

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

لمحتوى المفاهيمي :

جهة التحول التلقائي

<u>تطبيق: الأعمدة الكهربائية</u> (خاص بالشعب الرباضية فقط)

• تعریف التحول التلقائی :

التحول الكيميائي التلقائي هو تحول كيميائي يحدث بشكل عفوي من دون تاثير خارجي .

● تركيب العمود :

يتشكل العمود من نصفين : الأول يتكون من صفيحة معدنية لمعدن M_1 مغموسة في محلول يحتوي على شوارد هذا المعدن M_1^{n+} ، و الثاني يتكون من صفيحة معدنية لمعدن آخر M_2 مغموسة في محلول يحتوي على شوارد هذا المعدن M_2^{n+} ، و هذين النصفين موصولين ببعضهما بواسطة جسر ملحي (شاردي) .

الرمز الإصطلاحي للعمود:

إذا كان المسرى M_1 هو القطب الموجب للعمود و المسرى M_2 هو القطب السالب يرمز اصطلاحيا لهذا العمود كما يلى :

$$\text{(-)}\ {M_2}^{m+}\!/{M_2}\,/\!/\ {M_1}^{n+}\!/{M_1}\ \text{(+)}$$

و نشير هنا إلى أن القطب الموجب يكون دوما على اليمين و القطب السالب على اليسار .

• تطور الجملة الكيميائية في العمود خلال اشتغاله:

- عند اشتغال العمود ، التحول الكيميائي الذي يحدث ينمذج بتفاعل يرفق بثابت توازن K فكلما كان كسر التفاعل $Q_r < K$ كلما أنتج العمود تيارا كهربائيا و عندما تصل حالة الجملة الكيميائية إلى التوازن $Q_r = K$) ، تنعدم شدة التيار الكهربائي و يتوقف العمود الكهربائي عن الإشتغال .
 - عند القطب السالب للعمود يحدث تفاعل أكسدة وفق المعادلة :

$$\mathbf{M}_2 = \mathbf{M}_2^{n+} + \mathbf{n}\mathbf{e}^{-}$$

- عند القطب الموجب يحدث تفاعل إرجاع وفق المعادلة:

$$M_1^{\ m+} + me^{\bar{}} = M_1$$

و عند جمع معادلتي الأكسدة و الإرجاع طرف إلى طرف بعد ضرب طرفي كل معادلة في عدد مناسب يجعل عدد الإلكترونات المفقودة مساوي لعدد الإلكترونات المكتسبة نحصل على المعادلة الكيميائية المنمذجة للتحول الكيميائي الحادث في العمود.

مثال (عمود دانیال) :

 $\overline{-}$ عمود دانيال هو عمود يتكون نصفه الأول و الذي يمثل القطب الموجب من صفيحة نحاس $\overline{-}$ مغموسة في محلول كبريتات النحاس ($\overline{-}$ $\overline{-$

- رمز العمود:

$$(-) Zn^{2+}/Zn // Cu^{2+}/Cu (+)$$

- التفاعلات الحادثة:

عند القطب السالب (-) يتأكسد الزنك و فق المعادلة :

$$Zn = Zn^{2+} + 2e^{-}$$

عند القطب الموجب (+) ترجع شوارد النحاس وفق المعادلة:

$$Cu^{2+} + 2e^{-} = Cu$$

● القوة الهدركة الكمر بائية لعمود :

تمثل القوة المحركة الكهربائية التي يرمز لها بE و حدتها الفولط (V) لعمود ، التوتر الكهربائي بين مسرييه عندما V يجرى هذا العمود أي تيار كهربائي .

- تتعلق قيمة القوة المحركة الكهربائية لعمود بطبيعة الثنائيات التي تدخل في تركيب العمود و كذلك التراكيز المولية للمحاليل التي تشكل العمود .

● دور الجسر الملحي :

- الجسر الملحي و الذي يسمى أيضا الجسر الكهروكيميائي يمكن من الإتصال الكهربائي بين نصفي العمود (دون اختلاط المحلولين) من جهة ، و من جهة أخرى يسمح لشوارد المحلول الملحي بالتحرك من أجل ضمان التعادل الكهربائي للمحلولين .
 - (الشكل) التالي يبين حركة الشوارد عبد الجسر الملحي أثناء اشتغال عمود دانيال .

● كوية الكمرباء التي ينتجما العمود خلال اشتغاله :

- تقدم التفاعل هو عدد مرات حدوث التفاعل مقدرا بالمول (أو أفوقادرو مرة) .

- نرمز ب $_Z$ لعدد الإلكترونات المتبادلة بين المؤكسد و المرجع عندما يحدث التفاعل مرة واحدة ، و بالتالي يكون عدد الإلكترونات المتبادلة عندما يحدث التفاعل N_A (عدد أفوقادرو) مرة هو :

$$N=z\;N_A$$

- إذا رمزنا Q_0 لكمية الكهرباء الموافقة لهذا العدد من الإلكترونات (عدد أفوقادرو) يكون :

$$Q_0 = z N_A e$$

- عندما يشتغل العمود مدة زمنية Δt و باعتبار أن تقم التفاعل يبلغ القيمة x(mol) تكون الشحنة التي ينتجها العمود خلال هذه المدة هي :

$$Q = e \cdot x \cdot N_A e$$

المقدار (N_A e) الذي يمثل كمية الكهرباء الموافقة لعدد أفوقادرو (1mol) من الإلكترونات تدعى الفاراداي ، يرمز لها بF و وحدتها الكولوم على المول (Cmol) و يكون :

$$F = N_A e$$

 $F = 6.02 \cdot 10^{23} \cdot 1.6 \cdot 10^{-19}$

1F = 96500 C/mol

إذن يعبر عن كمية الكهرباء التي ينتجها العمود خلال مدة زمنية Δt و التي عندها تتقدم الجملة بالمقدار x بالعلاقة :

$$Q = z \cdot x \cdot F$$

- التيار الكهربائي الذي ينتجه العمود الكهربائي مستمر ، أي شدته ثابتة لذلك يعبر أيضا عن كمية الكهرباء التي ينتجها عمود يشتغل مدة زمنية Δt بالعلاقة :

$$Q = I \cdot \Delta t$$

و عليه نكتب في النهاية:

$$Q=I$$
 . $\Delta t=z$. \boldsymbol{x} . \boldsymbol{F}

● الحصيلة الطاقوية للجهلة " عمود كمربائي ":

