ELECTROCHEMICAL ELEMENT

Patent Number:

JP7320720

Publication date:

1995-12-08

Inventor(s):

TAKADA KAZUNORI; others: 02

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Requested Patent:

☐ JP7320720

Application Number: JP19940109627 19940524

Priority Number(s):

IPC Classification:

H01M4/02; H01M10/40

EC Classification:

Equivalents:

JP3237394B2

Abstract

PURPOSE:To provide an electrochemical element capable of being operated by a large electric current by containing a lithium nitride metal compound and metal lithium respectively in at least one of paired electrodes so as to reduce interfacial impedance.

CONSTITUTION:An electrode material having a lithium ion conductive electro lyte interposed between a pair of electrode and including lithium nitride metal compound and metal lithium is contained in at least one of a pair of electrodes. Moreover, a lithium nitride transition metal compound is used as the lithium nitride metal compound. These materials are used to obtain a battery composed of the negative electrode 10, a nickel mesh 11 serving also as a current collecting body and for holding the negative electrode, a separator 12, a liquid electrolyte 13, the positive electrode 14, a high chromium stainless-steel mesh 15 serving also as another current collecting body and for retaining the positive electrode 14, cases 16, 17 and a gasket 18.

Data supplied from the esp@cenet database - I2

(19)日本国符許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-320720

(43)公開日 平成7年(1995)12月8日

(51)	T-4	رس ه	
(21)	ını.	u.	

識別記号 庁内整理番号

В

Z

FΙ

技術表示箇所

H 0 1 M 4/02 10/40

審査請求 未請求 請求項の数5 OL (全 12 頁)

(21)出願番号	
----------	--

特顧平6-109627

(71)出顧人 000005821

松下電器産業株式会社

(22)出願日

平成6年(1994)5月24日

大阪府門真市大字門真1006番地

(72)発明者 高田 和典

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 新田 芳明

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 近藤 繁雄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 電気化学素子

(57)【要約】

【目的】 急速充放電特性などの応答性に優れたリチウム二次電池、電気化学表示素子、電気二重層コンデンサ等の電気化学素子を提供する。

【構成】 少なくとも一対ある電極のうち、一方の電極の材料として、リチウムニトリド金属化合物と金属リチウムとの混合物を用いるものである。

【特許請求の範囲】

【請求項1】少なくとも一対の電極と、前記電極間に配 されたリチウムイオン伝導性電解質を有する電気化学素 子であって、前記―対の電極の少なくとも一方が、リチ ウムニトリド金属化合物と金属リチウムを含むことを特 徴とする電気化学素子。

【請求項2】リチウムニトリド金属化合物が、リチウム ニトリド遷移金属化合物であることを特徴とする請求項 1 記載の電気化学素子。

【請求項3】リチウムニトリド金属化合物が、六方晶の 10 結晶構造を有することを特徴とする請求項1記載の電気

【請求項4】リチウムニトリド遷移金属化合物が、リチー ウム、窒素と、鉄、銅、ニッケル、コバルトより選ばれ る少なくとも一種類以上の元素よりなることを特徴とす る請求項2記載の電気化学素子。

【請求項5】電気化学素子が、リチウム二次電池である ことを特徴とする請求項1~請求項4のいずれかに記載 の電気化学素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リチウムイオン伝導性 電解質を有するリチウム二次電池をはじめとし、電気化 学素子―般に関するものである。

[0002]

【従来の技術】現在、リチウムイオンを伝導イオンとす る電解質を用いた電気化学索子としては、リチウム電 池、電気二重層コンデンサ、電気化学表示素子などがあ る。なかでも、再充電が可能なリチウム二次電池は、近 年の携帯型電子機器の普及にともない、高電圧、高エネ 30 ルギー密度を有する携帯型電子機器用の電源として、各 方面で盛んにその開発研究が行われている。

【0003】リチウム電池用の負極活物質としては、と れまで商品化されてきたものにおいては、金属リチウム が主に用いられてきたが、電池の充放電にともないデン ドライトが生成して電池に内部短絡を生じる問題があ り、最悪の場合には電池の発熱、さらには発火などが生 じる危険性がある。との問題を取り除くために、金属リ チウムに代わる電極材料として黒鉛材料の検討が行われ

【0004】しかしながら、金属リチウムに代えて黒鉛 材料をリチウム電池の負極材料として用いた場合には、

(1) 黒鉛材料の理論容量密度は370mAh/gであ り、金属リチウムの理論容量密度の3860mAh/g に比べ小さく、さらに体積当たりの理論容量密度はさら に小さなものであることから、電池の容量密度が小さな ものとなる。

【0005】(2)電気化学的な酸化還元反応の生じる 電位が金属リチウムに比べて貴な電位であることから、 電池の作動電圧が若干低いものとなるなどの問題点も存 50 ら後者の反応は、窒化リチウムが電子伝導を示さないた

在する。

【0006】ヨーロッパ公開特許0281352号に は、窒化リチウムと金属リチウムの混合体を負極材料と したリチウム電池が開示されている。その電極反応に関 しては明らかではないが、充放電の繰り返しに対しても 安定に動作し、またC.D. Desjardins等によるとその容 量密度は金属リチウムに比べて遜色がない3400mA h/gの値を示し、また酸化還元電位も金属リチウムと ほぼ同じ電位であると報告されている (Power Sources. vol.12, pp.489-498(1989)).

