

CARACTERIZAÇÃO EXPERIMENTAL DE ANTENAS TIPO PATCH AFILADO

Alfrêdo GOMES NETO (1); Severino André Carvalho SEGUNDO (2)

(1) CEFET-PB/João Pessoa, Avenida 1° de Maio, 720, Jaguaribe, 83-3208-3000, fax: 83-3208-3004, e-mail: alfredogomes@ieee.org

(2) CEFET-PB/João Pessoa, e-mail: afron.brown@gmail.com

RESUMO

Com a evolução e expansão dos sistemas de comunicação, as telecomunicações assumiram um papel importante no desenvolvimento mundial. Neste contexto, o estudo das antenas faz-se necessário na tentativa de otimizar e aumentar a eficiência dos sistemas de telecomunicações, em detrimento das disfunções que podem ocorrer no processo de transmissão e recepção de sinais. Com isso, as antenas de microfita, constituídas de um patch metálico depositado sobre um material dielétrico e limitado por um plano condutor, em frequência de microondas, apresentam algumas vantagens como baixo perfil, pequenas dimensões e custo reduzido. Uma das principais limitações desse tipo de antena é sua pequena largura da banda, determinada principalmente pelas dimensões do patch metálico, pela constante dielétrica e pela altura do substrato. No projeto destas antenas, um aspecto importante que deve ser considerado é a presença de modos de ordem superior, os quais podem causar efeitos indesejáveis como a redução da eficiência e a degradação do diagrama de radiação e das características de polarização, caso a antena seja projetada para operar em uma largura de banda especifica. Portanto, o conhecimento do comportamento dos modos de ordem superior torna-se importante para o projeto de antenas de microfita. Neste trabalho é apresentada a caracterização experimental de antenas tipo patch afilado, sendo discutidos os efeitos do afilamento nas frequências de ressonância, suas vantagens e desvantagens. Concluindo, são consideradas possíveis aplicações dos resultados obtidos, principalmente na sintonia das antenas.

Palavras-chave: antenas tipo patch, microfita, caracterização experimental, microondas, telecomunicações.

1. INTRODUÇÃO

Na atualidade, principalmente com a expansão dos sistemas de comunicação sem fio e, mais recentemente, com os sistemas de localização geográfica, as telecomunicações assumiram um papel fundamental para o desenvolvimento global. A cada momento, novas tecnologias são disponibilizadas procurando oferecer um acesso mais fácil, rápido e confiável aos diversos serviços de comunicação, nas suas várias formas, como, por exemplo, rádio, televisão, internet, sistemas telefônicos, especialmente sistemas telefônicos móveis, sistemas Wi-Fi, sistemas Wi-Max, sistemas de segurança e de identificação pessoal, dentre outros. Neste contexto, a antena é um dispositivo importante, cuja evolução tem viabilizado muitas dessas aplicações. A forma da antena, o seu tamanho, a tecnologia utilizada e os tipos de materiais empregados são determinados pelas aplicações.

Em freqüências de microondas e ondas milimétricas, antenas de microfita apresentam algumas vantagens, tais como baixo perfil, pequenas dimensões e custo reduzido. Basicamente, esse tipo de antena pode ser visto como sendo constituída por um *patch* metálico depositado sobre um material dielétrico $(2,2 < \varepsilon_r < 12,0)$ limitado por um plano condutor, [1]-[4], como ilustrado na Fig. 1.

Fig. 1 - Antena do tipo patch retangular de microfita.

Usualmente, essas antenas são projetadas para se obter um diagrama de radiação com um máximo na direção normal ao *patch* (*broadside*), embora diagramas de radiação com o máximo na direção tangencial ao *patch* (*endfire*), também possam ser obtidos, dependendo do tipo de alimentação a ser utilizada e do modo de operação. Uma das principais limitações desse tipo de antena é sua pequena largura da banda, determinada principalmente pelas dimensões do *patch* metálico e pela constante dielétrica e altura do substrato. Um outro aspecto importante a ser considerado é a presença de modos de ordem superior.

Se a antena for projetada para operar em uma largura da banda específica, modos de ordem superior podem introduzir efeitos indesejáveis como a redução da eficiência e a degradação do diagrama de radiação e das características de polarização. Por outro lado, em aplicações em que a antena é utilizada em mais de uma faixa de freqüências, a operação em modos de ordem superior pode ser interessante. Um tipo de modo de ordem superior que pode estar presente em uma antena de microfita é o modo no dielétrico, *substrate mode*, também denominado modo de superfície, *surface wave mode*. A antena pode acoplar parte da potência do modo de operação a esses modos e como eles não contribuem para o diagrama de radiação primário, constituem um mecanismo de perda significante [5]. Portanto, o conhecimento do comportamento dos modos de ordem superior, incluindo os modos de superfície, é um aspecto importante a ser considerado no projeto de antenas de microfita.

Recentemente, foi apresentada uma análise do patch retangular afilado [6], Fig. 2. Essa análise foi baseada no método dos momentos, em simulações computacionais e em resultados experimentais. Entretanto, a maioria dos resultados trata apenas dos casos em que $W_2 \leq W_1$. Neste trabalho é apresentada a caracterização experimental de antenas tipo patch afilado, sendo inicialmente considerado um patch retangular projetado para uma freqüência de ressonância de 2,45GHz e a partir desse, são feitas as variações das dimensões. São discutidos os efeitos do afilamento nas freqüências de ressonância, suas vantagens e desvantagens, considerando além dos casos apresentados em [6], casos em que $W_2 > W_1$.

Fig. 2 - Antena tipo patch retangular afilado

2. FREQÜÊNCIAS DE RESSONÂNCIA DE UMA ANTENA TIPO PATCH

Uma antena tipo patch retangular, Fig. 1, tem sua freqüência de ressonância determinada, basicamente, em função dos seguintes fatores: constante dielétrica, \mathcal{E}_r , altura do substrato, h, largura, W, e comprimento, L. A partir desses parâmetros é estabelecida uma estrutura equivalente, Fig. 3, com a mesma altura do substrato, h, mas com valores efetivos de constante dielétrica, \mathcal{E}_{ref} , largura, W_{ef} , e comprimento, L_{ef} . Através do modelo da cavidade equivalente dessa estrutura podem ser determinadas as freqüências de ressonância utilizando a equação (1) [4], [7]. Como a reentrância y_0 é utilizada apenas para o casamento de impedância, o seu valor não entra no cálculo das freqüências de ressonância.

Fig. 3 – Antena tipo patch retangular e estrutura equivalente

$$f_{r(mnp)} = \sqrt{f_{r(m00)}^2 + f_{r(0n0)}^2 + f_{r(00p)}^2}$$
 (1)

$$f_{r(m00)} = \frac{3x10^8 \times m}{2W_{ef}\sqrt{\varepsilon_{ref}}} \qquad m = 0,1,2,\dots$$
 (2)

$$f_{r(0n0)} = \frac{3x10^8 \times n}{2L_{ef}\sqrt{\varepsilon_{ref}}} \qquad n = 0,1,2,\dots$$
(3)

$$f_{r(00p)} = \frac{3x10^8 \times p}{2h\sqrt{\varepsilon_{ref}}}$$
 $p = 0,1,2,...$ (4)

Onde os índices m, n e p estão associados às ressonâncias em W_{ef} , L_{ef} e h, respectivamente. Dependendo do tipo de alimentação e da sua posição, valores de m e n podem ser possíveis ou não [7]. Na prática, $h << W_{ef}$ e $h << L_{ef}$, e dessa forma as freqüências de ressonância dos primeiros modos serão determinadas por:

$$f_{r(mn)} = \sqrt{f_{r(m00)}^2 + f_{r(0n0)}^2} \tag{5}$$

Além disso, para W >> h, $W_{ef} = W$, L >> h, $W_{ef} = W$ O valor de ε_{ref} pode ser calculado através de (6), [8], ou utilizando programas como APPCAD, disponível em [9].

$$\varepsilon_{ref} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + \frac{10}{u} \right)^{-ab}$$

$$u = \frac{W}{h}$$

$$a = 1 + \frac{1}{49} \ln \left(\frac{u^4 + \left(\frac{u}{52}\right)^2}{u^4 + 0,432} \right) + \frac{1}{18,7} \ln \left[1 + \left(\frac{u}{18,1}\right)^3 \right]$$
 (6)

$$b = 0.564 \left(\frac{\varepsilon_r - 0.9}{\varepsilon_r + 3} \right)^{0.053}$$

Para uma antena tipo patch afilado, com $W_2 > W_1$, dentro de certas limitações, em [6] é proposto que:

$$\varepsilon_{ref} = \frac{\varepsilon_{r1} + \varepsilon_{r2}}{2} \tag{7}$$

Onde ε_{ri} , i = 1,2 é calculado a partir de (6).

$$f_{r(m00)} = \frac{3x10^8 \times m}{(W_{ef1} + W_{ef2})\sqrt{\varepsilon_{ref}}} \qquad m = 0,1,2,...$$
(8)

Os valores obtidos para a antena tipo *patch* retangular serão utilizados como referência neste trabalho. Destaque-se que embora as equações (1)-(8) apresentem limitações, os seus resultados servem como uma primeira aproximação para projetos.

