Relational realisability model for QTT

Our aim is to build a concrete realisability model for QTT which allows for meta-reasoning with results derived from parametricity. To that end, a construction of a quantitative category with families (QCwF, see [1]) is presented. We follow the relational approach to types introduced by Reynolds for typed lambda calculus [4] and later refined for dependent types theories [2].

Once and for all fix a usage semiring R and an R-linear combinatory algebra \mathscr{A}^1 .

0 Preliminaries

We recall some basic structures used in constructing the model.

Definition 1 (Assemblies[†]). An assembly[†] Γ is a pair $(|\Gamma|, e)$ where $|\Gamma|$ is a carrier set and e is a realisability function $|\Gamma| \to \mathcal{P}(\mathscr{A})$.

Given some $\gamma \in |\Gamma|$, $e(\gamma)$ is interpreted as the set of witnesses for the existence of γ . To emphasize on that aspect, we write $a \vDash_{\Gamma} \gamma$ to denote $a \in e(\gamma)$. Moreover, let $\lfloor \Gamma \rfloor$ stand for the set of realisable elements - $\{\gamma \in |\Gamma| : e_{\Gamma}(\gamma) \neq \emptyset\} \subseteq |\Gamma|$.

A morphism between two assemblies[†] Γ and Δ is a function $f: |\Gamma| \to |\Delta|$ that is realisable - there exists a realiser $a_f \in \mathscr{A}$ that tracks the function f in the following sense:

for every
$$\gamma$$
 in $|\Gamma|$ and a_{γ} in \mathscr{A} , $a_{\gamma} \vDash_{\Gamma} \gamma \implies a_f.a_{\gamma} \vDash_{\Delta} f(\gamma)$ holds.

Note that multiple realisers for the same function f do not induce multiple morphisms. Using these notions we can construct a category $Asm^{\dagger}(\mathscr{A})$.

Definition 2 (Reflexive graph). A reflexive graph (r.g.) G is a tuple $(G_O, G_R, G_{refl}, G_{src}, G_{tgt})$, where G_O and G_R are sets, $G_{src}: G_R \to G_O$, $G_{tgt}: G_R \to G_O$ and $G_{refl}: G_O \to G_R$ are functions, s.t. the identities hold:

$$G_{src} \circ G_{refl} = id_{G_O} = G_{tgt} \circ G_{refl}$$

 G_O and G_R stand for a set of objects and a set of relations, respectively. In general, reflexive graphs are less structured than categories as relations need not compose.

A morphism between reflexive graphs G and H is a pair of functions $(f_o: G_O \to H_O, f_r: G_R \to H_R)$, s.t. all of the depicted squares commute:

¹In case some non-trivial properties of \mathscr{A} are required, we will assume that \mathscr{A} is a graph model (see [3])

$$G_{O} \xrightarrow{f_{o}} H_{O}$$

$$G_{src} (G_{refl}) G_{tgt} \qquad H_{src} (H_{refl}) H_{tgt}$$

$$G_{R} \xrightarrow{f_{r}} H_{R}$$

Reflexive graphs equipped with r.g. morphisms form a category $\mathcal{R}Gph$. The terminal object $\mathbf{1}_{\mathcal{R}Gph}$ is $(\{\star\}, \{\star\}, id, id, id)$.

Reflexive graphs provide enough structure for a dyadic interpretation of types in the spirit of [4].

1 Reflexive graphs with realisability information

One could easily generalize reflexive graphs by considering object and relation components from arbitrary categories instead of Set. As our purpose is to build a relational model incorporating realisability information, we replace the set of objects with an assembly[†] and retain the Set-based representation of relations.

Definition 3 (Reflexive graph with realisable objects). A reflexive graph with realisable objects G is a tuple $(G_O, G_R, G_{refl}, G_{src}, G_{tgt})$, where $G_O \in Ob(\mathcal{A}sm^{\dagger}(\mathscr{A}))$, G_R is a set and the functions $G_{refl}: |G_O| \to G_R$, $G_{src}: G_R \to |G_O|$, $G_{tgt}: G_R \to |G_O|$ are such that the identities in Definition 2 are satisfied.

Accordingly, a morphism between reflexive graphs with realisable objects, G and H, is a pair $(f_O: G_O \to H_O, f_R: G_R \to H_R)$, s.t. (f_O, f_R) is an $\mathcal{R}Gph$ morphism between the reflexive graphs $(|G_O|, G_R, G_{refl}, G_{src}, G_{tgt})$ and $(|H_O|, H_R, H_{refl}, H_{src}, H_{tgt})$.

With these components, we obtain a category $\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$. By considering reflexive graphs with realisable objects of shape $(X, |X|, id_X, id_X, id_X)$, we identify an isomorphic copy of $\mathcal{A}sm^{\dagger}(\mathscr{A})$ inside $\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$.

A terminal object $\mathbf{1}_{\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))}$ in $\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$ is a tuple $(\mathbf{1}_{\mathcal{A}sm^{\dagger}(\mathscr{A})}, \{*\}, id, id, id)$, where $\mathbf{1}_{\mathcal{A}sm^{\dagger}(\mathscr{A})}$ is the terminal assembly $(\{*\}, f)$, with f defined as $* \mapsto \{I\}$.

Definition 4 (Family of reflexive graphs with realisable objects). Let \mathcal{C} be a category with a terminal object. Given a reflexive graph $\Gamma \in Ob(\mathcal{C})$, a family of reflexive graphs with realisable objects over Γ is a tuple $S := (S_O, S_R, S_{refl}, S_{src}, S_{tgt})$, where:

- $S_O:\Gamma_O\to \mathcal{A}sm^{\dagger}(\mathscr{A})$
- $S_R:\Gamma_R\to\mathcal{S}et$

- a Γ -indexed collection of functions $S_{refl} := \{f_{\gamma} : |S_O(\gamma)| \to S_R(\Gamma_{refl}(\gamma))\}_{\gamma \in \Gamma_O}$
- $S_{src} := \{ f_{\gamma} : S_R(\gamma) \to |S_O(\Gamma_{src}(\gamma))| \}_{\gamma \in \Gamma_R}$
- $S_{tgt} := \{ f_{\gamma} : S_R(\gamma) \to |S_O(\Gamma_{tgt}(\gamma))| \}_{\gamma \in \Gamma_R}$

such that

• each identity in the following collection is satisfied:

$$S_{\sigma}(\Gamma_{refl}(\gamma)) \circ S_{refl}(\gamma) = id \text{ for every } \gamma \in \Gamma_O, \sigma \in \{src, tgt\}$$

