Лабораторная работа №2

студента группы ИТ – 42 Курбатовой Софьи Андреевны

Выполнение:	Защита	

МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ НЕЗАВИСИМЫХ ВЕЛИЧИН

Цель работы: уточнение имитационной модели СМО посредством моделирования случайных величин, характеризующих параметры заявок и режимы функционирования устройств их обработки в реальной сложной системе.

Содержание работы

Система обработки информации содержит мультиплексный канал и N ЭВМ. Сигналы поступают на вход канала через t1(мкс).

В канале они предварительно обрабатываются в течение t2 (мкс). Затем они поступают на обработку в ту ЭВМ, где наименьшая очередь. Емкости входных накопителей в каждой ЭВМ - Е. Время обработки сигнала в каждой из ЭВМ - t3 (мкс).

Смоделировать процесс обработки 1000 сигналов.

Данные для детерминированной модели CMO: N=3, t1=10, t2=10, t3=33, E=4.

Данные для стохастической модели СМО: интервал t1 распределен по показательному закону с параметром $\lambda 1$ =0,1, интервалы t2, t3 распределены нормально с параметрами m2=10, m3=33, $\sigma 2$ =1,5, $\sigma 3$ =3; вследствие возмущающих воздействий емкости входных накопителей каждой из ЭВМ непрерывно меняются, поэтому величина Е является стационарным случайным процессом с нормальным законом распределения и интервалом разброса [2... 6] (сигналы, находившиеся в накопителе до изменения его емкости и не вмещающиеся в него после изменения его емкости, уничтожаются).

Варьируемые параметры: N.

Показатели работы: производительность системы, стоимость обработки, вероятность переполнения накопителей.

Ход работы

Условные обозначения: Aij – активность, $\Phi Дi$ – функциональное действие, Y3ij – условие запуска.

В системе наблюдаются следующие функциональные действия (ФД):

ФД1 – приход сигнала с интервалом t1

ФД2 – обработка сигнала внутри канала

ФДЗ – поступление на обработку в ЭВМ с наименьшей очередью

Предполагается наличие следующих активностей:

А10 – Поступление сигнала в канал

А21 – Обработка сигнала внутри канала

А22 – Конец обработки и переход к следующему

А31 – Определение ЭВМ с меньшей очередью (где емкость больше)

А32 — Выполнение обработки сигнала в ЭВМ Кобрбсигн — количество обработанных сигналов. Квх — количество принятых (входных) сигналов Кпотерсигнал — количество сигналов, которые были потеряны

В задании одна случайная величина T1 распределяется по показательному закону распределения $\lambda 1$ =0,1 и две случайные величины (T2, T3) распределены по показательному закону распределения: m2=10, m3=33, a $\sigma 2$ =1,5, $\sigma 3$ =3.

$$T_1(t) = 0.1e^{-0.1t}$$

$$T_2(t) = \frac{1}{1.5\sqrt{2\pi}}e^{-\frac{(t-10)^2}{4.5}}$$

$$T_3(t) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(t-14)^2}{18}}$$

Далее был разработан программный модуль для генерации случайных чисел в соответствии с законами, описанными выше. Код для представлен на листинге 1.

Листинг 1

На рисунке ниже представлены результаты генерации чисел:

1	Показательная величина	Нормальная величина 1	Нормальная величина 2
2	7,335539802	8,839217068	33,74843671
3	3,041088123	8,681210142	33,71219306
4	2,488495351	11,75309731	28,85789497
5	9,042545037	10,51605867	37,61208981
6	8,522707849	12,19490501	30,56404817
7	4,823946016	12,80729281	34,41752865
8	2,330164874	11,89862106	28,84177724
9	4,114683183	9,164978466	36,25207597
10	1,251988417	10,76713883	33,80571016
11	12,50998866	10,82787412	37,80779225
12	8,504672531	10,54916483	32,46304338
13	11,84004488	7,578769245	29,10089423
14	43,86276994	10,05196071	36,27096062
15	0,595449073	12,28597981	34,12825617
16	23,96518059	11,66765691	27,27171262
17	16,71510111	11,22061909	31,06830131

