

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики Лабораторная работа № 4 по дисциплине «Программирование вычислений»

Численное интегрирование

Бригада 5 ГРИНЕВИЧ ЮЛИЯ

Группа ПМ-21 ЕГУПОВ ИВАН

Вариант 2, 5.4, 5.6 ПОРСИН ДАНИЛ

Преподаватели РОЯК СВЕТЛАНА ХАИМОВНА

Новосибирск, 2024

1. Цель работы

Изучение методов численного интегрирования, оценки порядка точности, оценки погрешности по правилу Рунге, уточнения значений по Ричардсону.

2. Математическая модель

<u>Входные данные:</u> интегрируемая на отрезке интегрирования функция f(x), пределы интегрирования [a,b] этой функции.

Выходные данные: результат вычисления интеграла заданной функции f(x).

• Метод трапеций

Усложненная квадратурная формула для равномерной сетки из N отрезков:

$$\int_{a}^{b} f(x)dx \approx h(\frac{f(a)}{2} + \sum_{i=1}^{N-1} f(x_i) + \frac{f(b)}{2})$$

где h – шаг сетки.

Порядок точности – 1

Порядок метода (порядок аппроксимации) - 2

• Метод Ньютона – Котеса

Усложненная квадратурная формула для равномерной сетки из N отрезков и с n точками на каждом из отрезков (считая начало и конец отрезка):

$$\int_{a}^{b} f(x)dx = \frac{n*h}{C_n} \sum_{i=1}^{N} \sum_{j=0}^{n} (c_{in}f(x_i + j*h))$$

Порядок точности – (n-1)

Порядок метода (порядок аппроксимации): для 4 узлов – 4, для 6 узлов – 5

3. Текст программы

```
program main
implicit none
common/data/a,b,seg
real a,b
real nc6
real grid
dimension grid(2**28)
integer seg
call input
call make_grid(grid(1))
call trapez(grid,seg+1)
print*,'-----'
call nc4(grid,seg+1)
print*,'-----'
print*,nc6(grid,seg+1)
pause
end
subroutine input
implicit none
common/data/a,b,seg
real a,b
integer seg
print*,'enter begin and end of the integration interval'
read*,a,b
print*,'enter the number of segments'
read*,seg
```

```
end
subroutine make_grid(grid)
implicit none
common/data/a,b,seg
real a,b
real h
real grid
dimension grid(2**28)
integer seg
integer i
h=(b-a)/seg
do i=0,seg
 grid(i+1)=a+i*h
end do
end
subroutine trapez(grid,len)
implicit none
common/data/a,b,seg
real a,b,h,res,f
integer len, seg
real grid
dimension grid(len)
integer i
h = grid(2)-grid(1)
res = h*(f(grid(1))+f(grid(len)))/2.0
do i = 2,len-1
 res = res + h*f(grid(i))
end do
print*,res
end
real function nc6(grid,len)
```

```
implicit none
common/data/a,b,seg
real a,b,f,h
integer seg,len
real grid
dimension grid(len)
real sum_i,sum_j
integer coefs
dimension coefs(6)
integer i,j
h=(grid(2)-grid(1))/5
coefs(1)=19
coefs(2)=75
coefs(3)=50
coefs(4)=50
coefs(5)=75
coefs(6)=19
sum_i=0
sum_j=0
do i=1,seg
 do j=0,5
   sum_j=sum_j+coefs(j+1)*f(grid(i)+j*h)
 end do
 sum_i=sum_i+sum_j
 sum_j=0
end do
nc6=5*h*sum_i/288
end
subroutine nc4(grid,len)
implicit none
common/data/a,b,seg
```

```
real a,b,f,h,res
integer seg,len
real grid
dimension grid(len)
real sum_i,sum_j
integer coefs
dimension coefs(4)
integer i,j
h=(grid(2)-grid(1))/3
coefs(1)=1
coefs(2)=3
coefs(3)=3
coefs(4)=1
sum_i=0
sum_j=0
do i=1,seg
 do j=0,3
   sum_j=sum_j+coefs(j+1)*f(grid(i)+j*h)
 end do
 sum_i=sum_i+sum_j
 sum_j=0
end do
res=3*h*sum_i/8
print*,res
end
real function f(x)
implicit none
real x
```

f = 0.25*x**7

end

1_____

4. Таблицы

Верификация программы:

	метода: Метод Ньютона-Котеса для 6 узлов метода (порядок аппроксимации): 6								
Георетич	еское значение порядка точности: 5								
Степень полинома	полином и область инегрирования	Ан алитическое зн ачение и нтеграла	Чи сло отрезков	Чи <i>с</i> ленное значение интеграла	Отношение потрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсон у	Погрешность уточненного решения
	f(x), $[a, b]$	I^*	N	Ih	$\frac{I^* - I_{2h}}{I^* - I_h}$	$I^* - I_h$	$\frac{I_h-I_{2h}}{2^k-1}$	I^R	$I^* - I^R$
4	$1 + 2x^{13} + 3x^2 + 4x^3 + 5x^4,$ [-5,5]	6510,0000	1	6510,0000		0,0000		><	
5	$1 + 2x^{[.]} + 3x^2 + 4x^3 + 5x^4 + 6x^5$	6510,0000	1	6510,0000		0,0000	><	><	
	[-5,5]		2	6510,0000	#DIV/0!	0,0000	0,0000	6510,0000	0,0000
			1	177426,67		-14666,67	><	\sim	
6	$1 + 2x^{[]} + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6,$ [-5,5]	162760,00	2	162989,17	63,999	-229,17	-229,167	162760,01	-0,01
7	$1 + 2x^{[]} + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7$	162760,00	1	177426,67	> <	-14666,67		><	
	[-5,5]	102,00,00	2	162989,17	63,999	-229,17	-229,167	162760,01	-0,01

Порядок г	метода (порядок аппроксимации): 4								
Теоретиче	еское значение порядка точности: 3								
Степень полинома	полином и область инегрирования	Аналитическое значение интеграла	Число отрезков	Чи <i>с</i> ленное значение интеграла	Отношени е погрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсон у	Погрешность уточненного решения
	f(x), $[a,b]$	I*	N	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I ^R	$I^* - I^R$
2	$ \begin{array}{r} 1 + x + 2x^2 \\ [-5,5] \end{array} $	176,66667	1	176,66666	> <	0,00001	>		
	$1 + x + 2x^2 + 3x^3$,		1	176,66664	> <	0,00003	> <	$> \sim$	
3	[-5,5]	176,66667	2	176,66664	1,00000	0,00003	0,00000	176,66664	0,00003
	$1 + x + 2x^2 + 3x^3 + 4x^4$		1	6658,1479		-1481,4812	> <	\sim	
4	$1 + x + 2x^{2} + 3x^{3} + 4x^{4}$, [-5,5]	5176,6667	2	5269,2588	16,0001	-92,5921	-92,59261	5176,6662	0,0005
			1	6658,1479		-1481,4812	> <	> < <	
5	$1 + x + 2x^2 + 3x^3 + 4x^4 + 5x^5,$ [-5,5]	5176,6667	2	5269,2588	16,0001	-92,5921	-92,59261	5176,6662	0,0005

рядок г	иетода (порядок аппроксимации): 2								
оретиче	еское значение порядка точности: 1								
Степень полинома	Полином и область инетрирования	Аналитическое значение интеграла	Число отрезков	Чи <i>с</i> ленное значение интеграла	Отношение погрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсону	Погрешность уточненного решения
	f(x), $[a,b]$	<i>I</i> *	N	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I^R	$I^* - I^R$
0	1 [-5,5]	10,000000	1	10,000000		0,000000	> <		
1	1 + x, [-5,5]	10,000000	2	10,000000 10,000000	#DIV/0!	0,000000	0,00000	10,000000	0,000000
2	1 + x + 2x ² [-5,5]	176,66667	1 2	510,00000 260,00000	4,000000	-333,33333 -83,33333	-83,33333	176,66667	0,00000
3	$1 + x + 2x^2 + 3x^3$, [-5,5]	176,66667	1 2	510,00000 260,00000	4,000000	-333,33333 -83,33333	-83,33333	176,66667	0,00000

Вывод: точность вычисления каждого из методов соответствовала теоретическому порядку точности. То есть каждый метод правильно исчислял интеграл от полинома с максимальной степенью, равной порядку точности метода.

Изучение порядка аппроксимации:

Название	Название метода: Ньютона-Котеса для 6 узлов											
	Порядок метода k: 6											
Подынте	Подынтегральная функция и область интегрирования: $0.25 * x^9, [0; 5]$											
Интеграл	и его аналит	ическое значение 🛚 🏌	244140,6250000									
Число отрезко в	Шаг	Численн oe значени e интегра ла	Отноше ние погрешн остей	Оценка отношен ия погрешн остей	Погреш	Оценка погрешн ости по правилу Рунге	Уточнен ие по Ричардс ону	Погреш ность уточнен ного решения				
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{2}{I_h - I_h}}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I ^R	$I^* - I^R$				
1	1,0000000	250781,2500000	×	×	-6640,6250000	×	×	×				
2	0,5000000	244292,4531250	43,7377791	44,4714749	-151,8281250	-102,9967758	244189,4563492	-48,8313492				
4	0,2500000	244143,1875000	59,2500000	59,9691358	-2,5625000	-2,3692956	244140,8182044	-0,1932044				
8	0,1250000	244140,6562500	82,0000000	82,0000000	-0,0312500	-0,0401786	244140,6160714	0,0089286				
16	0,0625000	244140,6250000	#DIV/0!	#DIV/0!	0,0000000	-0,0004960	244140,6245040	0,0004960				
32	0,0312500	244140,6250000	#DIV/0!	1,0000000	0,0000000	0,0000000	244140,6250000	0,0000000				
64	0,0156250	244140,6093750	0,0000000	0,6666667	0,0156250	-0,0002480	244140,6091270	0,0158730				
128	0,0078125	244140,6562500	-0,5000000	0,0000000	-0,0312500	0,0007440	244140,6569940	-0,0319940				
256	0,0039063	244140,6093750	-2,0000000	×	0,0156250	-0,0007440	244140,6086310	0,0163690				

Вывод: минимальная погрешность вычисленного интеграла была получена при N=16. При этом при N =32 была получена минимальная погрешность уточненного решения

Название	Название метода: Ньютона-Котеса для 6 узлов											
	Порядок метода k: 6											
	Подынтегральная функция и область интегрирования: 5xsin(5x), [0; 5]]											
		ическое значение I.*	-4,9824840									
Число отрезко в	Шаг	Численн ое значени е интегра ла	Отноше ние погрешн остей	Оценка отношен ия погрешн остей	Погреш	Оценка погрешн ости по правилу Рунге	Уточнен ие по Ричардс ону	Погреш ность уточнен ного решения				
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{2}{I_h - I_h}}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I ^R	$I^* - I^R$				
1	1,0000000	20,1850624	×	×	-25,1675464	×	×	×				
2	0,5000000	-2,6858869	0,0912523	9,5950881	-2,2965971	-0,3630309	-3,0489178	-1,9335662				
4	0,2500000	-5,3468194	-0,1586414	-6,2667256	0,3643354	-0,0422370	-5,3890564	0,4065724				
8	0,1250000	-4,9806390	-0,0050640	-199,8228584	-0,0018450	0,0058124	-4,9748266	-0,0076574				
16	0,0625000	-4,9824624	0,0117073	84,2602740	-0,0000216	-0,0000289	-4,9824913	0,0000073				
32	0,0312500	-4,9824843	-0,0138889	-14,6428571	0,0000003	-0,0000003	-4,9824846	0,0000006				
64	0,0156250	-4,9824829	-3,6666667	0,2631579	-0,0000011	0,0000000	-4,9824829	-0,0000011				
128	0,0078125	-4,9824848	-0,7272727	2,9000000	0,0000008	0,0000000	-4,9824848	0,0000008				
256	0,0039063	-4,9824858	2,2500000	0,4736842	0,0000018	0,0000000	-4,9824858	0,0000018				
512	0,0019531	-4,9824839	-0,0555556	×	-0,0000001	0,0000000	-4,9824839	-0,0000001				

Вывод: минимальная погрешность вычисленного интеграла была получена при N=32. А при N =512 была получена минимальная погрешность уточненного решения

	Название м	етода: Трапец	ия			l I						
	Порядок ме	етода k: 2										
	Подынтегра	альная функци	я и область интегри	рования:	$0,25 * x^5, [0; 5]$]]						
и его ана.	литическое	значение :	I* 651,0410000			l I						
Число отрезков	Шаг	Численное значение интеграла	Отношение погрешностей	Оценка отношения погрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсону	Погрешность уточненного решения				
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{2}{I_h - I_h}}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I ^R	$I^* - I^R$				
1	5,0000000	1953,1250000	×	×	-1302,0840000	×	×	×				
2	2,5000000	1037,5976563	0,2968754	4,2000000	-386,5566563	-305,1757812	732,4218751	-81,3808751				
4	1,2500000	751,4953613	0,2598697	4,8095261	-100,4543613	-95,3674317	656,1279296	-5,0869296				
8	0,6250000	676,3935547	0,2523788	4,9529298	-25,3525547	-25,0339355	651,3596192	-0,3186192				
16	0,3125000	657,3945313	0,2506071	4,9882637	-6,3535313	-6,3330078	651,0615235	-0,0205235				
32	0,1562500	652,6307983	0,2502228	4,9971835	-1,5897983	-1,5879110	651,0428873	-0,0018873				
64	0,0781250	651,4390259	0,2503625	4,9987706	-0,3980259	-0,3972575	651,0417684	-0,0007684				
128	0,0390625	651,1409912	0,2512178	5,0024589	-0,0999912	-0,0993449	651,0416463	-0,0006463				
256	0,0195313	651,0665283	0,2553055	5,0131557	-0,0255283	-0,0248210	651,0417073	-0,0007073				
512	0,0097656	651,0479736	0,2731713	4,8974731	-0,0069736	-0,0061849	651,0417887	-0,0007887				
1024	0,0048828	651,0432129	0,3173253	4,8999754	-0,0022129	-0,0015869	651,0416260	-0,0006260				
2048	0,0024414	651,0419922	0,4483709	-4,0008193	-0,0009922	-0,0004069	651,0415853	-0,0005853				
4096	0,0012207	651,0422363	1,2460189	0,6667122	-0,0012363	0,0000814	651,0423177	-0,0013177				
8192	0,0006104	651,0415039	0,4075872	3,0000000	-0,0005039	-0,0002441	651,0412598	-0,0002598				
16384	0,0003052	651,0411377	0,2732685	0,7272863	-0,0001377	-0,0001221	651,0410156	-0,0000156				
32768	0,0001526	651,0424805	10,7516340	0,9999979	-0,0014805	0,0004476	651,0429281	-0,0019281				

Вывод: минимальная погрешность вычисленного интеграла была получена при N=2048. При этом при N=16384 была получена минимальная погрешность уточненного решения

	Название м	етода: Трапец	ция					
	Порядок ме				5x*sin(5x), [0; 5	-		
	Подынтегра	эльная функці	ия и область интегри]]				
	литическое	значение :	I* -4,9824840					
Число отрезков	Шаг	Численное значение интеграла	Отношение погрешностей	Оценка отношения погрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсону	Погрешность уточненного решения
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{2}{I_h - I_h}}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I^R	$I^* - I^R$
1	5,0000000	-8,2719841	×	×	3,2895001	×	×	×
2	2,5000000	-6,2085514	2,6829684	5,0022086	1,2260674	0,6878109	-5,5207405	0,5382565
4	1,2500000	-5,6929779	1,7256551	1,3296290	0,7104939	0,1718578	-5,5211201	0,5386361
8	0,6250000	-4,1288757	-0,8323418	9,1399808	-0,8536083	0,5213674	-3,6075083	-1,3749757
16	0,3125000	-3,9367251	0,8162573	0,7575293	-1,0457589	0,0640502	-3,8726749	-1,1098091
32	0,1562500	-4,7291946	4,1287117	5,1610632	-0,2532894	-0,2641565	-4,9933511	0,0108671
64	0,0781250	-4,9196434	4,0306649	5,0383374	-0,0628406	-0,0634829	-4,9831263	0,0006423
128	0,0390625	-4,9668036	4,0075891	5,0093347	-0,0156804	-0,0157201	-4,9825237	0,0000397
256	0,0195313	-4,9785662	4,0023483	5,0038805	-0,0039178	-0,0039209	-4,9824871	0,0000031
512	0,0097656	-4,9815040	3,9977551	5,0035432	-0,0009800	-0,0009793	-4,9824833	-0,0000007
1024	0,0048828	-4,9822378	3,9805037	4,9557951	-0,0002462	-0,0002446	-4,9824824	-0,0000016
2048	0,0024414	-4,9824233	4,0560132	5,6843434	-0,0000607	-0,0000618	-4,9824851	0,0000011
4096	0,0012207	-4,9824629	2,8767773	3,4444444	-0,0000211	-0,0000132	-4,9824761	-0,0000079
8192	0,0006104	-4,9824791	4,3061224	-3,2631579	-0,0000049	-0,0000054	-4,9824845	0,0000005
16384	0,0003052	-4,9824753	0,5632184	0,8467742	-0,0000087	0,0000013	-4,9824740	-0,0000100
32768	0,0001526	-4,9825001	-0,5403727	-9,3333333	0,0000161	-0,0000083	-4,9825084	0,0000244
65536	0,0000763	-4,9824977	1,1751825	1,1008403	0,0000137	0,0000008	-4,9824969	0,0000129
131072	0,0000381	-4,9824739	-1,3564356	×	-0,0000101	0,0000079	-4,9824660	-0,0000180

Вывод: минимальная погрешность вычисленного интеграла была получена при N=8192. Этому же N соответствовала минимальная погрешность уточненного решения.

