Math 231a Problem Set 5

Lev Kruglyak

November 29, 2022

Problem 1.

- (a) Prove that complex projective space \mathbb{CP}^n admits a CW structure in which $\mathrm{Sk}_{2k}\mathbb{CP}^n=\mathbb{CP}^k$ for any $0\leq k\leq n$. Use this to compute the homology of \mathbb{CP}^n .
- (b) Endow $Gr_2(\mathbb{C}^4)$ with a CW structure and use this to compute its homology.
- (a) Recall that \mathbb{CP}^n is defined as

$$\mathbb{CP}^n = \left(\mathbb{C}^{n+1} - \{0\}\right) / \{z \sim \lambda z : \lambda \neq 0\}.$$

But then letting $U(1) \subset \mathbb{C}$ be the unitary group and considering S^{2k+1} as a subset of \mathbb{C}^{k+1} , we get isomorphisms

$$\mathbb{CP}^n \cong S^{2n+1}/U(1) \cong \left\{ \left(z, \sqrt{1 - |z|^2} \right) \in \mathbb{C}^{n+1} : ||z|| \le 1 \right\} / \{ (z, 0) \sim \lambda(z, 0) : ||z|| = 1, \lambda \neq 0 \}$$
$$\cong D^{2n} / \{ z \sim \lambda z : z \in \partial D^{2n}, \lambda \neq 0 \}.$$

However since $\partial D^{2n}/U(1) = S^{2n-1}/U(1) \cong \mathbb{CP}^{n-1}$, it follows that \mathbb{CP}^n is created from \mathbb{CP}^{n-1} by attaching a 2n-cell S^{2n-1} by the attachment map $\alpha: S^{2n-1} = \partial D^{2n} \to \partial D^{2n}/U(1) = \mathbb{CP}^{n-1}$.

To summarize this CW structure, we begin with a 0-cell, so $\mathbb{CP}^0 = *$. Then set $\mathrm{Sk}_{2k+1}\mathbb{CP}^n = \mathrm{Sk}_{2k}\mathbb{CP}^n$ for all $0 \leq k \leq n$, and $\mathrm{Sk}_{2k+2}\mathbb{CP}^n$ is the adjunction of $\mathrm{Sk}_{2k}\mathbb{CP}^n$ with D^2n by the previously mentioned attachment map $\alpha : \partial D^{2n} \to \mathrm{Sk}_{2k}\mathbb{CP}^n$.

Now the cellular chain complex of this CW structure is

$$0 \to 0 \to \mathbb{Z} \to 0 \to \mathbb{Z} \to \cdots \to \mathbb{Z} \to 0 \to \mathbb{Z} \to 0$$
.

It follows that all of these maps must be trivial, so the homology groups are:

$$H_k(\mathbb{CP}^n) = \begin{cases} \mathbb{Z} & 0 \le k \le n \text{ and } k \text{ even,} \\ 0 & 0 \le k \le n \text{ and } k \text{ odd,} \\ 0 & k > n. \end{cases}$$

(b) For the sake of sanity, we'll use the standard CW decomposition on the Grassmanian. Recall that a Schubert symbol is a sequence $1 \le \sigma_1 < \sigma_2 < \cdots < \sigma_k \le n$. Each of these symbols corresponds to a $d(\sigma)$ -cell in a CW decomposition of $\operatorname{Gr}_k(\mathbb{C}^n)$ where $d(\sigma) = 2\sum_{i=1}^n (\sigma_i - i)$. It's easy to see that there are only 6 Schubert symbols in the case of $\operatorname{Gr}_2(\mathbb{C}^4)$, each of even degree so we have the homology:

$$H_n(\operatorname{Gr}_2(\mathbb{C}^4)) = \begin{cases} \mathbb{Z} & n = 0, 2, 6, 8, \\ \mathbb{Z} \oplus \mathbb{Z} & n = 4, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 2. Describe a functor $|\cdot|$: ssSet \to Top as follows. Given a semisimplicial set X_{\bullet} , we set:

$$|X_{\bullet}| = \frac{\prod_n X_n \times \Delta^n}{(d_i x, y) \sim (x, d^i y)}.$$

The space $|X_{\bullet}|$ is called the *geometric realization* of X_{\bullet} .

(a) Given a semisimplicial set X_{\bullet} and a nonnegative integer $n \geq 0$, define a new semisimplicial set

$$\operatorname{Sk}_n X_{\bullet} = \begin{cases} X_k & k \le n, \\ \varnothing & k > n, \end{cases}$$

where the face maps d_i are induced by those of X_{\bullet} .

Prove that $|X_{\bullet}|$ has a CW structure with $\operatorname{Sk}_n|X_{\bullet}| = |\operatorname{Sk}_n X_{\bullet}|$ and whose n-cells are induced by X_n .

