

Figure 1: Planar Graph Attempt

... black out so some of this was hard to see ...

Start with the graph on the left of Figure 1.

We try to create a planar embedding but fail (see the right of Figure 1)

We now try to find a subdivision of $K_{5,5}$ - which must have 5 vertices of degree 4. See Figure 2 (incomplete)

Definition A *colouring* of a graph G is a function $f: G \to \{1, 2, ...\}$ such that for each edge $xy \in E(G)$ we have $f(x) \neq f(y)$.

We say that f is a k-colouring if $f: G \to \{1, 2, ..., k\}$ and that G is k-colourable if there exists a k-colouring of G.

See Figure 3 for a 3-colourable graph.

Note that if G has p vertices then it is p-colourable.

Note that if G is 1-colourable then $E(G) = \emptyset$.

Note that if G is 2-colourable then G is bipartite.

Figure 2: $K_{5,5}$ subdivision of the graph (incomplete)

Figure 3: $3-colouring\ {\rm graph}$

Figure 4: 4 - colouring graph

Theorem Every planar graph is 6-colourable.

Proof Let G be a planar graph with p-vertices. We use induction on p.

Base case: $p \le 6$. Since $|V(G)| \le 6$ we can use a different colour for each vertex, and use ≤ 6 colours.

Inductive Hypothesis Assume $p \ge 7$ and that every planar graph with fewer than p vertices is 6 – colourable.

Inductive Step Let G be a planar graph with p vertices. We proved that every planar graph has a vertex v of degree ≤ 5 .

Let G' = G - v be obtained by removing v.

G' would still be planar, now with p-1 vertices. Then by *Induction Hypothesis* G' has a 6-colouring f.

Then on the neighbours of v, at most 5 colours out of $\{1,2,3,4,5,6\}$ are used by f. Hence we can extend f to a colouring of G by giving v a colouring not appearing on any neighbour.

Figure 5: Visualization of contracting

Note: every planar graph is 4 - colourable - "4-colour theorem"

Otherwise known as - every geographical map can be coloured with 4 colours such that no two countries sharing a border get the same colour.

See Figure 4.

Proof of 4-colouring theorem is beyond the scope of this course, but we will cover the 5-colourable theorem.

Definition Let G be a graph and let e = xy be an edge of G. The graph G/e formed by contracting e has vertex set $V(G) \setminus \{x,y\} \cup \{z\}$ and the edge set $\{uv \in E(G) : \{u,v\} \cap \{x,y\} = \emptyset\} \cup \{uz : u \notin \{x,y,z\} \land ux \in E(G) \lor uy \in E(G)\}$ See Figure 5