9. Kijelentések, kvantorok, logikai állítások III.

Cél: kvantoros kifejezések, következtetések, ekvivalenciák megértése, használata.

9.1. Kiegészítés az elmélethez

Lásd a 7. fejezet elméleti összefoglalóját.

9.1.1. Ellenőrző kérdések az elmélethez

- 1. Írja le matematikai jelölésekkel, kvantorokkal az alábbi állításokat, majd döntse el, hogy igazak-e:
 - (a) A természetes számok halmazának van legnagyobb eleme.
 - (b) A (0; 1] intervallumnak van legnagyobb eleme.
 - (c) A (0;1] intervallumnak van legkisebb eleme.
 - (d) Nem minden természetes szám osztható 3-mal.
 - (e) Nincs (nem létezik) olyan valós szám melynek a négyzete −1 lenne.
 - (f) Van olyan valós szám, amelyik nem racionális.
 - (g) Bármely valós szám reciproka is valós szám.
 - (h) Bármely pozitív természetes szám reciproka racionális szám.
- 2. Tekintsük az alábbi nyitott kijelentéseket a valós számok halmazán. Írjuk a \square -be a \Longrightarrow , \Longleftrightarrow , szimbólumok valamelyikét úgy, hogy igaz állítást kapjunk (ahova \Longleftrightarrow írható, oda csak azt írjuk):
 - (a) $x^2 + x < 0 \quad \Box \quad x > -1$;
 - (b) $x^2 + y^2 \le 0 \quad \Box \quad (x = 0 \land y = 0)$;
 - (c) $(x+y)^2 = (x-y)^2 \quad \Box \quad (x=0 \lor y=0)$;
- 3. Írja le kvantorok segítségével az alábbi állítást:

Van olyan pozitív K szám, hogy minden nála nagyobb x pozitív valós szám esetén teljesül az, hogy $\frac{\sqrt{x}}{x}$ kisebb mint 100^{-1} .

Igaz-e a kapott állítás?

4. Írja le kvantorok segítségével az alábbi állítást:

Minden ε pozitív számhoz van olyan pozitív K szám, hogy minden nála nagyobb x pozitív valós szám esetén teljesül az, hogy $\frac{\sqrt{x}}{x}$ kisebb mint ε .

Igaz-e a kapott állítás?

5. Fogalmazza meg kvantorokkal a matematika nyelvén az alábbi implikációt:

Minden olyan x, t valós számra az [1;2] intervallumból, melyek távolsága kevesebb mint 1/3 a négyzetgyökeik eltérése kisebb mint 1/6.

Igaz-e a kapott állítás?

6. Fogalmazza meg kvantorokkal a matematika nyelvén az alábbi állítást:

Majdnem minden n természets szám esetén

$$\frac{2^n}{3^n} < \left(\frac{1}{10}\right)^3$$

Igaz-e a kapott állítás?

7. Igaz-e az alábbi állítás, ha x valós számot jelöl:

$$\exists A \subset \mathbb{R} : (|x^2 - 4| = 1 \iff x \in A)$$
?

8. Igaz-e az alábbi állítás, ha x valós számot jelöl:

$$\exists A \subset \mathbb{R} : ((|x-1| < 1/2 \land |x-1/3| < 3/4)) \iff x \in A) ?$$

9. Pozitív formában tagadja az alábbi állítást, majd döntse el, hogy melyik az igaz:

$$\forall A \subseteq \mathbb{R} \ \exists x \in A : |x - 2| > 3.$$

10. Fogalmazza meg kvantorokkal a matematika nyelvén az alábbi állítást:

Majdnem minden n természets szám esetén $\frac{3n+1}{n+2}$ eltérése 3-tól kevesebb, mint $\frac{1}{10}$. Igaz-e a kapott állítás?

11. Helyes-e az alábbi levezetés (x valós számot jelöl):

$$\sqrt{x-2} - \sqrt{1-x} > 1 \iff \sqrt{x-2} > 1 + \sqrt{1-x} \iff \sqrt{1-x} < x-2 \iff$$

$$\iff x^2 - 3x + 3 > 0 \iff x \in \mathbb{R}?$$

12. Tekintsük az alábbi függvényt:

$$f(x) := \frac{x^2 + 1}{x} \quad (x > 0).$$

Igaz-e, hogy:

$$\forall y \in [2; +\infty) \ \exists x \in (0; +\infty) : f(x) = y ?$$

13. Tekintsük az alábbi függvényt:

$$f(x) := \cos x \quad (x \in (-\pi/2; +\pi/2)).$$

Igaz-e a következő implikáció?

Ha
$$x \in \mathbb{R}$$
 olyan, hogy $|2x| < 1 \implies f(x) > \frac{1}{\sqrt{2}}$.

Írja fel a megfordított állítást is és vizsgálja meg annak igazságtartalmát.

14. Tekintsük az alábbi függvényt:

$$f(x) := \sin x \quad (x \in \mathbb{R}).$$

Vizsgáljuk meg, hogy milyen irányú implikációk és ekvivalenciák igazak az alábbi állítások között:

(a)
$$A(x): f(x) > 0;$$

(b)
$$B(x): \exists k \in \mathbb{N} \ x \in (2k\pi; (2k+1) \cdot \pi;$$

(c)
$$C(x): x \in \bigcup_{k \in \mathbb{Z}} (2k\pi; (2k+1) \cdot \pi).$$

15. Vizsgáljuk meg, hogy milyen irányú implikációk és ekvivalenciák igazak az alábbi állítások között:

(a)
$$A(x): x \in \bigcap_{n=1}^{+\infty} (-1/n; 1/n);$$

(b)
$$B(x): \forall k \in \mathbb{N}^+: |k \cdot x| < 1;$$

(c)
$$C(x): x = 0.$$

9.2. Feladatok

9.2.1. Órai feladatok

Egyenletek, egyenlőtlenségek levezetése

- Helyesek-e az alábbi levezetések a valós számok halmazán tekintve a megfelelő átalakításokat:
 - (a) $\ln x^6 = 6 \iff 6 \cdot \ln x = 6 \iff \ln x = 1 \iff x = e$?
 - (b) $\sqrt{2x^2-2} > x$ $(x \in (-\infty; -1] \cup [1; +\infty))) \iff 2x^2-2 > x^2 \iff x^2 > 2 \iff x \in (-\infty; -\sqrt{2}) \cup (\sqrt{2}; +\infty)$?
 - (c) $\sqrt[3]{4x-1} + \sqrt[3]{4-x} = -\sqrt[3]{3} \iff$ $\iff (4x-1) + (4-x) + 3 \cdot \sqrt[3]{(4x-1)(4-x)} \cdot (\sqrt[3]{4x-1} + \sqrt[3]{4-x}) = -3 \iff$ $\iff (4x-1) + (4-x) + 3 \cdot \sqrt[3]{(4x-1)(4-x)} \cdot (-\sqrt[3]{3}) = -3 \iff$ $\iff x+2 = \sqrt[3]{3} \cdot \sqrt[3]{-4x^2 + 17x 4} \iff x^3 + 18x^2 39x + 20 = 0 \iff$ $\iff (x-1)^2 \cdot (x+20) = 0 \iff x_1 = x_2 = 1 \land x_3 = -20?$
 - (d) $x^2 + 2xy 3y^2 = 0 \iff \left(\frac{x}{y}\right)^2 + 2 \cdot \frac{x}{y} 3 = 0 \iff \left(\frac{x}{y} = 1 \lor \frac{x}{y} = -3\right) \iff (y = x \lor x = -3y)$?
 - (e) $x^2 + 2xy 3y^2 = 0 \iff (x+y)^2 4y^2 = 0 \iff (x-y) \cdot (x+3y) = 0 \iff (y=x \lor x=-3y)$?
 - (f) Ha $x, y \in Z$ akkor:

$$x^{2} + 2xy - 3y^{2} = 5 \iff (x - y) \cdot (x + 3y) = 5 \iff (x, y) \in \{(2, 1), (-4, 1)\}$$
?

(g) Ha $x, y \in Z$ akkor:

$$x^{2} + 2xy - 3y^{2} = 3 \Longleftrightarrow (x - y) \cdot (x + 3y) = 3 \Longleftrightarrow (x; y) \in \emptyset$$
?

Implikációk, ekvivalenciák

2. Állapítsuk, meg, hogy az alábbi állítások közé milyen jel tehető a \star szimbólum helyére a következő halmazból

$$\{\Longrightarrow; \Longleftarrow; \Longleftrightarrow\}$$

úgy, hogy igaz állítást kapjunk. Ahol ekvivalencia érvényes, ott csak az \iff jelet tegyük ki. Ahol csak az "egyik irány igaz" ott cáfoljuk meg egy példával az állítás megfordítását. Az előforduló változók valós számokat jelölnek.

9.2. Feladatok 87

(a)
$$x^2 = 25 \star x = 5$$
.

(b)
$$x^2 = 25 \star x = -5$$
.

(c)
$$a^2 + b^2 = 0 \star ab = 0$$
.

(d)
$$a < b \star a^2 < b^2$$
.

(e)
$$x^3 - x^2 - x + 1 = 0 \star x = 1$$
.

(f)
$$x^4 - 2x^3 - 3x^2 + 4x + 4 = 0 \star x \in \{-1, 2\}.$$

(g)
$$x^2 - 3x = 0 \star x = 3$$
.

(h)
$$\ln x < 1 - \sqrt{x} \star x \in (0, 1]$$
.

