

Klausur

Grundlagen der Betriebssysteme / Technische Informatik I

Datum und Uhrzeit: Institut:	29.7.2015 10:00 Uhr Institut für Verteilte Systeme	Bearbeitungszeit: Prüfer:	120 Minuten Prof. Dr. Franz J. Hauck
Vom Prüfungsteilnel	hmer auszufüllen:		
Name:	Vornan	ne:	Matrikelnummer:
Studiengang:	Abschlu	uss:	
renden aufgeführt sein, wird.	ss ich prüfungsfähig bin. Sollte dann nehme ich hiermit zur Ko	enntnis, dass diese Pr	rüfung nicht gewertet werden
Unterschrift des Prüfun	gsteilnehmers	Optionales Codev	vort für den Aushang
Hinweise zur Prüfu	ng:		
 (insgesamt 10 Aufga Lösungen bitte nur a nicht mit Rot- oder Als Schmierzettel bi den! Lösungen, die n gabe stehen, bitte de referenzieren! 	uf Aufgabenblätter und Bleistift schreiben! tte Rückseiten verwen- icht direkt bei der Auf- utlich kennzeichnen und zusätzlichen Bekanntga-	E	Barcode
Erlaubte Hilfsmitte	l:		

Vom Prüfer auszufüllen:

keine

14 PHZ 140 1

Aufgabe	1	2	3	4	5	6	7	8	9	10	\sum
Punkte	13	11	10	8	11	8	7	10	6	-1	90
Erreicht											
Zeichen											

Note:
Unterschrift Prof. Dr. Franz J. Hauck

Aufgabe 1: Rechnerarithmetik

(13 Punkte)

1.) Die folgende Zeile eines MIPS-Assembler-Programms legt vier konstante Worte im Datensegment ab.

var .data
$$27$$
, $0xAF$, -1 , 053

Welche Bitmuster werden in den Speicher gelegt?

(8 P)

- 2.) Das float-Format der MIPS sei folgendermaßen aufgebaut:
 - 1 Bit Vorzeichen s
 - 23 Bit Mantisse m
 - 8 Bit Exponent m mit Bias b=127

Der Wert berechnet sich bei Zahlen ungleich Null als $(-1)^s \cdot 1, m \cdot 2^{(e-b)}$. Berechnen Sie die Darstellung der Zahl -10, 25 und geben Sie die sich ergebenden 32 Bit an. (5 P)

Wozu dient die Master-File-Table in NTFS und was wird darin gespeichert?	(6 P)
Ein Verzeichnis in einem Linux-Dateisystem speichert Paare von Namen und In z.B.	nteger-Zahlen,
	nteger-Zahlen,
z.B.	$ateger-Zahlen, \ (5P)$
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	
z.B. (".", 4711), ("", 23), ("test", 5633)	

Aufgabe 3: Scheduling

(10 Punkte)

Gegeben sind drei Prozesse P_1 , P_2 und P_3 . Sie kommen zu unterschiedlichen Startpunkten ins System und haben unterschiedliches Laufverhalten (Rechenbedarf, Blockierungen):

- P₁: Start bei t= 0s, läuft 1,0s, blockiert für 0,5s, läuft noch einmal 1,5s und terminiert
- P_2 : Start bei t=0.5s, läuft 0.5s, blockiert für 1.0s, läuft noch einmal für 0.5s und terminiert
- P_3 : Start bei t=1,0s, läuft 1,5s ohne Blockierung und terminiert

Tragen Sie die Prozesszustände in folgende Zeitdiagramme ein. Markieren Sie einen Balken auf der jeweiligen Achse, so dass zu jedem Zeitpunkt (x-Achse) ersichtlich ist, in welchem Zustand sich der Prozess befindet.

1.) Tragen Sie die Prozesszustände für die präemptive Strategie Highest-Priority-First (HPF) ein! P_1 hat höchste, P_3 hat niedrigste Priorität. (5 P)

2.) Tragen Sie die Prozesszustände für die Round-Robin-Strategie mit konstanter Zeitscheibe von 1,0s ein! (5P)

Erklären Sie die Begriffe Parallelität und Nebenläufigkeit. Gel	han Sia inchesondere suf die
Unterschiede ein.	then Sie hisbesondere auf die $(2P)$
Was ist ein Semaphor? Erläutern Sie insbesondere die Funktion	nsweise des in der Vorlesung
vorgestellten Semaphor und beschreiben Sie <u>einen</u> möglichen Ei	insatzzweck. $(6P)$

gabe 5: Stapelspeicher	(11 Punkte)
Für welche Zwecke wird typischerweise ein Stapelspeicher (Stack) in setzt, wie z.B. dem MIPS-Prozessor?	einem Prozessor einge- $(5P)$
Die Implementierung eines Stacks erfolgt typischerweise durch ein den Stapelzeiger (Stack Pointer), z.B. \$sp bei der MIPS. Erläutern Si	
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be Fall in Worten, was zu tun ist.	vird (Pop)! Hier können
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem
Stack abgelegt wird (Push) und ein Wert vom Stack wieder geholt w Sie MIPS-Befehle zur Erläuterung verwenden, müssen aber nicht. Be	rird (Pop)! Hier können eschreiben Sie in jedem

]
		erder optin								tzt.	W	as	mü	sste	e de	LB <i>P)</i>

Aufgabe 7: Seitenersetzungen

(7Punkte)

Gegeben ist eine Referenzfolge für den Seitenzugriff als:

Sie haben nur zwei Kacheln im Hauptspeicher zur Verfügung.

1.) Sie verwenden die Strategie Least-Recently-Used (LRU). Ermitteln Sie die Belegung der jeweiligen Kacheln zu jedem Zeitpunkt der Referenzfolge und tragen Sie diese in das folgende Diagramm ein. (4P)

Referenzfolge	1	2	1	3	2	4
Kachel 1						
Kachel 2						

2.) Wieviele Einlagerungen gab es ingesamt?	(1 P)	

Erklären	Sie den Unterschied	d zwischen Polling	und Interrupt	Retrieb in ein	er Treiherimple-
	ing. Geben Sie auch	_	_		(4 P)
	1 6 1				
teschlang	ber für lang dauernd ge. Erläutern Sie wie arbeitet und jeder A	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt-
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden
teschlang Betrieb	ge. Erläutern Sie wie	e der Treiber arbe	eitet, wenn das	bediente Gera	ät im Interrupt- bersetzt werden

Auf	fgabe 9: Festplattentreiber	6 Punkte)	
	Festplattentreiber arbeitet nach der SCAN-Strategie. Die Warteschlange der Aufträg purnummern:	ge enthält	
23	3, 3, 55, 33, 17		
1.)	Der Schreib-, Lesekopf steht über der Spur mit Nummer 16 und bewegt sich Richt riger Nummern. Welcher Auftrag wird als nächstes ausgeführt?	ung nied- (1 P)	
2.)	Welcher Auftrag steht nach Ausführung des Auftrags aus Teilaufgabe 1) als näc	hstes an? (1 P)	
3.)	Während der Abarbeitung des zweiten Auftrags kommen weitere Aufträge ins Sys $_{\rm 2,\ 18}$	tem:	
	Welche Aufträge führt der Treiber im Folgenden der Reihe nach aus?	(2P)	
4.)	Wie viele Spurwechsel hat das System bis zur Abarbeitung aller Aufträge vornehmen	n müssen? (2 P)	

(2 P)
(1 P)
(2 P)
(1 P)
(11)

Zusatzblatt zu Aufgabe ____:

CdBS/Fill 2015