(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 12. Juni 2003 (12.06.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/048406 A2

(51) Internationale Patentklassifikation⁷: C23C 14/00

(21) Internationales Aktenzeichen: PCT/EP02/13743

(22) Internationales Anmeldedatum:

4. Dezember 2002 (04.12.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 101 59 907.2 6. Dezember 2001 (06.12.2001) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INTERPANE ENTWICKLUNGS- UND BE-RATUNGSGESELLSCHAFT MBH & CO. [DE/DE]; Sohnreystrasse 21, 37697 Lauenförde (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): LANDGRAF, Ralf [DE/DE]; Bahnhofstrasse 88, 94469 Deggendorf (DE). SCHMITT, Michael [DE/DE]; Alte Langdorfer Strasse 30, 94227 Zwiesel (DE). MÖNNEKES, Jörg [DE/DE]; Rohrweg 19, 37671 Höxter (DE). HÄUSER, Karl [DE/DE]; Am Waldfriedhof 2, 37688 Beverungen (DE). BLESSING, Rolf [DE/DE]; Schützenstrasse 20, 34388 Trendelburg (DE). PAVIC, Davorin [DE/DE]; Lange-Geismar-Strasse 20, 37073 Götttingen (DE). HERLITZE, Lothar [DE/DE]; Sollingstrasse 17, 37691 Derental (DE). HERWIG, Wilhelm [DE/DE]; Buchenweg 17, 37688 Beverungen (DE). BÖWER, Reimund [DE/DE]; Am Waldfriedhof 4, 37688 Beverungen (DE).

(74) Anwalt: KÖRFER, Thomas; Mitscherlich & Partner, Sonnenstrasse 33, 80331 München (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: COATING METHOD AND COATING

(54) Bezeichnung: BESCHICHTUNGSVERFAHREN UND BESCHICHTUNG

(57) Abstract: The invention relates to a method for applying one or several coats to a substrate in a device comprising a PVD/CVD coating chamber. One solid matter is physically transformed at least in part into a gaseous phase and is applied to the substrate in the gaseous phase. At least one additional compound and/or one additional metal is added to the gaseous phase in liquid or gaseous form, and the at least one additional compound and/or the at least one additional metal reacts with the surface of the substrate. The invention also relates to a coating that is produced according to said method.

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Aufbringung von einer oder mehreren Schichten auf einem Substrat in einer Vorrichtung mit PVD/CVD-Beschichtungskammer, wobei ein Feststoff wenigstens teilweise physikalisch in die Gasphase überführt und aus der Gasphase auf dem Substrat abgeschieden wird. Der Gasphase wird wenigstens eine weitere Verbindung und/oder ein weiteres Metall in flüssiger oder gasförmiger Form zugeführt, wobei die wenigstens eine weitere Verbindung und/oder das wenigstens eine weitere Metall wenigstens teilweise mit der Oberfläche des Substrat reagiert. Die Erfindung betrifft weiterhin eine Beschichtung, die mit diesem Verfahren hergestellt ist.

5

Beschichtungsverfahren und Beschichtung

Die Erfindung betrifft ein Verfahren zur Aufbringung von einer oder mehreren Schichten auf einem Substrat in einer Vorrichtung mit PVD-Beschichtungskammer, wobei ein Feststoff wenigstens teilweise physikalisch in die Gasphase überführt und aus der Gasphase auf dem Substrat abgeschieden wird, sowie gemäß dem Verfahren hergestellte Schichten.

- 10 Im Stand der Technik (z. B. aus Kienel, Röll, "Vakuum-Beschichtung 2", VDI-Verlag, 1995, ISBN 3-18-401312-X, Kap. 5 Und Kap. 10) sind verschiedene Beschichtungsverfahren bekannt.
- Über die sogenannten PVD-Verfahren (PVD engl.: Physical Vapor Deposition) können Metall- oder Metalloxidschichten auf ein Substrat aufgebracht werden. Unter den PVD-Verfahren werden Vakuum-Beschichtungsverfahren zur Herstellung von dünnen Schichten auf Substraten verstanden, bei denen das Beschichtungsmaterial durch rein physikalische Methoden in die Gasphase überführt wird, um nachfolgend auf den Substraten abgeschieden zu werden.
- Ausprägung dieses Verfahrens wird das Bei einer 25 Beschichtungsmaterial im Hochvakuum bis zum Übergang in den Zustand erhitzt. Die Erwärmung kann über gasförmigen elektrische Widerstandsheizung, durch Beschuß mit hochenergetischen Elektronen oder durch Laserstrahlbeschuß verdampfte Beschichtungsmaterial wird Das nachfolgend auf einem Substrat abgeschieden. 30

Zu den PVD-Verfahren zählt auch das Sputter-Verfahren, das auch als Kathodenzerstäubung bezeichnet wird. Hierbei wird Vakuumkammer bei einem konstanten einer durch Gleichoder 35 beispielsweise 1 Ра, eine Hochfrequenzspannung zwischen zwei Elektroden ein Plasma Plasma entstehende positive Ιm beispielsweise Argonionen, werden beschleunigt und treffen auf einen an der Kathode angeordneten Feststoff, der auch

als Target bezeichnet wird, auf. Die von den auftreffenden Argonionen aus dem Feststoff herausgeschlagenen Atome diffundieren durch das Plasma und werden auf dem an der Anode angeordneten Substrat abgeschieden.

5

10

Nachteilig bei den bekannten Verfahren ist, daß die Beschichtungsraten regelmäßig zu niedrig sind. Insbesondere bei der Beschichtung von großflächigen Substraten wie Scheibenglas, die in großen Mengen hergestellt werden, ist es aus ökonomischen Gründen erwünscht, den Durchsatz an beschichteter Flächeneinheit Scheibenglas pro Zeiteinheit zu erhöhen.

Weiterhin wird das sogenannte CVD-Verfahren (CVD - engl.: 15 Chemical Vapor Deposition) häufig zur Beschichtung von Substraten eingesetzt. Bei diesem Verfahren wird ein Gas, einen Reaktanten enthält, einem Substrat in Der Reaktant reagiert unter Reaktor zugeleitet. Energiezufuhr an der Substratoberfläche unter Bildung eines Reaktionsproduktes. Beispielsweise können unter Verwendung 20 des CVD-Verfahrens Metalloxid- oder Metallnitridschichten aufgebracht werden.

Aufgabe der vorliegenden Erfindung ist es somit, ein Verfahren zur Beschichtung von Substraten bereitzustellen, das eine effiziente und homogene Beschichtung von Substraten erlaubt, sowie eine entsprechende Beschichtung bereitzustellen.

Die der Erfindung zugrundeliegende Aufgabe wird durch ein 30 Anspruch 1 gelöst. gemäß Bevorzugte Unteransprüchen Weiterbildungen sind in den angegeben. gemäß Weiterhin wird die Aufgabe auch durch eine erfindungsgemäßen Verfahren hergestellte Beschichtung gemäß 35 Anspruch 14 gelöst.

Das erfindungsgemäße Verfahren kann in einer modifizierten PVD-Beschichtungskammer durchgeführt werden. Das Substrat, beispielsweise Float-Glas, wird in der Beschichtungskammer

angeordnet und ein geeigneter Unterdruck angelegt. Der Unterdruck liegt beispielsweise in einem Bereich von 0,1 bis 10 Pa, bevorzugt von 1 bis 5 Pa.

5 Der Feststoff (bzw. das Target) wird durch ein geeignetes Verfahren verdampft. Die Verdampfung bzw. Überführung des Feststoffs in die Gasphase kann vorzugsweise durch Erhitzen induktives Erhitzen, Kathodenzerstäubung, beispielsweise und/oder Magnetron-Sputtern, Elektronen-, Ionen-Laser-10 Strahlbeschuß (Laser-Ablation) und Kombinationen davon bewirkt werden.

Ausführungsform Gemäß einer bevorzugten erfolqt die Feststoffs die Gasphase Überführung des in durch 15 Kathodenzerstäubung bzw. Sputter-Verfahren, wobei zwischen Kathode und Anode ein Plasma erzeugt wird.

Verbindung und/oder wenigstens eine weitere Die wenigstens eine weitere Metall können über wenigstens eine Zuführung der PVD/CVD-Beschichtungskammer in gasförmiger 20 Form zugeleitet werden. Die vorgenannten Verbindungen bzw. Metalle können aber auch in flüssiger Form, beispielsweise als Aerosol, zugeführt mittels eines Trägergases, Beschichtungskammer eingebracht werden. Bevorzugt erfolgt 25 die Zuführung der vorgenannten Verbindungen bzw. Metalle in gasförmiger Form.

Die Zuführungen sind dabei entsprechend der Geometrie der Beschichtungskammer an oder in der Beschichtungskammer daß die Umsetzung der wenigstens einen angeordnet, und/oder zugeführten Verbindung des wenigstens einen zugeführten Metalls über die gesamte Substratoberfläche gleichmäßig erfolgt. Auf diese Weise wird eine schnelle Substratoberfläche der gesamten unter Umsetzung an Ausbildung einer homogenen Beschichtung bewirkt.

30

35

Bei einer sehr bevorzugten Ausführungsform der Erfindung ist die wenigstens eine weitere Verbindung bzw. das wenigstens eine weitere Metall im Sputtergas enthalten. Als Sputtergas

kann beispielsweise ein inertes Gas, beispielsweise ein Edelgas, bevorzugt Argon, verwendet werden. Die wenigstens eine weitere Verbindung und/oder das wenigstens eine weitere Metall wird bevorzugt in Gasform mit dem Sputtergas, beispielsweise in einer Mischkammer, vermengt. Das so erzeugte Gasgemisch kann dann in die PVD-Beschichtungskammer auf herkömmliche Art und Weise eingebracht werden.

Das erfindungsgemäße Verfahren stellt somit eine Kombination von PVD- und CVD-Verfahren dar.

In der Fig. 1 ist beispielhaft eine Beschichtungskammer 1 für ein solches erfindungsgemäßes Verfahren dargestellt. In der Beschichtungskammer 1 wird ein Substrat 2 beschichtet, wobei dass Substrat 2 auf Rollen 3, 3' in der durch den Pfeil angegebenen Richtung transportiert wird. Die Beschichtungskammer 1 ist von einer Umwandung 4 räumlich begrenzt, die auf einem Massepotential 5 liegt.

In der Beschichtungskammer 1 ist eine Kathode 6 angeordnet, 20 auf der im dargestellten Ausführungsbeispiel zwei Targets 7 und 7' angeordnet sind. Die Kathode 6 kann beispielsweise mit einer Wechselspannung beaufschlagt werden und ist hierzu mittels einer elektrischen Zuleitung 8 mit einem Generator verbunden. Der Materialauftrag auf der Oberfläche 15 des 25 2 durch Substrats erfolat Absputtern Beschichtungsmaterials von dem Target 7 sowie dem Target 7'. abgesputterte Material kondensiert dann der auf Oberfläche 15 des Substrats 2.

30

35

5

15

Um von dem Target 7 und dem Target 7' Material abzusputtern, wird in der Beschichtungskammer 1 ein Plasma gezündet. Zum Zünden des Plasmas ist in der Beschichtungskammer 1 ein Sputtergas vorhanden, welches über eine Gaszuführungsöffnung 9 in die Beschichtungskammer 1 eingebracht wird.

Über die Gaszuführungsöffnung 9 ist es außerdem möglich, zusätzlich zu dem Sputtergas eine weitere Verbindung oder ein weiteres Metall in die Beschichtungskammer 1 WO 03/048406 PCT/EP02/13743 5

einzubringen, indem die weitere Verbindung oder das weitere zugeführt wird. die einer Mischkammer 10 An Metall Mischkammer 10 sind eine erste Zuführungsleitung 11 sowie eine zweite Zuführungsleitung 12 angeschlossen, über die das Sputtergas sowie die weitere Verbindung bzw. das weitere Metall der Mischkammer 10 zugeleitet werden. Das Gemisch aus und der weiteren Verbindung, die Sputtergas beschichtendes Gas ist, oder einem verdampften Metall, wird dann qemeinsam über die Gaszuführungsöffnung 9 Beschichtungskammer 1 eingebracht.

5

10

15

20

25

30

35

Um die Beschichtungsrate zu erhöhen, ist auf der von der Kathode 6 abgewandten Seite des Substrats 2 ein Magnetron 13 angeordnet. Das Magnetron 13 erzeugt ein Magnetfeld 14, welches auf der Oberseite direkt über der Oberfläche 15 des Substrats 2 wirkt. Das Magnetfeld 14 bewirkt eine Erhöhung der Plasmadichte über der Oberfläche 15 des Substrats 2. Es hat sich dabei gezeigt, dass die erhöhte Plasmadichte über dem Substrat 2 zu einer Verbesserung der Beschichtungsrate beim Auftragen einer homogenen Schicht auf der Oberfläche 15 des Substrats 2 führt.

Die weitere Verbindung, welche über die Mischkammer 10 mit ist selbst bereits Sputtergas vermischt wird, schichtbildendes Gas. An Stelle einer solchen gasförmigen weitere Verbindung kann der Mischkammer 10 auch ein Aerosol zugeführt werden, welches in der Mischkammer 10 mit dem die wird und ebenfalls über vermischt Sputtergas Gaszuführungsöffnung 9 in die Beschichtungskammer 1 eingebracht wird.

Alternativ zu der dargestellten Ausführungsform, bei dem die der weiteren Verbindung bzw. des Vermischung Metalls mit dem Sputtergas außerhalb der Beschichtungskammer 1 in der Mischkammer 10 erfolgt, kann die Vermischung auch innerhalb der Beschichtungskammer 1 durchgeführt werden. kann auf eine Mischkammer 10 auch vollständig verzichtet werden. Die einzelnen Komponenten werden dann separate Gaszuführungsöffnungen direkt in die über

Beschichtungskammer 1 eingeleitet und vermischen sich dann direkt in der Beschichtungskammer 1.

Ebenfalls nur beispielhaft ist die Darstellung einer Kathode 5 6, auf der zwei Targets 7 und 7' als planare Targets angeordnet sind. Ebenso ist die Verwendung von Rohrkathoden der anderer Systeme zum Durchführen eines PVD-Prozesses denkbar.

10 Es hat sich völlig überraschend gezeigt, daß das erfindungsgemäße Verfahren das Aufbringen einer äußerst homogenen Beschichtung insbesondere auf großflächigen Substraten, wie beispielsweise Scheibenglas, in kürzerer Zeit erlaubt, verglichen mit herkömmlichen Verfahren.

15

20

25

30

35

Das Plasma wird bei dem erfindungsgemäßen Verfahren in der Beschichtungskammer bei konstantem Gasdruck durch eine Gleich- oder Hochfrequenzspannung zwischen Kathode und Anode gezündet. Gemäß einer bevorzugten Weiterentwicklung werden mehrere Kathoden, beispielsweise zwei Kathoden, die als Doppelkathoden ausgebildet sein können, verwendet. Der Gasdruck kann in einem Bereich von 0,1 bis 10 Pa, bevorzugt von 1 bis 5 Pa liegen. Für die Hochfrequenzspannung wird vorzugsweise eine Spannung von etwa 600V sowie eine Frequenz im Bereich von 1 bis 500 kHz.

Die plasmagestützte Beschichtung kann auch im Impulsmodus erfolgen. Beispielsweise kann bei dem erfindungsgemäßen Verfahren das Plasma wie bei dem Plasma-Impuls-PVD-Verfahren gepulst werden.

Bei dem Plasma-Impuls-PVD-Verfahren wird in der Regel bei kontinuierlichem Fluß der Beschichtungsgase die das Plasma anregende elektrische Leistung gepulst zugeführt, wobei sich bei jedem Puls eine dünne Schicht auf dem Substrat bildet.

Dadurch, daß jedem Leistungsimpuls eine Impulspause folgt, können äußerst vorteilhaft auch nicht temperaturstabile Substrate während eines Pulses mit hohen Leistungen

beaufschlagt werden. Beispielsweise erlaubt das Plasma-Impuls-PVD-Verfahren, die Aufbringung von Beschichtungen auf Substrate aus Polymermaterialien, beispielsweise Polymethylmethacrylat, die temperaturempfindlich sind.

