

4주차 터치센서를 이용한 범퍼로봇

2015.09.21.

기초로봇공학실험

- 수업일정(수정) -

주차	수업일자	수업주제	
1주차	09월 03일	기초 로봇공학 실험 수업 소개(NXT 및 ROBOTC 소개)	
2주차	09월 07일	ROBOTC 기초 프로그래밍1	
3주차	09월 14일	ROBOTC 기초 프로그래밍2	
4주차	09월 21일	범퍼 로봇(Bumper Robot)설계 및 제어 실습	
5주차	09월 28일	추석 연휴	
6주차	10월 05일	라인 로봇(Line Robot)설계 및 제어 실습	
7주차	10월 12일	보이스 로봇(Voice Robot)설계 및 제어 실습	
8주차	10월 19일	휴강(중간고사)	
9주차	10월 26일	회피 로봇(Avoid Robot)설계 및 제어 실습	
10주차	11월 02일	테스트 (순서도 / 프로그래밍)	
11주차	11월 09일	엔코더 로봇(Encoder Robot)설계 및 제어 실습	
12주차	11월 16일	블루투스 로봇(Bluetooth Robot)설계 및 제어 실습	
13주차	11월 23일	로봇 구조의 기본 형태	
14주차	11월 30일	Term Project 예비 발표 및 준비	
15주차	12월 07일	Term Project 준비	
16주차	12월 14일	Term Project 발표	

터치센서 (Touch Sensor)

✔ 터치센서

: 각종 장치에서 회로를 연결하는 입력 장치로 사용

• 상태 기억 X

: 일반적인 스위치는 전기회로를 열고 닫는데 사용

• 상태 기억 O

: 스위치를 한번 누를 때 마다 그 상태가 변하여 유지

▶ 압전센서, 터치스크린 등의 다양한 분야로 확대

터치센서 연결 및 확인

터치센서 - ROBOTC 연결 설정


```
#pragma config(Sensor, S1, touch, sensorTouch)
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
```

- Port S1 : 1번 포트 → 사용자 임의
- Name: 프로그램 상에서 사용될 센서 이름
- Type : ROBOTC에서 센서 종류에 맞게 라이브러리 지원

▶ 예제 1 : 터치센서가 눌리면 소리내기


```
#pragma config(Sensor, S1, to
//*!!Code automatically generated

task main()
{
    while(SensorValue(touch) == 0)
    {
        PlaySound(soundBeepBeep);
        wait1Msec(1000);
}
```

➤ 예제 2 : 터치센서가 눌린 동안에만 전진

▶ 예제 3 : 터치센서를 누를 때마다 전진과 정지를 반복하는 로봇

✓ 조건 : 최초 정지상태에서 버튼을 누를 때 마다 전진과 정지 반복

▶ 예제 4 : 직진 중 터치센서 눌리면 후진 후 좌우회전하고 다시 직진

✓ 조건 : 터치센서 눌리면 1초간 후진 & 좌/우 중 랜덤으로 회전한 후 다시 직진

- 1. 로봇 릴레이 게임
 - 3조씩 2팀으로 나뉘어 로봇 릴레이 게임 실시
 - 보다 빠른 시간에 도착한 팀이 승리
 - 터치센서를 이용하여 학생이 조종
 - ① 범퍼에 설치 : 눌릴 시 소리와 함께 정지
 - ② 전진 / 90도 회전 조종 (조작방법은 사용자 원하는 대로)
 - 범퍼로 다음 로봇을 터치하면 소리를 내며 정지하고 다음 로봇 시작
 - 조작 실수 시 혹은 원할 때에 그 로봇의 시작점에서 다시 시작 가능
 - 로봇 고장 혹은 조작이 원활히 안될 경우 자동 패배

1. 로봇 릴레이 게임

- 테이프 부착 지점이 시작 및 대기, 골인 지점
- 반드시 90도 회전이어야 함 (대각으로 이동은 금지)

2. 장애물 달리기

- 조별로 장애물 달리기를 하여 기록 측정
- 기록 순으로 상2 / 중2 / 하2 으로 나누어 점수 부여
- 터치센서 2개를 이용하여 학생이 직접 조종
- 최대 2번의 기회 부여

	터치센서 1	터치센서 2
전진	0	0
후진	X	X
좌회전	0	X
우회전	X	0

> Performance

항목	세부 내용	배점
1 HJ 스웨	버튼에 따른 전진 & 90도 회전 구현	2
1번 수행	승리/패배	3/1
2出 소해	버튼에 따른 전 & 후 & 좌 & 우 구현	2
2번 수행	기록 상(2) / 중(2) / 하(2)	3/2/1

> Algorithm & Programming

항목	세부 내용	배점
ヘリロ	1번 순서도	3
순서도	2번 순서도	3
프로그램	1번 소스코드	2
프로그램 능숙도	2번 소스코드	2

