Numerical Integration

Dr Seema Varghese,
Assistant Professor,
Department of Mathematics,
Government Engineering College,
Thrissur-680009

Numerical Integration

- The process of evaluating a definite integral from a set of tabulated values of the integrand f(x) is called numerical integration.
- This process when applied to a function of a single variable, is known as quadrature.
- We learn two methods of numerical integration
 - 1. Trapezoidal Rule
 - 2. Simpson's one-third rule.

Trapezoidal Rule

- $\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{2}[(y_0+y_n)+2(y_1+y_2\dots y_{n-1})].$
- Here $x_0, x_1, \dots x_n$ are the x values and $y_0, y_1, \dots y_n$ are the corresponding function values.
- *h* is the interval width.

Simposon's One-third Rule

- $\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{3}[(y_0+y_n)+4(y_1+y_3\dots y_{n-1})+2(y_2+y_4\dots y_{n-2})]$
- Here $x_0, x_1, \dots x_n$ are the x values and $y_0, y_1, \dots y_n$ are the corresponding function values
- h is the interval width.

Problem

- Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using
 - (i) Trapezoidal Rule
 - (ii) Simpson's $\frac{1}{3}$ Rule and compare the results with the actual value.
- Solution: Divide the interval (0,6) into six parts each of width h=1. The values of $f(x)=\frac{dx}{1+x^2}$ are given below:

	x	0	1	2	3	4	5	6
ĺ	f(x) = y	1	0.5	0.2	0.1	0.0588	0.0385	0.027

Using Trapezoidal Rule

•
$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{2}[(y_0+y_n) + 2(y_1+y_2\dots y_{n-1})]$$

= $\frac{1}{2}[(1+0.027) + 2(0.5+0.2+0.1+0.0588+0.0385)]$
= 1.1408.

Using Simpson's One-Third Rule

•
$$\int_{x_0}^{x_0+nh} f(x)dx = \frac{h}{3}[(y_0+y_n)+4(y_1+y_3\dots y_{n-1})+2(y_2+y_4\dots y_{n-2})]$$
=
$$\frac{1}{3}[(1+0.027)+4(0.5+0.1+0.0385)+2(0.2+0.0588)]$$
= 1.3662.

By Actual Integration

•
$$\int_0^6 \frac{dx}{1+x^2} \tan^{-1} x_0^6 = \tan^{-1} 6 = 1.4056$$

Problems

- Evaluate $\int_0^{\frac{\pi}{2}} \cos x dx$ using trapezoidal rule choosing n=6.
- Evaluate $\int_0^2 x e^x dx$ using Simpson's one third rule, choosing n=8.

Thank You