Introdução a Métodos Computacionais em EDOs Notas de aula - Solução de Sistemas Não-Lineares

Prof. Yuri Dumaresq Sobral

Departamento de Matemática Universidade de Brasília

2025

• Queremos resolver sistemas de equações não-lineares do tipo

$$\begin{cases} x^3 - 3xy^2 = 1 \\ 3x^2y - y^3 = 0 \end{cases} \begin{cases} 3x - \cos(yz) = \frac{1}{2} \\ x^2 - 81(y+0.1)^2 + \sin(z) = -1.06 \\ e^{-xy} + 20z = \frac{10\pi - 3}{3} \end{cases}$$

- Estes sistemas podem ser muito complicados de se resolverem analiticamente, pois é possível que não seja possível isolar as variáveis de maneira adequada!
- Além disto, é complicado determinar o que são soluções destes sistemas não-lineares! Estes sistemas podem admitir vários tipos de soluções!
- Antes de prosseguirmos, precisamos redefinir, pontualmente (só neste capítulo), nossa notação:

Considere um sistema de M equações e M incógnitas dado por

$$\begin{cases} f_{1}(x_{1}, x_{2}, x_{3}, \dots, x_{M}) = 0 \\ f_{2}(x_{1}, x_{2}, x_{3}, \dots, x_{M}) = 0 \\ f_{3}(x_{1}, x_{2}, x_{3}, \dots, x_{M}) = 0 \\ \vdots \\ f_{M}(x_{1}, x_{2}, x_{3}, \dots, x_{M}) = 0 \end{cases} \Leftrightarrow (f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \dots, f_{M}(\mathbf{x})) = \mathbf{f}(\mathbf{x}) = \mathbf{0}.$$

- Neste capítulo, x_i denotará a i-ésima componente de um vetor
 x qualquer.
- A *n*-ésima iteração de um processo iterativo baseado na variável escalar x_i será denotada por $x_i^{(n)}$,

$$x_i^{(n+1)} = g(x_i^{(n)}).$$

 Por outro lado, a n-ésima iteração da variável vetorial x será denotada por xn,

$$x_{n+1} = h(x_n).$$

- Vamos construir processos iterativos para tentar aproximar a solução de sistemas não-lineares do tipo f(x) = 0.
- Para isto, vamos querer que as soluções buscadas sejam soluções isoladas do sistema, isto é, se \mathbf{x}^* for solução de $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, então $\exists \ \delta > 0$ tal que se $0 < |\mathbf{x} \mathbf{x}^*| < \delta$, então $\mathbf{f}(\mathbf{x}) \neq \mathbf{0}$. Ou seja, não há nenhuma outra solução nas vizinhanças de \mathbf{x}^* .
- Note que, aqui, não exigimos que a solução seja única. Pode existir mais de uma solução, mas todas elas têm que ser isoladas.
- Agora, vamos formular nosso problema: dado um sistema $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, queremos construir um processo iterativo $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_n)$ tal que seu ponto fixo \mathbf{x}^* seja solução do sistema.

- Já sabemos bastante sobre isto nos casos escalares, em que $g: IR \to IR$. Agora, precisamos estudar os casos vetoriais em que $\mathbf{g}: IR^M \to IR^M$. E as coisas se complicam um pouco.
- O primeiro passo que devemos analisar é a estabilidade de x*: precisamos que ele seja assintoticamente estável.
- Vamos estudar como se comporta o processo iterativo nas vizinhanças de x*. Para isso, vamos usar uma Série de Taylor:

$$\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x}^*) + \frac{d\mathbf{g}}{d\mathbf{x}}(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) + \frac{1}{2!} \frac{d^2\mathbf{g}}{d\mathbf{x}^2}(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)^2 + \cdots$$

- Temos um problema! Quem são essas derivadas que envolvem quantidades vetoriais? Faz sentido escrever $(\mathbf{x} \mathbf{x}^*)^2$?
- Detalhes sobre o cálculo de funções de várias variáveis vão ficar para o curso de Cálculo 3. Vamos mostrar o que vamos precisar aqui!

• A primeira derivada $\frac{d\mathbf{g}}{d\mathbf{x}}$ é, na verdade, o conjunto de todas as possíveis primeiras derivadas organizadas da seguinte maneira:

$$\frac{d\mathbf{g}}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \dots & \frac{\partial g_1}{\partial x_M} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \dots & \frac{\partial g_2}{\partial x_M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_M}{\partial x_1} & \frac{\partial g_M}{\partial x_2} & \dots & \frac{\partial g_M}{\partial x_M} \end{pmatrix} = \nabla \mathbf{g}.$$

- A matriz que mostramos acima é chamada de matriz
 Jacobiana de g. Esta matriz é muito importante em diversas áreas da matemática!
- A segunda derivada $\frac{d^2\mathbf{g}}{d\mathbf{x}^2}$ já é um tensor (matriz 3D!) e contém todas as possíveis segundas derivadas de \mathbf{g} . Ele é chamado de tensor Hessiana de \mathbf{g} , $H_{\mathbf{g}}$, e o termo associado a ela na série de Taylor é escrito como $\frac{1}{2!}(\mathbf{x}-\mathbf{x}^*)^T \cdot H_{\mathbf{g}} \cdot (\mathbf{x}-\mathbf{x}^*)$.

- As contas se complicam muito nos termos de ordem superior e uma notação tensorial é a mais adequada. (Google!)
- Vamos voltar à série de Taylor:

$$\mathbf{g}(\mathbf{x}) pprox \mathbf{g}(\mathbf{x}^*) +
abla \mathbf{g}(\mathbf{x}^*) \cdot (\mathbf{x} - \mathbf{x}^*)$$

e vamos escrever o processo iterativo como:

$$\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_n) = \mathbf{g}(\mathbf{x}^*) + \nabla \mathbf{g}(\mathbf{x}^*) \cdot (\mathbf{x}_n - \mathbf{x}^*) \Leftrightarrow$$
 $\Leftrightarrow \mathbf{x}_{n+1} - \mathbf{g}(\mathbf{x}^*) = \nabla \mathbf{g}(\mathbf{x}^*) \cdot (\mathbf{x}_n - \mathbf{x}^*) \Leftrightarrow \mathbf{x}_{n+1} - \mathbf{x}^* = \nabla \mathbf{g}(\mathbf{x}^*) \cdot (\mathbf{x}_n - \mathbf{x}^*)$
e, portanto, o erro do processo é dado por:

$$\mathbf{e}_{n+1} = \nabla \mathbf{g}(\mathbf{x}^*) \cdot \mathbf{e}_n$$

• Desta forma, o ponto fixo \mathbf{x}^* será assintoticamente estável se, e somente se, $\nabla \mathbf{g}(\mathbf{x}^*)$ for uma matriz convergente! Isto é, se seu raio espectral $\rho(\nabla \mathbf{g}(\mathbf{x}^*)) < 1$.

 Já conhecemos as dificuldades que isto traz. Podemos usar o resultado

$$\rho(\nabla \mathbf{g}(\mathbf{x}^*)) \leq \max_{i=1,\dots,M} \sum_{j=1}^{M} \left| \frac{\partial g_i}{\partial x_j} \right|_{\mathbf{x}=\mathbf{x}^*} \right|$$

para estimar o raio espectral da matriz Jacobiana em x*.

- Existe um resultado que pode ser útil em algumas aplicações: se conseguirmos construir uma **g**(**x**) tal que
 - $\mathbf{g}:\Omega\to\Omega$, com $\Omega\subset IR^M$ (isto é, seu conjunto imagem é o mesmo conjunto domínio),
 - exista uma constante $0 < \sigma < 1$ tal que $|\mathbf{g}(\mathbf{x}) \mathbf{g}(\mathbf{y})| \le \sigma |\mathbf{x} \mathbf{y}|$, então $\mathbf{g}(\mathbf{x})$ adimite um único $\mathbf{x}^* \in \Omega$, e tomando qualquer ponto inicial $\mathbf{x}_0 \in \Omega$, o processo necessariamente converge para \mathbf{x}^* , isto é, $\mathbf{x}_n \to \mathbf{x}^*$ com $n \to \infty$.

Observações:

- uma função $\mathbf{g}: IR^M \to IR^M$ com estas propriedades é chamada de uma contração;
- se g for uma contração, não apenas o problema da convergência está resolvido, como também do chute inicial!
 Encontrar chutes iniciais pode ser bastante complicado em altas dimensões;
- a solução \mathbf{x}^* do sistema não-linear $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ é isolada se e somente se

$$\det\left(\nabla\mathbf{g}(\mathbf{x}^*)\right)\neq 0.$$

- Vamos, agora, pensar em uma maneira de construir um processo iterativo que tenha um convergência mais rápida.
 Para isto, vamos usar uma metodologia muito similar à que utilizamos no caso dos processos iterativos escalares.
- Vamos querer construir processos que tenham convergência quadrática e, para tal, precisamos construir processos com

$$\nabla \mathbf{g}(\mathbf{x}^*) = \mathbb{O}.$$

 Vamos fazer uma análise totalmente análoga à que fizemos para o caso escalar para resolver uma equação algébrica.
 Vamos propor

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} + \mathcal{H}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}),$$

em que $\mathcal{H}(\mathbf{x})$ é uma matriz de $M \times M$ em que cada termo é uma função de \mathbf{x} .

 Com isto, impondo a condição de que a matriz Jacobiana seja nula no ponto fixo:

$$\nabla \mathbf{g}(\mathbf{x}^*) = \mathbb{O} = \mathbf{I} + \nabla \mathcal{H}(\mathbf{x}^*) \cdot \mathbf{f}(\mathbf{x}^*) + \mathcal{H}(\mathbf{x}^*) \cdot \nabla \mathbf{f}(\mathbf{x}^*).$$

• Como $f(x^*) = 0$, a expressão acima se reduz a:

$$\mathcal{H}(\mathbf{x}^*) \cdot \nabla \mathbf{f}(\mathbf{x}^*) = -\mathbf{I} \iff \mathcal{H}(\mathbf{x}^*) = -\left(\nabla \mathbf{f}(\mathbf{x}^*)\right)^{-1},$$

• Ou seja, a matriz $\mathcal{H}(\mathbf{x})$ é o oposto da inversa da Matriz Jacobiana avaliada no ponto fixo \mathbf{x}^* .

 Vamos usar a mesma idéia usada no caso escalar de uma equação algébrica e vamos assumir que a igualdade seja válida para qualquer valor de x, isto é:

$$\mathcal{H}(\mathbf{x}) = -\Big(\nabla \mathbf{f}(\mathbf{x})\Big)^{-1},$$

e, assim, podemos definir

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - \left(\nabla \mathbf{f}(\mathbf{x})\right)^{-1} \cdot \mathbf{f}(\mathbf{x}) \quad \forall \mathbf{x}.$$

• Com isto, podemos construir o seguinte processo iterativo:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \left(\nabla \mathbf{f}(\mathbf{x}_n)\right)^{-1} \cdot \mathbf{f}(\mathbf{x}_n).$$

Método de Newton-Raphson para Sistemas

 Note que este método é totalmente análogo ao Método de Newton-Raphson para equações algébricas

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - (f'(x_n))^{-1} f(x_n).$$

• PROBLEMA!!! A cada passo do Método de Newton-Raphson precisaremos avaliar as funções que compõem a Matriz Jacobiana em \mathbf{x}_n ($\mathcal{O}(M^2)$ operações), posteriormente, teremos que inverter esta matriz ($\mathcal{O}(M^3)$ operações), e depois temos que multiplicar este resultado por $\mathbf{f}(\mathbf{x}_n)$ ($\mathcal{O}(M^2)$ operações)!

MUITO CARO!!

 Normalmente, substitui-se a inversão da Matriz Jacobiana por uma solução de sistema linear:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \underbrace{\left(\nabla \mathbf{f}(\mathbf{x}_n)\right)^{-1} \cdot \mathbf{f}(\mathbf{x}_n)}_{\mathbf{y}_n},$$

$$\mathbf{y}_n = \left(\nabla \mathbf{f}(\mathbf{x}_n)\right)^{-1} \cdot \mathbf{f}(\mathbf{x}_n) \iff \nabla \mathbf{f}(\mathbf{x}_n)\mathbf{y}_n = \mathbf{f}(\mathbf{x}_n).$$

 Então, cada iteração do Método de Newton-Raphson seria dada por:

$$\nabla \mathbf{f}(\mathbf{x}_n)\mathbf{y}_n = \mathbf{f}(\mathbf{x}_n), \quad \mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{y}_n.$$

- O sistema para determinar o vetor y_n pode ser resolvido por qualquer método (Eliminação Gaussiana, fatoração LU, Gauss-Jacobi, Gauss-Seidel, SOR, etc).
- Algumas simplificações podem ser bem-vindas, mesmo penalizando a ordem quadrática do método:
- Às vezes, calcular exatamente as M² derivadas parciais pode não ser prático. Uma possibilidade é aproximar numericamente as derivadas:

$$\frac{\partial f_i}{\partial x_j}(\mathbf{x}_n) = \lim_{h \to 0} \frac{f_i(\mathbf{x}_n + h\mathbf{e}_j) - f_i(\mathbf{x}_n)}{h} \approx \frac{f_i(\mathbf{x}_n + h\mathbf{e}_j) - f_i(\mathbf{x}_n)}{h}$$

para |h| pequeno.

• Às vezes, a Matriz Jacobiana não muda tanto de uma iteração para outra, pois x_n e x_{n+1} estão muito próximos um do outro.

- Então, é possível economizar algumas soluções de sistema implementando o seguinte algoritmo:
- 1. Defina x_0 e faça $x_{ref} = x_0$
- 2. Calcule $\nabla \mathbf{f}(\mathbf{x}_0)$
- 3. Resolva $\nabla \mathbf{f}(\mathbf{x}_0)\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$
- 4. Faça de n=0 até N
 - 4.1 Calcule $\mathbf{x}_{n+1} = \mathbf{x}_n \mathbf{y}_n$
 - 4.2 Se $|\mathbf{x}_{n+1} \mathbf{x}_{ref}| < TOL$
 - 4.3 Então resolva $\nabla \mathbf{f}(\mathbf{x}_{ref})\mathbf{y}_{n+1} = \mathbf{f}(\mathbf{x}_{n+1})$
 - 4.4 Senão
 - 4.4.1 Calcule $\nabla \mathbf{f}(\mathbf{x}_{n+1})$
 - 4.4.2 Resolva $\nabla \mathbf{f}(\mathbf{x}_{n+1})\mathbf{y}_{n+1} = \mathbf{f}(\mathbf{x}_{n+1})$
 - 4.4.3 Faça $x_{ref} = x_{n+1}$
- As aproximações mencionadas aqui geram métodos que são chamados de Métodos de Quase-Newton.
- Estes métodos normalmente têm convergência superlinear (> 1), e não mais quadrática. Mas exigem consideravelmente menos operações por iteração.