# Lecture 14 Neural Networks: Part II

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. April. 11th, 2019





#### Outline

- Vanishing gradients
  - What causes it?
  - Activation function
  - Xavier and He initialization
  - Batch normalization

Optimization algorithms

Implementing DNN in TensorFlow

## Acknowledgments

 Michael Nielsen for an excellent explanation of the vanishing gradients

(<a href="http://neuralnetworksanddeeplearning.com/chap-5.html">http://neuralnetworksanddeeplearning.com/chap-5.html</a>)

#### A shallow neural network



#### A shallow neural network



#### A shallow neural network



# A deep neural network



## Another deep neural network

input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Image source: http://neuralnetworksanddeeplearning.com/chap5.html

# Why deep representation?



Credit: Andrew Ng

## Forward propagation



## A different representation



## Forward Propagation



## **Back Propagation**

$$\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial g_2} \frac{\partial g_2}{\partial f_2} \frac{\partial f_2}{\partial g_1} \frac{\partial g_1}{\partial f_1} \frac{\partial f_1}{\partial w^{[1]}}$$

$$x \longrightarrow x^{[1]} \longrightarrow a^{[1]} \longrightarrow a^{[1]} \longrightarrow z^{[2]} \longrightarrow a^{[2]} \longrightarrow L(a^{[2]})$$

$$= f_1(w^{[1]}, b^{[1]}) = g_1(z^{[1]}) \longrightarrow f_2(w^{[2]}, a^{[1]}, b^{[2]}) = g_2(z^{[2]})$$

# Gradient descent (for a 2-layer NN)

- Initialize  $w^{[1]}, b^{[1]}, w^{[2]}, b^{[2]}$
- While (not converge):

• compute 
$$\frac{\partial L}{\partial w^{[1]}}$$
,  $\frac{\partial L}{\partial b^{[1]}}$ ,  $\frac{\partial L}{\partial w^{[2]}}$ ,  $\frac{\partial L}{\partial b^{[2]}}$ 

• 
$$w^{[1]} = w^{[1]} - \alpha \frac{\partial L}{\partial w^{[1]}}$$

• 
$$b^{[1]} = b^{[1]} - \alpha \frac{\partial L}{\partial b^{[1]}}$$

• 
$$b^{[1]} = b^{[1]} - \alpha \frac{\partial L}{\partial b^{[1]}}$$
  
•  $w^{[2]} = w^{[2]} - \alpha \frac{\partial L}{\partial w^{[2]}}$   
•  $b^{[2]} = b^{[2]} - \alpha \frac{\partial L}{\partial b^{[2]}}$ 

• 
$$b^{[2]} = b^{[2]} - \alpha \frac{\partial L}{\partial b^{[2]}}$$

end

- Backpropagation works its way from the output layer to the input layer
- Computes the error gradients on the way

## Vanishing gradients

- Backpropagation works its way from the output layer to the input layer
- Computes the error gradients on the way
- Unfortunately, gradients often get smaller and smaller as we move backward through the layers

## Vanishing gradients

- Backpropagation works its way from the output layer to the input layer
- Computes the error gradients on the way
- Unfortunately, gradients often get smaller and smaller as we move backward through the layers
- This leaves the weights associated with shallower layers virtually unchanged, and makes learning at those layers much slower than deeper layers.

## Vanishing gradients

- Backpropagation works its way from the output layer to the input layer
- Computes the error gradients on the way
- Unfortunately, gradients often get smaller and smaller as we move backward through the layers
- This leaves the weights associated with shallower layers virtually unchanged, and makes learning at those layers much slower than deeper layers.
- This was a barrier to training deep NN for a long time.



$$z_j = w_j a_{j-1} + b_j$$

$$a_j = g(z_j)$$

Let us consider the simplest deep neural network



$$z_j = w_j a_{j-1} + b_j$$

$$a_j = g(z_j)$$

Let us take a closer look at the gradient  $\frac{\partial L}{\partial b_1}$ 



$$z_j = w_j a_{j-1} + b_j$$

$$a_j = g(z_j)$$

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} \times \frac{\partial a_4}{\partial z_4} \times \frac{\partial z_4}{\partial a_3} \times \frac{\partial z_3}{\partial z_3} \times \frac{\partial z_3}{\partial a_2} \times \frac{\partial z_2}{\partial z_2} \times \frac{\partial z_2}{\partial a_1} \times \frac{\partial a_1}{\partial z_1} \times \frac{\partial z_1}{\partial b_1}$$



$$z_j = w_j a_{j-1} + b_j$$

$$a_j = g(z_j)$$

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} \times \left(\frac{\partial a_4}{\partial z_4}\right) \times \frac{\partial z_4}{\partial a_3} \times \left(\frac{\partial a_3}{\partial z_3}\right) \times \frac{\partial z_3}{\partial a_2} \times \left(\frac{\partial a_2}{\partial z_2}\right) \times \frac{\partial z_2}{\partial a_1} \times \left(\frac{\partial a_1}{\partial z_1}\right) \times \frac{\partial z_1}{\partial b_1}$$













Let us consider the simplest deep neural network



 $\frac{\partial L}{\partial b_1}$  measures how much change would happen to the cost function if  $b_1$  changes.

