Predict TSA Throughput

A time series analysis

Problem Identification and Business Context

Predictive model - TSA Throughput

Purpose:

- Allow airports and airlines make better resource allocation and staffing decisions
- TSA efficiency and customer service
- Recovering from Covid-19 travel restrictions beginning in March 2020

Stakeholders:

- Airports
- Airlines
- Airport businesses

Challenges:

- Extreme weather
- War
- Pandemics

Data Collection

Data gathering: Github repository (source)

- Individual Csv files for each airport
- Columns for each gate
- Values: TSA throughput (number of people going through security)

Data Collection

Building final Dataframe:

- Aggregate all gates within an airport
- A column for each airport
- Datetime Index (hourly)

Data Exploration and Cleaning

Data

18 columns: US International Airports

27216 rows: Hourly Data between

December 30th 2018 – February 5th 2022

Values: Number of people going through security

Airports

ANC - Anchorage

ATL - Atlanta

BOI - Boise

BZN - Bozeman

DEN - Denver

DFW - Dallas Fort Worth

FLL - Fort Lauderdale

LAS - Las Vegas

LAX - Los Angeles

MCO - Orlando

MIA - Miami

MSO - Missoula Montana

PDX - Portland

SEA - Seattle

SFO - San Francisco

SJC - San Jose

TPA - Tampa

Boxplots

Density Plots

Data Distribution

- First peak for relatively low counts
- Large airports have a second peak at higher counts
- Extremely busy times with relatively large throughput are much more rare

Null values

Null value distribution per hour for each airport

Null value treatment

Small airports have a higher ratio of values missing than large airports
(Outgoing flight times for small vs large airports)

 Missing values are concentrated in late evening to early morning hours (Least common times for outgoing flights for large airports)

Impute null values with ZERO

Time Series Plot - All Airports

Yearly Trends - SFO

Yearly Trends

Preprocessing and Training

Autocorrelation

Seasonality - SFO

Strong seasonality with period of 24 (hours)

Augmented Dicky-Fuller Test

- Null hypothesis time series is non-stationary
- Only tests for trend
- Reject null if p-value is small (less than 5%)

Baseline Model - Yesterday's values

Mean Error = 276 people

Modeling

ARIMA Model

Grid search

(p, d, q) X (P, D, Q, S)

Evaluate Model

Prediction

Future work: