IIC3253

Funciones de hash

Marvin Minsky: A computer scientist is someone who believes that hashing is possible

Mencionado por Jeffrey Ullman en una charla sobre hashing

Funciones de hash criptográficas

Función de un espacio de posibles mensajes a un espacio de mensajes de largo fijo:

$$h:\mathcal{M} o\mathcal{H}$$

 \mathcal{M} es el espacio de mensajes y \mathcal{H} es el espacio de posibles valores de la función de hash

- ullet Por ejemplo, $\mathcal{M}=\{0,1\}^*$ y $\mathcal{H}=\{0,1\}^{128}$
- Decimos que h(m) es el *hash* del mensaje m

Una propiedad básica de las funciones de hash

Debe existir un algoritmo eficiente que, dado $m \in \mathcal{M}$, calcula h(m)

Una primera propiedad fundamental de las funciones de hash

No debe existir un algoritmo eficiente que, dado $x \in \mathcal{H}$, encuentra $m \in \mathcal{M}$ tal que h(m) = x

Esta propiedad se denota como ser resistente a preimagen

¿Por qué insistimos en el adjetivo "criptográficas"?

Considere la siguiente función de hash:

$$h(m) = (A \cdot m + B) \mod C$$

Suponemos que los mensajes son números naturales

• A, B y C son constantes, C es un número primo

¿Es esta función resistente a preimagen?

La función anterior no es resistente a preimagen

Considere $h(m) = (13 \cdot m + 97) \mod 641$

Suponga que tiene el valor "de hash" 200. ¿Puede encontrar un mensaje m tal que h(m)=200?

Una combinación de herramientas de aritmética modular nos pueden dar una respuesta rápida: 501

$$h(501) = (13 \cdot 501 + 97) \mod 641 = 200$$

Una segunda propiedad fundamental de las funciones de hash

No debe existir un algoritmo eficiente que pueda encontrar $m_1,m_2\in\mathcal{M}$ tales que $m_1
eq m_2$ y $h(m_1)=h(m_2)$

Esta propiedad se denota como ser resistente a colisiones

Las funciones de hash en la práctica

```
import hashlib
      name == " main ":
       h1 = hashlib.md5(b"este es mi primer mensaje")
       h2 = hashlib.md5(
           b"El objetivo del curso es introducir al alumno a "
           b"los conceptos fundamentales de criptografia y
           b"seguridad computacional, poniendo enfasis tanto en "
           b"los aspectos formales necesarios para definir"
10
       h3 = hashlib.md5(b"este es mi prXmer mensaje")
11
12
       print(h1.hexdigest())
13
       print(h2.hexdigest())
14
       print(h3.hexdigest())
15
```

Output: 30635f74755bfb8c9faeac3ab106c2ab

c0e1fe34f764e458463c4fd8a91355d0

2c5956c357577eed8e76608cf40e79ee

Las funciones de hash en la práctica

```
import hashlib
      name == " main ":
       h1 = hashlib.sha256(b"este es mi primer mensaje")
       h2 = hashlib.sha256(
           b"El objetivo del curso es introducir al alumno a "
           b"los conceptos fundamentales de criptografia y
           b"seguridad computacional, poniendo enfasis tanto en "
           b"los aspectos formales necesarios para definir"
10
       h3 = hashlib.sha256(b"este es mi prXmer mensaje")
11
12
       print(h1.hexdigest())
13
       print(h2.hexdigest())
14
       print(h3.hexdigest())
15
```

Output: 105f0a373501caffc828ce3da6b0b9c7569c68194f1db1057831fa8b3844cc8c 5a022e6e371bf654c33025642eb147a432f26dc3c3206ec992fc7725799c3868 5d94508d4fb9a1daeade09995904a281ccbdd165d2dc7a24798fcff9a80c96e7

¿Para qué son usadas las funciones de hash criptográficas?

Aplicaciones de las funciones de hash

Las funciones de hash (criptográficas) tienen muchas aplicaciones prácticas, y nos van a acompañar durante todo el curso

Vamos ahora a ver algunas aplicaciones que dan una idea de su utilidad

Una primera aplicación: integridad de un documento

Una segunda aplicación: lanzar una moneda por teléfono

¿Pueden dos usuarios ponerse de acuerdo en un número aleatorio de manera remota?

Un primer protocolo

Un primer protocolo

Un segundo protocolo

Un segundo protocolo

iUn protocolo correcto!

¿Cómo se formaliza la noción de función de hash?

¿Por qué es necesario formalizar esta noción?

Un primer intento

Una función de hash es una función h tal que:

- h toma un mensaje $m \in \{0,1\}^*$, y retorna un hash $h(m) \in \{0,1\}^\ell$, donde ℓ es un largo fijo.
- *h* se puede calcular en tiempo polinomial.

¿Es h resistente a preimagen?

Sea $m_0 \in \{0,1\}^\ell$. Si me dan $h(m_0)$, ¿cuánto me demoro en encontrar su preimagen?

En el peor de los casos, ejecuto 2^{ℓ} veces un algoritmo polinomial.

¿Podemos considerar esto ineficiente?

Un segundo intento

Una función de hash es una familia de funciones $\{h_n\}_{n\in\mathbb{N}}$ tal que:

- h_n toma un mensaje $m \in \{0,1\}^*$, y retorna un hash $h_n(m) \in \{0,1\}^{\ell(n)}$, donde $\ell(n)$ es fijo para cada n.
- h_n se puede calcular en tiempo polinomial en n.

¿Podemos definir bien la resistencia a preimagen?

Una noción necesaria

Sea \mathbb{R}^+ el conjunto de los números reales positivos, y $\mathbb{R}^+_0 = \mathbb{R}^+ \cup \{0\}$.

Una función $f:\mathbb{N} \to \mathbb{R}_0^+$ es despreciable si:

$$(orall ext{ polinomio } p: \mathbb{N} o \mathbb{N}) (\exists n_0 \in \mathbb{N}) (orall n \geq n_0) igg(f(n) < rac{1}{p(n)} igg)$$

- 1. Muestre que 2^{-n} y $n^{-\log(n)}$ son funciones despreciables
- 2. Demuestre que si f y g son funciones despreciables y p es un polinomio, entonces f+g y $f\cdot p$ son funciones despreciables

Resistencia a colisiones

Considere una función de hash $\{h_n\}_{n\in\mathbb{N}}$

Definimos el juego Hash-Col(n):

- 1. El adversario elige mensajes m_1 y m_2 con $m_1
 eq m_2$
- 2. El adversario gana el juego si $h_n(m_1)=h_n(m_2)$, y en caso contrario pierde

Formalizando la noción de resistencia a colisiones

Una función de hash $\{h_n\}_{n\in\mathbb{N}}$ se dice resistente a colisiones si para todo adversario que funciona como un algoritmo aleatorizado de tiempo polinomial, existe una función despreciable f(n) tal que:

 $\Pr(\text{Adversario gane } \textit{Hash-Col}(n)) \leq f(n)$

¿Cómo se formaliza la noción de ser resistente a preimagen usando las ideas anteriores?

Dejamos esta definición como ejercicio

Además, dejamos como ejercicio demostrar que ser resistente a colisiones implica ser resistente a preimagen

Una definición formal de función de hash

Una función de hash es un par (Gen, h) tal que:

- Gen es un algoritmo aleatorizado de tiempo polinomial. Gen toma como entrada un parámetro de seguridad 1^n , y genera una llave s
- h es algoritmo de tiempo polinomial. h toma como entrada s y un mensaje $m \in \{0,1\}^*$, y retorna un hash $h^s(m) \in \{0,1\}^{\ell(n)}$, donde ℓ es un polinomio fijo

Una definición formal de función de hash

Si $m \in \{0,1\}^{\ell'(n)}$ para un polinomio fijo ℓ' tal que $\ell'(n) > \ell(n)$, entonces (Gen,h) es una función de hash de largo fijo

¿Dónde estamos?

- Estudiamos dos conceptos fundamentales en criptografía: cifrado simétrico y funciones de hash
 - Vimos algunas propiedades teóricas de estos conceptos
- Vamos a estudiar un tercer concepto fundamental: autentificación de mensajes
 - También vamos a ver algunas de sus propiedades teóricas
- Después de esto vamos a ver cómo se pueden implementar estos conceptos en la práctica