DS 6

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ⊳ | encadrez les résultats principaux;
 - > soulignez les résultats et arguments intermédiaires importants;
 - *⊳* soignez votre écriture ;
 - ▷ maintenez une marge dans vos copies, aérez vos copies;
 - ⊳ enfin, numérotez vos copies (et non vos pages).
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Pour répondre à une question, vous pouvez admettre des résultats issus des questions précédentes en le signalant.
- Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le sur votre copie en expliquant les initiatives que vous avez été amené à prendre.
- Ne rendez pas le sujet avec vos copies.

DS6

Racines carrées des fonctions

Existence et régularité

Les parties dépendent les unes des autres selon le schéma ci-dessous :

Notations générales

Pour \mathbb{K} égal à \mathbb{R} ou \mathbb{C} :

- pour tout intervalle $I \subset \mathbb{R}$,
 - \triangleright on note $\mathscr{C}(I,\mathbb{K})$ l'ensemble des fonctions continues de I dans \mathbb{K} ;
- pour tout intervalle $I \subset \mathbb{R}$ non vide et non réduit à un point,
 - \triangleright on note $\mathcal{D}(I,\mathbb{K})$ l'ensemble des fonctions dérivables de I dans \mathbb{K} ,
 - \triangleright pour tout entier $k \in \mathbb{N}$, on note $\mathscr{C}^k(I,\mathbb{K})$ l'ensemble des fonctions k fois continûment dérivables de I dans \mathbb{K} ,
 - \triangleright on note $\mathscr{C}^{\infty}(I,\mathbb{K})$ l'ensemble des fonctions infiniment dérivables de I dans \mathbb{K} .

Thème du sujet

Ce problème étudie la question de l'existence et, le cas échéant, de la régularité de la racine carrée d'une fonction.

DS6

Partie I – Préliminaires

1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et soit $a \in \mathbb{R}^*$.

Montrer que

$$f \ge 0$$
 $f(x) \sim ax^2 \text{ quand } x \to 0$
 $\Rightarrow a \ge 0.$

2. Un lemme de tangence.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable en 0.

Montrer que

$$\begin{cases} f \geqslant 0 \\ f(0) = 0 \end{cases} \implies f'(0) = 0.$$

3. Soit $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ des fonctions dérivables.

Montrer que l'implication

$$f(x) \sim g(x)$$
 quand $x \to 0$ \Longrightarrow $f'(x) \sim g'(x)$ quand $x \to 0$

est fausse en général.

On donnera un contre-exemple.

Partie II – Racine carrée \mathscr{C}^1 : une condition nécessaire

Données

ullet Dans cette partie, on fixe $f:\mathbb{R}\longrightarrow\mathbb{R}$ de classe \mathscr{C}^2 telle que

$$f(0) = 0$$
 et $\forall x \in \mathbb{R}^*, f(x) > 0,$

et on pose $g \coloneqq \sqrt{f}$.

- On suppose que g est de classe \mathscr{C}^1 .
- On veut montrer que f''(0) = 0. Pour cela, on raisonne par l'absurde et on suppose que $f''(0) \neq 0$.
- **4.** Calculer g'(x) pour $x \in \mathbb{R}^*$.
- **5.** Montrer que g'(0) = 0.
- **6.** (a) Sans justification, donner les valeurs $(a,b,c) \in \mathbb{R}^3$ et $(A,B) \in \mathbb{R}^2$ telles que

$$f(x) = a + bx + cx^2 + o(x^2)$$
 quand $x \to 0$
 $f'(x) = A + Bx + o(x)$ quand $x \to 0$.

On donnera néanmoins le nom du théorème utilisé; on simplifiera le résultat.

- (b) En déduire des équivalents simples de :
 - (i) f(x) quand $x \to 0$;
 - (ii) f'(x) quand $x \to 0$;
 - (iii) g'(x) quand $x \to 0$.
- 7. Aboutir à une contradiction et conclure.

Partie III – Racine carrée \mathscr{C}^1 : une condition suffisante

Données, notations et but

ullet Dans cette partie, on fixe $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction de classe \mathscr{C}^2 telle que

$$f(0) = f'(0) = f''(0) = 0$$

et telle que

$$\forall t \in \mathbb{R}^*, \ f(t) > 0.$$

- On pose $g := \sqrt{f}$.
- Le but de cette partie est de montrer que la fonction g est de classe \mathscr{C}^1 .
- 8. Soit $\delta > 0$.

