In this tests we consider:

- $\psi(x) = \sin(\pi x)$
- $\psi_l = 0$
- $\psi_{ll} = \pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = -\pi$
- $g(x) = -\pi^4 \sin(\pi x)$
- the different PRO schemes are:
 - PRO1 weak $(R = A^{\dagger}B)$ and degree d
 - PRO2 strong (constrained least squares) and degree d

Table 1: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$ E_{\infty,0}$	$O_{\infty,0}$
	20	5.37E - 03		4.42E - 03		4.42E - 03	_	4.42E - 03	_
	40	7.55E - 04	2.83	6.90E - 04	2.68	6.90E - 04	2.68	6.90E - 04	2.68
TD - (1)	80	1.51E - 04	2.32	1.47E - 04	2.24	1.47E - 04	2.24	1.47E - 04	2.24
$\mathbb{P}_3(4)$	160	3.53E - 05	2.09	3.50E - 05	2.07	3.50E - 05	2.07	3.50E - 05	2.07
	320	8.67E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02
	640	2.16E - 06	2.01	2.16E - 06	2.00	2.16E - 06	2.00	2.16E - 06	2.00
	20	2.68E - 05	_	2.24E - 05	_	2.24E - 05	_	2.24E - 05	_
	40	3.73E - 07	6.17	4.59E - 07	5.61	4.59E - 07	5.61	4.59E - 07	5.61
$\mathbb{P}_5(6)$	80	5.88E - 08	2.66	5.41E - 08	3.08	5.41E - 08	3.08	5.41E - 08	3.08
F5(0)	160	4.19E-09	3.81	3.79E - 09	3.84	3.73E - 09	3.86	3.73E - 09	3.86
	320	$4.12E{-}10$	3.34	$2.39E{-}10$	3.99	$1.63E{-}10$	4.52	$2.26E{-}10$	4.04
	640	$7.13E{-}10$	\uparrow	1.37E - 09	\uparrow	5.09E - 09	\uparrow	6.06E - 09	\uparrow

Table 2: Numerical results of PRO2 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	5.37E - 03	_	4.42E - 03	_	4.42E - 03	_	4.42E - 03	_
	40	7.55E - 04	2.83	6.90E - 04	2.68	6.90E - 04	2.68	6.90E - 04	2.68
ID (4)	80	1.51E - 04	2.32	1.47E - 04	2.24	1.47E - 04	2.24	1.47E - 04	2.24
$\mathbb{P}_3(4)$	160	3.53E - 05	2.09	3.50E - 05	2.07	3.50E - 05	2.07	3.50E - 05	2.07
	320	8.67E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02
	640	2.16E - 06	2.01	2.16E - 06	2.01	2.16E - 06	2.00	2.16E - 06	2.01
	20	2.68E - 05	_	2.24E-05	_	2.24E-05	_	2.24E-05	
	40	3.73E - 07	6.17	4.59E - 07	5.61	4.59E - 07	5.61	4.59E - 07	5.61
D. (6)	80	5.88E - 08	2.66	5.41E - 08	3.08	5.41E - 08	3.08	5.41E - 08	3.08
$\mathbb{P}_5(6)$	160	4.11E-09	3.84	3.75E - 09	3.85	3.77E - 09	3.85	3.75E - 09	3.85
	320	2.99E - 10	3.78	$2.60E{-}10$	3.85	4.78E - 10	2.98	$2.61E{-}10$	3.85
	640	2.17E - 09	\uparrow	1.24E - 08	\uparrow	1.93E - 08	\uparrow	1.24E - 08	\uparrow

In this tests we consider:

- $\psi(x) = \sin(2\pi x)$
- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = 2\pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = 2\pi$
- $g(x) = -16\pi^4 \sin(2\pi x)$
- the different PRO schemes are:
 - PRO1 weak $(R = A^{\dagger}B)$ and degree d
 - PRO2 strong (constrained least squares) and degree d

Table 3: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$\overline{E_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{E_{\infty,0}}$	$O_{\infty,0}$
	20	6.05E-02		4.96E - 02	_	4.96E - 02	_	4.96E - 02	_
	40	6.90E - 03	3.13	6.47E - 03	2.94	6.47E - 03	2.94	6.47E - 03	2.94
$\mathbb{P}_3(4)$	80	1.24E - 03	2.47	1.23E - 03	2.40	1.23E - 03	2.40	1.23E - 03	2.40
13(4)	160	2.82E - 04	2.14	2.82E - 04	2.12	2.82E - 04	2.12	2.82E - 04	2.12
	320	6.89E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03
	640	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01
	20	3.65E - 03	_	1.85E - 03	_	1.85E - 03	_	1.85E - 03	_
	40	1.55E - 05	7.88	1.95E - 05	6.57	1.95E - 05	6.57	1.95E - 05	6.57
$\mathbb{D}_{-}(6)$	80	1.54E - 06	3.34	1.76E - 06	3.47	1.76E - 06	3.47	1.76E - 06	3.47
$\mathbb{P}_5(6)$	160	1.29E-07	3.57	1.20E - 07	3.87	1.20E - 07	3.87	1.20E - 07	3.87
	320	8.81E - 09	3.87	7.72E - 09	3.96	7.78E - 09	3.95	7.80E - 09	3.95
	640	4.03E-09	1.13	3.61E - 09	1.10	3.36E - 09	1.21	5.43E - 09	0.52

Table 4: Numerical results of PRO2 scheme.

		$\omega = 1 1,1$		$\omega = 1 3,1$		$\omega = 1 3,3$		$\omega = 1 3, 10$	
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	6.05E-02	_	4.96E - 02	_	4.96E - 02	_	4.96E - 02	_
	40	6.90E - 03	3.13	6.47E - 03	2.94	6.47E - 03	2.94	6.47E - 03	2.94
ID (4)	80	1.24E - 03	2.47	1.23E - 03	2.40	1.23E - 03	2.40	1.23E - 03	2.40
$\mathbb{P}_3(4)$	160	2.82E - 04	2.14	2.82E - 04	2.12	2.82E - 04	2.12	2.82E - 04	2.12
	320	6.89E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03
	640	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01
	20	3.65E - 03	_	1.85E - 03	_	1.85E - 03		1.85E - 03	_
	40	1.55E - 05	7.88	1.95E - 05	6.57	1.95E - 05	6.57	1.95E - 05	6.57
ID (6)	80	1.54E - 06	3.34	1.76E - 06	3.47	1.76E - 06	3.47	1.76E - 06	3.47
$\mathbb{P}_5(6)$	160	1.29E - 07	3.57	1.20E - 07	3.87	1.20E - 07	3.87	1.20E - 07	3.87
	320	8.58E - 09	3.91	7.74E - 09	3.96	7.89E - 09	3.93	7.74E - 09	3.96
	640	1.23E-09	2.81	6.66E - 09	0.22	2.20E-09	1.84	3.87E - 09	1.00

In this tests we consider:

- $\psi(x) = \sin(3\pi x)$
- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = 3\pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = -3\pi$
- $g(x) = -81\pi^4 \sin(3\pi x)$
- the different PRO schemes are:
 - PRO1 weak $(R = A^{\dagger}B)$ and degree d
 - PRO2 strong (constrained least squares) and degree d

Table 5: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	4.35E - 01	_	3.01E - 01	_	3.01E - 01	_	3.01E - 01	
	40	3.00E - 02	3.86	4.55E - 02	2.73	4.55E - 02	2.73	4.55E - 02	2.73
TD (1)	80	1.64E - 02	0.88	1.74E - 02	1.39	1.74E - 02	1.39	1.74E - 02	1.39
$\mathbb{P}_3(4)$	160	4.66E - 03	1.81	4.72E - 03	1.88	4.72E - 03	1.88	4.72E - 03	1.88
	320	1.20E - 03	1.96	1.21E - 03	1.97	1.21E - 03	1.97	1.21E - 03	1.97
	640	3.03E - 04	1.99	3.03E - 04	1.99	3.03E - 04	1.99	3.03E - 04	1.99
	20	8.55E - 02	_	7.29E-02	_	7.29E-02	_	7.29E - 02	
	40	2.78E - 03	4.94	2.31E - 03	4.98	2.31E - 03	4.98	2.31E-03	4.98
D. (6)	80	1.06E - 04	4.71	9.56E - 05	4.59	9.56E - 05	4.59	9.56E - 05	4.59
$\mathbb{P}_5(6)$	160	5.75E - 06	4.21	5.19E - 06	4.20	5.19E - 06	4.20	5.19E - 06	4.20
	320	3.43E - 07	4.07	3.12E - 07	4.06	3.11E - 07	4.06	3.12E - 07	4.06
	640	2.34E - 08	3.87	1.74E - 08	4.17	2.09E - 08	3.90	2.98E - 08	3.38

Table 6: Numerical results of PRO2 scheme.

		$\omega = 1 1,1$		$\omega = 1 3,1$		$\omega = 1 3,3$		$\omega = 1 3, 10$	
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{E_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	4.35E-01	_	3.01E - 01	_	3.01E - 01	_	3.01E-01	_
	40	3.00E - 02	3.86	4.55E - 02	2.73	4.55E - 02	2.73	4.55E - 02	2.73
ID (4)	80	1.64E - 02	0.88	1.74E - 02	1.39	1.74E - 02	1.39	1.74E - 02	1.39
$\mathbb{P}_3(4)$	160	4.66E - 03	1.81	4.72E - 03	1.88	4.72E - 03	1.88	4.72E - 03	1.88
	320	1.20E-03	1.96	1.21E - 03	1.97	1.21E - 03	1.97	1.21E - 03	1.97
	640	3.03E-04	1.99	3.03E - 04	1.99	3.03E - 04	1.99	3.03E - 04	1.99
	20	8.55E-02	_	7.29E-02	_	7.29E - 02	_	7.29E-02	
	40	2.78E - 03	4.94	2.31E - 03	4.98	2.31E-03	4.98	2.31E - 03	4.98
ID (6)	80	1.06E - 04	4.71	9.56E - 05	4.59	9.56E - 05	4.59	9.56E - 05	4.59
$\mathbb{P}_5(6)$	160	5.75E - 06	4.21	5.19E - 06	4.20	5.19E - 06	4.20	5.19E - 06	4.20
	320	3.43E - 07	4.07	3.12E - 07	4.06	3.12E - 07	4.06	3.12E - 07	4.06
	640	2.13E-08	4.01	1.37E - 08	4.51	1.37E - 08	4.51	1.37E - 08	4.51