Analiza szeregów czasowych - notowania giełdowe firm McDonald's oraz Starbucks

Alicja Hołowiecka, Matylda Jankowska, Marcin Dziadosz 23 12 2019

Contents

Wstęp		2
McDonald's		2
Opis firmy		2
Wczytanie danych i rysunki		2
Dopasowanie wielomianu		3
Model liniowy		3
Model kwadratowy		4
Model sześcienny		6
Model z czwartą potęgą		7
Testy jednorodności wariancji reszt		9
Test Breuscha-Pagana		9
Test Goldfelda-Quandta		9
Test Harrisona-McCabe'a		9
Ruchoma średnia		9
Metoda wykładniczych wag ruchomej średniej	1	2
Testy na resztach modelu	1	16
Losowość	1	16
Normalność	1	۱7
Autokorelacja	2	21
Metoda różnicowa		21
Stacjonarność		22
Inne rzeczy		23
Sezonowość		25
Arima		32
Holt - Winters	3	33
Starbucks		3
Opis firmy		3
Wczytanie danych		37
Rysunek		37
Dopasowanie wielomianu		37
Model liniowy		37
Model kwadratowy		39
Model sześcienny		10
Ruchoma średnia		11
Metoda wykładniczych wag ruchomej średniej		14
Testy na resztach modelu sześciennego		18
Metoda różnicowa		53
Stacjonarność		
Inne rzeczy		
Sezonowość		57

Figure 1: Jedzenie z McDonald's

Wstęp

W tym raporcie przeanalizujemy dwa szeregi czasowe: notowania firm McDonald's oraz Starbucks z okresu dwóch lat (od początku 2018 do końca 2019). Na potrzeby oceny w raporcie pojawia się nie tylko sama analiza, ale też wszystkie polecenia w języku R, jakich używaliśmy w jej celu.

McDonald's

Opis firmy

McDonald's to największa na świecie sieć restauracji szybkiej obsługi. Obejmuje ona ponad 30 tys. restauracji, każdego dnia obsługujących ponad 46 mln osób w 119 krajach. Wartość marki McDonald's szacuje się na 24,7 mld dolarów.

Wczytanie danych i rysunki

Na początek wczytujemy bibliotekę tseries, która będzie nam potrzebna do wykonania analizy szeregu czasowego.

```
library(tseries)
```

Dane pobieramy z yahoo finance za pomocą funkcji get.hist.quote i zamieniamy na typ numeryczny.

```
## time series starts 2018-01-02
## time series ends 2019-12-30
```

```
mcd <- as.numeric(mcd)</pre>
```

Wykonamy rysunek przedstawiający notowania firmy McDonald's od 01-01-2018 do 31-12-2019

```
plot(mcd, type = "1", xlab = "czas", ylab = "USD", main = "Notowania McDonald's")
```

Notowania McDonald's

Na rysunku w ciągu tych dwóch lat wyraźnie widać trend rosnący.

Dopasowanie wielomianu

Spróbujemy do danych dopasować wielomian stopnia 1, 2 i 3.

```
t <- 1:length(mcd)
```

Model liniowy

```
mod1 <- lm(mcd~t)
summary(mod1)

##
## Call:
## lm(formula = mcd ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.1318 -8.6506 -0.5902 6.3288 23.2450</pre>
```

```
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.530e+02 8.855e-01 172.82
                                              <2e-16 ***
                                      37.98
## t
               1.159e-01
                         3.051e-03
                                              <2e-16 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.905 on 500 degrees of freedom
## Multiple R-squared: 0.7426, Adjusted R-squared: 0.7421
## F-statistic: 1443 on 1 and 500 DF, p-value: < 2.2e-16
Zarówno wyraz wolny, jak i współczynnik kierunkowy są istotne statystycznie. R^2 wynosi około 74%.
par(mfrow = c(1, 2))
plot(mcd, type = "l", main = "Model liniowy", xlab = "czas", ylab = "USD")
abline(mod1, col = "red")
plot(mod1$residuals, type = "l", main = "Reszty modelu liniowego", xlab = "czas", ylab = "reszty")
abline(h=0)
```

