# How <u>not</u> to construct functional brain networks: Node definition

Onerva Korhonen

Aalto Brain & Mind Computational Seminar

17.11.2020

Slides: https://github.com/onerva-korhonen/presentations/blob/master/aalto-brain-mind-computational-seminar-20201117





- Network: a model of connections and interactions
  - Internet, public transport, social networks

- Network: a model of connections and interactions
  - Internet, public transport, social networks
- Nodes: network's basic elements
  - Web pages, stops, people



- Network: a model of connections and interactions
  - Internet, public transport, social networks
- **Nodes:** network's basic elements
  - Web pages, stops, people
- Links: connections between nodes
  - Web links, transport lines, social relationships



- Network: a model of connections and interactions
  - Internet, public transport, social networks
- Nodes: network's basic elements
  - Web pages, stops, people
- Links: connections between nodes
  - Web links, transport lines, social relationships
  - Weights?



- Network: a model of connections and interactions
  - Internet, public transport, social networks
  - **Nodes:** network's basic elements
    - Web pages, stops, people
- Links: connections between nodes
  - Web links, transport lines, social relationships
  - Weights?
  - Direction?

# Why is the brain a network?



- Brain = a system of neurons
  - Separated neurons tend to reconnect
- Axon bundles connect brain areas
- Cognitive tasks require collaboration of brain areas

### **Network neuroscience**



- Network neuroscience = applying network tools on the brain
- Two aims:
  - 1. Understand the healthy brain
  - 2. Find causes of diseases
- Broad scales:
  - Molecule neuron brain area human
  - Milliseconds years
- Different brain networks:
  - Structural: anatomic connections
  - Functional: temporal coactivation
  - Effective: causality

#### Functional brain networks: how-to?



Network from Nummenmaa et al. 2014, *Neurolmage*, by permission

## Functional brain networks: how-to?



Network from Nummenmaa et al. 2014, *Neurolmage*, by permission

# The problem of node definition

- No natural candidates above the level of neurons
- Node selection affects network properties
- Some commonly used nodes:
  - Voxels/vertices
  - Random clumps of voxels/vertices
  - Regions of Interest (ROIs): collections of voxels/vertices

### **Voxels vs ROIs**

#### Voxels:

- fMRI imaging resolution
- noisy signals?
- ~10.000 nodes
- large computational load

#### ROIs:

- collections of voxels
- defined by anatomy, function, connectivity, ...
- homogeneous (= all voxels are similar)?
- ROI time series to represent voxel dynamics:

$$X_I = \frac{1}{N_I} \sum_{i \in I} x_i$$

Violent?

# How homogeneous are ROIs?

- Spatial consistency
- = measure of functional homogeneity:

$$\varphi_{spat}(I) = \frac{1}{N_I(N_I - 1)} \sum_{i,i' \in I} C(x_i, x_{i'})$$

- Straightforward to calculate
- Easy to interpret



# Spatial consistency changes in time



# Spatial consistency changes in time



Spatiotemporal consistency

= stability of spat. consistency

# ROIs have rich internal connectivity structure



# ROIs have rich internal connectivity structure



# ROIs have rich internal connectivity structure



# **Consistency predicts topology**

#### **Hub vs non-hub:**

Accuracy:
Training 64.22%
Test 62.31%
(> Random 55.01%)



#### Provincial vs connector hub

Accuracy:
Training 61.26%
Test 60.85%
(> Random 50.20%)



 Based on multilayer networks (= different connections in the same network)



1. Layers = time windows

 Based on multilayer networks (= different connections in the same network)



1. Layers = time windows

ROIs optimized inside layers for maximal consistency

 Based on multilayer networks (= different connections in the same network)



- 1. Layers = time windows
- ROIs optimized inside layers for maximal consistency
- 3. Interlayer links = Pearson correlation

 Based on multilayer networks (= different connections in the same network)



- 1. Layers = time windows
- ROIs optimized inside layers for maximal consistency
- Interlayer links = Pearson correlation
- Intralayer links = spatial overlap

### **Conclusions**

- It's not trivial to construct a functional brain network
  - Know your methods!
- Currently used nodes are not functionally homogeneous
  - Data lost in averaging
  - Can we trust observed connectivity?
- Homogeneity changes in time
  - Changes relate to function
- Low homogeneity isn't a technical flaw
  - ⇒ Can't be fixed by new static nodes
  - ⇒ Flexible nodes needed!



brain-mind-computational-seminar-20201117