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} \times g'(z_4) \times w_4 \times g'(z_3) \times w_3 \times g'(z_2) \times w_2 \times g'(z_1)$$



$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} \mathbf{g}'(\mathbf{z}_4) w_4 \mathbf{g}'(\mathbf{z}_3) w_3 \mathbf{g}'(\mathbf{z}_2) w_2 \mathbf{g}'(\mathbf{z}_1)$$



$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} \mathbf{g}'(\mathbf{z}_4) w_4 \mathbf{g}'(\mathbf{z}_3) w_3 \mathbf{g}'(\mathbf{z}_2) w_2 \mathbf{g}'(\mathbf{z}_1)$$

Remember 
$$g(z) = \frac{1}{1+e^{-z}}$$

$$|g'(z_j)| \leq \frac{1}{4}$$



Image source: https://goo.gl/s3MbSx



$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial a_4} g'(z_4) w_4 g'(z_3) w_3 g'(z_2) w_2 g'(z_1)$$

Let us assume that the weights are randomly initialized using a Gaussian with mean 0 and standard deviation of 1. (very popular)

So, weights will usually satisfy  $|w_j| < 1$ 

Therefore, 
$$|g'(z_j)w_j| < \frac{1}{4}$$



When we take a product of many such terms, the product will exponentially decrease: the more terms, the smaller the product.

 $\frac{\partial L}{\partial b_1}$  becomes very very small for deep neural networks.

Therefore, 
$$|g'(z_j)w_j| < \frac{1}{4}$$



When we take a product of many such terms, the product will exponentially decrease: the more terms, the smaller the product.

 $\frac{\partial L}{\partial b_1}$  becomes very very small for deep neural networks.

Therefore, 
$$|g'(z_j)w_j| < \frac{1}{4}$$

Vanishing gradients!!!



#### Vanishing gradients!!!

Different layers in the network will learn at vastly different speeds.

#### Note

- The problem has been empirically observed for quite a while
- It was one of the reasons why deep NNs were mostly abandoned for a long time
- In 2010, a paper titled 'Understanding the difficulty of training deep feedforward neural networks' by Xavier Glorot and Yoshua Bengio shed some lights on it.

#### Observations

• It is the combination of logistic activation function and the weight initialization strategy that causes the vanishing gradient problem. (Glorot and Bengio, 2010).

### Two strategies

- Use a different activation function
- Use a different initialization scheme

Sigmoid function



$$g(z) = \frac{1}{1 + e^{-z}}$$

Image credit: Andrew Ng

Tanh (hyperbolic tangent) function



Image credit: Andrew Ng

ReLU (rectified linear units) function



Image credit: Andrew Ng

ELU (exponential linear unit) function



Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 280

#### Xavier and He initialization

Table 11-1. Initialization parameters for each type of activation function

|    | Activation function                              | Uniform distribution [-r, r]                                     | Normal distribution                                                   |
|----|--------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Xa | vier initialization (2010)<br>Logistic           | $r = \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$          | $\sigma = \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$          |
|    | Hyperbolic tangent                               | $r = 4\sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$         | $\sigma = 4\sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$         |
| He | initialization (2015)<br>ReLU (and its variants) | $r = \sqrt{2} \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$ | $\sigma = \sqrt{2} \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$ |

Aurelien Geron, 2017, Hands-on Machine Learning with Scikit-Learn & TensorFlow, pp 278

#### Batch normalization

- Another way of dealing with the vanishing gradient problem
- Proposed by Sergey Ioffe and Christian Szegedy in 2015.

## A deep neural network w/o BN



# A deep neural network w/ BN



### Batch normalization (loffe and Szegedy, 2015)

 Let us consider jth layer, suppose there are m neurons in this layers

$$\bullet \ \mu = \frac{1}{m} \sum_{i=1}^{m} z_i^{[j]}$$

• 
$$\sigma = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (z_i^{[j]} - \mu)^2}$$

$$\bullet \ \hat{z}_i^{[j]} = \frac{z_i^{[j]} - \mu}{\sqrt{\sigma^2 + \varepsilon}}$$

• 
$$\tilde{z}_i^{[j]} = \gamma \hat{z}_i^{[j]} + \beta$$

 $\gamma$  and  $\beta$  are learned during training.

## Optimization algorithms

- Mini-batch gradient descent
  - tf.train.GradientDescentOptimizer()
- Momentum Optimization
  - tf.train.MomentumOptimizer()
- RMSProp
  - tf.train.RMSPropOptimizer()
- Adam Optimization
  - tf.train.AdamOptimizer()

tf.keras
tf.layers

See tf.contrib.opt for more optimizers.

## Implementing DNN in TensorFlow