Classe \mathbb{C}^n

f est C^n sur [a,b] si f est n fois dérivables sur [a,b] et f^n est continue sur [a,b]. C^∞ si $\forall n \in \mathbb{N}, f^n$ existe.

Chapitre

Intégrales

4. Techniques de base

4.1. Intégration par parties

Soient u,v 2 fonctions C^1 (continues de dérivée continues) sur [a,b]. Alors

π

Théorème 1.1 : Formule

$$\int_{a}^{b} u(x)v'(x) \, dx = \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

4.1. Changement de variable dans une intégrale

 $\hat{\pi}$

Théorème 1.2 :

Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable

Soit $\varphi[\alpha,\beta] \to [a,b]$ une application bijective et C^1 . On note φ^{-1} l'application réciproque

Alors
$$\int_a^b f(t) dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(u)) \varphi'(u) du$$
.

4.1. Méthode

Vérifications à faire

Avant d'intégrer, il faut toujours vérifier que la fonction est intégrable, c'est à dire qu'elle est monotone ou continue sur [a, b].

Première méthode

Il faut que la fonction \boldsymbol{u} choisie soit bijective pour appliquer cette méthode!

- 1. On pose $t = \varphi(u)$
- 2. $dt = \varphi'(u)du$
- 3. Valeurs aux bornes $t=a\Rightarrow u=\varphi^{-1}(a)$ et $t=b\Rightarrow u=\varphi^{-1}(b)$

Variante

Variante dans le calcul de primitive. On n'exige pas le fait que cela soit bijectif

Soit f une fonction continue sur [a, b]

$$\int f(t)dt = \int f \circ \varphi(u)\varphi'(u)du$$

On pose $t = \varphi(u)$ et $dt = \varphi'(u)du$

Si $F = \int f$ et f continue sur [a, b], $(F \circ \varphi)' = F' \circ \varphi \times \varphi' = f \circ \varphi \times \varphi'$

4.1.4n pratique

Exemple 1

Calculons:

$$\int_0^1 \sqrt{e^x - 1}$$

On va effectuer un changement de variable pour tenter d'enlever la racine.

On pose donc $u=\sqrt{e^x-1}$. Calculons maintenant $\mathrm{d}u$ pour en déduire $\mathrm{d}x:\mathrm{d}u=\frac{e^x}{2\sqrt{e^x-1}}\mathrm{d}x=\frac{e^x-1+1}{2u}\mathrm{d}x=\frac{u^2+1}{2u}\mathrm{d}x$. Finalement, on obtient $\mathrm{d}x=\frac{2u}{u^2+1}\mathrm{d}u$

Astuce

Le but est de simplifier l'expression au maximum et l'exprimer le plus possible en fonction de $\it u.$

î

Remarque

Comme la fonction u est bijective, on aurait aussi pu calculer sa réciproque pour obtenir une nouvelle expression de $x:u=\sqrt{e^x-1}\iff u^2=e^x-1\iff u^2+1=e^x\iff x=\ln(u^2+1).$ On peut ensuite exprimer directement $\mathrm{d}x=\frac{2u}{u^2+1}\mathrm{d}u$

On applique maintenant la fonction u^{\times} aux bornes de l'intégrale : On obtient $x=0 \Rightarrow u(0)=0, x=\ln(2) \Rightarrow u(\ln(2))=1.$

X Difficulté et non sa réciproque!

On peut maintenant reécrire l'intégrale :

$$\begin{split} I &= \int_0^1 u \times \frac{2u}{u^2 + 1} \mathrm{d}u \\ &= \int_0^1 \frac{2u^2}{u^2 + 1} \mathrm{d}u \\ &= 2 \int_0^1 \frac{u^2 - 1 + 1}{u^2 + 1} \mathrm{d}u \\ &= 2 \int_0^1 1 - \frac{1}{u^2 + 1} \mathrm{d}u \\ &= 2 [u - \tan^{-1}(u)]_0^1 \\ &= 2 - \frac{2\pi}{4} \end{split}$$

Exemple 2

Calculons:

$$\int \sin^5(x) \cos^3(x) \mathrm{d}x$$

On pose $u=\sin(x)$. Calculons maintenant $\mathrm{d}u$ pour en déduire $\mathrm{d}x$: $\mathrm{d}u=\cos(x)\mathrm{d}x\iff \mathrm{d}x=\frac{\mathrm{d}u}{\cos(x)}.$

Remarque

Comme la fonction u n'est pas bijective, on ne peut pas écrire de manière équivalente que $x=\arcsin(u)$

On peut maintenant reécrire l'intégrale :

$$F(x) = \int \sin^5(x) \cos^3(x) dx$$

$$= \int u^5 \cos(x)^3 \frac{du}{\cos(x)}$$

$$= \int u^5 \cos(x)^2 du$$

$$= \int u^5 (1 - \sin(x)^2) du$$

$$= \int u^5 (1 - u^2) du$$

$$= \int u^5 - u^7 du$$

$$= \left[\frac{u^6}{6} - \frac{u^8}{8} \right] = \left[\frac{\sin(x)^6}{6} - \frac{\sin(x)^8}{8} \right]$$

