1. Seja o sistema linear:

$$Ax = b$$

onde,

$$\mathbf{A} = A_{i,j} = \frac{1}{i+j+1}$$
 e $\mathbf{b} = b_i = \frac{1}{i+n+1}$.

Supondo a matriz $\mathbf{A}_{n\times n}$, com diferentes dimensões n (ex. n=10,100,500,1000), obtem-se os seguintes resultados:

- Gauss sem pivoteamento:

Algorithm 1 Gauss sem pivoteamento

```
1: for i = 0, ..., n do
       if A[i][i] = 0 then
 2:
            Divisão por zero detectada
 3:
            Sair do programa
 4:
       end if
 5:
        for j = 0, ..., n + 1 do
 6:
           razao \leftarrow A[j][i]/A[i][i]
 7:
            for k = 0, ..., n + 1 do
 8:
               A[j][k] \leftarrow A[j][k] - razao * A[i][k]
 9:
            end for
10:
       end for
11:
12: end for
13: solucao[n-1] = A[n-1][n]/A[n-1][n-1]
14: for i = n - 2, \dots, -1 do
        solucao[i] \leftarrow A[i][n]
15:
        for j = i + 1, ..., n do
16:
            solucao[i] \leftarrow solucao[i] - A[i][j] * solucao[j]
17:
18:
        solucao[i] \leftarrow solucao[i]/A[i][i]
19:
20: end for
21: return solucao
```

Algorithm 2 Gauss (pivoteamento)

```
1: for k = 0, ..., n do
        i_m ax \leftarrow k
 2:
        pivo_m ax = A[i_m ax][k]
 3:
        for i = k + 1, ..., n do
 4:
            if |A[i][k]| > pivo_m ax then
 5:
                pivo_max \leftarrow A[i][k]
 6:
                i_m ax \leftarrow i
 7:
            end if
 8:
        end for
 9:
        if A[k][i_max] = 0 then
10:
            Divis\~a oporzero de tectada
11:
12:
            Sair doprograma
        end if
13:
        if i_m ax! = k then
14:
            troca_linha(A, k, i_max, n)
15:
        end if
16:
        for i = k+1, \ldots, n do
17:
            f \leftarrow A[i][k]/A[k][k]
18:
            for j=k+1,\ldots,n+1 do
19:
                 \overset{\circ}{A}[i][j] \leftarrow A[i][j] - f * A[k][j] 
20:
            end for
21:
            A[i][k] = 0
22:
        end for
23:
24: end for
25: for i = n - 1, \dots, -1 do
        solucao[i] = A[i][n]
        for j = i + 1, ..., n do
27:
            solucao[i] \leftarrow solucao[i] - A[i][j] * solucao[j]
28:
29:
        end for
        solucao[i] \leftarrow solucao[i]/A[i][i]
31: end for
32: return solucao
```

- Decomposição LU:

Algorithm 3 Decomposição LU

```
1: L, U \leftarrow decompoeLU(matriz)
 2: //ResolucaoL * y = b
 3: y[0] \leftarrow B[0]/L[0][0]
 4: for i = 1, ..., n do
        soma \leftarrow 0
 5:
 6:
        for j = 0, \dots, i do
            soma \leftarrow soma + L[i][j] * y[j]
 7:
        end for
 8:
        y[i] \leftarrow (B[i] - soma)/L[i][i]
 9:
10: end for
11: //ResolucaoU * x = y
12: x[n-1] \leftarrow y[n-1]/U[n-1][n-1]
13: for i = n - 1, \dots, -1 do
        soma \leftarrow y[i]
14:
        for j = i + 1, ..., n do
15:
            soma \leftarrow soma - U[i][j] * x[j]
16:
        end for
17:
        x[i] \leftarrow soma/U[i][i]
18:
19: end for
20: return x
```

- Cholesky:

Algorithm 4 Cholesky

```
1: for i = 0, ..., n do
        for j = 0, ..., i + 1 do
 2:
            S \leftarrow Soma \ de \ L[i][k] * L[j][k] \ para \ todo \ k = i, \dots, j
 3:
            if i == j then
 4:
                L[i][j] \leftarrow RaizQuadrada(A[i][i] - s)
 5:
            end if
 6:
            if i! = j then
 7:
                1.0/L[j][j] * (A[i][j] - s
 8:
            end if
 9:
        end for
10:
        Lt \leftarrow transposta(L)
11:
        Y \leftarrow substituicaoRegressiva(L, B)
12:
        X \leftarrow substituicaoRegressiva(Lt, Y)
14: return X
```

