PC 1: Probabilités, Interférences et Dualité

Dernière modification 12 mai 2023

Exercice 1 : La désintégration d'une particule radioactive

Beaucoup de phénomènes naturels peuvent être modélisés par des processus sans mémoire. On va étudier la désintégration radioactive d'une particule, qui appartient à cette classe de processus. Le processus est défini de la manière suivante : si la particule ne s'est pas désintégrée au temps t, sa probabilité de désintégration pendant l'intervalle de temps infinitésimal $[t,t+\delta t]$ s'écrit $\frac{\delta t}{\tau}$, où $\tau>0$ est une constante. Notons $P_S(t)$ la probabilité de survie (non désintégration) à l'instant t.

Q1 Déterminer $P_S(t + \delta t)$ en fonction de $P_S(t)$, de τ et de δt .

Si la particule survie jusqu'à l'instant $t + \delta t$, ça veut dire que elle a survecu jusqu'à l'instant t et en suite, ne s'est pas désintégré pendant l'intervalle $[t, t + \delta t]$. Donc,

$$P_S(t + \delta t) = P_S(t) \cdot \left(1 - \frac{\delta t}{\tau}\right) \tag{1}$$

Q2 Déduire l'expression de $P_S(t)$.

Utilisant l'exercice précedent, on note que

$$\frac{P_S(t+\delta t) - P_S(t)}{\delta t} = -\frac{P_S(t)}{\tau}. (2)$$

Prenons la limite lorsque $\delta t \to 0$,

$$\frac{d}{dt}P_S(t) = -\frac{P_S(t)}{\tau} \iff P_S(t) = e^{-\frac{t}{\tau}}.$$
 (3)

On note que $P_S(0) = 1$.

Il s'agit de la densité de la distribution exponentielle avec paramètre τ .

Q3 Déterminer la densité de probabilité du temps de désintégration p(t).

Soit T l'instant de désintégration. On note que $T \sim p(t)$. On regarde la fonction de répartition de T. La probabilité que $T \leq t$ est égal à la probabilité que la particule n'est pas en vie à l'instant t. Donc,

$$\mathbb{P}(T \le t) = 1 - P_S(t) \implies \int_0^t p(t)dt = 1 - P_S(t) \tag{4}$$

Par le théorème fondamental du calcul,

$$p(t) = \frac{d}{dt}(1 - P_S(t)) = -\frac{d}{dt}P_S(t).$$
 (5)

Donc,

$$p(t) = \frac{1}{\tau} e^{-\frac{t}{\tau}}.\tag{6}$$

 ${\bf Q4}$ Vérifier que p(t) est bien une densité de probabilité.

On note que $p(t) \ge 0 \quad \forall t \in \Omega = \mathbb{R}_+$.

$$\int_{0}^{+\infty} p(t)dt = \int_{0}^{+\infty} \frac{1}{\tau} e^{-\frac{t}{\tau}}$$

$$= -e^{-\frac{t}{\tau}} \Big|_{t=0}^{t \to +\infty}$$

$$= 1, \text{ donc } p(t) \text{ est normalisée.}$$

$$(7)$$

 $\mathbf{Q5}$ Calculer alors la durée de vie moyenne de la particule et sa variance.

Calculer durée de vie moyenne $\langle T \rangle$

$$\langle T \rangle = \int_0^{+\infty} t \cdot p(t) dt = \int_0^{+\infty} \frac{t}{\tau} e^{-\frac{t}{\tau}} dt \tag{8}$$

Integration par parties tabular

$$\frac{t}{\tau} \quad e^{-\frac{t}{\tau}}$$

$$\frac{1}{\tau} \quad -\tau e^{-\frac{t}{\tau}} \quad +$$

$$0 \quad \tau^2 e^{-\frac{t}{\tau}} \quad -$$

Donc,

$$\int \frac{t}{\tau} e^{-\frac{t}{\tau}} dt = -te^{-\frac{t}{\tau}} - \tau e^{-\frac{t}{\tau}}.$$
 (9)

Donc,

$$\langle T \rangle = \left(-te^{-\frac{t}{\tau}} - \tau e^{-\frac{t}{\tau}} \right) \Big|_{t=0}^{t \to +\infty}$$

$$= \tau$$
(10)

Calculer $\langle T^2 \rangle$

$$\langle T \rangle = \int_0^{+\infty} t^2 \cdot p(t)dt = \int_0^{+\infty} \frac{t^2}{\tau} e^{-\frac{t}{\tau}} dt \tag{11}$$

Integration par parties tabular

$$\begin{array}{ccccc} \frac{t^2}{\tau} & e^{-\frac{t}{\tau}} \\ \frac{2t}{\tau} & -\tau e^{-\frac{t}{\tau}} & + \\ \frac{2}{\tau} & \tau^2 e^{-\frac{t}{\tau}} & - \\ 0 & -\tau^3 e^{-\frac{t}{\tau}} & + \end{array}$$

