A Local Search Algorithm for Cubic Clustering

Hans Harder

TU Dresden

hans.harder@mailbox.tu-dresden.de

Overview

- 1 Problem
- 2 Data Structure
- 3 Cost Function
- 4 Algorithms
- 5 Implementation and Scenario
- 6 Results

Notation / Sets

k-ary subsets of V

$$\binom{V}{k} = \{\{v_1, \dots, v_k\} \subseteq V : v_1, \dots, v_k \text{ pairwise distinct}\}$$

- \blacksquare X_V is the set of partitions of V
- for $\Pi \in X_V$ and $v \in V$, then $[v]_\Pi$ denotes the set in Π that contains v (e.g. for $\Pi = \{\{1,2\},\{3\}\}$ then $[1]_\Pi = \{1,2\}$)

Notation / Random Variables

- random variables $\mathbf{x}, \mathbf{y}, \dots$ and distributions $\mathcal{Q}, \mathcal{U}, \dots$
- lacktriangle random variable "distributed as" $oldsymbol{x} \sim \mathcal{Q}$
- uniform distribution over a finite set $A: \mathcal{U}(A)$
- domain of a random variable \mathbf{x} : $dom(\mathbf{x})$ (e.g. $dom(\mathbf{x}) = \mathbb{R}$)
- expected value for $\mathbf{x} \sim \mathcal{Q}$ and $f : \text{dom}(\mathbf{x}) \rightarrow \mathbb{R}$ and $\text{dom}(\mathbf{x})$ finite:

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{Q}}[f(\mathbf{x})] = \sum_{x \in \text{dom}(\mathbf{x})} \mathcal{Q}(x)f(x)$$

Problem Statement

Input: finite set V, functions $c, c': {V \choose 3} \to \mathbb{R}$ **Output:** partition Π^* of V such that

$$\Pi^* = \arg\min_{\Pi \in X_V} \sum_{T \in \binom{V}{3}} \ell(T, \Pi)$$

where

$$\ell(\{u,v,w\},\Pi) = \begin{cases} c'(\{u,v,w\}) & [u]_\Pi = [v]_\Pi = [w]_\Pi \\ c(\{u,v,w\}) & [u]_\Pi,[v]_\Pi,[w]_\Pi \text{ pairwise distinct} \\ 0 & \text{otherwise} \end{cases}$$

Problem Statement

Input: finite set V, functions $c, c': {V \choose 3} \to \mathbb{R}$ **Output:** partition Π^* of V such that

$$\Pi^* = \operatorname*{arg\,min}_{\Pi \in \mathcal{X}_V} \sum\nolimits_{T \in \binom{V}{3}} \ell(T,\Pi)$$

where

$$\ell(\{u,v,w\},\Pi) = \begin{cases} c'(\{u,v,w\}) & [u]_\Pi = [v]_\Pi = [w]_\Pi \\ c(\{u,v,w\}) & [u]_\Pi,[v]_\Pi,[w]_\Pi \text{ pairwise distinct} \\ 0 & \text{otherwise} \end{cases}$$

Intuition

- ullet c' adds penalty/reward when u, v, w are in the same set
- ullet c adds penalty/reward when u, v, w are in different sets

Local Search

Local Search

Objectives

- defining a data structure for representing partitions
- defining a neighbourhood for every partition
- defining a search algorithm (e.g. hill climbing)

¹if only the reduced cost is computed

Local Search

Objectives

- defining a data structure for representing partitions
- defining a neighbourhood for every partition
- defining a search algorithm (e.g. hill climbing)

Difficulties

- if V is large, computing the costs in $O(|V|^3)$ is problematic
- even runtimes in $O(|V|^2)$ are prohibitive in this case¹
- the neighbourhood for a partition might become large as well

¹if only the reduced cost is computed

Objective

There are many local search algorithms that work equally well. **Therefore:** focus on shared difficulties.

- references focus on smared difficulties.
- efficient representation (memory-wise) of partitions
- efficient transformations (from partitions to their neighbours)
- efficient enumeration of the neighbourhood

and for large V's

- efficient sampling of neighbours from the neighbourhood
- approximation of the reduced costs

Basic Idea

Indexing

- represent a partition by a mapping $\varphi: V \to \{1, ..., n\}$ where |V| = n (this can be implemented by an array of length |V|)
- the equivalence kernel of φ is the equivalence relation \sim_{φ} where $u \sim_{\varphi} v$ iff $\varphi(u) = \varphi(v)$.
- $\bullet \sim_{\varphi}$ yields a partition $\Pi(\varphi)$ of V.
- we say that the indexing φ induces $\Pi(\varphi)$.

²see, e.g. http://en.wikipedia.org/wiki/equivalence_relation.

Basic Idea

Indexing

- represent a partition by a mapping $\varphi: V \to \{1, ..., n\}$ where |V| = n (this can be implemented by an array of length |V|)
- the equivalence kernel of φ is the equivalence relation \sim_{φ} where $u \sim_{\varphi} v$ iff $\varphi(u) = \varphi(v)$.
- $\bullet \sim_{\varphi}$ yields a partition $\Pi(\varphi)$ of V.
- we say that the indexing φ induces $\Pi(\varphi)$.

Pro: memory linear in |V|, and changing the assigned index of a $v \in V$ can be done in O(1).

Con: there are multiple ways of representing the same partition through such an indexing.

²see, e.g. http://en.wikipedia.org/wiki/equivalence_relation.

Example Indexing

 φ and ψ are different, but yield the same partition.

Neighbourhood of an Indexing

we define the following transformation:

$$\varphi_{v\to k}(u) = \begin{cases} k & u=v\\ \varphi(v) & u\neq v \end{cases}$$

which "moves" an element v to a (new) index k.

The neighbourhood of a partition $\Pi(\varphi)$ is defined as the set

$$\mathit{Ne}(\Pi(\varphi)) = \{\Pi(\varphi_{w \to k}) : w \in V, 1 \le k \le n, \Pi(\varphi_{w \to k}) \ne \Pi(\varphi)\}.$$

The neighbourhood of a partition $\Pi(\varphi)$ is defined as the set

$$Ne(\Pi(\varphi)) = {\Pi(\varphi_{w \to k}) : w \in V, 1 \le k \le n, \Pi(\varphi_{w \to k}) \ne \Pi(\varphi)}.$$

Open Questions. We want to find an efficient enumeration of possible "moves" $(w_1, k_1), \ldots, (w_m, k_m) \in V \times \{1, \ldots, n\}$ such that

- we do not enumerate "too much", i.e. $\Pi(\varphi_{w_1 \to k_1}), \ldots, \Pi(\varphi_{w_m \to k_m})$ are all pairwise distinct,
- all neighbours occur somewhere in this enumeration, i.e. if $\Pi \in Ne(\Pi(\varphi))$, then $\Pi = \Pi(\varphi_{w_i \to k_i})$ for a (w_i, k_i) ,
- we do not enumerate $\Pi(\varphi)$ itself, i.e. $\Pi(\varphi_{w_i \to k_i}) \neq \Pi(\varphi)$ for all (w_i, k_i) .

Algorithm 1: MOVE-ENUMERATION

```
Input: Set of vertices V with indexing \varphi
   Result: Sequence of moves (w_1, k_1), \dots, (w_m, k_m)
 1 Let < be some linear order on V
 2 Let \mathcal{N} := \{1, \ldots, n\} \setminus \operatorname{image}(\varphi)
 3 forall vertices w \in V do
        forall \varphi(v) \in \text{image}(\varphi) \setminus \{\varphi(w)\}\ do
             if [w]_{\omega} = \{w, u, \dots\} or [v]_{\omega} = \{v, s, \dots\} then
 5
                 enumerate (w, \varphi(v))
 6
             else if [w]_{\varphi} = \{w\} and [v]_{\varphi} = \{v\} and w < v then
 7
                  enumerate (w, \varphi(v))
 8
        if [w]_{\varphi} = \{w, u, v, \dots\} or ([w]_{\varphi} = \{w, u\} \text{ and } w < u) then
 9
             Let k \in \mathcal{N}
10
             enumerate (w, k)
11
```

Algorithm MOVE-ENUMERATION has indeed the wanted properties:

Pairwise Distinctiveness

$$\Pi(\varphi_{w_i \to k_i}) \neq \Pi(\varphi_{w_i \to k_i})$$
 for all $1 \leq i < j \leq n$.

Completness

for all $\Pi \in Ne(\Pi(\varphi))$, there is $1 \le i \le m$ such that $\Pi = \Pi(\varphi_{w_i \to k_i})$.

No self-neighbour

$$\Pi(\varphi) \neq \Pi(\varphi_{w_i \to k_i})$$
 for all $1 \le i \le m$.

(proofs omitted, see report at https://github.com/graps1/mlcv-local-search/blob/master/tex/main.pdf).

Randomized Neighbourhood Enumeration

- there are too many neighbours: a complete sequence $(w_1, k_1), \ldots, (w_m, k_m)$ via algorithm MOVE-ENUMERATION is in $O(|V| \cdot |\Pi(\varphi)|) = O(|V|^2)$.
- we want to select a small part of $(w_1, k_1), \ldots, (w_m, k_m)$ in order to avoid quadratically many neighbours
- how do we do this?

Randomized Neighbourhood Enumeration

- there are too many neighbours: a complete sequence $(w_1, k_1), \ldots, (w_m, k_m)$ via algorithm MOVE-ENUMERATION is in $O(|V| \cdot |\Pi(\varphi)|) = O(|V|^2)$.
- we want to select a small part of $(w_1, k_1), \ldots, (w_m, k_m)$ in order to avoid quadratically many neighbours
- how do we do this?
 - construct r.v. $(\mathbf{w}, \mathbf{k}) \sim \mathcal{U}(\{(w_1, k_1), \dots, (w_m, k_m)\})$
 - split sampling into two parts: $\mathbf{w} \sim \mathcal{Q}(\mathbf{w})$, then $\mathbf{k} \sim \mathcal{P}(\mathbf{k}|\mathbf{w})$ such that $\mathcal{U}(\mathbf{w}, \mathbf{k}) = \mathcal{Q}(\mathbf{w})\mathcal{P}(\mathbf{k}|\mathbf{w})$.
 - sampling from $Q(\mathbf{w})$ and $P(\mathbf{k}|\mathbf{w})$ can be done efficiently (see report for more details).
 - this yields an algorithm RANDOM-MOVE-ENUMERATION that samples N neighbours in $O(|V| \cdot N)$.

Computing the Costs

recall: we want to find a partition Π^* such that

$$\Pi^* = \mathop{\mathsf{arg\,min}}_{\Pi \in \mathcal{X}_V} \sum_{\mathcal{T} \in \binom{V}{3}} \ell(\mathcal{T}, \Pi).$$

Computing the Costs

recall: we want to find a partition Π^* such that

$$\Pi^* = \arg\min_{\Pi \in X_V} \sum_{T \in \binom{V}{3}} \ell(T, \Pi).$$

we can rewrite this as an expectation:

$$\begin{split} \Pi^* &= \underset{\Pi \in X_V}{\text{arg min}} \sum_{T \in \binom{V}{3}} \ell(T, \Pi) \\ &= \underset{\Pi \in X_V}{\text{arg min}} \frac{1}{|\binom{V}{3}|} \sum_{T \in \binom{V}{3}} \ell(T, \Pi) \\ &= \underset{\Pi \in X_V}{\text{arg min}} \mathbb{E}_{\mathbf{T} \sim \mathcal{U}\left(\binom{V}{3}\right)} \left[\ell(\mathbf{T}, \Pi)\right] \end{split}$$

