DRINKING WATER SURVEY

ST. CLAIR - DETROIT RIVER AREA

Update

January, 1986

TD 812.5 .P6 I58 1978

Ministry of the Environment

The Honourable Jim Bradley Minister

Rod McLeod, Q.C. Deputy Minister

DRINKING WATER SURVEY

ST. CLAIR - DETROIT RIVER AREA

Update

January, 1986

ONTARIO MINISTRY OF THE ENVIRONMENT

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact Service Ontario Publications at copyright@ontario.ca

TABLE OF CONTENTS

- 1. Drinking Water Surveillance Program (DWSP)
- 2. Perchloroethylene Drinking Water Program
- 3. Dioxin Drinking Water Program

TABLES

Table A - 1985/86 DWSP - Results

- Comment and Footnotes

Table B - Summary of St. Clair Study Results

Table C - Dioxin Drinking Water Survey - Results

DRINKING WATER SURVEY ST. CLAIR - DETROIT RIVER AREA

Drinking Water Surveillance Program (DWSP)

The Ministry of the Environment's Drinking Water Surveillance Program (DWSP) is a comprehensive program to provide immediate, reliable and current information on drinking water quality across the province.

The drinking water treatment plants at the following locations in the St. Clair River area were added to the DWSP program. These additional plants were sampled according to the following schedule:

Wallaceburg	 June 5, July 3, August 6, September
· ·	3, October 7, November 5, 15, 26,
	December 2, 10, 16, 23, 1985,
	January 6, 1986

Mitchell's Bay	- June 18, July 22, August 26,
	September 23, October 28, November
	25, December 9, 1985, January 6,
	1986

Windsor	- July 15, August 16, September 16,
	October 21, November 21, December
	2, 10, 17, 1985, January 7, 1986

Stoney Point	- June 6, July 2, August 6, September
SECTION CONTRACTOR SECTION SEC	3, October 8, November 4, December
	2, 17, 1985, January 6, 1986

Amherstburg	- May 23, August 26, September 23,
-	October 28, November 21, 25,
	December 2, 10, 1985, January 7,
	1986

Walpole Island	- November 6, 15, 25, December 2, 9	,
1 N N	17, 23, 1985, January 6, 1986	

Sarnia - November 15, December 2, 10, 1985, January 6, 1986

Analyses were conducted at these locations for 139 parameters, which are various kinds of characteristics of the water or compounds in it. These parameters fall into several categories: physical parameters, field tests, anions, microbiological (bacterial) parameters, metals, trihalomethanes, pesticides, and organics.

The results of the tests carried out are shown in Table A. A breakdown of total tests on a plant-by-plant basis is shown in Table B.

To January 20, 1986, 11,670 results for both raw and treated water have been received; 3,060 of these are positive results.

Many of the 3,060 positive results fall into categories that are from analyses such as pH and temperature, or are for naturally-cccurring substances or treatment byproducts.

There were 537 positive results, of 652 reported analyses, for physical parameters, such as pH and temperature. These are used as an indication of the analytical validity and integrity of the sample and the general characteristics of the water.

Positive results for 416 analyses, of a total of 426 reported analyses, are categorized as **field** tests, and serve as a record of some properties of the water at the time of sampling which can be used as a guide to making an assessment of the treatment process; they also indicate whether any changes occur during the time elapsed between sampling and actual analysis.

A further group of tests was conducted for anions, which are ubiquitous, generally naturally occurring and which provide background information on water characteristics. These tests yielded 232 positive results out of 668 tests reported.

Positive results were obtained for 223 analyses for microbiological parameters out of a total number reported of 417. These bacterial tests include those for species of paramount importance from a public health point of view, and those which assess the general microbiological quality and characteristics of the water; by this means, a measure is obtained of the overall efficiency of water treatment processes.

Analyses of 2,620 tests for metals in the water samples were reported; 1,416 of these were positive results. Metals can occur naturally, and most are generally regarded as being ubiquitous. However, some may be present in water as a result of industrial or other discharges. A small number of metals have public health significance.

Trihalomethanes (THMs) are acknowledged to be produced during the water treatment process and will almost always only occur in treated waters. Trihalomethanes are comprised mainly of chloroform, chlorodibromoethane and

dichlorobromoethane. Results are given for the individual compounds as well as for their sum, in other words, total trihalomethanes (Total THM). Some 485 tests were reported for THMs of which 192 yielded positive results.

Two thousand one hundred and fifty six (2,156) tests for pesticides have been reported and none showed positive results.

Ontario has an established set of objectives for acceptable levels of various compounds in drinking water - Ontario Drinking Water Objectives, or ODWOs. Of those substances discussed above for which there are ODWOs, there were no exceedances of the Objectives. Nor did the levels exceed any guidelines for drinking water set by other jurisdictions, such as the U.S. Environmental Protection Agency (USEPA), the World Health Organization (WHO), and Health and Welfare Canada (H & W Canada). Further, the results of these analyses are consistent with those obtained in other areas of the Great Lakes.

There was a total of 3,743 reported results of analyses for the over 60 organic compounds included in the DWSP. Only 35 results were positive, as shown in Table B.

Of the organic compounds tested for in this survey, none was found at levels approaching the Ontario Drinking Water Objectives, or the guidelines for treated water of the USEPA or other jurisdictions.

For organic compounds not covered in the ODWOs, only fifteen were detected in either raw or treated water, most only on an occasional basis.

Eight of these organic compounds were found above trace levels, in either raw or treated water, at least on one occasion at one or more locations. These compounds were:

1,2,3,5-tetrachlorobenzene
1,2,4,5-tetrachlorobenzene
pentachlorobenzene
hexachlorobenzene
carbon tetrachloride
benzene
tetrachloroethylene
hexachlorobutadiene

Five of these compounds were detected in treated drinking water.

The five that were detected (1,2,4,5-tetrachlorobenzene, 1,2,3,5-tetrachlorobenzene, pentachlorobenzene, benzene, and carbon tetrachloride) were found above trace levels in treated drinking water, at least on one occasion at one or more locations. The following dates on which positive results were obtained are all in 1985.

1,2,4,5-tetrachlorobenzene was found at four locations, on August 26 at Mitchell's Bay at 25 parts per trillion (ppt), on November 15 at Sarnia at 12 ppt, on November 21 at both Amherstburg and Windsor at 15 ppt and 35 ppt respectively. The USEPA has set an 'ambient' water guideline (set on the assumption that water and fish are consumed from the same water source over a lifetime) of 38,000 ppt.

On October 8, 25 ppt of 1,2,3,5-tetrachlorobenzene was detected in treated water at Stoney Point, and on November 15, at 23 ppt at Walpole Island; it was also found at 10 ppt on December 10 at Sarnia. The USEPA 'ambient' water guideline for 1,2,4,5-tetrachlorobenzene is 38,000 ppt; this is the most toxic of the isomers, and should thus give an extra margin of safety when applied to the less toxic 1,2,3,5-isomer. (An isomer is a compound having the same molecular weight and formula as another, but a different structural formula.)

On July 15 pentachlorobenzene was detected at the lowest quantifiable level of 10 ppt in treated water at Windsor; the USEPA ambient water guideline for this substance is 74,000 ppt.

Carbon tetrachloride was found on five occasions at Wallaceburg, on June 5, November 5, November 26, and December 23 at a level of 1 part per billion (ppb) and December 10 at 2 ppb, and at Walpole Island on November 6 and 25 at 1 ppb. The World Health Organization (WHO) has set a tentative guideline value of 3 ppb for this compound.

Benzene was detected on three occasions in treated water at Walpole Island on November 15 at 1 ppb, December 9 at 2 ppb and on December 23 at 4 ppb. It was also found on December 23 at Wallaceburg at 2 ppb. The WHO has set a guideline value of 10 ppb for benzene.

The scientific data for these parameters indicate that drinking water from these supplies meets all health-related drinking water objectives, whether these are ODWOs, or guidelines set by the WHO, USEPA or H & W Canada. The setting of these guidelines is based on the assumption that the water will be consumed for a lifetime.

2. Perchloroethylene Drinking Water Program

A program of intensive monitoring for perchloroethylene was initiated at eight St. Clair River area water treatment plants on August 29, 1985, as a result of the August 1985 Dow Chemical spill of this substance. Daily testing for perchloroethylene was conducted at Windsor, Amherstburg, Mitchell's Bay, Tilbury North, Belle River, Stag Island, Wallaceburg and Walpole Island until mid-September 1985. When the spill clean-up began on November 14, 1985, twice-daily monitoring was conducted at Walpole Island and Wallaceburg. This program was terminated on December 24, 1985, upon completion of the spill clean-up operation.

The highest level detected at any time in treated drinking water was 4 parts per billion (ppb) immediately following the spill. Continued monitoring indicated that perchloroethylene levels steadily decreased in the river since the spill. From the starting date of the spill clean-up (November 14, 1985), no levels in any sample have exceeded 1 ppb. The World Health Organization's tentative guideline for perchloroethylene in treated drinking water is 10 ppb.

Weekly monitoring for perchloroethylene as part of the regular DWSP program continues in Windsor, Wallaceburg, Amherstburg, Mitchell's Bay and Walpole Island.

3. Dioxin Drinking Water Program

The Ministry of the Environment tested for dioxins at four St. Clair area water treatment plants, including Sarnia (Lambton), Wallaceburg, Windsor and Amherstburg. (See Table C.1)

In November 1985, an agreement was entered into by Health and Welfare Canada, Carleton University and the Ministry of the Environment to allow this program to be expanded to include 7 area water treatment plants (Sarnia, Walpole Island, Wallaceburg, Amherstburg, Windsor, Mitchell's Bay and Stoney Point). (See Table C.2)

Arising from this joint study on dioxin testing, several technical decisions relating to data interpretation required resolution. H & W Canada uses high resolution mass spectrometry while the Ministry of the Environment routinely uses low resolution mass spectrometry, with high resolution mass spectrometry reserved to corroborate positive findings.

The results of the dioxin survey are as follows, with dates shown by month/day/year:

- Octadibenzodioxins were found at trace levels in treated water at Mitchell's Bay on 11/25/85 and 12/09/85; at Sarnia on 12/09/85; at Wallaceburg on 12/02/85 and 12/16/85; and at Windsor on 12/03/85 and 12/10/85.
- Octadibenzofurans were found in treated water at trace levels at Windsor on 12/03/85.
- No 2,3,7,8-tetradibenzodioxins were found in any sample of raw or treated water.
- 4. Tetradibenzodioxins were found in raw water at Windsor on 07/15/85 and at Walpole Island on 12/05/85; none were found in treated water.
- 5. Pentadibenzodioxins were found in raw water at Walpole Island on 12/05/85; none were found in treated water.
- 6. Hexadibenzodioxins were found in raw water at Wallaceburg on 12/02/85; they were not found in any treated water.
- 7. Heptadibenzodioxins were found only once in raw water at Amherstburg on 12/02/85; they were not found in treated water.
- 8. Octadibenzodioxins were found in raw water at Windsor on 07/15/85, 09/25/85, 11/20/85, 12/03/85, 12/10/85 and 12/17/85; at Amherstburg on 07/02/85, 11/19/85 and 12/02/85; at Mitchell's Bay on 11/25/85 and 12/09/85; at Wallaceburg on 12/02/85 and 12/09/85; at Walpole Island on 12/09/85; at Stoney Point on 12/03/85 and 12/17/85.
- Tetradibenzofurans were found in raw water at Wallaceburg on 12/02/85; none were found in treated water.
- 10. Pentadibenzofurans were found in Wallaceburg on 12/02/85; none were found in treated water.
- 11. Octadibenzofurans were found in raw water at Windsor on 12/03/85 and at Wallaceburg on 12/02/85.

To put the results of the octadibenzodioxins and the octadibenzofurans in perspective, the following explanation is offered:

- An interim "maximum acceptable concentration" of 15 parts per quadrillion (ppq) (as 2,3,7,8-dibenzodioxin) for drinking water was derived by an expert group with members from Health and Welfare Canada, Ontario Ministry of Health, Ontario Ministry of Labour, and Ontario Ministry of the Environment. Dibenzodioxins and dibenzofurans, other than 2,3,7,8-dibenzodioxin, are far less toxic, some of these by as much as a factor of ten thousand.
- Therefore, the trace levels found in treated water, even for the maximum values, added together for octadibenzodioxins and octadibenzofurans, in Windsor treated water (12/03/85) at $T \le 10$ ppq respectively (i.e., $T \le 20$ ppq total) should be compared to a much larger number to reflect the lower toxicity of these compounds. This number is 150,000 ppq, derived by multiplying the health-based level of 15 ppq by the lower toxicity factor of 10,000. A similar comparison can be made in the case of the $T \le 22$ ppq octadibenzodioxins at Sarnia (12/09/85).

Note: $T \le \text{(number)}$ means below or equal to the reporting limit, that is, dioxin or furan is present but at a level too low to quantify.

Table A - Comment

Ontario Drinking Water Objectives (ODWO)

The primary purpose of drinking water objectives is the protection of the health of the public consuming the water. Aesthetic considerations may also provide a basis for drinking water objectives, since the water should be pleasant to drink. The control of such aspects of water quality as hardness, corrosiveness, etc. is also important. The limits set are considered to outline the minimum requirements necessary to fulfill the above objectives, and may be either health related or related to aesthetic and other considerations.

Because this survey covered such a large number of parameters, many of them did not have an ODWO. In order to be able to compare data results to health guidelines, it was necessary to refer to objectives and guidelines from other jurisdictions.

Table A - Footnotes

A3C = approximate result; exceeds 300 colonies

AW = analysis withdrawn

c = California State Department of Health Action Level

CS = contamination suspected

d = OWDO for DDT (contains other isomers such as OPDDT and PPDDT)

e = USEPA ambient quideline

ea = United States Environmental Protection Agency (USEPA) ambient level for endosulfan (contains other isomers)

ep = USEPA proposed maximum contaminant level for drinking water

g = suggested Health and Welfare Canada/Ontario Ministry of the Environment guideline value

h = World Health Organization (WHO) guideline

h* = World Health Organization (WHO) Odour Threshold

IS = no data: insufficient sample provided for this analysis

LA = lab accident

mg/L = milligrams per litre, parts per million, (ppm)

NA = not applicable to this type of sample

ng/L = nanograms per litre, parts per trillion, (ppt)

Table A - Footnotes (continued)

```
= not requested
NR
       not sampled
NS
    = obscured plate
OP
Presence/Absence = microbiological test to indicate presence or absence of coliform bacteria
R
     = raw water
    = Treated Drinking Water
\mathbf{T}
    = below the usual reporting limit of 10 times analytical detection, and is provided for
       information only
     = ODWO Interim maximum acceptable concentration
t
       micrograms per litre, parts per billion, (ppb)
UPR = no data; no preserved sample provided for this test
       no data; no unpreserved sample provided for this test
UR
     = less than lowest detectable concentration
<W
     = New York State (Taste and Odour) proposed drinking water guideline
       ODWO unless noted
1
     = greater than
       less than
INR = sample not received at laboratory
!AD = no data; anomalous data withdrawn
172 = no data; sample age exceeds 72 hours
       no data; seasonal analysis
     = total Tribalomethanes
++
+++ = combined total: Heptachlor and Heptachlor Epoxide
     = total Kjeldahl Nitrogen minus Ammonia Nitrogen
     = total of Aldrin and Dieldrin
**
    = Chlordane is a mixture of alpha and gamma isomers
     = no data, too numerous to count
TN
X<T = present but not quantifiable
    = no data; sample missing (lost in lab?)
SM
    = no data; sample broken in transit
BT
```

TABLE A

AMHERSTBURG WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

PARAMETERS	Seak Construction of the C		DATE										DRINKING WATER OBJ	1/
PARAMETERS		MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		LIMIT	GUIDELINE	
1 ALKALINITY 1 (LAB)		84.0	82.4 68.4	86.6 75.4	85.0 71.6	91.4 70.4	85.2 67.8	107.8 67.0	107.0 86.0			0.2 mg/L		
2 ALUMINUM 2 (MET)		0.250	0.033 0.069		0.190 0.056	0.990 0.038	0.570 0.068	9.100 0.090	P			0.003 mg/L		
3 ARSENIC 3 (MET)	mg/L T	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w 	0.001 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<>				0.001 mg/L	0.05 mg/L	
4 BARIUM 4 (MET)		0.012	0.013 0.013	0.014 0.014	0.013 0.012	0.017 0.015	0.014 0.013	0.054 0.014				0.001 mg/L	1 mg/L	
5 BORON 5 (MET)		0.06	0.10 0.10	<w <w< td=""><td>0.03 0.08</td><td><w <w< td=""><td>0.08 0.05</td><td>0.04 0.06</td><td></td><td></td><td></td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></w </td></w<></w 	0.03 0.08	<w <w< td=""><td>0.08 0.05</td><td>0.04 0.06</td><td></td><td></td><td></td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></w 	0.08 0.05	0.0 4 0.06				0.02 mg/L	5 mg/L	
6 BERYLLIUM 6 (MET)	mg/L I	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w 				0.001 mg/L		
7 BENZENE 7 (VOL)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 			1 ug/L	10 ug/L	h
8 TOLUENE 8 (VOL)	ug/L I	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 			1 ug/L	14300 ug/L	е
9 ETHYLBENZENE 9 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 			1 ug/L	1400 ug/L	е
10 P-XYLENE 10 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 			1 ug/L	620 ug/L	е
11 M-XYLENE 11 (VOL)		< \ < \ < \	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 			1 ug/L	620 ug/L	С

PARAMETERS						DAT	E					DETECTION	DRINKING WATER OBJ/
	MA	Y 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		2	GUIDELINE ¹
12 O-XYLENE 12 (VOL) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 			1 ug/L	620 ug/L c
13 CALCIUM 13 (LAB) mg/L	R 26 T 26		27.2 28.4	29.6 30.0	30.0 30.0	34.6 37.0	31.0 33.5	42.0 34.8	40.2 42.0			0.1 mg/L	
14 CYANIDE 14 (MET) mg/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 				0.001 mg/L	0.2 mg/L
15 CADMIUM 15 (MET) mg/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 				0.0003 mg/L	0.005 mg/L
16 CHLORIDE 16 (LAB) mg/L	R 10 T 10		8.8 12.8	9.6 12.4	10.6 19.8	22.4 22.4	17.6 20.2	21.0 19.4	26.2 27.6			0.2 mg/L	250 mg/L
17 COLOUR TCU 17 (LAB)	R 3.0 T 1.0		4.0 0.5 <t< td=""><td>6.0 0.5<t< td=""><td>7.0 0.5<t< td=""><td>22.5 0.5<t< td=""><td>7.5 0.5<t< td=""><td>80.0 1.5<t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	6.0 0.5 <t< td=""><td>7.0 0.5<t< td=""><td>22.5 0.5<t< td=""><td>7.5 0.5<t< td=""><td>80.0 1.5<t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	7.0 0.5 <t< td=""><td>22.5 0.5<t< td=""><td>7.5 0.5<t< td=""><td>80.0 1.5<t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<></td></t<></td></t<></td></t<>	22.5 0.5 <t< td=""><td>7.5 0.5<t< td=""><td>80.0 1.5<t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<></td></t<></td></t<>	7.5 0.5 <t< td=""><td>80.0 1.5<t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<></td></t<>	80.0 1.5 <t< td=""><td>20.0 0.5<t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></t<>	20.0 0.5 <t< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<>			0.5 TCU	5 TCU
18 CONDUCTIVITY 18 (LAB) umho/cm	R 232 T 238		230 246	238 258	238 269	310 323	270 300	349 306	352 368			0.01 UMHO/CM	
19 COBALT 19 (MET) mg/L	R <w T <w< td=""><td></td><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 0.001</td><td>0.001 <w< td=""><td>0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 		<w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 0.001</td><td>0.001 <w< td=""><td>0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	0.001 <w< td=""><td><w <w< td=""><td>0.001 0.001</td><td>0.001 <w< td=""><td>0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.001 0.001</td><td>0.001 <w< td=""><td>0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></w 	0.001 0.001	0.001 <w< td=""><td>0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<>	0.009 <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<>				0.001 mg/L	
20 CHROMIUM 20 (MET) mg/L	R 0.0				0.002 0.001	0.003 0.002	0.003 0.002	0.017 0.002				0.001 mg/L	0.05 mg/L
21 COPPER 21 (MET) mg/L	R 0.0			0.005 <w< td=""><td>0.006 0.003</td><td></td><td>0.008 0.013</td><td>0.020 0.004</td><td></td><td></td><td>, 18</td><td>0.001 mg/L</td><td>1 mg/L</td></w<>	0.006 0.003		0.008 0.013	0.020 0.004			, 18	0.001 mg/L	1 mg/L
22 F. COLIFORM MF 22 (BAC) count/100mL	R 118 T NA			124. NA	176. NA	>300 NA	TN NA	TN NA	TIN NA	>600 NA	88 U	0	0/0.1L mL

	PARAMETERS						D A	TE				DETECTION	DRINKING WATER OBJ/
		MA	Y 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		CUIDELINE ¹
		R 0.4		0.110 0.013	0.250 <w< td=""><td>0.270 <w< td=""><td>0.940 0.002</td><td>0.560 0.014</td><td>9.800 0.025</td><td></td><td></td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<></td></w<>	0.270 <w< td=""><td>0.940 0.002</td><td>0.560 0.014</td><td>9.800 0.025</td><td></td><td></td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<>	0.940 0.002	0.560 0.014	9.800 0.025			0.002 mg/L	0.3 mg/L
1460110		R 0.0			0.10 1.17	0.11 1.02	0.14 0.97	0.10 1.20	0.16 1.11	0.12 1.08		0.01 mg/L	2.4 mg/L
		R NA T 0.2				NA 0.20	NA 0.10	NA 0.00	NA 0.10	NA 0.25	NA NS		
	FIELD CHLORINE (FREE) (FLD)	R NA I 0.7	70			NA 0.80			NA 0.80	NA 0.65	na Ns		
	FIELD CHLORINE (TOTAL) (FLD)	R NA I O.S	90			NA 1.00	NA 0.90	NA 0.80	NA 0.90	NA 0.90	NA NS		
		R 7.7			7.70 7.10	7.80 7.10	8.10 7.20	7.60 6.80	7.80 7.10	7.90 7.00	7.70 NS		
		R 14. I 15.				14.0 14.0	9.0 8.0	7.0 6.0	5.0 5.0	2.0 3.0	0.5 NS		
		7.7 F 0.0				5.30 0.0 4	23.0 0.05	24.2 0.23	112.0 0.27	34.0 0.38	2.30 NS		1 FTU
100 B		95. 196.				105 106	123 130	110 117	149 122	140 144		0.5 mg/L	
		R 180 280				L A 9	>2 4 00 1	>2 4 00 1	>2400 4	AW AW	580 AW		500 orga- nisms per mL
		R <w C <w< td=""><td></td><td></td><td></td><td></td><td>0.01 0.01</td><td>0.01 <₩</td><td>0.10 <₩</td><td></td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></w 					0.01 0.01	0.01 <₩	0.10 <₩			0.01 ug/L	1 ug/L

	PARAMETERS						D A	TE				DETECTION	DRINKING WATER OBJ/
	Trada-iistrado		MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7	 	GUIDELINE ¹
0.550	MAGNESIUM (LAB)		7.10 7.10	7.20 7.20	7.50 7.70	7.40 7.50	8.85 9.10	7.80 8.20	10.80 8.40	9.70 9.60		0.05 mg/L	
	MANGANESE (MET)		0.015 0.005	0.007 <w< td=""><td>0.010 <w< td=""><td>0.009 0.001</td><td>0.013 0.003</td><td><w 0.002</w </td><td>0.130 0.003</td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<>	0.010 <w< td=""><td>0.009 0.001</td><td>0.013 0.003</td><td><w 0.002</w </td><td>0.130 0.003</td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	0.009 0.001	0.013 0.003	<w 0.002</w 	0.130 0.003			0.001 mg/L	0.05 mg/L
	MOLYBDENUM (MET)		0.002 <w< td=""><td><w <w< td=""><td>0.001 0.001</td><td>0.002 0.002</td><td>0.001 0.001</td><td>0.001 0.001</td><td><w 0.001</w </td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w </td></w<>	<w <w< td=""><td>0.001 0.001</td><td>0.002 0.002</td><td>0.001 0.001</td><td>0.001 0.001</td><td><w 0.001</w </td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w 	0.001 0.001	0.002 0.002	0.001 0.001	0.001 0.001	<w 0.001</w 			0.001 mg/L	0.25 mg/L s
	SODIUM (LAB)		7.0 6.2	6.2 7.4	6.4 7.4	6.6 11.8	13.5 12.3	10.8 12.0	11.6 10.2	15.4 15.5		0.1 mg/L	
100000000000000000000000000000000000000	NICKEL (MET)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w 	0.003 <w< td=""><td>0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></td></w<>	0.002 <w< td=""><td>0.015 0.002</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<>	0.015 0.002			0.002 mg/L	
100	AMMONIUM TOTA (LAB)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w </td></w<></w 	<w 0.05<t< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></t<></w 	<w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w 		0.05 mg/L	
	NITRITE (LAB)	2000	.015 <t <w< td=""><td>.020<t< td=""><td></td><td>.015<t <w< td=""><td>.015<t <w< td=""><td>.015<t <w< td=""><td>0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></w<></t </td></t<></td></w<></t 	.020 <t< td=""><td></td><td>.015<t <w< td=""><td>.015<t <w< td=""><td>.015<t <w< td=""><td>0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></w<></t </td></t<>		.015 <t <w< td=""><td>.015<t <w< td=""><td>.015<t <w< td=""><td>0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></w<></t 	.015 <t <w< td=""><td>.015<t <w< td=""><td>0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t 	.015 <t <w< td=""><td>0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t 	0.070 <w< td=""><td>0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<>	0.040< <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<>		0.005 mg/L	1 mg/L as N
E33E1	NITRATE (LAB)				0.30 <t 0.30<t< td=""><td></td><td></td><td>0.55 0.90</td><td>2.00 0.90</td><td>1.55 1.55</td><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t 			0.55 0.90	2.00 0.90	1.55 1.55		0.05 mg/L	10 mg/L as N
E003-7	NITROGEN TOTA (LAB)				0.30 <t 0.10<t< td=""><td></td><td></td><td>0.30<t 0.10<t< td=""><td>1.75 0.20<t< td=""><td>0.40<t 0.20<t< td=""><td>E:</td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></td></t<></t </td></t<></t 			0.30 <t 0.10<t< td=""><td>1.75 0.20<t< td=""><td>0.40<t 0.20<t< td=""><td>E:</td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></td></t<></t 	1.75 0.20 <t< td=""><td>0.40<t 0.20<t< td=""><td>E:</td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<>	0.40 <t 0.20<t< td=""><td>E:</td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t 	E:	0.1 mg/L	0.15 mg/L *
	PRESENCE/ABSI (BAC)			NA ABSENT		NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	0	Absent
	LEAD (MET)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w 	0.018 <w< td=""><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<>			0.003 mg/L	0.05 mg/L

Γ	ninue e e						D A	TE				DETECTION LIMIT	WATER OF	BJ/
	PARAMETERS		MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7	 	CUIDELI	NE1
	PH (LAB)		8.22 7.20	8.22 7.37	8.45 7.44	8.29 7.45	8.24 7.29	7.99 7.22		8.16 7.24				
		ILTERED REACTIVE R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.06<t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.06<t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.06<t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.06<t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td>0.06<t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w 	0.06 <t 0.01<t< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t 			0.01 mg/L		
0.00 5045	PHOSPHORUS TO (LAB)		0.02 <t< td=""><td>0.06<t 0.04<t< td=""><td></td><td>0.02<t <w< td=""><td>NR NR</td><td>0.08<t 0.02<t< td=""><td></td><td>0.070< <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></t<></t </td></w<></t </td></t<></t </td></t<>	0.06 <t 0.04<t< td=""><td></td><td>0.02<t <w< td=""><td>NR NR</td><td>0.08<t 0.02<t< td=""><td></td><td>0.070< <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></t<></t </td></w<></t </td></t<></t 		0.02 <t <w< td=""><td>NR NR</td><td>0.08<t 0.02<t< td=""><td></td><td>0.070< <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></t<></t </td></w<></t 	NR NR	0.08 <t 0.02<t< td=""><td></td><td>0.070< <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></t<></t 		0.070< <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<>		0.01 mg/L		
	ALDRIN (PST)	ng/L T	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 		1 ng/L	700 ng/L	**
	ALPHA BHC (PST)	ng/L I		<w <w< td=""><td>3<t 2<t< td=""><td>2<t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 2<t< td=""><td>2<t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t </td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w 	3 <t 2<t< td=""><td>2<t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 2<t< td=""><td>2<t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t </td></t<></t </td></t<></t </td></t<></t </td></t<></t 	2 <t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 2<t< td=""><td>2<t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t </td></t<></t </td></t<></t </td></t<></t 	2 <t 3<t< td=""><td>2<t 2<t< td=""><td>2<t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t </td></t<></t </td></t<></t 	2 <t 2<t< td=""><td>2<t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t </td></t<></t 	2 <t <w< td=""><td>3<t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></w<></t 	3 <t <w< td=""><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t 		1 ng/L	700 ng/L	С
-	BETA BHC (PST)	ng/L T	7040 (1040)	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 		1 ng/L	300 ng/L	С
	LINDANE (PST)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 		1 ng/L	4000 ng/L	
25/25/25	ALPHA CHLORDA (PST)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 		2 ng/L	700 ng/L	***
27.000	GAMMA CHLORDA (PST)		<w <w<="" td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w></td></w>	<w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w></td></w<></w 	<w <<="" td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w>		2 ng/L	700 ng/L	***
528.5156	DIELDRIN (PST)	ng/L I		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 		2 ng/L	700 ng/L	**
1200	METHOXYCHLOR (PST)	ng/L I		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td> 5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w 		 5 ng/L	100000 ng/L)

	PARAMETERS					,		TE			DETECTION	DRINKING WATER OBJ
_			MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10 JAN 7	Birit	GUIDELINE 1
	ENDRIN (PST)		R <w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w></td></w<></w 	<w <w<="" td=""><td>4 ng/L</td><td>200 ng/L</td></w>	4 ng/L	200 ng/L
	THIODAN SULP (PST)		< \W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>4 ng/L</td><td></td></w<></w 	4 ng/L	
	THIODAN I (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 	2 ng/L	74000 ng/L ea
	THIODAN II (PST)	ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w></td></w<></w 	<w <w<="" td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w>	4 ng/L	74000 ng/L ea
	METHYLPARATH (SPC)	ION F		++	+	+	+	+			50 ng/L	7000 ng/L
	PARATHION (SPC)	R T		++	+ +	+	+	+ +			50 ng/L	35000 ng/L
	HEPTACHLOR E		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w></td></w<></w 	<w <w<="" td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w>	1 ng/L	3000 +++ ng/L
	HEPTACHLOR (PST)	ng/L I	125.	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w </td></t<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w </td></t<></w </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>1<t <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w </td></t<></w </td></w<></t </td></w<></w 	1 <t <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w </td></t<></w </td></w<></t 	<w 5<t< td=""><td><w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w </td></t<></w 	<w <w< td=""><td><w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w></td></w<></w 	<w <w<="" td=""><td>1 ng/L</td><td>3000 ng/L +++</td></w>	1 ng/L	3000 ng/L +++
	MIREX (PST)	ng/L R	353.5	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td></td></w></td></w<></w </td></w<></w 		<w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td></td></w></td></w<></w 	<w <w<="" td=""><td>5 ng/L</td><td></td></w>	5 ng/L	
	OXYCHLORDANE (PST)	ng/L T	<w <w< td=""><td>2.5</td><td></td><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	2.5		<w <w< td=""><td></td><td></td><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 			<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td></td></w<></w 	2 ng/L	
	O,P,-DDT (PST)	ng/L R				.23	- 150 E	1000	<w <w< td=""><td><w <w<="" td=""><td>5 ng/L</td><td>30000 ng/L d</td></w></td></w<></w 	<w <w<="" td=""><td>5 ng/L</td><td>30000 ng/L d</td></w>	5 ng/L	30000 ng/L d

PARAMETERS						D A	TE		,		DETECTION LIMIT	WATER OBJ
	The section of the se	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7	N-0-10-10-10-10-10-10-10-10-10-10-10-10-1	CUIDELINE]
67 PCB 67 (PST)	ng/L I		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w 		20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
69 P,P-DDE 69 (PST)		2 <t <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></t 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>đ</td></w<></w 		1 ng/L	đ
70 P,P-DDT 70 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td>0</td><td>5 ng/L</td><td>d</td></w<></w 	0	5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L R	+	# *	+ +	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+ +				50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L R	+	+ +	* +	<w <w< td=""><td>+</td><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	+ +				50 ng/L	
73 DIAZINON 73 (SPC)	ng/L R	+	+	+ +	NS NS	+	+				50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L R	+ +	+	+ +	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+ +	+ +				100 ng/L	
75 PROMETONE 75 (SPC)	ng/L R	+	* *	+	<w <w< td=""><td>+</td><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	+ +				50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L R	+ +	+ +	+	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+ +				50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L R	+	+ +	+ +	<w <w< td=""><td># #</td><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	# #	+				50 ng/L	

								D A	ΤE				 DETECTION	DRINKING
	PARAMETERS		MAY	23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7	LIMIT	WATER OBJ/ GUIDELINE ¹
	SENCOR (SPC)	ng/L	+ 5 +		+	+	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+ +	+ +				100 ng/L	
79	SIMAZINE	F	+		+	+	<w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td>50</td><td></td></w<>	+	+				50	
	(SPC)	ng/L			+	+	<w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td>ng/L</td><td></td></w<>	+	+				ng/L	
	DICAMBA (SPC)	ng/L I	+ +		+	+	<w <w< td=""><td>+ +</td><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+ +	+				100 ng/L	
	PICLORAM (SPC)	ng/L I	+ +	- 1	+ +	+ +	<w <w< td=""><td>+ +</td><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+ +	+				100 ng/L	
	SILVEX (SPC)	ng/L F		- 3	+	+	<w <w< td=""><td>++</td><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w 	++	+				50 ng/L	10000 ng/L
	2,4-D (SPC)	ng/L I	+	- 1	+	+	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td>ā</td><td></td><td>100 ng/L</td><td>100000 ng/L</td></w<></w 	+ +	+ +		ā		100 ng/L	100000 ng/L
84	2,4-D BUTYRI	C ACID F		- 1	+	+	<w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td>200</td><td></td></w<>	+	+				200	
	(SPC)				+	+	<w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td>ng/L</td><td></td></w<>	+	+				ng/L	
	2,4-D PROPIO (SPC)	NIC ACID F	+	- 1	+	+	<w <w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+	+				100 ng/L	
	2,4,5-T (SPC)	ng/L F	++	- 1	+	+	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+ +				50 ng/L	
5777673	TOTAL SOLIDS (LAB)		151 155			155 168	155 175	221 210	176 195	556 199	241 239		1 mg/L	
	SELENIUM (MET)		<w <w< td=""><td></td><td>1 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		1 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 			0.001 mg/L	0.01 mg/L

PARAMETERS		•		,		TE				DETECTION	DRINKING WATER OBJ/
	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	V		CUIDELINE1
	0.099 0.098	0.100 0.110		0.220 0.100	0.130 0.130	0.100 0.110	0.190 0.120			0.001 mg/L	
90 (BAC) count/100mL T	1800 0	300 0	1800 0	800 : 0	11800 · 2	4900A3C 0	11400A 0	3C 7600/ 0	A3C 4600 0	0	ODWO Bacti
91 (BAC) count/100mL T	16500 0	90000 0	4 9000 0	46000 1	110000 11	58000 0	96000 2	31000 0	10600 0	0	OWDO Bacti
92 (LAB) FIU T	9.8 0.43 <t< td=""><td></td><td>9.0 0.19<t< td=""><td>10.9 0.10<t< td=""><td>32 0.27<t< td=""><td>20 0.17<t< td=""><td>>200 0.16<t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		9.0 0.19 <t< td=""><td>10.9 0.10<t< td=""><td>32 0.27<t< td=""><td>20 0.17<t< td=""><td>>200 0.16<t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	10.9 0.10 <t< td=""><td>32 0.27<t< td=""><td>20 0.17<t< td=""><td>>200 0.16<t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<></td></t<></td></t<>	32 0.27 <t< td=""><td>20 0.17<t< td=""><td>>200 0.16<t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<></td></t<>	20 0.17 <t< td=""><td>>200 0.16<t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<>	>200 0.16 <t< td=""><td>48.0 0.16<t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<>	48.0 0.16 <t< td=""><td></td><td>0.01 FTU</td><td>1 FTU</td></t<>		0.01 FTU	1 FTU
	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><₩ <₩</td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><₩ <₩</td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><₩ <₩</td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td><₩ <₩</td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w 	<w <<="" td=""><td><₩ <₩</td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w>	<₩ <₩			0.002 mg/L	.02 mg/L t
	(4) (4) (5) (5) (5) (5) (5) (5) (5)	<w 0.001</w 	Line contract		0.001 <w< td=""><td>0.001 <₩</td><td>0.021 <w< td=""><td></td><td></td><td>0.001 mg/L</td><td></td></w<></td></w<>	0.001 <₩	0.021 <w< td=""><td></td><td></td><td>0.001 mg/L</td><td></td></w<>			0.001 mg/L	
95 HEXACHLOROBUTADIENE R 95 (CHA) ng/L T		- S-1.00	11 - 32 1, 475	~40m31	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w 		1 ng/L	4500 ng/L e
96 1,1-DICHLOROETHYLENE R 96 (VOL) ug/L T			Fig. 600	==50000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 		1 ug/L	.3 ug/L h
97 METHYLENE CHLORIDE R 97 (VOL) ug/L T			(623)	1.000	<w <w< td=""><td>!AD !AD</td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w 	!AD !AD				5 ug/L	40 ug/L c
98 T,1,2-DICHLOROETHYLENE R 98 (VOL) ug/L T			1.0	88	100000		SEC	<w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w 		1 ug/L	
99 1,1-DICHLOROETHANE R 99 (VOL) ug/L T	2017/02/2				5556	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 				1 ug/L	

F	PARAMETERS						D A	T E				DETECTION LIMIT	DRINKI WATER	
			MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7	DIPILI	GUIDEL	-
	CHLOROFORM (VOL) ug/		<w 21</w 	<w 38</w 	<w 31</w 	<w 20</w 	<w 26</w 	<w 17</w 	<w 16</w 	<w 15</w 		1 ug/L	350 ug/L	++
	DICHLOROMETHANE (VOL) ug/		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	cs cs	<w <w< td=""><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 		5 ug/L	40 ug/L	С
	1,1,1-TRICHLORO (VOL) ug/			<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
	DICHLOROETHANE (VOL) ug/	T. R	F 17-25000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
	1,2-DICHLOROETH (VOL) ug/		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 		1 ug/L	10 ug/L	h
	CARBON TETRACHI (VOL) ug/		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w 		1 ug/L	3 ug/L	h
	1,2 DICHLOROPRO (VOL) ug/		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w 		1 ug/L	6 ug/L	ep
	TRICHLOROETHYLE (VOL) ug/		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 		1 ug/L	30 ug/L	h
	DICHLOROBROMOME (VOL) ug/		<w 10</w 	<w 14</w 	<w 13</w 	<w 9</w 	<w 12</w 	<w 10</w 	<w 7</w 	<w 10</w 		1 ug/L	350 ug/L	++
	1,1,2-TRICHLORO (VOL) ug/		<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>e</td></w<></w 		1 ug/L	6 ug/L	e
	CHLORODIBROMOME (VOL) ug/		<w 5</w 	<w 15</w 	<w 15</w 	<w 8</w 	<w 9</w 	<₩ 9		<w 9</w 		1 ug/L	350 ug/L	++

,	PARAMETERS						D A	TE				DETECTION	DRINKIN WATER O	
		10	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		GUIDELI	NE ¹
	TETRACHLOROETHYLENE (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 		1 ug/L	10 ug/L	h
	BROMOFORM (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 		1 ug/L	350 ug/L	++
	1,1,2,2-TETRACHLOROETHANE (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 		1 ug/L	1.7 ug/L	е
	HEXACHLOROBENZENE (PST) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>3<t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></w<></w 	3 <t <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t 	<w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 		1 ng/L	10 ng/L	h
	HEXACHLOROETHANE (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 5<t< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></t<></w </td></w<></w 	<w 5<t< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></t<></w 	<w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 		1 ng/L	19000 ng/L	е
	OCTACHLOROSTYRENE (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w 		1 ng/L		
	PENTACHLOROBENZENE (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w 		1 ng/L	74000 ng/L	е
	TOTAL TRIHALOMETHANES (VOL) ug/L	R T	<w 36</w 	<w 67</w 	<w 59</w 	<w 37</w 	<w 47</w 	<w 36</w 	<w 29</w 	<w 34</w 		3 ug/L	350 ug/L	++
	2,3,6-TRICHLOROTOLUENE (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 19<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w 	<w 13<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w 		5 ng/L		
	2,4,5-TRICHLOROTOLUENE (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 		5 ng/L	10000 ng/L	g
	2,6,A-TRICHLOROTOLUENE (CHA) mg/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w 		5 ng/L		

PARAMETERS			,		DA	TE				DETECTION	DRINKING WATER OB	
	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		GUIDELIN	
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w 		1 ng/L	100-300 ng/L) h*
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
125 1,2-DICHLOROBENZENE R 125 (VOL) ug/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
126 TRIFLUOROCHLOROTOLUENE R 126 (CHA) ug/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w></td></w<></w 	<w .<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 		5 ng/L	10000 ng/L	У
	<w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w 	<w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 		1 ng/L	38000 ng/L	е
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><W 10</td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	< W 10	<w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w 		1 ng/L		
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>16<t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t </td></w<></w 	16 <t <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></t 	<w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 		5 ng/L	15000 ng/L	У
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 15</w </td><td><w <w< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 15</w </td><td><w <w< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 15</w </td><td><w <w< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 15</w </td><td><w <w< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w 15</w 	<w <w< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w </td></w<></w 	<w 7<t< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></t<></w 		1 ng/L	38000 ng/L	е
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w 	<w 9<t< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 		5 ng/L	10000 ng/L	У

PARAMETERS					D A	TE					DETECTION	DRINKING WATER OF	
	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 1	.0 J	AN 7		GUIDELIN	Œ1
	+	+	+	<w <w< td=""><td>+ +</td><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	+ +	+					50 ng/L	10000 ng/L	h
	+ +	+	+	<w <w< td=""><td>+ +</td><td>+ +</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w 	+ +	+ +					100 ng/L		
135 2,3,4,5-TETRACHLOROPHENOL R 135 (CHP) ng/L T	+ +	+	* *	<w <w< td=""><td>+ +</td><td>+</td><td></td><td></td><td>3</td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+ +	+			3		50 ng/L		
136 2,3,5,6-TETRACHLOROPHENOL R 136 (CHP) ng/L T	+ +	+	+	<w <w< td=""><td>+</td><td>+ +</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+	+ +					50 ng/L		
137 2,4,5-TRICHLOROPHENOL R 137 (CHP) ng/L T	+ +	+	+ +	<w <w< td=""><td>+ +</td><td>+ .</td><td>*</td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+ +	+ .	*				50 ng/L		
138 2,4,6-TRICHLOROPHENOL R 138 (CHP) ng/L T	+ +	+	+ +	<w <w< td=""><td>*</td><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	*	+					50 ng/L	10000 ng/L	h
	0.006 <w< td=""><td>0.003 0.001</td><td>0.003 0.010</td><td></td><td>0.007 0.002</td><td></td><td>0.051 0.002</td><td></td><td></td><td></td><td>0.001 mg/L</td><td>5 mg/L</td><td>h</td></w<>	0.003 0.001	0.003 0.010		0.007 0.002		0.051 0.002				0.001 mg/L	5 mg/L	h
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 			0.1 ug/L		
141 PENTACHLOROPROPENE R 141 (MS) ug/L T			NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 			0.1 ug/L		
	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 			0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td>-</td><td>0.1 ug/L</td><td></td><td></td></w<></w 		-	0.1 ug/L		

MAY 23	ALIC 26								LIMIT	DRINKING WATER OBJ/
	AUG 20	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		GUIDELINE ¹
NS NS	NS NS	NS NS	NS NS	(NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
							<w< td=""><td></td><td>0.1 ug/L</td><td></td></w<>		0.1 ug/L	
	N5	NS	NS	NS.	NS	NS	<w< td=""><td></td><td></td><td></td></w<>			
		NS NS	NS NS		2 -2	5.55	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
			NS NS				<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
							<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
		130.00	200	17.55	CONTRACTOR OF THE PARTY OF THE		<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
					5055	220000			0.1 ug/L	
1000 0000			100,000		50000 III		1.452000		0.1 ug/L	
5555			1000000	37.77		183.50 V	1. 200.		0.1 ug/L	
			12.00						0.1 ug/L	
	23 52 53 53 53 53 53 53 53 53 53 53 53 53 53	NS N	NS N	NS	NS N	NS N	NS NS<	NS NS NS NS NS <	NS NS<	NS NS NS NS NS NS NS VW 0.1 NS NS NS NS NS NS NS 0.1 NS NS NS NS NS NS VW 0.1 NS NS NS NS NS NS VW 0.1 NS NS NS NS NS NS NS VW NS NS NS NS NS NS NS NS NS NS

PARAMETERS					DA	ΤE				DETECTION	DRINKING WATER OBJ/
	MAY 23	AUG 26	SEP 23	OCT 28	NOV 21	NOV 25	DEC 2	DEC 10	JAN 7		CUIDETINE ₁
	NS NS						NS NS	<w X<t< td=""><td></td><td>0.1 ug/L</td><td></td></t<></w 		0.1 ug/L	
155 DIBROMOCHLOROMETHANE R 155 (MS) ug/L T	NS NS						NS NS	<w X<t< td=""><td></td><td>0.1 ug/L</td><td></td></t<></w 		0.1 ug/L	
156 TETRACHLOROETHYLENE R 156 (MS) ug/L T	NS NS	NS NS		NS NS			NS NS	<w <<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L	
	NS NS			NS NS		NS NS	NS NS	<w <<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L	
	NS NS			NS NS	NS NS	NS NS	NS NS	<₩ <₩		0.1 ug/L	
			7								
											8

LAB - Chemistry (LAB) FLD - Chemistry (FIELD) BAC - Bacteriological MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

TABLE A

MITCHELL'S BAY WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

	PARAMETERS		1		20 21 22 22		D A	T E				DETECTION LIMIT	DRINKING WATER OB	
	Tradabilico		MAY 2	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		GUIDELIN	
	L ALKALINITY L (LAB)		R 101.2 T 79.2	103.6 64.2	69.4 48.4	69.6 48.0	111.2 88.8	127.4 89.2	180.4 113.4	157.6 78.2		0.2 mg/L		
	ALUMINUM (MET)		R 0.240 r 0.081	0.082 0.220		0.210 0.035	0.210 0.041	0.140 0.015	2.7 0.05	2.000 0.067	0.240 0.060	0.003 mg/L		
	ARSENIC (MET)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w 	0.001 mg/L	0.05 mg/L	
	BARIUM (MET)		0.014 0.019	0.015 0.019		0.010 0.011	0.017 0.019	0.018 0.026	0.034 0.022	0.027 0.021	0.021 0.018	0.001 mg/L	1 mg/L	
	BORON (MET)	mg/L	R IS C 0.05	0.08 0.06	0.07 0.08	0.06 0.07	<0.05 <0.05	0.15 0.13	0.13 0.08	0.09 0.03	0.13 0.10	0.02 mg/L	5 mg/L	
	BERYLLIUM (MET)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w 	0.001 mg/L		
	BENZENE (VOL)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 		1 ug/L	10 ug/L	h
9	TOLUENE (VOL)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 		1 ug/L	14300 ug/L	е
1888	ETHYLBENZENE (VOL)	179	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 		1 ug/L	1400 ug/L	е
153375	P-XYLENE (VOL)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 		1 ug/L	620 ug/L	е
440.000	M-XYLENE (VOL)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 		1 ug/L	620 ug/L	С

PARAMETERS					D A	TE					DETECTION LIMIT	DRINKING WATER OBJ
THVEILING	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		DIMIT	GUIDELINE ¹
12 O-XYLENE 12 (VOL)	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 			1 ug/L	620 ug/L c
13 CALCIUM 13 (LAB)	R 33.0 F 38.0	34.0 44.5	20.8 23.5	20.5	40.2 47.0	47.5 47.5	78.5 79.0	66.0 68.0			0.1 mg/L	
14 CYANIDE 14 (MET)	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 		0.001 mg/L	0.2 mg/L
15 CADMIUM 15 (MET)	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 		0.0003 mg/L	0.005 mg/L
16 CHLORIDE 16 (LAB)	R 11.2 F 14.2	11.6 14.4	12.6 15.2	9.4 10.6	19.0 23.2	15.8 17.6	26.2 29.0	20.6 24.4			0.2 mg/L	250 mg/L
17 COLOUR 17 (LAB)	8.0 1.5 <t< td=""><td>8.0 <w< td=""><td>8.0 1.0<t< td=""><td>5.5 1.0<t< td=""><td>18.0 1.5<t< td=""><td>9.5 3.0</td><td>31.0 1.5<t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<>	8.0 <w< td=""><td>8.0 1.0<t< td=""><td>5.5 1.0<t< td=""><td>18.0 1.5<t< td=""><td>9.5 3.0</td><td>31.0 1.5<t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<></td></t<></td></w<>	8.0 1.0 <t< td=""><td>5.5 1.0<t< td=""><td>18.0 1.5<t< td=""><td>9.5 3.0</td><td>31.0 1.5<t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<></td></t<>	5.5 1.0 <t< td=""><td>18.0 1.5<t< td=""><td>9.5 3.0</td><td>31.0 1.5<t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<>	18.0 1.5 <t< td=""><td>9.5 3.0</td><td>31.0 1.5<t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<>	9.5 3.0	31.0 1.5 <t< td=""><td>36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<>	36.5 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<>			0.5 TCU	5 TCU
18 CONDUCTIVIT 18 (LAB)	273 7 314	281 293	216 251	201 209	336 393	362 371	552 570	472 506			0.01 UMHO/CM	
19 COBALT 19 (MET)	 R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>.002<t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t </td></w<></w 	.002 <t <w< td=""><td>0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<></td></w<></t 	0.002< <w< td=""><td>0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></td></w<>	0.001 <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<>		0.001 mg/L	
20 CHROMIUM 20 (MET)	0.003	<w <w< td=""><td>0.002 0.002</td><td>0.003 0.005</td><td>0.003 0.002</td><td>0.003 <w< td=""><td>0.008</td><td>0.006 0.003</td><td>0.003 0.003</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w 	0.002 0.002	0.003 0.005	0.003 0.002	0.003 <w< td=""><td>0.008</td><td>0.006 0.003</td><td>0.003 0.003</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	0.008	0.006 0.003	0.003 0.003		0.001 mg/L	0.05 mg/L
21 COPPER 21 (MET)	0.003	0.003 0.029	0.002 0.021	0.003 0.014	0.005 0.024	0.005 0.018	0.008 0.021	0.008 0.024	0.006 0.019		0.001 mg/L	1 mg/L
22 F. COLIFORN 22 (BAC) cour	2 <2 NA	O NA	<2 NA	O NA	7 NA	0 NA	26 NA	37 NA	o NA	33	0	0/0.1L mL

					D A	TE				DETECTION LIMIT	DRINKING WATER OBJ/
PARAMETERS	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		GUIDELINE1
	0.32 0.02 <t< td=""><td>0.066 0.022</td><td></td><td></td><td>0.220 0.023</td><td>0.050 0.041</td><td></td><td>1.900 0.130</td><td>0.310 0.048</td><td>0.002 mg/L</td><td>0.3 mg/L</td></t<>	0.066 0.022			0.220 0.023	0.050 0.041		1.900 0.130	0.310 0.048	0.002 mg/L	0.3 mg/L
	0.13 0.07			0.10 0.07	0.16 0.10		Sheet Affairmed and	0.17 0.07		0.01 mg/L	2.4 mg/L
	NA 0.20	NA 0.10	NA 0.20	NA 0.80	NA 1.00	NA NS		NA NS	NA >0.10		
	NA 0.80	NA 1.10	NA 0.80	NA 0.80	NA 1.00	NA 0.80		NA 1.00	NA 0.90	g	
	NA 1.0	NA 1.20	NA 1.0	NA NS	NA NS	NA NS		NA >1.00	NA >1.00		
	ns ns	ns ns	NS NS	NS NS	NS NS	NS NS	8.3 7.2	8.00 6.90	NS 7.00		
	14.0 16.0	19.0 21.0	23.0 24.0	21.0 23.0	20.0 21.0	15.0 12.0	6.0 13.5	7.5 10.0	NS 9.5		
TOO LILLED TOUGHTELE	5.70 0.25	1.50 0.15	2.00 0.27	1.20 0.25	1.00 0.27	3.50 0.21	61.0 0.31	66.00 0.34	NS 0.44		1 FTU
	117.0 133.0	125.0 150	86.9 96.1	82.1 86.6	147.3 167.2	166.0 164.0	266.0 266.0	224.0 231.0		0.5 mg/L	
	1	>2 4 00 0	>2400 7	900 1	900 0	260 !72	900. 0	1200 AW	250 1	0	500 orga- nisms per mL
	0.01 <w< td=""><td><w <w< td=""><td>0.01 0.01</td><td><w 0.01</w </td><td>0.01 0.01</td><td>0.01 0.01</td><td>0.02 0.01</td><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.01 0.01</td><td><w 0.01</w </td><td>0.01 0.01</td><td>0.01 0.01</td><td>0.02 0.01</td><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></w 	0.01 0.01	<w 0.01</w 	0.01 0.01	0.01 0.01	0.02 0.01	0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<>	0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<>	0.01 ug/L	1 ug/L

PAI	RAMETERS				DETECTION LIMIT	DRINKING WATER OBJ/								
111	adrillia.		MAY	23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		CUIDELINE ¹
34 MAG	GNESIUM AB)		R 8.3		9.70 9.40	8.50 9.10	7.50 7.70	11.40 12.10	11.50 11.10	16.9 16.8	14.50 14.90		0.05 mg/L	
35 MAI 35 (MI	NGANESE IET)				0.017 0.006		0.004 0.003	0.009 0.006	0.004 0.004	The state of the s	0.025 0.013	0.046 0.036	0.001 mg/L	0.05 mg/L
36 MOI 36 (MI	DLYBDENUM NET)		R <w T 0.0</w 			0.003 0.002	0.002 0.001	0.002 0.002	0.002 0.002	ACCUSED BY TO COME	0.001 0.001	0.001 <w< td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<>	0.001 mg/L	0.25 mg/L s
37 SOI 37 (L			R 6.8 T 7.0		7.0 7.0	6.8 7.2	5.5 5.8	8.2 8.8	8.2 8.2	8.4 8.5	9.3 8.5		0.1 mg/L	
38 NIO 38 (MI	The state of the s		R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002</td><td>0.002 <w< td=""><td>0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002</td><td>0.002 <w< td=""><td>0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.002</td><td>0.002 <w< td=""><td>0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.002</td><td>0.002 <w< td=""><td>0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w 	0.002	0.002 <w< td=""><td>0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<></td></w<>	0.004 <w< td=""><td>0.004 0.001</td><td>0.002 0.002</td><td>0.002 mg/L</td><td></td></w<>	0.004 0.001	0.002 0.002	0.002 mg/L	
39 AM 39 (L	MONIUM TOTA "AB)	17 Table 1 Tab	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>0.05<t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w 	0.05 <t <w< td=""><td>0.05<t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t 	0.05 <t <w< td=""><td>9</td><td>0.05 mg/L</td><td></td></w<></t 	9	0.05 mg/L	
40 NI'			R .02 T <w< td=""><td>S 1</td><td>0.150 <w< td=""><td>.025<t <w< td=""><td>0.01<t 0.01<t< td=""><td>0.03<t <w< td=""><td>0.04<t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></t<></t </td></w<></t </td></w<></td></w<>	S 1	0.150 <w< td=""><td>.025<t <w< td=""><td>0.01<t 0.01<t< td=""><td>0.03<t <w< td=""><td>0.04<t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></t<></t </td></w<></t </td></w<>	.025 <t <w< td=""><td>0.01<t 0.01<t< td=""><td>0.03<t <w< td=""><td>0.04<t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></t<></t </td></w<></t 	0.01 <t 0.01<t< td=""><td>0.03<t <w< td=""><td>0.04<t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t </td></t<></t 	0.03 <t <w< td=""><td>0.04<t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t </td></w<></t 	0.04 <t <w< td=""><td>.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<></td></w<></t 	.075 <w< td=""><td>0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></td></w<>	0.055 <w< td=""><td>8</td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<>	8	0.005 mg/L	1 mg/L as N
41 NI 41 (L			R NS T NS		NS NS	NS NS	NS NS	1.35 1.75	NS NS	5.5 5.5	3.95 3.65	3	0.05 mg/L	10 mg/L as N
42 NI 42 (L			R 0.2		0.4 <t 0.3<t< td=""><td>0.4<t 0.2<t< td=""><td>0.5<t 0.6<t< td=""><td></td><td></td><td>1.0 0.5<t< td=""><td>0.90 0.40<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></td></t<></t </td></t<></t </td></t<></t 	0.4 <t 0.2<t< td=""><td>0.5<t 0.6<t< td=""><td></td><td></td><td>1.0 0.5<t< td=""><td>0.90 0.40<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></td></t<></t </td></t<></t 	0.5 <t 0.6<t< td=""><td></td><td></td><td>1.0 0.5<t< td=""><td>0.90 0.40<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></td></t<></t 			1.0 0.5 <t< td=""><td>0.90 0.40<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<>	0.90 0.40 <t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<>		0.1 mg/L	0.15 mg/L *
43 PR 43 (B	RESENCE/ABSI BAC)		R NA T ABS		NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA NS	NA ABSENT	NA ABSENT	NA ABSENT	0	Absent
44 LE 44 (M			R <w T <w< td=""><td></td><td>0.003 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 		0.003 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w 	0.004 <w< td=""><td>0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<>	0.005 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<>	<w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 	0.003 mg/L	0.05 mg/L

PARAMETERS				DETECTION LIMIT	DRINKING WATER OF								
	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6			GUIDELIN	E
				8.51 7.60	8. 4 2 7.19	8.20 7.32	8.14 7.53	8.09 6.75					
	0.02 <t <w< td=""><td>0.01<t 0.01<t< td=""><td>0.000</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></t </td></w<></t 	0.01 <t 0.01<t< td=""><td>0.000</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></t 	0.000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 			0.01 mg/L		
	<w 0.06<t< td=""><td></td><td>0.02<t 0.01<t< td=""><td></td><td></td><td></td><td>0.10<t 0.02<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></t<></t </td></t<></w 		0.02 <t 0.01<t< td=""><td></td><td></td><td></td><td>0.10<t 0.02<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></t<></t 				0.10 <t 0.02<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t 				0.01 mg/L		
	1004.00	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			1 ng/L	700 ng/L	**
	-3200	<w 2<t< td=""><td><2T <3T</td><td><w <w< td=""><td>2<t 4<t< td=""><td>2<t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w </td></t<></w 	<2T <3T	<w <w< td=""><td>2<t 4<t< td=""><td>2<t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w 	2 <t 4<t< td=""><td>2<t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t </td></t<></t </td></t<></t 	2 <t 2<t< td=""><td>2<t 3<t< td=""><td>2<t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t </td></t<></t 	2 <t 3<t< td=""><td>2<t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t 	2 <t 1<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t 			1 ng/L	700 ng/L	С
	100.00	<w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 			1 ng/L	300 ng/L	С
	5.55	<w 1<t< td=""><td><w <<="" td=""><td><₩ <₩</td><td><w 3<t< td=""><td><₩ 2<t< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></td></t<></w </td></w></td></t<></w 	<w <<="" td=""><td><₩ <₩</td><td><w 3<t< td=""><td><₩ 2<t< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></td></t<></w </td></w>	<₩ <₩	<w 3<t< td=""><td><₩ 2<t< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></td></t<></w 	<₩ 2 <t< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<>	<₩ <₩	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 			1 ng/L	4000 ng/L	
		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w></td></w<></w 	<w <<="" td=""><td><w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w>	<w <w< td=""><td></td><td>*</td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w 		*	2 ng/L	700 ng/L *	***
	C-CCORPAN	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>***</td></w<></w 			2 ng/L	700 ng/L *	***
	Just ever in	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			2 ng/L	700 ng/L	**
	71 L 5 de L	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w 			5 ng/L	100000 ng/L	

PARAMETERS			DETECTION LIMIT	DRINKING WATER OBJ							
***************************************	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6	Dimiri	GUIDELINE 1
56 ENDRIN 56 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w 		4 ng/L	200 ng/L
57 THIODAN SULPHATE 57 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w 		4 ng/L	
58 THIODAN I 58 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w></td></w<></w 	<w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 		2 ng/L	74000 ng/L ea
59 THIODAN II 59 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w 		4 ng/L	74000 ng/L ea
60 METHYLPARATHION 60 (SPC)	R + T +	<w <w< td=""><td>+ +</td><td>+</td><td>+</td><td>+</td><td>++</td><td></td><td></td><td>50 ng/L</td><td>7000 ng/L</td></w<></w 	+ +	+	+	+	++			50 ng/L	7000 ng/L
61 PARATHION 61 (SPC)	R + T +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td>* *</td><td>+</td><td></td><td></td><td>50 ng/L</td><td>35000 ng/L</td></w<></w 	+	+	+	* *	+			50 ng/L	35000 ng/L
62 HEPTACHLOR EPOXIDE 62 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w 		1 ng/L	3000 +++ ng/L
63 HEPTACHLOR 63 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></w<></w 	<w 1<t< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w 		1 ng/L	3000 ng/L +++
64 MIREX 64 (PST) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w 		5 ng/L	
65 OXYCHLORDANE 65 (PST) ng/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w 		2 ng/L	
66 O,P,-DDT 66 (PST) ng/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w 		5 ng/L	30000 ng/L d

PARAMETERS			DETECTION	WATER OBJ/								
		MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		GUIDET INE]
67 PCB 67 (PST)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w 		20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
69 P,P-DDE 69 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w></td></w<></w 	<w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w 		1 ng/L	d
70 P,P-DDT 70 (PST)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L I		+	+ +	+ +	+ +	<w .<="" td=""><td>÷</td><td></td><td></td><td>50 ng/L</td><td></td></w>	÷			50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L I		+ +	++	+	+ +	<w <w< td=""><td>* *</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	* *			50 ng/L	
73 DIAZINON 73 (SPC)	ng/L I		<w <w< td=""><td>+</td><td>*</td><td>+</td><td>NS NS</td><td>÷</td><td></td><td></td><td>50 ng/L</td><td>14000 ng/L</td></w<></w 	+	*	+	NS NS	÷			50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L I		+	+ +	÷ +	* *	<w <w< td=""><td>+</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+			100 ng/L	
75 PROMETONE 75 (SPC)	ng/L I		+	+	+	* *	<w <w< td=""><td>* *</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	* *			50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L I		+	+	+	+	<w <w< td=""><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+			50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L I		+	+	+	+	<w <w< td=""><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+			50 ng/L	

PARAMETERS							D A	TE				DETECTION		DRINKING WATER OBJ/
			23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6			GUIDELINE ¹
78 SENCOR 78 (SPC)		R +		+	+	+	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+				100 ng/L	
79 SIMAZINE 79 (SPC)		R +		+	+	+ +	+ +	<w <w< td=""><td>+ +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +				50 ng/L	
80 DICAMBA 80 (SPC)	ng/L	R +		+	+	++	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+				100 ng/L	
81 PICLORAM 81 (SPC)	ng/L	R +		+	+	+	++	<w <w< td=""><td>+ +</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+ +				100 ng/L	
82 SILVEX 82 (SPC)	ng/L	R +		+	+	++	+ +	<w <w< td=""><td>++</td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w 	++				50 ng/L	10000 ng/L
83 2,4-D 83 (SPC)	ng/L	R +		+	+++++++++++++++++++++++++++++++++++++++	++	++	<w <w< td=""><td>+ +</td><td></td><td></td><td></td><td>100 ng/L</td><td>100000 ng/L</td></w<></w 	+ +				100 ng/L	100000 ng/L
84 2,4-D BUTYRI 84 (SPC)	C ACID I	R +		++	+	++	++	<w <w< td=""><td>÷</td><td></td><td></td><td></td><td>200 ng/L</td><td></td></w<></w 	÷				200 ng/L	
85 2,4-D PROPIC 85 (SPC)		R +		+	+	++	++	<w <w< td=""><td>++</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++				100 ng/L	
86 2,4,5-T 86 (SPC)	ng/L	۲ + ۲ +		+	+	+	++	<w <w< td=""><td>† +</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	† +				50 ng/L	
87 TOTAL SOLIDS 87 (LAB)		R 177 204		206 230	140 163	131 136	218 255	235 241	413 394	383 344			1 mg/L	
88 SELENIUM 88 (MET)		<w <w<="" td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 		0.001 mg/L	0.01 mg/L

PARAMETERS						D A	TE				DETECTION LIMIT	DRINKING WATER OBJ	
		MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		CUIDELINE	
89 STRONTIUM 89 (MET) mg/L		0.120 0.160		0.100 0.130				0.190 0.190		0.180 0.180	0.001 mg/L		
90 TOTAL COLIFORM MF 90 (BAC) count/100mL	R T		300 0	<2 0	200 0	100 0	4 0	500 0	2600A30	10A3C 0	0	ODWO Bacti	
91 TOTAL COLIFORM BACKGROUND MF 91 (BAC) count/100mL	R T		41000 0	210000 1		18000 0	500 !72	24000 0	41 000 0	420 0	0	OWDO Bacti	
92 TURBIDITY 92 (LAB) FTU		7.1 0.3 <t< td=""><td>1.77 <t< td=""><td>3.40 0.12</td><td></td><td>7.00 0.25<t< td=""><td>1.50 0.27<t< td=""><td>CANADA STREET, STATE OF THE STA</td><td>85.00 0.30<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	1.77 <t< td=""><td>3.40 0.12</td><td></td><td>7.00 0.25<t< td=""><td>1.50 0.27<t< td=""><td>CANADA STREET, STATE OF THE STA</td><td>85.00 0.30<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td><td></td></t<></td></t<></td></t<></td></t<>	3.40 0.12		7.00 0.25 <t< td=""><td>1.50 0.27<t< td=""><td>CANADA STREET, STATE OF THE STA</td><td>85.00 0.30<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td><td></td></t<></td></t<></td></t<>	1.50 0.27 <t< td=""><td>CANADA STREET, STATE OF THE STA</td><td>85.00 0.30<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td><td></td></t<></td></t<>	CANADA STREET, STATE OF THE STA	85.00 0.30 <t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td><td></td></t<>		0.01 FIU	1 FIU	
93 URANIUM 93 (MET) mg/L	2000 000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w 	<w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w 	0.002 mg/L	.02 mg/L	t
94 VANADIUM 94 (MET) mg/L			0.001 <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.009</td><td>0.005 <₩</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>.009</td><td>0.005 <₩</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>.009</td><td>0.005 <₩</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>.009</td><td>0.005 <₩</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	.009	0.005 <₩	<w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w 	0.001 mg/L		
95 HEXACHLOROBUTADIENE 95 (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w </td></w<></w 	<w 2<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></w 		1 ng/L	4500 ng/L	е
96 1,1-DICHLOROETHYLENE 96 (VOL) ug/L		<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w 		1 ug/L	.3 ug/L	h
97 METHYLENE CHLORIDE 97 (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ය ය</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ය ය</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ය ය</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>ය ය</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td>ය ය</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 	ය ය			5 ug/L	40 ug/L	С
98 T,1,2-DICHLOROETHYLENE 98 (VOL) ug/L		102200	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
99 1,1-DICHLOROETHANE 99 (VOL) ug/L		30.000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		