A morphism M between two families S and T of reflexive graphs with realisable objects over Γ is a pair (M_O, M_R) of Γ -indexed collections of morphisms:

- $M_O := \{ f_\gamma : S_O(\gamma) \to T_O(\gamma) \}_{\gamma \in \Gamma_O}$ $M_R := \{ f_\gamma : S_R(\gamma) \to T_R(\gamma) \}_{\gamma \in \Gamma_R}$

s.t. the following identities are satisfied:

- $T_{refl}(M_O(\gamma)(s_o)) = M_R(\Gamma_{refl}(\gamma))(S_{refl}(\gamma)(s_o))$ for every $\gamma \in \Gamma_O$, $s_o \in |S_O(\gamma)|$
- $T_{src}(M_R(\gamma)(s_r)) = M_O(\Gamma_{src}(\gamma))(S_{src}(\gamma)(s_r))$ for every $\gamma \in \Gamma_R$, $s_r \in S_R(\gamma)$
- $T_{tgt}(M_R(\gamma)(s_r)) = M_O(\Gamma_{tgt}(\gamma))(S_{tgt}(\gamma)(s_r))$ for every $\gamma \in \Gamma_R$, $s_r \in S_R(\gamma)$

Families of reflexive graphs with realisable objects over Γ and their morphisms forms a category $\mathcal{F}am - \mathcal{O}\mathcal{RG}(\mathcal{A}sm^{\dagger}(\mathscr{A}), \Gamma)$.

The terminal object $\mathbf{1}_{\mathcal{F}am-\mathcal{O}\mathcal{RG}(\mathcal{A}sm^{\dagger}(\mathscr{A}),\Gamma)}$ is given by $(\lambda \gamma_r.\mathbf{1}_{\mathcal{A}sm^{\dagger}(\mathscr{A})}, \lambda \gamma_r.\{*\}, \mathbf{1}_{refl}, \mathbf{1}_{tgt}, \mathbf{1}_{src}),$ where $\mathbf{1}_{\sigma}$ are the appropriate functions.

A CwF from families of reflexive graphs with realisable objects 2

As a first step toward obtaining a relationally parametric realisability model of QTT, we construct a concrete CwF using families of reflexive graphs with realisable objects.

Consider the category $\mathcal{R}Gph$ with terminal object $\mathbf{1}_{\mathcal{R}Gph}$. Let $\Gamma, \Delta \in Ob(\mathcal{R}Gph)$, define:

- the collection of semantic types $Ty(\Gamma)$ as the collection of families of reflexive graph with realisable objects over Γ .
- given a type $S \in Ty(\Gamma)$, an element $M \in Tm(\Gamma, S)$ is a pair of functions $(M_O: \forall \gamma \in \Gamma_O.|S_O(\gamma)|, M_R: \forall \gamma \in \Gamma_R.S_R(\gamma)), \text{ s.t.}$

$$\forall \gamma \in \Gamma_O.S_{refl}(M_O(\gamma)) = M_R(\Gamma_{refl}(\gamma))$$
$$\forall \gamma \in \Gamma_R.S_{src}(M_R(\gamma)) = M_O(\Gamma_{src}(\gamma))$$
$$\forall \gamma \in \Gamma_R.S_{tat}(M_R(\gamma)) = M_O(\Gamma_{tat}(\gamma))$$

- given $f: \Gamma \to \Delta$, substitutions in types and terms is a precomposition with f on the object and relation components of types and terms respectively. Clearly, these operations are compatible with identity and composition in $\mathcal{R}Gph$.
- context extension: Suppose $S \in Ty(\Gamma)$, construct a r.g. $\Gamma.S$ as:

$$(\Gamma.S)_O = \{(\gamma, x) : \gamma \in \Gamma_O, x \in |S_O(\gamma)|\}$$

$$(\Gamma.S)_R = \{(\gamma, r) : \gamma \in \Gamma_R, r \in S_R(\gamma)\}$$

$$(\Gamma.S)_{refl}(\gamma, x) = (\Gamma_{refl}(\gamma), S_{refl}(\gamma)(x))$$

$$(\Gamma.S)_{\sigma}(\gamma, r) = (\Gamma_{\sigma}(\gamma), S_{\sigma}(\gamma)(r)), \quad \sigma \in \{src, tgt\}$$

Claim. $Hom_{\mathcal{R}Gph}(\Delta, \Gamma.S) \cong \{(f, M) : f : \Delta \to \Gamma, M \in Tm(\Delta, S\{f\})\}, natural in \Delta.$

Upgrading to a QCwF

Recall the definition of a QCwF from [1]. Given a usage semiring R, a R-QCwF consists of:

- 1. A CwF $(\mathcal{C}, 1, Ty, Tm, -..., \langle -... \rangle)$
- 2. A category \mathcal{L} with a faithful functor $U: \mathcal{L} \to \mathcal{C}$
- 3. A functor (+): $\mathcal{L} \times_{\mathcal{C}} \mathcal{L} \to \mathcal{L}$, s.t $U(\Gamma_1 + \Gamma_2) = U(\Gamma_1) = U(\Gamma_2)^2$. $\mathcal{L} \times_{\mathcal{C}} \mathcal{L}$ denotes the pullback $\mathcal{L} \xrightarrow{U} \mathcal{C} \xleftarrow{U} \mathcal{L}$.

Additionally, there exists an object $\Diamond \in \mathcal{L}$, s.t. $U\Diamond = 1$.

- 4. A functor $\rho(-): \mathcal{L} \to \mathcal{L}$ for each $\rho \in R$, s.t $U(\rho(-)) = U(-)$.
- 5. A collection $RTm(\Gamma, S)$ for each $\Gamma \in \mathcal{L}$ and $S \in Ty(U\Gamma)$, equipped with an injective function $U_{\Gamma,S}: RTm(\Gamma, S) \to Tm(U\Gamma, S)$.

For an \mathcal{L} morphisms $f: \Gamma \to \Delta$ and types $S \in Ty(U\Gamma)$, a function $-\{f\}: RTm(\Delta, S) \to RTm(\Gamma, S\{f\})$, s. t. $U(-\{f\}) = (U(-))\{Uf\}$.

6. Given $\Gamma \in \mathcal{L}$, $\rho \in R$ and $S \in Ty(U\Gamma)$, an object $\Gamma . \rho S$, s.t $U(\Gamma . \rho S) = U\Gamma . S$. Additionally, the following natural transformations exist:

```
emp_{\pi}: \Diamond \to \pi \Diamond

emp_{+}: \Diamond \to \Diamond + \Diamond

ext_{\pi}: \pi \Gamma.(\pi \rho S) \to \pi(\Gamma.\rho S), \text{ s.t. } U(ext_{\pi}) = id

ext_{+}: (\Gamma_{1} + \Gamma_{2}).(\rho_{1} + \rho_{2})S \to \Gamma_{1}.\rho_{1}S + \Gamma_{2}.\rho_{2}S, \text{ s.t. } U(ext_{+}) = id
```

7. Given $\Gamma \in \mathcal{L}$, $S \in Ty(U\Gamma)$, there exists:

```
a morphism p_{\Gamma,S}: \Gamma.0S \to \Gamma, s.t. U(p_{\Gamma,S}) = p_{U\Gamma,S}
an element v_{\Gamma,S} \in RTm(0\Gamma.1S, S\{p_{U\Gamma,S}\}), s.t. U(v_{\Gamma,S}) = v_{U\Gamma,S}
```

a morphism $wk(f, \rho S') : \Gamma . \rho S'\{Uf\} \to \Delta . \rho S'$ for each $f : \Gamma \to \Delta$, $S' \in Ty(U\Gamma, \Delta)$

s.t. $U(wk(f, \rho S')) = wk(Uf, S')$

let $\Gamma_1, \Gamma_2 \in \mathcal{L}$, s.t $U\Gamma_1 = U\Gamma_2$ and $M \in RTm(\Gamma_2, S)$. There is a morphism $\overline{\rho M}$: $\Gamma_1 + \rho \Gamma_2 \to \Gamma_1.\rho S$, s.t $U(\overline{\rho M}) = \overline{UM}$

a morphism $\overline{M}: \Gamma \to \Gamma.0S$ for $M \in Tm(U\Gamma, S)$, s.t. $U(\overline{M}) = \overline{M}$.

²the second equality being trivially satisfied

Now to construct the concrete QCwF, consider the CwF from previous section as the underlying category.

Let $\mathcal{L} := \mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$, the category of reflexive graphs with realisable objects For the addition structure, let Γ' , Γ'' be reflexive graphs with realisable objects, s.t $|\Gamma'_O| = |\Gamma''_O|$ and $\Gamma'_R = \Gamma''_R$

- $\Gamma_O := (|\Gamma'_O|, \models_{\Gamma})$ with $a \models_{\Gamma} \gamma$ iff there exist $x, y \in \mathscr{A}$, s.t. a = [x, y] and $x \models_{\Gamma'} \gamma$ and $y \models_{\Gamma''} \gamma$.
- $\Gamma_R := \Gamma'_R (= \Gamma''_R)$.
- $\Gamma_{\sigma} := \Gamma'_{\sigma}$, where $\sigma \in \{src, tgt, refl\}$.

Define \Diamond as the terminal object $\mathbf{1}_{\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))}$.

Consider the scaling structure and let $\Gamma := \rho(\Gamma')$:

- $\Gamma_{\sigma} = (|\Gamma'_{\sigma}|, \vDash_{\Gamma_{\sigma}})$ with $a \vDash_{\Gamma_{\sigma}} \gamma$ iff there is $x \in \mathscr{A}$, s.t $a = !_{\rho}x$ and $x \vDash_{\Gamma'_{\sigma}} \gamma$ for $\sigma \in \{O, R\}$
- again, scaling leaves unmodified Γ_{σ} for $\sigma \in \{src, tgt, refl\}$.

Let $RTm(\Gamma, S)$ be the collection of morphisms from the terminal family $\mathbf{1}_{\mathcal{F}am-\mathcal{O}\mathcal{RG}(\mathcal{A}sm^{\dagger}(\mathscr{A}),\Gamma)}$ to S. Spelling this out and simplifying it, an element of $RTm(\Gamma, S)$ is a tuple of functions $(M_O: \forall \gamma_o \in \Gamma_O.|S_O(\gamma_o)|, M_R: \forall \gamma_r \in \Gamma_R.S_R(\gamma_r))$, s.t. the conditions from Definition 4 are satisfied, namely

$$\forall \gamma_o \in \Gamma_O.S_{refl}(M_O(\gamma_o)) = M_R(\Gamma_{refl}(\gamma_o))$$
$$\forall \gamma_r \in \Gamma_R.S_{src}(M_R(\gamma_r)) = M_O(\Gamma_{src}(\gamma_r))$$
$$\forall \gamma_r \in \Gamma_R.S_{tgt}(M_R(\gamma_r)) = M_O(\Gamma_{tgt}(\gamma_r))$$

such that M_O is tracked - $\exists a_M \in \mathscr{A}. \forall a_\gamma \in \mathscr{A}, \gamma \in \Gamma_O. a_\gamma \vDash_{\Gamma_O} \gamma \implies a_m \cdot a_\gamma \vDash_{S(\gamma)} M_O(\gamma).$ $U_{\Gamma,S}$ is the just identity function.

Substitution in terms is given by precomposition with $f: \Gamma \to \Delta$, let $-\{f_O\} := \lambda M_O. \forall \gamma \in \Gamma. M_O(f(\gamma))$ and similarly, $-\{f_R\} := \lambda M_R. \forall \gamma \in \Gamma. M_R(f(\gamma))$. The functor U interacts nicely with the so-defined $-\{f\}$ as essentially the substitution in terms in the underlying CwF is defined in the same way.

Resourced context extension is given by $\Gamma . \rho S := (\Gamma'_O, \Gamma'_R, \Gamma'_\sigma)$, where

• $|\Gamma'_O| := \{(\gamma, x) : \gamma \in |\Gamma_O|, x \in S_O(\gamma)\}$ $a \vDash_{\Gamma, \rho S} (\gamma, x)$ iff there exists $b, c \in \mathscr{A}$, s.t $a = [b, !_{\rho}c], b \vDash_{\Gamma} \gamma$ and $c \vDash_{S(\gamma)} \pi_1((\check{\gamma}, x))$, where $(\check{-}) : \Gamma.S \to U(\Gamma.S), (\check{-}) := id$ as the set-theoretic part of the extensions in the CwF and \mathcal{L} is the same by definition.