Computing the Costs

recall: we want to find a partition Π^* such that

$$\Pi^* = \arg\min_{\Pi \in X_V} \sum_{T \in \binom{V}{3}} \ell(T, \Pi).$$

we can rewrite this as an expectation:

$$\begin{split} \Pi^* &= \underset{\Pi \in X_V}{\text{arg min}} \sum_{T \in \binom{V}{3}} \ell(T, \Pi) \\ &= \underset{\Pi \in X_V}{\text{arg min}} \frac{1}{|\binom{V}{3}|} \sum_{T \in \binom{V}{3}} \ell(T, \Pi) \\ &= \underset{\Pi \in X_V}{\text{arg min}} \, \mathbb{E}_{\mathbf{T} \sim \mathcal{U}\left(\binom{V}{3}\right)} \left[\ell(\mathbf{T}, \Pi)\right] \end{split}$$

we can approximate the costs by computing the sample mean!

Computing the Reduced Costs

if we want to compute how much a neighbour $\Pi(\varphi_{v\to k})$ improves the value of a given $\Pi(\varphi)$, we obtain:

$$\begin{split} J(\Pi(\varphi),\Pi(\varphi_{v\to k})) &= \mathbb{E}_{\mathsf{T}}\left[\ell(\mathsf{T},\Pi(\varphi))\right] - \mathbb{E}_{\mathsf{T}}\left[\ell(\mathsf{T},\Pi(\varphi_{v\to k}))\right] \\ &= \mathbb{E}_{\mathsf{T}}\left[\ell(\mathsf{T},\Pi(\varphi)) - \ell(\mathsf{T},\Pi(\varphi_{v\to k}))\right] \\ &= \mathbb{E}_{\mathsf{T}}\left[\delta(\mathsf{T},\Pi(\varphi),\Pi(\varphi_{v\to k}))\right] \\ &= \mathbb{E}_{\{\mathsf{u},\mathsf{w}\}\sim\mathcal{U}(\binom{V\setminus \{v\}}{2})\}}\left[\delta(\{\mathsf{u},v,\mathsf{w}\},\Pi(\varphi),\Pi(\varphi_{v\to k}))\right] \end{split}$$

since $\ell(T, \Pi(\varphi)) = \ell(T, \Pi(\varphi_{v \to k}))$ whenever $v \notin T$. \to computing the reduced costs J is in $O(|V|^2)$.

Greedy Search

```
Algorithm 2: GREEDY-SEARCH
Input: Set of vertices V with indexing \varphi.
Result: Better indexing \psi
1 while not (stopping\ criterion) do
2 (v_1, k_1), \dots, (v_m, k_m) := \text{MOVE-ENUMERATION}(V, \varphi)
3 (v^*, k^*) := \arg\max_{(v_i, k_i)} J(\Pi(\varphi), \Pi(\varphi_{v_i \to k_i}))
4 if J(\Pi(\varphi), \Pi(\varphi_{v^* \to k^*})) \le 0 then
5 | \text{return } \varphi |
6 \varphi := \varphi_{v^* \to k^*}
7 return \varphi
```

Complexity: line 2 returns $O(|V|^2)$ neighbours, and computing the reduced costs for each of these neighbours in line 3 is in $O(|V|^4)$. The remainder can be done in O(1). The overall complexity per iteration is therefore $O(|V|^4)$.

Greedy Search with Sampling

```
Algorithm 3: GREEDY-SEARCH WITH SAMPLING Input: Set of vertices V with indexing \varphi, neighbourhood sample size N, objective sample size M

Result: Better indexing \psi

1 while not (stopping\ critierion) do

2 (v_1, k_1), \ldots, (v_N, k_N) := \text{RANDOM-MOVE-ENUMERATION}(V, \varphi, N)

3 Sample \{u_{i,1}, w_{i,1}\}, \ldots, \{u_{i,M}, w_{i,M}\}\ \text{from}\ \binom{V \setminus \{v_i\}}{2}\ \text{for}\ 1 \le i \le N

4 (v^*, k^*) := \arg\max_{\{v_i, v_i\}} \frac{1}{M} \sum_{j=1}^M \delta(\{u_{i,j}, w_{i,j}, v_i\}, \Pi(\varphi_i), \Pi(\varphi_{v_i \to k_i}))

5 if \varphi_{v^* \to k^*} is an improvement over \varphi then

6 \varphi := \varphi_{v^* \to k^*}
```

