## Mid Term Presentation of BTP project

# Real-time Battery Monitoring system using Machine Learning

Presented by Tathya Bhatt – 191030011041 Gurpreet Singh - 191030012005

Under the guidance of Dr. Jagat Rath



Department of Mechanical and Aerospace Engineering Institute of Infrastructure, Technology, Research and Management



#### **Table of contents**

Introduction to Battery Monitoring System

Literature Reviews

Problem Statement

Objective

Methodology and Timeline

Hardware requirements

7 Future prospects



### Purpose

- With the rise of electrification in various tech products, many countries are working towards optimizing the performance and safety of battery operated machines.
- Lithuim-ion battery is used widely. This wide usage is primarily because it is lighter, efficient, charge faster and have a longer lifespan than other.
- Practically, Li-ion batteries are susceptible to many conditions that can damage the battery pack.
- Thus a typical Battery Monitoring System (BMS) became a revolutionary component which has the capability to monitor and optimize various parameters like Current, Voltage, Temperature, concerned for the safety.



### **Functions**

- The primary function of the BMS is to protect the battery cells from damage caused by being overcharged or over-discharged.
- But it has many more functionalities apart from protecting:

#### **Sensing Functionalities**

- Measures cell voltages
- Measure cell current
- Measure cell temperature



#### **Functions**

- The primary function of the BMS is to protect the battery cells from damage caused by being overcharged or over-discharged.
- But it has many more functionalities apart from protecting

#### **Protection Functionalities**

- Over Voltage , Current & Temperature
- Short Circuits
- Disconnecting a cell if faulty



#### **Functions**

- The primary function of the BMS is to protect the battery cells from damage caused by being overcharged or over-discharged.
- But it has many more functionalities apart from protecting

#### **Estimation**

#### **State of Charge (SOC)**

- It is the level of charge of a battery relative to its capacity of charge.

#### "State of Charge" (SoC)



#### **Functions**

- The primary function of the BMS is to protect the battery cells from damage caused by being overcharged or over-discharged.
- But it has many more functionalities apart from protecting

#### **Estimation**

#### State of Health (SOH)

- It is the measure of a performance of a battery considering the difference of the maximum capacity currently in use to the maximum capacity of a fresh battery.





www.biologic.net



## Working

1. BMS gets the data from various sensors



## Working

- 1. BMS gets the data from various sensors
- 2. Measuring with the help of a Microcontroller unit



## Working

- 1. BMS gets the data from various sensors
- 2. Measuring with the help of a Microcontroller unit
- 3. Estimation of State of Charge, State of Health, Thermal Status with various algorithms



## Working

- 1. BMS gets the data from various sensors
- 2. Measuring with the help of a Microcontroller unit
- 3. Estimation of State of Charge, State of Health, Thermal Status with various algorithms
- 4. Data sent through Control Area Network of that system to perform require actions



## **Applications**



Electric Vehicles



On Board Battery Charger



Autonomous Vehicle



Multicopters and Drones



Service Robots



**Power Tools** 

Try Pitch



Wearables



Home Appliances



Smart Audio



Wireless Charging

## **Literature Reviews**

| Sr.No | Paper Title                                                                                                                                 | Authors                                                                                                                 | Summary                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | A Guide to Lithium Polymer Batteries for Drones<br>Article - Tyro Robotics                                                                  | Lauren Nagel                                                                                                            | <ul> <li>How to read the specifications of a Li-Po         Battery Pack     </li> <li>Understandin C-Rate, Maximum Capacity,         Supply Voltage     </li> </ul> |
| 3.    | Battery Management System Hardware Concepts: An Overview  Applied Sciences MDPI (Page 2-14)                                                 | Markus Lelie<br>Thomas Braun<br>Marcus Knips<br>Hannes Nordmann<br>Florian Ringbeck<br>Hendrik Zappen<br>Dirk Uwe Sauer | <ul> <li>Existing concepts in a BMS System</li> <li>Different topologies of current BMS System of different companies</li> </ul>                                    |
| 4.    | Design a Battery Monitoring System for Lead-Acid Battery<br>International Journal of Creative Research Thoughts (IJCRT)<br>(Page 308 - 310) | Niraj Agarwal<br>Phulchand Saraswati<br>Ashish Malik<br>Yogesh Bateshwar                                                | How to use current sensor and temperature sensor to measure SOC                                                                                                     |



## **Literature Reviews**

| Sr.No | Paper Title                                                                                                                    | Authors                                                                                      | Summary                                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.    | Battery Management Systems: Accurate State-of-<br>Charge Indication for Battery-Powered Applications<br>ISBN 978-1-4020-6944-4 | P. P. L. Regtien<br>H. J. Bergveld<br>Dmitry Danilov<br>Valer Pop                            | Detail study and drawbacks between different methods<br>like Coulomb Counting, Voltage Acquisition to determine<br>the State of Charge                 |
| 5.    | Machine Learning Approaches in Battery<br>Management Systems: State of the Art<br>IEEE Explore (Page 63-64)                    | Reza Ardeshiri<br>Bharat Balagopal<br>Amro Alsabbagh<br>Chengbin Ma<br>Mo-Yuen Chow          | <ul> <li>Comprehensive study of different Neural Network<br/>approaches in the estimation of SOC and Remaining<br/>Useful Life of a battery</li> </ul> |
| 6.    | Predicting the Current and Future State of Batteries using Data-Driven Machine Learning  Nature Machine Intelligence           | Man-Fai Ng<br>Jin Zhao<br>Qingyu Yan<br>Gareth J. Conduit<br>Zhi Wei Seh                     | Advantages of data driven models and challenges in current models                                                                                      |
| 7.    | Overview of Machine Learning Methods for Lithium-<br>Ion Battery Remaining Useful Lifetime Prediction<br><i>Electronics</i>    | Siyu Jin<br>Xin Sui<br>Xinrong Huang<br>Shunli Wang<br>Remus Teodorescu<br>Daniel-loan Stroe | Review of different ML Algorithms and to find the best and accurate one                                                                                |

#### **Problem Statement**

- Currently, battery monitoring system rely mostly on measurement of current and voltage and ultimately SOC through hardware systems.
- These methods neglect to consider temperature of surroundings as a parameter,
   which are pretty critical in understanding the true runtime of the battery
- Current algorithms (such as Coulomb Counting, Voltage Method) suffer from
   Hysterisis a condition where there is a delay in the output of a system causing
   a certain error in measurements
- Battery aging effects are not taken seriously which effects the accuracy



## **Objectives**

- In this age of Artificial Intelligence, there are very few BMS systems based on Machine Learning
- One of the best solution to overcome the challenges aforementioned is to use data driven approach in order to be efficient and accurate.
- To study different machine learning approach and to find the best approach.
- To bring into account the effect of battery temperature in order to get the optimum result.



1. To make a BMS Hardware system to get a real time current, voltage data





 To make a BMS Hardware system to get a real time current, voltage data

#### 2. Testing the hardware system



- 1. To make a BMS Hardware system to get a real time current, voltage data
- 2. Testing the hardware system
- 3. Select a Machine Learning Algorithm with necessary requirements



- 1. To make a BMS Hardware system to get a real time current, voltage data
- 2. Testing the hardware system
- 3. Select a Machine Learning Algorithm with necessary requirements
- 4. Train the model with a specific data set





- 1. To make a BMS Hardware system to get a real time current, voltage data
- 2. Testing the hardware system
- 3. Select a Machine Learning Algorithm with necessary requirements
- 4. Train the model with a specific data set
- 5. Validate the model and implement on the system





#### **Voltage Sensor**

- Wide Voltage input range: DC 0-25 V
- Resistive Voltage Divider principle
- Resolution of 0.00489V



#### **Current Sensor - ACS712**

- Supply Voltage: 4.5V~5.5V DC
- Measure Current Range: 30A
- Low-noise analog signal path
- Output voltage proportional to DC current
- Nearly zero magnetic hysteresis



# Battery - Lemon 1800mAh 3S 25C/50C Lithium Polymer

- Maximum Capacity 1800mAh
- Voltage 11.1 Volt
- Suitable for the required application



## Micro-processor - Raspberry Pi 4 Model B 4GB Ram

- Used for onboard computation
- Better data processing



#### **Power Distribution Board - PDB-XT60**

- Regulated 5V and 12V outputs
- 6 pairs of connections
- Used for distributing the required amount of power to other elements of the system

#### **Timeline**

#### Mid Sem 7th Semester



- Understand the working of a monitoring system and identify the problem statement
- Choose necessary sensors and hardware required for data acquisition

#### Mid Sem 8th Semester

• Training and Implementing the selected algorithm with the data set

#### End Sem 7th Semester

- Understand machine learning algorithm and its working
- Select the best algorithm

#### End Sem 8th Semester

 Integrate hardware and machine learning to get the desired result of a battery driven device

#### References

- 1. Lauren Nagel A Guide to Lithium Polymer Batteries for Drones Article Tyro Robotics
- 2. Markus Lelie; Thomas Braun; Marcus Knips; Hannes Nordmann; Florian Ringbeck; Hendrik Zappen; Dirk Uwe Sauer Battery Management System Hardware Concepts: An Overview *Applied Sciences MDPI*
- 3. Niraj Agarwal; Phulchand Saraswati; Ashish Malik; Yogesh Bateshwar Design a Battery Monitoring System for Lead-Acid Battery International Journal of Creative Research Thoughts (IJCRT)
- 4. P. P. L. Regtien; H. J. Bergveld; Dmitry Danilov; Valer Pop Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications *ISBN*: 978-1-4020-6944-4
- 5. Reza Ardeshiri; Bharat Balagopal; Amro Alsabbagh; Chengbin Ma; Mo-Yuen Chow Machine Learning Approaches in Battery Management Systems: State of the Art *IEEE Explore*
- 6. Man-Fai Ng; Jin Zhao; Qingyu Yan; Gareth J. Conduit; Zhi Wei Seh Predicting the Current and Future State of Batteries using Data-Driven Machine Learning Nature Machine Intelligence
- 7. Siyu Jin; Xin Sui ; Xinrong Huang ; Shunli Wang ; Remus Teodorescu ; Daniel-Ioan Stroe Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction *Electronics*
- 8. Applications Infeon Technologies



# Thank you

