Graduate preliminary exam, Fall 2002 [3 hours, problems counted equally, \mathbb{R} denotes the set of real numbers.] Instructions: Work 7 of the 8 problems.

- 1. (a) Suppose that for each positive integer m, we have a set S_m of real numbers, a real number α_m , and a real function f_m . Formulate the negation of this statement: "There exists a positive integer m such that for every $x \in S_m$, $x \ge \alpha_m$ and $f_m(x) = 0$."
 - (b) The following statement is not valid: "For any positive integer m, if T is a set of positive integers such that (1) $m \in T$ and (2) $n \in T$ implies $n + 1 \in T$, then $T = \{\text{positive integers } n : n \ge m\}$." Explain and correct the flaw.
- 2. For a function $f: \mathbb{R} \to \mathbb{R}$, give the definition of <u>continuity</u> of f at a point a. For functions f and g from \mathbb{R} to \mathbb{R} , prove that if f is continuous at a and g is continuous at b = f(a), then $g \circ f$ is continuous at a. [The composition $g \circ f$ is defined by $(g \circ f)(x) = g(f(x))$ for $x \in \mathbb{R}$.]
- 3. Define what it means for a series $\sum_{n=1}^{\infty} a_n$ (of real numbers a_n) to converge to a real number S. Prove that the series $\sum_{n=1}^{\infty} 1/10^n$ converges.
- 4. Determine the 2×2 matrix A such that $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ -6 \end{bmatrix}$ and $A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Prove that the matrix A is not diagonalizable.
- 5. Let $v_1, ..., v_k$ be vectors in \mathbb{R}^n . Define the <u>span</u> $V = \langle v_1, ..., v_k \rangle$ of the vectors. Prove that there is a subset of the vectors $v_1, ..., v_k$ that forms a basis for V.
- 6. For the cubic polynomial $x^3 3x + 2$, use the cubic formula described below to find the root 1. [The roots of this cubic are 1 (with multiplicity 2) and -2. You do not have to prove the validity of the cubic formula.]
 - For a cubic polynomial $x^3 + px + q$, the roots can all be found by the following formula, carried out in the complex number system. Let s be a square root of $q^2/4 + p^3/27$, set A = -q/2 + s, and then let c be a cube root of A. Then c p/3c is a root of $x^3 + px + q$.
- 7. Let k and n be positive integers with $k \le n$. Give the definitions for the <u>permutations</u> and for the <u>combinations</u> of k elements from an n-element set, and state formulas for the numbers of these. Derive a formula for the number of one-to-one functions from a k-element set to an n-element set.
- 8. (a) State the Cauchy integral formula and use it to evaluate the complex line integral: $\oint_{\gamma} z^2/(z-i) dz$, where γ is a circle centered at i and oriented counterclockwise. (b) Use a parametrization of the path γ to express the line integral explicitly in terms of real integrals, with limits of integration. [You do not have to evaluate these real integrals.]