

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Bayesian Statistics and Data Analysis Lecture 5

Måns Magnusson Department of Statistics, Uppsala University Thanks to Aki Vehtari, Aalto University

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$\begin{split} E_{p(\theta|y)}[f(\theta)] &= \int f(\theta) p(\theta|y) d\theta, \\ \text{where} \quad p(\theta|y) &= \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta} \end{split}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$\begin{split} E_{p(\theta|y)}[f(\theta)] &= \int f(\theta) p(\theta|y) d\theta, \\ \text{where} \quad p(\theta|y) &= \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta} \end{split}$$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where
$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta)$, for example, in

• Monte Carlo methods which can sample from $p(\theta^{(s)}|y)$ using only $q(\theta^{(s)}|y)$

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?
 - Markov chain Monte Carlo (Ch 11-12)

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Grid methods works in less than a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?
 - Markov chain Monte Carlo (Ch 11-12)
 - Laplace, Variational*, EP* (Ch 4, 13*, next course)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

 Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

• $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

- $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution
- Under some assumptions $p(\theta_t|\theta_{t-1})$ will converge (in total variation) to *one* stationary distribution $p(\theta)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)

$$p(\theta_t|\theta_{t-1},\theta_{t-2},...)=p(\theta_t|\theta_{t-1})$$

- $T_t(\theta_t \mid \theta_{t-1}) \equiv p(\theta_t | \theta_{t-1})$ is usually referred to as the transition distribution
- Under some assumptions $p(\theta_t|\theta_{t-1})$ will converge (in total variation) to *one* stationary distribution $p(\theta)$
- Goal in MCMC: Construct a transition distribution with $p(\theta|y)$ as the stationary distribution

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Produce draws $\theta^{(t)}$ given $\theta^{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Produce draws $\theta^{(t)}$ given $\theta^{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Produce draws $\theta^{(t)}$ given $\theta^{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Produce draws $\theta^{(t)}$ given $\theta^{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - + central limit theorem holds for expectations

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Produce draws $\theta^{(t)}$ given $\theta^{(t-1)}$ from a Markov chain, with stationary distribution $p(\theta|y)$
 - + generic
 - + combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - + central limit theorem holds for expectations
 - draws are dependent
 - construction of efficient Markov chains is not always easy

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Set of random variables $\theta_1, \theta_2, \ldots$, so that with all values of t, θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)})=p(\theta_t|\theta_{(t-1)})$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Set of random variables $\theta_1, \theta_2, \ldots$, so that with all values of t, θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)}) = p(\theta_t|\theta_{(t-1)})$$

ullet Chain has to be initialized with some starting point $heta_0$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Set of random variables $\theta_1, \theta_2, \ldots$, so that with all values of t, θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)}) = p(\theta_t|\theta_{(t-1)})$$

- Chain has to be initialized with some starting point θ_0
- Transition distribution $T_t(\theta_t|\theta_{t-1})$ (may depend on t)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Set of random variables $\theta_1, \theta_2, \ldots$, so that with all values of t, θ_t depends only on the previous $\theta_{(t-1)}$

$$p(\theta_t|\theta_1,\ldots,\theta_{(t-1)}) = p(\theta_t|\theta_{(t-1)})$$

- Chain has to be initialized with some starting point θ_0
- Transition distribution $T_t(\theta_t|\theta_{t-1})$ (may depend on t)
- Choose a transition distribution so the stationary distribution of the Markov chain is p(θ|y)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1,...,J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{j,t-1} = (\theta_{1,J},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{t-1,J})$

• Will converge (in total variation) to $p(\theta|y)$ as $T \to \infty$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1,...,J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{j,t-1} = (\theta_{1,J},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{t-1,J})$

- Will converge (in total variation) to $p(\theta|y)$ as $T \to \infty$
- *j* can be multiple (blocked) parameters
- 1D sampling (|j| = 1) is generally easy

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Alternate sampling from conditional distributions
- Basic algorithm, for $j \in \{1, ..., J\}$

sample
$$\theta_{j,t}$$
 from $p(\theta_j|\theta_{-j,t-1},y)$, where $\theta_{j,t-1} = (\theta_{1,J},\ldots,\theta_{j-1,t},\theta_{j+1,t-1},\ldots,\theta_{t-1,J})$

- Will converge (in total variation) to $p(\theta|y)$ as $T \to \infty$
- *i* can be multiple (blocked) parameters
- 1D sampling (|j| = 1) is generally easy
- Related to the (stochastic) EM algorithm

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Draws — Steps of the sampler — 90% HPD

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

 With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Gibbs sampling

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Gibbs sampling

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
- BUGS / WinBUGS / OpenBUGS / JAGS
- No algorithm parameters to tune
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)
- Slow if parameters are highly dependent in the posterior...

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Gibbs sampling

Draws — Steps of the sampler — 90% HPD

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Sampling conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Sampling conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal
- Can we use that to form a Markov chain?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$.

Proposal distribution has to be symmetric, i.e.

 $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

$$r = \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

(c) set
$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

(c) set
$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

ie, if $p(\theta^*|y) > p(\theta_{t-1}|y)$ accept the proposal always and otherwise accept the proposal with probability r

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

(c) set
$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

 rejection of a proposal increments the time t also by one ie, the new state is the same as previous

UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

- Algorithm
 - 1. starting point θ^0
 - 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time t also by one ie, the new state is the same as previous
- ullet step c is executed by generating a random number from $\mathcal{U}(0,1)$

UNIVERSITET

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

The Metropolis algorithm

Algorithm

- 1. starting point θ^0
- 2. t = 1, 2, ...
 - (a) pick a proposal θ^* from a proposal distribution $J_t(\theta^*|\theta_{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

(c) set
$$\begin{aligned} r &= \frac{p(\theta^*|y)}{p(\theta_{t-1}|y)} \\ \theta_t &= \begin{cases} \theta^* & \text{with probability min}(r,1) \\ \theta_{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time t also by one
 ie, the new state is the same as previous
- step c is executed by generating a random number from $\mathcal{U}(0,1)$
- $p(\theta^*|y)$ and $p(\theta_{t-1}|y)$ have the same normalization terms, and thus instead of $p(\cdot|y)$, unnormalized $q(\cdot|y)$ can be used, as the normalization terms cancel out!

• Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Metropolis algorithm

- Example: one bivariate observation (y_1, y_2)
 - bivariate normal distribution with unknown mean and known covariance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \middle| \ y \sim \mathcal{N} \left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

• proposal distribution $J_t(\theta^*|\theta_{t-1}) = \mathcal{N}(\theta^*|\theta_{t-1}, \sigma_p^2)$

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

 Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted
- Theoretically
 - 1. Prove that simulated series is a Markov chain which has unique stationary distribution
 - Prove that this stationary distribution is the desired target distribution

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 1. Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - b) aperiodic

c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic

c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient
 - = probability to return to a state i is 1 as $T \to \infty$
 - holds for a random walk on any proper distribution (except for trivial exceptions)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $heta_{t-1} \sim p(heta|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $heta_{t-1} \sim p(heta|y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta|y)$ and labeled so that $p(\theta_b|y) \ge p(\theta_a|y)$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $\theta_{t-1} \sim p(\theta|y)$ consider any two such points θ_t and θ_t drawn from $p(\theta|y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta|y)$ and labeled so that $p(\theta_b|y) \ge p(\theta_a|y)$
 - the unconditional probability density of a transition from θ_{a} to θ_{b} is

$$p(\theta_{t-1} = \theta_a, \theta_t = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a),$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $heta_{t-1} \sim p(\theta|y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta|y)$ and labeled so that $p(\theta_b|y) \ge p(\theta_a|y)$
 - the unconditional probability density of a transition from θ_a to θ_b is

$$p(\theta_{t-1} = \theta_a, \theta_t = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a),$$

- the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta_t = \theta_a, \theta_{t-1} = \theta_b) = p(\theta_b|y)J_t(\theta_a|\theta_b)\left(\frac{p(\theta_a|y)}{p(\theta_b|y)}\right)$$
$$= p(\theta_a|y)J_t(\theta_a|\theta_b),$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $heta_{t-1} \sim p(heta|y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta|y)$ and labeled so that $p(\theta_b|y) \geq p(\theta_a|y)$
 - the unconditional probability density of a transition from θ_a to θ_b is

$$p(\theta_{t-1} = \theta_a, \theta_t = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a),$$

