Database design: Bottom-up Approach Part 1: Functional Dependency

Instructor: Vu Tuyet Trinh

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

Learning objective

- Upon completion of this lesson, students will be able to:
 - 1. Recall the concept of functional dependency, Armstrong's axioms and secondary rules
 - 2. Identify closure of a FD set, closure of a set of attributes
 - 3. Find a minimal key of a relation under a set of FDs
 - Identify the equivalence of sets of FDs and find the minimal cover of a set of FDs

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Outline

- 1. Functional Dependency
- 2. Armstrong's Axioms and secondary rules
- 3. Closure of a FD set, closure of a set of attributes
- 4. A minimal key
- 5. Equivalence of sets of FDs
- 6. Minimal Sets of FDs

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3

1. Functional Dependency

- 1.1. Introduction
- 1.2. Definition

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1.1. Introduction

- We have to deal with the problem of database design
 - · anomalies, redundancies
- The most important concepts in relational schema design theory

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

5

1.2. Definition

- Suppose that $R = \{A_1, A_2, ..., A_n\}$, X and Y are non-empty subsets of R.
- A functional dependency (FD), denoted by X → Y, specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t₁ and t₂ in r that have t₁[X] = t₂[X], they must also have t₁[Y] = t₂[Y].
 - X: the left-hand side of the FD
 - Y: the right-hand side of the FD

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1.2. Definition

 This means that the values of the X component of a tuple uniquely

(or functionally) determine the values of the Y component.

- A FD $X \rightarrow Y$ is trivial if $X \supseteq Y$
- If X is a candidate key of R, then $X \rightarrow R$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

7

1.2. Definition

- Examples
 - $AB \rightarrow C$

Α	В	С	D
a1	b1	c1	d1
a1	b1	с1	d2
a1	b2	c2	d1
a2	b1	с3	d1

- subject_id → name,
- subject_id → credit,
- subject_id → percentage_final_exam,
- subject_id → {name, credit}

subject

subject_id	name	credit	percentage_ final_exam
IT3090	Databases	3	0.7
IT4843	Data integration	3	0.7
IT4868	Web mining	2	0.6
IT2000	Introduction to ICT	2	0.5
IT3020	Discrete Mathematics	2	0.7
IT3030	Computer Architectures	3	0.7

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2. Armstrong's axioms

- 2.1. Armstrong's axioms
- 2.2. Secondary rules
- 2.3. An example

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

9

2.1. Armstrong's axioms

- Given
 - $R = \{A_1, A_2, ..., A_n\}, X, Y, Z, W \text{ are subsets of } R.$
 - XY denoted for X∪Y
- Reflexivity
 - If $Y \subseteq X$ then $X \rightarrow Y$
- Augmentation
 - If X→Y then XZ→YZ
- Transitivity
 - If $X \rightarrow Y$, $Y \rightarrow Z$ then $X \rightarrow Z$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.2. Secondary rules

- Union
 - If $X \rightarrow Y$, $X \rightarrow Z$ then $X \rightarrow YZ$.
- Pseudo-transitivity
 - If $X\rightarrow Y$, $WY\rightarrow Z$ then $XW\rightarrow Z$.
- Decomposition
 - If $X \rightarrow Y$, $Z \subseteq Y$ then $X \rightarrow Z$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

11

2.3. An example

- Given a set of FDs: $F = \{AB \rightarrow C, C \rightarrow A\}$
- Prove: BC → ABC
 - From $C \rightarrow A$, we have $BC \rightarrow AB$ (Augmentation)
 - From AB \rightarrow C, we have AB \rightarrow ABC (Augmentation)
 - And we can conclude BC → ABC (Transitivity)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3. Closure of a FD set, closure of a set of attributes

- 3.1. Closure of a FD set
- 3.2. Closure of a set of attributes
- 3.3. A problem

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

1.

13

3.1. Closure of a FD set

Suppose that F = {A → B, B → C} on R(A, B, C,...). We can infer many
 FDs such as:

$$\mathsf{A} \to \mathsf{C},\,\mathsf{AC} \to \mathsf{BC},\dots$$

- Definition
 - Formally, the set of all dependencies that include F as well as all dependencies

that can be inferred from F is called the closure of F, denoted by F+.

• $F \models X \rightarrow Y$ to denote that the FD $X \rightarrow Y$ is inferred from the set of FDs F.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3.2. Closure of a set of attributes

- Problem
 - We have F, and X \rightarrow Y, we have to check if F \models X \rightarrow Y or not
- Should we calculate F⁺? ⇒ Closure of a set of attributes
- Definition
 - For each such set of attributes X, we determine the set X+ of attributes that are functionally determined by X based on F; X+ is called the closure of X under F.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

15

3.2. Closure of a set of attributes

- To find the closure of an attribute set X+ under F
 - Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R. X⁰ := X:

```
X<sup>0</sup> := X;

repeat

for each functional dependency Y → Z in F do

if X<sup>i-1</sup> ⊇ Y then X<sup>i</sup> := X<sup>i-1</sup> ∪ Z;

else X<sup>i</sup> := X<sup>i-1</sup>

until (X<sup>i</sup> unchanged);

X<sup>+</sup> := X<sup>i</sup>
```


SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3.2. Closure of a set of attributes

- · An example
 - Given R = {A, B, C, D, E, F} and F = {AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B}. Calculate (AB)+_F
 - X⁰ = AB
 - $X^1 = ABC \text{ (from } AB \rightarrow C)$
 - $X^2 = ABCD \text{ (from BC} \rightarrow AD)$
 - $X^3 = ABCDE \text{ (from } D \rightarrow E)$
 - $X^4 = ABCDE$
 - (AB)+_F=ABCDE

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

17

3.3. A Problem

- $X \to Y$ can be inferred from F if and only if $Y \subseteq X^+_F$
- $F \models X \rightarrow Y \Leftrightarrow Y \subseteq X^+_F$
- An example
 - Let $R = \{A, B, C, D, E\}, F = \{A \rightarrow B, B \rightarrow CD, AB \rightarrow CE\}.$

Consider whether or not $F \models A \rightarrow C$

• $(A)^+_F = ABCDE \supseteq \{C\}$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4. Minimal key

- 4.1. Definition
- 4.2. An algorithm to find a minimal key
- 4.3. An example

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

19

4.1. Definition

- Minimal key
 - Given $R = \{A_1, A_2, ..., A_n\}$, a set of FDs F
 - K is considered as a minimal key of R if:
 - K⊆R
 - K→R ∈ F+
 - Với ∀K'⊂K, thì K'→R ∉ F+
 - $K^+=R$ and $K\setminus\{A_i\} \to R \notin F^+$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4.2. An algorithm to find a minimal key

- To find a minimal key
 - Input: $R = \{A_1, A_2, ..., A_n\}$, a set of FDs F
 - Step⁰ K⁰= R
 - Stepⁱ If $(K^{i-1}\setminus\{A_i\})\rightarrow R$ then $K^i=K^{i-1}\setminus\{A_i\}$ else $K^i=K^{i-1}$
 - Stepⁿ⁺¹ $K = K^n$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

21

21

4.3. An example

- Given R = {A, B, C, D, E}, F = {AB \rightarrow C, AC \rightarrow B, BC \rightarrow DE}.
- Find a minimal key
 - Step⁰: K⁰= R = ABCDE
 - Step¹: Check if or not $(K^0\setminus \{A\}) \to R$ (i.e, BCDE $\to R$).
 - (BCDE)+= BCDE \neq R. Vậy K¹ = K⁰ = ABCDE
 - Step²: Check if or not $(K^1\setminus \{B\}) \to R$ (i.e, ACDE $\to R$).
 - $(ACDE)^+ = ABCDE = R. So, K^2 = K^1 \setminus \{B\} = ACDE$
 - Step³: $K^3 = ACDE$
 - Step⁴: K⁴ = ACE
 - Step⁵: K⁵ = AC
- · We infer that AC is a minimal key

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4.4. An other algorithm to find a minimal key

Input: $U = \{A_1, A_2, ..., A_n\}$, F

Output: a minimal key

• Step 1:

VT = set of all attributes on the left-side of FD in F VP = set of all attributes on the right-side of FD in F X = U \ VP: set of attributes that must be in K
Y = VP \ VT: set of attributes that must NOT be in K
Z = VP ∩ VT: set of attributes that may be in K

- Step 2: If $(X)^+ = U$ then X is the minimal key: K = X. End!
- **Step 3**: If (X)+ ≠ U then
 - $K^0 = X \cup Z$
 - Repeat: check if we can remove any attribute from Z (similar to slide 22)
 - K = Kⁱ

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

23

23

5. Equivalence of Sets of FDs

- 5.1. Definition
- 5.2. An example

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

5.1. Definition

- Definition:
 - A set of FDs F is said to cover another set of FDs G if every FD in G is also

in F⁺ (every dependency in G can be inferred from F).

- Check if F and G are equivalent:
 - Two sets of FDs F and G are equivalent if F+ = G+.
 - Therefore, equivalence means that every FD in G can be inferred from F, and every FD in F can be inferred from G;
 - That is, G is equivalent to F if both the conditions G covers F and F covers G - hold.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

25

25

5.2. An example

- Prove that F = {A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H} and G = {A \rightarrow CD, E \rightarrow AH} are equivalent
 - For each FD of F, prove that it is in G+
 - $A \rightarrow C$: $(A)^+_G = ACD \supseteq C$, so $A \rightarrow C \in G^+$
 - AC \rightarrow D: (AC) ^+_G = ACD \supseteq D, so AC \rightarrow D \in G $^+$
 - E \rightarrow AD: (E)+_G = EAHCD \supseteq AD, so E \rightarrow AD \in G+
 - E \rightarrow H: (E) $^{+}_{G}$ = EAHCD \supseteq H, so E \rightarrow H \in G $^{+}$
 - $^{\bullet} \Rightarrow F^{+} \subseteq G^{+}$
 - For each FD of G, prove that it is in F+ (the same)
 - \Rightarrow G+ \subseteq F+
 - \Rightarrow F⁺ = G⁺

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

6. A minimal cover of a set of FDs

- 6.1. Definition
- 6.2. An algorithm to find a minimal cover of a set of FDs
- 6.3. An example

school of information and communication technology =

2

27

6.1. Definition

- · Minimal Sets of FDs
 - · A set of FDs F to be minimal if it satisfies:
 - Every dependency in F has a single attribute for its right-hand side.
 - We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a proper subset of X, and still have a set of dependencies that is equivalent to F.
 - We cannot remove any dependency from F and still have a set of dependencies that is equivalent to F.
 - A set of dependencies in a standard or canonical form and with no redundancies

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

6.2. An algorithm to find a minimal cover of a set of FDs

- · Finding a Minimal Cover F for a Set of FDs G
 - Input: A set of FDs G.
 - 1. Set F := G.
 - 2. Replace each functional dependency X → {A₁, A₂, ..., A_n} in F by the n FDs X →A₁, X →A₂, ..., X → A_n.
 - 3. For each FD $X \rightarrow A$ in F
 - · for each attribute B that is an element of X
 - if $\{\{F-\{X\to A\}\}\cup\{(X-\{B\})\to A\}\}$ is equivalent to F
 - then replace $X \to A$ with $(X \{B\}) \to A$ in F.
 - 4. For each remaining functional dependency X → A in F
 - if $\{F \{X \rightarrow A\}\}\$ is equivalent to F, then remove $X \rightarrow A$ from F.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

29

29

6.3. An example

- G = {B \rightarrow A, D \rightarrow A, AB \rightarrow D}.
- We have to find the minimal cover of G.
 - · All above dependencies are in canonical form
 - In step 2, we need to determine if AB → D has any redundant attribute
 - on the left-hand side; that is, can it be replaced by $B \to D$ or $A \to D$?
 - Since B → A then AB → D may be replaced by B → D.
 - We now have a set equivalent to original G, say G_1 : {B \rightarrow A, D \rightarrow A, B \rightarrow D}.
 - In step 3, we look for a redundant FD in G₁. Using the transitive rule on
 - B \rightarrow D and D \rightarrow A, we conclude B \rightarrow A is redundant.
 - Therefore, the minimal cover of G is {B → D, D → A}

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Remark

- Functional dependencies
- Armstrong axioms and their secondary rules
- Closure of a set of FDs
- Closure of a set of attributes under a set of FDs
- An algorithm to find a minimal key
- Equivalence of sets of FDs
- Finding a minimal set of a set of FDs

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

31

31

Summary

- 1. Functional Dependency
 - A FD X → Y: the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component
- 2. Armstrong 's Axioms and secondary rules
 - Reflexivity, Augmentation, Transitivity
 - · Union, Pseudo-transitivity, Decomposition
- 3. Closure of a FD set, closure of a set of attributes
 - All dependencies that can be inferred from F, include F, is called the closure of F, den oted by F⁺
 - A set of attributes are functionally determined by X based on F
- 4. A minimal key
 - A minimal set of attributes can determine R
- 5. Equivalence of sets of functional dependencies
 - F is equivalent to G if every dependency in G can be inferred from F, and every dependency in F can be inferred from G
- 6. A minimal cover of a set of FDs
 - · A set of dependencies in a standard or canonical form and with no redundancies

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY