

Discrete Mathematics LECTURE 5 Sequences & Summations

Assistant Professor Gülüzar ÇİT

Outline

- ➤ Sequences
 - ➤ Geometric Progression
 - ➤ Arithmetic Progression
 - ➤ Recurrence Relations
- **≻**Summations
- **≻** References

- ordered lists of elements
- discrete structure used to represent an ordered list.
 - \geq 1, 2, 3, 5, 8 is a sequence with five terms
 - \triangleright 1, 3, 9, 27, 81, . . . , 3n, . . . is an **infinite** sequence.
- \triangleright the notation $\{a_n\}$ is used to describe the sequence.
 - $\triangleright a_n$ represents an individual term of the sequence $\{a_n\}$
- described by listing the terms of the sequence in order of increasing subscripts
- **Example:** Consider the sequence $\{a_n\}$, where $a_n = \frac{1}{n}$ for n=1,2,3,...
- \succ The list of the terms of this sequence, beginning with a_1

$$a_1 = 1, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3}, \ a_4 = \frac{1}{4}, \dots$$

▶ Geometric Progression

- \triangleright a sequence of the form $a, ar, ar^2, ..., ar^n, ...$
 - > a is the initial term
 - >r is the common ratio
 - >a and r are real numbers
- \triangleright discrete analogue of the exponential function $f(x) = ar^x$
- **Example:** Consider the sequence $\{b_n\}$, where $b_n = (-1)^n$ for n=0,1,2,3,...
- ➤a geometric progression with initial term of 1 and common ratio of -1
- \succ the list of the terms of this sequence, beginning with b_0

$$\triangleright b_n = 1.(-1)^n \implies b_0 = 1, \ b_1 = -1, \ b_2 = 1, \ b_3 = -1, \dots$$

>Arithmetic Progression

- \triangleright a sequence of the form a, a+d, a+2d, ..., a+nd, ...
 - > a is the initial term
 - **>** d is the common difference
 - >a and d are real numbers
- If discrete analogue of the exponential function f(x) = dx + a
- Example: Consider the sequence $\{s_n\}$, where $s_n = -1 + 4n$ for n=0,1,2,3,...
- ➤ a arithmetic progression with initial term of -1 and common difference of 4
- \triangleright the list of the terms of this sequence, beginning with s_0

$$rac{rac}{rac} s_n = -1 + 4n \implies s_0 = -1, \ s_1 = 3, \ s_2 = 7, \ s_3 = 11, \dots$$

➤ Recurrence Relation

- \blacktriangleright an equation that express a_n in terms of one of more of the previous terms of the sequence for the sequence $\{a_n\}$
 - $ightharpoonup \{a_n\}$ is $a_0, a_1, \ldots, a_{n-1}$ for all integers n with $n>n_0$ where n_0 is a nonnegative integer
- > said to recursively define a sequence
- **Example:** Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n=1,2,3,... and suppose that $a_0 = 2$. What are a_1, a_2, a_3 ?

$$a_1 = a_0 + 3 = 2 + 3 \implies a_1 = 5$$

$$a_2 = a_1 + 3 = 5 + 3 \implies a_2 = 8$$

$$a_3 = a_2 + 3 = 8 + 3 \implies a_3 = 11$$

➤ Recurrence Relation...

- The initial conditions for a recursively defined sequence specify the terms that precede the first term where the recurrence relation takes effect
- **Example:** The Fibonacci sequence, $f_0, f_1, f_2, ...$ is defined by the initial conditions $f_0 = 0$, $f_1 = 1$ and the recurrence relation $f_n = f_{n-1} + f_{n-2}$ for n=2,3,4... Find the Fibonacci numbers f_2, f_3, f_4, f_5 and f_6 .

$$f_2 = f_1 + f_0 = 1 + 0 \implies f_2 = 1$$

 $f_3 = f_2 + f_1 = 1 + 1 \implies f_3 = 2$
 $f_4 = f_3 + f_2 = 2 + 1 \implies f_4 = 3$
 $f_5 = f_4 + f_3 = 3 + 2 \implies f_5 = 5$
 $f_6 = f_5 + f_4 = 5 + 3 \implies f_6 = 8$

Recurrence Relation...

Example: A couple of rabbits were placed in a cage surrounded by walls. Assuming that each pair of rabbit gives birth to a new pait of rabbits after a month, each new pair takes a month to mature, and the rabbits do not die, how many pairs of rabbits will there be within the walls at the end of 100 months?

Recurrence Relation...

Example: A couple of rabbits were placed in a cage surrounded by walls. Assuming that each pair of rabbit gives birth to a new pair of rabbits after a month, each new pair takes a month to mature, and the rabbits do not die, how many pairs of rabbits will there be within the walls at the end of 100 months?...

month	number of mature couples	number of young couples	number of total couples
0	0	1	1
1	1	0	1
2	1	1	2
3	1	2	3
4	2	3	5
5	3	5	8

Recurrence Relation...

Example: A couple of rabbits were placed in a cage surrounded by walls. Assuming that each pair of rabbit gives birth to a new pait of rabbits after a month, each new pair takes a month to mature, and the rabbits do not die, how many pairs of rabbits will there be within the walls at the end of 100 months?...

$$R_0 = 1$$
 $R_1 = 1$
...
 $R_n = R_{n-1} + R_{n-2}$

➤ Recurrence Relation...

- >closed formula
 - right an explicit formula together within th inital conditions for the terms of the sequence
- **Example:** Determine whether the sequence $\{a_n\}$, where $a_n = 3n$ for every nonnegative integer n, is a solution of the recurrence relation $a_n = 2a_{n-1} a_{n-2}$ for n=2,3,4,...
- $(a_n) \Rightarrow a_n = 3n \Rightarrow 2a_{n-1} a_{n-2} = 2(3(n-1)) 3(n-2) = 3n$
- Therefore, $\{a_n\}$, where $a_n=3n$ is a solution of the recurrence relation

➤ Recurrence Relation...

- *≻***iteration**
 - >A strightforward method for solving recurrence relations
 - iterate, or repeatedly use recurrence relation
 - ➤ Two basic approaches
 - > forward substitution
 - Finding the successive terms beginning with the inital consition and ending with a_n
 - bacward substitution
 - beginning with an a_n and iterated to express it in terms of falling terms of the sequence until finding it in terms of the first terms of the sequence

➤ Recurrence Relation...

Example: Solve the recurrence relation for $\{a_n\}$, where $a_n = a_{n-1} + 1$ with an initial condition of 2 for every nonnegative integer

> with forward substition

$$a_1 = 2$$

 $a_2 = 2 + 3$
 $a_3 = (2 + 3) + 3 = 2 + 3 * 2$
 $a_4 = (2 + 3 * 2) + 3 = 2 + 3 * 3$
...
$$a_n = a_{n-1} + 3 = (2 + 3 * (n - 2)) + 3 = 2 + 3(n - 1)$$

➤ Recurrence Relation...

Example: Solve the recurrence relation for $\{a_n\}$, where $a_n = a_{n-1} + 1$ with an initial condition of 2 for every nonnegative integer...

with backward substition

$$a_n = a_{n-1} + 3$$

$$= (a_{n-2} + 3) + 3$$

$$= (a_{n-3} + 3) + 3 * 2$$
...
$$= a_2 + 3(n - 2)$$

$$= (a_1 + 3) + 3(n - 2)$$

$$= a_1 + 3(n - 1)$$

$$= 2 + 3(n - 1)$$

▶ Recurrence Relation...

Example: Suppose that a person deposits \$10.000 in a saving account at a bank yielding 11% per year with interest compunded annually. How much will be in the account after 30 years?

$$P_1 = P_0 * (1.11)$$

 $P_2 = P_1 * (1.11) = P_1 * (1.11)^2$
 $P_3 = P_2 * (1.11) = P_0 * (1.11)^3$
...
$$P_n = P_0 * (1.11)^n$$

$$P_{30} = 10000 * (1.11)^{30} \implies $228.922,97$$

Recurrence Relation...

- **≻**Example:
 - ➤ Hanoi Towers
 - ➤a maths game/puzzle
 - was invented and released in 1883 by the French mathematician Edouard Lucas
 - consists of three poles and *n* discs of different sizes
 - you can transfer these discs to any pole
 - begins with the smallest disc on top of the first pole whose discs are lined up from smallest to largest

(B) Middle

(C) Goal

(A) Start

Recurrence Relation...

- **≻Example:** ...
 - ➤ Hanoi Towers...
 - ➤ the goal of the game is to move all the discs from the first pole to the last according to the following rules:
 - only one disc can be moved per move.
 - rightharpooler each move consists of taking the top disc from the pole and moving it to another pole.
 - no disc can be placed on a smaller disc.

➤ Recurrence Relation...

- **≻**Example: ...
 - ➤ Hanoi Towers...
 - minimum number of steps required for three discs

Recurrence Relation...

≻Example: ...

➤ Hanoi Towers...

$$\begin{split} H_1 &= 1 \\ H_n &= 2(2H_{n-2}+1)+1=2^2H_{n-2}+2+1 \\ H_n &= 2^2(2H_{n-3}+1)+2+1=2^3H_{n-3}+2^2+2+1 \\ \dots \\ H_n &= 2^{n-1}H_1+2^{n-2}+2^{n-3}+\dots+2+1 \\ H_n &= 2^{n-1}+2^{n-2}+2^{n-3}+\dots+2+1 \\ H_n &= 2H_{n-1}+1 \end{split}$$

1 disc ⇒ (2) - 1 = 1 step
2 discs ⇒ (2 * 2) - 1 = 3 steps
3 discs ⇒ (2 * 2 * 2) - 1 = 7 steps
4 discs ⇒ (2 * 2 * 2 * 2) - 1 = 15 steps
5 discs ⇒ (2 * 2 * 2 * 2 * 2) - 1 = 31 steps
...
n discs ⇒
$$2^n - 1$$

Summation

- > the addition of the terms of a sequence
- begins by describing the notation used to express the sum of the terms from the sequence $\{a_n\}$
- \triangleright the notation is: $\sum_{j=m}^{n} a_j$ or $\sum_{m \leq j \leq n} a_j$
 - $\triangleright \Sigma$ denotes the summation
 - $\triangleright j$ is the index of the summation
 - $\triangleright m$ is the lower limit of the summation
 - $\triangleright n$ is the upper limit of the summation
 - read as the sum from j = m to j = n of a_j
 - \triangleright represents $a_m + a_{m+1} + \cdots + a_n$

Summation...

- **Example:** Use summation notation to Express the sum of the first 100 items of the sequence $\{a_j\}$ where $a_j = 1/j$ for j = 1,2,3,...
- The lower limit for the index of summation is 1, and the upper limit is 100. So, the sum is $\sum_{i=1}^{100} \frac{1}{j}$
- **Example:** What is the value of $\sum_{j=1}^{5} j^2$?
- $\sum_{i=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$

Summation...

➤ Shifting a summation

$$\triangleright$$
 Example: $\sum_{i=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$

Double summation

Example: What is the value of $\sum_{i=1}^{4} \sum_{j=1}^{3} ij$?

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i + 2i + 3i)$$
$$= \sum_{i=1}^{4} 6i = 6 * \sum_{i=1}^{4} i$$
$$= 6(1 + 2 + 3 + 4) = 60$$

Summation...

Example: What is the value of $\sum_{k=50}^{100} k^2$?

$$\sum_{k=1}^{100} k^2 = \sum_{k=1}^{49} k^2 + \sum_{k=50}^{100} k^2$$
 ve $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

$$\Rightarrow \sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 + \sum_{k=1}^{49} k^2$$

$$\sum_{k=50}^{100} k^2 = \frac{100*101*201}{6} - \frac{49*50*99}{6} = 338350 - 40425 = 297925$$

References

- ➤ K.H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, Mc Graw Hill, 2012.
- R.P. Grimaldi, Discrete and Combinatorial Mathematics, An Applied Introduction, Fifth Edition, Pearson, 2003.
- ➤S.S. Epp, Discrete Mathemtics with Applications, Fouth Edition, 2010.
- ➤ N. Yurtay, "Ayrık İşlemsel Yapılar" Lecture Notes, Sakarya University