Model liniowy

Reszty modelu liniowego


```
par(mfrow = c(1, 1))
```

Model kwadratowy

Teraz stworzymy model kwadratowy.

```
mod2 <- lm(mcd~t+I(t^2))
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = mcd ~ t + I(t^2))
##
## Residuals:
##
        Min
                  1Q Median
                                    3Q
                                            Max
## -19.8159 -7.7496 -0.3429 6.7492 21.1529
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.560e+02 1.321e+00 118.060 < 2e-16 ***
## t
               8.080e-02 1.213e-02
                                    6.661 7.19e-11 ***
## I(t^2)
               6.972e-05 2.335e-05
                                    2.985 0.00297 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.828 on 499 degrees of freedom
## Multiple R-squared: 0.7471, Adjusted R-squared: 0.7461
## F-statistic: 737.1 on 2 and 499 DF, p-value: < 2.2e-16
Wszystkie współczynniki są istotne statystycznie. \mathbb{R}^2 wynosi około 75%, a więc zmieniło się bardzo nieznacznie.
par(mfrow = c(1, 2))
plot(mcd, type = "l", main = "Model kwadratowy", xlab = "czas", ylab = "USD")
lines(t, mod2\fitted.values, col = "red", )
plot(mod2$residuals, type = "l", main = "Reszty modelu kwadratowego", xlab = "czas", ylab = "reszty")
abline(h = 0)
```

Model kwadratowy

Reszty modelu kwadratowego


```
par(mfrow = c(1, 1))
```

Model kwadratowy zachowuje się bardzo podobnie jak model liniowy.

Model sześcienny

```
mod3 <- lm(mcd~t+I(t^2)+I(t^3))
summary(mod3)</pre>
```

```
##
## Call:
## lm(formula = mcd \sim t + I(t^2) + I(t^3))
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -15.3266 -4.3160
                      -0.4541
                                 4.2902
                                         14.0168
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.766e+02 1.096e+00 161.08
                                                <2e-16 ***
## t
               -4.081e-01
                           1.885e-02
                                       -21.65
                                                <2e-16 ***
                2.497e-03 8.705e-05
                                        28.69
## I(t^2)
                                                <2e-16 ***
## I(t^3)
               -3.217e-06
                           1.138e-07
                                       -28.28
                                                <2e-16 ***
## ---
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
```

```
## Residual standard error: 6.094 on 498 degrees of freedom
## Multiple R-squared: 0.903, Adjusted R-squared: 0.9024
## F-statistic: 1545 on 3 and 498 DF, p-value: < 2.2e-16</pre>
```

W modelu sześciennym wszystkie współczynniki są istotne statystycznie. R^2 wynosi 90%, a więc znacząco się poprawił w stosunku do poprzednich dwóch modeli.

```
par(mfrow = c(1, 2))
plot(mcd, type = "l", main = "Model sześcienny", xlab = "czas", ylab = "USD")
lines(t, mod3$fitted.values, col = "red")
plot(mod3$residuals, type = "l", main = "Reszty modelu sześciennego", xlab = "czas", ylab = "reszty")
abline(h= 0)
```

Model szescienny

Reszty modelu szesciennego

Widać, że reszty modelu mają mniejszy rozrzut niż poprzednio - teraz mamy skalę od -15 do 15, a wcześniej było od -20 do 20.

Model z czwartą potęgą

```
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.708e+02 1.309e+00 130.435 < 2e-16 ***
## t
               -1.804e-01
                           3.599e-02
                                      -5.012 7.52e-07 ***
                4.647e-04
                           2.906e-04
                                       1.599 0.110408
## I(t^2)
## I(t^3)
                3.064e-06
                           8.676e-07
                                       3.532 0.000451 ***
                           8.557e-10
                                      -7.297 1.17e-12 ***
## I(t<sup>4</sup>)
               -6.244e-09
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 5.798 on 497 degrees of freedom
## Multiple R-squared: 0.9124, Adjusted R-squared: 0.9116
## F-statistic: 1293 on 4 and 497 DF, p-value: < 2.2e-16
par(mfrow = c(1, 2))
plot(mcd, type = "l", main = "Model z czwartą potęgą", xlab = "czas", ylab = "USD")
lines(t, mod4$fitted.values, col = "red")
plot(mod3$residuals, type = "l", main = "Reszty modelu z czwartą potęgą", xlab = "czas", ylab = "reszty
abline(h= 0)
```

Model z czwarta potega

Reszty modelu z czwarta potega

W modelu z czwartą potęgą współczynnik przy t^3 jest nieistotny statystycznie, ale nie możemy go usunąć, ponieważ efekt wyższego rzędu (t^4) jest istotny. R^2 wynosi około 91%, więc niewiele się różni od modelu sześciennego. Reszty także znajdują się w podobnym przedziale jak w poprzednim modelu. Model z t^4 niewiele się różni od tego z t^3 , dlatego do dalszych badań wykorzystamy model sześcienny.

