微积分II(第一层次)期末参考答案_(2015.6.22)

一、1. 曲面
$$S$$
 的方程为 $z = \sqrt{a^2 - x^2 - y^2}$, $(x,y) \in D$, $D: x^2 + y^2 \le a^2 - h^2$, 原式= $\iint_D \sqrt{a^2 - x^2 - y^2} \cdot \sqrt{1 + (z_x')^2 + (z_y')^2} dx dy = \iint_D a dx dy = \pi a (a^2 - h^2)$.

2.
$$\mathbb{R} = \int_{-1}^{1} dx \int_{x^2}^{2} (y - x^2) dy + \int_{-1}^{1} dx \int_{0}^{x^2} (x^2 - y) dy = \frac{46}{15}.$$

3. 记
$$F(x,y,z) = x^2 + y^2 + z^2 + 2z - 5$$
,则 $\mathbf{n} = (F'_x(1,1,1), F'_y(1,1,1), F'_z(1,1,1)) = (2,2,4) = 2(1,1,2)$,于是曲面在 $(1,1,1)$ 的切平面方程为 $(x-1) + (y-1) + 2(z-1) = 0$,法线方程为 $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$.

$$4. \int_0^{+\infty} \frac{1+x^2}{1+x^4} \, \mathrm{d}x = \int_0^{+\infty} \frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}} \, \mathrm{d}x = \int_0^{+\infty} \frac{\mathrm{d}(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2} = \frac{1}{\sqrt{2}} \arctan \frac{(x-\frac{1}{x})}{\sqrt{2}} \bigg|_0^{+\infty} = \frac{\pi}{\sqrt{2}}$$

5. 原方程可化为
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(\frac{y}{x})^2}{\frac{y}{x}+1}$$
, 这是一个齐次微分方程. 令 $u = \frac{y}{x}$, 则 $y = ux$, $\frac{\mathrm{d}y}{\mathrm{d}x} = u + x\frac{\mathrm{d}u}{\mathrm{d}x}$, 于是原方

程变为 $u+x\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{u^2}{u+1}$,分离变量得 $\left(1+\frac{1}{u}\right)\mathrm{d}u=-\frac{\mathrm{d}x}{x}$,两边积分,得 $u+\ln|u|+C=-\ln|x|$,所以原方程的通积分为: $\frac{y}{x}+\ln|y|+C=0$. y=0为奇解. (通积分也可写成 $y=Ce^{-\frac{y}{x}}$.)

6.
$$\oint_C \arctan \frac{y}{x} dy - dx = \int_0^1 [2x\arctan x - 1] dx + \int_1^0 (\arctan 1 - 1) dx = \frac{\pi}{4} - 1.$$

7.
$$S = \lim_{n \to \infty} \left(\frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} - \frac{\frac{7}{10}(1 - (\frac{1}{10})^n)}{1 - \frac{1}{10}} \right) = -\frac{5}{18}$$
. 所以级数收敛,和为 $-\frac{5}{18}$.

8. 记
$$P = \frac{-y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$, 则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$ 在 l 与单位圆周 $C : x^2 + y^2 = 1$ 所围的区域内成立,故积分与路径无关,所以 $\int_{l} \frac{x \mathrm{d}y - y \mathrm{d}x}{x^2 + y^2} = \int_{C} \frac{x \mathrm{d}y - y \mathrm{d}x}{x^2 + y^2} = \int_{0}^{2\pi} \mathrm{d}\theta = 2\pi$.

9.
$$\[id\] P = e^x \sin y - 2y \sin x, Q = e^x \cos y + 2 \cos x, \] \[id\] \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = e^x \cos y - 2 \sin x, \] \[id\] \mathcal{P}$$

全微分方程, $u(x,y) = \int_0^x 0 dx + \int_0^y (e^x \cos y + 2 \cos x) dy = e^x \sin y + 2y \cos x$, 所以原方程的通解为 $e^x \sin y + 2y \cos x = C$.

敛,
$$|x| > 1$$
 时级数发散,而 $x = \pm 1$ 时,易知级数收敛,所以收敛域为 $[-1,1]$. 设 $S(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}$,

則
$$S(0) = 0$$
, $S'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$, 所以 $S(x) = S(0) + \int_0^x S'(x) dx = \int_0^x \frac{1}{1+x^2} dx = \arctan x$, $x \in [-1,1]$.

11. 在上题中令
$$x = 1$$
 得 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} = \arctan 1 = \frac{\pi}{4}$.

