FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2016. október 27. 14:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma				
Tisztázati				
Piszkozati				

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1612 2 / 16 2016. október 27.

Fizika — emelt szint	Azonosító jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

		liasz betűjetet a jobb otaátt jener negyzetbe! Ha szüksegest kat, rajzokat készíthet a feladatlapon.	nek tarija, kiseoo
1.	robba lefelé	függőlegesen fellőtt lövedék pályája tetején két, egyforma an szét, melyek közül az egyik függőlegesen fölfelé, a másik p indul el. Melyik darab érkezik le nagyobb sebességgel a földre gellenállástól eltekinthetünk.)	edig függőlegesen
	A) B) C) D)	Amelyik fölfelé indult el. Amelyik lefelé indult el. Egyforma sebességgel érkeznek le. A megadott adatok alapján nem lehet eldönteni.	
			2 pont
2.	módo közül	dugattyús hengerbe zárt gázt először izobár módon melegítü on hűtünk. Összehasonlítjuk a gáz kezdeti és végállapotát. A melyik lesz biztosan igaz?	
	A) B) C) D)	A gáz nyomása csökkent. A gáz sűrűsége nőtt. A gáz hőmérséklete csökkent. A gáz térfogata csökkent.	
			2 pont
3.		lassulnak le termikus sebességűre egy atomerőmű aktív zóná orán keletkező gyors neutronok?	jában a maghasa-
	A) B) C) D)	A neutronok közt ható magerők lassítják le őket. Az aktív zónában lévő elektromágneses terek lassítják le őket. Atomokkal való ütközések során lassulnak le. A szabályozórudak lassítják le őket.	
			2 pont

4. Egy függőleges torony h_1 és h_2 magasan lévő ablakából ugyanakkora, vízszintes kezdősebességgel elhajítunk egyegy követ. Az egyik a torony lábától x_1 , a másik x_2 távolságban ér talajt. Mekkora a $\frac{h_1}{h_2}$ arány, ha $\frac{x_1}{x_2} = 2$? (A légellenállástól tekintsünk el!)

- A) $\frac{h_1}{h} = 2$
- **B)** $\frac{h_1}{h_2} = 4$
- C) $\frac{h_1}{h_2} = \sqrt{2}$

2 pont

5. Válassza ki a mondat helyes befejezését! Villámlás esetén egy Faraday-kalitkában azért vagyunk biztonságban, mert benne ...

A kép forrása: https://tr.wikipedia.org/wiki/Faraday_kafesi

- A) az elektromos térerősség nulla.
- **B)** az elektromos potenciál nulla.
- C) az elektromos térerősség és a potenciál is nulla.

- 6. A definíció szerint az egy atomi tömegegység (1 AU) a ¹²₆C szénatom tömegének $\frac{1}{12}$ része. Melyik állítás a helyes?
 - $1 \text{ AU} = \frac{6m_{\text{proton}} + 6m_{\text{neutron}} + 6m_{\text{elektron}}}{6m_{\text{elektron}}}$

12

 $1 \text{ AU} < \frac{6m_{\text{proton}} + 6m_{\text{neutron}} + 6m_{\text{elektron}}}{1 \text{ Tomega}}$ a tömegdefektus miatt. B)

C) $1 \text{ AU} > \frac{6m_{\text{proton}} + 6m_{\text{neutron}} + 6m_{\text{elektron}}}{6m_{\text{elektron}}}$ az elektronok mozgása miatt.

2 pont

- 7. Keringhet-e mesterséges hold (hajtómű nélküli űreszköz) a Föld körül, a Hold és Föld közötti pályán úgy, hogy mozgása során folyamatosan a Hold és Föld által meghatározott egyenesen van? (A Hold gravitációs hatásától tekintsünk el!)
 - Ez lehetséges. Csak az a fontos, hogy a mesterséges hold keringési ideje egyenlő legyen a Hold keringési idejével.
 - Ez nem lehetséges, mert ilyen pálya csak a Holdnál távolabb található, B) a Hold és a Föld között nem.
 - Ez nem lehetséges, mert a Hold keringési idejével csak Föld-Hold távolságnyira keringhet a műhold a Föld körül.

2 pont

8. Két teljesen egyforma (azonos hosszúságú és rugóállandójú), elhanyagolható súlyú rugó közül az egyikre egy m tömegű testet akasztunk, a másikra pedig egy csigán átvetett fonál segítségével két darab m tömegű testet az ábra szerint. Melyik rugó nyúlik meg jobban?

- A) Az első.
- B) A második.
- C) Egyforma a két rugó megnyúlása.

9. Két, egymással kémiai reakcióba nem lépő anyagot keverünk össze: az egyik m_1 tömegű, fajhője c_1 , a másik tömege m_2 , fajhője c_2 . Hogyan számíthatjuk ki a keverék c fajhőjét?

A)
$$c = \frac{c_1 + c_2}{2}$$

$$\mathbf{B)} \quad c = \sqrt{c_1 \cdot c_2}$$

C)
$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2}$$

D)
$$c = \frac{c_1 \cdot m_1 + c_2 \cdot m_2}{m_1 + m_2}$$

2 pont

10. Egy egyenletesen haladó vonatszerelvény hátsó kocsija leválik a szerelvényről, és egyenletesen lassulva 100 méter úton megáll. Eközben a vonat változatlan sebességgel megy tovább. Mekkora távolságra lesz a szerelvénytől a kocsi a megállás pillanatában?

- **A)** 50 m-re.
- **B)** 100 m-re.
- C) 150 m-re.
- **D)** 200 m-re.

11. A mellékelt grafikon egy izzón átfolyó áram erősségét mutatja az izzóra jutó feszültség függvényében. Mit állíthatunk az izzó ellenállásáról a grafikon alapján?

A) Az izzónak nincs ellenállása, hiszen a feszültség és az áramerősség nem egyenesen arányos egymással.

- B) Az izzó ellenállása állandó.
- C) Az izzó ellenállása a feszültséggel csökken.
- D) Az izzó ellenállása a feszültséggel nő.

írásbeli vizsga 1612

Fizika	— eme	1t	szint

Azonosító								
jel:								

12. Egy körfolyamat során egy gáz hőt vesz fel (Q_{fel}) és hőt ad le (Q_{le}) . Egy teljes ciklus alatt összesen 2400 J munkát végez a környezetén. Mit mondhatunk az egy ciklus alatt felvett hőről?

- **A)** $Q_{fel} < 2400 \text{ J}.$
- **B)** $Q_{fel} = 2400 \text{ J}.$
- C) $Q_{fel} > 2400 \text{ J}.$
- **D)** A felvett hőről nem tehetünk egyértelmű állítást.

13. Milyen irányú a mágneses indukció vektora a rúdmágnes belsejében?

- A) Az északi pólus felől a déli felé mutat.
- **B)** A déli pólus felől az északi pólus felé mutat.
- C) Nincs a rúdmágnes belsejében mágneses indukció, hiszen a fém belsejében az elektromos térerősség nulla.
- **D)** A mágneses tér iránya merőleges a két pólust összekötő tengelyre.

14. Egy gáztartályban 10 perces felezési idejű ¹³N izotópot tartalmazó gázelegy van. A keletkező bomlástermék gáz halmazállapotú és stabil. A gázelegy aktivitása éppen A₀, amikor a tartály falán egy kis lyuk keletkezik, és szivárogni kezd belőle a gáz. 20 perc múlva a nyomás a felére esik a tartályban, miközben a hőmérséklet állandó marad. Mekkora lesz a tartályban lévő gáz aktivitása a kilyukadás után 20 perccel?

- **A)** $A_0/2$
- **B)** $A_0/4$
- **C)** $A_0/8$
- **D)** $A_0/16$

15. Egy szögtükörre (két, egymással α szöget bezáró síktükörre) fénysugár esik, mely kétszer visszaverődve elhagyja a szögtükröt. Az alábbiak közül milyen szög esetében lehetséges, hogy a beeső és kilépő fénysugár metszi egymást?

- A) $\alpha = 60^{\circ}$
- **B)** $\alpha = 90^{\circ}$
- C) $\alpha = 120^{\circ}$
- **D)** Egyik sem, a szögtükörről a fénysugár mindig önmagával párhuzamosan verődik vissza.

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet, és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

Radioaktív bomlástörvény, aktivitás

"Az előbb leírt kísérletek közül néhányat febr. 26-án szerdán és febr. 27-én csütörtökön készítettem elő. De mivel ezeken a napokon a nap csak időnként sütött ki, nem végeztem el a kísérletet, amelyet előkészítettem, hanem visszatettem a lemeztartót egy sötét fiókba, rajtuk hagyva az uránsót; és minthogy a nap a következő napokon sem sütött ki, márc. 1-én előhívtam a fényképezőlemezeket, azt várva, hogy nagyon gyönge képet fogok kapni. Várakozásommal ellentétben a sziluettek igen nagy intenzitással jelentkeztek."

Becquerel 1896-os cikkének részlete Simonyi Károly: A fizika kultúrtörténete c. könyvében

Henri Becquerel (1852-1908)

Mutassa be és értelmezze a radioaktív bomlástörvényt! Ismertesse a felezési idő fogalmát! Mutassa be a bomlástörvény statisztikus jellegét a következő két kérdés alapján: Hogyan érvényesül a bomlási törvény egy, csupán néhány atomból álló anyagminta esetén? Létezik-e olyan módszer, amellyel megjósolhatjuk, hogy egy általunk kiválasztott radioaktív atommag mikor fog elbomlani, illetve hogy a következő pillanatban az általunk megfigyelt minta mely atommagjai fognak elbomlani? Mit nevezünk egy radioaktív anyagminta aktivitásának? Hogyan változik az anyagminta aktivitása az időben? Mutasson be a gyakorlati életből olyan példát, amikor egy anyagminta aktivitásából vonnak le következtetéseket! Milyen mérőeszköz teszi lehetővé egy anyagminta aktivitásának mérését? Mutassa be az eszköz felépítését egy ábra segítségével, és ismertesse a működését!

írásbeli vizsga 1612 9 / 16 2016. október 27.

Holdfogyatkozás

"Holdfogyatkozás származik mindannyiszor, valahányszor a hold a napra és földre nézve olyan helyzetbe jő, hogy az utolsónak árnyéka a holdra essék. A holdnak a földtőli középtávola, mint tudva van, 60 földátmérő, ha tehát a földnek árnyéke a holdnál tovább ér, ennek általa be kell boríttatnia."

Ismertesse a holdfogyatkozás jelenségét! Hogyan következtethetünk a Föld gömb alakjára a holdfogyatkozás megfigyeléséből? Mi a különbség a holdfázisok és a holdfogyatkozás jelensége között? A holdfogyatkozáskor a sötét és a világos részt elválasztó vonal a holdkorongon nem éles, hanem elmosódott a határ. Hogyan hozható ez a tapasztalat kapcsolatba a Föld légkörével? Mit jelent az, hogy a holdfogyatkozás teljes, illetve részleges? Milyen holdfázisban figyelhetünk meg holdfogyatkozást? Miért nincs minden hónapban holdfogyatkozás? A napfogyatkozást csak a Föld bizonyos területeiről figyelhetjük meg. Mit állíthatunk a holdfogyatkozásról: a Föld mely területeiről látható? Válaszait indokolja, szükség esetén készítsen ábrát!

Az ideális gázok és a gázmodell

"A szerző a gázok tulajdonságait, már ami a hőt és a rugalmasságot illeti, egy különös elméletből vezeti le, mely a hőt úgy tekinti, mint ami az anyag részecskéinek kicsi, de nagyon gyors mozgásából áll. Úgy képzeli, hogy a gáz atomjai, amelyek teljesen elasztikusak, állandó mozgásban vannak minden irányba…"

J. Waterston cikkének részlete (~ 1840) Simonyi Károly: A fizika kultúrtörténete c. könyvéből

Ismertesse a légnemű anyag legfontosabb tulajdonságait! Mutassa be, hogy milyen makroszkopikus mennyiségekkel jellemezhetjük fizikai szempontból egy gáz állapotát! Milyen matematikai kapcsolat áll fenn ezen mennyiségek között? Az ideális gázok részecskemodellje alkalmas a makroszkopikus mennyiségek mikroszkopikus értelmezésére. Ismertesse a modell feltevéseit! Mutassa be, hogy az egyes állapotjelzőket hogyan értelmezhetjük a részecskemodell alapján! (Nem szükséges levezetéseket ismertetnie, elegendő a végeredmény bemutatása.) Egy állandó hőmérsékleten tartott, állandó térfogatú tartályban tárolt gáz tömegét megkétszerezzük. Ekkor megváltozik a gáz nyomása. Hogyan értelmezhetjük a nyomásváltozást a modell alapján? Egy másik, dugattyúval elzárt tartályban állandó nyomás mellett melegítjük a gázt. Ekkor a gáz térfogata megnő. Miért kell megnövekednie a térfogatnak, hogy a nyomás állandó maradhasson? Értelmezze a részecskemodell alapján!

