scheme や scheme morphism の性質の定義は section3_text.pdf にまとめたので参照すること. 同じ PDF で B-fin.gen. scheme などの独自の用語を定義している. http://stacks.math.columbia.edu/tag/01T0 も参照すると良い.

記法について. Spec $A_f = D_A(f)$ と書く.

Ex3.1 Definition(s) of Locally of Finite Type Morphism.

補題 **Ex3.1.1** (Nike's Lemma). X :: scheme, $U, V \subseteq X, U = \operatorname{Spec} A, V = \operatorname{Spec} B$ かつ $U \cap V \neq \emptyset$ とする. この時, 任意の点 $P \in U \cap V$ に対し, $a \in A, b \in B$ であって

$$P \in D_A(a) = D_B(b) \subset U \cap V$$

となるものがある. 系として Prop2.2 より $A_a \cong B_b$ が得られる.

(証明). 適当に $a \in A, b \in B$ をとり,

$$P \in D_B(b) \subseteq D_A(a) \subseteq U \cap V$$

としよう. $X = \operatorname{Spec} B, X_f = D_B(b), \bar{b} = b|_{D_A(a)} \in A_a$ として Ex2.16a を用いると,

$$D_B(b) = D_A(a) \cap D_B(b) = \operatorname{Spec}(A_a)_{\bar{b}}.$$

なので、あとは $(A_a)_{\bar{b}}$ を調べれば良い.

 $(A_a)_{\bar{b}}$ の元は以下のように書ける.

$$\frac{u/a^m}{\bar{b}^n} = \frac{u}{a^m \bar{b}^n} \quad (m, n \in \mathbb{N}; u \in A).$$

 $\bar{b} \in A_a$ なので $a^N \bar{b} = a' \in A$ となる $N \in \mathbb{N}$ が存在する.

$$\frac{ua^{nN}}{a^ma^{nN}\bar{b}^n} = \frac{ua^{nN}}{a^ma'^n}.$$

仮に $m \ge n$ とすると

$$\frac{ua^{nN}}{a^ma'^n} = \frac{ua^{m-n+nN}}{(aa')^m}$$

 $m\leq n$ でも同様に分子分母に a'^{n-m} をかければ, $(A_a)_{\bar b}$ の元は $A_{aa'}$ の元として書ける.逆に $A_{aa'}$ の元として書くことは直ちに出来る.よって $(A_a)_{\bar b}=A_{aa'}$.

以上より,
$$\alpha = aa' \in A, b \in B$$
 について $D_B(b) = D_A(\alpha)$.

補題 **Ex3.1.2** (Preimage of POS^{†1} is POS.). $f: X \to Y$:: scheme morphism. Spec $B \subseteq Y, f^{-1}\operatorname{Spec} B = \bigcup_{i \in I}\operatorname{Spec} C_i$ とする. この時,以下が成立する.

$$\forall b \in B, \exists \{c_i (\in C_i)\}, f^{-1}D_B(b) = \bigcup_{i \in I} D_{C_i}(c_i).$$

(証明). $U = \operatorname{Spec} B, V_i = \operatorname{Spec} C_i$ とする. すると f の制限により scheme morphism $f|_{V_i}: V_i \to U$ が得られる. これは $V_i \hookrightarrow X \xrightarrow{f} Y$ という写像で,したがって逆写像は $(f|_{V_i})(S) = f^{-1}(S) \cap V_i$ であることに注意. structure sheaf の間の射を考えると,以下が得られる.

$$\phi_i = ((f|_{V_i})^{\#})_U : B = \mathcal{O}_U(U) \to (f|_{V_i})_* \mathcal{O}_{V_i}(U) = C_i.$$

 $^{^{\}dagger 1}$ Principle Open Set

ここで Prop2.2 を用いた. Prop2.3 から, ϕ_i は $f|_{V_i}: V_i \to U$ に 1-1 対応し、特に topological space と して

$$f|_{V_i}(\mathfrak{p}) = \phi_i^{-1}(\mathfrak{p}) \ (\mathfrak{p} \in \operatorname{Spec} C_i)$$

が成り立つ. このことから以下が得られる.

$$f^{-1}(D_B(b)) \cap V_i = (f|_{V_i})^{-1}D_B(b) = D_{C_i}(\phi_i(b)).$$

最左辺と最右辺を $\bigcup_{i \in I}$ すれば主張が示せる.

補題 $\mathbf{Ex3.1.3.}$ $f \in A$ とする. 有限生成 A_f 代数は有限生成 A 代数でもある.

(証明). 変数の数は問題にならないので 1 変数で証明する. (つまり以下で $A_f[x]$ を多変数にしても構わ ない.) 有限生成 A_f 代数 B には $A_f[x]$ からの全射が存在する. $A_f[x]$ には A[x,y] から次のような全射 が存在する.

$$y \mapsto 1/f$$

これが全射であることは.

$$ay^n x^m \mapsto (a/f^n) x^m \in A_f[x]$$

のように分かる. あとはこの写像が A 準同型 (代入写像) であることに注意すれば良い. よって $A[x,y] \to A_f[x] \to B$ という全射が存在する.

以下の命題を示す.

$${}^{\exists}\{B_i\}_{i\in I}, \quad \left[Y = \bigcup_{i\in I} \operatorname{Spec} B_i\right] \wedge \left[{}^{\forall} i \in I, \quad f^{-1}(\operatorname{Spec} B_i) :: \operatorname{locally} B_i\operatorname{-fin.gen. scheme}\right]$$

$$\iff {}^{\forall} \operatorname{Spec} A \subseteq X, \quad f^{-1}(\operatorname{Spec} A) :: \operatorname{locally} A\operatorname{-fin.gen. scheme}$$

下から上は自明である.上から下を示そう.

 $U = \operatorname{Spec} A \subset X, V_i = \operatorname{Spec} B_i$ とする. $U \cap V_i$ の各点 P に対し,

$$P \in D_{B_i}(b_{ij}) = D_A(a_{ij}) \subseteq U \cap V_i$$

であるような $b_{ij} \in B_i, a_{ij} \in A$ が取れる. P を動かせば、このようにして U が被覆できる.

$$U = \bigcup_{i,j} D_{B_i}(b_{ij}) = \bigcup_{i,j} D_A(a_{ij}).$$

仮定より、各 V_i は $\{\operatorname{Spec} C_{ik}\}_{i,k}$ で被覆され、これらの C_{ik} は有限生成 B_i 代数 $^{\dagger 2}$ であるようにとれる. Lemma (Preimage of POS is POS) より、 $c_{ijk} \in C_{ik}$ が存在し、以下のようになる.

$$f^{-1}U = \bigcup_{i,j} f^{-1}D_{B_i}(b_{ij}) = \bigcup_{i,j} \bigcup_k D_{C_{ik}}(c_{ijk}).$$

 $D_{C_{ik}}(c_{ijk}) = \operatorname{Spec}(C_{ik})_{c_{ijk}}$ であり、 $(C_{ik})_{c_{ijk}}$ は有限生成 $(B_i)_{b_{ij}}$ 代数. これは有限生成代数の定義から 存在する全射 $B[x_1,\ldots,x_n] \to C_{ik}$ の両辺を局所化 $^{\dagger 3}$ すれば分かる。 $(B_i)_{b_{ij}} \cong A_{a_{ij}}$ (Nike's Lemma の 最後の文)と最後の Lemma より、 $(C_{ik})_{c_{ijk}}$ は有限生成 A 代数.

以上より, $f^{-1}\operatorname{Spec} A$ は $\operatorname{Spec}(C_{ik})_{c_{ijk}}$ で被覆され,各 $(C_{ik})_{c_{ijk}}$ は有限生成 A 代数である.

