01204211 Discrete Mathematics Lecture 10c: Matrices

Jittat Fakcharoenphol

September 7, 2022

What is linear algebra?

What is a matrix?

Matrices arise in many places. We will see that there are essentially two ways to look at matrices.

$$\left[\begin{array}{cccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]$$

What is a matrix?

Matrices arise in many places. We will see that there are essentially two ways to look at matrices.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

What is a matrix?

Matrices arise in many places. We will see that there are essentially two ways to look at matrices.

columns

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{2}{5} & \frac{3}{6} \\ \frac{7}{10} & \frac{8}{11} & \frac{9}{12} \end{bmatrix}$$

Consider the following system of linear equations:

$$x_1 + x_2 + x_3 = 5$$

 $2x_1 + x_2 + 2x_3 = 10$
 $3x_1 + x_2 + 2x_3 = 4$

Consider the following system of linear equations:

$$x_1 + x_2 + x_3 = 5$$

 $2x_1 + x_2 + 2x_3 = 10$
 $3x_1 + x_2 + 2x_3 = 4$

Again we can view it as a vector equation:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} x_3 = \begin{bmatrix} 5 \\ 10 \\ 4 \end{bmatrix}$$

From the following system of linear equations

We can also view variables x_1, x_2, x_3 as a vector, i.e., let $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

From the following system of linear equations

We can also view variables x_1, x_2, x_3 as a vector, i.e., let $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

The coefficients form a nice rectangular "matrix" A:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix},$$

From the following system of linear equations

We can also view variables x_1, x_2, x_3 as a vector, i.e., let $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

The coefficients form a nice rectangular "matrix" A:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix},$$

and rewrite the system as

Matrix - Vector

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 4 \end{bmatrix}$$

4 columns

Size

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 5 \\ 3 & 1 & 2 & 4 \end{bmatrix}$$

The **size** of a matrix is determined by the number of rows and columns. A matrix with m rows and n columns is referred to as an m-by-n matrix or an $m \times n$ matrix. We refers to m and n as its dimensions.

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

How would we understand the multiplication

By rows. Consider the first row of *A*:

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

By rows. Consider the first row of A:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

By rows. Consider the first row of *A*:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3.$$

$$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

By rows. Consider the first row of *A*:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3.$$

$$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3,$$

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

By rows. Consider the first row of *A*:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3.$$

$$\begin{bmatrix}2 & 1 & 2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = 2\cdot x_1 + 1\cdot x_2 + 2\cdot x_3, \qquad \begin{bmatrix}3 & 1 & 2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$$

How would we understand the multiplication

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

By rows. Consider the first row of *A*:

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ x_2 \\ x_3 \end{bmatrix} = 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3.$$

$$\begin{bmatrix} \mathbf{2} & \mathbf{1} & \mathbf{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{\mathbf{2} \cdot x_1 + \mathbf{1} \cdot x_2 + \mathbf{2} \cdot x_3}, \qquad \begin{bmatrix} 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3,$$

We look at matrix-vector multiplication with "row perspective". This is a common way to view matrix-vector multiplication.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

We look at matrix-vector multiplication with "row perspective". This is a common way to view matrix-vector multiplication.

$$egin{bmatrix} 1 & 1 & 1 \ x_2 \ x_3 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \ x_1 + x_2 + 1 \cdot x_3 \ x_2 + x_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3.$$

We look at matrix-vector multiplication with "row perspective". This is a common way to view matrix-vector multiplication.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3,$$

We look at matrix-vector multiplication with "row perspective". This is a common way to view matrix-vector multiplication.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3,$$

Review: Dot product

Definition

For n-vectors $u = [u_1, u_2, \dots, u_n]$ and $v = [v_1, v_2, \dots, v_n]$, the **dot product** of u and v, denoted by $u \cdot v$, is

$$u_1 \cdot v_1 + u_2 \cdot v_2 + \cdots + u_n \cdot v_n$$

We look at matrix-vector multiplication with "row perspective", which can be written nicely with **dot product**. I.e., from:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

we have

$$\begin{bmatrix} \underline{r_1} \\ \underline{r_2} \\ \underline{r_3} \end{bmatrix} \underline{x} = \begin{bmatrix} \underline{r_1 \cdot x} \\ \underline{r_2 \cdot x} \\ \underline{r_3 \cdot x} \end{bmatrix},$$

where

$$r_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \quad r_2 = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}, \quad r_3 = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}.$$

We look at matrix-vector multiplication with "row perspective", which can be written nicely with **dot product**.

I.e., from:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

we have

$$\begin{bmatrix} \underline{r_1} \\ \underline{r_2} \\ \underline{r_3} \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} \underline{r_1 \cdot \boldsymbol{x}} \\ \underline{r_2 \cdot \boldsymbol{x}} \\ \underline{r_3 \cdot \boldsymbol{x}} \end{bmatrix},$$

where

$$r_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \quad r_2 = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}, \quad r_3 = \begin{bmatrix} 3 & 1 & 2 \end{bmatrix}.$$

Dot-product perspective

The matrix-vector product is a vector of **dot products** between each rows and the vector.

However, another nice way to look at matrix-vector multiplication is **by columns**. Notice that:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

However, another nice way to look at matrix-vector multiplication is **by columns**. Notice that:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

can be written as

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} x_3 = \begin{bmatrix} 5 \\ 10 \\ 4 \end{bmatrix}$$

However, another nice way to look at matrix-vector multiplication is **by columns**. Notice that:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \\ 3 \cdot x_1 + 1 \cdot x_2 + 2 \cdot x_3 \end{bmatrix}$$

can be written as

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} x_3 = \begin{bmatrix} 5 \\ 10 \\ 4 \end{bmatrix}$$

Linear combination perspective

The matrix-vector product is a **linear combination** of column vectors.

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \\ a_{41} \cdot x_1 + a_{42} \cdot x_2 + a_{43} \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \\ a_{41} \cdot x_1 + a_{42} \cdot x_2 + a_{43} \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \cdot x_1 +$$

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \\ a_{41} \cdot x_1 + a_{42} \cdot x_2 + a_{43} \cdot x_3 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \cdot x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \end{bmatrix} \cdot x_2 +$$

Two perspectives: Matrix-Vector multiplication

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \\ a_{41} \cdot x_1 + a_{42} \cdot x_2 + a_{43} \cdot x_3 \end{bmatrix}$$

Linear combination of column vectors

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \cdot x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \end{bmatrix} \cdot x_2 + \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \\ a_{43} \end{bmatrix} \cdot x_3$$

Two perspectives: Matrix-Vector multiplication

Dot products between rows and the vector

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 \\ a_{41} \cdot x_1 + a_{42} \cdot x_2 + a_{43} \cdot x_3 \end{bmatrix}$$

Linear combination of column vectors

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} \cdot x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{42} \end{bmatrix} \cdot x_2 + \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \\ a_{43} \end{bmatrix} \cdot x_3$$

Dimensions

If the matrix has n columns, the vector should be an n-vector.

Document search

➤ You have 1,000,000 documents in a library. Given another document, you would like to find similar documents from the library. How can you do that?

Document search

- ➤ You have 1,000,000 documents in a library. Given another document, you would like to find similar documents from the library. How can you do that?
- You need some way to measure document similarity.

Document search

- ➤ You have 1,000,000 documents in a library. Given another document, you would like to find similar documents from the library. How can you do that?
- ▶ You need some way to measure document **similarity**.
- Suppose that you nave N documents in the library: d_1, d_2, \ldots, d_N . Given a query document q, you want to find document d_i that maximize

$$\underbrace{sim}(d_i,q),$$

where $\underline{sim(d,d')}$ is the similarity score between documents \underline{d} and $\underline{d'}$.

What is a document?