írásbeli vizsga 1612 10 / 16 2016. október 27.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

írásbeli vizsga 1612 11 / 16 2016. október 27.

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy M=12 kg tömegű, l=20 cm hosszú tégla egy L=2 m hosszú asztal lapján éppen középen helyezkedik el a mellékelt ábrán látható módon. A téglához mindkét oldalról csigán átvetett fonalat rögzítünk, amelyek végén mindkét oldalon 4-4 db, m=1 kg tömegű test függ. A tégla és az asztallap között a csúszási és a tapadási súrlódási együttható megegyezik, értéke $\mu=0,2$. A fonalak és a csigák ideálisnak tekinthetők.

- a) Legkevesebb hány testet kell áthelyeznünk a bal oldali kötél végéről a jobb oldali kötélre, hogy a test elinduljon?
- b) Mekkora munkát végzünk, miközben az eredeti állapotból kiindulva, a bal oldali kötelet húzva a tégla elér az asztallap széléig?

$$(g = 9.8 \frac{\text{m}}{\text{s}^2})$$

a)	b)	Összesen				
6 pont	4 pont	10 pont				

2. Egy hőszigetelt tartályt egy könnyen mozgó, hőszigetelő dugattyú oszt két részre. A hőmérséklet kezdetben mindkét térrészben 20 °C. A bal oldali tárolóban 0,63 g oxigéngáz van, térfogata kezdetben 0,5 liter, a jobb oldali részben hélium található, amelynek kezdeti térfogata szintén 0,5 liter.

- a) Határozza meg az oxigén nyomását!
- b) Határozza meg a hélium tömegét!
- c) Mennyi lesz a két térrész térfogatának aránya, ha a héliumot 120 °C-ra melegítjük, miközben az oxigén hőmérsékletét változatlanul hagyjuk?

$$(R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}, \text{ az oxigén moláris tömege } M_{O_2} = 32 \text{ g/mol}, \text{ a héliumé } M_{He} = 4 \text{ g/mol}.)$$

a)	b)	c)	Összesen
3 pont	3 pont	7 pont	13 pont

írásbeli vizsga 1612 13 / 16 2016. október 27.

- 3. Az alábbi sorozatfelvételt egy földi megfigyelő készítette. A képen a napkorong előtt elhaladó Nemzetközi Űrállomást (International Space Station, ISS) figyelhetjük meg. Az expozíciók 0,1 másodpercenként követték egymást. Az eredeti felvételre centiméterenként függőleges vonalakat rajzoltunk.
 - a) Határozza meg az ISS keringési sebességét, és állapítsa meg, hogy a felvételen milyen mértékben kicsinyítették az ISS pályáját! Tudjuk, hogy a Föld tömege 5,97·10²⁴kg, a Föld sugara 6370 km, az ISS a Föld felszínétől 360 km távolságban, körpályán kering.
 - b) Állapítsa meg a Nap kicsinyítésének mértékét a felvételen, ha tudjuk, hogy a Nap átmérője 1,39 · 10⁶ km!
 - c) Magyarázza meg, hogy a fényképen miért eltérő a két objektum kicsinyítésének mértéke!

$$(\gamma = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2})$$

a)	b)	c)	Összesen
9 pont	3 pont	2 pont	14 pont

írásbeli vizsga 1612 14 / 16 2016. október 27.

- 4. Egy rezgőkör egy 100 nF kapacitású kondenzátorból és egy vasmaggal ellátott tekercsből áll. A rezgőkörről oszcilloszkóppal készült felvétel a létrejött rezgést mutatja. Az ábrán egy vízszintes beosztás 100 μs időt jelent (azaz egy rácsvonalköz 500 μs-ot).
 - a) Az ábra segítségével állapítsa meg a rendszer sajátfrekvenciáját!
 - b) Számítsa ki a tekercs induktivitását!
 - c) Hogyan változik meg a rendszer sajátfrekvenciája, ha kivesszük a vasmagot a tekercsből? Válaszát indokolja!

a)	b)	c)	Összesen			
4 pont	4 pont	2 pont	10 pont			

írásbeli vizsga 1612 15 / 16 2016. október 27.

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	30	
II. Esszé: tartalom	18	
II. Esszé: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

dátum	javító tanár

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok	_	

dátum	dátum		
javító tanár	jegyző		