

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 Fax: +86-755-26636041

Jackychen Luy Cr: Luy Cr:

FCC PART 15 SUBPART C TEST REPORT

Part 15.247

Report Reference No...... CTL1601180219-WF

Compiled by

(position+printed name+signature) .: File administrators Jacky Chen

Name of the organization performing

the tests

Test Engineer Tracy Qi

(position+printed name+signature) .:

Approved by

(position+printed name+signature) .: Manager Tracy Qi

Date of issue...... Feb. 23, 2016

Test Laboratory Name Shenzhen CTL Testing Technology Co., Ltd.

Address Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Applicant's name...... Shenzhen MIRODDI Technology Co., Ltd

Address: Yongfengtian Industrial Garden, The 3rd Industrial Park Of

Fenghuang, Fuyong Street, Baoan District, Shenzhen, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–

2483.5 MHz, and 5725-5850 MHz.

TRF Originator...... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF...... Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: IP CAMERA

FCC ID...... 2AHDPBW-IPC002

Trade Mark

Model/Type reference BW-IPC002, BW-IPC002S, BWIPC002D, BW-IPC001, BW-IPC003,

BW-IPC004, BW-IPC004A, BW-IPC006, BW-IPC008

802.11n(40MHz): 2422~2452 MHz

Antenna Type External

Antenna Gain 2.5dBi

Result Positive

TEST REPORT

Test Report No. :	CTL1601180219-WF	Feb. 23, 2016
	C1L1001100213-VVI	Date of issue

Equipment under Test : IP CAMERA

Model /Type : BW-IPC002

Listed Modes : BW-IPC002S, BWIPC002D, BW-IPC001, BW-IPC003, BW-IPC004,

BW-IPC004A, BW-IPC006, BW-IPC008

Difference Description : Only the color and model's name is different

Applicant : Shenzhen MIRODDI Technology Co., Ltd

Address Yongfengtian Industrial Garden, The 3rd Industrial Park Of Fenghuang,

Fuyong Street, Baoan District, Shenzhen, China

Manufacturer : Shenzhen MIRODDI Technology Co., Ltd

Address Yongfengtian Industrial Garden, The 3rd Industrial Park Of Fenghuang,

Fuyong Street, Baoan District, Shenzhen, China

Test Result according to the standards on page 4:	Positive
Startdards on page 4.	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

30 WI WI A K T		<u></u>
General Remarks		
Equipment Under Test		
Short description of the Equipment unde	er Test (EUT)	
EUT operation mode		
EUT configuration		
NOTE		
Related Submittal(s) / Grant (s) Modifications		
wountcations		
TEST ENVIRONMENT		
+1	At 1	
Address of the test laboratory	7117	
Test Facility		
Environmental conditions	10-60	
Configuration of Tested System Duty Cycle		
Statement of the measurement uncertair	atv	
Equipments Used during the Test		
Summary of Test Result		
TEST CONDITIONS AND RESU	JLTS	
3 00		
Conducted Emissions Test	NI N	
Radiated Emission and Bandedge Test		
6dB Bandwidth Measurement	1,50	
Maximum Peak Output Power		
Power Spectral Density Measurement		
Spurious RF Conducted Emission and B	Sandedge Sandedge	
Antenna Requirement	20.	
1 7	- chl	
TEST SETUP PHOTOS OF THE	ALL TOU	

V1.0 Page 4 of 55 Report No.: CTL1601180219-WF

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

ANSI C63.4-2014

KDB Publication No. 558074 D01 v03r03Guidance on Measurements for Digital Transmission Systems

V1.0 Page 5 of 55 Report No.: CTL1601180219-WF

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Jan. 18, 2016
Testing commenced on	:	Jan. 18, 2016
Testing concluded on	:	Feb. 23, 2016

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	 •	120V / 60 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	0	Other (specified in blank bel	ow	

Description of the test mode

IEEE 802.11b/g/n(HT20): Thirteen channels are provided to the EUT, but only eleventh channels used for USA and Canada.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437	No.	8
7	2442	- C	50/

IEEE 802.11n (HT40)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
3	2422	8	2447
4	2427	9	2452
5	2432		
6	2437		
7	2442		

2.3. Short description of the Equipment under Test (EUT)

IP CAMERA, support 802.11b/g/n.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

V1.0 Page 6 of 55 Report No.: CTL1601180219-WF

2.4. EUT operation mode

Test Mode:

1. The EUT has been tested under normal operating condition.

2. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. Channel low (2412MHz), mid (2437MHz) and high (2462MHz) for 802.11b/g/n(HT20) and Channel low (2422MHz), mid (2437MHz) and high (2452MHz) for 802.11 n HT40 with highest data rate are chosen for full testing.

3. Test Mode:

Test Mode(TM)	Description	Remark
1	Transmitting	802.11 b
		2412MHz, 2437MHz, 2462MHz
2	Transmitting	802.11 g
		2412MHz, 2437MHz, 2462MHz
3	Transmitting	802.11 n HT20
		2412MHz, 2437MHz, 2462MHz
4	Transmitting	802.11 n HT40
		2422MHz, 2437MHz, 2452MHz

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

 \bigcirc - supplied by the manufacturer

supplied by the lab

Shenzhen MIRODDI Technology Co.,

O AC adapter Manufacturer : Ltd

Model No.: CBD0502000

Notebook PC(FCC DOC Approval)
 Manufacturer : DELL
 Model No. : PP18L

2.6. NOTE

1. The EUT is a IP CAMERA, The functions of the EUT listed as below:

	Test Standards	Reference Report
W/I ANI 902 11b/g 902 11p	FCC Part 15 Subpart C (Section15.247)	CTL1601180219-WF
WLAN 802.11b/g, 802.11n	FCC Per 47 CFR 2.1091(b)	CTL1601180219-WM

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
802.11b	$\sqrt{}$	_	_	_
802.11g	$\sqrt{}$	_	_	_
802.11n(20MHz)	$\sqrt{}$	_	_	_
802.11n(40MHz)	\checkmark	_	_	_

3. The EUT incorporates a MIMO function, Physically, the EUT provides two completed transmitter and two completed receivers.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCCID: 2AHDPBW-IPC002 filing to comply with of the FCC part15.247 Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 8 of 55 Report No.: CTL1601180219-WF

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 (2013) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Configuration of Tested System

Connection Diagram

EUT

A

Signal Cable Type
A

Coaxial Cable
Shielded, >5m

3.5. Duty Cycle

Operated Mode for Worst Duty Cycle						
Operated norma	Operated normally mode for worst duty cycle					
Operated test n	node for worst duty	cycle				
Mode	Mode Duty Cycle (%) Duty Factor (dB)					
11b 100 0						
11g 100 0						
11n HT20	0					
11n HT40 100 0						

3.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	19		
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	1~12.75GHz	4.32dB	(1)
Radiated Emission	12.75GHz-25 GHz	4.68dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

Chi Testing

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.7. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
ULTRA-ROADBAND ANTENNA	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	Daze	ZN30900A	N/A	2015/05/19	2016/05/18
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
ISN	FCC	F-071115- 1057-1-09	11229	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2015/06/02	2016/06/01
Radio Communication Tester	R&S	CMU200	115419	2015/05/22	2016/05/21
Temperature/Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2015/05/20	2016/05/19
Wideband Peak Power Meter+Power sensor	Anritsu	ML2487B +MA2411B	110553 +100345	2015/05/20	2016/05/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2015/05/20	2016/05/19
High-Pass Filter	K&L	9SH10- 2700/X12750 -O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10- 1375/U12750 -O/O	TeCN/A	2015/05/20	2016/05/19
RF Cable	HUBER+SUHNER	RG214	N/A	2015/05/20	2016/05/19

3.8. Summary of Test Result

FCC PART 15		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
AC Power Conducted Emission	Normal Link	11 Mbps	1
KX N	11b/DSSS	11 Mbps	1/6/11
Maximum Peak Conducted Output Power Power Spectral Density	11g/OFDM	54 Mbps	1/6/11
6dB Bandwidth Spurious RF conducted emission	11n(20MHz)/OFDM	65Mbps	1/6/11
Opullous IXI Colludeted Cillisatori	11n(40MHz)/OFDM	150Mbps	3/6/9
2 40	11b/DSSS	11 Mbps	1/6/11
	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 30MHz~1GHz	11n(20MHz)/OFDM	65Mbps	<mark>1/6/1</mark> 1
13	11n(40MHz)/OFDM	150Mbps	3/6/9
CX	11b/DSSS	11 Mbps	1/6/11
	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	65Mbps	1/6/11
	11n(40MHz)/OFDM	150Mbps	3/6/9
	11b/DSSS	11 Mbps	1/11
	11g/OFDM	54 Mbps	1/11
Band Edge Compliance of RF Emission	11n(20MHz)/OFDM	65Mbps	1/11
	11n(40MHz)/OFDM	150Mbps	3/9

Note1: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

V1.0 Page 12 of 55 Report No.: CTL1601180219-WF

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST CONFIGURATION

TEST PROCEDURE

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Гиодиолом		Maximum RF Line Voltage (dBμv)					
Frequency (MHz)	CLA	SS A	CLASS B				
(···· · -)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - <mark>0</mark> .50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

- 1. Please follow the guidelines in ANSI C63.4-2009.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

The RBW/VBW for 150KHz to 30MHz: 9KHz

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL160126600 fin"

1/26/2016	9:52AM						
Frequen Mi	cy Level Hz dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.5685	01 38.90	10.2	56	17.1	QP	N	GND
21.5880	01 48.50	11.0	60	11.5	QP	N	GND
27.0015	01 51.80	11.2	60	8.2	QP	N	GND
28.9410	01 40.10	11.2	60	19.9	QP	N	GND
29.3730	01 40.90	11.3	60	19.1	QP	N	GND
29.4360	01 40.10	11.3	60	19.9	QP	N	GND

MEASUREMENT RESULT: "CTL160126600_fin2"

PΕ
GND

SCAN TABLE: "Voltage (9K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL160126601_fin"

1/26/	2016 9:5	5AM						
Fr	equency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0	.568501	44.70	10.2	56	11.3	QP	L1	GND
0	.573001	43.30	10.2	56	12.7	QP	L1	GND
0	.622501	39.30	10.2	56	16.7	QP	L1	GND
21	.588001	47.40	11.0	60	12.6	QP	L1	GND
26	.416501	38.50	11.2	60	21.5	QP	L1	GND
27	.001501	47.10	11.2	60	12.9	QP	L1	GND

MEASUREMENT RESULT: "CTL160126601_fin2"

	/2016											
F:	requenc MH	-	Level dBµV		.sd dB	Limi dBµ		Margi:		etector	Line	PE
	0.54600	1	33.30	10	. 2	4	6	12.	7 A	V	L1	GND
	0.59100	1	28.50	10	. 2	4	6	17.	5 A	V	L1	GND
-	0.69000	1	29.00	10	.2	4	6	17.	0 A	V	L1	GND
2:	1.58800	1	38.70	11	.0	5	0	11.	3 A	V	L1	GND
2:	1.61050	1	39.00	11	.0	5	0	11.	0 A	V	L1	GND
2	7.00150	1	42.20	11	. 2	5	0	7.	8 A	V	L1	GND

V1.0 Page 15 of 55 Report No.: CTL1601180219-WF

4.2. Radiated Emission and Bandedge Test

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

V1.0 Page 16 of 55 Report No.: CTL1601180219-WF

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)			
RA = Reading Amplitude	AG = Amplifier Gain			
AF = Antenna Factor				

TEST PROCEDURE

- 1. The testing follows FCC KDB Publication No. 558074 D01 v03r03(Measurement Guidelines of DTS).
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane below 1GHz and 1.5m above ground plane above 1GHz.
- 3. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Span = wide enough to fully capture the emission being measured; RBW = 1 MHz for f >1 GHz, 100 kHz for f < 1 GHz; VBW ≧ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Repeat above procedures until all frequency measurements have been completed.

Note:

When doing emission measurement above 1GHz, the horn antenna will be bended down a little (as horn antenna has the narrow beamwidth) in order to keeping the antenna in the "cone of radiation" of EUT. The 3dB beamwidth is 60 degrees for H-plane and 90 degrees for E-plane.

Remark: For above 1GHz, RBW 1MHz, VBW 3MHz, Peak detector for PK value, RMS detector for AV value.

LIMIT

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

TEST RESULTS

9KHz-30MHz:

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Dstance extrapolation factor= 40 log (specific distance/ test distance) (dB); Limit line= specific limits (dBuV) + distance extrapolation factor.

Below 1GHz:

The radiated measurement are performed the each test mode (b/g/n) and channel (low/mid/high), the datum recorded below (802.11b mode, the middle channel) is the worst case for all the test mode and channel.

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL160128600 red"

1/28/2016 9:3	32AM							
Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
175.500000	33.10	12.9	43.5	10.4		0.0	0.00	HORIZONTAL
206.540000	34.80	14.1	43.5	8.7		0.0	0.00	HORIZONTAL
239.520000	33.10	13.7	46.0	12.9		0.0	0.00	HORIZONTAL
336.520000	36.00	16.3	46.0	10.0		0.0	0.00	HORIZONTAL
383.080000	35.00	17.7	46.0	11.0		0.0	0.00	HORIZONTAL
864.200000	35.20	25.3	46.0	10.8		0.0	0.00	HORIZONTAL

SWEEP TABLE: "test (30M-1G)"

NEEP TABLE.
Short Description:
Stop Detector Meas.
Time Field Strength

Transducer

Frequency Frequency
30.0 MHz 1.0 GHz MaxPeak Bandw. 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL160128601 red"

1/28/2016	9:33AM
-----------	--------

1/20/2010 7.0	JUAN							
Frequency MHz	Level dBµV/m			Margin dB	Det.	Height cm	Azimuth deg	Polarization
107.600000	34.70	12.9	43.5	8.8		0.0		VERTICAL
111.480000	38.90	13.7	43.5	4.6		0.0	0.00	VERTICAL
142.520000	35.90	14.2	43.5	7.6		0.0	0.00	VERTICAL
175.500000	34.70	12.9	43.5	8.8		0.0	0.00	VERTICAL
206.540000	40.60	14.1	43.5	2.9		0.0	0.00	VERTICAL
239.520000	42.00	13.7	46.0	4.0		0.0	0.00	VERTICAL

Above 1GHz:

802.11b

СН	Antenna	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2412	83.5	30.8	114.3	Fundamental	1	PK
	V	3200	13.6	31.1	44.7	54(note3)	9.3	PK
	V	2390	37.9	32.2	70.1	74	3.9	PK
	V	2390	19.4	32.2	51.6	54	2.4	AV
1	V	2400	40.3	32.1	72.4	74	1.6	PK
' '	V	2400	20.5	32.1	52.6	54	1.4	AV
	V	4824	7.1	42.6	49.7	54(note3)	4.3	PK
	V	7236	23.6	46.5	70.1	74	3.9	PK
	V	7236	0.7	46.5	47.2	54	6.8	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2437	83.6	31.2	114.8	Fundamental	/	PK
	V	3200	12.5	31.1	43.6	54(note3)	10.4	PK
6	V	4876	17.5	32.8	50.3	54(note3)	3.7	PK
0	V	7311	23.0	46.8	69.8	74	4.2	PK
	V	7311	3.0	46.1	49.1	54	4.9	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2462	82.8	30.9	113.7	Fundamental	D.	PK
	V	3200	13.1	31.1	44.2	54(note3)	9.8	PK
	V	2483.5	34.9	30.2	65.1	74	8.9	PK
11	V	2483.5	15.5	30.2	45.7	54	8.3	AV
''	V	4927	15.8	32.5	48.3	54(note3)	5.7	PK
	V	7386	23.8	46.3	70.1	74	3.9	PK
	V	7386	3.2	46.3	49.5	54	4.5	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK

Note: 1. Measure Level = Reading Level + Factor.

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

^{4.} H and V polarity all have been tested ,only worse case is reported.

802.11g

СН	Antenna	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2411.9	82.1	30.8	112.9	Fundamental	1	PK
	V	3200	9.4	31.1	40.5	54(note3)	13.5	PK
	V	2390	36.6	32.2	68.8	74	5.2	PK
	V	2390	17.2	32.2	49.4	54	4.6	AV
1	V	2400	40.2	32.1	72.3	74	1.7	PK
'	V	2400	18.0	32.1	50.1	54	3.9	AV
	V	4824	7.0	42.6	49.6	54(note3)	4.4	PK
	V	7236	21.6	46.5	68.1	74	5.9	PK
	V	7236	3.8	46.5	50.3	54	3.7	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2437	81.9	31.2	113.1	Fundamental	1	PK
	V	3200	11.0	31.1	42.1	54(note3)	11.9	PK
6	V	4876	16.1	32.8	48.9	54(note3)	5.1	PK
"	V	7311	23.6	46.8	70.4	74	3.6	PK
	V	7311	3.0	46.1	49.1	54	4.9	AV
	Н	24000 //	11.7	38.9	50.6	54	3.4	PK
	V	2462.3	82.7	30.9	113.6	Fundamental	1	PK
	V	3200	11.5	31.1	42.6	54(note3)	11.4	PK
	V	2483.5	34.5	30.2	64.7	74	9.3	PK
11	V	2483.5	15.0	30.2	45.2	54	8.8	AV
''	V	4927	19.3	32.5	51.8	54(note3)	2.2	PK
	V	7386	23.0	46.3	69.3	74	4.7	PK
	V	7386	1.2	46.3	47.5	54	6.5	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK

Note: 1. Measure Level = Reading Level + Factor.

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

^{4.} H and V polarity all have been tested ,only worse case is reported.

802.11n(20MHz)

002.1	1n(20MHz)						
СН	Antenna	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2411.9	82.9	30.8	113.7	Fundamental	/	PK
	V	3200	9.7	31.1	40.8	54(note3)	13.2	PK
	V	2390	36.6	32.2	68.8	74	5.2	PK
	V	2390	16.9	32.2	49.1	54	4.9	AV
1	V	2400	38.7	32.1	70.8	74	3.2	PK
'	V	2400	18.2	32.1	50.3	54	3.7	AV
	V	4824	7.2	42.6	49.8	54(note3)	4.2	PK
	V	7236	20.7	46.5	67.2	74	6.8	PK
	V	7236	2.6	46.5	49.1	54	4.9	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2437	82.8	31.2	114.0	Fundamental	/	PK
	V	3200	10.0	31.1	41.1	54(note3)	12.9	PK
6	V	4876	10.6	32.8	43.4	54(note3)	10.6	PK
"	V	7311	22.8	46.8	69.6	74	4.4	PK
	V	7311	2.4	46.1	48.5	54	5.5	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2462.3	82.2	30.9	113.1	Fundamental	1/2/	PK
	V	3200	10.4	31.1	41.5	54(note3)	12.5	PK
	V	2483.5	35.3	30.2	65.5	74	8.5	PK
11	V	2483.5	13.0	30.2	43.2	54	10.8	AV
''	V	4927	17.1	32.5	49.6	54(note3)	4.4	PK
	V	7386	23.9	46.3	70.2	74	3.8	PK
	V	7386	2.3	46.3	48.6	54	5.4	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK

Note: 1. Measure Level = Reading Level + Factor.

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

^{4.} H and V polarity all have been tested ,only worse case is reported.

802.11n(40MHz)

СН	Antenna	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2422	83.6	30.8	114.4	Fundamental	1	PK
	V	3200	11.7	31.1	42.8	54(note3)	11.2	PK
	V	2390	37.9	32.2	70.1	74	3.9	PK
	V	2390	17.0	32.2	49.2	54	4.8	AV
3	V	2400	39.4	32.1	71.5	74	2.5	PK
3	V	2400	18.1	32.1	50.2	54	3.8	AV
	V	4844	5.2	42.9	48.1	54(note3)	5.9	PK
	V	7266	22.1	46.8	68.9	74	5.1	PK
	V	7266	0.5	46.8	47.3	54	6.7	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2437	82.6	31.2	113.8	Fundamental	/	PK
	V	3200	13.5	31.1	44.6	54(note3)	9.4	PK
6	V	4876	17.1	32.8	49.9	54(note3)	4.1	PK
"	V	7311	23.8	46.8	70.6	74	3.4	PK
	V	7311	3.7	46.1	49.8	54	4.2	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK
	V	2452	82.3	30.9	113.2	Fundamental	1	PK
	V	3200	14.1	31.1	45.2	54(note3)	8.8	PK
	V	2483.5	35.0	30.2	65.2	74	8.8	PK
9	V	2483.5	16.5	30.2	46.7	54	7.3	AV
9	V	4967	15.4	32.5	47.9	54(note3)	6.1	PK
	V	7356	22.3	46.1	68.4	74	5.6	PK
	V	7356	0.8	46.1	46.9	54	7.1	AV
	Н	24000	11.7	38.9	50.6	54	3.4	PK

Note: 1. Measure Level = Reading Level + Factor.

