Mathe 3 Mitschriften

Paul Glaser

May 8, 2023

Contents

Chapter 1	runktionen im K	r age 2
1.1	Krümmung	2
1.2	Kurven in \mathbb{R}^3	3
1.3	Differentiation	5
Chapter 2	Taylorformel und Extremstellen	Page 7
2.1	Kettenregel	7
2.2	Richtungsableitungen	9
2.3	Taylorpolynome	9
2.4	Extrempunkte, Maxima, Minima	11
Chapter 3	Hyperflächen und Satz über implizite Funktionen	Page 12

Chapter 1

Funktionen im \mathbb{R}^n

1.1 Krümmung

Definition 1.1.1

Sei g:[0,L] eine zweimal steigt differenzierbare Kurve, parametrisiert nach Bogenlänge. Dann heißt

$$T(s) = g'(s)$$

Tangentialvektor der Kurve,

$$\kappa = \kappa(s) = ||T'(s)||_2 = \left|\frac{d\psi}{ds}\right|$$

heißt Krümmung der Kurve im Punkt g(s) und

$$N(s) = \frac{T'(s)}{\kappa(s)}$$

heißt Normalenvektor (definiert, wenn $\kappa(s) \neq 0$), also

$$T'(s) = \kappa(s)N(s)$$

Note:-

Da g parametrisiert ist, ist ||T|| = 1.

N(s) ist einfach nur die normierte Zweite Ableitung, folgt aus der Eigenschaft das ||T||=1.

$$1 = \langle T(s), T(s) \rangle$$

$$\frac{d}{ds} 1 = \frac{d}{ds} \langle T(s), T(s) \rangle$$

$$0 = \frac{d}{ds} \sum_{i} t_{i}^{2}$$

$$0 = 2 \sum_{i} t_{i} \cdot t_{i}'$$

$$0 = \langle T(s), T'(s) \rangle$$

Definition 1.1.2: Krümmungskreis

Für ebene Kurven ist der Kreis mit Mittelpunkt $g(s) + \frac{1}{\kappa}N(s)$ und Radius $r = \frac{1}{\kappa}$, der Kreis, der die Kurve g(s) am besten approximiert. Wir nennen diesen Kreis den Krümmungskreis.

Note:-

Da ||N(s)|| = 1 gibt $r \cdot N(s)$ exakt die Radius Länge. Je größer die Kurve gekrümmt ist, desto kleiner wird der Kreis, während desto flacher die Kurve ist der Kreis auch flacher wird und sich perfekt anähert.

1.2 Kurven in \mathbb{R}^3

Definition 1.2.1

Sei $g:[0,L]\to\mathbb{R}^3$ eine Kurve, die nach Bogenlänge parametrisiert ist. Dann ist $N\perp T$. Wir wählen nun $B\in\mathbb{R}^3$ so, dass

eine orientierte Orthonormalmatrix bilden.

Der Vektor B heißt Binormalenvektor und das Tripel (T, N, B) heißt Fresnelsches Dreibein.

Theorem 1.2.1

Die Ableitung des Binormalenvektors B(s) kann durch

$$B'(s) = -\tau(s)N(s)$$

beschrieben werden, wobei $\tau(s)$ eine bestimmte Funktion $R \to R$ ist. Wir nennen $\tau(s)$ die Torsion der Kurve im Punkt g(s).

Note:-

$$B(s) = T(s) \times N(s)$$

$$\frac{dB(s)}{ds} = \frac{d(T(s) \times N(s))}{ds}$$

$$= \frac{dT(s)}{ds}N(s) \times N(s) + T(s) \times \frac{dN(s)}{ds}$$

$$= \kappa N(s) \times N(s) + T(s) \times \frac{dN(s)}{ds}$$

$$= T(s) \times \frac{dN(s)}{ds}$$

$$T(s) \implies \text{ orthogonal zu } T(s)$$

$$da \ r(s) \cdot r'(s) = 0 \text{ für alle } r \text{ mit } ||r|| = 1, \text{ muss } \frac{dB(s)}{ds} \text{ orthogonal zu } B(s) \text{ sein }$$

$$= \tau N(s)$$

Funktionen auf \mathbb{R}^n

Definition 1.2.2

Mit $f:D\subset\mathbb{R}^n\to\mathbb{R}$ ordnen wir jedem Element von $D\subset\mathbb{R}^n$ einen reellen Wert zu. Die Menge $\Gamma_f:=\{(x,y)\in D\times\mathbb{R}\mid f(x)=y\}$ ist der Graph von f.

Definition 1.2.3: Niveaumenge

Sei $f:D\to\mathbb{R}$ und $c\in\mathbb{R}$. Die Menge aller Punkte x für die f(x)=c,

$$N_c(f) = \{x \in D \mid f(x) = c\},\$$

heißt Niveaumenge von f zum Niveau c.

Note:-

Man erhält den Contourplot durch mehrfaches plotten von verschiedenen Niveaumengen.

Figure 1.1: Die Funktion $f(x_1,x_2)=x_1^2+x_2^2$ und ihr Contourplot

Definition 1.2.4: Offener und abgeschlossener Ball

Sei $a \in \mathbb{R}^n$ und r > 0. Dann ist die Menge

$$B_r(a) := \{ x \in \mathbb{R}^n \mid ||x - a||_2 < r \}$$

ein offener Ball mit Radius r und

$$\overline{B_r(a)} := \{ x \in \mathbb{R}^n \mid ||x - a||_2 \le r \}$$

ein abgeschlossener Ball mit Radius r.

Definition 1.2.5: Offen und abgeschlossen

Sei $U \subset \mathbb{R}^n$ eine Teilmenge.

U heißt offen, falls $\forall a \in U : \exists \varepsilon > 0$ so dass $B_{\varepsilon}(a) \subset U$.

Eine Teilmenge $A \subset \mathbb{R}^n$ heißt abgeschlossen, wenn $\mathbb{R}^n \backslash A$ offen ist.

Note:-

 $B_r(a)$ ist offen und $\overline{B_r(a)}$ ist abgeschlossen.

Definition 1.2.6: beschränkt und kompakt

Eine Teilmenge $D \subset \mathbb{R}^n$ heißt beschränkt, wenn es ein r > 0 gibt, so dass $D \subset B_r(0)$. Eine abgeschlossene und beschränkte Menge $K \subset \mathbb{R}^n$ heißt kompakt.

Definition 1.2.7

Sei $D \subset \mathbb{R}^n$ eine Teilmenge.

$$\overset{\circ}{D} := \{ x \in \mathbb{R}^n \mid \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset D \}$$

ist die Menge der inneren Punkte von D. Mit

$$\bar{D} := \{ x \in \mathbb{R}^n \mid B_{\varepsilon}(x) \cap D \neq \emptyset \forall \varepsilon > 0 \}$$

bezeichnen wir den Abschluss von D. Der Rand von D ist

$$\partial D = \bar{D} \setminus \stackrel{\circ}{D}$$

Note:-

noch keine Ahnung was ich dazu sagen soll:)

Example 1.2.1

 $B_r(a)$ ist der Abschluss von $B_r(a)$ und $\partial B_r(a) = \{x \in \mathbb{R}^n \mid ||x - a||_2 = r\}$ ist die Kugeloberfläche

1.3 Differentiation

Definition 1.3.1: stetig

Sei $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ eine Funktion. Die Funktion f heißt stetig in $a \in D \subset \mathbb{R}^n$, wenn für alle $\varepsilon > 0$ ein $\delta > 0$ existiert, so dass

$$|f(x) - f(a)| < \varepsilon \quad \forall x \in D$$

 $\min \|x - a\|_2 < \delta$

Theorem 1.3.1

Summe, Produkte und Quotienten (falls definiert) stetiger Funktionen sind stetig.

Definition 1.3.2: Partiell differenzierbar

Sei $f:U\to R, a=(a_1,\ldots,a_n)\in U$ Dann heißt f in a partiell nach x_i differenzierbar, wenn die Funktion in einer Variablen

$$x_i \mapsto f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$$

nach x_i differenzierbar ist. Dann heißt

$$\frac{\partial f}{\partial x_{i}}(a) := \lim_{h \to 0} \frac{f(a_{1}, \dots, a_{i-1}, a_{i} + h, a_{i+1}, \dots, a_{n}) - f(a_{1}, \dots, a_{i-1}, a_{i}, a_{i+1}, \dots, a_{n})}{h}$$

die partielle Ableitung von f nach x_i .

Note:-

Die komplexe Version der Ableitung vom Ein-dimensionalem falls

$$\frac{df}{dx}(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

Definition 1.3.3: Gradient

Ist $f: U \to \mathbb{R}$, U offen, in jedem Punkt nach allen Variablen partiell differenzierbar, dann heißt U partiell differenzierbar auf U. Der Vektor

$$\nabla f(a) := (\operatorname{grad} f)(a) := \left[\begin{array}{ccc} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_n}(a) \end{array} \right]$$

heißt Gradient von f im Punkt $a \in U$.

Example 1.3.1

Sei $f(x, y) = (x^2 + y^2, x \cdot y^2)$. Dann ist

$$\nabla f(x,y) = (\operatorname{grad} f)(x,y) := \begin{bmatrix} \frac{\partial f}{\partial x}(x,y), & \frac{\partial f}{\partial y}(x,y) \end{bmatrix}$$
$$= (2x, 2xy)$$

Definition 1.3.4: Hesse-Matrix

Die Matrix

$$\operatorname{Hess}(f) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{ij} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

heißt Hesse-Matrix.

Theorem 1.3.2

Sei $f: U \to \mathbb{R}$ zweimal stetig differenzierbar, dann gilt

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}.$$

Das heißt unter diesen Voraussetzungen ist die Hesse-Matrix symmetrisch.

Example 1.3.2

Sei $f(x,y) = \sqrt{x^2(1-y)}$, dann ist

$$\operatorname{Hess}(f) = \left[\begin{array}{ccc} 6x \cdot y^2 & 4x \cdot y^3 \cdot z^2 \cdot c^2 & 0 \\ 4x \cdot y^3 \cdot z^2 & & \end{array} \right]$$

6

Chapter 2

Taylorformel und Extremstellen

2.1 Kettenregel

Definition 2.1.1

Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^m$ $f(u) \subset V \subset \mathbb{R}^m$ und V offen, sowie $g: V \to \mathbb{R}$ und $h = g \circ f$ Die Koordinaten in U bezeichnen wir mit x_i , die in V mit x_j . Dann gilt

$$\frac{\partial h}{\partial x_i}(x) = \sum_{j=1}^m \frac{\partial g}{\partial y_j} (f(x)) \frac{\partial f_j}{\partial x_i}(x)$$

Note:-

Die Kettenregel lässt sich über herleiten durch nutzen der Taylor-Entwicklung Erster Ordnung: Seien f,g,h definiert wie oben, dann ist

$$g(y) \approx g(f(x)) + \sum_{j=1}^{m} \frac{\partial g}{\partial y_j} (f(x)) \left(y_j - f_j(x) \right). \tag{2.1}$$

Für f in der Nähe von x erhält man:

$$f_i(x + \Delta x) \approx f_i(x) + \sum_{k=1}^n \frac{\partial f_i}{\partial x_k}(x) \Delta x_k$$

Da Eq:2.1 h beschreibt und man an der Entwicklungsstelle $h(x + \Delta x)$ interessiert sind, setzt man $y = f(x + \Delta x)$

in die Taylor-Entwicklung von g ein

$$h(x + \Delta x) \approx g(f(x + \Delta x)) + \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(f(x)) \left(f_{j}(x + \Delta x) - f_{j}(x)\right)$$

$$h(x) + \Delta h(x) \approx g(f(x)) + \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(f(x)) \left(\sum_{k=1}^{n} \frac{\partial f_{j}}{\partial x_{k}}(x) \Delta x_{k}\right)$$

$$\Delta h(x) \approx \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(f(x)) \left(\sum_{k=1}^{n} \frac{\partial f_{j}}{\partial x_{k}}(x) \Delta x_{k}\right) \quad \text{da } h(x) = g(f(x))$$

$$\frac{\Delta h(x)}{\Delta x_{i}} \approx \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(f(x)) \left(\sum_{k=1}^{n} \frac{\partial f_{j}}{\partial x_{k}}(x) \frac{\Delta x_{k}}{\Delta x_{i}}\right)$$

$$\frac{\partial h}{\partial x_{i}}(x) = \lim_{\Delta x_{i} \to 0} \frac{\Delta h(x)}{\Delta x_{i}} = \sum_{j=1}^{m} \frac{\partial g}{\partial y_{j}}(f(x)) \frac{\partial f_{j}}{\partial x_{i}}(x) \quad \text{da } \frac{\Delta x_{k}}{\Delta x_{i}} \text{ wird } 0 \text{ für alle } k \neq i$$

Example 2.1.1

Sei $f(r, \phi) = (r \cdot \cos(\phi), r \cdot \sin(\phi))$, dann ist

$$J_f = Df = \begin{bmatrix} \cos(\phi) & -r \cdot \sin(\phi) \\ \sin(\phi) & r \cdot \cos(\phi) \end{bmatrix}$$

Sei $g(x,y)=x^2+y^2$, dann ist Dg=(2x,2y).

Sei $h = g \circ f$, dann ist gilt

$$h(r,\phi) = (r \cdot \cos(\phi))^2 + (r \cdot \sin(\phi))^2 = r^2$$

Von hier ist leicht zu sehen, dass

$$\frac{\partial h}{\partial r} = 2r \quad \frac{\partial h}{\partial \phi} = 0$$

$$D h(r, \phi) = D g(f(r, \phi)) \cdot D f$$
$$= (2r \cos f, 2r \sin \phi) \cdot D f(r, \phi)$$
$$= (2r, 0)$$

Es kann auch über die Formel berechnet werden

$$\frac{\partial h}{\partial r}(r,\phi) = \frac{\partial g}{\partial x}(f(r,\phi))\frac{\partial f_1}{\partial r}(r,\phi) + \frac{\partial g}{\partial y}(f(r,\phi))\frac{\partial f_2}{\partial r}(r,\phi)$$
$$= 2 \cdot (r\cos(\phi))\cos(\phi) + 2 \cdot (r\sin(\phi))\sin(\phi)$$
$$= 2r$$

$$\frac{\partial h}{\partial \phi}(r,\phi) = \frac{\partial g}{\partial x}(f(r,\phi))\frac{\partial f_1}{\partial \phi}(r,\phi) + \frac{\partial g}{\partial y}(f(r,\phi))\frac{\partial f_2}{\partial \phi}(r,\phi)$$
$$= 2 \cdot (r \cdot \cos(\phi)) \cdot (-r\sin(\phi)) + 2 \cdot (r \cdot \sin(\phi)) \cdot (r\cos(\phi))$$
$$= 0$$

Man erhält das gleiche Ergebnis

2.2 Richtungsableitungen

Definition 2.2.1

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$, $a \in U$ und $v \in \mathbb{R}^n$ mit ||v|| = 1, Dann heißt

$$(D_v f)(a) = \lim_{h \to 0} \frac{f(a+h \cdot v) - f(a)}{h}$$

Richtungsableitung von f in Richtung v.

Theorem 2.2.1

Sei $f:U\to\mathbb{R}, U\in\mathbb{R}^n$ offen, total und differenzierbar in a. Dann gilt

$$(D_v f)(a) = \langle (\operatorname{grad} f)(a), v \rangle.$$

Insbesondere: Für $v \in g^{n-1} := \{ve\mathbb{R}^n \mid ||v|| = 1\}$ ist die Richtungsableitung maximal genau dann, wenn de fradiar (gradf) (a) in die Gluide Ridehueg wie V zeigt

2.3 Taylorpolynome

Definition 2.3.1: Multiindex

 $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ nennen wir einen Multiindex. $|\alpha|=\alpha_1+\ldots+\alpha_n$ heißt Totalgrad von α . Wir setzen $x^\alpha=x_1^{\alpha_1}x_n^{\alpha_n}$ Damnn bezeichnet

$$\overset{\alpha}{\mathrm{D}}f := \frac{\partial^{|\alpha|}f}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$$

Die α -te partielle Ableitung.

Example 2.3.1

$$\alpha = (1, 2, 3)$$
 $|\alpha| = 1 + 2 + 3 = 6$

$$\overset{\alpha}{\mathrm{D}} f = \frac{\partial^6 f}{\partial x_1 \partial x_2^2 \partial x_3^3}$$

Definition 2.3.2: Taylorpolynome

Sei $U \subset \mathbb{R}^n$ offen, $a \in U$. sei $f: u \to \mathbb{R}$ k-mal stetig partiell differenzierbar. Dann heißt das polynom

$$\sum_{|\alpha| \le k} \frac{\partial |\alpha| f}{\partial x |\alpha|}(a) \cdot \frac{(x-a)^{\alpha}}{\alpha!}$$

das Taylorpolynom k-ter Ordnung vou f in a.

Note:-

Eine hübsche andere Formel für den Fall $U \subset \mathbb{R}^2$ und $f: U \to \mathbb{R}$, ist über die Summe der binomischen Formeln:

$$f(x) = f + \sum_{i=1}^{k} \frac{1}{i!} \left(\frac{\partial f}{\partial x} (x - a) + \frac{\partial f}{\partial y} (y - a) \right)^{i}$$

mit f evaluiert an der Stelee a. Der Zussamenhang folgt aus dem Zussamenhang, dass man bei α k Elemente aus n auswählt.

