TITLE OF THE INVENTION

HUMAN SEMAPHORIN L (H-SEMAL) AND CORRESPONDING SEMAPHORINS IN OTHER SPECIES

RELATED APPLICATIONS

This application claims priority to German Application Nos. 19729211.9 and 19805371.1, filed July 9, 1997 and February 11, 1998 respectively, each incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to novel semaphorins which are distinguished by a particular domain structure and derivatives thereof, nucleic acids (DNA, RNA, cDNA) which code for these semaphorins, and derivatives thereof, and the preparation and use thereof.

Description of the Related Art

The publications which are referenced in this application describe the state of the art to which this invention pertains. These references are incorporated herein by references.

Semaphorins were described for the first time by Kolodkin {Kolodkin et al. (1993) Cell 75:1389-1399} as members of a conserved gene family.

The genes or parts of the genes of other semaphorins have now been cloned and, in some cases, characterized. To date, a total of 5 human (H-Sema III, H-Sema V, H-Sema IV, H-SemaB and H-SemaE) {Kolodkin et al. (1993); Roche et al. (1996) Onkogene 12:1289-1297; Sekido et al. (1996) Proc. Natl.

Acad. Sci. USA 93:4120-4125; Xiang et al. (1996) Genomics 32:39-48; Hall et al. (1996) Proc. Natl. Acad. Sci. USA 39:11780-11785; Yamada et al. (1997) (GenBank Accession No. AB000220)}, 8 murine (mouse genes; M-Sema A to M-Sema-H) {Püschel et al. (1995) Neuron 14:941-948; Messerschmidt et al. (1995) Neuron 14:949-959; Inigaki et al. (1995) FEBS Letters 370:269-272; Adams et al. (1996) Mech. Dev. 57:33-45; Christensen et al. (1996) (GenBank Z80941, Z93948)}, 5 galline (chicken) (collapsin-1 to -5) Accession No. {Luo et al. (1993); Luo et al. (1995) Neuron 14:1131-1140}, and genes from rats (R-Sema-III) {Giger et al. (1996) J. Comp. Neurol. 375:378-392}, zebra fish, insects (fruit fly (Drosophila melanogaster: D-Sema I and D-Sema II), beetles (Tribolium confusum: T-Sema-I), grasshoppers (Schistocerca americana: G-Sema-I)) {Kolodkin et al. (1993)}, and nematodes (C.elegans: Ce-Sema) {Roy et al. (1994) (GenBank Accession No. U15667)} have been disclosed. In addition, two poxviruses (vaccinia (ORF-A39) and variola (ORFA39-homologous)) {Kolodkin et al. (1993)} and alcelaphine herpesvirus Type 1 (AHV-1) (AHV-Sema) {Ensser and Fleckenstein (1995) Gen. Virol. 76:1063-1067} have genes homologous to semaphorins.

Table 1 summarizes the semaphorins identified to date in various species. Table 1 indicates the names of the semaphorins (column 1), the synonyms used (column 2), the species from which the particular semaphorin has been isolated (column 3) and, where known, data on the domain structure of the encoded protein and on the chromosomal location (column 4 in Table 1), the accession number under which the sequence of the gene is stored in gene databanks (for example in an EST (expressed sequence tags) databank, EMBL (European Molecular Biology Laboratory, Heidelberg) or NCBI (National Center for Biotechnology Information, Maryland, USA), and the corresponding reference under which these data have been published (column 5 in Table 1).

All the gene products (encoded semaphorins) of the semaphorin genes disclosed to date have an N-terminal signal peptide which has at its C-terminal end a characteristic Sema domain with a length of about 450 to 500 amino acids. Highly conserved amino acid motifs and a number of highly

conserved cysteine residues are located within the Sema domains. The gene products (semaphorins) differ in the C-terminal sequences which follow the Sema domains and are composed of one or more domains. They have, for example, in these C-terminal amino acid sequences transmembrane domains (TM), immunoglobulin-like domains (Ig) (constant part of the immunoglobulin), cytoplasmic sequences (CP), processing signals (P) (for example having the consensus sequence (RXR) where R is the amino acid arginine and X is any amino acid) and/or hydrophilic C termini (HPC). The semaphorins disclosed to date can be divided on the basis of the differences in the domain structure in the C terminus into 5 different subgroups (I to V):

l		Secreted, without other domains (for example ORF-A49)
11	lg	Secreted (without transmembrane domain) for example
		AHV-Sema)
Ш	lg, TM, CP	Membrane-anchored with cytoplasmic sequence
		(for example CD100)
IV	Ig, (P), HPC	Secreted with hydrophilic C terminus (for example
		H-Sema III, M-SemaD, collapsin-1)
V	lg, TM, CP	Membrane-anchored with C-terminal 7 thrombospondin
		motif (for example M-SemaF and G)

A receptor or extracellular ligand for semaphorins has not been described to date. Intracellular, heterotrimeric GTP-binding protein complexes have been described in connection with semaphorin-mediated effects. One component of these protein complexes which has been identified in chickens is called CRMP (collapsin response mediator protein) and is presumed to be a component of the semaphorin-induced intracellular signal cascade (Goshima et al. (1995) Nature 376: 509-514). CRMP62, for example, has homology with unc-33, a nematode protein which is essential for directed growth of axons. A human protein with 98% amino acid identity with CRMP62 is likewise known (Hamajima et al. (1996) Gene 180: 157-163). Several CRMP-related genes have likewise been described in rats (Wang et al. (1996) Neurosci. 16: 6197-6207).

The secreted or transmembrane semaphorins convey repulsive signals for growing nerve buds. They play a part in the development of the central nervous system (CNS) and are expressed in particular in muscle and nerve tissues (Kolodkin et al. (1993); Luo et al. (1993) Cell 75:217-227).

Pronounced expression of M-SemaG has been observed not only in the CNS but also in cells of the lymphatic and hematopoietic systems, in contrast to the closely related M-SemaF {Furuyima et al. (1996) J. Biol. Chem. 271: 33376-33381}.

Recently, two other human semaphorins have been identified, H-Sema IV and H-Sema V, specifically in a region on chromosome 3p21.3, whose deletion is associated with various types of bronchial carcinomas. H-Sema IV {Roche et al. (1996), Xiang et al. (1996), Sekido et al. (1996)} is about 50% identical at the amino acid level with M-SemaE, whereas H-Sema V {Sekido et al. (1996)} is the direct homolog of M-SemaA (86% amino acid identity). Since these genes (H-Sema IV and V) were found during DNA sequencing projects on the deleted 3p21.3 loci, the complex intron-exon structure of these two genes is known. Both genes are expressed in various neuronal and non-neuronal tissues.

Likewise only recently, the cellular surface molecule CD100 (human), expressed and induced on activated T cells, has been identified as a semaphorin (likewise listed in Table 1). It assists interaction with B cells via the CD40 receptor and the corresponding ligand CD40L. CD100 is a membrane-anchored glycoprotein dimer of 150 kd (kilodaltons). An association of the intracytoplasmic C-terminus of CD100 with an as yet unknown kinase has been described {Hall et al. (1996)}. This means that CD100 is the first and to date only semaphorin whose expression in cells of the immune system has been demonstrated.

In the "transforming genes of rhadinoviruses" project, the complete genome of alcelaphine herpesvirus Type 1 (AHV-1) has been cloned and sequenced {Ensser et al. (1995)}. AHV-1 is the causative agent of malignant catarrhal fever, a disease of various ruminants which is associated with a lymphoproliferative syndrome and is usually fatal. On analysis, an open reading frame was found, at one end of the viral genome, having remote but significant homology with a gene of vaccinia- virus (ORF-A39 corresponds to VAC-A39 in Ensser et al. (1995) J. Gen. Virol. 76:1063-1067) which has been assigned to the semaphorin gene family. Whereas the AHV-1 semaphorin (AHV-Sema) has a well-conserved semaphorin structure, the poxvirus genes (ORF-A39 and ORF-A39-homologous, see Table 1) have C-terminal truncations, i.e. the conserved Sema domain is present in them only incompletely.

Databank comparison of the found AHV-Sema with dbEST (EST (expressed sequence tags) databank (db)) provided in each case 2 EST sequences from 2 independent cDNA clones from human placenta (accession numbers H02902, H03806 (clone 151129), accession numbers R33439 and R33537 (clone 135941)). These display distinctly greater homology with AHV-1 semaphorin than with the neuronal semaphorins hitherto described.

SUMMARY OF THE INVENTION

The present invention relates to semaphorins which have a novel, as yet undisclosed and unexpected domain structure and which possess a biochemical function in the immune system (immunomodulating semaphorins). The novel semaphorins are referred to as type L semaphorins (SemaL). They comprise an N-terminal signal peptide, a characteristic Sema domain and, in the C-terminal region of the protein, an immunoglobulin-like domain and a hydrophobic domain which represents a potential transmembrane domain.

The amino acid sequence of the signal peptide may have fewer than 70, preferably fewer than 60 amino acids and more than 20, preferably more than 30 amino acids, and a particularly preferred length is of about 40 to 50 amino acids. In a specific embodiment of the invention, the signal peptide has a length of 44 amino acids, i.e. a cleavage site for a signal peptidase is located between amino acids 44 and 45.

The Sema domain may have a length of from 300 to 700 or more, preferably of about 400 to 600, amino acids. Preferred Sema domains have a length of 450 to 550 amino acids, preferably of about 500 amino acids. In a preferred embodiment of the invention, the Sema domain is joined to the signal peptide, in which case the Sema domain preferably extends up to amino acid 545.

The immunoglobulin-like domain may have a length of about 30 to 110 or more amino acids, and preferred lengths are between 50 and 90, particularly preferably about 70, amino acids.

The transmembrane domain may have a length of about 10 to 35, preferably of about 15 to 30, particularly preferably of about 20 to 25, amino acids.

The invention relates to type L semaphorins from various species, in particular from vertebrates, for example from birds and/or fishes, preferably from mammals, for example from primates, rat, rabbit, dog, cat, sheep, goat, cow, horse, pig, particularly preferably from human and mouse. The invention also relates to corresponding semaphorins from microorganisms, especially from pathogenic microorganisms, for example from bacteria, yeasts and/or viruses, for example from retroviruses, especially from human-pathogenic microorganisms.

BRIEF DECEPTION OF THE DRAWING

The invention will be described in greater detail with the aid of the following figures:

- Fig. 1 is a Multiple tissue Northern blot for the tissue-specific expression of H-SemaL.
- Fig. 2 is a diagrammic representation of the cloning of the H-SemaL cDNA and of the genomic organization of the H-SemaL encoding sequence.
 - Fig. 3 is a phylogenetic tree.
 - Fig. 4 is a FACS analysis of H-SEMAL expression in various cell lines.
 - Fig. 5 is a comparative analysis of CD 100 and H-SemaL expression.
- Fig. 6 is the expression of secretable human SEMA-L (H-SemaL) in HiFive and SC3 cells.
 - Fig. 7 depicts the specificity of the antiserum.
 - Fig. 8 is a plasmid map of pMelBacA-H-SEMAL.

DETAILED DESCRIPTION OF THE INVENTION

One embodiment of the invention is a corresponding human semaphorin (H-SemaL) which has a signal peptide, a Sema domain, an immunoglobulin-like domain and a transmembrane domain. A specific embodiment is the semaphorin which is given by the amino acid sequence shown in Table 4.

Another embodiment of the invention comprises corresponding semaphorins in other species which have, in the region of the Sema domain, an amino acid identity greater than 40%, preferably greater than 50%, particularly preferably greater than 60%, in relation to the Sema domain of H-SemaL (amino acids 45 to 545 of the sequence in Table 4). The corresponding semaphorins from closely related species (for example primates, mouse) may perfectly well have

amino acid identities of greater than 70%, preferably greater than 80%, particularly preferably greater than 90%. Percentage homologies can be determined or calculated for example using the GAP program (GCG program package, Genetic Computer Group (1991)).

Such an embodiment of the invention is a corresponding mouse semaphorin (murine semaphorin (M-SemaL)). This contains, for example, the partial amino acid sequence shown in Table 5 (murine semaphorin (M-SemaL)).

The invention also relates to corresponding semaphorins which have an amino acid identity (considered over the entire length of the amino acid sequence of the protein) of only about 15 to 20% in the case of less related species (very remote from one another phylogenetically), preferably 25 to 30%, particularly preferably 35 to 40%, or a higher identity in relation to the complete amino acid sequence of H-SemaL shown in Table 4.

The genes which code for type L semaphorins have a complex exon-intron structure. These genes may have, for example, between 10 and 20 exons, preferably about 11 to 18, particularly preferably 12 to 16, exons and a corresponding number of introns. However, they may also have the same number of exons and introns as does the gene of H-SemaL (13 or 15 exons, preferably 14 exons). A particular embodiment of the invention relates to the gene of H-SemaL. This gene preferably has a length of 8888 to 10,000 or more nucleotides. The human semaphorin gene preferably contains the nucleotide sequence given in Table 14 or the nucleotide sequence which has been deposited at the GenBank databank under accession number AF030697. These nucleotide sequences contain at least 13 introns. In addition, the human semaphorin gene has at the 5' end an additional sequence region. This region contains, where appropriate, further coding and uncoding sequences, for example one or two further introns or exons.

Attempts to locate the human type L semaphorin on the chromosome revealed that the corresponding gene is located at position 15q22.3-23. The gene for M-SemaL has correspondingly been located at position 9A3.3-B.

As a consequence of the complex intron-exon structure, the splicing of the primary transcript of the semaphorin mRNA may vary, resulting in different splicing variants of the semaphorins. The proteins translated from these splicing variants are derivatives of the semaphorins according to the invention. They correspond in their amino acid sequence and also substantially in their domain structure to the described type L semaphorins according to the invention, but are truncated by comparison with the latter where appropriate. For example, splicing variants wholly or partly lacking the transmembrane domain may be formed. A semaphorin derivative which contains an incomplete, or no, transmembrane domain, but contains a signal peptide, may be secreted and in this way have effects outside the cell, locally or else over relatively large distances, for example on other cells. Another splicing variant may, for example, no longer contain a sequence which codes for a signal peptide and, where appropriate, also no sequence which codes for a hydrophobic amino acid sequence representing a potential transmembrane domain. One consequence would be that this semaphorin derivative is neither incorporated into the membrane nor secreted (unless through secretory vesicles). Such a semaphorin derivative may be involved in intracellular processes, for example in signal transduction processes. It is possible in this way for a wide variety of intra- and extracellular processes to be controlled and/or harmonized with the same basic molecule (type L semaphorins) and the derivatives derived therefrom (for example splicing variants).

A particular embodiment of the invention relates to semaphorin derivatives which are derived from the type L semaphorins according to the invention but which contain an incomplete, or no, transmembrane domain.

Another embodiment of the invention relates to semaphorin derivatives which are derived from the type L semaphorins according to the invention but which contain no signal peptide.

The signal peptide may also undergo post-translational elimination. This forms a membrane-bound (with TM domain) or a secreted (splicing variant without TM domain) semaphorin derivative with truncated domain structure. A semaphorin derivative which has undergone post-translational processing in this way now contains only Sema domain, Ig domain and, where appropriate, transmembrane domain. A signal peptide cleavage site can be located, for example, right at the end of the signal peptide, but it may, for example, be located 40 to 50 amino acids or more away from the amino terminus.

A "truncated" (i.e. containing fewer domains) semaphorin L derivative can be distinguished from other semaphorins which are not derived from type L semaphorins in that there is a very great (> 90%) amino acid identity or an identical amino acid sequence with the type L semaphorins in the domains which are present.

The semaphorins according to the invention may also have undergone post-translational modification in other ways. For example, they may be glycosylated (N- and/or O-glycosylated) once, twice, three, four, five, six, seven, eight, nine, ten or more times. The amino acid sequences of the semaphorins may then have an equal number of or more consensus sequences for potential glycosylation sites, preferably five such sites. One embodiment of the invention relates to semaphorins in which the glycosylation sites are located at positions which correspond to positions 105, 157, 258, 330 and 602 of the H-SemaL amino acid sequence (Table 4).

In addition, the semaphorins may be in the form of their phosphorylated derivatives. Semaphorins may be the substrates of various kinases, for example the amino acid sequences may have consensus sequences for protein kinase C, tyrosine kinase and/or creatine kinases. In addition, the

amino acid sequences of the semaphorins may have consensus sequences for potential myristylation sites. Corresponding semaphorin derivatives may be esterified with myristic acid at these sites.

The type L semaphorins according to the invention and their derivatives may be in the form of monomers, dimers and/or multimers, for example two or more semaphorins or their derivatives can be linked together by intermolecular disulfide bridges. It is also possible for intramolecular disulfide bridges to be formed.

Further derivatives of the semaphorins according to the invention are fusion proteins. A fusion protein of this type contains, on the one hand, a type L semaphorin or parts thereof and, in addition, another peptide or protein or a part thereof. Peptides or proteins or parts thereof may be, for example, epitope tags (for example His tag (6xhistidine), Myc tag, flu tag) which can be used, for example, for purifying the fusion proteins, or those which can be used for labeling the fusion proteins, for example GFP (green fluorescent protein). Examples of derivatives of the type L semaphorins are given for example by the constructs described in the examples. The sequences of these constructs can be found in Tables 7 to 15, where appropriate taking account of the annotations relating to the plasmids.

The invention further relates to nucleic acid sequences, preferably DNA and RNA sequences, which code for the type L semaphorins according to the invention and/or their derivatives, for example the corresponding genes, the various splicing variants of the mRNA, the cDNAs corresponding thereto, and derivatives thereof, for example salts of the DNA or RNA. Derivatives for the purpose of the inventions are sequences or parts thereof which have been modified, for example, by methods of molecular biology and adapted to the particular requirements, for example truncated genes or parts of genes (for example promoter sequences, terminator sequences), cDNAs or chimeras thereof, constructs for expression and cloning and salts thereof.

One embodiment relates to the genomic sequences (genes) of the type L semaphorins. The invention relates to the intron and exon sequences and gene-regulatory sequences, for example promoter, enhancer and silencer sequences.

This embodiment relates on the one hand to the gene of H-SemaL or its derivatives. The invention relates on the one hand to a gene which comprises the nucleotide sequence given in Table 14. The invention further relates to the gene which comprises the nucleotide sequence which is deposited in the GenBank databank under accession number AF030697.

This embodiment further relates to the gene of M-SemaL and its derivatives.

The invention further relates to the cDNA of H-SemaL or its derivatives (for example parts of the cDNA). A particular embodiment is the cDNA of H-SemaL according to the nucleotide sequence in Table 2. The invention further relates to the cDNA of H-SemaL which is deposited in the GenBank databank under accession number AF030698. The invention also relates to the mRNAs corresponding to these cDNAs, or parts thereof.

The invention further relates to the cDNA of M-SemaL or its derivatives (for example parts of the cDNA). A particular embodiment is the partial cDNA sequence of M-SemaL shown in Table 3, and cDNA sequences which comprise this partial cDNA sequence. Another embodiment of the invention relates to the cDNA of M-SemaL which is deposited in the GenBank databank under accession number AF030699. The invention also relates to the mRNAs corresponding to these cDNAs, or parts thereof.

The invention also comprises alleles and/or individual expression forms of the genes/mRNAs/cDNAs which differ only slightly from the semaphorin sequences described herein and code for an identical or only slightly modified protein (difference in the amino acid sequence less than or equal to 10%) (further example of derivatives). Further examples of the derivatives are given

by the constructs indicated in the examples. The sequences of these constructs are depicted in Tables 7 to 14 and can be interpreted taking account of the annotation for plasmids.

The invention further relates to plasmids which comprise DNA which codes for the type L semaphorins or derivatives thereof. Plasmids of this type may be, for example, plasmids with high replication rates suitable for amplification of the DNA, for example in E. coli.

A specific embodiment comprises expression plasmids with which the semaphorins or parts thereof or their derivatives can be expressed in prokaryotic and/or eukaryotic expression systems. Both constitutive expression plasmids and those containing inducible promoters are suitable.

The invention also relates to processes for preparing nucleic acids which code for type L semaphorins or derivatives thereof.

These nucleic acids, for example DNA or RNA, can be synthesized, for example, by chemical means. In particular, it is possible for these nucleic acids, for example the corresponding genes or cDNAs or parts thereof, to be amplified by PCR using specific primers and suitable starting material as template. (For example cDNA from a suitable tissue or genomic DNA).

A specific process for preparing semaphorin L cDNA and the H-SemaL gene is described in the examples.

The invention also relates to processes for preparing type L semaphorins. For example, a semaphorin L or a derivative thereof can be prepared by cloning a corresponding nucleic acid sequence which codes for a type L semaphorin or a derivative thereof into an expression vector and using the latter recombinant vector to transform a suitable cell. It is possible to use, for example, prokaryotic or eukaryotic cells. The type L semaphorins or derivatives thereof may also, where appropriate, be prepared by chemical means.

In addition, the type L semaphorins and derivatives thereof can be expressed as fusion proteins, for example with proteins or peptides which permit detection of the expressed fusion protein, for example as fusion protein with GFP (green fluorescent protein). The semaphorins may also be expressed as fusion proteins with one, two, three or more epitope tags, for example with Myc and/or His (6xhistidine) and/or flu tags. It is correspondingly possible to use or prepare plasmids which comprise DNA sequences which code for these fusion proteins. For example, semaphorin-encoding sequences can be cloned into plasmids which contain DNA sequences which code for GFP and/or epitope tags, for example Myc tag, His tag, flu tag. Specific examples thereof are given by the examples and the sequences listed in the tables, where appropriate with the assistance of the annotation relating to the plasmids.

The invention further relates to antibodies which specifically bind or recognize the type L semaphorins, derivatives thereof or parts thereof. Possible examples thereof are polyclonal or monoclonal antibodies which can be produced, for example, in mouse, rabbit, goat, sheep, chicken etc.

A particular embodiment of this subject-matter of the invention comprises antibodies directed against the epitopes which correspond to the amino acid sequences from position 179 to 378 or 480 to 666 of the H-SemaL sequence shown in Table 4. The invention also relates to a process for preparing specific anti-semaphorin L antibodies, using for the preparation antigens comprising said epitopes.

The invention also relates to processes for preparing the antibodies, preferably using for this purpose a fusion protein consisting of a characteristic semaphorin epitope and an epitope tag which can be used for the subsequent purification of the recombinant fusion protein. The purified fusion protein can subsequently be used for the immunization. To prepare the recombinant fusion protein, a corresponding recombinant expression vector is prepared

and used to transform a suitable cell. The recombinant fusion protein can be isolated from this cell. The procedure can be, for example, like that described in Example 8.

These antibodies can be used, for example, for purifying the corresponding semaphorins, for example H-SemaL and its derivatives, for example on affinity columns, or for the immunological detection of the proteins, for example in an ELISA, in a Western blot and/or in immunohistochemistry. The antibodies can also be used to analyze the expression of H-SemaL, for example in various cell types or cell lines.

The cDNA of H-SemaL has a length of 2636 nucleotides (Table 2). The gene product of the H-SemaL cDNA has a length of about 666 amino acids (Table 4) and displays the typical domain structure of a type L semaphorin. The gene product has an N-terminal signal peptide (amino acids 1 to 44), Sema domain (amino acid 45 to approximately amino acid 545), and Ig (immunoglobulin) domain (approximately amino acids 550 to 620) and, at the C-terminal end, a hydrophobic amino acid potential sequence which represents transmembrane domain. This domain structure has never previously been described for semaphorins. It relates to a membrane-associated glycoprotein which is probably located on the cell surface and belongs to a new subgroup. On the basis of this previously unknown domain structure, the semaphorins can now be divided into VI subgroups:

I		Secreted, without other domains (for example ORF-A49)
Ħ	lg	Secreted (without transmembrane domain) (for example
		AHV-Sema)
III	lg, TM, CP	Membrane-anchored with cytoplasmic sequence (for
		example CD100)
IV	Ig, (P), HPC	Secreted with hydrophilic C terminus (for example
		H-Sema-III, M-SemaD, collapsin-1)
V	lg, TM, CP	Membrane-anchored with C-terminal 7 thrombospondin
		motif (for example M-SemaF and G)

VI Ig, TM Membrane-anchored (for example H-SemaL, M-SemaL)

The unglycosylated, unprocessed form of H-SemaL has a calculated molecular weight of about 74.8 kd (74823 dalton) (calculated using Peptide-Sort, GCG program package). The isoelectric point is calculated to be pH = 7.56.

A possible signal peptide cleavage site is located between amino acids 44 and 45 (Table 3; calculated with SignalP (http://www.cbs.dtu.dk/services/Signal P), a program based on neural networks for analyzing signal sequences {Nielsen H. et. al. (1997) Protein Engineering 10:1-6}). This gives for the processed protein (without signal peptide) a molecular weight (MW) of 70.3 kd (70323 dalton) and an isoelectric point of pH=7.01.

The genomic structure is likewise substantially elucidated. The H-SemaL gene has 13 or 15 or more exons, preferably 14 exons, and 12 or 14 introns, preferably 13 introns. Because of this complex exon-intron structure, various splicing variants are possible. The mRNA of the transcribed H-SemaL gene is found in the Northern blot particularly in placenta, gonads, thymus and spleen. No mRNA has been detected in neuronal tissue or in muscle tissue. There is evidence of specifically regulated expression in endothelial cells.

Alternative splicing may also result in forms of H-SemaL with intracytoplasmic sequences which are involved in intracellular signal transduction, similar to, for example, CD100. It would likewise be possible for alternative splicing to result in secreted forms of H-SemaL, analogous to viral AHV-Sema.

Nucleotide and amino acid sequence analyses were performed with the aid of the GCG program package (Genetics Computer Group (1991) Program manual for the GCG package, Version 7, 575 Science Drive, Wisconsin, USA 53711), FASTA (Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85, 2444-

2448) and BLAST program (Gish and States (1993) Nat. Genet.3, 266-272; Altschul et al. (1990) J. Mol. Biol. 215, 403-410). These programs were also used for sequence comparisons with GenBank (Version 102.0) and Swiss Prot (Version 34.0).

Post-translational modifications such as glycosylation and myristylation of H-SemaL are likewise possible. Consensus sequences for N-glycosylation sites were found with the aid of the Prosite program (GCG program package) at positions 105, 157, 258, 330 and 602 of the amino acid sequence of H-SemaL (shown in Table 4), and those for myristylation were found at positions 114, 139, 271, 498, 499, 502 and 654 (consensus sequence: G~(E, D, R, K, H, P, F, Y, W) x (S, T, A,G, C, N)~(P)). In addition, the amino acid sequence of H-SemaL contains several consensus sequences for potential phosphorylation sites for various kinases. It can therefore be assumed that H-SemaL can be the substrate of various kinases, for example phosphorylation sites for creatine kinase 2, protein kinase C and tyrosine kinase.

Predicted creatine kinase 2 phosphorylation sites (consensus sequence Ck2: (S,T)x2(D,E)) (Prosite, GCG) at positions 119, 131, 173, 338, 419 and 481 of the amino acid sequence.

Predicted protein kinase C phosphorylation sites (consensus sequence PkC: (S,T)x(R,K)) (Prosite, GCG) at positions 107, 115, 190, 296, 350, 431, 524 and 576 of the amino acid sequence.

Predicted tyrosine kinase phosphorylation site (consensus sequence: $(R,K)x\{2,3\}(D,E)x\{2,3\}Y$) (Prosite, GCG) at position 205 of the amino acid sequence.

The consensus sequences are indicated in the single letter code for amino acids.

An "RGD" motif (arginine-glycine-aspartic acid) characteristic of integrins is located at position 267.

The glycosylation sites are highly conserved between viral AHV-Sema, H-SemaL and (as far as is known) M-SemaL.

Di- or multimerization of H-SemaL is possible and has been described for other semaphorins such as CD100 {Hall et al. (1996)}. The CD100 molecule is likewise a membrane-anchored glycoprotein dimer of 150kd. However, CD100 is not closely related to the human semaphorin (H-SemaL) according to the invention.

The partial cDNA sequence of M-SemaL has a length of 1195 nucleotides. This sequence codes for a protein having 394 amino acids. These 394 amino acids correspond to amino acids 1 to 396 of H-SemaL. The signal peptide in M-SemaL extends over amino acids 1 to 44 (exactly as in H-SemaL). The Sema domain starts at amino acid 45 and extends up to the end or probably beyond the end of the sequence shown in Table 4.

Multiple alignments were carried out using the Clustal W program (Thompson et al. (1994)). These alignments were processed further manually using SEAVIEW (Galtier et al. (1996) Comput. Appl. Biosci 12, 543-548). The phylogenetic distances were determined using Clustal W (Thompson et al. (1994)).

Comparison of the protein sequences of the known and of the novel semaphorins and phylogenetic analysis of these sequences shows that the genes can be categorized according to their phylogenetic relationship. The C-terminal domain structure of the corresponding semaphorin subtypes is, of course, involved in this as a factor deciding why semaphorins in the same subgroups are, as a rule, also more closely related phylogenetically than are semaphorins in different subgroups. The species from which the semaphorin

was isolated also has an influence, i.e. whether the corresponding species are phylogenetically closely related to one another or not.

A phylogenetic analysis (compare Figure 3) of the known semaphorin amino acid sequences (complete sequences and/or part-sequences, using the amino acid sequences for H-SemaL and M-SemaL shown in Tables 4 and 5 and for all other sequences the sequences stored under the accession numbers or the encoded amino acid sequences derived from these sequences) using the CLUSTAL W program {Thompson J.D. et al. (1994) Nucleic Acids Res. 22:4673-4680} shows that the amino acid sequences of H-SemaL and M-SemaL are phylogenetically closely related to one another and form a separate phylogenetic group. H-SemaL and M-SemaL in turn are phylogenetically most closely related to AHV-Sema and Vac-A39. The are distinctly more closely related to one another than to any other previously disclosed semaphorin. The analysis also shows that other semaphorins are also phylogenetically closely related to one another and form separate groups within the semaphorins. For example, the semaphorins which are secreted, for example H-Sema III, -IV, -V and -E belong in one phylogenetic group. Their homologs in other species also belong to this subfamily, whereas the human (transmembrane) CD100 belongs in one phylogenetic group together with the corresponding mouse homolog (M-SemaG2) and with Collapsin-4.

In relation to the complete amino acid sequences, the observed homologies within the phylogenetic groups are between about 90% and 80% amino acid identity in relation to very closely related genes such as, for example, H- and M-SemaE or -III/D and somewhat less than 40% in the case of less related genes of the semaphorins. Within the Sema domain, the observed amino acid identity is a few percent higher, and, owing to its great contribution to the total protein (50-80% of the protein belong to the Sema domain) of the amino acid sequence, this considerably influences the overall identity.

H-SemaL is, calculated for the complete protein, 46% identical with AHV-Sema, but if the Sema domain is considered on its own, then the amino

acid identity is 53%. This is higher than, for example, between the related M-Sema-B and -C (37% identity in relation to the complete protein, 43% identity in relation to the Sema domain), similar to M-SemaA and -E (43% complete protein, 53% Sema domain). The amino acid identity between the partial M-SemaL sequence (Table 6) and H-SemaL (Table 5) in the region of the Sema domain is 93% so that it can be assumed that the correspondingly homologous mouse gene is involved.

Semaphorins corresponding to H-SemaL and M-SemaL in other species may have an amino acid identity within the Sema domain of more than 40% in relation to H-SemaL. In closely related vertebrates (mammals, birds) amino acid identities above 70% may even be found.

The semaphorins belong to a new subfamily with greater amino acid identity to the viral AHV-Sema than to the previously disclosed human and murine semaphorins, and with a C-terminal structure not previously disclosed for human semaphorins. These novel semaphorins (members of the subfamily) are distinguished by belonging, because of their domain structure, to subgroup IV and/or to the same phylogenetic group as H-SemaL and M-SemaL and/or have, in relation to the complete amino acid sequence, an amino acid identity of at least 30 to 40%, preferably 50 to 60%, particularly preferably 70 to 80%, or a greater identity, to H-SemaL and/or have, in relation to the Sema domain, an amino acid identity of at least 70%, preferably greater than 80%, particularly preferably greater than 90%, to H-SemaL.

The type L semaphorins also have a different type of biochemical function. One novel function of these semaphorins is modulation of the immune system.

The closest relative of H-SemaL is the viral AHV semaphorin (AHV-Sema). The latter has a similar size but, in contrast to H-SemaL, has no transmembrane domain. AHV-Sema is presumably secreted by virus-infected

cells in order to block the H-SemaL equivalent receptor (type L semaphorin in the blue wildebeest) in the natural host (blue wildebeest) and thus elude the attack of the immune system. It is also conceivable that there is a function as repulsive agent (chemorepellant) for cells of the immune system.

The biochemical function of the novel type L semaphorins and derivatives thereof is to be regarded as generally immunomodulating and/or inflammation-modulating. They are able on the one hand

A) as molecules inhibiting the immune response to display their effect as chemorepellant and/or immunosuppressant either locally, for example as transmembrane protein on the surface of cells, or else over larger distances, for example if they are secreted due to processing (for example proteases) or alternative splicing, for example by diffusion in the tissue.

For example, expression of these novel type L semaphorins for example on the surface of the cells of the vascular endothelium can prevent leukocyte attachment and migration thereof through the vessel wall. The novel semaphorins may play a part in maintenance of barrier effects, for example to prevent infections in particularly "important" or exposed organs, for example to maintain the blood-brain barrier, the placental circulation and/or other immunologically privileged locations (for example pancreatic islets) and/or in prevention of autoimmune diseases. In addition, the novel semaphorins and/or their derivatives may also be involved in repulsive signals in various tissues, for example for cells of the immune system (for example leukocytes) to prevent inadvertent activation of defense mechanisms.

B) In addition, the novel semaphorins and/or derivatives thereof may have functions as accessory molecules. Expressed on the cell surface, they may, for example, be involved in the interaction with cells of the

immune system as part of the activation of defense mechanisms, for example in cases of virus infection.

This reveals several possible uses of the novel type L semaphorins and derivatives thereof, and the nucleic acids coding for these proteins.

Function A): This comprises an immunosuppressant and/or anti-inflammatory principle: there are numerous potential possibilities of use in the areas of organ transplantation, therapy of inflammations, immunotherapy and gene therapy.

For example, nonhuman, transgenic animals can be produced with the aid of the semaphorin-encoding DNA or derivatives thereof.

One possible use of these animals is in the inhibition of transplant rejection in transgenic models of organ transplantations. For example, transgenic animal organs protected against rejection can be produced for xenotransplantations. This ought to be possible for example also together with other transgenes (for example complement regulators such as DAF or CD59). Another use is in the production of nonhuman knock-out animals, for example knock-out mice ("Laboratory Protocols for Gene-Targeting", Torres and Kühn (1997) Oxford University Press, ISBN 0-19-963677-X): It is possible by knocking out the mouse M-SemaL gene for example to find other functions of the gene. They also represent potential model systems for inflammatory diseases if the mice can survive without semaphorin gene. If M-SemaL is important for immunomodulation, a plurality of such mice is to be expected. In addition, nonhuman knock-in animals, for example mice, can be produced. This entails, for example, replacing M-SemaL by normal/modified H-SemaL or modified M-SemaL (for example integration of the novel semaphorin subtypes under the control of constitutive and/or inducible promoters). Animals of this type can be used, for example, for looking for further functions of the novel semaphorins, for example functions of the human gene or derivatives of these genes, or be used for identifying and characterizing immunomodulating agents.

Use of, for example, nucleic acids which code for type L semaphorins or derivatives thereof for producing, for example, recombinant immunosuppressants, other soluble proteins or peptides derived from the amino acid sequence of type L semaphorins, for example from H-SemaL or the corresponding nucleic acids, for example genes. It is also possible in a similar way to produce agonists with structural similarity. These immunosuppressant agents or agonists may be used for autoimmune diseases and inflammatory disorders and/or organ transplantations too.

Gene therapy with type L semaphorins, for example with nucleic acids which code for H-SemaL or derivatives thereof, for example using viral or nonviral methods. Use in autoimmune diseases and inflammatory disorders, the transduction of organs and before/during/after transplantations to prevent transplant rejection.

It is particularly possible to employ the novel semaphorins and/or the nucleic acids coding for these semaphorins, and derivatives thereof, in particular H-SemaL, DNA coding for H-SemaL, and derivatives thereof, in a method for screening for agents, in particular for identifying and characterizing immunomodulating agents.

Function B): H-SemaL is an accessory molecule which is expressed on the cell surface and is involved in the interaction with cells, for example of the immune system, for example as accessory molecule in the activation of signal pathways. A viral gene or the gene product of a viral or other pathogenic gene, for example of microbiological origin, might act, for example, as competitive inhibitor of this accessory molecule. One use of the novel semaphorins with this function is likewise in the area of organ transplantation, therapy of inflammation, immunotherapy and/or gene therapy.

For example, the novel semaphorins can be used in a method for screening for antagonistic agents or inhibitors. Agents identified in this way can then be employed, for example, for blocking the semaphorin receptor. Soluble and/or secreted H-SemaL antagonists or inhibitors may be, for example, chemical substances or the novel semaphorins or derivatives thereof themselves (for example parts/truncated forms thereof, for example without membrane domain or as Ig fusion proteins or peptides derived from the latter, which are suitable for blocking the corresponding receptor). Specific antagonists and/or inhibitors identified in this way may, for example, have competitive effects and be employed for inhibiting rejection, for example in transgenic models of organ transplantations and for autoimmune diseases, inflammatory disorders and organ transplantations. Nucleic acids, for example DNA, which code for the novel semaphorins, or derivatives thereof produced with the aid of methods of molecular biology, may be used, for example, for producing nonhuman transgenic animals. Overexpression of H-SemaL in these transgenic animals may lead to increased susceptibility to autoimmune diseases and/or inflammatory disorders. Such transgenic animals are thus suitable for screening for novel specific immunomodulating agents.

Such nucleic acids can likewise be used to produce nonhuman knock-out animals, for example knock-out mice in which the mouse M-SemaL gene is switched off. Such knock-out animals can be employed to search for further biochemical functions of the gene. They also represent potential model systems for inflammatory disorders if the mice are able to survive without the M-SemaL gene.

This DNA can likewise be used to produce nonhuman knock-in animals, for example mice. This entails the M-SemaL gene being replaced by a modified M-SemaL gene/cDNA or an optionally modified, for example mutated, type L semaphorin gene/cDNA of another species, for example H-SemaL. Such transgenic animals can be used to look for further functions of the semaphorins according to the invention.

The invention also relates to the use of the type L semaphorins and derivatives thereof, and of the nucleic acids coding for these proteins, for

example genes/cDNAs and derivatives thereof and/or agents identified with the aid of these semaphorins for producing pharmaceuticals. It is possible, for example, to produce pharmaceuticals which can be used in gene therapy and which comprise agonists and/or antagonists of the expression of the type L semaphorins, for example of H-SemaL. It is possible to use for this purpose, for example, viral and/or nonviral methods. These pharmaceuticals can be employed, for example, for autoimmune diseases and inflammatory disorders, organ transplantations before and/or during and/or after the transplantation to prevent rejection.

The nucleic acids coding for the novel semaphorins, for example genes, cDNAs and derivatives thereof, can also be employed as aids in molecular biology.

In addition, the novel semaphorins, especially H-SemaL and nucleic acids, for example genes/cDNAs thereof can be employed in methods for screening for novel agents. Modified proteins and/or peptides derived, for example, from H-SemaL and/or M-SemaL can be used to look for the corresponding receptor and/or its antagonists or agonist in functional assays, for example using expression constructs of H-SemaL and homologs.

The invention also relates to the use of a type L semaphorin or a nucleic acid sequence which codes for a type L semaphorin in a method for identifying pharmacological agents, especially immunomodulating agents.

The invention also relates to methods for identifying agents employing a type L semaphorin or a derivative thereof or a nucleic acid sequence which codes for a type L semaphorin, or a derivative thereof, in order to identify pharmacological agents, for example immunomodulating agents. The invention relates, for example, to a method in which a type L semaphorin is incubated under defined conditions with an agent to be investigated and, in parallel, a second batch is carried out without the agent to be investigated but

under conditions which are otherwise the same, and then the inhibiting or activating effect of the agent to be investigated is determined.

The invention also relates, for example, to methods for identifying agents where a nucleic acid sequence which codes for a type L semaphorin or a derivative thereof is expressed under defined conditions in the presence of an agent to be investigated, and the extent of the expression is determined. It is also possible, where appropriate, in such a method to carry out two or more batches in parallel under the same conditions but with the batches containing different amounts of the agent to be investigated.

For example, the agent to be investigated may inhibit or activate transcription and/or translation.

The type L semaphorin can, like its viral homologs, bind to the newly described receptor molecule VESPR (Comeau et al, (1998) Immunity, Vol. 8, 473-482) and in monocytes can presumably cause induction of cell adhesion molecules such as ICAM-1 and cytokines such as interleukin-6 and interleukin-8. This may lead to activation thereof and to cell aggregation. The expression pattern of the VESPR receptor shows some interesting parallels with H-SemaL, for example strong expression in placenta and pronounced expression in spleen tissue. Interactions with other as yet unknown receptors of the plexin family or other receptors are possible. It may also interact with itself or other semaphorin-like molecules. Interaction of the type L semaphorins may take place in particular via a conserved domain in the C-terminal region of the Sema domain.

Concerning the annotation on plasmids:

pMelBacA-H-SemaL (6622bp) in pMelBacA (Invitrogen, De Schelp, NL) (SEQ ID NO.42). Nucleotide 96-98 ATG – start codon, nucleotide 96-168 mellitin signal sequence, nucleotide 168-173 BamHI cleavage site (PCR/cloning), nucleotide 171-1998 reading frame SEMA-L amino acids 42-649 (without own

signal sequence and without transmembrane sequence), nucleotide 1993-1998 EcoRI cleavage site (PCR/cloning) and nucleotide 1992-1994 stop codon

Plasmid pCDNA3.1-H-SemaL-MychisA (7475 bp) (SEQ ID NO. 35): nucleotide 954-959 BamHI cleavage site (cloning), nucleotide 968-970 ATG SEMAL, nucleotide 968-2965 reading frame SEMAL, nucleotide 2963-2968 PmI I cleavage site, nucleotide 2969-2974 HindIII cleavage site, nucleotide 2981-3013 Myc tag, nucleotide 3026-3033 6xHis tag, nucleotide 3034-3036 stop codon,

Plasmid pCDNA3.1-H-SemaL-EGFP-MychisA (8192 bp):(SEQ ID NO. 36): nucleotide 954-959 BamHI cleavage site (cloning), nucleotide 968-970 ATG SEMA-L, nucleotide 968-2965 reading frame SEMA-L, nucleotide 2963-2965 half PmI I cleavage site, nucleotide 2966-3682 reading frame EGFP (cloned in PmI I), nucleotide 3683-3685 half PmI I cleavage site, nucleotide 3685-3691 HindIII, nucleotide 3698-3730 Myc tag, nucleotide 3743-3760 6xHis tag, and nucleotide 3761-3763 stop codon

Plasmid pIND-H-SemaL-EA (7108 bp) in vector pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 38): nucleotide 533-538 BamHI cleavage site (cloning), nucleotide 546-548 ATG SEMA-L, nucleotide 546- reading frame SEMA-L, nucleotide 2542-2547 PmI I cleavage site, nucleotide 2548-2553 HindIII cleavage site and nucleotide 2563-2565 stop codon.

Plasmid pIND-H-SemaL-EE (total length 7102 bp) in vector pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 37): nucleotide 533-538 BamHI cleavage site (cloning), nucleotide 546-548 ATG SEMA-L, nucleotide 546- reading frame SEMA-L, nucleotide 2542-2547 Pml I cleavage site, nucleotide 2548-2553 HindIII cleavage site, nucleotide 2560-2592 Myc tag, nucleotide 2605-2622 6xHis tag and nucleotide 2623-2625 stop codon.

Plasmid pQE30-H-SemaL-179-378.seq (4019 bp) in vector pQE30 (Qiagen, Hilden) corresponds to pQE30-H-SemaLBH (SEQ ID No. 39): nucleotide 115-117 ATG, nucleotide 127-144 6xHis tag, nucleotide 145-750 BamHI-HindIII PCR fragment SEMA-L amino acids (aa) 179-378 and nucleotide 758-760 stop codon.

Plasmid pQE31-H-SemaL- (SH (3999 bp) in vector pQE31 (Qiagen, Hilden) (SEQ ID No. 40): nucleotide 115-117 ATG, nucleotide 127-144 6xHis tag, nucleotide (147-152 BamHI), nucleotide 159-729 SacI-HindIII fragment SEMA-L (C-terminal) aa480-666 and nucleotide 734-736 stop codon.

Examples:

Experimental conditions used in the examples:

PCR programs used:

Taq52-60 (with Ampli-Taq^R polymerase, Perkin Elmer, Weil der Stadt,

Germany)

96°C/60s 1 cycle

96°C/15s-52°C/20s-70°C/60s 40 cycles

70°C/60s 1 cycle

Taq60-30

96°C/60s 1 cycle

96°C/15s-60°C/20s-70°C/30s 35 cycles

70°C/60s 1 cycle

Taq60-60

96°C/60s 1 cycle

96°C/15s-60°C/20s-70°C/60s 35 cycles

70°C/60s 1 cycle

Taq62-40

96°C/60s 1 cycle

96°C/15s-62°C/20s-70°C/40s 35 cycles

70°C/60s 1 cycle

Reaction conditions used for PCR with Taq polymerase:

50 μ l reaction mixtures with 100-200ng of template, 200 μ M dNTP, 0.2-0.4 μ M each primer, 2.5U of Ampli-Taq R , 5 μ l of the 10x reaction buffer supplied

Programs used for:

1. XL62-6 (with expand-long template PCR System^R,

Boehringer Mannheim, Germany)

94°C/60s 1 cycle 94°C/15s-62°C/30s-68°C/6min 10 cycles 94°C/15s-62°C/30s-68°C/(6min+15s/cycle) 25 cycles 68°C / 7min 1 cycle

2. XL62-12 (with expand-long template PCR System^R, Boehringer Mannheim, Germany)

94°C/60s 1 cycle 94°C/15s-62°C/30s-68°C/12min 10 cycles 94°C/15s-62°C/30s-68°C/(12min+15s/cycle) 25 cycles 68°C / 7min 1 cycle

Reaction conditions for PCR with expand-long template PCR System 50 μ l reaction mixtures with 100-200ng of template, 500 μ M dNTP, 0.2-0.4 μ M each primer, 0.75 μ l of enzyme mix, 5 μ l of the 10x reaction buffer No. 2 supplied.

Example 1:

Starting from AHV-Sema sequences (Ensser & Fleckenstein (1995), J. General Virol. 76: 1063-1067), PCRs and RACE-PCRs were carried out. The starting material used for this was human cDNA from placental tissue onto which adaptors had been ligated for the RACE amplification (Marathon TM -cDNA Amplification Laboratories GmbH, Kit, Clontech Tullastraße 4, 69126 Heidelberg, Germany). Firstly specific primers (No. 121234 + No. 121236, Table 6) were used to amplify a PCR fragment with a length of about 800bp (base pairs) (PCR program: (Taq60-60)). This was cloned and sequenced (Taq dye-deoxy terminator sequencing kit, Applied Biosystems, Foster City, CA, USA/ Brunnenweg 13, Weil der Stadt). Sequencing of the PCR product revealed a sequence which has a high degree of homology with the DNA sequence of AHV-Sema, identical to the sequence of the two ESTs.

A PCR fragment of 600bp was identified using the primer pair (No. 121237 + No. 121239, Table 6). It emerged that they were clones with DNA sequences from the same gene.

Example 2:

The 800bp PCR fragment from Example 1 was radiolabeled (random priming by the method of {Feinberg (1983) Anal. Biochem. 132:6-13}, with $^{32}\text{P-}\alpha\text{-}d\text{CTP})$ and used as probe for a multitissue Northern blot (Human Multiple Tissue Northern Blot II, Clontech, Heidelberg, Germany) which contains mRNA samples from the tissues spleen, thymus, prostate, testes, ovaries, small intestine, large intestine and leukocytes (PBL). This clearly showed expression of an mRNA with a length of about 3.3kb in spleen and gonads (testes, ovaries), and less strongly in the thymus and intestine. Hybridization of a master blot (dot-blot with RNA from numerous tissues (Human RNA Master Blot TM , Clontech)) confirmed this result and also showed strong expression in placental tissue.

Hybridization was carried out under stringent conditions (5xSSC, 50 mM Na phosphate pH 6.8, 50% formamide, 100 μ g/ml yeast RNA) at 42°C for 16 hours. The blots were washed stringently (65°C, 0.2XSSC, 0.1% SDS) and exposed to a Fuji BAS2000 Phosphoimager TM .

Example 3:

A cDNA library from human spleen, cloned in the bacteriophage Lambda gt10 (Human Spleen 5' STRETCH PLUS cDNA, Clontech), was screened with this probe, and a lambda clone was identified. The cDNA with a length of 1.6kb inserted in this clone was amplified by PCR (Expand Long Template PCR System, Boehringer Mannheim GmbH, Sandhofer Straße 116, 68305 Mannheim) using the vector-specific primers No. 207608 + No. 207609 (Table 6) (flanking the EcoRI cloning site), and the resulting PCR fragment was sequenced. This clone contained the 5' end of the cDNA and also extended

the known cDNA sequence in the 3' direction. Starting from the new part-sequences of the cDNA, new primers for the RACE-PCR were developed (No. 232643, No. 232644, No. 233084, Table 6). Together with an improved thermocycler technique (PTC-200 from MJ-Research, Biozym Diagnostik GmbH, 31833 Hess. Oldendorf) with distinctly better performance data (heating and cooling rates), a 3' RACE-PCR product was amplified using the primers No. 232644 and No. 232643 and AP1, and was cloned into the vector pCR2.1 (Invitrogen, De Schelp 12, 9351 NV Leek, The Netherlands). The 3' RACE-PCR product was sequenced and the 3' end of the cDNA was identified in this way. A RACE amplification in the 5' direction (primers No. 131990 and No. 233084 and AP1) extended the 5' end of the cDNA by a few nucleotides and confirmed the amino terminus of H-SemaL found in the identified lambda clone.

Example 4:

Starting from a short murine EST (Accession No. AA260340) and a primer derived therefrom, No. 260813 (Table 6) and the H-SemaL specific primer No. 121234 (Table 6), PCR (conditions: Taq52-60) was used to amplify a DNA fragment with a length of about 840 bp of murine cDNA, followed by cloning into the vector pCR2.1. The gene containing this DNA fragment was called M-SemaL. The resulting M-SemaL DNA fragment was used to investigate a cDNA bank from mouse spleen (Mouse Spleen 5' STRETCH cDNA, Clontech), identification of several clones being possible.

PCR (Taq60-30) with the primers No. 260812 and No. 260813 from murine endothelial cDNA provided a PCR fragment with a length of 244 base pairs. The PCR results showed that there is distinct baseline expression in murine endothelial cells which declines after stimulation with the cytokine interferon-γ and lipopolysaccharides.

Example 5:

Investigations on the location in the chromosome were carried out by fluorescence in situ hybridization (FISH). For this purpose, human and murine metaphase chromosomes were prepared starting from a human blood sample and the mouse cell line BINE 4.8 (Keyna et al. (1995) J. Immunol. 155, 5536-5542), respectively (Kraus et al. (1994) Genomics 23, 272-274). The slides were treated with RNase and pepsin (Liehr et al. (1995) Appl. Cytogenetics 21, 185-188). For the hybridization, 120 mg of human nick-translated semaphorin sample and 200 mg of a corresponding mouse sample were used. The hybridization was in each case carried out in the presence of 4.0 µg of COT1-DNA and 20 µg of STD at 37°C (3 days) in a moistened chamber.

The slides were washed with 50% formamide/2x SSC (3 times for 5 min each time at 45°C) and then with 2x SSC (3 times for 5 min each time at 37°C), and the biotinylated sample was detected using the FITC-avidin system (Liehr et al. (1995)). The slides were evaluated using a fluorescence microscope. 25 metaphases/sample were evaluated, carrying out each experiment in duplicate. It emerged that H-SemaL is located on chromosome 15q23. Located adjacent in the chromosome is the locus for Bardet-Biedls syndrome and Tay-Sachs disease (hexosaminidase A).

Example 6:

The genomic intron-exon structure of the H-SemaL gene is for the most part elucidated.

Genomic DNA fragments were amplified starting from 250 mg of human genomic DNA which had been isolated from PHA-stimulated peripheral lymphocytes (blood). Shorter fragments were amplified using Ampli Taq^R (Perkin Elmer), and longer fragments were amplified using the expanded long template PCR System (Boehringer Mannheim).

It has been possible by PCR amplification to date to clone and characterize almost the complete genomic locus of H-SemaL. It has already been possible in total to determine more than 8888 bp of the genomic sequence and thus substantially to elucidate the intron-exon structure of the gene.

Example 7:

Expression clonings:

Since no complete clone of the semaphorin gene could be isolated from the lambda-gt10 cDNA bank, and no complete clone was obtainable by PCR either, the coding region of the cDNA was amplified in 2 overlapping subfragments by PCR (XL62-6) using the primers No. 240655 and No. 121339 for the N-terminal DNA fragment, and the primers No. 240656 (contains HindIII and Pmel cleavage sites) and No. 121234 for the C-terminal DNA fragment. The resulting DNA fragments (subfragments) were cloned into the vector pCR21. The two subfragments were completely sequenced and finally the complete H-SemaL cDNA was prepared by inserting a 0.6kb Cterminal SstI-HindIII restriction fragment into the plasmid which contained the N-terminal DNA fragment and had been cut with the restriction enzymes Sstl and HindIII. From this plasmid pCR2.1-H-SemaL (sequence shown in Table 7, SEQ ID NO. 34), the complete gene was cut out using the EcoRI cleavage site (in pCR2.1) and HindIII cleavage site (in primer No. 240656, Table 6) and correspondingly cut constitutive expression into ligated pCDNA3.1(-)MycHisA (Invitrogen). The EcoRI-Apal fragment (without Myc-His tag) was cut out of the resulting recombinant plasmid pCDNA3.1(-)H-SemaL-MycHisA (sequence shown in Table 8) and ligated into the inducible vector pIND (Ecdysone-Inducible Mammalian Expression System, Invitrogen) which had previously likewise been cut with EcoRI-Apal. The recombinant plasmid was called pIND-H-SemaLEA (sequence shown in Table 11). An EcoRI-Pmel fragment (with Myc-His tag) from pCDNA3.1(-)H-SemaL-Myc-HisA (sequence shown in Table 9) was inserted into an EcoRI-EcoRV-cut vector pIND. The recombinant plasmid was called pIND-H-SemaL-EE (sequence shown in Table 10).

A fusion gene of H-SemaL with enhanced green fluorescent protein (EGFP) was prepared by ligating the PCR-amplified EGFP reading frame (from the vector pEGFP-C1 (Clontech), using the primers No. 243068 + No. 243069, Taq52-60) into the Pmel cleavage site of the plasmid pCDNA3.1(-)H-SemaL-MycHisA, resulting in the plasmid pCDNA3.1(-)H-SemaL-EGFP-MycHisA (sequence shown in Table 9).

Small letters in Tables 7 to 13 and Table 15 denote the sequence of H-SemaL, parts or derivatives thereof, and large letters denote the sequence of the plasmid.

Example 8:

To prepare H-SemaL-specific antibodies, cDNA fragments of H-SemaL were integrated into prokaryotic expression vectors and expressed in E. coli, and the semaphorin derivatives were purified. The semaphorin derivatives were expressed as fusion proteins with a His tag. Accordingly, vectors containing the sequence for a His tag and permitting integration of the semaphorin cDNA fragment into the reading frame were used. An N-terminal 6xhistidine tag makes it possible, for example, to purify by nickel chelate affinity chromatography (Qiagen GmbH, Max-Volmer Straße 4, 40724 Hilden):

- The part of the H-SemaL cDNA coding for amino acids 179-378 was amplified by PCR using the primers No. 150788 and No. 150789, and this DNA fragment was ligated into the vector pQE30 (Qiagen) which had previously been cut with the restriction enzymes BamHI and HindIII (construct pQE30-H-SemaL-BH (sequence shown in Table 12)).
- 2. The section of the H-SemaL cDNA coding for the C-terminal amino acids 480-666 was cut with the restriction enzymes Sstl and HindIII out of the plasmid pCR 2.1 and ligated into the vector pQE31 (Qiagen)

which had previously been cut with Sstl and HindIII (construct pQE31-H-SemaL-SH (sequence shown in Table 13)).

Correct integration of the sequences in the correct reading frame was checked by DNA sequencing. The fusion proteins consisting of an N-terminal 6xhistidine tag and a part of the semaphorin H-SemaL were purified by Ni²⁺ affinity chromatography. The purified fusion proteins were used to immunize various animals (rabbit, chicken, mouse).

Example 9:

FACS analysis of various cell types (Figures 4 and 5) The cells (about $0.2\text{-}0.5 \times 10^6$) were washed with FACS buffer (phosphate-buffered saline (PBS) with 5% fetal calf serum (FCS) and 0.1% Na azide) and then incubated with the antisera (on ice) for 1 hour in each case.

The primary antibodies used for the control (overlay chicken preimmune serum (1:50)) and for the specific detection (specific staining) comprised an H-SemaL-specific chicken antiserum (1:50). The specific antiserum with antibodies against amino acids (Aa) 179-378 (with N-terminal His tag) of H-SemaL was generated by immunizing chickens with the protein purified by Ni chelate affinity chromatography (as described in Example 8). The second antibody used was an FITC-labeled anti-chicken F(ab') antibody from rabbits (Dianova Jackson Laboratories, Order No. 303-095-006, Hamburg, Germany) (1 mg/ml). A rabbit anti-mouse IgG, FITC-labeled, was used for the CD100 staining. The second antibody was employed in each case in 1:50 dilution in FACS buffer.

The cells were then washed, resuspended in PBS and analyzed in the FACS. The FACS analysis was carried out using a FACS-track instrument (Becton-Dickinson). Principle: a single cell suspension is passed through a measuring channel where the cells are irradiated with laser light of 488 nm and thus fluorescent dyes (FITC) are excited. The measurements are of the light

scattered forward (forward scatter, FSC: correlates with the cell size), and to the side (sideward scatter, SSC: correlates with the granular content: different in different cell types) and fluorescence in channel 1 (FL 1) (for wavelengths in the FITC emission range, max. at 530 nm). 10,000 events (cells) were measured in this way each time.

The dot plot (Figures 4a-k) (figure on the left in each case): FSC against SSC (size against granular content/scatter) with, inside the boundary, the (uniform) cell population of similar size and granular content analyzed in the right-hand window (relevant right-hand figure in each case). The right-hand window shows the intensity of FL 1 (X axis) against the number of events (Y axis), that is to say a frequency distribution.

In each of these, the result with the control serum (unfilled curve) is superimposed on the result of the specific staining (filled curve). A shift of the curve for the specific staining to the right compared with the control corresponds to an expression of H-SemaL in the corresponding cells. A larger shift means stronger expression.

Cell lines used for FACS analysis:

a) U937 cell line

American Type Culture Collection ATCC; ATCC number: CRL-1593

Name: U-937

Tissue: lymphoma; histiocytic; monocyte-like

Species: human; Depositor: H. Koren

b) THP-1 cell line

ATCC number: TIB-202

Tissue: monocyte; acute monocytic leukemia

Species: human

Depositor: S. Tsuchiya

c) K-562 cell line

ATCC number: CCL-243

Tissue: chronic myelogenous leukemia

Species: human;

Depositor: H.T. Holden

d) L-428 cell line

DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,

DSMZ No: ACC 197

Cell type: human Hodgkin's lymphoma

e) Jurkat cell line

DSMZ-Deutsche Sammlung von Mikroorganismen und zellkulturen GmH,

DSMZ No: ACC 282

Cell type: human T cell leukemia

f) Daudi cell line

ATCC number: CCL-213

Tissue: Burkitt's lymphoma; B lymphoblast; B cells

Species : human Depositor: G. Klein

g) LCL cell line

EBV-transformed lymphoblastoid B-cell line.

h) Jiyoye (P-2003) cell line

ATCC number: CCL-87

Tissue: Burkitt's lymphoma; B cells, B lymphocyte

Species: human Depositor: W. Henle

i) CBL-Mix57

Human T-cell line (isolated from blood) transformed with recombinant H. Saimiri (wild-type without deletion)

j) CBL-Mix59
 Human T-cell line (isolated from blood) transformed with H. Saimiri (deletion of ORF71).

Example 10: Protein gel and Western blot

Secretable human SEMA-L (amino acids 42-649 in Table 4 (without signal peptide and without transmembrane domain)) was cloned into the plasmid pMelBac-A (Invitrogen, De Schelp, Leck, The Netherlands, Cv 1950-20) and, in this way, the plasmid pMelBacA-H-SemaL (length 6622bp) was generated (Figure 8). The H-SemaL derivative was expressed in the baculovirus system (Bac-N-Blue, Invitrogen). Expression was carried out in the cell lines derived from insect egg cells Sf9 (from Spodoptera frugiperda) and High Five TM (from Trichoplusia ni, U.S. Pat. No. 5,300,435, purchased from Invitrogen) by infection with the recombinant, plaque-purified baculoviruses.

The expression was carried out in accordance with the manufacturer's instructions.

The proteins were then fractionated in a gel, and the H-SemaL derivative was detected in a Western blot. Detection was carried out with H-SemaL-specific chicken antiserum (compare Example 8 and Figure 7) (dilution 1:100). The specific chicken antibody was detected using anti-IgY-HRP conjugate (dilution: 1:3000, from donkey; Dianova Jackson Laboratories) in accordance with the manufacturer's instructions.

Example 11: Preparation of pMelBacA-H-SEMAL

The recombinant vector (pMelBacA-H-SEMAL, 6622bp) was prepared by cloning an appropriate DNA fragment which codes for amino acids 42-649 of

H-SemaL into the vector pMelBacA (4.8 kb Invitrogen) (compare annotation for pMelBacA-H-SEMAL). The cloning took place via BamHI and EcoRI in frame behind the signal sequence present in the vector ("honeybee melittin signal sequence"). A corresponding H-SemaL DNA fragment was amplified using the primer pair h-sema-1 baculo 5' and h-sema-1 baculo 3'.

Primers for amplification (TaKaRa Ex Ta9 polymerase) and cloning:

"h-sema-1 baculo 5'" for amplification without signal sequence and for introducing a BamHI cleavage site

5'-CCGGATCCGCCCAGGGCCACCTAAGGAGCGG-3' (SEQ ID NO: 43) "h-sema-1 baculo 3'" for amplification without transmembrane domain and for introducing an EcoRI cleavage site

5'-CTGAATTCAGGAGCCAGGGCACAGGCATG-3' (SEQ ID NO: 44).

DETAILED DESCRIPTION OF THE DRAWINGS

Figure 1:

Tissue-specific expression of H-Sema - L

A) Multiple tissue Northern blot (Clontech, Heidelberg, Germany). Loadings from left to right: 2 µg in each lane of Poly-A-RNA from spleen, thymus, prostate, testes, ovaries, small intestine, large intestinal mucosa, peripheral (blood) leukocytes. Size standards are marked.

The blots were hybridized under stringent conditions with an H-SemaL probe 800 base-pairs long.

Figure 2:

Diagrammatic representation of the cloning of the H-SemaL cDNA and of the genomic organization of the H-SemaL encoding sequences (H-SemaL gene) Top: Location of the EST sequences (accession numbers; location of the EST sequences is shown relative to the AHV-Sema sequence).

Below: Amplified PCR and RACE products and the position of the cDNA clones in relation to the location in the complete H-SemaL cDNA and the open reading frame (ORF) for the encoded protein.

Bottom: Relative position of the exons in the H-SemaL gene in relation to the genomic sequence. The position of the oligonucleotide primer used is indicated by arrows.

Figure 3:

Phylogenetic tree: Obtained by multiple alignment of the listed semaphorin sequences. The phylogenetic relationship of the semaphorins can be deduced from their grouping in the phylogenetic tree.

Figure 4:

FACS analysis of H-SemaL expression in various cell lines and various cell types (compare Example 8).

Figure 5:

Comparative analysis of CD100 and H-SemaL expression (compare Example 9).

Figure 6:

Expression of secretable human SEMA-L (H-SemaL) in HiFive and Sf3 cells (compare Example 10).

Aa 42-649 in pMelBac-A (Invitrogen) in the baculovirus system (Bac-N-Blue, Invitrogen)

Detection with specific chicken antiserum (1:100) and anti-IgY-HRP conjugate (1:3000, from rabbits, Jackson Lab.)

1,4,6 uninfected HiFive cells (serum-free)

2,3,5,7,8 HiFive cells infected with recombinant baculovirus (serum-free)

M Rainbow molecular weight marker (Amersham RPN756)

9.10 infected Sf9 cells (serum-containing medium).

Figure 7: Specificity of the antiserum

Lanes 1-3: chicken 1; lanes 4-6: chicken 2

Lanes 1 and 4:

Preimmune serum

Lanes 2 and 5:

60th day of immunization

Lanes 4 and 6:

105th day of immunization

Immunization was carried out with amino acids 179-378 of H-SemaL (with amino-terminal His tag) (compare Example 8, Section 1.)

Figure 8: Depiction of the plasmid map of pMelBacA-H-SEMAL.

The recombinant plasmid was prepared as described in Example 11.

TABLES

Table 1: Various subtypes of semaphorins from various species

Name	Synonym	Species		Reference
H-Sema III	(H-SemaD)	Human	Sec.	(Kolodkin et al. 1993)
CD-100		Human	TM, IC; CD45 associated, expressed in T cells	(Hall et al. 1996)
H-Sema V	(H-SemaA)	Human	Sec.; Locus 3p21.3	(Sekido et al. 1996; Roche et al. 1996)
H-Sema IV	(H-Sema3F)	Human	Sec.; Locus 3p21.3	(Xiang et al. 1996; Sekido et al. 1996)
H-SemaE		Human	Sec.; divergent from M-Sema-E at the 3' end (alignment of reading frame improved)	AB000220 (Yamada 1997 unpublished)
H-SemaK	KIAA0331	Human	Sec.;	(Nagase et al. 1997)
H-SemaL	SEMAL	Human	TM, no IC	This application
M-SemaA		Mouse	Sec.	(Püschel et al. 1995)
M-SemaB		Mouse	TM, IC	(Püschel et al. 1995)
M-SemaC		Mouse	TM, IC	(Püschel et al. 1995)
M-SemaD	M-Sema III	Mouse	Sec.	(Messersmith et al. 1995; Püschel et al. 1995)
M-SemaE		Mouse	Sec.; 5' partial sequence	(Püschel et al. 1995)

Name	Synonym	Species		Reference
M-SemaF1	M-SemaF	Mouse	TM, IC	(Inagaki et al. 1995)
M-SemaG2	M-SemaG	Mouse	TM, IC; expressed in lymphoid cells, mouse homolog of CD100	(Furuyama et al. 1996)
M-SemaF2	M-SemaF	Mouse	TM, IC; Thrombospondin motif	(Adams et al. 1996)
M-SemaG1	M-SemaG	Mouse	TM, IC; Thrombospondin motif	(Adams et al. 1996)
M-SemaH		Mouse	Sec.	(Christensen 1996 unpub) Z80941
M-Sema Vla		Mouse	TM, IC	(Zhou et al. 1997)
M-SemaL	Semal	Mouse	Partial sequence	This application
Collapsin-1		Chicken	Sec.	(Luo et al. 1993)
Collapsin-2		Chicken	Sec.	(Luo et al. 1995)
Collapsin-3		Chicken	Sec.	(Luo et al. 1995)
Collapsin-4		Chicken	Partial sequence	(Luo et al. 1995)
Collapsin-5		Chicken	Sec.	(Luo et al. 1995)
R-Sema III		Rat	Sec.	(Giger et al. 1996)

PJW0761

Name	Synonym	Species		Reference
T-Sema l		Tribolium confusum	TM, IC	(Kolodkin et al. 1993)
Ce-Semal		C.elegans	TM, IC	U15667 (Roy1994 unpublished)
G-Sema I	Fasciclin-IV	Grasshopper	TM, IC	(Kolodkin et al. 1992)
D-Sema l		Drosophila	TM, IC	(Kolodkin et al. 1993)
D-Sema II		Drosophila	Sec.	(Kolodkin et al. 1993)
AHV-Sema		AHV-1	Sec.	(Ensser and Fleckenstein, 1995)
ORF-A39		Vaccinia	Sec.	(Kolodkin et al. 1993)
ORF-A39 homologous		Variola	Sec.;	(Kolodkin et al. 1993)

TM: transmembrane domain

Sec.: secreted

presumably intracellular cytoplasmic sequence motif <u>ပ</u> PJW0761

Table 2: cDNA sequence of H-SemaL (2636 nucleotides) (SEQ ID NO.: 1)

	1	eggggecaeg ggatgaegee teeteegeee ggaegtgeeg eecceagege
	51	accgcgcgcc cgcgtccctg gcccgccggc tcggttgggg cttccgctgc
5	101	ggetgegget getgetgetg etetgggegg eegeegeete egeecaggge
	151	cacctaagga geggaeeeeg eatettegee gtetggaaag geeatgtagg
	201	gcaggaccgg gtggactttg gccagactga gccgcacacg gtgcttttcc
	251	acgagecagg cageteetet gtgtgggtgg gaggaegtgg caaggtetae
	301	ctctttgact tccccgaggg caagaacgca tctgtgcgca cggtgaatat
10	351	cggctccaca aaggggtcct gtctggataa gcgggactgc gagaactaca
	401	tcactctcct ggagaggcgg agtgaggggc tgctggcctg tggcaccaac
	451	geceggeace ecagetgetg gaacetggtg aatggeactg tggtgecact
	501	tggcgagatg agaggctacg ccccttcag cccggacgag aactccctgg
	551	ttctgtttga aggggacgag gtgtattcca ccatccggaa gcaggaatac
15	601	aatgggaaga tccctcggtt ccgccgcatc cggggcgaga gtgagctgta
	651	caccagtgat actgtcatgc agaacccaca gttcatcaaa gccaccatcg
	701	tgcaccaaga ccaggcttac gatgacaaga tctactactt cttccgagag
	751	gacaateetg acaagaatee tgaggeteet etcaatgtgt eeegtgtgge
	801	ccagttgtgc aggggggacc agggtgggga aagttcactg tcagtctcca
20	851	agtggaacac ttttctgaaa gccatgctgg tatgcagtga tgctgccacc
	901	aacaagaact tcaacaggct gcaagacgtc ttcctgctcc ctgaccccag
	951	eggeeagtgg agggaeacea gggtetatgg tgttttetee aaceeetgga
	1001	actactcagc cgtctgtgtg tattccctcg gtgacattga caaggtcttc
	1051	cgtacctcct cactcaaggg ctaccactca agccttccca acccgcggcc
25	1101	tggcaagtgc ctcccagacc agcagccgat acccacagag accttccagg
	1151	tggctgaccg tcacccagag gtggcgcaga gggtggagcc catggggcct
	1201	ctgaagacge cattgtteea etetaaatae caetaceaga aagtggeegt
	1251	tcaccgcatg caagccagcc acggggagac ctttcatgtg ctttacctaa
	1301	ctacagacag gggcactatc cacaaggtgg tggaaccggg ggagcaggag
30	1351	cacagetteg cetteaacat catggagate cagecettee geegegege
	1401	tgccatccag accatgtcgc tggatgctga gcggaggaag ctgtatgtga
	1451	gctcccagtg ggaggtgagc caggtgcccc tggacctgtg tgaggtctat
	1501	ggcgggggct gccacggttg cctcatgtcc cgagacccct actgcggctg
	1551	ggaccagggc cgctgcatct ccatctacag ctccgaacgg tcagtgctgc
35	1601	aatccattaa tccagccgag ccacacaagg agtgtcccaa ccccaaacca

gacaaggccc cactgcagaa ggtttccctg gccccaaact ctcgctacta 1651 cctgagetge cccatggaat cccgccacge cacctactca tggcgccaca 1701 aggagaacgt ggagcagagc tgcgaacctg gtcaccagag ccccaactgc 1751 atcetgttca tegagaacet caeggegeag eagtaeggee aetaettetg 1801 cgaggcccag gagggctcct acttccgcga ggctcagcac tggcagctgc 5 1851 tgcccgagga cggcatcatg gccgagcacc tgctgggtca tgcctgtgcc 1901 ctggctgcct ccctctggct gggggtgctg cccacactca ctcttggctt 1951 getggteeae tagggeetee egaggetggg eatgeeteag gettetgeag 2001 cccagggcac tagaacgtct cacactcaga gccggctggc ccgggagctc 2051 10 cttgcctgcc acttcttcca ggggacagaa taacccagtg gaggatgcca 2101 ggcctggaga cgtccagccg caggcggctg ctgggcccca ggtggcgcac 2151 ggatggtgag gggctgagaa tgagggcacc gactgtgaag ctggggcatc 2201 gatgacccaa gactttatct tctggaaaat atttttcaga ctcctcaaac 2251 ttgactaaat gcagcgatgc tcccagccca agagcccatg ggtcggggag 2301 tgggtttgga taggagaget gggacteeat etegaeeetg gggetgagge 15 2351 ctgagtcctt ctggactctt ggtacccaca ttgcctcctt cccctcctc 2401 tctcatggct gggtggctgg tgttcctgaa gacccagggc taccctctgt 2451 ccagccetgt cetetgeage tecetetetg gteetgggte ccaeaggaca 2501 gccgccttgc atgtttattg aaggatgttt gctttccgga cggaaggacg 2551 20 gaaaaagctc tgaaaaaaaa aaaaaaaaaa aaaaaa 2601

Table 3: Nucleotide sequence of the cDNA of M-SemaL (partial, 1195 nucleotides) (SEQ ID NO.: 2)

25 cggggctgcg ggatgacgcc tectectece ggacgtgccg eccecagege 1 accgegegee egegteetea geetgeegge teggtteggg eteeegetge 51 ggetgegget tetgetggtg ttetgggtgg eegeegeete egeeeaagge 101 cactcgagga geggaecceg cateteegee gtetggaaag ggeaggaeca 151 30 tgtggacttt agccagcctg agccacacac cgtgcttttc catgagccgg 201 gcagettete tgtetgggtg ggtggaegtg gcaaggteta ccaetteaac 251 ttccccgagg gcaagaatgc ctctgtgcgc acggtgaaca tcggctccac 301 aaaggggtcc tgtcaggaca aacaggactg tgggaattac atcactcttc 351 tagaaaggcg gggtaatggg ctgctggtct gtggcaccaa tgcccggaag 401 35 cccagctgct ggaacttggt gaatgacagt gtggtgatgt cacttggtga 451

	501	gatgaaaggc tatgccccct tcagcccgga tgagaactcc ctggttctgt
	551	ttgaaggaga tgaagtgtac tctaccatcc ggaagcagga atacaacggg
	601	aagatccctc ggtttcgacg cattcggggc gagagtgaac tgtacacaag
	651	tgatacagtc atgcagaacc cacagttcat caaggccacc attgtgcacc
5	701	aagaccaagc ctatgatgat aagatctact acttcttccg agaagacaac
	751	cctgacaaga accccgagge teeteteaat gtgteeegag tageccagtt
	801	gtgcaggggg gaccagggtg gtgagagttc gttgtctgtc tccaagtgga
	851	acaccttcct gaaagccatg ttggtctgca gcgatgcagc caccaacagg
	901	aacttcaatc ggctgcaaga tgtcttcctg ctccctgacc ccagtggcca
10	951	gtggagagat accagggtct atggcgtttt ctccaacccc tggaactact
	1001	cagctgtctg cgtgtattcg cttggtgaca ttgacagagt cttccgtacc
	1051	tcatcgctca aaggctacca catgggcctt tccaaccctc gacctggcat
	1101	gtgcctccca aaaaagcagc ccatacccac agaaaccttc caggtagctg
	1151	atagtcaccc agaggtggct cagagggtgg aacctatggg gcccc
15		

Table 4: Amino acid sequence of H-SemaL (666 amino acids) (SEQ ID NO.: 3)

20	1	MTPPPPGRAA PSAPRARVPG PPARLGLPLR LRLLLLLWAA AASAQGHLRS
	51	GPRIFAVWKG HVGQDRVDFG QTEPHTVLFH EPGSSSVWVG GRGKVYLFDF
	101	PEGKNASVRT VNIGSTKGSC LDKRDCENYI TLLERRSEGL LACGTNARHP
	151	SCWNLVNGTV VPLGEMRGYA PFSPDENSLV LFEGDEVYST IRKQEYNGKI
	201	PRFRRIRGES ELYTSDTVMQ NPQFIKATIV HQDQAYDDKI YYFFREDNPD
25	251	KNPEAPLNVS RVAQLCRGDQ GGESSLSVSK WNTFLKAMLV CSDAATNKNF
	301	NRLQDVFLLP DPSGQWRDTR VYGVFSNPWN YSAVCVYSLG DIDKVFRTSS
	351	LKGYHSSLPN PRPGKCLPDQ QPIPTETFQV ADRHPEVAQR VEPMGPLKTP
	401	LFHSKYHYQK VAVHRMQASH GETFHVLYLT TDRGTIHKVV EPGEQEHSFA
	451	FNIMEIQPFR RAAAIQTMSL DAERRKLYVS SQWEVSQVPL DLCEVYGGGC
30	501	HGCLMSRDPY CGWDQGRCIS IYSSERSVLQ SINPAEPHKE CPNPKPDKAP
	551	LQKVSLAPNS RYYLSCPMES RHATYSWRHK ENVEQSCEPG HQSPNCILFI
	601	ENLTAQQYGH YFCEAQEGSY FREAQHWQLL PEDGIMAEHL LGHACALAAS
	651	LWLGVLPTLT LGLLVH

Table 5: (Partial) amino acid sequence of M-SemaL (394 amino acids, corresponding to position 1-396 of H-SemaL) (SEQ ID NO.: 4)

5	1	MTPPPPGRAA PSAPRARVLS LPARFGLPLR LRLLLVFWVA AASAQGHSRS
	51	GPRISAVWKG QDHVDFSQPE PHTVLFHEPG SFSVWVGGRG KVYHFNFPEG
	101	KNASVRTVNI GSTKGSCQDK QDCGNYITLL ERRGNGLLVC GTNARKPSCW
	151	NLVNDSVVMS LGEMKGYAPF SPDENSLVLF EGDEVYSTIR KQEYNGKIPR
	201	FRRIRGESEL YTSDTVMQNP QFIKATIVHQ DQAYDDKIYY FFREDNPDKN
10	251	PEAPLNVSRV AQLCRGDQGG ESSLSVSKWN TFLKAMLVCS DAATNRNFNR
	301	LQDVFLLPDP SGQWRDTRVY GVFSNPWNYS AVCVYSLGDI DRVFRTSSLK
	351	GYHMGLSNPR PGMCLPKKQP IPTETFQVAD SHPEVAQRVE PMGP

15 Table 6: Synthetic oligonucleotides (Eurogentec, Seraing, Belgium)

	Number of the prim	ner/name	Nucleotide sequence	of the primer (of the synthetic oligonucleotides)
	91506/AP2	actcactatagggctcg	gagcggc	(SEQ ID NO.: 5)
	121234	agccgcacacggtgc	ttttc	(SEQ ID NO.: 6)
20	121235/Est 2	gcacagatgcgttcttg	ccc	(SEQ ID NO.: 7)
	121236/Est 3	accatagaccctggtg	tccc	(SEQ ID NO.: 8)
	121237/Est 4	gcagtgatgctgccac	caac	(SEQ ID NO.: 9)
	121238	ccagaccatgtcgctg	gatg	(SEQ ID NO.: 10)
	121239/Est 6	acatgaggcaaccgt	ggcag	(SEQ ID NO.: 11)
25	131989/AP1	ccatcctaatacgact	cactatagggc	(SEQ ID NO.: 12)
	131990/Est 7	aggtagaccttgccac	egtec	(SEQ ID NO.: 13)
	131991	gaacttcaacaggctg	gcaagacg	(SEQ ID NO.: 14)
	131992	atgctgagcggagga	agctg	(SEQ ID NO.: 15)
	131993	ccgccatacacctca	cacag	(SEQ ID NO.: 16)
30	150788	ctggaagctttctgtgg	gtatcggctgc	(SEQ ID NO.: 17)
	150789	tttggatccctggttctg	tttgaag	(SEQ ID NO.: 18)
	167579/cDNA	ttctagaattcagcgg	ccgcttttttttttttttttttttttt	ttvn (SEQ ID NO.: 19)
	Synthesis primer			
	168421	ggggaaagttcactg	tcagtctccaag	(SEQ ID NO.: 20)
35	168422	gggaatacacacag	acggctgagtag	(SEQ ID NO.: 21)

	207608/	agcaagttcagcctggttaagt	(SEQ ID NO.: 22)
	Amplification of λgt	10 insert	
	207609/	ttatgagtatttcttccaggg	(SEQ ID NO.: 23)
	Amplification of λgt	10 insert	
5	232643/Est 13	ccattaatccagccgagccacacaag	(SEQ ID NO.: 24)
	232644/Est 14	catctacagctccgaacggtcagtg	(SEQ ID NO.: 25)
	233084	cagcggaagccccaaccgag	(SEQ ID NO.: 26)
	240655/hs 5	gggatgacgcctcctccgcccgg	(SEQ ID NO.: 27)
	240656/hs 3	aagcttcacgtggaccagcaagccaagagtg	(SEQ ID NO.: 28)
10	240657/hs 3c	aagctttttccgtccttccgtccgg	(SEQ ID NO.: 29)
	243068	atggtgagcaagggcgaggagctg	(SEQ ID NO.: 30)
	243069	cttgtacagctcgtccatgccgag	(SEQ ID NO.: 31)
	260812	GGGTGGTGAGAGTTCGTTGTCTGTC	(SEQ ID NO.: 32)
	260813	GAGCGATGAGGTACGGAAGACTCTC	G(SEQ ID NO.: 33)
15			

Table 7: Nucleotide sequence of the recombinant plasmid pCR2.1-H-SemaL (SEQ ID NO.: 34)

