Exercice 2 : Mise en équation et résolution de circuits linéaires en régime variable - Conditions initiales nulles **

On considère le circuit suivant.

A t=0, les conditions initiales sont nulles (les condensateurs sont déchargés).

Le circuit est alimenté par une générateur de tension $e(t) = E_0 \cdot u(t)$ où u(t) est un échelon unité.

On prendra les valeurs des composants suivantes : $E_0=10\,V$, $R=1\,k\Omega$ et $C=100\,\mu F$.

Partie: 1 - Résolution temporelle **

Question

1) Déterminer l'équation différentielle qui régit s(t).

Indice

Solution

Question

2) Donner les conditions initiales $s(0^+)$ et $\frac{ds}{dt}(0^+)$.

Solution

Question

3) Résoudre "à la main" l'équation différentielle pour déterminer l'expression de s(t).

Indice

Solution

Partie : 2- Résolution avec le formalisme de la transformée de Laplace ***

L'objectif de cette partie est de redémontrer les résultats obtenus précédemment en utilisant cette fois-ci le formalisme de la transformée de Laplace.

Question

4) Faire le schéma équivalent du circuit avec le formalisme de la transformée de Laplace en précisant les notations utilisées pour chaque grandeur électrique.

Solution

Question

5) On note S(p), la transformée de Laplace s(t). Donner la relation entre S(p) en fonction de E_0 , R et C.

Méthode?

Solution

Question

6) A partir du résultat obtenu à la question précédente, calculer s(t). Vérifier que le résultat obtenu est le même qu'à la question 3).

Indice

Solution

Partie: 3- Simulation

Question

7) Utiliser Octave pour calculer la transformée de Laplace inverse de S(p) en utilisant l'expression de S(p) obtenue à la question 5).

On utilisera la fonction *pretty* pour mettre en forme l'affichage de l'expression et la fonction *simplify* pour simplifier l'expression afin qu'elle se rapproche au plus du résultat trouvé à la main.

Calcul de la transformée de Laplace inverse avec Octave ?

Syntaxe de pretty et simplify?

Solution

Question

8) Utiliser Octave pour résoudre l'équation différentielle obtenue à la question 1) avec les conditions initiales obtenues à la question 2).

On utilisera la fonction *pretty* pour mettre en forme l'affichage de l'expression et la fonction *rewrite* pour réécrire l'expression afin qu'elle se rapproche au plus du résultat trouvé à la main.

Résolution d'équation différentielle avec Octave ?

Syntaxe de pretty et rewrite?

Solution