3. RESULTADOS EXPERIMENTAIS

A determinação das frequências de ressonância foi realizada no GTEMA/CEFET-PB, a partir da medição do módulo coeficiente de transmissão, |S11|, utilizando um analisador de redes vetorial, VNA, na faixa de frequência de 1GHz a 6GHz, Fig. 4. As antenas foram confeccionadas em um substrato de fibra de vidro, $\varepsilon_r = 4.5$ e h = 1.5mm, Fig. 5, com uma reentrância $y_0 = 8.6mm$. Por ter a alimentação centralizada, são possíveis apenas modos pares em W.

Fig. 4 – Esquema de medição

Fig. 5 – Antenas tipo patch retangular e tipo patch retangular afilado

Na Fig. 6 são apresentados os resultados da medição para um patch retangular, com dimensões $W_1 = W_2 = 36,8mm$ e $L_1 = 30,0mm$. Usando as equações (2), (3) e (6), as duas primeiras freqüências de ressonância esperadas são $f_{r(010)} = 2,44GHz$ e $f_{r(200)} = 3,98GHz$, para as quais foram medidas, respectivamente, 2,43GHz e 4,00GHz, apresentando uma excelente concordância. São observadas ainda as

frequências de ressonância $f_{r(210)}=4,65GHz$ e $f_{r(020)}=5,00GHz$, para as quais os valores esperados são, respectivamente, $f_{r(210)}=4,67GHz$ e $f_{r(020)}=4,88GHz$, verificando-se uma boa concordância.

Fig. 6 – |S11| (dB) x frequência (GHz) – patch retangular - $W_1 = W_2 = 36.8mm$ e $L_1 = 30.0mm$

Na Fig. 7 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1=36,8mm$, $W_2=28,8mm$ e $L_1=30,0mm$. Usando as equações (3), (6), (7) e (8), as duas primeiras freqüências de ressonância esperadas são $f_{r(010)}=2,45GHz$ e $f_{r(200)}=4,48GHz$, para as quais foram medidas, respectivamente, 2,45GHz e 4,45GHz, observando-se novamente uma concordância muito boa. Como a variação foi apenas na dimensão W, com pouca influência no comprimento efetivo de L, a maior variação é na segunda freqüência de ressonância, $f_{r(200)}$. Os valores teóricos esperados para as próximas freqüências de ressonância são $f_{r(210)}=5,11GHz$ e $f_{r(020)}=4,90GHz$. Provavelmente, ocorre uma degeneração modal e esse resultado é observado em trono de 5,45GHz.

Fig. 7 – |S11| (dB) x frequência (GHz) – patch retangular afilado $W_1 = 36,8mm$, $W_2 = 28,8mm$ e $L_1 = 30,0mm$

Na Fig. 8 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1 = 36,8mm$, $W_2 = 20,8mm$ e $L_1 = 30,0mm$. As duas primeiras frequências de ressonância esperadas são $f_{r(010)} = 2,46GHz$ e $f_{r(200)} = 5,13GHz$, para as quais foram medidas, respectivamente, 2,45GHz e 5,10GHz, observando-se novamente uma concordância muito boa. Não fica claro a que frequência de

ressonância corresponde a frequência de ressonância medida em 4,47GHz, mas deve estar relacionada com a frequência do modo $f_{r(020)}$, cujo o valor esperado é $f_{r(020)} = 4,93GHz$.

Fig. 8 – |S11| (dB) x frequência (GHz) – patch retangular afilado $W_1 = 36.8mm$, $W_2 = 20.8mm$ e $L_1 = 30.0mm$

Na Fig. 9 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1=36,8mm$, $W_2=12,8mm$ e $L_1=30,0mm$. As duas primeiras freqüências de ressonância esperadas são $f_{r(010)}=2,49GHz$ e $f_{r(020)}=4,98GHz$, para as quais foram medidas, respectivamente, 2,47GHz e 4,52GHz. De uma maneira geral, observa-se uma boa concordância para a primeira freqüência de ressonância e para as demais os resultados perdem precisão na medida em que a freqüência aumenta e surgem modos degenerados.

Fig. 9 – |S11| (dB) x freqüência (GHz) – patch retangular afilado $W_1 = 36.8mm$, $W_2 = 12.8mm$ e $L_1 = 30.0mm$

Na Fig. 10 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1=36,8mm$, $W_2=4,8mm$ e $L_1=30,0mm$. A primeira freqüência de ressonância esperada é $f_{r(010)}=2,54GHz$, para qual foi medida 2,57GHz, observando-se uma boa concordância. Entretanto, para as demais freqüências de ressonância não se verifica uma boa concordância, o que decorrer das limitações dos modelos utilizados.

