

Department of Computer Science

EE204 – Computer Architecture

Fall 2019

Instructor Name: Dr. Haroon Mahmood
Email address: haroon.mahmood@nu.edu.pk

Office Location/Number: Liberty lab

Office Hours: Monday to Thursday10:00-11:00 AM

TA Name (section C, D): Hina Naveed Email address: l182169@lhr.nu.edu.pk
TA Name (section E): Soufia Kousar Email address: l176119@lhr.nu.edu.pk

Course Information

Program: BS **Credit Hours:** 3 **Type:** Core

Pre-requisites (if any): Digital Logic Design (EE227)

Class Meeting Time: Section C: Mon, Wed 12:30 – 1:50 PM Section D: Mon, Wed 3:30 – 4:50 PM

Section E: Tue, Thur 08:00 -09:20 AM

Class Venue: Section C, D CS-2, Section E CS-5

Course Description/Objectives/Goals:

- The main objective of this course is to provide a profound understanding of the architectural design and internal working of a microprocessor which will allow computer science students to appreciate concepts like optimization and hardware level performance issues.
- This course also introduces advanced concepts like pipelining and superscalar architecture and techniques like microprogramming.
- Multi-Core processors and issues related to multicore processors are introduced.

Course Textbook

- 1. M. Morris Mano, Computer System Architecture 3rd Edition, Prentice Hall
- 2. David A. Patterson, John L. Hennessy, *Computer Organization and Design: The hardware/software interface*, 4th Edition

Additional references and books related to the course:

1. Modern Processor Design: Fundamentals of Superscalar Processors by John Paul Shen and Mikko H. Lipasti

Tentative Weekly Schedule

	Tentative weekly Schedule						
Lect #	Topics to be covered	Readings	Assignments/				
	•		Projects?				
1	Introduction to basic hardware	Text1	Trojects.				
1	components and devices						
		Chapter 1					
	a) Digital Logic Design Review	(Excluding 1.4)					
	i) Boolean Algebra						
	ii) Combinational Circuits						
	iii) Sequential Circuits	TD 41					
2	Frequently used components in	Text1					
	computers	Chapter 2					
	a) Adders						
	b) Decoders	Text2					
	c) Multiplexers	Chapter 2					
	d) Registers (Parallel load with	(Section					
	shifts)	2.4)					
	e) Counters	Chapter 3					
	Number Systems and Binary	(Section 3.5)					
	Representations						
	a) Integer Representations						
	b) Floating point representation						
3	Logic Operations	Text1					
	Shift Operations	Chapter 4					
	Combined Arithmetic, Logic and Shift	(Section $4.5 - 4.7$)					
	Unit.						
4	Additional Arithmetic Operations:	Text2					
	a) Integer Multiplication, Division	Chapter 3					
	b) Floating Point Operations (Addition)	(Section $3.4 - 3.6$)					
5	Complete ALU and FPU design	Text2					
	Introduction to Machine Language	Chapter 3					
		(Section 3.6)					
	Central processing unit in detail						
	a) General register organization	Text2					
	b) Addressing modes	Chapter 2					
	c) CISC Vs RISC	•					
6	Computer Instructions and instruction	Text2	Assignment 1				
	codes	Chapter 2	Assignment 1				
	Introduction to the MIPS Assembly	(Figure 2.32, 2.38)					
	Language	(1 1guic 2.32, 2.30)					
	Instruction Types						
	1) Arithmetic Instructions						
	2) Memory Reference						
	3) Branch Instructions						
	5) Dianon insulations						
7	Design of a Single Cycle Machine	Text2					
'	1) Register File	Chapter 4					
	2) ALU	(Section 4.1 – 4.4)					
	3) Instruction and Data Memory	(5000001 7.1 - 4.4)					
	4) Control Unit						
	5) Integration of Units						
8	Single Cycle Machine Design Continued	Text2					
0	Control Unit (As a hardwired	Chapter 4					
	combinational circuit)	(Section 4.1 – 4.4)					
	,	(Section 4.1 – 4.4)					
	Exceptions and Interrupts						
9	Revision for Mid 1						
		Text2					
10	Multi-cycle implementation Motivation and Hardware Differences	Chapter 4					
<u></u>	1viouvation and Hardware Differences	Chapter 4					

		(Section 4.5)	
11	Enhancing Performance with Pipelining a) Introduction to pipelining b) A pipelined data-path c) Pipelined Control d) Shallow and deep pipelining	Text2 Chapter 4 (Section 4.5)	
12	Multi-cycle Continued Control Unit State for each instruction type Pipelined Machine: Hardware and Control Unit	Text2 Chapter 4 (Section 4.6)	
13	Multi-cycle Continued Control Unit State Machine combined Exception Handling in Multi-Cycle machine	Text2 Chapter 4 (4.6, 4.9)	
14	Data Hazards a) RAW (covered in detail) b) WAR c) WAW	Text2 Chapter 4 Section (4.7)	
15	Control Hazards a) Branch Prediction Performance of pipelined systems	Text2 Chapter 4 Section (4.8)	Assignment 2
16	Understanding Performance a) CPU Performance b) Benchmarks c) Evaluating Performance	Text2 Chapter 1 (Section 1.4)	
17	Superscalar Processors. Basic concepts of superscalar processors and instruction independence		
18	Step by step execution of instructions in superscalar processors.		
19	Code Rescheduling Loop Unrolling		
20	Revision for Mid 2		
21	Cache Design: Memory Hierarchy basic concepts Basics and Direct mapped caches	Text 2 Chapter 5 (Section 5.1, 5.2)	
22	Cache Design: Associative Caches and Miss Rates	Text 2 Chapter 5 (Section 5.2)	
23	Cache Design: Processor performance evaluation with cache / Multi-level Caches.	Text 2 Chapter 5 (Section 5.3)	
24	Virtual Memory	Text 2 Chapter 5	

	1	70 5.4	1
		(Section 5.4)	
25	Multicores, Multiprocessors, and	Text 3	Assignment 3
	Clusters	Chapter 7	
	Multi-processor Systems basics.	Text 2	
	Multi-processor system types	Chapter 7	
	Parallel Processing Programs	(Section 7.1 &	
		Section 7.2)	
26	Intro to memory sharing models and	Text 2	
	cache coherence problem	Chapter 7	
	Clusters and Other Message-Passing	(Section 7.3 & 7.4)	
	Multiprocessors		
27	Hardware multithreading	Text 2	
	SISD,MIMD,SIMD,SPMD	Chapter 7	
		(Section 7.5 & 7.6)	
28	GPUs	Text 2	
		Chapter 7	
		(Section 7.7)	
29	NVIDIA GPU architecture	Text 2	
		Chapter 7	
		(Section 7.7)	
30	Revision for Final		

(Tentative) Grading Criteria

- 1. 3-4 Assignments (10%)
- 2. 4-5 Quizzes (15%)
- 3. 2 Midterm Exam(s)(30%)
- 4. Final Exam (45%)

Course Policies

- 1. No makeup for missed quiz or assignment.
- 2. 80% attendance