Injectivité, surjectivité et bijectivité

Exercice 1 [01501] [correction]

Soient $f: \mathbb{N} \to \mathbb{N}$ et $q: \mathbb{N} \to \mathbb{N}$ les applications définies par :

$$\forall k \in \mathbb{N}, f(k) = 2k \text{ et } g(k) = \begin{cases} k/2 & \text{si } k \text{ est pair} \\ (k-1)/2 & \text{si } k \text{ est impair} \end{cases}$$

- a) Etudier l'injectivité, la surjectivité et la bijectivité de f et de g.
- b) Préciser les applications $g \circ f$ et $f \circ g$.

Etudier leur injectivité, surjectivité et bijectivité.

Exercice 2 [01502] [correction]

Soient a, b et c trois réels tels que $c \neq 0$ et $a^2 + bc \neq 0$.

On considère la fonction $f: \mathbb{R} \setminus \{a/c\} \to \mathbb{R} \setminus \{a/c\}$ définie par $f(x) = \frac{ax+b}{cx-a}$. Justifier que l'application f est bien définie.

Calculer $f \circ f$, en déduire que f est une permutation dont on déterminera l'application réciproque.

Exercice 3 [01503] [correction]

Soit $f: \mathbb{N} \to \mathbb{Z}$ définie par

$$f(n) = \begin{cases} n/2 & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{sinon} \end{cases}$$

Montrer que f est bien définie et bijective.

Exercice 4 [01504] [correction]

Soient $f:E \to F$ et $g:F \to G$. Etablir les implications suivantes :

- a) $g \circ f$ injective $\Rightarrow f$ injective.
- b) $g \circ f$ surjective $\Rightarrow g$ surjective
- c) $g \circ f$ injective et f surjective $\Rightarrow g$ injective.
- d) $q \circ f$ surjective et q injective $\Rightarrow f$ surjective.

Exercice 5 [01505] [correction]

Soient E, F, G trois ensembles, $f: E \to F$, $g: F \to G$ et $h: G \to E$ Etablir que si $h \circ g \circ f$ est injective et que $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives alors f, g et h sont bijectives. Exercice 6 [01506] [correction]

Soient E un ensemble et $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si, et seulement si, f est surjective.

Exercice 7 [01507] [correction]

Soient $f: E \to F$ et $g: F \to E$ deux applications telles que $f \circ g \circ f$ soit bijective. Montrer que f et g sont bijectives

Exercice 8 [01508] [correction]

Soient E, F, G trois ensembles, $f_1, f_2 : E \to F$ et $g : F \to G$. On suppose $g \circ f_1 = g \circ f_2$ et g injective. Montrer que $f_1 = f_2$.

Exercice 9 [01509] [correction]

Soient E, F, G trois ensembles, $f: E \to F$ et $g_1, g_2: F \to G$. On suppose f surjective et $g_1 \circ f = g_2 \circ f$. Montrer que $g_1 = g_2$.

Exercice 10 [01510] [correction]

Soit $f: E \to I$ une application surjective. On pose, pour tout $i \in I$, $A_i = f^{-1}(\{i\})$.

Montrer que les A_i sont non vides, deux à deux disjoints, de réunion égale à E.

Exercice 11 [01511] [correction]

Soient A et B deux parties d'un ensemble E et

$$f: \left\{ \begin{aligned} \mathcal{P}\left(E\right) &\rightarrow \mathcal{P}\left(A\right) \times \mathcal{P}\left(B\right) \\ X &\mapsto \left(X \cap A, X \cap B\right) \end{aligned} \right.$$

Montrer que :

- a) f est injective si, et seulement si, $A \cup B = E$
- b) f est surjective si, et seulement si, $A \cap B = \emptyset$.

Corrections

Exercice 1 : [énoncé]

a) On a

f est injective car $2k = 2k' \Rightarrow k = k'$ mais non surjective car les nombres impairs ne sont pas des valeurs prises.

g est surjective car 2y est un antécédent de y mais non injective car un nombre pair et l'impair qui le suit prennent même valeur par q.

b) D'une part

$$(g \circ f)(k) = k$$

donc $q \circ f = \mathrm{Id}_{\mathbb{N}}$.

D'autre part

$$(f \circ g)(k) = \begin{cases} k & \text{si } k \text{ est pair} \\ k - 1 & \text{sinon} \end{cases}$$

 $g \circ f$ est bijective. $f \circ g$ n'est ni injective, ni surjective.

Exercice 2 : [énoncé]

f est bien définie sur $\mathbb{R}\setminus\{a/c\}$ car le dénominateur ne s'y annule pas.

$$f(x) = \frac{a}{c} \Leftrightarrow (ax+b)c = a(cx-a) \Leftrightarrow a^2 + bc = 0$$

qui est exclu, donc f est à valeurs dans $\mathbb{R}\setminus\{a/c\}$.

Par calculs

$$(f \circ f)(x) = \cdots = x \text{ pour tout } x \in \mathbb{R} \setminus \{a/c\}$$

Puisque $f \circ f = \mathrm{Id}_{\mathbb{R} \setminus \{a/c\}}$, f est une involution, c'est donc une permutation et $f^{-1} = f$.

Exercice 3 : [énoncé]

Soit $n \in \mathbb{N}$.

Si n est pair alors $f(n) = n/2 \in \mathbb{Z}^+$ et si n est impair alors

 $f(n) = -(n+1)/2 \in \mathbb{Z}^{-*}$. Dans les deux cas $f(n) \in \mathbb{Z}$.

Soient $n, n' \in \mathbb{N}$. Supposons f(n) = f(n').

Compte tenu de la remarque précédente, n et n' ont nécessairement même parité. Si n et n' sont pairs alors n/2 = n'/2 donc n = n'.

Si n et n' sont impairs alors -(n+1)/2 = -(n'+1)/2 donc n = n'.

Ainsi f est injective.

Soit $m \in \mathbb{Z}$.

Si $m \ge 0$ alors pour $n = 2m \in \mathbb{N}$ on a $f(n) = \frac{2m}{2} = m$. Si m < 0 alors pour $n = -2m - 1 \in \mathbb{N}$ on a $f(n) = \frac{2m}{2} = m$.

Ainsi f est surjective.

Finalement f est bijective.

Exercice 4 : [énoncé]

a) Supposons $q \circ f$ injective.

Soient $x, x' \in E$. Si f(x) = f(x') alors g(f(x)) = g(f(x')). Or $g \circ f$ injective, donc x = x'.

Ainsi f injective.

b) Supposons $q \circ f$ surjective.

Soit $z \in G$. Il existe $x \in E$ tel que z = g(f(x)). Pour $y = f(x) \in F$, on a g(y) = z. Ainsi q surjective.

c) Supposons $g \circ f$ injective et f surjective.

Par a), on a f injective et donc f bijective. Introduisons f^{-1} .

 $q = (q \circ f) \circ f^{-1}$ est injective par composition d'applications injectives.

d) Supposons $g \circ f$ surjective et g injective.

Par b), on a q surjective donc q bijective. Introduisons q^{-1} .

 $f = q^{-1} \circ (q \circ f)$ est surjective par composition d'applications surjectives.

Exercice 5 : [énoncé]

Supposons $h \circ q \circ f$ injective et $q \circ f \circ h$ ainsi que $f \circ h \circ q$ surjectives.

Puisque $(h \circ q) \circ f$ est injective, on a f injective.

Puisque $f \circ (h \circ q)$ est surjective, on a f surjective.

Par suite f est bijective et on peut introduire f^{-1} .

Par composition $h \circ q = (h \circ q \circ f) \circ f^{-1}$ est injective et par suite q est injective.

D'autre part $g \circ f \circ h$ est surjective et donc g aussi. Finalement g est bijective.

Par composition $h = (h \circ q) \circ q^{-1}$ est injective et $h = f^{-1} \circ (f \circ h \circ q) \circ q^{-1}$ est surjective donc h est bijective.

Exercice 6 : [énoncé]

Supposons f injective.

Soit $y \in E$. On a $f((f \circ f)(y)) = f(y)$, or f est injective donc $(f \circ f)(y) = y$.

Pour $x = f(y) \in E$ on a f(x) = f(f(y)) = y. Finalement f est surjective.

Supposons f surjective.

Soient $x, x' \in E$ tels que f(x) = f(x').

Puisque f est surjective, $f \circ f$ l'est aussi et donc $\exists a, a' \in E$ tels que $x = (f \circ f)(a)$ et $x' = (f \circ f)(a')$.

La relation f(x) = f(x') donne alors $(f \circ f \circ f)(a') = (f \circ f \circ f)(a')$ d'où f(a) = f(a') puis x = f(f(a)) = f(f(a')) = x'. Finalement f est injective.

Exercice 7: [énoncé]

Par l'exercice précédent, $f \circ g \circ f$ bijective implique f injective et f surjective. Ainsi f est bijective et on peut introduire f^{-1} .

 $g = f^{-1} \circ (f \circ g \circ f) \circ f^{-1}$ est bijective par composition d'applications bijectives.

Exercice 8: [énoncé]

 $\forall x \in E \text{ on a } (g \circ f_1)(x) = (g \circ f_2)(x) \text{ i.e. } g(f_1(x)) = g(f_2(x)) \text{ donc } f_1(x) = f_2(x).$ Ainsi $f_1 = f_2$.

Exercice 9 : [énoncé]

 $\forall y \in F, \exists x \in E \text{ tel que } y = f(x) \text{ et alors } g_1(y) = (g_1 \circ f)(x) = (g_2 \circ f)(x) = g_2(y)$ donc $g_1 = g_2$.

Exercice 10 : [énoncé]

Puisque f est surjective, les A_i sont non vides.

Si $A_i \cap A_j \neq \emptyset$ alors pour $x \in A_i \cap A_j$ on a f(x) = i et f(x) = j donc i = j.

Par contraposée : $i \neq j \Rightarrow A_i \cap A_j = \emptyset$.

Soient $x \in E$ et i = f(x). On a $x \in A_i$. Ainsi $E \subset \bigcup_{i \in I} A_i$ puis l'égalité.

Exercice 11 : [énoncé]

a) Supposons f injective. $f(E) = (A, B) = f(A \cup B)$ donc $E = A \cup B$.

Supposons $A \cup B = E$. Soient $X, Y \in \mathcal{P}(E)$.

Si f(X) = f(Y) alors $(X \cap A, X \cap B) = (Y \cap A, Y \cap B)$ donc $X = X \cap E = X \cap (A \cup B) = (X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B) = Y \cap (A \cup B) = Y \cap E = Y$. Ainsi f est injective.

b) Supposons f surjective. L'élément (A,\emptyset) possède un antécédent $X\in\mathcal{P}(E)$.

On a $A \cap B = (X \cap A) \cap B = A \cap (X \cap B) = A \cap \emptyset = \emptyset$.

Supposons $A \cap B = \emptyset$.

Soit $(A', B') \in \mathcal{P}(A) \times \mathcal{P}(B)$. Pour $X = A' \cup B'$, on a

 $f(X) = ((A' \cap A) \cup (B' \cap A), (A' \cap B) \cup (B' \cap B)) = (A', B') \operatorname{car} A' \cap A = A',$ $B' \cap A = \emptyset.$