Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

Pseudo Code and Theoretical run-time Analysis

Pseudo Code: Enumeration, Algorithm 1

```
enumeration(array[1...n])
      low_index and high_index ← 0
      if length of array >= 1
            for outer_index from 0 to n
                   for inner index from outer index + 1 to n
                          new_max_sum is the sum (array[outer_index] to
array[inner_index]
                         if new max sum > max sum
                                new_max_sum assigned to max_sum
                                low_index is the current outer_index
                                high_index is the current inner_index
            return array[low_index...high_index], max_sum
      else
```

return no_max_sum

Recurrence: Enumeration $T(n) = n * n * n + \Theta(1)$

Asymptotic runtime: Enumeration $T(n) = O(n^3)$, easy to see that n*n*n results in the asymptotic bound and the $\Theta(1)$ can be disregarded for large n.

Pseudo Code: Iteration, Algorithm 2

iteration(array[1...n])

```
low_index and high_index ← 0
if array length > 1
     for outer_index from 0 to n
           new_max_sum ← 0
                 for inner_index from outer_index to n
                       new_max_sum = new_max_sum + array[inner_index]
                 if new_max_sum > max_sum
                       max_sum ← new_max_sum
```

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

```
low_index ← outer_index
high_index ← inner_index
return array[low_index...high_index], max_sum
else if array length is 1
max_sum ← array[0]
return array, max_sum
else
return no_max_sum
```

Recurrence: Iteration

```
T(n) = (O(n) \text{ outerindex iterations}) * (O(n) \text{ innerindex iterations}) * O(1)
```

Asymptotic runtime: Iteration $T(n) = O(n^2)$, due to the two nested for loops that both iterate through the array n times and O(1) can be disregarded for large n.

Pseudo Code: Divide and Conquer, Algorithm 3

Cite: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (Page 72). The MIT Press. Kindle Edition.

Using a helper function to find the max crossing subarray

```
max_crossing_array(array, low, mid, high)
       Left_sum = right_sum = -inf
       sum = 0
       for i = mid down to low
              sum = sum + array[i]
              if sum > left_sum
              max left = i
       sum = 0
       for j = mid + 1 to high
              sum = sum + A[i]
              if sum > right_sum
                     right_sum = sum
                     max_right = j
       return max_left, max_right, (left_sum + right_sum)
find_max_subarray(array, low, high)
       if high == low
              return low, high, array[low]
       else
```

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

With implementation in order to effectively write the results to file a function was used to call the initial call to find_max_subarray()

```
recursive(array)
low, high, sum = fiind_max_subarray(array, 0, len(array) -1)
return array[low ... high], sum
```

Recurrence: Divide and Conquer $T(n) = 2 * T(n/2) + \Theta(n) + \Theta(1) + 1$ (for the recursive())

Asymptotic runtime: Divide and Conquer

```
Using the master method then with a = 2, b = 2, and f(n) = n 

Compare n^{\log_2 2} = n^1 = n with f(n) = n

Then by case 2: if f(n) = \Theta(n^{\log_2 n}) then: T(n) = \Theta(n^{\log_2 2} \log_2 n) = \Theta(n \log_2 n)
```

Hence the asymptotic runtime is $\Theta(n \log_2 n)$

Pseudo Code: Recursion Inversion (Linear time), Algorithm 4

```
Cite: Based on Kadan's algorithm:

https://en.wikipedia.org/wiki/Maximum_subarray_problemh
recursion_inversion(array)

If array length == 0

return array, "No max sum"

maxMax = currentMax = array[0]

Idx = 0

Low_idx = high_idx = 0

For index in array length

If array[index] > (currentMax + array[index])
```

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

Recurrence: Linear time

T(n) = n + O(1) + 1 for constant work

Asymptotic runtime: Linear Time

As n increases, the constant matters less. Since there is nothing altering n, it remains the same.

