Deep Learning Hands on Lab

Microsoft, Program manager, Minsoo Bae

Topics

Cloud Computing
Virtual Machine
Data Science VM
Hands on Lab (MNIST dataset)

What do you think Cloud Computing is?

Cloud Computing NIST Definition

Cloud computing is a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics, three service models, and four deployment models.

National Institute of Standards and Technology

Five Key Cloud Characteristics

- On-demand self-service
- Ubiquitous network access
- Location-independent resource pooling
- Rapid elasticity
- Pay for what you use

Cloud Computing Service Models

Model	Description
Software as a Service (SaaS)	Consume it End-User Applications delivered as a service, rather than by on-premises software
Platform as a Service (PaaS)	Build on it Application platform or middleware provided as a service on which developers can build and deploy custom applications
Infrastructure as a Service (IaaS)	Migrate to it Computing, storage, or other IT infrastructure provided as a service, rather than as a dedicated capability

Service Model Division of Responsibility

Cloud Deployment Model

Why Cloud Computing?

24x7 Support

Pas As You Go

Lower TCO

Device- & Location-Independent

Easy & Agile Deployment

Why Cloud Computing?

Utility Based

Highly Automated Reliability, Scalability

Lower Capital Expenditure

> Free Up Internal Resources

Typical Computing Pattern

Azure Services

Azure Data Science Virtual Machine (DSVM)

Data Science Virtual Machines (DSVM)

Pre-Configured environments in the cloud for Data Science & AI Modeling, Development & Deployment.

Data Science Virtual Machines (DSVM)

Editions

DSVM – Windows Server 2016

DSVM – Linux – Ubuntu

Deep Learning Virtual Machines

Analytics desktop in the cloud

Data science training and education

On-demand elastic capacity

Why Data Science VMs?

Examples & Templates to get started

Deep Learning with GPUs

Highly Parallelized scalable AI Training with Azure Batch

End-to-End AI Development Workflow using Data Science Virtual Machines (DSVM)

Tools and services for any developer, any app

Linux

iOS

CoffeeScript Clojure Objective-C Swift Go Groovy Java Perl PHP Ruby Rust

Hands on Lab

AKA.MS/SNUDL