- 1. Recall that if S is a set, the powerset $\mathcal{P}(S)$ of S is the set of all subsets of S.
 - (a) [3 points] List the elements of $\mathcal{P}(\{1,2,3\})$.
 - (b) [3 points] List the elements of $\mathcal{P}(\emptyset)$.
 - (c) [3 points] List the elements of $\mathcal{P}(\mathcal{P}(\emptyset))$.
 - (d) [3 points] List the elements of $\{S \in \mathcal{P}(\{1,2,3\}) \mid |S| = 2\}$.
- 2. [12 points] A drawer contains 8 gray socks, 10 black socks, and 6 white socks. Suppose that you draw 10 socks from the drawer without looking at them. Prove that you will definitely draw some four socks of the same color.
- 3. [12 points] For each of the following statements, write the negation of the statement **using** logical symbols without using the ~ symbol, and determine whether the negation is true or false. No explanations are necessary, but an explanation may earn partial credit if the answer is incorrect.
 - (a) $\exists n \in \mathbb{Z} \text{ such that } (2 \nmid n) \land (2 \nmid (n-1))$ The negation is (in symbols): _____

The negation is: \Box True \Box False

(b) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}, \ y^2 \neq x$. The negation is (in symbols): _____

The negation is: \Box True False

(c) $\forall a \in \mathbb{Z} \ \forall b \in \mathbb{Z} \ \left((a \mid b^2) \Rightarrow (a \mid b) \right)$. The negation is (in symbols): _____

The negation is: \Box True False

4. [12 points] Prove the following formula, by induction on n.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} = 1 - \frac{1}{n+1}.$$

5. [12 points] Let n be an integer. Prove that n is odd if and only if $n^2 - 1$ is divisible by 4.