Towards a More Accessible Material Platform for Photonic Integrated Circuits: A Hybrid Si₃N₄-Based Alternative to Thin-Film Lithium Niobate

Your Name
Department of Photonics Engineering
Your Institution
Email: your.email@example.com

Abstract—Thin-film lithium niobate (TFLN) has recently gained prominence in photonic integrated circuits (PICs) due to its excellent electro-optic properties. However, the high fabrication cost, limited CMOS compatibility, and processing complexity present challenges for large-scale deployment. This paper proposes a more accessible and scalable alternative platform, based on low-loss silicon nitride (Si $_3$ N $_4$) with heterogeneous integration of active electro-optic materials such as barium titanate (BTO), aluminum nitride (AlN), and thin LiNbO $_3$ itself. We analyze and compare performance metrics including optical loss, electro-optic efficiency, and bandwidth, and outline paths toward CMOS-compatible hybrid PICs with high scalability and minimal power consumption.

I. INTRODUCTION

Photonics is transitioning from lab-scale demonstration to industrial-scale manufacturing, requiring material platforms that are low-loss, CMOS-compatible, and scalable. TFLN offers a high Pockels coefficient and wide optical transparency but remains expensive and challenging to integrate. Silicon nitride (Si_3N_4) , in contrast, is already widely adopted for ultralow-loss passive circuits. This work explores hybrid combinations leveraging Si_3N_4 's scalability with high-performance active materials.

II. MOTIVATION AND HYPOTHESIS

A. Limitations of TFLN

Despite its success in modulators with $\[\& 100 \]$ GHz bandwidth, TFLN suffers from:

- Complex wafer bonding or ion-slicing processes
- High propagation losses outside telecom band
- Difficulties in integration with standard CMOS back-end

B. Hypothesis

A hybrid platform based on $\mathrm{Si}_3\mathrm{N}_4$ combined with electrooptic layers such as BTO, AlN, or transferred LiNbO $_3$ can maintain performance while improving accessibility, loss, and scalability.

III. MATERIAL PLATFORM COMPARISON

IV. HYBRID PLATFORM DESIGN

We propose a layered stack:

• Substrate: Thermally oxidized silicon

TABLE I
COMPARISON OF CANDIDATE MATERIALS FOR HYBRID PICS

Platform	Loss	$V\pi L$	EO Coeff.	CMOS Comp.
	(dB/cm)	(V·cm)	(pm/V)	
TFLN	0.03-0.2	3–9	~30	Partial
Si ₃ N ₄	< 0.01	-	_	Full
$Si_3N_4 + TFLN$	0.1-1	5–9	~30	High
$Si_3N_4 + BTO$	6–40	0.3-1	~900	Moderate
$Si_3N_4 + AlN$	1–10	~10	1–2	Full

- Passive Layer: LPCVD Si₃N₄ (200–400 nm) for lowloss guiding
- Active Layer: BTO (via pulsed laser deposition) or bonded thin-film LiNbO₃
- **Electrodes:** Coplanar waveguide (CPW) for efficient RF-optical overlap

A. BTO Integration

Recent results show BTO exhibits high Pockels effect but higher optical loss. Mode overlap engineering and surface polishing are under investigation to reduce this.

B. AlN Consideration

AlN offers moderate EO effect with strong thermal and mechanical properties. Suitable for GHz-bandwidth resonator-based modulation.

V. PERFORMANCE PROJECTIONS

Based on simulations and literature:

- Si₃N₄ + TFLN hybrid: loss <1 dB/cm, VπL ~5–9 V·cm, 100 GHz BW
- Si₃N₄ + BTO: $V\pi L \sim 0.3 \text{ V} \cdot \text{cm}$, potential for ultralow power
- Si_3N_4 + AlN: GHz-range modulation with robust integration

VI. DISCUSSION

The choice of hybrid material depends on application priorities:

- Low power: BTO preferredHigh stability: AlN preferred
- Broad compatibility and proven performance: TFLN CMOS compatibility and foundry support favor Si₃N₄-based stacks, allowing reuse of existing infrastructure.

VII. CONCLUSION AND FUTURE WORK

Hybrid Si₃N₄ platforms with integrated active electro-optic materials offer a promising path beyond monolithic TFLN. Future work includes:

- · Experimental verification of BTO and AlN hybrid modulators
- RF-optical co-design for maximized efficiency
- Transfer printing for scalable heterogeneous integration

ACKNOWLEDGEMENTS

We thank the authors of foundational papers on Si₃N₄, TFLN, and BTO-based PICs, and acknowledge open access sources including MDPI, AIP, and IEEE.

REFERENCES

- [1] C. Wang et al., "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, 2018.
- [2] H. Abdalla et al., "High-performance electro-optic modulation using ferroelectric BaTiO₃ on SiN," *Sensors*, 2022.
- [3] X. Guo et al., "Aluminum nitride photonic circuits for RF-optical signal
- processing," *New J. Phys.*, 2012.
 [4] A. Gajda et al., "Silicon nitride PICs: ultra-low-loss and broadband," PhotonDelta Whitepaper, 2022.