Chapitre 1 : Fonctions logiques et algèbre de Boole

Justine Philippe

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

Variable et fonction logique

- Les états logiques sont représentés par les valeurs binaires 0 et 1
- □ Une variable logique est une grandeur physique ne pouvant prendre que deux états : 0 et 1

Convention	Représentation physique (tension)	Représentation logique (état)	
Logique positive	Haute	'1' ou actif	
Logique positive	Basse	'0' ou inactif	
Logique págativo	Basse	'1' ou actif	
Logique négative	Haute	'0' ou inactif	

Tables de vérité

□ La table de vérité donne la valeur des sorties pour chaque configuration des entrées :

Logigramme

- Représentation graphique d'une fonction logique par des symboles logiques
- □ La lecture s'effectue de gauche à droite

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

Fonctions logiques de base

□ Opérateur « oui » : f(A) = A

A	A
0	0
1	1

A	\overline{A}
0	1
1	0

Fonctions logiques de base

□ Opérateur « ou » (OR) : f(A,B) = A + B

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

□ Opérateur « et » (AND) : f(A,B) = A.B

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Fonctions logiques dérivées

□ Opérateur « non ou » (NOR) : $f(A, B) = \overline{A + B}$

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

□ Opérateur « non et » (NAND) : $f(A, B) = \overline{A \cdot B}$

Α	В	$\overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

Fonctions logiques dérivées

□ Opérateur « ou exclusif » (XOR) : $f(A, B) = A \oplus B$

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

□ Opérateur « et inclusif » (XNOR) : $f(A, B) = A \odot B = A \odot B$

A	В	$A \odot B$
0	0	1
0	1	0
1	0	0
1	1	1

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

Propriétés des opérations

Commutativité :

- A + B = B + A
- A.B = B.A

■ Associativité :

- A+B+C = (A+B)+C = A+(B+C)
- A.B.C = (A.B).C = A.(B.C)

Distributivité :

- A.(B+C) = (A.B) +(A.C)
- A+(B.C) = (A+B).(A+C)

□ Existence d'un élément neutre :

- A+0 = A
- A.1 = A

Existence d'un complément (unique) :

- $-A+\overline{A}=1$
- $-A.\overline{A}=0$

Dualité :

- et \leftrightarrow ou
- $-0 \leftrightarrow 1$
- $A.(B + 0) = A.B \leftrightarrow A + (B.1) = A + B$

Propriétés des opérations

■ Loi d'idempotence :

- -A+A=A
- A.A = A

Loi d'absorption :

- A+A.B = A
- A.(A+B) = A

$$\overline{\overline{A}} = A$$

$$A.B + \overline{A}.C + B.C = A.B + \overline{A}.C$$

Loi de simplification :

- $A+(\overline{A}.B) = A+B$
- $A.(\overline{A}+B) = A.B$

□ Théorème de DE MORGAN :

- $\overline{(A+B)} = \overline{A}.\overline{B}$
- $-\overline{(A.B)} = \overline{A} + \overline{B}$

$$- \overline{(A_0 + A_1 + A_2 + \dots + AN)} = \overline{A_0}.\overline{A_1}.\overline{A_2}.\dots\overline{A_N}$$

Réseaux de NOR et de NAND

 $\mathbf{F} = (\mathbf{A} + \mathbf{B}).(\mathbf{C} + \mathbf{D})$

Intérêt : homogénéiser les opérateurs

$$F \ = \ \overline{(\overline{A.\,B}).\,(\overline{C.\,D})} \ = \ \overline{\overline{A.\,B}} + \overline{\overline{C.\,D}} \ = \ A.\,B + C.\,D$$

$$\mathbf{F} = \overline{(\overline{\mathbf{A} + \mathbf{B}}) + (\overline{\mathbf{C} + \mathbf{D}})} = \overline{\mathbf{A} + \mathbf{B}}.\overline{\overline{\mathbf{C} + \mathbf{D}}} = (\mathbf{A} + \mathbf{B}).(\mathbf{C} + \mathbf{D})$$

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

Expressions algébriques : définitions

- □ Terme somme : $A + B + C + D + \cdots$
- □ Terme produit : A.B.C.D. ...
- Minterm: terme produit contenant toutes les variables une seule fois ex: 3 entrées a,b,c A.B.C A.B.C etc...
- Maxterm : terme somme contenant toutes les variables une seule fois ex : 3 entrées a,b,c
 A+B+C
 A+B+C etc...
- Somme de produits canoniques (SPC) : 1 e forme canonique ex : 3 entrées a,b,c $S = A.B.C + A.\overline{B}.C + \overline{A}.B.\overline{C}$
- Produit de sommes canoniques (PSC) : L' forme canonique ex : 3 entrées a,b,c $S = (A+B+C).(A+\overline{B}+C).(\overline{A}+B+\overline{C})$

ISEN école d'ingénieurs

Simplification algébrique

Quelques propriétés utiles :

- $A.B + \bar{A}.B = B \tag{}$
- $\bar{A} + A.B = \bar{A} + B \tag{2}$
- $(A+B).(\bar{A}+B) = B$ (3)

Règles de simplification :

Regrouper les termes à l'aide des identités ci-dessus

ex:
$$A.B.C + A.B.\bar{C} + A.\bar{B}.C.D = A.B + A.\bar{B}.C.D$$
 (identité 1)
= $A.(B + \bar{B}.C.D)$ (factorisation par A)
= $A.(B + C.D)$ (loi de simplification)

Ajouter un terme déjà existant

ex :
$$A.B.C + \bar{A}.B.C + A.\bar{B}.C + A.B.\bar{C} = A.B.C + \bar{A}.B.C + A.B.C + A.\bar{B}.C + A.B.C + A.B.\bar{C}$$