Testy jednorodności wariancji reszt

Aby zbadać czy reszty w modelu są homoskedastyczne posłużymy się kilkoma popularnymi testami.

Test Breuscha-Pagana

 H_0 : jednorodność wariancji reszt. H_1 : wariancja reszt zależy od zmiennych objaśniających w modelu

```
library(lmtest)
pv1 <- bptest(mod3)$p.value</pre>
```

P-value wynosi 0.0000044826, należałoby zatem odrzucić hipotezę o jednorodności wariancji reszt.

Test Goldfelda-Quandta

Weryfikacja hipotezy polega na podziale danych na dwie grupy i sprawdzeniu, czy w obu wariancja ma taką samą wartość.

```
pv2 <- gqtest(mod3, order.by = ~fitted(mod3))$p.value</pre>
```

P-value wynosi 0.678, zatem nie ma podstaw do odrzucenia hipotezy o równości wariancji.

Test Harrisona-McCabe'a

Sprawdza hipotezę podobną do tej, którą weryfikuje test Goldfelda-Quandta; jednak w tym przypadku porównuje pierwszą połowę wartości do całości danych.

```
hmctest(mod3, order.by = ~fitted(mod3))
```

```
##
## Harrison-McCabe test
##
## data: mod3
## HMC = 0.39433, p-value < 2.2e-16
pv3 <- hmctest(mod3, order.by = ~fitted(mod3))$p.value</pre>
```

P-value wynosi jest praktycznie równe 0, należy przyjąć hipotezę alternatywną, czyli wariancja reszt modelu ulega zmianie.

Biorąc pod uwagę uzyskane wyniki, należy przyjąć, że reszty z modelu trzeciego stopnia są heteroskedastyczne.

Ruchoma średnia

Wykorzystamy metody ruchomych średnich, aby wygładzić szereg i zaobserwować ogólne trendy. Metoda średniej ruchomej ma na celu zmniejszenie rozrzutu razy m+1.

W metodzie średniej ruchomej estymator części deterministycznej ma postać

$$\hat{f}(t) = \frac{1}{m+1} \sum_{k=0}^{m} x_{t-k}$$

Do wykonania wygładzonych wykresów napisaliśmy funkcję ruchoma, której argumentami są x - szereg czasowy, m - paramter metody średniej ruchomej, kolor - kolor, na jaki dorysujemy wygładzoną linię na wykresie.

```
ruchoma <- function(x, m, kolor){
    t <- length(x)
    f <- NULL
    for(i in (m+1):t){
        f[i] <- mean(x[(i-m):i])
    }
    plot(x, type = "l")
    lines((m+1):t, f[(m+1):t], lwd = 2, col = kolor)
}</pre>
```

Narysujemy wykresy dla kilku parametrów m.

Dla m = 3:

```
ruchoma(mcd, 3, "red")
```



```
Dla m = 10:
```

```
ruchoma(mcd, 10, "green")
```


Dla m = 30:
ruchoma(mcd, 30, "blue")

Jak widać, im większy parametr m przyjmiemy, tym bardziej wygładzony wykres uzyskujemy, ale też mniej dokładny.

Metoda wykładniczych wag ruchomej średniej

W metodzie ruchomej średniej obserwacje starsze i nowsze mają taką samą wagę, dlatego ta metoda jest mało dokładna. Skorzystamy teraz z dokładniejszej metody wykładniczych wag ruchomej średniej.

W tej metodzie estymator części deterministycznej ma postać:

$$\hat{f}(t) = \frac{1 - \eta}{1 - \eta^t} \sum_{k=0}^{t-1} \eta^k x_{t-k}$$

gdzie $\eta \in (0,1)$

Skorzystamy z postaci rekurencyjnej:

$$\hat{f}(t) = \frac{1 - \eta}{1 - \eta^t} \left[x_t + \eta \frac{1 - \eta^{t-1}}{1 - \eta} \hat{f}(t - 1) \right]$$

```
wykladnicza <- function(x, mi, kolor){
  f <- NULL
  f[1] <- x[1]

for (i in 2:length(x)){</pre>
```

```
f[i] <- (1-mi)/(1-mi^i)*(x[i]+mi*(1-mi^(i-1))/(1-mi)*f[i-1])
}
plot(x, type = "l")
lines(1:length(x), f, lwd = 2, col = kolor)
}</pre>
```

