

Warum Trantorque M?

Der von Ingenieuren vertretene minimalistische Ansatz bei der Konstruktion von Maschinen führt dazu, dass auch Antriebssysteme systematisch verkleinert werden. Die Folge: Zahlreiche Motorkonfigurationen weisen heute eine Abtriebswelle mit verringertem Durchmesser und ohne Keilnut auf.

Herkömmliche Welle-Nabe-Verbindungen mit Keilnuten und Einstellschrauben, Kegelbuchsen oder nutlosen Mehrfachschrauben-Spannsätzen sind eher ungeeignet für Anwendungen, bei denen positionsempfindliche, spielfreie Synchrongetriebe im Normalfall von kompakten Stell- oder Schrittmotoren angetrieben werden.

Trantorque M ist gezielt auf die technischen Anforderungen der Maschinenkonstrukteure von heute zugeschnitten: eine unkomplizierte, kompakte, leichtgewichtige und kostengünstige Einheit zur Montage kritischer Antriebskomponenten.

Entscheiden Sie sich für nutlose Spannsätze und profitieren Sie von den Vorteilen der einzigartigen, wertsteigernden Eigenschaften der Trantorque M-Serie.

- Präzise axiale und radiale Positionierung der Bauteile
- ◆ Einfach zu verbinden und zu lösen kein Festfressen auf der Welle
- ◆ Perfekt für spielfreie Verbindungen
- ◆ Ausgezeichnete Konzentrizität und Balance
- ◆ Eine einzelne Sicherungsmutter für schnelle installation und Einstellungen

- Minimaler Auβendurchmesser für die Montage dünnwandiger Bauteile
- Hervorragende
 Drehmomentübertragung selbst bei Teileingriff der Welle
- ◆ Für den Einsatz mit genuteten und nutlosen Wellen geeignet
- Niedriges Massen- und Trägheitsmoment
- ◆ Erfüllt die Richtlinie RoHS 2002/95/EU

	Produktcode	(d) Welle Ø (mm)	(D) Bohrung Bauteil (mm)	Max. übe Drehmoment (Nm)	ertragbare(s) Schubwirkung (kN)	Nabenbelastung (N/mm ²)	L1 (mm)	L2 (mm)	A (mm)	B (mm)	Gewicht (g)	Installations- drehmoment (Nm)
	TTQM0516	5	16	16	6	112	19	10	13	3	18,8	14
Kleinserie	TTQM0616	6	16	19	6	112	19	10	13	3	18,1	14
	TTQM0720	7	20	36	10	123	22	11	16	3	33,9	28
	TTQM0820	8	20	41	10	123	22	11	16	3	32,9	28
	TTQM0920	9	20	47	10	123	22	11	16	3	31,8	28
	TTQM1023	10	23	68	14	123	26	13	19	5	48,9	44
	TTQM1123	11	23	75	14	123	26	13	19	5	47,2	44
	TTQM1223	12	23	81	14	123	26	13	19	5	45,4	44
	TTQM1426	14	26	123	18	113	29	16	22	5	64,9	66
	TTQM1526	15	26	132	18	113	29	16	22	5	62,0	66
	TTQM1626	16	26	140	18	113	29	16	22	5	59,0	66
Standardserie	TTQM1732	17	32	211	25	137	30	22	30	6	118,6	110
	TTQM1832	18	32	223	25	137	30	22	30	6	113,9	110
	TTQM1932	19	32	236	25	137	30	22	30	6	108,9	110
	TTQM2035	20	35	303	30	138	33	24	32	7	144,0	150
	TTQM2235	22	35	333	30	138	33	24	32	7	131,5	150
	TTQM2438	24	38	405	34	129	35	25	36	8	166,3	185
	TTQM2538	25	38	422	34	129	35	25	36	8	158,8	185
	TTQM2845	28	45	515	37	101	41	29	46	11	292,9	240
	TTQM3045	30	45	551	37	101	41	29	46	11	272,2	240
	TTQM3250	32	50	601	38	87	44	30	50	12	377,4	265
	TTQM3550	35	50	658	38	87	44	30	50	12	340,2	265

