BTS - Initiation aux plans d'expériences - TD

Étude expérimentale d'une colle à prise chimique

Un fabricant met au point une nouvelle colle à prise chimique (par polymérisation). Durant la phase de collage, la résistance à la traction de la colle augmente de façon significative jusqu'à une valeur maximale. Le fabricant veut étudier la \og durée de prise \fg, c'est à dire la durée nécessaire pour que la résistance de la colle atteigne les trois quarts de sa valeur maximale.

Partie A

Le fabricant étudie l'influence de deux facteurs, la température et l'humidité ambiantes, sur la durée de prise de la colle. Il note X_1 (resp. X_2) la variable qui associe au facteur température (resp. humidité) son niveau, et Y la durée de prise étudiée (exprimée en minutes).

Température X_1

18°C

22°C

18°C

22°C

Humidité X_2

faible

faible

forte

forte

Durée de prise (en min) Y

11

9

10

13

Il procède à un plan d'expérience factoriel \$2^2\$ dont les résultats figurent ci-dessous.

Le modèle retenu pour Y est un modèle polynomial du ${
m type}: Y=a_0+a_1X_1+a_2X_2+a_{12}X_1X_2+\epsilon$

• •	
Exercice	

- 1. Déterminer les niveaux +1 et -1 pour chaque facteur.
- Dresser la matrice complète des expériences et des effets, construite selon l'algorithme de Yates.
- 3. Calculer les estimations ponctuelles des effets principaux et de l'interaction.
- 4. Écrire l'équation du modèle de Y en fonction de X_1 et X_2 .
- 5. Interprétation des effets :
 - Peut-on négliger l'interaction ?
 - À la température de 20°C (T = 0), Comment varie la durée de prise lorsque l'humidité varie du niveau faible à fort ?

Partie B

Le fabricant effectue une deuxième campagne de mesures : il fait réaliser 100 collages indépendants, dans des conditions de température variables entre 18°C et 22°C. Les résultats sont donnés ci-dessous.

Durée de prise en	[8,5 ;	[9 ;	[9,5 ;	[10 ;	[10,5 ;	[11 ;	[11,5 ;	[12 ;	[12,5 ;
min	9[9,5[10[10,5[11[11,5[12[12,5[13[
Effectif	0	6	9	17	22	27	13	4	2

Exercice 2:

- 1. Calculer la moyenne \overline{x} et l'écart-type s de la série de mesures (on donnera les valeurs au centième).
- 2. On admet ici que la durée de prise est une variable aléatoire X suivant une loi normale de moyenne μ inconnue et d'écart-type $\sigma=0.8$.

On note X la variable aléatoire qui à une série quelconque de 100 collages indépendants associe sa durée moyenne de prise.

Donner la loi de probabilité de \overline{X} en fonction de μ et σ .

1 sur 1 03/01/2023 23:02