0.1 IE 517 - Homework #1: Solving the TSP using Construction Heuristics and 2-Opt Improvement Heuristic

Instructor: Prof. Necati Aras

Students: Gönül Aycı - 2016800003, Çağla Yaman - 2017800018

Construction heuristics

```
Problem type: Shortest path problem cities: c_i = (s_i, x_i, y_i) i=0,1,2,...,n n = number of cities s = indis of a city <math>s=[1,n] x,y = place of a city in 2D coordinates <math>p = final path (n+1 cities)
```

objective function = $\min \sum_{i=0}^{n} d_{i(i+1)} d$ = distance between cities i and j

decision variables : $p_i = c_j$ if city c_j is the i^{th} element in the path p

constraints : $p_i \neq p_j$ where i=0 and j=n+1 (Every city should be visited only once except for the first city is also the last city in the tour)

Cities are represented as a class.

```
class CustomerLocation:
    #number of the city on the file
    indis = 0
    #coordianates of the cities
    x = 0
    y = 0

def __init__(self, indis=None, x=None,
y=None):
    self.indis = indis
    self.x = x
    self.y = y
```

Distances between cities are calculated at initialization and kept in the distance matrix.

```
def calculateDistance(path):
    totalDistance = 0
    for i in range(len(path) -1):
        #use euclidean distance as the distance measure
        totalDistance += euclideanDistance(path[i], path[i + 1])
    return totalDistance
```

Improvement heuristics

Solution representation: Permutation representation ($s_0, s_1, \ldots, s_n, s_{n+1}$)

Neighborhood structure: 2-opt neighborhood structure

One-sided insertion

Solve each instance using the one-sided nearest neighbor heuristic starting at cities 10, 20, and 30.

```
# Creates route according to one-sided NN
# a: list of cities, index: first city
def oneSidedNN(index, a, distanceMatrix):
    #the final route that will be created
    path = []
    # start with a node which is given from instructor
    # current is always the last added city to the path
    current = a[index - 1]
    path.append(current)
    #while all cities are not visited
    while len(path) < len(a):</pre>
        # the minimum distance found so far
        candidateDistance = float('inf')
        # city wiht the min distance from the end of the path
        candidateNode = CustomerLocation()
        # loop all the cities and find the closest one to last added city
        for can in a:
            if can not in path:
                 distance = distanceMatrix[current.indis - 1][can.indis - 1]
                 if distance < candidateDistance:</pre>
                     candidateDistance = distance
                     candidateNode = can
        # add the closest city to the path
        path.append(candidateNode)
        current = candidateNode
    # return to the first city
    path.append(path[0])
     # calculate the total lenght of the path
    totalLength = round(calculateDistance(path), 2)
    return totalLength, path
```

2. Two-sided insertion

Solve each instance using the two-sided nearest neighbor heuristic starting at cities 10, 20, and 30.

```
# Creates route according to two-sided NN
# a: list of cities, index: first city

def twoSidedNN(index, a, distanceMatrix):
    # initialize final route
    path = []
# set the beginning of the route
    first_node = a[index - 1]
    path.append(first_node)
# at the initial step first and last node is the same
    last_node = first_node

# while every city is not visited
while len(path) < len(a):
    #initialize candidate distance
    candidateDistance = float('inf')
    # candidate node is the closest node to beginning or the end of the route
    candidateNode = CustomerLocation()
# distance from the first and last node are kept separately</pre>
```

```
dist_begin = candidateDistance
    dist_end = candidateDistance
    # for every city not already in the path find the closest one
    for can in a:
        if can not in path:
            #distance from first node
            first_distance = distanceMatrix[first_node.indis - 1][can.indis - 1]
            #distance from last node
            last_distance = distanceMatrix[last_node.indis - 1][can.indis - 1]
            \# set the smallest distance to the end
            if last distance < candidateDistance:</pre>
                candidateDistance = last_distance
                candidateNode = can
                dist_end = last_distance
            # set the smallest distance to the beginning
            if first_distance < candidateDistance and first_distance<last_distance:</pre>
                candidateDistance = first_distance
                candidateNode = can
                dist_begin = first_distance
    # the priority to add is to the end of the route in case the distances are equal
    if (dist_begin < dist_end):</pre>
        # if the node is to be added to the beginning of the route
        # reverse the route
        path.reverse()
    # add the new node to the end
    path.append(candidateNode)
    #set the first and last node
    first_node = path[0]
    last_node = path[path._
                            _len_
totalLength = round(calculateDistance(path), 2)
return totalLength, path
```

3. Nearest insertion

Solve each instance using the nearest insertion heuristic starting at cities 10, 20, and 30.

```
# Creates route according to nearest insertion
# a: list of cities, index: first city
def nearestInsertion(index, a, distanceMatrix):
    # initialize the final path
   path = []
    # start the tour from the given city
   current = a[index - 1]
   path.append(current)
   #keep a list of unvisited cities
   q = copy.copy(a)
   q.remove(current)
    candidateDistance = float("inf")
    candidateNode = CustomerLocation()
    # from unvisited cities, find the closest one to the initial city and add it to the path
   for candidate in q:
        if candidate not in path:
            distance = distanceMatrix[current.indis - 1][candidate.indis - 1]
            if distance < candidateDistance:</pre>
                candidateDistance = distance
                candidateNode = candidate
   path.append(candidateNode)
    #remove the visited cities
   q.remove(candidateNode)
    # create the edges list of th einitial tour
   edges = [(current, candidateNode), (candidateNode, current)]
    # while there is still unvisited cities, do the insertion process
   while len(q) > 0:
        # select a possible candidate to insert
        k = q[0]
        # initialize the distance
        crj = distanceMatrix[path[0].indis - 1][k.indis - 1]
        # find the node to be added to the path among unvisited cities
        for candidate in q:
            if candidate not in path:
                # check the distance of the candidate city to each of the visited cities
```

```
for c in path:
                       distance = distanceMatrix[candidate.indis - 1][c.indis - 1]
                       if distance < crj:</pre>
                           # k is the nearest city
                           k = candidate
         # we will add k to path. Find place
         cost = float('inf')
         # the edge that will be eliminated
         edge_to_part = edges[0]
         # for each edge, calculate the cost added when the pat is inserted in this edge
         for edge in edges:
             # cost added is
             # total of distances of the candidate node to the begin and end of the edge is added to
the cost
             # length of the edge is reduced from the cost
distance = distanceMatrix[edge[0].indis - 1][k.indis - 1] + distanceMatrix[k.indis - 1][
             edge[1].indis - 1] - distanceMatrix[edge[0].indis - 1][edge[1].indis - 1] # k will be added instead of the removed edge
             if distance < cost:</pre>
                  cost = distance
                  edge_to_part = edge
         # remove the edge
         edges.remove(edge_to_part)
         # add the edge between i and k (i is the beginning of the removed edge)
         edges.append((edge_to_part[0], k))
# add the edge between j and k (j
                                                is the end of the removed edge)
         edges.append((k, edge_to_part[1]))
         # the location in the path k will be added
         inst_loc = path.index(edge_to_part[1])
# insert k to the path
         path.insert(inst_loc, k)
         # remove k from the unvisited city list
         q.remove(k)
    # go back to first city
    path.append(path[0])
    totalLength = calculateDistance(path)
    return totalLength, path
```

4. farthest insertion

Solve each instance using the farthest insertion heuristic starting at cities 10, 20, and 30.

```
# Creates route according to nearest insertion
# a: list of cities, index: first city
def farthestInsertion(index, a, distanceMatrix):
    # initialization part is the same with the nearest insertion
    path = []
    current = a[index - 1]
    path.append(current)
    q = copy.copy(a)
    q.remove(current)
    candidateDistance = float("-inf")
    candidateNode = CustomerLocation()
    # find the farthest node to the start node and add it to the path
    for candidate in q:
        if candidate not in path:
            distance = distanceMatrix[current.indis - 1][candidate.indis - 1]
            if (distance - candidateDistance) > 0.01:
                 candidateDistance = distance
                 candidateNode = candidate
    path.append(candidateNode)
    q.remove(candidateNode)
    # add the edges of the initial route
    edges = [(current, candidateNode), (candidateNode, current)]
    while len(q) > 0:
        k = q[0]
        crj = distanceMatrix[path[0].indis - 1][k.indis - 1]
        # find the fartest node to be added to the path
        for candidate in q:
```

```
if candidate not in path:
             for c in path:
                 distance = distanceMatrix[candidate.indis - 1][c.indis - 1]
                 if (distance - crj) > 0.01:
                      k = candidate
    # we will add k to path. Find the place
cost = float('inf')
    edge_to_part = edges[0]
    # for each edge, calculate the cost added when the pat is inserted in this edge
    for edge in edges:
        distance = distanceMatrix[edge[0].indis - 1][k.indis - 1] + distanceMatrix[k.indis - 1][
             edge[1].indis - 1] - distanceMatrix[edge[0].indis - 1][edge[1].indis - 1]
         # k with the smallest cost will be added instead of the removed edge
         if (distance - cost) < 0.01:</pre>
             cost = distance
             edge_to_part = edge
    # remove the edge
    edges.remove(edge_to_part)
    # add the edge between i and k (i is the beginning of the removed edge)
    edges.append((edge_to_part[0], k))
# add the edge between j and k (j
                                          is the end of the removed edge)
    edges.append((k, edge_to_part[1]))
    # the location in the path k will be added
    inst_loc = path.index(edge_to_part[1])
# insert k to the path
    path.insert(inst_loc, k)
    # remove k from the unvisited city list
    q.remove(k)
totalLength = round(calculateDistance(path), 2)
return totalLength, path
```

5. 2-opt improvement

For each tour obtained so far, apply the 2-opt improvement heuristic.

```
def twoOptSolution(existingPath):
    improvement = True
    existingDistance = calculateDistance(existingPath)
    # while there is improvement execute 2-opt edge swap
    while improvement:
         improvement = False
         candidate_path = existingPath
          # keep start and end node unchanged.
         for i in range(1, len(existingPath) - 2):
             for k in range(i + 1, len(existingPath)-1):
    # swap two edges and create new path
                  newPath = twoOptSwap(existingPath, i, k)
                  # calculate the distance of the new path
                  newDistance = calculateDistance(newPath)
                  # find the shortest path
if existingDistance - newDistance > 0.01:
                       existingDistance = newDistance
                       candidate_path = newPath
                       improvement = True
         # set the new shortest path as the solution and keep improving
existingPath = candidate_path
    return existingDistance, existingPath
```

Experiments

```
Experiments are run by executing test_tsp.py
```

```
---test with 51 nodes---
one sided insertion-----10-----
```

initial

558.84

[10, 49, 9, 50, 16, 2, 29, 21, 34, 30, 39, 33, 45, 15, 44, 37, 17, 4, 18, 47, 12, 46, 51, 27, 1, 32, 11, 38, 5, 6, 48, 8, 26, 31, 28, 3, 20, 35, 36, 22, 7, 23, 24, 14, 25, 13, 41, 19, 42, 40, 43, 10]

2-opt improvement

436.85

[10, 30, 34, 21, 29, 2, 16, 50, 9, 49, 38, 5, 37, 17, 4, 18, 47, 12, 46, 51, 27, 11, 32, 1, 22, 20, 35, 36, 3, 28, 31, 26, 8, 48, 6, 23, 7, 43, 24, 14, 25, 13, 41, 40, 19, 42, 44, 15, 45, 33, 39, 10]

two sided insertion-----10-----

initial

558.47

[30, 34, 21, 29, 2, 16, 50, 9, 49, 10, 39, 33, 45, 15, 44, 37, 17, 4, 18, 47, 12, 46, 51, 27, 1, 32, 11, 38, 5, 6, 48, 8, 26, 31, 28, 3, 20, 35, 36, 22, 7, 23, 24, 14, 25, 13, 41, 19, 42, 40, 43, 30]

2-opt improvement

440.52

[30, 34, 21, 29, 2, 22, 20, 35, 36, 3, 28, 31, 26, 8, 48, 6, 23, 7, 43, 24, 14, 25, 13, 41, 40, 19, 42, 44, 37, 17, 4, 18, 47, 12, 46, 51, 27, 1, 32, 11, 38, 5, 15, 45, 33, 39, 10, 49, 9, 16, 50, 30]

nearest insertion-----10-----

initial

455.39

[10, 39, 30, 34, 50, 9, 38, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 45, 33, 15, 37, 5, 49, 10]

2-opt improvement

455.39

[10, 39, 30, 34, 50, 9, 38, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 45, 33, 15, 37, 5, 49, 10]

farthest insertion-----10-----

initial

455.39

[24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 45, 33, 15, 37, 5, 49, 10, 39, 30, 34, 50, 9, 38, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24]

2-opt improvement

455.39

[24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 45, 33, 15, 37, 5, 49, 10, 39, 30, 34, 50, 9, 38, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24]

---test with 51 nodes---

one sided insertion----20----

initial

567.29

[20, 35, 36, 3, 28, 31, 8, 26, 7, 23, 48, 27, 51, 46, 12, 47, 4, 17, 37, 15, 44, 42, 19, 41, 13, 25, 14, 6, 24, 43, 18, 5, 38, 11, 32, 1, 22, 2, 16, 50, 9, 49, 10, 30, 34, 21, 29, 39, 33, 45, 40, 20]

