Высшая Школа Экономики (национальный исследовательский университет)

Лабораторная работа Оптика

Геометрическая оптика

Содержание

1	Och	ювы теории и постановка эксперимента	2
	1.1	Тонкая положительная линза	2
	1.2	Метод Аббе	3
	1.3	Система линз	
	1.4	Угловое увеличение телескопа	7
2	Рез	ультаты измерений и обработка данных	8
	2.1	Тонкая положительная линза	8
	2.2	Метод Аббе	8
	2.3	Система линз	9
	2.4	Угловое увеличение телескопа	10
3	Оце	енка погрешностей	10
4	Вы	воды	11

Аннотация

В лабораторной работе экспериментально исследованы различные методы определения фокусных расстояний линз и систем линз: с помощью зеркала, экрана и метода Аббе, а также рассмторена простейшая модель телескопа труба Кеплера и измерено его угловое увеличение. Полученные данные сопоставлены с теоретическими расчётами.

1 Основы теории и постановка эксперимента

1.1 Тонкая положительная линза

В рамках настоящей задачи целью является экспериментальное определение фокусного расстояния собирающей линзы двумя независимыми методами.

Способ с использованием зеркала

Первый из них основан на использовании плоского зеркала и реализует принцип, при котором лучи, прошедшие через линзу, отражаются и снова проходят через ту же линзу, формируя изображение объекта в его первоначальной плоскости. На рисунке ниже представлена схема проведения этого эксперимента.

Рис. 1: Схема расположения оптических элементов в опыте по определению фокусного расстояния линзы с использованием плоского зеркала. На рисунке изображены следующие элементы: 1 – осветитель S, 2 – объект P (LMP-141), 3 – собирающая линза L (f=150 мм), 4, 6 – двухосевой держатель оптических элементов (LMP-07), 5 – плоское зеркало M.

Предмет, используемый в эксперименте сделан, таким образом, что его перевернутое изображение полностью дополняет его до окружности, поэтому линза выставлялась таким образом, чтобы система изображение-предмет были максимально близки к кругу. Затем, чтобы избежать лишней случайной погрешности, связанной с тем, что можно было неровно поставить линзу и т.д. линза и предмет поворачивались на 180° и эксперимент повторялся Фокусное расстояние находилось по формуле

$$f = x_2 - x_1 \tag{1}$$

где x_2 - положение линзы, а x_1 - положение предмета

Способ с использованием экрана

Рассмотрим ситуацию, представленную на рисунке 2, то есть мы зафиксировали некое расстояние L между предметом и экраном и хотим найти при каких значениях расстояния от предмета до линзы x мы будем иметь четкое изображение предмета на экране. Для этого запишем уравнение тонкой линзы:

$$\frac{1}{x} + \frac{1}{L - x} = \frac{1}{f}$$

Выразим из него возможные значения x:

$$x_{1,2} = \frac{L \pm \sqrt{L^2 - 4Lf}}{2}$$

То есть, при условии, что L > 4f мы будем иметь четкое изображение предмета на экране, при двух положениях линзы, тогда измерив разницу $|x_1 - x_2| = l$ и расстояние от предмета до экрана L мы можем вычислить фокус линзы по формуле:

$$f = \frac{L^2 - l^2}{4L} \tag{2}$$

На рисунке ниже представлена схема экспериментальной установки:

Рис. 2: Изображение предмета на экране

Рис. 3: Схема расположения оптических элементов в опыте по определению фокусного расстояния линзы с использованием экрана. Все элементы алогичны с прошлым экспериментом, за исключением замены зеркала на экран

В процессе работы фиксировалось какое-то расстояние L, затем "на глаз" находились два положения максимальной четкости, фиксировалась разница расстояний и затем по формуле $\,^2$ вычислялся фокус. Для избежания излишней случайности экспермента, после этого линза и экран поворачивались на 180° и процедура повторялась. Так как определение максимальной четкости - достаточно субъективно, то для усреднения эксперимент проводился на трех разных расстояниях L

1.2 Метод Аббе

Фокусное расстояние любой (в том числе толстой) положительной линзы можно определить по методу Аббе.

Пусть предмет, линейный размер которого равен y, находится на расстоянии x_1 от главного фокуса F положительной оптической системы. Изображение предмета имеет размер y_1 . Тогда линейное увеличение β_1 определяется выражением:

$$\beta_1 = \frac{y_1}{y} = \frac{f}{x_1}.$$

Если теперь отодвинуть предмет от линзы на расстояние Δx , то линейное увеличение β_2 станет:

$$\beta_2 = \frac{y_2}{y} = \frac{f}{x_2},$$

где $x_2 = x_1 + \Delta x$.

Подставляя значения β_1 и β_2 , можно выразить фокусное расстояние линзы через:

$$f = \frac{\Delta x}{\frac{1}{\beta_2} - \frac{1}{\beta_1}}$$
 (3)

Рис. 4: Измерение фокусного расстояния оптической системы по методу Аббе

Рис. 5: Схема расположения оптических элементов в опыте по определению фокусного расстояния линзы с помощью метода Аббе.

В этом эксперименте для определения фокусного расстояния положительной линзы, мы измеряли линейное увличение системы в двух положениях предмета и расстояния между этими двумя положениями, для лучшего усреднения, эксперимент проводился трижды для различных Δx

1.3 Система линз

Геометрическую оптику можно описывать не только с помощью представлений о лучах и законах преломления, но и в более формализованном виде — через матричный (или ABCD) подход.

В этом случае каждый оптический элемент описывается 2×2 матрицей, преобразующей вектор, содержащий положение y и угол наклона y' светового луча. В общем виде это записывается так:

$$\begin{bmatrix} y_2 \\ y_2' \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ y_1' \end{bmatrix}$$

Рассмотрим этот подход подробнее, чтобы получить аналитическое выражение для фокусного расстояния системы, состоящей из двух тонких линз, расположенных на конечном расстоянии друг от друга.

Свободное распространение

Для свободного распространения луча на расстояние d, луч перемещается по прямой, поэтому угол не меняется:

$$y_2' = y_1'$$

Координата меняется линейно:

$$y_2 = y_1 + dy_1'$$

Поэтому получаем матрицу:

$$M_{\text{free}} = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \tag{4}$$

 $y_{1,2}$ y_{1} y_{2} y_{2} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{7} y_{8} y_{7} y_{8} $y_$

Рис. 6: Свободное перемещение

Рис. 7: Тонкая линза.

Тонкая линза

Поскольку линза тонкая, луч не распространяется на каком-либо расстоянии. Луч непрерывен, поэтому

$$y_2 = y_1$$

Поэтому A=1, а B=0. Однако луч изменяет направление движения, то есть угол, возпользуемся формулой тонкой линзы:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Из геометрии:

$$y_1' = \frac{y_1}{d_o}, \quad y_2' = -\frac{y_1}{d_i} \Rightarrow y_2' = -y_1\left(\frac{1}{d_i}\right) = y_1\left(\frac{1}{f} - \frac{1}{d_o}\right) = -\frac{y_1}{f} + y_1'$$

Тогда находим коэффициенты C, D:

$$M_{\rm lens} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \tag{5}$$

Фокусное расстояние системы двух линз

Для того, чтобы найти итоговую ABCD матрицу системы нужно перемножить их в обратном порядке. Для нашего случая:

$$M = M_{f_2} \cdot M_l \cdot M_{f_1}$$

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f_2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\frac{1}{f_1} & 1 \end{pmatrix}$$

Если мы найдем коэффициент C этой матрицы, то можем найти эффективное фокусное расстояние нашей системы двух линз, приняв ее за тонкую линзу с ABCD матрицей M_{lens}

Перемножаем матрицы и получаем результат:

$$\left| \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{l}{f_1 f_2} \right| \tag{6}$$

Экспериментальное определение

Рис. 8: Схема расположения оптических элементов в опыте по определению фокусного расстояния оптической системы с помощью метода Аббе. На рисунке изображены следующие элементы: 1 – осветитель S, 2 – слайд с линейкой (Millimetre Ruler), 3 – держатель бипризм (LMP-41), 4 – линза L_0 (f=150 мм); 5 – двухосевой держатель оптических элементов (LMP- 07), 6 – оптическая система, состоящая из линз L_1 (f=190 мм) и L_2 (f=300 мм); 7 – держатель группы линз (LMP-28), 8 – экран H (LMP-13).

