Fraudulent Claim Detection CaseStudy-Report

Submitted By

Pradeep Harry Michael Pavan Kumar BN

Contents

Problem Statement

Analysis and Model Building

- 1> Data Preparation and Cleaning
- 2> EDA
- 3> Feature Engineering
- 4> Model Building (LR / Random Forest)
- 5> Predicting and Evaluation

Business Summary

Problem Statement

- **Challenge**: Global Insure, a major player in the insurance industry, is experiencing substantial financial losses due to a high volume of fraudulent claims. The existing fraud detection system relies heavily on manual inspections, which are not only time-consuming and labour-intensive but also inefficient. As a result, many fraudulent claims are detected only after payouts have been made, limiting the company's ability to prevent losses and straining operational resources.
- **Objective**: To address this issue, Global Insure seeks to enhance its fraud detection capabilities by leveraging data-driven insights and advanced analytics. The goal is to implement an intelligent system that can accurately classify claims as fraudulent or legitimate at an early stage in the approval process. This proactive approach would help the company significantly reduce financial losses, improve the speed and accuracy of claims processing, and optimize overall efficiency in claims management.

Data Preparation and Cleaning

Data Understanding and Cleaning activities performed

- Drop Columns which do not have any values across all Rows.
- Drop Rows which have all column values as NA or Null
- Data type Changes
- Drop Columns which have large portion of values as unique
- Drop rows where features have invalid negative values
- Handle missing data like '?' as 'Unknown'

Outcome

- The initial Data Frame of shape(rows, columns) (1000,40) was reduced to (908, 36)
- The Key Columns for analysis were identified

Numerical Fields

- months as customer, age, policy deductable
- policy_annual_premium, umbrella_limit, capital-gains, capital-loss
- incident_hour_of_the_day, number_of_vehicles_involved, bodily_injuries
- witnesses, total_claim_amount, injury_claim, property_claim
- vehicle_claim, auto_year

Categorical Field

- policy_state, policy_csl, insured_sex
- insured_education_level, insured_occupation, insured hobbies
- insured_relationship, , incident_type, collision_type
- incident_severity, authorities_contacted, incident_state
- incident_city, incident_location, property_damage
- police_report_available, auto_make, auto_model

DateField incident_date policy_bind_date

Target Field fraud reported

EDA: Numeric Correlation

High Correlation Identified between the following fields

- 1> vehicle_claim and total_claim_amount
- 2> months_as_customer and age

EDA: Target Likelihood for Categorical Variables

Top 5 Categorical Features with Highest Variation in 'Y' Likelihood:

- incident_severity
- auto_model
- insured_hobbies
- incident_type
- collision_type

EDA: Target Likelihood for Numerical Variables

Top 5 Numerical Features with Highest Variation in 'Y' Likelihood:

- policy_annual_premium
- number_of_vehicles_involved
- total_claim_amount
- vehicle_claim
- age

Feature Engineering:

- Resampling using RandomOverSampler to handle Class Imbalance
- Deriving new Features from Date Columns
- Combining Features like auto model and auto make
- Handle Redundant Columns
- Dummy Variables for Categorical Columns
- Feature Scaling

Model Building: Logistic Regression

Summary of Model (Training)

• Probability Cutoff Chosen: 0.565

• Model Accuracy at Optimal Cutoff (0.565): 0.8766

• Sensitivity (Recall): 0.8777

Specificity: 0.8755Precision: 0.8758

• Recall: 0.8777

• **F1 Score:** 0.8767

Model Building: Random Regression

Summary of Model (Training)

Best Hyperparameters Found:

{'max_depth': 10, 'max_features': 12, 'min_samples_leaf': 10, 'min_samples_split': 20, 'n_estimators': 20}

Training Accuracy: 0.8863Sensitivity (Recall): 0.9206

Specificity: 0.8519Precision: 0.8614F1 Score: 0.8900

Model Building: Prediction and Evaluation

Model	Tuning	Training Set Performance	Validation Set Performance
Logistic Regression	Probability Cutoff Chosen: 0.565	Model Accuracy at Optimal Cutoff (0.565): 0.8766 Sensitivity (Recall): 0.8777 Specificity: 0.8755 Precision: 0.8758 Recall: 0.8777 F1 Score: 0.8767	Model Accuracy at Optimal Cutoff (0.565): 0.8388 Sensitivity (Recall): 0.8194 Specificity: 0.8458 Precision: 0.6556 Recall: 0.8194 F1 Score: 0.7284
Random Forest	Best Hyperparameters Found: {'max_depth': 10, 'max_features': 12, 'min_samples_leaf': 10, 'min_samples_split': 20, 'n_estimators': 20}	•Training Accuracy: 0.8863 •Sensitivity (Recall): 0.9206 •Specificity: 0.8519 •Precision: 0.8614 •F1 Score: 0.8900	Validation Accuracy: 0.8388 Sensitivity (Recall): 0.8889 Specificity: 0.8209 Precision: 0.6400 F1 Score: 0.7442

Business Summary

A data-driven approach to analyze historical claim records has revealed clear patterns associated with fraudulent behaviour.

Both Logistic Regression and Random Forest models were trained to predict fraud probability, with Random Forest achieving slightly better performance.

Categorical and numerical likelihood analysis identified features that significantly influence the likelihood of fraud.

High-variation features like incident_severity, insured_hobbies, total_claim_amount(vehicle/property/injury), policy_annual_premium, months_as_customer were strong fraud indicators.

Low-impact features (e.g., insured_sex, policy_state) contributed minimally and can be deprioritized or dropped to reduce noise.