Abmessungen in mm und nur zu Referenzzwecken

Toleranz bei Welle und Bohrung

Wellendurchmesser und Bauteilbohrung müssen innerhalb folgender Toleranzen liegen:

Kleinserie: $\pm 0,04$ mm Standardserie: $\pm 0,08$ mm

Oberflächenbearbeitung von Welle und Nabe

Für eine optimale Leistung der Trantorque M-Einheit sollte die Oberflächenbearbeitung von Welle und Nabe Werte zwischen 0,08 μ m (32) und 3,2 μ m (125) Ra (Mittenrauhwert) aufweisen. Labortests haben gezeigt, dass eine Ausführung mit einem Wert von 1,6 μ m (63) Ra optimal ist. Wenn der Oberflächenwert nicht bekannt ist, kann eine angemessene Oberflächenbearbeitung mit Schleifpapier mittlerer Güte erzielt werden.

Lauftoleranz

Das einzigartige Design von Trantorque M stellt gewährleistet eine äußerst genaue Konzentrizität und überlegene Balance. Alle Trantorque M-Einheiten liegen innerhalb von 0,025 mm T.I.R. (Lauf über den gesamten Messbereich).

Synthetische Montagebauteile

Trantorque M-Einheiten werden nicht für den Einsatz mit vollständig aus synthetischem Material hergestellten Bauteilen empfohlen. Die meisten dieser Materialien zeigen unter Last einen gewissen Schlupf, der im Lauf der Zeit zu einer Lockerung der Bauteile führt. Allerdings kann eine Trantorque M-Einheit dann verwendet werden, wenn die Bohrung des synthetischen Bauteils mit einer verstärkten Metalllaufbuchse versehen ist.

Lager

Die Montage von Lagern mit Trantorque M ist nicht empfehlenswert. Die beim Anziehen der Mutter erzeugten Dehnungskräfte könnten so stark sein, dass sich der innere Laufring des Lagers verzieht und zu einem vorzeitigen Ausfall des Lagers führt.

Temperatur

Wenn die Welle und die zugehörige Nabe aus Stahl gefertigt sind, werden Trantorque M-Einheiten im Temperaturbereich von −34°C bis +204°C nicht beeinträchtigt. Bestehen allerdings die Welle bzw. die entsprechenden Bauteile aus anderen Materialien, beispielsweise Aluminium, muss ein Konstruktionsausgleich für die Differenz zwischen den Dehnungskoeffizienten vorgesehen werden. In üblichen Werksumgebungen, in denen Temperaturunterschiede von 55°C zwischen Sommer und Winter auftreten, erfordern die meisten Anwendungen keine Kompensation, selbst dann nicht, wenn unterschiedliche Materialien verwendet werden.

Axialbewegung

Eine Eigenschaft von Trantorque M ist die Axialbewegung, sobald ein Installationsdrehmoment auf die Mutter ausgeübt wird. Diese Bewegung tritt nicht nur bei Trantorque M auf, sondern bei allen konischen Montagevorrichtungen. Diese Bewegung von handfest bis zum vollen Installationsdrehmoment wird immer in die Richtung ausgeführt, in der die Mutter festgezogen wird. Das Innenelement bleibt fest auf der Welle, wo es handfest platziert wurde. Mutter, Außenelement und Bauteil bewegen sich zusammen, während die Mutter festgezogen wird. Die von diesen Teilen zurückgelegte Strecke beträgt ca. 0 9mm

Zur Auswahl der für Ihre Anwendung am besten geeigneten Trantorque M-Einheit führen Sie einfach die nachfolgend beschriebenen Schritte durch. Zuvor benötigen Sie jedoch folgende Informationen über die Anwendung:

- 1. Wellengröße
- 2. Übertragenes Drehmoment (nm), alternativ: Leistung (kW) und Drehzahl (U/min)
- 3. Streckgrenze des Bauteilmaterials (N/mm²)
- 4. Kraftmaschine (Elektromotor, Maschine usw.)
- 5. Angetriebene Maschine (Lüfter, Gebläse, Stanzmaschine usw.)

Beispiel: Wählen Sie eine Trantorque M-Einheit für eine 20-mm-Welle. Als Kraftmaschine dient ein Elektromotor, der einen Betonmischer antreibt. Der Mischer benötigt ein Drehmoment von 135 Nm und übt einen Axialschub von 5 KN aus. Die zu montierende Nabe hat einen Auβendurchmesser von 55 mm und besteht aus Stahl mit einer Streckgrenze von 250 N//mm². Stellen Sie fest, ob die Wand für diese Anwendung dick genug ist.

Klassifizierungen der angetriebenen Maschinen GLEICHMÄSSIGE LASTEN

Rührwerke für Flüssigkeiten Gebläse und Absauganlagen

Zentrifugalpumpen / Kompressoren Generatoren

Förderbänder: leichte Belastung, Ofen

Mischer

Textilmaschinen: Schärer, Zwirner,

Spinnrahmen usw. Flaschenabfüllanlagen Klärapparate / Klassierer

Kompressoren: Schnecken, Nocken

Dynanometer

Elektromotoren, Turbinen	1,00
Mehrzylindermotoren	1,25
Einzylindermotoren	1,50

MÄSSIGE STOSSBELASTUNGEN

Betonmischer

Förderbänder: Kübel, Tröge, Schleppketten

Kolbenkompressoren

Pumpen: Zahnräder, Drehkolben, Nocken

Druckerpressen

Papierfabrik: Kalandrierwerk, Trockner

Werkzeugmaschinen

Waschmaschinen / Schleuder

Elektromotoren, Turbinen	1,25
Mehrzylindermotoren	1,50
Einzylindermotoren	1,75

4. Trantorque M-Einheiten üben einen nach außen wirkenden Druck aus. Deshalb muss der Nabendurchmesser der Bauteile groß genug sein, um diesem Druck zu widerstehen. Ein zu kleiner Durchmesser kann zu Ausfällen während der Installation führen. Den Mindestnabendurchmesser anhand folgender Formel berechnen:

Zur Bestimmung des maximal übertragbaren

Kombination aus zulässigem Drehmoment und zulässigem Schub Betriebsfaktor gemäß der

Kraftmaschine und der angetriebenen Maschine

mithilfe der Tabelle der Konstruktionsfaktoren bestimmen. Die anwendbaren Gesamtkräfte mit

dem Betriebsfaktor multiplizieren, um das Konstruktionsdrehmoment zu erhalten

Drehmoments (Mtt) die Kraft F mit dem

Wellenradius multiplizieren:

Mt = übertragenes Drehmoment

Mth = Schub d = Wellendurchmesser

Dmin = erforderlicher Mindestnabendurchmesser D = Bohrungsgröße des Bauteils

Hp = Nabenkontaktdruck

S = Streckgrenze des Nabenmaterials

$$Dmin = \frac{Hp \times D}{S - \frac{Hp}{2}} + D$$

Bei diesen Zahlen wird davon ausgegangen, dass das montierte Bauteil vollständig in die Abmessung L2 der Einheit eingerückt ist. Bei Anwendungen, bei denen dies nicht der Fall ist, erhöht sich der Nabendruck proportional. Siehe hierzu folgende Formel:

$$Hp = PP \times \frac{L_2}{L_1}$$

wobei:

PP = bekannter Nabendruck

L2 = bekannte Länge

L1 = Bauteillänge durch die Bohrung

STARKE STOSSBELASTUNGEN

Maschinen zur Ziegelherstellung

Stanzpressen

Hammermühlen

Feinmahlanlagen

Brechwerke

Sägewerkmaschinen

Kolbenkompressoren

Kolbenpumpen

Kugel-/Rohrmühlen

Elektromotoren, Turbinen	1,75		
Mehrzylindermotoren	2,00		
Einzylindermotoren	2,25		

Eine nutlose Trantorque-Spannhülse ermöglicht eine flexible und einfache Installation und zeichnet sich durch außergewöhnliche Haltekraft aus. Um die spezifizierte Leistung einer Trantorque-Einheit sicherzustellen, muss sie ordnungsgemäß installiert werden.

