Representación de Números Decimales

Sistemas de Procesamiento <u>de Datos</u>

UTN-FRA

Técnico Superior en Programación 2017

Dentro de un procesador, microprocesador, memoria o cualquier otro medio de almacenamiento de datos digitales que utiliza el sistema binario debemos encontrar alguna forma de representar números decimales. Existen variantes que pueden utilizarse a tal fin:

- Números con punto fijo
- Números con punto flotante

Formas de Representar Números Decimales Números con punto fijo

Se representan colocando bits a la derecha de la coma binaria, del mismo modo que los números decimales fraccionarios se colocan a la derecha de la coma decimal.

Potencias positivas de dos (números enteros)									Potencias negativas de dos (números fraccionarios)					
28	27	26	25	24	2 ³	2 ²	21	20	2-1	2-2	2-3	2-4	2-5	2-6
256	128	64	32	16	8	4	2	1	1/2 0,5	1/4 0,25		1/16 0,0625	1/32 0,03125	1/64 0,015625

Números con punto flotante

Un número en coma flotante tiene dos partes más un signo.

- La mantisa es la parte del número en coma flotante que representa la magnitud del número.
- El exponente es la parte de un número en coma que representa el número de lugares que se va a desplazar el punto decimal

Números con punto flotante

Ejemplo

Consideremos un número decimal que, en formato entero, es:

241.506.800 => La mantisa es .2415068

=> El exponente es 9.

Números con punto flotante simple precisión

En el formato estándar para un número binario de simple precisión, el bit de signo (S) es el que se encuentra más a la izquierda, el exponente (E) incluye los siguientes 8 bits y la mantisa o parte fraccionaria (F) incluye los restantes 23 bits.

S	Exponente (E)	Mantisa (parte fraccionaria, F)						
1 bit	8 bits	23 bits						

Números con punto flotante simple precisión

En el formato estándar para un número binario de simple precisión, el bit de signo (S) es el que se encuentra más a la izquierda, el exponente (E) incluye los siguientes 8 bits y la mantisa o parte fraccionaria (F) incluye los restantes 23 bits.

Número =
$$(-1)^{s} x (1, +F) x 2^{(E-127)}$$

Conversión de números decimales a números con punto flotante simple precisión

- 1. Si el número a analizar (N) es positivo, asignar a S=0 y, en caso contrario, S=1.
 - N = 21,625 => S = 0
- 2. Tomar la parte entera del número N y convertirla a Binario (Dividiendo por 2)
 - N = 21,625 => 21 => 0001 0101
- 3. Tomar la parte decimal del número N y convertirla a Binario (Multiplicando por 2)
 - N = 21,625 => 0,625 => ,101
- 4. Juntar la parte entera y la parte decimal convertidas a binario
 - 00010101,101
- 5. Contar la cantidad de lugares que hay entre la coma y el número uno ubicado más a la izquierda
 - 0001 <u>0101</u>, 101 => 4 lugares => Exponente (E) = 127 + 4 = 131 => 1000 0011
- 6. Expresar el número desplazando la coma 4 lugares, descartar la parte entera y completar con ceros hasta llegar a 23bits (N).
 - 0001, <u>0101</u> 101 => <u>0101</u> 1010 0000 0000 0000 000
- 7. Concatenar Signo (S), Exponente (E) y el número (N)

Ayuda Memoria

Potencias positivas de dos (números enteros)									Potencias negativas de dos (números fraccionarios)					
28	27	26	25	24	23	2 ²	21	20	2-1	2-2	2-3	2-4	2-5	2-6
256	128	64	32	16	8	4	2	1	1/2	1/4	1/8		1/32	1/64
									0,5	0,25	0,125	0,0625	0,03125	0,015625