I3 Loi de Faraday 1/4

Loi de Faraday

1. Neutralisation de flux

- 1. Une bobine circulaire de 30 spires de rayon 10 cm est plongée dans un champ magnétique externe de 26 mT parallèle à son axe. Quel flux magnétique traverse la bobine?
- 2. Un courant de 3,8 A circule maintenant dans la bobine. On constate que le flux magnétique total est nul. En déduire l'inductance propre de la bobine.
- 2. Sens du courant induit On considère deux boucles concentriques: \mathscr{C}_1 , dans laquelle circule un courant I dans le sens trigonométrique, et \mathscr{C}_2 .
 - 1. Faire un dessin.
 - 2. Quel est le sens du courant induit dans \mathscr{C}_2 lorsque l'intensité I diminue?
 - 3. On éloigne \mathscr{C}_1 vers l'arrière de la feuille, I restant constante. Que se passe-t-il?
 - 4. On rapproche \mathscr{C}_1 . Même question.
- **3. Loi de lenz** On considère une spire circulaire \mathscr{C} fixe, conductrice de résistance R soumise à un champ magnétique \overrightarrow{B} variable uniforme et orthogonal à la surface du circuit. Faire un dessin puis déterminer le sens de l'intensité du courant induit dans \mathscr{C} sachant que la norme B(t) du champ magnétique inducteur \overrightarrow{B} est une fonction croissante du temps.
- 4. Richtig oder falsch?* Soit un circuit filiforme plan, parfaitement déformable, évoluant sans frottement dans le plan xOy, de résistance R, alimenté par un générateur de f.é.m. E(t), parcouru par un courant i(t), soumis à l'action d'un champ magnétique extérieur $\overrightarrow{B}(t)$ uniforme perpendiculaire à son plan. Le sens d'orientation du circuit est choisi pour que le flux de soit positif (voir figure ci-contre), c'est aussi le sens conventionnel choisi pour le courant. Lesquelles de ces propositions sont vraies?

- 1. Si i > 0, les forces de Laplace déforment le circuit dans le sens d'une augmentation de sa surface.
- 2. On suppose ici que le champ magnétique extérieur est nul. Pour i > 0, le circuit se déforme de telle manière que sa surface augmente.

Le circuit est fermé, mais n'est plus alimenté par un générateur.

- 3. Si $\|\overrightarrow{B}\|$ diminue, la surface du circuit va augmenter.
- 4. Si un opérateur extérieur déforme la surface en l'augmentant, les forces de Laplace qui apparaissent sont de nature à faire diminuer la surface. Préciser le signe du courant induit.
- **5. Inducteur et induit** Indiquez sur chaque figure le sens du courant induit I, en expliquant la méthode utilisée. Dans chacun des deux cas, vous préciserez l'induit de l'inducteur.

6. Aimant qui bouge Dans les huit cas ci-dessous, indiquer le sens réel du courant induit i qui traverse la résistance R (dessiner la flèche à côté de la lettre i).

7. Prévision par loi de Lenz*

1. On considère un circuit constitué de deux rails parallèles horizontaux distants de a=AA', sur lesquels peut glisser sans frottement une barre conductrice de masse m. Les deux rails sont reliés par une résistance R. L'ensemble est plongé dans un champ magnétique vertical $\overrightarrow{B}=B\overrightarrow{e_z}$. À t=0, la barre est lancé avec une vitesse initiale $\overrightarrow{v_0}=v_0\overrightarrow{e_x}$ où $v_0>0$. Dans quel sens circule le courant dans le circuit?

2. Même question sur des rails inclinés.

8. Spire élastique* Un matériau conducteur élastique est étiré pour former une spire circulaire de rayon 25 cm. Il est plongé dans un champ magnétostatique de 0,1 T dirigé suivant son axe. Lorsqu'on relâche la boucle, son rayon commence à diminuer à une vitesse de 1 m/s. Quelle est la fem induite à cet instant?

9. Moteur électrique* Une spire d'un moteur électrique est en rotation dans un champ magnétique. On donne le flux magnétique à travers la spire. Déterminer la force électromotrice induite et la vitesse de rotation du moteur en tours par minute.