- $\Gamma'_R := \{(\gamma, r) : \gamma \in \Gamma_R, r \in S_R(\gamma)\}$
- Each Γ'_{σ} is defined pointwise.

The natural transformation $emp_{\pi}: \Diamond \to \pi \Diamond$ is given by the identity functions on both the object and relational part. It is realised by $K!_{\varrho}I$.

We list the realisers for the remaining transformations:

- emp_+ K.[I,I],
- ext_{π} $\lambda^*q.let[x,y] = q$ in $F_{\pi}.(F_{\pi}.(!_{\pi}\lambda^*stu.ust).x).\delta_{\pi\rho}y$
- ext_+ $\lambda^*q.let[[x,y],z] = q$ in $W_{\pi\rho}.(\lambda^*ab.[[x,a],[y,b]]).z$

The underlying function part of the above-defined natural transformations is given by identity, hence naturality follows trivially.

Finally, we construct the morphisms, listed in Item 7:

- $p_{\Gamma.S}: \Gamma.0S \to \Gamma$ is the first projection of $(\Gamma.0S)_{\sigma} = \{(\gamma, s): \gamma \in \Gamma_{\sigma}.s \in S(\gamma)\}$, $(\sigma \in \{O, R\})$ and is realized by $\lambda^*t.(t.K)$. The equality $U(p_{\Gamma.S}) = p_{U\Gamma.S}$ holds trivially due to the identical structure of context extension in the underlying CwF and \mathcal{L} .
- define $v_{\Gamma,S} \in RTm(0\Gamma.1S, S\{p_{U\Gamma.S}\})$ as the second projection. $v_{\Gamma.S}$ is realized by λ^*t . B.t.K.D.
- Let a_f^{σ} realize f_{σ} , then $wk(f, \rho S') := \lambda(\gamma, s).(f(\gamma), s)$ is realized by $\lambda^*q.let[x, y] = q$ in $[a_f^{\sigma}.x, y]$
- given a $M_{\sigma} \in RTm(\Gamma, S)$, $M_{\sigma} : \forall \gamma \in U(\Gamma_{\sigma}).S_{\sigma}(\gamma)$ with realizers a_m^{σ} , let $\overline{\rho M}_{\sigma} := \lambda \gamma.(\gamma, M_{\sigma}(\gamma))$ realized by $\lambda^*q.let[x, y] = q$ in $[x, F_{\rho}.(!_{\rho}a_m^{\sigma}).y]$
- given a $M_{\sigma} \in Tm(U\Gamma, S) = M_{\sigma} : \forall \gamma \in U\Gamma_{\sigma}.S_{\sigma}(\gamma)$, let $\overline{M}_{\sigma} := \lambda \gamma.(\gamma, M_{\sigma}(\check{\gamma}))$ realized by the K combinator.

From now on, we refer to the constructed model as M.

3 Type formers

Definition 5 (Dependent function types a QCwF). A QCwF supports dependent function types with usage information, if

• the underlying CwF \mathcal{C} supports them, namely, if for all $\Gamma \in Ob(\mathcal{C}), S \in Ty(\Gamma), T \in Ty(\Gamma.S), \pi \in R$, there exist type $\Pi \pi ST \in Ty(\Gamma)$ and a bijection

$$\Lambda: Tm(\Gamma.S, T) \cong Tm(\Gamma, \Pi \pi ST),$$

natural in Γ .

• for $\Gamma \in Ob(\mathcal{L}), S \in Ty(U\Gamma), T \in Ty(U\Gamma.S), \pi \in R$, there exists a bijection

$$\Lambda_{\mathcal{L}}: RTm(\Gamma.\pi S, T) \cong RTm(\Gamma, \Pi\pi ST),$$

natural in Γ such that $U \circ \Lambda_{\mathcal{L}} = \Lambda \circ U$ and $U \circ \Lambda_{\mathcal{L}}^{-1} = \Lambda^{-1} \circ U$.

To show that our model supports Π types, fix some $\pi \in R$, suppose Γ is a r.g in $Ob(\mathcal{C})$, $S \in Ty(\Gamma)$, $T \in Ty(\Gamma.S)$. Define the semantic type $\Pi \pi ST$ as the family of assemblies over Γ , consisting of:

•
$$(\Pi \pi ST)_O(\gamma) := (X, \vDash_X)$$
 for $\gamma \in \Gamma_O$, where
$$X := \{ (f_O, f_R) \mid f_O : \forall s \in |S_O(\gamma)|.T_O(\gamma, s), \\ f_R : \forall r \in S_R(\Gamma_{refl}(\gamma)).T_R(\Gamma_{refl}(\gamma), r), \\ \forall s \in S_O(\gamma).T_{refl}(\gamma, s)(f_O(s)) = f_R(S_{refl}(\gamma)(s)), \\ \forall r \in S_R(\Gamma_{refl}(\gamma)).T_{src}(\Gamma_{refl}(\gamma), r)(f_R(r)) = f_O(S_{src}(\Gamma_{refl}(\gamma))(r)), \\ \forall r \in S_R(\Gamma_{refl}(\gamma)).T_{tgt}(\Gamma_{refl}(\gamma), r)(f_R(r)) = f_O(S_{tgt}(\Gamma_{refl}(\gamma))(r)) \}$$

 $a \vDash_X (f_O, f_R) \text{ iff } \forall s \in |S_O(\gamma)|, a_s \in \mathscr{A}.a_s \vDash_{S_O(\gamma)} s \implies a \cdot !_{\pi} a_s \vDash_{T_O(\gamma, s)} f_O(s).$

Note that f_R does not contribute any realisability information to \vDash_X .

•
$$(\Pi \pi ST)_R(\gamma) :=$$

$$\{((f_O^{src}, f_R^{src}), (f_O^{tgt}, f_R^{tgt}), r) \mid (f_O^{src}, f_R^{src}) \in (\Pi \pi ST)_O(\Gamma_{src}(\gamma)), (f_O^{tgt}, f_R^{tgt}) \in (\Pi \pi ST)_O(\Gamma_{tgt}(\gamma)),$$

$$r : \forall s \in S_R(\gamma).T_R(\gamma, s),$$

$$\forall s \in S_R(\gamma).T_{src}(\gamma, s)(r(s)) = f_O^{src}(S_{src}(\gamma)(s)),$$

$$\forall s \in S_R(\gamma).T_{tgt}(\gamma, s)(r(s)) = f_O^{tgt}(S_{tgt}(\gamma)(s))\}$$

- $(\Pi \pi ST)_{refl}(\gamma) := \lambda(f_O, f_R).((f_O, f_R), (f_O, f_R), f_R)$ for $\gamma \in \Gamma_O$.
- $(\Pi \pi ST)_{src}(\gamma) := \lambda(f^{src}, f^{tgt}, r).f^{src} \text{ for } \gamma \in \Gamma_R.$
- $(\Pi \pi ST)_{tgt}(\gamma) := \lambda(f^{src}, f^{tgt}, r), f^{tgt} \text{ for } \gamma \in \Gamma_R.$

Unwinding Definition 5, we get

$$\{(M_O, M_R) : \forall (\gamma, s) \in (\Gamma \cdot \pi S) \cdot T(\gamma, s)\} \cong \{(N_O, N_R) : \forall \gamma \in \Gamma \cdot (\Pi \pi S T)(\gamma)\}$$

where the terms have the following elaborated types:

$$\begin{split} M_O : \forall (\gamma, s) \in (\Gamma.\pi S)_O.T_O(\gamma, s) \\ M_R : \forall (\gamma, r) \in (\Gamma.\pi S)_R.T_R(\gamma, s) \\ N_O : \forall \gamma \in \Gamma_O. \\ \{(f_O, f_R) \mid f_O : \Pi S(\gamma)_O.T(\gamma)_O \\ f_R : \Pi S_R(\Gamma_{refl}(\gamma).T(\Gamma_{refl}(\gamma)))\} \\ N_R : \forall \gamma \in \Gamma_R. \\ \{(f^{src}, f^{tgt}, r) \mid f^{src} \in (\Pi \pi ST)_O(\Gamma_{src}(\gamma)) \\ f^{tgt} \in (\Pi \pi ST)_O(\Gamma_{tgt}(\gamma)) \\ r : \Pi S_R(\gamma).T_R(\gamma)\} \end{split}$$

Thus, we can define Λ as $\Lambda(M_O, M_R) = (N_O, N_R)$, where

$$N_O := \lambda \gamma_o.(\lambda s. M_O(\gamma_o, s), \lambda s_r. M_R(\Gamma_{refl}(\gamma_o), s_r))$$

$$N_R := \lambda \gamma_r.(N_O(\Gamma_{src}(\gamma)), N_O(\Gamma_{tot}(\gamma)), \lambda s_r. M_R(\gamma, s_r)))$$

For $\Lambda_{\mathcal{L}}$, a realizer a_m of M (that is $\forall (\gamma, s), \forall (a_{\gamma}, a_s), [a_{\gamma}, a_s] \vDash_{\Gamma, \pi S} (\gamma, s) \implies a_m.[a_{\gamma}, a_s] \vDash_{T(\gamma, s)} M(\gamma, s)$) can be transformed to a realizer a_n of N by:

$$a_n := \lambda^* y.(\lambda^* s.(a_m.[y,s]))$$

The conditions $U \circ \Lambda_{\mathcal{L}} = \Lambda \circ U$ and $U \circ \Lambda_{\mathcal{L}}^{-1} = \Lambda^{-1} \circ U$ follow trivially.

Universe of small types A plausible candidate for the universe U is given by the general construction:

 $U_O :=$ the set of small reflexive graphs

$$U_R := \{ (A, B, R, R_{src}, R_{tgt}) : R \in \mathcal{U}, R_{src} : R \to A_O, R_{tgt} : R \to A_O, A, B \text{ are small r.g.} \}$$

However, this universe turns out to be "too big' - types do not carry enough structure to model parametricity accurately. To remedy the definition, we impose restrictions laid out by the following characterization:

A family of reflexive graphs of assemblies S over Γ is

- small if for all $\gamma_{\sigma} \in \Gamma_{\sigma}$, $S_R(\gamma_R) \in \mathcal{U}$ and $|S_O(\gamma_O)| \in \mathcal{U}$.
- discrete if for every $\gamma \in \Gamma_O$, there exists $X \in \mathcal{A}sm^{\dagger}(\mathscr{A})$, s.t.

• proof-irrelevant - if for all $\gamma \in \Gamma_R$, the function $\langle S_{src}(\gamma), S_{tgt}(\gamma) \rangle : S_R(\gamma) \to |S_O(\Gamma_{src}(\gamma))| \times |S_O(\Gamma_{tgt}(\gamma))|$ is injective.

For any reflexive graph Γ , define the small, discrete, proof-irrelevant universe $U \in Ty(\Gamma)$ and the type decoder $T \in Ty(\Gamma, U)$ as:

- $|U_O(\gamma)|$:= the set of small, discrete r.g. of assemblies $a \vDash_{U_O(\gamma)} S$ for $a \in \mathscr{A}$, a = I and $S \in |U_O(\gamma)|$.
- $U_R(\gamma_R) := \{(S, T, R, R_{src}, R_{tgt}) \mid R \in \mathcal{U}$ S, T are small discrete r.g. of assemblies $\langle R_{src}, R_{tgt} \rangle : R \rightarrow |S_O| \times |T_O| \text{ is injective} \}$
- $U_{refl}(\gamma_R)(S) := (S, |S|, S_{refl}, S_{src}, S_{tgt})$
- $U_{src}(\gamma_R)(S, T, R, R_{src}, R_{tat}) = S$
- $U_{src}(\gamma_R)(S, T, R, R_{src}, R_{tgt}) = T$

and $T \in Ty(\Gamma.U)$ as:

- $T_O(\gamma_O, S) := S_O$
- $T_R(\gamma_R, (S, T, R, R_{src}, R_{tat})) := R$
- $T_{refl}(\gamma_O, S) := S_{refl}$
- $T_{src}(\gamma_R, (S, T, R, R_{src}, R_{tot})) := R_{src}$
- $T_{tgt}(\gamma_R, (S, T, R, R_{src}, R_{tgt})) := R_{tgt}$.

Claim. U is closed under Π types.

Given some r.g Γ and $S \in Ty(\Gamma)$, $T \in Ty(\Gamma.S)$, it suffices to show that $\Pi \pi TS \in Ty(\Gamma)$ is a small, discrete and proof-irrelevant family of r.g. of assemblies^{† 3} For brevity, let $V := \Pi \pi ST$.

Smallness follows by the closure under Π -types in the ambient set-theoretical universe \mathcal{U} . For proof-irrelevance, take some $\gamma_R \in \Gamma$ and $f, g \in V_R(\gamma_R)$, s.t $\langle V_{src}(\gamma_R), V_{tgt}(\gamma_R) \rangle(f) = \langle V_{src}(\gamma_R), V_{tgt}(\gamma_R) \rangle(g)$. WTP f = g, by def. we get immediately that $f^{src} = g^{src}$ and $f^{tgt} = g^{tgt}$. Given that $(f^{src}, f^{tgt}, r_f), (f^{src}, f^{tgt}, r_g) \in V_R(\gamma_R)$, note that,

$$\forall s \in S_R(\gamma_R).\langle T_{src}(\gamma_R, s), T_{src}(\gamma_R, s) \rangle (r_f(s)) = (f_O^{src}(S_{src}(\gamma_R)(s)), f_O^{tgt}(S_{tgt}(\gamma_R)(s)))$$

$$\forall s \in S_R(\gamma_R).\langle T_{src}(\gamma_R, s), T_{src}(\gamma_R, s) \rangle (r_g(s)) = (f_O^{src}(S_{src}(\gamma_R)(s)), f_O^{tgt}(S_{tgt}(\gamma_R)(s)))$$

Since T is proof-irrelevant, it follows directly that $r_f = r_g$ and thus f = g.

Reduced Π **types -** $\Pi^R \pi ST$ Our proposed definition of Π types give rise to few subtle issues with realisability. Ideally, the elements of an assembly[†] and their realisers are in 1:1 correspondence. But clearly this is not the case with Π types:

- $|(\Pi \pi ST)_O(-)|$ contains all set-theoretic functions $f:(s:S)\to T$, so some elements do not have realisers
- two distinct functions $f, f': (s:S) \to T$ might have identical behaviour on $\lfloor S \rfloor$ but differ on some element of $|S| \setminus \lfloor S \rfloor$. Thus f and f' will share the same realiser a.

To remedy this situation one might try to "prune" some of the elements of $|(\Pi \pi ST)_O(-)|$ and ensure that terms are to be defined in "nice enough" contexts.

Formalizing on these considerations, we introduce a new reduced function type, a derivative of the standard $\Pi \pi ST$ types with the main difference being that realisability is now internalised in the object assembly[†] part:

$$(\Pi^{R}\pi ST)_{O}(\gamma_{O}) := (X, \vDash_{X}), \text{ where}$$

$$X := \{ (f_{O}, f_{R}) \mid f_{O} : \forall s \in |S_{O}(\gamma)|.T_{O}(\gamma, s), \dots$$

$$\exists a_{f} \in \mathscr{A}. \forall s \in |S_{O}(\gamma)|, a_{s} \in \mathscr{A}.a_{s} \vDash_{S_{O}(\gamma)} s \implies a_{f} \cdot !_{\pi}a_{s} \vDash_{T_{O}(\gamma, s)} f_{O}(s),$$

$$\dots \}$$

A new operation on resourced contexts, \mathbf{R} , takes care of removing any nonrealisable element. The functor is defined on objects as:

$$\mathbf{R}: \mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A})) \to \mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$$

$$\mathbf{R}(X_O, X_R, X_{refl}, X_{src}, X_{tqt}) = ((\lfloor X_O \rfloor, \vDash_X), X_R, X_{refl}, X_{src}, X_{tqt})$$

³it actually does not suffice, we implicitly assume a lemma that gives an isomorphism between terms of type U and small, discrete, p.i. r.g of assemblies[†]

and extends naturally to $\mathcal{O}RGph(\mathcal{A}sm^{\dagger}(\mathscr{A}))$ morphisms. It can be also endowed with comonadic structure by observing we have a canonical choice for the natural transformations $\mathbf{R}(X) \to X$ and $\mathbf{R}(X) \to \mathbf{R}(\mathbf{R}(X))$, namely the canonical injection and identity. Also observe that the functors $!_{\pi}$ commute with \mathbf{R} , particularly $!_{0}(\mathbf{R}(X)) = \mathbf{R}(!_{0}(X))$.

On the surface level, we have the usual type formation rule in the syntax:

$$\frac{0\Gamma \vdash S \quad 0\Gamma, x \stackrel{0}{:} S \vdash T}{0\Gamma \vdash \Pi^R \pi S T} \text{ reduced } \Pi$$

However, the abstraction rule differs from the standard Π -type. In general, given an unresourced term M, Γ , $x \stackrel{0}{:} S \vdash M \stackrel{0}{:} T$, one cannot find a corresponding λ term, $\Gamma \vdash (\lambda x \stackrel{\pi}{:} S.M) \stackrel{0}{:} \Pi^R \pi ST$. That is to say, no bijection on the object level exists between $f_M : \forall (\gamma, s).T(\gamma, s)$ and $f_{\lambda} : \forall \gamma.(\Pi^R \pi ST)_O(\gamma)$ as the latter function carries some notion of realisability while the former does not.

Such bijection exists in the 1 fragment, though. Thus, there is the reduced abstraction rule:

$$\frac{\Gamma, x \stackrel{\pi}{:} S \vdash M \stackrel{1}{:} T}{\mathbf{R}(\Gamma) \vdash (\lambda x \stackrel{\pi}{:} S.T) \stackrel{1}{:} \Pi^R \pi ST} \text{ reduced Lam}$$

To verify it is sound, suppose we are given a function $t_M : \forall (\gamma, s) \in |\Gamma.\pi S|_O.T(\gamma, s)$ and its tracker $a_M \in \mathscr{A}$. Unwinding the latter, we get :

$$\forall \gamma \in |\Gamma_O|, s \in |S_O(\gamma)|, a_\gamma, a_s \in \mathscr{A}, a_\gamma \vDash_{\Gamma_O} \gamma \land a_s \vDash_{S_O(\gamma)} s \implies a_M \cdot [a_\gamma, !_\pi a_s] \vDash_{T_O(\gamma, s)} t_m(\gamma, s)$$

Focus only on the object part and fix some $\gamma \in |\Gamma_O|$. Now we have to construct an inhabitant $(f_O^{\gamma}, f_R^{\gamma})$ of $|\Pi^R \pi S T_O(\gamma)|$. Again forgetting the relational part, let $f_O^{\gamma} := \lambda s \stackrel{\pi}{:} S.t_m(\gamma, s)$. Its realiser is a_f must satisfy

$$\forall s \in |S_O(\gamma)|, a_s \in \mathscr{A}.a_s \vDash_{S_O(\gamma)} s \implies a_f \cdot !_{\pi} a_s \vDash_{T(\gamma,s)} t_m(\gamma,s)$$

A plausible solution is $a_f := \lambda^* x. a_M \cdot [a_\gamma, x]$. Observe that in order a_f to be well-defined, a_γ must always exist. This is guaranteed by the application of \mathbf{R} to the context Γ in the conclusion.

