Pronóstico de la demanda en empresas retail Técnica basada en Business Intelligence y Machine Learning

Raúl Benítez - Alberto Garcete Tutores: PhD. Diego P. Pinto Roa - Ing. Aditardo Vázquez

Universidad Nacional de Asunción - Facultad Politécnica

Agosto 2018

ARIMA

MODELOS ARIMA (p, d, q)

Un modelo ARIMA(0, d, 0) es una serie temporal que se convierte en ruido blanco (proceso puramente aleatorio) después de ser diferenciada \mathbf{d} veces.

El modelo (0, d, 0) se expresa mediante: $(1-B)^d X_t = a_t$

El modelo general ARIMA(p, d, q) denominado proceso autorregresivo integrado de medias móviles de orden p, d, q, toma la expresión:

$$(1 - \ \varphi_1 \, B - \ \varphi_2 \, B^2 - \, \cdots \, - \ \varphi_p \, B^p \,) \, (1 - B)^d \ \, X_t \, = (1 - \ \nu_1 \, B \, - \, \nu_2 \, B^2 - \, \cdots \, - \, \nu_q \, B^q \,) \, a_t$$

Un modelo ARIMA(p, d, q) permite describir una serie de observaciones después de que hayan sido diferenciadas **d** veces, a fin de extraer las posibles fuentes de no estacionariedad. Esta fórmula se puede

ARIMA

aplicar a cualquier modelo. Si hay alguna componente p, d, q, igual a cero, se elimina el término correspondiente de la fórmula general.

Los modelos cíclicos o estacionales son aquellos que se caracterizan por oscilaciones cíclicas, también denominadas variaciones estacionales. Las variaciones cíclicas a veces se superponen a una tendencia secular.

Las series con tendencia secular y variaciones cíclicas pueden representarse mediante los modelos ARIMA(p, d, q)(P, D, Q). El primer paréntesis (p, d, q) se refiere a la tendencia secular o parte regular de la serie y el segundo paréntesis (P, D, Q) se refiere a las variaciones estacionales, o parte cíclica de la serie temporal.

En este sentido, se adjuntan algunas expresiones del modelo:

- ARIMA(0, 1, 1)(0,0,1)₁₂: $(1-B)X_t = (1-v_1B^{12})(1-\delta_{12}B^{12})$
- $\qquad \text{ARIMA(0, 1, 1)(0,1,1)}_{12}: \quad (1-B)\,(1-B^{12})\,X_t = (1-\nu_1\,B^{12})\,(1-\delta_{12}\,B^{12})$
- ARIMA(2, 1, 0)(1,0,0)₁₂: $(1 \phi_1 B \phi_2 B^{12}) (1 \Omega_1 B^{12}) (1 B) X_t = a_t$
- $= \quad \text{ARIMA(1, 1, 1)(2,1,1)}_{12}: \quad (1-\ \varphi_1\ B)\ (1-\ \Omega_1\ B^{12}-\ \Omega_2\ B^{24})\ (1-B^{12})\ \ (1-B)\ X_t = \ (1-\ \nu_1\ B)\ (1-\delta_{12}\ B^{12})\ a_t = (1-\delta_{12}\ B^{12})$

