MAT473 Homework 3

Throughout we assume that R is a commutative ring with identity $1 \neq 0$.

1. Recall that $S^{-1}R$ is defined to be the set of equivalence classes in $R \times S$ with the equivalence relation $(r,s) \sim (r',s')$ if there exists an element $t \in S$ such that t(rs'-r's)=0. Prove that the multiplication $(r_1,s_1)\cdot (r_2,s_2)=(r_1r_2,s_1s_2)$ is a well-defined operation on $S^{-1}R$. Let $(r,s) \sim (r',s')$ and choose t so that t(rs'-r's)=0. Then we compute:

$$(r,s)(a,b) = (ra,sb)$$

 $(r',s')(a,b) = (r'a,s'b).$

I claim that $(r'a, s'b) \sim (ra, sb)$. Indeed, $t(r'asb - ras'b) = t(r's - rs')ab = 0 \cdot ab = 0$. So multiplication is well-defined on $S^{-1}R$.

2. Define Φ to be the function which takes a subset of R to a subset of $S^{-1}R$ in the following way:

$$\Phi(I) = \{ (x, s) \mid x \in I, s \in S \}.$$

- Prove that if I is an ideal in R, then $\Phi(I)$ is an ideal in $S^{-1}R$. Suppose that I is an ideal in R. Let $(x,s), (y,s') \in \Phi(I)$ and $(r,s'') \in S^{-1}R$. By definition, $x,y \in I$. Then (x,s) + (r,s'')(y,s') = (xs' + sry, ss's'') is in $\Phi(I)$ since $xs' \in I$ and $sry \in I$. Also $(0,1) \in \Phi(I)$ since $0 \in I$.
- Prove that if P is a prime ideal that does not intersect S, and S has no zero divisors, then $\Phi(I)$ is a prime ideal in $S^{-1}R$. Suppose that P is a prime ideal not intersecting S and that S has no zero divisors. Suppose that $(x,s)(y,s') \in \Phi(I)$. Then $(xy,ss') \in \Phi(I)$, i.e., there is an element $r \in I$ such that $(xy,ss') \sim (r,s'')$ for some s''. This implies there exists a $t \in S$ such that t(xys''-rss')=0. Since S has no zero-divisors, $xys''=rss' \in I$ since $r \in I$. Since $s'' \notin I$, this implies $xy \in I$, so either $x \in I$ or $y \in I$.
- 3. Suppose that $S \subset R$ is a multiplicative set in R. Prove that the homomorphism $\phi: R \to S^{-1}R$ is injective if and only if S contains no zero-divisors. Suppose that ϕ is injective and that $s \in S$ such that rs = 0 for some $r \in R$.

$$(0,1) = \phi(0)$$
$$= \phi(rs)$$
$$= (rs, 1).$$

Since $s \in S$, there is an element (1, s) in $S^{-1}R$ with the property that (1, s)(s, 1) = (s, s) = (1, 1) (the latter equality due to the fact that t(s - s) = 0 for any t we choose). Multiplying both sides of the equation by this element yields

$$(0,1)(1,s) = (r,1)(s,1)(1,2)$$
$$(0,s) = (r,1).$$

Hence, $\phi(r)=0$, which implies r=0. Thus, s is not a zero-divisor. Next, suppose that S has a zero divisor t such that tr=0 for some non-zero $r\in R$. Then I claim that (r,1)=(0,1) in $S^{-1}R$. Indeed, $t(r\cdot 1-0\cdot 1)=tr=0$. So $\phi(r)=(r,1)=0$. Hence, ϕ is not injective.

Name:

MAT473 Homework 3

4. Let p be a prime integer, and consider the ring $R = \mathbb{Z}$. Let $S = \mathbb{Z} \setminus p\mathbb{Z}$. The ring $S^{-1}R$ is called the localization of \mathbb{Z} at p. Find all of the ideals of this ring, and describe the maximal ideal (there is only one). We proved in class that Φ from problem 2 is a bijection between ideals in R not intersecting S and ideals in $S^{-1}R$. Let $n\mathbb{Z}$ be an ideal in \mathbb{Z} such that $n\mathbb{Z} \cap S = \emptyset$. Then

$$n\mathbb{Z} \cap (\mathbb{Z} \setminus p\mathbb{Z}) = \emptyset$$

$$\Rightarrow n\mathbb{Z} \setminus n\mathbb{Z} \cap p\mathbb{Z} = \emptyset$$

$$\Rightarrow n\mathbb{Z} \setminus np\mathbb{Z} = \emptyset$$

$$\Rightarrow n = kp\exists k \in \mathbb{Z}.$$

So the ideals in $S^{-1}R$ are the ideals generated by a multiple of p. These are all contained in $p\mathbb{Z}$, so this is the unique maximal ideal.

