Set A

2698BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN) **COMPREHENSIVE EXAMINATION, SEMESTER I (2017-18)**

CHEM F110: Chemistry Laboratory Quiz (Closed Book)

Time: 1h (10:00 – 11:00 AM) Date: 30th Nov., 2017

Marks obtained

Marks: 75

Instructions: I. There are total 30 questions. II. Answer all the questions. III. Each correct answer: 2.5M; each wrong answer: -0.5M. IV. Change of answer must be endorsed by invigilator's signature. V. Mobile phone is not allowed during examination.

Important data: Atomic Masses: Cu = 63.5g/mol; Molecular Weights: Acetone = 58.08; Benzaldehyde = 106.121; Dibenzalacetone: 234.29; HCl = 36.5; KOH = 56g/mol; $N_A = 6.023 \times 10^{23}$

_; ID:______; Sec:____; Instructor:___

O.1 The plots of pH vs. Volume of acid added for acid-base titrations are shown below. Which of the following statements is correct?

- (A) Plot I: Weak acid and Strong base; Plot II: Strong acid and Weak base; Plot III: Strong acid and Strong base;
- (B) Plot I:Strong acid and Strong base: Plot II: Weak acid and Weak base: Plot III: Weak acid and Strong base:
- (C) Plot I:Strong acid and Strong base; Plot II: Strong acid and Weak base; Plot III: Weak acid and Strong base;
- (D) Plot I:Strong acid and Weak base; Plot II: Weak acid and Strong base; Plot III: Strong acid and Strong base
- **Q.2** A solution of acetic acid (pKa = 4.75) has a pH of 6.75. What will be the ratio of acid to conjugate base?
 - - (A) 1:10000

(B) 100:1

(C) 1:100

(D) 10000:1

Q.3 NaOH is added to a 500mL of 2M acetic acid. If the pKa value of acetic acid is 4.8, what volume of 2M NaOH must be added so that the pH of the solution is 4.8?

- (A) 2000mL;
- (B) 1000mL;
- (C) 500mL;
- (D) 250mL

0.4 The colours of free Eriochrome Black T indicator and its complex with calcium ions are, respectively

(A) blue and colourless

(B) blue and wine red

(C) wine red and colourless

(D) wine red and blue

Q.5 The coordinating atoms (Oxygen: O, Nitrogen: N, Carbon: C) of the hexadentate EDTA ligand are

(A) 4 O and 2 N

(B) 2 N and 4 C

(C) 3 O and 3 N

(D) 2 N, 2 O and 2C

Q.6 In a complexometric titration, 25.0 mL of 0.015 M calcium carbonate solution requires 30.0 mL of EDTA solution to reach equivalence point. The molarity of EDTA is

(A) 0.0125

(B) 0.00625

D

В

(C) 0.025		(D) 0.018		
Q.7 In the confirmatory	test of tartaric acid with Tolle	en's reagent, silver io	ns (Ag ⁺) act as	В
(A) reducing agent	(B) oxidizing agent	(C) catalyst	(D) dehydrating agent	В
Q.8 An orange preci	pitate is obtained when a	small amount of	Blue cheese is treated	with 2,4-
dinitrophenylhydrazine.	Based on the above inform			
constituent present in B	ue cheese?			
(A) <i>n</i> -Pentanal		(B) Pentanoic ac	id	Α
(C) Methyl pent	anoate	(D) 2-Pentanol		
	followings is the correct str mall portion of cooled alkali resorcinol (2 eq.).			
				В
	prox amount of copper in the			ı was
(A) 0.0635 g		(B) 0.0317 g		Α
(C) 0.635 g		(D) 0.317 g		
` '	opper by iodometry experimen	` ,	dization of Na.S.O. solution	n one small
full test tube of KSCN a	and starch solution were added or was added comparatively l	d at the end of the titr		
(A) Indicator form a sol	uble complex with $Na_2S_2O_3$;			
(B) Indicator gives a wa	ter-insoluble complex with io	odine;		В
(C) Indicator form an in	soluble complex with KSCN;			
(D) Indicator has no role	e and iodine catalyses hydroly	sis of starch		
_	arces of error can influence the solution i.e., iodide in acid the following method:			
(A) By keeping the reac	tion vessel in dark;			
(B) By adding sufficient	t glacial acetic acid in the read	ction vessel;		С
(C) By adding sufficient	t NaHCO ₃ in the reaction vess	sel;		
(D) By adding sufficient				
() 5	t $Na_2S_2O_3$ in the reaction vess	el		
Q.13 If 10 moles of a	t $Na_2S_2O_3$ in the reaction vess acetone is reacted with 5 m penzalacetone. The number of	oles of benzaldehyd		

Page **2** of **4**

(C) 5	(D) 2.5	
Q.14 Which one is the best electrophile for cross	-aldol reaction with acetone?	
(A) acetophenone	(B) acetaldehyde	D
(C) 4-ethoxybenzaldehyde;	(D) 4-chlorobenzaldehyde	
Q.15 To prepare 5 g of dibenzalacetone, the conversion)	optimum amount of benzaldehyde should be (a	assuming 100%
(A) 5.52 g	(B) 4.53 g	В
(C) 2.26 g	(D) 11.03 g	В
Q.16 The structure of the Schiff's base you prepare	ared by mechanochemical synthesis is	
(A)	(B)	D
(C)	(D)	
0.15 m		
Q.17 The term Rf used for TLC analysis is the a		
(A) Resistance Factor	(B) Retention Factor	В
(C) Resolution Factor	(D) Residence Factor	
Q.18 In context to the washing of the Schiff's b NOT correct?	ase with cold dry ethanol, which of the following	ig statements is
(A) Removal of excess starting materials;	(B) Removal of soluble impurities;	С
(C) Removal of Schiff's base as soluble product	for later crystallization;	
(D) Removal of water, as dry ethanol is hygrosco	ppic	
Q.19 Consider the reactions: (I) $A \rightarrow B$; and (II constants as k_1 and k_2 , respectively. If R_1 is indefine the reactions (I) and (II), respectively, are: (ambi	ependent of [A] and k_2 is independent of [C], the	•
(A) 0 and 0	(B) 1 and 0	
(C) 0 and 1	(D) 1 and 1	
Q.20 The kinetics of a first order reaction $R \rightarrow l$ coloured substance, whereas P is colourless. T with time.		
(A) decrease exponentially;	(B) decrease linearly;	Α
(C) remain unchanged;	(D) increase exponentially	
Q.21 Kinetics of iodination of acetone was str	•	respectively are
instantaneous and initial concentrations of iodir transmitted beams, then which of the following s	ne and I_0 and I , respectively are the intensities	_
(A) $C/C_0 \alpha I/I_0$;	(B) C $\alpha \log I_0/I$;	D
(C) $C_0/C \alpha \log I/I_0$	(D) C α exp(- I/I ₀)	В

Q.22 For a reaction $3H2 + N2 \leftarrow$	\rightarrow 2 <i>NH</i> 3, If ex	tra NH ₃ is added at equilibri	um, what will happen?	
(A) There won't be any change in	the reaction;			
(B) To restore Equilibrium, reaction	on will shift to	product side;		
(C) To restore Equilibrium, reaction	on will shift to	reactant side;		С
(D) Reaction will stop completely				
Q.23 Determine the moles of war Assuming del $V_{mix} = 0$	ater in 10 mL	of 5 N HCl. Suppose we	ight of 10 mL 5 (N) HCl is	7.2 g
(A) 1 mole;		(B) 0.29 mole		В
(C) 0.89 mole		(D) 2 mole		
Q.24 Determine Kc for a reaction moles of X and 0.1 moles of Y whabove reaction.				
(A) 5.2×10^5		(B) 2.7×10^5		В
(C) 3.5×10^5		(D) 1.5×10^5		
Q. 25 The relationship between t solution with volume, V cm ³ cont			c conductance (K) of an elec	trolytic
(A) $\lambda = K \times V / 1000$;		(B) $\lambda = K \times 1000 / V$;		С
(C) $\lambda = K \times V$;		(D) $\lambda = K / V$		
Q. 26 Choose the correct optionstrong electrolyte with dilution	n for the varia	ation of equivalent conduct	ance and specific conductant	ce of
(A) Both will increase;				В
(B) Equivalent conductance will increase while specific conductance will decrease				
(C) Equivalent conductance will d	lecrease while	specific conductance will in	icrease;	
(D) Both will decrease				
Q.27 The CGS units of specific conductance and equivalent conductance are, respectively				
(A) mho cm ⁻¹ and mho cm ² equivalent ⁻¹ ; (B) mho cm ² and mhocm ² equivalent ⁻¹				
(C) mho cm ⁻¹ and mho cm ⁻¹ equive	alent ⁻¹ (D) m	ho cm ² and mho cm ⁻¹ equiva	alent ⁻¹	
Q.28 Saponification values of the their molecular weights in increas			respectively. The correct orde	r of
(A) P < Q < R < S		(B) S< P< R< Q		С
(C) S <p<q<r< td=""><td></td><td>(D) R < Q < P < S</td><td></td><td></td></p<q<r<>		(D) R < Q < P < S		
Q.29 The saponification value of	1 g fat sample	that consumed 10 mL of 0.	5 N KOH during hydrolysis is	s
(A) 186		(B) 210		
(C) 140		(D) 280		D
Q.30 The number of moles of m fat sample is	onobasic fatty	acid anions released during	g saponification of one mole	of a
(A) 1	(B) 2	(C) 3	(D) 4	С
			·	