VORSICHT: Keine Schmiermittel für diese Installation ver wenden. Keinen Schlagschraubenschlüssel für diese Installation ver wenden.

- 1. Welle und Bauteilbohrung müssen innerhalb von ± 0.08 mm des angegebenen Bohrungsdurchmessers liegen und eine Oberflächenbearbeitung von $0.80-3.2~\mu m$ Ra (Mittenrauhwert) aufweisen. Wenden Sie sich an den Hersteller, wenn die Oberflächenbearbeitung außerhalb dieser Werte liegt
- 2. Welle und Bauteilbohrung müssen vollständig frei von Farbe, Fett, Öl und Schmutz sein. Bei Bedarf die Oberflächen mit einem nicht auf Erdöl basierenden Reinigungsmittel (Isopropylalkohol) säubern.

VORSICHT: Die Trantorque-Hülse oder die Welle nicht schmieren. Das Auftragen von Schmiermittel auf die Kontaktflächen kann zu einem vorzeitigen Ausfall führen und hat das Erlöschen jeglicher Gewährleistung zur Folge.

3. Die Trantorque-Einheit in das zu montierende Bauteil setzen und dabei sicherstellen, dass die entsprechende Nabe vollständig in die Mutter eingreift. Siehe Abbildung 2.

VORSICHT: Zum Verschieben der Trantorque-Einheit auf der Welle keinen Hammer verwenden oder ähnliche Schlageinwirkung ausüben.

ACHTUNG: Die Welle muss vollständig in den Welleneinspannbereich (Abb. 1) der Trantorque-Einheit eingreifen. In Abbildung 2 ist der Mindesteingriff der Welle dargestellt.

- 4. Die Baugruppe an der gewünschten Stelle auf der Welle platzieren und die Mutter handfest anziehen, bis die Baugruppe gut auf der Welle sitzt.
- Mit einem Drehmomentschlüssel die Mutter auf das richtige Drehmoment anziehen. Siehe Abbildung 3.

Hinweis: Bei vollem Installationsdrehmoment bewegt sich die Baugruppe um ca. 0,9 mm entlang der Welle von der Mutter weg. Wenn die axiale Position entscheidend ist, muss ggf. die Mutter gelöst und die Baugruppe neu positioniert werden.

WARNUNG: Ein zu festes Anziehen der Mutter kann zu Schäden an der Trantorque-Einheit bzw. der montierten Einheit führen.

Wellenstärke (mm)	Installationsdrehmoment (Nm)
5 — 6	14
7 — 9	28
10 — 12	44
14 — 16	66
17 — 19	110
20 — 22	150
24 — 25	185
28 — 30	240
32 - 35	265

Abb. 3

Verlassen Sie sich auf Fenner Drives. Wir liefern das richtige Produkt für Ihre Anwendung.

EAGLE.

Trantorque[®] Keyless Bushings

Fenner Drives ist marktführend in der Entwicklung und Fertigung von Problemlösungen für Kraftübertragungs- und Förderanwendungen.

Unser Ruf als Innovator in der Fertigungstechnik basiert auf Produkten, die kontinuierlich Zuverlässigkeit, Qualität und Mehrwert vereinen.

Unsere nach ISO 9001:2000 zertifizierten Produktionsstätten befinden sich in Leeds, Großbritannien, Manheim, PA und Wilmington, NC, USA.

Im Zuge unseres Engagements für unübertroffenen technischen Support und Service unterhalten wir umfassende Konstruktions-,

Entwicklungs- und Testanlagen.

Besuchen Sie uns im Internet unter: www.leimbach-innovation.de

AQUA-POWER ••• INNOVATION ••• ANTRIEBSTECHNIK

www.leimbach-innovation.de

R. LEIMBACH GmbH

56727 MAYEN · CONDER STR. 29 · 56705 MAYEN · POSTFACH 1525 · TEL. 0 26 51 / 74 01 · TELEFAX 0 26 51 / 7 69 01