= $B.C + A.C + A.B$ (identité 1)

- Supprimer les termes superflus (théorème du consensus)
- Simplifier la forme canonique ayant le nombre de termes minimum

- Quelques définitions
- Portes logiques de base
- Propriétés et théorèmes
- Simplification algébrique
- Simplification graphique

Tableaux de Karnaugh : construction

- But : obtenir une expression algébrique simplifiée sous forme SPC ou PSC en minimisant
 - le nombre de sommes (de produits)
 - les produits (les sommes) eux-mêmes
- Exemple de construction : 3 variables d'entrée A, B, C donc 2³ = 8 combinaisons possibles

	Α	В	С	S						
	0	0	0	0	Codage GRAY : <u>une</u> seule variable change entre 2 lignes					
	0	0	1	Χ						
	0	1	1	1						
	0	1	0	Χ	BC B BC 00 01 11 10					
	1	1	0	1						
	1	1	1	1						
	1	0	1	0	A 1 0 1 1 1 1 0 1 1					
	1	0	0	1						
5	ÉN école d'ingénieurs									

Tableaux de Karnaugh : propriétés

Propriétés :

- □ Simplification des équations logiques :
 - réaliser les plus grands regroupements possibles de '0' ou de '1'
 - les 'X' peuvent être choisis comme des '0' ou des '1'
 - une case peut appartenir à plusieurs groupements
 - pas de groupements "inutiles"
 - tous les '0' ou les '1' doivent appartenir à un regroupement

Simplification graphique

Exemples de groupements autorisés

Penser à utiliser les symétries!

JPH - CIR2/L3Si - Chapitre 1

Minimisation en somme de produits

Regroupement de cellules adjacentes à '1', chaque regroupement est un produit (fonction ET), le résultat est la somme de ces produits (fonction OU)

$$\mathbf{F} = \overline{\mathbf{C}}.\overline{\mathbf{D}} + \overline{\mathbf{A}}.B.\overline{\mathbf{C}} + \overline{\mathbf{A}}.\overline{\mathbf{B}}.\mathbf{C} + \overline{\mathbf{A}}.\overline{\mathbf{D}}$$

$$\mathbf{F} = \overline{\mathbf{C}}.\overline{\mathbf{D}} + \overline{\mathbf{A}}.B.\overline{\mathbf{C}} + \overline{\mathbf{A}}.\overline{\mathbf{B}}.\mathbf{C} + \mathbf{B}.\overline{\mathbf{D}}$$

Minimisation en produit de sommes

Regroupement de cellules adjacentes à '0', chaque regroupement est <u>un produit</u> (fonction ET), le résultat est <u>la somme de ces produits</u> (fonction OU)

$$\mathbf{F} = (\overline{\mathbf{A}} + \overline{\mathbf{C}}).(\overline{\mathbf{A}} + \overline{\mathbf{D}}).(\overline{\mathbf{B}} + \overline{\mathbf{C}} + \overline{\mathbf{D}}).(\mathbf{B} + \mathbf{C} + \overline{\mathbf{D}})$$

La minimisation en somme de produits donne un résultat identique à la minimisation en produit de sommes !

Et pour plus de 4 variables ?

Exemple dans le cas d'une fonction à 5 variables d'entrée :

F = F0 + F1

$$\mathbf{F} = \mathbf{B}.\,\mathbf{D}.\,\mathbf{E} + \overline{\mathbf{B}}.\,\overline{\mathbf{C}}.\,\overline{\mathbf{D}}.\,\mathbf{E} + \overline{\mathbf{B}}.\,\mathbf{D} + \mathbf{A}.\,\mathbf{C}.\,\overline{\mathbf{D}}.\,\overline{\mathbf{E}}$$

BC

Exemple 1

$$S_1 = \overline{A} \cdot B + A \cdot \overline{B} = A \cdot B B$$

$$\overline{S}_1 = \overline{A} \overline{B} + A.B = AOB$$

$$= \overline{A}.\overline{B} \qquad \overline{A}B = \underline{(A+B)}.(\overline{A}+\overline{B})$$

						2
	Α	В	С	S ₁	S ₂	0001110
	0	0	0	0	0	41 1000
	0	0	1	0	1	1000
	0	1	0	1	0	Se=A.C+A.C
	0	1	1	1	1	· · · · · · · · · · · · · · · · · · ·
	1	0	0	1	1	JUEA.CH A. C
	1	0	1	1	0_	Si=Si= A.C.+A.E
	1	1	0	0	1	
	1	1	1	0	0	= A.C. A.C
•		\				$=(\overline{A}+\overline{C})\cdot(A+C)$

Exemple 2

•	Α	В	С	D	S ₁	S ₂	
	0	0	0	0	1	0	
	0	0	0	1	0	1	
	0	0	1	0	0	0	1
	0	0	1	1	1	1	
Ì	0	1	0	0	1	1	
	0	1	0	1	1	0	_
	0	1	1	0	0	0	5
1	0	1	1	1	1	0	
	1	0	0	0	0	1	(
	1	0	0	1	0	0	
	1	0	1	0	0	0,	
١	1	0	1	1	0	1	5
1	1	1	0	0	1	0	
	1	1	0	1	1	0	
	1	1	1	0	0	1	
	1	1	1	1	0	1	

ISEN école d'ingénieurs

JPH - CIR2/L3Si - Chapitre 1

Récapitulatif (A savoir)

- □ Règles d'algèbre de Boole
- Opérateurs standards
- □ Tables de vérités et tableaux de Karnaugh

Fin du chapitre 1

