Динамическое программирование

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 14.05.2024

Содержание лекции

- Динамическое программирование, метод разбиения и жадные алгоритмы.
- Отличия семейств алгоритмов.
- Этапы алгоритма динамического программирования. Принцип оптимальности Беллмана и перекрывающиеся вспомогательные задачи.
- Задача о минимальном размене и задача и количестве разменов.

Задача оптимизации и методы решения

$$f(x) \to \min$$

при некоторых ограничениях (зависят от задачи).

Динамическое программирование (ДП) – методика решения поставленной задачи путем комбинирования решений вспомогательных задач.

Метод разбиения (декомпозиции, "разделяй и влавствуй"):

- > задача разбивается на более мелкие вспомогательные задачи;
- эти вспомогательные задачи рекурсивно решаются;
- их решения комбинируются и образуют решение исходной задачи.

Большое количество сортировок, алгоритмы перемножения больших чисел, важнейшего алгоритма быстрого преобразования Фурье, вычисления дискретного преобразования Фурье.

Жадные алгоритмы: на каждом очередном шаге совершается выбор, который кажется самым оптимальным в данный момент.

Алгоритмы Краскала, Прима-Ярника и разработка кода Хаффмана.

Этапы алгоритма ДП

- 1. Описание структуры оптимального решения;
- 2. Рекурсивное определение значения, соответствующего оптимальному решению;
- 3. Вычисление значения, соответствующего оптимальному решению, с помощью метода восходящего анализа;
- 4. Составление оптимального решения на основе информации, полученной на предыдущих этапах (составлять оптимальное решение нужно не во всех задачах; если все же требуется, то на шаге 3 вводится дополнительная структура для хранения информации).

Отличия парадигм ДП и "разделяй и влавствуй"

- Алгоритм ДП по-разному определяет способы разделения входной задачи на мелкие подзадачи, рекурсивные вызовы в методе разбиения придерживаются одного способа разделения входа на вспомогательные задачи;
- Поскольку способы разделения различны, то вспомогательные задачи зачастую повторяются (мы увидим это в примерах). Поэтому для оптимизации их решения кэшируются в специальных структурах (очень часто это таблицы). В методе разбиения вспомогательные задачи не пересекаются и кэширование их решения не нужно;
- Обычно понижение в сложности, которое получается заменой условного "простого" алгоритма, заметнее в случае ДП;
- Обычно в методе разбиения размеры вспомогательных задач кратно меньше размеры входной задачи, в то время как в алгоритмах ДП размера могут едва отличаться.

Принцип оптимальности Беллмана

Ключевые свойства, которые должны быть у задачи оптимизации:

- ▶ Наличие оптимальной подструктуры;
- Перекрывающиеся вспомогательные программы.

Принцип оптимальности Беллмана, или наличие оптимальной структуры, заключается в том, что в оптимальном решении задачи оптимизации содержатся оптимальные решения вспомогательных подзадач.

Наличие оптимальной подструктуры роднит ДП с жадным подходом, в котором ее наличие тоже необходимо. Отличия возникают в *направлении использования* оптимальной подструктуры:

- в ДП используется в восходящем направлении: из решения вспомогательных задач конструируется решение исходной – движение "снизу вверх";
- в жадных алгоритмах движение по нисходящей: вместо выбора из нескольких решений выбирается кажущийся оптимальным на данный момент, а потом уже решается возникшая в результате выбора вспомогательная задача – движение "сверху вниз".

Перекрывающиеся вспомогательные задачи: пространство вспомогательных задач должно быть *небольшим* (обычно это полиномиальная функция от размера входных данных) в том смысле, что в результате выполнения рекурсивного алгоритма одни и те же вспомогательные задачи решаются снова и снова (возникают в процессе решения задачи в разных подзадачах и в этом смысле перекрываются), а новые вспомогательные задачи не возникают.

- такое количество все же ведет к корректному решению задачи и позволяет ускорить решение в сравнение с условным "простым" решением;
- каждая вспомогательная задача решается ровно один раз, после чего ее решение записывается в специальную таблицу. Из этой таблицы данные уже потом извлекаются за константное время.

Определение: Процесс сохранения результатов вызова функции на определенных параметрах для предотвращения повторных вызовов называется мемоизацией (англ. memoization) или запоминанием.

Примеры перекрываемости:

- сортировка слиянием;
- вычисление чисел Фибоначчи.

