Simplificação Algébrica (capítulo 4)

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University

3-10 Teoremas Booleanos

Teorema (1): para toda a entrada juntamente com 0 numa porta AND, o resultado será 0.

Teorema (2): também pode ser comparado a uma multiplicação.

Teorema (3): pode ser provado testando-se caso a caso.

Se
$$x = 0$$
, então $0 \cdot 0 = 0$

Se
$$x = 1$$
, então $1 \cdot 1 = 1$

Assim,
$$x \cdot x = x$$

Teorema (4): pode ser provado da mesma forma.

3-10 Teoremas Booleanos

Teorema (5): o 0 adicionado a qualquer valor não afeta este valor, seja numa adição ou numa operação OR.

Teorema (6): para qualquer variável numa operação OR com 1, o resultado será 1. Verifique: 0 + 1 = 1 e 1 + 1 = 1.

Teorema (7): pode ser provado verificando-se os dois valores de x. 0 + 0 = 0 e 1 + 1 = 1.

Teorema (8): pode ser verificado de forma similar.

Leis comutativas

$$(9) x + y = y + x$$

$$(10) x \cdot y = y \cdot x$$

Leis Associativas

(11)
$$x + (y + z) = (x + y) + z = x + y + z$$

$$(12) x(yz) = (xy)z = xyz$$

Lei Distributiva

$$(13a) \quad x(y+z) = xy + xz$$

$$(13b) \quad (w+x)(y+z) = wy + xy + wz + xz$$

Teoremas Multivariáveis

Teoremas (14) e (15) não possuem similares na álgebra tradicional. Podem ser provados verificando-se todos os possíveis valores para *x* e *y*.

(14)
$$x + \underline{x}y = x$$
Tabela de análise para o Teorema (14)

(15a) $\underline{x} + xy = \underline{x} + y$
(15b) $x + xy = x + y$

		x	у	ху	x + xy
x + xy = x(1 + y)	[using theorem (6)] [using theorem (2)]	0	0	0	0
$= x \cdot 1$ $= x$		0	1	0	0
		1	0	0	1
		1	1	1	1

Teoremas de DeMorgan são extremamente úteis na simplificação expressões em que um produto ou soma das variáveis está invertido.

$$(16) \quad (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

Teorema (16) diz que a inversão da soma OR de duas variáveis é o mesmo que inverter cada variável individualmente e aplicar AND nas variáveis invertidas.

$$(17) \quad (\overline{x \cdot y}) = \overline{x} + \overline{y}$$

Teorema (17) diz que a inversão do produto E de duas variáveis é o mesmo que inverter cada variável individualmente e, em seguida, reuni-las num OR.

Cada teorema de DeMorgan pode ser facilmente comprovado pela verificação de todas as combinações possíveis de x e y.

Circuitos equivalentes pelo Teorema (16)

$$(16) \quad (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

O símbolo alternativo para a função NOR.

Circuitos equivalentes pelo Teorema (17)

$$(17) \quad (\overline{x \cdot y}) = \overline{x} + \overline{y}$$

O símbolo alternativo para a função NAND.

Uma expressão em soma de produtos Sum-of-products (SOP) aparece como dois ou mais termos AND unidos por operações de OR.

1.
$$ABC + \overline{A}B\overline{C}$$

2.
$$AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$$

3.
$$\overline{A}B + C\overline{D} + EF + GK + H\overline{L}$$

4-1 Forma de produto de somas (*Product-of-Sums*)

Uma expressão em produto de somas - **product-of-sums (POS)** aparece como dois ou mais termos **OR** unidos por operações de **AND**.

1.
$$(A + \overline{B} + C)(A + C)$$

2.
$$(A + \overline{B})(\overline{C} + D)F$$

3.
$$(A + C)(B + \overline{D})(\overline{B} + C)(A + \overline{D} + \overline{E})$$

4-2 Simplificação de circuitos lógicos

- Os circuitos mostrados fornecem o mesmo resultado
 - O circuito (b) é claramente menos complexo.

Os circuitos lógicos pode ser simplificados usando Álgebra Booleana e Mapas de Karnaugh.

4-3 Simplificação algébrica

- Coloque a expressão em forma SOP através da aplicação de teoremas de DeMorgan e da multiplicação de termos.
- Busque na forma SOP por fatores comuns.
 - A fatoração, sempre que possível, deve eliminar um ou mais termos.

Simplifique o circuito abaixo

O primeiro passo consiste em determinar a expressão para a saída:

$$z = ABC + A\overline{B} \cdot (\overline{A} \overline{C})$$

Uma vez que a expressão é determinada, quebre os grandes inversores através dos teoremas de DeMorgan e multiplique todos os termos.

$$z = ABC + A\overline{B}(\overline{A} + \overline{C})$$

$$= ABC + A\overline{B}(A + C)$$

$$= ABC + A\overline{B}A + A\overline{B}C$$

$$= ABC + A\overline{B} + A\overline{B}C$$

[theorem (17)]
[cancel double inversions]
[multiply out]

$$[A \cdot A = A]$$

Simplifique o circuito abaixo

Fatoração - o primeiro e terceiro termos acima têm AC em comum, que pode ser levado para fora:

$$z = AC(B + \overline{B}) + A\overline{B}$$

$$z = AC(1) + A\overline{B}$$
$$= AC + A\overline{B}$$

Fatora-se **A**, o que resulta em...

Circuito lógico simplificado

$$z = A(C + \overline{B})$$

Ver mais exemplos em:

https://drive.google.com/open?id=1IVO5nbSKMedOWu-5v03V49rQP-2vIfNI