कंप्यूटर संगठन और वास्तुकला

व्याख्यान **2.1** प्राध्यापक **स्मृति रंजन सारंगी** प्रस्तोता आर्यन गौरव 2020CS10327 अतुल जेफ 2020CS10329

बिट्स की भाषा

यह प्रस्तुति किस बारे में है?

- बूलियन बीजगणित (Boolean Algebra)
 - तार्किक संचालन (Logical operations)
 - डी मॉर्गन के नियम
 - सर्वसम्मित प्रमेय (Consensus theorem)
- धनात्मक पूर्णांक (Positive integers)
 प्राचीन रोमन और भारतीय संख्या प्रणाली

 - विभिन्न आधारों में संख्या
 - बाइनरी संख्या प्रणाली
 - हेक्साडेसिमल और ऑक्टल नंबर सिस्टम

कंप्यूटर कौन सी भाषा समझता है?

• एक कंप्यूटर <mark>प्राकृतिक मानव</mark> भाषाओं या प्रोग्रामिंग भाषाओं को नहीं समझता है।

~10^6

बाइटस

• वे केवल बिट्स की भाषा समझते हैं।

मेगाबाइट

• एक <mark>कंपाइलर</mark> मानव पठनीय भाषा को कंप्यूटर समझने योग्य भाषा में परिवर्तित कर<u>ता है।</u>

 बिट्स
 कोई

 बाइट
 8 बिट्स

 शब्द
 4 बाइट्स

 किलोबाइट
 1024 बाइट्स

तार्किक संचालन-।

- बिट्स: बूलियन चर
- सत्य तालिका (Truth table): एक तालिका जिसमें फ़ंक्शन के आउटपुट मान, इनपुट चर के प्रत्येक संभावित संयोजनों के लिए हो।
- A + B : A नहीं तो B (OR)
- A.B : A और B (AND)

A	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

तार्किक संचालन-॥

- NAND और NOR संचालन
- बूलियन फ़ंक्शन : एक फ़ंक्शन जो n चर के कुल 2^n संयोजनों के लिए आउटपुट मान देता है। सभी मान सेट {0,1} से आते हैं। कुल 2^(2^n) फ़ंक्शन संभव है।
- NAND और NOR सार्वभौमिक संचालन हैं। उनका उपयोग किसी भी बूलियन फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

A	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

तार्किक संचालन-॥

- XOR परिचालन: अनन्य OR के रूप में भी जाना जाता है।
- एकाधिक चर के लिए, XOR केवल तभी सत्य (True) देता है जब चर की विषम संख्या सत्य (True) हो, अन्यथा XOR गलत (False) देता है।

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

तार्किक संचालन-।∨

- NOT संचालक

 - इसे पूरक संचालक के रूप में भी जाना जाता है: $\overline{0} = 1$ और $\overline{1} = 0$ NOT परिचालन का NOT, एक चर A पर , वहीं चर लौटाता है। इसे डबल निषेध (double negation) के रूप में जाना जाता है: $\overline{A} = A$.
- OR और AND संचालक
 - Identity : A+0 = A और A.1 = A
 - Annulment : A+1 = A और A.0 = 0

बूलियन बीजगणित के गुण

- Idempotence: A+A = A, A.A = A. जब हम चर A की OR या AND गणना स्वयं के साथ करते हैं तो हमें वही चर वापस मिलता है।
- Complementarity: $A + \overline{A} = 1$, $A \cdot \overline{A} = 0$.
- Commutativity: A+B = B+A, A.B = B.A. बूलियन चर के क्रम से परिणाम में कोई फर्क नहीं पडता।
- Associativity: A+(B+C) = (A+B)+C, A.(B.C) = (A.B).C. प्राकृतिक संख्याओं के जोड़ और गुणन के समान।
- Distributivity: A.(B+C) = A.B + A.C, A+ (B.C) = (A+B).(A+C).

Distributivity का प्रमाण

Α	В	С	В+С	A.(B +C)	A.B	A.C	A.B+ A.C
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Α	В	С	B.C	A+(B.C)	A+B	A+C	(A+B). (A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

आकृति : 1

आकृति : 2

डी मॉर्गन के नियम

•
$$\overline{A+B} = \overline{A}.\overline{B}$$

•
$$\overline{A.B} = \overline{A} + \overline{B}$$

Α	В	А+В	$\overline{A+B}$	\overline{A}	\overline{B}	$\overline{A}.\overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Α	В	A.B	$\overline{A.B}$	\overline{A}	\overline{B}	\overline{A} + \overline{B}
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

सर्वसम्मति प्रमेय (Consensus Theorem)

•
$$X.Y + \overline{X}.Z + Y.Z = X.Y + \overline{X}.Z$$

• प्रमाणः

- $X.Y + \overline{X}.Z + Y.Z.1 = X.Y + \overline{X}.Z + Y.Z.(X + \overline{X})$
- $X.Y + \overline{X}.Z + Y.Z.(X + \overline{X}) = X.Y + \overline{X}.Z + Y.Z.X + Y.Z.\overline{X}$
- $X.Y + \overline{X}.Z + Y.Z.X + Y.Z.\overline{X} = X.Y.(1+Z) + \overline{X}.Z.(1+Y)$
- X.Y.(1+Z) + \overline{X} .Z.(1+Y) = X.Y.1 + \overline{X} .Z.1
- X.Y.1 + \overline{X} .Z.1 = X.Y + \overline{X} .Z

Positive Integers धनात्मक पूर्णांक

धनात्मक पूर्णांकों का प्रतिनिधित्व

* प्राचीन रोमन प्रणाली

Symbol	I	V	X	L	С	D	M
Value (मूल्य)	1	5	10	50	100	500	1000

* मुद्दे :

- * 0 की कोई धारणा नहीं थी
- * बड़ी संख्या का प्रतिनिधित्व करना बहुत मुश्किल है
- * योग, और व्यवकलन (बहुत मुश्किल)

भारतीय प्रणाली

बक्शाली से मिली पुरानी स्क्रिप्ट बख्शाली अंक, 7 वीं शताब्दी ईस्वी

* स्थान मान प्रणाली का उपयोग करता है

$$5301 = 5 * 10^3 + 3 * 10^2 + 0 * 10^1 + 1*10^0$$

 $74215 = 7 * 10^4 + 4 * 10^3 + 2 * 10^2 + 1 * 10^1 + 5*10^0$

आधार 10 में उदाहरण

अन्य ठिकानों में संख्या सिस्टम

- हम आधार 10 का उपयोग क्यों करते हैं?
- क्योंकि हमारे पास 10 उंगलियां हैं और प्राचीन काल में हम उंगलियों से गिनती करते थे

क्या होगा अगर हमारे पास एक ऐसी दुनिया थी जिसमें ...

* लोगों की सिर्फ दो उंगलियां थीं।

बाइनरी नंबर सिस्टम

* वे आधार 2 के साथ एक संख्या प्रणाली का उपयोग करेंगे।

दशमलव में संख्या	बाइनरी में संख्या
5	101
100	1100100
500	111110100
1024	1000000000

एम.एस.बी और एल.एस.बी

 * एम.एस.बी (सबसे महत्वपूर्ण बिट) → एक बाइनरी संख्या का सबसे बायां बिट। उदाहरण के लिए, 1110 का एम.एस.बी 1 है

* एल.एस.बी (न्यूनतम महत्वपूर्ण बिट) → एक द्विआधारी संख्या का सबसे दाहिना बिट। जैसे, 1110 का एल.एस.बी 0 है

एम.एस.बी और एल.एस.बी

	MSB	LSB
1110	1	0
1001001	1	1
0010	1 (क्योंकि 0 प्रारंभ करना गिनती नहीं करता है, 0010 = 10)	0
0010 (यदि यह दिया गया है कि संख्या 4 बिट की है)	0 (0010 के रूप में गिना जाता है)	0

हेक्साडेसिमल और ऑक्टल नंबर

Binary	Decimal	Octal	Hexa- Decimal
Base 2	Base 10	Base 8	Base 16
(0, 1)	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)	(0, 1, 2, 3, 4, 5, 6, 7)	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

हेक्साडेसिमल और ऑक्टल नंबर

* हेक्साडेसिमल संख्या

- * आधार 16 नंबर 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- * Ox से प्रारंभ करें

* ऑक्टल नंबर

- अधार 8 नंबर 0,1,2,3,4,5,6,7
- o से शुरू करें

उदाहरण

110010111 को ऑक्टल स्वरूप में कनवर्ट करें: 110010 101 = 0625

110100111010 को ऑक्टल स्वरूप में कनवर्ट करें: 110 100 111 010 = 06472

110100111010 को हेक्स स्वरूप में कनवर्ट करें: <u>1101</u>0011 <u>1010</u> = 0xD3A

111000101111 को हेक्स स्वरूप में कनवर्ट करें: 1110 0010 1111 = 0xE2F