Complexity: line 2 is in $O(|V| \cdot N)$, line 3 and 4 are both in $O(M \cdot N)$, and line 5 and 6 are doable in constant time. This yields a complexity of $O(N \cdot (M + |V|))$ per iteration.

given: set of points in \mathbb{R}^3 that are sampled with noise from 2-5 random planes going through the origin (without knowing from which plane a point stems).

goal: figure out original set of planes by partitioning the points.

given: set of points in \mathbb{R}^3 that are sampled with noise from 2-5 random planes going through the origin (without knowing from which plane a point stems).

goal: figure out original set of planes by partitioning the points. **example:**

implemented cost-structure: define c to be 0 everywhere and define

$$c'\big(\{u,v,w\}\big) = \operatorname{distance}\big(\operatorname{plane}\big(\{u,v,w\}\big),(0,0,0)\big) - \tau$$

where τ is some small positive constant.

implemented cost-structure: define c to be 0 everywhere and define

$$c'(\{u,v,w\}) = \operatorname{distance}(\operatorname{plane}(\{u,v,w\}),(0,0,0)) - \tau$$

where τ is some small positive constant. This yields the following intuition:

- if the distance between the plane formed by $\{u, v, w\}$ to the origin is larger than τ , u, v, w probably don't belong to the same partition (plane) \rightarrow positive costs.
- $lue{}$ if the distance is smaller respectively, they probably belong to the same partition (plane) ightarrow negative costs.

Implementation

- implemented in Python 3,
- distances are computed in batches using numpy,
- visualization using matplotlib,
- processing of experimental results using pandas

(b) Dataset 2, 3×150 points (|V| = 450)

(c) Dataset 3, 4×250 points (|V| = 1000)

(d) Dataset 4, 5×300 points (|V| = 1500)

Comparisions:

- greedy search vs. greedy search with sampling
- greedy search with sampling on growing problem size

run	dataset	Ν	Μ	or [s]	iter	or/iter [s]
1-S-S	1	40	5000	16.68	439	0.038
1-E-S	1	_	5000	949.42	375	2.532
1-S-E	1	40	_	59.18	461	0.128
1-E-E	1 1 1 1	_	_	949.42 59.18 473.91	143	3.314

run	dataset	Ν	Μ	or [s]	iter	or/iter [s]
2-S-S	2	50	5000	47.41	988	0.048
3-S-S	3	50	10000	321.57	4532	0.071
4-S-S	4	50	15000	1078.05	10000	0.108

Conclusion.

- investigation of a fitting data structure:
 - \blacksquare can be stored in O(|V|)
 - lacktriangle elements can be moved from one index to another in O(1)
 - comparing the equivalence of two indexings φ , ψ (i.e. whether their induced partitions are the same) is doable in $O(|V|)^3$
- proposed algorithms for enumerating the neighbourhood (randomly)
- viewing (reduced-)costs as expected values allowed for efficient approximations

³see my report for more details.

Conclusion.

- investigation of a fitting data structure:
 - \blacksquare can be stored in O(|V|)
 - \blacksquare elements can be moved from one index to another in O(1)
 - comparing the equivalence of two indexings φ , ψ (i.e. whether their induced partitions are the same) is doable in $O(|V|)^3$
- proposed algorithms for enumerating the neighbourhood (randomly)
- viewing (reduced-)costs as expected values allowed for efficient approximations

Further Research.

- extension to other local search algorithms (e.g. tabu-search, simulated annealing)
- investigate scaleability (e.g. through a more efficient implementation in another programming language)
- investigate how something similar could be carried out to other data structures, e.g. the disjoint-set data structure.

³see my report for more details.