ORLD'S HIGHEST STANDARD OF LIVE

Εξέλιξη της μηχανικής μάθησης και της επεξεργασίας φυσικής γλώσσας και η επίδρασή τους στην οικονομία

Θερινό σχολείο ιστορίας και οικονομίας (HISEC 2022 @preveza)

Γκόγκος Χρήστος

Τι είναι δύσκολο για τους υπολογιστές σήμερα;

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

https://xkcd.com/1425/

Τεχνητή Νοημοσύνη (ΤΝ)

- Η Τεχνητή Νοημοσύνη (Artificial Intelligence, AI) είναι ένα ευρύ πεδίο της επιστήμης υπολογιστών που στοχεύει στη μίμηση της ανθρώπινης νοημοσύνης από τους υπολογιστές
 - Τεχνητή: μη φυσική, κατασκευάζεται ως απομίμηση
 - Νοημοσύνη: η ικανότητα εξαγωγής συμπερασμάτων για τον κόσμο στον οποίο ζούμε, η σχεδίαση ενεργειών εκ των προτέρων και η επίλυση προβλημάτων

Ένας ορισμός για την Τεχνητή Νοημοσύνη

Τεχνητή νοημοσύνη είναι ο σχεδιασμός και η δημιουργία ευφυών πρακτόρων που είναι σε θέση να αντιληφθούν ένα περιβάλλον και να πραγματοποιήσουν ενέργειες που επιδρούν σε αυτό

Εκδηλώσεις ευφυούς συμπεριφοράς

- Συλλογιστική (Reasoning): δημιουργία ενός νοητικού μοντέλου για την τρέχουσα κατάσταση
- Σχεδιασμός (Planning): απόφαση για μια σειρά ενεργειών που αναμένεται να οδηγήσουν στο επιθυμητό αποτέλεσμα
- Εκμάθηση (Learning): ενίσχυση της ικανότητας για αποδοτική λύση προβλημάτων αποκτώντας γνώση μέσω μελέτης ή εμπειριών
- Λήψη αποφάσεων (Decision Support): επιλογή ανάμεσα σε εναλλακτικές αποφάσεις εκείνης που θα έχει το καλύτερο αποτέλεσμα
- Επίλυση προβλημάτων (Problem Solving): εύρεση βέλτιστων λύσεων ή λύσεων που προσεγγίζουν τις βέλτιστές σε δύσκολα προβλήματα

Ένα παράδειγμα TN: ο αλγόριθμος Α*

https://qiao.github.io/PathFinding.js/visual/

Ένα ακόμα παράδειγμα ΤΝ: Ρομποτική

Ρομποτική είναι ο επιστήμη που μελετά τον έλεγχο μηχανικών εξαρτημάτων έτσι ώστε να αλληλεπιδρούν με το φυσικό κόσμο

https://www.youtube.com/watch?v=tF4DML7FIWk&t=3

Μηχανική μάθηση

- Η μηχανική μάθηση (Machine Learning, ML) είναι υπο-πεδίο της Τεχνητής Νοημοσύνης και εστιάζει στη μάθηση από δεδομένα, και όχι στο σαφή (explicit) προγραμματισμό
- Ιδανικά, ένα σύστημα μηχανικής μάθησης γίνεται καλύτερο καθώς του δίνονται περισσότερα δεδομένα

Κατηγορίες τεχνικών μηχανικής μάθησης

- Εποπτευόμενη μάθηση (ο αλγόριθμος μαθαίνει από παραδείγματα για τα οποία υπάρχει σήμανση και εν συνεχεία μπορεί να προβλέψει τη σήμανση για δεδομένα που βλέπει πρώτη φορά)
- Μη εποπτευόμενη μάθηση (δέχεται ως είσοδο δεδομένα χωρίς σήμανση και εντοπίζει σε αυτά κρυμμένα πρότυπα)
- Ενισχυτική μάθηση (ένας πράκτορας πραγματοποιεί ενέργειες σε ένα εικονικό περιβάλλον και μαθαίνει μέσω ανταμοιβών και ποινών (π.χ. AlphaZero για σκάκι, σόγκι και γκο)

Silver, David, et al. "AlphaZero: Shedding new light on the grand games of chess, shogi and Go." *DeepMind blog* (2018).

