Efficient Data Structures and Graph Width Parameters

Marek Sokołowski

25 February 2025

Featured works

- T. Korhonen, K. Majewski, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [FOCS '23] *Dynamic Treewidth*
- T. Korhonen, <u>M. Sokołowski</u> [STOC '24]

 Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth
- T. Korhonen, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [SODA '24] Fully Dynamic Approximation Schemes on Planar and Apex-Minor-Free Graphs
- Mi. Pilipczuk, M. Sokołowski, A. Zych-Pawlewicz [STACS '22] Compact Representation For Matrices of Bounded Twin-Width
- Mi. Pilipczuk, M. Sokołowski [J. Comb. Theory B '24] Graphs of Bounded Twin-Width Are Quasi-Polynomially χ -Bounded

Featured works

- T. Korhonen, K. Majewski, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [FOCS '23] *Dynamic Treewidth*
- T. Korhonen, M. Sokołowski [STOC '24]

 Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth
- T. Korhonen, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [SODA '24] Fully Dynamic Approximation Schemes on Planar and Apex-Minor-Free Graphs
- Mi. Pilipczuk, M. Sokołowski, A. Zych-Pawlewicz [STACS '22] Compact Representation For Matrices of Bounded Twin-Width
- Mi. Pilipczuk, M. Sokołowski [J. Comb. Theory B '24] Graphs of Bounded Twin-Width Are Quasi-Polynomially χ -Bounded

n vertices, m edges

n vertices, m edges

MAXIMUM MATCHING

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

MAXIMUM INDEPENDENT SET

n vertices, m edges

MAXIMUM MATCHING

Easy! [Edmonds '61]

MAXIMUM INDEPENDENT SET

NP-hard! [Cook '71, Karp '72, Levin '73]

MAXIMUM INDEPENDENT SET is NP-hard in general... But becomes easy on trees!

Question

Maybe some hard problems can be solved efficiently on more general tree-like graphs?

tree decomposition

• Each vertex in a non-empty connected subgraph of the decomposition

• Each vertex in a non-empty connected subgraph of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1

- Each vertex in a non-empty connected subgraph of the decomposition
- Each edge $uv \Longrightarrow$ both u and v in some common bag of the decomposition
- Width: maximum bag size, minus 1
- Treewidth: minimum possible width of a tree decomposition

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen '21]	2w + 1	$2^{\mathcal{O}(w)} \cdot n$

Treewidth is great!

Given: n-vertex graph G and its tree decomposition of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{\mathcal{O}(w)} \cdot n$

Problem: Usually we don't have a tree decomposition of a graph beforehand.

Tree decomposition algorithms

	Width guarantee	Time
[Robertson, Seymour '86]	4w + 3	$2^{\mathcal{O}(w)} \cdot n^2$
[Bodlaender '96]	W	$2^{\mathcal{O}(w^3)} \cdot n$
[Bodlaender et al. '16]	5w + 4	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen '21]	2w + 1	$2^{\mathcal{O}(w)} \cdot n$
[Korhonen, Lokshtanov '23]	W	$2^{\mathcal{O}(w^2)} \cdot n^4$

Suddenly...

Suddenly...

Problem

How to maintain tree decompositions of dynamic graphs?

Main result

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a **dynamic graph** G with n vertices of treewidth $w \dots$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a **dynamic graph** G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of *G* of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

$$\log^{1000} n \ll 2^{\sqrt{\log n \log \log n}} \ll n^{0.001}$$

Korhonen, Majewski, Nadara, Pilipczuk, **Sokołowski** [FOCS '23]

DYNAMIC TREEWIDTH

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of *G* of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO₂ logic.

Main result

In a dynamic graph G with n vertices of treewidth $w \dots$

We maintain: a tree decomposition of G of width at most 6w + 5...

Initialization time: $2^{w^{\mathcal{O}(1)}} \cdot n$

(2(1) /-------

Update time: $2^{w^{\mathcal{O}(1)} \cdot \sqrt{\log n \log \log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO₂ logic.

MAX MATCHING, MAX INDEPENDENT SET, LONGEST PATH, HAMILTONIAN CYCLE...

• Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$

- Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$
- Edge uv added?

- Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$
- Edge uv added? \Longrightarrow Insert u into additional bags

- Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$
- Edge uv added? ⇒ Insert u into additional bags
- A bag too large?

- Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$
- Edge uv added? \Longrightarrow Insert u into additional bags
- A bag too large? ⇒ Recompute a local neighborhood of the bag

- Maintain a low-diameter tree decomposition of the graph $(2^{\mathcal{O}(\sqrt{\log n \log \log n})})$
- Edge uv added? \Longrightarrow Insert u into additional bags
- A bag too large? ⇒ Recompute a local neighborhood of the bag

Issue: treewidth applicable only to sparse graphs...

Issue: treewidth applicable only to sparse graphs...

trees

Issue: treewidth applicable only to **sparse** graphs...

complements of trees

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

complements of trees

Issue: treewidth applicable only to sparse graphs...

complements of trees

trees

Issue: treewidth applicable only to sparse graphs...

complements of trees

squares of trees

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Rankwidth is great!

Given: n-vertex graph G and its **rank decomposition** of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Issue: treewidth applicable only to sparse graphs...

But there also exist dense tree-like graphs!

Solution

Equivalent notions of cliquewidth [Courcelle et al. '93] and rankwidth [Oum, Seymour '06].

Rankwidth is great!

Given: *n*-vertex graph G and its **rank decomposition** of width w

Then: MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Also Max Clique, Min Dominating Set, Longest Induced Path, ...

Rankwidth

Rankwidth is great!

Given: *n*-vertex graph G and its **rank decomposition** of width w **Then:** MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Same problem: Need to compute a rank decomposition.

Rankwidth

Rankwidth is great!

Given: n-vertex graph G and its **rank decomposition** of width w **Then:** MAXIMUM INDEPENDENT SET can be solved in time $2^{f(w)} \cdot n$

Same problem: Need to compute a rank decomposition.

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$

Korhonen, **Sokołowski** [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a **dynamic graph** G with n vertices and m edges of rankwidth $w \dots$

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a **dynamic graph** G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Korhonen, Sokołowski [STOC '24]

ALMOST-LINEAR TIME PARAMETERIZED ALGORITHM FOR RANKWIDTH VIA DYNAMIC RANKWIDTH

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a **dynamic graph** G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in $CMSO_1$ logic.

Korhonen, Sokołowski [STOC '24]

Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth

Main result

In a dynamic graph G with n vertices and m edges of rankwidth $w \dots$

We maintain: a rank decomposition of G of width at most $4w \dots$

Initialization time: $2^{f(w)} \cdot n \log^2 n$

Update time: $2^{f(w)\cdot\sqrt{\log n\log\log n}}$ (amortized)

Extension

We can also dynamically solve any decision/optimization problem expressible in CMSO₁ logic.

MAX CLIQUE, MAX INDEPENDENT SET, MIN DOMINATING SET, LONGEST PATH...

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$

Rank decomposition algorithms

Given an n-vertex graph G of rankwidth w, we can **find** a rank decomposition of G...

	Width guarantee	Time
[Oum, Seymour '06]	3w + 1	$2^{\mathcal{O}(w)} \cdot n^9$
[Oum '08]	3w - 1	$f(w) \cdot n^3$
[Jeong, Kim, Oum '21]	W	$f(w) \cdot n^3$
[Fomin, Korhonen '22]	W	$f(w) \cdot n^2$
[Korhonen, Sokołowski '24]	w	$\int f(w) \cdot n^{1+o(1)} + \mathcal{O}(m)$

Static variant: NP-hard... but $(1-\varepsilon)$ -approximation in time $f(\varepsilon) \cdot \mathcal{O}(n)$ [Baker '94]

Question: What about dynamic approximation schemes?

Korhonen, Nadara, Pilipczuk, Sokołowski [SODA '24]

FULLY DYNAMIC APPROXIMATION SCHEMES ON PLANAR AND APEX-MINOR-FREE GRAPHS

Main result

Korhonen, Nadara, Pilipczuk, Sokołowski [SODA '24]

FULLY DYNAMIC APPROXIMATION SCHEMES ON PLANAR AND APEX-MINOR-FREE GRAPHS

Main result

Given: Initially edgeless, vertex-weighted dynamic **planar** graph *G*.

Korhonen, Nadara, Pilipczuk, Sokołowski [SODA '24]

FULLY DYNAMIC APPROXIMATION SCHEMES ON PLANAR AND APEX-MINOR-FREE GRAPHS

Main result

Given: Initially edgeless, vertex-weighted dynamic **planar** graph G. Let also $\varepsilon > 0$.