2-opt improvement

436.73

[20, 35, 36, 3, 28, 31, 8, 26, 7, 23, 43, 24, 14, 25, 13, 41, 40, 19, 42, 4, 18, 6, 48, 27, 51, 46, 12, 47, 17, 37, 44, 15, 45, 33, 39, 10, 49, 5, 38, 11, 32, 1, 22, 2, 16, 50, 9, 30, 34, 21, 29, 20]

two sided insertion-----20-----

initial

545.56

[39, 33, 45, 5, 38, 22, 1, 32, 11, 2, 16, 34, 30, 10, 49, 9, 50, 21, 29, 36, 35, 20, 3, 28, 31, 8, 26, 7, 23, 48, 27, 51, 46, 12, 47, 4, 17, 37, 15, 44, 42, 19, 41, 13, 25, 14, 6, 24, 43, 18, 40, 39]

2-opt improvement

437.97

[39, 33, 45, 15, 44, 37, 17, 47, 12, 46, 51, 27, 48, 6, 18, 4, 42, 19, 40, 41, 13, 25, 14, 24, 43, 23, 7, 26, 8, 31, 28, 3, 36, 35, 20, 29, 21, 16, 2, 22, 1, 32, 11, 38, 5, 49, 9, 50, 34, 30, 10, 39]

nearest insertion-----20-----

initial

460.63

[29, 21, 34, 50, 16, 2, 11, 5, 38, 9, 49, 10, 30, 39, 33, 45, 15, 37, 17, 44, 42, 19, 40, 41, 13, 25, 24, 43, 7, 23, 6, 14, 18, 4, 47, 12, 46, 51, 27, 48, 32, 1, 22, 8, 26, 31, 28, 3, 20, 36, 35, 29]

2-opt improvement

444.79

[29, 21, 34, 50, 16, 2, 11, 5, 38, 9, 49, 10, 30, 39, 33, 45, 15, 37, 17, 44, 42, 19, 40, 41, 13, 25, 24, 43, 7, 23, 48, 6, 14, 18, 4, 47, 12, 46, 51, 27, 32, 1, 22, 8, 26, 31, 28, 3, 36, 35, 20, 29]

farthest insertion-----20-----

initial

451.25

[41, 13, 4, 17, 47, 12, 46, 51, 18, 25, 14, 24, 43, 7, 23, 48, 6, 27, 32, 1, 22, 8, 26, 31, 28, 3, 36, 35, 20, 29, 21, 34, 50, 16, 2, 11, 5, 38, 9, 49, 10, 30, 39, 33, 45, 15, 37, 44, 42, 19, 40, 41]

2-opt improvement

451.25

[41, 13, 4, 17, 47, 12, 46, 51, 18, 25, 14, 24, 43, 7, 23, 48, 6, 27, 32, 1, 22, 8, 26, 31, 28, 3, 36, 35, 20, 29, 21, 34, 50, 16, 2, 11, 5, 38, 9, 49, 10, 30, 39, 33, 45, 15, 37, 44, 42, 19, 40, 41]

---test with 51 nodes---

one sided insertion-----30-----

initial

520.0

[30, 34, 50, 9, 49, 10, 39, 33, 45, 15, 44, 37, 17, 4, 18, 47, 12, 46, 51, 27, 1, 32, 11, 38, 5, 16, 2, 29, 21, 20, 35, 36, 3, 28, 31, 8, 26, 7, 23, 48, 6, 14, 25, 13, 41, 19, 42, 40, 24, 43, 22, 30]

2-opt improvement

444.12

[30, 34, 50, 21, 29, 20, 35, 36, 3, 28, 31, 8, 26, 7, 23, 43, 24, 6, 48, 27, 1, 22, 2, 16, 38, 5, 11, 32, 51, 46, 12, 47, 18, 14, 25, 13, 41, 40, 19, 42, 4, 17, 37, 44, 15, 45, 33, 39, 10, 49, 9, 30]

two sided insertion-----30-----

initial

520.63

[40, 42, 19, 41, 13, 25, 14, 6, 48, 23, 7, 26, 8, 31, 28, 3, 36, 35, 20, 21, 29, 2, 16, 30, 34, 50, 9, 49, 10, 39, 33, 45, 15, 44, 37, 17, 4, 18, 47, 12, 46, 51, 27, 1, 32, 11, 38, 5, 22, 24, 43, 40]

2-opt improvement

444.21

[40, 41, 13, 25, 14, 18, 47, 12, 46, 51, 27, 48, 6, 24, 43, 23, 7, 26, 8, 31, 28, 3, 36, 35, 20, 29, 21, 2, 22, 1, 32, 11, 5, 38, 16, 50, 34, 30, 9, 49, 10, 39, 33, 45, 15, 44, 37, 17, 4, 42, 19, 40]

nearest insertion-----30-----

initial

451.34

[30, 49, 10, 39, 33, 45, 15, 37, 44, 42, 19, 40, 41, 13, 4, 17, 47, 12, 46, 51, 18, 25, 14, 24, 43, 7, 23, 48, 6, 27, 32, 1, 22, 8, 26, 31, 28, 3, 36, 35, 20, 29, 21, 16, 2, 11, 5, 38, 9, 50, 34, 30]

2-opt improvement

451.34

[30, 49, 10, 39, 33, 45, 15, 37, 44, 42, 19, 40, 41, 13, 4, 17, 47, 12, 46, 51, 18, 25, 14, 24, 43, 7, 23, 48, 6, 27, 32, 1, 22, 8, 26, 31, 28, 3, 36, 35, 20, 29, 21, 16, 2, 11, 5, 38, 9, 50, 34, 30]

farthest insertion-----30-----

initial

451.34

[24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 37, 15, 45, 33, 39, 10, 49, 30, 34, 50, 9, 38, 5, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24]

2-opt improvement

451.34

[24, 14, 25, 18, 51, 46, 12, 47, 17, 4, 13, 41, 40, 19, 42, 44, 37, 15, 45, 33, 39, 10, 49, 30, 34, 50, 9, 38, 5, 11, 2, 16, 21, 29, 20, 35, 36, 3, 28, 31, 26, 8, 22, 1, 32, 27, 6, 48, 23, 7, 43, 24]

---test with 76 nodes---

one sided insertion-----10-----

initial

640.48

[10, 58, 72, 39, 9, 32, 44, 3, 16, 63, 33, 73, 62, 28, 74, 30, 2, 68, 75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 27, 52, 45, 29, 48, 47, 21, 36, 71, 60, 70, 20, 37, 5, 15, 57, 4, 26, 12, 40, 17, 51, 6, 1, 43, 41, 42, 64, 22, 61, 69, 23, 56, 49, 24, 18, 50, 25, 55, 31, 38, 65, 11, 66, 59, 10]

2-opt improvement

571.23

[10, 58, 72, 39, 9, 32, 44, 3, 16, 63, 33, 73, 62, 2, 30, 74, 28, 21, 47, 48, 29, 45, 27, 52, 4, 76, 75, 68, 6, 51, 17, 40, 12, 26, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 57, 15, 5, 37, 20, 70, 60, 71, 36, 69, 61, 22, 64, 42, 41, 43, 1, 56, 23, 49, 24, 18, 50, 25, 55, 31, 66, 59, 11, 65, 38, 10]

two sided insertion-----10-----

initial

699.02

[69, 61, 22, 64, 42, 41, 43, 1, 6, 51, 17, 40, 12, 26, 4, 57, 15, 5, 37, 20, 70, 60, 71, 36, 21, 47, 48, 29, 45, 52, 27, 13, 54, 19, 14, 53, 7, 35, 8, 46, 34, 67, 76, 75, 68, 2, 30, 74, 28, 62, 73, 33, 63, 16, 3, 44, 32, 9, 39, 72, 58, 10, 38, 65, 11, 66, 59, 31, 25, 50, 18, 24, 49, 23, 56, 55, 69]

2-opt improvement

586.75

[69, 61, 22, 64, 42, 41, 43, 1, 56, 23, 49, 24, 18, 50, 25, 55, 31, 66, 59, 11, 65, 38, 10, 58, 72, 39, 9, 32, 44, 3, 40, 12, 26, 17, 6, 51, 16, 63, 33, 73, 62, 28, 74, 30, 2, 68, 4, 75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 52, 27, 45, 29, 48, 21, 47, 36, 37, 5, 15, 57, 20, 70, 60, 71, 69]

nearest insertion-----10-----

initial

591.4

[7, 35, 53, 14, 59, 11, 66, 65, 38, 10, 72, 39, 9, 31, 55, 25, 18, 50, 32, 44, 3, 24, 49, 16, 51, 6, 63, 33, 73, 1, 43, 23, 56, 41, 42, 64, 22, 62, 28, 74, 48, 47, 21, 61, 69, 36, 71, 60, 70, 20, 37, 5, 15, 57, 13, 54, 19, 8, 52, 46, 34, 27, 45, 29, 30, 2, 4, 68, 75, 76, 67, 26, 17, 40, 12, 58, 7]

2-opt improvement

[7, 35, 53, 14, 59, 11, 66, 65, 38, 10, 72, 39, 9, 31, 25, 55, 18, 50, 32, 44, 3, 24, 49, 16, 51, 6, 33, 63, 73, 1, 43, 23, 56, 41, 42, 64, 22, 62, 28, 74, 48, 47, 21, 61, 69, 36, 71, 60, 70, 20, 37, 5, 15, 57, 13, 54, 19, 8, 46, 34, 52, 27, 45, 29, 30, 2, 68, 4, 75, 76, 67, 26, 17, 40, 12, 58, 7]

farthest insertion-----10-----

initial

572.27

[71, 36, 69, 61, 21, 47, 48, 29, 45, 30, 74, 28, 62, 22, 64, 42, 43, 41, 56, 23, 24, 49, 16, 63, 33, 1, 73, 2, 6, 68, 4, 75, 76, 51, 17, 12, 40, 3, 44, 32, 50, 18, 25, 55, 31, 9, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 35, 7, 26, 67, 34, 46, 52, 27, 8, 19, 54, 13, 57, 15, 5, 37, 20, 70, 60, 71]

2-opt improvement

571.17

[71, 36, 69, 61, 21, 47, 48, 29, 45, 30, 74, 28, 62, 22, 64, 42, 43, 41, 56, 23, 24, 49, 16, 63, 33, 1, 73, 2, 6, 68, 4, 75, 76, 51, 17, 12, 40, 3, 44, 32, 50, 18, 55, 25, 31, 9, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 35, 7, 26, 67, 34, 27, 52, 46, 8, 19, 54, 13, 57, 15, 5, 37, 20, 70, 60, 71]

---test with 76 nodes---

one sided insertion----20----

initial

735.93

[20, 70, 60, 71, 36, 47, 21, 74, 28, 62, 73, 33, 63, 16, 51, 6, 68, 75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 27, 52, 45, 29, 48, 5, 37, 15, 57, 4, 30, 2, 1, 43, 41, 42, 64, 22, 61, 69, 26, 12, 40, 17, 3, 44, 32, 9, 39, 72, 58, 10, 38, 65, 11, 66, 59, 31, 25, 50, 18, 24, 49, 23, 56, 55, 20]

2-opt improvement

583.99

[20, 70, 60, 71, 69, 61, 22, 64, 42, 41, 43, 1, 73, 33, 16, 63, 23, 56, 49, 24, 18, 50, 25, 55, 31, 66, 59, 11, 65, 38, 10, 58, 72, 39, 9, 32, 44, 3, 40, 12, 26, 17, 51, 6, 68,

75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 57, 15, 37, 5, 48, 29, 45, 27, 52, 4, 30, 2, 62, 28, 74, 21, 47, 36, 20]

two sided insertion----20-----

initial

699.95

[69, 61, 22, 64, 42, 41, 43, 1, 4, 2, 30, 48, 15, 57, 13, 54, 19, 14, 53, 7, 35, 8, 46, 34, 52, 27, 45, 29, 5, 37, 20, 70, 60, 71, 36, 47, 21, 74, 28, 62, 73, 33, 63, 16, 51, 6, 68, 75, 76, 67, 26, 12, 40, 17, 3, 44, 32, 9, 39, 72, 58, 10, 38, 65, 11, 66, 59, 31, 25, 50, 18, 24, 49, 23, 56, 55, 69]

2-opt improvement

578.95

[69, 61, 22, 64, 42, 41, 43, 1, 56, 23, 49, 24, 18, 50, 25, 55, 31, 66, 59, 11, 65, 38, 10, 58, 72, 39, 9, 32, 44, 3, 17, 40, 12, 26, 67, 76, 75, 68, 6, 51, 16, 63, 33, 73, 62, 28, 74, 2, 4, 30, 48, 29, 45, 27, 52, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 57, 15, 5, 37, 20, 70, 60, 71, 36, 47, 21, 69]

nearest insertion-----20-----

initial

572.27

[20, 37, 5, 15, 57, 13, 54, 19, 8, 27, 52, 46, 34, 67, 26, 7, 35, 53, 14, 59, 11, 66, 65, 38, 10, 58, 72, 39, 9, 31, 55, 25, 18, 50, 32, 44, 3, 40, 12, 17, 51, 76, 75, 4, 68, 6, 2, 73, 1, 33, 63, 16, 49, 24, 23, 56, 41, 43, 42, 64, 22, 62, 28, 74, 30, 45, 29, 48, 47, 21, 61, 69, 36, 71, 60, 70, 20]

