Chapitre 12

Structure usuelle

TABLE DES MATIÈRES

Ι	Groupes	2
II	Anneaux	9
III	Corps	14
IV	Actions de groupes	17

Première partie

Groupes

<u>Principe de symétrie</u> (Pierre Curie)

La symétrie des causes se retrouvent dans les effets.

On fait tomber un caillou dans un plan d'eau ce qui crée une onde qui se propage.

Symétries des "causes" $\overline{\text{(conserver } O \text{ en place)}}$

- $\begin{array}{ll} -- & \text{translation de vecteur } \overrightarrow{0} \\ -- & \text{rotations de centre } O \text{ d'angle quelconque} \end{array}$
- symétries d'axe passant par O

Symétries des "effets" (conserver les ondes en place)

- symétries d'axe passant par O

Groupes

- translation de vecteur $\overrightarrow{0}$
- 4 rotations de centre O d'angle $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$
- 4 symétries axiales

Causes

— <u>Effet</u>

Définition: Soit G un ensemble, muni d'une loi de composition <u>interne</u> \diamond . On dit que (G, \diamond) est un groupe si :

- $\begin{array}{c} & \diamond \text{ est associative} \\ & \diamond \text{ a un neutre } e \in G \end{array}$
- $-- \ \forall x \in G, \exists y \in G, x \, \diamond \, y = y \, \diamond \, x = e$

Définition: On dit que (G,\diamond) est un groupe <u>commutatif</u> ou <u>abélien</u> si c'est un groupe et \diamond est une loi commutative.

Définition: Soit (G,\cdot) un groupe (d'élément neutre e) et $H\subset G.$ On dit que H est un sous groupe de G si

- 1. $\forall (x,y) \in H^2, x \cdot y \in H$
- $e \in H$
- 3. $\forall x \in H, x^{-1} \in H$

Proposition: Soit H un sous groupe de (G,\cdot) . Alors, (H,\cdot) est un groupe.

Proposition: Soit (G, \cdot) un groupe et $H \subset G$.

H est un sous groupe de $G \iff \begin{cases} \forall (x,y) \in H, x \cdot y^{-1} \in H \\ H \neq \emptyset \end{cases}$

Proposition: Soit (G, \cdot) un groupe et $(H_i)_{i \in I}$ une famille non vide de sous groupes de G. Alors, $\bigcap_{i \in I} H_i$ est un sous groupe de G.

Proposition: Soit (G, \cdot) un groupe. $\{e\}$ et G sont des sous groupes de G

Remarque:

Une réunion de sous groupes n'est pas nécessairement un sous groupe.

$$(G,\cdot)=(\mathbb{Z},+)$$

 $2\mathbb{Z} \cup 3\mathbb{Z} = A$

 $2 \in A$ et $3 \in A$ mais $2 + 3 = 5 \notin A$.

Donc, A n'est pas un sous groupe de $\mathbb Z$

Proposition – **Définition:** Soit (G, \cdot) un groupe et $A \subset G$. Alors,

$$\bigcap_{\begin{subarray}{c} H \end{subarray}} H$$
 sous groupe de G
$$A\subset H$$

est le plus petit (au sens de l'inclusion) sous groupe de G qui contient A. On dit que c'est le sous groupe engendré par A et on le note $\langle A \rangle$

5

Définition: Soit (G, \cdot) un groupe et $A \subset G$.

On dit que A est une partie génératrice de G ou que A engendre G si $G=\langle A\rangle$

Remarque (Notation):

Soit (G, \cdot) un groupe et $a \in G$.

Pour $n \in \mathbb{N}_*$, on pose $a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ fois}}$. On pose $a^0 = e$ et pour $n \in Z_*^-$,

$$a^n = (a^{-1})^{-n}$$

Remarque:

Si le groupe est noté additivement. On note na $(n \in \mathbb{Z}, a \in G)$ à la place de a^n

Définition: On dit qu'un groupe (G,\cdot) est <u>monogène</u> s'il existe $a\in G$ tel que

$$G = \langle a \rangle$$

On dit alors que a est un générateur de ${\cal G}$

Définition: Un groupe monogène fini est cyclique.

Proposition: Soit (G,\cdot) un groupe monogène fini. Soit a un générateur de G. Il existe $k \in \mathbb{N}$ tel que

$$G = \{e, a, a^2, \dots a^{k-1}\}$$

Définition: Soit (G, \cdot) un groupe et $a \in G$.

