

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen V

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2018-19.

Grupo A.

Profesor Rafael Ortega Ríos.

Descripción Primer parcial.

Fecha 21 de marzo de 2019.

Ejercicio 1. En el plano con coordenadas (x, y) se considera la familia de curvas dada por la ecuación

$$\frac{y^2}{2} + x = c$$

donde $c \in \mathbb{R}$ actúa como parámetro. Encuentra la familia de trayectorias ortogonales. Dibuja ambas familias.

La familia descrita también se puede expresar con la ecuación $x = y^2/2 + c$, donde vemos más fácilmente que se trata de una parábola con eje de simetría en el eje y = 0 y vértice en el punto (c, 0). Además, las ramas de la parábola van hacia los valores de x negativos.

Buscamos ahora una ecuación diferencial que las admita como soluciones, para lo que derivamos implícitamente:

$$1 + yy' = 0 \implies y' = -\frac{1}{y} \text{ con dominio } D = left \begin{cases} D_1 = \mathbb{R} \times \mathbb{R}^+, \\ \vee \\ D_2 = \mathbb{R} \times \mathbb{R}^-. \end{cases}$$

Usando que el producto de pendientes de rectas ortogonales es -1 y la interpretación geométrica de la derivada, podemos concluir que las trayectorias ortogonales vienen descritas por la ecuación diferencial:

$$y' = y$$
 con dominio $D = \begin{cases} D_1 = \mathbb{R} \times \mathbb{R}^+, \\ \vee \\ D_2 = \mathbb{R} \times \mathbb{R}^-. \end{cases}$

Sus soluciones sabemos, por lo visto en Teoría, que son de la forma:

$$y(x) = ce^x$$
, $\forall x \in \mathbb{R}$ con $c \in \mathbb{R}$.

Las dos familias de curvas dibujadas en el plano (x, y) son:

Ejercicio 2. Escribe la ecuación diferencial que modela la desintegración del Radio 226 sabiendo que la masa se reduce a la mitad (periodo de semi-desintegración) en 1600 años.

Sea m(t) la masa de Radio 226 en el año t desde que comenzó la desintegración. Como la velocidad a la que se desintegra es directamente proporcional a la cantidad de masa presente, podemos escribir la ecuación diferencial:

$$m' = -\lambda m$$
,

donde $\lambda \in \mathbb{R}$ es el factor de proporcionalidad. El dominio de esta ecuación diferencial es \mathbb{R}^2 , y como condición inicial sabemos que:

$$m(1600) = \frac{m(0)}{2}.$$

Ejercicio 3. Encuentra las órbitas del sistema autónomo

$$\begin{cases} x' = (x^2 + 3y^2 + 1)y, \\ y' = -(x^2 + 3y^2 + 1)x. \end{cases}$$

¿Qué tipo de curvas son?

Para encontrar las órbitas del sistema, en primer lugar hemos de asegurar que:

$$(x^2 + 3y^2 + 1)y \neq 0 \iff y \neq 0 \qquad \forall (x, y) \in \mathbb{R}^2.$$

Por tanto, la ecuación diferencial que define las órbitas es:

$$\frac{dy}{dx} = \frac{-(x^2 + 3y^2 + 1)x}{(x^2 + 3y^2 + 1)y} = -\frac{x}{y} \quad \text{con dominio } D = \begin{cases} D_1 &= \mathbb{R} \times \mathbb{R}^+, \\ & \vee \\ D_2 &= \mathbb{R} \times \mathbb{R}^-. \end{cases}$$

Se trata de una ecuación diferencial de variables separadas donde la ecuación dependiente de y no se anula, luego:

$$ydy = -xdx \Longrightarrow \frac{y^2}{2} = -\frac{x^2}{2} + C' \Longrightarrow x^2 + y^2 = C$$

Esto sabemos que define curvas en implícitas, y se trata de las circunferencias de radio $r = \sqrt{C}$ y centro en el origen.

Ejercicio 4. Se considera la transformación $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, $\varphi(t, x) = (s, y)$ con:

$$s = e^t, \quad y = e^t x.$$

Determina la imagen $\varphi(\mathbb{R}^2) = \widehat{\Omega}$ y prueba que φ es un C^1 -difeomorfismo entre $\Omega = \mathbb{R}^2$ y $\widehat{\Omega}$. ¿Es este cambio de variable admisible para la ecuación $x' = t^2 \cos x$?

En primer lugar, definimos el cambio de variable:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \widehat{\Omega}$$

 $(t, x) \longmapsto (s, y) = (e^t, e^t x)$

Busquemos en primer lugar su inversa, para lo cual buscamos despejar de forma única t y x en función de s y y:

$$s = e^t \Longrightarrow t = \ln s$$

 $y = e^t x \Longrightarrow x = e^{-t} y = e^{-\ln s} y = y/s$

Por tanto, tenemos que φ es biyectiva, y su inversa es:

$$\varphi^{-1}: \widehat{\Omega} \longrightarrow \mathbb{R}^2$$

 $(s,y) \longmapsto (t,x) = (\ln s, y/s)$

Calculemos ahora $\widehat{\Omega}$. En primer lugar, para que φ^{-1} esté bien definida, necesitamos s > 0. Por tanto, $\widehat{\Omega} \subset \mathbb{R}^+ \times \mathbb{R}$. Tenemos que:

$$\widehat{\Omega} = \varphi(\mathbb{R}^2) = \{(s, y) \in \mathbb{R}^2 \mid (\ln s, y/s) \in \mathbb{R}^2\} = \mathbb{R}^+ \times \mathbb{R}$$

Tenemos que φ, φ^{-1} son biyectivas, y sus componentes son productos o cocientes de funciones elementales de clase 1, por lo que $\varphi, \varphi^{-1} \in C^1$. Por tanto, φ define un difeomorfismo entre \mathbb{R}^2 y $\widehat{\Omega}$.

Para comprobar que el cambio de variable es admisible para la ecuación $x' = t^2 \cos x$, tenemos que:

$$\frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} x' = e^t + 0 \cdot x' = e^t > 0 \qquad \forall (t, x) \in \mathbb{R}^2$$

Por tanto, el cambio de variable sí es admisible.

Ejercicio 5. Por un argumento visto en clase sabemos que la ecuación

$$x^{55} + x + t = 0$$

define una función $x : \mathbb{R} \to \mathbb{R}$, x = x(t), de clase C^1 . Demuestra que esta función también es de clase C^2 y encuentra una ecuación diferencial de segundo orden que la admita como solución.

Para ello, derivamos implícitamente:

$$1 + (55x^{54} + 1) x' = 0 \Longrightarrow x' = -\frac{1}{55x^{54} + 1}$$

La función x' es cociente de dos funciones de clase C^1 (pues x es de clase C^1), y el denominador no se anula puesto que $55x^{54} + 1 > 0$ para todo $x \in \mathbb{R}$. Por tanto, x' es de clase C^1 , y por tanto x es de clase C^2 .

Para hallar una ecuación diferencial de segundo orden que admita a x como solución, derivamos de nuevo:

$$x'' = \frac{1}{(55x^4 + 1)^2} \cdot 55 \cdot 54 \cdot x^{53} x' = -\frac{55 \cdot 54 \cdot x^{53}}{(55x^{54} + 1)^3} \quad \text{con dominio } D = \mathbb{R}^2.$$