Vortex Flows in High Voltage AC Power Grids

Philippe Jacquod

Dynamics Days - 06.06.2016

Delabays, Coletta, Adagideli and PJ, arXiv:1605.07925 Delabays, Coletta and PJ, J Math Phys 57, 032701 (2016)

The team

Tommaso Coletta, postdoc

Robin Delabays, grad student (talk earlier in the session)

Inanc Adagideli (Sabanci)

Take-home message

Profound, unexpected similarities between Josephson junction arrays and high voltage AC power grids!

Takahide, Yagi, Kanda, Ootuka, and Kobayashi Phys. Rev. Lett. 85, 1974 (2000)

Superconductivity vs. electric power systems!

	Superconductor	high voltage AC power grid
State	$\Psi(\mathbf{x}) = \Psi(\mathbf{x}) e^{i\theta(\mathbf{x})}$	$V_i = V_i e^{i\theta_i}$
Current / power flow	$I_{ij} = I_c \sin(heta_i - heta_j)$ Josephson current	$P_{ij} \simeq B_{ij} \sin(heta_i - heta_j)$ Power flow; lossless line approx.
winding # $q = \sum_{i} \theta_{i+1} - \theta_{i} / 2\pi$	Flux quantization Persistent currents	Circulating loop flows

Superconductivity vs. electric power systems!

	Superconductor	high voltage AC power grid
State	$\Psi(\mathbf{x}) = \Psi(\mathbf{x}) e^{i\theta(\mathbf{x})}$	$V_i = V_i e^{i\theta_i}$
Current / power flow	$I_{ij} = I_c \sin(heta_i - heta_j)$ Josephson current	$P_{ij} \simeq B_{ij} \sin(heta_i - heta_j)$ Power flow; lossless line approx.
winding # $q=\Sigma_i \theta_{i+1}-\theta_i /2\pi$	Flux quantization Persistent currents	Circulating loop flows

Circulating loop flows

*Thm: Different solutions to the following power-flow problem (AC Kirchhoff)

$$P_i = \sum B_{ij} \sin(\theta_i - \theta_j)$$

may differ only by circulating loop current(s) in any network

Dörfler, Chertkov, Bullo, PNAS '13; Delabays, Coletta and PJ, JMP '16

*Voltage angle uniquely defined

$$q=\Sigma_i |\theta_{i+1}-\theta_i|/2\pi \in \mathbb{Z}$$
 ~topological winding number

"quantization" of these loop currents ~vortex flows

Janssens and Kamagate '03

Circulating loop flows

*Thm: Different solutions to the following power-flow problem (AC Kirchhoff)

$$P_i = \sum B_{ij} \sin(\theta_i - \theta_j)$$

may differ only by circulating loop current(s) in any network

Dörfler, Chertkov, Bullo, PNAS '13; Delabays, Coletta and PJ, JMP '16

*Voltage angle uniquely defined

 $q=\Sigma_i|\theta_{i+1}-\theta_i|/2\pi\in\mathbb{Z}$ ~topological winding number

"quantization" of these loop currents ~vortex flows

Janssens and Kamagate '03

Circulating loop flows

*Thm: Different solutions to the following power-flow problem (AC Kirchhoff)

$$P_i = \sum B_{ij} \sin(\theta_i - \theta_j)$$

may differ only by circulating loop current(s) in any network

Dörfler, Chertkov, Bullo, PNAS '13; Delabays, Coletta and PJ, JMP '16

*Voltage angle uniquely defined

 $q=\Sigma_i|\theta_{i+1}-\theta_i|/2\pi\in\mathbb{Z}$ ~topological winding number

"quantization" of these loop currents ~vortex flows

Janssens and Kamagate '03

Vortex flows in AC power grids vs. superconductivity

Vortex/circulation creation in SC via B-field

Can one create vortex flows in AC power grids?
How?

- Superconductors are dissipationless
- AC power grids are dissipative ~ they have a finite resistance

Do vortex flows survive the presence of dissipation?

Vortex flows in AC power grids vs. superconductivity

Vortex/circulation creation in SC via B-field

Can one create vortex flows in AC power grids?
How?

```
Three mechanisms: *dynamical phase slip
*line tripping
*line tripping and reclosure
```

- Superconductors are dissipationless
- AC power grids are dissipative ~ they have a finite resistance

Do vortex flows survive the presence of dissipation?

YES! They are robust against moderate amounts of dissipation

Power flow equations - approximations

 Admittance dominated by its imaginary part for large conductors ~ high voltage

Sum of power flowing out of I

A.k.a. lossless line approximation

• Incorporating dissipation to leading order $ilde{G}_{lm}/ ilde{B}_{lm}\ll 1$

$$P_l = \sum_{m \neq l} \left(\tilde{B}_{lm} \sin(\theta_l - \theta_m) + \tilde{G}_{lm} [1 - \cos(\theta_l - \theta_m)] \right)$$

Ohmic losses

$$\Delta P = \sum_{l} P_{l} = \sum_{l,m} \tilde{G}_{lm} \left[1 - \cos(\theta_{l} - \theta_{m}) \right] > 0$$

Generation of vortex flow by line tripping

- *Power grids are meshed path redundancy
- *Power is still supplied after one line trips
- *Consider line tripping in an asymmetric, three-path circuit
- *all winding numbers vanish initially

Power redistribution can lead to vortex flow with $q=\sum_i |\theta_{i+1}-\theta_i|/2\pi > 0$

Line tripping at $P/B_0 > 1.3$

Vortex state characterized by -hysteresis

- = topological protection
- -higher losses

- Single-loop network
- One producer, one consumer
- One line trips, is later reclosed

Vortex formation for $P/B_0 > 0.26$ Vortex formation for $|\Theta_{i+1}-\Theta_i| > \pi$ (two ends of faulted line)

*Lyapunov function - defines basins of attraction for different solutions

$$\mathcal{V}(\{\theta_i\}) = -\sum_{l} P_l \theta_l - \sum_{\langle l, m \rangle} B_0 \cos(\theta_l - \theta_m)$$

van Hemmen and Wreskinski '93

*Steady-state solutions have $\nabla \mathcal{V} = 0$

*Lyapunov function - defines basins of attraction for different solutions

$$\mathcal{V}(\{\theta_i\}) = -\sum_{l} P_l \theta_l - \sum_{\langle l, m \rangle} B_0 \cos(\theta_l - \theta_m)$$

van Hemmen and Wreskinski '93

fault-

$$\mathcal{V}(\Delta_{L}, \Delta_{R}) = -N_{L}P\Delta_{L} - N_{L}B_{0}\cos\Delta_{L} - (N_{R} - 1)B_{0}\cos\Delta_{R} - B_{0}\cos(N_{L}\Delta_{L} - (N_{R} - 1)\Delta_{R})$$

!! Cannot kill nor create vortex by adapting ΔP !! Instead one changes the grid's frequency

 \parallel Cannot kill nor create vortex by adapting $\Delta P \parallel$ \parallel Topological protection \parallel

Dynamical generation of vortex flows

Similar to quantum phase slips in JJ arrays
Lau, Markovic, Bockrath, Bezryadin and Tinkham '01
Matveev, Larkin and Glazman '02

20

