Euler's Method

Differential Equations

5.16	Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n)$; $x_{n+1} = x_n + h$, where h is a constant
		(step length)

Example 1.

Consider the differential equation $\frac{dy}{dx} = e^x + 1$ with y(0) = 1.

- a. Estimate y(0) = 0.5 by applying Euler's method with:
 - i. h = 0.25 for two steps
 - ii. h = 0.1 for five steps.

b. Find y(0) = 0.5 exactly using the Fundamental Theorem of Calculus.

EULER'S METHOD

Casio fx-CG50

Consider the differential equation $\frac{dy}{dx} = e^x + 1$ with y(0) = 1.

To estimate y(0.5) using Euler's method with step size 0.005, we have $x_0 = 0$, $y_0 = 1$, and

$$\begin{cases} x_i = x_{i-1} + 0.005 \\ y_i = y_{i-1} + 0.005(e^{x_{i-1}} + 1). \end{cases}$$

Select **Recursion** from the Main Menu, press (TYPE), then (a_{n+1}) .

Enter $a_n + 0.005$ into $\mathbf{a_{n+1}}$, and $b_n + 0.005(e^{a_n} + 1)$ into $\mathbf{b_{n+1}}$.

Note: a_n is entered by pressing (\mathbf{F}^4) $(\mathbf{n}.\mathbf{a_n}\cdots)$, then (\mathbf{F}^2) $(\mathbf{a_n})$.

 b_n is entered by pressing $(\mathbf{a_n} \cdot \cdot \cdot)$, then $(\mathbf{b_n})$.

Press (SET) and adjust the table settings.

Set **Start** = 0, and **End** = 100 since we are taking $\frac{0.5}{0.005} = 100$ steps.

Set $a_0 = 0$ since $x_0 = 0$, and $b_0 = 1$ since $y_0 = 1$.

Press **EXIT**, then **F**6 (**TABLE**) to view the table of values.

Press \triangleright to highlight the first entry in the b_{n+1} column.

Press **OPTN** \mathbb{F}^1 (**LISTMEM**), then enter 1 **EXE** to save the values of $\mathbf{b_{n+1}}$ into **List 1**.

To view **List 1** press **MENU** and select **Statistics**.

Press until the 101st entry is shown.

So, $y(0.5) \approx 2.1471$.

	Rad Norm1 d/c Real								
	List 1	List 2	List 3	List 4					
SUB									
99	2.1207								
100	2.1338								
101	2.1471								
102									
	2.147100819								
GRA	GRAPH CALC TEST INTR DIST								

Example 2.14 marks

Consider the differential equation

$$\frac{dy}{dx} = \sqrt{x}y, x > 0, y > 0 \text{ where } y(1) = 4$$

a. Use Euler's method with a step length of 0.25 to fill in the following table, rounding each value to two decimal places. [4]

x	1.25	1.50	1.75	2
y				

b. Solve the differential equation.

c. Hence, find the exact value of y(2) to 2 decimal places

[6]

d. Calculate the percentage error in the value of y(2) found by using Euler's method. Give your answer to 2 significant figures. [2]

Example 3.

Consider the differential equation $\frac{dy}{dx} = x \cos(y)$ with initial point (0, 0).

- a. h = 1
- b. h = 0.1
- c. h = 0.01