What is a document? It's just a list of words.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

- lacksquare d1: People love pets. Most famous pets are cats and dogs.
- lacksquare d2: Bar Mai has many restaurants with cheap foods.
- lacktriangledown d3: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.
- d_4 : Dogs are human's best friends. They were around in civilization for a long long time.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ extstyle extstyle extstyle d_1 = \{ extstyle extstyle extstyle d_1 = \{ extstyle extstyle d_1 = \{ extstyle extstyle d_1 = \{ extstyle extstyle d_2 = \{ extstyle extstyle d_2 = \{ exts$
- $lacksquare d_2$: Bar Mai has many restaurants with cheap foods.
- lacktriangledown d 3: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.
- d_4 : Dogs are human's best friends. They were around in civilization for a long long time.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ \mathsf{dog}, \mathsf{cat} \}$
- $m d_2$: Bar Mai has many restaurants with cheap foods. $d_2 = \{ { t restaurant, food} \}$
- $lacktriangledown d_3$: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.
- $ightharpoonup d_4$: Dogs are human's best friends. They were around in civilization for a long long time.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ \mathsf{dog}, \mathsf{cat} \}$
- d_2 : Bar Mai has many restaurants with cheap foods. $d_2 = \{ ext{restaurant}, ext{food} \}$
- d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there. $d_3 = \{ exttt{coffee}, exttt{cat} \}$
- $lacktriangledown d_4$: Dogs are human's best friends. They were around in civilization for a long long time.

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ \mathsf{dog}, \mathsf{cat} \}$
- d_2 : Bar Mai has many restaurants with cheap foods. $d_2 = \{ ext{restaurant}, ext{food} \}$
- d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there. $d_3 = \{ exttt{coffee}, exttt{cat} \}$
- d_4 : Dogs are human's best friends. They were around in civilization for a long long time. $d_4 = \{ { t dog} \}$

What is a document? It's just a list of words. If you throw all the ordering away, a document is simply a set of words.

Let's start with an example. Suppose that we only care about 5 words: dog, cat, food, restaurant, and coffee.

Consider the following 4 (very short) documents:

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ \mathsf{dog}, \mathsf{cat} \}$
- d_2 : Bar Mai has many restaurants with cheap foods. $d_2 = \{ ext{restaurant}, ext{food} \}$
- d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there. $d_3 = \{ exttt{coffee}, exttt{cat} \}$
- d_4 : Dogs are human's best friends. They were around in civilization for a long long time. $d_4 = \{ { t dog} \}$

How can we translate these sets into vectors?

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 $m d_1$: People love pets. Most famous pets are cats and dogs. $d_1 = \{ ext{dog}, ext{cat} \}$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ exttt{dog}, exttt{cat} \} \ d_1 = [1,1,0,0,0]$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

▶ d_1 : People love pets. Most famous pets are cats and dogs.

$$d_1 = \{ \text{dog}, \text{cat} \}$$

 $d_1 = [1, 1, 0, 0, 0]$

lacksquare d2: Bar Mai has many restaurants with cheap foods.

$$d_2 = \{ \mathtt{restaurant}, \mathtt{food} \}$$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 $m{d}_1$: People love pets. Most famous pets are cats and dogs. $d_1 = \{ ext{dog}, ext{cat} \}$ $m{d}_1 = [1,1,0,0,0]$

 $lacktriangledown d_2$: Bar Mai has many restaurants with cheap foods.

$$\begin{aligned} d_2 &= \{\texttt{restaurant}, \texttt{food}\} \\ \boldsymbol{d}_2 &= [0, 0, 1, 1, 0] \end{aligned}$$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 d_1 : People love pets. Most famous pets are cats and dogs.

$$d_1 = \{ \text{dog}, \text{cat} \}$$

 $d_1 = [1, 1, 0, 0, 0]$

lacksquare Bar Mai has many restaurants with cheap foods.

$$d_2 = \{ \texttt{restaurant}, \texttt{food} \}$$

 $d_2 = [0, 0, 1, 1, 0]$

lacktriangledown d3: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.

$$d_3 = \{ \texttt{coffee}, \texttt{cat} \}$$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 d_1 : People love pets. Most famous pets are cats and dogs.