T(n) = O(n elements to iterate over) = O(n)

Testing

- When testing each of the algorithms for correctness, first tested each algorithm with MSS_TestProblems.txt to verify that it worked properly for that set of given arrays.
- Created boundary cases using arrays of size n = 1, to ensure we had base cases correct when there was nothing to compare against.
- Tested arrays that contained only negative numbers.
- Tested arrays that contained all zeros with only 1 other integer, either positive or negative.
- With each test case we inspected the MSS_Results.txt that was created to ensure the algorithms worked as intended.

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

Experimental Analysis

#1 Enumeration:

Equation #1 for regression curve: $a * n^3 + b * n^2 + c * n + d$, where a, b, c, d are constants

Enumeration	Enumeration		
n	Average Time		
100	0.105960677		
200	0.341997607		
300	0.943891832		
400	1.808750487		
500	3.040338509		
600	4.780747184		
700	6.232254964		
800	9.669896875		

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

900	10.79555459
1000	15.09172075

#2 Iteration:

Equation #2 for regression curve: $a * n^2 + b * n + c$, where a, b, c are constants

Iteration			
n	Average Time	n	Average Time
100	0.020099468	1000	1.817726205
200	0.073781952	2000	7.110037233
300	0.163660474	3000	15.03335721
400	0.294904714	4000	28.71316899
500	0.454518362		
600	0.660570064		
700	0.888529375		

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

800	1.151724451	
900	1.174364603	

#3 Divide and Conquer:

Equation #3 for regression curve: $n \log n$

Divide and Conquer				
n	Average Time	n	Average Time	
100	0.00828156	7000	0.663376374	
200	0.017074951	8000	0.759921519	
300	0.025133213	9000	0.861398635	
400	0.032304606	10000	1.037731206	
500	0.041581789	20000	2.171978121	
600	0.050818943	30000	3.325826343	
700	0.05844892	40000	4.519081552	
800	0.068020385	50000	5.69710066	
900	0.076997825			
1000	0.086130618			

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

2000	0.178267778	
3000	0.280500386	
4000	0.377630112	
5000	0.471748008	
6000	0.570816677	

#4 Linear (DP)

Equation #4 for regression curve: a * n + c, where a and c are constants

Recursion Inversion / Dynamic Programming				
n	Average Time	n	Average Time	
100	0.000767809	8000	0.056289595	
200	0.001502693	9000	0.062582659	
300	0.002216309	10000	0.073068458	
400	0.003010353	20000	0.149766705	
500	0.003685789	30000	0.229626963	
600	0.004441979	40000	0.306683045	
700	0.005602602	50000	0.369255645	
800	0.005850205	60000	0.459359847	
900	0.006603973	70000	0.534317694	
1000	0.007954147	80000	0.627928438	
2000	0.015690907	90000	0.700311114	

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

3000	0.02118845	100000	0.776009099
4000	0.028403731		
5000	0.036918236		
6000	0.041798477		
7000	0.049773685		

Data collection:

On collecting the data sets we noticed that at small values of n, the data points were much less in line with the data points collected at larger values of n. The constant work done by each function in this case is causing a greater deviation. This can been seen in the divide and conquer graph where the small data points lie further from the regression and the R-square value is lower for this particular regression curve than any of the other algorithms.

Generally we had very good data collection and the regression curves fit as expected with their equations, as can been seen by the high R-square of the other graphs.

5. Largest input for Algorithm that can be solved in:

	10 seconds	30 seconds	1 minute
#1 Enumeration	853	1,406	1,926
#2 Iteration	2,416	4,227	6,014
#3 Divide and Conquer	87,926	248,437	478,437
#4 Linear (DP)	1,326,109	3,970,452	7,931,037

To calculate these inputs, the log log trend line formula was used of each algorithm. Solve the formula from the trend line for n and input the time into the formula as log(time), so log(10) = 1, log(30) = 1.477121, log(60) = 1.778151 to find the largest n possible for the given time, rounding down to the nearest integer.

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

Group: 6

Date: 2016.10.06 Due Date: 2016.10.16

Group Members: Kelsey Helms, Jay Steingold, Johannes Pikel

6. Log log plots of algorithms

