Analysis of multivariate recurrent event data with timedependent covariates and informative censoring

Xingqiu Zhao^{1,*}, Li Liu², Yanyan Liu² and Wei Xu³

¹Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

Supplementary Information

For sake of convenience, let $\sum_{i < l}$ stand for $\sum_{i=1}^n \sum_{l=i+1}^n$ and $\sum_{i < l_1 < l_2}$ stand for $\sum_{i=1}^n \sum_{l=i+1}^n \sum_{l=i+1}^n \sum_{l=i+1}^n$

Proof of Theorem 1

Since $-\log(1+\rho_{ij,lj}(T_{ijk},T_{ljs})'\beta)$ is the log-likelihood of T_{ijk} and T_{ljs} conditional on

$$\{(\xi_{i0}, C_{ij}, Z_{ij}, m_{ij}, \mathcal{X}_{ij}(C_{ij})), (C_{lj}, Z_{lj}, m_{lj}, \mathcal{X}_{lj}(C_{lj}))\}$$

and the order statistics of T_{ijk} and T_{ljs} , it follows that $-\log(1 + \rho_{ij,lj}(T_{ijk}, T_{ljs})'\beta)$ achieves its maximum at the true parameter value β_0 . By the conditional Kullback-Leibler information inequality (Andersen, 1970), the maximum pairwise pseudolikelihood estimator $\hat{\beta}$ is consistent.

Next, we derive the asymptotic normality of $\hat{\beta}$. Applying Taylor expansion to $l(\beta)$ gives

$$\sqrt{n}(\hat{\beta} - \beta_0) = (-\partial l(\beta_0)/\partial \beta_0)^{-1} \cdot \sqrt{n}l(\beta_0) + o_p(1), \tag{1}$$

²School of Mathematics and Statistics, Wuhan University, Wuhan, China

³Dalla Lana School of Public Health, University of Toronto, Toronto, Canada

^{*}Corresponding author: e-mail: xingqiu.zhao@polyu.edu.hk, Phone: +852-2766-6921, Fax: +852-2362-9045

where

$$\frac{\partial l(\beta)}{\partial \beta} = \frac{1}{\binom{n}{2}} \sum_{i < l} \frac{\partial H(D_i, D_l; \beta)}{\partial \beta}$$

$$= \frac{1}{\binom{n}{2}} \sum_{i < l} \sum_{i = 1}^{J} \iint_{0}^{C_{ij} \wedge C_{lj}} \frac{\exp\{\rho_{ij,lj}(t, u)'\beta\}}{(1 + \exp\{\rho_{ij,lj}(t, u)'\beta\})^2} \rho_{ij,lj}^2(t, u) dN_{ij}(t) dN_{lj}(u)$$

is also a U-statistic. It is easy to show that $\sqrt{n}l(\beta_0)$ converges weakly to a normal distribution with mean 0 and variance covariance $V_1(\beta_0)$, and $\partial l(\beta_0)/\partial \beta_0$ converges almost surely to $V_2(\beta_0)$. Hence, Theorem 1 follows from (1).

Proof of Lemma 1

For any $u \in [0, \tau]$ and d = 0, 1, define

$$\tilde{Q}_{0j}^d(u;\beta) = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^{m_{ij}} I(T_{ijk} \le u) \exp(-X_{ij}(T_{ijk})'\beta) X_{ij}(T_{ijk})^d$$
, and

$$\tilde{R}_{0j}^d(u;\beta) = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^{m_{ij}} I(T_{ijk} \le u \le C_{ij}) \exp\{-X_{ij}(T_{ijk})'\beta\} X_{ij}(T_{ijk})^d.$$

It is easy to see that

$$\int_{t}^{\tau} \frac{dQ_{0j}^{0}(u)}{R_{0j}^{0}(u)} = \int_{t}^{\tau} \frac{d\Lambda_{0j}(u)}{\Lambda_{0j}(u)} = -\ln\left(\frac{\Lambda_{0j}(t)}{\Lambda_{0j}(\tau)}\right) = -\ln F_{0j}(t).$$

By using similar arguments used in the proof of Lemma 1 of Huang, Qin and Wang (2010), we have for each $t \in [c^*, \tau]$,

$$\hat{F}_{0j}(t) = \exp\left(-\int_{t}^{\tau} \frac{d\tilde{Q}_{0j}^{0}(u;\hat{\beta})}{\tilde{R}_{0j}^{0}(u;\hat{\beta})}\right) + o_{p}(n^{-1/2}),$$

and

$$\int_{t}^{\tau} \frac{d\tilde{Q}_{0j}^{0}(u;\hat{\beta})}{\tilde{R}_{0j}^{0}(u;\hat{\beta})} - \int_{t}^{\tau} \frac{dQ_{0j}^{0}(u)}{R_{0j}^{0}(u)} \\
= \frac{1}{\binom{n}{2}} \sum_{i \leq l} \zeta_{0j}(D_{i}, D_{l}; t, \beta_{0}) + \frac{1}{n} \sum_{i=1}^{n} \psi_{0j}(D_{i}; t, \beta_{0}) + o_{p}(n^{-1/2}).$$

Note that $\frac{1}{\binom{n}{2}} \sum_{i < l} \kappa_{0j}(D_i, D_l; t, \beta)$ is a U-statistic. Similar to the proof of Theorem 1, for each fixed $t \in [c^*, \tau]$, $\sqrt{n} \left(\int_t^{\tau} \frac{d\tilde{Q}_{0j}^0(u; \hat{\beta})}{\tilde{R}_{0j}^0(u; \hat{\beta})} - \int_t^{\tau} \frac{dQ_{0j}^0(u)}{R_{0j}^0(u)}, j = 1, \ldots, J \right)'$ converges weakly to a normal distribution with mean 0 and variance $4E[\kappa_0(D_1, D_2; t, \beta_0) \kappa_0(D_1, D_3; t, \beta_0)']$, where

$$\kappa_0(D_i, D_l; t, \beta_0) = (\kappa_{0j}(D_i, D_l; t, \beta_0), j = 1, \dots, J)'$$

Applying the delta method, we have

$$\hat{F}_{0j}(t) - F_{0j}(t) = -\frac{1}{\binom{n}{2}} \sum_{i < l} \kappa_{0j}(D_i, D_l; t, \beta_0) F_{0j}(t) + o_p(n^{-1/2}),$$

and for fixed $t \in (\tau_0, \tau]$, $\sqrt{n}(\hat{F}_{0j}(t) - F_{0j}(t), j = 1, ..., J)'$ converges weakly to a normal distribution with mean 0 and variance $\Sigma_{\kappa}(t)$.

Proof of Theorem 2

Following the strong consistency of $\hat{\beta}$ and $\hat{F}_{0j}(\cdot)$, we have

$$M_{ij}(\hat{\beta}, \hat{F}_{0j}) = \left[\frac{m_{ij}}{\int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\hat{\beta}\} d\hat{F}_{0j}(u)} - \frac{m_{ij}}{\int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\beta_{0}\} dF_{0j}(u)} \right] + \frac{m_{ij}}{\int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\beta_{0}\} dF_{0j}(u)}$$

$$= \frac{-m_{ij}}{\left\{ \int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\beta_{0}\} dF_{0j}(u) \right\}^{2}} \left[\int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\beta_{0}\} X_{ij}(u)'dF_{0j}(u)(\hat{\beta} - \beta_{0}) + \int_{0}^{C_{ij}} \exp\{X_{ij}(u)'\beta_{0}\} d\{\hat{F}_{0j}(u) - F_{0j}(u)\} \right] + M_{ij}(\beta_{0}, F_{0j}) + o_{p}(n^{-1/2}).$$
 (2)

We first show the asymptotic properties of $\hat{\eta}$. From the proofs of Theorem 1 and Lemma 1, it is esay to see that

$$\frac{1}{n} \sum_{i=1}^{n} Z_i^* M_i(\hat{\eta}; \hat{\beta}, \hat{F}) = \frac{1}{\binom{n}{2}} \sum_{i < l} \iota(D_i, D_l) + o_p(n^{-1/2}),$$

and $\frac{1}{\binom{n}{2}} \sum_{i < l} \iota(D_i, D_l)$ is a U-statistics. Similar to the arguments as that of the proof in Theorem 1, we have $\sqrt{n}(\hat{\eta} - \eta)$ converges to the multivariate normal distribution with mean

0 and variance-covariance matrix Σ_{η} . Hence, it follows that $\sqrt{n}(\hat{\gamma} - \gamma_0)$ converges weakly to a normal distribution with mean 0 and variance Σ_{γ} .

To derive the asymptotic normality of $\sqrt{n}(\hat{\Lambda}_{0j}(t) - \Lambda_{0j}(t), j = 1, \dots, J)'$, we write

$$\sqrt{n}(\hat{\Lambda}_{0j}(t) - \Lambda_{0j}(t)) = \sqrt{n}F_{0j}(t)\exp(\eta_j)\frac{1}{\binom{n}{2}}\sum_{i < l} \{f_{0j}(D_i, D_l) + \kappa_{0j}(D_i, D_l; t, \beta_0)\} + o_p(1).$$

Hence, by the central limit theorem for U-statistics, $\sqrt{n}(\hat{\Lambda}_{0j}(t) - \Lambda_{0j}(t), j = 1, \dots, J)'$ converges weakly to the multivariate normal distribution with mean 0 and covariance $\Sigma_{\Lambda}(t)$.

Proof of Theorem 3

Now we turn to the asymptotic properties of $\tilde{\eta}$. By using (2), we can get

$$\frac{1}{n} \sum_{i=1}^{n} Z_i^* \tilde{M}_i(\tilde{\eta}; \hat{\beta}, \hat{F}) = \frac{1}{\binom{n}{2}} \sum_{i < l} \tilde{\iota}(D_i, D_l) + o(n^{-1/2}).$$

It can be verified that $\frac{1}{\binom{n}{2}} \sum_{i \neq l} \tilde{\iota}(D_i, D_l)$ is a U-statistics. Thus, by the same arguments as the proof of Theorem 2, we can obtain the results of Theorem 3.

References

Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. *Journal of the Royal Statistical Society, Series B* **32**, 283-301.

Huang, C. Y., Qin, J. and Wang, M. C. (2010). Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring. *Biometrics* **66**, 39-49.

Table 1: Simulation results based on Schaubel and Cai's method and the proposed method with n=200, where censoring time $C_{ij}=\min(10,C_{ij}^1)$ with $C_{ij}^1\sim E(1/10)$ if $Z_{ij}=1,C_{ij}^1|(\xi_{i0},\mathcal{X}_{ij},Z_{ij})\sim E(1/(6\xi_{i0}+4))$ if $Z_{ij}=0$

			$ar{eta}$	$ar{eta}$		$ar{\gamma}$		\hat{eta}		$\hat{\gamma}$	
β_0	γ_0	σ	Bias	SSE	Bias	SSE	Bias	SSE	Bias	SSE	
0	0.5	1	0.004	0.128	-0.186	0.136	-0.002	0.107	-0.029	0.147	
		0.7	0.003	0.103	-0.108	0.103	0.007	0.107	-0.023	0.124	
		0.5	-0.001	0.093	-0.057	0.084	0.000	0.106	-0.016	0.106	
		0.3	-0.002	0.075	-0.021	0.068	-0.002	0.113	0.001	0.105	
0.2	0.5	1	-0.003	0.130	-0.200	0.135	-0.010	0.114	-0.035	0.152	
		0.7	0.001	0.103	-0.115	0.103	0.007	0.113	-0.024	0.125	
		0.5	-0.001	0.093	-0.061	0.082	0.002	0.109	-0.018	0.113	
		0.3	-0.002	0.072	-0.022	0.066	-0.001	0.117	0.001	0.106	
0.2	-0.3	1	0.002	0.137	-0.190	0.143	-0.004	0.136	-0.026	0.164	
		0.7	0.001	0.109	-0.115	0.110	0.008	0.133	-0.022	0.138	
		0.5	0.003	0.101	-0.061	0.092	0.007	0.138	-0.014	0.130	
		0.3	0.001	0.081	-0.025	0.076	0.003	0.141	-0.004	0.121	

Note: $\bar{\beta}$ and $\bar{\gamma}$ represent the estimates of regression parameters β and γ in Schaubel and Cai (2005). SSE represents the sample standard error of estimates.

Table 2: Simulation results based on Schaubel and Cai's method and the proposed method with n=200, where censoring time $C_{ij}=\min(10,C_{ij}^1)$ with $C_{ij}^1|(\xi_{i0},\mathcal{X}_{ij},Z_{ij})\sim E(1/(6\xi_{i0}+4))$ if $Z_{ij}=1$ or $X_{ij}\leq 0.5,\ C_{ij}^1\sim E(1/10)$ otherwise

			$ar{eta}$		$ar{\gamma}$		\hat{eta}		$\hat{\gamma}$	
β_0	γ_0	σ	Bias	SSE	Bias	SSE	Bias	SSE	Bias	SSE
0	0.5	1	-0.067	0.123	0.093	0.132	-0.002	0.106	0.008	0.148
		0.7	-0.038	0.098	0.048	0.101	0.009	0.104	0.001	0.125
		0.5	-0.022	0.086	0.028	0.084	-0.002	0.103	0.001	0.109
		0.3	-0.011	0.073	0.011	0.070	-0.002	0.112	0.004	0.096
0.2	0.5	1	-0.078	0.125	0.099	0.130	-0.011	0.114	0.005	0.148
		0.7	-0.041	0.099	0.055	0.100	0.008	0.109	0.002	0.129
		0.5	-0.023	0.087	0.032	0.083	-0.002	0.108	-0.002	0.113
		0.3	-0.011	0.069	0.012	0.067	0.001	0.116	0.003	0.099
0.2	-0.3	1	-0.109	0.137	0.114	0.137	-0.001	0.140	0.018	0.161
		0.7	-0.063	0.109	0.057	0.106	0.011	0.136	0.007	0.138
		0.5	-0.040	0.100	0.044	0.107	0.004	0.134	0.000	0.130
		0.3	-0.013	0.080	0.010	0.079	0.004	0.139	0.002	0.122

Note: $\bar{\beta}$ and $\bar{\gamma}$ represent the estimates of regression parameters β and γ in Schaubel and Cai (2005). SSE represents the sample standard error of estimates.

Table 3: Estimation results of the regression coefficients for four types of transfusion reactions, i.e., fever, chill, rigor and all other symptoms. The corresponding p-values of the estimators are indicated in the parentheses

	\hat{eta}		$\hat{\gamma}$				
Type	$\hat{eta}^{(1)}$	$\hat{eta}^{(2)}$	$\hat{\gamma}^{(1)}$	$\hat{\gamma}^{(2)}$	$\hat{\gamma}^{(3)}$		
I	$2.058 \ (< 0.01)$	$0.610 \ (< 0.01)$	$-0.203 \ (0.621)$	$-0.074 \ (0.845)$	0.049 (0.803)		
II	$1.680 \ (< 0.01)$	$1.736 \ (< 0.01)$	$-0.386 \ (0.523)$	$0.269 \ (0.607)$	$0.370 \ (0.208)$		
III	$1.828 \ (< 0.01)$	$0.569 \ (< 0.01)$	-0.206 (0.689)	-0.348 (0.435)	$0.352 \ (0.109)$		
IV	$-0.608 \ (< 0.01)$	$2.405 \ (< 0.01)$	-0.985 (0.032)	$0.761 \ (0.044)$	$0.060 \ (0.750)$		

Type I = "Fever", Type II = "Chill", Type III = "Rigor", and Type IV = "All other reactions".

Figure 1 Plots of $\hat{\Lambda}_{0j}(t)$, $j=1,\ldots,4$, the estimated mean numbers of recurrence of fever, chill, rigor and all other reactions in the FNHTR Data, with pointwise bootstrap 95% Confidence Intervals.