

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)INTERNATIONAL APPLICATION NO.
PCT/EP94/03564INTERNATIONAL FILING DATE
October 28, 1994PRIORITY DATE CLAIMED
October 28, 1993

TITLE OF INVENTION

ADENO-ASSOCIATED VIRUS - ITS DIAGNOSTIC USE WITH EARLY ABORTION

APPLICANT(S) FOR DO/EO/US

Andrea Kern, Jürgen Kleinschmidt, Karsten Geletneky, Michèle Rabreau, Jörg Schlehofer, Edda Tobiasch

Applicant herewith submits to the United States Designated/ Elected Office (DO/EO/US) the following items under 35 U.S.C. 371:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the international Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
 A **SECOND** or **SUBSEQUENT** preliminary amendment.
14. A substitute specification.
15. A change of power of attorney and/or address letter.
16. Other items or information:

a VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS

EXPRESS MAIL CERTIFICATION

"Express Mail" label No. _____

Date of Deposit _____

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

(Signature of person mailing paper or fee)

(Signature of person mailing paper or fee) _____

INTERNATIONAL APPLICATION NO.
PCT/EP94/03564INTERNATIONAL FILING DATE
28 October 1994

17. The U.S. National Fee (35 U.S.C. 371(c)(1)) and other fees as follows:

CLAIMS				
(1)FOR	(2)NUMBER FILED	(3)NUMBER EXTRA	(4)RATE	(5)CALCULATIONS
TOTAL CLAIMS	25 -20=	5	X \$ 22.00	\$ 110
INDEPENDENT CLAIMS	5 -3=	2	X \$ 78.00	156
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$ 250.00	250
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)): CHECK ONE BOX ONLY				
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) \$ 680				
<input type="checkbox"/> No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) \$ 750				
<input checked="" type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$ 1010				
<input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2) to (4) \$ 94				
<input type="checkbox"/> Filing with EPO or JPO search report \$ 880				
Surcharge of \$130.00 for furnishing the National fee or oath or declaration later than <input checked="" type="checkbox"/> 20 <input type="checkbox"/> 30 mos. from the earliest claimed priority date (37 CFR 1.492(e)).				
TOTAL OF ABOVE CALCULATIONS				
Reduction by 1/2 for filing by small entity, if applicable. Affidavit must be filed also. (Note 37 CFR 1.9, 1.27, 1.28).				
SUBTOTAL				
Processing fee of \$130.00 for furnishing the English Translation later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 mos. from the earliest claimed priority date (37 CFR 1.492(f)).				
TOTAL FEES ENCLOSED				

- a. A check in the amount of \$ _____ to cover the above fees is enclosed.
- b. Please charge Deposit Account No. 16-1150 in the amount of \$ _____ to cover the above fees. A copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 16-1150. A copy of this sheet is enclosed.

18. Other instructions

19. All correspondence for this application should be mailed to
PENNIE & EDMONDS
1155 AVENUE OF THE AMERICAS
NEW YORK, NEW YORK 10036-2711

20. All telephone inquiries should be made to (212) 790-2803

ALBERT P. HALLUIN
NAME
SIGNATURE

25,227

REGISTRATION NUMBER

4/29/96
DATE

Express Mail No.: **EL 340 684 876 US**

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of: Kern *et al.*

Serial No.: 08/637,752

Filed: April 29, 1996

For: ADENO-ASSOCIATED VIRUS-ITS
DIAGNOSTIC USE WITH EARLY
ABORTION

Group Art Unit: 1648

Examiner: M. Mosher

Attorney Docket No.: 8484-013-999

RECEIVED

DEC 13 2001

TECH CENTER 1600/2900

AMENDMENT AND RESPONSE TO RESTRICTION REQUIREMENT

U.S. Patent and Trademark Office
P.O. Box 2327
Arlington, VA 22202

Sir:

In response to the Office Action dated October 2, 2001 (Paper No. 14), please enter the following amendments and remarks.

Applicants enclose herewith a Petition for a one (1) month extension of time extending the time for response from November 2, 2001 to December 2, 2001.

AMENDMENTS

IN THE CLAIMS:

Please cancel Claims 1-11, and ~~14-15~~.

Please amend the claims as follows:

12. (Amended) A kit for detecting the causative agent of spontaneous abortion, comprising a probe antibody directed to an AAV antigen in a suitable container.

13. (Amended) The kit of Claim 12, wherein said probe antibody is A1 as deposited with DSM under deposit number ACC2195, A20 as deposited with DSM under deposit number ACC2194, A69 as deposited with DSM under deposit number ACC2196 or B1 as deposited with DSM under deposit number ACC2197.

16. (Amended) An antibody directed against an AAV antigen.

A2

17. (Amended) The antibody of Claim 16, wherein said antibody is directed against an AAV capsid or a protein thereof.

18. (Amended) The antibody of Claim 17, wherein said antibody is A1 as deposited with DSM under deposit number ACC2195.

ACC2194

19. (Amended) The antibody of Claim 17, wherein said antibody is A20 as deposited with DSM under deposit number ACC2194.

20. (Amended) The antibody of Claim 17, wherein said antibody is A69 as deposited with DSM under deposit number ACC2196.

21. (Amended) The antibody of Claim 17, wherein said antibody is B1 as deposited with DSM under deposit number ACC2197.

REMARKS

Claims 1-11, 14, and 15 have been canceled as belonging to a non-elected invention. Claims 12, 13, and 16-21 are pending.

The Amendments. The claims have been amended to avoid dependencies from non-elected claims. The amendments do not introduce new matter, and they are fully supported in the specification and the claims as originally filed. Entry pursuant to 37 C.F.R. § 1.111 is therefore respectfully requested. A marked-up copy of the amended claims is attached hereto as *Appendix A*. The claims as presently pending are attached hereto as *Appendix B*.

Response to Restriction Requirement. In response to the requirement for restriction, Applicants hereby elect Group II, encompassing Claims 12, 13, 16-21, which are drawn to anti-AAV antibody products, without traverse. Applicants reserve the right to pursue Group I, encompassing Claims 1-11, and Group III, encompassing Claims 14-15, in later filed divisional applications.

No fee is believed to be due with this response. However, if it is determined that fees are due, please charge them to Pennie & Edmonds LLP Deposit Account No. 16-1150 (order no. 8484-013-999). A copy of this sheet is enclosed for accounting purposes.

Respectfully submitted,

Date 30 November 2001

Birgit Millauer 43,341
(Reg. No.)

for:
Laura A. Coruzzi (Reg. No. 30,742)
PENNIE & EDMONDS LLP
1155 Avenue of the Americas
New York, New York 10036-2711
(650) 493-4935

APPENDIX A
MARKED-UP COPY OF THE AMENDED CLAIMS

IN THE CLAIMS:

Please cancel Claims 1-11, and 14-15.

Please amend the claims as follows:

12. (Amended) A kit for [performing the method according to Claim 4] detecting the causative agent of spontaneous abortion, comprising a probe antibody directed to an AAV antigen in a suitable container.

13. (Amended) The kit [according to] of Claim 12, wherein [the] said probe antibody is A1 [(DSM) as deposited with DSM under deposit number ACC2195[, deposited on 13.10.1994)], A20 [(DSM) as deposited with DSM under deposit number ACC2194[, deposited on 13.10.1994)], A69 [(DSM) as deposited with DSM under deposit number ACC2196[, deposited on 13.10.1994 and/or] or B1 [(DSM) as deposited with DSM under deposit number ACC2197[, deposited on 13.10.1994])].

