Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 34

1. Пусть
$$z = \frac{3\sqrt{3}}{2} + \frac{3i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{2\sqrt{3} + 2i}$ имеет аргумент $-\frac{37\pi}{24}$.

2. Решить систему уравнений:

$$\begin{cases} x(13-5i) + y(-8+2i) = 219+7i \\ x(-5-6i) + y(5-7i) = -90+19i \end{cases}$$

- 3. Найти корни многочлена $3x^6 + 30x^5 + 123x^4 + 234x^3 + 114x^2 264x 240$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -2 2i$, $x_2 = -3 + i$, $x_3 = -1$.
- 4. Даны 3 комплексных числа: -3-23i, -3-24i, 13+10i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1+2i| < 1\\ |arg(z+5+6i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 1, -1), b = (-1, 9, -6), c = (2, -4, -5). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-13,5,-9) и плоскость P:-14x+4y-96=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1,2,4), $M_1(1,-27,0)$, $M_2(-13,1,0)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -11x - 6y - 28z - 112 = 0 \\ -16x + 4y - 10z - 76 = 0 \end{cases} \qquad L_2: \begin{cases} 5x - 10y - 18z - 2730 = 0 \\ -x - 15y - z - 1014 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.