Finally, we can construct a term of Π^R type - namely let $t_{\lambda} := \lambda \gamma : |\mathbf{R}(\Gamma)|_O f_O^{\gamma}$ with tracker $\lambda^* y \, x \, a_m[y, x]$.

As a last step, we also have a non-altered application rule as well:

$$\frac{\Gamma_2 \vdash N \stackrel{\sigma'}{:} S \quad \Gamma_1 \vdash M \stackrel{\sigma}{:} \Pi^R \pi S T}{\Gamma_1 \vdash \pi \Gamma_2 \vdash App_{(\Pi^R \pi S T)}(M, N) \stackrel{\sigma}{:} T[N/x]} \text{App}$$

For brevity, let's verify only the case of $\sigma = \sigma' = 1$. Let $\llbracket \Gamma_1 \rrbracket = (|\Gamma|, \vDash_1)$ and $\llbracket \Gamma_2 \rrbracket = (|\Gamma|, \vDash_2)$, $(t_m, _) : \forall \gamma \in |\Gamma_O| . (\Pi^R \pi ST)_O(\gamma), \ t_n : \forall \gamma \in |\Gamma_O| . S_O(\gamma), \ a_m \text{ is a tracker for } t_m, \ a_n \text{ - for } t_n$. Then we construct a function $t_{app} : \forall \gamma \in |\Gamma_O| . T[N/x], \ t_{app} := \lambda \gamma . t_m(\gamma)(t_n(\gamma))$ with a realiser $a_{app} := \lambda^* x. \text{let } [a_1, a_2] = x \text{ in } a_m \cdot a_1 \cdot a_2$.

A subuniverse U^R Although introducing Π^R types was a step into right direction, we have not quite yet guaranteed bijection between elements of some assembly[†] and their realisers. To that end, we will semantically identify the types which enjoy that property (w.r.t their object part).

Definition 6 (Comodest set/Distinct realisers?). Let A be an assembly[†]. A has distinct realisers if for every x, y in |A|, $a \in \mathcal{A}$, the following holds

$$a \vDash_A x \land a \vDash_A y \implies x = y$$

Let S be a family of reflexive graphs with realisable objects over some reflexive graph Γ . S has distinct realisers if for every $\gamma \in \Gamma_O$, $S_O(\gamma)$ has distinct realisers. A much weaker property is:

Definition 7 (No universal realiser). Let A be an assembly[†]. A has no universal realiser if for every $a \in \mathcal{A}$, there is some $x \in \lfloor A \rfloor$, s.t. $a \not\models_A x$.

Accordingly, a family of reflexive graphs with realisable objects S over reflixe graph Γ has no universal realiser if for every $\gamma \in \Gamma_O$, $S_O(\gamma)$ has no universal realiser.

Claim. U^R is closed under Π^R types.

4 Some (free) theorems

Definition 8 (No universal realizer). Given a context Γ and a type T, s.t $\Gamma \vdash T$, the model \mathcal{C} constructed so far has no universal realizer iff $\bigcap_{\gamma \in \llbracket \Gamma \rrbracket_O} \{a \in \mathscr{A} : \text{for every } \mathbf{x} \in |\llbracket T \rrbracket_O(\gamma)|, a \vDash_{\llbracket T \rrbracket_O(\gamma_O)} x\}$ is empty.

Theorem 9. Let Γ be a context and $T := \Pi a \stackrel{0}{:} \mathbf{U}.\Pi_{-} \stackrel{0}{:} \mathbf{T}a.\mathbf{T}a$ - a type. Assume the model has no universal realizers. There is no resourced term M of that type - i.e. $\Gamma \vdash M \stackrel{1}{:} T$ does not hold in \mathbb{M} .

Assume such term M, $\Gamma \vdash M \stackrel{1}{:} T$ exists. Fix some $\gamma \in \Gamma_O$ and consider the uncurried term M', s.t Γ , $a \stackrel{O}{:} \mathbf{U}$, $a \stackrel{O}{:} \mathbf{T} a \vdash M' \stackrel{1}{:} \mathbf{T} a$ and

$$M'_{O}(\gamma_{O}, a_{O}, \cdot) := let ((f''_{O}, f''_{R}), f'_{R}) = M_{O}(\gamma_{O}) in f''_{O}(\gamma_{O}, a_{O}, \cdot)$$

$$M'_{R}(\gamma_{R}, a_{R}, \cdot) := let (f'^{src}, f'^{tgt}, (f''^{src}, f''^{tgt}, r)) = M_{R}(\gamma_{R}) in r(\gamma_{R}, a_{R}, \cdot)$$

Fix some $\gamma_O \in \Gamma_O$. Spelling out explicitly the type of M'_R , "instantiated" at $\Gamma_{refl}(\gamma_O)$ (or equivalently, of $r(\Gamma_{refl}(\gamma_O), -, -)$ and suppressing the realizability information, we get that:

$$M'_R(\Gamma_{refl}(\gamma_O), -, -) : \forall a_R \in \mathbf{U}_R(\Gamma_{refl}(\gamma_O)) . \mathbf{T}_R(\Gamma_{refl}(\gamma_O), a_R) \to \mathbf{T}_R(\Gamma_{refl}(\gamma_O), a_R)$$