(i)
$$|x| = x \star x > 0$$
.

(j)
$$\sin 2x = \operatorname{tg} x \star x = \frac{\pi}{4} + k \cdot \frac{\pi}{2} \quad (k \in \mathbb{Z}).$$

(k) Tekintsük az
$$f(x) := \frac{x}{1-|x|}$$
 $(x \in (-1,1))$ függvényt.

Ekkor:
$$f(x) = f(t) \star x = t$$
.

(l) Tekintsük az $f(x) := |x-1| + |x+2| \ (x \in \mathbb{R})$ függvényt.

Ekkor:
$$f(x) = f(t) \star x = t$$
.

3. Adjunk meg szükséges és elégséges feltételt jelentő A (ekvivalens) kijelentést az alábbi állításokhoz:

(a)
$$\sqrt[4]{x} = x^4 \iff A(x)$$
.

(b)
$$\sqrt[3]{x} = x^3 \iff A(x)$$
.

(c)
$$\sqrt{1-\cos x} = -2 \cdot \sin \frac{\pi}{4} \cdot \sin \frac{x}{2} \iff A(x)$$
.

(d)
$$\sqrt{\cos x} > 1 - \sin^2 x \iff A(x)$$
.

(e)
$$\cos x = x^2 - 4\pi \cdot x + 4\pi^2 + 1 \iff A(x)$$
.

(f)
$$\frac{x \cdot 2018^{1/x} + \frac{1}{x} \cdot 2018^x}{2} = 2018 \iff A(x).$$

(g)
$$tg(x-y) = tgx - tgy \iff A(x;y)$$
.

(h)
$$x^2 + y^2 + 1 = xy + x + y \iff A(x; y)$$
.

- (i) $|x|+|y|<1\iff A(x;y)$. Az ekvivalens feltételt fogalmazzuk meg a geometria "nyelvén" és a megengedett pontok halmazát szemléltessük a kétdimenziós síkbeli koordináta rendszerben.
- (j) $\sqrt{x^2 + y^2 + z^2 + 2x 2y + 2z + 2} < 3 \iff A(x; y; z)$. Az ekvivalens feltételt fogalmazzuk meg a geometria "nyelvén" és a megengedett pontok halmazát szemléltessük a háromdimenziós térbeli koordináta rendszerben.

(k)
$$max\{a,b\} = \frac{|a-b| + a + b}{2} \iff A(a;b).$$

(l) Tekintsük az $f(x) := ax - 2 \ (x \in \mathbb{R})$ függvényt, ahol a valós paraméter. Ekkor:

$$(f(x) = f(t) \implies x = t) \iff A(a).$$

(m) Tekintsük az
$$f(x) := \frac{x+1}{x-2}$$
 $(x \in \mathbb{R} \setminus \{2\})$ függvényt. Ekkor:

Az f(x) = y egyenlet megoldható (x-re nézve $) \iff A(y)$.

(n) Tekintsük az $f(x) := x^2 - 4x \ (x \in (0; +\infty))$ függvényt.

 $(\emptyset \neq D \subset D_f$ tovább nem bővíthető halmaz, melyre

$$\forall x \neq t \in D \implies f(x) \neq f(t)) \iff A(D).$$

9.2.2. További feladatok

Egyenletek levezetése

 Helyesek-e az alábbi levezetések a valós számok halmazán tekintve a megfelelő átalakításokat:

(a)
$$\frac{\sin x}{x} + \frac{x}{\sin x} = 0 \iff \sin^2 x + x^2 = 0 \iff (\sin x = 0 \land x = 0) \iff x = 0$$
?

(b)
$$\sqrt{x-3} - \sqrt{2-x} > 0 \iff \sqrt{x-3} > \sqrt{2-x} \iff x-3 > 2-x \iff x > \frac{5}{2}$$
?

(c)
$$x^2 - 3xy + 2y^2 = 0 \iff \left(\frac{x}{y}\right)^2 - 3 \cdot \frac{x}{y} + 2 = 0 \iff \left(\frac{x}{y} = 2 \lor \frac{x}{y} = 1\right) \iff (y = x \lor x = 2y)$$
?

(d)
$$x^2 - 3xy + 2y^2 = 0 \iff (x - y)^2 + y^2 - xy = 0 \iff$$

 $\iff (x - y)^2 - y \cdot (x - y) = 0 \iff (x - y) \cdot (x - 2y) = 0 \iff (y = x \lor x = 2y)$?

(e) Ha $x, y \in Z$ akkor:

$$x^{2} + 3xy + 2y^{2} = 2 \iff (x+y)^{2} + y \cdot (x+y) = 2 \iff (x+y) \cdot (x+2y) = 2 \iff (x;y) \in \{(0;1); (3;-1); (0;-1); (-3;1)\} ?$$

Implikációk, ekvivalenciák

2. Állapítsuk meg, hogy az alábbi állítások közé milyen jel tehető a ★ szimbólum helyére a következő halmazból

$$\{\Longrightarrow; \Longleftarrow; \Longleftrightarrow\}$$

úgy, hogy igaz állítást kapjunk. Ahol ekvivalencia érvényes, ott csak az \iff jelet tegyük ki. Ahol csak az "egyik irány igaz" ott cáfoljuk meg egy példával az állítás megfordítását. Az előforduló változók valós számokat jelölnek.

9.2. Feladatok 89

(a)
$$x^3 = -8 \star x = \sqrt[3]{-8} = -2$$
.

(b)
$$x^4 = 4 \star x = \sqrt[4]{4} = \sqrt{2}$$
.

(c)
$$\sqrt[4]{x^6} = -x \cdot \sqrt[4]{x^2} + x < 0$$
.

(d)
$$\frac{a}{b} = 0 \star ab = 0.$$

(e)
$$ab > 0 \star (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$$
.

(f)
$$\frac{a}{b} \le 0 \star ab \le 0$$
.

(g)
$$\ln(ab) = \ln a + \ln b * (ab > 0).$$

(h)
$$\ln^2(ab) = \ln^2 a + \ln^2 b \star (a, b > 0 \land (a = 1 \lor b = 1)).$$

(i)
$$x^4 + 2x^3 - x^2 - 2x + 1 = 0 \star x = \frac{-1 \pm \sqrt{5}}{2}$$
.

(j)
$$\frac{1}{x+1} \le e^x \star x \in (-\infty; -1) \cup (0; +\infty).$$

(k)
$$|x| = -x \star x \ge 0$$
.

(l)
$$1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x} \star x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi : k \in \mathbb{Z} \right\}.$$

(m) Tekintsük az
$$f(x) := \frac{\sqrt{x}}{1 - \sqrt{x}} \ (x \in [0; 1))$$
 függvényt. Ekkor :

$$f(x) = f(t) \star x = t$$
.

(n) Tekintsük az $f(x):=(x-3)^2+|1-x|\ (x\in\mathbb{R})$ függvényt. Ekkor :

$$f(x) = f(t) \star x = t.$$

3. Adjunk meg szükséges és elégséges feltételt jelentő A (ekvivalens) kijelentést az alábbi állításokhoz:

(a)
$$\left| \frac{1}{x} \right| = x^3 \iff A(x)$$
.

(b)
$$\frac{1}{\sqrt[3]{x}} = \sqrt{x^2} \iff A(x).$$

(c)
$$\sqrt{1+\cos x} = \cos\frac{x}{2} \iff A(x)$$
.

(d)
$$\sqrt{\sin x} = 1 - \cos^2 x \iff A(x)$$
.

(e)
$$\sqrt{\sin x} > 1 - \cos^2 x \iff A(x)$$
.

(f)
$$\sqrt{\cos x} < 1 - \sin^2 x \iff A(x)$$
.

(g)
$$x^2 + \sin x + \pi \cdot x + \frac{\pi^2}{4} = -1 \iff A(x)$$
.

(h)
$$\frac{e^x}{x} + x \cdot e^{-x} = 2 - (e^x - x)^2 \iff A(x)$$
.

- (i) $tg(x+y) = tgx + tgy \iff A(x;y)$.
- (j) $\sqrt{(x-2)^2 + (y+1)^2} < 2 \iff A(x;y)$. Az ekvivalens feltételt fogalmazzuk meg a geometria "nyelvén" és a megengedett pontok halmazát szemléltessük a kétdimenziós síkbeli koordináta rendszerben.
- (k) $|x-3|+|y-2|<1\iff A(x;y)$. Az ekvivalens feltételt fogalmazzuk meg a geometria "nyelvén" és a megengedett pontok halmazát szemléltessük a kétdimenziós síkbeli koordináta rendszerben.
- (1) $min\{a,b\} = \frac{a+b-|a-b|}{2} \iff A(a;b).$
- (m) Tekintsük az $f(x) := x 1 + ax \ (x \in \mathbb{R})$ függvényt, ahol a valós paraméter. Ekkor :

$$(f(x) = f(t) \implies x = t) \iff A(a).$$

- (n) Tekintsük az $f(x) := \frac{3x+2}{x+1}$ $(x \in \mathbb{R} \setminus \{-1\})$ függvényt. Ekkor:
 - Az f(x) = y egyenlet megoldható (x-re nézve $) \iff A(y)$.
- (o) Tekintsük az $f(x) := 1 x^2 \ (x \in (-\infty; 1])$ függvényt.
 - $(\emptyset \neq D \subset D_f$ tovább nem bővíthető halmaz, melyre

$$\forall x \neq t \in D \implies f(x) \neq f(t)) \iff A(D)$$
.