Predictive Coding in SNNs using Energy Optimization

Predictive Coding 101

PC hypothesis: brain forms prediction errors about the world

Investigating PC using energy-minimizing SNNs with compartmental neuron models

Energy-minimizing SNNs exhibits key characteristics of PC

Recon. from internal repr.

Mismatch behavior

Motivation: energy optimisation in the brain

- Neuroscience: energy consumption of brain is 20-25 Watt [1]
 - Main energy consumption: propagation of action potentials (i.e. spikes)
- Our SNN energy model [2] uses a local, indirect energy term:
 - Reduces spike rate
 - Decreases classification performance
 - Enables PC characteristics
- What happens when we directly penalize spiking?
 - 1. How does the control+spike model perform at equal spike rate?
 - 2. Does the *control+spike* model show PC characteristics?
 - 3. How does the *energy+spike* model perform?

^[1] Balasubramanian V. Brain power. 2021.

Methods: introduce spike loss term

$$\mathcal{L}_{t} = \mathcal{L}_{clf,t} + \alpha_{reg}\mathcal{L}_{reg} + \alpha_{spike}\mathcal{L}_{spike} + \alpha_{E}\mathcal{L}_{E}$$

- Four classes of models:
 - Control
 - Control+Energy
- Parameters:
 - \circ α
 - \circ α_{spike}

- Control+Spike
- Control+Energy+Spike

$$\mathcal{L}_{spike} = \frac{\sum_{L=1}^{3} n_L}{BD}$$

- n_L: number of spikes
 per layer L
- B: batch size
- D: total dimensions of network

$$g\left(V_{a,i}^l(t), V_{s,i}^l(t)\right) = |V_{a,i}^l(t) - V_{s,i}^l(t)|,$$

$$\mathcal{L}_{E,t} = \left(\sum_l \sum_i g\left(V_{a,i}^l(t), V_{s,i}^l(t)\right)\right)/N,$$

Results: spike rate & energy per neuron

- Spike rate differs per epoch
- Spike models reduce spikes rates
- Control+spike001 gives approx. equal spike rate to energy005
- Energy models have much reduced average neuron energy compared to control models
- Spike models slightly reduce average neuron energy

Results: control+spike

- Classification accuracy:
 - Moderate-high α_{spike} : spike models **reduce** test accuracy of control+spike models
 - Low α_{spike} (<0.03): *spike* models can slightly **improve** test accuracy of *control+spike* models (regulator characteristics)

Generative features

- Moderate-high α_{spike} : slight generative features but much worse than *energy* models
- Low $\alpha_{\rm spike}$ (<0.03): no noticeable generative features

Results: energy+spike001

- Classification accuracy:
 - Moderate-high $\alpha_{E}(0.10)$: **reduced** test accuracy of *energy+spike* models
 - Low α_{E} (0.05): *spike* models can slightly **improve** test accuracy of *energy+spike* models (regulator characteristics)

Generative features

- Moderate-high $\alpha_{\rm E}$: slight generative features but much worse than *energy* models
- Low α_{F} : slightly **improved** generative features

Conclusions - control+spike & energy+spike

- *Spike* models significantly **decrease** spike rate of both *control* and *energy* models
- Low α_{spike} (<0.03),
 - slightly increases classification performances of both control and energy models
 - slightly **increases** generative features for *energy* models while no noticeable effect for control models
- Moderate-high $\alpha_{\text{spike'}}$
 - decreases classification performances of both control and energy models
 - slightly **decreases** generative features for *energy* models while slightly **increasing** generative features for *control* models
- Increasing α_{F} **decreases** performance for *energy+spike001* models

Conclusions - research questions

- What happens when we directly penalize spiking?
 - 1. How does the control+spike model perform at equal spike rate?
 - 2. Does the *control+spike* model show PC characteristics?
 - 3. How does the energy+spike model perform?
- 1. *Control+spike001* has most comparable spike rate to *energy005* & performs best of all models in classification. Significantly better than *energy005*.
- 2. Control+spike001 shows no PC characteristics, interestingly Control+spike015 does slightly better
- 3. *Energy005+spike001* performs somewhat better than *energy005* in both classification & generative performance while decreasing spike rate. However, *energy01+spike001* decreases performance in comparison to energy005.

Discussion & future research

Remaining questions

- Does the diagonal of pair-wise representation actually correlate to generative features?
 - If yes, does the *control+spike015* model give indication for PC features?
- Does the control+spike015 show other PC characteristics?
- What happens to energy+spike models with moderate-high $\alpha_{\rm spike}$?

Future research

- Small spike loss term seems to improve performances of control & energy models. Check whether this holds for other SNN models
- Explore different ways of implementing spike loss term
- Find more suitable metrics for generative/PC features

Questions?