

NICE: NoIse-modulated Consistency rEgularization for Data-Efficient GANs

Yao Ni[†], Piotr Koniusz^{§,†}

[†]The Australian National University [§]Data61♥CSIRO yao.ni@anu.edu.au, piotr.koniusz@data61.csiro.au

Summary

Background: Limited data in GAN training causes discriminator overfitting and training instability.

Goal: To improve the generalization of GANs.

Contributions:

- We use an adaptive multiplicative noise to modulate latent features of discriminator to boost generalization of GAN.
- We introduce NICE to enforce the discriminator consistency across varying noise modulations, implicitly penalizing first and second-order gradients of discriminator latent features to improve the stability of training.
- We showcase theoretical and practical effectiveness of NICE in preventing discriminator overfitting. We achieve superior performance in image generation with limited data.

Pipeline

Discriminator with adaptive noise (AN) ^a:

NoIse-modulated Consistency rEgularization (NICE):

Update β : control the variance of noise by monitoring $r(\boldsymbol{x}) = \mathbb{E}[\operatorname{sign}(D(\boldsymbol{x}))]$. Update $\beta_{t+1} = \beta_t + \Delta_{\beta} \cdot \operatorname{sign}(r(\boldsymbol{x}) > \eta)$.

NICE: weight regularization \rightarrow better generalization

NICE: gradient penalization \rightarrow stable training

 $^ad'$: feature size. \odot : expands \boldsymbol{Z} to $d' \times d^H \times d^W$ then performs element-wise multiplication. B_l : l-th block. C_S : Convolution in skip branch. f: feature extractor. $\boldsymbol{x}/\tilde{\boldsymbol{x}}$: real/fake image. η : a threshold.

Method

Reducing the weight norms of ${\cal D}$ improves generalization:

n: dataset size. \mathcal{H}/\mathcal{G} : D/G sets. $\forall h \in \mathcal{H}, \|h\|_{\infty} \leq \Delta$. μ/ν : measures on real/fake data. $\hat{\mu}_n/\nu_n$: empirical measures. Assume $d_{\mathcal{H}}(\hat{\mu}_n, \nu_n) - \inf_{\nu \in \mathcal{G}} d_{\mathcal{H}}(\hat{\mu}_n, \nu) \leq \epsilon$.

$$d_{\mathcal{H}}(\mu,\nu_n) - \inf_{\nu \in \mathcal{G}} d_{\mathcal{H}}(\mu,\nu) \le 2 \underbrace{R_n^{(\mu)}(\mathcal{H})} + 2\Delta \sqrt{2\log(1/\delta)/n} + \epsilon$$

Generalization error of GAN.

Complexity of D.

For $\forall i \in \{1, ..., n\}$, $\|\boldsymbol{x}^{(i)}\|_2 \leq q$ and a t-layer fully-connected network parameterized from set $\mathcal{V} = \{v_{\boldsymbol{\theta}} : \|\boldsymbol{W}_i\|_{\text{lip}} \leq k_i, \|\boldsymbol{W}_i^T\|_{2,1} \leq b_i\}$:

$$\underbrace{R_n^{(\mu)}(\mathcal{V})}_{\text{Rademacher complexity.}} \leq \frac{q}{\sqrt{n}} \cdot \left(\prod_{i=1}^t k_i\right) \cdot \left(\sum_{i=1}^t \underbrace{b_i^{2/3}}_{i} / k_i^{2/3}\right)^{3/2}$$
Weight norm.

Multiplicative noise modulation reduces weight norms:

 w_k : the k-th column vector of the second layer weight W_2 . \hat{a}_k : mean feature norm ≥ 0 . β^2 : variance of noise. y: label. Multiplicative noise modulation z on the latent feature $a^{(i)}$ in a two-layer net induces weight regularization.

$$\hat{L}_{\text{noise}}(w) := \hat{\mathbb{E}}_i \mathbb{E}_{\boldsymbol{z}} \left[\| \boldsymbol{y}^{(i)} - \boldsymbol{W}_2(\boldsymbol{z} \odot \boldsymbol{a}^{(i)}) \|_2^2 \right]$$

$$= \hat{\mathbb{E}}_i \left[\| \boldsymbol{y}^{(i)} - \boldsymbol{W}_2 \boldsymbol{a}^{(i)} \|_2^2 \right] + \beta^2 \sum_k \hat{a}_k \| \boldsymbol{w}_k \|_2^2$$

Noise modulation causes gradient norm amplification:

Implicit regularization on $\| oldsymbol{w}_k \|_2$

$$\min_{\boldsymbol{\theta}_{d}} L_{D}^{\text{AN}} := \mathbb{E}_{\tilde{\boldsymbol{a}}} \mathbb{E}_{\boldsymbol{z}} \left[h(\boldsymbol{z} \odot \tilde{\boldsymbol{a}}) \right] - \mathbb{E}_{\boldsymbol{a}} \mathbb{E}_{\boldsymbol{z}} \left[h(\boldsymbol{z} \odot \boldsymbol{a}) \right]
\approx \mathbb{E}_{\tilde{\boldsymbol{a}}} [h(\tilde{\boldsymbol{a}})] - \mathbb{E}_{\boldsymbol{a}} [h(\boldsymbol{a})]
+ \frac{\beta^{2}}{2} \left(\mathbb{E}_{\tilde{\boldsymbol{a}}} \left[\sum_{k} \tilde{a}_{k}^{2} H_{kk}^{(h)}(\tilde{\boldsymbol{a}}) \right] - \mathbb{E}_{\boldsymbol{a}} \left[\sum_{k} a_{k}^{2} H_{kk}^{(h)}(\boldsymbol{a}) \right] \right)$$

$$\min_{\boldsymbol{\theta}_g} L_G^{\text{AN}} := -\mathbb{E}_{\boldsymbol{z}} \mathbb{E}_{\tilde{\boldsymbol{a}}} \left[h(\boldsymbol{z} \odot \tilde{\boldsymbol{a}}) \right]
\approx -\mathbb{E}_{\tilde{\boldsymbol{a}}} \left[h(\tilde{\boldsymbol{a}}) \right] - \frac{\beta^2}{2} \mathbb{E}_{\tilde{\boldsymbol{a}}} \left[\sum_k \tilde{a}_k^2 H_{kk}^{(h)}(\tilde{\boldsymbol{a}}) \right]$$

 a/\tilde{a} : real/fake feature. $H^{(h)}(a)$: Hessian of h at a. \odot : element-wise product.

Consistency regularization (NICE) lowers gradient norm: $\ell^{\text{NICE}}(\boldsymbol{a}) := \mathbb{E}_{\boldsymbol{z}_1, \boldsymbol{z}_2} [(f(\boldsymbol{z}_1 \odot \boldsymbol{a}) - f(\boldsymbol{z}_2 \odot \boldsymbol{a}))^2]$

$$\approx 2\beta^2 \sum_k a_k^2 \nabla_k^2 f(\boldsymbol{a}) + \beta^4 \sum_{j,k} a_j^2 a_k^2 (H_{jk}^{(f)}(\boldsymbol{a}))^2$$

 $\nabla f(\boldsymbol{a}), H^{(f)}(\boldsymbol{a})$: gradient and Hessian matrix of feature extractor f at \boldsymbol{a} . $H_{jk}^{(f)}$: (j,k)-th entry of $H^{(f)}$.

We apply NICE on real & fake images when training G & D.

Experimental Results

Comparison with the state of the art:

	CIFAR-10			CIFAR-100			
Method	100% data	20% data	10% data	100% data	20% data	10% data	
	IS↑/tFID↓	IS↑/tFID↓	IS↑/tFID↓	IS↑/tFID↓	IS↑/tFID↓	IS↑/tFID↓	
BigGAN	9.21/5.48	8.74/16.20	8.24/31.45	11.02/7.86	9.94/25.83	7.58/50.79	
+NICE	9.50/4.19	8.96/8.51	8.73/13.65	10.99/ 6.31	10.32/13.17	8.96/19.53	
LeCam+DA	9.45/4.32	9.01/8.53	8.81/12.64	11.25/6.45	10.12/15.96	9.17/22.75	
+NICE	9.52/3.72	9.12/6.92	8.99/9.86	11.28/5.72	10.54/10.02	9.35/14.95	
OmniGAN+ADA	10.24/4.95	9.41/27.04	7.86/40.05	13.07/6.12	12.07/13.54	8.95/44.65	
+NICE	10.38/2.25	10.18/4.39	10.08/5.49	13.82/3.78	12.75/6.28	12.04/9.32	

Method	FID	↓ on Ima	geNet
	10%	5%	2.5%
BigGAN	38.30	91.16	133.80
ADA	31.89	43.21	56.83
DA	32.82	56.75	63.49
MaskedGAN	26.51	35.70	38.62
KDDLGAN	20.32	22.35	28.79
NICE	21.44	24.72	31.45
ADA+NICE	18.29	20.07	24.41

Generated Images:

Method (FID↓)	Obama	GrumpyCat	Panda	AnimalCat	AnimalDog
StyleGAN2	80.20	48.90	34.27	71.71	131.90
StyleGAN2+NICE	24.56	18.78	8.92	25.25	46.56
ADA	45.69	26.62	12.90	40.77	56.83
LeCam+KDDLGAN	29.38	19.65	8.41	31.89	50.22
ADA+NICE	20.09	15.63	8.18	22.70	28.65

NICE reduces weight and gradient norms in the discriminator:

