Scale-invariant-Fine-Tuning for Improved Model Generalization

Luheng Wang, Yash Bharti, Yilun Kuang

New York University

May 18, 2021

Overview

Introduction

Motivation

Data

Approach

Smoothness-inducing Adversarial Regularizer Codebase Implementation

Result

Baselines

Evaluation of the Implementation

Topic

- ▶ What is SiFT?
- ▶ Perturbation (SMART by [Jia+20])
- Layer Normalization

Data

- CoLA ¹(NYU)
- ► Twitter Sentiment Dataset ² (Kaggle)
- ► UCI Sentiment Dataset ³ (UCI)

¹https://nyu-mll.github.io/CoLA/

 $^{^2} https://www.kaggle.com/arkhoshghalb/twitter-sentiment-analysis-hatred-properties and the sentiment of t$ speech

³http://archive.ics.uci.edu/ml/datasets

Smoothness-inducing Adversarial Regularizer

Consider the optimization objective with a standard cross entropy loss $\mathcal{L}(\theta)$ and a regularizer:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\theta) + \lambda_{s} \mathcal{R}_{s}(\theta). \tag{1}$$

The Smoothness-inducing Adversarial Regularizer $\mathcal{R}_s(\theta)$ is defined as

$$\mathcal{R}_{s}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \max_{||\tilde{x}_{i} - x_{i}|| \leq \epsilon} I_{s}(f(\tilde{x}_{i}; \theta), f(x_{i}; \theta)). \tag{2}$$

where l_s is the symmetrized KL-divergence [p1]

$$I_{s}(P,Q) = \mathcal{D}_{\mathsf{KL}}(P||Q) + \mathcal{D}_{\mathsf{KL}}(Q||P). \tag{3}$$

Code Implementation

```
loss_fct = CrossEntropyLoss()
regular_loss = loss_fct(preds,labels)
loss_list = [regular_loss]
```

Listing 1: cross entropy loss $\mathcal{L}(\theta)$

```
MODE="SIFT"
normalise = True if MODE == "SIFT" else False
noised_embeddings = noise(embed,normalize=normalise)
adv_logits = model.predict(noised_embeddings)
adv_loss = stable_kl(preds, adv_logits)
```

Listing 2: calculate $\mathcal{R}_s(\theta)$

```
1 loss_list.append(adv_loss)
2 loss = sum(loss_list)
3 total_train_loss += loss.item()
4 loss.backward()
```

Listing 3: minimize $\mathcal{L}(\theta) + \mathcal{R}_s(\theta)$

Cola Dataset

	sentence_source	label	label_notes	sentence
4689	ks08		NaN	Loren was relied on by Pavarotti and Hepburn b
404	bc01		NaN	His book is nice.
7363	sks13		NaN	I put the book on the desk on Sunday.
2291	I-93			David constructed the bricks into a house.
8043	ad03		NaN	I haven't left yet
7859	ad03		NaN	He'll no can do it, will he?
3380	I-93		NaN	The horse jumped into the stream.
2812	I-93		NaN	Paula swatted at the fly.
2285	I-93			The pasture is herding with cattle.
8229	ad03		NaN	I have been flying helicopters for years.

UCI Dataset and Twitter Dataset

	Sentence	Label
0	A very, very, very slow-moving, aimless movie	0
1	Not sure who was more lost - the flat characte	0
2	Attempting artiness with black & white and cle	0
3	Very little music or anything to speak of.	0
4	The best scene in the movie was when Gerardo i	1

Testing Methodology

CoLA Baselines

All the baselines were first trained on a cola dataset. Then the Matthews Correlation Coefficient was calculated on the test set due to CoLAs skewed nature

UCI Dataset

Our technique to check on generalisation. The in domain training set was on Twitter. We achieved high results on the out of domain set of UCI Sentiment Analysis: IMDB, AMAZON, YELP reviews, with very little training.

Results with BERT

Model	CoLA	UCI 10
Plain BERT	0.52	0.55
BERT w SMART	0.51	0.70
BERT w SIFT	0.53	0.80

Table: Results with the BERT Model

Results with DeBERTA

Model	CoLA	UCI 10
Plain DeBERTA	0.54	0.56
DeBERTA w SMART	0.57	0.80
DeBERTA w SIFT	0.58	0.91

Table: Results with the DeBERTA Model

Experiment Results

- Successfully achieved higher results for SiFT compared to SMART and plan deberta, and bert
- Higher Matthews Correlation Coefficient for Cola on both BERT and DeBERTA.
- Higher accuracy on the UCI Sentiment Analysis dataset after training for 10 percent dataset.
- Effectively proved that SiFT technique is better for generalization than the SMART algorithm and the plain models.

References

SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics