El templo de Artemisa Saga de las maravillas del mundo

Jesús González Abril Pedro Villa Navarro Sergio Lozano Melgar Mario Gallego Navarro

Curso 2024-2025

Índice general

1.	Vari	iedades topológicas. Superficies	2
	1.1.	La topología cociente	2
	1.2.	Ejemplos de espacios cocientes	7
	1.3.	Espacios localmente euclídeos	16
	1.4.	Variedades topológicas	16
		1.4.1. Ejemplos de superficies	19
		1.4.2. Propiedades de las variedades topológicas	22
	1.5.	Unión disjunta	24
	1.6.	Suma conexa	26
2.	Clasificación de superficies compactas		31
	2.1.	Símplices	31
	2.2.	Complejos simpliciales	32
	2.3.	Triangulaciones	33
	2.4.	Presentación de superficies	33
	2.5.	Transformaciones elementales	37
	2.6.	Teorema de Clasificación	39
3.	Homotopía. El grupo fundamental		47
	3.1.	Equivalencia homotópica	47
	3.2.	Espacios contractiles	52
	3.3.	Homotopía por caminos	54
	3.4.	Espacios simplemente conexos	58
	3.5.	El homomorfismo inducido	58
Α.	Teoría de grupos		
	A.1.	Grupos y subgrupos	59
	A.2.	Homomorfismos	60

Capítulo 1

Variedades topológicas. Superficies

1.1. La topología cociente

Definición 1.1.1: Topología final o imagen

Sea (X, \mathcal{T}) un espacio topológico, Y un conjunto y $p: X \to Y$ una aplicación. Definimos en Y la topología final o imagen de p como:

$$\mathcal{T}(p) := \{ O \subset Y \mid p^{-1}(O) \in \mathcal{T} \}.$$

Afirmación

 $\mathcal{T}(p)$ es una topología sobre Y

Demostraci'on

- $(\mathrm{T}1) \ p^{-1}(\emptyset) = \emptyset \in \mathcal{T} \implies \emptyset \in \mathcal{T}(p). \ p^{-1}(Y) = X \in \mathcal{T} \implies Y \in \mathcal{T}(p).$
- (T2) Si $U_i \in \mathcal{T}(p) \ \forall i \in I$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in I$, por tanto $p^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcup_{i \in I} U_i \in \mathcal{T}(p)$.
- (T3) Si $U_i \in \mathcal{T}(p) \ \forall i \in \{1,\ldots,n\}$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in \{1,\ldots,n\}$, por tanto $p^{-1}(\bigcap_{i=1}^n U_i) = \bigcap_{i=1}^n p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcap_{i=1}^n U_i \in \mathcal{T}(p)$.

Proposición 1.1.2: Propiedades de la topología final

- 1. $\mathcal{T}(p)$ hace a p continua y es la topología más fina que lo hace.
- 2. Sea $g:(Y,\mathcal{T}(p))\to (Z,\mathcal{T}'')$ una aplicación. g es continua si y solo si $g\circ p$ es continua.
- 3. Los cerrados de $\mathcal{T}(p)$ son $\{C \subset Y \mid p^{-1}(C) \text{ es cerrado en } \mathcal{T}\}.$

Demostración

- 1. Que $\mathcal{T}(p)$ hace continua a p es inmediato por la propia definición de $\mathcal{T}(p)$. Además, si \mathcal{T}' es otra topología cualquiera que hace a p continua entonces $\forall U \in \mathcal{T}', p^{-1}(U) \in \mathcal{T} \implies U \in \mathcal{T}(p)$, por lo que $\mathcal{T}' \subset \mathcal{T}(p)$, luego la topología final es la más fina.
- 2. Claramente si g es continua entonces $g \circ p$ es continua, puesto que es composición de dos aplicaciones continuas (recordemos que p es continua como aplicación en $(Y, \mathcal{T}(p))$). Si por el contrario $g \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(g \circ p)^{-1}(U) = p^{-1}(g^{-1}(U)) \in \mathcal{T}$ es abierta por ser $g \circ p$ continua, pero entonces por la definición de $\mathcal{T}(p)$ debe cumplirse $g^{-1}(U) \in \mathcal{T}(p)$, por tanto g es continua.
- 3. C es cerrado en $\mathcal{T}(p) \iff Y \setminus C \in \mathcal{T}(p) \iff p^{-1}(Y \setminus C) \in \mathcal{T} \iff X \setminus p^{-1}(C) \in \mathcal{T} \iff p^{-1}(C)$ es cerrado en \mathcal{T} . El tercer \iff se cumple puesto que $p^{-1}(Y) = X$.

Definición 1.1.3: Identificación

Sean (X, \mathcal{T}) , (Y, \mathcal{T}') espacios topológicos, y $p: X \to Y$ una aplicación. Decimos que $p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es una identificación si p es sobreyectiva y $\mathcal{T}' = \mathcal{T}(p)$.

Nota

Si $f: X \to Y$ es una aplicación sobreyectiva entonces $f(f^{-1}(U)) = U$ para cualquier $U \subset X$.

Proposición 1.1.4: Propiedades de las identificaciones

- 1. $Id: (X, \mathcal{T}) \to (X, \mathcal{T}')$ es una identificación si y solo si $\mathcal{T} = \mathcal{T}'$.
- 2. Si $p:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una identificación y $f:(Y,\mathcal{T}')\to (Z,\mathcal{T}'')$ es una aplicación, entonces f es continua si y solo si $f\circ p$ es continua.
- 3. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua, abierta (o cerrada) y sobreyectiva, entonces f es una identificación.

Demostración

- 1. Claramente Id es sobreyectiva (de hecho es biyectiva con inversa $(Id)^{-1} = Id$), por lo que será identificación si y solo si $\mathcal{T}' = \mathcal{T}(Id)$. Ahora bien, $\mathcal{T}(Id) = \{O \subset Y \mid (Id)^{-1}(O) \in \mathcal{T}\} = \{O \subset Y \mid O \in \mathcal{T}\} = \mathcal{T}$, por tanto Id es identificación si y solo si $\mathcal{T}' = \mathcal{T}$.
- 2. Si f es continua entonces $f \circ p$ es continua por ser composición de aplicaciones continuas. Si por el contrario $f \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(f \circ p)^{-1}(U) = p^{-1}(f^{-1}(U)) \in \mathcal{T}$ es abierta por ser $f \circ p$ continua, pero entonces, como $\mathcal{T}' = \mathcal{T}(p)$ al ser p identificación, debe cumplirse $f^{-1}(U) \in \mathcal{T}'$, por tanto f es continua.
- 3. Como f es sobreyectiva solo necesitamos ver que si es continua y abierta (cerrada) entonces $\mathcal{T}' = \mathcal{T}(f)$. Supongamos que f es continua, en tal caso tenemos garantizado que $\mathcal{T}' \subset \mathcal{T}(f)$.

Si además es abierta entonces dado $U \in \mathcal{T}(f)$ arbitrario, $f^{-1}(U) \in \mathcal{T}$ por la definición de $\mathcal{T}(f)$, pero entonces $f(f^{-1}(U)) \in \mathcal{T}'$ al ser f abierta, y como es sobreyectiva $f(f^{-1}(U)) = U \in \mathcal{T}'$, por lo que $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \Longrightarrow \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Si f es cerrada razonamos de manera similar pero con cerrados: dado $U \in \mathcal{T}(f)$, $C = Y \setminus U$ es cerrado en $\mathcal{T}(f)$, por lo que $f^{-1}(C)$ es cerrado en \mathcal{T}^a , por tanto $f(f^{-1}(C)) = C$ es cerrado en \mathcal{T} al ser f cerrada, pero entonces $U = Y \setminus (Y \setminus C) \in \mathcal{T}$, por tanto $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \implies \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Definición 1.1.5: Topología cociente

Sea (X,\mathcal{T}) un espacio topológico, \sim una relación de equivalencia en X, y $p:X\to X^{-1}/\infty=\tilde{X}$ la proyección al cociente. La topología cociente sobre \tilde{X} es la topología final o imagen de p:

$$^{\mathcal{T}}/_{\sim} = \tilde{\mathcal{T}} := \mathcal{T}(p) = \{ V \subset \tilde{X} \mid p^{-1}(V) \in \mathcal{T} \}.$$

El espacio $(\tilde{X}, \tilde{\mathcal{T}}) = (X/_{\sim}, \mathcal{T}/_{\sim})$ se llama espacio cociente.

Nota

1. Toda relación de equivalencia \sim sobre X determina un espacio cociente dado por $\tilde{X}=X/\sim$. Recíprocamente, todo espacio final asociado a una aplicación p es el espacio cociente correspondiente a la relación de equivalencia \sim_p dada por

$$x \sim_p y \iff p(x) = p(y).$$

- 2. Al definir un cociente estamos identificando los puntos que están en una misma clase de equivalencia.
- 3. $\tilde{\mathcal{T}}$ es la topología más fina sobre \tilde{X} que hace continua a p.

 $[^]a\mathrm{Por}$ la tercera parte de la Proposición 1.1.2

Proposición 1.1.6: Propiedades del espacio cociente

- 1. V es un abierto de \tilde{X} si y solo si $\bigcup_{[x]\in V}[x]$ es abierto en X.
- 2. Si X es compacto, entonces \tilde{X} es compacto.
- 3. Si X es conexo (conexo por caminos), entonces \tilde{X} es conexo (conexo por caminos).
- 4. $p:(X,\mathcal{T})\to (\tilde{X},\tilde{\mathcal{T}})$ es una identificación.
- 5. $g: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ es continua si y solo si $g \circ p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es continua.

Demostración

- 1. $V \in \tilde{\mathcal{T}} \iff p^{-1}(V) \in \mathcal{T}$ por definición de la topología cociente, veamos que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$. Si $y \in p^{-1}(V) \implies p(y) = [y] \in V$, por tanto $[y] \subset \bigcup_{[x] \in V} [x]$, luego $y \in [y] \subset \bigcup_{[x] \in V} [x]$, por lo que $p^{-1}(V) \subset \bigcup_{[x] \in V} [x]$.
 - Por otro lado si $x \in \bigcup_{[x] \in V} [x]$ entonces $[x] \in V$, por tanto $p(x) = [x] \in V \implies x \in p^{-1}(V)$, lo que prueba finalmente que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$.
- 2. Sabemos que la aplicación p es continua y la compacidad se preserva por aplicaciones continuas. Como además p es sobreyectiva entonces $p(X) = \tilde{X}$, por tanto si X es compacto entonces $p(X) = \tilde{X}$ también lo es.
- 3. Sabemos que la aplicación p es continua y tanto la conexión como la arcoconexión se preservan por aplicaciones continuas. Como además p es sobreyectiva entonces $p(X) = \tilde{X}$, por tanto si X es conexo (conexo por caminos) entonces $p(X) = \tilde{X}$ también lo es.
- 4. Es inmediato que $\tilde{\mathcal{T}} = \mathcal{T}(p)$, por otro lado dado $y \in \tilde{\mathcal{T}} \implies y = [x]$ para cierto $x \in X$, por tanto p(x) = y, luego p es sobreyectiva.
- 5. Por el apartado 4, p es una identificación, por tanto basta aplicar la parte 2 de la Proposición 1.1.4

Recordemos ahora que dada una aplicación $f: X \to Y$ cualquiera, podemos definir una relación de equivalencia sobre X a partir de ella. Denotaremos por R_f a la relación de equivalencia en X dada por:

$$xR_fx' \iff f(x) = f(x')$$

Ejercicio 1.1

Demostrar que R_f es una relación de equivalencia.

Teorema 1.1.7: Proposición 4.1

Dados (X, \mathcal{T}) y (Y, \mathcal{T}') espacios topológicos y $(\tilde{X}, \tilde{\mathcal{T}})$ el espacio cociente dado por R_f , existe una aplicación $\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ que hace que el siguiente diagrama sea conmutativo^a

Además, $f:(X,\mathcal{T})\to (Y,\mathcal{T})$ es una identificación si y solo si $\tilde{f}:(\tilde{X},\tilde{\mathcal{T}})\to (Y,\mathcal{T}')$ es un homeomorfismo.

"Que el diagrama sea conmutativo quiere decir que "da igual que camino de flechitas sigamos", es decir, $\tilde{f}\circ p=f.$

Demostración. Si pretendemos que el diagrama sea conmutativo debe cumplirse

$$\tilde{f}(p(x)) = f(x) \iff \tilde{f}([x]) = f(x)$$

por tanto definimos \tilde{f} de la siguiente manera:

$$\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}'), \quad \tilde{f}([x]) = f(x).$$

Ahora solo necesitamos ver que la aplicación está bien definida. En efecto si $x, y \in X$ son dos representantes de la misma clase de equivalencia [x] entonces xR_fy , por tanto se cumple f(x) = f(y), luego

$$\tilde{f}([x]) = f(x) = f(y) = \tilde{f}([y])$$

por lo que la aplicación está bien definida¹.

Para la segunda parte, si suponemos que \tilde{f} es un homeomorfismo entonces $f = \tilde{f} \circ p$ es continua por ser composición de funciones continuas, y es sobreyectiva por serlo \tilde{f} y p. Además, si $U \in \mathcal{T}(f)$ entonces $f^{-1}(U) = p^{-1}(\tilde{f}^{-1}(U)) \in \mathcal{T}$, por tanto $\tilde{f}^{-1}(U) \in \tilde{\mathcal{T}}$, y al ser \tilde{f} abierta y biyectiva $U = \tilde{f}(\tilde{f}^{-1}(U)) \in \mathcal{T}'$, lo que prueba que $\mathcal{T}(f) = \mathcal{T}'$ y por tanto f es una identificación.

Si por el contrario suponemos que f es una identificación entonces f es sobreyectiva y $\mathcal{T}' = \mathcal{T}(f)$, por tanto f es continua y al ser p identificación también lo es \tilde{f} (apartado 2 de la Proposición 1.1.4). Que \tilde{f} es inyectiva es inmediato por la propia definición de \tilde{f} . Para ver que es sobreyectiva, dado $g \in Y$ por ser f sobreyectiva existe $x \in X \mid f(x) = y$, por tanto $\exists z = [x] \in \tilde{X}$ tal que $\tilde{f}([x]) = f(x) = y$. Veamos que \tilde{f} es abierta: dado $U \in \tilde{\mathcal{T}}$ entonces $f^{-1}(\tilde{f}(U)) = p^{-1}(\tilde{f}^{-1}(\tilde{f}(U))) = p^{-1}(U) \in \mathcal{T}$ por ser p continua, por lo tanto $\tilde{f}(U) \in \mathcal{T}(f) = \mathcal{T}'$, luego \tilde{f} es un homeomorfismo.

¹Está bien definida ya que hemos visto que la imagen de una clase de equivalencia no depende del representante escogido.

1.2. Ejemplos de espacios cocientes

Veamos ahora algunos ejemplos de espacios cociente y la posibilidad de establecer homeomorfismos entre estos espacios cociente y otros espacios topológicos de interés. En estos primeros ejemplos haremos uso del Teorema 1.1.7 para encontrar tales homeomorfismos.

Ejemplo

Para el intervalo I = [0, 1], consideramos la partición:

$$\tilde{I} = \{\{0,1\}\} \cup \{\{x\} : x \in (0,1)\}.$$

El espacio cociente (\tilde{I}, \tilde{T}) es homeomorfo a la circunferencia unidad \mathbb{S}^1 .

Demostración. Probemos que la relación \sim dada por la partición \tilde{I} coincide con la relación dada por la aplicación $f: I \to \mathbb{S}^1, f(t) = (\cos(2\pi t), \sin(2\pi t))$. Para ello, dados $x, y \in I$

$$xR_f y \iff f(x) = f(y) \iff \begin{cases} \cos(2\pi x) = \cos(2\pi y) \\ \sin(2\pi x) = \sin(2\pi y) \end{cases}$$

Para que se den estas igualdades entre cosenos y senos hay varias opciones: si $x, y \in (0, 1)$ entonces debe cumplirse x = y; si $x, y \in \{0, 1\}$ entonces o bien x = y, o bien x = 0, y = 1, o bien x = 1, y = 0. En resumen:

$$xR_fy \iff x=y \text{ o } x=1, y=0 \text{ o } x=0, y=1 \iff x\sim y$$

Por tanto ambas son la misma relación. Ahora veamos que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1 .

En primer lugar, f es continua por ser restricción de una aplicación continua (basta considerarla como aplicación de I a \mathbb{R}^2), además es cerrada puesto que I es compacto y \mathbb{S}^2 es Hausdorff (Ver Ejercicio 1.2). Por último dado $(x,y) \in \mathbb{S}^1$, denotemos por $\alpha = \text{ang}((x,y))$ al ángulo en radianes que forma el punto (x,y) con la horizontal, con $\alpha \in [0,2\pi)$. Es sencillo comprobar que $f(\frac{\alpha}{2\pi}) = (x,y)$, por tanto f es sobreyectiva, lo que según la Proposición 1.1.4 apartado 3 garantiza que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1

Ejercicio 1.2

Probar que si X es compacto, Y es Hausdorff y $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua entonces f es cerrada.

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 = y_2$.

El espacio cociente es homeomorfo a un cilindro.

Demostración. Consideremos el cilindro $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z \in [0, 1]\}$, probaremos que la relación \sim coincide con la relación dada por la aplicación $f: X \rightarrow C, f(t, s) = (\cos(2\pi t), \sin(2\pi t), s)$. Para ello, dados $(x_1, y_1), (x_2, y_2) \in X$

$$(x_1, x_2)R_f(x_2, y_2) \iff \begin{cases} \cos(2\pi x_1) = \cos(2\pi x_2) \\ \sin(2\pi x_1) = \sin(2\pi x_2) \\ y_1 = y_2 \end{cases}$$

Dejamos como un sencillo ejercicio comprobar que para que se den estas igualdades entre cosenos y senos debe darse $x_1 - x_2 \in \mathbb{Z}$. En resumen:

$$(x_1, x_2)R_f(x_2, y_2) \iff (x_1, y_1) \sim (x_2, y_2)$$

Por tanto ambas son la misma relación. Ahora veamos que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{X} y C.

En primer lugar, f es continua y cerrada por un argumento similar al del ejemplo anterior. Para ver que es sobreyectiva basta tomar $p=(x,y,z)\in C$, y denotemos por $\alpha=\arg((x,y))$ al ángulo en radianes que forma el punto (x,y) con la horizontal si consideramos a (x,y) como punto de \mathbb{S}^1 , con $\alpha\in[0,2\pi)$. Entonces $f(\frac{\alpha}{2\pi},z)=(x,y,z)=p$, por lo que f es sobreyectiva y por tanto identificación.

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $(x_1, y_1) = (x_2, y_2)$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2].$

El espacio cociente es homeomorfo a una banda de Möbius.

Demostración. Llamamemos M a la banda de Möbius. M será la imagen de la función

$$F: [0, 2\pi] \times [-1, 1] \to \mathbb{R}^3$$

$$F(u, v) = ((2 - v \sin(\frac{u}{2})) \sin(u), (2 - v \sin(\frac{u}{2})) \cos(u), v \cos(\frac{u}{2}))$$

es decir, $M = F([0, 2\pi] \times [-1, 1])$.

Probaremos ahora que la función $f:I\times I\to M$ dada por $f(t,s)=F(2\pi t,2s-1)$ define la misma relación que \sim y además es una identificación. La aplicación f es claramente continua, cerrada por ir de un compacto a un T_2 y sobreyectiva por definición (ya que $M=F([0,2\pi]\times[-1,1])=f(I\times I)$).

En cuanto a la relación, dados $(x, y), (a, b) \in I \times I$

$$(x_1, y_1)R_f(x_2, y_2) \iff f(x_1, y_1) = f(x_2, y_2) \iff$$

$$\begin{cases} (2 - (2y_1 - 1)\sin(\pi x_1))\sin(2\pi x_1) = (2 - (2y_2 - 1)\sin(\pi x_2))\sin(2\pi x_2) \\ (2 - (2y_1 - 1)\sin(\pi x_1))\cos(2\pi x_1) = (2 - (2y_2 - 1)\sin(\pi x_2))\cos(2\pi x_2) \\ (2y_1 - 1)\cos(\pi x_1) = (2y_2 - 1)\cos(\pi x_2) \end{cases}$$

claramente si $(x_1, y_1) = (x_2, y_2)$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2]$ entonces se dan las igualdades y $(x_1, y_1)R_f(x_2, y_2)$. Por el contrario, si $(x_1, y_1)R_f(x_2, y_2)$ dejamos la comprobación de que debe cumplirse $(x_1, y_1) = (x_2, y_2)$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2]$ como ejercicio (o castigo) al lector.

Sea $X = [0,1] \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 - y_2 \in \mathbb{Z}$.

El espacio cociente es homeomorfo a un toro.

Demostración. En primer lugar notemos que la relación de equivalencia consiste en identificar los lados del cuadrado $[0,1] \times [0,1]$ según la siguiente figura

En cuanto al toro \mathbb{T}^2 , lo consideraremos como el subconjunto de \mathbb{R}^3 de la siguiente forma

$$\mathbb{T}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}$$

Si definimos la función

$$F: [0, 2\pi] \times [0, 2\pi] \to \mathbb{T}^2$$

$$F(u, v) = (\cos u(\cos v + 2), \sin u(\cos v + 2), \sin v)$$

basta comprobar que

$$f: [0,1] \times [0,1] \to \mathbb{T}^2, \quad f(t,s) = F(2\pi t, 2\pi s)$$

induce la misma relación de equivalencia que \sim , y además es continua, sobreyectiva y cerrada (por ir de un compacto a un Hausdorff). Todas estas comprobaciones, muy similares a las de los anteriores ejemplos, quedan como un sencillo ejercicio para el lector.

Sea $X=[0,1]\times[0,1]$ con la relación de equivalencia: $(x_1,y_1)\sim(x_2,y_2)\text{ si y solo si }[x_1=x_2\text{ e }y_1-y_2\in\mathbb{Z}]\text{ o }[x_1-x_2=\pm 1\text{ e }y_1=1-y_2].$

El espacio cociente es homeomorfo a una botella de Klein.

Demostración. Definiremos la botella de Klein K como el subconjunto de \mathbb{R}^4 dado por la imagen de la siguiente función:

$$f: [0,1] \times [0,1] \to K \subset \mathbb{R}^4$$

$$f(t,s) = ((2 + \cos(2\pi t))\cos(2\pi s),$$

$$(2 + \cos(2\pi t))\sin(2\pi s),$$

$$\sin(2\pi t)\cos(\pi s),$$

$$\sin(2\pi t)\sin(\pi s))$$

Claramente f es continua, sobreyectiva (por la propia definición de K) y cerrada (por ir de un compacto a un T2). Además, se puede comprobar que determina la misma relación de equivalencia que \sim , por lo que en virtud de la Proposición 4.1 existe un homeomorfismo entre \tilde{X} y la botella de Klein.

Ejemplo

Sea $X = \mathbb{S}^1 \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $y_1 = y_2 = 0$ o $(x_1, y_1) = (x_2, y_2)$.

El espacio cociente es homeomorfo a un cono.

Demostración. Definamos el cono

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, z \in [0, 1]\}$$

y tomemos la función

$$\begin{split} f:\mathbb{S}^1\times[0,1]\to C\\ f(\theta,t) = (t\theta_x,t\theta_y,t), \quad \theta = (\theta_x,\theta_y)\in\mathbb{S}^1\subset\mathbb{R}^2 \end{split}$$

es inmediato ver que la función es continua, sobreyectiva y cerrada por argumentos como los del resto de ejemplos. Por otro lado

$$(\theta, t)R_f(\theta', t') \iff t = t', t\theta = t'\theta' \iff t = t' = 0 \quad \text{\'o} \quad (\theta, t) = (\theta', t') \iff (\theta, t) \sim (\theta', t')$$

Por tanto existe un homeomorfismo entre C y \tilde{X} .

Sea $X = \mathbb{S}^2$ con la relación de equivalencia:

$$p \sim q \iff p = \pm q$$
.

El espacio cociente $\tilde{\mathbb{S}}^2$ es homeomorfo al plano proyectivo \mathbb{RP}^2 .

Demostración. En primer lugar, el plano proyectivo \mathbb{RP}^2 será el conjunto cociente obtenido al considerar la siguiente relación \sim_p sobre $\mathbb{R}^3 \setminus \{0\}$.

$$x \sim_p y \iff x = \lambda y, \lambda \neq 0.$$

La idea va a ser construir una aplicación de $\mathbb{R}^3 \setminus \{0\}$ a \mathbb{S}^2 de tal manera que la aplicación respeta la relación que existe sobre \mathbb{S}^2 , es decir, $x \sim_p y \iff f(x) \sim f(y)$. Similarmente, veremos que existe una aplicación de \mathbb{S}^2 a $\mathbb{R}^3 \setminus \{0\}$ que también respeta la relación de equivalencia del proyectivo. Esto garantiza que las aplicaciones "pasan al cociente". Finalmente veremos que estas aplicaciones en el cociente son homeomorfismos y que la una es la inversa de la otra. La idea se resume en el siguiente diagrama, donde π_1, π_2 son las proyecciones a los cocientes.

$$\mathbb{R}^{3} \setminus \{0\} \xleftarrow{f} \mathbb{S}^{2}$$

$$\downarrow_{\pi_{1}} \qquad \downarrow_{\pi_{2}}$$

$$\mathbb{RP}^{2} \xleftarrow{\tilde{f}} \tilde{\mathbb{S}}^{2}$$

Definamos $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{S}^2$ por $f(x) = \frac{x}{|x|}$, y $\iota: \mathbb{S}^2 \to \mathbb{R}^3 \setminus \{0\}$ por $\iota(x) = x$. Notemos que si $x, y \in \mathbb{R}^3 \setminus \{0\}$ están relacionados entonces:

$$x \sim_n y \iff x = \lambda y, \lambda \neq 0$$

y por tanto

$$f(x) = \frac{x}{|x|} = \frac{\lambda y}{|\lambda||y|} = \pm \frac{y}{|y|} = \pm f(y) \iff f(x) \sim f(y).$$

Además, si $f(x) \sim f(y)$ entonces

$$\frac{x}{|x|} = \pm \frac{y}{|y|} \implies x = \lambda y, \lambda \neq 0$$

en esencia hemos visto que $x \sim_p y \iff f(x) \sim f(y)$, lo que garantiza que la aplicación $\tilde{f}([x]_p) = [f(x)]^2$ está bien definida puesto que

$$\tilde{f}([x]_p) = \tilde{f}([y]_p) \iff [f(x)] = [f(y)] \iff f(x) \sim f(y) \iff x \sim_p y \iff [x]_p = [y]_p.$$

La demostración de que ι también pasa al cociente como $\tilde{\iota}([x]) = [\iota(x)]_p$ se deja como un sencillo ejercicio.

 $^{^2}$ Usamos $[\cdot]_p$ para referirnos a las clases de equivalencia en el proyectivo y $[\cdot]$ para las clases de equivalencia en \mathbb{S}^2 .

Veamos ahora que \tilde{f} y $\tilde{\iota}$ son inversas la una de la otra

$$\tilde{f}(\tilde{\iota}([x])) = \tilde{f}([x]_p) = [f(x)] = \left\lceil \frac{x}{|x|} \right\rceil = [x]$$

donde la última igualdad se sigue de que $x \in \mathbb{S}^2$ y por tanto |x|=1. Por otro lado

$$\tilde{\iota}(\tilde{f}([x]_p)) = \tilde{\iota}([f(x)]) = \tilde{\iota}(\left[\frac{x}{|x|}\right]) = \left[\frac{x}{|x|}\right]_p = [x]_p$$

donde la última igualdad se sigue del hecho de que $\frac{x}{|x|} \sim_p x$.

Veamos ahora que \tilde{f} es continua. Para ello notemos que por la Proposición 1.1.6, \tilde{f} es continua si y solo si $\tilde{f} \circ \pi_1 = \pi_2 \circ f$ lo es. Pero claramente f es continua y también lo es la proyección π_2 , por lo que \tilde{f} es continua. De manera similar, ι es continua si y solo si lo es $\iota \circ \pi_2 = \pi_1 \circ \iota$, que es claramente continua por serlo π_1, ι .

Ejemplo

En el disco cerrado D(0,1) de \mathbb{R}^2 , consideramos la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 = \pm x_2$ e $y_1 = y_2$.

El espacio cociente $^{D(0,1)}/_{\sim}$ es homeomorfo a la esfera $\mathbb{S}^2.$

Demostración. Se deja como ejercicio.

Ejercicio 1.3

Dado (X, \mathcal{T}) un espacio topológico y $K \subset X$, definimos la relación

$$x \sim y \iff \begin{cases} x, y \in K \\ x = y \end{cases}$$

y llamemos al espacio cociente $(X/K, \mathcal{T}/K) := (X/\sim, \mathcal{T}/\sim)$.

- a) Demostrar que $p|_{X\setminus K}: X\to p(X\setminus K)$ es una biyección.
- b) Demostrar que $p|_{X\setminus K}$ es un homeomorfismo si K es abierto o cerrado.

Solución:

Para el apartado a) notemos que

$$\forall x \in X \setminus K, \quad p|_{X \setminus K}(x) = [x]$$

pero por la manera en la que está definida la relación de equivalencia, es inmediato ver que $[x] = \{x\}$, ya que el único elemento relacionado con x es el propio x (recordemos que $x \notin K$). Por tanto $p|_{X \setminus K}$ es inyectiva ya que

$$p|_{X\setminus K}(x) = p|_{X\setminus K}(y) \implies [x] = [y] \implies \{x\} = \{y\} \implies x = y$$

y además es sobreyectiva por estar definida en su imagen. Por tanto $p|_{X\setminus K}$ es una biyección.

Para el apartado b) notemos en primer lugar que p es continua, por lo que $p|_{X\setminus K}$ también lo será por ser su restricción a $X\setminus K$.

Haremos el caso K cerrado, cuando K es abierto hay que razonar de manera idéntica pero con cerrados teniendo en cuenta la parte 3 de la Proposición 1.1.2.

Si K es cerrado entonces $X \setminus K$ es abierto, ahora si tomamos $U \in \mathcal{T}|_{X \setminus K}$ entonces $U = \tilde{U} \cap (X \setminus K), \tilde{U} \in \mathcal{T}$. Pero como $X \setminus K$ es abierto entonces de hecho $U \in \mathcal{T}$ y por tanto

$$p^{-1}(p(U)) = (p|_{X \setminus K})^{-1}(p|_{X \setminus K}(U)) = U \in \mathcal{T}$$

(recordemos que $p|_{X\backslash K}$ es una biyección y por tanto tiene inversa). Finalmente por la definición de topología cociente debe de ser $p(U)\in {}^{\mathcal{T}}/_{K}$, pero como además $p|_{X\backslash K}(U)=p(U)=p(U)\cap p(X\backslash K)$ deducimos que $p|_{X\backslash K}(U)\in {}^{\mathcal{T}}/_{K}|_{p(X\backslash K)}$, lo que prueba que $p|_{X\backslash K}$ es abierta y por tanto un homeomorfismo.

1.3. Espacios localmente euclídeos

Definición 1.3.1: Espacio localmente euclídeo

Un espacio topológico (X, \mathcal{T}) se dice que es localmente euclídeo de dimensión n si todo punto p de X tiene un entorno U homeomorfo a una bola abierta B de \mathbb{R}^n . Si $\varphi: U \subset X \to B \subset \mathbb{R}^n$ es tal homeomorfismo, (U, φ) se llama carta en X alrededor de $p \in U$.

Nota

- 1. Por ser X localmente euclídeo, este hereda las propiedades locales de \mathbb{R}^n .
- 2. Podemos sustituir la bola abierta en la definición anterior por un entorno abierto de \mathbb{R}^n .

Definición 1.3.2: Bola euclídea

Diremos que $B' \subset X$ es una bola euclídea si B' es homeomorfo a una bola abierta B(0,r) de \mathbb{R}^n .

Definición 1.3.3: Bola regular euclídea

Diremos que $B\subset X$ es una bola regular euclídea si:

- Existe una bola euclídea B' tal que $\overline{B} \subset B'$.
- Existe r > 0 y una carta $\varphi : B' \to B^n(0,2r)$ tal que $\varphi(\overline{B}) = \overline{B^n(0,r)}$.

1.4. Variedades topológicas

Definición 1.4.1: Variedad topológica

Una variedad topológica M es un espacio topológico T_2 y $2A\mathbb{N}$ que es localmente euclídeo. La dimensión de M es el número natural n. También se denomina n-variedad (topológica).

Definición 1.4.2: Superficie topológica

Una superficie topológica S es una variedad topológica de dimensión dos o 2-variedad.

Nota

En ocasiones podemos referirnos a las superficies topológicas como superficies, o en general a las n-variedades topológicas como n-variedades (o incluso variedades si se sobrentiende su dimensión). Cabe destacar que en otro contextos la palabra superficie puede referirse a un concepto distinto, como el de superficie parametrizada o el de variedad diferenciable de dimensión 2 (superficie regular).

Definición 1.4.3: Variedad con borde

Si en la definición de variedad cambiamos el espacio modelo \mathbb{R}^n por el semiespacio superior $\mathbb{H}^n = \{x \in \mathbb{R}^n : x_i \geq 0\}$, obtenemos el concepto de variedad con borde.

Ejemplo

Sea $X=(\mathbb{R}\times\{0\})\cup(\mathbb{R}\times\{1\})$ y consideremos la relación R dada por

$$(x,0)R(x,1)\forall x \neq 0, (x,y)R(x,y)\forall (x,y) \in X.$$

Entonces $^{X}/_{R}$ es localmente euclídeo de dimensión 1 pero no es Hausdorff, por tanto no es una variedad. Para más información consultar *Line with two origins* en Wikipedia.

Proposición 1.4.4: Observaciones sobre variedades topológicas

- 1. Toda variedad topológica es localmente conexa por caminos (y localmente conexa).
- 2. Las componentes conexas y las componentes conexas por caminos coinciden en una variedad.
- 3. Una variedad es conexa si y solo si es conexa por caminos.
- 4. Toda variedad es localmente compacta.
- 5. Si una variedad no es compacta, siempre podremos compactificarla añadiendo un solo punto.

Demostración

Sea M una n-variedad. Notemos en primer lugar la siguiente afirmación que usaremos para probar el punto 4:

Afirmación

Dado $x \in M$, como M es una variedad existe un entorno $U \in \mathcal{E}(x)$ homeomorfo a una bola $B(0,r) = \varphi(U)$ de \mathbb{R}^n con $\varphi(x) = 0$.

Demostración

Sabemos por ser M variedad que existe un entorno $U' \in \mathcal{E}(x)$ y un homeomorfismo $\psi: U' \to B$ con B una bola en \mathbb{R}^n . Si $\psi(x) = 0$ ya hemos acabado, si $\psi(x) \neq 0$ entonces podemos elegir una bola centrada en $\psi(x)$ de radio r' lo suficientemente pequeño de manera que $B(\psi(x), r') \subset B \Longrightarrow A = \psi^{-1}(B(\psi(x), r')) \subset \psi^{-1}(B) = U$, y $A \in \mathcal{E}(x)$. Finalmente la aplicación $\phi: B(\psi(x), r') \to B(0, r'), \phi(s) = s - \psi(x)$ es un homeomorfismo, por lo que $\varphi = \phi \circ \psi|_A: A \to B(0, r')$ es el homeomorfismo buscado.

De hecho dado cualquier $V \in \mathcal{E}(x)$ siempre podemos elegir el entorno homeomorfo a una bola de manera que $U \subset V$ puesto que si $U \not\subset V$, entonces basta tomar $B'(0,r') \subset B(0,r)$ lo suficientemente pequeña para que $U' = \varphi^{-1}(B'(0,r')) \subset U \cap V$ y claramente U' también es homeomorfo a una bola de \mathbb{R}^n .

- 1. Sean $x \in M, V \in \mathcal{E}(x)$, como M es una variedad existe un entorno $U \in \mathcal{E}(x), U \subset V$ homeomorfo a una bola de \mathbb{R}^n , y por tanto localmente conexo por caminos. Como U es localmente conexo por caminos $\exists U' \subset U$ un entorno de x conexo por caminos. Por último notemos que $U' \subset U \subset V \implies U' \subset V$, luego U' es un entorno de x conexo por caminos contenido en V, lo que prueba que M es localmente conexa por caminos. Que es localmente conexa es inmediato puesto que localmente conexo por caminos implica localmente conexo.
- 2. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 3. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 4. Sea $x \in M$, como M es una variedad existe un entorno $U \in \mathcal{E}(x)$ homeomorfo a una bola B(0,r) mediante un homeomorfismo $\varphi: B(0,r) \to U$ con $\varphi(0) = x$. Puesto que $\overline{B(0,\frac{r}{2})}$ es compacto y φ es continua, $\varphi(\overline{B(0,\frac{r}{2})})$ es un compacto. Además $\varphi(\overline{B(0,\frac{r}{2})}) \subset \varphi(B(0,r)) = U$ por lo que si tomamos $C = \varphi(\overline{B(0,\frac{r}{2})})$ como compacto y U como entorno se verifica que $x \in C \subset U$, por lo que M es localmente compacta en x, como el punto elegido era arbitrario M es localmente compacta.
- 5. Como cualquier variedad es T_2 y locamente compacta el Teorema de Alexandroff nos asegura que podemos compactificarla por un punto.

1.4.1. Ejemplos de superficies

En todos los ejemplos siguientes consideramos subespacios de algún \mathbb{R}^m , por tanto todos los espacios son T_2 y $2A\mathbb{N}$ (recordemos que estas propiedades se heredan al considerar las topologías relativas). Solo necesitamos probar que cada uno de estos espacios son localmente euclídeos.

Ejemplo

La esfera \mathbb{S}^2 es una superficie topológica.

Demostración. Sea $p=(x,y,z)\in\mathbb{S}^2$ y supongamos que z>0, en tal caso el entorno $U=\mathbb{S}^2\cap\{z>0\}$ es homeomorfo a la bola $B^2((0,0),1)$ mediante el homeomorfismo

$$\varphi:B^2((0,0),1)\to U,\quad \varphi(x,y)=(x,y,\sqrt{x^2+y^2}).$$

En efecto φ es un homeomorfismo pues es abierta, continua y biyectiva, con inversa

$$\varphi^{-1}(x, y, z) = (x, y).$$

Para el resto de puntos sabemos que alguna de las tres componentes x, y, z debe ser no nula, por lo que podemos hacer un procedimiento similar, tarea que encomendamos al lector.

Ejemplo

El toro $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ es una superficie topológica.

Demostración. Recomendamos al lector que vuelva a echar un vistazo al ejemplo referente al toro en la Sección 1.2, aunque en este caso identificaremos al toro con el producto cartesiano de dos circunferencias.

Para ver que \mathbb{T}^2 es localmente euclídeo sea $p=(x,y)\in\mathbb{T}^2=\mathbb{S}^1\times\mathbb{S}^1$, de manera que

$$p = ((\cos \theta, \sin \theta), (\cos \phi, \sin \phi))$$

para ciertos $\theta, \phi \in [0, 2\pi)$. Consideremos la bola abierta $B = B((\theta, \phi), 1) \subset \mathbb{R}^2$ y el homeomorfismo

$$\varphi: B \to U \subset \mathbb{S}^1 \times \mathbb{S}^1, \quad \varphi(\theta', \phi') = ((\cos \theta', \sin \theta'), (\cos \phi', \sin \phi')).$$

En efecto es un homeomorfismo al considerarla sobre su imagen $U = \varphi(B)$ porque es continua y biyectiva con inversa continua. Que es sobreyectiva es inmediato, que es inyectiva también puesto que las funciones seno y coseno son 2π -periódicas y el radio de la bola es menor que 2π . Por tanto para cada punto p existe la carta (U, φ^{-1}) en torno a ese punto, lo que prueba que \mathbb{T}^2 es localmente euclídeo.

El cilindro $\mathbb{S}^1 \times \mathbb{R}$ es una superficie topológica.

Demostración. Sea $p = (\cos \theta, \sin \theta, s) \in \mathbb{S}^1 \times \mathbb{R}$ y consideremos la bola abierta $B = B((\theta, s), 1) \subset \mathbb{R}^2$ y el homeomorfismo

$$\varphi: B \to U \subset \mathbb{S}^1 \times \mathbb{S}^1, \quad \varphi(\theta', s') = (\cos \theta', \sin \theta', s').$$

En efecto es un homeomorfismo al considerarla sobre su imagen $U = \varphi(B)$ porque es continua y biyectiva con inversa continua. Por tanto para cada punto p existe la carta (U, φ^{-1}) en torno a ese punto, lo que prueba que el cilindro es localmente euclídeo.

Ejemplo

El paraboloide de revolución $x^2 + y^2 - z = 0$ es una superficie topológica.

Demostración. Sea $P = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z = 0\}$ y sea $p \in P, p = (x, y, z)$. Consideremos el número $r = 1 + \sqrt{x^2 + y^2}$ y la bola B = B((x, y), r), así como el homeomorfismo

$$\varphi: B \to U, \quad \varphi(x', y') = (x', y', x'^2 + y'^2)$$

definido en su imagen $U = \varphi(U)$, entonces (U, φ^{-1}) es una carta que cubre al punto p, lo que prueba que P es una superficie.

El resto de ejemplos se pueden justificar de manera similar a los anteriores encontrando una serie de cartas que cubran todos los puntos de la superficie. Dejamos esta tarea al lector.

Ejemplo

El hiperboloide de una hoja $x^2 + y^2 - z^2 = 1$ es una superficie topológica.

Ejemplo

El hiperboloide de dos hojas $x^2 + y^2 - z^2 = -1$ es una superficie topológica.

Proposición 1.4.5: Espacio proyectivo real

El espacio proyectivo real \mathbb{RP}^n es una variedad topológica de dimensión n.

Demostración

Veamos en primer lugar qué tipo de espacio topológico es \mathbb{RP}^n . Para ello, notemos que está definido por la relación de equivalencia sobre $\mathbb{R}^{n+1} \setminus \{0\}$ dada por

$$x \sim y \iff x = \lambda y, \lambda \neq 0.$$

Podemos dar una expresión explicita de las clases de equivalencia en \mathbb{RP}^n como

$$[x_1, \dots, x_{n+1}] = \{(\lambda x_1, \dots, \lambda x_{n+1}) : \lambda \in \mathbb{R} \setminus \{0\}, \exists x_{i_0} \neq 0\}$$

en cuyo caso la proyección al cociente viene dada por

$$\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n, \quad \pi(x_1, \dots, x_{n+1}) = [x_1, \dots, x_{n+1}]$$

Veamos que \mathbb{RP}^n es localmente euclídeo. Sea $p = [x_1, \dots, x_{n+1}] \in \mathbb{RP}^n$, por definición de \mathbb{RP}^n sabemos que existe un i_0 tal que $x_{i_0} \neq 0$, definimos el siguiente entorno $U_p = \{[y_1, \dots, y_{n+1}] : y_{i_0} \neq 0\}$ que contiene a p y es abierto puesto que la topología sobre \mathbb{RP}^n es precisamente la topología final de π y se tiene $\pi^{-1}(U_p) = V_p$ donde

$$V_p = \{(y_1, \cdots, y_{n+1}) : y_{i_0} \neq 0\}$$

que es abierto puesto que su complementario

$$[\mathbb{R}^{n+1} \setminus \{0\}] \setminus V_p = \{(y_1, \dots, y_{n+1}) : y_{i_0} = 0\}$$

es cerrado. Por tanto U_p es abierto (recuérdese la definición de topología final), y la siguiente aplicación

$$\varphi: U_p \to \mathbb{R}^n, \quad \varphi([x_1, \cdots, x_{n+1}]) = \left(\frac{x_1}{x_{i_0}}, \cdots, \frac{x_{i_0-1}}{x_{i_0}}, \frac{x_{i_0+1}}{x_{i_0}}, \cdots, \frac{x_{n+1}}{x_{i_0}}\right)$$

es un homeomorfismo. Omitiremos ver que φ esta bien definida y es un homeomorfismo.

1.4.2. Propiedades de las variedades topológicas

Comenzamos demostrando sin demasiado detalle un pequeño lema técnico.

Lema 1.4.6: Lema técnico

Sea $B = B(0,1) \subset \mathbb{R}^n$ la bola abierta de centro 0 y radio 1 y sean $p, q \in B$. Entonces existe un homeomorfismo $\phi : \overline{B} \to \overline{B}$ de manera que $\phi(p) = q$ y $\phi|_{\partial B} = Id$.

Demostración. Sea $\mu: B \to \mathbb{R}^n, \mu(x) = \frac{x}{1-|x|}$, es fácil comprobar que μ es un homeomorfismo. Definamos la aplicación $\phi: \overline{B} \to \overline{B}$ por

$$\phi(x) = \begin{cases} \mu^{-1} (\mu(x) - \mu(p) + \mu(q)), & x \in B \\ x, & x \in \partial B \end{cases}$$

se puede comprobar que ϕ es continua en la frontera de B y que también lo es su inversa, por tanto es un homeomorfismo que cumple $\phi(p) = q, \phi|_{\partial B} = Id$.

Teorema 1.4.7: Proposición 4.2 - Homogeneidad

Sea X una variedad topológica conexa de dimensión n y $p, q \in X$. Entonces existe un homeomorfismo $f: X \to X$ tal que f(p) = q.

Demostración. Sea la relación de equivalencia en X dada por

$$p \sim q \iff \exists f: X \to X \text{ homeomorfismo tal que } f(p) = q.$$

Vamos a ver que [p] es abierta y cerrada en X, y, por tanto, es todo X al ser X conexo.

Para ver que es abierta sea $q \in [p]$, veremos que podemos encontrar un entorno de q contenido en [p]. Por ser X localmente euclídeo existe $U \in \mathcal{E}(q)$ homeomorfo a una bola de \mathbb{R}^n . Como todas las bolas son homeomorfas podemos elegir un homeomorfismo de la siguiente forma

$$\varphi: B^n(0,2) \to U, \quad \varphi(0) = q, \quad 0 = \varphi^{-1}(q).$$

Consideremos ahora los conjuntos $B = B^n(0,1), B' = \varphi(B)$. Notemos que ambos son abiertos en sus respectivas topologías. Definamos ahora la aplicación

$$\tilde{\varphi}: \overline{B} \to \overline{B'}, \quad \tilde{\varphi}(x) = \varphi(x)$$

y veamos que es un homeomorfismo. En efecto por ser φ continua y cerrada se tiene

$$\varphi(\overline{B}) \subset \overline{\varphi(B)} = \overline{B'} \subset \overline{\varphi(\overline{B})} = \varphi(\overline{B}) \implies \varphi(\overline{B}) = \overline{B'}$$

por lo que $\tilde{\varphi}$ está bien definida y es sobreyectiva. Finalmente notemos que $\tilde{\varphi}$ es la restricción de un homeomorfismo y es sobreyectiva, y por tanto es un homeomorfismo. Démonos cuenta también de que

$$\tilde{\varphi}(\partial B) = \tilde{\varphi}(\overline{B} \setminus B) = \tilde{\varphi}(\overline{B}) \setminus \tilde{\varphi}(B) = \overline{B'} \setminus B' = \partial B'$$

Veamos ahora que $B' \subset [p]$, para ello sea $y \in B'$, de manera que $y = \varphi(x), x \in B$. Por el lema anterior, como $0, x \in B$ existe un homeomorfismo $\phi : \overline{B} \to \overline{B}$ de manera que $\phi(0) = x$ y $\phi|_{\partial B} = Id$. Definamos ahora la siguiente aplicación

$$F: \overline{B'} \to \overline{B'}, \quad F = \tilde{\varphi} \circ \phi \circ \tilde{\varphi}^{-1}$$

que es un homeomorfismo por ser composición de homeomorfismos y además cumple

$$F(q) = \tilde{\varphi}(\phi(\tilde{\varphi}^{-1}(q))) = \tilde{\varphi}(\phi(\varphi^{-1}(q))) = \tilde{\varphi}(\phi(0)) = \tilde{\varphi}(x) = \varphi(x) = y$$

Si tomamos $z \in \partial B'$ entonces $\tilde{\varphi}^{-1}(z) \in \partial B$, por lo que $\phi(\tilde{\varphi}^{-1}(z)) = \tilde{\varphi}^{-1}(z)$ luego

$$F(z) = \tilde{\varphi}(\phi(\tilde{\varphi}^{-1}(z))) = \tilde{\varphi}(\tilde{\varphi}^{-1}(z)) = z \implies F|_{\partial B'} = Id.$$

Ahora, por el lema del pegado para aplicaciones continuas la aplicación

$$f: X \to X, \quad f(x) = \begin{cases} F(x), & x \in \overline{B'} \\ x, & x \in X \setminus B' \end{cases}$$

es continua ya que $\overline{B'}$, $X \setminus B'$ son cerrados y tanto F como Id son continuas en cada uno de estos respectivos cerrados, coincidiendo además sus valores en la intersección $\partial B'$. Por un argumento completamente análogo podemos ver que la inversa de f

$$f^{-1}: X \to X, \quad f^{-1}(x) = \begin{cases} F^{-1}(x), & x \in \overline{B'} \\ x, & x \in X \setminus B' \end{cases}$$

es también continua, lo que prueba que f es un homeomorfismo en X que además satisface f(q) = F(q) = y, por tanto $\forall y \in B'$ se tiene $y \sim q \sim p \implies y \sim p$, lo cual quiere decir que $B' \subset [p]$, luego [p] es abierto.

Hemos visto que [p] es abierto. Además, $X \setminus [p] = \bigcup_{q \neq p} [q]$, porque las clases de equivalencia son disjuntas. Al ser unión arbitraria de abiertos es abierto, luego el complementario [p] es cerrado. Como X es conexo y [p] es abierto y cerrado debe ser [p] = X, lo que finaliza la demostración.

1.5. Unión disjunta

Definición 1.5.1: Unión disjunta

Sea $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in J}$ una familia indexada de espacios topológicos. Definimos su unión disjunta como:

$$\bigsqcup_{\alpha \in J} X_{\alpha} = \{(x, \alpha) : x \in X_{\alpha}, \alpha \in J\}.$$

Consideramos las inyecciones canónicas $\iota_{\alpha}: X_{\alpha} \to \bigsqcup_{\alpha \in J} X_{\alpha}$, dadas por $\iota_{\alpha}(x) = (x, \alpha)$.

Nota

Para entender la unión disjunta podemos pensar en ek siguiente contexto. Supongamos que los espacios topológicos son subconjuntos acotados del plano (por ejemplo polígonos), su unión disjunta consistirá en disponer estos subconjuntos de tal manera que no se solapen unos con otros. Un ejemplo sería la imagen siguiente

Otra manera de imaginar la unión disjunta es considerar que ponemos cada subconjunto del plano en una copia distinta de \mathbb{R}^2 , es decir, tendremos cada espacio topológico (figura) en un plano y la unión disjunta será la unión de esas "hojas".

Proposición 1.5.2: Topología unión disjunta

La familia de subconjuntos $B = \{\iota_{\alpha}(U) : U \in \mathcal{T}_{\alpha}, \alpha \in J\}$ es una base para una topología \mathcal{T} sobre $\bigsqcup_{\alpha \in J} X_{\alpha}$ que recibe el nombre de topología unión disjunta.

Demostración

Sea $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in J}$ una familia de espacios topológicos.

(B1) Para todo $(x, \alpha) \in \bigsqcup_{\alpha \in J} X_{\alpha}$ se tiene $x \in X_{\alpha}$, y como $X_{\alpha} \in \mathcal{T}_{\alpha}$, deducimos que $(x, \alpha) \in \iota_{\alpha}(X_{\alpha}) \in B$.

(B2) Si $(x,\alpha) \in \iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2)$ necesariamente $\alpha = \beta$ puesto que en otro caso

$$\iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2) = \emptyset$$

que es una contradiccion con que x esta en la intersección. Entonces $x \in U_1 \cap U_2$ y existe $V = U_1 \cap U_2 \in \mathcal{T}_{\alpha}$ (que es abierto puesto que U_1, U_2 lo son) con $x \in V \subset U_1 \cap U_2$, por lo que $(x, \alpha) \in \iota_{\alpha}(V) \subset \iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2)$. La última inclusión es fácil de comprobar y se deja como un sencillo ejercicio.

Proposición 1.5.3: Propiedades de la unión disjunta

- 1. Cada inclusión ι_{α} es un embebimiento, por lo que podemos identificar $X_{\alpha} \equiv \iota_{\alpha}(X_{\alpha}) \subset \bigsqcup_{\alpha \in J} X_{\alpha}.$
- 2. Un subconjunto es abierto en $\bigsqcup_{\alpha \in J} X_{\alpha}$ si y solo si su intersección con cada X_{α} es un abierto en X_{α} .
- 3. Una aplicación $f: \bigsqcup_{\alpha \in J} X_{\alpha} \to Y$ es continua si y solo si $f|_{X_{\alpha}}$ es continua, para todo $\alpha \in J$.
- 4. Si todos los espacios X_{α} son T_2 (resp. $1A\mathbb{N}$), la unión disjunta también es T_2 (resp. $1A\mathbb{N}$).
- 5. Si todos los espacios X_{α} son $2A\mathbb{N}$ y J es numerable, entonces la unión disjunta también es $2A\mathbb{N}$.
- 6. La unión disjunta de una cantidad numerable de n-variedades es una n-variedad.

Demostraci'on

Pendiente.

1.6. Suma conexa

Definición 1.6.1: Suma conexa

Sean S_1 y S_2 dos superficies conexas y sean D_1 y D_2 discos regulares euclídeos. Sea $\varphi: \partial D_1 \to \partial D_2$ un homeomorfismo y denotemos por $S_i' := S_i \setminus D_i$, i = 1, 2. Definimos en $S_1' \sqcup S_2'$ la menor relación de equivalencia que contiene a $x \sim \varphi(x)$ para todo $x \in \partial D_1$. Entonces el cociente $S_1' \sqcup S_2' /_{\sim}$ es un espacio topológico.

Nota

El homeomorfismo $\varphi: \partial D_1 \to \partial D_2$ existe siempre puesto que las fronteras de los discos son homeomorfas a las fronteras de alguna bola euclídea, y por tanto ambas fronteras son homeomorfas a la circunferencia unidad

$$\partial D_1 \cong \mathbb{S}^1 \cong \partial D_2$$
.

A continuación se enuncian un par de lemas que serán útiles para la demostración de la Proposición 1.7.4. El primero es una generalización del conocido Teorema de la Curva de Jordan, el cual se enuncia sin demostración. El segundo es un lema técnico, que sí demostraremos.

Lema 1.6.2: Teorema de Jordan - Schönflies

Sean C y C' dos curvas cerradas simples de \mathbb{R}^2 , y $f:C\to C'$ un homeomorfismo. Entonces existe un homeomorfismo $F:\mathbb{R}^2\to\mathbb{R}^2$ tal que $F|_C=f$ y fuera de un compacto $K\supseteq C$ es la identidad.

Lema 1.6.3: Extensión de homeomorfismos de \mathbb{S}^1

Sean C_1, C_2 homeomorfos a \mathbb{S}^1 , $h: C_1 \to C_2$ un homeomorfismo y $U \subseteq \mathbb{R}^2$ abierto, $U \cong \mathbb{R}^2$, con $C_1 \cup C_2 \subseteq U$. Entonces existe un homeomorfismo $H: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $H|_{C_1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Demostraci'on

Sea $g: U \to \mathbb{R}^2$ el homeomorfismo dado por la hipótesis $U \cong \mathbb{R}^2$ y sean $\tilde{C}_1 = g(C_1), \tilde{C}_2 = g(C_2)$, definamos la aplicación

$$\hat{h} = (g \circ h \circ g^{-1})|_{\tilde{C}_1} : \tilde{C}_1 \to \tilde{C}_2.$$

que es claramente un homeomorfismo. Por el Teorema de Jordan-Schönflies existe un homeomorfismo $\hat{H}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\hat{H}|_{\tilde{C}_1} = \hat{h}$ y \hat{H} es la identidad fuera de un compacto $K \supseteq \tilde{C}_1$. Sea $H = g^{-1} \circ \hat{H} \circ g$, entonces H es el homeomorfismo buscado puesto que para

todo $x \in C_1$

$$H|_{C_1}(x) = \left(g^{-1} \circ \hat{H} \circ g\right)|_{C_1}(x) = \left(g^{-1} \circ \hat{H}|_{\tilde{C}_1}\right)(g(x)) = \left(g^{-1} \circ \hat{h}\right)(g(x)) =$$

$$= \left(g^{-1} \circ g \circ h \circ g^{-1}\right)(g(x)) = h(x) \implies H|_{C_1} = h$$

Además, si $K \subset U$ entonces claramente $H|_{\mathbb{R}^2 \setminus U} = Id$, y siempre podemos suponer que $K \subset U$ porque U es homeomorfo a \mathbb{R}^2 .

Proposición 1.6.4: Invarianza del cociente $S_1' \sqcup S_2' /_{\sim}$

Si S_1 y S_2 son dos superficies topológicas conexas, entonces, salvo homeomorfismo, el espacio $S_1' \sqcup S_2' /_{\sim}$ no depende de los discos regulares euclídeos ni del homeomorfismo φ .

Demostración

Veremos la demostración en 3 pasos:

1. El tamaño del disco no importa.

Sean D_1 y D_3 discos regulares y euclídeos centrados en $p \in S_1$, y supongamos que $\overline{D_1} \subset D_3$ sin pérdida de generalidad. Veamos que $S_1 \setminus D_1 \cong S_1 \setminus D_3$.

Sea D_3' otro disco euclídeo con $\overline{D_3} \subseteq D_3'$, y $\psi: D_3' \to B(0,2)$ un homeomorfismo verificando $\psi(\overline{D_3}) = \overline{B(0,1)}$.

Aplicamos el Lema 1.6.3 a $U = B(0,3/2), C_1 = \psi(\partial D_1), C_2 = \psi(\partial D_3)$ y $h: C_1 \to C_2$ un homeomorfismo cualquiera. Obtenemos que existe $H: \mathbb{R}^2 \to \mathbb{R}^2$ de forma que $H|_{C_1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Sea

$$\tilde{H} = \psi^{-1} \circ H \circ \psi : D_3' \to D_3',$$

entonces $\tilde{H}(D_3' \setminus D_1) = D_3' \setminus D_3$, pues $\overline{D_1} \subset D_3$ y $\tilde{H}(\partial D_1) = \partial D_3$.

Ahora, extendiendo fuera de D_3' por la identidad obtenemos el homeomorfismo buscado.

2. El punto donde centremos el disco no importa.

Sea D_1 un disco regular euclídeo centrado en $p \in S_1$ y D_3 disco regular euclídeo centrado en $q \in S_1$. Veamos que $S_1 \setminus D_1 \cong S_1 \setminus D_3$ haciendo una construcción similar al caso anterior, pero haciendo también uso de la homogeneidad.

Sea $F: S_1 \to S_1$ un homeomorfismo verificando F(p) = q. Sea D_3' disco regular con $\overline{D_3} \subseteq D_3'$. Sea $\psi: D_3' \to B(0,2)$ el homeomorfismo que cumple que $\psi(\overline{D_3}) = \overline{B(0,1)}$.

Sea ahora $\varepsilon > 0$ suficientemente pequeño de forma que $\overline{F(D_4)} \subseteq D_1$, donde $D_4 = \psi^{-1}(B(0,\varepsilon))$. Como $\overline{D_4} \subseteq D_3$, por el paso 1) obtenemos $S_1 \setminus D_4 \cong S_1 \setminus D_3$, y de la misma forma $S_1 \setminus F(D_4) \cong S_1 \setminus D_1$.

Pero como F es un homeomorfismo, $S_1 \setminus F(D_4) \cong S_1 \setminus D_4$, concluyendo así el paso 2.

3. No influye el homeomorfismo que elijamos.

Consideramos $\varphi, \sigma: \partial S_1 \to \partial S_2$ y veamos que

$$S_1' \sqcup S_2' / R_{\varphi} \cong S_1' \sqcup S_2' / R_{\sigma}.$$

Sea D_2' disco regular euclídeo con $\overline{D_2}\subseteq D_2'$ y $\psi_2:D_2'\to B(0,2)$ homeomorfismo, con $\psi_2(\overline{D_2})=\overline{B(0,1)}$.

Aplicamos el lema 1.6.3 a las curvas $C_1 = C_2 = \mathbb{S}^1$, $h = \psi_2 \circ \sigma \circ \varphi^{-1} \circ \psi_2^{-1} : \mathbb{S}^1 \to \mathbb{S}^1$ y U = B(0, 3/2). Obtenemos un homeomorfismo $H : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $H|_{\mathbb{S}^1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Definimos $F: D_2' \to D_2'$ como $F = \psi_2^{-1} \circ H|_{B(0,2)} \circ \psi_2$, verificando $F(D_2' \setminus D_2) = D_2' \setminus D_2$.

Ahora, extendiendo F a todo S_2 por la identidad, obtenemos un homeomorfismo $\hat{F}: S_2 \to S_2$ definido como la identidad en $S_1 \setminus D_1$ y como F en $S_2 \setminus D_2$.

Para concluir la prueba basta comprobar que \hat{F} pasa al cociente. Es decir, queremos ver si a partir de nuestro homeomorfismo

$$\hat{F}: (S_1 \setminus D_1) \sqcup (S_2 \setminus D_2) \to (S_1 \setminus D_1) \sqcup (S_2 \setminus D_2)$$

podemos definir un homeomorfismo entre los cocientes:

$$\tilde{F}: {S_1' \sqcup S_2' \choose R_{\varphi}} \to {S_1' \sqcup S_2' \choose R_{\sigma}}.$$

Para que esto ocurra debe verificarse $xR_{\varphi}y \implies \hat{F}(x)R_{\sigma}\hat{F}(y)$. En nuestro caso,

$$xR_{\omega}y \iff y = \varphi(x), \quad x \in \partial D_1, \quad y \in \partial D_2.$$

Pero entonces

$$\hat{F}(y) = \hat{F}(\varphi(x)) = \psi_2^{-1} \circ \psi_2 \circ \sigma \circ \varphi^{-1} \circ \psi_2^{-1} \circ \psi_2(\varphi(x)) = \sigma(x) = \sigma(\hat{F}(x)),$$

donde la última igualdad se debe a que \hat{F} es la identidad en ∂D_1 .

Por tanto, $\hat{F}(x) \sim \hat{F}(y)$, y \hat{F} pasa al cociente como \tilde{F} , que es continua.

Aplicando la misma construcción a φ^{-1} y σ^{-1} podemos construir \tilde{F}^{-1} , y por tanto \tilde{F} es un homeomorfismo, concluyendo así la demostración.

Definición 1.6.5: Suma conexa de superficies

Al espacio topológico cociente $S_1' \sqcup S_2' /_{\sim}$ lo denotaremos $S_1 \# S_2$ y lo llamaremos suma conexa de S_1 y S_2 .

Proposición 1.6.6: Propiedades heredadas de la suma conexa

Sean S_1, S_2 superficies. Entonces, $S_1 \# S_2$ es una superficie. Además:

- Si S_1 y S_2 son superficies conexas, entonces $S_1 \# S_2$ es una superficie conexa.
- Si S_1 y S_2 son superficies compactas, entonces $S_1 \# S_2$ es una superficie compacta.

Demostración

Las demostraciones de las propiedades de conexidad y compacidad se consideran <u>inmediatas</u>. Nos centramos en demostrar que $S_1 \# S_2$ es una superficie. Se puede comprobar fácilmente que las propiedades de $2A\mathbb{N}$ y T_2 se heredan de S_1 y S_2 . Por tanto, nos queda comprobar que $S_1 \# S_2$ es localmente euclídeo de dimensión 2.

Usando la notación habitual, sea

$$S_1 \# S_2 = \frac{S_1' \sqcup S_2'}{R_{\varphi}},$$

con $\varphi: \partial D_1 \to \partial D_2$ un homeomorfismo. Ya vimos en la proposición ?? que $S_1 \# S_2$ no depende de la elección de D_1, D_2 ni de φ .

Consideramos la proyección

$$p|_{S_1'\setminus\partial D_1}\to S_1\#S_2,$$

que nos da un homeomorfismo de $S_1' \setminus \partial D_1$ sobre su imagen, la cual es un abierto de $S_1 \# S_2$. Por tanto, $S_1' \setminus \partial D_1$ es localmente euclídeo de dimensión 2. Análogamente, $S_2' \setminus \partial D_2$ es localmente euclídeo de dimensión 2.

Falta ver qué ocurre en ∂D_1 y ∂D_2 . Sean D_1' y D_2' discos regulares tales que $\overline{D_i} \subseteq D_i'$, i=1,2 y sean $\psi_i:D_i'\to B(0,2)$ homeomorfismos tales que $\psi_i(\overline{D_i})=B(0,1)$. Introducimos la siguiente notación: si $J\subseteq [0,+\infty)$ es un intervalo, denotamos

$$A_J = \{ x \in \mathbb{R}^2 : ||x|| \in J \}.$$

Se tiene que $\psi_i(D_i' \setminus D_i) = A_{[1,2]}$. Si llamamos $\beta = \psi_2 \circ \varphi \circ \psi_1^{-1} : \mathbb{S}^1 \to \mathbb{S}^1$, y

$$\alpha(x) = \begin{cases} \|x\| \cdot \beta\left(\frac{x}{\|x\|}\right) & \text{si } x \neq (0,0), \\ (0,0) & \text{si } x = (0,0). \end{cases}$$

Se verifica que $\alpha|_{\mathbb{S}^1} = \beta$ y que $\alpha \circ \psi_1 = \psi_2 \circ \varphi$. Por tanto, α es un homeomorfismo de $D_1 \setminus D_1$ sobre $D_2 \setminus D_2$.

Sea ahora

$$I: A_{[1,2)} \to A_{(1/2,1]}, \quad z \mapsto I(z) = \frac{z}{\|z\|^2}.$$

Por último, definimos

$$\Phi: (D_1' \setminus D_1) \cup (D_2' \setminus D_2) \rightarrow A_{(1/2,2)}$$

mediante

$$\Phi(q) = \begin{cases} I \circ \alpha \circ \psi_1(q) & \text{si } q \in D_1' \setminus D_1, \\ \psi_2(q) & \text{si } q \in D_2' \setminus D_2. \end{cases}$$

Afirmamos que

$$V_0 = p((D_1' \setminus D_1) \cup (D_2' \setminus D_2))$$

es el abierto de $S_1 \# S_2$ que contiene a $p(\partial D_1) = p(\partial D_2)$. Se tiene que

$$(\partial D_1) \cup \big((D_1' \setminus D_1) \cap (S_1' \setminus \partial D_1) \big) = \partial D_1 \cup (D_1' \setminus D_1) = D_1' \setminus D_1.$$

Veamos que $\varphi(\partial D_1) \cup (D_2' \setminus D_2)$ es abierto en S_2 .

Queda por demostrar que $\Phi: V_0 \to A_{(1/2,2)}$ pasa al cociente. Esto ocurre pues se tiene que

$$\psi_2 \circ \varphi = I \circ \alpha \circ \psi_1$$

sobre ∂D_1 . Cabe como ejercicio para el pobre lector comprobar que, dado $xR_{\varphi}y$, se cumple que $\psi_2(y) = \psi_2(\varphi(x)) = I \circ \alpha \circ \psi_1(x)$. Una vez hecho esto, la demostración concluye.

Capítulo 2

Clasificación de superficies compactas

2.1. Símplices

Definición 2.1.1: Símplice

Dados k+1 puntos $v_0, \ldots, v_k \in \mathbb{R}^m$ afínmente independientes, el subconjunto convexo de \mathbb{R}^m más pequeño que los contiene se conoce como un k-símplice y se denota por $\sigma = [v_0, \ldots, v_k]$. Los puntos v_i se llaman los vértices del k-símplice. Diremos que la dimensión de σ es k.

Definición 2.1.2: Subsímplices, caras

Si $\sigma = [v_0, \dots, v_k]$ es un k-símplice, cualquier subconjunto no vacío de vértices tambien determina un símplice que llamaremos subsímplice de σ . Si solo se omite un vértice, el subsímplice correspondiente se denomina una cara.

Las caras de σ se denotan: $[v_0, \dots, \hat{v}_i, \dots, v_k]$, donde \hat{v}_i es el vértice omitido.

Ejemplo

0-símplice (punto), 1-símplice (segmento de línea), 2-símplice (triángulo) y 3-símplice (tetraedro)

Definición 2.1.3: Frontera

Si $\sigma=[v_0,\ldots,v_k]$ es un k-símplice, la unión de todas sus caras se denomina la frontera de σ y se denota por

$$\partial \sigma = \bigcup_{0 \le i \le k} [v_0, \dots, \hat{v}_i, \dots, v_k].$$

Definición 2.1.4: Interior

Si σ es un k-símplice, el complementario de su frontera se denomina el interior de σ ,

$$int(\sigma) = \sigma \setminus \partial \sigma$$

Inmediatamente, se obtiene $\sigma = \operatorname{int}(\sigma) \cup \partial \sigma$, donde la unión es disjunta.

Nota

La frontera y el interior de un k-símplice σ son conceptos independientes de la topología tomada sobre \mathbb{R}^m . Sin embargo, si k=m, entonces coinciden con la frontera y el interior topológicos de σ en topología usual de \mathbb{R}^m .

2.2. Complejos simpliciales

Definición 2.2.1: Complejo simplicial

Un complejo simplicial K es una colección finita de símplices tal que:

- 1. Cada cara de cada símplice de K también está en K.
- 2. La intersección de cualesquiera dos símplices de K es vacía o es un subsímplice de ambos.

La dimensión de K es la máxima dimensión de sus símplices.

Definición 2.2.2: Número de Euler

Sea K un complejo simplicial de dimensión n, si para cada $0 \le k \le n$ denotamos por i_k el número de k-símplices de K, entonces el número (o característica) de Euler de K es:

$$\chi(K) = i_0 - i_1 + \dots + (-1)^n i_n.$$

Nota

Para el caso de un complejo simplicial de dimensión 2, denotando a los vértices $V = i_0$, aristas $E = i_1$ y caras $F = i_2$; la característica de Euler se puede expresar como:

$$\chi = V - E + F$$

Definición 2.2.3: Poliedro asociado

Dado un complejo simplicial K, la unión de todos los símplices de K con la topología inducida por la topología usual de \mathbb{R}^n se denomina el poliedro de K y lo denotamos por |K|.

2.3. Triangulaciones

Definición 2.3.1: Triangulación

Una triangulación de dimensión n de un espacio topológico X es un complejo simplicial K de dimensión n de forma que |K| y X son homeomorfos. En este caso se dice que X es triangulable.

Enunciamos el siguiente teorema sin demostración:

Teorema 2.3.2: Teorema de Radó

Toda superficie topológica admite una triangulación por un complejo simplicial de dimensión 2. Además cada 1-símplice (arista) es subsímplice de exactamente dos 2-símplices (cara).

2.4. Presentación de superficies

Definición 2.4.1: Letras y palabras

Sea A un conjunto finito (sus elementos los llamaremos letras). Una palabra W es una sucesión finita de elementos de la forma a ó a^{-1} , con $a \in A$, denotada por yuxtaposición.

Ejemplo

Consideremos el conjunto $A = \{a, b, c\}$ formado por tres letras. Algunos ejemplos de palabras son los siguientes:

$$W_1 = cbab^{-1}ca^{-1}, W_2 = caab^{-1}bc^{-1}, W_3 = abb^{-1}a^{-1}.$$

Definición 2.4.2: Presentación poligonal

Una presentación poligonal, escrita como $\mathcal{P} = \langle A|W_1, \dots, W_k \rangle$, está formada por un conjunto finito de letras A y una colección finita de palabras W_1, \dots, W_k que cumplen:

- 1. Cada letra de A aparece exactamente dos veces en todo el conjunto de palabras.
- 2. Cada palabra tiene al menos longitud tres, salvo que haya una sola palabra que podría ser de dos letras.

Ejemplo

Algunos ejemplos sencillos de presentaciones poligonales son los siguientes:

$$\mathcal{P}_1 = \langle a \mid aa^{-1} \rangle, \mathcal{P}_2 = \langle a, b \mid aba^{-1}b^{-1} \rangle.$$

Si consideramos el conjunto de letras y palabras del ejemplo anterior, $\mathcal{P} = \langle A \mid W_1 \rangle$ es una representación poligonal, pero $\mathcal{P}' = \langle A \mid W_3 \rangle$ no, ya que la letra c no aparece exactamente dos veces en el conjunto de palabras.

Definición 2.4.3: Realización geométrica de \mathcal{P}

Toda presentación poligonal \mathcal{P} tiene asociado un espacio topológico $|\mathcal{P}|$ (realización geométrica de \mathcal{P}) construido como sigue:

- 1. Para cada palabra se considera un polígono con el mismo número de aristas que la longitud de la palabra.
- 2. Cada arista se etiqueta correlativamente con las letras de la palabra y orientación opuesta si la letra está elevada a -1.
- 3. Finalmente, se identifican las aristas con el mismo nombre y orientación, mediante la topología cociente.

Proposición 2.4.4: Compacidad y conexión de $|\mathcal{P}|$

Dada una representación poligonal \mathcal{P} , su realización geométrica, $|\mathcal{P}|$, es una superficie compacta. Además si solo tiene una palabra, entonces es conexa.

Demostración

Vamos a ver que el espacio topológico cociente \tilde{X} es:

- 1. Compacto
- 2. Superficie $(T_2, 2A\mathbb{N}, \text{localmente euclideo})$

Compacto: Sea X el polígono en \mathbb{R}^2 , sea \sim la relación de equivalencia entre las aristas

y sea \tilde{X} el cociente. X es compacto y $p: X \to \tilde{X} = X/_{\sim}$ la proyección al cociente es continua. Por tanto, \tilde{X} es compacto.

 $\underline{T_2}$: Puedo tomar discos en \mathbb{R}^2 infinitamente pequeños de forma que separen los puntos en X y las imágenes por p separan los puntos de \tilde{X} .

 $2A\mathbb{N}$: La proyección es continua, y el polígono es $2A\mathbb{N}$, luego \tilde{X} también lo es.

Localmente euclídeo: La idea es distinguir 3 casos:

Veamos que $\mathcal{P}/_R$ es localmente euclídeo. Necesitamos que para cada punto, haya un entorno que sea homeomorfo a un abierto de \mathbb{R}^2 . Sea $x \in \mathcal{P}/_R$ y consideramos

$$\pi^{-1}(x) = \begin{cases} p \in \text{int}(\mathcal{P}) \\ \{q_1, q_2\} \in \text{aristas} \\ \{v_1, \dots, v_k\} \in \text{v\'ertices} \end{cases}$$

- 1. $\pi^{-1}(x) = p \in \text{int}(P)$. Entonces, $\pi|_{\text{int}(\mathcal{P})} : \text{int}(\mathcal{P}) \to \pi(\text{int}(\mathcal{P}))$ es biyectiva y continua y su inversa también es continua. Por tanto, como $\text{int}(\mathcal{P})$ es abierto, se tiene que es localmente euclídeo en $\text{int}(\mathcal{P})$.
- 2. Tomamos $D_i \subset \mathbb{R}^2$ disco centrado en q_i con $\overline{D_1} \cap \overline{D_2} = \emptyset$. Además, tampoco cortan ningun vértice de \mathcal{P} . Sea $U_i = D_i \cap \mathcal{P} \equiv$ semidiscos. Sea $h: a \to a'$ el homeomorfismo que da la relación de equivalencia (con a, a' las aristas), es decir, $h(x) = y, x \in a, y \in a' \iff xRy$.

Existen homeomorfismos $\alpha_i : \mathbb{R}^2 \to \mathbb{R}^2$ (de hecho aplicaciones afines) tales que:

$$\alpha_1(U_1) = \{ z \in \mathbb{C} : |z| < r_1, \operatorname{Im}(z) \ge 0 \} = \{ (x, y) \in \mathbb{R}^2 : ||(x, y)|| < r_1, y \ge 0 \}$$
$$\alpha_2(U_2) = \{ z \in \mathbb{C} : |z| < r_2, \operatorname{Im}(z) \le 0 \}$$

y también que $\alpha_2 \circ h = \alpha_1|_a$.

Sea $r = \min\{r_1, r_2\}$ y llamo $V_1 = \alpha^{-1}(\{z : |z| < r, \operatorname{Im}(z) \ge 0\})$ y $V_2 = \alpha^{-1}(\{z : |z| < r, \operatorname{Im}(z) \le 0\})$. Lo que hemos llamado $A = V_1 \cup V_2$ abierto de \mathcal{P} . $\alpha : V_1 \cup V_2 \to B(0, r)$ identificación (continua, cerrada, sobreyectiva) donde $\alpha(x) = \begin{cases} \alpha_1(x) & x \in V_1 \\ \alpha_2(x) & x \in V_2 \end{cases}$. Está bien definida y pasa al cociente porque $xRy, x \in a, y \in a$ $x \in V_1 = a$ $x \in V_2 = a$ $x \in V$

3. Sea ahora $\pi^{-1}(x) = \{v_1, \dots, v_k\}, k \in \mathbb{N}$. Consideramos D_i disco infinitamente pequeño tal que $\overline{D_i} \cap \overline{D_j} = \emptyset, i \neq j$ no contenga puntos de otras aristas, ni vértices. Sea $U_i = D_i \cap \mathcal{P} \equiv$ sector circular. Supongamos los sectores ordenados de forma que $b_i \sim a_{i+1}, i = 1, \dots, k$.

Objetivo: $V_1 \cup \cdots \cup V_k \stackrel{\alpha}{\longrightarrow} B(0,r) \subset \mathbb{R}^2$.

Sea homeomorfismo afín $\alpha_i: \mathbb{R}^2 \to \mathbb{R}^2$ que lleva U_i en $\{z: |z| < r_i, \arg(z) \in [\frac{2\pi(i-1)}{k}, \frac{2\pi i}{k}]\}$ para todo $i=1,\ldots,k$ cumpliendo $\alpha_{i+1} \circ h_i = \alpha_i|_{b_i}$, donde $h_i: b_i \to a_{i+1}$.

Finalmente queda construir $\alpha_k : \mathbb{R}^2 \to \mathbb{R}^2$ que lleve U_k en $\{z : |z| < r_k, \arg(z) \in \mathbb{R}^2 \}$

 $\left[\frac{2\pi(k-1)}{k}, 2\pi\right]$ y que cumpla

$$\begin{cases} \alpha_k \circ h_{k-1} = \alpha_{k-1}|_{b_{k-1}} \\ \alpha_1 \circ h_k = \alpha_k|_{b_k \equiv a_1} \end{cases}$$
 (2.1)

, con $h_k:b_k\to a_1$.

Para garantizar la existencia de α_k , podemos construirla en dos pasos, una para llevar a su hueco y otra para garantizar 2.1.

Sea $r \leq \min r_1, \ldots, r_k$ y $V_i = \alpha_i^{-1}(\{z : |z| < r, \arg(z) \in [\frac{2\pi(i-1)}{k}, \frac{2\pi i}{k}]\})$. Definimos $\alpha : V_1 \cup \cdots \cup V_k \to B(0,r)$ como $\alpha(x) = \alpha_i(x), x \in V_i$. α está bien definida pues si $xRy, x \in b_i, y \in a_{i+1} \implies \alpha(y) = \alpha_{i+1}(h_i(x)) = \alpha_i(x) = \alpha(x), i \neq k$. Y para k, $y = h_k(x) \in a_1 \to \text{misma cuenta}$. Luego, α es identificación (continua, sobreyectiva, cerrada) y $\tilde{\alpha}$ es homeomorfismo.

Definición 2.4.5: Presentación de una superficie compacta

Sea \mathcal{S} una superficie compacta. Una presentación de \mathcal{S} es una presentación poligonal \mathcal{P} tal que $|\mathcal{P}|$ y \mathcal{S} son homeomorfas.

Proposición 2.4.6: Presentación de $S_1 \# S_2$

Sean S_1 y S_2 dos superficies compactas y conexas presentadas por $\langle A_1|W_1\rangle$ y $\langle A_2|W_2\rangle$, respectivamente. Entonces, $\langle A_1\sqcup A_2|W_1W_2\rangle$ es una presentación de $S_1\#S_2$.

Demostración

Sea \mathcal{P}_1 polígono asociado a W_1 y sean $p, q \in \operatorname{int}(\mathcal{P}_1)$ dos puntos distintos y v vértice de $partes_1$.

 $\mathcal{S}_1 = \langle A_1 | W_1 \rangle = \langle A_1 \sqcup a, b, c | W_1 cba = Q_1, abc \rangle$. Definimos $\pi' : \mathcal{P}_1 \sqcup Q_1 \to \mathcal{S}_1$ y $\pi : \mathcal{P}_1 \to \mathcal{S}_1$. Sea entonces $B_1 = \pi'(\operatorname{int}(Q_1)) \subset \mathcal{S}_1$. Si probamos que B_1 es homeomorfo a un disco, entonces tendremos que $\mathcal{S}_1 \# \mathcal{S}_2$ se puede ver como $\mathcal{S}_1 \setminus Q_1 \sqcup^{\mathcal{S}_2}/R_{\varphi}$.

Para ver que B_1 es homeomorfo a un disco, hacemos un razonamiento similar al de la proposición anterior tomando como abierto uno de la forma "sector circularçon p y q dentro del sector y v el vértice, y hacer el mismo razonamiento con un solo sector.

Así, tendremos que $\langle A_1 \sqcup \{a,b,c\}|W_1cba,a^{-1}b^{-1}c^{-1}\rangle$ es una presentación de $S_1 \setminus \operatorname{int}(Q_1)$, análogamente $\langle A_2 \sqcup \{a',b',c'\}|W_2c'b'a',(a')^{-1}(b')^{-1}(c')^{-1}\rangle$ es presentación de $S_2 \setminus \operatorname{int}(Q_2)$.

