

Description

The VSM50N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

• $V_{DS} = 60V, I_{D} = 50A$ $R_{DS(ON)} < 20m\Omega @ V_{GS} = 10V$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM50N06-TC	VSM50N06	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	50	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35.4	A A W	
Pulsed Drain Current	I _{DM}	90		
Maximum Power Dissipation	P _D	85		
Derating factor		0.3	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	245	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Electrical Characteristics (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	Source Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250µ/		60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)			•			•	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.4	1.9	2.5	V	
Drain-Source On-State Resistance	Source On-State Resistance $R_{DS(ON)}$ V_{GS} =10V, I_D =20A		-	14	20	mΩ	
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	18	-	-	S	
Dynamic Characteristics (Note4)			•			•	
Input Capacitance	C _{lss}		-	2050	-	PF	
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	158	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	120	-	PF	
Switching Characteristics (Note 4)	•		•			•	
Turn-on Delay Time	t _{d(on)}		-	7.4	-	nS	
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =6.7 Ω	-	5.1	-	nS	
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =3 Ω	-	28.2	-	nS	
Turn-Off Fall Time	t _f		-	5.5	-	nS	
Total Gate Charge	Qg	\/ 00\/\ 00\	-	50		nC	
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =20A, V_{GS} =10V	-	6		nC	
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	15		nC	
Drain-Source Diode Characteristics	•		•			•	
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	50	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	28	-	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	40	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition : Tj=25 $^{\circ}$ C,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance