Architectural Trade-offs in designing a Network Processor for Layers 4-7

Enric Musoll

Clearwater Networks
19-Dec-01

Outline

- Definition of Network Processor
 - Data vs. Control planes
 - Lower vs. Upper layers
 - Interfaces
- Workload Characteristics
 - Packet-based processing
 - Memory bottleneck
 - Applications
 - Benchmarking
- Architecture
 - Chip interfaces
 - ISAs
 - Pipeline
- Clearwater Networks
 - SMT core
 - Packet Management Unit
 - High Memory Bandwidth

Definition - Several ...

- Fundamental building blocks of the internet infrastructure
 - Enable efficient processing of network cells or packets
- Several definitions depending on what dimension we are
 - Data vs. Control plane
 - Lower vs. Upper layers
 - Interfaces (bandwidth)
 - Programmability (ASIC vs. processor)

Definition - Control/Data

- Data Plane: processing done for each packet
- Control Plane: otherwise
- Data plane passes exception packets to control plane
 Too complex processing for data plane
 - Exception packets often result in modification of state
- Key: how often exception packets occur?

Definition - Data/Control

- Data Plane typical functions
 - Packet source/destination lookup and next-hop determination
 - QoS/CoS determination and/or enforcement
 - Packet encapsulation/deencapsulation
 - Packet fragmentation/reassembly
 - Maintenance of traffic statistics

- Control plan typical functions
 - Running routing protocols
 - Managing routing tables
 - Responding to management of complex inquiries (TELNET, HTTP requests,...)
 - Other system managements tasks, like host processor communications

Definition - Interfaces Packet bandwidth determines maximum wire speed processing Memory bandwidth determines what can be done to meet wire speed processing Line Interface Packet Memory I/F Network Processor Pabric I/F Host Interface

Definition - Programmability

- Stand-alone processor
 - Fetch/Execute its own instruction set
 - Provides packet interfaces directly on chip
 - Types:
 - · Purpose-built NPs
 - Execute an instruction stream in response to receiving a packet
 - Usually used in the data planeHigh-bandwidth packet interfaces
 - · Networking-enhanced processors
 - Traditional ISA
 - Networking peripherals integrated
 - · Usually used in control plane and as general processors
 - Low/Medium bandwidth packet interfaces
- Co-processor
 - Offload some processing from the control-plane processor
 - They are fed instructions and/or data from the control-plane processor
 - Typically work in a request/response mode
 - Types:
 - · Configurable (packet buffer manager, queuing manager)
 - · Fixed-function engines (address look up, encryption, statistic gathering)

Definition - Summary Tendency Control Plane Processing Effort Data Plane Layer Packet Bandwidth

Workload - Outline

- Packet-based processing
- Memory bottleneck
- Applications
- Benchmarking

Workload - Packet based

- Dependencies among packets within the same flow
 - NP has to maintain some kind of <u>state</u>
 - The more state modification, the higher the likelihood of processing stalling (like dependencies in typical pipelines)

Workload - Packet based

- Issue: time budgets per cell/packet arrival at high wire speeds
 - Budget relaxed if packets are large (except if payload is processed)

Line I/F	Bandwidth	Budget (time)	Budget (cycles)	
			@ 300MHz	@ 1GHz
Ethernet	10 Mbps	50us	15K	50K
1 Gig Ethernet	1 Gbps	500ns	150	500
10 Gig Ethernet	10 Gbps	50ns	15	50
OC-768	40 Gbps	13ns	4	13

(Assuming 64-byte packets) (Approx. 60 RISC instructions needed for basic L3 forwarding)

Workload - Memory bottleneck

- Network applications are memory intensive
 - L2/L3 apps need to perform standard packet receiving/switching/sending processing
 - L4 and up add accesses to state
- Size of packets not memory friendly
 - Size usually not power of 2 (wasted memory bandwidth)
 - Memory fragmentation
- Caches
 - DCache
 - Look-up tables very big and accesses sparse (data caches do not help)
 - Temporal locality very poor for L2/L3 apps (different picture for upper layers)
 - ICache
 - Good locality, however significant thrashing under simultaneously tasks (threads)

Workload – Memory bottleneck

- Typical sequence of memory accesses for L2/L3 forwarding (tasks are decoupled)
 - Receiving packet task
 - · Get buffer descriptor from allocation pool
 - · Write packet status and store packet into buffer memory
 - · (Schedule pointer into queue for classification)
 - Processing packet task
 - · Read descriptor
 - Fetch needed packet data from buffer
 - · Do appropriate accesses to look-up table
 - · Modify L2/L3 header into buffer
 - · Update descriptor
 - · (Schedule pointer into a queue for transmission)
 - Transmitting packet task
 - Fetch descriptor
 - · Read packet from buffer and send it out
 - · Return descriptor to allocation pool

Workload - Applications

- L4
 - Proxying
 - NAT (Network Address Translation)
 - TCP stack
 - Stream/Flow reassembly
 - Content-based routing
 - CoS/QoS (Classification/Prioritization)
 - Rate shaping
 - Basic load balancing
- L5-L7
 - Web Switching (Content-based load balancing)
 - RMON (Remote monitoring)
 - Intrusion detection (Firewalls)
 - Virus detection
 - VPNs (Virtual Private Networks)
 - NAS (Network Attached Storage)

Workload - Applications

- Network Address Translation (NAT)
 - Method of connecting multiple computers to an IP network using one IP address
 - Mapping "private" addresses to real IP addresses
 - Source/Destination addresses and port numbers might get modified
 - Checksum for the whole packet needs to be recomputed and replaced
 - NAT client has to maintain state
 - Mapping tables
 - Time-out counters for each of the users (specially for UDP traffic)
 - NAT implements by default a basic firewall mechanism by rejecting unknown packets

Workload - Applications

- Class Of Service/Quality of Service
 - CoS: packets are analyzed and mapped into classes
 - QoS: prioritization among classes
 - RSVP protocol to guarantee "quality"
 - Hosts request the degree of quality, nodes enforce the agreements
 - Class == Queue, which implies that usually there is need of more queues than hardware can provide

Workload - Applications

- Web Switching
 - Used in web hosting, online business, content providers, ecommerce services
 - A web switch redirects requests based on URLs in addition to IP addresses
 - URL identifies the content, not the destination server
 - Redirection to the best server (uses NAT)
 - Processing includes
 - URL parsing
 - Maintain virtual connection for all the packets of the session
 - Delayed binding: the content requested is not know until a number of packets have arrived
 - Tracking requests to predict hot content. Initiate content replication in different servers
 - Virtual web sites: a web switch can redirect requests to a site anywhere

Workload - Applications

- Virtual Private Networks (VPNs)
 - Goal: to use public networks privately
 - 4 key objectives tackled by 2 mechanisms
 - IPSec
 - Integrity (data is not changed)
 - Authenticity (sender "signs" the packets); MD5
 - Replay protection (duplications are not welcome)
 - 3DES
 - · Confidentiality (encryption/decryption)
 - VPN nodes at the edges need to insert/remove the variable length Authentication Header after the IP header

Workload - Applications Network Attached Storage (NAS) Evolution of NFS: offload servers from file management tasks

Platform independent (network decouples file system and servers operating systems)

LAN

Workload - Benchmarking

- Network applications have some common characteristics
 - High data throughput, multiple simultaneous packets
 - · Stress to the memory system
 - Context switching overhead
 - Loosely dependent threads
 - · Significant inter-thread communication
 - Multiple, relatively light threads
 Reduced effectiveness of traditional branch predictors
- No typical application (level dependent; L2-7)
- No typical traffic pattern (location dependent; core, edge, farm)
- SPEC benchmarks not suitable (but help)
 - Metrics
 - Benchmarking organizations
 - Academic benchmark suites

Workload - Benchmarking

- Metrics
 - Packets/second
 - Flow independent
 - · For forwarding and client/server applications
 - Sessions/second
 - Flow dependent
 - Highly asymmetric (1:10 ratios)
 - Inbound session setup rate limited by outbound rate
 - For web (HTTP+FTP) and TCP (3-way handshake) requests

