IN THE CLAIMS

(previously amended) A method for detecting errors in GPS accuracy, comprising:
 determining an initial GPS position of a marker;
 receiving GPS signals at the marker;
 calculating, from the GPS signals, a GPS coordinate position of the marker;
 comparing the GPS coordinate position and the initial GPS position; and
 issuing a warning if the GPS coordinate position differs from the initial GPS position by
 more than a predetermined amount.

identifying, in response to said issuing, a source of local interference; and neutralizing the source of local interference.

- 2. (original) The method of claim 1, said determining further comprises obtaining coordinates from a site survey.
 - 3. (original) The method of claim 1, said determining further comprising: receiving GPS signals at the marker; obtaining a single sample of the GPS signals; and calculating a single GPS position from the single sample of the GPS signals; and setting said initial GPS position at the single GPS position.
 - 4. (previously amended) A method for detecting errors in GPS accuracy, comprising: determining an initial GPS position of a marker; receiving GPS signals at the marker;

calculating, from the GPS signals, a GPS coordinate position of the marker;

comparing the GPS coordinate position and the initial GPS position; and

issuing a warning if the GPS coordinate position differs from the initial GPS position by

more than a predetermined amount;

said determining further comprising:

calculating a plurality of GPS positions for the marker over a period of time; statistically analyzing the plurality of GPS positions; and setting said initial GPS position based on a result of said analyzing.

- 5. (original) The method of claim 4, said analyzing comprising taking an average of at least some of the plurality of GPS positions.
- 6. (original) The method of claim 4, said analyzing including disregarding aberrant ones of the plurality of GPS positions.
- 7. (original) The method of claim 1, further comprising issuing a warning if there are insufficient GPS signals to perform said calculating.
 - 8. (previously amended) A method for detecting errors in GPS accuracy, comprising: determining an initial GPS position of a marker; receiving GPS signals at the marker; calculating, from the GPS signals, a GPS coordinate position of the marker; comparing the GPS coordinate position and the initial GPS position;

issuing a warning if the GPS coordinate position differs from the initial GPS position by more than a predetermined amount;

identifying, in response to said issuing, a source of local interference; and neutralizing the source of local interference.

- 9. (currently amended) A system for detecting local interference in GPS signals, comprising:
 - a GPS receiver capable of determining its GPS coordinates;
- a memory capable of storing an initial location of said GPS receiver and a user-defined range of error;
- a processor being programmed to determine whether said GPS coordinates from said GPS receiver differ from said initial location by more than a said user-defined range of error, and for issuing a warning in response thereto;

a remote unit including said GPS receiver, said memory, said processor, and a transmitter capable of sending said warning; and

a monitoring unit including a receiver capable of receiving said warning and a display capable of displaying information relating to said warning;

wherein said warning contributes to local interference detection over an area.

10. (canceled).

- 11. (previously amended) A system for detecting local interference in GPS signals, comprising:
 - a GPS receiver capable of determining its GPS coordinates;
- a memory capable of storing an initial location of said GPS receiver and a user-defined range of error;
- a processor being programmed to determine whether GPS coordinates from said GPS receiver differ from said initial location by more than a range of error, and for issuing a warning in response thereto;
- a plurality of remote units, each including said GPS receiver, said memory, said processor, and a transmitter capable of sending said warning; and
- a monitoring unit including a receiver capable of receiving said warning from each of said plurality of remote units, and a display capable of displaying information relating to said warning;

wherein said plurality of remote units collectively provide local interference detection over an area.

Claims 12-13 (previously cancelled).

14. (previously amended) A method for detecting errors in GPS accuracy, comprising: determining an initial GPS position of a marker; receiving GPS signals at the marker; calculating, from the GPS signals, a GPS coordinate position of the marker;

comparing the GPS coordinate position and the initial GPS position; and

issuing a warning if the GPS coordinate position differs from the initial GPS position by more than a predetermined amount;

wherein the marker is in the same location for said determining and said calculating, said determining further comprising:

calculating a plurality of GPS positions for the marker over a period of time; statistically analyzing the plurality of GPS positions; and setting said initial GPS position based on a result of said analyzing.

- 15. (previously added) The method of claim 14, said analyzing comprising taking an average of at least some of the plurality of GPS positions.
- 16. (previously added) The method of claim 14, said analyzing including disregarding aberrant ones of the plurality of GPS positions.
- 17. (previously amended) The method of claim 14, further comprising issuing a warning if there are insufficient GPS signals to perform said calculating.

Claim 18 (cancelled).

19. (currently amended) A system for detecting local interference in GPS signals, comprising:

a stationary GPS receiver capable of determining its GPS coordinates;

a memory capable of storing an initial location of said GPS receiver and a user-defined range of error; and

a processor being programmed to determine whether said GPS coordinates from said GPS receiver differ from said initial location by more than a said user-defined range of error, and for issuing a warning in response thereto;

a remote unit including said GPS receiver, said memory, said processor, and a transmitter capable of sending said warning; and

a monitoring unit including a receiver capable of receiving said warning and a display capable of displaying information relating to said warning;

wherein a positive determination from said processor is consistent with the presence of local interference.

20. (cancelled).

21. (currently amended) The system of claim-19, further comprising: A system for detecting local interference in GPS signals, comprising:

a stationary GPS receiver capable of determining its GPS coordinates;

a memory capable of storing an initial location of said GPS receiver and a user-defined range of error; and

a processor being programmed to determine whether said GPS coordinates from said GPS receiver differ from said initial location by more than a said user-defined range of error, and for issuing a warning in response thereto;

a plurality of remote units, each including said GPS receiver, said memory, said processor, and a transmitter capable of sending said warning; and

a monitoring unit including a receiver capable of receiving said warning from each of said plurality of remote units, and a display capable of displaying information relating to said warning;

wherein said plurality of remote units collectively provide local interference detection over an area.

22. (previously added) A method for detecting errors in GPS accuracy, comprising: determining an initial GPS position of a marker;

receiving GPS signals at the marker;

calculating, from the GPS signals, a GPS coordinate position of the marker;

comparing the GPS coordinate position and the initial GPS position;

issuing a warning if the GPS coordinate position differs from the initial GPS position by more than a predetermined amount; and

identifying, in response to at least said issuing, a source of local interference.

23. (previously added) A method for detecting errors in GPS accuracy, comprising:

determining an initial GPS position of a marker;

receiving GPS signals at the marker;

calculating, from the GPS signals, a GPS coordinate position of the marker;

comparing the GPS coordinate position and the initial GPS position;

· SWEETAPPLE Patent Appln. No. 09/833,802

issuing a warning if the GPS coordinate position differs from the initial GPS position by more than a predetermined amount; and

neutralizing at least one source of local interference that is at least partially responsible for the GPS coordinate position differing from the initial GPS position by more than the predetermined amount.