- (b) Let $S_*(X_{\bullet})$ denote the semisimplicial chain complex of X_{\bullet} , and let $S_*(|X_{\bullet}|)$ denote the singular chain complex of $|X_{\bullet}|$. Define a natural injection of chain complexes $S_*(X_{\bullet}) \hookrightarrow S_*(|X_{\bullet}|)$ and prove that it induces an isomorphism on homology.
- (a) For n=0 we have $Sk_0X_{\bullet}=X_0$, and for $n\geq 1$ we have

$$\operatorname{Sk}_{n} X_{\bullet} = \frac{\prod_{k=0}^{n} X_{k} \times \Delta^{k}}{(d_{i}x, y) \sim (x, d^{i}y)} = \frac{\operatorname{Sk}_{n-1} \sqcup X_{n} \times \Delta^{n}}{(d_{i}x, y) \sim (x, d^{i}y)} = \operatorname{Sk}_{n-1} \cup_{\alpha_{n}} X_{n} \times \Delta^{n}$$

where $\alpha_n: X_n \times \Delta^n \to \operatorname{Sk}_{n-1}$ is the canonical attachment map induced by the face maps d_i . Since X_n is a discrete space, $\Delta^n \cong D^n$, and $d^i\Delta^n \subset \partial \Delta^n$, we have a CW structure.

(b) Define the map $\alpha: S_*(X_{\bullet}) \hookrightarrow S_*(|X_{\bullet}|)$ by $\alpha_n(x) = [\{x\} \times \Delta^n]$ for any $x \in X_n$ and extending linearly. This is clearly a chain map because it commutes with the face maps, and hence the boundary operator as well. To prove that it induces an isomorphism on homology, let $\sigma: \Delta^n \to |X_{\bullet}|$ be a cycle. This map induces isomorphisms on homology by the cellular boundary formula.

Problem 3. Let $p, q \in \mathbb{Z}$, and let $X_{p,q}$ be the 2-dimensional CW complex obtained by attaching two 2-cells to S^1 using maps of degree p and q. Compute $\pi_1(X_{p,q})$ and $H_*(X_{p,q})$.

Let's begin by calculating the fundamental group using the Seifert van-Kampen theorem. First we'll compute $\pi_1(X_p)$ where X_p is the space obtained by attaching a single 1-cell to S^1 using a map of degree p. In other words, this space is the quotient of D^2 by some equivalence relation \sim_p on ∂D^2 . Let $A = A_\epsilon \subset D^2$ be some subset of radius ϵ , and let $B = D^2 - A_{\epsilon/2}$. We can naturally identify these as subsets of X_p . Then applying the Siefert van-Kampen theorem and picking a suitable basepoint $x \in A \cap B$ (omitted for clarity), we get a diagram

Since A is contractible, it follows that $\pi_1(A,x) *_{\pi_1(A \cap B,x)} \pi_1(B,x) \cong \pi_1(B,x)/i_B(\pi_1(A \cap B,x))$. First we'll show that $\pi_1(B,x) \cong \mathbb{Z}$. First observe that B is canonically homotopy equivalent to S^1 by the map which lets $\epsilon/2 \to 1$, then applies α_p , the attachment map of degree p. Similarly, $A \cap B$ is canonically

homotopy equivalent to S^1 . Then i_B sends a generator $[\iota]$ of $\pi_1(A \cap B, x)$ to $[\alpha(\iota)] = p[\iota]$ in $\pi_1(B, x)$ so we get $\pi_1(X_{p,q}, x) \cong \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}/p$.

Now we can consider $X_{p,q}$ as the attachment of X_p to X_q along the image of S^1 in X_p, X_q , i.e. $X_{p,q} = (X_p \sqcup X_q)/(\alpha_p \sqcup \alpha_q)$. Let $U_p, U_q \subset X_{p,q}$ be open sets which ϵ expand X_p and X_q respectively. The Seifert van-Kampen theorem then gives us the pushout

The group presentation of $\pi_1(X)$ then becomes $\langle x,y \mid x^p=y^q=1, x=y \rangle$ which is exactly the group $\mathbb{Z}/\gcd(p,q)$. Here we take the convention that $\mathbb{Z}/0=\{1\}$ so that $\gcd(x,0)=x$ and $\gcd(0,y)=y$. So

$$\pi_1(X_{p,q}) \cong \mathbb{Z}/\gcd(p,q).$$

Next let's compute the homology groups. Recall that our CW structure is: X_0 consists of a single point v_0 , X_1 adds an edge e_0 looped at v_0 , and X_2 adds two faces f_0 , f_1 by maps e_0^p and e_0^q respectively. Recall that $C_n(X_{p,q}) = \mathbb{Z}I_n$ where I_n is the set of n-cells. Thus our chain complex is

$$0 \longleftarrow \mathbb{Z}v_0 \stackrel{\beta}{\longleftarrow} \mathbb{Z}e_0 \stackrel{\alpha}{\longleftarrow} \mathbb{Z}f_0 \oplus \mathbb{Z}f_1 \longleftarrow 0$$

