	Given a	graph G.	ertest Path	e want	to 1	to each v	irtest
,	path for	om a given	Source	verten s	EV	to each v	eden
						Path	leng
	Source 5'	→ 0 <u>50</u>	2 -	10	$\rightarrow 3$	(1,4).	(6
		20/10	20	35/	/	(1,2)	<u> 45</u>
		(4)	$\rightarrow \bigcirc$	3	<u> </u>	(1,5),14,5,2,3	
						(1,5)	25
						(16)	~
	Terminol	Logy			•		
			۵_		6		
1)	Verten				× CD	4	
3) 2)	\cup	ledoe	50		tod 8	3 09	
	Coeighted	Positive	75	-3		7	
		Negative		3	>∞,	-1	
(ب	Cycle			-6	+		
	, i) Positive u	veighted.	<u>Ψ</u>			
		e) Negative	weighted	<u> </u>	-4		
			3,		6	" Salah	
			(0) 5	$\rightarrow \mathfrak{F}$		10,3	9
					-3	20	ə <i>O</i>
				Two.	<i></i>	(10)	
					-6		

if $d[v] > d[u] + \omega(u,v)$ then $d[v] < d[u] + \omega(u,v)$ $\pi[v] \geq u$ 0 = [s,t,n,y,z S= [40,5,4,2,t,n] 0 = [t, n, y, z] 0 = [t, n, z]0 = [t,n] 0 = [n]

					/	_/
Bell	may (d-Algarith				
Sol	LIE H	d-Algarith	m	weight may		
 But	ANG.	problem	with c	weight may	he hee	ative
	not neg	problem ative cycl	o ,	J	J	
	U	J				
		t	5			
		2	N	N		
	6		2	ry)		
		8	2/	`		
300			\			
			-4	(
		100	2	N		
				2-2		
		7		2		
0			,			
1/158	MMAN-FO	ORD (Gus, 1)		· · · · · · · · · · · · · · · · · · ·		
	- 3 m	C1	,			
2) 104	i < 1 +	2 - 310012 - 50	OURCE (G	(2,5)		
3)						
 4)		or each	edge (i	(,v) E F [6	7	
50 6		do RELAX	(4,10,00)	1	
	eath	edge (11)	O) 6 ET/	7		
		do if di	[07 > d	Su] two Eu on False		-0
7)			0. 0.	Lust co Lu	(4)	ve gut
8) RE	TURN TRU	ıç	ten Keto	th FALSE		yde
					•	J
10						
	17/ALIZE -	- S/W17LE -	SOURCE (C	n, s)		
1) b	each v	erten U E	- V[6]	/		
2)	do d	[V] +	an			
3)		TIVIE				
			NIL			
11/0	[s] 40					
1						

	RELAX (u, v, w)
1)	if d[v] > d[u] + w(u,v)
2)	then dly td (u,v)
3)	$\pi[V] \leftarrow u$
	(F) -2 (G)
	0,000
	6
	6) -3/-4
	7
	(-2)
	Dynamic Programming
一	gris a technique for solving recursively or
	Dynamic Bog ramming 9t is a technique for Solving recursively or non recursively by memorization or tabulation method.
	method.
	he he was but is involved.
→	Creedy approach does not give optimal Solution
	quarantee but Dynamic Programing gives guarantee
	grarantee but Dynamic Programing gives grarantee of optimal Salution by using principle of optimality.
	Principle of optimality! A problem is Said to Satisfy principle of optimality if the Sub Solution of an optimal Solution of the problem are themselves optimal Solution for their Subproblems.
	Satisfy principle of optimality if the Sub Solution
	of an oppinal Solution of the problem are
	themselves optimal Solution for their Subjections.
	·