9. FUNKCJA LOGARYTMICZNA

CZĘŚĆ TEORETYCZNA

DEFINICJA LOGARYTMU

⇒ Niech $a, b \in \mathbb{R}_+$ i $a \neq 1$. $\log_a b = c$ wtedy i tylko wtedy, gdy $a^c = b$.

OZNACZENIA

$$\Rightarrow \log_{10} x = \log x$$

$$\Rightarrow \log_{10} x = \log x \qquad \Rightarrow (\log_a x)^n = \log_a^n x$$

TWIERDZENIA O LOGARYTMACH

Jeśli $a \in \mathbb{R}_+ \setminus \{1\}$, $x, y \in \mathbb{R}_+$, $n \in \mathbb{R}$, to

$$\Rightarrow \log_n x + \log_n y = \log_n x$$

$$\Rightarrow \log_a x + \log_a y = \log_a xy$$
 $\Rightarrow \log_a x - \log_a y = \log_a \frac{x}{y}$

$$\Rightarrow n \log_a x = \log_a x^n$$

$$\Rightarrow a^{\log_a x} = x$$

TWIERDZENIA O ZAMIANIE PODSTAWY LOGARYTMU

Jeśli $a, b \in \mathbb{R}_+ \setminus \{1\}, x \in \mathbb{R}_+$, to

$$\Rightarrow \log_a x = \frac{\log_b x}{\log_b a}$$

WŁASNOŚCI FUNKCJI LOGARYTMICZNEJ $f(x) = \log_a x, \ a \in \mathbb{R}_+ \setminus \{1\}$

Dziedzina: R+

Zbiór wartości: R

→ Monotoniczność: jeśli a∈(1;+∞), to funkcja jest rosnąca; jeśli a∈(0;1), to funkcja jest malejąca.

ZADANIA WPROWADZAJĄCE

Zdający zna	definicję logarytmu
Zdający potrafi	stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym
	stosować wzór na logarytm potęgi o wykładniku rzeczywistym i wzór na zamianę podstawy logarytmu

9.1 R Oblicz

b)
$$\log_6 \sqrt{6}$$
; c) $\log_3 1$;

d)
$$\log_5 0.2$$
;

e)
$$\log 2 + \log 5$$

e)
$$\log 2 + \log 50$$
; f) $\log_3 18 - \log_3 2$; g) $2^{\log_2 5}$;

h)
$$27^{\log_3 2}$$
;

i)
$$\frac{\log_6 125}{\log_6 5}$$

a)
$$\frac{\log_4 5}{\log_2 5}$$
;

b)
$$\log_2(\log_3\sqrt{5}) - \log_2(\log_3 5)$$
;

c)
$$(\sqrt{8})^{\frac{2}{3} + \log_4 81}$$

9.3 W Znajdź liczbę p, jeśli

a)
$$\log_2 p = 3$$
;

b)
$$\log_{6} p = 0$$
;

b)
$$\log_{6}p = 0;$$
 c) $\log_{0.5}p = -2;$

d)
$$\log_5 p = 1.5$$
;

e)
$$\mathbb{R} \log_3(\log_2 p) = 2$$
; f) $\mathbb{R} \log_p(5p-4) = 2$.

$$| R \log_{p} (5p-4) = 2.$$

FUN

Zda

9.4

9.6

9.9

9.10

ZA

Zdający potrafi

- posługiwać się własnościami funkcji logarytmicznych
- szkicować wykresy funkcji logarytmicznych

9.4 Określ dziedzine funkcji

- a) $f(x) = \log_2 x$;

- b) $\Re f(x) = \log_x(3-x)$; c) $f(x) = \log(x^2 + 4x + 3)$; d) $\Re f(x) = \log(x^2 + 3x + 4)$.

9.5 R Znajdź te wartości parametru m, dla których dziedziną funkcji $f(x) = \log(x^2 + 4x + m)$ jest zbiór liczb rzeczywistych.

9.6 R Wyznacz te wartości parametru m, dla których funkcja $g(x) = \log_{4m+9} x$ jest malejąca.

9.7 Określ znak liczby

- a) R $\log_a b$, jeżeli a > 1 i b > 1; b) $\log_a b$, jeżeli $a \in (0, 1)$ i $b \in (0, 1)$; c) R $\log_a b$, jeżeli $a \in (0, 1)$ i b > 1.

9.8 R Wyznacz wszystkie liczby p spełniające nierówność

- a) $\log_2 p < 3$;
- b) $\log_{0.5} p > 3$.

9.9 W Rozstrzygnij, czy funkcje f i g są równe.

- a) $f(x) = \log_3(x-2) + \log_3(x-3)$ i $g(x) = \log_3[(x-2)(x-3)]$;
- b) $f(x) = \log(x-2) \log(x-3)$ i $g(x) = \log\frac{x-2}{x-3}$; c) $f(x) = \log(x-2) \log(3-x)$ i $g(x) = \log\frac{x-2}{3-x}$;
- d) $f(x) = \log x^2$ i $g(x) = 2\log x$;

e) $f(x) = \log x^2$ i $g(x) = 2\log |x|$.

9.10 R Przekształcając wykres funkcji $f(x) = \log_2 x$, naszkicuj wykres funkcji

- a) $g(x) = \log_2(-x)$;
 - b) $h(x) = \log_2(2-x)$;
- c) $k(x) = \log_2 \frac{1}{x}$; d) $l(x) = \log_2 |x|$.

ZADANIA MATURALNE

LOGARYTM

454. R Która z liczb $\log_7 7\sqrt{7}$, $\log_{32} 8$, $\log_3 \sqrt[3]{9}$ jest najmniejsza, a która najwieksza?

455. R O ile procent liczba log 8 jest mniejsza od liczby log²4+log 25 · log 4?

O ile procent liczba $2^{2\sqrt{3} + \log_2 7}$ jest większa od liczby $4^{\sqrt{3} + 1}$? 456.

457. R Rozstrzygnij, które z liczb $a = \log_4 \sqrt{5} \cdot \log_{25} 8$, $b = \log_2 2 \cdot \log_2 50 + \log^2 5$, $c = (\log_3 36)^2 - \log_3 16 \cdot \log_3 18$ są liczbami całkowitymi.

- **458.** Uzasadnij, że liczby $a = \log_7 2 \cdot \log 7 + \log 50$, $b = \frac{\log_2 36 \cdot \log_3 36}{\log_2 36 + \log_3 36}$, $c = \frac{\log^3 4 + \log^3 25}{4 \cdot (\log^2 2 \log 2 \cdot \log 5 + \log^2 5)}$ są równe.
- **459.** R Znajdź wszystkie liczby rzeczywiste a spełniające równość $\log_{1-2a}(a+7)=2$.
- **460.** Znajdź wszystkie liczby rzeczywiste p spełniające równość $9^{\log_3(p-3)} = 4$.
- **461.** R Oblicz $\log_2(-ab)$ wiedząc, że $\log_{(-a)} 2 = 2$ i $\log_{16} b = 0.75$.
- **462.** Oblicz $\log_a \sqrt{ab}$ wiedząc, że $\log_a b = 5$, gdzie a, b są liczbami dodatnimi i $a \ne 1$.
- **463.** Oblicz $\log ab$ wiedząc, że $\log 10a = 2010$ i $\log \frac{10}{b} = 1020$.
- **464.** Oblicz $\log_{a^2} \frac{1}{b}$ wiedząc, że $\log_a b = \sqrt{2}$, gdzie a, b są liczbami dodatnimi i $a \ne 1$.
- **465.** Oblicz $\log_{abc} p$ wiedząc, że $\log_a p = 2$, $\log_b p = 3$ i $\log_c p = 6$.
- **466.** R Uzasadnij, że liczby 2^{log₃ 5} i 5^{log₃ 2} są równe.
- **467.** Wykaż, że jeśli $b, c \in \mathbb{R}_+$ i $\log_2 b + \log_2 c + 1 = \log_2 (b^2 + c^2)$, to b = c.
- **468.** Wykaż, że dla każdej liczby naturalnej k większej od 2 zachodzi równość $\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \ldots \cdot \log_{k+1} k = \log_{k+1} 2$.
- **469.** R Udowodnij, że jeżeli $c \in \mathbb{R}_+ \setminus \{1\}$, $a, b \in \mathbb{R}_+$ i $a^2 + b^2 = 7ab$, to $\log_c \frac{a+b}{3} = \frac{1}{2} (\log_c a + \log_c b)$.
- 470. Wykaż, że dla dowolnych dodatnich liczb a i b równanie $\log a \cdot x^2 + \log b = \log (ab)^x$ ma co najmniej jedno rozwiązanie. Kiedy równanie ma dokładnie jedno rozwiązanie?
- 471.* R Niech $x = 10^{\frac{1}{1 \log z}}$ i $y = 10^{\frac{1}{1 \log x}}$. Wykaż, że $z = 10^{\frac{1}{1 \log y}}$

472.

FUNK

473.

474.

475.

476.

477.

478.

479.

480.

FUNKCJA LOGARYTMICZNA

- 472. R Obok pokazano fragment wykresu funkcji logarytmicznej f.
 - a) Oblicz wartość funkcji f dla argumentu 9√3.
 - b) Dla jakiego argumentu funkcja f przyjmuje wartość $-\frac{2}{3}$? Zapisz znaleziony argument w postaci $\sqrt[n]{c}$, gdzie c jest liczbą całkowitą.

- 473. Punkt A=(2,-1) należy do wykresu funkcji $f(x)=\log_2(x+k)+m$. Dziedziną funkcji f jest przedział $(-2;+\infty)$.
 - a) Wyznacz kim.
 - b) Znajdź zbiór tych argumentów, dla których funkcja ta przyjmuje wartości dodatnie.
- 474. R Dane są funkcje funkcji $f(x) = 5^{\log_5(4-x^2)}$ i $g(x) = 3^{1+\log_3 x}$.
 - a) Naszkicuj wykres funkcji f.
 - b) Znajdź współrzędne punktów wspólnych wykresów funkcji f i g.
- 475. R Naszkicuj wykres i podaj zbiór wartości funkcji $f(x) = \log_{0.5}(x^2 5x + 6) \log_{0.5}(x 3)$.
- 476. Punkt A = (0,125, -3) należy do wykresu funkcji logarytmicznej f. Naszkicuj wykres funkcji $g(x) = \left(\frac{1}{2}\right)^{|f(x)|}$.
- 477. R Przekształcając wykres funkcji $f(x) = \log_2 x$, naszkicuj wykres funkcji $g(x) = \log_{0.5} \frac{4}{x-1}$.
- 478. W Przekształcając wykres funkcji $f(x) = \log_2 x$, naszkicuj wykres funkcji $g(x) = 0.5\log_2 x^2$ i wykres funkcji $h(x) = \log_2 (x^2 x) \log_2 (1 x)$.
- 479. Naszkicuj wykres funkcji $f(x) = \log_2 \frac{1}{x^2} \cdot \log_{x^2}(x+2)$ i podaj jej zbiór wartości.
- 480. Funkcja g określona jest wzorem $g(x) = \log_2 \frac{x^2 9}{|x| 3}$
 - a) Wyznacz dziedzinę funkcji g.
 - b) W Przekształcając wykres funkcji $f(x) = \log_2 x$, naszkicuj wykres funkcji g.
 - Sporządź wykres funkcji, która każdej liczbie rzeczywistej m przyporządkowuje liczbę rozwiązań równania g(x) = m.
- 481. W Określ zbiór wartości funkcji $f(x) = \frac{\log_5 7}{\log_x 7}$

FUNK

495.*

496. \

497. F

499. W

500. R

501.

502. R

503. R

504.

- 482. Naszkicuj wykres funkcji $f(x) = \frac{|\log_7 x|}{\log_7 \sqrt{x}}$.
- **483.** W Funkcja f określona jest wzorem $f(x) = \left| \log_2 8\sqrt[3]{x} + \log_2 4\sqrt[3]{x} + \log_2 2\sqrt[3]{x} \right|$. Podaj te wartości parametru m, dla których równanie f(x) = m ma dwa rozwiązania mniejsze od 1.
- **484.** R Wyznacz zbiór wartości funkcji $f(x) = \log_2 x \cdot \log_8 x \log_4 x$.
- 485. Wyznacz zbiór wartości funkcji $f(x) = \log_{\frac{1}{2}}(x^2 2x + 10)$.
- 486. Wykaż, że funkcja $f(x) = \log \frac{x-1}{x+1}$ dla przeciwnych argumentów przyjmuje przeciwne wartości.
- **487.** Funkcja f, określona w zbiorze liczb rzeczywistych, dana jest wzorem $f(x) = \log(x + \sqrt{1 + x^2})$. Wykaż, że jeśli a + b = 0, to $(f(a))^2 = (f(b))^2$.

