QUERSCHNITTPRÜFUNG PHYSIK 05

HINWEISE:

- erlaubte Hilfsmittel: Taschenrechner, FoTa, Formelblatt
- Berechnungen immer mit Herleitung (algebraische Lösung und Ausrechnung mit eingesetzten Werten)
- numerische Resultate korrekt runden
- 1. Im Gegensatz zu einem weit verbreiteten Irrglauben werden die Eisenbahnschienen der SBB heutzutage beim Verlegen auf die Normtemperatur von 25 °C erwärmt und endlos (d.h. ohne Lücken zwischen den Schienen) verschweisst. Die bei Temperaturänderung durch Längenausdehnung entstehenden Druck- und Zugkräfte können vom Gleiskörper kompensiert werden. Nur in engen Kurven werden die 36 m langen Schienenstücke wie früher mit Zwischenräumen verlegt.
 - a) Die Schienen sollen auch an einem heissen Sommertag befahrbar sein. Bestimmen Sie die Grösse der Zwischenräume in engen Kurven an einem kalten Wintertag. (4 P)
 - b) Nennen Sie zwei weitere Beispiele aus dem Alltag, bei denen die Temperaturausdehnung eine wesentliche Rolle spielt. (2 P)
- 2. In einer Berghütte werden in einem Topf 3.4 kg Schnee (Anfangstemperatur -12 °C) geschmolzen.
 - a) Wie viel Wärme muss dem Schnee zugeführt werden, bis er den Schmelzpunkt erreicht hat? (2 P)
 - b) Wie gross ist die Wärmemenge, welche für den eigentlichen Schmelzvorgang benötigt wird? (2 P)
 - c) Der Luftdruck in der Berghütte beträgt 700 mbar. Bei welcher Temperatur siedet das Wasser? (2 P)
 - d) Beschreiben Sie, was geschieht, wenn das Volumen eines abgeschlossenen Gefässes, welches gesättigten Wasserdampf enthält, verkleinert wird. (2 P)
- 3. Mit Butangas (C_4H_{10}) wird der im Diagramm dargestellte Kreisprozess $A \rightarrow B \rightarrow C \rightarrow A$ durchgeführt. Im Zustand A beträgt das Gasvolumen 6 ℓ .

- a) Berechnen Sie das Volumen, welches ein Mol Butangas im Zustand B einnimmt. (4 P)
- b) Beschreiben Sie die drei Teilprozesse mit den korrekten Fachbegriffen. Wie kann der Teilprozess B → C konkret realisiert werden? (4 P)
- Übertragen Sie den Kreisprozess in ein p(V)-Diagramm. Achten Sie auf korrekte Achsenbeschriftungen (Grösse, Einheit, Skala). (4 P)

4.	In jeder Sekunde verdunsten auf der Erde 14 Millionen Kubikmeter Wasser. Sie gelangen als Niederschläge wieder zurück auf die Erde [Bulletin SEV/VSE 02/2004 S. 43].	
	Welcher Bruchteil der eingestrahlten Sonnenenergie wird für das Verdunsten gebraucht?	(6 P)
	HINWEIS: Rechnen Sie mit 2.4 MJ/kg Verdunstungswärme.	
5.	Kreuzen Sie alle korrekten Aussagen an:	(3 P)
	☐ Die Teilchen in einem Gas bewegen sich im Mittel schneller als sich Schallwellen im Gas ausbreite	en.
	☐ In einem Mol eines Gases hat es immer gleich viele Atome.	
	□ Bei gleicher Temperatur ist die mittlere kinetische Energie der Gasteilchen für alle Gase gleich.	
	☐ Wasserdampf ist ein Gas.	
	☐ Ein Mol eines Gases nimmt immer ein Volumen von 22.4 ℓ ein.	
6.	In einer Turnhalle mit einem Volumen von 8'700 m³ sondern 43 Personen je 0.55 kg Schweiss bei einer temperatur von 28 °C ab. Wie stark steigt dadurch die Luftfeuchtigkeit maximal?	r Luft- (3 P)
7.	Die Dauerleistung einer Motorspritze Typ 2 "ZS" der Feuerwehr beträgt 44 PS bei einem Treibstoffverbrauch von maximal 14 ℓ Motorenbenzin pro Stunde. Motorenbenzin hat einen Energieinhalt von 3 pro Liter.	33 MJ
	a) Berechnen Sie die der Motorspritze zugeführte Heizleistung unter den angegebenen Bedingungen. gross ist der Wirkungsgrad der Wirkungsgrad?	Wie (5 P)
	b) Schätzen Sie die Temperatur in den Zylindern des Motors ab.	(4 P)
	Hinweis: Die getroffenen Annahmen müssen angegeben werden. Falls Sie a) nicht lösen konnten, Sie sich einen realistischen Wert für den Wirkungsgrad vor.	geben
8.	Der Wolframfaden einer 40 W-Glühlampe wird auf 1'800 °C erhitzt und gibt dabei die gesamte Leistun Strahlung ab.	ng als
	a) Bestimmen Sie die Grösse der Oberfläche des Glühfadens.	(5 P)
	b) Bei welcher Wellenlänge strahlt die Glühlampe am meisten Energie ab?	(3 P)
To	TAL	(55 P)

