C 55.220/2-3:794

WORLD DATA CENTER A Oceanography

CATALOGUE OF DATA CHANGE NOTICE NOS. 52 AND 53

WDCA-OC-94-2

-
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

WORLD DATA CENTER A Oceanography

CATALOGUE OF DATA

CHANGE NOTICE NOS. 52 AND 53 (1 JANUARY- 31 DECEMBER 1993)

WORLD DATA CENTER A
Oceanography
Washington, D.C.

December 1994

ABSTRACT

This change notice lists and describes all data received by WDC-A, Ocean-ography during the period 1 January - 31 December 1993. It supplements the original six-volume <u>Catalogue of Data</u>, which includes <u>Change Notice Nos. 1-16</u>. The types of data catalogued include oceanographic station data, bathythermograph data, current measurements, biological observations, meteorological observations, and sea surface measurements. An Alphabetical Index of ship names and a Geographical Index of ocean areas assist the user in selecting the required data. Publications are cross referenced by accession number with the WDC-A <u>Catalogue of Accessioned Publications</u>.

NOTE: Country identification numbers used in this publication do not necessarily reflect recent realignments of nations' territorial boundaries and political subdivisions.

CONTENTS

	Page
ABSTRACT	ii
WORLD DATA CENTER A	iv
PREFACE	vi
INTRODUCTION	1
HOW TO USE THE CHANGE NOTICE TO THE CATALOGUE OF DATA	2
How to Use the Alphabetical Index	3
How to Use the Geographical Index	3
How to Obtain Data from WDC-A, Oceanography	4
Data Exchange Policy of WDC-A, Oceanography	4
Acknowledgement of Data Sources	6
EXPLANATION OF THE ALPHABETICAL INDEX OF SHIPS AND FIXED STATIONS	7
EXPLANATION OF THE GEOGRAPHICAL INDEX	7
ALPHABETICAL INDEX	8
GEOGRAPHICAL INDEX	13
NUMERICAL LIST OF COUNTRIES	18
LIST OF DATA CENTER ACRONYMS	19
INDEX OF COUNTRIES AND INSTITUTIONS CONTRIBUTING DATA TO WDC-A, OCEANOGRAPHY DURING THE PERIOD 1 JANUARY -	20
31 DECEMBER 1993	20
EXPLANATION OF WDC-A, OCEANOGRAPHY DATA INFORMATION SHEET	23
REMARKS	39
AVAILABILITY OF TRACK CHARTS	41
DATA HOLDINGS OF RNODC's AND SPECIALIZED DATA CENTERS	43

WORLD DATA CENTER A

World Data Center A consists of the Coordination Office and twelve subcenters:

World Data Center A, Coordination Office National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D.C. 20418, U.S.A.

Telephone: (202) 334-3368 FAX: (202) 334-1377

GLACIOLOGY (SNOW AND ICE):

WDC-A, Glaciology Cooperative Institute for Research in Environmental Sciences Campus Box 449 University of Colorado Boulder, Colorado 80309, U.S.A.

Telephone: (303) 492-5171 FAX: (303) 492-2468

PALEOCLIMATOLOGY:

WDC-A, Paleoclimatology National Geophysical Data Center Code E/GC 325 Broadway, Colorado 80303, U.S.A.

Telephone: (303) 497-6172 FAX: (303) 497-6513

ROTATION OF THE EARTH

WDC-A, Rotation of the Earth Time Service Department U.S. Naval Observatory Washington, D.C. 20392, U.S.A.

Telephone: (202) 653-0066 FAX: (202) 653-0587

OCEANOGRAPHY:

WDC-A, Oceanography National Oceanic and Atmospheric Administration Washington, D.C. 20235, U.S.A.

Telephone: (202) 606-4571 FAX: (202) 606-4586

METEOROLOGY (AND NUCLEAR RADIATION):

WDC-A, Meteorology National Climatic Data Center NOAA, E/CC Federal Building Asheville, North Carolina 28801, U.S.A.

Telephone: (704) 271-4800 FAX: (704) 271-4246

ROCKETS AND SATELLITES:

WDC-A, Rockets and Satellites National Space Science Data Center Goddard Space Flight Center NASA, Code 633.4 Greenbelt, Maryland 20771, U.S.A.

Telephone: (301) 286-6695 FAX: (301) 286-1635 SOLID-EARTH GEOPHYSICS (TSUNAMIS, GRAVIMETRY, EARTH TIDES, RECENT MOVEMENTS OF THE EARTH'S CRUST, MAGNETIC MEASUREMENTS, PALEOMAGNE-TISM AND ARCHEOMAGNETISM, VOLCANOLOGY, GEOTHERMICS):

World Data Center A, Solid-Earth Geophysics NOAA, E/GC1 325 Broadway Boulder, Colorado 80303, U.S.A.

Telephone: (303) 497-6521 FAX: (303) 497-6513

MARINE GEOLOGY AND GEOPHYSICS (GRAVITY, MAGNETICS, BATHYMETRY, SEISMIC PROFILES, MARINE SEDIMENT AND ROCK ANALYSIS):

World Data Center A, Marine Geology and Geophysics NOAA, E/GC3 325 Broadway Boulder, Colorado 80303, U.S.A.

Telephone: (303) 497-6487 FAX: (303) 497-6513

SEISMOLOGY

WDC-A, Seismology U.S. Geological Survey, MS-967 Box 25046 Denver Federal Center Denver, Colorado 80225, U.S.A.

Telephone: (303) 273-8500 FAX: (303) 273-8450 SOLAR-TERRESTRIAL PHYSICS
(SOLAR AND INTERPLANETARY
PHENOMENA, IONOSPHERIC
PHENOMENA, FLARE-ASSOCIATED
EVENTS, GEOMAGNETIC VARIATIONS,
MAGNETOSPHERIC AND INTERPLANETARY MAGNETIC PHENOMENA,
AURORA, COSMIC RAYS, AIRGLOW):

World Data Center A, Solar-Terrestrial Physics NOAA, E/GC2 325 Broadway Boulder, Colorado 80303, U.S.A.

Telephone: (303) 497-6323 FAX: (303) 497-6513

REMOTELY SENSED LAND DATA:

WDC-A, Remotely Sensed Land Data U.S. Geological Survey EROS Data Center Sioux Falls South Dakota 57198, U.S.A.

Telephone: (605) 594-6142 FAX: (605) 594-6589

ATMOSPHERIC TRACE GASES:

WDC-A, Atmospheric Trace Gases Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 U.S.A.

Telephone: (615) 574-7817 FAX: (615) 574 4665

PREFACE

The six-volume <u>Catalogue of Data</u> and the loose-leaf <u>Change Notice Numbers 1-16</u>, which have been integrated into the <u>Catalogue</u>, list all oceanographic data received by World Data Center A, Oceanography, from July 1957 through June 1975. The <u>Catalogue</u> has a loose-leaf arrangement of sheets, which have been punched for standard three-ring binders. It includes station location charts for many cruises.

Beginning with <u>Change Notice No. 17</u>, each <u>Change Notice</u> is printed in a modified format as a separate, bound publication describing all data received during a particular six-month or one-year period. The six-volume <u>Catalogue of Data</u>, including <u>Change Notice Nos. 1-16</u>, continues to serve as a reference volume for data received from July 1957 through June 1975. Provision has been made in the modified format for correlating newly received data for a particular cruise with data previously received for that same cruise and already described in a prior Change Notice.

The capability for identifying those data, which have been machine-processed by a national, regional, or responsible national oceanographic data center, has been retained in the modified catalogue format. In addition, this format provides a column for listing the catalogue number from the WDC-A, Oceanography, <u>Catalogue of Accessioned Publications</u>, thus identifying the published report in which the referenced data appear.

Until recently, data gathered before the beginning of the IGY in 1957 had not been extensively accessioned by World Data Center A, Oceanography; however, international bodies, such as the IOC/IODE's Group of Experts on RNODCs and Global Programs have called for WDCs, Oceanography to accession as much historical data as possible, in order to augment the data bases required for support of Climate Research and Global Change Programs. Thus, the acquisition of pre-IGY, as well as post-IGY data, has become a high priority goal for WDC-A. The Catalogue now contains pre-IGY data accessioned by WDC-A and available in automated form to requesters in the international oceanographic community.

WDC-A, Oceanography, welcomes suggestions for improved ways to present information in the <u>Change Notices</u> to the <u>Catalogue of Data</u>. It will make every effort to promptly correct any cataloguing error or omission brought to its attention.

INTRODUCTION

The World Data Center system was established in 1957 to collect data from the numerous and widespread observational programs of the International Geophysical Year (IGY) under the principles set forth by the International Council of Scientific Unions (ICSU) and to make such data readily accessible for an indefinite period of time to interested scientists and scholars. The system consists of World Data Center A (WDC-A) located in the U.S.A.; WDC-B located in the U.S.S.R.; WDC-C located in Western Europe and Japan; and WDC-D located in the People's Republic of China. WDC-A is established under the auspices of the U.S. National Academy of Sciences, where the Coordination Office is located. WDC-A is divided into twelve discipline subcenters whose addresses are given on pages iv and v. These centers are located in institutions which, in the opinion of the Academy, can best serve the interests of science because of their data-handling capabilities for the appropriate scientific disciplines. WDC-A, Oceanography, is collocated with the National Oceanographic Data Center (NODC) in Washington, D.C.

After completion of the IGY program, ICSU delegated the responsibility for the operation of the World Data Centers to its Comite International de Geophysique (CIG) and subsequently to the ICSU Panel on World Data Centres. The framework for continued international exchange of oceanographic data is set forth in ICSU's <u>Guide to the World Data Centre System</u> and the Intergovernmental Oceanographic Commission's (IOC's) <u>Manual on International Oceanographic Data Exchange</u>.

The types of oceanographic data desired for inclusion in the World Data Center system are those from international cooperative expeditions, Global Change and Climate Research Programs, and those associated with various countries' National Oceanographic Programs. Data are to be exchanged internationally in accordance with provisions of the IOC's <u>Manual</u> and the ICSU <u>Guide</u>. Lists of National Oceanographic Programs are compiled by various national committees on oceanography and submitted to the Intergovernmental Oceanographic Commission for dissemination to the international oceanographic community.

Contributors of oceanographic data to the World Data Center system and national committees on oceanography are urged to compare the <u>Catalogue of Data</u> with data gathering cruises and expeditions listed in IOC information documents or on-line information systems to determine whether the cruises actually completed agree with those listed and to ensure that the data resulting from them are transmitted to the World Data Centers in the manner prescribed by the IOC <u>Manual</u> and the ICSU <u>Guide</u>. Data need not be limited to those identified in IOC documents or on-line systems; WDC-A, Oceanography, welcomes all data that fall within the framework of the ICSU <u>Guide</u> and the IOC <u>Manual</u> and that contributors may wish to include in the World Data Center system.

HOW TO USE THE CHANGE NOTICE TO THE CATALOGUE OF DATA

Catalogue Numbering System

The catalogue numbering system uses groups of numbers and letters to designate identifying references for purposes of data archiving and retrieval. A catalogue number consists of numerals for the assigned: series, country, institution, ship and cruise.

<u>Series</u> — The catalogue numbering system is divided into basic groups called series. At present, these consist of the <u>100 series</u> for data from ships and other mobile platforms and the <u>200 series</u> for data from shore and fixed stations in the following categories:

- a. Coastal and island stations.
- b. Near shore manned stations; i.e., lightvessels and platforms.
- c. Offshore manned stations; i.e., ocean weather ships.
- d. Unmanned stations; i.e., automatic buoys.
- e. Stations on shipping routes.
- f. Offshore reference stations visited regularly.
- g. Cables in use for oceanographic observations.
- h. Repetitive drifting observations; i.e., ice islands, drifting buoys.

<u>Country</u> — A list in the Indexes section includes all countries and institutions from which this Center has received data during this period together with their discrete identifying numbers. The series and two-digit country number comprise the first three digits of the catalogue number.

Example: For country number 01, Argentina, data from ships and mobile platforms are catalogued as 101, and data from shore and fixed stations as 201.

NOTE: The designations of countries used in this catalogue do not imply the expression of any opinion whatsoever on the part of this Center concerning the legal status of any country or territory, or of its authorities, or concerning the delineation of the frontiers of any country or territory.

<u>Institution</u> — An institution which contributed data, either directly or through its designated national agency or national, regional or specialized oceanographic data center, is assigned a decimal number following the series/country number.

<u>Example</u>: The number 101.01 is assigned to data taken by ships and mobile platforms and received from the Argentine Servicio de Hidrografia Naval, and the number 201.01 is assigned to data taken at shore and fixed stations and received from the same institution.

<u>Ship</u> — Each ship, or in some instances a group of ships operating together, is assigned a letter following the series/country/institution number. The letter is followed by a number assigned to the particular cruise as the data are received.

NOTE: The term "cruise" is used in this catalogue to define, whenever possible, the beginning and ending dates of a series of data collected by a ship, usually identified by the contributing institution with a cruise name and/or number. Sometimes it is necessary to group together several series of data from one or more ships under one catalogue number.

Example: The first cruise data received from the Argentine Servicio de Hidrografia Naval are from the ship CAPITAN CANEPA, which is assigned the letter A, followed by the number 01, thus A-01; the second cruise is A-02, the third A-03, etc. Thus, the catalogue numbers 101.01 A-01, A-02, A-03, etc.

A similar system is used in the 200-series for ships but is <u>not</u> applied to lightvessels and fixed shore stations; for the latter the ship/cruise identifier is omitted. For these categories, the series/country/institution numbers are given, but the lightvessel's or station's <u>name</u> must be added instead of the ship/cruise number to complete the catalogue identification.

Example: The Canadian station at Triple Island is identified as: 206.03 Triple Island.

A shore station is listed under the country in or near whose territory it is located. If observations are carried out and the data contributed by an institution of another country, the observing country's name and institution are listed after the name of the country of location.

How to Use the Alphabetical Index

- 1. Look up the name of the ship or fixed station in the Alphabetical Index where the related country/institution/ship catalogue numbers are listed.
- 2. Look up, under the respective countries, the indicated Catalogue Numbers.

How to Use the Geographical Index

- 1. Obtain the geographic area number and name from the Geographical Index Charts.
 - 2. Look up the list of catalogue numbers of available data for the area in

the Geographical Index.

3. Use these catalogue numbers to locate information about the types and amount of data available.

How to Obtain Data from WDC-A, Oceanography

When communicating with the Center for additional information concerning data, <u>always</u> refer to the specific catalogue numbers for data of interest to you. The catalogue numbers are designed to speed the identification and retrieval of the information or data you need.

Address all correspondence to:

Director, World Data Center A, Oceanography National Oceanic and Atmospheric Administration Washington, D.C. 20235, U.S.A.

If you telephone, the numbers are:

The Director: 202-606-4507.

The Associate Director: 202-606-4571. The Data Archives: 202-606-4571.

FAX: 202-606-4586

If you wish to visit the Center, its office hours are from 6:30 a.m. to 4:00 p.m., Monday through Friday. The Center is not open on Saturdays, Sundays, and U.S. national holidays. If you wish the use of study space, you should if possible give the Center advance notice so that necessary arrangements can be made. There is no charge for the use of study space.

Data Exchange Policy of World Data Center A, Oceanography

World Data Centers are held responsible for the provision of data and information to qualified requesters in the scientific community either in exchange or at a cost not to exceed that of processing and shipping. Unless a requester specifies otherwise, the Center is responsible for using the method which most satisfactorily reproduces the data or information item at the least cost. For certain types of requests, limitations in funding, personnel, or facilities may preclude direct or free provision of data or information by the World Data Center.

Data exchanges between WDC-A, Oceanography and WDC's in the same discipline usually take place without charge for routine exchanges of mutually agreed-upon types of data received by WDC-A in internationally-approved data exchange formats and in readily reproducible media forms. Non-standard data

types are not normally exchanged. The ICSU Panel has now recognized that it is not always economically feasible to copy large data sets from one WDC to another. For certain types of data, the exchange of inventories of available data in a WDC subcenter may be considered acceptable in lieu of the transfer of the actual data sets.

In general, reasonably-sized requests from national or regional contributors to WDC-A, Oceanography may be considered as exchange, and equivalent data thus provided to the requester without charge. For requests for unusually large amounts of data, for specially formatted data, for derived data products, or for data to be obtained from outside the WDC system, WDC-A will normally be required to recover the costs of processing and shipping, or, at its discretion, may arrange for the request to be serviced by an RNODC or a regional, national, or disciplinary center. WDC-A may serve as an intermediary or coordinator for requests for unique types of data or data in other disciplines by placing the originator of the request in contact with the appropriate institution or disciplinary center.

Normally, WDC-A, Oceanography considers its data exchange commitment with a cooperating Data Center to be limited to the servicing of those requests or routine updating requirements intended to build or enhance standard data bases operated by that Center for specific, mutually agreed-upon data types and geographical areas of national or scientific interest. If the availability of funding and resources permit, WDC-A also attempts to assist such cooperating Data Centers when they require special data sets for institutions that are performing project-related research for international climate and global change programs and/or that have historically contributed data to WDC-A, Oceanography through that Data Center. WDC-A, Oceanography is obliged, in any case, to follow the exchange and cost recovery policies of its sponsoring (funding) government agency, while attempting to maintain consistency with data exchange guidelines of the ICSU Panel on WDC's as published in the ICSU <u>Guide</u>.

Data and information may be requested from WDC-A, Oceanography through NODCs, Designated National Agencies, or any other organization identified by national or international initiatives as responsible for communication with the World Data Centers. These materials may also be requested directly from WDC-A, Oceanography. Organizations, institutions, or individuals from Member States of the IOC may apply to the IOC Secretariat or UNESCO for possible assistance in funding their projects.

Data Centers or institutions in the international community that have acquired an automated data set or specialized data product from WDC-A must be aware that original data sets are updated from time to time, errors corrected, or spurious data deleted by the originating data center. Where duplicate data sets are deliberately held in this way, the holder is responsible for making regular

contact, as required, with the originating center to check whether the old data set is still valid, whether it should be deleted, or whether new data are available. WDC-A bears no responsibility in the conduct of these arrangements, except as regards the provision of information in its role as a coordination and referral center.

Acknowledgment of Data Sources

In many instances, data contributed to the Center are unpublished at the time of receipt. Unpublished data are identified in the <u>Change Notice</u> by the absence of a publication number in the column entitled Data Center Reference Number. Accordingly, as stipulated by the <u>Guide</u>, recipients of copies of such data from the Center are reminded that the rights of the original investigators must always be respected. Thus, it is requested that *if any data supplied by WDC-A*, Oceanography are published, due acknowledgment be made of the institution (and where appropriate, the principal investigator) which undertook the original observations. To facilitate proper acknowledgment, the <u>Change Notice</u> indicates the originating institution.

PART I CATALOGUE INDEXES

EXPLANATION OF THE ALPHABETICAL INDEX OF SHIPS AND FIXED STATIONS

This index presents in alphabetical order the names of the ships, lightvessels, platforms, and shore stations that are listed on the Data Information sheets.

<u>Ship or Fixed Station</u> — The name of the ship, lightvessel, platform, lighthouse, shore station, etc. Names of ships and lightvessels are given in capital letters, with lightvessels identified by (LV) after their name. All others not so identified are shore or other types of fixed stations.

<u>Country</u> — The name of the country that used the ship to collect data, or the name of the country in or near whose territory fixed oceanographic station observations were made. If the data were collected by an institution of another country, the contributing country is listed after the one where the observations were taken.

<u>Catalogue Number</u> — The country and institution numbers and ship letter assigned to each ship are given in this column to facilitate locating data information in the catalogue.

EXPLANATION OF THE GEOGRAPHICAL INDEX

The Geographical Index is based on the divisions of areas shown on the three charts immediately preceding the Index. These divisions are defined in "Limits of Oceans and Seas," Special Publication No. 23 of the International Hydrographic Bureau, third edition, Monaco, 1953. To define the extensive areas of the Atlantic, Indian, and Pacific Oceans more specifically, the following subdivisions have been added:

23	- <u>North Atlantic Ocean</u>	32	- <u>South Atlantic Ocean</u>
	Northeast AtlanticNorthwest Atlantic		Southeast AtlanticSouthwest Atlantic
45	- <u>Indian Ocean</u>	57	- North Pacific Ocean
45b	Northwest IndianNortheast IndianSouthwest Indian		Northwest PacificNortheast Pacific
	- Southeast Indian	61	- <u>South Pacific Ocean</u>
SO	- <u>Southern Oceans</u>		- Southwest Pacific - Southeast Pacific
Sout	th of latitude 50° South	010	

The catalogue numbers of ship cruises extending into any of the areas, or shore or fixed stations located in the areas, are listed under the area's number and name.

SHIP OR FIXED STATION	COUNTRY	CATALOGUE NUMBER			
- A -					
ACT 3	UNITED KINGDOM	138.02 K			
AKADEMIK KOROLEV	RUSSIAN FEDERATION	137.06 н			
ALPHA HELIX	U.S.A.	139.20 н			
AMERICAN STAR	UNITED KINGDOM	138.02 K			
Anchieta Island	BRASIL	204.02 A			
ANRO AUSTRALIA	AUSTRALIA	102.06 A			
AUSTRALIAN	AUSTRALIA	102.06 A			
AWAZI	JAPAN	124.13 B			
- B -					
BRESLAU	GERMANY	114.01 U			
BRISBANE	AUSTRALIA	102.06 A			
BUSAN 206	KOREA	143.02 BB			
		243.01 C			
BUSAN 851	KOREA	143.02 Z			
		243.01 C			
BUSAN 852	KOREA	143.02 T			
		243.01 C			
BUSAN 881	KOREA	143.02 CC			
		243.01 C			
		243.01 E			
- C -					
CANTERBURY	NEW ZEALAND	127.02 A			
CAPE HATTERAS	U.S.A.	139.24 B			
CARIBA EXPRESS	GERMANY	114.02 F			
CHARLES DARWIN	UNITED KINGDOM	138.10 B			
COLUMBUS CANADA	GERMANY	114.01 R			
COLUMBUS VICTORIA	GERMANY	114.01 R			
COLUMBUS VIRGINIA	GERMANY	114.01 R			
COLUMBUS WELLINGTON	GERMANY	114.01 R			
- D -					
DARWIN	AUSTRALIA	102.06 A			
DAVID STARR JORDAN	U.S.A.	139.23 Y			
DERWENT	AUSTRALIA	102.06 A			
DEUTSCHE BUCHT (LV)	GERMANY	214.01			
- E -					
E DATO	SPAIN	134.01 I			
ELBE 1 (LV)	GERMANY	214.01			
ELLEN B. SCRIPPS	U.S.A.	139.23 Y			
ENDEAVOR	U.S.A.	139.05 C			
ENDEAVOUR	CANADA	106.19 F			
	•	124.13 B			

SHIP OR FIXED STATION	COUNTRY	CATALOGUE NUMBER			
ETT ZEN	JAPAN	124.13 B			
ETIZEN		124.13 B			
ETOMO	JAPAN	124.13 B			
- F -					
FARNELLA	UNITED KINGDOM	138.02 K			
FEHMARNBELT (LV)	GERMANY	214.01			
FLINDERS	AUSTRALIA	102.06 A			
FORTHBANK	UNITED KINGDOM	138.02 K			
FRANKLIN	AUSTRALIA	102.06 C			
- G -					
GANG WON 867	KOREA	143.02 X			
GYRE	U.S.A.	139.07 н			
- н -					
Haikou	PEOPLE'S REPUBLIC OF CHINA	273.01			
HAKUHO MARU	JAPAN	124.24 B			
HOBART	AUSTRALIA	102.06 A			
HOKUSEI MARU	JAPAN	124.02 C			
HOKUSHIN MARU	JAPAN	124.20 E			
HOKUYO MARU	JAPAN	124.20 G			
HONG KONG STAR	UNITED KINGDOM	138.02 K			
- I -					
INCHEON 866	KOREA	143.02 Y			
IRON NEW CASTLE	AUSTRALIA	102.06 A			
IRON PACIFIC	AUSTRALIA	102.06 A			
IVYBANK	UNITED KINGDOM	138.02 K			
IWAKI MARU	JAPAN	124.13 B			
- J -					
JEONBUK 868	KOREA	143.02 AA			
		243.01 E			
- K -					
KAIYO	JAPAN	124.13 В			
KAKADIAMAA	GHANA	116.01 E			
Kiel (LH)	GERMANY	214.01			
KINSEI MARU	JAPAN	124.20 C			
KNORR	U.S.A.	139.01 I			
KOFU MARU	JAPAN	124.08 D			
KOSIKI	JAPAN	124.13 B			
KOYO MARU	JAPAN	124.16 A			
KUDARA	JAPAN	124.13 B			
KUZURYU	JAPAN	124.13 B			

MALPELO COLOMBIA 108.03 MATUSIMA JAPAN 124.13 MEIYO JAPAN 124.13 MELYOURE STAR UNITED KINGDOM 138.03 MILLER FREEMAN U.S.A. 139.03 MILLER FREEMAN U.S.A. 139.23 MOTOBU JAPAN 124.13 MOTOBU JAPAN 124.13 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - Neah Bay U.S.A. 239.03 NEDILOYD BARREIN NETHERLANDS 126.03 NEDLLOYD MARREIN NETHERLANDS 126.03 NEDLLOYD MANILLA NETHERLANDS 126.03 NEDLLOYD MANILLA NETHERLANDS 126.03 NEDLLOYD MANILLA NETHERLANDS 126.03 NEW HORIZON U.S.A. 139.03 Nordsee (Platform) GERMANY 139.03 Nordsee (Platform) GERMANY 214.03 NORDSEE (Platform) GERMANY 214.03 JAPAN 124.13 - O - OCA BALDA ARGENTINA 101.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.14 OKHOMARU JAPAN 124.15 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.17 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.17 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.17 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.16 OKI MARU JAPAN 124.17 OKI MARU JAPAN 124.16 OKI MARU JAPAN 12	GUE NUMBER	CATALOGUE NUI	COUNTRY	SHIP OR FIXED STATION		
MALPELO COLOMBIA 108.03 MATUSIMA JAPAN 124.13 MELBOURNE STAR UNITED KINGDOM 138.03 MELVILLE U.S.A. 139.06 MILLER FREEMAN U.S.A. 139.07 MILLER FREEMAN U.S.A. 139.07 MOTOBU JAPAN 124.13 MOTOBU JAPAN 124.13 MUSSON RUSSIAN FEDERATION 137.06 - N - Neah Bay U.S.A. 139.23 NEDLOYD BARREIN NETHERLANDS 126.03 NEDLLOYD MADRAS NETHERLANDS 126.03 NEDLLOYD MADRAS NETHERLANDS 126.03 NEDLLOYD MADRAS NETHERLANDS 126.03 NEDLLOYD MADRAS NETHERLANDS 126.03 NEDLOYD MADRAS NETHERLANDS 126.03 NEW HORIZON U.S.A. 139.03 NOrdsee (Platform) GERMANY 214.03 NOrdsee (Platform) GERMANY 214.03 NOTOSee (Platform) GERMANY 214.03 OCEAN RESEARCHER 1 TAIWAN 124.13 OCEAN RESEARCHER 1 TAIWAN 124.13 OCEAN MARU JAPAN 124.13 OCEAN MARU JAPAN 124.13 OKI MAR				- L -		
MALPELO MATUSIMA METUYO MELBOURNE STAR MELVILE MELBOURNE STAR MELVILE MELBOURNE STAR MUNITED KINGDOM MELVILE MUSSA. MILLER FREEMAN MOTOBU MOSSON MUSSA. MUSSIAN FEDERATION METHERLANDS MEDLLOYD BARCELONA METHERLANDS MEDLLOYD BARCELONA METHERLANDS MEDLLOYD MANILLA METHERLANDS MOTOBUBLOYD MANILLA METHERLANDS MOTOBUBLOYD MOTO	3.07 J	113.07	FRANCE	LE NOROIT		
MATUSIMA JAPAN 124.12 MEIYO JAPAN 124.12 MELBOURNE STAR UNITED KINGDOM 138.02 MELVILLE U.S.A. 139.02 MILLER FREMAN U.S.A. 139.02 MOTOBU JAPAN 124.13 MOTOURA JAPAN 124.13 MT. MITCHELL U.S.A. 139.02 MUSSON RUSSIAN FEDERATION 137.06 - N - RUSSIAN FEDERATION 137.06 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD BARCELONA NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.01 NORDSEE (Platform) GERMANY 214.01 NORDSEE (Platform) GERMANY 214.01 NOTO JAPAN 124.13 - O - JAPAN 124.13 - O - JAPAN 124.01 OCEANUS JAPAN 124.01 OCEANUS JAPAN 124.01				- M -		
MEIYO JAPAN 124.13 MELBOURNE STAR UNITED KINGDOM 138.03 MELVILLE U.S.A. 139.03 MILLER FREEMAN U.S.A. 139.23 MOTOBU JAPAN 124.13 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - Neah Bay U.S.A. 239.03 NEDLLOYD BARCELONA NETHERLANDS 126.03 NEDLLOYD MADRAS NETHERLANDS 126.03 NEDLLOYD MANILLA NETHERLANDS 126.03 NEDLLOYD MANILLA NETHERLANDS 126.03 NEW HORIZON U.S.A. 139.03 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 - O - OCA BALDA ARGENTINA 101.03 OCEANUS U.S.A. 139.00 OJIKA JAPAN 124.13 OCEAN RESEARCHER 1 TAIWAN 112.03 OCHANUS U.S.A. 139.00 OJIKA JAPAN 124.13 OCEAN GERMANY 124.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.20 OKEN UNITED KINGDOM 138.03 OKI OKI MARU JAPAN 124.20 OKEN OKI MARU JAPAN 124	8.03 C	108.03	COLOMBIA	MALPELO		
MELBOURNE STAR UNITED KINGDOM 138.02 MELVILLE U.S.A. 139.06 MILLER FREEMAN U.S.A. 139.02 MOTOBU JAPAN 124.13 MOTOURA JAPAN 124.13 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 NEDLIOYD BARCELONA NETHERLANDS 126.02 NEDLLOYD BARCELONA NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.02 NORDSEE (Platform) GERMANY 214.03 Nordsee (Platform) GERMANY 214.03 NOTO JAPAN 124.01 OCEAN RESEARCHER 1 TAIWAN 112.01 OCEAN RESEARCHER 1 TAIWAN 112.01 OCEANUS U.S.A. 139.01 OJIKA JAPAN 124.01 OSHORO MARU JAPAN 124.01 OSHORO MARU JAPAN 124.01 OYASHIO MARU JAPAN <td< td=""><td>4.13 B</td><td>124.13</td><td>JAPAN</td><td>MATUSIMA</td></td<>	4.13 B	124.13	JAPAN	MATUSIMA		
MELVILLE U.S.A. 139.06 MILLER FREMAN U.S.A. 139.23 MOTOBU JAPAN 124.13 MOTOURA JAPAN 124.13 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - - N - Neah Bay U.S.A. 239.02 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.08 NOTGSEE (Platform) GERMANY 214.01 NOTGSEE (Platform) GERMANY 214.01 NOTO JAPAN 124.01 NOTO JAPAN 124.01 OCEAN RESEARCHER 1 TAIWAN 112.01 OCEAN RESEARCHER 1 TAIWAN 112.01 OCEANUS U.S.A. 139.00 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OKI MARU	4.13 в	124.13	JAPAN	MEIYO		
MILLER FREEMAN U.S.A. 139.22 MOTOBU JAPAN 124.13 MOTOURA JAPAN 124.13 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - - N - Neah Bay U.S.A. 239.02 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD MARRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.02 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.01 OJIKA JAPAN 124.13 OCEANUS U.S.A. 139.01 OJIKA JAPAN 124.13 OSHORO MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OYASHIO MARU<	8.02 K	138.02	UNITED KINGDOM	MELBOURNE STAR		
MOTOURA	9.08 Q	139.08	U.S.A.	MELVILLE		
MOTOURA JAPAN 124.12 MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - Neah Bay U.S.A. 239.02 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.01 Nordsee (Platform) GERMANY 214.01 NOTO JAPAN 124.01 OCEA BALDA ARGENTINA 112.01 OCEAN RESEARCHER 1 TAIWAN 112.01 OCEANUS U.S.A. 139.01 OCEANUS U.S.A. 139.01 OCEANUS U.S.A. 139.01 OCEANUS JAPAN 224.01 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.02 OW	9.23 X	139.23	U.S.A.	MILLER FREEMAN		
MT. MITCHELL U.S.A. 139.23 MUSSON RUSSIAN FEDERATION 137.06 - N - U.S.A. 239.02 NeDLLOYD BAHREIN NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.03 Nordsee (Platform) GERMANY 214.03 NOTO JAPAN 124.13 - O - ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.01 OJIKA JAPAN 224.03 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.01 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.02	4.13 B	124.13	JAPAN	MOTOBU		
MUSSON RUSSIAN FEDERATION 137.06 - N - U.S.A. 239.02 Neah Bay U.S.A. 239.02 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.02 Nordsee (Platform) GERMANY 214.01 Nordsee Boje II (Platform) GERMANY 214.01 NOTO JAPAN 124.13 - O - ARGENTINA 110.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 224.03 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PROSERPINA SPAIN 134.01 PROSERPIN		124.13	JAPAN			
Neah Bay		139.23				
Neah Bay U.S.A. 239.02 NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 OCEA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.01 OCIJIKA JAPAN 224.03 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PROSERPINA SPAIN 134.03 <td>7.06 K</td> <td>137.06</td> <td>RUSSIAN FEDERATION</td> <td>MUSSON</td>	7.06 K	137.06	RUSSIAN FEDERATION	MUSSON		
NEDLLOYD BARREIN NETHERLANDS 126.02 NEDLLOYD BARCELONA NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 224.01 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.0				- N -		
NEDLLOYD BARCELONA NETHERLANDS 126.02 NEDLLOYD MADRAS NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 OCEA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.01 OJIKA JAPAN 224.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.02	9.02	239.02	U.S.A.	Neah Bay		
NEDLLOYD MADRAS NETHERLANDS 126.02 NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.02 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 - O - CCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS JAPAN 224.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.04 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PORT HARCOURT GERMANY 114.02 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	6.02 B	126.02	NETHERLANDS	NEDLLOYD BAHREIN		
NEDLLOYD MANILLA NETHERLANDS 126.02 NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.03 Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 - O - CCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OKI MARU JAPAN 124.03 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 - P - AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT HACKING, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	6.02 B	126.02	NETHERLANDS	NEDLLOYD BARCELONA		
NEW HORIZON U.S.A. 139.06 Nordsee (Platform) GERMANY 214.00 Nordsee Boje II (Platform) GERMANY 214.01 NOTO JAPAN 124.13 - O - - O - - O - OCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS JAPAN 224.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OKHORO MARU JAPAN 124.13 OYASHIO MARU JAPAN 124.20 OYASHIO MARU JAPAN 124.20 PORT HARCOURT GERMANY 114.02 PORT HACKING, N.S.W. AUSTRALIA 102.06 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	6.02 B	126.02	NETHERLANDS	NEDLLOYD MADRAS		
Nordsee (Platform) GERMANY 214.01	6.02 B	126.02	NETHERLANDS	NEDLLOYD MANILLA		
Nordsee (Platform) GERMANY 214.00 Nordsee Boje II (Platform) GERMANY 214.01 NOTO JAPAN 124.13 - O - COCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 Ocean Data Buoys JAPAN 224.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.02 OYASHIO MARU JAPAN 124.20 PORT HARCOURT GERMANY 114.02 PORT HACKING, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03	9.08 V	139.08	U.S.A.	NEW HORIZON		
Nordsee Boje II (Platform) GERMANY 214.03 NOTO JAPAN 124.13 - O - 124.13 124.13 OCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 Ocean Data Buoys JAPAN 224.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.03 OYASHIO MARU JAPAN 124.03 OYASHIO MARU JAPAN 124.20 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03	9.23 Y	139.23				
NOTO JAPAN 124.13 - O - ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS JAPAN 224.03 OJIKA JAPAN 139.03 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 - P - AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 POTH Hacking, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03	4.01	214.01	GERMANY	Nordsee (Platform)		
OCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS JAPAN 224.01 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.13 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 - P - PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PROSERPINA SPAIN 202.03 PROVIDENCIA COLOMBIA 108.03	4.01	214.01	GERMANY	Nordsee Boje II (Platform)		
OCA BALDA ARGENTINA 101.03 OCEAN RESEARCHER 1 TAIWAN 112.03 Ocean Data Buoys JAPAN 224.03 OCEANUS U.S.A. 139.03 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT HACKING, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03	4.13 B	124.13	JAPAN	NOTO		
OCEAN RESEARCHER 1 TAIWAN 112.03 OCEANUS JAPAN 224.03 OJIKA JAPAN 139.03 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03				- 0 -		
Ocean Data Buoys JAPAN 224.00 OCEANUS U.S.A. 139.00 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	1.03 A	101.03	ARGENTINA	OCA BALDA		
OCEANUS U.S.A. 139.01 OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	2.03 A	112.03	TAIWAN	OCEAN RESEARCHER 1		
OJIKA JAPAN 124.13 OKI MARU JAPAN 124.13 OSHORO MARU JAPAN 124.02 OWEN UNITED KINGDOM 138.02 OYASHIO MARU JAPAN 124.20 PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	4.01 A	224.01	JAPAN	Ocean Data Buoys		
OKI MARU OSHORO MARU OSHORO MARU OWEN OYASHIO MARU - P - PERTH PORT HARCOURT Port Hacking, N.S.W. PROSERPINA PROVIDENCIA 124.13 124.13 124.03 124.20 138.02 134.03 124.20 134.03 134.03 134.03 134.03	9.01 L	139.01	U.S.A.	OCEANUS		
OSHORO MARU OWEN OYASHIO MARU - P - PERTH PORT HARCOURT Port Hacking, N.S.W. PROSERPINA PROVIDENCIA JAPAN 124.02 UNITED KINGDOM 138.02 124.20 124.20 AUSTRALIA 102.06 AUSTRALIA 202.01 AUSTRALIA 202.01 AUSTRALIA 134.01 134.01		124.13	JAPAN	OJIKA		
OWEN OYASHIO MARU - P - PERTH PORT HARCOURT PORT Hacking, N.S.W. PROSERPINA PROVIDENCIA UNITED KINGDOM 138.02 124.20 102.06 138.02 124.20		124.13	JAPAN	OKI MARU		
OYASHIO MARU - P - PERTH PORT HARCOURT Port Hacking, N.S.W. PROSERPINA PROVIDENCIA JAPAN 124.20 AUSTRALIA 102.06 GERMANY AUSTRALIA 202.01 134.01 134.01		124.02	JAPAN	OSHORO MARU		
PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 PORT Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03		138.02	UNITED KINGDOM	OWEN		
PERTH AUSTRALIA 102.06 PORT HARCOURT GERMANY 114.02 Port Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	4.20 B	124.20	JAPAN	OYASHIO MARU		
PORT HARCOURT GERMANY 114.02 Port Hacking, N.S.W. AUSTRALIA 202.03 PROSERPINA SPAIN 134.03 PROVIDENCIA COLOMBIA 108.03				- P -		
PORT Hacking, N.S.W. AUSTRALIA 202.01 PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03	2.06 A	102.06	AUSTRALIA	PERTH		
PROSERPINA SPAIN 134.01 PROVIDENCIA COLOMBIA 108.03		114.02	GERMANY	PORT HARCOURT		
PROVIDENCIA COLOMBIA 108.03		202.01	AUSTRALIA	Port Hacking, N.S.W.		
		134.01	SPAIN	PROSERPINA		
DUEDNO DECENDO ADCEMENTA 101 01		108.03				
POERIO DESEADO ARGENIINA 101.01	1.01 K	101.01	ARGENTINA	PUERTO DESEADO		

SHIP OR FIXED STATION	COUNTRY	CATALOGUE NUMBER
_		
- R -		
RABELAIS	FRANCE	113.07 J
RACINE	FRANCE	113.07 J
R. B. YOUNG	CANADA	106.19 A
RIMBAUD	FRANCE	113.07 J
ROBERT D. CONRAD	U.S.A.	139.09 C
RONSARD	FRANCE	113.07 J
- S -		
SAGAMI MARU	JAPAN	124.13 B
SAMUDERA	INDONESIA	120.01 A
SATUMA	JAPAN	124.13 B
SEIFU MARU	JAPAN	124.11 D
SEITOKU MARU No. 21	JAPAN	124.20 D
SEIYO MARU	JAPAN	124.04 D
SHINYO MARU	JAPAN	124.04 B
Ships of Opportunity	U.S.A.	139.23 0
SHIRASE	JAPAN	124.31 B
SHOYO	JAPAN	124.13 GGG
SIERRA EXPRESS	GERMANY	114.02 F
SINANO	JAPAN	124.13 B
SOELA	AUSTRALIA	102.01 Z
SORATI	JAPAN	124.13 B
SOUTHLAND	NEW ZEALAND	127.02 A
SPRIGHTLY	AUSTRALIA	102.06 B
SURVEYOR	U.S.A.	139.23 J
SWAN	AUSTRALIA	102.06 A
SYDNEY	AUSTRALIA	102.06 A
- T -		
T. A. EXPLORER	UNITED KINGDOM	138.02 к
TAKUYO	JAPAN	124.13 E
T. A. VOYAGER	UNITED KINGDOM	138.02 K
TENYO MARU	JAPAN	124.13 J
		124.16 B
TESIO	JAPAN	124.13 B
TOWNSEND CROMWELL	U.S.A.	139.23 DD
		139.23 Y
TW/EMS (LV)	GERMANY	214.01
TYOKAI	JAPAN	124.13 B
TYRO	NETHERLANDS	126.05 A
- U -		
UMITAKA MARU	JAPAN	124.04 A

SHIP OR FIXED STATION	COUNTRY	CATALOGUE NUMBER	₹
- V -			
VECTOR	CANADA	106.19 A	
VICTORIA	SPAIN	134.01 G	
VIDAL	UNITD KINGDOM	138.02 B	
VIKTOR BUGAEV	RUSSIAN FEDERATION	137.02 E	
VINION BOGALV	ROSSIAN FEDERATION	137.02 E	
- W -			
WAIKATO	NEW ZEALAND	127.02 A	
WECOMA	U.S.A.	139.23 Y	
WELLINGTON	NEW ZEALAND	127.02 A	
WHITING	U.S.A.	139.23 Z	
- x -			
XAUEN	SPAIN	134.01 B	
Xiamen	PEOPLE'S REPUBLIC OF CHINA	273.01	
- Y -			
YAHIKO	JAPAN	124.13 B	
YUBARI	JAPAN	124.13 B	

1.	BALTIC	SEA	28Aa	. <u>STRAIT C</u>		8Ae.	TYRRHEN: SEA	IAN	39.	ARABIAN	SEA
	214.01				B-01		134.01	B-03		127.02	A-06
4.	NORTH SI	ΞA	225	NORTH WE	. C.m			E-19	43.	BAY OF	BENGAL
	214.01		230.	ATLANTIC		28B.	MEDITER			124.04	B-05
6.	NORWEGIA	AN SEA		114.01 114.01	U-01 U-02		SEA - EA BASIN	ASTERN	45a.	NORTH W	
	138.10	B-07		114.01	F-02		127.02	A-06		INDIAN	OCEAN
	138.10	B-09		114.02	F-03		137.02		l	138.02	A-08
	100.10	<i>D</i> 03		124.04	A-14		138.02			100.02	11 00
12.	CHUCKCH	T SEA		137.02	E-19		138.02		45h	NORTH E	A S TT
12.	<u>chocken</u>	0011		139.01	L-18		10000	00	430.	INDIAN	
	124.02	B-63		139.05	C-11	30	BLACK SE	Z A		T1415 T 111	OCLIFILY
	139.23	J-13		139.09	C-13	50.	DIJITON DI	al-la-de		102.01	Z-03
				139.23	Q-09		139.01	I-35		102.06	
13.	BEAUFOR'	r SEA		139.23	Z-02				}		B-63
10.	DDITOT OT	000.		139.24	B-01	32a	SOUTH EA	A S Tr			B-08
	106.22	0-04		139.24	B-02	J 22 a .	ATLANTIC				A-06
				139.24	B-03			∠			
22.	BAY OF I	RISCAY		139.24	B-04		138.10	B-09	450	SOUTH W	EST
		2100111			_ •		139.01		130.	INDIAN	
	134.01	B-04	26.	GULF OF				Q-15		THOTAIN	OCLIPIA
	134.01	G-01	20.	MEXICO				2 -0		124.31	A-02
	134.01	H-01				32h	SOUTH WE	7 C T		124.31	
	134.01	I-01		139.07	H-05] 320.	ATLANTIC			124.31	
				139.07	H-10		ATDAMIT.	۷		121.01	11 0 1
23a	NORTH E	1 S Tr	1	139.07	H-11		101.01	K-01	152	SOUTH E	n c m
250.	ATLANTIC			139.07	H-12			A-01	430.	INDIAN	
İ	AIDAWII	<u> </u>			Q-09			I-34		TIADIAN	JCEAN
	114.01	U-01		139.23	Z-03			L-18		124.31	B-08
		U-02		203120	_ 00			Q-15		1111111	
	114.02	F-02	27.	CARIBBEA	N SEA			Q-18	48.	INDONES	TΔNI
l	114.02	F-03		<u> </u>				C-13	10.	ARCHIPE	
	124.04	A-14		108.03	B-01		204.02	A-01			HEYO O
l	134.01	B-03		108.03	C-01					102.06	A-30
	134.01	B-04		139.05	C-11	34.	GULF OF			102.06	A-31
	134.01	G-01				`	GUINEA			127.02	A-06
	134.01	H-01	28A	MEDITERR	ANEAN		2221211				• •
	134.01	I-01		SEA - WE			116.01	E-12	48f	CERAM SI	RΑ
	137.02	E-19		BASIN	VALUE OF VALUE		116.01	E-13	101.	ODIVING O	
	137.06	H-18		20 4 4 5 4 4 5 T				_ = 0		120.01	A-36
	137.06	K-36		137.02	E-19	37.	RED SEA			120.01	A-37
	138.02	A-07		138.02	A-01	``.	- See O D C S			126.05	A-01
	138.02	A-08			_		127.02	A-06		126.05	A-02
	138.02	B-01	28Ab	ALBORAN	SEA		138.02	A-01			
	138.10	B-07					138.02	A-08	480	BANDA SI	EΑ
	138.10	B-08		134.01	B-04						
	139.01	I-34		137.02	E-19	38.	GULF OF	ADEN		120.01	A-36
	139.01	L-18						a see of T		120.01	A-37
		Q-18					138.02	A-01		126.05	A-01
	139.08	Q-IO	ļ .			ı	100.02			120.00	11 0 =

			G	EOGR	RAPH	ICA	L IND	EX			
48h.	ARAFURA	SEA		143.02	Y-07		139.20	H-06		124.20	E-04
				143.02	z - 03		139.20	H - 07		124.20	E-05
	102.06	C-03		143.02	Z - 04		139.20	H - 0.8		124.24	B-54
	120.01	A-36	ŀ	243.01	A-37		139.20	H-11		124.24	B-55
	120.01	A-37		243.01	A-38		139.23	J-13		124.24	B-56
	126.05	A-01		243.01	C-21		139.23	X-20		138.02	K-11
	126.05	A-02		243.01	C-22		139.23	X-21		138.02	K-12
			1	243.01	E-03					139.23	0-11
48i.	TIMOR SI	EΑ				56.	PHILIPP	INE		139.23	0-12
		BLO	52.	JAPAN_S	EΑ		SEA			139.23	x-20
	102.06	C-03		<u> </u>			SCANA A			224.01	A-16
				124.02	B-63		102.06	A-30			`
49.	SOUTH C	HTMA		124.02	C-16		102.06	A-31	57b.	NORTH E	אכתי
33.	SEA	HINA		124.08	D-80		112.03	A-01	375.	PACIFIC	1
	SEU		1	124.11	D-72		124.04	D-02		PACIFIC	·
	102.06	A-30		124.13	B-26		124.13	B-26		102.06	A-30
	102.06	A-31		124.13	B-27		124.13	B-27		102.06	A-31
	112.03	A-01		124.13	J-03		124.13	E-70		113.07	J-07
	127.02	A-06		124.13	B-04		124.13	E-71		114.01	R-09
	138.02	K-11		124.20	B-05		124.13		1	114.01	R-10
	273.01	K-11		124.20	C-04		124.13			124.01	B-63
	273.01			124.20	C-04		124.15	A-33		124.02	C-16
		0			G-04						
50.	EASTERN	CHINA		124.20			124.24	B-54		124.04	A-14
	SEA			124.20	G-05		124.24	B-56		124.16	A-33
	104 00	D 60	1	143.02	BB-01		138.02	K-11		126.02	B-07
		B-63		143.02	BB-02		138.02	K-12		126.02	B-08
	124.13	B-26		143.02	CC-01		139.23	0-11		138.02	K-11
	124.13	B-27		143.02	T-08		139.23	0-12		138.02	K-12
	124.13			143.02	X-06		224.01	A-15		139.08	V-18
	124.13			143.02	X-07		224.01	A-16		139.08	V-19
		B-13		143.02	Z-03					139.20	H-02
		BB-01		143.02	Z-04	57a.	NORTH W			139.20	н-03
		BB-02	1	224.01	A-15		PACIFIC	-		139.20	H-09
	143.02			224.01			100 06	- 00		139.20	
	143.02	T-08		243.01	A-37		102.06	A-30		139.23	DD-01
ł	143.02	Z-03	İ	243.01	A-38		102.06	A-31		139.23	J-11
	143.02	Z-04		243.01	C-21		102.06	C-05		139.23	J-12
	224.01	A-15		243.01	C-22		113.07	J-07		139.23	0-11
	224.01	A-16					124.02	B-63		139.23	0-12
	243.01	A-37	54.	SEA OF			124.02	C-16		139.23	x-20
	243.01	A-38		OKHOTSK			124.04	A-14		139.23	X-21
	243.01	C-21					124.13	B-26		139.23	Y-02
	243.01	C-22		124.13	B-26		124.13	B-27		139.23	Y-03
				124.13			124.13	E-70		139.23	Y-04
51.	YELLOW	SEA		124.13			124.13	E-71		139.23	Y-05
				124.13			124.13			139.23	Y-06
		B-63		124.13	J-03		124.13			139.23	Y-07
	143.02	AA-03		124.20	G-04		124.13	J-03		139.23	Y-11
	143.02	AA-04		124.20	G-05		124.16	A-33		139.23	Y-14
	143.02	BB-01					124.16	B-13		139.23	Y-32
	143.02	BB-02	55.	BERING	SEA		124.20	B - 04		239.02	
	143.02	CC-01					124.20	B-05			
	143.02	T-08		124.02	B-63		124.20	C-05			
	143.02	Y-06		139.20	H - 04		124.20	D-03			

			G	EOGF	RAPH	ICA	L IND	EX		
58.	139.20 139.20 139.20 139.20 139.20 139.20	B-63 H-02 H-03 H-05 H-06 H-09 H-10 X-20 X-21	62.	138.02 139.23 139.23 GREAT AUSTRAL BIGHT 102.06 102.06 127.02	O-12 IAN B-03 C-03 A-06	so.	SOUTHERS OCEANS (South of latitude 50°S) 124.31 124.31 124.31 124.31 139.08	of		
59.	THE COAST. WATERS OF SOUTH EAS' ALASKA AND BRITISH COLUMBIA	T D		102.06 102.06 124.31 127.02 202.01	B-03					
	106.19	A-10 A-11 F-08	64.	102.06 102.06	EA A-30 A-31					
61a.	102.06 102.06 113.07 114.01	A-30 A-31 C-05 J-07 R-09 R-10 E-70		102.06 113.07 124.24 127.02 127.02 138.02 138.02 139.23 139.23	C-05 J-07 B-56 A-06 A-07 K-11 K-12 O-11 O-12					
	124.16 II 124.24 II 124.31 II 126.02 II 127.02 II 138.02 II 138.02 II 139.23	A-33 B-13 B-56 B-08 B-07 B-08 A-06 A-07 K-11 K-12 O-11	65.	102.06 113.07 124.24 138.02 138.02 139.23 139.23	C-05 J-07 B-56 K-11 K-12 O-11 O-12					
61b.	SOUTH EAST PACIFIC			102.06 138.02 139.23 139.23	C-05 K-11 O-11 O-12					

NUMERICAL LIST OF COUNTRIES

1.	ARGENTINA
2.	AUSTRALIA
3.	BELGIUM
4.	BRAZIL
5.	BURMA
6.	CANADA
7.	CHILE
8.	COLOMBIA
9.	DENMARK
10.	ECUADOR
11.	FINLAND
12.	TAIWAN
13.	FRANCE
14.	GERMANY
15.	GERMANY
16.	GHANA
17.	GUATEMALA
18.	ICELAND
19.	INDIA
20.	INDONESIA
21.	IRELAND
22.	ISRAEL
23.	ITALY
24.	JAPAN
	MEXICO
26.	NETHERLANDS
	3 TEST T C T 1 3 T 1 3 T 2 3

42. YUGOSLAVIA

43. KOREA (Republic of)

2.	AUSTRALIA
3.	BELGIUM
4.	BRAZIL
5.	BURMA
6.	CANADA
7.	CHILE
8.	COLOMBIA
9.	DENMARK
10.	ECUADOR
11.	FINLAND
12.	TAIWAN
13.	FRANCE
14.	GERMANY
15.	GERMANY
16.	GHANA
17.	GUATEMALA
18.	ICELAND
19.	INDIA
20.	INDONESIA
21.	IRELAND
22.	ISRAEL
23.	ITALY
24.	JAPAN
25.	MEXICO
26.	NETHERLANDS
27.	NEW ZEALAND
28.	NORWAY
29.	PAKISTAN
30.	PERU
31.	PHILIPPINES
32.	POLAND
33.	PORTUGAL
34.	SPAIN
35.	SWEDEN
36.	SOUTH AFRICA
37.	RUSSIAN FEDERATION
38.	UNITED KINGDOM
39.	UNITED STATES OF AMERICA
40.	URUGUAY

```
44. IVORY COAST
45. NIGERIA
46. CONGO (People's Republic)
47. MALAYSIA
48. MALAGASY REPUBLIC
49. MOROCCO
50. SENEGAL
51. THAILAND
52. TURKEY
53. VENEZUELA
54. EL SALVADOR
55. COSTA RICA
56. PANAMA
57. HONDURAS
58. DOMINICAN REPUBLIC
59. HAITI
60. CUBA
61. JAMAICA
62. AUSTRIA
63. ROMANIA
64. EGYPT
65. LEBANON
66. ALGERIA
67. MONACO
68. GREECE
69. TANZANIA
70. SIERRA LEONE
71. TUNISIA
72. TRINIDAD AND TOBAGO
73. PEOPLE'S REPUBLIC OF
    CHINA
74. CZECHOSLOVAKIA
75. MAURITANIA
76. BULGARIA
77. BENIN
78. PEOPLE'S DEMOCRATIC
    REPUBLIC OF YEMEN
79. IRAQ
80. LIBERIA
81. SINGAPORE
82. UKRAINE
```

83. REPUBLIC OF YEMEN

LIST OF DATA CENTER ACRONYMS

AODC Australian Oceanographic Data Centre

BODC British Oceanographic Data Centre, United Kingdom

CEADO Centro Argentino de Datos Oceanograficos

CECOLDO Centro Colombiano de Datos Oceanograficos

CEDO Centro Espanol de Datos Oceanograficos

CENADO Centro Nacional de Datos Oceanograficos, Mexico

CENDOC Centro Nacional de Datos Oceanograficos de Chile

CNODC China National Oceanographic Data Center

CNRDO Centro Nazionale Raccolta Dati Oceanografici, Italy

DOD Deutsches Ozeanographisches Datenzentrum

ENODC Egyptian National Oceanographic Data Center

ICES International Council for the Exploration of the Sea

IHO International Hydrographic Organization

INODC Indian National Oceanographic Data Center

ISMARE Irish Marine Data Centre

JODC Japan Oceanographic Data Center

KODC Korean Oceanographic Data Center

MARIS Marine Informatie Service Stichting

MEDS Marine Environmental Data Service, Canada

NOD Norsk Oseanografisk Datasenter

NODC National Oceanographic Data Center, U.S.A.

