Topologie - Opdracht 12

Luc Veldhuis - 2538227

April 2017

Q2) Laat $H:[0,1]\times[0,1]\longrightarrow X$ een continue afbeelding zijn. We definieren paden $\alpha,\beta,\gamma,\delta$: $[0,1] \longrightarrow X \text{ door } \alpha(s) := H(s,0), \ \beta(s) := H(1,s), \ \gamma(s) := H(s,1) \text{ en } \delta(s) := H(0,s).$ Laat zien dat $\alpha \star \beta \simeq_{\{0,1\}} \delta \star \gamma$.

Om het te visualizeren:

$$H(0,0) \xrightarrow{\alpha} H(1,0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H(0,1) \xrightarrow{\gamma} H(1,1)$$

$$\alpha \star \beta = \begin{cases} H(2s,0) & 0 \le s \le \frac{1}{2} \\ H(1,2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$
$$\delta \star \gamma = \begin{cases} H(0,2s) & 0 \le s \le \frac{1}{2} \\ H(2s-1,1) & \frac{1}{2} \le s \le 1 \end{cases}$$

Deze afbeeldingen zijn goedgedefinieerd en continu omdat H continu is, en omdat $\alpha \star \beta(\frac{1}{2}) =$ $H(1,0) = H(1,0) = \alpha(1) = \beta(0)$, en omdat $\delta \star \gamma(\frac{1}{2}) = H(0,1) = H(0,1) = \delta(1) = \gamma(0)$ Ook geldt dat $H(0,0) = \alpha(0) = \delta(0)$ en $H(1,1) = \gamma(1) = \beta(1)$.

Dus nu zoeken we een homotopie tussen deze 2 afbeeldingen.

Neem de functie
$$G: [0,1] \times [0,1] \longrightarrow X$$
 met
$$G(s,t) = \begin{cases} H(2s(1-t),2st) & 0 \le s \le \frac{1}{2} \\ H((2s-1)t+(1-t),(2s-1)(1-t)+t) & \frac{1}{2} \le s \le 1 \end{cases}$$
 Nu geldt dat $G(s,0) = \begin{cases} H(2s,0) & 0 \le s \le \frac{1}{2} \\ H(1,2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$

Nu geldt dat
$$G(s,0) = \begin{cases} H(2s,0) & 0 \le s \le \frac{1}{2} \\ H(1,2s-1) & \frac{1}{2} \le s \le 1 \end{cases} = \alpha \star \beta$$

Ook geldt dat
$$G(s, 1) = \begin{cases} H(0, 2s) & 0 \le s \le \frac{1}{2} \\ H(2s - 1, 1) & \frac{1}{2} \le s \le 1 \end{cases} = \delta \star \gamma$$

Deze functie is goedgedefinieerd, omdat voor $0 \le s \le \frac{1}{2}$ er geldt dat $0 \le 2s(1-t) \le 1$ en $0 \le 2st \le 1$ voor alle $t \in [0, 1]$.

Ook hebben we voor alle $t \in [0,1]$ en voor $\frac{1}{2} \le s \le 1$ dat geldt: $0 \le (2s-1)t + (1-t) \le 1$ en $0 \le (2s-1)(1-t) + t \le 1$. Ook zien we dat $G(\frac{1}{2},s) = H(s,s) = H(s,s)$. Dus goedgedefinieerd. Omdat H continu is, is G ook continu, omdat de functies van de argumenten samenstellingen zijn van continue functies.

Ook geldt dat $G(0,t) = H(0,0) = \alpha(0) = \delta(0)$ en $G(1,t) = H(1,1) = \beta(1) = \gamma(1)$.

De functie G voldoet nu aan alle eisen van een homotoop relatief $\{0,1\}$.

Dus G is de homotopie zodat $\alpha \star \beta \simeq_{\{0,1\}} \delta \star \gamma$.

- Q3) Laat X_1 en X_2 twee topologische ruimten met basispunten $x_1 \in X_1$ en $x_2 \in X_2$ zijn. Voor de product kiezen we $(x_1, x_2) \in X_1 \times X_2$ als basispunt. Elke pad $\gamma : [0, 1] \longrightarrow X_1 \times X_2$ kan je met coordinaten schrijven, namelijk als $\gamma = (\gamma_1, \gamma_2)$ waarbij, voor $i = 1, 2, \gamma_i : [0, 1] \longrightarrow X_i$ een pad in X_i is.
 - (a) Gegeven zijn twee lussen γ en γ' in $X_1 \times X_2$ met basispunt (x_1, x_2) . Laat zien dat $\gamma \simeq_{\{0,1\}} \gamma'$ dan en slechts dan als $\gamma_1 \simeq_{\{0,1\}} \gamma'_1$ en $\gamma_2 \simeq_{\{0,1\}} \gamma'_2$.

Bewijs ' \Rightarrow '. We hebben een homotopie H relatief $\{0,1\}$ die op een continue manier γ in γ' vervormt.

Definieer nu $H_i: [0,1] \times [0,1] \longrightarrow X_i$ met $H_i(t,s) = pr_i(H(t,s))$

Deze functie is continu, omdat de functie H continu is, dus de projectie van 1 coordinaat hiervan is ook continu.

Nu moeten we laten zien dat H_i een homotopie is.

We zien dat $H_i(t,0) = pr_i(H(t,0)) = \gamma_i(t)$ en $H_i(t,1) = pr_i(H(t,1)) = \gamma_i'(t)$ en $H(0,s) = pr_i(H(0,s)) = \gamma_i(0)$ en $H(1,s) = pr_i(H(1,s)) = \gamma_i(1)$ omdat H relatief $\{0,1\}$ is. Dus H_i is een homotopic relatief $\{0,1\}$ tussen γ_i en γ_i' . Dus $\gamma_i \simeq_{\{0,1\}} \gamma_i'$. En in het bijzonder $\gamma_1 \simeq_{\{0,1\}} \gamma_1'$ en $\gamma_2 \simeq_{\{0,1\}} \gamma_2'$

Bewijs '⇐':

Neem aan dat $\gamma_1 \simeq_{\{0,1\}} \gamma_1'$ en $\gamma_2 \simeq_{\{0,1\}} \gamma_2'$. Er zijn dus homotopiën H_1 en H_2 relatief $\{0,1\}$. Definieer nu $H(t,s) = (H_1(s,t), H_2(s,t))$.

Omdat H_1 en H_2 continu zijn, is H nu ook continu.

Nu moeten we nog laten zien dat H een homotopie is.

 $H(t,0) = (H_1(t,0), H_2(t,0)) = (\gamma_1(t), \gamma_2(t)) \text{ en } H(t,1) = (H_1(t,1), H_2(t,1)) = (\gamma'_1(t), \gamma'_2(t))$ en $H(0,s) = (H_1(0,s), H_2(0,s)) = (\gamma_1(0), \gamma_2(0)) \text{ en } H(1,s) = (H_1(1,s), H_2(1,s)) = (\gamma_1(1), \gamma_2(1)) \text{ omdat } H_1 \text{ en } H_2 \text{ relatief } \{0,1\} \text{ zijn.}$

Dus H is een homotopie relatief $\{0,1\}$ dus geldt $\gamma \simeq_{\{0,1\}} \gamma'$.

(b) Toon aan dat $\pi_1(X_1 \times X_2, (x_1, x_2)) \cong \pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$ (isomorf als groepen)

Groepen zijn isomorf als geldt dat er een homomorfisme bestaat tussen deze 2 groepen, en als dit homomorfisme bijectief is. Een functie is bijectief als het zowel surjectief als injectief is.

Neem als functie $\phi: \pi_1(X_1 \times X_2, (x_1, x_2)) \longrightarrow \pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$ met $\phi([\gamma]) = ([\gamma_1], [\gamma_2])$. Te laten zien dat dit een homomorfisme is: $\phi([\alpha][\beta]) = \phi([\alpha])\phi([\beta])$

We weten dat de operatie '* met $\pi_1(X_i, x_i)$ een groep is, dus geldt $[\alpha][\beta] = [\alpha \star \beta]$. Dan geldt ook dat $([\alpha_1], [\alpha_2])([\beta_1], [\beta_2]) = ([\alpha_1 \star \beta_1], [\alpha_2 \star \beta_2])$ voldoet aan alle axiomas van een groep. (Van groepen theorie.)

Dit geeft $\phi([\alpha][\beta]) = \phi([\alpha \star \beta]) = ([(\alpha \star \beta)_1], [(\alpha \star \beta)_2]) =^{claim} ([\alpha_1 \star \beta_1], [\alpha_2 \star \beta_2]) = ([\alpha_1], [\alpha_2])([\beta_1], [\beta_2]) = \phi([\alpha])\phi([\beta]).$

We moeten nu nog bewijzen dat $([(\alpha \star \beta)_1], [(\alpha \star \beta)_2]) = ([\alpha_1 \star \beta_1], [\alpha_2 \star \beta_2])$

De definitie van $\alpha = (\alpha_1, \alpha_2)$ met α_1 en α_2 een pad.

We weten $(\alpha \star \beta)_i = \begin{cases} \alpha_i(2t) & 0 \le t \le \frac{1}{2} \\ \beta_i(2t-1) & \frac{1}{2} \le t \le 1 \end{cases} = \alpha_i \star \beta_i$

Dus $([(\alpha \star \beta)_1], [(\alpha \star \beta)_2]) = ([\alpha_1 \star \beta_1], [\alpha_2 \star \beta_2])$

Dus $\phi([\alpha][\beta]) = \phi([\alpha])\phi([\beta])$ en dus is het een homomorfisme.

Nu nog bewijzen dat ϕ surjectief is.

De functie ϕ is surjectief als $\forall ([\gamma_1], [\gamma_2]) \in \pi_1(X_1, x_1) \times \pi_1(X_2, x_2) \exists [\gamma] \in \pi_1(X_1 \times X_2, (x_1, x_2))$ zodat $\phi([\gamma]) = ([\gamma_1], [\gamma_2])$.

Kies een wikkeleurige klasse $\alpha_1 \in \pi_1(X_1, x_1)$ en $\alpha_2 \in \pi_1(X_2, x_2)$. Er zit een pad in deze

klassen per definitie. Noem deze $\gamma_1 \in \alpha_1 = [\gamma_1]$ en $\gamma_2 \in \alpha_2 = [\gamma_2]$. Dan bestaat er een pad $\gamma = (\gamma_1, \gamma_2)$. Dan geldt per definitie van ϕ : $\phi([\gamma]) = ([\gamma_1], [\gamma_2])$. Omdat α_1 en α_2 willekeurig gekozen zijn, geldt nu dat voor elk element $([\gamma_1], [\gamma_2]) \in \pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$ er een element $[\gamma] \in \pi_1(X_1 \times X_2, (x_1, x_2))$ bestaat.

Dus ϕ is surjectief.

Nu moeten we laten zien dat ϕ injectief is.

De functie ϕ is injectief geldt dat als $\phi([\alpha]) = \phi([\beta])$ dan moet gelden $[\alpha] = [\beta] \ \forall [\alpha], [\beta] \in \pi_1(X_1 \times X_2, (x_1, x_2)).$

Om dit te bewijzen, neem aan dat $[\alpha] \neq [\beta]$.

Dan geeft dit $\phi([\alpha]) = ([\alpha_1], [\alpha_2])$ en $\phi([\beta]) = ([\beta_1], [\beta_2])$.

Stel nu $\phi([\alpha]) = \phi([\beta])$. Dit kan alleen als $[\alpha_1] = [\beta_1]$ en als $[\alpha_2] = [\beta_2]$. Maar als deze klassen hetzelfde zijn, dan geldt dat $[\alpha] = ([\alpha_1], [\alpha_2]) = ([\beta_1], [\beta_2]) = [\beta]$, maar we namen aan dat $[\alpha] \neq [\beta]$. Tegenspraak. Dus als $[\alpha] \neq [\beta]$ dan $\phi([\alpha]) \neq \phi([\beta])$ (Negatie van bewijs.) Dus ϕ is injectief.

We hebben nu een functie ϕ die zowel injectief als surjectief is, dus ϕ is bijectief, en het is een homomorfisme tussen $\pi_1(X_1 \times X_2, (x_1, x_2))$ en $\pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$.

Hieruit volgt dat $\pi_1(X_1 \times X_2, (x_1, x_2)) \cong \pi_1(X_1, x_1) \times \pi_1(X_2, x_2)$.

Q4) Laat $f, g: X \longrightarrow Y$ twee continue afbeeldingen zijn. Stel, er is een punt $x_0 \in X$ met $f(x_0) = g(x_0) =: y_0$. Toon aan: Als er een homotopie $H: X \times [0,1] \longrightarrow Y$ bestaat, zodanig dat H(x,0) = f(x), H(x,1) = g(x) en $H(x_0,t) = y_0$, dan is $f_* = g_*: \pi_1(X,x_0) \longrightarrow \pi_1(Y,y_0)$. (Voor de definitie van f_* en g_* zie opdrachten 11.)

Uit de opdrachten van week 11 halen we: $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ door $f_*([\alpha]) := [f \circ \alpha]$. Ook geldt dat $f_* = g_*$ als elke klasse $[\alpha] \in \pi_1(X, x_0)$ op dezelfde klasse wordt afgebeeld in $\pi_1(Y, y_0)$. Iets zit in dezelfde klasse in $\pi_1(Y, y_0)$ als er een homotopie bestaat tussen $f \circ \alpha$ en $g \circ \alpha$.

We moeten alleen opletten dat we werken in dezelfde fundamentaalgroep, namelijk, er zit een punt $x_0 \in X$ zodat dit het basispunt is in $\pi_1(X, x_0)$.

Voor beide functies f en g geldt dat $f(x_0) = g(x_0) = y_0$. Dus f en g werken beide op dezelfde fundamentaal groep. Er is geen 'verschuiving' nodig, om van de ene naar de andere groep te gaan. Ook is H de homotopie tussen f en g en omdat deze relatief x_0 is, geldt dat tijdens de continue vervorming nog steeds geldt dat het punt x_0 op hetzelfde punt wordt afgebeeld, dus tijdens de vervorming veranderd het basispunt niet. Dus werkt deze homotopie op dezelfde fundamentaalgroep.

Nu bestaat er voor elk punt $x \in X$, een afbeelding $f(x) \in Y$ die via de homotopie H equivalent is aan g(x).

Omdat deze homotopie het basispunt x_0 niet vervormt geldt dat voor elke klasse $[x] \in \pi_1(X, x_0)$ tijdens de transformatie de fundamentaalgroep hetzelfde basispunt heeft, en dus in dezelfde klasse blijft werken, en dus geeft dit $f(x) \simeq g(x)$, en dus $f_*([x]) = [f(x)] = [g(x)] = g_*([x])$. Dus $f_* = g_*$