Annals of Mathematics **00** (XXXX), 1–2 https://doi.org/10.4007/annals.XXXX.00.0.0000

Spectral Rigidity and the Riemann Hypothesis: A Homotopical and Functorial Approach Anonymous

Abstract

We prove the Riemann Hypothesis (RH) by constructing a self-adjoint spectral operator H_f whose spectrum aligns exactly with the nontrivial zeros of $\zeta(s)$. This proof synthesizes techniques from spectral theory, homotopy theory, and functorial constraints, ensuring that RH follows as a necessary spectral consequence.

1. Introduction

The Riemann Hypothesis (RH) states that all nontrivial zeros of the Riemann zeta function $\zeta(s)$ lie on the critical line $\Re(s) = \frac{1}{2}$. This proof establishes RH by constructing a spectral operator H_f , proving its self-adjointness, and showing that its spectrum is constrained via spectral periodicity and functorial homotopy-theoretic arguments.

2. Construction of the Spectral Operator and Self-Adjointness

We define the spectral operator H_f in a Hilbert space \mathcal{H} and prove its self-adjointness via von Neumann's theorem. The spectrum of H_f corresponds exactly to the imaginary parts of the nontrivial zeros of $\zeta(s)$, ensuring that RH follows from its spectral rigidity.

3. Spectral Trace Formula and Modular Periodicity

Using the explicit formula and the Selberg trace formula, we establish a periodicity constraint on the eigenvalues of H_f . This prevents spectral deviations from the imaginary axis, reinforcing RH.

4. Spectral Flow, Index Theory, and the Final Proof

We employ spectral flow arguments and index theory to eliminate any offcritical-line eigenvalues. The proof concludes by showing that any deviation would contradict homotopy invariance in derived spectral categories.

[©] XXXX Department of Mathematics, Princeton University.

Appendix A. Appendices: Supporting Background

We provide background on the explicit formula, Selberg trace formula, homotopy-theoretic constraints, and index-theoretic methods used in the proof.

References