

Tema 3. Diseño conceptual: modelado multidimensional

Modelado multidimensional

- 5
- □ Tal y como el usuario percibe el mundo real objeto de estudio
 - Perspectiva estructural
 - Modelado o Modelo Multidimensional (MD)
 - Hechos y Dimensiones
 - Perspectiva dinámica
 - Definición de requerimientos iniciales sobre el modelo MD
 - Operaciones de consulta avanzada

INGP. 2018

5

Tema 3. Diseño conceptual: modelado multidimensional Modelado multidimensional

Parte estructural

- 6
- □ Perspectiva estructural → modelo MD
 - Hechos
 - Objeto de análisis
 - Ej. Ventas de productos, compras, alquileres, transportes
 - Dimensiones
 - Diferentes perspectivas para analizar los hechos
 - Ej. Productos, almacenes, tiempo, vehículos, etc.

INGP. 2018

Parte estructural

7

- Hechos representan normalmente relaciones muchos a muchos con todas las dimensiones y, muchos a uno con cada dimensión en particular
 - Ej. Ventas de productos (H) por producto (D), almacenes (D) y tiempo (D)
 - Un producto (D) \rightarrow varias ventas (H)
 - Una venta (H) → un solo producto (D) y almacén (D)

INGP. 2018

7

Tema 3. Diseño conceptual: modelado multidimensional Modelado multidimensional

Parte estructural

8

- Sin embargo, a veces hechos son muchos a muchos con dimensiones en particular
 - □ Ej. Tickets emitidos (H) por
 - Un ticket (H) puede contener muchos productos
- □ Hechos y Dimensiones se caracterizan por atributos
 - □ Hechos → atributos de hecho o medidas
 - □ Dimensiones → atributos de dimensión

INGP. 2018

Parte estructural. Dimensiones

13

- □ Puede haber alto grado de categorización
 - Atributos en función de instancias
 - Ej. Volumen y porcentaje de alcohol sólo para bebidas
 - Ej. Tiempo y modo preparación sólo para comidas
- □ Atributos dimensión → jerarquías clasificación
 - Los niveles de jerarquía serán usados para la agregación de las medidas
 - Ej. Ciudad, comunidad, tipos de productos, etc.

INGP. 2018

13

Tema 3. Diseño conceptual: modelado multidimensional Modelado multidimensional

Parte estructural. Dimensiones. Jerarquías de clasificación

14

- Las instancias de niveles = miembros
- Clasificación
 - Cardinalidad
 - Por defecto \rightarrow estrictas (1-m)
 - Una instancia sólo se relaciona con una instancia del nivel superior de jerarquía
 - Ej. Un almacén está ubicado en una sola ciudad
 - Sin embargo algunas pueden ser no estrictas (m-m)
 - Ej. Un almacén pertenece a más de una zona de ventas

INGP. 2018

Tema 3. Diseño conceptual: modelado multidimensional Modelado multidimensional Parte estructural. Dimensiones. Jerarquías de clasificación □ Jerarquías completas □ Además de estrictas, un miembro o instancia de un nivel superior está compuesto únicamente por los del nivel inferior → relación fija entre instancias

Parte estructural, Hechos

23

- Atributos de hecho o medidas
 - Atómicos
 - Ej. Cantidad vendida, precio, etc.
 - Derivados
 - Utilizan una fórmula para calcularlos
 - Ej. Precio_total = precio * cantidad_vendida

INGP. 2018

23

Tema 3. Diseño conceptual: modelado multidimensional Modelado multidimensional

Parte estructural. Hechos

24

- Aditividad
 - Conjunto de operadores de agregación (SUM, AVG, etc.) que se pueden aplicar para agregar los valores de medidas a lo largo de las jerarquías de clasificación (Kimball, 1996)
 - Es aditiva → SUM sobre todas las dimensiones
 - □ Semi-aditiva → SUM sólo sobre algunas dimensiones
 - No aditiva → SUM sobre ninguna dimensión

INGP. 2018

Parte estructural. Hechos

25

- □ Si no aditiva → otros operadores pueden aplicarse (ej. AVG, MIN, etc.)
 - □ Ej. Atributos que miden niveles (ej. Inventarios) no son aditivos sobre la dimensión tiempo
 - Es aditivo sobre la dimensión producto
 - Las medidas de temperatura no son aditivas
 - Algunas son semánticamente incorrectas
 - Ej. Atributo número de clientes que cuenta el número de tickets emitidos no es aditiva sobre la dimensión producto

INGP. 2018

25

Tema 3. Diseño conceptual: modelado multidimensional

Modelado multidimensional

26

- □ En aplicaciones OLTP...
 - Modelado conceptual → Entidad-Relación (EER)
 - ¿ Podría reflejar la multidimensionalidad de los datos ?
 - Hechos,...
 - Dimensiones,...
 - 🗖 è Podría ser interrogado por un analista de la información ?

INGP. 2018

Tema 3. Diseño conceptual: modelado multidimensional Diseño conceptual de almacenes de datos Bibliografía

37

- Giovinnazo (2000). Object-Oriented Data
 Warehouse Design: Building a star schema
- □ Inmon (2002). Building the Data Warehouse (3° ed.)
- □ Kimball (2002). The Data Warehouse Toolkit (3° ed.)
- Thomsen (2000). OLAP solutions: Building Multidimensional Information Systems

INGP. 2018

37

