Fields

Definition

To say that R is a *commutative ring* means:

- 1). R is a ring
- 2). Multiplication in R is commutative

Note that the binomial theorem holds for any commutative ring R:

 $\forall a, b \in R, \forall n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} b^k$$

Definition

To say that R is a division ring (skew field) means:

- 1). R is a ring with unity $1 \neq 0$
- 2). $\langle R \{0\}, \cdot \rangle$ is a group

In other words, every non-zero element of R is a unit.

Definition

To say that R is a *field* means:

- 1). R is a ring with unity $1 \neq 0$
- 2). $\langle R \{0\}, \cdot \rangle$ is an abelian group

In other words, ${\cal R}$ is a commutative division ring (skew field).

If R is a non-commutative division ring then it is called a $\it strictly \it skew \it field.$

Example

 $\mathbb Z$ is not a field, because $2\in\mathbb Z$ but 2 has no multiplicative inverse.

 \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.