- the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta_t = \theta_a, \theta_{t-1} = \theta_b) = p(\theta_b|y)J_t(\theta_a|\theta_b)\left(\frac{p(\theta_a|y)}{p(\theta_b|y)}\right)$$
$$= p(\theta_a|y)J_t(\theta_a|\theta_b),$$

which is the same as the probability of transition from θ_a to θ_b , since we have required that $J_t(\cdot|\cdot)$ is symmetric

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta|y)$
 - consider starting algorithm at time t-1 with a draw $heta_{t-1} \sim p(heta|y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta|y)$ and labeled so that $p(\theta_b|y) \geq p(\theta_a|y)$
 - the unconditional probability density of a transition from θ_a to θ_b is

$$p(\theta_{t-1} = \theta_a, \theta_t = \theta_b) = p(\theta_a|y)J_t(\theta_b|\theta_a),$$

- the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta_t = \theta_a, \theta_{t-1} = \theta_b) = p(\theta_b|y)J_t(\theta_a|\theta_b)\left(\frac{p(\theta_a|y)}{p(\theta_b|y)}\right)$$
$$= p(\theta_a|y)J_t(\theta_a|\theta_b),$$

which is the same as the probability of transition from θ_a to θ_b , since we have required that $J_t(\cdot|\cdot)$ is symmetric

- since their joint distribution is symmetric, θ_t and θ_{t-1} have the same marginal distributions, and so $p(\theta|y)$ is the stationary distribution of the Markov chain of θ

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta_{t-1})}{p(\theta_{t-1}|y)/J_t(\theta_{t-1}|\theta^*)}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{\rho(\theta^*|y)/J_t(\theta^*|\theta_{t-1})}{\rho(\theta_{t-1}|y)/J_t(\theta_{t-1}|\theta^*)} = \frac{\rho(\theta^*|y)J_t(\theta_{t-1}|\theta^*)}{\rho(\theta_{t-1}|y)J_t(\theta^*|\theta_{t-1})}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the proposal distribution shape has been selected, it is important to select the scale
 - small scale
 - \rightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - \rightarrow long steps proposed, but many of those rejected and again chain moves slowly

demo

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Ideal proposal distribution is the distribution itself
 - $J(\theta^*|\theta) \equiv p(\theta^*|y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the proposal distribution shape has been selected, it is important to select the scale
 - small scale
 - \rightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - \rightarrow long steps proposed, but many of those rejected and again chain moves slowly

demo

Generic rule for rejection rate is 60-90%

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Gibbs sampling as a special case

- Specific case of Metropolis-Hastings algorithm
 - single updated (or blocked)
 - proposal distribution is the conditional distribution
 - \rightarrow proposal and target distributions are same
 - ightarrow acceptance probability is 1

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Metropolis

- Usually doesn't scale well to high dimensions
 - if the shape doesn't match the whole distribution, the efficiency drops

- Draws—Steps of the sampler—90% HPI
- Draws-Steps of the sampler-90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Dynamic Hamiltonian Monte Carlo and NUTS

- Chapter 12 presents some more advanced methods
 - Chapter 12 includes Hamiltonian Monte Carlo and NUTS, which is one of the most efficient methods
 - uses gradient information
 - Hamiltonian dynamic simulation reduces random walk
 - Demo http://elevanth.org/blog/2017/11/28/ build-a-better-markov-chain/

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Example of uncertainty in modeling

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

HMC / NUTS

Comparison of algorithms on **highly correlated** 250-dimensional Gaussian distribution

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- •Do 1,000 draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

Source: Jonah Gabry

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

Draws—Steps of the sampler—90% HP

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

- Draws—Steps of the sampler—90% HPI
- Warm-up = remove draws from the beginning of the chain
 - warm-up may include also phase for adapting algorithm parameters

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

- Draws—Steps of the sampler—90% HPI
- Warm-up = remove draws from the beginning of the chain
 - warm-up may include also phase for adapting algorithm parameters
- Convergence diagnostics
 - Do we get samples from the target distribution?

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

MCMC draws are dependent

Monte Carlo estimates still valid (central limit theorem holds)

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Estimation of Monte Carlo error is more difficult
 - evaluation of effective sample size

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Use of several chains make convergence diagnostics easier
- Start chains from different starting points preferably overdispersed

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Use of several chains make convergence diagnostics easier
- Start chains from different starting points preferably overdispersed

 Remove draws from the beginning of the chains and run chains long enough so that it is not possible to distinguish where each chain started and the chains are well mixed

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Visual convergence check is not sufficient

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

ullet M chains, each having N draws (with new R-hat notation)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- M chains, each having N draws (with new R-hat notation)
- Within chains variance W

$$W = rac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = rac{1}{N-1} \sum_{n=1}^{N} (heta_{nm} - ar{ heta}_{.m})^2$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- M chains, each having N draws (with new R-hat notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^2,$$
 where $\bar{\theta}_{.m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{n=1}^{M} \bar{\theta}_{.m}$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- M chains, each having N draws (with new R-hat notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^2,$$
 where $\bar{\theta}_{.m} = \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{n=1}^{M} \bar{\theta}_{.m}$

• B/N is variance of the means of the chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- M chains, each having N draws (with new R-hat notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$\begin{split} B &= \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^2, \\ \text{where } \bar{\theta}_{.m} &= \frac{1}{N} \sum_{n=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{n=1}^{M} \bar{\theta}_{.m} \end{split}$$

- B/N is variance of the means of the chains
- Estimate total variance $var(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimate total variance $var(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

• this *overestimates* marginal posterior variance if the starting points are overdispersed

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimate total variance $\mathrm{var}(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta|y)$

UPPSALA UNIVERSITET

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimate total variance $var(\theta|y)$ as a weighted mean of W and B

$$\widehat{\operatorname{var}}^+(\theta|y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta|y)$
- As $\widehat{\mathrm{var}}^+(\theta|y)$ overestimates and W underestimates, compute

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \hat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$\widehat{R} = \sqrt{\frac{\widehat{\mathrm{var}}^+}{W}}$$

- Estimates how much the scale of ψ could reduce if ${\it N} \rightarrow \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- if \widehat{R} is big (e.g., R > 1.01), keep sampling

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

$$\widehat{R} = \sqrt{\frac{\widehat{\operatorname{var}}^+}{W}}$$

- Estimates how much the scale of ψ could reduce if ${\it N} \rightarrow \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- if \widehat{R} is big (e.g., R > 1.01), keep sampling
- If \widehat{R} close to 1, it is still possible that chains have not converged
 - if starting points were not overdispersed
 - distribution far from normal (especially if infinite variance)
 - just by chance when N is finite

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Split- \widehat{R}

- BDA3: split- \widehat{R}
- Examines mixing and stationarity of chains
- To examine stationarity chains are split to two parts
 - after splitting, we have M chains, each having N draws
 - scalar draws θ_{nm} (n = 1, ..., N; m = 1, ..., M)
 - · compare means and variances of the split chains

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Original \widehat{R} requires that the target distribution has finite mean and variance

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Original R requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Original R requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
- Folding improves detecting scale differences between chains

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
- Folding improves detecting scale differences between chains
- Paper proposes also local convergence diagnostics and practical MCSE estimates for quantiles

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
- Folding improves detecting scale differences between chains
- Paper proposes also local convergence diagnostics and practical MCSE estimates for quantiles
- Notation updated compared to BDA3

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Time series analysis

- Auto correlation function
 - describes the correlation given a certain lag
 - can be used to compare efficiency of MCMC algorithms and parameterizations

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Auto correlation

Draws—Steps of the sampler—90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Auto correlation

Draws—Steps of the sampler—90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Auto correlation

• Draws - Steps of the sampler - 90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Auto correlation

• Draws—Steps of the sampler—90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Auto correlation

• Draws - Steps of the sampler - 90% HPI

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{E_{\max}}}$$

where $S_{E_{\text{max}}} = S/\tau$, and τ is sum of autocorrelations

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{E_{\max}}}$$

where $S_{E_{\text{max}}} = S/\tau$, and τ is sum of autocorrelations

 \bullet τ describes how many dependent draws correspond to one independent sample

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{E_{\max}}}$$

where $S_{E_{\text{max}}} = S/\tau$, and τ is sum of autocorrelations

- ullet au describes how many dependent draws correspond to one independent sample
- new R-hat paper S=NM (in BDA3 N=nm and $n_{E_{\max}}=N/ au$)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$\operatorname{Var}[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{E_{\max}}}$$

where $S_{E_{\text{max}}} = S/\tau$, and τ is sum of autocorrelations

- ullet au describes how many dependent draws correspond to one independent sample
- new R-hat paper S=NM (in BDA3 N=nm and $n_{E_{\max}}=N/ au$)
- ullet BDA3 focuses on $S_{E_{
 m max}}$ and not the Monte Carlo error directly new R-hat paper discusses more about MCSEs for

different quantities

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2 \hat{\text{var}}^+}$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\hat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2 \hat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)
- BDA3 has slightly different and less accurate equation.
 The above equation is used in Stan 2.18+

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\hat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)
- BDA3 has slightly different and less accurate equation.
 The above equation is used in Stan 2.18+
- Compared to a method which computes the autocorrelation from a single chain, the multi-chain estimate has smaller variance

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- ullet empirical autocorrelation function is noisy and thus estimate of au is noisy
- noise is larger for longer lags (less observations)

Monte Carlo recap

- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Time series analysis

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- empirical autocorrelation function is noisy and thus estimate of τ is noisy
- noise is larger for longer lags (less observations)
- less noisy estimate is obtained by truncating

$$\hat{\tau} = 1 + 2\sum_{t=1}^{T} \hat{\rho}_t$$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- empirical autocorrelation function is noisy and thus estimate of τ is noisy
- noise is larger for longer lags (less observations)
- less noisy estimate is obtained by truncating

$$\hat{\tau} = 1 + 2\sum_{t=1}^{T} \hat{\rho}_t$$

- As τ is estimated from a finite number of draws, it's expectation is overoptimistic
 - if $\hat{\tau} > MN/20$ then the estimate is unreliable

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Geyer's adaptive window estimator

- Truncation can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let $\Gamma_m = \rho_{2m} + \rho_{2m+1}$, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Geyer's adaptive window estimator

- Truncation can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let $\Gamma_m = \rho_{2m} + \rho_{2m+1}$, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m
- Initial positive sequence estimator (Geyer's IPSE)
 - Choose the largest m so, that all values of the sequence $\hat{\Gamma}_1, \dots, \hat{\Gamma}_m$ are positive

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

Effective sample size $\mathrm{ESS} = S_{E_{\mathrm{max}}} \approx S/\hat{\tau}$

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings

Effective sample size $ESS = S_{E_{max}} \approx S/\hat{\tau}$

theta2 —theta1—theta2

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}$$

$$\approx 24$$

-theta1 —theta2 - - 95% interval for MCMC error -- 95% interval for indepen

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs samplingMetropolis-Hastings

Effective sample size $ESS = S_{E_{max}} \approx S/\hat{\tau}$

eta1—theta2 —theta1—theta2

$$\hat{ au} = 1 + 2 \sum_{t=1}^{T} \hat{
ho}$$
 $pprox 104$

-theta1 —theta2 - - 95% interval for MCMC error · · · · 95% interval for indepen

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 Metropolis-Hastings

Effective sample size $ESS = S_{E_{max}} \approx S/\hat{\tau}$

iliciai iliciaz

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}$$

$$\approx 63$$

theta1 - theta2

-theta1 —theta2 - - 95% interval for MCMC error · · · · 95% interval for indepen

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Nonlinear dependencies
 - optimal proposal depends on location

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location
- Multimodal
 - difficult to move from one mode to another

- Monte Carlo recap
- Markov Chain Monte Carlo (MCMC)
 - Gibbs sampling
 - Metropolis-Hastings

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location
- Multimodal
 - difficult to move from one mode to another
- Long-tailed with non-finite variance and mean
 - central limit theorem for expectations does not hold