5

Gemäß einer bevorzugten Ausführungsform wird das Plasma in einer Doppel-Ionenquelle erzeugt.

Bei den Ionen kann es sich um Ionen des Füllgases oder auch um Ionen des Beschichtungsmaterials handeln. Der Druck kann dabei in einem Bereich von 0,1 bis 10 Pa, bevorzugt in einem Bereich von 1 bis 5 Pa, liegen. Die hochenergetischen Ionen der Doppel-Ionenquelle besitzen vorzugsweise eine Energie von etwa 100 eV bis zu einigen keV.

15

20

25

Gemäß einer weiteren sehr bevorzugten Ausführungsform wird das Plasma mittels eines umgekehrten Magnetrons erzeugt. Magnetron wird im Sinne einem umgekehrten Unter Erfindung verstanden, daß ein Magnetfeld von einem Mangetron erzeugt wird, welches auf der von der zu beschichtenden Oberfläche abgewandten Seite des Substrats angeordnet wird und nicht, wie bei dem Kathodenzerstäubungsverfahren üblich, kathodenseitig hinter dem Targetmaterial. Durch solchermaßen hinter dem Subtrat angeordnetes Magnetron wird auch auf derjenigen Seite des Substrats ein Mangetfeld erzeugt, zu der die zu beschichtende Oberfläche orientiert ist. Damit stellt sich eine erhöhte Plasmadichte auch direkt Substrat ein, die zu einer höheren über dem Beschichtungsrate führt.

30

35

Bei diesem Verfahren ist die Beschichtung ausschließlich der Art des Füllgases. abhängig von Beschichtungskammer ein Inertgas, wie z.B. Argon, zugeführt, findet ein Plasmaätzen des Substrats statt. Erfolgt die Zuführung eines dissoziierbaren Gases oder Gas-Aerosolz.B. metallorganische Verbindungen, wird eine Schicht auf dem Substrat abgeschieden. Der Druck kann dabei in einem Bereich von 0,1 bis 10 Pa, bevorzugt in einem Bereich von 1 bis 5 Pa, liegen.

5

10

Gemäß weiter eine weiter bevorzugten Ausführungsform wird Kathodenzerstäubungsverfahren mit dem CVD-Verfahren kombiniert. Als Sputterkathode wird bevorzugt eine Kathode bzw. werden bevorzugt mehrere Kathoden, beispielsweise eine Doppelkathode oder mehrere Doppelkathoden verwendet, die eine Länge von mehreren Metern, beispielsweise von 1 bis 4m Die Verwendung von Sputterkathoden aufweisen. mit vorgenannten Abmessungen ermöglicht die Bereitstellung eines homogenen Plasmas über die gesamte Beschichtungsbreite von insbesondere großflächigen Substraten wie z.B. Scheibenglas. In diesem homogenen Plasma erfolgt die Beschichtung der Substrate mit hoher Geschwindigkeit.

15 Gemäß einer bevorzugten Weiterbildung der Erfindung werden Wechselfrequenz beaufschlagt, Kathoden mit einer von 1 bis 500 kHz, bevorzugt von 10 bis beispielsweise Abführung von Ladungsträgern eine zu 100kHz, um Beispielsweise garantiert ein gewährleisten. im bipolaren Betrieb 20 Mittelfrequenzverfahren eine im wesentlichen beschichtungsfreie Kathode zur Abführung von und Ladungsträgern somit ein zeitlich Beschichtungsverfahren.

Unter einem Mittelfrequenzverfahren im bipolaren Betrieb ist im Sinne der Erfindung eine Doppelkathodenanordnung zu verstehen, so daß die beiden im Rezipienten befindlichen Kathoden an eine Hochfrequenzspannung gelegt werden. Die Ionen erfahren je in einer Halbwelle eine Beschleunigung zur 30 entsprechenden Kathode an der die Zerstäubung des Targets stattfindet. Diese Methode erlaubt die Herstellung von Schichten insbesondere aus nicht leitendem Material. Für die Hochfrequenzspannung wird dabei vorzugsweise eine Spannung von etwa 600V sowie eine Frequenz im Bereich von 1 bis 500 kHz verwendet.

