

# Algoritmos - Grafos



## Índice

| 1 Definiciones             | 3 |
|----------------------------|---|
| 1. Grafo                   | 3 |
| 2. Adyacencia e Incidencia | 4 |
| 3. Transición              | 5 |
| 2 Tipos de Grafos          | 7 |
| 1. Definiciones            | 7 |
| 2. Ejemplos                | 8 |
| 3 Recorridos               | 9 |
| 1.Recorrido en anchura     |   |
| 2.Recorrido en profundidad |   |



## 1 Definiciones

#### 1. Grafo

Dupla compuesta por un conjunto no vacío de vértices y; un conjunto de aristas que vinculan pares de esos vértices.

Las aristas pueden ser Dirigidas o No Dirigidas. Las primeras versan sobre relaciones antisimétricas y las segundas sobre relaciones simétricas.

Matemáticamente sería

$$G = (\ V\ ;\ A\ )\ donde \qquad A \in V\ x\ V \qquad \acute{o}\ (Arista\ Dirigida)$$
 
$$A \subset V\ ^* \#A = 2\ (Arista\ No\ Dirigida)$$

Permiten representar mapas de interrelación de datos, como pueden ser carreteras, cañerías, circuitos eléctricos, diagrama de dependencia, etc.

Los vértices se representan gráficamente con puntos y las aristas pueden ser flechas (aristas dirigidas) o líneas (aristas no dirigidas) conectando dos vértices.

Veamos un ejemplo

$$G = (V; A)$$
  $V = \{a; b; c; d\}$   $A = \{\{a; b\}; (b; c); (a; a); (d; d)\}$ 



Podemos observar la representación de las aristas dirigidas (2<sup>da</sup>, 3<sup>ra</sup> y 4<sup>la</sup>) y la no dirigida (1<sup>ra</sup>). Así mismo, observemos dos nuevas definiciones:

- · Vértice aislado (d): sin relación (mediante aristas) con otro vértice.
- Lazo (3<sup>ra</sup> y 4<sup>ta</sup>): arista cuyo vértice origen y destino coincide.
- · **Arista ponderada** (1<sup>ra</sup>): a las aristas se les puede asociar un valor representativo de la relación que representan, en este caso podría representar la cantidad de Km. entre la ciudad a y b.



• Peso de una arista: es el valor asociado a una arista ponderada.

### 2. Adyacencia e Incidencia

- Vértices adyacentes (v,w): v y w son adyacentes si están relacionados
- · Incidencia (v): conjunto de aristas finalizadas / comenzadas en v.
- · Incidencia de entrada (v): conjunto de aristas dirigidas finalizadas en v.
- · Incidencia de salida (v): conjunto de aristas dirigidas comenzadas en v.
- · Adyacencia (v): conjunto de vértices relacionados con v.
- · Adyacencia de entrada (v): vértices iniciales de la Incidencia de entrada (v).
- · Adyacencia de salida (v): vértices finales de la Incidencia de salida (v).
- **Grado** (v): cantidad de ocurrencias de v en el conjunto de aristas.
- Grado de Entrada (v): cantidad de aristas dirigidas finalizadas env.
- · Grado de Salida (v): cantidad de aristas dirigidas comenzadas en v.
- Fuente: vértice cuyo grado de salida es 0 y no es aislado.
- Sumidero: vértice cuyo grado de entrada es 0 y no esaislado.





|                       | а       | b          | С          | d    |
|-----------------------|---------|------------|------------|------|
| Adyacencia            | {a,b}   | {a,c}      | {b}        | {d}  |
| Adyacencia de Entrada | {a}     | <i>{</i> } | {b}        | {d}  |
| Adyacencia de Salida  | {a}     | {c}        | {}         | {d}  |
| Incidencia            | {a3,a4} | {a3,a2}    | {a2}       | {a1} |
| Incidencia de Entrada | {a4}    | <i>{</i> } | {a2}       | {a1} |
| Incidencia de Salida  | {a4}    | {a2}       | <i>{</i> } | {a1} |
| Grado                 | 3       | 2          | 1          | 2    |
| Grado de Entrada      | 1       | 0          | 1          | 1    |
| Grado de Salida       | 1       | 1          | 0          | 1    |

#### 3. Transición

- · **Camino**: serie alternada de vértices y aristas que inicia y finaliza con vértices y donde cada arista conecta el vértice que le precede con el que le sucede.
  - · Longitud de camino: cantidad de aristas del camino.
  - · Camino abierto: camino donde el vértice inicial y final difieren.
  - · Camino cerrado: camino donde el vértice inicial y final coinciden.
  - · Recorrido: camino que no repite aristas.
  - · Recorrido Euleriano: recorrido que contiene todas las aristas del grafo.



- · Circuito: recorrido cerrado.
- · Circuito Euleriano: recorrido Euleriano cerrado.
- · Camino simple: camino que no repite vértices (salvo inicial y final).
- · Camino de Hamilton: camino simple que contiene todos los vértices del grafo.
- · Ciclo: camino simple cerrado.
- · Ciclo de Hamilton: camino Hamiltoniano cerrado.



## 2 Tipos de Grafos

#### 1. Definiciones

- · Sub Grafo G': G' = (V', A') donde  $V' \subset V$  y A'  $\subset$  A
- · Árbol recubridor: es un árbol Sub Grafo de G.
- · Grafo regular: todos sus vértices tienen el mismo grado.
- · **Grafo completo**: aquel donde 2 vértices cualesquiera se hayan relacionados.
- Grafo plano: aquel en cuya representación en el plano no se superponen aristas.
- · Grafo dirigido: todas sus aristas son dirigidas.
- · Grafo no dirigido: todas sus aristas son no dirigidas.
- · Grafo ponderado: compuesto por aristas ponderadas.
- Multigrafo: aquel que contiene dos o mas aristas semejantes.
- · Digrafo: aquel con aristas dirigidas.
- Grafo conexo: existe un camino para todo par de vértices del grafo.
- · Grafo disconexo: existen cuando menos un par de vértices no comunicados.
- · Componente conexa: conjunto maximal de vértices en el cual existe un camino entre cualesquiera 2 vértices del mismo.
  - Árbol: grafo conexo sin ciclos.



## 2. Ejemplos





## 3 Recorridos

#### 1. Recorrido en anchura

Desmarcar Vértices

Acolar Vértice Origen

Mientras queden Vértices en Cola

Desacolar Vértice

Si debe marcarse

Marcar Vértice

Acolar Hijos(Vértice)

Fin Si

Fin Mientras

## 2. Recorrido en profundidad

Desmarcar Vértices

Apilar Vértice Origen

Mientras queden Vértices en Cola

Desapilar Vértice

Si debe marcarse

Marcar Vértice

Apilar Hijos(Vértice)

Fin Si

Fin Mientras