Si $\langle a \rangle$ est fini, le cardinal de $\langle a \rangle$ est appelé <u>ordre</u> de a : c'est le plus petit entier strictement positif n tel que $a^n = e$

Définition: Soient (G_1,\cdot) et $(G_2,*)$ deux groupes et $f:G_1\to G_2$. On dit que f est un (homo)morphisme de groupes si

$$\forall (x,y) \in G_1, f(x \cdot y) = f(x) * f(y)$$

Proposition: Avec les notations précédentes,

- l'image directe d'un sous groupe de \mathcal{G}_1 est un sous groupe de \mathcal{G}_2
- l'image réciproque d'un sous groupe de G_2 est un sous groupe de G_1

Lemme:

$$\begin{cases} f(e_1) = e_2 \\ \forall u \in G_1, f(u^{-1}) = (f(u))^{-1} \end{cases}$$

Corollaire: Soit $f:(G_1,\cdot)\to (G_2,*)$ un morphisme de groupes. Alors, $\mathrm{Im}(f)$ est un sous groupe de G_2 .

$$Ker(f) = \{x \in G_1 \mid f(x) = e_2\} = f^{-1}(\{e_2\})$$

est un sous groupe de G_1 .

Théorème: Avec les notations précédentes,

$$f$$
 injective \iff Ker $(f) = \{e_1\}$

Théorème: Soit $f:(G_1,\cdot)\to (G_2,*)$ un morphisme de groupes, $y\in G_2$ et (\mathscr{E}) l'équation

$$f(x) = y$$

d'inconnue $x\in G_1.$ Si $y\not\in {\rm Im}(f),$ alors $(\mathscr E)$ n'a pas de solution.

Sinon, soit $x_0 \in G_1$ tel que $f(x_0) = y$ (x_0 est une solution particulière de (\mathscr{E}))

$$f(x) = y \iff \exists h \in \operatorname{Ker}(f), x = x_0 \cdot h$$

Proposition: Soient $f:G_1\to G_2$ et $g:G_2\to G_3$ deux morphisme de groupes. Alors, $g \circ f$ est un morphisme de groupes.

Définition: Soit G un groupe.

- Un endomorphisme de G est un morphisme de groupes de G dans G.
- Un <u>isomorphisme</u> de G dans H un morphisme de groupes $f:G\to H$ bijectif.
- Un <u>automorphisme</u> de G est un endomorphisme de G bijectif.

Proposition: Soit $f:G\to H$ un isomorphisme de groupes. Alors, $f^{-1}:H\to G$ est aussi un isomorphisme.

Corollaire: On note ${\rm Aut}(G)$ l'ensemble des automorphismes de G. ${\rm Aut}(G)$ est un sous groupe de $(S(G),\circ)$.

Définition: Soit (G,\cdot) un groupe et $g\in G$. L'application

$$c_g: G \longrightarrow G$$
$$x \longmapsto gxg^{-1}$$

est appelée $\underline{\text{conjugaison par } g}$. On dit aussi que c'est un $\underline{\text{automorphisme intérieur}}$.

Proposition: Avec les notations précédentes,

$$c_q \in \operatorname{Aut}(G)$$

Corollaire:

Ι

$$\forall x \in G, \forall n \in \mathbb{Z}, c_g(x^n) = (c_g(x))^n$$

Proposition: L'application

$$G \longrightarrow \operatorname{Aut}(G)$$

 $g \longmapsto c_q$

est un morphisme de groupes.

Proposition (Rappel):

$$\forall g, h \in G, (gh)^{-1} = h^{-1}g^{-1}$$

Proposition – Définition: Soient $(G_1,*)$ et $(G_2,*)$ deux groupes. On définit une loi sur $G_1 \times G_2$ en posant

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1y_1, x_2y_2)$$

Alors, $G_1 \times G_2$ est un groupe pour cette loi appelée groupe produit.

Deuxième partie

Anneaux

II Anneaux

Définition: Un <u>anneau</u> $(A, +, \times)$ est un ensemble A muni de deux lois de compositions <u>internes</u> notées + et \times vérifiant

- 1. (A, +) est un groupe commutatif (son neutre est noté 0_A)
- 2. (A, \times) est un monoïde
 - (a) × est associative
 - (b) \times a un neutre $1_A \in A$
- 3. distributivité à gauche et à droite :

$$\forall (a,b,c) \in A^3, \begin{cases} a \times (b+c) = (a \times b) + (a \times c) \\ (b+c) \times a = (b \times a) + (c \times a) \end{cases}$$

Remarque (Convention):

Soit $(A, +, \times)$ un anneau.

On convient que la multiplication est prioritaire sur l'addition.

$$(a \times b) + (a \times c) = a \times b + a \times c$$

et l'exponentiation est prioritaire sur la multiplication $(n \in \mathbb{N})$

$$a \times b^n = a \times (\underbrace{b \times b \times \cdots \times b}_{n \text{ fois}})$$

$$\neq (a \times b)^n$$

Proposition: Soit $(A, +, \times)$ un anneau. Alors, 0_A est absorbant

$$\forall a \in A, a \times 0_A = 0_A \times a = 0_A$$

Remarque:

On peut imaginer $\begin{cases} a \times b = 0_A \\ a \neq 0_A \\ b \neq 0_A \end{cases}$

Définition: On dit qu'un anneau $(A, +, \times)$ est <u>intègre</u> si

$$\forall (a,b) \in A^2, (a \times b = 0_A \implies a = 0_A \text{ ou } b = 0_A)$$

Proposition: Soient $(A, +, \times)$ un anneau, $(a, b) \in A^2$, $n \in \mathbb{Z}$. Alors,

$$n(a \times b) = (na) \times b = a \times (nb)$$

Théorème (Formule du binôme de Newton): Soient $(A, +, \times)$ un anneau, $(a, b) \in A^2$, $n \in \mathbb{N}$.

Si a et b commutent alors

II

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proposition: Soient $(A, +, \times)$ un anneau, $(a, b) \in A^2$ et $n \in \mathbb{N}_*$. Si a et b commutent, alors

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

Proposition: On note A^{\times} l'ensemble des éléments inversibles d'un anneau $(A,+,\times)$. (A^{\times},\times) est un groupe.

Définition: Soit $(A, +, \times)$ un anneau <u>commutatif.</u>

- 1. Soient $(a,b) \in A^2$. On dit que a divise b s'il existe $k \in A$ tel que $b = a \times k$. On dit aussi que a est un diviseur de b et que b est un multiple de a.
- 2. On dit que a et b sont <u>associés</u> s'il existe $k \in A^\times$ tel que ak = b (dans ce cas, $a \mid b$ et $b \mid a)$

Remarque:

Le théorème des deux carrés peut se démontrer en exploitant les propriétés arithmétiques de l'anneau $(Z[i], +, \times)$ où $Z[i] = \{a+ib \mid a \in \mathbb{Z}, b \in \mathbb{Z}\}$. $\mathbb{Z}[i]^{\times} = \{1, -1, i, -i\}$

Théorème des deux carrés :

1. Soit p un nombre premier.

$$\exists (a,b) \in \mathbb{N}^2, p = a^2 + b^2 \iff p \equiv 1 \ [4]$$

2. Soit $n \in \mathbb{N}_*$, $n = \prod_{p \in \mathscr{P}} p^{\alpha(p)}$

$$\exists (a,b) \in \mathbb{N}^2, n = a^2 + b^2 \iff \forall p \in \mathscr{P} \text{ tel que } \alpha(p) \neq 0, p \equiv 1 \ [4]$$

Définition: Soit $(A,+,\times)$ un anneau et $B\subset A.$ On dit que B est un sous anneau de A si

- 1. B est un sous groupe de (A, +)
- 2. $\forall (a,b) \in B^2, a \times b \in B$
- 3. $1_A \in B$

II Anneaux

Proposition: Soit $(A, +, \times)$ un anneau et B un sous anneau de A. Alors, $(B, +, \times)$ est un anneau.

 $\begin{array}{ll} \textbf{Proposition:} & \text{Soit } (A,+,\times) \text{ un anneau.} \\ \text{Si } 0_A=1_A \text{ alors } A=\{0_A\}. \text{ On dit alors que } A \text{ est l'anneau nul.} \\ \end{array}$

Définition: Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux (les lois notés de la même façon mais ne sont pas forcément les mêmes!).

Soit $f: A \to B$. On dit que f est un (homo)morphisme d'anneaux si

- 1. $\forall (a,b) \in A^2, f(a+b) = f(a) + f(b)$
- 2. $\forall (a,b) \in A^2, f(a \times b) = f(a) \times f(b)$
- 3. $f(1_A) = 1_B$

Proposition: Avec les notations précédentes, si $a \in A^{\times}$ alors $f(a) \in B^{\times}$ et dans ce cas,

 $f(a)^{-1} = f(a^{-1})$

Définition: Soient $(A,+,\times)$ et $(B,+,\times)$ deux anneaux et $f:A\to B$ un morphisme d'anneaux.

