Profa. Leticia T. M. Zoby

(leticia.zoby@iesb.edu.br)

- Um conjunto fuzzy é dito normalizado se o valor máximo é 1:  $\sup_{x \in U} \mu_A(x) = 1$
- Um conjunto fuzzy que não é normal é chamado de subnormal. Duas características importantes do conjunto fuzzy:
  - O **suporte** de A: é a parte de U sobre a qual a função de pertinência de A não é nula. A sua notação é supp(A) e verifica:  $\sup(A) = \{x \in U \mid \mu_A(x) \neq 0\}$
  - O **núcleo** (ou cerne) de A: ele não é vazio na condição de que o conjunto fuzzy A seja normalizado. A sua notação é nuc(A) e verifica: nuc(A) =  $\{x \in U \mid \mu_A(x) = 1\}$

#### Conjunto a-cut

- Para todo valor  $\alpha$  do intervalo [0,1], é definido o  $\alpha$ -cut  $A_{\alpha}$  (ou corte no nível  $\alpha$ ) de um conjunto fuzzy A de U como o sub-conjunto:  $A_{\alpha} = \{x \in U \mid \mu_{A}(x) \geq \alpha\}$
- Qualquer conjunto fuzzy A forma uma família aninhada (nested family) de conjuntos, isto é:  $A_{\alpha} \subset A_{\beta}$  quando  $\alpha > \beta$

#### Exemplo:

· Conceito: jovem; meia-idade; velho

$$\varphi_{A_1}(x) = \begin{cases} 1, & \text{se } x \le 20 \\ \frac{(35-x)}{15}, & \text{se } 20 < x < 35, \\ 0, & \text{se } x \ge 35 \end{cases}$$

$$\varphi_{A_2}(x) = \begin{cases} 0, & \text{se } x \le 20 \text{ ou } x \ge 60 \\ \frac{(x-20)}{15}, & \text{se } 20 < x < 35 \\ \frac{(60-x)}{15}, & \text{se } 45 < x < 60 \\ 1, & \text{se } 35 \le x \le 45 \end{cases}$$

$$\varphi_{A_3}(x) = \begin{cases} 0, & \text{se } x \le 45 \\ \frac{(x-45)}{15}, & \text{se } 45 < x < 60. \\ 1, & \text{se } x \ge 60 \end{cases}$$



#### Exemplo:

· Conceito: jovem; meia-idade; velho

$$\varphi_{A_1}(x) = \begin{cases} 1, & \text{se } x \le 20 \\ \frac{(35-x)}{15}, & \text{se } 20 < x < 35, \\ 0, & \text{se } x \ge 35 \end{cases}$$

$$\varphi_{A_2}(x) = \begin{cases} 0, & \text{se } x \le 20 \text{ ou } x \ge 60 \\ \frac{(x-20)}{15}, & \text{se } 20 < x < 35 \\ \frac{(60-x)}{15}, & \text{se } 45 < x < 60 \\ 1, & \text{se } 35 \le x \le 45 \end{cases}$$

$$\varphi_{A_3}(x) = \begin{cases} 0, & \text{se } x \le 45 \\ \frac{(x-45)}{15}, & \text{se } 45 < x < 60. \\ 1, & \text{se } x \ge 60 \end{cases}$$

$$0,2$$



- Conjuntos suportes fuzzy A<sub>1</sub>,A<sub>2</sub>,A<sub>3</sub> são:
  - $supp A_1 = \{x \in [0, 80] \mid x < 35\} = [0, 35[,$
  - $suppA_2 = \{x \in [0, 80] \mid 20 < x < 60\} = ]20, 60[,$
  - $supp A_3 = \{x \in [0, 80] \mid x > 45\} = ]45, 80].$

Relembrando: ^(conjunção), v (disjunção), -> (implicação)

$$\overline{a} = 1 - a$$
  
 $a \lor b = Max(a,b)$   
 $a \land b = Min(a,b)$ 

• Tomando os valores binários "0" e "1", podemos mostrar para a função implicação (->) a seguinte tautologia:

$$a \rightarrow b = \overline{p \wedge \overline{q}} = \overline{p} \vee q$$

- Regras são expressas através de implicações lógicas da forma  $se \dots ent \tilde{a}o$ , representando uma relação  $R_{A-}$  $>_B$  entre um ou mais antecedentes e um ou mais consequentes.
- A função de pertinência associada a esta relação é definida por intermédio do operador de implicação f<sub>-></sub>, que deve ser escolhido apropriadamente. O conceito de implicação está relacionado a um ramo da matemática conhecido como lógica proposicional, que é isomórfica à teoria dos conjuntos, sendo que ambas são isomórficas à álgebra booleana.

• A tautologia tem um importante papel na lógica fuzzy, por ter sido ponto de partida para a conceituação da implicação fuzzy. A Lógica Fuzzy está na linguagem natural onde há predominância de raciocínio aproximado e preposições vagas.

|     |     | Lukasiewicz |          |               | Bochvar |          |               | Kleene |          |               | Heyting |          |               |
|-----|-----|-------------|----------|---------------|---------|----------|---------------|--------|----------|---------------|---------|----------|---------------|
| a   | b   | <           | <b>V</b> | $\rightarrow$ | ^       | <b>V</b> | $\rightarrow$ | <      | <b>V</b> | $\rightarrow$ | <       | <b>V</b> | $\rightarrow$ |
| 0   | 0   | 0           | 0        | 1             | 0       | 0        | 1             | 0      | 0        | 1             | 0       | 0        | 1             |
| 0   | 1/2 | 0           | 1/2      | 1             | 1/2     | 1/2      | 1/2           | 0      | 1/2      | 1             | 0       | 1/2      | 1             |
| 0   | 1   | 0           | 1        | 1             | 0       | 1        | 1             | 0      | 1        | 1             | 0       | 1        | 1             |
| 1/2 | 0   | 0           | 1/2      | 1/2           | 1/2     | 1/2      | 1/2           | 0      | 1/2      | 1/2           | 0       | 1/2      | 0             |
| 1/2 | 1/2 | 1/2         | 1/2      | 1             | 1/2     | 1/2      | 1/2           | 1/2    | 1/2      | 1/2           | 1/2     | 1/2      | 1             |
| 1/2 | 1   | 1/2         | 1        | 1             | 1/2     | 1/2      | 1/2           | 1/2    | 1        | 1             | 1/2     | 1        | 1             |
| 1   | 0   | 0           | 1        | 0             | 0       | 1        | 0             | 0      | 1        | 0             | 0       | 1        | 0             |
| 1   | 1/2 | 1/2         | 1        | 1/2           | 1/2     | 1/2      | 1/2           | 1/2    | 1        | 1/2           | 1/2     | 1        | 1/2           |
| 1   | 1   | 1           | 1        | 1             | 1       | 1        | 1             | 1      | 1        | 1             | 1       | 1        | 1             |

Tabela: Lógica tri-valores

#### Variável Linguística

- Uma variável linguística é uma variável cujos valores são sentenças na forma de linguagem "natural".
  - Ex: distância, temperatura, altura
- E os termos pequeno, grande, muito jovem, muito próximo, entre outros, são os valores para as variáveis linguísticas.

#### Variável Linguística

- Formalmente, uma variável linguística é caracterizada pela quíntupla: (H, T(H), U, G, M) onde:
  - · H: é o nome da variável.
  - T(H): é o conjunto de termos linguísticos de H.
  - · U: é o universo em discurso.
  - G: é a regra sintática que gera os termos linguísticos de H.
  - M: é regra semântica que associa com cada valor linguístico seu significado M(x), que é um subconjunto nebuloso em U.
  - X: é um valor genérico para H.

- · Regra Composicional de Inferência
- · As relações entre variáveis linguísticas são descritas através de declarações condicionais nebulosas do tipo SE X É A ENTÃO Y É B, onde X e Y são variáveis linguísticas, e A e B são conjuntos fuzzy.

#### · Regra Composicional de Inferência

- Considere uma função real y = f(x), tal como na Figura 2.
- Se x for igual a "a" qual seria o valor para y? A resposta é facilmente obtida fazendo-se y = b = f(a).



Figura 2: Procedimento geométrico para cálculo de b=f(a).

