Discussion/solution. We can write $avg(x) = (1/n)1^T x$, so

$$\operatorname{avg}(Ax) = \operatorname{avg}(x) \iff (1/m)\mathbf{1}^T Ax = (1/n)\mathbf{1}^T x. \iff \mathbf{1}^T Ax = (m/n)\mathbf{1}^T x.$$

This holds for all x if and only if $\mathbf{1}^T A = (m/n)\mathbf{1}^T$, which can be expressed as $A^T \mathbf{1} = (m/n)\mathbf{1}$. This means that all columns of A must sum to m/n.

Another way to say it is: If you add up the rows of A, you get a row vector all of whose entries as m/n.

If A is square (which it need not be), the condition also means that A has 1 as a left eigenvector, with associated eigenvalue m/n.

The second question is a bit trickier. The solution is: $|\mathbf{avg}(Ax)| \leq |\mathbf{avg}(x)|$ for all x if and only if $A^T\mathbf{1} = \alpha(m/n)\mathbf{1}$ for some α with $|\alpha| \leq 1$. In other words, all columns of A must sum to m/n, times a constant (which is the same for all columns) less than or equal to one in magnitude. In terms of eigenvectors, the condition can be expressed as: A has A as a left eigenvector, with associated eigenvalue A, with $|A| \leq m/n$.

The "if" direction is clear: If $A^T \mathbf{1} = \alpha(m/n) \mathbf{1}$, where $|\alpha| \leq 1$, then for any x we have

$$\operatorname{avg}(Ax) = (1/m)|(A^T 1)^T x| = (|\alpha|/n)|1^T x| \le (1/n)|1^T x| = \operatorname{avg}(x).$$

Now we'll show the opposite direction. Let $a=A^T\mathbf{1}$ and $b=(m/n)\mathbf{1}$. Then $|\mathbf{avg}(Ax)| \leq |\mathbf{avg}(x)|$ can be written as $|a^Tx| \leq |b^Tx|$. Suppose that $|a^Tx| \leq |b^Tx|$ for all x. We'll show that $a=\alpha b$, for some $\alpha \in [-1,1]$. Note that this holds if a=0, with $\alpha=0$, so we will assume that $a\neq 0$.

Clearly if $b^Tx=0$, then $a^Tx=0$. Thus $\mathcal{N}(b^T)\subseteq\mathcal{N}(a^T)$. Taking orthogonal complements we get $\mathcal{R}(b)\supseteq\mathcal{R}(a)$. In particular $b\in\mathcal{R}(a)$, which means that $b=\alpha a$ for some $\alpha\in\mathbf{R}$. Taking x=b in $|a^Tx|\leq |b^Tx|$ yields

$$|a^T b| = |\alpha| a^T a \le |b^T b| = \alpha^2 a^T a,$$

so $|\alpha| \le \alpha^2$. From this we conclude $|\alpha| \le 1$.

Another way to come to the conclusion that the sums of the columns of A must be equal is to consider the particular values of x given by $x=e_i-e_j$, with $i\neq j$. Then $\operatorname{avg}(x)=0$, so we have to have $\operatorname{avg}(Ax)=0$. But $\operatorname{avg}(Ax)$ is exactly half the difference of the sum of column i and column j. We conclude that these column sums must be equal; since i and j were arbitrary, we see that all columns of A must have the same sum.