Таблицы для осциллирующей функции с использованием в коде программы вычислений с двойной точностью:

	Название	метода: Трапеция										
	Порядок м	метода k: 2										
	Подынтег	ральная функция и область	интегрирования:		5x*sin(5x), [0; 5]]							
Интегра	Интеграл и его аналитическое зна¶ение : -4,982484000000000											
Число отрезков	Шаг	Численное значение интеграла	Отношение погрешностей	Оценка отношения погрешностей	Погрешность	Оценка погрешности по правилу Рунге	Уточнение по Ричардсону	Погрешность уточесного решения				
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{1}{2}I_h - I_h}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I ^R	I* – I ^R				
1		-8,2719843811108100	×	×	3,2895003811108100	×	×	×				
2		-6,2085514827804200	2,6829684559050800	5,0022071947770200	1,2260674827804200	0,6878109661101300	-5,5207405166702900	0,5382565166702890				
4		-5,6929777511097500	1,7256555470971700	1,3296292074749600	0,7104937511097500	0,1718579105568900	-5,5211198405528600	0,5386358405528600				
8		-4,1288756631300900	-0,8323416260378310	9,1399842741906100	-0,8536083368699100	0,5213673626598870	-3,6075083004702000	-1,3749756995298000				
16		-3,9367251582527100	0,8162573461427030	0,8158212592023240	-1,0457588417472900	0,0640501682924601	-3,8726749899602500	-1,1098090100397500				
32		-4,9800079174092700	422,3440872538950000	-16,2831475915995000	-0,0024760825907304	-0,3477609197188530	-5,3277688371281200	0,3452848371281230				
64		-4,9196437532067000	0,0394028145509193	×	-0,0628402467933000	0,0201213880675232	-4,8995223651391800	-0,0829616348608235				

	Название метода: Ньютона-Котеса для 6 узлов											
			ЮВ									
Порядок г			F!-(F)	[0 F3]								
		ункция и область интегри		, [0; 5]]								
Интеграл и его аналитическое значение!* : -4,9824840												
Число отрезко в	численн ое значени е интегра		Оценка отноше ния погреш ностей	Погреш	Оценка погреш ности по правилу Рунге	Уточнен ие по Ричардс ону	Погреш ность уточнен решени я					
N	h	I_h	$\frac{I^* - I_{2h}}{I^* - I_h}$	$\frac{I_h - I_{2h}}{\frac{2}{I_h - I_h}}$	$I^* - I_h$	$\frac{I_h - I_{2h}}{2^k - 1}$	I^R	$I^* - I^R$				
1		20,1850610498172000	×	×	-25,1675450498172000	×	×	×				
2		-2,6858857614446100	-7,5152343929030800	9,5950851597892400	-2,2965982385553900	-7,6236489370872700	-10,3095346985319000	5,3270506985318800				
4		-5,3468188861401000	0,5023334095731020	-6,2667258898245100	0,3643348861400990	-0,8869777082318300	-6,2337965943719300	1,2513125943719300				
8		-4,9806384129752100	1,0735207904695400	-199,7686192635140000	-0,0018455870247900	0,1220601577216300	-4,8585782552535800	-0,1239057447464200				
16		-4,9824623059446800	0,9996339374274250	83,5164289371577000	-0,0000216940553202	-0,0006079643231566	-4,9830702702678400	0,0005862702678368				
32		-4,9824844093366100	0,9999955637810150	-4410,2200885569100000	0,0000004093366099	-0,0000073677973100	-4,9824917771339200	0,0000077771339200				
64		-4,9824844043258900	1,0000000010056700	-0,0157531153696853	0,0000004043258892	0,0000000016702402	-4,9824844026556500	0,000004026556493				
128		-4,9824844092589000	0,9999999990099300	65,2319906556107000	0,0000004092588997	-0,0000000016443368	-4,9824844109032400	0,0000004109032368				
256		-4,9824844093357000	0,9999999999845860	65,0037009622502000	0,0000004093356996	-0,0000000000256000	-4,9824844093613000	0,0000004093612995				
512		-4,9824844093369000	0,999999999997590	#DIV/0!	0,0000004093368995	-0,0000000000004000	-4,9824844093373000	0,0000004093372992				
1024		-4,9824844093369000	1,00000000000000000	×	0,0000004093368995	0,00000000000000000	-4,9824844093369000	0,000004093368995				

Вывод: Длина слова, т.е. количество битов в ячейке памяти, может влиять на точность вычислений в численном интегрировании. Чем длиннее слово, тем больше битов доступно для представления чисел с плавающей точкой. Это может позволить использовать больше разрядов для хранения значений, что может привести к более точным результатам вычислений.