Contours of unregularized error function

Elastic net

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} (Y - X\beta)^T (Y - XB) + \lambda(\alpha \|\beta\|_1 + (1 - \alpha) \|\beta\|_2^2)$$

Lasso

19 non-zero coefficients

Elastic Net

39 non-zero coefficients, but with smaller magnitudes

Machine Learning

Lecture 5: Regularization; Bias-Variance tradeoff

The lectures are mainly offered on white board accompanied by some slides.

Hesam Montazeri Department of Bioinformatics, IBB, University of Tehran

Polynomials having various orders M

Magnitude of the coefficients increases with p

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
$w_8^{\dot\star}$				-557682.99
w_9^\star				125201.43

The increasing size of the data set reduces the over-fitting problem

Regularized error function

Bias-variance decomposition

Whiteboard notes

Example: sine target

$$f:[-1,1] \to \mathbb{R}$$
 $f(x) = \sin(\pi x)$

Only two training examples! N=2

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

$$\mathcal{H}_1$$
: $h(x) = ax + b$

Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

Approximation - \mathcal{H}_0 versus \mathcal{H}_1

 \mathcal{H}_0

 \mathcal{H}_1

Learning - \mathcal{H}_0 versus \mathcal{H}_1

 \mathcal{H}_0

 \mathcal{H}_1

Bias and variance - \mathcal{H}_0

Bias and variance - \mathcal{H}_1

and the winner is ...

A familiar example

with regularization

and the winner is ...

without regularization

 $\mathsf{bias} = \mathbf{0.21}$

var = 1.69

bias = 0.23

var = 0.33

100 datasets n=100 P=25

[Bishop]

References

References

- Pattern Recognition and Machine Learning by Christopher Bishop
- Learning from data by Abu-Mostafa, Y.S., Magdon-Ismail, M. and Lin, H.T.
 - Slides 10-18 are from the lectures 8 and 12 of Learning from data course at Caltech
 - https://work.caltech.edu/lectures.html