Package 'r2redux'

June 18, 2022

Title R2 Statistic
Version 1.0.8
Description R2 statistic for significance test. Variance and covariance of R2 values used to assess the 95% CI and p-value of the R2 difference.
License GPL (>=3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
NeedsCompilation no
Depends R (>= 2.10)
LazyData true
Authors Hong Lee and Moksedul Momin
Maintainers Moksedul Momin
R topics documented:
cc_trf
dat1
dat2
olkin12_1
olkin12_13
olkin12_3
olkin12_34
olkin1_2
olkin_beta1_2
olkin_beta_inf
r2_diff
r2_enrich_beta
r2_var
Index 1

cc_trf

cc_trf cc_trf function

Description

This function transforms the predictive ability (R2) and its standard error (se) between the observed scale and liability scale

Usage

```
cc_trf(R2, se, K, P)
```

Arguments

R2	R2 or coefficient of determination on the observed or liability scale
se	Standard error of R2
K	Population prevalence
P	The ratio of cases in the study samples

Value

This function will transform the R2 and its s.e between observed scale and liability scale.Output from the command is the lists of outcomes.

R21	Transformed R2 on the liability scale
sel	Transformed se on the liability scale
R20	Transformed R2 on the observed scale
se0	Transformed se on the observed scale

References

Lee, S. H., Goddard, M. E., Wray, N. R., and Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genetic epidemiology, (2012). 36(3): p. 214-224.

```
#To get the transformed R2
output=cc_trf(0.06, 0.002, 0.05, 0.05)
output

#output$R21 (transformed R2 on the liability scale)
#0.2679337

#output$sel (transformed se on the liability scale)
#0.008931123

#output$R20 (transformed R2 on the observed scale)
#0.01343616

#output$se0 (transformed se on the observed scale)
#0.000447872
```

dat1 3

dat1

Phenotypes and 10 sets of PGSs

Description

A dataset containing phenotypes and multiple PGSs estimated from 10 sets of SNPs according to GWAS p-value thresholds

Usage

dat1

Format

A data frame with 1000 rows and 11 variables:

- V1 Phenotype, value
- V2 PGS1, for p value threshold <=1
- **V3** PGS2, for p value threshold <=0.5
- V4 PGS3, for p value threshold <=0.4
- V5 PGS4, for p value threshold <=0.3
- **V6** PGS5, for p value threshold <=0.2
- V7 PGS6, for p value threshold <=0.1
- **V8** PGS7, for p value threshold <=0.05
- **V9** PGS8, for p value threshold <=0.01
- V10 PGS9, for p value threshold <=0.001
- V11 PGS10, for p value threshold <=0.0001

dat2

Phenotypes and 2 sets of PGSs

Description

A dataset containing phenotypes and 2 sets of PGSs estimated from 2 sets of SNPs from regulatroy and non-regulatory genomic regions

Usage

dat2

Format

A data frame with 1000 rows and 3 variables:

- V1 Phenotype
- V2 PGS1, regulatory region
- V3 PGS2, non-regulatory region

4 olkin12_13

olkin12_1

olkin12_1 function

Description

olkin12_1 function

Usage

```
olkin12_1(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin12_13

olkin12_13 function

Description

olkin12_13 function

Usage

```
olkin12_13(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin12_3 5

olkin12_3

olkin12_3 function

Description

olkin12_3 function

Usage

```
olkin12_3(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

olkin12_34

olkin12_34 function

Description

olkin12_34 function

Usage

```
olkin12_34(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

6 olkin_beta1_2

olkin1_2	olkin1_2 function
----------	-------------------

Description

olkin1_2 function

Usage

```
olkin1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

This function will be used as source code

```
olkin_beta1_2 olkin_beta1_2 function
```

Description

This function derives Information matrix for beta 1^2 and beta 2^2 where beta 1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 beta 1 + x2 beta 2 + e, where y, x1 and x2 are column-standardised, (i.e. in the context of correlation coefficients, see Olkin and Finn 1995).

Usage

```
olkin_beta1_2(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

Value

var1_2

This function will give information (variance-covariance) matrix of beta1^2 and beta2^2. To get information (variance-covariance) matrix of beta1^2 and beta2^2. Where beta1 and beta2 are regression coefficients from a multiple regression model. The outputs are listed as follows.

C	1 6	
info	2x2 information (variance-covariance) matrix	
var1	Variance of beta1^2	
var2	Variance of beta2^2	

Variance of difference between beta1^2 and beta2^2

olkin_beta_inf 7

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Momin, M.M., Lee, S. Wray, N. and S. Lee, S.H. The variance and covariance of the coefficients of determination for genetic profile analysis (will be subbitted soon)

Examples

```
#To get information (variance-covariance) matrix of beta1_2 and beta2_2 where
#beta1 and 2 are regression coefficients from a multiple regression model.
dat=dat1
omat=cor(dat)[1:3,1:3]
#omat
#1.0000000 0.1958636 0.1970060
#0.1958636 1.0000000 0.9981003
#0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta1_2(omat,nv)
output
#output$info (2x2 information (variance-covariance) matrix)
#0.04146276 0.08158261
#0.08158261 0.16111124
#output$var1 (variance of beta1^2)
#0.04146276
#output$var2 (variance of beta2^2)
#0.1611112
#output$var1_2 (variance of difference between beta1^2 and beta2^2)
#0.03940878
```

olkin_beta_inf

olkin_beta_inf function

Description

This function derives Information matrix for beta1 and beta2 where beta1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 * beta1 + x2 * beta2 + e, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta_inf(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

8 r2_diff

Value

This function will generate information (variance-covariance) matrix of beta1 and beta2. The outputs are listed as follows.

info	2x2 information (variance-covariance) matrix
var1	Variance of beta1
var2	Variance of beta2
var1_2	Variance of difference between beta1 and beta2

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Examples

```
#To get information (variance-covariance) matrix of beta1 and beta2 where
#beta1 and 2 are regression coefficients from a multiple regression model.
dat=dat1
omat=cor(dat)[1:3,1:3]
#omat
#1.0000000 0.1958636 0.1970060
#0.1958636 1.0000000 0.9981003
#0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta_inf(omat,nv)
output
#output$info (2x2 information (variance-covariance) matrix)
#0.2531406 -0.2526212
#-0.2526212 0.2530269
#output$var1 (variance of beta1)
#0.2531406
#output$var2 (variance of beta2)
#0.2530269
#output$var1_2 (variance of difference between beta1 and beta2)
#1.01141
```

r2_diff $r2_diff function$

Description

This function estimates $var(R2(y\sim x[,v1]) - R2(y\sim x[,v2]))$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

r2_diff

Usage

```
r2_diff(dat, v1, v2, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size

Value

This function will estimate significant difference between two PGS (either dependent or independent and joint or single). To get the test statistics for the difference between $R2(y\sim x[,v1])$ and $R2(y\sim x[,v2])$. (here we define $R2_1=R2(y\sim x[,v1])$) and $R2_2=R2(y\sim x[,v2])$). The outputs are listed as follows.

rsq1	R2_1
rsq2	R2_2
var1	Variance of R2_1
var2	variance of R2_2
var_diff	Variance of difference between R2_1 and R2_2
r2_based_p	P-value for significant difference between R2_1 and R2_2
mean_diff	Differences between R2_1 and R2_2
upper_diff	Upper limit of 95% CI for the difference
lower_diff	Lower limit of 95% CI for the difference

```
#To get the test statistics for the difference between R2(y\sim x[,v1]) and
\#R2(y\sim x[,v2]). (here we define R2_1=R2(y\sim x[,v1])) and R2_2=R2(y\sim x[,v2])))
dat=dat1
nv=length(dat$V1)
v1=c(1)
v2=c(2)
output=r2_diff(dat,v1,v2,nv)
output
#r2redux output
#output$rsq1 (R2_1)
#0.03836254
#output$rsq2 (R2_2)
#0.03881135
#output$var1 (variance of R2_1)
#0.0001437583
#output$var2 (variance of R2_2)
```

10 r2_diff

