请扫码登记

无线网名称: BUAA_SME3, 无线网密码: sme41sme

扫码登记

课程微信群

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年10月26日

直流和频率特性测量与分析

- 直流特性实验内容
 - 1、二极管的直流特性测量与分析
 - 2、双极型晶体管的直流特性测量与分析
 - 3、场效应晶体管的直流特性测量与分析

■ 频率特性实验内容

- 1、双极型晶体管的频率特性测量与分析
- 2、场效应晶体管的频率特性测量与分析

回顾

实验一、二极管直流特性

■ 注意事项

- 1. 请测量发光二极管(小心烫手)
- 2. 反向击穿电压大于30V

实验二、双极型晶体管输入特性

注意事项:

- V_{CE}=0V时CE端不需要连接电压源, 只需用导线连接
- 2. V_{CE}太大会烧毁器件(小心烫手), 建议*V_{CE}*=0.5V
- 3. 反向击穿电压约为-12.5V

回顾

■ 输出特性曲线

1.调节*E*_B使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*E*c使

E_C=0.1-1V以及1-10V

 $3.测量 V_{CE} 和 I_C 并画图$

电压源 产生电压*E_B和E_C*

手持式万用表1测量电压 V_{CE}

手持式万用表2 测量电流 I_c

台式万用表测量电流/₈

注意事项

1952 1952

■ 扎手持式万用表探针会临时引入万用表内阻,建议采用鳄鱼夹

■ 面包板使用方便但有时会接触不良,尽量减少不必要的接线

注意事项

■ 面包板的左右两边是不导通的

- 有的器件已损坏,在正式测试数据前需要检查器件好坏
 - □ 例如,在测量频率特性前,先测量直流特性,确保工作在放大区
 - 口 步步为营、稳打稳扎
- 态度端正、进步明显、再接再厉

电子元器件: 三极管

■ 三极管的功能:放大和开关

- ightharpoonup 截止区: ${
 m {\it i}}_{
 m {\it B}}$ =0时, ${
 m {\it I}}_{
 m {\it C}}$ 很小,相当于开关断开
- \triangleright 放大区: 当 I_B >0时, I_B 轻微的变化 会在 I_C 上以几十甚至百多倍放大表 现出来,表现出放大功能
- \triangleright 饱和区: 当 I_B 很大时, I_C 也很大, I_C 也很大, I_C 不随 I_B 的增大而增大,三极管 失去放大功能,表现为开关导通。

➢ 三极管是一种控制电流的半导体器件,其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

电子元器件: 三极管

■ 三极管的功能:放大和开关

- 三极管是一种控制电流的半导体器件,其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
- ▶ 将"交流小信号"放大

双极型晶体管的直流特性测量与分析

■ 输出特性曲线

□ 基本测试原理电路如右图所示,测试时用逐点测试的方法把一条条曲线

描绘出来。

双极型晶体管的直流特性测量与分析

C9018

- 输出特性曲线
- 1.调节*E_B*使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*E*c使

E_C=0.1-1V以及1-10V

 $3.测量 V_{CE} 和 I_C 并画图$

电压源 产生电压*E_R和E_C*

手持式万用表1测量电压 V_{CE}

手持式万用表2 测量电流 I_c

台式万用表 测量电流/_B

步骤1:确保工作在放大区

- 直流输出特性测量
- 1.调节*E_B*使*I_B*=60µA
- 2.调节*E*c使

V_{CF}=0.1-1V以及1-20V

 $3.测量 V_{CE}和 I_C$ 并画图

4.思考: 频率特性测量时

 E_{C} 应设置为多少伏?

电压源 产生电压*E_B和E_C*

C9018

手持式万用表1 测量电压*V_{CF}*

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

步骤2: 放大特性测量

■ 放大特性测量

- 1.使 I_B =60 μ A, E_C =15V
- 2.任意波形发生器输出 1KHz、1V信号v_b
- 3.用示波器分别测量 R1和R2的电压波形
- 4.计算电流放大系数 i_c/i_b

任意波形发生器 产生交流信号 v_n

数字示波器 测量R1和R2电压波形

课后思考

■ 课后思考

- 1. 电阻Rc的直流分压如何随 E_c 变化?
- 2. 当交流输入信号 ٧, 过大时会出现什么现象? 为什么?

步骤1:确保工作在放大区

- 直流输出特性测量
- 1.调节*E_B*使*I_B*=60µA
- 2.调节*E*c使

V_{CF}=0.1-1V以及1-20V

 $3.测量 V_{CE}和 I_C$ 并画图

4.思考:频率特性测量时

 E_{C} 应设置为多少伏?

电压源 产生电压*E_B和E_C*

C9018

手持式万用表1 测量电压*V_{CF}*

手持式万用表2 测量电流 I_c

台式万用表 测量电流/₈

步骤2: 放大特性测量

■ 放大特性测量

- 1.使 I_B =60 μ A, E_C =15V
- 2.任意波形发生器输出 1KHz、1V信号v_b
- 3.用示波器分别测量 R1和R2的电压波形
- 4.计算电流放大系数i_c/i_b

任意波形发生器 产生交流信号 v_n

数字示波器 测量R1和R2电压波形