2

【0007】以上のことから、窒化リチウムと金属リチ ウムの混合体は、黒鉛材料を負極材料として用いた上記 の問題を解決しうる負極材料となりうるものと考えられ

[0008]

【発明が解決しようとする課題】しかしながら、窒化リ チウムと金属リチウムの混合体を負極材料に用いた場合 には、上記のC.D. Desjardins等の論文にも示されたよ うに、電極/電解質界面の界面インピーダンスが高いも 20 のとなり、金属リチウムを電極とした場合に比べて大電 流での作動特性に劣るという課題を有していた。

【0009】本発明は、以上の課題を解決し、リチウム 二次電池用負極材料をはじめとする、リチウムイオン伝 導性電解質を用いた電気化学素子において、界面インビ ーダンスを減らして、大きな電流で作動しうる電気化学 素子を提供することを目的とする。

[0010]

【課題を解決するための手段】 少なくとも一対の電極 と、前記電極間に配されたリチウムイオン伝導性電解質 を有する電気化学素子において、リチウムニトリド金属 化合物と金属リチウムを含む電極材料を、前記一対の電 極のうち少なくとも一方に含むように電気化学素子を構 成する。

【0011】さらに、リチウムニトリド金属化合物とし ては、リチウムニトリド選移金属化合物を用いるもので あり、リチウムニトリド金属化合物としては、六方晶の 結晶構造を有するものを用いる。

【0012】さらに、リチウムニトリド選移金属化合物 としては、リチウム、窒素と、鉄、銅、ニッケル、コバ 40 ルトより選ばれる少なくとも一種類以上の元素よりなる ものを用いるのが好ましく、電気化学素子の応用として リチウム二次電池などを構成するものである。

[0013]

【作用】界面インピーダンスが高くなる原因としては、 次のような機構が考えられる。

【0014】金属リチウムと窒化リチウムの混合物を電 極活物質として用いた際の電極反応は、金属リチウム/ 電解質界面におけるリチウムの溶解析出反応とともに、 窒化リチウムの酸化還元反応が考えられる。しかしなが め、電気化学反応を生じるために必要な電荷移動が窒化 リチウム/電解質界面では生じず、電解質/金属リチウ ム/窒化リチウムの3相界面において生じる。このよう に窒化リチウム/電解質界面においては、電気化学反応 が生じないことから電極反応面積は小さなものとなり、 その結果界面インピーダンスが高くなるものと考えられ

【0015】とれに対して、リチウムニトリド金属化合 物はバンド構造の変化により窒化リチウムとは異なり、 電子伝導性を示す。特にリチウムニトリド金属化合物と してのリチウムニトリド遷移金属化合物は、下記の機構 により高い電子伝導性を示す。

【0016】リチウムニトリド遷移金属化合物におい て、遷移金属元素は低次の酸化状態をとる。例えば、L i,-xCoxNで表されるニトリドコバルト酸リチウムや Li,-xFe,Nで表されるニトリド鉄酸リチウムにおい ては、コバルトあるいは鉄は十十価の酸化状態をとる。 また、Li,TiN,で表されるニトリドチタン酸リチウ ムにおいてチタンは+4価、Li,FeN,で表されるニ トリド鉄酸リチウムにおいて鉄は+2価の原子価をと り、いずれも金属元素はd軌道に電子が存在する状態と なっている。したがってこれらのリチウムニトリド遷移 金属化合物においては、このd電子が電子伝導に寄与す るため、これらのリチウムニトリド遷移金属化合物は電 子伝導性を示す。

【0017】したがって、金属リチウムとリチウムニト リド金属化合物の混合物を電極材料として用いること で、電極反応はリチウムニトリド金属化合物/電解質界 面の2相界面でも生じることとなり、その結果界面イン ピーダンスは低いものとなり、大きな電流を取り出すこ 30 とができる電気化学素子が得られる。

【0018】とのようなリチウムニトリド金属化合物 は、Li_{1-x}Ni_x[Li₂N], Li_{1-x}Cu_x[Li N], Li__,Co, [Li,N], Li__,Fe, [Li ,N] などの窒化リチウムの六方晶の結晶構造におい て、リチウム原子がニッケル、鉄原子などの金属原子に より置換された固溶体を形成するものと、Li,Ti N,, Li, VN,, LiZnNなどの蛍石型の超構造を 有する化合物とに大別することができる。

【0019】 これらのリチウムニトリド金属化合物にお 40 いて、固溶体を形成するものは、鉄、銅、ニッケル、コ バルトの金属元素が+1価の低次の酸化状態をとり、電 子伝導に寄与する電子密度が高いものとなる。したがっ て、これらの六方晶の結晶構造を有するリチウムニトリ ド金属化合物は、より高い電子伝導性を示し、電気化学 素子の電極材料として用いた場合、電解質との界面イン ピーダンスが小さなものとなることから特に好ましく用 いられる。

【0020】また以上の理由により、リチウムニトリド 金属化合物としては、六方晶の結晶構造を有し、リチウ 50 金属リチウムと窒化リチウムをモル比で9:1に混合

ムと窒素と、鉄、銅、ニッケル、コバルトより選ばれる 少なくとも一種の金属元素よりなるものが、特に好まし く用いられる。

【0021】さらに、電気化学素子としてのリチウムニ 次電池は、その作動時の酸化還元電気量が他の電気化学 素子に比べて大きなものであることから、金属リチウム を電極材料として用いた場合にデンドライトの発生が生 じやすく、また性能的にも髙容量密度が期待されている ことから高容量密度の電極材料を用いる必要があり、さ らに大電流での作動特性も重要であるため、このような リチウム二次電池の電極材料として用いた場合の効果 は、特に大きなものとなる。

[0022]

【実施例】以下、本発明について実施例を用いて詳細に 説明する。

【0023】 (実施例1) 本実施例においては、金属リ チウムとリチウムニトリド金属化合物の混合物として、 金属リチウムとLi,FeN,で表されるニトリド鉄酸リ チウムの混合物を電極材料とし、その特性を評価した。 【0024】Li,FeN,で表されるニトリド鉄酸リチ ウムは、以下の方法で合成した。市販試薬特級の窒化リ チウム(Li,N)と金属鉄をモル比で混合し、この混 合物を鉄製坩堝中にいれ、少量の水素を含む窒素気流中 900℃で6時間焼成し、Li,FeN,で表されるニト リド鉄酸リチウムを得た。

【0025】次に、とのようにして得たニトリド鉄酸リ チウムを金属リチウム箔上に金属リチウムと窒素の比が 9:1となるように、すなわち、Li:Li,FeN₂の 式量比が18:1となるように散布した。その後圧延口 ーラーで圧延を繰り返し、ニトリド鉄酸リチウムを金属 リチウムに混練し、最終的に100μmの厚みに圧延 し、本発明による電極材料を得た。

【0026】以上のようにして得た電極材料を、金属銅 メッシュに充填して電極とし、その電極を用いて図1に 示すような電気化学セルを構成し、その内部抵抗を複素 インピーダンス法により測定した。

【0027】但し、図1において、1、2は上記で得た 電極材料であり、3、4は集電体を兼ね電極を保持する ための銅メッシュ、5は厚さ50μmのポリプロピレン のミクロ多孔質膜からなるセパレータ、6はプロピレン カーボネート(PC)とジメトキシエタン(DME)を 1:1の比率で混合した混合溶媒に6フッ化リチウムリ ン (LiPF。) を1. 0Mの浪度となるよう溶解した 電解液、7、8はステンレス製のケースであり、ガスケ ット9を間に介在して封口した。

【0028】次に比較のために、以下の方法により金属 リチウムと窒化リチウムの混合物である電極材料を得

【0029】金属リチウムと窒化リチウムの混合物は、

し、上記と同様に圧延し電極材料とした。

【0030】とのようにして得た電極材料を用いた以外 は上記と同様の方法で、同様の電気化学セルを構成し、 その内部抵抗を測定した。

5

【0031】とのようにして測定した内部抵抗を、複素 インピーダンス表示したものを図2に示す。なお図中、 黒丸印●は本発明の実施例によるニトリド鉄酸リチウム と金属リチウムの複合体を電極材料として用いた電気化 学セルを用いた測定結果、白三角印△は比較例による窒* * 化リチウムと金属リチウムの複合体を電極材料として用 いた電気化学セルを用いた測定結果を表す。各々の測定 結果において、半円弧は、電極/電解質界面における電 荷移動抵抗に対応すると考えられる。この円弧の直径よ り求めた電荷移動抵抗の値を(表1)に示すが、この結 果より本実施例による電極材料が、比較例による電極材 料に比べて小さな電荷移動抵抗を示すことがわかった。 [0032]

【表1】

		電荷移動抵抗	(Ω ∕ α⅓)
Li ₃ FeN ₂ +Li	(本発明)	1 2	
Li ₃ N+Li	(比較例)	19	

【0033】以上のことから、本実施例によるとリチウ ムイオン導電性の電解質と組み合わせた場合、電荷移動 抵抗が小さく、分極の小さな電極材料が得られることが わかった。

【0034】(実施例2)本実施例においては、実施例 20 1において得た電極材料を負極材料として用い、電気化 学素子としてリチウム二次電池を構成した例について説 明する。

【0035】リチウム二次電池の負極材料として実施例 1で得た電極材料を、18mmφの径に打ち抜き、金属 銅メッシュに充填した。

【0036】リチウム二次電池の正極活物質としては、 コバルト酸リチウム (LiCoOz) を用いた。正極活 物質であるコバルト酸リチウムは、酸化コバルトと、炭 酸リチウムを式量比で2:1の比となるように混合し、 大気中700℃で焼成することで合成した。

【0037】とのようにして得たコパルト酸リチウム に、上記と同様に導電材として繊維状黒鉛、結着材とし てポリ4フッ化エチレン(PTFE)を混合して正極材 料とした。この正極材料1000mgを18mm φの径 のハイクロムステンレスメッシュに充填し、正極とし た。

【0038】電解質とセパレータは、実施例1と同じも のを用いた。これらの材料を用い、図3に示すような断 面を持つリチウム電池を構成した。図3において、10 40 は負極、11は集電体を兼ね負極を保持するためのニッ ケルメッシュ、12はセパレータ、13は電解液、14 は正極、15は集電体を兼ね正極を保持するためのハイ クロムステンレスメッシュ、16、17はステンレス製 のケースであり、ガスケット18を間に介在して封口 し、試験電池を作製した。

【0039】次に比較のために負極材料として実施例1 で得た金属リチウムと窒化リチウムの混合物を用いた以 外は同様の方法でリチウム二次電池を構成した。

【0040】とのようにして得たリチウム二次電池を、

10mAの電流値、3V~4.2Vの電圧範囲で定電流 充放電を行った。その結果得られた放電曲線を図4亿示 す。本実施例による金属リチウムとニトリド鉄酸リチウ ムの混合物を負極材料として用いた電池の方が、金属リ チウムと窒化リチウムの混合物を負極材料として用いた 電池に比べ高い放電電圧を示したことがわかる。

【0041】以上のことより、本実施例による負極材料 を用いたリチウム二次電池が、大電流での作動が可能で あることがわかった。

【0042】(実施例3)本実施例においては、リチウ ムニトリド金属化合物として、実施例1、実施例2にお けるLi,FeN,で表されるニトリド鉄酸リチウムに代 えてLi,FeN,で表されるニトリド鉄酸リチウムを用 い、実施例1と同様の電気化学セルを構成し、その内部 インピーダンスを測定するとともに、実施例2と同様に 電気化学素子としてリチウム二次電池を構成した例につ いて説明を行う。 Li.FeN,で表されるニトリド鉄 酸リチウムは、以下の方法で合成した。

【0043】金属リチウムを鉄製坩堝中にいれ、窒素気 流中900℃で加熱し溶融した。との温度で5時間加熱 し、その後融液を水冷した鉄板上に流しだし、Li.F eN,で表されるニトリド鉄酸リチウムを合成した。

