MATH 5591H HOMEWORK 11

BRENDAN WHITAKER

14.2 Exercises

- 3. Determine the Galois group of $(x^2-2)(x^2-3)x^2-5$). Determine all the subfields of the splitting field of this polynomial.
 - We draw the subfield lattice of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}$. Note that every nonidentity element is of order 2, and the whole group is of order 8, so the Galois group is isomorphic to \mathbb{Z}_2^3 .

10. Determine the Galois group of the splitting field over \mathbb{Q} of $x^8 - 3$.

Let
$$\alpha = \sqrt[8]{3}$$
 and $\omega = e^{2\pi i/8}$. Note:

$$\omega^2 = e^{2\pi i/4} = e^{\pi i/2} = \sqrt{e^{\pi i}} = \sqrt{-1} = i.$$

And $\omega = \sqrt{e^{2\pi i/4}} = \sqrt{i} = \frac{1+i}{\sqrt{2}}$. Note $\sqrt{2} = \frac{1+i}{\omega} = \frac{1+\omega^2}{\omega}$. So $\sqrt{2} \in \mathbb{Q}(\omega)$. Now the roots of $f(x) = x^8 - 3$ are $\alpha \omega^k$ where k = 0, ..., 7, and thus the splitting field is $\mathbb{Q}(\alpha, \omega)$. We write out our options for constructing the automorphisms in the Galois group. We have 8 options to map α to and 4 options to map ω to (since $\varphi(8) = 4$):

$$\alpha \mapsto \alpha \omega^k, k = 0, ..., 7$$

$$\omega \mapsto \omega, \omega^3, \omega^5, \omega^7.$$
(1)

Since none of these combinations give us equivalent maps, we have exactly $8\cdot 4=32$ automorphisms in our group, thus $|\mathrm{Gal}(f(x))|=|G|=32$. So let $\varphi_{k_1,l_1},\varphi_{k_2,l_2}\in G$, where $\varphi_{k,l}:\alpha\mapsto\alpha\omega^k,\varphi_{k,l}:\omega\mapsto\omega^l$. Then we have:

$$\varphi_{k_2,l_2} \circ \varphi_{k_1,l_1}(\alpha) = \varphi_{k_2,l_2}(\alpha \omega^{k_1}) = \alpha \omega^{k_2} \omega^{k_1 l_2} = \alpha \omega^{k_2 + k_1 l_2}
\varphi_{k_2,l_2} \circ \varphi_{k_1,l_1}(\omega) = \varphi_{k_2,l_2}(\omega^{l_1}) = \omega^{l_1 l_2}.$$
(2)

Thus $\varphi_{k_2,l_2} \circ \varphi_{k_1,l_1} = \varphi_{k_2+k_1l_2 \mod 8,l_1l_2 \mod 8}$, and this multiplication rule completely defines the Galois group. Furthermore, from this we see $G \cong \mathbb{Z}_8 \rtimes V_4$, the nontrival semidirect product of \mathbb{Z}_8 and the Klein 4-group.

- 13. Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.
 - *Proof.* Suppose the Galois group of the splitting field of a cubic f(x) is \mathbb{Z}_3 . Note since this is a group of the form \mathbb{Z}_p for p prime, we know that it has non nontrivial proper subgroups. Suppose we had an non-real root. Then we know that if K/\mathbb{Q} is the splitting field of f, then $i \in K \Rightarrow \mathbb{Q}(i)/\mathbb{Q}$ is a subextension of K. But note that $\mathbb{Q}(i)/\mathbb{Q}$ has degree 2, and the Galois theorem gives us a bijection between nontrivial subgroups of the Galois group and nontrivial subextensions, hence $[K:\mathbb{Q}]=3$. If $\mathbb{Q}(i)$ were a subextension of K, we would have 2|3, a contradiction, so all roots must be real. \square

14. Show that $K = \mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e., is a Galois extension of degree 4 with a cyclic Galois group.

Proof. Recall that an extension is Galois if and only if it is the splitting field of a separable polynomial. Note that $\alpha = \sqrt{2 + \sqrt{2}}$ is a root of $f(x) = (x^2 - 2)^2 - 2 = x^4 - 4x^2 + 2$. We show that this is the minimal polynomial of α by showing it is irreducible. Note that $2 \nmid 1$, the leading coefficient, and $2 \mid -4, 2$, and $2^2 \nmid 2$, so it is irreducible by Eisenstein's criterion. So $\deg \alpha = 4 \Rightarrow [K : \mathbb{Q}] = 4$. Note the roots of f are $\pm \sqrt{2 \pm \sqrt{2}}$, and so it has no multiple roots \Rightarrow it is separable. So we need only prove that K is the splitting field of f. Clearly we have $x - \alpha$ and $x + \alpha$ for the roots of the form $\pm \sqrt{2 + \sqrt{2}}$. So we need only show $\sqrt{2 - \sqrt{2}} \in K$. Note since $\alpha^2 = 2 + \sqrt{2}$, we know $\sqrt{2} \in K$. But $\frac{\sqrt{2}}{\sqrt{2 + \sqrt{2}}} \frac{\sqrt{2 - \sqrt{2}}}{\sqrt{2 - \sqrt{2}}} = \frac{\sqrt{2}\sqrt{2 - \sqrt{2}}}{\sqrt{4 - 2}} = \sqrt{2 - \sqrt{2}} = \beta$, thus $\pm \beta \in K$, and hence K is the splitting field of f, so K is Galois. Now note since all 3 conjugates of α also have degree 4, we know that all automorphsims of K are given by $\alpha \mapsto \alpha, -\alpha, \beta, -\beta$. Denote these by $1, \varphi_1, \ldots, \varphi_3$, respectively. Then we know:

$$\beta = \frac{\alpha^2 - 2}{\alpha}.\tag{3}$$

So:

$$\varphi_2(\beta) = \varphi_2\left(\frac{\alpha^2 - 2}{\alpha}\right) = \frac{\beta^2 - 2}{\beta} = -\frac{\sqrt{2}}{\beta} = -\alpha.$$
(4)

