Resumo: Conectividade em Grafos Direcionados e Não-Direcionados e Componentes Fortemente Conexos

Fechos Transitivos

- De $v \in V$:
 - Direto:
 - Vértices alcançáveis de v, com caminho maior ou igual a zero (quem o v chega).
 - Inverso:
 - Vértices que alcançam v, com caminho maior ou igual a zero (quem chega em v).
- De $X \subseteq V$:
 - Direto:
 - Vértices alcançáveis de cada vértice de X, com caminho maior ou igual a zero.
 - Inverso:
 - Vértices que alcançam algum vértice de X, com caminho maior ou igual a zero.

Conectividade

- Definição:
 - Um grafo é dito conexo se existe um caminho entre todo par de vértices.
 - Formalmente: $\forall u, v \in V, \exists \operatorname{path}(u, v)$.
 - Um grafo é dito não conexo (ou desconexo) se existe pelo menos um par de vértices entre os quais não existe caminho.
 - Formalmente: $\exists u, v \in V, \not\exists \operatorname{caminho}(u, v)$.
- Grafo Não-Direcionado:
 - Conexo:
 - Se existe um caminho entre todo par de vértices.
 - Não-Conexo:
 - Se existe pelo menos um par de vértices entre os quais não existe caminho.
- Grafo Direcionado:
 - Fortemente Conexo:
 - Para todo par de vértice u, v existe um caminho de u para v **E** de v para u.

- Formalmente: $\forall u, v \in V \mid \exists \operatorname{path}(u, v) \in \operatorname{path}(v, u)$.
- Semi-Fortemente Conexo:
 - Para todo par de vértice u, v existe um caminho de u para v **OU** de v para u.
 - Formalmente: $\forall u, v \in V \mid \exists \operatorname{path}(u, v) \operatorname{ou} \operatorname{path}(v, u)$.
- Fracamente Conexo:
 - Existe pelo menos um par de vértice u, v no qual não existe um caminho de u para v e nem de v para u.
 - Formalmente: $\exists u, v \in V \mid \not \exists \operatorname{path}(u, v) \in \not \exists \operatorname{path}(v, u)$.

$$\exists~u,v\in V\mid v
ot\in \Gamma^+(u)\ \mathrm{e}\ u
ot\in \Gamma^+(v).$$

- Também é possível pegar o grafo associado, isto é o grafo obtido desconsiderando a orientação de G, e verificar se este é conexo:
 - Se o grafo associado for conexo, então o grafo original é fracamente conexo.

Atingibilidade

- Base:
 - Um base B de um grafo G = (V, E) é um subconjunto $B \subseteq V$ se:
 - 1. Não há caminho entre vértices de *B*.
 - 2. Todo vértice não pertencente a B pode ser **atingido** por algum vértice de B.
- Anti-Base:
 - Uma anti-base A de um grafo G = (V, E) é um subconjunto $A \subseteq V$ se:
 - 1. Não há caminho entre vértices de *A*.
 - 2. Todo vértice não pertencente a A pode atingir A por um caminho.
- Raíz:
 - Sendo B uma base de G, se B for um **conjunto unitário**, então dizemos que B **é a** raíz de G.
- Anti-Raíz:
 - Sendo A uma anti-base de G, se A for um **conjunto unitário**, então dizemos que A **é a anti-raíz** de G.

Componentes Fortemente Conexos (Strongly Connected Components - SCC)

A **partição** de um conjunto finito V é um conjunto P de subconjuntos disjuntos não vazios de V, cuja união é V, isto é:

$$P = \{S_1, S_2, \cdots, S_k\} \mid \; \cup_{i=1}^k S_i = V ext{ e } S_i \cap S_j = \emptyset \; orall \; i
eq j$$

Onde cada subconjunto Si é uma região da partição e, também, um **componente fortemente conexo**.

Como Encontrar Componentes Fortemente Conexos (Algoritmo de Kosaraju)

Seja G = (V, E) um grafo direcionado. Para identificar as **componentes fortemente** conexas de G:

- 1. Realizar uma busca em profundidade (**DFS**) a partir de um vértice arbitrário, registrando os **tempos de descoberta** e os **tempos de finalização** de cada vértice.
- 2. Construir o **grafo transposto** $G^- = (V, E')$, no qual, para cada aresta $e = (u, v) \in E$, adiciona-se a aresta reversa e' = (v, u) em E'.
- 3. Realizar uma nova busca em profundidade sobre o grafo G^- , explorando os vértices na **ordem decrescente dos tempos de finalização** obtidos na primeira DFS.
 - 1. A cada nova chamada recursiva da DFS no grafo transposto, atribuir um **rótulo** ou identificador ao componente que está sendo explorada. Todos os vértices visitados nessa chamada pertencem ao **mesmo componente fortemente conexo**.
- 4. Ao final, o número total de componentes fortemente conexas corresponde ao **número de rótulos diferentes** atribuídos.

⊘ Observação

Se o número de componentes fortemente conexas for igual ao número de vértices de G, então o grafo é acíclico.