

## **CPO**

#### Semana 01 - Clase 001

## Relaciones

Una relación binaria (dos elementos) R, de un conjunto A a un conjunto B, es un subconjunto del producto cartesiano AxB. El producto cartesiano es un conjunto de todos los posibles pares ordenados, tal que  $AxB=\{x\in a,y\in B\}$ , donde se cumple que  $(x,y)\neq (y,x)$ .

# **Propiedades**

#### Reflexividad

Si  $(a,a)\in R$ , para todo  $a\in A$ , entonces diremos que es reflexiva. De esta forma, si existe el elemento  $1\in A$ , pero no existe (1,1), basta que suceda eso para decir que no es reflexiva (tienen que estar todos los elementos del conjunto A).

### Simetría

Si para todo  $a,b\in A$ , decimos que si existe el par  $(a,b)\in R$ , entonces  $(b,a)\in R$  debe pertenecer a la relación obligatoriamente, es decir si  $(1,3)\in R$ , entonces  $(3,1)\in R$  (debe cumplirse para todos).

### **Antisimetría**

Si para toda  $a,b\in A$ , si  $(a,b)\in R$ , entonces  $(a,b)\in R$  y  $a\neq b$ , entonces  $(b,a)\notin R$  no debe pertenecer a la relación (lo contrario a la simetría).

#### **Transitividad**

Si para todo  $a,b,c\in A$  , si  $(a,b)\in R$  , y  $(b,c)\in R$  , entonces por transitividad el par  $(a,c)\in R$  debe existir en la relación.

# Orden parcial

Una relación R en un conjunto X, se llama orden parcial si R es reflexiva, antisimétrica y transitiva. Se denota como (A,R), donde A es el conjunto, se puede asociar con las siglas RAT (Reflexiva, Antisimétria y Transitiva)  $\clubsuit$ .

Un CPO, un conjunto parcialmente ordenado es aquel conjunto (relación de pares ordenados) que cumple con las propiedades RAT. Por ejemplo  $R = \{(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)\}$ ,

## **Divisibilidad**

La relación de divisibilidad denotada como "|", es un orden parcial para el conjunto de enteros positivos  $\mathbb{Z}^+$  (pues no cuenta con el cero). De tal forma para la expresión m|n, significa: m es divisor de n, m divide a n, n es múltiplo de m, y la podemos expresar como  $\exists q \in \mathbb{Z}$ , tal que  $m \cdot q = n$ .

Será un orden parcial pues, a siempre se divide a si mismo (reflexividad),  $(a,a) \in R$ , siempre que  $a \in \mathbb{Z}^+$ . Será simétrica, pues si a|b y se cumple b|a, entonces b=a. Por último si a|b y b|c, entonces  $b=a\cdot k$ , y  $c=b\cdot l$ , entonces  $c=a(k\cdot l)\equiv a(k\cdot l)=c$ , por lo que a|c.