Application No.: 10/529,122 Office Action dated June 17, 2008

Amendment dated November 17, 2008

Amendment dated Novem Page 2 of 11

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (CURRENTLY AMENDED) A method for the detection of a target nucleic acid molecule in a

living cell, comprising:

a) exposing the target nucleic acid molecule to a first complementation molecule and

a second complementation molecule, wherein the first complementation molecule comprises a first

polypeptide portion coupled to a first probe portion, wherein the first probe portion binds to a first

nucleic acid hybridization-site, and wherein the second complementation molecule comprises a

second polypeptide portion coupled to a second probe portion, wherein the second probe portion

binds to a second nucleic acid hybridization site, and wherein the first and second probe portions

are nucleic acids or nucleic acid analogues, and wherein when the first and second probe portions

hybridize to nucleic acid sites that are located in close proximity to each other, then the first and

second polypeptide portions of the first and second complementation molecules interact and form

an assembled complementation complex;

b) allowing the components to react under conditions that permit the formation of an

assembled complementation complex; and

c) determining if an assembled complementation complex is present by any means

which allows detection of the assembled complex but not the individual polypeptide portions;

wherein the presence of an assembled complex shows the target nucleic acid in the living cell.

2. (Original) The method of claim 1, wherein the first and second polypeptides interact in

the complementation complex to form an active enzyme.

11194155.3

Application No.: 10/529.122 Office Action dated June 17, 2008

Amendment dated November 17, 2008 Page 3 of 11

3. (ORIGINAL) The method of claim 1, wherein the first and second polypeptides interact in

the complementation complex to form an assembled protein with detectable fluorogenic activity.

4. (ORIGINAL) The method of claim 1, wherein the first and second polypeptides interact in

the complementation complex to form an assembled protein which contains a discontinuous

epitope, which may be detected by use of an antibody which specifically recognizes the

discontinuous epitope on the assembled protein but not the partial epitope present on either

individual polypeptide.

5. (ORIGINAL) The method of claim 1, wherein the target nucleic acid is detected in vivo or in

vitro.

(ORIGINAL) The method of claim 5, wherein the target nucleic acid is detected in vivo. 6.

7 (ORIGINAL) The method of claim 1, wherein the target nucleic acid is single-stranded or

double-stranded.

8. (ORIGINAL) The method of claim 2, wherein the active enzyme is detected by a

chromogenic or fluorogenic reaction.

9. (ORIGINAL) The method of claim 8, wherein the enzyme is dihydrofolate reductase or β-

lactamase.

10. (ORIGINAL) The method of claim 3, wherein the assembled protein is a fluorescent protein.

(ORIGINAL) The method of claim 10, wherein the fluorescent protein is a natural. 11

modified, or genetically engineered fluorescent protein.

12 (ORIGINAL) The method of claim 11, wherein the fluorescent protein is selected from the

group consisting of GFP, EGFP, CFP, YFP, and RFP.

13. (CANCELLED)

11194155 3

Application No.: 10/529.122 Office Action dated June 17, 2008

Amendment dated November 17, 2008

Page 4 of 11

14 (CURRENTLY AMENDED) The method of claim III1311, wherein the first probe portion and

the second probe portion are oligonucleotides.

15. (CANCELED)

16. (ORIGINAL) The method of claim 1, wherein the probe portion and the polypeptide portion

of each complementation molecule is coupled by a flexible linker.

17 (ORIGINAL) The method of claim 1, wherein the target nucleic acid is amplified prior to

exposure to the first and second complementation molecules.

18. (ORIGINAL) The method of claim 17, wherein the target nucleic acid is amplified using

rolling circle amplification to generate a single-stranded DNA target with a multiplicity of the

same hybridization sites.

19 (ORIGINAL) The method of claim 1, wherein the first and the second probes bind to two

adjacent sequences in the target nucleic acid.

20. (CURRENTLY AMENDED) The method of claim 1, wherein the first and the second probes

bind to the same sequence in the target nucleic acid to form a triplex, wherein the target nucleic

acid sequence forms part of the triplex.

21. (CURRENTLY AMENDED) A kit for the detection of a target nucleic acid molecule in a

living cell, wherein the kit comprises a vial containing a first complementation molecule and a vial

containing a second complementation molecule, wherein the first complementation molecule

comprises a first polypeptide portion coupled to a first probe portion, wherein the first probe

portion binds to a first nucleic acid hybridization site of the target nucleic acid molecule in the

living cell, and wherein the second complementation molecule comprises a second polypeptide

portion coupled to a second probe portion, wherein the second probe portion binds to a second

11194155 3

Application No.: 10/529.122 Office Action dated June 17, 2008

Amendment dated November 17, 2008

Page 5 of 11

nucleic acid hybridization site of the target nucleic acid molecule in the living cell, and wherein

the first and second probe portions are nucleic acids or nucleic acid analogues, and wherein when

the first and second probe portions bind to nucleic acid sites that are located in close proximity to

each other, then the first and second polypeptide portions of the first and second complementation

molecules interact and form an assembled complementation complex when the target nucleic acid

molecule in the living cell is exposed to the first and second complementation molecules.

22. (ORIGINAL) The kit of claim 21, wherein the first and second polypeptides interact in the

complementation complex to form an active enzyme.

23. (ORIGINAL) The kit of claim 21, wherein the first and second polypeptides interact in the

complementation complex to form an assembled protein with detectable fluorogenic activity.

24. (ORIGINAL) The kit of claim 21, wherein the first and second polypeptides interact in the

complementation complex to form an assembled protein which contains a discontinuous epitope,

which may be detected by use of an antibody which specifically recognizes the discontinuous

epitope on the assembled protein but not the partial epitope present on either individual

polypeptide.

(NEW) The method of claim 1, wherein the living cell is in vivo.

26. (NEW) The method of claim 1, wherein the living cell is in vitro.

27. (NEW) The kit of claim 21, wherein the living cell is in vivo.

28. (NEW) The kit of claim 21, wherein the living cell is in vitro.

11194155 3