Para obtener $S_1 \# S_2$ identificamos $\varphi : \partial Q_1 \to \partial Q_2$, con $\varphi(a) = a', \varphi(b) = b', \varphi(c) = c'$ y obtenemos $S_1 \# S_2 = \langle A_1 \sqcup A_2 \sqcup \{a, b, c\} | W_1 cbaa^{-1}b^{-1}c^{-1}W_2 \rangle = \langle A_1 \sqcup A_2 | W_1 W_2 \rangle$.

2.5. Transformaciones elementales

Definición 2.5.1: Transformaciones elementales sobre presentaciones poligonales

Dada una presentación poligonal, llamaremos transformaciones elementales a las siguientes operaciones:

- Renombrado: Sustituir todas las apariciones de una letra a por otra letra b que no estuviera en la presentación.
- Subdivisión: Cambiar todas las apariciones de una letra a por ab, y todas las apariciones de a^{-1} por $b^{-1}a^{-1}$, donde b es una letra nueva que no estaba en la presentación.
- Consolidado: Dadas dos letras a y b que siempre aparezcan juntas de la forma ab o $b^{-1}a^{-1}$, sustituimos todas las apariciones de ab por c, y todas las apariciones de $b^{-1}a^{-1}$ por c^{-1} , donde c es una letra nueva que no estaba en la presentación.
- Reflejo: Cambiar una palabra de la forma $a_1 a_2 \dots a_k$ por $a_k^{-1} a_{k-1}^{-1} \dots a_1^{-1}$, donde a_i son letras de la presentación.
- Rotación: Cambiar una palabra de la forma $a_1a_2...a_k$ por $a_2a_3...a_ka_1$, donde a_i son letras de la presentación.
- Corte: Dada una palabra W_1W_2 , con W_1 y W_2 no vacías, quitamos W_1W_2 de la presentación y añadimos W_1a , $a^{-1}W_2$ como palabras nuevas, donde a es una letra nueva que no estaba en la presentación.
- **Pegado** Sustituimos dos palabras de la forma $W_1a, a^{-1}W_2$, con W_1 y W_2 arbitrarias y no vacías, por W_1W_2 .
- Plegado Una palabra de la forma W_1aa^{-1} se sustituye por W_1 , donde W_1 tiene al menos longitud 3, salvo que haya una sola palabra, en cuyo caso podría ser de dos letras.
- **Desplegado** Una palabra de la forma W_1 se sustituye por W_1aa^{-1} , donde W_1 tiene al menos longitud 3, salvo que haya una sola palabra, en cuyo caso podría ser de dos letras.

Definición 2.5.2: Presentaciones equivalentes

Dos transformaciones poligonales se dice que son topológicamente equivalentes si sus realizaciones geométricas son homeomorfas.

Proposición 2.5.3: Equivalencia por transformaciones elementales

Cada una de las transformaciones elementales sobre una presentación poligonal produce otra presentación topológicamente equivalente.

Demostraci'on

Pendiente.

2.6. Teorema de Clasificación

En esta sección se presenta y demuestra el teorema de clasificación de superficies compactas de \mathbb{R}^n . Ya hemos visto que las transformaciones elementales sobre presentaciones poligonales producen presentaciones equivalentes, nuestro objetivo ahora es demostrar que cualquier presentación poligonal de una superficie compacta y conexa puede ser transformada en una de las formas canónicas dadas por el teorema de clasificación.

El siguiente lema simplifica la demostración del teorema de clasificación, mostrando la equivalencia entre ciertos tipos de superficies.

Lema 2.6.1: Equivalencia entre algunos tipos de superficies

- 1. La botella de Klein y $\mathbb{RP}^2 \# \mathbb{RP}^2$ son homeomorfas.
- 2. $\mathbb{T}^2 \# \mathbb{RP}^2$ y $\mathbb{RP}^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$ son homeomorfas.

Demostración

Para la primera parte nos fijamos en el siguiente dibujo:

Por tanto a la presentación de la botella de Klein dada por $\langle a, b \mid abab^{-1} \rangle$ le aplicamos un corte, una reflexión, dos rotaciones, un pegado y una última rotación:

$$\langle a, b \mid abab^{-1} \rangle \cong \langle a, b, c \mid abc, c^{-1}ab^{-1} \rangle \cong \langle a, b, c \mid abc, ba^{-1}c \rangle$$
$$\cong \langle a, b, c \mid bca, a^{-1}cb \rangle \cong \langle b, c \mid bccb \rangle \cong \langle b, c \mid bbcc \rangle$$

y llegamos a una presentación de la suma conexa de dos proyectivos.

Para la segunda parte nos fijamos en este otro dibujo:

Partimos de una presentación de $K\#\mathbb{RP}^2$, que por la parte 1 sabemos que es homeomorfo a $\mathbb{RP}^2\#\mathbb{RP}^2\#\mathbb{RP}^2$. La presentación está dada por $\langle a,b \mid abab^{-1}cc \rangle$, y le aplicamos las transformaciones de la figura (ejercicio para el lector: indicar qué transformaciones

elementales se usan en cada paso)

$$\begin{split} \langle a,b,c\mid abab^{-1}cc\rangle &\cong \langle a,b,c,d\mid abd^{-1}c,c^{-1}ba^{-1}d^{-1}\rangle \cong \langle a,b,d\mid abd^{-1}ba^{-1}d^{-1}\rangle \\ &\cong \langle a,b,d,e\mid deb^{-1},bea^{-1}d^{-1}a\rangle \cong \langle a,d,e\mid deea^{-1}d^{-1}a\rangle \\ &\cong \langle a,d,e\mid a^{-1}d^{-1}adee\rangle \end{split}$$

y llegamos a una presentación de la suma conexa de un toro y un proyectivo.

Teorema 2.6.2: Clasificación de superficies compactas

Sea S una superficie compacta y conexa, entonces S es homeomorfa a una de las siguientes superficies:

- la esfera \mathbb{S}^2 .
- una suma conexa de toros $\mathbb{T}^2 \# \dots \# \mathbb{T}^2$.
- una suma conexa de planos proyectivos $\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2$.

Demostración. Sea M una superficie compacta y conexa y sea \mathcal{P} su presentación poligonal, la cual sabemos que existe por el Teorema de Radó (2.3.2).

Objetivo: aplicar transformaciones elementales a \mathcal{P} hasta llegar a uno de los siguientes casos:

$$\mathcal{P} \cong \begin{cases} \langle a|aa^{-1}\rangle, & \text{presentación de } \mathbb{S}^2, \\ \langle a_1,b_1,\ldots,a_n,b_n|a_1b_1a_1^{-1}b_1^{-1}\ldots a_nb_na_n^{-1}b_n^{-1}\rangle, & \text{presentación de } \mathbb{T}^2\#\ldots\#\mathbb{T}^2, \\ \langle a_1,\ldots,a_n|a_1a_1\ldots a_na_n\rangle, & \text{presentación de } \mathbb{RP}^2\#\ldots\#\mathbb{RP}^2. \end{cases}$$

Para ello, separamos la demostración en 7 pasos, en cada uno de los cuales manipulamos \mathcal{P} para que cumpla una determinada condición (nótese el abuso de notación al llamar \mathcal{P} tanto a la presentación original como a la presentación \mathcal{P}' obtenida tras aplicar una transformación elemental). Al término del último paso, llegaremos a que \mathcal{P} adopta una de las formas canónicas anteriores.

Durante la demostración, llamaremos aristas complementarias a aquellas que aparecen en \mathcal{P} como a y a^{-1} , y aristas retorcidas a las que aparecen como a y a, o a^{-1} y a^{-1} .

PASO 1:

Podemos suponer que \mathcal{P} tiene solo una palabra (o que el polígono tiene 1 sola cara).

Una consecuencia de que la superficie sea conexa es la siguiente: si \mathcal{P} tiene varias palabras, para cada palabra debe existir una arista que se identifique con una arista de otra palabra. Es decir, siempre que \mathcal{P} tenga varias palabras, para cada palabra W_1 de \mathcal{P} debe existir una arista $a \in W_1$ y una palabra W_2 tal que o bien $a \in W_2$ o $a^{-1} \in W_2$. En caso de que esto no

ocurra, en la realización geométrica W_1 y las demás palabras serían disjuntas, formando así una separación que contradice la conexión de M.

Ahora, si W_1 es una palabra y \mathcal{P} tiene más de una palabra, por lo anterior existe una arista a que conecta con otra palabra W_2 (ya sea mediante a o a^{-1}). Pegando W_1 y W_2 (aplicando rotaciones y reflejos si fuera necesario), obtenemos una presentación donde W_1 y W_2 se han sustituido por una única nueva palabra $W'_1W'_2$.

Como el número de palabras de la presentación original es finito, mediante este proceso se obtiene una presentación equivalente compuesta por una sola palabra.

PASO 2:

Podemos suponer que no hay pares de aristas complementarias adyacentes $(W_1aa^{-1}W_2)$.

Si las hubiera, plegando por ellas desaparecen. Excepto el caso en que solo tengamos ese par $(W_1, W_2 = \emptyset)$. Pero entonces la superficie es una esfera, que es una de las formas canónicas que pretendíamos obtener.

PASO 3:

Podemos suponer que todos los pares de aristas retorcidas son adyacentes.

Supongamos que tenemos VaWa, con $V, W \neq \emptyset$. Cortamos por el medio $(Vab \ y \ b^{-1}Wa)$. Rotamos y pegamos por $a \ (bVa \ y \ a^{-1}W^{-1}b)$, llegando a $bbVW^{-1}$. La repetición de este proceso una cantidad finita de veces demuestra el paso 3.

Nota: En cada iteración, es posible que tengamos que volver a aplicar el paso 2 ya que al pegar V y W^{-1} en VW^{-1} podrían aparecer nuevas aristas complementarias adyacentes.

PASO 4:

Podemos suponer que el polígono tiene todos sus vértices identificados.

Sea $p: \mathcal{P} \to M$ la proyección al cociente. Sea p(v) = [v]. Si no todos los vértices están identificados, existen vértices v_1, w en \mathcal{P} y una arista $a: v_1 \to w$ con $p(v_1) \neq p(w)$. Ahora, la arista que termina en v_1 no puede ser ni a (porque entonces $p(v_1) = p(w)$) ni a^{-1} (pues tendríamos la secuencia $a^{-1}a$ y podríamos aplicar el paso 2). Por tanto, concluimos que la arista es distinta, llamémosla b, y al vértice del que parte x. Es decir, tenemos $b: x \to v_1$.

Por la definición de presentación poligonal, la letra b debe aparecer (bien como b o como b^{-1}) en otro sitio de la presentación. Suponemos que aparece b^{-1} (si fuese b sería análogo salvo una reflexión que ahora mencionaremos). Tenemos entonces $baXb^{-1}Y$. Podemos suponer $X, Y \neq \emptyset$. Veámos por qué:

- Si X fuese vacío, por la definición de b el vértice al que llega b^{-1} en nuestra cadena no sería otro que w. Pero entonces $p(v_1) = p(w)$, lo que contradice la hipótesis.
- Si Y fuese vacío, rotando obtendríamos dos aristas adyacentes b y b^{-1} y estaríamos en el paso 2.

Ahora, cortando por una nueva arista $c: w \to x$, rotando para pegar por b (y reflejando si en vez de tener b^{-1} tuviéramos b) obtenemos:

$$baXb^{-1}Y \cong bac, c^{-1}Xb^{-1}Y \cong acb, b^{-1}Yc^{-1}X \cong acYc^{-1}X$$

Incluyendo los vértices en la presentación a la que hemos llegado,

$$v_1 \stackrel{a}{\rightarrow} w \stackrel{c}{\rightarrow} x \stackrel{Y}{\rightarrow} x \stackrel{c^{-1}}{\rightarrow} w \stackrel{X}{\rightarrow} v_1$$

que es una presentación equivalente donde hemos reducido la cantidad de vértices que se identifican con v_1 en una unidad.

Nota: De nuevo, podría ser que al pegar Xa aparecieran nuevas aristas complementarias adyacentes. En ese caso, se aplicaría el paso 2, donde en ningún caso se pueden aumentar los vértices identificados con v_1 , solo disminuirlos.

Una cantidad finita de iteraciones de este proceso elimina la clase de equivalencia de vértices v_1 , pues en cada paso se elimina un elemento de este conjunto finito. Repitiendo para cada clase de equivalencia de vértices, llegamos a que solo puede quedar una, demostrando así el paso 4.

PASO 5:

Se cumple que si aparece un par a, a^{-1} , entonces hay otro par b, b^{-1} intercalado, es decir, de la forma $a \dots b \dots a^{-1} \dots b^{-1}$.

Si no fuese así, tendríamos una presentación de la forma $aXa^{-1}Y$, donde además X e Y no comparten aristas (si compartiesen alguna letra b, por hipótesis ésta debería aparecer como b, y no como b^{-1} , tanto en X como en Y, lo cual no es posible por el paso 3). Esto significa también que X e Y no comparten vértices, ya que si x fuese un vértice de X y y un vértice de Y tales que acaban identificados en la proyección, por cómo se define la relación de equivalencia tendría que haber una arista a la vez en X y en Y, contradiciendo así que X e Y no comparten aristas.

En particular, los vértices finales de a y a^{-1} , que están ambos en X, solo pueden identificarse con vértices de X. Por otro lado, los vértices iniciales de a y a^{-1} , que están ambos en Y, solo pueden identificarse con vértices de Y. Entonces, existen dos clases de equivalencia de vértices distintas, lo que contradice el paso 4.

Nota: se invita al lector a hacer el dibujo y verlo por sí mismo, en este caso no es difícil. No se puede confirmar ni desmentir que la invitación al lector sea por la pereza de los autores de añadir dibujos.

PASO 6:

Podemos suponer que los pares de aristas del paso 5 aparecen consecutivos.

Tenemos ahora una cadena $aXbYa^{-1}Zb^{-1}W$, y buscamos hacer transformaciones para que las aristas aparezcan consecutivas. Empezamos con nuestra presentación original, la cual

rotamos para cortar desde el final de X al final de W, llamando a la arista del corte c.

$$aXbYa^{-1}Zb^{-1}W \cong WaXbYa^{-1}Zb^{-1} \cong WaXc, c^{-1}bYa^{-1}Zb^{-1}$$

Vamos a pegar por a, para lo cual tenemos primero que rotar.

$$WaXc, c^{-1}bYa^{-1}Zb^{-1} \cong XcWa, a^{-1}Zb^{-1}c^{-1}bY \cong XcWZb^{-1}c^{-1}bY$$

Ahora cortamos desde el final de b^{-1} al final de c, llamando d a esa arista.

$$XcWZb^{-1}c^{-1}bY \cong c^{-1}bYXcWZb^{-1} \cong c^{-1}bYXcd, d^{-1}WZb^{-1}$$

Por último, rotando y pegando por b conseguimos que las cuatro aristas queden consecutivas.

$$c^{-1}bYXcd,\, d^{-1}WZb^{-1}\cong YXcdc^{-1}b,\, b^{-1}d^{-1}WZ\ \cong\ YXcdc^{-1}d^{-1}WZ$$

Haciendo esto para todos los pares de aristas intercalados que no sean consecutivos se demuestra el paso 6.

PASO 7:

La superficie M es homeomorfa a $\mathbb{T}^2 \# \dots \# \mathbb{T}^2$, o bien a $\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2$.

Con todo lo que hemos hecho hasta ahora, nuestra presentación solo puede contener los siguientes tipos de elementos:

- 1. Parejas de aristas complementarias consecutivas, de la forma $aba^{-1}b^{-1}$.
- 2. Aristas retorcidas de la forma aa.

Recordemos que la presentación poligonal de un toro viene dada precisamente por la forma $aba^{-1}b^{-1}$, y la presentación de un plano proyectivo por aa. Por tanto, si solo hubiese aristas de una de estas dos formas, la superficie sería homeomorfa a una suma conexa de toros o de planos proyectivos, respectivamente.

Nos queda ver qué ocurre en el caso de que \mathcal{P} contenga ambos grupos de aristas. Supongamos que existen un grupo de aristas complementarias $aba^{-1}b^{-1}$ y otro de aristas retorcidas cc. Por el lema 2.6.1, la suma conexa de un toro y un plano proyectivo es homeomorfa a la suma conexa de tres planos proyectivos. Es decir, $aba^{-1}b^{-1}cc \cong a'a'b'b'c'c'$. Transformando cada par (toro, proyectivo) en tres proyectivos podemos eliminar los toros y quedarnos con un número finito de planos proyectivos.

Concluyendo, si \mathcal{P} tiene solo aristas complementarias alternadas, es homeomorfa a una suma conexa de toros. Si tiene solo aristas retorcidas, es homeomorfa a una suma conexa de planos proyectivos. Y si tiene ambos tipos de aristas, es homeomorfa a una suma de planos proyectivos.

Proposición 2.6.3: Característica de Euler invariante por transformaciones elementales

La característica de Euler de una presentación poligonal es invariante por transformaciones elementales

Demostración

Renombrar, reflejar y rotar CHECK Consolidar y dividir:

3 vertices, 2 aristas \longleftrightarrow 2 vértices, 1 arista, χ se mantiene.

Cortar y pegar:

1 cara, 2 aristas \longleftrightarrow 2 caras, 3 aristas, χ se mantiene.

Plegar y desplegar:

1 vértice \longleftrightarrow 2 vértices, 1 arista, χ se mantiene.

Definición 2.6.4: Característica de Euler de una superficie compacta

Dada una superficie compacta M, se define su característica de Euler $\chi(M)$ como la característica de cualquier presentación poligonal de ella (ya que es invariante por transformaciones elementales).

Ejemplo

Característica de Euler en las superficies modelo:

1.
$$\chi(\mathbb{S}^2) = 1 - 1 + 2 = 2$$
.

2.
$$\chi(n\mathbb{T}^2) = 1 - 2n + 1 = 2 - 2n$$
.

3.
$$\chi(n\mathbb{RP}^2) = 1 - n + 1 = 2 - n$$
.

Nota

Para todo poliedro de \mathbb{R}^3 , esto es, un sólido bordeado por un conjunto finito de polígonos convexos unidos por los lados, que sea homeomorfo a la esfera \mathbb{S}^2 se tiene que

$$\chi = V - E + F = 2$$

Definición 2.6.5: Superficie orientable

Una superficie compacta se dice orientable si admite una presentación poligonal en la que no existe ningún par de aristas que se identifiquen recorriéndose en el mismo sentido, es decir, si para cada arista a de la presentación, aparece tanto a como a^{-1} .

Proposición 2.6.6

Una superficie compacta no orientable contiene un subespacio homeomorfo a la cinta de Möbius (de hecho es un si y solo si).

Demostración

(\Longrightarrow) Siempre tenemos aristas identificadas aa. Demostración con dibujitos, no puedo hacerlo :(

 (\Leftarrow) Sea una presentación:

Afirmación 1: El subespacio homeomorfo a la cinta de Möbius toca al borde. No entra en detalle, si alguien quiere hacerlo que se las apañe jeje.

Ejemplo

Superficies no orientables: \mathbb{RP}^2 , K (la botella). Superficies orientables: \mathbb{S}^2 , \mathbb{T}^2 .

Proposición 2.6.7: Orientabilidad de la suma conexa

Dadas dos superficies compactas S_1 y S_2 , la suma conexa $S_1 \# S_2$ es orientable si, y solo si, ambas superficies son orientables.

Demostración

Pendiente...

Ejemplo

 $\mathbb{T}^2 \# \dots \# \mathbb{T}^2$ es orientable. $\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2$ es no orientable.

Corolario 2.6.8

Dos superficies compactas y conexas son homeomorfas si, y solo si, tienen la misma característica de Euler y la misma orientabilidad.

Demostración

Pendiente...

Definición 2.6.9: Género de una superficie

Sea S una superficie compacta y conexa. Se define el género de S como $g(S)=1-\frac{1}{2}\chi(S)$ si S es orientable, y $g(S)=2-\chi(S)$ si no lo es. El género también se conoce como el número de agujeros.

Ejemplo

- $g(\mathbb{S}^2) = 0 = g(0\mathbb{T}).$
- $g(\mathbb{T}^2\#\ldots\#\mathbb{T}^2)=n.$
- $g(\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2) = n.$

Corolario 2.6.10

Si S es una superficie compacta, conexa y orientable, entonces S es homeomorfa a:

$$\begin{cases} \text{una esfera, cuando } g(S) = 0 \\ \text{una suma conexa de } n \text{ toros, cuando } g(S) = n, n \geq 1 \end{cases}$$

Demostración

Pendiente...

Capítulo 3

Homotopía. El grupo fundamental

3.1. Equivalencia homotópica

Definición 3.1.1: Camino o arco

Sea (X, τ) un espacio topológico e $I = [0, 1] \subset \mathbb{R}$. Se llama **camino o arco** en X a una aplicación continua $\alpha : I \to X$. Se llama $\alpha(0)$ origen y $\alpha(1)$ final. Diremos que α es un arco uniendo $\alpha(0)$ con $\alpha(1)$. Cuando $\alpha(0) = \alpha(1)$ diremos que α es un lazo.

Definición 3.1.2: Aplicaciones homotópicas

Dos aplicaciones continuas $f,g:X\to Y$ entre dos espacios topológicos son homotópicas si existe una aplicación continua $F:X\times [0,1]\to Y$ tal que F(x,0)=f(x) y F(x,1)=g(x), para todo $x\in X$. Se dice que F es una homotopía entre f y g, y se representa por $f\simeq g$.

Nota

Si F es una homotopía, para cada $t \in [0,1]$, definimos $F_t: X \to Y$ por $F_t(x) = F(x,t)$. Las aplicaciones F_t son continuas, $F_0 = f$ y $F_1 = g$. Si fijamos x, entonces

$$F_x(t) = F(x,t) : I \to Y$$

es un arco en Y uniendo f(x) con g(x).

Ejemplo

Si $Y \subset \mathbb{R}^n$ es convexo, cualquier par de aplicaciones f, g continuas son homotópicas.

Demostración. Consideremos la siguiente homotopía:

$$F: X \times I \rightarrow Y$$
, $F(x,t) = g(x) + (1-t)f(x)$

como para cada $x \in X$ se tiene $f(x), g(x) \in Y$ y el conjunto Y es convexo, entonces el segmento contenido entre f(x), g(x) está contenido en Y, luego F está bien definida. Además es continua por ser composición de aplicaciones continuas. Finalmente notemos que F(x,0) = f(x), F(x,1) = g(x).

Ejemplo

Sean X, Y espacios topológicos e $y_1, y_2 \in Y$. Entonces las aplicaciones constantes

$$C_{y_i}: X \to Y, \quad C_{y_i}(x) = y_i, \quad i = 1, 2$$

son homotópicas si y solo si existe un arco en Y uniendo y_1, y_2 .

Demostración. Si ambas aplicaciones son homotópicas sea F(x,t) la homotopía entre ellas, entonces dado $x_0 \in X$ arbitrario la aplicación $F_{x_0}(t) = F(x_0,t)$ es un camino que une y_1, y_2 puesto que es continua y

$$F_{x_0}(0) = F(x_0, 0) = C_{y_1}(x_0) = y_1, \quad F_{x_0}(1) = F(x_0, 1) = C_{y_2}(x_0) = y_2.$$

Si por el contrario existe $\alpha: I \to Y$ un camino uniendo $y_1 = \alpha(0), y_2 = \alpha(1)$ entonces consideremos la aplicación dada por

$$F(x,t) = tC_{y_2} + (1-t)C_{y_1}$$

que es claramente continua y además verifica $F(x,0)=C_{y_1}, F(x,1)=C_{y_2}$, luego es una homotopía.

Proposición 3.1.3: Relación \simeq entre aplicaciones continuas

La propiedad de ser homotópicas \simeq es una relación de equivalencia en el conjunto $\mathcal{C}(X,Y)$ formado por todas las aplicaciones continuas de X en Y.

Demostraci'on

1. Reflexiva: $f \simeq f$

Definamos la aplicación $F: X \times I \to Y$ por F(x,t) = f(x). F es continua por ser f continua, además se tiene $\begin{cases} F(x,0) = f(x) \\ F(x,1) = f(x) \end{cases}$ por lo que es una homotopía, luego $f \simeq f$.

2. Simétrica: $f \simeq g \implies g \simeq f$

Sea F la homotopía entre f, g entonces la aplicación

$$\overline{F}: X \times I \to Y, \quad \overline{F}(x,t) = F(x,1-t)$$

es una homotopía entre g, f puesto que es continua al serlo F y cumple $\overline{F}(x,0) = F(x,1) = g(x), \overline{F}(x,1) = F(x,0) = f(x).$

Nota: La aplicación \overline{F} se puede construir con cualquier homeomorfismo $\alpha:I\to I$ con alpha(0)=1 y $\alpha(1)=0$ en vez de 1-t.

3. Transitiva: $f \simeq g, g \simeq h \implies f \simeq h$

Sea F_1 la homotopía entre f, g y F_2 la homotopía entre g, h, entonces la aplicación

$$\overline{F}: X \times I \to Y, \quad \overline{F}(x,t) = \begin{cases} F_1(x,2t) & t \in [0,\frac{1}{2}] \\ F_2(x,2t-1) & t \in [\frac{1}{2},1] \end{cases}$$

es continua y verifica $\overline{F}(x,0) = F_1(x,0) = f(x), \overline{F}(x,1) = F_2(x,1) = h(x)$, por lo que es una homotopía entre f y h.

Nota: Al igual que antes, se podría hacer con cualquier homeomorfismo que cumpla con lo que necesitamos.

Definición 3.1.4: Espacios homotópicamente equivalentes

Decimos que dos espacios topológicos X e Y son homotópicamente equivalentes o tienen el mismo tipo de homotopía (denotado $X \simeq Y$) si existen aplicaciones continuas $f: X \to Y$ y $g: Y \to X$ tales que $g \circ f \simeq Id_X$ y $f \circ g \simeq Id_Y$. A la aplicación f (también a g) se le llama, equivalencia de homotopía.

Ejemplo

Si $Y \subset \mathbb{R}^n$ es convexo, entonces $Y \simeq \{x\}$.

Demostración. Sea $X = \{x\}$, fijemos un $y_0 \in Y$ y definamos las aplicaciones $f: X \to Y$, $f(x) = y_0$ y $g: Y \to X$, g(y) = x. Es inmediato notar que $g \circ f = Id_X$ puesto que para el único punto de X se cumple

$$g(f(x)) = g(y_0) = x.$$

Por tanto $g \circ f = Id_X \simeq Id_X$ por la reflexividad de \simeq .

Por otro lado sea $h = f \circ g : Y \to Y$ y definamos la siguiente homotopía:

$$H(y,t) = (y,t) = ty + (1-t)y_0 \implies \begin{cases} H(y,0) = y_0 = f(x) = f(g(y)) = h(y) \\ H(y,1) = y = Id_Y(y) \end{cases}$$

que es claramente continua y está bien definida porque Y es convexo.

Ejemplo

$$\mathbb{R}^2 \setminus \{0\} \simeq \mathbb{S}^1.$$

Demostración. Buscamos $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{S}^1$ y $g: \mathbb{S}^1 \to \mathbb{R}^2 \setminus \{0\}$ continuas tales que

$$\begin{cases} f \circ g \simeq Id_{\mathbb{S}^1} \\ g \circ f \simeq Id_{\mathbb{R}^2 \setminus \{0\}}. \end{cases}$$

Sean $f(y) = \frac{y}{|y|}$ y g(x) = x. Es inmediato notar que $f \circ g = Id_{\mathbb{S}^1} \simeq Id_{\mathbb{S}^1}$ ya que

$$f(g(x)) = f(x) = \frac{x}{|x|} = x$$

al ser g(x) = x de norma 1.

Por otro lado definamos la homotopía F siguiente

$$F(y,t) = ty + (1-t)\frac{y}{|y|}, \quad \begin{cases} F(y,0) = \frac{y}{|y|} = g(f(y)) \\ F(y,1) = y = Id_{\mathbb{R}^2 \setminus \{0\}}(y) \end{cases}$$

luego $g \circ f \simeq Id_{\mathbb{R}^2 \setminus \{0\}}$.

Ejemplo

La corona circular $C = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2\} \simeq \mathbb{S}^1$

Proposición 3.1.5: Espacios homeomorfos y homotopía

Si X e Y son homeomorfos, entonces $X \simeq Y$. El recíproco no es cierto.

Demostración

Supongamos que X e Y son homeomorfos. En tal caso existe $f: X \to Y$ homeomorfismo, que será una aplicación continua y con inversa $g = f^{-1}$ también continua. Entonces

$$g \circ f = Id_X \simeq Id_X, \quad f \circ g = Id_Y \simeq Id_Y$$

por lo que $X \simeq Y$.

Como contraejemplo para el recíproco consideremos el conjunto \mathbb{R}^n que es convexo, por tanto $\mathbb{R}^n \simeq \{x\}$ para cualquier $x \in \mathbb{R}^n$, sin embargo no son espacios homeomorfos puesto que \mathbb{R}^n no es compacto y $\{x\}$ sí.

Proposición 3.1.6: Relación \simeq entre espacios

La propiedad \simeq define una relación de equivalencia entre los espacios topológicos.

Demostración

1. Reflexiva: $X \simeq X$

Basta tomar $f = g = Id_X \implies f \circ g = g \circ f = Id_X \simeq Id_X$.

2. Simetrica: $X \simeq Y \implies T \simeq X$

Si $X \simeq Y$ entonces $\exists f: X \to Y, g: Y \to X$ de manera que $f \circ g \simeq Id_X, g \circ f \simeq Id_Y$, luego tomando $\bar{f} = g, \bar{g} = f$ tenemos dos aplicaciones que cumplen lo necesario para que $Y \simeq X$.

3. Transitiva: $X \simeq Y, Y \simeq Z \implies X \simeq Z$

Por hipótesis $\exists f_1: X \to Y, g_1: Y \to X$ cumpliendo

$$f_1 \circ g_1 \simeq Id_X, g_1 \circ f_1 \simeq Id_Y$$

y también $\exists f_2: Y \to Z, g_2: Z \to Y$ de manera que

$$f_2 \circ g_2 \simeq Id_Y, g_2 \circ f_2 \simeq Id_Z$$

Definamos ahora

$$f = f_2 \circ f_1 : X \to Z, \quad g = g_1 \circ g_2 : Z \to X$$

y notemos que se tiene:^a

$$f \circ g = f_2 \circ f_1 \circ g_1 \circ g_2 \simeq f_2 \circ Id_Y \circ g_2 = f_2 \circ g_2 \simeq Id_Z$$

así como

$$g \circ f = g_1 \circ g_2 \circ f_2 \circ f_1 \simeq g_1 \circ Id_Y \circ f_1 = g_1 \circ f_1 \simeq Id_X$$
.

Nota: A lo largo de la demostración todas las aplicaciones que aparecen son continuas, recordemos que esto es indispensable para que podamos hablar de homotopías.

Ejercicio 3.1

Probar que si $f_1: X \to Y, f_2: X \to Y, g: Y \to Z$ son aplicaciones continuas tales que $f_1 \simeq f_2$ entonces se tiene $g \circ f_1 \simeq g \circ f_2$. Plantear y resolver el problema análogo para ver que se cumple $f_1 \circ g \simeq f_2 \circ g$

 $[^]a\mathrm{Para}$ los pasos \simeq ver el Ejercicio 3.1

3.2. Espacios contractiles

Definición 3.2.1: Espacio contráctil

Un espacio topológico X se dice que es contráctil si es homotópicamente equivalente a un punto.

Proposición 3.2.2: Caracterizaciones de espacios contráctiles

Sea Y un espacio topológico, las siguientes afirmaciones son equivalentes:

- 1. Y es contráctil.
- 2. Existe $y_0 \in Y$ tal que $Id_Y y C_{y_0} : Y \to \{y_0\}$ son homotópicas.
- 3. Si X es otro espacio topológico, cualquier par de aplicaciones continuas $f,g:X\to Y$ son homotópicas.
- 4. Para todo $y_0 \in Y$, se tiene que C_{y_0} es homotópica a la Id_Y .
- 5. Si X es otro espacio topológico y $f:Y\to X$ continua, entonces existe $x_0\in X$ tal que $f\simeq C_{x_0}$.

Demostración

 $(1 \Longrightarrow 2)$

Por hipótesis $Y \simeq \{p\}$, luego existen aplicaciones $g: Y \to \{p\}, f: \{p\} \to Y$ cumpliendo que $g \circ f \simeq Id_{\{p\}}$ y $f \circ g \simeq Id_Y$. Notemos que g debe ser C_p , es decir g(y) = p $\forall y \in Y$ ya que el espacio de llegado es un único punto, y por otro lado la imagen de f será un único punto $f(p) = y_0$.

