Análise probabilística

CLRS 5.1, 5.2, C.1 a C.3, 7.1 e 7.2

Problema: Encontrar o elemento máximo de um vetor A[1..n] de números inteiros positivos distintos.

```
MAX (A, n)

1 max \leftarrow 0

2 para i \leftarrow 1 até n faça

3 se A[i] > max

4 então max \leftarrow A[i]

5 devolva max
```

Quantas vezes a linha 4 é executada?

Problema: Encontrar o elemento máximo de um vetor A[1..n] de números inteiros positivos distintos.

```
MAX (A, n)

1 max \leftarrow 0

2 para i \leftarrow 1 até n faça

3 se A[i] > max

4 então max \leftarrow A[i]

5 devolva max
```

Quantas vezes a linha 4 é executada?

Melhor caso, pior caso, caso médio?

Problema: Encontrar o elemento máximo de um vetor A[1..n] de números inteiros positivos distintos.

```
MAX (A, n)

1 max \leftarrow 0

2 para i \leftarrow 1 até n faça

3 se A[i] > max

4 então max \leftarrow A[i]

5 devolva max
```

Quantas vezes a linha 4 é executada?

Melhor caso, pior caso, caso médio?

Suponha que A[1...n] é permutação aleatória uniforme de 1,...,n.

Problema: Encontrar o elemento máximo de um vetor A[1..n] de números inteiros positivos distintos.

```
MAX (A, n)

1 max \leftarrow 0

2 para i \leftarrow 1 até n faça

3 se A[i] > max

4 então max \leftarrow A[i]

5 devolva max
```

Quantas vezes a linha 4 é executada?

Melhor caso, pior caso, caso médio?

Suponha que A[1...n] é permutação aleatória uniforme de 1,...,n.

Cada permutação tem probabilidade 1/n!.

Um pouco de probabilidade

```
\begin{split} &(\Omega,\mathbb{P}) \text{ espaço de probabilidade} \\ &\Omega = \text{conjunto finito (espaço amostral)} \\ &\mathbb{P} \colon \Omega \to [0,1] \text{ é uma função tal que} \\ &\quad \text{p1. } \mathbb{P}(\omega) \geq 0 \text{ para todo } \omega \in \Omega \text{ e} \\ &\quad \text{p2. } \mathbb{P}(\Omega) = 1, \\ &\quad \text{onde } \mathbb{P}(U) \text{ é abreviação de } \sum \mathbb{P}(\omega) \text{ para todo } U \subseteq \Omega. \end{split}
```

Um pouco de probabilidade

```
\begin{array}{l} (\Omega,\mathbb{P}) \text{ espaço de probabilidade} \\ \Omega = \text{conjunto finito (espaço amostral)} \\ \mathbb{P} \colon \Omega \to [0,1] \text{ \'e uma função tal que} \\ \text{p1. } \mathbb{P}(\omega) \geq 0 \text{ para todo } \omega \in \Omega \text{ e} \\ \text{p2. } \mathbb{P}(\Omega) = 1, \\ \text{onde } \mathbb{P}(U) \text{ \'e abreviação de } \sum_{\omega \in U} \mathbb{P}(\omega) \text{ para todo } U \subseteq \Omega. \end{array}
```

Note que,

p3. para quaisquer
$$R, S \subseteq \Omega$$
, vale que $\mathbb{P}(R \cup S) = \mathbb{P}(R) + \mathbb{P}(S) - \mathbb{P}(R \cap S)$.

Um pouco de probabilidade

```
\begin{array}{l} (\Omega,\mathbb{P}) \text{ espaço de probabilidade} \\ \Omega = \text{conjunto finito (espaço amostral)} \\ \mathbb{P} \colon \Omega \to [0,1] \text{ \'e uma função tal que} \\ \text{p1. } \mathbb{P}(\omega) \geq 0 \text{ para todo } \omega \in \Omega \text{ e} \\ \text{p2. } \mathbb{P}(\Omega) = 1, \\ \text{onde } \mathbb{P}(U) \text{ \'e abreviação de } \sum_{\omega \in U} \mathbb{P}(\omega) \text{ para todo } U \subseteq \Omega. \end{array}
```

Note que,

p3. para quaisquer
$$R, S \subseteq \Omega$$
, vale que $\mathbb{P}(R \cup S) = \mathbb{P}(R) + \mathbb{P}(S) - \mathbb{P}(R \cap S)$.

No problema do máximo:

- $ightharpoonup \Omega$ é o conjunto das permutações dos números de $1, \ldots, n$;
- ▶ na distribuição uniforme, para cada $\omega \in \Omega$, $\mathbb{P}(\omega) = 1/n!$.

Um evento é um subconjunto de Ω .

Um evento é um subconjunto de Ω .

No problema do máximo, eventos são subconjuntos de permutações de $1, \ldots, n$.

Exemplo.

 $U := \{ permutações de 1, \dots, n em que A[n] é máximo \}$

é um evento de Ω .

