EXAMINATION DATA SHEET FOR TECHNICAL SCIENCES

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Standard pressure	p^{θ}	1,01 × 10 ⁵ Pa
Standard temperature	T ⁰	273 K
Speed of light in a vacuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck's constant	h	6,63 × 10 ⁻³⁴ J·s

TABLE 2 WAVES, SOUND AND LIGHT

$v = f\lambda$	$T = \frac{1}{f}$
$E = hf \text{ or } E = h\frac{c}{\lambda}$	

TABLE 3 FORMULAE

$$\begin{split} E_{\text{cell}}^{\theta} &= E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \\ E_{\text{cell}}^{\theta} &= E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} \end{split}$$

IEB Copyright © 2019 PLEASE TURN OVER

TABLE 4 PERIODIC TABLE OF ELEMENTS

	1	2	3	4 KEN	5 //SLF	6 !!T F !	7	8	9	10	11	12	13	14	15	16	17	18
1	KEY/SLEUTEL 1 2,1 Atomic number/Atoomgetal 1 2,1 Electronegativity/Elektronegatiwiteit											2 He						
2	1 3 1,0 Li	4 1,5 Be					1	1		ol/Sim	nbool		5 2,0 B	6 2,5 C	7 3,0 N	8 3,5 O	9 4,0 F	10 Ne
_	7 11 0,9	9 1,2	Approximate relative atomic mass/ Benaderde relatiewe atoommassa 10,8 12 14 16 19 10 10 10 10 10 10 10										19 17 3,0	20 18				
3	Na 23 19 0,8	Mg 24,3 20 1,0	21 1,3	22 1,5	23 1,6	24 1,6	25 1,5	26 1,8	27 1,8	28 1,8	29 1,9	30 1,6	Aℓ 27 31 1,6	Si 28 32 1,8	P 31 33 2,0	32 34 2,4	Cl 35,5 35 2,8	Ar 40 36
4	K 39 37 0,8	Ca 40 38 1,0	Sc 45 39 1,2	Ti 48 40 1,4	V 51	Cr 52	Mn 55	Fe 56	Co 59 45 2,2	Ni 59	Cu 63,5	Zn 65,4 48 1,7	Ga 70 49 1,7	Ge 72,6	As 75 51 1,9	Se 79	Br 80 53 2,5	Kr 84
5	Rb 85,5	Sr 88	Y 89	Zr 91	Nb 93	Mo 96	Tc	Ru 101	Rh 103	Pd 106	Ag	Cd	In 115	Sn 119	Sb 121	Te	 127	Xe 131
6	55 0,7 Cs 133	56 0,9 Ba 137,3	La	72 1,6 Hf 178,5	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 200,6	81 1,8 T2 204,4	82 1,8 Pb 207	83 1,9 Bi 209	Po	85 2,5 At	Rn
7	87 0,7 Fr	88 0,9 Ra	89 Ac															
				1	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
					90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr
					232		238	•										

TABLE 5A STANDARD REDUCTION POTENTIALS

Half-	Ε ^θ (V)		
$F_2(g) + 2e^-$	<u> </u>	2F ⁻	+ 2,87
Co ³⁺ + e ⁻	-	Co ²⁺	+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	-	2H₂O	+ 1,77
MnO + 8H ⁻ + 5e ⁻	-	$Mn^{2+} + 4H_2O$	+ 1,51
$C\ell_2(g) + 2e^-$	-	2Cl ⁻	+ 1,36
$Cr_2(g) + 2e^-$ $Cr_2O + 14H^+ + 6e^-$	-	2Cr ³⁺ + 7H ₂ O	+ 1,33
$O_2(g) + 4H^+ + 4e^-$	-	2H ₂ O	+ 1,33
$MnO_2 + 4H^+ + 2e^-$	+	$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻	+	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	+	2Br ⁻	+ 1,20
$NO + 4H^{+} + 3e^{-}$	-	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻			+ 0,85
Ag ⁺ + e ⁻	≓	Hg(ℓ)	+ 0,83
NO + 2H ⁺ + e ⁻		Ag	+ 0,80
Fe ³⁺ + e ⁻	≠ ≠	NO ₂ (g) + H ₂ O Fe ²⁺	+ 0,80
$O_2(g) + 2H^+ + 2e^-$ $I_2 + 2e^-$	=	H ₂ O ₂ 2I ⁻	+ 0,68
Cu ⁺ + e ⁻	=	Cu	+ 0,54
	_		+ 0,52
$SO_2 + 4H^+ + 4e^-$,	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻ Cu ²⁺ + 2e ⁻	_	4OH⁻ Cu	+ 0,40
	,	Cu	+ 0,34
SO + 4H ⁺ + 2e ⁻	,	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
S + 2H ⁺ + 2e ⁻	,	$H_2S(g)$	+ 0,14
2H ⁺ + 2e ⁻	/	H ₂ (g)	0,00
Fe ³⁺ + 3e ⁻	,	Fe	- 0,06
Pb ²⁺ + 2e ⁻ Sn ²⁺ + 2e ⁻	=	Pb	- 0,13
_	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	=	Ni O-	- 0,27
$Co^{2+} + 2e^{-}$	=	Co	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
$Cr^{3+} + e^{-}$	_	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	,	Fe	- 0,44
$Cr^{3+} + 3e^{-}$	=	Cr	- 0,74
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
2H ₂ O + 2e ⁻	=	H2(g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,81
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Al	- 1,66
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36
Na ⁺ + e ⁻	\rightleftharpoons	Na	- 2,71
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	- 2,90
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	- 2,92
K ⁺ + e ⁻	\rightleftharpoons	K	- 2,93
Li ⁺ + e ⁻	=	Li	- 3,05

Increasing reducing ability

Increasing oxidising ability

TABLE 5B STANDARD REDUCTION POTENTIALS

Half-reactions Ε ^θ (V)							
			Ε ^θ (V)				
Li ⁺ + e ⁻	\rightleftharpoons	Li	-3,05				
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93				
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	-2,92				
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90				
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89				
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87				
Na ⁺ + e ⁻	\rightleftharpoons	Na	-2,71				
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,36				
$A\ell^{3-} + 3e^{-}$	\rightleftharpoons	Αl	-1,66				
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18				
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	-0,91				
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83				
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76				
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74				
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44				
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41				
Cd ²⁺ + 2e ⁻	=	Cd	-0,40				
Co ²⁺ + 2e ⁻	<u>`</u>	Co	-0,28				
Ni ²⁺ + 2e ⁻	· ⇌	Ni	-0,27				
Sn ²⁺ + 2e ⁻	, ≓	Sn	-0,14				
Pb ²⁺ + 2e ⁻	, 	Pb	-0,13				
Fe ³⁺ + 3e ⁻	, ≓	Fe	-0,06				
2H ⁺ + 2e ⁻	<u>,</u>	H ₂ (g)	0,00				
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+0,14				
Sn ⁴⁺ + 2e ⁻	+	Sn ²⁺	+0,15				
Cu ²⁺ + e ⁻	=	Cu ⁺	+0,16				
SO + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+0,17				
Cu ²⁺ + 2e ⁻	, ⇒	Cu	+0,34				
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+0,40				
$SO_2 + 4H^+ + 4e^-$	+	S + 2H ₂ O	+0,45				
Cu ⁺ + e ⁻	+	Cu	+ 0,52				
$I_2 + 2e^-$	=	2I ⁻	+0,54				
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+0,68				
$\int_{2}^{2} (9) + 2\pi + 2e$ $\int_{2}^{2} Fe^{3+} + e^{-}$	+	Fe ²⁺	+0,00				
NO + 2H ⁺ + e ⁻	=		+0,77				
$Ag_{\perp}^{\dagger} + e^{-}$		$NO_2(g) + H_2O$	+0,80				
Hg ²⁺ + 2e ⁻	≠	Ag Ha(l)	· ·				
NO + 4H ⁺ + 3e ⁻	 	$Hg(\ell)$	+0,85				
	=	$NO(g) + 2H_2O$	+0,96				
$Br_2(\ell) + 2e^-$ $Pt^{2+} + e^-$	=	2Br ⁻	+1,07				
	→	Pt	+1,20				
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+1,23				
$O_2(g) + 4H^+ + 4e^-$	→	2H ₂ O	+1,23				
Cr ₂ O + 14H ⁺ + 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	+1,33				
$C\ell_2(g) + 2e^-$,	2Cl ⁻	+1,36				
MnO + 8H ⁺ + 5e ⁻	→	$Mn^{2+} + 4H_2O$	+1,51				
$H_2O_2 + 2H^+ + 2e^-$	-	2H ₂ O	+1,77				
$Co^{3+} + e^{-}$,	Co ²⁺	+1,81				
$F_2(g) + 2e^-$	=	2F ⁻	+2,87				

Increasing reducing ability

Increasing oxidising ability