 $^{^{\}dagger 2}$ $\phi_{ik} = \left((f|_{\operatorname{Spec}\,C_{ik}})^{\#}\right)_{\operatorname{Spec}\,B_i}$ で代数とみなす。 $^{\dagger 3}$ C_{ik} が ϕ_{ik} による B_i 代数であることと $c_{ijk} = \phi_{ik}(b_{ij})$ を用いて計算する.

Ex3.2 Definition(s) of Quasi-Compact Morphism.

以下を示す.

$${}^{\exists}\{B_i\}_{i\in I}, \quad \left[Y=\bigcup_{i\in I}\operatorname{Spec} B_i\right] \wedge \left[{}^{\forall}i\in I, \quad f^{-1}(\operatorname{Spec} B_i) :: \text{ quasi-compact.}\right]$$

$$\iff {}^{\forall}\operatorname{Spec} A\subseteq Y, \quad f^{-1}(\operatorname{Spec} A) :: \text{ quasi-compact.}$$

まず $\operatorname{Spec} A = \bigcup_{i,j} D_{B_i}(b_{ij})$ となるように b_{ij} をとる。 $\operatorname{Ex2.13b}$ より $\operatorname{Spec} A$ は quasi-compact だから b_{ij} は有限個でよい。 $f^{-1}\operatorname{Spec} B_i$ は open subscheme だから, $f^{-1}\operatorname{Spec} B_i = \bigcup_{i,k}\operatorname{Spec} C_{ik}$ なる C_{ik} がある。仮定より $f^{-1}\operatorname{Spec} B_i$ は quasi-compact であるから C_{ik} は有限個。これに $\operatorname{Ex3.1}$ の中で示した Lemma (Preimage of POS is POS) を用いると以下のようになる。

$$f^{-1}\operatorname{Spec} A = \bigcup_{i,j} f^{-1}D_{B_i}(b_{ij}) = \bigcup_{i,j} \bigcup_k D_{C_{ik}}(c_{ijk}).$$

確認したとおり組 (i,j,k) は高々有限の組み合わせしか無い. Ex2.13 の証明にあるとおり, $D_{C_{ik}}(c_{ijk})$ は quasi-compact だから, f^{-1} Spec A は quasi-compact な開集合の有限和. よって f^{-1} Spec A も quasi-compact.

Ex3.3 Definition(s) of Finite Type Morphism.

- (a) Finite Type = Locally Finite Type+Quasi-Compact. 定義より明らか.
- (b) Another Definition of Finite Type Morphism.

Ex3.1 の弱い形である.

- (c) If $f :: Finite Type and Any Spec <math>A \subseteq f^{-1}(\operatorname{Spec} B)$, A :: Fin.Gen B-Alg.
- Ex3.4 Definition(s) of Finite Morphism.

Ex3.1 と同様に証明できる.

Ex3.5 Finite/Quasi-Finite Morphism.

 $f: X \to Y$ が quasi-finite morphism であるとは、任意の点 $y \in Y$ について $f^{-1}(y)$ が有限集合であるという事である.

- (a) Finite ⇒ Quasi-Finite.
- (b) Finite \Longrightarrow Closed.
- (c) Give an Example of morphism that is Surjective, Finite-Type, Quasi-Finite BUT NOT Finite.

Ex3.6 Function Field.

X:: integral scheme とし、 $\mathcal{O}_{X,\zeta}$ が体であることと、任意の affine open subset Spec A について $\mathcal{O}_{X,\zeta}\cong \mathrm{Quot}(A)$ であることを示す.

 $\zeta \in X$ を generic point としよう. $\{\zeta\}$ は X で dense な 1 点集合だから,任意の開集合に含まれる. だから $\operatorname{Spec} A$:: affine open subset をどのように取ってもよい. $\mathcal{O}_{X,\zeta} = (\mathcal{O}_X|_{\operatorname{Spec} A})_{\zeta} = A_{\zeta}$ であり, $A = \mathcal{O}_X|_{\operatorname{Spec} A}(\operatorname{Spec} A)$ が integral であることから, $\zeta = (0) \in \operatorname{Spec} A$.以上から

$$\mathcal{O}_{X,\zeta} = (\mathcal{O}_X|_{\operatorname{Spec} A})_{\zeta} = A_{\zeta} = A_{(0)} = \operatorname{Quot}(A)$$

が得られる.

