# Giant Anisotropy of Spin Relaxation and Spin-valley Mixing in a Silicon Quantum Dot

Xin Zhang (张鑫)

Supervisors: Hai-Ou Li (李海欧), Guoping Guo (郭国平)



#### Motivation



Quantum CPU

#### Motivation

# $G_{C}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{3}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{6}$ $G_{7}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{9}$ $G_{1}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{9}$ $G_{1}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{9}$ $G_{1}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{1}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{1}$ $G_{1}$ $G_{2}$ $G_{3}$ $G_{4}$ $G_{5}$ $G_{7}$ $G_{8}$ $G_{8$



#### Single-qubit gate fidelity: 99.957% (Clifford)



#### Two-qubit gate fidelity: 98% (CROT)







B (T)

#### Motivation

#### B dependence



M. Kroutvar et al. Science 2004 L. C. Camenzind et al. Nat. Commun. 2018



R. R. Hayes et al. arXiv: 0908.0173 M. Xiao et al. Phys. Rev. Lett. 2010 C. H. Yang et al. Nat. Commun. 2013 L. Petit et al. Phys. Rev. Lett. 2018 F. Borjans et al. Phys. Rev. Appl. 2019 A. Hollmann et al. Phys. Rev. Appl. 2020

#### Gate voltage dependence



S. Amasha et al. Phys. Rev. Lett. 2008 V. Srinivasa et al. Phys. Rev. Lett. 2013

#### Anisotropy



P. Scarlino et al. Phys. Rev. Lett. 2014
A. Hofmann et al. Phys. Rev. Lett. 2017
L. C. Camenzind et al. Nat. Commun. 2018



Variation:  $\times$  10



T.F. Watson et al. Nature 2018 W. Huang et al. Nature 2019 R. C. C. Leon et al. Nat. Commun. 2020



#### Device and measurement method



$$P_{\uparrow} = \rho \exp(-t_{\text{wait}}/T_1) + \alpha$$



J. M. Elzerman et al. Nature 2004





# B dependence: spin-valley relaxation "hot spot"



C. H. Yang et al. Nat. Commun. 2013

- P. Huang et al. Phys. Rev. B. 2014
- C. Tahan and R. Joynt. Phys. Rev. B. 2014
- L. Petit et al. Phys. Rev. Lett. 2018
- F. Borjans et al. Phys. Rev. Appl. 2019
- A. Hollmann et al. arXiv:1907.04146v1



$$T_1^{-1} = (c_J E_Z + c_{ph} E_Z^5) F_{SV}(E_Z)$$

$$F_{SV}(E_Z) = 1 - 1/\sqrt{1 + (\Delta_{SV}/\Delta_Z)^2}$$

#### B dependence: different relaxation channels



- C. H. Yang et al. Nat. Commun. 2013
- P. Huang et al. Phys. Rev. B. 2014
- C. Tahan and R. Joynt. Phys. Rev. B. 2014
- L. Petit et al. Phys. Rev. Lett. 2018
- F. Borjans et al. Phys. Rev. Appl. 2019
- A. Hollmann et al. arXiv:1907.04146v1

$$T_1^{-1} = \Gamma_{J,SV} + \Gamma_{ph,SV} + \Gamma_{J,SO} + \Gamma_{ph,SO} + \Gamma_{const}$$

$$(c_{J,SV}E_Z + c_{ph,SV}E_Z^5)(1 - 1/\sqrt{1 + (\Delta_{SV}/\Delta_Z)^2})$$

#### B dependence: different relaxation channels



C. H. Yang et al. Nat. Commun. 2013

- P. Huang et al. Phys. Rev. B. 2014
- C. Tahan and R. Joynt. Phys. Rev. B. 2014
- L. Petit et al. Phys. Rev. Lett. 2018
- F. Borjans et al. Phys. Rev. Appl. 2019
- A. Hollmann et al. arXiv:1907.04146v1



# Spin relaxation anisotropy



P. Stano and J. Fabian, Phys. Rev. B. 2005 A. Hofmann et al. Phys. Rev. Lett. 2017

## The complex nature of intervalley transition element

$$B_{SO} = \frac{2im^* E_{VS}}{\hbar \gamma} (\alpha_{-}r_{y}^{-+} \hat{x} + \alpha_{+}r_{x}^{-+} \hat{y})$$

$$B_{SO,x} \sim \alpha_{-}r_{y}^{-+} / \gamma \qquad B_{SO,y} \sim \alpha_{+}r_{x}^{-+} / \gamma$$

$$B_{SO,x} / B_{SO,y} = \alpha_{-}r_{y}^{-+} / \alpha_{+}r_{x}^{-+} = R = Re^{-i\theta}$$

$$\Delta_{SV} = 2\langle \uparrow | H_{SV} | \downarrow \rangle = \langle \uparrow | B_{SO} \cdot \sigma | \downarrow \rangle$$

$$\frac{|\Delta_{SV}|^{2}}{2} \cos(2\phi - \frac{\pi}{2}) - R\cos\theta \sin(2\phi - \frac{\pi}{2}) + \frac{1 + R^{2}}{2}$$

$$\frac{|\Delta_{SV}|^{2}}{5} = \frac{1 + R^{2}}{2} \cos(2\phi - \frac{\pi}{2}) - R\cos\theta \sin(2\phi - \frac{\pi}{2}) + \frac{1 + R^{2}}{2} = \frac{10}{5}$$

$$\frac{|\Delta_{SV}|^{2}}{5} = \frac{1 + R^{2}}{5} = \frac{10}{5}$$

$$\frac{|\Delta_{SV}|^{2}}{5} = \frac{1 + R^{2}}{5} = \frac{10}{5} = \frac{1$$

# Explanation of Spin relaxation anisotropy



#### Spin relaxation anisotropy with a large valley splitting



# Summary

- Giant anisotropy of spin-relaxation rate:
  - > 100, limited by different relaxation channels
- Complex valley transition elements lead to finite anisotropy of spin-valley mixing and also affects the anisotropy angle
- Electric field can affect valley splitting severely, but has much smaller effect on anisotropy magnitude of spin-valley mixing



# Ongoing work





HongWen Jiang



Xuedong Hu



Peihao Huang





**Dimitrie Culcer** 



Jianjun Zhang



Guilei Wang

#### Appendix I: the origin of complex valley transition element

$$|v_{-}\rangle = \frac{1}{\sqrt{2}} (e^{-ik_0 z} u_{-z}(r) - e^{ik_0 z} u_{+z}(r)) \psi_{-}(r),$$
 (S2)

$$|v_{+}\rangle = \frac{1}{\sqrt{2}} (e^{-ik_0 z} u_{-z}(r) + e^{ik_0 z} u_{+z}(r)) \psi_{+}(r),$$
 (S3)

$$r_{-+} = \langle v_{-}|r|v_{+}\rangle$$

$$= \frac{1}{2}\psi_{-}(r)^{+} [u_{-z}(r)^{+} ru_{-z}(r) - u_{+z}(r)^{+} ru_{+z}(r)]\psi_{+}(r)$$

$$+ \frac{1}{2}\psi_{-}(r)^{+} [e^{i2k_{0}z}u_{-z}(r)^{+} ru_{+z}(r) - e^{-i2k_{0}z}u_{+z}(r)^{+} ru_{-z}(r)]\psi_{+}(r)$$



Containing phase

## Appendix II: the situation with tilted magnetic field

$$|\Delta_{SV}|^2$$
=  $c_{SV}\{[(R\cos\Phi + \sin\Phi)^2 - R(\cos\theta - 1)\sin 2\Phi]\cos^2\Theta - 2R\sin\theta\cos\Theta$ 





# Appendix II: Measurement details

