Teorema lui Wilson

Lemă. Dacă p este un număr prim, atunci $x^2 \equiv 1 \pmod{p}$ dacă și numai dacă $x \equiv \pm 1 \pmod{p}$.

Demonstrație. Fie p un număr prim. Dacă $x^2 \equiv 1 \pmod{p}$, adică $x^2 - 1 = (x - 1)(x + 1) \equiv 0 \pmod{p}$, atunci, având în vedere că p este prim, fie $p \mid x - 1$, fie $p \mid x + 1$. Așadar, $x \equiv \pm 1 \pmod{p}$.

Corolar. Dacă p este un număr prim, atunci, pentru orice număr natural a din intervalul [2, p-2], inversul său multiplicativ modulo p este cuprins tot între 2 și p-2, și este diferit de x.

Teorema lui Wilson. Un număr natural p > 1 este prim dacă și numai dacă $(p-1)! \equiv -1 \pmod{p}$.

Demonstrație. Fie p > 1 un număr natural.

Dacă p este compus, atunci p sigur se poate scrie drept produsul a două numere a și b, unde $2 \le a \le \sqrt{p} \le b \le p-2$. Distingem două cazuri.

Dacă $a \neq b$, atunci atât a cât și b apar în lista $2, 3, \ldots, p-2$, de unde $a \cdot b \mid (p-1)!$, adică $(p-1)! \equiv 0 \not\equiv -1 \pmod{p}$. În schimb, dacă $a = b \ (= \sqrt{p})$, atunci avem alte două cazuri.

Dacă p=4, obținem $(p-1)!=6\not\equiv -1\pmod p$. Dacă p>4, atunci a>2, așa că $2a< a^2=p$. Prin urmare, atât a cât și 2a se regăsesc în lista $2,3,\ldots,p-1$. Deci, $a^2\mid (p-1)!$, adică $(p-1)!\equiv 0\not\equiv -1\pmod p$.

Dacă p este prim, avem două cazuri. Dacă p=2, atunci $(p-1)!=1\equiv -1\pmod p$. Altfel, numărul de elemente din lista $2,3,\ldots,p-2$ este par. Deci, conform corolarului de mai sus, putem grupa aceste elemente în (p-1)/2 perechi de numere (a,b), cu proprietatea că $a \cdot b \equiv 1 \pmod p$. Prin urmare, $(p-1)! \equiv p-1 \equiv -1 \pmod p$.

Aşadar, $(p-1)! \equiv -1 \pmod{p}$ dacă și numai dacă p este prim. \square