Pierre-Antoine Graham

Homework 3

Aldo Riello Classical Physics

Contents

1	Planar electromagnetic waves		2
	Α	Maxwell equations for the four-potential	2
	В	Plane wave Ansatz	2
	С	Electric and Magnetic fields	2
	D	Linearly polarized waves	2
	E	Poynting vector	3
	F	Asymptotic Power	3
	G	Poynting vector for planar waves	3
2	Radiation of an isolated system		
	A	Lienard–Wiechert potential with isolated sources	3
	В		4
	С		4
	D		4
	E		4
3	Beyond radiation		4
	A		4
	В		4
	С		4
4	4 Acknowledgement		

1 Planar electromagnetic waves

A Maxwell equations for the four-potential

The components of the contravariant four potential are $A^{\mu}=(\varphi,\mathbf{A})$ ($A_{\mu}=(-\varphi,\mathbf{A})$ for the covariant components) where φ is the electric potential and \mathbf{A} is the magnetic potential vector. The sources generating each component of A^{μ} can be grouped in a current four vector $j^{\mu}=(\rho,\mathbf{j})$ ($j_{\mu}=(-\rho,\mathbf{j})$) for the covariant components) where ρ is the charge density and \mathbf{j} is the current observed in the reference frame where we solve for A^{μ} . In the lorentz gauge $0=\nabla_{\mu}A^{\mu}$, the Maxwell equations for A^{μ} with sources j^{μ} read $\Box A^{\mu}=-4\pi j^{\mu}$ ($\Box A_{\mu}=-4\pi j_{\mu}$ for the covariant components).

B Plane wave Ansatz

We now solve the Maxwell equations in the Lorentz gauge, by introducing the plane wave ansatz $A_{\mu}(t, \mathbf{x}) = a_{\mu} \exp\left(ik_{\mu}x^{\mu}\right)$ where $k^{\mu} = (\mu, \mathbf{k})$ is the four wave vector and a^{μ} is the four amplitude. On one hand, substituting this ansatz in the Lorentz gauge condition, we get

$$0 = \nabla_{\mu}A^{\mu} = \nabla_{\mu}\left(a^{\mu}\exp\left(ik_{\nu}x^{\nu}\right)\right) = a^{\mu}i\delta_{\mu}^{\nu}k_{\nu}\exp\left(ik_{\nu}x^{\nu}\right) = \left(a^{\mu}k_{\mu}\right)\exp\left(ik_{\nu}x^{\nu}\right) \iff a^{\mu}k_{\mu} = 0.$$

On the other hand, substituting the ansatz in the vacuum Maxwell equations (j_{μ}) yields

$$0 = \nabla^{\mu} \nabla_{\mu} A_{\nu} = i \delta^{\rho}_{\mu} k_{\rho} \nabla^{\mu} (\exp(ik^{\rho} x_{\rho})) = -k^{\mu} k_{\mu} \exp(ik^{\rho} x_{\rho}) \iff k^{\mu} k_{\mu} = 0$$

so the four wave vector is light-like in the vacuum.

C

D

Electric and Magnetic fields

In terms of A_u , the electric and magnetic fields **E**, **B** can be written as

$$\begin{split} \mathbf{E} &= \nabla_{j} A_{0} - \nabla_{0} \mathbf{A} = a_{0} \nabla_{j} \exp \left(i k_{\mu} x^{\mu} \right) - \mathbf{a} \nabla_{0} \exp \left(i k_{\mu} x^{\mu} \right) = \left(i a_{0} \mathbf{k} - i \mathbf{a} k_{0} \right) \exp \left(i k_{\mu} x^{\mu} \right), \\ \mathbf{B} &= \varepsilon_{i}^{jk} \nabla_{j} A_{k} = i \varepsilon_{i}^{jk} k_{j} a_{k} \exp \left(i k_{\mu} x^{\mu} \right) = i \mathbf{k} \times \mathbf{a} \exp \left(i k_{\mu} x^{\mu} \right) \end{split}$$

with ${\bf A}$, ${\bf a}$ and ${\bf k}$ are respectively the spatial components of A_{μ} , a_{μ} and k_{μ} . We consider the projection of ${\bf E}$, ${\bf B}$ along ${\bf k}$. We define ${\bf n}:={\bf k}/k$ to write the projections

$$\mathbf{n} \cdot \mathbf{E} = \mathbf{k}/k \cdot \mathbf{E} = (ia_0\mathbf{k}^2 - i\mathbf{k} \cdot \mathbf{a}k_0) \exp\left(ik_\mu x^\mu\right)/k = (ia_0(k_0^2) - i(k_0a_0)k_0) \exp\left(ik_\mu x^\mu\right)/k = 0,$$

$$\mathbf{n} \cdot \mathbf{B} = \mathbf{k} \cdot (i\mathbf{k} \times \mathbf{a} \exp\left(ik_\mu x^\mu\right))/k = 0.$$

Furthermore, we can relate E and B in the following way:

$$\begin{split} \mathbf{k} \times \mathbf{B}/k_0 &= i\mathbf{k} \times (\mathbf{k} \times \mathbf{a}) \exp\left(ik_\mu x^\mu\right) \\ &= i\left((\mathbf{k} \cdot \mathbf{a})\mathbf{k} - (\mathbf{k} \cdot \mathbf{k})\mathbf{a}\right) \exp\left(ik_\mu x^\mu\right)/k_0 \\ &= i\left((k_0a_0)\mathbf{k} - (k_0^2)\mathbf{a}\right) \exp\left(ik_\mu x^\mu\right)/k_0 \\ &= i\left(a_0\mathbf{k} - k_0\mathbf{a}\right) \exp\left(ik_\mu x^\mu\right) = \mathbf{E}. \end{split}$$

Since $k_0^2 - \mathbf{k}^2 = 0$ and $\mathbf{n} = \mathbf{k}/\sqrt{\mathbf{k}^2}$, $\mathbf{k} \times \mathbf{B}/k_0 = \mathbf{n} \times \mathbf{B} = \mathbf{E}$. The conclusion of these calculations is that \mathbf{E}, \mathbf{B} are orthogonal to each oother and to the direction of propagation of the wave given by \mathbf{k} . To analyse the phase difference between \mathbf{E} and \mathbf{B} , we notice that the global phase in \mathbf{E} is the phase of the complex quantity $a_0\mathbf{k} - k_0\mathbf{a}$ and that the global phase in \mathbf{B} is the phase in \mathbf{a} .

Linearly polarized waves

In what follows, we set $A^0 = -\varphi = 0$, $a^0 = 0$ which corresponds to having a 0 electric potential everywhere. The time derivative of the spatial components of four potential is

$$\dot{\mathbf{A}} = ik_0 \mathbf{a} \exp\left(ik_\mu x^\mu\right).$$

It can be used to express **E**, **B** when the $a^0 = 0$. Indeed

$$\mathbf{E} = -\dot{\mathbf{A}} = (i(0)\mathbf{k} - i\mathbf{a}k_0) \exp(ik_{\mu}x^{\mu}), \mathbf{B} = \mathbf{n} \times \dot{\mathbf{A}}$$

E Poynting vector

The energy-momentum transport associated to the electromagnetic field is described by the Poynting vector $S = E \times B$. Here, we want to relate S to the electromagnetic energy density $\varepsilon = (E^2 + B^2)/2$. To do so, we differenciate ε with respect to time to get

$$\frac{\partial \varepsilon}{\partial t} = \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} + \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} = \mathbf{E} \cdot (\nabla \times \mathbf{B}) - \mathbf{B} \cdot (\nabla \times \mathbf{E}) = -\nabla \cdot (\mathbf{E} \times \mathbf{B}) \iff 0 = \frac{\partial \varepsilon}{\partial t} + \nabla \cdot \mathbf{S}$$

where we have used the Faraday and Vacuum Ampere laws to express the partial derivatives. A continuity equation is found and we interpret S as the energy current density.

F Asymptotic Power

Following the analogy with the charge continuity equation, we can write an integral form of the energy continuity equation. We choose a spherical volume V surrounded by a sphere surface ∂V at radius R with outward normal \mathbf{n} . Integrating he continuity equation for ε and \mathbf{S} , we get

$$0 = \int_{V} d^{3}r \left(\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \mathbf{S} \right) = \frac{\partial}{\partial t} \left(\int_{V} d^{3}r \varepsilon \right) + \int_{V} d^{3}r \nabla \cdot \mathbf{S} = \frac{dE}{dt} + R^{2} \int_{\partial V} \sin(\theta) d\phi d\theta \mathbf{n} \cdot \mathbf{S}$$

Where *E* represents the total electromagnetic energy in *V*. If *R* is big enough compared to the caracteristic siuze of the emitting system, only radiation directed to infinity goes trough it and $\frac{dE}{dt}$ represents the total radiation power of the system.

G Poynting vector for planar waves

For planar waves, we have the following poynting vector:

$$S = E \times B = -B \times (n \times B) = -(B \cdot n)B + (B \cdot B)n = \frac{B^2 + E^2}{2}n = \varepsilon n$$

where we used $\mathbf{E} = \mathbf{n} \times \mathbf{B}$, $0 = \mathbf{n} \cdot \mathbf{B}$ and $\mathbf{B}^2 = (\mathbf{n} \times \mathbf{B})^2 = \mathbf{E}^2$.

