2022-2 – Laboratório de Arquitetura de Computadores Como aumentar o desempenho de acesso aos discos

https://youtu.be/B1MGsgsr9GE

Western Digital Vídeo

Memórias Externas RAID Architecture

Frase do dia:

"O que sabemos é uma gota; o que ignoramos é um oceano."
Sir Isaac Newton

IDENTIKIT E DADOS PESSOAIS

Signo do zodíaco Capricórnio

Nome Isaac Sobrenome Newton Título Sir Nascido 4 Janeiro 1643 em Woolsthorpe-by-ColsterworthLincolnshire Falecido 31 Março 1727 em Kensington, Londra Gênero masculino Nacionalidade Inglesa Profissão matemático, físico

Avisos: CC-03AN - Datas Importantes

Avaliação N1: 20/10/2022 – 21h10

- Avaliação N2:

- Apresentação dos Grupos: 17/11/2022

- Avaliação Integrada (AI) parte da N2: 21 a 23/11/2022

Avaliação Processual (AP) – 100% - Fechamento 30/11/2022

- 40% - Seminário sobre TI – Formulário Grupos e Temas 02/10/2022

- 60% - Atividades

- In class

- Formulários

- Prova N3: 15/12/2022 - 21h10

USCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL

Introduction

- RAID stands for Redundant Array of Independent Disks
- A system of arranging multiple disks for redundancy (or performance)
- Term first coined in 1987 at Berkley
- Idea has been around since the mid 70's
- RAID is now an umbrella term for various disk arrangements
 - Not necessarily redundant

RAID 0

- Also known as "Striping"
- Data is striped across the disks in the array
- Each subsequent block is written to a different disk

RAID 0 Writes

RAID 0 Writes

RAID 0 Reads

USCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SU

RAID 0 Pros

- Best use of space
 - Every byte of the disks can be accessed in the array
- Very fast reads and writes
 - The more disks you add to the array, the faster it goes
- Simple design and operation
 - No parity calculation

RAID 0 Cons

- No redundancy
- Not for use in mission critical systems
- One disk failure means all your data is unrecoverable

RAID 1

- Known as "Mirroring"
- Data is written to two disks concurrently
- The first type of RAID developed

RAID 1 Reading

RAID 1 Recovery

USCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUI

RAID 1 Pros

- Good redundancy
 - Two copies of every block
- Fast reads
 - Can read 2 blocks at once (more if more disks)
- Writes are acceptable
- No intense calculation on rebuild, just copy

RAID 1 Cons

- SPACE!!
- Using 2 disks gives you 1/2 the space, using 3 gives 1/3 etc...
- Writes are not as fast as other RAID types
- Very expensive

RAID 4

- Striping with a dedicated parity disk
- Blocks are written to each subsequent disk
- Each block of the parity disk is the XOR value of the corresponding blocks on the data disks
- Not used often in the real world

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	1

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	10

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	100

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	1001

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	10010

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	100101

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	1001011

Block	Data
A1	11110000
A2	11001100
A3	10101010
AP	10010110

RAID 4 Modifying

RAID 4 Recovery

USCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SU

RAID 4 Pros

- High read rate
- Low ratio of error correction space
 - Any number of data disks only require 1 parity disk.
 4 disks gives 3/4 usable space 5 gives 4/5
- Can recover from single disk failures

RAID 4 Cons

- Very slow writes
 - Every write requires 2 reads and 2 writes
 - Every write requires accessing the single parity disk
- Recovery is processor intensive
- Parity bit cannot detect multi-bit error

USCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL

RAID 5

- Striped disks with interleaved parity
- Much like RAID 4 except that parity blocks are spread over every disk

RAID 5

RAID 5 Pros

- Read rates the same as RAID 4
- Because parity bits are distributed, every write does not need to access a single disk
 - Writes are marginally better than RAID 4
- Like RAID 4, you need relatively little parity which allows larger arrays

RAID 5 Cons

- Re-writing a block still requires 2 reads and 2 writes
 - Interleaving mitigates the penalty
- Rebuilding the array takes a long time
- Can only tolerate one disk failure

UNCS UNIVERSIDADE MUNICIPAL DE SÃO CAETANO DO SUL

RAID 2

- Striped set with dual distributed parity
- Defined as any form of RAID that can recover from two concurrent disk failures
- Different implementations
 - Double parity, P+Q, Reed-Solomon Codes
- Essentially RAID 5 with an extra parity disk

RAID 2 Error Correction Using Hamming Codes (Double parity)

	Data			Redundant			
Disk	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

	Data				Red	Redundant	
Dis k	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

Data

Dis k	Contents
1	11110000
2	????????
3	00111000
4	01000001
5	????????
6	10111110
7	10001001

Data

Dis k	Contents
1	11110000
2	????????
3	00111000
4	01000001
5	????????
6	10111110
7	10001001

No Good! Disk 2 has failed.

Data				Redundant			
Dis k	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

Data

Dis k	Contents
1	11110000
2	????????
3	00111000
4	01000001
5	????????
6	10111110
7	10001001

Great. We can recover disk 2 by using disks 1, 4, and 6. XOR them all and we get...