(b) Montrer que

$$\sup_{t\in [-\delta,\delta]} \bigl|f''(t)\bigr| > 0.$$

Notation

Dans la suite, pour $\delta > 0$, on pose

$$M_\delta \coloneqq \sup_{t \in [-\delta,\delta]} ig|f''(t)ig|.$$

9. Soit r>0 et soit $t\in [-r,r]$. On considère le polynôme $P_t\in\mathbb{R}[X]$ défini par

$$P_t := M_{2r} \frac{X^2}{2} + f'(t)X + f(t).$$

- (a) Montrer que $|f'(t)| \leq rM_{2r}$.
- (b) Montrer que

$$\forall h \in [-r, r], \quad \left| f(t+h) - f(t) - f'(t)h \right| \leqslant \frac{h^2}{2} M_{2r}.$$

(c) En déduire que

$$\forall h \in [-r, r], \quad P_t(h) \geqslant 0.$$

(d) Montrer que

$$|f'(t)| \leqslant \sqrt{2f(t)M_{2r}}.$$

10. Montrer que g est de classe \mathscr{C}^1 sur \mathbb{R} .

Partie IV – Racine carrée \mathscr{C}^k dans le cas non nul

Données

Dans cette partie, on se donne

$$a: \mathbb{R} \longrightarrow \mathbb{C}$$

une fonction continue.

11. Résolution des EDL d'ordre 1.

Soit $t_0 \in \mathbb{R}$ et soit $z_0 \in \mathbb{C}$.

Montrer que

$$\exists ! f \in \mathscr{D}(\mathbb{R}, \mathbb{C}) : \begin{cases} \forall t \in \mathbb{R}, \ f'(t) + a(t)f(t) = 0 \\ f(t_0) = z_0. \end{cases}$$

On pourra procéder par analyse-synthèse.

12. Régularité des solutions.

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$, dérivable, telle que

$$\forall t \in \mathbb{R}, \ f'(t) + a(t)f(t) = 0.$$

- (a) Montrer que f est, en fait, de classe \mathscr{C}^1 .
 - (b) Montrer que

$$\forall k \in \mathbb{N}, \quad a \in \mathscr{C}^k(\mathbb{R}, \mathbb{C}) \implies f \in \mathscr{C}^{k+1}(\mathbb{R}, \mathbb{C}).$$

(c) Montrer que

$$a \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{C}) \implies f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{C}).$$

13. Une racine carrée \mathscr{C}^k si $k \geqslant 1$.

Soit $k \in \mathbb{N}^* \cup \{\infty\}$ et soit $f : \mathbb{R} \longrightarrow \mathbb{C}^*$ de classe \mathscr{C}^k .

Montrer que

$$\exists g \in \mathscr{C}^k(\mathbb{R}, \mathbb{C}): f = g^2.$$

On utilisera les questions 11 et 12.

Partie V – Parties irradiantes de la droite réelle

Définitions

• Soit $X \subset \mathbb{R}$.

 $\,\rhd\,$ On dit que X irradie (ou que X est irradiante) ssi

$$\forall x \in X, \ \exists \delta > 0: \]x - \delta, x + \delta[\subset X.$$

 $\,\rhd\,$ On dit que Xirradie à droite ssi

$$\forall x \in X, \ \exists \delta > 0: \ [x, x + \delta] \subset X.$$

• Soit I un intervalle de \mathbb{R} . On dit que I est ouvert ssi

$$\exists a, b \in \mathbb{R} \cup \{-\infty, \infty\} : I =]a, b[.$$

14. Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue. Montrer que l'ensemble

$$\left\{ t \in \mathbb{R} \mid f(t) \neq 0 \right\}$$

irradie.

15. L'irradiance est stable par union quelconque.

Soit A un ensemble non vide et soit $(U_a)_{a\in A}\in \mathscr{P}(\mathbb{R})^A$ une famille de parties de \mathbb{R} . Montrer que

$$(\forall a \in A, \ U_a \text{ irradie}) \implies \bigcup_{a \in A} U_a \text{ irradie}.$$

16. Soit I un intervalle de \mathbb{R} .

Montrer que

$$I \text{ est ouvert} \iff I \text{ irradie.}$$

17. Principe de récurrence forte continue.

Soit $A \subset \mathbb{R}_+$. Montrer que

$$0 \in A$$

$$A \text{ irradie à droite}$$

$$\forall x \in \mathbb{R}_+, \quad [0, x[\subset A \implies x \in A]$$

$$\implies \quad A = \mathbb{R}_+.$$

18. Structure des parties irradiantes.

Soit $U \subset \mathbb{R}$ une partie irradiante.

Montrer que U est une réunion disjointe d'intervalles ouverts, ie montrer que U s'écrit

$$U = \bigcup_{a \in A} I_a,$$

avec A un ensemble non vide et avec $(I_a)_{a\in A}$ une famille d'intervalles de \mathbb{R} deux à deux disjoints.

Partie VI – Racine carrée continue

Résultat admis

On pourra utiliser le résultat suivant, qui sera démontré dans la partie VII.

