CS 171, Intro to A.I., Winter Quarter, 2020 — Quiz # 2 — 25 minutes

NAME:		UCINetID			
YOUR ID#:	ID# TO RIGHT:	ID# TO LEFT:	ROW:	SEAT:	
		d as (M pts, blank=N) where			
guessing. If you de	on't know the answer, you ca	an leave it blank and receive I	N points. The inter	nt is to discourage	
		measure is the same whether	•		
chosen that way. I	However, leaving it blank has	s a lower variance than guessi	ng, and so a more	reliable score.	

1. (30 pts, blank=15) CNF. Convert the following sentence to CNF. SHOW YOUR WORK.

$$A \Leftrightarrow (B \land C)$$

$$[A \Rightarrow (B \land C)] \land [(B \land C) \Rightarrow A]$$

$$[\neg A \lor (B \land C)] \land [\neg (B \land C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [\neg (B \land C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \land C)] \land [(\neg B \lor \neg C) \lor A]$$

$$[\neg A \lor (B \lor (B \lor C)) \land (\neg A \lor C) \land$$

2. (30 pts total, 5 pts each; blank=15 pts total, 2.5 pts each) Logic-To-English. For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1) "Butterfly(x)" is intended to mean "x is a butterfly." (2) "Flower(x)" is intended to mean "x is a flower." (3) "FeedsOn(x, y)" is intended to mean "x feeds on y."

	D	$\forall b \exists f \text{ Butterfly}(b) \Rightarrow [\text{ Flower}(f) \land \text{ FeedsOn}(b, f)]$	A	Every butterfly feeds on every flower.	See Section 8.2.6
•	F	$\exists f \forall b \text{ Flower}(f) \land [\text{ Butterfly}(b) \Rightarrow \text{FeedsOn}(b, f)]$	В	For every flower, there is some butterfly who feeds on that flower.	Note that ⇒ or ⇔ is the natural
	В	$\forall f \exists b \text{ Flower}(f) \Rightarrow [\text{ Butterfly}(b) \land \text{ FeedsOn}(b, f)]$	С	There is some butterfly who feeds on some flower.	connective to
	Е	$\exists b \ \forall f \ Butterfly(b) \land [\ Flower(f) \Rightarrow FeedsOn(b, f)]$	D	For every butterfly, there is some flower that the butterfly feeds on.	use with ∀.
	A	$\forall b \ \forall f [Butterfly(b) \land Flower(f)] \Rightarrow FeedsOn(b, f)$	Е	There is some butterfly who feeds on every flower.	Note that ∧ is the natural
	С	$\exists b \ \exists f \ Butterfly(b) \land Flower(f) \land FeedsOn(b, f)$	F	There is some flower that every butterfly feeds on.	connective to use with \exists .

NAME (Print Darkly & Clearly):					UCI NetID:			
3. (40 pts, b	lank=20) Res	olution T	heorem Prov	ing. Your Know	vledge Base (K	B) is:		
A	$A \Rightarrow (B \lor C)$		$B \Rightarrow D \qquad (C \lor D) \Rightarrow F$					
You are ask	ed to prove tha	ıt F is true	, that is, your	query sentence	is F. In CNF yo	our KB plus ne	egated query is:	
A	$(\neg A \vee B \vee$	C)	$(\neg B \vee D)$	(¬C∨	⁄ F)	$(\neg D \vee F)$	$\neg F$	
The first one The	e is done for yo shortest proof	ou as an e I know of	xample. <u>Think</u> is only five li	of that F is true, a about it, then fines long. Longe () in your answe	ind a proof that or proofs are OI	t mirrors how K provided the	<u>you think.</u>	
Resolve	A	with _	$(\neg A \lor B \lor C)$	C)	_ to produce: _	(B ∨ C)		
Resolve	(B v C))	with _	(¬B∨D)		_ to produce: _	(C ∨ D)		
Resolve	(C ∨ D)	with_	$(\neg C \lor F)$		_ to produce: _	(D ∨ F)		
Resolve	(D ∨ F)	with_	$(\neg D \lor F)$		_ to produce: _	F		
Resolve	F	with _	¬F		_ to produce: _	()		
Resolve	⊸F	with_	$(\neg D \lor F)$	m F. Many othe	_ to produce: _	¬D		
Resolve	$\neg D$	with _	(¬B∨D)		to produce: _	$\neg B$		
Resolve	¬С	with _	$(\neg A \lor B \lor C)$	C)	_ to produce: _	$(\neg A \lor B)$		
Resolve	¬B	with _	(¬A ∨ B)		_ to produce: _	$\neg A$		
Resolve	¬A	with _	A		_ to produce: _	()		