Um evento é um subconjunto de Ω .

No problema do máximo, eventos são subconjuntos de permutações de $1, \ldots, n$.

Exemplo.

 ${\color{blue}U}:=\{ ext{permutações de }1,\dots,n \text{ em que }A[n]\text{ \'e máximo}\}$ é um evento de Ω .

Se $\mathbb P$ é a distribuição uniforme, então

$$\mathbb{P}(U) = ???.$$

Um evento é um subconjunto de Ω .

No problema do máximo, eventos são subconjuntos de permutações de $1, \ldots, n$.

Exemplo.

 $U := \{ permutações de 1, \dots, n em que A[n] é máximo \}$

é um evento de Ω .

Se \mathbb{P} é a distribuição uniforme, então

$$\mathbb{P}(U)=\frac{1}{n}$$
.

Uma variável aleatória é uma função numérica definida sobre o espaço amostral Ω .

Uma variável aleatória é uma função numérica definida sobre o espaço amostral Ω .

Exemplo de variável aleatória

X(A) := número de execuções da linha 4 em MAX(A, n)

Uma variável aleatória é uma função numérica definida sobre o espaço amostral Ω .

Exemplo de variável aleatória

$$X(A) := \text{número de execuções da linha 4 em } MAX(A, n)$$

"
$$X = k$$
" é uma abreviação de $\{\omega \in \Omega : X(\omega) = k\}$

Esperança $\mathbb{E}[X]$ de uma variável aleatória X

$$\mathbb{E}[X] = \sum_{k \in \mathsf{Im}(X)} k \cdot \mathbb{P}(X = k) = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)$$

Uma variável aleatória é uma função numérica definida sobre o espaço amostral Ω .

Exemplo de variável aleatória

$$X(A) := n$$
úmero de execuções da linha 4 em $MAX(A, n)$

"
$$X = k$$
" é uma abreviação de $\{\omega \in \Omega : X(\omega) = k\}$

Esperança $\mathbb{E}[X]$ de uma variável aleatória X

$$\mathbb{E}[X] = \sum_{k \in \mathsf{Im}(X)} k \cdot \mathbb{P}(X = k) = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)$$

Linearidade da esperança: $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$

De volta ao máximo

Problema: Encontrar o elemento máximo de um vetor A[1..n] de números inteiros distintos.

```
MAX (A, n)

1 max \leftarrow 0

2 para i \leftarrow 1 até n faça

3 se A[i] > max

4 então max \leftarrow A[i]

5 devolva max
```

Quantas vezes a linha 4 é executada no caso médio?

Suponha que

A[1...n] é permutação aleatória uniforme de 1,...,n.

Cada permutação tem probabilidade 1/n!.

Exemplos

A[12]	linha 4	A[13]	linha 4
1,2	2	1,2,3	3
2,1	1	1,3,2	2
$\mathbb{E}[X]$	3/2	2,1,3	2
ш[/\]	3/2	2,3,1	2
		3,1,2	1
		3,2,1	1
		$\mathbb{E}[X]$	11/6

Mais um exemplo

<i>A</i> [14]	linha 4	A[14]	linha 14
1,2,3,4	4	3,1,2,4	2
1,2,4,3	3	3,1,4,2	2
1,3,2,4	3	3,2,1,4	2
1,3,4,2	3	3,2,4,1	2
1,4,2,3	2	3,4,1,2	2
1,4,3,2	2	3,4,2,1	2
2,1,3,4	3	4,1,2,3	1
2,1,4,3	2	4,1,3,2	1
2,3,1,4	3	4,2,1,3	1
2,3,4,1	3	4,2,3,1	1
2,4,1,3	2	4,3,1,2	1
2,4,3,1	2	4,3,2,1	1
		$\mathbb{E}[X]$	50/24

Variáveis aleatórias

X = número total de execuções da linha 4

Variáveis aleatórias

X =número total de execuções da linha 4

$$X_i = \left\{ egin{array}{ll} 1 & ext{se "max} \leftarrow A[i]" ext{ \'e executado} \\ 0 & ext{caso contrário} \end{array}
ight.$$

X = número total de execuções da linha 4= $X_1 + \cdots + X_n$

Variáveis aleatórias

X =número total de execuções da linha 4

$$X_i = \left\{ egin{array}{ll} 1 & ext{se "max} \leftarrow A[i]" ext{ \'e executado} \\ 0 & ext{caso contrário} \end{array}
ight.$$

$$X$$
 = número total de execuções da linha 4
= $X_1 + \cdots + X_n$

Esperanças:

$$\mathbb{E}[X_i]$$
 = probabilidade de que $A[i]$ seja máximo em $A[1...i]$ = $1/i$

