NATIONAL INSTITUTE OF TECHNOLOGY CALICUT DEPARTMENT OF MATHEMATICS

Fourth Semester B.Tech. Second interim test - April 2015 MA 2002 MATHEMATICS IV

Time: 75 minutes

Answer all questions

Max. marks: 20 T + 5 A

PART - A (5 marks)

1. If f(z) is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$.

(3)

2. Find the image of the circle |z-3i|=3 under the inversion map $w=\frac{1}{z}$.

(2)

PART - B (20 marks)

3. When do we say that a function f(z) is analytic at a point? Show that Cauchy-Riemann equations are necessary for the function f(z) = u + iv to be analytic at a point.

(3)

4. Determine the analytic function f(z) such that the real part of f'(z) is $3x^2 - 4y - 3y^2$ and f(0) = 1, f'(0) = i.

(3)

5. Find the bilinear transformation that maps the points z = 1, i, -1 to w = -i, 0, i respectively. What is the image of the real axis under this map?

(3)

6. Evaluate $\int_C f(z)dz$ where $f(z) = \begin{cases} 4y, & \text{when } y > 0 \\ 1, & \text{when } y < 0 \end{cases}$ and C is the arc from z = 1 - i to z = 1 + i of the cubical curve $y = x^3$.

(2)

7. State and prove Cauchy's integral theorem. Using this theorem find the value of $\int_C \frac{1}{z-2} dz$, where C is the circle |z|=1.

(3)

- 8. Using Cauchy's integral formula, evaluate $\int_C \frac{(3z^2-2z)}{(z+1)^2(z-2)} dz$, where C is the circle |z-1|=3.
- 9. Find the Laurent series expansions of $f(z) = \frac{1}{z^2 + 1}$ about its singular points. Also state the regions of convergence.

(3)