Pom 1		to land ? A gandon
95 gender	endependent	of education level? A random
sample of	395 people	evere surveyed and each fresson
was person	r was asked	I to report the highest education The clata that resulted from the
survey is	summarized	in the following table. Bachelore Masleis Ph.d Total
	High School	Bachelors Masters 41 201
Female	60	Bachelors Masleis Ph.d Total 54 46 41 201 44 53 57 194 98 99 98 395
Male.	40	44 53
Total	100	98 99 98 [395]
		57
0 60	54 46	41 46 44 53 57
E 51	50 50	50 49 48 49 48
		1.62 1.65 0.33 0.33 1.69
(O-E)2 1.588	0.32 0.72	
<i>E</i>		
1/2	≥(0-E)2	= 8.248

$$\chi^{2} = \frac{2(0-E)^{2}}{E} = \frac{8.248}{E}$$

$$\chi^{2} \text{ wit } (0.05) = 7.815$$

$$\text{olf} = (2-1)(4-1)$$

Geneler and education level are dependent at 0.05%. Significance level. Vsing the following clata, perform a oneway analysis of variance using &= 0.05. Write up the results in APA format

CAROUDI: 51, 45, 33, 45, 67

Group 2: 23, 43, 23, 43, 45

Group3: 56,76, 74,87,56.

guap's			, , ,2	(C12-M2)2	(G13-M3)2
91	42	93		153.76	190.44
51	23	56	7.84	57.76	38.44
45	43	76	10.24	153.76	14.64
33	23	74	231.04	57.76	295.84
45	43	87	10·24 353·44	22 11	190.44.
67	45	56		515.2	732.8
T: 241	177	349	612.8	513.2	

69.8 M: 48.2 35.4 M3 MI MZ

Here lx: 3 11 = 15

$$837 = \sum_{i=1}^{N} n_i \left(S_{iM} - \chi_g \right)^2$$

$$= 5 \left(48.2 - 51.13 \right)^2 + 5 \left(35.4 - 51.13 \right)^2 + 5 \left(69.8 - 51.13 \right)^2$$

$$= 3022.9335 / 304 = 1511.46875$$

$$Msst = \frac{3022 \cdot 9335}{3-1}$$

$$= 1511 \cdot 46175$$

$$= 612 \cdot 8 + 515 \cdot 2 + 732 \cdot 8$$

$$= 1860 \cdot 8$$

$$Msse = \frac{1860 \cdot 8}{(N-14)}$$

$$= \frac{151 \cdot 46175}{15-3}$$

$$Fstat = \frac{Msst}{Msse}$$

$$= \frac{9 \cdot 7472}{3 \cdot 8}$$

$$= \frac{9 \cdot 7472}{3 \cdot 8}$$

$$= \frac{9 \cdot 7472}{3 \cdot 8}$$

$$= \frac{1860 \cdot 8}{(N-14)} = \frac{155 \cdot 0667}{155 \cdot 0667}$$

$$= \frac{1511 \cdot 46175}{155 \cdot 0667}$$

AMOVA TABLE

	Sum of Squares	olf	Mean	F
Between groups	3022.9	2	1511.45	9.75
(error) welhin	1860.8	12	155.07	
group Total	4883.4			

Pbm 3

Calculate F test for gener 10,20,30,40,50 and 5,10,15,20,25

$$F_{test} = \frac{N}{121} (0c_1 - \bar{x})^2$$

$$F_{test} = \frac{N}{121} (0c_1 - \bar{x})^2$$

$$N. \quad N. \quad \text{fuit set}$$

$$Variance of the fuit set}$$

$$Variance of the sucond set}$$

$$(8) - M)^2 \quad 32 \quad (82 - ML)^2$$

$$100$$

$$10 \quad 400 \quad 5$$

$$20 \quad 100$$

$$20 \quad 10$$

$$20 \quad 25$$

$$40 \quad 100 \quad 25$$

$$400 \quad 25$$

$$7: 150 \quad 1000$$

$$T: 75 \quad 250$$

$$H_1: 30$$

$$F_{stat} = \frac{1000/5}{250/5}$$

$$= \frac{4}{1200}$$