FINAL PROJECT REPORT

SANBERCODE PYTHON-DATA SCIENCE

Dibuat Oleh:

Mohammad Dwiantara Mahardhika

1. Formulasi Masalah

Permasalahan

HELP International adalah LSM kemanusiaan internasional yang berkomitmen untuk memerangi kemiskinan dan menyediakan fasilitas dan bantuan dasar bagi masyarakat di negara-negara terbelakang saat terjadi bencana dan bencana alam. HELP International telah berhasil mengumpulkan sekitar \$ 10 juta. Saat ini, CEO LSM perlu memutuskan bagaimana menggunakan uang ini secara strategis dan efektif. Jadi, CEO harus mengambil keputusan untuk memilih negara yang paling membutuhkan bantuan.

Tujuan

Untuk mengkategorikan negara menggunakan faktor sosial ekonomi dan kesehatan yang menentukan pembangunan negara secara keseluruhan.

2. Reading and Understanding Data

Reading Data

Data yang digunakan berasal dari file 'Data Negara HELP.csv' seperti berikut.

					Impor		Litopoi	Kematian_anak	Negara	
1.00	5.82	56.2	9.44	1610	44.9	7.58	10.0	90.2	Afghanistan	0
1.05 4090	1.65	76.3	4.49	9930	48.6	6.55	28.0	16.6	Albania	1
2.89 4460	2.89	76.5	16.10	12900	31.4	4.17	38.4	27.3	Algeria	2
6.16 3530	6.16	60.1	22.40	5900	42.9	2.85	62.3	119.0	Angola	3
2.13 12200	2.13	76.8	1.44	19100	58.9	6.03	45.5	10.3	Antigua and Barbuda	4
3.50 2970	3.50	63.0	2.62	2950	52.7	5.25	46.6	29.2	Vanuatu	162
2.47 13500	2.47	75.4	45.90	16500	17.6	4.91	28.5	17.1	Venezuela	163
1.95 1310	1.95	73.1	12.10	4490	80.2	6.84	72.0	23.3	Vietnam	164
4.67 1310	4.67	67.5	23.60	4480	34.4	5.18	30.0	56.3	Yemen	165
5.40 1460	5.40	52.0	14.00	3280	30.9	5.89	37.0	83.1	Zambia	166
6.16 2.13 1 3.50 2.47 1.95	6.16 2.13 3.50 2.47 1.95 4.67	60.1 76.8 63.0 75.4 73.1 67.5	22.40 1.44 2.62 45.90 12.10 23.60	5900 19100 2950 16500 4490 4480	42.9 58.9 52.7 17.6 80.2 34.4	2.85 6.03 5.25 4.91 6.84 5.18	62.3 45.5 46.6 28.5 72.0 30.0	119.0 10.3 29.2 17.1 23.3 56.3	Angola Antigua and Barbuda Vanuatu Venezuela Vietnam Yemen	3 4 162 163 164 165

167 rows × 10 columns

Dari pembacaan dataset diatas didapatkan bahwa data yang ada berjumlah 10 kolom dan 167 baris dengan keterangan kolom sebagai berikut.

Kolom	Keterangan
Negara	Nama negara
Kematian_anak	Kematian anak di bawah usia 5 tahun per 1000 kelahiran
Ekspor	Ekspor barang dan jasa perkapita
Kesehatan	Total pengeluaran Kesehatan perkapita
Impor	Impor barang dan jasa perkapita
Pendapatan	Penghasilan bersih perorang
Inflasi	Pengukuran tingkat pertumbuhan tahunan dari Total GDP

Harapan_hidup	Jumlah tahun rata- rata seorang anak yang baru lahir akan			
	hidup jika pola kematian saat ini tetap sama			
Jumlah_Fertiliti	Jumlah anak yang akan lahir dari setiap wanita jika tingkat			
	kesuburan usia saat ini tetap sama			
GDPperkapita	GDP per kapita. Dihitung sebagai Total GDP dibagi dengan			
	total populasi.			

Describing Data

Dilakukan analisa statistika deskriptif terhadap dataset yang digunakan dengan menggunakan library pandas. Didapatkan data-data statistik dari dataset seperti ratarata nilai setiap kolom, nilai minimum dan maksimum dari setiap kolom dan lain sebagainya.

df.describe()

	Kematian_anak	Ekspor	Kesehatan	Impor	Pendapatan	Inflasi	Harapan_hidup	Jumlah_fertiliti	GDPperkapita
count	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000
mean	38.270060	41.108976	6.815689	46.890215	17144.688623	7.781832	70.555689	2.947964	12964.155689
std	40.328931	27.412010	2.746837	24.209589	19278.067698	10.570704	8.893172	1.513848	18328.704809
min	2.600000	0.109000	1.810000	0.065900	609.000000	-4.210000	32.100000	1.150000	231.000000
25%	8.250000	23.800000	4.920000	30.200000	3355.000000	1.810000	65.300000	1.795000	1330.000000
50%	19.300000	35.000000	6.320000	43.300000	9960.000000	5.390000	73.100000	2.410000	4660.000000
75%	62.100000	51.350000	8.600000	58.750000	22800.000000	10.750000	76.800000	3.880000	14050.000000
max	208.000000	200.000000	17.900000	174.000000	125000.000000	104.000000	82.800000	7.490000	105000.000000