Korhonen, Nadara, Pilipczuk, Sokołowski [SODA '24]

FULLY DYNAMIC APPROXIMATION SCHEMES ON PLANAR AND APEX-MINOR-FREE GRAPHS

Main result

Given: Initially edgeless, vertex-weighted dynamic **planar** graph G. Let also $\varepsilon > 0$.

Then: We can maintain a value $p \ge 0$ so that:

$$(1-\varepsilon)\mathsf{OPT}_{\mathsf{IS}} \leq p \leq \mathsf{OPT}_{\mathsf{IS}},$$

where OPT_{IS} is the maximum weight of an independent set in G.

Korhonen, Nadara, Pilipczuk, Sokołowski [SODA '24]

FULLY DYNAMIC APPROXIMATION SCHEMES ON PLANAR AND APEX-MINOR-FREE GRAPHS

Main result

Given: Initially edgeless, vertex-weighted dynamic **planar** graph G. Let also $\varepsilon > 0$.

Then: We can maintain a value $p \ge 0$ so that:

$$(1-\varepsilon)\mathsf{OPT}_{\mathsf{IS}} \leq p \leq \mathsf{OPT}_{\mathsf{IS}},$$

where OPT_{IS} is the maximum weight of an independent set in G.

Update time: $f(\varepsilon) \cdot n^{o(1)}$ (amortized).

Also generalizations to wider classes of graphs, MIN DOMINATING SET...

Featured works

- T. Korhonen, K. Majewski, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [FOCS '23] *Dynamic Treewidth*
- T. Korhonen, M. Sokołowski [STOC '24]

 Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth
- T. Korhonen, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [SODA '24] Fully Dynamic Approximation Schemes on Planar and Apex-Minor-Free Graphs
- Mi. Pilipczuk, M. Sokołowski, A. Zych-Pawlewicz [STACS '22] Compact Representation For Matrices of Bounded Twin-Width
- Mi. Pilipczuk, M. Sokołowski [J. Comb. Theory B '24] Graphs of Bounded Twin-Width Are Quasi-Polynomially χ -Bounded

Featured works

- T. Korhonen, K. Majewski, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [FOCS '23] *Dynamic Treewidth*
- T. Korhonen, <u>M. Sokołowski</u> [STOC '24] Almost-Linear Time Parameterized Algorithm for Rankwidth via Dynamic Rankwidth
- T. Korhonen, W. Nadara, Mi. Pilipczuk, <u>M. Sokołowski</u> [SODA '24] Fully Dynamic Approximation Schemes on Planar and Apex-Minor-Free Graphs
- Mi. Pilipczuk, M. Sokołowski, A. Zych-Pawlewicz [STACS '22] Compact Representation For Matrices of Bounded Twin-Width
- Mi. Pilipczuk, M. Sokołowski [J. Comb. Theory B '24] Graphs of Bounded Twin-Width Are Quasi-Polynomially χ -Bounded

THANK YOU!

APPENDIX

Definition of rankwidth

Aim: recursively vertex-decompose a graph G...

 ${a, b, c, d, e, f, g, h, i}$

$$\{a, b, c, d, e, f, g, h, i\}$$

 $\{a, b, c, d\}$ $\{e, f, g, h, i\}$

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Simple for rankwidth: adjacency matrix of the cut has small $\mathrm{GF}(2)$ rank

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Rank: 1

Simple for rankwidth: adjacency matrix of the cut has small $\mathrm{GF}(2)$ rank

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Simple for rankwidth: adjacency matrix of the cut has small GF(2) rank

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Rank: 2

Simple for rankwidth: adjacency matrix of the cut has small GF(2) rank

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Width of a cut (X, \overline{X}) : GF(2) rank of the adjacency matrix of $G[X, \overline{X}]$

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Width of a cut (X, \overline{X}) : GF(2) rank of the adjacency matrix of $G[X, \overline{X}]$ Width of a rank decomposition \mathcal{T} of G: maximum width of a cut given by \mathcal{T}

Aim: recursively vertex-decompose a graph G... so that each cut is simple

Width of a cut (X, \overline{X}) : GF(2) rank of the adjacency matrix of $G[X, \overline{X}]$ Width of a rank decomposition \mathcal{T} of G: maximum width of a cut given by \mathcal{T} Rankwidth of G: minimum width of a rank decomposition of G