21/09/2007

Geometria 2– Corso di laurea in Matematica

Nome:	Cognome:	Matricola:	
l'esercizio stesse N.B.2 Gli eserc N.B.3 Per pote	o (gli esercizi svolti in altri fo izi senza nome e cognome ha	deve essere riportata nello spazio sottosta ogli non verranno presi in considerazione unno valore nullo. necessario aver risolto agli Esercizi $A,\ B,$	e).
Esercizio A De Risposta:	finire il concetto di forma quad	lratica definita positiva e scrivere un esemp	oio.
Esercizio B Sia Risposta:	$A \in GL_n(\mathbb{R})$. Dimostrare che	$\det(A^{-1}) = (\det A)^{-1}.$	
Esercizio C Di $v \in V$ allora T è Risposta:		mo $T:V \to V$ è tale che $\ T(v)\ = \ v\ $ per	ogni

Esercizio 1

Dire se la matrice $A=\left(\begin{array}{cc}0&2\\2&0\end{array}\right)$ è invertibile. In caso affermativo calcolarne l'inversa . Scrivere inoltre A come prodotto di matrici elementari.

Risposta:

Esercizio 2

Sia $T:\mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare rappresentata rispetto alle basi canoniche dalla matrice

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

 $\mathcal{C}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}.$ e Trovare la matrice $\boldsymbol{A}^{'}$ che rappresenta Trispetto alle basi

$$C_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Esercizio 3

Dopo aver verificato che $C = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è una base di \mathbb{R}^2 , si scriva il prodotto scalare associato a tale base, ossia il prodotto scalare rispetto al quale la base C è ortonormale. **Risposta:**

Esercizio 4

Trovare le bisettrici delle rette $r: x+y-1=0, \, s: 2x-y+3=0$

Risposta:

Esercizio 5		
Scrivere delle equazioni per la circonferenza Σ passante per i punti $(0,0,0),(1,1,1)(0,1,1)$.		
Risposta:		

Esercizio 6

Trovare un'equazione cartesiana del piano tangente alla sfera $S: x^2+y^2+z^2+2x-2=0$ nel punto $P_0(0,0,\sqrt{2})$.

Risposta: