Universidad del Valle de Guatemala Programación de Microcontroladores Prof. José Morales Prof. Yosemite Melendez

Pablo Andres Figueroa Gámez - 21775

Repositorio de Github: https://github.com/PabloFigue/Proyecto Generador Funciones

Proyecto: Generador de Funciones

Circuitos Utilizados: El circuito completo utilizado para la simulación en el software proteus se presenta a continuación, conteniendo los principales componentes:

- DAC R2R para la conversión de una señal digital a analógica (PUERTO A del PIC16F887)
- Display de 4 dígitos de 7 segmentos para la presentación de la frecuencia (PUERTO C del PIC16F887)
- Push Button en formato PULL-UP (PUERTO B del PIC16F887)
- Transistores 2N222 para la elección del dígito a mostrar en el display (PUERTO D del PIC16F887)
- Resistencias Variadas
- Leds para mostrar kHz o Hz (PUERTO E del PIC16FF887)

Datos:

Para la realización de este proyecto se hizo uso del módulo TMR0 y el módulo TMR2 los cuales pueden funcionar como temporizadores o contadores. En este caso, fueron utilizados como temporizadores y por lo tanto se calcularon algunos datos como el valor inicial de conteo o de comparación para tener un tiempo y por lo tanto frecuencia de interrupción de cada uno de los módulos.

En el módulo TMR0 del PIC16F887 el tiempo de interrupción se calcula con la siguiente fórmula:

Por lo tanto, la frecuencia de interrupción del TMR0 es 1/Tiempo.

Y para el móudulo TMR2 del PIC16F887, el tiempo de interrupción se calcula utilizando la siguiente formula:

$$T_{TMR2IF} = Prescaler \cdot PR2 \cdot Postscaler \cdot \frac{1}{(F_{OSC}/4)}$$

por lo tanto la frecuencia de interrupción del TMR2 es $1/T_{\it TMR2IF}$

Ya habiendo definido las formulas utilizadas para calcular la frecuencia de interrupción de cada uno de estos módulos que posee el PIC16F887, se define a continuación para que fueron utilizados y si se realizó algún calculo posterior con estos.

- TMR0: El modulo del TMR0 fue utilizado para el control de las señales generadas, estas se dividen en dos grupos:
 - Cuadrada: Cada reinicio del TMR0, se realizaba un cambio en una bandera lo cual indicaba encendido o apagado de todo el puerto C. Por lo que la frecuencia generada a partir del TMR0 para la señal cuadrada es la mitad Fec. tmr0/2
 - Senoidal y Triangular: Cada reinicio del TMR0, se realiza un incremento en un registro, produciendo de esta manera una señal Diente de sierra ya que se reinicia automáticamente al llegar al valor 256, luego en cada interrupción se mapea el valor a la señal triangular o senoidal dependiendo de otras configuraciones por lo tanto la frecuencia de estas ondas es la frecuencia de reinicio del TMR0 entre 256.

Fec. tmr0/256

- TMR2: El modulo del TMR2 fue utilizado en este proyecto para el cambio de muestre en el display de 4 digitos de 7 segmentos, por lo que se utilizó únicamente una frecuencia constante para cambiar de display y así visualizar como que todos los display están encendidos al mismo tiempo.

Para hacer este proyecto se estáblecio un incremento de 25 Hz entre cada una de las frecuencias desde la frecuencia 25Hz hasta la 2000Hz, luego un incremento de 50 Hz desde la frecuencia 2000Hz hasta la frecuencia 5000Hz y posteriormente un incremento de aleatorio hasta la frecuencia máxima.

Lo cual se puede observar en la siguiente tabla donde se muestran los 82 valores de frecuencia para cada una de las señales CUADRADA, TRIANGULAR Y SENOIDAL, así mismo como sus valores respectivos y luego sus valores del TMR0 para la frecuencia calculada en excel con la formula descrita anteriormente.

				Frecuencia	Frecuencia	43	4	48	2403.85	1180	18
	PRESCALER	TMR0	FRECUENCIA	Cuadrada	SENO/TRIANGULAR	44	4	56	2500	1225	18
0	256	100	50.08	25	0	-					
1	256	178	100.16	50	1	45	4	64	2604.17	1276	19
2	256	204	150.24	74	1	46	4	71	2702.7	1324	20
3	256	217	200.32	99	2	47	4	78	2808.99	1375	20
4	32	6	250	123	2	48	4	84	2906.98	1420	21
_ 5	32	48	300.48	147	2	49	4	89	2994.01	1460	22
6	32	78	351.12	171	3	50	4	95	3105.59	1517	23
7	32	100	400.64	195	3	51	4	100	3205.13	1562	24
8	32	117	449.64	217	3	52	4	105	3311.26	1615	24
9	32	131	500	241	4	53	4	109	3401.36	1650	25
_10	32	143	553.1	266	4	54	4	113	3496.5	1698	25
11	32	152	600	288 310	4	55	4	117	3597.12	1750	26
12	32	160	651.04		5	56	4	121	3703.7	1796	27
13	32 32	167 173	702.25 753.01	334 365	6	57	4	125	3816.79	1854	27
15	32	178	801.28	388	6	58	2	0	3906.25	1894	28
16	16	109	850.34	411	6	59	2	6	4000	1941	29
17	16	117	899.28	434	7	60		12			30
18	16	125	954.2	459	7		2		4098.36	1984	
19	8	6	1000	480	7	61	2	18	4201.68	2030	31
20	8	18	1050.42	503	8	62	2	24	4310.34	2083	31
21	8	29	1101.32	527	8	63	2	29	4405.29	2126	32
22	8	39	1152.07	550	9	64	2	34	4504.5	2175	32
23	8	48	1201.92	572	9	65	2	56	5000	2400	36
24	8	56	1250	594	9	66	2	89	5988.02	2850	42
25	8	64	1302.08	618	10	67	2	113	6993.01	3305	50
26	8	71	1351.35	640	10	68	2	131	8000	3751	55
27	8	78	1404.49	663	11	69	2	145	9009.01	4190	63
28	8	84	1453.49	685	11	70	2	156	10000	4615	68
29	8	90	1506.02	708	11	71	2	206	20000	8560	125
30	8	95	1552.8	729	12	72	2	223	30303.03	12060	178
31	8	100	1602.56	751	12	73	2	231	40000	14950	220
32	8	105	1655.63	774 794	12 13	74	2	236	50000	17550	250
33	8	109 113	1700.68 1748.25	794 814	13	75			62500		250
35	8	117	1798.56	836	14	_	2	240		20420	
36	8	121	1851.85	860	14	76	2	242	71428.57	20830	250
37	8	125	1908.4	884	14		2	244	83333.33	20830	250
38	8	128	1953.13	902	15	78	2	245	90909.09	20830	250
39	4	6	2000	922	15	79	2	246	100000	20840	250
40	4	18	2100.84	965	16	80	2	252	250000	20850	250
41	4	29	2202.64	1081	16	81	2	254	500000	20860	250
42	4	39	2304.15	1130	17	82	2	255	1000000	20870	251

Gráficos:

Únicamente para la visualización de las señales se utilizó el osciloscopio para comprobar el correcto funcionamiento y mapeado de las señales por lo que se gráfico la señal las cuales se muestran acontinuación:

Gráfica señal Cuadrada:

Gráfica Señal Triangular:

Gráfico Señal Senoidal:

Explicaciones de algunas cosas que hice en este proyecto:

En este proyecto decidí utilizar 2 tablas las cuales considero que son las principales y esenciales para el cambio de frecuencia de interrupción del TMR0, La tabla TMR0 y la Tabla Prescaler, estas tablas utilizan como offset el valor que contiene el registro PUNTERO el cual es variable al incrementar o decrementar por medio de los botones. De esta manera cada tabla tiene correlación entre ellas ya que el valor del TMR0 y el Prescaler que se obtienen por las tablas corresponden a una frecuencia específica que ya está registrada en otras dos tablas. Las tablas de frecuencia para el display 0 y 1, y la tabla para el display 2 y 3, de igual manera tienen relación ya que el registro PUNTERO es el mismo offset para las tablas. Por lo que en el caso del puntero cuando es 0, De todas las tablas se está obteniendo respectivamente el valor almacenado en este espacio.

El uso de tablas para el mapeo de las señales triangular y senoidal se realizó porque las instrucciones que debía realizar en la interrupción eran menos que si se realizaba este mismo mapeo pero con únicamente instrucciones haciendo esto que las frecuencias máximas disminuyeran un poco más por la realización de más instrucciones en la interrupción.

Repositorio de Github: https://github.com/PabloFigue/Proyecto Generador Funciones