Donc,

$$\int \frac{t^2}{\tau} e^{-\frac{t}{\tau}} dt = -t^2 e^{-\frac{t}{\tau}} - 2t\tau e^{-\frac{t}{\tau}} - 2\tau^2 e^{-\frac{t}{\tau}}.$$
 (12)

Donc,

$$\langle T^2 \rangle = \left(-t^2 e^{-\frac{t}{\tau}} - 2t\tau e^{-\frac{t}{\tau}} - 2\tau^2 e^{-\frac{t}{\tau}} \right) \Big|_{t=0}^{t \to +\infty}$$

$$= 2\tau^2.$$
(13)

Calculer variance ΔT^2

$$\Delta T^{2} = \langle T^{2} \rangle - \langle T \rangle^{2}$$

$$= 2\tau^{2} - \tau^{2}$$

$$= \tau^{2}$$
(14)

On peut en déduire le écart-type, $\Delta T = \tau$.

Exercice 2: Distribution gaussienne

On considère la densité de probabilité suivante, définie par une fonction gaussienne:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$
 (15)

où x et x_0 sont des nombres réels, et σ est un nombre réel positif.

 ${\bf Q1}$ Vérifier qu'il s'agit bien d'une densité de probabilité. Formule utile : $\int_{-\infty}^{+\infty}e^{-\frac{z^2}{2}}dz=\sqrt{2\pi}.$

On note que $p(x) \ge 0 \quad \forall x \in \Omega = \mathbb{R}$.

$$\int_{-\infty}^{+\infty} p(x)dx = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} dx$$

$$= 2 \int_{x_0}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} dx.$$
(16)

Faisons la substitution $u = \frac{x - x_0}{\sigma} \implies dx = \sigma \cdot du$.

$$\int_{x_0}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} dx = \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du$$

$$= \frac{1}{2} \quad \text{par la formule dans l'énoncé.}$$
(17)

Donc, $\int_{-\infty}^{+\infty} p(x)dx = 1$.

Q2 Calculer la valeur moyenne $\langle x \rangle$.

On utilise la même substitution $u = \frac{x - x_0}{\sigma} \implies dx = \sigma \cdot du$.

$$\langle x \rangle = \int_{-\infty}^{+\infty} x p(x) dx$$

$$= \int_{-\infty}^{+\infty} \frac{x}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x_0)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{+\infty} \frac{\sigma u + x_0}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u e^{-\frac{u^2}{2}} du + \frac{x_0}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du$$

$$= x_0.$$
(18)

 $\mathbf{Q3}$ Calculer l'écart quadratique moyenne Δx .

On utilise encore la même substitution $u = \frac{x - x_0}{\sigma} \implies dx = \sigma \cdot du$.

$$\langle x^{2} \rangle = \int_{-\infty}^{+\infty} x^{2} p(x) dx$$

$$= \int_{-\infty}^{+\infty} \frac{x^{2}}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}} dx$$

$$= \int_{-\infty}^{+\infty} \frac{(\sigma u + x_{0})^{2}}{\sqrt{2\pi}} e^{-u^{2}} 2 du$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u^{2} e^{-u^{2}} 2 du + \frac{2\sigma x_{0}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u e^{-u^{2}} 2 du + \frac{x_{0}^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-u^{2}} 2 du$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u^{2} e^{-u^{2}} 2 du + x_{0}^{2}.$$
(19)

Par integration par parties,

$$\int_{-\infty}^{+\infty} u^2 e^{-u^2} 2du = -u e^{-\frac{u^2}{2}} \Big|_{u \to -\infty}^{u \to +\infty} + \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2\pi}.$$
 (20)

Donc, $\langle x^2 \rangle = x_0^2 + \sigma^2$. Alors,

$$\Delta x^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}$$

$$= x_{0}^{2} + \sigma^{2} - x_{0}^{2}$$

$$= \sigma^{2}.$$
(21)

On en déduit, $\Delta x = \sigma$.

Exercice 3 : L'expérience des fentes de Young

On supposera que les ondes de matière diffractées par chaque fente sont de la forme $\psi(M) \propto e^{\frac{ip_0r}{h}}$ sur l'écran.

Q1 Notons r_1 et r_2 les distances entre l'écran et les fentes S1 et S2. Montrer que $r_{1,2} = \sqrt{(x \pm a/2)^2 + D^2}$ et donner une expression simplifiée de $r_1 - r_2$ en fonction de x en utilisant l'hypothèse $D \gg a$.

Par le théorème de Pythagore,

$$\left(\frac{a}{2} \pm x\right)^2 + D^2 = r_{1,2}^2. \tag{22}$$

Alors,

$$|r_1 - r_2| = \sqrt{\left(\frac{a}{2} + x\right)^2 + D^2} - \sqrt{\left(\frac{a}{2} - x\right)^2 + D^2}$$
 (23)