(19) Weltorganisation für geistiges Eigentum Internationales Büro

: THE COLUMN CONTRACTOR OF THE PARTY OF THE P

(43) Internationales Veröffentlichungsdatum 17. Oktober 2002 (17.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/082248 A2

(51) Internationale Patentklassifikation7: G06F 1/32

PCT/DE02/00821

(72) Erfinder; und (75) Erfinder/Anmelder (nur für US); WEDER, Uwe [DE/DE]; Im Bäckerfeld 23a, 84072 Au (DE). SEDLAK, Holger [DE/DE]; Neumünster 10a, 85658 Egmating (DE).

(21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:

7. März 2002 (07.03.2002)

(74) Anwalt: EPPING, HERMANN & FISCHER; Ridlerstr.

(25) Einreichungssprache:

Deutsch

Dentsch

(81) Bestimmungsstaaten (national): JP, KR, US.

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität:

55, 80339 München (DE).

4. April 2001 (04.04.2001) DE 101 16 871.3 (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme yon US): INFINEON TECHNOLOGIES AG [DE/DE]:

St-Martin-Str. 53, 81669 München (DE).

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, DE, FR, GB, IT).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

[Fortsetzung auf der nächsten Seite]

(54) Title: INTEGRATED CIRCUIT WITH LOW ENERGY CONSUMPTION IN A POWER SAVING MODE

(54) Bezeichnung: INTEGRIERTE SCHALTUNG MIT GERINGEM ENERGIEVERBRAUCH IN EINEM STROMSPARMO-DUS

the voltage regulator can be switched off by a first switching device in a power saving mode. The supply potential input of the useful circuit is then connected to the supply potential terminal via a diode circuit.

[Fortsetzung auf der nächsten Seite]

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkärzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazetle verwiesen.

.

⁽⁵⁷⁾ Zusammenfassung: Die Erfindung schlägt eine integrierte Schaltung mit zumindest einem zwischen einem Versorgungspotential-anschlübd werschalten Spiecher undroder Logik enthaltende Nutzschaltung aufweist, derem Versorgungspotential-Elingang mit einem Ausgang des Spaanungsregler von der Jedik eine Spiecher undroder Logik enthaltende Nutzschaltung aufweist, derem Versorgungspotential-Elingang mit einem Ausgang des Spaanungsreglers gekoppel iss. Erfindungsgemäß ist in einem Storsorgangsprodest der eine erste Schaltung vorrichtung abschaltung ber Versorgungspotential-Elingang der Nutzschaltung wird dann über eine Diodenschaltung mit dem Versorgungspotential-Anschluß verbunden.

Integrierte Schaltung mit geringem Energieverbrauch in einem Stromsparmodus

Die Erfindung betrifft eine integrierte Schaltung mit einem 5 zwischen einem Versorgungspotentialanschluß und einem Bezugspotentialanschluß verschalteten Spannungsregler und mit zumindest einer Speicher und/oder Logik enthaltenden Nutzschaltung, deren Versorgungspotential-Eingang mit einem Ausgang des Spannungsreglers gekoppelt ist.

10

Derartige integrierte Schaltungen können in einen Stromsparmodus gebracht werden. Dabei wird ein externer Takt angehalten, wodurch die Stromaufnahme im Stromsparmodus ausschließlich durch Querströme in der integrierten Schaltung bestimmt 15 ist.

Es gibt daneben auch integrierte Schaltungen, bei denen der externe Takt weiterläuft. Dieser wird für eine I/o-Kommunikation benötigt. Die Stromaufnahme im Stromsparmodus 20 wird maßgeblich durch die Querströme in der integrierten Schaltung bestimmt. In beiden Fällen wird die CPU angehalten.

Häufig weisen die integrierten Schaltungen unterschiedliche interne, von der Versorgungsspannung unterschiedliche Spannungsniveaus zur Versorgung verschiedener Nutzschaltungen auf. Zur Erzeugung der erforderlichen Spannungsniveaus enthält die integrierte Schaltung wenigstens einen Spannungsregler, der unabhängig vom gewählten Betriebsmodus – Stromsparmodus oder Normalbetrieb – eine stabile interne Spannung generiert und diese Spannung den Nutzschaltungen zuführt. Die Spannungsregler, die meist eine Spannungsreglerschaltung und eine Spannungsrefernzschaltung beinhalten, sind als Analogschaltungen aufgebaut und erfordern deshalb sowohl im Normalbetrieb als auch im Stromsparmodus einen Querstrom, der u. a. den Energieverbrauch der integrierten Schaltung bestimmt.

1.0

Zur Ansteuerung der Spannungsreglerschaltung oder Spannungsreglerschaltungen ist die Spannungsreferenzschaltung erforderlich, die üblicherweise als Bandgap ausgeführt ist. Auch diese Spannungsreferenzschaltungen benötigen im Stromsparmodus einen Ouerstrom.

Manche integrierte Schaltungen weisen darüber hinaus Spannungssensoren auf, die ebenfalls durch Analogelemente gebildet sind und somit auch im Stromsparmodus Querströme nach sich ziehen

Je nach Ausführung der integrierten Schaltung kann somit die Summe an Queretrömen, im Stromsparmodus relativ hoch sein. Dies ist vor allem ein Nachteil bei batteriegetriebenen Geräten. Bei manchen dieser batteriebetriebenen Geräte existieren Spezifikationen, die den maximalen Querstrom im Stromsparmodus festlegen. Im Falle von Mobilfunktelefonen liegt diese Grenze bei 100 µA.

Ausgehend von einer derartigen Spezifikation werden dann die Bauelemente der integrierten Schaltung dimensioniert. In einer Variante werden die Bauelemente derart dimensioniert, daß der Querstrom der Spannungsreglerschaltung im Normalbetrieb identisch zum Querstrom im Stromsparmodus ist. Die vom Stromsparmodus ausgehende Stromlimitierung begrenzt somit jedoch die Regelkonstante im Normalbetrieb. In einer anderen Variante ist der Querstrom der Spannungsreglerschaltung im Normalbetrieb größer als im Stromsparmodus. Diese an sich vorteilhafte Variante erfordert jedoch eine aufwendige Umschaltung des Spannungsreglers mit einer negativen Beeinflussung seines dynamischen Verhaltens.

Die Aufgabe der Erfindung besteht deshalb darin, eine gattungsgemäße integrierte Schaltung anzugeben, die in einem 35 Stromsparmodus einen geringeren Energieverbrauch aufweist. Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen integrierten Schaltung ergeben sich aus den abhängigen Ansprüchen.

5 Die der Erfindung zugrundeliegende Problematik besteht darin, daß die in der integrierten Schaltung enthaltene Nutzschaltung üblicherweise auch in dem Stromsparmodus mit einer ausreichenden Spannung an ihrem Versorgungspotential - Eingang beauftragt werden muß. Im Stand der Technik wird dies durch den Querstrom benötigenden Spannungsregler sichergestellt.

Erfindungsgemåß ist jetzt vorgesehen, daß in einem Stromsparmodus der Spannungsregler über eine erste Schaltvorrichtung
abschaltbar ist und der Versorgungspotential-Eingang der

Nutzschaltung über eine Diodenschaltung mit dem Versorgungspotentialanschluß der integrierten Schaltung verbindbar ist.
Dieses Vorgehen stellt sicher, daß keinerlei statischer Querstrom im Stromsparmodus durch den Spannungsregler fließt. Die
Nutzschaltung hingegen erhält über die Diodenschaltung eine
ausreichende Spannung, um die darin gespeicherten Daten während des Stromsparmodus nicht zu verlieren. Hierdurch ergibt
sich ein drastisch geringerer Energieverbrauch im Stromsparmodus. Folglich erhöht sich die Betriebsbereitschaft bei einem batteriebetriebenen Gerät.

Die Schaltvorrichtung ist vorzugsweise zwischen dem Versorgungspotentialanschluß der integrierten Schaltung und dem Spannungsregler vorgesehen.

30 In einer vorteilhaften Ausgestaltung der Erfindung ist der Versorgungspotential-Eingang der Nutzschaltung über einen Schalter mit dem Ausgang des Spannungsreglers verbunden. Hierdurch ist sichergestellt, daß dem Spannungsregler auch über die Diodenschaltung kein Strom zugeführt wird, so daß kein Ouerstrom mehr auftreten kann.

Der Versorgungspotential-Eingang der Nutzschaltung ist mit einem Ladungsspeicher (Gatekapazitäten, Source/Drainkapazitäten, Leistungskapazitäten) verbunden. Sollte der Nutzschaltung über die Diodenschaltung keine Spannung mehr zugeführt werden können, so kann diese über den Ladungsspeicher, der vorzugsweise als interne Pufferkapazität ausgeführt ist, der Nutzschaltung zugeführt werden. Der Ladungsspeicher stellt dann den von der Nutzschaltung benötigten Strom bereit. Die mit der Zeit auftretende Entladung des Ladungsspeichers kann durch einen einfachen Detektor erkannt werden. Aufgrund der sehr geringen Entladungsgeschwindigkeit ergeben sich an diesen keine hohen Anforderungen bzgl. der Geschwindigkeits- bzw. Genauigkeitsdetektion.

15 Die Diodenschaltung besteht in einer ersten Variante aus einer Serienschaltung aus einer Diode und einem Schalter. Dieser einfache Aufbau der Serienschaltung ist ausreichend, wenn die Spannung am Versorgungspotential-Anschluß der integrierten Schaltung im Stromsparmodus nur ein einziges Niveau annimmt und der Versorgungspotential-Eingang der Nutzschaltung einen zulässicen Wert einnimmt.

Sofern die Spannung im Versorgungspotential-Anschluß der integrierten Schaltung unterschiedliche Werte annehmen kann,
ist es vorteilhaft, wenn die Diodenschaltung eine Serienschaltung aus einer Diode, einem Schalter und einem Widerstand aufweist. In Verbindung mit einer Diodenkette, die mit dem Versorgungspotential-Eingang der Nutzschaltung verbunden ist, ist sichergestellt, daß die an diesem Versorungspotenti30 al-Eingang anliegende Spannung einen vorgegebenen Maximalwert nicht überschreiten kann. Die dann noch zwischen dem Versorgungspotential-Eingang der Nutzschaltung und dem Versorgungspotential-Anschluß der integrierten Schaltung anfallende Spannung wird durch den Widerstand der Diodenschaltung aufgenmen.

Die Diodenkette weist vorzugsweise wenigstens zwei seriell verschaltete Dioden auf, wobei die Anzahl der Dioden durch die am Versorgungspotential-Eingang der Nutzschaltung geforderte Spannung festgelegt ist.

Zweckmäßigerweise weist der Spannungsregler eine Spannungsregelschaltung und eine mit dieser verbundene Spannungsreferenzschaltung auf, wobei die Spannungsreferenzschaltung der Spannungsreglerschaltung ein genau definiertes Reglersignal

Vorzugsweise weist die Schaltvorrichtung zumindest zwei Schalter auf, die den gleichen Schaltzustand (offen/geschlossen) aufweisen, wobei jeweils einer der Schaltung 15 der Spannungsreferenzschaltung und der Spannungsreglerschaltung zugeordnet ist.

Die integrierte Schaltung weist in einer weiteren Ausgestaltung weiterhin zumindest eine mit dem Versorgungspotential-20 Anschluß gekoppelte und mit dem Bezugspotential gekoppelte Analogschaltung auf, die in einem Stromsparmodus über einen Schalter abschaltbar ist.

Besonders vorteilhaft ist es, wenn der bzw. die der bzw. den 25 Analogschaltung zugeordnete Schalter Teil der Schaltvorrichtung sind.

Die Schaltvorrichtung kann auch aus einem einzigen Schalter bestehen, der mit der Spannungsreferenz-, der Spannungsreg-30 lerschaltung und der bzw. den Analogschaltungen verbunden ist. In diesem Fall wird lediglich ein einziger Schalter benutzt, um sämtliche Schaltungen in einem Stromsparmodus von der Versorgungsspannung zu trennen.

35 Die Erfindung und deren Vorteile wird anhand der nachfolgenden Figuren n\u00e4her erl\u00e4utert. Es zeigen:

- Figur 1 eine integrierte Schaltungsanordnung, wie sie aus dem Stand der Technik bekannt ist,
- Figur 2 ein erstes Ausführungsbeispiel der erfindungsgemä-5 ßen integrierten Schaltung und
 - Figur 3 ein zweites Ausführungsbeispiel der erfindungsgemäßen integrierten Schaltung.
- 10 In den nachfolgenden Figuren sind gleiche Bezugszeichen für gleiche Merkmale verwendet.

Die Figur 1 zeigt eine aus dem Stand der Technik bekannte integrierte Schaltung. Zwischen einem Versorgungspotential-

- Anschluß V und einem Bezugspotential-Anschluß GND liegen ein Spannungsregler SR sowie beispielhaft eine Analogschaltung XA. Der Spannungsregler SR besteht aus einer Spannungsreglerschaltung VRG und einer Spannungsreferenzschaltung BG, die beide zwischen dem Versorgungspotential-Anschluß V und dem
- 20 Bezugspotentialanschluß GND verschalten sind. Weiterhin besteht eine Verbindung zwischen der Spannungsreferenzschaltung und der Spannungsreglerschaltung, mit der der letzteren ein konstantes Regelsignal zugeführt wird. Auch wenn jede der genannten Schaltungskomponenten mit einem separaten Bezugspotentialanschluß GND verbunden ist, so liegen diese alle auf
- 25 tentialanschluß GND verbunden ist, so liegen diese alle auf dem gleichen Bezugspotential.

Bin Ausgang des Spannungsreglers SR ist mit einem Eingang NSE einer Nutzschaltung NS verbunden. Diese ist ebenfalls mit dem

30 Bezugspotentialanschluß GND verbunden. Ein Ladungsspeicher C, der beispielsweise als interne Pufferkapazität ausgebildet sein kann, ist mit dem Knotenpunkt des Eingangs NSE und des Ausgangs SRO des Spannungsreglers SR verbunden. Obwohl in der Figur 1 nur eine Nutzschaltung dargestellt ist, kann die dargestellte integrierte Schaltung auch eine Mehrzahl an derartien Nutzschaltungen aufweisen.

Da sämtliche Komponenten des Spannungsreglers SR sowie der Analogschaltung XA aus analogen Bauelementen bestehen, fließt auch im Stromsparmodus ein jeweiliger Querstrom I_{XA} , I_{BG} und I_{VBA} .

5 Mit jedem zusätzlichen Spannungsregler SR und jeder zusätzlichen Analogschaltung XA erhöht sich die Summe an Querströmen im Stromsparmodus. Hierdurch ist bei batteriebetriebenen Applikationen ein Entladen der Batterie bzw. des Akkumulators in sehr kurzer Zeit mödlich.

10

Die Figur 2 zeigt ein erstes Ausführungsbeispiel der erfindungsgemäßen integrierten Schaltung, die keinerlei statischen Querstrom im Stromsparmodus aufweist. Erfindungsgemäß liegt zwischen dem Spannungsregler SR und dem Versorgungspotential-15 Anschluß V eine Schaltvorrichtung SV1. Die Schaltvorrichtung SV1 weist einen Schalter S11 und einen weiteren Schalter S12 auf. Der Schalter S11 ist zwischen dem Versorgungspotential-Anschluß V und der Spannungsreferenzschaltung BG verschalten, während der Schalter S12 zwischen dem Versorgungspotential-20 Anschluß V und der Spannungsreglerschaltung VRG verschalten ist. Es ware auch denkbar, daß die Schaltvorrichtung 1 nur einen einzigen Schalter aufweist, der dann sowohl mit der Spannungsreglerschaltung als auch der Spannungsreferenzschaltung verbunden ist. Weitere Querstrom-verursachende Leitungs-25 elemente sind ebenfalls über einen Schalter mit dem Versorgungspotential-Anschluß V verbunden. Im vorliegenden Ausführungsbeispiel ist lediglich eine Analogschaltung XA dargestellt. Selbstverständlich könnte die integrierte Schaltung auch eine Vielzahl derartiger Analogschaltungen XA aufweisen, 30 wobei dann jede dieser Schaltungen über einen Schalter mit dem Versorgungspotential-Anschluß V verbunden wäre.

Weiterhin ist eine Diodenschaltung DS vorgesehen, die zwischen dem Versorgungspotential-Anschluß V und dem Eingang NSE 35 der Nutzschaltung NS liegt. Die Diodenschaltung besteht in der Figur 2 aus der Serienschaltung einer Diode und einem Schalter S2. Der Kathodenanschluß der Diode ist dabei mit dem Eingang NSE der Nutzschaltung NS verbunden.

Darüber hinaus ist ein weiterer Schalter S3 vorgesehen, der 5 zwischen dem Ausgang SRO des Spannungsreglers SR und dem Eingang NSE der Nutzschaltung NS geschalten ist.

Die Schalter der Schaltvorrichtung SV1 sowie die Schalter S3 und S4 weisen grundeätzlich die gleiche Schalterstellung auf, 10 während der Schalter S2 der Diodenschaltung einen hierzu komplementären Schaltzustand einnimmt. Dies bedeutet, ist der Schalter S2 geschlossen, so sind die übrigen Schalter S11, S12, S3, S4 geöffnet und umgekehrt.

Beim Umschalten der integrierten Schaltung in einen Stromsparmodus werden die Schalter Sll, Sl2, Sl3, S4 geöffnet, während der Schalter S2 geschlossen wird. Hierdurch wird jeglicher Querstrom I_{XA}, I_{NG}, I_{VNG} durch den Spannungsregler SR sowie die Analogschaltung XA unterbunden. Da die in der Nutzschaltung gespeicherten Informationen im Stromsparmodus lediglich gehalten werden müssen, ist eine Stabilisierung auf einen konstanten Spannungswert am Eingang NSE der Nutzschaltung nicht erforderlich. Aus diesem Grund ist es ausreichend, eine einfache Diode zwischen den Eingang NSE und den Versorgungspotential-Anschluß V zu schalten.

Die Erfindung weist weiterhin den Vorteil auf, daß das Abschalten des Spannungsreglers im Stromsparmodus die Möglichkeit eröffnet, die Dimensionierung der Bauelemente auf den

- 30 Normalbetriebszustand auszurichten, wodurch keine Kompromisse bzgl. des Stromsparmodus eingegangen werden müssen. Insbesondere können die dynamischen Regeleigenschaften im Normalbetrieb verbessert werden.
- 35 Die in Figur 2 gezeigte erfindungsgemäße integrierte Schaltung ist insbesondere geeignet, wenn der Stromsparmodus lediglich ein einziges Spannungsniveau aufweist. Die in Figur 3

gezeigte zweite Ausführungsvariante der Erfindung ist dagegen auch für unterschiedliche Spannungsniveaus am Versorgungspotential-Anschluß V geeignet.

9

5 Gegenüber dem ersten Ausführungsbeispiel unterscheidet sich die zweite Variante durch eine Diodenschaltung DS, die eine Serienschaltung aus einer Diode D, einem Widerstand R und einem Schalter S2 aufweist. Darüber hinaus ist eine Diodenkette DK vorgesehen, die zwischen dem Eingang NSE der Nutzschaltung 10 NS und dem Bezugspotential-Anschluß GND geschalten ist. Hierbei ist eine Anode einer Diode DK1 mit dem Versorgungspotential-Eingang NSE verbunden. Der Kathodenanschluß einer Diode DKn ist mit dem Bezugspotential-Anschluß GND verbunden. Die Anzahl der seriell verschalteten Dioden ist durch die am Ver-15 sorgungspotential-Eingang NSE der Nutzschaltung geforderte Spannung festgelegt.

Im übrigen unterscheidet sich das zweite Ausführungsbeispiel nach Figur 3 nicht von dem der Figur 2.

20 Unabhängig von der am Versorgungspotential-Anschluß V anliegenden Spannung, sorgt die Diodenkette DK für eine gleichbleibende Spannung am Versorgungspotential-Eingang NSE der Nutzschaltung NS. Eine darüber hinaus anfallende Spannung wird durch die Diode D der Diodenschaltung DS und den Widerstand R aufgenommen.

Auch ein schnelles Absenken der Versorgungsspannung am Versorgungspotential-Anschluß V führt aufgrund der Diodenschal-30 tung zu keiner Reduzierung der an dem Versorgungspotential-Eingang anliegenden Spannung.

Für den Fall, daß die externe Spannung so weit abgesenkt wird, daß über die Diodenschaltung kein Nachladen des (not-35 wendigen) Leckstromes der Nutzschaltung NS erfolgen kann, so entlädt dieser Leckstrom INS den Ladungsspeicher C. Diese sehr langsame Entladung des Ladungsspeichers C könnte beispielsweise durch einen einfachen Detektor erkannt werden. Beim Unterschreiten einer vorgegebenen Spannungsschwelle könnte dieser einen Reset der Nutzschaltung auslösen.

5 Bei dem eingangs angesprochenen Stromsparmodus, bei dem der externe Takt weiterläuft, wird der benötigte Strom über die Diodenschaltung zur Verfügung gestellt.

Bezugszeichenliste

25

	v	versorgungspotential-Anschlus
	GND	Bezugspotentialanschluß
5	SR	Spannungsregler
	SRO	Spannungsregler-Ausgang
	VRG	Spannungsregler-Schaltung
	BG	Spannungsreferenzschaltung
	NS	integrierte Schaltung
10	NSE	Versorgungspotential-Eingang
	C	Ladungsspeicher
	XA	Analogschaltung
	SV1	Schaltvorrichtung
	S2	Schalter
15	S3	Schalter
	S4	Schalter
	S11	Schalter
	S22	Schalter
	DS	Diodenschaltung
20	D	Diode
	R	Widerstand
	DK	Diodenkette
	DK1	Diode
	DKn	Diode

10

35

Patentansprüche

- 1. Integrierte Schaltung mit
- zumindest einem zwischen einem Versorgungspotential-Anschluß (V) und einem Bezugspotentialanschluß (GND) verschaltenen Spannungsregler (SR),
 - zumindest einer Speicher und/oder Logik enthaltenden Nutzschaltung (NS), deren Versorgungspotential-Eingang (NSE) mit einem Ausgang (SRO) des Spannungsreglers (SR) gekoppelt ist,
- dadurch gekennzeichnet, daß in einem Stromsparmodus
- der Spannungsregler (SR) über eine erste Schaltvorrichtung (SVI) abschaltbar ist und
- 15 der Versorgungspotential-Eingang (NSE) der Nutzschaltung (NS) über eine Diodenschaltung (DS) mit dem Versorgungspotential-Anschluß (V) verbindbar ist.
 - 2. Integrierte Schaltung nach Anspruch 1,
- 20 dadurch gekennzeichnet, daß die Schaltvorrichtung (SV1) zwischen dem Versorgungspotential-Anschluß (V) und dem Spannungsregler (SR) vorgesehen ist.
 - 3. Integrierte Schaltung nach Anspruch 1 oder 2,
- 25 dadurch gekennzeichnet, daß
 der Versorgungspotential-Eingang (NSE) über einen Schalter
 (S3) mit dem Ausgang (SRO) des Spannungsreglers verbunden
 ist.
- Integrierte Schaltung nach einem der vorhergehenden Ansprüche,
 - dadurch gekennzeichnet, daß der Versorgungspotential-Eingang (NSE) der Nutzschaltung (NS) mit einem Ladungsspeicher (C) verbunden ist.
 - Integrierte Schaltung nach einem der vorhergehenden Ansprüche,

WO 02/082248 PCT/DE02/00821 13

dadurch gekennzeichnet, daß die Diodenschaltung (DS) eine Serienschaltung aus einer Diode (D) und einem Schalter (S2) aufweist.

- 5 6. Integrierte Schaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, die Diodenschaltung (DS) eine Serienschaltung aus einer Diode (D), einem Schalter (S2) und einem Widerstand (R) aufweist.
- 7. Integrierte Schaltung nach Anspruch 6, 10 dadurch gekennzeichnet, daß der Versorgungspotential-Eingang (NSE) der Nutzschaltung (NS) mit einer Diodenkette (DK) verbunden ist.
- 15 8. Integrierte Schaltung nach Anspruch 7, dadurch gekennzeichnet, die Diodenkette (DK) wenigstens zwei seriell verschaltete Dioden aufweist, wobei die Anzahl der Dioden durch die am Versorgungspotential-Eingang (NSE) der Nutzschaltung (NS) ge-20 forderte Spannung festgelegt ist.
 - 9. Integrierte Schaltung nach einem der vorhergehenden Ansprüche,
- dadurch gekennzeichnet, daß 25 der Spannungsregler (SR) eine Spannungsreglerschaltung (VRG) und eine mit dieser verbundene Spannungsreferenzschaltung (BG) aufweist, wobei die Spannungsreferenzschaltung (BG) der Spannungsreglerschaltung (VRG) ein genau definiertes Regelsiqnal zuführt.

30

10. Integrierte Schaltung nach Anspruch 9, dadurch gekennzeichnet, daß die Schaltvorrichtung zumindest zwei Schalter (S11, S12) aufweist, die den gleichen Schaltzustand (offen/geschlossen) 35 aufweisen, wobei jeweils einer der Schalter (S11, S12) der Spannungsreferenzschaltung (BG) und der Spannungsreglerschal-

tung (VRG) zugeordnet ist.

WO 02/082248 PCT/DE02/00821

11. Integrierte Schaltung nach einem der vorhergehenden Ansprüche,

12. Integrierte Schaltung nach Anspruch 11, dadurch gekennzeichnet, daß

der bzw. die der bzw. den Analogschaltungen (XA) zugeordneten Schalter Teil der Schaltvorrichtung (SV1) sind.

Integrierte Schaltung nach einem der vorhergehenden Ansprüche,

d a durch gekennzeichnet, daß die Schaltungsanordnung (SVI) aus einem einzigen Schalter besteht, der mit der Spannungsreferenz (BG) der Spannungsreg-

lerschaltung (VRG) und der bzw. den Analogschaltungen (XA) verbunden ist.

25

10

15

30

2/2

