Gravitational Wave Event Rate Constraints On GRB Jet Angles

James A. Clark¹, Ik Siong Heng² & Martin Hendry²

- 1. Georgia Institude of Technology
- 2. University of Glasgow

Outline

- 1. Most short gamma-ray bursts (GRBs) are probably associated with compact binary coalescence.
- 2. The observed rate of GRBs in the local Universe is a function of the opening angle of the beamed jet emmitted by GRBs, and the rate of compact binary coalescence; searches for gravitational waves (GWs) yield direct constraints on the binary coalescence rate.
- 3. It has previously been shown (e.g., [1, 2]) how coalescence rate limits may be used to constrain the jet opening angle.
- 4. We demonstrate a how to transform the posterior measurement of the binary coalescence rate measured from GW observations to a direct measurement of the GRB beaming angle, while accounting for the uncertainty in the rate measurement and our ignorance in the details of the GRB progenitor model.

GRB Beaming Angles From Coalescence Rate Measurements

Assuming at least some fraction of sGRBs are due to compact binary coalescence, the observed rate of sGRBs may be written,

$$\mathcal{R}_{\text{grb}} = \epsilon \mathcal{R} (1 - \cos \theta), \tag{1}$$

- θ is the *mean* GRB jet opening angle, given a population of angles.
- ullet R is the rate of GRB progenitor events (binary neutron star coalescence).
- ϵ is the (unknown) probability that any given coalescence will successfully generate a GRB, a.k.a 'efficiency'.

OBJECTIVE: infer the value of and uncertainty in the jet angle θ , given GW constraints on the binary coalescence rate \mathcal{R} and a clearly stated level of ignorance on the GRB efficiency ϵ .

For the purposes of this study, we assume that the sGRB rate \mathcal{R}_{grb} in the local Universe is known to arbitrary accuracy and adopt a fiducial value of $\mathcal{R}_{grb} = 3 \times 10^{-9} \, \text{Mpc}^{-3} \text{yr}^{-1}$

Robustness of Mean Angle Inference To Distribution Width

How robust is our inference on the *mean* GRB beaming angle to the *width* of the distribution of angles?

We conduct a simple Monte-Carlo experiment: simulate a population of binary inclinations and count how many of these events would be observed, given a certain jet angle distribution.

Figure 1: Expected relative numbers of observed GRBs and binary coalescences for different distributions on the GRB beaming angle. Lines in the figure correspond to jet angle population means, while the x-axis shows the width of the distribution. All distributions are Gaussian, truncated at (0, 90] degrees.

Figure 1 shows the fraction of mergers observed as GRBs is quite insensitive to the distribution width - the ratio only changes by a few %, for a given distribution mean.

Notice that the ratio is degenerate across a range of distribution means (e.g., the result for $p(\theta) = N(5, 10)$ is approximately the same as the result for $p(\theta) = N(10, 5)$).

Key finding: event rate-based inferences on θ are really *upper bounds* on the *mean* of the GRB jet angle population.

Posterior Inferences On The Jet Angle

To build the jet angle posterior:

1. Construct the joint-PDF on the jet angle θ and efficiency ϵ from the joint-PDF on the rate and the efficiency,

$$p(\theta, \epsilon) = p(\mathcal{R}, \epsilon) \left| \left| \frac{\partial(\mathcal{R}, \epsilon)}{\partial(\theta, \epsilon)} \right| \right|, \tag{2}$$

where the second term is the Jacobian determinant for the transformation and we assume: $p(\mathcal{R},\epsilon)=p(\epsilon|\mathcal{R})p(\mathcal{R})=p(\epsilon)p(\mathcal{R})$

2. Get the 1-D jet angle posterior by marginalising the joint posterior $p(\theta, \epsilon)$ over the unknown efficiency:

$$p(\theta) = \int_{\epsilon} p(\theta, \epsilon) \, d\epsilon = \int_{\epsilon} d\epsilon p(\mathcal{R})(\epsilon) \left\| \frac{\partial(\mathcal{R}, \epsilon)}{\partial(\theta, \epsilon)} \right\|, \tag{3}$$