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

^{4.} H and V polarity all have been tested ,only worse case is reported.

V1.0 Page 23 of 55 Report No.: CTL1601180219-WF

4.3. 6dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

1. The testing follows FCC KDB Publication No. 558074 D01 v03r03(Measurement Guidelines of DTS).

11

- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.
- 4. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST RESULTS

Mode	CHANNEL	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
	1	9.787	0.5	PASS
802.11b	6	9.141	0.5	PASS
	11 💝	9.135	0.5	PASS
	1 0	16.56	0.5	PASS
802.11g	6	16.54	0.5	PASS
	11	16.57	0.5	PASS
	1 0	17.78	0.5	PASS
802.11n HT20	6	17.76	0.5	PASS
11120	11	17.78	0.5	PASS
	3	36.52	0.5	PASS
802.11n HT40	6	36.50	TeV 0.5	PASS
	9	36.52	0.5	PASS

For 802.11b:

CH1

CH11

For 802.11g:

CH1

For 802.11n (20MHz) Mode:

CH1

For 802.11n (40MHz) Mode:

CH3

V1.0 Page 28 of 55 Report No.: CTL1601180219-WF

4.4. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to C63.10:2013 and KDB558074 D01 v03r02, The EUT was directly connected to the power meter / spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

Use the wideband power meter to test peak power and record the result.

LIMIT

The Peak Output Power Measurement limits are 30dBm.

TEST RESULTS

Mode	Channel	Peak Power Output (dBm)	Peak Power Limit (dBm)	PASS / FAIL
	1	19.32	30	PASS
	6	19.57	30	PASS
802.11b	11	19.69	30	PASS
	1 0	17.77	30	PASS
	6 5	18.06	30	PASS
802.11g	11	18.25	30	PASS
	1	16.92	30	PASS
802.11n	6	17.02	30	PASS
HT20	11	17.36	30	PASS
	3	16.07	30	PASS
802.11n	6	16.43	30	PASS
HT40	9	16.92	30	PASS

Note: The test results including the cable lose.

V1.0 Page 29 of 55 Report No.: CTL1601180219-WF

4.5. Power Spectral Density Measurement

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r03for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW ≥ 10KHz, SPAN to 1.5 times greater than the EBW,.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

_			and have	1.4	
	Channel	Channel Frequency (MHz)	PSD (dBm/3KHz)	Maximum limit (dBm/ 3KHz)	PASS / FAIL
802.1	lb 1	2412	-11.364	8	PASS
	6	2437	-11.264	8	PASS
	11	2462	-11.070	8	PASS
802.11	<u> </u>	2412	-15.730	C 8 8	PASS
002.11	6	2437	-15.258	8	PASS
	11	2462	-14.997	8//	PASS
802.11nH2	20 1	2412	-16.709	8	PASS
	6	2437	-16.314	8	PASS
	11	2462	-16.089	8	PASS
802.11nH	40 3	2422	-19.994	8	PASS
	6	2437	-20.237	8	PASS
	9	2452	-20.622	8 Te	PASS
				TITLE ASSESSED.	

For 802.11b Mode:

CH1

CH6

CH1

Report No.: CTL1601180219-WF

For 802.11n (20MHz) Mode:

CH1

СН6

For 802.11n (40MHz) Mode:

CH3

V1.0 Page 34 of 55 Report No.: CTL1601180219-WF

4.6. Spurious RF Conducted Emission and Bandedge

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r03for compliance to FCC 47CFR 15.247 requirements.

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measure frequeny range from 30MHz to 26.5GHz.

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

TEST RESULTS

Photos of Spurious RF Conducted Emission Measurement

For 802.11b Mode:

CH₆

For 802.11g Mode:

For 802.11n (20MHz) Mode:

For 802.11n (40MHz) Mode:

V1.0 Page 46 of 55 Report No.: CTL1601180219-WF

4.8. Antenna Requirement

STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

ANTENNA CONNECTED CONSTRUCTION

The directional gains of antenna used for transmitting is 2.5 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External Photos of EUT

Internal Photos of EUT