```
#0.0001452828
#output$var_diff (variance of difference between R2_1 and R2_2)
#5.678517e-07
#output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
#0.5514562
#output$mean_diff (differences between R2_1 and R2_2)
#-0.0004488044
#output$upper_diff (upper limit of 95% CI for the difference)
#0.001028172
#output$lower_diff (lower limit of 95% CI for the difference)
#-0.001925781
#To get the test statistics for the difference between R2(y\sim x[,v1]+x[,v2]) and
\#R2(y\sim x[,v2]). (here R2_1=R2(y\sim x[,v1]+x[,v2]) and R2_2=R2(y\sim x[,v1]))
dat=dat1
nv=length(dat$V1)
v1=c(1,2)
v2=c(1)
output=r2_diff(dat,v1,v2,nv)
#r2redux output
#output$rsq1 (R2_1)
#0.03896678
#output$rsq2 (R2_2)
#0.03836254
#output$var1 (variance of R2_1)
#0.0001475195
#output$var2 (variance of R2_2)
#0.0001437583
#output$var_diff (variance of difference between R2_1 and R2_2)
#2.321425e-06
#output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
#0.4369177
#output$mean_diff (differences between R2_1 and R2_2)
#0.0006042383
#output$upper_diff (upper limit of 95% CI for the difference)
#0.004887989
#output$lower_diff (lower limit of 95% CI for the difference)
#-0.0005574975
```

r2_enrich_beta

2_enrich_beta

Description

This function estimates var((t1/exp) - (t2/(1-exp))), where $t1 = beta1^2$ and $t2 = beta2^2$, and beta1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1.beta1 + x2.beta2 + e, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995). y is y is y 1 matrix having the dependent variable, and y 1 is y 1 matrix having the ith explanatory variables. y 2 is y 1 matrix having the jth explanatory variables. y 1 and y 2 indicates the ith and jth column in the data (y 1 or y 2 should be a single interger between 1 - y 3. Where y 3 is y 3 indicates the ith and jth column in the data (y 1 or y 2 should be a single interger between 1 - y 3. Where y 4 is y 3 indicates the ith and jth column in the data (y 1 or y 2 should be a single interger between 1 - y 3. Where y 4 is y 4 indicates the ith and jth column in the data (y 4 indicates the ith and jth column in the data (y 5 indicates the ith and jth column in the data (y 5 indicates the ith and jth column in the data (y 5 indicates the ith and jth column in the data (y 5 indicates the ith and jth column in the data (y 5 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and jth column in the data (y 6 indicates the ith and y 6 indicates the ith and y 8 indicates

Usage

```
r2_enrich_beta(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by (M+1) matrix having variables in the order of cbind(y,x)
v1	These can be set as $v1=1$, $v1=2$, $v1=3$ or any value between 1 - M based on combination
v2	These can be set as $v2=1$, $v2=2$, $v2=3$, or any value between 1 - M based on combination
nv	Sample size
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)

Value

This function will test the ratio which is significantly different from the expectation. To get the test statistic for the ratio which is significantly different from the expectation. var[(t1/exp)-(t2/(1-exp))], where $t1 = beta1^2$ and $t2 = beta2^2$. beta1 and beta2 are regression coefficients from a multiple regression model, i.e. y = x1.beta1 + x2.beta2 + e, where y, x1 and x2 are column-standardised. The outputs are listed as follows.

beta1_sq	t1
beta2_sq	t2
var1	Variance of t1
var2	Variance of t2
var1_2	Variance of difference between t1 and t2
COV	Covariance between t1 and t2
enrich_p2	P-value for testing the difference between t1/exp and t2/(1-exp)
mean_diff	Difference between t1/exp and t2/(1-exp)
var_diff	Variance of difference, t1/exp - t2/(1-exp)
upper_diff	Upper limit of 95% CI for the mean difference
lower_diff	Lower limit of 95% CI for the mean difference

12 r2_enrich_beta

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

```
#To get the test statistic for the ratio which is significantly
#different from the expectation.
\#var[(t1/exp) - (t2/(1-exp))], where t1 = beta1^2 and t2 = beta2^2.
#betal and beta2 are regression coefficients from a multiple regression model,
\#i.e. y = x1.beta1 + x2.beta2 + e, where y, x1 and x2 are column-standardised.
dat=dat2
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
#r2redux output
#output$beta1_sq (t1)
#0.01118301
#output$beta2_sq (t2)
#0.004980285
#output$var1 (variance of t1)
#7.072931e-05
#output$var2 (variance of t2)
3.161929e-05
#output$var1_2 (variance of difference between t1 and t2)
#0.000162113
#output$cov (covariance between t1 and t2)
#-2.988221e-05
\#output$enrich_p2 (p-value for testing the difference between t1/exp and t2/(1-exp))
#0.1997805
#output$mean_diff (difference between t1/exp and t2/(1-exp))
0.2743874
#output$var_diff (variance of difference, t1/exp - t2/(1-exp))
#0.04579649
#output$upper_diff (upper limit of 95% CI for the mean difference)
#0.6938296
#output$lower_diff (lower limit of 95% CI for the mean difference)
#-0.1450549
```

r2_var 13

r2_var r2_var function

Description

This function estimates $var(R2(y\sim x[,v1]))$ where R2 is the R squared value of the model, where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_var(dat, v1, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	Sample size

Value

This function will test the null hypothesis for R2. To get the test statistics for $R2(y\sim x[,v1])$. The outputs are listed as follows.

```
rsq R2
var Variance of R2
r2_based_p P-value under the null hypothesis, i.e. R2=0
upper_r2 Upper limit of 95% CI for R2
lower_r2 Lower limit of 95% CI for R2
```

```
#To get the test statistics for R2(y~x[,v1])
dat=dat1
nv=length(dat$V1)
v1=c(1)
output=r2_var(dat,v1,nv)
output

#r2redux output

#output$rsq (R2)
#0.03836254

#output$var (variance of R2)
#0.0001437583

#output$r2_based_p (P-value under the null hypothesis, i.e. R2=0)
#1.213645e-10
```

```
#output$upper_r2 (upper limit of 95% CI for R2)
#0.06435214
#output$lower_r2 (lower limit of 95% CI for R2)
#0.01763347
#To get the test statistic for R2(y \sim x[,v1]+x[,v2]+x[,v3])
dat=dat1
nv=length(dat$V1)
v1=c(1,2,3)
r2_var(dat,v1,nv)
#r2redux output
#output$rsq (R2)
#0.03917668
#output$var (variance of R2)
#0.0001499374
#output$r2_based_p (R2 based P-value)
#7.461267e-11
#output$upper_r2 (upper limit of 95% CI for R2)
#0.06538839
#output$lower_r2 (lower limit of 95% CI for R2)
#0.01821657
```

Index

.T:. D2	Tania observed
*Topic R2	*Topic observed
cc_trf, 2	cc_trf, 2
r2_diff,8	*Topic of
r2_var, 13	cc_trf,2 olkin_beta1_2,6
*Topic Transformation	olkin_beta_inf,7
cc_trf, 2	r2_enrich_beta, 11
*Topic and	*Topic ratio
cc_trf, 2	r2_enrich_beta, 11
*Topic a	*Topic regression
r2_enrich_beta, 11 *Topic beta^2	r2_enrich_beta, 11
r2_enrich_beta, 11	*Topic scale
*Topic between	cc_trf, 2
cc_trf, 2	*Topic source
r2_enrich_beta,11	olkin12_1,4
*Topic context	olkin12_13,4
olkin_beta1_2,6	olkin12_3,5
olkin_beta_inf,7	olkin12_34,5
*Topic correlation	olkin1 $_2$, $_6$
olkin_beta1_2,6	*Topic the
olkin_beta_inf,7	olkin_beta1_2, 6
*Topic datasets	olkin_beta_inf, 7
dat1,3	*Topic variance
dat1,3	$r2_diff, 8$
*Topic from	r2_enrich_beta,11
r2_enrich_beta, 11	r2_var, 13
*Topic information	
olkin_beta1_2,6	cc_trf,2
olkin_beta_inf,7	da+1 2
r2_diff,8	dat1,3 dat2,3
r2_var, 13	datz, 3
*Topic in	olkin12_1,4
olkin_beta1_2,6	olkin12_13,4
olkin_beta_inf,7	olkin12_3,5
*Topic liability	olkin12_34,5
cc_trf, 2	olkin1 $_2$, $_6$
*Topic matrix	olkin_beta1_2,6
olkin_beta1_2,6	olkin_beta_inf,7
olkin_beta_inf,7	
r2_diff, 8	r2_diff,8
r2_var, 13	r2_enrich_beta,11
*Topic multiple	r2_var, 13
r2_enrich_beta, 11	