

EXPLAINED IN A NÚTSHEL

Computers use data to learn and make better predictions or decisions over time, applied in tasks like image recognition and recommendation systems.

Machine Learning Job Roles

3 Types of Machine Learning

- Labeled Data
- Direct Feedback
- Predict outcome / future

nsupervised Learning

- No labels
- No feedback
- Find hidden structure in data

ment Learning

- Decision Process
- Reward system
- · Learn series of actions

A BEGINNER'S GUIDE TO MACHINE LEARNING WORKFLOW

Project setup

1. Understand the business goals

Speak with your stakeholders and deeply understand the business goal behind the model being proposed. A deep understanding of your business goals will help you scape the necessary technical solution, data sources to be collected. how to evaluate model performance and more

2. Choose the solution to your problem

Once you have a deep understanding of your problem - focus on which category of models drives the highest impact.

Data Preparation

1. Data Collection

Collect all the data your for your models, whether from your organization,

2. Data Cleaning

Turn the messy raw data into clean, tidy data ready for analysis.

3. Feature Engineering

Manipulate the datasets create variables (features). prediction accuracy. Create the same features in both the training set and the testing set.

4. Split the data

Randomly divide the records in the dataset into a training set and a testing set. For a more reliable assessment of model performance generate mulitple training and testing set using cross-validation

Modeling

1. Hyperparameter tuning

For model, use hyperparameter tuning techniques to improve model performance.

2. Train your models

For model, use hyperparameter tuning techniques to improve model performance.

3. Make Predictions

Make predictions on the testing set.

4. Assess model Performance

For each model, calculate performance metrics on the testing set such as accuracy, recall and precision.

Deployment

1. Deploy the model Embed the model you

chose in dashboards, applications, or whoever you need it.

0

2. Monitor model performance

Regularly test the performance of your model as you data changes to avoid model drift.

3. Improve your model

Continuously iterate and improve you model post-deployment. Replace your model with an updated version to improve performance.

ML TERMS EXPLAINED

Algorithm

A set of instructions that tells a computer how to solve a specific problem step by step.

Supervised Learning

A type of machine learning where the computer learns provided by humans.

Label

The correct answer o output that the model is trying to learn and predict from the data

Clustering

Grouping similar data points together without predefined labels, like organizing books by topic. 🗸

Data

Information collected and used by computers to learn, make decisions, and predict outcomes

Unsupervised Learning

A type of machine learning ere the computer finds patterns in data without any

Overfitting

When a model learns too much from the training data and performs poorly

Accuracy

A measure of how often the model's predictions are correct, shown as a percentage.

Model

A computer's representation or understanding of data used to make predictions or decisions

Neural Netwo

Classification

The process of sorting data into categories or groups, like sorting animals into types.

Bias

A systematic error in the model's predictions, often due to assumptions in the learning process.

Training

The process of teaching a computer by showing it many examples so it can learn patterns.

Feature

Feature
An individual measurable property or characteristic of the data used to make predictions.

Regression

A type of prediction who the goal is to predict a continuous number, like forecasting temperatures.

Validation

The process of checking how well the model works with new data, ensuring it can generalize to unseen data

