Chapter 29 Développements limités

Exercice 1 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de $x \mapsto \operatorname{sh}(x) - 2\sqrt{1+x}$.

Solution 1 (29.0)

Exercice 2 (29.0)

Déterminer le développement limité à l'ordre 7 en 0 de la fonction arctan.

Solution 2 (29.0)

Exercice 3 (29.0)

Déterminer le développement limité à l'ordre 5 en 0 de la fonction $x \mapsto e^x \sin(x)$.

Solution 3 (29.0)

Exercice 4 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln(\cos(x))$.

Solution 4 (29.0)

Exercice 5 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln \left(\frac{\sin(x)}{x} \right)$.

Solution 5 (29.0)

Exercice 6 (29.0)

Déterminer le développement limité à l'ordre 5 en 0 de la fonction tanh.

Solution 6 (29.0)

Exercice 7 (29.0)

1. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \operatorname{sh}(x)\operatorname{ch}(2x)$$
.

2. Déterminer le développement limité à l'ordre 5, au voisinage de x = 0 de

$$f(x) = e^{\sin(2x)}.$$

3. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \ln(1 + \sinh x).$$

Solution 7 (29.0)

1. Lorsque $x \to 0$,

$$f(x) = \operatorname{sh}(x)\operatorname{ch}(2x) = \left(x + \frac{x^3}{6} + o\left(x^4\right)\right) \left(1 + \frac{(2x)^2}{2} + \frac{(2x)^4}{24} + o\left(x^4\right)\right)$$
$$= \left[x + \frac{13}{6}x^3 + o\left(x^4\right)\right].$$

2. Lorsque $x \to 0$,

$$\sin(2x) = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} + o\left(x^5\right) = 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + o\left(x^5\right).$$

Avec $u = 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + o(x^5) \rightarrow 0$, $u^2 = 4x^2 - \frac{16}{3}x^4 + o(x^5)$, $u^3 = 8x^3 - 16x^5 + o(x^5)$, $u^4 = 16x^4 + o(x^5)$, $u^5 = 32x^5 + o(x^5)$. On obtient

$$e^{\sin(2x)} = e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \frac{u^{4}}{4!} + \frac{u^{5}}{5!} + o\left(u^{5}\right)$$
$$= \left[1 + 2x + 2x^{2} - 2x^{4} - \frac{32}{15}x^{5} + o\left(x^{5}\right)\right].$$

3. Lorsque $x \to 0$, sh $x = x + \frac{x^3}{6} + o\left(x^4\right)$ et lorsque $u \to 0$, $\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o\left(u^4\right)$. D'où avec $u = x + \frac{x^3}{6} + o\left(x^4\right) \to 0$, $u^2 = x^2 + \frac{x^4}{3} + o\left(x^4\right)$, $u^3 = x^3 + o\left(x^4\right)$, $u^4 = x^4 + o\left(x^4\right)$, on obtient

$$\ln(1 + \sinh x) = \ln(1 + u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o\left(u^4\right)$$
$$= \left[x - \frac{x^2}{2} + \frac{x^3}{2} - \frac{5}{12}x^4 + o\left(x^4\right)\right].$$

Exercice 8 (29.0)

Donner les développements limités suivants.

1.
$$DL3$$
 en 0 de $f(x) = (\cos x)\sqrt{1+x}$;

2.
$$DL4 \text{ en } 0 \text{ de } f(x) = \ln(1+x)\sqrt{1+x}$$
;

3.
$$DL3$$
 en 0 de $f(x) = \frac{(1+x)^{1/3}}{1-x}$;

4.
$$DL4$$
 en 0 de $f(x) = e^{\cos x}$;

5.
$$DL3$$
 en 0 de $f(x) = \frac{x}{\ln(1+x)}$;

6. *DL*4 en 0 de
$$f(x) = \frac{x}{\sin x}$$
.

Solution 8 (29.0)

Dans chaque question, $x \to 0$.

1.
$$f(x) = 1 + \frac{1}{2}x - \frac{5}{8}x^2 - \frac{3}{16}x^3 + o(x^3)$$
.

2.
$$f(x) = x - \frac{1}{24}x^3 + \frac{1}{24}x^4 + o(x^4)$$
.

3.
$$f(x) = 1 + \frac{4}{3}x + \frac{11}{9}x^2 + \frac{104}{81}x^3 + o(x^3)$$
.

4.
$$f(x) = e - \frac{e}{2}x^2 + \frac{e}{6}x^4 + o(x^4)$$
.