$$d_1 = \{ \text{dog}, \text{cat} \}$$

 $d_1 = [1, 1, 0, 0, 0]$

 $lacktriangledown d_2$: Bar Mai has many restaurants with cheap foods.

$$d_2 = \{ \texttt{restaurant}, \texttt{food} \}$$

 $d_2 = [0, 0, 1, 1, 0]$

 $lacktriangledown d_3$: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.

$$d_3 = \{ \texttt{coffee}, \texttt{cat} \}$$

 $d_3 = [0, 1, 0, 0, 1]$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 $lacksquare d_1$: People love pets. Most famous pets are cats and dogs.

$$d_1 = \{ \text{dog}, \text{cat} \}$$

 $d_1 = [1, 1, 0, 0, 0]$

lacksquare d2: Bar Mai has many restaurants with cheap foods.

$$d_2 = \{ \mathtt{restaurant}, \mathtt{food} \}$$

 $d_2 = [0, 0, 1, 1, 0]$

lacksquare d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.

$$d_3 = \{ \texttt{coffee}, \texttt{cat} \}$$

 $d_3 = [0, 1, 0, 0, 1]$

 $lacktriangledown d_4$: Dogs are human's best friends. They were around in civilization for a long long time.

$$d_4 = \{ \mathsf{dog} \}$$

We assign a fixed co-ordinate for each word, and if a set contain a particular word, we put 1 in that co-ordinate.

Here are our 5 words: dog, cat, food, restaurant, and coffee. Each document becomes:

 $lacksquare d_1$: People love pets. Most famous pets are cats and dogs.

$$d_1 = \{ \mathsf{dog}, \mathsf{cat} \}$$

$$\rightarrow$$
 $d_1 = [1, 1, 0, 0, 0]$

 d_2 : Bar Mai has many restaurants with cheap foods.

$$d_2 = \{ \mathtt{restaurant}, \mathtt{food} \}$$

$$\rightarrow$$
 $d_2 = [0, 0, 1, 1, 0]$

 $lacktriangledown d_3$: Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.

$$d_3 = \{ coffee, cat \}$$

$$\rightarrow$$
 $d_3 = [0, 1, 0, 0, 1]$

 $lacktriangledown d_4$: Dogs are human's best friends. They were around in civilization for a long long time.

$$d_4 = \{ \mathsf{dog} \}$$

$$\mathbf{d}_4 = [1, 0, 0, 0, 0]$$

Words: dog, cat, food, restaurant, and coffee. Suppose that we have query document:

q: I love cats and coffee. What restaurant should I visit?

Words: dog, cat, food, restaurant, and coffee. Suppose that we have query document:

```
q: I love cats and coffee. What restaurant should I visit? as a set: q = \{ \texttt{cat}, \texttt{coffee}, \texttt{restaurant} \}
```

Words: dog, cat, food, restaurant, and coffee. Suppose that we have query document:

```
q: I love cats and coffee. What restaurant should I visit? as a set: q=\{\texttt{cat},\texttt{coffee},\texttt{restaurant}\} as a vector: {\pmb q}=[0,1,0,1,1]
```

Words: dog, cat, food, restaurant, and coffee. Suppose that we have query document:

```
q: I love cats and coffee. What restaurant should I visit? as a set: q=\{\texttt{cat},\texttt{coffee},\texttt{restaurant}\} as a vector: \boldsymbol{q}=[0,1,0,1,1]
```

Our documents are:

- d_1 : People love pets. Most famous pets are cats and dogs. $d_1 = \{ \deg, \operatorname{cat} \}$ $d_1 = [1, 1, 0, 0, 0]$
- d_2 : Bar Mai has many restaurants with cheap foods. $d_2 = \{ ext{restaurant}, ext{food} \} \qquad d_2 = [0,0,1,1,0]$
- d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there. $d_3 = \{ \texttt{coffee}, \texttt{cat} \}$ $d_3 = [0,1,0,0,1]$
- d_4 : Dogs are human's best friends. They were around in civilization for a long long time. $d_4=\{\log\}$ $d_4=[1,0,0,0,0]$

Words: dog, cat, food, restaurant, and coffee.

Suppose that we have query document:

```
q: I love cats and coffee. What restaurant should I visit? as a set: q = \{ \texttt{cat}, \texttt{coffee}, \texttt{restaurant} \} as a vector: q = [0,1,0,1,1]
```

Our documents are:

$$d_1$$
: People love pets. Most famous pets are cats and dogs.
$$d_1 = \{\deg, \operatorname{cat}\} \quad \widehat{d_1} = [1, \widehat{1}]0, 0, 0]$$

 $ightharpoonup d_2$: Bar Mai has many restaurants with cheap foods.

(1)
$$d_2 = \{\text{restaurant}, \text{food}\}$$
 $d_2 = [0, 0, 1, 1, 0]$ $d_2 \cdot q = 1$

lacksquare d_3 : Cat cafe used to be popular in Thailand. People buy coffee and play with cats there.

(2)
$$d_3 = \{ coffee, cat \}$$
 $d_3 = [0, 1, 0, 0, 1]$ $d_3 \cdot q = 2$

 $lacktriangledown d_4$: Dogs are human's best friends. They were around in civilization for a long long time.

$$d_4 = \{ \text{dog} \}$$
 $d_4 = [1, 0, 0, 0, 0]$ $d_4 \cdot q = 0$

How can we define "similarity" measure?

From the previous example, we see that the dot products between d_i 's and q count the number of common words.

From the previous example, we see that the dot products between d_i 's and q count the number of common words.

This simple idea can be extended in many ways.

From the previous example, we see that the dot products between d_i 's and q count the number of common words.

This simple idea can be extended in many ways.

▶ We can increase our "dictionary"'s size to include more words.

From the previous example, we see that the dot products between d_i 's and q count the number of common words.

This simple idea can be extended in many ways.

- ▶ We can increase our "dictionary" 's size to include more words.
- ▶ We can group similar words into the same "co-ordinates".

From the previous example, we see that the dot products between d_i 's and q count the number of common words.

This simple idea can be extended in many ways.

- ▶ We can increase our "dictionary" 's size to include more words.
- ▶ We can group similar words into the same "co-ordinates".
- ▶ In fact, the dot product measures the "angle" between vectors. For vectors over \mathbb{R} , we have that

$$u \cdot v = |u||v|\cos\theta$$

where θ is the angle between vectors \boldsymbol{u} and \boldsymbol{v} .

Computing all similarity scores

If we have documents d_1, d_1, \dots, d_N , as vectors, and a query q, how can we compute all similarity scores?

Computing all similarity scores

If we have documents d_1, d_1, \dots, d_N , as vectors, and a query q, how can we compute all similarity scores? By performing matrix-vector multiplication:

Vector-matrix multiplication

Let's consider another direction. What is

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}?$$

Vector-matrix multiplication

Let's consider another direction. What is

As a linear combination

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_3 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_5 \longrightarrow x_5$$

Vector-matrix multiplication

Let's consider another direction. What is

As a linear combination

As dot products

Matrix-matrix multiplication

Consider

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}.$$

Matrix-matrix multiplication (based on matrix-vector multiplication)

Matrix-matrix multiplication (based on vector-matrix multiplication)

Matrix transpose

If A is an $m \times n$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix},$$

the **transpose** of A, denoted by A^T is an $n \times m$ matrix

```
\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m3} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.
```

Matrix transpose

If A is an $m \times n$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix},$$

the **transpose** of A, denoted by A^T is an $n \times m$ matrix

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m3} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} & & & & \\ & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

Remark: We usually view a vector as a column vector. Therefore, a dot product between m-vectors can be viewed also as a matrix multiplication:

$$(\boldsymbol{u}\cdot\boldsymbol{v}) = \boldsymbol{u}^T\boldsymbol{v}$$