Duration: 3 hrs

Branch: IT/COMP

Semester: V

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri(West), Mumbai 400058-India (An Autonomous Institute Affiliated to University of Mumbai

Grade Improvement Examination August 2023

Max. Marks: 100 Class: TEIT/TECOMP

Course Code:

Course: Artificial Intelligence and Machine Learning

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Questi on No.		Max. Mark	C	B L
Q1(a)	 i) For each of the following activities, give PEAS description of the task environment and characterize it in terms of properties of task environment. 1- Knitting a Sweater 2- Performing High Jump 3- Practicing tennis against wall ii) Describe various properties of task environments 	03	1	2
	w. Natural and the second seco	07		
Q1 (b)	Describe Learning agent model with suitable diagram.	10	2	4
Q2 (b)	Find the most cost-effective path to reach the final state from initial state using A* Algorithm.	10	2	6
	Consider $g(n)$ = Depth of node and $h(n)$ = Number of misplaced tiles			
	Z 8 3 1 6 4 7 6 5			
	Initial State Final State	10	-	-
Q3(a)	Suggest the optimal decision for the given game tree using Alpha-beta Pruning. At each point, show the range of possible values for each node i.e. α , β , and pruned nodes along with pruning criteria.	10		
	min			
	10 21 9 15 14 18 22 9 5 2			

Q3 (b) Represent the following sentences in first order locie as			
Q3 (b) Represent the following sentences in first-order logic, us (which you must define):	sing a consistent vocabulary 10	3	1
a. Some students took French in spring 2001.			
b. Every student who takes French passes it.			
c. Only one student took Greek in spring 2001.			
d. The best score in Greek is always higher than the best			
e. Every person who buys a policy is smart.	t score in French.		
f. No person buys an expensive policy.			
OR			
For the following English statements choose the correct	FOL statements. And give		
Justification for the incorrect statement stating the reason	n.	1 1	
a. Paris and Marseilles are both in France.			
(i) In(Paris ∧ Marseilles,France).			
(ii) In(Paris,France) ∧ In(Marseilles,Fran	ice)		
(iii) In(Paris,France) ∨ In(Marseilles,Fra	nce)		
, , , , , , , , , , , , , , , , , , ,	ince).		
b. There is a country that borders both Iraq and Paki	istan.		
(i) ∃ c Country(c) ∧ Border (c,Iraq) ∧ Border	rder (c Pakistan)		
(ii) \exists c Country(c) \Rightarrow [Border (c,Iraq) \land Bo	order (c Pakistan)1		
(iii) [∃ c Country(c)] ⇒ [Border (c	radi (e,rakistani).		
(c.Pakistan)].	Sirad, W Border		
(iv) ∃ c Border (Country(c), Iraq ∧ Pakista	anl		
	all).		
c. All countries that border Ecuador are in South Amo	erica.	-	
(i) ∀ c Country(c) ∧ Border (c,Ecu	uador) ⇒ In(c,		
SouthAmerica).	211(0,		
(ii) ∀ c Country(c) ⇒ [Border (c,Ec	uador) \Rightarrow In(c,		
SouthAmerica)].	111(C,		
(iii) ∀ c [Country(c) ⇒ Border (c,Eco	uador 11 → Tr/c		
SouthAmerica).	dador /1 → In(e,		
(iv) ∀ c Country(c) ∧ Border (c,Ect	undam) A Tale		
SouthAmerica).	uador) /\ In(c,		
d. No region in South America borders any region in E	,		
(i) ¬[∃ c,d In(c, SouthAmerica) ∧	Lurope.		
Borders(c,d)].	In(d,Europe) A		
	7 (27		
(ii) ∀ c.d [In(c, SouthAmerica) ∧	In(d,Europe)] ⇒		
¬Borders(c,d)].			

	¬Border	s(c,d). c In(c,			\Rightarrow ∃ d In(d \Rightarrow \forall d In(d				
	(i) ∀ x ∨¬(Map((ii) ∀ x, y)) ⇒ ¬(1 (iii) ∀ ¬(MapCo (iv) ∀ x	<pre>x,y ¬Cou Color (x) y (Count MapColor x,y Cou lor (x) =</pre>	<pre>intry(x) = MapCo ry(x) ^ r(x) = M intry(x) MapCole intry(x)</pre>	olor (y)). Country(y apColor (y ^ Count or (y)).	$ntry(y) \lor \neg y$	x,y) \(\cap (x = \) ders(x,y) \(\lambda \)			
Q4(a)	CANDIDA	TE-ELIMI	NATION a		sets computed by		10	4	3
	STATUS	FLOOR	DEPT.	OFFICE SIZE	RECYCLING BIN?				
	Faculty	four	cs	medium	yes				
	Faculty	four	ee	medium	yes				
	Student	four	cs	small	no				
	Faculty	five	cs	medium	yes				
		v							
Q4 (b)	5.5.5	C2(6) and C3	3(15) as in	en data set for			10	4	3

5(a) A	pply Naive Bay	esian Classification	1 16				١
	ta pa pa	urget label. The statient has no sugartient).	arget label has two pear and I means the dia	lgorithm on a given ossibilities 0 and 1. betic patient has suga	dataset. Sugar is the 0 means the diabetic ar (1- He is a diabetic	10	5	3
	P	redict the respon	se for the person with	BMI=43.6, Age=40				
		ВМІ	Age	Sugar				
		33.6	50	1				
		26.6	30	0				
		23.4	40	0				
		43.1	67	0				
		35.3	23	1				
		35.9	67	1				
		36.7	45	1				
		25.7	46	0				
		23.3	29	0				
		31	56	1				
5	1				*			

Q5(b)	Obtain the equation of regression line for the following data. Calculate value of correlation coefficient. Estimate glucose level for age=55 using the regression line equation.								10	5	5
	Age (X)	43	21	25	42	57	59				
Q5(c)	Glucose Level(Y)	99	65	79	75	87	81			*	
	Compare Bias and Variance with suitable examples. OR How Support Vector Machine are used as Classification Model.						10	4	4		

ID.
 VD