16. (Amended) [Antibody] An antibody directed [to] against an AAV antigen.

17. (Amended) [Antibody according to] The antibody of Claim 16, wherein [the] said antibody is directed [to] against an AAV capsid or a protein thereof.

18. (Amended) [Antibody according to] The antibody of Claim 17, wherein [the] said antibody is A1 [(DSM) as deposited with DSM under deposit number ACC2195[, deposited on 13.10.1994)].

19. (Amended) [Antibody according to] The antibody of Claim 17, wherein [the] said antibody is A20 [(DSM) as deposited with DSM under deposit number ACC2194[, deposited on 13.10.1994)].

20. (Amended) [Antibody according to] The antibody of Claim 17, wherein [the] said antibody is A69 [(DSM) as deposited with DSM under deposit number ACC2196[, deposited on 13.10.1994)].

21. (Amended) [Antibody according to] The antibody of Claim 17,
wherein [the] said antibody is B1 [(DSM) as deposited with DSM under deposit number
ACC2197[, deposited on 13.10.1994)].

APPENDIX B
CLEAN COPY OF THE AMENDED CLAIMS

12. (Amended) A kit for detecting the causative agent of spontaneous abortion, comprising a probe antibody directed to an AAV antigen in a suitable container.

13. (Amended) The kit of Claim 12, wherein said probe antibody is A1 as deposited with DSM under deposit number ACC2195, A20 as deposited with DSM under deposit number ACC2194, A69 as deposited with DSM under deposit number ACC2196 or B1 as deposited with DSM under deposit number ACC2197.

16. (Amended) An antibody directed against an AAV antigen.

17. (Amended) The antibody of Claim 16, wherein said antibody is directed against an AAV capsid or a protein thereof.

18. (Amended) The antibody of Claim 17, wherein said antibody is A1 as deposited with DSM under deposit number ACC2195.

19. (Amended) The antibody of Claim 17, wherein said antibody is A20 as deposited with DSM under deposit number ACC2194.

20. (Amended) The antibody of Claim 17, wherein said antibody is A69 as deposited with DSM under deposit number ACC2196.

21. (Amended) The antibody of Claim 17, wherein said antibody is B1 as deposited with DSM under deposit number ACC2197.

J/Rec'd PCT/PTC 02 MAY 1996

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ADENO-ASSOCIATED VIRUS - ITS DIAGNOSTIC

USE WITH EARLY ABORTION

5

This is a national phase filing of the Application No. PCT/EP94/03564, which was filed with the Patent Corporation Treaty on October 28, 1994, and is entitled to priority of European Patent Application 93117452.8, filed October 23,

10 1993.

I. FIELD OF THE INVENTION

The present invention relates to a method of detecting a causative agent of the so-called spontaneous early abortion 15 by investigating patients' samples for the presence of adeno-associated virus DNA (AAV DNA), or AAV antigen or antibodies, preferably of the IgM type, directed to AAV. Furthermore, the present invention relates to antibodies suitable for said method.

20

II. BACKGROUND OF THE INVENTION

The adeno-associated viruses (AAV) which are human parvoviruses that depend on coinfecting helper viruses for their replication, are thought to be non-pathogenic (Siegl, 25 et al. (1985), *Intervirology*, 23:61-73, Berns, et al. 1987, *Adv. Virus Res.* 32:243-306) but rather to exhibit tumorsuppressive properties (Rommelaere et al. 1991, *J. Virol. Methods* 33:233-251. The virus may persist in infected individuals, possibly by integration of its DNA into specific 30 chromosomal sites of the host cell genome as seen in cell culture. Recent studies of our laboratories have demonstrated that AAV is able to induce differentiation in a variety of cells of human and mouse origin (Klein-Bauernschmitt et al. 1992, *J. Virol.* 66:4191-4200) including 35 embryonic stem cells. In the course of looking for putative targets of AAV infection, we analyzed material from spontaneous abortion for the presence of AAV DNA using for

example the polymerase chain reaction (PCR), the Southern blotting technique and the in situ hybridization technique. Additionally, we analyzed serum samples from women with miscarriage and from other diseased or healthy women for the presence of antibodies to AAV using serological standard techniques such enzyme linked immunosorbent assay (ELISA), fluorescence immuno assay (FIA), radioimmune assay (RIA) or immunofluorescence assay (IFA).

Surprisingly, we found a significant correlation of both detectable AAV DNA in samples of abortion material and detectable IgM antibodies directed to AAV with the early abortion occurring during the first trimester of pregnancy.

III. SUMMARY OF THE INVENTION

The present invention relates to a method of detecting a causative agent of the so-called spontaneous early abortion by investigating patients' samples for the presence of adeno-associated viruses DNA (AAV DNA), or AAV antigen or antibodies, preferably of the IgM type, directed to AAV. Furthermore, the present invention relates to antibodies suitable for said method.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 depicts PCR analysis of DNA, prepared from histological sections of a spontaneous abortion (see, Example 1).

V. BRIEF DESCRIPTION OF THE INVENTION

Accordingly, the present invention relates to a method of detecting the causative agent of spontaneous abortion comprising the steps of

- (a) hybridizing a probe for an AAV polynucleotide to nucleic acids of a sample of abortion material under conditions which allow the formation of a heteroduplex between an AAV nucleic acid and the probe, and
- (b) detecting a polynucleotide duplex which contains the probe.

In a preferred embodiment of the present invention the method as mentioned above is a polymerase chain reaction (PCR), Southern blotting or in situ hybridization technique.

In another preferred embodiment of the present invention a hybridization technique is applied as described above, wherein one or more nucleic acid probes are used which are selected from the group consisting of the primers pan1, pan2, nest1 and nest2. In FIGURE 1 a schematic drawing of these primers, relative to the genome of the AAV type 2 (AAV-10 2) and the nucleotide sequences of the primers is presented.

The present invention further relates to a method of detecting the causative agent of spontaneous abortion comprising the steps of

(a) incubating a probe antibody directed to an AAV antigen 15 with a sample of abortion material under conditions which allow the formation of an antigen-antibody complex, and

(b) detecting the antigen-antibody complex containing the probe antibody.

In step (a) one or more probe antibodies can be used.

20 These antibodies can be directed to e.g. an AAV capsid or a single protein thereof, particularly VP1, VP2 or VP3.

Examples of these antibodies are the following monoclonals:

A1; deposited at DSM under DSM ACC2195 on Oct. 13, 1994

A69; deposited at DSM under DSM ACC2196 on Oct. 13, 1994

25 B1; deposited at DSM under DSM ACC2197 on Oct. 13, 1994

A20; deposited at DSM under DSM ACC2194 on Oct. 13, 1994

(see, TABLE 1).

The antibodies as mentioned above are subject matter of the present invention.

30 In a preferred embodiment of the present invention the method of antigen detection as mentioned above is an enzyme linked immunosorbent assay (ELISA), a radioimmuno assay (RIA), a fluorescence immuno assay (FIA) or an immunofluorescence assay (IFA).

