

What is Amortized Analysis?

- In amortized analysis, the time required to perform a sequence of operations is averaged over all the operations performed.
- No involvement of probability
- Average performance on a sequence of operations, even some operation is expensive.
- Guarantee average performance of each operation among the sequence in worst case.

Amortized analysis is not just an analysis tool, it is also a way of thinking about designing algorithms.

Methods of Amortized Analysis

- **Aggregate Method**: we determine an upper bound *T*(*n*) on the total sequence of *n* operations. The cost of each will then be *T*(*n*)/*n*.
- Accounting Method: we overcharge some operations early and use them to as prepaid charge later.
- **Potential Method:** we maintain credit as potential energy associated with the structure as a whole.

1. Aggregate Method

- Show that for all n, a sequence of n operations take worst-case time T(n) in total
- In the worst case, the average cost, or amortized cost, per operation is T(n)/n.
- The amortized cost applies to each operation, even when there are several types of operations in the sequence.

Aggregate Analysis: Stack Example

3 ops:			
	Push(S,x)	Pop(S)	Multi- pop(S,k)
Worst-case cost:	O(1)	O(1)	O(min(S ,k) = O(n)

...... Aggregate Analysis: Stack Example

- Sequence of n push, pop, Multipop operations
 - Worst-case cost of Multipop is O(n)
 - ☐ Have n operations
 - ☐ Therefore, worst-case cost of sequence is O(n²)
- Observations
 - Each object can be popped only once per time that it's pushed
 - □ Have <= n pushes => <= n pops, including those in Multipop
 - \square Therefore total cost = O(n)
 - Average over n operations => O(1) per operation on average
- Notice that no probability involved

2. Accounting Method

- Charge i th operation a fictitious amortized cost ĉ_i, where \$1 pays for 1 unit of work (i.e., time).
 - ☐ Assign different charges (amortized cost) to different operations
 - Some are charged more than actual cost
 - Some are charged less
- This fee is consumed to perform the operation.
- Any amount not immediately consumed and it is stored in the bank for use by subsequent operations.
- The bank balance (the credit) must not go negative!

We must ensure that $\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} \hat{c}_{i}$ for all n.

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Thus, the total amortized costs provide an upper bound on the total true costs.

..... Accounting Method: Stack Example

3 ops:			
	Push(S,x)	Pop(S)	Multi-pop(S,k)
Assigned cost:	2	0	0
•Actual cost:	1	1	min(S ,k)

Push(S,x) pays for possible later pop of x.

..... Accounting Method: Stack Example

- When pushing an object, pay \$2
 - ■\$1 pays for the push
 - ■\$1 is prepayment for it being popped by either pop or Multipop
 - ☐ Since each object has \$1, which is credit, the credit can never go negative
 - ☐ Therefore, total amortized cost = O(n), is an upper bound on total actual cost

..... Accounting Method: Binary Counter

Introduction

■ k-bit Binary Counter: A[0..k–1]

$$x = \sum_{i=0}^{k-1} A[i] \cdot 2^{i}$$

```
INCREMENT(A)

1. i \leftarrow 0

2. while i < length[A] and A[i] = 1

3. do A[i] \leftarrow 0 \triangleright reset\ a\ bit

4. i \leftarrow i + 1

5. if i < length[A]

6. then A[i] \leftarrow 1 \triangleright set\ a\ bit
```


..... Accounting Method: Binary Counter

Consider a sequence of n increments. The worst-case time to execute one increment is $\Theta(k)$. Therefore, the worst-case time for n increments is $n \cdot \Theta(k) = \Theta(n \cdot k)$.

WRONG! In fact, the worst-case cost for n increments is only $\Theta(n) \ll \Theta(n \cdot k)$.

Let's see why.

Note: You'd be correct if you'd said $O(n \cdot k)$. But, it's an overestimate.

