Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Интервальный анализ Отчёт по лабораторной работе №1

Выполнил:

Студент: Дамаскинский Константин

Группа: 3630102/70201

Принял:

к. ф.-м. н., доцент

Баженов Андрей Николаевич

Содержание

1.	Постановка задачи	2		
	1.1. Задача 1	2		
	1.2. Задача 2			
2.	Теория	2		
3.	Реализация	3		
4.	Результаты	3		
	4.1. Задача 1	3		
	4.2. Задача 2	4		
5.	Обсуждение	5		
Литература				
6.	Приложения	5		
Список иллюстраций				
1.	Зависимость параметра ε от размерности матрицы	4		
\mathbf{C}	писок таблиц			
1.	Ответ ко второй задаче. Признак Бекка	4		

2 *ТЕОРИЯ*

1. Постановка задачи

1.1. Задача 1

Дана матрица

$$A = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix} \tag{1.1.1}$$

Пусть теперь все элементы матрицы a_{ij} имеют радиус ε :

$$rad \mathbf{a}_{ij} = \varepsilon \tag{1.1.2}$$

Тогда

$$\mathbf{A} = \begin{pmatrix} [1 - \varepsilon, 1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \\ [1.1 - \varepsilon, 1.1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \end{pmatrix}$$
 (1.1.3)

Требует определить, при каком радиусе ε матрица (1.1.3) содержит особенные матрицы.

1.2. Задача 2

Дана матрица

$$A = \begin{pmatrix} 1 & [0, \varepsilon] & \dots & [0, \varepsilon] \\ [0, \varepsilon] & 1 & \dots & [0, \varepsilon] \\ \vdots & \vdots & \vdots & \vdots \\ [0, \varepsilon] & [0, \varepsilon] & \dots & 1 \end{pmatrix}$$
(1.2.1)

Требует определить, при каком радиусе ε матрица (1.2.1) содержит особенные матрицы.

2. Теория

Определение 1. Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{n \times n}$ называется **неособен- ной**, если неособенны все точечные матрицы $A \in \mathbf{A}$.

Определение 2. Если же все точечные матрицы являются особенными, то **A** называется **особенной**.

Теорема 1. Критерий Баумана [1]. Интервальная матрица неособенна тогда и только тогда, когда определители всех её крайних матриц имеют одинаковый знак.

Теорема 2. Признак Бекка [1].

Пусть mid \mathbf{A} неособенна ($\mathbf{A} \in \mathbb{IR}^{n \times n}$) и

$$\rho(|(\operatorname{mid} \mathbf{A})^{-1}| \cdot \operatorname{rad} \mathbf{A}) < 1$$

Тогда А неособенна.

3. Реализация

Лабораторная работа выполнена с помощью языка программирования Python с использованием библиотеки numpy в редакторе vim. Операционная система Ubuntu 20.04.

Ссылка на исходный код лабораторной работы и отчёта находится в разделе "Приложения".

4. Результаты

4.1. Задача 1

Воспользуемся критерием Баумана. Ясно, что для определения знаков всех крайних матриц достаточно найти наименьшее и наибольшее возможное значение точечного определителя матрицы **A**:

$$\det \mathbf{A} = (1 \pm \varepsilon)^2 - (1.1 \pm \varepsilon)(1 \pm \varepsilon) \tag{4.1.1}$$

Разность достигает **наибольшего** значения, когда уменьшаемое достигает **наибольшего** значения, а вычитаемое **наименьшего**.

$$\max \det \mathbf{A} = \varepsilon^2 + 4.1\varepsilon - 0.1 \tag{4.1.2}$$

Разность достигает **наименьшего** значения, когда уменьшаемое достигает **наименьшего** значения, а вычитаемое **наибольшего**.

$$\min \det \mathbf{A} = -2\varepsilon^2 - 2.1\varepsilon - 0.1 \tag{4.1.3}$$

Видно, что минимум строго отрицательный, а значит, нам необходимо определить из 4.1.2, при каких ε наибольший определитель имеет отрицательное значение.

Решая квадратное уравнение, получаем:

$$\varepsilon < \frac{-4.1 + \sqrt{4.1^2 + 0.4}}{2} \approx 0.024$$
 (4.1.4)

Итак, матрица особенна, когда $\varepsilon < 0.024$, следовательно, неособенна, когда $\varepsilon > 0.024$.

4 *РЕЗУЛЬТАТЫ*

4.2. Задача 2

Решение данной задачи основывается на использовании признака Бекка совместно с бинарным поиском: примем сначала интервал неопределённости достаточно большим, чтобы \mathbf{A} содержала особенные матрицы (скажем, скажем, [0;200]). ε (то есть текущее приближение его нижней границы) вычисляется как середина интервала неопределённости. Далее, если при текущем ε результат применения признака Бекка отрицательный (то есть матрица неособенна), то сдвигаем правую границу поиска на текущий ε . Иначе сдвигаем левую. Вычисления производились с точностью до третьего знака после запятой. Результаты для разных размерностей матрицы приведены в следующей таблице:

Размерность	ε	
2	1.000	
3	0.593	
4	0.419	
5	0.324	
6	0.262	

Таблица 1. Ответ ко второй задаче. Признак Бекка

Рис. 1. Зависимость параметра ε от размерности матрицы

Замечание 1. Результаты следует интерпретировать как: "При ε бо́льших, чем в таблице, матрица является особенной".

5 ПРИЛОЖЕНИЯ 5

5. Обсуждение

Последовательное решение первой и второй задач наглядно демонстрирует область применения различных критериев. В задачах сравнительно высокой размерности критерий Баумана применять практически нерационально ввиду сверхэкспоненциального роста алгоритмической сложности задачи ($|vert \mathbf{A}| = 2^{n^2}$). В то же время, признак Бекка косвенно является приближённым ввиду численного вычисления обратной матрицы и матричного спектра, что является недостатком метода. Из приведённого графика 4.2 видно, что при росте размерности матрицы начало луча, при попадании ε в который матрица становится особенной, становится всё ближе к нулю, то есть получить вырожденную матрицу становится проще.

Список литературы

[1] А. Н. Баженов. Лекции по интервальному анализу.

6. Приложения

1. Репозиторий с кодом программы и кодом отчёта:

https://github.com/kystyn/interval