

Plano de Verificação Funcional MUSA

Fazemos Qualquer Negócio Inc.

Compilação 1.0

Histórico de Revisões

Data	Descrição	Autor(es)
23/10/2014	Criação do documento.	Terseu Hunter
24/11/2014	Refatoração do documento	Anderson Queiroz e Manuelle Macedo

CONTENTS

1	Introdução	3
	1.1 Propósito do Documento	. 3
2	Stakeholders	3
	2.1 Siglas e Abreviações	. 3
3	Visão Geral do DUT	4
4	Ambiente de Verificação	5
	4.1 Design Under Test Interface	. 5
	4.2 Monitor e Checker	. 5
	4.3 Modelo de Referência	. 6
	4.4 Especificações de Projeto do Ambiente de Verificação	. 6
5	Lista de Funcionalidades	7
6	Lista de Testes	8
7	Assertions	10
8	Recursos Requirements	11
9	Cronograma	12

1. Introdução

1.1. Propósito do Documento

O objetivo deste documento é definir o plano de verificação da implementação MUSA. Este documento inclui o ambiente de verificação utilizado para realizar a verificação do processador, ao lado das principais características do design, a lista de testes, lista de assertions e outros.

2. Stakeholders

Nome	Papel/Responsabilidades
Manuelle	Gerência
Manuelle, Vinicius, Weverson, Patrick	Análise
Patrick, Lucas, Mirela, Vinícius, Gabriel, Anderson e Tarles	Projeto

2.1. Siglas e Abreviações

Sigla	Descrição
DUT	Design Under Test
IF	Interface

3. Visão Geral do DUT

- Implementação de um plano de verificação.
- Implementação de todos os testbenches necessários para o DUT completo e os DUTs resultantes de hierarquização.
- Implementação do DUT. Essa implementação é seguida pela simulação do DUV, juntamente com o testbench.
- Captação dos dados de simulação através da coleta dos itens de cobertura e dos logs da simulação.
- Análise da cobertura funcional, que pode levar a uma mudança de estímulos no testbench e a uma nova simulação.

4. Ambiente de Verificação

A metolologia de verificação adotada pelo projeto é baseada em *testbench*, compondo parte das análises por meio de verificação baseada em *waveform*. Situações especiais serão verificadas apartir de verificações baseadas em *assertions*. A interface do DUT será responsável por coletar os dados do MUSA e enviá-los para o *monitor*, no qual estarão declarados todos os *assertions*. A Figura abaixo apresenta um modelo conceitual do ambiente de verificação.

4.1. Design Under Test Interface

O DUT IF promove a interface entre o *monitor* e o DUT. Esta interface é responsável por controlar as informações trocadas entre o ambiente de verificação e o DUT. Dessa forma, ela deve conter instâncias de todos os sinais do DUT a serem utilizados ao longo do processo de verificação.

A interface do DUT possui tabém a implementação dos *assertions*. Estas estruturas têm como objetivo garantir que o comportamento dos sinais internos do DUT estão sendo produzidos e manipulados de maneira correta. Esta interface é instanciada na entidade *top level* do ambiente de verificiação e seus sinais são conectados aos sinais provenientes do DUT.

4.2. Monitor e Checker

O *monitor* é reponsável por observar o comportamento do DUT e coletar as suas saídas, de modo a verificar se as instruções estão funcionando da maneira desejada. O *monitor* observa o comportamento dos sinais de controle e, quando necessário, captura os dados armazenados na memória de instruções e no banco de registradores.

O *checker* é responsável por executar o modelo de referência com o mesmo programa usado pelo DUT e comparar os dados armazenados na memória de dados e no banco de registradores. Se qualquer mal funcionamento for identificado, o *checker* deve reportar uma mensagem de erro.

Quando a execução do programa chega ao fim, o monitor deve invocar o *checker*. O *monitor* identifica o final da execução do programa a partir da instrução HALT.

O teste que será executado no modelo de referência deve ser definido no arquivo sim/tb/defines.sv. Para executar o teste no DUT, o procedimento deve ser realizado no arquivo de memória de instruções sim/model/test.txt, a partir da alteração do caminho especificado na funcão read_memh.

4.3. Modelo de Referência

Tendo em vista garantir que o processador executará as instruções corretamente, foi desenvolvido um modelo de referência, capaz de simular o comportamento do processador MUSA. Este modelo é capaz de executar todas as instruções suportadas pelo MUSA. O arquivo do modelo de referência está localizado no diretório sim/model/mainHex.c.

4.4. Especificações de Projeto do Ambiente de Verificação

Componente	Descrição			
Nome do Documento	Plano de Verificação do MUSA			
Versão e data do documento	Versão 3.0, 18 de dezembro de 2014			
Autor(es) / Proprietário(s)	Terseu Hunter, Manuelle Macedo e Anderson Queiroz			
Metodologia de Verificação	Top-Down			
Métodos de Verificação	Simulation and Formal Verification			
Aplicação	ModelSim ALTERA Edition			
Linguagens	System Verilog			
Ambiente de verificação	Custom testbench			
Arquivos de teste	No diretório: sim/model e sim/tests			
Tecnologias	FPGA Cyclone 3 Development Board			

5. Lista de Funcionalidades

Número	Descrição	Prioridade
MUSA_F1	Os sinais são ativados baseados na instrução	10
MUSA_F2	COmunicação com a memória de instruções	9
MUSA_F3	Operação de leitura e escrita na memória de dados	9
MUSA_F4	Operação de leitura e escrita no arquivo de registro	10
MUSA_F5	Todas os protocolos de interface devem estar funcio- nando apropriadamente	9

IpPR®CESS

6. Lista de Testes

Número do Teste	Descrição	Método	Nível	Funcionalidade Verificadas	Prioridade	Proprietário	Situação
MUSA_T1	Execução de todas as instruções da categoria aritmética.	Sim	Unit	MUSA_F1, MUSA_F4	5	Anderson	90%
MUSA_T2	Execução de todas as instruções de transferência de dados.	Sim	Unit	MUSA_F1, MUSA_F4	5	Anderson	90%
MUSA_T3	Execução de todas as instruções da categoria lógica.	Sim	Unit	MUSA_F1, MUSA_F4	5	Anderson	90%
MUSA_T4	Execução de todas as instruções da categoria salto condicional.	Sim	Unit	MUSA_F1, MUSA_F4	5	Anderson	90%
MUSA_T5	Execução de todas as instruções da categoria salto incondicional.	Sim	Unit	MUSA_F1, MUSA_F2	5	Anderson	90%
MUSA_T6	Acesso à memória de declarados	Assertion	Unit	MUSA_F3	7	Manuelle	90%
MUSA_T7	Acesso à memória de in- struções	Assertion	Unit	MUSA_F4	9	Manuelle	90%
continua na próxima página							

continuação da página anterior								
Número do Teste	Descrição	Método	Nível	Funcionalidade Verificadas	Prioridade	Proprietário	Situação	
MUSA_T8	Execução de programas completos sob a arquitetura.	Sim	Unit	MUSA_F3, MUSA_F4	8	Anderson	90%	
MUSA_T9	Teste de todos os protocolos de interface.	Assertion	Unit	MUSA_F5	8	Manuelle	90%	

7. Assertions

Número	Critério	Status
MUSA_A1	Assertion para a busca correta das instrução.	Concluído
MUSA_A2	Assertion para verificar a operação de decodificação	Concluído
MUSA_A3	Assertion para verificar a operação do bloco de execução.	Concluído
MUSA_A4	Assertion para leitura da memória de dados e write back.	Concluído
MUSA_A5	Assertion para branches e instruções de salto.	Concluído
MUSA_A6	Assertion para verificar os protocolos de interface.	Concluído
MUSA_A7	Assertion para os sinais de controle de cada instrução.	Concluído

8. Recursos Requirements

Recursos	Quantidade	Descrição	Início	Duração
Recursos de Engenharia				
Engenheiro de Verificação	3	Alunos	10/11	25 dias
Recursos Computacionais				
Computador	3	Intel i5	N.A.	N.A.
Recursos de Software				
ALTERA Quartus	1	WEB Edition	10/11	30 dias
ALTERA ModelSIM	1	ALTERA WEB Edition	14/11	30 dias