# Assessing Deficiencies in NYC's Mobility System Network Through Citi Bike Data

Aiman Abdul Wahab, Yulin Chen, Meenakshi Girish Nair, Mayank Thakur, Vaishnav Srinidhi, Aayush Shah

### Motivation

- ~4.1 days per year lost on traffic
- Daily subway ridership at 65%
- Subway satisfaction is at 49%
- 33,130,892 citi bikes trips per year.
- Launched in 2013 with 6000 bikes, now at 35,000.

Where does the NYC mobility network fail to provide adequate metro accessibility?

Can cycling behaviour serve as a proxy for identifying these critical deficiencies?

 Novelty: This study is the first to integrate actual bikeshare usage data with network-analysis metrics to identify weaknesses in the metro system



## **Related Work**

first/last-mile access.



=> Identify weak subway regions using network characteristics, and use data-driven simulation to recommend where to add metro stations

Namgung et al. (2025) —

# Methodology (CitiBike)

**Dataset:** CitiBike system data; trip data for August 2024

- Consider only member rides, remove outliers
- Aggregated over weekday & weekend
- Fully connected graph (station pairwise trips) with self-edges

#### Characterization:

- Find hubs using edge weights (trip counts), and closeness centrality
- Calculate average trip time per edge, per cycle type



# Methodology (Subway)

**Dataset:** MTA Subway stations dataset and MTA Subway Origin-Destination Ridership Estimate: 2024

- Aggregated over weekday-weekend in a month (August 2024)
- Aggregation between stops over the actual transport data

#### Key Network Characterization Metrics Used:

 Component reachability, Betweenness, Efficiency and Flow strength





# Methodology (Subway)



# **Finding Virtual Stations**

| Location                                            | Key Reason                                                                                                   |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Coast off Roosevelt Island (40°46'11"N, 73°55'40"W) | Poor-medium income area, high city bike strength, lacks metro connectivity, strengthens island connectivity  |
| Steinway/31 Av (40°45'40"N, 73°55'01"W)             | Low income area, good bike strength, increases regional connection                                           |
| North Brooklyn (40°41'14"N, 73°56'30"W)             | High bike strength and closeness, low subway reachability and strength                                       |
| Brooklyn Navy Yard (40°41'53"N, 73°58'50"W)         | High bike strength, closeness, port worker region                                                            |
| South Bronx (40°49'27"N, 73°54'50"W)                | Low bike and metro usage, improves the network                                                               |
| South Manhattan (40°43'17"N, 73°59'01"W)            | High bike strength and closeness, very low subway strength, very populous area                               |
| South Manhattan (40°43'33"N, 73°59'00"W)            | Generally low connection for subway, high synergy with previous virtual station, increase metro connectivity |

# Methodology (Simulation)

**GOAL:** Does a virtual station save travel time compared to using existing metro or direct biking?

- Selected 10 random points within 1km of source location
- Calculate Avg. Time via 3 scenarios:
  - Scenario A: Virtual Station
  - Scenario B: Existing metro
  - Scenario C: Direct Biking
- Walking and biking time is provided by Google Maps API
- Distance from virtual station to the nearest actual metro station is calculated using haversine distance



# Results (Simulation)

| Destination                             | Bike  | Subway | Subway (Virtual) | $\Delta$ Subway (%) |
|-----------------------------------------|-------|--------|------------------|---------------------|
| Roosevelt Island Coast                  | 42:52 | 62:13  | 66:41            | 7.18%               |
| Steinway St / 31 Av                     | 42:34 | 55:38  | 56:59            | 2.43%               |
| North Brooklyn (Gates / Throop Av)      | 52:00 | 65:47  | 64:48            | -1.49%              |
| Brooklyn Navy Yard (Flushing / Navy St) | 50:40 | 60:39  | 57:42            | -4.86%              |
| South Bronx (161 St / Melrose Av)       | 56:11 | 73:16  | 70:27            | -3.84%              |
| South Manhattan (Houston / Clinton St)  | 41:16 | 53:00  | 51:42            | -2.45%              |
| South Manhattan (Ave A / St. Marks Pl)  | 41:17 | 52:27  | 53:16            | 1.56%               |

Table 8: Average Travel Times Between Subway and Virtual Subway Scenarios

- In all cases, on average, cycling remains faster
- In **4 of 7** cases, adding virtual stations slightly improved travel times, but the change was not significant.

# Summary

#### Q1. Where does the NYC metro network fail to provide adequate metro accessibility?

• Weak connectivity persists in western Queens and south Brooklyn, where even with simulated stations, accessibility remains low.

#### Q2. Can cycling behavior serve as a proxy for identifying these critical deficiencies?

• Cycling often remains faster than new metro links, but is a good proxy, and revealed the bad connectivity of the NYC metro – helped identify branching pattern of Metro

## Limitations

- Citi Bike data doesn't span NYC
- We don't consider schedules.
- We don't consider the bus network
- Methodology rather subjective, could be automated/improved
  - We could have added more virtual stations and positioned them more strategically in locations that minimize transfer times.
- Comparatively higher bike usage in areas that are rich

#### References

https://www.nyc.gov/html/dot/downloads/pdf/bike-share-usage-data-report-q3-2024.pdf?utm

https://comptroller.nyc.gov/wp-content/uploads/documents/Riders-Return-February-2023-Snapshot.pdf?utm

https://www.tomtom.com/traffic-index/ranking/?country=MX%2CUS%2CCA

Ashraf, M. T., Hossen, M. A., Dey, K., El-Dabaja, S., Aljeri, M., & Naik, B. (2021). Impacts of Bike Sharing Program on Subway Ridership in New York City. *Transportation Research Record: Journal of the Transportation Research Board*, *2675*(9), 924-934. <a href="https://doi.org/10.1177/03611981211004980">https://doi.org/10.1177/03611981211004980</a> (Original work published 2021)

Namgung, Min & Lee, JangHyeon & Ding, Fangyi & Chiang, Yao-Yi. (2025). Transit for All: Mapping Equitable Bike2Subway Connection using Region Representation Learning. 10.48550/arXiv.2506.15113.

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 29:33 | 46:34  | 50:40            |
| Steinway St / 31 Av                     | 42:33 | 58:47  | 58:47            |
| North Brooklyn (Gates / Throop Av)      | 71:09 | 95:32  | 93:19            |
| Brooklyn Navy Yard (Flushing / Navy St) | 62:49 | 84:52  | 81:38            |
| South Bronx (161 St / Melrose Av)       | 46:39 | 105:06 | 100:11           |
| South Manhattan (Houston / Clinton St)  | 52:60 | 70:17  | 69:28            |
| South Manhattan (Ave A / St. Marks Pl)  | 57:48 | 80:32  | 77:56            |

Table 1: Average Travel Times from Astoria Park (North Roosevelt Island Coast)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 36:13 | 42:28  | 50:59            |
| Steinway St / 31 Av                     | 32:15 | 33:60  | 37:05            |
| North Brooklyn (Gates / Throop Av)      | 59:52 | 52:55  | 51:58            |
| Brooklyn Navy Yard (Flushing / Navy St) | 52:36 | 49:10  | 44:25            |
| South Bronx (161 St / Melrose Av)       | 47:39 | 46:58  | 42:16            |
| South Manhattan (Houston / Clinton St)  | 39:07 | 45:17  | 42:58            |
| South Manhattan (Ave A / St. Marks Pl)  | 30:28 | 36:13  | 36:56            |

Table 2: Average Travel Times from Central Park Entrance (Columbus Monument)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 47:31 | 55:32  | 54:17            |
| Steinway St / 31 Av                     | 48:56 | 44:11  | 43:05            |
| North Brooklyn (Gates / Throop Av)      | 36:42 | 42:22  | 40:44            |
| Brooklyn Navy Yard (Flushing / Navy St) | 26:36 | 32:25  | 29:25            |
| South Bronx (161 St / Melrose Av)       | 61:47 | 53:15  | 52:29            |
| South Manhattan (Houston / Clinton St)  | 11:48 | 24:25  | 22:38            |
| South Manhattan (Ave A / St. Marks Pl)  | 12:42 | 21:19  | 27:09            |

Table 3: Average Travel Times from Little Italy (Chinatown)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 30:04 | 47:29  | 52:13            |
| Steinway St / 31 Av                     | 21:25 | 30:58  | 32:32            |
| North Brooklyn (Gates / Throop Av)      | 47:12 | 66:38  | 69:22            |
| Brooklyn Navy Yard (Flushing / Navy St) | 59:44 | 62:33  | 62:11            |
| South Bronx (161 St / Melrose Av)       | 58:07 | 76:25  | 73:22            |
| South Manhattan (Houston / Clinton St)  | 51:07 | 52:10  | 49:54            |
| South Manhattan (Ave A / St. Marks Pl)  | 50:29 | 56:03  | 56:07            |

Table 4: Average Travel Times from North Queens (Jackson Heights)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 66:50 | 81:18  | 86:02            |
| Steinway St / 31 Av                     | 64:23 | 69:03  | 74:12            |
| North Brooklyn (Gates / Throop Av)      | 32:46 | 51:44  | 48:42            |
| Brooklyn Navy Yard (Flushing / Navy St) | 30:05 | 53:50  | 52:17            |
| South Bronx (161 St / Melrose Av)       | 91:09 | 90:01  | 88:13            |
| South Manhattan (Houston / Clinton St)  | 36:26 | 45:43  | 43:41            |
| South Manhattan (Ave A / St. Marks Pl)  | 37:52 | 53:45  | 59:57            |

Table 5: Average Travel Times from Red Hook (Brooklyn Bay Area)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 54:36 | 100:53 | 109:25           |
| Steinway St / 31 Av                     | 55:36 | 95:58  | 96:41            |
| North Brooklyn (Gates / Throop Av)      | 96:52 | 111:32 | 109:52           |
| Brooklyn Navy Yard (Flushing / Navy St) | 92:56 | 95:21  | 88:00            |
| South Bronx (161 St / Melrose Av)       | 22:30 | 67:06  | 64:54            |
| South Manhattan (Houston / Clinton St)  | 74:35 | 99:07  | 97:51            |
| South Manhattan (Ave A / St. Marks Pl)  | 71:59 | 85:01  | 85:39            |

Table 6: Average Travel Times from The Bronx (Residential)

| Destination                             | Bike  | Subway | Subway (Virtual) |
|-----------------------------------------|-------|--------|------------------|
| Roosevelt Island Coast                  | 35:17 | 61:19  | 63:12            |
| Steinway St / 31 Av                     | 32:50 | 56:28  | 56:28            |
| North Brooklyn (Gates / Throop Av)      | 19:30 | 39:46  | 39:36            |
| Brooklyn Navy Yard (Flushing / Navy St) | 29:52 | 46:24  | 45:57            |
| South Bronx (161 St / Melrose Av)       | 65:28 | 74:01  | 71:46            |
| South Manhattan (Houston / Clinton St)  | 22:47 | 34:03  | 35:21            |
| South Manhattan (Ave A / St. Marks Pl)  | 27:38 | 34:15  | 29:05            |

Table 7: Average Travel Times from West Queens (North Brooklyn)