Running Time Analysis and Asymptotic Notation

COMP4500/7500

July 24, 2019

What is an algorithm?

- An algorithm is a well-defined computation procedure that takes some values as input and produces some value, or set of values, as output [CLRS CH1].
- Usually defined to solve a specific computational problem.
- We would like such algorithms to be correct (w.r.t. their problem) and efficient.

Sorting Problem

```
input A sequence of numbers \langle a_1, a_2, \dots, a_n \rangle output A permutation \langle a'_1, a'_2, \dots, a'_n \rangle of the input sequence such that a'_1 \leq a'_2 \leq \dots \leq a'_n
```

Sorting Algorithm: Insertion Sort

```
INSERTION-SORT(A)
   for i = 2 to A.length
         key = A[i]
3
        // Insert A[j] into the sorted sequence A[1..j-1]
         i = i - 1
5
         while i > 0 and A[i] > key
6
              A[i + 1] = A[i]
              i = i - 1
         A[i + 1] = kev
8
Try it on A = [5, 2, 4, 6, 1, 3].
```

Sorting Algorithm: Insertion Sort

```
INSERTION-SORT(A)
    for i = 2 to A.length
 2
         // Invariant: A[1..j-1] contains original elements
 3
         // from A[1..i-1], but in sorted order
          key = A[i]
 5
         // Insert A[i] into the sorted sequence A[1..i-1]
 6
         i = i - 1
         while i > 0 and A[i] > key
 8
               A[i + 1] = A[i]
               i = i - 1
          A[i + 1] = kev
10
```

Loop invariants can be used to prove algorithms are correct.

Execution Time

What does it depend on?

- input size, e.g. sorting 10 elements versus 1000 elements
- input value, e.g. sorting an already sorted list versus a reverse sorted list

Generally we want an upper bound on execution time.

Execution time: Worst, Average and Best case

Definition (Worst case)

T(n) = Maximum execution time over all inputs of size n

Definition (Average case)

T(n) =Average execution time over all inputs of size n, weighted by the probability of the input

Definition (Best case)

T(n) = Minimum execution time over all inputs of size n

July 24, 2019 7/2

Running Time Analysis

The *running time* of an algorithm on a given input can be measured in terms of the number of primitive *steps* executed.

Sorting Algorithm: Insertion Sort

```
Let n be A.length.
```

Let's measure time in terms of the number of array comparisons (in red):

```
Insertion-Sort(A)
   for i = 2 to A.length
        kev = A[i]
3
        // Insert A[j] into the sorted sequence A[1..j-1]
4
        i = i - 1
5
        while i > 0 and A[i] > key
6
             A[i + 1] = A[i]
             i = i - 1
8
        A[i + 1] = key
```

Worst case: $T(n) = \sum_{j=2}^{n} (j-1) = n(n-1)/2$ Best case: $T(n) = \sum_{j=2}^{n} (1) = n-1$

Running Time Analysis: Recursion

- More complicated than conditionals and loops.
- Running time can often be described by a recurrence
- Overall running time on a problem of size n is described in terms of running time(s) on smaller inputs and functions of n. (see CLRS Ch2 Ex: Merge Sort)

Asymptotic Analysis: the general idea

- Groups functions together based on their rate of growth.
 - Merge sort $\Theta(n \lg n)$
 - Insertion sort $\Theta(n^2)$
- For large inputs, difference in order outweigh constant factors:
 - E.g. Merge sort is ultimately better for large enough *n* no matter what the constant factors.
- Ignores implementation dependent constants:
 - machine speed
 - compiler

Growth of functions

Largest instance that can be solved in given time

T(n)	1 <i>second</i>	1 <i>day</i>	1 <i>year</i>
n	1,000,000	86, 400, 000, 000	31, 536, 000, 000, 000
n log n	62,746	2, 755, 147, 514	798, 160, 978, 500
n^2	1,000	293, 938	5, 615, 692
n^3	100	4,421	31,593
2 ⁿ	19	36	44

Asymptotic Analysis: limitations?

- Constant factors are relevant for
 - small input sizes, and
 - algorithms of same order

Asymptotic notation

For functions f and g

- $f \in O(g)$ f is asymptotically bounded above by g to within a constant factor
 - $\bullet \ n \in O(n^2)$
 - $64,000n \in O(n)$
- $f \in \Omega(g)$ f is asymptotically bounded below by g to within a constant factor
 - $g \in O(f)$
 - $n^2 \in \Omega(n)$
- $f \in \Theta(g)$ f is asymptotically bounded above and below by g to within a constant factor
 - $f \in O(g) \land f \in \Omega(g)$
 - $42n \in \Theta(n)$
 - $n \notin \Theta(n^2)$

Upper Bounds

Definition (Big-O)

$$O(g) = \{ f | \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le f(n) \le c.g(n) \}$$

$$f \in O(g) \iff \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le f(n) \le c.g(n)$$

Upper Bounds

Definition (Big-O)

$$O(g) = \{ f | \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le f(n) \le c.g(n) \}$$

Prove that: $2n^3 \in O(n^3)$

Need constants $c, n_0 > 0$ such that $(\forall n \ge n_0 \bullet 0 \le 2n^3 \le cn^3)$.

Choosing c = 2 and $n_0 = 1$ will suffice since:

$$\forall n \geq 1 \bullet 0 \leq 2n^3 \leq 2n^3$$

$$\equiv \text{ true}$$

Quick question: upper Bounds

Definition (Big-O)

$$O(g) = \{f | \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le f(n) \le c.g(n)\}$$

Prove that: $2n^2 \in O(n^3 - n^2)$

Lower Bounds

Definition (Ω)

$$\Omega(g) = \{ f | \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le c.g(n) \le f(n) \}$$

$$f \in \Omega(g) \iff \exists c, n_0 > 0 \bullet \forall n \geq n_0 \bullet 0 \leq c.g(n) \leq f(n)$$

Lower Bounds

Definition (Ω)

$$\Omega(g) = \{ f | \exists c, n_0 > 0 \bullet \forall n \ge n_0 \bullet 0 \le c.g(n) \le f(n) \}$$

Prove that: $2n^3 \in \Omega(n^3)$

Need constants $c, n_0 > 0$ such that $(\forall n \ge n_0 \bullet 0 \le cn^3 \le 2n^3)$.

Choosing c = 2 and $n_0 = 1$ will suffice since:

$$\forall n \geq 1 \bullet 0 \leq 2n^3 \leq 2n^3$$

$$\equiv \text{ true}$$

Tight Bounds

Definition (⊖)

$$\Theta(g) = \{ f | \exists c_1, c_2, n_0 > 0 \bullet \\ \forall n \ge n_0 \bullet 0 \le c_1. g(n) \le f(n) \le c_2. g(n) \}$$

$$f \in \Theta(g) \iff \exists c_1, c_2, n_0 > 0 \bullet \\ \forall n \geq n_0 \bullet 0 \leq c_1. g(n) \leq f(n) \leq c_2. g(n)$$

Tight Bounds

Definition (⊖)

$$\Theta(g) = \{ f | \exists c_1, c_2, n_0 > 0 \bullet \\ \forall n \ge n_0 \bullet 0 \le c_1. g(n) \le f(n) \le c_2. g(n) \}$$

Prove that: $2n^3 \in \Theta(n^3)$

Need constants c_1 , c_2 , $n_0 > 0$ such that $(\forall n \geq n_0 \bullet 0 \leq c_1 n^3 \leq 2n^3 \leq c_2 n^3)$.

Choosing $c_1 = c_2 = 2$ and $n_0 = 1$ will suffice since:

$$\forall n \geq 1 \bullet 0 \leq 2n^3 \leq 2n^3 \leq 2n^3$$
 true

Tight Bounds: Prove: $\frac{n^2}{2} - 2n \in \Theta(n^2)$

Need constants $c_1, c_2, n_0 > 0$ such that

$$(\forall n \geq n_0 \bullet 0 \leq c_1 n^2 \leq \frac{n^2}{2} - 2n \leq c_2 n^2).$$

$$0 \leq c_1 n^2$$

$$\equiv \text{ true} \qquad \text{if } n \geq 0$$

$$c_1 n^2 \leq \frac{n^2}{2} - 2n$$

$$\equiv 2 \leq n(\frac{1}{2} - c_1) \qquad \text{if } n > 0$$

$$\equiv 8 \leq n \qquad \text{if } c_1 = \frac{1}{4}$$

$$\frac{n^2}{2} - 2n \leq c_2 n^2$$

$$\equiv \text{ true} \qquad \text{if } n \geq 0 \text{ and } c_2 \geq \frac{1}{2}$$

Choosing $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$ and $n_0 = 8$ will therefore suffice.

Properties of asymptotic notation

Theorem

$$f \in \mathcal{O}(g) \implies g + f \in \Theta(g)$$

For example, $n \in O(n^2) \implies n^2 + n \in \Theta(n^2)$

Theorem

For k > 0,

$$k.n^a \in \Theta(n^a)$$

Theorem

For k > 0 and $0 \le a \le b$

$$k.n^a \in O(n^b)$$

Properties of asymptotic notation

Theorem

For any functions f and g

$$f \in O(g) \iff g \in \Omega(f)$$

Theorem

For any functions f and g

$$f \in \Theta(g) \iff f \in O(g) \land f \in \Omega(g)$$

Comparing Functions

Definition (Asymptotically non-negative)

A function f is asymptotically non-negative if

$$\exists n_0 \bullet (\forall n \geq n_0 \bullet f(n) \geq 0)$$

Theorem

If f and g are asymptotically non-negative functions, and

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c \ge 0$$
 then $f \in O(g)$
= $c > 0$ then $f \in \Theta(g)$
= ∞ then $g \in O(f)$

where c is a real-valued constant.

Cannot compare all functions

For example the functions

n and $n^{1+\sin n}$

are not comparable.

Polynomials

$$p(n) = \sum_{k=0}^{d} a_k n^k = a_0 n^0 + a_1 n^1 + a_2 n^2 + \dots + a_d n^d$$

Theorem

If $a_d > 0$,

$$p(n) \in \Theta(n^d)$$

$$\begin{aligned} & \lim_{n \to \infty} \frac{p(n)}{n^d} \\ &= \lim_{n \to \infty} \sum_{k=0}^{d} \frac{a_k n^k}{n^d} \\ &= \lim_{n \to \infty} \frac{a_d n^d}{n^d} + \sum_{k=0}^{d-1} \frac{a_k n^k}{n^d} \\ &= \lim_{n \to \infty} a_d + \sum_{k=0}^{d-1} \frac{a_k}{n^{d-k}} \\ &= a_d \end{aligned}$$

Polynomials

Theorem

For
$$a > 1$$
 and $d \ge 0$,

$$n^d \in O(a^n)$$

$$\begin{split} &\lim_{n\to\infty}\frac{n^d}{a^n}\\ &= \quad \text{by L'Hôpital's rule}\\ &\lim_{n\to\infty}\frac{dn^{d-1}}{a^n\ln a}\\ &= \quad \text{by L'Hôpital's rule}\\ &\lim_{n\to\infty}\frac{d(d-1)n^{d-2}}{a^n(\ln a)^2}\\ &= \quad d \text{ times}\\ &\lim_{n\to\infty}\frac{d(d-1)(d-2)...1n^0}{a^n(\ln a)^d}\\ &= \lim_{n\to\infty}\frac{d!}{a^n(\ln a)^d}\\ &= \quad \text{as } d! \text{ and } (\ln a)^d \text{ are constants and } a^n \text{ tends to } \infty \end{split}$$