PSMSL Permanent Service for Mean Sea Level

SADCO South African Data Centre for Oceanography

SISMER Systeme d'Informations Scientifiques pour la Mer

INSTITUTION INDEX

	COUNTRY	INSTITUTION	CATALOGUE	NUMBER
01	ARGENTINA	Servicio de Hidrografia Naval National Institute of Fishing Research & Development	101.01	
02	AUSTRALIA	Commonwealth Scientific and Industrial Research Organization	102.01 102.06	202.01
04	BRAZIL	Universidade de Sao Paulo, Instituto de Biociencias		204.02
06	CANADA	University of British Columbia, Institute of Oceanography Department of Fisheries & Oceans Institute of Ocean Sciences	106.19	
08	COLOMBIA	Ministeria de Defensa Nacional, Armada Nacional	108.03	
12	TAIWAN	Institute of Marine Geology, National Sun Yat-sen Unviersity	112.03	
13	FRANCE	Museum National d'Histoire Naturelle	113.07	
14	GERMANY	Bundesamt fuer Seeschiffahrt und Hydrographie Institute fur Meereskunde der Universitat Kiel	114.01	214.01
16	GHANA	Fishery Research Unit	116.01	
20	INDONESIA	Lembaga Penelitian Laut	120.01	
24	JAPAN	Hokkaido University	124.02 124.04 124.08 124.11 124.13 124.16	

INSTITUTION INDEX

	COUNTRY	INSTITUTION	CATALOGUE	NUMBER
		University of Tokyo National Institute of Polar Research Japan Meteorological Agency	124.24	224.01
26	NETHERLANDS	Royal Netherlands Navy	126.02	
		(NIOZ)	126.05	
27	NEW ZEALAND	New Zealand Royal Navy	127.02	
34	SPAIN	Instituto Espanol de Oceanografia	134.01	
37	RUSSIAN FEDERATION	Hydrometeorological Service	137.02 137.06	
38	UNITED KINGDOM	Hydrographic Department, Admiralty Natural Environment Research Council	138.02 138.10	
39	UITED STATES	Woods Hole Oceanographic Institution University of Rhode Island Texas A & M University Scripps Institution of Oceanography Lamont Doherty Geological Observatory University of Alaska National Oceanic & Atmospheric	139.01 139.05 139.07 139.08 139.09 139.20	239.02
		AdministrationDuke University Marine Laboratory	139.23 139.24	
43	KOREA	National Fisheries Research & Development Agency	143.02	243.01
73	PEOPLE'S REPUBLIC OF CHINA	State Oceanic Administration		273.01

PART II CATALOGUE

EXPLANATION OF THE WDC-A, OCEANOGRAPHY DATA INFORMATION SHEET

The <u>Change Notice</u> lists on Data Information sheets the data which have been received by this Center. The entries are described below. Countries are arranged in the sequence shown in the numerical list of countries. Data from each country are arranged in the sequence of catalogue numbers. The 200-series data sheets follow the last 100-series data sheet in the catalogue.

<u>Country/Catalogue Number</u> — The series number and two digit number of the contributing country, as well as the identifying number for the data information, are given in this column. Details of the catalogue numbering system are given in the section "How to Use the <u>Change Notice</u> to the <u>Catalogue of Data"</u>. The numbers corresponding to the country and institution portions of the Catalogue Number are found in the index section that lists countries and contributing institutions.

<u>Country/Ship or Fixed Station</u> — The country name, as well as the names of ships are printed in capital letters; lightvessels are identified by (LV) following the name. All other names not so designated are those of shore stations and other types of fixed platforms, such as lighthouses (LH) or offshore towers; names are reported as they appear with the data.

<u>Start Date/End Date</u> — The dates during which the data were gathered are given in the order of day/month/year. In some instances, depending on the nature of the project, the dates indicate the beginning and ending of a cruise or expedition, while in others the dates indicate the first and last observations. For shore and fixed stations months and years only are usually given.

<u>Region</u> — The region(s) of the World Ocean where observations were gathered. The areas listed are defined in "Limits of Oceans and Seas," International Hydrographic Bureau, Special Publication No. 23, third edition, Monaco, 1953, with certain modifications as indicated in the Catalogue Indexes section.

Oceanographic Serial Stations:

<u>Number of Stations</u> — The number of oceanographic serial stations (also referred to as hydrographic, hydrographical, hydrological and hydrochemical stations by various authorities) at which serial measurements of temperature, salinity, and other chemical values are made, normally to depths of five meters or greater. Data to depths less than five meters are usually catalogued as Surface Observations. The single dagger symbol (†) is used to denote data obtained by electronic, in-situ, Salinity/Temperature/Depth (STD) or Conductivity/Temperature/Depth (CTD) sensors.

<u>Physical and Chemical Data</u> — The types of physical and chemical data, available at serial depths as observed and as computed values, are listed using the following symbols and abbreviations:

T - Temperature of the water sample

Cl - Chlorinity

S - Salinity

O₂ - Dissolved oxygen content

CO₂ - Carbon dioxide

pH - Hydrogen ion concentration

Alk - Alkalinity

N - Nitrogen compounds

P - Phosphorous compounds

Si - Silicon compounds

sig-t - Density of the water at T & S <u>in-situ</u> and at atmospheric pressure

SVA - Anomaly of specific volume

TherAnom - Thermosteric anomaly

△ D - Anomaly of dynamic heights

PE - Potential energy

PT - Potential temperature

Q - Q factor for transport computations

Vs - Speed of sound

NOTE: Chemical compounds may also be indicated by standard chemical symbols.

<u>Sample Depths</u> — The depth, or range of depths, to which the predominant number of samples/casts for that particular cruise were observed. They are recorded to the nearest 100 meters, except when the observations are in water less than 100 meters in depth, in which case they are usually recorded to the nearest 10 meters.

<u>Maximum Depth</u> — The actual depth of the deepest sample/cast for a particular cruise or data set and is not rounded off.

 \underline{BTs} — The type and number of mechanical bathythermograph (MBT) or expendable bathythermograph (XBT) observations are indicated by:

MB - Analog prints of bathythermographs taken by a mechanical BT

MTb - Tables or listings of mechanical BT temperature readings at selected depths

XB - Analog prints of bathythermographs taken by an expendable BT

XTb - Tables or listings of expendable BT temperature readings at selected depths

DTb - Table or listings of digital BT temperature readings at selected depths

STb - Tables or listings of bathythermographs reported at selected levels only, eg. 5m intervals

<u>Currents</u> — The types and quantity of observations of surface and subsurface currents are indicated by:

Surf - Surface Subs - Subsurface

Biological — The types of marine biological observations made and the number of stations and/or abundance of data are indicated by any of the following categories:

Phyt - Phytoplankton Pleu - Pleuston Pigm - Pigments Sest - Seston PrPr - Primary productivity Neus - Neuston Zoo - Zooplankton Bent - Benthos Nek - Nekton PeF - Pelagic fishes DeF - Demersal fishes Eggs - Fish eggs and/or larvae Micr - Microbiological data FObs - Fishery observations Biol - Bioluminescence Bore - Borers and foulers Poll - Pollution studies Cet - Cetacea

C14 - Carbon

Surf - Surface visual observations of birds, fishes mammals, reptiles and discolored water

<u>Meteorological</u> — The types of meteorological observations taken in conjunction with oceanographic data are indicated by:

Wd - Wind direction and speed

W - Weather

Ta - Temperature of the air, dry bulb

Tw - Temperature of the air, wet bulb

Bar - Atmospheric pressure, barometer

Cld - Clouds

Vis - Visibility

Hum - Humidity

DP - Dew point

Pre - Precipitation

SoRa - Solar radiation

Rad - Radiosonde observations

<u>Sea Surface</u> — The types of sea surface observations and measurements taken are listed. In addition to the abbreviations and symbols listed for Physical and Chemical Data, the following are also used:

Col - Color of the water

Tra - Transparency of the water

Wa - Visual data on waves, including sea state

IWa - Instrumented wave data

Ice - Data on ice in the sea

LP - Light penetration

LPW - Long period wave records

<u>Data Center Reference Number</u> — Data which have been processed at a national, regional, or responsible oceanographic data center, usually have been assigned some type of identifying reference number by that center. The availability of data in automated form is indicated by the initials of the data center followed by that center's reference number. For example, machine-processed oceanographic station data for Reference Number 310863 of the National Oceanographic Data Center would appear as NODC 310863. As a means of identifying those types of data that have been machine-processed and thus correspond to the Reference Number, the Diamond symbol (◊) is entered in the appropriate columns describing data that are automated under that Reference Number.

Publication number refers to the Catalogue Number from the WDC-A, Oceanography <u>Catalogue of Accessioned Publications Supplement</u> identifying the published report in which the referenced data appear. The absence of a number in this column indicates that the data were not received in published form.

Remarks — Any additional information included to further describe the data. The term "(CAT. OF DATA)" or "(Change)", indicates that data for this listed cruise represent an addition to data previously received by WDC-A, Oceanography, and already described under this Catalogue Number in the Catalogue of Data (including Change Notice Nos. 1-16) or the referenced Change Notice. An asterisk (*) is placed beside each data entry which represents an addition to data catalogued previously; the total number of observations held for this cruise is shown in parentheses () beneath the data entry. Data entries preceded by a minus sign (-) and enclosed in parentheses, e.g. (-9), indicate a deletion of observations. For more extensive explanation of some cruises, the Remarks Section immediately follows the main Catalogue Section in this Change Notice.

NOTE: Track charts showing locations of oceanographic observations are not printed in the <u>Change Notice</u>. If a track chart is available for a particular cruise, that information will be given in the Remarks Section of this <u>Change Notice</u>. WDC-A will gladly provide copies of such track charts upon request.

	Γ			8	1/85		<u> </u>							04,	,03		
		PEMAPKS		Cruise PTO, DESEADO 2/84 (Change 46)	Cruise OCA BALDA 4/85 (Change 46)					443 CTD stations (Change 49)	(Change 49)			Cruises 91/01-91/04, 91/06, 91/08, 91/11, 91/16 ††	Cruises 92/01, 92/03	Cruise 92/02	
	DATACENTER	PEPEPENCE NUMBER		Publication 01.01-114	Publication 01.01-114		NODC 099119	NODC TOGA PACIFIC DATA BASE	NODC TOGA PACIFIC DATA BASE	NODC 091374, 099129 *	NODC 099144,	NODC 099160 thru 069162		Publication 06.08-015	Publication 06.08-016	Publication 06.08-016	
		SEA SURFACE							,					Wa			(T, S, Ice)-13
		METEORO- LOGICAL		Wd, Ta, Hum	Wd, Ta, Hum									Ta, Tw, Wd, Cld	Ta, Tw, Wd, Cld	Ta, Tw, Wd, Cld	
S	1	BIO- LOGICAL															Pigm-9
OBSERVATIONS		CURRENTS															
e OB	ватну-			XTb-46	XTb-19			XTb-983 ◊	XTb-412 ◊								
10	STATIONS	MAX. DEPTH			1205		1979					3743		400	390	250	57
TYPES	ERIAL	SAMPLE					20-1979					29-3743		50-400	70-390	40-250	5-57
	OCEANOGRAPHIC S	PHYS. & CHEM. DATA					(T, S) ◊					(T, S) ◊		T, S, 02	T, S, 02	T, S, 02	T, S, O2, S103, POr, N103, PE
	I フト	NO.OF STAS.			1 * (8) †		91 +			481 * (919)	102 * (586)	309 +		986	20	18	+ 06
Г		里路		32b	32b		45b	48 49 57a 57b 56 61a 64	48 49 56 57a 57b 61a 64	62	45b 48h 48i 62	57a 61a 63 64 65		59	59	59	13
		BND DATE		12/11/84	22/06/85		18/09/86	31/12/91	31/12/92	14/09/84	20/11/87	11/12/90		06/12/91	10/04/92	04/03/92	11/05/91
		START		07/11/84	18/06/85		02/09/86	01/01/91	01/01/92	09/01/84	20/01/87	06/10/90		21/01/91	27/01/92	02/03/92	23/04/91
	COUNTRY/	SHIP OR FIXED STATION	ARGENTINA	PUERTO DESEADO	OCA BALDA	AUSTRALIA	SOELA	ANRO AUSTRALIA, AUSTRALIAN, BRISBANE, DARWIN, DEWRENY, ELINDERS, IRON NEW CASTLE, IRON PACIFIC, PERTH, STUARI, SWAN, SYDNEY	DERWENT, FLINDERS, HOBARI, PERTH, SWAN	SPRIGHTLY	FRANKLIN	FRANKLIN	CANADA	VECTOR, R. B. YOUNG	VECTOR	ENDEAVOUR	Aircraft
	ITRY/	90 EF	:	K-01	A-01	:	Z-03	A-30	A-31	B-03	C-03	S 0-0		A-10	A-11	F-08	0-04
	COUNTRY/	CATALOGUE	101	101.01	101.03	102	102.01	102,06	102.06	102.06	102.06	102.06	106	106.19	106.19	106.19	106.22

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC.A. OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALIMITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 THEOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

²⁷

			1		-	TYPES	S	OF	088	OBSERVATIONS						_
COUNTRY/	COUNTRY/			1	OCEANOGRAPHIC		SERIAL STATIONS		ватну-					DATACENTER		
CATALOGUE	SHIP OR FIXED STATION	START	DATE	HB N	NO.OF STAS. C	PHYS. 8 CHEM. DATA	SAMPLE	MAX. T	THERMO C	CURRENTS	BIO- LOGICAL	METEORO- LOGICAL	SEA	REFERENCE	FIEMARKS	
108	COLCMBIA															
108.03 B-01	ARC, PROVIDENCIA	09/06/83	29/06/83 2	27 73		T, S, sig-t, SVA, AD, Vs, O2, PO4, NO2, NO3, SIO4, NH4, PH	10-1532	1794				Wd, Ta, Bar	Tra	Publication 08.07-009	Cruise OCEANN) VI	
108.03 C-01	ARC, NALPELO	04/10/83 26/10/83		27 35		T, S, sig-t, SVA, AD, VS, OZ, PO4, NO2, NO3, SIO4, NH4, PH	200-966	1932				Wd, Ta, Tw, Cld, Bar	Wa, Col, Tra	Publication 08.07-010	Cruise OCEANO VII	
112	TAIWAN															
112.03 A-01	OCEAN RESEARCHER 1	07/05/92 11/05/92		49 1. 56	16 † T, pH	, S, co2,	500-2000	2006				Wd, Ta		Publication 12.03-001	Cruise 316	
113	FRANCE															
113.07 J-07	LE NOROIT, RABELAIS, RACINE, RIMBAUD, RONSARD	01/01/91	31/12/91	57a 57b 61a 61b 64					XTb-432					NODC TOGA PACIFIC DATA BASE		
114	GERMANY															
114.01 R-09	COLUMBUS CANADA, COLUMBUS VICTORIA, COLUMBUS VIRGINIA, COLUMBUS WELLINGTON	01/01/91	31/12/91	57b 61a					XTb-540					NODC TOGA PACIFIC DATA BASE		
114.01 R-10	COLUMBUS VICTORIA, COLUMBUS VIRGINIA, COLUMBUS WELLINGTON	01/01/95	31/12/92 5	57b 61a					XTb-293					NODC TOGA PACIFIC DATA BASE		
114.01 U-01	BRESLAU	22/09/85	03/10/85 2	23a 23b					XTb-53 ♦					NODC (SBT) 046101	Ship of Opportunity Programme	
114.01 U-02	BRESLAU	31/12/85	04/12/86 2	23a 23b					XTb-142 ◊				.	NODC (SBT) 046102,046103	Ship of Opportunity Programme	
114.02 F-02	SIERRA EXPRESS, PORT HARCOURT, CARIBA EXPRESS	04/01/85	06/12/85 2	23a 23b					XTb-833					NODC (SBT) 046136-046139 046124-046128 046108-046116		
114.02 F-03	PORT HARCOURT, CARIBA EXPRESS	04/01/86 04/12/86	04/12/86	23a 23b					XTb-363 ♦					NODC (SBT) 046129-046130 046117-046122		
116	GHANA									•						
116.01 E-12	КАКАDIAMAA	06/02/90 18/12/90		34 89		(T, S, 02)	300-100	100				(Wd, W, Cld, Bar) 0	(Wa, Col, Tra) 0	NODC GH1002		
				-				-								

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC-A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 H FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

	١
_	
<u> </u>	
O	
NOI I	
⋖	
5	
INFORM/	
$\overline{}$	
~	
≒	
=	
_	
⋖	
-	
٩.	Į
DATA	
≥	
Ť	
٩.	
۷.	
₾	
O	
OCEANOGRAPHY	
ž	
7	
m	
$\tilde{}$	
\approx	
U	
-	
WDC-A,	
A.	
\simeq	
H	
3	

	BEMABKS				H =	н		., 42, 43,	3, 54, 55,				-10	:-02, 92-05, 10	
	158				SNELLIUS II Expedition	SNELLIUS II Expedition		Cruises 41, 44, 45	Cruises 53, 56	Cruise 49	Cruise 19	Cruise 11	Cruise 92-10	Cruises 92-02, 92-07, 92-10	
	DATACENTER	NUMBER	NODC GH1003		Publication 20.02-028	Publication 20.02-028		Publication 24.04-049	Publication 24.04-049	Publication 24.12-056	Publication 24.12-056	Publication 24.12-056	Publication 24.25-021	Publication 24.27-018 24.25-019 24.25-020 24.25-021	Publication 24.10-055
	A H	SUPFACE	(Wa Col, Tra) ◊		Wa, Tra	Wa, Tra		T Wa, Col, Tra	T Wa, Col, Tra					v	Wa
	METEORO	LOGICAL	(Wd, W, Cld, Bar) ◊		Wd, Ta, Tw, Cld, Bar	Wd, Ta, Tw, Cld, Bar		Wd, W, Ta, Tw, Bar	Wd, W, Ta, Tw, Bar	Ta, Tw, Wd, Bar	Ta, Tw, Wd, Bar				Б
	O. C.	LOGICAL			200-21 P1gm-20	200-23 Pigm-23		Phyt-187 FObs-187	Phyt-73 FODS-84		Fobs-7				
OBSERVATIONS	CLIPRENTS												Subs-46	Surf-8 Subs-249	Surf-GEK -1,041
OB	BATHY. THERMO	GRAPH								XTD-247	XTb-43		XTb-16	XTb-60	XTb-903
p	STATIONS	Ö	100		392	397		3000	1500		1100	101	2500	1200	
1	SERIAL STATE	DEPTHS	30-100		22-392	15-390		40-3000	20-1500		500-1100	75-100	200-2500	50-1200	
	OGRAPHIC PHYS. 8		(T, S, 02)		T, S, sig-t, O2, PO4, NO3, SiO3	T, S, sig-t, O2, PO4, NO3, SiO3		T, S, sig-t, TherAnom, SVA, AD, PO4, NO2, NO3, S1	T, S, sig-t, TherAnom, SVA, AD		T, S, 02	T, S, 02	T, S	T, S	
	NO OF	STAS.	89		21 †	23 +		220 †	173 †		÷	40 +	22 †	150 †	
	Ē	E.	34		48f 48g 48h	48f 48g 48h		12 45b 50 51 52 52 55 57a 57b	52 57a 57b	23a 23b 57a 57b	43	99	. 52	52	50 52 54 56 57a
	2	\rightarrow	17/12/91		25/08/84	15/02/85 27/02/85		02/09/92	23/10/92	20/03/91	21/02/91	22/01/90	17/10/92	28/10/92	11/12/89.
	START	DATE	03/01/91		14/08/84	15/02/85		31/10/91	22/01/92	14/11/90	12/02/91	20/01/90	06/10/92	05/02/92	13/01/89
	COUNTRY/	STATION	KAKADIAMAA	INDONESIA	SAMUDERA	SAMUDERA	JAPAN	OSHORO MARU	HOKUSEI MARU	UMITAKA MARU	SHINYO MARU	SEIYO MARU	KOFU MARU	SEIFU MARU	KAIYO, AWAZI, ESAN, ECOMO, ETIZEN, IWAKI MARU, KAIYO, KOSIKI, KUDARA, KUZORYU, MATUSIMA, MEIYO, MOYOBU, NOTO, OAIKA, OKI MARU, SATUMA, TYOKAI, YAHIKO,
	TRY	5	E-13		A-36	A-37		B-63	C-16	A-14	B-05	D-02	D-80	D-72	B-26
	CATALOGUE	NUMBER	116.01	120	120.01	120.01	124	124.02	124.02	124.04	124.04	124.04	124.08	124.11	124.13

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WIG. A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/SITD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT COPRESPONDS TO THE DATA CENTER REFERENCE NUMBER.

11 FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

z
ō
F
⊻
≊
ORMATIO
\underline{H}
INFORM
DATA
A
>
NOGRAPHY
9
7
<u>5</u>
Õ
z
OCEAN
\overline{c}
Ó
Y-
WDC-
WDC
5

									** *					-		
		REMARKS		WESTPAC, 7th cruise	WESTBAC, 8th Cruise							204 CTD stations				
	DATACENTER	HETERBNOE NUMBER	Publication 24.10-056	Publication 24.10-057	Publication 24.10-058	Publication 24.10-056	Publication 24.10-055	Publication 24.10-056	Publication 24.11-055	Publication 24.11-055	Publication 24.06-067	Publication 24.06-068	Publication 24.06-067	Publication 24.06-068	Publication 24.06-067	Publication 24.06-067
		SEA	Wa	ма	е 34	wa	Wa	Wa	T, S Wa, Col, Tra	T, S Wa, Col Tra	Col	Col, Tra	Col, Tra	Tra		S Tra
		METEORO- LOGICAL	Ta	Wd, W, Ta, Tw, Cld, Bar, Vis	Wd, W, Ta, Tw, Cld, Bar, Vis	Wd, W, Ta, Tw, Cld, Bar	Wd, W, ta, Tw, Cld, Bar, Vis	Wd, W, Ta, Tw, Cld, Bar, Vis	Wd, W, Ta, Bar	Wd, W, Ta, Bar	Wd, W, Ta, Bar	Wd, W, Ta, Bar	Wd, W, Ta, Bar	Wd, W, Ta, Bar	W, Ta, Bar	Wd, W, Ta, Bar
S		BIO- LOGICAL							Fobs-5	FObs-6			Phyt-66 P1gm-34	Phyt-42 Pigm-12		
OBSERVATIONS		CURPRENTS	Surf-GEK -1,006	Surf- 1,453 ††	Surf-953 ††									-		
BO	ВАТНУ-		1,048	XTb-123	4439 XTb-126	XTD-95	4500 XTb-349	4500 XTb-359	1000 XTb-29	XTb-11					MTD-44	600 MTb-177
9	STATIONS	MAX. DEPTH		4515	4439	4500	4500	4500	1000	1000	300	200	300	800		009
	~ 1	SAMPLE		100-4500	75-4400	30-4500	30-4500	30-4500	200-1000	200-1000	50-300	30-500	10-300	30-800		20-600
≥1	- 1	PHYS. 8 CHEM. DATA		T, S, O2, P, Si, pH, Heavy Metal Hydrocarbon	T, S, O2, P, S1, pH	T, S	T, S, O2, P, Si, pH	T, S, O2, P, Si, pH	ν	T, S	T, S	N E	T, S, O2, PO4, NO2, NO3	T, S, O2, PO4, NO2, NO3, NH4, S1		T, S
	OCEAN	NO.OF STAS.		81 +	51 +	37 †	274 †	343 †	115 †	16 †	257 †	309 +	290 †	253 +		82 +
		HEG.	50 52 54 56 57a	56 8 57a 61a	57a	52 54 57a	50 54 57a 57a	50 54 56 57a	56 57a 57b 61a	50 57a 61a	52 57a	52 57a	25	52 57a	57a	57a B
	1	BND	16/12/90		13/03/91	13/11/90	04/12/89	16/12/90	28/02/92	25/07/91	15/03/88	17/03/89	05/03/88	02/03/89	29/09/87	25/02/88
		START	12/01/90	07/02/90 12/03/90	08/02/91	17/10/90	08/03/89	12/04/90	01/11/91	30/04/91	07/04/87	14/04/88	09/04/87	13/04/88	30/05/87	13/04/87
	COUNTRY	SHIP OR FIXED STATION	KAIYO, ESAN, ETIZEN IWAKI MARU, KAIYO, KOSIKI, KUDARA, KUZIRYU, MATUSIMA, MEIYO, WOTORA, WOTO, SAGAMI MARU, SINANO, SORATI, TESIO, TYOKAI	TAKUYO	TAKUYO	TENYO MARU	SHOYO	SHOYO	KOYO MARU	TENYO MARU	OYASHIO MARU	OYASHIO MARU	KINSEI MARU	KINSEI MARU	SEITOKU MARU No. 21	HOKUSHIN MARU
	HY/		B-27	E-70	E-71	J-03	GGG-21		A-33	B-13	B-04	B-05	C-04	C-05	D-03	E-04
	COUNTRY/	CATALOGUE	124.13	124.13	124.13	124.13	124.13 GC	124.13 GGG-22	124.16	124.16	124.20	124.20	124.20	124.20	124.20	124.20

DATA FOR THIS CRIUSE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC-A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 THE FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

C-A, OCEANOGRAPHY DATA INFO
-A, OCEANOGRA
-A.

		REMARKS				Cruise KH-91-1, Legs 1 & 2	Cruise KH-91-6	Cruise KH-92-5, TOGA/COARE	Cruise JARE-24, BIOMASS (Change 47)	JARE-25, BICMASS (Change 41)	31	CTD stations		, , ,			SWELLIUS II Expedition
	CENTER	REFERENCE NUMBER	Publication 24.06-068	Publication 24.06-067	Publication 24.06-068	Publication Cruis 24.13-076 Legs	Publication Cruis 24.13-077	Publication Cruis 24.13-078 TOGAV	Publication Cruise . 24.22-037 BIOMASS (Change	Publication JARE- 24.22-038 (Chan	Publication JARE-31 24.22-039	Publication 5 CTD 24.22-040		NODC TOGA PACIFIC DATA BASE	NODC TOGA PACIFIC DATA BASE	Publication 20.02-028	Publication SNELL 20.02-028 Exped
	_	SEA FEH SURFACE NU				Publio 24.13	Public 24.13	Publi. 24.13	Publ 1-24.22	Publi 24.22	Publi 24.22	74, PH		NODC PACIF BASE	NODC PACIF BASE		
		METEORO- S LOGICAL SUF	Wd, W, S Ta, Bar Tra	Wd, W, Tra Ta, Bar	Wd, W, Tra Ta, Bar	Wd, W, Ta, DP, Bar, Vis		Wd, Ta, T DP, Bar, Hum				Md, W, T, S, ET, Bar, O2, PC Vis, Hum NO2, NO3, NH4, S103, S103, Wa				Wd Tra	Wd Tra
NS		BIO- LOGICAL					Zoo-13 Pigm-5 FObs-26		99-007	200-52						Phyt-29 200-44 PrPr-24	Phyt-30 200-47
OBSERVATIONS	÷	IO- CUPPENTS H	06								9	00		65	78		
P		MAX. THERMO- DEPTH GRAPH	MTb-290	200	200	1036	7275				1005 XTb-16	3419 XTD-202		XTD-259	XTb-178	305	304
	2	SAMPLE DEPTHS		20-500	20-500	1000	1100-1800 5500-6700				32-1003	733–3400				299-303	296-304
-1	- 1	PHYS. & CHEM. DATA		S &	T, S	T, S	T, S, O2, PO4, SiO4, SiO2, PT				T, S, sig-t, O2	T, S, sig-t, AD, O2, PO4, NO2, NO3, NH4, S1O3, PH Hydrocarbon	Heavy Metal			T, S, O2, PO4, NO2, NO3, S1, PH	T, S, O2, PO4, NO2, NO3, S1, PH
		NO.OF STAS.		623 †	408 †	22 †	14 †				73 t	11 +				35 †	36 +
	_	DATE PEG.	23/03/89 57a	25/02/88 52 54	22/02/89 52 54	22/01/91 56 57a	24/11/91 57a	06/12/92 56 57a 61a 64 65	11/01/84 45c	06/01/85 45c	14/01/91 45c SO	19/03/91 45b 45d 61a 63 80		31/12/91 57b 61a	31/12/92 57b 61a	13/08/84 48f 48g 48h	21/02/85 48£ 489 48h
		START	11/04/88 2	07/04/87	11/04/88 2	17/01/91	04/11/91 2	29/10/92 0	16/02/83 1	18/02/84 0	03/04/90 1	14/11/90		01/01/91	01/01/92 3	01/08/84	09/02/85
	COUNTRY/	SHIP OR FIXED STATION	HOKUSHIN MARU	HOKUYO MARU	HOKUYO MARU	HAKUHO MARU	HAKUHO MARU	накино маки	Shore-Based Party	Shore-Based Party	Shore-Based Party	SHIRASE	NETHERLANDS	NEDLLOYD BAHREIN, NEDLLOYD BARCELONA, NEDLLOYD MADRAS, NEDLLOYD MANILLA	NEDLLOYD MADRAS, NEDLLOYD MANILLA	TYRO	TYRO
	THY/	OGUE HER	E-05	G-04	G-05	B-54	B-55	B-56	A-02	A-03	A-04	B-08	•	B-07	B-08	A-01	A-02
	COUNTRY	CATALOGUE	124.20	124.20	124.20	124.24	124.24	124.24	124.31	124.31	124.31	124.31	126	126.02	126.02	126.05	126.05

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC-A OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 THE FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

Z	
ō	
Ě	
ď	
Σ	
Œ.	
0	
ż	
=	
Ø	
5	
2	
≥	
PH	
Ā	
ď	
(5	
0	
A	
Ĕ	
\overline{c}	
Õ	
Ą	
Ö	
0	
3	

				H	ŀ	TYPES	S	O.F	OBSE	OBSERVATIONS					
COUNTRY	COUNTRY	FOATO	-	1	OCEANOGRAPHIC		A		BATHY-	OD COL		000	410	DATACENTER	CAMPLE
CATALOGUE		STAHI	DATE	HEG.	STAS. C	CHEM. DATA	DEPTHS			COMPRENIS	LOGICAL	LOGICAL	SUFFACE	NUMBER	HEMAHKS
127	NEW ZEALAND			_											
127.02 A-06	CANTERBURY, WELLINGTON	01/01/91	31/12/91 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	288 37 39 45b 48 49 61a 62 63					XTD-288 ♦					NODC (BT) 080009, 080029 080047, 080402 080418, 080418, 080423 NODC TOGA PACIFIC DATA BASE	
127.02 A-07	CANTERBURY, WAIKATO	01/01/92	31/12/92 6	61a 64					XTb-149					NODC(BT) 080403,080422 NODC TOGA PACIFIC DATA BASE	
134	SPAIN														
134.01 B-03	XAUEN	14/09/29	13/12/29	23a 1 28Ae	19 T.	W	75-450	800						ICES	
134.01 B-04	XAUEN	26/02/30	14/09/30 22	22 23a 28Ab	73 T,	Ø	50-500	700					(T, S)-	ICES	
134.01 G-01	VICTORIA	01/02/25	21/11/25 2.	22 23a	58 T,	v	20-200	535						ICES	
134.01 H-01	PROSERPINA	12/05/26	21/08/26 2	22 23a	31 T,	v	20-200	200						ICES	
134.01 I-01	E DATO	23/02/28 14/06/28		22 23a	51 T,	v	20-200	200						ICES	
137	RUSSIAN FEDERATION														
137.02 E-19	VIKTOR BUGAEV	22/11/84	01/03/85 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23a 2 23b (28A 28Ab 28Ab 28Ae 28B	(254)									NODC 907149,	Cruise 38 (Change 42)
137.06 H-18	AKADEMIK KOROLEV	06/20/90	02/04/90 2	23a 8	87 (T	(T, S) 0	500-2200	2200						NODC 907370	Cruise 50
137.06 K-36	MUSSON	15/11/84	15/11/84 2	23a 2		(T, S) 0	270, 1980	1980						NODC 907350	Cruise 46
138	UNITED KINGDOM								-						
138.02 A-01	OWEN	01/11/57	22/12/57	28A 28B 37 38				۷,	MTb-84			(W, Ta, Tw, Cld, Bar, Vis) 0 *	T 0 * Wa 0 *	NODC (BT)	(Original Catalogue)
138.02 A-07	OWEN	26/09/57	28/09/57 2	23a				24	MTb-12			Wd, W, Ta, Tw, Cld, Bar, Vis	T Wa	NODC (BT) 024684	
			-		-										

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC-A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 TF FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

COUNTRY/ SHIP OR FIXED STATION						П	H	CDSENALIONS	2012				
TATION				OCEAN	-	71	\neg					DATACENTER	
	START	DATE	밀	NO.OF STAS.	CHEM. DATA	SAMPLE	MAX.	THERMO- CURPENTS GRAPH	TS BIO-	METEORO-	SUPFACE	RETENENCE NUMBER	PEMAPKS
	00	8	23a 28B 37 38 45a			1		MTb-114		Wd, W, Ta, Iw, Cld, Bar, Vis		NODC (BT) 002532	
	22/10/57	22/10/57	23Aa 23a	(6)				MTb-6		(W, Ta, Tw, Cld, Bar, Vls) 0 *	* \(\)	NODC 740949	(Original Catalogue)
ACT 3, FARNELLA, FORTHBANK, IVYBANK, MELBOURNE STRR, T. A. EXPLORER, T. A. VOYAGER	01/01/91	31/12/91	49 56 57a 57b 61a 61b 64 65					×TD-834				NODC TOGA PACIFIC DATA BASE	
AMERICAN STAR, HONG KONG STAR, MELBOURNE STAR	01/01/92	31/12/92	56 57a 57b 61a 61b 64					XTb-313				NODC TOGA PACIFIC DATA BASE	AMERICAN STAR formerly ACT 3
CHARLES DARWIN	25/01/90	31/07/90	6 23a	+ 00	T, S, sig-t, SVA, AD, Vs, PT, 02	151-2033	2033					Publication 38.14-405	Cruise 51
CHARLES DARWIN	26/04/91	08/06/91	23a	40 +	T, S, O2, NO2, PO4, Alk, pH, CFC	140-4913	2090		Pigm-40			Publication 38.14-406	Cruises 58/59, Vivaldi '91
CHARLES DARWIN	08/09/91	23/09/91	6 32a	28 t	T, S, sig-t, AD, PT	192-3400	3400					Publication 39.14-407	
UNITED STATES													
	24/11/87	06/03/88	23a 32a 32b	163 † * (500)					····			NODC 310066 thru 310068	Cruise SAVE, Legs 1-3 163 CTD stations (Change 49)
	14/05/88 27/07/88		30	87 †	T, S, O2, PO4, NO2, NO3, NH4, S104	500-2100	2101						Black Sea Expedition Cruises 2 thru 5
OCEANUS	22/02/80	04/03/80	23a 23b 32b	36 +	(T, S) ◊	1000-1500	1500					NODC 329618	
ENDEAVOR	11/04/85 28/04/85		23b 27	92 †	(T, S) \$	1000-6200	6239					NODC 329616	Cruise 129

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC.A. OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 HORA ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

WDC-A, OCEANOGRAPHY DATA INFORMATION

SHIP OR FIXED			-			0.00.2							
CHYLLXED CHILXED	_		1	NOGRAPHIC	SERIAL STA	STATIONS		i			į	DATACENTER	
STATION	DATE DA	DATE	HEG. STA	STAS. CHEM. DATA	SAMPLE	MAX.	THERMO-C	CURPENTS	BIO- LOGICAL	METEORO- LOGICAL	SUFFACE	NUMBER	PEMARKS
	01/10/90 15/1	15/10/90 26	(31)	1	40-1200	2400						NODC 329632	24 CTD stations
GYRE	15/06/91 18/0	18/06/91 26	13 † (24)	÷ @ ,								NODC 329648	Cruise GO4 13 CTD stations (Change 50)
	21/06/92 31/1	31/10/92 26	5.9	† (T, S) \$	10-1400	1500						NODC 329841, 329876,329877 329878	
	11/07/90 23/0	23/07/90 26	116	6 † (T, S) Ø	06-9	1100						NODC 329625	Cruise 90-G10
MELVILLE	09/11/88 06/03/89	328 32b 32b 30		138 † (355)						(Wd, Ta, Tw, Cld, Bar) ◊ *	S-4 0 *	NODC 310069, 310070 *	Cruise SAVE, Legs 4 6 5/HYDROS Legs 2 6 3 138 CTD stations (Change 49)
MELVILLE	14/03/89 12/04/89	04/89 23a		71 † (157)						(Wd, Ta, Bar) 0		NODC 310071	Cruise SAVE leg 6/HDROS leg 4 71 CTD stations (Change 50)
NEW HORIZON	26/09/92 12/1	12/10/92 57b	J. 26	t T, S, sig-t, SVA, AD, O2, PO4, NO2, NO3, S1O3, PT	31–535	572			Zoo-64 Pigm-76 PrPr-12	Wd, W, Ta, Tw, Cld, Bar	Wa, Col, Tra	Publication 39.01-333	CalCOFI Cruise 9210 12 CTD stations
NEW HORIZON	19/08/89 01/09/89	9789 576	7b 85	† (T, S) \$								NODC 329880	
ROBERT D. CONRAD	[/22 6//01/10	22/10/79 23a 23b 32b	3a 72	† (T, S) Ø								NODC 319899	
АГРНА НЕГІХ	24/07/91 14/1	14/11/91 57b 58	7b 116	6 † (T, S) \$								NODC 310043 thru 310047	Cruises HX159, HX160, L09 thru L011 11
АГРНА НЕГІХ	11/11/80 21/1	21/11/80 57b 58	7b 206	6 † (T, S) \$								NODC 319271	
ALPHA HELIX	19/06/82 04/0	04/07/82 55	111	1 + (T, S) 0								NODC 319249	
АГРНА НЕLIX	01/04/83 29/1	29/10/83 58	3 596	6 t (T, S) \$				11				NODC 319331, 319334,319335 319337	
АГРНА НЕГІХ	07/05/84 03/1	03/11/84 55	627	7 † (T, S) \$								NODC 319400, 319401,319419 319421,319426	
ALPHA HELIX	13/07/85 22/0	22/08/85 55	287	7 + (T, S) \$								NODC 319548, 319602	
ALPHA HELIX	12/07/86 08/09/86	98/60	336	6 + (T, S) 0								NODC 319672, 319687,319690	
АГРНА НЕГІХ	13/05/87 26/0	26/05/87 57b 58	7b 144	4 + (T, S) \$								NODC 319717	

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECENED BY WDC-A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITYSALINITY/TRAPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 THOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

³⁴

INFORMATION
Y DATA
APH
OCEANOGR
WDC-A.