Notemos ahora que dado $y \in Y$, $f(g(y)) = f(p) =: y_0 \in Y$, luego $C_{y_0} = f \circ g \simeq Id_Y$, por tanto existe $y_0 = f(p)$ de manera que $Id_Y \simeq C_{y_0}$. $(2 \Longrightarrow 3)$

Sabemos que $\exists y_0 \in Y$ tal que $Id_Y \simeq C_{y_0}$. Sea X espacio topológico, y $f, g: X \to Y$ continuas. Veamos que $f \simeq g$.

$$f = Id_Y \circ f \simeq C_{y_0} \circ f = \overline{C_{y_0}} : X \to \{y_0\} \text{ tal que } \overline{C_{y_0}}(x) = y_0$$

 $g = Id_Y \circ g \simeq C_{y_0} \circ g = \overline{C_{y_0}} : X \to \{y_0\} \text{ tal que } \overline{C_{y_0}}(x) = y_0$

Por tanto, $f \simeq \overline{C_{y_0}} \simeq g$. $(3 \Longrightarrow 4)$

Tomemos $Y=X,\ f=Id_Y,\ g=C_{y_0},\ {\rm con}\ y_0\in Y$ arbitrario. Aplicando (3) a estos espacios y funciones se obtiene que $Id_Y=f\simeq g=C_{y_0}.$ (4 \Longrightarrow 5)

Sabemos que $C_{y_0} \simeq Id_Y, \forall y_0 \in Y.$ Sea X espacio topológico y $f: Y \to X$ continua. Entonces

$$f = f \circ Id_Y \simeq f \circ C_{u_0} : Y \to X$$

donde $(f \circ C_{y_0})(y) = f(C_{y_0}(y)) = f(y_0)$. Luego, $f \circ C_{y_0} = C_{f(y_0)} : Y \to X$. Tomando $x_0 = f(y_0)$, se tiene que $f \simeq C_{x_0}$. $(5 \Longrightarrow 2)$

Aplicamos la hipótesis al espacio X = Y y la función $f = Id_Y$. Entonces, obtenemos $y_0 \in Y$ tal que $f \simeq C_{y_0}$. Por tanto, $Id_Y \simeq C_{y_0}$. $(2 \Longrightarrow 1)$

Por la hipótesis, existe $y_0 \in Y$ tal que $Id_Y \simeq C_{y_0}$. Las aplicaciones buscadas son

$$f = C_{y_0} : Y \to \{y_0\}, \quad f(y) = y_0$$

 $g = \iota : \{y_0\} \to Y, \quad g(y_0) = y_0$

que son continuas y cumplen:

$$f \circ g = Id_{\{y_0\}} \simeq Id_{\{y_0\}}$$
$$g \circ f = C_{y_0} \simeq Id_Y$$

luego $Y \simeq \{y_0\}.$

Corolario 3.2.3

Todo espacio contráctil es arcoconexo y por tanto conexo.

Demostración

Sea Y un espacio contráctil y sean $y_1,y_2\in Y$ dos puntos arbitrarios. Aplicando el apartado (3) de la proposición anterior a las aplicaciones $f=C_{y_1},g=C_{y_2}:Y\to Y$ continuas obtenemos

$$C_{y_1} \simeq C_{y_2} \iff \exists F: Y \times I \to Y \text{ continua tal que } \begin{cases} F(y,0) = C_{y_1}(y) = y_1 \\ F(y,1) = C_{y_2}(y) = y_2 \end{cases}$$

Consideremos la aplicación $\alpha: I \to Y, \alpha(t) = F(y_0, t)$, con $y_0 \in Y$ fijo. Esta aplicación es claramente continua y une y_1 y y_2 , por tanto, Y es arcoconexo.

Definición 3.2.4: Invariante homotópico

Un invariante homotópico es una propiedad topológica \mathcal{P} que se conserva por equivalencias homotópicas, es decir, si $X \simeq Y$, entonces X satisface \mathcal{P} si, y solo si, Y satisface \mathcal{P} .

Ejemplo

- 1. La conexión es un invariante homotópico.
- 2. La conexión por caminos es un invariante homotópico.
- 3. La compacidad NO es un invariante homotópico.

3.3. Homotopía por caminos

Definición 3.3.1: Caminos homotópicos

Dos caminos $\alpha, \beta: I \to X$ en un espacio topológico X uniendo dos puntos x_0 y x_1 se dice que son homotópicos (por caminos) si existe una homotopía $F: I \times I \to X$ entre α y β tal que $F(0,t) = x_0$, $F(1,t) = x_1$, para todo $t \in I$. Lo denotaremos por $\alpha \simeq_p \beta$.

Nota

Para cada $t \in I$, F_t es un camino uniendo x_0 y x_1 , con $F_0 = \alpha$ y $F_1 = \beta$. En la siguiente imagen aparecen los distintos F_t en color gris:

Proposición 3.3.2: Relación de equivalencia \simeq_p

 \simeq_p define una relación de equivalencia sobre el conjunto de caminos que unen x_0, x_1 . Denotamos por $[\alpha]$ la clase asociada a un camino α .

Demostración

1. Reflexiva: $\alpha \simeq \alpha$

Definamos la aplicación $F:I\times I\to X$ por $F(s,t)=\alpha(s)$. F es continua por ser α continua, además se tiene $\begin{cases} F(s,0)=\alpha(s) \\ F(s,1)=\alpha(s) \end{cases}$ por lo que es una homotopía. Como además cumple

$$F(0,t) = \alpha(0) = x_0, F(1,t) = \alpha(1) = x_1$$

se tiene $\alpha \simeq_p \alpha$.

2. Simétrica: $\alpha \simeq \beta \implies \beta \simeq \alpha$

Sea F la homotopía por caminos entre α, β entonces la aplicación

$$\overline{F}: I \times I \to X, \quad \overline{F}(s,t) = F(s,1-t)$$

es una homotopía por caminos entre β , α puesto que es continua al serlo F y cumple

$$\overline{F}(s,0) = F(s,1) = \beta(s), \overline{F}(s,1) = F(s,0) = \alpha(s)$$

así como

$$\overline{F}(0,t) = F(0,1-t) = x_0, \overline{F}(1,t) = F(1,1-t) = x_1$$

por tanto $\beta \simeq_p \alpha$.

3. Transitiva: $\alpha \simeq \beta, \beta \simeq \gamma \implies \alpha \simeq \gamma$

Sea F_1 la homotopía por caminos entre α, β y F_2 la homotopía por caminos entre β, γ , entonces la aplicación

$$\overline{F}: I \times I \to X, \quad \overline{F}(s,t) = \begin{cases} F_1(s,2t) & t \in [0,\frac{1}{2}] \\ F_2(s,2t-1) & t \in [\frac{1}{2},1] \end{cases}$$

es continua y verifica $\overline{F}(s,0)=F_1(s,0)=\alpha(s), \overline{F}(s,1)=F_2(s,1)=\gamma(s),$ y también

$$\overline{F}(0,t) = \begin{cases} F_1(0,2t) = x_0 & t \in [0,\frac{1}{2}] \\ F_2(0,2t-1) = x_0 & t \in [\frac{1}{2},1] \end{cases}, \quad \overline{F}(1,t) = \begin{cases} F_1(1,2t) = x_1 & t \in [0,\frac{1}{2}] \\ F_2(1,2t-1) = x_1 & t \in [\frac{1}{2},1] \end{cases}$$

por lo que es una homotopía entre α y γ .

Definición 3.3.3: Producto de caminos

Si α es un camino uniendo x_0 y x_1 , y β es un camino uniendo x_1 y x_2 , definimos el camino producto $\alpha * \beta$ por

$$\alpha * \beta(s) = \begin{cases} \alpha(2s) & s \in [0, \frac{1}{2}] \\ \beta(2s-1) & s \in [\frac{1}{2}, 1] \end{cases}$$

Nota

Es importante tener en mente que definimos el producto de caminos de izquierda a derecha, es decir, recorriendo primero el camino de la izquierda y después el de la derecha.

Proposición 3.3.4: Propiedades del producto de caminos

- 1. $\alpha * (\beta * \gamma) \simeq_p (\alpha * \beta) * \gamma$.
- 2. Si ϵ_{x_0} es el arco constante x_0 e igual ϵ_{x_1} , entonces

$$\epsilon_{x_0} * \alpha \simeq_p \alpha y \alpha * \epsilon_{x_1} \simeq_p \alpha$$

3. Sea $\bar{\alpha} = \alpha(1-t), t \in I$. Entonces,

$$\alpha * \bar{\alpha} \simeq_p \epsilon_{x_0} \text{ y } \bar{\alpha} * \alpha \simeq_p \epsilon_{x_1}$$

Definición 3.3.5: Conjunto de arcos

Dado X un espacio topológico, denotaremos por

$$\Omega^{x_1}_{x_0}(X):=\{\alpha:I\to X \text{ continua con }\alpha(0)=x_0,\alpha(1)=x_1\}$$

у

$$\Omega_{x_0} = \Omega_{x_0}^{x_0}(X)$$

Llamaremos

$$\pi_1(X,x_0): {}^{\Omega_{x_0}}/_{\simeq_p}$$

Definición 3.3.6: Producto de clases de homotopía

El producto * induce un producto bien definido para clases de homotopía:

$$[\alpha] * [\beta] := [\alpha * \beta]$$

Teorema 3.3.7: El grupo fundamental

El conjunto $\pi_1(X, x_0)$ junto con la operación producto * es un grupo, denominado el **grupo fundamental** de X en x_0 .

Lema 3.3.8: Lema previo

Sean
$$\alpha \in \Omega^{x_1}_{x_0}(X), \beta \in \Omega^{x_2}_{x_1}(X)$$
. Entonces, $\alpha * \beta \simeq_p \gamma(t) = \begin{cases} \alpha(\frac{t}{r}) & t \in [0,r] \\ \beta(\frac{t-r}{1-r}) & t \in [r,1] \end{cases}$

Demostración

Quiero ver que $\alpha * \beta$ y γ son homotópicos por caminos, luego necesito una homotopía $H(x,t): I \times I \to X$ tal que $H(x,0) = \alpha * \beta(x)$ y $H(x,1) = \gamma(x)$, además de que $H(0,t) = x_0$ y $H(1,t) = x_2$.

$$H(x,t) = \begin{cases} \alpha \left(\frac{x}{(1-t)\frac{1}{2} + tr} \right) & x \in [0, (1-t)\frac{1}{2} + tr] \\ \beta \left(\frac{x - (1-t)\frac{1}{2} - tr}{1 - (1-t)\frac{1}{2} - tr} \right) & x \in [(1-t)\frac{1}{2} + tr, 1] \end{cases}$$

- $H(x,0) = \alpha * \beta(x). \checkmark$
- $H(x,1) = \gamma(x).\checkmark$
- $H(0,t) = \alpha(0) = x_0.\checkmark$
- $H(1,t) = \beta(1) = x_2.\checkmark$

Demostración. Pendiente...

Ejemplo

Si $X \subset \mathbb{R}^n$ convexo, entonces $\pi_1(X, x_0) = 0$ (el grupo trivial) para todo $x_0 \in X$. En particular $\pi_1(\mathbb{R}^n, x_0) = 0$ y $\pi_1(B^n, x_0) = 0$, donde B^n es la bola unidad.

Ejemplo

 $\pi_1(\mathbb{R}, x) = (0, +)$ (el grupo trivial se denota así).

Definición 3.3.9

Sea σ un camino uniendo dos puntos $x_0, x_1 \in X$. Definimos

$$\hat{\sigma}: \pi_1(X, x_0) \to \pi_1(X, x_1)$$

por

$$\hat{\sigma}([\gamma]) = [\overline{\sigma}] * [\gamma] * [\sigma].$$

Proposición 3.3.10: Proposición 6.8

La aplicación $\hat{\sigma}$ es un isomorfismo de grupos para todo camino σ .

Demostración

Para ver que $\hat{\sigma}$ es biyectiva comprobaremos que tiene inversa dada por

$$(\hat{\sigma})^{-1} = \widehat{(\overline{\sigma})}$$

en efecto se tiene

$$(\overline{\widehat{\sigma}})(\widehat{\sigma})([\gamma]) = \text{Pasos pendientes} = [\gamma]$$

Corolario 3.3.11

Si X es conexo por caminos, todos los grupos $\pi_1(X, x_0)$ son isomorfos entre sí. En este caso, podemos considerar el grupo fundamental $\pi_1(X)$, independiente del punto base.

Demostración

Pendiente.

3.4. Espacios simplemente conexos

Definición 3.4.1: Espacio simplemente conexo

Decimos que un espacio topológico X es simplemente conexo si es conexo por caminos y $\pi_1(X)=0$.

Ejemplo

Si $X \subset \mathbb{R}^n$ es convexo, entonces X es simplemente conexo.

3.5. El homomorfismo inducido

Definición 3.5.1: Homomorfismo inducido

Sea $f:X\to Y$ una aplicación continua. Para todo punto $x_0\in X,\, f$ induce una aplicación

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

definida por $f_*([\alpha]) = [f \circ \alpha]$, denominada el homomorfismo inducido.

Proposición 3.5.2: Propiedades del homomorfismo inducido

- 1. Si $f: X \to Y$ y $g: Y \to Z$ son continuas, entonces $(g \circ f)_* = g_* \circ f_*$.
- 2. Para la identidad $Id_X: X \to X$ se tiene $(Id_X)_* = Id|_{\pi_1(X,x_0)}$.
- 3. Si f es un homeomorfismo, entonces f_* es un isomorfismo de grupos. Así, el grupo fundamental es un invariante topológico.

Demostraci'on

Pendiente.

Apéndice A

Teoría de grupos

A.1. Grupos y subgrupos

Definición A.1.1: Grupo

Un grupo es un par (G,*) donde G es un conjunto y $*: G \times G \to G$ es una operación binaria que satisface:

- (G1) Asociatividad: (a*b)*c = a*(b*c) para todo $a,b,c \in G$
- (G2) Elemento neutro: Existe $e \in G$ tal que e * a = a * e = a para todo $a \in G$
- (G3) Elemento inverso: Para cada $a \in G$, existe $a^{-1} \in G$ tal que

$$a * a^{-1} = a^{-1} * a = e.$$

Definición A.1.2: Grupo abeliano

Un grupo (G,*) se dice abeliano o conmutativo si además cumple:

(G4) Conmutatividad: a * b = b * a para todo $a, b \in G$

Ejercicio A.1

Probar las siguientes afirmaciones:

- $(\mathbb{Z}, +)$ es un grupo abeliano.
- $(\mathbb{R} \setminus \{0\}, \cdot)$ es un grupo abeliano.
- \blacksquare El grupo simétrico S_n de permutaciones de n elementos es un grupo.
- \blacksquare (N, +) no es un grupo.

Definición A.1.3: Subgrupo

Un subconjunto H de un grupo G es un subgrupo (denotado $H \leq G$) si:

- 1. H es no vacío
- 2. Para todo $a, b \in H$, $a * b \in H$ (cerrado bajo la operación)
- 3. Para todo $a \in H$, $a^{-1} \in H$ (cerrado bajo inversos)

A.2. Homomorfismos

Definición A.2.1: Homomorfismo de grupos

Sean (G,\cdot) y (H,*) grupos. Una aplicación $f:G\to H$ es un homomorfismo de grupos si preserva las operaciones de grupo, es decir:

$$f(a \cdot b) = f(a) * f(b) \quad \forall a, b \in G$$

Definición A.2.2: Isomorfismo de grupos

Un isomorfismo de grupos es una aplicación biyectiva que además es homomorfismo. Si (G,\cdot) y (H,*) son grupos y $f:G\to H$ es un isomorfismo decimos que G y H son isomorfos.

Definición A.2.3: Imagen y núcleo

Dado un homomorfismo $f: G \to H$ definimos la imagen de f como

$$\text{Im } f = \{ h \in H \mid h = f(q), q \in G \}$$

y el núcleo de f como

$$Ker f = \{ g \in G \mid f(g) = e_H \}$$

donde e_H indica el elemento neutro del grupo H.

Ejercicio A.2

Sea $f: G \to H$ un homomorfismo, probar las siguientes afirmaciones:

- f es inyectiva si y solo si $Ker f = \{e_H\}.$
- \blacksquare Si f es biyectiva, entonces f^{-1} también es un homomorfismo.
- \bullet $\mathrm{Im} f, \mathrm{Ker} f$ son subgrupos de H, G respectivamente.
- Si $K \leq G$ entonces $f(K) \leq H$. Recordar que \leq indica que el conjunto es un subgrupo.