Il Teorema della Sfera in Geometria Riemanniana

Candidato: Dario Rancati

Relatore: prof. Andrea Malchiodi

Università di Pisa

13 luglio 2018

IL TEOREMA

(Klingenberg 1961)

Sia M^n , $n \ge 3$, una varietà riemanniana compatta e semplicemente connessa, la cui curvatura sezionale K soddisfa, detto K_{\max} il massimo di K:

$$0 < \frac{1}{4}K_{\mathsf{max}} < K \le K_{\mathsf{max}}.$$

Allora M è omeomorfa a \mathbb{S}^n .

Lo Spazio dei Cammini

DEFINIZIONE

Sia M una varietà liscia, e siano p e $q \in M$. Lo Spazio dei Cammini tra p è q è l'insieme di tutte le curve regolari a tratti tra p e q, e lo indicheremo con $\Omega(M;p,q)$. Lo Spazio Tangente a Ω in un cammino ω , denotato con $T\Omega_{\omega}$, è lo spazio vettoriale costituito dai campi vettoriali regolari a tratti che si annullano in $\omega(0)$ e $\omega(1)$.

IL FUNZIONALE ENERGIA

DEFINIZIONE

Sia M una varietà riemanniana. Per $\omega \in \Omega(M; p, q)$ e $0 \le a < b \le 1$ definiamo *l'Energia di* ω *da a a b* come:

$$E_a^b(\omega) := \int_a^b \left\| \frac{d\omega}{dt} \right\|^2 dt.$$

IL FUNZIONALE ENERGIA

DEFINIZIONE

Sia M una varietà riemanniana. Per $\omega \in \Omega(M; p, q)$ e $0 \le a < b \le 1$ definiamo *l'Energia di* ω *da a a b* come:

$$E_a^b(\omega) := \int_a^b \left\| \frac{d\omega}{dt} \right\|^2 dt.$$

Definiamo variazione di $\gamma \in \Omega(M; p, q)$ una mappa $\alpha: (-\epsilon, \epsilon) \to \Omega(M; p, q)$ tale che $\alpha(0) = \gamma$ e che $(\alpha, \alpha(\cdot))$ sia liscia su ciascuna restrizione $(-\epsilon, \epsilon) \times [t_i, t_{i+1}]$. Similmente, possiamo definire una n-variazione sostituendo a $(-\epsilon, \epsilon)$ un intorno di 0 in \mathbb{R}^n .

VARIAZIONE PRIMA

Sia ω un cammino di M, $\alpha: (-\epsilon, \epsilon) \to \Omega$ una variazione di ω , W(t) la velocità di α , $V(t) = \frac{d\omega}{dt}(t)$ la velocità di ω , Y(t) l'accelerazione di ω e infine $\Delta V(t)$ la discontinuità della velocità in $t \in [0,1]$. Allora vale

$$\frac{1}{2}\frac{dE(\alpha(u))}{du}\bigg|_{u=0} = -\sum_{t} \langle W(t), \Delta V(t) \rangle - \int_{0}^{1} \langle W(t), Y(t) \rangle dt.$$

VARIAZIONE PRIMA

Sia ω un cammino di M, $\alpha: (-\epsilon, \epsilon) \to \Omega$ una variazione di ω , W(t) la velocità di α , $V(t) = \frac{d\omega}{dt}(t)$ la velocità di ω , Y(t) l'accelerazione di ω e infine $\Delta V(t)$ la discontinuità della velocità in $t \in [0,1]$. Allora vale

$$\frac{1}{2}\frac{dE(\alpha(u))}{du}\bigg|_{u=0} = -\sum_{t} \langle W(t), \Delta V(t) \rangle - \int_{0}^{1} \langle W(t), Y(t) \rangle dt.$$

Conseguenza fondamentale della formula per la variazione prima è che un cammino ω è critico per E_a^b se e solo se esso è una geodetica.

VARIAZIONE SECONDA

Sia γ una geodetica, V la sua velocità, A una sua 2-variazione con velocità W_1 e W_2 e $\Delta \frac{DW_1}{dt}(t)$ la discontinuità di $\frac{DW_1}{dt}$. Allora vale:

$$\begin{split} \frac{1}{2} \left. \frac{\partial^2 E(A(u_1, u_2, t))}{\partial u_1 \partial u_2} \right|_{(0,0,t)} &= -\sum_t \left\langle W_2(t), \Delta \frac{DW_1}{dt}(t) \right\rangle \\ &- \int_0^1 \left\langle W_2(t), \frac{D^2 W_1}{dt}(t) + R(V(t), W_1(t))V(t) \right\rangle \mathrm{d}t. \end{split}$$

VARIAZIONE SECONDA

Sia γ una geodetica, V la sua velocità, A una sua 2-variazione con velocità W_1 e W_2 e $\Delta \frac{DW_1}{dt}(t)$ la discontinuità di $\frac{DW_1}{dt}$. Allora vale:

$$\begin{split} \frac{1}{2} \left. \frac{\partial^2 E(A(u_1, u_2, t))}{\partial u_1 \partial u_2} \right|_{(0,0,t)} &= -\sum_t \left\langle W_2(t), \Delta \frac{DW_1}{dt}(t) \right\rangle \\ &- \int_0^1 \left\langle W_2(t), \frac{D^2 W_1}{dt}(t) + R(V(t), W_1(t))V(t) \right\rangle \mathrm{d}t. \end{split}$$

Conseguenze della Variazione Seconda

Dalla formula per la variazione seconda segue che, definendo l'Hessiano di E_a^b in una geodetica come

$$E_{**}: T\Omega_{\gamma} \times T\Omega_{\gamma} \to \mathbb{R}$$

$$E_{**}(W_1, W_2) := \frac{\partial^2 E(A(u_1, u_2, t))}{\partial u_1 \partial u_2} \bigg|_{(0,0,t)}$$

tale funzione è ben definita, bilineare e simmetrica.

Campi di Jacobi

DEFINIZIONE

Sia M una varietà riemanniana, $\gamma(t):[0,1]\to M$ una geodetica. Un campo vettoriale J lungo γ è detto Campo di Jacobi se soddisfa

$$\frac{D^2J}{dt^2} + R(\gamma'(t), J(t))\gamma'(t) = 0.$$
 (1)

Campi di Jacobi

DEFINIZIONE

Sia M una varietà riemanniana, $\gamma(t):[0,1]\to M$ una geodetica. Un campo vettoriale J lungo γ è detto Campo di Jacobi se soddisfa

$$\frac{D^2J}{dt^2} + R(\gamma'(t), J(t))\gamma'(t) = 0.$$
 (1)

DEFINIZIONE

Sia $\gamma:[0,a]\to M$ una geodetica, $t_0\in(0,a]$. Il punto $\gamma(t_0)$ è detto coniugato a $\gamma(0)$ lungo γ se esiste un campo di Jacobi J lungo γ non identicamente nullo tale che $J(\gamma(0))=J(\gamma(t_0))=0$. Il massimo numero di campi di Jacobi linearmente indipendenti con questa proprietà è detto molteplicità del punto coniugato $\gamma(t_0)$.

Proprietà dei Campi di Jacobi

Sia γ una geodetica, e sia v(s) una curva in $T_{\gamma(0)}M$ con $v(0) = \gamma'(0)$ e v'(0) = w. Allora il campo vettoriale

$$J(t) = \frac{\partial(\exp_{\gamma(0)}(tv(s)))}{\partial s}(t,0)$$

è di Jacobi, ed è l'unico con J(0) = 0 e $\frac{DJ}{\partial t}(0) = w$;

