NASA Contractor Report 4102

A Simulation Study of the Flight Dynamics of Elastic Aircraft

Volume Two—Data

Martin R. Waszak, John B. Davidson, and David K. Schmidt

GRANT NAG1-254 DECEMBER 1987

(NASA-CR-4102-Vcl-2) A SIMULATION STUDY OF THE FLIGHT DYNAMICS OF FLASTIC ALBORAFT. VCLUME 2: DATA (FURDUE URIV.) 223 p CSCL 01C

N88-15813

Unclas H1/08 0120484

A Simulation Study of the Flight Dynamics of Elastic Aircraft

Volume Two—Data

Martin R. Waszak, John B. Davidson, and David K. Schmidt

School of Aeronautics and Astronautics

Purdue University

West Lafayette, Indiana

Prepared for Langley Research Center under Grant NAG1-254

Scientific and Technical Information Division

ACKNOWLEDGMENTS

This research was supported by the NASA Langley Research Center under grant number NAG-1-254. Thanks go to Mr. William Grantham and Mr. Jerry Elliott who have served as technical monitors.

TABLE OF CONTENTS

Page	2
VOLUME ONE - EXPERIMENT, RESULTS AND ANALYSIS	
LIST OF TABLESv	
LIST OF FIGURESvii	
LIST OF SYMBOLSx	
ABSTRACTxiv	
CHAPTER 1 INTRODUCTION1	
CHAPTER 2 THE EXPERIMENT	
Facility	
CHAPTER 3 RESULTS AND ANALYSIS	
Conduct of the Experiment	
CHAPTER 4 SUMMARY AND CONCLUSION101	
CHAPTER 5 RECOMMENDATIONS	
LIST OF REFERENCES105	
VOLUME TWO - DATA	
Appendix 1 Aerodynamic Data1	

		Page
Appendix 2	Structural Mode Data	7
Appendix 3	SCAS Gain Schedules and Nonlinear Effects	13
Appendix 4	Configuration Listings	20
Appendix 5	Experimental Summary Sheets	27
Appendix 6	Simulator Frequency Response Data	184

LIST OF TABLES

Tab	ple P	age
1	Force/Feel System Parameters	5
2	Vehicle Equations of Motion	9
3	Aerodynamic Forces and Moments	11
4	Geometry, Inertia and Flight Condition of Study Vehicle	12
5	Additional Vehicle Equations	14
6	Constant Control Gains	18
7	$\frac{q(s)}{\delta(s)}$ Transfer Function Data for Simulation Model	21
8	Eigenspace Assignment Controller Gains	24
9	Engine Data : FNE	27
10	Engine Data: %FNE / sec	27
11	Engine Data: %FNE _c	28
12	Display Scaling Parameters	31
13	Command Parameters	31
14	Case Number Definition	35
15	Baseline Configuration Parameters	38
16	Test Pilot Profiles	40

Tabl	e	Page
17	Strip Chart Response Parameters.	43
18	Tabulated Response Parameters	45
19	Pilot Comments, Ratings and Tracking Performance	90
20	Frequency Response Inputs and Outputs	93
21	Scale Factors and Units	94
Appe Tabl	endix e	
A.1	Aerodynamic Force Data	2
A.2	Aerodynamic Moment Data	3
A.3	Aerodynamic Structural Data	5
A.4	Modal Data : Wing	10
A.5	Modal Data : Fuselage, Tail	11
A.6	Configuration Specifications	21
A.7	List of Simulation Runs	23
A.8	Data Summary Sheets	28
A.9	Simulator Data : Symbol Definition	185
A.10	Simulator Data : Configuration Definition	186
A.11	Simulator Data: Frequency Responses	187

LIST OF FIGURES

Fig	ure	Page
1	Simulator Functional Block Diagram	4
2	Geometry of Study Vehicle	7
3	Shapes of Modeled Structural Modes	13
4	Pitch SCAS Block Diagram	15
5	Roll SCAS Block Diagram	16
6	Yaw SCAS Block Diagram	17
7	Phugoid Augmentation Controller Block Diagram	20
8	Eigenspace Assignment Controller Block Diagram	23
9	Engine Model Block Diagram	26
10	Tracking Task Display Symbology	30
11	Configuration Listing (excerpt)	36
12	Chronological Listing of Runs (excerpt)	36
13	Sample Summary Sheet	41
14	Sample Strip Chart Plot	44
15		
16	15.11.15.10.15.01	

Fig	Figure Page		
17	Cooper-Harper Rating: 1C-11, 1C-12, 1C-21 and 1C-22 (Asymmetric Mode Frequency Varied)	.49	
18	Cooper-Harper Rating: 2C-11, 2C-12 and 2C-21	.50	
19	RMS Pitch and Flight-Path Tracking Errors (degrees)	.52	
20	RMS Roll and Heading Tracking Errors (degrees)	.56	
21	RMS Longitudinal Stick Displacements (inches)	.60	
22	RMS Longitudinal Stick Rates (inches/second)	.64	
23	RMS Lateral Stick Displacements (inches)	.68	
24	RMS Lateral Stick Rates (inches/second)	.72	
25	RMS Normal Accelerations (g's)	.76	
26	RMS Lateral Accelerations (g's)	.79	
27	PSD of Longitudinal Stick Rates - Motion and Display Effects	.85	
28	PSD of Longitudinal Stick Displacements - Rigid and Flexible Configurations	.87	
29	PSD of Longitudinal Stick Rates - Rigid and Flexible Configurations	.89	
	Simulator Functional Block Diagram	.92	
31	Simulator Frequency Response : $\frac{\delta_{pitch}}{F_{pitch}}$.96	
32	Simulator Frequency Response: $\frac{n_{z_{cp}}}{\delta_{pitch}}$, $\frac{\dot{\theta}}{\delta_{pitch}}$.97	
33	Simulator Frequency Response: $\frac{\hat{n}_{z_{cp}}}{n_{z_{cp}}}, \frac{\dot{\hat{q}}}{\dot{\theta}}$.98	
34	Simulator Frequency Response: $\frac{\hat{n}_{z_{cp}}}{F_{pitch}}$, $\frac{\hat{q}}{F_{pitch}}$.99	

Figu	ure	Page
35	Simulator Frequency Response: $\frac{\hat{n}_{z_{cmd}}}{F_{pitch}}$, $\frac{\hat{q}_{cmd}}{F_{pitch}}$.100
App Figu	pendix ure	
A. 1	Structural Control Point Locations	8
A.2	Mode Shape Sign Conventions	9
A.3	Pitch Axis Gain Schedule : K _{M0}	14
A.4	Pitch Axis Gain Schedule : K _{he}	15
A.5	Yaw Axis Gain Schedule: K _{hy}	16
A.6	Pitch Axis Gearing Effects: Tail Surface Deflection vs. Stick Displacement	17
A.7	Pitch Axis Gearing Effects: Spoiler Surface Deflection vs. Stick Displacement	18
A.8	Limits imposed on δ_{DH} as a function of δ_t	19

LIST OF SYMBOLS

Symbol	Meaning
C _(·)	aerodynamic coefficient for the parameter (·)
F _{pitch} , F _{roll} , F _s	stick input forces, lbs
I _{xx} , I _{vv} , etc	mass moments of inertia, slug-ft ²
K _(·)	
	aerodynamic rolling moment in body axes, ft-lbs
_ M	Mach number and vehicle mass, slugs
<u>M</u>	aerodynamic pitching moment in body axes, ft-lbs
<i>M</i> _y	generalized modal mass for antisymmetric mode, slug-ft ²
<i>M</i> _z	generalized modal mass for symmetric modes, slug-ft ²
<u>N</u>	aerodynamic yawing moment in body axes, ft-lbs
$\overline{P_{\epsilon}}$	longitudinal tracking error, degrees
Q _{η_v}	generalized force for antisymmetric mode, ft-lbs
Q _{ηz}	generalized force for symmetric mode, ft-lbs
R _ε	lateral tracking error, degrees
S	wing planform area, ft ²
T	total vehicle thrust force, lbs
U, V, W	velocity components of vehicle body axes, ft/sec
<u>W</u>	vehicle weight, lbs
V _{TOT}	total velocity, ft/sec
V ₀	trim velocity, ft/sec
X, Y, Z	aerodynamic force components in body axes, lbs
a_ , a	normal and lateral accelerations, g's
b	
	mean aerodynamic chord, ft
	gravitational acceleration, ft/sec ²
h	
	distance from cg to cockpit in x-direction, ft
n _z , n _v ,	normal and lateral accelerations, g's
4(·)' y(·)	

Symbol

Meaning

proll rate of vehicle body axes, rad/sec
qpitch rate of vehicle body axes, rad/sec
q _M pitch rate of the ideal body-reference (mean) axes, rad/sec
q _T total pitch rate measured at cockpit location, rad/sec
ryaw rate of vehicle body axes, rad/sec
sLaplace variable
ttime, sec
x, y, zcoordinate directions of the vehicle body axes
z _{cp} distance from cg to cockpit in negative z-direction, ft
Λwing sweep, degrees
$\Phi_{\rm cp}^{\rm y}$ modal displacement at cockpit in y-direction, ft
$\Phi_{\rm cp}^{\rm z}$ modal displacement at cockpit in z-direction, ft
$\Phi_{\mathrm{cp}}^{\phi}$ fuselage torsional displacement mode shape at cockpit, rad
αangle of attack, degrees
βsideslip angle, degrees
γflight path angle, degrees
$\delta_{\rm cv}$ forward control vane deflection, degrees
$\delta_{\mathrm{long}},\delta_{\mathrm{lat}}$ longitudinal and lateral stick deflections, inches
δ_{p} pilot stick input, inches
δ_{ped} rudder pedal deflection, inches
$\delta_{\rm RL}$, $\delta_{\rm RU}$ lower and upper split rudder deflections, degrees
δ_{DH} differential horizontal tail deflection, degrees
$\delta_{\rm t}$ symmetric horizontal tail deflection, degrees
δ_{S} spoiler deflection, degrees (right spoiler positive)
ε _(·) tracking errors
ζ_y , ζ_z antisymmetric and symmetric modal damping ratios
η _y antisymmetric generalized modal coordinate, ft
η_z symmetric generalized modal coordinate, ft
η_1, η_2 random variables to drive command signals
ρatmospheric density, slug/ft ³
pamiospheric density, stuggit

Symbol Meaning	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
subscripts	
C	
γflight path εerror θpitch φroll ψyaw	

Symbol

Meaning

operations

<u></u>	measured response of (·)
(·)	time derivative of (·)
·	magnitude of (·)

abbreviations

AGT	Adage Graphics Terminal
A/D	Analogue-to-Digital Converter
CRT	Cathode Ray Tube
D/A	Digital-to-Analogue Converter
ESC	Eigenspace Assignment Controller
ETAY	lateral axis structural mode status
ETAZ	longitudinal axis structural mode status
FNE	engine thrust parameter
KQ	gain on pitch-rate feedback in SCAS
	antisymmetric mode frequency
OMEGAZ	symmetric mode frequency
PLA	Power Lever Angle
RMS	Root-Mean-Square
SCAS	Stability and Control Augmentation System
SPDH	Speed Hold (Phugoid Augmentation Controller)
THCINC	thrust increment
THCDEC	thrust decrement
VMS	Langley Visual/Motion Simulator

ABSTRACT

The simulation experiment described herein addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley Visual/Motion Simulator facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

APPENDICES

Appendix 1 Aerodynamic Data

This appendix consists of the aerodynamic force and moment coefficients and generalized force and moment coefficients for the elastic vehicle model. These nondimensional coefficients are tabulated for various values of vehicle angle on attack, α in degrees. The coefficients that are tabulated correspond to the coefficients which appear in the table of aerodynamic forces and moments, Table 2 in Chapter 2. The values of the coefficients correspond to the forces and moments that occur for the geometry, mass and inertia, and flight condition of the baseline study vehicle.

Table A.1 - Aerodynamic Force Data

ALPHA	C _x	C_{x_q}	$C_{x\delta_s}$	$C_{x\delta_t}$	$C_{x\delta_{cv}}$
-10	0.010	1.0	-0.0003	0.0042	0.0006
-5	-0.013	0	-0.0003	0.0032	
0	-0.028	-2.0	-0.0005	0.0027	
5	0.020	1.0	-0.0007	0.0024	
7.5	0.030	5.0	-0.0006	0.0016	
10	0.008	7.	-0.0002	0.0012	
12.5	-0.002	6.5	0.0001	0.0018	
15	-0.008	4.0	0.0001	0.0018	
17.5	-0.013	2.0	0.0001	0.0016	
20	-0.015	1.0	0.0001	0.0012	

ALPHA	$C_{y_{\beta}}$	$C_{y\delta_s}$	$C_{y\delta_{DH}}$	$C_{y\delta_{RU}}$	$C_{y\delta_{RL}}$	$C_{y\eta_y}$	$C_{y\dot{\eta}_y}$
-10	-0.0131	-0.00020	-0.0006	0.00292	0.00128	-0.0090	-0.016
-5	-0.0130	-0.00020	-0.0005	0.00227	0.00113	-0.0090	-0.016
0	-0.0110	-0.00020	-0.0005	0.00187	0.00103	-0.009	-0.016
5	-0.0100	-0.00020	-0.0005	0.00147	0.00103	-0.009	-0.016
7.5	-0.0100	-0.0020	-0.0004	0.00157	0.00103	-0.009	-0.016
10	-0.0100	-0.00020	-0.0002	0.00167	0.00103	-0.009	-0.016
12.5	-0.0100	-0.00016	-0.0003	0.00177	0.00103	-0.009	-0.016
15	-0.0100	-0.00010	-0.0004	0.00177	0.00103	-0.009	-0.016
17.5	-0.0090	-0.00007	-0.0004	0.00177	0.00103	-0.009	-0.016
20	-0.0080	0	-0.0003	0.00177	0.00103	-0.009	-0.016

ALPHA	C _z	C_{z_q}	$C_{z\delta_s}$	$C_{z\delta_t}$	$C_{z\eta_z}$	$C_{z\dot{\eta}_z}$	$C_{z\delta_{cv}}$
-10	0.14	-10.0	0.0036	-0.0058	-0.0288	-0.0848	-0.0016
-5	-0.09	18.0	0.0036	-0.0066	-0.0288	-0.0848	
0	-0.34	18.0	0.0036	-0.0078	-0.0288	-0.0848	
5	-0.60	-15.0	0.0036	-0.0061	-0.0288	-0.0848	
7.5	-0.66	-37.0	0.0030	-0.0040	-0.0288	-0.0848	
10	-0.66	-55.0	0.0016	-0.0021	-0.0288	-0.0848	
12.5	-0.70	-51.0	0.0008	-0.0010	-0.0288	-0.0848	
15	0.73	-50.0	0.0003	-0.0003	-0.0288	-0.0848	
17.5	-0.73	-40.0	0	-0.0012	-0.0288	-0.0848	
20	-0.73	-35.0	0	-0.0028	-0.0288	-0.0848	↓ ↓

Table A.2 - Aerodynamic Moment Data

ALPHA	C ₀ β	C _{0 p}	C ₀ ,	C _{0 δ}	C _{0 δ_{DH}}	C _{0 δ_{RU}}
-10	0.0014	-0.074	-0.15	0.00029	0.00010	0.00015
-5	0.0004	-0.074	0	0.00041	0.00030	0.00006
0	-0.0010	-0.077	0.15	0.00041	0.00028	0.00014
5	-0.0023	-0.070	0.30	0.00041	0.00032	0.00024
7.5	-0.0033	-0.047	0.38	0.00033	0.00032	0.00024
10	-0.0043	-0.047	0.43	0.00022	0.00030	0.00026
12.5	-0.0049	-0.020	0.48	0.00016	0.00028	0.00021
15	-0.0049	0	0.50	0.00011	0.00023	0.00010
17.5	-0.0049	0	0.45	0.00005	0.00022	0.00010
20	-0.0049	0	0.38	0	0.00022	0.00009

C _{0 δ_{RL}}	C _{0ηy}	$C_{\emptyset \stackrel{\cdot}{\eta_y}}$
0.00004	0.0678	0.0243
0.00002	0.0678	0.0243
0.00003	0.0678	0.0243
0.00005	0.0678	0.0243
0.00006	0.0678	0.0243
0.00006	0.0678	0.0243
0.00005	0.0678	0.0243
0.00003	0.0678	0.0243
0.00002	0.0678	0.0243
0.00002	0.0678	0.0243

ALPHA	C _m	C_{m_q}	$C_{m_{\dot{\alpha}}}$	$C_{m\delta_s}$	$C_{m\delta_t}$	$C_{m\eta_z}$	$C_{m\dot{\eta}_z}$	$C_{m\delta_{cv}}$
-10	0.029	-35.0	-4.0	0.0080	-0.042	-0.0321	-0.159	0.014
-5	-0.111	-35.0	-4.0	0.0080	-0.042	-0.0321	-0.159	
0	-0.252	-34.7	-4.2	0.0090	-0.045	-0.0321	-0.159	
5	-0.399	-35.2	-5.2	0.0090	-0.046	-0.0321	-0.159	
7.5	-0.358	-34.0	-5.6	0.0090	-0.046	-0.0321	-0.159	
10	-0.300	-28.8	-6.0	0.0080	-0.045	0	0	
12.5	-0.260	-20.0	-6.6	0.0070	-0.043	0	0	
15	-0.265	-11.5	-4.5	0	-0.039	0	0	
17.5	0	-13.0	-2.6	0	-0.034	0	0	
20	0	-13.2	-0.8	0	-0.028	0	0	1

Table A.2 - Aerodynamic Moment Data concluded

ALPHA	$C_{n_{\beta}}$	$C_{n_{\dot{\beta}}}$	C_{n_p}	C_{n_r}	C _{nδ}	$C_{n\delta_{DH}}$	$C_{n\delta_{RU}}$	$C_{n\delta_{RL}}$
-10	0.0020	0.051	0.038	-0.140	0.00015	0.00016	-0.00031	-0.00044
-5	0.0019	0.065	-0.027	-0.135	0.00016	0.00013	-0.00031	-0.00044
0	0.0020	0.075	-0.080	-0.135	0.00018	0.00012	-0.00030	-0.00044
5	0.0023	0.070	-0.085	-0.130	0.00018	0.00012	-0.00030	-0.00044
7.5	0.0022	0.060	-0.065	-0.130	0.00021	0.00007	-0.00034	-0.0004.5
12.5	0.0019	0.133	0.055	-0.080	0.00021	0.00003	-0.00032	-0.00051
15	0.0017	0.228	0.030	-0.030	0.00014	0.00008	-0.00026	-0.00052
17.5	0.0012	0.288	0.025	-0.025	0.00006	0.00009	-0.00026	-0.00046
20	0.0005	0.309	0.015	-0.030	0	0.00003	-0.00026	-0.00038
ALPHA	$C_{n\eta_y}$	$C_{n\eta_y}$						
-10	0.0080	0.0052			•			
-5	0.0080	0.0052				:		
0	0.0080	0.0052						ı
5	0.0080	0.0052						
7.5	0.0080	0.0052						
10	0.0080	0.0052						
12.5	0.0080	0.0052						
15	0.0080	0.0052						
17.5	0.0080	0.0052						
20	0.0080	0.0052						

Table A.3 - Aerodynamic Structural Data

ALPHA	C _{ηy}	$C_{\eta_y\beta}$	$C_{\eta_y p}$	$C_{\eta_y r}$	$C_{\eta_y\delta_s}$	$C_{\eta_y\delta_{DH}}$	$C_{\eta_y \delta_{RU}}$
-10	0	-0.00046	0.00157	0.00077	-0.0219	-0.0064	0.00367
-5			1				
0			i				
5							
7.5							
10							
12.5							
15							
17.5		}					
20	1 1	1	<u> </u>	+	<u> </u>	 	
ALPHA	$C_{\eta_y \delta_{RL}}$	$C_{\eta_y\eta_y}$	$C_{\eta_y\dot{\eta}_y}$	$C_{\eta_y\delta_{ev}}$		<u> </u>	
-10	0.0011	-1.700	-0.923	0			
-5							
0							
5							
7.5							
10							
12.5							
15							
17.5							
20	↓	1	1	+			

Table A.3 - Aerodynamic Structural Data concluded

ALPHA	C_{η_z}	$C_{\eta_z \alpha}$	$C_{\eta_z\dot{\alpha}}$	$C_{\eta_z q}$	$C_{\eta_z\delta_s}$	$C_{\eta_z\delta_t}$	$C_{\eta_z\eta_z}$
-10	0	-0.00113	0	-1.452	0.0009	-0.00342	0.00064
-5							1
0			1 1				
5							
7.5							
10							
12.5							
15							
17.5							
20	↓	↓	1	↓	↓	↓ ↓	↓
ALPHA	$C_{\eta_z\dot{\eta}_z}$	$C_{\eta_z\delta_{ev}}$					
-10	-0.00966	-0.00227					
-5							
0							
0 5							
7.5							
10							
12.5							
15							·
17.5							
20	↓	1					

Appendix 2 Structural Mode Data

The control point locations and corresponding normalized structural deflections for the study vehicle are presented in this appendix. Figure A.1 depicts the locations of the control points. Figure A.2 presents the sign conventions for the mode shapes and their deflections and slopes. The modal deflections are defined to be positive in the positive coordinate directions. They are normalized so that the deflection at the nose (i.e. fuselage station 0) is one foot. The structural coordinates are defined so that the x-axis lies along the longitudinal axis of the vehicle and is directed forward. The y-axis lies in the plane of the wings, is orthogonal to the x-axis and points out the right wing. The z-axis is orthogonal to the xy-plane and is directed downward. The origin of the xyz-coordinate system is at the center of mass of the aircraft.

