By Wenjie

• Tree Terminology review

- o Vertex: "nodes"
- Edge: a connection between two vertices
- o Path: sequence of edges
- o Parents: Node **b**, **d**, **x** have Node **a** as their parent
- o Children: **b**, **d**, **x**, are the children of **a**
- Siblings: **b**, **d**, **x**, are siblings of each other
- o Ancestors: **u** has ancestors **l**, **d**, **a**
- o Descendants: **x** has **s**, **m** as its descendants
- Leaves: Vertices with no children

• Binary Tree

- o A binary tree is either
 - \blacksquare T = {T_L, T_R, r}, where T_L, T_R are binary trees
 - $\blacksquare \quad \mathsf{T} = \big\{ \big\} = \emptyset$

• Computation of the tree height

- The length of the longest path from the root to the leaf (count edges).
- If we want to compute recursively:
 - height(T) = 1 + max(height(T_L), height(T_R)), where if height(null) = -1, which might be counter-intuitive but it follows the mathematical definition of tree height

By Wenjie

Full Tree:

- A binary tree is **full** if and only if
 - Either: F = {}
 - Or: $F = \{T_L, T_R, r\}$ where T_L, T_R both have either 0 or 2 children

Perfect Tree

- \circ A perfect tree P_h is defined by its height
 - \blacksquare P_h is a tree of height **h**, with
 - $P_{-1} = \{\}$
 - $P_h = \{r, P_{h-1}, P_{h-1}\}$ when $h \ge 0$

Complete Tree

- o A complete tree is
 - A perfect tree except for the last level
 - All leaves must be pushed to the **left**
- o Or, recursively, a complete tree C_h of height h is

 - $\mathbf{C}_{h} = \{r, T_{L}, T_{R}\}$ where
 - Either: $T_L = C_{h-1}$ and $T_R = P_{h-2}$
 - Or: $T_L = P_{h-1}$ and $T_R = C_{h-1}$

By Wenjie

 $T_L = C_{h-1}$ and $T_R = P_{h-2}$

$$T_L = P_{h-1}$$
 and $T_R = C_{h-1}$

• Tree property

- o Is every full tree has to be complete?
 - No

- How about the other way is every complete tree has to be full?
 - No

- Also,
 - Full does not imply perfect, so as complete does not imply perfect
 - Not full implies not perfect, thus perfect implies full; perfect also implies complete too.

• Tree ADT

- o Operations of Tree ADT
 - Insert

By Wenjie

- Remove
- Traverse
- A binary tree is just like a fancy linked list since they both traverse between nodes/TreeNode


```
BinaryTree.h
    #pragma once
3
   template <typename T>
4
   class BinaryTree {
5
         public:
6
              /* ... */
7
8
9
         private:
10
              class TreeNode {
11
                    TreeNode * left; // pointer to the left child
12
                    TreeNode * right; // pointer to the right
13
   child
14
                    T & data;
15
                    TreeNode(T & t):
16
                       data(t), left(NULL), right(NULL) {};
17
                       // constructor (initialization list)
18
              };
```

By Wenjie

```
TreeNode * root_;
// root of the tree: similar to head in linked list
}
```

Drawing

The actual tree

- Every pointer not pointing to another node is NULL
- Number of null pointers in a binary tree
 - **Theorem**: A binary tree with n data items has n+1 null pointers.