

Computer Vision

(Course Code: 4047)

Module-2:Lecture-3: Hough Transform

Gundimeda Venugopal, Professor of Practice, SCOPE

Hough Transform

Challenge: One of the problem with boundary detection of an object in an image is knowing which edges in the image that are corresponding to the boundary we are looking for.

- Hough Transform provides an elegant solution to the problem when the boundary can described by a small number of parameters.
- ❖ The Hough Transform is an algorithm patented by Paul V. C. Hough and was originally invented to recognize complex lines in photographs (Hough, 1962).
- The algorithm has been modified and enhanced to be able to recognize other shapes such as circles and quadrilaterals of specific types.
- ❖ Perform edge detection first on the Input image (using edge detection algorithms: Canny, Sobel, Laplacian etc.) to produce an edge image which will then be used as input into the Hough Transform algorithm.

Difficulties for the Fitting Approach

Input Image Edge Map

Task: Find the two wheels of the bicycle

- Extraneous Data: Which points to fit to? (e.g., to the bicycle circles,)
- ❖ Incomplete Data: Only part of the model is visible (e.g., Occlusion, Part of the wheel is incomplete.)
- Noise (e.g., edges close to the wheels which don't correspond to real edges)

Solution: Hough Transform (1962)

Fit / Associate a model with observed features

Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Fitting: Main idea

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
 - ➤ What model represents this set of features best?
 - ➤ Which of several model instances gets which feature?
 - ➤ How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Case study: Line fitting

Why fit lines? Many objects characterized by presence of straight lines

Wait, why aren't we done just by running edge detection?

Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
 - which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - how to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - how to detect true underlying parameters?

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- ❖ Voting is a general technique where we let the features vote for all models that are compatible with it.
 - > Cycle through features, cast votes for model parameters.
 - ➤ Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.

Hough Transform: Line Detection

Hough Transform: Line Detection

Note: Straight line equation for m and c

Hough Transform: Line Detection (Hough Parameter Space)

Transform all the image points from Image Space to Hough Parameter Space

Hough Transform: Concept

Transform all the image points from Image Space to Hough Parameter Space

Hough Transform: Line Detection Algorithm (with a Voting scheme)

Multiple Lines Detection

Issue: Slope of the line $-\infty \le m \le \infty$

- Large Accumulator
- More Memory and Computation

Solution: Use $x \sin \theta - y \cos \theta + \rho = 0$

- Orientation θ is finite: $0 \le \theta < \pi$
- Distance ρ is finite

Two Line Equations

Hugh Transform Mechanics

- * How big should the accumulator cells be?
 - > Too big: Different lines may be merged.
 - > Too small: Noise causes lines to be missed. Miss lines because some points that are not exactly collinear cast votes for different buckets
- How many lines
 - Count the peaks in the accumulator array
- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude
- Handling inaccurate edge locations:
 - > Increment patch in accumulator rather than single point
- Strong Edges
 - Give more votes for stronger edges.
 - > Examine the surrounding pixels in the chosen cell
 - > Edge thinning can be beneficial
- \bullet Change the sampling of (ρ, θ) to give more/less resolution
- Increment neighboring bins (smoothing in accumulator array)

Hugh Transform Advantages and Disadvantages

Advantages

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model (e.g., line, circle, ...) in a single pass
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Disadvantages

- > Complexity of search time increases exponentially with the number of model parameters
- > Non-target shapes can produce spurious peaks in parameter space
- ➤ It's hard to pick a good Accumulator (grid) size

Line Detection Results

Line Detection Results

Line Detection Results

https://github.com/adityaintwala/Hough-Line-Detection

Hugh Transform: Circle Detection

Hugh Transform: Circle Detection

Hugh Transform: Circle Detection

Circle Detection Results

Hough Transform: Circle Detection

Note: Complexity of search time increases exponentially with the number of model parameters

Generalized Hough Transform

Find shapes that cannot be described by equations

Reference point: (x_c, y_c)

Edge direction: ϕ_i $0 \le \phi_i < 2\pi$

Edge location: $\vec{r}_k^i = (r_k^i, \alpha_k^i)$

ee K. Nayar

Generalized Hough Transform

Find shapes that cannot be described by equations

Reference point: (x_c, y_c)

Edge direction: ϕ_i $0 \le \phi_i < 2\pi$

Edge location: $\vec{r}_k^i = (r_k^i, \alpha_k^i)$

Hough Model

Generalized Hough Transform

- Create accumulator array $A(x_c, y_c)$
- Set $A(x_c, y_c) = 0$ for all (x_c, y_c)
- For each edge point (x_i, y_i, ϕ_i) ,

For each entry $\phi_i \rightarrow \vec{r}_k^{\ i}$ in ϕ – table,

$$x_c = x_i \pm r_k^i \cos(\alpha_k^i)$$

$$y_c = y_i \pm r_k^i \sin(\alpha_k^i)$$

$$A(x_c, y_c) = A(x_c, y_c) + 1$$

• Find local maxima in $A(x_c, y_c)$

A	1			1
\boldsymbol{A}	(x_i)		ν	_]
	(00)	CJ,	"	

0	0	0	0	0
0	2	0	1	0
0	0	4	1	0
0	2	0	0	0
0	0	0	1	0

 y_c

Results

Handling Scale and Rotation

Use Accumulation Array: $A(x_c, y_c, s, \theta)$

$$x_c = x_i \pm r_k^i \cdot s \cos(\alpha_k^i + \theta)$$

$$y_c = y_i \pm r_k{}^i \cdot s \sin(\alpha_k{}^i + \theta)$$

$$A(x_c, y_c, s, \theta) = A(x_c, y_c, s, \theta) + 1$$

Huge Memory and Computationally Expensive!

Hough Transform: Comments

- Works on disconnected edges
- Relatively insensitive to occlusion and noise
- Effective for simple shapes (lines, circles, etc.)
- Complex Shapes: Generalized Hough Transform
- Trade-off between work in image space and parameter space

Hough Transform: Line Detection (Parameter Space)

Hough Transform Concept

Hough Transform Concept

