$\Delta(1940) \ 3/2^{-}$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$ Status: **

OMITTED FROM SUMMARY TABLE

Δ (1940) POLE POSITION

R	FΔ	I P	ΔRT
	-	_ , ,	

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2040± 50	SOKHOYAN	15A	DPWA	Multichannel
$1878 \pm 11 \pm 5.5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1900 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	ing data for averages	s, fits,	limits, e	tc. • • •
2040± 50	GUTZ	14	DPWA	Multichannel
$1990 + 100 \\ -50$	ANISOVICH	12A	DPWA	Multichannel

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
450 ± 90	SOKHOYAN	15A	DPWA	Multichannel
$212 \pm 21 \pm 6$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
200 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the followi	ng data for average	s, fits,	limits, e	etc. • • •
450 ± 90	GUTZ	14	DPWA	Multichannel
450 ± 90	ANISOVICH	12A	DPWA	Multichannel

△(1940) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
6±3	SOKHOYAN	15A	DPWA	Multichannel
$9\!\pm\!1\!\pm\!1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
8±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
4±3	GUTZ	14	DPWA	Multichannel
4 ± 4	ANISOVICH	12A	DPWA	Multichannel
PHASE θ VALUE (°)	DOCUMENT ID		TECN	COMMENT
	DOCUMENT ID	15A		COMMENT Multichannel
VALUE (°)	•	15A 14	DPWA	
<i>VALUE</i> (°) − 90±35	SOKHOYAN	14	DPWA L+P	Multichannel
VALUE (°) - 90±35 140± 7±7	SOKHOYAN ¹ SVARC CUTKOSKY	14 80	DPWA L+P IPWA	$\begin{array}{ll} Multichannel \\ \pi \ N \ \to \ \pi \ N \\ \pi \ N \ \to \ \pi \ N \end{array}$

△(1940) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi$ $ o$	∆ (1940) →	Δ (1232) η
-----------------------------------	-------------------	------------------------

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
< 0.01	undefined	GUTZ	14	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1940) \to N(1535)\pi$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
< 0.03	undefined	GUTZ	14	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1940) \to \Delta(1232)\pi$, S-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.12 ± 0.06	120 ± 45	SOKHOYAN 15A	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1940) \to \Delta(1232)\pi$, *D*-wave

		• •	,	•	
MODULUS	PHASE (°)	DOCUMENT ID	7	TECN	COMMENT
0.06 ± 0.04	-80 ± 35	SOKHOYAN	15A [DPWA	Multichannel

△(1940) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1940 to 2060 (\approx 2000) OUR ESTIM	IATE			
2050 ± 40	SOKHOYAN	15A	DPWA	Multichannel
1940 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •
2050 ± 40	GUTZ	14	DPWA	Multichannel
1995 + 105 - 60	ANISOVICH	12A	DPWA	Multichannel

△(1940) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
450± 70	SOKHOYAN	15A	DPWA	Multichannel
200 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
$\begin{array}{c} 450 \pm \ 70 \\ 450 \pm 100 \end{array}$	GUTZ ANISOVICH			Multichannel Multichannel

Δ (1940) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	1–7 %
Γ_2	$N\pi\pi$	
Γ ₃	$\Delta(1232)\pi$	30–85 %
Γ_4	${\it \Delta}(1232)\pi$, $\it S$ -wave	25–65 %
Γ_5	$\mathit{\Delta}(1232)\pi$, $\mathit{D} ext{-}wave$	5–20 %

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:20

Γ_6	$N(1535)\pi$	2–14 %
Γ_7	<i>N a</i> ₀ (980)	seen
Γ ₈	$\Delta(1232)\eta$	4–16 %
Γ ₉	N γ , helicity=1/2	seen
Γ_{10}	$N\gamma$, helicity=3/2	seen

Δ (1940) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
2±1	SOKHOYAN	15A	DPWA	Multichannel	
5±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •	
2 ± 1	GUTZ	14	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>S</i> -wave $)/\Gamma_{total}$					Γ4/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
46 ± 20	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>D</i> -wave $)/\Gamma_{total}$					Γ ₅ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
12±7	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(N(1535)\pi)/\Gamma_{\rm total}$					Γ_6/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
8±6	GUTZ	14	DPWA	Multichannel	
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •	
2 ± 1	HORN	08A	DPWA	Multichannel	
$\Gamma(Na_0(980))/\Gamma_{\text{total}}$					Γ ₇ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •	
2 ± 1	HORN	08A	DPWA	Multichannel	
$\Gamma(\Delta(1232)\eta)/\Gamma_{total}$					Г ₈ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10±6	GUTZ	14	DPWA	Multichannel	
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •	
4±2	HORN	08A	DPWA	Multichannel	

Δ (1940) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1940) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT	
$0.170^{+0.120}_{-0.100}$	-10 ± 30	SOKHOYAN	15A	DPWA	Multichannel	

Δ (1940) \rightarrow N γ , helicity-3/2 amplitude A $_{3/2}$

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.150 \!\pm\! 0.080$	-10 ± 30	SOKHOYAN	15A	DPWA	Multichannel

△(1940) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1940) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

	,			
$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
$0.170 {}^{+ 0.110}_{- 0.080}$	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •
$0.170 {}^{+ 0.110}_{- 0.080}$	GUTZ	14	DPWA	Multichannel

Δ (1940) \rightarrow N γ , helicity-3/2 amplitude A $_{3/2}$

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.150 ± 0.080	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
0.150 ± 0.080	GUTZ	14	DPWA	Multichannel

Δ (1940) FOOTNOTES

△(1940) REFERENCES

SOKHOYAN GUTZ SVARC	15A 14 14	EPJ A51 95 EPJ A50 74 PR C89 045205	V. Sokhoyan <i>et al.</i> E. Gutz <i>et al.</i> A. Svarc <i>et al.</i>	(CBELSA/TAPS Collab.) (CBELSA/TAPS Collab.)
ANISOVICH HORN Also	12A 08A	EPJ A48 15 EPJ A38 173 PRL 101 202002	A.V. Anisovich <i>et al.</i> I. Horn <i>et al.</i> I. Horn <i>et al.</i>	(BONN, PNPI) (CB-ELSA Collab.) (CB-ELSA Collab.)
CUTKOSKY Also HOEHLER	80 79	Toronto Conf. 19 PR D20 2839 PDAT 12-1	R.E. Cutkosky <i>et al.</i> R.E. Cutkosky <i>et al.</i> G. Hohler <i>et al.</i>	(CMU, LBL) IJP (CMU, LBL) (CMU, LBL) (KARLT)

Created: 5/30/2017 17:20

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.