عند اشتغال العمود الكهربائي ، يحدث تغير في الطاقة الداخلية للجملة " عمود " بسبب التحول الكيميائي الذي يكون مصحوبا بتحويل كهربائي \mathbf{W}_{e} (الشكل) .

- معادلة انحفاظ الطاقة للجملة : عمود كهربائي " هي :

$$E_1 - |W_e| = E_2$$

التمرين (1): (بكالوريا 2009 – رياضيات)

ينمذج التحول الكيميائي الذي يتحكم في تشغيل عمود بالتفاعل ذي المعادلة:

 $Al_{(s)} + 3Ag^{+}_{(aq)} = Al^{3+}_{(aq)} + 3Ag_{(s)}$

ينتج العمود عند اشتغاله تيارا كهربائي شدته ثابتله ثابتله $\hat{I} = 40 \text{ mA}$ خلال مدة زمنية $\Delta t = 300 \text{ min}$ و يحدث عندها تناقص في التركيز المولى لشوارد Δg^+ .

1- حدد قطبي العمود ؟ برر اجابتك أ

2- مثل بالرسم هذا العمود مبينا عليه اتجاه التيار الكهربائي و اتجاه حركة الالكترونات . أكتب رمز العمود (سؤال إضافي غير مدرج في تمرين البكالوريا)

3- اكتب المعادلتين النصفيتين عند المسريين .

4- احسب كمية الكهرباء التي ينتجها العمود خلال 300 min من التشغيل.

 $\Delta t = 300 \; \mathrm{min}$ من الاشتغال $\Delta t = 300 \; \mathrm{min}$ من الاشتغال :

أ- عين التقدم x .

. ب- احسب النقصان $(\Delta m_{(Al)})$ في كتلة مسرى الألمنيوم

. 1F = 96500 C ، M(Al) = 27 g/mol : يعطى

الأجوبة :

ا تحديد قطبي العمود: A_1 من المعادلة يتضم أن الألمنيوم A_1 تأكسد في حين أن شوارد الفضة A_2 أرجعت ، و نحن نعلم أن في العمود من المعادلة يتضم أن الألمنيوم A_1 الكهربائي تحدث عملية أكسدة في المصعد (القطب الموجب) ، و عملية إرجاع عند المهبط (القطب السالب) ، إذن مسرى الَّالمنيوم يمثل القطب السَّالب للعمود ، و مسرى الفضَّة يمثل قطبه الموجَّب .

- تكون جهة التيار من مسرى الفضة نحو مسرى الألمنيوم (خارج العمود).
 - رمز العمود :

$$(-) Al^{3+}/Al // Ag^{+}/Ag (+)$$

3- المعادلتين النصفيتين:

(-)
$$Al = Al^{3+} + 3e^{-}$$

$$(+)$$
 $3Ag^{+} + 3e^{-} = 3Ag$

4- كمية الكهرباء التي ينتجها العمود خلال 300 min :

$$Q = I \cdot \Delta t$$

 $Q = 40 \cdot 10^{-3} \cdot 300 \cdot 60 = 720 \text{ C}$

 $\frac{5-1}{1-1}$ التقدم : نعتبر $X_{(300)}$ هو مقدار التقدم عند مرور min من اشتغال العمود ، و $X_{(300)}$ هو مقدار التقدم عند مرور العمود في هذه المدة الزمنية يكون:

$$Q_{(300)} = z \cdot x_{(300)} \cdot F \rightarrow x_{(300)} = \frac{Q_{(300)}}{z \cdot F}$$

من المعادلتين النصفيتين نلاحظ أن عدد الإلكترونات المتبادلة بين المؤكسد و المرجع من أجل تفاعل واحد هو 3 إلكترونات أى z = 3 و منه :

$$x_{(300)} = \frac{720}{3.96500} = 2.5.10^{-4} \text{ mol}$$

ب- النقصان في الكتلة : نمثل جدول التقدم :

الحالة	التقدم	Al -	$+$ 3Ag $^+$	$= Al^{3+}$	+ 3Ag
ابتدائية	$\mathbf{x} = 0$	\mathbf{n}_1	n_2	0	0
انتقالية	X	n ₁ - x	n ₂ - x	X	3x
نهائية	$\mathbf{x}_{\mathbf{f}}$	n ₁ - x _f	n ₂ - x _f	X_{f}	$3x_{\rm f}$

: من جدول التقدم عدد مو لات الألمنيوم المختفية (المتفاعلة) عند مرور $n_{(300)}(Al)$ و لتكن $n_{(300)}(Al) = x_{(300)} = 2.5 . 10^{-4} \, \mathrm{mol}$

$$n_{(300)}(Al) = \frac{\Delta m}{M(Al)} \rightarrow \Delta m = n_{(300)}(Al) . M(Al)$$

$$\Delta m = 2.5 \cdot 10^{-3} \cdot 27 = 6.75 \cdot 10^{-2} \text{ g} = 67.5 \text{ mg}$$