

Machine Learning

Machine Learning é o método de análise de dados que automatiza a construção de modelos analíticos

Machine Learning pode realizar análises preditivas mais rápido que qualquer humano seria capaz de fazer

Machine Learning é um subconjunto da Inteligência Artificial

Inteligência Artificial inclui Machine Learning, mas Machine Learning por si só não define Inteligência Artificial

Inteligência Artificial é baseada em Machine Learning e Machine Learning é essencialmente diferente de Estatística

Mas é baseado na estatística

Técnica	Estatística	Machine Learning
Entrada de Dados	Os parâmetros interpretam fenômenos da vida real e trabalham a magnitude.	Os dados são randomizados e transformados para aumentar a acurácia de análises preditivas.
Tratamento de Dados	Modelos são usados para previsões em amostras pequenas.	Trabalha com Big Data na forma de redes e gráficos. Os dados são divididos em dados de treino e dados de teste.
Resultado	Captura a variabilidade e a incerteza dos parâmetros.	Probabilidade é usada para comparações e para buscar as melhores decisões.
Distribuição dos Dados	Assumimos uma distribuição bem definida dos dados.	A distribuição dos dados é desconhecida ou ignorada antes do processo de aprendizagem.
Objetivos	Assumimos um determinado resultado e então tentamos prová-lo.	Os algoritmos aprendem a partir dos dados.

Machine Learning se baseia em alguns importantes conceitos da Matemática e da Estatística:

Manipulação de Matrizes

Teoria da Probabilidade

Teorema de Bayes

www.datascienceacademy.com.br

Machine Learning usa algoritmos para analisar grandes conjuntos de dados

O tipo de problema a ser resolvido, determina o tipo de algoritmo a ser utilizado

O uso de algoritmos para manipular dados é a pedra fundamental da Machine Learning

Foco é identificar padrões e solucionar problemas

Encontrar as apropriadas fontes de Big Data, permite que você crie cenários em que a Machine Learning pode aprender de diferentes maneiras e gerar resultados mais precisos

Big Data não é apenas um grande conjunto de dados, mas também uma grande variedade

Machine Learning é a chave que permite compreender o que está guardado no Big Data

O processo de treino de algoritmos de Machine Learning usa o seguinte conceito

www.datascienceacademy.com.br

Um algoritmo pode aprender diversas tarefas, mas nem todo algoritmo será adequado para todas as tarefas

Um algoritmo vai sempre tentar encontrar uma função que melhor resolva o problema apresentado

Machine Learning Frameworks

Um framework é um conjunto de softwares que produzem um resultado específico

Microsoft Azure Machine Learning

O Microsoft Azure ML será alvo de estudo nos próximos capítulos. Ele é um serviço em nuvem (Cloud) que tem como objetivo implementar modelos de Machine Learning de forma rápida e fácil. Com o Azure Machine Learning é possível construir modelos de análise preditiva, usando datasets de treino das mais variadas fontes e então fazer o deploy destes modelos através de web services com o serviço Cloud da Microsoft. Com o Azure Machine Learning Studio, é possível criar experimentos de dados, usando os módulos disponíveis ou construindo seus próprios modelos usando R, Python e SQL por exemplo.

Para deep learning, usado em processamento de linguagem natural e reconhecimento de imagens. Pode ser um pouco

lento

Apache incubator ™

Data Science Academy

Google Tensor Flow

Caffe

Outro para deep learning, alta capacidade para processar muitas imagens

Nervana

Nervana neon, para deep learning. Foco no hardware.

Data Science Academy

Outras Ferramentas

Weka

Waikato Environment for Knowledge Analysis (Weka)

Feito em Java. Uso em data mining

Processo de Aprendizagem

O Processo de Aprendizagem ocorre de diferentes formas e podemos dividir os algoritmos de Machine Learning em 3 grupos principais:

Aprendizagem Supervisionada, Aprendizagem Não Supervisionada e Reinforcement Learning

Processo de Aprendizagem

Do ponto de vista matemático, o processo de representação de aprendizagem de máquina pode ser expressado utilizando mapeamento equivalente. Mapeamento é a construção de uma função observando suas saídas.

www.datascienceacademy.com.br

Aprendizagem Supervisionada

O algoritimo aprende a partir de dados de exemplos de inputs e possíveis outputs, que podem ser valores quantitativos ou qualitativos

