Тензорные и Матричные разложения

Москворецкий Виктор

Про матрицы Сингулярное разложение Практические применения Тензорные разложения Нейросеть - набор матриц Ранг матрицы

Определение SVD Усеченное разложение Оптимальный ранг Примеры BERT и LLaMA-2

LadaBERT Fisher-SVD LASER KroneckerBERT

Oпределение тензора СР разложение Tucker Разложение Tensor Train разложение >>> Матрицы

Нейросеть - набор матриц

Все нейросети - "модные" матричные умножения

- Полносвязная сеть Матричные умножения с нелинейностями между ними
- Сверточная сеть Тензорные умножения с нелинейностями между ними
- Рекуррентная сеть Рекуррентные Матричные умножения с нелинейностями между ними
- Механизм внимания Матричные умножения с софтмаксом
- Современные трансформеры Глубокая полносвязная сеть с механизмом внимания

Нейросеть - Последовательное преобразование признакового пространства Цель: сделать сложное пространство приятным для решения задачи

$$\varphi_k(W_k \cdot \ldots \cdot \varphi_2(W_2 \cdot \varphi_1(W_1 \cdot x)))$$

Ранг матрицы

Линейный слой принимающий п признаков и выдающий т признаков

Ранг - это настоящая размерность выходного пространства

Пример:

$$W_1, \quad rank(W_1) = 1, \quad W_1 \in \mathbb{R}^{2 \times 2} \qquad \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

$$(x, y) \xrightarrow{W} (x, 2x)$$

Вывод: Может сократить размер матрицы без потери информации

Эквивалентные определения ранга

система векторов называется линейно независимой, когда $\ \alpha_1 v_1 + \cdots + \alpha_n v_n = 0$ имеет только тривиальное решение, то есть все $\ \alpha_i = 0$

Столбцовый: максимальное количество линейно независимых столбцов

Строковый: максимальное количество линейно независимых строк

Факториальный: Минимальная размерность в разложении

$$\min\{k|W=BC, \text{ where } B\in\mathbb{R}^{n\times k}, C\in\mathbb{R}^{k\times m}\}$$

Тензорный: Минимальное количество тощих матриц необходимых для разложения

$$\min\{k|W = x_1y_1^T + \ldots + x_ky_k^T, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}^m\}$$

Повышаем эффективность

- Разложения могут сократить количество параметров. Хранение происходит эффективнее
- При определенных условиях можно ускорить инференс. Если суммарное число операций станет меньше
- Может служить регуляризацией, потенциально повышая качество. А возможно и динамику обучения
- Можем сохранить всю основную информацию в наших матрицах

>>> Сингулярное разложение

Сингулярное разложение

- Основной вид разложения
- Всегда существует
- Хорошо численно считается
- Имеет приятную интерпретацию
- Широко используется
- Определен для любых матриц

$$W = U\Sigma V^*$$

$$UU^* = I$$
 $VV^* = I$

- U и V унитарные. Левые и правые сингулярные вектора
- \sum диагональная с сингулярными значениями

Низкоранговая аппроксимация

Задача: Найти низкоранговую матрицу, чтобы она сохраняла информацию

Решение: Усеченное сингулярное разложение $\hat{D}=U_r\Sigma_rV_r^*$

- Делаем SVD
- Берем первые г компонент
- Лучшее решение данной задачи
- Аналитически доказанное

Усеченное сингулярное разложение

Оптимальный ранг разложения

- ullet Изначальная память: N imes M
- Размерность сингулярного разложения $U_r \in R^{N imes r}$ $\sum_r \in R^r$ $V_r^* \in R^{r imes M}$
- Память после сингулярного разложения

 (N > m) | m | (m > M) = m(N | M)
- $(N\times r)+r+(r\times M)=r(N+M+1)$ Условие оптимольности
 - r(N+M+1) < NM
- Необходимый ранг

$$r < \frac{NM}{N+M+1}$$

BERT base SA, N=M=768 -> r < 383

Llama2-7b SA, N=M=4096 -> r < 2048

Усеченное сингулярное разложение (BERT)

Какую из матриц лучше сжимать?

Omвет: Layer 12 FF2

Усеченное сингулярное разложение (BERT)

Как выглядит матрица, которую удобно сжимать?