	REMAPKS						Cruise ICE 90				Cruise FOCI	Cruise OCSEAP, FOCI	CalCOFI Cruises 7801, 7803, 7804 1804 180 CTD stations (Change 33)	CalCOFI Cruise 8401 40 CTD stations (Change 35)	CalCOFI Cruise 8402-3 83 CTD stations (Change 35)	24 CTD stations (Change 35)	CalCOFI Cruise 8407 36 CTD stations (Change 36)
	DATA CENTER REFERENCE	NUMBER	NODC 319906	NODC 319875	NODC 319991	NODC 319992	NODC 310048	NODC TOGA PACIFIC DATA BASE	NODC TOGA PACIFIC DATA BASE	NODC 310001	NODC 310060 thru 310062	NODC 310022 THRU 310027	NODC 319810, 319811,319812	NODC 318633, 319828 *	NODC 318634, 319829 *	NODC 318627, 318635,319830	NODC 318631, 319831 *
	SEA	SUFFACE															
	METEORO	LOGICAL															
S	BIO.	LOGICAL								-							
OBSERVATIONS	CURPRENTS																
80	BATHY. THERMO-							XTb- 2,492 ◊	XTb- 1,020 \$	10							
P	STATIONS LE MAX.	DEPTH								2565	4329			1000	1000		1000
1	SERIAL STA	DEPTHS								1000-2500	40-1500, 3000-4000			30-1000	20-1000		30-1000
1	OCEANOGRAPHIC S	CHEM. DATA	(T, S) 0	(T, S) 0	(T, S) 0	(T, S) Ø	(T, S) Ø			(T, S) Ø	(T, S) \$	T, S					
	NO.OF	STAS.	132 †	186 †	÷ 6	23 †	153 †			16 †	287 †	4444	180 † (430)	40 † (119)	83 † (185)	24 † (157)	36 † (115)
	밀		57b 58	55	57b	57b	12 55	56 57a 57b 61a 61b 64 65	56 57a 57b 61a 61b 64 65	23b 26	55 57a 57b 58	55 57b 58	57b	57b	57b	57b	57b
	8		29/06/88	30/07/89	16/09/88	15/09/89	20/10/90	31/12/91	31/12/92	29/09/90	05/10/91	06/04/90 11/10/90	26/04/78	24/01/84	25/03/84	10/04/84 02/06/84	11/07/84 28/07/84
	START	DATE	16/06/88	09/01/89	13/09/88	12/09/89	02/10/90	01/01/91	01/01/92	17/04/90	02/04/91	06/04/90	87/10/90	05/01/84	09/02/84	10/04/84	11/07/84
	COUNTRY/ SHIP OR FIXED	STATION	АГРНА НЕГІХ	ALPHA HELIX	SURVEYOR	SURVEYOR	SURVEYOR	Ships of Opportunity	Ships of Opportunity	MT. MITCHELL	MILLER FREEMAN	MILLER FREEMAN	DAVID STARR JORDAN	DAVID STARR JORDAN	DAVID STARR JORDAN	DAVID STARR JORDAN	DAVID STARR JORDAN
	GUE GUE	5	H-10	H-11	J-11	J-12	J-13	0-11	0-12	60-0	x -20	x- 21	Y-02	Y-03	Y-04	Y-05	¥-06
	COUNTRY/	NUMBER	139.20	139.20	139.23	139,23	139.23	139,23	139,23	139,23	139.23	139,23	139.23	139.23	139,23	139,23	139,23

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC-A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 THE FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

	1	1																	
		FEMAPKS	CalCOFI Crufse 8410 41 CTD stations (Change 36)	CalCOFI Cruises 8301 thru 8312 †† 162 CTD stations (Change 38)	CalCOFI Cruises 7805, 7807, 7808 200 CTD stations (Change 38)	14 CTD stations													
	DATACENTER	NUMBER	NODC 318632, 319832 *	NODC 319824	NODC 319813	Publication 39.01-333	NODC 319855, 319872,319894 thru 319897	NODC 319981	NODC 319898	NODC 329550, 329551,329552	NODC 329553 thru 329562	NODC 329563 thru 329572	NODC 329573 thru 329579		Publication 43.02-035	Publication 43.02-085	Publication 43.02-086	Publication 43.02-085	Publication 43.02-086
		SUPFACE				Wa, Col, Tra				(T, S, sig-t, SVA, AD, Vs)-5 \$	(T, S, sig-Ot, Vs)-1 0				Wa, Col, Tra	Wa, Col, Tra	Wa, Col, Tra	Wa, Col, Tra	Wa, Col, Tra
		LOGICAL				Wd, W, Ta, Tw, Cld, Bar									Wd, Ta, Cld, Bar	Wd, Ta, Cld, Bar	Wd, Ta, Cld, Bar	Wd, Ta, Cld, Bar	Wd, Ta, Cld, Bar
IS.		LOGICAL				200-66 Pigm-80 PrPr-14													
OBSERVATIONS		COMPENIS																	
OE	BATHY-	GRAPH													<u> </u>				
P	STATIONS	MAX. DEPTH	1000			575	1286	1090	1000	201	1000	1000	1000		200	200	200	74	75
55	12	DEPTHS	40-1000			50-525	650-1200	200-1085	550-1000	5-200	9-900	5-1000	5-1000		30-500	45-500	50-500	30-74	18-75
TYPES	OCEANOGRAPHIC SI	CHEM. DATA				T, S, slc-t, SVA, AD 02, PO, NO2, NO, S103, PT	(T, S) \$	(T. S) \$	(T. S) \$	(T, S) ◊	(T S,) \$	(T, S) \$	(T. S) \$		T, S, O2, PO, NO2, NO	T, S, Ow	T, S, 02	T, S, 02	T, S, 02
	OCEAN	STAS.	41 † (112)	98 † (251)	200 † (488)	+ 08	19 †	16 +	102 †	133	359 †	289 †	227 +		165	140	267	140	139
Ī	_	E 29	57b	57b	57b	57b	23b	26	57b	23b	23b	23b	23b		50 51 52	52	52	. 51	51
	d	DATE	23/10/84	08/12/83	26/08/78	02/07/92 16/07/92	10/11/89	27/07/90 20/11/90	24/06/72	14/04/84 04/10/84	05/10/85	24/10/86	23/09/87		19/06/91	29/10/91	28/10/92	09/10/91	12/10/92
	TATA	DATE	02/10/84	23/01/83	12/05/78	02/01/92	16/05/89	27/07/90	04/06/72	14/04/84	07/04/85	16/01/86	20/03/87		02/02/91	04/02/91	02/04/92	08/02/91	09/02/92
	COUNTRY/	STATION	DAVID STARR JORDAN	TOWNSEND CROMMELL, ELLEN B. SCRIPPS, WECCMA, DAVID STARR JORDAN, NEW HORIZON	DAVID STARR JORDAN	DAVID STARR JORDAN	WHITING	WHITING	TOWNSEND CROMWELL	CAPE HATTERAS	CAPE HATTERAS	CAPE HATTERAS	CAPE HATTERAS	KOREA	BUSAN 852	GANG WON 867	GANGWON 867	INCHEON 866	INCHEON 866
	TRY/	3 5	Y-07	Y-11	Y-14	Y-32	2-05	2-03	DD-01	B-01	B-02	B-03	B-04	:	T-08	90-X	X-07	¥-06	Y-07
	COUNTRY/	NUMBER	139.23	139,23	139,23	139,23	139,23	139.23	139.23	139.24	139,24	139,24	139,24	143	143.02	143.02	143.02	143.02	143.02

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC.A, OCEANOGRAPHY.
DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
THEOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

z
9
4
ì
H
E
Z
۷
AT
2
>
프
A
꼺
×
Ż
EA
O
0
ď
نٰ
9
5

							TVPES	ا	OBS	OBSERVATIONS	U				
COUNTRY/	COUNTRY/			T	OCEAN	OCEANOGRAPHIC SE	SERIAL STATIONS	-	ВАТНУ-					DATACENTER	
CATALOGUE	SHIP OR FIXED STATION	START DATE	BND	里 岩	NO.OF STAS.	LE	PLE PRS	I.I		CURPENTS	BIO- LOGICAL	METEORO- LOGICAL	SEA	NUMBER	REMARKS
143.02 2-03	BUSAN 851	03/02/91 1	17/10/91	52	173	T, S, O2, PO4, NO2, NO3	45-500	200				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-085	
143.02 Z-04	BUSAN 851	07/02/92 2	23/02/92	50 51 52	100	T, S, O2, PO4, NO2, NO3	25-500	200				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-086	
143.02 AA-03	JEONBUK 868	05/02/91 0	09/10/91	51	120	T, S, 02	25-90	100				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-085	
143.02 AA-04	JEONBUK 868	09/05/95 0	09/10/92	51	120	T, S, 02	25-90	06				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-086	
143.02 BB-01	BUSAN 206	03/08/91	13/08/91	50 51 52	11	T, S, O2, PO4, NO2, NO3	30-500	200				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-085	
143.02 BB-02	BUSAN 206	16/04/92 19/06/92		50 51 52	98	T, S, PO4, NO2, NO3	20-220	220				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-086	
143.02 CC-01	BUSAN 881	17/08/92	16/10/92	50 51 52	88	T, S, O2, PO4, NO2, NO3	30-200	200				Wd, Ta, Cld, Bar	Wa, Col, Tra	Publication 43.02-086	
202	AUSTRALIA														
202.01	Port Hacking, N.S.W. (C962)	01/05/53 3	31/12/67	63	300 (834)		50-250	300						NODC 090985 thru 090999	(Change 4)
204	BRAZIL														
204.02 A-01	Anchieta Island	16/02/84	30/07/84	32b	9	T, S, pH	20-57	57						Publication 04.06-032.1	
214	GERMANY														
214.01	DEUTSCHE BUCHT (LV), ELBE 1 (LV), KTell (LH), Nordsee (Platform), Nordsee Boje II (Platform), TW/EMS (LV)	01/01/57	31/12/91	1 4	1,756	ν	13–35	35				Wd, Та		Publication 14.02-247	* Period: Add 1991 ff * Total Stats: 13,538 ff (Change 50)
224	JAPAN														
224.01 A-15	Ocean Data Buoys	01/01/92 31/12/92		50 52 56								Wd, Ta, Tw, Bar, Sol Rad	T &	Publication 24.07-089	
224.01 A -16	Ocean Data Buoys	01/01/87	31/12/87	50 52 56 57a								Wd, Ta, Tw, Bar, Sol Rad	T Wa	Publication 24.07-090	

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC.A. OCEANOGRAPHY.

 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.

 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.

 THE FOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

WDC-A, OCEANOGRAPHY DATA INFORMATION

	PEMARKS			• Period: Add 1992 (Change 50)				Korea-Japan Cooperative Expedition		Cruise Line 600		
	DATACENTER	NUMBER		Publication 39.01-334		Publication 43.02-085	Publication 43.02-086	Publication 43.02-085	Publication 43.02-086	Publication 43.02-086		Publication 73.07-023 73.07-024
	\ \ \ \ \ \ \	SUPFACE		T, S, sig-t				Wa, Col, Tra	Wa, Col, Tra	Wa, Col		T, s
	METEORO	LOGICAL						Wd, W, Ta, Cld, Bar	Wd, W, Ta, Cld, Bar	Wd, W, Ta, Cld, Bar		Wd, W, Ta, Cld, Bar, Cld, Hum, Vis
0	AIO.	LOGICAL				200-420	200-435					
OBSEHVALIONS	CHERENTS						·					
BO	BATHY.	GRAPH										
5	STATIONS	DEPTH						120	120	98		
	SERIAL STA	DEPTHS						46-120	40-120	30-86		
<u>-</u>	OCEANOGRAPHIC S	CHEM. DATA						T, S, O2, PO4, NO2, NO3	T, S, O2, PO4, NO2, NO3	T, S, O2, PO4, NO2, NO3		
	NO OF	STAS.						9	65	50		
	Ē	HB.		57b		50 51 52	50 51 52	52 52	50 51 52	51		Q.
	S	DATE		31/12/92		29/10/91	28/10/92	05/02/91 11/10/92	09/02/92 13/10/92	11/08/92 17/08/92		01/01/71 31/12/71
	START	DATE		01/01/61		02/02/91	07/02/92	05/02/91	09/02/92	11/08/92		11/10/10
	COUNTRY/	STATION	UNITED STATES	Neah Bay, etc. (West Coast Shore Stations)	KOREA	Ship not identified	Ship not identified	BUSAN 206, BUSAN 851, BUSAN 852	BUSAN 206, BUSAN 851, BUSAN 881	BUSAN 881, JEONBUK 868	PEOPLE'S REPUBLIC OF CHINA	(Coastal Stations)
	CATALOGUE	NUMBER	239	239.02		243.01 A-37	243.01 A-38	243.01 C-21	243.01 C-22	243.01 E-03		273.01
			239	239	243.	243	243	243	243	24.	273	:12

DATA FOR THIS CRUISE REPRESENT AN ADDITION TO DATA PREVIOUSLY RECEIVED BY WDC.A, OCEANOGRAPHY.
 DENOTES DATA OBTAINED BY ELECTRONIC, IN-SITU, CONDUCTIVITY/SALINITY/TEMPERATURE/DEPTH (CTD/STD) SENSORS.
 INDICATES MACHINE PROCESSED DATA THAT CORRESPONDS TO THE DATA CENTER REFERENCE NUMBER.
 HOR ADDITIONAL DESCRIPTIVE REMARKS PLEASE SEE THE REMARKS SECTION.

PART III REMARKS

REMARKS

106.19 A-10	SHIP	CRUISE	PERIOD	NO. OF STAS
	VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR VECTOR R. B. YOUNG	91/01 91/02 91/03 91/04 91/06 91/08 91/11 91/16	21-24/1/1991 19-21/2/1991 25-28/2/1991 26-27/3/1991 22-25/4/1991 21-23/5/1991 21-23/6/1991 2-4/12/1991	11 11 13 10 11 10 10
124.13 E-70	<u>CURRENTS:</u>	Surface - 1,450 Surface Driftin		
124.13 E-71	CURRENTS:	Surface - 950 (I Surface Driftin		
139.20 H-02	NODC NO.	PERIOD	CRUISE	NO. OF STAS.
	310043 310044 310045 310046 310047	9-27/9/1991 4/10/1991 24/7/1991 22/8/1991 14/11/1991	HX159 HX160 L09 L10 L011	106 CTD 3 CTD 3 CTD 2 CTD 2 CTD
139.23 Y-11	SHIP			CRUISE
	TOWNSEND CIELLEN B. SCRIWECOMA DAVID STARR ELLEN B. SCRI DAVID STARR ELLEN B. SCRI DAVID STARR ELLEN B. SCRI DAVID STARR NEW HORIZON	IPPS JORDAN IPPS JORDAN IPPS JORDAN		8301, 02, 03 8303 8304 8305 8305 thru 8309 8309 8310 8311
214.01	NO. OF STAS.: CURRENTS:	New Total - Total: - 327,	,	

NOTE: WDC-A, Oceanography maintains detailed information concerning numbers of stations and numbers of current observations, archived by year, for each Light Vessel. This information is available upon request.

			A.o.
			1

AVAILABILITY OF TRACK CHARTS

Track charts are available from WDC-A, Oceanography for cruises represented by the following Catalogue Numbers:

WDC-A Cata	alogue Number	Page No.
106.19	A-10	27
106.19	A-11	27
106.19	F-08	27
108.03	B-01	28
108.03	C-01	28
112.03	A-01	28
120.01	A-36	29
120.01	A-37	29
124.04	B-05	29
124.04	D-02	29
124.13	E-70	30
124.13	E-71	30
124.16	A-33	30
124.16	B-13	30
124.24	B-54	31
124.24	B-55	31
124.24	B-56	31
124.31	B-08	31
126.05	A-01	31
126.05	A-02	31
138.10	B-07	33
138.10	B-08	33
138.10	B-09	33
139.08	V-18	34
139.23	Y-32	36
204.02	A-01	37

PART IV DATA HOLDINGS OF RNODC's AND SPECIALIZED DATA CENTERS

DATA HOLDINGS OF RNODC'S AND SPECIALIZED DATA CENTERS

This section of the Change Notice provides information on the availability of specialized data sets prepared by the various Responsible National Oceanographic Data Centers (RNODC's) and other Specialized Data Centers. Only those data sets that have actually been received by WDC-A, Oceanography are described in this section. WDC-A can provide magnetic tape copies of these data sets in the originator's format.

These data products are not described in the usual manner in the Catalogue portion of the Change Notice (except for certain separately-identified cruises that are also included in data sets such as FOY), as the data are not usually merged with the standard WDC-A, Oceanography data bases. Thus they constitute a suite of data products, prepared by RNODC's and other Specialized Data Centers, that are separate and distinct from the standard data types regularly catalogued in the Change Notices and normally available from WDC-A.

Such data products are not necessarily intended to be routinely exchanged by the WDC's under normal international data exchange guidelines. They may be voluminous or costly to prepare and, thus, may be precluded from regular data exchanges between WDC's and their exchange cooperators. Data sets in automated form are available from the WDC's usually at a cost not to exceed the cost of reproduction and postage.

MEDALPEX

RNODC FOY

FGGE OPERATIONAL YEAR GLOBAL OCEAN CLIMATE DATA BASE

The Global Ocean Climate Data Base is available from the National Oceanographic Data Center (NODC) which served as the Responsible National Oceanographic Data Center for the FGGE* Operational Year (RNODC/FOY). The Global Ocean Climate Data Base is a collection of oceangraphic data submitted to NODC by 17 different countries. Although the formal FGGE Operational Year was from 1 December 1978 to 30 November 1979, the data set covers the extended FOY period from 1 September 1978 to 29 February 1980.

The data base includes four types of data: (1) oceanographic hydrocast (bottle) data, (2) conductivity/ salinity-temperature-depth (C/STD) data, (3) expendable bathythermograph (XBT)

data, and (4) Eulerian currrent (current meter) data. The data are recorded on magnetic tape in two different formats: (1) the Intergovernmental Oceanographic Commission General Exchange Format 3 (GF3) and (2) NODC archive formats (different format for each of the four types of data). In GF3 the data base comprises eight magnetic tapes; in the NODC formats the data base comprises four tapes.

The FGGE Operational Year was the culmination of a series of international ocean/atmosphere research programs conducted in the 1970's. This effort, in turn, was a steppingstone toward the increasingly ambitious and large-scale research and monitoring programs of the 1980's and 1990's that are directed toward fuller understanding of tropical dynamics and their influence on global ocean/atmosphere phenomena.

*FGGE = First GARP Global Experiment, also known as the Global Weather Experiment. GARP = Global Atmosphere Research Program.

The FGGE/FOY Data Base

The FGGE/FOY Global Ocean Climate Data Base compiled by the RNODC contains: 10,413 Oceanographic hydrocast (bottle) stations; 4,030 CTD/STD casts; 28,733 expendable bathythermograph (XBT)

temperature profiles; and 294 months of timeseries data from current meter moorings. The sources of these data are summarized in Table 1.

		Data '	Гуре	
Country	Oceanographic Stations (stations)	CTD/STD (stations)	XBT (stations)	Current Meter (meter-months)
Australia			2,754	
Canada	324		507	
People's Republic of China	318	•-		
Republic of the Congo	307			
France			307	
German Democratic Republic	74			
Federal Republic of Germany			1,366	
Ghana	335			
Italy			55	
Japan	1,138		832	
Philippines			8	
Poland	87		267	
Republic of South Africa			56	
Spain			180	
UK		64	944	
USA	1,271	3,966	20,727	294
USSR	6,559		730	

Table 2 lists the number of tapes included in the data set. Customers may order the entire set of

tapes or only the tape(s) for one or more of the four different data types in either of the two format options.

Table 2. FOY Global Ocean Climate Data Tapes

		Number of Tapes		
Data Type	Data Quantity	GF3 Format (1600 bpi)	NODC Format (6250 bpi)*	
Oceanographic Station (hydrocast)	10,413 stations (128 cruises)	2	1	
CTD/STD	4,030 stations (62 cruises)	1	1	
XBT	28,733 stations (571 cruises)	3	1	
Current Meter	294 months (27 meters)	2	1	
	TOTAL	8	4	

^{*}Data tapes in NODC archive formats are also available by special request in 1600 bpi density

Data Availability

Magnetic tape copies of the FOY Global Ocean Climate Data Base are available from the RNODC in either GF3 format or in NODC archive formats. Magnetic tape characteristics are: (1) GF3 format -- 9 track, 1600bpi, ANSI/ASCII, non-labeled, record length = 1920, unblocked; (2) NODC formats -- 9 track, 6250 bpi, ANSI/ASCII, non-labeled, variable record length, maximum blocksize = 4,160 (oceanographic station and CTD/STD data), 2,600 (XBT data), and any multiple of 60 (current meter data).

Complete sets of tapes or individual tapes are available at the cost of tape reproduction from:

World Data Center A, Oceanography NOAA

Washington, DC 20235, USA

Telephone: 202-606-4571 FAX: 202-606-4586

Electronic mail: wdca @ nodc.noaa.gov

(Internet).

RNODC MEDALPEX (Sea Level)

MEDITERRANEAN ALPINE EXPERIMENT SEA LEVEL DATA SET

In 1975, the IOC decided to support the development of an oceanographic program in the Mediterranean during the GARP Alpine Experiment (ALPEX). The MEDALPEX project took place between 1 September 1981 and 30 September 1982, with a special period of observation from 15 February 1982 to 30 April 1982. It was a multi-national project involving scientists from 7 countries.

The main purpose of MEDALPEX was to increase understanding of the effect of wind forcing on the dynamics of the western part of the Mediterranean Basin. Specific studies were undertaken, each having a particular scientific objective including:

- 1. The interrelationship between the general circulation and mesoscale eddies
- 2. Offshore dynamic response mechanisms under severe weather conditions
- 3. Storm surges and the piling up of water, especially in the Adriatic and Ligurian seas

The measurement of sea level was considered to be an important component of the observation program to support these studies. A wide range of other types of oceanographic data were also collected, including classical and synoptic meteorological measurements, data collected using remote sensing techniques and data from current meters, thermistor chains, waverider buoys, CTDs and XBTs.

The Permanent Service for Mean Sea Level (PSMSL) was requested by IOC to fulfil the role of the Responsible National Oceanographic Data Center for the MEDALPEX sea level data. The work was under-taken on behalf of PSMSL by the Marine Information and Advisory Service (MIAS) - U.K.'s national oceanographic data center (now the British Oceanographic Data Centre.)

Sea level data were submitted to MIAS from 29 of the 40 MEDALPEX sites. An inventory of the data is given on the following page. Measurements from 28 of the sites were taken using conventional stilling wells and, with one exception, were supplied to MIAS as hourly values. Data from the remaining site, off the coast of Corsica, were collected by an Aanderaa water level recorder at half-hourly intervals.

INVENTORY OF DATA RECEIVED

BY MEDALPEX SEA LEVEL DATA CENTER

SITE	LATITUDE	LONGITUDE	START DATE	SERIES DURATION	CYCLE INTERVAI
	DDD MM.MH	DDD MM.MH	DD/MM/YY	WEEKS	SECS
CADIZ	36 32.0N	6 17.0W	01/09/81	56	3600
TARIFA	36 0.0N	5 36.0W	01/09/81	56	3600
GIBRALTAR	36 8.0N	5 21.0W	01/09/81	56	3600
CEUTA	35 54.0N	5 19.0W	01/09/81	56	3600
ALGECIRAS	36 7.0N	5 26.0W	01/09/81	56	3600
PUERTOS BANUS	36 37.0N	4 55.0W		NO DATA	
MALAGA	36 43.0N	4 25.0W	01/09/81	56	3600
ALMERIA	36 49.7N	2 29.2W	14/08/81	58	3600
CARTEGENA	37 36.0N	0 59.0W		NO DATA	
ALICANTE I	38 20.3N	0 30.4W	23/08/81	60	3600
ALICANTE III	38 20.3N	0 30.7W	28/08/81	60	3600
PALMA DE MALLORCA	39 33.0N	2 38.0E	01/09/81	56	3600
BLANES	41 41.0N	2 48.0E		NO TIDE GAUGE	
ROSAS	42 15.0N	3 11.0E		NO TIDE GAUGE	
PORT VENDRES	42 31.0N	3 6.0E	28/12/81	39	3600
SETE	43 25.0N	3 43.0E		NO DATA	
FOS	43 25.0N	4 46.0E		NO DATA	
TOULON	43 7.0N	5 55.0E	30/08/81	56	3600
NICE	43 42.0N	7 16.0E	03/07/81	68	3600
MONACO	43 44.0N	7 25.0E	29/06/81	69	3600
OFFSHORE	42 34.8N	8 44.0E	06/04/82	18	1800
NEAR CALVI	42 34.8N	8 44.0E	29/07/82	9	1800
AJACCIO	41 55.0N	8 43.0E	30/08/81	49	3600
CAGLIARI	39 13.0N	9 8.0E		NO DATA	
SAVONA	44 18.0N	8 28.0E		NO DATA	
GENOVA	44 24.0N	8 54.0E	31/08/81	58	3600
LA SPEZIA	44 7.0N	9 48.0E		NO DATA	
LIVORNO	43 33.2N	10 18.2E	31/08/81	49	3600
CIVITAVECCHIA	42 5.7N	11 47.4E	25/08/81	22	3600
NAPOLI	40 50.4N	14 16.2E	31/08/81	56	3600
PALERMO	38 8.0N	13 23.0E		NO DATA	
ANCONA	43 37.0N	13 31.0E	01/09/81	56	3600
PTO CORSINI	44 35.0N	12 20.0E		NO DATA	
VENEZIA	45 26.0N	12 20.0E	01/01/81	104	3600
KOPER	45 33.0N	13 44.0E	28/02/82	9	3600
ROVINJ	45 5.0N	13 38.0E	28/02/82	9	3600
BAKAR	45 18.0N	14 32.0E	28/02/82	9	3600
ZADAR	44 5.4N	15 16.3E	28/02/82	9	3600
NOVALJA	44 33.3N	14 13.2E	28/02/82	9	3600
SPLIT	43 30.0N	16 26.0E	28/02/82	9	3600
DUBROVNIK	42 40.0N	18 4.0E	28/02/82	9	3600
BAR	42 5.0N	19 5.0E	28/02/82	9	3600

In compiling the dataset, MIAS translated all incoming data into a common format with elevation values standardized to meters and times to GMT. The data for each site were plotted as a time series and checks were carried out for gaps or constant values, spikes, spurious data or punching errors. Further checks were carried out by tidally analyzing and low pass filtering the data. Non-tidal fluctuations were investigated using principal component analysis. Qualifying information applicable to the data from each site was checked for inconsistencies and completeness, and appropriate documentation was stored with the data in the form of plain language records. The complete quality controlled dataset, including documentation, is available as a single magnetic tape formatted in GF3, the IOC's standard format for the exchange of oceanographic data. A copy of the magnetic tape may be obtained at a cost not to exceed the cost of reproduction and postage from:

World Data Center A, Oceanography National Oceanic & Atmospheric Administration Washington, D.C. 20235 U.S.A.

Electronic mail: wdca @ nodc.noaa.gov (Internet)

or

RNODC/MEDALPEX Sea Level Data BODC Bidston Observatory Merseyside L43 7RA U.K.

Electronic mail: bodcmail @ ua.nbi.ac.uk (Internet)

TOGA

TROPICAL OCEAN and GLOBAL ATMOSPHERE PROGRAMME TROPICAL SUBSURFACE DATA SET

TOGA Tropical Subsurface Data Centre

The TOGA Tropical Subsurface Data Centre in Brest operates within the framework of both the IOC's International Oceanographic Data Exchange (IODE) system and the Joint IOC-WMO Integrated Global Ocean Services System (IGOSS). The Centre collects subsurface ocean observations for the tropical oceans (30°N-30°S) from the following sources:

- 1. tropical oceans observations from the IGOSS network;
- 2. additional vertical temperature profiles from XBT's and from drifting or moored buoys with thermistor chains, not sent over the GTS;
- 3. time series of temperature and conductivity (salinity) at fixed depth from moored thermistor chains;
- 4. surface temperature and conductivity (salinity) data and vertical profiles of temperature and conductivity as from CTD's, bottle casts, and WCTD's; and
- 5. other subsurface ocean temperature and conductivity (salinity) measurements from process-oriented intensive oceanographic observation projects in the tropical oceans.

Initially, data are collected from radio transmissions, with fully digitized and quality controlled observations added with time.

The subsurface thermal data described above are analyzed, and the Centre produces quality-controlled Level II-B data sets for the tropical oceans for the ten-year period (1985-1994). The Centre is also responsible for provision of these data sets on magnetic tape in GF-3 format to other TOGA Data Centres and to the World Data Centers, Oceanography at appropriate intervals.

WDC-A, Oceanography Support to TOGA

WDC-A, Oceanography serves as an archival center for the TOGA Tropical Subsurface Data Sets. Its responsibilities are to provide TOGA data sets to requesters in the international scientific community, at a cost not to exceed that of data reproduction and postage, and to provide copies of all TOGA data sets received to World Data Center B, Oceanography in exchange.

WDC-A, Oceanography provides additional data management support to the TOGA program by its contributions to the enhancement of global tropical thermal data bases. WDC-A has utilized the IOC's lists of Declared National Programs (DNP's) to identify selected cruises for which data were observed in the tropical oceans and, subsequently, requested the data. Report of Observations/Samples Collected by Oceanographic Programs (ROSCOP) marine data inventory forms have been used in the same manner to identify available tropical oceans data. The compilation of the Time Series Data Inventories of the world's oceans by WDC-A, has also resulted in some cases in the identification of available tropical ocean observations. WDC-A expects to utilize these tools increasingly in the future to acquire selected data sets intended to further enhance the tropical oceans data bases.

Climate researchers and modelling experts have identified the digitization of historical oceanographic observations as one of the key elements required in data management support for TOGA and other Global Change programs, such as GOFS and WOCE. Such data sets are frequently extremely useful in filling spatial or temporal gaps in existing digital data holdings. WDC-A, Oceanography's data archives contain data for a substantial number of observations in manuscript form that have never been processed. A significant portion of these could provide support to TOGA. For example, some Japan Fisheries Agency standard sections in the Western Pacific are in the TOGA area. Many of these manuscript data sets would be amenable to data entry by an optical scanning device. The possibility of support for procurement of such a device is being explored by WDC-A.

TOGA Tropical Subsurface Data Products

WDC-A receives Level II-B data sets from the Subsurface Data Centre in Brest for both Atlantic and Indian Oceans data, as previously described. Magnetic tape copies of the Level II-B data sets for the Atlantic and Indian Oceans are then provided to WDCs B and D, Oceanography in exchange. Magnetic tape copies of these data sets are available at the cost of tape reproduction from:

World Data Center A, Oceanography National Oceanic and Atmospheric Administration Washington, D.C. 20235 U.S.A.

TOGA Subsurface Data Centre Centre IFREMER de Brest BP 70 29263 Plouzane

France

WDC-A, by virtue of its collocation with the U.S. National Oceanographic Data Center (NODC), also has access to the Tropical Pacific Ocean data set prepared jointly by NODC and the Scripps Institution of Oceanography (SIO), serving as the Joint Environmental Data Analysis (JEDA) Center. JEDA tracks, acquires, quality controls, and merges all available subsurface thermal data for the Tropical Pacific. NODC assembles, reformats and initiates quality control of the data; SIO performs further quality control and analysis of the data. The TOGA Pacific data flow is depicted in Figure 1. Each yearly Level II-B Pacific Ocean data set undergoes the full spectrum of quality control and analysis by the JEDA Center. It is then converted to the GF-3 format and provided to WDC-A, which in turn provides tape copies to WDC-B and WDC-D in exchange. The TOGA Pacific Data Sets are available on magnetic tape at the cost of tape reproduction from:

World Data Center-A, Oceanography NOAA

Washington, D.C. 20235 U.S.A.

Email: wdca@nodc.noaa.gov (Internet)

JEDA Center National Oceanographic Data Center NOAA Washington, D.C. 20235 U.S.A. Email: mhamilton @ nodc.noaa.gov (Internet) JEDA Center Scripps Institution of Oceanography University of California La Jolla, CA 92093 U.S.A. Email: nhall @ nodc.noaa.gov (Internet)

RNODC SOC

SOUTHERN OCEANS DATA SET

The RNODC/Southern Oceans (RNODC/SOC) was created in order to provide a regional data management and data information service for Southern Oceans physical and chemical oceanographic data. The RNODC was created under guidelines set forth in Recommendation XII.1 by the IOC's Technical Committee on International Oceanographic Data Exchange (IODE XII, Moscow 10-17 December 1986).

The Terms of Reference of the RNODC/SOC include the following responsibilities:

- Acquire, quality control, and store in standard format the physical and chemical data obtained by the international community from the cruises and research programmes carried out in the Southern Oceans;
- Co-operate closely with the World Data Centers, Oceanography by sending regular shipments (at least once a year), free of charge, of complete sets of physical and chemical data stored on magnetic tapes in GF3, and inventories, data summaries, and other data products related to the physical and chemical data from the Southern Oceans;
- Assist the World Data Centers by sending copies to them of any ROSCOP forms submitted to the RNODC-SOC;
- Co-operate with the BIOMASS Data Center, regarding exchange of data and inventories, as well as other data products.

The RNODC-SOC is located in and operated by the Argentine Oceanographic Data Center (CEADO).

RNODC/SOC Oceanographic Data Set

The RNODC/SOC data set contains data for all available oceanographic stations for the Southern Oceans between 50° and the Antarctic Continent. Data for a total of 11,093 oceanographic stations taken during 294 Southern Oceans cruises are included in the data set. Seasonally, the data totals are nearly 2,000 observations taken during the Austral Winter (April-September) and more than 9,000 observations taken during the Austral Summer (October-March). Southern Oceans observational data taken by 16 countries have been received by the RNODC.

The RNODC/SOC data set is available from:

RNODC/SOC Centro Argentino de Datos Oceanograficos Avda. Montes de Oca 2124 1271 - Buenos Aires Republica Argentina

or

World Data Center A, Oceanography National Oceanic & Atmospheric Administration Washington, D.C. 20235 U.S.A. Email: wdca @ nodc.noaa.gov (Internet)

SOUTHERN OCEANS OCEANOGRAPHIC STATION PLOT

This plot shows the locations of 11,093 oceanographic data observations made in the Southern Oceans and registered in the RNODC/SOC master data file.

RNODC IGOSS

INTEGRATED GLOBAL OCEAN SERVICES SYSTEM DATA SET

Background

The Integrated Global Ocean Services System (IGOSS) is a worldwide system for the rapid collection, exchange and analysis of oceanographic data and the timely preparation and dissemination of ocean products and services. IGOSS was established to support oceanographic and meteorological research efforts by providing: (1) a global distribution of oceanographic observations, (2) a mechanism for the timely and effective exchange of data, and (3) the preparation of oceanographic analysis products capable of supporting global change and climate research studies. IGOSS products and services can be useful for input to large scale circulation models, for research survey planning, and for direct application in commercial fisheries, recreation, commercial shipping, and search and rescue efforts. Real-time ocean products currently available include sea surface and subsurface temperature analyses and graphical depictions of mixed layer depths and ocean frontal positions. Additional analyses and data summaries available as delayedmode products include: (1) ocean currents, (2) salinity, (3) distribution of pollutants, and (4) weekly and monthly temperature means. The IGOSS data are BATHY (profiles of temperature with depth) and TESAC (temperature/salinity/ current profiles with depth).