Data Info

Dari analisa data info ini dapat diketahui tipe data setiap kolom dari dataset beserta jumlah data non-null pada setiaap kolom. Kolom negara bertipe objek tidap perlu diubah karena kolom negara hanya digunakan sebagai 'index'. Untuk kolom yang lainnya merupakan kolom numerikal, semua kolom numerikal tersebut sudah bertipe float / int sehingga tidak perlu diubah.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 167 entries, 0 to 166
Data columns (total 10 columns):
                    Non-Null Count Dtype
# Column
    Negara
                     167 non-null
    Kematian_anak 167 non-null
                                     float64
1
    Ekspor
                     167 non-null
                                     float64
    Kesehatan
                    167 non-null
                                     float64
                     167 non-null
                                     float64
    Impor
    Pendapatan
                     167 non-null
                                     int64
    Inflasi
                      167 non-null
                                     float64
    Harapan_hidup 167 non-null
                                     float64
    Jumlah fertiliti 167 non-null
                                     float64
   GDPperkapita
                      167 non-null
                                     int64
dtypes: float64(7), int64(2), object(1)
memory usage: 13.2+ KB
```

3. Exploratory Data Analysis

• Cleaning Data

Setelah dilakukan analisa missing values pada dataset, didapatkan bahwa dataset yang digunakan tidak mempunyai missing values di semua kolom sehingga tidak dilakukan cleaning data.

df.isna().sum()	
Negara	0
Kematian anak	0
Ekspor	0
Kesehatan	0
Impor	0
Pendapatan	0
Inflasi	0
Harapan hidup	0
Jumlah fertiliti	0
GDPperkapita	0
dtype: int64	

• Univariate Analysis

Dilakukan analisa univariate dengan menggunakan histogram untuk melihat persebaran data pada setiap kolom numerik di dataset.

Dengan analisa univariate menggunakan histogram diatas kita dapat mengetahui persebaran data pada masing-masing kolom. Sebagai contoh pada kolom GDPperkapita dapat terlihat ternyata masih banyak negara yang mempunyai GDPperkapita rendah pada range 0-20000 yang lebih dari 100 negara begitu pula pada kolom Pendapatan, masih banyak negara yang mempunyai pendapatan rendah. Selain itu juga dari histogram diatas kita dapat mengetahui bahwa terdapat beberapa negara yang mempunyai kematian_anak yang sangat tinggi dan juga terdapat negara yang mempunyai Harapan_hidup yang sangat rendah.

• Bivariate Analysis

Dilakukan analisa bivariate terhadap variabel kematian_anak dengan harapan_hidup menggunakan scatter plot. Hasil visualisasi scatter menampilkan bahwa kedua variabel tersebut memiliki korelasi negatif karena semakin tinggi tingkat kematian_anak di suatu negara maka harapan_hidupnya semakin rendah

Dilakukan juga analisa terhadap hubungan pendapatan dengan GDPperkapita menggunakan scatter plot. Dari hasil yang didapat dapat disimpulkan bahwa kedua variabel tersebut memiliki korelasi positif karena semakin tinggi pendapatan perorang di suatu negara maka GDPperkapita di negara tersebut juga meningkat.

Dilakukan analisa korelasi keseluruhan variabel data dengan menggunakan heatmap. Dari hasil heatmap ini didapatkan bahwa korelasi antar Kematian_anak dengan Harapan_hidup (-0.89) dan pendapatan dengan GDPperkapita (0.9) mempunyai korelasi paling kuat.

• Multivariate Analysis

Dari hasil analisa univariate dan bivariate yang saya lakukan, saya memutuskan untuk menggunakan Kematian_anak, Harapan_hidup, Pendapatan, dan GDPperkapita untuk dianalisa lebih lanjut. Dari hasil pairplot untuk keempat variabel tersebut didapatkan hubungan dan persebaran data keempat data tersebut.

4. Outlier Treatment

Setelah memilih variabel apa saja yang akan digunakan, kemudian dilakukan pengecekan terdapat data outlier pada kolom-kolom yang akan digunakan tersebut menggunakan boxplot.

Dari hasil boxplot diatas dapat diketahui setiap kolom masih mempunyai outlier. Oleh karena itu dilakukan outlier handling menggunakan **Interquartile Range** masing-masing variabel.

