DATA SCIENCE Stochastic Methods

December 16, 2022

Problem 1. [8] Let $X \sim U(0,2)$ and $Y \sim U(0,2)$ be two INDEPENDENT uniform random variables and let $Z = \max\{X,Y\}$.

- (i) Compute $P[Z \le z]$ for $z \in \mathbb{R}$;
- (ii) Compute E[Z];
- (iii) Compute E[1/Z].

(i)
$$P[Z \le z] = P[mex \{x,y\} \le z] = P[X \le z], Y \le z]$$

$$= P[X \le z], P[Y \le z] = \begin{cases} 0 & z < z < z \\ 1 & z > z \end{cases}$$

$$= [Z] = \int_{0}^{z} P[z] = \int_{0}^{z} (1 - z^{2}/4) dz = \int_{0}^{z} (1 - z^{2}/4) dz$$

$$F[4] = \frac{1}{2} = \frac{1}{2}$$

Problem 2. [8] Let $X \sim Bin(1,p)$ and Y be a Poisson random variable with (random) parameter X+1, i.e. $P[Y=k|X=x]=e^{-(x+1)}\frac{(x+1)^k}{k!}$ for x=0,1 and $k \in \mathbb{N}$.

- (i) Compute P[Y = k] for any $k \in \mathbb{N}$;
- (ii) Compute E[Y].

(i)
$$P[Y=k] = P[Y=k|X=0] \cdot P[X_0=0] + P[Y=k|X=1] \cdot P[X=1] + P[Y=k|X=1] \cdot P[X=1] + e^{-\frac{1}{\kappa!}} \cdot P$$

(ii)
$$\mathbb{E}[Y] = \sum_{k=0}^{+\infty} \kappa \left(e^{-\frac{1}{k!}}(1-P) + e^{-\frac{1}{2}\frac{2^{k}}{k!}}P\right)$$

$$= (1-P)\sum_{k=0}^{+\infty} \kappa e^{-\frac{1}{2}\frac{1}{k!}} + P\sum_{k=0}^{+\infty} \kappa \cdot e^{-\frac{1}{2}\frac{2^{k}}{k!}}$$

$$= (1-P)1 + P \cdot 2 = 1+P$$

Problem 3. [8] Define a simple Random Walk $\{X_n, n \ge 0\}$ on the undirected graph:

- (i) Compute the probability to go from 6 to 3 in three steps.
- (ii) Is the chain irreducible? Is the chain aperiodic?
- (iii) Find the invariant distribution.
- (iv) Starting from state 6, how many steps are needed on average to go back to 6?

(i)
$$P[X_3 = 3 \mid X_0 = 6] = P_{62} \cdot P_{25} \cdot P_{53} = 4 \cdot \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$(\pi_1,..,\pi_6) = (\frac{2}{16}, \frac{4}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16})$$

Problem 4. [10] Let $(X_i)_{1 \le i \le n}$ be a family of i.i.d. $Poisson(\lambda)$ random variables.

- (i) Compute the moment generating function of X_1 ;
- (ii) Prove that if $\lambda = 1$, then $X_1 + ... + X_n$ is a Poisson(n) random variable;

(iii) Defined
$$\overline{X}_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 and taking again $\lambda = 1$, determine an exponential decay for the "lower tail" of $X_{n} = 1$.

(i) $M_{X_{n}}(t) = \mathbb{E}\left[e^{t \times \Lambda}\right] = \sum_{k=0}^{\infty} e^{t \cdot k} e^{-t \cdot k} \frac{1}{k!} = e^{-t \cdot k!} = e^{-t \cdot k} \frac{1}{k!} = e^{-t \cdot k} \frac{1}{k$

where h(t) = -(t-1). Since $E + (1-E) f_0(1-E) > E_2^2$ for $0 \le C \le 1$, we get $h(t^*) \ge E_2^2 \ge C \le 1$ $P[X_n \le 1-E] \le C^{-n} E_2^2 \ge C \le 1$