120 points) Problem #1

You're given the following filter, and you measure the magnitude and phase of its transfer function $(H(j\omega) =$

(a) What type of filter is this (specify whether it is first- or second-order)? What is/are this filter's cutoff frequency/frequencies (reasonable estimates are okay)? [5 points]

$$W_1 \approx 7 \times 10^4 \text{ rod/s}$$
 \ $\sim 3 \times 10^6 \text{ rad/s}$ \ $\sim 3 \times 10^6 \text{ rad/s}$

(b) If $V_i(t) = 0.5\cos(2000t)$ V, then what is $V_o(t)$ (again, reasonable estimates are okay)? [5 points]

$$-20 dB = 70 \log_{10} \left(\frac{|V_0|}{|V_1|}\right) dB$$

$$-1 = \log_{10} \left(\frac{|V_0|}{0.5}\right)$$

$$1111 = 0.05$$

Continue on next page...

Name: Inwer Rey

(c) Solve for the values of R & L needed to achieve this transfer function, assuming that C = 5.55 nF and the quality factor for this circuit can be expressed as $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$. [10 points]

$$Q = \frac{\omega_n}{B} = \frac{\omega_n}{\omega_2 - \omega_1} \frac{3 \times 10^5}{(4.5 \times 10^6 - 2 \times 10^4)} = 0.067$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 0.067 = \frac{1}{R} \sqrt{\frac{2 \times 10^{-3}}{5.55 \times 10^{-9}}}$$

Name: Answer Rey

Problem #3 [25 points] [25]

 $I_s(t) = 10\cos(1000t) \text{ mA}$

$$Z_1 = 20 \Omega$$

$$Z_2 = 30 \Omega$$

$$Z_3 = ?$$

$$Z_4$$
 = variable load

 $Z_{1...4}$ represent discrete components in the circuit (i.e., resistors, capacitors, and inductors). When $Z_4 = \infty$ (open circuit across terminals a & b), $v_{ab} = 120 \cos(1000t)$ mV, and when $Z_4 = 0$ (short circuit across terminals a to b), $i_4 = 9.86 \cos(1000t + 9.46^\circ)$ mA.

(a) What is the Norton impedance for the circuit as seen from \mathbb{Z}_4 (i.e., \mathbb{Z}_4 acts as the load)? [5 points]

$$Z_{n} = \frac{V_{oc}}{i_{sc}} = \frac{120 \times 10^{-3}}{9.86 \times 10^{-3} / 9.46} = 12.17 / 29.460$$

$$= 12.0 - 2j - 12$$

(b) Given Z_T , what is Z_3 ? [5 points]

$$12-2j = \frac{2}{3} + 12$$

(c) Is Z_3 a resistor, a capacitor, or an inductor? What is the value of this component? [5 points]

Continue on the next page...

Name: Induer Ly

(d) Solve for $i_4(t)$ if Z_4 is a 5 mH inductor. [5 points]

(e) Solve for $v_{ab}(t)$ if Z_4 is a 5 mH inductor (same as (d)). [5 points]

$$v_{ab}(t) = v_{4}(t) = L \frac{din(t)}{dt} = (5 \times 10^{-3})(-1000)(10^{-3})(9.7) \text{sm}(1000t-140)V$$

Name: Answer Rey

Problem #4/3[18 points]

$$V_s(t) = 20\cos(100t) \text{ V}$$
 $I_s(t) = 10\cos(1000t + 20^\circ) \text{ mA}$
 $R_1 = 100 \Omega$
 $R_2 = 500 \Omega$
 $C_1 = 250 \mu\text{F}$
 $C_2 = 750 \mu\text{F}$
 $L = 5 \text{ mH}$

Assume that all of the sources have been on for a long time (i.e., the circuit is in a steady-state condition).

(a) Solve for an expression for $V_L(t)$. [5 points]

$$V_{L} = L_{L} Z_{L} = (10/20^{\circ})(\frac{1000 \times 5 \times 10^{-3}}{1000 \times 5 \times 10^{-3}}) = \frac{50/110^{\circ}}{1000 \times 5 \times 10^{-3}} = \frac{50/110^{\circ}}{1000 \times 10^{-3}} = \frac{50/110^$$

(b) Solve for an expression for $I_{O_1}(t)$. [15 points] $Ceq = C_1 + C_2 = 1000 \text{ a.f.}$ $Ceq = C_1 + C_2 = 1000 \text{ a.f.}$ $Ceq = \frac{1}{2} + \frac{$

$$\frac{c_{v_{s}} = \sqrt{s}}{2e_{eq} + 2c_{eq}} = \frac{20/0}{600 - 10j} = 0.0333 / 1.0^{\circ}$$
Current División w/i (eq.: $c_{v_{s}} = c_{v_{s}} = \frac{2c_{i}}{2c_{i} + 2c_{2}} = 0.0333 / 1.0^{\circ} = \frac{-13.33j}{-40j - 13.33j}$

$$\frac{c_{v_{s}}(t)}{c_{v_{s}}(t)} = 0.0083cos (100t + 1.0^{\circ})A$$
Continue on the next page if necessary...