5. Scaling Data

Untuk mempermudah tahapa clustering dilakukan scaling data menggunakan StandardScaler.

Standardization:

$$z = \frac{x-\mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

	Negara	Kematian_anak	Harapan_hidup	Pendapatan	GDPperkapita
0	Afghanistan	1.422745	-1.815960	-0.979242	-0.840648
1	Albania	-0.668452	0.911397	-0.136445	-0.344530
2	Algeria	-0.364433	0.938535	0.164409	-0.292632
3	Angola	2.241039	-1.286772	-0.544675	-0.423078
4	Antigua and Barbuda	-0.847454	0.979242	0.792455	0.793020
162	Vanuatu	-0.310448	-0.893272	-0.843503	-0.501627
163	Venezuela	-0.654246	0.789277	0.529081	0.975364
164	Vietnam	-0.478085	0.477191	-0.687504	-0.734467
165	Yemen	0.459544	-0.282670	-0.688517	-0.734467
166	Zambia	1.221012	-2.385856	-0.810075	-0.713427

6. Clustering

Pada analisa kali ini saya melakukan clustering untuk variabel Kematian_anak dengan Harapan_hidup dan Pendapatan dengan GDPperkapita.

• Kematian_anak dengan Harapan_hidup (Data Model 1)

Data kematian_anak dengan Harapan_hidup.

	Kemauan_anak	narapan_muup
0	1.422745	-1.815960
1	-0.668452	0.911397
2	-0.364433	0.938535
3	2.241039	-1.286772
4	-0.847454	0.979242
162	-0.310448	-0.893272
163	-0.654246	0.789277
164	-0.478085	0.477191
165	0.459544	-0.282670
166	1.221012	-2.385856

137 rows × 2 columns

Dari hasil elbow method diatas dilakukan k yg optimal berada antara 2-4. Kemudian dilakukan validasi menggunakan Silhouette Score untuk nilai K=2 sampai K=4.

K=2 0.6257876220156149 K=3 0.5470548944541891 K=3 0.4772090776702319

Dari hasil Silhouette Score didapatkan bahwa K=2 adalah mempunyai nilai terbaik. Oleh karena itu, clustering dilakukan menggunakan K=2 dengan hasil sebagai berikut.

Dari hasil clustering diatas cluster 1 (Hijau) merupakan negara-negara yang mempunyai harapan hidup tinggi dan tingkat kematian_anak rendah sedangkan cluster 2 (Biru) merupakan negara-negara yang mempunyai tingkat harapan_hidup rendah dan tingkat kematian_anak tinggi. Sehingga dapat diambil kesimpulan Cluster 2 (Biru) adalah negara-negara kandidat fokus bantuan.

• Pendapatan dengan GDPperkapita (Data Model 2)

Data Pendapatan dengan GDPperkapita

	Pendapatan	GDPperkapita
0	-0.979242	-0.840648
1	-0.136445	-0.344530
2	0.164409	-0.292632
3	-0.544675	-0.423078
4	0.792455	0.793020
162	-0.843503	-0.501627
163	0.529081	0.975364
164	-0.687504	-0.734467
165	-0.688517	-0.734467
166	-0.810075	-0.713427

137 rows × 2 columns

Dari hasil elbow method diatas dilakukan k yg optimal berada antara 2-4. Kemudian dilakukan validasi menggunakan Silhouette Score untuk nilai K=2 sampai K=4.

K=2
0.6491057643161912
K=3
0.6070391387874169
K=3
0.558301383270302

Dari hasil Silhouette Score didapatkan bahwa K=2 adalah mempunyai nilai terbaik. Oleh karena itu, clustering dilakukan menggunakan K=2 dengan hasil sebagai berikut.

Dari hasil clustering diatas cluster 1 (Hijau) merupakan negara-negara yang mempunyai GDPperkapita dan Pendapatan rendah sedangkan cluster 2 (Biru) merupakan negara-negara yang mempunyai GDPperkapitan dan Pendapatan tinggi. Sehingga dapat diambil kesimpulan Cluster 1 (Hijau) adalah negara-negara kandidat fokus bantuan.

7. Summary

Terakhir dilakukan merge data hasil clustering data model 1 dengan clustering data model 2. Negara yang mempunyai Harapan_hidup rendah dan kematian_anak (**Cluster 2 Data Model 1**) tinggi serta mempunyai Pendapatan dan GDPperkapita rendah (**Cluster 1 Data Model 2**) adalah negara-negara yang perlu menjadi fokus bantuan. Berikut hasil merge kedua hasil clustering.

			17	India		
	Negara	ĸ	18	Kenya		
0	Afghanistan		19	Kiribati		
1	Angola		20	Lao		
2	Benin		21	Liberia		
3	Botswana		22	Madagascar		
4	Burkina Faso		23	Malawi		
5	Burundi		24	Mali		
6	Cameroon		25	Mauritania		
7	Comoros		26	Mozambique		
8	Congo, Dem. Rep.		27	Myanmar		
9	Congo, Rep.		28	Namibia		
10	Cote d'Ivoire		29	Niger	36	Sudan
11	Eritrea		30	Nigeria	37	Tanzania
12	Gabon		31	Pakistan	38	Togo
13	Gambia		32	Rwanda	39	Turkmenistan
14	Ghana		33	Senegal	40	Uganda
15	Guinea		34	Solomon Islands	41	Yemen
16	Guinea-Bissau		35	South Africa	42	Zambia