Числено решаване на диференциални уравнения

Обикновени диференциални уравнения (ОДУ)

$$y = y(x) = ?$$
 $F(x, y, y', y', y'', ..., y^{(k)}) = 0$
ОДУ от k^{TU} ред
Частен случай => ОДУ от 1-ви ред
 $F(x, y, y') = 0$
=> $y' = f(x, y)$ (Задача на Коши)

Частни диференциални уравнения (ЧДУ)

$$y = y(x_1, x_2 \dots x_n)$$
 $F(x_1 \dots x_n, y, \frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2} \dots \frac{\partial y}{\partial x_n}, \frac{\partial^2 y}{\partial x_1^2} \dots \frac{\partial^2 y}{\partial x_n^2}) = 0$ ЧДУ от $k^{\text{ти}}$ ред

$$y' = f(x, y), \quad x \ni [a,b]$$

Аналитичен подход:

y = y(x, c) с - неопределена константа **Напр:** $y = y^*(x) + c$ $y(x_0) = y_0$ $y(x_0, c) = y_0 \Rightarrow c^*$ спрямо у частно $(x) = y(x, c^*)$

Числен подход: (намиране частно решение!)

Начална задача на Коши: $y' = f(x, y), x \ni [a,b]$ $y(a) = y_0$

Метод на Ойлер

Приемаме, че знаем y_i . Търсим $y_{i+1} = ?$ Развиваме в ред на Тейлър y(x) около точка x_i

$$y(x) = y(x_i) + \frac{1}{1!}(x - x_i)^* y'(x_i) + \frac{1}{2!}(x - x_i)^{2*} y''(\zeta), \quad \zeta \ni (x, x_i)$$

Заместваме: $x = x_{i+1}$

$$y(x_{i+1}) = y(x_c) + (x_{i+1} - x_i) * y'(x_i) + \frac{1}{2}(x_{i+1} - x_i)^2 * y''(\zeta)$$

$$y_{i+1} = y_i + h^* f_i + O(h^2), \quad i = \overline{0, n-1}$$
 Формула на Ойлер

Локална грешка - $O(h^2)$

Глобална грешка - n * O(h^2) = $\frac{b-a}{h}$ *O(h^2) = O(h)

Задача:

$$y' = x + \frac{1}{v}, x \ni [0,1]$$

$$y(0) = 2$$

Решение: n = 4

$$h = \frac{b-a}{n} = \frac{1}{4} = 0.25$$

i
$$x_i$$
 y_i f_i $y_{\text{touho}}(x_i)$ $\varepsilon_i = |y_i - y_{\text{touho}}(x_i)|$

0 0 2 0,5

1 0,25 2,125 0,7201

2 0,5 2,305 0,9338

3 0,75 2,5385

1 $y_4 = ?$

Теоретична грешка:

Локална: $h^2 = 0.25^2 = 0.0625$

Глобална: h = 0.25

=> Пишем междинните резултати с 4 знака след десетичната точка

При і = 0:

$$y_0 = 2$$

$$f_0 = f(x_0, y_0) = x_0 + \frac{1}{y_0} = 0 + \frac{1}{2} = 0.5$$

$$y_1 = y_0 + h^* f_0 = 2 + 0.25 * 0.5 = 2,125$$

$$f_1 = f(x_1, y_1) = x_1 + \frac{1}{y_1} = 0.25 + \frac{1}{2.125} = 0,7201$$

$$y_2 = y_1 + h^* f_1 = 2.125 + 0.25 * 0.7201 = 2,305$$

$$f_2 = f(x_2, y_2) = x_2 + \frac{1}{y_2} = 0.5 + \frac{1}{2.305} = 0.9338$$

$$y_3 = y_2 + h^* f_2 = 2.305 + 0.25 * 0.9338 = 2,5385$$