Chapter 1 Overview of Statistical Data Science

1.1 What is data science?

Data science is an interdisciplinary field.

- It uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data.
- It involves techniques and theories drawn from many fields within the context of mathematics, statistics, computer science, domain knowledge and information science.
- It is related to data mining, machine learning and big data.

People have very different views regarding data science and statistics.

- Some argued that data science is not a new field, but rather another name for statistics.
- Some see that data science is applied statistics.
- Some see that data science as a brand new field that uses statistics.

Everyone agrees that statistics is a crucial component of data science.

Compared with traditional statistics (e.g., in the 70s), data science

- deals with new types of data (e.g., images, electronic health record),
- deals with huge datasets,
- and emphasizes prediction and action.

A crude schematic of a common data science project is show below. As the can roughly categorize tasks of a data scientist based on the schematic.

Task	Descriptions	Skills required	
Visioning	To generate hypotheses or questions that are of interest	Domain knowledge, self-learning, quantitative methods, etc.	
Data acquisition	To gather data for verifying hypotheses via experiments, sample surveys, or data queries	Experimental designs, causal inference, query languages, etc.	
Analysis	To analyze data to produce meaningful visualizations, build predictive models, test hypotheses, etc.	Domain knowledge, programming languages, statistical models, statistical theory, optimization, etc.	
Conclusion	To conclude the analysis results in writing or via presentations	Communication skills, writing skills, public speaking skills, etc.	
Management	To manage and oversee the project	Leadership, collaboration skills, tools for team projects, etc.	

This collection of notes focuses on the **Data** part of the chain. As 2 The transform-visualise-model step is in fact an iterative process, where we need to reflect and revise our approaches based on results in previous steps. As 3

1.2 Example: wages

We now turn to the wages data to see an example of data analysis.

```
In [4]: library(readx1)
library(ggplot2)
suppressPackageStartupMessages(library(tidyverse))

wages <- read_excel(".../Data/wages.xlsx", na="NA")
wages %>%
    ggplot(aes(log(income))) + geom_histogram(binwidth = 0.25)
```


In the code above, we propose a linear model for the response (log income) and the single predictor (education).

The formula for lm() only needs to include the response (variable on the y axis) and predictors (variable on the x-axis). The intercept term is included by default, unless specified otherwise (-1).

(Intercept): 8.558

We can try to interpret the fitted coefficients.

- The average log income is {{as.numeric(round(mod_e\$coef[1],digits=3))}} for those with zero years of education.
- The average difference in log income is {{as.numeric(round(mod_e\$coef[2],digits=3))}} for groups with one year difference in education.

Neither statement makes a lot of sense. For instance, (1) there isn't anyone with zero years of education in the wages dataset, and (2) differences in log income are not informative for general audience. Therefore, we have two questions to think about.

- Why take the logarithm of income?
- How should we interpret the fitted results?

After model fitting, we usually proceed to hypothesis testing, predictive modeling, or model diagnostics. An experienced reader can certainly perform these tasks from scratch. However, it is best not to reinvent the wheels. For very common tasks, it is extremely likely that there are existing tools out there on the Internet. Here we use the package broom in R.

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats: what uncertainty is associated with it?
- 2. glance() returns model diagnostics: how "good" is the model?
- 3. augment() returns predictions, residuals, and other raw values

```
In [30]: library(broom)
mod_e %>% tidy()
```

```
        term
        estimate
        std.error
        statistic
        p.value

        <chr>
        <dbl><dbl><dbl><dbl>
        <dbl>
        <dbl>

        (Intercept)
        8.5576906
        0.073259622
        116.81320
        0.000000e+00

        education
        0.1418404
        0.005304577
        26.73924
        8.408952e-148
```

```
In [31]: mod_e %>% glance()
```

		A tibble: 1 × 12							
r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	devia
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<d< th=""></d<>

devia	BIC	AIC	logLik	df	p.value	statistic	sigma	adj.r.squared	r.squared
< d	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
5181.	14881.29	14861.59	-7427.793	1	8.408952e- 148	714.987	0.9923358	0.119456	0.1196233

