Теортест-1 (Вариант 131)

Тема – определенный интеграл

Задача 1

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;
- 2. $\int f(x)dx = \int f(1/t) \frac{dt}{t^2}$;
- 3. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau, \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} \varepsilon;$
- 3. $\forall \tau \; \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi);$
- 4. $\forall \tau \; \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = dv + C;
- 2. du = vdt + C;
- 3. u = dv;
- 4. dv = udt + C;

Задача 4

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(a) = 1;
- 2. f(a) > 0, f(b) > 0;
- 3. f непрерывна на [a,b] и f(a+b)=1;
- 4. f непрерывна на [a,b] и f((a+b)/2)=1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все верные утверждения:

- 1. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 2. Длины противоположных путей равны;
- 3. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 4. Длина спрямляемой кривой конечна;
- 5. Длина замкнутой кривой равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. любое множество имеет неотрицательную площадь;
- 2. площадь одной точки равна нулю;
- 3. площадь графика любой функции равна нулю;
- 4. площадь отрезка равна нулю;

Задача 7

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-x+1}{x^2+x}$;
- 2. $\frac{x^2-1}{x^2+1}$;
- 3. $\frac{x}{x^2-1}$;
- 4. $\frac{x^4}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [-10; 0];
- 2. [-0.25; 10];
- 3. [-1; 5];
- 4. [0.5; 5];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f интегрируема на [a, b], то она имеет первообразную на [a, b];
- 2. Если f интегрируема на [a, b], то она монотонна на [a, b];
- 3. Если f интегрируема на [a, b], то она ограничена на [a, b];
- 4. Если f имеет конечное число точек разрыва типа скачок на [a,b], то она интегрируема на [a,b];

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a,b];
- 2. F непрерывна на [a, b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. Если f непрерывна на [a,b], то F первообразная для f на [a,b];