Neural Networks (CSC372)

Unit 2: Rosenblatt's Perceptron

(3 Hrs.)

Reference: Simon Haykin (3rd Edition)

By Kiran Bagale,

Department of IT, 2025

Learning Objectives

- Understand the structure and working of Rosenblatt's Perceptron
- Explain the Perceptron Convergence Theorem
- Compare Perceptron with Bayes Classifier
- Apply the Batch Perceptron Algorithm for classification tasks

Before going to Rosenblatt's Perceptron

- In the formative years of neural networks (1943–1958), several researchers stand out for their pioneering contributions:
 - McCulloch and Pitts (1943) for introducing the idea of neural networks as computing machines.
 - Hebb(1949) for postulating the first rule for self-organized learning.
 - Rosenblatt (1958) for proposing the perceptron as the first model for learning with a teacher (i.e., supervised learning).

Introduction to Perceptron

- Developed by Frank Rosenblatt (1958)
- Inspired by the biological neuron
- Simplest form of neural Network
- Used for binary classification tasks
- Processes input via weighted sum and activation function

Assumptions

- 1.Binary classification $(i.e.y_i \in \{-1, +1\})$
- 2.Data is linearly separable

Perceptron Model

• Rosenblatt's perceptron is built around a nonlinear neuron, namely, the *McCulloch*— *Pitts model* of a neuron.

Input vector:
$$x = [x_1, x_2, ..., x_m]$$

Weight vector: $w = [w_1, w_2, ..., w_m]$
Output: $y = \varphi(w \cdot x + b)$

Perceptron Goal:

Classify input vector (x1,x2,...,xm) into two classes:

- If output y=+1, assign to class **c1**
- If output y=-1, assign to class **c2**

FIG 2.1: Signal-flow graph of the perceptron.

Learning rule: Adjust weights to minimize classification error

Classifier

FIG 2.2: Illustration of the hyperplane (in this example, a straight line) as decision boundary for a two-dimensional, two-class pattern-classification problem.

• From the model, we find that the hard limiter input, or induced local field, of the neuron is,

$$y_i = v = \sum_{i=1}^m w_i x_i + b$$

 \boldsymbol{b} is the bias term (without the bias term, the hyperplane that \boldsymbol{w} defines would always have to go through the origin). Dealing with \boldsymbol{b} can be a pain, so we 'absorb' it into the feature vector \boldsymbol{w} by adding one additional constant dimension.

• Under this convention,

$$x_i$$
 becomes $\begin{bmatrix} x_i \\ 1 \end{bmatrix}$ and w becomes $\begin{bmatrix} w \\ b \end{bmatrix}$

• We can verify that

$$\begin{bmatrix} x_i \\ 1 \end{bmatrix} \top \begin{bmatrix} w \\ b \end{bmatrix} = w^{\mathsf{T}} x_i + b$$

Using this, we can simplify the above formulation of f(xi) to

$$f(xi) = \varphi(w^{\mathsf{T}}x)$$

•

Observation: Note that $y_i(w^Tx_i) > 0 \Leftrightarrow x_i$ is classified correctly

where 'classified correctly' means that x^i is on the correct side of the hyperplane defined by w. Also, note that the left side depends on $y_i \in \{-1, +1\}$ (it wouldn't work if, for example $y_i \in \{0, +1\}$).

(Left:) The original data is 1-dimensional (top row) or 2-dimensional (bottom row). There is no hyperplane that passes through the origin and separates the red and blue points. (Right:) After a constant dimension was added to all data points such a hyperplane exists.

Perceptron Algorithm

```
Initalize \vec{w} = \vec{0}
 while True do
    m = 0
                                         //count the miss classifications, m
    for (x_i, y_i) \in D do
                                         //loop over each (data, label) pair in the dataset, D
             if yi(\overrightarrow{w}^T.\overrightarrow{x_i}) \ge 0 then //if the pair (xi, yi) is misclassified
                      \vec{w} \leftarrow \vec{w} + y\vec{x} //update the weight vector
                       m \leftarrow m + 1
              end if
    end for
    if m = 0 then
                                         //if the recent w gives 0 misclassifications
              break
                                         //break out the while loop
    end if
end while
```

Geometric Intuition

The hyperplane defined by $\mathbf{w_t}$ misclassifies one red (-1) and one blue (+1) point.

The red point x is chosen and used for an update. Because its label is -1 we need to **subtract** x from w_t .

Fig: lustration of a Perceptron update.

The updated hyperplane $\mathbf{w_t} + \mathbf{1} = \mathbf{w_t} - \mathbf{x}$ separates the two classes and the Perceptron algorithm has converged.

Perceptron Convergence Theorem

- Proves that perceptron learning algorithm converges in finite steps
- Assumes data is linearly separable
- Guarantees finding a solution (if it exists)
- Let us assume, $\exists w^*$ such that $y_i(w^{*Tx}) > 0 \ \forall (xi, yi) \in D$
- The bias b(n) is treated as a synaptic weight driven by a fixed input equal to 1. Thus, Input dimension is (m+1) by 1 given as,

$$\mathbf{x}(n) = [+1, x_1(n), x_2(n), ..., x_m(n)]^T$$

where n denotes the time step in applying the algorithm. Correspondingly, we define the (m + 1) - by - 1 weight vector as,

$$\mathbf{w}(n) = [b, w_1(n), w_2(n), ..., w_m(n)]^T$$

Accordingly, the linear combiner output is written in the compact form

$$egin{aligned} v(n) &= \sum_{i=0}^m w_i(n) x_i(n) \ &= \mathbf{w}^T(n) \mathbf{x}(n) \end{aligned}$$

Adjust the weight vector \mathbf{w} in such a way that the two classes C1 and C2 are linearly separable. i.e.

 $w^T X > 0$ for every input vector x belonging to class C1 $w^T X < 0$ for every input vector x belonging to class C2

Fig: (a) A pair of linearly separable patterns. (b) A pair of non-linearly separable patterns.

Now, suppose that we rescale each data point and the w* such that $||w|^*|| = 1$ and $||x_i|| \le 1 \ \forall xi \in D$

Let us define the <u>margin</u> γ <u>of the hyperplane</u> w^* as $\gamma = min(xi, yi) \in D|w^{*Tx}|$

$$\gamma = min(xi, yi) \in D|w^{*Tx}|$$

To summarize our setup:

- All inputs x_i live within the unit sphere.
- There exists a separating hyperplane defined by w*, with $\|\mathbf{w}\|^*=1$ (i.e. $\mathbf{w}*$ lies exactly on the unit sphere).
- γ is the distance from this hyperplane (blue) to the closest data point.
- **Theorem:** If all of the above holds, then the Perceptron algorithm makes $1/\gamma 2$ at most mistakes.

Or "For any finite set of linearly separable labeled examples, the Perceptron Learning Algorithm (PLA) will terminate after a finite number of iterations."

Proof:

Keeping what we defined above, consider the effect of an update (w becomes w + yx) on the two terms w^Tw^* and w^Tw . We will use two facts:

- $y(x^Tw) \le 0$: This holds because x is misclassified by w otherwise we wouldn't make the update.
- $v(x^Tw^*) > 0$: This holds because w^* is a separating hyperplane and classifies all points correctly.

1. Consider the effect of an update on
$$\mathbf{w}^{\mathsf{T}}\mathbf{w}^{*}$$
:
$$(\mathbf{w} + \mathbf{y}\mathbf{x})^{\mathsf{T}}\mathbf{w}^{*} = \mathbf{w}^{\mathsf{T}}\mathbf{w}^{*} + \mathbf{y}(\mathbf{x}^{\mathsf{T}}\mathbf{w}^{*}) \geq \mathbf{w}^{\mathsf{T}}\mathbf{w}^{*} + \mathbf{y}$$

The inequality follows from the fact that, for w*, the distance from the hyperplane defined by w^* to x must be at least γ (i. e. $\gamma(x^T w^*) = |x^T w^*| \ge \gamma$).

This means that for each update, w^Tw^* grows by at least γ .

2. Consider the effect of an update on w^Tw :

$$(w + yx)^{\mathsf{T}}(w + yx) = w^{\mathsf{T}}w + 2y(w^{\mathsf{T}}x) + y^{2}(x^{\mathsf{T}}x) \le w^{\mathsf{T}}w + 1$$

The inequality follows from the fact that

- $2y(w^Tx) < 0$ as we had to make an update, meaning x was misclassified
- $0 \le y^2(x^Tx) \le 1$ as $y^2=1$ and all $x^Tx \le 1$ (because $||x|| \le 1$). This means that for each update, w^Tw grows by at most 1.

3. Now we know that after M updates the following two inequalities must hold:

1)
$$\mathbf{w}^{\mathsf{T}}\mathbf{w}^{*} \geq M \mathbf{\gamma}$$

2)
$$w^{\mathsf{T}}w \leq M$$
.

We can then complete the proof:

$$M\gamma \leq w^{\top}w^{*}$$
 By (1)

$$= \| w \| \cos(\theta) \qquad \text{by definition of inner-product, where } \theta \text{ is the angle between } w \text{ and } w^{*}.$$

$$\leq ||w|| \qquad \text{by definition of } \cos, \text{ we must have } \cos(\theta) \leq 1.$$

$$= \sqrt{w^{\top}w} \qquad \text{by definition of } \|w\|$$

$$\leq \sqrt{M} \qquad \text{By (2)}$$

$$\Rightarrow M\gamma \leq \sqrt{M}$$

$$\Rightarrow M^{2}\gamma^{2} \leq M$$

$$\Rightarrow M \leq 1/\gamma^{2}$$

And hence, the number of updates M is bounded from above by a constant.

Limitations of Perceptron

- Fails to solve non-linearly separable problems (e.g., XOR)
- Can only classify linearly separable datasets
- Motivated development of multilayer perceptron

RELATION BETWEEN THE PERCEPTRON AND BAYES CLASSIFIER FOR A GAUSSIAN ENVIRONMENT

- The perceptron bears a certain relationship to a classical pattern classifier known as the Bayes classifier.
- When the environment is Gaussian, the Bayes classifier reduces to a linear classifier.

 $\mathcal{X} = \mathcal{H}$

 $\mathcal{C}_{j} = Ci = \mathcal{C}_{j}$

Bayes Classifier

- Bayes classifier, or Bayes hypothesis testing procedure
 - minimize the average risk, denoted by \Re .

• For a two-class problem, represented by classes C1 and C2, the average risk is defined by Van Trees (1968) as,

$$\Re = c_{11}p_1 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22}p_2 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} \qquad \text{Correctly classified}
+ c_{21}p_1 \int_{\mathcal{H}_2} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{12}p_2 \int_{\mathcal{H}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x} \qquad \text{missclassified}$$
(1.23)
$$missclassified$$

Where,

 p_i - prior probability that the observation vector corresponds to an object in class C1, with i=1,2, and

$$p_1 + p_2 = 1$$

 C_{ij} cost of deciding in favor of class C_i represented by subspace H_i when class C_i is true (i.e., observation vector \mathbf{x} corresponds to an object in class C_1), with i, j = 1, 2

 $p_x(\mathbf{x}|\mathcal{C}_i)$ conditional probability density function (pdf) of the random vector \mathbf{X} , given that the observation vector \mathbf{x} corresponds to an object in class \mathcal{C}_1 , with i = 1, 2.

- To minimize the risk,
 - each observation vector \mathbf{x} must be assigned in the overall observation space \mathcal{H} to either $\mathcal{H}1$ or $\mathcal{H}2$. Thus,

$$\mathcal{H} = \mathcal{H}1 + \mathcal{H}2 \dots \dots (1.24)$$

we may rewrite Eq. (1.23) in the equivalent form

$$\Re = c_{11} p_1 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) d\mathbf{x} + c_{22} p_2 \int_{\mathcal{X} - \mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}
+ c_{21} p_1 \int_{\mathcal{X} - \mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_1) \mathbf{x} + c_{12} p_2 \int_{\mathcal{X}_1} p_{\mathbf{X}}(\mathbf{x}|\mathcal{C}_2) d\mathbf{x}$$
(1.25)

where $c_{11} < c_{21}$ and $c_{22} < c_{12}$. We now observe the fact that

$$\int_{\mathcal{Y}} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) d\mathbf{x} = \int_{\mathcal{Y}} p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) d\mathbf{x} = 1$$
 (1.26)

Hence, Eq. (1.25) reduces to

$$\Re = c_{21}p_1 + c_{22}p_2
+ \int_{\Re_1} [p_2(c_{12} - c_{22}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2) - p_1(c_{21} - c_{11}) \ p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1)] d\mathbf{x}$$
(1.27)

