ET5 (Representació en Ca2 i aritmètica entera) Objectius per avaluar objectius de nivell B

Objectius: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 i 5.10.

Exercici 5.1. (Objectiu 5.1)

Descriu els avantatges de la representació en complement a 2 respecte de la representació en signe i magnitud.

Exercici 5.2. (Objectiu 5.2)

Escriu la fórmula que ens dóna el valor d'un nombre enter X_s en funció dels n bits del vector de dígits $X = x_{n-1}x_{n-2}...x_1x_0$ que el representa en complement a 2.

Exercici 5.3. (Objectiu 5.3)

Dóna el rang d'un nombre enter representat en complement a 2 per un vector de 7 bits.

Exercici 5.4. (Objectiu 5.6)

Completa la taula següent, on X_s és un nombre enter en decimal i X en Ca2 és el vector de 8 bits que el representa en complement a 2. Si en algun cas amb 8 bits no n'hi ha prou posa Irr a la casella corresponent.

Xs	X en Ca2
120	
-76	
	11000101
128	
-1	
	01111001

Exercici 5.5. (Objectiu 5.4)

Escriu el valor del vector W de 12 bits que representa el mateix nombre enter que el vector X de 8 bits (escriu el resultat en la mateixa base que el vector X en cada cas).

X	W
00001101	
10001101	
0xFE	0x
0x7E	0x

Exercici 5.6. (Objectiu 5.5)

Pregunta a.

3-SE(X). Dibuixa l'esquema lògic intern del bloc que estén el rang per a enters. X és un bus de 8 bits i la sortida del bloc ha de ser de la mateixa mida. La sortida ha de representar el mateix nombre que els 3 bits de menor pes de X interpretats en Ca2.

Pregunta b.

Què valdrà la sortida del bloc 3-SE(X) si X=00000100?

Exercici 5.7. (Objectiu 5.7.1)

Escriu els **8 bits de menor pes** del vector de bits resultant d'efectuar les següents sumes en Ca2 i indica si el resultat és representable usant 8 bits o no.

- a) 10011111+01101111.
- b) 10101011+11111111.
- c) 01011101+01000001.

Respon ara a les següent preguntes:

- a) Sota quines condicions hi pot haver resultat no representable quan els dos operands són de diferent signe?
- b) Sota quines condicions hi pot haver resultat no representable quan els dos operands són negatius?
- c) Sota quines condicions hi pot haver resultat no representable quan els dos operands són positius?

Exercici 5.8. (Objectiu 5.8.1)

Dibuixa l'esquema lògic intern del bloc combinacional ADD(X,Y) que calcula tant X_u+Y_u (suma natural) com X_s+Y_s (suma entera) usant Full-adders. X i Y són busos de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits interpretant el resultat com a suma de naturals, i el senyal Ovf que s'activa quan el resultat no és representable quan s'interpreta el resultat com a suma d'enters.

Exercici 5.9. (Objectiu 5.7.2)

Escriu els **8 bits de menor pes** del vector de bits W resultant d'efectuar els canvis de signe de X en Ca2 (tal que $W_s = -X_s$) i indica si el resultat és representable usant 8 bits o no.

X	W	Representable
00001101		
00000000		
11111111		
10000000		

Exercici 5.10. (Objectiu 5.8.2)

Dibuixa l'esquema lògic intern del bloc combinacional CS(X) que calcula $-X_s$ a partir de Half-adders i portes Not. X és un bus de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits.

Exercici 5.11. (Objectiu 5.7.3)

Escriu els **8 bits de menor pes** del vector de bits resultant d'efectuar les següents restes (mitjançant canvi de signe i suma) en Ca2 i indica si el resultat és representable usant 8 bits o no.

- a) 10101101-01011101.
- b) 10100000-10000001.
- c) 00100011-00111111.

Exercici 5.12. (Objectiu 5.7.3)

Dibuixa l'esquema lògic intern del bloc combinacional SUB(X,Y) que calcula X_s - Y_s usant Full-adders i portes Not. X i Y són busos de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits.

