Name: Alexander Bigalke Robin Rombach Arthur Heimbrecht

Assignment: exercise 8
Due: Wednesday 18th July, 2018

Berkeley Admission

First we want to complete the data. We need the probabilities p(F|G), p(A|F,G) and p(G).

	men		women	
field	p(F G)	p(A F,G)	p(F G)	p(A F,G)
A	0.62	0.32	0.82	0.06
В	0.63	0.22	0.68	0.01
C	0.37	0.13	0.34	0.32
D	0.33	0.16	0.35	0.20
E	0.28	0.07	0.24	0.21
F	0.06	0.10	0.07	0.19
	0.585		0.415	

Total Causal Effect

1. we can straight forward calculate the conditional probability $p_1(A = \text{true}|do(G))$:

$$p_1(A = \operatorname{true}|do(G)) = p_1(A = \operatorname{true}|G) = \sum_F p(F|G)p(A = \operatorname{true}|F, G)$$
(1)

2. Now we can calculate

$$p_1(A=\text{true}|do(G=\text{male})) = 0.32 \cdot 0.62 + 0.22 \cdot 0.63 + \dots = 0.46$$

$$p_1(A=\text{true}|do(G=\text{female})) = 0.0.06 \cdot 0.82 + 0.01 \cdot 0.68 + \dots = 0.30$$

This indicates that women might be discriminated.

Direct Causal Effect

1. we can calculate $p_2(A = \text{true}|G)$:

$$\begin{split} p_2(A = \operatorname{true}|G) &= p_1(A = \operatorname{true}|G, \operatorname{cut}(G \to A)) \\ &= \sum_F p_1(F|G)p_1(A = \operatorname{true}|F, G, \operatorname{cut}(G \to A)) \\ &= \sum_F \sum_{\tilde{G}} p_1(F|G)p_1(A = \operatorname{true}|F, \tilde{G})p(\tilde{G}) \\ &= \sum_{\tilde{G}} p(\tilde{G}) \sum_F p_1(F|G)p_1(A = \operatorname{true}|F, \tilde{G}) \\ &= p(\tilde{G} = \operatorname{male}) \sum_F p_1(F|G)p_1(A = \operatorname{true}|F, \tilde{G} = \operatorname{male}) \\ &+ p(\tilde{G} = \operatorname{female}) \sum_F p_1(F|G)p_1(A = \operatorname{true}|F, \tilde{G} = \operatorname{female}) \end{split}$$

2. Now we can calculate

$$\begin{split} p_2(A = \text{true}|G = \text{male}) &= 0.585 \cdot p_1(A = \text{true}|do(G = \text{male})) + 0.415 \cdot (0.82 \cdot 0.32 + \ldots) \\ &= 0.585 \cdot 0.46 + 0.415 \cdot 0.54 = 0.49 \\ p_2(A = \text{true}|G = \text{female}) &= 0.415 \cdot p_1(A = \text{true}|do(G = \text{female})) + 0.585 \cdot (0.06 \cdot 0.62 + \ldots) \\ &= 0.415 \cdot 0.30 + 0.585 \cdot 0.30 = 0.30 \end{split}$$

The results yield the same conditional probability for women in both models indicating that there is no discrimination in that respect. But for men the direct causal effect yields a higher conditional probability thus indicating that there might be little discrimination against male applicants.