- · Regra Composicional de Inferência
- Exemplo: Seja X = Y = 1 + 2 + 3 + 4, e R uma relação nebulosa em XxY:

$$R_{XXY} = \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{bmatrix} \quad \text{e} \qquad A_X = \begin{bmatrix} 1 & 0.6 & 0.2 & 0 \end{bmatrix}$$

· Então a relação B=AoR é dada por:

$$B_{Y} = \begin{bmatrix} 1 & 0.6 & 0.2 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0.5 & 0 \\ 0 & 0.5 & 1 & 0.5 \\ 0 & 0 & 0.5 & 1 \end{bmatrix}$$

$$B_Y = \begin{bmatrix} 1 & 0.6 & 0.5 & 0.2 \end{bmatrix}$$

#### · Regra Composicional de Inferência

• Genericamente, a regra composição de inferência pode ser descrita da seguinte forma:

Se X é A Então Y é B (implicação)
X é A' (premissa)
Y é B' (conclusão)

• A solução para B' : B'= A' ° (A->B). Em termos de função de pertinência temos: μ B'(v) = V μ A'(u) ^ μ A->B (u,v) Onde (A->B) é a implicação entre A e B, e depende da interpretação lógica da função de implicação: Se A Então B. A seguir, listamos algumas soluções propostas para μ <sub>A->B</sub> (u,v).

#### · Regra Composicional de Inferência

| Soluções propostas para $\mu_{{\scriptscriptstyle A}	o{\scriptscriptstyle B}}(u,v)$                                           |                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| $\Big(\mu_{\scriptscriptstyle A}(u) \wedge \mu_{\scriptscriptstyle B}(v)\Big) \vee \Big(1-\mu_{\scriptscriptstyle A}(u)\Big)$ | Zadeh (1973)          |  |  |  |  |  |
| $1 \wedge \left(1 - \mu_{\scriptscriptstyle A}(u) + \mu_{\scriptscriptstyle B}(v)\right)$                                     |                       |  |  |  |  |  |
| $\mu_{A}(u) \wedge \mu_{B}(v)$                                                                                                | Mamdani (1974)        |  |  |  |  |  |
| $\begin{cases} 1 & se  \mu_A(u) \le \mu_B(v) \\ \mu_A(u) & se  \mu_A(u) > \mu_B(v) \end{cases}$                               | Mizumoto (1979)       |  |  |  |  |  |
| $\mu_{A}(u) \cdot \mu_{B}(v)$                                                                                                 | Larsen (1980)         |  |  |  |  |  |
| $1-\mu_{\scriptscriptstyle A}(u)+\mu_{\scriptscriptstyle A}(u)\mu_{\scriptscriptstyle B}(v)$                                  | Bandler (1980)        |  |  |  |  |  |
| $f_{\rightarrow}(\mu_A(u),\mu_B(u))^*$                                                                                        | Gupta e J. Qui (1991) |  |  |  |  |  |

 <sup>\*</sup> onde f é uma função de implicação que usa os operadores
 T-norm e S-norm.

#### · Regra Composicional de Inferência

 Zadeh conceituou a implicação nebulosa inspirado na função implicação definida na lógica clássica, cuja tabela verdade é mostrada a seguir:

| A | В | $A \rightarrow B$ |
|---|---|-------------------|
| T | T | T                 |
| T | F | F                 |
| F | T | T                 |
| F | F | T                 |

- A partir desta tabela, podemos escrever: A->B = AB +A'. Agora se A e B são conjuntos nebulosos definidos em U e V, então a função de pertinência para A->B pode ser escrita como:  $\mu_{A->B}$  (u,v)=  $(\mu_A(u) \wedge \mu_B(v))v(1-\mu_A(u))$
- Mamdani, no entanto, interpretou A->B como sendo "A acoplado com B", assim:

A->B = AxB ou 
$$\mu_{A->B}$$
 (u,v)=  $\mu_{A}$ (u)  $_{\wedge}$   $\mu_{B}$ (v)

#### Sistemas Nebulosos

- Um sistema nebuloso é formado pela agregação de um conjunto de relações linguísticas estruturadas no formato "Se  $X_1$  é  $A_1$  e  $X_2$  é  $A_2$  e .... $X_n$  é  $A_n$  então Y é B", denominadas de regras de inferência.
  - Ex Árvore de Decisão



• Possível derivar regras (SE) do ex:

R1:

Se montante = médio e salário = baixo

Então classe = não

R2:

Se montante = médio e salário = alto

Então classe = sim

#### Sistemas Nebulosos

- ATENÇÃO:
- Não devemos confundir: Sistema Nebuloso e Sistema Especialista, apesar da semelhança.
- O SE utiliza processamento simbólico para resolver as regras de inferência.
- O SN utiliza processamento numérico para resolver as regras de inferência.

