

NATIONAL OPEN UNIVERSITY OF NIGERIA UNIVERSITY VILLAGE, PLOT 91 CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESS WAY, JABI - ABUJA. FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCES SEPTEMBER 2020_1 EXAMINATION

COURSE CODE: CHM 306

COURSE TITLE: INSTRUMENTAL METHODS OF ANALYSIS

COURSE UNIT: 2

TIME: 2 HOURS

INSTRUCTION: Answer question one and any other three questions.

1a) What is Infrared spectroscopy? 2 marks

1b) Explain briefly the principle of Infrared spectroscopy. 6 marks

1c) State two (2) applications of IR spectroscopy. 2 marks

1d) When X-rays of wavelength 1.54x 10^{-8} cm is passed through NaCl, an intense cone is formed at θ = 15.87°. Determine its spacing, d between the planes, If this is taken as first order reflection.

1e) Define Fourier transform spectroscopy.

2 marks

1f) Enumerate four (4) advantages of Fourier Transform Infra-Red (FTIR) spectrophotometer. 2 marks

1g) Write short notes on the basic Principle of Polarimetry. $6^{1/2}$ marks

2ai) Define x-ray spectroscopy.

2 marks.

2aii) Enumerate three (3) common sources of x-rays.

2 marks

2bi) Draw and label a block diagram of an X-ray emission spectrometer.

3 marks

2bii) Give a brief account on how X-ray emission spectrometer operates.

3marks

2ci) List any two applications of X-ray spectroscopy.	2 marks
2cii) Enumerate three (3) types of x-ray detectors.	3 marks
3ai) What is Nuclear Magnetic Resonance (NMR) spectroscopy?	2 marks
3aii) Outline the six (6) basic components of an NMR spectrometer.	3 marks
3b) Explain the pattern of an NMR spectrum.	5 marks
3c) What is the effect of the following on the fluorescence spectroscopy?	
i. Temperature and solvent	2 marks
ii. Concentration	3 marks
4a) Define voltammetry and give its two major subdivisions.	3 marks
4bi) Give an illustration of a polarogram.	3 marks
4bii) From (bi), explain the meanings of:	
(I) halfway potential	4 marks
(II) diffusion current.	2 marks
4c) Enumerate three (3) applications of polarography.	3 marks
5ai) What is Interferometer?	2 marks
5aii) In an FTIR analysis, a wavelength of 100 μm was used. Express this in terms of:	
i. wave numberii. frequency	2½ marks 3½ marks
5b) Distinguish between dextrorotatory and laevorotatory. 3 marks	
5c) List (four) 4 uses of Polarimeter.	4 marks