35 An example of the ELISA comprises the following steps.

(a) providing a substrate carrying the monoclonal antibody
A 20,

43 200 000 000 000 000 000

(b) contacting the substrate of (a) with a sample of abortion material to get an antigen-antibody complex,

(c) contacting the complex of (b) with a polyclonal anti-AAV capsid antibody to get an antibody-antigen-antibody complex,

(d) contacting the complex of (c) with an enzyme-labelled antibody directed to the polyclonal antibody of (c) to get a labelled complex of (c), and

(e) contacting the complex of (d) with an enzyme-label-
10 indicator to indicate the presence of said complex.

It is clear that the term "sample of abortion material" is only an example of materials which contain AAV capsids or parts thereof. Other examples are cells expressing recombinant AAV capsids or parts thereof.

15 The present invention, i.e. the antibodies alone or in combination with the AAV antigen detection method, is suitable to detect AAV capsids and/or parts thereof in any material.

Furthermore, the present invention relates to a method
20 of detecting the causative agent of spontaneous abortion comprising the steps of

(a) incubating a sample containing AAV or an antigenic part thereof with a sample suspected of containing anti-AAV antibodies under conditions which allow the formation of an
25 antibodyantigen complex, preferably only containing antibodies of the IgM type, and

(b) detecting an antibody-antigen complex, preferably IgM antibodyantigen complex, containing the probe antigen.

In step (a) the term "sample containing AAV or an
30 antigenic part thereof" refers to AAV capsid proteins, particularly VPI, VP2 and/or VP3, preferably.

In another preferred embodiment of the present invention the method of detection of AAV specific antibodies, particularly IgM antibodies, is an ELISA, a RIA, a FIA or an
35 IFA.

An example of the ELISA comprises the following steps:

(a) providing a substrate carrying an anti-human IgM

antibody,

(b) contacting the substrate of (a) with a patient's bodyfluid to get an antibody-antibody complex,

(c) contacting the complex of (b) with recombinant VP1,
5 VP2 and/or VP3 to get a VP-antibody-antibody complex,

(d) contacting the complex of (c) with an anti-VP-antibody to get an anti-VP-antibody-VP-antibody-antibody complex,

(e) contacting the complex of (d) with an enzyme-labelled antibody directed to the anti-VP-antibody of (d) to get a
10 labelled complex of (d), and

(f) contacting the complex of (e) with an enzyme-label-indicator to indicate the presence of said complex.

It is evident that persisting anti-AAV IgM/IgG titers in serum are associated with predisposition to early
15 abortions. Thus, the present invention can also be used for effective risk factor screening, development of methods for prevention of pregnancy failure, and information of patients about the risks of pregnancy failure.

Furthermore, the present invention relates to a kit
20 for detecting the causative agent of spontaneous abortion by hybridization as described above, comprising a probe for an AAV polynucleotide in a suitable container.

The present invention further relates to a kit for detecting the causative agent of spontaneous abortion by
25 immunological antigen detection as described above, comprising a probe antibody directed against an AAV antigen in a suitable container.

The present invention further relates to a kit for detecting the causative agent of spontaneous abortion by
30 immunological antibody detection as described above, comprising AAV or an antigenic part thereof in a suitable container.

Modes for carrying out the invention. The art is rich in methods available to the man of the art in recombinant
35 nucleic acid technology, microbiology and immunobiology for carrying out the present invention. Detailed descriptions of all of these techniques will be found in the relevant

literature. See for example Maniatis, Fritsch & Sambrook: Molecular Cloning: A Laboratory Manual (1989); DNA Cloning, Vol. I and II (D.N. Glover ed., 1985); Oligonucleotide Synthesis (M.J. Gait ed., 1984); Nucleic Acid Hybridization 5 (B.D. Hamos & S.J. Higgins eds., 1984); Animal Cell Culture (R.I. Freshney ed., 1986); J.D. Watson, M. Gilman, J. Witkowski, M. Zoller: Recombinant DNA, Second Edition (1992); Immunochemical Methods in Cell and Molecular Biology (Academic Press, London, 1987); Protein Purification: 10 Principles and Practice, Second Edition (Springer Verlag, N.Y.); Handbook of Experimental Immunology, Vol. I-IV (D.M. Weir and C.C. Blackwell eds., 1986); Immunoassay: A Practical Guide (D.W. Chan and M.T. Perlstein eds., 1987). ELISA and Other Solid Phase Immunoassays: Theoretical and 15 Practical Aspects (D.M. Kemeny and S.J. Challacombe eds., 1988); Principles and Practice of Immunoassay (C.P. Price and D.J. Newman eds., 1991).

More detailed information on specific methodological aspects of AAV, such as cell culture, virus growth, virus 20 purification, isolation of proteins, can be found in the relevant literature, e.g. Handbook of Parvoviruses, Vol. I and II CRC Press, Boca Raton, Florida, Ed. P. Tijssen; Ruffing, et al. 1992, *J. Virol.*, 66:6922-6930.

All reagents such as antigens, antibodies, probe 25 antigens, probe antibodies, nucleic acid probes, primers and auxilliary reagents necessary to perform an immunoassay or a hybridization assay, possibly using amplification techniques for improved sensitivity may be filled into suitable containers or coated to any solid phase such as plastic, 30 glass and cells, and packaged into kits together with instructions for conducting the test.

VI. EXAMPLES

A. Example 1: Detection by Polymerase-Chain-Reaction (PCR) - analysis of AAV DNA in biological, e.g., curettage material of spontaneous abortion.

35

The primers used in PCR (pan1, pan3) and nested PCR (nest1, nest2), respectively, were designed to hybridize to

sequences of AAV-2 and AAV-5 DNA by allowing mismatches not leading to amplification of other (e.g. cellular) DNA sequences. The amplified products are distinguishable by Southern blot experiments. The primers were prepared
5 according to standard procedures.

The primers were designed displaying mismatches (underlined) as shown below:

	- - - - -	AACTGGACCAATGAAA <u>ACTTTCC</u> - - - - -	pan1
10	1386	TGCGTAA <u>ACTGGACCAATGAGA</u> ACTTTCCCTTCAAC	AAV-
2			
	130	TGCGTAA <u>ACTGGACCAATGAA</u> ACTTTCCCTTCAAC	AAV-
5			
15		AAAAAGTCTTGACTTCCTGCTT	pan3
	1729	AAAAAGTCTTGACTTCCTGCTT	AAV-
2			
	472	AAAAAGT <u>CTTGACTTCCTGCTT</u>	AAV-
5			
20			

DNA prepared from histological sections (5 μ m, of fresh or fixed, paraffin-embedded, deparaffinized material (Methods as described by D.H. Wright and M.M. Manos in "PCR Protocols, A Guide to Methods and Applications", edited by 25 M.A. Innis, D.H. Gelfand, J.J. Snoisky and T.L. White, Chapter 19, pp. 153-158; Academic Press, New York, 1990) were analysed by PCR using the primers pan1 and pan3 combined, followed in AAV positive cases by a repetition of the PCR (to confirm specificity) using the (internal) primers nest1 30 and nest2 (see, FIGURE 1), respectively. PCRs were performed for 40 cycles (one cycle = 92°C, 1 min; 62 °C, 4 min; 92°C, 15 sec) (van den Brule et al., (1989) *J. Med. Virol.*, 29:20-27). Amplified products were characterized by electrophoretic separation (2% agarose gel) and blotting onto 35 a nylon membrane (Gene Screen, NEN, Dupont, Dreieich, Germany) followed by hybridization at high stringency with 32 P-labelled probes (labelled using the Megaprime™ DNA

Labelling System, Amersham, UK) of AAV-2 (pTAV2 [Heilbronn et al. (1990), J. Virol., 64, pp. 3012-3018] or of AAV-5. This probe was cloned from DNA from purified AAV-5 virions, propagated with adenovirus type 12 and purified as described
5 in de La Maze and Carter (1980), J. Virol., 33, pp. 1129-1137 and in Rose (1974) Parvovirus Reproduction, pp. 1-61; In: H. Fraenkel-Conrat and R.R. Wagner, eds., Comprehensive Virology, Plenum Press, New York.

