

| 1   | 1. A method for forming an aperture plate, the method comprising:                         |
|-----|-------------------------------------------------------------------------------------------|
| 2   | providing a mandrel comprising a plate body having a conductive surface                   |
| 3   | and a plurality of non-conductive islands disposed on the conductive surface, wherein the |
| 4   | islands extend above the conductive surface and are sloped relative to the conductive     |
| 5   | surface;                                                                                  |
| 6   | placing the mandrel within a solution containing a material that is to be                 |
| 7   | deposited onto the mandrel;                                                               |
| 8   | applying/electrical current to the mandrel to form an aperture plate on the               |
| 9   | mandrel, wherein the apertures have an exit angle that is in the range from about 30° to  |
| 10  | about 60°.                                                                                |
| 1   | 2. A method as in claim 1, wherein the islands have a geometry that                       |
| 1   | approaches a generally conical shape, and wherein the islands have a base diameter in the |
| 2   | range from about 20 microns to about 200 microns and a height in the range from about 4   |
| 4   | microns to about 20 microns.                                                              |
| 7   | inferons to about 20 inferons.                                                            |
| 1   | A method as in claim 1, wherein the islands have an average slope                         |
| 2   | in the range from about 15° to about 30° relative to the conductive surface.              |
| 1   | A method as in claim 3, further comprising forming the islands                            |
| 2 - | from a photoresist material using a photolithography process.                             |
| 1   | 5. A method as in claim 4, further comprising treating the islands                        |
| 2   | following the photolithography process to alter the shape of the islands.                 |
|     | Control of the control of the denosited                                                   |
| 1   | 6. A method as in claim 1, further comprising removing the deposited                      |
| 2   | aperture plate from the mandrel and forming a dome shape in the aperture plate.           |
| 1   | 7. A method as in claim 1, wherein the material in the solution is                        |
| 2   | selected from a group of materials consisting of palladium, palladium nickel, and         |
| 3   | palladium alloys.                                                                         |
|     | a la                                                  |
| 1   | 8. A method as in claim 1, wherein the apertures have an exit angle                       |
| 2   | that is in the range from about 41° to about 49°.                                         |
| 1   | 9. An aperture plate formed according to the process of claim 1.                          |

|   | Subbl          |           |                                                                       |
|---|----------------|-----------|-----------------------------------------------------------------------|
| 1 |                | 10.       | An aperture plate comprising:                                         |
| 2 | ,              | _         | e body having a top surface, a bottom surface, and a plurality of     |
| 3 | •              | _         | from the top surface to the bottom surface, wherein the apertures are |
| 4 | -              |           | from the top surface to the bottom surface, and wherein the           |
| 5 |                |           | it angle that is in the range from about 30° to about 60°, and a      |
| 6 | diameter that  | is in th  | e range from about 1 micron to about 10 microns at the narrowest      |
| 7 | portion of the | e taper.  |                                                                       |
| 1 |                | 11.       | An aperture plate as in claim 10, wherein the plate body is           |
| 2 | constructed f  | rom ma    | terials selected from a group consisting of palladium, palladium      |
| 3 | nickel and pa  | lladium   | alloys.                                                               |
|   |                |           |                                                                       |
| 1 |                | 12.       | An aperture plate as in claim 10, wherein the plate body includes a   |
| 2 | portion that i | s dome    | shaped in geometry.                                                   |
| 1 |                | 13.       | An aperture plate as in claim 10, wherein the plate body has a        |
| 2 | thickness in   | the rang  | e from about 20 microns to about 70 microns.                          |
| 1 |                | 14/       | An aperture plate as in claim 10, wherein the apertures have an exit  |
| 2 | angle that is  | in the ra | ange from about 41° to about 49°.                                     |
| _ | g. 0 10        | ,         |                                                                       |
| 1 |                | 15.       | A mandred for forming an aperture plate, the mandrel comprising:      |
| 2 |                |           | ndrel body having a conductive, generally flat top surface and a      |
| 3 |                |           | ductive islands disposed on the conductive surface, wherein the       |
| 4 | islands exten  | d above   | e the conductive surface and have a geometry approaching a generally  |
| 5 | conical shape  | €.        |                                                                       |
| 1 |                | 16.       | A mandrel as in claim 15, wherein the islands have a base diameter    |
| 2 | in the range   | from ab   | out 20 microns to about 200 microns, a height in the range from       |
| 3 | about 4 micr   | ons to a  | bout 20 microns                                                       |
| 1 |                | 17.       | A mandrel as in claim 15, wherein the islands are formed from a       |
| 2 | photoresist r  | naterial  | using a photolithography process.                                     |
| 1 |                | 18.       | A method as in claim 17, wherein the islands are treated following    |
| 2 | the photolith  | ography   | y process to alter the shape of the islands.                          |

| 1  |                | 19.       | A method for producing a mandrel that is adapted to form an           |
|----|----------------|-----------|-----------------------------------------------------------------------|
| 2  | aperture plate | , the me  | thod comprising:                                                      |
| 3  |                | a) pro    | viding an electroforming mandrel body;                                |
| 4  |                | b) app    | olying a photoresist film to the mandrel body;                        |
| 5  |                | c) pla    | cing a mask having a pattern of circular regions over the photoresist |
| 6  | film;          |           |                                                                       |
| 7  |                | d) dev    | veloping the photoresist film to form an arrangement of non-          |
| 8  | conductive isl | ands co   | rresponding to the location of the holes in the pattern; and          |
| 9  |                | e) hea    | ting the mandrel body to permit the islands to melt and flow into a   |
| 10 | desired shape  |           |                                                                       |
| 1  |                | 20.       | A method as in claim 19, further comprising repeating steps b)        |
| 2  | through e) wh  | ere the   | pattern of circular regions of the mask are smaller.                  |
|    | -              |           |                                                                       |
| 1  |                | 21.       | A method as in claim 20, wherein the desired shape is generally       |
| 2  | conical.       |           |                                                                       |
| 1  |                | 22.       | A method as in claim 20 further comprising permitting the islands     |
| 2  | to cure before | repeati   | ng the steps.                                                         |
|    |                |           |                                                                       |
| 1  |                | 23.       | A method as in claim 20, further comprising heating the mandrel       |
| 2  | body until the | islands   | have an average angle of taper that is in the range from about 15° to |
| 3  | about 30°.     |           |                                                                       |
| 1  |                | 24.       | A method as in claim 19, wherein the photoresist film has a           |
| 2  | thickness in t | he range  | e from about 4 microns to about 15 microns.                           |
| 1  |                | 25.       | A method as in claim 19, wherein the mandrel body is heated to a      |
| 2  | temperature i  | n the ra  | nge from about 50°C to about 250° C for about 30 minutes.             |
| 1  |                | 26.       | A method as in claim 25, further comprising raising the               |
| 2  | temperature a  | it a rate | that is less than about 3°C per minute until reaching the desired     |
| 3  | range.         |           |                                                                       |
| 1  |                | 27.       | A method for aerosolizing a liquid, the method comprising:            |

| 2  | providing an aperture plate comprising a plate body having a top surface, a                                                                                       |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3  | bottom surface, and a plurality of apertures that taper in a direction from the top surface                                                                       |  |  |
| 4  | to the bottom surface, wherein the apertures have an exit angle that is in the range from                                                                         |  |  |
| 5  | about 30° to about 60°, and a diameter that is in the range from about 1 micron to about                                                                          |  |  |
| 6  | 10 microns at the narrowest portion of the taper;                                                                                                                 |  |  |
| 7  | supplying a liquid to the bottom surface of the aperture plate; and                                                                                               |  |  |
| 8  | vibrating the aperture plate to eject liquid droplets from the top surface.                                                                                       |  |  |
| 1  | 28. A method as in claim 27, wherein the droplets have a size in the                                                                                              |  |  |
| 2  | range from about 2 microns to about 10 microns.                                                                                                                   |  |  |
|    | 29. A method as in claim 27, further comprising holding the supplied                                                                                              |  |  |
| 1  | 29. A method as in claim 27, further comprising holding the supplied liquid to the bottom surface by surface tension forces until the liquid droplets are ejected |  |  |
| 2  | /                                                                                                                                                                 |  |  |
| 3  | from the top surface.                                                                                                                                             |  |  |
| 1  | 30. A method as in claim 27, wherein the aperture plate has a least                                                                                               |  |  |
| 2  | about 1000 apertures which product droplets having a size in the range from about 2                                                                               |  |  |
| 3  | microns to about 10 microns, and further comprising aerosolizing a volume of liquid in                                                                            |  |  |
| 4  | the range from about 4µL to about 30µL within a time of less than about one second.                                                                               |  |  |
| 5  |                                                                                                                                                                   |  |  |
| 6  | 31. An aperture plate comprising:                                                                                                                                 |  |  |
| 7  | a plate body having a top surface, a bottom surface, and a plurality of                                                                                           |  |  |
| 8  | apertures extending from the top surface to the bottom surface, wherein the apertures each                                                                        |  |  |
| 9  | include an upper portion and a lower portion, wherein the lower portion extends upwardly                                                                          |  |  |
| 10 | from the bottom surface and is generally concave in geometry, and wherein the upper                                                                               |  |  |
| 11 | portion is tapered in a direction from the top surface to the bottom surface and                                                                                  |  |  |
| 12 | intersections with the lower portion.                                                                                                                             |  |  |
| 13 |                                                                                                                                                                   |  |  |
| 14 | 32. An aperture plate as in claim 31, wherein upper portion has an angle                                                                                          |  |  |
| 15 | of taper that is in the range from about 30° to about 60° at the intersection with the lower                                                                      |  |  |
| 16 | portion, and a diameter that is in the range from about 1 micron to about 10 microns at the                                                                       |  |  |
| 17 | intersection with the lower portion.                                                                                                                              |  |  |
| 18 |                                                                                                                                                                   |  |  |

| 19 | 33. An aperture plate as in claim 32, wherein the lower portion has a                       |
|----|---------------------------------------------------------------------------------------------|
|    |                                                                                             |
| 20 | diamter at the lower surface that is in the range from about 20 microns to about 200        |
| 21 | microns, a height in the range from about 4 microns to about 20 microns.                    |
| 22 |                                                                                             |
| 23 | 34. An aperture plate as in claim 31, wherein the bottom surface is                         |
| 24 | adpated to receive a liquid, and wherein the plate body is vibratable to eject liquid       |
| 25 | droplets from the front surface.                                                            |
| 26 |                                                                                             |
| 27 | 35. A method for ejecting droplets of liquid, the method comprising:                        |
| 28 | providing an aperture plate comprising a plate body having a top surface, a bottom          |
| 29 | surface, and a plurality of apertures that taper in a direction from the top surface to the |
| 30 | bottom surface, wherein the apertures have an exit angle that is in the range from about    |
| 31 | 30° to about 60°, and a diameter that is in the range from about 1 micron to about 10       |
| 32 | microns at the narrowest portion of the taper; and                                          |
| 33 | forcing liquid through the apertures to eject liquid droplets from the front surface.       |
| 34 | Addbox                                                                                      |