ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

P.PORTO

ÁLGEBRA RELACIONAL - CONTINUAÇÃO

Decompor Operações Complexas

 $\sigma_{\text{Client.clientNo}} = \text{Viewing.clientNo} \left(\pi_{\text{clientNo}}, \text{fName, IName} \left(\text{Client} \right) \right) X \left(\pi_{\text{clientNo}}, \text{propertyNo, comment} \left(\text{Viewing} \right) \right)$

TempViewing $\leftarrow \pi_{\text{clientNo, propertyNo, comment}}$ (Viewing)

TempClient $\leftarrow \pi_{\text{clientNo, fName, IName}}$ (Client)

Comment_(clientNo, fName, IName, vclientNo, propertyNo, comment) ← TempClient X TempViewing

Result $\leftarrow \sigma_{clientNo} = vclientNo (Comment)$

Renomeação

- Sintaxe : $\rho_{S_{(a1, a2, ..., an)}}$ (R)
 - Renomeia a relação R para S com a possibilidade de renomear também os atributos

Exemplo do slide anterior com decomposição:

Comment_(clientNo, fName, IName, vclientNo, propertyNo, comment) ← TempClient X TempViewing

com operação de renomeação:

 $\rho_{Comment}_{(clientNo, \ fName, \ IName, \ vclientNo, \ propertyNo, \ comment)} \text{(TempClient X TempViewing)}$

Theta Join

- Sintaxe : R ⋈ _F S
 - Junção das relações R e S cujos tuplos satisfazem o predicado F
 - O predicado **F** assume a forma **R.a**_i θ **S.b**_i onde θ é uma operador de comparação (<, \le , >, \ge , =, \ne)
 - Pode ser reescrito usando o Produto Cartesiano e a Seleção

$$R \bowtie_F S = \sigma_F (RXS)$$

Theta Join e EquiJoin

- O **Theta Join** é utilizado principalmente para junções em que os critérios de junção são de desigualdade
- Quando o predicado F de um Theta Join é uma igualdade estamos perante um EquiJoin
- O **EquiJoin** é normalmente utilizado em operações de junção em que:
 - o critério de comparação é sobre atributos que têm nomes diferentes
 - ou quando o Natural Join não se adequa por este usar todos os atributos cujos nomes são idênticos

EquiJoin - Exemplo

 Lista dos clientes e respetivos comentários que tenham visitado uma propriedade para alugar

 $(\pi_{\text{clientNo, fName, IName}}(\text{Client})) \bowtie_{\text{Client.clientNo = Viewing.clientNo}} (\pi_{\text{clientNo, propertyNo, comment}}(\text{Viewing}))$

client.clientNo	fName	IName	Viewing.clientNo	propertyNo	comment
CR76	John	Kay	CR76	PG4	too remote
CR56	Aline	Stewart	CR56	PA14	too small
CR56	Aline	Stewart	CR56	PG4	
CR56	Aline	Stewart	CR56	PG36	
CR62	Mary	Tregear	CR62	PA14	no dining room

Outer Join

- Quando se pretende conservar tuplos que não têm correspondência numa operação de junção usa-se uma operação de Outer Join

 - Full Outer Join - Conserva os tuplos sem correspondência de ambas as relações

Left Outer Join - Exemplo

• Sintaxe : R ≥ S

Listagem de propriedades e respetivas visitas

 $\pi_{\text{propertyNo, street, city}}$ (PropertyForRent) \bowtie Viewing

propertyNo	street	city	clientNo	viewDate	comment
PA14	16 Holhead	Aberdeen	CR56	24-May-01	too small
PA14	16 Holhead	Aberdeen	CR62	14-May-01	no dining room
PL94	6 Argyll St	London	null	null	null
PG4	6 Lawrence St	Glasgow	CR76	20-Apr-01	too remote
PG4	6 Lawrence St	Glasgow	CR56	26-May-01	
PG36	2 Manor Rd	Glasgow	CR56	28-Apr-01	
PG21	18 Dale Rd	Glasgow	null	null	null
PG16	5 Novar Dr	Glasgow	null	null	null

Semi Join

- Sintaxe: R ▷_F S
 - Define uma relação com os tuplos de R que participam na junção com S
 - Pode ser reescrito usando o Projeção e Junção

$$R \triangleright_F S = \pi_A (R \bowtie_F S)$$

Semi Join - Exemplo

 Lista dos dados dos funcionários que trabalham nos escritórios de Glasgow

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SG37 SG14 SG5	Ann David Susan	Beech Ford Brand	Supervisor		10-Nov-60 24- Mar-58 3-Jun-40	12000 18000 24000	B003 B003 B003

Divisão

- Sintaxe: R ÷ S
 - Define uma relação sob um conjunto de atributos de R
 (diferentes dos atributos de S) que consiste dos tuplos de R que combinam com todos os tuplos de S
 - Pode ser reescrito através de operações básicas

$$T_1 \leftarrow \pi_C(R)$$
 $T_2 \leftarrow \pi_C((S X T_1) - R)$
 $T \leftarrow T_1 - T_2$

Divisão - Exemplo

 Identifique os clientes que visitaram todas as propriedades com três quartos

```
(\pi_{\text{clientNo, propertyNo}}(\text{Viewing})) \div (\pi_{\text{propertyNo}}(\sigma_{\text{rooms = 3}}(\text{PropertyForRent})))
```

$\Pi_{\text{clientNo,propertyNo}}$	$V_{o}(V)$	iew	/in	g)
------------------------------------	------------	-----	-----	----

clientNo	propertyNo
CR56	PA14
CR76	PG4
CR56	PG4
CR62	PA14
CR56	PG36

Π (σ (ProportyForPont))	DECITIT
$\Pi_{\text{propertyNo}}(\sigma_{\text{rooms}=3}(\text{PropertyForRent}))$	KESULI

propertyNo	
PG4	
PG36	

Agregação

- Sintaxe : \$\mathcal{I}\$ AL (R)
 - Aplica as funções de agregação definidas na lista
 AL à relação R para produzir uma nova relação
 - A lista AL contém um ou mais pares (<função_agregação>, <atributo>)
 - Funções de agregação:
 - COUNT, SUM, AVG, MIN e MAX

Agregação

• Quantas propriedades têm renda superior a 350€

$$\rho_{R_{(myCount)}} \mathfrak{I}_{COUNT propertyNo}$$
 ($\sigma_{rent > 350}$ (PropertyForRent))

myCount
5
(a)

Grupos e Agregação

- Sintaxe : $_{GA}\mathfrak{I}_{AL}$ (R)
 - Agrupa tuplos de R pela lista de atributos GA e depois aplica as funções de agregação definidas na lista AL a cada um dos grupos criados para produzir uma nova relação
 - A relação resultante é composta pelos atributos da lista GA mais os atributos resultantes da aplicação das funções de agregação

Grupos e Agregação - Exemplo

 Crie uma lista com o total de funcionários e a soma dos seus salários para cada escritório

$$\rho_{R_{(branchNo, \, myCount, \, mySum)}}$$
 ($_{branchNo}$ (COUNT staffNo, SUM salary) (Staff))

branchNo	myCount	mySum
B003	3	54000
B005	2	39000
B007	1	9000

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

P.PORTO

ÁLGEBRA RELACIONAL - CONTINUAÇÃO