`ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СО-ОБЩЕНИЯ Императора Александра I»

Кафедра «Информационные и вычислительные системы» Дисциплина «Системы искусственного интеллекта»

ОТЧЁТ ПО ПРАКТИЧЕСКОМУ ЗАДАНИЮ №6

«Разведочный анализ данных»

 Выполнили студенты
 Шефнер А.

 Факультет: АИТ
 Кот. Н.Д.

 Группа: ИВБ-211
 Егупов Н.М.

 Ахмедов Х.А.

Проверил: Пугачев С.В.

Санкт-Петербург 2025

Задание

Разведочный анализ данных

- 1. Загрузить набор данных для анализа. Например, данные по мировому населению (https://www.kaggle.com/datasets/iamsouravbanerjee/world-population dataset?datasetId=2432740&sortBy=voteCount) как датафрейм библиотеки pandas. Конкретный dataset выбрать самостоятельно.
- 2. Получить представлении о наборе данных с помощью методов shape, head, describe, info библиотеки pandas.
- 3. Произвести разведочный анализ данных по данному набору данных визуализировать данные с помощью библиотек matplotlib, seaborn, plotly. Построить:
 - Парные диаграммы (pairplots)
 - Тепловую карту по матрице корреляции
 - Диаграммы рассеяния
 - Сводные диаграммы
 - Гистограммы
 - Ящик с усами (диаграмма размаха)
 - Скрипичные диаграммы
- 4. На основе выполненного анализа данных произвести выводы о динамике изменения населения по регионам, процентном соотношении населения по регионам. Выявить корреляцию между признаками

Ход работы

Используемые библиотеки

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pycountry
```

Чтение данных из CSV файла

Файл содержит информацию о ВВП стран мира по годам

```
In [2]: data = pd.read_csv("gdp.csv")
```

Размерность датасета

```
In [3]: data.shape
```

Первые 10 строк датасета

In [4]: data.head

Out[4]:		Country Name	Country Code	Year	Value
	0	Afghanistan	AFG	2000	3.521418e+09
	1	Afghanistan	AFG	2001	2.813572e+09
	2	Afghanistan	AFG	2002	3.825701e+09
	3	Afghanistan	AFG	2003	4.520947e+09
	4	Afghanistan	AFG	2004	5.224897e+09
	5	Afghanistan	AFG	2005	6.203257e+09
	6	Afghanistan	AFG	2006	6.971758e+09
	7	Afghanistan	AFG	2007	9.747886e+09
	8	Afghanistan	AFG	2008	1.010930e+10
	9	Afghanistan	AFG	2009	1.241615e+10

Информация о датафрейме

```
In [5]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13979 entries, 0 to 13978
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Country Name	13979 non-null	object
1	Country Code	13979 non-null	object
2	Year	13979 non-null	int64
3	Value	13979 non-null	float64
dtyp	es: float64(1)	, int64(1), obje	ct(2)

memory usage: 437.0+ KB

Статистический анализ числовых характеристик датасета

Для примера проанализирован ВВП всех стран за 2022 год

```
In [6]: data2022 = data[data["Year"] == 2022]
  data2022["Value"].describe()
```

```
2.500000e+02
Out[6]: count
                3.344889e+12
        mean
                1.116573e+13
        std
        min
                5.906598e+07
        25%
                1.313119e+10
        50%
                7.059355e+10
        75%
                 7.862607e+11
                 1.012251e+14
        max
        Name: Value, dtype: float64
```

Количество пустых строк

Диаграммы для 10 стран с самым большим ВВП на 2022 год

Извлечение датасета

Out[9]:		Country Name	Country Code	Year	Value
	1912	Canada	CAN	1960	4.056377e+10
	1913	Canada	CAN	1961	4.103819e+10
	1914	Canada	CAN	1962	4.233621e+10
	1915	Canada	CAN	1963	4.514034e+10
	1916	Canada	CAN	1964	4.950366e+10
	•••				
	13399	United States	USA	2019	2.152140e+13
	13400	United States	USA	2020	2.132295e+13
	13401	United States	USA	2021	2.359403e+13
	13402	United States	USA	2022	2.574411e+13
	13403	United States	USA	2023	2.736094e+13

612 rows × 4 columns

Парные диаграммы

In [10]: sns.pairplot(data, hue="Country Code")

Out[10]: <seaborn.axisgrid.PairGrid at 0x133a2af90>

Тепловая карта корреляции

Out[11]: <Axes: >

Диаграмма рассеяния

```
In [12]: sns.scatterplot(data, x="Year", y="Value")
```

Out[12]: <Axes: xlabel='Year', ylabel='Value'>

Сводная диаграмма ВВП на 2022 год

```
In [17]: data_sums = data[data["Year"] == 2022].sort_values(by="Value")
          plt.figure(figsize=(12, 6))
          sns.barplot(data_sums, x="Country Code", y="Value", orient="x")
          plt.xticks(rotation=90)
          plt.show()
          2.5
          2.0
          1.0
          0.5
                       CAN
                                                                     M
                                                                             CHN
                                       FRA
                                                             DEU
```

Диаграммы для ВВП всех стран на 2022 год

 $\frac{1}{2}$

Country Code

USA

Ħ

Гистограмма распределения

```
In [14]: sns.histplot(data2022['Value'], bins=30, kde=True)
```

Out[14]: <Axes: xlabel='Value', ylabel='Count'>

Диаграмма размаха

```
In [15]: sns.boxplot(x=data2022['Value'])
```

Out[15]: <Axes: xlabel='Value'>

Скрипичная диаграмма

In [16]: sns.violinplot(x=data2022['Value'])

Out[16]: <Axes: xlabel='Value'>

Выводы

С помощью языка Python и библиотек pandas, matplotlib и seaborn выполнен анализ ВВП для всех стран мира по годам. Полученные релузьтаты показывают следующие выводы:

- В 2022 году Россия заняла 8 место по размеру ВВП
- США и Китай страны, развивающиеся стремительнее всех остальных
- ВВП большинства стран лежит в пределах до 1 триллиона долларов США

Использованный набор инструментов отлично подходит для задач, связанных со статистикой и анализом больших данных.