Circuit theorems 009

Unlimited Attempts.

The resistance R_I is a variable resistor that can take on values in the range $0 \le R_1 \le 24\Omega$.

- Find the value of $R_1=R_{1a}$ that maximizes current i_1 and the resulting maximum current $i_1 = i_{1a}$.
- 2. Find the value of $R_1 = R_{1b}$ that maximizes voltage v_1 and the resulting maximum voltage $v_1 = v_{1b}$.
- Find the value of $R_1 = R_{1c}$ that maximizes the power received by R_1 and the resulting maximum power P_{1c} .

V_s $\stackrel{+}{\overset{-}{\cdot}}$	$+v_1$ $ I_s$	R_3 R_4	
Given Variables: Vs:36 V Is:2 A R2:12 ohm R3:18 ohm R4:24 ohm Calculate the following: i1a (A):			
R1a (ohm) :			
v1b (V) :			
R1b (ohm) :			
P1c (W):			
R1c (ohm):			

The resistance R_I is a variable resistor that can take on values in the range $0 \le R_I \le 24\Omega$.

Vs = 12 V

1. Find the value of $R_1=R_{1\alpha}$ that maximizes current i_1 and the resulting current $i_1=i_{1\alpha}$.

Is = 3 A

2. Find the value of $R_1=R_{1b}$ that maximizes voltage v_1 and the resulting current $v_1=v_{1b}$.

R3 = 18 ohm

R2 = 12 ohm

3. Find the value of $R_1 = R_{1c}$ that maximizes the power received by R_1 and the resulting power P_{1c} .

R4 = 24 ohm

$$\Rightarrow R_{TH} = 18 / (12 + 24) = \left(\frac{1}{18} + \frac{1}{36}\right)^{-1}$$
$$= \left(\frac{3}{36}\right)^{-1} = 12 - \Omega$$

5c= 48V

$$\widehat{IR_1=0} \quad \widehat{C}_1 = \frac{48}{12} = 4 \implies \widehat{C}_1 = 4A$$

(2)
$$R_1 = 24 \Omega$$
 $\sigma_1 = 48 \cdot \frac{24}{24+12} = 48 \cdot \frac{2}{3} = 32$

(3)
$$R_1 = R_{TH} \Rightarrow R_1 = 12.52$$

$$\bar{C} = \frac{48}{24} = 2A \implies \beta = i^2 R = 4.12$$