5.
$$f(x) = 1 + \frac{1}{2}x - \frac{1}{12}x^2 + \frac{1}{24}x^3 + o(x^3)$$
.

6.
$$f(x) = 1 + \frac{1}{6}x^2 + \frac{7}{360}x^4 + o(x^4)$$
.

Exercice 9 (29.0)

Donner les développements limités suivants.

- **1.** DL3 en 0 de $f(x) = \ln \frac{1+x}{1-x}$.
- **2.** DL3 en 0 de $f(x) = \exp \sqrt{1+x}$.
- 3. DL3 en 0 de $f(x) = \ln(2 + \sin x)$.

Solution 9 (29.0)

Exercice 10 (29.0)

Donner les développements limités suivants.

1. $DL4 \text{ en } \pi/3 \text{ de } f(x) = \cos x$;

2. DL4 en 1 de $f(x) = e^x$;

3. $DL4 \text{ en } 2 \text{ de } f(x) = \frac{1}{x}$;

4. $DL3 \text{ en } \pi/4 \text{ de } f(x) = \tan x$;

5. DL4 en e de $f(x) = \ln x$;

6. *DL*4 en 1 de $f(x) = \frac{\ln x}{x}$

Solution 10 (29.0)

1. Lorsque $x \to \pi/3$, $h = x - \pi/3 \to 0$, et

$$f(x) = f(\pi/3 + h) = \cos(\pi/3 + h) = \frac{1}{2}\cos h + \frac{\sqrt{3}}{2}\sin h$$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2}h - \frac{1}{4}h^2 - \frac{\sqrt{3}}{12}h^3 + \frac{1}{48}h^4 + o(h^4)$$

$$f(x) = \frac{1}{2} + \frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right) - \frac{1}{4}\left(x - \frac{\pi}{3}\right)^2 - \frac{\sqrt{3}}{12}\left(x - \frac{\pi}{3}\right)^3 + \frac{1}{48}\left(x - \frac{\pi}{3}\right)^4 + o\left(\left(x - \frac{\pi}{3}\right)^4\right).$$

2. Lorsque $x \to 1$, $h = x - 1 \to 0$ et

$$f(x) = e^x = e^{1+h} = e \cdot e^h$$

$$= e\left(1 + h + \frac{1}{2}h^2 + \frac{1}{6}h^3 + \frac{1}{24}h^4 + o(h^4)\right)$$

$$f(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{6}(x - 1)^3 + \frac{e}{24}(x - 1)^4 + o\left((x - 1)^4\right)$$

3. Lorsque $x \to 2$, $h = x - 2 \to 0$ et

$$f(x) = f(2+h) = \frac{1}{2+h} = \frac{1}{2} \frac{1}{1+\frac{h}{2}}$$

$$= \frac{1}{2} \left(1 - \frac{h}{2} + \frac{h^2}{4} - \frac{h^3}{8} + \frac{h^4}{16} + o(h^4) \right)$$

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + \frac{1}{32}(x-2)^4 + o\left((x-2)^4\right).$$

4. Lorsque $x \to \pi/4$, $h = x - \pi/4 \to 0$ et

$$f(x) = f(\pi/4 + h) = \tan(\pi/4 + h) = \frac{\tan h + 1}{1 - \tan h}$$

$$= \frac{1 + h + \frac{1}{3}h^3 + o(h^3)}{1 - h - \frac{1}{3}h^3 + o(h^3)}$$

$$= 1 + 2h + 2h^2 - \frac{8}{3}h^3 + o(h^3)$$

$$f(x) = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 - \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3 + o\left(\left(x - \frac{\pi}{4}\right)^3\right).$$

5. Lorsque $x \to e$, $h = x - e \to 0$ et

$$f(x) = (f(e+h) = \ln(e+h) = \ln(e(1+h/e)) = \ln(e) + \ln(1+h/e)$$

$$= 1 + \frac{h}{e} - \frac{h^2}{2e^2} + \frac{h^3}{3e^3} - \frac{h^4}{4e^4} + o(h^4).$$

$$f(x) = 1 + \frac{x-e}{e} - \frac{(x-e)^2}{2e^2} + \frac{(x-e)^3}{3e^3} - \frac{(x-e)^4}{4e^4} + o\left((x-e)^4\right).$$

6. Lorsque $x \to 1$, $h = x - 1 \to 0$ et

$$f(x) = f(1+h) = \frac{\ln(1+h)}{1+h}$$

$$= h - \frac{3}{2}h^2 + \frac{11}{6}h^3 - \frac{25}{12}h^4 + o(h^4)$$

$$f(x) = (x-1) - \frac{3}{2}(x-1)^2 + \frac{11}{6}(x-1)^3 - \frac{25}{12}(x-1)^4 + o((x-1)^4).$$

Exercice 11 (29.0)

Déterminer un équivalent simple, au voisinage de x = e de $e^x - x^e$.

Solution 11 (29.0)

Exercice 12 (29.0)

Déterminer les développements limités à l'ordre demandé au voisinage des points indiqués.

1. $\frac{1}{1-x^2-x^3}$ (ordre 7 en 0).

2. $\frac{1}{\cos x}$ (ordre 7 en 0).

3. Arccos $\sqrt{\frac{x}{\tan x}}$ (ordre 3 en 0).

4. $\tan x$ (ordre 3 en $\frac{\pi}{4}$).

5. $(\operatorname{ch} x)^{1/x^2}$ (ordre 2 en 0).

6. $\tan^3 x(\cos(x^2) - 1)$ (ordre 8 en 0).

7. $\frac{\ln(1+x)}{x^2}$ (ordre 3 en 1).

8. Arctan($\cos x$) (ordre 5 en 0).

9. Arctan $\sqrt{\frac{x+1}{x+2}}$ (ordre 2 en 0).

10. $\frac{1}{x^2} - \frac{1}{\text{Arcsin}^2 x}$ (ordre 5 en 0).

11. $\int_{x}^{x^2} \frac{1}{\sqrt{1+t^4}} dt$ (ordre 10 en 0).

12. $\ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)$ (ordre 100 en 0).

13. $\tan \sqrt[3]{4(\pi^3 + x^3)}$ (ordre 3 en π).

Solution 12 (29.0)

Solution dispo exo7

Exercice 13 (29.0)

Calculer les limites suivantes.

1.
$$\lim_{x\to 0} \frac{\sin 3x}{1-e^{2x}}$$
;

3.
$$\lim_{x\to 0} \frac{1}{\sin x} - \frac{1}{x}$$
;

2.
$$\lim_{x\to 0} \frac{x - \ln(1+x)}{x^2}$$
;

4.
$$\lim_{x \to 0} \frac{x - \arcsin(x)}{x^3}$$
.

Solution 13 (29.0)

Exercice 14 (29.0)

Pour chacune des fonctions suivantes, donner le développement limité demandé. En déduire l'équation de la tangente à la courbe de f au point d'abscisse 0 ainsi que les positions relatives.

1.
$$DL2$$
 en 0 de $f(x) = e^x - 2\sqrt{1 + x}$.

3.
$$DL3$$
 en 0 de $f(x) = \ln(1-x) - \cos x$.

2.
$$DL3$$
 en 0 de $f(x) = \ln(1+x) + e^x$.

4.
$$DL4$$
 en 0 de $f(x) = e^x \cos(x) + \frac{x^3}{3} - x$.

Solution 14 (29.0)

1. Lorsque que $x \to 0$,

$$f(x) = -1 + \frac{3}{4}x^2 + o(x^2),$$

donc

$$f(x) - (-1) \sim \frac{3}{4}x^2$$
.

La tangente à la courbe de f au point d'abscisse 0 a donc pour équation y = -1. De plus, au voisinage de ce point, la courbe est au-dessus de la tangente. La tangente étant horizontale, le point 0 est un minimum local pour f.

2. Lorsque que $x \to 0$,

 $f(x) = 1 + 2x + \frac{1}{2}x^3 + o(x^3),$

donc

$$f(x) - (2x - 1) \sim \frac{1}{2}x^3.$$

La tangente à la courbe de f au point d'abscisse 0 a donc pour équation y = 2x - 1. De plus, au voisinage de ce point, la courbe est au-dessous de la tangente à gauche, au dessus à droite. Le point d'abscisse 0 est donc un point d'inflexion.

3. Lorsque que $x \to 0$,

$$f(x) = -1 - x - \frac{1}{3}x^3 + o(x^3),$$

donc

$$f(x) - (-x - 1) \sim -\frac{1}{3}x^3$$
.

La tangente à la courbe de f au point d'abscisse 0 a donc pour équation y = -x - 1. De plus, au voisinage de ce point, la courbe est au-dessus de la tangente à gauche, au dessous à droite. Le point d'abscisse 0 est donc un point d'inflexion.

