Final preparation

The final will contain 10 questions. This final preparation contains 20 questions similar in style to the final questions.

Throughout this exam, let $A = [a_1, a_2, a_3, a_4] = \begin{bmatrix} 1 & 5 & 1 & 2 \\ 2 & 11 & 5 & 0 \\ 3 & -1 & 4 & 0 \end{bmatrix}$

- (1) Write the augmented matrix for the matrix equation $Ax = [3, -1, 2]^{\top}$.
- (2) Use row reduction to find a parametric solution for $Ax = [3, -1, 2]^{\top}$.
- (3) Does Ax = y have a solution for any $y = [y_1, y_2, y_3]$? Why, or why not?
- (4) What is the dimension of the nullspace of A? Why?
- (5) Find a linear dependence between the columns of A or explain why none exists.
- (6) Do there exist distinct vectors v_1 , v_2 such that $Av_1 = Av_2$? Why, or why not?

Let
$$B = [b_1, b_2, b_3] = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

- (7) Find determinant of B. What is the rank of B?
- (8) Write the characteristic polynomial and compute all eigenvalues.
- (9) Are the columns of B linearly independent? Why, or why not?
- (10) Does B^{-1} exist? Explain why.
- (11) Find an eigenvector for each eigenvalue of B
- (12) Diagonalize B, i.e. Find the invertible matrix P and diagonal matrix D satisfying $B = PDP^{-1}$. (Note: This matrix is more challenging than what you would be given on the exam it's good practice however!)
- (13) Explain why $B^{-1} = PD^{-1}P^{-1}$.
- (14) Find a closed form for $B^n \begin{bmatrix} 2 \\ -6 \\ 2 \end{bmatrix}$. for any n.

Let
$$C = [c_1, c_2, c_3] = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ -1 & 3 & 1 \end{bmatrix}$$

- (15) Compute $c_1 \cdot c_2$ and $c_1 \cdot c_3$. Without performing the computation, explain why c_1 is orthogonal to $c_2 + c_3$.
- (16) Compute the vectors d_1 and d_2 of length 1 pointing in the directions of c_1 and $c_2 + c_3$ respectively.
- (17) Find a vector d_3 which makes $\{d_1, d_2, d_3\}$ into an orthonormal basis of \mathbb{R}^3 .
- (18) Write c_2 as a linear combination of the vectors d_1 , d_2 and d_3 .
- (19) Compute the projection of c_1 onto $\operatorname{Span}(c_2)$, and the projection onto $\operatorname{Span}(c_2, c_3)$.
- (20) Find the point z in the plane spanned by c_1 and c_3 closest to c_2 . What is the distance from z to c_2 ?