On dit que f est un

- <u>isomorphisme d'anneaux</u> si f est bijective
- endomorphisme d'anneaux si $\begin{cases} A = B \\ + = + \\ \times = \times \end{cases}$
- <u>automorphisme d'anneaux</u> si f est à la fois un isomorphisme et un endomorphisme d'anneaux

Proposition: La composée de deux morphismes d'anneaux est un morphisme d'anneaux. $\hfill\Box$

Proposition: La réciproque d'un isomorphisme d'anneaux est un isomorphisme d'anneaux. $\hfill\Box$

Proposition: L'ensemble des automorphismes d'anneaux de A est un sous groupe de $(S(A), \circ)$.

II Anneaux

Proposition: L'image directe ou réciproque d'un sous anneau par un morphisme d'anneaux est un sous anneaux.

Définition: Soi $f:A\to B$ un morphisme d'anneaux. Le <u>noyau</u> de f est

$$\mathrm{Ker}(f) = \{ a \in A \mid f(a) = 0_B \}$$

Proposition: Avec les notations précédents,

$$f$$
 injective $\iff \operatorname{Ker}(f) = \{0_A\}$

Remarque:

 $\operatorname{Ker}(f)$ n'est pas un sous anneau en général (car $1_A \not\in \operatorname{Ker}(f)$ sauf si $A = \{0_A\})$

Définition: Soit $(A, +, \times)$ un anneau et $a \in A \setminus \{0_A\}$. On dit que a est un <u>diviseur de zéro</u> s'il existe $b \in A \setminus \{0_A\}$ tel que $a \times b = b \times a = 0_A$

Proposition: Les diviseurs de zéro ne sont pas inversibles.

Troisième partie

Corps

III Corps

Définition: Soit $(\mathbb{K},+,\times)$ un ensemble muni de deux lois de composition internes. On dit que c'est un <u>corps</u> si

- 1. (\mathbb{K},\times) est un groupe abélien
- 2. (\mathbb{K}, \times) est un monoïde commutatif
- 3. $\forall x \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}, \exists y \in \mathbb{K}, xy = 1_{\mathbb{K}}$
- 4. $0_{\mathbb{K}} \neq 1_{\mathbb{K}}$

Proposition: $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un corps si et seulement si n est premier.

Proposition: Tout corps est un anneau intègre.

Proposition: Soit $(\mathbb{K},+,\times)$ un corps et P un polynôme à coefficients dans \mathbb{K} de degré n. Alors, l'équation $P(x)=0_{\mathbb{K}}$ a au plus n solutions dans \mathbb{K}

Corollaire ((Théorème de Wilson)): voir exercice 16 du TD 12

Définition: Soit $(\mathbb{K}, +, \times)$ un corps et $L \subset \mathbb{K}$.

On dit que L est un sous corps de $\mathbb K$ si

1. L est un anneau de $(\mathbb{K},+,\times)$ non nul 2. $\forall x\in L\setminus\{0_{\mathbb{K}}\}, x^{-1}\in L$

en d'autres termes si

- 1. $\forall (x,y) \in L^2, x-y \in L$
- 2. $\forall (x,y) \in L^2, x \times y^{-1} \in L$

On dit aussi que $\mathbb K$ est une $\underline{\text{extension}}$ de L.

Proposition: Tout sous corps est un corps.

Définition: Soient $(\mathbb{K}_1, +, \times)$ et $(\mathbb{K}_2, +, \times)$ deux corps et $f : \mathbb{K}_1 \to \mathbb{K}_2$. On dit que f est un <u>morphisme de corps</u> si f est un morphisme d'anneaux i.e. si

$$\begin{cases} \forall (x,y) \in \mathbb{K}_1^2, & f(x+y) = f(x) + f(y) \\ \forall (x,y) \in \mathbb{K}_1^2, & f(x \times y) = f(x) \times f(y) \end{cases}$$

III Corps

Proposition: Tout morphisme de corps est injectif.

Quatrième partie

Actions de groupes

Définition: Soit (G,\cdot) un groupe et X un ensemble non vide. Une action de G sur Xest une application

$$\varphi:G\times X\longrightarrow X$$

$$(g,x)\longmapsto \underbrace{g\cdot x}_{\text{ce n'est pas la loi de }G}$$

qui vérifie

- 1. $\forall x \in X, \varphi(e, x) = e \cdot x = x$
- 2. $\forall x \in X, \forall g, h \in G, g \cdot (h \cdot x) = (g \cdot h) \cdot x$

$$G \longrightarrow S(X)$$