Kryptografia w Internecie SSL, PGP, SSH VPN, bezpieczeństwo DNS

Bezpieczne usługi sieciowe Cechy wspólne: Algorytm hybrydowy Kompresja danych

SSL - Security Socket Layer TLS – Transport Layer Security Protokół służący do szyfrowania sesji z serwerami Pozwala na zestawianie szyfrowanych połączeń internetowych wykorzystujących takie protokoły jak: http (strony WWW), ftp, smtp, telnet

Certyfikat SSL Rucz publiczny serwera Numer seryjny certyfikatu Okres ważności certyfikatu Nazwę domenową serwera (pwr.edu.pl) Nazwę domenową wystawcy certyfikatu Podpis wystawcy

Ważność certyfikatu Ważność certyfikatu wygasa: W momencie upływu jego terminu ważności. Gdy certyfikat zostanie unieważniony przed datą wygaśnięcia ważności. listy unieważnień (certificate revocation lists), przechowywane na serwerach wszystkich CA.

Certyfikaty zaufanych CA Są dołączone do większości przeglądarek internetowych Ze względu na wygasanie i unieważnienia certyfikatów należy pamiętać o aktualizacji przeglądarki Jak to wygląda w praktyce ?

Historia SSL

- Security Socket Layer
 - SSL 1.0 (1993)
 - SSL 2.0
 - SSL 3.0
- Transport Layer Security
 - TLS 1.0 (SSL 3.1)
 - TLS 1.1
 - TLS 1.2 (sierpień 2008)

PGP – Pretty Good Privacy

- Pierwsza wersja PGP powstała w 1991
- PGP zapewnia poufność, integralność i uwierzytelnienie w poczcie elektronicznej oraz przy przechowywaniu plików
- Algorytmy: konwencjonalny (IDEA), asymetrycznych (RSA) i haszowania (MD5)

PGP

- Wersje dla systemów: DOS/Windows, UNIX, Macintosh, Linux
- Możliwość zintegrowania PGP z większością programów pocztowych
- Darmowe wersje OpenPGP
- Nie jest kontrolowany przez żadną instytucję rządową ani standaryzacyjną, co utrudnia służbom wywiadowczym kontrolę poczty elektronicznej

Uwierzytelnianie w PGP

Sygnatury mogą być:

- <u>dołączane</u> do sygnowanego komunikatu
- przesyłane oddzielnie (np. gdy prowadzi się dziennik sygnatur, w celu wykrywania wirusów, gdy dokument sygnowany jest przez więcej niż jedną osobę.

PGP - baza kluczy prywatnych

- Indeksowana przez ID użytkownika lub ID klucza.
- Klucz prywatny zaszyfrowany za pomocą wartości H(Pi) - hasła użytkownika (Pi) przekształconego operacją hashowania.
- Każdy dostęp do klucza prywatnego wymaga podania hasła. Dlatego bezpieczeństwo całego systemu PGP zależy od bezpieczeństwa hasła.

PGP - baza kluczy prywatnych

Datownik	ID Klucza	Klucz jawny	Zaszyfrowany klucz prywatny	ID użytkownika	
*	¥	18	(8)	(40)	
	9				
- 2		7			
Ti	KJ _i mod 2 ⁶⁴	KJi	$E_{H(Pi)}[KP_i]$	Użyt i	
	9				
*		3			
			323	090	

PGP – baza kluczy jawnych

- Każda pozycja w bazie kluczy jawnych to certyfikat klucza jawnego.
- Pole zaufania sygnatury wskazuje stopień zaufania użytkownika do osoby/firmy sygnującej certyfikat.

PGP – baza kluczy jawnych

Datownik	ID Klucza	Klucz jawny	Zaufanie do właściciela	ID użytko- wnika	Legalność klucza	Sygna tura	Zaufanie do sygnatury
	3-2		-				
13	343			D.		- 2	
T_{i}	KJ _i mod 2 ⁶⁴	$\mathrm{KJ_{i}}$	flaga _i zaufania	Użyt i	flaga _i zaufania		
	353						
19	525			13		- 1	
	\ \						/