The deflections of the control points for the lowest frequency symmetric and antisymmetric modes are presented in the tables that follow. This mode shape data was used to obtain the mode shape plots presented in Figure 3 in Chapter 2.

Figure A.1 - Structural Control Point Locations

MODE SHAPE SIGN CONVENTIONS

 $\phi_i \stackrel{\Delta}{=}$ mode deflection (feet)

 $\phi'_i \triangleq \text{mode slope (feet/feet)}$

 $\eta_i \stackrel{\Delta}{=} generalized deflection (dimensionless)$

Figure A.2 - Mode Shape Sign Conventions

Table A.4 - Modal Data: Wing

Control	Fuselage Station	Butt Plane	Wing Defle	ctions (ft.)
Point	Station	Trane	Symmetric	Antisymmetric
	(in.)	(in.)	Mode	Mode
1	509.0	24.0	0.134767	-0.00529188
2	708.25	24.0	-0.138436	-0.00511932
3	907.25	24.0	-0.141176	-0.00496657
4	1106.8	24.0	-0.0709361	0.175614
5	1306.0	24.0	0.0143585	0.470995
6	625.0	72.0	-0.0953299	-0.0155787
7	795.25	72.0	-0.154605	-0.0151372
8	965.5	72.0	-0.124002	-0.00717671
9	1135.8	72.0	-0.0587528	0.718319
10	1306.0	72.0	0.0143585	1.41295
] 11	740.0	120.0	-0.188116	0.711527
12	881.5	120.0	-0.157258	0.216667
13	1023.0	120.0	-0.101854	-0.216821
14	1164.5	120.0	-0.0359900	-0.00717671
15	1306.0	120.0	0.0400484	-1.61333
16	858.0	171.0	-0.182679	0.412947
17	970.0	171.0	-0.125595	-0.227527
18	1082.0	171.0	-0.0686746	-0.952831
19	1194.0	171.0	-0.0058470	-2.02406
20	1306.0	171.0	0.0712297	-3.58068
21	963.0	225.0	-0.130195	-0.352080
22	1052.5	225.0	-0.0807926	-0.949884
23	1142.0	225.0	-0.0289801	-1.79710
24	1231.5	225.0	0.0330662	-2.97565
25	1321.0	225.0	0.107921	-4.55961 -1.07003
26	1053.0	269.0	-0.0837392	-1.07092
27	1135.2	269.0	-0.0341160 0.0233756	-1.88686 -2.96850
28	1217.5	269.0	1	-4.42628
29	1299.8	269.0	0.0927204 0.175921)
30	1382.0	269.0	-0.0248385	-6.30396 -2.22464
31	1147.0	313.0		
32	1220.8	313.0	0.0298222	-3.28454 -4.62097
33	1294.5	313.0		
34	1368.2	313.0	0.168843	-6.34319 -8.40589
35	1442.0 1242.0	313.0 358.0	0.256431	-3.89604
36 37			0.0301230	-5.19295
37	1307.4	358.0	0.109/10	-6.77517
38	1372.8	358.0	0.178917	-8.62406
39	1438.1	358.0		
40	1503.5	358.0	0.339823 0.145596	-1.06203
41	1339.0	403.0	0.145596	-6.19584 -7.73575
42	1395.8	403.0		
43	1452.5	403.0	0.280700	-9.39314 -11.1836
44	1509.2	403.0	0.354708 0.433277	-11.1836 -13.0908
45	1566.0	403.0	1	
46	1434.0	447.0	0.264467	-9.20502 -10.7275
47	1482.5	447.0	0.327487	-10.7275
48	1531.5	447.0	0.392753	-12.3092
49	1580.2	447.0	0.459351	-13.9266
50	1629.0	447.0	0.525813	-15.5401

Table A.5 - Modai Data : Fuselage, Tail

Control	Fuselage Station	Butt Plane	Fuselage Displacement (ft.)		
Point	(in.)	(in.)	Symmetric Mode	Antisymmetric Mode	
51	72.0	0.0	1.00	1.00	
52	172.0	0.0	0.725128	0.752280	
53	272.0	0.0	0.444520	0.500628	
54	372.0	0.0	0.220083	0.291652	
55	472.0	0.0	0.0557356	0.131140	
56	572.0	0.0	-0.0556486	0.0287140	
57	672.0	0.0	-0.123779	-0.0395304	
58	772.0	0.0	-0.152392	-0.0799198	
59	872.0	0.0	-0.149516	-0.106551	
60	972.0	0.0	-0.121980	-0.123343	
61	1072.0	0.0	-0.0850331	-0.136570	
62	1172.0	0.0	-0.0435321	-0.146232	
63	1272.0	0.0	0.0124225	-0.150222	
64	1372.0	0.0	0.0476976	-0.146850	
65	1472.0	0.0	0.102925	-0.133034	
66	1572.0	0.0	0.182146	-0.109942	
67	1683.0	0.0	0.283587	-0.0858145	

Control Point	· · · · · · · · · · · · · · · · · · ·			rizontal placement (ft.)		
FOIIIL	(in.)	(in.)	Symmetric Mode	Antisymmetric Mode		
68	1509.0	2.6	0.139051	0.579749		
69	1557.75	2.6	0.167729	0.580116		
70	1606.5	2.6	0.196390	0.580502		
71	1655.25	2.6	0.225057	0.508069		
72	1704.0	2.6	0.253724	0.581237		
73	1538.0	7.0	0.155290	1.53797		
74	1580.75	7.0	0.183866	1.59169		
75	1623.5	7.0	0.212379	1.65005		
76	1666.25	7.0	0.241100	1.71845		
77	1709.0	7.0	0.269892	1.78918		
78	1564.0	11.2	0.175834	2.62599		
79	1601.25	11.2	0.200924	2.64232		
80	1638.5	11.2	0.226280	2.68232		
81	1675.75	11.2	0.251626	2.74309		
82	1713.0	11.2	0.276976	2.80618		
83	1592.0	15.6	0.198652	3.64985		
84	1623.0	15.6	0.220458	3.69440		
85	1654.0	15.6	0.242372	3.74502		
86	1685.0	15.6	0.264412	3.81121		
87	1716.0	15.6	0.286702	3.87768		
88	1621.0	20.1	0.225144	4.81932		
89	1646.0	20.1	0.243351	4.86860		
90	1671.0	20.1	0.261732	4.92077		
91	1696.0	20.1	0.280271	4.97623		
92	1721.0	20.1	0.298967	5.03478		
93	1649.0	24.6	0.253577	6.02821		
94	1668.0	24.6	0.267826	6.08184		
95	1687.0	24.6	0.282179	6.13875		
96	1706.0	24.6	0.296624	6.19836		
97	1725.0	24.6	0.311216	6.26058		

Table A.5 - Modal Data: Fuselage, Tail concluded

Control	Fuselage Station	Butt Plane	Vertical Tail Displacement (ft.) Antisymmetric
	(in.)	(in.)	Mode Only
98	1406.4	84.54	0.960609
99	1470.02	84.54	1.02464
100	1533.65	84.54	1.08966
101	1597.27	84.54	1.13121
102	1660.9	84.54	1.17671
103	1433.9	107.5	1.50415
104	1492.65	107.5	1.57845
105	1551.4	107.5	1.60744 1.65526
106	1610.15	107.5 107.5	1.72058
107	1668.9	127.23	1.96203
108	1458.4 1512.65	127.23	1.90203
110	1566.9	127.23	2.05256
111	1621.15	127.23	2.10676
112	1675.4	127.23	2.16116
113	1488.9	152.0	2.48309
114	1537.4	152.0	2.55807
115	1585.9	152.0	2.63681
116	1634.4	152.0	2.73140
117	1682.9	152.0	2.82589
118	1527.9	184.62	3.17362
119	1569.4	184.62	3.32290
120	1610.9	184.62	3.43652
121	1652.4	184.62	3.53246
122	1693.9	184.62	3.68473
123	1563.4	213.31	4.00473
124	1598.4	213.31	4.07662
125	1633.4	213.31	4.16280
126	1668.4	213.31	4.29739
127	1703.4	213.31	4.44783
128	1598.4	242.18	4.74522
129	1627.15	242.18	4.85121
130	1655.9	242.18	4.95758
131	1684.65	242.18	5.07749
132	1713.4	242.18	5.26976
133	1635.4	269.15	5.51623
134	1658.02	269.15	5.61797
135	1680.65	269.15	5.74599
136	1703.27	269.15	5.89924
137	1725.9	269.15	6.04927

Appendix 3 SCAS Gain Schedules and Nonlinear Effects

The gain schedules that were used in the stability and control augmentation systems for the study vehicle are presented in this appendix. Nonlinear properties and gearing effects in the control system are also presented here. Figures A.3 and A.4 depict the variation of the pitch SCAS gains $K_{M\theta}$ and $K_{h\theta}$ with variations in flight condition (i.e. Mach number and altitude, respectively). Figure A.5 depicts the variation of the yaw SCAS gain $K_{h\psi}$ with variations in altitude. Figure A.6 presents the nonlinear relationship between longitudinal stick displacement and symmetric horizontal tail deflections. Figure A.7 presents the relationship between lateral stick displacement and spoiler deflections. Finally, Figure A.8 depicts the limits that are imposed on differential tail displacement due to commanded symmetric tail displacement.

NO. 2 MM SEMI INE CRAPII PAPER

PARTIES, MASS 82184
MADE MILLS A

ORIGINAL PAGE IS OF POOR QUALITY

Figure A.7 - Pitch Axis Gearing Effects:

Spoiler Surface Deflection vs. Stick Displacement

Appendix 4 Configuration Listings

This appendix contains the specifications for the vehicle configurations that were studied in the simulation experiment. It also contains a chronological listing of the runs that were completed. The first table below presents the values for the dynamic parameters that were assigned to each configuration. These dynamic parameters specify the degree of flexibility in terms of the structural mode vibration frequencies ω_v and ω_z , which correspond to the antisymmetric and symmetric modes, respectively. The parameters "ETAY" and "ETAZ" indicate whether or not the antisymmetric or symmetric modes, respectively, were implemented in the simulation. The dynamic parameters also indicate the control system status. The SCAS status is indicated by the parameter SCAS which takes on values of either ON or OFF, if ON the stability and control augmentation systems were enabled. The gain on pitch rate in the pitch SCAS, KQ, is also indicated since this parameter was varied throughout the experiment. The status of the phugoid augmentation controller (i.e. the "speed hold") is indicated by the SPDH parameter. When this value is ON the phugoid augmentation was enabled and when OFF the phugoid augmentation was not used. An additional parameter, OLD CASE, is included in the configuration list. This parameter indicates the case number assigned to the combination of experimental and dynamic parameters when the experiment was conducted. The old case number is useful when cross referencing the experimental data.

The chronological listing provides the case number associated with each simulation run that was made during the experiment. This chronological listing provides a means by which any run number or configuration number can be cross referenced. It also gives some indication of the availability of various forms of data that was collected during the simulation study such as digitally tabulated response data or strip chart plots of vehicle responses.

Table A.6 - Configuration Specifications

CASE NO.	ETAY	ETAZ	OMEGY	OMEGZ	SCAS	KQ	SPDH	OLD CASE
1A-11-1	OFF	OFF	_	_	ON	2.0	OFF	4
1A-11-2	OFF	ON	2.0	2.0	ON	2.0	OFF	10
1A-11-3	OFF	ON	2.0	1.75	ON	2.0	OFF	16
1A-11-4	OFF	ON	2.0	1.5	ON	2.0	ON	22
1A-21-1	OFF	OFF	_	_	ON	1.6	OFF	1*
1A-21-1	OFF	OFF	_	_	ON	2.0	OFF	1
1A-21-2 1A-21-3	OFF	ON	2.0	2.0	ON	2.0	OFF	7
1A-21-3	OFF	ON	2.0	1.5	ON	2.0	ON	21
1A-21-4	OFF	OIA	2.0	1.5	ON	2.0	ON	21
1B-11-1	OFF	OFF	_	-	ON	2.0	OFF	5
1B-11-2	ON	OFF	2.0	2.0	ON	2.0	OFF	11
1B-11-3	ON	OFF	1.5	2.0	ON	2.0	ON	32
1B-21-1	OFF	OFF	_	_	ON	1.6	OFF	2*
	OFF	OFF	_	_	ON	2.0	OFF	2
1B-21-2 1B-21-3	ON	OFF	2.0	2.0	ON	2.0	OFF	8
1B-21-3 1B-21-4	ON	OFF	1.5	2.0	ON	2.0	ON	31
15-21-4	ON	OFF	1.5	2.0	ON	2.0	ON	51
1C-11-1	OFF	OFF	-	-	ON	2.0	OFF	6
1C-11-2	ON	ON	2.0	2.0	ON	2.0	OFF	12
1C-11-3	ON	ON	2.0	2.0	ON	2.0	ON	13
1C-11-4	ON	ON	2.0	1.75	ON	2.0	ON	18
1C-11-5	ON	ON	2.0	1.5	ON	2.0	ON	24
1C-11-6	ON	ON	1.5	2.0	ON	2.0	ON	34
1C-11-7	ON	ON	1.0	2.0	ON	2.0	ON	40
1C-11-8	ON	ON	2.0	1.0	ON	2.0	ON	49
1C-12-1	ON	ON	2.0	2.0	ON	2.0	ON	14,50
1C-12-2	ON	ON	2.0	1.75	ON	2.0	ON	19
1C-12-3	ON	ON	2.0	1.5	ON	2.0	ON	25,48,51
1C-12-4	ON	ON	2.0	1.25	ON	2.0	ON	27
1C-12-5	ON	ON	2.0	1.0	ON	2.0	ON	29,47,52
1C-12-6	ON	ON	1.5	2.0	ON	2.0	ON	35
1C-12-7	ON	ON	1.0	2.0	ON	2.0	ON	41
1C-12-8	ON	ON	2.0	0.8	ON	2.0	ON	45,53
1C-12-9	ON	ON	2.0	0.9	ON	2.0	ON	46
1C-12-10	ON	ON	2.0	2.0	ON	1.6	ON	54
1C-12-11	ON	ON	2.0	1.5	ON	1.6	ON	55
1C-12-12	ON	ON	2.0	1.0	ON	1.6	ON	56
1C-12-13	ON	ON	2.0	0.8	ON	1.6	ON	57
1C-12-14	ON	ON	2.0	2.0	OFF	_	ON	58
1C-12-15	ON	ON	2.0	1.5	OFF	_	ON	59
1C-12-16	ON	ON	2.0	1.0	OFF	-	ON	60
1C-12-17	OFF	OFF	_	-	ON	2.0	ON	29*

Table A.6 - Configuration Specifications concluded

1C-21-1	OFF	OFF	_	_	ON	1.6	OFF	3*
1C-21-2	OFF	OFF	-	-	ON	2.0	OFF	3
1C-21-3	ON	ON	2.0	2.0	ON	2.0	OFF	9,111
1C-21-4	ON	ON	2.0	1.75	ON	2.0	ON	17
1C-21-5	ON	ON	2.0	1.5	ON	2.0	ON	23
1C-21-6	ON	ON	1.5	2.0	ON	2.0	ON	33
1C-21-7	ON	ON	1.0	2.0	ON	2.0	ON	39
1C-21-8	ON	ON	2.0	2.0	ON	ESC	OFF	113
10 21 0	021	011			V 1.	200	011	113
1C-22-1	ON	ON	2.0	2.0	ON	2.0	ON	20
1C-22-2	ON	ON	2.0	1.5	ON	2.0	ON	26
1C-22-3	ON	ON	2.0	1.25	ON	2.0	ON	28
1C-22-4	ON	ON	2.0	1.0	ON	2.0	ON	30
1C-22-5	ON	ON	1.5	2.0	ON	2.0	ON	36
1C-22-6	ON	ON	1.0	2.0	ON	2.0	ON	42
1C-22-7	ON	ON	2.0	1.0	ON	1.6	ON	56B
1C-22-8	ON	ON	2.0	0.8	ON	2.0	ON	45B
1C-22-9	ON	ON	2.0	1.5	ON	ESC	OFF	75 75
1C-22-10	ON	ON	2.0	1.5	ON	2.0	OFF	76
1C-22-11	ON	ON	2.0	2.0	ON	2.0	OFF	77,110
1C-22-12	ON	ON	2.0	2.0	ON	ESC	OFF	112
10 22 12	011	ON	2.0	2.0	OII	D 00	OFF	112
2C-11-1	OFF	OFF	_	_	ON	1.6	ON	61
2C-11-2	ON	ON	2.0	2.0	ON	1.6	ON	62
2C-11-3	ON	ON	2.0	2.0	ON	1.6	ON	63
2C-11-4	ON	ON	2.0	2.0	ON	1.6	ON	64
2C-11-5	ON	ON	2.0	2.0	ON	2.0	ON	78
2C-11-6	ON	ON	2.0	1.5	ON	2.0	ON	79,85
2C-11-7	ON	ON	2.0	1.0	ON	2.0	ON	80
2C-11-8	ON	ON	2.0	1.5	ON	2.0	OFF	91
2C-11-9	ON	ON	2.0	1.5	ON	2.0	OFF	92
2C-11-10	ON	ON	2.0	1.0	ON	2.0	OFF	93
2C-11-11	ON	ON	2.0	1.0	ON	2.0	ON	93B
2C-11-12	ON	ON	2.0	0.8	ON	2.0	OFF	94
2C-11-13	ON	ON	2.0	0.8	ON	2.0	ON	94B
20 11 15	OIV	OII	2.0	0.0	011	2.0	OII	עדל
2C-12-1	ON	ON	2.0	2.0	ON	2.0	ON	82
2C-12-2	ON	ON	2.0	1.0	ON	2.0	ON	83
2C-12-3	ON	ON	2.0	1.5	ON	2.0	ON	84
2C-12-4	OFF	OFF	_	_	ON	2.0	OFF	90
2C-12-5	OFF	OFF	_	-	ON	2.0	ON	90B
2C-12-6	ON	ON	2.0	2.0	OFF	_	OFF	114
20 12 0	O.N	011	2.0		011		011	114
2C-21-1	ON	ON	2.0	1.0	ON	2.0	ON	81,101
2C-21-2	ON	ON	2.0	2.0	ON	2.0	ON	99 [°]
2C-21-3	ON	ON	2.0	1.5	ON	2.0	ON	100
2C-21-4	ON	ON	2.0	1.0	ON	2.0	OFF	93C
		-	-				_	-

Table A.7 - List of Simulation Runs

DATE	RUN	CASE	COMMENT
4/30	1 2 3 4 5	1A-21-1 1B-21-1 1C-21-1 1A-21-2 1A-21-2	no taped data, limited strips
5/2	1 2 3 4 5 6	1A-21-1 1B-21-2 1C-21-2 1A-11-1 1B-11-1 1C-11-1	
5/3	1 2 3 4 5 6 7 8 9 10	1C-11-1 1C-11-1 1A-21-3 1B-21-3 1C-21-3 1A-11-2 1B-11-2 1C-11-2 1C-11-3 1C-12-1 1A-21-4	tau(3) = 0
5/7	1 2 3 4 5 6 7 8 9	1C-11-1 1A-11-2 1C-11-2 1C-11-3 1A-21-3 1B-21-3 1C-21-3 1C-11-3 1C-12-1	
5/8	1 2 3 4 5 6 7 8	1C-11-1 1C-11-3 1C-12-1 1A-11-3 1A-11-3 1C-21-4 1C-21-4 1C-11-4	

Table A.7 - List of Simulation Runs continued

5/10	1	1C-21-2	not on tape
•	2	1C-11-3	
	3	1C-11-4	••
	4	1C-12-2	••
	5	1C-22-1	••
	6	1C-11-4	••
	7	1A-21-4	••
	8	1A-11-4	••
	9	1C-11-5	
5/14	1	1A-21-4	
J, L.	2	1A-11-4	
	3	1C-21-5	
	4	1C-11-5	
	5	1C-12-3	
	6	1C-22-2	
5/16	1	?	tape only, no comment no strip
5/17	1	1C-12-4	
- •	2	1C-22-3	
	3	1C-12-5	
	4	1C-12-17	
	5	1C-22-3	
	6	1C-22-4	
	7	1B-21-4	
	8	1B-11-3	
	9	1C-21-6	
	10	1C-11-6	
	11	1C-12-6	
	12	1C-22-5	
5/21	1	1C-12-8	
		1C-12-9	
	2 3	1C-12-8	
	4	1C-12-5	
	5	?	on tape only
	6	1C-12-3	, o cape o,
	7	1C-12-1	
	8	1C-11-3	
	9	1C-11-5	
	10	1C-11-8	
5/22	1-4	1C-12-1	no strips, some comments

Table A.7 - List of Simulation Runs concluded

6/3	1 2 3 4 5 6 7	1C-22-9 1C-22-10 1C-22-11 2C-11-5 2C-11-6 2C-11-7 2C-21-1	
6/4	1 2 3 4 5 6 7 8 9 10	1C-22-9 1C-22-10 1C-22-9 1C-22-11 2C-21-4 2C-11-7 2C-11-5 2C-12-1 2C-12-2 2C-12-3 2C-11-6	
6/6	1 2 3 4 5 6 7 8 9 10	2C-12-4 2C-11-8 2C-11-9 2C-11-10 2C-11-12 2C-11-11 2C-11-13 2C-21-2 2C-21-3 2C-21-1 2C-12-5	
6/11	1 2 3 4 5 6 7 8 9	1C-22-12 1C-22-11 1C-21-3 1C-21-8 1C-21-8 1C-22-12 1C-22-11 1C-22-12 1C-21-8 2C-12-6	no tape, no strips

Table A.7 - List of Simulation Runs continued

5/24	1	1C-12-1	
-,-:	2	1C-12-3	
!	3	1C-12-5	
	4	1C-12-8	
	5	1C-12-10	
	6	1C-12-11	
	7	1C-12-12	
	8	1C-12-13	
	9	1C-12-10	
	10	1C-12-11	
	11	1C-12-12	
	12	1C-22-7	
	13	1C-12-13	
	14	1C-12-14	
	15	1C-12-15	
	16	1C-12-16	
5/29	1	1C-12-3	
	2	1C-12-5	
	3	1C-22-8	
	4	1C-12-8	
	5	1C-11-2	
	6	1C-11-6	
	7	1C-12-6	
	8	1C-21-7	
5/30	1	1C-11-3	not on tape
	1 2 3	1C-21-6	••
	3	1C-21-6	••
	4	1C-11-6	••
	5	1C-11-3	••
	6	1C-12-6	
	7	1C-22-5	**
	8	1C-21-7	••
	9	1C-11-7	
5/31	1	1C-11-1	
	2	1C-11-7	
	3	1C-12-7	
	1 2 3 4 5	1C-22-6	
	5	2C-11-1	
	6	2C-11-2	
	7	2C-11-3	
	8	2C-11-4	

Appendix 5 Experimental Summary Sheets

The complete set of summary sheets for the simulation experiment are presented in this appendix. The summary sheets provide basic information about each simulation run that was made. This basic information consists of the case number, run number, pilot identifier and dynamic parameters associated with each run. The summary sheets also provide statistical performance data which includes the mean errors, $\varepsilon_{long.}$ and $\varepsilon_{lat.}$, and standard deviations, $\sigma_{long.}$ and $\sigma_{lat.}$, of the tracking errors. The longitudinal axis values correspond to pitch errors for the pitch/roll tracking task and flight-path errors for the flight-path/heading task. The lateral axis values correspond to roll errors for the pitch/roll tracking task and heading angle errors for the flight-path/heading task.

Probably the most important items recorded on the summary sheets are the subjective pilot ratings and pilot/evaluator comments. The pilot ratings indicate the level of handling qualities associated with each run measured on the Cooper-Harper scale. The comments consist of pilot opinions and recommendations regarding the vehicle dynamics and evaluator comments that document significant observations made by the engineer/evaluator during the experiment.

Table A.8 - Data Summary Sheets

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: OFF\;\;\omega_{_{_{\boldsymbol{y}}}}=-$	SCAS : ON	K = 2.0
1 A-1 1-1	$\eta_{_{z}}$: OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	4	
RUN/PILOT	SCORES :		COOPER- HARPER
5-2-1	$\varepsilon = .155$	σ = 1.02 long	RATING
В	arepsilon = .373	$\sigma_{_{ m loft}}=$. 492	N/A
			<u>L</u>

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: OFF \omega_{j} = -$	SCAS : ON	K = 2.0
1 A-1 1-1	$\eta_{_{z}}$: OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	4	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-2-4	ළ = .155 long	$\sigma = 1.02$	RATING
B	$oldsymbol{arepsilon}_{ ext{lat}}=$.373	$\sigma_{_{ m loft}}=$. 492	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{r}: OFF \omega_{r}=2.0$	SCAS : ON	K = 2.0
1A-11-2	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	10	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-3-6	$\varepsilon = .048$	or = 1.40	RATING
В	€ =056 lot	$\sigma_{_{ m loft}}=$.387	N/A
1]

- MOTION TASK HARDER AND MORE DIFFICULT
- WORSE THAN NO MOTION (THE SENSATION NOT NECESSARILY THE PERFORMANCE)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y}=2.0$	SCAS : ON	$K_{\parallel} = 2.0$
1A-11-2	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	10	
RUN/PILOT	SCORES :		COOPER-
		•	HARPER
5-7-2	ε = .15 long	Or = 1.37	RATING
В	$arepsilon_{ m lot} = .10$	$\sigma_{_{ m loft}}=$.58	N/A

- DEFINITELY MORE COMPENSATION THAN PREVIOUS RUN

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{y} : OFF $\omega_{y} = 2.0$ SCAS: ON	$K_{\bullet} = 2.0$
1A-11-3	$\eta_{_{1}}$: ON $\omega_{_{1}}=1.75$ SPEED H	OLD ; ON
	OLD CASE NO. : 16	
RUN/PILOT	SCORES:	COOPER-
5-8-4	$\varepsilon = .152$ $\sigma = 1.39$	HARPER RATING
	iong long	
В	$\varepsilon =129$ $\sigma = .71$	N/A

- FLEW AGGRESSIVELY
- OBVIOUSLY MORE JUMPY THAN BEFORE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{j}: \text{OFF} \;\; \omega_{j}=2.0 \;\;\; \text{SCAS}: \text{ON}$	K = 2.0
1A-11-3	η_z : ON $\omega_z=1.75$ SPEED HOLD	; ON
	OLD CASE NO. : 16	
RUN/PILOT	SCORES:	COOPER-
5-8-5	$\varepsilon = .175 \sigma = 1.87$	HARPER
3-6-3	long long	RATING
B	$\varepsilon =35$ $\sigma = .468$	N/A

- FELT THAT WAS THE BEST HE COULD DO WITHOUT EXCITING THE STRUCTURAL MODES
- ACCEPTING WIDER TOLERANCE AND EXCURSION
- LEARNED TO COMPENSATE FOR JUMP WITH SMOOTHER TECHNIQUE
- CAN KEEP FROM EXCITING THE MODES BUT WITH LOWER FTEQUENCIES PERFORMANCE IS DEGRADED, WHERE BEFORE IS WAS NOT DEGRADED MUCH AT ALL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y}=2.0$	SCAS : ON	K = 2.0
1A-11-4	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	22	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-10-8	$\varepsilon = .012$	0 = 1.56 long	RATING
B	$\varepsilon_{\rm lot} =055$	$\sigma_{\rm lot} = .365$	N/A
1			

- MUCH LARGER AMPLITUDE OF OSCILLATION
- ADEQUATE PERFORMANCE NOT ACHIEVABLE
- PITCH OVERSHOOT, PIO AND LAG
- HAVE TO HOLD STICK INTIL MEPRINGME CATCHES UP
- HAD TO REDUCE GAINS OR THINGS GOT BAD

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y}=2.0$	SCAS : ON	K = 2.0
1A-11-4	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	22	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-14-2	£ = .167 teng	σ = 1.7	RATING
B	$\epsilon_{ m lot} = .14$	$\sigma_{\rm lot} = .415$	7

- CAN IDENTIFY FLEX OSCILLATIONS EASIER WITH MOTION
- CUES HELP: WITHOUT MOTION IT IS HARD TO TELL WHETHER A VISUAL MATTITUDE TO CHANGE IN THE DISPLAY IS DUE TO ACTUAL ATTITUDE CHANGE OR FLEX
- TASK A LITTLE EASIER THAN CASE 1A-21-1; CAN KEEP MEAN ERROR AROUND ZERO AND LET OSCILLATIONS DIE OUT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: OFF \omega_{j} = -$	SCAS : ON	K = 1.6
1A-21-1	ກຼ : OFF ພູ = -	SPEED HOLD	; OFF
	OLD CASE NO. :	1*	
RUN/PILOT	SCORES:		COOPER-
			HARPER
4-30-1	ε = N/A long	or = N/A	RATING
A	$\varepsilon_{_{ m lot}}=$ N/A	$\sigma_{_{ m lot}}=$ N/A	N/A

- ZERO CROSSINGS BOBBLE
- SMALL PIOMS WITH NOMINAL TRACKING
- EARLY IN RUN, TARGET REVERSED
- HIGH GAIN
- SIGMA(P)**2 = 0.77

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: OFF \;\;\omega_{_{_{\boldsymbol{y}}}}=-$	SCAS : ON	K = 2.0
1A-21-2	η_z : OFF $\omega_z = -$	SPEED HOLD	; OFF
	OLD CASE NO. :	1	
RUN/PILOT	SCORES :		COOPER-
			HARPER
4-30-4	ε = N/A leng	or = N∕A ionq	RATING
A	$\varepsilon_{\rm lot} = N/A$	$\sigma_{_{ m lot}}=$ N/A	N/A

- WELL DAMPED, KQ=2.0 APPEARS TO BE AN IMPROVEMENT OVER 1.6
- SIGMA(P)**2 = 0.77

	<u> </u>		
CASE NO.	SPECS :		
	$\eta_{r}: OFF \omega_{r} = -$	SCAS : ON	K = 2.0
1A-21-2	$\eta_{_{z}}$: OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	1	
RUN/PILOT	SCORES :		COOPER-
			HARPER
4-30-5	ε ≕ N/A Iong	OF - N/A	RATING
A	$\varepsilon_{ m lat}={ m N/A}$	σ = N/A	N/A

- SIGMA(P)**2 = 0.77 ; KG = 5.0 (RATHER THAN NOMINAL 4.5)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y}=2.0$	SCAS : ON	K = 2.0
1A-21-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	7	
RUN/PIL OT	SCORES:		COOPER- HARPER
5-3-3	ε = .240 kmg	or = 1.23	RATING
В	$\varepsilon_{lot} =051$	$\sigma_{_{\rm int}}=.345$	N/A

- PITCH MORE DIFFICULT
- MORE COMPENSATION REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{r}: OFF \omega_{r}=2.0$	SCAS : ON	K = 2.0
1A-21-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	7	
RUN/PILOT	SCORES :		COOPER-
5-7-5	ε = .035	$\sigma = 1.65$	HARPER RATING
	long	ionq	KHILIIG
/ B	$\epsilon_{lat} = .173$	$\sigma=.458$	N/A

- MOTION GAVE PERFORMANCE CUES, IN THE SENSE THAT IT WAS AN AID
- CAN TELL THE DEFFIERENCE BETWEEN HIS PIONS AND THE FLEX MODE AND HE KNOWS NOT TO FIGHT IT
- WITH NO MOTION, PERHAPS ITES HARDER TO TELL THE DIFFERENCE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{j} : OFF $\omega_{j} = 2.0$ SCAS: ON	K = 2.0
18-21-4	$\eta_{_{z}}$; ON $\omega_{_{z}}=1.5$ SPEED HOLD	; ON
	OLD CASE NO. : 21	
RUN/PILOT	SCORES:	COOPER-
		HARPER
5-3-11	$\varepsilon = .513$ $\sigma = 2.02$	RATING
В	ε = -1.16 σ = 1.32	N/A

- ALMOST IMPOSSIBLE WITH AND PRECISION
- DOESNMT THINK THERE IS A LAG PROBLEM.
 BUT DID PERCEIVE A LAG
- OBVIOUS VISUAL OVERSHOOTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y}=2.0$	SCAS : ON	K = 2.0
18-21-4	η_{x} : ON $\omega_{x} = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	21	
RUN/PILOT	SCORES :		COOPER-
5-10-7	$\varepsilon = .348$	σ = 1.49	HARPER RATING
В	$\epsilon_{_{ m loc}}=$ 041	$\sigma_{ m lost}=$.574	N/A

- TENDENCY TO PITCH OVERSHOOT AND PIO
- LOWER INTENSITY DUE TO NOT OVERCONTROLLING
- BARELY ADEQUATE PERFORMANCE, DUE TO PIO TENDENCY
- APPARENT LAG (LIKE A SPRING), NOSE DOWN AT FIRST

CASE NO.	SPECS :		
	$\eta_{_{y}}: OFF \omega_{_{y}}=2.0$	SCAS : ON	K = 2.0
1A-21-4	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	21	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-14-1	£ = .605 lor₁g	or = 1.63	RATING
В	$\epsilon_{_{ m lot}}=$.18	$\sigma_{_{ m lort}}=.51$	7+

- CONTROLLABILITY OF TASK IN DOUBT
- LAG EFFECTS NOTICABLE AND A VARIABLE FUNCTION OF THE MAGNITUDE OF INPUT
- LOWER GAINS AND SMOOTHING INPUTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: OFF \omega_{j} = -$	SCAS : ON	K = 2.0
1B-11-1	$\eta_{_{z}}$: OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	5	
RUN/PILOT	SCORES :		COOPER-
RUN/PILOT	SCORES: $\varepsilon =007$	or = .228	COOPER- HARPER RATING

- PILOTS ARE TRAINED TO IGNORE MOTION AND BELIEVE THIER EYES, THEREFORE MOTION AND NO MOTION RESULTS SHOULD BE CLOSE
- SIGMA(P)**2 = 0.77

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1B-11-2	$\eta_{_{_{_{2}}}}$: ON $\omega_{_{_{_{_{2}}}}}=2.0$ SCAS : ON $\eta_{_{_{_{2}}}}$: OFF $\omega_{_{_{_{2}}}}=2.0$ SPEED HOLD OLD CASE NO. : 11	
RUN/PILOT	SCORES:	COOPER-
5-3-7	ε =063 σ = .298	HARPER RATING
	iong long	KHIING
/ B	$\mathcal{E} =034$ $\sigma = 2.18$	N/A

COMMENTS :

- PILOT COMMENTED THAT IN GENERAL, ROLL ALWAYS OVERSHOOTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j} = 1.5$	SCAS : ON	K = 2.0
1B-11-3	η_z : OFF $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	32	
RUN/PILOT	SCORES :		COOPER- HARPER
5-17-8	$\varepsilon = .84$	or = .235	RATING
В	€ = .222	$\sigma_{_{\mathrm{loft}}} =$ 1.19	3.5

- MODERATE PILOT COMPENSATION
- TENDENCY TO OVERSHOOT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
1B-21-1	ກຸ : OFF ພຸ = - ກຼ : OFF ພູ = -	SCAS : ON SPEED HOLD	K = 1.6
	OLD CASE NO. :	2*	
RUN/PILOT	SCORES :		COOPER- HARPER
4-30-2	ε = N/A long	OT = N/A	RATING
A	E = N/A	o = N/A	N/A

- BREAKOUTS AND GRADIENTS IN HARMONY
- SIGMA(P)**2 = 0.77

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: OFF \omega_{j} = -$	SICAS : ON	K = 2.0
1B-21-2	η_z ; OFF $\omega_z = -$	SPEED HOLD	; OFF
	OLD CASE NO. :	2	
RUN/PILOT	SCORES :		COOPER-
5-2-2	$\varepsilon = .044$	or = .229	RATING
В	€ =059	σ = 1.83	N/A
			<u> </u>

- TENDENCY TO CREATE COMPENSATION IN ROLL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1B-21-3	η_{\star} : ON $\omega_{\star}=2.0$ SCAS : ON η_{\star} : OFF $\omega_{\star}=2.0$ SPEED HOLD OLD CASE NO. : 8	
RUN/PILOT	SCORES:	COOPER- HARPER
5-3-4	ε =233 σ = .361	RATING
В	€ =432	N/A

- LAG IN ROLL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1B-21-3	$\eta_{_{x}}$: OFF $\omega_{_{x}}=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	8	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-7-6	ع = .346 اومو	σ = .343 long	RATING
В	€ =137	$\sigma_{_{ m int}}=$ 1.40	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=1.5$	SCAS : ON	K = 2.0
1B-21-4	η_z : OFF $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	31	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-7	$\varepsilon = .085$	or = .265	RATING
В	ε =302	$\sigma_{_{ m int}}=$ 1.33	3

- SENSITIVE TO ROLL
- BE CAREFUL NOT TO OVERSHOOT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :			
	$\eta_{j}: OFF \omega_{j} = -$	SCAS : ON	K = 2.0	
1 C-1 1-1	$\eta_{_{z}}$: OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF	
	OLD CASE NO. :	6		
RUN/PILOT	SCORES :		COOPER-	
			HARPER	
5-2-6	£ ==035 teng	σ = .325	RATING	
В	$\varepsilon_{\rm loc} = 1.04$	$\sigma_{ m int} =$ 1.89	N/A	

- RELUCTANCE TO DIVE AMPLIFIES BY MOOWN MOTION
- SIGMA(P)**2 = 0.77

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η,: OFF ω,=-	SCAS : ON	K = 2.0
10-11-1	$\eta_{_{z}}: OFF \;\;\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	6	
RUN/PILOT	SCORES :		COOPER- HARPER
5-3-1	ε =069	or = .202	RATING
В	$arepsilon_{ m lat}=\ .927$	$\sigma_{_{ m lost}}=$ 2.19	2.5
ļ			

- NOT TOO MUCH PITCH COMPENSATION REQUIRED
- ROLL MAY TAKE A LITTLE (COMPENSATION TO COMPLETE TESK)
- TAU(3) = 0.0

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: OFF\;\;\omega_{_{_{\boldsymbol{y}}}}=-$	SCAS : ON	K = 2.0
1C-11-1	$\eta_{_{z}}$; OFF $\omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	6	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-3-2	$\varepsilon = .167$	or == 1.05	RATING
B	$arepsilon_{ m loc}=.171$	$\sigma_{_{ m loft}}=$ 1.99	N/A

- ROLL MORE NOTICEABLE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η _, : OFF ω _, = -	SCAS : ON	K = 2.0
1C-11-1	$\eta_{_z}$: OFF $\omega_{_z}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	6	
RUN/PILOT	SCORES:		COOPER-
5-7-1	$\varepsilon =071$	$\sigma = .91$	HARPER RATING
	iong	ionq	
/ B	$\varepsilon = .152$	$\sigma_{\rm lint} = 1.32$	2.5

- SLIGHT TENDENCY TO BOBBLE IN PITCH AND ROLL
- C(L(DELTA(S))) MULT = 0.5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: OFF \omega_{y} = -$	SCAS : ON	K = 2.0
1C-11-1	$\eta_{_{z}}: OFF \;\; \omega_{_{z}} = -$	SPEED HOLD	; OFF
	OLD CASE NO. :	6	
RUN/PIL OT	SCORES :		COOPER- HARPER
5-8-1	ළ == .026 leng	or = 1.01	RATING
В	$oldsymbol{arepsilon}_{ ext{lat}} = .051$	$\sigma_{\rm int} = 1.36$	2.5

- COULD PERFORM TASK EASILY
- TECHNIQUE : LIKE AIR-TO-AIR HUD, DONNT FIXATE ON DOT BUT MLOOK THROUGH THE DISLAY SO AS TO SEE ROLL TOO
- TRIED TO BE MORE AGGRESSIVE, LED TO DIMINISHING RETURNS, POSSIBLY IN WORSE LONGITUDINAL SCORES

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: OFF \omega_{j} = -$	SCAS : ON	K = 2.0
1C-11-1	η_z : OFF $\omega_z = -$	SPEED HOLD	; OFF
	OLD CASE NO. :	6	
RUN/PILOT	SCORES :		COOPER- HARPER
5-31-1	ε = .154	or = .953	RATING
c	ε =105	$\sigma_{\rm lat} = 1.19$	3

