

1814ict/2814ict/7003ict/1011ICT:

Data Management/ Database Design/ Applied Computing

Topic 4.1: Introduction to SQL

(Chapter 7)

Convenor: AProf. Henry Nguyen - School of ICT

School of Information and Communication Technology

*Course developed by: Dr Mohammad Awrangjeb; AProf John Wang and Dr Zhe Wang

Course bigger picture

• Chapter references are to textbook Database Systems: Design, Implementation, & Management - By Carlos Coronel and Steven Morris

Learning Outcomes

At the end of this lecture students will be able to know:

- How to create a database and its tables
- How to insert data into a table
- How to update/modify/alter a table and its data
- What are some to the SQL constraints

Content

DDL	, DML, DCL, TCL	Outcome 1
-----------------------	-----------------	-----------

Create statement

Insert statementOutcome 2

Alter, modify, update, drop statements
 Outcome 3

ConstraintsOutcome 4

Recap from Topic 3.2

Relational database schema

- We are given an ERD and it's relation schema
- Can you check if all tables are in 3NF?

Relational database schema

Table Name	Field	Туре	Description
BOOK	BookCode	CHAR(6)	PRIMARY KEY
	Title	VARCHAR(40)	
	PublisherCode	CHAR(3)	FOREIGN KEY REFERENCES
			PUBLISHER(PublisherCode)
	DateFirstPublished	DATE	Format: DD-MM-YYYY
	Type	CHAR(3)	
	Price	DOUBLE	
	Paperback	CHAR(1)	
	Description	VARCHAR(30)	
AUTHOR	AuthorNum	INT (11)	PRIMARY KEY
			NOT NULL
			AUTO_INCREMENT
	AuthorLast	VARCHAR(12)	
	AuthorFirst	VARCHAR(10)	
	DateOfBirth	DATE	
	Address	VARCHAR(30)	
	City	VARCHAR(30)	
	State	CHAR(3)	
	Postcode	CHAR(4)	
	Phone	VARCHAR(15)	
BOOK-	BookCode	CHAR(6)	PRIMARY KEY
AUTHOR			FOREIGN KEY REFERENCES
			BOOK(BookCode)
	AuthorNum	INT(11)	PRIMARY KEY
			FOREIGN KEY REFERENCES
			AUTHOR(AuthorNum)
	Sequence	INT	
PUBLISHER	PublisherCode	CHAR(3)	PRIMARY KEY
	PublisherName	VARCHAR(25)	
	City	VARCHAR(30)	

- For columns with fixed length values (e.g., Postcode, BookCode) use CHAR(...) instead of VARCHAR(...).
- CHAR saves memory for fixed length values (e.g., s-number), VARCHAR saves memory of variable length values (e.g., name).

Introduction to SQL

SQL – Structured Query Language

- Used in relational DBMS to build and alter database and query tables.
- SQL is a Transform-Oriented language
 - designed to use relations to transform inputs into required outputs
- Currently Two standards organisations:
 - The American National Standards Institute (ANSI) and
 - The International Standards Organisation (ISO).
- Most components are case insensitive
 - SELECT vs select
- Data representation in SQL commands
 - Non-numeric is in single quotes: 'Smith'
 - Numeric is NOT in quotes: 12345

SQL – Structured Query Language

Types of SQL statements:

- <u>D</u>ata <u>D</u>efinition <u>L</u>anguage (<u>DDL</u>) Defines and modifies a schema e.g.
 <u>CREATE</u> / <u>DROP</u> / <u>ALTER table</u>; does not manipulate data
- <u>D</u>ata <u>Manipulation Language</u> (<u>DML</u>) Language used to retrieve (<u>SELECT</u>), add (<u>INSERT</u>), modify (<u>UPDATE</u>) and <u>DELETE data</u>
- <u>Data Control Language</u> (DCL) statements. Used for providing (GRANT)/withdrawing (REVOKE) access privileges
- <u>Transaction Control Language</u> (TCL) statements are used to manage the changes made by DML statements. It allows statements to be grouped together into <u>logical transactions</u>. Example: COMMIT, ROLLBACK, etc.

SQL and Relational Algebra

- Relation Algebra (RA) is the basis for specifying and evaluating practical relational query languages such as SQL.
- Basic set of operators to retrieve the data from the database
 - Select, Project, Product, Natural Join, Union, Intersect, Minus, Divide
- Advantages
 - Relatively standard implementation-independent form to express a query

SQL and Relational Algebra

Results Table

- Each of the operations results in a new temporary table
- Temporary table exists only during the time the query is in use
- E.g. Display all products with a price < \$2
 - SELECT * FROM PRODUCT;
 - SELECT * FROM PRODUCT WHERE Price < 2;

Thank you