THE EFFECTS OF BINARITY ON PLANET OCCURRENCE RATES MEASURED BY TRANSIT SURVEYS

L. G. Bouma, ¹ J. N. Winn, ¹ and K. Masuda ¹

¹Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540, USA

Submitted to AAS journals.

ABSTRACT

This derives the equations of the paper.

Keywords: methods: data analysis — planets and satellites: detection — surveys

Corresponding author: L. Bouma luke@astro.princeton.edu

1. PRELIMINARIES

1.1. Searchable Distance

We can detect a signal if

$$\frac{\text{signal}}{\text{noise}} \sim \frac{\delta_{\text{obs}}}{(L/d^2)^{-1/2}}, \quad \delta_{\text{obs}} : \text{observed depth}$$
 (1)

is above some threshold (it would probably make more sense to include the duration information, but that would anyway be a trivial extension and so we omit it here for brevity). Thus, the maximum searchable distance scales as

$$d(\delta_{\rm obs}, L_{\rm sys}) \propto \delta_{\rm obs} \cdot L_{\rm sys}^{1/2}.$$
 (2)

We assume that the signal is detected if and only if a given star is searchable.

Using this distance, the number of searchable stars $N_{\rm s}$ is given by

$$N_{\rm s}(\delta_{\rm obs}, L_{\rm sys}) = n_0 \delta_{\rm obs}^3 L_{\rm sys}^{3/2},\tag{3}$$

where n_0 is a normalization constant proportional to the volume density of the systems with a certain type of interest (e.g. single star, binary). We neglect the dependence of the normalization n_0 on the stellar type.

1.2. Relation between Apparent and Actual Stellar Properties

We assume that the apparent property of an unresolved binary is the same as that of the primary:

$$M_{\rm a} = M_1, \quad R_{\rm a} = R_1, \dots$$
 (4)

We also assume the stellar radius and luminosity is uniquely related to the stellar mass.

Given these assumptions, the total luminosity of the system is

$$L_{\text{svs}} = L_1 + L_2 = L(M_a) + L(qM_a),$$
 (5)

where $q = M_2/M_1$. Note that $L_{\rm sys}$ is the true value (because $M_{\rm a}$ is the true primary mass), while the system luminosity estimated by an observer would be $L(M_{\rm a})$, which based on the apparent stellar parameters (unless the observer has a priori knowledge on the distance to a given system).

1.3. Apparent Number of Searchable Stars

Given the apparent signal δ_{obs} and stellar mass M_{a} , the maximum searchable distance for singles and binaries are proportional to $\delta_{\text{obs}} \cdot L(M_{\text{a}})^{1/2}$ and $\delta_{\text{obs}} \cdot [L(M_{\text{a}}) + L(qM_{\text{a}})]^{1/2}$. Thus, the apparent number of searchable stars (i.e. points in the sky), which will be selected by an ignorant observer, is

$$N_{s,a}(\delta_{obs}, M_{a}) = n_{s} \delta_{obs}^{3} L(M_{a})^{3/2} \left\{ 1 + \int dq \, f(q) \frac{BF}{1 - BF} \left[1 + \frac{L(qM_{a})}{L(M_{a})} \right]^{3/2} \right\}$$

$$\equiv N_{s}^{0}(\delta_{obs}, L(M_{a})) \left[1 + \mu(BF, M_{a}) \right], \tag{6}$$

where $N_{\rm s}^0$ is the number of searchable singles (this agrees with the actual value), f(q) is the binary mass ratio distribution, and BF = $n_{\rm b}/(n_{\rm s}+n_{\rm b})$ is the binary fraction in a volume-limited sample.

2. APPARENT OCCURRENCE RATE — GENERAL FORMULA

A group of astronomers wants to measure the mean number of planets of a certain type per star of a certain type. They simply observe a set points on the sky selected in a magnitude-limited way (or whatever, actually?) and detect n planets of a desired class. Then they compute the occurrence as

$$\Lambda(\mathcal{P}, \mathcal{S}) = \frac{n(\mathcal{P}, \mathcal{S})}{N_{s}(\mathcal{P}, \mathcal{S})} \times \frac{1}{p_{tra}(\mathcal{P}, \mathcal{S})}.$$
 (7)

Here $N_{\rm s}$ is the number of stars (among those initially selected) around which the planets of interest are searchable; $p_{\rm tra}$ is the transit probability.