By the cellular boundary formula, we get $\beta(e_0) = 0$, $\alpha(f_0) = pe_0$, and $\alpha(f_1) = qe_0$. Finally we can calculate the homology groups. $H_0(X_{p,q}) = \mathbb{Z}/\mathrm{Im}(\beta) = \mathbb{Z}$, $H_1(X_{p,q}) = \ker(\beta)/\mathrm{Im}(\alpha) = \mathbb{Z}/\gcd(p,q)$, and $H_2(X_{p,q}) = \ker(\alpha) = \mathbb{Z}$ if p,q are not both nonzero and $\mathbb{Z} \oplus \mathbb{Z}$ otherwise. To summarize,

$$H_n(X_{p,q}) = \begin{cases} \mathbb{Z} & n = 0, \\ \mathbb{Z}/\gcd(p,q) & n = 1, \\ \mathbb{Z} & n = 2 \text{ and } (p,q) \neq (0,0), \\ \mathbb{Z} \oplus \mathbb{Z} & n = 2 \text{ and } (p,q) = (0,0), \\ 0 & n \geq 3. \end{cases}$$

Problem 4. Compute the homology groups of the following 2-dimensional CW complexes:

- (a) The quotient of S^2 obtained by identifying the north and south poles to a point.
- (b) The space obtained from S^2 by first deleting the interiors of two disjoint subdisks in the interior of D^2 and then identifying all three resulting boundary circles together via homeomorphisms preserving the clockwise orientations of these circles.
- (a) Let X be the space. First of all, X is homotopy equivalent to the torus with a disk glued into the central hole. This can be given the following CW structure: X_0 consists of a single point v_0 . X_1 adds two circles e_0 , e_1 at v_0 , and X_2 adds two disks f_0 , f_1 , with f_0 glued to e_0 and f_1 glued to $e_0e_1e_0^{-1}e_1^{-1}$. (Here we use the notation $e_0e_1e_0^{-1}e_1^{-1}$ to represent the attachment map which goes around e_0 , then e_1 , then e_0 in the other direction, then e_1 in the other direction). We thus get the following cellular chain complex:

$$0 \longleftarrow \mathbb{Z}v_0 \stackrel{\beta}{\longleftarrow} \mathbb{Z}e_0 \oplus \mathbb{Z}e_1 \stackrel{\alpha}{\longleftarrow} \mathbb{Z}f_0 \oplus \mathbb{Z}f_1 \longleftarrow 0$$

Here we consider these v_i, e_i, f_i as generators of $H_n(S^n)$ for the appropriate n. The cellular boundary formula gives $\beta(e_0) = v_0 - v_0 = 0$ and $\beta(e_1) = v_0 - v_0 = 0$. Similarly $\alpha(f_0) = e_0$ and $\alpha(f_1) = e_0 + e_1 - e_0 - e_1 = 0$. Then $H_0(X) = \mathbb{Z}/\text{Im}(\beta) = \mathbb{Z}$, $H_1(X) = \mathbb{Z}e_0 \oplus \mathbb{Z}e_1/\mathbb{Z}e_0 = \mathbb{Z}$, and $H_2(X) = \mathbb{Z}e_1/0 = \mathbb{Z}$. Thus

$$H_n(X) = \begin{cases} \mathbb{Z} & n = 0, 1, 2, \\ 0 & n \ge 3. \end{cases}$$

(b) Let X be the space. Let's give the following CW structure to X:

So X_0 consists of two 0-cells, X_1 adds five 1-cells, and X_2 adds two 2-cells. This gives us the chain complex

$$0 \longleftarrow \mathbb{Z}^2 \xleftarrow{\beta} \mathbb{Z}^5 \xleftarrow{\alpha} \mathbb{Z}^2 \longleftarrow 0$$

with boundary maps α, β given by:

$$\beta(e_0) = v_1 - v_0 \qquad \qquad \alpha(f_0) = e_0 + e_2 + e_3 + e_4$$

$$\beta(e_1) = v_1 - v_0 \qquad \qquad \alpha(f_1) = e_1 + e_2 + e_3 + e_4$$

$$\beta(e_2) = 0$$

$$\beta(e_3) = v_1 - v_0$$

$$\beta(e_4) = 0$$

Then it's fairly easy to see by calculating kernels and images of these maps that

$$H_n(X) = \begin{cases} \mathbb{Z} & n = 0, \\ \mathbb{Z} \oplus \mathbb{Z} & n = 1, \\ 0 & n \ge 2. \end{cases}$$