# CV 510% Modeling, Uncertainty, and Data for Engineers (July – Nov 2025)

Dr. Prakash S Badal

1

# Flow

- Covariance
- Correlation
- Parametric distributions
- SciPy

#### **Announcement**

- Practice scipy.stats for the following:
  - Using distributions → Shifting, scaling
  - · Generating random numbers
  - Fitting distributions





3

# scipy

- [Ref.] https://docs.scipy.org/doc/scipy/reference/stats.html
- Tutorial https://docs.scipy.org/doc/scipy/tutorial/stats.html
- Probability distributions
   https://docs.scipy.org/doc/scipy/tutorial/stats/probability\_d
   istributions.html
- Run examples
  - Common Methods
  - !• Random number generator
  - Shifting-scaling: loc, scale
  - Fitting distributions

4

л

#### Check-in with teach-book

https://mude.citg.tudelft.nl/book/2024/

- Q1 Topics (Chapters 5, 6, 2, and 3)
  - Q1C5 Univariate continuous distribution
    - Q1C5.1 PDF/CDF

- Q1C5.2 Empirical Distributions
- Q1C5.3 Parametric Distributions
- Q1C5.4 Fitting a Distribution
- Q1C6 Multivariate Distributions (briefly)
- Q1C2 Propagation of Uncertainty
- Q1C3 Observation Theory: least-sq., Hyp. Test, Conf. Intervals
- Q2 Topics (Chapter 7 and 8)
  - Q2C7 Extreme value theory: GEV, return period, POT
  - Q2C8 Risk and decision making (CBA)
- Fundamental Concepts
  - Chapter 6, 7, 8, 9. Probability basics, rv, z- and t-tables
- Programming
  - Fundamental Concepts → Chapter 10

5



# In-Class problem

• The compressive strength of a concrete mix is normally distributed with mean 40 MPa and standard deviation 5 MPa.

Out of 10,000 specimen produced, how many will generally have strength less than 35 MPa?

How many with strength less than 30 MPa?



7

7







#### Standard Normal Probabilities

Z-table



| Table entry for $z$ is the area |
|---------------------------------|
| under the standard normal       |
| curve to the left of $z$ .      |

| z                | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4             | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 |
| -3.3             | .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 |
| -3.2             | .0007 | .0007 | .0006 | .0006 | .0006 | .0006 | .0006 | .0005 | .0005 | .0005 |
| -3.1             | .0010 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0008 | .0007 | .0007 |
| -3.0             | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011 | .0011 | .0010 | .0010 |
| -2.9             | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 |
| -2.8             | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 |
| <del>-</del> 2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 |
| -2.6             | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 |
| -2.5             | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 |
| -2.4             | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 |
| -2.3             | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 |
| -2.2             | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 |
| -2.1             | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 |
| -2.0             | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 |
| -1.9             | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 |
| -1.8             | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 |
| -1.7             | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 |
| -1.6             | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 |
| -1.5             | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 |
| -1.4             | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 |
| -1.3             | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 |
| -1.2             | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 |
| -1.1             | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 |
| -1.0             | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 | .1423 | .1401 | .1379 |
| -0.9             | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8             | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7             | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6             | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 |
| -0.5             | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| -0.4             | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 |
| -0.3             | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 |
| -0.2             | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974 | .3936 | .3897 | .3859 |
| -0.1             | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 |
| -0.0             | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 |

11



# Inverse CDF

• For designing a structure, we often need

a value that is not exceeded with more than p probability:

$$x = F^{-1}(p)$$

13

# **Empirical distribution**



Standard ECDF:

 $F_n(x) = \frac{i}{n}$  goes from 0 to 1

Bounded ECDF:

 $F_{n,b}(x) = \frac{i}{n+1}$  stays clear of 0 and 1

useful in Q-Q/probability plotting, avoids  $-\infty$  or  $+\infty$ .

# scipy

- Tutorial (not reference) https://docs.scipy.org/doc/scipy/tutorial/stats/probability\_d istributions.html
- https://docs.scipy.org/doc/scipy/tutorial/stats.html
  - · Run examples
    - Common Methods
    - Random number generator
    - Shifting-scaling: loc, scale
    - Fitting distributions

15

# **Uniform Distribution**



**PDF** 

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } a \le x \le b \\ 1 & \text{for } x > b \end{cases}$$

$$E[X] = \frac{1}{2}(a+b)$$

Properties 
$$E[X] = \frac{1}{2}(a+b); \quad Var[X] = \frac{1}{12}(b-a)^2$$



17



10

 $f_Y(y)$ 

 $0.2 \quad 0.3 \quad 0.4$ 

## Gumbel distributions

· When we are interested in

the smallest

or



the largest of a set of rv's,

e.g., a chain of links: smallest strength.

Flood level under a bridge: highest flood level during its lifetime.

$$Y_1 = \min(X_1, X_2, \dots, X_n),$$

$$Y_n = \max(X_1, X_2, \dots, X_n).$$

19

19

## Gumbel distributions

$$Y_1 = \min(X_1, X_2, ..., X_n),$$
  
 $Y_n = \max(X_1, X_2, ..., X_n).$ 

The CDF of  $Y_1$  is:

$$F_{Y_1}(y) = \Pr(Y_1 \le y) = 1 - \Pr(Y_1 > y) = 1 - \prod_{i=1}^n \Pr(X_i > y)$$

$$CDF \ F_{Y_1}(y) = 1 - [1 - F_X(y)]^n$$

$$PDF \ f_{Y_1}(y) = 1 - nf_X(y)[1 - F_X(y)]^{n-1}$$

Similarly, the CDF of  $Y_n$  is:

$$\begin{aligned} F_{Y_n}(y) &= \Pr(Y_2 \le y) = \prod_{i=1}^n \Pr(X_i < y) \\ \text{CDF } F_{Y_n}(y) &= [F_X(y)]^n \\ \text{PDF } f_{Y_n}(y) &= nf_X(y)[F_X(y)]^{n-1} \end{aligned}$$

Exact when distributions are known. Integration needed for mean/var. Hence, asymptotic distributions: GEV

20





# Core distributions

• Tails: thick/light



23

# **Next**

B.1.3 Propagation laws & least-squares (Q1C3)

Questions, comments, or concerns?

25