

사람과 <mark>동물의</mark> 신체상 구조 차이점?

사람은 만물의 영장이다.

생물 중 가장 진화 한 것은 사람이다.

해<mark>부학적</mark>으로 사람을 넘어서는 동물이 존재함

사람

생물학적 분류상 영장류 (Primates)

✔ 사람만이 갖는 독특한 특징

구조적 분류상 척추동물 (Vertebrate)

'사람은 만물의 영장'

포유동물

씨 단국대학교

사람이 포유류보다 월등 한 이유

대뇌겉질 (Cerebral Cortex) → 이러한 대뇌의 발달로 높은 지능을 갖게 됨

새겉질 (Neocortex) 고등 정신활동 기능 가능

탁월한 문명을 발전시킴

사람

- ✔ 두 발로 서서 생활
- ✔ 뇌의 발달

→ 뇌머리뼈의 용량이 커지도록진화

사람의 머리뼈에 나타나는 진화의 흔적

	사람의 머리뼈	VS	꼬리 없는 원숭이 머리 뼈
37	크다		작다
지능	높다		날 다

해부학적 구조를 통한 특징

꼬리 없는 원숭이

✔ 턱으로 내려갈 수록 경사, 돌출

사람은 수직

✔ 눈확(Orbit)이 잘 보이지 않음

사람은 눈확이 분명히 관찰됨

✔ 앞으로 튀어나온 코뼈가 없음

안경을 지탱하는 <mark>코뼈 존재</mark>

치아의 형태학적 특징

U자 형, 송곳니를 위한 공간 존재

호모사피엔스

포물선, 송곳니를 위한 공간 없음

송곳니가 작다는 것 → 도구로서의 사용 미약

- ✔ 송곳니의 역할을 손과 도구가 대신함
 - → 호모사피엔스의 송곳니가 작은 이유

고릴라

상하 씹기, 자르기, 부수기

호모사피엔스

둥글게 씹고, 어금니로 분쇄

사람과 동물의 차이점 직립

척주굽이가 나타나기 시작

씨가 단국대학교

사람의 무게를 감당하는 발

- ✔ 상대적으로 커져 있음
- ✓ 탄력적으로 무게를 감당하기 위해 휘어진 발활(Foot arch)을 이름

씨 단국대학교

손가락

- ✔ 짧고 휘지 않은 상태
- ✓ 맞섬(Opposition) 움직임
 - → 엄지손가락이 다른 관절형태를 띄어 물건을 쥐도록 하는 움직임

볼기

서 있는 자세로 생활하기 때문에 발달한 볼기

✓ 골반이 균형을 맞추기 위해 뒤로 기울어지며 발달함

볼기와 넙다리 뒷면 사이에 사람만 가지는

볼기고랑 (gluteal sulcus) 긴다리 잘록한 허리 우뚝 솟은 콧대

사람의 특징

진화론적 관점에서의 우수한 조건

의남 미녀의 기준? 큰 머리뼈는 예외적 조건

해부학에서 사람의 몸

정상적인 구조를 대상으로 함

→ 사람의 몸에 대한 비정상은 '병적 상태' 또는 '기형'으로 쓰이고 있음

'비정상'이나 '이상'이 '병적'이나 '기형'의 의미로 해석되기엔 무리

사람의 몸

✔ 생김새, 크기, 숫자가 각기 조금씩 다름

정상

Normal

많은 사람에게서 가장 자주 볼 수 있는 구조물의 모 양과 크기 및 수를 가진 표준적이며 전형적인 구조

변이

Variation

정상적인 것에서 약간 벗어나 있으면서도 자연환경에 대한 적응력이 못하거나 떨어지지 않는 범위의 것

Variation

- ✔ 많은 사람들이 조금씩 갖고 있음
- ✓ 크고, 뼈처럼 단단한 구조물일 경우 변이가 적고, 미세한 구조로 내려갈수록 변이가 나타날 확률은 높음
 - → 뼈대 계통은 변이가 적은 편
 - → 혈관이나 신경은 가장 변이가 많음

변이

Variation

태생기 발생과정 중 나타난 변화가 출생 뒤에도 남아있는 것

* 기능 수행에는 아무런 지장이 없음

- ✔ 특정 구조물의 발생 지연
- ✔ 구조물 배열상태가 달라짐
- ✔ 숫자가 정상보다 부족하거나 많아짐
 - → 이 때, 기형(Deformity, Anomaly, Malformation)이라 함

기형

Deformity, Anomaly, Malformation

✔ 기능적으로 장애가 있고 외형상으로 정상이 아닌 경우

변이 Variation

✔ 정상은 아니지만 기능장애와 관계가 없는 상태

연골

✓ 포유동물 배아의 발생단계에서 뼈되기(Ossification)가 시작되기 전 몸의 기본 틀을 형성함

특수결합조직

(Specialized Connective Tissue)

연골을 이루는 것

적은 수의 연골세포, 많은 양의 세포사이물질

세포사이물질

아교섬유와 바탕질로 구성

바탕질

- ✔ 수분 60~80%
- ✓ 당 단백질 포함 → 단단함과 탄력성

배아의 발달

연골의 섬유질이 석회질로 변화

- ✓ 연골세포 → 뼈세포로 대체
- ✔ 뼈가 길어지고 커지며 성장을 이름

모든 연골이 다 뼈로 바뀌지는 않는다.

