Qiusi Shen 004749315

1. P=>¬Q, Q=>¬P

Р	Q	¬Q	¬P	P=>¬Q	Q=>¬P
Т	T	F	F	F	F
Т	F	Т	F	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

From the last two columns P=>¬Q, Q=>¬P are equivalent

$$P \Leftrightarrow \neg Q$$
, $((P^{\neg}Q) \vee (\neg P^{\wedge}Q))$

Р	Q	¬P	¬Q	P^¬Q	¬P^Q	((P^¬Q) \((¬P^Q))	P⇔¬Q
Т	T	F	F	F	F	F	F
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	F	Т	Т	Т
F	F	Т	Т	F	F	F	F

From the last two columns $P \Leftrightarrow \neg Q$, $((P^{\wedge} \neg Q) \lor (\neg P^{\wedge}Q))$ are equivalent

2

In this question, use S for smoke, F for fire, H for heat

(Smoke=>Fire) => (¬Smoke => ¬ Fire)

S	F	¬S	¬F	S=>F	¬S=>¬F	(S=>F) =>(¬S=>¬F)
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	Т	Т
F	F	T	T	Т	F	F

From the last column, I can see the statement is true under certain circumstances. So, the statement is Neither.

(Smoke=>Fire) => ((Smoke V Heat) => Fire)

S	F	Н	S V H	S=>F	(S V H) =>F	(S=>F) => ((S \(^{\text{H}}\)) =>F)
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т
F	F	F	F	Т	Т	Т
F	Т	F	F	Т	Т	Т
F	F	Т	Т	Т	F	F

From the last column, I can see the statement is true under certain circumstances. So, the statement is Neither.

((Smoke ^ Heat) => Fire) ⇔ ((Smoke=> Fire) ∨ (Heat=>Fire))

S	Н	F	S^H	S=>F	H=>F	((S=>F) \(^(H=>F))	(S^H) =>F	Statement
Т	Т	T	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F	Т
Т	F	T	F	T	Т	Т	Т	Т
Т	F	F	F	F	Т	Т	T	Т
F	Т	Т	F	Т	Т	Т	Т	Т
F	Т	F	F	Т	F	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т	Т
F	F	F	F	T	Т	Т	Т	Т

From the last column, I can see the statement is always true.

So, the statement is Valid.

3

In this question use Y for Mythical, I for Immortal, L for Mammal, H for Horned, G for Magical

a) Knowledge base

$$\neg Y => (\neg I \land L)$$

$$(I \lor L) => H$$

$$H \Rightarrow G$$

b) Convert to CNF

$$\neg Y => (\neg I \land L) \rightarrow Y \lor (\neg I \land L) \rightarrow (Y \lor \neg I) \land (Y \lor L)$$

$$(I \lor L) => H \rightarrow \neg (I \lor L) \lor H \rightarrow (\neg I \land \neg L) \lor H \rightarrow (H \lor \neg I) \land (H \lor \neg L)$$

$$H \Rightarrow G \rightarrow \neg H \lor G$$

So, all the CNF are

- 1) ¬Y V I
- 2) Y V ¬I
- 3) Y V L
- 4) H \(^1
- 5) H \(^-\)L
- 6) ¬H ∨ G

c) Find if the unicorn is Mythical? Add ¬Y to the knowledge base

- 7) ¬Y
- 8) L (resolve 3 and 7)
- 9) ¬I (resolve 2 and 7)
 - 10)H (resolve 5 and 8)
 - 11) G (resolve 6 and 10)

12)

From the knowledge base I have, I can't prove the unicorn is Mythical

Find if the unicorn is Magical? Add ¬G to the knowledge base 7) ¬G

8) ¬H (resolve 6 and 7)

9) ¬L (resolve 5 and 8)

10) ¬I (resolve 8 and 4)

11) Y (resolve 3 and 9)

12) I (resolve 1 and 11)

13) contradiction (10 and 12)

So, I proved unicorn is magical.

Find if the unicorn is Horned? Add ¬H to the knowledge base

- 7) ¬H
- 8) ¬I (resolve 4 and 7)
- 9) ¬L (resolve 5 and 7)
- 10) ¬Y (resolve 1 and 8)
- 11) Y (resolve 3 and 9)
- 12) contradiction (10 and 11)

So, I proved unicorn is Horned.