Cosmogenic Rejection Studies

Update 11.10.2020

Recap

- Previous Approach:
 - Preliminary cut: everything < 5 PE detected => Ar39
 - Further Selection: CNN Model
- Criticities:
 - Interpretability of CNN Model: it results as a black-box
 - Feasibility of implementation: it would need a cluster

Can we find a "simpler" model to achieve comparable performance?

Preliminary Cuts on Mu vs 1Ar39

- Comparison:
 - Cut on NPE (tot)
 - Cut on Nr Outer Slices wt >=1 PE (Nr Active Slices)
- Comparable Efficiency:
 - ~85%
- **Reduction** of **FPR** on 1 Ar39:
 - From 8.7% to 2.3%

Random Forest

- Train a RF model:
 - Signal Class: muons instances
 - Background Class: pileup of 1, ..., 5 Ar39
 - Hyperparameters:
 - 10 DTree estimators:
 - max depth = 5
 - min samples split = 100
 - min samples leaf = 100
- Why RF?
 - decision rules = if-then-else
 - interpretability = understand its logic
 - ensemble = parallelization

Performance RF on Validation Set: Per-Class "Muon" Classification Rate

Note: we are not considering the combination with the preliminary cut

Comparison Cut4NAS+RF vs Cut5PE+CNN

- Test Set:
 - Data from previous run (07.2020)
 - 1M Muons
 - 2M Ar39, then aggregated in pileups
 - 100% unseen data
- Evaluation: TPR, FPR, ROC
- Issue: FPR includes several Ar39 classes of events with different frequency

- FPR (weighted):
 - W₁ * FPR₁ + W₂ * FPR₂ + ... + W₅ * FPR₅
 - $w_i = pr(i) / sum(pr(j), j=1...5)$
 - pr(i) = Poisson(i decays | T=10us)

Cut4NAS+RF vs Cut5PE+CNN on Test Set

- Similar ROC Curve
- Threshold=0.50:
 - CNN+: TPR: 84.7%, FPR: 4.7%
 - RF+: TPR: 82.7%, FPR: 0.5%

Evaluation Cut4NAS+RF on Test Set

Conclusions

- The new approach results more effective w.r.t. Ar39 detection
- It is simpler to implement and its logic can be analysed

- Next Steps:
 - Optimization of the model (reduce nr features, reduce redundancy in dtrees)
 - Implementation in C code to test its performance