CIS 263 Introduction to Data Structures and Algorithms

Backtracking

Minimum Spanning Tree

- We have to find spanning Trees with the minimum cost
 - Search all combinations
 - Approximation Algorithms
 - Greedy Algorithms
 - Prim's Algorithm
 - Kruskal's Algorithm

- Uses heuristics
- Solution may not be optimal

Optimization Problems

Greedy Algorithms

- Mainly Heuristics based

Bruteforce

- Constraints based

Optimization Problems

Greedy Algorithms

- Mainly Heuristics based

Bruteforce

- Constraints based
- Backtracking

- You have to fill the boxes
- No condition
- 3! solutions

- You have to fill the boxes
- No condition
- 3! solutions

- You have to fill the boxes
- Conditions
 - Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking

- You have to fill the boxes
- Conditions
 - Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- You have to fill the boxes
- Conditions
 - o Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- You have to fill the boxes
- Conditions
 - o Green cannot be in the middle
 - R2 cannot be in the first box
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- Condition: Two adjacent nodes cannot have the same color
- Can we do it with 2 colors say {Red, Green}?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 3 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - o Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No
- What are your scheduling options; or How many combinations of days/dates you may have?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No
- What are your scheduling options; or How many combinations of days/dates you may have?
 - Answer: 3! (the first toy example we did.)

Let's go back to our original question!

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require? 4 or 3 or some other number of days?

Graph Coloring Problem

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require? or 3 or some other number of days?
- Answer: 2 days (2 colors)

Is this the only solutions?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require? or 3 or some other number of days?
- Answer: 2 days(2 colors)
- What are your scheduling options; or How many combinations of days/dates you may have?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
- Q: What's the minimum number days your schedule will require? 4 or 3 days?
- Answer: 2 days(2 colors)
- What are your scheduling options; or How many combinations of days/dates you may have?
 - Backtracking solution

