

Low-Cost Multi-Channel Fiber Optic Interrogator with Energy Harvesting and Wireless Communication for Power Grid Applications

Heather Phillips¹, Jacob Jones², Peter Kutschke², Jillian Zitcovich², Yang-Duan Su³, Brandon Grainger² and Paul Ohodnicki^{1,2,3}

¹Engineering Science, University of Pittsburgh

²Department of Electrical and Computer Engineering, University of Pittsburgh ³Department of Mechanical Engineering and Materials Science, University of Pittsburgh

Multi-Channel Transimpedance Amplifier Control Board

INTRODUCTION & SYSTEM OVERVIEW

Power transformers benefit from state-of-health (SOH) monitoring. A key challenge in deploying SOH systems is balancing technical difficulty and economic cost. Fiber optic sensors are a good solution because they are compact and enable in-situ measurement with fine-area resolution. This work integrates multiple optical fiber sensors into a compact unit for multi-parameter sensing of critical gas indicators and real-time temperature. Source power is collimated and focused through custom optics, with fluctuation referenced and compensated. The interrogator includes energy harvesting. SPICE simulations validate all circuit models for the interrogator and are compared with output measurements from the final PCB circuit. Optical sensing is performed by measuring the voltage at each detection circuit's output, and wireless sensing capability allows long-distance data transmission via mesh networks using commercial RF hardware. A prototype is demonstrated.

METHODOLOGIES

Evanescent Wave Generation

Low-Cost Sensor Design and Fabrication

Low-Cost LED Collimation and Focusing

- Energy inserted into the system is regulated via the LDL212 Linear Regulator to provide consistent output
- Operating voltage range (DC): 3.4V -
- Output voltage for circuit: 5V Output current: 1.2A

Dip Coating

 $EFL = \frac{R}{n_L - 1}$

BFL = EFL - ET

 $\theta_0^{in}(i) = \arctan\left((d/2(i))/BFL \right)$

into an output voltage

• Transimpedance Amplifier converts a current source

- Output voltage is linearly correlated with input current and set via feedback gain.
- Stability is provided via external capacitors and virtual
- ground Current sources for TIA are $V_{o,max} - V_{o,min}$
 - **LED Emitters** LEDs are regulated using the NCR421U Driver
 - Configuration of Drivers regulates LED to provide max continuous power

LED Model #	()ntical Power Measured	Max Allowed Ratings Set	
		using DC bench supply	
LED525L	4.34uW(90%) / 0.3uW(10%)	0.028A/3.5V	
LED545L	13.93uW(90%) / 1 uW(10%)	0.05A/3.4V	
LED595LW	25.63uW(90%) / 3.18uW(10%)	0.15A/2.8V	

The E-Harvester runs

4 Volt output at ~1mA

via a current

K I LKO9U	C/(1202 101 1141 1 100	WIFI LORA 32 V3
+	State Care Section Control of	DE LETTE CONTROL DE LA CONTROL

End node	MCU	Transceiver	LoRaWAN capable?	Features	Cost
RYLR890	n/a*	SX1276	No	AT-commands	17.00
SX1262 for Rpi-Pico	RP4020*	SX1262	Yes	Dual core MCU driver/manager control 18 available GPIO	14.99
WiFi LoRa 32 V3	ESP32	SX1262	Yes	Dual core MCU driver/manager control WiFi BLE TFT screen for rapid prototyping 18 available GPIO	17.90

Energy Harvester Circuit for Energy Independence

transformer Small design (~59x36mm) Rated for 5 Amps Supercapacitor is Main Current Transformer maintained between ~2.2-2.6V Protection circuits ensure supercapacitor safety

Transformer Health Analytics Based on State Estimation Thermal Model

- 4. Oil viscosity
- 2. Oil thermal time constant 5. Rated oil temperature rise 6. RUL 3. Load factor

Output:

RESULTS & DISCUSSION

Temperature Sensing Data Through Wireless Transmission

Tested Metrics

1.1 ℃

Cost-Benefit Analysis for a 2500 kVA Power Transformer

-	Lab-sca	ale Research/ Develop	oment			
Stage			Pilot-scale			
				Full-scale Industrial Producti		
Number of Fiber Sensor Channels	1 (temperature)	1 (temperature) – cost reduction starts factoring in	4 (temperature, H ₂ , CH4, C ₂ H ₂)	6 (temperature, H ₂ , CH4, C ₂ H ₂ , C ₂ H ₄ , CO)	≥ 8 (temperature, H ₂ , CH ₄ , C ₂ H ₂ , C ₂ H ₄ , CO, CO ₂ , C ₂ H ₆ and Moisture)	
Fiber Optic Photonic Nose Suite Projected Sales Price	\$ 830	\$ 580	\$ 830	\$ 1000	\$ 1200	
Reduced Cost in New Transformer Purchase $(R_{Pr})^a$	\$ 67.2k		\$ 98k	\$ 112k	\$ 137.2k	
Saved Downtime Cost $(D_{Sv})^b$ Over Lifetime	\$ 3743.1		\$ 5989	\$ 6737.6	\$ 7478.7	
Avoided Catastrophe Cost $(C_{Av})^c$ Over Lifetime	\$ 687.7k		\$ 1.1M	\$ 1.2M	\$ 1.4M	
Note	^a $R_{Pr} = p_{Ex} \cdot T_c$, where p_{Ex} is stage dependent. ^b $D_{Sv} = p_{Sv} \cdot t_{avg} \cdot R_{kWh} \cdot P_{avg}$, where p_{Sv} is stage dependent.					
Note						
	c $C_{Av} = q_c \cdot q_d \cdot C_c$, where q_d is stage dependent.					

transformer being the possible lifetime the daunting cost of one single catastrophic failure given the historical examples referenced. (Y-D, Su. et al., APL Photonics, under

Hypothetical

value streams

are justified, with

the reduced cost

ACKNOWLEDGEMENT

This work is supported by Solar Energy Technologies Office under DOE **SOLAR ENERGY** Office of Energy Efficiency and Renewable Energy **TECHNOLOGIES OFFICE** U.S. Department Of Energy

 x_k : state vector $h(x_k)$: relation equation $\rightarrow h(x_k) = \theta_k \rightarrow \text{predicted TOT}$ Error to feedback to model: $\varepsilon_k = z_k - h(x_k) - r_{k-1}$