International Rectifier

IRF7311

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N-Channel MOSFET
- Surface Mount
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	20	- v	
Gate-Source Voltage		V _{GS}	± 12		
Continuous Drain Current®	$T_A = 25$ °C	- 1_	6.6		
Continuous Diam Current	$T_A = 70$ °C	- I _D	5.3	- A	
Pulsed Drain Current		I _{DM}	26		
Continuous Source Current (Diode Conduction)		Is	2.5		
Maximum Power Dissipation ®	$T_A = 25$ °C	- P _D	2.0	W	
	$T_A = 70$ °C	LD.	1.3		
Single Pulse Avalanche Energy ②		E _{AS}	100	mJ	
Avalanche Current		I _{AR}	4.1	Α	
Repetitive Avalanche Energy		E _{AR}	0.20	mJ	
Peak Diode Recovery dv/dt ③		dv/dt	5.0	V/ ns	
Junction and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to + 150	℃	

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient®	$R_{\theta JA}$	62.5	°C/W

IRF7311

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.027		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.023	0.029	Ω	$V_{GS} = 4.5V, I_D = 6.0A$ ④	
			0.030	0.046		$V_{GS} = 2.7V, I_D = 5.2A \oplus$	
V _{GS(th)}	Gate Threshold Voltage	0.7			V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	
9 _{fs}	Forward Transconductance		20		S	$V_{DS} = 10V, I_{D} = 6.0A$	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 16V, V_{GS} = 0V$	
				5.0		$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
lass	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 12V$	
I _{GSS}	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -12V$	
Qg	Total Gate Charge		18	27		$I_D = 6.0A$	
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = 10V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge		6.2	9.3		V_{GS} = 4.5V, See Fig. 10 \oplus	
t _{d(on)}	Turn-On Delay Time		8.1	12		V _{DD} = 10V	
t _r	Rise Time		17	25	ne	$I_{D} = 1.0A$	
t _{d(off)}	Turn-Off Delay Time		38	57	ns	$R_G = 6.0\Omega$	
t _f	Fall Time		31	47		$R_D = 10\Omega \ \oplus$	
C _{iss}	Input Capacitance		900			V _{GS} = 0V	
Coss	Output Capacitance		430		pF	V _{DS} = 15V	
C _{rss}	Reverse Transfer Capacitance		200			f = 1.0MHz, See Fig. 9	
		•					

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			2.5		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			26	Α	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage		0.72	1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		52	77	ns	$T_J = 25$ °C, $I_F = 1.7A$
Q _{rr}	Reverse RecoveryCharge		58	86	nC	di/dt = 100A/µs ③

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\label{eq:target} \begin{tabular}{ll} \begin$
- $\label{eq:loss} \begin{array}{l} \text{ } \\ \text{ } \\$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Surface mounted on 1 in square Cu board

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

IRF7311 International IOR Rectifier

0.032

 R_{DS} (on) , Drain-to-Source On Resistance (Ω) V _{GS} = 2.7V 0.028 0.024 V_{GS} = 4.5V 0.020 10 30 I_D, Drain Current (A)

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 8. Maximum Avalanche Energy Vs. Drain Current

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Details

INCHES MILLIMETERS MIN MAX MIN MAX 1.75 .0532 .0688 1.35 Α .0040 0.25 b .013 .020 0.33 0.51 .0075 .0098 0.19 0.25 С D .189 4.80 5.00 .1497 .1574 3.80 4.00 .050 BASIC 1.27 BASIC 0.635 BASIC e 1 .025 BASIC Н .2284 5.80 6.20 Κ .0099 .0196 0.25 0.50 .016 .050 0.40 1.27 L у

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903