Variables Aleatorias Continuas

Ejemplos

- Se mide la concentración de cierta sustancia en una solución.
 - $X = \mathsf{medici\acute{o}n}$ obtenida
- Se elige una mujer adulta argentina al azar y se mide su estatura.
 - X =estatura de la mujer elegida.

Estos son ejemplos de variables aleatorias que no son discretas

Ejemplos

 Se quiere determinar la concentración de cierta sustancia en una solución. Para ello se repita la medición 5 veces.

 $X_i = i$ – ésima medición obtenida

 $\bar{X}=$ promedio de las mediciones obtenidas.

 Se eligen al azar 100 mujeres adultas argentinas y se mide su estatura.

 $X_i = \text{estatura de la } i - \text{ésima mujer.}$

 $\bar{X}=$ promedio de las estaturas obtenidas

• En un hospital se registran los pesos de los recién nacidos.

 $X_i = {\sf peso} \ {\sf del} \ i- \ {\sf \'esimo} \ {\sf ni\~no} \ {\sf nacido} \ {\sf en} \ 2020 \ {\sf en} \ {\sf ese} \ {\sf hospital}.$

 $ar{X}=$ peso promedio de todos los niños nacidos en 2020 en ese hospital.

Estos son más ejemplos de variables aleatorias que no son discretas

Densidad

 $f:\mathbb{R}
ightarrow \mathbb{R}$ se dice densidad si

- $\bullet \ f(u) \geq 0 \ {\rm para} \ {\rm todo} \ u \in \mathbb{R}$
- $\bullet \int_{-\infty}^{+\infty} f(u) \, du = 1$

Variables Aleatorias Continuas

Una variable aleatoria X se dice continua sii existe una densidad

$$f_X: \mathbb{R} \to \mathbb{R}_{\geq 0}$$

tal que

$$\mathbb{P}(X \in A) = \int_A f_X(u) \, du.$$

En particular,

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(u) \ du$$
.

En tal caso, diremos que f_X es la función de densidad de la variable aleatoria X.

Densidades

Densidades

Densidades

Variables aleatorias continuas

- Función de densidad: $f_X: \mathbb{R} \to \mathbb{R}_{\geq 0}$
- $\mathbb{P}(X=t)=0$ para todo t.
- $\mathbb{P}(X \in A) = \int_A f_X(u) du$.
- Función de distribución acumulada:

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(u) \ du$$

Importante: F_X vs. f_X - ida y vuelta a mano

- 1. Si conozco f_X recupero la acumulada haciendo $F_X(t) = \int_{-\infty}^t f_X(u) \ du$
- 2. Si conozco F_X , recupero la densidad f_X haciendo $f_X(x) = F_X^\prime(x)$

Ejemplo:

Una barra de 12 pulgadas sujeta por ambos extremos, debe someterse a una creciente cantidad de esfuerzo hasta que se rompa. Sea Y= distancia desde el extremo izquierdo hasta dónde ocurre la rotura. Supongamos que la densidad de Y es la siguiente

$$f_Y(y) = \begin{cases} ay\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12\\ 0 & \text{en otro caso.} \end{cases}$$

- 1. Hallar a.
- 2. Calcular $P(Y \le 4), P(6 < Y); P(4 \le Y < 6)$.
- 3. Hallar $F_Y(y)$.

Densidades - Histogramas

Percentiles

Dada una variable aleatoria continua X y dado $p\in(0,1)$ definimos el 100p—ésimo percentil (o p-ésimo cuantil) de X como el valor x_p que verifica

$$F_X(x_p) = p.$$

- Cuando p=1/2, el valor para el cual la acumulada vale 1/2 se dice mediana.
- Los percentiles asociados a p=1/4 y p=3/4 se dicen cuartiles.

Esperanza

Dada una variable aleatoria continua X con función de densidad f_X , definimos la esperanza de X como

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} u \, f_X(u) \, du \, .$$

siempre que $\int_{-\infty}^{\infty} |u| f_X(u) du < \infty$.

Esperanza - Propiedad

Lema (Regla del estadístico inconciente): Sea X una variable aleatoria continua con función de densidad f_X . Entonces, para toda función g tenemos que

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du.$$

Aplicación

$$f_Y(y) = \left\{ \begin{array}{ll} \frac{1}{24}y\left(1-\frac{y}{12}\right) & \text{ si } 0 \leq y \leq 12 \\ \\ 0 & \text{ en otro caso}. \end{array} \right.$$

Calcular $\mathbb{E}(Y^2)$.

Esperanza y Varianza: sigue todo igual

- Definición: $\mathbb{E}(X) = \int u f_X(u) du$.
- Propiedad: $\mathbb{E}[g(X)] = \int g(u) f_X(u) du$.
- Corolario: Linealidad $\mathbb{E}[aX + b] = a\mathbb{E}(X) + b$.
- Definición: $\mathbb{V}(X) = \mathbb{E}[(X \mu_X)^2]$, donde $\mu_X = \mathbb{E}(X)$, medida de dispersión.
- Propiedad: $\mathbb{V}(X) = \mathbb{E}[X^2] \mu_X^2$

$$\mathbb{V}(aX+b) = a^2 \mathbb{V}(X)$$

 Desvío estandar: $SD(X) = \sqrt{V(X)},$ SD(aX+b) = |a|SD(X)

La función indicadora - Ejemplo

$$f_Y(y) = \begin{cases} \frac{1}{24}y\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12 \\ 0 & \text{en otro caso.} \end{cases}$$

Función Indicadora (del intervalo [0, 12])

$$I_{[0,12]}(y) = \left\{ \begin{array}{ll} 1 & \text{ si } y \in [0,12] \\ \\ 0 & \text{ en otro caso.} \end{array} \right.$$

Escribimos f_Y de manera simplificada

$$f_Y(y) = \frac{1}{24}y\left(1 - \frac{y}{12}\right)I_{[0,12]}(y)$$

La función indicadora - Ejemplo

Función Indicadora (del intervalo A)

$$I_A(x) = \left\{ \begin{array}{ll} 1 & \text{ si } x \in A \\ \\ 0 & \text{ en otro caso.} \end{array} \right.$$

$$I_{\{x \in A\}} = \left\{ \begin{array}{ll} 1 & \text{ si } x \in A \\ \\ 0 & \text{ en otro caso.} \end{array} \right.$$

Ejercicio: Graficar $I_{[2,4]}$ en R