Dla $\eta=0.2$

wykladnicza(mcd, 0.2, "red")

$$\label{eq:definition} \begin{split} \mathrm{Dla} \; \eta &= 0.5 \\ \mathrm{wykladnicza(mcd, 0.5, "green")} \end{split}$$

$$\begin{split} & \text{Dla} \ \eta = 0.7 \\ & \text{wykladnicza(mcd, 0.7, "blue")} \end{split}$$

 $\begin{aligned} & \text{Dla} \ \eta = 0.9 \\ & \text{wykladnicza(mcd, 0.9, "yellow")} \end{aligned}$

Podobnie jak w przypadku prostej metody średniej ruchomej - im większy parametr η , tym bardziej wygładzony wykres, ale i mniejsza dokładność.

Testy na resztach modelu

Do danych dobraliśmy wcześniej model wielomianowy trzeciego stopnia. Teraz sprawdzimy, czy reszty tego modelu spełniają założenia:

- losowość
- jednorodność wariancji
- -normalność
 - brak autokorelacji

Losowość

```
library(randtests)
runs.test(mod3$residuals, threshold = 0, plot = T)
```



```
##
## Runs Test
##
## data: mod3$residuals
## statistic = -18.556, runs = 44, n1 = 229, n2 = 273, n = 502,
## p-value < 2.2e-16
## alternative hypothesis: nonrandomness</pre>
```

P-value bliskie zero, odrzucamy hipotezę o losowości reszt.

Normalność

```
plot(density(mod3$residuals), main = "Wykres gestości rozkładu reszt w porównaniu z rozkładem normalnym
curve(dnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd = 2)
```

Wykres gestosci rozkladu reszt w porównaniu z rozkladem normalny


```
qqnorm(mod3$residuals, main = "Wykres z liniq kwantylowq")
qqline(mod3$residuals, col=2, lwd = 3)
```

Wykres z linia kwantylowa

plot(ecdf(mod3\$residuals), main = "Dystrybuanta empiryczna w porównaniu z rozkładem normalnym")
curve(pnorm(x, 0, sd(mod3\$residuals)), add = T, col = 2, lwd =2)

Dystrybuanta empiryczna w porównaniu z rozkladem normalnym


```
library(nortest)
ks.test(x = mod3$residuals, y = "pnorm", mean = 0, sd = sd(mod3$residuals))
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: mod3$residuals
## D = 0.051812, p-value = 0.135
## alternative hypothesis: two-sided
lillie.test(mod3$residuals)
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: mod3$residuals
## D = 0.051812, p-value = 0.002624
shapiro.test(mod3$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: mod3$residuals
## W = 0.98969, p-value = 0.001356
ad.test(mod3$residuals)
```

##

```
## Anderson-Darling normality test
##
## data: mod3$residuals
## A = 1.3485, p-value = 0.001691
```

Z testów Kołmogorowa-Lillieforsa, Shapiro-Wilka oraz Andersona-Darlinga wynika, że musimy odrzucić hipotezę o normalności rozkładu reszt (dla testu Kołmogorowa-Smirnova nie było podtsaw do odrzucenia, p-value około 0.14). Jeżeli chodzi o wykresy, to brak normalności najbardziej widać na wykresie gęstości. Na drugim wykresie (z linią kwantylową) reszty najbardziej odstają od rozkładu normalnego na początku i na końcu. Dystrybuanta empiryczna jest zbliżona do dystrybuanty rozkładu normalnego.

Autokorelacja

```
acf(mod3$residuals)
```

Series mod3\$residuals

Dla opóźnień do rzędu 25 obserwacje nie mieszczą się w niebieskich przerywanych liniach - wnioskujemy, że pojawia się autokorelacja.

Metoda różnicowa

```
par(mfrow = c(2, 3))
for(i in 1:6){
plot(diff(mcd, differences = i), type = "l")
abline(h = 0)}
```


Stacjonarność

```
adf.test(mcd) #niest
##
##
    Augmented Dickey-Fuller Test
##
## data: mcd
## Dickey-Fuller = -2.2351, Lag order = 7, p-value = 0.4788
## alternative hypothesis: stationary
kpss.test(mcd) #niest
##
    KPSS Test for Level Stationarity
##
##
## data: mcd
## KPSS Level = 7.0755, Truncation lag parameter = 5, p-value = 0.01
kpss.test(mcd, null = "Trend") #niest
##
##
   KPSS Test for Trend Stationarity
##
## data: mcd
```

```
## KPSS Trend = 0.66563, Truncation lag parameter = 5, p-value = 0.01
adf.test(diff(mcd, differences = 1)) #stacj
##
##
    Augmented Dickey-Fuller Test
##
## data: diff(mcd, differences = 1)
## Dickey-Fuller = -8.574, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss.test(diff(mcd, differences = 1)) #stacj
##
##
   KPSS Test for Level Stationarity
## data: diff(mcd, differences = 1)
## KPSS Level = 0.12182, Truncation lag parameter = 5, p-value = 0.1
kpss.test(diff(mcd, differences = 1), null = "Trend") #stacj
##
##
   KPSS Test for Trend Stationarity
## data: diff(mcd, differences = 1)
## KPSS Trend = 0.1159, Truncation lag parameter = 5, p-value = 0.1
Szereg jest niestacjonarny, i niestacjonarny względem trendu. Po zróżnicowaniu 1 raz, jest zarówno stacjonarny,
jak i TS (Trend Stationary).
library(forecast)
auto.arima(mcd)
## Series: mcd
## ARIMA(0,1,0)
## sigma^2 estimated as 4.176: log likelihood=-1068.94
## AIC=2139.87
                 AICc=2139.88
                                 BIC=2144.09
```

Inne rzeczy

Trend

W środowisku R dostępne są także funkcje dotyczące filtrowania szeregów czasowych. Jest to takie przekształcenie danych które doprowadza do oczyszczenia szeregu czasowego z wahań periodycznych. W środowisku R dostępnych jest kilka takich filtrów. Jeden z bardzie popularnych to filtr Hodrick-Prescotta zaimplementowany w pakiecie FRAPO::trdhp. Stosując filtr HP należy pamiętać o odpowiednim doborze parametru λ . Hodrick oraz Prescott zalecają, aby wartość współczynnika λ była równa 400, 1600 i 14400 odpowiednio dla danych rocznych, kwartalnych i miesiecznych.

(P. Biecek Na przełaj przez Data Mining)

```
library(FRAPO)
f <- FRAPO::trdhp(mcd, 14400)
plot(mcd, type = "l")
lines(f, col = 2)</pre>
```


plot(mcd - f, type = "l")

Sezonowość

```
mcd_sez <- ts(mcd, frequency = 12)
mcd_dek <- decompose(mcd_sez)
forecast:: ggseasonplot(mcd_sez)</pre>
```

Seasonal plot: mcd_sez

forecast::ggseasonplot(mcd_sez, polar = T)

Seasonal plot: mcd_sez

Month

```
trend <- mcd_dek$trend
sezon <- mcd_dek$seasonal
reszty <- mcd_dek$random
plot(cbind(trend, sezon, reszty))</pre>
```

cbind(trend, sezon, reszty)

plot(stl(mcd_sez, "periodic"))

Chyba McDonalds jest jakiś super sezonowy, bo wszystko idealnie wygląda na wykresach... ;p To skoro ten model wygląda najlepiej, to chyba dla jego reszt trzeba by testować... ?

plot(reszty)
abline(h=0)

shapiro.test(reszty) #ohohoo malutkie p value

```
##
## Shapiro-Wilk normality test
##
## data: reszty
## W = 0.98851, p-value = 0.0006816
library(lmtest)
qqnorm(reszty)
qqline(reszty, col = 2)
```

Normal Q-Q Plot

#nie ma normalności!!
acf(reszty, na.action = na.pass) #dla dalszych z grubsza się mieszczą w pasku

Series reszty

Arima

Dobra, ogólnie tutaj nie wiem jak to zrobić, czy nasz w końcu ma tę sezonowość? Bo jeśli ma, to SARIMA podobno, a jeśli nie to ARIMA. Plus, ten szereg chyba jest niestacjonarny, nie? To też przecież musi być stacjonarny i ja nie wiem już nic w końcu :((()))

Arima(reszty, order = c(12,0,2)) #tu AIC jakoś 1842, jak sie leci z p do gory, to coraz lepiej, ale tez

```
## Series: reszty
## ARIMA(12,0,2) with non-zero mean
##
##
   Coefficients:
##
             ar1
                     ar2
                               ar3
                                       ar4
                                                 ar5
                                                           ar6
                                                                   ar7
                                                                            ar8
##
         0.5512
                  0.5878
                          -0.4389
                                    0.0194
                                             -0.0822
                                                      -0.0345
                                                                0.1207
                                                                        0.0038
         0.1224
                  0.1712
                            0.0915
                                    0.0622
                                              0.0615
                                                       0.0616
                                                                0.0615
                                                                        0.0626
## s.e.
##
                     ar10
                              ar11
                                       ar12
                                                            ma2
             ar9
                                                  ma1
                                                                    mean
         0.0114
                  -0.1060
                           0.0122
                                    -0.0057
                                              -0.1144
                                                       -0.8486
                                                                 -0.0016
##
         0.0620
                                     0.0566
                   0.0616
                           0.0684
                                               0.1142
                                                        0.1163
                                                                  0.0081
## sigma^2 estimated as 2.418:
                                  log likelihood=-905.29
## AIC=1842.59
                  AICc=1843.74
                                  BIC=1909.7
```

Holt - Winters

```
mcd_hw <- HoltWinters(mcd_sez, seasonal = "additive")
pred <- predict(mcd_hw, n.ahead = 4*12, prediction.interval = T, level = 0.9)
plot(mcd_hw, pred)</pre>
```

Holt-Winters filtering

Predykcja za pomocą metody Holta-Wintersa. Testując dla różnej liczby okresów naprzód, widzimy, że przedział ufności drastycznie się rozszerza im większe n.ahead.

Starbucks

Opis firmy

Starbucks Corporation – największa na świecie sieć kawiarni. Została założona 30 marca 1971 w Seattle w stanie Waszyngton.

Kawa ze Starbucks jest znana z tego, że pojawiła się jako błąd w jednym z odcinków Gry o tron.

Kawiarnia jest znana z tego, że każdy kubek jest podpisany imieniem zamawiającego. Urocze!

Figure 2: Kawa ze Starbucks

Figure 3: Starbucks jest tak popularny, że piją go nawet w fantasy, które dzieje się w średniowieczu!

Figure 4: hehe

Wczytanie danych

Rysunek

```
plot(sbux, type = "l", xlab = "czas", ylab = "USD", main = "Notowania Starbucks")
```

Notowania Starbucks

Widać trend rosnący.

Dopasowanie wielomianu

```
t <- 1:length(sbux)
```

Model liniowy

```
mod1 <- lm(sbux~t)
summary(mod1)</pre>
```

```
##
## Call:
## lm(formula = sbux ~ t)
##
## Residuals:
##
       Min
                                    3Q
                  1Q
                       Median
                                            Max
   -10.1924 -5.1586 -0.6162
                                4.8674 17.3536
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.756892
                           0.569068
                                      83.92
                                              <2e-16 ***
                0.086293
                           0.001961
                                      44.02
                                              <2e-16 ***
## t
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.366 on 500 degrees of freedom
## Multiple R-squared: 0.7949, Adjusted R-squared: 0.7944
## F-statistic: 1937 on 1 and 500 DF, p-value: < 2.2e-16
Wszystkie współczynniki są istotne statystycznie. R^2 wynosi około 79%.
par(mfrow = c(1, 2))
plot(sbux, type = "1", main = "Model liniowy", xlab = "czas", ylab = "USD")
abline(mod1, col = "red")
plot(mod1$residuals, type = "1", main = "Reszty modelu liniowego", xlab = "czas", ylab = "reszty")
abline(h=0)
```

Model liniowy

Reszty modelu liniowego


```
par(mfrow = c(1, 1))
```

Na wykresie widać, że reszty mają rozrzut mniej więcej od -10 do 15. Model nie jest zbyt dokładny - na początku przeszacowuje wartości, potem zdecydowanie niedoszacowuje, na koniec znowu przeszacowuje.