PARAMETERS					D A	TE					DETECTION	DRINKI WATER	
111011111111111111111111111111111111111	MAY	23 JUN 1	3 JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		DIMI	GUIDEL	
100 CHLOROFORM 100 (VOL) ug/L	R <w T 29</w 	<w 43</w 	<w 32</w 	<w 31</w 	<w 55</w 	<w 44</w 	<w 51</w 	<w 29</w 			1 ug/L	350 ug/L	++
101 DICHLOROMETHANE 101 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>cs cs</td><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w 	cs cs	<w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 			5 ug/L	40 ug/L	С
102 1,1,1-TRICHLOROETHANE 102 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
103 DICHLOROETHANE 103 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
104 1,2-DICHLOROETHANE 104 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 			1 ug/L	10 ug/L	h
105 CARBON TETRACHLORIDE 105 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w 			1 ug/L	3 ug/L	h
106 1,2 DICHLOROPROPANE 106 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>27 27</td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w 		27 27	1 ug/L	6 ug/L	ep
107 TRICHLOROETHYLENE 107 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 			1 ug/L	30 ug/L	h
108 DICHLOROBROMOMETHANE 108 (VOL) ug/L	R <w T 16</w 	<w 17</w 	<w 14</w 	<w 10</w 	<w 25</w 	<w 16</w 	<w 18</w 	<w 14</w 			1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE 109 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w 			1 ug/L	6 ug/L	е
110 CHLORODIBROMOMETHANE 110 (VOL) ug/L	R <w T 6</w 	<w 5</w 	<w 13</w 	<w 9</w 	< W 20	<w 10</w 	<w 10</w 	<w 11</w 			1 ug/L	350 ug/L	++

PARAMETERS			4		D A	TE					DETECTION LIMIT	WATER O	BJ/
	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6			GUIDELI	NE1
111 TETRACHLOROETHYLENE 111 (VOL) ug/L	R <w T <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w </th></w<></w 	<w <w< th=""><th></th><th></th><th>1 ug/L</th><th>10 ug/L</th><th>h</th></w<></w 			1 ug/L	10 ug/L	h
112 BROMOFORM 112 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td>F21</td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 	F21		1 ug/L	350 ug/L	++
113 1,1,2,2-TETRACHLOROETHANE 113 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>e</td></w<></w 			1 ug/L	1.7 ug/L	e
114 HEXACHLOROBENZENE 114 (PST) ng/L	R <w T <w< td=""><td><w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 1<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>61 61 65</td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 		61 61 65	1 ng/L	10 ng/L	h
115 HEXACHLOROETHANE 115 (CHA) ng/L	R <w T <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 5<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w></td></w<></w 	<w -<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 			1 ng/L	19000 ng/L	е
116 OCTACHLOROSTYRENE 116 (CHA) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 			1 ng/L		
117 PENTACHLOROBENZENE 117 (CHA) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w 			1 ng/L	74000 ng/L	е
118 TOTAL TRIHALOMETHANES 118 (VOL) ug/L	R <w T 51</w 	<w 65</w 	<w 59</w 	<₩ 50	<w 100</w 	<₩ 70	<w 79</w 	<w 54</w 			3 ug/L	350 ug/L	++
119 2,3,6-TRICHLOROTOLUENE 119 (CHA) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 21<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			5 ng/L		
120 2,4,5-TRICHLOROTOLUENE 120 (CHA) ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 			5 ng/L	10000 ng/L	g
121 2,6,A-TRICHLOROTOLUENE 121 (CHA) mg/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></w 	<w 5<t< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			5 ng/L		

PARAMETERS					D A	TE				DETECTION LIMIT	DRINKING WATER OB	Company of the
TAMELLES	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		GUIDELIN	
(1984) (1	< \W < \W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>100-300 ng/L 1</td><td>h*</td></w<></w 		1 ng/L	100-300 ng/L 1	h*
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
201 1/0 01	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 		1 ug/L	400 ug/L	е
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 		5 ng/L	10000 ng/L	У
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 		1 ng/L	38000 ng/L	е
	R <w C <w< td=""><td><w 9<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 9<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w 		1 ng/L		
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 		5 ng/L	15000 ng/L	У
	R <w C <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 6<t< td=""><td><w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w 25</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 		1 ng/L	38000 ng/L	е
/-/-	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 12<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 12<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 12<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 12<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></w<></w 	<w 9<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w 		5 ng/L	10000 ng/L	У

PARAMETERS						D A	TE					DETECTION LIMIT	DRINKING WATER OBJ/
FARAVILLERS		MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6			CUIDELINE
133 PENTACHLOROPHENOL 133 (CHP) ng/L	R T	+ +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L h</td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L h</td></w<></w 	+				50 ng/L	10000 ng/L h
134 2,3,4-TRICHLOROPHENOL 134 (CHP) ng/L	R T	+ +	<w <w< td=""><td>+</td><td>++</td><td>+ +</td><td><w <w< td=""><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w<></w 	+	++	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+				100 ng/L	
135 2,3,4,5-TETRACHLOROPHENOL 135 (CHP) ng/L	R T	* *	<w <w< td=""><td>+</td><td>+ +</td><td>+</td><td><w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	+	+ +	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+				50 ng/L	
136 2,3,5,6-TETRACHLOROPHENOL 136 (CHP) ng/i	R T	+	<w <w< td=""><td>+</td><td>+</td><td>*</td><td><w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	+	+	*	<w <w< td=""><td>+</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+				50 ng/L	
137 2,4,5-TRICHLOROPHENOL 137 (CHP) ng/L	R T	* *	<w <w< td=""><td>+</td><td>+</td><td>+ +</td><td><w .<="" td=""><td>++</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w></td></w<></w 	+	+	+ +	<w .<="" td=""><td>++</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w>	++				50 ng/L	
138 2,4,6-TRICHLOROPHENOL 138 (CHP) ng/L	R T		<w <w< td=""><td>+</td><td>+</td><td>*</td><td><w <w< td=""><td>+</td><td></td><td>815 N</td><td></td><td>50 ng/L</td><td>10000 ng/L h</td></w<></w </td></w<></w 	+	+	*	<w <w< td=""><td>+</td><td></td><td>815 N</td><td></td><td>50 ng/L</td><td>10000 ng/L h</td></w<></w 	+		815 N		50 ng/L	10000 ng/L h
139 ZINC 139 (MET) mg/L		0.007 0.006	0.004 0.011	0.003 0.006	0.007 0.006	0.005 0.010		0.016 0.009	0.016 0.011	0.012 0.012	19 14	0.001 mg/L	5 mg/L h
140 PENTACHLOROPROPANE 140 (MS) ug/L		NS NS	ns ns	NS NS	NS NS	NS NS	ns ns	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
141 PENTACHLOROPROPENE 141 (MS) ug/L	115(3)	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ns ns	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
142 HEXACHLOROPROPENE 142 (MS) ug/L	/AFIG.	NS NS	ns ns	ns ns	NS NS	ns Ns	ns ns	ns ns	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
143 TETRACHLORBUTANE 143 (MS) ug/L		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ns ns	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	

PARAMETERS					DA	TE				DETECTION LIMIT	DRINKING WATER OBJ/
	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6		GUIDELINE ¹
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
145 PENTACHLOROANALINE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w< td=""><td></td><td>0.1 ug/L</td><td></td></w<>		0.1 ug/L	
146 FLUORANIHENE	NS NS	<w <w<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L							
147 NAPHTHALENE	NS NS	<w <w< td=""><td>5</td><td>0.1 ug/L</td><td></td></w<></w 	5	0.1 ug/L							
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L							
	NS NS	X <t X<t< td=""><td></td><td>0.1 ug/L</td><td></td></t<></t 		0.1 ug/L							

PARAMETERS					DA	TE	N .				DETECTION LIMIT	WATER OBJ/
	MAY 23	JUN 18	JUL 22	AUG 26	SEP 23	OCT 28	NOV 25	DEC 9	JAN 6			CUIDELINE 1
154 CARBON TETRACHLORIDE I 154 (MS) ug/L	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	<w X<t< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 			0.1 ug/L	
	NS NS			NS NS			NS NS	<w X<t< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 			0.1 ug/L	
	NS NS			NS NS			NS NS	<w X<t< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 			0.1 ug/L	
	NS NS			NS NS			NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
	NS NS			NS NS			NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
						6						
							7					
										Ä		

LAB - Chemistry (LAB) FLD - Chemistry (FIELD) BAC - Bacteriological MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

TABLE A

SARNIA WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

PARAMETERS						D A	TE				DETECTION LIMIT	DRINKING WATER OB	
THURBIE		NOV 15	DEC 2	DEC 10	JAN 6						DE TROOPINE ES	GUIDELIN	
1 ALKALINITY 1 (LAB)	mg/L T	80.2 73.0	79.4 72.8								0.2 mg/L		
2 ALUMINUM 2 (MET)	mg/L R	NR NR			0.051 0.086						0.003 mg/L		
3 ARSENIC 3 (MET)	mg/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w 						0.001 mg/L	0.05 mg/L	
4 BARIUM 4 (MET)	mg/L R	NR NR			0.011 0.011				e1		0.001 mg/L	1 mg/L	
5 BORON 5 (MET)	mg/L R	NR NR	IS IS		0.04 0.06						0.02 mg/L	5 mg/L	
6 BERYLLIUM 6 (MET)	mg/L R	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td><td></td></w<></w 						0.001 mg/L		
7 BENZENE 7 (VOL)	ug/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 							1 ug/L	10 ug/L	h
8 TOLUENE 8 (VOL)	ug/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>36</td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>36</td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>36</td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 	36						1 ug/L	14300 ug/L	е
9 ETHYLBENZENE 9 (VOL)	ug/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>AU Pri</td><td>,</td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>AU Pri</td><td>,</td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>AU Pri</td><td>,</td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 	AU Pri	,					1 ug/L	1400 ug/L	е
10 P-XYLENE 10 (VOL)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>500 600 600</td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>500 600 600</td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>500 600 600</td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 						500 600 600	1 ug/L	620 ug/L	е
11 M-XYLENE 11 (VOL)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 			,				1 ug/L	620 ug/L	С

	PARAMETERS						D A	TE		DETECTION	DRINKING WATER OBJ/
			NOV 1	DEC 2	DEC 10	JAN 6					GUIDELINE1
100	O-XYLENE (VOL)		R <w I <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 					1 ug/L	620 ug/L c
	CALCIUM (LAB)		R 26.0 F 27.0	25.5 26.0						0.1 mg/L	
177,000	CYANIDE (MET)	mg/L	R NR I NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 				0.001 mg/L	0.2 mg/L
	CADMIUM (MET)	mg/L	R NR I NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 				0.0003 mg/L	0.005 mg/L
	CHLORIDE (LAB)		R 5.0 F 6.6	4.8 6.0				·		0.2 mg/L	250 mg/L
	COLOUR (LAB)	TCU	R 3.5	4.0 0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<>						0.5 TCU	5 TCU
	CONDUCTIVITY (LAB) ur	mho/cm	R 210 F 215	211 216						0.01 UMHO/CM	
	COBALT (MET)		R NR I NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w 				0.001 mg/L	
100000	CHROMIUM (MET)		R NR I NR	0.001 0.002	0.001 0.001	0.001 0.001				0.001 mg/L	0.05 mg/L
	COPPER (MET)		R NR I'NR	0.002 0.004	0.002 0.004	0.002 0.004				0.001 mg/L	1 mg/L
	F. COLIFORM N (BAC) count,		R NR I'NR	10 NA	O NA	O NA				0	0/0.1L mL

PARAMETERS			****		D A	ΤE				DETECTION LIMIT	WATER OBJ/
	NOV 15	DEC 2	DEC 10	JAN 6				A. II			CUIDELINE
23 IRON 23 (MET) mg/L	R NR T NR	0.230 0.092	0.039 0.023	0.061 0.040						0.002 mg/L	0.3 mg/L
24 FLUORIDE 24 (LAB) mg/L	R 0.08 T 1.19	0.07 1.33								0.01 mg/L	2.4 mg/L
25 FIELD CHLORINE (COMBINED) 25 (FLD)	R NA T NS	NA 0.10	NA 0.10	NA NS					10 S		
26 FIELD CHLORINE (FREE) 26 (FLD)	R NA T NS	NA 0.68	NA 0.70	NA NS	7						
27 FIELD CHLORINE (TOTAL) 27 (FLD)	R NA T NS	NA 0.75	NA 0.80	NA NS		727	1000				
28 FIELD PH 28 (FLD)	R NS T NS	8.23 7.23	8.50 NS	8.00 NS							
29 FIELD TEMPERATURE 29 (FLD)	R NS T NS	5.0 10.0	5.0 7.0	0.0 NS							
30 FIELD TURBIDITY 30 (FLD)	R NS T NS	4.50 0.47	0.88 0.10	3.20 NS							1 FTU
31 HARDNESS 31 (LAB) mg/L	R 94.8 T 97.3	92.7 94.2							10. 27	0.5 mg/L	
32 STANDARD PLATE COUNT MF 32 (BAC) count/mL	R NR T NR	33 2	5 AW	12 0			13 SSSS			0	500 orga- nisms per mL
33 MERCURY 33 (MET) ug/L	R NR T NR	LA LA	<w <w< td=""><td>0.01 0.01</td><td></td><td></td><td></td><td></td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></w 	0.01 0.01						0.01 ug/L	1 ug/L

	PARAMETERS	- 						D A	TE			DETECTION	DRINKING WATER OBJ/
				NOV 15	DEC 2	DEC 10	JAN 6						GUIDELINE ¹
	MAGNESIUM (LAB)	mg/L	R	7.25 7.25	7.05 7.10							0.05 mg/L	
	MANGANESE (MET)				0.006 0.004	0.002 0.002	0.004 0.002					0.001 mg/L	0.05 mg/L
100000	MOLYBDENUM (MET)	mg/L	R T		0.001 0.001	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w 					0.001 mg/L	0.25 mg/L s
(C) (C)	SODIUM (LAB)	mg/L	R T		4.0 3.5		^					0.1 mg/L	
8203507	NICKEL (MET)	mg/L	R T		0.001 0.001	<w 0.001</w 	<w <w< td=""><td></td><td>A.</td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></w 		A.			0.002 mg/L	
	AMMONIUM TOTA (LAB)	AL mg/L	R T	NIR NIR	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w 							0.05 mg/L	
	NITRITE (LAB)	mg/L	R T	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w 							0.005 mg/L	1 mg/L as N
	NITRATE (LAB)			0.30 <t 0.30<t< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t 		÷						0.05 mg/L	10 mg/L as N
1000	NITROGEN TOTA (LAB)				0.20 <t 0.10<t< td=""><td>3</td><td></td><td></td><td></td><td>e e</td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t 	3				e e		0.1 mg/L	0.15 mg/L *
	PRESENCE/ABSI (BAC)					NA ABSENT	NA ABSENT					0	Absent
USC LOSS IN	LEAD (MET)			G2 (2) (2)	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 					0.003 mg/L	0.05 mg/L

PARAMETERS			1	1	D A	TE			DETECTION LIMIT	WATER OB	J/
	NOV :	.5 DEC 2	DEC 10	JAN 6						CUIDELIN	Εı
45 PH 45 (LAB)	R 8.13 T 7.50	8.15 7.49									
46 PHOSPHORUS FILTERED REACTIVE 46 (LAB) mg/L	R NR T NR	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 							0.01 mg/L		
47 PHOSPHORUS TOTAL 47 (LAB) mg/L	R NR T NR	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 							0.01 mg/L		
48 ALDRIN 48 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 						1 ng/L	700 ng/L	**
49 ALPHA BHC 49 (PST) ng/L	R 3 <t T 3<t< td=""><td>3<t LA</t </td><td>3<t 4<t< td=""><td></td><td></td><td>e2</td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t </td></t<></t 	3 <t LA</t 	3 <t 4<t< td=""><td></td><td></td><td>e2</td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></t 			e2			1 ng/L	700 ng/L	С
50 BETA BHC 50 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 						1 ng/L	300 ng/L	С
51 LINDANE 51 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 						1 ng/L	4000 ng/L	
52 ALPHA CHLORDANE 52 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w 						2 ng/L	700 ng/L *	**
53 GAMMA CHLORDANE 53 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w 						2 ng/L	700 ng/L *	**
54 DIELDRIN 54 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 						2 ng/L	700 ng/L	**
55 METHOXYCHLOR 55 (PST) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w 						5 ng/L	100000 ng/L	

PARAMETERS				,		DA	TE			DETECTION	DRINKING WATER OBJ
		NOV 15	DEC 2	DEC 10	JAN 6						CUIDELINE
56 ENDRIN 56 (PST) ng/L		<w <<="" td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w>	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w 						4 ng/L	200 ng/L
57 THIODAN SULPHATE 57 (PST) ng/L		<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td></td></w<></w 						4 ng/L	
58 THIODAN I 58 (PST) ng/L		<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 						2 ng/L	74000 ng/L ea
59 THIODAN II 59 (PST) ng/L	R T	<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w 						4 ng/L	74000 ng/L ea
60 METHYLPARATHION 60 (SPC)	R T	+					S.,			50 ng/L	7000 ng/L
61 PARATHION 61 (SPC)	R T	+ +								50 ng/L	35000 ng/L
62 HEPTACHLOR EPOXIDE 62 (PST) ng/L			<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>3000 +++</td></w<></w 						1 ng/L	3000 +++
63 HEPTACHLOR 63 (PST) ng/L		0.00	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w 						1 ng/L	3000 ng/L +++
64 MIREX 64 (PST) ng/L			<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td></td></w<></w 						5 ng/L	
65 OXYCHLORDANE 65 (PST) ng/L		1.02.93	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td></td></w<></w 						2 ng/L	
66 O,P,-DDT 66 (PST) ng/L			<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>30000 ng/L</td></w<></w 						5 ng/L	30000 ng/L

PARAMETERS				•		DA	TE			DETECTION LIMIT	WATER OBJ
		NOV 15	DEC 2	DEC 10	JAN 6					 1. THE REST NO. 154 TV 100 I	GUIDELINE
67 PCB 67 (PST)	ng/L I		<w LA</w 	<w <w< td=""><td>383.00</td><td></td><td></td><td></td><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w 	383.00					20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 						5 ng/L	d
69 P,P-DDE 69 (PST)		<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td>Si .</td><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td>Si .</td><td></td><td>1 ng/L</td><td>d</td></w<></w 				Si .		1 ng/L	d
70 P,P-DDT 70 (PST)		<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 						5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L T	+								50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L T	+								50 ng/L	
73 DIAZINON 73 (SPC)	ng/L T	+								50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L T	+	S 8							100 ng/L	
75 PROMETONE 75 (SPC)	ng/L T	+			Ü					50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L R	+								50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L R	++								50 ng/L	

	PARAMETERS	- Post-old State and State Post-old State of the State of							D A	T E			DETECTION LIMIT	DRINKING WATER OBJ/
_			NO	V 15	DEC 2	DEC 1	0 J <i>i</i>	AN 6						CUIDELINE ¹
	SENCOR (SPC)	ng/L R	++										100 ng/L	
	SIMAZINE (SPC)	ng/L R	+										50 ng/L	
	DICAMBA (SPC)	ng/L R	+							16 23 31			100 ng/L	
	PICLORAM (SPC)	ng/L R	+							N 7:			100 ng/L	
	SILVEX (SPC)	ng/L R	++										50 ng/L	10000 ng/L
	2,4-D (SPC)	ng/L R	++										100 ng/L	100000 ng/L
	2,4-D BUTYRIO	C ACID R ng/L T	+	89									200 ng/L	
	2,4-D PROPIO (SPC)	NIC ACID R ng/L T	+										100 ng/L	
	2,4,5-T (SPC)	ng/L R	+								8		50 ng/L	
	TOTAL SOLIDS (LAB)		137 140		137 140								1 mg/L	
	SELENIUM (MET)	mg/L R	<w <w< td=""><td></td><td></td><td><w <w< td=""><td><v <v< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></v<></v </td></w<></w </td></w<></w 			<w <w< td=""><td><v <v< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></v<></v </td></w<></w 	<v <v< td=""><td></td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></v<></v 						0.001 mg/L	0.01 mg/L

PARAMETERS					D A	тЕ		DETECTION	WATER OBJ/
	NOV 15	DEC 2	DEC 10	JAN 6					CUIDELINE1
	R NR I'NR	0.094 0.095	0.090 0.087	0.088 0.092				0.001 mg/L	
	R NIR I'NIR	10	6	0				0	ODWO Bacti
	R NR I'NR	87 0	56 0	0 0				0	OWDO Bacti
	R 2.7 T 0.08 <t< td=""><td>7.00 0.14<t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<>	7.00 0.14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<>						0.01 FTU	1 FTU
	R NIR I'NIR	<w IS</w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w 				0.002 mg/L	.02 mg/L t
	R NR I NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>3</td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>3</td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>3</td><td></td><td>0.001 mg/L</td><td></td></w<></w 		3		0.001 mg/L	
	R <w T <w< td=""><td><w LA</w </td><td><w 3<t< td=""><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w 	<w LA</w 	<w 3<t< td=""><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w 					1 ng/L	4500 ng/L e
	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 					1 ug/L	.3 ug/L h
	R <w T <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w 							5 ug/L	40 ug/L c
	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 					1 ug/L	
	R <w T <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 							1 ug/L	

PARAMETERS					DA	TE			DETECTION	DRINKI WATER	
	NOV 15	DEC 2	DEC 10	JAN 6						GUIDEL	
	R <w T 29</w 	<w 16</w 	<w 22</w 				8		1 ug/L	350 ug/L	++
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>k);</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>k);</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>k);</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 			k);			5 ug/L	40 ug/L	С
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>431</td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>431</td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>431</td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			431			1 ug/L		
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 						1 ug/L		
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>23 84</td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>23 84</td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>23 84</td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 			23 84			1 ug/L	10 ug/L	h
105 CARBON TETRACHLORIDE 105 (VOL) ug/L	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w 						1 ug/L	3 ug/L	h
106 1,2 DICHLOROPROPANE 106 (VOL) ug/L	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>6) </td><td>- N. E.</td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>6) </td><td>- N. E.</td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>6) </td><td>- N. E.</td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w 			6) 	- N. E.		1 ug/L	6 ug/L	ер
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>8</td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>8</td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>8</td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 				8		1 ug/L	30 ug/L	h
	R <w T 11</w 	<w 8</w 	<w 10</w 						1 ug/L	350 ug/L	++
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w 						1 ug/L	6 ug/L	е
	R <w T 10</w 	<w 8</w 	<w 11</w 						1 ug/L	350 ug/L	++

PARAMETERS					D A	TE			DETECTION LIMIT	WATER O	BJ/
- 100 CH 11 CH 100 CH 1	NOV 15	DEC 2	DEC 10	JAN 6						CUIDETI	NE ¹
	< W < W	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 						1 ug/L	10 ug/L	h
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 						1 ug/L	350 ug/L	++
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 						1 ug/L	1.7 ug/L	е
	<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 						1 ng/L	10 ng/L	h
	<w 2<t< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></t<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 						1 ng/L	19000 ng/L	е
116 OCTACHLOROSTYRENE 1 116 (CHA) ng/L	<w <w<="" td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w>	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 						1 ng/L		
	<w <w<="" td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td>ê</td><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></w>	<w LA</w 	<w <w< td=""><td></td><td></td><td>ê</td><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w 			ê			1 ng/L	74000 ng/L	е
	<w 50</w 	<w 32</w 	<w 43</w 						3 ug/L	350 ug/L	++
	<w 9<t< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td>33</td><td>511</td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td>33</td><td>511</td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			33	511		5 ng/L		
	<w <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td>9</td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td>9</td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 			9			5 ng/L	10000 ng/L	g
	<₩ <₩	<w LA</w 	<w <w< td=""><td></td><td></td><td>d S</td><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			d S			5 ng/L		

PARAMETERS					DA	TE	 ,	,	DETECTION	DRINKIN WATER C	
	NOV 1	DEC 2	DEC 10	JAN 6						GUIDELI	NE1
122 CHLOROBENZENE 122 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>00 h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>00 h*</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>00 h*</td></w<></w 						1 ng/L	100-30 ng/L	00 h*
123 1,4-DICHLOROBENZENE 123 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>8</td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>8</td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>8</td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 			8			1 ug/L	400 ug/L	е
124 1,3-DICHLOROBENZENE 124 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w 						1 ug/L	400 ug/L	e
125 1,2-DICHLOROBENZENE 125 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 						1 ug/L	400 ug/L	е
126 TRIFLUOROCHLOROTOLUENE 126 (CHA) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 						1 ug/L		
127 1,2,3-TRICHLOROBENZENE 127 (CHA) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td>) () () (</td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td>) () () (</td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w) () () (5 ng/L	10000 ng/L	У
128 1,2,3,4-TETRACHLOROBENZENE 128 (CHA) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 						1 ng/L	38000 ng/L	е
129 1,2,3,5-TETRACHLOROBENZENE 129 (CHA) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w 10</w </td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 	<w LA</w 	<w 10</w 						1 ng/L		
130 1,2,4-TRICHLOROBENZENE 130 (CHA) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 						5 ng/L	15000 ng/L	У
131 1,2,4,5-TETRACHLOROBENZENE 131 (CHA) ng/L	R <w T 12</w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 						1 ng/L	38000 ng/L	е
132 1,3,5-TRICHLOROBENZENE 132 (CHA) ng/L	R <w T <w< td=""><td><w LA</w </td><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w LA</w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 						5 ng/L	10000 ng/L	У

PARAMETERS		100000			D A	T E			DETECTION LIMIT	WATER OB	J/
PARAMETERS	NOV 15	DEC 2	DEC 10	JAN 6						GUIDELIN	Ε _τ
133 PENTACHLOROPHENOL R 133 (CHP) ng/L T	+								50 . ng/L	10000 ng/L	h
134 2.3.4-TRICHLOROPHENOL R	* *								100 ng/L		
135 2.3.4.5-TETRACHLOROPHENOL R	+ +								50 ng/L	Ō	
136 2.3.5.6-TETRACHLOROPHENOL R	+ +								50 ng/L		
137 2,4,5-TRICHLOROPHENOL R	+					ä		8	50 ng/L		
138 2.4.6-TRICHLOROPHENOL R	+							2	50 ng/L	10000 ng/L	h
	NR NR	0.005 0.029	0.00 4 0.017	0.003 0.012					0.001 mg/L	5 mg/L	h
	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 						0.1 ug/L		
	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 						0.1 ug/L		
	NS NS	NS NS	<w <<="" td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w>						0.1 ug/L		
TIO IDIIIIO DOLLO	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 						0.1 ug/L		

PARAMETERS					DA	TE	 	, , ,	DETECTION	DRINKING WATER OBJ/
	NOV 15	DEC 2	DEC 10	JAN 6						GUIDEL INE 1
	R NS T NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
45 PENTACHLOROANALINE	R NS	NS NS	<w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td><u> </u></td></w<>						0.1 ug/L	<u> </u>
46 FLUORANTHENE	R NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I'NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I'NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I'NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 						0.1 ug/L	
	R NS I'NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td></td><td>28</td><td>0.1 ug/L</td><td></td></w<></w 					2 8	0.1 ug/L	

PARAMETERS		,			D A	TE				DETECTION LIMIT	WATER OBJ
	NOV 15	DEC 2	DEC 10	JAN 6							GUIDELINE
154 CARBON TETRACHLORIDE 154 (MS) ug/L	R NS T NS	NS NS	<w X<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 							0.1 ug/L	
155 DIBROMOCHLOROMETHANE 155 (MS) ug/L	R NS T NS	NS NS	<w X<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 							0.1 ug/L	
156 TETRACHLOROETHYLENE 156 (MS) ug/L	R NS T NS	NS NS	X <t X<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></t<></t 							0.1 ug/L	
157 BIPHENYL 157 (MS) ug/L	R NS I NS	NS NS	<w <w< td=""><td></td><td>5</td><td></td><td>-9 -0</td><td></td><td>ij</td><td>0.1 ug/L</td><td></td></w<></w 		5		-9 -0		ij	0.1 ug/L	
L58 BROMOFORM L58 (MS) ug/L	R NS I NS	NS NS	<w <w< td=""><td></td><td>10</td><td></td><td>8</td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 		10		8			0.1 ug/L	
					6-		£				
								18			

LAB - Chemistry (LAB) FLD - Chemistry (FIELD) BAC - Bacteriological

MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

TABLE A

STONEY POINT WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

PARAMETERS						D A	ТЕ				DETECTION LIMIT	DRINKING WATER OBJ	
FARANETERS		JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		GUIDELINE]	
1 ALKALINITY 1 (LAB)		105 85.4	91.8 72.8	86.6 68.4	83.4 69.8	91.8 71.6	84.2 72.4	128.0 102.0			0.2 mg/L	5	
2 ALUMINUM 2 (MET)		2.1	0.033 0.047	0.25 0.048	0.14 0.067	0.45 <w< td=""><td>0.220 0.045</td><td>2.100 0.150</td><td>1.300 0.130</td><td>0.061 0.180</td><td>0.003 mg/L</td><td></td><td></td></w<>	0.220 0.045	2.100 0.150	1.300 0.130	0.061 0.180	0.003 mg/L		
3 ARSENIC 3 (MET)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<></td></w<></w 	0.001 <w< td=""><td><w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w </td></w<>	<w <w< td=""><td><w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></td></w<></w 	<w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<>	0.001 mg/L	0.05 mg/L	
4 BARIUM 4 (MET)		0.027	0.017 0.015	0.017 0.017	0.017 0.013	0.018 0.007	0.018 0.016	0.027 0.015	0.018 0.013	0.013 0.016	0.001 mg/L	1 mg/L	
5 BORON 5 (MET)		0.05 <w< td=""><td>0.31 0.28</td><td>0.06 0.09</td><td><w <w< td=""><td><w <w< td=""><td>0.02 <w< td=""><td>0.03 0.04</td><td>0.04 0.08</td><td>0.04 0.04</td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></td></w<></w </td></w<></w </td></w<>	0.31 0.28	0.06 0.09	<w <w< td=""><td><w <w< td=""><td>0.02 <w< td=""><td>0.03 0.04</td><td>0.04 0.08</td><td>0.04 0.04</td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.02 <w< td=""><td>0.03 0.04</td><td>0.04 0.08</td><td>0.04 0.04</td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></td></w<></w 	0.02 <w< td=""><td>0.03 0.04</td><td>0.04 0.08</td><td>0.04 0.04</td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<>	0.03 0.04	0.0 4 0.08	0.04 0.04	0.02 mg/L	5 mg/L	
6 BERYLLIUM 6 (MET)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w 	0.001 mg/L		
7 BENZENE 7 (VOL)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L 1</td><td>h</td></w<></w 			1 ug/L	10 ug/L 1	h
8 TOLUENE 8 (VOL)	ug/L I	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 			1 ug/L	14300 ug/L	е
9 ETHYLBENZENE 9 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 			1 ug/L	1400 ug/L	е
10 P-XYLENE 10 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 			1 ug/L	620 ug/L	е
11 M-XYLENE 11 (VOL)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 			1 ug/L	620 ug/L	С

PARAMETERS					D A	TE					DETECTION	DRINKING WATER OBJ/
	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6			GUIDELINE ¹
12 O-XYLENE R 12 (VOL) ug/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 				1 ug/L	620 ug/L c
13 CALCIUM R 13 (LAB) mg/L T	35.0 36.5	26.0 27.0	27.8 29.2	35.0 31.2	31.0 32.0	28.5 29.5	49.0 50.2				0.1 mg/L	
14 CYANIDE R 14 (MET) mg/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 		0.001 mg/L	0.2 mg/L
15 CADMIUM R 15 (MET) mg/L T	300	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 		0.0003 mg/L	0.005 mg/L
16 CHLORIDE R 16 (LAB) mg/L T	12.8 14.2	7.8 10.8	9.0 17.6	16.8 13.6	9.6 12.2	8.0 10.8	14.4 16.4				0.2 mg/L	250 mg/L
17 COLOUR TCU R 17 (LAB) T	7.0 1.0 <t< td=""><td>6.5 1.0<t< td=""><td>4.5 0.5<t< td=""><td>9.0 0.5<t< td=""><td>13.0 <w< td=""><td>10.0 0.5<t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></w<></td></t<></td></t<></td></t<></td></t<>	6.5 1.0 <t< td=""><td>4.5 0.5<t< td=""><td>9.0 0.5<t< td=""><td>13.0 <w< td=""><td>10.0 0.5<t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></w<></td></t<></td></t<></td></t<>	4.5 0.5 <t< td=""><td>9.0 0.5<t< td=""><td>13.0 <w< td=""><td>10.0 0.5<t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></w<></td></t<></td></t<>	9.0 0.5 <t< td=""><td>13.0 <w< td=""><td>10.0 0.5<t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></w<></td></t<>	13.0 <w< td=""><td>10.0 0.5<t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<></td></w<>	10.0 0.5 <t< td=""><td>32.5 2.0</td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></t<>	32.5 2.0				0.5 TCU	5 TCU
	279 294	242 256	243 266	307 263	248 259	229 243	363 385				0.01 UMHO/CM	
19 COBALT R 19 (MET) mg/L T	0.01 <w< td=""><td>0.017 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<>	0.017 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></td></w<></w 	0.003 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<>	0.002 <w< td=""><td><w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<>	<w <w< td=""><td></td><td>0.001 mg/L</td><td></td></w<></w 		0.001 mg/L	
	0.003 <w< td=""><td>0.001 <w< td=""><td></td><td>0.002 0.002</td><td><w <w< td=""><td>0.001 <w< td=""><td>0.006 0.002</td><td>0.003 0.001</td><td>0.002 0.002</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></td></w<>	0.001 <w< td=""><td></td><td>0.002 0.002</td><td><w <w< td=""><td>0.001 <w< td=""><td>0.006 0.002</td><td>0.003 0.001</td><td>0.002 0.002</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<>		0.002 0.002	<w <w< td=""><td>0.001 <w< td=""><td>0.006 0.002</td><td>0.003 0.001</td><td>0.002 0.002</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w 	0.001 <w< td=""><td>0.006 0.002</td><td>0.003 0.001</td><td>0.002 0.002</td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	0.006 0.002	0.003 0.001	0.002 0.002		0.001 mg/L	0.05 mg/L
	0.009 <w< td=""><td>0.014 0.002</td><td></td><td>0.004 0.004</td><td>0.014 <w< td=""><td>0.019 0.002</td><td>0.010 0.004</td><td>0.009 0.004</td><td>0.006 0.009</td><td></td><td>0.001 mg/L</td><td>1 mg/L</td></w<></td></w<>	0.014 0.002		0.004 0.004	0.014 <w< td=""><td>0.019 0.002</td><td>0.010 0.004</td><td>0.009 0.004</td><td>0.006 0.009</td><td></td><td>0.001 mg/L</td><td>1 mg/L</td></w<>	0.019 0.002	0.010 0.004	0.009 0.004	0.006 0.009		0.001 mg/L	1 mg/L
	4 NA	O NA	O NA	1 NA	1 NA	8 NA	12 NA	21 NA	0 NA	_	0	0/0.1L mL

