Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \tag{1}$$

parameters	values		description
m ₁	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$		AB
\mathbf{m}_2	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$		ВС
m ₃	$\begin{pmatrix} -1 \\ 8 \end{pmatrix}$		CA
A - B	5.38		length of AB
B-C	4.24		length of BC
C - A	8.06		length of CA
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3		non-collinear
n ₁	$\begin{pmatrix} 5 \\ -2 \end{pmatrix}$	2[1]	AB
$\mathbf{c_1}$	-5	2[1]	AB
n ₂	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	2[1]	BC
\mathbf{c}_2	-3	2[1]	BC
n ₃	$\begin{pmatrix} -8 \\ -1 \end{pmatrix}$	2[1]	CA
c ₃	-13	2[1]	CA
Area	10.5		Area of Triangle
∠A	28.93°	3[1]	Angles
∠B	113.20°		
∠C	37.88°		

TABLE I Triangle ABC

parameters	value		description
D	$\begin{pmatrix} 0.5 \\ -1.5 \end{pmatrix}$		midpoint of BC
E	(1.5) (1.0)		midpoint of CA
F	$\begin{pmatrix} 0 \\ 2.5 \end{pmatrix}$		midpoint of AB
n ₁	$\begin{pmatrix} -6.5 \\ 0.5 \end{pmatrix}$	2[1]	AD
c_1	-4.0	2[1]	AD
$\mathbf{n_2}$	$\begin{pmatrix} 1 \\ -2.5 \end{pmatrix}$	2[1]	BE
c_2	-1	2[1]	BE
\mathbf{n}_3	$\binom{5.5}{2}$	2[1]	CF
c ₃	5.0	2[1]	CF
G	$\begin{pmatrix} 0.67 \\ 0.67 \end{pmatrix}$		Centroid
$\begin{array}{c} \underline{AG} \\ \underline{GD} \\ \underline{BG} \\ \underline{GE} \\ \underline{GG} \\ \underline{GF} \end{array}$	3[1] 2	3[1]	Division ratio by G
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix}$	3[1] 2	3[1]	collinear
$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{B} & \mathbf{E} & \mathbf{G} \end{pmatrix}$			
$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$			

TABLE II Medians

parameters	value	description		
n ₁	$\begin{pmatrix} -3\\3 \end{pmatrix}$	2[1]	Altitude AP	
$\mathbf{c_1}$	12	2[1]	Altitude <i>AP</i>	
\mathbf{n}_2	$\begin{pmatrix} 1 \\ -8 \end{pmatrix}$	2[1]	Altitude BQ	
$\mathbf{c_2}$	-1	2[1]	Altitude BQ	
n ₃	$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$	2[1]	Altitude CR	
c ₃	-11	2[1]	Altitude <i>CR</i>	
Н	$\begin{pmatrix} -4.43 \\ -0.43 \end{pmatrix}$	Orthocentre		
	(O-((B+C)/2).(B-C)=0		Verified	

TABLE III
ALTITUDES

Fig. 1. Triangle ABC

parameters	value		description		
\mathbf{n}_1	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$	2[1]	Perpendicular bisector of AB		
c_1	-12.5	2[1]	Perpendicular bisector of AB		
\mathbf{n}_2	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	2[1]	Perpendicular bisector of BC		
\mathbf{c}_2	6	2[1]	Perpendicular bisector of BC		
n ₃	$\begin{pmatrix} -1 \\ 8 \end{pmatrix}$	2[1]	Perpendicular bisector of CA		
c ₃	6.5	2[1]	Perpendicular bisector of CA		
0	(3.21) (1.21)		Circumcentre		
$ \mathbf{O} - \mathbf{A} $	4[2] 6.24	4[2]	OA = OB = OC = R		
$ \mathbf{O} - \mathbf{B} $					
O - C					
∠BOC	57.85°	2[1]	$\angle BOC = 2\angle BAC$		
∠BAC	28.92°				

PERPENDICUAL BISECTORS

Fig. 2. Medians

Fig. 3. Altitudes

Fig. 4. Perpendicular bisectors

parameters		value		description
$\mathbf{n_1}$		$\begin{pmatrix} -1.92\\0.25 \end{pmatrix}$	2[1]	Angle bisector of A
$\mathbf{c_1}$		-0.68	2[1]	Angle bisector of A
\mathbf{n}_2		$\begin{pmatrix} 0.22 \\ -1.08 \end{pmatrix}$		Angle bisector of B
\mathbf{c}_2		-0.22	2[1]	Angle bisector of B
n_3		$\begin{pmatrix} 1.7 \\ 0.83 \end{pmatrix}$	2[1]	Angle bisector of C
c ₃		0.90	2[1]	Angle bisector of C
I		$\begin{pmatrix} 0.39 \\ 0.29 \end{pmatrix}$		Incentre
\mathbf{D}_3		$\begin{pmatrix} -0.45 \\ -0.55 \end{pmatrix}$		Point of contact with BC
$\mathbf{E_3}$		$\begin{pmatrix} 1.57 \\ 0.43 \end{pmatrix}$		Point of contact with AC
F ₃		$\begin{pmatrix} -0.71\\ 0.73 \end{pmatrix}$		Point of contact with AB
$ \mathbf{I} - \mathbf{D}_3 $	4[2]	1.187	4[2]	$ID_3 = IE_3 = IF_3 = r$
$\ I-E_3\ $				
$\ I-F_3\ $				
r				
∠BAI	2[1]	14.46°	2[1]	$\angle BAI = \angle CAI$
∠CAI				
AE_3		4.60		$\mathbf{AE_3} = \mathbf{AF_3} = m$
AF ₃		4.60		
BD_3		0.78		$\mathbf{BD_3} = \mathbf{BF_3} = n$
BF ₃		0.78		
CD_3		3.45		$CD_3 = CE_3 = p$
CE_3			A DI E V	

TABLE V
Angle bisectors

Fig. 5. Angle bisectors