4. Lorsque que $x \to 0$,

$$f(x) = 1 - \frac{1}{6}x^4 + o(x^4)$$

donc

$$f(x) - 1 \sim -\frac{1}{6}x^4.$$

La tangente à la courbe de f au point d'abscisse 0 a donc pour équation y=1. De plus, au voisinage de ce point, la courbe est au-dessous de la tangente. La tangente étant horizontale, le point 0 est un maximum local pour f.

Exercice 15 (29.0)

Pour $x \in \mathbb{R}^*$, on pose

$$f(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right).$$

- 1. Déterminer un développement limité à l'ordre 3 au voisinage de x = 0 de f(x).
- 2. En déduire le prolongement par continuité de f en zéro. On note encore f ce prolongement.
- 3. Montrer que f, ainsi prolongée, est dérivable en zéro.
- **4.** Préciser la position de la courbe représentative de *f* par rapport à sa tangente au point d'abscisse zéro, au voisinage de ce point.

Solution 15 (29.0)

Exercice 16 (29.0)

Déterminer la limite de $\frac{1}{x^2} - \frac{1}{\tan^2(x)}$ quand x tend vers 0.

Solution 16 (29.0)

Exercice 17 (29.0)

Soit f la fonction définie sur]-1, 1[par $f(x)=\frac{\sqrt{1+x}}{1-x}$. Déterminer une équation de la tangente à la courbe représentative de f au point de coordonnées (0, f(0))puis la position de la courbe par rapport à sa tangente.

Solution 17 (29.0)

Exercice 18 (29.0)

Pour les fonctions suivantes au voisinage du point *a* indiqué, étudier la possibilité de prolonger par continuité, puis, dans l'affirmative, la dérivabilité et l'existence d'une tangente à la courbe ; enfin préciser le placement local de la courbe par rapport à sa tangente.

1.
$$f: x \mapsto \frac{2x \ln x}{x-1}$$
 au point $a = 1$.

2.
$$g: x \mapsto \ln(\tan x)$$
 au point $a = \pi/4$.

3.
$$h: x \mapsto \frac{1}{x(e^x - 1)} - \frac{1}{x^2} + \frac{1}{2x}$$
 au point $a = 0$.

Exercice 19 (29.0)

Soit g la fonction $x \mapsto \frac{\arctan x}{(\sin x)^3} - \frac{1}{x^2}$.

- 1. Donner le domaine de définition de g.
- 2. Montrer qu'elle se prolonge par continuité en 0 en une fonction dérivable.
- **3.** Déterminer la tangente en 0 au graphe de cette fonction et la position de ce graphe par rapport à celle-ci.

Solution 19 (29.0)

- **1.** La fonction g est définie en x sauf si $\sin(x) = 0$ ou x = 0. Son domaine de définition est donc $\mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$.
- **2.** On peut prolonger *g* en une fonction continue en 0 si et seulement si elle y admet une limite. Elle est dérivable en ce point si et seulement si elle y admet un développement limité à l'ordre 1. Toutefois, comme l'énoncé demande la position du graphe de *g* par rapport à sa tangente en 0, nous allons calculer directement le développement limité à l'ordre 2 de *g* en 0.

Pour x au voisinage de 0, on a

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 + o(x^4),$$

d'où par intégration, le développement limité en 0 à l'ordre 5 de

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5).$$

Or

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o\left(x^5\right) = x\left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + o\left(x^4\right)\right).$$

Posons $u = \frac{x^2}{3!} - \frac{x^4}{5!} + o(x^4) \xrightarrow[x \to 0]{} 0$. On a alors $u^2 = \frac{x^4}{36} + o(x^4)$ et $u^3 = o(x^4)$, d'où

$$\frac{1}{(1-u)^3} = (1-u)^{-3} = 1 + 3u + 6u^2 + 10u^3 + 15u^4 + o(u^4) = 1 + \frac{1}{2}x^2 + \frac{17}{5!}x^4 + o(x^4)$$

et donc

$$\frac{1}{\sin^3 x} = \frac{1}{x^3} \left(1 + \frac{1}{2} x^2 + \frac{17}{5!} + o(x^4) \right).$$

