Similarity Based on Resample Exposure

Anton D. Lautrup, Hafiz Saud Arshad, Tobias Hyrup, Muhammad Rajabinasab, Arthur Zimek, and Peter Schneider-Kamp University of Southern Denmark, Odense, Denmark

Problem: Existing measures of proximity in heterogeneous data discards most data insights beyond mere matching and therefore causes unstable results due to no granularity.

Goal: Develop a data-driven metric that accounts for frequency of categorical levels and employ distribution shape of the numerical variables.

Solution: Resample exposure (REX) similarity

$$\operatorname{REX}(q,t) = \begin{cases} 0 & \text{if } q_k, \text{or } t_k \text{ is missing} \\ 1 & \text{if } q_k = t_k \\ \operatorname{Pr}(t_k) & \text{if } k \text{th variable is nominal} \\ \left(1 - \frac{|q_k - t_k|}{\operatorname{rng}_k}\right) \left(1 - \frac{b(q_k t_k)}{\operatorname{trav}_k}\right) & \text{if } k \text{th variable is quantitative} \end{cases}$$

	Bin	ary			Categorical			
	q	t	GOW	REX	q	t	GOW	REX
Α	Т	Т	1	1	r	r	1	1
В	Т	Т	1	1	g	r	0	0.7
С	F	F	1	1	b	r	0	0.7
D	F	Т	0	0.8	r	g	0	0.2
Е	Т	F	0	0.2	b	g	0	0.2
F	Т	F	0	0.2	r	b	0	0.1

			Categ	Guicai			Binary	Categorical	
	GOW	REX	q	t	GOW	REX	T 0.8	r 0.7	
	1	1	r	r	1	1	F 0.2	g 0.2 b 0.1	
	1	1	g	r	0	0.7			
	1	1	b	r	0	0.7	Uniform	Multimodal	
	0	0.8	r	g	0	0.2	Onliforni		
	0	0.2	b	g	0	0.2	i I îøøøø I		
	0	0.2	r	b	0	0.1	1.0 2.0 3.0 4.0	10 20 30 40	
_									

	Unit	form			Multi	Multimodal		
	q	t	GOW	REX	q	t	GOW	REX
Α	1.0	1.0	1	1	1.0	1.0	1	1
В	2.0	1.0	0.66	0.66	1.0	2.0	0.66	0.66
С	1.0	2.0	0.66	0.66	2.0	1.0	0.66	0.5
D	1.0	3.0	0.33	0.33	1.0	3.0	0.33	0.22
Е	2.0	4.0	0.33	0.33	2.0	4.0	0.33	0.22
F	1.0	4.0	0.0	0.0	4.0	1.0	0.0	0.0

		Overal	l Score
		GOW	REX
	Α	4	4
	В	2.33	3.03
	O	2.33	2.86
	О	0.66	1.55
	Ш	0.66	0.95
	F	0.0	0.3