Esperança

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n]$$

$$= \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$$

$$= 1/1 + \dots + 1/n$$

$$< 1 + \ln n$$

$$= \Theta(\lg n)$$

$$2.92 < \frac{1}{1} + \dots + \frac{1}{10} < 2.93 < 3.30 < 1 + \ln 10$$

$$5.18 < \frac{1}{1} + \dots + \frac{1}{100} < 5.19 < 6.60 < 1 + \ln 100$$

$$9.78 < \frac{1}{1} + \dots + \frac{1}{10000} < 9.79 < 10.21 < 1 + \ln 10000$$

Série harmônica

$$\ln n = \int_{1}^{n} \frac{dx}{x} < H_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

$$< 1 + \int_{1}^{n} \frac{dx}{x} = 1 + \ln n.$$

De volta ao Quicksort

Rearranja A[p ... r) em ordem crescente.

```
QUICKSORT (A, p, r)

1 se r - p > 1

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q)

4 QUICKSORT (A, q + 1, r)
```

O consumo de tempo do QUICKSORT é $O(n^2)$ e $\Omega(n \lg n)$.

Por que ele é melhor na prática que outros algoritmos que têm consumo de tempo $O(n \lg n)$?

Particione

```
Rearranja A[p..r] de modo que p \leq q < r e
A[p \dots q) < A[q] < A(q \dots r)
      PARTICIONE (A, p, r)
      1 \quad x \leftarrow A[r-1] \qquad \triangleright x \in o \text{ "pivô"}
      2 i \leftarrow p
      3 para j \leftarrow p até r-2 faça
      4 se A[i] \leq x
                   então A[i] \leftrightarrow A[j]
                           i \leftarrow i + 1
      7 A[i] \leftrightarrow A[r-1]  \triangleright troca com o "pivô"
           devolva i
```

Considere que A[0..n) é permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Considere que A[0..n) é permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A,0,n).

Observe que X é uma variável aleatória.

Considere que A[0...n) é permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A,0,n).

Observe que X é uma variável aleatória.

Uma maneira de estimarmos o consumo de tempo médio do QUICKSORT é calcularmos $\mathbb{E}[X]$.

Considere que A[0...n) é permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A, 0, n).

Observe que X é uma variável aleatória.

Uma maneira de estimarmos o consumo de tempo médio do QUICKSORT é calcularmos $\mathbb{E}[X]$.

Ideia: Escrever X como soma de variáveis aleatórias binárias, cuja esperança é mais fácil de calcular.

Quem serão essas variáveis aleatórias binárias?

Exemplo

1	3	6	2	5	7	4
1	3	2	4	5	7	6
1	2	3	4	5	6	7

	1	2	3	4	5	6	7
1		1	0	1	0	0	0
2	1		1	1	0	0	0
3	0	1		1	0	0	0
4	1	1	1		1	1	1
5	0	0	0	1		1	0
6	0	0	0	1	1		1
7	0	0	0	1	0 0 0 1 1	1	

Para $a \in b \in \{1, \ldots, n\}$, seja

 X_{ab} = número de comparações entre a e b na linha 4 de PARTICIONE.

Queremos calcular

X = total de execuções da linha 4 do PARTICIONE = $\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{ab}$

Supondo a < b,

$$X_{ab} = \begin{cases} 1 & \text{se o primeiro pivô em } \{a, \dots, b\} \text{ \'e } a \text{ ou } b \\ 0 & \text{caso contrário.} \end{cases}$$

Qual a probabilidade de X_{ab} valer 1?

Supondo a < b,

$$X_{ab} = \begin{cases} 1 & \text{se o primeiro pivô em } \{a, \dots, b\} \text{ \'e } a \text{ ou } b \\ 0 & \text{caso contrário.} \end{cases}$$

Qual a probabilidade de X_{ab} valer 1?

$$\mathbb{E}[X_{ab}] = \mathbb{P}(X_{ab}=1) = \frac{1}{b-a+1} + \frac{1}{b-a+1}$$

Supondo a < b,

$$X_{ab} = \begin{cases} 1 & \text{se o primeiro pivô em } \{a, \dots, b\} \text{ \'e } a \text{ ou } b \\ 0 & \text{caso contrário.} \end{cases}$$

Qual a probabilidade de X_{ab} valer 1?

$$\mathbb{E}[X_{ab}] = \mathbb{P}(X_{ab}=1) = \frac{1}{b-a+1} + \frac{1}{b-a+1}$$

$$X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{ab}$$

$$\mathbb{E}[X] = ????$$

$$\mathbb{E}[X] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \mathbb{E}[X_{ab}]$$

$$= \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \mathbb{P}(X_{ab}=1)$$

$$= \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$$

$$= \sum_{a=1}^{n-1} \sum_{k=1}^{n-a} \frac{2}{k+1}$$

$$< \sum_{a=1}^{n-1} 2\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$< 2n\left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right) < 2n(1 + \ln n)$$

Conclusão

O consumo de tempo esperado do QUICKSORT, quando sua entrada é uma permutação de $1, \ldots, n$ escolhida uniformemente, é $O(n \log n)$.