# 旋转图像

# 题目描述

给定一个 n×n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

| 1 | 2 | 3 | 7 |
|---|---|---|---|
| 4 | 5 | 6 | 8 |
| 7 | 8 | 9 | 9 |

| 7 | 4 | 1 |
|---|---|---|
| 8 | 5 | 2 |
| 9 | 6 | 3 |

示例 1:

输入: matrix = [[1,2,3],[4,5,6],[7,8,9]]

输出: [[7,4,1],[8,5,2],[9,6,3]]

| 5  | 1  | 9  | 11 |
|----|----|----|----|
| 2  | 4  | 8  | 10 |
| 13 | 3  | 6  | 7  |
| 15 | 14 | 12 | 16 |



| 15 | 13 | 2  | 5  |
|----|----|----|----|
| 14 | 3  | 4  | 1  |
| 12 | 6  | 8  | 9  |
| 16 | 7  | 10 | 11 |

```
示例 2:
输入: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:
输入: matrix = [[1]]
输出: [[1]]

示例 4:
输入: matrix = [[1,2],[3,4]]
输出: [[3,1],[4,2]]

提示:
matrix.length == n
matrix[i].length == n
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
```

## 解析

### 方法1

- 由于需要进行原地操作
- 首先对矩阵进行上下反转
- 再对矩阵按照对角线反转



### 代码实现

### 方法1:

#### **CPP**

```
class Solution {
public:
   void rotate(vector<vector<int>>& matrix) {
        int rows = matrix.size();
        int cols = rows;
        if (rows <= 1)
            return ;
        // 先进行上下的反转
        for (int i = 0; i < cols ; i++)</pre>
        {
            for (int j = 0; j < (rows / 2); j++)
                int temp = matrix[j][i];
                matrix[j][i] = matrix[rows - j - 1][i];
                matrix[rows - j - 1][i] = temp;
            }
        }
        // 再进行对角线反转
        for (int i = 0; i < rows; i++)
        {
            for (int j = 0; j < i; j++)
            {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
       }
   }
};
```