Examen parcial de Física - ONES 22 de Desembre de 2015

Model A

Qüestions: 100% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Descrivim una ona amb la funció $y(x,t) = A\cos(kx - \omega t)$. Si la velocitat màxima transversal és $v_{\rm max}=0.5~{\rm ms^{-1}},$ la longitud d'ona és $\lambda=200\,{\rm m}$ i l'amplitud de l'ona és $A = 1.75 \,\mathrm{m}$, la velocitat de propagació de l'ona és:

a) $v = 0.63 \,\mathrm{ms^{-1}}$. b) $v = 4.32 \,\mathrm{ms^{-1}}$. c) $v = 9.09 \,\mathrm{ms^{-1}}$. d) $v = 3.74 \,\mathrm{ms^{-1}}$.

T2) Una ona electromagnètica es propaga en el sentit positiu de l'eix z. En un punt de l'espai i en un instant donat el camp elèctric val $\vec{E} = 0.081 \,\hat{i} \, \mathrm{Vm}^{-1}$. En aquest punt, el camp magnètic és:

a) $\vec{B} = 2.70 \cdot 10^{-10} \hat{j} \text{ T.}$

b) $\vec{B} = 2.43 \cdot 10^6 \,\hat{i} \, \text{T}.$

c) $\vec{B} = -2.43 \cdot 10^6 \,\hat{i} \, \text{T}.$

d) $\vec{B} = -2.70 \cdot 10^{-10} \,\hat{i} \, \text{T}.$

T3) El camp elèctric d'una ona electromagnètica és $\vec{E}(z,t) = E_0 \cos(kz + \omega t)(\hat{i} + \hat{j})$. Aleshores, el camp magnètic de l'ona és:

a) $\vec{B}(z,t) = (E_0/c)\cos(kz - \omega t)\hat{k}$.

b) $\vec{B}(z,t) = (E_0/c)\cos(kz + \omega t)(\hat{i} - \hat{j}).$

c) $\vec{B}(z,t) = (E_0/c)\cos(kz - \omega t)(\hat{i} + \hat{j}).$

d) $\vec{B}(z,t) = (E_0/c)\cos(kz + \omega t)(-\hat{i} + \hat{j}).$

T4) L'amplitud del camp magnètic d'una ona electromagnètica harmònica val $3.3 \cdot 10^{-7}$ T. Si l'ona incideix perpendicularment sobre una superfície de 10 cm², la potència incident val:

a) $1.7 \cdot 10^{-7}$ W.

b) $1.3 \cdot 10^{-2} \,\mathrm{W}$. c) $2.7 \cdot 10^{-2} \,\mathrm{W}$.

d) 100 W.

T5) La nau espacial Voyager 1, en viatge interplanetari, utilitza una freqüència $f = 8.4 \,\mathrm{GHz}$ quan emet ones de ràdio cap a la Terra, des d'una distància actual de d=20000 milions de Km. La potència d'emissió és de 19 W, i l'ona és dirigida amb gran precisió cap a la Terra, de forma que quan aquesta arriba a nosaltres (després de 18.5 hores de viatge) el senyal s'ha repartit sobre una superfície que és només 1/150000 de la superfície d'una esfera de radi igual a la distància Voyager-Terra. El valor màxim del camp elèctric de la radiació electromagnètica provinent de la nau en arribar a nosaltres és doncs aproximadament:

a) $E_0 = 6.5 \cdot 10^{-10} \,\mathrm{Vm}^{-1}$.

b) $E_0 = 2.7 \cdot 10^{-11} \, \text{Vm}^{-1}$.

c) $E_0 = 5.8 \cdot 10^{-9} \,\mathrm{Vm}^{-1}$.

d) Cap dels anteriors.

T6) Entre dos filtres polaritzadors, amb els respectius eixos de transmissió perpendiculars entre sí, interposem un tercer polaritzador amb el seu eix de transmissió formant un angle α amb el primer i 90° – α amb el segon. Si fem passar llum no polaritzada pel sistema i la intensitat emergent és un 8.5 % de la intensitat inicial, podem deduir que el valor de l'angle α és:

a) $\alpha = 27.8^{\circ}$.

b) $\alpha = 37.1^{\circ}$.

c) $\alpha = 18.0^{\circ}$.

d) $\alpha = 22.5^{\circ}$.

T7) El gràfic mostra un raig de llum que es propaga a través de tres medis diferents. Per les velocitats de la llum en aquests tres medis es verifica que

a) $v_3 > v_2 > v_1$.

b) $v_2 > v_1 > v_3$.

c) $v_3 > v_1 > v_2$.

d) $v_1 > v_2 > v_3$.

T8) Una font F emet ones de ràdio a l'entrada del tub esquematitzat a la figura. Una part de les ones viatja a través de la part semicircular del tub i la resta a través de la part recta. Quan r = 17.5 cm el receptor D detecta una intensitat nul·la. Llavors, la longitud d'ona de les ones pot valer, aproximadament,

a) 20 cm.

- b) 10 cm.
- c) 40 cm.
- d) 75 cm.

T9) La profunditat dels forats practicats en la làmina metàl·lica dels CD-ROM és $d=125\,\mathrm{nm}$. Sabent que aquesta làmina està recoberta per una capa de policarbonat d'índex de refracció $n_p=1.5$, que a la zona de lectura hi incideixen $4\cdot 10^{16}$ fotons/s i que la constant de Planck val $h=6.63\cdot 10^{-34}\,\mathrm{Js}$, el làser utilitzat en la seva lectura té aproximadament una potència de

a) 7.1 mW.

b) 10.6 mW.

c) 71 mW.

d) 2.6 mW.

T10) Un punter làser emet llum de longitud d'ona $\lambda=635\,\mathrm{nm}$ amb una potència $4\,\mathrm{mW}$. Si enviem un pols de $0.3\,\mathrm{s}$ de durada, quants fotons s'han emès? ($h=6.63\cdot10^{-34}\,\mathrm{Js},$ $c=3\cdot10^8\,\mathrm{ms}^{-1})$

a) $N = 3.83 \cdot 10^{15}$.

b) $N = 3.83 \cdot 10^{16}$.

c) $N = 5.81 \cdot 10^{17}$.

d) $N = 5.81 \cdot 10^{14}$.

Examen parcial de Física - ONES 22 de Desembre de 2015

Model B

Qüestions: 100% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** El camp elèctric d'una ona electromagnètica és $\vec{E}(z,t) = E_0 \cos(kz + \omega t)(\hat{i} + \hat{j})$. Aleshores, el camp magnètic de l'ona és:
 - a) $\vec{B}(z,t) = (E_0/c)\cos(kz \omega t)(\hat{i} + \hat{j}).$
 - b) $\vec{B}(z,t) = (E_0/c)\cos(kz \omega t)\hat{k}$.
 - c) $\vec{B}(z,t) = (E_0/c)\cos(kz + \omega t)(-\hat{i} + \hat{j}).$
 - d) $\vec{B}(z,t) = (E_0/c)\cos(kz + \omega t)(\hat{i} \hat{j}).$
- **T2)** L'amplitud del camp magnètic d'una ona electromagnètica harmònica val $3.3 \cdot 10^{-7}$ T. Si l'ona incideix perpendicularment sobre una superfície de 10 cm², la potència incident val:
 - a) $1.7 \cdot 10^{-7}$ W.
- b) 100 W.
- c) $1.3 \cdot 10^{-2} \,\mathrm{W}$. d) $2.7 \cdot 10^{-2} \,\mathrm{W}$.
- **T3**) La nau espacial Voyager 1, en viatge interplanetari, utilitza una freqüència $f = 8.4 \,\mathrm{GHz}$ quan emet ones de ràdio cap a la Terra, des d'una distància actual de d=20000 milions de Km. La potència d'emissió és de 19 W, i l'ona és dirigida amb gran precisió cap a la Terra, de forma que quan aquesta arriba a nosaltres (després de 18.5 hores de viatge) el senval s'ha repartit sobre una superfície que és només 1/150000 de la superfície d'una esfera de radi igual a la distància Voyager-Terra. El valor màxim del camp elèctric de la radiació electromagnètica provinent de la nau en arribar a nosaltres és doncs aproximadament:
 - a) $E_0 = 6.5 \cdot 10^{-10} \,\mathrm{Vm}^{-1}$.
- b) $E_0 = 2.7 \cdot 10^{-11} \,\mathrm{Vm}^{-1}$.
- c) $E_0 = 5.8 \cdot 10^{-9} \,\mathrm{Vm}^{-1}$.
- d) Cap dels anteriors.
- T4) Entre dos filtres polaritzadors, amb els respectius eixos de transmissió perpendiculars entre sí, interposem un tercer polaritzador amb el seu eix de transmissió formant un angle α amb el primer i 90° – α amb el segon. Si fem passar llum no polaritzada pel sistema i la intensitat emergent és un 8.5 % de la intensitat inicial, podem deduir que el valor de l'angle α és:
 - a) $\alpha = 37.1^{\circ}$.

b) $\alpha = 18.0^{\circ}$.

c) $\alpha = 27.8^{\circ}$.

- d) $\alpha = 22.5^{\circ}$.
- **T5)** Descrivim una ona amb la funció $y(x,t) = A\cos(kx \omega t)$. Si la velocitat màxima transversal és $v_{\rm max}=0.5~{\rm ms^{-1}},$ la longitud d'ona és $\lambda=200\,{\rm m}$ i l'amplitud de l'ona és $A = 1.75 \,\mathrm{m}$, la velocitat de propagació de l'ona és:

- a) $v = 4.32 \,\mathrm{ms^{-1}}$. b) $v = 9.09 \,\mathrm{ms^{-1}}$. c) $v = 3.74 \,\mathrm{ms^{-1}}$. d) $v = 0.63 \,\mathrm{ms^{-1}}$.

- **T6)** Una font F emet ones de ràdio a l'entrada del tub esquematitzat a la figura. Una part de les ones viatja a través de la part semicircular del tub i la resta a través de la part recta. Quan r = 17.5 cm el receptor D detecta una intensitat nul·la. Llavors, la longitud d'ona de les ones pot valer, aproximadament,
 - a) 40 cm.
 - b) 20 cm.
 - c) 10 cm.
 - d) 75 cm.

- T7) Un punter làser emet llum de longitud d'ona $\lambda=635\,\mathrm{nm}$ amb una potència $4\,\mathrm{mW}$. Si enviem un pols de $0.3\,\mathrm{s}$ de durada, quants fotons s'han emès? ($h=6.63\cdot10^{-34}\,\mathrm{Js},$ $c=3\cdot10^8\,\mathrm{ms}^{-1}$)
 - a) $N = 5.81 \cdot 10^{14}$.

b) $N = 5.81 \cdot 10^{17}$.

c) $N = 3.83 \cdot 10^{16}$.

- d) $N = 3.83 \cdot 10^{15}$.
- T8) La profunditat dels forats practicats en la làmina metàl·lica dels CD-ROM és d=125 nm. Sabent que aquesta làmina està recoberta per una capa de policarbonat d'índex de refracció $n_p=1.5$, que a la zona de lectura hi incideixen $4\cdot 10^{16}$ fotons/s i que la constant de Planck val $h=6.63\cdot 10^{-34}$ Js, el làser utilitzat en la seva lectura té aproximadament una potència de
 - a) $10.6 \,\mathrm{mW}$.

b) 71 mW.

c) 2.6 mW.

- d) 7.1 mW.
- T9) El gràfic mostra un raig de llum que es propaga a través de tres medis diferents. Per les velocitats de la llum en aquests tres medis es verifica que
 - a) $v_2 > v_1 > v_3$.
 - b) $v_3 > v_2 > v_1$.
 - c) $v_1 > v_2 > v_3$.
 - d) $v_3 > v_1 > v_2$.

- **T10)** Una ona electromagnètica es propaga en el sentit positiu de l'eix z. En un punt de l'espai i en un instant donat el camp elèctric val $\vec{E} = 0.081\,\hat{j}~{\rm Vm^{-1}}$. En aquest punt, el camp magnètic és:
 - a) $\vec{B} = 2.70 \cdot 10^{-10} \,\hat{j} \, \text{T}.$
- b) $\vec{B} = -2.70 \cdot 10^{-10} \,\hat{i} \, \text{T}.$

c) $\vec{B} = -2.43 \cdot 10^6 \,\hat{j} \text{ T.}$

d) $\vec{B} = 2.43 \cdot 10^6 \,\hat{j} \text{ T.}$

Respostes correctes

Qüestió	Model A	Model B
T1)	c	d
T2)	d	c
T3)	b	a
T4)	b	c
T5)	a	b
T6)	a	a
T7)	c	d
T8)	c	a
T9)	b	d
T10)	a	b

Resolució del Model A

T1) La velocitat transversal màxima és:

$$\frac{\partial y}{\partial t} = \omega A \sin(k x - \omega t) \rightarrow v_{\text{max}} = A \omega$$

i

$$\omega = \frac{2\pi}{T} = 2\pi \frac{v}{\lambda} \to v_{\text{max}} = 0.5 = 2\pi \frac{A v}{\lambda}$$

Aleshores,

$$v = 0.5 \frac{\lambda}{2\pi \text{ A}} = 9.0945 \,\text{m/s}$$

T2) Podem calcular \vec{B} a partir de

$$\vec{B} = \frac{\hat{u} \times \vec{E}}{c} = \frac{\hat{k} \times 0.081\hat{j}}{3 \times 10^8} = -2.7 \cdot 10^{-10} \,\hat{i} \,\text{T}$$

T3) D'acord amb l'expressió del camp elèctric, l'ona es propaga cap a les z negatives. Per tant, el vector unitari que indica la direcció de propagació és $\hat{u} = -\hat{k}$. Considerant que $\vec{B} = (\hat{u} \times \vec{E})/c$ s'obté

$$\vec{B}(z,t) = (E_0/c)\cos(kz + \omega t)(\hat{i} - \hat{j})$$

- T4) La intensitat mitjana de l'ona és $\bar{I}=cB_0^2/(2\mu_0)=13\,\mathrm{Wm^{-2}}$. La potència incident serà $P=\bar{I}\cdot(10\cdot10^{-4})=1.3\cdot10^{-2}\,\mathrm{W}$.
- T5) Calculem la intensitat mitjana de l'ona electromagnètica rebuda a la Terra :

$$\bar{I} = \frac{P}{S} = \frac{150000 \times 19}{4\pi (2 \times 10^{-13})^2} = 5.67 \times 10^{-22} \,\mathrm{W/m}^2$$

El valor màxim del camp elèctric val doncs

$$\bar{I} = \frac{1}{2} \frac{E_0^2}{\mu_0 c} \to E_0 = \sqrt{2\bar{I}\mu_0 c} = 6.5 \cdot 10^{-10} \,\text{V/m}$$

- **T6)** La intensitat es redueix en un factor 1/2 en passar per el primer filtre, un segon factor $\cos^2(\alpha)$ en passar per el segon i un nou factor $\cos^2(90^\circ \alpha) = \sin^2(\alpha)$ en passar pel tercer.
 - La intensitat emergent és doncs $\frac{1}{2}\cos^2(\alpha)\sin^2(\alpha)$ vegades la intensitat inicial. Les solucions proposades donen com a quocient (0.085, 0.116, 0.062, 0.043) per als valors $\alpha=(27.8^\circ, 37.1^\circ, 22.5^\circ, 18^\circ)$, per tant l'angle amb que hem introduït el filtre polaritzador central és $\alpha=27.8^\circ$
- T7) D'acord amb la llei de Snell, en la primera refracció tenim $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$. Com que l'angle de refracció és menor que el d'incidència, $n_2 > n_1$ i $v_1 > v_2$ (ja que $v_i = c/n_i$). En el pas del segon al tercer medi $n_2 \sin \alpha_2 = n_3 \sin \alpha_3$. Aquí $\alpha_3 > \alpha_2$ i per tant $n_2 > n_3$, de manera que $v_3 > v_2$. De les anteriors equacions tenim també $n_1 \sin \alpha_1 = n_3 \sin \alpha_3$. Com que $\alpha_3 > \alpha_1$, llavors $n_1 > n_3$, i per tant $v_3 > v_1$.
- T8) Al detector D es produeixen interferències entre ones que presenten una diferència de fase degut a la diferència dels camins recorreguts. La diferència de camins recorreguts per les ones provinents del camí semicircular i les del camí recte és de $\Delta r = \pi r 2r$. La condició de mínim és $k \cdot \Delta r_m = (2n+1)\pi$, de manera que $\lambda = 2\Delta r_m/(2n+1)$ i per n=0 tenim $\lambda = 40$ cm.
- **T9)** Per la correcta lectura del CD s'ha de verificar que $k \cdot 2d = \pi$ i per tant $\lambda = 4d = 500 \,\text{nm}$. La longitud d'ona a l'aire serà $\lambda_0 = \lambda \cdot n_p = 750 \,\text{nm}$. Trobem la potència del làser fent $P = (4 \cdot 10^{16} \,\text{fotons/s}) \cdot E_{\text{foto}}$, és a dir, $P = (4 \cdot 10^{16} \,\text{fotons/s}) \cdot (h \cdot c/\lambda_0) = 10.6 \,\text{mW}$.
- **T10)** L'energia total del pols és: $U = (4 \cdot 10^{-3})(0.3) s = 1.2 \cdot 10^{-3}$ J. L'energia de cada fotó és: $h f = h c/\lambda = 3.13 \cdot 10^{-19}$ J

Aleshores, el nombre total de fotons és el quocient:

$$N = \frac{U}{h \ f} = 3.83 \cdot 10^{15}$$