В представленном эксперименте линза L_0 устанавливалась на фокусном расстояни от объекта, с помощью метода с зеркалом. Затем мы устанавливали систему линз L_1-L_2 и с помощью перемещения экрана находили расположение заданей фокальной плоскости системы, поворачивая систему на 180° , находили вторую фокальную плоскость.

И затем с помощью метода Аббе находили фокусное расстояние системы. Которое можно сравнить с теоретическим результатом, вычисленным по формуле

1.4 Угловое увеличение телескопа

Астрономическая зрительная труба (труба Кеплера) состоит из двух линз: объектива и окуляра. Объектив формирует действительное изображение удалённого предмета, которое далее рассматривается через окуляр. В случае наблюдения бесконечно удалённых объектов изображение, формируемое объективом, располагается в его фокальной плоскости. Для минимизации напряжения глаза предполагается, что глаз аккомодирован на бесконечность, то есть мнимое изображение, формируемое окуляром, также должно быть на бесконечности. Таким образом, фокальная плоскость объектива совпадает с фокальной плоскостью окуляра, и система называется афокальной.

В афокальной системе параллельный пучок лучей, входящий в объектив, выходит из окуляра также параллельным, но с другим углом наклона. Это изменение угла определяет **угловое увеличение телескопа**, которое определяется как отношение углов, под которыми наблюдаются изображение и объект:

$$\gamma = \frac{\tan \varphi_2}{\tan \varphi_1},$$

где φ_1 — угол, под которым объект виден невооружённым глазом, а φ_2 — угол, под которым виден тот же объект через телескоп.

Для параксильных лучей (малые углы) можно использовать приближение $\tan \varphi \approx \varphi$, тогда:

$$\gamma = \frac{\varphi_2}{\varphi_1}.$$

Из геометрии прохождения пучков через систему линз следует, что:

$$\left[\gamma = \frac{f_1}{f_2}\right]$$

гле.

- f_1 фокусное расстояние объектива ($f_1 = 225$ мм),
- f_2 фокусное расстояние окуляра ($f_2 = 190$ мм).

Увеличение можно также выразить через отношение диаметров пучков:

$$\gamma = \frac{D_1}{D_2},$$

где D_1 — диаметр светового пучка, прошедшего через объектив, а D_2 — диаметр изображения этого пучка в окуляре.

Таким образом, угловое увеличение телескопа можно определить тремя способами:

- 1. путём измерения фокусных расстояний объектива и окуляра;
- 2. через углы зрения с и без телескопа;

3. по измерению диаметров входного и выходного пучков.

В эксперименты мы будем считать количество линий на линейке, попадающее в трубу и находить увеличение по формуле:

$$\gamma = \frac{N_1}{N_2} \tag{7}$$

2 Результаты измерений и обработка данных

2.1 Тонкая положительная линза

Находим фокусные расстояния с помощью формул 1 и 2

Таблица 1: Метод с зеркалом

Таблица 2: Метод с экраном

L, mm	l, mm	f, mm
719 ± 2	124 ± 15	174 ± 1
719 ± 2	113 ± 15	175 ± 1
919 ± 2	428 ± 15	180 ± 4
919 ± 2	430 ± 15	180 ± 4
1219 ± 2	766 ± 15	184 ± 5
1219 ± 2	768 ± 15	184 ± 5

Метод с зеркалом: $f_{mir} = 150 \pm 3$ мм

Метод с зеркалом: $f_{scr} = 180 \pm 4$ мм

Эталонное значение фокусного расстояние $f_{th}=150$ мм. Поэтому можно сделать вывод, что первый метод показал себя значительно лучше.

Первый метод показал себя очень достойно, это произошло потому что предмет был подобран идеально для этого эксперимента - очень легко совместить две части окружности очень точно - эксперимент очень удобный и простой в дальнейшем в эксперименте 3 и 4 использовался этот метод, когда надо было найти фокусное расстояние какой-то линзы.

Второй метод показал себя очень плохо, разница от эталонного значения - большая, так еще и не попадает в границы погрешности. Это говорит либо о несостоятельности метода (что не так, поскольку теоретически метод вполне рабочий), либо о наличии систематической погрешности (более вероятно), которую я не учел. Это может быть связано с неправильным определением контрастности изображения, поскольку это довольно субъективный параметр, когда мы определяем его на глаз, может быть связано с неправильным положением линзы, в чем я сомневаюсь, так как эксперимент повторялся 6 раз и линза доставалась 6 раз. Мне довольно трудно понять из-за чего эксперимент не удался.

2.2 Метод Аббе

Таблица 3: Метод Аббе

β_1	β_2	Δx , mm	f, mm
4.0 ± 0.5	6.5 ± 0.5	4 ± 2	42 ± 25
4.0 ± 0.5	6.0 ± 0.5	2 ± 2	24 ± 26
4.0 ± 0.5	7.5 ± 0.5	9 ± 2	77 ± 28

Метод Аббе:
$$f_{ab} = 48 \pm 26$$
 мм

Эталонное значение фокусного расстояние $f_{th} = 34$ мм.

Метод Аббе показал наибольшую погрешность из всех методов, особенно в этой конфигурации, это связано с тем, что необходимо передвигать линзу на маленькое расстояние, поэтому относительная погрешность Δx очень большая, так же мне показалась очень неудобным микроскоп, который мы использовали для опеределения увеличения, в дальнейшем будем использовать экран и линейку и метод покажет себя значительно лучше.

Ответ попадает в границы погрешности, что радует, метод Аббе, является не самым точным, но его главное приемущество, что он работает не только для тонких линз, поэтому в дальнейшем он будет использован для поиска фокусного расстояния системы из двух линз.

2.3 Система линз

В эксперименте зафиксировалось расстояние l=40 мм между линзами и больше не менялось. Затем были найдены фокальные плоскости системы. После этого было найдено фокусное расстояние - экспериментальное значение сравнили с теоретическим посчитанным по формуле 6

Таблица 4: **Поиск фокальных плоскостей**

Таблица 5: **Поиск фокусных расстояний**

x_1, MM	x_2 , MM	f, mm
742 ± 2	846 ± 2	104 ± 3 (задняя)
742 ± 2	898 ± 2	$156 \pm 3 \; ($ передняя $)$

eta_1	eta_2	Δx , MM	f, mm
1.8 ± 0.2	2.6 ± 0.2	2.2 ± 2	129 ± 25
1 ± 0.2	1.8 ± 0.2	5.3 ± 2	119 ± 7

Задняя фокальная плоскость: $x_b = 104 \pm 3$ мм

Передняя фокальная плоскость: $x_f = 156 \pm 3$ мм

Фокусное расстояние: $f_{exp} = 124 \pm 18$ мм

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{l}{f_1 f_2} = \frac{1}{190} + \frac{1}{300} - \frac{40}{190 \cdot 300}$$

$$\boxed{f_{th} = 127 \text{ mm}}$$

В ходе данного эксперимента метод Аббе показал себя еще лучше, поскольку можно было совершать большие перемещения и метод определения увеличения был точнее и удобнее. Погрешность можно было бы уменьшить еще сильнее, если бы во время эксперимента я сделал больше точек или просто в первом опыте сделал Δx не таким маленьким.