Ex3.7 Dominant, Generically Finite Morphism of Finite Type of Integral Schemes.

Ex3.8 Normalization.

scheme が normal であるとは、その任意の局所環が integrally closed domain である、という意味である。X:: integral scheme とする。 $U=\operatorname{Spec} A\subseteq X$ に対し、 \tilde{A} を A の integral closure, $\tilde{U}=\operatorname{Spec} \tilde{A}$ とする。

- (a) $\{\tilde{U}\}$ can be glued.
- (b) \tilde{X} has a UMP.
- (c) X:: finite type $\implies \tilde{X} \to X::$ finite.

Ex3.9 The Topological Space of a Product.

- (a) $\mathbb{A}^1_k imes_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \mathbb{A}^2_k$ but $\mathbb{A}^2_k
 eq \mathbb{A}^1_k imes \mathbb{A}^1_k$ as sets.
 - $\mathbb{A}^1_k = \operatorname{Spec} k[x]$ として $\mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k$ を考える.
- ■ $\mathbb{A}^1_k imes_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \mathbb{A}^2_k$. $\mathbb{A}^1_k imes_{\operatorname{Spec} k} \mathbb{A}^1_k \cong \operatorname{Spec} k[x] \otimes_k k[y]$ かつ, $k[x] \otimes_k k[y] \cong k[x,y]$ (Ch I, Ex3.18 の解答を参照.) なので明らか.
- ■ $\mathbb{A}_k^1 \times_{\operatorname{Spec} k} \mathbb{A}_k^1 \neq \mathbb{A}_k^2$ as sets. Spec k[x,y] は $(y-x^2)$ のような点 (generic point of a variety) を含むが、 $\mathbb{A}_k^1 \times_{\operatorname{Spec} k} \mathbb{A}_k^1$ にこれに対応する点はない。

(b) Describe Spec $k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t)$.

 $\operatorname{Spec} k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t) \cong \operatorname{Spec} k(s) \otimes_k k(t)$ である. $k(s) \otimes_k k(t)$ の元は 0 でなければ単元である. 実際, $f, g, f', g' \neq 0$ であるとき,

$$\frac{f(s)}{g(s)} \otimes \frac{f'(t)}{g'(t)} \cdot \frac{g(s)}{f(s)} \otimes \frac{g'(t)}{f'(t)} = 1 \otimes 1 = 1.$$

よって $k(s) \otimes_k k(t)$ は体で、 $\operatorname{Spec} k(s) \otimes_{\operatorname{Spec} k} \operatorname{Spec} k(t)$ は 1 点 scheme.

Ex3.10 Fibres of a Morphism.

(a) $\operatorname{sp}(X_y) \approx f^{-1}(y)$.

X,Y:: scheme, $f:X\to Y,\,y\in Y$ とし、fiber X_y を考える。k(y):: the residue field at y は体だから、Spec k(y) は 1 点空間。そこで定値写像 ct_y を

$$ct_y : \operatorname{Spec} k(y) = \{*\} \to Y; \quad * \mapsto y$$

とする. $X_y := X \times_Y \operatorname{Spec} k(y)$ は以下の図式を伴う.

$$X_{y} \leftarrow - - \exists ! - - - \forall Z$$

$$\downarrow \qquad \qquad \forall \qquad \qquad \forall \qquad \forall \qquad \forall \qquad \forall \qquad X$$

$$X \xrightarrow{f} Y \leftarrow_{ct_{y}} \operatorname{Spec} k(y)$$

以下,scheme はその base space だけを考える.(つまり topology space の圏に落とし込んで考える.) 普遍性が保たれることは,scheme morphism が $(f,f^{\#})$ と言う topological space と structure space の間の射の組であり, $f \neq g$ ならば $\mathcal{O}_X \to f_*\mathcal{O}_Y$ と $\mathcal{O}_X \to g_*\mathcal{O}_Y$ の写像が一致し得ないことから分かる. $f^{-1}(y)$ が X_y の普遍性を満たせば,直ちに $^{\dagger 4}$ sp $(X_y) \approx f^{-1}(y)$ が得られる.