Quesclant prufy 05

1. a)
$$\Delta e = \alpha \cdot l_0 \quad \Delta \vartheta = 11 \cdot 10^{-6} \, \text{K}^{-1} \cdot 36 \, \text{m} \cdot (25 + 20) \, \text{K}$$

State = 1.8 cm

by 2.3. Briden, Hoch spannys letruju, Bruetalle, ...

c) FoTa Touche fath) mysdampfdmch vu Warsu:

bei 700 mbar (= 70 kPa):
$$\vartheta = 90^{\circ}\text{C}$$

3. a)
$$V_8 = \frac{n \cdot R \cdot T_8}{P_8} = \frac{1 \text{ mcl. } 8,3145 \text{ J/mcl. } k \cdot 200 \text{ K}}{12 \cdot 1057 \text{ g}} = \frac{1.48}{12 \cdot 1057 \text{ g}}$$

4.
$$Q = M \cdot L_{r}$$
 $= \frac{M \cdot L_{r}}{J_{0} \cdot A \cdot \Delta t} = \frac{M \cdot L_{r}}{J_{0} \cdot \Gamma_{E}^{2} \cdot \Pi \cdot \Delta t}$

$$= \frac{14 \cdot 10^{6} \cdot 10^{3} \text{ kg} \cdot 2.4 \cdot 10^{6} \text{ J/sg}}{1'366 \text{ W/m}^{2} \cdot (G_{0})^{3} \cdot 10^{6} \text{ m}^{2} \cdot \Pi \cdot 15}$$

$$= 19\%$$

6.
$$\Delta \varphi = \frac{\Delta g}{g_5} = \frac{\Delta m}{V \cdot g_5} = \frac{43 \cdot 0.155 \text{ Ly}}{8'700 \text{ m}^3 \cdot 0.02726 \text{ Ly/m}^3} = 0,10$$

$$7. a P_{HL} = \frac{Q}{\Delta t} = \frac{V. H_{U}}{\Delta t} = \frac{14e. 33 \, \text{M}}{316 \cos s} = \frac{128 \, \text{LM}}{316 \cos s}$$

$$V = \frac{P_{\text{med}}}{P_{\text{HL}}} = \frac{44.735,5 \, \text{M}}{128.103 \, \text{M}} = \frac{25\%}{128.103 \, \text{M}}$$

b) Amalune: ichale Nameluaffraschine
$$\frac{1}{T_1} = \frac{1 - \frac{T_2}{T_1}}{T_1} = \frac{353 \, \text{k}}{1 - 0.25} = \frac{470 \, \text{k}}{1 - 0.25}$$

(8. a)
$$P = J \cdot A = \sigma \cdot T^4 \cdot A \longrightarrow A = \frac{P}{\sigma \cdot T^4} = \frac{40 \,\text{W}}{5,67 \cdot 10^{-5} \,\text{W}} \cdot (2673)^{-5} = 3,8 \cdot 10^{-5} \,\text{m}^2 = 0,38 \,\text{cm}^2$$

6)
$$\lambda_{max} = \frac{6}{T} = \frac{219 \cdot 10^{-3} \text{ m.k}}{20^{2} 3 \times 10^{-3} \text{ m.k}} = \frac{1.4 \text{ µm}}{20^{2} 3 \times 10^{-3} \text{ m.k}}$$