ELEC 204

Ruiheng Su 2019

Fundamentals

i is the rate of change in charge:

$$i = \frac{dq}{dt}$$

v is the energy required to move a positive unit charge through a circuit element. Charge moves from high to low potential

$$v = \frac{dW}{dq}$$

p is rate of change in energy per unit time

$$p = \frac{dW}{dt} = \frac{dW}{dq} \frac{dq}{dt} = vi$$

 ${\cal R}$ is the ability to resist current

$$R \propto
ho rac{l}{A}$$
 l : Length of resistor; A : Cross section area

G is the ability to conduct current

$$G = \frac{1}{R}$$
 Units: Siemens [S]

Node: Point where two or more elements join **Loop**: Path whose last node is starting node

Mesh: A loop that does not enclose any other loops

Zeros: Root of the numerator **Pole**: Root of the denominator

Cramer's Method

$$\begin{split} \mathbf{M} &= \begin{pmatrix} a+jb & \alpha & V_1 \\ \beta & c+jd & V_2 \end{pmatrix} \\ V_1 &= \frac{1}{\det \mathbf{M}} \begin{bmatrix} V_1 & \alpha \\ V_2 & c+jd \end{bmatrix} \qquad V_2 = \frac{1}{\det \mathbf{M}} \begin{bmatrix} a+jb & V_1 \\ \beta & V_2 \end{bmatrix} \end{split}$$

Decibel Scale

$$\log 1 = 0 \qquad \log AB = \log A + \log B$$

$$\log \frac{A}{B} = \log A - \log B \qquad \log A^n = n \log A$$

The dB is used for measuring the ratio of variables of the same unit. Use the **magnitude** of quantities.

1 Decibel:
$$10 \log_{10} \frac{A}{R}$$

Passive Sign Convention

Given the assumption that current flows from $+\ \mbox{to}\ -.$ Current that flow from $-\ \mbox{to}\ +$ are multiplied -1

Passive Component: Absorbing Power $\ P \geq 0$

Active Component: Delivering Power P < 0

Tellegan's Theorem

Power consumed and produced by all elements in a circuit sum to zero at all time

$$\sum P = 0$$

KCL

Sum of currents entering any closed boundary is zero

KVL

Sum of voltage drops around any closed path is zero

Resistors

Parallel Resistors

$$\frac{1}{R_{eq}} = \sum_{i=1}^{n} \frac{1}{R_i} \qquad G_{eq} = \sum_{i=1}^{n} G_i$$

Wheatstone Bridge

Balanced when:

$$\frac{R_1}{R_3} = \frac{R_2}{R_x}$$

$Y \Delta$ Transformation

Let $R_a \leftrightarrow R_1$, $R_2 \leftrightarrow R_2$, $R_3 \leftrightarrow R_3$ Notice the pattern in the numerator and the denominator

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c} \qquad R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

If R values in the Y or Δ network are equal, then

$$R_Y = \frac{R_\Delta}{3}$$
 $R_\Delta = 3R_Y$

Nodal Analysis

1. Simplify the circuit if possible

Choose a node for ground which minimizes the number of floating

- 2. Construct KCL for all leftover nodes. Pure assign a current variable to each floating source
- 3. Use the convention that $\Delta V = V_{\rm start} V_{\rm end}$
- 4. Solve equations

Superposition

1. Turn off all independent source, except one

$$V_{\text{source}} \rightarrow \text{Ideal wire} \qquad I_{\text{source}} \rightarrow \text{Open circuit}$$

- 2. Calculate current or voltage contribution due to that source
- 3. Repeat for all independent sources
- 4. Sum up calculated values

Source Transformation

We can transform any voltage source in series with a resistor to a current source in parallel with that same resistor

$$V \to I$$
 $I = VR$
 $I \to V$ $V = \frac{I}{R}$

Thevenin's Theorem

A linear two terminal network can be transformed into one involving a resistor and a voltage source

 R_{th} represents: Dependent sources, resistors

 V_{th} represents: Independent sources

Methods for R_{th}

1. Turn off all independent source. Find the equivalent resistance. If there are dependent sources, then apply $V_{\rm test}$ or $I_{\rm test}$ at the terminal, and

$$rac{V_{
m terminal}}{I_{
m test}}$$
 or $rac{V_{
m test}}{I_{
m terminal}}=R_{th}$

- 2. Given V_{th} and find I_{sc} we can find R_{th} (Without turning any sources off)
- 3. 1A2A method (V_{th} we can find R_{th} by solving only one equation in the 1A2A method)

Methods for V_{th}

- 1. $V_{oc} = V_{th}$ without turning off any sources
- 2. Find I_{sc} and R_{th} and apply ohm's law
- 3. 1A2A method (R_{th} we can find V_{th} by solving only one equation in the 1A2A method)

1A2A Method

Find the voltage drop across a $1\,A$ source (V_1) and a $2\,A$ source (V_2) , and

$$V_{th} + R_{th} = V_1$$
 $V_{th} + 2R_{th} = V_2$

Maximum Power Transfer in Thevenin Circuit

$$p=i^2R_L=\left(rac{V_{th}}{R_{th}+R_L}
ight)^2R_L \qquad p_{max} ext{ when } R_L=R_{th}$$

First Order Circuits

The number of capacitors and inductors that cannot be combined tells the order of the circuit.

Natural Response: No sudden application of DC source

Stepped Response: Sudden switching

Capacitors

$$q=CV_c \qquad i_c(t)=C\frac{dV_c}{dt} \qquad E_c(t)=\frac{1}{2}CV_c^2(t)$$
 In parallel: $C_{eq}=\sum_i^n C_i \qquad$ In series: $\frac{1}{C_{eq}}=\sum_i^n \frac{1}{C_i}$

RC Natural Response:

Capacitor Property: $v(0^-) = v(0) = v(0^+)$

Assuming $v_c(0) = V_o$

$$v_c(t) = V_o e^{\frac{-t}{\tau}}$$
 $\tau = RC$ $v_c(t) \approx 0$ after 5τ

Inductors

$$v_L(t)=L\frac{di}{dt} \qquad E_L=\frac{1}{2}Li_L^2(t)$$
 In parallel:
$$\frac{1}{L_{eq}}=\sum_i^n\frac{1}{L_i} \qquad \text{In series: } L_{eq}=\sum_i^nC_i$$

RL Natural Response:

Inductor Property: $i(0^-) = i(0^+)$

Assuming $i(0) = I_o$

$$i_l(t) = I_o e^{\frac{-t}{\tau}}$$
 $\tau = \frac{L}{R}$

DC Step Response

For a step applied at $t=t_o$, and condition at time $t=t_0^+$

$$x(t) = [x(t_0^+) - x(\infty)]e^{-\frac{t-t_0}{\tau}} + x(\infty)$$

Second Order Circuits

Construct RCL series by using KVL, and RCL parallel by using KCL at top node.

Unit Step Function

$$u(t) = \begin{cases} 0 & t \le 0 \\ 1 & t > 0 \end{cases}$$

$$u(t) = \begin{cases} u(t) & u(t-t) \\ u(t-t_0) & u(t+t_0) \end{cases}$$

Operation Amplifiers

Voltage output is limited by saturation

$$-V_{cc} \le V_{out} \le +V_{cc}$$

- end is the inverting input, and + end is the non-inverting input An ideal opAmp has ∞ input impedance and 0 output impedance, and infinite gain Given negative feedback, we can say

$$V_{-} = V_{+}$$
 $I_{-} = I_{+} = 0$

Inverting Amplifier

$$V_{out} = -\frac{R_f}{R_{in}} V_{in}$$

Non-Inverting Amplifier

$$V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in}$$

Buffer

$$V_{out} = V_{in}$$

Summer

$$V_{out} = -R_f \sum_{i}^{n} \frac{V_i}{R_i}$$

Difference Amplifier

$$V_{out} = \frac{(R_f + R_1)R_g}{(R_g + R_2)R_1}V_2 - \frac{R_f}{R_1}V_1$$

Differentiator

$$V_{out} = -RC \frac{dV_{in}}{dt}$$

Integrator

$$V_{out} = -\frac{1}{RC} \int v_i \, dt + V_{out}^{\text{initial}}$$

Logarithm

When $V_D>0$, current through the diode is $I_D pprox I_{Se} rac{V_D}{V_T}$

$$V_{out} = V_T \ln \left(rac{V_{in}}{I_S R}
ight)$$
 V_T : Thermal Voltage; I_S : Saturation Current