Ainsi,

$$\begin{aligned} \frac{\arctan x}{(\sin x)^3} &= \frac{1}{x^3} \left(x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5) \right) \left(1 + \frac{x^2}{2} + \frac{17}{5!} + o(x^4) \right) \\ &= \frac{1}{x^2} \left(1 - \frac{x^2}{3} + \frac{x^4}{5} + o(x^4) \right) \left(1 + \frac{x^2}{2} + \frac{17}{5!} + o(x^4) \right) \\ &= \frac{1}{x^2} \left(1 + \frac{1}{6}x^2 + \frac{7}{40}x^4 + o(x^4) \right) \\ &= \frac{1}{x^2} + \frac{1}{6} + \frac{7}{40}x^2 + o(x^2). \end{aligned}$$

Finalement,

$$f(x) = \frac{1}{6} + \frac{7}{40}x^2 + o(x^2).$$

Ainsi on peut prolonger g en une fonction continue en 0 en posant $g(0) = \frac{1}{6}$. La fonction obtenue est dérivable en 0 et sa dérivée est nulle. La tangente en 0 à son graphe est la droite d'équation $y = \frac{1}{6}$. Enfin le graphe de g est au-dessus de cette droite au voisinage de 0.

Exercice 20 (29.0)

Étudier avec soin les branches infinies et leur placement local par rapport aux éventuelles asymptotes.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x + \sqrt{x^2 + 1}$$

Solution 20 (29.0)

Lorsque $x \to +\infty$, $h = 1/x \to 0$ et

$$\frac{f(x)}{x} = \frac{x + x\sqrt{1 + 1/x^2}}{x} = 1 + \sqrt{1 + \frac{1}{x^2}} = 1 + \sqrt{1 + h^2} = 2 + \frac{1}{2}h^2 + o(h^2) = 2 + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)$$

d'où

$$f(x) = 2x + \frac{1}{2x} + o\left(\frac{1}{x}\right),$$

et finalement,

$$f(x) - 2x \sim \frac{1}{2x} \xrightarrow[x \to +\infty]{} 0 + .$$

La courbe de f admet donc une asymptote oblique en $+\infty$, d'équation y=2x. De plus, au voisinage de $+\infty$, la courbe de f est au dessus de l'asymptote.

Lorsque $x \to -\infty$, $h = 1/x \to 0$ et

$$\frac{f(x)}{x} = \frac{x + |x|\sqrt{1 + 1/x^2}}{x} = 1 - \sqrt{1 + \frac{1}{x^2}} = 1 - \sqrt{1 + h^2} = -\frac{1}{2}h^2 + o(h^2) = -\frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)$$

d'où

$$f(x) = -\frac{1}{2x} + o\left(\frac{1}{x}\right),\,$$

et finalement,

$$f(x) \sim -\frac{1}{2x} \xrightarrow[x \to -\infty]{} 0 + .$$

La courbe de f admet donc une asymptote horizontale en $-\infty$, d'équation y = 0 (axe des abscisses). De plus, au voisinage de $-\infty$, la courbe de f est au dessous de l'asymptote.

Exercice 21 (29.0)

Soit la fonction f définie par

$$f(x) = \frac{x^3}{x+1} \ln\left(\frac{x+1}{x}\right)$$

Étudier les branches infinies (pour $x \to +\infty$ et $x \to -\infty$) de la courbe de f.

Solution 21 (29.0)

Exercice 22 (29.0)

Étudier la fonction d'une variable réelle définie par la relation

$$f(x) = x + \sqrt{x^2 - 1}$$

en portant une attention particulière aux asymptotes et demi-tangentes.

Solution 22 (29.0)

La fonction f est définie en x si et seulement si $x^2 - 1 \ge 0$ donc sur l'ensemble

$$D =]-\infty, -1] \cup [1, +\infty[$$
.

De plus $x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ et

$$x^2 - 1 = 0 \iff x = \pm 1.$$

Par suite, la fonction f est dérivable sur $]-\infty,-1[\cup]1,+\infty[$.

Calculons f'(x) pour tout élément x de D, différent de 1 et de -1, nous avons

$$f'(x) = 1 + \frac{x}{\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}}.$$

- Si x > 1, alors clairement f'(x) > 0.
- Si x < -1, on a

$$f'(x) \ge 0 \iff \sqrt{x^2 - 1} + x \ge 0 \iff \sqrt{x^2 - 1} \ge -x \ge 0 \iff x^2 - 1 \ge x^2$$

qui est donc toujours faux. Donc f'(x) < 0.

Étudions f au voisinage de $\pm \infty$

• Pour x > 1, nous avons

$$f(x) = x + x\sqrt{1 - \frac{1}{x^2}}$$

d'où $\lim_{x \to +\infty} \frac{f(x)}{x} = 2$. De plus,

$$f(x) - 2x = \sqrt{x^2 - 1} - x = \frac{-1}{\sqrt{x^2 - 1} + x} \xrightarrow{x \to +\infty} 0 - .$$

Le graphe de f admet la droite d'équation y = 2x comme asymptote et se trouve au dessous de cette droite.

• Pour x < -1, nous avons

$$f(x) = \frac{x^2 - (x^2 - 1)}{x - \sqrt{x^2 - 1}} = \frac{1}{x - \sqrt{x^2 - 1}} \underset{x \to -\infty}{\longrightarrow} 0 - .$$

Le graphe de f admet l'axe des abscisses comme asymptote et se trouve au dessous de cette droite.

Déterminons la pente de la demi-tangente au graphe à droite du point d'abscisse 1 ; nous avons

$$\lim_{\substack{x \to 1 \\ > }} \frac{x + \sqrt{x^2 - 1} - 1}{x - 1} = \lim_{\substack{x \to 1 \\ > }} 1 + \frac{\sqrt{x + 1}}{\sqrt{x - 1}} = +\infty.$$

De la même manière, déterminons la pente de la demi-tangente au graphe à droite du point d'abscisse -1; nous avons

$$\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{x + \sqrt{x^2 - 1} + 1}{x + 1} = \lim_{\substack{x \to 1 \\ x \neq 1}} 1 - \frac{\sqrt{x - 1}}{\sqrt{x + 1}} = -\infty.$$

Nous avons donc des demi-tangentes verticales au points d'abscisses 1 et -1.

Nous avons le tableau de variation suivant

X	$-\infty$	-1	1	+∞
f'(x)	_	-8	400	+
f(x)	0	-1	1	+∞

Exercice 23 (29.0)

Soit λ un réel strictement positif, différent de $\sqrt{2}$, et (f_{λ}) la famille de fonctions définie par

$$f_{\lambda}(x) = \left(x - \frac{1}{\lambda}\right)e^{\lambda/x}.$$

On note C_{λ} sa courbe représentative.

- **1.** Étude de f_1 .
 - (a) Étudier les variations de la fonction f_1 .
 - (b) À l'aide d'un développement limité on dit aussi développement asymptotique —, déterminer sa limite en $+\infty$ et $-\infty$, montrer que sa courbe admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
 - (c) Calculer les limites à gauche et à droite de f_1 en 0. La fonction f_1 admet-elle un prolongement par continuité en 0 ? Si oui, ce prolongement est-il dérivable ? Que peut-on en déduire pour la courbe \mathcal{C}_1 ?
 - (d) Représenter graphiquement C_1 et son asymptote oblique.
- 2. Dans cette question, on étudie f_2 . À l'aide d'un développement limité, déterminer sa limite en $+\infty$ et $-\infty$, montrer que la courbe C_2 admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
- 3. À l'aide d'un développement limité, étudier les branches infinies de C_{λ} .

Solution 23 (29.0)

Exercice 24 (29.0)

- 1. Montrer que, pour $\lambda > e$, l'équation $e^x = \lambda x$ a deux solutions dans $]0, +\infty[$. On notera $x(\lambda)$ la plus petite.
- **2.** Se convaincre sur un dessin que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- **3.** Montrer que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- **4.** Établir successivement les résultats suivants lorsque λ tend vers $+\infty$:

(a)
$$x(\lambda) \sim \frac{1}{\lambda}$$
.

(b)
$$e^{x(\lambda)} = 1 + \frac{1}{\lambda} + o\left(\frac{1}{\lambda}\right)$$
.

(c)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + o\left(\frac{1}{\lambda^2}\right)$$
.

(d)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + \frac{3}{2\lambda^3} + o\left(\frac{1}{\lambda^3}\right)$$
.

On a ainsi obtenu un développement asymptotique de $x(\lambda)$ quand λ tend vers $+\infty$.

Solution 24 (29.0)

Exercice 25 (29.0) Applications des développements limités à l'étude de suites

Déterminer un équivalent des suites dont le terme général est donné.

1.
$$u_n = (n+1)^{\frac{1}{n+1}} - n^{\frac{1}{n}}$$
.

2.
$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}$$
.

3.
$$u_n = \frac{\ln(n+1) - \ln(n)}{\sqrt{n+1} - \sqrt{n}}$$
.

Solution 25 (29.0)