Rules of Exponents or Laws of Exponents			
Multiplication Rule	$a^x \times a^y = a^{x+y}$		
Division Rule	$a^x \div a^y = a^{x-y}$		
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$		
Power of a Product Rule	$(ab)^x = a^x b^x$		
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$		
Zero Exponent	$a^{0} = 1$		
Negative Exponent	$a^{-x} = \frac{1}{a^x}$		
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$		

$$\sum_{n=0}^{N-1} r^{N} = \frac{1-r^{N}}{1-r}$$
 for $r \neq 1$

$$\sum_{n=1}^{k} n = \frac{\frac{n(n+1)}{2}}{\frac{n(n+1)(2n+1)}{6}} = \frac{\frac{n^2 + n}{2}}{\frac{2n^3 + 3n^2 + n}{6}}$$

$$\sum_{n=1}^{k} n^2 = \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n^2(n+1)^2}{4}} = \frac{\frac{2n^3 + 3n^2 + n}{6}}{\frac{n^4 + 2n^3 + n^2}{4}}$$

$$\sum_{n=1}^{k} n^4 = \frac{\frac{n(n+1)(2n+1)(3n^2 + 3n-1)}{30}}{\frac{n^2(n+1)^2(2n^2 + 2n-1)}{12}} = \frac{6n^5 + 15n^4 + 10n^3 - n}{30}$$

$$\sum_{n=1}^{k} n^5 = \frac{\frac{n^2(n+1)^2(2n^2 + 2n-1)}{12}}{\frac{n^2(n+1)^2(2n^2 + 2n-1)}{12}} = \frac{2n^6 + 6n^5 + 5n^4 - n^2}{12}$$

Brøker

Brøker er tal på formen

$$\frac{a}{b}$$

hvor a, b er tal samt $b \neq 0$. a er tælleren og b er nævneren.

Regneregler

Der gælder

$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}, \quad \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}, \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc},$$
$$a\frac{b}{c} = \frac{ab}{c}, \quad \frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{bc}, \quad \frac{a}{\underline{b}} = \frac{ac}{b}.$$

Forkorte/Forlænge Brøker

Fælles faktorer kan forkortes:

$$\frac{a}{b} = \frac{ac}{bc}$$

Potenser

Potenser er tal på formen x^a , x er grundtallet og a er eksponenten.

Regneregler

Der gælder

$$\begin{split} x^a x^b &= x^{a+b}, \quad \frac{x^a}{x^b} = x^{a-b}, \quad (xy)^a = x^a y^a, \\ \left(\frac{x}{y}\right)^a &= \frac{x^a}{y^a}, \quad (x^a)^b = x^{ab}, \qquad x^{-a} = \frac{1}{x^a}. \end{split}$$

Rødder

Hvis $x \ge 0$ og $n \in \mathbb{Z}_+$ så findes et tal $\sqrt[n]{x} > 0$ så

$$(\sqrt[n]{x})^n = x.$$

Bemærk at $\sqrt[n]{x} = x^{\frac{1}{n}}$.

Regneregler

Der gælder

$$\sqrt[q]{x} = x^{\frac{1}{n}}, \quad \sqrt[q]{x^m} = x^{\frac{m}{n}} = (\sqrt[q]{x})^m,$$

$$\sqrt[q]{xy} = \sqrt[q]{x}\sqrt[q]{y}, \qquad \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[q]{x}}{\sqrt[q]{y}}.$$

Kvadratsætninger

Der gælder

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$
$$(a-b)^{2} = a^{2} + b^{2} - 2ab$$
$$(a+b)(a-b) = a^{2} - b^{2}.$$

Ligninger

Ligninger kan reduceres med følgende regler:

- Man må lægge til/trække fra med det samme tal på begge sider af et lighedstegn.
- Man må gange/dividere med det samme tal (undtagen 0) på begge sider af et lighedstegn.

Andengradsligninger

Andengradsligninger er på formen

$$ax^2 + bx + c = 0, \tag{1}$$

Løsningerne til (1) er

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Faktorisering

Hvis $ax^2 + bx + c = 0$ har rødder r_1 og r_2 så gælder.

$$ax^2 + bx + c = a(x - r_1)(x - r_2).$$

Funktioner

En funktion $f: X \to Y$ tildeler alle $x \in X$ præcis ét element $f(x) \in Y$.