Dystrybucja kluczy jawnych

- Jedną z przyczyn powstania PGP było ograniczenie możliwości naruszania prywatności korespondencji przez agencje rządowe.
- Dlatego nie istnieją centralne ośrodki certyfikacji, nad którymi ktoś mógłby przejąć kontrolę.
- Użytkownicy sieci uwierzytelniają nawzajem swoje klucze jawne

Zarządzanie kluczami jawnymi w PGP

- Poświadczenia oryginalności kluczy dokonywane nie przez zaufanego wystawcę certyfikatów, lecz przez użytkowników tworzących rozproszoną sieć zaufania (Web of Trust).
- W bazie kluczy jawnych w polu zaufania wpisywane jest zaufanie użytkownika do właściciela danego klucza. Można ufać całkowicie (w pełni) lub częściowo.

Web of Trust – PGP i OpenPGP

- Każdy użytkownik weryfikuje (podpisuje) klucze użytkowników, do których ma zaufanie
- Po wygenerowaniu swojego klucza użytkownik przekazuje go do podpisania swoim 'znajomym'
- Klucz jest wysyłany innym razem z podpisami
- Istnieją serwery kluczy

SSH (Secure Shell) Zapewnia mechanizm szyfrowania danych w warstwie transportowej

- Program został napisany przez Tatu Ylonena z Uniwersytetu w Helsinkach
- Połączenie jest realizowane po stronie klienta przez program ssh, a po stronie serwera przez demona sshd

Algorytmy SSH Szyfrowanie wiadomości: AES (SSH2) DES, 3DES – tryb CBC IDEA - CFB

RC4
■ Asymetryczne uwierzytelnianie: RSA

Blowfish-CBC

Zasada działania SSH

- Każdy z komputerów posiada parę kluczy, tzw. Public Host Key
- Podczas uruchamiania demona sshd generowana jest dodatkowa para kluczy serwera. Klucz publiczny nazywa się Server Key. Klucze są zmieniane co godzinę.

Zasada działania SSH

Kiedy użytkownik A chce się zalogować na serwer B, to B przesyła do A dwa klucze publiczne Server Key i Public Host Key. A sprawdza czy Public Host Key jest poprawny (zgadza się z kluczem zapisanym w pliku lokalnym)

Uwierzytelnienie w SSH

- Protokół Kerberos.
- Rhosts uwierzytelnienie komputera.
- RhostsRSA uwierzytelnienie komputera z użyciem RSA.
- Public-Key uwierzytelnienie na podstawie kluczy asymetrycznych użytkowników.
- User-password uwierzytelnienie na podstawie hasła przesyłanego w formie zaszyfrowanej.

Zastosowania SSH

- Praca na zdalnym terminalu (np. *Putty*)
- Zdalne wykonywanie poleceń
- Kopiowanie plików (scp)

Virtual Private Networks

VPN

- Dla prywatnych sieci rozległych
- Zamiast tworzenia własnych łączy
- Wirtualne tunele
- Potrzeba zapewnienia bezpieczeństwa
- Rodzaje:
 - Zaufany VPN (trusted VPN)
 - Bezpieczny VPN (secure VPN)
 - Hybrydowy VPN (hybrid VPN)

Systemy tłumaczenia nazw RFC 882 i RFC 883 (1984) – początek DNS Latwość zapamiętywania i 'odgadywania' nazw domen Można odgadnąć funkcje serwera znając jego adres domenowy, np.: dn.xyz.com db.xyz.com www.xyz.com smtp.xyz.com smtp.xyz.com

Zapytania DNS

- Zapytania proste
 - Load balancing
- Zapytania odwrotne
 - Wygoda użytkownika
 - Ułatwienia konfiguracji filtrów
 - Domena in-addr.arpa

Zapytania DNS

- Zapytania rekurencyjne
 - zadaniem serwera jest udzielenie prawidłowej odpowiedzi
 - pytania użytkownik -> serwer DNS
- Zapytania iteracyjne
 - serwer zwraca adres serwera DNS, który ma udzielić odpowiedzi
 - pytania serwer DNS -> serwer DNS

Odpowiedzi DNS

- Resource record zawierający odpowiedź na nasze zapytanie (Answer RR), np rekord A 193.59.201.40 dla zapytania o adres IP dla domeny www.xyz.pl,
- Resource record zawierający informacje o serwerach autorytatywnych (Authority RR).
- Resource record zawierający wszelkie dodatkowe informacje (Additional RR), czasem zwany "glue recordem".

