Big Compute Clash 2020 Problem Statement

(in the clouds)

Primary Objective: Maximize Lift/Drag (L/D) of an airfoil

- Control the shape of the airfoil by perturbing Bezier control points
- Fix angle of attack, Mach, and other flow characteristics
- Given a finite compute budget

Control Points define a spline for each surface of the airfoil

Moving control points will create a new curve for the airfoil surface

Script will then generate a computational mesh for new surface

Computational mesh run through SU2 CFD solver

Labeling of points for input

User will provide an input file the maps to a perturbation of a control point - these are normalized onto [-1, 1] with preset bounds

•	
inputs.tx	t
mputs.ta	ι
mpats.ax	·

X-coord	Y-coord
0	0.50
-0.10	-0.25
0.40	-0.50
-0.30	-0.25
0.50	-0.25
	0 -0.10 0.40 -0.30

^{*} Pattern shown for demonstration only, not all (if any) points will map to this pattern

Need two inputs:

- inputs.txt
- airfoil_inv.cfg

Run two commands:

- gen_mesh (with arg either coarse, medium, fine)
- run_solve (with arg the number of cores to run on)

Outputs:

- Some pretty pictures
- Solution files
- output.txt summary

Example Job

https://platform.rescale.com/jobs/fqvWo/setup/input-files/

Other controls

- Can use either a coarse, medium, or fine mesh coarse will run faster but might not arrive at acceptable solution
- Control the solver iterations (EXT_ITER) in the configuration file airfoil_inv.cfg

• • •

% Number of total iterations

EXT ITER=500

• • •

fewer iterations will run faster, but the solution may not pass

• Run on more cores - this will generate the solution faster, but will cost slightly more (parallel efficiency). You have a **\$25 limit**, use it wisely.

The Catch: Solution Must be Converged!

- All non-analytic numerical solutions carry some type of error
- This error must be below a threshold
 - This will be checked automatically and printed to an output summary

How do I fix a non-converged solution?

- Increase solver iterations
- Restart solver (subtle numerical trick)
- Change mesh quality
- Throw away geometry

output.txt

Converged: Yes/No

Lift/Drag: 80

Lift: 1.1

Drag: 0.1375

Success Metrics: Maximize Lift/Drag of an airfoil

- Quantitative value of L/D. Final L/D must be run on fine mesh.
- Approach. Explore the design space as efficiently as possible. Bonus points for creativity.
- 3 finalists will be selected and will present their solution

SCORE =
$$f(L/D) + f(approach) + f(presentation)$$

Winner takes home the goods!

Final Submission

- Rescale job with your best L/D
 (Make sure the solution has converged with a fine mesh)
- Presentation, 5 slides or less (Google slides, make sure it's publicly accessible)

More details in instruction email.

Questions?

Tips and Tricks

- Interactively work on the problem by inserting a sleep inf in the command on the Rescale UI
- You can drop the EXT_ITER down to only a few iterations to get quick look at the mesh generated (want to be running interactively)
- You can restart solver from a previous solution by changing the flag (RESTART_SOL) in the configuration file airfoil_inv.cfg

•••

% Restart solution (NO, YES)

RESTART_SOL= NO

** the file indicated by the field **SOLUTION_FLOW_FILENAME** must in the directory the code is run in, and from the same mesh