Radiation of an isolated system

A Lienard–Wiechert potential with isolated sources

The Lienard-Wiechert potential provides an expression for the four-potential generated by a charge moving on a world line.

Supposing the charges are moving slowly compared to the speed of light, the three potential **A** contribution at time t and position \mathbf{r} of a point charge charge q with three-velocity \mathbf{v} and three-position \mathbf{r}' at time $t_R = t - |\mathbf{r} - \mathbf{r}'|$ reads:

$$\mathbf{A} = \frac{q\mathbf{v}(t_R)}{|\mathbf{r} - \mathbf{r}'| - \mathbf{v}(t_R) \cdot (\mathbf{r} - \mathbf{r}')} \approx \frac{q\mathbf{v}(t_R)}{|\mathbf{r} - \mathbf{r}'|} + O(|\mathbf{v}|^2)$$

Here we are interested in the integrated potential generated by a continum of charges described by charge density $\rho(t, \mathbf{r})$ and a three-curent $\mathbf{j}(t, \mathbf{r})$ at time t and cartesian three-position \mathbf{r} . In the limit of small velocities, the previous expression can be formulated in the charge continuum by replacing $q\mathbf{v}(t_R)$ by the integral expression of the magnetic potential is given by $\mathbf{j}(t_R, \mathbf{r}')$ and integrating over a space-slice to combine the contribution of all sources. We have

$$\mathbf{A}(t,\mathbf{r}) = \int \mathrm{d}^3 r' \frac{\mathbf{j}(t_R,\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}.$$

If the observation point r of the three-potential is far from the sources, we can write

$$\begin{split} \mathbf{A}(t,\mathbf{r}) &= \int_{\mathbf{j}(t_{R},\mathbf{r}')\sim 0,\; |\mathbf{r}|\sim |\mathbf{r}'|} \mathrm{d}^{3}r' \frac{\mathbf{j}(t_{R},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} + \int_{\mathbf{j}(t_{R},\mathbf{r}')\neq 0,\; |\mathbf{r}|\gg |\mathbf{r}'|} \mathrm{d}^{3}r' \frac{\mathbf{j}(t_{R},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \\ &\approx \frac{1}{|\mathbf{r}|} \int_{\mathbf{j}(t_{R},\mathbf{r}')\sim 0,\; |\mathbf{r}|\sim |\mathbf{r}'|} \mathrm{d}^{3}r' \underbrace{\mathbf{j}(t_{R},\mathbf{r}')}_{\sim 0} + \frac{1}{|\mathbf{r}|} \int_{\mathbf{j}(t_{R},\mathbf{r}')\neq 0,\; |\mathbf{r}|\gg |\mathbf{r}'|} \mathrm{d}^{3}r' \mathbf{j}(t_{R},\mathbf{r}') = \frac{1}{|\mathbf{r}|} \int \mathrm{d}^{3}r' \mathbf{j}(t_{R},\mathbf{r}') \end{split}$$

where we have used the expansion

$$\begin{split} |\mathbf{r} - \mathbf{r}'| &= |\mathbf{r} - \mathbf{r}'| \Big|_{\mathbf{r}' = 0} + \mathbf{r}' \cdot \frac{\partial}{\partial \mathbf{r}'} |\mathbf{r} - \mathbf{r}'| \Big|_{\mathbf{r}' = 0} + O(|\mathbf{r}'|^2) = |\mathbf{r}| - \mathbf{r}' \cdot \frac{\mathbf{r}}{|\mathbf{r}|} + O(|\mathbf{r}'|^2, 1/|\mathbf{r}|^2) \\ &\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{|\mathbf{r}| - \mathbf{r}' \cdot \frac{\mathbf{r}}{|\mathbf{r}|} + O(|\mathbf{r}'|^2)} = \frac{1}{|\mathbf{r}|} \frac{1}{1 - \mathbf{r}' \cdot \frac{\mathbf{r}}{|\mathbf{r}|^2} + O(|\mathbf{r}'|^2)} = \frac{1}{|\mathbf{r}|} \left(1 + \mathbf{r}' \cdot \frac{\mathbf{r}}{|\mathbf{r}|^2} \right) + O(|\mathbf{r}'|^2) = \frac{1}{|\mathbf{r}|} + O(|\mathbf{r}'|^2, 1/|\mathbf{r}|^2) \\ &\mathbf{j}(t_R, \mathbf{r}') = \mathbf{j} \left(t - |\mathbf{r}| + \mathbf{r}' \cdot \frac{\mathbf{r}}{|\mathbf{r}|} \right), \end{split}$$

- В
- С
- D
- E
- 3 Beyond radiation
- Α
- В
- С
- 4 Acknowledgement

References

[1] Aldo Riello. Fourteen Lectures in CLASSICAL PHYSICS. 2023.