Spectral-based Sound Transformations

Xavier Serra

Music Technology Group
Universitat Pompeu Fabra, Barcelona
http://mtg.upf.edu

Index

- Filtering
- Morphing
- Frequency scaling
- Time stretching

Short-time Fourier transform

STFT

Filtering: Equalization

Morphing with STFT

Morphing

Harmonic plus residual model

Filtering sine waves


```
Hz = np.array([0, 2099, 2100, 3000, 3001, fs/2]) # Hz
dB = np.array([-200, -200, 0, 0, -200, -200]) # dB
Filter = np.asarray((Hz, dB))
ysmag += np.interp(ysloc/Ns*fs, Filter[0,:],Filter[1,:])
```

Frequency shifting of sine waves

Frequency stretching of sine waves


```
fstretch = 1.1
ysloc = ysloc * (fstretch**np.arange(0, ysloc.size))
```

Pitch transposition with timbre preservation

Harmonic plus Stochastic model

Time scaling

It's a frame based frequency domain technique

 $AF_n = Analysis$ Frame number n

 $SF_m = Analysis Frame number m$

Analysis and synthesis processes must use the same window size and window type

Frame positions

The Time-Scale module

Delta phase around each peak

The phase around each peak is obtained applying the delta phase function of the original frame

References

- http://en.wikipedia.org/wiki/Sound_effects
- http://en.wikipedia.org/wiki/Equalization_filter
- http://en.wikipedia.org/wiki/Audio_timescale-pitch_modification

Credits

All the slides of this presentation are released under an Attribution-Noncommercial-Share Alike license.