A ONE-TAILED SITUATIONS

The entries in this table are the critical values for z for which the area under the curve representing α is in the right-hand tail. Critical values for the left-hand tail are found by symmetry.

Amount of α in one tail											
α	0.25	0.10	0.05	0.025	0.02	0.01	0.005	į			
$z(\alpha)$	0.67	1.28	1.65	1.96	2.05	2.33	2.58				

B TWO-TAILED SITUATIONS

The entries in this table are the critical values for z for which the area under the curve representing α is split equally between the two tails.

		Amount	of α in tv	vo-tails			
α	0.25	0.20	0.10	0.05	0.02	0.01	Two-tailed example:
z(α/2)	1.15	1.28	1.65	1.96	2.33	2.58	$\alpha = 0.05$ or $1 - \alpha = 0.95$
1 – α	0.75	0.80	0.90	0.95 in the "cer	0.98	0.99	$\alpha/2 = 0.025$ $z(\alpha/2) = z(0.025) = 1.96$
•				z(0.2) = z(0.023) = 1.96			

For specific details about using this table to find: confidence coefficients, see page 351; critical values, pages 393, 395.

ことをなっては、これにはいいというできる。 おおける物できるななな