

## SEQUENCE LISTING

| <110>                            | Universi<br>HILDEBRA<br>FUKUSHIG | ND, D     | avid H       |               | esea:      | rch I     | Found     | datio     | on         |            |           |           |       |
|----------------------------------|----------------------------------|-----------|--------------|---------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-------|
| <120>                            | RECOMBIN<br>AND USES             |           |              | ELON (        | CITR       | JLLUS     | S LAI     | UTAN      | S) H       | 'DROI      | PERO      | KIDE      | LYASE |
| <130>                            | 50229-41                         | 2         |              |               |            |           |           |           |            |            |           |           |       |
|                                  | 10/718,2<br>2003-11-             |           |              |               |            |           |           |           |            |            |           |           |       |
| <160>                            | 6                                |           |              |               |            |           |           |           |            |            |           |           |       |
| <170>                            | PatentIn                         | vers      | ion 3.       | . 2           |            |           |           |           |            | •          |           |           |       |
| <210><br><211><br><212><br><213> |                                  | s lan     | atus         |               |            |           |           |           |            |            |           |           |       |
| <400>                            | 1                                |           |              |               |            |           |           |           |            |            |           |           |       |
| Met Ly:<br>1                     | s Val Thr                        | Met<br>5  | Thr Se       | er Gly        | Gly        | Met<br>10 | Pro       | Ser       | Ile        | Pro        | Ser<br>15 | Ser       |       |
| Ile Se                           | r Pro Pro<br>20                  | Pro       | Val Th       | nr Leu        | Pro<br>25  | Leu       | Arg       | Asn       | Ile        | Pro<br>30  | Gly       | Ser       |       |
| Tyr Gl                           | y Leu Pro<br>35                  | Leu       | Phe Gl       | y Ser<br>40   | Ile        | Gly       | Asp       | Arg       | Leu<br>45  | Asp        | Tyr       | Phe       |       |
| Trp Pho                          | e Gln Gly                        | Pro       | Glu Ly<br>55 |               | Phe        | Arg       | Ser       | Arg<br>60 | Met        | Glu        | Lys       | Asn       |       |
| Gln Se                           | r Thr Val                        |           | Arg Th<br>70 | nr Asn        | Val        | Pro       | Pro<br>75 | Ser       | Phe        | Pro        | Phe       | Phe<br>80 |       |
| Phe Th                           | r Asp Pro                        | Arg<br>85 | Val I        | e Ala         | Val        | Leu<br>90 | Asp       | Cys       | Lys        | Ser        | Phe<br>95 | Ala       |       |
| His Le                           | u Phe Asp<br>100                 |           | Glu I        | e Val         | Glu<br>105 | Lys       | Lys       | Asn       | Val        | Leu<br>110 | Val       | Gly       |       |
| Asp Pho                          | e Met Pro<br>115                 | Ser       | Thr Se       | er Phe<br>120 | Thr        | Gly       | Asn       | Met       | Arg<br>125 | Val        | Суѕ       | Ala       | ٠     |

Tyr Leu Asp Thr Ser Glu Ser Gln His Ser Lys Ile Lys Asn Phe Val Met Asp Val Leu Arg Arg Ser Ser Arg Ile Trp Ile Gln Glu Leu Glu Ser Asn Leu Ser Thr Met Trp Asp Ser Ile Glu Ser Glu Ile Ala Lys Asp Thr Lys Ser Ser Phe Arg Asn His Leu Gln Pro Thr Leu Phe Asn Phe Phe Ser Lys Thr Leu Ala Gly Ala Asp Thr Ala Lys Ser Pro Glu Val Ala Lys Ser Gly Tyr Ile Asp Val Ile Ile Trp Leu Gly Leu Gln Leu Val Pro Thr Ile His Ile Gly Ile Leu Gln Pro Leu Glu Glu Ile Phe Leu His Ser Phe Arg Leu Pro Phe Phe Pro Ile Ala Ser Arg Tyr Gln Arg Leu Tyr Asp Phe Ile Gln Lys Glu Glu Glu Val Val Glu Arg Gly Val Ser Glu Phe Gly Leu Thr Lys Asp Glu Ala Ile His Asn Leu Ile Phe Thr Met Gly Phe Asn Ala Tyr Gly Gly Phe Ser Leu Phe Phe Pro Val Leu Leu Asp Arg Ile Leu Asn Asp Lys Thr Gly Leu Gln Gln Arg Ile Leu Glu Glu Val Lys Ala Lys Thr Gly Ser Gly Leu Thr Phe Glu Ser Val Lys Glu Met Asp Leu Ile Tyr Ser Val Val Tyr Glu 345 350

Thr Leu Arg Leu Asp Pro Pro Val Pro Thr Gln Tyr Ala Arg Ala Arg

**.**355 360 365

Lys Asp Phe Lys Leu Ser Ser Tyr Asp Ser Ala Tyr Ser Ile Lys Lys 370 375 380 Gly Glu Leu Leu Cys Gly Tyr Gln Pro Leu Val Met Arg Asp Pro Lys 390 395 Val Phe Asn Lys Pro Lys Thr Phe Asn Pro Gly Arg Phe Arg Gly Glu 405 410 415 Lys Gly Ala Ala Leu Leu Asp Tyr Leu Phe Trp Ser Asn Gly Pro Gln 420 425 430 Thr Gly Leu Pro Ser Glu His Asn Lys Gln Cys Ala Gly Lys Asp Leu Val Val Leu Thr Ala Val Val Phe Val Ala Tyr Ile Phe Arg Tyr Asp Trp Ile Ala Gly Glu Gly Gly Ser Ile Thr Ala Phe Gln Arg Thr 475 465 470 Asn <210> 2 <211> 1632 <212> DNA <213> Citrullus lanatus <400> 2 atgaaqqtca ccatgacctc cggcggaatg ccttccatac cttcatcgat ttcgccaccg 60 coggtcactt taccgctcag aaatatcccc ggcagctacg gtttgccgct gttcggatcc 120 ateggtgace ggetggatta ettetggttt caaggaceeg agaagttett eaggtetegg 180 atggagaaga atcaaagtac ggttttcaga acgaatgttc ctccgtcgtt ccctttcttc 240 ttcaccgatc cgagagtgat tgcggttctg gattgcaagt cgtttgcgca tctattcgac 300 atggaaatcg tggagaagaa gaatgttctg gtcggtgatt tcatgccgag cacaagtttc 360 accqqaaata tqaqaqtctq tqcqtatttq qatacqtcqq aatctcaaca ctcqaagata 420

aaaaacttcg tcatggacgt tctgcggcgg agctcgagga tttggataca ggagttggaa

480

togaacctat cgacgatgtg ggacagcata gaatccgaaa togcaaagga cacaaaatcc 540 agcttcagaa accatctcca accaactctt ttcaatttct tctccaaaac cctggccggc 600 660 gccgacactg caaaatcacc ggaagtggct aaatccggct acatcgacgt cataatttgg 720 ctggggctcc agctggtccc caccatccac atcggcattc tccaacccct ggaagaaata 780 ttcctccact ctttccgatt accettcttc cccatcgcct ctcgctacca aagactctac 840 gatttcatcc aaaaaqaagg ggaagaagtg gttgagcgag gcgtttcgga gttcgggttg 900 acgaaggatg aagcaattca caatctcatc ttcaccatgg gattcaacgc ctacggtggt ttcagtctct tcttcccggt tctactcgat cggatactca acgacaaaac cggtttacaa 960 1020 caqaqaatcc tcqaqqaaqt caaqqcaaaa accqqctccq qtctgacatt cgagtcggtc aaggagatgg atctcatcta ctccgtcgtt tacgagacac tccggcttga cccgccggtt 1080 ccaacccagt acgcgagagc cagaaaggat ttcaagctaa gttcctacga ttcagcgtat 1140 agcatcaaqa aaqqqqaqct qctttqtqqq tatcaqccqc tqqtqatqaq agacccqaaq 1200 1260 gtgttcaata aaccgaagac gtttaatccg ggccggttcc ggggagagaa gggggcggcg 1320 ctgctggatt atttgttctg gtcgaacggg ccgcagacgg gactaccgag cgagcataac 1380 aagcagtgcg ccgggaagga tttggtggtg ctgacggcag tggtgttcgt ggcttacata tttcgaaggt atgattggat tgcaggggaa ggaggttcga ttacagcttt tcaaaggacc 1440 1500 aactgaagtg aaatatatat atatatgtag attgagaact gcagcttttt ttgttcatgg cttctttttt atgtatgagt gtggagccca aatgaaaaaa attggaaaaa ttaatcaata 1560 1620 1632 aaaaaaaaa aa

<210> 3

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence derived from partial watermelon Hydroperoxide lyase sequence

<400> 3

ccggctccgg tctgacattc gagtcgg

27

<210> 4

<211> 29

<212> DNA

|   | <21,3> | Artificial Sequence                                                              |   |
|---|--------|----------------------------------------------------------------------------------|---|
|   | <220>  |                                                                                  |   |
|   | <223>  | Artificial sequence derived from partial watermelon hydroperoxide lyase sequence | 2 |
|   | <400>  | 4                                                                                |   |
|   | gctcgc | etegg tagtecegte tgeggeeeg 29                                                    | ) |
|   | <210>  | 5                                                                                |   |
| • | <211>  | 29                                                                               |   |
|   | <212>  | DNA                                                                              |   |
|   | <213>  | Artificial Sequence                                                              |   |
|   | <220>  |                                                                                  |   |
|   | <223>  | Artificial sequence designed from watermelon hydroperoxide lyase gene            |   |
|   | <400>  |                                                                                  |   |
|   | cgcact | agta tgaaggtcac catgacctc 29                                                     | 9 |
|   | <210>  | 6                                                                                |   |
|   | <211>  |                                                                                  |   |
|   | <212>  |                                                                                  |   |
|   |        | Artificial Sequence                                                              |   |
|   | <220>  |                                                                                  |   |
|   | <223>  | Artificial sequence designed from watermelon hydroperoxide lyase gene            |   |
|   | <400>  | 6                                                                                |   |
|   | ggtaag | rcttc agttggtcct ttgaaaagc 29                                                    | 9 |

(a)