In [32]: mod_e %>% augment()

						augment()	mou_c ///
			e: 5264 × 8	A tibble			
.cooksd	.sigma	.hat	.std.resid	.fitted	education	log(income)	.rownames
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
3.054133e- 05	0.9924012	0.0001991827	-0.55371967	10.401615	13	9.852194	1
6.675581e- 05	0.9924074	0.0005537086	0.49090632	9.976094	10	10.463103	2
9.843315e- 05	0.9923784	0.0003590043	0.74038545	10.827137	16	11.561716	3
2.805560e- 07	0.9924299	0.0001953068	0.05359492	10.543456	14	10.596635	4
4.611455e- 05	0.9923856	0.0001953068	0.68712042	10.543456	14	11.225243	5
6.800811e- 05	0.9924131	0.0007513008	0.42532922	11.110817	18	11.532728	6
1.062372e- 04	0.9923532	0.0002602083	0.90351685	10.259775	12	11.156251	7
7.284298e- 05	0.9923774	0.0002602083	0.74815540	10.259775	12	11.002100	8
2.327661e- 04	0.9922098	0.0001991827	1.52864202	10.401615	13	11.918391	9
1.243231e- 04	0.9923648	0.0003590043	0.83207630	10.827137	16	11.652687	10
6.729971e- 04	0.9920766	0.0003590043	1.93594843	10.827137	16	12.747903	11
9.691986e- 06	0.9924251	0.0003590043	-0.23232373	10.827137	16	10.596635	12
6.405274e- 07	0.9924295	0.0001953068	-0.08098093	10.543456	14	10.463103	13
9.843315e- 05	0.9923784	0.0003590043	0.74038545	10.827137	16	11.561716	14
2.389626e- 04	0.9923046	0.0003590043	-1.15359186	10.827137	16	9.682591	15
3.835423e- 04	0.9921522	0.0002602083	-1.71674017	10.259775	12	8.556414	16
1.966012e- 05	0.9924159	0.0002602083	0.38867895	10.259775	12	10.645425	17

.rownames	log(income)	education	.fitted	.std.resid	.hat	.sigma	.cooksd
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
18	10.878047	12	10.259775	0.62312838	0.0002602083	0.9923935	5.053115e- 05
19	10.558414	12	10.259775	0.30098414	0.0002602083	0.9924216	1.178939e- 05
20	10.691945	12	10.259775	0.43556436	0.0002602083	0.9924122	2.468930e- 05
21	11.440355	12	10.259775	1.18985260	0.0002602083	0.9922966	1.842428e- 04
22	11.034890	12	10.259775	0.78120277	0.0002602083	0.9923726	7.942032e- 05
23	10.714418	14	10.543456	0.17229923	0.0001953068	0.9924273	2.899606e- 06
24	11.775290	16	10.827137	0.95564771	0.0003590043	0.9923440	1.639915e- 04
25	10.714418	12	10.259775	0.45821373	0.0002602083	0.9924103	2.732375e- 05
26	11.225243	12	10.259775	0.97305163	0.0002602083	0.9923408	1.232185e- 04
27	11.198215	14	10.543456	0.65988033	0.0001953068	0.9923891	4.253071e- 05
28	10.915088	12	10.259775	0.66046059	0.0002602083	0.9923890	5.676726e- 05
29	12.747903	14	10.543456	2.22168956	0.0001953068	0.9919646	4.821021e- 04
30	10.308953	12	10.259775	0.04956390	0.0002602083	0.9924299	3.196943e- 07
			•••				
5237	10.714418	12	10.259775	0.4582137	0.0002602083	0.9924103	2.732375e- 05
5238	9.392662	12	10.259775	-0.8739238	0.0002602083	0.9923581	9.939196e- 05
5239	7.600902	12	10.259775	-2.6797567	0.0002602083	0.9917527	9.345334e- 04
5240	9.472705	14	10.543456	-1.0791263	0.0001953068	0.9923203	1.137409e- 04
5241	10.043249	12	10.259775	-0.2182262	0.0002602083	0.9924256	6.197521e- 06
5242	9.190138	18	11.110817	-1.9362412	0.0007513008	0.9920765	1.409383e- 03
5243	10.545341	12	10.259775	0.2878094	0.0002602083	0.9924223	1.077988e- 05
5244	9.615805	11	10.117935	-0.5061031	0.0003783836	0.9924060	4.847799e- 05

