Lezione del 5 Dicembre del Prof. Frigerio

Osservazione 1. Quando non altro specificato, supponiamo tutte le funzioni continue

Definizione 0.1. Siano $f, g: X \to Y$ continue.

Una **omotopia** tra $f \in g$ è una mappa continua

$$H: X \times [0,1] \to Y \quad H(x,0) = f(x) \quad H(x,1) = g(x) \quad \forall x \in X$$

Nel seguito indicheremo l'intervallo [0,1] con I

Osservazione 2. $\forall t \in [0,1]$ la mappa $H_t(x) = H(x,t)$ è continua per cui H descrive un'interpolazione continua tra f e g: deforma f in g

Definizione 0.2. f si dice **omotopa** a g e si indica con $f \sim g$ se esiste un omotopia tra f e g

Proposizione 0.1. Essere omotopi è una relazione di equivalenza sull'insieme C(X,Y) delle funzioni continue da X a Y.

L'insieme delle classi di omotopia di tali funzioni si denota con [X,Y]

Dimostrazione.

- Riflessiva: $f \sim f$ infatti basta prendere $H(x,t) = f(x) \ \forall x \in X \ e \ \forall t \in I$
- \bullet Transitiva. Sia Hl'omotopia tra fe gallora K(x,t)=H(x,1-t) è un omotopia tra ge f
- Transitiva. Sia H è l'omotopia tra f e g e K è l'omotopia tra g e h. Costruiamo un omotopia tra f e h: $J: X \times [0,1] \to Y$ così definita

$$J(x,t) = \begin{cases} H(x,2t) \text{ se } t \in \left[0,\frac{1}{2}\right] \\ K(x,2t-1) \text{ se } t \in \left[\frac{1}{2},1\right] \end{cases}$$

J è continua in quanto è ben definita ed inoltre è continua la restrizione sui chiusi $X \times \left[0, \frac{1}{2}\right]$ e $X \times \left[\frac{1}{2}, 1\right]$ (sono ricoprimento fondamentale)

Esempio 0.2. Se Y è convesso di \mathbb{R}^n (e.g \mathbb{R}^n stesso), allora |[X,Y]| = 1 cioè tutte le mappe $f: X \to Y$ sono omotope tra loro.

Date $f,g:X\to Y$ la funzione H(x,t)=tf(x)+(1-t)g(x) è ben definita essendo Y convesso ed inoltre è continua, dunque è l'omotopia cercata

Osservazione 3. In realtà basta Y stellato rispetto a $p \in Y$.

H(x,t)=tf(x)+(1-t)p dunque H è un omotopia tra f e la costante p, da cui la tesi per transitività di \sim

Definizione 0.3. Sia X uno spazio topologico, denotiamo con $\pi_0(X)$ l'insieme delle componenti connesse per archi di X

Definizione 0.4. Sia $f: X \to Y$ allora tale funzione induce una ben definita funzione

$$f_{\star}: \pi_0(X) \to \pi_0(Y)$$

definita in modo che $f(C) \subseteq f_{\star}(C) \ \forall C \in \pi_0(X)$

Osservazione 4. f_{\star} manda una componente connessa di X nell'unica componente connessa di Y che contiene f(C) (le componenti connesse sono disgiunte)

Lemma 0.3. Se $f \sim g$ allora $f_{\star} = g_{\star}$

Dimostrazione. Sia $C \in \pi_0(X)$ e sia $x_0 \in C$.

Se H è un omotopia tra f e g, la mappa

$$\gamma: [0,1] \to Y \quad \gamma(t) = H(x_0,t)$$

è un cammino continuo in Y che congiunge $f(x_0)$ e $g(x_0)$.

 $f(x_0)$ e $g(x_0)$ giacciono nella stessa componente connessa per archi di Y che è sia $f_{\star}(C)$ (contiene $f(x_0)$) sia $g_{\star}(C)$ (contiene $g(x_0)$).

Dato che le componenti connesse sono disgiunte si ottiene $f_{\star}(C) = g_{\star}(C)$

Corollario 0.4. Se $X \subseteq \mathbb{R}^n$ è stellato rispetto a p, allora c'è una biezione tra [X,Y] e $\pi_0(Y)$

Dimostrazione. Essendo X stellato, è connesso per archi ovvero $|\pi_0(X)| = 1$. Definiamo

$$\psi: C(X,Y) \to \pi_0(Y) \quad \psi(f) = f_{\star}(X)$$

Per il lemma ψ induce una ben definita funzione φ ; $[X,Y] \to \pi_0(Y)$, mostriamo che φ è biettiva

- Suriettiva. Dato $C \in \pi_0(Y)$ scelgo $y \in C$ e pongo f(x) = y allora f è continua e $\psi(f) = C$ da cui $\varphi([f]) = C$
- Iniettiva. Data $f \in C(X,Y)$ allora f è omotopa alla costante f(p) in quanto H(x,t) = f(tx + (1-t)p) è ben definita in quanto X stellato. Dato f, g con $\psi(f) = \psi(g)$ abbiamo f(p) e g(p) vivono nella stessa componente connessa

per archi di Y e dunque le costanti f(p) e g(p) sono omotope tramite $H(x,t) = \delta$ dove δ è un arco che congiunge f(p) e g(p).

$$f \sim f(p) \sim g(p) \sim g$$
 dunque $[f] = [g]$

Definizione 0.5. $f:X\to Y$ è un' **equivalenza omotopica** se ammette un inversa omotopica cioè

$$q: Y \to X$$

tali che $f \circ g \sim Id_Y$ e $g \circ f \sim Id_X$.

Due spazi si dicono **omotopicamente equivalenti** (o omotopici) se esiste un'equivalenza omotopica tra di loro

Proposizione 0.5. Essere omotopici è una relazione di equivalenza, la transitività si mostra usando il seguente

Lemma 0.6. Siano $f_0, f_1: X \to Y$ e $g_0, g_1: Y \to Z$ continue

$$f_0 \sim f_1 \ e \ q_0 \sim q_1 \quad \Rightarrow \quad q_0 \circ f_0 \sim q_1 \circ f_1$$

Dimostrazione. Sia H è l'omotopia tra f_0 e f_1 e K l'omotopia tra g_0 e g_1 . La mappa $(x,t) \to K(H(x,t))$ è un'omotopia tra $g_0 \circ f_0$ e $g_1 \circ f_1$

Definizione 0.6. X è contraibile se è omotopicamente equivalente ad un punto

Proposizione 0.7. $X \subseteq \mathbb{R}^n$ stellato $\Rightarrow X$ contraibile

Dimostrazione. Sia $Y = \{q\}$, definiamo allora le funzioni

$$f: X \to Y \quad f(x) = q$$

$$g: Y \to X \quad g(q) = x_0 \text{ a caso}$$

ora f e g sono continue inoltre $f \circ g = Id_Y \sim Id_Y$ mentre $g \circ f$ è omotopa a Id_X poichè X stellato per cui tutte le funzioni sono omotope tra loro

Proposizione 0.8. Se $f: X \to Y$ è equivalenza omotopica allora $f_{\star}: \pi_0(X) \to \pi_0(Y)$ è una biqezione

Dimostrazione. Segue dal fatto che le mappe omotope inducono la stessa mappa sui π_0 ed inoltre $(f \circ g)_{\star} = f_{\star} \circ g_{\star}$

Osservazione 5. X contrattile $\Rightarrow X$ connesso per archi.

Essendo contrattile esiste una bigezione tra $\pi_0(X)$ e le componente connesse per archi del punto, Ora l'insieme fatto da un solo punto ha una sola componente connessa, dunque anche X ha una sola componente connessa per archi

Definizione 0.7. Sia X topologico. $C \subseteq X$ di dica

- Retratto se $\exists r: X \to C$ (retrazione) continua tale che $r(x) = x \ \forall x \in C$
- Retratto di deformazione se esiste r come sopra. Inoltre esiste un omotopia H tra Id_X e $i \circ r$ tale che $H(x,t) = x \ \forall c \in C$ e $\forall t \in [0,1]$. Dove $i: C \to X$ è l'inclusione

Esempio 0.9. Se $p \in X$ allora $\{p\}$ è un retratto di X

Esemplo 0.10. S^n è un retratto di deformazione di $\mathbb{R}^{n+1}\setminus\{0\}$.

La retrazione è data da $f(x) = \frac{x}{||x||}$.

L'omotopia tra $i \circ r$ e l'identità è dato da $H(x,t) = (1-t)x + t \frac{x}{||x||}$