The major operational elements of the IGOSS program are: (1) observing system, (2) data processing and services system, (3) telecommunication arrangements, (4) marine pollution monitoring, and (5) data archival and exchange. The organizational structure of the IGOSS data processing and services system consists of World Oceanographic Centers in Moscow and Washington and National and Specialized Oceanographic Centers in participating nations. Data from all cooperating nations are combined in standard formats at the World Oceanographic Centers, and then used as input to global and hemispheric analyses for improved weather forecasting, global climate studies, and a variety of products for oceanographic research uses. National Oceanographic Centers provide quality control for data from their country entering the international exchange system via a high speed global telecommunications link called the Global Telecommunication System (GTS) of the World Weather Watch.

Long-range data exchange and service arrangements and long-term archival activities for IGOSS data are performed by National Oceanographic Data Centers in Japan, the U.S.S.R., and the United States. These NODC's, serving as Responsible National Oceanographic Data Centers (RNODC's) for IGOSS, compile archives of IGOSS data and products, assume responsibilities for specified regions of the world oceans, and deal with problems of quality control. They maintain geographically sorted, updated magnetic tape files of observations received via the GTS.

RNODC's/IGOSS Terms of Reference

The terms of reference for RNODC's/IGOSS are as follows:

- 1. Acquire BATHY and TESAC datasets and sub-surface temperature data from drifting and moored buoys from IGOSS Specialized Oceanographic Centres (SOC) for area of responsibility; apply supplementary quality control to acquired data and provide services to users after 30 days from receipt of that data;
- 2. Acquire non-operational BATHY, TESAC, and sub-surface temperature data from drifting and moored buoys and/or datasets for area of responsibility; apply quality control on non-operational data, prepare integrated datasets, and provide services to users;
- 3. Maintain a data base and inventories for areas of responsibility;
- 4. Prepare products based on operational and non-operational IGOSS data, as appropriate; also, archive and make available to users, selected data products provided by SOCs and analysis centres;
- 5. Provide for exchange of IGOSS data in GF-3 format with other RNODC's or to other users as requested;
- 6. Transmit datasets in GF-3 format, inventories of archived data, and selected data products to the WDCs annually;
- 7. Provide for exchange of documentation and software regarding quality control and processing procedures, with other RNODC's, as possible;
- 8. Participate in efforts to monitor data flow, and participate, as feasible, in IOC training programmes;
- 9. Prepare inventories of available data sets of the RNODC's area of interest and transmit them to the IOC Secretariat semiannually.

RNODC/IGOSS - Japan

The RNODC/IGOSS-Japan is operated by the Japan Oceanographic Data Center (JODC), with support from the Japan Meteorological Agency (JMA), which serves as a Specialized Oceanographic Center (SOC) for IGOSS. At the SOC, systematic quality control of the collected BATHY/TESAC reports is made. The SOC compiles the IGOSS monthly summaries including maps showing the geographical distribution of BATHY/TESAC messages and numbers of messages of individual ships and sends them to the Secretariat of the IOC.

IGOSS data submitted by the SOC are stored in three formats at the RNODC/ IGOSS. The first includes the original data file compiled on a semiannual basis. This file contains the collected and processed data from the GTS and other operational sources within the area of responsibility. The second contains the data and data inventory files recorded in a form of the SYNDARC Format, and is available to users as computer-generated data summaries, statistical presentations, and graphical plots, or in a medium which allows the user to further process the data using a personal computer. During the conversion process, minimum quality control procedures are applied to the original data based on IOC Manuals and Guides No. 3. The third is the JODC-formatted version of the data inventory file. From this file, data products such as data summaries and location plots of observations are provided to users, as well as to the IOC and WMO.

RNODC/IGOSS - Russia

The RNODC/IGOSS-Russia and SOC for IGOSS data was established in 1984 under the auspices of the All-Union Scientific Research Center for Hydrometeorological Information and the Russian Hydrometeorological Scientific Research Center (Russian Hydrometeenter). The responsibilities of the RNODC/IGOSS include the collection of BATHY/TESAC messages and logs, quality control of the data, preparation of data sets on magnetic tape, and the development of products concerning availability and time-space data distribution. The RNODC/IGOSS also provides national and international users with copies of data, results of analyses, and with other products for its area of responsibility.

The responsibilities of the SOC include preparation, publication, and distribution of different types of operational oceanographic products on a regular basis including those distributed via FAX machines that are readily available to different groups of users.

These activities are carried out in accordance with the procedures spelled out in the IOC's <u>Guide to Operational Procedures for the Collection and Exchange of Oceanographic Data (BATHY and TESAC), 1985</u> and the <u>Guide to the IGOSS Data Processing and Services System, 1983</u>.

RNODC/IGOSS - U.S.

The RNODC/IGOSS-U.S., located at the National Oceanographic Data Center (NODC), receives near real-time data weekly from the Ocean Products Center at Suitland, Maryland and the Ocean Applications Group in Monterey, California. These data are extracted from the Global Telecommunications System (GTS) on a daily basis for screening and editing. At the RNODC, the near real-time data sent by the two organizations are run through a series of programs to convert the data into NODC's Universal Bathythermograph (UBT) format. This data set is next sorted by date, time, position, and an indicator of the source of the data. The sorted file is then compared with existing observations and duplicates are eliminated.

The records retained are then sorted by reference number, date, and time to produce a cruise-ordered data set. From this final data set, inventory records are created and applied to NODC's Data Inventory Data Base (DINDB). These data are then merged into the RNODC/IGOSS Archive. The Archive is updated on a monthly basis in geographical sequence.

Data in the U.S. RNODC/IGOSS Archive are then available for international exchange and can be provided to users in a variety of forms ranging from magnetic tape copies to computer-generated data summaries, statistical analyses, and graphic plots.

Availability of IGOSS Data and Products through WDC A, Oceanography

Various RNODC/IGOSS data, analyses, and products are available through WDC-A, Oceanography. Upon request, WDC-A will provide magnetic tape copies of pertinent data products, or, alternatively, refer the requester to the appropriate IGOSS data source.

RNODC DRIBU

RNODC FOR DRIFTING BUOYS

Background

The Marine Environmental Data Service (MEDS) began operation of the RNODC/Drifting Buoy Data in January 1986. The RNODC acquires Drifting Buoy Data from worldwide sources, makes the data available to international scientific programs, and prepares geographical plots of Drifting Buoy locations and tracks for the world oceans on a monthly basis. The RNODC also provides monthly statistics of operational buoys and the number of messages received from them.

Acquisition of Drifting Buoy Data

There are three procedures by which Drifting Buoy Data are received by the RNODC. The first and more traditional is for the principal investigator to submit his data directly to the RNODC, or to his National Oceanographic Data Centre which in turn submits the data to the RNODC. For historical data sets, this is the only option available. Data received in this way are usually of the highest quality, since they have undergone the most discriminating calibration and quality control procedures under the direction of the principal investigator; however, data entering the system in this manner are not sufficiently timely to meet the operational requirements of the major global science programs.

The second path for data flow to the RNODC is via the GTS. An advantage of this procedure is that the data are available in time scales suitable for the operational requirements of researchers in programs such as TOGA and WOCE, as well as for other operational users such as meteorological forecasters. Data received in this way may be less accurate, because they have not been fully reviewed and assessed by the principal investigator. For drifting buoy data, there is also a problem in that using the DRIBU format on the GTS for some buoys may limit the data that can be transmitted, because of a requirement to restrict the information to 256 bits.

A third procedure involves retrieving the DRIBU data as they pass through Services ARGOS. Although these data still have not been reviewed and assessed by the principal investigator, they are an improvement over the GTS data in that both time of observation and position time are available to improve velocity calculations. Data received by Service ARGOS are stored on magnetic tape for a period of 90 days. After this time, the tapes are reused and the data then reside solely in the hands of the principal investigators. Canada and the United States have

agreed to share the cost of buying copies of these tapes for the RNODC. Data from a buoy can only be provided to the RNODC if the principal investigator has given consent in writing.

RNODC/Drifting Buoy Data Base

MEDS utilizes a hierarchical database, called System 2000, to store the drifting buoy data; because of the volume of data, each year of data is stored in its own data base. In order to provide services to users at all time scales and to have available at each time scale the best data possible, the RNODC has decided to accept all data using the following hierarchical guidelines:

- 1. Where possible, Principal Investigators are requested to make their data available to other operational users and to the RNODC by having the data transmitted on the GTS. The RNODC will copy all available data from the GTS, quality control it, and update it into the data base on a weekly basis.
- 2. Principal Investigators are also requested to agree to have Service ARGOS provide a copy of their data to MEDS via tape each month whether or not those data have already been on the GTS. The data circulated on the GTS have only the one time included which poses a difficulty in calculating velocities. Thus, the tape data with the two times is an improvement to the database and will be used to replace the GTS data in the database. In addition, data will be picked up which could not be circulated on the GTS because of the format of the transmission from the buoy.

If Service Argos has not already been supplied with the calibration constants, channel allocations, and algorithms, or has not been requested to make the conversions to physical units, there will be a requirement for the RNODC to obtain this information from the principal investigators. Principal investigators are reminded that if the sensor data cannot be made available, the position data itself is of value for the database.

3. Principal Investigators are requested to provide a copy of their Drifting Buoy Data either directly to the RNODC when the fully processed, quality controlled version is available, or to provide the data to their National Oceanographic Data Centre, where the RNODC will be requesting such data on a regular basis. Data received by this path will replace GTS or Service ARGOS versions of the data in the database.

By receiving data in the configuration set forth above, and replacing earlier, lower quality data as higher quality versions of the data arrive, the RNODC can offer

users a choice between timeliness and quality, as dictated by their particular requirements.

The RNODC recognizes that in some cases there exists a need to restrict distribution of data to protect a scientist's right to benefit first from collection activities carried out at considerable effort and cost. It is noted that the large international experiments generally have data exchange agreements that state when the data are available to other participants and to those outside the program. The RNODC will honor such data exchange agreements and will, at a scientist's request, restrict further distribution of the data according to the terms of the pertinent agreement. In regard to data from individual scientists, bilateral agreements on further distribution of data for a period of up to two years can also be made

RNODC Services

As mentioned earlier, the RNODC maintains its drifting buoy data in a data base structure. This provides maximum flexibility when meeting a request. While a number of different qualifiers may be used to retrieve data, the most common are area and time. Requesters may also specify all data or only those which have passed the quality control procedures. On output, the data can be written to magnetic tape in a standard subset of the GF3 formatting system or in some other agreed ad hoc character format, if appropriate. In choosing the data format, users should be aware that the GF3 Formatting System is supported by a powerful and growing software system which is available for many of the more widely used host computers.

Each month, the RNODC publishes a summary of the data it has received in real time; also produced are global maps of drifting buoy tracks for the previous month. These maps are issued regularly on a monthly basis. Anyone wishing to receive this summary, should contact the RNODC. There is no charge to receive this product.

To obtain the RNODC Drifting Buoy Data Set, requesters should contact one of the following:

RNODC for Drifting Buoy Data Marine Environmental Data Service Department of Fisheries and Oceans 200 Kent Street Ottawa K1A 0E6 Canada

Telephone: 613-990-0268

Telex: 053-4428

Email: wilson @ ottmed.meds.dfo.ca

(Internet)

World Data Center A, Oceanography NOAA Washington, D.C. 20235 U.S.A.

Telephone: 202-606-4571 FAX: 202-606-4586

Email: wdca @ nodc.noaa.gov

(Internet)

TOGA

TROPICAL OCEAN and GLOBAL ATMOSPHERE PROGRAMME SEA LEVEL DATA SET

TOGA Background

A major component of the TOGA International Implementation Plan is the monitoring of the global atmosphere and the upper layers of the three tropical oceans during the ten-year period of 1985-1994. Existing meteorological and oceanographic observation systems have been maintained and expanded by TOGA while new networks have been installed in key locations. These observations along with available historical data will provide a description of the ocean-climate system and its variability from sub-seasonal to interannual scales.

TOGA Sea Level Center

The TOGA Project, realizing the importance of sea level data for research in ocean dynamics and for the monitoring and prediction of oceanographic processes, has established a TOGA Sea Level Center at the University of Hawaii. It is the purpose of the Center to collect all sea level data taken by island-based and coastal tide gauges in the TOGA area between 30°N and 30°S during the ten years of the TOGA project, 1985 to 1994, and to make them available for research. The TOGA Sea Level Center also obtains and archives past sea level data for the same region, when they are made available from the originators. Hourly, daily, and monthly values are prepared and archived, the data are stored digitally on magnetic tape, and are passed on yearly to other TOGA data centers, to the Permanent Service for Mean Sea Level (PSMSL), and to the World Data Centers A, B, and D for Oceanography. The TOGA Sea Level Center also supports the Global Sea Level Observing System (GLOSS). The importance of sea level data has been enhanced by the need for calibration of satellite altimeters such as GEOSAT, and for the TOPEX mission planned for WOCE.

Joint Archive for Sea Level (JASL)

Through the creation of the Joint Archive for Sea Level (JASL) with the University of Hawaii, the National Oceanographic Data Center, serving as a Specialized Data Center, is providing data management for this effort and assisting in the acquisition, processing, quality assurance, archiving, and dissemination of the data. The Joint Archive for Sea Level submits sea level time series data updates to NODC on a yearly basis. These updates may include data from new stations, as well as previously unprocessed data from existing stations. In addition, the updates may include data previously submitted to NODC that have been reprocessed to improve data quality. Therefore, to update the sea level data files for a station already in the database, NODC completely replaces the data time series for that station with a new version that may include both new and reprocessed data.

Availability of JASL Data through WDC-A, Oceanography

NODC maintains the JASL permanent archive of sea level data in three archive data files that contain hourly data, daily data, and monthly data. Data for the entire data base or selected subsets can be retrieved from these data files and provided to customers on magnetic tape or - for small data volumes - on a floppy disk at prices determined by data volume and output medium.

The JASL data set is available from:

World Data Center A, Oceanography National Oceanic and Atmospheric Administration Washington, D.C. 20235 U.S.A.

Email: wdca@nodc.noaa.gov (Internet)

Certain stations may have unresolved problems. These data are retained at the TOGA Sea Level Center and may be obtained on a case-by-case basis. For these data and for questions concerning data preparation contact:

> The Joint Archive for Sea Level c/o The TOGA Sea Level Center University of Hawaii - MSB 316 1000 Pope Road Honolulu, Hawaii 96734 U.S.A.

Email: caldwell @ nodc.noaa.gov (Internet)

Pacific Ocean sea-level stations with quality-controlled data in the JASL archive

Indian Ocean sea-level stations with quality-controlled data in the JASL srchive

GTSPP

GLOBAL TEMPERATURE - SALINITY PILOT PROJECT

INTRODUCTION

Making ocean temperature and salinity data quickly and easily accessible to users is the primary goal of the Global Temperature-Salinity Pilot Project (GTSPP). A cooperative international project, the GTSPP has now developed a global ocean T-S data base comprised of data that are as up-to-date and of the highest quality possible. Countries contributing to the project are Australia, Canada, France, Germany, Japan, Russia, and the United States.

U.S. PARTICIPATION

The U.S. supports the GTSPP through the participation of its National Oceanographic Data Center (NODC). The NODC fulfills several functions in support of the GTSPP:

- 1. Data communications support. The Internet is used daily to transmit and receive data and project information. Real-time data are relayed from NOAA's National Weather Service and the Navy's Fleet Numerical Oceanography Center to Canada's Marine Environmental Data Service (MEDS). In addition, monthly files are transmitted to oceanography centers in Hobart, Australia; Brest, France; La Jolla, Calif.; Miami, Fla.; and other locations in the United States. Each month approximately 30 megabytes of GTSPP data are received or transmitted using FTP (file transfer protocol) over the Internet.
- 2. Data quality control. All GTSPP data are passed through standard data quality tests, which are documented in the GTSPP Real-Time Quality Control Manual (Intergovernmental Oceanographic Commission Manuals and Guides No. 22, Unesco, 1990). In early 1994, the NODC implemented two systems to apply quality tests to data destined for the GTSPP database. The systems operate on UNIX-based workstations that are part of NODC's new client/server computing environment. One system displays geographic positions of observations as compared to landmasses, and shows ship speed between observations as a check on positions, dates and times. The second system applies tests to subsurface temperature and salinity data, setting flags to reflect test results.
- 3. Database maintenance. GTSPP data are maintained in a relational database that is managed by commercial software on a UNIX work station. Real-time data are added automatically, as they arrive from MEDS three times per week. Higher quality delayed mode data

are now being quality controlled and added to the database. As these observations are added, the matching real-time data are tagged to avoid sending two copies of the same data. The database makes it possible to quickly load and retrieve data, as well as to provide statistics about the number of observations per geographic region, time period, ship, or data type.

GTSPP DATA

Data in the GTSPP database are generated by ships or buoys from all regions of the world's oceans. Instruments used to collect the data include thermistor chains (on buoys), XBTs, digital bathythermographs (DBTs), bottle samplers, and CTDs. The data are sent in real-time (by radio or satellite transmission) and later in delayed mode when ships return to port.

Delayed-mode records are generally of higher resolution than records sent in real time. Therefore, NODC acquires delayed mode data (usually several months after data were collected) and merges them into the database. To avoid duplication of real-time and delayed mode observations, real-time records are matched to corresponding delayed mode records in the database. In that way, the GTSPP data resource is built quickly from real-time records and subsequently enhanced by high quality, high resolution delayed-mode records.

SUPPORT TO CLIMATE RESEARCH

NODC continues to provide monthly files of real-time data to WOCE Upper Ocean Thermal science centers in France, Australia, and the U.S.; each of these centers uses the data in ocean climate research. Results of their scientific analyses are fed back into the GTSPP database to enhance data quality. Also, in support of WOCE, NODC now produces reports of the distribution of data along TOGA-WOCE-IGOSS transect lines.

GTSPP has demonstrated the feasibility of a global ocean network of data management and science centers. The project has shown that computer technology and networks, now in place, are sufficient for sustaining cooperative work such as that being done in GTSPP. Experience gained from GTSPP will be useful to future global ocean data management projects, such as the Global Ocean Observing System (GOOS).

To obtain information about the availability of data from the GTSPP Data Base, as well as participation in the Project itself, please contact the following:

National Oceanographic Data Center NOAA/NESDIS Washington, D.C. 20235 U.S.A.

Email: wdca@nodc.noaa.gov (Internet)

PENN STATE UNIVERSITY LIBRARIES

ADDOD 72043288