Пример: задача о минимальном размене

Задача о минимальном размене: имеется некоторая сумма $N\in\mathbb{N}$, которую необходимо разменять наименьшим количеством монет номиналами $\left\{w_i\right\}_{i=1}^n$, $w_i\in\mathbb{N}$. Эту задачу можно записать как задачу линейного программирования (оптимизации):

$$f(N) = \sum_{i=1}^{n} x_i \to \min_{\Omega}$$

$$\Omega \left\{ \sum_{i=1}^{n} x_i w_i = N \atop x_i \ge 0, \ i \in 1:n, \right.$$

где x_i – количество монет номинала w_i .

Эта задача, в свою очередь, является подзадачей **задачи о количестве разменов** (англ. coin-making problem): дано значение N и набор номиналов монет $\{w_i\}_{i=1}^n$. Необходимо посчитать (и при необходимости вывести) количество способов разменять значение N монетами $\{w_i\}_{i=1}^n$.

Задача о наименьшем размене демонстрирует оптимальную подструктуру в следующем виде: рассмотрим оптимальный размен $\left\{x_i\right\}_{i=1}^k$ монетами $\left\{w_i\right\}_{i=1}^k$ суммы N. Возьмем его разбиение мощности 2:

$$b = \sum_{i=1}^{\kappa} \bar{x}_i w_i, \ N - b = \sum_{i=1}^{\kappa} (x_i - \bar{x}_i) w_i,$$

где $0 \leq \bar{x}_i \leq x_i, i \in \overline{1:k}$. Тогда $\left\{\bar{x}_i\right\}_{i=1}^k$ — это оптимальный размен b монетами $\left\{w_i\right\}_{i=1}^k$, а $\left\{x_i - \bar{x}_i\right\}_{i=1}^k$ — оптимальный размен N-b монетами $\left\{w_i\right\}_{i=1}^k$.

Док-во: от противного. Пусть существует $\left\{x_i^*\right\}_{i=1}^k$ — более оптимальный способ разменять b: $b=\sum_{i=1}^k x_i^* w_i, \ \sum_{i=1}^k x_i^* < \sum_{i=1}^k \bar{x}_i.$ Тогда

$$\sum_{i=1}^{k} x_i^* w_i + \sum_{i=1}^{k} (x_i - \bar{x}_i) w_i = b + (N - b) = N,$$

$$\sum_{i=1}^{k} x_i^* + \sum_{i=1}^{k} (x_i - \bar{x}_i) < \sum_{i=1}^{k} \bar{x}_i + \sum_{i=1}^{k} (x_i - \bar{x}_i) = \sum_{i=1}^{k} x_i \quad (?$$

Рекурсивное определение оптимального решения

Обозначим за c[p] минимальное количество монет номиналами $\left\{w_i\right\}_{i=1}^n$, необходимых для размена суммы p. Заметим, что в оптимальном разбиении суммы p должен присутствовать номинал w_i такой, что $w_i < p$. Следовательно, оставшиеся монеты в оптимальном размене должны образовывать оптимальный размен суммы $p-w_i$ и тогда справедливо соотношение

$$c[p] = 1 + c[p - w_i].$$

В общем случае мы не знаем какой именно номинал входит в оптимальное решение, однако мы можем проверить все монеты, удовлетворяющие свойству $w_i < p$. Таких монет может быть несколько, поэтому проверяем все подходящие номиналы и в качестве c[p] берем минимальное из всех $1+c[p-w_i]$. Отметим также, что если необходимо разменять нулевую сумму, то для этой цели нужно ровно ноль монет. Теперь составим рекурсивное соотношение:

$$c[p] = \begin{cases} 0, \text{ если } p = 0, \\ \min_{i:w_i < p} \left(1 + c[p - w_i]\right), \text{ если } p > 0. \end{cases}$$

Вычисление методом восходящего анализа

- 1. Проинициализируем нулями два списка c[0:N] и s[0:N].
 - lacktriangle В c[l] будет храниться оптимальные решения для размена l.
 - lacktriangleright В s[l] будет храниться индекс первой монеты оптимального размена l.
- 2. Пробегаемся по всем потенциальным промежуточным суммам l и
 - присваиваем значению $c[l] = \min_{i:w_i < l} \left(1 + c[l w_i]\right)$ для всех $w_i < l$ согласно рекурсивному соотношению.
 - lacktriangle присваиваем значению s[l] индекс номинала i, на котором был достигнут $\min_{i:w_i < l} \left(1 + c[l-w_i]
 ight)$.
- 3. После заполнения списков c и s значение c[N] будет равняться искомому оптимуму.

