# Entropy

### Entropy concept

1. Replace the path  $i \rightarrow f$  along the general path by iabf such that

$$W_{iabf} = W_{if}$$
 (equal areas)

$$\Delta U_{iabf} = \Delta U_{if}$$
 (*U* function of state)

$$\therefore Q_{iabf} = Q_{if}$$
 (from first law)

We can find a zig-zag path having an isothermal with the same *Q* transfer as in the actual path element.



# Entropy

### Entropy concept

2. Taking account of sign convention for heat transfers

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

Over all slices  $\sum \left[ \frac{Q_1}{T_1} + \frac{Q_2}{T_2} \right] = 0$ 

Round zig-zag loop  $\sum \frac{Q_R}{T} = 0$ 

In limit of thin slices  $\oint \frac{dQ_R}{T} = 0$ 





## Entropy

### Entropy concept

3. 
$$\oint \frac{dQ_R}{T} = \int_i^f \frac{dQ_R}{T} + \int_f^i \frac{dQ_R}{T} = 0$$

$$\therefore \int_i^f \frac{dQ_R}{T} = \int_i^f \frac{dQ_R}{T} = \int \frac{dQ_R}{T}$$
A B Any reversible route

**Definition:** the difference in **entropy** S

between any states i and f is

$$S_f - S_i = \int_i^f dS = \int_i^f \frac{dQ_R}{T}$$