上の図式で X_y の部分に $f^{-1}(y)$ を入れた時の図式は次のよう. 示すべきは $Z \to f^{-1}(y)$ が一意に存在することである.

まず、 $f^{-1}(y) \to Y$ の射が可換であることを見る. つまり

$$\forall x \in f^{-1}(y), \ f \circ i(x) = f(x) = y = ct_y \circ j(x)$$

が成立することを示す必要があるが、これは $f^{-1}(y)$ の定義. 次に $Z \to Y$ の射が可換であることから、以下が成り立つ.

$$\forall z \in Z, \ f \circ p(z) = y = ct_u \circ q(z).$$

 $^{^{\}dagger 4}$ homeomorphism は topology space の圏における isomorphism であることに注意.

よって $Z\subseteq (f\circ p)(y)=p^{-1}(f^{-1}(y))$. 逆の包含関係は自明だから, $Z=p^{-1}(f^{-1}(y))$ が得られる. したがって $Z\to f^{-1}(y)$ の射として p を取ることが出来る.

$$f^{-1}(y) \xrightarrow{p} \forall Z$$

$$\downarrow \downarrow q$$

$$X \xrightarrow{f} Y \xleftarrow{ct_y} \operatorname{Spec} k(y)$$

i が単射であることから、この図式を可換にする $Z \to f^{-1}(y)$ の射は p に一致する. よって $f^{-1}(y)$ は $\mathrm{sp}(X_y)$ の普遍性を持つ.

(b) Fibers of $f: X = \operatorname{Spec} k[s, t]/(s - t^2) \to \operatorname{Spec} k[s] = Y$.

k :: algebraically closed field とする. $A=k[s,t]/(s-t^2)=k[\bar{t},\bar{s}], B=k[s]$ とおき、 $X=\operatorname{Spec} A, Y=\operatorname{Spec} B$ とする. $\bar{s}=\bar{t}^2$ に注意. また、f を $\phi:B\to A; s\mapsto \bar{s}$ から誘導される morphism だとする. この設定のもとで各点における fiber を調べていく.

■At $y=(s-a)\in Y$ $(a\neq 0)$. まず k(y) を調べる. $k(y)=B_y/yB_y\cong (B/y)_{\bar{y}}$ だが, $B/y\cong k$ は体だから k(y)=k. よって $X_y=\operatorname{Spec}(A\otimes_B k)$ となる. $\phi(y)=(\bar{t}^2-a)=(\bar{t}-\sqrt{a})\cap(\bar{t}+\sqrt{a})$ だから,(a) から以下が成り立つ.

$$\operatorname{sp}(X_y) \approx f^{-1}(y) = f^{-1}V(y) = V(\phi(\mathfrak{a})) = \{(\bar{t} - \sqrt{a}), (\bar{t} + \sqrt{a})\}.$$

各点での residue field を見ていく. X_y は $\operatorname{Spec} A \otimes_B k$ である. ここでの $T_y = A \otimes_B k$ は, $A, k \cong (B/y)_{\bar{y}}$ をそれぞれ $\phi, s \mapsto a$ †5で B 代数とみなしている. この時, T_y は

$$\mathfrak{m}_{\pm} = \langle (\bar{t} - \pm \sqrt{a}) \otimes_B 1 \rangle$$

を極大イデアルにもち、それぞれでの剰余体は k である.これは $F=\sum_{i=0}^d c_i(\overline{t^i}\otimes 1)\in A$ について $F\otimes 1$ を変形してみると分かる.