ZADANIA Z PARAMETREM

- **488.** Znajdź takie wartości parametru m, aby reszta z dzielenia trójmianu $x^2 + \log(m-2) \cdot x + \log(m-2)$ przez dwumian x-2 jest była równa 10.
- 489. Dla jakich wartości parametru m równanie $x^2 2x \log_{\frac{1}{3}} m = 0$ ma dwa różne dodatnie pierwiastki?
- **490.** R Liczby x_1 i x_2 są różnymi pierwiastkami równania $mx^2 mx + 2 = 0$. Dla jakich wartości parametru m spełniona jest nierówność $\log_2 x_1 + \log_2 x_2 > -3$?
- 491. Dane jest równanie $x^2+2x+1+\log m=0$. Funkcja $f(m)=x_1x_2$ określona jest w zbiorze tych m, dla których dane równanie ma różne pierwiastki x_1 i x_2 Wyznacz dziedzinę funkcji f i określ jej zbiór wartości.
- **492.** W Wyznacz te wartości parametru p, dla których równanie $|\log_3(x+2)| = 2p-1$ ma dwa rozwiązania różnych znaków.
- 493. Wyznacz te wartości parametru m, dla których dziedziną funkcji $f(x) = \log [(m-2)x^2 + (m-2)x + 1]$ jest zbiór liczb rzeczywistych.
- 494. Wyznacz te wartości parametru k, dla których dziedziną funkcji $f(x) = \sqrt{\log(x^2 + 4x + k)}$ jest zbiór liczb rzeczywistych.

495.* R Wyznacz wszystkie wartości parametru m, dla których dziedzina funkcji $f(x) = \log_2[(m+2)x^2 + (m+5)x - 1]$ nie jest zbiorem pustym i zawiera się w zbiorze liczb rzeczywistych dodatnich.

ZADANIA RÓŻNE

- **496.** W Uzasadnimy, że $\frac{4}{3} < \log_3 5 < \frac{5}{3}$.
 - $3\log_3 5 = \log_3 5^3 > \log_3 81 = 4$. Zatem $\log_3 5 > \frac{4}{3}$.
 - $3\log_3 5 = \log_3 5^3 < \log_3 243 = 5$. Zatem $\log_3 5 < \frac{5}{3}$.

Wykorzystując powyższe uzasadnienie

- a) wykaż, że $\log_2 3 \in (1\frac{1}{2}; 1\frac{3}{4});$
- b) rozstrzygnij, która liczba jest większa, log 2 3 czy log 3 5.
- **497.** R Wykaż, że $\frac{1}{\log_3 2} + \frac{1}{\log_5 2} < 4$.
- 498. R Uzasadnij, że
 - a) $\log_7 6 \cdot \log_7 36 \cdot \log_7 216 < 6$;
 - b) $\log_3 2 \cdot \log_3 10 \cdot \log_3 100 > 4$.
- 499. W Wykaż, że jeżeli $a, b \in (0, 1)$, to $\log_a b + \log_b a \ge 2$.
- 500. R Podaj najmniejszą liczbę całkowitą spełniającą nierówność xlog 5 0,5 < log 5 15.
- 501. Rozwiąż równanie $x(x-3) + \log_x x^2 = 0$.
- 502. R Uzasadnij, że równanie $x^2 + \log_4 3 = \log_4 9^x$ nie ma rozwiązań.
- **503.** R Zbiór *A* jest zbiorem rozwiązań nierówności $x^4 2x^3 x^2 + 8x 16 < 0$. Sprawdź, czy liczby $a = \log_{12} 3 \cdot \log_3 36 + \log_{12} 4$, $b = \log_3 7 \cdot \log_{49} \frac{1}{9}$ należą do zbioru *A*.
- Zbiór A jest zbiorem rozwiązań nierówności $x^4 2x^3 + 8x 16 < 0$. Sprawdź, czy liczby $a = (\log_2 6)^2 \log_2 6 \cdot \log_2 3$, $b = \log_2 5^2 \log^2 5$ należą do zbioru A.
- 505. Zaznacz na płaszczyźnie z układem współrzędnych zbiór $A = \{(x, y): \log_x y = 2\}$.

- 506. Zaznacz na płaszczyźnie z układem współrzędnych zbiór punktów, których współrzędne spełniają równanie log xy x² = 1.
- 507. W Zaznacz na płaszczyźnie z układem współrzędnych zbiór punktów (x, y), których współrzędne spełniają równość $\log_x y = \log_y x$.
- 508.* R Zaznacz na płaszczyźnie z układem współrzędnych zbiór punktów (x, y), których współrzędne spełniają równanie $\log_2 x \cdot \log_2 y = \log_2 \frac{x^2 y^2}{16}$.

CZĘŚ

DEFINI

- ⇒ sin
- e cos
- ⇒ tgα

DEFINI

- ⇒ sine
- ⇒ cos
- sp tga

WYKRE