MATH 217 (Fall 2022)

Honors Advanced Calculus, I

ASsignment #2

- 1. Which of the following sets are convex:
 - (i) $\{(x,y) \in \mathbb{R}^2 : x > y\};$
 - (ii) $\{x \in \mathbb{R}^N : ||x|| > 2\};$
 - (iii) $\mathbb{R} \setminus \mathbb{Q}$;
 - (iv) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 2022\}$?

Justify your answers.

- 2. Let \mathcal{C} be a family of convex sets in \mathbb{R}^N . Show that $\bigcap_{C \in \mathcal{C}} C$ is again convex. Is $\bigcup_{C \in \mathcal{C}} C$ necessarily convex?
- 3. Show that \mathbb{Z} is closed in \mathbb{R} , but not open, and that $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed.
- 4. Let $\emptyset \neq S \subset \mathbb{R}^N$ be arbitrary, and let $\emptyset \neq U \subset \mathbb{R}^N$ be open. Show that

$$S + U := \{x + y : x \in S, y \in U\}$$

is open.

- 5. Let $S \subset \mathbb{R}^N$. Show that $x \in \mathbb{R}^N$ is a cluster point of S if and only if each neighbourhood of x contains an infinite number of points in S.
- 6^* For $x = (x_1, \dots, x_N) \in \mathbb{R}^N$, set

$$||x||_1 := |x_1| + \dots + |x_N|$$
 and $||x||_{\infty} := \max\{|x_1|, \dots, |x_N|\}.$

- (a) Show that the following are true for $j=1,\infty,\,x,y\in\mathbb{R}^N$ and $\lambda\in\mathbb{R}$:
 - (i) $||x||_j \ge 0$ and $||x||_j = 0$ if and only if x = 0;
 - (ii) $\|\lambda x\|_j = |\lambda| \|x\|_j$;
 - (iii) $||x+y||_j \le ||x||_j + ||y||_j$.
- (b) For N=2, sketch the sets of those x for which $||x||_1 \leq 1$, $||x|| \leq 1$, and $||x||_{\infty} \leq 1$.
- (c) Show that

$$||x||_1 \le \sqrt{N}||x|| \le N \, ||x||_{\infty}$$

for all $x \in \mathbb{R}^N$.

Due Monday, September 26, 2020, at 10:00 a.m.; no late assignments.