Approximation (suite et fin)

Le LIVRE

Pour toute la partie Algorithmique :

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest: Introduction to algorithms, MIT Press, 1990.

La dernière edition :

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to algorithms, MIT Press, 2009. THOMAS H. CORMEN CHARLES E. LEISERSON RONALD L. RIVEST CLIFFORD STEIN

INTRODUCTION TO

ALGORITHMS

THIRD EDITION

VF

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction à l'algorithmique, troisième édition, Dunod, juin 2010.

Cormen • Leiserson Rivest • Stein

Cours, exercices et problèmes

Algorithmique

Cours avec 957 exercices et 158 problèmes

20 000 examplaires ventus 3e édition avec compléments en ligne

DUNOD

Approximation de SSP

Le problème de décision : étant donné l'ensemble de nombres naturels $S=\{x_1, x_2, ..., x_n\}$ et un nombre naturel t, on pose la question s'il existe un sous-ensemble de S, dont la sommme des éléments soit t.

Le problème d'optimisation : étant donné l'ensemble de nombres naturels $S=\{x_1, x_2, ..., x_n\}$ et un nombre naturel t, on cherche le plus grand $t' \le t$, tel qu'il existe un sous-ensemble de S, dont la somme des éléments soit t'.

Notation

on notera "L + x", la liste triée obtenue par addition de x à chaque élément de la liste triée L

on notera "merge(L,L')" la liste triée et sans doublons obtenue à partir des listes triées L et L'

•on notera " $\sup(L,k)$ " la liste triée obtenue à partir de la liste triée L par suppression des éléments supérieurs à k

Algo exponentiel pour SSP

$$n \leftarrow |S|$$
 $L_0 \leftarrow <0>$
 $pour i = 1 à n faire$
 $L_i \leftarrow merge(L_{i-1}, L_{i-1} + x_i)$
 $L_i \leftarrow supr(L_i, t)$
 $return(maximum de L_n)$

Exemple

```
S=\{1, 4, 7, 10\}
t=20
L_0 = \{0\}
L_1 = \{0, 1\}
L_2 = \{0, 1, 4, 5\}
L_3 = \{0, 1, 4, 5, 7, 8, 11, 12\}
L_4 = \{0, 1, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18\}
Résultat: 18
```

Le même exemple encore

```
S=\{10, 7, 4, 1\}
t=20
L_0 = \{0\}
L_1 = \{0, 10\}
L_2 = \{0, 7, 10, 17\}
L_3 = \{0, 4, 7, 10, 11, 14, 17\}
L_4 = \{0, 1, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18\}
Résultat: 18
```

Exemple de l'exponentialité

$$S=\{1,2,4,8,16,\ldots\}=\{2^{i-1}\mid i=1,\ldots,n \}$$
 t assez grand $\Theta(2^n)$
$$L_1=\{0,1\}$$

$$L_2=\{0,1,2,3\}$$
 ...
$$L_i=\{0,1,\ldots,2^{i-1}\}$$

et comme la taille des L_i est exponentielle, l'algorithme l'est.

Un FPTAS pour SSP

L'idée est d'utiliser un procédée d'élagage.

Soit $0 < \delta < 1$. Un *élagage* de la liste L par δ , consiste en la suppression de maximum d'éléments de L, de manière à obtenir une liste L', qui pour tout élément supprimé y contient un élément proche, c.a.d. $z \le y$, tel que $(y-z)/y \le \delta$

c.a.d. $(1-\delta)y \le z \le y$

On peut considérer que z représente y ; ainsi chaque valeur est soit présente soit représentée par une valeur assez proche.

Exemple d'élagage

```
L = \{10, 11, 12, 15, 20, 21, 22, 23, 24, 29\}
\delta = 1/10
L = \{10, 11, 12, 15, 20, 21, 22, 23, 24, 29\}
11 représenté par 10
21 et 22 representés par 20
24 representé par 23
L'={10, 12, 15, 20, 23, 29}
```

Algorithme d'élagage en O(m)

```
ELAGAGE(L,δ)
   m \leftarrow |\mathbf{L}|
   L' \leftarrow \{y_1\}
   last \leftarrow y_1
   pour i = 2 à m faire
        si last < (1 - \delta) y_i
                 alors
                          L' \leftarrow L' \leftarrow \{y_i\}
                          last \leftarrow y_i
   reurn(L')
```

Le schéma d'approximation

```
Approx SSP(S, t, \varepsilon)
  n \leftarrow |S|
  L_0 \leftarrow \{0\}
   pour i = 1 à n faire
        L_i \leftarrow merge(L_{i-1}, L_{i-1} + x_i)
        L_i \leftarrow elagage(L_i, \varepsilon/n)
        L_i \leftarrow \text{supr}(L_i, t)
   return(maximum de L_n)
```

Exemple

$$S = \{24, 28, 36, 32\}$$

$$t = 66$$

$$\epsilon = 0,3 \Rightarrow$$

$$\delta = \epsilon/4 = 0,075$$

$$L_0 = \{0\}$$

$$M L_1 = \{0, 24\}$$

$$E L_1 = \{0, 24\}$$

$$S L_1 = \{0, 24\}$$

$$M L_2 = \{0, 24, 28, 52\}$$

$$E L_2 = \{0, 24, 28, 52\}$$

$$S L_2 = \{0, 24, 28, 52\}$$

```
L_3=\{0, 24, 28, 36, 52, 60, 64,
  88 }
E L_3=\{0, 24, 28, 36, 52, 60, 88\}
L_3=\{0, 24, 28, 36, 52, 60\}
M L_4=\{0, 24, 28, 32, 36, 52, 56,
  60, 68, 84, 88, 92 }
E L_4=\{0, 24, 28, 32, 36, 52, 60,
  68, 84, 88, 92 }
L_4=\{0, 24, 28, 32, 36, 52, 60\}
Résultat: 60
(Le résultat optimal est 64)
```

Preuve de l'algorithme

 Dans toutes les opérations on manipule des sommes d'éléments (et éventuellement on en supprime) donc le résultat est la somme de certains éléments de S.

Reste à montrer que

Résultat $\geq (1 - \varepsilon)$ Optimum

Il faut montrer que la complexité de l'algorithme est polynomiale.

L'approximation

Un élément élagué, y est représenté par un z tel que :

$$(1 - \varepsilon/n) y \le z \le y$$

Lors d'une phase ultérieure, on obtient

$$(1 - \varepsilon/n)^i y \le z \le y$$

Ainsi, pour chaque élément dans L_i , y est soit présent soit représenté par un z tel que

$$(1 - \varepsilon/n)^i y \le z \le y$$

Donc le résultat vérifie

$$(1 - \varepsilon/n)^n Opt \le R\acute{e}s \le Opt$$

Approximation (suite)

Mais comme la fonction

$$\mathbf{f}(\mathbf{n}) = (1 - \varepsilon/n)^n$$

est croissante en n (dérivé positive !), on a

$$(1-\varepsilon)<(1-\varepsilon/n)^n$$

Donc

$$(1 - \varepsilon) Opt \leq R\acute{e}s \leq Opt$$

La complexité

Après l'élagage, si z et z' sont des éléments consécutifs dans L_i , alors on ne peut pas avoir

$$z'$$
 $(1 - \varepsilon/n) < z < z'$

donc on a

$$z'(1 - \varepsilon/n) > z$$

c.a.d.

$$z'/z > 1/(1 - \varepsilon/n)$$

Ainsi le nombre d'éléments de L_i est au plus

$$\log_{1/(1-\varepsilon/n)} t = \ln t / (-\ln(1-\varepsilon/n)) \le n \ln t / \varepsilon$$

Complexité (suite)

Le nombre d'éléments de Li est donc polynomial en n, $\ln t$ et $1/\epsilon$.

La première valeur est bornée par la taille des données, la seconde est la taille de la représentation de t et la troisième $(1/\epsilon)$ est celle demandée par un FPTAS.

CQFD

Une dernière remarque concernant la NP-complétude

Problèmes de reconnaissance vs optimisation Si on sait reconnaître en temps polynomial, alors en un nombre $O(\log R\acute{e}s)$ de reconnaissances on peut trouver l'optimum.

Si on sait trouver l'optimum alors on sait répondre au problème de reconnaissance.

Remarque : pour les problèmes d'optimisation on parle de NP-difficulté seulement.

