Геодезическая гравиметрия 2019

Практическое занятие № 3

Притяжение тел простой формы I

25 февраля 2019 г.

1 Притяжение простого слоя

Потенциал объемного тела может быть представлен в виде потенциалов простого слоя, двойного слоя или их комбинации. Это полезное свойство, которое часто используется в теории фигур планет при решении теоретических задач. Такая замена позволяет перейти от интегрирования по объёму к интегрированию по поверхности (то есть от тройного интеграла к двойному). Рассмотрим потенциал простого слоя.

Пусть в объеме τ , заключенном между двумя очень близкими, поверхностями σ и σ' находится притягивающая масса с переменной объёмной плотностью δ , тогда потенциал объёмных масс будет равен

$$V = G \iiint \frac{\delta \left(x,y,z \right) \mathrm{d}\tau}{r},$$

где интегрирование ведётся по всему объёму τ , а r — расстояние от текущей точки до притягиваемой P.

Элементарный объём

$$d\tau = dh d\sigma$$

где dh — кратчайшее расстояние между σ и σ' , $d\sigma$ — элемент площади поверхности.

Элементарная масса

$$dm = \delta d\tau = \delta dh d\sigma$$
.

Пусть σ и σ' неограниченно приближаются друг к другу, тогда вся элементарная масса dm элементарного объёма d τ будет сконденсирована на бесконечно тонком слое площадью d σ . Такой слой называется простым слоем, а его поверхностная плотность (или плотность простого слоя) равна

$$\mu = \frac{\mathrm{d}m}{\mathrm{d}\sigma},$$

откуда

$$dm = \delta d\tau = \delta dh d\sigma = \mu d\sigma.$$

Элементарный потенциал, создаваемый массой $\mathrm{d}m$ будет равен

$$\mathrm{d}V = G \frac{\mu \, \mathrm{d}\sigma}{r},$$

откуда, интегрируя по поверхности σ , получаем потенциал притяжения простого слоя

$$V = G \iint_{\sigma} \frac{\mu \, \mathrm{d}\sigma}{r}.$$

2 Притяжение однородной сферы (сферического слоя)

Пусть простой слой постоянной плотности μ распределён на сфере радиуса R. Найдём притяжение такой однородной сферы в точке P, находящейся на расстоянии r от центра сферы O. ρ — переменное расстояние от элементарной площади $d\sigma$ поверхности сферы до точки P.

Воспользуемся сферической системой координат (θ, λ) . Пусть элемент $d\sigma$ представляет собой криволинейную трапецию, ограниченную меридианами λ , $\lambda + d\lambda$ и параллелями θ , $\theta + d\theta$. Тогда стороны трапеции будут равны

 $R\,\mathrm{d}\theta$ — длина дуги меридиана, $R\sin\theta\,\mathrm{d}\lambda$ — длина дуги параллели,

а элементарная площадь

$$d\sigma = R\sin\theta \,d\lambda \cdot R \,d\theta = R^2\sin\theta \,d\theta \,d\lambda.$$

По теореме косинусов

$$\rho^2 = R^2 + r^2 - 2Rr\cos\theta.$$

Тогда для простого слоя, распределённого на поверхности сферы, можно записать

$$V = G\mu \int_{0}^{\pi} \int_{0}^{2\pi} \frac{R^2 \sin\theta \,d\theta \,d\lambda}{\sqrt{R^2 + r^2 - 2Rr\cos\theta}} = G\mu R^2 \int_{0}^{\pi} \frac{\sin\theta \,d\theta}{\sqrt{R^2 + r^2 - 2Rr\cos\theta}} \int_{0}^{2\pi} d\lambda =$$
$$= 2\pi G\mu R^2 \int_{0}^{\pi} \frac{\sin\theta \,d\theta}{\sqrt{R^2 + r^2 - 2Rr\cos\theta}}.$$

Выполним замену переменных. Дифференцируя $\rho^2 = R^2 + r^2 - 2Rr\cos\theta$, получаем

$$\frac{\mathrm{d}\rho}{\mathrm{d}\theta} = \frac{Rr\sin\theta}{\rho}, \quad \sin\theta\,\mathrm{d}\theta = \frac{\rho\,\mathrm{d}\rho}{Rr},$$

тогда

$$V = 2\pi G \mu R^2 \int_0^{\pi} \frac{\sin \theta \, d\theta}{\sqrt{R^2 + r^2 - 2Rr \cos \theta}} = 2\pi G \mu \frac{R}{r} \int_{\rho_1}^{\rho_2} d\rho.$$

Если точка P — внешняя, то $\rho_1 = r - R$, $\rho_2 = r + R$, тогда

$$V_e = 2\pi G \mu \frac{R}{r} \int_{r-R}^{r+R} \mathrm{d}\rho = 2\pi G \mu \frac{R}{r} \left[(r+R) - (r-R) \right] = \underline{4\pi G \mu \frac{R^2}{r}}.$$

Поскольку масса всего сферического слоя равна $M=4\pi R^2 \mu,$ то окончательно получаем

$$V_e = \frac{GM}{r}.$$

Если точка P — внутренняя, то $\rho_1 = R - r$, $\rho_2 = R + r$, тогда

$$V_i = 2\pi G \mu \frac{R}{r} \int_{R-r}^{R+r} \mathrm{d}\rho = 2\pi G \mu \frac{R}{r} \left[(R+r) - (R-r) \right] = \underline{4\pi G \mu R} = \underline{const}.$$

При неограниченном приближении точки P к поверхности сферы $r \to R$, поэтому значение внешнего потенциала будет равно

$$V_e = \lim_{r \to R} 4\pi G \mu \frac{R^2}{r} = 4\pi G \mu R.$$

Таким образом, на поверхности сферы $V_e = V_i$. Следовательно, потенциал сферы — функция, непрерывная во всём пространстве.

Поскольку потенциал притяжения зависит только от расстояния от притягивающей точки до центра сферы, то для нахождения силы для внешней точки достаточно вычислить радиальную производную

$$|\overrightarrow{F_e}| = F_r = -\frac{\partial V}{\partial r} = 4\pi G \mu \frac{R^2}{r^2} = \frac{GM}{r^2}.$$

Для внутренней точки

$$|\overrightarrow{F_i}| = F_r = -\frac{\partial V}{\partial r} = 0.$$

При неограниченном приближении точки P к поверхности сферы P_0 с внешней и с внутренней стороны, получим

$$F_{e_0} = \lim_{r \to R} -\frac{\partial V}{\partial r} = \lim_{r \to R} 4\pi G \mu \frac{R^2}{r^2} = 4\pi G \mu,$$

$$F_{i_0} = \lim_{r \to R} -\frac{\partial V}{\partial r} = 0.$$

Прямое значение силы на самой поверхности сферы P_0 равно среднему из предельных значений, то есть

$$F_0 = 2\pi G\mu$$
.

Задача 2.1. Как ведут себя потенциал и сила притяжения сферы, если притягиваемая точка премещается из центра сферы в бесконечность? Постройте графики зависимости потенциала и силы притяжения сферы от расстояния.