$$F \otimes 1$$

$$= \sum_{i=0}^{d} c_{i}(\bar{t}^{i} \otimes 1)$$

$$= \sum_{0 \leq i \leq d, i \in 2\mathbb{Z}} c_{i}(\bar{t}^{i} \otimes 1) + \sum_{0 \leq i \leq d, i \notin 2\mathbb{Z}} c_{i}(\bar{t}^{i} \otimes 1)$$

$$= \sum_{0 \leq i \leq \lfloor d/2 \rfloor} c_{i}(\bar{t}^{2i} \otimes 1) + \sum_{0 \leq i \leq d, i \notin 2\mathbb{Z}} c_{i}(\bar{t}^{i} \otimes 1)$$

$$= \sum_{0 \leq i \leq \lfloor d/2 \rfloor} c_{i}(a^{i} \otimes 1) + \sum_{0 \leq i \leq d, i \notin 2\mathbb{Z}} c_{i}(\bar{t}^{i} \otimes 1)$$

$$= \left(\sum_{0 \leq i \leq \lfloor d/2 \rfloor} c_{i}a^{i} \otimes 1\right) + \sum_{0 \leq i \leq d, i \notin 2\mathbb{Z}} c_{i}(\bar{t}^{i} \otimes 1).$$

途中で

$$s(1 \otimes 1) = \bar{s} \otimes 1 = \bar{t}^2 \otimes 1 = a \otimes 1 = 1 \otimes a = (1 \otimes 1)s$$

 $^{^{\}dagger 5}$ $s \mapsto a$ は $s \mapsto s \mod (s-a)$ という写像を書き換えたものである.

を使った.したがって $(F\otimes 1)(\pm\sqrt{a})=F(\pm\sqrt{a})\otimes 1$ となる.よって $\bar{t}\otimes 1\mapsto \pm\sqrt{a}$ の ker は \mathfrak{m}_{\pm} .また,上の計算からこの代入写像は k への全射であることが分かる.つまり $T_y/\mathfrak{m}_{\pm}\cong k$ なので, $k(\mathfrak{m}_{\pm})=k$.Spec T_y が 2 点のみを持つことから,これ以外に素イデアルはない $^{\dagger 6}$.

■At $y=(s)\in Y$. k(y) はやはり $B/y\cong k$ より k(y)=k. $\phi(y)=(\overline{t}^2)=(\overline{t})^2$ となるから

$$sp(X_y) \approx f^{-1}(y) = \{(\bar{t})\}.$$

 $X_y = \operatorname{Spec}(A \otimes_B k)$ の sheaf を考えよう. ここでの $T_y = A \otimes_B k$ は,A, k をそれぞれ $\phi, s \mapsto 0$ ^{†7}で B 代数とみなしている.この時 $A \otimes_B k$ は non-reduced である.

$$(\bar{t} \otimes 1)^2 \in T_y$$

$$= \bar{t}^2 \otimes 1$$

$$= \bar{s} \otimes 1$$

$$= s(1 \otimes 1)$$

$$= 1 \otimes s(0)$$

$$= 1 \otimes 0$$

$$= 0$$

■At $y=(0)=\eta\in Y$. $(B/\eta)_{\eta}=B_{(0)}=k(s)$ なので $k(\eta)=k(s)$. $\phi(\eta)=(0)=\zeta$:: generic point of A で, $\phi^{-1}(\mathfrak{a})=\eta=(0)$ となる \mathfrak{a} は他にないから $\operatorname{sp}(X_{\eta})\approx\{\zeta\}$ となる。 $(\{\eta\}\neq V(\eta)$ に注意。 $T_{\eta}=A\otimes_{B}k(s)$ を考える。ここでは A,k をそれぞれ $\phi,s\mapsto s/1$ で B 代数とみなしている。

(c) Another Solution of (b).

Ch.I Ex3.18(Product of Affine Varieties) で使った補題を少し変形した

$$\frac{k[s][t]}{I} \otimes_{k[s]} \frac{k[s][u]}{J} \cong \frac{k[s][t,u]}{I^e + J^e}$$

と,中国剰余定理を用いる.

