Math 215A — UCB, Spring 2017 — William Guss

Partners: Alekos, Chris

Selected Problems: 1,2 (Depending on that which wasn't submitted by Alekos or Chris.)

(1.1) (Interesting Examples)

• Write down interesting topological spaces that are not Hausdorff.

Recall the definition of a Hausdorff space.

Definition 0.1. Let X be a topological space endowed with a topology τ . If for every $x, y \in X$ there are open neighborhoods $U \ni x$ and $V \ni y$ so that $U \cap V = \emptyset$, then X is called Hausdorff.

With this definition in mind we will propose the following examples of a topological space (X, τ) that is not Hausdorff.

Example 1. Let $X = \{x, y\}$ and $\tau = \{\{x\}, \{x, y\}, \emptyset\}$. First (X, τ) is a topological space as τ contains X, \emptyset and is closed under union and finite intersection. However $x \neq y$ and $\{x\} \ni x$ and $\{x, y\} \ni y$ are not disjoint and there is no $U \in \tau$ so that $U \ni y$ and not $U \ni x$. Therefore (X, τ) is not Hausdorff.

Example 2. Let $x, y \in \mathbb{R}$ be \sim -equivalent $(x \sim y)$ if $x - y \in \mathbb{Q}$. Then let $X = (\mathbb{R}/\sim)$. We claim that the induced quotient topology is not Hausdorff.

Take x = [0], y = [e]. Then let \tilde{U}, \tilde{V} be open neighborhoods of x and y respectively. We have that $\tilde{U} = \pi(U)$ and $\tilde{V} = \pi(V)$ where U, V are open in \mathbb{R} with the standard topology.

From real analysis we know that every open V in \mathbb{R} must contain a rational number as V is composed of open intervals. Therefore $r \in \mathbb{Q}$ so that $r \in V$. Thus $\pi(r) = [0] \in \tilde{V}$ and thus $\tilde{U} \cap \tilde{V} \neq \emptyset$

Since this is true for every pair of open neighborhoods \tilde{U}, \tilde{V} the space could not be Hausdorff¹.

• Write down continuous bijections that aren't homeomorphisms.

Remark. If $f: X \to Y$ is continuous and Y is Hausdorff then f is open. Therefore we can only presume to have non-Hausdorff space as an example.

Example 1. Let (X,τ) be given from Example 1. Then let Y=X and τ_{disc} be the discrete topology generated by $f:Y\to X$ be identity map. Then clearly the preimage of opens, say $\{x,y\}\subset \tau$ is open $\{x,y\}\subset \tau_{disc}$, but the map is not open for $\{y\}\subset \tau_{desc}$ is not a subset of τ . I think the easiest way to generate these examples is to take a non-Hausdorff space and build an automorphism.

Example 2. Let $X = \mathbb{R}$ with the discrete topology, and let $Y = \mathbb{R}$ which the standard openball topology. Then let $f: X \to Y$ be an identity map, clearly the preimage of opens is open since every set is open in X with the discrete topology, but take the closed interval [6, 13] and its image is not open although under the discrete topology it is open. Therefore f continous bijection and it is not a homeomorphism.

(1.2) (Normality) Prove or disprove the followiking for a topological space (X, τ) .

¹I like this example.

• X Hausdorff and completely regular implies X normal.

We will disprove the above statment by proviong the following lemma and providing a counter example.

Lemma 0.1. If (X, τ) is completely regular than it is Hasudorff.

Proof. First observe that if X is completely regular then it is Urhysohn; that is, for any points $x, y \in X$ we have that there is a continuous function $f: X \to [0,1]$ where [0,1] is endowed with the subspace topology and f(x) = 0, f(y) = 1.

Now let $x, y \in X$ be given and not identical. Take an Urhysohn function f as above and then observe that W = [0, 0.5) and Z = (0.5, 1] are open subsets of [0, 1] in the inherited topology. Furthermore $Z \cap W = \emptyset$ implies that $f^{-1}(Z \cap W) = f^{-1}(Z) \cap f^{-1}(W) = \emptyset$. Furthermore $f^{-1}(Z) = V \ni y$, $f^{-1}(W) = U \ni x$.

Therefore X is Hausdorff.

Counter Example. We will provide a counter example using the topology X from the first example. The space is trivially normal since the only non-empty closed set is $\{y\}$ and so it is normal, but the space is not Hausdorff and so it is not completely regular. Therefore the assertion is false;).

• X Hausdorff, completely regular and Lindelof implies X normal.

Proof. Let $A, B \subset X$ be two disjoint closed sets in X. Then for every $x \in A$ let U_x be an openset containing x disjoint from B and let V_y be the converse for every $y \in B$.

Now $\{U_x\}_{x\in A} = \mathcal{U}$ and $\{V_y\}_{y\in B} = \mathcal{V}$. Then by the Linedelof property there exists a countable subcover indexed by $\{x_i\}_{i\in\mathbb{N}}$ and $\{y_j\}_{j\in\mathbb{N}}$ for \mathcal{U} and \mathcal{V} respectively.

Observe the following disjoitness properties:

$$U_{x_1} \setminus \overline{V_{y_1}} \cap V_{y_1} \setminus \overline{U_{x_1}} = \emptyset$$

$$U_{x_2} \setminus (\overline{V_{y_1}} \cup \overline{V_{y_2}}) \cap V_{y_2} \setminus (\overline{U_{x_1}} \cup \overline{U_{x_2}}) = \emptyset$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad = \vdots$$

$$\bigcup_{i=1}^{\infty} \left[U_{x_i} \setminus \bigcup_{j \le i} \overline{V_{y_j}} \right] \cap \bigcup_{i=1}^{\infty} \left[V_{y_i} \setminus \bigcup_{j \le i} \overline{U_{x_j}} \right] = \emptyset$$

Furthermore $\bigcup_{i=1}^{\infty}[U_{x_i}\setminus\bigcup_{j\leq i}\overline{V_{y_j}}]$ is a an open set since we subtract the finite union of closed sets from an opensets; that is we subtract a closed set from an open set and thus the resultant is open. Additionally $\bigcup_{i=1}^{\infty}\left[U_{x_i}\setminus\bigcup_{j\leq i}\overline{V_{y_j}}\right]\supset A$ and $\bigcup_{i=1}^{\infty}\left[V_{y_i}\setminus\bigcup_{j\leq i}\overline{U_{x_j}}\right]\supset B$. Therefore there are two disjoint open sets containing both A and B respectively. Since A,B were arbitrary X is normal. This completes the proof.