2-opt improvement

571.17

[20, 37, 5, 15, 57, 13, 54, 19, 8, 46, 52, 27, 34, 67, 26, 7, 35, 53, 14, 59, 11, 66, 65, 38, 10, 58, 72, 39, 9, 31, 25, 55, 18, 50, 32, 44, 3, 40, 12, 17, 51, 76, 75, 4, 68, 6, 2, 73, 1, 33, 63, 16, 49, 24, 23, 56, 41, 43, 42, 64, 22, 62, 28, 74, 30, 45, 29, 48, 47, 21, 61, 69, 36, 71, 60, 70, 20]

farthest insertion----20-----

initial

582.88

[25, 18, 50, 44, 3, 24, 49, 56, 23, 63, 16, 33, 73, 1, 43, 41, 42, 64, 22, 62, 2, 74, 28, 61, 21, 69, 71, 60, 70, 20, 57, 15, 5, 37, 36, 47, 48, 29, 45, 30, 4, 68, 6, 51, 17, 75, 76, 26, 67, 34, 46, 52, 27, 13, 54, 19, 8, 35, 7, 53, 14, 59, 11, 66, 65, 38, 10, 58, 72, 39, 12, 40, 32, 9, 31, 55, 25]

2-opt improvement

581.97

[25, 31, 9, 32, 40, 12, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 7, 35, 8, 19, 54, 13, 27, 52, 46, 34, 67, 75, 76, 26, 17, 51, 6, 68, 4, 30, 45, 29, 48, 47, 36, 37, 5, 15, 57, 20, 70, 60, 71, 69, 21, 61, 28, 74, 2, 62, 22, 64, 42, 41, 43, 1, 73, 33, 16, 63, 23, 56, 49, 24, 3, 44, 50, 18, 55, 25]

---test with 76 nodes---

one sided insertion-----30-----

initial

730.23

[30, 74, 28, 62, 73, 33, 63, 16, 51, 6, 68, 75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 27, 52, 45, 29, 48, 47, 21, 36, 71, 60, 70, 20, 37, 5, 15, 57, 4, 26, 12, 40, 17, 3, 44, 32, 9, 39, 72, 58, 10, 38, 65, 11, 66, 59, 31, 25, 50, 18, 24, 49, 23, 56, 41, 42, 43, 1, 22, 61, 69, 2, 64, 55, 30]

2-opt improvement

569.96

[30, 74, 28, 21, 47, 48, 29, 45, 27, 52, 4, 76, 75, 68, 6, 51, 17, 40, 12, 26, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 57, 15, 5, 37, 20, 70, 60, 71, 36, 69, 61, 22, 1, 43, 42, 64, 41, 56, 23, 49, 24, 18, 50, 25, 55, 31, 66, 59, 11, 65, 38, 10, 58, 72, 39, 9, 32, 44, 3, 16, 63, 33, 73, 62, 2, 30]

two sided insertion-----30-----

initial

[59, 66, 11, 65, 38, 10, 31, 55, 25, 50, 18, 24, 49, 3, 44, 32, 9, 39, 72, 58, 4, 26, 12, 40, 17, 6, 51, 16, 63, 33, 73, 62, 28, 74, 30, 2, 68, 75, 76, 67, 34, 46, 8, 35, 7, 53, 14, 19, 54, 13, 27, 52, 45, 29, 48, 47, 21, 36, 71, 60, 70, 20, 37, 5, 15, 57, 69, 61, 22, 1, 43, 41, 42, 64, 56, 23, 59]

2-opt improvement

567.08

[59, 11, 66, 65, 38, 10, 31, 55, 25, 50, 18, 24, 49, 23, 56, 41, 64, 42, 43, 1, 22, 61, 69, 71, 60, 70, 20, 57, 15, 5, 37, 36, 47, 21, 48, 29, 45, 27, 52, 13, 54, 19, 35, 8, 46, 34, 4, 75, 76, 67, 26, 12, 40, 17, 51, 6, 68, 2, 30, 74, 28, 62, 73, 33, 63, 16, 3, 44, 32, 9, 39, 72, 58, 7, 53, 14, 59]

nearest insertion-----30-----

initial

576.18

[28, 61, 21, 69, 36, 71, 60, 70, 20, 37, 15, 57, 29, 5, 47, 48, 30, 45, 4, 76, 26, 17, 12, 40, 3, 44, 32, 50, 18, 25, 55, 31, 9, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 7, 35, 8, 19, 54, 13, 27, 52, 46, 34, 67, 75, 68, 6, 51, 33, 73, 1, 63, 16, 49, 24, 23, 56, 41, 43, 42, 64, 22, 62, 2, 74, 28]

2-opt improvement

571.37

[28, 61, 21, 69, 36, 71, 60, 70, 20, 37, 15, 57, 29, 5, 47, 48, 30, 45, 4, 67, 34, 46, 52, 27, 13, 54, 19, 8, 35, 7, 53, 14, 59, 11, 66, 65, 38, 10, 58, 72, 39, 9, 31, 25, 55, 18, 50, 32, 44, 3, 40, 12, 17, 26, 76, 75, 68, 6, 51, 33, 73, 1, 63, 16, 49, 24, 23, 56, 41, 43, 42, 64, 22, 62, 2, 74, 28]

farthest insertion-----30-----

initial

580.24

[31, 9, 32, 40, 12, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 7, 35, 8, 19, 54, 13, 27, 52, 46, 34, 67, 26, 76, 75, 17, 51, 6, 68, 2, 30, 4, 45, 29, 48, 47, 5, 15, 57, 37, 20, 70, 60, 71, 36, 69, 21, 61, 28, 74, 62, 22, 64, 42, 41, 43, 1, 73, 33, 16, 63, 23, 56, 49, 24, 3, 44, 50, 18, 25, 55, 31]

2-opt improvement

579.33

[31, 9, 32, 40, 12, 39, 72, 58, 10, 38, 65, 66, 11, 59, 14, 53, 7, 35, 8, 19, 54, 13, 27, 52, 46, 34, 67, 75, 76, 26, 17, 51, 6, 68, 2, 30, 4, 45, 29, 48, 47, 5, 15, 57, 37, 20, 70, 60, 71, 36, 69, 21, 61, 28, 74, 62, 22, 64, 42, 41, 43, 1, 73, 33, 16, 63, 23, 56, 49, 24, 3, 44, 50, 18, 55, 25, 31]

---test with 101 nodes---

one sided insertion-----10-----

initial

795.98

[10, 62, 88, 31, 70, 30, 20, 51, 9, 81, 33, 79, 3, 77, 76, 50, 1, 69, 27, 101, 53, 58, 40, 21, 73, 72, 74, 22, 75, 56, 39, 23, 67, 25, 55, 54, 80, 68, 12, 26, 28, 89, 6, 94, 95, 97, 92, 59, 99, 96, 93, 85, 91, 100, 37, 98, 61, 16, 44, 14, 42, 87, 2, 57, 15, 43, 38, 86, 17, 84, 5, 60, 83, 18, 52, 7, 82, 48, 47, 36, 49, 19, 11, 63, 90, 32, 66, 71, 35, 34, 78, 29, 24, 4, 41, 13, 8, 45, 46, 64, 65, 10]

2-opt improvement

666.79

[10, 62, 88, 31, 70, 30, 20, 51, 9, 81, 33, 79, 3, 77, 76, 50, 1, 69, 27, 101, 53, 28, 26, 12, 68, 80, 54, 4, 72, 74, 73, 21, 40, 58, 13, 87, 42, 14, 44, 16, 61, 85, 91, 100, 37, 98, 93, 99, 96, 59, 92, 97, 95, 94, 6, 89, 18, 52, 7, 82, 48, 19, 11, 64, 49, 36, 47, 46, 8, 45, 83, 60, 5, 84, 17, 86, 38, 43, 15, 57, 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 24, 29, 78, 34, 35, 71, 65, 66, 32, 90, 63, 10]

two sided insertion-----10-----

initial

816.6

[65, 66, 71, 35, 34, 78, 29, 24, 4, 28, 26, 12, 68, 80, 54, 55, 25, 67, 23, 39, 56, 75, 22, 74, 72, 73, 21, 40, 58, 53, 101, 27, 69, 1, 50, 76, 77, 3, 79, 33, 81, 9, 51, 20, 30, 70, 31, 88, 62, 10, 90, 32, 63, 11, 19, 47, 48, 82, 7, 52, 18, 60, 83, 84, 5, 99, 59, 92, 37, 98, 85, 93, 96, 94, 6, 89, 13, 95, 97, 87, 2, 57, 15, 43, 42, 100, 91, 16, 61, 17, 45, 8, 46, 36, 49, 64, 86, 44, 14, 38, 41, 65]

2-opt improvement

674.17

[65, 66, 32, 90, 10, 62, 88, 31, 70, 30, 20, 51, 9, 81, 33, 79, 3, 77, 76, 50, 1, 69, 27, 89, 6, 94, 96, 99, 5, 84, 83, 60, 18, 52, 7, 82, 48, 47, 19, 11, 63, 64, 49, 36, 46, 8, 45, 17, 61, 16, 86, 38, 44, 14, 43, 42, 100, 91, 85, 98, 37, 93, 59, 92, 97, 95, 13, 87, 2, 57, 15, 41, 22, 75, 56, 23, 67, 39, 25, 55, 4, 72, 74, 73, 21, 40, 58, 53, 101, 28, 26, 12, 68, 80, 54, 24, 29, 78, 34, 35, 71, 65]

nearest insertion-----10-----

initial

710.07

[7, 48, 82, 8, 45, 83, 60, 18, 89, 6, 96, 99, 59, 93, 98, 85, 61, 5, 84, 17, 86, 38, 14, 44, 16, 91, 100, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 39, 67, 25, 55, 54, 4, 56, 74, 72, 73, 21, 26, 40, 58, 13, 95, 94, 53, 101, 28, 50, 76, 12, 80, 68, 77, 3, 24, 29, 79, 78, 34, 81, 33, 51, 9, 71, 35, 65, 66, 20, 32, 30, 70, 1, 69, 27, 52, 88, 31, 10, 90, 63, 64, 49, 36, 47, 46, 19, 11, 62, 7]

2-opt improvement

696.94

[7, 48, 82, 8, 45, 83, 60, 18, 89, 6, 96, 99, 59, 93, 98, 85, 61, 5, 84, 17, 86, 38, 14, 44, 16, 91, 100, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 67, 39, 25, 55, 54, 4, 56, 74, 72, 73, 21, 26, 40, 58, 13, 95, 94, 53, 101, 28, 12, 76, 50, 3, 77, 68, 80, 24, 29, 79, 78, 34, 81, 33, 51, 9, 35, 71, 65, 66, 20, 32, 30, 70, 1, 69, 27, 52, 88, 31, 10, 90, 63, 64, 49, 36, 46, 47, 19, 11, 62, 7]

farthest insertion-----10-----

initial

710.53

[25, 55, 54, 4, 56, 72, 21, 26, 40, 58, 53, 101, 28, 27, 69, 1, 50, 76, 12, 80, 68, 77, 3, 24, 29, 79, 78, 34, 81, 33, 51, 9, 71, 35, 65, 66, 20, 30, 70, 32, 90, 63, 64, 49, 36, 47, 46, 19, 11, 31, 10, 62, 88, 7, 48, 82, 18, 52, 89, 6, 94, 96, 99, 59, 93, 98, 85, 91, 44, 14, 38, 86, 17, 84, 45, 8, 83, 60, 5, 61, 16, 100, 37, 92, 97, 95, 13, 87, 42, 43, 15, 57, 2, 41, 22, 73, 74, 75, 23, 39, 67, 25]

2-opt improvement

[25, 55, 54, 4, 56, 75, 74, 72, 73, 21, 26, 40, 58, 53, 101, 28, 27, 69, 1, 50, 76, 12, 77, 3, 68, 80, 24, 29, 79, 78, 34, 81, 33, 51, 9, 35, 71, 65, 66, 20, 30, 70, 32, 90, 63, 64, 49, 36, 46, 47, 19, 11, 62, 10, 31, 88, 7, 48, 82, 8, 45, 84, 17, 86, 38, 14, 44, 16, 61, 5, 60, 83, 18, 52, 89, 6, 94, 96, 99, 59, 93, 98, 85, 91, 100, 37, 92, 97, 95, 13, 87, 42, 43, 15, 57, 2, 41, 22, 23, 67, 39, 25]

---test with 101 nodes---

one sided insertion----20-----

initial

800.67

[20, 30, 70, 31, 88, 7, 82, 48, 47, 36, 49, 19, 11, 62, 10, 90, 32, 63, 64, 46, 8, 45, 17, 84, 5, 60, 83, 18, 52, 89, 6, 94, 95, 97, 92, 59, 99, 96, 93, 85, 91, 100, 37, 98, 61, 16, 44, 14, 42, 87, 2, 57, 15, 43, 38, 86, 13, 58, 40, 53, 101, 27, 28, 26, 12, 80, 68, 77, 3, 79, 33, 81, 9, 51, 50, 76, 1, 69, 78, 34, 35, 71, 66, 65, 29, 24, 54, 55, 25, 39, 56, 75, 74, 22, 41, 73, 21, 72, 4, 23, 67, 20]

2-opt improvement

659.73

[20, 66, 65, 71, 35, 34, 78, 29, 24, 54, 55, 25, 39, 67, 23, 56, 75, 41, 22, 74, 73, 21, 72, 4, 26, 28, 27, 101, 53, 40, 58, 13, 2, 87, 42, 57, 15, 43, 14, 44, 38, 86, 16, 61, 85, 91, 100, 37, 98, 93, 99, 96, 59, 92, 97, 95, 94, 6, 89, 52, 18, 83, 60, 5, 84, 17, 45, 8, 46, 47, 36, 49, 64, 63, 90, 32, 10, 62, 11, 19, 48, 82, 7, 88, 31, 70, 30, 69, 1, 50, 76, 12, 80, 68, 77, 3, 79, 33, 81, 9, 51, 20]

two sided insertion-----20-----

initial

833.54

[46, 45, 8, 52, 18, 83, 60, 5, 84, 17, 86, 38, 43, 15, 57, 2, 87, 42, 14, 44, 16, 61, 98, 37, 100, 91, 85, 93, 96, 99, 59, 92, 97, 95, 94, 6, 89, 28, 26, 12, 68, 80, 54, 55, 25, 67, 23, 39, 56, 75, 22, 74, 72, 73, 21, 40, 58, 53, 101, 27, 69, 1, 50, 76, 77, 3, 79, 33, 81, 9, 51, 20, 30, 70, 31, 88, 7, 82, 48, 47, 36, 49, 19, 11, 62, 10, 90, 32, 63, 64, 66, 71, 35, 34, 78, 29, 24, 4, 41, 13, 65, 46]

2-opt improvement

[46, 45, 83, 60, 5, 84, 17, 86, 38, 43, 15, 57, 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 24, 29, 78, 34, 35, 71, 65, 66, 32, 90, 10, 62, 63, 64, 11, 19, 49, 36, 47, 48, 82, 7, 88, 31, 70, 30, 20, 51, 9, 81, 33, 79, 3, 77, 76, 50, 1, 69, 27, 101, 53, 28, 26, 12, 68, 80, 54, 4, 72, 74, 73, 21, 40, 58, 13, 87, 42, 14, 44, 16, 61, 85, 91, 100, 37, 98, 93, 99, 96, 59, 92, 97, 95, 94, 6, 89, 52, 18, 8, 46]

nearest insertion-----20-----

initial

737.87

[51, 33, 50, 76, 77, 12, 54, 4, 25, 55, 24, 80, 68, 29, 3, 79, 78, 81, 9, 34, 35, 71, 65, 20, 66, 32, 90, 63, 64, 11, 62, 19, 47, 49, 36, 46, 48, 82, 18, 83, 8, 45, 17, 84, 5, 60, 96, 94, 95, 87, 57, 2, 73, 21, 72, 74, 56, 39, 67, 23, 75, 22, 41, 15, 43, 42, 97, 92, 37, 100, 91, 44, 14, 38, 86, 16, 61, 85, 98, 93, 59, 99, 6, 89, 13, 58, 40, 26, 53, 101, 28, 27, 1, 69, 52, 7, 88, 31, 10, 70, 30, 51]

2-opt improvement

708.32

[51, 33, 50, 76, 77, 68, 80, 12, 54, 4, 25, 55, 24, 29, 3, 79, 78, 81, 9, 34, 35, 71, 65, 66, 20, 32, 90, 63, 64, 11, 62, 19, 47, 49, 36, 46, 48, 82, 18, 83, 8, 45, 17, 84, 5, 60, 89, 6, 94, 95, 96, 99, 59, 93, 98, 85, 61, 16, 86, 38, 14, 44, 91, 100, 37, 92, 97, 42, 43, 15, 41, 22, 75, 23, 67, 39, 56, 74, 72, 21, 73, 2, 57, 87, 13, 58, 40, 26, 53, 101, 27, 28, 1, 69, 52, 7, 88, 31, 10, 70, 30, 51]

farthest insertion-----20-----

initial

699.66

[14, 44, 100, 98, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 39, 67, 25, 55, 54, 4, 56, 74, 72, 73, 21, 40, 58, 13, 95, 94, 6, 89, 101, 53, 26, 28, 50, 76, 12, 80, 68, 77, 3, 24, 29, 79, 78, 34, 81, 33, 51, 9, 71, 35, 65, 66, 20, 30, 32, 90, 63, 64, 49, 36, 47, 46, 19, 11, 62, 10, 31, 70, 1, 69, 27, 52, 88, 7, 48, 82, 18, 83, 8, 45, 17, 84, 5, 60, 96, 99, 59, 93, 85, 91, 61, 16, 86, 38, 14]

2-opt improvement

[14, 44, 100, 98, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 67, 39, 25, 55, 54, 4, 56, 74, 72, 73, 21, 40, 58, 13, 95, 94, 6, 89, 101, 53, 28, 26, 12, 76, 50, 3, 77, 68, 80, 24, 29, 79, 78, 34, 81, 33, 51, 9, 35, 71, 65, 66, 20, 30, 32, 90, 63, 64, 49, 36, 46, 47, 19, 11, 62, 10, 31, 70, 1, 69, 27, 52, 88, 7, 48, 82, 18, 83, 8, 45, 17, 84, 5, 60, 96, 99, 59, 93, 85, 91, 61, 16, 86, 38, 14]

---test with 101 nodes---

one sided insertion-----30-----

initial

776.46

[30, 70, 31, 88, 7, 82, 48, 47, 36, 49, 19, 11, 62, 10, 90, 32, 63, 64, 46, 8, 45, 17, 84, 5, 60, 83, 18, 52, 89, 6, 94, 95, 97, 92, 59, 99, 96, 93, 85, 91, 100, 37, 98, 61, 16, 44, 14, 42, 87, 2, 57, 15, 43, 38, 86, 13, 58, 40, 53, 101, 27, 28, 26, 12, 80, 68, 77, 3, 79, 33, 81, 9, 51, 20, 66, 71, 35, 34, 78, 29, 24, 54, 55, 25, 39, 56, 75, 74, 22, 41, 73, 21, 72, 4, 23, 67, 76, 50, 1, 69, 65, 30]

