Aula 8 - Redes Sem Fio: Enlaces, CDMA, WLAN, WPAN

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Conceitos Básicos de Redes Sem fio.
 - Hosts sem fio ≠ móveis.
 - Estação base: interconecta hosts.
 - Define uma **área de cobertura**.
 - Também serve de relay com a infraestrutura cabeada.
 - Enlaces sem fio têm grande variabilidade.
 - Meio sem fio é **compartilhado**.
 - Redes sem fio podem ser infraestruturadas ou ad hoc.
 - Ter ou não estação base.

- Camada física:
 - Representação da informação no meio.
 - Através de algum parâmetro físico alterável/mensurável.
 - **Transmissor** cria **símbolos**: altera estado do parâmetro físico.
 - **Receptor** mensura o parâmetro: interpreta o símbolo.
 - Símbolos codificam um ou mais bits e possuem certa duração.
 - Taxa de transmissão é função do # de símbolos/bit e sua duração.
 - Mas taxas maiores ⇒ maior probabilidade de erro.

Características dos Enlaces Sem Fio

Características dos Enlaces Sem Fio (I)

- Diferenças importantes em relação a enlaces cabeados.
 - Sinais recebidos com baixa potência: sinal de rádio é atenuado a medida que se propaga.
 - Interferência de outras fontes: frequências padronizadas para uso de tecnologias sem fio (e.g., 2,4 GHz) compartilhadas com outros dispositivos (e.g., telefones sem fio).
 - Mesmo dispositivos que não são de comunicação podem gerar interferência (e.g., forno de micro-ondas).
 - Ruídos: fenômenos naturais no ambiente e na geração e captura do sinal criam ruídos.
 - Propagação por múltiplos percursos: sinal de rádio é refletido (objetos, chão), chega ao destino múltiplas vezes.
 - Atrasos e tempos ligeiramente diferentes.
- Tornam comunicação muito mais "difícil".

Características dos Enlaces Sem Fio (II)

- SNR: relação sinal-ruído.
 - Quanto maior, mais fácil extrair sinal desejado.
 - Quanto menor, transmissão mais propensa a falhas.
- BER: taxa de erro de bits.
 - Fração de bits interpretados de forma errada pelo receptor.
- Compromissos entre SNR e BER:
 - Dada uma camada física (taxa), aumentar SNR
 ⇒ reduzir BER.
 - Dado um SNR, escolher camada física (taxa) para alcançar certo BER e maximizar vazão.
 - SNR pode variar dinamicamente (e.g., mobilidade).
 - Solução: adaptação automática da camada física.

...... QAM256 (8 Mbps)

– • QAM16 (4 Mbps)

BPSK (1 Mbps)

Características dos Enlaces Sem Fio (III)

- Múltiplos transmissores e receptores sem fio criam problemas adicionais.
 - Além dos de acesso múltiplo.

- **B** e **A** se ouvem.
- **B** e **C** se ouvem.
- A e C não se ouvem.
- **A** não está ciente de que interfere com **C** em **B**.

- Atenuação do sinal:
 - Terminais escondidos podem ocorrer mesmo sem obstáculos.
 - Rápida atenuação do sinal pode criar a situação.

CDMA

Code Division Multiple Access (CDMA)

- Outra estratégia para permitir acesso múltiplo a canais de difusão.
 - Alternativa ao FDMA, TDMA, CSMA, ...
- "Código" único atribuído a cada usuário.
 - Todos os usuários compartilham a mesma frequência.
 - Mas cada um utiliza um código particular para codificar os dados.
 - Permite coexistência e transmissões simultâneas com interferência mínima.
 - Se os códigos são "ortogonais".
 - Sinal codificado = (dado original) X (código).
 - Decodificação: produto interno entre código e sinal.

CDMA: Codificação/Decodificação

CDMA: Transmissores Interferentes

Redes Locais IEEE 802.11: Histórico

- 802.11b
 - Opera na faixa não licenciada de 2.4 GHz.
 - Até 11 Mb/s.
 - Camada física com DSSS (Direct Sequence Spread Spectrum).
 - Similar ao CDMA, mas todos os nós usam o mesmo código.
- 802.11a
 - Faixa (não licenciada) de 5 GHz.
 - Até 54 Mb/s.