.rownames	log(income)	education	.fitted	.std.resid	.hat	.sigma	.cooksd
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
5245	10.950807	18	11.110817	-0.1613071	0.0007513008	0.9924277	9.781768e- 06
5246	11.982929	16	10.827137	1.1649283	0.0003590043	0.9923022	2.436823e- 04
5247	12.747903	18	11.110817	1.6503493	0.0007513008	0.9921733	1.023910e- 03
5248	10.705489	12	10.259775	0.4492150	0.0002602083	0.9924111	2.626108e- 05
5249	11.082143	16	10.827137	0.2570217	0.0003590043	0.9924239	1.186220e- 05
5250	10.165852	6	9.408733	0.7636642	0.0018265061	0.9923751	5.335683e- 04
5251	9.118225	11	10.117935	-1.0076213	0.0003783836	0.9923344	1.921593e- 04
5252	10.373491	10	9.976094	0.4005770	0.0005537086	0.9924150	4.444920e- 05
5253	10.434116	12	10.259775	0.1757101	0.0002602083	0.9924272	4.017887e- 06
5254	9.210340	12	10.259775	-1.0576774	0.0002602083	0.9923246	1.455830e- 04
5255	9.998798	11	10.117935	-0.1200798	0.0003783836	0.9924288	2.729018e- 06 9.691986e-
5256	10.596635	16	10.827137	-0.2323237	0.0003590043	0.9924251	06 5.993192e-
5257	10.933107		10.259775		0.0002602083		05 1.249921e-
5258	9.952278		10.259775		0.0002602083		05 2.942982e-
5259	9.998798		10.543456		0.0001953068		05 6.719439e-
5260	9.546813		10.259775		0.0002602083		05 6.712422e-
5261	8.006368		10.259775		0.0002602083		04 4.075766e-
5262	11.184421		10.543456		0.0001953068		05 1.120911e-
5263	10.043249		10.827137		0.0003590043		04 1.572374e-
5264	11.350407		10.259775		0.0002602083		04 2.817226e-
5265	9.798127		10.259775		0.0002602083		05 2.343379e-
5266	10.126631	12	10.259775	-0.1341897	0.0002602083	0.9924284	06

```
In [33]: mod_e %>% tidy() %>% filter(p.value < 0.05)
```

A tibble: 2 × 5							
term	estimate	p.value					
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
(Intercept)	8.5576906	0.073259622	116.81320	0.000000e+00			
education	0.1418404	0.005304577	26.73924	8.408952e-148			

The low \mathbb{R}^2 indicates that education explains only a part of variability of income. We can include more predictors in the model.

```
In [34]: mod_eh <- wages %>%
    lm(log(income) ~ education + height, data = .)
    mod_eh %>% tidy()
```

 term
 estimate
 std.error
 statistic
 p.value

 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

 (Intercept)
 5.34837618
 0.231320415
 23.12107
 1.002503e-112

A tibble: 3×5

education 0.13871285 0.005205245 26.64867 7.120134e-147

height 0.04830864 0.003309870 14.59533

In [36]: mod_eh %>% glance()

A tibble: 1 × 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC devi <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <(1.273687e-2 -7323.321 14654.64 14680.92 0.1538835 0.1535618 0.9729281 478.4099 4980 191

2.504935e-47

The \mathbb{R}^2 does improves a bit, but still remains low. Maybe the linear model is a not a good choice. It might be a good idea to look at the raw data.

```
wages %>%
ggplot(aes(x = height, y = log(income))) +
geom_point(alpha = 0.1) +
geom_smooth(method = lm)
```

 $geom_smooth()$ using formula 'y ~ x'


```
wages %>%
ggplot(aes(x = height, y = log(income))) +
geom_point(alpha = 0.1) +
geom_smooth(method = loess)
```

 $\ensuremath{\text{geom_smooth}()}\ensuremath{\text{using formula 'y}}\ensuremath{\text{~~x'}}$