Exercici 5.13. (Objectiu 5.7.4)

Escriu els **8 bits de menor pes** del vector de bits resultant de les següents multiplicacions de nombres en Ca2 per potències de 2 i digues si el resultat és representable en 8 bits o no.

- a) 00010110 per 2⁴.
- b) 00101010 per 2².
- c) 10000111 per 2^3 .

Exercici 5.14. (Objectiu 5.7.5)

Escriu els **8 bits de menor pes** del vector de bits resultant de les divisions següents de nombres en Ca2 per potències de 2.

- a) 11110101 entre 2³.
- b) 10000000 entre 2⁷.
- c) 01111111 entre 2⁶.

Exercici 5.15. (Objectiu 5.9)

- a) Dibuixa l'esquema lògic intern del bloc combinacional SRA-3(X) que realitza els desplaçaments aritmètics sobre enters codificats en Ca2 necessaris per a calcular $W_u=X_u/2^3$. X i W són busos de 8 bits.
- b) Què valdrà la sortida del bloc SRA-3(X) si X=10000111?

Exercici 5.16. Comparadors d'enters (Objectiu 5.10)

- a) **Comparador LT(X,Y)**. Bloc que calcula la funció de comparació de nombres enters $X_s < Y_s$, a partir d'un restador amb sortida d'overflow anomenada v i portes lògiques. X i Y són busos de 8 hits
- b) Què valdrà la sortida del bloc LT(X,Y) si X=10001000 i Y=01111111?
- c) **Comparador LE(X,Y)**. Bloc que calcula la funció de comparació de nombres enters $X_s \le Y_s$, a partir d'un restador amb sortida d'overflow anomenada v i portes lògiques. X i Y són busos de 8 bits.
- d) Què valdrà la sortida del bloc LE(X,Y) si X=10001000 i Y=10001001?

Solucions ET5 (Representació en Ca2 i aritmètica entera)

Exercici 5.1.

- Permet sumar nombres enters usant el mateix hardware que l'usat pels nombres naturals.
- Cada nombre té una sola codificació (no hi ha dos representacions pel zero, com en signe i magnitud).
- Té un rang una mica més gran (hi ha un negatiu més que en signe i magnitud).

Exercici 5.2. $X_s = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$

Exercici 5.3. [-64,63]

Exercici 5.4.

X _s	X en Ca2
120	01111000
-76	10110100
-59	11000101
128	Irr
-1	11111111
121	01111001

Exercici 5.5.

X	W
00001101	00000001101
10001101	111110001101
0xFE	0xFFE
0x7E	0x07E

Exercici 5.6.

a)

b) 3-SE(00000100) = 111111100.

Exercici 5.7.

- a) 10011111+01101111 = 00001110. Representable.
- b) 10101011+11111111 = 10101010. Representable.
- c) 01011101+01000001 = 10011110. No representable.
- d) Mai, el resultat sempre serà representable.
- e) Si el resultat és positiu.
- f) Si el resultat és negatiu.

Exercici 5.8.

Exercici 5.9.

X	W	Representable
00001101	1110011	Sí
00000000	0000000	Sí
11111111	0000001	Sí
10000000	1000000	No

Exercici 5.10.

Exercici 5.11.

- a) 10101101-01011101 = 01010000. Representable.
- b) 10100000-10000001 = 00011111. Representable.
- c) 00100011-00111111 = 11100100. Representable.

Exercici 5.12.

Exercici 5.13.

- a) $00010110 \text{ per } 2^4 = 01100000$. No representable. b) $00101010 \text{ per } 2^2 = 10101000$. No representable. c) $10000111 \text{ per } 2^3 = 00111000$. No representable.

Exercici 5.14.

- a) 11110101 entre $2^3 = 111111110$. b) 10000000 entre $2^7 = 11111111$. c) 01111111 entre $2^6 = 00000001$.

Exercici 5.15.

a)

b) SRA-3(10000111) = 11110000.

Exercici 5.16.

a)

b) LT(10001000, 01111111) = 1. c)

d) LE(10001000, 10001001) = 1