20	1	AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA
	51	TGCAGCTGGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA
	101	CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT
	151	TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT
	201	CACACAGGAA ACAGCTATGA CCATGATTAC GCCaagcttc acgtggacca
25	251	gcaagccaag agtgagtgtg ggcagcaccc ccagccagag ggaggcagcc
	301	agggcacagg catgacccag caggtgctcg gccatgatgc cgtcctcggg
	351	cagcagetge cagtgetgag ectegeggaa gtaggageee teetgggeet
	401	cgcagaagta gtggccgtac tgctgcgccg tgaggttctc gatgaacagg
	451	atgcagttgg ggctctggtg accaggttcg cagctctgct ccacgttctc
30	501	cttgtggcgc catgagtagg tggcgtggcg ggattccatg gggcagctca
	551	ggtagtagcg agagtttggg gccagggaaa ccttctgcag tggggccttg
	601	tctggtttgg ggttgggaca ctccttgtgt ggctcggctg gattaatgga
	651	ttgcagcact gaccgttcgg agctgtagat ggagatgcag cggccctggt
	701	cccagccgca gtaggggtct cgggacatga ggcaaccgtg gcagcccccg
35	751	ccatagacct cacacaggtc caggggcacc tggctcacct cccactggga

	801	gctcacatac agcttcctcc gctcagcatc cagcgacatg gtctggatgg
	851	cagccgcgcg gcggaagggc tggatctcca tgatgttgaa ggcgaagctg
	901	tgeteetget eeceeggtte eaceacettg tggatagtge eectgtetgt
	951	agttaggtaa agcacatgaa aggtctcccc gtggctggct tgcatgcggt
5	1001	gaacggccac tttctggtag tggtatttag agtggaacaa tggcgtcttc
	1051	agaggececa tgggetecae ectetgegee acetetgggt gaeggteage
	1101	cacetggaag gtetetgtgg gtateggetg etggtetggg aggeaettge
	1151	caggccgcgg gttgggaagg cttgagtggt agcccttgag tgaggaggta
	1201	cggaagacct tgtcaatgtc accgagggaa tacacacaga cggctgagta
10	1251	gttccagggg ttggagaaaa caccatagac cctggtgtcc ctccactggc
	1301	cgctggggtc agggagcagg aagacgtctt gcagcctgtt gaagttcttg
	1351	ttggtggcag catcactgca taccagcatg gctttcagaa aagtgttcca
	1401	cttggagact gacagtgaac tttccccacc ctggtccccc ctgcacaact
,	1451	gggccacacg ggacacattg agaggagcct caggattctt gtcaggattg
15	1501	tcctctcgga agaagtagta gatcttgtca tcgtaagcct ggtcttggtg
	1551	cacgatggtg gctttgatga actgtgggtt ctgcatgaca gtatcactgg
	1601	tgtacagete actetegece eggatgegge ggaacegagg gatetteeca
	1651	ttgtattcct gcttccggat ggtggaatac acctcgtccc cttcaaacag
	1701	aaccagggag ttctcgtccg ggctgaaggg ggcgtagcct ctcatctcgc
20	1751	caagtggcac cacagtgcca ttcaccaggt tccagcagct ggggtgccgg
	1801	gcgttggtgc cacaggccag cagcccctca ctccgcctct ccaggagagt
	1851	gatgtagttc tcgcagtccc gcttatccag acaggacccc tttgtggagc
	1901	cgatattcac cgtgcgcaca gatgcgttct tgccctcggg gaagtcaaag
	1951	aggtagacet tgccacgtcc tcccacccac acagaggagc tgcctggctc
25	2001	gtggaaaagc accgtgtgcg gctcagtctg gccaaagtcc acccggtcct
	2051	gccctacatg gcctttccag acggcgaaga tgcggggtcc gctccttagg
	2101	tggccctggg cggaggcggc ggccgccag agcagcagca gcagccgcag
	2151	ccgcagcgga agccccaacc gagccggcgg gccagggacg cgggcgcgcg
	2201	gtgegetggg ggeggeaegt eegggeggag gaggegteat eecaageega
30	2251	attcTGCAGA TATCCATCAC ACTGGCGGCC GCTCGAGCAT GCATCTAGAG
•	2301	GGCCCAATTC GCCCTATAGT GAGTCGTATT ACAATTCACT GGCCGTCGTT
	2351	TTACAACGTC GTGACTGGGA AAACCCTGGC GTTACCCAAC TTAATCGCCT
	2401	TGCAGCACAT CCCCCTTTCG CCAGCTGGCG TAATAGCGAA GAGGCCCGCA
	2451	CCGATCGCCC TTCCCAACAG TTGCGCAGCC TGAATGGCGA ATGGGACGCG
35	2501	CCCTGTAGCG GCGCATTAAG CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT

2551 GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC 2601 CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 2651 GGGCTCCCTT TAGGGTTCCG ATTTAGAGCT TTACGGCACC TCGACCGCAA 2701 AAAACTTGAT TTGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA 2751 CGGTTTTTCG CCCTTTGACG TTGGAGTCCA CGTTCTTTAA TAGTGGACTC 5 2801 TTGTTCCAAA CTGGAACAAC ACTCAACCCT ATCGCGGTCT ATTCTTTTGA 2851 TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA AATGAGCTGA 2901 TTTAACAAAT TCAGGGCGCA AGGGCTGCTA AAGGAACCGG AACACGTAGA 2951 AAGCCAGTCC GCAGAAACGG TGCTGACCCC GGATGAATGT CAGCTACTGG 3001 GCTATCTGGA CAAGGGAAAA CGCAAGCGCA AAGAGAAAGC AGGTAGCTTG 10 3051 CAGTGGGCTT ACATGGCGAT AGCTAGACTG GGCGGTTTTA TGGACAGCAA 3101 GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT TGGGAAGCCC 3151 TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 3201 GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG 3251 AACAAGATGG ATTGCACGCA GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA 15 3301 TTCGGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT 3351 GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC AAGACCGACC 3401 TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG 3451 CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA 3501 AGCGGGAAGG GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC 20 3551 TGTCATCTCG CCTTGCTCCT GCCGAGAAAG TATCCATCAT GGCTGATGCA 3601 ATGCGGCGGC TGCATACGCT TGATCCGGCT ACCTGCCCAT TCGACCACCA 3651 AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGTCTTG 3701 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA 25 3751 CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT 3801 GATCCATGGC GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT 3851 TTTCTGGATT CAACGACTGT GGCCGGCTGG GTGTGGCGGA CCGCTATCAG 3901 GACATAGCGT TGGATACCCG TGATATTGCT GAAGAGCTTG GCGGCGAATG 3951 GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC GATTCGCAGC 4001 GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAAT TGAAAAAGGA 30 4051 AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTTGCG 4101 GCATTTTGCC TTCCTGTTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA 4151 AGATGCTGAA GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC 4201 TCAACAGCGG TAAGATCCTT GAGAGTTTTC GCCCCGAAGA ACGTTTTCCA 35 4251 ATGATGAGCA CTTTTAAAGT TCTGCTATGT CATACACTAT TATCCCGTAT

	4301	TGACGCCGGG CAAGAGCAAC TCGGTCGCCG GGCGCGGTAT TCTCAGAATG
	4351	ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG
	4401	ACAGTAAGAG AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC
	4451	GGCCAACTTA CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT
5	4501	TTTTGCACAA CATGGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG
	4551	GAGCTGAATG AAGCCATACC AAACGACGAG AGTGACACCA CGATGCCTGT
	4601	AGCAATGCCA ACAACGTTGC GCAAACTATT AACTGGCGAA CTACTTACTC
	4651	TAGCTTCCCG GCAACAATTA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA
	4701	GGACCACTTC TGCGCTCGGC CCTTCCGGCT GGCTGGTTTA TTGCTGATAA
10	4751	ATCTGGAGCC GGTGAGCGTG GGTCTCGCGG TATCATTGCA GCACTGGGGC
	4801	CAGATGGTAA GCCCTCCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG
	4851	GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT
	4901	GATTAAGCAT TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA
	4951	TTGATTTAAA ACTTCATTTT TAATTTAAAA GGATCTAGGT GAAGATCCTT
15	5001	TTTGATAATC TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG
	5051	AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT
	5101	TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGCG
	5151	GTGGTTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC
	5201	TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT
20	5251	AGTTAGGCCA CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT
	5301	CTGCTAATCC TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT
	5351	TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG
	5401	GCTGAACGGG GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC
	5451	ACCGAACTGA GATACCTACA GCGTGAGCAT TGAGAAAGCG CCACGCTTCC
25	5501	CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG
	5551	GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT
	5601	CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC
	5651	GTCAGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC
	5701	GGTTCCTGGC CTTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA
30	5751	TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTTGAGT GAGCTGATAC
	5801	CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG
		AGCGAGGAAG

5851 CGGAAG

Table 8: Nucleotide sequence of the recombinant expression plasmid pCDNA3.1(-)H-SemaL-MycHisA (SEQ ID NO.: 35)

	1	GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC
5	51	TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT
	101	GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG
	151	GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG
	201	CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC
	251	TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
10	301	TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG
	351	CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT
	401	AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT
	451	AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC
	501	CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA
15	551	CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
		TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA
	701	TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA
	751	ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT
20		ACGGTGGGAG
		GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG
		GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
	901	GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT
	951	
25	1001	
	1051	
	1101	3000
	1151	
		tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg
30	1251	tctacctctt tgacttcccc gagggcaaga acgcatctgt gcgcacggtg
	1301	
	1351	
	1401	
	1451	
35	1501	cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg

	1551	aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag
	1601	ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac
	1651	categtgeae caagaceagg ettacgatga caagatetae taettettee
	1701	gagaggacaa tcctgacaag aatcctgagg ctcctctcaa tgtgtcccgt
5	1751	gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt
	1801	ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg
	1851	ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac
	1901	cccagcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc
	1951	ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg
10	2001	tetteegtae etecteacte aagggetaee acteaageet teecaaeceg
	2051	cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt
	2101	ccaggtggct gaccgtcacc cagaggtggc gcagagggtg gagcccatgg
	2151	ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg
	2201	gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta
15	2251	cctaactaca gacaggggca ctatccacaa ggtggtggaa ccgggggagc
	2301	aggagcacag cttcgccttc aacatcatgg agatccagcc cttccgccgc
	2351	gcggctgcca tccagaccat gtcgctggat gctgagcgga ggaagctgta
	2401	tgtgagetee cagtgggagg tgagecaggt geeeetggae etgtgtgagg
	2451	tctatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc
20	2501	ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt
	2551	gctgcaatcc attaatccag ccgagccaca caaggagtgt cccaacccca
	2601	aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc
	2651	tactacetga getgececat ggaateeege eaegeeacet acteatggeg
	2701	ccacaaggag aacgtggagc agagctgcga acctggtcac cagagcccca
25	2751	actgcatcct gttcatcgag aacctcacgg cgcagcagta cggccactac
	2801	ttctgcgagg cccaggaggg ctcctacttc cgcgaggctc agcactggca
	2851	getgetgeee gaggaeggea teatggeega geacetgetg ggteatgeet
	2901	gtgccctggc tgcctccctc tggctggggg tgctgcccac actcactctt
	2951	
30	3001	AGAGGATCTG AATAGCGCCG TCGACCATCA TCATCATCAT CATTGAGTTT
		AAACCGCTGA TCAGCCTCGA CTGTGCCTTC TAGTTGCCAG CCATCTGTTG
	3101	TTTGCCCCTC CCCGTGCCT TCCTTGACCC TGGAAGGTGC CACTCCCACT
	3151	GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC TGAGTAGGTG
	3201	TCATTCTATT CTGGGGGGTG GGGTGGGGCA GGACAGCAAG GGGGAGGATT
35	3251	GGGAAGACAA TAGCAGGCAT GCTGGGGATG CGGTGGGCTC TATGGCTTCT

	3301	GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC ACGCGCCCTG
	3351	TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTGACCG
	3401	CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC
	3451	TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCAT
5	3501	CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC CCCAAAAAAC
	3551	TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT
	3601	TTTCGCCCTT TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT
	3651	CCAAACTGGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT
	3701	AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAATGA GCTGATTTAA
10	3751	CAAAAATTTA ACGCGAATTA ATTCTGTGGA ATGTGTGTCA GTTAGGGTGT
	3801	GGAAAGTCCC CAGGCTCCCC AGGCAGGCAG AAGTATGCAA AGCATGCATC
	3851	TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC
	3901	AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC
	3951	CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC
15	4001	CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC
	4051	TCTGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT
	4101	AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT TTCGGATCTG
	4151	ATCAAGAGAC AGGATGAGGA TCGTTTCGCA TGATTGAACA AGATGGATTG
	4201	CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTCG GCTATGACTG
20	4251	GGCACAACAG ACAATCGGCT GCTCTGATGC CGCCGTGTTC CGGCTGTCAG
	4301	CGCAGGGGC CCCGGTTCTT TTTGTCAAGA CCGACCTGTC CGGTGCCCTG
	4351	AATGAACTGC AGGACGAGGC AGCGCGGCTA TCGTGGCTGG CCACGACGGG
	4401	CGTTCCTTGC GCAGCTGTGC TCGACGTTGT CACTGAAGCG GGAAGGGACT
	4451	GGCTGCTATT GGGCGAAGTG CCGGGGCAGG ATCTCCTGTC ATCTCACCTT
25	4501	GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC GGCGGCTGCA
	4551	TACGCTTGAT CCGGCTACCT GCCCATTCGA CCACCAAGCG AAACATCGCA
	4601	TCGAGCGAGC ACGTACTCGG ATGGAAGCCG GTCTTGTCGA TCAGGATGAT
	4651	CTGGACGAAG AGCATCAGGG GCTCGCGCCA GCCGAACTGT TCGCCAGGCT
	4701	CAAGGCGCGC ATGCCCGACG GCGAGGATCT CGTCGTGACC CATGGCGATG
30	4751	CCTGCTTGCC GAATATCATG GTGGAAAATG GCCGCTTTTC TGGATTCATC
	4801	GACTGTGGCC GGCTGGGTGT GGCGGACCGC TATCAGGACA TAGCGTTGGC
	4851	TACCCGTGAT ATTGCTGAAG AGCTTGGCGG CGAATGGGCT GACCGCTTCC
	4901	TCGTGCTTTA CGGTATCGCC GCTCCCGATT CGCAGCGCAT CGCCTTCTAT
	4951	CGCCTTCTTG ACGAGTTCTT CTGAGCGGGA CTCTGGGGTT CGAAATGACC
35	5001	GACCAAGCGA CGCCCAACCT GCCATCACGA GATTTCGATT CCACCGCCGC

	5051	CTTCTATGAA AGGTTGGGCT TCGGAATCGT TTTCCGGGAC GCCGGCTGGA
	5101	TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCGC CCACCCCAAC
	5151	TTGTTTATTG CAGCTTATAA TGGTTACAAA TAAAGCAATA GCATCACAAA
	5201	TTTCACAAAT AAAGCATTTT TTTCACTGCA TTCTAGTTGT GGTTTGTCCA
5	5251	AACTCATCAA TGTATCTTAT CATGTCTGTA TACCGTCGAC CTCTAGCTAG
	5301	AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA ATTGTTATCC
	5351	GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT
	5401	GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG
	5451	CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG
10	5501	CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT
	5551	CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA
	5601	GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC
	5651	AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA
	5701	AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCC TGACGAGCAT
15	5751	CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA
	5801	AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC
	5851	CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC
	5901	GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT
	5951	CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC
20	6001	GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC
	6051	GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG
	6101	GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT
	6151	ACACTAGAAG GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC
	6201	TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA CCACCGCTGG
25	6251	TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG
	6301	GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG
	6351	AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT
	6401	CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA
	6451	GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG
30	6501	GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT
	6551	CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA
	6601	GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA
	6651	GCAATAAACC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC
	6701	TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA GCTAGAGTAA
35	6751	GTAGTTCGCC AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC

	6801	ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA GCTCCGGTTC
	6851	CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG
	6901	TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG
	6951	TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC
5	7001	ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT
	7051	GAGAATAGTG TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG
•	7101	GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA TCATTGGAAA
	7151	ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA
	7201	GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT
10	7251	TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA
	7301	AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTTT
	7351	TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC
	7401	ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC CGCGCACATT
	7451	TCCCCGAAAA GTGCCACCTG ACGTC
4 E		

15

Table 9: Nucleotide sequence of the recombinant plasmid pcDNA3.1-H-SemaL-EGFP-MychisA (SEQ ID NO.: 36)

1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC

20 51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT 101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG 151 GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG 201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC 251 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA 25 301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG 351 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT 401 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT 451 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC 501 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA 30 551 CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA 601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA 651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA 701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA 751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG 35 801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG

	851	GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
	901	GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT
	951	GCAgaattcg gcttgggatg acgcctcctc cgcccggacg tgccgccccc
	1001	agegeacege gegeeegegt eeetggeeeg eeggeteggt tggggettee
5	1051	getgeggetg eggetgetge tgetgetetg ggeggeegee geeteegeee
	1101	agggccacct aaggagcgga ccccgcatct tcgccgtctg gaaaggccat
	1151	gtagggcagg accgggtgga ctttggccag actgagccgc acacggtgct
	1201	tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg
	1251	tctacctctt tgacttcccc gagggcaaga acgcatctgt gcgcacggtg
10	1301	aatatcggct ccacaaaggg gtcctgtctg gataagcggg actgcgagaa
	1351	ctacatcact ctcctggaga ggcggagtga ggggctgctg gcctgtggca
	1401	ccaacgcccg gcaccccagc tgctggaacc tggtgaatgg cactgtggtg
	1451	ccacttggcg agatgagagg ctacgccccc ttcagcccgg acgagaactc
	1501	cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg
15	1551	aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag
	1601	ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac
	1651	catcgtgcac caagaccagg cttacgatga caagatctac tacttcttcc
	1701	gagaggacaa tcctgacaag aatcctgagg ctcctctcaa tgtgtcccgt
	1751	gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt
20	1801	ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg
	1851	ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac
	1901	cccagcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc
-	1951	ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg
	2001	tetteegtae eteeteacte aagggetaee aeteaageet teeeaaceeg
25	2051	cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt
	2101	ccaggtggct gaccgtcacc cagaggtggc gcagagggtg gagcccatgg
	2151	ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg
	2201	gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta
	2251	cctaactaca gacaggggca ctatccacaa ggtggtggaa ccggggggagc
30	2301	aggagcacag cttcgccttc aacatcatgg agatccagcc cttccgccgc
	2351	geggetgeea teeagaceat gtegetggat getgagegga ggaagetgta
	2401	tgtgagetee cagtgggagg tgagecaggt geeettggae etgtgtgagg
	2451	tctatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc
	2501	ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt
25	0554	actacactor attentacon conneces accanactat accanacac

	2601	aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc
	2651	tactacetga getgeceeat ggaateeege eaegeeacet acteatggeg
	2701	ccacaaggag aacgtggagc agagctgcga acctggtcac cagagcccca
	2751	actgcatcet gttcatcgag aacctcacgg cgcagcagta cggccactac
5	2801	ttetgegagg cecaggaggg etectaette egegaggete ageaetggea
	2851	getgetgeee gaggaeggea teatggeega geacetgetg ggteatgeet
	2901	gtgccctggc tgcctccctc tggctggggg tgctgcccac actcactctt
	2951	ggcttgctgg tccacATGGT GAGCAAGGGC GAGGAGCTGT TCACCGGGGT
	3001	GGTGCCCATC CTGGTCGAGC TGGACGGCGA CGTAAACGGC CACAAGTTCA
10	3051	GCGTGTCCGG CGAGGGCGAG GGCGATGCCA CCTACGGCAA
		GCTGACCCTG
	3101	AAGTTCATCT GCACCACCGG CAAGCTGCCC GTGCCCTGGC CCACCCTCGT
	3151	GACCACCCTG ACCTACGGCG TGCAGTGCTT CAGCCGCTAC CCCGACCACA
	3201	TGAAGCAGCA CGACTTCTTC AAGTCCGCCA TGCCCGAAGG CTACGTCCAG
15	3251	GAGCGCACCA TCTTCTTCAA GGACGACGGC AACTACAAGA CCCGCGCCGA
	3301	GGTGAAGTTC GAGGGCGACA CCCTGGTGAA CCGCATCGAG CTGAAGGGCA
	3351	TCGACTTCAA GGAGGACGGC AACATCCTGG GGCACAAGCT GGAGTACAAC
	3401	TACAACAGCC ACAACGTCTA TATCATGGCC GACAAGCAGA AGAACGGCAT
	3451	CAAGGTGAAC TTCAAGATCC GCCACAACAT CGAGGACGGC AGCGTGCAGC
20	3501	TCGCCGACCA CTACCAGCAG AACACCCCCA TCGGCGACGG CCCCGTGCTG
	3551	CTGCCCGACA ACCACTACCT GAGCACCCAG TCCGCCCTGA GCAAAGACCC
	3601	CAACGAGAAG CGCGATCACA TGGTCCTGCT GGAGTTCGTG ACCGCCGCCG
	3651	GGATCACTCT CGGCATGGAC GAGCTGTACA Aggtgaagct tGGGCCCGAA
	3701	CAAAAACTCA TCTCAGAAGA GGATCTGAAT AGCGCCGTCG ACCATCATCA
25	3751	TCATCATCAT TGAGTTTAAA CCGCTGATCA GCCTCGACTG TGCCTTCTAG
	3801	TTGCCAGCCA TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCTGG
	3851	AAGGTGCCAC TCCCACTGTC CTTTCCTAAT AAAATGAGGA AATTGCATCG
	3901	CATTGTCTGA GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TGGGGCAGGA
	3951	CAGCAAGGG GAGGATTGGG AAGACAATAG CAGGCATGCT GGGGATGCGC
30	4001	TGGGCTCTAT GGCTTCTGAG GCGGAAAGAA CCAGCTGGGG CTCTAGGGGG
	4051	TATCCCCACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT
	4101	TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT
	4151	TCGCTTTCTT CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA
	4201	GCTCTAAATC GGGGCATCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA
35	4251	CCTCGACCCC AAAAAACTTG ATTAGGGTGA TGGTTCACGT AGTGGGCCAT