- HAD TO WORK A LITTLE
- NOTICED PITCH SENSITVITY

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y} = 2.0$	SCAS : ON	K = 2.0
10-11-2	η_z ; ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	12	
RUN/PILOT	SCORES :		COOPER-
5-3-8	arepsilon = .01	or = 1.24	HARPER RATING
В	$\epsilon_{_{ m loc}} = .217$	$\sigma_{\rm left} = 2.61$	5
	<u> </u>		<u> </u>

- DEFINITELY COMPENSATING ON BANK ERROR
- TWO AXIS TASK LEADS TO WORSE ROLL SCORE
- NOT SATISFACTORY PERFORMANCE
- LURCHING AND DISPLAY JUMPING

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1C-11-2	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	12	
RUN/PILOT	SCORES :		COOPER-
5-7-3		σ = 1.34	HARPER RATING
В	long & == ~.056	ion q σ = 1.62	5
	lat.	int 1.02	J

- HAVE TO REST RIGHT ARM ON RIGHT LEG FOR PRECISE INPUTS
- LET OSCILLATIONS DIE OUT, BUT COULD BE AGGRESSIVE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1C-11-2	η_z : ON $\omega_z=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	12	
RUN/PILOT	SCORES:		COOPER-
5-29-5	$\varepsilon=.07$	or = 1.33	HARPER RATING
B	ε = .01	$\sigma_{\rm int} = 1.19$	7-8
5-29-5	SCORES: $\mathcal{E} = .07$ \mathbf{erg} $\mathcal{E} = .01$	$\sigma = 1.33$ $\sigma = 1.19$	HARPER RATING

- NOT PUTTING SMOOTH INPUTS IN
- REALLY AGGRESSIVE (NOTICEABLY MORE AGGRESSIVE INPUTS)
- ACQUISITION EASY; FINE TRACKING HARD
- HARD TO CONTROL THIS DISPLAY
- NOT AS MITUNED UP TODAY REFERING TO HIS TECHNIQUE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-11-3	$\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SPEED HC	•
RUN/PILOT	SCORES:	COOPER-
5-3-9 B	ε = .166 σ = 1.12 σ = 2.07 σ = 2.07	HARPER RATING 4

- BANK ANGLE STILL ANNOYING
- TASK EASIER, RESPONSIVE, POOR RATING DUE TO ROLL (A RIGID-BODY PROBLEM PERHAPS)
- NOT CONFUSING DISPLAY, MOTION FELT (PER-CEIVED) BUT DISPLAY AS GOOD AS BASILINE
- TWO DISCRETE TASKS (NOT COUPLED)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	K = 2.0
10-11-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	13	
RUN/PILOT	SCORES :		COOPER-
5-7-4	$\varepsilon = .097$	or = 1.24	HARPER RATING
B	€ = .163	σ = 1.63	N/A

- FREE ARM FED BY MOTION

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{y} : ON $\omega_{y} = 2.0$ SCAS : ON	K = 2.0
1C-11-3	$\eta_{_{_{\scriptstyle x}}}$: ON $\omega_{_{_{\scriptstyle x}}}=$ 2.0 SPEED HOLD	; ON
	OLD CASE NO. : 13	
RUN/PIL OT	SCORES:	COOPER-
5-7-8		HARPER
	$\mathcal{E} = .276$ $\sigma = 1.58$	RATING
В	ε = .011 σ = 1.65	5

- MOTION MAY PROVIDE A ■DAMPING CUE™ FROM SOUND AND MOTION

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :
	η_{y} : ON $\omega_{y} = 2.0$ SCAS : ON K = 2.0
10-11-3	η_z : ON $\omega_z = 2.0$ SPEED HOLD ; ON
	OLD CASE NO. : 13
RUN/PILOT	SCORES: COOPER-
	HARPER
5-8-2	$\mathcal{E} = .182$ $\sigma = 1.13$ RATING long
В	$\varepsilon =07$ $\sigma = 1.28$ 4

- APPLIED LEARNED TECHNIQUE. PART OF HIS COMPENSATION
- INVESTIGATOR THOUGHT IT WAS CASE 1C-21-1 (BY OBSERVING TASK)
- FLYING AGGRESSIVELY BUT SMOOTHLY. DID NOT LET DOT COMPLETELY VIBRATE FREELY BY MISMOOTHING ME
- THE PERFORMANCE WAS AS GOOD AS PREVIOUS
 RUN BUT CONSIDERABLE COMPENSATION
 REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$ SCAS: ON	K = 2.0
1C-11-3	$\eta_{_{1}}:$ ON $\omega_{_{1}}=2.0$ SPEED HOLD	; ON
	OLD CASE NO. : 13	
RUN/PILOT	SCORES :	COOPER-
		HARPER
5-10-2	$\varepsilon = .079$ $\sigma = 1.17$	RATING
В	$\varepsilon =10$ $\sigma = 1.14$	5
	, <u></u>	

- PILOT CAN CONTROL THE SITUATION AND RIDE IS MUCH SMOOTHER
- VISUAL CUES AID IN CONTROL OF THE SITUATION
- QUALITATIVELY DISCONCERTING THAT SCORES ARE NOT HIGHER (WORSE) SINCE NOTED MORE ERROR
- THE PILOT PERCIEVED WORSE PERFORMANCE AND HIGH WORK LOAD
- NOTE : NO DIGITAL DATA

66
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-11-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	13	
RUN/PILOT	SCORES :		COOPER-
5-21-8	ε = .213	σ = 1.26	HARPER RATING
A	$\varepsilon = .215$	σ = 1.49	4-5
	ic	lot	

67
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1 C-1 1-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	13	
RUN/PILOT	SCORES :		COOPER-
5-30-1	ε =008 tong	or = 1.58	HARPER RATING
/ c	€ = .868 lot	σ = 2.34	N/A
<u> </u>			

- (ON LEARNING CURVE)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1 C-1 1-3	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	13	
RUN/PILOT	SCORES :		COOPER- HARPER
5-30-5	$\varepsilon =085$	σ = 1.35 long	RATING
/ c	$\epsilon_{ m lot} =49$	$\sigma_{_{ m lost}} = 1.79$	5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-11-4	$\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=1.75$ SPEED HOLD OLD CASE NO. : 18	
	010 001 110 16	
RUN/PILOT	SCORES:	COOPER- HARPER
5-8-8	E = .347 (7 = 1.69	RATING
В	$arepsilon=1.03$ $\sigma=1.55$	6-7

- TRIED TO FLY WITH MOPTIMAIZEDM TECHNIQUE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{y} : ON $\omega_{y} = 2.0$ SCAS : ON	K = 2.0
1C-11-4	η_z : ON $\omega_z = 1.75$ SPEED HOLD	; ON
	OLD CASE NO. : 18	
RUN/PILOT	SCORES:	COOPER-
5-10-3 /	$\varepsilon = .13$ $\sigma = 1.42$	HARPER RATING
	long long	
/ B	$\mathcal{E} =036$ $\sigma = 1.26$	6.5

- NOT QUITE ADEQUATE PERFORMANCE (WORSE THAN COOPER-HARPER 6)
- ON FRINGES OF ADEQUATE TASK PERFORMANCE; HIGH INTENSE EFFORT
- NOTE : NO DIGITAL DATA

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
10-11-4	$\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=1.75$ SPEED HOLD OLD CASE NO. : 18	
RUN/PILOT	SCORES:	COOPER- HARPER
5-10-6	$\varepsilon=.173$ $\sigma=1.39$	RATING
В	$\varepsilon =079$ $\sigma = 1.26$	6.5

- BARLEY OBTAINED ADEQUATE PERFORMANCE
- INTENSE CONCENTRATION REQUIRED
- FIGHT TENDENCY TO PIO
- NOTE : NO DIGITAL DATA

72
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :
	η_{j} : ON $\omega_{j}=2.0$ SCAS : ON $K_{j}=2.0$
10-11-5	η_z : ON ω_z = 1.5 SPEED HOLD ; ON
	OLD CASE NO. : 24
RUN/PILOT	SCORES: COOPER-
	HARPER
5-10-9	$\mathcal{E} = .33$ $\sigma = 1.74$ RATING long
В	ε = .283 σ = 1.52 7+

- CAN POINT THE NOSE WITH RIGID-BODY AND IT STAYS THERE; IN THIS CASE HE CANEET LET GO
- COMMENTS FOR PREVIOUS RUN APPLY (I.E. RUN NO. 5-10-8)
- CONTROLLABILITY NOT A QUESTION BUT PER-FORMANCE IS TERRIBLE; CANET DO TASK
- NOTE : NO DIGITAL DATA

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-11-5	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	24	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-14-4	ε = .224 long	σ = 1.60 long	RATING
B	$\varepsilon_{lot} =044$	$\sigma_{_{ m lot}}=$ 1.61	N/A

- MOTION CUES HELPFUL
- THOUGH PERFORMANCE WAS BETTER THAN PRE-VIOUS RUN (I.E. RUN NO. 5-14-3), GAINS WERE HIGHER; CAN GET INTO OSCILLATIONS AND HAVE TO FIGHT NOT FEED THEM
- MOTION HELPS SORT OUT FLEX MOTION SUCH THAT LAGS WERE NOT SO APPARENT
- EASIER TO CONTROL TIGHTER

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
10-11-5	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	SPEED HOLD	Ì
	OLD CASE NO. :	24	
RUN/PILOT	SCORES:		COOPER- HARPER
5-21-9	ε = .34 long	or = 1.71	RATING
/ A	& =102	$\sigma_{\text{lot}} = 2.02$	7

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y} = 1.5$	SCAS : ON	K = 2.0
1C-11-6	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	34	
RUN/PILOT	SCORES :		COOPER-
5-17-10	arepsilon = .112	or = 1.05	HARPER RATING
В	ε =12	$\sigma_{_{ m loft}}=$ 1.15	4.5

- MOTION HELPS DETERMINE WHAT TO CHASE AND WHAT NOT TO
- SOME WING FLEXING NOTICED
- DISPLAY JITTER NOT AS APPEARENT AS IT WAS WHEN WE TESTED LOW FREQUENCY IN LONGITUDINAL AXIS
- HIGH COMPENSATION REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{m{y}}}}:$ ON $\omega_{_{_{m{y}}}}=1.5$	SCAS : ON	K = 2.0
1C-11-6	$\eta_{_{z}}$; ON $\omega_{_{z}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	34	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-29-6	arepsilon = .17	$\sigma = 1.24$	RATING
В	$\varepsilon_{_{ m loc}}=$ 143	$\sigma_{_{ m int}}=$ 1.49	7-8

- NOT EXCITING STRUCTURAL MODE
- PITCH AND ROLL RESPONSE BOTH MORE SENSI-TIVE THAN LAST RUN (I.E. RUN NO. 5-29-5)
- THOUGHT AT FIRST IT WAS NO DIFFERENT THAN LAST RUN
- COPPER-HARPER RATING WAS PRIMARILY DUE TO PITCH

CASE NO.	SPECS :		
1C-11-6	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	SPEED HOLD	•
RUN/PILOT 5-30-4	SCORES : ε =044	or = 1.42	COOPER- HARPER RATING
C	-	o = 2.10	5

- PIO TENDENCY IN PITCH AND ROLL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\mathcal{I}}}}: ON \omega_{_{_{\mathcal{I}}}} = 1.0$	SCAS : ON	K = 2.0
10-11-7	η_x : ON $\omega_x = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	40	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-30-9	$\varepsilon = .192$	σ = 1.38 long	RATING
/ c	€ = .152	$\sigma_{_{ m int}}=$ 1.80	4

- NOT SURE IF MOTION HELPED IN THIS CASE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{m{y}}}}$: ON $\omega_{_{_{m{y}}}}=1.0$	SCAS : ON	K = 2.0
10-11-7	η_z : ON $\omega_z=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	40	
RUN/PIL OT	SCORES:		COOPER- HARPER
5-31-2	ε = .126	or = 1.34	RATING
/c	$\epsilon_{lot} =112$	σ = 1.46	5

- JUDGES ADEQUATE PERFORMANCE BUT NOT DESIRED PERFORMANCE ACHIEVED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η_y : ON $\omega_y = 2.0$	SCAS : ON	K = 2.0
10-11-8	$\eta_{_{_{ m I}}}$; ON $\omega_{_{_{ m I}}}=1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	49	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-21-10	ε = .41 long	or = 2.88	RATING
A	$\varepsilon_{\rm lot} =021$	$\sigma_{_{ m int}}=$ 1.97	N/A

81 Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-1	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	14.	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-3-10	$\varepsilon = .015$	$\sigma = 1.16$	RATING
B	$\varepsilon = .396$	$\sigma_{\rm lot} = 2.12$	4

- PITCH RESPONSE SLIGHTLY WORSE THAN RIGID -BODY
- RATING PRIMARILY DUE TO ROLL PERFORMANCE RATING WOULD HAVE BEEN 3 IF NOT FOR ROLL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{y} : ON $\omega_{y}=2.0$ SCAS : ON	K = 2.0
10-12-1	η_z : ON $\omega_z=2.0$ SPEED HOLD	; ON
	OLD CASE NO. : 14,	
RUN/PILOT	SCORES:	COOPER-
		HARPER
5-7-9	$\varepsilon = .279$ $\sigma = 1.02$	RATING
В	$\epsilon_{ m lot} = .058$ $\sigma_{ m lot} = 1.56$	3

- BETTER PERFORMANCE
- COMPENSATION IN LEARNING NOT TO PAY ATTENTION TO MOTION
- PREVIOUSLY (WITH FLEXIBLE DISPLAY) COULD USE MORION TO IDENTIFY BENDING MODE AND IGNORE IT
- PRETTY RESPONSIVE IN PITCH, TASK WAS COE CLEARLY EASIER THAN WITH FLEXIBLE DISPLAY
- IN THIS CASE, TRIED TO IGNORE THE MOTION

83
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-1	η_x : ON $\omega_x = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	14.	
RUN/PILOT	SCORES:		COOPER~
			HARPER
5-8-3	$\varepsilon = .130$	$\sigma = 1.09$	RATING
B	$\epsilon_{_{ m lot}}=$.016	$\sigma_{_{ m loft}}=$ 1.38	5

- HAD TO UNLEARN TECHNIQUE USED FOR CASE 1C-11-3, PERHAPS OVERCONTROL AS A RESULT
- COMPENSATION LIGHTER, HAD TO MOVE THE STICK SLOWLY
- FELT TASK WAS HARDER, FELT THE MOTION AND NEW IT WAS FLEXIBLE BUT DIFFERENT FROM CASE 1C-11-3
- FELT PERFORMANCE WAS WORSE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-1	$\eta_{_{x}}$; ON $\omega_{_{x}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	14,	
RUN/PILOT	SCORES:		COOPER~
			HARPER
5-10-1	arepsilon = .18	or = 1.00	RATING
E	$\epsilon_{_{ m lot.}} =118$	$\sigma_{_{ m lost}}=$ 1.13	4.5

- IDENTIFIED THIS CASE
- QUALITATIVE PERFORMANCE A LITTLE WORSE;
 HAVE TO SUPPRESS THE MOTION CUES, MOTION
 IS A DISTRACTION; AWARE OF UNDULATION
 AND POSSIBLY MOTION FEEDING BACK THROUGH
- DESIRED PERFORMANCE BUT EXCESSIVE WORK LOAD
- MUCH MORE EFFORT, INTENSE CONCENTRATION NEEDED TO OVERCOME THE MOTION SENSATION AND GRIPPING STICK HARD
- NOTE : NO DIGITAL DATA

CASE NO.	SPECS :		
	$\eta_{_{y}}$: ON $\omega_{_{y}}=2.0$	SCAS : ON	K = 2.0
10-12-1	$\eta_{_{\scriptscriptstyle 1}}$; ON $\omega_{_{\scriptscriptstyle 2}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. : 14	4.	
RUN/FIL OT	SCORES:		COOPER-
- 54 5	210	- 005	HARPER
5-21-7		= .905	RATING
A		r = 1.35	N/A

- AS SYMMETRIC BENDING FREQUENCY DECREASES THE TOTAL RESPONSE DECREASES: THEREFORE THE AEROELASTIC MODE RESPONSE IS NOT AS DRAMATIC
- AEROELASTIC MODE RESPONSE IS NOTICEABLE WITH ABRUPT INPUTS
- TWO PHASE TASK: THERE IS A DIFFERENCE BETWEEN FINE-TRACKING AND TARGET ACQUISITION

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-1	η_z : ON $\omega_z=2.0$	SPEED HOLD	; 0N
	OLD CASE NO. :	14.	
RUN/PIL OT	SCORES:		COOPER-
5-22-1	ج ==05 الاصلاح	or = 1.07	HARPER RATING
A	€ = .08 lot	$\sigma_{\rm int} = 1.64$	2-3

- PERHAPS SLIGHT LAG, PITCH FAIRLY RESPONSIVE AND PREDICTABLE
- NOTE: NO STRIP CHARTS AVAILABLE BUT DIGITAL DATA IS AVAILABLE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-1	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	14,	
RUN/PILOT	SCORES:		COOPER-
		6F.4	HARPER
5-24-1	ε =203 kmg	0" = .954 long	RATING
A	$\epsilon_{_{ m lot.}}=01$	$\sigma_{_{ m lost}}=$ 1.28	2-3

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$ SCAS: ON	K = 2.0
10-12-2	η_z : ON $\omega_z=1.75$ SPEED HOLD	; ON
	OLD CASE NO. : 19	
RUN/PIL OT	SCORES:	COOPER-
		HARPER
5-10-4	ε = .081 σ = .92 long long	RATING
В	ε =124 σ = 1.17	4.5
l ·	,	

- DELUSION OF REDUCTION IN PITCH-DAMPING: TENDENCY TO OVERSHOOT
- NEARLY OBTAINED DESIRED PERFORMANCE, BUT STILL INTENSE CONCENTRATION NECESSARY
- HARDER THAN CASE 1C-12-1
- NOTE : NO DIGITAL DATA

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-3	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	25 .	
RUNZPILOT	SCORES:		COOPER-
			HARPER
5-14-5	ع . 205 الحمو	Or = .959 long	RATING
/ _E	$\varepsilon = .111$	$\sigma = 1.29$	2.5
1 1	løt.	lat	

- VERY CLOSE TO DESIRED PERFORMANCE
- PIECE OF CAKE
- BASED ON PREVIOUS RUNS OF 5-14 THIS CASE IS PRETTY EASY
- EVALUATOR COMMENT I COULD SURE FEEL THE VIBRATION MOTION

CASE NO.	SPECS :		
10-12-3	$\eta_{y}: ext{ON} \omega_{y} = 2.0$ $\eta_{z}: ext{ON} \omega_{z} = 1.5$		`
	OLD CASE NO. :		, 511
RUN/PILOT	SCORES:		COOPER-
5-21-6 /	$\varepsilon = .20$	$\sigma = .953$	HARPER RATING
	lorig	long	
/ A	$\varepsilon =066$	$\sigma_{\rm int} = 1.40$	N/A

CASE NO.	SPECS :		
10-12-3	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$		·
	OLD CASE NO. :		
RUN/PILOT	SCORES :		COOPER-
5-29-1 A	long	$\sigma = .952$ $\sigma = 1.34$	HARPER RATING 4
	l <i>a</i> t.	lat	

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$		
10-12-3	η_x ; ON $\omega_x = 1.5$; ON
	OLD CASE NO. :	25 .	
RUN/PILOT	SCORES :		COOPER- HARPER
5-24-2	ະ = .028 kmg	$\sigma = 1.01$	RATING
A	$\epsilon_{lot} =065$	$\sigma_{\rm int} = 1.36$	2~3

- GOOD RESPONSE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-12-4	$\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=1.25$ SPEED HOLD OLD CASE NO. : 27	•
RUN/PILOT	SCORES:	COOPER- HARPER
5-17-1	$\varepsilon = .153$ $\sigma = 1.02$	RATING
В	& = .044	3

- THOUGHT PERFORMANCE WAS BETTER, PERHAPS PEAK DEVIATION LESS THAN PREVIOUS RUN
- RIDE IS STILL ROUGH

CASE NO.	SPECS :		
	, , , , , , , , , , , , , , , , , , ,	SCAS : ON	9
1C-12-5	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	29 /	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-3	$\varepsilon = .27$	or = 1.00	RATING
В	$arepsilon_{ m loc} = .15$	$\sigma_{_{ m int}} =$ 1.2	3.5

- DISTRACTION TO FEEL VIBRATION
- CLOSE TO DESIRED PERFORMANCE

Table A.8 - Data Summary Sheets continued

	Table A.o - Data Summa	ry Sheets Commuca	
CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.$	0 SCAS : ON	$K_{q} = 2.0$
10-12-5	$\eta_x:$ ON $\omega_x=1.$	0 SPEED HOLD); ON
	OLD CASE NO.	: 29,	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-21-4	€ = .262 long	om = 1.05	RATING
Á	$\varepsilon =084$	$\sigma_{_{ m iot}}=$ 1.51	N/A
COMMENTS :			
			:
]

96
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-5	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	29 .	
RUN/PILOT	SCORES :		COOPER-
İ			HARPER
5-24-3	ε =035 lorig	or = 1.04	RATING
A	$\varepsilon_{ m lot} =16$	$\sigma_{_{ m loft}}=$ 1.36	N/A

- LOW FREQUENCY NORMAL (PLUNGE) UNDULATION NOTICEABLE

97
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
1C-12-5	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; 0N
	OLD CASE NO. :	29 .	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-29-2	$\varepsilon = .32$	$\sigma = 1.07$	RATING
/ A	$\varepsilon_{_{ m loc}}=.066$	$\sigma_{_{ m loft}}=$ 1.43	4

- LOW FREQUENCY PLUNGE SENSATION

78
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y} = 1.5$	SCAS : ON	K = 2.0
1C-12-6	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	35	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-11	arepsilon = .131	or = .797	RATING
/ B	$arepsilon_{ ext{last}}=$ 038	$\sigma_{_{ m int}}=$ 1.15	3.5

- CONSISTENT WITH PREVIOUS RESULTS
- PERFORMANCE BECOMES SOMEWHAT INDEPENDENT FROM CASE TO CASE
- VARIATION WITH MOTION CAN BE FELT
- IN ROLL: TENDENCY TO OVERSHOOT
- CAN EXCITE LATERAL MODE LEADING TO PIO

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{r}: ON \omega_{r} = 1.5 SCAS$: ON $K_q = 2.0$
1C-12-6	η_z : ON $\omega_z=2.0$ SPEE	D HOLD ; ON
	OLD CASE NO. : 35	
RUN/PILOT	SCORES:	COOPER-
		HARPER
5-29-7	E = .12 (7 = .	.86 RATING
/ B	$\varepsilon =06$ $\sigma = 1$	1.29 4
	`	

- ROLL DIFFICULTIES WERE MORE APPEARENT; ROLL RESPONSE HAD LESS DAMPING AND WAS HARDER TO CONTROL
- HAD TO FIGHT TO KEEP PITCH PERFORMANCE UP
- HAD TO CONDENTRATE ON ROLL TASK, WHERE AS IN BASELINE ROLL TASK WAS ALMOST AUTOMATIC
- INCREASED ROLL SENSITIVITY, OR REDUCED ROLL DAMPING; OVERHSOOT AND 2-3 ROLL CORRECTIONS REQUIRED
- PIO TENDENCY IN ROLL

100
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y} = 1.5$	SCAS : ON	$K_q = 2.0$
10-12-6	$\eta_{_{z}}$: ON $\omega_{_{z}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	35	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-30-6	$\varepsilon=.070$	or = 1.00	RATING
/ c	ε =362	$\sigma_{_{ m int}}=$ 1.51	3-4

- MUCH EASIER TASK THAN LAST TWO (I.E. RUN NO. 5-30-4 AND 5-30-5)
- HAD TO WORK HARDER THAN WOULD LIKE TO

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
10-12-7	$\eta_{p}: ON \omega_{p} = 1.0 SCAS: ON $ $\eta_{p}: ON \omega_{p} = 2.0 SPEED HOLD$	K = 2.0
	OLD CASE NO. : 41	•
RUN/PILOT	SCORES:	COOPER-
5-31-3	ج = .049 رح = .985 اومو	HARPER RATING
/ c	$\mathcal{E} =516$ $\sigma = 1.64$	4-5

- TASK EASIER THAN LAST RUN BUT STILL WORK ING HARD
- MOTION MIGHT NOT HAVE HELPED
- MODERATE TO HEAVY COMPENSATION REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	$K_{q} = 2.0$
1C-12-8	η_z : ON $\omega_z = 0.8$	SPEED HOLD	; ON
	OLD CASE NO. :	45 /	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-21-1	ε =24 iong	0 = 1.54 long	RATING
A	$\epsilon_{_{ m lat.}} =25$	$\sigma_{_{ m lot}}=$ 1.70	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{y} : ON $\omega_{y}=2.0$ SCAS : ON	K = 2.0
1C-12-8	$\eta_{_{x}}$: ON $\omega_{_{x}}=$ 0.8 SPEED HOLD	; ON
	OLD CASE NO. : 45,	
RUN/PILOT	SCORES:	COOPER-
		HARPER
5-21-3	$arepsilon = 0.006$ $\sigma = 1.48$	RATING
A	ε =143 σ = 1.79	N/A

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	$K_{q} = 2.0$
1C-12-8	η_z : ON $\omega_z=0.8$	SPEED HOLD	; ON
	OLD CASE NO. :	45 ,	
RUN/PILOT	SCORES:		COOPER-
		i	HARPER
5-24-4	ε =25 long	or = 1.37	RATING
/ A	$\epsilon_{\rm lot} =077$	$\sigma_{_{ m int}} =$ 1.57	4-5

- LOW FREQUENCY LIGHTLY DAMPED
- PERHAPS FLEW A LITTLE TENTATIVELY BECAUSE OF ODD (LOW FREQUENCY) MOTION AND WAS APPREHENSIVE AS A RESULT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-12-8	η_z : ON $\omega_z=2.0$ SCAS: ON η_z : ON $\omega_z=0.8$ SPEED HOLD	
	OLD CASE NO. : 45,	
RUN/PILOT	SCORES :	COOPER- HARPER
5-29-4	E =24 (7 = 1.30 long	RATING
A	$\varepsilon_{ m lot}=.15$ $\sigma_{ m lot}=1.36$	5

- HEAVIER FORCES
- LESS PREDICTABLE
- UNSTABLE PHUGOID NOTED BUT NOT CONTROLLED

106
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
10-12-9	η_z : ON $\omega_z = 0.9$	SPEED HOLD	; ON
	OLD CASE NO. :	46	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-21-2	ε = .287 long	or = 1.05	RATING
A	ε = .058	$\sigma_{ m int} =$ 1.40	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 1.6
10-12-10	η_z ; ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	54	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-24-5	ළ = .281 long	OT = .995	RATING
A	$\varepsilon =227$	$\sigma_{_{ m loft}}=$ 1.08	3

- LITTLE OSCILLATORY TENDENCY
- STICK MORE SENSITIVE (THAN PREVIOUS RUNS I.E. RUNS 5-24-1 5-24-4)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	,	SCAS : ON	•
10-12-10	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	54	
RUN/PILOT	SCORES :		COOPER-
5-24-9 /	ε = .080	or * .839	HARPER RATING
	teng	ione	
/ B	$\varepsilon_{\rm loc} =130$	O = 1.08	3

- LITTLE OVERSHOOT
- MUST BE CAREFUL NOT TO OVERCONTROL
- FREQUENCY OF VIBRATION NOT DISTRACTING

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 1.6
1 C-1 2-1 1	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	55	
RUN/PILOT	SCORES :		COOPER-
5-24-6	ε =034	or == 1.00	HARPER RATING
A	_	$\sigma_{\text{int}} = 1.18$	2.5

- PRETTY GOOD RESPONSE
- NOT TOO SENSITIVE

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 1.6
1C-12-11	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	55	
RUN/PILOT	SCORES :		COOPER-
5-24-10	ت == .13 iong	7 = 1.03	HARPER RATING
В	ε = .054	$\sigma = .895$	3+
·	lot.	let .	

- ACQUISITION NOMINAL
- OSCILLATIONS TEND TO BE ANNOYING
- HAD TO MENTALLY SUPRESS THE ANNOYANCE (SENSATION)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	73, : ON 22 = 2.0 SCAS : ON	K = 1.6
1C-12-12	η_{z} : ON $\omega_{z} = 1.0$ SPEED HOLD	; ON
	OLD CASE NO. : 56	
RUN/PILOT	SCORES :	COOPER-
		HARPER
5-24-7	E ==040 (7 == 1.0 long	RATING
A	$\mathcal{E} =074 \qquad \sigma = 1.37$	3.5

- MORE DIFFICULT TO CONTROL (THAN PREVIOUS RUN)
- SICKENING MOTION

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	72 ₂ : ΟΝ ω ₂ = 2.0	SCAS : ON	K = 1.6
10-12-12	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	56	
RUN/PILOT	SCORES :		COOPER-
		005	HARPER
5-24-11	ع 054 iong	cr = .895	RATING
В	€ =004	$\sigma_{_{ m iext}} =$ 1.10	N/A
		·	

- TASK SEEMED A LITTLE TOUGHER (THAN PREVIOUS RUNS)
- NOT SURE IF ENTIRELY DUE TO MOTION

Table A.8 - Data Summary Sheets continued

SPECS :		
η _μ : ΟΝ ω _μ = 2.0	SCAS : ON	K = 1.6
η_z : ON $\omega_z = 0.8$	SPEED HOLD	ON
OLD CASE NO. :	57	
SCORES :		COOPER-
ε =145	or = 1.27	HARPER RATING
terng	long	
$\varepsilon_{\rm lot} =017$	$\sigma = 1.32$	5
	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\eta_{_{\parallel}}:$ ON $\omega_{_{\parallel}}=2.0$ SCAS: ON $\eta_{_{\parallel}}:$ ON $\omega_{_{\parallel}}=0.8$ SPEED HOLD OLD CASE NO.: 57 SCORES: $\varepsilon_{_{\parallel}}=145 \qquad \sigma_{_{\parallel}}=1.27$ long $\varepsilon_{_{\parallel}}=017 \qquad \sigma_{_{\parallel}}=1.32$

- MUCH HARDER (THAN PREVIOUS RUNS)
- WEIRD MOTION

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 1.6
10-12-13	η_z : ON $\omega_z=0.8$	SPEED HOLD	; ON
	OLD CASE NO. :	57	
RUN/FILOT	SCORES :		COOPER-
5-24-13	გ = .058 iona	or = 1.21	HARPER RATING
В		σ = 1.11	5

- SIGNIFICANT DEGREDATION IN PERFORMANCE
- MORE DIFFICULT TO ACQUIRE TARGET
- SLUGGISH
- MORE STICK DEFLECTION REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η ; ON ω = 2.0	SCAS : OFF	K = -
10-12-14	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	58	
RUN/PILOT	SCORES :		COOPER-
5-24-14	ε = .023	σ = 1.18	HARPER RATING
	iong	iong	
/ B	$\varepsilon =12$	$\sigma_{\rm int} = 1.32$	5

- SLUGGISH
- HEAVY, LARGE STICK DISPLACEMENTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
}	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : OFF	K = -
1C-12-15	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	59	
RUN/PILOT	SCORES :		COOPER-
5-24-15	ε ==014 long	σ = 1.35	RATING
В	€ =016	$\sigma_{_{ m left}} =$ 1.30	6

- SLUGGISH
- HEAVY, LARGE STICK DISPLACEMENTS
- LESS PREDICTABLE
- LARGER OVERSHOOT IN CORRECTIONS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : OFF	K = -
10-12-16	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; DN
	OLD CASE NO. :	60	
RUN/PILOT	SCORES :		COOPER-
5-24-16	ε = .059 leng	OF == 1.35	HARPER RATING
В	$\epsilon_{_{ m loc}}=20$	ø= 1.21	. 6

- SIMILAR TO LAST RUN
- DID NOT SEEM TO BE JUMPING QUITE AS BAD
- LARGE FORCES AND DISPLACEMENTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η,: OFF ω = -	SCAS : ON	K = 2.0
1C-12-17	η_z : OFF $\omega_z = -$	SPEED HOLD	; ON
	OLD CASE NO. :	29*	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-4	em .08	or = .84 long	RATING
B	$\epsilon_{ m lot}=$.033	$\sigma_{_{\rm int}} = 1.15$	2.5

- MOTION A DISTRACTION BECAUSE FELT SURGE (U) IN DIVE: PILOTS ARE WARY
- DESIRED PERFORMANCE ACHIEVED
- PITCH A LITTLE LIGHTER IN RESPONSE SO MAY BE TENDENCY TO OVERSHOOT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
1C-21-1	"# #	SCAS : ON SPEED HOLD	K = 1.6
	OLD CASE NO. :	3**	
RUN/PILOT	SCORES :		COOPER- HARPER
4-30-3	ε = N/A iong	σ = N/A Ionq	RATING
A	$arepsilon_{ m lat}=$ N/A	o = N/A	5

- INTERESTING THING IS AN OSCILLATION IS SET UP WHEN TRYING TO RECOVER BOTH AXES THAT DID NOT OCCUR IN CASE 18-21-2
- CAN NOT DIVERT ATTENTION OR ELSE A FEW OVERSHOOTS
- WILL TRY TO ADJUST KO IN PITCH SCAS TO ELIMINATE BOBBLE
- NOTE : SIGMA(P)**2 = 0.77 FOR THIS RUN

CASE NO.	SPECS :		t y and Telebrica (and a second s
10-21-2	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	SCAS : ON SPEED HOLD	•
RUN/PILOT	SCORES :		COOPER- HARPER
5-2-3	long	ong = 1.00	RATING
/ B	€ = .046	$\sigma_{\rm lot} = 1.84$	4

- NOTE: SIGMA(P)**2 = 0.77 FOR THIS RUN

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-21-3	$\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{2}}}=2.0$ SPEED HOLD OLD CASE NO. : 9.1	K = 2.0
RUN/PILOT	SCORES:	COOPER-
5-3-5	ε = .315 σ = 1.36	HARPER RATING
В	ε = -5.25 σ = 2.53	N/A

- OSCILLATIONS STAY WITHIN CIRCLE
- JUST LET IT DAMPEN OUT SINCE CAN NOT CONTROL IT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{j}: ON \omega_{j} = 2.0 SCAS$: ON $K_{q} = 2.0$
10-21-3	η_z : ON $\omega_z=2.0$ SPEE	D HOLD ; OFF
	OLD CASE NO. : 9.1	
RUN/PILOT	scores :	COOPER-
		HARPER
5-7-7	ε = .565 σ = : long long	1.62 RATING
В	ε = .308 σ = 1	1.92 N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{s} : ON $\omega_{s}=2.0$ SCAS : ON	K = 2.0
10-21-3	η_z : ON $\omega_z=2.0$ SPEED HOLD); OFF
	OLD CASE NO. : 9,1	
RUN/PILOT	SCORES:	COOPER-
		HARPER
6-11-3	$\varepsilon = .419$ $\sigma = 1.53$	RATING
0	ε =57 σ = 2.25	N/A

- MORE OSCILLATION IS DISPLAY COMPARED TO TWO PREVIOUS RUNS
- DEGRADED PERFORMANCE COMPARED TO TWO PREVIOUS RUNS
- ROLL OVERSHOOT

124
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{j} : ON $\omega_{j}=2.0$ SCAS : ON	K = 2.0
10-21-4	η_z : ON $\omega_z=1.75$ SPEED HOLD	; ON
	OLD CASE NO. : 17	
RUN/PILOT	SCORES:	COOPER-
5-8-6	ε = .162 σ = 1.69 iong long	HARPER RATING
В	$\varepsilon =11$ $\sigma = 1.41$	N/A

- TRIED TO BE AS AGGRESSIVE AS POSSIBLE
- TRYING TO STAY CENTERED ON TARGET WITH OSCILLATIONS ON EITHER SIDE OF THE DOT. OBVIOUS DUE TO VIBRATION
- ROLL STILL NOT A PROBLEM CONCENTRATE ON PITCH
- USED MECHANICAL TECHNIQUE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{j} : ON $\omega_{j}=2.0$ SCAS : ON $K_{j}=2.$	0
10-21-4	$\eta_{_{_{1}}}$: ON $\omega_{_{_{2}}}=$ 1.75 SPEED HOLD ; ON	
	OLD CASE NO. : 17	
RUN/PILOT	SCORES: COOPER-	- 1
5-8-7	E = .429 0 = 1.53 RATING	
В	€ =25	

- ATTEMPTED TO FLY AS SMOOTHLY AS POSSIBLE TO AVOID EXCITATION OF MODES

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$: ON K = 2.0
10-21-5	$\eta_{_{z}}:$ ON $\omega_{_{z}}=1.5$ SPEE	D HOLD ; ON
	OLD CASE NO. : 23	
RUN/PILOT	SCORES :	COOPER-
		HARPER
5-14-3	$\varepsilon = .474$ $\sigma = 100$	1.82 RATING
В	ε = .364 σ =	1.64 7+

- APPARENT LAG VERY ANNOYING
- EXTREME STICK DISPLACEMENTS REQUIRED TO GET NOSE MOVING
- TENDS TO PIO
- ROLL DOES NOT SEEM TO AFFECT MY PERFORMANCE OR THE TASK

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j} = 1.5$	SCAS : ON	K = 2.0
10-21-6	$\eta_{_{x}}$: ON $\omega_{_{x}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. : 3	:3	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-9		= 1.39	RATING
B	$\varepsilon_{\rm lot} =167$	7 = 1.68	7
		j	

- HARD TO ROLL: ROLL OBVIOUSLY DEGRADED
- HARD TO FLY INSTINCTIVELY (AS BEFORE)
- PERFORMANCE VERY BAD

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\mathcal{P}}}}$: ON $\omega_{_{_{\mathcal{P}}}}=1.5$ SCAS : ON	K = 2.0
10-21-6	η_z : ON $\omega_z=2.0$ SPEED HC	OLD ; ON
	OLD CASE NO. : 33	
RUN/PILOT	scores:	COOPER-
	- 4 40	HARPER
5-30-2	E = .224 (7 = 1.49	RATING
/c	$\varepsilon_{\text{int}} = .32$ $\sigma_{\text{int}} = 2.08$	N/A

- (ON LEARNING CURVE)
- MENTALLY TRIED HARDER THAN PREVIOULY
- FELT PERFOMANCE WAS BETTER THAN PREVIOUS RUN

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{m{y}}}}:$ ON $\omega_{_{m{y}}}=1.5$	SCAS : ON	K = 2.0
10-21-6	$\eta_{x}: ON \omega_{x}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	33	
RUN/PILOT	SCORES :		COOPER-
5-30-3	ε = .244 long	$\sigma = 1.45$	RATING
/ c	ε = .751	$\sigma_{_{ m loft}}=$ 1.95	N/A

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=1.0$	SCAS : ON	K = 2.0
1 C-2 1-7	η_z ; ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	39	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-29-8	ε = .227 long	OT = 1.42	RATING
В	€ =264	$\sigma_{ m lost} = 1.74$	7.5
<u> </u>			

- HARD TO TELL WHETHER PITCH OR ROLL IS THE PREBLEM WITH SIMULTANEOUS TASKS BEING FLOWN
- DIFFICULT CONFIGURATION TO CONTROL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=1.0$	SCAS : ON	K = 2.0
10-21-7	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	39	
RUN/PILOT	SCORES:		COOPER- HARPER
5-30-8	$\varepsilon = .18$	σ = 1.31 ionq	RATING
/c	$arepsilon_{ ext{ict}} = .156$	$\sigma_{_{ m int}}=$ 1.76	S

- A LITTLE TOUGHER THAN LAST RUN
- FELT LIKE MORE RUDDER EFFECTIVENESS
- AILERON FELT THE SAME

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = ESC
10-21-8	η_z ; ON $\omega_z=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	113	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-11-4	ε =049 long	7 = 2.63 ionq	RATING
0	$\varepsilon_{_{ m lock}}=$ 323	$\sigma_{_{ m int}}=$ 2.94	N/A

- TASK WAS VERY DIFFICULT
- PERFORMANCE UNACCEPTABLE
- LARGE STICK DISPLACEMENTS REQUIRED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$	SCAS : ON	K = ESC
10-21-8	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	113	
RUN/PILOT	SCORES:		COOPER-
			HARPER
6-11-5	$\varepsilon =161$	σ = 2.05 lon∉	RATING
0	ε = .592	σ = 3.34	N/A
			<u> </u>

- UNACCEPTABLE PERFORMANCE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = ESC
10-21-8	$\eta_{_{x}}$: ON $\omega_{_{x}}=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	113	
RUN/PILOT	SCORES :		COOPER-
c	007	2.05	HARPER
6-11-9	$\varepsilon =027$	σ = 2.85 ion€	RATING
/ c	$\varepsilon_{lot} =704$	$\sigma_{_{ m int}}=$ 2.19	8+

- LARGE STICK INPUTS
- OVERSHOOT PROBLEM
- SLUGGISH RESPONSE
- VERY HARD TASK; UNACCEPTABLE PERFORMANCE

135
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
1C-22-1	$\eta_{\underline{i}}$: ON $\omega_{\underline{i}} = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	20	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-10-5	E == .11 long	7 == 1.04 long	RATING
/ B	€ =179	$\sigma_{\rm lot} = 1.29$	3.5

