Clipping

Fig. 3.47 Polygon clipping, edge by edge. (a) Before clipping. (b) Clip on right. (c) Clip on bottom. (d) Clip on left. (e) Clip on top; polygon is fully clipped.

- Divide and Conquer Strategy
 - Clip against a single infinite clip edge and get new vertices
 - Repeat for next clip edge
- Adding Vertices to Output List

Fig. 3.48 Four cases of polygon clipping.

```
Input:
       Polygon described by an input of list of vertices: v_1, v_2, ..., v_n
2.
       Convex clip region C
Algorithm:
Inputlist: v_1, v_2, ..., v_n
For each clip edge e in E do
     S \square v_n
     P \square v_1
     While (j<n)
             do, if both S & P inside the clip region,
                    Add p to output list
            else if S inside & P outside, then
                    Find intersection point i
                    Add i to output list
            else if S outside and P inside, then
                    find intersection point i
                    add i to output list
                    add P to output list
            else if S and P both outside
                    do nothing
            S \square v_j
```

- a, b, c, d, e, f, g
- S = g, P = a
- Output: 1, 2, c, d, e, f, g

SP	Intersection	Output	Comments
g, a	1	1	g inside, a outside
a, b	-	-	Both outside
b, c	2	2,c	b outside, c inside
c, d	-	d	Both inside
d, e	-	e	Both inside
e, f	-	f	Both inside
f, g	-	g	Both inside

- Output of previous iteration 1, 2, c, d, e, f, g
- S = g, P = 1
- Output: 3, 1, 4, 5, d, e, f, 6

SP	Intersection	Output	Comments
g,1	3	3,1	g outside, 1 inside
1, 2	4	4	1 inside, 2 outside
2, c	-	-	Both outside
c, d	5	5,d	d inside, c outside
d, e	-	e	Both inside
e, f	-	f	Both inside
f, g	6	6	f inside, g outside

- Output of previous iteration 3, 1, 4, 5, d, e, f, 6
- S = 6, P = 3
- Output: 3, 1, 4, 7, 8, e, 9, 10, 6

SP	Intersection	Output	Comments
6, 3	-	3	Both inside
3, 1	-	1	Both inside
1, 4	-	4	Both inside
4, 5	7	7	4 inside, 5 outside
5, d	-	-	Both outside
d, e	8	8, e	e inside, d outside
e, f	9	9	e inside, f outside
f, 6	10	10, 6	6 inside, f outside

- Output of previous iteration 3, 1, 4, 7, 8, e, 9, 10, 6
- S = 6, P = 3
- Output: 3, 1, 4, 7, 11, 12, e, 9, 10, 6

SP	Intersection	Output	Comments
6, 3	-	3	Both inside
3, 1	-	1	Both inside
1, 4	-	4	Both inside
4, 7	-	7	Both inside
7, 8	11	11	7 inside, 8 outside
8, e	12	12, e	e inside, 8 outside
e, 9	-	9	Both inside
9, 10	-	10	Both inside
10, 6	-	6	Both inside

Clipping Circles (and Ellipses)

- Analytical
 - Intersect circle's extent (square of size of circle's diameter) with clip rectangle
 - Run the algorithm of polygon clipping
 - No intersect : trivial reject
 - Intersect : divide into quadrants (and later octants if needed) and repeat
 - Compute intersection by solving equations
- During Scan Conversion
 - When circle is relatively small or scan conversion is fast
 - After extent checking scissor on a pixel by pixel basis
- ➤ Similar Approach for Ellipses!

Thank you ⊙