Authenticity Guarantee

Holographic Charizard Card-

Price: US \$4,999.99



Ameen Ismail Pheno 2022 Symposium 10 May 2022



#### (how anomalies shape the dilaton action)

arXiv:2205.xxxxx (keep your eyes peeled!) with C. Csáki, J. Hubisz, G. Rigo, and F. Sgarlata Pheno 2022 Symposium 10 May 2022

#### Conformal sectors are everywhere!

#### in model building:

- Composite Higgs
- Warped models
- Dark matter
- Continuum states
- CC, hierarchy problems

in formal theory...

#### The Minimal Composite Higgs Model

Kaustubh Agashe a, Roberto Contino a, Alex Pomarol b

#### A Warped Model of Dark Matter

TONY GHERGHETTA AND BENEDICT VON HARLING

#### Continuum Dark Matter

Csaba Csáki,<br/>a Sungwoo Hong,  $^{a,b,c}$ Gowri Kurup,  $^{a,d}$  Seung J. Lee,<br/> $^c$  Maxim Perelstein,  $^a$  and Wei Xue<br/>  $^f$ 

#### Crunching Dilaton, Hidden Naturalness

Csaba Csáki, Raffaele Tito D'Agnolo, Michael Geller, and Ameen Ismail

#### On Renormalization Group Flows in Four Dimensions

Zohar Komargodski ♣♥ and Adam Schwimmer ♣



### The big picture

Dilaton: NGB of spontaneously broken scale/conformal invariance

AdS/CFT relates dilaton to radion in holographic (warped) models

Weyl a-anomaly for the dilaton  $\Leftrightarrow$  chiral anomaly for the pion

- Three lessons:
  - ▶ there are *a*-anomalous interactions at  $\mathcal{O}(\partial^4)$ ,
  - including four-dilaton interaction and dilaton-matter coupling,
  - which have implications for collider pheno and cosmology



#### Dilaton effective Lagrangians I

Construct from coset methods (analogy:  $\chi \mathcal{L}$  from  $SU(3)_L \times SU(3)_R/SU(3)_V$ )

$$S = \int d^4x \frac{1}{2} f^2 e^{-2\tau} (\partial \tau)^2 + \lambda e^{-4\tau} + \mathcal{O}(\partial^6)$$

 $\tau$ : dilaton field; f: "decay constant"

Quartic allowed, unlike usual GBs

No terms at order  $\partial^4$ 

#### Dilaton effective Lagrangians II

Anomaly manifests in curved background (analogy: background gauge field)

$$\langle T_{\mu}^{\mu} 
angle = cW_{\mu
u
ho\sigma}^2 - aE_4, \quad E_4 = \left(R_{\mu
u
ho\sigma}^2 - 4R_{\mu
u}^2 + R^2 
ight)$$

Leads to anomaly action (analogy: WZW term):

$$S_{a} = a \int d^{4}x \sqrt{g} \left[ -\tau E_{4} - 4G^{\mu\nu} \partial_{\mu} \tau \partial_{\nu} \tau + 4(\partial \tau)^{2} \Box \tau - 2(\partial \tau)^{4} \right]$$

$$\xrightarrow{\text{Minkowski}} 2a \int d^{4}x (\partial \tau)^{4} + \mathcal{O}(\partial^{6})$$

Upshot: a-anomalous interaction survives in flat space!



### Dilatons in AdS/CFT



Radion/dilaton mode + background bundled into A (e.g.

$$\langle A \rangle = ky$$

 $h_{\mu 
u}$  parametrizes KK + massless graviton fluctuations



#### Holographic dilaton action: setup

Compactify on interval  $(y_{UV}, y_{IR})$ 

5D Planck scale 
$$M_5^3=1/(2\kappa^2)$$
, CC  $\Lambda=-6k^2$ 

$$S_{5D,\text{grav}} = -\frac{1}{2\kappa^2} \int d^5 x \sqrt{g} (R+2\Lambda) - \frac{1}{\kappa^2} \sum_{i=\text{UV},\text{IR}} \int d^4 x \sqrt{g_i} (K_i + \lambda_i)$$

Simple IR-localized matter model:

$$S_{
m matter} = \int d^4 x \sqrt{g_{
m IR}} \mathcal{L}_{
m matter}(\psi_{
m light})$$

Strategy: integrate out KK gravitons in a derivative expansion (to do this, solve Einstein equations)



# Holographic dilaton action: order $\partial^2$

Set 
$$h_{\mu\nu} = 0$$
:  $ds^2 = e^{-2A} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - B^2 dy^2$ 

Kinetic + quartic,

$$S_{\rm radion} = \int d^4x \frac{f^2}{2} e^{-2\tau} (\partial \tau)^2 - (\lambda + 6k^2/\kappa^2) e^{-4\tau}$$

with 
$$au = A(y_{\rm IR}) - \langle A(y_{\rm IR}) \rangle$$

"Decay constant"  $f^2=6/(\kappa^2 k)e^{-2\langle A(y_{\rm IR})\rangle}$ —not the same as KK scale  $M_{\rm KK}=ke^{-\langle A(y_{\rm IR})\rangle}$ 

Quartic leads to runaway potential unless tuned,  $\lambda = -6k^2/\kappa^2$ 



# Holographic dilaton action: order $\partial^4$

After a lot of calculation (no longer have  $h_{\mu\nu}=0!)...$ 

$$S_{
m radion} = 2a \left[ (\partial au)^4 + \partial^\mu au \partial^
u au \left( T_{\mu
u} - rac{1}{6} \eta_{\mu
u} T 
ight) 
ight]$$

with  $a = 1/(8\kappa^2 k^3)$ 

Self-interaction and dilaton-matter couplings

In terms of N of dual CFT  $(N^2 \sim 1/(\kappa^2 k^3))$ :

$$a = N^2/(64\pi^2)$$

agrees with anomaly-matching arguments!



## Phenomenology

Change variables to  $\phi = fe^{-\tau}$ , expand about vev  $\phi = f + \varphi$ :

$$\mathcal{L}_{
m radion} \supset rac{1}{2} (\partial arphi)^2 + rac{\pi^2}{3 N^2 M_{
m KK}^4} \partial^\mu arphi \partial^
u arphi \left( \mathcal{T}_{\mu
u} - rac{1}{6} \eta_{\mu
u} \mathcal{T} 
ight)$$

Novel dimension-8 operator; can probe N via e.g. radion production cross-sections

Contrast usual matter coupling to trace of  $T_{\mu\nu}$   $(\sim \phi T)$ 

—contact interaction with scale-invariant fields  $(g, \gamma)$ 



### Toy cosmology

Homogeneous  $\phi = \phi(t)$ ,  $\lambda > 0$ 

$$\mathcal{L}_{\mathrm{radion}} \supset \frac{1}{2}\dot{\phi}^2 - \lambda\phi^4 + 2a\frac{\dot{\phi}^4}{\phi^4}$$

a-term acts as field-dependent viscosity, an "anomaly drag"

Effects qualitative change in behaviour

- smooths out singularity
- changes EOS



## Toy cosmology

Homogeneous  $\phi = \phi(t)$ ,  $\lambda > 0$ 

$$\mathcal{L}_{\mathrm{radion}} \supset \frac{1}{2}\dot{\phi}^2 - \lambda\phi^4 + 2a\frac{\dot{\phi}^4}{\phi^4}$$

a-term acts as field-dependent viscosity, an "anomaly drag"

Effects qualitative change in behaviour

- smooths out singularity
- changes EOS



#### Thank you!



contact: Ameen Ismail, ai279@cornell.edu