Matrius i vectors (grup de matí)

Curs 2018–2019

10.1 Existència de matrius inverses

En aquesta secció només considerarem matrius quadrades, és a dir, matrius $n \times n$ on $n \ge 1$. La matriu identitat $n \times n$ és la matriu

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

que denotarem només per I quan no calgui especificar n. Aquesta matriu té la propietat que AI = A i IA = A per a tota matriu A quadrada $n \times n$.

Definició 10.1. Una matriu quadrada A es diu *invertible* o *regular* si existeix una matriu B tal que AB = I i BA = I.

Si A és invertible, aleshores la matriu B que satisfà AB = BA = I és única. Aquest fet es demostra suposant que AC = CA = I i escrivint

$$C = CI = C(AB) = (CA)B = IB = B.$$

Aquesta única matriu B tal que AB = BA = I (si existeix) s'anomena *inversa* de A i es denota per A^{-1} . Observem que $(A^{-1})^{-1} = A$ i que, si A i B són dues matrius invertibles, llavors

$$(AB)^{-1} = B^{-1}A^{-1},$$

ja que

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

Si A és invertible i es compleix AB = AC, llavors B = C. Es demostra així:

$$AB = AC \Rightarrow A^{-1}(AB) = A^{-1}(AC) \Rightarrow (A^{-1}A)B = (A^{-1}A)C \Rightarrow B = C.$$

Anàlogament, si A és invertible i es compleix BA = CA, llavors B = C.

Proposició 10.2. Si una matriu quadrada A és invertible, llavors la seva transposada A^{t} també és invertible i es compleix $(A^{t})^{-1} = (A^{-1})^{t}$.

$$Demostraci\'o. \ A^{\rm t}(A^{-1})^{\rm t}=(A^{-1}A)^{\rm t}=I^{\rm t}=I \ {\rm i} \ {\rm tamb\'e}\ (A^{-1})^{\rm t}A^{\rm t}=(AA^{-1})^{\rm t}=I. \quad \ \Box$$

Proposició 10.3. Sigui A una matriu quadrada per a la qual existeixen matrius B i C tals que AB = I i CA = I. Llavors A és invertible i $B = C = A^{-1}$.

Demostració. Tenim que

$$C = CI = C(AB) = (CA)B = IB = B,$$

i per tant es compleix BA = CA = I. Aleshores, com que AB = I i BA = I, podem concloure que A es invertible i que $A^{-1} = B$ i $A^{-1} = C$.

A continuació demostrarem el teorema principal sobre l'existència d'inverses, que afirma que una matriu quadrada A és invertible si i només si rang A = n.

Lema 10.4. Si A és quadrada $n \times n$ i es compleix AB = I per a alguna matriu B o bé CA = I per a alguna matriu C, llavors rang A = n.

Demostració. la igualtat AB = I s'escriu com

$$\begin{pmatrix} a_1^1 & a_1^2 & \cdots & a_1^n \\ a_2^1 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & & \vdots \\ a_n^1 & a_n^2 & \cdots & a_n^n \end{pmatrix} \begin{pmatrix} b_1^1 & b_1^2 & \cdots & b_1^n \\ b_2^1 & b_2^2 & \cdots & b_2^n \\ \vdots & \vdots & & \vdots \\ b_n^1 & b_n^2 & \cdots & b_n^n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

D'aquí deduïm que

$$b_1^1 A_1 + b_2^1 A_2 + \dots + b_n^1 A_n = e_1$$

$$\vdots$$

$$b_1^n A_1 + b_2^n A_2 + \dots + b_n^n A_n = e_n$$

on A_1, \ldots, A_n són les columnes de la matriu A i e_1, \ldots, e_n són les columnes de I, que són exactament la base canònica de \mathbb{R}^n . Aquest fet implica que A_1, \ldots, A_n generen \mathbb{R}^n i per tant rang A = n.

D'altra banda, si CA = I, llavors $A^{t}C^{t} = I^{t} = I$ i per tant rang $(A^{t}) = n$ pel que acabem de demostrar. Aleshores també rang A = n.

Teorema 10.5. Una matriu A quadrada $n \times n$ té inversa si i només si rang A = n.

Demostració. Si A és invertible, llavors rang A=n pel lema 10.4. Recíprocament, suposem que rang A=n. Llavors tot sistema d'equacions lineals amb matriu A és de Cramer i per tant té solució única. Siguin B_1, \ldots, B_n les solucions respectives dels sistemes

$$AX = e_1, \qquad \dots, \qquad AX = e_n \tag{10.1}$$

on e_1, \ldots, e_n és la base canònica de \mathbb{R}^n . Si diem B a la matriu que té per columnes B_1, \ldots, B_n , aleshores (10.1) ens diu que AB = I.

D'altra banda, si rang A=n aleshores també rang $(A^t)=n$. Per tant, tot sistema d'equacions lineals amb matriu A^t també té solució única. Si C_1,\ldots,C_n són les solucions de

$$A^{\mathbf{t}}X = e_1, \qquad \dots, \qquad A^{\mathbf{t}}X = e_n$$

i diem C a la matriu que té per files els vectors C_1, \ldots, C_n , llavors $A^{\mathsf{t}}C^{\mathsf{t}} = I$ i per tant $CA = I^{\mathsf{t}} = I$. Aleshores, com que AB = I i CA = I, la proposició 10.3 implica que A és invertible.

Corol·lari 10.6. Si A és una matriu quadrada i existeix una matriu B tal que AB = I, llavors A és invertible i $B = A^{-1}$.

Demostració. Si AB = I, el lema 10.4 ens diu que rang A = n i aleshores el teorema 10.5 implica que A és invertible. A més, $A^{-1} = B$ ja que AB = I.

Anàlogament, si A és quadrada i existeix una matriu C tal que CA = I, llavors A és invertible i $C = A^{-1}$.