$\mathbf{E}\mathbf{X}$:[V	o.	8

DATE:12/04/25

Create an ARIMA Model for time series forecasting

AIM:

To Create an ARIMA Model for time series forecasting.

ALGORITHM:

- 1. ADF Test Checks if the PM2.5 time series is stationary using statistical significance.
- 2. Differencing Transforms non-stationary data to stationary by subtracting consecutive values.
- 3. ARIMA Model Selection Chooses ARIMA(p,d,q) model where p = autoregressive lags, d = differencing, q = moving average lags.
- 4. Model Training Fits the ARIMA model to historical PM2.5 data using specified parameters.
- 5. Forecasting Predicts future PM2.5 values for the next 30 days using the trained model.
- 6. Visualization Plots actual vs forecasted PM2.5 levels to visualize model performance.

Code:

```
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from pandas.plotting import register_matplotlib_converters
from statsmodels.tsa.stattools import adfuller
import seaborn as sns
register_matplotlib_converters()
# Step 1: Load the dataset
df = pd.read_csv('/content/us_air_pollution_2012_2021_updated.csv', parse_dates=['Date'])
df.set_index('Date', inplace=True)
# Step 2: Handle encoding issues
df.columns = [col.encode('utf-8').decode('utf-8').replace("Â", "") for col in df.columns]
df = df.apply(pd.to numeric, errors='coerce') # convert all to numeric, force errors to NaN
# Step 3: Drop missing values
df = df.dropna()
# Step 4: Visualize the PM2.5 levels
plt.figure(figsize=(10, 4))
plt.plot(df['PM2.5 (\mug/m³)'], label='PM2.5')
plt.title('PM2.5 over time')
plt.legend()
plt.show()
# Step 5: Check stationarity using ADF test
result = adfuller(df['PM2.5 (\mug/m³)'])
```

```
print('ADF Statistic:', result[0])
print('p-value:', result[1])
# Step 6: Differencing (if p-value > 0.05)
df['PM2.5\_diff'] = df['PM2.5 (\mu g/m^3)'].diff().dropna()
# Step 7: Fit ARIMA model (you can tune p,d,q manually or use auto_arima)
model = ARIMA(df['PM2.5 (\mu g/m^3)'], order=(1,1,1)) # Example (p=1, d=1, q=1)
model fit = model.fit()
# Step 8: Summary
print(model_fit.summary())
# Step 9: Forecast
forecast = model_fit.forecast(steps=30) # Forecasting next 30 time points
# Step 10: Plot forecast
plt.figure(figsize=(10, 4))
plt.plot(df['PM2.5 (µg/m³)'], label='Historical')
plt.plot(pd.date_range(start=df.index[-1], periods=31, freq='D')[1:], forecast, label='Forecast', color='red')
plt.legend()
plt.title('PM2.5 Forecast')
plt.show()
```

OUTPUT:

ADF Statistic: -9.886813891901397 p-value: 3.6455466907399357e-17

SARIMAX Results

==============	==============		========
Dep. Variable:	PM2.5 $(\mu g/m^3)$	No. Observations:	120
Model:	ARIMA(1, 1, 1)	Log Likelihood	-432.639
Date:	Sat, 12 Apr 2025	AIC	871.278
Time:	04:33:41	BIC	879.615
Sample:	01-01-2012	HQIC	874.663
	- 12-01-2021		
Covariance Type:	opg		

coef	std err	Z	P> z	[0.025	0.975]
			0.458	-0.119	0.263
82.4100	16.919	4.871	0.000	49.250	-0.884 115.570
	=======	:=======			=======
L1) (Q):		0.01	Jarque-Bera	(JB):	
		0.91	Prob(JB):		
sticity (H):		0.71	Skew:		
o-sided):		0.29	Kurtosis:		
	0.0723 -0.9665	0.0723 0.097 -0.9665 0.042 82.4100 16.919 ===================================	0.0723 0.097 0.742 -0.9665 0.042 -22.821 82.4100 16.919 4.871 ====================================	0.0723 0.097 0.742 0.458 -0.9665 0.042 -22.821 0.000 82.4100 16.919 4.871 0.000 ================================	0.0723

RESULT:

Thus, the program using the time series data implementation has been done successfully.