Workload - Benchmarking

- Performance headroom
 - "Headroom" left while forwarding packets/setting up sessions at wire speed as a performance metric
 - But ...
 - Wire speed, OC-48 (2.5Gbps), 25% utilization => Wire speed, OC-192 (10Gbps)?
 - No, since 25% is the average, or best lowest utilization of just one part of the processor (e.g. 45% memory, 5% decoder)

Workload - Benchmarking

- Benchmarking organizations
 - Network Processor Benchmark Forum (www.npforum.org)
 - Benchmarking Working Group
 - Ipv4 ready
 - · MPLS, DiffServ on progress
 - · Switch fabric next
 - EEMBC (<u>www.eembc.org</u>)
 - · Benchmark both silicon and simulators (!)
 - · Automotive, Consumer, Printer, Telecom
 - Networking
 - OSPF/Dijstra
 - · Route Lookup/Patricia
 - · Packet management

Workloads - Benchmarking

- Academic benchmarks
 - CommBench
 - · Small, computationally intense kernels
 - · 4 header-processing kernels
 - · RTR (table look-up)
 - · FRAG (packet fragmentation)
 - · DRR (deficit round robin/QoS)
 - · TCP (TCP traffic monitoring)
 - · 4 payload-processing kernels
 - · CAST (encryption)
 - · ZIP, JPEG (compression)
 - REED (error correction)
 - · Compared against SPEC

Wolf, T.; Franklin, M.; CommBench: A Telecommunication Benchmark for Network Processors, In Proc. of IEEE Int. Symp. On Performance Analysis of Systems and Software. April 2000

Workloads - Benchmarking

- CommBench
 - Static code size
 - SPEC is x7 larger
 - Dynamic code size
 - · CommBench: 16%
 - SPEC: 24%
 - Dead code in network applications typically correspond to error handling of rare conditions
 - Cache miss rates
 - ICache: CommBench is 1/2 of SPEC
 - DCache: CommBench is 20% less than SPEC
 - In CommBench, Header kernels have higher locality than payload kernels

Workloads - Benchmarks

- NetBench
 - IP-level programs
 - · Route (IPv4 routing)
 - · DRR (deficit round robin/QoS)
 - · NAT (Network address translation)
 - IPCHAINS (Firewall)
 - Application-level programs
 - · URL (URL-based switching)
 - DH (Public key encryption/decryption)
 - · MD5 (Authetication)
 - Compared against MediaBench (multimedia & communication)

Memik, G.; Mangione-Smith, W.; Hu, W.; NetBench: A Benchmarking Suite for Network Processors, In Proc. of ICCAD. April 2001

Workload - Benchmarking

- NetBench
 - ILP
 - 15% higher than MediaBench (for an Alpha 21264-like processor)
 - Branch prediction
 - 5%/4% better address/direction prediction than MediaBench
 - Instruction mix
 - · 40% more dynamic load/store ops
 - · Network applications are memory intensive
 - 36% less dynamic branch instructions
 - Branch prediction is not as important in network applications
 - Cache miss rates
 - · 4KB L1 Icache: 1/8 of MediaBench
 - 4KB L1 Dcache: ½ of MediaBench
 - · Unified 128K L2: 2/3 of MediaBench

Workload - Benchmarking

- These results somewhat contradict this:
 - Locality can be poor in network applications
 - The faster the network port, the likelier more unrelated streams are aggregated => lower temporal locality
 - Temporal locality in ICache issue if small cache and lots of simultaneous and different threads
 - Often scattered state is updated per packet
- (My) justification:
 - Previous benchmark suites are simplistic
 - · One application at a time
 - · One thread per application
 - · Not too much flow aggregation

Architecture - Outline

- Architectural decisions
 - Chip interfaces
 - ISAs
 - Tool support
 - Clock speed
 - Pipeline
- Constraints: Performance/Cost/Power/Design time

Architecture - Interfaces Line interface Bandwidth Application dependent (upper levels have require lower bandwidth) Bandwidth Physical Layer 10Mbps Ethernet (10Base-T) Fast Ethernet (100Base-T) 100Mbps Gigabit Ethernet (GbE) 1Gbps 10Gigabit Ethernet (10GbE) 10Gbps T-1 1.5Mbps T-3 45Mbps OC-3 Synchronous Optical 155Mbps OC-12 622Mbps Technology (SONET) First network processors OC-48 2.5Gbps OC-192 10Gbps Currently PPP OC-768 40Gbps Future

Architecture - Interfaces Line interface Protocol: connect to external MAC or integrate? High-speed data-path Ethernet-style network interface interconnection with other network processors Line Interface P/S Network Switch PHY MAC Processor S/P Fabric GMII or CSIX or Utopia POS-PHY, Utopia or proprietary Switch-fabric interface Ideally narrow to reduce chip pin count Not well defined yet Parallel/Serial, Serial/Parallel converters Bandwidth similar to line interface for routers (+25% overhead)

Architecture - Interfaces

- Host interface
 - Used to connect to a general purpose processor
 - Host processor handles control-plane functions
 - Usually PCI, but others are emerging, with higher bandwidth, narrower and more scalable

Standa	Bandwidth		
32-bit PCI		< 2Gbps	
64-bit PCI	Wide	< 4 Gbps	
64-bit PCI-X		< 8 Gbps	
Infiniband	Narrow	> 4 Gbps	
HyperTransport		> 6.4 Gbps	
RapidI/O		> 16 Gbps	

Architecture - Interfaces

- Memory interface
 - Packet memory (SDRAM, DDR SDRAM, RDRAM, FTCAM)
 - · Packet headers, payload
 - · Queues for QoS
 - · But some NPs have internal (SRAM) packet memory
 - EZChip's NP-1 has 5MB
 - Clearwater's CNP810 has 256KB
 - Table memory (SRAM, CAM)
 - 1-3 accesses per packet (forwarding)
 - Instruction memory (ROM)
 - Or internally, or through host I/F

Architecture - Interfaces

- Memory interface
 - Bandwidth
 - At least, 4 times of line bandwidth to cover basic operations
 - Write packet into memory
 - Read packet from memory
 - Store modifications into memory
 - Read packet from memory and send it out
 - But theoretical bandwidth is approx. 2x effective bandwidth => 8x line bandwidth
 - However, not for every packet ...
 - DDR SDRAM, 300MHz (600MHz)
 - 40Gbps => x8 = 320Gbps => 533 pins

Architecture - ISAs

- Standard
 - Faster time to market
 - Tool chain already there
 - Examples:
 - MIPS: Lexra's NetVortex, Broadcom's SB-1250, Clearwater's CNP810
 (Lexra and Clearwater have added extensions)
 - · PowerPC: IBM's Rainier
 - · ARM: Intel's IXP1200, Xscale
 - MIPS ISA Extension (bit field manipulation instructions)
- Custom
 - Higher performance
 - Examples:
 - · Lucent's Payload Plus (VLIW-like)
 - · Motorola's C-5, C-5e
 - · SiliconAccess' IFlow

Architecture - Tool chain

- Compiler
 - Mainly for control-plane code
- Assembler
- Optimized libraries for data-plane functions
- Debugger
- Easier for Standard ISAs

Architecture - Clock speed

- Time to market vs. performance
 - Standard cells vs. full custome
- Memory bottlneck
 - High MHz have diminishing returns
- Examples
 - Intel's IXP1200: 166MHz
 - Clearwater's CNP810: 300MHz
 - Broadcom SB-1250: 600MHz
 - Lexra's LX8380: 420MHz
 - Intel's XScale: 1.4GHz

Architecture - Core

- Different implementations
 - Packet Engine + Control (PE)
 - Context pipelining + Control (CP)
 - Standard Super Scalar (SS)
 - Simultaneous Multithreading (SMT)
 - Chip Multiprocessing (CMP)
 - PE, CP, SS, SMT