- 802.11g
 - 2,4 GHz.
 - Até 54 Mb/s.
- 802.11n
 - 2,4 ou 5 GHz.
 - Múltiplas antenas, maior largura de banda.
 - Até 200 Mb/s.
- 802.11ac
 - Faixa (não licenciada) de 5 GHz.
 - Largura de banda ainda maior.
 - Até gigabits por segundo.
- Todas as emendas usam CSMA/CA para acesso múltiplo.
- Todas preveem modo infraestruturado e *ad hoc*.

Redes Locais IEEE 802.11: Arquitetura

- Host sem fio se comunica com estação base.
 - Estação base = Ponto de Acesso (AP).
- Basic Service Set
 - Ou "célula"
 - No modo infraestruturado contém:
 - Hosts sem fio.
 - Ponto de acesso.
 - No modo ad hoc:
 - Apenas hosts.

BSS 2

Redes Locais IEEE 802.11: Canais

- 802.11b: espectro de 2,4 GHz até 2,485 GHz dividido em 11 canais em frequências diferentes.
 - Em algumas regiões, há mais canais (faixa é mais larga).
 - Canal escolhido pelo administrador.
 - Ou algoritmos automáticos.
 - Possibilidade de interferência: canal escolhido pode ser o mesmo da rede vizinha.
 - Além disso, nem todos os canais são ortogonais.

Redes Locais IEEE 802.11: Associação

- Host precisa se associar com o AP.
 - Varre os canais procurando por quadros de beacon
 - Contêm informações básicas sobre o AP/rede: nome (SSID), MAC, ...
 - Seleciona um AP para se associar.
 - Pode realizar autenticação (Cap. 8).
 - Normalmente, executa DHCP para obter endereço IP na sub-rede do AP.

Redes Locais IEEE 802.11: Varreduras Passiva e Ativa

Varredura Passiva:

- 1. AP envia beacon.
- 2. Host envia quadro de association request.
- 3. AP responde com quadro de association response.

Varredura Ativa:

- 1. Host envia quadro de probe request.
- 2. AP envia quadro de probe response.
- 3. Host envia quadro de association request.
- 4. AP responde com quadro de association response.

Redes Locais IEEE 802.11: Acesso Múltiplo

- Evitar colisões: 2 ou mais nós transmitindo ao mesmo tempo.
- CSMA: ouvir antes de transmitir.
 - Não cause colisões com transmissões em andamento.
- Mas sem detecção de colisão.
 - Ao menos diretamente, como no Ethernet.
 - Dificuldade de recepção (para detectar colisões) enquanto se transmite.
 - Atenuação: sinal recebido é várias ordens de magnitude mais fraco que sinal transmitido.
 - Além disso, ainda há a possibilidade de não ouvir outras transmissões: terminais escondidos.
- Logo, o objetivo é evitar colisões: CSMA/CA (Collision Avoidance).

Protocolo MAC do IEEE 802.11: CSMA/CA

- Transmissor:
 - 1. Se o canal fica livre por **DIFS**, então
 - transmite quadro **inteiro** (sem detecção de colisão).
 - 2. Caso contrário
 - Inicia backoff aleatório.
 - Temporizador decrementado enquanto meio está livre.
 - Transmite quando temporizador expira.
 - 3. Se o ack não é recebido em um tempo determinado, então
 - Se o **limite de retransmissões** não foi excedido, aumenta backoff e volta para 2.
 - Caso contrário, pacote é descartado.

- Receptor:
 - 1. Se quadro não está corrompido, então
 - Envie ack após SIFS.

Evitando Colisões (Mais)

- Ideia: permitir que transmissor "reserve" o canal para transmitir dados.
 - Ao invés de acessar aleatoriamente.
 - Evita colisões de quadros longos.
- Transmissor começa enviando um quadro **pequeno** de request-to-send (RTS).
 - RTSs ainda podem colidir, mas são pequenos ("baratos" para retransmitir).
- AP envia (broadcast) um CTS como resposta.
 - Clear-to-send.
 - (Idealmente) ouvido por todos os nós.
 - Que passam a saber que o meio está reservado por determinado período.
- Transmissor envia dados, enquanto outras estações aguardam.
- Sempre funciona?

Evitando Colisões: Troca de RTS-CTS

Quadros do IEEE 802.11: Endereçamento (I)

Quadros do IEEE 802.11: Endereçamento (II)

802.**11** frame

Quadros do IEEE 802.11 (Mais)

IEEE 802.11: Mobilidade Dentro da Mesma Sub-rede

- H1 permanece na mesma sub-rede.
 - Endereço IP pode continuar o mesmo.
- Ponto de vista do switch: a qual AP H1 está associado?
 - Auto-aprendizado (Capítulo 5).
 - Switch recebe quadro originado em H1.
 - Armazena a informação da porta.

IEEE 802.11: Outras Características (I)

- Adaptação automática de taxa:
 - Estação base e hosts dinamicamente alteram taxa de transmissão.
 - Forma de compensar variações no SNR (e.g., devido a mobilidade).
- 1. SNR diminui e BER aumenta a medida que host se distancia do AP.
- 2. Quando o BER se torna muito alto, escolhe-se taxa mais baixa (mas com BER menor).

IEEE 802.11: Outras Características (II)

- Gerenciamento de Energia:
 - Host informa ao AP: "vou dormir até o próximo beacon".
 - AP sabe que n\u00e3o deve transmitir quadros para o host.
 - Host acorda antes do próximo beacon.
 - Quadro de beacon:
 - Contém lista de hosts para os quais AP possui dados a transmitir.
 - Nó permanece acordado se está lista.
 - Caso contrário, pode voltar a dormir até próximo beacon.

IEEE 802.15: Redes Pessoais

- Menos de 10 metros de alcance.
- Substitui cabos em periféricos.
 - Teclado, mouse, fones de ouvido.
- Arquitetura ad hoc (sem infraestrutura).
- Mestres/escravos:
 - Escravos pedem permissão para transmitir.
 - Mestre atende a pedidos.
- Evoluiu da especificação do Bluetooth.
 - Faixa de 2,4-2,5 GHz.
 - Até 721 kb/s.

Resumo da Aula (I)...

- Enlaces sem fio: mais propensos a erros.
 - Sinais recebidos com baixa potência.
 - Altos níveis de **ruído**, **interferência**.
 - Múltiplos percursos de propagação.
 - Tudo isso colabora para queda no SNR.
 - Resulta em queda da **BER**.
 - Solução: adaptação automática entre múltiplas taxas.
 - Outros problemas: **terminais escondidos**.
- CDMA: outra técnica comum para acesso múltiplo.
 - Usuários **podem** transmitir ao mesmo tempo, na mesma frequência.
 - Códigos ortogonais garantem que não haverá colisão.

Resumo da Aula (II)...

- IEEE 802.11: padrão para **redes locais sem fio** (WLANs).
 - Evolução através de **emendas**, taxas de transmissão mais altas.
 - CSMA/CA para acesso múltiplo.
 - Detecção de colisões é impossível.
 - Solução: **tentar ao máximo** evitá-las.
 - Utilizar acks para verificar se transmissão foi bem sucedida.
 - Pode usar **CTS/RTS**: reserva do meio.
 - **Modos** infraestruturado e *ad hoc*.
 - Componentes da arquitetura:
 - **AP** = estação base.
 - **BSS** = área de cobertura do AP, célula.
 - Nem todos os canais são ortogonais.
 - **Associação**: entrada do host na rede.
 - Adaptação automática de taxa.
 - Gerenciamento de energia.

Leitura e Exercícios Sugeridos

- Características dos enlaces sem fio e CDMA.
 - Páginas 380 a 385 do Kurose (Seção 6.2).
 - Exercícios de fixação 3 e 4 do capítulo 6 do Kurose.
 - Problemas 1, 2 e 4 do Kurose.
- IEEE 802.11 e IEEE 802.15.
 - Páginas 385 a 399 do Kurose (Seção 6.3).
 - Exercícios de fixação 5 a 10 do capítulo 6 do Kurose.
 - Problemas 6 e 7 do Kurose.
- (Opcional) WiMAX.
 - Páginas 399 a 401 do Kurose (último tópico da Seção 6.3).

Próxima Aula...

- Dois tópicos diferentes, porém interconectados:
 - Rede Celular.
 - Evolução, arquitetura, funcionamento.
 - Mobilidade:
 - Conceitos básicos.
 - Ideias para soluções.