PARAMETERS					DA	TE	1				DETECTION LIMIT	WATER OBJ/
	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6			CUIDELINE1
TOTAL CONTROL OF THE	!AD <w< td=""><td>0.04 0.012</td><td>0.28 0.004</td><td>0.19 <w< td=""><td>0.53 0.005</td><td>0.35 0.007</td><td>2.100 0.034</td><td>0.960 0.015</td><td>0.006 0.180</td><td>N.</td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<></td></w<>	0.04 0.012	0.28 0.004	0.19 <w< td=""><td>0.53 0.005</td><td>0.35 0.007</td><td>2.100 0.034</td><td>0.960 0.015</td><td>0.006 0.180</td><td>N.</td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<>	0.53 0.005	0.35 0.007	2.100 0.034	0.960 0.015	0.006 0.180	N.	0.002 mg/L	0.3 mg/L
	0.10 0.08	0.09 0.07	0.09 0.07	0.17 0.08	0.11 0.07	0.10 0.08	0.14 0.08				0.01 mg/L	2.4 mg/L
25 FIELD CHLORINE (COMBINED) R 25 (FLD) T	NA .10	NA 1.30	NA 1.70	NA 1.50	NA NS	NA 0.15	NA 1.20	NA NS				
	NA 0.40	NA 0.20	NA 1.50	NA 1.35	NA 1.50	NA 1.5	NA 1.50	NA NS				
	NA 0.50	NA 1.50	NA 3.20	NA 2.85	NA NS	NA 1.65	NA 2.70	NA >1.00				
	NS NS	NS NS	7.80 7.40	7.65 7. 4 0	7.80 7.30	7.65 7. 4 0	7.80 7. 4 0	7.90 7.40		=		
	18.5 18.5	20.5 20.5	21.0 21.0	21.5 21.5	37.5 37.5	12.0 11.5	4.0 4.0	1.0 2.0				
	4 2 3.0		NS 0	38 0.10	30 0	18 0	NS 0.04	NS NS				1 FTU
	12 4 128	97.0 99.5	102 108	128 112	110 112	102 105	166 169				0.5 mg/L	
32 STANDARD PLATE COUNT MF R 32 (BAC) count/mL T	650 0	1600 250	>2 4 00 3	>2400 !AD	350 1	940 15	>2400 11	460 1	1 4 3 0		0	500 orga- nisms per mL
	<w <w< td=""><td><w <w< td=""><td>0.01 0.03</td><td>0.06 0.03</td><td>0.04 0.04</td><td>0.05 0.04</td><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.05 0.05</td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.01 0.03</td><td>0.06 0.03</td><td>0.04 0.04</td><td>0.05 0.04</td><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.05 0.05</td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></w 	0.01 0.03	0.06 0.03	0.04 0.04	0.05 0.04	0.02 <w< td=""><td>0.01 <w< td=""><td>0.05 0.05</td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<>	0.01 <w< td=""><td>0.05 0.05</td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<>	0.05 0.05		0.01 ug/L	1 ug/L

	PARAMETERS							D A	тЕ				DETECTION	DRINKING WATER OBJ/
	IMULILLO			JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		GUIDELINE ¹
	MAGNESIUM (LAB)			8.9 8.9	7.8 7.8	7.8 8.4	9.8 8.3	7.9 7.9	7.5 7.7	10.7 10.6			0.05 mg/L	
-	MANGANESE (MET)				0.013 <w< td=""><td>0.010 0.001</td><td>0.019 <w< td=""><td>0.013 <w< td=""><td>0.011 0.001</td><td></td><td>0.013 0.003</td><td>0.002 0.005</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<>	0.010 0.001	0.019 <w< td=""><td>0.013 <w< td=""><td>0.011 0.001</td><td></td><td>0.013 0.003</td><td>0.002 0.005</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<>	0.013 <w< td=""><td>0.011 0.001</td><td></td><td>0.013 0.003</td><td>0.002 0.005</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	0.011 0.001		0.013 0.003	0.002 0.005	0.001 mg/L	0.05 mg/L
	MOLYBDENUM (MET)				0.002 0.001	<w 0.001</w 	0.002 0.002	<w <w< td=""><td><w <w< td=""><td>0.001 0.002</td><td>0.001 0.001</td><td><w <w< td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 0.002</td><td>0.001 0.001</td><td><w <w< td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w </td></w<></w 	0.001 0.002	0.001 0.001	<w <w< td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w 	0.001 mg/L	0.25 mg/L s
	SODIUM (LAB)				6.2 6.0	5.8 6.5	9.6 6.4	6.0 5.9	5.0 5.5	7.0 6.8			0.1 mg/L	
	NICKEL (MET)			0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>0.002 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>0.002 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 0.002</td><td>0.002 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	0.002 0.002	0.002 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<></td></w<></w 	0.005 <w< td=""><td>0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<></td></w<>	0.003 <w< td=""><td><w 0.002</w </td><td>0.002 mg/L</td><td></td></w<>	<w 0.002</w 	0.002 mg/L	
1000	AMMONIUM TOTA (LAB)			0.10 <t 0.10<t< td=""><td></td><td><w <w< td=""><td>0.20<t <w< td=""><td><w <w< td=""><td>0.20<t <w< td=""><td>0.05<t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></t </td></w<></w </td></t<></t 		<w <w< td=""><td>0.20<t <w< td=""><td><w <w< td=""><td>0.20<t <w< td=""><td>0.05<t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></t </td></w<></w 	0.20 <t <w< td=""><td><w <w< td=""><td>0.20<t <w< td=""><td>0.05<t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w </td></w<></t 	<w <w< td=""><td>0.20<t <w< td=""><td>0.05<t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t </td></w<></w 	0.20 <t <w< td=""><td>0.05<t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t </td></w<></t 	0.05 <t <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></t 			0.05 mg/L	
	NITRITE (LAB)	mg/L	R	.005 <t< td=""><td>.010<t <w< td=""><td>.010<t <w< td=""><td>.015<t <w< td=""><td><w <w< td=""><td>.010<t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t </td></w<></w </td></w<></t </td></w<></t </td></w<></t </td></t<>	.010 <t <w< td=""><td>.010<t <w< td=""><td>.015<t <w< td=""><td><w <w< td=""><td>.010<t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t </td></w<></w </td></w<></t </td></w<></t </td></w<></t 	.010 <t <w< td=""><td>.015<t <w< td=""><td><w <w< td=""><td>.010<t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t </td></w<></w </td></w<></t </td></w<></t 	.015 <t <w< td=""><td><w <w< td=""><td>.010<t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t </td></w<></w </td></w<></t 	<w <w< td=""><td>.010<t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t </td></w<></w 	.010 <t <w< td=""><td>0.03<t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t </td></w<></t 	0.03 <t 0.01<t< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></t 			0.005 mg/L	1 mg/L as N
1000	NITRATE (LAB)					NIR NIR	NR NR	0.5 0.4	0.2 <t NR</t 	2.70 2.65			0.05 mg/L	10 mg/L as N
	NITROGEN TOTA (LAB)			Carrie and the same of the sam	0.4 <t 0.2<t< td=""><td>0.3<t <w< td=""><td>0.6<t 0.2<t< td=""><td>0.3<t 0.1<t< td=""><td>0.2<t 0.1<t< td=""><td>0.75 0.3<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></t<></t </td></t<></t </td></w<></t </td></t<></t 	0.3 <t <w< td=""><td>0.6<t 0.2<t< td=""><td>0.3<t 0.1<t< td=""><td>0.2<t 0.1<t< td=""><td>0.75 0.3<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></t<></t </td></t<></t </td></w<></t 	0.6 <t 0.2<t< td=""><td>0.3<t 0.1<t< td=""><td>0.2<t 0.1<t< td=""><td>0.75 0.3<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></t<></t </td></t<></t 	0.3 <t 0.1<t< td=""><td>0.2<t 0.1<t< td=""><td>0.75 0.3<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></t<></t 	0.2 <t 0.1<t< td=""><td>0.75 0.3<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t 	0.75 0.3 <t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<>			0.1 mg/L	0.15 mg/L *
	PRESENCE/ABS (BAC)				NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	0	Absent
	LEAD (MET)			<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	0.004 <w< td=""><td><w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></td></w<></w 	0.005 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<>	0.004 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<>	<w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 	0.003 mg/L	0.05 mg/L

PARAMETERS						D A	TE					DETECTION LIMIT	DRINKIN WATER C	
FARAMETERS		JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6			CUIDET1	NE1
45 PH 45 (LAB)		8.12 7.40		8.29 7.15	8.18 7. 4 0	8.21 7.18	8.09 7.71	8.18 7.13			Ğ			
46 PHOSPHORUS FIL 46 (LAB)		NR NR	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td>0.02<t 0.04<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td>0.02<t 0.04<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td>0.02<t 0.04<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>0.02<t 0.04<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t </td></w<></w 	0.02 <t 0.04<t< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></t<></t 				0.01 mg/L		
47 PHOSPHORUS TO 47 (LAB)		0.06 <t 0.10<t< td=""><td></td><td>0.02<t <w< td=""><td></td><td><w <w< td=""><td>0.02<t <w< td=""><td>0.160 <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></w </td></w<></t </td></t<></t 		0.02 <t <w< td=""><td></td><td><w <w< td=""><td>0.02<t <w< td=""><td>0.160 <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></w </td></w<></t 		<w <w< td=""><td>0.02<t <w< td=""><td>0.160 <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></w 	0.02 <t <w< td=""><td>0.160 <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t 	0.160 <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<>				0.01 mg/L		
48 ALDRIN 48 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			1 ng/L	700 ng/L	**
49 ALPHA BHC 49 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2<t 3<t< td=""><td><w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w </td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2<t 3<t< td=""><td><w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w </td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>2<t 3<t< td=""><td><w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>2<t 3<t< td=""><td><w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w </td></t<></t </td></w<></w 	2 <t 3<t< td=""><td><w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w </td></t<></t 	<w 4<t< td=""><td>2<t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t </td></t<></w 	2 <t 2<t< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w </td></t<></t 	<w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></t<></w 			1 ng/L	700 ng/L	С
50 BETA BHC 50 (PST)	7.7	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w 			1 ng/L	300 ng/L	c
51 LINDANE 51 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2<t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2<t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2<t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>2<t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>2<t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t </td></w<></w 	2 <t 2<t< td=""><td><w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></t 	<w <w< td=""><td><₩ <₩</td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 	<₩ <₩			1 ng/L	4000 ng/L	
52 ALPHA CHLORDA 52 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 			2 ng/L	700 ng/L	***
53 GAMMA CHILORDAI 53 (PST)		<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 			2 ng/L	700 ng/L	***
54 DIELDRIN 54 (PST)		<w <<="" td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			2 ng/L	700 ng/L	**
55 METHOXYCHLOR 55 (PST)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>כ</td></w<></w 			5 ng/L	100000 ng/L	כ

PARAMETERS					8	D A	TE				DETECTION LIMIT	DRINKING WATER OB	
Tridentities		JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		GUIDELIN	
56 ENDRIN 56 (PST) n		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td><td></td></w<></w 		4 ng/L	200 ng/L	
57 THIODAN SULPHA 57 (PST) no		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td></td><td></td></w<></w 		4 ng/L		
58 THIODAN I 58 (PST) no		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w 		2 ng/L	74000 ng/L	ea
59 THIODAN II 59 (PST) n	ng/L R		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L</td><td>ea</td></w<></w 		4 ng/L	74000 ng/L	ea
60 METHYLPARATHIO 60 (SPC)	ON R		+ +	+	+	+ +	+				50 ng/L	7000 ng/L	
61 PARATHION 61 (SPC)	R T	+	+ +	+	+	+	+		£1		50 ng/L	35000 ng/L	
62 HEPTACHLOR EPO 62 (PST) n	DXIDE R		<w <w< td=""><td><w <w< td=""><td>2<t <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>2<t <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></t </td></w<></w 	2 <t <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></t 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>3000 + ng/L</td><td>++</td></w<></w 		1 ng/L	3000 + ng/L	++
63 HEPTACHLOR 63 (PST) n	ng/L T	10000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +</td><td>++</td></w<></w 		1 ng/L	3000 ng/L +	++
64 MIREX 64 (PST) n	ng/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w 		5 ng/L		
65 OXYCHLORDANE 65 (PST) n	ng/L R		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>2 ng/L</td><td></td><td>20000</td></w<></w 		2 ng/L		20000
66 O,P,-DDT 66 (PST) n	ng/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L</td><td>d</td></w<></w 		5 ng/L	30000 ng/L	d

PARAMETERS						D A	TE				DETECTION LIMIT	WATER OBJ/
	A STATE OF THE STA	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		CUIDELINE1
67 PCB 67 (PST)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L t</td></w<></w 		20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		< \w C < \w	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td>9</td><td>5 ng/L</td><td>d</td></w<></w 	9	5 ng/L	d
69 P,P-DDE 69 (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w 		1 ng/L	d
70 P,P-DDT 70 (PST)		< \W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L	t +	<w LA</w 	+ +	* *	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L	t + r +	<w LA</w 	+	* *	+ +	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
73 DIAZINON 73 (SPC)	ng/L	t +	*	+ +	*	* *	NS NS				50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L	+	<w LA</w 	+ +	+	+	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 				100 ng/L	
75 PROMETONE 75 (SPC)	ng/L	t +	<w LA</w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L	t + [+	<w LA</w 	+	*	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L I	+ +	<w LA</w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	

PARAMETERS						DA	TE				DETECTION	DRINKING WATER OBJ/
		JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		CUIDELINE ¹
78 SENCOR 78 (SPC)	ng/L	R + F +	<w LA</w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 				100 ng/L	
79 SIMAZINE 79 (SPC)	ng/L	R + F +	<w LA</w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
80 DICAMBA 80 (SPC)	ng/L	R + F +	<w <w< td=""><td>++</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w<></w 	++	+	+	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 				100 ng/L	
81 PICLORAM 81 (SPC)	ng/L	R + F +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 				100 ng/L	
82 SILVEX 82 (SPC)	ng/L	R + F +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w 				50 ng/L	10000 ng/L
83 2,4-D 83 (SPC)	ng/L	R + F +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td>100000 ng/L</td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td>100000 ng/L</td></w<></w 				100 ng/L	100000 ng/L
84 2,4-D BUTYRI 84 (SPC)	IC ACID ng/L	R + F +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>200 ng/L</td><td></td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td>200 ng/L</td><td></td></w<></w 				200 ng/L	
85 2,4-D PROPIO 85 (SPC)	ONIC ACID ng/L	R + F +	<w <w< td=""><td>+</td><td>+</td><td>+ +</td><td><w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w<></w 	+	+	+ +	<w <w< td=""><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 				100 ng/L	
86 2,4,5-T 86 (SPC)	ng/L	R + F +	<w <w< td=""><td>++</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	++	+	+	<w <w< td=""><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 				50 ng/L	
87 TOTAL SOLIDS 87 (LAB)	s mg/L	230 191	164 160	158 173	219 171	165 168	149 190	313 250			1 mg/L	
88 SELENIUM 88 (MET)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 	0.001 mg/L	0.01 mg/L

PARAMETERS					D A	TE				DETECTION	DRINKING WATER OBJ/
TANKETING	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6	2-19-00-000	CUIDELINE1
	0.13	0.12 0.11	0.13 0.15	0.19 0.12	0.18 0.06	Terrance Schwilliam III			0.130 0.140	0.001 mg/L	
	!OP 0	!OP 0	2 0	1000 1	!OP 0	4 00 0	1000 0	900 0	4 A3C 0	0	ODWO Bacti
	35000	50000 0	1800 0	26000 5	27500 0	12000 2	15500 0	3700 0	510 1	0	OWDO Bacti
	34 0.34 <t< td=""><td></td><td>9.3 0.81<t< td=""><td></td><td>15.4 0.47<t< td=""><td>12.0 0.42<t< td=""><td>96.0 1.36</td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<></td></t<>		9.3 0.81 <t< td=""><td></td><td>15.4 0.47<t< td=""><td>12.0 0.42<t< td=""><td>96.0 1.36</td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<></td></t<>		15.4 0.47 <t< td=""><td>12.0 0.42<t< td=""><td>96.0 1.36</td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<></td></t<>	12.0 0.42 <t< td=""><td>96.0 1.36</td><td></td><td></td><td>0.01 FTU</td><td>1 FTU</td></t<>	96.0 1.36			0.01 FTU	1 FTU
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></w 	<w <<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w>	0.002 mg/L	.02 mg/L t
	0.004 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001 <w< td=""><td>0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.005 0.001</td><td>0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></td></w<>	0.005 0.001	0.002 <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<>	<w <<="" td=""><td>0.001 mg/L</td><td></td></w>	0.001 mg/L	
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w </td></w<></w 	<w 3<t< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></t<></w 		1 ng/L	4500 ng/L e
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 			1 ug/L	.3 ug/L h
97 METHYLENE CHLORIDE I 97 (VOL) ug/L :	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w 				5 ug/L	40 ug/L c
98 T,1,2-DICHLOROETHYLENE I 98 (VOL) ug/L	장마를 통해하고	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w 			1 ug/L	
99 1,1-DICHLOROETHANE I 99 (VOL) ug/L	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 				1 ug/L	

PARAMETERS					D A	TE					DETECTION LIMIT	DRINKI WATER	
	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6			CUIDEL	
100 CHLOROFORM 100 (VOL) ug/L	R <w T 17</w 	<w 38</w 	<w 66</w 	<w 54</w 	<w 39</w 	<w 47</w 	<w 57</w 				1 ug/L	350 ug/L	++
101 DICHLOROMETHANE 101 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w 				5 ug/L	40 ug/L	c
102 1,1,1-TRICHLOROETHANE 102 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 				1 ug/L		
103 DICHLOROETHANE 103 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>10 500</td><td>1 ug/L</td><td></td><td></td></w<></w 			10 500	1 ug/L		
104 1,2-DICHLOROETHANE 104 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 				1 ug/L	10 ug/L	h
105 CARBON TETRACHLORIDE 105 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w 				1 ug/L	3 ug/L	h
106 1,2 DICHLOROPROPANE 106 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ер</td></w<></w 				1 ug/L	6 ug/L	ер
107 TRICHLOROETHYLENE 107 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 				1 ug/L	30 ug/L	h
108 DICHLOROBROMOMETHANE 108 (VOL) ug/L	R <w T 10</w 	<w 14</w 	<w 18</w 	<w 18</w 	<w 15</w 	<w 15</w 	<w 12</w 				1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE 109 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w 				1 ug/L	6 ug/L	е
110 CHLORODIBROMOMETHANE 110 (VOL) ug/L	R <w T 4</w 	<w 5</w 	<w 16</w 	<w 14</w 	<w 12</w 	<w 10</w 	<w 5</w 				1 ug/L	350 ug/L	++

PARAMETERS					D A	TE					DETECTION LIMIT	DRINKIN WATER O	775
LING RULLEY	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6			GUIDELI	
	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 				1 ug/L	10 ug/L	h
	R <w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 				1 ug/L	350 ug/L	++
	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 				1 ug/L	1.7 ug/L	е
	< W < W	<w <w< td=""><td><w <w< td=""><td>3<t 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>3<t 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></t </td></w<></w 	3 <t 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></t 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 			1 ng/L	10 ng/L	h
	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 			1 ng/L	19000 ng/L	е
	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 			1 ng/L		
	< W < W	<w <w< td=""><td><w <w< td=""><td>2<t 6<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>2<t 6<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></t<></t </td></w<></w 	2 <t 6<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></t<></t 	<w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 3<t< td=""><td><w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w 	<w 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w 			1 ng/L	74000 ng/L	е
	<w 31</w 	<w 57</w 	<w 100</w 	<w 86</w 	<w 66</w 	<w 72</w 	<w 74</w 			E H H H	3 ug/L	350 ug/L	++
	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 39<t< td=""><td><w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w 	<w 7<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w 			5 ng/L		
	< W < W	<w <w< td=""><td><w <w< td=""><td><w 20<t< td=""><td><w 23<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 20<t< td=""><td><w 23<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 20<t< td=""><td><w 23<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></t<></w 	<w 23<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 			5 ng/L	10000 ng/L	g
	< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			5 ng/L		

PARAMETERS						D A	TE		7,000		DETECTION	DRINKIN WATER O	
		JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6	LIMIT .	GUIDELI	- 19
122 CHLOROBENZENE 122 (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-30 ng/L</td><td>0 h*</td></w<></w 			1 ng/L	100-30 ng/L	0 h*
123 1,4-DICHLOROBENZENE 123 (VOL) ug/L	R		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w 			1 ug/L	400 ug/L	€
124 1,3-DICHLOROBENZENE 124 (VOL) ug/L	R T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>€</td></w<></w 			1 ug/L	400 ug/L	€
125 1,2-DICHLOROBENZENE 125 (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 			1 ug/L	400 ug/L	е
126 TRIFLUOROCHLOROTOLUENE 126 (CHA) ug/L	R T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
127 1,2,3-TRICHLOROBENZENE 127 (CHA) ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w </td></w<></w 	<w 9<t< td=""><td><w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w </td></t<></w 	<w 15<t< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></t<></w 		5 ng/L	10000 ng/L	У
128 1,2,3,4-TETRACHLOROBENZENE 128 (CHA) ng/L	R		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 		1 ng/L	38000 ng/L	е
129 1,2,3,5-TETRACHLOROBENZENE 129 (CHA) ng/L	R		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 25</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w 25</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w 		1 ng/L		
130 1,2,4-TRICHLOROBENZENE 130 (CHA) ng/L	R		<w <w< td=""><td><w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 39<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 39<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 		5 ng/L	15000 ng/L	У
131 1,2,4,5-TETRACHLOROBENZENE 131 (CHA) ng/L	R <		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></w 	<w 3<t< td=""><td><w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></t<></w 	<w <w< td=""><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 		1 ng/L	38000 ng/L	е
132 1,3,5-TRICHLOROBENZENE 132 (CHA) ng/I	R <		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 		5 ng/L	10000 ng/L	У

PARAMETERS				21(1-	D A	TE					DETECTION	DRINKING WATER OF	
PARAMETERS	JUN	5 JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		V - 177 - 100 (50) 50 9 1	GUIDELIN	Œ1
133 PENTACHLOROPHENOL 133 (CHP) ng/L	R + T +	<w <w< th=""><th>+</th><th>+</th><th>+</th><th><w <w< th=""><th></th><th></th><th></th><th></th><th>50 ng/L</th><th>10000 ng/L</th><th>h</th></w<></w </th></w<></w 	+	+	+	<w <w< th=""><th></th><th></th><th></th><th></th><th>50 ng/L</th><th>10000 ng/L</th><th>h</th></w<></w 					50 ng/L	10000 ng/L	h
134 2,3,4-TRICHLOROPHENO 134 (CHP) ng/L	R + T +	<w <w< td=""><td>+</td><td>+</td><td>+ +</td><td><w <w< td=""><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	+	+ +	<w <w< td=""><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w 					100 ng/L		
135 2,3,4,5-TETRACHLOROP 135 (CHP) ng/L	HENOL R + T +	<w <w< td=""><td>+</td><td>+</td><td>+ +</td><td><w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	+	+ +	<w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 					50 ng/L		
136 2,3,5,6-TETRACHLOROP 136 (CHP) ng/L	HENOL R +	<w <w< td=""><td>+</td><td>+ +</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	+ +	+	<w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 					50 ng/L		
137 2,4,5-TRICHLOROPHENO 137 (CHP) ng/L	L R + T +	<w <w< td=""><td>+ +</td><td>+</td><td>* *</td><td><w .<="" td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w></td></w<></w 	+ +	+	* *	<w .<="" td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w>					50 ng/L		
138 2,4,6-TRICHLOROPHENO 138 (CHP) ng/L	L R + T +	<w <w< td=""><td>+</td><td>+</td><td>+</td><td><w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w </td></w<></w 	+	+	+	<w <w< td=""><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 					50 ng/L	10000 ng/L	h
139 ZINC 139 (MET) mg/L	R 0.01 T 0.00		0.004	0.006 0.005	0.008 0.002	0.009 0.005	0.015 0.003	0.009 0.003	0.004 0.005		0.001 mg/L	5 mg/L	h
140 PENTACHLOROPROPANE 140 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS			u:	0.1 ug/L		
141 PENTACHLOROPROPENE 141 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	NS NS	ns ns	ns ns				0.1 ug/L		
142 HEXACHLOROPROPENE 142 (MS) ug/L	R NS T NS	NS NS	ns ns	NS NS	NS NS	NS NS	NS NS				0.1 ug/L		
143 TETRACHLORBUTANE 143 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS				0.1 ug/L		

PARAMETERS	JUN 6	Тип э	AUG 6	SEP 3	DA	TE	DEC 2	DEC 17	TANK 6		DETECTION LIMIT	WATER OBJ/
	JUN 6	JUL Z	AUG 6	DEF 3	WI 8	IVOV 4	DEC Z	DEC 17	JAN 6			GUIDELINE1
	NS NS				0.1 ug/L							
145 PENTACHLOROANALINE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		W -4		0.1 ug/L	
145 (MS) UG/L	LINS	IND	INS	INS	IND	No	NS			-		
	NS NS				0.1 ug/L							
	NS NS				0.1 ug/L							
	NS NS				0.1 ug/L							
	NS NS				0.1 ug/L							
	NS NS				0.1 ug/L							
	NS NS	.g			0.1 ug/L							
	NS NS	NS NS	NS NS	NS NS	2000	NS NS	NS NS				0.1 ug/L	
	NS NS	NS NS	NS NS	NS NS	4.46	NS NS	NS NS				0.1 ug/L	

STONEY POINT WATER TREATMENT PLANT 1985-1986 DWSP DATA

PARAMETERS					D A	TE				DETECTION LIMIT	WATER OBJ/
TAMETERS	JUN 6	JUL 2	AUG 6	SEP 3	OCT 8	NOV 4	DEC 2	DEC 17	JAN 6		GUIDELINE ¹
154 CARBON TETRACHLORIDE F 154 (MS) ug/L T	NS NS	NS NS	NS NS	NS NS	NS NS	nis Nis	NS NS			0.1 ug/L	
155 DIBROMOCHLOROMETHANE F 155 (MS) ug/L T	NS NS	NS NS	ns ns	NS NS	NS NS	NS NS	NS NS			0.1 ug/L	
156 TETRACHLOROETHYLENE F 156 (MS) ug/L T	NS NS	NS NS	NS NS	ns ns	ns ns	ns ns	NS NS			0.1 ug/L	
	NS NS	NS NS	NS NS	ns ns	NS NS	NS NS	NS NS			0.1 ug/L	
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS			0.1 ug/L	
											8
		Í									

LAB - Chemistry (LAB) FLD - Chemistry (FIELD)

BAC - Bacteriological MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

TABLE A

WALLACEBURG WATER TREATMENT PLANT 1985 DWSP DATA

PACE 1 Updated: January 21, 1986

PARAMETERS						D A	TE					DETECTION LIMIT	DRINKING WATER OB	
PARAMETERS		JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELIN	
1 ALKALINITY 1 (LAB)	mg/L I	82.0 72.6	83.6 74.2	81.6 73.6	UR 76.4	82.0 71.2	134.6 !NR	94.4 71.4	80.6 72.0	170.6 105.4		0.2 mg/L		
2 ALUMINUM 2 (MET)		0.130	0.34 0.13	0.110 0.098	0.048 0.180	0.062 0.046	1.30 0.019	NR NR	0.056 0.026	2.300 0.210	0.100 0.034	0.003 mg/L		
3 ARSENIC 3 (MET)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></td></w<></w 	0.001 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<>	<w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w 	0.001 mg/L	0.05 mg/L	
4 BARIUM 4 (MET)		0.013	0.015 0.013	0.014 0.014		0.013 0.013	0.038 0.027	NR NR	0.012 0.014	0.037 0.020	0.011	0.001 mg/L	1 mg/L	
5 BORON 5 (MET)		0.14	0.36 0.29	<0.02 <0.02	.03UPR .04UPR		<w <w< td=""><td>NIR NIR</td><td>0.06 0.07</td><td>0.05</td><td><w 0.04</w </td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></w 	NIR NIR	0.06 0.07	0.05	<w 0.04</w 	0.02 mg/L	5 mg/L	
6 BERYLLIUM 6 (MET)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	NIR NIR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w 	0.001 mg/L		
7 BENZENE 7 (VOL)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w 	1 <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<>	1 ug/L	10 ug/L	h
8 TOLUENE 8 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 	1 ug/L	14300 ug/L	е
9 ETHYLBENZENE 9 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 	1 ug/L	1400 ug/L	е
10 P-XYLENE 10 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 	1 ug/L	620 ug/L	е
11 M-XYLENE 11 (VOL)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 	1 ug/L	620 ug/L	С

PAGE 1a Updated: January 21, 1986

PARAMETERS					D A	TE	1		DETECTION	WATER OBJ
		DEC 16	DEC 23	JAN 6						GUIDELINE
1 ALKALINITY 1 (LAB)	mg/L I		80.6 72.8						0.2 mg/L	
2 ALUMINUM 2 (MET)		0.100	0.033 0.038	0.089 0.041					0.003 mg/L	
3 ARSENIC 3 (MET)	mg/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w 					0.001 mg/L	0.05 mg/L
4 BARIUM 4 (MET)		0.010	0.013 0.015	0.012 0.013		9			0.001 mg/L	1 mg/L
5 BORON 5 (MET)		0.10	0.10 0.09	0.07 0.04					0.02 mg/L	5 mg/L
6 BERYLLIUM 6 (MET)	mg/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w 					0.001 mg/L	
7 BENZENE 7 (VOL)	ug/I		<w 2.0</w 			6 9 8			1 ug/L	10 ug/L h
8 TOLUENE 8 (VOL)	ug/L R		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>14300 ug/L e</td></w<></w 						1 ug/L	14300 ug/L e
9 ETHYLBENZENE 9 (VOL)	ug/L I		<w <w< td=""><td></td><td>K K</td><td></td><td></td><td></td><td>1 ug/L</td><td>1400 ug/L e</td></w<></w 		K K				1 ug/L	1400 ug/L e
10 P-XYLENE 10 (VOL)	ug/L R		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L e</td></w<></w 						1 ug/L	620 ug/L e
11 M-XYLENE 11 (VOL)	ug/L R		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 						1 ug/L	620 ug/L c

	PARAMETERS						D A	ТE					DETECTION LIMIT	DRINKING WATER OBJ/
	PARAMETERS	 JUN	15	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELINE ¹
1.000	O-XYLENE (VOL)	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>620 ug/L c</td></w<></w 	1 ug/L	620 ug/L c
120000	CALCIUM (LAB)	R 26. T 27.		22.0 23.0	25.5 26.0	UR 26.2	27.0 27.0	58.0 !NR	35.0 38.2	27.5 28.0	78.0 57.0		0.1 mg/L	
ALC: NO	CYANIDE (MET)	R <w T <w< td=""><td>- 1</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	- 1	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w !NR</w 	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 	0.001 mg/L	0.2 mg/L
-	CADMIUM (MET)	R <w T <w< td=""><td>- 1</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	- 1	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td>0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></td></w<></w 	0.0003 <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<>	<w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 	0.0003 mg/L	0.005 mg/L
	CHLORIDE (LAB)	R 8. T 10.		6.6 9.4	8.8 13	UR 8.8	8.8 10.6	30.8 !NR	11.8 15.4	8.8 11.0	23.2 21.0		0.2 mg/L	250 mg/L
10000	COLOUR (LAB)	R 4 T 1.0) <t< td=""><td>3 0.5<t< td=""><td>5 <w< td=""><td>UR 5</td><td>2 <w< td=""><td>47.0 !NR</td><td>56.0 3.0</td><td>3.0 <w< td=""><td>56.0 7.5</td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></w<></td></w<></td></t<></td></t<>	3 0.5 <t< td=""><td>5 <w< td=""><td>UR 5</td><td>2 <w< td=""><td>47.0 !NR</td><td>56.0 3.0</td><td>3.0 <w< td=""><td>56.0 7.5</td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></w<></td></w<></td></t<>	5 <w< td=""><td>UR 5</td><td>2 <w< td=""><td>47.0 !NR</td><td>56.0 3.0</td><td>3.0 <w< td=""><td>56.0 7.5</td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></w<></td></w<>	UR 5	2 <w< td=""><td>47.0 !NR</td><td>56.0 3.0</td><td>3.0 <w< td=""><td>56.0 7.5</td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></w<>	47.0 !NR	56.0 3.0	3.0 <w< td=""><td>56.0 7.5</td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<>	56.0 7.5		0.5 TCU	5 TCU
	CONDUCTIVITY (LAB) ur	R 221 T 230		220 227	225 239	UR 228	221 232	469 NR	282 311	227 233	536 440		0.01 UMHO/CM	
	COBALT (MET)	R <w T <w< td=""><td></td><td>0.019 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 		0.019 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w 	0.002 <w< td=""><td>NR NR</td><td><w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w </td></w<>	NR NR	<w <w< td=""><td>0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></td></w<></w 	0.003 <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<>	<w <w< td=""><td>0.001 mg/L</td><td></td></w<></w 	0.001 mg/L	
	CHROMIUM (MET)	R <w T <w< td=""><td></td><td>0.001 <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td><w <w< td=""><td>0.001 <w< td=""><td>NR NR</td><td>0.001 0.001</td><td>0.009</td><td>0.001 0.001</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<></td></w<></w 		0.001 <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td><w <w< td=""><td>0.001 <w< td=""><td>NR NR</td><td>0.001 0.001</td><td>0.009</td><td>0.001 0.001</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td>0.002 0.002</td><td><w <w< td=""><td>0.001 <w< td=""><td>NR NR</td><td>0.001 0.001</td><td>0.009</td><td>0.001 0.001</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w </td></w<></w 	0.002 0.002	<w <w< td=""><td>0.001 <w< td=""><td>NR NR</td><td>0.001 0.001</td><td>0.009</td><td>0.001 0.001</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></w 	0.001 <w< td=""><td>NR NR</td><td>0.001 0.001</td><td>0.009</td><td>0.001 0.001</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	NR NR	0.001 0.001	0.009	0.001 0.001	0.001 mg/L	0.05 mg/L
	COPPER (MET)	R 0.0		0.002 0.018	0.002 0.008	0.013 0.049	0.002 0.039	0.004 0.063	NIR NIR	0.002 <w< td=""><td>0.016 0.005</td><td>0.004 0.002</td><td>0.001 mg/L</td><td>1 mg/L</td></w<>	0.016 0.005	0.004 0.002	0.001 mg/L	1 mg/L
	F. COLIFORM (BAC) count,	R LA T NA		18500 NA	1100 NA	1700 NA	2000 NA	103 NA	NR NA	111 NA	TN NA	104 NA	0	0/0.1L mL

PARAMETER	es					D A	TE	Т		DETECTION LIMIT	WATER OBJ/
			DEC 16	DEC 23	JAN 6						GUIDELINE1
12 O-XYLENE 12 (VOL)	ug/L	R		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 						1 ug/L	620 ug/L c
13 CALCIUM 13 (LAB)	mg/L	R		27.0 27.0		25 25 27 27 28				0.1 mg/L	
14 CYANIDE 14 (MET)	mg/L	R T		<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 					0.001 mg/L	0.2 mg/L
15 CADMIUM 15 (MET)	mg/L	R		<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 					0.0003 mg/L	0.005 mg/L
16 CHLORIDE 16 (LAB)	mg/L	R		10.4 10.8						0.2 mg/L	250 mg/L
17 COLOUR 17 (LAB)	TCU	R		5.0 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<>						0.5 TCU	5 TCU
18 CONDUCTIV 18 (LAB)	VITY umbo/cm	R		223.00 233.00						0.01 UMHO/CM	
19 COBALT 19 (MET)	mg/L	R		<w <w< td=""><td><w <w< td=""><td></td><td>5</td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>5</td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w 		5			0.001 mg/L	
20 CHROMIUM 20 (MET)	mg/L		0.001	<w <w< td=""><td>0.001 0.001</td><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w 	0.001 0.001					0.001 mg/L	0.05 mg/L
21 COPPER 21 (MET)	mg/L		0.006 0.005	0.011 0.001	0.004 0.002					0.001 mg/L	1 mg/L
22 F. COLIF 22 (BAC) co		R T	143 NA		62 NA					0	0/0.1L mL

PARAMETERS					D A	TE					DETECTION	DRINKING WATER OBJ/
TAVALLED	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		CUIDELINE 1
I	0.33 <w< td=""><td>0.45 0.049</td><td>0.17 0.003</td><td>0.14 0.023</td><td>0.12 0.002</td><td>1.2 0.04</td><td>NR NR</td><td>0.082 <w< td=""><td>2.100 0.053</td><td>0.071 <w< td=""><td>0.002 mg/L</td><td>0.3 mg/L</td></w<></td></w<></td></w<>	0.45 0.049	0.17 0.003	0.14 0.023	0.12 0.002	1.2 0.04	NR NR	0.082 <w< td=""><td>2.100 0.053</td><td>0.071 <w< td=""><td>0.002 mg/L</td><td>0.3 mg/L</td></w<></td></w<>	2.100 0.053	0.071 <w< td=""><td>0.002 mg/L</td><td>0.3 mg/L</td></w<>	0.002 mg/L	0.3 mg/L
	0.1	0.07 0.05	0.07 0.35	UR 0.32	0.08	0.16 !NR	0.12 0.10	0.08	0.16 0.07		0.01 mg/L	2.4 mg/L
	NA 0.20	NA 0.10	NA >0.005	NA NS	NA NS	NA 0.2	NA NS	NA 0.1	NA 0.10	NA 0.20		
	NA 0.80	NA 0.80	NA 0.95	NA 1.00	NA 1.00	NA 0.8	NA NS	NA 0.7	NA 1.00	NA 0.90		
	NA 1.00	NA 0.90	NA >1.00	NA >1.00	NA >1.00	NA 1.0	NA NS	NA 0.8	NA 1.10	NA 1.10		
	NS NS	7.40 NS	7.80 7.30	7.80 7.40	7.80 7.20	7.6 7.0	NS NS	7.7 7.3	7.90 6.90	7.70 6.80		
	14.0	18.0 18.0	20.0 20.0	22.0 21.0	15.0 16.0	11.0 12.0	NS NS	NS NS	3.8 5.5	5.0 6.0		
30 FIELD TURBIDITY F		9.00 0.80	6.75 1.00	5.00 0.30	3.25 0.20	22.0 1.0	NS NS	2.4	147.00 1.75	2.40 0.25		1 FTU
	95 98	85 87	93 95	UR 95	98 97	204 !NR	126 134	97.9 99.6	256.0 193.0		0.5 mg/L	
	AW AW	>2400 14	>2400	>2400 AW	AW AW	OP 22	NR NR	760 0	>2400 8	800 AW	0	500 orga- nisms per mL
33 MERCURY 33 (MET) ug/L	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.01 0.01</td><td>0.01 0.01</td><td>NR NR</td><td>0.01 0.01</td><td>0.01 0.01</td><td><w <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.01 0.01</td><td>0.01 0.01</td><td>NR NR</td><td>0.01 0.01</td><td>0.01 0.01</td><td><w <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.01 0.01</td><td>0.01 0.01</td><td>NR NR</td><td>0.01 0.01</td><td>0.01 0.01</td><td><w <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>0.01 0.01</td><td>0.01 0.01</td><td>NR NR</td><td>0.01 0.01</td><td>0.01 0.01</td><td><w <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></w </td></w<></w 	0.01 0.01	0.01 0.01	NR NR	0.01 0.01	0.01 0.01	<w <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></w 	0.01 ug/L	1 ug/L

PARAMETERS				DA	TE	1		DETECTION LIMIT	WATER OBJ/
	DEC 16	DEC 23	JAN 6	 					GUIDELINE1
	0.046	0.055 0.005	0.093 <w< td=""><td></td><td></td><td></td><td></td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<>					0.002 mg/L	0.3 mg/L
24 FLUORIDE I 24 (LAB) mg/L	2	0.08						0.01 mg/L	2.4 mg/L
	NA 0.25	NA NS	NA NS						
26 FIELD CHLORINE (FREE) 26 (FLD)	NA 0.75	NA 1.00	NA NS						
	NA 1.00	NA 1.00	NA NS		8				
	7.70	8.00 7.40	8.10 NS						
	3.0	2.0 3.0	0.5 NS						
	3.00	2.50 0.15	2.00 NS						1 FTU
31 HARDNESS IN Mg/L IN Mg/L		97.5 97.5	i O					0.5 mg/L	
32 STANDARD PLATE COUNT MF 32 (BAC) count/mL	2100		1300 0					0	500 orga- nisms per mL
33 MERCURY F 33 (MET) ug/L		<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.01 ug/L</td><td>1 ug/L</td></w<></w 					0.01 ug/L	1 ug/L

	PARAMETERS						2	D A	TE					DETECTION	DRINKING WATER OBJ/
	TAIGHETERS			JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		CUIDELINE ¹
1	MAGNESIUM (LAB)	mg/L		7.3 7.3	7.4 7.2	7.2 7.3	UR 7.3	7.5 7.3	14.5 !NIR	9.25 9.40	7.10 7.20	15.00 12.30		0.05 mg/L	
100000000000000000000000000000000000000	MANGANESE (MET)	mg/L	200	.008 <t <w< td=""><td>0.012 0.001</td><td>0.005 <w< td=""><td>0.004 <w< td=""><td>0.004 <w< td=""><td></td><td>NR NR</td><td>0.003 <w< td=""><td>0.043 0.007</td><td>0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></t 	0.012 0.001	0.005 <w< td=""><td>0.004 <w< td=""><td>0.004 <w< td=""><td></td><td>NR NR</td><td>0.003 <w< td=""><td>0.043 0.007</td><td>0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<></td></w<></td></w<>	0.004 <w< td=""><td>0.004 <w< td=""><td></td><td>NR NR</td><td>0.003 <w< td=""><td>0.043 0.007</td><td>0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<></td></w<>	0.004 <w< td=""><td></td><td>NR NR</td><td>0.003 <w< td=""><td>0.043 0.007</td><td>0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<>		NR NR	0.003 <w< td=""><td>0.043 0.007</td><td>0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<>	0.043 0.007	0.003 <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>	0.001 mg/L	0.05 mg/L
	MOLYBDENUM (MET)				0.001 0.001	0.001 <w< td=""><td>0.001 0.001</td><td></td><td></td><td>NR NR</td><td>0.002 0.002</td><td>0.002 0.002</td><td><w 0.001</w </td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<>	0.001 0.001			NR NR	0.002 0.002	0.002 0.002	<w 0.001</w 	0.001 mg/L	0.25 mg/L s
	SODIUM (LAB)	mg/L	R T	5.5 6	5.8 5.8	5.8 6.8	UR 4.8	6.2 7.2	13.5 !NR	6.5 7.0	5.5 6.0	9.4 8.5		0.1 mg/L	
	NICKEL (MET)	mg/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>NR NR</td><td><w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>NR NR</td><td><w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>NR NR</td><td><w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.002 0.002</td><td>NR NR</td><td><w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 0.002</td><td>NR NR</td><td><w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	0.002 0.002	NR NR	<w <w< td=""><td>0.006 0.002</td><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w 	0.006 0.002	<w <w< td=""><td>0.002 mg/L</td><td></td></w<></w 	0.002 mg/L	
100000000000000000000000000000000000000	AMMONIUM TOTA (LAB)			0.10 <t 0.10<t< td=""><td></td><td><w <w< td=""><td>UR <w< td=""><td><w <w< td=""><td><w !NIR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></t<></t 		<w <w< td=""><td>UR <w< td=""><td><w <w< td=""><td><w !NIR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	UR <w< td=""><td><w <w< td=""><td><w !NIR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w !NIR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w !NIR</w 	NR NR	<w <w< td=""><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w 		0.05 mg/L	
1578743567	NITRITE (LAB)	mg/L	1000	0.01 <t <w< td=""><td>.015<t 0.01<t< td=""><td>Land Company Comment</td><td>UR <w< td=""><td><w <w< td=""><td>0.095 !NIR</td><td>0.03<t <w< td=""><td>0.01<t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t </td></w<></t </td></w<></w </td></w<></td></t<></t </td></w<></t 	.015 <t 0.01<t< td=""><td>Land Company Comment</td><td>UR <w< td=""><td><w <w< td=""><td>0.095 !NIR</td><td>0.03<t <w< td=""><td>0.01<t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t </td></w<></t </td></w<></w </td></w<></td></t<></t 	Land Company Comment	UR <w< td=""><td><w <w< td=""><td>0.095 !NIR</td><td>0.03<t <w< td=""><td>0.01<t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t </td></w<></t </td></w<></w </td></w<>	<w <w< td=""><td>0.095 !NIR</td><td>0.03<t <w< td=""><td>0.01<t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t </td></w<></t </td></w<></w 	0.095 !NIR	0.03 <t <w< td=""><td>0.01<t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t </td></w<></t 	0.01 <t <w< td=""><td>0.120 0.10<t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<></td></w<></t 	0.120 0.10 <t< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></t<>		0.005 mg/L	1 mg/L as N
00.276	NITRATE (LAB)	mg/L	R T	-	-	5	-	0.20 <t 0.20<t< td=""><td></td><td>1.37 1.80</td><td>.34 .35</td><td>5.90 3.30</td><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t 		1.37 1.80	.34 .35	5.90 3.30		0.05 mg/L	10 mg/L as N
100	NITROGEN TOTA (LAB)				0.3 <t 0.2<t< td=""><td>0.2<t 0.2<t< td=""><td>UR 0.4<t< td=""><td><0.3<t <w< td=""><td></td><td>NR NR</td><td>0.30<t 0.10<t< td=""><td>1.00 0.30<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></w<></t </td></t<></td></t<></t </td></t<></t 	0.2 <t 0.2<t< td=""><td>UR 0.4<t< td=""><td><0.3<t <w< td=""><td></td><td>NR NR</td><td>0.30<t 0.10<t< td=""><td>1.00 0.30<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></w<></t </td></t<></td></t<></t 	UR 0.4 <t< td=""><td><0.3<t <w< td=""><td></td><td>NR NR</td><td>0.30<t 0.10<t< td=""><td>1.00 0.30<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></w<></t </td></t<>	<0.3 <t <w< td=""><td></td><td>NR NR</td><td>0.30<t 0.10<t< td=""><td>1.00 0.30<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t </td></w<></t 		NR NR	0.30 <t 0.10<t< td=""><td>1.00 0.30<t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></td></t<></t 	1.00 0.30 <t< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<>		0.1 mg/L	0.15 mg/L *
	PRESENCE/ABSI (BAC)	ENCE		NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA NR	NA ABSENT	NA ABSENT	NA ABSENT	0	Absent
	LEAD (MET)	mg/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.004</w </td><td><w 0.005</w </td><td>NR NR</td><td><w <w< td=""><td>0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.004</w </td><td><w 0.005</w </td><td>NR NR</td><td><w <w< td=""><td>0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 0.004</w </td><td><w 0.005</w </td><td>NR NR</td><td><w <w< td=""><td>0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 0.004</w </td><td><w 0.005</w </td><td>NR NR</td><td><w <w< td=""><td>0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></w </td></w<></w 	<w 0.004</w 	<w 0.005</w 	NR NR	<w <w< td=""><td>0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></td></w<></w 	0.007 <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<>	<w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 	0.003 mg/L	0.05 mg/L

PARAMETERS					D A	TE			DETECTION	WATER OBJ/
		DEC 16	DEC 23	JAN 6						GUIDELINE1
34 MAGNESIUM 34 (LAB)	mg/L I		7.30 7.30						0.05 mg/L	
35 MANGANESE 35 (MET)		0.003 <w< td=""><td>0.002 <w< td=""><td>0.004 <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.004 <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></td></w<>	0.004 <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<>					0.001 mg/L	0.05 mg/L
36 MOLYBDENUM 36 (MET)		<w 0.001</w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w 					0.001 mg/L	0.25 mg/L s
37 SODIUM 37 (LAB)	mg/L T		6.5 6.5						0.1 mg/L	
38 NICKEL 38 (MET)	mg/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.002 mg/L</td><td></td></w<></w 					0.002 mg/L	
39 AMMONIUM TOT 39 (LAB)	AL F		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w 						0.05 mg/L	
40 NITRITE 40 (LAB)	mg/L I		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w 						0.005 mg/L	1 mg/L as N
41 NITRATE 41 (LAB)	mg/L T		0.25 <t 0.25<t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t 						0.05 mg/L	10 mg/L as N
42 NITROGEN TOT 42 (LAB)	AL KJEIDAHL F mg/L 1		0.20 <t <w< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></w<></t 						0.1 mg/L	0.15 mg/L *
43 PRESENCE/ABS 43 (BAC)	ENCE F	NA ABSENT		NA ABSENT			UA.		0	Absent
44 LEAD 44 (MET)	mg/L F	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 					0.003 mg/L	0.05 mg/L

	PARAMETERS							D A	TE					DETECTION LIMIT	DRINKII WATER	
	PARAMETERS			JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDEL	
	PH (LAB)			8.31 7.48	8.25 7.68	8.35 7.51	UR 7.72	8.21 7.43	7.89 !NR	945 A. C.	8.12 7.68	8.00 7.08				
	PHOSPHORUS F (LAB)			AD AD	<w <w< td=""><td><w <w< td=""><td>UR <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>UR <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	UR <w< td=""><td><w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w !NR</w </td><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w !NR</w 	NR NR	<w <w< td=""><td><w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 		0.01 mg/L		
	PHOSPHORUS T			THE COLUMN TWO IS NOT THE REAL PROPERTY.	0.04 <t 0.02<t< td=""><td>THE STATE OF THE PARTY OF THE P</td><td>UR <w< td=""><td><w <w< td=""><td>0.09<t !NR</t </td><td>NR NR</td><td><w <w< td=""><td>0.200 <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></w </td></w<></w </td></w<></td></t<></t 	THE STATE OF THE PARTY OF THE P	UR <w< td=""><td><w <w< td=""><td>0.09<t !NR</t </td><td>NR NR</td><td><w <w< td=""><td>0.200 <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td>0.09<t !NR</t </td><td>NR NR</td><td><w <w< td=""><td>0.200 <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></w </td></w<></w 	0.09 <t !NR</t 	NR NR	<w <w< td=""><td>0.200 <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></w 	0.200 <w< td=""><td></td><td>0.01 mg/L</td><td></td><td></td></w<>		0.01 mg/L		
	ALDRIN (PST)	ng/L	22500	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 	1 ng/L	700 ng/L	**
	ALPHA BHC (PST)	ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t 5<t< td=""><td>2<t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t </td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t 5<t< td=""><td>2<t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t </td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>3<t 5<t< td=""><td>2<t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>3<t 5<t< td=""><td>2<t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t </td></t<></t </td></w<></w 	3 <t 5<t< td=""><td>2<t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t </td></t<></t 	2 <t 2<t< td=""><td>2<t NS</t </td><td>LA 2<t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<></td></t<></t 	2 <t NS</t 	LA 2 <t< td=""><td>1<t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t </td></t<>	1 <t 1<t< td=""><td>3<t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t </td></t<></t 	3 <t <w< td=""><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t 	1 ng/L	700 ng/L	С
	BETA BHC (PST)	ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<></td></w<></w 	<w NS</w 	LA 2 <t< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></t<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 	1 ng/L	300 ng/L	С
	LINDANE (PST)	ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w </td></t<></w 	<w 1<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></t<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 	1 ng/L	4000 ng/L	
	ALPHA CHLORD (PST)	ANE ng/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 	2 ng/L	700 ng/L	***
-	GAMMA CHLORD (PST)	ANE ng/L	R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 	2 ng/L	700 ng/L	***
	DIELDRIN (PST)	ng/L	R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 	2 ng/L	700 ng/L	**
	METHOXYCHLOR (PST)	ng/L	R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>00</td></w<></w 	5 ng/L	10000 ng/L	00

PARAMETERS					D A	TE	,		DETECTION LIMIT	WATER (DBJ/
I FROM BUILDING		DEC 16	DEC 23	JAN 6						GUIDEL	INE ¹
45 PH 45 (LAB)	R		7.97 7.58								
46 PHOSPHORUS FILTERED REACTIVE 46 (LAB) mg/L	R T		<w <w< td=""><td></td><td></td><td></td><td></td><td>8</td><td>0.01 mg/L</td><td></td><td></td></w<></w 					8	0.01 mg/L		
47 PHOSPHORUS TOTAL 47 (LAB) mg/L	R		0.020< 0.020<						0.01 mg/L		
48 ALDRIN 48 (PST) ng/L		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 							1 ng/L	700 ng/L	**
49 ALPHA BHC 49 (PST) ng/L		3 <t <w< td=""><td></td><td></td><td></td><td>12</td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>С</td></w<></t 				12			1 ng/L	700 ng/L	С
50 BETA BHC 50 (PST) ng/L		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 							1 ng/L	300 ng/L	С
51 LINDANE 51 (PST) ng/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 							1 ng/L	4000 ng/L	
52 ALPHA CHLORDANE 52 (PST) ng/L	R T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 							2 ng/L	700 ng/L	***
53 GAMMA CHLORDANE 53 (PST) ng/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 							2 ng/L	700 ng/L	***
54 DIELDRIN 54 (PST) ng/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 							2 ng/L	700 ng/L	**
55 METHOXYCHLOR 55 (PST) ng/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>0</td></w<></w 							5 ng/L	100000 ng/L	0

							D A	ТE					DETECTION LIMIT	DRINKING WATER OBJ/
	PARAMETERS		JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10	TERRITACIONALITATION .	GUIDELINE1
	ENDRIN (PST)	ng/L I		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<></w 	4 ng/L	200 ng/L
10000	THIODAN SULP (PST)	HATE F		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>4 ng/L</td><td></td></w<></w 	4 ng/L	
	THIODAN I (PST)	ng/L	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 	2 ng/L	74000 ng/L ea
-	THIODAN II (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w 	4 ng/L	74000 ng/L ea
	METHYLPARATH (SPC)	ION		-	-	-	-	+	++	+			50 ng/L	7000 ng/L
	PARATHION (SPC)	1	- 2	-	-	-	Ē	+	++	+			50 ng/L	35000 ng/L
1 ZERTON	HEPTACHLOR E (PST)		< \w C < \w	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w 	1 ng/L	3000 +++ ng/L
	HEPTACHLOR (PST)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA 3>T</td><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	LA 3>T	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>3000 ng/L ++-</td></w<></w 	1 ng/L	3000 ng/L ++-
	MIREX (PST)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td></td></w<></w 	5 ng/L	
100.00	OXYCHLORDANE (PST)	•	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>2 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>2 ng/L</td><td></td></w<></w 	2 ng/L	
	O,P,-DDT (PST)		R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<>	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>30000 ng/L</td></w<></w 	5 ng/L	30000 ng/L

PARAMETERS	DATE	DETECTION	DRINKING WATER OBJ/
LARANETERO	DEC 16 DEC 23 JAN 6		CUIDELINE1
56 ENDRIN R 56 (PST) ng/L T	<w< td=""><td>4 ng/L</td><td>200 ng/L</td></w<>	4 ng/L	200 ng/L
	<w< td=""><td>4 ng/L</td><td></td></w<>	4 ng/L	
	<w< td=""><td>2 ng/L</td><td>74000 ng/L ea</td></w<>	2 ng/L	74000 ng/L ea
	<w< td=""><td>4 ng/L</td><td>74000 ng/L ea</td></w<>	4 ng/L	74000 ng/L ea
60 METHYLPARATHION R 60 (SPC) T		50 ng/L	7000 ng/L
61 PARATHION R 61 (SPC) T		50 ng/L	35000 ng/L
62 HEPTACHLOR EPOXIDE R 62 (PST) ng/L T	<w td="" ="" <=""><td>1 ng/L</td><td>3000 +++ ng/L</td></w>	1 ng/L	3000 +++ ng/L
63 HEPTACHLOR R 63 (PST) ng/L	<w td="" ="" <=""><td>1 ng/L</td><td>3000 ng/L +++</td></w>	1 ng/L	3000 ng/L +++
64 MIREX R 64 (PST) ng/L	<w td="" ="" <=""><td>5 ng/L</td><td></td></w>	5 ng/L	
65 OXYCHLORDANE R 65 (PST) ng/L	<w< td=""><td>2 ng/L</td><td></td></w<>	2 ng/L	
	<w <w<="" td=""><td>5 ng/L</td><td>30000 ng/L d</td></w>	5 ng/L	30000 ng/L d

PARAMETERS						D A	TE					DETECTION LIMIT	DRINKING WATER OBJ/
PARAMETERS		JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		CUIDELINE
67 PCB 67 (PST)		R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w </td></w<></w 	<w <w< td=""><td>20 ng/L</td><td>3000 ng/L t</td></w<></w 	20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		< \W C \< W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>d</td></w<></w 	5 ng/L	d
69 P,P-DDE 69 (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>d</td></w<></w 	1 ng/L	d
70 P,P-DDT 70 (PST)		R <w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>d</td></w<></w 	5 ng/L	d
71 AMETRINE 71 (SPC)		R +	<w <w< td=""><td>++</td><td>+</td><td><w <w< td=""><td>+</td><td>† +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	++	+	<w <w< td=""><td>+</td><td>† +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	† +	+			50 ng/L	
72 ATRAZINE 72 (SPC)		₹ + C +	<w <w< td=""><td>+ +</td><td>+</td><td><w <w< td=""><td>+ +</td><td>+ +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	+ +	+	<w <w< td=""><td>+ +</td><td>+ +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+ +	+			50 ng/L	
73 DIAZINON 73 (SPC)		R +	++	+ +	+	NS NS	+	+	+			50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L	R + Γ +	+	+	+	<w <w< td=""><td>++</td><td>+</td><td>+</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++	+	+			100 ng/L	
75 PROMETONE 75 (SPC)		t +	++	++	+	<w <w< td=""><td>+</td><td>+</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	+	+			50 ng/L	
76 PROPAZINE 76 (SPC)		R +	++	+ +	+	<w <w< td=""><td>+ +</td><td>+</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+	+			50 ng/L	
77 PROMETRYNE 77 (SPC)		R +	+ +	+ +	+	<w <w< td=""><td>+ +</td><td>+</td><td>++</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+ +	+	++			50 ng/L	

PARAMETERS					I.	D A	TE	1		DETECTION LIMIT	WATER OBJ
		DEC 16	DEC 23	JAN 6							GUIDELINE
67 PCB 67 (PST)	ng/L I	<w <w< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>20 ng/L</th><th>3000 ng/L</th></w<></w 								20 ng/L	3000 ng/L
58 P,P-DDD 58 (PST)	ng/L I	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 								5 ng/L	d
69 P,P-DDE 69 (PST)		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>1 ng/L</td><td>d</td></w<></w 							5	1 ng/L	d
70 P,P-DDT 70 (PST)		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 								5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L I								ō	50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L R									50 ng/L	
73 DIAZINON 73 (SPC)	ng/L R									50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L R									100 ng/L	
75 PROMETONE 75 (SPC)	ng/L T									50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L I			-						50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L I				T. =		E-			50 ng/L	123

PARAMETERS						D A	TE					DETECTION LIMIT	WATER OBJ/
		JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10	**************************************	GUIDELINE1
78 SENCOR 78 (SPC)	ng/L T		<w <<="" td=""><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td>+ +</td><td>+</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w>	+	+	<w <w< td=""><td>+</td><td>+ +</td><td>+</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+	+ +	+			100 ng/L	
79 SIMAZINE 79 (SPC)	ng/L T	+	<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td>+</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>+</td><td>+</td><td>+</td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	+	+			50 ng/L	
80 DICAMBA 80 (SPC)	ng/L R	+	+	+	+	+	* *	+	+			100 ng/L	
81 PICLORAM 81 (SPC)	ng/L T	+	<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>++</td><td>* *</td><td>+ +</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>++</td><td>* *</td><td>+ +</td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++	* *	+ +			100 ng/L	
82 SILVEX 82 (SPC)	ng/L T	<u>+</u>	<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>.</td><td>*</td><td>+</td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>.</td><td>*</td><td>+</td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w 	.	*	+			50 ng/L	10000 ng/L
83 2,4-D 83 (SPC)	ng/L T	+	+	*	*	+	+	+	+ +			100 ng/L	100000 ng/L
84 2,4-D BUTYRI 84 (SPC)			<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td>+</td><td>+</td><td></td><td></td><td>200 ng/L</td><td></td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>+</td><td>+</td><td>+</td><td></td><td></td><td>200 ng/L</td><td></td></w<></w 	+	+	+			200 ng/L	
85 2,4-D PROPIC 85 (SPC)		†	+ +	++	+ +	+ +	+ +	*	+			100 ng/L	
86 2,4,5-T 86 (SPC)	ng/L T		+ +	++	* *	* +	+	+	+	왕		50 ng/L	
87 TOTAL SOLIDS 87 (LAB)	s R	144 150	164 142	146 155	UR 148	144 151	330 !NR	212 202	148 151	446.0 292.0		1 mg/L	
88 SELENIUM 88 (MET)		<.001 <.001	<.001 <.001	<.001 <.001	<.001 <.001	<.001 <.001	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 	0.001 mg/L	0.01 mg/L

PARAMETERS		DEC 16	DEC 23	JAN 6	D A	TE				DRINKING WATER OBJ/ GUIDELINE ¹
78 SENCOR 78 (SPC)	R ng/L T								100 ng/L	
79 SIMAZINE 79 (SPC)	ng/L R							14 14 15 16	50 ng/L	
80 DICAMBA 80 (SPC)	ng/L R								100 ng/L	
81 PICLORAM 81 (SPC)	ng/L R								100 ng/L	
82 SILVEX 82 (SPC)	ng/L R					£			50 ng/L	10000 ng/L
83 2,4-D 83 (SPC)	ng/L R							30 33	100 ng/L	100000 ng/L
84 2,4-D BUTYR 84 (SPC)	IC ACID R ng/L T							-	200 ng/L	
85 2,4-D PROPIO 85 (SPC)	ONIC ACID R								100 ng/L	
86 2,4,5-T 86 (SPC)	ng/L R					3			50 ng/L	
87 TOTAL SOLIDS 87 (LAB)	S R mg/L T		145.0 151.0						1 mg/L	
88 SELENIUM 88 (MET)	mg/L R	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 					0.001 mg/L	0.01 mg/L

PARAMETERS					DA	TE					DETECTION	DRINKING WATER OB	
1114 1111111	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELIN	
	0.092 0.072	0.097 0.098		0.088 0.086	0.100 0.100	0.24 0.21	NR NR	0.09 0.10	0.190 0.160	0.083 0.095	0.001 mg/L		
	100 LA	600 0	1100 0	1700A30	2000	9300 0	NR NR	800 0	6900A30	1300	0	ODWO Bacti	
91 TOTAL COLIFORM BACKGROUND MF R 91 (BAC) count/100mL T	16000 LA	18500 0	5500 0	34000 3	3900 0	160000 0	NR NR	2000	66000 0	2500 0	0	OWDO Bacti	
		15.0 0.39 <t< td=""><td>3.8 0.19<t< td=""><td></td><td>3.6 0.10<t< td=""><td>31 !NR</td><td>56 1.72</td><td>4.1 0.30<t< td=""><td>111.00 1.94</td><td></td><td>0.01 FIU</td><td>1 FTU</td><td></td></t<></td></t<></td></t<></td></t<>	3.8 0.19 <t< td=""><td></td><td>3.6 0.10<t< td=""><td>31 !NR</td><td>56 1.72</td><td>4.1 0.30<t< td=""><td>111.00 1.94</td><td></td><td>0.01 FIU</td><td>1 FTU</td><td></td></t<></td></t<></td></t<>		3.6 0.10 <t< td=""><td>31 !NR</td><td>56 1.72</td><td>4.1 0.30<t< td=""><td>111.00 1.94</td><td></td><td>0.01 FIU</td><td>1 FTU</td><td></td></t<></td></t<>	31 !NR	56 1.72	4.1 0.30 <t< td=""><td>111.00 1.94</td><td></td><td>0.01 FIU</td><td>1 FTU</td><td></td></t<>	111.00 1.94		0.01 FIU	1 FTU	
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NR NR</td><td><0.002 <0.002</td><td></td><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w </td></w<></w 	NR NR	<0.002 <0.002		<w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L</td><td>t</td></w<></w 	0.002 mg/L	.02 mg/L	t
	<w <w< td=""><td>100 E C 100 E 100 E</td><td>0.001 0.001</td><td><w 0.001</w </td><td><w <w< td=""><td>0.003 0.001</td><td>NR NR</td><td></td><td>0.006 0.002</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	100 E C 100 E	0.001 0.001	<w 0.001</w 	<w <w< td=""><td>0.003 0.001</td><td>NR NR</td><td></td><td>0.006 0.002</td><td><w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w </td></w<></w 	0.003 0.001	NR NR		0.006 0.002	<w <w< td=""><td>0.001 mg/L</td><td></td><td></td></w<></w 	0.001 mg/L		
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>7<t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>7<t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>7<t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>7<t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>7<t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t </td></w<></w 	7 <t 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<></td></t<></t 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w </td></w<>	<w <w< td=""><td>5<t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t </td></w<></w 	5 <t 2<t< td=""><td>1 ng/L</td><td>4500 ng/L</td><td>е</td></t<></t 	1 ng/L	4500 ng/L	е
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>.3 ug/L</td><td>h</td></w<></w 	1 ug/L	.3 ug/L	h
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></td></w<></w 	CS <w< td=""><td><w NS</w </td><td>cs cs</td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<>	<w NS</w 	cs cs			5 ug/L	40 ug/L	С
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w 	1 ug/L		
The state of the s	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		

PARAMETERS				DA	TE		DETECTION	DRINKING WATER OBJ/
	DEC 16	DEC 23	JAN 6					CUIDELINE 1
89 STRONTIUM 89 (MET) mg/L	R 0.085 T 0.094	0.092 0.095	0.095 0.060				0.001 mg/L	
90 TOTAL COLIFORM MF 90 (BAC) count/100mL	R 2100 T 0		500 0				0	ODWO Bacti
91 TOTAL COLIFORM BACKGROUND MF 91 (BAC) count/100mL	3500 T 0		3000 0				0	OWDO Bacti
92 TURBIDITY 92 (LAB) FTU	R	3.00 0.09 <t< td=""><td></td><td></td><td></td><td></td><td>0.01 FIU</td><td>1 FTU</td></t<>					0.01 FIU	1 FTU
93 URANIUM 93 (MET) mg/L	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w 				0.002 mg/L	.02 mg/L t
94 VANADIUM 94 (MET) mg/L	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.001 mg/L</td><td></td></w<></w 				0.001 mg/L	
	R <w F <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w 						1 ng/L	4500 ng/L e
96 1,1-DICHLOROETHYLENE 96 (VOL) ug/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 					1 ug/L	.3 ug/L h
97 METHYLENE CHLORIDE 97 (VOL) ug/L	R						5 ug/L	40 ug/L c
98 T,1,2-DICHLOROETHYLENE 98 (VOL) ug/L	R	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 					1 ug/L	
99 1,1-DICHLOROETHANE 99 (VOL) ug/L	R T						1 ug/L	

PARAMETERS		Za			D A	TE					DETECTION LIMIT	DRINKI WATER	
PANAPETERS	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		CUIDEL	INE
	R <w I 21</w 	<w 21</w 	<w 22</w 	<w 35</w 	<w 26</w 	<w 44</w 	<w NS</w 	<w 11</w 	<w 29</w 	<w 9</w 	1 ug/L	350 ug/L	++
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w 	CS <w< td=""><td><w NS</w </td><td>cs cs</td><td><w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<>	<w NS</w 	cs cs	<w <w< td=""><td><w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 	5 ug/L	40 ug/L	С
	R <w F <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w 	1 ug/L		
	R <w T <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w 	1 ug/L		
	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 	1 ug/L	10 ug/L	h
	R 1 T 1	<w <w< td=""><td><w <w< td=""><td>1 <w< td=""><td><w <w< td=""><td>1</td><td>1 NS</td><td>1</td><td><w <w< td=""><td>2</td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>1 <w< td=""><td><w <w< td=""><td>1</td><td>1 NS</td><td>1</td><td><w <w< td=""><td>2</td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></td></w<></w 	1 <w< td=""><td><w <w< td=""><td>1</td><td>1 NS</td><td>1</td><td><w <w< td=""><td>2</td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td>1</td><td>1 NS</td><td>1</td><td><w <w< td=""><td>2</td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w </td></w<></w 	1	1 NS	1	<w <w< td=""><td>2</td><td>1 ug/L</td><td>3 ug/L</td><td>h</td></w<></w 	2	1 ug/L	3 ug/L	h
	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w 	1 ug/L	6 ug/L	ep
	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 	1 ug/L	30 ug/L	h
	R <w T 9</w 	<w 15</w 	<w 10</w 	<w 14</w 	<w 11</w 	<₩ 25	<w NS</w 	<w 9</w 	<w 12</w 	<w 17</w 	1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE 109 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w 	1 ug/L	6 ug/L	е
110 CHLORODIBROMOMETHANE 110 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 20</w </td><td><w NS</w </td><td><w 13</w </td><td><w 8</w </td><td><w 10</w </td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 20</w </td><td><w NS</w </td><td><w 13</w </td><td><w 8</w </td><td><w 10</w </td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 20</w </td><td><w NS</w </td><td><w 13</w </td><td><w 8</w </td><td><w 10</w </td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 20</w </td><td><w NS</w </td><td><w 13</w </td><td><w 8</w </td><td><w 10</w </td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td><w 20</w </td><td><w NS</w </td><td><w 13</w </td><td><w 8</w </td><td><w 10</w </td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 	<w 20</w 	<w NS</w 	<w 13</w 	<w 8</w 	<w 10</w 	1 ug/L	350 ug/L	++

PARAMETERS				D A	TE			DETECTION	DRINKI WATER	
	DEC 16	DEC 23	JAN 6			25.5			GUIDEL	
100 CHLOROFORM F 100 (VOL) ug/L		<w 17</w 						1 ug/L	350 ug/L	++
101 DICHLOROMETHANE F 101 (VOL) ug/L		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>С</td></w<></w 						5 ug/L	40 ug/L	С
102 1,1,1-TRICHLOROETHANE F 102 (VOL) ug/L 7		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 						1 ug/L		
103 DICHLOROETHANE F 103 (VOL) ug/L		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 						1 ug/L		
104 1,2-DICHLOROETHANE F 104 (VOL) ug/L		<w <w< td=""><td>9</td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 	9					1 ug/L	10 ug/L	h
105 CARBON TETRACHLORIDE F 105 (VOL) ug/L		1						1 ug/L	3 ug/L	h
106 1,2 DICHLOROPROPANE F 106 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w 						1 ug/L	6 ug/L	ep
107 TRICHLOROETHYLENE F 107 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>h</td></w<></w 						1 ug/L	30 ug/L	h
108 DICHLOROBROMOMETHANE F 108 (VOL) ug/L		<w 8</w 						1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE F 109 (VOL) ug/L		<w <w< td=""><td>9</td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>е</td></w<></w 	9					1 ug/L	6 ug/L	е
110 CHLORODIBROMOMETHANE F 110 (VOL) ug/L		<w 8</w 						1 ug/L	350 ug/L	++

DADAMINETIC					D A	TE					DETECTION	DRINKING WATER OF	
PARAMETERS	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELI	
111 TETRACHLOROETHYLENE R 111 (VOL) ug/L T		<w <w< td=""><td><w <w< td=""><td>4 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></td></w<></w </td></w<></w 	<w <w< td=""><td>4 3<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></td></w<></w 	4 3 <t< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<>	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 	1 ug/L	10 ug/L	h
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 	1 ug/L	350 ug/L	++
113 1,1,2,2-TETRACHLOROETHANE R 113 (VOL) ug/L T	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 	1 ug/L	1.7 ug/L	е
114 HEXACHLOROBENZENE R 114 (PST) ng/L T	Lance Committee	<w <w< td=""><td>2<t <w< td=""><td>7<t 3<t< td=""><td>2<t 3<t< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<></td></w<></w </td></t<></t </td></t<></t </td></w<></t </td></w<></w 	2 <t <w< td=""><td>7<t 3<t< td=""><td>2<t 3<t< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<></td></w<></w </td></t<></t </td></t<></t </td></w<></t 	7 <t 3<t< td=""><td>2<t 3<t< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<></td></w<></w </td></t<></t </td></t<></t 	2 <t 3<t< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<></td></w<></w </td></t<></t 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w </td></w<>	<w <w< td=""><td>1<t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t </td></w<></w 	1 <t <w< td=""><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></t 	1 ng/L	10 ng/L	h
115 HEXACHLOROETHANE R 115 (CHA) ng/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 	1 ng/L	19000 ng/L	е
116 OCTACHLOROSTYRENE R 116 (CHA) ng/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w 	1 ng/L		
117 PENTACHLOROBENZENE R 117 (CHA) ng/L T	The Committee of the Co	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></td></t<></w </td></w<></w 	<w 2<t< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<></td></t<></w 	<w NS</w 	LA <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w </td></w<>	<w 2<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w </td></t<></w 	<w <w< td=""><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w 	1 ng/L	74000 ng/L	е
118 TOTAL TRIHALOMETHANES R 118 (VOL) ug/L T		<w 43</w 	<w 43</w 	<w 63</w 	<w 47</w 	<w 89</w 	<w NS</w 	<w 33</w 	<w 49</w 	<w 36</w 	3 ug/L	350 ug/L	++
119 2,3,6-TRICHLOROTOLUENE R 119 (CHA) ng/L T		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></w<>	<w 27<t< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w 	<w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w 	5 ng/L		
120 2,4,5-TRICHLOROTOLUENE R 120 (CHA) ng/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA 23<t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<></td></w<></w 	<w NS</w 	LA 23 <t< td=""><td><w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w </td></t<>	<w 13<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></t<></w 	<w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 	5 ng/L	10000 ng/L	g
121 2,6,A-TRICHLOROTOLUENE R 121 (CHA) mg/L T	<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td></td><td></td></w<></w 	5 ng/L		

PARAMETERS		I			D A	TE		DETECTION	WATER	OBJ/
	DEC 16	DEC 23	JAN 6						GUIDEL	INE
111 TETRACHLOROETHYLENE R 111 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 						1 ug/L	10 ug/L	h
112 BROMOFORM R 112 (VOL) ug/L T		<w 1</w 						1 ug/L	350 ug/L	++
113 1,1,2,2-TETRACHLOROETHANE R 113 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 						1 ug/L	1.7 ug/L	е
114 HEXACHLOROBENZENE R 114 (PST) ng/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 							1 ng/L	10 ng/L	h
115 HEXACHLOROETHANE R 115 (CHA) ng/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>e</td></w<></w 							1 ng/L	19000 ng/L	e
116 OCTACHLOROSTYRENE R 116 (CHA) ng/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 							1 ng/L		
117 PENTACHLOROBENZENE R 117 (CHA) ng/L T	<w <w< td=""><td></td><td></td><td>20 20 20 20 20 20 20 20 20 20 20 20 20 2</td><td></td><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></w<></w 			20 20 20 20 20 20 20 20 20 20 20 20 20 2				1 ng/L	74000 ng/L	е
118 TOTAL TRIHALOMETHANES R 118 (VOL) ug/L T	n	<w 34</w 						3 ug/L	350 ug/L	++
119 2,3,6-TRICHLOROTOLUENE R 119 (CHA) ng/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 							5 ng/L		
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 							5 ng/L	10000 ng/L	g
121 2,6,A-TRICHLOROTOLUENE R 121 (CHA) mg/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 							5 ng/L		

PARAMETERS					-	D A	T E	0.				DETECTION LIMIT	DRINKING WATER OB	
FARMETERS	3	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELIN	
122 CHLOROBENZENE 122 (VOL) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w 	1 ng/L	100-300 ng/L) h*
123 1,4-DICHLOROBENZENE 123 (VOL) ug/L	0.000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 	1 ug/L	400 ug/L	е
124 1,3-DICHLOROBENZENE 124 (VOL) ug/L	0.000	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 	1 ug/L	400 ug/L	е
125 1,2-DICHLOROBENZENE 125 (VOL) ug/L	-	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 	1 ug/L	400 ug/L	е
126 TRIFLUOROCHLOROTOLUENE 126 (CHA) ug/L		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w NS</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ug/L</td><td></td><td></td></w<></w 	1 ug/L		
127 1,2,3-TRICHLOROBENZENE 127 (CHA) ng/L	R <	-0.00	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 	5 ng/L	10000 ng/L	У
128 1,2,3,4-TETRACHLOROBENZENE 128 (CHA) ng/L	R T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w 	1 ng/L	38000 ng/L	e
129 1,2,3,5-TETRACHLOROBENZENE 129 (CHA) ng/L	R <	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>1 ng/L</td><td></td><td></td></w<></w 	1 ng/L		
130 1,2,4-TRICHLOROBENZENE 130 (CHA) ng/L	R <		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 40<t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 40<t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 40<t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA 40<t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA 40<t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<></td></w<></w 	<w NS</w 	LA 40 <t< td=""><td><w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w </td></t<>	<w 16<t< td=""><td><w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></t<></w 	<w <w< td=""><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 	5 ng/L	15000 ng/L	У
131 1,2,4,5-TETRACHLOROBENZENE 131 (CHA) ng/L	R <		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w </td></w<>	<w 3<t< td=""><td><w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w </td></t<></w 	<w <w< td=""><td>1 ng/L</td><td>38000 ng/L</td><td>6</td></w<></w 	1 ng/L	38000 ng/L	6
132 1,3,5-TRICHLOROBENZENE 132 (CHA) ng/L	R <		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w NS</w </td><td>LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w NS</w 	LA <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w </td></w<></w 	<w <w< td=""><td>5 ng/L</td><td>10000 ng/L</td><td>7</td></w<></w 	5 ng/L	10000 ng/L	7

PARAMETERS	DATE DEC 16 DEC 23 JAN 6									DETECTION LIMIT	WATER OB	J/
	DEC 16	DEC 23	JAN 6								GUIDELIN	E ₁
122 CHLOROBENZENE R 122 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>) h*</td></w<></w 								1 ng/L	100-300 ng/L) h*
123 1,4-DICHLOROBENZENE R 123 (VOL) ug/L T		<w <w< td=""><td>33</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 	33							1 ug/L	400 ug/L	е
124 1,3-DICHLOROBENZENE R 124 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 								1 ug/L	400 ug/L	е
125 1,2-DICHLOROBENZENE R 125 (VOL) ug/L T		<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 								1 ug/L	400 ug/L	е
126 TRIFLUOROCHLOROTOLUENE R 126 (CHA) ug/L T		<w <w< td=""><td></td><td></td><td></td><td>왆</td><td></td><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 				왆				1 ug/L		
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 									5 ng/L	10000 ng/L	У
128 1,2,3,4-TETRACHLOROBENZENE R 128 (CHA) ng/L T	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 									1 ng/L	38000 ng/L	е
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 									1 ng/L		
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 									5 ng/L	15000 ng/L	У
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>e</td></w<></w 									1 ng/L	38000 ng/L	e
	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 							_		5 ng/L	10000 ng/L	У

PARAMETERS					D A	TE					DETECTION LIMIT	DRINKING WATER OF	
ENWHETERS	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELIN	-
133 PENTACHLOROPHENOL F 133 (CHP) ng/L T		<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td>++</td><td>++</td><td>ij</td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>+</td><td>++</td><td>++</td><td>ij</td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	+	++	++	ij		50 ng/L	10000 ng/L	h
134 2,3,4-TRICHLOROPHENOL F 134 (CHF) ng/L T		<w <w< td=""><td>+</td><td>+</td><td><w <w< td=""><td>+</td><td>++</td><td>+ +</td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	+	<w <w< td=""><td>+</td><td>++</td><td>+ +</td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w 	+	++	+ +			100 ng/L		
135 2,3,4,5-TETRACHLOROPHENOL F 135 (CHP) ng/L T		<w <w< td=""><td>++</td><td>++</td><td><w <w< td=""><td>+++++++++++++++++++++++++++++++++++++++</td><td>++</td><td>++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w </td></w<></w 	++	++	<w <w< td=""><td>+++++++++++++++++++++++++++++++++++++++</td><td>++</td><td>++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+++++++++++++++++++++++++++++++++++++++	++	++			50 ng/L		
136 2,3,5,6-TETRACHLOROPHENOL F 136 (CHP) ng/L T		<w <w< td=""><td>+</td><td>++</td><td><w <w< td=""><td>+</td><td>+</td><td>+++++++++++++++++++++++++++++++++++++++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	++	<w <w< td=""><td>+</td><td>+</td><td>+++++++++++++++++++++++++++++++++++++++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+	+	+++++++++++++++++++++++++++++++++++++++			50 ng/L		
137 2,4,5-TRICHLOROPHENOL F 137 (CHP) ng/L T	2 455	<w <w< td=""><td>+</td><td>++</td><td><w <w< td=""><td>++</td><td>++</td><td>++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w </td></w<></w 	+	++	<w <w< td=""><td>++</td><td>++</td><td>++</td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	++	++	++			50 ng/L		
138 2,4,6-TRICHLOROPHENOL F 138 (CHP) ng/L T	9	<w <w< td=""><td>++</td><td>+</td><td><w <w< td=""><td>++</td><td>+ +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w </td></w<></w 	++	+	<w <w< td=""><td>++</td><td>+ +</td><td>+</td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	++	+ +	+			50 ng/L	10000 ng/L	h
	0.003	0.005 0.018	0.004 0.013	0.002 0.032	0.004 0.036	0.008 0.037	NR NR	0.004	0.016 0.006	0.004	0.001 mg/L	5 mg/L	h
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td><td></td></w<></w 	0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td><td></td></w<></w 	0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td><td></td></w<></w 	0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td><td></td></w<></w 	0.1 ug/L		

PARAMETERS					DA	TE			DETECTION LIMIT	DRINKING WATER OB
	DE	EC 16	DEC 23	JAN 6						GUIDELIN
133 PENTACHLOROPHENOL 133 (CHP) ng/L	R								50 ng/L	10000 ng/L
134 2,3,4-TRICHLOROPHENOL 134 (CHF) ng/L	R T								100 ng/L	
135 2,3,4,5-TETRACHLOROPHENOL 135 (CHP) ng/L	R T								50 ng/L	
136 2,3,5,6-TETRACHLOROPHENOL 136 (CHP) ng/L	R								50 ng/L	
137 2,4,5-TRICHLOROPHENOL 137 (CHP) ng/L	R								50 ng/L	
138 2,4,6-TRICHLOROPHENOL 138 (CHP) ng/L	R								50 ng/L	10000 ng/L
139 ZINC 139 (MET) mg/L				0.003 0.003					0.001 mg/L	5 mg/L
140 PENTACHLOROPROPANE 140 (MS) ug/L	R T								0.1 ug/L	
141 PENTACHLOROPROPENE 141 (MS) ug/L	R T								0.1 ug/L	
142 HEXACHLOROPROPENE 142 (MS) ug/L	R								0.1 ug/L	
143 TETRACHLORBUTANE 143 (MS) ug/L	R								0.1 ug/L	

PARAMETERS					D A	TE					DETECTION	DRINKING WATER OBJ/
	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELINE1
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
145 PENTACHLOROANALINE	NS NS		NS NS	<w< td=""><td>0.1 ug/L</td><td></td></w<>	0.1 ug/L							
146 FLUORANIHENE R	NS NS		NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L							
	NS NS		NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L							
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
	NS NS	X <t <w< td=""><td>0.1 ug/L</td><td></td></w<></t 	0.1 ug/L									
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td>2</td></w<></w 	0.1 ug/L	2								

PARAMETERS	DATE DEC 16 DEC 23 JAN 6	DETECTION DRINKING LIMIT WATER OBJ/ GUIDELINE ¹
144 PENTACHLOROBUTADIENE R 144 (MS) ug/L T		0.1 ug/L
145 N-DICHLOROMETHYLENE- 145 PENTACHLOROANALINE 145 (MS) ug/L T		0.1 ug/L
146 FLUORANIHENE R 146 (MS) ug/L T		0.1 ug/L
147 NAPHIHALENE R 147 (MS) ug/L T		0.1 ug/L
148 METHYL PHENANTHRENE R 148 (MS) ug/L T		0.1 ug/L
149 PYRENE R 149 (MS) ug/L T		0.1 ug/L
150 DIPHENYL ETHER R 150 (MS) ug/L T		0.1 ug/L
151 DI-N-BUTYL PHTHALATE R 151 (MS) ug/L T		0.1 ug/L
152 CL BIPHENYL R 152 (MS) ug/L T		0.1 ug/L
153 ATRAZINE R 153 (MS) ug/L T		0.1 ug/L

PARAMETERS					D A	TE					DETECTION LIMIT	WATER OBJ/
TUMETING	JUN 5	JUL 3	AUG 6	SEP 3	OCT 7	NOV 5	NOV 15	NOV 26	DEC 2	DEC 10		GUIDELINE1
	NS NS	<w <w< td=""><td>0.1 ug/L</td><td></td></w<></w 	0.1 ug/L									
	NS NS	NS NS		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w X<t< td=""><td>0.1 ug/L</td><td></td></t<></w 	0.1 ug/L	
	NS NS	X <t <w< td=""><td>0.1 ug/L</td><td></td></w<></t 	0.1 ug/L									
157 BIPHENYL IST (MS) ug/L	NS NS	<w X<t< td=""><td>0.1 ug/L</td><td></td></t<></w 	0.1 ug/L									
	NS NS	<w X<t< td=""><td>0.1 ug/L</td><td></td></t<></w 	0.1 ug/L									
		in .										
										s		

LAB - Chemistry (LAB)

FLD - Chemistry (FIELD) BAC - Bacteriological

MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

PARAMETERS	DEC 16	DEC 23	JAN 6	D A	TE			DETECTION LIMIT	DRINKING WATER OBJ/ GUIDELINE ¹
154 CARBON TETRACHLORIDE R 154 (MS) ug/L T								0.1 ug/L	
155 DIBROMOCHLOROMETHANE R 155 (MS) ug/L T							8	0.1 ug/L	
156 TETRACHLOROETHYLENE R 156 (MS) ug/L T								0.1 ug/L	
157 BIPHENYL R 157 (MS) ug/L T								0.1 ug/L	
158 BROMOFORM R 158 (MS) ug/L T								0.1 ug/L	
			W						

LAB - Chemistry (LAB) FLD - Chemistry (FIELD)

BAC - Bacteriological

MS - Mass Spec. Ana.

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols

SPC - Specific Pesticides

TABLE A

WALPOLE ISLAND WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

					DETECTION LIMIT	DRINKING WATER OBJ						
PARAMETERS		NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE	
1 ALKALINITY 1 (LAB)	mg/L I	83.8 75.6	81.2 72.0	79.8 70.4				80.6 71.0		0.2 mg/L		
2 ALUMINUM 2 (MET)		0.250	NR NR	0.021 0.021	0.300 0.039	0.042 0.036	0.073 0.043	0.026 0.032	0.054 0.040	0.003 mg/L		
3 ARSENIC 3 (MET)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td><td></td></w<></w 	0.001 mg/L	0.05 mg/L	
4 BARIUM 4 (MET)		0.018	NR NR	0.011 0.012	0.013 0.012	0.012	0.011 0.011	0.013 0.011	0.011 0.011	0.001 mg/L	1 mg/L	
5 BORON 5 (MET)		<w <w< td=""><td>NR NR</td><td>0.14 0.03</td><td>0.04 0.08</td><td>0.03</td><td>0.12 0.11</td><td>0.10 0.05</td><td>0.04 0.04</td><td>0.02 mg/L</td><td>5 mg/L</td><td></td></w<></w 	NR NR	0.14 0.03	0.04 0.08	0.03	0.12 0.11	0.10 0.05	0.04 0.04	0.02 mg/L	5 mg/L	
6 BERYLLIUM 6 (MET)		<w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w></td></w<></w 	<w <w<="" td=""><td>0.001 mg/L</td><td></td><td></td></w>	0.001 mg/L		
7 BENZENE 7 (VOL)		<w <w<="" td=""><td>1</td><td><w <w< td=""><td><w< td=""><td>1 2</td><td></td><td><w 4</w </td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w </td></w>	1	<w <w< td=""><td><w< td=""><td>1 2</td><td></td><td><w 4</w </td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></td></w<></w 	<w< td=""><td>1 2</td><td></td><td><w 4</w </td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<>	1 2		<w 4</w 		1 ug/L	10 ug/L	h
8 TOLUENE 8 (VOL)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>14300 ug/L</td><td>е</td></w<></w 		1 ug/L	14300 ug/L	е
9 ETHYLBENZENE 9 (VOL)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>1400 ug/L</td><td>е</td></w<></w 		1 ug/L	1400 ug/L	е
10 P-XYLENE 10 (VOL)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>е</td></w<></w 		1 ug/L	620 ug/L	е
11 M-XYLENE 11 (VOL)		<w <w<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L</td><td>С</td></w<></w 		1 ug/L	620 ug/L	С

PARAMETERS					D A	TE			DETECTION	DRINKING WATER OBJ/
	VOM	7 6 NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE ¹
12 O-XYLENE 12 (VOL) ug/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 		1 ug/L	620 ug/L c
13 CALCIUM 13 (LAB) mg/L	R 28.5 T 28.5		27.5 28.2	<w <w< td=""><td>:Q</td><td></td><td>27.0 27.5</td><td></td><td>0.1 mg/L</td><td></td></w<></w 	:Q		27.0 27.5		0.1 mg/L	
14 CYANIDE 14 (MET) mg/L	R <w T <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 	0.001 mg/L	0.2 mg/L
15 CADMIUM 15 (MET) mg/L	R T <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 	0.0003 mg/L	0.005 mg/L
16 CHLORIDE 16 (LAB) mg/L	R 8.4 T 10.0		8.6 9.0			ú	8.0 8.8		0.2 mg/L	250 mg/L
17 COLOUR TCU 17 (LAB)	R 18.0 T 0.5		2.0 <w< td=""><td></td><td></td><td></td><td>2.5 <w< td=""><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></w<>				2.5 <w< td=""><td></td><td>0.5 TCU</td><td>5 TCU</td></w<>		0.5 TCU	5 TCU
18 CONDUCTIVITY 18 (LAB) umho/cm	R 230 T 236		223 235				223.00 231.00		0.01 UMHO/CM	
19 COBALT 19 (MET) mg/L	R .002 T .003		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td></w<></w 	0.001 mg/L	
20 CHROMIUM 20 (MET) mg/L	R 0.00		0.001	0.002 0.001		0.002 0.001	<w <w< td=""><td>0.001 0.002</td><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w 	0.001 0.002	0.001 mg/L	0.05 mg/L
21 COPPER 21 (MET) mg/L	R 0.00		<w 0.003</w 			0.007 0.010	0.001 0.004	0.002 0.004	0.001 mg/L	1 mg/L
22 F. COLIFORM MF 22 (BAC) count/100mL	R 168 T NA	NR NA	120 NA		178 NA	510 NA		109 NA	0	0/0.1L mL

PARAMETERS					D A	TE			DETECTION LIMIT	DRINKING WATER OBJ/
PARAVILIERS	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		CUIDELINE
	0.410 0.019	NR NR	0.043 0.010	0.330 0.007	0.036 0.006	0.0 4 2 0.007	0.035 0.009	0.050 0.009	0.002 mg/L	0.3 mg/L
	0.08 0.07	0.08 0.07	0.07 0.06				0.09 0.06		0.01 mg/L	2.4 mg/L
25 FIELD CHLORINE (COMBINED) R 25 (FLD) T	NA 0.5	NA NS	NA 0.2	NA NS	NA NS	NA NS	NA NS	NA NS		
	NA 1.5	NA NS	NA 0.7	NA NS	NA >1.00	NA NS	NA NS	NA NS		
	NA 2.0	NA NS	NA 0.9	NA NS	NA >1.00	NA >1.00	NA >1.00	NA NS		121
	7.9 7.7	NS NS	7.9 · 7.4	NS 7.4	7.80 7.40	7.80 7.50	7.90 7.50	7.90 NS		
	NS NS	NS NS	NS NS	NS 5.5	4.5 5.5	3.0 3.0	3.0 6.0	1.0 NS		
	17.1 0.64	NS NS	1.8 NS	NS NS	NS NS	3.40 0.80	4.40 0.40	4.10 NS		1 FTU
	103 102	97.5 101	97.9 99.8				97.3 98.5		0.5 mg/L	
	OP 31	NR NR	1300 0		1000 AW	510 0		1400	0	500 orga- nisms per mL
	<w <w< td=""><td>NR NR</td><td><w 0.01</w </td><td>0.01 <w< td=""><td><w <w< td=""><td>0.01 <w< td=""><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	NR NR	<w 0.01</w 	0.01 <w< td=""><td><w <w< td=""><td>0.01 <w< td=""><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.01 <w< td=""><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<></td></w<></w 	0.01 <w< td=""><td>0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<>	0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<>	0.01 ug/L	1 ug/L

PARAMETERS						D A	TE			DETECTION	DRINKING WATER OBJ/
TAIGHEILIG		NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		CUIDELINE ¹
34 MAGNESIUM 34 (LAB)		R 7.70 T 7.60	7.30 7.45	7.10 7.15				7.25 7.25		0.05 mg/L	
35 MANGANESE 35 (MET)		R <w T 0.001</w 	NIR NIR	0.001 0.001	0.008	0.002 0.001		0.002 0.001	0.003 0.001	0.001 mg/L	0.05 mg/L
36 MOLYBDENUM 36 (MET)		R <w T 0.001</w 	NIR NIR	0.001 0.002	0.001 0.001	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w></td></w<></w 	<w <w<="" td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w>	0.001 mg/L	0.25 mg/L s
37 SODIUM 37 (LAB)	mg/L	R 5.5 F 5.5	6.2 6.5	5.5 5.5				6.0 6.0		0.1 mg/L	
38 NICKEL 38 (MET)		R <w F <w< td=""><td>NIR NIR</td><td><w <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	NIR NIR	<w <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td></td></w></td></w<></w 	<w <w<="" td=""><td>0.002 mg/L</td><td></td></w>	0.002 mg/L	
39 AMMONIUM TO 39 (LAB)		R <w F <w< td=""><td>NIR NIR</td><td><w <w< td=""><td></td><td></td><td></td><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	NIR NIR	<w <w< td=""><td></td><td></td><td></td><td><w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 				<w <w< td=""><td></td><td>0.05 mg/L</td><td></td></w<></w 		0.05 mg/L	
40 NITRITE 40 (LAB)		R 0.01 <i< td=""><td><w <w<="" td=""><td>0.01<t <w< td=""><td></td><td></td><td></td><td><w <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w </td></w<></t </td></w></td></i<>	<w <w<="" td=""><td>0.01<t <w< td=""><td></td><td></td><td></td><td><w <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w </td></w<></t </td></w>	0.01 <t <w< td=""><td></td><td></td><td></td><td><w <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w </td></w<></t 				<w <w< td=""><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></w 		0.005 mg/L	1 mg/L as N
41 NITRATE 41 (LAB)		R 0.50 T 0.40	0.35 0.40	0.25 <t 0.25<t< td=""><td></td><td></td><td></td><td>0.30<t 0.25<t< td=""><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t </td></t<></t 				0.30 <t 0.25<t< td=""><td></td><td>0.05 mg/L</td><td>10 mg/L as N</td></t<></t 		0.05 mg/L	10 mg/L as N
42 NITROGEN TO 42 (LAB)		R NR I'NR	0.20 <t <w< td=""><td>0.20<t <w< td=""><td></td><td></td><td></td><td>0.20<t <w< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></w<></t </td></w<></t </td></w<></t 	0.20 <t <w< td=""><td></td><td></td><td></td><td>0.20<t <w< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></w<></t </td></w<></t 				0.20 <t <w< td=""><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></w<></t 		0.1 mg/L	0.15 mg/L *
43 PRESENCE/ABS 43 (BAC)		R NA I ABSENI	NA NR	NA ABSENT	NA	NA ABSENT	NA ABSENT	NA	NA ABSENT	0	Absent
44 LEAD 44 (MET)		R <w T <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w></td></w<></w 	<w <w<="" td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w>	0.003 mg/L	0.05 mg/L

DADAMENADO		DATE									DETECTION	DRINKIN WATER C	Maria and and
PARAMETERS		NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6			GUIDELI	
45 PH 45 (LAB)		8.19 7.83		8.14 7.67				8.17 7.41					
46 PHOSPHORUS FILT 46 (LAB) mg			NIR NIR	<w <w< td=""><td></td><td>ᆈ</td><td></td><td><w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w 		ᆈ		<w <w< td=""><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 			0.01 mg/L		
47 PHOSPHORUS TOTA 47 (LAB) mg		0.02 <t <w< td=""><td>NIR NIR</td><td><w <w< td=""><td></td><td></td><td></td><td>0.020<1 0.020<1</td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></t 	NIR NIR	<w <w< td=""><td></td><td></td><td></td><td>0.020<1 0.020<1</td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 				0.020<1 0.020<1			0.01 mg/L		
48 ALDRIN 48 (PST) ng		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5</td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			5	1 ng/L	700 ng/L	**
49 ALPHA BHC 49 (PST) ng		2 <t 4<t< td=""><td>3<t 3<t< td=""><td>2<t 2<t< td=""><td><w 2<t< td=""><td>4<t 4<t< td=""><td>3<t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t </td></t<></t </td></t<></w </td></t<></t </td></t<></t </td></t<></t 	3 <t 3<t< td=""><td>2<t 2<t< td=""><td><w 2<t< td=""><td>4<t 4<t< td=""><td>3<t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t </td></t<></t </td></t<></w </td></t<></t </td></t<></t 	2 <t 2<t< td=""><td><w 2<t< td=""><td>4<t 4<t< td=""><td>3<t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t </td></t<></t </td></t<></w </td></t<></t 	<w 2<t< td=""><td>4<t 4<t< td=""><td>3<t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t </td></t<></t </td></t<></w 	4 <t 4<t< td=""><td>3<t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t </td></t<></t 	3 <t 3<t< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>с</td></t<></t 				1 ng/L	700 ng/L	с
50 BETA BHC 50 (PST) ng		1 <t <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></t 	<w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>С</td></w<></w 				1 ng/L	300 ng/L	С
51 LINDANE 51 (PST) ng		<w 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 				1 ng/L	4000 ng/L	
52 ALPHA CHLORDANE 52 (PST) ng		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 				2 ng/L	700 ng/L	***
53 GAMMA CHLORDANE 53 (PST) ng	E R g/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>***</td></w<></w 				2 ng/L	700 ng/L	***
54 DIELDRIN 54 (PST) ng	g/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 				2 ng/L	700 ng/L	**
55 METHOXYCHLOR 55 (PST) ng	g/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td>)</td></w<></w 				5 ng/L	100000 ng/L)

DADAMINI	T)C					D A	T E			DETECTION	DRINKING WATER OBJ/
PARAMETT	<u> </u>	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6	Limit	GUIDELINE ¹
56 ENDRIN 56 (PST)	ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w 			4 ng/L	200 ng/L
57 THIODAN 57 (PST)	SULPHATE ng/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>4 ng/L</td><td></td></w<></w 			4 ng/L	
58 THIODAN 58 (PST)	I ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 			2 ng/L	74000 ng/L ea
59 THIODAN 59 (PST)	II ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w 			4 ng/L	74000 ng/L ea
60 METHYLP 60 (SPC)	ARATHION	R								50 ng/L	7000 ng/L
61 PARATHIO 61 (SPC)	DN	R								50 ng/L	35000 ng/L
62 HEPTACHI 62 (PST)	OR EPOXIDE ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w 			1 ng/L	3000 +++ ng/L
63 HEPTACHI 63 (PST)	i.OR ng/L	R <w T <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 4<t< td=""><td><w <w< td=""><td><w 1<t< td=""><td><w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 1<t< td=""><td><w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></t<></w </td></w<></w 	<w 1<t< td=""><td><w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w </td></t<></w 	<w 2<t< td=""><td></td><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></t<></w 			1 ng/L	3000 ng/L +++
64 MIREX 64 (PST)	ng/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td><u></u></td><td></td><td>5 ng/L</td><td></td></w<></w 	<u></u>		5 ng/L	
65 OXYCHLOR 65 (PST)	RDANE ng/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>2 ng/L</td><td></td></w<></w 			2 ng/L	
66 O,P,-DD 66 (PST)	T ng/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w 			5 ng/L	30000 ng/L d

DADAMENTOS						DA	тЕ				DETECTION LIMIT	DRINKING WATER OBJ/
PARAMETERS		NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6			GUIDELINE1
67 PCB 67 (PST)	ng/L	< \W < \W	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>V</th><th>20 ng/L</th><th>3000 ng/L t</th></w<></w </th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>V</th><th>20 ng/L</th><th>3000 ng/L t</th></w<></w </th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th><w <w< th=""><th></th><th></th><th>V</th><th>20 ng/L</th><th>3000 ng/L t</th></w<></w </th></w<></w </th></w<></w 	<w <w< th=""><th><w <w< th=""><th></th><th></th><th>V</th><th>20 ng/L</th><th>3000 ng/L t</th></w<></w </th></w<></w 	<w <w< th=""><th></th><th></th><th>V</th><th>20 ng/L</th><th>3000 ng/L t</th></w<></w 			V	20 ng/L	3000 ng/L t
68 P,P-DDD 68 (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 				5 ng/L	d
69 P,P-DDE 69 (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>d</td></w<></w 				1 ng/L	d
70 P,P-DDT 70 (PST)		< W < W	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>d</td></w<></w 				5 ng/L	d
71 AMETRINE 71 (SPC)		W> X	+	++							50 ng/L	
72 ATRAZINE 72 (SPC)		R <w <w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+	+							50 ng/L	
73 DIAZINON 73 (SPC)		R NS I'NS	+	+							50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)		R <w C <w< td=""><td>++</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++	+							100 ng/L	
75 PROMETONE 75 (SPC)		R <w C <w< td=""><td>++</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	++	+							50 ng/L	
76 PROPAZINE 76 (SPC)		R <w F <w< td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	++	++							50 ng/L	
77 PROMETRYNE 77 (SPC)		R <w F <w< td=""><td>+++</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+++	+							50 ng/L	

PARAMETERS						DA	TE			DETECTION	DRINKING WATER OBJ/
 		NOV 6	NOV 1	5 NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE ¹
SENCOR (SPC)		< W < W	++	++						100 ng/L	
SIMAZINE (SPC)		<w <w<="" td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w>	++	++						50 ng/L	
DICAMBA (SPC)		<w <w<="" td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w>	++	++						100 ng/L	
PICLORAM (SPC)		<w <w< td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++	++						100 ng/L	
SILVEX (SPC)	ng/L	<w <w< td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td></w<></w 	++	++						50 ng/L	10000 ng/L
2,4-D (SPC)	ng/L		+	++						100 ng/L	100000 ng/L
2,4-D BUTYRIO (SPC)	C ACID F		+	+						200 ng/L	
2,4-D PROPION (SPC)		<w <w< td=""><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	+	+						100 ng/L	
2,4,5-T (SPC)	ng/L I	<w <w< td=""><td>++</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	++	++						50 ng/L	
TOTAL SOLIDS (LAB)	mg/L F	150 153	146 155	145 153				145 150		1 mg/L	
SELENIUM (MET)		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.01 mg/L</td></w<></w 	0.001 mg/L	0.01 mg/L

