Looking Beyond Traditional Network Routing

Akash Suryawanshi

November 18, 2020

1 Exercise 15

1.1 Part (a)

Distance to reach node						
Information	A	В	С	D	E	F
stored at node						
A	0	8	3	8	∞	∞
В	∞	0	∞	∞	2	∞
C	3	∞	0	∞	1	6
D	8	∞	∞	0	2	∞
E	∞	2	1	2	0	∞
F	∞	∞	6	∞	∞	0

1.2 Part (b)

Distance to reach node						
Information	A	В	С	D	Е	F
stored at node						
A	0	∞	3	8	4	9
В	∞	0	3	4	2	∞
C	3	3	0	3	1	6
D	8	4	3	0	2	∞
E	4	2	1	2	0	7
F	9	∞	6	∞	7	0

1.3 Part (c)

Distance to reach node						
Information	A	В	С	D	Е	F
stored at node						
A	0	6	3	8	4	9
В	6	0	3	4	2	9
C	3	3	0	3	1	6
D	8	4	3	0	2	9
E	4	2	1	2	0	7
F	9	9	6	9	7	0

2 Exercise 40

2.1 Part (a)

For A: Number of hosts = 72, Subnet size = 2^7 = 128. Maximum hosts = 2^7 - 2 = 126. Masking address: 255.255.255.128, Network Address: 200.1.1.0

For B: Number of hosts = 35, Subnet size = 2^6 = 64. Maximum hosts = 2^6 - 2 = 62. Masking address: 255.255.255.192, Network Address: 200.1.1.128

For C: Number of hosts = 20, Subnet size = 2^5 = 32. Maximum hosts = 2^5 - 2 = 30. Masking address: 255.255.255.224, Network Address: 200.1.1.192

For D: Number of hosts = 18, Subnet size = 2^5 = 32. Maximum hosts = 2^5 - 2 = 30. Masking address: 255.255.255.224, Network Address: 200.1.1.224

2.2 Part(b)

In order to solve this problem, we assign several subnets to a single department(split). Since A wants 72 hosts, the remaining can be allotted to D. Hence:

A1 = 200.1.1.0 - 200.1.1.31

A2 = 200.1.1.32 - 200.1.1.63

A3 = 200.1.1.64 - 200.1.1.95

Subnet of B = 200.1.1.96 - 200.1.1.159

Subnet of C = 200.1.1.160 to 200.1.1.191

Subnet of D = 200.1.1.192 to 200.1.1.255