10 B. **Example 2: Detection by Southern Blotting analysis of AAV DNA in fresh curettage material.**

Genomic DNA was isolated using standard procedures with minor modification (Laird et al. 1991, *Nucl. Acids Res.*, 19:4293-4294) and digested with restriction enzymes allowing
15 analysis of characteristic restriction sites within the AAV genome. After separation through 0,8 % agarose gels, DNA fragments were blotted onto Nylon membranes (Gene Screen) and hybridized AAV-2 DNA (pTAV2, see, Example 1) or specific AAV-5 DNA (see, TABLE 2) labelled by random priming with [α -³²P] dCTP (Amershem, Braunschweig, Germany).

20 C. **Example 3: Detection of AAV DNA by in situ hybridization in sections of biopsy material, e.g. curettage from spontaneous abortion.**

In situ hybridization was performed as described
25 (Tobiasch et al. 1992, *Differentiation*, 50:163-178), however, with the modification that AAV-2 DNA was detected by RNA-DNA hybridization. After DNase treatment, the probes were subjected to limited alkaline hydrolysis. Upon linearisation of the plasmid pTAV2 (Heilbronn et al. 1990, *supra*, with
30 EcoRV, riboprobes were obtained and labelled with [³⁵S]-UTP by in vitro transcription with T7 RNA polymerase (method as described in Boehringer Mannheim Procedure supplied with the "SP6/17 Transcription Kit"). Prior to hybridization, both probe and target DNA were denatured (93°C, 10 min). For in
35 situ hybridization with [³²P]-UTP labelled probes, the protocol was as described in Dürst et al. 1992, *Virology*,

189:132-140.

D. Example 4: Provision Of Antibodies Directed To AAV Capsid Proteins

5 In order to generate monoclonal antibodies directed to AAV capsid proteins two BALB/C mice were injected subcutaneously (s.c.) with 150 µl of a mixture of gel purified recombinant capsid proteins in PBS containing 100 µg each of VP1, VP2 and VP3, mixed with an equal volume of
10 complete Freund's adjuvant. After four weeks the mice were boosted s.c. with 25µg of purified UV-inactivated AAV-2 in 50 µl PBS and 50 µl incomplete Freund's adjuvant. After four weeks the mice were injected intraperitoneally (i.p.) each with 10 µg of UV-Inactivated AAV-2 in 100 µl PBS. Three days
15 later one mouse was killed and the spleen cells were fused with X63/Ag8 cells according to standard procedures (Harlovv, E. and Lane, D. (1988), Cold Spring Harbor Laboratory, Antibodies, A laboratory manual). Resultant hybridoma culture supernatants were screened by Western
20 blotting, immunofluorescence and ELISA. The second mouse was immunized six months later with 100 µg of purified VP3 in PBS (i.p.) and monoclonal antibodies were prepared as described above.

25 E. Example 5: ELISA For The Detection Of IgG Antibodies Directed To AAV

96-well microtiterplates (Nunc, Denmark) were coated with 50 µl CsCl-gradient purified AAV 2 (dilution 1:1000 in 0,05 M carbonate-buffer pH 9,6) or with 50 µl recombinant AAV 2 capsid proteins VP1-3 (1:8000 in 0,05 M carbonate-buffer) and incubated overnight at RT. Plates were washed twice (washing buffer: PBS, 0,05 % Tween 20) and human sera were added (50 µl/well, dilutions 1:25 to 1:800, dilution buffer: PBS, 2% BSA, 0,05% Tween 20) and incubated for 1 h at 37°C in
30 a wet chamber. After washing plates were incubated with 50 µl/well peroxydase conjugated monkey antihuman IgG antibody
35

(1:2000) for 45 minutes at 37°C in a wet chamber. Plates were washed four times and 50 µl substrate solution (5 mg OPD in 25 ml 0,1 M citratebuffer pH 5,0 + 10 µl H₂O₂ 35%) was added. Plates were stored for 10-15 minutes in the dark and 5 the reaction was stopped with 50 µl 1N H₂SO₄/well. Extinctions were measured at 492 nm in a Titertek photometer. Background signal was determined by measuring the extinction without adding human sera and was subtracted on every well (background signal extinction ranged from 0,035 to 0,05).

10

F. Example 6: ELISA For The Detection Of IgM Antibodies Directed To AAV

Version A

Plates were coated as described in Example 4. Human 15 sera were added after they had been treated according to the following absorption protocol in order to eliminate remaining IgG-antibodies: 20 µl absorption reagent (FREKA-Fluor, Fresenius, Germany) were diluted with 25 µl PBS and 5 µl of human serum was added. Absorption was performed for at least 20 15 minutes at RT, and subsequently sera were tested at dilutions from 1:100 to 1:800. Incubation was performed for 1 h at 37°C in a wet chamber and after washing 50 µl/well peroxydase conjugated goat anti human IgM antibody (1:2000 in PBS/2 % BSA/0,05 % TWEEN 20) were added. Plates were 25 incubated for 45 minutes at 37°C and washed four times. The OPD reaction and photometric evaluation were performed as described in Example 5.

Version B

30 **µ-capture ELISA**

Plate Coating

Rabbit anti-human IgM antibody (DAKO) was first denatured at a protein concentration of 600µg/ml, incubating 35 for 30 min at RT in 50mM glycine/HCl pH 2,5 containing 100 mM NaCl then neutralized with 1 M Tris base. The denatured antibody was then desalting by passing the solution over a

Sephadex PD 10 column equilibrated in the coating solution (10mM Tris/HCl pH 8,5 containing 100 mM NaCl). The sample was eluted from the column in the same buffer. The solution was adjusted to a protein concentration of 6 μ g/ml by dilution 5 in coating buffer and 200 μ l added to each well on a polystyrene microtiter plate (NUNC immuno flat-bottomed well). The plate was incubated at 37°C for 24 h in a humid atmosphere, contents decanted and wells washed 4 times with 250 μ l/well of Tris-buffered saline (TBS) (0,02 M Tris/HCl pH 10 7,4, 0,15 M NaCl) containing 0,05 % Tween 20 (wash buffer). The wells were then blocked with TBS containing 1% Tween 20 and 5 % Sucrose (blocking solution) by incubating at 4°C followed by 2 washings in wash buffer (TBS containing 0,05% Tween 20).

15

Assay

The second step in the ELISA involved contacting patients' sera with the antibody-coated plate. During incubation, IgM was immunologically bound to the solid-phase 20 antibody. After removal of the unbound material and washing of the microtiter plates, the plates were incubated with purified recombinant AAV nucleocapsid proteins VP1, VP2 and VP3. After removal of the unbound material and washing of the microtiter plates, complexes of human IgM antibody-VP 25 complexes were detected by incubation with the A1, A69 and B1 antibodies. Unbound monoclonal antibodies were removed by aspiration and the plates were washed. The bound monoclonal antibodies were detected by incubating the plates with goat anti-mouse immunoglobulin antibodies conjugated to 30 horseradish peroxidase (HRP). Following removal of unbound conjugate by washing, a solution containing H₂O₂ 3-3', 5-5' tetramethylbenzidine (TMB) was added. Reactions were stopped after a suitable interval by addition of sulfuric acid. The Cutoff value of the ELISA was calculated as the average 35 optical density of five negative samples plus 3 standard deviations (to correct for any aspecific binding). Samples giving absorbance values higher than the cutoff were

considered positive.

Specifically, the anti-human IgM on the plate was reacted with serum by adding 100 μ l of serum samples diluted 5 1:200 in TBS containing 10 mg/ml bovine serum albumin, and incubating the serum-containing wells for 1 h at room temperature. After incubation, the serum samples were removed by aspiration and the wells were washed 5 times with washing solution (TBS + 0,05% Tween 20). Aliquots of 100 μ l 10 of the VP1, VP2 and VP3 antigen mixture (conc of 10-10 nM VP1, VP2 and VP3) were added to each well and the plates were incubated at room temperature at least 2 h, followed by removal of excess probe by aspiration and 5 washes with TBS + 0,05 % Tween 20. Bound VP1, VP2 and VP3 was detected by 15 addition of 100 μ l of a mixture of hybridoma supernatants from A1, A69 and B1 monoclonal antibodies producing hybridomas (antibody conc 1-10 nM), followed by 5 standard washes of the plates with TBS + 0,05% Tween 20. Monoclonal antibody binding was detected by addition of 200 μ l of 1 1/2000 20 dilution of sheep anti-mouse IgG horseradish peroxidase-conjugated antibody (Dako, Hamburg/Germany) and incubated for 1,5 h at room temperature, followed by 5 standard washings of the plate. Enzyme activity was revealed by addition of 100 μ l of a solution of TMB (Serex, Maywood, N.J./USA). The plate 25 was incubated until the desired color development was reached and terminated by addition of 50, μ l 2N sulfuric acid. Optical densities (OD_{450}) of negative and positive control sera as well as samples were determined. The cutoff value as calculated from five negative sera was $OD_{450}=0,40$.

30

G. Example 7: ELISA For The Detection Of AAV Capsids Plate Coating

100 μ l of the A20 antibody (see, *supra*) equilibrated in coating buffer solution (50 mM NAHCO₃, pH 9.6 and adjusted 35 to a protein concentration of 1,5 ng/ml was addad to each well on a polystyrene microtiter plate (NUNC immune flat-bottomed well). The plate was incubated at 4°C for 24 h,

contents decanted and wells, washed 5 times with 250 µl/well of phosphate-buffered saline (PBS) (wash buffer). The wells were blocked with 260 µl of 3% BSA in PBS (blocking solution) by incubating at least 30 minutes at room temperature
5 followed by 6 washings in wash buffer.

Assay

A standard curve within the range of 10 - 10,000 capsids/ml was prepared by diluting AAV capsids in standard
10 dilution solution containing PBS.

Unknown samples were diluted as appropriate in dilutent solution and 100 µl added to the test wells. When tissue culture supernatants were to be assayed, 100 µl of a 1:10 to 1:10⁸ dilution was to be added to the test well. The
15 plate was incubated for 3 h at room temperature. The plate was washed 5 times in wash buffer and 100 µl rabbit anti-AAV-polyclonal antiserum at a dilution of 1/1000 in 3% BSA in PBS added to each well. The plate was incubated at room temperature for 2 h as previously and then washed 5 times in
20 PBS Tween. AAV capsid was detected by addition of 100 µl of a 1/2000 dilution of a goat anti-rabbit IgG myeloperoxidase-conjugated antibody prepared in antibody diluent and incubated for 1 h at room temperature followed by 5 standards washes of the plate. Enzyme activity was revealed by
25 addition of 100 µl of a 0.1 mg/ml solution of tetramethylbenzidine (TMB) prepared in 0,1 M Na-acetate buffer pH 6 to each well. The plate was incubated at room temperature until the desired color development was reached, longer incubation periods being necessary to detect lower
30 concentration ranges, i.e. standards less than 10 capsids/ml. The concentration of unknown samples was determined by comparison of their optical density to the standard curve.

H. Example 8: Detection of AAV-DNA In Curettage Material
35 Of Spontaneous Absorption

A total of 50 samples of curettage material of spontaneous absorption were analysed for the presence of AAV

DNA either by PCR or Southern Blotting or both. 41 samples were from abortions in the first and 9 samples from abortions in the second and third trimester of pregnancy.

Among the 41 samples taken during the first trimester 5 of pregnancy, 14 consisted of fresh material that could be tested by Southern Blotting, by which method 9 samples were shown to be positive. All other samples tested were sections from paraffin-embedded tissues, that were analysed by PCR. Among these, 30 samples were from abortions in the first 10 trimester of pregnancy, of which 12 samples were shown to be positive for AAV DNA. All of the 9 samples from the second or third trimester of pregnancy were negative by PCR.

Thus, in 21 of 41 samples, i.e. 50% of spontaneous abortions in the first trimester of pregnancy AAV specific 15 DNA sequences could be detected, whereas 9 spontaneous abortions in the second or third trimester were negative (see TABLE 3).

I. Example 9

20 A total serum of 148 serum samples drawn from healthy probands, diseased patients with various syndromes being unrelated to abortion, and pregnant women with spontaneous abortion during the first trimester of pregnancy were tested 25 for antibodies directed to AAV.

The results obtained are displayed in TABLE 4. Generally, the prevalence of specific IgG antibodies was quite high, between 62 and 100% in the different groups of probands/patients. However, specific IgM antibodies were 30 shown to be significantly correlated with "pregnancy problems".

Table 1

Term	Subtype	Epitope	Western Blotting	Immuno-Precipitation	Immuno-Fluorescence	Characteristics
A1	IgG2a	between aa 1-104	+ specific recognition of VP1	+	+	recognition of monomeric and oligomeric VP1
A69	IgG1	between aa 105-136	+ specific recognition of VP1 and VP2	++	++	recognition of monomeric and oligomeric VP1 and VP2
B1	IgG1	between aa 136-669	+ + recognition of VP1, VP2 and VP3	++	++	recognition of monomeric and oligomeric VP1, VP2 and VP3
A20	IgG3	presumable conformation	- (negativ)	+++	++	preferable recognition of AAV capsid, no reaction with recombinant monomeric capsid protein

aa: amino acid

TABLE 2

388 bp part of BamH1b fragment of AAV5

487	TCAATCAGGTGCCGGTGACTCACCGACTTTAAAGTTCCCAGGGATTGGCGGGAACTAAAG AGTTAGTCCACGGCCACTGAGTGCTCAAATTCAACCGCTCCCTAACCGCCCTGATTTC	546
547	GGGCGGAGAAATCTCTAAAACCCCCACTGGGTGACGTCAACCAATACTAGCTATAAAAGTC CCCGCCTCTTAGAGATTTCGGGTGACCCACTGCAGTGGTTATGATCGATATTTCAAG	606
607	TGGAGAAGCGGGCCAGGCTCTCATTTGTTCCCCACACCCCTCGCAGTTCAAGACGGTGA ACCTCTCGCCCCGGTCCGAGAGTAACAAAGGGCTCTGGGAGCGTCAAGTCTGCACTGAC	666
667	TTGATCCCCCTCCTCTGCCACCGCTCAATTGAAATTCAAGGTATGATTGCAATTGTGACT AACTAGGGCGAGGGAGACCGCTGGCGAGTTAACCTTAAAGTTCCATACTAACCTTACACTCA	726
727	ATCATGCTCAATTGACAACATTTCTAACAAATGTGATGAATGTGAATATTGAAATCGGG TAGTACGAGTTAAACTGTTGTAAGATTCTTACACTTACACTTATAAACTTAGCCCC	786
787	GCAAAAATGGATGTATCTGTCAACATGTAACACTCACTGTCAATTGTCATGGGATTCCCC CGTTTTACCTACATAGACAGTGTACATTGACTGACAGTTAAACAGTACCCCTAAGGGG	846
847	CCTGGGAAAAGGAAAACTTGTCAGATT CGACCCCTTTCTTGAACAGTCTAAA	874

Table 3

Prevalence of AAV DNA in curettage materials

Diagnosis/Pathology	Detection of AAV DNA by (number AAV positive / number analysed)		
	PCR	Southern Blotting	Total
spontaneous abortion (1st trimester of pregnancy)	12/30	9/14	21/41*
abortion 2nd trimester	0/3	n.d.	0/3
abortion 3rd trimester or placenta post partum	0/6	n.d.	0/6

n.d. = not done;

* = 3 samples positive with PCR were tested by Southern blotting analysis

PEMP-54809.1

Table 4

Serum Antibodies to AAV Diagnosis	n	IgG- IgM-	IgG+ IgM-	IgG- IgM+	IgG+ IgM+	IgG+ n	%	IgM+ n	%
Controls (all)	58	8	45	2	3	48	83	5	8,6
Employees	32	4	24	2	2	26	81	4	12,5
Patents *)	26	4	21	0	1	22	85	1	4
breast (all)	38	1	32	0	5	37	97	5	13,2
mammary dystrophy	19	1	13	0	5	18	75	5	26
breast cancer	19	0	19	0	0	19	100	0	0
cervix uteri (all)	26	2	17	4	3	20	77	7	27
normal (or metaplasia)	3	1	2	0	0	2	67	0	0
CIN / CIS	22	1	14	4	3	17	77	7	32
cancer	1	0	1	0	0	1	100	0	0
pregnancy problems (all)	26	6	12	2	6	18	69	8	31
Extra uterine	2	0	2	0	0	2	100	0	0
chromosomal aberrations	3	0	2	0	1	3	100	1	33
abortion (1st trimester) of unclear etiology	21	6	8	2	5	13	62	8	38

*) with uterus myoma, or normal pregnancy, hysterectomy (normal)

CLAIMS:

1. A method of detecting the causative agent of spontaneous abortion comprising the steps of

5 (a) hybridizing a probe for an AAV polynucleotide to nucleic acids of a sample of abortion material under conditions which allow the formation of a heteroduplex between an AAV nucleic acid and the probe, and

10 (b) detecting a polynucleotide duplex which contains the probe.

2. The method according to Claim 1, which is a PCR, Southern blotting or an in situ hybridization technique.

15 3. The method according to Claim 1, wherein one or more probes are used which are selected from the group consisting of the primers pan1, pan3, nest1 and nest2.

4. A method of detecting the causative agent of spontaneous abortion comprising the steps of

20 25 (a) incubating a probe antibody directed to an AAV antigen with a sample of abortion material under conditions which allow the formation of an antigen-antibody complex, and

(b) detecting the antigen-antibody complex containing the probe antibody.

30 5. The method according to Claim 4, wherein the probe antibody is A1 (DSM ACC2195, deposited on 13. 10. 1994), A20 (DSM ACC2194, deposited on 13. 10. 1994), A69 (DSM ACC2196, deposited on 13. 10. 1994) and/or B1 (DSM ACC2197, deposited on 13. 10. 1994).

35 6. The method according to Claim 4 or 5, which is an ELISA, a RIA, a FIA or an IFA.

7. A method of detecting the causative agent of spontaneous abortion comprising the steps of

5 (a) incubating a sample containing AAV or an antigenic part thereof with a sample suspected of containing anti-AAV antibodies under conditions which allow the formation of an antibody-antigen complex, and

10 (b) detecting the antibody-antigen complex, containing the probe antigen.

8. The method according to Claim 7, wherein the antigenic part of AAV is VP1, VP2 or VP3.

15 9. The method according to Claim 7 or 8, wherein the antibody in the antibody-antigen complex is of the IgM type.

10. The method according to one of Claim 7 to 9, which is an ELISA, a RIA, a FIA or an IFA.

20 11. A kit for performing the method according to Claim 1, comprising a probe for an AAV polynucleotide in a suitable container.

25 12. A kit for performing the method according to Claim 4, comprising a probe antibody directed to an AAV antigen in a suitable container.

30 13. The kit according to Claim 12, wherein the probe antibody is A1 (DSM ACC2195, deposited on 13.10.1994), A20 (DSM ACC2194, deposited on 13.10.1994), A69 (DSM ACC2196, deposited on 13.10.1994 and/or B1 (DSM ACC2197, deposited on 13.10.1994)).

35 14. A kit for performing the method according to Claim 7, comprising AAV or an antigenic part thereof in a suitable container.

15. The kit according to Claim 14, wherein the antigenic part of AAV is VP1, VP2 and/or VP3.

16. Antibody directed to an AAV antigen.

5

17. Antibody according to Claim 16, wherein the antibody is directed to an AAV capsid or a protein thereof.

18. Antibody according to Claim 17, wherein the antibody
10 is A1 (DSM ACC2195, deposited on 13.10.1994).

19. Antibody according to Claim 17, wherein the antibody is A20 (DSM ACC2194, deposited on 13.10.1994).

15 20. Antibody according to Claim 17, wherein the antibody is A69 (DSM ACC2196, deposited on 13.10.1994).

21. Antibody according to Claim 17, wherein the antibody is B1 (DSM ACC2197, deposited on 13.10.1994).

20

25

30

35

ABSTRACT

Adeno-Associated Virus-
Its Diagnostic Use with Early Abortion

The present invention relates to a method of detecting a causative agent of the so-called spontaneous early abortion by investigating patients' samples for the presence of adeno-
10 associated viruses DNA (AAV DNA), or AAV antigen or antibodies, preferably of the IgM type, directed to AAV. Furthermore, the present invention relates to antibodies suitable for said
15 method.

20

25

30

35

08/637752

1/1

Figure 1

01 P 09:31 FAX +19 89 42724749

HUBER & SCHUESSLER PAT → PENNIE PALO ALTO 002

RECEIVED JULY 2 2001 BY U.S. PATENT & TRADEMARK OFFICE

PENNIE & EDMONDS DOCKET NO. 8484-013-999

DECLARATION
AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below at 201 et seq. underneath my name.

I believe I am the original, first and sole inventor if only one name is listed at 201 below, or an original, first and joint inventor if plural names are listed at 201 et seq. below, of the subject matter which is claimed and for which a patent is sought on the invention entitled

ADEN0-ASSOCIATED VIRUS - ITS DIAGNOSTIC USE WITH EARLY ABORTION

and for which a patent application:

is attached hereto and includes amendment(s) filed on _____ (*if applicable*)
 was filed in the United States on _____ as Application Serial No. 08/637,752 (*for declaration not accompanying application*)
with amendment(s) filed on _____ (*if applicable*)
 was filed as PCT international application Serial No. PCT/EP94/03564 on 28 October 1994 and was amended
under PCT Article 19 on _____ (*if applicable*)

I hereby state that I have reviewed and understand the contents of the above identified application, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

EARLIEST FOREIGN APPLICATION(S), IF ANY, FILED PRIOR TO THE FILING DATE OF THE APPLICATION			
APPLICATION NUMBER	COUNTRY	DATE OF FILING (day, month, year)	PRIORITY CLAIMED
93117452.8	Europe	28 October 1993	YES <input checked="" type="checkbox"/> NO <input type="checkbox"/>
		--	YES <input type="checkbox"/> NO <input checked="" type="checkbox"/>

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below.

APPLICATION NUMBER	FILING DATE

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION SERIAL NO.	FILING DATE	STATUS		
		PATENTED	PENDING	ABANDONED

POWER OF ATTORNEY: As a named inventor, I hereby appoint S. Leslie Misrock (Reg. No. 18872), Berj A. Terzian (Reg. No. 20060), David Weild, III (Reg. No. 21094), Jonathan A. Marshall (Reg. No. 24614), Barry D. Rein (Reg. No. 22411), Stanton T. Lawrence, III (Reg. No. 25736), Charles E. McKenney (Reg. No. 22795), Philip T. Shannon (Reg. No. 24278), Francis E. Morris (Reg. No. 24615), Charles E. Miller (Reg. No. 24576), Gidon D. Stern (Reg. No. 27469), John J. Lauter, Jr. (Reg. No. 27814), Brian M. Poissant (Reg. No. 28462), Brian D. Coggio (Reg. No. 27624), Rory J. Radding (Reg. No. 28749), Stephen J. Harbulak (Reg. No. 29166), Donald J. Goodell (Reg. No. 19766), James N. Palik (Reg. No. 25510), Thomas E. Friebel (Reg. No. 29258), Laura A. Coruzzi (Reg. No. 30742), Jennifer Gordon (Reg. No. 30753), Geraldine F. Baldwin (Reg. No. 31232), Victor N. Balancia (Reg. No. 31231), Samuel B. Abrams (Reg. No. 30605), Steven I. Wallach (Reg. No. 35402), Marcia H. Sundeen (Reg. No. 30893), Paul J. Zegger (Reg. No. 33821), Edmund R. Bannon (Reg. No. 32110), Bruce J. Barker (Reg. No. 33291), Adriane M. Antler (Reg. No. 32605), Thomas G. Rowan (Reg. No. 34419), James G. Markley (Reg. No. 31636), Thomas D. Kohler (Reg. No. 32797), Scott D. Stimpson (Reg. No. 33607), Gary S. Williams (Reg. No. 31066), Ann L. Gisolfi (Reg. No. 31956), Todd A. Wagner (Reg. No. 35399), Scott B. Familant (Reg. No. 35514), Kelly D. Talcott (Reg. No. 39582), Francis D. Cerrito (Reg. No. 38100), Anthony M. Insogna (Reg. No. 35203), Brian M. Rotherapy (Reg. No. 35340), Brian D. Siff (Reg. No. 35679), Alan Tenenbaum (Reg. No. 34939), Michael

PENNIE & EDMONDS DOCKET NO. 8484-013-999

J. Lyons (Reg. No. 37,386), Garland T. Stephens (Reg. No. 37,242) and William J. Sipio (Reg. No. 34,514), all of Pennie & Edmonds LLP, whose addresses are 1155 Avenue of the Americas, New York, New York 10036, 1667 K Street N.W., Washington, DC 20006 and 3300 Hillview Avenue, Palo Alto, CA 94304, all of Pennie & Edmonds LLP (PTO Customer No.), as its attorneys to prosecute this application and to transact all business in the United States Patent and Trademark Office connected therewith, said appointment to be to the exclusion of the inventors and their attorney(s) in accordance with the provisions of 37 C.F.R. 3.71, provided that, if any one of these attorneys ceases being affiliated with the law firm of Pennie & Edmonds LLP as partner, counsel, or employee, then the appointment of that attorney and all powers derived therefrom shall terminate on the date such attorney ceases being so affiliated.

SEND CORRESPONDENCE TO: PENNIE & EDMONDS 1155 AVENUE OF THE AMERICAS NEW YORK, N.Y. 10036-2711			DIRECT TELEPHONE CALLS TO: PENNIE & EDMONDS DOCKETING (212) 790-2803		
	FULL NAME OF INVENTOR	LAST NAME Kern	FIRST NAME Andrea	MIDDLE NAME	
201	RESIDENCE & CITIZENSHIP	CITY Ittlingen	STATE OR FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET Auf der Spreit 25	CITY Ittlingen	STATE OR COUNTRY Germany	ZIP CODE 74930
	FULL NAME OF INVENTOR	LAST NAME Kleinschmidt	FIRST NAME Jürgen	MIDDLE NAME	
202	RESIDENCE & CITIZENSHIP	CITY Bammental	STATE OR FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET Weihwiesenweg 5	CITY Bammental	STATE OR COUNTRY Germany	ZIP CODE 69245
	FULL NAME OF INVENTOR	LAST NAME Geletneky	FIRST NAME Karsten	MIDDLE NAME	
203	RESIDENCE & CITIZENSHIP	CITY Heidelberg	STATE OR FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET Römerstrasse 20	CITY Heidelberg	STATE OR COUNTRY Germany	ZIP CODE 69115
	FULL NAME OF INVENTOR	LAST NAME Babreau	FIRST NAME Michèle	MIDDLE NAME	
204	RESIDENCE & CITIZENSHIP	CITY Bordeaux	STATE OR FOREIGN COUNTRY France	COUNTRY OF CITIZENSHIP France	
	POST OFFICE ADDRESS	STREET 13. rue F. Marceau	CITY Bordeaux	STATE OR COUNTRY France	ZIP CODE F-33200
	FULL NAME OF INVENTOR	LAST NAME Schlehofer	FIRST NAME Jörg	MIDDLE NAME	
205	RESIDENCE & CITIZENSHIP	CITY Leimen	STATE OR FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET Feilgasse 14	CITY Leimen	STATE OR COUNTRY Germany	ZIP CODE 69181
	FULL NAME OF INVENTOR	LAST NAME Tobiasch	FIRST NAME Edda	MIDDLE NAME	
206	RESIDENCE & CITIZENSHIP	CITY Dossenheim	STATE OR FOREIGN COUNTRY Germany	COUNTRY OF CITIZENSHIP Germany	
	POST OFFICE ADDRESS	STREET Am Petrus 9	CITY Dossenheim	STATE OR COUNTRY Germany	ZIP CODE 69221

20/07 2001 09:32 FAX +49 89 42724749

HUBER & SCHUESSLER PAT → PENNIE PALO ALTO 004

PENNIE & EDMONDS DOCKET NO. 8484-013-999

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

SIGNATURE OF INVENTOR 201	SIGNATURE OF INVENTOR 202	SIGNATURE OF INVENTOR 203
V. KERN	J. HUBER & SCHUESSLER	K. GÖTTSCHE
DATE 19.4.01	DATE 20.4.2001	DATE 19.4.2001
SIGNATURE OF INVENTOR 204	SIGNATURE OF INVENTOR 205	SIGNATURE OF INVENTOR 206
R. BREAU	J. HUBER & SCHUESSLER	C. BELL
DATE 23/5/01	DATE 19/4/2001	DATE 14.06.2001

LIST OF REFERENCES CITED BY APPLICANT <i>(Use several sheets if necessary)</i>		ATTY. DOCKET NO. 8484-013-999	SERIAL NO. 08/637,752
APPLICANT Andrea Kern et al.			
FILING DATE April 29, 1996		GROUP N/A	

U.S. PATENT DOCUMENTS

*EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE

FOREIGN PATENT DOCUMENTS

		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANSLATION	
							YES	NO
MM	AA	WO 91/12269	8/22/91	PCT				
↓	AB	WO 91/04330	4/4/91	PCT				

OTHER REFERENCES (Including Author, Title, Date, Pertinent Pages, Etc.)

MM	AC	Berns et al., 1987, "Adeno-Associated Viruses: An Update," <u>Adv. Virus Res.</u> <u>32</u> :243-306.
	AD	de La Maza et al., 1980, "Heavy and Light Particles of Adeno-Associated Virus," <u>J. Virol.</u> <u>33</u> :1129-1137.
	AE	Dürst et al., 1992, "Human Papillomavirus Type 16 (HPV 16) Gene Expression and DNA Replication in Cervical Neoplasia: Analysis by <i>in Situ</i> Hybridization," <u>Virology</u> <u>189</u> :132-140.
	AF	Klein-Bauernschmitt et al., 1992, "Induction of Differentiation-Associated Changes in Established Human Cells by Infection with Adeno-Associated Virus Type 2," <u>J. Virol.</u> <u>66</u> :4191-4200.
	AG	Laird et al., 1991, "Simplified Mammalian DNA Isolation Procedure," <u>Nucleic Acids Res.</u> <u>19</u> :4293-4294.
	AH	Rogers et al., 1993, "Detection of Human Parvovirus B19 in Early Spontaneous Abortuses Using Serology Histology Electron Microscopy In-Situ Hybridization and the Polymerase Chain Reaction," <u>Obstetrics and Gynecology</u> <u>81</u> :402-408
	AI	Rommelaere et al., 1991, "Antineoplastic Activity of Parvoviruses," <u>J. Virol. Methods</u> <u>33</u> :233-251.
	AJ	Rose, 1974, "Parvovirus Reproduction," <u>PUBLISHER UNKNOWN</u> :1-61.
	AK	Ruffing et al., 1992, "Assembly of Viruslike Particles by Recombinant Structural Proteins of Adeno-Associated Virus Type 2 in Insect Cells," <u>J. Virol.</u> <u>66</u> :6922-6930.
↓	AL	Siegl et al., 1985, "Characteristics and Taxonomy of <i>Parvoviridae</i> ," <u>Intervirology</u> <u>23</u> :61-73.

Mosley

1-2-02

<i>MM</i>	AM	Srivastava <i>et al.</i> , 1983, "Nucleotide sequence and organization of the adeno-associated virus 2 genome," <u>J. Virol.</u> <u>45</u> :555-564.
	AN	Tobiasch <i>et al.</i> , 1992, "Structural Features and Sites of Expression of a New Murine 65 kD and 48 kD Hair-related Keratin pair, Associated with a Special Type of Parakeratotic Epithelial Differentiation", <u>Differentiation</u> <u>50</u> :163-178.
	AO	van den Brule <i>et al.</i> , 1989, "Use of Anticontamination in Primers in the Polymerase Chain Reaction for the Detection of Human Papilloma Virus Genotypes in Cervical Scrapes and Biopsies," <u>J. Med. Virol.</u> <u>29</u> :20-27.
✓	AP	Wright <i>et al.</i> , 1990, "PCR Protocols, A Guide to Methods and Applications," <u>Academic Press Chapter 19, Part 1</u> :153-158
EXAMINER <i>Mosley</i>		DATE CONSIDERED <i>1-2-02</i>

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

SEQUENCE LISTING

<110> KERN, ANDREA
GELETNEKY, KARSTEN
RABREAU, MICHELE
SCHLEHOFER, JORG
TOBIASCH, EDDA
KLEINSCHMIDT, JURGEN

<120> Adeno-Associated Virus-Its Diagnostic Use With Early Abortion

<130> 8484-013

<140> US 08/637,752

<141> 1996-04-29

<150> PCT/EP94/03564

<151> 1994-10-28

<150> EP93117452.8

<151> 1993-10-23

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer pan1

<400> 1
aactggacca atgaaaactt tcc

<210> 2
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer nest1

<400> 2
aaggtgcgcg tggaccagaa atg

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer nest2

<400> 3
agttcaaatt tgaacatccg gtc

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer pan3

<400> 4
aaaaagtctt tgacttcctg ctt

<210> 5
<211> 36
<212> DNA
<213> Adeno-Associated Virus-2

23

23

23

23

<400> 5
tgcgtaaaact ggaccaatga gaactttccc ttcaac 36

<210> 6

<211> 36

<212> DNA

<213> Adeno-Associated Virus-5

<400> 6
tgcgtaaaact ggaccaatga aaactttccc ttcaac 36

<210> 7

<211> 23

<212> DNA

<213> Adeno-Associated Virus-2

<400> 7
aaaaagtctt tgacttcctg ctt 23

<210> 8

<211> 23

<212> DNA

<213> Adeno-Associated Virus-5

<220>

<223> Description of sequence: Sequence fragment from Adeno-Associated Virus-5

<400> 8
aaaaagtctt tgacttcctg ctt 23

<210> 9

<211> 388

<212> DNA

<213> Adeno-Associated Virus-5

<400> 9
tcaatcaggt gccgggtgact cacgagttt aagttccca ggaattggcg ggaactaaag 60

gggcggagaa atctctaaaa cgcccactgg gtgacgtcac caataactagc tataaaagtc 120
tggagaagcg ggccaggctc tcatttggtc ccgagacgcc tcgcagttca gacgtgactg 180
ttgatccgc tcctctgcga ccgctcaatt ggaattcaag gtatgattgc aaatgtgact 240
atcatgctca atttgacaac atttctaaca aatgtgatga atgtgaatat ttgaatcggg 300
gaaaaaatgg atgtatctgt cacaatgtaa ctcaactgtca aatttgcattt gggattcccc 360
cctgggaaaa ggaaaacttg tcagattt 388

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

Page(s) _____ of Small entity statement were not present
for scanning. (Document title)

Page(s) _____ of _____ were not
present
for scanning. (Document title)

Scanned copy is best available.