Lecture hours 30-32

Definitions and Theorems

Definition (Eigenvectors - Eigenvalues). A vector $\vec{v} \in \mathbb{R}^n$ is an eigenvector of $n \times n$ matrix A if there exists a scalar λ ("lambda") such that $A\vec{v} = \lambda \vec{v}$, and $\vec{v} \neq \vec{0}$. This λ is called the corresponding eigenvalue.

Definition (Eigenspace). If A is an $n \times n$ matrix and λ is a scalar, the λ -eigenspace of A (denoted E_{λ}) is the set of all vector $\vec{v} \in \mathbb{R}^n$ such that $A\vec{v} = \lambda \vec{v}$. So, the nonzero vector in E_{λ} are exactly the eigenvector of A with eigenvalues λ . This set is a subspace.

Definition (Geometric Multiplicity). The geometric multiplicity of an eigenvalue λ is the dimension of its eigenspace (dim (ker(λ I - A))).

Definition (Algebraic Multiplicity). The algebraic multiplicity of an eigenvalue λ_1 is the number of times the factor $(\lambda - \lambda_1)$ appears in the characteristic polynomial $c_A(\lambda) \stackrel{\text{def}}{=} \det(\lambda I - A)$.

Definition (Diagonalization). We say a $n \times n$ matrix A is diagonalizable if there exists an invertible matrix S and a diagonal matrix B such that $A = SBS^{-1}$.

Problem 52. For what values of λ is the following matrix invertible?

$$\begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & 1 - \lambda & -2 & 7 \\ 0 & -1 & 2 - \lambda & 3 \\ 0 & 0 & 0 & 4 - \lambda \end{bmatrix}.$$

Problem 53. For which values of k does the matrix

$$\begin{bmatrix} k+1 & k \\ -k & 1-k \end{bmatrix}$$

have an eigenbasis?

Problem 54 (Eigenvalues). Two $n \times n$ matrices A and B are called *similar* if there is an invertible matrix S with $A = SBS^{-1}$.

- a) Show that if X and Y are similar, then $\det X = \det Y$.
- b) Show that if A is similar to B, then the matrix $\lambda I A$ is similar to $\lambda I B$.
- c) Use the previous two parts to show that similar matrices have the same eigenvalues. (Hint: use the characteristic polynomial).

Problem 55 (Diagonalization and Dynamical Systems). The matrix A has the following eigenvectors and eigenvalues: $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ with eigenvalue $\lambda_1 = 1$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ with eigenvalue $\lambda_2 = -1$, and $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ with eigenvalue $\lambda_3 = 2$.

- a) Diagonalise A, i.e., find a matrix S such that $S^{-1}AS$ is a diagonal matrix.
- b) Find a closed form for A^{2021} .
- c) Consider the discrete dynamical system given by $\vec{x}(t+1) = A\vec{x}(t)$ with initial condition $\vec{x}(0) = \begin{bmatrix} 1000 \\ 2000 \\ 3000 \end{bmatrix}$. Find x(2021).