

Introduction to Single-cell RNA-seq analysis

Harvard Chan Bioinformatics Core

https://tinyurl.com/hbc-intro-to-scrnaseq

Learning Objectives

- Describe best practices for designing a Single-cell RNA-seq experiment
- ✓ Describe steps in a Single-cell RNA-seq analysis workflow.
- ✓ Use Seurat and associated tools to perform analysis of single-cell expression data, including data filtering, QC, clustering, and marker identification

Useful Resources

Computational packages for single-cell analysis:

http://bioconductor.org/packages/devel/workflows/html/

simpleSingleCell.html

https://satijalab.org/seurat/

https://scanpy.readthedocs.io/

Comprehensive list of packages for single-cell and other analyses:

https://github.com/seandavi/awesome-single-cell

Online courses:

https://hemberg-lab.github.io/scRNA.seq.course/

https://github.com/SingleCellTranscriptomics

Survey

https://tinyurl.com/scrnaseq-exit

Bioinformatics Community Networking Breakfast!

- Free and open to the LMA community
- Food and seats are first-come-first-served
- Last Wednesday of every month

Date: July 31th, 2019

Time: 9:00 to 10:30 am

Venue: HSPH Building2 room 426

Thanks!

- Sarah Boswell, HMS
- Ayshwarya Subramanian, Broad Institute
- HBC members

Contact us!

Training team : hbctraining@hsph.harvard.edu

Consulting : bioinformatics@hsph.harvard.edu

These materials have been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license (CC BY 4.0)</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