二、 设
$$S_1: z = 0$$
 ($x^2 + y^2 \le a^2$), 取下侧, 记 $V \notin S \ni S_1$ 所围立体.

$$I = \iint_{S} \frac{ax \, dy \, dz - 2y(z+a) \, dz \, dx + (z+a)^{2} \, dx \, dy}{\sqrt{x^{2} + y^{2} + z^{2}}} = \iint_{S} \frac{ax \, dy \, dz - 2y(z+a) \, dz \, dx + (z+a)^{2} \, dx \, dy}{a}$$

$$= \iint_{S+S_1} \frac{ax \, dy \, dz - 2y(z+a) \, dz \, dx + (z+a)^2 \, dx \, dy}{a} - \iint_{S_1} \frac{ax \, dy \, dz - 2y(z+a) \, dz \, dx + (z+a)^2 \, dx \, dy}{a}$$

$$= \iiint\limits_V \mathrm{d}V - \iint\limits_{S_1} \frac{ax\,\mathrm{d}y\,\mathrm{d}z - 2y(z+a)\,\mathrm{d}z\,\mathrm{d}x + (z+a)^2\,\mathrm{d}x\,\mathrm{d}y}{a} = \frac{2}{3}\pi a^3 + \iint\limits_{x^2+y^2 \le a^2} a\,\mathrm{d}x\mathrm{d}y = \frac{5}{3}\pi a^3.$$

三、 设 $P(x,y) = 3x^2y$,因为积分与路径无关,所以 $P'_y(x,y) = Q'_x(x,y) = 3x^2$,故 $Q(x,y) = x^3 + \varphi(y)$.

又因为
$$\int_{(0,0)}^{(t,1)} 3x^2 y dx + Q(x,y) dy = \int_0^1 Q(0,y) dy + \int_0^t 3x^2 dx = \int_0^1 Q(0,y) dy + t^3,$$

$$\int_{(0,0)}^{(1,t)} 3x^2 y dx + Q(x,y) dy = \int_0^t Q(0,y) dy + \int_0^1 3x^2 t dx = \int_0^t Q(0,y) dy + t,$$

所以 $\int_0^1 Q(0,y) dy + t^3 = \int_0^t Q(0,y) dy + t$, 两边对 t 求导得 $3t^2 = Q(0,t) + 1$, 即 $Q(0,t) = 3t^2 - 1$, 所以 $Q(y) = Q(0,y) = 3y^2 - 1$.

四、 (1) 因为 f(x) 是偶函数,所以 $b_n = 0$ $(n = 1, 2, 3 \cdots)$.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3}.$$
 $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx dx = (-1)^n \frac{4}{n^2}, (n = 1, 2, 3, \dots).$

而 f(x) 在 $[-\pi, \pi]$ 上连续,且 $f(-\pi) = f(\pi)$,所以 $f(x) = x^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos nx$, $(-\pi \le x \le \pi)$.

(2) 在上式中令
$$x = 0$$
, 得 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = \frac{\pi^2}{12}$.

(3)
$$\pm(1)$$
 中令 $x = \pi$, 得 $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$, 与(2)式相加得 $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

$$\pm$$
, (1) $\frac{a_n}{S_n^2} = \frac{S_n - S_{n-1}}{S_n^2} < \frac{S_n - S_{n-1}}{S_n S_{n-1}} = \frac{1}{S_{n-1}} - \frac{1}{S_n}, (n \ge 2),$

$$\sigma_n = \sum_{k=1}^n \frac{a_k}{S_k^2} < \frac{1}{S_1} + \left(\frac{1}{S_1} - \frac{1}{S_2}\right) + \left(\frac{1}{S_2} - \frac{1}{S_3}\right) + \dots + \left(\frac{1}{S_{n-1}} - \frac{1}{S_n}\right) = \frac{2}{a_1} - \frac{1}{S_n} < \frac{2}{a_1},$$

而正项级数收敛的充要条件是其部分和数列有界,所以级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 收敛.

(2) 设级数
$$\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$$
 的部分和为 σ_n , 即 $\sigma_n = \sum_{k=1}^n \frac{a_k}{\sqrt{S_k}}$, $\sigma_n > \sum_{k=1}^n \frac{a_k}{\sqrt{S_n}} > \sqrt{S_n}$, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$ 收敛,

则 σ_n 有上界,由上式可知 S_n 有上界,故级数 $\sum_{n=1}^{\infty} a_n$ 收敛. $\sigma_n < \sum_{k=1}^{n} \frac{a_k}{\sqrt{S_1}} = \frac{S_n}{\sqrt{a_1}}$, 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,

则 S_n 有上界,由上式可知 σ_n 有上界,故级数 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$ 收敛.

六、
$$\lim_{x\to +\infty}\frac{e-(1+\frac{1}{x})^x}{\frac{1}{x}}=\frac{e}{2}, \text{ 所以级数} \sum_{n=1}^{\infty}\left(e-\left(1+\frac{1}{n}\right)^n\right)^p 与级数 \sum_{n=1}^{\infty}\frac{1}{n^p}$$
 敛散性相同, $p>1$ 时收敛, $p\leq 1$ 时发散.