

VastTrack: Vast Category Visual Object Tracking

Liang Peng¹* Junyuan Gao¹* Xinran Liu¹* Weihong Li¹* Shaohua Dong²* Zhipeng Zhang³ Heng Fan²†

(*equal contributions; †equal advising and co-last author)

¹Institute of Software Chinese Academy of Sciences ²University of North Texas ³KargoBot

PROCESSING SYSTEMS

Introduction

- We propose VastTrack, the largest tracking benchmark regarding the number of videos and object categories.
- We offer high-quality comprehensive labeling, including bounding box annotation and natural language description for each video.
- We evaluate 25 state-of-the-art visual trackers on VastTrack, providing extensive baselines for future comparisons.

Motivation 31000 Number of Object Classes O UAV20L ○ UAV123 ○ OTB-2013 ○ OTB-2015 ○ TC-128 ○ VOT-2017 NUS-PRO TNL2K OxUvA LaSOT TrackingNet OGOT-10k VastTrack

- Limitations of existing tracking benchmarks
- > Restricted number of categories
- > Limited scale for training generic trackers
- > Small number of natural language descriptions

Proposed VastTrack

Benchmark	Voor	Closecs	Vidoos	Mean	Total	Total	Absent	Num. of	Lang.	Frame	Dataset	Dataset
Dencimark	Tear	Classes	videos	Frames	Frames	Duration	label	Att.	Anno.	Rate	Focus	Goal
OTB-2013 [53]	2013	10	50	578	29 K	16.4 min	Х	11	Х	30 fps	ST	Eva.
OTB-2015 [54]	2015	16	100	590	59 K	32.8 min	X	11	X	30 <i>fps</i>	ST	Eva.
TC-128 [36]	2015	27	128	429	55 K	30.7 min	×	11	X	30 <i>fps</i>	ST	Eva.
NUS-PRO [32]	2016	17	365	371	135 K	75.2 min	×	12	X	30 <i>fps</i>	ST	Eva.
UAV123 [42]	2016	9	123	915	113 K	62.5 min	X	12	X	30 fps	ST	Eva.
UAV20L [42]	2016	5	20	2,934	59 K	32.6 min	×	12	X	30 fps	LT	Eva.
NfS [21]	2017	17	100	3,830	383 K	26.6 min	×	9	X	240 fps	ST	Eva.
VOT-2017 [29]	2017	24	60	356	21 K	11.9 min	X	24	X	30 <i>fps</i>	ST	Eva.
OxUvA [46]	2018	22	366	4,235	1.55 M	14.4 hours	X	6	X	30 <i>fps</i>	LT	Eva.
TrackingNet [43]	2018	27	30,643	471	14.43 M [♭]	140.0 hours	×	15	X	30 fps	ST	Tra./Eva.
LaSOT [16]	2019	70	1,400	2,053	3.52 M	32.5 hours	✓	14	/	30 <i>fps</i>	LT	Tra./Eva.
TNL2K [50]	2021	169 [¶]	2,000	622	1.24 M	11.5 hours	✓	17	1	30 fps	ST	Tra./Eva.
GOT-10k [27]	2021	563	9,935	149	1.45 M	40.0 hours	✓	6	X	10 <i>fps</i>	ST	Tra./Eva.
VastTrack	2024	2,115	50,610	83	4.20 M	194.4 hours		10	_	6 fps	ST	Tra./Eva.

VastTrack

- ❖ Vast Object Category: VastTrack covers targets from 2,115 categories, significantly surpassing classes of existing benchmarks (e.g., GOT-10k with 563 classes and LaSOT with 70 categories). It is the richest dataset to date.
- ❖ Larger scale: VastTrack offers 50,610 videos with 4.2 million frames, which makes it the largest and the most diverse tracking dataset in terms of the numbers of videos and targets compared to existing datasets.
- ❖ Rich and Precise Annotations: VastTrack offers both standard bounding box annotations and rich linguistic specifications for videos, and thus enables exploration of both vision-only and vision-language tracking.
- Dataset Split
- Training: 47,110 sequences of VastTrack a used for training.

Training: 47,110 sequences of VastTrack are		Classes	Videos	Mean frames	Total frames
used for training.	$\overline{VastTrack_{Tst}}$		3,500		372 K
❖ Test: 3,500 videos are employed for evaluation.	$VastTrack_{Tra}$	1,974	47,110	81.2	3.82 M

Evaluation Protocol: We utilize a hybrid protocol wherein part of object classes (not videos) in test set have overlap with training set, while the rest classes remains unseen.

Experiments

 Evaluation of 25 state-of-the-art-trackers using precision, normalized precision and success scores.

Comparison on meta classes using success score

Comparison of VastTrack with other datasets

	Success Score					
	TrackingNet	LaSOT	TNL2K	VastTrack		
	[43]	[16]	[50]	(Ours)		
SeqTrack [6]	0.855	0.725	0.578	0.396		
MixFormer [9]	0.854	0.724	0.533	0.395		
DropMAE [52]	0.841	0.718	0.569	0.375		
ROMTrack [4]	0.841	0.714	0.604	0.370		
GRM [22]	0.840	0.699	0.611	0.363		
ARTrack [51]	0.843	0.708	0.575	0.356		
RTS [44]	0.816	0.697	0.599	0.355		
MixFormerV2 [10]	0.834	0.706	0.506	0.352		
ToMP [40]	0.815	0.685	0.584	0.349		
SimTrack [5]	0.834	0.705	0.556	0.344		
OSTrack [57]	0.839	0.711	0.559	0.336		
STARK [56]	0.820	0.671	0.525	0.334		
SwinTrack [38]	0.811	0.672	0.559	0.330		
TrSiam [49]	0.781	0.624	0.523	0.326		
PrDiMP [12]	0.758	0.598	0.470	0.310		

Conclusion

- We propose a new large-scale dataset VastTrack for vast category tracking
- Our experiments show that there is still a long way for generic tracking

