Attorney Docket No. 103152-2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

PPLICANTS

Minoru Mukaida

SERIAL NO.

09/740,345

FILED

December 18, 2000

FOR

ENERGY CONSUMPTION EFFICIENCY IMPROVING

AGENT AND METHOD, AND ARTICLE HAVING

IMPROVED ENERGY CONSUMPTION EFFICIENCY

ART UNIT

1773

EXAMINER

Uhlir, Nikolas J.

DECLARATION UNDER RULE 1.132

I, the undersigned declarant, hereby state as follows:

I am one of the named inventors in the above-referenced application.

I am a Japanese citizen residing at Shinagawa-ku, Japan.

I conducted the experiments set forth in detail in the following description, and I submit this declaration in support of the above-referenced application.

EXPERIMENTS

The inventor has conducted an experiment, which shows the fact that when a thin film is attached to the ground contact surface of tire, the increase of the ground contact frictional force against a load surface is changed into an energy transmitting force, which improves the energy consumption of vehicles, while the critical point, where the increase of the rolling resistance due to the thickness of the film, which makes the energy consumption worse, exceeds over the rate of the increase of the friction, is $10\,\mu$ m.

(1) Difference of the ground contact frictional force due to the thickness of the film attached on the surface of tire. (A model vehicle was used for the experiment)

F=p	1000			٠.	
7	97				200
/ F: F	rictional	Force			1
	rictional	Consta	nt		1
				4	. 1
10:1	iega bao.	nst the c	my	HIG	tires /

	Thickness of Film on the Driving Tires			
	0 μ m (without film)	0.01 μ m	0.5 µ m	10 µ m
Ground Contact Frictional Force: F	120g	160g	150g	140g
Ground Contact Frictional Constant: #	0.65	0.85	0.81	0.75
Increasing rate of Frictional Force	-	33.3%	25.0%	16.7%
(Comparison to the tire without film)		increased	increased	increased

Best Available Copy

(2) Difference of the rolling resistance due to the thickness of the film attached on the surface of time: (A model vehicle was used for the experiment).

The model car down on the slope keeping the gear in neutral

v=v2gh , - vt=l (i=nsoving time)

Rolling resistance R=m de . Mean deceleration b= de

	Thickness of Film on Tires			
	0μm (without film)	0.01 µ m	0.5 u m	10 µ m
Rolling Distance: I	4280mm	4076mm	3873mm	3669mm
Rolling Resistance: R	0.0126kgf	0.0132kgf	0.0139kgf	0.0147kgf
Mean deceleration; b	50.4mm/s ²	52.9 mm/s ²	55:7 mm/s²	58.8 mm/s ²
Increasing rate of Rolling Resistance (Comparison to the tire without film)	- -	5.0% increased	10.5% increased	16.7% increased

Best Available Copy

(3) Experimental result: (1) + (2)

The thin film used in the experiment was prepared and applied to the tire surface in accordance with presently amended claim 1, as follows:

The film had a viscosity of 100,000 cp or less, and contained antislipping agents, the antislipping agents consisting of fine particles of an average particle diameter of 10µm or less. The film comprised a polymer binder selected from the group consisting of polyethylene; a methyl, phenyl, chloro, hydroxy, acetoxy, or cyano derivative of polyethylene; polybutadiene; a methyl or chloro derivative of polybutadiene; a copolymer of said polyethylene derivative and said butadiene derivative; silicone; polysulfide; polyurethane; modified silicone; modified epoxy resin; and modified acrylic resin.

All statements made herein on knowledge are true, and all statements made on information and belief are believed to be true; and further these statements were made with the knowledge that willful false statement and the

地對計事務所

like so made are puttishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: December 25, 2004

Minoru Mukaida

Best Available Copy