補題 **Ex3.10.1.** I,J をそれぞれ k[s][t](=k[s,t]), k[s][u](=k[s,u]) のイデアルとする.この時,以下が成り立つ.

$$\frac{k[s][t]}{I} \otimes_{k[s]} \frac{k[s][u]}{I} \cong \frac{k[s][t, u]}{I^e + I^e}$$

ただし, $\frac{k[s][t]}{I}$, $\frac{k[s][u]}{J}$ はそれぞれ $f\mapsto f \bmod I$, $f\mapsto f \bmod J$ で k[s] 代数とみなす.

(証明). 以下の写像を考える.

$$\frac{k[s][t]}{I} \otimes_{k[s]} \frac{k[s][u]}{J} \longrightarrow \frac{k[s][t,u]}{I^e + J^e}$$

$$(f(s)t^m \bmod I) \otimes (g(s)u^n \bmod J) \mapsto f(s)g(s)t^mu^n \bmod I^e + J^e$$

$$h(s) \cdot (t^m \bmod I) \otimes (u^n \bmod J) \longleftrightarrow h(s)t^mu^n \bmod I^e + J^e$$

$$(\bar{t}^2 - \alpha^2) \otimes 1 = \bar{t}^2 \otimes 1 - \alpha^2 \otimes 1 = s(1 \otimes 1) - s(1 \otimes \alpha^2/a) = (\bar{t}^2 \otimes 1)((1 - \alpha^2/a) \otimes 1)$$

だから $\langle (\bar{t} - \alpha) \otimes_B 1 \rangle$ は素イデアルでない.

 $^{^{\}dagger 6}$ $\alpha^2 \neq a$ であるとき

 $^{^{\}dagger 7} s \mapsto 0$ は $s \mapsto s \mod (s-0)$ という写像を書き換えたものである.

(任意の元については加法準同型として拡張する.) \to ϕ , \leftarrow を ψ と名付ける. $(f(s)t^m \mod I) \otimes (g(s)u^n \mod J) = f(s)g(s) \cdot (t^m \mod I) \otimes (u^n \mod J)$ だから,二つが well-defined ならばこれらが互いに逆を与えることをは明らか.

 ϕ, ψ の well-defiendness を占めす. $I, J \subset I^e + J^e$ だから, ϕ が well-defined であることは明らか. 問題は ψ の well-defiendness である. $I^e + J^e$ の元は,

$$\sum_{\text{finite}} (\text{element of } k[s][t,u]) \cdot (\text{element of } I) + \sum_{\text{finite}} (\text{element of } k[s][t,u]) \cdot (\text{element of } J)$$

のように書ける. したがって, $w=c(s)t^{c_0}u^{c_1}\cdot i(s)t^{i_0}+d(s)t^{d_0}u^{d_1}\cdot j(s)u^{j_0}$ の形の元の和である. ψ は加 法準同型であるように定義されているから, $\psi(w \bmod I^e+J^e)=0$ さえ示せば十分. $\psi(w \bmod I^e+J^e)$ を計算する.

$$\begin{split} c(s)i(s) \cdot (t^{c_0}t^{i_0} \bmod I) \otimes (u^{c_1} \bmod J) + d(s)j(s) \cdot (t^{d_0} \bmod I) \otimes (u^{j_0}u^{d_1} \bmod J) \\ = &c(s) \cdot (t^{c_0} \cdot i(s)t^{i_0} \bmod I) \otimes (u^{c_1} \bmod J) + d(s) \cdot (t^{d_0} \bmod I) \otimes (u^{j_0} \cdot j(s)u^{d_1} \bmod J) \\ = &c(s) \cdot (0 \otimes (u^{c_1} \bmod J)) + d(s) \cdot ((t^{d_0} \bmod I) \otimes 0) \\ = &0 \end{split}$$

よって ψ は well-defined.

これをつかって (b) を計算していく.

