

Introdução à metagenômica: curso prático

Obtenção de perfis taxonômicos e funcionais

Fluxo típico de uma análise metagenômica

Breitwieser et al. (2019)

Perfis baseados em sequências curtas (read-based profiling)

Perfis baseados em sequências curtas são

Rápidos de obter Quantitativos

De certa maneira ultrapassados

- # Montagem de metagenomas é preferível
- # Pode gerar uma visão geral preliminar, quick and dirty

Quince et al. (2017)

Abordagens para obtenção de perfis taxonômicos

Mapeamento de sequências agrupamento composicional

- # Analisa todas as sequências
- # Bancos de genomas referências
- # Mapeamento: lento, requer bastante processamento e RAM
- # Agrupamento composicional: mais rápido mas menos preciso

<u>Bengtsson-Palme (2018)</u>

Abordagens para obtenção de perfis taxonômicos

Análise de barcoding

- # Analise genes específicos
 (por exemplo, 16S rRNA)
- # Bancos de sequências curadas
 (por exemplo, SILVA)
- # Muito mais rápido do que as outras abordagens, mas resolução depende do gene utilizDO

<u>Bengtsson-Palme (2018)</u>

Abordagens para obtenção de perfis taxonômicos: como escolher?

Análise de todas sequências (mapeamento de sequências e agrupamento composicional) sofre com bancos de genomas limitados

Mais adequado para ambientes
 melhor descritos (por exemplo,
 microbioma humano)

Análise de *barcoding* oferece menor resolução

Mais adequado para ambientes
 com uma alta fração de
 microrganismos desconhecidos
 (por exemplo, solo)

Abordagens para obtenção de perfis funcionais

Perfis amplos *vs* específicos

- # Bancos de dados amplos:
 todo universo funcional
 (e.g. KEGG, PFAM)
- # Bancos de dados específicos:
 foco em um ou mais processos
 (e.g. CAZy, CARD)

Bengtsson-Palme (2018)

Abordagens para obtenção de perfis taxonômicos: como escolher?

Bancos de dados amplos fornecem uma visão geral do potencial funcional das comunidades microbianas

Adequado para investigar
 grandes diferenças entre
 ambientes

Bancos de dados específicos geralmente são melhor curados e podem fornecer informações à nível de substrato

Adequado para investigar
 variantes de genes em ambientes
 relacionados

Interpretação de perfis taxonômicos e funcionais

Análises comparativas

Estatística

- # Univariada (e.g. ANOVA individual
 para cada táxon/gene)
- # Multivariada (e.g. PERMANOVA, ordenamento, teste de Mantel)

Normalização

- # Tamanho da biblioteca
- # Abundância (e.g gene *rpoB*)

Bengtsson-Palme (2018)

Pontos fortes e fracos de perfis baseados em sequências curtas

Abrangência	Fornecer uma imagem agregada da função ou estrutura da comunidade, mas é baseado apenas na pequena fração existente em bancos de dados		
Complexidade da comunidade	Pode lidar com comunidades complexas dependendo da profundidade de sequenciamento e cobertura em bancos de dados		
Novidade	Não possibilita a resolução de organismos distantes de genomas de referência		
Demanda computacional	Pode ser realizado de forma eficiente permitindo grandes meta—análises		
Metabolismo à nível de genoma	Normalmente fornece apenas o metabolismo agregado da comunidade; conexões com filogenia só são possíveis no contexto de genomas de referência		
Curadoria manual	Geralmente não requer curadoria manual, mas a seleção de genomas de referência a serem usados pode envolver supervisão humana		
Integração com genômica	Perfis obtidos não podem ser colocados diretamente no contexto de genomas derivados de isolados cultivados		

Quince et al. (2017)

Armadilhas de perfis baseados em sequências curtas

Nível de curadoria do banco de dados

As sequências são verificadas experimentalmente?

Abrangência do banco de dados

Tanto taxonômica quanto funcionalmente

Troca entre velocidade vs sensibilidade

Por exemplo, BLAST vs DIAMOND

Escolha de limites de identidade, bitscore, e-value, cobertura

Não é possível generalizar para todos os genes

Lembre-se: faça sempre testes de sanidade

Principalmente para resultados novos/não esperados:

- # Refaça as análises com limites mais estritos
- # Refaça com programas e bancos de dados diferente
- # Investigue outros genes pertencentes à mesma rota metabólica

Alguns exemplos de programas

Table 3. Metagenomic classifiers, aligners and profilers				
Tool	Synopsis	Reference	Web site	
Kraken	Fast taxonomic classifier using in-memory k-mer search of metagenomics reads against a database built from multiple genomes	[64]	https://ccb.jhu.edu/software/kraken/	
Kraken-HLL	Extension of Kraken counting unique k-mers for taxa and allowing multiple databases		https://github.com/fbreitwieser/kraken-hll	
CLARK(-S)	Fast taxonomic classifier using in-memory k-mer search of metagenomics reads against a database built from completed genomes. S extension uses spaced k-mer seeds for better classification	[65, 66]	http://clark.cs.ucr.edu	
Kallisto	Taxonomic profiler using pseudo-alignment with k-mers using techniques based on transcript (RNA-seq) quantification	[67]	https://github.com/pachterlab/kallisto	
k-SLAM	Taxonomic classifier using database of nonoverlap- ping k-mers in genomes. Reads are split into k-mers, and overlaps found by lexicographical ordering are pseudo-assembled	[68]	https://github.com/aindj/k-SLAM	
Kaiju	Fast taxonomic classifier against protein sequences using FM-index with reduced amino acid alphabet	[69]	https://github.com/bioinformatics-centre/kaiju	
DIAMOND	Protein homology search using spaced seeds with a reduced amino acid alphabet, 2000–20 000 times faster than BLASTX	[70]	https://github.com/bbuchfink/diamond	
BLAST+	Highly sensitive nucleotide and translated-nucleo- tide protein alignment	[61, 71]	https://blast.ncbi.nlm.nih.gov	
MEGAN6/CE	Desktop and Web metagenomics analysis suite. Uses BLAST or diamond to match sequences and assigns LCA of matches	[72, 73]	http://ab.inf.uni-tuebingen.de/software/megan6/	
DUDes	Top-down assignment of metagenomics reads	[74]	https://sourceforge.net/projects/dudes/	
Taxonomer	Web-based metagenomics classifier including bin- ning and visualization	[75]	http://taxonomer.iobio.io/	
GOTTCHA	Taxonomic profiler that maps reads against short unique subsequences ('signature') at multiple taxonomic ranks	[76]	http://lanl-bioinformatics.github.io/GOTTCHA/	
LMAT(-ML)	K-mer-based taxonomic read classifier using exten- sive database including draft genomes and eu- karyotes. ML (Marker Library) extension reduces RAM requirements by stringent pruning of non-in- formative and overlapping k-mers	[77, 78]	https://sourceforge.net/projects/lmat/	
taxator-tk	Uses BLAST or LAST output for binning and taxo- nomic assignment via overlapping regions and pairwise distance measures	[79]	https://github.com/fungs/taxator-tk	
Centrifuge	Fast taxonomic classifier using database compressed with FM-index, database and output format simi- lar to Kraken	[80]	http://ccb.jhu.edu/software/centrifuge/	
MetaPhlAn 2	Marker gene-based taxonomic profiler	[81]	https://bitbucket.org/biobakery/metaphlan2	
mOTU	Taxonomic profiler based on a set of 40 prokaryotic marker genes	[82]	http://www.bork.embl.de/software/mOTU/	
Mash	MinHash-based taxonomic profiler enabling super- fast overlap estimations	[83]	http://mash.readthedocs.io	
sourmash	Alternative implementation of MinHash algorithm using fast searches with sequence bloom trees for taxonomic profiling	[84]	https://github.com/dib-lab/sourmash	
PanPhlAn	Pan-genome-based phylogenomic analysis	[2]	http://segatalab.cibio.unitn.it/tools/panphlan/	

Breitwieser et al. (2019)