Indexing und Klassifikation

Udo Hahn

www.julielab.de

Document Content Technology

DIFFERENT VIEWS ON DOCUMENTS

Structured vs. Unstructured Data (1996)

Source: Prabhakar & Raghavan, Verity (2002)

Structured vs. Unstructured Data (2006)

Information Retrieval: Dokumenten-Retrieval

Textsuch-Modi

Direkte Textsuche

 Abgleich eines Anfrageterms direkt (partiell) mit einem Textterm in einem Dokument (Freitext-Retrieval)

```
Q: ,,history" :: Doc ,,history"
Q: ,,histor$" :: Doc1 ,,history",
Doc2 ,,historical",
Doc3 ,,histories"
```

Metadaten-basierte Textsuche

 Abgleich eines Anfrageterms vermittelt mit einem Konzept(-Identifier) eines Textterms

```
• Q: "history" :: Doc1 "HISTORY" (←,,history"),
Doc2 "HISTORY" (←,,historical"),
Doc3 "HISTORY" (←,,histories")
Doc4 "HISTORY" (←,,Geschichte")
```

Boole'sche Suche

• Einzel-Term-Suche

 Abgleich eines Anfrageterms direkt (partiell) mit einem Textterm in einem Dokument (Freitext-Retrieval)

• Multi-Term-Suche

 Abgleich von Anfragetermen direkt (partiell) mit Texttermen in einem Dokument unter Verwendung einfacher logischer Ko-okkurrenz-Bedingungen

```
• Q: "history" AND "music" :: Doc "history" ... "music"
```

- Q: ,,history" OR ,,music" :: Docl ,,music", Doc2 ,,history"
- Q: "history" NOT "music" :: Doc "history"

Basic Model of Information (Document) Retrieval

Flavors of Information (Document) Retrieval (1/2)

Flavors of Information (Document) Retrieval (2/2)

 Categorization/Clustering: Group documents into predefined classes/ adaptive clusters Topic Detection and Tracking: Cluster news in stream

INDEXING

- ◆ Indexing by Derivation
 - Index terms are derived from the document (and possibly morphologically normalized)
- ◆ Indexing by Assignment
 - Index terms are assigned to a document using an authoritative terminology (usually, a thesaurus)

INDEX TERMS

- ◆ Nouns (singletons, compounds)
 - Cell, blood cell,
- ♦ Noun phrases
 - Hot spot, regulation of cells
- ◆ Avoid too complex terms (pre-coordination)
 - The regulation of cells under laser beam exposure in vitro

MANUAL INDEXING

- ◆ Determine main topic(s)
- ◆ What's a relevant issue?
- ◆ Based on human (speed) reading and understanding of the document

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Eliminate stop words (high occurrence frequency!)
- ◆ Assumption: frequency is positively correlated with relevance (denotation of main topics)
- ◆ Term frequency inverse document frequency metric

 w_{ij} = weight of term t_j in document d_i tf_{ij} = frequency of term t_j in document d_i N = number of documents in collection n = number of documents where term t_j occurs at least once

$$w_{ij} = tf_{ij} * \log_2 \frac{N}{n}$$

AUTOMATIC INDEXING (Vector Space Model)

- ◆ Bag of words: remove all stop words from a doc and normalize all terms morphologically
- ◆ Create a document term matrix from the remaining terms for each document (*n* being the max number of terms in the document collection)
 - $-\operatorname{doc}_{i} = (\operatorname{term}_{i1}, \operatorname{term}_{i2}, \operatorname{term}_{i3}, ..., \operatorname{term}_{in})$
 - Each component term_{ik} is either ,0' (absent) or ,1' (realized)
- Compute the association between a document term and a query term vector (query = (query₁, query₂, query₃, ..., query_n), n as above), e.g., using the cosine measure

$$SIM(doc_i, query) = \frac{\sum_{k=1}^{t} (term_{ik} \bullet query_k)}{\sqrt{\sum_{k=1}^{t} (term_{ik})^2 \bullet \sum_{k=1}^{t} (query_k)^2}}$$

GRAPHICAL INTERPRETATION

CLASSIFICATION

- ◆ Manual classification
 - Manual assignment of docs to pre-defined categories (classes)
- ◆ Automatic classification
 - Automatic assignment of docs to pre-defined categories (classes)
 - Grouping of docs around automatically determined (unnamed) clusters

Clustering

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.

Data Set with Clear Clustering Structure

Cluster-Modelle

k-Means Clustering

- flaches Clustering
- k ist vorher bekannt
- Dokumente werden als Vektoren repräsentiert
- Ziel: Abstand zum Cluster-Zentrum minimieren

Centroid

 künstliches Zentrum eines Clusters – Mittelwert der Vektoren der Dokumente im Cluster

RSS

- Residual Sum of Squares
- wie Centroid, nur quadratische Summen der Abstände
- damit werden "Ausreißer" stärker gewichtet

Algorithmus

- Initialisierung: wähle zufällig k Dokumente als Centroiden
- Iteration: ordne Dokumente nächstem Centroid zu, Centroid im Cluster neu berechnen

Quelle: Manning, Raghavan, Schütze, Introduction to Information Retrieval, 2008.

K-means Clustering

- Each cluster in K-means is defined by a centroid.
- Objective/partitioning criterion: minimize the average squared difference from the centroid
- Recall definition of centroid:

$$\vec{\mu}(\omega) = \frac{1}{|\omega|} \sum_{\vec{x} \in \omega} \vec{x}$$

where we use ω to denote a cluster.

- We try to find the minimum average squared difference by iterating two steps:
 - reassignment: assign each vector to its closest centroid
 - recomputation: recompute each centroid as the average of the vectors that were assigned to it in reassignment

K-means Clustering Algorithm

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
  1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
   2 for k \leftarrow 1 to K
   3 do \vec{\mu}_k \leftarrow \vec{s}_k
   4 while stopping criterion has not been met
   5 do for k \leftarrow 1 to K
   6 do \omega_k \leftarrow \{\}
   7 for n \leftarrow 1 to N
              do j \leftarrow \operatorname{arg\,min}_{i'} |\vec{\mu}_{i'} - \vec{x}_n|
                    \omega_i \leftarrow \omega_i \cup \{\vec{x}_n\} (reassignment of vectors)
 10
              for k \leftarrow 1 to K
              do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
         return \{\vec{\mu}_1,\ldots,\vec{\mu}_K\}
```

Idee des Relevance Feedback

- Relevance feedback: user feedback on relevance of docs in initial set of results
 - User issues a (short, simple) query
 - The user marks some results as relevant or non-relevant.
 - The system computes a better representation of the information need based on feedback.
 - Relevance feedback can go through one or more iterations.
- Idea: it may be difficult to formulate a good query when you don't know the collection well, so iterate

Annahmen zum Relevance Feedback

- User has sufficient knowledge for initial query.
- Relevance prototypes are "well-behaved".
 - Term distribution in relevant documents will be similar
 - Term distribution in non-relevant documents will be different from those in relevant documents
 - All relevant documents are tightly clustered around a single prototype.
 - Similarities between relevant and irrelevant document are small

Relevance Feedback (Rocchio-Algorithmus)

- unterschiedliche Gewichtung positiver und negativer Beispiele
- Berücksichtigung der ursprünglichen Anfrage

$$\vec{q}_{k}' = \vec{q}_{k} + \alpha \frac{1}{|D_{k}^{R}|} \sum_{d_{j} \in D_{k}^{R}} \vec{d}_{j} - \beta \frac{1}{|D_{k}^{N}|} \sum_{d_{j} \in D_{k}^{N}} \vec{d}_{j}$$

 α , β — positive Konstanten, heuristisch festzulegen (z.B. $\alpha = 0.75$, $\beta = 0.25$)

Vorgehensweise:

- 1. Retrieval mit Fragevektor \vec{q}_k vom Benutzer
- 2. Relevanzbeurteilung der obersten Dokumente der Rangordnung
- 3. Berechnung eines verbesserten Fragevektors \vec{q}_k aufgrund der Feedback-Daten
- 4. Retrieval mit dem verbesserten Vektor
- Evtl. Wiederholung der Schritte 2-4

Idee des Relevance Feedback (Rocchio-Algorithmus)

unterschiedliche Gewichtung positiver und negativer Beispiele:

Rechenbeispiel zum Relevance Feedback

Beispiel:

ANTWORTEN VON INFORMATIONSSYSTEMEN

Datenbanksysteme liefern stets korrekte und vollständige Antwort auf Anfragen

- im Sinne eines Beweisverfahrens
- ▶ i.a. nicht bezüglich der realen Welt
- → Betrachtung von Effektivität hier nicht sinnvoll

IR-Systeme können wegen Vagheit und Unsicherheit i.a.

- weder korrekte (alle gefundenen Dokumente relevant)
- noch vollständige (alle relevanten Dokumente)

Antworten liefern.

→ Effektivität als wichtiges Qualitätskriterium

EVALUATION UND "RELEVANZ"

("fiktive" Beziehung zwischen Anfragen und Dokumenten) als Mittel zur Beurteilung von Retrievalalgorithmen Annahmen

- Systemantwort ist eine Menge von Dokumenten
- Qualität des Dokuments hängt nur von der Anfrage ab

Probleme.

- Systemantwort kann strukturiert sein
- Dokumente nicht unabhängig
- Keine einfache Beziehung zwischen Informationsbedürfnis (umgangssprachlich/subjektiv) und Anfrage (formal)

EVALUATIONSMETRIKEN

GEF: Menge der gefundenen Antwortdokumente

REL: Menge der relevanten Dokumente in der Datenbank

ALL: Menge aller Dokumente in der Datenbank

Precision
$$p = \frac{|REL \cap GEF|}{|GEF|}$$

Recall $r = \frac{|REL \cap GEF|}{|REL|}$

Fallout $f = \frac{|GEF - REL|}{|ALL - REL|}$

INTEGRATION IM F-MASS

Abbildung von (r, p)-Paar auf einzelnes Maß (definiert Kurve zur Aufteilung des 'Unentschieden-Bereichs')

Grundidee:

harmonisches Mittel aus Recall und Precision

$$F = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

Unterschiedliche Gewichtung von Recall und Precision: Gewichtungsfaktor β für Recall

$$F_{\beta} = \frac{1+\beta^2}{\frac{1}{p}+\beta^2\frac{1}{r}}$$

"NATURGESETZ" DER INVERSEN P-R-BEZIEHUNG

Trade-off between Precision and Recall

Literatur

- Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval, 1999.
 - der Klassiker
- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, 2008.
 - Online verfügbar unter: http://nlp.stanford.edu/IRbook/information-retrieval-book.html