DADAMETERS	Π				D A	TE			DETECTION	DRINKING WATER OBJ/
PARAMETERS	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE ¹
	0.12	NR NR		0.099 0.099	0.091 0.089	0.083 0.090	0.093 0.090	0.092 0.092	0.001 mg/L	
	5900	NR NR	900 0		1300 0	600 0		1400	0	ODWO Bacti
	12300	NR NR	1000 0		2800 0	1800 2		9200	0	OWDO Bacti
	17.1 0.10 <t< td=""><td>6.90 0.12<t< td=""><td>1.89 0.15<t< td=""><td>,</td><td></td><td></td><td>2.10 0.12<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<></td></t<></td></t<>	6.90 0.12 <t< td=""><td>1.89 0.15<t< td=""><td>,</td><td></td><td></td><td>2.10 0.12<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<></td></t<>	1.89 0.15 <t< td=""><td>,</td><td></td><td></td><td>2.10 0.12<t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<>	,			2.10 0.12 <t< td=""><td></td><td>0.01 FIU</td><td>1 FIU</td></t<>		0.01 FIU	1 FIU
	< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NR NR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>IS <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>IS <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>IS <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>IS <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<></td></w<></w 	IS <w< td=""><td><w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w></td></w<>	<w <w<="" td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w>	0.002 mg/L	.02 mg/L t
	0.001 W		0.001 0.001	0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <w<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w 	<w <w<="" td=""><td>0.001 mg/L</td><td></td></w>	0.001 mg/L	
	<w 5 9<t< td=""><td>38 6<t< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td>1<t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></t<></td></t<></w 	38 6 <t< td=""><td><w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td>1<t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t </td></w<></t </td></w<></w </td></w<></w </td></t<>	<w <w< td=""><td><w <w< td=""><td>3<t <w< td=""><td>1<t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t </td></w<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>3<t <w< td=""><td>1<t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t </td></w<></t </td></w<></w 	3 <t <w< td=""><td>1<t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t </td></w<></t 	1 <t <w< td=""><td></td><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></t 			1 ng/L	4500 ng/L e
	< W < W	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 		1 ug/L	.3 ug/L h
	< \w C < \w	<w <w< td=""><td>DR DR</td><td></td><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w 	DR DR						5 ug/L	40 ug/L c
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td></td></w<></w 		1 ug/L	
	R <w C <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 						1 ug/L	

PARAMETERS					D A	TE			DETECTION LIMIT	DRINKI WATER	
	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		CUIDEL	
100 CHLOROFORM 100 (VOL) ug/L	R <w T 38</w 	<w 18</w 	<w 16</w 	<w< td=""><td><w 16</w </td><td></td><td><w 24</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<>	<w 16</w 		<w 24</w 		1 ug/L	350 ug/L	++
101 DICHLOROMETHANE 101 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td>DR DR</td><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>C</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>DR DR</td><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>C</td></w<></w </td></w<></w </td></w<></td></w<></w 	DR DR	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>C</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>C</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ug/L</td><td>40 ug/L</td><td>C</td></w<></w 		5 ug/L	40 ug/L	C
102 1,1,1-TRICHLOROETHANE 102 (VOL) ug/L	R T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
103 DICHLOROETHANE 103 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		1 ug/L		
104 1,2-DICHLOROETHANE 104 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td>-</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td>-</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td>-</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td>-</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td>-</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w </td></w<></w 	-	<w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ŀ</td></w<></w 		1 ug/L	10 ug/L	ŀ
105 CARBON TETRACHLORIDE 105 (VOL) ug/L	R <w T 1</w 	<w <w< td=""><td><w 1</w </td><td>1</td><td>1 <w< td=""><td></td><td><w 1</w </td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></td></w<></w 	<w 1</w 	1	1 <w< td=""><td></td><td><w 1</w </td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<>		<w 1</w 		1 ug/L	3 ug/L	ŀ
106 1,2 DICHLOROPROPANE 106 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>eŗ</td></w<></w 		1 ug/L	6 ug/L	eŗ
107 TRICHLOROETHYLENE 107 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ŀ</td></w<></w 		1 ug/L	30 ug/L	ŀ
108 DICHLOROBROMOMETHANE 108 (VOL) ug/L	R <w T 16</w 	<w 10</w 	<w 10</w 	<w< td=""><td><w 10</w </td><td></td><td><w 11</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<>	<w 10</w 		<w 11</w 		1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE 109 (VOL) ug/L	R <w T <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w 		1 ug/L	6 ug/L	•
110 CHLORODIBROMOMETHANE 110 (VOL) ug/L	R <w T 11</w 	<w 10</w 	<w 16</w 	<w< td=""><td><w 14</w </td><td></td><td><w 11</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<>	<w 14</w 		<w 11</w 		1 ug/L	350 ug/L	++

DADAMITETO					D A	TE			DETECTION LIMIT	DRINKIN WATER O	
PARAMETERS	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELI	NEI
111 TETRACHLOROETHYLENE R 111 (VOL) ug/L T	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></td></w></td></w<></w 	<w <<="" td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></td></w>	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 		1 ug/L	10 ug/L	h
112 BROMOFORM R 112 (VOL) ug/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w 2</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w 2</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w 2</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w 2</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<>	<w <w< td=""><td></td><td><w 2</w </td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 		<w 2</w 		1 ug/L	350 ug/L	++
113 1,1,2,2-TETRACHLOROETHANE R 113 (VOL) ug/L T	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td>X 33 III</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td>X 33 III</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td>X 33 III</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td>X 33 III</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td>X 33 III</td><td><w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	X 33 III	<w <w< td=""><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 		1 ug/L	1.7 ug/L	е
	<w 2<t< td=""><td>32 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></t<></w 	32 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 			1 ng/L	10 ng/L	h
	<w 8<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td>Š</td><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 	Š		1 ng/L	19000 ng/L	е
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 			1 ng/L		
	<w 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>e</td></w<></w 			1 ng/L	74000 ng/L	e
	<w 65</w 	<w 38</w 	<w 42</w 	<w< td=""><td><₩ 40</td><td></td><td><w 48</w </td><td></td><td>3 ug/L</td><td>350 ug/L</td><td>++</td></w<>	<₩ 40		<w 48</w 		3 ug/L	350 ug/L	++
	<w <w< td=""><td><w <w< td=""><td><w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td><w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w </td></w<></w 	<w 13<t< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></t<></w 			5 ng/L		
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 14<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>ç</td></w<></w 			5 ng/L	10000 ng/L	ç
	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td></td><td></td></w<></w 			5 ng/L		

PARAMETERS						D A	TE				DETECTION	DRINKING WATER OBJ
PARAMETERS	NO	0V 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6	<u> </u>		GUIDELINE
122 CHLOROBENZENE 122 (VOL) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L h</td></w<></w 			1 ng/L	100-300 ng/L h
123 1,4-DICHLOROBENZENE 123 (VOL) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w 			1 ug/L	400 ug/L
124 1,3-DICHLOROBENZENE 124 (VOL) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w 			1 ug/L	400 ug/L
125 1,2-DICHLOROBENZENE 125 (VOL) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td></w<></w 			1 ug/L	400 ug/L
126 TRIFLUOROCHLOROTOLUENE 126 (CHA) ug/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></w 	<w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>8</td><td>1 ug/L</td><td></td></w<></w 		8	1 ug/L	
127 1,2,3-TRICHLOROBENZENE 127 (CHA) ng/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w 				5 ng/L	10000 ng/L
128 1,2,3,4-TETRACHLOROBENZENE 128 (CHA) ng/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w 				1 ng/L	38000 ng/L
129 1,2,3,5-TETRACHLOROBENZENE 129 (CHA) ng/L	R <w T <w< td=""><td></td><td><w 23</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w 23</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td></td></w<></w 				1 ng/L	
130 1,2,4-TRICHLOROBENZENE 130 (CHA) ng/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w 13<t< td=""><td><w 17<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w 13<t< td=""><td><w 17<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 13<t< td=""><td><w 17<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></t<></w 	<w 17<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td></w<></w 				5 ng/L	15000 ng/L
131 1,2,4,5-TETRACHLOROBENZENE 131 (CHA) ng/L	R <w T <w< td=""><td></td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 		<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td></w<></w 				1 ng/L	38000 ng/L
132 1,3,5-TRICHLOROBENZENE 132 (CHA) ng/L	R <w T <w< td=""><td></td><td><w 24<t< td=""><td><w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></t<></w </td></w<></w 		<w 24<t< td=""><td><w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 6<t< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td></w<></w 				5 ng/L	10000 ng/L

						D A	T E			DETECTION	DRINKING WATER OF	
PARAMETERS	NOV	6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6	Divit	GUIDELIN	144
133 PENTACHLOROPHENOL 133 (CHP) ng/L	R <w T <w< td=""><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 		+	+						50 ng/L	10000 ng/L	h
134 2,3,4-TRICHLOROPHENOL 134 (CHP) ng/L	R <w T <w< td=""><td></td><td>+ +</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w 		+ +	+						100 ng/L		
135 2,3,4,5-TETRACHLOROPHENOL 135 (CHP) ng/L	R <w T <w< td=""><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 		+	+						50 ng/L		
136 2,3,5,6-TETRACHLOROPHENOL 136 (CHP) ng/L	R <w T <w< td=""><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 		+	+						50 ng/L		
137 2,4,5-TRICHLOROPHENOL 137 (CHP) ng/L	R <w T <w< td=""><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 		+	+						50 ng/L		
138 2,4,6-TRICHLOROPHENOL 138 (CHP) ng/L	R <w T <w< td=""><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 		+	+						50 ng/L	10000 ng/L	h
139 ZINC 139 (MET) mg/L	R 0.00		NR NR	0.004	0.004	0.003 0.004	0.006	0.004	0.002 0.005	0.001 mg/L	5 mg/L	h
140 PENTACHLOROPROPANE 140 (MS) ug/L	R NS T NS		NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 				0.1 ug/L		
141 PENTACHLOROPROPENE 141 (MS) ug/L	R NS T NS		NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 				0.1 ug/L		
142 HEXACHLOROPROPENE 142 (MS) ug/L	R NS T NS		NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 				0.1 ug/L		
143 TETRACHLORBUTANE 143 (MS) ug/L	R NS T NS		NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 				0.1 ug/L		

PARAMETERS					D A	TЕ			DETECTION	DRINKING WATER OBJ/
	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE ¹
144 PENTACHLOROBUTADIENE 144 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <<="" td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w>				0.1 ug/L	
145 N-DICHLOROMETHYLENE- 145 PENTACHLOROANALINE 145 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<>				0.1 ug/L	
146 FLUORANTHENE 146 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
147 NAPHIHALENE 147 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w >W</w 				0.1 ug/L	
148 METHYL PHENANTHRENE 148 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td>T.</td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 	T.			0.1 ug/L	
149 PYRENE 149 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td><u>.</u></td><td></td><td>0.1 ug/L</td><td></td></w<></w 		<u>.</u>		0.1 ug/L	
150 DIPHENYL ETHER 150 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
151 DI-N-BUTYL PHTHALATE 151 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
152 CL BIPHENYL 152 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
153 ATRAZINE 153 (MS) ug/L	R NS T NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
							- 5			

DADAMETER					D A	TE			DETECTION	DRINKING WATER OBJ/
PARAMETERS	NOV 6	NOV 15	NOV 25	DEC 2	DEC 9	DEC 17	DEC 23	JAN 6		GUIDELINE ¹
154 CARBON TETRACHLORIDE F 154 (MS) ug/L	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
	NS NS	NS NS		NS NS	<w X<t< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 				0.1 ug/L	
	NS NS	NS NS	NS NS	NS NS	X <t X<t< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></t<></t 				0.1 ug/L	
	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	
	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 				0.1 ug/L	

LAB - Chemistry (LAB) FLD - Chemistry (FIELD)

BAC - Bacteriological

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols

SPC - Specific Pesticides

TABLE A

WINDSOR WATER TREATMENT PLANT 1985-1986 DWSP DATA

PAGE 1 Updated: January 21, 1986

Γ	PARAMETERS	Ukonne upakasani upakasan nemana oda yar osmani mene					D A	TE				DETECTION LIMIT	DRINKING WATER OBJ
	PARAMETERS		JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		CUIDELINE
255	ALKALINITY (LAB)		!NR 76.6	!NR 75.0	91.6 79.8	91.2 67.2	92.8 80.2	81.8 77.8	107.2 90.4			0.2 mg/L	
	ALUMINUM (MET)		0.091 0.170			2.300 0.200		0.790 0.098		0.230 0.300	0.063 0.110	0.003 mg/L	
	ARSENIC (MET)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></w 	0.001 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.05 mg/L</td></w<></w 	0.001 mg/L	0.05 mg/L
	BARIUM (MET)		0.048 0.014		0.015 0.01 4	0.023 0.014	0.017 0.013	0.016 0.012			0.011 0.012	0.001 mg/L	1 mg/L
	BORON (MET)		0.10 0.15		0.07 0.02	0.02 0.01	0.02 <₩	0.08 0.08	<w 0.03</w 	0.08 0.06	0.05 0.04	0.02 mg/L	5 mg/L
1	BERYLLIUM (MET)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w </td></w<></w 	<w <w< td=""><td><w <<="" td=""><td>0.001 mg/L</td><td></td></w></td></w<></w 	<w <<="" td=""><td>0.001 mg/L</td><td></td></w>	0.001 mg/L	
	BENZENE (VOL)		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><₩ <₩</td><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<₩ <₩	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td></w<></w 			1 ug/L	10 ug/L
	TOLUENE (VOL)	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>14300 ug/L</td></w<></w 			1 ug/L	14300 ug/L
	ETHYLBENZENE (VOL)	No.	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1400 ug/L</td></w<></w 			1 ug/L	1400 ug/L
1157-05	P-XYLENE (VOL)	1/17	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><₩ <₩</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w 	<₩ <₩	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w 			1 ug/L	620 ug/L
ESSENTED	M-XYLENE (VOL)		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w </td></w<>	<w <w< td=""><td><w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w></td></w<></w 	<w <<="" td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w </td></w>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L</td></w<></w 			1 ug/L	620 ug/L

PARAMETERS						D A	ΤE				DETECTION	DRINKING WATER OBJ/
		JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		GUIDELINE ¹
12 O-XYLENE 12 (VOL) ug/L	9.800	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>620 ug/L c</td></w<></w 			1 ug/L	620 ug/L c
13 CALCIUM 13 (LAB) mg/L	107.0	!NR 27.5	!NR 27.0	31.6 31.6	32.0 32.2	34.5 33.8	27.0 30.4	41.0 42.0			0.1 mg/L	
14 CYANIDE 14 (MET) ug/L	.7.2	<w <w< td=""><td>!NR <w< td=""><td>. V07364</td><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td>. V07364</td><td>NIR NIR</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	. V07364	NIR NIR	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td>0.2 mg/L</td></w<></w 	0.001 mg/L	0.2 mg/L
15 CADMIUM 15 (MET) mg/L	ST (3)	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.0003 mg/L</td><td>0.005 mg/L</td></w<></w 	0.0003 mg/L	0.005 mg/L
16 CHLORIDE 16 (LAB) mg/L		!NR 10.0		10.4 12.4	9.2 10.8	10.2 11.8	6.0 9.6	13.0 14.6			0.2 mg/L	250 mg/L
17 COLOUR TOU 17 (LAB)		!NR 0.5 <t< td=""><td></td><td></td><td>27.5 1.0<t< td=""><td>16.0 .5<t< td=""><td>12.0 1.0<t< td=""><td>21.0 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<></td></t<>			27.5 1.0 <t< td=""><td>16.0 .5<t< td=""><td>12.0 1.0<t< td=""><td>21.0 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<></td></t<>	16.0 .5 <t< td=""><td>12.0 1.0<t< td=""><td>21.0 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<></td></t<>	12.0 1.0 <t< td=""><td>21.0 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<></td></t<>	21.0 <w< td=""><td></td><td></td><td>0.5 TCU</td><td>5 TCU</td></w<>			0.5 TCU	5 TCU
18 CONDUCTIVITY 18 (LAB) umho/cr		!NR 222		255 255	248 258	265 269	222 249	310 322			0.01 UMHO/CM	
19 COBALT 19 (MET) mg/L	1000	0.001 <w< td=""><td></td><td>5-01035</td><td>0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>		5-01035	0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<>	0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td></w<></w 	0.001 mg/L	
20 CHROMIUM 20 (MET) mg/L		0.004 0.002			0.006 0.002	0.004 0.002	0.003 0.001	0.004 0.002	0.001 0.002	0.001 0.001	0.001 mg/L	0.05 mg/L
21 COPPER 21 (MET) mg/L		0.006 0.007					0.006 0.005	0.007 0.006	0.005 0.004	0.005 0.004	0.001 mg/L	1 mg/L
22 F. COLIFORM MF 22 (BAC) count/100ml		!NR NA			OP NA	>300 NA	73 NA	TN NA		87 NA	0	0/0.1L mL

PARAMETERS					D A	TE				DETECTION LIMIT	DRINKING WATER OBJ/
LUARITIO	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		GUIDELINE1
	0.005 0.012		0.230 0.027	2.300 0.042	1.100 <w< td=""><td>0.940 0.013</td><td>1.400 0.014</td><td>0.280 0.042</td><td>0.050 0.010</td><td>0.002 mg/L</td><td>0.3 mg/L</td></w<>	0. 94 0 0.013	1.400 0.014	0.280 0.0 4 2	0.050 0.010	0.002 mg/L	0.3 mg/L
	!NR 1.01		0.10 1.15	0.12 1.12	0.12 0.89	0.08 1.07	0.11 0.86			0.01 mg/L	2.4 mg/L
		NA 0.40	NA O	NA O	NA O	NA 0.3	11700.000.00	NA 0.80	na Ns		
			NA 1.45	NA 1.2	NA O	NA 1.2	(E)=(E)	NA 0.10	NS 1.0		
			NA 1.45	NA 1.2	NA 1.0	NA 1.5	1111 THE R. P. LEWIS CO., LANSING, MICH.	NA 0.90	NA >1.00		
	7.70 7.50	7.82 7.50	7.93 7.30	7.85 7.00	7.95 7.2	7.38 7.30	7.80 7.70	7.80 7.50	NS 7.50		
		GENERAL CO.	20.0 20.0	15.3 15.5	10.0 10.0	5.0 4.0	4.0 5.0	1.0 2.0	NS 1.0		
			11.0 0.67	54.0 0.49	36.0 0.74	30.0 0.61	49.00 0.58	17.00 1.40	NS 0.57		1 FIU
	!NR 98.3	!NR 97.1	111.8 111.6	113.0 118.0	120.0 119.0	97.7 108.0	142.0 144.0			0.5 mg/L	
			>2 4 00 27	>2 4 00 8	>2400 0	282 2	AW AW		125 4	0	500 orga- nisms per mL
	<\ 0.01	!NR 0.03	0.01 0.01	0.02 0.02	0.02 0.01	0.02 0.01	0.01 0.02	0.01 <w< td=""><td>0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<></td></w<>	0.01 <w< td=""><td>0.01 ug/L</td><td>1 ug/L</td></w<>	0.01 ug/L	1 ug/L

	PARAMETERS							DA	TE				DETECTION LIMIT	DRINKING WATER OBJ/
			,	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		CUIDELINE
	MAGNESIUM (LAB)	mg/L		!NR 7.2	!NR 7.2	8.0 8.0	8.0 7.8	8.35 8.35	7.35 7.80	9.50 9.60			0.05 mg/L	
7.00	MANGANESE (MET)			0.032 0.002	!NR 0.001	0.01 0.003	0.051 0.002	0.021 0.001	0.022 0.002	0.018 0.002	0.007 0.002	0.002 0.002	0.001 mg/L	0.05 mg/L
	MOLYBDENUM (MET)			0.004 0.002	!NR 0.001	0.001 0.001	0.002 0.002	0.001 0.001	0.001 0.001	0.002 0.001	<w 0.001</w 	<w <w< td=""><td>0.001 mg/L</td><td>0.25 mg/L s</td></w<></w 	0.001 mg/L	0.25 mg/L s
	SODIUM (LAB)			!NR 5.0	!NR 4.8	6.2 6.0	6.1 5.6	6.0 6.3	4.0 4.8	7.1 7.2			0.1 mg/L	
	NICKEL (MET)		R T	<w 0.002</w 	!NIR <w< td=""><td><w <w< td=""><td>0.006 0.002</td><td>0.003 <w< td=""><td>0.003 <w< td=""><td>0.003 0.001</td><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.006 0.002</td><td>0.003 <w< td=""><td>0.003 <w< td=""><td>0.003 0.001</td><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></w 	0.006 0.002	0.003 <w< td=""><td>0.003 <w< td=""><td>0.003 0.001</td><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<>	0.003 <w< td=""><td>0.003 0.001</td><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w </td></w<>	0.003 0.001	<w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 mg/L</td><td></td></w<></w 	0.002 mg/L	
100000	AMMONIUM TOTA (LAB)	AL mg/L		!NR <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<>	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>0.05 mg/L</td><td></td></w<></w 			0.05 mg/L	
1,072-35	NITRITE (LAB)	mg/L		!NIR <w< td=""><td>!NR 0.01<t< td=""><td>0.01<t <w< td=""><td><w <w< td=""><td>.015<t <w< td=""><td>.015<t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t </td></w<></t </td></w<></w </td></w<></t </td></t<></td></w<>	!NR 0.01 <t< td=""><td>0.01<t <w< td=""><td><w <w< td=""><td>.015<t <w< td=""><td>.015<t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t </td></w<></t </td></w<></w </td></w<></t </td></t<>	0.01 <t <w< td=""><td><w <w< td=""><td>.015<t <w< td=""><td>.015<t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t </td></w<></t </td></w<></w </td></w<></t 	<w <w< td=""><td>.015<t <w< td=""><td>.015<t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t </td></w<></t </td></w<></w 	.015 <t <w< td=""><td>.015<t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t </td></w<></t 	.015 <t .010<t< td=""><td>.030<t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t </td></t<></t 	.030 <t <w< td=""><td></td><td></td><td>0.005 mg/L</td><td>1 mg/L as N</td></w<></t 			0.005 mg/L	1 mg/L as N
0.000	NITRATE (LAB)	mg/L	R	!NR +	!NIR NIR	0.5 0.4	0.6 0.5	0.88	0.35 0.65	1.60 1.65			0.05 mg/L	10 mg/L as N
	NITROGEN TOTA (LAB)	AL KJELDAHL mg/L		!NIR <w< td=""><td>!NR <w< td=""><td>0.3<t 0.3<t< td=""><td>0.6<t 0.2<t< td=""><td>NR NR</td><td></td><td>0.30<t 0.20<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></t </td></t<></t </td></w<></td></w<>	!NR <w< td=""><td>0.3<t 0.3<t< td=""><td>0.6<t 0.2<t< td=""><td>NR NR</td><td></td><td>0.30<t 0.20<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></t </td></t<></t </td></w<>	0.3 <t 0.3<t< td=""><td>0.6<t 0.2<t< td=""><td>NR NR</td><td></td><td>0.30<t 0.20<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></t </td></t<></t 	0.6 <t 0.2<t< td=""><td>NR NR</td><td></td><td>0.30<t 0.20<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t </td></t<></t 	NR NR		0.30 <t 0.20<t< td=""><td></td><td></td><td>0.1 mg/L</td><td>0.15 mg/L *</td></t<></t 			0.1 mg/L	0.15 mg/L *
	PRESENCE/ABS (BAC)		RI	NA ABSENT	NA !NR	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT	NA ABSENT		NA ABSENT	0	Absent
	LEAD (MET)	mg/L	556	<w <w< td=""><td>!NIR <w< td=""><td>0.007 <w< td=""><td>0.01 <w< td=""><td>0.006 <w< td=""><td>0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	!NIR <w< td=""><td>0.007 <w< td=""><td>0.01 <w< td=""><td>0.006 <w< td=""><td>0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.007 <w< td=""><td>0.01 <w< td=""><td>0.006 <w< td=""><td>0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>	0.01 <w< td=""><td>0.006 <w< td=""><td>0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<>	0.006 <w< td=""><td>0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<></td></w<>	0.003 <w< td=""><td>0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<></td></w<>	0.004 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w </td></w<></w 	<w <w< td=""><td>0.003 mg/L</td><td>0.05 mg/L</td></w<></w 	0.003 mg/L	0.05 mg/L

PARAMETERS					D A	TE			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Company of the Comp	DETECTION LIMIT	WATER OB.	J/
TAVELLED	JUL	15 AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7			GUIDELIN	El
45 PH 45 (LAB)	R !NR T 7.4		7.08 7.38	8.22 7.02	8.30 7.61	8.11 7.39	8.17 7.32						
46 PHOSPHATES FRAC REACTIVE 46 (LAB) mg/L	R !NR T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<>	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>NR NR</td><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	NR NR	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></w 				0.01 mg/L		
47 PHOSPHORUS TOTAL 47 (LAB) mg/L	R !NR T <w< td=""><td>!NR <w< td=""><td>0.04T 0.02<t< td=""><td>0.08<t <w< td=""><td>NR (</td><td>040<t <w< td=""><td>0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></t </td></t<></td></w<></td></w<>	!NR <w< td=""><td>0.04T 0.02<t< td=""><td>0.08<t <w< td=""><td>NR (</td><td>040<t <w< td=""><td>0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></t </td></t<></td></w<>	0.04T 0.02 <t< td=""><td>0.08<t <w< td=""><td>NR (</td><td>040<t <w< td=""><td>0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></t </td></t<>	0.08 <t <w< td=""><td>NR (</td><td>040<t <w< td=""><td>0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t </td></w<></t 	NR (040 <t <w< td=""><td>0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<></td></w<></t 	0.060< <w< td=""><td></td><td></td><td></td><td>0.01 mg/L</td><td></td><td></td></w<>				0.01 mg/L		
48 ALDRIN 48 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			1 ng/L	700 ng/L	**
49 ALPHA BHC 49 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td>3<t 3<t< td=""><td>2<t 5<t< td=""><td>2<t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td>3<t 3<t< td=""><td>2<t 5<t< td=""><td>2<t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w </td></w<>	<w <w< td=""><td>3<t 3<t< td=""><td>2<t 5<t< td=""><td>2<t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t </td></t<></t </td></t<></t </td></w<></w 	3 <t 3<t< td=""><td>2<t 5<t< td=""><td>2<t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t </td></t<></t </td></t<></t 	2 <t 5<t< td=""><td>2<t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t </td></t<></t 	2 <t 4<t< td=""><td></td><td>3<t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t </td></t<></t 		3 <t 3<t< td=""><td></td><td></td><td>1 ng/L</td><td>700 ng/L</td><td>C</td></t<></t 			1 ng/L	700 ng/L	C
50 BETA BHC 50 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>300 ng/L</td><td>c</td></w<></w 			1 ng/L	300 ng/L	c
51 LINDANE 51 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w </td></t<></w 	<w 2<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w </td></t<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>4000 ng/L</td><td></td></w<></w 			1 ng/L	4000 ng/L	
52 ALPHA CHLORDANE 52 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>90</td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w 		90	2 ng/L	700 ng/L *	**
53 GAMMA CHLORDANE 53 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L *</td><td>**</td></w<></w 			2 ng/L	700 ng/L *	**
54 DIELDRIN 54 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>2 ng/L</td><td>700 ng/L</td><td>**</td></w<></w 			2 ng/L	700 ng/L	**
55 METHOXYCHLOR 55 (PST) ng/L	R <w T <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>100000 ng/L</td><td></td></w<></w 			5 ng/L	100000 ng/L	

PARAMETERS						D A	TE				 DETECTION	DRINKING WATER OBJ/
		JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7	DIMIT	GUIDELINE1
56 ENDRIN 56 (PST)		<w <w<="" td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w>	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>4 ng/L</td><td>200 ng/L</td></w<></w 		4 ng/L	200 ng/L
57 THIODAN SULP 57 (PST)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w </td></w<></w 			<w <w< td=""><td></td><td>4 ng/L</td><td></td></w<></w 		4 ng/L	
58 THIODAN I 58 (PST)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 			<w <w< td=""><td></td><td>2 ng/L</td><td>74000 ng/L ea</td></w<></w 		2 ng/L	74000 ng/L ea
59 THIODAN II 59 (PST)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td><w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w </td></w<></w 			<w <w< td=""><td></td><td>4 ng/L</td><td>74000 ng/L ea</td></w<></w 		4 ng/L	74000 ng/L ea
60 METHYLPARATH 60 (SPC)	ION R	+++++++++++++++++++++++++++++++++++++++	++	+	+	+					50 ng/L	7000 ng/L
61 PARATHION 61 (SPC)	R T	+++	++	++	+	+			4		50 ng/L	35000 ng/L
62 HEPTACHLOR E 62 (PST)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td>3000 +++ ng/L</td></w<></w 		1 ng/L	3000 +++ ng/L
63 HEPTACHLOR 63 (PST)		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w 2<t< td=""><td><w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 2<t< td=""><td><w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 2<t< td=""><td><w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w </td></t<></w 	<w 3<t< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w </td></t<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td>3000 ng/L +++</td></w<></w 		1 ng/L	3000 ng/L +++
64 MIREX 64 (PST)		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td></td></w<></w 		5 ng/L	
65 OXYCHLORDANE 65 (PST)		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>2 ng/L</td><td></td></w<></w 		2 ng/L	
66 O,P,-DDT 66 (PST)		<w <w<="" td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w>	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td>30000 ng/L d</td></w<></w 		5 ng/L	30000 ng/L d

PARAMETERS							D A	T E				DETECTION LIMIT	DRINKING WATER OB
PARAMETERS			JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7	Divita	GUIDELIN
67 PCB 67 (PST)	ng/L		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>20 ng/L</td><td>3000 ng/L</td></w<></w 		20 ng/L	3000 ng/L
68 P,P-DDD 68 (PST)	ng/L		<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
69 P,P-DDE 69 (PST)	ng/L		<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td>d</td></w<></w 		1 ng/L	d
70 P,P-DDT 70 (PST)	ng/L	5.5	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td>d</td></w<></w 		5 ng/L	d
71 AMETRINE 71 (SPC)	ng/L	R	+ +	+ +	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+					50 ng/L	
72 ATRAZINE 72 (SPC)	ng/L	R T	+ +	+	+ +	<w <w< td=""><td>+++</td><td>=</td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+++	=				50 ng/L	
73 DIAZINON 73 (SPC)	ng/L	201	+ +	+ +	+ +	NS NS	+					50 ng/L	14000 ng/L
74 BLADEX 74 (SPC)	ng/L	5/10	+	+	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td>3</td></w<></w 	+					100 ng/L	3
75 PROMETONE 75 (SPC)	ng/L	5.11	+ +	+ +	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+					50 ng/L	
76 PROPAZINE 76 (SPC)	ng/L		+ +	+ +	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	+					50 ng/L	
77 PROMETRYNE 77 (SPC)	ng/L		+ +	+ +	+ +	<w <w< td=""><td>++</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<></w 	++					50 ng/L	

	DA DA WEMEDO							D	АТЕ				DET.	DRINKING WATER OBJ/
_	PARAMETERS		JUL	15	AUG 16	SEP 16	OCT 2	NOV 2	DEC 2	DEC 10	DEC 17	JAN 7	LIMIT	GUIDELINE ¹
	SENCOR (SPC)	ng/L T		- 1	+	+ +	<w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<>	+					100 ng/L	
	SIMAZINE (SPC)	ng/L F	++	- 1	+ +	+ +	<w <<="" td=""><td>++</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w>	++					50 ng/L	
10000000	DICAMBA (SPC)	ng/L F		- 1	+ +	+ +	<w <w< td=""><td>++</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<></w 	++					100 ng/L	
100000000000000000000000000000000000000	PICLORAM (SPC)		++	- 1	+ +	+	<w< td=""><td>++</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<>	++					100 ng/L	
	SILVEX (SPC)		+++	- 1	+ +	+	<m <="" ri=""></m>	++					50 ng/L	10000 ng/L
	2,4-D (SPC)		++	- 1	+ +	+ +	<m <m< td=""><td>++</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td>100000 ng/L</td></m<></m 	++					100 ng/L	100000 ng/L
	2,4-D BUTYRIO		+++	- 4	+ +	+	<m <m< td=""><td>++</td><td></td><td></td><td></td><td></td><td>200 ng/L</td><td></td></m<></m 	++					200 ng/L	
85 85	2,4-D PROPION	NIC ACID F	++	- 1	+ +	+ +	<w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td></w<>	+					100 ng/L	
	2,4,5-T (SPC)		++	- 1	+ +	+ +	<w< td=""><td>++</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td></w<>	++					50 ng/L	
	TOTAL SOLIDS (LAB)		INR 144		!NR 160	166 166	234 168	196 174	172 162	220 209			l mg/L	
	SELENIUM (MET)		(V)		INR <w< td=""><td><n <n<="" td=""><td><w< td=""><td><m>M ></m></td><td>< W < W</td><td><w <<="" td=""><td><n <n<="" td=""><td><w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w></td></n></td></w></td></w<></td></n></td></w<>	<n <n<="" td=""><td><w< td=""><td><m>M ></m></td><td>< W < W</td><td><w <<="" td=""><td><n <n<="" td=""><td><w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w></td></n></td></w></td></w<></td></n>	<w< td=""><td><m>M ></m></td><td>< W < W</td><td><w <<="" td=""><td><n <n<="" td=""><td><w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w></td></n></td></w></td></w<>	<m>M ></m>	< W < W	<w <<="" td=""><td><n <n<="" td=""><td><w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w></td></n></td></w>	<n <n<="" td=""><td><w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w></td></n>	<w <<="" td=""><td>0.001 mg/I</td><td>0.01 mg/L</td></w>	0.001 mg/I	0.01 mg/L