	Data				Red	unda	nt
Dis k	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

Hamming Code

Data

Dis k	Contents
1	11110000
2	00001111
3	00111000
4	01000001
5	????????
6	10111110
7	10001001

	Data				Red	unda	nt
Dis k	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

Data

Dis k	Contents
1	11110000
2	00001111
3	00111000
4	01000001
5	????????
6	10111110
7	10001001

Now we can see disk 5 is the parity bit for disks 1,2,3. XOR them all and we have recovered from two disk failures.

Hamming Code

	Data				Redu	ındanı	
Dis k	1	2	3	4	5	6	7
	1	1	1	0	1	0	0
	1	1	0	1	0	1	0
	1	0	1	1	0	0	1

Data

Dis k	Contents
1	11110000
2	00001111
3	00111000
4	01000001
5	11000111
6	10111110
7	10001001

RAID 2 Continued

- In the example shown, we have not interleaved the parity information to make it easier to understand
- We can interleave the data in the same way we do in RAID 5 to avoid the bottleneck of writing all the parity to a small subset of disks

RAID 2 Pros

- Fast reads
- Very fault tolerant
- As rebuild times increase, having extra fault tolerance is becoming more important
- ▶ The parity method described requires 2^k-1 disks with k disks used for parity
- Other methods can require only 2 disks for parity

Raid 2 Cons

- About the same performance write speed as RAID 5. More reads and writes are required, but most can be done concurrently.
- Requires more parity space than RAID 5
 - Still less than RAID 1
- Very computationally expensive

RAID 3

- Bit-interleaved parity
- Instead of using several disks to store Hamming code, as in RAID 2, RAID 3 has a single disk check with parity information.
- Performance is similar between RAID 2 and 3

Hybrids

- ▶ RAID 1+0
 - Sets of drives in RAID 1 act as the drives for RAID 0
 - Very fast reads
 - Faster writes than RAID 5
 - Redundant yet none of the overhead that comes with RAID 5 or 6
 - In certain cases can handle multiple failures
 - Very expensive

Hybrids Cont.

- Others
 - \circ 5+0
 - \circ 0+1
 - Hot Spares
 - Intel Matrix Raid

Software RAID (Fake RAID)

- Software controllers offload their error correction calculations to the CPU
- Cheap
- Included on nearly every modern motherboard
- Difficult to boot from

Hardware RAID

- No CPU overhead
- Can include battery backed write cache
- Can appear as a single disk to the BIOS
- Often very expensive
 - (Some cost more than the hard drives used to build the array)
- Proprietary (if your controller card fails, other manufacturers cards wont be able to read the array)

Problems Inherent in all RAIDs

- Correlated Failures
 - Identical disks produced from the same assembly line and run for the exact same amount of time tend to fail together
- Write Atomicity
 - What happens when there is a system crash between a block being written and its associated parity block?

Problems Cont.

- RAID does not protect from bad data overwriting your good data
 - Viruses
 - User Error
- RAID solves the problem of uptime and availability, not data integrity.

Applications

- ▶ RAID 0
 - Photoshop scratch disk
 - Video editing workstation
- RAID 5/6
 - File server
 - Web server with static content
- ▶ RAID 1+0
 - Database server

Elkhorn Creek

Servidor de Storage - Pentium® G / Xeon® E3-V3 Modelo Elkhorn Creek Storage, 8G, SSD120, 5x HD8TB

» Processador Intel® Pentium® G-3260 ou Intel® Xeon® E3-V3 [+]
 » Placa Mãe Supermicro® X10SLL-HF [+]
 » 8 GB de Memória Kingston® DDR3-1600 ECC [+]
 » SSD: Drive Sólido de 120 GB, Kingston® SV300S37A/120G [+]
 » RAID 0/1/10/5: 05 (Cinco) Hard Disks de 8 TB, Seagate® SATA 6Gbps, Cache 128MB [+]
 » RAID o/1/10/5: 05 (Cinco) Hard Disks de 8 TB, Seagate® SATA 6Gbps, Cache 128MB [+]

» RAID suportado em Windows® Server 2003/2008/2012, Red Hat e SUSE Linux

» Sem Unidades Óticas (CD, DVD) [+]
» 02 Portas de Rede Gigabit Intel® i210AT + i217LM

» Gabinete Corsair® Carbide CC-9011056-WW [+]

» Fonte Server ATX/EPS, PFC Ativo, 500W [+]

» Cabeamento "Origami Design" para otimização de fluxo de ar [+]

» Sem Monitor, teclado e mouse

Com processador Intel® Pentium® G-3260 (2-Core 3.3GHz, 3MB): R\$ 17.250.00 PRONTA ENTREGA

Windows Server 2012

Sistema Operacional MS Windows Server 2012 R2 Essentials OEM com 25 clientes, em português, por R\$2.495,00

Sistema Operacional MS Windows Server 2012 R2 Standard OEM com suporte a 2CPU/2VM, em português, por R\$4.585,oo

Compare as versões Essentials e Standard

Source

- Course Text 1 Instructor's Support Materials
- http://www.zdnet.com/
- Western Digital Vídeo
- https://youtu.be/B1MGsqsr9GE

Checklist

- What is mirroring?
- What is striping?
- What is a parity bit?
- How do we use Hamming code to allow identification of a single error?
- List 5 levels of RAID
- What is Hybrid, Software, Hardware RAID?

The end!