Architecture - Core Chip Multiprocessor with Packet Engines Intel's IXP1200 (OC12-OC-48) 6 PEs PE has proprietary ISA, and some level of multithreading Intel's XScale (OC-192) · Can also function as in CP mode · Almost nothing disclosed IBM's Rainier (OC-48) · 16 PEs divided into 8 units • 4 Table Look-up engines (1/2 per unit) • 56 co-processors (7 per unit); not programmable Frame classifiers Checksum String movement Motorola C-5e (OC-48) · 16 Pes with 4 threads each 4 co-processors Table Look-up manager Queue manager Fabric manager Buffer manager

- Context Pipelining
 - Lucent's Payload Plus (OC-48)
 - 7 stages with 7 SRAM interfaces to external memory (table lookups)
 - · 2 SDRAM interfaces for packet memory
 - Cisco's "Toaster 2" (OC-48)
 - · 4 pipelines, 4 stages each
 - · Each stage can execute 2 instructions
 - 8 states => put two Toaster 2 in series
 - EZChip's NP-1 (OC-192)
 - 4 stages (12+32+12+8 PEs)
 - · Parse: packets are analyzed and classified
 - · Search: support for long and variable search keys
 - · Resolve: QoS, queuing, statistic gathering
 - · Modification: header updates, encapsulation

Architecture - Pipeline

- SuperScaler/Chip MultiProcessing-SuperScalar
 - Lexra's NetVortex, PowerPlant (OC-192)
 - Multithreaded (8 threads)
 - CMP of Netvortex: PowerPlant (up to 16 NetVortex)
 - Broadcom's SB-1, SB-1250 (OC-192)
 - 4 issue (2 Int/FP + 2 LD/ST)
 - In order
 - 9 stages
 - · 4K-entry, Gshare BP, 64-entry RAS
 - CMP of SB-1: SB-1250 (2 SB-1; connectivity limits to 8)
- Simultaneous MultiThreading
 - Clearwater Networks' CNP810

- SS vs. FGMT vs. CMP-SS vs. SMT
 - Benchmarks
 - · IPv4 packet forwarding
 - IPsec
 - 3DES
 - MD5
 - Analysis without OS overhead, single thread
 - Analysis with OS overhead, but still single thread
 - Variable number of functional units/contexts/processors (1-8)

Crowley, P.; Fiuczynski, M.; Baer, J-L.; Bershad, B.; *Characterizing Processor Architectures for Programmable Network Interfaces*, Dept. of CSE, University of Washington, Seattle, US In Proc. of the Int. Conf. On Supercomputing. May 2000

Architecture - Pipeline

- SS vs. FGMT vs. CMP-SS vs. SMT
 - Summary of results without overhead (MPPS)

Application	Pipeline architecture			
	SS	FGMT	CMP	SMT
IPv4	12	12	<u>22</u>	21
MD5	0.35	0.41	<u>1.7</u>	<u>1.7</u>
3DES	0.033	0.033	<u>0.095</u>	<u>0.095</u>

@ 500MHz 8 FUs/Processors/Contexts

o i os/i rocessors/ contexts

CMP/SMT outperform SS/FGMT 2-4 times

- SS vs. FGMT vs. CMP-SS vs. SMT
 - Summary of results with overhead (MPPS)

Application	Pipeline architecture			
	SS	FGMT	CMP	SMT
IPv4	0.65	<u>1.25</u>	0.6	1.15
MD5	0.25	0.35	0.65	<u>0.75</u>
3DES	0.025	0.025	0.080	<u>0.085</u>

- @ 500MHz 8 FUs/Processors/Contexts
- SMT usually outperforms the rest architectures
- Overhead is very significant for short applications

MD5: results with overhead

- CMP settles at the maximum performance of the OS thread
- Lower # of FUs/Contexts => no unused resources => more effective to serialize processing

Architecture - Pipeline

3DES: results with overhead

1/n of time FGMT gets idle (OS thread)

Clearwater Networks - Outline

- Overview
- CNP810 Network Services Processor
 - SMT core
 - NPX[™] Instructions
 - PMU coprocessor
 - Packet Cache™
 - RTU
 - High-performance memory interface
 - System Implementations

Clearwater Networks

Some slides from

www.clearwaternetworks.com/clearwater_overview.pdf