					D A	TE				DETECTION	DRINKING WATER OBJ/
PARAMETERS	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		CUIDETINE ₁
	0.2	!NR 0.087	0.13 0.13	0.12 0.12	0.12 0.12	0.110 0.110			0.097 0.100	0.001 mg/L	
	R!NR CO	!NR !NR	700A3C 0	2100A30 0	4300 A3 0	1100 2	2000A3C 0	700 0		0	ODWO Bacti
	R!NR CO	!NR !NR	120000 7	40000 0	29000 0	1400 0	33000 2	1100 0		0	OWDO Bacti
	!NR 1 0.69 <t< td=""><td>NR 0.71<t< td=""><td>12.4 1.35</td><td>78 1.68</td><td>37 0.58<t< td=""><td>36 0.43<t< td=""><td>48 0.45<t< td=""><td></td><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<></td></t<></td></t<></td></t<>	NR 0.71 <t< td=""><td>12.4 1.35</td><td>78 1.68</td><td>37 0.58<t< td=""><td>36 0.43<t< td=""><td>48 0.45<t< td=""><td></td><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<></td></t<></td></t<>	12.4 1.35	78 1.68	37 0.58 <t< td=""><td>36 0.43<t< td=""><td>48 0.45<t< td=""><td></td><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<></td></t<>	36 0.43 <t< td=""><td>48 0.45<t< td=""><td></td><td></td><td>0.01 FIU</td><td>1 FIU</td></t<></td></t<>	48 0.45 <t< td=""><td></td><td></td><td>0.01 FIU</td><td>1 FIU</td></t<>			0.01 FIU	1 FIU
	R <w F <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w </td></w<></w 	<w <w< td=""><td>0.002 mg/L</td><td>.02 mg/L t</td></w<></w 	0.002 mg/L	.02 mg/L t
	0.001 F <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<>	!NIR <w< td=""><td><w <w< td=""><td>0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<>	<w <w< td=""><td>0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></w 	0.003 <w< td=""><td>0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<></td></w<>	0.002 <w< td=""><td><w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>0.001 mg/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td>0.001 mg/L</td><td></td></w<></w 	0.001 mg/L	
	R <w F <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 4<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></t<></w </td></w<></w 	<w 4<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w </td></t<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td>4500 ng/L e</td></w<></w 		1 ng/L	4500 ng/L e
	R <w F <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>.3 ug/L h</td></w<></w 			1 ug/L	.3 ug/L h
	R <w IT CS</w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>5 ug/L</td><td>40 ug/L c</td></w<></w 					5 ug/L	40 ug/L c
	R <w F <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td></w<></w 			1 ug/L	
	R <w F <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td></td><td>1 ug/L</td><td></td></w<></w 					1 ug/L	

PARAMETERS					D A	TE				DETECTION LIMIT	DRINKI WATER	
Trace and trace	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		CUIDEL	INE
100 CHLOROFORM 100 (VOL) ug/L	48CS 39	!NR 53	<w 66</w 	<w 43</w 	<w 62</w 	<w 38</w 	<w 47</w 			1 ug/L	350 ug/L	++
101 DICHLOROMETHANE 101 (VOL) ug/L	<w CS</w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>5 ug/L</td><td>40 ug/L</td><td>c</td></w<></w 			5 ug/L	40 ug/L	c
102 1,1,1-TRICHLOROETHANE 102 (VOL) ug/L	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
103 DICHLOROETHANE 103 (VOL) ug/L	<w <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 			1 ug/L		
104 1,2-DICHLOROETHANE 104 (VOL) ug/L	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>ř</td></w<></w 			1 ug/L	10 ug/L	ř
105 CARBON TETRACHLORIDE 105 (VOL) ug/L	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>3 ug/L</td><td>ŀ</td></w<></w 			1 ug/L	3 ug/L	ŀ
106 1,2 DICHLOROPROPANE 106 (VOL) ug/L	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>ep</td></w<></w 			1 ug/L	6 ug/L	ep
107 TRICHLOROETHYLENE 107 (VOL) ug/L	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>30 ug/L</td><td>ł</td></w<></w 			1 ug/L	30 ug/L	ł
108 DICHLOROBROMOMETHANE 108 (VOL) ug/L	22CS 15	!NR 16	<w 17</w 	<w 14</w 	<w 14</w 	<w 12</w 	<w 14</w 			1 ug/L	350 ug/L	++
109 1,1,2-TRICHLOROETHANE 109 (VOL) ug/L	<w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>6 ug/L</td><td>•</td></w<></w 			1 ug/L	6 ug/L	•
110 CHLORODIBROMOMETHANE 110 (VOL) ug/L	20CS 14	!NR 12	<w 9</w 	<w 6</w 	<w 5</w 	<₩ 7	<w 6</w 			1 ug/L	350 ug/L	+

DADAMENTOC					D A	TE				DETECTION LIMIT	DRINKIN WATER O	
PARAMETERS	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		GUIDELI	NE
TITL THE POST OF T	< < W < < W	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>10 ug/L</td><td>h</td></w<></w 			1 ug/L	10 ug/L	h
	< W < W	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>350 ug/L</td><td>++</td></w<></w 			1 ug/L	350 ug/L	++
	< W < W	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td>1 ug/L</td><td>1.7 ug/L</td><td>е</td></w<></w 			1 ug/L	1.7 ug/L	е
	< \W < \W	!NR <w< td=""><td><w <w< td=""><td>2<t <w< td=""><td><w 3<t< td=""><td>3<t <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></t<></w </td></w<></t </td></w<></w </td></w<>	<w <w< td=""><td>2<t <w< td=""><td><w 3<t< td=""><td>3<t <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></t<></w </td></w<></t </td></w<></w 	2 <t <w< td=""><td><w 3<t< td=""><td>3<t <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></t<></w </td></w<></t 	<w 3<t< td=""><td>3<t <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t </td></t<></w 	3 <t <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w </td></w<></t 		<w <w< td=""><td></td><td>1 ng/L</td><td>10 ng/L</td><td>h</td></w<></w 		1 ng/L	10 ng/L	h
	< < W < W	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td>5<t 9<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></t<></t </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td>5<t 9<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></t<></t </td></w<></w </td></w<></w 	<w <w< td=""><td>5<t 9<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></t<></t </td></w<></w 	5 <t 9<t< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w </td></t<></t 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td>19000 ng/L</td><td>е</td></w<></w 		1 ng/L	19000 ng/L	е
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>1 ng/L</td><td></td><td></td></w<></w 		1 ng/L		
	R <w 10</w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td></td><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td></td><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 6<t< td=""><td><w <w< td=""><td></td><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w </td></w<></w 	<w 6<t< td=""><td><w <w< td=""><td></td><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w </td></t<></w 	<w <w< td=""><td></td><td><w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w </td></w<></w 		<w 2<t< td=""><td></td><td>1 ng/L</td><td>74000 ng/L</td><td>е</td></t<></w 		1 ng/L	74000 ng/L	е
	90CS 68	!NR 81	<w 92</w 	<w 63</w 	<w 81</w 	<w 57</w 	< W 67			3 ug/L	350 ug/L	++
	R <w <w<="" td=""><td>!NR <w< td=""><td><w <w< td=""><td><w 12<t< td=""><td><w CS</w </td><td><w 46<t< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<></td></w>	!NR <w< td=""><td><w <w< td=""><td><w 12<t< td=""><td><w CS</w </td><td><w 46<t< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w </td></w<>	<w <w< td=""><td><w 12<t< td=""><td><w CS</w </td><td><w 46<t< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w </td></w<></w 	<w 12<t< td=""><td><w CS</w </td><td><w 46<t< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w </td></t<></w 	<w CS</w 	<w 46<t< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></t<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w 		5 ng/L		
	R <w C <w< td=""><td>!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NIR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>g</td></w<></w 		5 ng/L	10000 ng/L	g
	R <w C <w< td=""><td>!NR 4<t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<></td></w<></w 	!NR 4 <t< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></t<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td>5 ng/L</td><td></td><td></td></w<></w 		5 ng/L		

PARAMETERS					DA	TE		7			 DETECTION	DRINKING WATER OF	
	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC	17	JAN 7		GUIDELI	
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ng/L</td><td>100-300 ng/L</td><td>0 h*</td></w<></w 				1 ng/L	100-300 ng/L	0 h*
The state of the s	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>e</td></w<></w 				1 ug/L	400 ug/L	e
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 				1 ug/L	400 ug/L	е
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w </td></w<></w 	<w <w< td=""><td></td><td></td><td></td><td>1 ug/L</td><td>400 ug/L</td><td>е</td></w<></w 				1 ug/L	400 ug/L	е
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w </td></w<></w 	<w <w< td=""><td></td><td>-</td><td></td><td>1 ug/L</td><td></td><td></td></w<></w 		-		1 ug/L		
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>ts.</td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></w<></w 	ts.	<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 			5 ng/L	10000 ng/L	У
	< W < W	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 			1 ng/L	38000 ng/L	е
	R <w C <w< td=""><td>!NR <5</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	!NR <5	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td></td><td></td></w<></w 			1 ng/L		
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>15000 ng/L</td><td>У</td></w<></w 			5 ng/L	15000 ng/L	У
	R <w <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 35</w </td><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 35</w </td><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w 35</w </td><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 35</w </td><td><w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w </td></w<></w 	<w 35</w 	<w <w< td=""><td></td><td><w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w </td></w<></w 		<w <w< td=""><td></td><td></td><td>1 ng/L</td><td>38000 ng/L</td><td>е</td></w<></w 			1 ng/L	38000 ng/L	е
	R <w C <w< td=""><td>!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	!NR <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w </td></w<></w 	<w 16<t< td=""><td></td><td><w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w </td></t<></w 		<w <w< td=""><td></td><td></td><td>5 ng/L</td><td>10000 ng/L</td><td>У</td></w<></w 			5 ng/L	10000 ng/L	У

DADAMINETIC					D A	TE				DETECTION	DRINKING WATER OF	
PARAMETERS	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		GUIDELIN	-
133 PENTACHLOROPHENOL F 33 (CHP) ng/L	+ +	+	+	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	+					50 ng/L	10000 ng/L	h
	+ +	+	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>100 ng/L</td><td></td><td></td></w<></w 	+					100 ng/L		
	+ +	+	+ +	<w <w< td=""><td>+</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+					50 ng/L		
	+ +	+	+	<w <w< td=""><td>+</td><td></td><td></td><td>100</td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+			100		50 ng/L		
	+ +	+ +	+ +	<w <w< td=""><td>+ +</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td></td><td></td></w<></w 	+ +					50 ng/L		
	+ + +	+	+	<w <w< td=""><td>+ +</td><td></td><td></td><td></td><td></td><td>50 ng/L</td><td>10000 ng/L</td><td>h</td></w<></w 	+ +					50 ng/L	10000 ng/L	h
	0.003	!NR <w< td=""><td>0.004 0.004</td><td>0.017</td><td>0.012</td><td>0.010 0.002</td><td>0.011 0.002</td><td>0.006</td><td>0.002 0.002</td><td>0.001 mg/L</td><td>5 mg/L</td><td>h</td></w<>	0.004 0.004	0.017	0.012	0.010 0.002	0.011 0.002	0.006	0.002 0.002	0.001 mg/L	5 mg/L	h
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 			0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td>Si di</td><td></td></w<></w 			0.1 ug/L	Si di	
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td>31</td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 	31		0.1 ug/L		
	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td><td></td></w<></w 			0.1 ug/L		

PARAMETERS					D A	TE			DETECTION	DRINKING WATER OBJ/
	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10 DEC	17 JAN 7		GUIDELINE ¹
			NS NS	NIS NIS	NS NS	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
145 PENTACHLOROANALINE			NS NS	NS NS	NS NS	NS NS	<w< td=""><td></td><td>0.1 ug/L</td><td></td></w<>		0.1 ug/L	
146 FLUORANIHENE R	NS I	NIS	NS NS	NS NS	NS NS	NS NS	<w< td=""><td></td><td>0.1 ug/L</td><td></td></w<>		0.1 ug/L	
	20 (CE)	200	1575EN	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
			151.115.12 (I		NS NS	NS NS	<w <w<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L	
	555.00% P7				NS NS	NS NS	<w <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<></w 		0.1 ug/L	
	C01151 12		6. 6		NS NS	NS NS	0.8 <w< td=""><td></td><td>0.1 ug/L</td><td></td></w<>		0.1 ug/L	
			NS NS		NS NS	NS NS	<w <w<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L	
			NS NS		NS NS	NS NS	<w <<="" td=""><td></td><td>0.1 ug/L</td><td></td></w>		0.1 ug/L	
A THE PART OF THE	and the same of th		NS NS	51	ns ns	NS NS	X <t X<t< td=""><td></td><td>0.1 ug/L</td><td></td></t<></t 		0.1 ug/L	

PARAMETERS					D A	TE				DETECTION LIMIT	WATER OBJ/
	JUL 15	AUG 16	SEP 16	OCT 21	NOV 21	DEC 2	DEC 10	DEC 17	JAN 7		GUIDELINE1
	NS NS			NS NS		NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
	NS NS		NS NS	NS NS	NS NS	NS NS	<w X<t< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 			0.1 ug/L	
156 TETRACHLOROETHYLENE R 156 (MS) ug/L T	NS NS			NS NS	NS NS	NS NS	<w X<t< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></t<></w 			0.1 ug/L	
	NS NS			NS NS	NS NS	NS NS	0.2 <w< td=""><td></td><td>120</td><td>0.1 ug/L</td><td></td></w<>		120	0.1 ug/L	
	NS NS		NS NS	NS NS	NS NS	NS NS	<w <w< td=""><td></td><td></td><td>0.1 ug/L</td><td></td></w<></w 			0.1 ug/L	
	8 9 16										

LAB - Chemistry (LAB) FLD - Chemistry (FIELD)

BAC - Bacteriological

MS - Mass Spec. Ana

MET - Metal

VOL - Volatiles

PST - PCB/OC Scan. Pesticides

CHA - Chloroaromatics

CHP - Chlorophenols SPC - Specific Pesticides

LOCATION			**************************************		P A	RAMET	ERS				
IXAI ION	24 METAL	7 PHYSICAL	8 ANION	6 FIELD TESTS	5 BACTERIAL	10 DIOXIN	39 PESTICIDE	19 MS**	5 THM*	45 ORGANIC	158 TOTAL
AMMERSTBURG Raw Treated Total # Positives Total # Tests	105(19)	56(7)	24(6)	27(3)	32(4)	2(1)	0(0)	0(0)	0(0)	0(0)	246(40)
	89(17)	40(6)	21(4)	48(6)	11(3)	0(0)	0(0)	0(0)	32(4)	2(2)	243(42)
	194	96	45	75	43	2	0	0	32	2	489
	342	110	130	75	71	44	370	38	80	613	1873
MITCHELL'S BAY Raw Treated Total # Positives Total # Tests	129(18) 118(16) 247 424	56(7) 41(6) 97 114	24(5) 19(3) 43 128	18(3) 43(6) 61 61	29(4) 5(2) 34 71	0(0) 0(0) 0	0(0) 0(0) 0 370	0(0) 0(0) 0 38	0(0) 32(4) 32 80	0(0) 1(1) 1 618	256(35) 259(36) 515 1904
SARNIA Raw Treated Total # Positives Total # Tests	35(15)	14(7)	4(2)	9(3)	8(4)	0(0)	0(0)	0(0)	0(0)	0(0)	70(31)
	36(15)	10(5)	4(2)	11(6)	1(1)	0(0)	0(0)	0(0)	12(4)	2(1)	76(34)
	71	24	8	20	9	0	0	0	12	2	146
	155	26	24	20	22	44	84	38	30	226	669
STONEY POINT Raw Treated Total # Positives Total # Tests	130(19)	49(7)	18(5)	19(3)	30(4)	0(0)	0(0)	0(0)	0(0)	0(0)	246(38)
	97(16)	37(7)	16(3)	38(6)	10(3)	0(0)	0(0)	0(0)	28(4)	1(1)	227(40)
	227	86	34	57	40	0	0	0	28	1	473
	420	100	112	61	72	0	416	0	70	566	1817
WALIACEBURG Raw	149(20)	63(7)	26(6)	34(3)	40(4)	0(0)	0(0)	0(0)	0(0)	9(3)	321 (43)
Treated	131(17)	50(7)	21(3)	59(6)	6(3)	0(0)	0(0)	0(0)	35(5)	6(3)	308 (44)
Total # Positives	280	113	47	93	46	0	0	0	35	15	629
Total # Tests	564	136	130	95	95	44	330	38	105	796	2333
WINDSOR Raw Treated Total # Positives Total # Tests	119(19)	35(7)	16(4)	24(3)	22(4)	5(2)	0(0)	2(2)	4(4)	0(0)	227(45)
	117(15)	38(7)	19(3)	48(6)	6(2)	0(0)	0(0)	0(0)	28(4)	2(2)	258(39)
	236	73	35	72	28	5	0	2	32	2	485
	392	110	86	76	48	77	324	38	65	495	1711
WALPOLE ISIAND Raw Treated Total # Positives Total # Tests	82(17)	28(7)	10(3)	15(3)	19(4)	0(0)	0(0)	0(0)	0(0)	6(4)	160(38)
	79(16)	20(5)	10(3)	23(6)	4(3)	0(0)	0(0)	0(0)	21(5)	6(3)	163(41)
	161	48	20	38	23	0	0	0	21	12	323
	323	56	58	38	38	66	262	38	55	429	1363

Example: 24 Metal Parameters

102(19) - 102 positives representing 19 of 24 parameters

*THM = Trihalomethanes

**MS = Mass Spec. Analysis

TABLE C

DIOXIN DRINKING WATER SURVEY - RESULTS

Page 1 Updated: January 21, 1986

					ED DIBEN	ZO-P-DIO	XINS (pp	ą)	CHL	ORINATED	DIBENZO	FURANS ()	ppq)
LOCATION	SAMPLE	DATE	2,3,7,B -T ₄ CDD	T ₄ CDD	P ₅ CDD	H ₆ CDD	H7CDD	O ₈ CDD	T ₄ CDF	P ₅ CDF	H ₆ CDF	H7CDF	O ₈ CDF
LAMBTON AREA (SARNIA)	Raw Treated Raw Treated	06/17/85 06/17/85 11/15/85 11/15/85	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND *	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
WALLACEBURG	Raw Treated Raw Treated	06/24/85 06/24/85 11/15/85 11/15/85	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND *	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND
WALPOLE ISLAND	Raw Treated Raw Treated Raw Treated	11/05/85 11/05/85 11/15/85 11/15/85 11/25/85 11/27/85	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	* * * * ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND

DIOXIN DRINKING WATER SURVEY - RESULTS

	MINERAL HISTORY			LORINATI	ED DIBEN	ZO-P-DIO	KINS (ppo	4)	CHL	ORINATED	DIBENZO	FURANS (1	opq)
LOCATION	SAMPLE	DATE	2,3,7,B -T ₄ CDD	T4CDD	P ₅ CDD	H6CDD	H7CDD	O ₈ CDD	T ₄ CDF	P ₅ CDF	H ₆ CDF	H7CDF	O ₈ CDF
WINDSOR	Raw Treated	07/15/85 07/15/85	ND -	40 -	ND -	NID -	ND -	16 -	ND -	NID -	ND -	ND -	ND -
	Raw Treated	09/25/85 09/25/85	ND ND	ND ND	ND ND	ND ND	ND ND	22 ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	10/03/85 10/03/85	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/20/85 11/20/85	ND ND	*	ND ND	ND ND	ND ND	63 ND	ND ND	ND ND	ND ND	ND ND	ND ND
AMHERSTBURG	Raw Treated	07/02/85 07/02/85	ND ND	ND ND	NID NID	ND ND	ND ND	20 ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/19/85 11/09/85	ND ND	*	ND ND	ND ND	ND ND	115 ND	ND ND	ND ND	ND ND	NID NID	ND ND

ND = Not Detected at an average detection limit of 10 ppq

^{* =} Sample contamination, value cannot be determined

ppq = parts per quadrillion, picograms per litre (pg/L)

^{- =} No Data

TABLE C.1: DATA SUMMARY: MOE DIOXIN SURVEY IN ST. CLAIR AREA WATER TREATMENT PLANTS

Page 1 January 21, 1986

					ED DIBEN		KINS (ppo	4)	CHL	DRINATED	DIBENZO	FURANS (1	opq)
LOCATION	SAMPLE	DATE	2,3,7,8 -T ₄ CDD	(TETRA) T ₄ CDD	(PENTA) P5CDD	(HEXA) H ₆ CDD	(HEPTA) H ₇ CDD	OgCDD (OCTA)	(TETRA) T ₄ CDF	(PENTA) P5CDF	(HEXA) H ₆ CDF	(HEPTA) H7CDF	(OCTA) O ₈ CDF
LAMBTON AREA (SARNIA)	Raw Treated	06/17/85 06/17/85	ND ND	ND ND	ND ND	ND ND	NID NID	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/15/85 11/15/85	ND ND	ND ND	ND ND	ND ND	ND ND	*	ND ND	ND ND	ND ND	ND ND	ND ND
WALLACEBURG	Raw Treated	06/24/85 06/24/85	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/15/85 11/15/85	ND ND	ND ND	NID NID	ND ND	ND ND	*	ND ND	ND ND	ND ND	ND ND	ND ND
WALPOLE ISLAND	Raw Treated	11/05/85 11/05/85	ND ND	ND ND	ND ND	ND ND	ND ND	*	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/15/85 11/15/85	NID NID	ND ND	ND ND	ND ND	ND ND	*	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/25/85 11/27/85	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
WINDSOR	Raw Treated	07/15/85 07/15/85	NID -	40 -	ND -	ND -	ND -	16 -	NTD -	NID -	ND -	ND -	ND -
	Raw Treated	09/25/85 09/25/85	ND ND	ND ND	ND ND	ND ND	ND ND	22 ND	NID NID	ND ND	ND ND	NID NID	ND ND

TABLE C.1: DATA SUMMARY: MOE DIOXIN SURVEY IN ST. CLAIR AREA WATER TREATMENT PLANTS

			CI	LORINATI	ED DIBENZ	ZO-P-DIO	KINS (ppo		CHL			FURANS (
LOCATION	SAMPLE	DATE	2,3,7,8		(PENTA) P5CDD	(HEXA) H ₆ CDD	(HEPTA) H ₇ CDD	(OCTA) O ₈ CDD	(TETRA) T ₄ CDF	(PENTA) P5CDF	(HEXA) H ₆ CDF	(HEPTA) H7CDF	(OCTA) O ₈ CDF
			-T ₄ CDD	T ₄ CDD	P5CDD	116CDD	11/CDD	OgCID	14001	15001	116001	II/CDI	ogesi
WINDSOR (Continued)	Raw Treated	10/03/85 10/03/85	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/20/85 11/20/85	ND ND	*	ND ND	ND ND	ND ND	63 ND	ND ND	ND ND	ND ND	ND ND	ND ND
AMHERSTBURG	Raw Treated	07/02/85 07/02/85	ND ND	ND ND	ND ND	ND ND	ND ND	20 ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Raw Treated	11/19/85 11/19/85	ND ND	*	ND ND	ND ND	ND ND	115 ND	ND ND	ND ND	ND ND	ND ND	ND ND
					8								

ND = Not Detected at an average detection limit of 10 ppq

ppq = parts per quadrillion, picograms per litre (pg/L)

^{* =} Sample contamination, value cannot be determined

^{- =} No Data

TABLE C.2: DATA SUMMARY: CO-OPERATIVE MISH, MOE AND CARLETON UNIVERSITY ANALYSIS OF CILCRINATED DIBENZODIOXINS AND DIBENZOFURANS IN ST. CLAIR AREA WATER TREATMENT PLANTS

DIOXINS Fage 1 Updated: January 27, 1986

				CHLORINATED DIBENZO-P-DIOXINS (ppq) CHLORINATED DIBENZOFURANS TE 2,3,7,8 (TETRA) (PENTA) (HEXA) (HEPTA) (OCTA) (TETRA) (PENTA) (HEXA) (HEPTA)										opa)
AGENCY	LOCATION	SAMPLE	DATE	2,3,7,8	(TETRA)	(PENTA)	(HEXA)	(HEPTA)	(OCTA)	(TETRA)	(PENTA)	(HEXA)	(HEPTA)	
				-T ₄ CDD	T ₄ CDD	P ₅ CDD	H ₆ CDD	H7CDD	O ₈ CDD	T ₄ CDF	P ₅ CDF	H ₆ CDF	H7CDF	O ₈ CDF
H&W	LAMBTON AREA (SARNIA)	Raw Treated	12/09/85 12/09/85	ND(9) ND(3)	ND(9) ND(3)	ND(6) ND(3)	ND(3) ND(9)	ND(15) ND(7)	ND(12) T<22	ND(3) ND(3)	ND(6) ND(3)	ND(6) ND(6)	ND(5) ND(3)	ND(7) ND(4)
H&W		Raw Treated	1/06/86 1/06/86					51 49	_	-437 V9-2				
H&W		Raw Treated	1/13/86 1/13/86		8									
MOE	WALLACEBURG	Raw Treated	11/26/85 11/26/85	ND(15) ND(15)	ND(15) ND(15)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(9) ND(9)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10)	ND(10) ND(10)
MOE		Raw Treated	12/02/85 12/02/85	ND(5) ND(5)	BC(5) ND(10)	ND(10) ND(10)	T<13 ND(10)	ND(10) ND(10)	180 T<11	T<10 ND(10)	T<10 ND(10)	ND(10) ND(10)	ND(10) ND(10)	T<10 ND(10)
H&W		Raw Treated	12/09/85 12/09/85	ND(6) ND(3)	ND(6) ND(3)	ND(6) ND(3)	ND(3) ND(9)	ND(18) ND(9)	T<27 ND(6)	ND(3)	ND(6) ND(3)	ND(6) ND(6)	ND(5) ND(3)	ND(7) ND(4)
W&H		Raw Treated	12/16/85 12/16/85	ND(12) ND(1)	ND(12) ND(1)	ND(3) ND(2)	ND(6) ND(5)	ND(11) ND(7)	NR T <u><</u> 16	ND(2) ND(1)	ND(3) ND(2)	ND(3)	ND(11) ND(8)	ND(11) ND(10)
MOE		Raw Treated	12/16/85 12/16/85	ND(10) ND(12)	ND(10) ND(12)	INT ND(10)	INT ND(21)	ND(6) ND(15)	ND(5) ND(12)	ND(9) ND(9)	INT ND(16)	ND(7) ND(6)	ND(10) ND(4)	ND(5) ND(6)
		Raw Treated	12/22/85 12/22/85					N	OT S	AMPL	E D			
				1										

TABLE C.2: DATA SUMMARY: CO-OPERATIVE MH&W, MOE AND CARLETON UNIVERSITY ANALYSIS OF CHLORINATED DIBENZODIOXINS AND DIBENZOFURANS IN ST. CLAIR AREA WATER TREATMENT PLANTS

								KINS (ppc			DRINATED			
AGENCY	LOCATION	SAMPLE	DATE	2,3,7,8 -T ₄ CDD	(TETRA) T ₄ CDD	(PENTA) P5CDD	(HEXA) H ₆ CDD	(HEPTA) H ₇ CDD	(OCTA) O ₈ CDD				(HEPTA) H ₇ CDF	
H&W	WALLACEBURG (continued)	Raw Treated	1/06/86 1/06/86				2. 2. 2. 2. 3.							10 10 10 10 10 10 10 10 10 10 10 10 10 1
H&W		Raw Treated	1/12/86 1/12/86											
MOE	WALPOLE ISLAND	Raw Treated	11/25/85 11/25/85	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	NTD(10) NTD(10)
MOE		Raw Treated	12/05/85 12/05/85	ND(6) ND(6)	T<10 ND(10)	T<14 ND(18)	ND(10) ND(10)	ND(10) ND(10)	NTD(10) NTD(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(10)
H&N		Raw Treated	12/09/85 12/09/85	ND(9) ND(3)	ND(9) ND(3)	ND(6) ND(4)	ND(10) ND(9)	ND(13) ND(11)	T<10 ND(15)	ND(6) ND(3)	ND(6) ND(3)	ND(6)	ND(10) ND(5)	ND(10) ND(10)
H&11		Raw Treated	12/17/85 12/17/85	ND(15) ND(2)	ND(15) ND(2)	ND(3) ND(2)	ND(6) ND(4)	ND(20) ND(20)	ND(20) ND(20)	ND(3) ND(2)	NTD(3) NTD(2)	ND(3) ND(2)	ND(20) ND(20)	ND(20) ND(20)
		Raw Treated	12/22/85 12/22/85					N C	T SA	AMPLE	E D			
H&W		Raw Treated	1/06/86 1/06/86						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
MOE		Raw Treated	1/06/86 1/06/86							55				
H&W		Raw Treated	1/13/86 1/13/86											

TABLE C.2: DATA SUMMARY: CO-OPERATIVE MH&W, MOE AND CARLETON UNIVERSITY ANALYSIS OF CHLORINATED DIBENZODIOXINS AND DIBENZOFURANS IN ST. CLAIR AREA WATER TREATMENT PLANTS

CHLORINATED DIBENZO-P-DIOXINS (ppq) CHLORINATED DIBENZOFURANS (ppq)														
			2											
AGENCY	LOCATION	SAMPLE	DATE	2,3,7,8 -T ₄ CDD	(TETRA) T ₄ CDD	(PENTA) P5CDD	(HEXA) H ₆ CDD	(HEPTA) H ₇ CDD	(OCTA) O _S CDD	(TETRA) T ₄ CDF	(PENTA) P5CDF	(HEXA) H ₆ CDF	(HEPTA) H7CDF	OCTA) OCTA)
-				-4	-4	- 3	-0		-0-	7		-		-
MOE	WINDSOR	Raw Treated	12/03/85 12/03/85	ND(9) ND(10)	ND(9) ND(10)	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(19)	15 T<10	ND(10) ND(10)	ND(10) ND(10)	ND(10) ND(14)	ND(10) ND(17)	T<10 T<10
MOE		Raw Treated	12/10/85 12/10/85	ND(3) ND(3)	ND(3)	ND(3) ND(9)	ND(9) ND(4)	ND(14) ND(4)	T<97 T<12	ND(3)	ND(3)	ND(6)	ND(4) ND(4)	ND(4) ND(4)
MOE		Raw Treated	12/17/85 12/17/85	ND(9) ND(2)	ND(9) ND(2)	ND(4) ND(2)	ND(8) ND(4)	ND(15) ND(4)	T<23 ND(15)	ND(2) ND(2)	ND(4) ND(2)	ND(4) ND(2)	ND(15) ND(2)	ND(15) ND(13)
MOE		Raw Treated	1/07/86 1/07/86											
MOE		Raw Treated	1/14/86 1/14/86											
MOE	AMHERSTBURG	Raw Treated	12/02/85 12/02/85	ND(13) ND(6)	ND(13) ND(6)	ND(30) ND(8)	ND(10) ND(10)	T<17 ND(10)	1100 ND(10)	ND(10) ND(10)	ND(30) ND(11)	ND(10) ND(10)	ND(10) ND(10)	ND(10)
H&W MOE		Raw Treated	12/10/85 12/10/85	ND(4) ND(5)	ND(4) ND(5)	ND(2) ND(24)	ND(4) ND(30)	ND(26) ND(9)	ND(110) ND(10)	ND(2) ND(7)	ND(2) ND(12)	ND(3) ND(3)	ND(24) ND(11)	ND(24) ND(10)
H&W		Raw Treated	1/07/86 1/07/86											
H&W		Raw Treated	1/14/86 1/14/86											
MOE		Raw Treated	1/14/86 1/14/86									ž 13=		

TABLE C.2: DATA SUMMARY: CO-OPERATIVE MH&W, MOE AND CARLETON UNIVERSITY ANALYSIS OF CHLORINATED DIBENZODIOXINS AND DIBENZOFURANS IN ST. CLAIR AREA WATER TREATMENT PLANTS

				CI	LORINATE	ED DIBENZ	O-P-DIO	KINS (ppc	1)	CHLC	RINATED	DIBENZO	TURANS (E	opq)
AGENCY	LOCATION	SAMPLE	DATE	2,3,7,8	(TETRA)	(PENTA)	(HEXA)	(HEPTA)	(OCTA)	(TETRA)	(PENTA)	(HEXA)	(HEPTA)	(OCTA)
			, , , , , , , , , , , , , , , , , , ,	-T ₄ CDD	T ₄ CDD	P ₅ CDD	H ₆ CDD	H7CDD	O8CDD	T ₄ CDF	P ₅ CDF	H ₆ CDF	H7CDF	O ₈ CDF
MOE	MITCHELL'S BAY	Raw	11/25/85	ND(15)	ND(15)	ND(10)	ND(10)	ND(10)	140	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
		Treated	11/25/85	ND(15)	ND(15)	ND(10)	ND(10)	ND(10)	T<15	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
H&W		Raw	12/09/85	ND(3)	ND(3)	ND(9)	ND(4)	ND(12)	T<170	ND(3)	ND(6)	MD(9)	ND(4)	ND(4)
		Treated	12/09/85	ND(3)	ND(3)	ND(3)	ND(9)	ND(11)	T<11	ND(3)	ND(3)	ND(6)	ND(4)	ND(4)
H&W		Raw	1/06/86	Ü										
LIONA		Treated	1/06/86											
MOE	STONEY POINT	Raw	12/03/85	ND(10)	ND(10)	ND(25)	ND(10)	ND(19)	96	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
PAL	BIONEL TOTAL	Treated	12/03/85	ND(10)	ND(10)	ND(15)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(14)	ND(10)	ND(10)
		_	10/17/05) III (0)	MD(0)	NTD(4)	MD(O)	ND(23)	T<50	ND(3)	ND(4)	ND(4)	ND(23)	ND(23)
H&W		Raw Treated	12/17/85 12/17/85	ND(9) ND(2)	ND(9) ND(2)	ND(4) ND(2)	ND(8) ND(4)	ND(23)	ND(12)	ND(3)	ND(4)	ND(4)	ND(23)	ND(11)
		1100000			,,									
H&W		Raw	1/15/86											
		Treated	1/15/86				0							

Trace amount detected. Quantitative value could not be determined because response was within three times background or within three times sample detection limit. Expected value is less that (<) or equal to "X".

ND Not detected. Detection limit is given in brackets (ppq).

Data are corrected for recovery if recoveries are within 35% - 130%. Data for recoveries 10% - 34% are corrected for recovery. Values reported as <X. Data are not corrected if recoveries are greater than 130%.

NP Data not reported if spike recoveries <10%.

NR Replicate determinations are not comparable.

INT Sample interference - could not analyze.

BC Blank contamination; data cannot be reported.