- 1. A certain arylesterase (EC 3.1.1.29) catalyzes the hydrolysis of phenyl acetate (S) into phenol (P) and acetic acid (A). Phenol is a (total) competitive inhibitor but also exerts (total) uncompetitive inhibition. Determine the kinetic expression for the initial rate of phenylacetate hydrolysis. (5)
- 2. Mushroom tyrosinase is immobilised in 2-mm spherical beads for conversion of tyrosine to DOPA in a continuous, well-mixed bubble column. The Michaelis constant for the immobilised enzyme is 2 gmol m⁻³. A solution containing 15 gmol m⁻³ tyrosine is fed into the reactor; because of the high cost of the substrate, the desired conversion is 99%. The reactor is loaded with beads at a density of 0.25 m³m⁻³; all enzyme is retained within the reactor. The intrinsic V_{max} for the immobilized enzyme is 1.5 x 10⁻² gmol s⁻¹ per m³ beads. The effective diffusivity of tyrosine in the beads is 7 x 10⁻¹⁰ m ² s⁻¹; external mass-transfer effects are negligible. Immobilisation stabilises the enzyme so that deactivation is minimal over the operating period. Determine the reactor (7.5)volume needed to treat 18 m³ tyrosine solution per day.
- 3. Protein A is 500 kDa intracellular protein with negatively charged N-terminus. Explain how this (2.5)protein can be purified using flow chart diagram.
- 4. The trisaccharide raffinose (a-D-galactosylsucrose) is a contaminant in sugar beet juice that retards sucrose crystallization. Raffinose (R) is hydrolyzed by soluble α -galactosidase (α -D-galactoside galactohydrolase, EC 3.2.1.22) from Aspergillus niger into sucrose and galactose. Its kinetic parameters are:

V_{max}= 2500 μmol_{hydrolyzed} raffinose ·g⁻¹enzyme protein min⁻¹

 $K_M = 70 \text{ mM}$

A batch reactor is loaded with 10 g/L of enzyme preparation with 14% protein and 300 g/L of raffinose (Mol. Wt: 504.42 g/mol). Calculate time required for 90% substrate (5)conversion.

BBL433, Enzyme Science Engineering Minor II

60 minutes

27th March 2018 20 marks

1. A BSTR of 600 L working volume is used for the removal of lactose from spent cheese whey (40 g/L) with fungal β -galactosidase at 50 °C and pH 4.5. The enzyme is strongly competitively inhibited by the product, galactose; its kinetic parameters under such conditions are K_M 90mM and K_i 9 mM. The operation is designed to remove 80% of the lactose after 5 hours of reaction.

(a) Determine the amount of enzyme required in katals (1 katal is the amount of enzyme that hydrolyzes 1 mole of lactose per second under these conditions).

- (b) A mutant β -galactosidase has been developed through directed evolution, in which KM is reduced to one-third and KI is increased three times. What amount of this mutant enzyme will be required to perform the same task? (7.5)
- 2. A system is being developed to remove urea from the blood of patients with renal failure. A prototype fixed-bed reactor is set up with urease immobilised in 2-mm gel beads; buffered urea solution is recycled rapidly through the bed so that the system is well mixed. The urease reaction is:

$$(NH_2)_2CO + 3H_2O \rightarrow 2NH_4^+ + HCO_3^- + OH^-$$

K_m for the immobilised urease is 0.54 g/L. The volume of beads in the reactor is 250 cm³, the total amount of urease is 10⁴g, and the turnover number is 11 000 g NH4⁺ per g enzyme per second. The effective diffusivity of urease in the gel is 7 x 10⁻⁶ cm ²S⁻¹; external mass-transfer effects are negligible. The reactor is operated continuously with a liquid volume of 1 litre. The feed stream contains 0.42 g/L urea; the desired urea concentration is 0.02 g/L. Ignoring enzyme deactivation, what volume of urea solution can be treated in 30 min? (7.5)

3. Write short notes on

 (2.5×2)

- a. Enzyme formulation
- b. Any one of carrier less immobilization method