시각적 분석 및 베이지안 다층 모형: 학습장애 학생을 위한 단일대상설계 연구

신미경 (Illinois State University 조교수) 박지연 (Eastern Kentucky University 부교수)

Visual Analysis and Bayesian Multilevel Models: Single-Case Design Research for Students with Learning Disabilities

Mikyung Shin (Assistant Professor, Dept. of Special Education) Jiyeon Park (Associate Professor, Dept. of Teaching, Learning, and Educational Leadership)

github.com/mshin77/2025ksse 🍙 mshin77.net

목차

- 학습장애 학생 대상 단일대상 실험설계 동향
- 시각적 분석 특성
- 다층 종단 모형 분석 특성
- 학습장애 학생 수학 중재 연구
- 시각적 분석 연구 결과
- 베이지안 다층 모형 연구결과

단일대상 실험설계 동향

▶ Code

1971년-2009년 학습장애 학생 단일대상 실험설계 동향

▶ Code

- 🚏 3번이상 언급, 최소 0.2 상관관계
- "학습장애" 가장 높은 연결중심성
- "학습장애"와 "읽기" 0.56의 가장 높은 상관관계

Search:					
단어	연결	고유벡터			
learning_disabilities	54	1			
show	2	0.192			
reading	2	0.192			
one	2	0.192			
computer	2	0.192			
program	2	0.192			
child	2	0.192			
studies	2	0.192			
examined	2	0.192			
purpose	2	0.192			

Showing 1 to 10 of 28 entries

First Previous Next Last

2010년-2025년 학습장애 학생 단일대상 실험설계 동향

► Code

- 🚏 3번이상 언급, 최소 0.28 상관관계
- "다층" 가장 높은 연결중심성
- "다층"과 "시각적 분석" 0.42의 높은 상관관계
- "시각적 분석"과 "Tau" 0.34의 상관관계

► Code Search: 단어 ♦ 연결 고

단어	연결	고유벡터
multilevel	58	1
generating	2	0.185
features	2	0.185
visual_analysis	14	0.233
picture	2	0.185
eighth	2	0.043
devices	2	0.185
exchange	2	0.185
improvements	2	0.185
greater	2	0.185

Showing 1 to 10 of 44 entries

First Previous Next Last

시각적 분석을 통한 행동 변화 확인

- 개별 학생(N=1) 또는 소집단을 대상으로 중재를 제공
- 행동의 예측, 검증, 재현 과정을 통하여 내적 타당도를 확인
- 그래프 데이터가 수집되어야 하며, 시각적인 분석이 이루어짐
- 연구설계에 따라서 기초선, 중재, 유지, 일반화 구간 등 설정

▶ Code

다층모형을 통하여 종단자료 분석

- 개인의 행동을 시간에 따라 반복적으로 측정
- 조각별 성장모형을 통하여 구간 간의 행동 변화를 측정
- t 시점의 관측치는 이전 시점의 관측치와 관련있음 (자기상관계수)
- 패널조사 등의 종단 연구와 다르게 집중적이고 빈번하게 데이터를 측정
- 반복측정에서 가까운 시점 간의 상관계수가 먼 시점 간의 상관계수보다 높음

비연속 분할 회귀 모형

• 각 구간마다 조건을 변화하며, 중재를 제공한 후에 학생의 수행 수준이 즉각적으로 변화하고, 중재 구간에서 목표한 행동 방향으로 행동이 증가하거나 감소할 것을 예상함(Center et al, 1985)

(Wilbert, 2025)

학습장애 학생 수학 중재 연구

- 1. 테크놀로지 보조 교수 및 교사의 의사소통 촉진은 중학교 학습장에 학생의 분수 곱셈 시각화 및 문장제 문제풀이 향상에 어떠한 효과를 미치는가? (시각적 분석)
- 2. 문장제 문제 질문 유형(시각화 대 문제해결)은 구간 간(기초선 대 중재, 중재 대 유지) 행동 변화에 어떠한 조절 효과를 보이는가? (베이지안 다층 모형)

Shin, M., & Park, J. (2024). Technology-assisted instruction with teacher prompts on fraction multiplication word problems: A single-case design with visual analysis and Bayesian multilevel modeling. *Assistive Technology*. Advance online publication.

https://doi.org/10.1080/10400435.2024.2415366

웹기반 분수 곱셈 온라인 교수

□웹사이트

Let's Learn How To Multiply Fractions.