Para variável qualitativa/categórica

Classificação

Atribui um rótulo

Alvo é valor numérico, segue espectro contínuo

Regressão

www.datascienceacademy.com.br

É o termo usado sempre que o programa é "treinado" sobre um conjunto de dados pré-definido

O algoritmo de aprendizagem recebe um conjunto de entradas, juntamente com as saídas corretas correspondentes e o algoritmo aprende comparando a sua saída real com as saídas corretas para então encontrar erros. Em seguida, o algoritmo ajusta o modelo de acordo com seu processo de aprendizagem

A aprendizagem supervisionada é normalmente usada em aplicações onde dados históricos preveem eventos futuros

O algoritimo aprende com exemplos simples, sem resposta associada. Os padrões de dados são determinados a cargo do algoritimo

Termo usado quando um programa pode automaticamente encontrar padrões e relações em um conjunto de dados

Os exemplos mais comuns são o K-Means, o Singular Value Decomposition (SVD) e o Principal Component Analysis (PCA)

Reinforcement Learning

Parecido com aprendizagem não supervisionada

Similar ao que chamamos de aprender por tentativa e erro

Reinforcement Learning

Aprendizagem por tentativa e erro

Neste caso existem e componentes envolvidos:

Tem como objetivo escolher as ações que maximizam a premiação esperada sobre um espaço de tempo

Agente tomador de decisão - próprio algoritmo

Ambiente onde ocorre a interação com o agente

Ações o que o agente pode fazer

•

Data Science Academy

Um componente chave do processo de aprendizagem é a generalização

O objetivo é generalizar as funções que melhor apresentam os outputs desejados de forma que a mesma solução possa ser dada a outros conjuntos de dados

E para poder generalizar a função que melhor resolve o problema, os algoritmos de Machine Learning se baseiam em 3 componentes:

- Representação modelo que produz um resultado para um conjunto de entradas
- Avaliação determina qual modelo funciona melhor, feita pelo próprio algoritmo
- Otimização conjunto de modelos produzidos no processo de treinamento, momento em que o melhor é utilizado

Espaço de Hipótese

Contem as variações de parâmetros de ML

True Positive

- True Negative
- False Positive
- False Negative

False Positive → desperdício de tempo False Negative → oportunidade perdida

Confusion Matrix ou matriz de erro.

Cada coluna representa as instâncias de uma classe prevista. As linhas representam as instâncias de uma classe real (valores reais).

Cost Function

Mede quão bem o algoritmo mapeia a função alvo

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Definindo o Erro

Cost Function → Nível de erro

Ajuda a compreender o processo de aprendizagem como:

- representação: capacidade de aproximar-se de certas funções matemáticas
- otimização: como os algoritmos de aprendizagem de máquina definem seus parâmetros internos

dados precisam estar carregados em memória

www.datascienceacademy.com.br

Perceba no gráfico que vai existir uma diferença entre o modelo preditivo (linha vermelha) e a função que resolve o problema (linha tracejada azul). Isso ocorre, por que o algoritmo tende a sistematicamemte subestimar ou sobreestimar as regras do mundo real, que representam partes tendenciosas. Normalmente isso ocorre com algoritmos que não são capazes de matemáticos expressar problemas complexos.

Overfitting

Para visualizar se os seus algoritmos de Machine Learning estão sofrendo algum tipo de força tendenciosa, você pode usar um gráfico chamado *Curva de Aprendizagem*

Para usar uma curva de aprendizagem, você precisa:

- 1- Dividir seus dados em amostras, chamadas dados de treino e dados de teste (uma divisão 70/30 funciona bem e permite cross-validation).
- 2- Criar porções dos seus dados de treino, com tamanhos diferentes a cada passagem de treino. Conceito de amostragem
- 3- Treinar seus modelos com os diferentes subsets. Registrar a performance.
- 4- Gerar um gráfico com os resultados. Atenção aos intervalos de confiança e ao desvio padrão.

 Data Science Academy

A linguagem Python fornece uma curva de aprendizagem através do pacote sckit-learn usando a função learning_curve.