Αλγόριθμοι μηχανικής μάθησης

- Γραμμική παλινδρόμηση
- Λογιστική παλινδρόμηση
- Δένδρα αποφάσεων
- Μηχανές διανυσμάτων υποστήριξης
- Naïve Bayes
- Κ-πλησιέστεροι γείτονες
- K-means
- Τυχαία δάση
- ...
- Νευρωνικά δίκτυα

Νευρωνικά δίκτυα - έμπνευση

Βιολογικός νευρώνας

Nucleus Axon Terminals Cell Soma Axon Dendrites

Τεχνητός νευρώνας

Νευρωνικά δίκτυα

Βιολογικό νευρωνικό δίκτυο (ανθρώπινος φλοιός)

Τεχνητό νευρωνικό δίκτυο (ρηχό)

Βαθιά μάθηση

- Η βαθιά μάθηση (Deep Learning, DL) είναι υποπεδίο της μηχανικής μάθησης
- Αφορά βαθιά νευρωνικά δίκτυα, δηλαδή δίκτυα με περισσότερα από 1 κρυμμένα επίπεδα

Βασική διαφορά μηχανικής μάθησης και βαθιάς μηχανικής μάθησης

- Στη μηχανική μάθηση ο χρήστης πρέπει να εντοπίσει τα σημαντικότερα χαρακτηριστικά (features) που θα χρησιμοποιηθούν στη συνέχεια από τον αλγόριθμο μηχανικής μάθησης (feature engineering)
- Στη βαθιά μηχανική μάθηση δεν γίνεται εξαγωγή χαρακτηριστικών χειροκίνητα από τον χρήστη, αλλά ο αλγόριθμος δέχεται τα πρωτογενή δεδομένα και ρυθμίζει αυτόματα τις παραμέτρους (βάρη) του νευρωνικού δικτύου που θα δώσουν το επιθυμητό αποτέλεσμα (end to end)

Επιπλέον διαφορές Μηχανικής Μάθησης και Βαθιάς Μάθησης

- Η μηχανική μάθηση χρησιμοποιεί σχετικά μικρά σύνολα δεδομένων ενώ η βαθιά μάθηση πολλά δεδομένα
- Η μηχανική μάθηση έχει μικρότερες υπολογιστικές απαιτήσεις από τη βαθιά μάθηση
- Η μηχανική μάθηση είναι καλύτερη για απλά προβλήματα, ενώ η βαθιά μάθηση για πολύπλοκα προβλήματα

Επεξεργασία φυσικής γλώσσας (NLP)

• Το πρόβλημα κατανόησης φυσικής γλώσσας (Natural Language Processing, NLP) είναι δύσκολο.

H NLP

- μελετά την ανάγνωση, ανάλυση και ερμηνεία γραπτού και προφορικού λόγου
- συνδυάζει γλωσσολογία, στατιστική και μηχανική μάθηση
- χρησιμοποιείται στο Google Translate, σε φωνητικούς βοηθούς (π.χ. Alexa, Siri), σε chatbots, στις μηχανές αναζήτησης στο διαδίκτυο, GPS με φωνητικές οδηγίες κ.λπ.

Βασικές περιοχές εφαρμογής του NLP

- Ανάλυση συναισθήματος (θετικό ή αρνητικό ύφος κειμένου)
 - Εντοπισμός τοξικών σχολίων
- Chatbots (απάντηση ερωτήσεων)
- Συμπλήρωση κειμένου (π.χ. κατά τη συγγραφή email)
- Δημιουργία κειμένου (με είσοδο ένα μικρό κείμενο και μια θεματική περιοχή, συγγραφή εκτεταμένου κειμένου)
- Σύνοψη κειμένου (δημιουργία περιλήψεων μεγαλύτερου κειμένου)
- Αναγνώριση πολυσημίας (κατανόηση νοήματος για την ίδια λέξη ανάλογα με τα συμφραζόμενα)
- Εντοπισμός σημασιολογικής ομοιότητας

NLP-προεπεξεργασία

- Διαχωρισμός προτάσεων
- Μετατροπή σε πεζά
- Αφαίρεση συχνών και λιγότερων σημαντικών λέξεων
- Λήψη λεκτικών μονάδων
- Επισημείωση κάθε λέξης με το μέρος του λόγου που είναι (π.χ. ουσιαστικό, ρήμα, επίρρημα, επίθετο)
- Εξαγωγή λημμάτων
- Αποκοπή