Fig. 10 – |S11| (dB) x freqüência (GHz) – patch retangular afilado $W_1=36,8mm$, $W_2=4,8mm$ e $L_1=30,0mm$

Na Fig. 11 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1 = 28,8mm$, $W_2 = 36,8mm$ e $L_1 = 30,0mm$. As duas primeiras frequências de ressonância esperadas são $f_{r(010)} = 2,45GHz$ e $f_{r(200)} = 4,48GHz$, para as quais foram medidas, respectivamente, 2,48GHz e 4,20GHz. Ainda é observada uma boa concordância para a primeira frequência de ressonância, mas para a segunda a diferença já é da ordem de 7%. Como a segunda ressonância corresponde a um modo em W e essa dimensão apresenta uma variação logo no início da antena, próximo ao ponto de alimentação, ocorre uma maior influência sobre a frequência de ressonância.

Fig. 11 – |S11| (dB) x freqüência (GHz) – patch retangular afilado $W_1 = 28.8mm$, $W_2 = 36.8mm$ e $L_1 = 30.0mm$

Na Fig. 12 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1=13,8mm$, $W_2=36,8mm$ e $L_1=30,0mm$. As duas primeiras freqüências de ressonância esperadas são $f_{r(010)}=2,48GHz$ e $f_{r(020)}=4,97GHz$, para as quais foram medidas, respectivamente, 2,62GHz e 4,72GHz. Observe-se que além das ressonâncias serem pouco pronunciadas, os valores das freqüências de ressonância apresentam um erro mais elevado.

Fig. 12 – |S11| (dB) x frequência (GHz) – patch retangular afilado $W_1 = 13.8mm$, $W_2 = 36.8mm$, e $L_1 = 30.0mm$

Na Fig. 13 são apresentados os resultados da medição para um patch retangular afilado, com dimensões $W_1=4,8mm$, $W_2=36,8mm$ e $L_1=30,0mm$. Pelas equações utilizadas, a primeira freqüência de ressonância esperadas é $f_{r(010)}=2,54GHz$, para qual foi medida 2,79GHz. Novamente observa-se uma ressonância de pouca intensidade e um erro percentual da ordem de 9%. As demais freqüências medidas não são identificadas.

Fig. 13 – |S11| (dB) x freqüência (GHz) – patch retangular afilado $W_1=4.8mm$, $W_2=36.8mm$, e $L_1=30.0mm$

Observa-se que para $W_1>W_2$ as ressonância dos primeiros modos são identificadas de maneira mais clara, principalmente quando o afilamento não é acentuado, $\frac{W_2}{W_1}>0.6$. Para $W_2>W_1$ as equações utilizadas não apresentaram bons resultados.

4. CONCLUSÕES

Neste trabalho foi apresentada a caracterização experimental de antenas tipo patch afilado, observando-se que para $W_1 > W_2$ o afilamento tem uma influência limitada sobre a freqüência fundamental. Para $W_1 < W_2$ a freqüência fundamental é fortemente afetada, indicando que ocorre um descasamento de impedância para

esse tipo de afilamento. As expressões numéricas utilizadas apresentaram bons resultados apenas quando $W_1 > W_2$, principalmente quando o afilamento não é acentuado, $\frac{W_2}{W_1} > 0,6$. Atualmente, com a utilização da técnica WCIP, vem sendo desenvolvida no GTEMA a caracterização numérica de antenas tipo *patch* afilado.

REFERÊNCIAS

- [1] BAHL, I. J.; and BHARTIA, P.: *Microstrip antennas*. Dedham, MA: Artech House, 1980
- [2] JAMES, J. R.; HALL; P. S. and WOOD, C.: *Microstrip antenna theory and design*. London, UK: Peter Peregrinus LTD, 1981
- [3] POZAR, M., "Microstrip antennas," *Proc. IEEE*, vol. 80, No 1, p. 79–81, January, 1992.
- [4] BALANIS, C. A.: *Antenna theory analysis and design*. 2° edição, John Wiley & Sons Inc., 1997
- [5] GONZALO, R., MAAGT, P.; and SOROLLA, M.: "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates", *IEEE Transactions on Microwave Theory and Techniques*, Volume 47, pp. 2131-2138, November, 1999
- [6] D'ASSUNÇÃO Jr., Adaildo Gomes : "Uma Nova Proposta de Antena Multibanda para Comunicações Móveis", Dissertação de Mestrado, UFRN, Natal, 2007
- [7] COSTA E SILVA, Jefferson: Análise dos Modos Ressonantes em Antenas de Microfita sobre Substratos Isso/Anisotrópicos por Técnicas de Ressonância Transversa. Tese de Doutorado, UFRN, Natal, 2005
- [8] HONG, Jia-Sheng; LANCASTER, M.J.: Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001
- [9] http://www.hp.woodshot.com/, disponível em 14/08/2008

AGRADECIMENTOS

Este trabalho foi parcialmente financiado através do **Programa Institucional de Bolsas Pesquisador, CEFET-PB**, Edital N° 001/2008, projeto: "CARACTERIZAÇÃO EXPERIMENTAL DE ANTENAS TIPO *PATCH* AFILADO".