Question 1: Grunnlegende
Hva vil det si at et problem har optimal substruktur?
At problemet kan løses i polynomisk tid
At delinstansene overlapper
 At dersom vi løser delinstansene optimalt kan vi også løse problemet optimalt
At optimalisering av strukturen kan gjøres i konstant tid
Question 2: Grunnlegende
Question 2: Grunnlegende
Question 2: Grunnlegende
Question 2: Grunnlegende X Hva innebærer overlappende delinstanser?
×
Hva innebærer overlappende delinstanser?
Hva innebærer overlappende delinstanser? At delinstansene er praktisk talt like, og derfor trygt kan ignoreres

Question 3: Grunnlegende
×
Hvilket av disse problemene er hensiktsmessig å løse med dynamisk programmering?
O Sortere en liste bestående av n heltall mellom 1 og n.
Finne det n'te Fibonacci tallet
Finne det elementet i et binært søketre som har verdi nærmest en oppgitt verdi.
Finne et element som forekommer mer enn én gang i en liste bestående av n heltall mellom 1 og n-1.
Question 4: Rekursive problemer
Merge-sort er et eksempel på en algoritme som rekursivt løser et problem. Hvorfor kan vi ikke bruke dynamisk
programmering til å forbedre den?
programmering til å forbedre den? Fordi problemet ikke har optimal subtruktur
Fordi problemet ikke har optimal subtruktur
Fordi problemet ikke har optimal subtruktur Fordi sortering ikke tar eksponensiell tid

Question 5: Rekursive problemer

Alle riktige svar funnet.

Ett rett svar.

Ett rett svar.

Hvilke(n) av disse rekursive dekomponeringene beskriver et problem som trolig kan løses ved hjelp av dynamisk programmering? Hint: Prøv å tegne delinstans-grafen og se etter overlapp, start med f.eks. P(5,5) og se om noen av delinstansene blir

like. Hva basis-tilfellene for rekkurensene er ikke viktig i denne oppgaven, bare anta at de finnes.

- $P(i,j) = max{P(i-1,j), P(i,j-1), P(i-1,j-1)}$
- \square P(i,j) = min {P(i,j-2), P(i-1, j)}
- P(i,j) = P(i-1,j-1) + 2
- P(i,j) = 4

Question 6: Matrisetraversering

I denne oppgaven skal vi ta for oss et rektangulært rutenett gitt som følger:

Vi skal nå prøve å finne ut av hvor mange veier det finnes fra punkt start (punkt [1, 1]) til punkt Mål (punkt [m, n]) under visse restriksjoner. En lovlig vei fra Start til Mål defineres ved at et skritt fra punkt [i, j] på veien skal gå enten til punktet [i+1, j] eller til punktet [i, j+1]. To veier er forskjellige dersom de ikke er identisk like, skritt for skritt. Funksjonen T(i, j) skal gi antall veier fra punkt [1, 1] til punkt [i, j]. Dette fører til at T(1, 2) = 1 og T(3, 2) = 3.

Hva blir T(1,4)?

- 52
- 0
- O 4
- 0:

Question 7: Matrisetraversering	
	×
Hva blir T(6,3)? (Det kan være lurt å finne et system)	
○ 8	
○ 14	
O 10	
2 1	
○ 18	
Question 8: Matrisetraversering I dynamisk programmering handler det ofte om å finne et utrykk som gir deg svaret på et problem dersom du	×
allerede har svaret på en delinstans av problemet, en rekursiv dekomponering.	
Hvilket av utrykkene under beskriver T(m,n)?	
T(m,n) =	
T(m,n) = m * 42	
○ m * 42	
○ m * 42 ○ T(m-1,n-1) + 2	

Question 9: Stavkutting

Gitt en stav med lengde N. En stav med lengde i kan selges for p_i, for i=1,2,...,N.

Finn hvordan staven skal kuttes opp slik at du maksimerer inntekten R ved å selge staven.

Hva blir inntekten R når

N = 4

 $p_1 = 3$, $p_2 = 7$, $p_3 = 12$, $p_4 = 13$

- 15

- O 14
- 16

Question 10: Stavkutting
Hva blir R når
N = 8
p_1 = 3, p_2 = 4, p_3 = 7 p_4 = 10, p_5 = 12, p_6 = 14, p_7 = 15, p_8 = 18
○ 23
O 26
O 24
○ 18
Question 11: Stavkutting
$oldsymbol{ imes}$
Hvor mange delinstanser må man løse for å finne optimal løsning for stavkutte-problemet hvis staven har en lengde n?
Merk: Her er det ikke viktig hvor lang tid en algoritme ville brukt på å løse problemet.
Θ(n^2)
Θ(2n)
Θ(lg n)