Priors On GRB 'Efficiency' ϵ

- $p(\epsilon|I) = \delta(\epsilon \epsilon_0)$: Efficiency known to be ϵ_0
- $p(\epsilon|I) = U(0,1]$: Unknown efficiency, uniform prior.
- $p(\epsilon|I) = \beta(0,1]$: Unknown efficiency, Jeffrey's prior for Bernoulli trial (success=GRB!)

Rate Posteriors

We consider two forms for the rate posterior in this study:

GW Null-detection / initial detector era results

The final binary neutron star coalescence rate posterior from observing runs in the initial-detector era: the S6/VSR2,3 loudest event rate posterior, constructed via the formalism of [3], and using the results from [4].

Multiple GW detections / advanced detector era results

We consider two scenarios based on those described in [5]: a 2016 observing run and a 2022 observing run. The rate posteriors are constructed via a Bayesian analysis of a Poission signal rate in the presence of known background, described in [6].

The results presented here are concerned with the hypothesis that BNS are GRB progenitors; the result is quite general and trivially extended to rate posteriors for other sources.

Constraints From The Initial Detector Era

Figure 2: *Left*: The binary neutron star merger rate posterior constructed from the 90% rate upper limit (dashed line) reported in [4] and the formalism described in [3]. *Right*: the jet angle posteriors obatined from equation 3. Different lines for the jet posterior correspond to the different priors on the GRB efficiency.

Constraints In The Advanced Detector Era

Figure 3: Rate posterior PDFs expected following the 2016 and 2022 observing scenarios described in [5], assuming the 'realistic' rate of BNS coalescence from [5] (solid vertical line) and using the Bayesian Poisson rate determination described in [6].

Validation: Posteriors For 'Known' Jet Angle

Figure 4: Simulated jet angle posterior PDFs generated by setting $\theta = 30^{\circ}$ and computing the corresponding \mathcal{R}_{grb} using $\epsilon = 1.0$ and $\mathcal{R} \sim 10^{-6} \, \mathrm{Mpc^{-3} \, yr^{-1}}$.

Predictions: Jet Angle Posteriors In ADE Observing Scenarios

Figure 5: Results Expected in ADE, given [5].

Conclusions

- General framework described for astrophysical inferences (θ measurement) from GW observations
- Interpretation of GRB beaming angles in terms of GW rates contingent on prior knowledge of progenitor physics (ϵ)
- Conversely, independent measurements of jet angle could be used to infer mean probability (ϵ) that BNS \rightarrow GRBs

References

- [1] H.-Y. Chen and D. E. Holz. Gamma-Ray-Burst Beaming and Gravitational-Wave Observations. *Physical Review Letters*, 111(18):181101, November 2013.
- [2] J. Clark, H. Evans, S. Fairhurst, I. W. Harry, E. Macdonald, D. Macleod, P. J. Sutton, and A. R. Williamson. Prospects for joint gravitational wave and short gamma-ray burst observations. *ArXiv e-prints*, September 2014.
- [3] P. R. Brady and S. Fairhurst. Interpreting the results of searches for gravitational waves from coalescing binaries. *Classical and Quantum Gravity*, 25(10):105002, May 2008.
- [4] LIGO Scientific Collaboration and Virgo Collaboration. Search for gravitational waves from low mass compact binary coalescence in ligo's sixth science run and virgo's science runs 2 and 3. *Phys. Rev. D*, 85:082002, Apr 2012.
- [5] LIGO Scientific Collaboration and Virgo Collaboration. Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories. *ArXiv e-prints*, April 2013.
- [6] Phil C. Gregory. *Bayesian Logical Data Analysis for the Physical Sciences*. Cambridge, Cambridge, 2005 (ISBN: 0-521-84150-X).