1) From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (3 marks)

I created box plot of categorical variable against count and had following conclusions:

- Demand increased in 2019 as compared to 2018. We can say that demand for bikes will increase with years.
- Demands remains on higher side from May to October. Demand is somewhat on lower side from November to April
- Demand is slightly lower during holidays.
- Mean for all days of week is almost same.
- Mean for working and non-working is more or less same.
- Demand is naturally high on clear days as compared to foggy and rainy days.
- Demand is high during summer and fall and on lower side during spring and winter. This fact is also evident from the data of months.

2) Why is it important to use drop_first=True during dummy variable creation? (2 mark)

drop_first=True used during dummy variable creation is very useful in reducing the number of columns. Dummy variables can be created when a categorical column has more than 2 categories.

If a category has n categories then during dummy variable creation n columns are created. By **drop_first=True** command we are able to reduce one column i.e. we get n-1 columns. This means if each category has 0 then the dropped category is valid.

3) Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (1 mark)

'temp' has highest correlation with the target variable.

- 4) How did you validate the assumptions of Linear Regression after building the model on the training set? (3 marks)
- Error should be normally distributed.
- There should be insignificant multicollinearity among variables.
- Variables should be linear.
- No autocorrelaton.
 - 5) Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (2 marks)
- Temperature
- Winter
- Year

General Subjective Questions

1) Explain the linear regression algorithm in detail. (4 marks)

Linear regression may be defined as the statistical model that analyses the linear relationship between a dependent variable with given set of independent variables. Linear relationship between variables means

that when the value of one or more independent variables will change (increase or decrease), the value of dependent variable will also change accordingly (increase or decrease).

Mathematically the relationship can be represented with the help of following equation –

$$Y = mX + c$$

Here, Y is the dependent variable we are trying to predict.

X is the independent variable we are using to make predictions.

m is the slope of the regression line which represents the effect X has on Yc is a constant,

known as the Y-intercept. If X = 0, Y would be equal to c.

Furthermore, the linear relationship can be positive or negative in nature as explained below-

- o Positive Linear Relationship:
 - A linear relationship will be called positive if both independent and dependent variable increases. It can be understood with the help offollowing graph –

- Negative Linear relationship:
 - A linear relationship will be called positive if independent increases and dependent variable decreases. It can be understood with the help of following graph –

Linear regression is of the following two types -

- > Simple Linear Regression
- Multiple Linear Regression

Assumptions -

The following are some assumptions about dataset that is made by Linear Regression model –

- ✓ Multi-collinearity
 - Linear regression model assumes that there is very little or no multi-collinearity in the data. Basically, multi-collinearity occurs when the independent variables or features have dependency in them.
- ✓ Auto-correlation
 - Another assumption Linear regression model assumes is that there is very little or no autocorrelation in the data. Basically, auto-correlation occurs when there is dependency between residual errors.
- ✓ Relationship between variables –

- o Linear regression model assumes that the relationship between response and feature variables must be linear.
- √ Normality of error terms
 - o Error terms should be normally distributed
- √ Homoscedasticity
 - o There should be no visible pattern in residual values.

2) Explain the Anscombe's quartet in detail. (3 marks)

Anscombe's Quartet was developed by statistician Francis Anscombe. It comprises four datasets, each containing eleven (x, y) pairs. The essential thing to note about these datasets that they share the same descriptive statistics. But things change completely, and I must emphasize COMPLETELY, when they are graphed. Each graph tells a different story irrespective of their similar summary statistics.

The summary statistics show that the means and the variances were identical for x and yacross the

552	100		II.		III		IV	
	X	У	X	У	X	У	X	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

groups:

- Mean of x is 9 and mean of y is 7.50 for each dataset.
- Similarly, the variance of x is 11 and variance of y is 4.13 for each dataset
- The correlation coefficient (how strong a relationship is between two variables) betweenx and y is 0.816 for each dataset

When we plot these four datasets on an x/y coordinate plane, we can observe that they showthe same regression lines as well but each dataset is telling a different story:

- Dataset I appears to have clean and well-fitting linear models.
- Dataset II is not distributed normally.
- In Dataset III the distribution is linear, but the calculated regression is thrown off by anoutlier.
- Dataset IV shows that one outlier is enough to produce a high correlation coefficient.

This quartet emphasizes the importance of visualization in Data Analysis. Looking at the datareveals a lot of the structure and a clear picture of the dataset.

3) What is Pearson's R? (3 marks)

Pearson's r is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive. If the variables tend to go up and down in opposition with low values of one variableassociated with high values of the other, the correlation coefficient will be negative.

The Pearson correlation coefficient, r, can take a range of values from +1 to -1. A value of 0 indicates that there is no association between the two variables. A value greater than 0 indicates a positive association; that is, as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association; that is, as the value of one variable increases, the value of the other variable decreases. This is shown in thediagram below:

4) What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)

Feature Scaling is a technique to standardize the independent features present in the data in a fixed range. It is performed during the data pre-processing to handle highly varying magnitudes or values or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values.

Example: If an algorithm is not using feature scaling method then it can consider the value 3000 meter to be greater than 5 km but that's actually not true and in this case, the algorithm will give wrong predictions. So, we use Feature Scaling to bring all values to same magnitudes and thus, tackle this issue.

S.NO.	Normalized scaling	Standardized scaling		
1.	Minimum and maximum value of features are used for scaling	Mean and standard deviation is used for scaling.		
2.	It is used when features are of different scales.	It is used when we want to ensure zero mean and unit standard deviation.		
3.	Scales values between [0, 1] or [-1, 1].	It is not bounded to a certain range.		
4.	It is really affected by outliers.	It is much less affected by outliers.		
5.	Scikit-Learn provides a transformer called MinMaxScaler for Normalization.	Scikit-Learn provides a transformer called StandardScaler for standardization.		

5) You might have observed that sometimes the value of VIF is infinite. Why does this happen? (3 marks)

If there is perfect correlation, then VIF = infinity. A large value of VIF indicates that there is accorrelation between the variables. If the VIF is 4, this means that the variance of the model coefficient is inflated by a factor of 4 due to the presence of multicollinearity.

When the value of VIF is infinite it shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R-squared (R2) =1, which lead to 1/(1-R2) infinity. To solve this we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

6) What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (3 marks)

The quantile-quantile (q-q) plot is a graphical technique for determining if two data sets comefrom populations with a common distribution.

Use of Q-Q plot:

A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second dataset. By a quantile, we mean the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data fall below and70% fall above that value. A 45-degree reference line is also plotted. If the two sets come from a population with the same distribution, the points should fall approximately along this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the two data sets have come from populations with different distributions.

Importance of Q-Q plot:

When there are two data samples, it is often desirable to know if the assumption of a common distribution is justified. If so, then location and scale estimators can pool both datasets to obtain estimates of the common location and scale. If two samples do differ, it is alsouseful to gain some understanding of the differences. The q-q plot can provide more insight into the nature of the difference than analytical methods such as the chi-square and Kolmogorov-Smirnov 2-sample tests.