- DESIRED PERFORMANCE OBTAINED WITH COMFORTABLE WORKLOAD
- ONLY SLIGHT TENDENCY TO OVERCONTROL IN PITCH
- NOTE : NO DIGITAL DATA

136
Table A.8 - Data Summary Sheets continued

SPECS:		
		K = 2.0
•		; ON
010 0 01 110	20	
SCORES :		COOPER-
$\varepsilon = .201$	O = .904	RATING
€ =131	$\sigma_{\rm int} = 1.32$	2.5
	$\eta_{_{_{\parallel}}}: \text{ON} \omega_{_{_{\parallel}}} = 2.0$ $\eta_{_{_{\parallel}}}: \text{ON} \omega_{_{_{\parallel}}} = 1.5$ OLD CASE NO.: SCORES: $\varepsilon_{_{_{\parallel}}} = .201$ long $\varepsilon_{_{\parallel}} =131$	$\eta_{_{_{2}}}$: ON $\omega_{_{_{3}}}=2.0$ SCAS : ON $\eta_{_{_{2}}}$: ON $\omega_{_{_{3}}}=1.5$ SPEED HOLD OLD CASE NO. : 26 SCORES : $\varepsilon=.201 \qquad \sigma=.904$ long $\varepsilon=131 \qquad \sigma=1.32$

- PERFORMANCE ABOUT THE SAME AS CASE 1C-12-3 (PREVIOUS RUN) BUT MUCH MORE PLEASANT TASK
- NO BOUNCING
- PERHAPS SUBTLE LAGS
- NOT QUITE DESIRED PERFORMANCE, BUT PRETTY CLOSE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$	SCAS : ON	K = 2.0
1C-22-3	$\eta_{\underline{z}}: ON \omega_{\underline{z}} = 1.25$	SPEED HOLD	; ON
	OLD CASE NO. : :	28	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-17-2	$\varepsilon = .144$ in the state of the	7 = .82 on¶	RATING
В	$\epsilon_{\rm lot} = .044$	σ = 1.10	2.5

- HINT OF PIO TENDENCY
- KEPT GAINS HIGH BUT REALLY CLOSE TO BASELINE

138
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-22-3	η : ON ω = 2.0 SCAS : ON η : ON ω = 1.25 SPEED HOLD	
	OLD CASE NO. : 28	
RUN/PILOT	SCORES :	COOPER- HARPER
5-17-5	$\varepsilon=.313$ $\sigma=1.11$	RATING
В	$\varepsilon_{ m loc} =032$ $\sigma_{ m loc} = 1.31$	3.5

- SENSITIVITY: MORE OF A TENDENCY TO OVERSHOOT
- FELT HE DID NOT GET IN A GROOVE
- HAD SOME TROUBLE OSCILLATING ABOUT TARGET
- NO MOTION PUTS YOU TO SLEEP

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
1C-22-4	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	30	
RUN/PILOT	SCORES :		COOPER-
5-17-6 /	ε = .16	a – ec	HARPER
	long	0" = .85 iong	RATING
/ B	$arepsilon_{ m loc}=$.18	$\sigma_{\rm int} = 1.12$	3.5
 			

- HAD TO BE SMOOTH TO GET HIGH GAINS, TO BE TIGHT
- INTENT ON KEEPING GAINS HIGH BUT STILL BE SMOOTH

140
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{ m J}}}$: ON $\omega_{_{_{ m J}}}=1.5$ SCAS : ON K	= 2.0
10-22-5	η_z : ON $\omega_z = 2.0$ SPEED HOLD ;	ON
	OLD CASE NO. : 36	
RUN/PILOT]	COOPER-
5-17-12,	$\varepsilon = .127$ $\sigma = .822$	HARPER RATING
В	iong long ε =278 σ = 1.11	4
	ick lot	

- HARD TO STAY AGGRESSIVE; WANT TO GO TO SLEEP WITH NO MOTION
- INTENSE CONCENTRATION NEEDE TO GET DESIRED PERFORMANCE
- LIGHT FORCES IN ROLL: HAD TO CONCENTRATE
 TO KEEP SMOOTH

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y} = 1.5$	SCAS : ON	K = 2.0
1C-22-5	$\eta_{_{\scriptscriptstyle \perp}}:$ ON $\omega_{_{\scriptscriptstyle \perp}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	36	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-30-7	e = .085	7 = 1.04 long	RATING
/ c	€ =157	$\sigma_{_{ m lost}}=$ 1.46	3.5

- LIKES THE MOTION. IT HELPS (REFERING TO COMPARISON WITH PREVIOUS RUNS)

142
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
1C-22-6	ກຸ: ON ພຸ = 1.0 SC ກຸ: ON ພຸ = 2.0 SF	·
	OLD CASE NO. : 42	
RUN/PILOT	SCORES :	COOPER-
5-31-4	E = .107 OF long	= .980 HARPER RATING
/ c	$\varepsilon_{lot} =570$ σ_{lot}	= 1.47 4

- LITTLE HARDER THAN CONFIG. 1C-11-1
- LESS PREDICTABLE IN ROLL

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	ກຸ: ON ພຸ = 2.0	SCAS : ON	K = 1.6
10-22-7	ກຼ : ON ພູ == 1.0	SPEED HOLD	; ON
	OLD CASE NO. :	56B	
RUN/PILOT	SCORES :		COOPER-
			HARPER
5-24-12	$\varepsilon = .41$	07 == 1.5 long	RATING
В	£ =299	$\sigma_{ m lost}=$ 1.49	4

- PITCH WAS NOT WELL BEHAVED (AS PREVIOUS RUNS)
- NOT ENTIRELY DUE TO MOTION (REFERING TO COMMENTS FOR PREVIOUS RUN)

144
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$	SCAS : ON	K = 2.0
10-22-8	$\eta_{_{z}}$: ON $\omega_{_{z}}=$ 0.8	SPEED HOLD	; ON
	OLD CASE NO. :	45B	
RUN/PILOT	SCORES :		COOPER- HARPER
5-29-3	ε =23 long	σ = 1.33 ione	RATING
A	arepsilon = .19	$\sigma_{_{\rm loft}} = 1.50$	5
			L

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = ESC
1C-22-9	η_z : ON $\omega_z=1.5$	SPEED HOLD	; OFF
	OLD CASE NO. :	75	
RUN/PILOT	SCORES :		COOPER-
			HARPER
6-3-1	$\varepsilon = .38$	σ = 1.29	RATING
/ A	$\epsilon_{\rm lot} =32$	σ = 2.04	N/A
		······································	

- STICK: SEEMS TO RUN OUT OF CONTROL POWER
- GOOD RESPONSE OTHERWISE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = ESC
10-22-9	$\eta_{_{x}}$: ON $\omega_{_{x}}=1.5$	SPEED HOLD	; OFF
	OLD CASE NO. :	75	
RUN/PILOT	SCORES:		COOPER- HARPER
6-4-1	$\varepsilon = .203$	$\sigma_{_{_{_{_{_{_{_{0}}}}}}}}=1.05$	RATING
A	$\varepsilon_{lat} =082$	$\sigma_{\rm int} = 1.77$	N/A
			L

147
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\boldsymbol{y}}}}$: ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$ SCAS : ON	K = ESC
10-22-9	η_z : ON $\omega_z=$ 1.5 SPEED HOLD	; OFF
	OLD CASE NO. : 75	
RUN/PILOT	SCORES:	COOPER-
6-4-3	$arepsilon = 1.81$ $\sigma = 1.02$	HARPER RATING
A	ε =275 σ = 1.48	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{j}: ON \omega_{j}=2.0 SCAS: ON$	K = 2.0
10-22-10	η_z : ON $\omega_z = 1.5$ SPEED HOLD	; OFF
	OLD CASE NO. : 76	
RUN/PILOT	SCORES:	COOPER-
6-3-2	ε =39 σ = 1.15	HARPER RATING
A	$\varepsilon_{lot} = .258$ $\sigma_{lot} = 1.57$	N/A

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	K = 2.0
10-22-10	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; OFF
	OLD CASE NO. :	76	
RUN/PILOT	SCORES:		COOPER- HARPER
6-4-2	ε =047	$\sigma = .91$	RATING
A	ε = .023	$\sigma_{\text{lot}} = 1.47$	N/A
			<u> </u>

Table A.8 - Data Summary Sheets continued			
CASE NO.	SPECS :		
	ກຸ: ON ພູ = 2.0	SCAS : ON	K = 2.0
10-22-11	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	77 .	
RUN/PILOT	SCORES :		COOPER-
6-3-3	ε =001	$\sigma = .88$	HARPER RATING
A	$oldsymbol{arepsilon} = .098$	long	N/A
	e. — 1036 lat	let 1.41	N/H
COMMENTS			

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	K = 2.0
10-22-11	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	77 .	
RUN/PILOT	SCORES :		COOPER-
6-4-4	ε = .013 leng	or == .96 long	HARPER RATING
A	ε =066	$\sigma_{\rm int} = 1.41$	N/A
			l

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	ກຸ : ON ພຸ = 2.0 SCAS : ON	K = 2.0
10-22-11	η_z : ON $\omega_z=2.0$ SPEED HOLD	; OFF
	OLD CASE NO. : 77,	
RUN/PILOT	SCORES:	COOPER-
6-11-2 /		HARPER
6-11-2	£ = .068 (7 == 1.30	RATING
/ D	ε =495 σ = 2.22	N/A

- NO DISCERNNABLE DIFFERENCE IN PERFORMANCE COMPARED TO PREVIOUS RUN
- SAME SLIGHT ROLL OVERSHOOT

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
1C-22-11	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	77 .	
RUN/PILOT	SCORES:		COOPER-
6-11-7	ε = .399 long	or = 1.15	HARPER RATING
/ c	€ =423 lot.	$\sigma_{\text{int}} = 1.94$	N/A

154
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = ESC
10-22-12	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	112	
RUN/PILOT	SCORES:		COOPER-
5-11-1	$\varepsilon = .087$	o = 1.34	HARPER RATING
٥	ε =09	$\sigma_{_{ m loft}}=$ 2.85	N/A

- SLIGHT ROLL OVERSHOOT
- PERFORMANCE ACCEPTABLE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :
	ກຸ: ON ພຸ = 2.0 SCAS : ON K = ESC
10-22-12	η_z : ON $\omega_z=2.0$ SPEED HOLD ; OFF
	OLD CASE NO. : 112
RUN/PILOT	
6-11-6	E = .196 OT = 1.29 RATING
0	ε =20 σ = 2.35 N/A

	# - NAVIDER - NEW YORK - WINDOWS - WINDOWS - NAVIDER - WARRING - W		
CASE NO.	SPECS :		
	ກຸ: ON $\omega_{ m p}=2.0$	SCAS : ON	K = ESC
10-22-12		SPEED HOLD	; OFF
	OLD CASE NO. :	112	
RUN/PILOT	SCORES :		COOPER- HARPER
6-11-8	$\varepsilon = .257$	or = 1.17	RATING
/c	ε _{ιστ} =229	$\sigma_{_{ m loft}} = 1.85$	N/A
			<u> </u>

- NO OBVIOUS DIFFERENCE FROM LAST RUN
- THIS RUN MIGHT BE LESS SQUIRRELY

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\mathcal{Y}}}}: OFF \;\; \omega_{_{_{\mathcal{Y}}}} = -$	SCAS : ON	K = 1.6
2C-11-1	η_z ; OFF $\omega_z=-$	SPEED HOLD	; ON
	OLD CASE NO. :	61	
RUN/PILOT	SCORES:		COOPER-
			HARPER
5-31-5	arepsilon = .066	cy = .513	RATING
/c	ε =270	$\sigma_{\rm lost} = .205$	2
	165.	166	

- ACHIEVED DESIRED PERFORMANCE
- NOTE : SIGMA(P)**2 = 0.1 ; OMEGA(R) =
 OMEGA(P) = 0.5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 1.6
20-11-2	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	62	
RUN/PILOT	SCORES :		COOPER-
5-31-6	ε = .066 leng	or = .456	HARPER RATING
/ c	€ =213	$\sigma_{_{ m lat}} = .210$	N/A

- TARGET VIBRATES WITH A/C SYMBOL: NO REAL CONFUSION
- NOTE: SIGMA(P)**2 = 0.1 : OMEGA(R) = OMEGA(P) = 0.5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	η_{p} : ON $\omega_{p}=2.0$ SCAS : ON	K = 1.6
20-11-3	$\eta_{_{_{2}}}:$ ON $\omega_{_{_{2}}}=2.0$ SPEED HOLD); ON
	OLD CASE NO. : 63	
RUN/PILOT	SCORES :	COOPER-
5-31-7	ε = .017 σ = .60 iong iong	RATING
/ c	ε =172 σ = .311	N/A
<u> </u>		

- NOTE : SIGMA(P)**2 = 0.2 : OMEGA(R) = OMEGA(P) = 0.5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 1.6
20-11-4	$\eta_{_{x}}$: ON $\omega_{_{x}}=2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	64	
RUN/PILOT	SCORES:		COOPER-
5-31-8	$arepsilon_{long} =111$	or = .735	HARPER RATING
/ c	$\varepsilon_{lot} =181$	$\sigma_{\rm lot} = .298$	4

- HAD TO BE CAREFUL
- NOTE : SIGMA(P)**2 = 0.3 : OMEGA(R) = OMEGA(P) = 0.5

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-11-5	η_z ; ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	78	
RUN/PILOT	SCORES:		COOPER-
5-3-4	$\varepsilon = .013$	or = .702	HARPER RATING
/ c	$\epsilon_{_{ m loc}}=$ 036	$\sigma_{_{ m loft}}=$. 291	4.5

- STICK FORCES ARE A LITTLE HEAVY
- GOOD TRACKING PERFORMANCE WITHOUT MUCH DIFFICULTY
- MOTION IS A DISTRACTION: BUT DOES NOT SEEM TO AFFECT PERFORMANCE
- ROLL OSCILLATIONS; MODERATELY OBJECTION-ABLE; CAUSES TENTATIVE USE OF AILERON, USE RUDDER TO COMPENSATE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$	SCAS : ON	$K_q = 2.0$
20-11-5	η_z : ON ω_z = 2.0	SPEED HOLD	; ON
	OLD CASE NO. :	78	
RUN/PILOT	SCORES :		COOPER-
6-4-7	long	or = .58	HARPER RATING
	& =112	σ = .203	4

- FINE TUNES HEADING ERROR WITH RUDDER; GROSS CORRECTION WITH AILERON (MINIMIZES ROLL OSCILLATIONS)
- DEFINITE INCREASE IN PERFORMANCE (OVER PREVIOUS RUN)
- WORKED AS HARD WITH BETTER RESULTS
- ROLL MOTION IS BOTHERSOME, JERKY

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$ SCAS : ON	K = 2.0
20-11-6	η_z : ON $\omega_z=1.5$ SPEED HOLD	; ON
	OLD CASE NO. : 79,	
RUN/PILOT	SCORES:	COOPER-
6-3-5	ε = .26 σ = 1.21 long	HARPER RATING
/ c	$\varepsilon =332$ $\sigma = .270$	S

- STICK FORCES SAME AS LAST RUN
- FELT PERFORMANCE WAS WORSE THAN SCORES INDICATE
- MOTION IS DISTRACTING: EFFECT ON PERFORMIANCE IS QUESTIONABLE
- AWARE OF ROLL OSCILLATIONS AND SO AVOIDS EXCITING THEM

CASE NO.	SPECS :		
	η_{y} : ON $\omega_{y}=2.0$	SCAS : ON	K = 2.0
20-11-6	$\eta_{_{x}}$: ON $\omega_{_{x}}=1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	79 /	
RUN/PILOT	SCORES:		COOPER-
6-4-11	ε ≕ .058 leng	or = .650	HARPER RATING
/ c	$\varepsilon_{\rm lot} =172$	$\sigma_{_{ m int}}=.279$	4.5

- LOW RUDDER RESPONSE
- CAN NOT SEEM TO OBTAIN PERFORMANCE THAT SEEMS TO BE ACHIEVABLE
- ANNOYING LONGITUDINAL VIBRATION

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
20-11-7	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	80	
RUN/PILOT	SCORES:		COOPER-
6-3-6	ε =017 long	or = .785	HARPER RATING
/ c	€ =405	$\sigma_{_{ m loft}}=$.427	5

- STICK FORCES SEEMED HEAVIER: MORE PITCH, AILERON AND RUDDER ACTIVITY WERE REQUIRED TO OBTAIN PERFORMANCE
- MOTION IS ANNOYING
- ROLL OSCILLATIONS LESS NOTICEABLE

166
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
	$\eta_{_{_{\boldsymbol{y}}}}:$ ON $\omega_{_{_{\boldsymbol{y}}}}=2.0$ SCAS : ON	K = 2.0
20-11-7	η_z : ON $\omega_z = 1.0$ SPEED HOLD	; ON
	OLD CASE NO. : 80	
RUN/PILOT	SCORES :	COOPER-
6-4-6	ε =113 σ = .709 iong iong	HARPER RATING
/c	$\varepsilon =153$ $\sigma = .339$	5

- TASK WAS DO-ABLE
- USED MOTION CUES BUT DID NOT CONSCIOUSLY KEY ON IT
- IGNORE HORIZON MOTION IN DISPLAY
- SLIGHT RESPONSE LAG

167
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-11-8	$\eta_{x}: ON \omega_{x}=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	91	
RUN/PILOT	SCORES :		COOPER-
			HARPER
6-6-2	æ .006 meng	♂ = . 59	RATING
/ c	€ =143	$\sigma_{ m left} = .198$	4.5

- NO MAJOR DEFICIENCIES
- FELT LATERAL MOTION ANNOYING; UNREALISTIC
- SLIGHTLY MORE DIFFICULT THAN PREVIOUS RUN
- FLEX MODE SEEMS SLIGHTLY DIFFERENT
- FELT HE WAS WORKING HARDER

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{y}: ON \omega_{y}=2.0$	SCAS : ON	K = 2.0
20-11-9	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; OFF
	OLD CASE NO. :	92	
RUN/PILOT	SCORES :		COOPER-
			HARPER
6-6-3	ε =12 leng	or = .654	RATING
/c	$\varepsilon_{\rm loc} =176$	$\sigma_{_{ m loft}}=$. 264	5

- DECREASE IN RESPONSIVENESS TO STICK (COMPARED TO PREVIOUS RUN)
- FELT PERFORMANCE WAS WORSE FOR THIS RUN (COMPARED TO PREVIOUS RUN)
- IGNORING HORIZON MOTION IN DISPLAY

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η ; ON ω = 2.0	SCAS : ON	K = 2.0
20-11-10	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; OFF
	OLD CASE NO. : 93	1	
RUN/PILOT	SCORES :		COOPER-
1			HARPER
6-6-4		= .785	RATING
/ c		= . 258	6

- VERY OBJECTIONABLE, SLUGGISH BEHAVIOR
- COULD COMPENSATE FOR DEFICIENCIES, FELT HE COULD DO BETTER WITH PRACTICE
- NOT AS RESPONSIVE TO STICK, MORE LEAD REQUIRED DUE TO INCREASED SLUGGISHNESS (COMPARED TO LAST FEW PREVIOUS RUNS)
- IGNORING HORIZON DISPLAY MOTION
- HAD TO BE MORE AGGRESSIVE

170
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-11-11	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	93B	
RUN/PILOT	SCORES :		COOPER-
6-6-6	ε = .122	o = .722	HARPER RATING
	iong	pnoi	
/ c	$\varepsilon_{loc} =28$	$\sigma = .25$	6

- EXTENSIVE PILOT COMPENSATION REQUIRED
- PIO TENDENCIES; TRIED TO PUT IN SMOOTH INPUTS TO NOT EXCITE OSCILLATIONS (IN BOTH AXES)
- TASK REQUIRED MORE STICK ACTIVITY
- IF TARGET GETS AWAY, A LARGER INPUT CAUSES A CHASING GAME
- SPEED HOLD EFFECTS NOTICED

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
2C-11-12	·	SCAS : ON SPEED HOLD	K = 2.0
	OLD CASE NO. :	94	
RUN/PILOT	SCORES :		COOPER-
			HARPER
6-6-5	ε =031 teng	♂ = . 78	RATING
/ c	€ =21	$\sigma_{ m left}=.264$	6

- TRYING TO PUT IN SMOOTH INPUTS IN LATERAL STICK TO NOT EXCITE OSCILLATIONS
- IF HE STAYS CLOSE TO TARGET OK, BUT IF IT GETS AWAY FROM HIM HE HAS TROUBLE GETTING BACK TO IT
- MORE DIFFICULT THAN PREVIOUS RUN
- CONTROL EFFECTIVENESS ABOUT THE SAME AS LAST RUN
- LEAD REQUIRED IN BOTH AXES

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
2C-11-13		SCAS : ON SPEED HOLD	K = 2.0
	OLD CASE NO. :	94B	
RUN/PILOT	SCORES :		COOPER-
6-6-7	e = .012	or == .765	HARPER RATING
/ c	£ =204	$\sigma_{\rm left} = .292$	6

- TASK REQUIRED SIGNIFICANT PILOT WORKLOAD
- NO NOTICE OF SPEED HOLD EFFECTS
- IGNORING HORIZON DISPLAY MOTION
- SOMETIMES FEELS COMBINATION OF CAB MOTION AND HORIZON MOTION CONFUSING
- THINKS MOTION IS CONFUSING

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :	
2C-12-1	η_z : ON $\omega_z=2.0$ SCAS: 0 η_z : ON $\omega_z=2.0$ SPEED 1	•
	OLD CASE NO. : 82	
RUN/PILOT	SCORES:	COOPER- HARPER
6-4-8	& = .033 (7 = .61	
/c	$arepsilon_{ m lost} =118$ $\sigma_{ m lost} = .17$	3 4

- DID NOT NOTICE ANY DIFFERENCE OVER PREVIOUS RUN
- COMMENTS FROM PREVIOUS RUN APPLY IN THIS RUN TOO

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-12-2	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	83	
RUN/PILOT	SCORES :		COOPER-
6-4-9 /	ε = .031	or = .634	HARPER RATING
	iong	long	
/ c	$\varepsilon =127$	$\sigma = .294$	5
		·	

- MORE COMPENSATION THAN PREVIOUS RUN
- HARDER TO OBTAIN DESIRED PERFORMANCE
- RESPONSE LAG
- WORSE THAN PREVIOUS RUN (I.E. CASE 2C-12-1)

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-12-3	η_z : ON $\omega_z = 1.5$	SPEED HOLD	; 0N
	OLD CASE NO. :	84	
RUN/PILOT	SCORES :		COOPER-
6-4-10	ε = .063 kma	σ = .636	HARPER RATING
/c	_	σ = .194	4.5

- MORES RESPONSIVE THAN PREVIOUS RUN (I.E. CASE 2C-12-2)
- PROMINANT ANNOYING LONGITUDINAL VIBRATION
- DID NOT FEEL HE DID AS WELL AS HE COULD HAVE
- DID NOT CAPITALIZE ON IMPROVED RESPONSIVENESS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: OFF\;\;\omega_{_{_{\boldsymbol{y}}}}=\;-$	SCAS : ON	K = 2.0
20-12-4	$\eta_{_{z}}: OFF \omega_{_{z}}=-$	SPEED HOLD	; OFF
	OLD CASE NO. :	90	
RUN/PILOT	SCORES:		COOPER-
			HARPER
6-6-1	ε = .045 km;	0 = .70 long	RATING
/ c	ε =15	$\sigma_{_{ m lost}}=$. 169	4

- MINOR DEFICIENCES BUT CAN COMPLETE TASK
- HAD TO WORK HARD
- HAD TO LEAD TARGET
- FELT HE COULD DO BETTER THAN HE DID

177
Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: OFF\ \omega_{_{_{\boldsymbol{y}}}}=-$	SCAS : ON	K = 2.0
20-12-5	$\eta_{_{\scriptscriptstyle \perp}}:$ OFF $\omega_{_{\scriptscriptstyle \perp}}=-$	SPEED HOLD	; ON
	OLD CASE NO. :	908	
RUN/PILOT	SCORES :		COOPER-
6-6-11	ε =019 iona	σ = .53 long	HARPER RATING
/ c	€ =030	$\sigma_{_{ m int}}=$.153	4

- HAD TO WORK SOME
- THIS CASE ALLOWS PILOT TO BE MORE AGGRESSIVE IN BOTH AXES
- CAN INPUT SHARPER INPUTS WITHOUT EXCITING PIO
- CAN LOCK ON TARGET BETTER

178

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	η_y : ON $\omega_y=2.0$	SCAS : OFF	K = -
20-12-6	$\eta_{_{x}}$: ON $\omega_{_{x}}=2.0$	SPEED HOLD	; OFF
	OLD CASE NO. :	114	
RUN/PILOT	SCORES :		COOPER- HARPER
6-11-10	ε = N/A long	σ = N/A long	RATING
/c	ε = N/A lat	$\sigma_{_{ m int}}=$ N/A	N/A

- PILOT INPUT CAUSES INSTABILITY; OBVIOUS PIO
- VERY LIGHT STICK FORCES REQUIRED TO MAINTAIN STABILITY
- NOTE : NO TAPED DATA : NO STRIP CHARTS

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{ar{y}}}}:$ ON $\omega_{_{_{ar{y}}}}=2.0$	SCAS : ON	K = 2.0
20-21-1	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; 0N
·	OLD CASE NO. :	81	
RUN/PILOT	SCORES :		COOPER- HARPER
6-3-7	ε =042 borg	or = .744 long	RATING
/c	ε =385 lat	$\sigma_{ m lot} = .269$	4

- WAS MORE AGGRESSIVE THAN PREVIOUS RUN
- NOTICED OVERSHOOT IN PITCH
- MORE AGGRESSIVE IN AILERON INPUTS
- IGNORED DISPLAY MOTION OF HORIZON.
 DID NOT AFFECT PERFORMANCE

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-21-1	η_z : ON $\omega_z = 1.0$	SPEED HOLD	; ON
	OLD CASE NO. :	81	
RUN/PILOT	scores:		COOPER- HARPER
6-6-10	ε = .024 long	σ = .64 long	RATING
/c	$\varepsilon_{_{ m lot}} =17$	$\sigma_{_{ m loft}}=$. 275	6
			<u> </u>

- FELT MOTION HELPED IN THIS CASE
- NO MOTION ALLOWS STEADIER STICK INPUTS
- FELT HE COULD BE MORE AGGRESSIVE.
 BUT STILL TRIED TO STAY SMOOTH

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{_{_{\boldsymbol{y}}}}: ON \omega_{_{_{\boldsymbol{y}}}}=2.0$	SCAS : ON	K = 2.0
20-21-2	η_z : ON $\omega_z = 2.0$	SPEED HOLD	; ON
	OLD CASE NO. :	99	
RUN/PILOT	SCORES :		COOPER-
6-6-8	ε = .142 long	or = .544	HARPER RATING
/ c	€ =096 lot	$\sigma_{_{ m loft}}=.21$	4

- CAN GET AGGRESSIVE AND THINGS DO NOT GET OUT OF CONTROL
- NO PIO TENDENCY
- CAN NOT TELL IF MOTION AFFECTS
 PERFORMANCE
- FELT SCORES MAY NOT REFLECT PERFORMANCE
- HAD TO SUPPLY SOME LEAD

Table A.8 - Data Summary Sheets continued

CASE NO.	SPECS :		
	$\eta_{j}: ON \omega_{j}=2.0$	SCAS : ON	K = 2.0
20-21-8	η_z : ON $\omega_z=1.5$	SPEED HOLD	; ON
	OLD CASE NO. :	100	
RUN/PILOT	SCORES :		COOPER-
6-6-9	ε = .061 long	σ = .60	HARPER RATING
/ c	$arepsilon_{ ext{lost}} =17$	$\sigma_{_{ m lot}}=$.185	5

- MORE SQUIRRELY IN ROLL THAN IN PREVIOUS RUN
- NOTICED OVERSHOOTS IN FITCH AND ROLL (MORE NOTICEABLE IN ROLL)
- CAN NOT TELL THE EFFECT OF MOTION ON PERFORMANCE

Table A.8 - Data Summary Sheets concluded

CASE NO.	SPECS :	
20-21-4	η_z : ON $\omega_z=2.0$ SCAS : ON η_z : ON $\omega_z=1.0$ SPEED HC	
	OLD CASE NO. : 930	
RUN/PILOT	SCORES:	COOPER- HARPER
6-4-5	ළ = .015 ල = .958 kmg iong	RATING
A	$\varepsilon =244$ $\sigma = .259$	N/A

Appendix 6 Simulator Frequency Response Data

This appendix presents frequency response data of the simulation facility that was used to conduct the simulation experiment, i.e. the Langley VMS simulator. This data was obtained experimentally using several sets of vehicle dynamics that correspond to varying degrees of structural flexibility. The following tables describe the experimental conditions and the data that was recorded. The units for the frequency response plots are indicated as well as a description of the parameters that were measured and their units. The values of the symmetric and antisymmetric mode vibration frequencies are also indicated, these define the configurations associated with each set of frequency response data. This data was used to produce the frequency response plots of the simulator presented in Figures 16 through 20, which correspond to the baseline configuration, i.e. Configuration 1.

Tabulated Simulator Frequency Response Data

- · Input Amplitude: 20 lbs (both axes).
- · Magnitudes tabulated in decibels (dB).
- · Phases tabulated in degrees.
- · Frequencies are tabulated in Hz.

The table below indicates the units for the various parameters-

Table A.9 - Simulator Data: Symbol Definition

Symbol	Meaning	Units
F	pitch and roll axes input force	lþs
δ	pitch and roll axes stick deflections	in
n Z	normal acceleration	g's
ny	lateral acceleration	g's
ė	attitude rate	rud Sec
9,P	pitch and roll rates	rad Sec

subscripts: cp - cockpit location

cmd- command to motion base

other symbols: (- measured at motion base

() - time derivative

Table A.10 - Simulator Data : Configuration Definition

	CONFIGURATION								
	1	1 2 3 4 5							
ω _₹ (#≥)	2.0	1.5	1.0	2.0	0				
Wy (Hz)	2.0	2.0	2.0	1.5	0				

Table A.11 - Simulator Data: Frequency Responses

CONFIGURATION 1 : Magnitudes

- 1) delta / F
- 2) nz / delta 3) theta / delta cp
- 6) nz /F 7) q / F
- 8) nz /F 9) q /F

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 1 : Phases

freq :	1	2	3	4	5	6	7	8	9
0. 25	-78. 27	-60. 75	-167. 74	47. 62	-287. 10	-91.41	~173. 09	-88. 82	-257. 60
0. 50	-60. 53	31. 13	-244. 31	20. 56	-319. 48	-8. 83	-264. 32	-3. 44	-337. 62
0. 75	-9B _. 01	14. 62	-258. 10	14. 29	-341.61	-69. 09	-337. 72	-61.68	-43. 27
1.00	-140. 16	7. 69	-262. 58	6. 67	~2. 49	-125. 70	-45. 24	-116. 11	-99. 42
1. 25	-176. 81	3. 00	-267. 58	0. 26	-22. 38	-173. 55	-106. 43	-163. 85	-144. 26
1. 50	-205. 62	-1.71	-270. 14	-5. 05	-39. 64	-212. 38	-155.40	-198.85	-180. 14
1. 75	-229. 06	-7 . 13	-277. 31	-8. 10	-57. 38	-244. 28	-203. 74	-229. 00	-209. 62
2. 00	-243. 89	-28. 03	-28. 67	-8. 58	-359. 14	-280. 51	-271.70	-265. 76	-241.76
0. 50 0. 75 1. 00 1. 25 1. 50 1. 75	-60. 53 -78. 01 -140. 16 -176. 81 -205. 62 -229. 06	31. 13 14. 62 7. 69 3. 00 -1. 71 -7. 13	-244. 31 -258. 10 -262. 58 -267. 58 -270. 14 -277. 31	20. 56 14. 29 6. 67 0. 26 -5. 05 -8. 10	-319. 48 -341. 61 -2. 49 -22. 38 -39. 64 -57. 38	-8.83 -69.09 -125.70 -173.55 -212.38 -244.28	-264. 32 -337. 72 -45. 24 -106. 43 -155. 40 -203. 74	-3. 44 -61. 68 -116. 11 -163. 85 -198. 85 -229. 00	-337. 6 -43. 2 -99. 4 -144. 2 -180. 1 -209. 6

key: All longitudinal axis parameters

1) delta / F

the data below is for easy reading into fortran programs

d	-	٠	•

0. 25	-78. 27	- 60. 75	-167.74	47. 62	-287. 10	-91.41	-173. 09	-88. B2	-257. 60
0. 50	-60. 53	31. 13	-244. 31	20. 56	-317. 48	-8. 83	-264. 32	-3. 44	-337. 62
0. 75	-98. 01	14. 62	-258. 10	14. 29	-341.61	-69. 09	-337. 72	-61.68	-43. <i>27</i> °
1.00	-140.16	7. 69	-262. 58	6. 67	-2. 49	-125. 70	-45. 24	-116. 11	-99. 42
1.25	-176. 81	3.00	-267. 5 8	0. 26	-22. 38	-173, 55	-106. 43	-163. 85	-144. 26
1.50	-205. 62	-1.71	-270. 14	- 5. 05	-39. 64	-212. 38	-155.40	-198. B5	-180.14
1.75	-229. 06	-7. 13	-277. 31	-8.10	-57. 38	-244. 28	-203. 74	-229. 00	-209. 62
2.00	-243. 89	-28. 03	-28. 67	-8. 5B	-359. 14	-280. 51	-271.70	-265. 76	-241.76

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 1 : Magnitudes

freq :	1	2	3	4	5	6	7	8	9
0. 251	-6. 390	-57. 180	-12. 080	2. 790	-43. 080	-60. 770	-61. 560	-18. 480	-26. 090
0. 50	-10. 900	-51. 700	-15. 290	-7 . 010	-36. 858	-69. 600	-63. 050	-25. 970	-30. 860
0. 75	-24. 260	-51. 990	-16. 850	-4. 780	-40. 610	-81.020	-81.720	-41.810	-45. 540

key: All lateral-directional axes parameters

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 1 : Phases

freq !	1	2	3	4	5	6	7	8	9
0. 25	~195. 18	-339. 67	-99. 08	-186. 43	-65. 80	-1. 27	-0. 06	-179. 38	-261. 50
0. 50	-267. 56	-337. 96	-83. 28	-215. 34	-107. 36	-100. 85	-98. 19	-260. 58	-351. 90
0. 75 i	-306. 44	-338. 28	-76. 03	-238. 83	-163. 54	-163. 54	-186. 01	-296. 97	-38. 54

key: All lateral-directional axes parameters

1) delta / F

1) ny / F /) CP

8) ny /F 9) p / cmd cmd

the data below is for easy reading into fortran programs

data

 0. 25
 -195. 18
 -339. 67
 -99. 08
 -186. 43
 -65. 80
 -1. 27
 -0. 06
 -179. 38
 -261. 50

 0. 50
 -267. 56
 -337. 96
 -83. 28
 -215. 34
 -107. 36
 -100. 85
 -98. 19
 -260. 58
 -351. 90

 0. 75
 -306. 44
 -338. 28
 -76. 03
 -238. 83
 -163. 54
 -163. 54
 -136. 01
 -296. 97
 -38. 54

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 2 : Magnitudes

freq !	1	2	3	4	5	. 6	7	8	9
0. 25	-14. 050	-38. 841	-12. 960	-12. 600	-31. 910	-65. 4B0	-5B. 92 0	-23. 350	-30. 570
0. 50	-12. 660	-39. 600	-15. 520	-13. 420	-29. 550	-65. 670	-57. 730	-23. 350	-32. 110
0. 75	-12. 460	-37. 380	-18. 120	-12. 360	-25. 710	-62. 200	-56. 290	-20. 010	-32. 640
1.00	-13. 720	-35. 380	-20. 010	-12. 970	-22. 146	-62. 070	-55. 880	-19. 630	-33. 650
1. 25	-15. 700	-32. 380	-22. 880	-13. 580	-18. 293	-61. 650	~56. 870	-19. 060	-35. 400
1. 50	-18. 290	-26. 720	-18. 880	-13. 870	-22. 210	-58. 870	-59. 370	-17. 260	-37. 980
1.75	-16. 820	-30. 940	-19. 070	-13. 270	-21. 370	-60. 960	-57. 250	-18. 840	-37. 330
2. 00	-18. 570	-33. 600	-20. 530	-13. 960	-19. 602	-66. 120	-58. 710	-21. 550	-38. 680

key: All longitudinal axis parameters

```
1) delta / F
```

- 2) nz / delta 3) theta / delta cp 4) nz / nz 5) q / theta cp 6) nz / F 7) q / F
- 8) n2 /F 9) q / i

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 2 : Phases

freq !	1	2	3	4	5	6	7	8	9
0. 25	-75.06	-64. 14	-172. 70	43. 61	-281. 75	~95 . 5 8	-169. 51	-89. 74	-254. 74
0. 50	-63. 16	24. 81	-248. 13	26. 38	-310. 74	-11 . 97	-262. 02	-7. 65	-322. 98
0. 75	-105. 87	8. 79	-261. 48	14. 57	-337. 36	-82. 51	-344. 71	-76. 02	-48. 15
1.00	-149. 02	0. 38	-267. 63	2. 13	-1. 56	-146. 51	-58. 21	-136. 56	-109. 61
1. 25	-182. 76	-10. 24	-279. 90	0. 61	-27. 12	-192. 39	-129. 78	-183. 42	-157.89
1. 50	-190. 12	-68. 17	-152. 98	-1. 19	-246. 96	-259. 49	-230. 06	-250. 32	-205. 32
1. 75	-220. 04	-158. 54	-244. 36	-10. B3	~15. 51	-29. 41	-119. 91	-11.72	-181. 11
2. 00	-246. 23	-170. 34	-255. 57	-11.81	-47. 52	-68. 38	-189. 32	-50. 28	-217. 28

key: All longitudinal axis parameters

- 1) delta / F
- 2) nz / delta 3) theta / delta cp
- 4) nz / nz cp
- 5) q / theta
- 6) nz /F
- 7) q/F
- 8) nz /F
- . ^ 9) q /F cmd

the data below is for easy reading into fortran programs

0. 25	-75. 06	-64. 14	-172. 70	43. 61	-281.75	-95. 58	-169. 51	-89. 74	-254. 74
0. 50	-63. 16	24. 81	-248. 13	26. 38	-310. 74	-11. 97	-262. 02	-7. 65	-322. 98
0. 75	-105.87	8. 79	-261.48	14. 57	-337.36	-B2. 51	-344.71	-76. 02	-48. 15
1.00	-149. 02	0. 3B	-267. 63	2. 13	-1.56	-146. 51	-58. 21	-136. 56	-109.61
1. 25	-182. 76	-10. 24	-279. 90	0. 61	-27. 12	-192. 39	-129. 78	-183, 42	-157.89
1.50	-190. 12	-68. 17	-152. 98	-1.19	-246. 96	-259. 49	-230. 06	-250. 32	-205. 32
1.75	-220. 04	-158. 54	-244.36	-10. B3	-15. 51	-29. 41	-119. 91	-11.72	-181.11
2.00	-246, 23	-170, 34	-255, 57	-11.81	-47, 52	-68, 38	-189, 32	-50.28	-217.28

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 2 : Magnitudes

freq :	1	2	3	4	5	6	7	8	9
0. 25 i	-6. 420	-56. 620	-12. 150	2. 480	-42. 870	-60. 550	-61. 440	-18. 420	~25. 970
0. 50	-11. 190	-51. 510	-15. 290	-7. 330	-36. 800	-70. 030	-63. 280	-26. 180	~31. 050
0. 75	-26. 920	-51. 980	-16. 760	-4 . 170	-36. 200	-83. 070	-79. 890	-44. 580	-48. 160
k e	y : All	lateral-	-directio	nal axe	s paramet	ters			
	1)	delta /	/ F						
	2)	ny /	delta	3)	p / deli	ta			

the data below is for easy reading into fortran programs

```
      0. 25
      -6. 420
      -56. 620
      -12. 150
      2. 480
      -42. 870
      -60. 550
      -61. 440
      -18. 420
      -25. 970

      0. 50
      -11. 190
      -51. 510
      -15. 290
      -7. 330
      -36. 800
      -70. 030
      -63. 280
      -26. 180
      -31. 050

      0. 75
      -26. 920
      -51. 980
      -16. 760
      -4. 170
      -36. 200
      -83. 070
      -79. 890
      -44. 580
      -48. 160
```

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 2 : Phases

freq :	1	2	3	4	5	6	7	8	9
0. 25	-197. 24	-311. 52	-97. 72	-211. 87	-63. 64	-0. 63	-385. 59	-178. 42	-260. 96
0. 50	-267. 60	-335. 59	-82. 72	-212. 49	-108. 35	-95. 08	-98. 67	-260. 23	-351. 70
0. 7 5 !	-305. 26	-337. 88	-75. 03	-304. 80	-149. 45	-227. 94	-169. 73	-292. 81	-36. 68

key: All lateral-directional axes parameters

1) delta / F

the data below is for easy reading into fortran programs

0. 25	-197. 24	-311. 52	- 97. 7 2	-211. 87	-63. 64	-0. 63	-385. 59	-178. 42	-260. 96
0.50	-267, 60	-335. 59	-82. 72	-212. 49	-108. 35	-95. 08	-98. 67	-260. 23	-351.70
0. 75	-305. 26	-337. 88	-75. 03	-304. BO	-149.45	-227. 94	-169. 73	-292. 81	-36. 68

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 3 : Magnitudes

freq !	1	2	3	4	5	6	7	8	9
0. 25	-13. 290	-41. 210	-13. 920	-10. 570	-35. 230	-65. 060	-62. 440	-24. 210	-34. 500
0. 50	-11. 150	-37. 600	-18. 670	-12. 810	-26. 740	-61. 560	-56. 560	-19. 410	-31. 440
0. 75	-13. 570	-33. 750	-26. 700	-13. 440	-15. 630	-60. 750	-55. 900	-18. 640	-32. 830
1. 00	-18. 100	-28. 890	-14. 000	-13. 590	-26. 530	-60. 560	-58. 620	-18. 450	-40. 280
1. 25	-14. 590	-33. 450	-17. 300	-12. 860	-24. 120	-60. 890	-56. 010	-19. 010	-34. 740
1. 50	-15. 750	-35. 560	-18. 990	-13. 130	-22. 100	-64. 430	-56. 850	-20. 790	-35. 490
1. 75	-17. 310	-36. 670	-19. 960	-13. 350	-20. 141	-67. 310	-57. 410	-22. 9 30	-36. 870
2. 00	-18. 780	-37. 380	-20. 910	-12. 080	-17. 830	-68. 240	-57. 520	-25. 110	-38. 290

key: All longitudinal axis parameters

delta / F

- 8) nz /F 9) q / cmd

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONE	IGURA	TION	3 .	Pha	
CUMP	IGUNN	I I UN		T 11 G	363

1	2	3	4	5	6	7	8	9
-61. B2	-63.38	-193. 91	56. 17	~153. 85	-69. 03	-49. 58	-73. 41	-138.11
-85. 72	5. 73	-260. 82	25. 70	~319. 17	-54. 29	-305. 71	-52. 22	-22. 98
-144.06	-14. 24	-64. 04	11. 72	~210. 88	-146. 58	-5 8. 9 7	-142. 86	-126. 11
-123. 52	-104. 57	-184. 68	4. 72	-265. 84	-223. 38	-214. 04	-216. 20	-271. 01
-150. 11	-162. 19	-243. 65	-5. 53	~345. 78	-317. 82	-19. 54	-303. 09	-92. 03
-196. 80	-171. 39	-252. 57	-12.64	-24. 98	-20. 82	-114. 35	-0. 19	-156.89
-225. 14	-174. 54	-257. 67	-5. 63	-51. 63	-45. 30	-174. 44	-32. 91	-192.89
-247. 38	-177. 21	-360.08	-16. 10	-69. 01	-80. 70	-216. 47	-58. 18	-220. 52
	-85. 72 -144. 06 -123. 52 -150. 11 -196. 80 -225. 14	-61. B2	-61. 82	-61. 82	-61. 82	-61. 82	-61. 82	-61. 62 +63. 38 -193. 91 56. 17 -153. 85 -69. 03 -49. 58 -73. 41 -85. 72 5. 73 -260. 82 25. 70 -319. 17 -54. 29 -305. 71 -52. 22 -144. 06 -14. 24 -64. 04 11. 72 -210. 88 -146. 58 -58. 97 -142. 86 -123. 52 -104. 57 -184. 68 4. 72 -265. 84 -223. 38 -214. 04 -216. 20 -150. 11 -162. 19 -243. 65 -5. 53 -345. 78 -317. 82 -19. 54 -303. 09 -196. 80 -171. 39 -252. 57 -12. 64 -24. 98 -20. 82 -114. 35 -0. 19 -225. 14 -174. 54 -257. 67 -5. 63 -51. 63 -45. 30 -174. 44 -32. 91

key: All longitudinal axis parameters

1) delta / F

the data below is for easy reading into fortran programs

0. 25	-61. 82	-63. 38	-193. 91	56. 17	-153. 85	-69. 03	-49. 58	~73. 41	-138. 11
0. 50	-85. 72	5. 73	-260. B2	25. 70	-319. 17	-54. 29	-305.71	-52, 22	-22. 98
0. 75	-144.06	-14. 24	-64. 04	11. 72	-210.88	-146. 58	-58. 97	-142. 86	-126. 11
1.00	-123. 52	-104. 57	-184. 68	4. 72	-265. 84	-223. 38	-214.04	-216, 20	-271.01
1. 25	-150. 11	-162. 19	-243. 65	~5. 53	-345. 78	-317. 82	-19. 54	-303. 09	-92. 03
1.50	-196. BO	-171. 39	-252. 57	-12.64	-24. 98	-20. 82	-114.35	-0.19	-156. 89
1.75	-225. 14	-174. 54	-257. 67	-5. 63	-51. 63	-45. 30	-174. 44	-32. 91	-192. 89
2 00	-247. 38	-177. 21	-360, 08	-16. 10	-69. 01	-BO. 70	-216. 47	-58, 18	-220, 52

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 3 : Magnitudes

freq :	1	5	3	4	5	6	7	8	9
0. 25	-6. 940	-51. 600	-11. 510	-2. 110	-42. 500	-60. 640	-60. 950	-18. 270	-25. 450
0. 50	-11. 590	-50. 390	-14. 650	-5. 410	-36. 300	-67. 380	-62. 540	-25. 690	-30. 360
0. 75 i	-26. 080	-50. 740	-15. 995	-2. 460	-34. 980	-79 . 270	-77 . 060	-42. 830	-46. 200
k e	y : All	lateral-	-direction	nal axes	; paramet	ers:			
	1)	delta /	/ F						
	2)	ny /	delta	3)	p / delt	a			
		^			<u>`</u>				
	4)	ny / cp	ny	5)	p / p				
		^							
	6)	ny / cp	F	7)	p / F				
		^			<u>`</u>				
	8)	ny /	/ F	9)	p/ cmd	F			

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 3 : Phases

freq !	1	2	3	4	5	6	7	8	9
0. 251	-192. 34	-245. 02	-98. 60	-266. 85	-52. 32	-344. 21	-343. 26	-162. 79	-246. 90
0. 50	-260. 04	-323. 78	-84. 97	-222. 31	-105. 50	-86. 14	-90. 52	-251, 72	-344, 30
0. 75	-299. 88	-331. 70	-77. 60	-219. 85	-146. 28	-131. 43	-163. 76	-2 83. 39	-34. 54

key: All lateral-directional axes parameters

1) delta / F

the data below is for easy reading into fortran programs

0. 25	-192. 34	-245. 02	~98. 60	-266. 85	-52. 32	-344. 21	-343, 26	-162. 79	-246. 90
0. 50	-260. 04	~32 3 . 78	-84. <i>9</i> 7	-222, 31	-105. 50	-86. 14	-90. 52	-251. 72	-344. 30
0. 75	-299. 88	-331. 70	-77. 60	-219. 85	-146. 28	-131.43	-163. 76	-283. 39	-34. 54

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 4 : Magnitudes

freq :	1	2	3	4	5	6	7	8	9
0. 25	-14. 070	-38. 500	-12. 950	-12. 080	-28. 800	-64. 640	-55. 820	-22. 590	-27. 590
0. 50	-13. 230	-40. 540	~14. 960	-10. 990	-25. 330	-64. 760	-53. 530	-22. 950	-28. 410
0. 75	-12. 550	-38. 460	-17. 490	-11. 240	-23. 110	-62. 230	-53. 140	-20. 890	-29. 800
1.00	-13. 470	-37. 300	-18. 990	-12. 270	-21. 550	-63. 040	-54. 020	-20. 550	-31. 730
1. 25	-14.880	-36. 010	~20. 160	-12. 100	-20. 628	-62. 970	-55. 670	-20. 380	-33. 610
1. 50	-16. 510	-34. 350	-21. 380	-12. 590	-19. 281	-63. 430	-57. 160	-20. 350	-35. 600
1.75	-18. 100	-31. 910	-22. 480	-12. 940	-17. 550	-62. 940	-58. 130	-19. 930	-37. 390
2. 00 ! !	-19. 650	-27. 970	-30. 450	-13. 410	-7 . 740	-60. 500	−57. 840	-18. 380	-39. 500

key: All longitudinal axis parameters

- 1) delta / F
- 2) nz / delta 3) theta / delta cp .
- 9) nz /F 9) q /F

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 4 : Phases

freq	1	2	3	4	5	6	7	8	9
0. 25	-78. 74	-57. 56	-167. 21	49. 24	-294. 23	-87. 06	-180. 18	-87. 28	-263. 0 1
0. 50	-60. 85	28. 80	-244. 27	22. 44	-323. 19	-9 . 61	-268. 27	-6. 68	-344. 53
0. 7 5	-98. 30	14. 01	-257. 98	14. 45	-343. 75	-69. 85	-340. 03	-62. 85	-46. 84
1.00	-140. 38	7. 15	-262. 39	3. 26	-2.44	-129. 96	-45. 20	-120. 76	-100. 40
1. 25	-176. 94	2. 65	-267. 70	0. 02	-22. 19	-174. 27	-106. 83	-164. 70	-144. 95
1. 50	-205. 62	-1.64	-269. 66	-3. 99	-43. 97	-211. 25	-159. 25	-199. 58	-179. 99
1. 75	-228. 99	-7. 28	-277. 21	-8. 62	-60. 23	-244. 90	-206. 44	-229. 42	-209. 31
2.00	-244. 08	-27. 79	-27. 75	-9. 54	-1. 19	-281.41	-273. 01	-265. 53	-241. 42

key: All longitudinal axis parameters

1) delta / F

the data below is for easy reading into fortran programs

0. 25	-78. 74	-57. 56	-167. 21	49. 24	-294. 23	-87. 06	-180. 18	-87. 28	-263. 01
0. 50	-60. 85	28. 80	-244, 27	22. 44	-323. 19	-9. 61	-268. 27	-6. 68	-344, 53
0. 75	-98. 30	14. 01	-257. 98	14. 45	-343. 75	-69. 85	-340. 03	-62. 85	-46.84
1.00	-140. 38	7. 15	-262. 39	3. 26	-2. 44	-129. 96	-45. 20	-120. 76	-100.40
1. 25	-176. 94	2. 65	-267. 70	0. 02	-22. 19	-174. 27	-106. 83	-164. 70	-144. 95
1.50	-205. 62	-1.64	-269. 66	-3. 99	-43. 97	-211. 25	~159. 25	-199. 58	-179. <i>9</i> 9
1.75	-228. 99	-7. 28	-277. 21	-8. 62	-60. 23	-244. 90	-206. 44	-229. 42	-209. 31
2 00	-244.08	-27. 79	-27, 75	-9. 54	-1.19	~281 41	-273.01	-265 53	-241 42

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 4 : Magnitudes

freq : 1	2 3	4	5	6	7	8	9
0. 25 -5. 550 -5	59. 920 -12. 160	4. 790	-43. 750	-60. 680	-61. 460	-1B. 400	-25. 999
0. 50 -11. 420 -5	52. 000 -14. 900	-5. 630	-36. 880	-69. 040	-63. 200	-26. 270	-31. 050
0. 75; -26. 630 -5	52. 210 -16. 310	-5. 980	-43. 590	-84. 810	-86. 530	-44. 030	-47. 360

key: All lateral-directional axes parameters

- 1) delta / F
- 2) ny / delta 3) p / delta
 cp
- 4) ng / ng 5)
- 6) ny /F 7) p/F

the data below is for easy reading into fortran programs

data

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 4 : Phases

freq		1	2	3	4	5	6	7	В	9
0. 25	-179	. 45	-4. 35	-116. 22	-179. 07	-63. 58	-2. 87	-359. 24	-179. 93	-261. 36
0. 50	-258	. 68	-342. 05	-92. 94	-221. 48	-105. 05	-102. 22	-96. 68	-258. 56	-348. 98
0. 75 i	-301	. 21	-335. 80	-82. 84	-163. 9 <u>2</u>	-159, 34	-80. 92	-183. 39	-291.11	-34. 49
k e	y : 0	A11	lateral-d	irectiona	l axes pa	rameters				
		1)	delta /	F						
		2)	ny / d	elta	3) p /	delta				

8) ny /F 9) p /F cmd cmd

the data below is for easy reading into fortran programs

```
0. 25 -179. 45 -4. 35 -116. 22 -179. 07 -63. 58 -2. 87 -359. 24 -179. 93 -261. 36 
0. 50 -258. 68 -342. 05 -92. 94 -221. 48 -105. 05 -102. 22 -96. 68 -258. 56 -348. 98 
0. 75 -301. 21 -335. 80 -82. 84 -163. 92 -159. 34 -80. 92 -183. 39 -291. 11 -34. 49
```

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 5 : Magnitudes

freq !	1	2	3	4	5	6	7	8	9
0. 25!	-14. 260	-38. 0 90	-12. 680	-11. 640	-28. 870	-63. 970	-55. 800	-21. 760	-27. 600
0. 50	-13. 790	-41.380	-14. 280	-10. 930	-25. 570	-66. 080	-53. 640	-24. 140	-28. 490
0. 75	-12. 890	-39. 620	-16. 710	-11. 370	-23. 510	-63. 870	-53. 110	-21.720	-29. 760
1.00	-13. 510	-39. 280	-18. 190	-10. 450	-22. 220	-63. 230	-53. 920	-21. 930	-31. 440
1. 25	-14. 560	-39. 120	-19. 230	-12. 170	-21. 890	-65. 830	-55. 670	-22. 630	-33. 040
1. 50	-16. 040	-39. 080	-20. 080	-13. 220	-21. 680	-68. 320	-57. 790	-24. 060	-34. 900
1. 75	-17. 460	-39. 020	-20. 690	-11. 540	-20. 704	-68. 010	-58. 850	-25. 430	-36. 520
2. 00	-18. 710	-39. 000	-21. 300	-12. 670	-19. 376	-70. 380	-59, 390	-26. 660	-37. 940

key: All longitudinal axis parameters

- 1) delta / F
- 6) nz /F 7) q cp
- AB) nz /F 9) q /F cmd cmd

the data below is for easy reading into fortran programs

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 5 : Phases

freq ;	1	2	3	4	5	6	7	8	9
0. 25	~81. 55	-57. 26	-163. 58	47. 94	-291. 24	-90. 86	-176. 36	-89. 74	-260.14
0 . 5 0	~59. 27	38. 60	-240. 33	22. 02	-322. 59	-358. 66	-262. 20	-356. 88	-337. 54
0. 75	-92. 29	20. 60	-254. 94	7. 80	-342. 59	-63. 89	-329. 63	-55. 50	-35. 94
1.00	-133. 93	14.82	-259. 46	10. 26	-1. 51	-108. 85	-34.89	-107. 36	-88. 92
1. 25	-172. 83	11. 57	-262. 19	-2. 71	-20. 67	-163. 96	-95. 69	-151.73	-135. 47
1. 50	-203. 78	9. 31	-263. 67	-14.44	-31.69	-208. 90	-139. 14	-186. 42	-171.71
1. 75	-227. 48	8. 37	-264. 80	-15. 36	-52. 99	-234. 46	-185. 26	-212. 26	-198. 81
2. 00	-246, 53	6. 94	-266. 07	-29. 69	-72. 02	-269. 28	-224. 62	-233. 44	-221. 53

key: All longitudinal axis parameters

the data below is for easy reading into fortran programs

data									
0. 25	5 ~ 81, 55	-57. 26	-163, 58	47. 94	-291, 24	-90. 86	-176. 36	-89. 74	-260, 14
0. 50			-240. 33		-322. 59		-262. 20		
0. 75	-92. 29	20.60	-254. 94	7. 80	-342.59		-329. 63		
1.00	-133. 93	14. 82	-259. 46	10. 26	-1.51	-108.85	-34.89	-107. 36	-88. 92
1. 25	-172.83	11.57	-262. 19	-2. 71	-20. 67	-163. 96	-95. 69	-151.73	-135.47
1. 50	-203.78	9. 31	-263. 67	-14.44	-31.69	-208. 90	-139, 14	-186. 42	-171.71
1.75	-227. 48	8. 37	-264. 80	-15. 36	-5 2. 9 9	-234. 46	-185. 26	-212. 26	-198.81
2, 00	-246.53	6. 94	-266, 07	-29.69	-72, 02	-269, 28	-224 62	-233 44	-221 53

Table A.11 - Simulator Data: Frequency Responses continued

CONFIGURATION 5 : Magnitudes

freq :	1	2	3	4	5	6	7	8	9
0. 25	-6. 490	-54. 870	-13. 990	0. 050	-41. 770	-61. 300	-62. 240	-19. 100	-26. 740
0. 50	-12. 370	-51. 470	-16. 920	-8. 950	-36. 930	-72. 790	-66. 220	-28. 480	-33. 730
0. 75	-39. 460	-51. 910	-18. 970	5. 590	-35. 340	-85. 770	-93. 780	-58. 480	-62. 210

key: All lateral-directional axes parameters

1) delta / F

the data below is for easy reading into fortran programs

```
      0. 25
      -6. 490
      -54. 870
      -13. 990
      0. 050
      -41. 770
      -61. 300
      -62. 240
      -19. 100
      -26. 740

      0. 50
      -12. 370
      -51. 470
      -16. 920
      -8. 950
      -36. 930
      -72. 790
      -66. 220
      -28. 480
      -33. 730

      0. 75
      -39. 460
      -51. 910
      -18. 970
      5. 590
      -35. 340
      -85. 770
      -93. 780
      -58. 480
      -62. 210
```

Table A.11 - Simulator Data: Frequency Responses concluded

CONFIGURATION 5 : Phases

freq	1	2	3	4	5	6	7	8	9
0. 25	-236. 74	-300. 30	-59. 71	-189. 32	-70. 17	-6. 36	-6. 62	-184. 30	-267. 87
0. 50	-286. 22	-329. 91	-64. 90	-232. 36	-129. 92	-128. 48	-121.04	-268. 6 5	-4. 06
0. 75	-306. 74	-330. 99	-64. 16	-140. 25	-6. 56	-57. 97	-17. 46	-282. 70	-44. 36

key: All lateral-directional axes parameters

the data below is for easy reading into fortran programs

0. 25	-236. 74	-300, 30	-59. 71	-189. 32	-70. 17	-6. 36	-6. 62	-184. 30	-267. 87
Q. 50	-286, 22	-329, 91	-64. 90	-232. 36	-129. 92	-128. 48	-121.04	-268. 65	-4.06
0. 75	-306. 74	-330, 99	-64. 16	-140. 25	-6. 56	-57. 97	-17. 46	-282. 70	-44. 36

NASA	Report Doo	cumentation Pag	је			
Report No.	2. Go	vernment Accession No.	3. Recipient's Catalog No.			
NASA CR-4102						
4. Title and Subtitle			5. Report Date December 1987			
A Simulation Study Aircraft. Volume	6. Performing Organization Code					
7. Author(s) Martin R. Waszak, J	John B. Davidson, a	nd David K. Schmi	8. Performing Organization Report No.			
	<u> </u>		10. Work Unit No.			
9. Performing Organization Na	me and Address		505-66-01-02			
Purdue University			11. Contract or Grant No.			
School of Aeronauti	NAG-1-254					
West Lafayette, IN	13. Type of Report and Period Covered					
12. Sponsoring Agency Name a	nd Address					
National Aeronautio		stration	Contractor Report			
Langley Research Co			14. Sponsoring Agency Code			
Hampton, VA 23665-5	0440					
15. Supplementary Notes	Store William D	Grantham and Jarr	eall R Filiatt			
NASA Technical Moni		earch Center	eii k. Eiiiott			
Volume One—Experim	ment, Results and A	nalysis				
flexibility on the simulation was perfuenced which we have results include contained and so allow a varitime histories indicates, degraded have	dynamic charactering formed using the NA e obtained as part applete response datiety of analyses. It increase andling qualities, se results, further	stics of a generi SA Langley VMS si of this research a and subjective The subjective rad flexibility can and changes in the	sees the effects of structural c family of aircraft. The mulation facility. The project. The simulation pilot ratings and comments atings and analysis of the lead to increased tracking he frequency content of the licantly affected by the visual			
17. Key Words (Suggested by	Authora(a))	18. Distribution St	atement			
Flexible Aircraft	Taranta(a))		led - Unlimited			
Flight Dynamics		Subject Ca				
Flying Qualities		Janjece da				
Ground-Based Simul	lation					
19. Security Classif. (of this rep Unclassified	port) 20. Se	curity Classif.(of this page classified	21. No. of Pages 22. Price			