BERT

- BERT (Bidirectional Encoder Representation from Transformers): state of the art τεχνολογία NLP (2018)
- Το BERT είναι ενσωματωμένο στην αναζήτηση του Google από τον Νοέμβριο του 2020
- Το BERT έχει εκπαιδευτεί με το περιεχόμενο της Wikipedia
 (2.5 δισεκατομμύρια λέξεις) και με το BookCorpus της Google
 (800 εκατομμύρια λέξεις)
- Υπάρχουν ελαφρύτερες εκδόσεις του BERT όπως το DistilBERT που είναι 60% ταχύτερο και πετυχαίνει 95% της απόδοσης του BERT

Transformers και κατανόηση φυσικής γλώσσας

- Οι transformers είναι τεχνικές μη επιβλεπόμενης μάθησης
- Ρυθμίζουν κατάλληλα τα βάρη ενός βαθιού νευρωνικού δικτύου χρησιμοποιώντας την αρχή "Attention is all you need"

Επεκτάσεις του NLP

Μετατροπή φωνής σε κείμενο

Μετατροπή κειμένου σε φωνή

Περιγραφή εικόνων ως κείμενο

Περιγραφή βίντεο ως κείμενο

Περιγραφή ιατρικών απεικονίσεων (π.χ. αξονική)

Μετατροπή νοηματικής σε κείμενο ή φωνή

Μετατροπή κειμένου σε εικόνα ή βίντεο (π.χ. DALL-e)

coffee, breakfast, drink, dawn, cup, espresso, ...

Εφαρμογές του NLP στο δημόσιο τομέα

- Κατηγοριοποίηση περιεχομένου (π.χ. ερωτήσεων που λαμβάνει ένα τηλεφωνικό κέντρο)
- Chatbots για εξυπηρέτηση πολιτών
- Σύνοψη εγγράφων
- Μηχανική μετάφραση (υπηρεσία eTranslation της Ευρωπαϊκής Ένωσης)

https://www.economist.com/graphic-detail/2022/07/06/countries-are-writing-ever-longer-constitutions

Εφαρμογές NLP στην εκπαίδευση

alewkowycz @alewkowycz · 30 Jun

Very excited to present Minerva : a language model capable of solving mathematical questions using step-by-step natural language reasoning. Combining scale, data and others dramatically improves performance on the STEM benchmarks MATH and MMLU-STEM. goo.gle/3yGpTN7

Question: A line parallel to y=4x+6 passes through (5,10). What is the y-coordinate of the point where this line crosses the y-axis?

Model output: The line is parallel to y = 4x+6, which means that it has the same slope as y = 4x+6. Since the line passes through (5,10), we can use the point-slope form of a line to find the equation of the line:

$$y - 10 = 4(x - 5)$$

 $y - 10 = 4x - 20$
 $y = 4x - 10$

Now that we have the equation of the line, we can find the y-coordinate of the point where

the line crosses the y-axis by substituting x=0 into the equation:

$$y = 4 \cdot 0 - 10 = \boxed{-10}$$

Εφαρμογές NLP σε νομικά κείμενα

Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective

Nikolaos Aletras^{1,2}, Dimitrios Tsarapatsanis³, Daniel Preoţiuc-Pietro^{4,5} and Vasileios Lampos²

contiguous word sequences, i.e., N-grams, and topics. Our models can predict the court's decisions with a strong accuracy (79% on average). Our empirical analysis

- Εξαγωγή γνώσης από νομικά κείμενα
- Μετατροπή νομικών κειμένων σε τυπικές αναπαραστάσεις έτσι ώστε να μπορούν να χρησιμοποιηθούν σε ερωτήματα

¹ Amazon.com, Cambridge, United Kingdom

² Department of Computer Science, University College London, University of London, London, United Kingdom

³ School of Law, University of Sheffield, Sheffield, United Kingdom

⁴Positive Psychology Center, University of Pennsylvania, Philadelphia, United States

⁵ Computer & Information Science, University of Pennsylvania, Philadelphia, United States

Υπολογιστική όραση (computer vision)

- Είναι υπο-πεδίο της Τεχνητής Νοημοσύνης και στοχεύει στη μίμηση της ανθρώπινης όρασης
- Επιδιώκει την ανάλυση και την κατανόηση εικόνων και βίντεο
- Η υπολογιστική όραση έχει πραγματοποιήσει άλματα τα τελευταία χρόνια λόγω
 - εξελίξεων στη μηχανική μάθηση
 - αύξησης υπολογιστικής ισχύος
 - συσσώρευσης μεγάλων δεδομένων εικόνας και βίντεο