Усеченное сингулярное разложение (LLaMA2)

>>> Практические применения

LADA BERT

- Итеративный Подход
- Сингулярное разложение
- Прунинг
- Дообучение
- Дистилляция

Источник: Mao, Yihuan, et al. "Ladabert: Lightweight adaptation of bert through hybrid model compression." arXiv preprint arXiv:2004.04124 (2020).

LADA BERT

- Основной прирост за счет дистилляции
- Отдельно прунинг и разложение портят модель

Table 3: Performance comparison on various model sizes

Algorithm	MNLI-m	MNLI-mm	SST-2	QQP	QNLI	#Params	Ratio
BERT-Base	84.6	83.4	93.5	71.2/-	90.5	110M	×1.0
LadaBERT-1	83.5	82.5	92.8	70.7/88.9	89.6	44M	×2.5
BERT-FT	74.8	74.3	86.4	65.8/86.9	84.3	44M	×2.5
BERT-KD	75.4	74.8	86.9	67.3/87.6	84.0	44M	×2.5
BERT-PKD	76.7	76.3	87.5	68.1/87.8	84.7	44M	×2.5
Weight pruning	82.8	81.6	92.3	70.1/88.5	88.9	44M	×2.5
matrix factorization	77.7	77.4	87.6	65.7/87.2	84.3	44M	×2.5
Hybrid pruning	81.2	80.0	90.0	68.0/87.5	83.3	44M	×2.5
LadaBERT-2	83.1	82.2	91.8	69.9/87.9	88.2	22M	×5.0
Weight pruning	75.9	75.6	84.8	60.3/83.5	81.7	22M	×5.0
matrix factorization	71.8	71.8	82.8	60.3/83.5	75.4	22M	×5.0
Hybrid pruning	76.1	75.3	85.4	64.9/85.8	80.6	22M	×5.0
LadaBERT-3	82.1	81.8	89.9	69.4/87.8	84.5	15M	×7.5
TinyBERT	80.9	79.5	89.5	65.4/87.5	77.9	15M	×7.5
BERT-Small	75.4	74.9	87.6	66.5/-	84.8	15M	×7.5
Weight pruning	69.1	68.8	81.8	59.7/82.9	76.4	15M	×7.5
matrix factorization	60.2	60.0	81.3	58.5/82.0	62.2	15M	×7.5
Hybrid pruning	71.9	71.0	83.5	62.3/84.7	73.8	15M	×7.5
LadaBERT-4	75.8	76.1	84.0	67.4/86.6	75.1	11M	×10.0
Distilled-BiLSTM	73.0	72.6	90.7	68.2/88.1	>=	10M	×10.8
Weight pruning	64.9	65.1	80.4	56.9/80.5	62.7	11M	×10.0
matrix factorization	59.9	59.6	79.2	57.8/81.9	62.2	11M	×10.0
Hybrid pruning	68.4	67.9	81.5	58.6/83.5	63.2	11M	×10.0

Fisher Weighted SVD

• Сингулярное разложение не знает что важно модели

Important
parameters

Poorly reconstructed
parameters

Truncated
parameters

ullet Покажем ему что важно $\min_{A,B} ||\hat{I}W - \hat{I}AB||_2.$

Источник: Hsu, Yen-Chang, et al. "Language model compression with weighted low-rank factorization." arXiv preprint arXiv:2207.00112 (2022).

Fisher Weighted SVD

• Оцениваем информацию Фишера

$$I_w = E\left[\left(\frac{\partial}{\partial w}\log p(D|w)\right)^2\right] \approx \frac{1}{|D|} \sum_{i=1}^{|D|} \left(\frac{\partial}{\partial w} \mathcal{L}(d_i; w)\right)^2 = \hat{I}_w.$$

