Propriedades de fechamento de linguagens regulares

União, Interseção, Diferença, Concatenação, Fechamento de Kleene, Reversão, Homomorfismo, Homomorfismo Inverso

Tradução dos slides do Prof. Jeffrey D. Ullman (Stanford University)

Propriedades de Fechamento

- Uma propriedade de fechamento é uma afirmação de que determinadas operações sobre linguagens, quando aplicadas às linguagens de uma classe (ex. Linguagens regulares), produz um resultado que também está na classe.
- ◆Para as linguagens regulares, podemos usar qualquer das suas representações para provar uma propriedade de fechamento.

Fechamento sob a união

- ◆Se L e M são linguagens regulares, então L ∪ M também é.
- Prova: Seja L e M linguagens das expressões regulares R and S, respectivamente.
- ◆Então R+S é uma expressão regular cuja linguagem é L ∪ M.

Fechamento sob a Concatenação e Fechamento de Kleene

- Mesma ideia:
 - RS é uma expressão regular cuja linguagem é LM.
 - R* é uma expressão regular cuja linguagem é L*.

Fechamento sob a Interseção

- ◆Se L e M são linguagens regulares, L ∩ M também o é.
- Prova: Sejam A e B DFA's cujas linguagens são L e M, respectivamente.
- ◆Construir C, o *produto dos autômatos* A e B.

Produto de DFA's

- Algoritmo envolve construir o produto do DFA a partir dos DFA's para L and M.
- Seja estes DFA's com conjunto de estados Q e R, respectivamente.
- Produto do DFA tem conjunto de estados QxR.
 - Ou seja, pares [q, r] com q em Q, r em R.

Produto de DFA's

- ◆Estado Inicial = $[q_0, r_0]$ (estados iniciais dos DFA's para L, M).
- ♦ Transições: $\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$
 - δ_L , δ_M são as funções de transição para os DFA's de L, M.
 - Simular os dois DFA's nos dois estados do produto do DFA.
- Seleciona-se como estados de aceitação de C todos os pares que são estado de aceitação em ambos DFA's.

Exemplo: Produto de DFA's para Interseção

Fechamento sob a Diferença

- ◆Se L e M são linguagens regulares, então ∠ M também o é. (strings que estão em L, mas não em M).
- Prova: Seja A e B DFA's cujas linguagens são L e M, respectivamente.
- Construir C, o produto dos autômatos A e B.
- Seleciona-se como estados de aceitação de C os pares que são estados de aceitação em A mas não em B.

Exemplo: Produto do DFA para Diferença

Observe: neste caso a diferença é a linguagem vazia

Fechamento sob o Complemento

- •O *complemento* de uma linguagem L (com respeito a um alfabeto Σ tal que Σ^* contêm L) é Σ^* L.
- Se L é uma linguagem regular sobre o alfabeto Σ , então $L = \Sigma^* L$ também é uma linguagem regular.

Fechamento sob a Reversão

- Dada a linguagem L, L^R é o conjunto de strings cujo reverso está em L.
- **Example:** $L = \{0, 01, 100\};$ $L^R = \{0, 10, 001\}.$
- ◆Prova: Seja E a expressão regular para L.
- Mostramos que existe outra expressão regular E^R tal que $L(E^R) = (L(E))^R$.

Reversão de uma Expressão Regular

- ◆Base: Se E é um símbolo a, ϵ , ou \emptyset , então E^R = E.
- ◆Indução: Se E é
 - ◆ F+G, então E^R = F^R + G^R.
 - FG, então E^R = G^RF^R
 - ◆ F*, então E^R = (F^R)*.

Exemplo: Reversão de uma RE

- Seja $E = 01^* + 10^*$.
- \bullet ER = (01* + 10*)R = (01*)R + (10*)R
- $\bullet = (1*)^{R}0^{R} + (0*)^{R}1^{R}$
- \Rightarrow = $(1^{R})*0 + (0^{R})*1$
- \bullet = 1*0 + 0*1.