23 iulie 2019, Admitere UPB, Fizică Fa. Enunțuri și rezolvare (dr. Savu-Sorin Ciobanu)

UNIVERSITATEA POLITEHNICA DIN BUCURESTI

Facultatea

Iulie 2019

CHESTIONAR DE CONCURS

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Drawwala	

DISCIPLINA: Fizică Fb

VARIANTA A

1. Un corp cu masa de 0,5 kg se află în repaus la înălțimea de 0,5 m față de sol. Energia potențială a corpului în cîmp gravitațional ($g = 10 \text{ m/s}^2$) este: **(6pct.)**

a) 5 J; b) 2,5 J; c) 25 mJ; d) 0,25 J; e) 25 J; f) 0,5 J.

Rezolvare 1. $E_p = mgh = 2.5 J$. Răspuns corect b).

2. Un rezistor cu rezistență variabilă este alimentat de 4 baterii identice legate în serie, fiecare cu tensiunea electromotoare E=1,5~V și rezistența internă $r=0,3~\Omega$. Valoarea maximă a puterii ce poate fi debitată pe rezistor este: (6pct.)

a) 30 W; b) 1,2 W; c) 6 W; d) 15 W; e) 7,5 W; f) 12 W.

Rezolvare 2. Gruparea bateriilor are tensiunea electromotoare echivalentă $E_e = 4E = 6 \text{ V}$ și rezistența internă echivalentă $r_e = 4r = 1,2 \Omega$. Pentru o valoare a rezistenței exterioare egală cu

 r_e se degajă o putere maximă pe rezistor $P_{max} = r_e \frac{E_e^2}{\left(2r_e\right)^2} = 7,5 \text{ W}$. Răspuns corect e).

3. Un sistem termodinamic închis efectuează un lucru mecanic de 200 J și primește o cantitate de căldură de 600 J. Variația energiei interne a sistemului este: **(6pct.)**

a) 600 J; b) -600 J; c) 800 J; d) 400 J; e) -800 J; f) 300 J.

Rezolvare 3: Variația energiei interne este diferența dintre căldura primită și lucrul mecanic efectuat: $\Delta U = Q - L = 400 \text{ J}$. Răspuns corect d).

4. Un corp cu masa de 2 kg are viteza 10 m/s. Impulsul corpului este: (6pct.)

a) $2 \text{ N} \cdot \text{s}$; b) $100 \text{ N} \cdot \text{s}$; c) $5 \text{ N} \cdot \text{s}$; d) $20 \text{ N} \cdot \text{s}$; e) $10 \text{ N} \cdot \text{s}$; f) $50 \text{ N} \cdot \text{s}$.

Rezolvare 4. $p = mv = 20 \text{ kg} \cdot \text{m/s} = 20 \text{ N} \cdot \text{s}$. Răspuns corect d).

5. Randamentul unei mașini termice care funcționează după un ciclu Carnot între temperaturile 300 K și 800 K este: (6pct.)

a) 87,5 %; b) 30 %; c) 37,5 %; d) 80 %; e) 62,5 %; f) 42,5 %.

Rezolvare 5.
$$\eta = 1 - \frac{T_r}{T_c} = 1 - \frac{300 \text{ K}}{800 \text{ K}} = \frac{5}{8} = 62,5\%$$
. Răspuns corect e).

6. În SI unitatea de măsură pentru căldura specifică este: (6pct.)

a)
$$J \cdot kg^{-1} \cdot K^{-1}$$
; b) $J \cdot kg^{-1} \cdot K$; c) $J \cdot kg \cdot K^{-1}$; d) $J \cdot kg^{-1}$; e) $J \cdot K^{-1}$; f) $J \cdot mol^{-1} \cdot K^{-1}$.

Rezolvare 6. Din definiție
$$c = \frac{Q}{m\Delta T}$$
, deci $\left[c\right]_{SI} = \frac{J}{kg\cdot K}$. Răspuns corect a).

7. O sursă cu tensiunea electromotoare E = 12 V are intensitatea curentului de scurtcircuit $I_s = 40 \text{ A}$. După legarea unui rezistor cu rezistența R la bornele sursei, tensiunea la bornele acesteia devine U = 11 V. Valoarea rezistenței R este: (6pct.)

a)
$$3,6\,\Omega$$
; b) $5\,\Omega$; c) $3\,\Omega$; d) $3,3\,\Omega$; e) $0,3\,\Omega$; f) $0,33\,\Omega$.

Rezolvare 7. Rezistența internă a sursei este $r=\frac{E}{I_s}=0.3\,\Omega$. La introducerea unei rezistențe externe, căderea de tensiune pe sursă este u=E-U=rI, deci $I=\frac{E-U}{r}=\frac{10}{3}\,A$. Astfel, valoarea rezistenței R este $R=\frac{U}{I}=3.3\,\Omega$. Răspuns corect d).

Comentariu: O prezentare mai elegantă a răspunsului final este $R = \frac{U}{E-U} \cdot \frac{E}{I_s} = 3,3 \Omega$.

8. Un mobil cu masa m = 200 g se mişcă după legea $x(t) = 4 + 2t + 2t^2$ (x este măsurat în metri iar t în secunde). Energia cinetică a mobilului la momentul t = 2 s este: **(6pct.)** a) 4 J; b) 2 J; c) 1 J; d) 30 J; e) 20 J; f) 10 J.

Rezolvare 8. Viteza mobilului este $v(t) = \frac{dx}{dt} = 2 + 4t$, deci v(2) = 10 m/s și $E_c = \frac{mv^2}{2} = 10 \text{ J}$. Răspuns corect f).

9. Un gaz ideal cu căldura molară la volum constant $C_v = 3R/2$ ocupă un volum de un litru la presiunea de 10^5 N/m². Cantitatea de căldură necesară pentru a mări volumul de 3 ori într-o transformare izobară este: **(6pct.)**

a) 500 J; b) 100 J; c) 200 J; d) 600 J; e) 300 J; f) 400 J.

Rezolvare 9.

$$Q = \nu \big(C_V + R \big) \big(T_f - T_i \big) = \frac{5}{2} \nu R \big(T_f - T_i \big) = \frac{5}{2} \big(p_i V_f - p_i V_i \big) = \frac{5}{2} p_i \big(V_f - V_i \big) = 5 p_i V_i = 500 \; J \; .$$
 Răspuns corect a).

- 10. Un autoturism cu puterea de 150 kW accelerează pe o șosea orizontală, atingînd viteza maximă de 240 km/h. Coeficientul de frecare dintre anvelope și șosea este 0,1. Masa autoturismului este ($g = 10 \text{ m/s}^2$): (**6pct.**)
- a) 1500 kg; b) 1125 kg; c) 2000 kg; d) 1700 kg; e) 2250 kg; f) 1000 kg.

Rezolvare 10. La viteză maximă, forța de frecare este egală cu forța de tracțiune a mașinii. Avem

$$F_f = \mu mg = \frac{P}{v_{max}} \text{, adică } m = \frac{P}{\mu g v_{max}} = \frac{150 \cdot 10^3 \cdot 3600}{0.1 \cdot 10 \cdot 240 \cdot 10^3} \text{ kg} = 2250 \text{ kg} \text{. Răspuns corect e)}.$$

11. Racheta Saturn folosită în programul Apollo genera o forță de propulsie de 35 MN. Știind că masa rachetei era de 2800 tone, accelerația acesteia după lansare a fost ($g = 10 \text{ m/s}^2$) (**6pct.**) a) 28 m/s²; b) 35 m/s²; c) 3,5 m/s²; d) 7 m/s²; e) 2,5 m/s²; f) 10 m/s².

Rezolvare 11. Lansarea fiind pe verticală, accelerația rachetei este
$$a = \frac{F - mg}{m} = \frac{F}{m} - g = 2,5 \, \text{m/s}^2$$
. Răspuns corect e).

12. Într-un circuit simplu format dintr-o sursă cu tensiunea electromotoare E = 12 V, rezistența internă $r = 0.5 \Omega$ și un rezistor cu rezistența $R = 5.5 \Omega$, intensitatea curentului este: **(6pct.)** a) 4 A; b) 0.5 A; c) 2 A; d) 3 A; e) 6 A; f) 24 A.

Rezolvare 12.
$$I = \frac{E}{R+r} = 2 A$$
. Răspuns corect c).

13. Printr-un rezistor cu rezistența $R = 40 \Omega$ trece un curent cu intensitatea I = 5 A. Energia disipată pe rezistor în timp de o oră este: **(6pct.)** a) 7,2 MJ; b) 7,2 kJ; c) 3,6 kJ; d) 20 kJ; e) 3,6 MJ; f) 100 kJ.

Rezolvare 13. Energia degajată de rezistor este $W = RI^2t = 3.6 \text{ MJ}$. Răspuns corect e).

14. Un gaz ideal se destinde adiabatic. În cursul procesului volumul crește de 100 ori iar temperatura scade de 10 ori. Exponentul adiabatic al gazului este: **(6pct.)** a) 4/3; b) 2; c) 7/5; d) 3/2; e) 5/4; f) 6/5.

Rezolvare 14. Legea transformării adiabatice este $TV^{\gamma-1}=ct=T_iV_i^{\gamma-1}=T_fV_f^{\gamma-1}$. Folosind și datele din enunț scriem $\left(\frac{V_f}{V_i}\right)^{\gamma-1}=100^{\gamma-1}=\frac{T_i}{T_f}=10$. Deci exponentul adiabatic al gazului este $\gamma=1,5$. Răspuns corect d).

15. Rezistența echivalentă a doi rezistori cu rezistențele $R_1 = 4 \Omega$ și $R_2 = 12 \Omega$ legați în paralel este: (6pct.)

a)
$$6\Omega$$
; b) 4Ω ; c) 16Ω ; d) 3Ω ; e) 8Ω ; f) 10Ω .

Rezolvare 15. Folosind $\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$, se obține $R_e = 3 \Omega$. Răspuns corect d).