Unpacking the definition of $U_R(\Gamma_{refl}(\gamma_O))$, we get (by conditions in Definition 4):

$$\forall S, T \in \mathbf{U}_O(\gamma_O), \forall R \in \mathcal{U}, R_{src} : R \to S_O, R_{tgt} : R \to T_O :$$

$$R_{src}(M_R'(\Gamma_{refl}(\gamma_O),(S,T,R,R_{src},R_{tgt}),(s,t))) = M_O'(\gamma_O,S,s)$$

$$R_{tqt}(M'_{R}(\Gamma_{refl}(\gamma_{O}), (S, T, R, R_{src}, R_{tqt}), (s, t))) = M'_{O}(\gamma_{O}, T, t)$$

Thus, we conclude that

$$\forall S, T \in \mathbf{U}_O(\gamma_O), \forall R \subseteq S \times T, \forall (s, t) \in R. \ (M'_O(\gamma_O, S, s), M'_O(\gamma_O, T, t)) \in R$$

Let X be some type, s.t $\Gamma \vdash X : \mathbf{U}$. Consider the term M instantiated at γ_O and X and $R^X := \{(x,x)|x : X\}$. Substituting X for S and T, R^X for R in (1) and applying currying, we get that for each x : X, $(M(\gamma_O, X(\gamma_O), x), M(\gamma_O, X(\gamma_O), x)) \in R$ holds. Hence $M(\gamma_O, X(\gamma_O), x) = x$.

Now since $M \in RTm(\Gamma, T)$, M is realizable - in particular, there exists an $a \in \mathscr{A}$ that tracks $M(\gamma_O X(\gamma_O), -)$. By def. we get that $\forall x \in X_O, \forall b \in \mathscr{A}.b \models_{\Gamma.0X} (\gamma_O, x) \implies a.!_0b \models_{X(\gamma_O)} M(\gamma_O, X(\gamma_O), x)$ - a is a realizer for every element x in $X_O(\gamma_O)$. But that is a contradiction, as no universal realizer exists for X by assumption. Therefore no resourced term M: T exists.

Definition 10 (Separability of realizers). Let Γ be a context and $S \in Ty(\Gamma)$. S has separable realizers if for every $\gamma \in \Gamma_O$ and $x, y \in |S_O(\gamma)|$ and $a \in \mathscr{A}$, if $a \models_{S_O(\gamma)} x$ and $a \models_{S_O(\gamma)} y$, then x = y.

Theorem 11. Let $\Gamma \vdash A : \mathbf{U}$ and $\Gamma, a \stackrel{\sigma}{:} A \vdash B : \mathbf{U}$. If A has a realisable inhabitant and B has separable realisers, then $\llbracket B \rrbracket \cong \llbracket \Pi x \stackrel{0}{:} A . B \rrbracket$ holds in \mathbb{M} .

Let a^* be the realisable inhabitant of A, $a^* \in RTm(\Gamma, A)$, $a_o^* : \forall \gamma_o \in \Gamma_O. \lfloor A_O(\gamma_o) \rfloor$, $a_r^* : \forall \gamma_r \in \Gamma_R. A_R(\gamma_r)$.

Define the morphisms $g: \Pi x \overset{0}{:} A. B \to B$ and $h: B \to \Pi x \overset{0}{:} A. B$ as 4 :

$$g_O(\gamma_o) := \lambda(f_O, f_R).f_O(a_o^*(\gamma))$$
 $h_O(\gamma_o) := \lambda b_O.(\lambda a_o.b_O, \lambda a_r.B_{refl}(b_O))$

Let $V := \Pi x \stackrel{0}{:} A$. B, observe that if $(f_O, f_R'), (f_O, f_R'') \in |V_O|$, then $f_R' = f_R''$ using the proof-irrelevance of B. Hence, to show that two inhabitants of $|V_O|$ are equal, it suffices to prove it

⁴for the time being, focus only on the object part

for the first components only (1).

Fix some $(f_O, f_R) \in \lfloor V_O \rfloor$. To find a realiser of $g_O(\gamma_o)$, consider the realiser $a_f \vDash_{V_O(\gamma_o)} (f_O, f_R)$. By def. we have that $\forall x \in |A_O(\gamma_O)|, a \in \mathscr{A}.a \vDash_{A_O(\gamma_o)} x \implies a_f!!_0 a \vDash_{B_O(\gamma_o)} f_O(x)$. As B has separable realisers, it must be the case that f_O is a constant function (2). Define the realiser a_g of $g_O(\gamma_o)$ as $a_g := \lambda^* x.(x.I)$.

As for $h_O(\gamma_o)$, we must first ensure that h_O outputs well-defined inhabitants of $V_O(\gamma_o)$. Notice that both $f' := \lambda a_o.b_O$ and $f'' := \lambda a_r.B_{refl}(b_O)$ are well-typed and we can easily verify they satisfy the conditions in Definition 5 by direct substitution (where the extension of f' is the natural extension over $|A_O|$). To construct the realiser of f', let $a_b \models_{B_O(\gamma_o)} b_O$ (such a_b exists due to $b_O \in \lfloor B_O(\gamma_o) \rfloor$), then $K.a_b$ realises f'.

Let $b^* \in \lfloor B_O(\gamma_o) \rfloor$, by def. we have that $(g_O \circ h_O)(\gamma_o, b^*) = b^*$. As for the converse direction, let $(h_O \circ g_O)(\gamma_o)(f_O, f_R) = (f_O', f_R')$ for some $(f_O, f_R) \in V_O(\gamma_o)$. By (1), we show only that $f_O = f_O'$. As f_O is a constant function by (2), expand the definition of h_o to obtain immediately $f \emptyset = f_O'$.

References

- [1] R. Atkey. "Syntax and Semantics of Quantitative Type Theory". In: *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science LICS '18.* New York, New York, USA: ACM Press, 2018, pp. 56–65. URL: http://dl.acm.org/citation.cfm?doid=3209108.3209189.
- [2] R. Atkey, N. Ghani, and P. Johann. "A relationally parametric model of dependent type theory". In: *Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL '14*. New York, New York, USA: ACM Press, 2014, pp. 503–515. URL: http://dl.acm.org/citation.cfm?doid=2535838.2535852.
- [3] E. Engeler. "Algebras and combinators". In: Algebra Universalis 13.1 (Dec. 1981), pp. 389–392. URL: https://link.springer.com/article/10.1007/BF02483849.
- [4] Q. Ma and J. C. Reynolds. "Types, abstraction, and parametric polymorphism, part 2". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 598 LNCS. 1992, pp. 1-40. URL: http://link.springer.com/10.1007/3-540-55511-0%7B%5C_%7D1.