→ 성인이 되어도 연골이 유지되는 부위가 있음 (윤활관절의 관절면, 가슴우리의 앞쪽 일부, 후두, 기관, 기관지, 코 및 귀)

연골의 표면

연골은 섬유성 막인 연골막(Perichondrium)에 덮여 있음

- ✔ 연골막 안에서 재생이 이루어짐
- ✓ 혈관이나 신경이 없어, 혈관으로 영양공급 불가능
 - → 확산(Diffusion)을 통해 영양분 공급

연골의 특징 대사율이 낮다!

- ✔ 물질대사가 느리기 때문에 수명이 길다.
 - → 하지만 손상 시, 치유나 재생이 더딤
- ✔ 매끄럽고 질기며 탄력적인 성질을 가지고 있다.
 - → 몸에서 힘을 많이 받는 곳에서 사용
 - → 저항력과 탄성력이 필요한 곳에서 사용
 - → 바깥으로 힘을 분산시켜야 하는 곳에 사용

바탕질 (Matrix), 세포바깥기질 (Extracellular Matrix)의 구성 성분에 따라 구분

유리연골 (Hyaline Cartilage) 섬유연골 (Fibrocartilage)

탄력연골 (Elastic Cartilage)

유리연골 (Hyaline Cartilage)

- 가장 광범위하게 퍼져있는 연골
- '배아의 뼈대를 형성하는 역할
 - ➡ 뼈되기에 앞서 뼈대의 모형 틀로서 역할을 함

- 여러 개의 연골방 안에 연골세포 존재
- 연골방을 둘러싼 바탕→ 반투명, 균일한 구조
- 😋 맑고 투명한 청백색

염색 후 현미경 관찰한 유리연골

관절연골

- ✔ 관절의 뼈 끝을 덮는 연골
- ✔ 유리 연골로 이루어짐
- "마찰계수가 낮기 때문에 "마찰이 거의 없이 관절이 움직일 수 있도록 도움

연골세포

- ✔ 연골을 만들고 유지하는 역할
- ✔ 연골모세포에서 세포분열이 일어남
- 생장이 멈추게 되면 ³ 정상적인 환경에서 더 이상 분열하지 않음

유리연골이 남아 있는 곳

→ 성인의 관절부위를 이루는 뼈의 끝부분, 갈비뼈의 끝부분, 코, 후두, 기관, 기관지 등

섬유연골 (Fibrocartilage)

- ✔ 적은 양의 바탕질 속에 많은 양의 아교섬유 존재
 - → 질긴 결합조직과 비슷한 성질을 가짐
- ✔ 관절 사이에 끼어 두 뼈의 마찰을 감소시킴
- ✔ 강한 압력에 대해 저항함
- ✔ 모양이 다른 관절면을 맞춰줌

쌔건국대학교

섬유연골로 이루어진 구조물

✔ 턱관절의 원반, 척추뼈사이 원반

다양한 충격을 흡수하고 제한된 범위 안에서의 관절운동을 돕는다.

골반의 두덩결합 Symphisis Pubis

양쪽 두덩뼈 사이, 섬유연골로 된 원반이 들어있음

- ✓ 바탕질 → 새의 깃털처럼 보임
- ✓ 연골세포가 줄을 지어 연골방에 들어가 있음
- ✔ 섬유모세포 → 작은 점처럼 관찰됨

특수 염색 후 현미경 관찰한 섬유연골 조직

탄력연골 (Elastic Cartilage)

- ✓ 탄성섬유를 다량 함유하고 있음→ 매우 탄력성이 큰 연골
- ✔ 약간 노란색을 띄고 있음
- ✔ 어떠한 저항에도, 탄력적으로 원래의 모습을 찾음
 - → 귓바퀴, 귓바퀴연골, 후두덮개, 귀인두관 및 바깥귀길

개의 후두덮개

특수 염색 후 현미경 관찰한 섬유연골 조직

- ✓ 후두덮개는 점막으로 덮여 있음→ 그 밑에 점막밑조직이 존재
- ✓ 후두덮개의 중심부를 이루는 뼈대→ 탄력연골

탄력섬유

지방조직