Some Notations

- θ_t : model parameters at time step t
- $\nabla L(\theta_t)$ or g_t : gradient at θ_t , used to compute θ_{t+1}
- m_{t+1} : momentum accumulated from time step 0 to time step t, which is used to compute θ_{t+1}

What is Optimization about?

- Find a θ to get the lowest $\sum_{x} L(\theta; x)$!!
- Or, Find a θ to get the lowest $L(\theta)$!!

On-line vs Off-line

• On-line : one pair of (x_t, \hat{y}_t) at a time step

On-line vs Off-line

• Off-line : pour all (x_t, \hat{y}_t) into the model at every time step

The rest of this lecture will focus on the off-line cases

SGD

因為gradient 的方向為L 增加的方向, 所以往反方向移動, 才可找到有最小L 的 θ

SGD with Momentum(SGDM)

Why momentum?

Gradient = 0, 若使用SGD 會停止

Adagrad

過去所有time step gradient 的和

What if the gradients at the first few time steps are extremely large...

RMSProp

避免gradient 持續變大, 導致Optimizer 卡住

$$\theta_{t} = \theta_{t-1} - \frac{\eta}{\sqrt{v_{t}}} g_{t-1}$$

$$v_{1} = g_{0}^{2}$$

$$v_{t} = \alpha v_{t-1} + (1 - \alpha)(g_{t-1})^{2}$$

Exponential moving average (EMA) of squared gradients is not monotonically increasing

Adam

SGDM

$$\theta_t = \theta_{t-1} - \eta m_t$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_{t-1}$$

• RMSProp

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{v_t}} g_{t-1}$$

$$v_1 = g_0^2$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2)(g_{t-1})^2$$

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \widehat{m}_t$$

$$\widehat{m}_t = \frac{m_t}{1 - {eta_1}^t}$$
 $\widehat{v}_t = \frac{v_t}{1 - {eta_2}^t}$ de-biasing $eta_1 = 0.9$
 $eta_2 = 0.999$
 $\varepsilon = 10^{-8}$

Adam vs SGDM

Adam vs SGDM

