Projeto_Pokemon

Thomas Raphael Zonta

2025-02-20

```
knitr::opts_chunk$set(echo = TRUE)
```

Bibliotecas

Essas foram as bibliotecas importadas para a realização desta análise.

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                                   2.1.5
                       v readr
## v forcats 1.0.0
                       v stringr
                                   1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
## v lubridate 1.9.4
                       v tidyr
                                   1.3.1
## v purrr
              1.0.4
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(readr)
library(dplyr)
library(summarytools)
## Anexando pacote: 'summarytools'
## O seguinte objeto é mascarado por 'package:tibble':
##
      view
library(readxl)
library(knitr)
library(dlookr)
## Registered S3 methods overwritten by 'dlookr':
    method
                    from
    plot.transform scales
```

```
## print.transform scales
##
## Anexando pacote: 'dlookr'
##
## O seguinte objeto é mascarado por 'package:tidyr':
##
## extract
##
## O seguinte objeto é mascarado por 'package:base':
##
## transform
```

Base de dados Pokemon

A ideia do projeto é dentro da base de dados estipular quais pokemons dentro das 6 gerações catalogadas são os mais fortes utilizando a coluna que registra os dados de ataque básico. A seguir vamos carregas a nossa base de dados:

```
df <- read.csv("C:/Users/Pichau/Documents/RSTUDIO/Estatistica_para_Ciencia_Dados/pokemon.csv", stringsA</pre>
```

Análises iniciais da tabela

Contagem do número de linhas da tabela.

Visualização das colunas da tabela.

Vamos visualizar o topo da base de dados para vermos os dados que teremos para trabalhar.

```
kable(head(df))
```

X.	Name	Type.1	Type.2	НР	Attack	Defense	SpAtk	SpDef	Speed	Generation	Legendary
1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False
2	Ivysaur	Grass	Poison	60	62	63	80	80	60	1	False
3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False
4	Mega	Grass	Poison	80	100	123	122	120	80	1	False
	Venusaur										
5	Charmander	Fire		39	52	43	60	50	65	1	False
6	Charmeleon	Fire		58	64	58	80	65	80	1	False

Tipos de dados da base de dados

Vamos visualizar o tipo de dados de cada coluna da nossa tabela.

df %>% dlookr::diagnose()

## # A tibble: 12 x 6									
##		variables	types	missing_count	missing_percent	unique_count	unique_rate		
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>		
##	1	Х.	integer	0	0	800	1		
##	2	Name	character	0	0	800	1		
##	3	Type.1	character	0	0	18	0.0225		
##	4	Type.2	character	0	0	19	0.0238		
##	5	HP	integer	0	0	94	0.118		
##	6	Attack	integer	0	0	111	0.139		
##	7	Defense	integer	0	0	103	0.129		
##	8	SpAtk	integer	0	0	105	0.131		
##	9	SpDef	integer	0	0	92	0.115		
##	10	Speed	integer	0	0	108	0.135		
##	11	${\tt Generation}$	integer	0	0	6	0.0075		
##	12	Legendary	character	0	0	2	0.0025		

Frequência por tipo

##

##

##

Poison

Psychic

Rock

28

57

44

3.50

7.12

5.50

Vamos visualizar a frequência com que cada tipo.1 aparece na nossa tabela.

```
df %>% dplyr::select(Type.1) %>% summarytools::freq()
## Error in table(names(candidates))[["tested"]]: indice fora dos limites
## Warning in parse_call(mc = match.call(), caller = "freq"): metadata extraction
## terminated unexpectedly; inspect results carefully
## Frequencies
## df$Type.1
## Type: Character
##
##
                   Freq % Valid % Valid Cum. % Total % Total Cum.
##
                     69
                             8.62
                                                      8.62
             Bug
                                           8.62
                                                                    8.62
##
            Dark
                     31
                             3.88
                                          12.50
                                                      3.88
                                                                   12.50
##
          Dragon
                     32
                             4.00
                                          16.50
                                                      4.00
                                                                   16.50
##
        Electric
                     44
                             5.50
                                          22.00
                                                      5.50
                                                                   22.00
                     17
                             2.12
                                           24.12
                                                      2.12
                                                                    24.12
##
           Fairy
##
        Fighting
                     27
                             3.38
                                           27.50
                                                      3.38
                                                                    27.50
                     52
##
            Fire
                             6.50
                                           34.00
                                                      6.50
                                                                    34.00
##
                     4
                             0.50
                                           34.50
                                                      0.50
                                                                    34.50
          Flying
##
           Ghost
                     32
                             4.00
                                           38.50
                                                      4.00
                                                                    38.50
                     70
                                           47.25
                                                                    47.25
##
           Grass
                             8.75
                                                      8.75
##
          Ground
                     32
                             4.00
                                           51.25
                                                      4.00
                                                                    51.25
                                           54.25
##
             Ice
                     24
                            3.00
                                                      3.00
                                                                   54.25
##
          Normal
                     98
                            12.25
                                           66.50
                                                     12.25
                                                                    66.50
```

70.00

77.12

82.62

3.50

7.12

5.50

70.00

77.12

82.62

##	Steel	27	3.38	86.00	3.38	86.00
##	Water	112	14.00	100.00	14.00	100.00
##	<na></na>	0			0.00	100.00
##	Total	800	100.00	100.00	100.00	100.00

Primeira comparação de poder de ataque

Vamos usar um um código para trazer de cada geração registrada o pokemon mais forte e mais fraco.

```
stronger <- df %>% group_by(Generation) %>% summarise(Mais_Forte = Name[which.max(Attack)], max_atack = Mais_Fraco = Name[which.min(Attack)], min_atack = print(stronger)
```

```
## # A tibble: 6 x 5
##
    Generation Mais_Forte
                                   max_atack Mais_Fraco min_atack
##
         <int> <chr>
                                       <int> <chr>
## 1
             1 Mega Mewtwo X
                                         190 Chansey
                                                                 5
## 2
             2 Mega Heracross
                                                                10
                                         185 Shuckle
             3 Primal Groudon
## 3
                                         180 Feebas
                                                                15
             4 Mega Garchomp
                                                                5
## 4
                                         170 Happiny
             5 Kyurem Black Kyurem
## 5
                                         170 Munna
                                                                25
## 6
             6 Mega Diancie
                                         160 Spewpa
                                                                22
```

Gráfico de apresentação

Veremos o gráfico apresentando os dados dos pokemons mais fortes e fracos de cada geração.

```
ggplot(data = stronger) +
geom_point(mapping = aes(x = Mais_Forte, y = max_atack)) +
geom_point(mapping = aes(x = Mais_Fraco, y = min_atack))
```


Buscando outliers

Poderemos ver se há pokemons que fogem a média dos outros.

```
df %>% dplyr::select(Generation, Attack) %>%
    ggplot(aes(group = Generation, x=Generation, y = Attack)) + geom_boxplot() +
    xlab('Geração') +
    ylab('Ataque') +
    theme_classic()
```


Mais forte por tipo.1

Veremos a lista dos mais fortes pokemons por seu tipo.

```
## # A tibble: 18 x 3
##
      Type.1
               Mais_forte_tipo1
                                          max_forte
      <chr>
                <chr>
##
                                              <int>
##
    1 Psychic Mega Mewtwo X
                                                190
               Mega Heracross
                                                185
##
    2 Bug
    3 Dragon
##
               Mega Rayquaza
                                                180
##
    4 Ground
               Primal Groudon
                                                180
    5 Ghost
               Mega Banette
                                                165
##
    6 Rock
               Rampardos
                                                165
##
##
    7 Fire
               Mega Blaziken
                                                160
##
    8 Normal
               Slaking
                                                160
##
    9 Water
               Mega Gyarados
                                                155
## 10 Dark
                                                150
               Mega Absol
## 11 Steel
                Aegislash Blade Forme
                                                150
## 12 Fighting Mega Lucario
                                                145
## 13 Grass
               Mega Abomasnow
                                                132
```

```
## 14 Fairy Xerneas 131
## 15 Ice Mamoswine 130
## 16 Electric Electivire 123
## 17 Flying Tornadus Incarnate Forme 115
## 18 Poison Toxicroak 106
```

Media de ataque

A média de ataque dos pokemons calculada na geração.

```
media_por_geracao <- df %>% group_by(Generation) %>% summarise(media = mean(Attack, na.rm = TRUE)) %>%
    arrange(Generation)

media_por_geracao

## # A tibble: 6 x 2
```

Estatísticas de ataque

Estatistica de ataque dos pokemons calculada por geração.

```
estatisticas_attack <- df %>% group_by(Generation) %>%
  summarise(
   media = mean(Attack, na.rm = TRUE),
   desvio = sd(Attack, na.rm = TRUE),
   prim_quartil = quantile(Attack, 0.25, na.rm = TRUE),
   terc_quartil = quantile(Attack, 0.75, na.rm = TRUE)
)

print(estatisticas_attack)
```

```
## # A tibble: 6 x 5
    Generation media desvio prim_quartil terc_quartil
##
         <int> <dbl> <dbl>
                                   <dbl>
                                                <dbl>
## 1
             1 76.6
                       30.7
                                    55
                                                 95
             2 72.0
                       32.7
                                                 90
## 2
                                    50
             3 81.6
## 3
                       36.6
                                    54
                                                100
## 4
             4 82.9
                       32.8
                                    62
                                                103
## 5
             5 82.1
                       30.4
                                    55
                                                103
             6 75.8
## 6
                       29.2
                                    53.2
                                                 94.2
```

Comparação de tipo e geração com base no ataque

Gráfico trazendo 3 parametros para demonstração: Geração, Tipo e Ataque

```
df %>% ggplot(aes(x= Type.1, y= Generation, fill = Attack)) +
  geom_tile() +
  xlab("Tipo") +
  ylab("Geração")
```


Função DESC

```
df %>% group_by(Generation) %>% dplyr::select(Attack) %>% summarytools::descr()
## Adding missing grouping variables: 'Generation'
## Descriptive Statistics
   by Generation
## Data Frame: df
## N: 800
##
##
##
                        76.64
                                 72.03
                                          81.62
                                                    82.87
                                                             82.07
                                                                      75.80
                Mean
```

##	Std.Dev	30.74	32.71	36.59	32.78	30.37	29.18
##	Min	5.00	10.00	15.00	5.00	25.00	22.00
##	Q1	55.00	50.00	53.00	62.00	55.00	53.00
##	Median	75.00	73.50	75.00	80.00	80.00	69.50
##	Q3	95.00	90.00	100.00	103.00	103.00	95.00
##	Max	190.00	185.00	180.00	170.00	170.00	160.00
##	MAD	29.65	31.88	37.06	29.65	37.06	28.91
##	IQR	40.00	40.00	46.00	41.00	48.00	41.00
##	CV	0.40	0.45	0.45	0.40	0.37	0.38
##	Skewness	0.58	0.63	0.63	0.31	0.34	0.83
##	SE.Skewness	0.19	0.23	0.19	0.22	0.19	0.27
##	Kurtosis	0.55	0.72	-0.14	-0.06	-0.59	0.40
##	N.Valid	166.00	106.00	160.00	121.00	165.00	82.00
##	N	166.00	106.00	160.00	121.00	165.00	82.00
##	Pct.Valid	100.00	100.00	100.00	100.00	100.00	100.00

Histograma de poder de ataque por quantidade

Separação por quantidade de pokemons nivelado por seu poder de ataque com bins = 10

```
ggplot(df, aes(x = Attack)) +
  geom_histogram(binwidth = 10, fill = "blue", color = "black", alpha = 0.7) +
  labs(title = "Histograma de Ataque", x = "Attack", y = "Quantidade") +
  theme_minimal()
```


Distribuição de ataque separado por geração

Aqui podemos analisar separadamente cada geração com o gráfico violino o lado para o qual a calda pende, mostrando uma curva assimétrica com calda prolongada para direita.

```
ggplot(df, aes(x = as.factor(Generation), y = Attack, fill = as.factor(Generation))) +
  geom_violin(alpha = 0.5) +
  labs(title = "Distribuição de Ataque por Geração", x = "Geração", y = "Ataque") +
  theme_minimal() +
  theme(legend.position = "none")
```


Scatterplot entre ataque e defesa

Veremos um scatterplot entre ataque e defesa separados por tipo.1 de pokemon vendo se há correlação ao fato de um pokemon com alto ataque também tem um alto índice de defesa ou não.

Gráfico de linha

generated.

Veremos um gráfico de linha calculando a médita de ataque por geração.

```
df_summary <- df %>%
  group_by(Generation) %>%
  summarise(Media_Attack = mean(Attack, na.rm = TRUE))

ggplot(df_summary, aes(x = Generation, y = Media_Attack)) +
  geom_line(color = "blue", size = 1) +
  geom_point(color = "red", size = 3) +
  labs(title = "Media de Ataque por Geracao", x = "Geracao", y = "Media de Ataque") +
  theme_minimal()

## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
```


Instalação RStudio

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Figure 1: Programa instalado na máquina

Figure 2: dataset no ambiente do RStudio