1801 and 768 × 630	FAIL
HP_TC_003	Functio nal	Home Page	Check if thepage redirects to the resultpage once theinput is given	The page shouldredir ect to the results page	Working as expected	PASS
BE_TC_001	Functio nal	Backend	Check if all the routesare working properly	All the routes should properly work	Working as expected	PASS
M_TC_001	Functio nal	Model	Check if the model can handle various image	The model shouldrescal ethe imageand predict the	Working as expected	PASS

				results		
M_TC_002 M_TC_003	Function al Functio nal	Model Model	Check if the modelpredicts the disaster Check if the model can handle complexinput	didodton in	Working as expected The model failsto identify it since the modelis not built to	PASS FAIL

				compexfeed	handle such data	
RP_TC_001	UI	Result Page	Verify UI elements in the ResultPage	The Result pagemust be displayed properly	Working as expected	PASS
RP_T <i>C</i> _002	UI	Result Page	Check if the resultis displayed properly	The result shouldbe displayed properly	Working as expected	PASS
RP_TC_003	UI	Result Page	Check if the other predictions aredisplayed properly	The other rediction s should be displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Tota I
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixe d	4	1	0	1	6
Not Reproduced	0	0	0	1	1

Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2

Total	6	1	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Teste d	Fail	Pa ss
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

RESULTS

9.1 PERFORMANCE METRICS

S.No.	Parameter	Value s	Sc	reensh ot	
1.	Model Summary	-	conv2d (Conv2D) (N max_pooling2d (MaxPooling2D ()) conv2d_1 (Conv2D) (N max_pooling2d_1 (MaxPooling () 2D) flatten (Flatten) (N dense (Dense) (N	None, 62, 62, 32) (None, 31, 31, 32) None, 29, 29, 32) (None, 14, 14, 32) None, 6272) None, 128)	896 0 9248 0 0 802944 516
2.	Accuracy	Training Accuracy – 88.04% Validation Accuracy -81.56%	Training Accu Training Loss Validation Ac Validation Lo	s: 32.64 ccuracy: 81	

ADVANTAGES & DISADVANTAGES

ADVANTAGES:-

- 1. Humans also need breaks and time offs to balance their work life and personal life. But AI can work endlessly without breaks.
- 2. With the use of various Al-based techniques, we can also anticipate today's weather and the days ahead.
- 3. Helpful in getting life back on track..
- 4. Their Alert nature able to respond effectively and efficiently which defend the society from large scale damages.

DISADVANTAGES:-

- 1. It involves huge money to be equipped.
- 2. Problems faced in life basic needs.
- 3. One application of artificial intelligence is a robot, which is displacing occupations and increasing unemployment .
- 4. Machines can perform only those tasks which they are designed or programmed to do, anything out of that they tend to crash or give irrelevant outputs which could be a major backdrop.

CONCLUSION

Many researchers have attempted to use different deep learning methodsfor detection of natural disasters. However, the detection of natural disasters by using deep learning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrence and the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity,98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

FUTURE SCOPE

AI -smart technology, which has enabled accurate and speedy solutions. If harnessed properly, the technology has the potential of predicting, preventing and providing response faster than ever.

AI data setups are trained to predict seismic data to analyze the patterns of earthquake occurrences, rainfall records and monitor flooding, measure the intensity of hurricanes and read the geological data to understand volcanic eruptions, such systemscan reduce the catastrophic impact of natural disasters.

Last year, Google's Pilot project to monitor flood in India with the help of AI, was a successful one - it was a Patna project. They were able to predict floods and the regions that it would be affected due to the natural disaster with an accuracy of over 90%. It was possible owing to the combination of data from government agencies that provide on-ground information - from measuring devices placed on the spot and satellite captured images of flood-prone areas. They ran hundreds of thousands of simulations on its machine learning (ML) models to predict the flow of water. In the future, leveraging AI can help disaster management bodies install drones, sensors androbots to provide accurate information about damaged buildings and landscapes, potential floods, making rescue missions safer and less time-consuming.

There is a need for smart technology to be integrated within our local communities. Immediate response and tech-based solutions can help reduce the extent of damage. However, since AI is based on machine codes, there is a scope of limitations and errors. However, the amalgamation of human, empathy and alertness, could do wonders in the field of crisis management.

APPENDIX

SOURCE CODE MODEL CREATION

```
model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
   model.add(MaxPooling2D(pool_size=(2, 2)))
   model.add(Conv2D(32, (3, 3), activation='relu'))
   model.add(MaxPooling2D(pool_size=(2, 2)))
   model.add(Flatten())
   model.add(Dense(units=128, activation='relu'))
   model.add(Dense(units=4, activation='softmax'))
   model.summary()
Model: "sequential"
Layer (type)
                         Output Shape
                                                Param #
______
conv2d (Conv2D)
                        (None, 62, 62, 32)
                                                896
max_pooling2d (MaxPooling2D (None, 31, 31, 32)
```

```
conv2d_1 (Conv2D)
                           (None, 29, 29, 32)
                                                    9248
 max_pooling2d_1 (MaxPooling (None, 14, 14, 32)
 flatten (Flatten)
                     (None, 6272)
                                                    a
                           (None, 128)
dense (Dense)
                                                  802944
 dense_1 (Dense)
                           (None, 4)
                                                    516
Total params: 813,604
Trainable params: 813,604
Non-trainable params: 0
   model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

```
model.fit(X_train,
     steps per epoch=len(X train),
     epochs=20,
     validation_data=X_test,
     validation_steps=len(X_test))
Output exceeds the size limit. Open the full output data in a text editor
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
111/111 [=============] - 47s 428ms/step - loss: 0.5846 - accuracy: 0.7847 - val_loss: 0.8129 - val_accuracy: 0.6980
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
111/111 [========================] - 45s 406ms/step - loss: 0.4554 - accuracy: 0.8361 - val_loss: 0.5008 - val_accuracy: 0.8111
```

```
Epoch 9/20
111/111 [======
     ============] - 45s 405ms/step - loss: 0.4598 - accuracy: 0.8335 - val_loss: 0.6498 - val_accuracy: 0.7557
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 19/20
Epoch 20/20
<keras.callbacks.History at 0x19d4c8a69b0>
 model.save("disaster.h5")
```

```
from tensorflow.keras preprocessing import image
import matplotlib.pyplot as plt

def predict(image_path):
    img = image.load_img(image_path, target_size=target_size)
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)

    labels = ['Cyclone', 'Earthquake', 'Flood', 'Wildfire']

    pred = model.predict(x)
    prediction = labels[np.argmax(pred[0])]

    print(f'Disaster: {prediction}')
    plt.imshow(plt.imread(image_path))
    plt.axis('off')
    plt.show()
```



```
predict('./Sample/4.jpg')

1/1 [=======] - 0s 26ms/step
Disaster: Flood
```

FLASK APP.PY

```
from flask import Flask, render_template, request
import cv2
from tensorflow.keras.models import load_model
import numpy as np
from werkzeug.utils import secure_filename
app=Flask(__name__,template_folder="templates")
model=load_model('disaster.h5')
print("Loaded model from disk")
@app.route('/',methods=['GET'])
def home():
    return render_template("index.html")
@app.route('/home',methods=['GET'])
    return render_template("index.html")
@app.route('/upload',methods=['GET'])
def index():
    cap=cv2.VideoCapture(0)
    H=None
    W= None
    while True:
            (grabbed,frame)= cap.read()
            if not grabbed:
                break
            if W is None or H is None:
               (H,W)= frame.shape[:2]
```

INDEX . HTML

```
<meta charset="utf-8" name="viewport" content= "width=device-width, initial-scale=1.0">
   margin: 0;
   padding: 0;
  body{
   width: 100vw;
   height: 100vh;
  .content{
   display: flex;
   flex-direction: column;
   margin-top: 5rem;
   .top{
        height: 3rem;
       background-color: ☐rgb(12, 104, 161);
        color: ☐white;
       display: flex;
        letter-spacing: 2px;
        align-items: center;
        font-weight: 900;
        font-size: 1.2rem;
```

```
font-family: monospace;
   padding-left: 2.5rem;
.images{
   display: flex;
   justify-content: center;
   align-items: center;
img{
   width:200px;
   height:300px;
   border-radius: 1rem;
   margin-left: 5rem;
button{
   position: relative;
   background-color: ☐rgb(12, 104, 161);
   color: White;
   padding: 5px 10px;
   border: 1px solid  □rgb(12, 104, 161);
   font-weight: 900;
   font-size: 1.2rem;
   font-family: monospace;
   display: flex;
   margin-left: 46%;
   margin-top: 5rem;
```

OUTPUT . HTML

```
padding: 0;
    margin: 0;
body{
    height: 100vh;
    width: 100vw;
.top{
     height: 3rem;
    background-color: ☐rgb(12, 104, 161);
    color: white;
    display: flex;
    letter-spacing: 2px;
    align-items: center;
    font-weight: 900;
    font-size: 1.2rem;
    font-family: monospace;
    padding-left: 2.5rem;
 .top #home{
    position:absolute;
background-color: ☐rgb(12, 104, 161);
    color: ■white;
```

```
right: 40;
     padding: 2px 8px;
     font-size: 1rem;
     font-family: monospace;
border: 1px solid ■rgb(255, 255, 255);
     border-radius: 5px;
 .content{
     display: flex;
     justify-content: center;
  #name{
     padding: 3rem;
     text-transform: uppercase;
     font-size:2rem ;
     font-weight: 900;
     text-align: center;
     font-family: 'Times New Roman', Times, serif;
img{
     width:400px;
     height:400px;
     border-radius: 4rem;
```

GITHUB:-

https://github.com/IBM-EPBL/IBM-Project-41075-1660639176

PROJECT DEMO:-

https://youtu.be/ G4izm6_VOL8