- 5. This problem is to help us look ahead. Let $\varphi(n)$ denote the number of units in $\mathbb{Z}/n\mathbb{Z}$. (From previous homework, we know this is the same as computing the number of integers $1 \leq k < n$ that are relatively prime to n.)
 - (a) Compute $\varphi(p^k)$ when p is prime and k is a non-negative integer. Write the element $m \in \mathbb{Z}/p^k\mathbb{Z}$ as $\sum_{i=0}^{k-1} a_i p^i$ where $a_i \in \{0, \dots, p-1\}$. Then m is a unit if and only if $a_0 \neq 0$. This yields $(p-1)p^{k-1}$ elements.
 - (b) Compute $\varphi(n)$ for $n \in \{6, 10, 12, 18, 24, 36\}$ and make a conjecture about the relationship between $\varphi(n)$ and the prime power decomposition of n. Good guess: $\varphi(n) = \prod_i \varphi(p_i^{k_i})$ when $n = \prod_i p_i^{k_i}$.

Here I'll recall the universal property that defines a product, and introduce a new one that defines the coproduct.

Definition: Let X_1, X_2 be objects in a category \mathcal{C} . Define $X_1 \prod X_2$ to be the object with the following universal property: There are morphisms $\pi_i: X_1 \prod X_2 \to X_i$ such that if there is any other object T with morphisms $\varphi_i: T \to X_i$ for $i \in \{1, 2\}$, then there is a unique morphism $\Psi: T \to X_1 \times \prod X_2$ such that $\pi_i \circ \Psi = \varphi_i$.

This is conveniently captured in the diagram to the right, and is read to mean that you start with the object $X_1 \prod X_2$ and its morphisms to X_1 and X_2 set in stone. Any time there is an object T with morphisms as in the diagram, there is a morphism Ψ that can fill in that dotted arrow so that the diagram commutes, meaning any two ways to get to the same place produce the same morphism.

6. Prove that if R_1 and R_2 are rings, then the product ring $\{(r_1, r_2) \mid r_1 \in R_1, r_2 \in R_2\}$ is actually the object $R_1 \prod R_2$. I.e., verify that it satisfies the universal

Name:

MAT473 Homework 3

property. Clearly we have maps $f_i: R_1 \times R_2 \to R_i$ given by $f_i(r_1, r_2) = r_i$. Now suppose that T is a ring with homomorphisms $p_i: T \to R_i$. Then define $\Phi: T \to R_1 \times R_2$ via $\Phi(t) = (p_1(t), p_2(t))$. We verify: $\pi_i(\Phi(t)) = p_i(t)$, so the diagram commutes. Furthermore, if $f(t) = (f_1(t), f_2(t))$, then $\pi_i(f(t)) = f_i(t)$, so in order for the commutativity to hold, $f_i(t) = p_i(t)$. Hence, $\Phi = f$, so Φ is the unique morphism making the commutativity hold.

7. Consider now the category \mathcal{C} whose objects are positive integers and so that $\operatorname{Mor}_{\mathcal{C}}(n,m) = \begin{cases} \{m/n\} & \text{if } n \mid m \\ \emptyset & \text{otherwise} \end{cases}$. Given two integers n,m, compute $m \prod n$ in this context (i.e., what integer has the desired universal property).

If you really like the last problem, awesome. You can try your hand at a new one. This is just for the superfans. Try to write what you think the universal property of the coproduct should be given just the diagram:

Then, compute $m \coprod n$ for objects m, n in \mathcal{C} . Suppose that $m, n \in \mathbb{Z}_{>0}$. I claim that $m \coprod n = \gcd(m, n)$. First, since $\gcd(m, n) \mid m$ and $\gcd(m, n) \mid n$, we have morphisms $\pi_m : \gcd(m, n) \to m$ and $\pi_n : \gcd(m, n) \to n$ (encoded as $m/\gcd(m, n)$) and $n/\gcd(m, n)$). Now suppose that there is an integer t and morphisms $p_m : t \to m$ and $p_n : t \to n$. By definition, then, $t \mid m$ and $t \mid n$ (and they are encoded as m/t and n/t). If this is the case, then $t \mid \gcd(m, n)$, so there is a morphism $\Phi : t \to \gcd(m, n)$ (encoded as $\gcd(m, n)/t$). Note that $\pi_m \circ \Phi$ is encoded as $(m/\gcd(m, n))(\gcd(m, n)/t) = m/t$ and similarly for n. Thus, $\pi_\star \Phi = p_\star$, and since the morphism sets here are singletons, Φ is unique.

Name: _____