## 浙江大学 2005-2006 学年 秋冬 学期期末考试

## 《计算理论》课程试卷

|       | 考试    | 时间: 1 | 20 分钟 | 开课学 | 院: <u></u> | <u>「机学院</u> | 专业: |   |    |  |
|-------|-------|-------|-------|-----|------------|-------------|-----|---|----|--|
| 任课教师: |       |       | 姓名:   |     |            | 学号          | 学号: |   |    |  |
|       | 题序    | 1     | 2     | 3   | 4          | 5           | 6   | 7 | 总分 |  |
|       | 4T 4) |       |       |     |            |             |     |   |    |  |
|       | 得分    |       |       |     |            |             |     |   |    |  |
|       | 评阅人   |       |       |     |            |             |     |   |    |  |

## Zhejiang University Theory of Computation, Fall-Winter 2005 Final Exam

- 1. (30%) Determine whether the following statements are true or false. If it is true write a  $\checkmark$  otherwise a  $\times$  in the bracket before the statement.
  - (a) ( ) Language  $\{a^m(bc)^n: m, n \in \mathbb{N}\}$  is not regular.
  - (b) ( ) Language  $\{a^ib^jc^k \mid i,j,k\geq 0, i\geq j+k\}$  is context-free.
  - (c) ( ) Let  $F = \{f : f \text{ be a primitive recursive function from } \mathbb{N} \text{ to } \mathbb{N}\}$ , then  $2^F$  (Power set of F) is uncountable.
  - (d) ( ) Let  $L_1, L_2, \dots, L_i, \dots$  be all regular languages, so is  $\bigcup_{i=1}^{\infty} L_i$ .
  - (e) ( ) Suppose language L is context-free and L' is a regular, then  $L^*L'^*$  is context-free.
  - (f) ( ) Every computable function is primitive recursive.
  - (g) ( ) The complement of every recursive enumerable language is recursive enumerable.
  - (h) ( )  $a^*b^* \cap c^*d^* = \emptyset^*$ .
  - (i) ( ) Every regular language is recursively enumerable.
  - (j) ( ) Let L be a language and there is a Turing machine M halts on x for every  $x \in L$ , then L is decidable.
- 2. (14%) Decide whether the following languages are regular or not and provide a formal proof for your answer.
  - (a)  $L_1 = \{a^n b^m : m \equiv n \mod 2\}$

(b)  $L_2 = \{ w \in \{a, b\}^* : w \neq w^R \}$ 

## 3. (18%)

- (b) Design a PDA  $M = (K, \Sigma, \Gamma, \Delta, s, F)$  accepting the language  $L_3$ . Solution: (a)

(b) The PDA  $M=(K,\Sigma,\Gamma,\Delta,s,F)$  is defined below:

| IZ.                            | _ |
|--------------------------------|---|
| K =                            | _ |
| $\Sigma = \{a, b\}$            | _ |
| Γ =                            | _ |
| s =                            | _ |
| $F = \underline{\hspace{1cm}}$ | _ |
|                                | _ |

4. (16%) Let the following Turing machine M computes f(x,y), the alphabet is  $\{0,1,;\}$ . The head of M begins from the most left blank;  $\sqcup$  is the symbol of blank; x and y are presented by binary strings respectively and separated with ;.



- (a) Describe the key configurations when M started from the configuration  $\trianglerighteq \underline{\sqcup} 10111; 111.$
- (b) Try to give the function f(x,y) that M can compute.

5. (12%) Let P(x,y) be primitive recursive predicate. Prove the following predicate

$$\exists y_{\leq u} P(x, y), \ \forall u \in \mathbb{N}$$

is also primitive recursive.

6. (10%) Show that the following language

 $H=\{\text{``}M\text{''}\mid M\text{ is a Turing Machine and halts on empty string}\}$  is recursively enumerable. An informal description suffices.