Robustness Analysis and Enhancement Strategies for Quantum-dot Cellular Automata Structures

MSc. Candidate: Dayane Alfenas Reis

Advisor: Frank Sill Torres

Masters Thesis Final Presentation February, 25th 2016

Agenda

- Introduction
- Background
- QCA Defects Simulator
- Robustness Enhancement Strategies
- Results
- Conclusions

Introduction

The current technology for computer design

- CMOS Complementary Metal-Oxide Semiconductor
 - ✓ Silicon transistors
 - ✓ Widely used since the late 1960s
 - ✓ Highly mature manufacturing process
 - ✓ Reliable

1950s Silicon Transistor

1 Transistor

1960s TTL Ouad Gate

16 Transistors

8-bit Microprocessor

1970s

4500 Transistors

1980s

32-bit Microprocessor

275,000 Transistors

1990s

32-bit Microprocessor

3,100,000 Transistors

2000s

64-bit Microprocessor

592,000,000 Transistors

Moore's Law and CMOS devices scaling

2x number of transistors every twenty four months.

Source: Ferain et al, 2011.

Consequences of CMOS devices scaling

- Transistor count still rising
 - ✓ Moore's Law still sustains

- Clock speed flattening sharply
 - ✓ Multi-core processors

Power reaches limits

✓ High efforts for cooling

✓ Increasing operational costs

√ Reduced reliability

What's next?

- Nanoelectronics: The use of nanotechnology in electronic components.
- Nanotechnology exploits:
 - ✓ Material quantum mechanical properties;
 - ✓ Inter-atomic level interactions.

Background

QCA - Quantum-dot Cellular Automata

A new computation paradigm based on electrostatic interactions.

QCA cell (basic unit)

QCA Components

More complex circuits are feasible.

QCA Pros and Cons

QCA Pros

- Very high theoretical speeds achieved (within THz range);
- Low power consumption (information is transported with no electric current flow);
- Small dimensions (a molecular QCA cell should be 2x2 nm).

QCA Cons

Extremely difficult physical implementation.

Defects and Errors in QCA circuits

This work considers as:

Defects

- Flaws of the cells of a structure;
- Phase shifts of the clock signals.

Errors

- Consequences of defects to the output signals.
- Manifest themselves as:
 - ✓ Excessive delay;
 - ✓ Wrong logic state (signal inversion).

Structural defects modeling

Errors in QCA circuits

• Unexpected deviations in the behavior of a system.

Major consequence: Reliability decreased.

Low threshold

Motivation

Introducing a methodology for QCA robustness analysis

Extensive

Four classes of defects + Three probability models

Flexible

Parameter-based approach

Operates under different conditions

Innovative

Easy to interpret and visualize the results

Error-free simulations calculation (%)

Heat map

Methodology Characterization Round

Repeat for all iterations

After all iterations

- Circuit selection
- Parameters setting

Step I

Step II

- Error-free reference simulation
- Defect insertion
- Fault simulation
- Comparison (Errorfree x defective)
- Error-free simulations percent calculation

- Result analysis
- Design heat map

Step III

Step I

Parameters to be set - basics

- Number of iterations;
- Round stop criteria:
 - ✓ Number of stable iterations required.
 - ✓ Maximum error-free simulation rate variation allowed
- Sample interval;
- HIGH/LOW thresholds.

Parameters to be set – defect classes and probabilities

- Test framework: structural defects/ clock phase shifts
- Define the defect classes:
 - ✓ Dislocation
 - ✓ Dopant
 - ✓ Interstitial
 - √ Vacancy
- Probability model
 - ✓ Sequential
 - ✓ Assignable
 - ✓ Uniform

Sequential Probability

Sequential Probability

- Cell 1 shall be defective!
- Which defect should be inserted?

It is randomly chosen among the defined (checked) classes.

- ✓ Dislocation
- ✓ Dopant
- ✓ Interstitial
- √ Vacancy

Sequential Probability

• The defect insertion process is repeated until it reaches the last cell...

Assignable Probability

- Cell 1 may or may not be defective.
 - ✓ It depends on an user-set probability parameter (between 0 and 1)
- Which defect should be inserted?

It is randomly chosen among the defined (checked) classes.

- ✓ Dislocation
- ✓ Dopant
- ✓ Interstitial
- √ Vacancy

Assignable Probability

• The defect insertion process is repeated until it reaches the last cell...

Uniform Probability

- Cell 1 may or may not be defective.
 - ✓ It depends on the fixed probability value P=1/N.

N= number of cells

- Which defect should be inserted?
- It is randomly chosen among the defined (checked) classes.
 - ✓ Dislocation
 - ✓ Dopant
 - ✓ Interstitial
 - √ Vacancy

Uniform Probability

• The defect insertion process is repeated until it reaches the last cell...

Step II

Simulations and defect insertion

- Error-free reference simulation;
 - ✓ Results stored
- Defect insertion;
 - ✓ According to the probabilities
- Simulation of the defective structure;
- Comparison (Error-free x defective);
 - ✓ Error detection
- Error-free simulations rate updated;
- Results file are saved.

Step III

Results analysis

- Design heat map creation (structural defects testing);
- Final update of the results file.

Heat map

- Mapping criticality of defective cells.
 - ✓ How often it provokes an error?

A visual resource for results analysis

IN OUT

Colors used

- <1%
- 1%-25%
- 25%-50%
- 50%-75%
- 75%-99%
- >99%

- Yellow cells are majorly related to defects.
- Given an error event, these cells have
 50-75%
 of probability to be defective.

Robustness Enhancement Strategies Fundamental components tests set up

- Sequential probability;
- 16 defect insertion per cell in each component;
- All the four defect classes defined separately.

Proposal of Robust Components

The robust components were proposed based on:

- Analysis of the heat maps:
 - ✓ Considers all the defect classes;
 - ✓ Identifies possible polarization weaknesses;
 - ✓ Inputs, Outputs and Turnings are vulnerable.
- The robustness enhancement strategy consists of:
 - ✓ Applying redundancy within the structures;
 - ✓ Perform strategic structural modifications.

Examples:

(a) Fanout of 2 under dislocation defects

(b) Fanout of 2 under vacancy defects

Components Proposed

Regular x Modified Robustness Verification

- Sequential probability;
- 4 defect insertion per cell in each component;
- All the four defect classes simultaneously defined.

	Error-free simulations rate (%)							
	Regular Component	Modified Component	Rate Variation					
Wire	72.40 %	86.46 %	+14.06 %					
Bend Wire	70.83 %	87.85 %	+17.02 %					
Fanout of 2	72.27 %	85.16 %	+12.89 %					
Fanout of 3	64.38 %	88.75 %	+24.37 %					

- Comparison between:
 - ✓ Regular structure
 - ✓ A robust structure already reported in the literature
 - ✓ The proposed structure (built with the modified fundamental components)

Inverters

(a) INV1 - Regular inverter

(b) INV2 - Robust Inverter (Beard, 2006)

(c) INV3 - The proposed inverter

3-input majority gates

(a) MAJ1 - Regular majority gate

(b) MAJ2 - Robust majority gate (Fijany et al, 2001)

(c) MAJ3 - The proposed majority gate

Full adders

(a) ADD1 - Regular full adder (Bruschi et al, 2001)

(b) ADD2 – Compact and robust full adder (Roohi et al, 2015)

(c) ADD3 - The proposed full adder

4-bit RCAs

(a) RCA1 - Regular RCA (Bruschi et al, 2001)

(c) RCA3 - The proposed full adder

(c) RCA2 – Compact and robust RCA (Roohi et al, 2015)

Results - Error-free simulations rates

- 4 defect insertion per cell in each component;
- All the four defect classes simultaneously defined.

Heat maps

Inverters

(a) INV1 under combined defects

- (b) INV2 under combined defects
- (c) INV3 under combined defects

3-input majority gates

(a) MAJ1 under combined defects (b) MAJ2 under combined defects

Full adders

(a) ADD1 under combined defects

(b) ADD2 under combined defects

(c) ADD3 under combined defects

RCA

RCA3 under combined defects

Remaining results

Phase-shifted clocking circuits

	Shifts Range (Synchronous Clock)		Shifts Range (Asynchronous Clock)			
Component	0 to 45º	45 to 90º	0 to 90º	0 to 45º	45 to 90º	0 to 90º
Wire	92.4%	72.3%	84.4%	99.9%	71.7%	85.8%
Bend Wire	96.8%	50.2%	73.5%	<u>99.9%</u>	44.8%	72.3%
Fanout of 2	96.1%	50.0%	73.0%	94.9%	48.7%	72.0%
Fanout of 3	<u>95.6%</u>	50.5%	73.1%	93.9%	50.6%	72.2%

Publications

Journal paper (under review)

Reis, D. A., Sill Torres, F. **Robustness analysis of structures and clocking for QCA devices**. – under review in JICS (Journal of Integrated Circuits and Systems)

Conference papers

Reis, D. A., Sill Torres, F. A novel methodology for robustness analysis of QCA circuits. In Proceedings of the 28th Symposium on Integrated Circuits and Systems Design (SBCCI '15). 2015. ACM, New York, NY, USA. DOI=http://dx.doi.org/10.1145/2800986.2800995

Reis, D. A., Sill Torres, F. O uso do clock assíncrono para aumento da confiabilidade de circuitos QCA. In Proceedings of the 2nd NaCoWo – Nanocomputing Workshop. Belo Horizonte, Brazil, 2015. ISSN 2447-9101

Conference paper (accepted)

Reis, D. A., Campos, C. A., Soares, T. R., Vilela Neto, O. P., Sill Torres, F. **A Methodology for Standard Cell Design for QCA**. – under review at IEEE Symposium on Circuits and Systems (ISCAS), Montreal, Canada, 2016

Conclusions

- The QCA Defects Simulator presented allows to:
 - Design more robust QCA circuits/ structures;
 - Compare QCA circuits in terms of robustness;
 - Verify the reliability of a QCA circuit undo different test conditions;
- The tests performed allow to:
 - Identify polarization weak regions within the structures;
 - Prove the robustness of the proposed components/ circuits.

Thank you! Questions?