FI.OTS

Définitions

Un réseau est un graphe orienté G(V,E) dans lequel chaque arc (u,v) dispose d'une capacité $c(u,v) \ge 0$.

Un réseau est doté de deux nœuds spéciaux :

s – source

t – puits

Nous supposerons par la suite que pour tout sommet x du réseau il existe un chemin de s vers x et un de x vers t.

Définitions (suite)

Un flot dans G est une fonction $f: E \to R$ qui vérifie :

-contrainte de capacité

$$\forall e \in E : 0 \le f(e) \le c(e)$$

-conservation des flots (lois de Kirchhoff)

Soit In(v) l'ensemble des arcs entrants en v et Out(v) l'ensemble des arcs sortants de v. Alors

$$\forall v \in \mathbf{V} - \{s, t\} : \Sigma_{e \in \mathbf{In}(v)} f(e) - \Sigma_{e \in \mathbf{Out}(v)} f(e) = \mathbf{0}$$

Définitions (suite)

La valeur d'un flot

$$|f| = \sum_{e \in \text{In}(t)} f(e) - \sum_{e \in \text{Out}(t)} f(e)$$

Le problème du flot maximum : trouver un flot de valeur maximum.

Exemple

Une coupe

Definition

Soient S, T ⊂ V. (S,T) désigne l'ensemble des arcs ayant l'origine dans S et l'extrémité terminale dans T.

Soit $S \subset V$, t.q. $s \in S$ et $t \notin S$. L'ensemble des arcs entre S et son complémentaire S' s'appelle une coupe (ou une s-t coupe). Il est noté (S;S')

Une propriété

Propriété: Pour tout s-t coupe (S,S'),

$$|f| = \sum_{e \in (S;S')} f(e) - \sum_{e \in (S';S)} f(e)$$

Preuve : Il suffit de sommer les équations

$$\Sigma_{e \in \text{In}(v)} f(e) - \Sigma_{e \in \text{Out}(v)} f(e) = 0$$

pour les sommets $v \in S'$ $(v \neq t)$

et

$$|f| = \sum_{e \in \text{In}(t)} f(e) - \sum_{e \in \text{Out}(t)} f(e)$$

La capacité d'une coupe

On définit

$$c(S) = \sum_{e \in (S;S')} c(e)$$

Une borne

Propriété: pour tout flot f et pour toute coupe S $|f| \le c(S)$

Preuve: par la propriété précédente nous avons

$$|f| = \sum_{e \in (S;S')} f(e) - \sum_{e \in (S';S)} f(e)$$

et par ailleurs $0 \le f(e) \le c(e)$ pour toute arête e.

Donc

$$|f| \le \sum_{e \in (S;S')} c(e) - 0 = c(S)$$

Un corollaire

Corollaire: Si |f| = c(S) alors le flot est maximum et la coupe S est de capacité minimum.

Chaîne augmentante

Une chaîne augmentante est un chaîne entre s et t sur laquelle on peut augmenter le flot,

c.a.d. une chaîne sur laquelle les arcs "avant" vérifient

$$f(\mathbf{e}) < c(e)$$

et les arcs "arrière" vérifient

Chaîne augmentante - exemple

Méthode Ford & Fulkerson

tant qu'il existe une chaîne augmentante faire

- chercher une chaîne augmentante
- augmenter le flot sur la chaîne fait

A préciser : comment chercher, de combien augmenter

Réseau résiduel

Si on a un arc de *u* vers *v*, alors

on met dans G_f un arc de u vers v de capacité $c_f(u,v) = c(u,v) - f(u,v)$

on met dans G_f un arc de v vers u de capacité $c_f(v,u) = f(u,v)$

Le réseau résiduel

La chaîne augmentante

On peut faire une augmentation de min{11,4,9}=4.

Le résultat

Le réseau résiduel

La chaîne augmentante

On peut faire une augmentation de $min{7,4,2,5,5}=2$.

Le résultat

Le réseau résiduel

Mais comment continuer?

On ne peut pas!

Et toutes les arcs sont dans le sens $S' \rightarrow S$.

La coupe dans le résultat

Les arcs $S' \rightarrow S$ sont de flot nul et les arcs $S \rightarrow S'$ sont saturés.

Conclusion

Le flot est maximum!

L'algorithme est terminé!