Optimal Theory and Method

程春杰 杭州电子科技大学 自动化学院 科技馆512

Email: cjzhai@hdu.edu.cn

目录

- 线性规划中的对偶理论(考)
- 对偶单纯形法(考)
- 灵敏度分析(考)

目录

- 线性规划中的对偶理论(考)
- 对偶单纯形法(考)
- 灵敏度分析(考)

- 灵敏度分析
- ▶为何进行灵敏度分析
- ▶系数向量c改变的影响
- ▶右端向量b改变的影响
- ▶约束矩阵A改变的影响

- 灵敏度分析
- ▶为何进行灵敏度分析?

数学模型中的数据未知 ,需要根据实际情况进行估计 和预测,很难做到十分准确。

研究数据的变化对最优解产生的影响,对解决实际 问题有重要意义。

min
$$cx$$
s.t. $Ax = b$.
 $x \ge 0$.

下面将简要介绍 c, A和 b 的变化所带来的影响。

■ 灵敏度分析

▶系数向量c改变的影响

线性规划的最优解: $x_B = B^{-1}b$, $x_N = 0$

线性规划的最优值: $f = c_B B^{-1} b$

(1) 非基变量 x_k 的系数 c_k 改变为 c_k

$$c_B$$
不变 \longrightarrow $z_k = c_B B^{-1} p_k$ 不变

替换判别数后,采用单纯形法求最优解和最优值

- 灵敏度分析
- ▶系数向量c改变的影响
 - (2) 基变量 x_k 的系数 c_k 改变为 c_k

$$c_B$$
改变 \longrightarrow $z_k = c_B B^{-1} p_k$ 改变 \longrightarrow 影响所有判别数

系数 c_k 改变为 c_k 后,重新计算判别数,采用单纯形法求最优解和最优值

■ 灵敏度分析

▶系数向量c改变的影响

线性规划问题:
$$\max -x_1+2x_2+x_3$$
 s. t $x_1+x_2+x_3 \le 6$ $2x_1-x_2 \le 4$ $x_1, x_2, x_3 \ge 0$

最优单纯形表:

	x_1	x_2	x_3	x_4	x_5		
x_2	1	1	1	1	0	6	
x_5	3	0	1	1	1	10	
	3	0	1	2	0	12	

- (1) 把 $c_1 = -1$ 改变为 $c_1 = 4$,求新问题的最优解.
- (2) 讨论 c_2 在什么范围内变化时原来的最优解也是新问题的最优解(最优值可以不同).

■ 灵敏度分析

(1) 把 $c_1 = -1$ 改变为 $c_1 = 4$

▶系数向量c改变的影响

解: x_1 非基变量 $z_1 - \acute{c}_1 = c_B B^{-1} p_1 - \acute{c}_1 = 2 - 4 = -2$

	x_1	x_2	x_3	x_4	x_5	
x_2	1	1	1	1	0	.6
x_5	3	0	1	1	1	10
	-2	0	1	2	0	12

x_2	0	1	3	2 3	$-\frac{1}{3}$	8 3
x_1	1	0	1/3	$\frac{1}{3}$	1 3	$\frac{10}{3}$
	0	0	<u>5</u>	8 3	$\frac{2}{3}$	$\frac{56}{3}$

线性规划的最优解: $(x_1, x_2, x_3, x_4, x_5) = (\frac{10}{3}, \frac{8}{3}, 0, 0, 0)$,

线性规划的最优值: $f = \frac{56}{3}$

■ 灵敏度分析

(2) c_2 在什么范围变化时最优解不变

▶系数向量c改变的影响

解:

	x_1	x_2	x_3	x_4	x_5	
x_2	1	1	1	1	0	6
x_5	3	0	1	1	1	10
	3	0	1	2	0	12

x₂基变量,最优解不变等价于替换后,所有的 判别数大于或等于0

$$\begin{aligned}
\dot{z}_1 - c_1 &= \dot{c}_B B^{-1} p_1 - c_1 = c_2 + 1 \ge 0 \\
\dot{z}_2 - c_2 &= \dot{c}_B B^{-1} p_2 - c_2 = 0 \\
\dot{z}_3 - c_3 &= \dot{c}_B B^{-1} p_3 - c_3 = c_2 - 1 \ge 0 \\
\dot{z}_4 - c_4 &= \dot{c}_B B^{-1} p_4 - c_4 = c_2 \ge 0 \\
\dot{z}_5 - c_5 &= \dot{c}_B B^{-1} p_5 - c_5 = 0
\end{aligned}$$

■ 灵敏度分析

▶系数向量b改变的影响

线性规划的最优解: $x_B = B^{-1}b$, $x_N = 0$

线性规划的最优值: $f = c_B B^{-1} b$

(1) $B^{-1}\acute{b} \geq 0$

原来的最优基仍是最优基,但是基变量的取值和目标 函数最优值将发生变化

(2) $B^{-1}\acute{b}$ 不全大于或等于0

原来的最优基不再是最优基,但是所有判别数仍小于或 等于零,现行的基本解是对偶可行的。

$$B^{-1}b \longrightarrow B^{-1}b$$
 $c_BB^{-1}b \longrightarrow c_BB^{-1}b$

■ 灵敏度分析

▶系数向量b改变的影响

线性规划问题: min
$$x_1+x_2-4x_3$$
 s. t $x_1+x_2+2x_3 \le 9$ $x_1+x_2-x_3 \le 2$ $x_1+x_2+x_3 \le 4$ $x_1, x_2, x_3 \ge 0$ $x_1, x_2, x_3 \ge 0$

最优单纯形表:

	x_1	x_2	x_3	x_4	x_5	x_6	
x_1	1	$-\frac{1}{3}$	0	1 3	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	3	1	1 3	0	<u>1</u>	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

■ 灵敏度分析

▶ 系数向量b改变的影响

解:

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \implies B^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 1 & 1 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix}$$

$$B^{-1}\dot{b} = B^{-1} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} \quad c_B B^{-1}\dot{b} = (1, 0, -4) \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} = -9$$

	x_1	x_2	x_3	x_4	x_5	x_6	
x_1	1	$-\frac{1}{3}$	0	1 3	0 .	$-\frac{2}{3}$	-1
x_5	0	2	0	0	1	1	5
x_3	0	$\frac{2}{3}$	1	1/3	0	1 3	2
	0	-4	0	-1	0	-2	-9

■ 灵敏度分析

▶系数向量b改变的影响

解:

	x_1	x_2	x_3	x_4	x_5	x_6	
x ₁	1	$-\frac{1}{3}$	0	1 3	0 .	$-\frac{2}{3}$	1
x_5	0	2	0	0	1	1	5
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	1 3	2
	0	-4	0	-1	0	-2	-9

x_6	$-\frac{3}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	1	3 2
x_5	$\frac{3}{2}$	$\frac{3}{2}$	0	1/2	1	0	$\frac{7}{2}$
x_3	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	0	0	$\frac{3}{2}$
:	-3	-3	0	-2	0	0	-6

■ 灵敏度分析

▶约束矩阵A改变的影响

线性规划的最优解: $x_B = B^{-1}b$, $x_N = 0$

线性规划的最优值: $f = c_B B^{-1} b$

(1) 非基列 p_j 变为 p_j

影响判别数 $z_i - c_i$ 和单纯性表的第j列 y_i

$$\dot{z}_j - c_j = c_B B^{-1} \dot{p}_j - c_j$$

$$\acute{\boldsymbol{y}}_i = \boldsymbol{B}^{-1} \acute{\boldsymbol{p}}_i$$

$$\dot{z}_i - c_i > 0$$
 \Longrightarrow 替代后,继续迭代,求最优解

- 灵敏度分析
- ▶约束矩阵A改变的影响
 - (2) 基列 p_j 变为 \hat{p}_j

原来的基向量集合用 p_j 取代 p_j 后,有可能线性相关,因而不再构成基,即使线性无关,可以构成基,它的 逆与原来基矩阵的逆 B可能差别很大.

由于基向量的改变将带来全面影响,因此在这种情况下,一般不去修改原来的最优表,而是重新计算

■ 灵敏度分析

▶增加新的约束

原有约束为 $Ax=b,x\geq 0$,增加一个新的约束

$$p^{m+1} x \leq b_{m+1}$$
,

其中 p^{m+1} 是 n 维行向量

- (1) 若原来的最优解满足新增加的约束,那么它也 是新问题的最优解
- (2) 若原来的最优解不满足新增加的约束,那么就需要把新的约束条件增加到原来的最优表中,再解新问题

■ 灵敏度分析

▶增加新的约束

线性规划问题:

$$\min \quad x_1 + x_2 - 4x_3$$
 $s.t \quad x_1 + x_2 + 2x_3 \leqslant 9$
 $x_1 + x_2 - x_3 \leqslant 2$
 $-x_1 + x_2 + x_3 \leqslant 4$
 $-3x_1 + x_2 + 6x_3 \leqslant 17$
 $x_1, x_2, x_3 \geqslant 0$
原问题的最优解: $(x_1, x_2, x_3) = (\frac{1}{3}, 0, \frac{13}{3})$

不满足新约束的条件, 引松弛变量

$$-3x_1+x_2+6x_3+x_7=17$$

■ 灵敏度分析

 $-3x_1+x_2+6x_3+x_7=17$

▶增加新的约束

	x_1	x_2	x_3	x_4	x_5	x_6	
x_1	1	$-\frac{1}{3}$	0	1 3	0	- 2	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	1 3	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_1	ı	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	0	1 3
x_5	0	2	0	0	1	1	0	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	1 3	0	$\frac{13}{3}$
x_7	-3	1	6	0	0	0	1	17
	0	-4	0	-1	0	-2	0	-17

■ 灵敏度分析

$-3x_1+x_2+6x_3+x_7=17$

▶增加新的约束

	x_1	x_2	x_3	x_4	x_{6}	x_6	x_7	
<i>x</i> ₁	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	0	$\frac{1}{3}$
x_5	0	2	0	0	1	1	0	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{13}{3}$
<i>x</i> ₇	0	-4	0	-1	0	-4	1	8
	0	-4	0	-1	0	-2	0	-17

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_1	1	$\frac{1}{3}$	0	$\frac{1}{2}$	0	0	$-\frac{1}{6}$	<u>5</u> 3
x_5	0	1	0	$-\frac{1}{4}$	1	o	1/4	4
x_3	0	$\frac{1}{3}$	1	$\frac{1}{4}$	0	0	$\frac{1}{12}$	$\frac{11}{3}$
x_6	0	1	0	1/4	0	1	$-\frac{1}{4}$	2
	0	-2	0	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	-13

原问题的最优解:

$$(x_1, x_2, x_3) = (\frac{5}{3}, 0, \frac{11}{3})$$

■作业

P163, P164:

1(2), 4, 7(2)