形状

输入 X 的形状为 (M, N)

输入 Y 的形状为 (N, K)

输出 Z 的形状为 (M,K)

前向传播计算

$$Z = XY$$

计算 z_{ij} :

$$z_{ij} = \sum_{n=1}^N x_{in} y_{nj}$$

反向传播

反向传播的目标是计算损失函数 L 对输入 X 的梯度 $\frac{\partial L}{\partial X}$,以及对输入 Y 的梯度 $\frac{\partial L}{\partial Y}$. 我们已知损失函数 L 对输出 Z 的梯度 $\frac{\partial L}{\partial Z}$.

且由于:

$$z_{ij} = \sum_{n=1}^N x_{in} y_{nj}$$

计算 $\frac{\partial L}{\partial x_{ij}}$:

因为 x_{ij} 出现在 z 的第 i 行的所有元素中,而 z 的每一行共有 K 个元素,所以:

$$rac{\partial L}{\partial x_{ij}} = \sum_{k=1}^{K} rac{\partial L}{\partial z_{ik}} rac{\partial z_{ik}}{\partial x_{ij}}$$

我们先计算 $\frac{\partial z_{ik}}{\partial x_{ij}}$:

$$rac{\partial z_{ik}}{\partial x_{ij}} = rac{\partial \left(\sum_{n=1}^{N} x_{in} y_{nk}
ight)}{\partial x_{ij}}$$

只有当 n=j 时,右侧偏导数才不为零,因此:

$$rac{\partial z_{ik}}{\partial x_{ij}} = y_{jk}$$

代入上式:

$$rac{\partial L}{\partial x_{ij}} = \sum_{k=1}^K rac{\partial L}{\partial z_{ik}} y_{jk}$$

将其写成矩阵形式:

$$oxed{rac{\partial L}{\partial X} = \left(rac{\partial L}{\partial Z}
ight)Y^T}$$

 $rac{\partial L}{\partial Z}$ 的形状为 [M,K] , Y^T 的形状为 [K,N] ,则 $rac{\partial L}{\partial X}$ 的形状为 [M,N] ,与 X 形状完成相同.

计算 $\frac{\partial L}{\partial y_{ij}}$:

因为 y_{ij} 出现在 z 的第 j 列的所有元素中,而 z 的每一列共有 M 个元素,所以:

$$rac{\partial L}{\partial y_{ij}} = \sum_{k=1}^{M} rac{\partial L}{\partial z_{kj}} rac{\partial z_{kj}}{\partial y_{ij}}$$

我们先计算 $\frac{\partial z_{kj}}{\partial y_{ii}}$:

$$rac{\partial z_{kj}}{\partial y_{ij}} = rac{\partial \left(\sum_{n=1}^{N} x_{kn} y_{nj}
ight)}{\partial y_{ij}}$$

只有当 n == i 时,右侧偏导数才不为零,因此:

$$rac{\partial z_{kj}}{\partial y_{ij}} = x_{ki}$$

代入上式:

$$rac{\partial L}{\partial y_{ij}} = \sum_{k=1}^{M} rac{\partial L}{\partial z_{kj}} x_{ki} = \sum_{k=1}^{M} x_{ki} rac{\partial L}{\partial z_{kj}}$$

将其写成矩阵形式:

$$\boxed{\frac{\partial L}{\partial Y} = X^T \frac{\partial L}{\partial Z}}$$

 X^T 的形状为 [N,M] , $\frac{\partial L}{\partial Z}$ 的形状为 [M,K] ,则 $\frac{\partial L}{\partial Y}$ 的形状为 [N,K] ,与 Y 形状完全相同。