Proprietà dei Campi di Jacobi

Sia γ una geodetica, e sia v(s) una curva in $T_{\gamma(0)}M$ con $v(0) = \gamma'(0)$ e v'(0) = w. Allora il campo vettoriale

$$J(t) = \frac{\partial(\exp_{\gamma(0)}(tv(s)))}{\partial s}(t,0)$$

è di Jacobi, ed è l'unico con J(0) = 0 e $\frac{DJ}{\partial t}(0) = w$;

■ sia γ una geodetica con $\gamma(0) = p$. Il punto $q = \gamma(t_0)$ è coniugato a p se e solo se $t_0\gamma'(0)$ è un punto critico di \exp_p ;

Proprietà dei Campi di Jacobi

Sia γ una geodetica, e sia v(s) una curva in $T_{\gamma(0)}M$ con $v(0) = \gamma'(0)$ e v'(0) = w. Allora il campo vettoriale

$$J(t) = \frac{\partial(\exp_{\gamma(0)}(tv(s)))}{\partial s}(t,0)$$

è di Jacobi, ed è l'unico con J(0) = 0 e $\frac{DJ}{\partial t}(0) = w$;

- sia γ una geodetica con $\gamma(0) = p$. Il punto $q = \gamma(t_0)$ è coniugato a p se e solo se $t_0\gamma'(0)$ è un punto critico di \exp_p ;
- un campo vettoriale $W \in T\Omega_{\gamma}$ appartiene al radicale di E_{**} se e solo se W è un campo di Jacobi. In particolare E_{**} è degenere se e solo se i punti estremali p e q sono coniugati.

Indice dell'Energia

Definiamo l'*indice* dell'Energia E_{**} come la massima dimensione di un sottospazio sul quale E_{**} sia definito negativo.

INDICE DELL'ENERGIA

Definiamo l'*indice* dell'Energia E_{**} come la massima dimensione di un sottospazio sul quale E_{**} sia definito negativo.

Teorema dell'Indice (Morse 1934)

L'indice di E_{**} è sempre finito, e coincide con il numero di punti $\gamma(t)$ con 0 < t < 1 coniugati a $\gamma(0)$ lungo γ , ciascuno contato con la sua molteplicità.

Indice dell'Energia

Definiamo l'*indice* dell'Energia E_{**} come la massima dimensione di un sottospazio sul quale E_{**} sia definito negativo.

Teorema dell'Indice (Morse 1934)

L'indice di E_{**} è sempre finito, e coincide con il numero di punti $\gamma(t)$ con 0 < t < 1 coniugati a $\gamma(0)$ lungo γ , ciascuno contato con la sua molteplicità.

Corollario: il numero di punti coniugati lungo una geodetica è sempre finito.

APPROSSIMAZIONE FINITO-DIMENSIONALE DI $\Omega(M; p, q)$

Diamo innanzitutto ad $\Omega(M; p, q)$ una struttura di spazio metrico:

Diamo innanzitutto ad $\Omega(M; p, q)$ una struttura di spazio metrico:

DISTANZA INDOTTA

Sia M una varietà connessa, $p,q\in M$, e sia ρ la sua distanza riemanniana. Dati $\omega(t),\omega'(t)\in\Omega(M;p,q)$, definiamo:

$$d(\omega,\omega') := \max_{0 \le t \le 1} \rho(\omega(t),\omega'(t)) + \left[\int_0^1 \left\| \frac{d\omega}{dt} - \frac{d\omega'}{dt} \right\|^2 \mathrm{d}t \right]^{\frac{1}{2}}.$$

Con la topologia indotta da d la funzione $E = E_0^1$ è continua da $\Omega(M; p, q)$ a \mathbb{R} .

Fissato c>0 denotiamo ora con Ω^c il sottoinsieme chiuso $E^{-1}([0,c])$ di $\Omega(M;p,q)$, e con $(\operatorname{Int}\Omega^c)$ la sua parte interna. Siano $0=t_0< t_1<\ldots< t_k=1$, e definiamo

$$\Omega(t_0,t_1,\ldots,t_k)$$

l'insieme delle geodetiche a tratti da p a q secondo la suddivisione assegnata.

Fissato c>0 denotiamo ora con Ω^c il sottoinsieme chiuso $E^{-1}([0,c])$ di $\Omega(M;p,q)$, e con $(\operatorname{Int}\Omega^c)$ la sua parte interna. Siano $0=t_0< t_1<\ldots< t_k=1$, e definiamo

$$\Omega(t_0,t_1,\ldots,t_k)$$

l'insieme delle geodetiche a tratti da p a q secondo la suddivisione assegnata. Definiamo inoltre

$$\operatorname{Int}\Omega(t_0,t_1,\ldots,t_k)^c:=(\operatorname{Int}\Omega^c)\cap\Omega(t_0,t_1,\ldots,t_k).$$

STRUTTURA DI VARIETÀ

Data M^n una varietà riemanniana completa e c>0 tale che $\Omega^c\neq\varnothing$, allora esiste una suddivisione dell'intervallo unitario tale che $\mathrm{Int}\Omega(t_0,t_1,\ldots,t_k)^c$ è dotabile della struttura di varietà liscia finito dimensionale, di dimensione $n\times(k-1)$.

STRUTTURA DI VARIETÀ

Data M^n una varietà riemanniana completa e c>0 tale che $\Omega^c \neq \varnothing$, allora esiste una suddivisione dell'intervallo unitario tale che $\mathrm{Int}\Omega(t_0,t_1,\ldots,t_k)^c$ è dotabile della struttura di varietà liscia finito dimensionale, di dimensione $n\times (k-1)$.

Indichiamo ora con E' la restrizione di E a Int $\Omega(t_0, t_1, \ldots, t_k)^c$.

Coerenza con l'Energia

La funzione E' è liscia. I punti critici di E' coincidono con i punti critici di E in $\mathrm{Int}\Omega^c$. Inoltre l'indice di E'_{**} nei suddetti punti critici coincide con quello di E_{**} .

IL CUT LOCUS

DEFINIZIONE

Sia M una varietà riemanniana completa con distanza d, $p \in M$, e sia $\gamma: [0,\infty) \to M$ una geodetica unitaria con $\gamma(0) = p$. Definiamo il *cut point* di p lungo γ come il massimo, se esiste, dei $t \in [0,\infty)$ tali che $d(\gamma(0),\gamma(t)) = t$. Definiamo $C_m(p)$ il *cut locus* di p come l'unione lungo tutte le geodetiche passanti per p dei cut points di p.

CARATTERIZZAZIONE CUT LOCUS

Supponiamo $\gamma(t_0)$ sia il cut point di $p = \gamma(0)$ lungo γ . Allora vale almeno una delle seguenti:

- **1** $\gamma(t_0)$ è il primo punto coniugato di $\gamma(0)$ lungo γ ;
- **2** esiste una geodetica $\sigma \neq \gamma$ da p a $\gamma(t_0)$ con $L(\sigma) = L(\gamma)$.

Inoltre, se vale una di queste due condizioni esiste un punto di taglio $\gamma(\overline{t})$ con $\overline{t} \in (0, t_0]$.

In particolare, notiamo che se abbiamo $d(p, C_m(p)) > C$ allora per ogni $p \in M$ in B(p, C) sono uniche le geodetiche minimizzanti.

Il Raggio di Iniettività

DEFINIZIONE

Definiamo il raggio di iniettività di una varietà riemanniana compatta M come

$$i(M) := \inf_{p \in M} d(p, C_m(p)).$$

Il Raggio di Iniettività

DEFINIZIONE

Definiamo il raggio di iniettività di una varietà riemanniana compatta M come

$$i(M) := \inf_{p \in M} d(p, C_m(p)).$$

(Klingenberg)

Sia M^n con $n \ge 3$ una varietà riemanniana compatta, semplicemente connessa, tale che la sua curvatura sezionale K soddisfi

$$\frac{1}{4} < K \le 1.$$

Allora $i(M) \geq \pi$.

Teoria di Morse

Lemma di Deformazione

Sia M^n una varietà liscia, $f:M\to\mathbb{R}$ funzione di Morse. Dati $p,q\in M$ e $\gamma:[0,1]\to M$ curva liscia che li congiunge, siano $a=\max\{f(p),f(q)\}$ e $b=\max_{t\in[0,1]}(f\circ\gamma(t))$. Supponiamo che $f^{-1}([a,b])$ sia compatto e non contenga punti critici di indice 1 o 0. Allora, per ogni $\delta>0$, γ è omotopo ad un cammino γ_1 tale che $\gamma_1([0,1])\subset M^{a+\delta}$ tramite un'omotopia che fissa gli estremi ad ogni tempo.

La stima di Klingenberg segue applicando questo lemma e il Teorema dell'Indice con $M = Int\Omega(t_0, t_1, \dots, t_k)^c$ ed f = E'.

La stima di Klingenberg segue applicando questo lemma e il Teorema dell'Indice con $M = Int\Omega(t_0, t_1, ..., t_k)^c$ ed f = E'.

(Berger, Tsukamoto)

Sia M^n , $n \ge 3$, un varietà riemanniana compatta e semplicemente connessa la cui curvatura sezionale K soddisfa ovunque

$$\frac{1}{4} < \delta \le K \le 1,$$

e siano $p,q\in M$ tali che $d(p,q)=\operatorname{diam} M$. Allora esiste ρ con $\frac{\pi}{2\sqrt{\delta}}<\rho<\pi$ tale che, detta $B_r(p)\subset M$ la palla geodetica di centro p e raggio r, si ha

$$M = B_{\rho}(p) \cup B_{\rho}(q).$$

L'OMEOMORFISMO ESPLICITO

Dal lemma possiamo facilmente individuare sulla varietà M un "equatore" formato dai punti equidistanti da p e da q, e da esso due "emisferi" D_1 e D_2 .

L'OMEOMORFISMO ESPLICITO

Dal lemma possiamo facilmente individuare sulla varietà M un "equatore" formato dai punti equidistanti da p e da q, e da esso due "emisferi" D_1 e D_2 . Fissiamo $N \in \mathbb{S}^n$, un'isometria $i: T_N\mathbb{S}^n \to T_pM$, e sull'equatore di \mathbb{S}^n , γ geodetica unitaria da N, m sull'equatore di M sulla geodetica per p con velocità $i(\gamma'(0))$, σ unitaria minimizzante su M da q a m. Definiamo $\Xi: \mathbb{S}^n \to M$:

L'OMEOMORFISMO ESPLICITO

Dal lemma possiamo facilmente individuare sulla varietà M un "equatore" formato dai punti equidistanti da p e da q, e da esso due "emisferi" D_1 e D_2 . Fissiamo $N \in \mathbb{S}^n$, un'isometria $i: T_N \mathbb{S}^n \to T_p M$, e sull'equatore di \mathbb{S}^n , γ geodetica unitaria da N, m sull'equatore di M sulla geodetica per p con velocità $i(\gamma'(0))$, σ unitaria minimizzante su M da q a m. Definiamo $\Xi: \mathbb{S}^n \to M$:

$$\begin{cases} \Xi(\gamma(s)) = \exp_p(\frac{2s}{\pi}d(p,m)(i\circ\gamma'(0))), & 0 < s \le \frac{\pi}{2}, \\ \Xi(\gamma(s)) = \exp_q((2-\frac{2s}{\pi})d(q,m)\sigma'(0)), & \frac{\pi}{2} \le s \le \pi. \end{cases}$$

BIBLIOGRAFIA

Milnor, John. *Morse Theory* Annals of Mathematics Studies, 51, Princeton University Press, Princeton, New Jersey, 1963.