Example 2.3.2

Sei $f(x,y) = e^{-x^2-y^2}$ und der Entwicklungspunkt a = (1,1), dann sind

$$\frac{\partial f}{\partial x} = -2xe^{-x^2-y^2}$$
 $\frac{\partial f}{\partial y} = -2ye^{-x^2-y^2}$

Die ersten partiellen Ableitungen und

$$\frac{\partial^2 f}{\partial x^2} = (4x^2 - 2) e^{-x^2 - y^2} \quad \frac{\partial^2 f}{\partial x \partial y} = 4xy e^{-x^2 - y^2} \quad \frac{\partial^2 f}{\partial y^2} = (4y^2 - 2) e^{-x^2 - y^2}$$

Daraus folgt das Das Taylorpolynom erster Ordnung

$$f(x) = f(a) + \frac{\partial f}{\partial x}(a) \cdot (x - a) + \frac{\partial f}{\partial y}(a) \cdot (y - a) = 1$$

Das Taylorpolynom 2-ter Ordnung ist

$$f(x) = f(a) + \frac{\partial f}{\partial x}(a) \cdot (x - a) + \frac{\partial f}{\partial y}(a) \cdot (y - a)$$

$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a) \cdot (x - a)^2 + \frac{\partial^2 f}{\partial x \partial y}(a) \cdot (x - a)(y - a) + \frac{\partial^2 f}{\partial y^2}(a) \cdot (y - a)^2 \right)$$

$$= 1 - x^2 - y^2$$

Figure 2.1: Die Funktion $f(x,y) = e^{-x^2-y^2}$ und die Taylorpolynome erster und zweiter Ordnung um den Entwicklungspunkt (0,0).

2.4 Extrempunkte, Maxima, Minima

Definition 2.4.1

Ser $f: u \to \mathbb{R}, U \subset \mathbb{R}^n$. f hat ein lokales (lokales Muimun), wenn ein Ball $Br(a) \subset U$ existiert, so dass $f|_{B_r(a)}$ in a das Maximum (Minimun) hat. f hat ein lokales Extrema, wenn eine der beiden Bediengungen eintritt.

Lenma 2.4.1

Die Matrix $A = A^{\top} \in \mathbb{R}^{n \times n}$ ist positiv definit, falls

$$x^{\top}Ax > 0 \quad \forall x \in \mathbb{R}^n \backslash \{0\}.$$

 \iff alle Eigenwerte der Matrix > 0 sind

Theorem 2.4.1 Minima und Maxima

Sei $U \subset \mathbb{R}^k$ offen: $f: U \to \mathbb{R}$ zweimal stetig partiell differenzierbar

1 Notwendig dafür, dass f in $a \in U$ ein lokales Extrema hat, ist dass

$$\frac{\partial f}{\partial x_1}(a) = \dots = \frac{\partial f}{\partial x_n}(a) = 0$$

Ist die notwendige Bedingung erfüllt, dann ist hinreichend für ein lokales Minimum, dass die Matrix

$$A = \operatorname{Hess}(f)(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{ij}$$

positiv definit ist. Ist A negativ definit dann liegt ein lokales Maximun vor.

Example 2.4.1

$$f(x,y) = x^2 + y^2$$
 $\frac{\partial f}{\partial x} = 2x = 0$

$$\frac{\partial f}{\partial y} = 2y = 0$$

 \Rightarrow (0,0) ist der einzige Kandidat für ein lokales Extrema

$$\operatorname{Hess}(f)(a) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right] > 0$$

Folglich hat die Funktion in (0,0) ein lokales Minima.

Chapter 3

Hyperflächen und Satz über implizite Funktionen

Definition 3.0.1: Hyperflächen

Sei $f:\mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Funktion. Dann heißt ihre Nullstellenmenge

$$N(f) := N_0(f) = \{ a \in \mathbb{R}^n \mid f(a) = 0 \}$$

die durch f definierte Hyperfläche.

Example 3.0.1

 $x^2 + y^2 + z^2 - 1 = 0$ ist eine Kugel, siehe abb. 3.1

Figure 3.1: Eine 3-dimensionale Kugel mit dem Radius 1

Definition 3.0.2: Tengentialraum

Sei X = N(f)