Gemäß einer bevorzugten Ausführungsform der Erfindung werden als Kathoden herkömmliche Doppelkathoden ohne Magnetfeld,

Magnetron-Doppelkathoden, Doppel-Rohrkathoden, Doppel-Ionenquellen sowie Kombinationen davon verwendet.

Äußerst bevorzugt werden als Kathoden Doppel-Rohrkathoden verwendet, weil die Abscheidung hochisolierender Schichten durch die permanente Zuführung eines unbelegten Targetbereiches ermöglicht wird.

Mit dem erfindungsgemäßen Verfahren lassen sich äußerst 10 vorteilhaft eine oder mehrere dünne Schicht(en) auf insbesondere großflächige Substrate aufbringen. Es hat sich gezeigt, daß die aufgebrachten Schichten sehr homogen sind.

der Erfindung wird unter einer Beschichtung verstanden, daß beim 15 Beschichten beispielsweise bis zu 4m Breite im kompletten Beschichtungszyklus etwa 1000m Länge, über die Breite des Substrats Schichtdickengleichmäßigkeit und damit Farbkonstanz erreicht wird. Die Schichtdickengleichmäßigkeit beträgt dabei weniger als 1%. 20

Die aufgebrachten dünnen Schichten können Schichten aus Metallen, Metalloxiden und/oder Metallnitriden, Halbleitern, Halbleiteroxiden und/oder Halbleiternitriden sein

25

30

35

Es können beispielsweise definierte Schichtaufbauten aus Siliziumoxid, Siliziumnitrid, Titanoxid, und/oder Titannitrid sowie weiterer Schichten auf ein Substrat aufgebracht werden.

und/oder als gasförmige flüssige Bevorzugt werden Lösungen und/oder kolloidal-disperse Verbindungen Metallen und/oder Metallverbindungen folgender Haupt- und Nebengruppen des Periodensystems der Elemente verwendet: Nebengruppen IVb, insbesondere Titan, Zirkonium und Hafnium; insbesondere Vanadium, Niob und Tantal; VIb. Molybdän und Wolfram; Chrom, VIIIb, insbesondere insbesondere Eisen, Kobalt, Nickel, Palladium und Platin; Ib, insbesondere Kupfer, Silber und Gold; IIb, insbesondere

Zink und Cadmium sowie die Hauptgruppen III, insbesondere Aluminium, Gallium und Indium; IV, insbesondere Kohlenstoff, Silizium, Germanium, Zinn und Blei; V, insbesondere Arsen, Antimon und Wismut, sowie VI, insbesondere Selen und Tellur.

5

10

15

Besonders bevorzugt sind gasförmige oder lösliche metallische und/oder metallorganische Verbindungen wie z.B. TiCl₄, GeH₄, Ti[OC₃H₇]₄, Al[OC₂H₅]₃, Al[OC₃H₇]₃, Al[C₅H₇O₂]₃, Ga[C₅H₇O₂]₃, In[C₅H₇O₂]₃, Zn[CH₃]₂, Zn[C₃H₅O₂]₂, Sn[CH₃]₄, Ta[OC₄H₉]₅, Zr[OC₄H₉]₄, Hf[OC₄H₉]₄ oder Mischungen davon.

Zur Aufbringung von Schichten aus Siliziumoxid oder Siliziumnitrid eignen sich insbesondere kolloidal-disperse Lösungen und/oder lösliche Organosilane, wie z.B. SiO₂, SiH₄, Si₂H₆, Si[OC₂H₅]₄ (TEOS), Si[OCH₃]₄ (TMOS), [Si(CH₃)₃]₂ (HMDS), [Si(CH₃)₃]₂O (HMDSO), Si[CH₃]₄ (TMS), [SiO(CH₃)₂]₄, [SiH(CH₃)₂]₂O oder Mischungen davon.

Die vorgenannten kolloidal-dispersen Lösungen werden in für 20 CVD-Verfahren geeigneten Lösungsmitteln wie z.B. Methanol, Ethanol, Propanol, Aceton, Ether, Amide, Ester oder Amine gelöst.

Vor Zuführung der flüssigen Verbindungen und/oder kolloidaldispersen Lösungen der Metallverbindungen oder Metalle in die PVD/CVD-Beschichtungskammer können diese beispielsweise einer Zerstäubervorrichtung oder einem Verdampfer/Vergaser Flüssigkeiten zugeführt werden. In dieser für Vergasungsvorrichtung können verschiedene Verbindungen Verhältnissen unter Bereitstellung bestimmten Trägergases miteinander gemischt werden, um anschließend die Verbindung bzw. das Verbindungsgemisch in die Gasform zu überführen. Das so hergestellte Gas kann dann der PVD/CVD-Beschichtungskammer geeignet zugeführt werden.

35

25

30

Mit dem erfindungsgemäßen Verfahren lassen sich auf einem Substrat eine Schicht oder mehrere übereinander angeordnete Schichten mit genau definierter Dicke, Struktur, Brechungsindex und/oder Zusammensetzung aufbringen.

WO 03/048406

PCT/EP02/13743

Beispielsweise sind folgende definierten Schichten mittels des erfindungsgemäßen Verfahrens herstellbar (n: Brechungsindex):

5

a.) Titanoxid / TiN: $2,1 \le n \le 2,7$

b.) SiO_x / Si_xN_v : $1,3 \le n \le 1,9$

c.) Zinnoxid / Zinnitrid: $1,8 \le n \le 2,1$

d.) Zinkoxid /Zinknitrid: $1,8 \le n \le 2,2$

10

Bei den vorstehend angegebenen beispielhaften Schichten a.) bis d.), die gemäß dem erfindungsgemäßen Verfahren herstellbar sind, können jeweils im Bereich der niedrigen Brechungsindizes hydrophobe Schichten erzeugt werden.

15

Die hydrophobe Oberfläche weisen ein hervorragendes Schmutzenthaftungsverhalten auf und sind folglich sehr einfach zu reinigen bzw. sind selbstreinigend.

Patentansprüche

1. Verfahren zur Aufbringung von einer oder mehreren Schichten auf einem Substrat in einer Vorrichtung mit PVD/CVD-Beschichtungskammer, wobei ein Feststoff wenigstens teilweise physikalisch in die Gasphase überführt und aus der Gasphase auf dem Substrat abgeschieden wird,

dadurch gekennzeichnet,

daß der Gasphase wenigstens eine weitere Verbindung und/oder ein weiteres Metall in flüssiger oder gasförmiger Form zugeführt wird, wobei die wenigstens eine weitere Verbindung und/oder das wenigstens eine weitere Metall wenigstens teilweise mit der Oberfläche des Substrats reagiert.

15 2. Verfahren gemäß Anspruch 1,

dadurch gekennzeichnet,

daß die Überführung des Feststoffes in die Gasphase durch Erhitzen, Kathodenzerstäubung, Magnetron-Sputtern, Elektronen-, Ionen- und/oder Laser-Strahlbeschuß (Laser-Ablation) und Kombinationen davon bewirkt wird.

3. Verfahren gemäß Anspruch 1 oder 2,

dadurch gekennzeichnet,

20

daß die Überführung des Feststoffes in die Gasphase durch 25 Kathodenzerstäubung unter Verwendung eines Sputtergases bewirkt wird, wobei in der Beschichtungskammer der Feststoff an der Kathode und das Substrat an der Anode angeordnet ist und zwischen Kathode und Anode ein Plasma erzeugt wird.

30 4. Verfahren gemäß Anspruch 3,

dadurch gekennzeichnet,

daß in der Beschichtungskammer wenigstens zwei Kathoden angeordnet sind.

35 5. Verfahren gemäß Anspruch 3 oder 4,

dadurch gekennzeichnet,

daß die eine oder mehreren Kathoden mit Wechselfrequenz beaufschlagt werden.

6. Verfahren gemäß Anspruch 4 oder 5,

dadurch gekennzeichnet,

daß die wenigstens zwei Kathoden als rotierende Kathoden,
Doppelkathoden ohne Magnetfeld, Magnetron-Kathoden,

5 Magnetron-Doppelkathoden, Doppel-Rohrkathoden mit oder ohne

Magnetfeld und Kombinationen davon ausgebildet sind.