【0044】とのようにして得たニトリド鉄酸リチウム を用いた以外は、実施例1と同様に電気化学セルを構成 しその内部インピーダンスを測定するとともに、実施例 2と同様にリチウム二次電池を構成した。

【0045】との電気化学セルを用いて内部インピーダ ンスを測定し、電荷移動抵抗を求めたところ、110/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0046】また、上記で得たリチウム二次電池を用い て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の

50 放電電圧よりも高いものであった。

【0047】以上のことより、本実施例による電極材料を用いたリチウム二次電池は、大電流での作動が可能であることがわかった。

【0048】また電極界面のインピーダンスを減じ、大電流での作動が可能となる電気化学素子を得ることができることがわかった。

【0049】(実施例4)本実施例においては、リチウムニトリド金属化合物として、Liz.,Coo.,Nで表されるニトリドコバルト酸リチウムを用い、実施例1と同様の電気化学セルを構成し、その内部インビーダンスを 10 測定するとともに、実施例2と同様に電気化学素子としてリチウム二次電池を構成した例について説明を行う。

Li.,Co.,Nで表されるニトリドコバルト酸リチウムは、窒化リチウムと金属コバルトをモル比で5:3 に混合し、窒素気流中500℃で加熱することにより得た。

【0.050】 このようにして得たニトリドコバルト酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インピーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

【0051】との電気化学セルを用いて内部インビーダンスを測定し、電荷移動抵抗を求めたところ、9Q/c m^2 の値を示し、本発明における電極材料は、実施例1中の比較例による電極材料よりも電荷移動抵抗の小さな電極となっていることがわかった。

【0052】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0053】以上のことより、本実施例による負極材料を用いたリチウム二次電池が、大電流での作動が可能であることがわかった。

【0054】また、本実施例によると電極界面のインビーダンスを減じ、大電流での作動が可能となる電気化学素子を得ることができることがわかった。

【0055】(実施例5)本実施例においては、実施例 1において得た電極材料を負極材料として用い、電気化 学素子としてリチウム二次電池を構成した例について説 明を行う。

【0056】リチウム二次電池の負極材料として、実施 40例1で得た電極材料を18mmφの径に打ち抜き、金属 銅メッシュに充填した。

【0057】リチウム二次電池の正極活物質としては、実施例2で用いたコバルト酸リチウム(LiCoO;)に代えて、二硫化チタン(TiS;)を用いた。これに結着材としてPTFEを混合して正極材料とした。この正極材料1000mgを18mmφの径に打ち抜いてハイクロムステンレスメッシュに充填し、正極とした。

【0058】電解質とセパレータは、実施例1と同じも 気化学セルを構成し、その内部インピーダンスを測定すのを用いた。これらの材料を用い、実施例2と同様の方 50 るとともに、実施例2と同様に電気化学素子としてリチ

法で本発明によるリチウム電池を構成した。

【0059】次に比較のために、負極材料として実施例 1の比較例で得た金属リチウムと窒化リチウムの混合物 を用いた以外は同様の方法でリチウム二次電池を構成し た。

【0060】 このようにして得たリチウム二次電池を10mAの電流値、1.5V~3.0Vの電圧範囲で定電流放電を行った。その結果、本実施例による金属リチウムとニトリド鉄酸リチウムの混合物を負極材料として用いた電池の方が、金属リチウムと窒化リチウムの混合物を負極材料として用いた電池に比べ高い放電電圧を示した。

【0061】以上のことより、本実施例による負極材料を用いたリチウム二次電池が、大電流での作動が可能であることがわかった。

【0062】(実施例6)本実施例においては、リチウムニトリド金属化合物として、実施例4と同様にニトリドコバルト酸リチウムを、ただしその組成をさまざまに変化させたものを用い、実施例1と同様の電気化学セル を構成し、その内部インピーダンスを測定するとともに、実施例2と同様に電気化学素子としてリチウム二次電池を構成した例について説明を行う。

【0063】ニトリドコバルト酸リチウム二次電池としては、 $\text{Li}_{3-x}\text{Co}_x\text{N}$ (x=0.25,0.12)で表されるものを実施例4と同様の方法で合成した。

【0064】とのようにして得たニトリドコバルト酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インピーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

[0065] この電気化学セルを用いて内部インピーダンスを測定し、電荷移動抵抗を求めたところ、9Q/c $m^2(x=0.25060)$ 、 $10Q/cm^2(x=0.12060)$ の値を示し、本発明における電極材料は、実施例1中の比較例による電極材料よりも電荷移動抵抗の小さな電極となっていることがわかった。

【0066】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0067】以上のことより、本実施例による負極材料を用いたリチウム二次電池が、大電流での作動が可能であることがわかった。

【0068】また、電極界面のインビーダンスも減じ、 大電流での作動が可能となる電気化学素子を得ることが できることがわかった。

【0069】(実施例7)本実施例においては、リチウムニトリド金属化合物として、Li,,Cu。,Nで表されるニトリド銅酸リチウムを用い、実施例1と同様の電気化学セルを構成し、その内部インピーダンスを測定するとともに、実施例2と同様に電気化学妻子としてリチ

(6)

ウム二次電池を構成した例について説明を行う。

【0070】 Li,,,Cu,,,Nで表されるニトリド銅酸リチウムは、窒化リチウムと金属銅をモル比で5:3に混合し、窒素気流中500℃で加熱することにより得た。

【0071】とのようにして得たニトリド銅酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インピーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

【0072】との電気化学セルを用いて内部インビーダ 10 ンスを測定し、電荷移動抵抗を求めたところ、100/cm³の値を示し、本発明における電極材料は、実施例 1中の比較例による電極材料よりも電荷移動抵抗の小さな電極となっていることがわかった。

【0073】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0074】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、大電流での作動が可能で 20 あることがわかった。

【0075】さらに、本実施例によると電極界面のイン ピーダンスを減じ、大電流での作動が可能となる電気化 学素子を得ることができることがわかった。

【0076】(実施例8)本実施例においては、リチウムニトリド金属化合物として、Li,MnN,で表されるニトリドマンガン酸リチウムを用い、実施例1と同様の電気化学セルを構成し、その内部インピーダンスを測定するとともに、実施例2と同様に電気化学素子としてリチウム二次電池を構成した例について説明を行う。

【0077】ニトリドマンガン酸リチウムは、実施例4と同様の方法で合成した。このようにして得たニトリドマンガン酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インビーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

【0078】この電気化学セルを用いて内部インビーダンスを測定し、電荷移動抵抗を求めたところ、14Q/cm²の値を示し、本実施例における電極材料は、実施例1中の比較例による電極材料よりも電荷移動抵抗の小40さな電極となっていることがわかった。

【0079】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0080】以上のことより、本発明による負極材料を用いたリチウム二次電池は、大電流での作動が可能であり、電極界面のインピーダンスを減じ、大電流での作動が可能となる電気化学素子を得ることができることがわかった。

【0081】(実施例9)本実施例においては、リチウムニトリド金属化合物として、Li,MnN,で表されるニトリドマンガン酸リチウムを用い、実施例1と同様の電気化学セルを構成し、その内部インビーダンスを測定するとともに、実施例2と同様に電気化学素子としてリチウム二次電池を構成した例について説明を行う。

【0082】ニトリドマンガン酸リチウムは、実施例4と同様の方法で合成した。このようにして得たニトリドマンガン酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インピーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

【0083】 この電気化学セルを用いて内部インピーダンスを測定し、電荷移動抵抗を求めたところ、14Q/cm³の値を示し、実施例における電極材料は、実施例1中の比較例による電極材料よりも電荷移動抵抗の小さな電極となっていることがわかった。

【0084】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0085】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、大電流での作動が可能、電極界面のインピーダンスを減じ、大電流での作動が可能となることがわかった。

【0086】(実施例10)本実施例においては、リチウムニトリド金属化合物として、Li,MnN4で表されるニトリドマンガン酸リチウムを用い、実施例1と同様の電気化学セルを構成し、その内部インビーダンスを測30 定するとともに、実施例2と同様に電気化学素子としてリチウム二次電池を構成した例について説明を行う。

【0087】ニトリドマンガン酸リチウムは、実施例4と同様の方法で合成した。このようにして得たニトリドマンガン酸リチウムを用いた以外は、実施例1と同様に電気化学セルを構成しその内部インピーダンスを測定するとともに、実施例2と同様にリチウム二次電池を構成した。

【0088】との電気化学セルを用いて内部インビーダンスを測定し、電荷移動抵抗を求めたところ、16Q/cm³の値を示し、本実施例における電極材料は、実施例1中の比較例による電極材料よりも電荷移動抵抗の小さな電極となっていることがわかった。

【0089】また、上記で得たリチウム二次電池を用いて実施例2と同様の充放電試験を行ったところ、その放電電圧は実施例2中の比較例によるリチウム二次電池の放電電圧よりも高いものであった。

【0090】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、大電流での作動が可能で、電極界面のインピーダンスを減じ、大電流での作動50 が可能となることがわかった。

【0091】(実施例11)本実施例においては、リチ ウムニトリド金属化合物として、Liz,Nio,Nで表 されるニトリドニッケル酸リチウムを用い、実施例1と 同様の電気化学セルを構成し、その内部インピーダンス を測定するとともに、実施例2と同様に電気化学素子と してリチウム二次電池を構成した例について説明を行 う。 ニトリドニッケル酸リチウムは、実施例4と同様 の方法で合成した。

11

【0092】とのようにして得たニトリドニッケル酸リ を構成しその内部インピーダンスを測定するとともに、 実施例2と同様にリチウム二次電池を構成した。

【0093】との電気化学セルを用いて内部インピーダ ンスを測定し、電荷移動抵抗を求めたところ、100/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0094】また、上記で得たリチウム二次電池を用い て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の 20 放電電圧よりも高いものであった。

【0095】以上のことより、本実施例による負極材料 を用いたリチウム二次電池は、大電流での作動が可能、 電極界面のインピーダンスを減じ、大電流での作動が可 能となることがわかった。

【0096】(実施例12)本実施例においては、リチ ウムニトリド金属化合物として、Li,Sェ,Ni,N,で 表されるニトリドストロンチウムニッケル酸リチウムを 用い、実施例1と同様の電気化学セルを構成し、その内 部インピーダンスを測定するとともに、実施例2と同様 30 に電気化学素子としてリチウム二次電池を構成した例に ついて説明を行う。

【0097】ニトリドストロンチウムニッケル酸リチウ ムは、実施例4と同様の方法で合成した。

【0098】とのようにして得たニトリドストロンチウ ムニッケル酸リチウムを用いた以外は、実施例1と同様 に電気化学セルを構成しその内部インピーダンスを測定 するとともに、実施例2と同様にリチウム二次電池を構 成した。

【0099】この電気化学セルを用いて内部インピーダ 40 ンスを測定し、電荷移動抵抗を求めたところ、140/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0100】また、上記で得たリチウム二次電池を用い て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の 放電電圧よりも高いものであった。

【0101】とのことより、本実施例による負極材料を

能で、電極界面のインピーダンスも減少し、大電流での 作動が可能となることがわかった。

【0102】(実施例13)本実施例においては、リチ ウムニトリド金属化合物として、LigCrNgで表され るニトリドクロム酸リチウムを用い、実施例1と同様の 電気化学セルを構成し、その内部インピーダンスを測定 するとともに、実施例2と同様に電気化学素子としてリ チウム二次電池を構成した例について説明を行う。

