Optimisation Statique et Dynamique

P. Riedinger Ensem 2A, Ingénierie des Systèmes Numeriques année 2013/14

Dans l'évaluation de votre travail, on attachera autant d'importance aux explications qu'aux résultats proprement dits

Les exercices sont indépendants.

Exercice 1 En utilisant les conditions de Kuhn et Tucker, trouver le minimum de $x_1^2 + x_2^2 + x_3^2$ sous les contraintes $x_1 + 2x_2 - x_3 = 4$ et $x_1 - x_2 + x_3 = -2$.

Exercice 2 Soit le problème de minimisation sur \mathbb{R}^2

$$\min f(x) = x_1^2 - x_1 x_2 + x_2^2 - 3x_1$$

sous les contraintes

$$\begin{array}{ll}
-x_1 - x_2 & \ge -2 \\
x_i \ge 0, i = 1, 2
\end{array}$$

On souhaite utiliser l'algorithme des contraintes actives en partant du point $x_0 = (0, 1)$. Dérouler cet algorithme en détaillant à chaque étape : l'ensemble des contraintes actives, le sous problème d'optimisation à traiter, sa solution et le cas échéant le retrait ou l'ajout de contraintes.

Exercice 3 [Programmation dynamique]

Le problème posé consiste à optimiser une gestion de stocks en décidant des approvisionnements, compte tenu des achats prévisibles des clients(sorties de stock) et des coûts.

On travaille par période (k = 1, 2..., N), on appelle x_k la quantité de stock en debut de période k (avant approvisionnement), a_k la quantité de produits rentrant dans le stock en début de période et s_k la demande de marchandise pendant la période.

Le coût relatif à chaque période $c(x_k, a_k, s_k)$ comprend le prix des achats (prix unitaire p) et un coût $H(x_k, a_k, s_k)$ qui dépend du stock restant (coût d'immobilisation) et d'une éventuelle insatisfaction des clients qui ne peuvent voir leur demande satisfaite si le stock disponible est insuffisant.

$$c(x_k, a_k, s_k) = p \ a_k + H(x_k, a_k, s_k)$$

$$H(x_k, a_k, s_k) = \max(0, x_k + a_k - s_k) + 3\max(0, -x_k - a_k + s_k)$$

La capacité maximale du stock est S, le stock ne peut être négatif.

On suppose que la suite de s_k est connue.

- Ecrire l'équation d'optimalité relative à ce problème.
- Résoudre le problème sur 2 périodes pour $p=1, S=2, x_1=0,1,2$ et $s_1=s_2=1$

Exercice 4 [Pontriaguine] On charge une capacité C grâce à une source de tension réglable u.

On rappelle que les equations de base : q(t) charge de la capacité à l'instant t; i(t) intensité dans le circuit

$$u = ri + \frac{q}{c} \tag{1}$$

$$i = \dot{q} \tag{2}$$

- 1. Si à un instant t le condensateur c est à la charge q_{ref} , quelle est la commande u_{ref} qui permet de maintenir la charge à la valeur de référence constante q_{ref} ? On note u_{ref} cette commande.
- 2. On pose le changement de variable $x = q q_{ref}$ et $v = u u_{ref}$. Montrer que x vérifie une équation de la forme $\dot{x} = Ax + Bv$ où l'on précisera A et B.
- 3. On part qu'une charge initiale nulle $q(0) = q_0$. On veut charger le condensateur à la valeur q_{ref} en tenant compte de l'énergie dépensée par effet Joule dans la résistance, le critère à minimiser est alors :

$$J = \int_{0}^{T} \mu(q - q_{ref})^{2} + ri^{2}(t)dt$$

avec $\mu > 0$.

Exprimer le critère en fonction de x et v et montrer que l'on a alors à résoudre un problème LQ de forme générale, c'est à dire de la forme

$$\dot{x} = Ax + Bv$$

$$J = \frac{1}{2} \int_0^T v^T Rv + x^T Qx + 2x^T Nv dt$$

solution : On a clairement $A=-\frac{1}{cr},\ B=\frac{1}{r}.$ Par ailleurs, comme $i=\dot{q}=\dot{x}=-\frac{1}{rc}x+\frac{1}{r}v,$ on voit que le critère s'écrit :

$$J = \int_0^T (\mu + \frac{1}{rc^2})x^2 + \frac{1}{r}v^2 - 2\frac{1}{rc}xvdt$$

d'où
$$Q=2\mu+\frac{2}{rc^2},\,N=-\frac{2}{rc}$$
 et $R=\frac{2}{r}.$

4. En utilisant le théorème de Pontriaguine, et en supposant que le vecteur adjoint s'écrit :

$$p(t) = S(t)x(t)$$

montrer que la commande optimale est de la forme "retour d'état" :

$$\hat{v} = -K(t)x(t)$$

solution : L'Hamiltonien est $H(x, p, v) = \frac{1}{2}(v^TRv + x^TQx + 2x^TNv) + p^T(Ax + Bv)$ Si p(t) = S(t)x(t), la condition de minimum donne :

$$Rv + N^T x + B^T S x = 0$$

d'où

$$v = -R^{-1}(N^T + B^T S)x$$

Ce qui donne bien un feedback v = -Kx.

5. En dérivant S(t)p(t), montrer que S(t) vérifie une équation différentielle de Riccati

$$-\dot{S} = SA + A^{T}S - (SB + N)R^{-1}(B^{T}S + N^{T}) + Q$$

et préciser la condition finale S(T).

solution: Si p = Sx, alors

$$\dot{S}x + S\dot{x} = \dot{p} = -A^T p - Qx - Nv$$

Soit encore:

$$\dot{S}x + S(A + Bv) = -A^T p - Qx - Nv$$

Puis en remplaçant v par $-R^{-1}(N+B^TS)x$ et p par Sx, on parvient à

$$(SA + A^{T}S - (SB + N)R^{-1}(B^{T}S + N^{T}) + Q)x = -\dot{S}x$$

Comme la relation est vrai quel que soit x, on a :

$$SA + A^{T}S - (SB + N)R^{-1}(B^{T}S + N^{T}) + Q = -\dot{S}$$

Comme x(T) est libre, p(T) = 0 soit S(T) = 0.

6. Par passage à la limite lorsque $T \to +\infty$, on admettra que $\dot{S} = 0$. Résoudre alors le problème posé sur horizon infini et en déduire l'expression de la commande $u = u_{ref} + v$ en fonction de q et q_{ref} . Que produit la commande optimale si $\mu = 0$?

solution :Ici,

$$-2s\frac{1}{rc} - \frac{r}{2}(\frac{s}{r} - \frac{2}{rc})^2 + 2\mu + \frac{2}{rc^2} = 0$$

dont la résolution conduit à $s=2\sqrt{\mu r}$. La commande est alors

$$u = u_{ref} - (\sqrt{\mu r} - \frac{1}{c})(q - q_{ref})$$

Lorsque $\mu=0,\,\dot{x}=0$ ou encore i=0 et le système n'évolue pas! On comprend alors la nécessité de ce coefficient μ pour parvenir à la référence.