Model kwadratowy

abline(h = 0)

```
mod2 \leftarrow lm(sbux~t+I(t^2))
summary(mod2)
##
## Call:
## lm(formula = sbux ~ t + I(t^2))
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -11.0010 -4.7965
                       0.7868
                                 3.2228 17.4555
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.396e+01 7.717e-01 69.924
                                               <2e-16 ***
## t
               1.245e-02 7.085e-03
                                      1.757
                                               0.0795 .
## I(t^2)
               1.468e-04 1.364e-05 10.763
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.74 on 499 degrees of freedom
## Multiple R-squared: 0.8335, Adjusted R-squared: 0.8328
## F-statistic: 1249 on 2 and 499 DF, p-value: < 2.2e-16
Współczynnik przy t jest nieistotny statystycznie (p-value około 0.08, więc decyzja niejednoznaczna), ale R^2
poprawiło się - wynosi teraz około 83%.
par(mfrow = c(1, 2))
plot(sbux, type = "1", main = "Model kwadratowy", xlab = "czas", ylab = "USD")
lines(t, mod2$fitted.values, col = "red")
```

plot(mod2\$residuals, type = "l", main = "Reszty modelu kwadratowego", xlab = "czas", ylab = "reszty")

Model kwadratowy

Reszty modelu kwadratowego


```
par(mfrow = c(1, 1))
```

Wykres reszt jest bardzo podobny jak w przypadku modelu liniowego.

Model sześcienny

```
mod3 <- lm(sbux~t+I(t^2)+I(t^3))
summary(mod3)</pre>
```

```
##
## Call:
## lm(formula = sbux ~ t + I(t^2) + I(t^3))
##
## Residuals:
                            3Q
##
      Min
              1Q Median
                                  Max
## -7.380 -2.608 -1.257 3.041 13.053
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.526e+01 6.978e-01
                                       93.53
                                                <2e-16 ***
## t
               -2.559e-01
                           1.200e-02
                                      -21.32
                                                <2e-16 ***
                1.479e-03 5.542e-05
## I(t^2)
                                       26.69
                                                <2e-16 ***
## I(t^3)
               -1.766e-06 7.243e-08
                                      -24.38
                                                <2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
```

```
## Multiple R-squared: 0.9241, Adjusted R-squared: 0.9237
## F-statistic: 2021 on 3 and 498 DF, p-value: < 2.2e-16
Wszystkie współczynniki są istotne statystycznie, a R² znów wzrosło - wynosi około 92% (znaczna poprawa).
par(mfrow = c(1, 2))
plot(sbux, type = "l", main = "Model sześcienny", xlab = "czas", ylab = "USD")
lines(t, mod3$fitted.values, col = "red")
plot(mod3$residuals, type = "l", main = "Reszty modelu sześciennego", xlab = "czas", ylab = "reszty")</pre>
```

Model szescienny

Residual standard error: 3.879 on 498 degrees of freedom

Reszty modelu szesciennego


```
par(mfrow=c(1,1))
```

Reszty modelu sześciennego mają mniejszy rozrzut niż w poprzednich przypadkach (od około -5 do 10).

Ruchoma średnia

abline(h= 0)

```
ruchoma(sbux, 3, "red")
```


ruchoma(sbux, 10, "green")

ruchoma(sbux, 30, "blue")

Metoda wykładniczych wag ruchomej średniej

```
wykladnicza(sbux, 0.2, "red")
```


wykladnicza(sbux, 0.5, "green")

wykladnicza(sbux, 0.7, "blue")

wykladnicza(sbux, 0.9, "yellow")

Testy na resztach modelu sześciennego

```
runs.test(mod3$residuals, threshold = 0, plot = T)
```



```
##
##
    Runs Test
##
## data: mod3$residuals
## statistic = -20.806, runs = 18, n1 = 187, n2 = 315, n = 502,
## p-value < 2.2e-16
## alternative hypothesis: nonrandomness
P-value jest bliskie 0, odrzucamy hipotezę zerową o losowości reszt
```

Wykresy normalności

```
plot(density(mod3$residuals))
curve(dnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd = 2)
```

density.default(x = mod3\$residuals)

Wykres gęstości empirycznej znacząco różni się od gęstości rozkładu normalnego. Bardzo znacząco.

```
qqnorm(mod3$residuals)
qqline(mod3$residuals, col=2, lwd = 3)
```

Normal Q-Q Plot

Tutaj także wyraźne odchyłki.

```
plot(ecdf(mod3$residuals))
curve(pnorm(x, 0, sd(mod3$residuals)), add = T, col = 2, lwd =2)
```

ecdf(mod3\$residuals)

