Loan Eligibility Code in Data Science

1. Import Necessary Libraries:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
2. Load the Dataset:
data = pd.read_csv("loan_data.csv") # Replace with your file path
3. Exploratory Data Analysis (EDA):
Check for null values:
print(data.isnull().sum())
Summary statistics:
print(data.describe())
Visualizations:

```
sns.countplot(x='Loan_Status', data=data)
plt.show()
4. Data Preprocessing:
_____
# Handle missing values:
data.fillna(data.median(), inplace=True)
# Encode categorical variables:
le = LabelEncoder()
for column in ['Gender', 'Married', 'Education', 'Property_Area']:
  data[column] = le.fit_transform(data[column])
5. Split Data:
X = data.drop('Loan_Status', axis=1)
y = data['Loan_Status']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
6. Build a Model:
# Train a Random Forest Classifier:
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# Predictions:
y_pred = model.predict(X_test)
```

7. Evaluate the Model:
<pre>print("Accuracy:", accuracy_score(y_test, y_pred))</pre>
<pre>print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))</pre>
8. Deployment and Save Model:
import joblib
joblib.dump(model, 'loan_eligibility_model.pkl')