Session 4 Quantitative Analysis of Financial Markets Capital Asset Pricing Model & Stock Picking

Christopher Ting

http://www.mysmu.edu/faculty/christophert/

Christopher Ting QF 603 October 29, 2018 1/24

Broad Lesson Plan

- 1 Introduction
- 2 Market Model
- 3 CAPM
- 4 SML versus CML
- 5 Portfolio Performance
- 6 Takeaways

 Christopher Ting
 QF 603
 October 29, 2018
 2/24

Learning Objectives

- ** Recall the familiar concept of CAPM and appreciate how it is further developed in the context of QF.
- Describe the market model and connect it with simple (univariate) OLS regression model.
- Gain a deep understanding of conditional mean and conditional variance in CAPM.
- Develop a working knowledge and a deeper understanding of how alpha, beta, systematic, and unsystematic risks are estimated.
- Describe and discuss security market line, capital market line, market risk premium, Sharpe's ratio, and other risk-adjusted performance measures.
- Obtain a familiarization with the notion of market timing.

Christopher Ting QF 603 October 29, 2018

3/24

Risk–Return Duality

- ** Expected return: $\mu = \mathbb{E}(r_t)$
- ***** Expected variance $\sigma^2 = \mathbb{V}(r_t)$
- ***** Volatility σ is a proxy for the potential of a risk.
- * Risk factor = Risk premium
- * Risk adjusted excess return, e.g. Sortino ratio

$$\frac{\mathbb{E}\left(r_t - r_{ft}\right)}{\sigma_d},$$

where r_{ft} is the risk-free rate, and σ_d is asset's or portfolio's downside standard deviation.

 Christopher Ting
 QF 603
 October 29, 2018
 4/24

Market Model

extstyle ext

Introduction

- The market model assumes that any stock's log return r_{it} is bivariate normally distributed with r_{mt} . The covariance is denoted by σ_{im} .
- riangledown The conditional distribution of r_{it} is normal with conditional mean and conditional variance given by

$$\mathbb{E}(r_{it}|r_{mt}) = \mathbb{E}(r_{it}) + \frac{\sigma_{im}}{\sigma_m^2} \left(r_{mt} - \mathbb{E}(r_{mt})\right)$$

$$= \left(\mathbb{E}(r_{it}) - \frac{\sigma_{im}}{\sigma_m^2} \mathbb{E}(r_{mt})\right) + \frac{\sigma_{im}}{\sigma_m^2} r_{mt}$$

$$\mathbb{V}(r_{it}|r_{mt}) = \sigma_i^2 - \frac{\sigma_{im}^2}{\sigma_m^2}$$

5/24

Christopher Ting QF 603 October 29, 2018

OLS Approach to Market Model

$$r_{it} = a + b \, r_{mt} + e_{it}$$

where

Introduction

$$a = \mathbb{E}(r_{it}) - \frac{\sigma_{im}}{\sigma_m^2} \mathbb{E}(r_{mt})$$
$$b = \frac{\sigma_{im}}{\sigma_m^2}$$

- \forall Properties of residuals e_{it} :
 - Uncorrelated with r_{mt} : $\mathbb{E}(e_{it}|r_{mt}) = 0$
 - By the law of iterated expectations, $\mathbb{E}(e_{it}) = 0$.

Christopher Ting QF 603 October 29, 2018 6/24

Proof for Conditional Variance

imes Unconditional variance of r_{it} has two parts

$$\sigma_i^2 = b^2 \, \sigma_m^2 + \sigma_e^2$$

- Systematic risk: $b \sigma_m$
- Unsystematic risk, idiosyncratic, or diversifiable risk: σ_e
- \bigvee Now, the variance of r_{it} given r_{mt} is simply

$$\mathbb{V}(r_{it}|r_{mt}) = \mathbb{V}(a + b\,r_{mt} + e_{it}|r_{mt}) = \sigma_e^2$$

because r_{mt} is known and thus zero variance.

Introduction

$$\mathbb{V}(r_{it}|r_{mt}) = \sigma_i^2 - \frac{\sigma_{im}^2}{\sigma_{rr}^2}$$

Capital Asset Pricing Model

- So far, bivariate normal distribution is assumed.
- When economic equilibrium is added to the market model, then a is restricted to

$$a = r_f(1 - b),$$

where r_f is the riskfree rate.

Imposing this theoretical CAPM restriction, the OLS regression of market model becomes

$$r_{it} = r_{ft} + b(r_{mt} - r_{ft}) + e_{it}.$$

Capital Asset Pricing Model

$$\mathbb{E}(r_{it} - r_{ft}) = b_i \, \mathbb{E}(r_{mt} - r_{ft}).$$

Regression specification

$$r_{it} - r_{ft} = a_i + b_i(r_{mt} - r_{ft}) + e_{it}.$$

 Christopher Ting
 QF 603
 October 29, 2018
 8/24

Estimation of Alpha and Beta

- **Time** series of returns $\{r_{it}, r_{mt}\}_{t=1,2,...,T}$
- OLS estimation of beta

Introduction

$$\widehat{b}_i = \frac{\sum_{t=1}^{T} \left(r_{mt} - \overline{r}_m \right) \left(r_{it} - \overline{r}_i \right)}{\sum_{t=1}^{T} \left(r_{mt} - \overline{r}_m \right)^2}$$

- **Theoretically alpha** a_i is zero in equilibrium. But
 - if $\hat{a}_i > 0$, then positive abnormal return
 - if $\hat{a}_i < 0$, then negative abnormal return
- Alpha is also called the Jensen measure in the context of portfolio theory.
- Practical issues
 - What is the ideal sampling frequency?
 - What is the ideal sampling size?

Christopher Ting QF 603 October 29, 2018 9/24

Example

$$abla$$
 Linear regression model: $r_{it} - r_{ft} = a_i + b_i \left(r_{mt} - r_{ft} \right) + e_{it}$

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MKT EXC RET	0.003119 0.624225	0.002653 0.080491	1.175459 7.755199	0.2426 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.375559 0.369314 0.026639 0.070965 226.0658 2.513910	Mean dependent var. S.D. dependent var. Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		0.000904 0.033544 -4.393447 -4.341977 60.14311 0.000000

 Christopher Ting
 QF 603
 October 29, 2018
 10/24

Introduction

Terms Used in the Example

The standard error of \hat{a}_i is "Std Error of C":

$$\widehat{\sigma}_e \sqrt{\frac{1}{T} + \frac{\overline{X}^2}{\sum_{t=1}^T (X_t - \overline{X})^2}}$$

 $f The standard error of <math>\widehat{b}_i$ is "Std Error of Coefficient of MKT EXC RET" is

$$\widehat{\sigma}_e \sqrt{\frac{1}{\sum_{t=1}^T (X_t - \overline{X})^2}}$$

- The SSR, "Sum squared resid" is SSR = $\sum_{t=0}^{T} \hat{e}_{t}^{2}$ (aka RSS)
- **?** The standard error of e_t , "S.E. of regression" is $\sigma_e = \sqrt{\frac{1}{T-2}} SSR$.

Christopher Ting OF 603 October 29, 2018 11/24

Security Market Line

▲ A line in a graph of expected return versus beta:

$$\mu := \mathbb{E}(r_j) = r_f + \beta_j (\mathbb{E}(r_m) - r_f)$$

or

$$\mu - r_f = \frac{\mathbb{C}(r_j, r_m)}{\mathbb{V}(r_m)} (\mathbb{E}(r_m) - r_f)$$

★ The market portfolio has a beta of 1.

Illustration of SML

Christopher Ting QF 603 October 29, 2018 13/24

Capital Market Line

- ◆ CML is the line containing all possible portfolios of investors. Each portfolio is a linear combination of 2 assets the market portfolio and the risk-free asset.
- \blacktriangle Any portfolio with return r_p and volatility σ_p has the same **Sharpe** ratio as the market portfolio has

$$\frac{\mathbb{E}(r_p - r_f)}{\sigma_p} = \frac{\mathbb{E}(r_m - r_f)}{\sigma_m} =: \lambda \implies \mathbb{E}(r_m - r_f) = \lambda \sigma_m.$$

\bullet Estimation of market risk premium λ :

Introduction

$$r_{mt} - r_{ft} = \lambda \sigma_{mt} + u_t$$

14/24

lacktriangle Merton's proposal: $\mathbb{E}(r_{mt} - r_{ft}) = \lambda \sigma_m^2$, where λ is interpreted as the relative risk aversion.

Christopher Ting QF 603 October 29, 2018

Illustration of CML

Christopher Ting QF 603 Octo

Treynor and Jensen Measures

Introduction

lackloss Treynor measure: expected excess portfolio return r_{pt} per unit of portfolio beta b_n

$$\frac{\mathbb{E}(r_{pt} - r_{ft})}{b_n}$$

▼ If Jensen measure indicates superior performance, so does Treynor measure:

$$a = \mathbb{E}(r_{pt} - r_{ft}) - b_p \mathbb{E}(r_{mt} - r_{ft}) > 0 \quad \Longleftrightarrow \quad \frac{\mathbb{E}(r_{pt} - r_{ft})}{b_p} > \mathbb{E}(r_{mt} - r_{ft})$$

Sharpe's Ratio and M^2

♥ Sharpe's ratio

Introduction

$$\frac{\mathbb{E}(r_{pt} - r_{ft})}{\sigma_p}$$

shows how well the portfolio is performing relative to CML with slope $\frac{\mathbb{E}(r_{mt}-r_{ft})}{\sigma}$

$$\frac{\mathbb{E}(r_{pt} - r_{ft})}{\sigma_n} > \frac{\mathbb{E}(r_{mt} - r_{ft})}{\sigma_m} \iff a > 0$$

 \bigvee M^2 measure in percent

$$M^2 := \mathbb{E}(r_{pt} - r_{ft}) \frac{\sigma_m}{\sigma_n} - \mathbb{E}(r_{mt} - r_{ft}).$$

- A generalized version of the Sharpe ratio with a generic benchmark r_{bt}
- Definition

$$\frac{\mathbb{E}\left(r_{pt}-r_{bt}\right)}{\sigma_{p-b}},$$

where σ_{p-b} is the standard deviation of the difference in returns between the portfolio and its benchmark.

- lacktriangledown The portfolio's excess return $r_{vt}-r_{bt}$ is also known as its active return.
- lacktriangledown The variability σ_{p-b} of the excess return is also referred to as active risk, tracking risk, or tracking error.

Christopher Ting OF 603 October 29, 2018 18/24

Application: Stock Picking

- Ideal stock to hold:
 - positive alpha
 - large beta during bull market
 - small beta during bear market
 - large Sharpe ratio
- Ideal stock to short is the reverse.
- Long the "good" stocks, short the "bad" stocks. Will this quant strategy work?
- ♥ So exactly how could one search for those good and bad stocks?

Christopher Ting QF 603 October 29, 2018 19/24

Market Timing

- Shift investment funds into the market portfolio when market is rising, and to shift out of the stock market into money market when market is falling, especially if the market falls below risk-free return.
- The goal is to avoid being invested in e.g. mutual funds during a market decline.
- Typically, trend-following indicators are used to determine the direction and identify buy and sell signals.
- In an up move "buy signal," money is transferred from a money market fund into a mutual fund in an attempt to capture a capital gain.
- ▼ In a down move "sell signal," the assets in the mutual fund are sold and moved back into the money market for safe keeping until the next up move.

Jensen's Empirical Tests

- Testing for the presence and significance of abnormal returns ("Jensen's alpha" - Jensen, 1968).
- Data: Annual Returns on the portfolios of 115 mutual funds from 1945-1964.
- ightharpoonup The model: $R_{it} R_{ft} = \alpha_i + \beta_i (R_{mt} R_{ft}) + u_{it}$ for $i = 1, 2, \dots, 115.$
- Are α_i significant?

Introduction

 \forall The null hypothesis is H_0 : $\alpha_i=0$.

Distribution of Mutual Fund Alphas' t-Ratios

Jensen (1968). Reprinted with the permission of Blackwell publishers.

Christopher Ting QF 603 October 29, 2018 22/24

Net of Transactions Costs

Jensen (1968). Reprinted with the permission of Blackwell publishers.

Christopher Ting QF 603 October 29, 2018 23/24

Takeaways

- The flip side of risk is risk premium, e.g., $\mathbb{E}\left(r_{pt}-r_{ft}\right)$ for market risk, which is systematic
- Market model is based on simple linear regression of log returns.
- Unsystematic risk can be diversified away by the portfolio approach.
- Security market line is a pictorial description of CAPM.

Introduction

- Capital market line allows you to perform allocation of fund between risk-free and risky assets
- ightharpoonup Treynor's ratio, Jensen's alpha, Sharpe's ratio, M^2 measure, information ratio
- Most active fund managers could not beat the market.

Christopher Ting QF 603 October 29, 2018 24/24