	4301	CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT
	4351	AATAGTGGAC TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGT
	4401	CTATTCTTTT GATTTATAAG GGATTTTGGG GATTTCGGCC TATTGGTTAA
	4451	AAAATGAGCT GATTTAACAA AAATTTAACG CGAATTAATT CTGTGGAATG
5	4501	TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG GCTCCCCAGG CAGGCAGAAG
	4551	TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAAGTCCC
	4601	CAGGCTCCCC AGCAGGCAGA AGTATGCAAA GCATGCATCT CAATTAGTCA
	4651	GCAACCATAG TCCCGCCCT AACTCCGCCC ATCCCGCCC TAACTCCGCC
	4701	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG
10	4751	CAGAGGCCGA GGCCGCCTCT GCCTCTGAGC TATTCCAGAA GTAGTGAGGA
	4801	GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTCCCGG GAGCTTGTAT
	4851	ATCCATTTTC GGATCTGATC AAGAGACAGG ATGAGGATCG TTTCGCATGA
	4901	TTGAACAAGA TGGATTGCAC GCAGGTTCTC CGGCCGCTTG GGTGGAGAGG
	4951	CTATTCGGCT ATGACTGGGC ACAACAGACA ATCGGCTGCT CTGATGCCGC
15	5001	CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC GGTTCTTTTT GTCAAGACCG
	5051	ACCTGTCCGG TGCCCTGAAT GAACTGCAGG ACGAGGCAGC GCGGCTATCG
	5101	TGGCTGGCCA CGACGGCGT TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC
	5151	TGAAGCGGGA AGGGACTGGC TGCTATTGGG CGAAGTGCCG GGGCAGGATC
	5201	TCCTGTCATC TCACCTTGCT CCTGCCGAGA AAGTATCCAT CATGGCTGAT
20	5251	GCAATGCGGC GGCTGCATAC GCTTGATCCG GCTACCTGCC CATTCGACCA
	5301	CCAAGCGAAA CATCGCATCG AGCGAGCACG TACTCGGATG GAAGCCGGTC
	5351	TTGTCGATCA GGATGATCTG GACGAAGAGC ATCAGGGGCT CGCGCCAGCC
	5401	GAACTGTTCG CCAGGCTCAA GGCGCGCATG CCCGACGGCG AGGATCTCGT
	5451	CGTGACCCAT GGCGATGCCT GCTTGCCGAA TATCATGGTG GAAAATGGCC
25	5501	GCTTTTCTGG ATTCATCGAC TGTGGCCGGC TGGGTGTGGC GGACCGCTAT
	5551	CAGGACATAG CGTTGGCTAC CCGTGATATT GCTGAAGAGC TTGGCGGCGA
	5601	ATGGGCTGAC CGCTTCCTCG TGCTTTACGG TATCGCCGCT CCCGATTCGC
	5651	AGCGCATCGC CTTCTATCGC CTTCTTGACG AGTTCTTCTG AGCGGGACTC
	5701	TGGGGTTCGA AATGACCGAC CAAGCGACGC CCAACCTGCC ATCACGAGAT
30	5751	TTCGATTCCA CCGCCGCCTT CTATGAAAGG TTGGGCTTCG GAATCGTTTT
	5801	CCGGGACGCC GGCTGGATGA TCCTCCAGCG CGGGGATCTC ATGCTGGAGT
	5851	TCTTCGCCCA CCCCAACTTG TTTATTGCAG CTTATAATGG TTACAAATAA
	5901	AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC
	5951	TAGTTGTGGT TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGTATAC
25	0004	

6051 GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG 6101 CATAAAGTGT AAAGCCTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA 6151 TTGCGTTGCG CTCACTGCCC GCTTTCCAGT CGGGAAACCT GTCGTGCCAG 6201 CTGCATTAAT GAATCGGCCA ACGCGCGGGG AGAGGCGGTT TGCGTATTGG 6251 GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG GTCGTTCGGC 5 6301 TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA 6351 GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA 6401 GGCCAGGAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC 6451 GCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA 6501 AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT 10 6551 CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTGTCCGCCT 6601 TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC AATGCTCACG CTGTAGGTAT 6651 CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC 6701 CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT 6751 CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC 15 6801 AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG 6851 GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT ATCTGCGCTC 6901 TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC 6951 AAACAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT 7001 TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG 20 7051 GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG 7101 AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG 7151 TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT GACAGTTACC 7201 AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTTCGTTCA 7251 TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG 25 7301 CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC 7351 CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC 7401 AGAAGTGGTC CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG 7451 CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG CGCAACGTTG 7501 TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT 30 7551 TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT 7601 GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA 7651 GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT 7701 TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA 35 7751 CTCAACCAG TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT

- 7801 GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA
- 7851 GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT CAAGGATCTT
- 7901 ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT
- 7951 CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA
- 5 8001 AGGCAAAATG CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT
 - 8051 ACTCATACTC TTCCTTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT
 - 8101 GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA
 - 8151 GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG TC

Table10: Nucleotide sequence of the recombinant plasmid pIND-H-SemaL-EE (SEQ ID NO.:37)

1	AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT
51	TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC
101	GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT
151	TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG
201	TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC
251	AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT
301	GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA
351	AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA
401	GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT
451	ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT
501	ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga
551	egecteetee geeeggaegt geegeeeca gegeaeegeg egeeegegte
601	cetggecege eggeteggtt ggggetteeg etgeggetge ggetgetget
651	gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac
701	cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac
751	tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc
801	ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg
851	agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg
901	tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag
951	gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccaget
1001	gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc
1051	tacgcccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga
1101	cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc
1151	ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc
1201	atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc
1251	ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga
1301	atcetgagge teeteteaat gtgteeegtg tggeeeagtt gtgeaggggg
1351	gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct
1401	gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca
1451	ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac
1501	accagggtet atggtgtttt etecaaceee tggaactaet eageegtetg
1551	tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca
	51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101 1151 1201 1251 1301 1351 1401 1451 1451 1501

	1001	agggetacca cicaagoott occaaooogo ggootggoaa gtgootooca
	1651	gaccagcagc cgatacccac agagaccttc caggtggctg accgtcaccc
	1701	agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt
	1751	tecaetetaa ataceaetae eagaaagtgg eegtteaeeg eatgeaagee
5	1801	agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac
	1851	tatccacaag gtggtggaac cgggggagca ggagcacagc ttcgccttca
	1901	acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg
	1951	tegetggatg etgageggag gaagetgtat gtgageteee agtgggaggt
	2001	gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg
10	2051	gttgcctcat gtcccgagac ccctactgcg gctgggacca gggccgctgc
	2101	atetecatet acageteega aeggteagtg etgeaateea ttaateeage
	2151	cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc
	2201	agaaggtttc cetggcccca aactoteget actacetgag etgccccatg
	2251	gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca
15	2301	gagetgegaa cetggteace agagececaa etgeateetg tteategaga
	2351	aceteaegge geageagtae ggeeactaet tetgegagge eeaggaggge
	2401	tectaettee gegaggetea geactggeag etgetgeeeg aggaeggeat
	2451	catggccgag cacctgctgg gtcatgcctg tgccctggct gcctccctct
	2501	ggctgggggt gctgcccaca ctcactcttg gcttgctggt ccacgtgaag
20	2551	cttGGGCCCG TTTAAACCCG CTGATCAGCC TCGACTGTGC CTTCTAGTTG
	2601	CCAGCCATCT GTTGTTTGCC CCTCCCCGT GCCTTCCTTG ACCCTGGAAG
	2651	GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT
	2701	TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG
	2751	CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG
25	2801	GCTCTATGGC TTCTGAGGCG GAAAGAACCA GCTGGGGCTC TAGGGGGTAT
	2851	CCCCACGCGC CCTGTAGCGG CGCATTAAGC GCGGCGGGTG TGGTGGTTAC
	2901	GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG
	2951	CTTTCTCCC TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT
	3001	CTAAATCGGG GCATCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT
30	3051	CGACCCCAAA AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC
	3101	CCTGATAGAC GGTTTTTCGC CCTTTGACGT TGGAGTCCAC GTTCTTTAAT
	3151	AGTGGACTCT TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGTCTA
	3201	TTCTTTTGAT TTATAAGGGA TTTTGGGGAT TTCGGCCTAT TGGTTAAAAA
	3251	ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAATTCTG TGGAATGTGT
35	3301	GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT

	3351	GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG
	3401	GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA
	3451	ACCATAGTCC CGCCCCTAAC TCCGCCCATC CCGCCCCTAA CTCCGCCCAG
	3501	TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTT ATTTATGCAG
5	3551	AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAAGTA GTGAGGAGGC
	3601	TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTCCCGGGAG CTTGTATATC
	3651	CATTTTCGGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG
	3701	AACAAGATGG ATTGCACGCA GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA
	3751	TTCGGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT
10	3801	GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC AAGACCGACC
	3851	TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG
	3901	CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA
	3951	AGCGGGAAGG GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC
	4001	TGTCATCTCA CCTTGCTCCT GCCGAGAAAG TATCCATCAT GGCTGATGCA
15	4051	ATGCGGCGC TGCATACGCT TGATCCGGCT ACCTGCCCAT TCGACCACCA
	4101	AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGTCTTG
	4151	TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA
	4201	CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT
	4251	GACCCATGGC GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT
20	4301	TTTCTGGATT CATCGACTGT GGCCGGCTGG GTGTGGCGGA CCGCTATCAG
	4351	GACATAGCGT TGGCTACCCG TGATATTGCT GAAGAGCTTG GCGGCGAATG
	4401	GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC GATTCGCAGC
	4451	GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG
	4501	GGTTCGAAAT GACCGACCAA GCGACGCCCA ACCTGCCATC ACGAGATTTC
25	4551	GATTCCACCG CCGCCTTCTA TGAAAGGTTG GGCTTCGGAA TCGTTTTCCG
	4601	GGACGCCGGC TGGATGATCC TCCAGCGCGG GGATCTCATG CTGGAGTTCT
	4651	TCGCCCACCC CAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC
	4701	AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG
	4751	TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT
30	4801	CGACCTCTAG CTAGAGCTTG GCGTAATCAT GGTCATAGCT GTTTCCTGTG
	4851	TGAAATTGTT ATCCGCTCAC AATTCCACAC AACATACGAG CCGGAAGCAT
	4901	AAAGTGTAAA GCCTGGGGTG CCTAATGAGT GAGCTAACTC ACATTAATTG
	4951	CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC GTGCCAGCTG
	5001	CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGGCG
35	5051	CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC

	5101	GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA
	5151	TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC
	5201	CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC
	5251	CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC
5	5301	CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT
	5351	GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC
	5401	TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC
	5451	AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC
	5501	CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA
10	5551	ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG
	5601	ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG
	5651	GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC
	5701	TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA
	5751	CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC
15	5801	GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGT
	5851	CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGAGA
	5901	TTATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA
	5951	TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT
	6001	GCTTAATCAG TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC
20	6051	ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT
	6101	ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA CGCTCACCGG
	6151	CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC CGAGCGCAGA
	6201	AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG
	6251	GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG
25	6301	CCATTGCTAC AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA
	6351	TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT
	6401	GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA
	6451	AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT
•	6501	CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC
30	6551	AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC
	6601	CGGCGTCAAT ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG
	6651	CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC
	6701	GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT
	6751	CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG
35	6801	CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT

6851	CATACTCTTC CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC			
6901	TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG			
6951	GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCG ACGGATCGGG			
Table	• • • • • • • • • • • • • • • • • • • •			
	SemaL-EA (SEQ ID NO.:38)			
1	AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT			
	TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC			
	GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT			
	TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG			
	TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC			
251	AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT			
301	GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA			
351	AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA			
401	GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT			
451	ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT			
501	ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga			
551	egeeteetee geeeggaegt geegeeeea gegeacegeg egeeegegte			
601	cetggecege eggeteggtt ggggetteeg etgeggetge ggetgetget			
651	getgetetgg geggeegeeg eeteegeeea gggeeaceta aggageggae			
701	cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac			
751	tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc			
801	ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg			
851	agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg			
901	tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag			
951	geggagtgag gggetgetgg cetgtggeac caaegeeegg caeeceaget			
1001	gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc			
1051	tacgcccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga			
1101	cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc			
1151	ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc			
1201	atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc			

1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga

1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg

	1351	gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct
	1401	gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca
	1451	ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac
	1501	accagggtet atggtgtttt etecaaeeee tggaaetaet eageegtetg
5	1551	tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca
	1601	agggctacca ctcaagcctt cccaacccgc ggcctggcaa gtgcctccca
	1651	gaccagcagc cgatacccac agagaccttc caggtggctg accgtcaccc
	1701	agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt
	1751	tccactctaa ataccactac cagaaagtgg ccgttcaccg catgcaagcc
10	1801	agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac
	1851	tatccacaag gtggtggaac cgggggagca ggagcacagc ttcgccttca
	1901	acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg
	1951	tcgctggatg ctgagcggag gaagctgtat gtgagctccc agtgggaggt
	2001	gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg
15	2051	gttgcctcat gtcccgagac ccctactgcg gctgggacca gggccgctgc
	2101	atctccatct acagetccga acggtcagtg ctgcaatcca ttaatccage
	2151	cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc
	2201	agaaggtttc cctggcccca aactctcgct actacctgag ctgccccatg
	2251	gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca
20	2301	gagetgegaa eetggteace agageeecaa etgeateetg tteategaga
	2351	acctcacggc gcagcagtac ggccactact tctgcgaggc ccaggagggc
	2401	tectaettee gegaggetea geactggeag etgetgeeeg aggaeggeat
	2451	catggeegag caectgetgg gteatgeetg tgeeetgget geeteeetet
	2501	ggctgggggt gctgcccaca ctcactcttg gcttgctggt ccacgtgaag
25	2551	cttGGGCCCG AACAAAACT CATCTCAGAA GAGGATCTGA ATAGCGCCGT
	2601	CGACCATCAT CATCATCATC ATTGAGTTTA TCCAGCACAG TGGCGGCCGC
	2651	TCGAGTCTAG AGGGCCCGTT TAAACCCGCT GATCAGCCTC GACTGTGCCT
	2701	TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCGTGC CTTCCTTGAC
	2751	CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG
30	2801	CATCGCATTG TCTGAGTAGG TGTCATTCTA TTCTGGGGGG TGGGGTGGGG
	2851	CAGGACAGCA AGGGGGAGGA TTGGGAAGAC AATAGCAGGC ATGCTGGGGA
	2901	TGCGGTGGGC TCTATGGCTT CTGAGGCGGA AAGAACCAGC TGGGGCTCTA
	2951	GGGGGTATCC CCACGCGCCC TGTAGCGGCG CATTAAGCGC GGCGGGTGTC
	3001	GTGGTTACGC GCAGCGTGAC CGCTACACTT GCCAGCGCCC TAGCGCCCGC
25	0054	TOOTTOOOT TTOTTOOOTT COTTTOTOOC CACOTTOOCC COOTTOOCC

	3101	GICAAGCICI AAATCGGGGC ATCCCTTTAG GGTTCCGATT TAGTGCTTTA
	3151	CGGCACCTCG ACCCCAAAAA ACTTGATTAG GGTGATGGTT CACGTAGTGG
	3201	GCCATCGCCC TGATAGACGG TTTTTCGCCC TTTGACGTTG GAGTCCACGT
	3251	TCTTTAATAG TGGACTCTTG TTCCAAACTG GAACAACACT CAACCCTATC
5	3301	TCGGTCTATT CTTTTGATTT ATAAGGGATT TTGGGGATTT CGGCCTATTG
	3351	GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TAATTCTGTG
	3401	GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGGCAGGC
	3451	AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA GGTGTGGAAA
	3501	GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT
10	3551	AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC GCCCCTAACT
	3601	CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTAT
	3651	TTATGCAGAG GCCGAGGCCG CCTCTGCCTC TGAGCTATTC CAGAAGTAGT
	3701	GAGGAGGCTT TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT CCCGGGAGCT
	3751	TGTATATCCA TTTTCGGATC TGATCAAGAG ACAGGATGAG GATCGTTTCG
15	3801	CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC GCTTGGGTGG
	3851	AGAGGCTATT CGGCTATGAC TGGGCACAAC AGACAATCGG CTGCTCTGAT
	3901	GCCGCCGTGT TCCGGCTGTC AGCGCAGGGG CGCCCGGTTC TTTTTGTCAA
	3951	GACCGACCTG TCCGGTGCCC TGAATGAACT GCAGGACGAG GCAGCGCGGC
	4001	TATCGTGGCT GGCCACGACG GGCGTTCCTT GCGCAGCTGT GCTCGACGTT
20	4051	GTCACTGAAG CGGGAAGGGA CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA
	4101	GGATCTCCTG TCATCTCACC TTGCTCCTGC CGAGAAAGTA TCCATCATGG
	4151	CTGATGCAAT GCGGCGGCTG CATACGCTTG ATCCGGCTAC CTGCCCATTC
	4201	GACCACCAAG CGAAACATCG CATCGAGCGA GCACGTACTC GGATGGAAGC
	4251	CGGTCTTGTC GATCAGGATG ATCTGGACGA AGAGCATCAG GGGCTCGCGC
25	4301	CAGCCGAACT GTTCGCCAGG CTCAAGGCGC GCATGCCCGA CGGCGAGGAT
	4351	CTCGTCGTGA CCCATGGCGA TGCCTGCTTG CCGAATATCA TGGTGGAAAA
	4401	TGGCCGCTTT TCTGGATTCA TCGACTGTGG CCGGCTGGGT GTGGCGGACC
	4451	GCTATCAGGA CATAGCGTTG GCTACCCGTG ATATTGCTGA AGAGCTTGGC
	4501	GGCGAATGGG CTGACCGCTT CCTCGTGCTT TACGGTATCG CCGCTCCCGA
30	4551	TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT TGACGAGTTC TTCTGAGCGG
	4601	GACTCTGGGG TTCGAAATGA CCGACCAAGC GACGCCCAAC CTGCCATCAC
	4651	GAGATTTCGA TTCCACCGCC GCCTTCTATG AAAGGTTGGG CTTCGGAATC
	4701	GTTTTCCGGG ACGCCGGCTG GATGATCCTC CAGCGCGGGG ATCTCATGCT
	4751	GGAGTTCTTC GCCCACCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA
25	4004	AATAAAAAA TAAAAAAA TAAAAAAA TAAAAAAA TAAAAAA

	4851	CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG
	4901	TATACCGTCG ACCTCTAGCT AGAGCTTGGC GTAATCATGG TCATAGCTGT
	4951	TTCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA CATACGAGCC
	5001	GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA GCTAACTCAC
5	5051	ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT
	5101	GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT
	5151	ATTGGGCGCT CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT
	5201	TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT
	5251	CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG
10	5301	CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG
	5351	GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT
	5401	GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC
	5451	TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC
	5501	CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC TCACGCTGTA
15	5551	GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC
	5601	GAACCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT
	5651	TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG
	5701	GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG
	5751	AAGTGGTGGC CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG
20 -	5801	CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT
	5851	CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG
	5901	CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC
	5951	TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG
	6001	TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA
25	6051	TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG
	6101	TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC
	6151	GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG
	6201	GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG
	6251	CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG
30	6301	AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT
	6351	TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA
	6401	CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA
	6451	TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC
	6501	CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT
25	GEE1	

15

35

	6601	ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT
	6651	GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG
	6701	CTCTTGCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT
	6751	TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG
5	6801	ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA
	6851	CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA
	6901	CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT
	6951	TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG
	7001	TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC
10	7051	AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC
	7101	GGATCGGG

Table12: Sequence of the recombinant plasmid pQE30-H-SemaL-BH (SEQ ID NO.:39)

1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT 51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG 101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACGGAtcc 20 151 ctggttctgt ttgaagggga cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc ggttccgccg catccggggc gagagtgagc 201 251 tgtacaccag tgatactgtc atgcagaacc cacagttcat caaagccacc 301 ategtgeace aagaceagge ttacgatgae aagatetaet aettetteeg 351 agaggacaat cctgacaaga atcctgaggc tcctctcaat gtgtcccgtg 25 tggcccagtt gtgcaggggg gaccagggtg gggaaagttc actgtcagtc 451 tccaagtgga acacttttct gaaagccatg ctggtatgca gtgatgctgc 501 caccaacaag aacttcaaca ggctgcaaga cgtcttcctg ctccctgacc 551 ccagcggcca gtggagggac accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg tgtgtattcc ctcggtgaca ttgacaaggt 30 651 cttccgtacc tcctcactca agggctacca ctcaagcctt cccaacccgc ggcctggcaa gtgcctccca gaccagcagc cgatacccac agaAAGCTTA 751 ATTAGCTGAG CTTGGACTCC TGTTGATAGA TCCAGTAATG ACCTCAGAAC 801 TCCATCTGGA TTTGTTCAGA ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC CAAGCTAGCT TGGCGAGATT TTCAGGAGCT AAGGAAGCTA

901 AAATGGAGAA AAAAATCACT GGATATACCA CCGTTGATAT ATCCCAATGG

	951	CATCGTAAAG AACATTITGA GGCATTTCAG TCAGTTGCTC AATGTACCTA
	1001	TAACCAGACC GTTCAGCTGG ATATTACGGC CTTTTTAAAG ACCGTAAAGA
	1051	AAAATAAGCA CAAGTTTTAT CCGGCCTTTA TTCACATTCT TGCCCGCCTG
	1101	ATGAATGCTC ATCCGGAATT TCGTATGGCA ATGAAAGACG GTGAGCTGGT
5	1151	GATATGGGAT AGTGTTCACC CTTGTTACAC CGTTTTCCAT GAGCAAACTG
	1201	AAACGTTTTC ATCGCTCTGG AGTGAATACC ACGACGATTT CCGGCAGTTT
	1251	CTACACATAT ATTCGCAAGA TGTGGCGTGT TACGGTGAAA ACCTGGCCTA
	1301	TTTCCCTAAA GGGTTTATTG AGAATATGTT TTTCGTCTCA GCCAATCCCT
	1351	GGGTGAGTTT CACCAGTTTT GATTTAAACG TGGCCAATAT GGACAACTTC
10	1401	TTCGCCCCG TTTTCACCAT GGGCAAATAT TATACGCAAG GCGACAAGGT
	1451	GCTGATGCCG CTGGCGATTC AGGTTCATCA TGCCGTCTGT GATGGCTTCC
	1501	ATGTCGGCAG AATGCTTAAT GAATTACAAC AGTACTGCGA TGAGTGGCAG
	1551	GGCGGGGCGT AATTTTTTTA AGGCAGTTAT TGGTGCCCTT AAACGCCTGG
	1601	GGTAATGACT CTCTAGCTTG AGGCATCAAA TAAAACGAAA GGCTCAGTCG
15	1651	AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGGTGA ACGCTCTCCT
	1701	GAGTAGGACA AATCCGCCGC TCTAGAGCTG CCTCGCGCGT TTCGGTGATG
	1751	ACGGTGAAAA CCTCTGACAC ATGCAGCTCC CGGAGACGGT CACAGCTTGT
	1801	CTGTAAGCGG ATGCCGGGAG CAGACAAGCC CGTCAGGGCG CGTCAGCGGG
	1851	TGTTGGCGGG TGTCGGGGCG CAGCCATGAC CCAGTCACGT AGCGATAGCG
20	1901	GAGTGTATAC TGGCTTAACT ATGCGGCATC AGAGCAGATT GTACTGAGAG
	1951	TGCACCATAT GCGGTGTGAA ATACCGCACA GATGCGTAAG GAGAAAATAC
	2001	CGCATCAGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT
	2051	CTGTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT
	2101	TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC
25	2151	CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA
	2201	TAGGCTCCGC CCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA
	2251	GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA
	2301	AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT
	2351	GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAA TGCTCACGCT
30	2401	GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG
	2451	CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG
	2501	TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA
	2551	CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC
	2601	TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG TATTTGGTAT
35	2651	CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT

	2701	GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG
	2751	CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT
	2801	TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT
	2851	TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA
5	2901	AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA
	2951	CAGTTACCAA TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT
	3001	TTCGTTCATC CATAGCTGCC TGACTCCCCG TCGTGTAGAT AACTACGATA
	3051	CGGGAGGCT TACCATCTGG CCCCAGTGCT GCAATGATAC CGCGAGACCC
	3101	ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA GCCGGAAGGG
10	3151	CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT
	3201	AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG
	3251	CAACGTTGTT GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG
	3301	GTATGGCTTC ATTCAGCTCC GGTTCCCAAC GATCAAGGCG AGTTACATGA
	3351	TCCCCCATGT TGTGCAAAAA AGCGGTTAGC TCCTTCGGTC CTCCGATCGT
15	3401	TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT ATGGCAGCAC
	3451	TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT
	3501	GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG
	3551	TTGCTCTTGC CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA
	3601	CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGCG AAAACTCTCA
20	3651	AGGATCTTAC CGCTGTTGAG ATCCAGTTCG ATGTAACCCA CTCGTGCACC
	3701	CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT GGGTGAGCAA
	3751	AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA
	3801	TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA
	3851	GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA
25	3901	AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC
	3951	TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC
	4001	GAGGCCCTTT CGTCTTCAC

- 30 Table13: Sequence of the recombinant plasmid pQE31-H-SemaL-SH (SEQ ID NO.: 40)
 - 1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT
 - 51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG
- 35 101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACACGGAT

	151	CCGCATGCga gctcccagtg ggaggtgagc caggtgcccc tggacctgtg
,	201	tgaggtctat ggcgggggct gccacggttg cctcatgtcc cgagacccct
	251	actgeggetg ggaccaggge egetgeatet ceatetacag eteegaaegg
	301	tcagtgctgc aatccattaa tccagccgag ccacacaagg agtgtcccaa
5	351	ccccaaacca gacaaggccc cactgcagaa ggtttccctg gccccaaact
	401	ctcgctacta cctgagctgc cccatggaat cccgccacgc cacctactca
	451	tggcgccaca aggagaacgt ggagcagagc tgcgaacctg gtcaccagag
	501	ccccaactgc atcctgttca tcgagaacct cacggcgcag cagtacggcc
	551	actacttctg cgaggcccag gagggctcct acttccgcga ggctcagcac
10	601	tggcagctgc tgcccgagga cggcatcatg gccgagcacc tgctgggtca
	651	tgcctgtgcc ctggctgcct ccctctggct gggggtgctg cccacactca
	701	ctcttggctt gctggtccac gtgaagcttA ATTAGCTGAG CTTGGACTCC
	751	TGTTGATAGA TCCAGTAATG ACCTCAGAAC TCCATCTGGA TTTGTTCAGA
	801	ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC CAAGCTAGCT
15	851	TGGCGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA AAAAATCACT
	901	GGATATACCA CCGTTGATAT ATCCCAATGG CATCGTAAAG AACATTTTGA
	951	GGCATTTCAG TCAGTTGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG
	1001	ATATTACGGC CTTTTTAAAG ACCGTAAAGA AAAATAAGCA CAAGTTTTAT
	1051	CCGGCCTTTA TTCACATTCT TGCCCGCCTG ATGAATGCTC ATCCGGAATT
20	1101	TCGTATGGCA ATGAAAGACG GTGAGCTGGT GATATGGGAT AGTGTTCACC
	1151	CTTGTTACAC CGTTTTCCAT GAGCAAACTG AAACGTTTTC ATCGCTCTGG
	1201	AGTGAATACC ACGACGATTT CCGGCAGTTT CTACACATAT ATTCGCAAGA
	1251	TGTGGCGTGT TACGGTGAAA ACCTGGCCTA TTTCCCTAAA GGGTTTATTG
	1301	AGAATATGTT TTTCGTCTCA GCCAATCCCT GGGTGAGTTT CACCAGTTTT
25	1351	GATTTAAACG TGGCCAATAT GGACAACTTC TTCGCCCCCG TTTTCACCAT
	1401	GGGCAAATAT TATACGCAAG GCGACAAGGT GCTGATGCCG CTGGCGATTC
	1451	AGGTTCATCA TGCCGTCTGT GATGGCTTCC ATGTCGGCAG AATGCTTAAT
	1501	GAATTACAAC AGTACTGCGA TGAGTGGCAG GGCGGGGCGT AATTTTTTTA
	1551	AGGCAGTTAT TGGTGCCCTT AAACGCCTGG GGTAATGACT CTCTAGCTTG
30	1601	AGGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT
	1651	TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGC
	1701	TCTAGAGCTG CCTCGCGCGT TTCGGTGATG ACGGTGAAAA CCTCTGACAC
	1751	ATGCAGCTCC CGGAGACGGT CACAGCTTGT CTGTAAGCGG ATGCCGGGAG
	1801	CAGACAAGCC CGTCAGGGGC CGTCAGCGGG TGTTGGCGGG TGTCGGGGCG
35	1851	CAGCCATGAC CCAGTCACGT AGCGATAGCG GAGTGTATAC TGGCTTAACT

	1901	ATGCGGCATC AGAGCAGATT GTACTGAGAG TGCACCATAT GCGGTGTGAA
	1951	ATACCGCACA GATGCGTAAG GAGAAAATAC CGCATCAGGC GCTCTTCCGC
	2001	TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CTGTCGGCTG CGGCGAGCGG
	2051	TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT
5	2101	AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG
	2151	TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG
	2201	AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA
	2251	CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC
	2301	TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG
10	2351	GAAGCGTGGC GCTTTCTCAA TGCTCACGCT GTAGGTATCT CAGTTCGGTG
	2401	TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAGCC
	2451	CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA
	2501	GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA
	2551	GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA
15	2601	CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG
	2651	TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC
	2701	GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA
	2751	AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC
	2801	AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA
20	2851	AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT
	2901	CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA
	2951	GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGCTGCC
	3001	TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG
	3051	CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT
25	3101	TATCAGCAAT AAACCAGCCA GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT
	3151	GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG
	3201	AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT GCCATTGCTA
	3251	CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC
	3301	GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA
30	3351	AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG
	3401	CAGTGTTATC ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC
	3451	ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC
	3501	ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCGGCGTCAA
	3551	TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT
25	2004	CCAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG

20

25

30

35

- 3651 ATCCAGTTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT
 3701 TTACTTTCAC CAGCGTTTCT GGGTGAGCAA AAACAGGAAG GCAAAATGCC
 3751 GCAAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT
 3801 CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG
 5 3851 GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC
 3901 ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT
 3951 GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAC
- 10 Table14: (Partial) nucleotide sequence of the human semaphorin L gene. (8888 nucleotides) (SEQ ID NO.: 41):

GGCAAGGTCTACCTCTTTGACTTCCCCGAGGGCAAGAACGCATCTGTGCGCACGGTGAGC CTCTCTCTCCCCCAACACCCCCCCTACCCTCTTATCTCCCCTCTGGCCCTGCCAAGGGT CCTCAGGGAATCCGAGGGAGCTGGCTTCTCTTCCTAAACTGCCCCCACCTCCGTATCCTA TAAATGGCTCCTGGGGGAGGCTCCCTAAAGGTAGTCCAGATTGGAGTGGGGAGCTGGGGC GGTGTGGAGAAAACAGGAGCTAATGGGCCTGGCCAGCTGGCCAGCGCTGCTGCGGAAAG CCCAGGCTGGAAGCTGGGCCCCAGAGCCCATGCCTGGTCTTCTGAACCCTCTGGGCCTCA TTGCTCATCTGTCAGATGAGAATAATGGTTGCTTCCTTTGGGGCTTATCCTGAGGCTGTG TGGAAAGCATTTCAGGGGTACCTCACCCCTGGCAGATTGAACTAATGCTTCTCCCCTTCC CCAGGTGAATATCGGCTCCACAAAGGGGTCCTGTCTGGATAAGCGGGTGAGCGGGGGAGG GATCTGGAGGGGTCTGAGCCACTTGGTAAAGGGAGAGGAGACCCTGAGGGTCTAAGGAAG GAAGCATGGCCCTGCCCCACGAGTCCCAGACTGATGGGGAGACGTGGTCCTCTGTGCTTA GGGGATGGCGTCAGCTGCACACACTCTGGGCTGTCCCGGGAGGCTGTCACCTATGCTAAG CCCTTCTGACACCTTCTTCCCTGATCCTGGGGGTCCTAGTGCTAGGCTTGCCAGGGCCTT CCAGCAACCAATTTCTCTCCCCCTTCTCTCTCTCCCCGGGCAGGACTGCGAGAACTACAT CACTCTCCTGGAGAGGGGGGTGAGGGGGCTGCTGGCCTGTGGCACCAACGCCCGGCACCC CAGCTGCTGGAACCTGGTGAGAAGGCTGCTCCCCATGTGCCTGATCAGCTCACCTTCTAC TGCGTGGGCTTCTGCCCCTCATGGTGGGAAGGAGATGGCGAGACTCCAATGCTGGCCTTG CCCTGGGAGGATGGGCTCCTGGCCGAGAAACTGGCCGTCATGGGAGGCAGTGGCTGTGG GATTATGTGGCCATCCAACCCTCTGGATCTCCCACAGGTGAATGGCACTGTGGTGCCACT TGGCGAGATGAGAGGCTACGCCCCCTTCAGCCCGGACGAGAACTCCCTGGTTCTGTTTGA AGGTTGGGGCATGCTTCGGAACTGGGCTGGGAGCAGGATGGTCAGCTCTTTGTCCAGTGT

10

15

20

25

30

35

AGGGGACGAGGTGTATTCCACCATCCGGAAGCAGGAATACAATGGGAAGATCCCTCGGTT AGGCTCCGGCTGGGCTGAGGGTGGGCAAGGGGGTGTGAGCACTTAAGGTGGCAGATGGGA TCCTGATGTTTCTGGGAGGGCTCCCTGAGGGCCGCTGGGGCCATGCAGGAAAGCAGGACC TTGGTATAGGCCTGAGAAGTTAGGGTTGGCTGGGAGCAGAGGAACAGACAAGGTATAGCA GTGGGATGGGCCCAGCCCTCTTCAGGAACACAAACAGAGGGAGCCCCAGACCCAGTGCAG GGTCCCCAGGAGCCAAAGTTTATCCTCTGCTGAGTTCACGTGGAGGCAGCCCCCCAACTC CCTCCTCATCAGGGCTCTGCCAATTGAGCAGAAGTGACATAGGGGCCCCCAGGGACCTTC CCCCACTCCCAGGCATGAAGTCATTGCTCCTGGGCCGATGACATCTTTGTAGGAAGAGG GCAAAACAGGTGTGGGGTGGAGGTGCAGGGTCTAGGGCCCCTCGGGGAGTTGGACCTGAT GTTATGAGTCCTATTCCAGATCTGATTTGCCATGGTTTGTGCAGACCCGAAGGAGGAGG AGAGTGTGCAGGGTTGGAATGGTCTCCCGGGCAAGCTTCCCAGCCTTACGCCCATTCGCT TCTGTGCCCTGGCAGACCCACAGTTCATCAAAGCCACCATCGTGCACCAAGACCAGGCTT **ACGATGACAGATCTACTACTTCTTCCGAGAGGACAATCCTGACAAGAATCCTGAGGCTC** CTCTCAATGTGTCCCGTGTGGCCCAGTTGTGCAGGGTGAACACGGGCGTGAGGGCTGCTG GCTACGTGTCTGTGCATGAATAGGCCTGAGTGAGGGTGAGTTCTGTGTGTCCGTGTGCAT GTAGAAGTTGTGGGATGTATGAGTGGGTCTGTGTCAGGGACTGTGGGAGCAGCTGTGTG TGCATGGAGCATCATGTGTCTGTGTGTGGGTAAAGGTGGCTGAGCTCCTGTGCACGTATG GTGTGAATGTGCTGTGCCACGTATGTGGGTGCGTGAGTCAGTAAATGTGTGTCTGAGTCC GTCTGCTCTGTGGGGACCTGGCACTCTCACCTGCCCTGACCCTGGGCACTGCTGGCCCTG GGCTCTGGATCAGCCAGGCCTGCTTGCAGGAGTCTCATCTGGAGACCTGCCCTGAGTCCT GGGGCACCCCGGCAGGTCCTGGCCCCTCGCAGCCTGCCTTCCTCCTCTGGGCCCAGGTG TTGATATTGCTGGCAGTGGTTTCCTGGGGTGTGTGGGGAAGCCCGGGCAGGTGCTGAGGG GCCTCTTCTCCCCTCTACCCTTCCAGGGGGACCAGGGTGGGGAAAGTTCACTGTCAGTCT CCAAGTGGAACACTTTTCTGAAAGCCATGCTGGTATGCAGTGATGCTGCCACCAACAAGA ACTTCAACAGGCTGCAAGACGTCTTCCTGCTCCCTGACCCCAGCGGCCAGTGGAGGGACA CCAGGGTCTATGGTGTTTTCTCCAACCCCTGGTGAGTGGCCCTTGTCCTGGGGCCGGGGC TGGCATTGGTTCAGTGTCCAGTAGGGACAGGAGGCCTTGGGCCCTGCTGAGGGCCTCCCT GGTGTGGCAGGAGCAGGGCTGCAGGCTCAAGAGGCTGGGCTGTTGCTGGGTGTGGGGTG TGTGCATGCCCTATATGCACACTCATGACTGCACTTGTGCCTGTGTGTCCCACCACCTGC TTGTGCCGAGAGTGGACACTGGGCCCAGGAGGAAGCTGCTGAAGCATCTCTCGGGGAGCT **GGGTGCTATTACACCTGCTCAGGCACTGCCTGAGCCCGATAATTCACACTTCTTAATCAC**

TCTCATTGATTGAACACACGGCAGGCGGAAGTGTTGGGTGTGTGGGGAGAGTTAGGGA TAGAGTGGAGGAAGCCAAGACCCTGCTCTGTGGCTCCTGGGTGAGTGGGTCCCCCAGGCT GGGAAGGGGTTGGGGTCTGGCCTCCTGGGGCATCAGCACCCCACAGCCTGTGCCCAGGG AGGGCTAGAGAACTGCTCAGCCTATGATGGGGTTCCTCCTGCCTTGGGGTTGGGTAGAGC AGATGGCCTCTAGACTCAGTGATTCTGTAACAGGATACAAGTTTGTGGTTTTAAATTGCA 5 GCACAAAGAAATTAGGCTGAACTCCTCCTCCTCCTCCCCATCCCCCCATTTTCAG TGGTGGTTGGCAACTCAGTGCCAGGCACAAGGCTGGCCTGGGTGAGTGGAGGTGGATGGG TGGGTTCTGGGCCCCCATTGAGCTGGTCTCCATGTCACTGCAGGAACTACTCAGCCGTC TGTGTGTATTCCCTCGGTGACATTGACAAGGTCTTCCGTACCTCCACTCAAGGGCTAC CACTCAAGCCTTCCCAACCCGCGGCCTGGCAAGGTGAGCGTGACACCAGCCGTGGCCCAG 10 GCCCAGCCCTCCTTCTGCCTCACCTCCCACCACCCCACTGACCTGGGCCTGCTCTCCTTG CCCAGTGCCTCCCAGACCAGCAGCCGATACCCACAGAGACCTTCCAGGTGGCTGACCGTC ACCCAGAGGTGGCGCAGAGGGTGGAGCCCATGGGGCCTCTGAAGACGCCATTGTTCCACT TTCATGTGCTTTACCTAACTACAGGTGAGAGGCTACCCCGGGACCCTCAGTTTGCTTTGT 15 AAAAACGGGCATGAAAGGTGTAAGGAATAATGTAGTTAACATCTGGTTGGATCTTTACAT GCCAGGCAGGAGAGCTTCCTGGAGGAGGTAGGGGCAAGAGGGGAAAGGGGGATGGGAGAA AAGCAAGCACTGGGATTTGGAGGCGGAAATCTGGAGAGTCTGAGCAAAGCCAGGTGCACC TTTGGTCCAGATGTCTGACTCAGGGAAGAAGATGGTAGGAAGAGACGTGGCAAATGAGGA 20 GGAGGGCCTGAACCACAGGGATACTGGCCTCTGCCAGGCAGAATGAGGGAGTCAGGCCC TGCGCCTGTCTTTGGGATTGTGCAGGTGAGAAGAACATTTGAGGAGTTGATGGGGCACA AATTAGGTATGGGGAAGGAGTTCCAGGGGGCAGAACCTTTGCCATCTCACAGAGGACAGG GGCAGCTTCTTCTTCCCTGGAGTAGGCCCTGCTGGGGGAAGCTGGGTGGAATGCCGTG GGAGATGCTCCTGCTTTCTGGAAAGCCACAGGACACGGAGGAGCCAGTCCTGAGTTGGGT 25 TTGTCGCAGCTTCCCATGCCAGCTGCCTTCCTTGAGACTGGAAAGGGCCTCTAGCACCCC TGGGGCCATTCAATTCAGGCCCAGGCGCCCAACCTCAGTTGTTCACATTCCCCATGTGAT CTCCTGTTGCTGCTTCACCTTGGGACTGTCTCGGCTTTGGTGACCTTGTAGGAAACTGGA ACCCAGCACCATTGTTTGGCTCCTGGAAGCCTTGGGGAGAGGAATTTCCCACAGGGCAG GGCCTGGGTCCTGATTCCCTGCCTCTTTACTCCCTATTCATCCCGGCTACACCCTTGGGC 30 CCCCATCCTTGCTTGGCTCCAGTACTGGCTGGCACAGCTGTTGTGGTCATCCAGGGATGG CAGGGCACTGGGGAACAGAAGAGAGAGGTCACACAGTGCGGAACTGGGAGCAGGAGCTAG GACAAGGAAGGCTGGACTTGGGCCATGGATTCCCTTCCTGCAGACTTGGGAAGTGAGCAC ACTTGAGTGATTAGAGAAGGTGTCTTCGTTCTAAGGGCAGTGGAGGAGGCACCATTTTGG AGCCTGCATCATTCGTATTTGGGCTAGATTGAAAAATAGAGCTTTCTAAGTCCTCTGCAG 35

10

15

20

25

30

35

AGAATGGGAGGCTCTCACAACTGGGAGAAGTATTGGCTCTTTTCCTGAGAATTTTGCCAA GGGTATGCTGTTACTGGGGCTGGTTTGGAAGGAGTATAGGGCATTATGTCTGTGAAGGCA GTGGCTGGGGTGGGGCCTTATCAGGCCCAAGGAGCATCTGGCCACATCTCAGAGTCCACA AGAAACTGGGAGAGCAGGTGAGGTAGGATTGGGAGGACCAGGGGTCAGGGTCCCCATTGG TTGGGAACTCTTGATTTAGAATCCAAGATCCTTTTTAGATCTAGGATTTTATAAAATTAA GATATCCCCTAAGATCAAATGCAACGTGGAGTCCTGAATTGGATCCTAGAACAGAAGAAG GACATTTGTGGAAAAACTAGTGAAATCCAAATAAAGTCTGTAGTTTTGTTAATAGTAATG CACCAATGTCAGTTGCCTAGTTGTGACAAATATACCGTGGTTATGTAAGATGGTAACATT AGGGGGAACTGGAGAAGGGTAGATTGGAGCTCTCTGTACTATCTTTGCAACTTTTCTGGG AATCTAAAATTACTCCAAAATAAAAAAAAAATGTATTTAAAGTAAATATATTCCCTAAGA GTCCAGGAGGCAGGGGAGTTGTAGAAGCAGCTGAGTGGTTGGGTTCTGACAGATTTGGTT CCAACTCGGTCTCTGCTGCTCACCAGCTGTGTGACCTTGAGCAAGTGGCTTAGCCTTTCT GAGCCTGATTTCCTTATCTGTGGAGTGGGGAAGATGACAGCCACCTCGCAGGGCTGTGGA GGGTTAAACGAGGTGATGCATGGACAGCAGCCGCACTGACCTTGCTGGTGTGGGGCTCCT GCTTCTGTTCTTCCCGTGCAGCCTTGGGAATGTTGGAGGCCGTATCCAGGGACCCCTGGG CCTCCTGGGATGGCCTCTCTGGATCAGCCTTGGAAGGTTCCAGGCTGCCCTTAGGCTCCC ACATTCTTCCCCAGTCACGCTCTCCTCGCCCTGCCCACACCAGTCCTGTGACCCTTGCCT GAGTTGTGACTTCCCACCCCTCCCGGCCTAGAGGAAAGCTGCCTGGCCCCTCAGTGGGA CTCCCGCCCACTGACCCTCTGTCCACCATACACAGACAGGGGCACTATCCACAAGGTGGT GGAACCGGGGGAGCAGGACACACCTTCGCCTTCAACATCATGGAGATCCAGCCCTTCCG CCGCGCGCGCTCCAGACCATGTCGCTGGATGCTGAGCGGGTGAGCCTTCCCCCACT GCGTCCCATGGGCTATGCAGTGACTGCAGCTGAGGACAGGGCTCCTTTGCATGTGATTTG TGTGTTCTTTTAAGAGCTTCTAGGCCTTAGGGCCTGGACATTTAGGACTGAGTGTGGGGT GGGGCCCGGCCTGACCCAATCCTGCTGTCCTTCCAGAGGAAGCTGTATGTGAGCTCCCA GTGGGAGGTGAGCCAGGTGCCCCTGGACCTGTGTGAGGTCTATGGCGGGGGCTGCCACGG TTGCCTCATGTCCCGAGACCCCTACTGCGGCTGGGACCAGGGCCGCTGCATCTCA CAGCTCCGAACGGTACGTTGGCCGGGATCCCTCCGTCCCTGGGACAAGGTGGGCATGGGA CAGGGGGAGGTGTTGTCGGGCTGGAAGAGGTGGCGGTACTGGGCCTTTCTTGTGGGACCT CCTCTCTACTGGAACTGCACTAGGGGTAAGGATATGAGGGTCAGGTCTGCAGCCTTGTAT CTGCTGATCCTCTTCGTCCTTCCCACTCCAGGTCAGTGCTGCAATCCATTAATCCAGCC GAGCCACACAGGAGTGTCCCAACCCCAAACCAGGTACCTGATCTGGCCCTGCTGGCGGC TGTGGCCCAATGAGTGGGGTACTGCCCTGCCCTGATTGTCCTGGTCTGAGGGAAACATGG

CCTTGTCCTGTGGGCCCCAGGTACATGGGGCAGGATACAGTCCTGCAGAGGGAGCCCTCT TGGTGGGATGAGCGAGACGGGAGAAAAAAGGAGGACGCTGAGGGCTGGGTTCCCCACGTT CATTCAGAAGCCTTGTCCTGGGATCCCAGTCGGTGGGGAGGACACATCCTCCCCTGGGAG CTCTTTGTCCCTCCTCACGGCTGCTTCCCCACTGCCTCCCCAGACAAGGCCCCACTGCAG AAGGTTTCCCTGGCCCCAAACTCTCGCTACTACCTGAGCTGCCCCATGGAATCCCGCCAC 5 GCCACCTACTCATGGCGCCACAAGGAGAACGTGGAGCAGAGCTGCGAACCTGGTCACCAG AGCCCCAACTGCATCCTGTTCATCGAGAACCTCACGGCGCAGCAGTACGGCCACTACTTC TGCGAGGCCCAGGAGGCTCCTACTTCCGCGAGGCTCAGCACTGGCAGCTGCCCGAG CTGGGGGTGCTGCCCACACTCACTCTTGGCTTGCTGGTCCACTAGGGCCTCCCGAGGCTG 10 GGCATGCCTCAGGCTTCTGCAGCCCAGGGCACTAGAACGTCTCACACTCAGAGCCGGCTG GCCCGGGAGCTCCTTGCCTGCCACTTCTTCCAGGGGACAGAATAACCCAGTGGAGGATGC CAGGCCTGGAGACGTCCAGCCGCAGGCGGCTGCTGGGCCCCAGGTGGCGCACGGATGGTG AGGGGCTGAGAATGAGGGCACCGACTGTGAAGCTGGGGCATCGATGACCCAAGACTTTAT CTTCTGGAAAATATTTTTCAGACTCCTCAAACTTGACTAAATGCAGCGATGCTCCCAGCC 15 CAAGAGCCCATGGGTCGGGGAGTGGGTTTGGATAGGAGAGCTGGGACTCCATCTCGACCC TGGGGCTGAGCCTGAGTCCTTCTGGACTCTTGGTACCCACATTGCCTCCTTCCCCTCCC TCTCTCATGGCTGGGTGGCTGGTGTTCCTGAAGACCCAGGGCTACCCTCTGTCCAGCCCT GTCCTCTGCAGCTCCCTCTCTGGTCCTGGGTCCCACAGGACAGCCGCCTTGCATGTTTAT 20 AAAAAAA

Table15: Nucleotide sequence of pMelBacA-H-SEMAL (6622bp) (SEQ ID NO: 42)

- 1 GATATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA
- 51 TTTTACTGTT TTCGTAACAG TTTTGTAATA AAAAAACCTA TAAATATGAA
- 101 ATTCTTAGTC AACGTTGCCC TTGTTTTTAT GGTCGTATAC ATTTCTTACA
- 151 TCTATGCGGA TCGATGG

gga tccgcccagg gccacctaag gagcggaccc

35

30

	201	egeatering contingual agglocatora gggeaggaco gggragacor
	251	tggccagact gagccgcaca cggtgctttt ccacgagcca ggcagctcct
5	301	ctgtgtgggt gggaggacgt ggcaaggtct acctctttga cttccccgag
	351	ggcaagaacg catctgtgcg cacggtgaat atcggctcca caaaggggtc
10	401	ctgtctggat aagcgggact gcgagaacta catcactctc ctggagaggc
10	451	ggagtgaggg gctgctggcc tgtggcacca acgcccggca ccccagctgc
	501	tggaacctgg tgaatggcac tgtggtgcca cttggcgaga tgagaggcta
15	551 601	tgcccccttc agcccggacg agaactccct ggttctgttt gaaggggacg aggtgtattc caccatccgg aagcaggaat acaatgggaa gatccctcgg
	651	ttccgccgca tccggggcga gagtgagctg tacaccagtg atactgtcat
20	701	gcagaaccca cagttcatca aagccaccat cgtgcaccaa gaccaggctt
	751	acgatgacaa gatctactac ttcttccgag aggacaatcc tgacaagaat
25	801	cctgaggctc ctctcaatgt gtcccgtgtg gcccagttgt gcagggggga
25	851	ccagggtggg gaaagttcac tgtcagtctc caagtggaac acttttctga
	901	aagccatgct ggtatgcagt gatgctgcca ccaacaagaa cttcaacagg
30	951	ctgcaagacg tcttcctgct ccctgacccc agcggccagt ggagggacac
	1001	cagggtctat ggtgttttct ccaacccctg gaactactca gccgtctgtg
	1051	tgtattccct cggtgacatt gacaaggtct tccgtacctc ctcactcaag

	1101	ggctaccact caagcottice caaccogogg cotggcaagt goolcocaga
	1151	ccagcagccg atacccacag agaccttcca ggtggctgac cgtcacccag
5	1201	aggtggcgca gagggtggag cccatggggc ctctgaagac gccattgttc
	1251	cactotaaat accactacca gaaagtggcc gttcaccgca tgcaagccag
10	1301	ccacggggag acctttcatg tgctttacct aactacagac aggggcacta
10	1351	tccacaaggt ggtggaaccg ggggagcagg agcacagctt cgccttcaac
	1401	atcatggaga tccagccctt ccgccgcgcg gctgccatcc agaccatgtc
15	1451	gctggatgct gagcggagga agctgtatgt gagctcccag tgggaggtga
	1501	gccaggtgcc cctggacctg tgtgaggtct atggcggggg ctgccacggt
20	1551	tgcctcatgt cccgagaccc ctactgcggc tgggaccagg gccgctgcat
20	1601	ctccatctac agctccgaac ggtcagtgct gcaatccatt aatccagccg
	1651	agccacacaa ggagtgtccc aaccccaaac cagacaaggc cccactgcag
25	1701	aaggttteee tggeeceaaa etetegetae taeetgaget geeceatgga
	1751	atcccgccac gccacctact catggcgcca caaggagaac gtggagcaga
30	1801	gctgcgaacc tggtcaccag agccccaact gcatcctgtt catcgagaac
	1851	ctcacggcgc agcagtacgg ccactacttc tgcgaggccc aggagggctc
	1901	ctacttccgc gaggetcage actggcaget getgcccgag gacggcatca
35	1951	traccaagea ectoctogot eatocetoto ecetooetoe etoaatte

	2001	AGCTTGGAGT CGACTCTGCT GAAGAGGAGG AAATTCTCCT TGAAGTTTCC
5	2051	CTGGTGTTCA AAGTAAAGGA GTTTGCACCA GACGCACCTC TGTTCACTGG
	2101	TCCGGCGTAT TAAAACACGA TACATTGTTA TTAGTACATT TATTAAGCGC
10	2151	TAGATTCTGT GCGTTGTTGA TTTACAGACA ATTGTTGTAC GTATTTTAAT
10	2201	AATTCATTAA ATTTATAATC TTTAGGGTGG TATGTTAGAG CGAAAATCAA
	2251	ATGATTTTCA GCGTCTTTAT ATCTGAATTT AAATATTAAA TCCTCAATAG
15	2301	ATTTGTAAAA TAGGTTTCGA TTAGTTTCAA ACAAGGGTTG TTTTTCCGAA
	2351	CCGATGGCTG GACTATCTAA TGGATTTTCG CTCAACGCCA CAAAACTTGC
20	2401	CAAATCTTGT AGCAGCAATC TAGCTTTGTC GATATTCGTT TGTGTTTTGT
20	2451	TTTGTAATAA AGGTTCGACG TCGTTCAAAA TATTATGCGC TTTTGTATTT
	2501	CTTTCATCAC TGTCGTTAGT GTACAATTGA CTCGACGTAA ACACGTTAAA
25	2551	TAAAGCCTGG ACATATTTAA CATCGGGCGT GTTAGCTTTA TTAGGCCGAT
	2601	TATCGTCGTC GTCCCAACCC TCGTCGTTAG AAGTTGCTTC CGAAGACGAT
30	2651	TTTGCCATAG CCACACGACG CCTATTAATT GTGTCGGCTA ACACGTCCGC
30	2701	GATCAAATTT GTAGTTGAGC TTTTTGGAAT TATTTCTGAT TGCGGGCGTT
	2751	TTTGGGCGGG TTTCAATCTA ACTGTGCCCG ATTTTAATTC AGACAACACG
35	2801	TTAGAAAGCG ATGGTGCAGG CGGTGGTAAC ATTTCAGACG GCAAATCTAC

	2851	TAATGGCGGC GGTGGTGGAG CTGATGATAA ATCTACCATC GGTGGAGGCG
5	2901	CAGGCGGGGC TGGCGGCGGA GGCGGAGGCG GAGGTGGTGG CGGTGATGCA
	2951	GACGGCGGTT TAGGCTCAAA TTGTCTCTTT CAGGCAACAC AGTCGGCACC
	3001	TCAACTATTG TACTGGTTTC GGGCGTATGG TGCACTCTCA GTACAATCTG
10	3051	CTCTGATGCC GCATAGTTAA GCCAGCCCG ACACCCGCCA ACACCCGCTG
	3101	ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA CAGACAAGCT
45	3151	GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC CGTCATCACC
15	3201	GAAACGCGCG AGACGAAAGG GCCTCGTGAT ACGCCTATTT TTATAGGTTA
	3251	ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA
20	3301	AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT
	3351	GTATCCGCTC ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA
25	3401	AAAGGAAGAG TATGAGTATT CAACATTTCC GTGTCGCCCT TATTCCCTTT
20	3451	TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACCCAGAAA CGCTGGTGAA
	3501	AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT TACATCGAAC
30	3551	TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT
	3601	TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC
35	3651	CCGTATTGAC GCCGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC

	3701	AGAATGACTT GGTTGAGTAC TCACCAGTCA CAGAAAAGCA TCTTACCCAT
	3751	GGCATGACAG TAAGAGAATT ATGCAGTGCT GCCATAACCA TGAGTGATAA
5	3801	CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG AAGGAGCTAA
	3851	CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG
40	3901	GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT
10	3951	GCCTGTAGCA ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC
	4001	TTACTCTAGC TTCCCGGCAA CAATTAATAG ACTGGATGGA GGCGGATAAA
15	4051	GTTGCAGGAC CACTTCTGCG CTCGGCCCTT CCGGCTGGCT GGTTTATTGC
	4101	TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC ATTGCAGCAC
20	4151	TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG
20	4201	AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC
	4251	CTCACTGATT AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC
25	4301	TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG
	4351	ATCCTTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT
30	4401	CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT TCTTGAGATC
30	4451	CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAA ACCACCGCTA
	4501	CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC TTTTTCCGAA
35	4551	GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT CTTCTAGTGT

	4601	AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC GCCTACATAC
5	4651	CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GCTGCCAGTG GCGATAAGTC
	4701	GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT AAGGCGCAGC
	4751	GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG
10	4801	ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC
	4851	GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG
15	4901	GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC CTGGTATCTT
10	4951	TATAGTCCTG TCGGGTTTCG CCACCTCTGA CTTGAGCGTC GATTTTTGTG
	5001	ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC AACGCGGCCT
20	5051	TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTTCCT
	5101	GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC
25	5151	TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG
23	5201	AGGAAGCATC CTGCACCATC GTCTGCTCAT CCATGACCTG ACCATGCAGA
	5251	GGATGATGCT CGTGACGGTT AACGCCTCGA ATCAGCAACG GCTTGCCGTT
30	5301	CAGCAGCAGC AGACCATTTT CAATCCGCAC CTCGCGGAAA CCGACATCGC
	5351	AGGCTTCTGC TTCAATCAGC GTGCCGTCGG CGGTGTGCAG TTCAACCACC
35	5401	GCACGATAGA GATTCGGGAT TTCGGCGCTC CACAGTTTCG GGTTTTCGAC
55		

5451	GTTCAGACGT AGTGTGACGC GATCGGTATA ACCACCACGC TCATCGATAA
5501	TTTCACCGCC GAAAGGCGCG GTGCCGCTGG CGACCTGCGT TTCACCCTGC
5551	CATAAAGAAA CTGTTACCCG TAGGTAGTCA CGCAACTCGC CGCACATCTG
5601	AACTTCAGCC TCCAGTACAG CGCGGCTGAA ATCATCATTA AAGCGAGTGG
5651	CAACATGGAA ATCGCTGATT TGTGTAGTCG GTTTATGCAG CAACGAGACG
5701	TCACGGAAAA TGCCGCTCAT CCGCCACATA TCCTGATCTT CCAGATAACT
5751	GCCGTCACTC CAACGCAGCA CCATCACCGC GAGGCGGTTT TCTCCGGCGC
5801	GTAAAAATGC GCTCAGGTCA AATTCAGACG GCAAACGACT GTCCTGGCCG
5851	TAACCGACCC AGCGCCCGTT GCACCACAGA TGAAACGCCG AGTTAACGCC
5901	ATCAAAAATA ATTCGCGTCT GGCCTTCCTG TAGCCAGCTT TCATCAACAT
5951	TAAATGTGAG CGAGTAACAA CCCGTCGGAT TCTCCGTGGG AACAAACGGC
6001	GGATTGACCG TAATGGGATA GGTCACGTTG GTGTAGATGG GCGCATCGTA
6051	ACCGTGCATC TGCCAGTTTG AGGGGACGAC GACAGTATCG GCCTCAGGAA
6101	GATCGCACTC CAGCCAGCTT TCCGGCACCG CTTCTGGTGC CGGAAACCAG
6151	GCAAAGCGCC ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC
6201	GGTGCGGGCC TCTTCGCTAT TACGCCAGCT GGCGAAAGGG GGATGTGCTG
6251	CAAGGCGATT AAGTTGGGTA ACGCCAGGGT TTTCCCAGTC ACGACGTTGT
0004	

	6351	TTTGATACAA CTAATTTTAC GACGACGATG CGAGCTTTTA TTCAACCGAG
5	6401	CGTGCATGTT TGCAATCGTG CAAGCGTTAT CAATTTTTCA TTATCGTATT
	6451	GTTGCACATC AACAGGCTGG ACACCACGTT GAACTCGCCG CAGTTTTGCG
	6501	GCAAGTTGGA CCCGCCGCGC ATCCAATGCA AACTTTCCGA CATTCTGTTG
10	6551	CCTACGAACG ATTGATTCTT TGTCCATTGA TCGAAGCGAG TGCCTTCGAC
	6601	TTTTTCGTGT CCAGTGTGGC TT

The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiments described may occur to those skilled in the art. These can be made without departing from the spirit or scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the claims and the applicable rules of law.