Τυπικές εργασίες υπολογιστικής όρασης (1/5)

Κατηγοριοποίηση εικόνας: ανάθεση κατάλληλης ετικέτας σε μια εικόνα

Τυπικές εργασίες υπολογιστικής όρασης (2/5)

Αναγνώριση αντικειμένων:

εντοπισμός αντικειμένων σε εικόνες ή βίντεο

Τυπικές εργασίες υπολογιστικής όρασης (3/5)

Σημασιολογική τμηματοποίηση: ομαδοποίηση τμημάτων της εικόνας που ανήκουν στην ίδια κλάση αντικειμένων

Τυπικές εργασίες υπολογιστικής όρασης (4/5)

Εκτίμηση στάσης αντικειμένων:

αναγνώριση θέσης και προσανατολισμού αντικειμένων σε μια εικόνα ή βίντεο

Τυπικές εργασίες υπολογιστικής όρασης (5/5)

Αναγνώριση προσώπου: αναγνώριση της ταυτότητας ενός προσώπου σε εικόνα ή σε βίντεο μέσα σε μια βάση προσώπων

Δημιουργία τεχνητών προσώπων

Δημιουργία νέων προσώπων με παρεμβολή υφιστάμενων

Mikko Kuitunen @Mikko Kuitunen 3 · Apr 6

Replying to @sama

A rabbit detective sitting on a park bench and reading a newspaper in a victorian setting

 \bigcirc 3

17 10

Sam Altman ② @sama · Apr 6

Υγεία

Στο χώρο της υγείας οι εφαρμογές μηχανικής μάθησης είναι πολλές και πλέον καθιερωμένες

• Ανάλυση ιατρικής εικόνας

Αυτόνομα οχήματα

Τα αυτόνομα οχήματα αντιλαμβάνονται τον κόσμο με συνδυασμό τεχνολογιών όπως η υπολογιστική όραση, ανάλυση δεδομένων από άλλες πηγές όπως αισθητήρες και ραντάρ

Ασφάλειες

- Εφαρμογές καθοδήγησης
 πελατών για την οπτική
 καταγραφή συμβάντων, ανάλυση
 εικόνων σε πραγματικό χρόνο και
 δρομολόγηση στους κατάλληλους
 ασφαλιστές
- Από την πλευρά της πρόληψης, συστήματα αποφυγής συγκρούσεων μπορούν να οδηγήσουν σε μείωση ατυχημάτων

Αγροτική παραγωγή

https://www.youtube.com/watch?v=AP0yiOI8Qas&list=PLI40k5sHWZNurAaoRdFPDd71THAnRVXNa

- Καλλιέργειες ακριβείας
- Ταχύς εντοπισμός ασθενειών ή προσβολών από παράσιτα και έντομα
- Ψεκασμός ακριβείας με ζιζανιοκτόνα
- Εκτίμηση ποιότητας εδάφους
- Διαλογή φρούτων λαχανικών βάσει χαρακτηριστικών (μέγεθος, χρώμα, υφή κ.λπ.)
- Μείωση χρόνου

Προκλήσεις που καλείται να υπερκεράσει η Τεχνητή Νοημοσύνη

Τεχνητή Γενική Νοημοσύνη (AGI=Artificial General Intelligence)

Ιδιωτικότητα και ασφάλεια

Διαφάνεια αλγορίθμων

Προκατάληψη (bias) συστημάτων Τεχνητής Νοημοσύνης

Ερωτήσεις συμπεράσματα

Έχει σημαντικές πιθανότητες να δημιουργήσει αναταράξεις σε οικονομικό επίπεδο

- η τεχνητή νοημοσύνη;
- η μηχανική μάθηση;
- η κατανόηση φυσικής γλώσσας;

Έχει σημαντικές πιθανότητες να δημιουργήσει κρίσεις που θα επηρεάσουν κράτη

- η τεχνητή νοημοσύνη;
- η μηχανική μάθηση;
- η κατανόηση φυσικής γλώσσας;

- Μπορεί μια χώρα στο μέγεθος της Ελλάδας
 - να είναι πρωτοπόρα στην έρευνα;
 - να διαθέτει εταιρείες στην αιχμή της τεχνολογίας;
- Πρέπει η Ελλάδα
 στρατηγικά και κατά
 προτεραιότητα να
 επενδύσει στην τεχνητή
 νοημοσύνη;