# YouTube spam detection Artificial Intelligence for CyberSecurity

July 16, 2023

Alessandro Zanatta

University of Pisa

### Dataset and goal

Total of 1956 YouTube comments from 5 different (famous) musical videos<sup>1</sup> with the following features:

- Comment ID
- Author
- Date
- Content
- Class

INTRODUCTION

Total of 1956 YouTube comments from 5 different (famous) musical videos<sup>1</sup> with the following features:

- Comment ID
- Author
- Date
- Content
- Class

Goal: recognize and differentiate between legitimate (ham) comments and spam comments!

<sup>&</sup>lt;sup>1</sup>https://archive.ics.uci.edu/dataset/380/youtube+spam+collection

# Example entries

|      | COMMENT_ID                                  | AUTHOR       | DATE                       | CONTENT                                       | CLASS |
|------|---------------------------------------------|--------------|----------------------------|-----------------------------------------------|-------|
| 0    | LZQPQhLyRh80UYxNuaDWhIGQYNQ96luCg-AYWqNPjpU |              | 2013-11-07T06:20:48        | Huh, anyway check out this you[tube] channel: | 1     |
| 1    | LZQPQhLyRh_C2cTtd9MvFRJedxydaVW-2sNg5Diuo4A |              |                            |                                               | 1     |
| 2    | LZQPQhLyRh9MSZYnf8djyk0gEF9BHDPYrrK-qCczIY8 |              |                            |                                               | 1     |
| 3    | z13jhp0bxqncu512g22wvzkasxmvvzjaz04         |              |                            |                                               | 1     |
| 4    | z13fwbwp1oujthgqj04chlngpvzmtt3r3dw         | GsMega       |                            | watch?v=vtaRGgvGtWQ Check this out .          | 1     |
|      |                                             |              |                            |                                               |       |
| 1951 | _2viQ_Qnc6-bMSjqyL1NKj57ROicCSJV5SwTrw-RFFA | Katie Mettam | 2013-07-13T13:27:39.441000 |                                               | 0     |
| 1952 | _2viQ_Qnc6-pY-1yR6K2FhmC5i48-WuNx5CumlHLDAI |              |                            |                                               | 0     |
| 1953 | _2viQ_Qnc6_k_n_Bse9zVhJP8tJReZpo8uM2uZfnzDs |              | 2013-07-13T12:09:31.188000 |                                               | 0     |
| 1954 | _2viQ_Qnc6_yBt8UGMWyg3vh0PulTqcqyQtdE7d4Fl0 |              |                            | Shakira u are so wiredo                       | 0     |
| 1955 | _2viQ_Qnc685RPw1aSa1tfrluHXRvAQ2rPT9R06KTqA |              |                            | Shakira is the best dancer                    | 0     |

Class equal to one indicates spam!

#### Word cloud





subscribe\_channel

Ham word cloud

Spam word cloud

### Most frequent words



#### Balanced dataset

Classes are (basically) balanced!



### Cleaning

- Checked for null values (only a few in date)
- Removed useless features (comment ID, author and date)
- Removed duplicates (only 3 duplicates, which affected the balance positively)
- Replaced HTML tags and entities in comments (e.g. replaced <br /> with \n)

### Adding useful features

Tried to extract possible features that may indicate a spamming behaviour:

- Links
- YouTube links (spamming one's channel)
- Use of non-ASCII characters (e.g. emojis)
- Number of characters, words, and sentences
- Number of uppercase letters

### Adding useful features - Links

Presence of links may indicate spam:



### Adding useful features - Characters

Spam comments have a much higher peak, a longer tail, and a second smaller peak at about 500 characters.



### Adding useful features - Heatmap



### Approach

Classification has been performed with 4 classifiers:

- Support Vector Machine
- Multinomial naïve Bayes
- Decision tree
- Random tree

and with 3 different preprocessings:

- Stemming with Porter stemmer
- Stemming with Snowball stemmer
- Lemmatization

#### Performance evaluation

Results obtain from K-fold (10 folds):

| SVM           |       | Multinomial NB | Decision tree | Random forest |
|---------------|-------|----------------|---------------|---------------|
| Snowball      | 0.948 | 0.908          | 0.957         | 0.964         |
| Porter        | 0.949 | 0.907          | 0.957         | 0.962         |
| Lemmatization | 0.947 | 0.903          | 0.949         | 0.958         |

F-measure

|               | SVM   | Multinomial NB | Decision tree | Random forest |
|---------------|-------|----------------|---------------|---------------|
| Snowball      | 0.948 | 0.908          | 0.958         | 0.964         |
| Porter        | 0.949 | 0.907          | 0.96          | 0.964         |
| Lemmatization | 0.947 | 0.904          | 0.949         | 0.961         |

Accuracy

#### Performance evaluation



# Testing the null hypothesis

The random forest classifier has performed the best, whereas the preprocessing has a much smaller impact on final results. Wilcoxon test can be used to determine if there is a statistical difference between preprocessing methods (with a fixed classifier).

| Preprocessing pair       | P-value |
|--------------------------|---------|
| Snowball - Porter        | 0.4962  |
| Snowball - Lemmatization | 0.1934  |
| Porter - Lemmatization   | 0.1055  |

Random forest with different preprocessing

Using the conventional acceptance of statistical significance at 0.05 (5%), we confirm the null hypothesis: the difference between the three proprocessing methods is not statistically significant!

#### Performance evaluation - Other results

In general, Wilcoxon test allows determining that in this dataset, for the tested classifiers and preprocessing algorithms:

- The use of a different preprocessing is usually not significant, but it is for the decision tree classifier
- The use of a different classifier is almost always significant

#### Conclusions and future work

#### Conclusions:

- The best classifier turned out to be the Random forest model. As the classifier has very good performances, the initial goal can be considered achieved
- The use of K-fold and of the Wilcoxon test ensure that results are statistically significant



#### Conclusions and future work

#### Conclusions:

- The best classifier turned out to be the Random forest model. As the classifier has very good performances, the initial goal can be considered achieved
- The use of K-fold and of the Wilcoxon test ensure that results are statistically significant

#### Improvements/future work:

- Trying other algorithms and/or preprocessing methods, which may lead to even higher performances
- The dataset is not large at all. To completely ensure that results can
  be trusted, it would be needed to use a much larger dataset (possibly
  with at least tens of thousand of comments). Unfortunately, no such
  dataset was found online