Practical-7

Plotting the characteristics for the first order PDE.

Find Characteristic Equation of the Curve (u-y)*ux+y*uy=x+y dx/(u-y) = dy/y = du/(x+y)

On taking I+ III and II,

we get (u+x)/y=C1

On taking I + II=III,

we get $(x+y)^2-u^2=C2$

On Integrate to plot this some particular values

$$F0 = Plot3D[-x, \{x, -5, 5\}, \{y, -5, 5\}, PlotPoints -> 10]$$

F2 = Plot3D[10 * y - x, $\{x, -5, 5\}, \{y, -5, 5\}, PlotPoints -> 10]$

 $H0 = Plot3D[x + y, {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]$

H1 = Plot3D[Sqrt[(x+y)^2+5], {x,-5,5}, {y,-5,5}, PlotPoints -> 10]

H2 = Plot3D[Sqrt[(x+y) 2 + 10], {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]

G2 = Show[H0, H1, H2]

Show[GraphicsArray[{G1, G2}]]

GraphicsArray::obs:

GraphicsArray is obsolete. Switching to GraphicsGrid. >>>

Find Characteristic Equation of the Curve (x*ux + y*uy = u)

dx/(x) = dy/(y) = du/(u)

On taking I and III,

we get x/u = C1

On taking II = III,

we get y/u = C2

On Integrate to plot this some particular values

 $F0 = Plot3D[x, {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]$

F1 = Plot3D[2x, {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]

H0 = Plot3D[2 y, {x, -5, 5}, {y, -5, 5}, PlotPoints \rightarrow 10] H0 = Plot3D[2 y, {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]

 $H1 = Plot3D[y, {x, -5, 5}, {y, -5, 5}, PlotPoints -> 10]$

G2 = Show[H0, H1]

G1 = Show[F0, F1]

Show[GraphicsArray[{G1, G2}]]

GraphicsArray::obs:

GraphicsArray is obsolete. Switching to GraphicsGrid. \gg

