# Logaritmo discreto: perché è difficile attaccarlo? E perché è ancora più difficile su una curva ellittica?

### Ottavio Giulio Rizzo

Ottavio.Rizzo@UniMI.it

Dipartimento di matematica «Federigo Enriques» Università degli Studi di Milano

> La De Cifris incontra Milano 11 settembre 2018

# Il problema del logaritmo discreto

## Esempio (Scambio di chiavi di Diffie-Hellman)

- Fissiamo un numero primo p.
- Alice e Bob scelgono ciascuno un intero a caso  $n_A$  e  $n_B$
- Alice e Bob si scambiano  $2^{n_A} \mod p$  e  $2^{n_B} \mod p$
- Alice e Bob hanno condiviso il segreto  $2^{n_A n_B}$

#### Problema

- Eva intercetta i messaggi e conosce  $2^{n_A}$  mod p,  $2^{n_B}$  mod p
- Eva è in grado di calcolare la chiave segreta 2<sup>n<sub>A</sub>n<sub>B</sub></sup>?

#### Soluzione

Se Eva è in grado di calcolare  $n_A$  dato  $2^{n_A}$ , allora ha risolto il Problema del logaritmo discreto

# Il logaritmo

## **Definizione**

Il logaritmo di a in base b è

$$c = \log_b(a)$$
 tale che  $a = b^c$ 

### Proprietà

- ecc. ecc.



# Calcolo

### Fatto

È facile calcolare il logaritmo

### Dimostrazione.

- Contare le cifre
- Interpolazione lineare
- Bit shuffling



# Logaritmo discreto

### Definizione (logaritmo modulare)

c è il logaritmo di a in base b modulo n se

$$a \equiv b^c \mod n$$

## Definizione (logaritmo generico)

Sia G un gruppo (moltiplicativo) generato da b: c è il logaritmo di a in base b se

$$a = b^c$$

Dove a e b sono elementi di G



# Dove vive c?

#### Fatti

- c non è un elemento di G
- Se G ha k elementi, allora  $c \in \mathbb{Z}/k\mathbb{Z}$
- In particolare, il logaritmo modulo n è definito modulo  $\phi(n)$

### Quindi

Il logaritmo è una funzione da un insieme in uno totalmente diverso!

# Cos'è veramente il logaritmo?

### Ricordiamo

- Non esiste log(0)

### Quindi

- Il logaritmo è una mappa fra un gruppo (moltiplicativo) e un gruppo (addittivo).
- O meglio: è un isomorfismo fra due gruppi, la cui mappa inversa è l'elevamento a potenza.
- L'isomorfismo dipende dalla scelta della base.



Il numero p = 13 ha esattamente quattro generatori: 2, 6, 7, 11.





Il numero p = 13 ha esattamente quattro generatori: 2, 6, 7, 11.



Il numero p = 13 ha esattamente quattro generatori: 2, 6, 7, 11.

1 2 3 4 5 6 7 8 9 10 11 12

70 711 78 710 73 77 71 79 74 72 75 76

Il numero p = 13 ha esattamente quattro generatori: 2, 6, 7, 11.







## Attacchi brutali

### Attacchi?

Sia G un gruppo di n elementi

Forza bruta *n* potenze

Teorema cinese del resto Se n è prodotto di primi piccoli, attacco ciascun primo separatamente

Baby step-giant step  $\sqrt{n}$  potenze

Attacchi migliori?

Solo usando struttura dello specifico gruppo



## Calcolo dell'indice

### Objettivo

Vogliamo calcolare  $\log_7(26 \mod 41)$ .

#### Idea

- Ricordiamo che log<sub>7</sub> è una funzione a valori mod 40
- Troviamo potenze di 7 che si fattorizzano in primi piccoli
- Calcoliamo log<sub>7</sub> per tutti i primi piccoli, usando l'algebra lineare mod 40
- Cerchiamo  $\alpha$  tale che  $7^{\alpha} \cdot 26$  si fattorizza in primi piccoli
- Ricaviamo log<sub>7</sub>(26)



$$7^2 \equiv 49 \equiv 8 = 2^3 \mod 41$$
, perciò  $2 = 3\log_7(2)$  quindi  $\log_7(2) \equiv 2/3 \equiv 14 \mod 40$   $7^{32} \equiv 10 \equiv 2 \cdot 5 \mod 41$ , perciò  $32 = \log_7(2) + \log_7(5)$  quindi  $\log_7(5) \equiv 32 - \log_7(2) \equiv 18 \mod 40$   $7^{21} \equiv 34 \equiv 2 \cdot 17 \mod 41$ , primo grande  $7^{13} \equiv 12 \equiv 2^2 \cdot 3 \mod 41$ , perciò  $13 = 2\log_7(2) + \log_7(3)$  quindi  $\log_7(3) \equiv 13 - 2\log_7(2) \equiv 25 \mod 40$ 

### **Abbiamo**

$$\log_7(2) \equiv 14 \mod 40$$
,  $\log_7(3) \equiv 25 \mod 40$ ,  $\log_7(5) \equiv 18 \mod 40$ 

## Vogliamo

 $\alpha$  tale che  $7^{\alpha} \cdot 26$  abbia fattori primi 2,3,5

$$7^{18} \cdot 26 \equiv 7$$
  
 $7^{21} \cdot 26 \equiv 23$   
 $7^{12} \cdot 26 \equiv 27 \equiv 3^3$ , quindi

$$12\log_7(7) + \log_7(26) \equiv 3\log_3(3) \mod 40$$
  
 $\log_7(26) \equiv 12 - 3 \cdot 25 \equiv 23 \mod 40$ 

#### Costo

Il calcolo dell'indice modulo p ha costo  $L_p[1/2, \sqrt{2}]$ 



## Curve ellittiche



• Una curva ellittica E è data da

$$y^2 = x^3 + Ax + B$$

 Tre punti P, Q, R della curva soddisfano

$$P + Q + R = O$$

se e solo se sono allineati

Dati P e Q multiplo di P
 è banale trovare l'intero n
 tale che Q = nP, se...



$$y^2 = x^3 + 7 \mod 7$$

 Una curva ellittica mod p è data da

$$y^2 = x^3 + Ax + B$$

• Un punto  $(\alpha, \beta)$  appartiene alla curva se

$$\beta^2 \equiv \alpha^3 + A\alpha + B \mod p$$

- Non c'è nessun analogo di fattorizzazione in primi piccoli, quindi il calcolo dell'indice non funziona
- DLP su curve ellittiche è molto più duro che su classi di resto, purché...

