

Stochastic model discussion summary

(Feb 25, 2022)

Formulation and solution

We will continue the discussion with the equations and solutions given by Maggi 2014:

$$\dot{y} = -\mu k y + \eta^T + \eta^A,$$

where η^A is the active noise, satisfying $\left<\eta^A(t)\eta^A(t')\right>=(D_A/\tau)e^{-|t-t'|/\tau}$. The active part of the solution is

$$\left\langle \Delta y^2(t)
ight
angle = rac{2D_A}{\mu k} rac{1 - e^{-\mu k t} - \mu k au (1 - e^{-t/ au})}{1 - (\mu k au)^2}.$$

We let $\mu k=1/ au^*$, and it can be shown that the au^* here is the saturation time scale of inner droplet motion.

Limit cases

$$egin{align} t o 0: \left< \Delta y^2(t)
ight> &= rac{D_A}{ au(1+ au/ au^*)} t^2 \ & au^* \gg t \gg au: \left< \Delta y^2(t)
ight> &= rac{2D_A}{1-(au/ au^*)^2} (t- au) \ & t o \infty: \left< \Delta y^2(t)
ight> &= rac{2D_A au^*}{1+ au/ au^*} \end{aligned}$$

Evaluate R_{∞} and au^*

A typical MSD curve can be described by the saturation value R^2_∞ and the transition time au^* . The ballistic regime, where $\left<\Delta y^2(t)\right>\propto t^2$, is usually within 1 second and is difficult to measure accurately in experiment.

The transition time au^* comes out directly from the model as

$$au^* = rac{1}{\mu k},$$

where $\mu=(6\pi\eta r_i)^{-1}$ is the particle mobility and $k=m^*g/(r_o-r_i)$ is the effective spring constant. Notice that m^* is the buoyant mass of the oil droplet in water, and can be computed as $m^*=\Delta\rho\frac{4}{3}\pi r_i^3$. Taken together, τ^* can be expressed as

$$au^* = rac{9\eta}{2\Delta
ho q}rac{r_o-r_i}{r_i^2} = rac{9\eta}{\Delta
ho q}rac{D-d}{d^2}$$

Use water viscosity $\eta=0.001$ Pa s, we can compute the theoretical coefficient $K=9\eta/\rho^*g=3.9~\mu\mathrm{m}$ s.

In the limit $au^*\gg au$, the saturation value $R_\infty^2pprox 2D_A au^*\propto au^*\propto (D-d)/d^2$,

$$R_{\infty} \propto rac{\sqrt{D-d}}{d}.$$

When $au^* \sim au$, the experimental determination of au^* becomes problematic.

Experimental data

The current data set presents 3 parameters: D,d,n and two observables: R_{∞} and τ^* . D and d are always combined as $(D-d)/d^2$ as x-axis. Bacterial concentration n is encoded using <code>tab10</code> colormap, with the following mapping.

The data here combines Chile and Paris data. To discern them, I use solid circle to plot

Paris data, and empty triangle to plot Chile data.

Parameter distribution:

$$au^*$$
 vs. $(D-d)/d^2$

$$R_{\infty}$$
 vs. $(D-d)/d^2$

Plot the scattered data in bins

Some attempts

Rescale R_{∞} with n (OD)

Plot
$$R_{\infty}^2/ au^*$$
 vs. $(D-d)/d^2$ ($= rac{2D_A}{1+ au/ au^*}$)

Plot R_{∞}^2 vs. au^* (similar to above, expect a linear regime)

Separate $(D-d)/d^2$ regimes (already evidenced in R_∞^2/τ^* vs. $(D-d)/d^2$ plot, and in τ^* vs. $(D-d)/d^2$ plot). A linear regime is seen for τ^* at intermediate $(D-d)/d^2$. Fit the linear regime, we obtain a slope $\sim 22~\mu{\rm m}$ s. The stochastic model predicts this slope to be $9\eta/\Delta\rho g \approx 3.9~\mu{\rm m}$ s. This discrepancy is interesting to look into.

