Thema: Isolierte Singularitäten, Laurentreihen, Residuensatz

Besprechung: Dienstag, 10. Dezember 2019

Aufgabe 1. Es seien holomorphe Funktionen definiert durch

$$f_1: D_{0,1}(0) \to \mathbb{C}z \mapsto \frac{1}{1 - e^z}$$
$$f_2: D_{0,1}(0) \to \mathbb{C}z \mapsto e^{\frac{1}{z}}$$
$$f_3: D_{0,1}(0) \to \mathbb{C}z \mapsto \frac{\sin z}{z}.$$

Man bestimme in allen drei Fällen, ob die Singularität bei 0 hebbar, ein Pol oder eine wesentliche Singularität ist.

Ist sie hebbar, so setze man f_k holomorph auf $B_1(0)$ fort.

Ist sie wesentlich, so bestimme man das Bild $f_k(D_{0,\varepsilon}(0))$ für alle $0 < \varepsilon < 1$.

Aufgabe 2. Es sei

$$f: \mathbb{C}\backslash\{1,0\} \to \mathbb{C}, z\mapsto \frac{1}{1-z} + \sin\left(\frac{1}{z}\right).$$

- (a) Man entwickle f in eine Laurentreihe um 0 in $\{0 < |z| < 1\}$ und bestimme $\text{Res}_0(f)$.
- (b) Man bestimme den Hauptteil der Laurentreihenentwicklung von f um 1 in $\{0 < |z-1| < 1\}$ und bestimme $\text{Res}_1(f)$.
- (c) Man berechne die Integrale

$$\frac{1}{2\pi i} \int_{\gamma_k} f(z) dz, k = 1, 2$$

für

$$\begin{split} \gamma_1: [0,2\pi] &\to \mathbb{C}, t \mapsto 2e^{it} \\ \gamma_2: [0,2\pi] &\to \mathbb{C}, t \mapsto \frac{1}{2}e^{2it} + 1 \end{split}$$

Aufgabe 3. Sei $u \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ holomorph, $D_{0,r}(z_o) \subset U$ für $r \in \mathbb{R}^{>0}$. Sei weiter

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

die Laurent-Reihe von f um z_0 .

Man zeige, daß z_0 genau dann ein Pol der Ordnung m ist, wenn $a_{-m} \neq 0$ und $a_n = 0$ für alle $n \in \mathbb{Z}$ mit n < -m.

Aufgabe 4. Sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ holomorph und $w \in U$. Man zeige, daß

$$g: U \to \mathbb{C}, z \mapsto \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{falls } z \in U \setminus \{w\} \\ f'(z) & \text{falls } z = w \end{cases}$$

holomorph ist.