Estadística y pronósticos para la toma de decisiones.

Profesor: Dr. Naím Manríquez

Universidad Tecmilenio

Objetivo del ejercicio: Realizar la predicción y el análisis de cada problema, encontrando la ecuación por medio de la regresión.

Descripción del ejercicio: A través de esta actividad el alumno comprenderá la utilidad en la predicción y el análisis por medio de la regresión lineal y múltiple.

Instrucciones:

Realiza las siguientes acciones:

1. Los tiempos de atención a clientes en las cajas de un supermercado y los valores de las compras están registrados en la siguiente tabla.

Tiempo requerido de atención (en minutos) x	Valor de las compras (en dólares)
	y
3.6	30.6
4.1	30.5
.8	2.4
5.7	42.2
3.4	21.8
1.8	6.2
4.3	40.1
.2	2.0
2.6	15.5
1.3	6.5

- a. Estimen la ecuación de regresión lineal.
- b. Calculen las predicciones (valores puntuales) para los siguientes valores de X_0 : 3, 4, 5, 6,7.
- c. Obtengan los intervalos de confianza al 99 para cada valor puntual de Y para los diferentes valores de X_0 .

Estadística. Universidad Tecmilenio – Campus Mazatlán

2. A continuación, se presentan la calificación de una muestra aleatoria de estudiantes de nuevo ingreso a cierta universidad, en la clase de estadística. Así como sus calificaciones en el examen y las clases perdidas por estudiante.

Estudiante	Calificación en	Calificación en	Clases
	estadística (y)	el examen	perdidas (x2)
		(x1)	
1	85	65	1
2	74	50	7
3	76	55	5
4	90	65	2
5	85	55	6
6	87	70	3
7	94	65	2
8	98	70	5
9	81	55	4
10	91	70	3
11	76	50	1
12	74	55	4

- a. Ajuste una ecuación de regresión lineal múltiple de la forma $\hat{Y}=b_0+b_1x_1+b_2x_2$.
- b. Estime la calificación de estadística para un estudiante que en la prueba de inteligencia obtuvo 50 de calificación y perdió 3 clases.

3. En una compañía manufacturera de línea blanca se llevan a cabo algunos ensayos experimentales, con un horno para determinar una forma de predecir el tiempo de cocción (y), a diferentes niveles de ancho del horno (x1) y a diferentes temperaturas (x2).

Los datos obtenidos están representados en la tabla:

Tiempo de cocción (y)	Niveles de ancho del horno en ft (x1)	Temperatura en °C (x2)
6.40	1.32	1.15
15.05	2.69	3.40
18.75	3.56	4.10
30.25	4.41	8.75
44.85	5.35	14.82
48.94	6.20	15.15
51.55	7.12	15.32
61.50	8.87	18.18
100.44	9.80	35.19
111.42	10.65	40.40

- a. Estime la ecuación de regresión lineal múltiple.
- b. Interpreta los coeficientes individuales de la ecuación de regresión lineal múltiple considerando el contexto del problema.
- c. Pronostica el tiempo de cocimiento cuando el nivel del ancho del horno es de 5 pies y la temperatura de cocción es de 25°Centigrados.

Preguntas de discusión en el aula

- a. ¿Qué diferencia existe entre hacer una predicción de un valor de X, empleando la ecuación de regresión lineal, y hacer una predicción considerando las fuentes de incertidumbre relacionadas con la predicción puntal?
- b. Considerando los problemas que realizaste en la actividad, ¿a qué conclusiones puedes llegar respecto al ajuste de la ecuación y las contribuciones de las variables independientes?
- c. ¿En qué situaciones es útil emplear una regresión lineal múltiple? ¿Cómo decides emplear una regresión lineal múltiple y no una regresión lineal?

Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada.