1 Άλγεβρα

Άσκηση 1 Δίνονται τα σύνολα

$$A = \left\{ x \in \mathbb{R} / \left(x^2 - 1 \right) (x - 2) \left(x^2 - 5x + 6 \right) = 0 \right\}$$

$$B = \left\{ x \in \mathbb{R} / \left(x^2 - 4 \right) (x - 1) \left(x^2 - 7x + 12 \right) = 0 \right\}$$

- i. Να γραφτούν τα σύνολα *A*, *B* με αναγραφή.
- ii. Να βρεθούν τα σύνολα $A \cup B$, $A \cap B$.
- Άσκηση 2 Ο καθηγητής των μαθηματικών καλείται να επιλέξει μαθητές για να εκπροσωπίσουν το σχολείο στη μαθηματική ολυμπιάδα του 2015. Στην επιλογή πρέπει να λάβει υπ όψιν του το αν ο μαθητής θα είναι αγόρι (α) ή κορίτσι (κ), σε ποιά τάξη πάει (Α, Β ή Γ Λυκείου) και το αν εχει συμμετάσχει ξανά ή όχι (ναι (ν) ή όχι (ο)) σε μαθηματική ολυμπιάδα. Εαν επιλέξει τυχαία κάποιον μαθητή να βρεθούν:
 - Ο δειγματικός χώρος του πειράματος.
 - ii. Το ενδεχόμενο ο μαθητής να έχει συμμετάσχει ξανά σε μαθηματική ολυμπιάδα.
 - iii. Το ενδεχόμενο ο μαθητής να έχει επιλέξει κάποια ομάδα προσανατολισμού. (Το στοιχείο αυτό στο δίνω ώστε να βγάλεις συμπέρασμα τι τάξη πάει.)
 - iv. Το ενδεχόμενο να είναι κορίτσι και να μην έχει συμμετάσχει ξανά σε διαγωνισμό.
 - ν. Οι πιθανότητες των παραπάνω ενδεχομένων.

Άσκηση 3 Δίνονται πραγματικοί αριθμοί a, β, γ, δ με $\beta \neq 0$ και $\gamma \neq \delta$ ώστε να ισχύουν:

$$\frac{a+\beta}{\beta} = 4$$
 $\kappa\alpha i \frac{\gamma}{\delta - \gamma} = \frac{1}{4}$

- i. Να αποδείξεις οτι : $a = 3\beta$ και $\delta = 5\gamma$
- ii. Να υπολογίσεις την τιμή της παράστασης $\frac{a\gamma + \beta\delta}{\beta\delta \beta\gamma}$.

Άσκηση 4 Δίνονται οι παραστάσεις $K = 2a^2 + \beta^2$ και $\Lambda = 2a\beta$.

i. Να αποδείξεις οτι $K \ge \Lambda$ για κάθε τιμή των ii. Για ποιές τιμές των a, β ισχύει η ισότητα; a, β .

Άσκηση 5 Να λυθούν οι ανισώσεις :

i.
$$|x-4| < 2$$

ii.
$$|x + 3| \ge 5$$

Άσκηση 6 Αν 1 < x < 4 να γράψεις την παρακάτω παράσταση χωρις απόλυτες τιμές.

$$A = |x - 1| + |x - 4| + 3$$

Άσκηση 7 Δίνεται ένας πραγματικός αριθμός x που ικανοποιεί τη σχέση $d(x,5) \le 9$.

- Να περιγράψεις την παραπάνω σχέση λεκτικά.
- ii. Με τη χρήση του άξονα των πραγματικών αριθμών, να παραστήσεις γραφικά το σύνολο των δυνατών τιμών του x.
- iii. Να γράψεις την αρχική σχέση με τη βοήθεια απόλυτων τιμών και να λύσεις αλγεβρικά την ανίσωση.
- iv. Να χρησιμοποιήσεις τα συμπεράσματα του ερωτήματος (γ) για να αποδείξεις οτι :

$$|x + 4| + |x - 14| = 18$$

2 Γεωμετρία

- **Άσκηση 1** Δίνεται ισοσκελές τρίγωνο $AB\Gamma$ με $AB = A\Gamma$. Να δείξεις οτι :
 - i. Οι διάμεσοι *BM* και ΓΝ είναι ίσες.
 - ii. Οι διχοτόμοι $B \Delta$ και ΓE είναι ίσες.
- Άσκηση 2 Δίνεται ένα τρίγωνο $AB\Gamma$ και η διάμεσος AM. Στην προέκταση της AM παίρνουμε τμήμα $M \Delta = AM$. Να αποδειχθεί οτι :
 - i. Τα τρίγωνα ΜΑΒ, ΜΓΔ και ΜΑΓ, ΜΒΔ είναι ίσα.
 - Τα τρίγωνα ΑΒΓ και ΔΒΓ είναι ίσα.
 - iii. $\hat{A} = B\hat{\Delta}\Gamma$.
- **Άσκηση 3** Δίνεται οξεία γωνία $x\hat{O}y$ και δύο ομόκεντροι κύκλοι (O, ρ_1) και (O, ρ_2) με $\rho_1 < \rho_2$, που τέμνουν την Ox στα σημεία K, A και την Oy στα A, B αντίστοιχα.

Να αποδείξεις οτι

- i. $A\Lambda = BK$.
- ii. το τρίγωνο APB είναι ισοσκελές, όπου P το σημείο τομής των AΛ, BK.
- iii. η OP διχοτομεί τη γωνία $x\hat{O}y$.
- Άσκηση 4 Στην προέκταση της διαμέσου AM ορθογωνίου τριγώνου $AB\Gamma$ $(\hat{A}=90^o)$ παίρνουμε τμήμα $M\Delta=MA$. Να αποδειχθεί οτι :
 - i. Τα τρίγωνα MAB και $M \Delta \Gamma$ είναι ίσα.
 - ii. $B\hat{A}M = \Gamma \Delta \hat{M}$.
 - iii. $B\Delta \perp \Gamma\Delta$.
- **Άσκηση 5** Σε ένα τρίγωνο $AB\Gamma$ ισχύει $AB < A\Gamma$. Η μεσοκάθετος της $B\Gamma$ τέμνει την $A\Gamma$ στο Δ . Να δειχθεί οτι $\Delta\Gamma < AB + A\Gamma$.
- **Άσκηση 6** Στις προεκτάσεις των πλευρών BA και ΓA τριγώνου $AB\Gamma$ παίρνουμε τα τμήματα $A\varDelta=AB$ και $AE=A\Gamma$. Να αποδείξεις οτι :
 - i. Τα τρίγωνα *ΑΒΓ*, *ΑΔΕ* είναι ίσα.
 - ii. Η προέκταση της διαμέσου MA προς το μέρος της κορυφής A διχοτομεί την πλευρά $E \Delta$ του τριγώνου $A \Delta E$.
- Άσκηση 7 Να αποδείξεις οτι κάθε σημείο της διχοτόμου OM μιας γωνίας $x\hat{O}y$ ισαπέχει από τις πλευρές της γωνίας και αντίστροφα κάθε σημείο της γωνίας που ισαπέχει από τις πλευρές, θα βρίσκεται πάνω στη διχοτόμο OM.