Let's see how the binary modifies this. The occurrence is computed based on the apparent planetary/stellar parameters \mathcal{P}_a , \mathcal{S}_a :

$$\Lambda_{\rm a}(\mathcal{P}_{\rm a}, \mathcal{S}_{\rm a}) = \frac{n(\mathcal{P}_{\rm a}, \mathcal{S}_{\rm a})}{N_{\rm s,a}(\mathcal{P}_{\rm a}, \mathcal{S}_{\rm a})} \times \frac{1}{p_{\rm tra}(\mathcal{P}_{\rm a}, \mathcal{S}_{\rm a})}.$$
 (8)

Here, N_s and p_{tra} are computed for the apparent parameter \mathcal{P}_a and \mathcal{S}_a . In the presence of dilution, planets with $(\mathcal{P}_a, \mathcal{S}_a)$ are associated with systems of many different planetary and stellar properties, so n_a is given by the convolution of the true occurrence, $\Lambda(\mathcal{P}, \mathcal{S})$, and number of searchable stars that give $(\mathcal{P}_a, \mathcal{S}_a)$ when the true system actually has $(\mathcal{P}, \mathcal{S})$, $\mathcal{N}(\mathcal{P}_a, \mathcal{S}_a; \mathcal{P}, \mathcal{S})$:

$$n(\mathcal{P}_{a}, \mathcal{S}_{a}) = \sum_{i} n^{i}(\mathcal{P}_{a}, \mathcal{S}_{a}) = \sum_{i} \int d\mathcal{P}d\mathcal{S} \,\mathcal{N}_{s}^{i}(\mathcal{P}_{a}, \mathcal{S}_{a}; \mathcal{P}, \mathcal{S}) \cdot \Lambda^{i}(\mathcal{P}, \mathcal{S}) \cdot p_{tra}(\mathcal{P}, \mathcal{S}), \tag{9}$$

where i specifies the type of true host stars (0: single, 1: primary, 2: secondary). So the problem essentially reduces to the evaluation of

$$\mathcal{N}_{s}(\mathcal{P}_{a}, \mathcal{S}_{a}; \mathcal{P}, \mathcal{S}) \tag{10}$$

for planets around single stars, primaries in binaries, and secondaries in binaries.

3. EVALUATION OF \mathcal{N}

Let us explicitly write $\mathcal{P} = r$ and $\mathcal{S} = M$; R and L are uniquely determined from the assumed mass–radius–luminosity relation. We neglect the P dependence.

For
$$i = 0$$
,

$$\mathcal{N}_{s}^{0}(\mathcal{P}_{a}, \mathcal{S}_{a}; \mathcal{P}, \mathcal{S}) = \delta(\mathcal{P}_{a} - \mathcal{P})\delta(\mathcal{S}_{a} - \mathcal{S})N_{s}^{0}(\mathcal{P}, \mathcal{S}), \tag{11}$$

SO

$$n^{0}(\mathcal{P}_{a}, \mathcal{S}_{a}) = N_{s}^{0}(\mathcal{P}_{a}, \mathcal{S}_{a}) \cdot \Lambda^{0}(\mathcal{P}_{a}, \mathcal{S}_{a}) \cdot p_{tra}(\mathcal{P}_{a}, \mathcal{S}_{a}). \tag{12}$$

If all the stars are singles, this yields

$$\Lambda_{\mathbf{a}}(\mathcal{P}_{\mathbf{a}}, \mathcal{S}_{\mathbf{a}}) = \Lambda^{0}(\mathcal{P}_{\mathbf{a}}, \mathcal{S}_{\mathbf{a}}), \tag{13}$$

as expected (now $\mu=0$ and $N_{\rm s,a}=N_{\rm s}^0$) — the true occurrence is recovered.

3.2. Primaries in Binaries

Since we assume $S_a = S_1$,

$$\mathcal{N}_{\rm s}^1(r', M'; r, M) \propto \delta(M' - M). \tag{14}$$

In this case, \mathcal{N}_{s}^{1} is non-zero only at $r' = R'\sqrt{D'}$, where

$$D' = \left\lceil \frac{r}{R(M')} \right\rceil^2 \times \frac{L(M')}{L_{\text{sys}}(M', q)} \tag{15}$$

and the normalization is given by the number of searchable binaries (for signal D'):

$$n_{\rm b}D'^3L_{\rm sys}^{3/2} = N_{\rm s}^0(D', L(M')) \cdot \mu(BF, M').$$
 (16)

Thus,

$$\mathcal{N}_{s}^{1}(r', M'; r, M) = \int dq \, f(q) \mathcal{N}_{s,q}^{1}(r', M'; r, M; q), \qquad (17)$$

where f(q) is the binary mass ratio distribution and

$$\mathcal{N}_{s,q}^{1}(r',M';r,M;q) = N_{s}^{0}(D',L(M')) \cdot \mu(BF,M')$$

$$\times \delta\left(r' - r\sqrt{\frac{L(M')}{L_{sys}(M',q)}}\right) \delta(M'-M). \tag{18}$$

3.3. Secondaries in Binaries

In this case, $M = qM_1 = qM'$, so

$$\mathcal{N}_{\rm s}^2(r', M'; r, M) \propto \delta\left(M' - \frac{M}{q}\right).$$
 (19)

Again $\mathcal{N}_{\mathrm{s}}^2$ is non-zero only at $r' = R'\sqrt{D'}$, but this time

$$D' = \left[\frac{r}{R(qM')}\right]^2 \times \frac{L(qM')}{L_{\text{sys}}(M', q)}.$$
 (20)

The normalization remains the same as the previous case (we are counting the searchable stars at a given observed depth D', total luminosity of the binary is the same). Thus,

$$\mathcal{N}_{s}^{2}(r', M'; r, M) = \int dq \, f(q) \mathcal{N}_{s,q}^{2}(r', M'; r, M; q), \qquad (21)$$

where

$$\mathcal{N}_{s}^{2}(r', M'; r, M; q) = N_{s}^{0}(D', L(M')) \cdot \mu(BF, M')$$

$$\times \delta \left(r' - r\sqrt{\left[\frac{R(M')}{R(qM')}\right]^{2} \frac{L(qM')}{L_{sys}(M', q)}}\right) \delta \left(M' - \frac{M}{q}\right). \tag{22}$$

4. RESULT

4.1. Marginalization over the True Properties

Let's integrate out \mathcal{P} and \mathcal{S} .

$$n^{0}(r_{a}, M_{a}) = \int dr dM \, \mathcal{N}_{s}^{0}(r_{a}, M_{a}; r, M) \cdot \Lambda^{0}(r, M) \cdot p_{tra}(M)$$

$$= \int dr dM \, \mathcal{N}_{s}^{0}(\delta_{obs}, L(M_{a})) \delta(r_{a} - r) \delta(M_{a} - M) \cdot \Lambda^{0}(r, M) \cdot p_{tra}(M)$$

$$= N_{s}^{0}(\delta_{obs}, L(M_{a})) \cdot \Lambda^{0}(r_{a}, M_{a}) \cdot p_{tra}(M_{a}).$$

$$(23)$$

$$= N_{s}^{0}(\delta_{obs}, L(M_{a})) \cdot \Lambda^{0}(r_{a}, M_{a}) \cdot p_{tra}(M_{a}).$$

$$(25)$$

$$n^{1}(r_{\mathrm{a}}, M_{\mathrm{a}}) = \int \mathrm{d}r \mathrm{d}M \,\mathcal{N}_{\mathrm{s}}^{1}(r_{\mathrm{a}}, M_{\mathrm{a}}; r, M) \cdot \Lambda^{1}(r, M) \cdot p_{\mathrm{tra}}(M)$$
(26)

$$= \int dq f(q) \int dr dM \mathcal{N}_{s,q}^{1}(r_{a}, M_{a}; r, M; q) \cdot \Lambda^{1}(r, M) \cdot p_{tra}(M)$$
 (27)

$$= N_{\rm s}^0(\delta_{\rm obs}, L(M_{\rm a})) \cdot p_{\rm tra}(M_{\rm a}) \cdot \mu(BF, M_{\rm a}) \int \frac{\mathrm{d}q}{\alpha} f(q) \Lambda^1(r^*, M_{\rm a}), \quad (28)$$

where $r^* = r_a/\alpha$ and

$$\alpha(q, M_{\rm a}) = \sqrt{\frac{L(M_{\rm a})}{L_{\rm sys}(M_{\rm a}, q)}}.$$
(29)

Finally,

$$n^{2}(r_{\mathrm{a}}, M_{\mathrm{a}}) = \int \mathrm{d}r \mathrm{d}M \,\mathcal{N}_{\mathrm{s}}^{2}(r_{\mathrm{a}}, M_{\mathrm{a}}; r, M) \cdot \Lambda^{2}(r, M) \cdot p_{\mathrm{tra}}(M)$$
(30)

$$= \int dq f(q) \int dr dM \mathcal{N}_{s,q}^2(r_a, M_a; r, M; q) \cdot \Lambda^2(r, M) \cdot p_{tra}(M)$$
 (31)

$$= N_{\rm s}^{0}(\delta_{\rm obs}, L(M_{\rm a})) \cdot \mu({\rm BF}, M_{\rm a}) \int \frac{q {\rm d}q}{\beta} f(q) \Lambda^{2}(r^{**}, q M_{\rm a}) p_{\rm tra}(q M_{\rm a}), \quad (32)$$

where $r^{**} = r_a/\beta$ and

$$\beta(q, M_{\rm a}) = \frac{R(M_{\rm a})}{R(qM_{\rm a})} \sqrt{\frac{L(qM_{\rm a})}{L_{\rm sys}(M_{\rm a}, q)}}.$$
(33)