Problem #4 continued...

Name: Answer Key

$$i_{IS} = I_{S} \frac{100}{160 + 500 - 10j}$$

$$= -10 / 20^{\circ} \frac{160}{600 - j}$$

$$= -10 / 20^{\circ} \frac{100}{600 / 0.1^{\circ}} (100) = -\frac{5}{3} / 19.9^{\circ}$$

$$i_{C_{1}} = i_{1}s (0.25) = -\frac{5}{12} / \frac{19.9}{19.9}$$

$$i_{C_{1}} = i_{2}s (0.25) = -\frac{5}{12} / \frac{19.9}{19.9}$$

BME153L.001 - Test #	2 Name:
Problem [70] points]:	For the circuit below, use phasor techniques to solve for Vo(t):
$Is = 10 \cos 2t$ 1020	$3 \Omega \geqslant 3 H \geqslant 1/3 F \longrightarrow 1 F \longrightarrow Vo(t)$
\$ W=2	$\frac{combine}{combine} = 1 cap 1/3 = Cc$
all in 11	=> use current dividen, to solve fin Vo.
1 _R =	15 = 15 = 15 = 15 = 3 = 16+ j = 3
	$= j_{5} \frac{2}{2-j+16j} = j_{5} \frac{2}{2\pm 15j} = j_{5} \frac{2}{15i^{3}} A^{82}$
	210
j	e = 1.32 L82 -820 = -1.438 rad.
Vo:	2 = 1.32 282 -82° = -1.438 rad. $= 1.82 = 3.96 282 - 4000 rad but Not = 3.96 cos(2t $82°) - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$
	15 And 305 march
	3-2+331

· 8/3

, and the second	4	
TO SEE SHOT OO -	11/	[]
BME153L.001 - 7	Fest #2 (フノ
- A-		

Name:

Problem [30 points]: Design a passive RC highpass filter that will attenuate signals with frequencies of 600 rad/sec by 20 dB.

- 4 (a) Draw your circuit.
- ↓ (b) Derive its transfer function.
- $\sqrt{\text{(c)}}$ What is your desired cutoff frequency? —
- ζ (d) What component values will you use?
- (e) Draw the Bode plot (both magnitude and phase) for your circuit.
- \mathcal{V} (f) Now design a passive RL highpass filter with the same cutoff frequency and draw your circuit.
- $\Im(g)$ What component values will you use?

(h) Describe the differences (if any) you would expect in the Bode plots between your RL and RC filters. NOTE: You do not have to draw this Bode plot.

$$\frac{V_0}{V_{in}} = \frac{R}{R + \frac{1}{j}wR} = \frac{1}{1+j}wRC$$

$$\frac{V_0}{V_{in}} = \frac{1}{R} + \frac{1}{j}wRC$$

Odb 600 (0) 1/2 Wu

$$\gamma = 1k \Rightarrow 6000 = \frac{1}{L}$$

Key points from the battery question:

- Batteries utilize oxidation-reduction (redox) reactions in half cells (cathode and anode) to generate a voltage difference across two terminals.
- Rechargeable batteries can have charge in these half cells replenished by having a reversed voltage difference applied across their terminals.
- The individual cells of different types of batteries utilize different redox reactions that are responsible for different typical single cell voltages.

Battery Type	Half Cell Reagents	Single Cell Voltage (V)	Notes
Alkaline	Zn, Mn	1.5	not rechargeable
Lead Acid	Pb, HSO ₄	2.1	heavy
NiCad	Ni, Cd	1.2	charging "memory" (bad)
NiMH	Ni, metal alloy	1.2	not as heavy; need smart charger
Lilon	Li, C	3.7	very high energy density; fire hazard

- BME design considerations:
 - Safety
 - Weight
 - Durability
 - Biocompatibility
 - Energy density / life expectancy

Lithern whichers called fearing to shape our with the fire

De Colonia

to provent hille de that causes plating of theiring also provents