线性稳压器 基础知识

什么是线性稳压器 (Linear Regulator)

- 线性稳压器通过一个通流器件(通常为晶体管或MOSFET)承受不需要的电压,从而使输入电压保持恒定。
- 通流器件的特性类似于一个可调电阻。

线性稳压器的优缺点

优点

- 低输出纹波,低噪声,EMI辐射小
- 成本低 (在小功率时)
- 结构简单,只需少数几个外围元件,容易调试和设计
- 暂态响应快
- 短路保护容易设计

缺点

- 效率低,能量以热能的形式消耗,当 V_{in}和 V_{out} 相差较大时尤为突出
- 散热要求高,功率越大,或V_{in}和 V_{out}相差越大,线性稳压器产生的热损耗越大
- 只能降压

线性稳压器的最小压差 (dropout voltage)

• 线性稳压器为了维持正常工作,V_{in} 和 V_{out} 之间必须有一个差值,此差值的最小值称为线性稳压器的最小压差 (dropout voltage)

4

线性稳压器的类型

- 线性稳压器的通流器件可以是晶体管或者MOSFET,不同的通流器件有不同的最小压差特性。
 - NPN型: 最小压差较大, 一般在2V以上。如7805, LM317。
 - "准LDO"型:最小压差比NPN型小,但仍在1V以上。如LM1117。
 - PNP型:最小压差较小,但对输出电容ESR有要求。如TPS7A4901。
 - MOSFET型:最小压差很小,PMOS型对输出电容ESR有要求。如TPS7A8300。
- 最小压差很小的线性稳压器称为LDO(low drop-out linear regulator)

理解Dropout

- 为维持输出电流,线性稳压器必须工作在线性区。当VDS下降到一定程度时,线性稳压器会进入饱和区,导致电流下降。
- 例如Vin=5V, Vout=3.3V, lout=500mA时,线性稳压器工作在A点。若输入电压持续下降,会导致FET饱和,线性区与饱和区的临界点就是dropout电压。

6

抢答: TPS7A4901的Dropout Voltage?

	,	Dropout voltage	V_{IN} = 95% $V_{OUT(nom)}$, I_{OUT} = 100 mA	260	mV
V	/DO		V_{IN} = 95% $V_{OUT(nom)}$, I_{OUT} = 150 mA	333 600	mV

Figure 9. Dropout Voltage vs Output Current

Figure 10. Dropout Voltage vs Temperature

线性稳压器的简化模型(Simple Model)

- A basic (first order) linear voltage regulator can be modeled with two resistors and a power supply for V_{IN}.
- V_{IN} = R_{LOAD} V_{OUT}
- In reality, the only constant is the output voltage, V_{OUT}. Everything else can, and will, be constantly changing.
- The input voltage may have changes due to outside influences, the load current may change due to a dynamic change in the behavior of the load.
- Changes in these variables can all happen simultaneously, and the value needed for R_{PASS} to hold V_{OUT} at a constant value will need to change as well.

Simple Model with Values

- For the first example, we will assign typical operating values and calculate the value needed for the series pass element R_{PASS}.
 - $V_{IN} = 12V$
 - $-V_{OUT}=5V$
 - $I_{1,OAD} = 50 \text{ mA}$
- With $V_{IN} = 12V$ and $V_{OUT} = 5V$, the voltage across $R_{PASS} = (12V 5V) = 7V$
- With the current through $R_{PASS} = I_{LOAD} = 50$ mA, the needed resistance for $R_{PASS} = (7V / 50 \text{mA}) = 140$ Ohms

Simple Model with Change of Load Current

- For the second example, we will change the load current from 50mA to 500mA and calculate the value needed for the series pass element R_{PASS}.
 - $V_{IN} = 12V$
 - $-V_{OUT} = 5V$
 - $-I_{LOAD} = 500 \text{ mA}$
- With $V_{IN} = 12V$ and $V_{OUT} = 5V$, the voltage across $R_{PASS} = (12V 5V) = 7V$
- With the current through $R_{PASS} = I_{LOAD} = 500$ mA, the needed resistance for $R_{PASS} = (7V / 500 \text{mA}) = 14$ Ohms

Simple Model with Change in Input Voltage

- For the third example, we will change the input voltage from 12V to 22V and calculate the value needed for the series pass element R_{PASS}.
 - $V_{IN} = 22V$
 - $-V_{OUT} = 5V$
 - $I_{1,OAD} = 50 \text{ mA}$
- With $V_{IN} = 22V$ and $V_{OUT} = 5V$, the voltage across $R_{PASS} = (22V 5V) = 17V$
- With the current through $R_{PASS} = I_{LOAD} = 50$ mA, the needed resistance for $R_{PASS} = (17 \text{V} / 50 \text{mA}) = 340 \text{ Ohms}$

The Control Loop

- It has been shown that the resistance of series pass element, R_{PASS}, needs to change as the operating conditions change.
- This is accomplished with a control loop.
- The error amplifier monitors the sampled output voltage, compares it to a known reference voltage, and actively changes R_{PASS} to keep V_{OUT} constant.
 - A characteristic of any linear voltage regulator is that it requires a finite amount of time to "correct" the output voltage after a change in load current demand.
 - This "time lag" defines the characteristic called transient response, which is a measure of how fast the regulator returns to steady-state conditions after a load change

暂态响应

Simple Model, with Control Loop Blocks

- Here 'simple' blocks have added to show the four basic divisions of any linear voltage regulator:
 - 1) Series Pass Element
 - 2) Error Amplifier
 - 3) VOUT Sampling Network
 - 4) Reference Voltage

线性稳压器的其他关键性能指标

- 静态电流(Quiescent current): 空载时线性稳压器消耗的电流。
 - 静态电流是考察线性稳压器是否低功耗的重要指标,在电池供电的应用中尤为关键。
- 电源抑制比(Power supply rejection ratio, 简称PSRR):输出电压纹波和输入电压纹波的比值。
 - PSRR是考察线性稳压器抗噪性能的关键指标,在对噪声要求较高的应用如音频,RF和 无线中需要重点关注。
- 宽带噪声(Broadband noise): 规定频率范围的噪声总和。
 - 对于噪声要求较高的应用,如PLL, RF和无线等,需要重点注意。