【0103】ニトリドクロム酸リチウムは、実施例4と チウムを用いた以外は、実施例 1 と同様に電気化学セル 10 同様の方法で合成した。このようにして得たニトリドク ロム酸リチウムを用いた以外は、実施例1と同様に電気 化学セルを構成しその内部インビーダンスを測定すると ともに、実施例2と同様にリチウム二次電池を構成し た。

> 【0104】この電気化学セルを用いて内部インピーダ ンスを測定し、電荷移動抵抗を求めたところ、13Q/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0105】また、上記で得たリチウム二次電池を用い て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の 放電電圧よりも高いものであった。

【0106】以上のことより、本実施例による負極材料 を用いたリチウム二次電池は、大電流での作動が可能 で、電極界面のインピーダンスを減じ、大電流での作動 が可能となることがわかった。

【0107】(実施例14)本実施例においては、リチ ウムニトリド金属化合物として、Li, VN. で表される ニトリドバナジン酸リチウムを用い、実施例1と同様の 電気化学セルを構成し、その内部インピーダンスを測定 するとともに、実施例2と同様に電気化学素子としてリ チウム二次電池を構成した例について説明を行う。

【0108】ニトリドバナジン酸リチウムは、実施例4 と同様の方法で合成した。このようにして得たニトリド バナジン酸リチウムを用いた以外は、実施例1と同様に 電気化学セルを構成しその内部インピーダンスを測定す るとともに、実施例2と同様にリチウム二次電池を構成

【0109】この電気化学セルを用いて内部インピーダ ンスを測定し、電荷移動抵抗を求めたところ、150/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0110】また、上記で得たリチウム二次電池を用い て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の 放電電圧よりも高いものであった。

【0111】以上のことより、本実施例による負極材料 用いたリチウム二次電池は、やはり大電流での作動が可 50 を用いたリチウム二次電池は、大電流での作動が可能で

あり、さらに電極界面のインピーダンスを減じ、大電流 での作動が可能となることがわかった。

【0112】 (実施例15) 本実施例においては、リチ ウムニトリド金属化合物として、LisMoNeで表され るニトリドモリブデン酸リチウムを用い、実施例1と同 様の電気化学セルを構成し、その内部インピーダンスを 測定するとともに、実施例2と同様に電気化学素子とし てリチウム二次電池を構成した例について説明を行う。

【0113】ニトリドモリブデン酸リチウムは、実施例 4と同様の方法で合成した。このようにして得たニトリ 10 ドモリブデン酸リチウムを用いた以外は、実施例1と同 様に電気化学セルを構成しその内部インピーダンスを測 定するとともに、実施例2と同様にリチウム二次電池を 構成した。

【0114】この電気化学セルを用いて内部インピーダ ンスを測定し、電荷移動抵抗を求めたところ、14Ω/ cm'の値を示し、本実施例における電極材料は、実施 例1中の比較例による電極材料よりも電荷移動抵抗の小 さな電極となっていることがわかった。

【0115】また、上記で得たリチウム二次電池を用い 20 て実施例2と同様の充放電試験を行ったところ、その放 電電圧は実施例2中の比較例によるリチウム二次電池の 放電電圧よりも高いものであった。

【0116】以上のことより、本実施例による負極材料 を用いたリチウム二次電池は、大電流での作動が可能で あることがわかった。

【0117】また、電極界面のインピーダンスを減じ、 大電流での作動が可能となる電気化学素子を得ることが できることがわかった。

[0118] (実施例16) 本実施例においては、実施 30 例4と同様にリチウムニトリド金属化合物として、ニト リドコバルト酸リチウムを負極材料として用い、電解質 としてはリチウムイオン導電性固体電解質を用いて、電 気化学素子として全固体リチウム二次電池を構成した例 について説明を行う。

【0119】電解質としては、以下の方法で合成した非 晶質リチウムイオン導電性固体電解質を用いた。Lix SとSiS,を式量比で3:2に混合し、Ar気流中で 溶融した。この融液を液体窒素中に注ぎ込んで急冷し、 ムイオン導電性固体電解質を合成した。

【0120】ニトリドコバルト酸リチウムとしては、実 施例4と同様の方法で得たものを用い、同じく実施例1 と同様の方法で金属リチウムとの複合体を得た。

【0121】このようにして得たニトリドコバルト酸リ チウムと金属リチウムの複合体に、導電材として繊維状 黒鉛を5wt%混合し、さらに上記で得た固体電解質5 0wt%を加え、全固体リチウム二次電池の負極材料と した。

【0122】リチウム二次電池の正極材料としては二硫 50 紫外線硬化樹脂35で封止した。

化チタンを用いた。これはまず、二硫化チタンをシクロ ヘキサンで希釈したn-ブチルリチウム中に少量ずつ浸 潰し、二硫化チタンの結晶層間にLi*イオンをインタ ーカレートし、LiTiS,で表される化合物を合成し た。その後との化合物をシクロヘキサンで洗浄し、減圧 下で乾燥した。とのLiTiS、と固体電解質を重量比 で1:1に混合し、全固体リチウム二次電池の正極材料 とした。

【0123】とれらの正極、負極、電解質を用い、図5 に示す断面構造をもつ全固体リチウム二次電池を構成し た。但し、図5において、19は正極、20は固体電解 質層、21は負極であり、リード端子22、23をカー ボンベースト24により接着の後、全体をエポキシ樹脂 25により封止した。

【0124】比較のために、実施例1の比較例で得た窒 化リチウムと金属リチウムの複合体を負極材料として用 いた以外は、上記と同様の方法で全固体リチウム二次電 池を構成した。