Построим оптическую схему системы двух линз:

Рис. 9: Схема двухлинзовой оптической системы

2.4 Угловое увеличение телескопа

Таблица 6: Угловое увеличение телескопа

$$\begin{array}{|c|c|c|c|c|} \hline N_1 & N_2 & \gamma \\ \hline 10.5 \pm 0.5 & 8 \pm 0.5 & 1.3 \pm 0.1 \\ \hline \gamma_N = 1.3 \pm 0.1 \\ \hline \end{array}$$

$$\gamma_f = \frac{f_1}{f_2} = \frac{225}{190} \approx 1.2$$

Полученные значения согласуются между собой и имеют хоршую точность. Что говорит о корректности представлении о работе трубы Кеплера. Однако увеличение в 1.3 раза для телескопа, наверное, совсем малое, поэтому для лучшего эффекта стоит увеличить (на сколько это возможно) фокусное расстояние объектива и уменьшить (на сколько это возможно) фокусное расстояние окуляра. Так у нас получится собрать, действительно неплохую и очень простую в конструкции модель телескопа.

3 Оценка погрешностей

Оценка погрешностей была произведена с помощью программы «Wolfram Mathematica», ноутбук с кодом можно найти на https://github.com/grass73/hse_lab_optics в файле «HSE_lab_optics_1.nb»

Метод с зеркалом

Из формулы 1:

$$\Delta f = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2}$$

Метод с экраном

Из формулы 2:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial L} \cdot \Delta L\right)^2 + \left(\frac{\partial f}{\partial l} \cdot \Delta l\right)^2} = \sqrt{\left(\frac{L^2 + l^2}{4L^2} \cdot \Delta L\right)^2 + \left(\frac{l}{2L} \cdot \Delta l\right)^2}$$

Метод Аббе Из формулы 3:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial \beta_1} \cdot \Delta \beta_1\right)^2 + \left(\frac{\partial f}{\partial \beta_2} \cdot \Delta \beta_2\right)^2 + \left(\frac{\partial f}{\partial (\Delta x)} \cdot \Delta (\Delta x)\right)^2}$$

Угловое увеличение

Из формулы 7:

$$\Delta \gamma = \sqrt{\left(\frac{1}{N_2} \Delta N_1\right)^2 + \left(\frac{N_1}{N_2^2} \Delta N_2\right)^2}$$

4 Выводы

Метод с зеркалом показал наименьшую погрешность и наиболее точное определение фокусного расстояния. Метод с экраном оказался менее точным из-за субъективности оценки резкости изображения. Метод Аббе продемонстрировал высокую погрешность при малых смещениях, но подтвердил применимость к более сложным системам. Угловое увеличение трубы Кеплера определено с хорошей сходимостью между теоретическим и экспериментальным значениями. Общие результаты соответствуют ожиданиям геометрической оптики.

Возможная модификация: В школьные годы мне очень нравились задачи по типу «В архивах лорда Снеллиуса», например такая - задача о оптическом черном ящике. Можно воссоздать ее экспериментально, с помощью литографии изготовить объект определенной формы, дать неизвестную линзу или систему линз - задача студентов восстановить, как можно больше информации: фокусные расстояния, геометрические параметры объекта и т. д.. Однако экспериментально - эта задача не настолько интересная, как теоретически, да и смысла большого в ней нет, мне просто кажется, что это довольно весело.

Список литературы

- [1] Методическое пособие к лабораторной работе «Изучение центрированных оптических систем». НИУ ВШЭ, Факультет физики, 2025.
- [2] Сивухин Д.В. Общий курс физики. Т. IV. Оптика. М.: Наука, 1980.
- [3] Daniel A. Steck, *Classical and Modern Optics*, available online at http://steck.us/teaching (revision 1.8.5, 25 May 2024).
- [4] AndreyWinter, Оптика в техническом зрении. Лекция 2: Аберрации // Habr.com. URL: https://habr.com/ru/articles/758558/ (дата публикации: 02.09.2023).