

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY

Paper 2 AS Level Structured Questions

May/June 2025

9701/23

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

- The chemical properties of an element are related to the electronic configuration of its atoms.
 - (a) (i) Give the full electronic configuration of a fluorine atom.

Deduce the number of pairs of electrons in the second energy shell, n = 2, of an oxygen atom.

E 4.3
111
 111

Draw the shape of the highest energy orbital that contains electrons in an atom of calcium.

F -	
1.	

Write an equation to represent the first ionisation energy of sulfur.

[1]]

Explain why the first ionisation energy of sulfur is less than the first ionisation energy of (ii) phosphorus.

[2]

(iii) Arrange the three species F⁻, Ne and Na⁺ in order of increasing radius.

Explain your answer.

	<	<
smallest radius		largest radius

.....

[4]

[Total: 10]

2

The chemical properties of oxides are related to the chemical bonding present in these compounds.

(a)	A Period 3 oxide produces a solution with a pH greater than 10 when it is added to water. State the formula of the oxide.	
		[1]
(b)	${\sf P_4O_{10}}$ is added to an excess of aqueous NaOH. Write an equation to describe the reaction.	
		[1]
(c)	Table 2.1 shows the molting points of some evides	

3

Table 2.1

melting point/°C
-73
0
17
1610
1132
2852
2072

(i)	Identify the oxide from Table 2.1 that contains the element with the highest oxidation number.
	[1]
(ii)	A student suggests the following hypothesis.
	The melting point of an ionically bonded oxide is only determined by the charge on the cation.
	Use Table 2.1 to deduce if this hypothesis is true or false or if there is not enough information to make a conclusion. Explain your answer.

		te why ZnO is described as a Brønsted–Lowry base when it is added to H ₂ SO ₄ (aq).
(e)	_	O ₃ is a white amphoteric compound.
	(i)	State the formula of the aluminium-containing species produced when ${\rm A}l_2{\rm O}_3$ reacts with NaOH(aq).
	(ii)	State the formula of the aluminium-containing salt produced when ${\rm A}l_2{\rm O}_3$ reacts with ${\rm H_2SO_4(aq)}$.
		[1]
		[Total: 8]

5

3 Different hydrocarbon mixtures produced from fractional distillation of crude oil have different uses.

(i) State the compound that is heated with long-chain hydrocarbons to produce more useful smaller alkanes and alkenes.

[1]

(ii) Describe how photochemical smog is produced during the combustion of petrol in an internal combustion engine.

[2]

(b) C_4H_8 reacts with an excess of H_2 to produce C_4H_{10} .

reaction 1
$$C_4H_8 + H_2 \rightarrow C_4H_{10}$$

Name a catalyst for reaction 1.

(ii) Define activation energy, E_A .

	[1]

The Boltzmann distribution for the reaction mixture in reaction 1 is shown in Fig. 3.1. Use the Boltzmann distribution to explain the effect of adding a catalyst on the rate of reaction.

Fig. 3.1

[Total: 7]

9701/23/M/J/25 [Turn over The reaction between $Na_2S_2O_3(aq)$ and HCl(aq) is monitored at constant temperature.

$$\mathrm{Na_2S_2O_3} + 2\mathrm{HC}\,l \rightarrow 2\mathrm{NaC}\,l + \mathrm{SO_2} + \mathrm{S} + \mathrm{H_2O}$$

Fig. 4.1 shows how the concentration of HCl(aq) varies with time.

Fig. 4.1

(a)	(i)	Use Fig. 4.1 to find the average rate of change of concentration of HC l(aq) in this reaction
		between 0–100 seconds and between 400–500 seconds. Include units in your answers.

0–100 seconds	units	
400–500 seconds	units	[2]

(ii) Use Fig. 4.1 to identify the limiting reagent. Explain your answer.

[1]	

(iii) Explain why the rate of reaction changes with time.

 	 	 	 	[1

The reaction between $Na_2S_2O_3(aq)$ and HC1(aq) is repeated in a second experiment.

7

In this second experiment, $25.0\,\mathrm{cm^3}$ of $0.050\,\mathrm{mol\,dm^{-3}}\,\mathrm{Na_2S_2O_3}(\mathrm{aq})$ reacts with $0.0020\,\mathrm{mol}$ of HCl(aq). Calculate the number of sulfur atoms produced.

	number of sulfur atoms produced =	[2]
(v)	Explain why the rate of reaction ${\bf cannot}$ be monitored accurately by measuring volume of ${\rm SO}_2(g)$ produced in this reaction.	the
		[1]

(b) Fig. 4.2 shows a possible arrangement of outer-shell electrons in one SO_2 molecule.

Fig. 4.2

Use Fig. 4.2 to predict the shape and bond angle of a molecule of SO_2 .

shape	
le a card a card a	0
bond angle	

[2]

Use Table 4.1 to predict the strength of the dipole moment of SO_2 , if any, compared to that of $\mathrm{H}_2\mathrm{O}$. Explain your answer.

Table 4.1

	Н	0	S	
electronegativity	2.1	3.5	2.6	
				[2]

* 0000800000008 *

5 (a) W is a colourless liquid.

W

8

Fig. 5.1

(i)	Deduce the empirical formula of W .	
	[1]

(ii) Two different reagents are each added to separate samples of W as shown in Table 5.1.Complete Table 5.1.

Table 5.1

reagent and conditions	observation when reagent is added to W	structural formula of organic product when reagent is added to W
solid Na		
Br ₂ in absence of ultraviolet light		

[4]

(b) Fig. 5.2 shows two reactions of **W** to produce organic compounds **Y** and **Z**.

V O LiAlH₄ Z

9

Fig. 5.2

(i)	Deduce the number of sigma (σ) bonds and pi (π) bonds present in Z
	number of σ bonds
	number of π bonds

(ii) **W** reacts with LiAlH₄ to produce **Y**.

Draw the structure of Y.

(iii)	Identify the role of $LiAlH_4$ when it reacts with \mathbf{W} .	[1]
(iv)	Suggest the reagent and conditions required when W is converted into Z .	[1]
		[1]

[2]

[2]

z|
0

10

Fig. 5.3

(v) Fig. 5.3 shows the structure of **Z**. Fig. 5.4 is the infrared spectrum of **Z**.

Fig. 5.4

Identify the bond and functional group responsible for each of the absorptions labelled $\bf A$, $\bf B$, $\bf C$ and $\bf D$ in Fig. 5.4.

Д	
-	
R	
C .	
_	

Table 5.2

11

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
О–Н	carboxyl hydroxy	2500–3000 3200–3650

(vi) Z is used to produce addition polymer Q.

Draw the repeat unit of polymer Q.

		[1]
(c)	Poly(ethene) is an addition polymer made from ethene.	
	Explain why ethene reacts with electrophiles but poly(ethene) does not .	
		[1]
	[To	tal: 14]

(i)

Define addition reaction.

- 6 (a) HOC1 reacts with CH₂=CH₂ to produce HOCH₂CH₂Cl in an electrophilic addition reaction.
 -
 -[1]
 - (ii) Describe how Cl_2 is used to produce $\operatorname{HOC} l$.
 -[1]
 - (iii) State **one** use for HOC*1*.
 - (b) Complete Fig. 6.1 to show the mechanism for the reaction between HOCl and CH $_2$ =CH $_2$ to produce HOCH $_2$ CH $_2$ Cl.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

$$+0^{\delta-}$$
 $C1^{\delta+}$

Fig. 6.1

[4]

(c) ${\rm HOCH_2CH_2C}l$ reacts in a two-step synthesis to produce ${\rm HOCH_2CH_2COOH}$, as shown in Fig. 6.2.

13

$$\begin{array}{c} \text{step 2} \\ \text{HOCH}_2\text{CH}_2\text{C}l \xrightarrow{\hspace*{1cm}} \text{HOCH}_2\text{CH}_2\text{CN} \xrightarrow{\hspace*{1cm}} \text{HOCH}_2\text{CH}_2\text{COOH} \end{array}$$

Fig. 6.2

(i) State the reagent and conditions for step 1.

.....[1]

(ii) Identify the type of reaction that occurs in step 2.

.....[1]

(iii) Complete the equation to show the reaction in step 2.

 $\mathsf{HOCH_2CH_2CN} + \dots$ [1]

[Total: 10]

14

BLANK PAGE

Important values, constants and standards

15

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ} C))$
specific heat capacity of water	$c = 4.18 \text{ kJkg}^{-1} \text{ K}^{-1} (4.18 \text{ Jg}^{-1} \text{ K}^{-1})$

lements
Ш
οę
Φ
=
ap
Ξ
O
픙
=
0
Ξ.
ē
Δ
Φ
~
È

							T														
	18	He 5	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	첫	krypton 83.8	52	Xe	xenon 131.3	98	R	radon	118	Og	oganessor
	17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ŗ	bromine 79.9	53	Н	iodine 126.9	85	¥	astatine	117	<u>s</u>	tennessine -
	16			8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>a</u>	tellurium 127.6	84	Ъо	polonium	116	_	livermorium
	15			7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	<u>.</u>	bismuth 209.0	115	Mc	moscovium
	14			9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Ŀ	flerovium
	13			2	В	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	81	<i>1</i> 1	thallium 204.4	113	R	nihonium
									12	30	Zu	zinc 65.4	48	ပ္ပ	cadmium 112.4	80	£	mercury 200.6	112	ပ်	copernicium
									7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
Group									10	28	z	nickel 58.7	46	Pd	palladium 106.4	78	చ	platinum 195.1	110	Ds	darmstadtium -
Gro									6	27	ပိ	cobalt 58.9	45	格	rhodium 102.9	77	'n	iridium 192.2	109	Μţ	meitnerium -
		- I	hydrogen 1.0						_∞	56	Fe	iron 55.8	4	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Η̈́	hassium
									7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	В	bohrium
						lod	ass			9	24	ပ်	chromium 52.0	42	Мо	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg
			Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>⊾</u>	tantalum 180.9	105	6	dubnium
					ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Έ	hafnium 178.5	104	꿏	rutherfordium
									က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57–71	lanthanoids		89–103	actinoids	
	2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ва	barium 137.3	88	Ra	radium
	_			3	:=	lithium 6.9	1	Na	sodium 23.0	19	メ	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium -

_				_			
71	Ρ	lutetium	175.0	103	ځ	lawrencium	ı
	Υp						ı
69	Tm	thulium	168.9	101	Md	mendelevium	1
89	ш	erbinm	167.3	100	Fm	ferminm	I
29	유	holmium	164.9	66	Es	einsteinium	ı
99	Δ	dysprosium	162.5	86	ŭ	californium	ı
65	Тр	terbium	158.9	26	Ř	berkelium	ı
64	Вd	gadolinium	157.3	96	Cm	curium	ı
63	En	europium	152.0	92	Am	americium	ı
62	Sm	samarium	150.4	98	Pu	plutonium	ı
61	Pm	promethium	ı	93	ď	neptunium	ı
09	PN	neodymium	144.2	92	⊃	uranium	238.0
69	Ā	praseodymium	140.9	91	Ра	protactinium	231.0
58	Se	cerium	140.1	06	H	thorium	232.0
25	La	lanthanum	138.9	88	Ac	actinium	1

lanthanoids actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

