Step-1

Consider the given matrix $R = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$.

The objective is to write R^2 and check that it is positive definite unless R is singular.

Step-2

Here,

$$R = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$$

$$R^{2} = \begin{bmatrix} p & q \\ q & r \end{bmatrix} \begin{bmatrix} p & q \\ q & r \end{bmatrix}$$

$$R^{2} = \begin{bmatrix} p^{2} + q^{2} & pq + qr \\ pq + qr & q^{2} + r^{2} \end{bmatrix}$$

Therefore, $R^2 = \begin{bmatrix} p^2 + q^2 & pq + qr \\ pq + qr & q^2 + r^2 \end{bmatrix}.$

Step-3

Note that;

If R is singular, then $\det R = 0$, that is

$$R = \begin{bmatrix} p & q \\ q & r \end{bmatrix}$$
$$\det(R) = pr - q^2$$

That is, $\det(R) = pr - q^2 = 0$.

Step-4

Observe the following;

$$p^2 + q^2 > 0$$

Consider $(p^2+q^2)(q^2+r^2)-(pq+qr)^2$

Simply the above expression and obtain the following;

$$\Rightarrow p^{2}q^{2} + p^{2}r^{2} + q^{4} + q^{2}r^{2} - q^{2}(p+r)^{2}$$

$$\Rightarrow p^{2}q^{2} + p^{2}r^{2} + q^{4} + q^{2}r^{2} - q^{2}p^{2} - q^{2}r^{2} - 2prq^{2}$$

$$\Rightarrow p^{2}r^{2} - 2prq^{2} + q^{4}$$

$$\Rightarrow p^{2}r^{2} - prq^{2} - prq^{2} + q^{4}$$

$$\Rightarrow pr(pr - q^{2}) - q^{2}(pr - q^{2})$$

$$\Rightarrow \left(pr-q^2\right)\left(pr-q^2\right)$$

$$\Rightarrow (pr-q^2)^2$$

If R is singular, then $pr-q^2=0$ which implies $(pr-q^2)^2=0$.

This implies R^2 is singular whenever R is.

Therefore, R^2 is positive **definite** unless R is singular.