Thus the order of φ_2 is > 2 which means it must be 4 since our group has order 4, so we know that our group must be isomorphic to \mathbb{Z}_4 .

- 15. (Biquadratic Extensions) Let F be a field of characteristic $\neq 2$.
 - (a) if $K = F(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in F$ have the property that none of D_1, D_2, D_1D_2 is a square in F, prove that K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group.

Proof. Since D_1, D_2 are not squares, we know $F(\sqrt{D_1})/F$ and $F(\sqrt{D_2})/F$ are both extensions of degree 2. And since D_1D_2 is not a square, we know that $F(\sqrt{D_2})/F(\sqrt{D_1})$ is a nontrivial extension (has degree 2). Thus we know that K/F has degree 4. We wish to first show it is Galois. Let $\alpha = \sqrt{D_1}, \beta = \sqrt{D_2}$. Then $m_{\alpha,F} = x^2 - D_1, m_{\beta,F} = x^2 - D_2$. And since the roots of these are $\pm \alpha, \pm \beta$, we know they are both separable, so α, β are separable, so K/F is separable. Also, K is normal since the only conjugates of α, β are $-\alpha, -\beta$, so K/F is normal and separable, thus it is Galois. We enumerate the automorphisms of K in the Galois group G. We have choices of mappings:

$$\begin{array}{l}
\alpha \mapsto \alpha, -\alpha \\
\beta \mapsto \beta, -\beta.
\end{array} \tag{5}$$

So we have:

$$1: \alpha \mapsto \alpha, \quad \beta \mapsto \beta$$

$$\varphi_1: \alpha \mapsto -\alpha, \quad \beta \mapsto \beta$$

$$\varphi_2: \alpha \mapsto \alpha, \quad \beta \mapsto -\beta$$

$$\varphi_3: \alpha \mapsto -\alpha, \quad \beta \mapsto -\beta.$$
(6)

Clearly, each has order 2, so it is V_4 .

(b) Conversely, suppose K/F is a Galois extension with Gal(K/F) isomorphic to V_4 . Prove that $K = F(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in F$ have the property that none of D_1, D_2, D_1D_2 is a square in F.

Proof. Suppose K/F is Galois with G = Gal(K/F) isomorphic to V_4 . By the Galois theorem, we know that the subgroup lattice of G is in (flipped) bijection with the subextension lattice of K/F. So since we know the lattice of V_4 , we know the structure of the subextensions of K:

Since they are of degree 2, all of L_1, L_2, L_3 must be of the form $F(\sqrt{D_i})$ for some D_i not a square in F. Furthermore D_iD_j cannot be a square in F, otherwise L_i, L_j are the same extension, which is a contradiction.

14.3 Exercises

8. Determine the splitting field of the polynomial $f(x) = x^p - x - a$ over \mathbb{F}_p where $a \neq 0, a \in \mathbb{F}_p$. Show explicitly that the Galois group is cyclic. [Show $\alpha \mapsto \alpha + 1$ is an automorphism.] Proof. Suppose α is a root. Then we have $\alpha^p - \alpha + a = 0$. Behold:

$$(\alpha+1)^{p} - (\alpha+1) - a = \left(\sum_{k=0}^{p} \binom{p}{k} \alpha^{k}\right) - \alpha - 1 - a$$

$$= \left(\sum_{k=1}^{p-1} \binom{p}{k} \alpha^{k}\right) + \alpha^{p} - \alpha - a$$

$$= \sum_{k=1}^{p-1} \binom{p}{k} \alpha^{k}$$

$$= \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} \alpha^{k}.$$

$$(7)$$

We claim that $\frac{p!}{k!(p-k)!}$ is divisible by p for all integer values of k in the range [1, p-1]. Note for these values of k that $p \nmid (k!(p-k)!)$ but that p|p!, and the binomial coefficient is an integer, so we must have that $p \mid \left(\frac{p!}{k!(p-k)!}\right)$. Thus:

$$\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} \alpha^k \mod p \equiv 0.$$

And since we are over \mathbb{F}_p , we know that $\alpha+1$ must then be a root. The roots of f are $\alpha+k$ for k=0,...,p-1, hence f is separable, and so $\mathbb{F}_p(\alpha)$ is the splitting field of a separable polynomial, and thus is Galois. And we have an automorphism $\varphi:\alpha\mapsto\alpha+1$ because an inverse is given by $\alpha\mapsto\alpha-1=\alpha+p-1$, these are both field homomorphisms, and they map $\mathbb{F}_p(\alpha)\to\mathbb{F}_p(\alpha)$, so then G must be cyclic since any other automorphism maps $\alpha\mapsto\alpha+k$ which is φ^k .