Treinamento, Validação e Teste

Treinamento, Validação e Teste

75 a 70% - dados de treino

25 a 30% - dados de teste

Treinamento, Validação e Teste

70% - dados de treino

20% - dados de validação

10% - dados teste

Treinamento, Validação e Teste

Treinamento, Validação e Teste

n > 10.000

Cross-Validation

O conceito central das técnicas de validação cruzada é o particionamento do conjunto de dados em subconjuntos mutualmente exclusivos, e posteriormente, utiliza-se alguns destes subconjuntos para a estimação dos parâmetros do modelo (dados de treinamento) e o restante dos subconjuntos (dados de validação ou de teste) são empregados na validação do modelo

Cross-Validation

Algoritmo **Dados** Modelo

Modelo

Existem muitos tipos diferentes de modelos. Você pode já estar familiarizado com alguns. Os exemplos incluem:

- Equações matemáticas
- Diagramas relacionais
- Agrupamentos de dados, conhecidos como clusters

Criação do Modelo

Modelo

O processo de "fitting" um modelo a um dataset é chamado de treinamento do modelo

Criação do Modelo

www.datascienceacademy.com.br

Aprendizagem Supervisionada

- Classificação
- Regressão

Aprendizagem Não Supervisionada

- Clustering
- Segmentação
- Redução de Dimensionalidade

Aprendizagem por Reforço

- Sistemas de Recomendação
- Sistemas de Recompensa
- Processo de Decisão

Não Supervisionada Supervisionada Clustering & Dimensionality Regression Reduction Linear Contínua Polynomial SVD **Decision Trees PCA** Random Forests K-means **Association Analysis** Classification Apriori Categórica KNN FP-Growth Trees Hidden Markov Model Logistic Regression Naive-Bayes SVM Data Science Academy

Data Science Academy

www.datascienceacademy.com.br

Estilo de Aprendizagem Similaridade (Funcionamento)

Podemos categorizar os algoritmos de Machine Learning em 2 grupos principais:

Estilo de Aprendizagem

- Aprendizagem Supervisionada
- Aprendizagem Não Supervisionada
- Reinforcement Learning

Algoritmos de Regressão

Regressão refere-se a modelar a relação entre variáveis, ajustando as medidas de erro nas previsões feitas pelo modelo.

- Ordinary Least Squares Regression (OLSR)
- Linear Regression
- Logistic Regression
- Stepwise Regression
- Multivariate Adaptive Regression Splines (MARS)
- Locally Estimated Scatterplot Smoothing (LOESS)

Algoritmos Regulatórios

Geralmente são extensão para os métodos de regressão.

- Ridge Regression
- Least Absolute Shrinkage and Selection Operator (LASSO)
- Elastic Net
- Least-Angle Regression (LARS)

Algoritmos Baseados em Instância (Instance-based)

Constroem banco de dados de exemplo e comparam novos dados com esse banco por similaridade.

- k-Nearest Neighbour (kNN)
- Learning Vector Quantization (LVQ)
- Self-Organizing Map (SOM)
- Locally Weighted Learning (LWL)

Algoritmos de Árvore de Decisão

- Classification and Regression Tree (CART)
- Conditional Decision Trees
- Iterative Dichotomiser 3 (ID3)
- C4.5 and C5.0 (different versions of a powerful approach)
- Chi-squared Automatic Interaction Detection (CHAID)
- Decision Stump
- M5

Algoritmos Bayesianos

- Naive Bayes
- Gaussian Naive Bayes
- Multinomial Naive Bayes
- Averaged One-Dependence Estimators (AODE)
- Bayesian Belief Network (BBN)
- Bayesian Network (BN)

Algoritmos de Clustering

Dados organizados em clusters

- k-Means
- k-Medians
- Expectation Maximisation (EM)
- Hierarchical Clustering

Algoritmos Baseados em Regras de Associação

- Apriori algorithm
- Eclat algorithm

Redes Neurais Artificiais

- Perceptron
- Back-Propagation
- Hopfield Network
- Radial Basis Function Network (RBFN)

Deep Learning

- Deep Boltzmann Machine (DBM)
- Deep Belief Networks (DBN)
- Convolutional Neural Network (CNN)
- Stacked Auto-Encoders

Algoritmos de Redução de Dimensionalidade

- Principal Component Analysis (PCA)
- Principal Component Regression (PCR)
- Partial Least Squares Regression (PLSR)
- Sammon Mapping
- Multidimensional Scaling (MDS)
- Projection Pursuit
- Linear Discriminant Analysis (LDA)
- Mixture Discriminant Analysis (MDA)
- Quadratic Discriminant Analysis (QDA)
- Flexible Discriminant Analysis (FDA)

Algoritmos Ensemble

- Boosting
- Bootstrapped Aggregation (Bagging)
- AdaBoost
- Stacked Generalization (blending)
- Gradient Boosting Machines (GBM)
- Gradient Boosted Regression Trees (GBRT)
- Random Forest

Outros Algoritmos

- Support Vector Machines
- Computer Vision (CV)
- Natural Language Processing (NLP)
- Recommender Systems
- Graphical Models

www.datascienceacademy.com.br

Regressão Linear

Regressão Linear Simples

Um estudo de regressão linear simples busca, essencialmente, associar uma variável Y (denominada variável resposta ou variável dependente) a uma outra variável X (denominada variável explanatória ou variável independente)

- Investigação Científica
- Relações Causais
- Indentificação de Padrões

Compreendendo a Regressão

$$\hat{y} = a + bx$$

Onde:

 \hat{y} = valor previsto de *y* dado um valor para *x*

x = variável independente

a = ponto onde a linha intercepta o eixo y

b = inclinação da linha reta

Estimativa dos Mínimos Quadrados

Fornece os valores de a e B da fórmula anterior, que minimizam a soma dos quadrados dos resíduos, ou seja, que minimizam a distância entre os valores observados e os valores estimados pelo modelo, indicados pela reta.

www.datascienceacademy.com.br

Deve-se determinar α e β de modo que a somatória dos quadrados dos resíduos seja a menor possível (método de Mínimos Quadrados Ordinários - MQO, ou, em inglês, Ordinary Least Squares - OLS)

Data Science Academy

Podemos armazenar a previsão em outra coluna no dataset de teste

dtrain\$predLogPINCP <- predict(model,newdata=dtrain)

E podemos fazer a mesma operação no dataset de treino

Data Science Academy

www.datascienceacademy.com.br

É o processo de identificar a qual conjunto de categorias uma nova observação pertence, com base em um conjunto de dados de treino contendo observações (ou instâncias) cuja associação é conhecida

K Nearest Neighbors (kNN) é um algoritmo que armazena e então classifica os dados de acordo com os dados mais próximos de suas características

O kNN é um algoritmo não paramétrico, que pode ser usado para classificação ou para regressão

Não paramétrico significa que o algoritmo não conhece previamente os dados e suas distribuições

Classificação

O kNN é um dos algoritmos mais simples de Machine Learning, mas que tem sido muito utilizado em diversos segmentos

Classificação

- Aplicações de reconhecimento de imagens e reconhecimento facial, tanto em imagens quanto em vídeos.
- Previsão se uma pessoa irá gostar da recomendação de filmes ou músicas.
- Identificação de padrões em dados genéticos, detectando doenças específicas.

O classificador KNN é indicado para tarefas de classificação onde o relacionamento entre as variáveis e as classes, ou grupos de variáveis, são numerosas, complexas e difíceis de compreender, embora os itens dessas classes sejam homogêneos. Ou seja, usamos classificação quando o conceito é difícil de explicar, mas fácil de definir depois de encontradas algumas características.

Classificador kNN

Vantagens	Desvantagens
Simples e efetivo	Não produz um modelo, limitando a compreensão como as características das classes de dados se relacionam
Cria suposições sobre a distirbuição de dados	Requer a apropriada seleção do valor de k
Fase de treinamento bastante veloz	Fase de classificação é lenta

Normalmente as observações mais próximas são definidas como aquelas com a menor distância euclidiana ao ponto de dados em consideração.

Distância euclidiana, ou distância métrica, é a distância entre dois pontos que pode ser provada pela aplicação repetida do teorema de Pitágoras. Aplicando esta fórmula como distância o espaço euclidiano torna-se o espaço métrico.

Eucli o que?

Classificação kNN

- Armazena todos os dados
- Calcula a distância de x para todos os pontos de dados
- Ordena os pontos dentro dos seus dados aumentando a distância para x
- Prevê a maioria de valores de "k" próxima aos pontos

O valor de k faz a diferença

Data Science Academy

www.datascienceacademy.com.br

Support Vector Machine

Vetores de suporte são simplesmente as coordenadas de observação individual. Support Vector Machine é uma fronteira que melhor se segrega as duas classes (hiper-plano / linha).

