

Основы синтаксиса. Выражения

Выражения представляют собой множество данных связанных между собой операциями - особыми операторами языка, возвращающих некоторое значение.

Аргументы операций называют операндами. Большинство операций либо *унарные* (с одним операндом) или *бинарные* (с двумя операндами).

Также операции характеризуются приоритетом (старшинством) выполнения в выражении. Например, результат выражения 4+5*2 будет 14, а не 18, так как операция умножения имеет больший приоритет, чем сложение.

Большинство операций выполняются только над простыми типами данных.

Арифметические операторы

+	Сложение
-	Вычитание
*	Умножение
/	Деление
%	Вычисление остатка
++	Инкремент
	Декремент
+=	Присваивание со сложением
-=	Присваивание с вычитанием
*=	Присваивание с умножением
/=	Присваивание с делением
%=	Присваивание с вычислением остатка

Арифметические операторы

```
int a, b, c, d, e;
a = 10;
b = 11;
c = 12;
e = -a; // e = -10
a += b; // a = a + b; a=21
a *= c; // a = a * c; a=252
a -= c; // a = 240
d = 5;
e = 10;
System.out.println(e--); // 10
// после вывода на экран 10-ки, от "е" отняли 1
// и она стала равной 9
System.out.println(--e); // 8
// перед выводом на экран от "е" отняли 1 и она стала равной 8
System.out.println(++d); // 6
System.out.println(d++); // 6
```

- 1. Даны стороны прямоугольника а и b. Найти его площадь S = a•b им периметр P = 2•(a + b)
- 2. Найти длину окружности L и площадь круга S заданного радиуса R: L = $2 \cdot \pi \cdot R$, S = $\pi \cdot R2$. В качестве значения π использовать 3.14.
- 3. Даны два числа а и b. Найти их среднее арифметическое: (a + b)/2.
- 4. Даны два неотрицательных числа а и b. Найти их среднее геометрическое, то есть квадратный корень из их произведения.
- 5. Найти расстояние между двумя точками с заданными координатами x1 и x2 на числовой оси: |x2 x1|.
- 6. Даны координаты двух противоположных вершин прямоугольника: (x1, y1), (x2, y2). Стороны прямоугольника параллельны осям координат. Найти периметр и площадь данного прямоугольника.
- 7. Даны переменные A, B, C. Изменить их значения, переместив содержимое A в B, B в C, C в A, и вывести новые значения переменных A,B, C.

Битовые (поразрядные) операторы

-	Унарное отрицание
&	Поразрядное И
1	Поразрядное ИЛИ
۸	Поразрядное исключающее ИЛИ
~	Дополнение(комплементация)
<<	Сдвиг битов влево
>>	Сдвиг битов вправо
>>>	Сдвиг битов вправо с заполнением старшего бита нулем
&=, =, ^=, <<=, >>=, >>>=	Присвоение с аналогичной операцией

Битовые (поразрядные) операторы

```
поразрядное И // поразрядное ИЛИ
    = 12 | 00001100 // A = 12 | 00001100
           00001010 //
                       B = 10 | 00001010
          00001000 // D = 14
c = a \& b;
d = a | b;
  поразрядное исключающее ИЛИ // дополнение
           00001100 // A = 12 | 00001100
    = 12
           00001010
   B = 10
           00000110
                           // F = -13 | 11110011
   a ^ b;
```


1. Дано целое число А. Проверить что число является степенью 2.

Логические операторы

==	Равно
!=	Не равно
<	Меньше
<=	Меньше или равно
>	Больше
>=	Больше или равно
&	Логическое и
	Логическое или
٨	Логическое исключающее или
!	Отрицание
&&	Условное и
ll l	Условное или
&=, =, ^ =	Присваивание с аналогичным оператором

Логические операторы

```
a = 10;
b = 15;
c = 20;
boolean b1 = a != b;
System.out.println("b1 = " +b1);
boolean b2 = c > a;
System.out.println("b2 = " + b2);
boolean b3 = b1 & b2;
System.out.println("b3 = " + b3);
boolean b4 = b3 ^ b1;
System.out.println("b4 = " + b4);
if (b1 && b4 == false) // Если условие выполняется, то:
b3 = true;
else // Если это не так, то:
b2 = false;
System.out.println("b2 = " + b2);
```


- 1. Дано целое число *A*. Проверить истинность высказывания: «Число *A* является положительным».
- 2. Дано целое число *A*. Проверить истинность высказывания: «Число *A* является нечетным».
- 3. Даны три целых числа: A, B, C. Проверить истинность высказывания: «Справедливо двойное неравенство A < B < C».
- 4. Даны три целых числа: *A*, *B*, *C*. Проверить истинность высказывания: «Хотя бы одно из чисел *A*, *B*, *C* положительное».
- 5. Даны три целых числа: *A*, *B*, *C*. Проверить истинность высказывания: «Ровно одно из чисел *A*, *B*, *C* положительное».
- 6. Дано целое положительное число. Проверить истинность высказывания: «Данное число является нечетным трехзначным».
- 7. Даны числа x, y, x1, y1, x2, y2. Проверить истинность высказывания: «Точка с координатами (x, y) лежит внутри прямоугольника, левая верхняя вершина которого имеет координаты (x1, y1), правая нижняя (x2, y2), а стороны параллельны координатным осям».

- 8. Даны целые числа *a*, *b*, *c*. Проверить истинность высказывания: «Существует треугольник со сторонами *a*, *b*, *c*».
- 9. Даны координаты поля шахматной доски *x*, *y* (целые числа, лежащие в диапазоне 1–8). Учитывая, что левое нижнее поле доски (1, 1) является черным, проверить истинность высказывания: «Данное поле является белым».
- 10. Даны координаты двух различных полей шахматной доски x1, y1, x2, y2 (целые числа, лежащие в диапазоне 1–8). Проверить истинность высказывания: «Ферзь за один ход может перейти с одного поля на другое».
- 11. Даны два числа А и В. Поменяйте их местами не используя дополнительную переменную и арифметические операции