【0125】とのようにして得た全固体リチウム二次電 池を3.0V~1.5Vの電圧範囲で100μAの電流 値で定電流充放電を行った。この結果得られた1サイク ル目の放電曲線を図6に示す。なお、図6中、実線は負 極材料としてニトリドコバルト酸リチウムと金属リチウ ムの複合体を用いたもの、破線は負極材料として窒化リ チウムと金属リチウムの複合体を用いたものの放電曲線 を示す。この結果より、本実施例による負極材料として ニトリドコバルト酸リチウムと金属リチウムの混合体を 用いたものの方が、放電電圧が高く、大電流での作動が 可能となっていることがわかる。

【0126】以上のことより、本実施例によると大電流 での作動が可能な全固体リチウム二次電池が得られると とがわかった。

【0127】(実施例17)本実施例においては、リチ ウムニトリド金属化合物と金属リチウムの複合体とし て、実施例1で用いたLi,FeN,表されるニトリド鉄 酸リチウムと金属リチウムの複合体を電極材料として用 い、電気化学素子として電気化学表示素子を構成した例 について説明を行う。

【0128】本実施例により構成した電気化学表示索子 0. 6 Li, S-0. 4 Si S, で表される非晶質リチウ 40 の断面図を図7 に示す。表示極としては、酸化タングス テンを用いた。これはガラス基板26上に透明電極とし てITO層27を、さらに酸化タングステン層28をそ れぞれ電子ピーム蒸着法により順次形成した。

> 【0129】一方、リード端子29をガラス半田30で 取り付けたガラスケース31中に、実施例1で得たニト リド鉄酸リチウムと金属リチウムの複合体よりなる電極 材料を用いた対極32を入れ、光反射板として多孔性セ ラミック板33、電解質34としてプロピレンカーボネ ートに1MのLiCIO。を溶解させたものを充填し、

【0130】比較のために、ニトリド鉄酸リチウムと金 属リチウムの複合体に代えて、実施例1の比較例で得た 窒化リチウムと金属リチウムの複合体を対極の電極材料 として用いた以外は上記と同様の方法で、電気化学表示 素子を構成した。

15

【0131】とのようにして得た電気化学表示素子の作 動特性として、発色の応答性について検討を行った。図 8に評価に用いた測定系の原理図を示す。図8中、36 は電気化学表示素子で、定電圧電源37により作動す る。電気化学表示素子の応答特性を測定するための光学 10 系として38のHe-Neレーザー光源を用い、この光 源より発せられた光は電気化学表示素子の表示部により 反射され、光ダイオード39に入射する。 反射光の強度 はこの光ダイオードにより検出され、信号増幅器40を 介して、波形記憶装置41に定電圧電源のモニター出力 とともに記録される。

【0132】ここで、この電気化学表示素子は、発色時 には赤い光が吸収されるため骨色を呈する。したがっ て、記録された光の吸収は電気化学表示素子の発色度合 いを表すものといえる。すなわち、光ダイオードに入射 20 圧を高インピーダンス電圧計により測定した。 する光強度の減少が、電気化学表示素子の発色が生じて いるととに対応する。

【0133】上記の測定系を用い、定電圧電源により電 気化学表示素子に1.5 Vの電圧を印加した際の反射光 強度の時間変化を図9に示す。なお、図9中において、 縦軸は電圧印加前の反射光強度に対する電圧の印加後の 反射光強度の比([/ [。) を示し、また実線は本実施 例による負極材料としてニトリド鉄酸リチウムと金属リ チウムの複合体を用いた電気化学表示素子を用いた際の 属リチウムの複合体を用いたものの結果である。この結 果より、反射光強度の減少は、対極として本実施例によ るニトリド鉄酸リチウムと金属リチウムとの複合体を用 いたものの方が速やかった。

【0134】以上のことより、本実施例によると応答性 に優れた電気化学表示素子が得られることがわかった。 【0135】(実施例18)本実施例においては、電気 化学索子として有極性の電気二重層コンデンサを構成し た例について説明を行う。

は、実施例4で用いた金属リチウムとニトリドコバルト 酸リチウムの複合体を用いた。 この電極材料を100μ mの厚みに圧延し、18mmφの径に打ち抜いてハイク ロムステンレスメッシュに充填し、非分極性電極とし た。

【0137】分極性電極には、高表面積の炭素材料を用 いた。髙表面積の炭素材料に結着材としてPTFEを3 wt%加えて混練後、1mmの厚さに圧延し、同様に1 8mm φの径に打ち抜いてハイクロムステンレスメッシ ュに充填し、分極性電極とした。

【0138】上記で得た非分極性電極ならびに分極性電 極を用い、本実施例により構成した電気二重層コンデン サの断面図を図10に示す。

【0139】図10において、42は非分極性電極、4 3は集電体を兼ね非分極性電極を保持するためのハイク ロムステンレスメッシュ、44は厚さ100μmのセパ レータ、45は電解液、46は分極性電極、47は集電 体を兼ね分極性電極を保持するためのハイクロムステン レスメッシュ、48、49はステンレス製のケースであ り、ガスケット50を間に介して封口し、電気二重層コ ンデンサを作製した。

【0140】比較例として、非分極性電極として実施例 1の比較例で得た金属リチウムと窒化リチウムの複合体 を非分極性電極材料として用いた以外は、上記と同様の 方法で電気二重層コンデンサを作製した。

【0141】とれらの電気二重層コンデンサを用い、定 電圧パルスによる急速充電特性を調べた。電気二重層コ ンデンサに与えた定電圧パルスは、3.0 Vの電圧で、 パルス幅lmsecとし、電圧印加後のコンデンサの電

【0142】その結果、非分極性電極材料として本実施 例による金属リチウムとニトリドコバルト酸リチウムを 用いたものでは、充電後の端子電圧は2.6 Vを示した のに対し、比較例による電気二重層コンデンサでは、充 電後の端子電圧は2.3 Vであった。

