Text Data Mining For Business Decisions

Module 9
Text Similarity Scoring
How do we compare the similarities of two text documents?

Data Mining- Continuing with Model-Making

Text Similarity Scoring

What is Text Similarity Scoring?

- Take, for example, these three texts:
 - A Most mornings, I like to go out for a run.
 - B Running is an excellent exercise for the brain.
 - C The lead runner broke away from the pack early in the race.
- We want to compare these statements against this one-sentence document:
 - The sergeant led the platoon in their daily run early in the day.
- Which of the three texts above is most similar to the fourth text?

• The three sentences are the target, and the fourth is our source. In the first step, the algorithm extracts all the terms and produces a Bag-of-Words for each (as we did in early chapters).

Text A	Text B	Text C	Source
Most	Running	The	The
mornings	is	lead	sargeant
I	great	runner	led
like	exercsie	broke	the
to	for	away	platoon
go	the	from	fin
out	brain	the	their
for		pack	daily
a	8	early	run
run		in	early
		the	in
		race	the
			day

TF-IDF Scoring

- In the next step, the algorithm removes all the stop words (I, to, a).
- Then tokenizes and lemmatizes all terms (run and runner get converted to run).
- The TF, or term frequency, is computed next (essentially, it performs a word frequency analysis).
 - But if some words are too frequent, they may not be too interesting (like the word "lawyer" in contracts: we all know they will be there, so they are commonplace and should be downplayed).
 - The algorithm downplays them by using the inverse of the frequency (the IDF part). We are left with lists of words and their inverse frequencies.
- Now we compare the list of words and their score to see if they have words in common and compute a common score normalized to 1 (the cosine similarity score).

TF-IDF Scoring

- We will use the tool Simi Bot for text similarity scoring
 - https://wukunchen.shinyapps.io/SimiBot/
- The results look like this:

TEXT	description	similarity_score
Text A	Most mornings I like to go out for a run.	0.099
Text C	The lead runner broke away from the pack early in the race.	0.091
Text B	Running is great exercsie for the brain.	0.083

Let's try it

Simi Bot

Results

TF-IDF weighs distinctive words more

```
Most frequent words in the corpus: great (1654); said (1310); city (1191); like (1169); time (1165)
```

Distinctive words (compared to the rest of the corpus):

- 1. InnocentsAbroadMarkTwain: saviour (57), naples (38), ephesus (36), jack (35), galilee (35).
- 2. MagellanVoyagesAnthonyPia...: tho (271), wo (98), magellan (158), aud (76), deg (72).
- 3. TheAlhambraWashingtonIrvi...: alhambra (301), aben (153), aaron (120), hamet (102), mariamne (91).
- 4. TravelsOfMarcoPolo: tartars (215), marco (330), polo (325), khan (575), cheu (130).
- 5. VoyageOfTheBeagleDarwin: cordillera (106), tierra (88), fuego (88), beagle (84), patagonia (83).

