Anhang: Existenz von Nullstellen von Polynomen über C

Der analytische Geholt des Fundamentalsatzes der Algebra besteht darin,

dass jedes Pdynom p(X) EC[X] vom Gnad ne deg p > 1 mindertens eine

Null stelle a EC besitzt. Spaltet man den zugehörigen Linear fahler (X-a)

von p(X) ab, so erhöltmen rehusiv schlie Mich die Linear fahler zerlegung von p(X).

Satz: Es sei p(X) = \(\frac{F}{k=0} \) Ch X \(\frac{F}{k=0} \) Ein Polynom vom Gnad \(n \rightarrow 1 \), \(\chin \frac{1}{k=0} \)

Dann gibt es ein a EC mit p(a)=0.

Beneiz: Es sill lin $\times EC(6)$: $P(k) = \frac{k}{2} \left(\frac{C_k}{C_k} + \sum_{k=0}^{n-1} \frac{C_k}{x^{n-k}} \right) \xrightarrow{n \to \infty} \infty$.

Wir finder also ein M>0, so dass für alle $x \in C$ mit $|x| \ge M$ gilt: $|P(x)| > |C_0| = |P(0)|$. Nun ist die kreissdeibe $K = \{x \in C \mid |x| \le M\}$ abges chlossen und beschrönkt, also kompakt, und nichtleer wegen $O \in K$. Die stetige Funktion

Ip): $k \to R_0^+$, $\chi \mapsto |p(x)|$ himmed also eig Miximum an, sogen wir an einer S telle a EK. Es gilt $|p(a)| \le |p(0)| = |c_0| < |p(x)|$ für alle $\chi \in K$ and |x| = M, also ist $|a| \neq M$ and daher |a| < M, d.h. a lieg from Juneren von K.

Wir Linden also ein 2>0 mit UE (a) E K. Wir untersheiden nun Z Fälle.

1. Fall; |p(a)|=0. Dany ist a eine Nullstelle vom p.

2 Fall: 1p(a) / >0. Wir Lithren diesen Fall zueinem Widerspruch:

Wir Taylor - entwickely p(X) um a: p(X) = q(X-a)

mit einem Polynom q(Y) = \$\frac{1}{k=0}\$ 6kY & \(\C[Y] \).

Mon beachle, doss kin Restlermansfritt, weil p ein Polynom vom Grad n ist, als seine n+1—te Ableitung g leich Dist. Weil p den Grad n besitzt, ist $b_n = c_n \neq 0$, und nach Fullannahme gilt auch $q(0) = b_0 = p(a) \neq 0$. Wir nehmen das kleinste $l \in \{1, ..., n\}$ mit $b_0 \neq 0$. Es gilt dann $q(y) = b_0 + b_0 y^0 + \sum_{k=0+1}^{n} b_k y_k^k = b_0 + b_0 y^0 + c(y)^0$ Lir $y \to 0$.

Nun hehmen wir eine ℓ -te Wurzel $u \in \mathcal{L}$ von $-\frac{b_0}{b_e} \in \mathcal{L}$, d.h. eine Lösung der Glaichung $u^2 = -\frac{b_0}{b_e}$. Dars so eine Lösung u existient, sieht man so: Schreiben wir $-\frac{b_0}{b_e} \in \mathcal{L}$ (to) in Polar k oording ten:

 $-\frac{b}{b_{\ell}} = re^{i\varphi} \text{ mit } r > 0 \text{ und } p \in \mathbb{R}, \text{ so } g : \{t \text{ fir } w := r = e^{i\frac{\varphi}{2}} : w = (r = e^{i\frac{\varphi}{2}})^{\ell} = re^{i\frac{\varphi}{2} \cdot \ell} = re^{i\varphi} = -\frac{b_{\ell}}{b_{\ell}}.$ When betradles wir |p(a+tw)| = |a|(b) = |a|(b) = |a|(b) + b|(b) + b|(b) = |a|(b) + b|(b) +

Die Funktion/p/ nimmt also nahe bei a auch Weste kleiner als /p(a)/ an, im Widerspruddaza, dass a eine Minimumstelle von /p/ist