Exponentiation

 $V_{out} = -RI_S e^{rac{V_{in}}{V_T}}$ V_T : Thermal Voltage; I_S : Saturation Current

Comparator

$$V_{out} = \begin{cases} -V_{cc} & V_{-} > V_{+} \\ V_{cc} & V_{+} > V_{-} \end{cases}$$

A comparator with positive feedback

Identities

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$\cos(-\alpha) = \cos(\alpha)$$

$$\sin(-\alpha) = -\sin(\alpha)$$

$$\cos(\omega t) = \sin(\omega t + \pi/2)$$

$$\sin(\omega t) = \cos(\omega t - \pi/2)$$

$$\cos(\omega t) = -\cos(\omega t \pm \pi)$$

$$\sin(\omega t) = -\sin(\omega t \pm \pi)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta)/2 + \cos(\alpha - \beta)/2$$

$$\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta)/2 + \sin(\alpha - \beta)/2$$

Combination of $\cos(\omega t)$ and $\sin(\omega t)$

$$A\sin(\omega t) + B\cos(\omega t) = \sqrt{A^2 + B^2}\cos[\omega t - \tan(B/A)]$$

Phasors

$$X_M \cos(\omega t + \theta) = \text{Re}[X_M e^{j(\omega t + \theta)}] = X_M \angle \theta$$

 $|\mathbf{V}| = |V_M \angle \theta| = V_M$

Multiplication by j shifts phasors by 90 degrees

$$jV \angle \theta = V \angle \theta + 90 = V \angle \theta + \frac{\pi}{2}$$

$$Z = X + jY = A\cos(\theta) + jB\sin(\theta) = A\angle\theta$$

Sinusoidal Steady State Analysis

$$\omega = 2\pi f \quad \text{[Rad/s]} \quad f = \frac{1}{T} \quad \text{[Hz]} \quad T = \frac{2\pi}{\omega} \quad x(t) = x(t+T)$$

Leading means approaching maximum first.

$$X_{rms} = \sqrt{\frac{1}{T} \int_{t_o}^{t_o + T} x(t)^2 dT} = \frac{X_M}{\sqrt{2}}$$

The same average power is consumed for a $4\,V_{rms}$ and a $4\,V_{DC}$

Impedances

$$\mathbf{Z} = R + jX$$
 Impedance = Resistance $+j$ (Reactance)

Resistance: In Phase	R
${\sf Capacitor} \colon I {\sf \ Lead \ } V$	$\frac{-j}{\omega C}$
Inductor: V Leads I	$j\omega l$

Admittance: $\frac{1}{Z}$

A positive reactance is **inductive**, whereas a negative inductance is **capacitive**

AC Power

Power Factor: $pf = \cos(\theta_v - \theta_i)$ Reactive Factor: $rf = \sin(\theta_v - \theta_i)$

A lagging pf means that the load is **inductive**. A leading power factor means that the load is **capacitive**

$$P = \frac{V_M I_M}{2} pf = V_{rms} I_{rms} pf \qquad \text{Real/Active/Average [W]}$$

$$P = R I_{rms}^2 \qquad R \text{: Real Part of Impedance}$$

$$Q = \frac{V_M I_M}{2} rf = V_{rms} I_{rms} rf \qquad \text{Reactive [VAR]}$$

$$Q = X I_{rms}^2 \qquad X \text{: Complex Part of Impedance}$$

$$\tan(\theta_v - \theta_i) = \frac{Q}{P}$$

Complex Power

$$\mathbf{S} = P + jQ = \mathbf{V}_{rms}\mathbf{I}_{rms}^* = \frac{1}{2}\mathbf{V}\mathbf{I}^*$$
 [VA

Instaneous Power $p = P + P\cos(2\omega t) - Q\sin(2\omega t)$

AC Maximum Average Power Transfer (No Restriction)

Assuming \mathbf{V}_{th} is not given in rms values, Select \mathbf{Z}_L such that

$$\mathbf{Z}_{L} = R_{th} + jX_{th} = \mathbf{Z}_{th}^{*}$$
 $P_{max} = \frac{|\mathbf{V}_{th}|^{2}}{8R_{th}} = \frac{|\mathbf{V}_{th}^{rms}|^{2}}{4R_{th}}$

AC Maximum Average Power Transfer (Restricted)

- 1. Choose X_L as close as possible to $-X_{th}$
- 2. Adjust R_L as close as possible to

$$\sqrt{R_{th}^2 + (X_L + X_{th})}$$

Diodes

A diode is conducting if it is "closed" or "on". A diode is not conducting when it is "open" or off

The pn junction of the diode results in a depletion region, which requires a barrier voltage to overcome ($\approx 0.7 V$).

$$V_D - 0.7 \ge 0$$
 Operation Condition

Diode current is a function of voltage $~i_D=I_0\left(e^{rac{V_D}{nV_T}}-1
ight)$

$$V_T = \frac{kT}{q_e} = \frac{1.38 \times 10^{-23} T_{\rm Kelvin}}{1.60 \times 10^{-19}}$$

$$T_{\mathsf{K}} = T_{\mathsf{Celcius}} + 273.15$$

For quality factor 1, and $v_D >> V_T$ we have $i_D = I_0 e^{\frac{v_D}{V_T}}$ Zener Diode

Zener diodes act like a perfect negative voltage source for a range of negative current values.

\mathcal{L} aplace Transform

$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}\,dt = \mathbf{F}(s)$$

$$f(0) = \lim_{s \to \infty} sF(s) = \lim_{t \to 0^+} f(t) \qquad \text{Initial Value Theorem}$$

$$f(\infty) = \lim_{s \to 0} sF(s) = \lim_{t \to \infty} f(t) \qquad \text{Final Value Theorem}$$

$$\begin{split} F(s) & f(t) \\ \frac{A}{s+a} & Ae^{-at}u(t) \\ \frac{A}{(s+a)^2} & Ate^{-at}u(t) \\ \frac{\mathbf{V}}{s+a-jB} + \frac{\mathbf{V}^*}{s+a+jB} & 2|\mathbf{V}|e^{-at}\cos(Bt+\theta)u(t) \\ \frac{\mathbf{V}}{(s+a-jB)^2} + \frac{\mathbf{V}^*}{(s+a+jB)^2} & 2t|\mathbf{V}|e^{-at}\cos(Bt+\theta)u(t) \end{split}$$

S Domain Equivalents

$$V_L = L\frac{di}{dt} \qquad \qquad i = \frac{1}{L} \int_0^t V_L \, dt + I_0 \quad \text{Time Domain}$$

$$V_L = sLI - LI_0 \qquad \qquad I = \frac{V}{sL} + \frac{I_0}{s} \quad \text{S Domain}$$

$$V_c = \frac{1}{C} \int_0^t i \, dt + V_0 \qquad \qquad i = C \frac{dV_c}{dt} \quad \text{Time Domain}$$

$$V_L = \frac{1}{C} + \frac{V_0}{C} \qquad \qquad I = sCV - CV_0 \quad \text{S Domain}$$

Impedance in the S Domain

Assuming zero initial conditions

Resistor	R
Capacitor	$\frac{1}{sC}$
Inductor	sL

Transfer Functions

Is the ratio of a ω dependent phasor output versus a phasor input.

$$\mathbf{H}(\omega) = rac{\mathbf{V}_{out}(\omega)}{\mathbf{V}_{in}(\omega)}$$
 $rac{\mathbf{I}_{out}(\omega)}{\mathbf{I}_{in}(\omega)}$ Voltage/Current Gain

Transfer Impedance/Admittance

We plot the magnitude of ${\bf H}$ versus frequency. We may let $j\omega=s$ to ease analysis

Bode Plots

$$H_{db} = 20 \log_{10}(\mathbf{H})$$

- 1. Place transfer function into standard form, involving constant parts as $\boldsymbol{1}$
- 2. Rewrite into phasor
- 3. Use reference table to plot the frequency (dB vs frequency) and phase (degrees vs frequency) plots. Add the sections graphically

Magnitude	$20\log H$ [dB
0.001	- 60
0.01	-40
0.1	-20
0.5	- 6
$\frac{1}{\sqrt{2}}$	- 3
1	0
$\sqrt{2}$	3
2	6
10	20
20	26
100	40
1000	60

Frequency Selective Circuits

Passive: only involves R, L, or C

Active: uses opamps and transistors We can combine high pass and low pass filters via opAmps to obtain a band pass or band reject filter.

For a first order low/high pass filter

$$\omega_c$$
 Is found by setting $|\mathbf{H}(\omega)| = \frac{1}{\sqrt{2}}$

Band Pass

Given that $\omega_{\rm CutOff}$ for the low pass filter is greater than the $\omega_{\rm CutOff}$ for the high pass filter

$$\lim_{t\to 0}\mathbf{H}=0 \qquad \lim_{t\to \infty}\mathbf{H}=0$$

Band Reject

Frequencies lying between cut off frequency of the low pass and the cut off frequency for the high pass is rejected, given that $\omega_{low} < \omega_{high}$

$$\lim_{t \to 0} \mathbf{H} = C \qquad \lim_{t \to \infty} \mathbf{H} = C \qquad C > 0$$

BJT Transistors

BJT Modes of Operation

	Emitter-Base	Collector-Base
Cutoff	Reverse	Reverse
Active	Forward	Reverse
Saturation	Forward	Forward

BJT Active Region

Collector Current (i_C is independent of V_{CE})

$$i_C = I_s e^{rac{V_{BE}}{V_T}} \qquad I_s$$
 Saturation Current

$$i_C = rac{eta}{eta+1} i_E = lpha i_E \qquad lpha$$
 Common Base Current Gain

Base Current (Is a fraction of i_C)

$$i_B = \frac{i_C}{\beta} = \frac{i_s}{\beta} e^{\frac{V_{BE}}{V_T}} \quad \beta \text{ Common Emitter Current Gain}$$

Emitter Current

$$i_E = i_C + i_B = \frac{\beta + 1}{\beta} i_C$$

Large Signal Models

For a pnp BJT, the diode in the model above is reversed, and so is the current source.

For large β , the base current can be assumed as zero.

Biasing

MOS

Common Source: In-Gate Out-Drain Common Gate: In-Source Out-Drain Common Drain: In-Gate Out-Source

BJT

Common Emitter: In-Base Out-Collector Common Base: In-Emitter Out-Collector Common Collector: In-Base Out-Emitter

MOS Transistors

A MOS transistor has Gate, Source and Drain. Infinite input impedance at gate, so $I_G\approx 0$ at steady state

Current flow determies the source and drain terminals

NMOS: I flows from Drain \rightarrow Source PMOS: I flows from Source \rightarrow Drain

NMOS Current Equations

$$\Delta V = V_{GS} - V_{TH}$$

$$I_D = I_{DS} =$$

Cut Off

$$0 V_{GS} < V_{TH}$$

Deep Triode

$$\mu_n C_{ox} \frac{W}{L}(\Delta V) V_{DS} \qquad V_{GS} > V_{TH}, V_{DS} << 2(\Delta V)$$

Triode

$$\mu_n C_{ox} \frac{W}{L} \left[(\Delta V) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad V_{GS} > V_{TH}, V_{DS} < \Delta V$$

Saturation

$$\frac{\mu_n C_{ox}}{2} \frac{W}{L} (\Delta V)^2 \qquad V_{GS} > V_{TH}, V_{DS} > \Delta V$$

PMOS Current Equations

$$\Delta V = V_{SG} - |V_{TH}|$$

$$I_D = I_{SD} =$$

Cut Off

$$V_{SG} < |V_{TH}|$$

Deep Triode

$$\mu_p C_{ox} \frac{W}{L}(\Delta V) V_{SD}$$
 $V_{SG} > |V_{TH}|, V_{SD} << 2(\Delta V)$

Triode

$$\mu_p C_{ox} \frac{W}{L} \left[(\Delta V) V_{SD} - \frac{V_{SD}^2}{2} \right] \qquad V_{SG} > |V_{TH}|, V_{SD} < \Delta V$$

Saturation

$$\frac{\mu_p C_{ox}}{2} \frac{W}{L} (\Delta V)^2 \qquad V_{SG} > |V_{TH}|, V_{SD} > \Delta V$$

Transconductance

As I_D in saturation is function of overdrive or effective voltage $(V_{GS}-V_{TH})$, we define transconductance, g_m as how well the device converts voltage into current.

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

 g_{m} is max in saturation, and drops in the triode region

Small Signal Model

$$i_D = g_m V_{GS} + \frac{V_{DS}}{R}$$