Tabela 1: Tempo de execução dos métodos(segundos)

n	Gauss (pivoteamento)	Gauss	Decomposicao LU	Cholesky
10	0.001356601715088	0.001231670379639	0.00060772895813	0.000555753707886
100	0.613649368286133	0.867716550827026	0.25876784324646	
500	74.5036897659302	113.268950223923	31.2850987911224	
1000	623.507143497467	905.776305437088	238.796887397766	

 Determinando o erro cometido, por cada um dos métodos utilizados, através do resíduo calculado na norma do máximo, dado por:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \max_{1 \le i \le n} |A_{i,j}x_i - b_i|, \quad \forall j \in [1, n]$$

onde x_i é o vetor solução:

Tabela 2: Erro cometido pelos métodos

n	Gauss (pivoteamento)	Gauss	Decomposicao LU	Cholesky
10	1.52328130254075	1.52328131358273	1.52328130778287	1.52328119267002
100	0.5856364768406	0.576314681584849	0.667631326654952	
500	0.028089464536946	0.028227547518109	0.029077149996626	
1000	0.042378590802719	0.042071161061903	0.037664308543295	

- Calculando a determinante da matriz \mathbf{A} , para valores até $\mathbf{n}=10$, é adquirida a seguinte progressão de valores:

- Assim, é possível perceber que, ao passo em que o tamanho da matriz aumenta, o determinante diminui em grande escala, de forma não linear.
- 2. A equação diferencial bidimensional

$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 10 \quad \text{em} \quad [0, 1]^2,$$

u=0 sobre o contorno do domínio,

quando resolvida pelo método de Diferenças Finitas dá origem a um sistema $\mathbf{A}\mathbf{u}=\mathbf{b},$ conforme representado na matriz abaixo:

com b = 1 e A a matriz heptadiagonal

$$\mathbf{A} = -(\sqrt{n} - 1)^2 \begin{bmatrix} T & I & & & & \\ I & T & I & & & \\ & I & T & I & & \\ & & \ddots & \ddots & \ddots & \\ & & & I & T & I \\ & & & & I & T \end{bmatrix}, \quad \text{com} \quad T = \begin{bmatrix} -4 & 1 & & & & \\ 1 & -4 & 1 & & & \\ & 1 & -4 & 1 & & \\ & & & \ddots & \ddots & \ddots & \\ & & & 1 & -4 & 1 \\ & & & & 1 & -4 \end{bmatrix}$$

Tomando n=81,289,1089,4225,16641 podemos montar uma tabela comparando o tempo de execução dos métodos diretos, implementados no item anterior, com os métodos iterativos de Jacobi e Gauss-Seidel adotando diferentes valores da tolerância ε .

Tabela 3: Tempo de execução com epsilon = 0.01

n	Gauss (pivoteamento)	Gauss	Decomposição LU	Cholesky	Gauss Seidel	Jacobi
81	0.001606	0.001242	0.000615	0.000497	0.019547	0.019165
289	0.055325	0.05103	0.022	0.013177	0.013177	0.21858
1089	3.10985	2.74598	1.23521	0.612731	3.04418	3.10143
4225	211.048	156.924	195.911	34.5993	46.0344	46.041
16641	35377,97624	26305,17012	32840,56093	5788,9824	230,175168	274,368800256

Tabela 4: Tempo de execução com epsilon = 0.001

n	Gauss (pivoteamento)	Gauss	Decomposição LU	Cholesky	Gauss Seidel	Jacobi
81	0.001606	0.001242	0.000615	0.000497	0.001249	0.001923
289	0.055325	0.05103	0.022	0.013177	0.039346	0.05022
1089	3.10985	2.74598	1.23521	0.612731	1.11235	1.54886
4225	211.048	156.924	195.911	34.5993	32.8734	42.2406
16641	35377,97624	26305,17012	32840,56093	5788,9824	250,890489219	298,218636