Zadanie 4.

4.1 Opis problemu:

Używając pakietu **Polynomial** obliczyć 20 zer wielomianu Wilkinsona w postaci naturalnej oraz iloczynowej. Sprawdzić obliczone pierwiastki. Powtórzyć eksperyment ze zmienionymi danymi dla współczynnika -210.

4.2 Rozwiązanie:

Do rozwiązania zadania użyto następujących funkcji pakietu Polynomial:

Poly([$x_1, x_2, ..., x_n$]), która generuje wielomian w postaci kanonicznej ze współczynnikami $x_1, x_2, ..., x_n$

 $poly([x_1, x_2, ..., x_n])$, która generuje wielomian z pierwiastakmi $x_1, x_2, ..., x_n$

roots(F) – liczy pierwiastki wielomianu,

polyval(F,x) w skrócie F(x) – liczy wartość wielomianu w punkcie x.

4.3 Wyniki:

Obliczone pierwiastki dla postaci naturalnej:

Wartość (z _k)	$ $ Błąd ($ z_k - k $)
20.00003828748953	3.82874895308305e-5
18.999446521804607	0.0005534781953926426
18.003321232598832	0.0033212325988323244
16.988230874424623	0.011769125575376904
16.02619992560325	0.026199925603251017
14.956412145478438	0.0435878545215615
14.050627815455417	0.0506278154554173
12.95603570035402	0.04396429964597992
12.029900023844753	0.02990002384475332
10.985567367949885	0.014432632050114691
10.005402181223316	0.005402181223315594
8.998597967213591	0.0014020327864088244
8.000241474128762	0.00024147412876196483
6.999978593565046	2.1406434954407416e-5
5.99999637082139	3.6291786109643454e-7
5.000000271146053	2.7114605316569396e-7
3.99999980489657	1.9510343118867013e-8

3.000000001301204	1.301203589321176e-10
2.000000000180593	1.8059331807762646e-11
0.99999999998247	1.7530421558831222e-13

Obliczone wartości wielomianu dla powyższych pierwiastków:

X	P(x)	p(x)
20.00003828748953	6.50945294848e12	1.401960742525414e23
18.999446521804607	4.078909789184e12	1.198562739966944e23
18.003321232598832	2.064536443392e1	1.0166202205347085e23
16.988230874424623	1.191399366656e12	8.511702631748157e22
16.02619992560325	1.139728016896e12	7.1191803959214564e22
14.956412145478438	3.71354137088e11	5.759016954431664e22
14.050627815455417	2.41390764032e11	4.7527239144582356e22
12.95603570035402	9.3423894528e10	3.7021260176303652e22
12.029900023844753	5.0825762816e10	2.944525601167112e22
10.985567367949885	1.7547646464e10	2.22298970740979e22
10.005402181223316	8.700433408e9	1.6629988024415347e22
8.998597967213591	1.653683712e9	1.1947671940993928e22
8.000241474128762	4.73758208e8	8.264925346177841e21
6.999978593565046	1.32373504e8	5.42329023892919e21
5.999999637082139	1.39264e7	3.320413290581068e21
5.000000271146053	1.1813888e7	1.8446747324854824e21
3.999999980489657	3.204096e6	8.854437011419633e20
3.000000001301204	233472.0	3.3204139337717796e20
2.000000000180593	111104.0	7.378697629750339e19
0.99999999998247	22016.0	3.210752e6

Dla zmienionych danych:

Błąd ($ \mathbf{z}_k - \mathbf{k} $)
1.815214645262131e-13
3.6711522710675126e-11

6.999593471115021 + 0.0im	0.00040652888497927364
•	
10.095898499560946 - 0.6443373996274354im	0.6514347294830742
•	
19.50237924554758 - 1.9403001967481368im	2.4539576709782454
19.50237924554758 + 1.9403001967481368im	2.004282854254313
20.84687198804629 + 0.0im	0.8468719880462885

X		P(x)	p(x)
0.999999999998185 0.0im	+	23040.0	3.326464e6
2.0000000000367115 0.0im	+	226304.0	7.37869763002561e19
6.999593471115021 0.0im	+	4.35741184e8	5.42234543378157e21
19.50237924554758 1.9403001967481368im	-	6.223348199767701e13	1.3181812259850728e23
19.50237924554758 1.9403001967481368im	+	6.223348199767701e13	1.3181812259850728e23
20.84687198804629 0.0im	+	1.48081940965376e14	1.5910995063682306e23

Dodatkowo sprawdziłem jeszcze w programie czy algorytm wylicza poprawne wartości wielomianu dla rzeczywistych miejsc zerowych. Są one poprawne, dla każdego $x \in \{1,2,...,20\}$

4.4 Wnioski:

Z otrzymanych wyników wynika że zadanie jest źle uwarunkowane. Obliczone pierwiastki różnią się minimalnie od rzeczywistych jednak ma to bardzo duży wpływ na obliczanie wartości wielomianu w tych punktach. Położenie miejsc zerowych wielomianu Wilkonsona jest bardzo wrażliwe na zaburzenia współczynników, ponieważ zmiana współczynnika o najmniejszą wartość dostępną w arytmetyce powoduje duże odchylenia wyników. (Przykład z odjęciem od jednego współczynnika wartości 2⁻²³).