..... Accounting Method: Binary Counter

Total cost of *n* operations

A[0] flipped every op *n*

A[1] flipped every 2 ops *n*/2

A[2] flipped every 4 ops $n/2^2$

A[3] flipped every 8 ops $n/2^3$

...

A[i] flipped every 2^i ops $n/2^i$

Ctr	A[4]	A[3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	3
3	0	0	0	1	1	4
4	0	0	1	0	0	7
5	0	0	1	0	1	8
6	0	0	1	1	0	<i>10</i>
7	0	0	1	1	1	11
8	0	1	0	0	0	<i>15</i>
9	0	1	0	0	1	<i>16</i>
10	0	1	0	1	0	<i>18</i>
11	0	1	0	1	1	<i>19</i>

..... Accounting Method: Binary Counter

Cost of n increments

$$= \sum_{i=1}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor$$

$$< n \sum_{i=1}^{\infty} \frac{1}{2^i} = 2n$$

$$= \Theta(n)$$

Thus, the average cost of each increment operation is $\Theta(n)/n = \Theta(1)$.

..... Accounting Method: Binary Counter

Charge an amortized cost of \$2 every time a bit is set from 0 to 1

- \$1 pays for the actual bit setting.
- \$1 is stored for later re-setting (from 1 to 0).

At any point, every 1 bit in the counter has \$1 on it... that pays for resetting it. (reset is "free")

Example:

$$0 \quad 0 \quad 0 \quad 1^{\$1} \quad 0 \quad 1^{\$1} \quad 0$$

$$Cost = $2$$

$$Cost = $2$$

..... Accounting Method: Binary Counter

```
    INCREMENT(A)
    1. i ← 0
    2. while i < length[A] and A[i] = 1</li>
    3. do A[i] ← 0  reset a bit
    4. i ← i + 1
    5. if i < length[A]</li>
    6. then A[i] ← 1  reset a bit
```

- When Incrementing,
 - ■Amortized cost for line 3 = \$0
 - ☐ Amortized cost for line 6 = \$2
- Amortized cost for INCREMENT(A) = \$2
- Amortized cost for n INCREMENT(A) = \$2n =O(n)

3. Potential Method

IDEA: View the bank account as the potential energy (as in physics) of the dynamic set.

FRAMEWORK:

- \blacksquare Start with an initial data structure D_0 .
- \blacksquare Operation *i* transforms D_{i-1} to D_{i-1}
- \blacksquare The cost of operation i is c_i .
- Define a *potential function* $\Phi: \{D_i\} \to \mathbb{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ for all *i*.
- The *amortized cost* $\hat{c_i}$ with respect to Φ is defined to be $\hat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$.

..... Potential Method

- Like the accounting method, but think of the credit as *potential* stored with the *entire data* structure.
 - □ Accounting method stores credit with specific objects while potential method stores potential in the data structure as a whole.
 - Can release potential to pay for future operations
- Most flexible of the amortized analysis methods.

..... Potential Method

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

potential difference $\Delta\Phi_i$

- □ If $\Delta\Phi_i > 0$, then $\hat{c_i} > c_i$. Operation i stores work in the data structure for later use.
- □ If $\Delta\Phi_i$ < 0, then $\hat{c_i}$ < c_i . The data structure delivers up stored work to help pay for operation i.

..... Potential Method

The total amortized cost of *n* operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right)$$

Summing both sides telescopically.

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

$$\geq \sum_{i=1}^{n} c_i$$
 since $\Phi(D_n) \geq 0$ and $\Phi(D_0) = 0$.

..... Potential Method: Stack Example

<u>Define:</u> $\phi(D_i) = \text{#items in stack}$ Thus, $\phi(D_0) = 0$.

Plug in for operations:

Push:
$$\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1})$$

= 1 + j - (j-1)

Pop:
$$\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1})$$

$$= 1 + (j-1) - j$$

$$= 0$$

Multi-pop:
$$\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1})$$

$$= k' + (j-k') - j$$
 $k'=min(|S|,k)$

$$= 0$$