MP*: Réduction

Coralie RENAULT

28 janvier 2015

Exercice

Déterminer l'image de $\phi: A \in \mathcal{M}_3(\mathbb{R}) \mapsto A^3 \in \mathcal{M}_3(\mathbb{R})$.

Exercice

- Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $Tr(A^k) = 0$ pour tout $k \in \mathbb{N}^*$. Montrer que A est nilpotente.
- Soit G un sous groupe de $\mathcal{GL}_n(\mathbb{C})$, $(M_i)_{1 \leq i \leq m} \in G^m$ une base de Vect(G) et $f: G \mapsto \mathbb{C}^m$ l'application qui à $A \in G$ associe $Tr(AM_i))_{1 \leq i \leq m}$. Montrer que si f(A) = f(B) alors $AB^{-1} I$ est nilpotente.
- Soit E un $\mathbb{K} ev$ de dimension finie $n \in \mathbb{N}^*$. On considère une famille $(f_i)_{i \in I}$ d'endomorphsimes de E commutant deux à deux. Montrer que si les f_i sont diagonalisables, on peut tous les diagonaliser dans une même base.
- On suppose que toutes les matrices de G sont diagonalisables. Montrer que f est injective.
- En déduire qu'un sous groupe de $\mathcal{GL}_n(\mathbb{C})$ d'exposant fini (ie il existe un entier N tel que $A^N = I$ pour toute matrice A du groupe) est fini.

Exercice

- Soit G un sous groupe fini de $\mathcal{GL}_n(K)$ avec $K = \mathbb{R}$ ou $K = \mathbb{C}$ tel que pour tout $A \in G$, $A^2 = I$. Monter que $Card(G) \leq 2^n$.
- On suppose qu'il existe un morphisme injectif du groupe $\mathcal{GL}_n(K)$ dans le groupe $\mathcal{GL}_m(L)$. Montrer que $n \leq m$.

Exercice

Soit

$$M = \left(\begin{array}{cc} A & A \\ 0 & A \end{array}\right)$$

avec $A \in \mathcal{M}_n(\mathbb{R})$.

Enoncer une condition nécessaire et suffisante pour que M soit diagonalisable.

Exercice

Question de cours : Si $deg(\Pi_u) = d$ quel est la dimension de $\mathbb{K}[u]$? Le démontrer. On considère la matrice :

$$\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$

Calculer les puissances de A.

Exercice

Soit E un K-ev et $f \in \mathcal{L}(E)$ admettant un polynôme minimal. Si f est inversible, montrer que f^{-1} est un polynôme en f.

Exercice

a) Déterminer l'ensemble Ω des réels a tels que

$$A = \left(\begin{array}{ccc} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{array}\right)$$

n'est pas diagonalisable.

b) Pour $a \in \Omega$, trouver P inversible telle que $P^{-1}AP$ soit triangulaire supérieure.

Exercice

Montrer que la matrice

$$\left(\begin{array}{ccc}
13 & -5 & -2 \\
-2 & 7 & -8 \\
-5 & 4 & 7
\end{array}\right)$$

est trigonalisable et préciser une matrice de passage.

Exercice

Soient E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ nilpotent. On suppose qu'il existe $P \in \mathbb{K}[X]$ tel que P(u) = 0. Si $Q \in \mathbb{K}[X]$, existe-t-il $R \in \mathbb{K}[X]$ tel que R(Q(u)) = 0?

Exercice

On veut démontrer le théorème de décomposition de dunford :

Soit un endomorphisme $f \in \mathcal{L}(E)$ tel que son polynome caractéristique P_f soit scindé sur \mathbb{K} . Il existe un unique couple (d, n) d'endomorphismes tel que :

- d est diagonalisable, n est nilpotente
- $-f = d + n \text{ et } d \circ n = n \circ d$

Pour cela:

- Montrer que si $f \in \mathcal{L}(E)$ et $F \in \mathbb{K}[X]$ un polynôme annulateur de f. Soit $F = \beta M_1^{\alpha_1}...M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de $\mathbb{K}[X]$ du polynome F. Pour tout i on note $N_i = ker(M_i^{\alpha_i}(f))$. On a alors $E = N_1 \oplus N_2... \oplus N_s$ et pour tout i, la projection sur N_i parallèlement à $\bigoplus N_j$ est un polynome en f.
- Montrer l'existence de d et n .
- Montrer l'unicité.