

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής - NETMODE

Ηρώων Πολυτεχνείου 9, Ζωγράφου, 157 80, Τηλ: 772.1448, Fax: 772.1452 e-mail: maglaris@netmode.ntua.gr, URL: http://www.netmode.ntua.gr

7 Μαΐου 2018

Συστήματα Αναμονής (Queuing Systems)

5η Ομάδα Ασκήσεων

Δίκτυο δύο εκθετικών ουρών εν σειρά

Θεωρούμε δύο ουρές με ανεξάρτητους εκθετικούς εξυπηρετητές Q_1 και Q_2 , οι οποίες βρίσκονται συνδεδεμένες εν σειρά, όπως φαίνεται στο ακόλουθο σχήμα. Κάθε ουρά δέχεται αφίξεις από το εξωτερικό του συστήματος που ακολουθούν την κατανομή Poisson με μέσο ρυθμό αφίξεων λ_1 και λ_2 για τις ουρές Q_1 και Q_2 αντίστοιχα. Οι εξυπηρετήσεις των πελατών στις δύο ουρές ακολουθούν την εκθετική κατανομή με μέσο χρόνο εξυπηρέτησης πελάτη $1/\mu_1$ και $1/\mu_2$ για τις ουρές Q_1 και Q_2 αντίστοιχα. Η κατάσταση του συστήματος ορίζεται ως το διάνυσμα $\mathbf{n} = (n_1, n_2)$, όπου n_1 και n_2 είναι ο συνολικός αριθμός πελατών στις ουρές Q_1 και Q_2 αντίστοιχα.

- (1) Ποιες είναι οι παραδοχές που απαιτούνται ώστε να έχουν οι εργοδικές πιθανότητες του συστήματος τη μορφή γινομένου;
- (2) Ποια είναι η ένταση του φορτίου ρ, και ρ, που δέχεται η κάθε ουρά;
- (3) Να σχεδιάσετε το διάγραμμα ρυθμών μεταβάσεων του συστήματος για τις καταστάσεις (i,j), όπου $0 \le i,j \le 3$.
- (4) Να αποδείξετε ότι επαληθεύεται η υπόθεση γινομένου για την κατάσταση (n_1, n_2) , όπου $n_1 > 0$, $n_2 > 0$ καθώς και τις καταστάσεις $(n_1, 0)$, $(0, n_2)$ του συστήματος.
- (5) Να διατυπώσετε το συνολικό μέσο χρόνο καθυστέρησης Ε(T) ενός τυχαίου πελάτη στο σύστημα ως συνάρτηση των παραμέτρων $\lambda_1, \lambda_2, \mu_1, \mu_2$.

Δίκτυο με εναλλακτική δρομολόγηση

Θεωρείστε ένα απλό δίκτυο με δύο κόμβους που συνδέονται μεταξύ τους με δύο παράλληλους συνδέσμους (γραμμές), όπως φαίνεται στο ακόλουθο σχήμα. Ροή πακέτων με ρυθμό $\lambda = 10 * 10^2$ πακέτα/sec (10 Kpps) πρόκειται να δρομολογηθεί από τον κόμβο 1 στον κόμβο 2 (προς μία κατεύθυνση μόνο). Το μέσο μήκος πακέτου είναι 128 bytes. Οι χωρητικότητες των δύο παράλληλων συνδέσμων (γραμμών) είναι $C_1 = 15$ Mbps και $C_2 = 12$ Mbps, αντίστοιχα. Υποθέστε ότι το ποσοστό α των πακέτων δρομολογείται από τη γραμμή 1, και ποσοστό $(1-\alpha)$ δρομολογείται από τη γραμμή 2.

- (1) Να αναφέρετε τις απαραίτητες παραδοχές ώστε οι σύνδεσμοι (γραμμές) να μπορούν να μοντελοποιηθούν σαν Μ/Μ/1 ουρές.
- (2) Με τις ανωτέρω παραδοχές και χρησιμοποιώντας το Octave για τιμές του $\alpha=0.001:0.001:0.999$ να κάνετε το διάγραμμα του μέσου χρόνου καθυστέρησης E(T) ενός τυχαίου πακέτου στο σύστημα συναρτήσει του α . Στη συνέχεια, υπολογίστε με το Octave την τιμή του α που ελαχιστοποιεί το E(T), καθώς και τον ελάχιστο χρόνο καθυστέρησης E(T).

Ανοιχτό δίκτυο ουρών αναμονής

Το παρακάτω σχήμα παριστά ένα ανοιχτό δίκτυο ουρών αναμονής. Όλες οι αφίξεις ακολουθούν την κατανομή Poisson με παραμέτρους λ_i , i=1,2 και οι εξυπηρετήσεις είναι εκθετικά κατανεμημένες με ρυθμούς μ_i , i=1,2,3,4,5.

- (1) Ποιες είναι οι απαραίτητες παραδοχές ώστε το παραπάνω δίκτυο να μπορεί να μελετηθεί ως ένα ανοιχτό δίκτυο με το θεώρημα Jackson;
- (2) Να προσδιορίσετε την ένταση του φορτίου ρ_i , i=1,2,3,4,5 που δέχεται η κάθε ουρά του δικτύου συναρτήσει των παραμέτρων λ_i , i=1,2 και μ_i , i=1,2,3,4,5. Στη συνέχεια, να υλοποιήσετε σε Octave τη συνάρτηση **intensities**, η οποία θα υπολογίζει τις τιμές ρ_i , i=1,2,3,4,5. Η συνάρτησή σας θα δέχεται ως όρισμα τις παραμέτρους λ_i , i=1,2 και μ_i , i=1,2,3,4,5 και θα επιστρέφει (α) τις τιμές ρ_i , i=1,2,3,4,5 και (β) την ακέραια τιμή 1, εάν το σύστημά σας είναι εργοδικό ή 0, εάν παραβιάζεται η συνθήκη της εργοδικότητας σε κάποια ουρά. Παράλληλα, η συνάρτησή σας θα πρέπει να εμφανίζει τις τιμές ρ_i , i=1,2,3,4,5.
- (3) Με τη βοήθεια της συνάρτησης του προηγούμενου ερωτήματος, να γράψετε σε Octave τη συνάρτηση **mean_clients**, η οποία θα δέχεται ως ορίσματα τις παραμέτρους τις τιμές λ_i , i=1,2 και μ_i , i=1,2,3,4,5 και θα επιστρέφει ένα διάνυσμα με τους μέσους αριθμούς πελατών των Q_i , i=1,2,3,4,5.
- (4) Για τις τιμές των παραμέτρων (σε πελάτες/sec) $\lambda_1 = 4, \lambda_2 = 1, \mu_1 = 6, \mu_2 = 5, \mu_3 = 8, \mu_4 = 7, \mu_5 = 6$ να υπολογίσετε χρησιμοποιώντας τις προηγούμενες συναρτήσεις (α) την ένταση του φορτίου που δέχεται η κάθε ουρά και (β) το μέσο χρόνο καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου.
- (5) Να προσδιορίσετε ποια ουρά είναι η στενωπός (bottleneck) του δικτύου. Με βάση αυτήν την ουρά, να υπολογίσετε την μέγιστη τιμή της παραμέτρου λ_1 ώστε το σύστημα να παραμένει εργοδικό.
- (6) Για τις τιμές των παραμέτρων του ερωτήματος (4) και για λ_1 από 0.1 έως 0.99 της μεγίστης τιμής, να κάνετε το διάγραμμα του μέσου χρόνου καθυστέρησης ενός πελάτη από άκρο σε άκρο του δικτύου.