Théorème (Relèvement des chemins dans \mathbb{U}).

Soit I un intervalle et soit $f: I \longrightarrow \mathbb{U}$ une fonction continue.

Alors, il existe $\varphi: I \longrightarrow \mathbb{R}$ continue telle que

$$\forall t \in I, f(t) = e^{i\varphi(t)}.$$

- **19.** Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue.
 - (a) En supposant que $\forall t \in \mathbb{R}, f(t) \neq 0$, montrer que $\exists g \in \mathscr{C}(\mathbb{R}, \mathbb{C}) : f = g^2$.
 - (b) Sans hypothèse supplémentaire, montrer que $\exists g \in \mathscr{C}(\mathbb{R}, \mathbb{C}) : f = g^2$.

Partie VII – Relèvement des chemins dans U

Données

Dans cette partie, on se donne $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue telle que

$$\forall t \in \mathbb{R}, \ f(t) \in \mathbb{U}.$$

Définition

Pour tout intervalle I de \mathbb{R} , on appelle argument continu de f sur I toute fonction continue $\varphi: I \longrightarrow \mathbb{R}$ telle que

$$\forall t \in I, \ f(t) = \mathrm{e}^{\mathrm{i} \varphi(t)}.$$

But

On veut montrer dans cette partie que f admet un argument continu sur \mathbb{R} .

20. Un peu de trigonométrie.

Soit $z \in \mathbb{C}$ tel que Re(z) > 0. On pose

$$r\coloneqq |z| \quad \text{et} \quad \theta\coloneqq \arctan\biggl(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\biggr).$$

Montrer que $z = re^{i\theta}$.

21. Un lemme de détermination.

Soit I un intervalle et soit $x_0 \in I$.

Soient $\varphi, \psi: I \longrightarrow \mathbb{R}$ des arguments continus de f sur I. Montrer que

$$\varphi(x_0) = \psi(x_0) \implies \varphi = \psi.$$

22. Soit $x_0 \in \mathbb{R}$ tel que $f(x_0) = 1$.

(a) Montrer que

$$\exists \delta > 0: \forall t \in]x_0 - \delta, x_0 + \delta[, \operatorname{Re}(f(t)) > 0.$$

- (b) Montrer qu'il existe $\delta > 0$ tel que f possède un argument continu sur $]x_0 \delta, x_0 + \delta[$.
- (c) Montrer que l'on peut se passer de l'hypothèse $f(x_0) = 1$. Autrement dit, montrer que, pour tout nombre $x \in \mathbb{R}$, il existe $\delta > 0$ tel que la fonction f admette un argument continu sur $|x - \delta, x + \delta|$.
- **23.** On fixe $\theta_0 \in \mathbb{R}$ tel que $f(0) = e^{i\theta_0}$ et on note

$$\mathsf{A}_{\theta_0} \coloneqq \Big\{ x \in \mathbb{R}_+ \ \Big| \ \exists \varphi \in \mathscr{C} \big([-x,x], \mathbb{R} \big) : \ \varphi(0) = \theta_0 \ \text{ et } \ \forall t \in [-x,x], \ f(t) = \mathsf{e}^{\mathsf{i} \varphi(t)} \Big\}.$$

En utilisant la question 17, montrer que $A_{\theta_0} = \mathbb{R}_+$.

24. Montrer que

$$\exists \varphi : \mathbb{R} \longrightarrow \mathbb{R} \text{ continue} : \quad \forall t \in \mathbb{R}, f(t) = e^{i\varphi(t)}$$

Ce résultat dit « de relèvement des chemins dans \mathbb{U} », qu'on a démontré ici pour les fonctions $f: \mathbb{R} \longrightarrow \mathbb{U}$ continues, reste encore valable pour les fonctions $f: I \longrightarrow \mathbb{U}$ continues, où I est un intervalle. La démonstration est identique.

Partie VIII – Une non-existence

Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$. On dit que f est continue ssi

$$\forall (z_n)_n \in \mathbb{C}^{\mathbb{N}}, \ \forall \lambda \in \mathbb{C}, \qquad z_n \longrightarrow \lambda \ \Longrightarrow \ f(z_n) \longrightarrow f(\lambda).$$

25. Une quasi-unicité.

Soient $f, g: \mathbb{R} \longrightarrow \mathbb{C}^*$ des fonctions continues. Montrer que

$$f^2 = g^2 \implies (f = g \text{ ou } f = -g).$$

26. Montrer qu'il n'existe pas de fonction racine : $\mathbb{C} \longrightarrow \mathbb{C}$ telle que

$$\begin{cases} \text{ racine est continue} \\ \forall z \in \mathbb{C}, \text{ racine}(z)^2 = z. \end{cases}$$

FIN DU SUJET.