4.2. Final Formula

Note again that the denominators of Λ_a are the same for singles, primaries, and secondaries: $N_{s,a}(\delta_{obs}, M_a)$ and $p_{tra}(M_a)$. This is because we are calculating the occurrence at the same apparent planet/star properties, and the observer can never distinguish binaries from singles (and adopt the primary properties for binaries). Using the results above, the apparent occurrence is thus given by

$$\Lambda_{\mathbf{a}}(r_{\mathbf{a}}, M_{\mathbf{a}}) = \frac{1}{1 + \mu(\mathrm{BF}, M_{\mathbf{a}})} \times \left\{ \Lambda^{0}(r_{\mathbf{a}}, M_{\mathbf{a}}) + \mu(\mathrm{BF}, M_{\mathbf{a}}) \left[\int \frac{\mathrm{d}q}{A} f(q) \Lambda^{1} \left(\frac{r_{\mathbf{a}}}{A}, M_{\mathbf{a}} \right) + \int \frac{q \mathrm{d}q}{B} f(q) \Lambda^{2} \left(\frac{r_{\mathbf{a}}}{B}, q M_{\mathbf{a}} \right) \frac{R(q M_{\mathbf{a}})}{R(M_{\mathbf{a}})} q^{-1/3} \right] \right\}, \tag{35}$$

where

$$A = \left[1 + \frac{L(qM_{\rm a})}{L(M_{\rm a})}\right]^{-1/2}, \quad B = \frac{R(M_{\rm a})}{R(qM_{\rm a})} \left[1 + \frac{L(M_{\rm a})}{L(qM_{\rm a})}\right]^{-1/2}.$$
 (36)

5. EXAMPLES

5.1. Twin Binary

We have $f(q) = \delta(q-1)$. Thus

$$\Lambda_{\rm a}(r_{\rm a}, M_{\rm a}) = \frac{1}{1 + \mu({\rm BF}, M_{\rm a})} \left\{ \Lambda^0(r_{\rm a}, M_{\rm a}) + \mu({\rm BF}, M_{\rm a}) \cdot \sqrt{2} \left[\Lambda^1(\sqrt{2}\,r_{\rm a}, M_{\rm a}) + \Lambda^2(\sqrt{2}\,r_{\rm a}, M_{\rm a}) \right] \right\},$$
(37)

where

$$\mu(BF, M_a) = \int dq \, f(q) \frac{BF}{1 - BF} \left[1 + \frac{L(qM_a)}{L(M_a)} \right]^{3/2} = 2^{3/2} \cdot \frac{BF}{1 - BF}.$$
 (38)

5.1.1. Same Planets

If $\Lambda^i(r, M) = Z^i \cdot \delta(r - r_0)$ (all the planets have the same radius),

$$\Lambda_{\rm a}(r_{\rm a}, M_{\rm a}) = \frac{1}{1 + \mu({\rm BF})} \left[Z^0 \cdot \delta(r_{\rm a} - r_0) + (Z^1 + Z^2) \cdot \mu({\rm BF}) \cdot \delta\left(r_{\rm a} - \frac{r_0}{\sqrt{2}}\right) \right]. (39)$$

This reproduces Eq.(9) of the draft, after correcting for the smaller number of apparently searchable stars for the diluted planets (factor of $(1/2)^3$). In the limit of BF $\to 1$ ($\mu \to \infty$), the above formula yields $\Lambda_a = (Z^1 + Z^2) \, \delta(r_a - r_0/\sqrt{2})$.

5.2. Power Law World

If we assume

$$L(M) \sim M^{\alpha} \sim R^{\alpha},$$
 (40)

we find

$$A = (1+q^{\alpha})^{-1/2}, \quad B = q^{-1}(1+q^{-\alpha})^{-1/2},$$
 (41)

so

$$\Lambda_{\rm a}(r_{\rm a}, M_{\rm a}) = \dots \tag{42}$$

We may further assume

$$f(q) \sim q^{\beta}, \quad \Lambda(r) \sim r^{\gamma}$$
 (43)

and keep calculating...