Algorithms Report1 (Due date: 5PM, Sep. 30, 2022)

Problem solving manually

(Must write down the problem solving process.)

- 1. Using Figure 2.4 (in the text book) as a model, illustrate the operation of merge sort (ascending order) on the array $A = \langle 3, 41, 6, 26, 22, 11, 9, 4 \rangle$
- 2. Consider sorting n numbers stored in array A by first finding the largest element of A and exchanging it with the element in A[1]. Then find the second largest element of A, and exchange it with A[2]. Continue in this manner for the first n-1 elements of A.
- a. Write pseudocode for this algorithm, which is known as selection sort.
- b. Why does it need to run for only the first n-1 elements, rather than for all n elements?
- c. Give the best-case and worst-case running times of selection sort in Θ -notation.
- d. Using Figure 2.2 as a model, illustrate the operation of the selection sort on the array $A = \langle 13, 16, 12, 21, 7, 8, 25, 32 \rangle$.
- 3. Express the following functions in terms of Θ -notation.

a.
$$2n^3 + n^2 + 1$$

b.
$$n^2 + 2n + \lg n$$

- 4. Draw the recursion tree for $T(n) = 2T(n/2) + cn^2$ where, c is constant. Provide a good asymptotic upper bound (O-notation). Also, verify your bound by the substitution method.
- 5. Express the following functions in terms of Θ -notation.

(Must show intermediate steps of a solution.)

a)
$$2n^2 + 2n + 5lgn$$

b)
$$n^3 + 3n + 10$$

6. Prove the following sum by mathematical induction.

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6 \quad \text{for n > 0}$$

7. Use the mater method to give tight asymptotic bounds for the following recurrences.

```
a) T(n) = 9T(n/3) + n
```

- b) $T(n) = 9T(n/3) + n^2$
- c) $T(n) = 9T(n/3) + n^3$

Programming (C language)

1. Write the SELECTION-SORT function to sort into descending order.

The program should count the number of comparison operations.

- Test the function with the following three types of **integer** inputs.
 - 1) int A[100]: filled with rand()%1000, execute srand(time(NULL)) first, (stdlib.h, time.h should be included)
 - (Duplicate keys are ignored, that is, avoid identical values when randomly generating values.)
 - 2) int A[100]: already sorted (Write a function for filling in A[]).
 - 3) int A[100]: reversely sorted (Write a function for filling in A[]).

(For the inputs of 2) and 3), A[] can be filled with the integers from $100 \sim 1$ (from 100 down to 1) and $1 \sim 100$ (from 1 to 100) respectively.)

- Print A[], before and after sorting for each case of the above inputs.
- Print the number of comparisons for each case of the above inputs.

2. Write the MERGE-SORT function to sort into ascending order.

The program should count the number of comparison operations.

- Test the function with the following three types of integer inputs.
 - 1) int A[100] : filled with rand()%1000, execute srand(time(NULL)) first, (stdlib.h, time.h should be included)
 - (Duplicate keys are ignored, that is, avoid identical values when randomly generating values.)
 - 2) int A[100]: already sorted (Write a function for filling in A[].)

3) int A[100]: reversely sorted (Write a function for filling in A[].

(For the inputs of 2) and 3), A[] can be filled with the integers from $100 \sim 1$ (from 100 down to 1) and $1 \sim 100$ (from 1 to 100) respectively.)

- Print A[], before and after sorting for each case of the above inputs.
- Print the number of comparisons for each case of the above inputs.
- 3. Write functions which perform according to the following descriptions.

The input to each function is a linked list of integers.

- a) insert
- Inserts an integer x to the end of a linked list.
 e.g.) insert(lst, x) where lst is a pointer to a linked list and x is an integer.
- b) delete
- Deletes 3rd last integer x in the linked list.
 e.g.) delete(lst)
- c) print
- prints the content of a linked list in three lines as described below

 1^{st} line: 1^{st} third of the list 2^{nd} line: 2^{nd} third of the list 3^{rd} line: 3^{rd} third of the list e.g.) print(lst)

- Test the functions as shown below.
- 1) Construct the linked list from a set of integers stored in an array using the insert function in a).

Where the length of the array is 60 and should be filled by rand()%1000 (execute srand(time(NULL)) first).

(Avoid same values when generating the values randomly.)

- 2) Then execute the delete function in b).
- 3) Print the content of the linked list using print function in c).
- 4) Repeat 2) and 3) two more times.

- 4. Program the matrix multiplication using
 - 1) standard algorithm (class note, page 18)
 - 2) divide-and-conquer algorithm (class note, page 20)
 - 3) strassen algorithm (class note, page 28)
- For the above cases 1), 2), 3)
- a) Compare the number of computations (multiplication, subtraction, addition) among 1), 2), 3) cases.

In the matrix computation of $C = A \times B$, matrices A and B are filled with rand()%1000, execute srand(time(NULL)) first. (Note that identical values are allowed.)

- For the case 2) and 3)
- b) Print whenever a partial matrix (except 1×1) of C is constructed, that is, whenever a return value from a recursion is determined, until the completion of the matrix multiplication.
- ▶ Execute with the 4x4 matrix multiplication and the 8x8 matrix multiplication. Print matrices, A, B, and C for 4x4 and 8x8 matrices.

How to submit the report.

- ▶ Need to upload the report1 in a zip file in the i-campus. Refer to the manual file for uploading in the i-campus.
- ▶ The zip file should contain the following three files.
 - 1) Document file (.hwp, photo, or scan): Problem solving manually part.
 - 2) C program file(s): Programming part.
 - 3) Test result file(s): Contains all the screen copy of the test results.
- The zip file should be named as shown below, report1_id_name.zip

example) report1_2020123456_HongGilDong.zip or report1_2020123456_홍길동.zip The **zip file** contains above 1), 2), and 3).

▶ Use windows OS and visual studio program.