《代数结构》作业反馈

学院: 计算机科学与技术学院

Edited By 李昱祁

2021年4月4日

第三周作业

课堂内容

- 2.3.1 同余式及其性质
- 2.3.2 线性同余方程
- 2.3.3 线性同余方程组

1 3月23日周二作业

1.1 Ch2 P17

作业题 1.1:

(1) 证明:

$$10^k \equiv (-1)^k \; (mod \; 11) \; , \; k \in N$$

(2) 推出一个整数能被 11 整除的判别法

Part(1)

- 1. 由于 $10 \equiv -1 \pmod{11}$, 再根据课本 2.3 节同余式性质 6^* 即可推出
- 2. 大部分同学的做法都是将 10^k 写为 $(11-1)^k$,之后进行二项展开:

$$(11-1)^k = \sum_{i=0}^k C_k^i \cdot 11^i \cdot (-1)^{k-i} = \sum_{i=1}^k C_k^i \cdot 11^i \cdot (-1)^{k-i} + (-1)^k$$

其中 $\sum_{i=1}^k C_k^i \cdot 11^i \cdot (-1)^{k-i} \equiv 0 \pmod{11}$, 故得证.

Part(2)

1. 显然题目是希望利用 (1) 中结论来进行判断。一个十进制数字 num 可以表示为

$$num = a_0 + a_1 \cdot 10^1 + \dots + a_n \cdot 10^n = \sum_{i=0}^{n} a_i \cdot 10^i$$

而 (1) 中已经证明 $10^k \equiv (-1)^k \pmod{11}$, 再利用性质 4^* 即可得到

$$num \equiv \sum_{i=0}^{n} a_i \cdot (-1)^i \equiv \sum_{i=0}^{\lfloor n/2 \rfloor} a_{2i} - \sum_{i=0}^{\lceil n/2 \rceil - 1} a_{2i+1} \pmod{11}$$

若要求 11|num 即 $num \equiv 0 \pmod{11}$, 则等价于

$$\sum_{i=0}^{\lfloor n/2 \rfloor} a_{2i} - \sum_{i=0}^{\lceil n/2 \rceil - 1} a_{2i+1} \equiv 0 \; (mod \; 11)$$

也即 num 的 10 进制表示中, 奇数位之和与偶数位之和的差值模 11 等于 0

本题反馈

- 第(1)问同学们出错较少;
- 第(2)问一些同学没有考虑到差值为11的倍数的情况,比如209

1.2 Ch2 P18

作业题 1.2:

解下列线性同余方程:

$$(1) \ 2x \equiv \ 1 \ (mod \ 17)$$

(2)
$$3x \equiv 6 \pmod{18}$$

$$(3) \ 4x \equiv 6 \ (mod \ 18)$$

$$(4) \ 3x \equiv \ 1 \ (mod \ 17)$$

题解

1.

$$2x \equiv 1 (mod \ 17) \Leftrightarrow 2x \equiv 18 (mod \ 17) \Leftrightarrow^{(2,17)=1} x \equiv 9 (mod \ 17)$$

2.

$$3x \equiv 6 \pmod{18} \Leftrightarrow x \equiv 2 \pmod{6} \Leftrightarrow x \equiv 2, 8, 14 \pmod{18}$$

3.

$$4x \equiv 6 \pmod{18} \Leftrightarrow 2x \equiv 3 \pmod{9} \Leftrightarrow 2x \equiv 12 \pmod{9}$$
$$\Leftrightarrow^{(2,9)=1} x \equiv 6 \pmod{9} \Leftrightarrow x \equiv 6, 15 \pmod{18}$$

4.

$$3x \equiv 1 \pmod{17} \Leftrightarrow 3x \equiv 18 \pmod{17} \Leftrightarrow (3,17)=1 \ x \equiv 6 \pmod{17}$$

本题反馈

比较简单,出错很少。

对于线性同余方程 $ax \equiv b \pmod{m}$,最终应该指出 x 模 m 不同余的所有解。有一些同学最后的答案格式不太标准。

2 3月25日周四作业

2.1 Ch2 P19

作业题 2.1:

解下列同余方程组:

$$(1) \begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 1 \pmod{3} \end{cases} \qquad (2) \begin{cases} x \equiv 31 \pmod{41} \\ x \equiv 59 \pmod{26} \end{cases} \qquad (3) \begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 1 \pmod{3} \end{cases} \qquad (4) \begin{cases} 2x \equiv 1 \pmod{5} \\ 3x \equiv 2 \pmod{7} \\ 4x \equiv 1 \pmod{11} \end{cases}$$

Part(1):

• 对于 (1), 根据同余式性质 9^* 可得 $x \equiv 1 \pmod{6}$

Part(2):

• 对于(2), 之后可以直接用中国剩余定理求解, 或者推导如下::

$$(m_1, m_2) = (41, 26) = 1 \Rightarrow (m_1, m_2) \mid (a_1 - a_2)$$

故该方程组有模 [41,26] = 1066 唯一解。

$$x \equiv 31 \pmod{41} \Leftrightarrow x = 41k + 31$$
$$x \equiv 59 \pmod{26} \Leftrightarrow 41k + 31 = 59 \pmod{26}$$
$$\Leftrightarrow 41k \equiv 28 \pmod{26}$$
$$\Rightarrow^{5^*} 41k \equiv 28 \pmod{13}$$

而

$$41k \equiv 28 \pmod{13} \Leftrightarrow 41k \equiv 41 \pmod{13} \Leftrightarrow^{(41,13)=1} k \equiv 1 \pmod{13}$$

 $\Leftrightarrow k \equiv 1 \pmod{26}$ 或 $k \equiv 14 \pmod{26}$

再由 $41k \equiv 28 \pmod{26}$ 可得 $k \equiv 14 \pmod{26}$

所以
$$x = 41k + 31 = 41(26m + 14) + 31 = 1066m + 605 \Leftrightarrow x \equiv 605 \pmod{1066}$$

Part(3):

• 对于 (3), 下面展示用中国剩余定理求解的方法: $a_1 = 1, a_2 = 6, m_1 = M_2 = 6, m_2 = M_1 = 7$, 之后求解 b_1, b_2 :

$$M_1b_1 \equiv 1 \pmod{6} \Leftrightarrow 7b_1 \equiv 1 \pmod{6} \Leftrightarrow 7b_1 \equiv 7 \pmod{6} \Leftrightarrow (7,6)=1$$
 $b_1 \equiv 1 \pmod{6}$

$$M_2b_2\equiv 1 (mod\ 7) \Leftrightarrow 6b_1\equiv 1 (mod\ 7) \Leftrightarrow^{(2,7)=1} 3b_1\equiv 4 (mod\ 7) \Leftrightarrow^{(3,7)=1} b_1\equiv 6 (mod\ 7)$$

取一个符合题意的解 $b_1 = 1$, $b_2 = 6$

所以最终解为 $x \equiv M_1b_1a_1 + M_2b_2a_2 \equiv 7 \cdot 1 \cdot 1 + 6 \cdot 6 \cdot 6 \pmod{6 \cdot 7}$

 $\mathbb{RI} \ x \equiv 13 \pmod{42}$

Part(4):

• 对于 (4), 需要先求解 3 个线性同余方程,

$$\begin{cases} 2x \equiv 1 \pmod{5} \\ 3x \equiv 2 \pmod{7} \Rightarrow \begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 3 \pmod{7} \\ x \equiv 3 \pmod{1} \end{cases}$$

之后可以通过中国剩余定理求解,也可根据性质 9^* 直接求出 $x \equiv 3 \pmod{385}$

本题反馈

除了第1题之外,其余小问均有不少同学出错。主要问题有二:

- (1) 运算错误
- (2) 使用中国剩余定理时把其中一些值搞混了,比如有些同学计算 $\sum_{j=1}^{r} M_j b_j a_j$ 时算成了 $\sum_{j=1}^{r} M_j b_j m_j$; 有些同学第 (4) 问在把题干中方程组变形后,又把原来的 3 个值 1,2,1 当作了 a_1, a_2, a_3 ……可能对于定理的推导过程还不是很理解。因为这个定理的证明是构造性的,所以建议大家对其要熟悉。(CRT 在考试中也是高频考点)

2.2 Ch2 P21

作业题 2.2:

求满足 2|n, 3|(n+1), 4|(n+2), 5|(n+3), 6|(n+4) 的最小整数 n(n > 2)

将题中条件写为同余式形式:

$$\begin{cases} n \equiv 2 \pmod{2} \\ n \equiv 2 \pmod{3} \\ n \equiv 2 \pmod{4} \\ n \equiv 2 \pmod{5} \\ n \equiv 2 \pmod{6} \end{cases}$$

再由同余式性质 9* 即可求得 $n \equiv 2 \pmod{[2,3,4,5,6]}$ 即 $n \equiv 2 \pmod{60}$ 最小满足条件的 $n \rightarrow 62$

本题反馈

大部分同学求出了正确答案。我批改的作业中一些同学算出的结果是 $n\equiv 2 (mod\ 30)$,我看了看都属于计算错误,还望细心

(1)

本次作业涉及到的课堂内容,首先便是同余式 & 同余方程。课本 2.3.1 节给出了 9 条基本性质,其中前 3 条说明了模 m 同余是一个等价关系 (参考 4.2 节)。

第 4、5、6 条性质根据定义很好理解; 性质 5 的逆命题并不成立,因为若设 m=cd,1 个模 d 同 余类会对应 c 个模 m 同余类! 比如 19 题第 (3) 问上述做法中,一些同学解出了 $k\equiv 1 \pmod{13}$ 之后直接认为 $k\equiv 1 \pmod{26}$,之后求出了错误的答案

需要注意的是第 7 条性质,它指出了与 $x \equiv y \pmod{m}$ 等价的是 $ax \equiv ay \pmod{am}$! 因为对于 $a, m \neq 0$,那么显然 x = km + y与 ax = kam + ay 是等价的

对于性质 6: $x \equiv y \pmod{m} \Rightarrow ax \equiv ay \pmod{m}$ 是因为 $m|(x-y) \Rightarrow m|a(x-y)$ 而它的逆命题则不一定成立,因为 a 与 m 可能有大于 1 的公因子;若 (a,m)=1,则其逆命题成立,即性质 8

第 9 条性质在本次作业中经常出现,此时 $m_i(1 \le i \le r)$ 是 x-y 的因子,比较容易理解

这些基本性质在解方程的过程中会经常使用,需要做到熟练运用

(2)

解线性同余方程 $ax \equiv b \pmod{m}$, 实际上就是求解线性不定方程 ax + my = b, 并求出 x 通解中所有模 m 不同余的情况

- 一般地, 我们解方程的步骤如下:
 - * 先令 b = b + km 使得 $(a, b) \neq 1$
 - * 之后 a, b, m 一起约去它们之间的最大公因子
 - * 新的 a,b 再约去它们之间的最大公因子

重复上述步骤, 直至 x 前的系数为 1; 之后找出模初始 m 不同余的所有解

(3)

关于中国剩余定理的一些说明:

- * 如此构造出的 M_i 、 m_i 互质,因此 $(m_i, M_i) = 1$,由定理 **2.2** 知 $km_1 + M_i b_i = 1$ 有解,故 $M_i b_i \equiv 1 \pmod{m_i}$ 有解,通过它来构造 y 中满足" 模 m_i 等于 a_i " 的那部分
- * 对于 $i \neq j$, $m_i \mid M_j$, 因此 $M_j b_j \equiv 0 \pmod{m_i}$
- * 因此对 $\forall i (1 \leq i \leq r)$ 均有:

$$y \equiv \sum_{j=1}^{r} M_j b_j a_j \equiv \sum_{j=1}^{r} M_j b_j a_j + M_i b_i a_i \pmod{m_i}$$
$$\equiv 0 + 1 \cdot a_i \equiv a_i \pmod{m_i}$$

上述三部分老师上课时都已经讲过。如果仍对该定理不太明白可以再思考下~