Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

transition
$$=(s,a,r,s')$$

$$\operatorname{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha$$
 [difference]

 $w_i \leftarrow w_i + \alpha \text{ [difference] } f_i(s, a)$

Approximate Q's

- Intuitive interpretation:
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

$\left\langle \begin{array}{c} \mathbf{r} \end{array} \right\rangle$

Q-learning with Linear Approximation

```
Algorithm 4: Q-learning with linear approximation.
```

```
Initialize q-value function Q with random weights w: Q(s, a; w) = \sum_{m} w_m f_m(s, a);
                                                                      2 for episode = 1 \rightarrow M do
```

Get initial state s_0 ;

for $t = 1 \rightarrow T$ do

With prob. ϵ , select a random action a_t ;

With prob. $1 - \epsilon$, select $a_t \in \operatorname{argmax}_a Q(s_t, a; w)$;

Execute selected action a_t and observe reward r_t and next state s_{t+1} ;

if episode terminates at step t+1otherwise $(r_t + \gamma \max_{a'} Q(s_{t+1}, a'; w))$ Set target $y_t = \begin{cases} r_t \\ r_t \end{cases}$

Perform a gradient descent step to update $w: w_m \leftarrow w_m + \alpha [y_t - Q(s_t, a_t; w)] f_m(s, a);$