Bezpieczeństwo DNS

- Serwery DNS małe wymagania, często instalowane na przestarzałym sprzęcie
- Stare wersje systemów operacyjnych podatność na ataki
- Brak dbałości o bezpieczeństwo kont administratorów DNS

Zagrożenia

- Konsekwencje przejęcia kontroli nad serwerem DNS:
 - Podmiana adresów zaufanych serwerów, przekierowanie klientów do stron konkurencji (poczta, www)
 - Wciągnięcie komputera intruza na listę zaufanych komputerów
 - Bezużyteczność certyfikatów SSL

Zagrożenia

- Przekierowanie usług: podmiana adresów stron informacyjnych, serwerów poczty, banków, składnic oprogramowania, itp.
- DoS:
 - przekierowanie na nieistniejący adres IP
 - zalanie niewielkiego serwera lawiną przekierowanych pakietów

Zagrożenia

- Wyciek informacji
 - Napastnik może uzyskać informacje o funkcjach serwerów i ich adresach:

dn.xyz.com www.xyz.com smtp.xyz.com

 Ciągłe przestrzenie puli adresów publicznych

Zagrożenia

- Podszycie się pod serwer DNS
- Przekazanie fałszywych informacji poprzez Additional Resource Record
- Wymuszenia transferu stref

Transfery stref

- Początkowe wersje serwerów DNS pozwalały na zdobycie pełnej informacji o konfiguracji stref każdemu pytającemu: programy nslookup, dig
- Wymuszenie częstego transferu stref (rekordy do 64kB) znacznie zwiększa ruch w sieci

Identyfikatory zapytań

- Jeden port dla zapytań DNS
- Identyfikacja zapytania i odpowiedzi na podstawie identyfikatora (query ID) – 16-bitowego
- Identyfikatory zwiększane o 1 dla kolejnego zapytania
- Zatruwanie pamięci podręcznej (cache poisoning)

DNS cache poisoning

- Napastnik wysyła do serwera zapytanie o wybrany adres
- Serwer odpytuje serwer niższego poziomu – zapytanie otrzymuje query ID
- 3. Napastnik zasypuje serwer spreparowanymi odpowiedziami, próbując trafić w przyjęty query ID
- Serwer przyjmuje spreparowaną odpowiedź, odrzuca prawidłową, która przychodzi później

DNS spoofing

Podszywanie pod serwer DNS:

- Użytkownik wysyła zapytanie do serwera DNS
- Napastnik wysyła zafałszowaną odpowiedź podszywając się pod serwer DNS
- Użytkownik odrzuca drugą odpowiedź od prawdziwego serwera – gdyż przychodzi ona później

DNS spoofing

- Łatwo przechwycić ruch do serwera DNS (dobrze znane adresy tych serwerów, port 53)
- Napastnik jest z reguły szybszy od serwera DNS, który musi znaleźć odpowiedź odpytując inne serwery

Bezpieczeństwo transferów stref

- Obecnie transfery stref tylko do wybranych komputerów – najczęściej według adresów IP
- Transaction Signatures (TSIG) uwierzytelnianie na podstawie sygnatur kryptograficznych

Transaction Signatures (TSIG)

- Stosowany wspólny tajny klucz
- Stosowana funkcja hashująca, np. SHA lub MD5
- Żądanie transferu stref musi być podpisane
- Zalety: większa elastyczność (DHCP)
- Wady: odkrycie tajnego klucza narusza bezpieczeństwo całego systemu

DNSSEC

- DNS Security Extensions bezpieczna wersja DNS
- Kryptografia klucza publicznego
- Odpowiedzi DNS podpisane przez serwer
- Do transferów stref i do podpisywania odpowiedzi

Projektowanie DNS

- Strefa wewnętrzna i zewnętrzna
- Separacja stref
- Serwer wewnętrzny zapewnia obsługę zapytań rekurencyjnych wyłącznie od użytkowników lokalnych
- Serwer zewnętrzny obsługuje zapytania zewnętrzne i nie obsługuje zapytań rekurencyjnych
- Ochrona przed zatruciem pamięci podręcznej serwera wewnętrznego