【0143】以上のことより、本実施例により得られた 電気二重層コンデンサが、急速充電特性に優れたもので あることがわかった。

【0144】なお、以上の実施例においては、リチウム 結果、破線は比較例である負極材料に窒化リチウムと金 30 ニトリド金属化合物を形成する金属元素としてFe, M n等についてのみ説明を行ったが、実施例には挙げなか ったW, Nb等を金属元素としたリチウムニトリド金属 化合物、また4元系以上の多元系ニトリド遷移金属酸リ チウムを用いた場合も同様の効果が得られることはいう までもなく、本発明はリチウムニトリド金属化合物を形 成する金属として実施例に挙げたものに限定されるもの ではない。

【0145】また、以上の実施例においては、リチウム ニトリド金属化合物を用いた電気化学素子として、リチ 【0136】非分極性電極に用いられる電極材料として 40 ウム二次電池、全固体リチウム二次電池、電気化学表示 素子、電気二重層コンデンサについてのみ説明を行い、 また電気化学素子に用いられる電解質としても有機溶媒 電解質、あるいは硫化物ガラス固体電解質を用いたもの について説明を行ったが、そのほか電気化学素子として は化学センサなどの他の電気化学素子を構成した場合 も、また電解質として髙分子固体電解質などリチウムイ オンを可動イオンとする他の電解質を用いた場合も同様 の効果が得られることはいうまでもなく、本発明は電気 化学索子、あるいは電解質として上記の実施例に挙げた 50 ものに限定されるものではない。

[0146]

【発明の効果】以上のように、少なくとも一対の電極 と、この電極間に配されたリチウムイオン伝導性電解質 を有する電気化学素子において、リチウムニトリド金属 化合物と金属リチウムを含む電極材料を前記一対の電極 のうちの少なくとも一方に用いることで、大電流での作 動が可能で、応答速度に優れた電気化学素子を得ること ができた。

17

【0147】さらに、リチウムニトリド金属化合物とし ては、リチウムニトリド遷移金属化合物を用いること で、大電流での作動が可能で応答速度に優れた電気化学 素子を得ることができた。

【0148】また、リチウムニトリド金属化合物として は、六方晶の結晶構造を有するものを用いることがで き、さらに、リチウムニトリド金属化合物の構成元素と しては、リチウム、窒素と、鉄、銅、ニッケル、コバル トより選ばれる少なくとも一種類以上の元素よりなるも のを用いることで、大電流での作動が可能で応答速度に 優れた電気化学素子を得ることができた。

【0149】また、電気化学素子としては、リチウムニ 20 24 カーボンペースト 次電池を構成することで、大電流での作動が可能にでき た。

【図面の簡単な説明】

【図1】本発明の一実施例における電気化学セルの断面

【図2】本発明の一実施例ならびに比較例による電気化 学セルの複素インビーダンス図

【図3】本発明の一実施例におけるリチウム二次電池の 断面図

【図4】本発明の一実施例におけるリチウム二次電池の 30 充放電曲線図

【図5】本発明の一実施例における全固体リチウム二次 電池の断面図

【図6】本発明の一実施例における全固体リチウム二次 電池の放電曲線図

【図7】本発明の一実施例における電気化学表示素子の 断面図

【図8】本発明の一実施例における測定装置の原理図

【図9】本発明の一実施例における電気化学表示素子の 応答特性を示した図

【図10】本発明の一実施例における電気二重層コンデ ンサの断面図

【符号の説明】

- 1 電極材料
- 2 電極材料
- 3 銅メッシュ
- 4 銅メッシュ

- 5 セパレータ
- 6 電解液
- 7 ケース
- 8 ケース
- 9 ガスケット
- 10 負極
- 11 負極集電体
- 12 セパレータ
- 13 電解液
- 10 14 正極
 - 15 正極集電体
 - 16 ケース
 - 17 ケース
 - 18 ガスケット
 - 19 正極
 - 20 固体電解質層
 - 21 負極
 - 22 リード端子
 - 23 リード端子
 - - 25 樹脂封止
 - 26 ガラス基板
 - 27 透明電極
 - 28 酸化タングステン層
 - 29 リード端子
 - 30 ガラス半田
 - 31 ガラスケース
 - 32 対極
 - 33 反射板
- 34 電解質
 - 35 紫外線硬化樹脂封止
 - 36 電気化学表示素子
 - 37 定電圧電源
 - 38 He-Neレーザー
 - 39 光ダイオード
 - 40 信号增幅器
 - 41 波形記憶装置
 - 42 非分極性電極
 - 43 集電体
- 44 セパレータ 40
 - 45 電解液
 - 46 分極性電極
 - 47 集電体
 - 48 ケース
 - 49 ケース
 - 50 ガスケット

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第1区分 【発行日】平成11年(1999)10月29日

【公開番号】特開平7-320720 【公開日】平成7年(1995)12月8日 【年通号数】公開特許公報7-3208 【出願番号】特願平6-109627 【国際特許分類第6版】

HO1M 4/02

10/40

[FI]

(FI)

H01M 4/02 B 10/40 Z

【手続補正書】

【提出日】平成10年12月16日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0085

【補正方法】変更

【補正内容】

【0085】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、大電流での作動が可能で<u>あり</u>、電極界面のインピーダンスを減じ、大電流での作動が可能となることがわかった。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0090

【補正方法】変更

【補正内容】

【0090】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、電極界面のインピーダンスを減じ、大電流での作動が可能となることがわかった。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0095

【補正方法】変更

【補正内容】

【0095】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、電極界面のインピーダンスを減じ、大電流での作動が可能となることがわかった。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0101

【補正方法】変更

【補正内容】

【0101】 このことより、本実施例による負極材料を用いたリチウム二次電池は、電極界面のインピーダンスを減少し、大電流での作動が可能となることがわかった

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0111

【補正方法】変更

【補正内容】

【0111】以上のことより、本実施例による負極材料を用いたリチウム二次電池は、電極界面のインピーダンスを滅じ、大電流での作動が可能となることがわかった。