Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Let L be a list of numbers and given the following PROLOG predicate definition with flow model (i, o):

```
f([],-1).

f([H|T],S):-f(T,S1),S1>0,!,S is S1+H.

f([\_|T],S):-f(T,S1),S is S1.
```

Rewrite the definition in order to avoid the recursive call **f(T,S)** in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list of all subsets with N elements, using the elements of a list, such that the sum of elements from a subset is an even number. Write the mathematical models and flow models for the predicates used. For example, for the list L=[1, 3, 4, 2] and N=2 \Rightarrow [[1,3], [2,4]].

C. Given a nonlinear list, write a Lisp function to return the list with all atoms on the level k replaced by 0. The superficial level is assumed 1. A MAP function shall be used.

Example for the list (a (1 (2 b)) (c (d))) **a)** $k=2 \Rightarrow (a (0 (2 b)) (0 (d)))$

- **b)** k=1 => (0 (1 (2 b)) (c (d)))
- c) k=4 => the list does not change