Sammensatte funktioner

Hvis $f: X \to Y$ og $g: Y \to Z$ defineres sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$. f er den *indre funktion*, g er den *ydre funktion*

Inverse funktioner

To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens *inverse* hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

for alle x i X og y i Y.

Polynomier

Et førstegradspolynomium har forskrift:

$$f(x) = ax + b$$
.

Et andengradspolynomium har for-

$$f(x) = ax^2 + bx + c.$$

Logaritmer og eksponentialfunktioner

Logaritmen med grundtal a, \log_a : $]0, \infty[\to \mathbb{R}$ er invers til eksponentialfunktionen $f_a(x) = a^x$ $(a > 0, a \neq 1)$. Der gælder at

$$\log_a(a^x) = x$$
 og $a^{\log_a(y)} = y$

og vi har

$$ln x = log_e x, \qquad log x = log_{10} x$$

Regneregler

Der gælder

$$\begin{split} \log_a(xy) &= \log_a(x) + \log_a(y), \\ \log_a\left(\frac{x}{y}\right) &= \log_a(x) - \log_a(y), \\ \log_a(x^r) &= r \log_a(x). \end{split}$$

Trigonometriske funktioner

De trigonometriske funktioner er defineret ud fra enhedscirklen:

Der gælder at $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ samt

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Differentialregning

Den afledede af f skrives som $f' = \frac{d}{dx}f = \frac{df}{dx}$.

Regneregier

Der gælder at

*/ 1	***
f(x)	f'(x)
С	0
x	1
x^n	nx^{n-1}
e^x	e ^x
ecx	ce ^{cx}
a^x	$a^x \ln a$
ln x	$\frac{1}{x}$
cosx	$-\sin x$
sin x	cos x
tan x	$1 + \tan^2(x)$

Generelle regneregler

Der gælder at

$$(cf)'(x) = cf'(x)$$

$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

Den sidste regneregel kaldes kædereglen.

Ubestemte integraler

En funktion f har stamfunktion F hvis

$$F'(x) = f(x).$$

Det ubestemte integral af f er

$$\int f(x) dx = F(x) + k,$$

hvor F'(x) = f(x) og $k \in \mathbb{R}$. Generelle regneregler

$$\int cf(x) dx = c \int f(x) dx \qquad \qquad \int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f(g(x))g'(x) dx = [f(x)G(x)]_a^g(x) dx$$

$$\int f(x)g(x) dx = f(x)G(x) - \int_a^b f'(x)G(x) dx \text{ Integration ved substitution}$$

$$Givet \quad \text{et integral på}$$

$$\int_a^b f(g(x))g'(x) dx = F(g(x)) + k.$$

Den 3. regel kaldes delvis integration og den sidste kaldes integration ved substi-

Regneregler

Der gælder at

f(x)	$\int f(x) dx$
С	cx + k
x	$\frac{1}{2}x^2 + k$
x^n	$\frac{1}{n+1}x^{n+1} + k$
e^x	$e^x + k$
ecx	$\frac{1}{c}e^{cx} + k$
$\frac{1}{x}$	ln(x) + k
$\ln x$	$x \ln(x) - x + k$
cos x	$\sin x + k$
sin x	$-\cos x + k$
tan x	$-\ln(\cos(x)) + k$

Integration ved substitution

Givet et integral på formen $\int f(g(x))g'(x)dx$ anvendes metoden:

- 1. Lad u = g(x).
- 2. Udregn $\frac{du}{dx}$ og isoler dx.
- 3. Substituer g(x) og dx.
- 4. Udregn integralet mht. u.
- 5. Substituer tilbage.

Besemte integraler

Det bestemte integral af f i intervallet For vinklen θ mellem \vec{u} , \vec{v} er

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

hvor F er en stamfunktion til f. Generelle regneregler

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x) \pm g(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} f(x)g(x)dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x)dx$$

$$\int_{a}^{b} f(y(x))g'(x)dx = [F(x)]_{g(a)}^{g(b)}.$$
Vektorer i rummet
$$\vec{u} = [x, y, z] \text{ hvor } x, y, z \in \mathbb{R}.$$
Regneregler
$$For \quad \vec{u} = [x_1, y_1, z_1], \quad \vec{v} = [x_2, y_2, z_2] \text{ og}$$

Givet et integral på formen $\int_{a}^{b} f(g(x))g'(x) dx$ anyendes metoden

- 1. Lad u = g(x).
- 2. Udregn $\frac{du}{dx}$ og isoler dx.
- 3. Substituer g(x), dx samt græn-
- 4. Udregn integralet mht. u.

Differentialligninger Løsningsformler

Differentiallign. Fuldstændig løsn.

f'(x) = k	f(x) = kx + c
f'(x) = h(x)	$f(x) = \int h(x) dx$
f'(x) = kf(x)	$f(x) = ce^{kx}$
f'(x) + af(x) = b	$f(x) = \frac{b}{a} + ce^{-ax}$

Panserformlen

Differentialligningen

$$f'(x) + a(x)f(x) = b(x)$$

har fuldstændig løsning

$$f(x) = e^{-A(x)} \int b(x) e^{A(x)} dx + c e^{-A(x)},$$

Vektorer i planen

En vektor \vec{u} i planen skrives som \vec{u} = [x, y] hvor $x, y \in \mathbb{R}$.

Regneregler

For $\vec{u} = [x_1, y_1], \vec{v} = [x_2, y_2], c \in \mathbb{R}$ er

$$\vec{u} \pm \vec{v} = \begin{bmatrix} x_1 \pm x_2 \\ y_1 \pm y_2 \end{bmatrix}, \qquad \vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2,$$
En linje i rummet/planen gennem punktet med stedvektor \vec{x}_0 og retning
$$c\vec{u} = \begin{bmatrix} cx_1 \\ cy_1 \end{bmatrix}, \ \det(\vec{u}, \vec{v}) = x_1 y_2 - x_2 y_1 \ \vec{r} \text{ har parameter fremstilling}$$

Længden af \vec{u} er $||\vec{u}|| = \sqrt{x_1^2 + y_1^2}$.

Vinklen mellem to vektorer

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad \sin \theta = \frac{\det(\vec{u}, \vec{v})}{\|\vec{u}\| \|\vec{v}\|}$$

Yderligere gælder

- 1. \vec{u} og \vec{v} er ortogonale $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$.
- 2. \vec{u} og \vec{v} er parallelle $\Leftrightarrow \det(\vec{u}, \vec{v}) =$

Vektorer i rummet

Regneregler

For $\vec{u} = [x_1, y_1, z_1], \ \vec{v} = [x_2, y_2, z_2]$ og $c \in \mathbb{R}$ gælder

$$\vec{u} \pm \vec{v} = \begin{bmatrix} x_1 \pm x_2 \\ y_1 \pm y_2 \\ z_1 \pm z_2 \end{bmatrix}, \qquad c\vec{u} = \begin{bmatrix} cx_1 \\ cy_1 \\ cz_1 \end{bmatrix},$$

Længden af \vec{u} er $\|\vec{u}\| = \sqrt{x_1^2 + y_1^2 + z_1^2}$. Krydsproduktet er givet ved

$$\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

Vinklen mellem to vektorer

For vinklen θ mellem \vec{u} og \vec{v} gælder

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}, \quad \sin \theta = \frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\| \|\vec{v}\|}$$

Yderligere gælder

- 1. \vec{u} og \vec{v} er ortogonale $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$.
- 2. \vec{u} og \vec{v} er parallelle $\Leftrightarrow \vec{u} \times \vec{v} = 0$.

Linjer og Planer

Planen/linjen gennem punktet med stedvektor \vec{x}_0 med normalvektor \vec{n} beskrives ved alle vektorer \vec{x} der løser ligningen

$$\vec{n} \cdot (\vec{x} - \vec{x_0}) = 0$$

$$\vec{r}_0 + t\vec{r}$$
 $t \in \mathbf{I}$