P

Vectors

1 Vectors

A vector is a quantity that has both magnitude and direction. Vectors are used to represent physical quantities that cannot be fully described by a single number alone. Examples of vector quantities include displacement, velocity, acceleration, and force.

rorce.					
Scalar Quantity	Vector Quantity				
 Having Magnitude only Follow simple algebricaddition 	 Having Magnitude and direction follow triangle law of vector addition. 				
 Can be changed only by changing its value 	 Can be changed by changing magnitude only, or changing dirⁿ only or changing both. 				
Ex-Speed, time, Mass, Volume, density current, etc.	Ex-Force, Velocity, current density, torque etc.				

Properties of Vectors

+ In a vector +ve sign and sign -ve indicate direction only.

Ex: +5N and -5N, same magnitude of force in opposite direction.

+ Angle between vector — When two vectors are placed head to head or tail to tail then smaller angle between vector is called angle between vector.

- + Vector can be shifted parallel to itself by keeping magnitude and direction fixed.
- + Rotation of vector not allowed it will change meaning of vector.
- + If angle between \overrightarrow{A} and \overrightarrow{B} vector is θ then angle between \overrightarrow{A} and $-\overrightarrow{B}$ is $(180^{\circ}-\theta)$.
- + All equal vectors are parallel but all parallels are not equal.
- + All opposite (Negative) Vectors are Antiparallel but all antiparallel are not Opposite Vector

2 Type of Vectors

Туре	Magnitude	Direction\Angle
Equal Vector	Same	Same $(\theta = 0)$
Parallel Vector	May or May not same	Same $(\theta = 0)$
Opposite Vector or Negative Vectors	Same	Opposite $\theta = 180^{\circ}$
Anti-parallel Vector	May or May not same	θ = 180° opposite
Orthogonal	May same	θ = 90°
Zero/Null Vector	Zero	any direction
Unit Vectors	One	$\hat{A} = \frac{\vec{A}}{A}$

Components of Vector in 2-D (effect of Vector)

+
$$\overrightarrow{B} = B_x \hat{i} + By \hat{j}$$

= $B \sin \theta \hat{i} + B \cos \theta \hat{j}$

Magnitude of resultant Vector

$$A = \int A_x^2 + Ay^2$$
 or $B = \int B_x^2 + B_y^2$

Direction:

$$\theta = \tan^{-1} \left(\frac{A_y}{A_x} \right) \text{ or } \theta = \tan^{-1} \left(\frac{B_x}{B_y} \right)$$

Rectangular component of a vector in 3D

$$\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Magnitude

$$|\vec{A}| = \int A_x^2 + A_y^2 + A_z^2$$

+ If vector is making an angle α , β and γ from x, y and z-axis respectively then $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$; $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 2$

Direction Cosine

$$\cos \alpha = \frac{Ax}{A}$$
 $\cos \beta = \frac{Ay}{A}$ $\cos \gamma = \frac{Az}{A}$

3 Vectors addition

+ It is the process of combining two vectors by placing the tail of one vector at the head of the other. i.e.,

Polygon Law of vector addition

+ Start tail of next vector from head of previous vector and so on.

Triangle Law of Vector addition

+
$$|\vec{R}| = (A^2 + B^2 + 2AB \cos \theta)$$

$$+$$
 tan $\alpha = \frac{B \sin \theta}{A + B \cos \theta}$

If
$$\theta = 0^{\circ}$$
 $\theta = 90^{\circ}$ $\theta = 180^{\circ}$
 $R_{\text{max}} = A + B$ $R = \sqrt{A^2 + B^2}$ $R_{\text{min}} = A - B$

$$+$$
 A $-$ B \leq R \leq A $+$ B

+ If
$$|\overrightarrow{A}| = |\overrightarrow{B}| = A$$
 and Angle b/w them θ
 $|\overrightarrow{R}| = 2A \cos(\theta/2)$ $|\overrightarrow{D}| = 2A \sin(\theta/2)$

Vector Subtraction

Angle B/w \overrightarrow{A} & \overrightarrow{B} is θ then $\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$

Magnitude

$$|\overrightarrow{D}| = \sqrt{A^2 + B^2 - 2AB \cos \theta}$$

+ If
$$\theta = 0^{\circ}$$
 $\theta = 90^{\circ}$ $\theta = 180^{\circ}$

$$D_{min} = A - B$$

$$D = A^{2} + B^{2}$$

$$D = A + B$$

$\theta = 0^{\circ}$	θ = 60°	θ = 90°	θ = 120°	θ = 180°
R = 2A	$R = \sqrt{3}A$	$R = \sqrt{2}A$	R = A	R = 0
D = 0	D = A	$D = \sqrt{2}A$	$D = \sqrt{3}A$	D = 2A

Properties of vector addtion and substraction:

+ Magnitude of Vector addition and subtraction are same at 90°.

$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} + \overrightarrow{A}$$

Commutative

+
$$n(\overrightarrow{A} + \overrightarrow{B}) = n\overrightarrow{A} + n\overrightarrow{B}$$

distributive

$$+ \overrightarrow{A} - \overrightarrow{B} \neq \overrightarrow{B} - \overrightarrow{A}$$

- + $\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\overrightarrow{B} = B_x \hat{i} + B_y \hat{j}$ + $B_z \hat{k}$ then $\overrightarrow{A} + \overrightarrow{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j}$ + $(A_z + B_z) \hat{k}$
- + If $|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A}| = |\overrightarrow{B}|$ then angle between \overrightarrow{A} and \overrightarrow{B} is 120°
- + If $|\overrightarrow{A}| + |\overrightarrow{B}| = |\overrightarrow{A} + \overrightarrow{B}|$ then angle between \overrightarrow{A} and \overrightarrow{B} is zero.
- + If $\overrightarrow{A} + \overrightarrow{B} = \sqrt{A^2 + B^2}$ then angle between \overrightarrow{A} and \overrightarrow{B} is 90°.

+ If $|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{B} - \overrightarrow{A}|$ then angle between \overrightarrow{A} and \overrightarrow{B} is 90° .

4 Displacement vector

+ If a particle moves from the initial position (x_1, y_1, z_1) to the final position (x_2, y_2, z_2) , the displacement vector r is given by:

$$r = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k$$
or
$$r = \Delta xi + \Delta yj + \Delta zk$$

Magnitude of displacement vector

+
$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- Q.1. Ramlal is moving with velocity 6m/s along east and pinky with 6 m/s at 30° east of north then relative velocity of pinky w.r.t Ramlal.
- Sol. $\vec{V}_{PR} = \vec{V}_{P} \vec{V}_{R}$ same vector ka subtraction at 60° $|\vec{V}_{PR}| = 6$ m/s
- Q.2. Find change in Speed and velocity

- Sol. Change in speed = 0 magnitude of change in velocity = 20 m/s
- Q.3. If $\overrightarrow{A} = 0.6\hat{i} + \beta\hat{j}$ is a unit vector then find value of β .

Sol.
$$|\overrightarrow{A}| = 1$$
 if A is unit vector
$$\int (0.6)^2 + \beta^2 = 1$$
$$\beta^2 + 0.36 = 1$$

$$\beta = \sqrt{0.64} = 0.8$$

- Q.4. Two force 10N and 6N acting then find resultant of these two force.
- Sol. $10 6 \le R \le 10 + 6$ R will between 4N to 16N
- Q.5. Find the angle which a vector $\hat{i} + \hat{j} + \sqrt{2}\hat{k}$ makes with x, y and z-axis

$$A = \sqrt{1^2 + 1^2 + (\sqrt{2})^2} = 2$$

$$A_{x} = 1$$

$$A_y = 1$$

$$A_7 = \sqrt{2}$$

$$\cos \alpha = \frac{A_x}{A} \cos \beta = \frac{A_y}{A} \cos \gamma = \frac{A_z}{A}$$

$$\alpha = 60^{\circ} \qquad \beta = 60^{\circ} \qquad \gamma = 45^{\circ}$$

- Q.6. In which of the following combination of three force resultant will be zero.
 - (a) 3N, 7N, 8N
 - (b) 2N, 5N, 1N
 - (c) 3N, 12N, 7N
 - (d) 4N, 5N, 10N
- Sol. (a) Sum of two smaller must be greater or equal to (3^{rd}) .

5 Scalar Product (Dot Product)

- $+ \overrightarrow{A} \cdot \overrightarrow{B} = A(B \cos \theta) = A(Component of B along A)$
- = $(A \cos \theta) B = B(Component \text{ of } A \text{ along } B)$

Component of B along
$$A = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{A}$$

Component of A along
$$B = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{B}$$

+ Result of dot product is always scalar.

$$\hat{i} \cdot \hat{i} = 1 \qquad \hat{j} \cdot \hat{j} = 1 \qquad \hat{k} \cdot \hat{k} = 1$$

$$\hat{i} \cdot \hat{k} = 0 \qquad \hat{j} \cdot \hat{i} = 0 \qquad \hat{k} \cdot \hat{j} = 0$$

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$

$$= A_x B_x + A_y B_y + A_z B_z$$

Application of dot Product

+ To Find Angle B/W vectors

$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$$

$$\cos\theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{AB}$$

+ To check unit vector

If \overrightarrow{A} is a unit vector then $\overrightarrow{A} \cdot \overrightarrow{A} = 1$

+ To check perpendicular vector (orthogonal)

If
$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos 90^\circ = O$$

 $\overrightarrow{A} \cdot \overrightarrow{B} = O \quad (\overrightarrow{A} \perp r \overrightarrow{B})$

+ To find component of one vector along other.

$$\overrightarrow{A} \cdot \overrightarrow{B} = A(B \cos \theta)$$

$$B \cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{A} = Comp^n \text{ of } B \text{ along } A$$

- Q.7. If $\overrightarrow{A} = 4\hat{i} + 2\hat{j} 3\hat{k}$ and $\overrightarrow{B} = \hat{i} + 3\hat{j} 2\hat{k}$ then find $\overrightarrow{A} \cdot \overrightarrow{B}$
 - (1) 10
 - (2) 16
 - (3)3
 - (4) 14

Sol. (2)
$$\overrightarrow{A} \cdot \overrightarrow{B} = (4\hat{i} + 2\hat{j} - 3\hat{k}) \cdot (\hat{i} + 3\hat{j} - 2\hat{k})$$

= $4 + 6 + 6$
= 16

- Q.8. A force $\vec{F} = 4\hat{i} + 5\hat{j}$ newton displaces a particle through $\vec{S} = 3\hat{i} + 6\hat{j}$ meter. Then find work done.
 - (1) 24 Joule
 - (2) 12 Joule
 - (3) 28 Joule
 - (4) 42 Joule

Sol. (1)
$$W = \overrightarrow{F} \cdot \overrightarrow{S} = (4\hat{i} + 5\hat{j}) \cdot (3\hat{i} + 6\hat{j})$$

= 12 + 30
= 42 J

6 Cross-Product : [Vector Product]

 $+ \vec{A} \times \vec{B} = AB \sin \theta \hat{n}$

- $+ \hat{n}$ is direction of $\overrightarrow{A} \times \overrightarrow{B}$ which is perpendicular to $\overrightarrow{A} \& \overrightarrow{B}$.
- + $(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{A} = O$ $(\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{B} = O$
- + B sin $\theta = \frac{\overrightarrow{A} \times \overrightarrow{B}}{A} = component of$ B perpendicular of A
- $+ \overrightarrow{R} = \overrightarrow{A} \times \overrightarrow{B}$

Place your finger of right hand along \vec{A} and slap \vec{B} then thumb will represent \vec{R} .

$$\hat{i} \times \hat{i} = 0 = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}$$

$$\hat{i} \times \hat{j} = \hat{k}$$

$$\hat{j} \times \hat{i} = -\hat{k}$$

$$\hat{j} \times \hat{k} = \hat{i}$$

$$\hat{k} \times \hat{j} = -\hat{i}$$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{j}$$

$$+ \overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
$$= i (A_y B_z - A_z B_y)$$
$$- J(A_x B_z - A_z B_x)$$
$$+ K(A_x B_y - A_y B_x)$$

+ Unit vector does not have any unit only have direction and magnitude one.

- + Minimum no. of vectors whose resultant can be zero is '2'.
- + Minimum no of unequal vectors whose resultant can be zero is 3.
- → The resultant of 3 Non-coplaner vectors can't be zero.
- + Minimum no of Non-coplaner, vectors whose resultant can be zero is 4.
- + Angle between $(\overrightarrow{A} \times \overrightarrow{B})$ and $(\overrightarrow{A} + \overrightarrow{B})$ is 90°
- + Division of vector with vector is not possible
- + Division of magnitude of vector is possible
- + Vector can be divided by scalar.
- + If vector multiplied by positive scalar then magnitude change and direction remains same.
- + If vector multiplied by negative scalar then magnitude change and direction becomes opposite.

Scalar triple Product

 $R = (\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{C}$ Result R will be scalar and R will be zero if any of these two vector becomes parallel.

Area of parallelogram

Area =
$$|A \times B|$$

Area of triangle:

Area =
$$\frac{1}{2} |A \times B|$$

The condition for coplanarity is

$$A \cdot (B \times C) = 0$$

Q.9. Force acting on object $\vec{F} = 5\hat{i} + 3\hat{j} - 7\hat{k}$ position vector $\vec{r} = 2i + 2j - k$ then find torque?? (NEET 2022)

Sol.
$$\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 5 & 3 & -7 \end{vmatrix}$$

$$\hat{i}(-14 - (-3) - \hat{j}(-14 - (-5) + \hat{k}(6-10) - 11\hat{i} + 9\hat{i} - 4\hat{k}$$

Q.10. If $|\vec{A} \times \vec{B}| = |\vec{3} \vec{A} \cdot \vec{B}|$ then angle between \vec{A} and \vec{B} is?

Sol. AB
$$\sin \theta = \sqrt{3}$$
 AB $\cos \theta$
 $\tan \theta = \sqrt{3} \Rightarrow \theta = 60^{\circ}$

7 Lami's Theorem (Laws of motion) for 3 Vectors

When.

$$\frac{A}{\sin \alpha} = \frac{B}{\sin \beta} = \frac{C}{\sin \gamma}$$

Then,
$$\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$$

Q. 11. As shown in figure tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newton are

(a)
$$30\sqrt{3}$$
, 30

(a)
$$30\sqrt{3}$$
, 30 (b) $30\sqrt{3}$, 60

(c) $60\sqrt{3}$, 30 (d) None of these

Ans.
$$\frac{30}{\sin 150^{\circ}} = \frac{T_1}{\sin 90^{\circ}}$$

$$\frac{T_1}{1} = \frac{30}{1/2}$$
, $T_1 = 60 \text{ N}$

$$\frac{W}{\sin 120^{\circ}} = \frac{30}{\sin 150^{\circ}}$$

$$\frac{W}{\sqrt{3}/2} = \frac{30}{1/2} = 30\sqrt{3}$$

Q. 12. If three force acting on the object as shown in figure. Then find net force on object.

Sol. Net force on this object (point)

Q. 13. For two vector \overrightarrow{A} and \overrightarrow{B} vector addition $\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$ and vector subtraction $\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$ then angle between \overrightarrow{A} and \overrightarrow{B} .

Condition

(i)
$$|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{R}| = |\overrightarrow{A}| = |\overrightarrow{B}| \rightarrow \theta = 120^{\circ}$$

(ii)
$$|\vec{A}| = |\vec{B}| = |\vec{A} - |\vec{B}|$$
 $\rightarrow \theta = 60^{\circ}$

(iii)
$$A^2 + B^2 = |\vec{A} - \vec{B}|^2 = D^2 \rightarrow \theta = 90^\circ$$

$$(iv) A^2 + B^2 = R^2 \qquad \rightarrow \theta = 90^\circ$$

$$(v) |\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A} - \overrightarrow{B}| \rightarrow \theta = 90^{\circ}$$

(vi)
$$|\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A}| + |\overrightarrow{B}|$$
 $\rightarrow \theta = 0^{\circ}$

$$|R| = A + B$$

$$(vii) |\overrightarrow{A} - \overrightarrow{B}| = |\overrightarrow{A}| + |\overrightarrow{B}| \rightarrow \theta = 180^{\circ}$$

$$|\overrightarrow{D}| = A + B$$

$$|\overrightarrow{D}| = A + B$$

$$(viii) |\overrightarrow{A} + \overrightarrow{B}| = |\overrightarrow{A}| - |\overrightarrow{B}| \rightarrow \theta = 180^{\circ}$$

$$|R| = A - B$$

$$(ix) |\overrightarrow{A} - \overrightarrow{B}| = |\overrightarrow{A}| - |\overrightarrow{B}| \rightarrow \theta = 0^{\circ}$$

MR*

•अपनी पढाई छोड़ जो तेरे पीछे चला आयेगा। वो खुद का ना हो सका, तेरा क्या हो जायेगा॥ •े