The first two terms on the right-hand side of Eq. (1.27) represent a fixed cost. Since the requirement is to minimize the average risk \Re , we may therefore deduce the following strategy from Eq.(1.27) for optimum classification:

- 1. Assign any value of \mathbf{x} to class $\mathcal{C}\mathbf{1}$ if the expression inside the square brackets is -ve, because this will reduce the overall risk \Re .
- 2. Assign any value of \mathbf{x} to class $\mathbf{C2}$ if the expression is $+\mathbf{ve}$, because this will increase the overall risk if included in class $\mathbf{C1}$.
- 3. If the expression is $\mathbf{0}$, it doesn't affect the risk, so those values of \mathbf{x} can be assigned to either class. Here, we choose to assign them to **class** $\mathbf{C2}$.

On this basis, we may now formulate the Bayes classifier as follows:

If the condition

$$p_1(c_{21}-c_{11}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1) > p_2(c_{12}-c_{22}) p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)$$

holds, assign the observation vector **x** to subspace \mathcal{X}_1 (i.e., class \mathcal{C}_1). Otherwise assign **x** to \mathcal{X}_2 (i.e., class \mathcal{C}_2).

To simplify matters, define

$$\Lambda(\mathbf{x}) = \frac{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_1)}{p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_2)}$$
(1.28)

and

$$\xi = \frac{p_2(c_{12} - c_{22})}{p_1(c_{21} - c_{11})} \tag{1.29}$$

The quantity $\Lambda(\mathbf{x})$, the ratio of two conditional probability density functions, is called the *likelihood* ratio.

The quantity ξ is called the *threshold* of the test.

Note that both $\xi(x)$ and $\Lambda(x)$ are always positive.

6/30/2025 @Kiran Bagale 22

Bayes classifier by stating the following

If, for an observation vector \mathbf{x} , the likelihood ratio $\mathbf{\Lambda}(\mathbf{x})$ is greater than the threshold $\boldsymbol{\xi}$, assign \mathbf{x} to class $\mathbf{C1}$. Otherwise, assign it to class $\mathbf{C2}$.

The data processing involved in designing the Bayes classifier is confined entirely to the computation of the likelihood ratio $\Lambda(x)$.

Fig: Two equivalent implementations of the Bayes classifier: (a) Likelihood ratio test, (b) Log-likelihood ratio test.

6/30/2025 @Kiran Bagale 23

Bayes Classifier for a Gaussian Distribution

- Consider a case of a two-class problem, for which the underlying distribution is Gaussian.
- The random vector **X** has a mean value that depends on whether it belongs to class c1 or class c2, but the covariance matrix of **X** is the same for both classes.

Class
$$\mathscr{C}_1$$
: $\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}_1$

$$\mathbb{E}[(\mathbf{X} - \boldsymbol{\mu}_1)(\mathbf{X} - \boldsymbol{\mu}_1)^T] = \mathbf{C}$$
Class \mathscr{C}_2 : $\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}_2$

$$\mathbb{E}[(\mathbf{X} - \boldsymbol{\mu}_2)(\mathbf{X} - \boldsymbol{\mu}_2)^T] = \mathbf{C}$$

The covariance matrix C is nondiagonal, which means that the samples drawn from classes c1 and c2 are correlated. It is assumed that C is nonsingular, so that its inverse matrix C^{-1} exists.

• The conditional probability density function of **X** as the multivariate Gaussian distribution

$$p_{\mathbf{X}}(\mathbf{x}|\mathscr{C}_i) = \frac{1}{(2\pi)^{m/2}(\det(\mathbf{C}))^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right), \quad i = 1, 2 \quad (1.30)$$

where m is the dimensionality of the observation vector \mathbf{x} .