Nawet na dystrybuancie widać, że rozkład normalny wygląda inaczej.

```
ks.test(x = mod3$residuals, y = "pnorm", mean = 0, sd = sd(mod3$residuals))
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: mod3$residuals
## D = 0.14346, p-value = 2.127e-09
## alternative hypothesis: two-sided
lillie.test(mod3$residuals)
##
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: mod3$residuals
## D = 0.14346, p-value < 2.2e-16
shapiro.test(mod3$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: mod3$residuals
## W = 0.93719, p-value = 1.043e-13
ad.test(mod3$residuals)
```

```
##
## Anderson-Darling normality test
##
## data: mod3$residuals
## A = 12.438, p-value < 2.2e-16</pre>
```

W każdym z testów p-value jest bardzo bliskie zero, stanowczo odrzucamy hipotezę o rozkładzie normalnym.

Badanie autokorelacji

```
acf(mod3$residuals)
```

Series mod3\$residuals

Słupki nie mieszczą się w niebieskim "pasku", zatem prawdopodobnie ma miejsce autokorelacja.

Metoda różnicowa

```
par(mfrow = c(3, 3))
for(i in 1:9){
plot(diff(sbux, differences = i), type = "l")
abline(h = 0)}
```


Z wykresów widać, że największa stabilizacja jest przy różnicowaniu rzędu 2 lub 3, potem rozrzut zaczyna się znacząco zwiększać.

Stacjonarność

##

```
adf.test(sbux) #niest
##
##
    Augmented Dickey-Fuller Test
##
## data: sbux
## Dickey-Fuller = -2.1662, Lag order = 7, p-value = 0.5079
## alternative hypothesis: stationary
kpss.test(sbux) #niest
##
    KPSS Test for Level Stationarity
##
##
## data: sbux
## KPSS Level = 7.4101, Truncation lag parameter = 5, p-value = 0.01
kpss.test(sbux, null = "Trend") #niest
```

```
## KPSS Test for Trend Stationarity
##
## data: sbux
## KPSS Trend = 1.0249, Truncation lag parameter = 5, p-value = 0.01
Szereg nie jest ani stacjonarny ani TS.
adf.test(diff(sbux, differences = 1)) #st
##
## Augmented Dickey-Fuller Test
##
## data: diff(sbux, differences = 1)
## Dickey-Fuller = -7.8439, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
kpss.test(diff(sbux, differences = 1)) #st
## KPSS Test for Level Stationarity
## data: diff(sbux, differences = 1)
## KPSS Level = 0.15287, Truncation lag parameter = 5, p-value = 0.1
kpss.test(diff(sbux, differences = 1), null = "Trend") #st
## KPSS Test for Trend Stationarity
## data: diff(sbux, differences = 1)
## KPSS Trend = 0.11762, Truncation lag parameter = 5, p-value = 0.1
Po zróżnicowaniu rzędu 1 szereg jest zarówno stacjonarny jak i TS.
auto.arima(sbux)
## Series: sbux
## ARIMA(0,1,0)
## sigma^2 estimated as 0.8884: log likelihood=-681.25
## AIC=1364.51 AICc=1364.52 BIC=1368.73
Inne rzeczy
Rysunek bez trendu.
f <- FRAPO::trdhp(sbux, 14400)
plot(sbux, type = "1")
lines(f, col = 2)
```


plot(sbux - f, type = "1")

Sezonowość

```
sbux_sez <- ts(sbux, frequency = 12)
sbux_dek <- decompose(sbux_sez)
forecast:: ggseasonplot(sbux_sez)</pre>
```

Seasonal plot: sbux_sez

forecast::ggseasonplot(sbux_sez, polar = T)

Seasonal plot: sbux_sez

Month

```
trend <- sbux_dek$trend
sezon <- sbux_dek$seasonal
reszty <- sbux_dek$random
plot(cbind(trend, sezon, reszty))</pre>
```

cbind(trend, sezon, reszty)

plot(stl(sbux_sez, "periodic"))

plot(reszty)
abline(h=0)

shapiro.test(reszty) #ohohoo malutkie p value

```
##
## Shapiro-Wilk normality test
##
## data: reszty
## W = 0.95604, p-value = 6.553e-11
qqnorm(reszty)
qqline(reszty, col = 2)
```

Normal Q-Q Plot

#nie ma normalności!!

Stanowczo nie ma normalności reszt.

acf(reszty, na.action = na.pass) #dla dalszych z grubsza się mieszczą w pasku

Series reszty

Z wykresu wynika, że raczej nie mamy do czynienia z autokorelacją.