Connectivity

Agenda

Intro to communications

Information theory

Channel characteristics & media types

Encoding and error control

Internet refresher ...

TCP/IP & HTTP

CoAP & MQTT

IoT specific protocols

Wireless: Wifi/HaLow, BT 4.0, LoRa, LTE, Zigbee, Z-wave, 6LowPAN

Wired: UART/RS485, SPI, I2C, OneWire, Ethernet, Modbus?, 4-20 mA

Intro to communications

What is information?

Data

Datum = something given, a thing

Knowledge

Subject + data = experience Learning = increasing knowledge

- Reduces uncertainty
- Improves outcome

Information

Conveys knowledge increments
Measured in bits
Entropy (data vs information)

Reducing uncertainty $P(A \mid E) > P(A)$

P(A|E)>P(A

Improving outcome

Quantity of information

$$I(m) = log_2(M)$$
 [bit]

Entropy

$$H = - sum(P_i log_2(P_i))$$
 [bit]

Shannon, Nyquist, Hartley, Mitchell

What is communication?

Communication

Conveying information (knowledge)

Encoding & decoding

Knowledge <-> Data

Transmission & reception

Data <-> Signal (energy wave)

Channel

Carries and modifies the signal / data Information may be affected

Signal & channel characteristics

Signal

An energy wave Spectrum (Fourier sum of sine waves)

Channel

Bandwidth, power, noise, attenuation

Latency

Capacity: $C = B \log_2(1+P_S/P_N)$ [bit/s]

Digital signal

Time discretization (Nyquist): $F_s > 2B$

Amplitude quantization:

$$SQNR = 20log_{10}(2^{Q}) = 6.02 Q [dB]$$

^{*} Signal to quantization noise ratio: Q bits

Common media types

Electrical wires

Twisted pair: 10 GB/s, 100 m, 0.5 EUR/m

Coaxial: 10 MB/s, 450m, 0.5 EUR/m

Optical fibers

Single mode: 100TB/s, ~150 km, 0.06 EUR/m

Multi-mode: 1GB/km, ~2 km, 0.3 EUR/m

Radio (ISM bands)

2.4 / 5GHz: 300MB/s, 50 m

433 / 868 MHz: 64KB/s, 20 km

More about radio

Propagation

Direction & Multi path

Penetration

Polarization

Antennas

Omni / directional

Connectors: SMA, UF.L, BNC, F ...

Regulations

Standard bodies: FCC(US), ETSI (EU) ...

Restrictions: Frequency, power, duty cycle

Connector	Frequency	Impedance
SMA	< 17 GHz	50Ω
UF.L	< 6 GHz	50Ω
BNC / F	< 3 GHz	50Ω , 75Ω

Encoding & Error control

Encoding

Text: Morse, ASCII, UTF8, CP1251 ...

Images: BMP, GIF, JPEG, PNG ...

Sound: Flac, Vorbis, MPEG, Speex, SILK, Opus ...

Video: H264, Theora ...

Error control

Detection: Parity bit, Checksum, CRC, Hash

Correction:

ACK/ARQ

FEC: Hamming, Reed-Solomon, Turbo code, LDPC

ASCII Alphabet			
Α	1000001	N	1001110
В	1000010	0	1001111
C	1000011	P	1010000
D	1000100	Q	1010001
E	1000101	R	1010010
F	1000110	S	1010011
G	1000111	T	1010100
ΗΙ	1001000	U	1010101
	1001001	v	1010110
J	1001010	W	1010111
K	1001011	x	1011000
L	1001100	Y	1011001
М	1001101	Z	1011010

Internet refresher & more ...

TCP/IP

IP

Private & public addresses
Routing, NAT and Firewalls
Host names (DNS)
Load balancing

- DNS round robin
- Virtual IP

TCP & UDP

Ports (services)

Error control & ordering

HTTP Request

Method

GET, POST, PUT, DELETE ...

Headers

Accept (content type, encoding)

Authorization

Cache-Control

Cookies

Content-Type

Host

Body

Application specific (e.g. JSON, XML ...)
Usually POST and PUT methods only

HTTP Response

Status line

Protocol version

Status

Headers

Access-Control-Allow-Origin

Cache-Control

Content-Type

Set-Cookie

. . .

Body

Application specific (e.g. JSON ...)

HTTP Proxies

Types of proxies

Forward proxy

Transparent proxy (with DNS)

Reverse proxy

Proxy functions

Virtual hosting

Load balancer (HTTP)

Cache

SSL terminator

DDoS protection

MQTT (ISO/IEC PRF 20922)

Overview

TCP/IP based

Small footprint / low bandwidth

Pub/sub (broker)

MQTT-SN: non TCP (e.g. Zigbee)

Methods

Connect / Disconnect Subscribe / Unsubscribe

Publish

IoT wireless protocols

Common network topologies

P₂P

Simplest

Star (Star of stars)

Common in public deployments

Mesh

Complex

Potentially more reliable

Partially connected with XOR distance

(Petar Maymounkov – DHT)

LoRa

FM Chirp Spread Spectrum & FEC

- Noise like signal: SNR = -5 to -20dB
- Bandwidth (7.8 500KHz) @ 868/915 MHz carrier
- Spreading factor (64 4096)
- Coding rate (for FEC)
- Range: LoS ~20km, non LoS ~2km
- Throughput = 18bps 78Kbps
- Resistance to fading (e.g. from multipath)

Interesting properties

Star, P2P and Mesh topologies
Private & Public deployments (LoRaWAN)
Military origin (anti-jamming & LPI)

LoRaWAN

Wide area network on top of LoRa

Class A: Bi-directional end device

Class B: Bi-directional end device with scheduled receive

slots

Class C: Bi-directional end device with max receive slots

Bluetooth 4 (BLE)

GATT (generic attribute profile)

Designed for low power

Peripherals advertise themselves

Central device initiates two way connection

Profiles, Services & Characteristics

Peripheral

Central

Bluetooth 5

Already here and compatible with Bluetooth 4

Samsung Galaxy S8, S8+, Note, S9, S9+, iPhone 8, some boards

Longer range (~ 4x)

12dB improved sensitivity, 500kbps or 125kbps modes with Coded PHY

Higher data throughput (~5x)

2x LE (up to 2Mbs) by changes in physical / radio layer Data Length Extensions (DLE)

Less congestion, extended advertising payloads

Periodic advertising & long range connections (e.g. for way-finding, indoor navigation, asset tracking) Improved coexistence by CSA#2 - improved randomness of channel hop sequencing

Faster over-the-air (OTA) downloads and firmware updates.

Bluetooth Mesh

Compatible with both Bluetooth LE 4 and Bluetooth 5

Implements mesh topology for establishing many-to-many (m:m) device communications.

Optimized for creating large-scale device networks

Building automation, sensor network, and asset tracking solutions ...

Design principles &technologies

Publish/subscribe model

Two-layer security – network layer key and application key.

Flooding with restricted relaying – prevents messages being relayed through too many hops Power saving with "friendship"

- Low-power devices can "friend" themselves with an always-on device
- Hi-power device stores, caches, and relays messages on their behalf, delivers security updates, etc.

BLE Proxy – proxy protocol for devices not supporting the advertising bearer defined by Bluetooth mesh natively (e.g smart phones).

WiFi HaLow (IEEE 802.11ah)

Overview

2.4GHz, 5GHz and 868 MHz

Low power

Longer range: 1 km

Better wall penetration

26 channels x 100 Kbit/s

Thousands devices per access point

Power saving

TWT (Target wake time)

Restricted access window (contention groups)

Bi directional TXOP (faster awake)

Sectorization

Some other protocols

Cellular

3G, LTE, 4G, Sigfox et al (UNB)

IEEE 802.15.4

Zigbee

- 2.4 GHz, Mesh, many vendors = Interop. problems
- Use cases: Home automation, Smart buildings, meters ...

Z-wave

- 868MHz, Mesh, single vendor
- Use cases: Home automation, Smart buildings

MiWi, SNAP, Thread, 6LoWPAN ...

IoT wired protocols

UART (Universal Async Receive Transmit – aka Serial)

Overview

TODO

Programming

Clock speed (divider)

Async Serial

UART (3.3 / 5 V, few meters)

RS232 (9600 bps/ 15m)

RS485 (100kbps / 1200m)

I2C

Overview

Distance: 1 – 10 m

Data and Clock lines

Synchronous bus (master clock)

Multi-master / up to 1008 slaves

Half-duplex, 100 kbit – 3.2mbit/s

Programming

Slave address: 7/10 bit

Open address

Write data

Read data

SPI (Serial peripheral interface)

Overview

Distance: 1 – 10 m

Data, Clock and Select lines

Synchronous bus (master clock)

Single master / multi slave

Full duplex, high data rate

Programming

Software vs Hardware SPI

Bit order (LSB/MSB)

Data mode (rising/falling edge)

Clock speed (divider)

OneWire et al

Overview

Distance: 10 to 100s of meters

Radius & weight

Half-duplex, 16 kbit / 125 kbit (overdrive)

Data line only (2/3 wire interface)

Single master / up to 100s of slaves

Programming

64bit slave IDs

Parasitic power (charge up)

Find devices

Communicate

Some other protocols

Industrial

CAN

CIP (common industrial protocol) - TODO

Ethernet (PROFINET)

Modbus (PLCs), Profibus, 4-20 mA

12S

HiFi sound

Exercise

Exercises

WiFi modes

Station + HTTP client – covered by Vladi?

Access point + HTTP server

SoftAP

HC-12

Nachev

MQTT?

Trayan