Machine Vision Project

Generative Adversarial Networks for improving classification and Neural style transfer

Yujin CHO, University Paris-Saclay

SUMMARY

PART1: CLASSIFICATION

PART2: DATA AUGMENTATION (GANs)

PART3: UNPAIRED NEURAL STYLE TRANSFER

Conclusion

PART1: CLASSIFICATION

GOAL: Design a COW and HORSE classifier based on CNN architecture

INPUTS:

Classes: "COW" and "HORSE"

Dataset size: 41 images of each class Image dimension: 256 x 256 x 3 pixels

1 training set and 1 test set

TRAINING DETAILS:

50 epochs

Learning rate: 0.005

Loss function: binary cross entropy loss(BCE loss)

Optimizer : SGD(Stochastic Gradient Descent)

SOLUTION: CNN architecture based on VGG 16 architecture Only 16 layers (13 CONV + 3 FC)

Custom CNN:

Modification of first convolution Adding a last fully connected

10/05/2021 [Yujin CHO]

3

PART1: CLASSIFICATION

GOAL: Design a COW and HORSE classifier based on CNN architecture

INPUTS:

Classes: "COW" and "HORSE"

Dataset size : 41 images of each class Image dimension : 256 x 256 x 3 pixels

1 training set and 1 test set

RESULTS:

Accuracy	Normal	with data augementation
Network	74,4%	100%
Cow	85,4%	100%
Horse	63,4%	100%

SOLUTION: CNN architecture based on VGG 16 architecture Only 16 layers (13 CONV + 3 FC)

Custom CNN:

Modification of first convolution

Adding a last fully connected

PART2: DATA AUGMENTATION (GANs)

GOAL: Generate COW and HORSE data with GAN

TRAINING DETAILS:

5000 epochs (two times)

Learning rate: 0.0002

Loss function: binary cross entropy loss (BCE)

• Optimizer : Adam optimizer

SOLUTION: Custom DCGAN architecture to generate 256 x 256 x 3

7 layers (convTranspose2d+ BatchNorm2d)

Discriminator:

Resnet 18
Pretrained ImageNet
1 FC layer added

Layer name	Output size	Resnet 18
conv1	$128 \times 128 \times 64$	7×7 , stride 2
conv2	$64 \times 64 \times 64$	$ \begin{array}{c} 3 \times 3 \text{ mxpl, stride 2} \\ \begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2 \end{array} $
conv3	$32 \times 32 \times 128$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$
conv4	$16 \times 16 \times 256$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$
conv5	$8 \times 8 \times 512$	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$
avg pool	$1 \times 1 \times 1$	7×7 average pool
fully connected	1	$512 \times 1000 \times 1$

PART2: DATA AUGMENTATION (GANs)

GOAL: Generate COW and HORSE data with GAN

RESULTS: 40 cow, 58 horses are augmented

Many epochs needed to have good results
Hard for generator to converge
Discriminator loss is too low

[Generated images of COW and HORSE]

6

GOAL: Generate COW with HORSE's feature and inverse

No paired image needed

2 adversarial GAN

2 Generator

G : COW→ HORSE

 $F: HORSE \rightarrow COW$

2 Discriminator

Dy : Generated HORSE / real HORSE

Dy: Generated COW / real COW

SOLUTION: CycleGAN architecture for 256 x 256 x 3

Generator:

Encoding: Downsampling

Transformation: 9 residual block (ResNet)

Decoding: Upsampling

GOAL: Generate COW with HORSE's feature and inverse

No paired image needed

2 adversarial GAN

2 Generator

 $G:COW \rightarrow HORSE$

F: HORSE → COW

2 Discriminator

Dy: Generated HORSE / real HORSE

Dy: Generated COW / real COW

SOLUTION: CycleGAN architecture for 256 x 256 x 3

Discriminator: Patch GAN

Divide image in many blocks

Judge eachs blocks

GOAL: Generate COW with HORSE's feature and inverse

Training details:

- 200 epochs
- Learning rate: 0.0002 and decrease learning rate every 100 epoch
- Loss function = GAN loss + cycle loss + Identity loss
- Optimizer : Adam optimizer
- Replay buffer: We show generated images to discriminator periodically to stabilize training
- Weight initialization with normal distribution : mean 0, std 0.02

RESULTS:

Original COW

COW w/ style transfert

Original HORSE

HORSE w/ style transfert

GOAL: Generate COW with HORSE's feature and inverse

Training details :

- 200 epochs
- Learning rate: 0.0002 and decrease learning rate every 100 epoch
- Loss function = GAN loss + cycle loss + Identity loss
- Optimizer : Adam optimizer
- Replay buffer: We show generated images to discriminator periodically to stabilize training
- Weight initialization with normal distribution : mean 0, std 0.02

10

Conclusion

First experience of Python programming

Learned to search Pytorch Library

Introduction into reading scientific paper

Importance of data

Concepts of Neural Network

Importance of hyper parameters

Thank you

