Computer Science & IT

C Programming

Function & Storage Class

Lecture No. 03

Recap of Previous Lecture

Topic

Static variable

Topic

prosperhesof static variable (Imp)

Topic

Topic

Topic

Topics to be Covered

Recursion

Type of Recursion

Achvahion Tree

Topic

Question


```
Consider the following C function:
                                             The value
             int f(int n){
                                            returned by f(1)
                    static int i = 1;
                                            is
                    if (n >=5)
                                             (a)
                                                   6
                                             (b)
                          return n;
                                             (c)
                    n = n+i;
                                                   8
                                             (d)
                    j++;
                    return f(n);
                                 Rocussim
```


GATE 2004


```
Y= /1+-00(1)+600(1)
#Q
#include <stdio.h>
int foo(int x);
int bar(int y);
int main ()
       int x = 1, y = 2, count;
        for (count = 1; count \leq 2; ++count){
               y = foo(x) + bar(x);
        printf("\n %d",y);
             (B) 42 74
                                   (D) 32 32
                        (C) 33 37
```

```
int foo (int x) {
                    Y = b 00 (x)
        int y;
        y=bar(x);
        return(y);
int bar (int x) {
        static int y = 10;
         y+=1; 🗸
        return (y+x);
                        12+1
```

```
y=y+foo(x)+bood

27+14+15

27+

X=1

Y=600(1)

Y=14
```

```
27 14 11 15
```


GATE 2004

```
#Q
#include <stdio.h>
int foo(int x);
int bar(int y);
int main ()
        int x = 1, y = 2, count;
        for (count = 1; count \leq 2; ++count){
                y = foo(x) + bar(x);
        printf("\n %d",y);
              (B) 42 74
                         (C) 33 37
                                     (D) 32 32
```

```
int foo (int x) {
        int y;
        y=bar(x);
                    A= pea(x
        return(y);
int bar (int x) {
        static int y = 10;
                13+1=14
        return (y+x);
                 14+1=15
```


Storage Class

- 1. Auto
- 2. Static
- 3. Extern No gate question | Tueday last class
- 4. Register < 1 gate gushon

Slide

* Recursion is a problem Solving technique in which Solution of a problem is expression in teams of smaller instance of same problem.

* In (Language it takes a function that call itself.

$$n = n \times n - 1$$

$$\begin{cases} n \times \ln 1 & n > 1 \\ 1 & n = 0 \leq 1 \end{cases}$$

Base

$$\frac{15}{4} = \frac{5 \times 14}{4} = \frac{120}{3}$$

$$\frac{3 \times 12 = 2}{4 \times 15}$$

int
$$factorial(int n)$$
{

if $(n=-0||n=-1)$

return 1;

else

return n* - actional (n-1);

(factorial(4))24 roetuin

-Ibonacci Series O, 1, 1, 2, 3, 5, 8, 13, 21....

int
$$f_{1b}(in+n)$$
 { $f_{1b(4)}$ Recursion Tree drow if $(n==0||n==1)$ { $f_{1b(4)}$ Recursion Recursion return n ; $f_{1b(3)}$ $f_{1b(3)}$ $f_{1b(2)}$ $f_{1b(1)}$ $f_{1b(0)}$ } }

if (n==0||n==1) ~ function called during fib(8)
return n;

else veturn - 216(n-1) + 216(n-2);.

- 1. value return
- 2. value printed (if given)
- 3. No of times fundion is called.

Single & 1. Tail Recursion

Recursive 2. Non tail Recursion

Call

if Recursive Call is Last statement of Recursion

```
#inalcude<stdio.h> +hen its called as tail Recurring.
void print(int n) {
                                        12mn+ (5
                                                      tracing
     if (n <= 0) return; <
     printf("%d", n);
                                              point(4)
     print(n-1);
                                                             in Recurron
int main() {
                                                   pnn+(3)
     print(5); /
     return 0;
                5,4,3,2,1
                                                       point(2)
```


print(5);

return 0;

Non Touil (Head Recursion)


```
#include<stdio.h>

recurrence (all is first Statement to execute

#include<stdio.h>

roid print (int n) {

if (n <= 0) return;

print (n-1);

printf("%d", n);

}

int main() {
```


#include<stdio.h>

void print(int n)

int main() {

if (n <= 0)

print(5);

return 0;

print (n-1);

printf("%d", n);

```
Non Touil (Head Recursion)
                     Pont (5
return;
                                  Recommon Tree
```


No. of value printed. 7


```
Ke currion tree crow
#include<stdio.h>
void print(int n)
     if (n <= 0) return; /
     print(n-1);
          printf("%d", n);
          print(n-1);
int main() {
          print(3);
          return 0;
```



```
#include<stdio.h>
void print(int n)
     if (n <= 0)
                 return;
     print(--n);
     printf("%d", n);
int main(){
     print(5);
     return 0;
```

```
No of values pointed
   pant (5)
```



```
which of the following is tore
#include<stdio.h>
    if (n <= 0) return; (4) 5 valus pointed
void print(int n)
     print(n--);
     printf("%d", n);
                       X(B) Infinite Loop
                        (C) Abnoomal Perminahan
int main(){
    print(5);
     return 0;
                               4 values pointed
```



```
Stack overflow
#include<stdio.h>
void print(int n)
     if (n <= 0) return;
     print(n--); <-
     printf("%d", n);
int main() {
                Segmentahon fault
     print(5);
     return 0;
```


point(s) pnn+(5) pmn (5) pnnt(s) pnn-(5) pnnt(5)


```
#Q. Consider the following program
   #include<stdio.h>
   int foo(int n){
              (n <= 9)
               return n;
        else
              return n%10+foo(n/10);
   int main() {
          printf("%d", foo(12345));
          return 0;
```


2 mins Summary

Topic

Recursion

Topic

Recumion Tree

Topic

Pail 2 Nontail Recursion

Topic

Topic

THANK - YOU

