

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina) jon.montalban@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Sarrera
- 2. Transistore motak
- 3. Transistore bipolarra (BJT)
- 4. Eremu efektuzko transistorea (FET)

1. SARRERA

- Bi PN juntura
- Triterminala
- o Aktiboa → Elikatu behar da
- Tentsioz edo korrontez kontrolatua
- Funtzionamendu egoera desberdinak

2. Transistore motak

o Transistore bipolarra (BJT)

- Elektroien eta hutsuneen mugimendua
- Kontrol magnitudea: korrontea
- Bi mota: PNP edo NPN

o Transistore unipolarra (FET)

- Eremu efektuzko transistoreak
- Elektroien edo hutsuneen mugimendua
- Kontrol magnitudea: tentsioa
- Bi mota:
 - JFET
 - MOSFET (N kanalekoa edo P kanalekoa)

o Juntura bakarreko transistoreak (UJT)

Oso konplexua → Ez ditugu ikusiko

o Kontrol magnitudea: Korrontea

• Bi PN juntura

PNP transistore bipolarra

NPN transistore bipolarra

o Magnitudeak:

- Terminaletako korronteak I_C, I_B, I_E
- Potentzial diferentziak V_{BC}, V_{BE}, V_{CE}
- 2 portaera ekuazio
- Hitzarmena

1.
$$I_E = I_B + I_C$$

$$2. \ \mathbf{V}_{BC} = V_{BE} - V_{CE}$$

3.
$$V_{BB} = R_B I_B + V_{BE}$$

3.
$$V_{BB} = R_B I_B + V_{BE}$$
 4. $V_{CC} = R_C I_C + V_{CE}$

o Ezaugarri kurbak:

5.
$$I_C = f(V_{CE}, I_B)$$

Irteera zirkuitua

6.
$$I_B = g(V_{BE}, V_{CE})$$

Sarrera zirkuitua

o Funtzionamendu egoerak:

- 2 PN juntura
 - o 2²=4 funtzionamendu egoerak

Egoera	Etendura	Alderantzizko gune aktiboa	Gune aktiboa	Asetasuna
BE juntura	A.P.	A.P.	Z.P.	Z.P.
BC juntura	A.P.	Z.P.	A.P.	Z.P.

• Alderantzizko gune aktiboa ez da asko erabiltzen

o Funtzionamendu egoerak (NPN):

Modeloa zirkuituan

Ekuazioak Baldintza

$$\begin{vmatrix} I_B = 0 \\ I_C = 0 \end{vmatrix} V_{BE} \le 0,7 \text{ V}$$

$$\begin{vmatrix} V_{BE} = 0.7 \text{ V} \\ I_C = \beta I_B \end{vmatrix} V_{CE} \ge 0.2 \text{ V}$$

asetasunean:
$$B \xrightarrow{I_{\overline{B}}} 0,2 \text{ V}$$

$$V_{BE} = 0.7 \text{ V} \quad \frac{I_C}{I_B} \le \beta$$

$$V_{CE} = 0.2 \text{ V} \quad \frac{I_C}{I_B} \le \beta$$

1.
$$I_E = I_B + I_C$$

$$2. \ \mathbf{V}_{BC} = V_{BE} - V_{CE}$$

$$3. \ \mathbf{V}_{BB} = R_B I_B + V_{BE}$$

$$4. \ \mathbf{V}_{CC} = R_C I_C + V_{CE}$$

$$5. I_C = f(V_{CE}, I_B)$$

$$6. I_B = g(V_{BE}, V_{CE})$$

o Zenbakizko ebazpidea:

- 1. Idatzi zirkuituari dagozkion ekuazioak
- 2. Idatzi transistorearen portaera-ekuazioak
- 3. Hipotesia egin: transistorearen egoera funtzionamendua suposatu
- 4. Dagokion hurbilketaz ordezkatu
- 5. Zirkuitua ebatzi
- 6. Hipotesia zuzena den egiaztatu
 - Zuzena ez bada 3. puntura bueltatu eta beste hipotesi bat egin
- 7. Zirkuituaren emaitza eman (polarizazio puntua)

o Kontrol magnitudea: Potentzial diferentzia

- Eremu elektrikoak funtzionamenduan eragina dauka
- Korrontea: bakarrik elektroien edo zuloen mugimendua, motaren arabera
- JFET eta MOSFET motakoak

o JFET - Ikurrak:

N kanaleko JFET transistorea

Ikurrak:

P kanaleko JFET transistorea

N kanaleko JFET transistorea

Atea iturritik gertu

P kanaleko JFET transistorea

o MOSFET - Motak:

• Ugaltze MOSFET: D eta S artean ez dago biderik

• Urritze MOSFET: D eta S artean bidea dago

B: Oinarria/Euskarria ez da terminal bat. Transistorea eraikitzeko erabiltzen da

4. Eremu efektuzko transistorea (FET)

o MOSFET - Motak (Beste Ikur batzuekin):

• Ugaltze MOSFET:

• Urritze MOSFET:

4. Eremu efektuzko transistorea (FET)

o MOSFET – Magnitudeak:

- Hiru magnitude portaera analizatzeko $(I_D, V_{DS} \text{ eta } V_{GS})$
- $I_G=0$ beti
- Polarizazioa egokia

o Ugaltze → Kanala sortu S eta D artean

o Urritze → S eta D arteko kanala estutu

4. Eremu efektuzko transistorea (FET)

N kanaleko ugaltze MOSFETa

- Operazio puntua: $Q(I_{DQ}, V_{DSQ}, V_{GSQ})$
- I_D , bi tentsioen funtzio: I_D = $f(V_{GS}, V_{DS})$
- Esperimentalki lortzen da
- 1. kurba: V_{DS} mantendu, I_{D} = $f(V_{GS})$ (asetasunean)
- 2. kurba: V_{GS} balio ezberdinentzat, I_D = $f(V_{DS})$

$$I_{D} = I_{Don} \cdot \left(\frac{V_{GS} - V_{T}}{V_{GSon} - V_{T}}\right)^{2}$$

o N kanaleko ugaltze MOSFETa -

Egoera	Baldintzak	Ekuazioak	Eredua
Etendura	$V_{GSQ} \leq V_T$	$I_D = 0$	G I_S
Gune ohmikoa	$\begin{aligned} V_{GSQ} &\geq V_T \\ V_{DSQ} &\leq V_{DSsat} \end{aligned}$	$I_D = \frac{V_{DSS}}{R_{DS}}$	$ \begin{array}{c} $
Asetasuna	$\begin{aligned} V_{GSQ} &\geq V_T \\ V_{DSQ} &\geq V_{DSsat} \end{aligned}$	$I_{D} = K \cdot I_{Don}$ $K = \left(\frac{V_{GS} - V_{T}}{V_{GSon} - V_{T}}\right)^{2}$	$G \xrightarrow{I} D$ S

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina)

jon.montalban@ehu.eus