4.1. Formulaire

Fonction	Primitive	Fonction	Primitive
x^n	$\frac{1}{n+1}x^{n+1} + k \text{ si } n \neq -1$	$u'\cos u$	$\sin u + k$
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}} + k$	$u'\sin u$	$-\cos u + k$
$\frac{a}{x}$	$a \ln x + k$	$\frac{u'}{u}$	$\ln u + k$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$	$u'\sqrt{u}$	$\frac{2}{3}(u)^{3/2} + k$
$\cos x$	$\sin x + k$	$u'e^u$	e^u
$\sin x$	$-\cos x + k$	$u' \cosh u$	$\sinh u$
e^x	$e^x + k$	$u' \sinh u$	$\cosh u$
$u'u^n$	$\frac{1}{n+1}u^{n+1} + k$	$\frac{-1}{\sqrt{1-x^2}}$	\cos^{-1}
$\frac{u'}{u^n}$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}} + k$	$\frac{1}{\sqrt{1-x^2}}$	\sin^{-1}
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u} + k$	$\frac{1}{a^2+x^2}$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)$

4. Techniques avancées

4.2.Linéarisation

Théorème 2.1 : Formules d'Euler

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

On souhaite intégrer $\cos(x) \times \sin(2x) \times \cos(3x)$. Pour cela, on applique les formules d'Euler $^{\mathbb{Q}}$ pour obtenir une somme de cosinus et de sinus que l'on peut intégrer sans problèmes :

$$\begin{split} f &= \cos(x) \times \sin(2x) \times \cos(3x) \\ &= \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \times \frac{1}{2i} \left(e^{2ix} - e^{-2ix} \right) \times \frac{1}{2} \left(e^{3ix} + e^{-3ix} \right) \\ &= \frac{1}{8i} \left(e^{3ix} - e^{-ix} + e^{ix} - e^{-3ix} \right) \left(e^{3ix} + e^{-3ix} \right) \\ &= \frac{1}{8i} \left(e^{6ix} + e^0 - e^{2ix} - e^{-4ix} + e^{4ix} + e^{-2ix} - e^0 - e^{-6ix} \right) \\ &= \frac{1}{8i} \left(e^{6ix} - e^{-6ix} + e^{4ix} - e^{-4ix} - e^{2ix} + e^{-2ix} \right) \\ &= \frac{1}{8i} \left[2i \sin(6x) + 2i \sin(4x) - 2i \sin(2x) \right] \\ &= \frac{1}{4} \left[\sin(6x) + \sin(4x) - \sin(2x) \right] \\ F(x) &= \frac{1}{4} \left[-\frac{1}{6} \cos(6x) - \frac{1}{4} \cos(4x) + \frac{1}{2} \cos(2x) \right] \\ &= \frac{1}{18} \left[-2 \cos(6x) - 3 \cos(4x) + 6 \cos(2x) \right] \end{split}$$

Astuce

Dans le cas où les cosinus et sinus ont des puissances, on utilise le triangle de Pascal pour déterminer les coefficients du développement!

4.2. Décomposition en éléments simples

On cherche à obtenir une primitive de

$$f(x) = \frac{1}{x^2 - x - 2}$$

En factorisant le dénominateur, on reconnait une fraction rationnelle, il ne nous reste plus qu'à déterminer a et b :

$$f(x) = \frac{1}{(x+1)(x-2)} = \frac{a}{x+1} + \frac{b}{x-2}$$

Calculons a en multipliant par x+1 deux 2 membres de l'égalité :

$$\frac{1}{x-2} = a + (x-1)\frac{b}{x-2}$$

Il nous suffit pour éliminer le membre avec b de donner à x une valeur qui annule x+1, c'est à dire -1. On obtient alors :

$$\frac{1}{(-1)-2} = \frac{1}{-3} = a$$

On procède de la même manière pour déterminer b. En multipliant par x-2 de 2 côtés et en donnant la valeur 2 à x, on trouve

$$\frac{1}{2+1} = \frac{1}{3} = b$$

Finalement, notre décomposition est :

$$f(x) = \frac{-1}{3(x+1)} + \frac{1}{3(x-2)}$$

Son intégrale vaut alors

$$\int f dx = -\frac{1}{3} \int \frac{1}{x+1} dx + \frac{1}{3} \int \frac{1}{x-2} dx = \frac{1}{3} \ln(|\frac{x-2}{x+1}|)$$

4.2. Forme canonique

Théorème 2.2 : Forme canonique

La forme canonique d'une équation du second degré de la forme

$$a(x+\frac{b}{2a})^2 - \frac{b^2-4ac}{4a}$$

Cette forme permet d'utiliser la formule de arctan pour calculer des intégrales avec un polynôme du second degré en dénominateur.

On cherche l'intégrale de $f(x) = \frac{2x}{x^2+x+1}$. On aimerait décomposer cette fraction en éléments simples mais le polynôme du dénominateur n'admet pas de racines réelles.

On va donc ré-écrire le numérateur pour faire apparaître la dérivée du dénominateur:

$$f(x) = \frac{2x+1-1}{x^2+x+1} = \frac{2x+1}{x^2+x+1} - \frac{1}{x^2+x+1}$$

La première fraction étant de la forme u'/u, sa primitive est triviale. Pour la seconde, on va mettre le dénominateur sous forme canonique pour utiliser la dérivée d'arctan :

$$f(x) = \frac{2x+1-1}{x^2+x+1} = \frac{2x+1}{x^2+x+1} - \frac{1}{\left(x+\frac{1}{2}^2\right)+\frac{3}{4}}$$

On applique la dernière formule de 4.1.5 avec $a=\frac{\sqrt{3}}{2}$ pour obtenir la primitive de la fonction :

$$F = \ln(x^2 + x + 1) - \frac{2}{\sqrt{3}}\arctan(\frac{2}{\sqrt{3}(x + 1\frac{1}{2})})$$

4.2.4ntégration par parties Tabulaire

En plus d'être plus rapide que la méthode classique quand elle est maîtrisée, cette façon de faire est aussi plus fiable et simples à mémoriser. Voir la fiche dédiée.