MECÂNICA QUÂNTICA II - TEORIA DE PERTURBAÇÕES

Sandro Dias Pinto Vitenti

Departamento de Física - CCE - UEL

1. Quando aplicamos a teoria de perturbações a um sistema, estamos supondo que o Hamiltoniano do sistema é dado por $\hat{H}=\hat{H}_0+\hat{H}_1$, onde \hat{H}_0 é o Hamiltoniano de um sistema cujas soluções são conhecidas e \hat{H}_1 é uma perturbação que afeta o sistema. A ideia é que o Hamiltoniano \hat{H}_1 é pequeno em relação a \hat{H}_0 . Responda:

- (a) O que significa dizer que \hat{H}_1 é pequeno em relação a \hat{H}_0 ? Quais são as hipóteses que devem ser satisfeitas para que a teoria de perturbações seja aplicável?
- (b) Dados os autoestados de \hat{H}_0 , $|n^{(0)}\rangle$, e os autovalores correspondentes, $E_n^{(0)}$, onde n é o índice que rotula os autoestados. Mostre como podemos encontrar as correções de primeira ordem para os autoestados e autovalores do Hamiltoniano total H.
- (c) No caso do oscilador harmônico, cuja Hamiltoniana é dada por $\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$, mostre os efeitos da perturbação $\hat{H}_1 = -qf\hat{x}$ nos autoestados e autovalores do sistema. Lembre-se que $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a} + \hat{a}^\dagger)$ e que $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$ e $\hat{a}^\dagger|n\rangle = \sqrt{n+1}|n+1\rangle$.
- 2. Na teoria de perturbações dependente do tempo estamos interessados em sistemas cujos Hamiltonianos são dados por $\hat{H} = \hat{H}_0 + \hat{H}_1(t)$, onde \hat{H}_0 é o Hamiltoniano de um sistema cujas soluções são conhecidas e $\hat{H}_1(t)$ é uma perturbação que afeta o sistema. Responda:
 - (a) Quais são as hipóteses que devem ser satisfeitas para que a teoria de perturbações dependente do tempo seja aplicável? Que tipo de problemas procuramos resolver com essa teoria?
 - (b) Dados os autoestados de \hat{H}_0 , $|n^{(0)}\rangle$, e os autovalores correspondentes, $E_n^{(0)}$, onde n é o índice que rotula os autoestados. Mostre como podemos encontrar uma equação para as componentes da solução $|\psi(t)\rangle$ de forma que a evolução temporal devida a \hat{H}_0 fatorada. Ou seja, dado

$$|\psi(t)\rangle = \sum_{n} c_n(t) |n^{(0)}\rangle,$$

- reescreva as componentes $c_n(t)=d_n(t)s_n^0(t)$ para que a equação de Schrödinger com $\hat{\mathbf{H}}=\hat{\mathbf{H}}_0$ seja resolvida exatamente para $d_n(t)$ constante.
- (c) Encontre a equação para $d_n(t)$ em primeira ordem. Escreva a solução para $d_n(t)$ em termos de uma integral temporal.