Analízis I, 12. gyakorlat

Bevezetés. Az $e \approx 2.718$ konstans a matematika egyik legfontosabb állandója (Euler-állandó, a természetes logaritmus alapszáma; 1683-ban vezette be Jacob Bernoulli). Az $x \mapsto e^x$ exponenciális függvény kitüntetett tulajdonságokkal rendelkezik, és mindenhol jelen van a természettudományokban és az alkalmazásokban; például a differenciálszámításban (az e^x exponenciális függvény deriváltja önmaga), a differenciálegyenletek elméletében (állandó együtthatós lineáris differenciálegyenletek megoldásakor), az algebrában (az e^x exponenciális függvény a számegyenes megfelelő additív és multiplikatív csoportjai közötti homomorfizmus), a geometriában (az e^i komplex exponenciális függvény a számegyenest az egységkörvonalra képezi), vagy a fizikában (ha t jelöli az időt, akkor az e^i komplex exponenciális függvény megfelelő vetületei a harmonikus rezgőmozgást leíró koszinusz- és szinuszfüggvények). A t0 http://functions.wolfram.com függvényenciklopédia az exponenciális függvénnyel kapcsolatban 1523 formulát tartalmaz. Az alábbiakban ezek közül tekintünk át néhány képletet.

A feladatok megoldásához szükséges lesz, hogy felidézzük

- az $\binom{N}{n}$ binomiális együttható különféle kiszámítási módjait;
- a Newton-féle binomiális tételt: $\forall a, b \in \mathbb{R}, \ \forall N \in \mathbb{N}^+: (a+b)^N = \sum_{n=0}^N \binom{N}{n} b^n a^{N-n};$
- a sorozat-határérték kapcsolatát az alapműveletekkel és a rendezéssel;
- a $\sum_{n=0}^{\infty} a_n$ végtelen sorok definícióját, konvergenciáját és abszolút konvergenciáját;
- az abszolút konvergens sorok Cauchy-szorzatát (= diszkrét konvolúció);
- a komplex számok alaptulajdonságait.

12/1

Motiváció. Az e számot – matematikatörténeti okokból – általában az $e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ határértékkel vezetjük be. Az $\left(1 + \frac{1}{n}\right)^n$ sorozat azonban lassan konvergál, ezért az e szám tizedesjegyeinek kiszámítására praktikusan nem alkalmas (például $n = 10^6$ esetén is csak 5 tizedesjegy pontosságot ad). Szerencsére létezik az e szám tizedesjegyeinek kiszámítására hatékony képlet, mégpedig a $\sum_{n=0}^{\infty} \frac{1}{n!} := \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!}$ végtelen sor. Először belátjuk, hogy a $\sum_{n=0}^{\infty} \frac{1}{n!}$ sorösszeg valóban e, majd megfogalmazunk egy hibabecslést, amely segítségével meghatározható, hogy az e szám előre adott pontosságú kiszámításához a $\sum_{n=0}^{\infty} \frac{1}{n!}$ végtelen sornak melyik részletösszegét elegendő kiszámolni (adott pontosságú racionális approximáció). A hibabecslés azt is mutatja, hogy a $\sum_{n=0}^{\infty} \frac{1}{n!}$ sor részletösszegei roppant gyorsan konvergálnak e-hez, amiből az e szám irracionális volta egyszerűen következik (Joseph Fourier módszerét ismertetjük).

Bizonyítás. Először az alábbi lemmát mondjuk ki és bizonyítjuk be.

Lemma. $\forall N \in \mathbb{N}^+, \forall M \in \mathbb{N}^+ : \left(1 + \frac{1}{N}\right)^N \le \sum_{n=0}^N \frac{1}{n!} \le \left(1 + \frac{1}{M}\right)^{M+N}$.

A lemma alsó becslésének bizonyítása.

$$(1 + \frac{1}{N})^N = [\text{binomiális tétel}] = \sum_{n=0}^{N} {N \choose n} \frac{1}{N^n} 1^{N-n} = [\text{definíció}] = \sum_{n=0}^{N} \frac{N(N-1)...(N-n+1)}{n!} \frac{1}{N^n} = [\text{definíció}]$$

[sorrendcsere] = $\sum_{n=0}^{N} \frac{N(N-1)...(N-n+1)}{N^n} \frac{1}{n!}$ = [széttagolás] =

$$\sum_{n=0}^N \tfrac{N}{N} \tfrac{N-1}{N} \dots \tfrac{N-n+1}{N} \tfrac{1}{n!} \leq [\text{t\'enyez\'onk\'enti becsl\'es}] \leq \sum_{n=0}^N 1 \cdot 1 \cdot \dots \cdot 1 \tfrac{1}{n!}.$$

A lemma felső becslésének bizonyítása. $\left(1+\frac{1}{M}\right)^{M+N}=[\text{binomiális tétel}]=\sum_{n=0}^{M+N}\binom{M+N}{n}\frac{1}{M^n}\geq$

[néhány pozitív tagot elhagyva a szummából] $\geq \sum_{n=0}^{N} {M+N \choose n} \frac{1}{M^n} = \sum_{n=0}^{N} \frac{(M+N)(M+N-1)...(M+N-n+1)}{n!} \frac{1}{M^n} = \sum_{n=0}^{N} \frac{(M+N)(M+N-1)}{n!} \frac{1}{M^n} = \sum_{n=0}^{N} \frac{(M+N)(M+N-1)}{$

$$\sum_{n=0}^{N} \frac{(M+N) \cdot (M+N-1) \dots (M+N-n+1)}{M^n} \cdot \frac{1}{n!} = \sum_{n=0}^{N} \frac{M+N}{M} \cdot \frac{M+N-1}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{1}{n!} \geq \text{[tényezőnkénti becslés]} \geq \sum_{n=0}^{N} \cdot 1 \cdot 1 \cdot \dots \cdot 1 \cdot \frac{1}{n!} = \sum_{n=0}^{N} \frac{M+N}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{1}{N} = \sum_{n=0}^{N} \frac{M+N}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{1}{n!} = \sum_{n=0}^{N} \frac{M+N}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{M+N-n+1}{M} \cdot \frac{M+N-n+1}{$$

A lemmából már egyszerűen következik a feladat állítása.

Először a $\sum_{n=0}^{N} \frac{1}{n!} \le \left(1 + \frac{1}{M}\right)^{M+N}$ felső becslésben rögzített $N \in \mathbb{N}^+$ esetén tekintsük az $M \to \infty$

határátmenetet: a bal oldal független
$$M$$
-től, a jobb oldal limesze pedig $\lim_{M\to\infty}\left(1+\frac{1}{M}\right)^{M+N}=\lim_{M\to\infty}\left(\left(1+\frac{1}{M}\right)^{M}\left(1+\frac{1}{M}\right)^{N}\right)=[\text{szorzástétel}]$

$$= \left(\lim_{M \to \infty} \left(1 + \frac{1}{M}\right)^{M}\right) \left(\lim_{M \to \infty} \left(1 + \frac{1}{M}\right)^{N}\right) = e \cdot 1 = e.$$

Azt kaptuk tehát, hogy $\forall N \in \mathbb{N}^+$ esetén $\sum_{n=0}^N \frac{1}{n!} \le e$, amiből a lemma alsó becslésével együtt

 $\left(1+\frac{1}{N}\right)^N \leq \sum_{n=0}^N \frac{1}{n!} \leq e$ adódik. Ebben az $N \to \infty$ határátmenetet véve a közrefogási elv segítségével

kapjuk, hogy $\lim_{N\to\infty} \sum_{n=0}^{N} \frac{1}{n!} = e$.

Hibabecslés. $\forall N \in \mathbb{N}^+$ esetén $0 < e - \sum_{n=0}^{N} \frac{1}{n!} < \frac{1}{N \cdot N!}$

Bizonyítás. Az imént láttuk, hogy $e = \lim_{N \to \infty} \left(\sum_{n=0}^{N} \frac{1}{n!} \right)$. Mivel a (...)-beli sorozat N-ben szigorúan

monoton nő, ezért $\forall N \in \mathbb{N}^+$ esetén $\sum_{n=0}^{N} \frac{1}{n!} < e$, azaz $0 < e - \sum_{n=0}^{N} \frac{1}{n!}$.

A felső becsléshez vegyük észre, hogy $e - \sum_{n=0}^{N} \frac{1}{n!} = \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) - \left(\sum_{n=0}^{N} \frac{1}{n!}\right) = \frac{1}{(N+1)!} + \frac{1}{(N+2)!} + \frac{1}{(N+3)!} + \dots$ $=\frac{1}{(N+1)!}\left(1+\frac{1}{N+2}+\frac{1}{(N+3)(N+2)}+\frac{1}{(N+4)(N+3)(N+2)}+\ldots\right)<\frac{1}{(N+1)!}\left(1+\frac{1}{N+2}+\frac{1}{(N+2)^2}+\frac{1}{(N+2)^3}+\ldots\right)=$

 $\left[\operatorname{az} \frac{1}{N+2} \text{ kvóciensű konvergens mértani sor összegképlete alapján}\right] = \frac{1}{(N+1)!} \left(\frac{1}{1-\frac{1}{N+2}}\right) = \frac{1}{(N+1)!} \frac{N+2}{N+1}$

Végül belátjuk, hogy $\frac{1}{(N+1)!} \frac{N+2}{N+1} < \frac{1}{N+N!}$ [vagyis gyengítjük a becslésünket, hogy a feladatban megadott egyszerűbb alakot nyerjük]. Nyilván

 $\frac{1}{(N+1)!}\frac{N+2}{N+1} < \frac{1}{N+N!} \Longleftrightarrow \frac{N!}{(N+1)!}\frac{N+2}{N+1} < \frac{1}{N} \Longleftrightarrow \frac{1}{N+1}\frac{N+2}{N+1} < \frac{1}{N} \Longleftrightarrow N(N+2) < (N+1)^2, \text{ ez utóbbi pedig triviálisan}$

Az e szám irracionális

Bizonyítás. Indirekt módon tegyük fel, hogy $e = \frac{p}{q} \in \mathbb{Q}$, ahol $p, q \in \mathbb{N}^+$. Írjuk fel a hibabecslést az N := q választással: $0 < e - \sum_{n=0}^{q} \frac{1}{n!} = \frac{p}{q} - \sum_{n=0}^{q} \frac{1}{n!} < \frac{1}{qq!}$, majd szorozzuk ezt be (qq!)-sal. Így $0 . Itt <math>n \le q$, tehát q! osztható n!-sal, ezért $p \ q! - \sum_{n=0}^{q} \frac{q \ q!}{n!} \in \mathbb{Z}$. Ez viszont ellentmondás, hiszen a (0, 1) nyílt intervallumban nincs egész szám.

Az e számra igaz, hogy 2.718 < e < 2.7183

Bizonyítás. Tekintsük a hibabecslésben megfogalmazott egyenlőtlenséget N = 6 esetén:

 $\sum_{n=0}^{6} \frac{1}{n!} < e < \frac{1}{6 \times 6!} + \sum_{n=0}^{6} \frac{1}{n!}$. Itt a bal és jobb oldalt kiértékelve élesebb korlátot is kapunk:

$$\left\{\sum_{n=0}^{6} \frac{1}{n!}, \frac{1}{6 \times 6!} + \sum_{n=0}^{6} \frac{1}{n!}\right\}$$

$$\left\{\frac{1957}{720}, \frac{11743}{4320}\right\} // N$$

{2.71806, 2.71829}

Megjegyzés: néhány száz tizedesjegy pontossággal számolva

N[e, 500]

2.71828182845904523536028747135266249775724709369995957496696762772407663035 354759457138217852516642742746639193200305992181741359662904357290033429526 059563073813232862794349076323382988075319525101901157383418793070215408914 993488416750924476146066808226480016847741185374234544243710753907774499206 955170276183860626133138458300075204493382656029760673711320070932870912744 374704723069697720931014169283681902551510865746377211125238978442505695369 67707854499699679468644549059879316368892300987931

Az első néhány tizedesjegy fejben tartásához segít az alábbi minta: e ≈ 2.7 <mark>1828 1828</mark> 45 <mark>90</mark> 45....

Motiváció. Az alábbiakban – mindenhol abszolút konvergens Taylor-sor segítségével – bevezetjük az e-alapú exponenciális függvényt, majd megmutatjuk egy fontos algebrai tulajdonságát (csoporthomomorfizmus: "összegből szorzatot készít"). Szintén mindenhol abszolút konvergens Taylor-sorokkal definiáljuk a koszinusz- és a szinuszfüggvényt, és belátjuk ezek kapcsolatát a komplex exponenciális függvénnyel (Euler-formula). Ezen összefüggések egyszerű alkalmazásával adódnak a trigonometrikus függvények addíciós tételei (speciális esetként a "többszörös szögek szögfüggvényei"), illetve a trigonometrikus Pitagorasz-tétel.

Definíció.
$$\forall z \in \mathbb{C}$$
 esetén $e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Megjegyzés: z = 0 esetén a szummában $0^0 := 1$ értendő. Más szóval: $e^z := 1 + \sum_{n=1}^{\infty} \frac{z^n}{n!}$

Megjegyzés: a hányadoskritérium miatt a fenti végtelen sor tetszőleges, rögzített $z \in \mathbb{C}$ esetén abszolút konvergens, így konvergens is.

Megjegyzés: z=1 esetén visszakapjuk a 12/1-beli $e=\sum\limits_{n=0}^{\infty}\frac{1}{n!}$ állítást.

