OXYGEN TRANSPORT AND O₂HB DISSOCIATION CURVE

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. Describe how the oxygen is transported in the blood.
- 2. Define Oxygen content, oxygen % saturation & oxygen partial pressure.
- 3. Describe with illustration the Oxy-Hb dissociation curve.

O₂ TRANSPORT

O2 is transported in blood in two forms:-

1- Physical solution: 1.5%

It is dissolved in plasma

It depends on blood PO₂.

At PO₂ 100 mmHg about 0.3 ml of O₂ is dissolved in 100 ml blood.

2- Chemical combination with Hb: 98.5 %

O₂ bind reversibly with the ferrous ion in Hb, so the reaction is called oxygenation and not oxidation.

$$HbO_2 \leftrightarrow O_2 + Hb$$

O₂ content of the blood:

The actual amount of O₂ which is present in 100 cc of arterial blood

- = dissolved $O_2 + O_2$ combined with Hb
- = 0.3 + 19.5
- = 19.8 ml/100 ml.

O₂ carrying capacity of the blood:

The maximal amount of oxygen which can be carried by Hb when it is fully saturated.

Each gm Hb when it is fully saturated can carry 1.34 ml O₂

OXYGEN TRANSPORT AND O2HB DISSOCIATION CURVE 1

Prof. Abdelrah man

$$=$$
 Hb (15) X O₂ / 1 gm Hb

 $=20.1 \text{ ml } O_2/100 \text{ cc blood.}$

O₂% saturation:

Normal saturation of arterial blood is 97.5%

It is determined by PO_2 which is related to the concentration of dissolved O_2

Coefficient of oxygen utilization:

It is 25 % during rest and 75 % during exercise.

Oxygen partial pressure (PO₂):

The pressure exerted by O₂ when it present in a gas mixture

Partial pressure = the total pressure (P) X the fractional concentration of O_2 (PF)

O₂-HB DISSOCIATION CURVE

It is drawn using a Tonometer, which measures O_2 content at different O_2 tension.

The curve is S shaped as:

A = arterial blood ($PO_2 = 100 \text{ mmHg }, O_2 \text{ saturation } = 97\%$).

H= high altitude, PO_2 decreased down to 60 mmHg but O_2 saturation decreased only to 90%.

OXYGEN TRANSPORT AND O2HB DISSOCIATION CURVE 1

Prof. Abdelrah man

 $V = \text{Venous blood } (PO_2 = 40, O_2 \text{ saturation } = 75\%)$

Thus O_2 dissociation during rest =25%.

E= muscular exercise (PO₂ = 15,O2 saturation = 25%).

Thus oxygen dissociation during exercise = 75 %.

Physiologic significance of the upper flat part of the curve:

If arterial PO_2 falls from 100 to 60 mmHg, Hb saturation decreases only from 97.5% to 90%.

So, considerable reduction in O_2 tension below the normal arterial value does **not** significantly reduce the oxygenation of arterial blood.

This ensures the ability to survive at high altitude or in pathological conditions as pulmonary diseases characterized by defect in ventilation, perfusion and gas exchange.

Physiologic significance of the steep lower part of the curve:

- It lies in blood PO₂ range from 0 to 60 mmHg, e.g. at tissue levels
- Within this range a small drop in PO₂ causes marked drop in Hb saturation. So, large amount of O₂ is released to tissue.
- At Venous blood ($PO_2 = 40$, O_2 saturation =75%). Thus O_2 dissociation during rest =25%, with adequate supply to tissues with O_2

At PO₂ below 40 mm Hg as in muscular exercise, Hb saturation decreased markedly thus releasing more O_2 to tissue.

The steep portion is important at tissue level as in this rang, small drop in PO_2 causes release of large amount of O_2 to meet the tissue requirement.

SUGGESTED TEXTBOOKS

1. Guyton and Hall textbook of medical physiology, thirteenth edition 2016, Elsevier, chapter 41, from page 528 to 531

- 2. Ganong's Review of Medical Physiology, twenty-fifth edition 2016, McGraw-Hill Education, chapter 35, from page 639 to 640
- 3. Lauralee Sherwood Human Physiology: From Cells to Systems, Ninth edition 2016. CENGAGE, chapter 13, from page 450 to 456

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. Define P50.
- 2. List and describe the factors that affect the position of Oxy-HB dissociation curve.
- 3. Describe the significance of 2,3 DBG in O₂ transport.
- 4. Explain the effects of fetal Hb & CO poisoning on HB affinity to oxygen.

5. Describe the myoglobin dissociation curve.

P₅₀:

- It is the value of PO_2 at which the blood is 50% saturated with O_2 .
- Normally $P_{50} = 26-28 \text{ mmHg}$.
- P_{50} is an inverse function of Hb affinity for O_2
- Increased P_{50} means the curve is shifted to the right and decrease Hb affinity to O_2 and vice versa.

Shift to the Right

OXYGEN TRANSPORT AND O2HB DISSOCIATION CURVE 1

Prof. Abdelrah man

Decrease the affinity of Hb to O_2 leading to increase O_2 delivery to tissues. Which caused by:

- 1-Fever.
- 2-Acidosis.
- 3-Increase CO₂.
- 4-Increase 2,3 DPG.
- 5-Muscular exercise.
- 6-Maternal Hb._

Shift to the Left:

Increase the affinity of Hb to O_2 leading to decrease O_2 delivery to tissues. Which caused by:

- 1-Hypothermia.
- 2-Alkalosis.
- 3-Decrease CO₂.
- 4-Decrease 2,3 DPG.
- 5-Foetal Hb (no β chain).
- 6-CarboxyHb(CO).
- 7-MetHb (oxidation)

2,3 diphsphoglycerate (2,3 DPG):

- Is formed by anaerobic glycolysis inside RBCs.
- It bind reversibly to β chain of adult Hb, decreasing its affinity to O₂ and causes shift of O₂ Hb curve to the right

 It is decreased in deep sleep, stored blood, acidosis and CO poisoning.

Fetal blood:

- Has high affinity for O₂, facilitating O₂ transport from mother to fetus.
- Fetal blood contains less O₂ and less CO₂ than the maternal blood.
- HbF has 2 γ chains (no β chains), so it binds less effectively to 2,3 DPG than HbA.

0

100-

80-

CO poisoning:

- CO binds to Hb at the same site as O₂ and forms carboxyhemoglobin (HbCO).
- The affinity of Hb to CO is higher than O₂
- CO enhances the affinity of Hb for O₂. This causes the dissociation curve to shift to the left.
- These two effects of CO are catastrophic for O₂ delivery to tissues. As there is reduction in both O₂-binding capacity of Hb and O2 release to tissues.

80

Po₂ (mm Hg)

120

OXYGEN - MVOGLOBIN CURVE

It is rectangular in shape.

- It is to the left when compared with hemoglobin demonstrates a higher affinity for O₂, and thus promotes a favorable transfer of O₂ from hemoglobin in the blood.
- The steepness of the myoglobin curve also shows that O₂ is released only at low PO₂ values. Thus, it acts as a store of O₂ to be available in anaerobic conditions.

SUGGESTED TEXTBOOKS

- 1. Guyton and Hall textbook of medical physiology, thirteenth edition 2016, Elsevier, chapter 41, from page 532 to 534
- 2. Ganong's Review of Medical Physiology, twenty-fifth edition 2016, McGraw-Hill Education, chapter 35, from page 640 to 642
- 3. Lauralee Sherwood Human Physiology: From Cells to Systems, Ninth edition 2016. CENGAGE, chapter 13, from page 472 to 475