10. Alternateur* Un alternateur est constitué d'un cadre carré de N=200 spires, de a=10 cm de côté, plongé dans un champ magnétique uniforme et constant $\overrightarrow{B}=\overrightarrow{B}\overrightarrow{e_x}$. Ce cadre, qui tourne avec une vitesse angulaire $\overrightarrow{\omega}=\omega\overrightarrow{e_z}$ constante, est relié à un oscilloscope qui permet de visualiser la tension aux bornes de l'alternateur représentée sur l'oscillogramme ci-dessous.

- 1. Établir l'expression du flux du champ magnétique à travers ce cadre et en déduire la fém induite.
- 2. On double la vitesse angulaire du cadre. Que devient l'oscillogramme?
- 3. Calculer la norme du champ magnétique.
- 11. Carte d'accès* Une carte permet de commander à distance la barrière d'accès d'un parking. L'antenne de la barrière est une boucle de courant de rayon 5 cm qui comporte 200 tours et qui est alimentée par un courant alternatif d'amplitude 2,5 A. Elle émet régulièrement un train d'ondes à la fréquence de 400 MHz. La carte d'accès, de la taille d'une carte de crédit (5 cm par 8 cm), comporte une boucle de 200 tours de fils. L'antenne crée un champ magnétique qui induit dans la carte une tension électromotrice. Celle-ci alimente un circuit qui réémet une onde modulée selon un code qui est spécifique à la carte.
 - 1. La carte est présentée dans l'axe de l'antenne, à une distance de 80 cm. Calculer la valeur du champ magnétique au centre de la carte. On donne le champ magnétique d'axe Oz créé par une spire de rayon R à une distance d de son centre

$$B_z = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + d^2)^{3/2}}$$

2. Quelle est la tension électromotrice induite dans la boucle de la carte en fonction de l'angle formé par l'axe de l'antenne et la normale à la surface de la carte?

En pratique, les boucles comportent moins de tours, ce qui réduit la portée du système.

- 12. Fluxmètre* Une petite bobine de section S=3 mm² comportant N=60 spires, de résistance $R=40~\Omega$, est placée dans l'entrefer d'un électroaimant de sorte que l'axe de la bobine et celui des pôles coïncident. Lorsque la bobine tourne d'un angle de 180° (autour d'un diamètre) un intégrateur de courant branché à ses bornes enregistre le passage d'une charge $Q=4,5~\mu C$. Déterminer le champ magnétique dans l'entrefer en le supposant uniforme.
- 13. Barre sur rail de Laplace en circuit ouvert* Quelle est la différence de potentiel $U_{MN} = V_M V_N$?

14. Barre en rotation* Expliciter la différence de potentiel $U = V_N - V_M$ en fonction du sens de rotation de la barre (de vitesse angulaire constante).

15. Flux à travers un rectangle** Le champ magnétique créé par un fil infini confondu avec l'axe Oz parcouru par un courant I constant vaut en tout point extérieur au fil $\overrightarrow{B}(M) = B_{\theta}(r) \overrightarrow{e_{\theta}} = \frac{\mu_0 I}{2\pi r} \overrightarrow{e_{\theta}}$

- 1. Rappeler les expressions du flux élémentaire et du flux à travers une surface S s'appuyant sur un contour $\mathscr C$ donné. On précisera comment est orientée la surface.
- 2. On considère un rectangle dont le plan contient le fil et de dimensions h parallèlement au fil et b perpendiculairement au fil. Le côté le plus proche du fil se trouve à une distance a du fil. Choisir une orientation pour la surface rectangulaire ainsi délimitée. Faire figurer sur un schéma l'orientation choisie et le vecteur unitaire \overrightarrow{n} orientant la surface délimitée par le rectangle.
- 3. Déterminer alors l'expression du flux du champ magnétique créé par le fil rectiligne infini à travers ce rectangle.

Application : Induction près d'une ligne électrique. Une ligne haute tension transporte un courant sinusoïdal de fréquence 50 Hz et de valeur efficace I = 1 kA. On approche une bobine plate de N spires carrées de côté a=30 cm à une distance d=2 cm du fil. Cette bobine, d'inductance et de résistance négligeables, est fermée sur une ampoule qui s'éclaire si la tension efficace à ses bornes est supérieure à 1,5 V. Déterminer le nombre de spires nécessaires. Donnée : $\mu_0=4\pi.10^{-7}$ H.m⁻¹.