Állítás [additív-multiplikatív tulajdonság]. $\forall z, w \in \mathbb{C}$ esetén $e^{z+w} = e^z e^w$

Bizonyítás. A definíció szerint

$$e^{z+w} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = [\text{a binomiális tételt használva}] = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k} = [\text{egyszerűsítve}]$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k}{k!} \frac{w^{n-k}}{(n-k)!}. \text{ Ez utóbbi kifejezés nem más, mint az } e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \text{ és } e^w = \sum_{n=0}^{\infty} \frac{w^n}{n!} \text{ abszolút konvergens sorok Cauchy-szorzata. A tanult tétel szerint ilyen esetben a Cauchy-szorzat összege a sorösszegek szorzata, vagyis
$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k}{k!} \frac{w^{n-k}}{(n-k)!} = \left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{w^n}{n!}\right) = e^z e^w.$$$$

Állítás. $\forall z \in \mathbb{C}$ esetén $e^{-z} = \frac{1}{e^z}$

Bizonyítás. Mivel $1 = 1 + \sum_{n=1}^{\infty} \frac{0^n}{n!} = e^0 = e^{z+(-z)} = [additív - multiplikatív tulajdonság] = e^z e^{-z}$, ezért $e^{-z} = \frac{1}{e^z}$.

Definíció.

 $\forall Z \in \mathbb{C} : \cos(Z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} Z^{2n}$ $\forall Z \in \mathbb{C} : \sin(Z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} Z^{2n+1}$

Állítás [Euler-formula]. Legyen $x \in \mathbb{R}$. Ekkor $e^{ix} = \cos(x) + i \sin(x)$.

Bizonyítás. Emlékezzünk arra, hogy \bar{i}^n ($n \in \mathbb{N}$) egy 4 periódusú sorozat (lehetséges értékei:

1,
$$\bar{l}$$
, -1 , $-\bar{l}$), $fgy e^{\bar{l}x} = \sum_{n=0}^{\infty} \frac{(\bar{l}x)^n}{n!} = 1 + \bar{l}\frac{x^1}{1!} - \frac{x^2}{2!} - \bar{l}\frac{x^3}{3!} + \frac{x^4}{4!} + \bar{l}\frac{x^5}{5!} - \frac{x^6}{6!} - \bar{l}\frac{x^7}{7!} + \dots = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots\right) + \bar{l}\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots\right) = \cos(x) + \bar{l}\sin(x).$

Megjegyzés: a fenti levezetéssel analóg módon látható be, hogy $\forall z \in \mathbb{C}: e^{iz} = \cos(z) + i\sin(z)$, vagy például az, hogy $z = a + b i \in \mathbb{C}$ esetén $e^{a+bi} = e^a(\cos(b) + i \sin(b))$. Ezekből például azt nyerjük, hogy $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ és $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$. A trigonometrikus függvények tehát mind kifejezhetők a (komplex) exponenciális függvénnyel.

Állítás. $\forall x \in \mathbb{R}$ esetén $\cos(2x) = \cos^2(x) - \sin^2(x)$ és $\sin(2x) = 2\sin(x)\cos(x)$. (A tétel egyébként $\forall x \in \mathbb{C}$ esetén is igaz.)

Bizonyítás. Egyrészt

 $e^{2ix} = e^{ix+ix} = [additiv - multiplikativ tulajdonság] = e^{ix} e^{ix} = [Euler - formula] =$ $(\cos(x) + \bar{\iota}\sin(x))^2 = (\cos^2(x) - \sin^2(x)) + \bar{\iota}(2\sin(x)\cos(x)).$

Másrészt az Euler-formula miatt $e^{2ix} = e^{i(2x)} = \cos(2x) + i \sin(2x)$. A valós és képzetes részeket összevetve adódik az állítás.

A trigonometrikus Pitagorasz-tétel. $\forall x \in \mathbb{R}$ esetén $\cos^2(x) + \sin^2(x) = 1$. (A tétel egyébként $\forall x \in \mathbb{C}$ esetén is igaz.)

Bizonyítás. $1 = e^0 = e^{ix + (-ix)} = [additív-multiplikatív tulajdonság] = e^{ix} e^{-ix} =$ [Euler-formula] = $(\cos(x) + i\sin(x))(\cos(-x) + i\sin(-x)) =$ [a cos-függvény páros és a sin-függvény páratlan volta a fenti definíciókból nyilvánvaló]= $(\cos(x) + i\sin(x))(\cos(x) - i\sin(x)) = \cos^2(x) + \sin^2(x).$