

Predicting Churn and Analyzing Customer Lifespans

Dominique Vandendries April 2019

Initial feature extraction

Non-negative Matrix Factorization

	Widget	Thingy	Gizmo
Larry	0	5	0
Claire	0	2	0
Martin	1	0	2

Random Forest

Random Forest

Cold Start

Cold Start

Partial Dependency Plots

Strongest predictors of churn

The strongest predictors of churn came from **customer type**, not their purchasing behavior

People who receive testers/samples often don't follow through as customers

Students tend to churn at a higher rate than other factions

Strongest predictors of lifespan

New chiropractors are most likely to stick around longer

Using a **coupon** with a first order positively correlates with lifespan

Buying expensive items on first purchase contributes negatively to lifespan

Free/reduced shipping doesn't
increase lifespan

WebApp Demonstration