■At $y=(s-a)\in Y$ $(a\neq 0)$. $\phi(y)=(\overline{t}^2-a)=(\overline{t}-\sqrt{a})\cap(\overline{t}+\sqrt{a})$ だから, (a) から以下が成り立つ.

$$\operatorname{sp}(X_y) \approx f^{-1}(y) = f^{-1}V(y) = V(\phi(\mathfrak{a})) = \{(\bar{t} - \sqrt{a}), (\bar{t} + \sqrt{a})\}.$$

 $k(y)=B_y/yB_y\cong (B/y)_{\bar{y}}$ だが, $B/y\cong k$ は体だから k(y)=k. $X_y=\operatorname{Spec} A\otimes_B B/y$ なので補題が使える.

$$\frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} \frac{k[s,u]}{(s-a,u)} \cong \frac{k[s,t,u]}{(s-t^2,s-a,u)}$$

$$\cong \frac{k[t]}{(t^2-a)}$$

$$= \frac{k[t]}{(t-\sqrt{a})\cap(t+\sqrt{a})}$$

$$\cong \frac{k[t]}{(t-\sqrt{a})} \oplus \frac{k[t]}{(t+\sqrt{a})}$$

$$\cong k \times k$$

途中で中国剰余定理を使った.このことから $X_y = \operatorname{Spec}(k \times k)$ で,各点での剰余体は k.

 $\blacksquare \mathsf{At} \ y = (s) \in Y.$

$$\frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} \frac{k[s,u]}{(s,u)} \cong \frac{k[s,t,u]}{(s-t^2,s,u)}$$
$$\cong \frac{k[t]}{(t^2)}$$

 $\frac{k[t]}{(t^2)}$ は (t) mod (t^2) を唯一の極大イデアルとする局所環なので, $\operatorname{Ex2.3b}$ より $\operatorname{Spec}\frac{k[t]}{(t^2)}$ は 1 点空間.また,non-reduced scheme である.

■At $y=(0)=\eta\in Y$. $(B/\eta)_{\eta}=B_{(0)}=k(s)$ なので $k(\eta)=k(s)$. $k(s)=\frac{k[s,u]}{(su-1)}$ より、以下のように計算できる.

$$\begin{split} \frac{k[s,t]}{(s-t^2)} \otimes_{k[s]} \frac{k[s,u]}{(su-1)} & \cong \frac{k[s,t,u]}{(s-t^2,su-1)} \\ & \cong \frac{k[s,t,1/s]}{(t^2-s)} \\ & \cong \frac{k(s)[t]}{(t^2-s)} \end{split}$$

 t^2-s は k(s) 係数既約多項式だから,この環は体.なので $X_y=\operatorname{Spec} \frac{k(s)[t]}{(t^2-s)}$ は 1 点空間である.しかも 剰余体は k(s)=k(y) の 2 次拡大体.

Ex3.11 Closed Subschemes.

- (a) Closed Immersions are Stable under Base Extension.
- (b) * Affine Closed Subscheme of Affine Scheme is Determined by a Suitable Ideal.
- (c) The Smallest Subscheme Structure on a Closed Subset.
- (d) The Scheme-Theoretic Image of f.
- Ex3.12 Closed Subschemes of Proj S.
- Ex3.13 Properties of Morphisms of Finite Type.
- Ex3.14 The Closed Points of Scheme of Finite Type over a Field.
- Ex3.15 Geometrically Irreducible/Reduced/Integral Schemes.
- Ex3.16 Noetherian Induction.
- Ex3.17 Zariski Spaces.
- Ex3.18 Constructible Sets.
- Ex3.19 Chevalley's Theorem on Constructible Set.
- Ex3.20 Dimension.
- Ex3.21 Spec of D.V. Ring Gives Counterexample for Ex3.20a,d,e.
- Ex3.22 Dimension of the Fibres of a Morphism.
- Ex3.23 $t(V \times W) = t(V) \times_{\operatorname{Spec} k} t(W)$.