Outli	1e															
Rind	7															
Fiel	А															
Poli	Noa	1,01	Ring	3												

```
Reap on group
    Group is a set & with a operation + (G+)
    Satisfies
 (1) closure: Y 9, h = Eq.
 (2) identify: \(\frac{1}{2}\) O \(\infty\) = \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2
  (3) inverse: 3 g E E, 3 (-g) E G, S-E B+ (-g) = (-9) + g=0
   (4) associativey: Y g, N, K & & , (g+h)+K = g+(h+k)
  quong to 2) (+, I) : p.3
   Ring is a sit R with two operations +, * (R, +, *)
   satisfies
(1) (R, t) is a commutative group
 (2) With respect to *:
                   (a) 3 usque multiplieurue idention, 1 ER Sit 1* 1=10x1=1
                   (b) * is associative
 (3) +, * are distributive: Y a, b, CER
                    (0+6)*C = (0*C) + (6*C)
E-9: (I,t,*) is a ring, (In, t, *) is a ring
   ( can do addition, substration, multiplication, but not
      division)
```

FIRLD A set F with two operations t, * satisfy (1) (F,+) is a commutative goup (2) (7)303 x) is a commerción group. (3) Distaurille E-a: IR, Q, C are infinite field Fp= Zp where p is prine is a tarte tipld (can do additor, subtartin, militipliation, division) Recap: Zp = Zp 303 has multiplicative inverse. (Zp" *) is a goup Questions: 01: Are there finite tiplds of arbitrary number of elements? 02: How to construct finite fields?

Theorems												
	Any	fente	-Sield	has	Pd	eleme	75	Chri	us ba	NRD.		
2	The	e exist	r a f	icite	fied	to b	E Pd	elin	2709			
			ed soi									
3	All	fente	tield	76	Size	Pd	V.E	(SOMO	chvic			
Pole	Noc	nial Ri	NC)									
2		- 2	2 + 5) \	1							
7	(×)	7	x 2+ 2	- de	050 €							
		000 (10										

Polynomial over Field F Let F be a field. FTXJ = 3 Cd x 4 + Cd-1 x 4-1 + ... + Co, C; E F } E-g= In F2[x] (x+1) C F2 [x] $(x^2+x)\in F_3$ [x] $1 + \times G + = \times + G \times +$ = \times^2+ (\in \mathbb{F}_3 (\times) $(\times 4)$ $(\times_3 + \times) = \times_3 + \times_3 + \times$ FIX) is not a field but a ring.

FIXI is not a field but a ring.

Just like ring of integers, we an add, sub-back,

multiply but not division.

Cockept of Frime concept of irreducible $f(x) \in F[x]$ integer & such that Fi Fi skinshbani Zi Z Phas own trivial divisors (1, P) has no proper factors other than it set and a constant. E9, 2, 3, 5, 7, E.g: OUP F5[X] X+1 is irreductale $x^2-1=(x-1)(x+1)$ is not irreducible FTX] (fx) is a field iff In is a field iff n is a prime. fix) is irreducible. All nontero poly namical in Al nonzero elements in Ip 21 (x) grand (cx) /(x) 7 Where p is prime has myltiplicative merse Irreducible has multiplicated 9272Ní Etrangla by Elements Ip has pelements While fox) is irreducible IFp= Z/(P) oue < F (x) of degree d. and F is a frite field of oder p

(20303, x) is cyclic = < 9> (Tolx)/(for) 303, x) is cyclic (Zp,+) 15 md; = <17 (TFDX] /(fcx) , t) is cyclic? No, un less it has only pelements. Construction of a finite field of order po 1) Find an irreducible Polynmial over IFP, with degree d, fx. (fix) is a first field of order pd. Example: Construct a finte field of order 23 = 8 $0 + (x) = x^3 + x + 1 \quad \text{out} \quad \mathbb{F}_2$ Prove that fix) is irreducible. Over Fz. If f(x) is not irreducible then $f(x) = x_3 + x + 1 = (0 \times + p)(c \times_5 + q \times + 6)$ coefficients of $x^3 = Cq = 1 \rightarrow C = q = 1$ $x^2 = Cb + qd = 0 \rightarrow d = 1$ There exists no qubicidie ETS that satify as (the egactions. 3) Find the primitive element / generate of (FEX)(+A)(*). \times , \times^{3} = \times +1, \times^{2} + \times , \times^{3} + \times^{2} = \times^{2} + \times +1, \times^{3} + \times^{2} + \times = \times^{2} +1 X3+X=1, X generates all nonzero elements in Elx/(fx)