2-opt improvement

659.73

[30, 70, 31, 88, 7, 82, 48, 19, 11, 62, 10, 32, 90, 63, 64, 49, 36, 47, 46, 8, 45, 17, 84, 5, 60, 83, 18, 52, 89, 6, 94, 95, 97, 92, 59, 96, 99, 93, 98, 37, 100, 91, 85, 61, 16, 86, 38, 44, 14, 43, 15, 57, 42, 87, 2, 13, 58, 40, 53, 101, 27, 28, 26, 4, 72, 21, 73, 74, 22, 41, 75, 56, 23, 67, 39, 25, 55, 54, 24, 29, 78, 34, 35, 71, 65, 66, 20, 51, 9, 81, 33, 79, 3, 77, 68, 80, 12, 76, 50, 1, 69, 30]

two sided insertion-----30-----

initial

833.54

[46, 45, 8, 52, 18, 83, 60, 5, 84, 17, 86, 38, 43, 15, 57, 2, 87, 42, 14, 44, 16, 61, 98, 37, 100, 91, 85, 93, 96, 99, 59, 92, 97, 95, 94, 6, 89, 28, 26, 12, 68, 80, 54, 55, 25, 67, 23, 39, 56, 75, 22, 74, 72, 73, 21, 40, 58, 53, 101, 27, 69, 1, 50, 76, 77, 3, 79, 33, 81, 9, 51, 20, 30, 70, 31, 88, 7, 82, 48, 47, 36, 49, 19, 11, 62, 10, 90, 32, 63, 64, 66, 71, 35, 34, 78, 29, 24, 4, 41, 13, 65, 46]

2-opt improvement

[46, 45, 83, 60, 5, 84, 17, 86, 38, 43, 15, 57, 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 24, 29, 78, 34, 35, 71, 65, 66, 32, 90, 10, 62, 63, 64, 11, 19, 49, 36, 47, 48, 82, 7, 88, 31, 70, 30, 20, 51, 9, 81, 33, 79, 3, 77, 76, 50, 1, 69, 27, 101, 53, 28, 26, 12, 68, 80, 54, 4, 72, 74, 73, 21, 40, 58, 13, 87, 42, 14, 44, 16, 61, 85, 91, 100, 37, 98, 93, 99, 96, 59, 92, 97, 95, 94, 6, 89, 52, 18, 8, 46]

nearest insertion-----30-----

initial

716.74

[30, 51, 33, 81, 9, 20, 66, 65, 71, 35, 34, 78, 79, 3, 29, 68, 80, 24, 55, 25, 54, 12, 77, 76, 50, 1, 69, 27, 28, 101, 53, 26, 40, 21, 72, 4, 39, 67, 23, 56, 75, 41, 22, 74, 73, 58, 13, 94, 95, 87, 2, 57, 15, 43, 42, 97, 92, 37, 100, 91, 85, 98, 93, 61, 16, 44, 14, 38, 86, 17, 84, 45, 8, 83, 60, 5, 99, 59, 96, 6, 89, 52, 18, 82, 48, 46, 36, 49, 47, 19, 7, 88, 31, 10, 62, 11, 64, 63, 90, 32, 70, 30]

2-opt improvement

684.45

[30, 51, 33, 81, 9, 20, 66, 65, 71, 35, 34, 78, 79, 3, 77, 76, 50, 1, 69, 27, 28, 101, 53, 26, 12, 80, 68, 29, 24, 54, 55, 25, 4, 39, 67, 23, 56, 75, 41, 22, 74, 72, 73, 21, 40, 58, 13, 94, 95, 87, 2, 57, 15, 43, 42, 97, 92, 37, 100, 91, 85, 98, 93, 61, 16, 44, 14, 38, 86, 17, 84, 45, 8, 83, 60, 5, 99, 59, 96, 6, 89, 52, 18, 82, 48, 46, 36, 49, 47, 19, 7, 88, 31, 10, 62, 11, 64, 63, 90, 32, 70, 30]

farthest insertion-----30-----

initial

694.96

[14, 44, 100, 98, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 39, 67, 25, 55, 54, 4, 56, 74, 72, 73, 21, 26, 40, 58, 13, 95, 94, 6, 89, 53, 101, 28, 27, 69, 1, 50, 76, 12, 80, 68, 77, 3, 24, 29, 79, 78, 34, 81, 33, 51, 9, 71, 35, 65, 66, 20, 30, 70, 10, 32, 90, 63, 64, 49, 36, 47, 46, 19, 11, 62, 88, 31, 52, 18, 7, 48, 82, 8, 83, 45, 17, 84, 5, 60, 96, 99, 59, 93, 85, 91, 61, 16, 86, 38, 14]

2-opt improvement

[14, 44, 100, 98, 37, 92, 97, 87, 42, 43, 15, 57, 2, 41, 22, 75, 23, 67, 39, 25, 55, 54, 4, 56, 74, 72, 73, 21, 26, 40, 58, 13, 95, 94, 6, 89, 101, 53, 28, 27, 69, 1, 50, 76, 12, 77, 3, 68, 80, 24, 29, 79, 78, 34, 81, 33, 51, 9, 35, 71, 65, 66, 20, 30, 70, 10, 32, 90, 63, 64, 49, 36, 46, 47, 19, 11, 62, 88, 31, 52, 18, 7, 48, 82, 8, 83, 45, 17, 84, 5, 60, 96, 99, 59, 93, 85, 91, 61, 16, 86, 38, 14]

			Tour Lengths (% Deviation from Optimal Tour Length							
Instance	Opt. Tour Length	Initial cust.	1-sided NN	After 2- opt	2- sided NN	After 2-opt	Nearest Insert	After 2- opt	Farthes t Insert	After 2- opt
eil51	429,97	10	558,84	436,85	558,47	440,52	455,39	455,39	455,39	455,39
eil51	429,97	20	567,29	436,73	545,56	437,97	460,63	444,79	451,25	451,25
eil51	429,97	30	520,00	444,12	520,63	444,21	451,34	451,34	451,34	451,34
eil76	545,34	10	640,48	571,23	699,02	586,75	591,40	579,03	572,27	571,17
eil76	545,34	20	735,93	583,99	699,95	578,95	572,27	571,17	582,88	581,97
eil76	545,34	30	730,23	569,96	662,86	567,08	576,18	571,37	580,24	579,33
eil101	642,23	10	795,98	666,79	816,60	674,17	710,07	696,94	710,53	675,88
eil101	642,23	20	800,67	659,73	833,54	678,34	737,87	708,32	699,66	683,53
eil101	642,23	30	776,46	659,73	833,54	678,34	716,74	684,45	694,96	683.83
Average	539,18		680,65	558,79	685,57	565,15	585,77	573,64	577,61	556,23