The two classes C1 and C2 are equiprobable:

$$p_1 = p_2 = \frac{1}{2} \tag{1.31}$$

Misclassifications carry the same cost, and no cost is incurred on correct classifications:

$$c_{21} = c_{12}$$
 and $c_{11} = c_{22} = 0$ (1.32)

• By substituting Eq. (1.30) into (1.28) and taking the natural logarithm, we get (after simplifications)

$$\log \Lambda(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_1)^T \mathbf{C}^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) + \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_2)^T \mathbf{C}^{-1} (\mathbf{x} - \boldsymbol{\mu}_2)$$

$$= (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \mathbf{C}^{-1} \mathbf{x} + \frac{1}{2} (\boldsymbol{\mu}_2^T \mathbf{C}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^T \mathbf{C}^{-1} \boldsymbol{\mu}_1)$$
(1.33)

• By substituting Eqs. (1.31) and (1.32) into Eq. (1.29) and taking the natural logarithm, we get

$$\log \xi = 0 \tag{1.34}$$

Equations (1.33) and (1.34) state that the Bayes classifier for the problem at hand is a *linear classifier*, as described by the relation

$$y = \mathbf{w}^T \mathbf{x} + b \tag{1.35}$$

6/30/2025 @Kiran Bagale 26

Where,

$$\mathbf{y} = \log \Lambda(\mathbf{x})$$

$$\mathbf{w} = \mathbf{C}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$b = \frac{1}{2}(\boldsymbol{\mu}_2^T \mathbf{C}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^T \mathbf{C}^{-1} \boldsymbol{\mu}_1)$$

$$(1.36)$$

$$(1.37)$$

On the basis of Eq. (1.35), we may now describe the log-likelihood ratio test for our two-class problem as follows:

If the output y of the linear combiner (including the bias b) is positive, assign the observation vector \mathbf{x} to class C1. Otherwise, assign it to class C2.

$\mu 1$ and $\mu 2$ the covariance matrix C.

Fig: Two overlapping, one-dimensional Gaussian distributions.

Perceptron vs. Bayes Classifier

Bayes Classifier

- Minimizes classification error probability, regardless of overlap between class distributions.
- Decision boundary lies where class distributions intersect (e.g., Gaussians).
- Parametric: Assumes specific distribution form (e.g., Gaussian), limiting applicability.
- Fixed design; can be made adaptive but requires more storage and computation.

• Perceptron Convergence Algorithm:

- Nonparametric: Makes no assumptions about input distribution.
- Focuses on classification errors, especially in overlapping regions.
- Performs well with nonlinear or non-Gaussian input distributions.
- Adaptive and simple: Requires only storage for weights and bias.

Statistical Approach (Naive Bayes)

Geometrical Approach (Perceptron, SVM)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Naive Bayes Classifier

THE BATCH PERCEPTRON ALGORITHM

- 1. Introduces the generalized form of a perceptron cost function.
- 2. Uses the cost function to formulate a batch version of the perceptron convergence algorithm.

we define the perceptron cost function as

$$J(\mathbf{w}) = \sum_{\mathbf{x}(n) \in \mathcal{X}} (-\mathbf{w}^T \mathbf{x}(n) d(n))$$
 (1.39)

where \mathcal{H} is the set of samples x misclassified by a perceptron using w as its weight vector.

- If all the samples are classified correctly, then the set \mathcal{H} is empty, in which case the cost function $J(\mathbf{w})$ is zero.
- In any event, the nice feature of the cost function J(w) is that it is differentiable with respect to the weight vector w.

Differentiating $J(\mathbf{w})$ with respect to \mathbf{w} yields the gradient vector,

$$\nabla J(\mathbf{w}) = \sum_{\mathbf{x}(n) \in \mathcal{X}} (-\mathbf{x}(n)d(n))$$
 (1.40)

where the *gradient operator*

$$\nabla = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, ..., \frac{\partial}{\partial w_m} \right]^T \tag{1.41}$$

In the *method of steepest descent*, the adjustment to the weight vector \mathbf{w} at each time-step of the algorithm is applied in a direction *opposite* to the gradient vector $\nabla J(\mathbf{w})$. Accordingly, the algorithm takes the form

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\nabla J(\mathbf{w})$$

$$= \mathbf{w}(n) + \eta(n) \sum_{\mathbf{x}(n) \in \mathcal{X}} \mathbf{x}(n)d(n)$$
(1.42)

which includes the single-sample correction version of the perceptron convergence algorithm as a special case.

6/30/2025 @Kiran Bagale 33

Applications and Experiment

- Simple pattern classification
- Handwritten digit recognition (basic)
- Basis for further neural network models

Summary

- Perceptron is a foundational model for neural networks
- Perceptron convergence theorem ensures learning under linear separability
- Limitations led to the evolution of deep networks

Thank You!!!