• Информация в строке = сумма по столбцам

	Model	#Param	CoNLL	CoLA	MNLI	MRPC	QNLI	QQP	SST-2	STS-B	G-Avg	A-Avg
Original	$ BERT_{base} $	109.5M	94.1	56.2	84.7	87.4	91.3	87.8	93.0	88.5	84.1	85.4
Path-1	DistilBERT MiniLMv2	67.0M 67.0M	93.2 92.2	49.8 43.3	82.2 84.0	88.7 89.1	89.3 90.6	86.7 86.7	90.4 91.4	86.1 88.1	81.9 81.9	83.3 83.2
	BERT-PKD BERT+SVD	67.0M 66.5M	12.0	45.5	81.3 35.6	85.7 61.4	88.4 37.2	88.4 60.0	91.3 76.7	86.2 26.8	81.0 42.9	39.0
Path-1	+fine-tuning BERT+FWSVD +fine-tuning	66.5M	92.4 49.6 93.2	40.5 13.5 49.4	82.8 52.8 83.0	84.1 81.2 88.0	89.6 52.2 89.5	87.3 65.7 87.6	90.9 82.1 91.2	85.7 68.6 87.0	80.1 59.4 82.2	81.6 58.2 83.6

LASER: SVD to LLM

Источник: Sharma, Pratyusha, Jordan T. Ash, and Dipendra Misra. "The truth is in there: Improving reasoning in language models with layer-selective rank reduction." arXiv preprint arXiv:2312.13558 (2023).

LASER: SVD to LLM

- Разные слои ведут себя по разному
- Разные матрицы ведут себя по разному
- Некоторые очень чувствительные
- Некоторые совсем не чувствительные

LASER: SVD to LLM

- Небольшое усечение
- Прирост к "честности"
- Работает на всех видах моделей

Dataset		Model Name								
		Roberta		GI	T-J	LLama2				
			LASER		LASER		LASER			
CounterFact	Acc	17.3	19.3	13.1	24.0	35.6	37.6			
Counterract	Loss	5.78	5.43	5.78	5.05	3.61	3.49			
HotPotQA	Acc	6.1	6.7	19.6	19.5	16.5	17.2			
HotPotQA	Loss	10.99	10.53	3.40	GPT-J LASER 3.1 24.0 35 5.78 5.05 3.6 19.6 19.5 16 3.40 3.39 3.1 50.2 56.2 59 1.24 1.27 1.0 70.9 97.5 75 3.86 4.20 3.4 75.6 82.1 85 4.64 4.91 4.1 4.49 55.6 50 1.02 1.01 0.9 17.1 38.3 44 1.74 0.62 0.7 51.8 65.9 59	3.15	2.97			
EEVED	Acc	50.0	52.3	50.2	56.2	59.3	64.5			
FEVER	Loss	2.5	1.76	1.24	1.27	1.02	0.91			
Bios Gender	Acc	87.5	93.7	70.9	97.5	75.5	88.4			
bios Gender	Loss	0.87	1.13	3.86	4.20	3.48	2.93			
Bios Profession	Acc	64.5	72.5	75.6	82.1	35.6 3.61 16.5 3.15 59.3 1.02 75.5 3.48 85.0 4.19 50.5 0.95 44.8 0.78 59.5	86.7			
DIOS Profession	Loss	4.91	6.44	4.64	4.91	4.19	4.05			
T-+1-f-10 A	Acc	56.2	56.2	54.9	55.6	35.6 3.61 16.5 3.15 59.3 1.02 75.5 3.48 85.0 4.19 50.5 0.95 44.8 0.78	56.2			
TruthfulQA	Loss	1.60	1.42	1.02	1.01	0.95	1.04			
D: D E	Acc	37.1	41.8	37.1	38.3	44.8	63.4			
BigBench-Epistemic Reasoning	Loss	9.39	6.80	0.74	0.62	0.78	0.73			
Di-D	Acc	28.0	30.7	51.8	65.9	59.5	62.0			
BigBench-WikidataQA	Loss	9.07	7.69	3.52	2.86	2.40	2.31			

KroneckerBert

- Основано на Кронекеровом произведении
- Может эффективно раскладывать до более низкого ранга
- Применяем к каждой матрице

Last block projected features Concat and project Concat Pooling-Classifier Classifier FFN output Add and Norm Add and Norm W_2 $A_2 \otimes B_2$ First layer in FFN output Feedforward Network Feedforward Network $A_1 \otimes B_1$ MHA output Add and Norm Add and Norm $A^O \otimes B^O$ W_0 Attention matrices W'^K W^{Q} Multi-head attention Multi-head attention $W^{\prime V}$ **Embedding output** $A^E \otimes B^E$ W^E Embedding Embedding Teacher BERTBASE Student KroneckerBERT

 $A \otimes B$

Источник: Tahaei, Marzieh S., et al. "Kroneckerbert: Learning kronecker decomposition for pre-trained language models via knowledge distillation." arXiv preprint arXiv:2109.06243 (2021).

KroneckerBert

- Может работать лучше чем LADA BERT
- Сжатие в 19 раз
- Основной прирост за счет дистилляции

Pre-training	Fine-tuning	MNLI-m	SST-2	MRPC
None	No KD	66.0	81.3	68.3
None	KD	80.7	86.2	70.3
KD	No KD	77.0	87.2	78.17
KD	KD	82.8	90.6	86.6

Model	Params	MNLI-(m/mm)	SST-2	MRPC	CoLA	QQP	QNLI	RTE	STS-B	Avg
BERTBASE	108.5M	83.9/83.4	93.4	87.9	52.8	71.1	90.9	67	85.2	79.5
BERT ₄ -PKD	52.2M	79.9/79.3	89.4	82.6	24.8	70.2	85.1	62.3	79.8	72.6
TinyBERT	14.5M	82.5/81.8	92.6	86.4	44.1	71.3	87.7	66.6	80.4	77.0
LadaBERT ₃	15M	82.1/81.8	89.9	-	-	69.4	84.5	-	-	-
KroneckerBERT ₈	14.3M	82.9 /81.7	91.2	88.5	31.2	70.8	88.4	66.9	83.1	76.1
SharedProject	5.6M	76.4/75.2	84.7	84.9	-	= 1	15.0	87.5	-	-
LadaBERT ₄	11M	75.8/76.1	84.0	-	-	67.4	75.1	-	-	-
KroneckerBERT ₁₉	5.7M	79.4/81.6	89.2	86.9	25.8	69.2	86.2	62.7	78.2	73.1

Что такое тензор

- Отображение из одного пространства в другое
- Или просто набор матриц
- Более общий вид
- Может встречаться в DL приложениях

Figure 3: $x \in \mathbb{R}$, $x \in \mathbb{R}^4$, $X \in \mathbb{R}^{4 \times 5}$, $\mathfrak{X} \in \mathbb{R}^{4 \times 5 \times 3}$

Figure 4: Column, row, and tube fibers of a mode-3 tensor

СР-разложение

- Сумма одноранговых тензоров
- Каждый член получен из тощих матриц
- Буквально определение ранга

$$X = \mathbf{a} \otimes \mathbf{b} = \mathbf{a} \mathbf{b}^{T}$$

$$X = \mathbf{a}^{(1)} \otimes \mathbf{a}^{(2)} \otimes \cdots \otimes \mathbf{a}^{(N)} \text{ with } x_{i_1 i_2 \cdots i_N} = a_{i_1}^{(1)} a_{i_2}^{(2)} \cdots a_{i_N}^{(N)}$$

Convolution Speed up with CPD

- Применим СРD к весам в свертках
- Измерим
 - Ускорение
 - Просадку в качестве
 - Экономию в параметрах
- Везде выигрываем

Источник: Lebedev, Vadim, et al. "Speeding-up convolutional neural networks using fine-tuned cp-decomposition." arXiv preprint arXiv:1412.6553 (2014).

Как умножать тензоры

- Умножить тензор на матрицу = умножить совпадающую размерность проходясь по всем остальным размерностям
- Можно мысленно переставлять нужную размерность в конец
- Можно думать как о цикле for
- Или смириться с формальным определением

$$\mathcal{X} \in R^{I \times J \times K}$$
 $\mathcal{M} \in R^{J \times M}$
 $(\mathcal{X} \times \mathcal{M}) \in R^{I \times N \times K}$
 $(\mathcal{X} \times \mathcal{M})_{i,n,k} = \sum_{j=1}^{J} \mathcal{X}_{i,j,k} \mathcal{M}_{j,n}$

Tucker Decomposition

- Один ключевой тензор
- Несколько отображений в размерности
- Наиболее близко по смыслу к Сингулярному

$$\mathcal{X} \in R^{I \times J \times K}$$

$$\mathcal{G} \in \mathbb{R}^{P \times Q \times R} \ A \in \mathbb{R}^{I \times P} \ B \in \mathbb{R}^{J \times Q} \ C \in \mathbb{R}^{K \times R}$$

Tucker Decomposition for Convolutions

- Лучше чем CPD
- Дает высокое сжатие
- Можно сделать еще лучше маленькими эвристиками
- https://arxiv.org/pdf/1906.07671

Network	#(Param.)	Orig. Acc.(%)	ADA-Tucker Acc.(%)	$\Delta({ m Acc.})$	CR
ResNet-20	0.27M	91.25%	90.97%	-0.28%	12
WRN-28-10	36.5M	95.83%	95.06%	-0.77%	58

Источник: Zhong, Zhisheng, et al. "ADA-Tucker: Compressing deep neural networks via adaptive dimension adjustment tucker decomposition." Neural Networks 110 (2019): 104-115.

Tensor Train

- Разложение в D трехмерных тензоров
- Обобщение тензорного ранга

Источник: Oseledets, Ivan V. "Tensor-train decomposition." SIAM Journal on Scientific Computing 33.5 (2011): 2295-2317.

Low-Rank Economic Tensor-Train Adaptation

- Решейп матрицы в тензор (обратная операция к векторизации)
- Разложение

Например:

- Mampuya 768 x 64 = 49k
- Решейп в тензор (8 x 8 x 12 x 8 x 8)
- Разложение в Тензор Трейн с рангом 5 = 5 тензоров
 - \circ 5 x 8 x 5 (2)
 - \circ 5 x 8 x 1 (2)
 - \circ 5 x 12 x 5 (1)
- Суммарное количество элементов = 780

Источник: Yang, Yifan, et al. "LoRETTA: Low-Rank Economic Tensor-Train Adaptation for Ultra-Low-Parameter Fine-Tuning of Large Language Models." arXiv preprint arXiv:2402.11417 (2024).

Low-Rank Economic Tensor-Train Adaptation

- В среднем лушче LoRA
- Энкодерная модель

Model & Method	# Train. Param.	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
DeBERTa-Base (FT)	139.19M	88.67	94.61	91.98	59.32	93.04	91.42	68.23	91.10	84.79
DeBERTa-Base (Adapters $_{r=8}$)	0.94M	87.69	94.72	88.88	54.19	92.95	85.52	59.20	89.68	81.60
DeBERTa-Base (LoRA $_{r=8}$)	0.30M	87.30	94.95	92.84	60.56	93.35	85.19	80.14	90.13	85.56
DeBERTa-Base (P-Tuning)	0.23M	56.25	91.39	79.93	43.31	86.30	78.43	55.95	78.38	71.24
DeBERTa-Base (LoRA $_{r=4}$)	0.15M	87.69	94.49	91.10	62.57	92.60	87.30	69.67	91.12	84.54
DeBERTa-Base (Prompt)	0.01M	77.63	92.43	81.90	32.99	80.30	78.15	62.81	56.71	70.36
DeBERTa-Base (Prefix)	0.15M	60.32	88.87	81.22	45.82	83.28	82.22	59.57	84.99	73.28
DeBERTa-Base (BitFit)	0.10M	84.63	95.41	91.42	64.06	93.30	84.15	66.79	90.23	83.75
DeBERTa-Base (LoRETTA _{adp})	0.10M	85.93	95.30	93.53	60.84	92.99	84.08	75.50	91.32	84.96
DeBERTa-Base (LoRETTA _{rep})	0.05M	86.80	95.53	88.73	59.69	93.25	89.2	75.81	90.66	84.95
RoBERTa-Base (BitFit) *	0.1M	85.30	94.80	92.33	62.70	91.30	68.10	73.60	88.50	82.08
RoBERTa-Base (LoRA $_{r=8}$)*	0.63M	86.82	94.01	91.48	62.08	92.39	85.71	74.51	90.48	84.69
RoBERTa-Base (LoRETTA $_{adp}$)	0.10M	85.61	94.38	91.08	62.70	92.12	87.22	78.70	90.26	85.26

>>> Спасибо за внимание!