A Proof of Theorem 1

In this section, we prove that with Algorithm 1, Theorem 1 is true. The assumption of Algorithm 1 is that no pause frame is ever corrupted or loss. Same as Section IV-C, we denote the variables at the n-th time slot with a subscript n. Symbols involved in the proof are listed int Table A1. Note that there are several restrictions. First, the total buffer reserved for the queue H should be configured as $H \ge \Delta + 2R_sT$. Second, without loss of generality, RTT is divisible by T so that $N = \frac{RTT}{T}$. Third, as the discussion in Section III-B, without loss of generality, $\tilde{R}_n \le R_s$.

Table A1. Symbols

Symbol	Description
L_n	queue length at the end of <i>n</i> -th time
	slot
F_n	in-flight bytes of downstream port
	at the end of <i>n</i> -th time cycle
c_n	granted bytes calculated at the end
	of <i>n</i> -th time slot
\tilde{R}_n	average draining rate during the <i>n</i> -
	th time slot
R_s	full sending rate
H	total buffer reserved for the queue
T	time slot duration
Δ	BDP of long distance link
N	number of time slots in one RTT

According to the Algorithm 1, the transition of variables in time slot n is shown in Equation 1. Since the calculation of c_n involves a branch, we will discuss them in both cases.

$$L_n = L_{n-1} + c_{n-(N+1)} - \tilde{R}_n T \tag{1a}$$

$$c_n = \min(R_s T, H - L_n - F_{n-1}) \tag{1b}$$

$$F_n = F_{n-1} - c_{n-(N+1)} + c_n \tag{1c}$$

Case 1: when $R_sT \leq H - L_n - F_{n-1}$, we have $c_n = R_sT$, and,

$$L_{n} \leq H - R_{s}T - F_{n-1}$$

$$= H - R_{s}T - (F_{n} + c_{n-(N+1)} - c_{n})$$

$$= H - R_{s}T - F_{n} - c_{n-(N+1)} + R_{s}T$$

$$= H - c_{n-(N+1)} - F_{n}$$
(2)

With Equation 2, $L_n + F_n \le H - c_{n-(N+1)} \le H$.

On the other hand, by adding Equation 1a and 1c, we have,

$$L_{n} + F_{n} = L_{n-1} + F_{n-1} + c_{n} - \tilde{R}_{n}T$$

$$= L_{n-1} + F_{n-1} + (R_{s} - \tilde{R}_{n})T$$

$$\geq L_{n-1} + F_{n-1}$$
(3)

With mathematical induction, if

$$L_{n-1} + F_{n-1} \ge \Delta + R_s T \tag{4}$$

then $L_n + F_n \ge \Delta + R_s T$. Since $L_1 + F_1 \ge \Delta + R_s T$, we can infer that $\forall n \in \mathbb{N}^+, L_n + F_n \ge \Delta + R_s T$.

Now, we conclude that when $R_sT \leq H - L_n - F_{n-1}$, $\Delta + R_sT \leq L_n + F_n \leq H$.

Case 2: when $R_sT > H - L_n - F_{n-1}$, we have $c_n = H - L_n - F_{n-1} < R_sT$. According to Equation 1c,

$$F_{n} = F_{n-1} - c_{n-(N+1)} + c_{n}$$

$$= F_{n-1} - c_{n-(N+1)} + H - L_{n} - F_{n-1}$$

$$= H - c_{n-(N+1)} - L_{n}$$
(5)

so that,

$$L_n + F_n = H - c_{n-(N+1)} \le H \tag{6}$$

At the same time, we have configured that $H \ge \Delta + 2R_sT$, so that,

$$L_n + F_n = H - c_{n-(N+1)}$$

$$\geq \Delta + 2R_s T - c_{n-(N+1)}$$

$$\geq \Delta + R_s T$$
(7)

Now we can conclude that when $R_sT>H-L_n-F_{n-1},$ $\Delta+R_sT\leq L_n+F_n\leq H.$ To sum up, for both cases in Equation 1b, $\Delta+R_sT\leq L_n+F_n\leq H$ holds, which means Theorem 1 is true.