Analysis of electrical power and energy systems

Practical session 5

21 October 2021

1 Synchronous generators in power systems¹

- 1. In the per-phase equivalent circuit of Figure 1, assume $R_s=0$ and $X_s=1.2$ pu. The terminal voltage $\overline{V}_a=1\angle 0$ pu and $\overline{I}_a=1\angle -\pi/6$ pu.
 - (a) Calculate \overline{E}_{af} .
 - (b) Show that the 3-phase active power produced at the stator is equivalent to the 3-phase active power transferred between two voltage sources $(\overline{E}_{af}$ and $\overline{V}_{\infty})$ where $\overline{V}_{\infty} = 1 \angle 0$ pu is an ideal voltage source.
 - (c) If E_{af} is kept constant, calculate the maximum power this machine can supply in theory and in practice.

Figure 1: Per-phase equivalent circuit.

- 2. In a synchronous generator, assume $R_s=0$ and $X_s=1.2$ pu. The terminal voltage $\overline{V}_a=1\angle 0$ pu. It is supplying 1 pu active power. Calculate \overline{I}_a in such a way the active power remains constant while the reactive power Q is as follows: (a) Q=0, (b) Q=0.5 pu and (c) Q=0.5 pu. For each configuration, show that $E_{af}\sin\delta$ is kept constant.
- 3. In a synchronous generator, assume $R_s=0$. The steady-state, transient and subtransient reactances are respectively given by (a) $X_s=1.2$ pu, (b) $X_s'=0.33$ pu and (c) $X_s''=0.23$ pu. The terminal voltage $\overline{V}_a=1\angle 0$ pu and the current $\overline{I}_a=1\angle -\pi/6$ pu. Calculate \overline{E}_{af} in each configuration of the machine. Compare the results.

2 Solutions

Link to the Python notebook shown during the session: Python Notebook TP5

- 1. (a) $\overline{E}_{af} = 1.91$ pu $\angle 0.58$ rad
 - (b) P = 2.598 pu
 - (c) $P_{max,th}=4.770$ pu, $P_{max,pr}=3.066$ pu

¹Exercises 9.5, 9.6, 9.7, and 9.9 of Ned Mohan's book "Electric power systems, a first course"

- 2. $E_{af} \sin \delta = 0.4$
 - (a) $\overline{I}_a = 0.333$ pu $\angle 0$ rad
 - (b) $\overline{I}_a = 0.373$ pu $\angle -0.464$ rad
 - (c) $\overline{I}_a = 0.373$ pu $\angle 0.464$ rad
- 3. (a) $\overline{E}_{af}=1.91$ pu $\angle 0.58$ rad
 - (b) $\overline{E'}_{af}=1.2$ pu $\angle 0.24$ rad
 - (c) $\overline{E''}_{af}=1.13$ pu $\angle 0.18$ rad