Ground-Truth-Renderer für Partikelbasierte Daten

Josef Schulz

Technische Universität Dresden

July 7, 2015

Motivation

Grundlagen der Arbeit

Rendergleichung

Resultate

Aufgabenstellung

Ziel der Arbeit war die Entwicklung eines CPU-Renderes für Kugelförmige Partikel, basierend auf dem Emissions- und Absorptionsmodells.

- ► Ground-Truth
- ► physikalische Plausibilität
- ▶ verzicht auf Echtzeitfähigkeit

Was ist Partikel

Ein Partikel ist ein beliebiges geometrisches Objekt und es wird durch eine Menge von Attributen beschrieben.

Das einzige obligatorische Attribut ist die Position.

Rendergleichung

Das Emissions- und Absorptionsmodell wurde von Nelson Max in der Arbeit [12] eingeführt:

$$I = I_A + I_E \tag{1}$$

Rendergleichung

Das Licht, dass am Sensor ankommt setzt sich zusammen aus der Addition zwischen dem emittierten und dem absorbierenden Lichtanteilen:

$$I = I_A + I_E$$

$$= I_B \cdot T(D) + \int_0^D g(s) \cdot T'(s, D) ds$$
(2)

Absorption

Die Absorption setzt sich als Produkt der Hintergrundbeleuchtung und einer Funktion zusammen, welche diese abschwächt:

$$I_{A} = I_{B} \cdot T(D)$$

$$T(D) = \exp\left(-\int_{0}^{D} \tau(t)dt\right)$$
(3)

Die Transferfunktion $\tau(t)$ bildet den Materialparamter auf einen Dichtewert an der Position t ab.

Lösung der Gleichung

In dieser Arbeit wird die Menge der Transferfunktionen auf Lineare beschränkt und es wird angenommen, dass die Dichte innerhalb des Volumens konstant ist.

Fragen

- Marco Ament, Filip Sadlo, and Daniel Weiskopf.
 Ambient volume scattering.

 IEEE Trans. Vis. Comput. Graph., 19(12):2936–2945, 2013.
- James F. Blinn.

 Models of light reflection for computer synthesized pictures.

 SIGGRAPH Comput. Graph., 11(2):192–198, July 1977.
- James F. Blinn.
 Light reflection functions for simulation of clouds and dusty surfaces.

 SIGGRAPH Comput. Graph., 16(3):21–29, July 1982.
- S. Grottel, M. Krone, C. Muller, G. Reina, and T. Ertl. Megamol—a prototyping framework for particle-based visualization. Visualization and Computer Graphics, IEEE Transactions on,
- Martin Huber.
 Warum ist denn exp (x2) nicht elementar integrierbar?

21(2):201-214, Feb 2015.

Technical report, Univerität Zürich, 1996.

Daniel Jönsson, Joel Kronander, Timo Ropinski, and Anders Ynnerman.

Historygrams: Enabling Interactive Global Illumination in Direct Volume Rendering using Photon Mapping.

IEEE Transactions on Visualization and Computer Graphics (TVCG), 18(12):2364–2371, 2012.

Daniel Jönsson, Erik Sundén, Anders Ynnerman, and Timo Ropinski.

A Survey of Volumetric Illumination Techniques for Interactive Volume Rendering.

Computer Graphics Forum, 33(1):27-51, 2014.

Moon-Ryul Jung, Hyunwoo Park, and Doowon Paik.
An analytical ray casting of volume data.
In Pacific Conference on Computer Graphics and Applications, pages 79–86. IEEE Computer Society, 1998.

🔋 James T. Kajiya.

The rendering equation.

SIGGRAPH Comput. Graph., 20(4):143–150, August 1986.

Joe Kniss, Simon Premoze, Charles D. Hansen, Peter Shirley, and Allen McPherson.
A model for volume lighting and modeling.

IEEE Trans. Vis. Comput. Graph., 9(2):150–162, 2003.

Thomas Kroes, Frits H. Post, and Charl P. Botha. Exposure render: an interactive photo-realistic volume rendering framework.

PLoS ONE, 7(7), 07 2012.

10.1371/journal.pone.0038586.

Nelson Max.
Optical models for direct volume rendering.

IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, June 1995.

Mathias Schott, Vincent Pegoraro, Charles Hansen, Kévin Boulanger, and Kadi Bouatouch.

A Directional Occlusion Shading Model for Interactive Direct Volume Rendering.

Computer Graphics Forum, 2009.

Joachim Staib, Sebastian Grottel, and Stefan Gumhold. Visualization of particle-based data with transparency and ambient occlusion.

page to appear, 2015.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli.

Image quality assessment: From error visibility to structural similarity.

IEEE TRANSACTIONS ON IMAGE PROCESSING, 13(4):600–612, 2004.