

Outlines

- Machine Learning: Overview
- Linear Regression
- Classification
- Logistic Regression
- Regularization
- Perceptron

1 Machine Learning: Overview

1 Machine Learning: Overview

2 Linear Regression: 1 Dimensional Input

Linear regression. Example

1 dimensional input $\mathbf{x} = (x_1)$

2 Linear Regression: 2 Dimensional Input

Linear regression. Example.

• 2 dimensional input $\mathbf{x} = (x_1, x_2)$

2 Linear Regression: An Example

 Suppose we have a dataset giving the living areas, number of bedrooms and prices of 200 houses from a specific region:

Living area ($feet^2$)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

• Given data like this, how can we learn to predict the prices of other houses, as a function of the size of their living areas and the number of bedrooms?

2 Linear Regression: Terms and Concepts

- Sample, Example
- Feature
- Target
- Hypothesis
- Training Data (Training Set)
- Test data (Test Set)
- Training Error & Test Error

2 Linear Regression: Hypothesis

Living area ($feet^2$)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	\vdots	i :

$$x_1^{(i)}$$
: the living area of the i-th house in the training set

$$x_2^{(i)}$$
: the number of bedrooms of the i-th house in the training set

$$y^{(i)}$$
: the price of the i-th house in the training set

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

$$\theta_i$$
's : parameters (weights)

2 Linear Regression: Cost Function

• Now, given a training set, how do we learn the parameters θ ? One reasonable method seems to be to make h(x) close to y.

• Cost Function (Loss Function):

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

2 Linear Regression: Cost Function

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Parameters:
$$\theta_0$$
, θ_1 , θ_2

Cost Function:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: Minimize
$$J(\theta)$$

• Gradient Descent Algorithm

Update Rule:

$$\theta = \theta - \alpha \nabla_{\theta} J(\theta)$$

In Our Case:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• Let's assume we have only one training example (x, y):

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

• For a single training example, this gives the update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

• **Batch Gradient Descent**: looks at every example in the entire training set on every step.

Old Version

Repeat until convergence {

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.$$

New Version

repeat until convergence {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
}

• Stochastic Gradient Descent: update the parameters according to the gradient of the error with respect to that single training example only.

```
Loop { for i=1 to m, { \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.} }
```

• Often, stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent.

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration. \leq
- But if α is too small, gradient descent can be slow to converge.

• Represent J as matrix-vectorial notation

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J(\theta) = \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

Represent J as matrix-vectorial notation

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix}$$
 m-by-n matrix, actually m-by-n + 1

$$ec{y} = \left[egin{array}{c} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{array}
ight]$$
 m-dimensional vector

• For example

Living area (feet 2)	$\# { m bedrooms}$	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	÷	:

$$X = \begin{bmatrix} 1 & 2104 & 3 \\ 1 & 1600 & 3 \\ 1 & 2400 & 3 \end{bmatrix}$$

$$\vec{y} = \begin{bmatrix} 400 \\ 330 \\ 369 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Note: more precisely, the features should be scaled.

2 Linear Regression: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

$$J(\theta) = \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

X:
$$\mathbf{m} \times (\mathbf{n} + \mathbf{m})$$

 $\mathbf{m} \times \mathbf{m}$
 $\mathbf{m} \times \mathbf{m}$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left(\underline{\theta}^T X^T X \theta - \underline{\theta}^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right) \quad \text{a real number}$$

$$= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\underline{\theta}^T X^T X \theta - \underline{\theta}^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\operatorname{tr} \underline{\theta}^T X^T X \theta - 2 \operatorname{tr} \vec{y}^T X \theta \right) \quad \operatorname{tr} A = \operatorname{tr} A^T$$

$$= \frac{1}{2} \left(X^T X \theta + X^T X \theta - 2 X^T \vec{y} \right) \quad \nabla_{A^T} \operatorname{tr} A B A^T C =$$

$$= X^T X \theta - X^T \vec{y} \quad \nabla_{A^T} \operatorname{tr} A B = B^T$$

$$\nabla_{A^T} \operatorname{tr} A B A^T C = B^T A^T C^T + B A^T C$$

$$\nabla_A \operatorname{tr} A B = B^T$$

• Normal Equations

$$X^T X \theta = X^T \vec{y}$$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

What if X^TX is non–invertible?

What if $X^T X$ is non-invertible?

Redundant features (linearly dependent).

```
E.g. x_1 = \text{size in feet}^2 x_2 = \text{size in m}^2
x_1 = (3.28)^2 \times 2
• Too many features (e.g. m \le n).
```

- Delete some features, or use regularization.

2 Gradient Descent Vs. Normal Equations

m training examples, n features.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$(X^TX)^{-1}$$
 $\xrightarrow{n \times n}$ $O(n^3)$

• Slow if n is very large.

3 Classification: Overview

Classification: classifies examples into given set of categories

3 Classification: Application

- Image/Document Classification
- Spam Email Filtering
- Optical Character Recognition
- Machine Vision (e.g., face detection)
- Natural Language Processing (e.g., spoken language understanding)
- Fraud Detection (e.g., if a transaction is fraudulent)
- Market Segmentation (e.g.: predict if customer will respond to promotion)
- Bioinformatics (e.g., classify proteins according to their function)

3 Classification: Algorithms

- Logistic Regression
- Support Vector Machine (SVM)
- Naïve Bayes Classifier
- K-Nearest Neighbor Classifier
- Decision Tree, Random Forest
- (Deep) Neural Network

4 Logistic Regression: Overview

- Logistic Regression was used in the biological sciences in early twentieth century. Logistic Regression is used when the dependent variable(target) is categorical. For example:
 - > To predict whether an email is spam (1) or (0)
 - > Whether the tumor is malignant (1) or not (0)

4 Logistic Regression: : Hypothesis

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$
 is called the logistic function or sigmoid function

4 Logistic regression: Hypothesis

4 Logistic Regression: Sigmoid Function

A useful property of the derivative of the sigmoid function:

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{(1 + e^{-z})} \cdot \left(1 - \frac{1}{(1 + e^{-z})}\right)$$

$$= g(z)(1 - g(z)).$$

4 Logistic Regression: How to fit θ ?

Let's assume that:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

This can be written as:

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

4 Logistic Regression: Maximize the Likelihood

• Assuming that the m training examples were generated independently, we can then write down the likelihood of the parameters as:

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

• It will be easier to maximize the log likelihood:

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

4 Logistic Regression: Maximize the likelihood

Maximize the likelihood

$$\frac{\partial}{\partial \theta_{j}} \ell(\theta) = \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) \frac{\partial}{\partial \theta_{j}} g(\theta^{T}x)
= \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) g(\theta^{T}x) (1 - g(\theta^{T}x) \frac{\partial}{\partial \theta_{j}} \theta^{T}x)
= \left(y (1 - g(\theta^{T}x)) - (1 - y) g(\theta^{T}x) \right) x_{j}
= \left(y - h_{\theta}(x) \right) x_{j}$$

The stochastic gradient ascent rule

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

4 Logistic Regression: Minimize Cross-Entropy Loss

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -\log(h_{\theta}(x^{(i)})), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x^{(i)})), & \text{if } y = 0 \end{cases}$$

4 Logistic Regression: Minimize Cross-Entropy Loss

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -\log(h_{\theta}(x^{(i)})), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x^{(i)})), & \text{if } y = 0 \end{cases}$$

Cross-Entropy Loss

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)}) = -\frac{1}{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

4 Logistic regression: Decision Boundary

Logistic regression

Logistic regression
$$\Rightarrow h_{\theta}(x) = g(\theta^T x) = \rho(y=1) \times 10^{\circ} 0$$

$$\Rightarrow g(z) = \frac{1}{1+e^{-z}}$$
Suppose predict " $y = 1$ " if $h_{\theta}(x) \ge 0.5$

$$\Leftrightarrow T_{\times} \ge 0$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$\Rightarrow g(z) \ge 0.5$$

$$\Leftrightarrow h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$\Leftrightarrow h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

$$\Leftrightarrow h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

$$\Leftrightarrow h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

4 Logistic regression: Decision Boundary

4 Logistic regression vs Linear regression

4 Logistic regression: Multiclass Classification

Binary classification:

Multi-class classification:

4 Logistic regression: Multiclass Classification

One-vs-all (one-vs-rest):

Andrew

4 Logistic regression: Multiclass Classification

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class \underline{i} to predict the probability that $\underline{y}=\underline{i}$.

On a new input \underline{x} , to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

5 Regularization: Overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$, but fail to generalize to new examples (predict prices on new examples).

5 Regularization: Overfitting

5 Regularization: Overfitting

Addressing overfitting:

Options:

- 1. Reduce number of features.
- → Manually select which features to keep.
- Model selection algorithm (later in course).
- 2. Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters θ_{j} .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

5 Regularization

Regularization.

5 Regularization: Linear Regression

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

5 Regularization: Linear Regression

5 Regularization: Linear Regression

Normal equation

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix}$$

$$\Rightarrow \min_{\theta} J(\theta)$$

$$\Rightarrow 0 = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\Rightarrow \sum_{\theta} J(\theta) = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \sum_{\theta} J(\theta) = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \sum_{\theta} J(\theta) = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \sum_{\theta} J(\theta) = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \sum_{\theta} J(\theta) = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5 Regularization: Logistic Regression

Regularized logistic regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \mathfrak{S}_{j}^{*} \left[\mathfrak{S}_{j}, \mathfrak{S}_{j}, \dots, \mathfrak{S}_{n}\right]$$

5 Regularization: Logistic Regression

Gradient descent

Repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (\underline{h_{\theta}(x^{(i)})} - y^{(i)}) x_{j}^{(i)} - \frac{\lambda}{m} \Theta_{j} \right]$ $\{ j := \mathbf{X}, \underline{1, 2, 3, \dots, n} \}$ ho(x)= 1+e-07x

6 Perceptron: Artificial Neuron

生物神经元的基本结构

人工神经元的结构模型

6 Perceptron: Model

Perceptron

- First compute a weighted sum of the inputs from other neurons.
- Then output a 1 if the weighted sum exceeds the threshold.

6 Perceptron: Minimizing Squared Errors

$$h_{\theta}(x) = g(\theta^T x) = g\left(\sum_{i=0}^n \theta_i x_i\right) \qquad g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

• The squared error for a single training example with input x and true output y is:

$$E = \frac{1}{2} (y^{(i)} - h_{\theta}(x^{(i)}))^2$$

• Gradient Descent

undefined and omitted

$$\frac{\partial E}{\partial \theta_j} = \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) \times (-1) \times g'(in) \times x_j^{(i)}$$
$$= -(y^{(i)} - h_{\theta}(x^{(i)})) \times x_j^{(i)}$$

• Update Rule

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Homework (1)

- Task: Regression
- Dataset: Housing

(https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#

housing)

Algorithms: Linear Regression

housing

- Source: UCI / Housing (Boston)
- # of data: 506
- # of features: 13
- Files:
 - housing
 - housing_scale (scaled to [-1,1])

```
24.0 1:0.00632 2:18.00 3:2.310 4:0 5:0.5380 6:6.5750 7:65.20 8:4.0900 9:1 10:296.0 11:15.30 12:396.90 13:4.98 21.6 1:0.02731 2:0.00 3:7.070 4:0 5:0.4690 6:6.4210 7:78.90 8:4.9671 9:2 10:242.0 11:17.80 12:396.90 13:9.14 34.7 1:0.02729 2:0.00 3:7.070 4:0 5:0.4690 6:7.1850 7:61.10 8:4.9671 9:2 10:242.0 11:17.80 12:392.83 13:4.03 33.4 1:0.03237 2:0.00 3:2.180 4:0 5:0.4580 6:6.9980 7:45.80 8:6.0622 9:3 10:222.0 11:18.70 12:394.63 13:2.94 36.2 1:0.06905 2:0.00 3:2.180 4:0 5:0.4580 6:7.1470 7:54.20 8:6.0622 9:3 10:222.0 11:18.70 12:396.90 13:5.33 28.7 1:0.02985 2:0.00 3:2.180 4:0 5:0.4580 6:6.4300 7:58.70 8:6.0622 9:3 10:222.0 11:18.70 12:394.12 13:5.21
```

Homework (2)

- Task: Classification
- Dataset: Mnist (http://yann.lecun.com/exdb/mnist/). The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples.
- Algorithms: Logistic Regression

Homework (3)

- Task: Classification
- Dataset: Breast Cancer Wisconsin (Diagnostic) Data Set
 (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)
- Algorithms: Perceptron

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	692187

Tips for Homework

- Evaluation Metrics:
- ✓ Regression: Root Mean Squared Error
- ✓ Classification: Accuracy

Tips for Homework

Plot Loss Function Figure

Normal

Overfitting

Learning Rate

Tips for Homework

K-Folds Cross Validation

- Divide the sample data into k parts.
- Use k-1 of the parts for training, and 1 for testing.
- Repeat the procedure k times, rotating the test set.
- Determine an expected performance metric (mean square error, misclassification error rate, confidence interval, or other appropriate metric) based on the results across the iterations

More Materials

- 1. Deep Learning, deeplearning.ai (Andrew Ng et al.) @ Coursera 网易云课堂
- 2. Andrew Ng. Machine Learning. Coursera,网易公开课
- 3. 机器学习基石, Hsuan-Tien Lin, 林軒田, 台湾大学 @ Coursera
- 4. 机器学习技法, Hsuan-Tien Lin, 林軒田, 台湾大学 @ Coursera
- 5.CS231n: Convolutional Neural Networks for Visual Recognition Feifei Li et al., University of Stanford
- 6.Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, Book in preparation for MIT Press, 2016, http://www.deeplearningbook.org/
- 7. 台大,李宏毅,<u>http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html</u>
- MIT公开课,Gilbert Strang,《线性代数》

Programming Skills

- Python
- Ubuntu
- Keras
- Pytorch
- Tensorflow