#### Sistemas Nebulosos

- · Exemplo de avaliação de crédito:
  - R1: SE a renda do cliente é alta E sua dívida é pequena, ENTÃO seu crédito é alto.
  - R2: SE a renda do cliente não é tão alta E sua dívida é média, ENTÃO seu crédito é médio.
  - R3: SE a renda do cliente é baixa E sua dívida é alta, ENTÃO seu crédito é baixo.

#### Sistemas Nebulosos

- Na R1:
  - a variável linguística  $X_1$  estaria associada com a renda do cliente  $(X_1 \equiv Cliente.renda);$
  - a variável linguística  $X_2$  estaria associada com a dívida do cliente  $(X_2 \equiv Cliente.dívida);$
  - a variável linguística Y estaria associada com o crédito do cliente (Y ≡Cliente.crédito);
  - a variável linguística  $A_1$  ( $A_1 \equiv alta.renda$ ); a variável linguística  $B_1$  ( $B_1 \equiv pequena.dívida$ );  $C_1$  ( $C_1 \equiv Cliente.crédito$ )



- Sistemas Nebulosos
- "SE  $X_1$  é A E  $X_2$  é B ENTÃO Y é C"



#### Sistemas Nebulosos - Inferência Mamdani

- Um dos métodos mais utilizados para tirar conclusões a partir de regras fuzzy
- O método Mamdani fundamenta-se na regra de composição de inferência max-min, propondo uma relação fuzzy binária para modelar as regras fuzzy.
- Para cada regra da forma

$$R_i$$
: Se  $x_1$  é  $A_{1i}$ , ...,  $x_n$  é  $A_{ni}$  então y é  $B_i$ ;  $i$  = 1; 2, ...,  $k$ .

O método Mamdani modela pela aplicação Δ (mínimo). Além disso, assume-se para o conectivo lógico "e" a t-norma Δ (mínimo) e para o conectivo lógico "ou" a t-conorma ▼(máximo).

#### Sistemas Nebulosos – Inferência Mamdani

• Exemplo:



#### Sistemas Nebulosos - Inferência Mamdani

#### Exemplo:

- Supondo que para um dado cliente sua renda seja  $X_1 = u_0 = 24$  e que sua dívida seja  $X_2 = v_0 = 15$ , então o processo de inferência nebulosa realiza as operações numéricas descritas a seguir:
  - para todas as regras da base de regras, é calculado o valor verdade da premissa de cada regra por meio da função conjunção (∧):
- Regra 1:  $\mu_1 = \mu_{A1}(u_0) \wedge \mu_{B1}(v_0)$
- Regra 2:  $\mu_2 = \mu_{A2}(u_0) \wedge \mu_{B2}(v_0)$
- Regra 3:  $\mu_3 = \mu_{A3}(u_0) \wedge \mu_{B2}(v_0)$

#### Sistemas Nebulosos – Inferência Mamdani

#### Exemplo:

- Regra 1:  $\mu_1 = \mu_{A1}(u_0) \wedge \mu_{B1}(v_0)$
- Regra 2:  $\mu_2 = \mu_{A2}(u_0) \wedge \mu_{B2}(v_0)$
- Regra 3:  $\mu_3 = \mu_{A3}(u_0) \wedge \mu_{B2}(v_0)$

#### E:

- Regra 1:  $\mu_1 = \mu_{A1}(24) \wedge \mu_{B1}(15) = 0.6 \wedge 0.25 = \min = 0.25$
- Regra 2:  $\mu_2 = \mu_{A1}(24) \wedge \mu_{B1}(15) = 0.13 \wedge 0.5 = \min = 0.13$
- Regra 3:  $\mu_3 = \mu_{A1}(24) \wedge \mu_{B1}(15) = 0.0 \wedge 0.0 = \min = 0.0$

## Referências

- LUGER, George F. Inteligência Artificial. Pearson (Edição Digital). 2015.
- PIMENTEL, Carlos. Lógica Nebulosa: Uma Introdução. 3 ed. Fortaleza: UFCE: 2014.