다중구성요소 테크놀로지 보조 수학 중재

근거기반 중재 구성 요소

- 웹기반 수학 중재
- 스크립트 기반 교사의 수학 의사소통 촉
 마우스 혹은 스크린 터치를 통하여 조작 진
- 인지 및 메타인지 전략
- 비디오 모델링
- 분수 곱셈 문장제 문제해결력 향상

가상 조작물 활용

- 상호작용적인 시각적 모형
- 가능
- 다양한 시각적 모형 제공
- 즉각적인 피드백 제공
- 다양한 예시의 활용 및 생성

연구방법

- 미국 남동부 지역 중학교
- 리소스 수학 학급(매일 50분씩 수학 수 업 받음)
- 특수교육 교사, 일대일 방식으로 중재
- 연구 참여 포함 기준: 6-8학년 재학, 수학학업성취도(주 시험) 학교수준보다 미달, 수학개별교육프로그램 목표 가짐, 선별 검사 30% 미만

변인	알렉스	빌리	카메론	딜런	
나이	14세	14세	14세	13세	
학년	8학년	8학년	8학년	7학년	
성별	남	남	남	여	
장애	학습장애	학습장애	학습장애	학습장애	
K-TEA-3 수학					
계산	78 (7th)	80 (9th)	73 (4th)	70 (2nd)	
K-TEA-3 수학					
개념 및 응용	72 (3rd)	78 (2nd)	84 (14th)	76 (5th)	
선별 검사	10%	19%	1%	12%	
K-TEA: 카우프만학업성취검사					
표준 점수(백분위)					

시각적 분석 연구결과

</>> Code

- 대상자 간 중다간헐기초선 설계
 는 중재와 목표 수학 행동 간 기
 능적 관계가 있음을 보여주었음
- 중재를 통하여 기초선과 비교했을 때 분수 곱셈 시각화 및 문장
 제 문제풀이에서 모두 향상함
- 시각화: 기초선 대 중재 Tau =
 0.76 ~ 1.00, 중재 대 유지 Tau
 = -0.29 ~ 0.33
- 문장제 문제풀이: 기초선 대 중재
 Tau = 1.00, 중재 대 유지 Tau =
 -0.71 ~ 0.10

베이지안 다층 모형 연구결과

$$egin{aligned} ext{logit}[\pi_{kijl}(Y>k)] &= \lnigg(rac{\pi\left(Y_{ijl}>k
ight)}{\pi\left(Y_{ijl}\leq k
ight)}igg) \ &= -lpha_k + (eta_{0jl} + eta_{1jl} \left(t - T_{1jl}
ight) \ &+ eta_{2jl} \left(t > T_{2jl}
ight) + eta_{3jl} \left(t - T_{2jl}
ight) \ & imes \left(t > T_{2jl}
ight) + eta_{4jl} \left(t > T_{3jl}
ight) \ &+ eta_{5jl} \left(t - T_{3jl}
ight) imes \left(t > T_{3jl}
ight), \end{aligned}$$

- $T_{1jl}, T_{2jl}, T_{3jl} =$ 기초선, 중재, 유지 구간 시작점
- $(t > T_{2il}), (t > T_{3il}) =$ 거짓(0) 또는 참(1)
- $eta_{0jl} \sim eta_{5jl}$: 로짓 회귀 계수
- 기초선 → 중재 → 유지 수준 및 추세 변화
- 학습장애 학생들은 분수 곱셈 문장제 문제해결 과제에서 시각화 문제에서보다 더 높은 유지 효과를 나타냈으며, 수준(logit = 2.6) 및 추세(logit = 0.22) 변화로 재확인함