Рис. 2.1. Сгенерированные числа

- 2. Далее было произведено тестирование по гистограмме. Полученные последовательности необходимо проверить на соответствие теоретическому закону распределения. Для этого:
 - 1. выбрала из полученных последовательностей минимальное и максимальное значение.
 - 2. интервал разбиения последовательности m=20, $N>=10^2 m => N=2000$.
 - 3. в каждый интервал попадает Nj чисел с вероятностью $P_j^{cm} = \frac{N_j}{N}$, где $N = \sum_{j=l}^m N_j$,
 - 4.выполнение расчета ширины и высоты получаемых гистограмм будет происходить по

формулам:
$$\begin{pmatrix} (x_j-x_{j-l}) & h_j = \frac{P_j^{cm}}{\left(x_j-x_{j-l}\right)}.$$

Фрагмент результатов расчета приведен на рисунках 2.2 и 2.3. deltaY – шаг.

Мин	Макс	М	deltaY	y[i]	n[i]	N	p[i]	h[i]
0,001	68,236	20,000	3,412	0,001	582,000	2000,000	0,291	0,085
				3,413	400,000		0,200	0,059
				6,824	277,000		0,139	0,041
				10,236	230,000		0,115	0,034
				13,648	147,000		0,074	0,022

Рис. 2.2. Фрагмент расчета для распределения t1

					00,200	0,000		0,000	0,000
ı	Иин	Макс	M	deltaY	y[i]	n[i]	N	p[i]	h[i]
	4,824	15,924	20,000	0,555	4,824	1,000	2000,000	0,001	0,000
					5,379	5,000		0,003	0,001
					5,934	19,000		0,010	0,003
					6,489	40,000		0,020	0,006

Рис. 2.3. Фрагмент расчета для t2

На рисунке 2.4 и 2.5 показаны полученные гистограммы, на основании которых можно говорить о том, что сгенерированная программно последовательность соответствует заданным законам распределения.

Рис. 2.4. Гистограмма для распределения по показательному закону

Рис. 2.5. Гистограмма для распределения по нормальному закону

2. Произведем тестирование по критерию согласия Колмогорова. При использовании критерия согласия Колмогорова на графике теоретической функции распределения F(y) строится

$$\mathbf{F}^{\mathrm{cr}}(\mathbf{y}_{k}) = \sum_{i=1}^{k} \mathbf{P}_{i}^{\mathrm{cm}}, k = 1, 2... \mathbf{N}.$$

$$\mathbf{D} = \max |\mathbf{F}^{\mathrm{cm}}(\mathbf{x}) - \mathbf{F}(\mathbf{x})|, \lambda = \mathbf{D}\sqrt{\mathbf{N}}$$

Был произведен расчет по данным полученным в п.1. Было получено, что D =0,99 , λ = 2,19. По таблице выберем ближайшее значение вероятности: p(2,19) = 0,001 . Таким образом можно говорить о том, что с вероятностью 0,001 полученные значения соответствуют заданному распределению.

λ	$p(\lambda)$	λ	$p(\lambda)$	λ	$p(\lambda)$
0,0	1,000	0,7	0,711	1,4	0,040
0,1	1,000	0,8	0,544	1,5	0,022
0,2	1,000	0,9	0,393	1,6	0,012
0,3	1,000	1,0	0,270	1,7	0,006
0,4	0,997	1,1	0,178	1,8	0,003
0,5	0,964	1,2	0,112	1,9	0,002
0,6	0,864	1,3	0,068	2,0	0,001

Рис. 2.6. Таблица распределения Колмогорова

Критерий Колмогорова	F(y[i])Teop	F(y[i])факт	одули разнос	D	λ
$p(\lambda) = 0,001$	0,000280	0,001	0,000220088	0,999960836	2,19638
	0,001034	0,003	0,001466305		
	0,003360	0,010	0,006139744		
	0,009632	0,020	0,010368293		
	0,024396	0,031	0,006603871		

Рис. 2.7. Фрагмент вычислений

Разработанный модуль генерирования чисел был внедрен в модуль созданной в лабораторной работе 1 программы. Разница представлена на рисунках 2.8 и 2.9.

Рис. 2.8. При детерминированной модели

Рис. 2.9. Случайные значения

```
      t0; prepTimeComp; MINcomp; Capacity; prepSignal; Message
      t0; prepTimeComp; MINcomp; Capacity; prepSignal; Message

      0; 0; 0; 1; 0; 06pa6oтка в ЭВМ
      0; 0; 0; 1; 0; 06pa6oтка в ЭВМ

      10; 0; 0; 2; 0; 0fopa6oтка в ЭВМ
      10; 0; 2; 1; 0; 06pa6oтка в ВВМ

      20; 0; 2; 0; 0; 06pa6oтка в ВВМ
      20; 0; 1; 1; 0; 06pa6oтка в ВВМ

      20; 0; 2; 1; 0; 06pa6oтка в ВВМ
      20; 0; 1; 1; 0; 06pa6oтка в ВВМ

      30; 0; 2; 2; 0; 0fpa6oтка в ВВМ
      30; 0; 1; 0; 06pa6oтка в ВВМ

      40; 0; 2; 2; 0; 0; 0pa6oтка в ВВМ
      30; 0; 1; 0; 06pa6oтка в ВВМ

      40; 0; 1; 0; 0; 05pa6oтка в ВВМ
      30; 0; 1; 0; 0; 06pa6oтка в ВВМ

      40; 0; 1; 0; 0; 05pa6oтка в ВВМ
      30; 0; 1; 0; 0; 06pa6oтка в ВВМ

      40; 0; 1; 0; 0; 05pa6oтка в ВВМ
      40; 0; 2; 0; прием сигнала

      40; 40; 1; 1; 1; 1; 06pa6oтка в ВВМ
      40; 0; 2; 1; 0; 06pa6oтка в ВВМ

      50; 40; 1; 1; 1; 1; 06pa6oтка в ВВМ
      40; 0; 2; 1; 1; 06pa6oтка в ВВМ

      60; 40; 0; 3; 1; 06pa6oтка в ВВВМ
      40; 40; 2; 1; 1; 06pa6otrka в ВВМ

      60; 40; 0; 3; 1; 06pa6otrka в ВВВМ
      50; 40; 2; 1; 1; 06pa6otrka в ВВМ

      70; 40; 0; 4; 1; 0fpa6otrka в Канале
      60; 40; 0; 3; 1; 06pa6otrka в ВВМ

      80; 40; 2; 2; 1; 06pa6otrka в Канале
      80; 40; 2; 2; 1; 1; 06pa6otrka в ВВМ

      80; 40; 2; 2; 1; 1; 06pa6otrka в Канале
      80; 80; 2; 1; 2; 06pa6otrka в ВВМ

      80; 80; 2
  60;40;1;1;1;Прием сигнала 60;40;0;2;1;0бработка в канале 60;40;0;3;1;0бработка в эВМ 70;40;0;4;1;0бработка в ЭВМ 80;40;0;4;1;Прием сигнала 80;40;2;2;1;0бработка в канале 80;80;2;1;2;0бработка в ЭВМ 90;80;2;2;2;0бработка в ЭВМ 100;80;2;2;2;Прием сигнала 100;80;1;1;2;0бработка в канале 100;80;1;1;2;0бработка в ЭВМ 110;80;1;3;2;0бработка в ЭВМ 110;80;1;3;2;0бработка в ЭВМ 120;80;1;3;2;Прием сигнала 120;80;1;3;2;Прием сигнала 120;80;2;2;2;0бработка в канале
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       110;80;2;2;2;Прием Сигнала
110;80;2;2;2;Прием Сигнала
110;110;2;1;3;Обработка в ЭВМ
120;110;2;1;3;Прием Сигнала
120;110;0;4;3;Обработка в канале
```

Рис. 2.10. Протокол моделирования до/после

Вывод: Таким образом в ходе выполнения лабораторной работы было осуществлено построение имитационной модели системы массового обслуживания, параметры которой являются стохастическими величинами. Результатом выполненной работы стало настольное приложение позволяющее смоделировать процесс обработки входящих сигналов.