- 7. Verfahren gemäß einem der Ansprüche 3 bis 6, dadurch gekennzeichnet,
- 10 daß das Plasma in einer Doppel-Ionenquelle erzeugt wird.
 - 8. Verfahren gemäß einem der Ansprüche 3 bis 6, dadurch gekennzeichnet,

daß das Plasma unter Verwendung eines Magnetrons erzeugt 15 wird, das Magnetron auf einer von der zu beschichtenden Oberfläche des Substrats abgewandten Seite angeordnet ist.

9. Verfahren gemäß Anspruch 8,

dadurch gekennzeichnet,

- 20 daß durch das Magnetron direkt über der zu beschichtenden Oberfläche des Substrats eine erhöhte Plasmadichte erzeugt wird.
 - 10. Verfahren gemäß einem der Ansprüche 3 bis 9,
- 25 dadurch gekennzeichnet,

daß die wenigstens eine weitere Verbindung und/oder ein weiteres Metall in dem Sputtergas enthalten ist.

- 11. Verfahren gemäß einem der Ansprüche 1 bis 10,
- 30 dadurch gekennzeichnet,

35

daß die Verbindungen aus der Gruppe von Verbindungen zur Herstellung dünner Schichten aus ein- oder mehrkomponentigen Oxiden, insbesondere Siliziumoxid, Titanoxiden, Chromoxid, Tantaloxiden, Aluminiumoxid, Wolframoxiden, oder aus Metalloxid/Metallnitrid, insbesondere gemischten Titanoxid-Titannitrid, Siliziumoxid-Siliziumnitrid, Metallnitriden, insbesondere Siliziumnitrid, Titannitrid ausgewählt werden.

12. Verfahren gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,

daß die Verbindungen aus der Gruppe von gasförmigen oder löslichen und Metall- oder Metalloxidverbindungen ausgewählt werden.

13. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,

daß die Verbindungen aus der Gruppe von löslichen oder 10 gasförmigen metallorganischen Verbindungen, bevorzugt Organosiloxanen, ausgewählt werden.

14. Beschichtung,

dadurch gekennzeichnet,

- 15 die Beschichtung mit einem Verfahren gemäß einem der Ansprüche 1 bis 13 hergestellt ist.
 - 15. Beschichtung gemäß Anspruch 14, dadurch gekennzeichnet,
- 20 daß die Beschichtung eine hydrophobe Oberfläche aufweist.

Fig. 1

PUB-NO: WO003048406A2

DOCUMENT-IDENTIFIER: WO 3048406 A2

TITLE: COATING METHOD AND COATING

PUBN-DATE: June 12, 2003

INVENTOR-INFORMATION:

NAME	COUNTRY
LANDGRAF, RALF	DE
SCHMITT, MICHAEL	DE
MOENNEKES, JOERG	DE
HAEUSER, KARL	DE
BLESSING, ROLF	DE
PAVIC, DAVORIN	DE
HERLITZE, LOTHAR	DE
HERWIG, WILHELM	DE
BOEWER, REIMUND	DE

ASSIGNEE-INFORMATION:

NAME	COUNTRY
INTERPANE ENTW & BERATUNGSGES	DE
LANDGRAF RALF	DE
SCHMITT MICHAEL	DE
MOENNEKES JOERG	DE
HAEUSER KARL	DE
BLESSING ROLF	DE
PAVIC DAVORIN	DE
HERLITZE LOTHAR	DE
HERWIG WILHELM	DE

BOEWER REIMUND

DE

APPL-NO: EP00213743

APPL-DATE: December 4, 2002

PRIORITY-DATA: DE10159907A (December 6, 2001)

INT-CL (IPC): C23C014/00

EUR-CL (EPC): C23C014/00 , C23C014/22 ,

C23C016/44

ABSTRACT:

CHG DATE=20040306 STATUS=O>The invention relates to a method for applying one or several coats to a substrate in a device comprising a PVD/CVD coating chamber. One solid matter is physically transformed at least in part into a gaseous phase and is applied to the substrate in the gaseous phase. At least one additional compound and/or one additional metal is added to the gaseous phase in liquid or gaseous form, and the at least one additional compound and/or the at least one additional metal reacts with the surface of the substrate. The invention also relates to a coating that is produced according to said method.