Book 10 Proposition 71

When a rational and a medial (area) are added together, four irrational (straight-lines) arise (as the square-roots of the total area)—either a binomial, or a first bimedial, or a major, or the square-root of a rational plus a medial (area).

Let AB be a rational (area), and CD a medial (area). I say that the square-root of area AD is either binomial, or first bimedial, or major, or the square-root of a rational plus a medial (area).

For AB is either greater or less than CD. Let it, first of all, be greater. And let the rational (straight-line) EF be laid down. And let (the rectangle) EG, equal to AB, have been applied to EF, producing EH as breadth. And let (the recatangle) HI, equal to DC, have been applied to EF, producing HK as breadth. And since AB is rational, and is equal to EG, EG is thus also rational. And it has been applied to the [rational] (straight-line) EF, producing EH as breadth. EH is thus rational, and commensurable in length with EF [Prop. 10.20].

Again, since CD is medial, and is equal to HI, HIis thus also medial. And it is applied to the rational (straight-line) EF, producing HK as breadth. HK is thus rational, and incommensurable in length with EF[Prop. 10.22]. And since CD is medial, and AB rational, AB is thus incommensurable with CD. Hence, EGis also incommensurable with HI. And as EG (is) to HI, so EH is to HK [Prop. 6.1]. Thus, EH is also incommensurable in length with HK [Prop. 10.11]. And they are both rational. Thus, EH and HK are rational (straight-lines which are) commensurable in square only. EK is thus a binomial (straight-line), having been divided (into its component terms) at H [Prop. 10.36]. And since AB is greater than CD, and AB (is) equal to EG, and CD to HI, EG (is) thus also greater than HI. Thus, EH is also greater than HK [Prop. 5.14]. Therefore, the square on EH is greater than (the square on) HK either by the (square) on (some straight-line) commensurable in length with (EH), or by the (square) on (some straight-line) incommensurable (in length with EH). Let it, first of all, be greater by the (square) on (some straight-line) commensurable (in length with EH). And the greater (of the two components of EK) HE is commensurable (in length) with the (previously) laid down (straight-line) EF. EK is thus a first binomial (straight-line) [Def. 10.5]. And EF (is) rational. And if an area is contained by a rational (straight-line) and a first binomial (straight-line) then the square-root of the area is a binomial (straight-line) [Prop. 10.54]. Thus, the square-root of EI is a binomial (straight-line). Hence the square-root of AD is also a binomial (straight-line). And, so, let the square on EH be greater than (the square on) HK by the (square) on (some straight-line) incommensurable (in length) with (EH). And the greater (of the two components of EK) EH is commensurable in length with the (previously) laid down rational (straight-line) EF. Thus, EK is a fourth binomial (straight-line) [Def. 10.8]. And EF (is) rational. And if an area is contained by a rational (straight-line) and a fourth binomial (straight-line) then the square-root of the area is the irrational (straight-line) called major [Prop. 10.57]. Thus, the square-root of area EI is a major (straight-line). Hence, the square-root of AD is also major.

And so, let AB be less than CD. Thus, EG is also less than HI. Hence, EH is also less than HK [Props. 6.1, 5.14]. And the square on HK is greater than (the square on) EH either by the (square) on (some straight-line) commensurable (in length) with (HK), or by the (square) on (some straight-line) incommensurable (in length) with Let it, first of all, be greater by the square on (some straight-line) commensurable in length with (HK). And the lesser (of the two components of EK) EH is commensurable in length with the (previously) laid down rational (straight-line) EF. Thus, EK is a second binomial (straight-line) [Def. 10.6]. And EF (is) rational. And if an area is contained by a rational (straight-line) and a second binomial (straight-line) then the square-root of the area is a first bimedial (straightline) [Prop. 10.55]. Thus, the square-root of area EI is

Thus, when a rational and a medial area are added together, four irrational (straight-lines) arise (as the square-roots of the total area)—either a binomial, or a first bimedial, or a major, or the square-root of a rational plus a medial (area). (Which is) the very thing it was required to show.