Заметим, что по построению справедливо, что в c[l], $0 \le l \le N$ будет храниться оптимальные решения для размена l, а в s[l], $0 \le l \le N$ будет храниться индекс первой монеты оптимального размена l.

Составление оптимального решения

Для восстановления решения необходимо просмотреть массив s[N] следующим образом:

- по построению s[N] содержит индекс первой монеты оптимального размена суммы N; далее переходим к рассмотрению суммы $N-w_{s[N]}$;
 - на промежуточном шаге рассматриваем размен суммы l: первая монета ее оптимального размена это $w_{s[l]}$ и далее переходим к рассмотрению суммы $l-w_{s[l]}$;
- выполняем этот шаг пока не спустимся до нуля.

Задача о количестве разменов

Введем h[k,v] — количество разменов суммы v монетами с номиналами $\left\{w_i\right\}_{i=1}^k$ (они отсортированы в порядке возрастания номиналов). Рекурсивное соотношение основывается на том, что размены суммы v можно поделить на два множества: содержащие наибольший номинал w_k и не содержащие (в них наибольший номинал не превышает w_{k-1}).

Тогда количество разменов в первом множестве это ровно h[k-1,v], а во втором будет $h[k,v-w_k]$:

$$h[k,v] = \begin{cases} h[k-1,v] + h[k,v-w_k], \text{ если } v \geq w_k, \\ h[k-1,v], \text{ если } v < w_k. \end{cases}$$

При этом считаем (граничные условия), что

- ightharpoonup если сумма, которую необходимо разменять, равна 0, то есть ровно один вариант ее размена $(x_i=0)$;
- lacktriangle если сумма v
 eq 0, то h[0,v]=0 (ноль способов разменять сумму).

Значение h[n,N] будет равно количеству разменов суммы N всеми доступными номиналами!

0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0												
1	┙	0	1	2	3	4	5	6	7	8	9	10
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	0								-		-	
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	2											
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	3										_	
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 1 2 1 2 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	5											0
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	6	1	0	0	0	0	0	0	0	0	0	0
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1												
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1									7	8		
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	0											0
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	2											
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	3			_						_	_	
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	5											
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	1	0	0	0	0	0	0	0	0	0	0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1												
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 1 1 1 1 2 1 2 2 3 3 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	0								-			0
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 1 1 1 1 2 1 2 2 3 3 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	2											1
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 1 1 1 1 2 1 2 2 3 3 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	3											2
0 1 2 3 4 5 6 7 8 9 10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 1 1 1 1 2 1 2 2 3 3 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	5											
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	1	0	0	0	0	0	0	0	0	0	0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	-	0	1	2	3	4	5	6	7	8	9	10
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 1 2 2 2 3 3	0											0
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 1 2 2 2 3 3	2											1
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 1 2 2 2 3 3	3							2		2	2	2
0 1 2 3 4 5 6 7 8 9 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 1 2 2 2 3 3	5						2	2	2			4
0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1	6	1	0	0	0	0	0	0	0	0	0	0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 0 1												
2 1 0 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 2 2 2 3 3 4	1	0	1	2	3	4	5	6	7	8	9	10
2 1 0 1 0 1 0 1 0 1 0 1 3 1 0 1 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 2 2 2 2 3 3 4 6 1 0 1 1 1 2 3 2 4 4 5	0		0	0	0	0	0	0	0	0	0	0
3 1 0 1 1 1 1 2 1 2 2 2 5 1 0 1 1 1 2 2 2 2 3 3 4 6 1 0 1 1 1 2 3 2 4 4 5	2											1
5 1 0 1 1 1 2 2 2 3 3 4 6 1 0 1 1 1 2 3 2 4 4 5	3											2
6 1 0 1 1 1 2 3 2 4 4 5	5							2	2			4
	6	1	0	1	1	1	2	3	2	4	4	5

Второе решение задачи о минимальном размене

Обозначим за $S_{k,v}$ минимальный размен суммы v на монеты с номиналами $\left\{w_i\right\}_{i=1}^k$. Как и в задаче о количестве разменов возможны два случая:

- если $w_k \notin S_{k,v}$, то $|S_{k,v}| = |S_{k-1,v}|$; ведь если $|S_{k,v}| < |S_{k-1,v}|$, то минимальный размен $S_{k-1,v}$ подходит для размена v и по мощности он меньше $S_{k,v}$ противоречие с оптимальностью $S_{k,v}$. А если $|S_{k,v}| > |S_{k-1,v}|$, то минимальный размен $S_{k,v}$ подходит для размена v на монеты $\left\{w_i\right\}_{i=1}^{k-1}$ (т.к. в нем нет w_k) противоречие с оптимальностью $S_{k-1,v}$.
- если $w_k \in S_{k,v}$, то оптимальный размен $S_{k,v-w_k}$ будет содержать ровно на одну монету меньше, нежели $S_{k,v}$ (это монета номиналом w_k). Если это не так, то, по аналогии с предыдущим пунктом, получим противоречие с оптимальностью либо $S_{k,v}$, либо $S_{k,v-w_k}$.

Нельзя наперед знать будет ли $w_k \in S_{k,v} \Rightarrow$ для нахождения $S_{k,v}$ нужно взять наименьшее по мощности множество из $S_{k-1,v}$ и $S_{k,v-w_k} \cup \left\{w_k\right\} \Rightarrow$ задача демонстрирует наличие оптимальной подструктуры!

Теперь рекурсивно определим оптимальное решение. По аналогии с задачей о количестве разменов введем обозначение $c[k,v] \coloneqq |S_{k,v}|$ – мощность оптимального размена суммы v монетами с номиналами $\left\{w_i\right\}_{i=1}^k$.

Заметим, что если $v < w_k$, то монета с номиналом w_k точно не участвует в оптимальном размене v на $\left\{w_i\right\}_{i=1}^k$ и $c[k,v] = |S_{k,v}| = |S_{k-1,v}| = c[k-1,v].$

Если $v < w_k$, то, по рассуждению о существовании оптимальной подструктуры, придется выбирать минимум из $|S_{k-1,v}|=c[k-1,v]$ и $|S_{k.v-w_k}\cup\{w_k\}|=c[k,v-w_k]+1$.

Таким образом, алгоритм базируется на рекурсивном соотношении

$$c[k,v] = \begin{cases} c[k-1,v], \text{ если } v < w_k, \\ \min\big(c[k-1,v],c[k,v-w_k]+1)\big), \text{ если } v \geq w_k, \\ c[0,v] = +\infty, v > 0, \\ c[k,0] = 0. \end{cases}$$

Вычисление методом восходящего анализа

- lacktriangleleft Инициализируем таблицу c[m,W] нулями, в самом верхнем ряду на каждой позиции (кроме нулевой) стоят $+\infty$. Строки будут соответствовать номиналам, отсортированным по возрастанию; столбцы размениваемым суммам от 0 до W.
- Далее на каждом шаге добавляем в рассмотрение одну монету и проводим пересчет минимальных количеств монет, необходимых для размена значений во всем ряду с учетом вновь добавленного номинала. Т.е., на i-ой итерации мы будем заполнять i-ю строку.
- lacktriangle Принцип заполнения клетки c[i,v] следующий:
 - Если $v < w[i] \Rightarrow$ в клетку записывается ответ из клетки выше c[i,v] = c[i-1,v],

после чего переходим в соседнюю клетку;

Если $v \geq w[i] \Rightarrow$ возможны размены без использования i-ой монеты и с использованием \Rightarrow в таблицу запишем:

$$c[i, v] = \min (c[i-1, v], c[i, v - w[i]] + 1).$$

- После заполнения очередной строки переходим к заполнению следующей.
- ightharpoonup После заполнения всей таблицы ответ будет находиться в c[n,W].

5 0 0 0 0 0 10 0 0 0 0 0	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28 29 ∞ ∞ ∞ 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 10 0 0 0 0 0	 11 12 13 14 15 16 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28 29 ∞ ∞ ∞ ∞ 14 ∞ 0 0 0 0 0 0 0 0 0
5 0 ∞ 1 ∞ 2 10 0 0 0 0 0	 11 12 13 14 15 16 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28 29 ∞ ∞ ∞ ∞ 14 ∞ 6 8 7 0 0 0 0 0 0
5 0 ∞ 1 ∞ 2 10 0 ∞ 1 ∞ 2	 11 12 13 14 15 16 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 28 29 ∞ ∞ ∞ ∞ ∞ 14 ∞ 6 8 7 4 6 5 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 12 13 14 15 16 17	0 11 0 12 0 13 14 6 5 4 6 5 7 6 5 7 3 5 4 2 5 3 6 4 3 5	27 28 29 ∞ ∞ ∞ ∞ 14 ∞ 6 8 7 4 6 5 3 5 4