实验一 黑盒测试用例设计实验

1. 引言

1.1 标识

本文档适用于以下测试环境

系统: win11, version 22H2

CPU: AMD 6800H

1.2 系统概述

本文档测试软件为"找零钱最佳组合程序",具体功能如下:

- 1) 输入付款金额和商品价格,程序计算找零钱的最佳组合(找给顾客货币最少张数)
- 2) 商品价格应为一个整数且不大于 100 元。
- 3) 商品价格应为阿拉伯数字。
- 4) 找零货币只有50,20,10,5,2,1六种面值。

2. 测试需求

2.1 输入验证

- 1) 确保输入的是一个整数。
- 2) 确保输入的不超过 100 元。
- 3) 确保输入的是阿拉伯数字。

2.2 输出正确性

当正确输入后,程序应能正确计算出找零的最佳组合,即货币的最少张数。

3. 测试执行结果

黑盒测试又称功能测试、数据驱动测试或基于规格说明书的测试,是一种从用户观点 出发的测试。本次测试将采用等价类划分方法,边界值方法,因果图方法来进行测试。

3.1 等价类划分方法

标识符	test-charge
测试项	用等价类划分方法来设计用例测试
	test.exe 的找零钱最佳组合功能
方法原理	把程序的输入域划分为若干个等价类
	(子集),然后从每个子集中选取少数
	有代表性的数据作为测试用例
测试环境要求	Windows11, IntelliJ IDEA 2023
预期输出	正确找零或者提示错误
测试人	杨帅棋

表 3.1 等价类划分标识符

3.1.1 测试用例设计

测试用例	操作	数据	期望结果	实际结果	测试状态
1-1	不输入数	-	提示非法输	提示非法输	Pass
	据,并进行		入	入	
	找零				
1-2	输入非法数	付款金额	提示非法输	提示非法输	Pass
	据并执行找	=abc	入	入	
	零				
1-3	输入超大数	付款金额	提示非法输	提示非法输	Pass
	据	=999	入	入	
1-4	输入负值	付款金额=-	提示非法输	提示非法输	Pass
		1	入	入	
1-5	输入高精度	付款金额	提示非法输	提示非法输	Pass
	数据	=1.1	入	入	
1-6	输入数据前	付款金额	提示非法输	提示非法输	Pass
	几位是0	=00015	入	入	
1-7	付款金额<	付款金额=5	提示非法输	提示非法输	Pass
	商品价格	商品价格	入	入	
		=10			
1-8	输入合法数	付款金额			Pass
	据	=25			

		商品价格 =12	找零:一张 10元,1张 2元,1张1		
			元	元	
1-9	输入合法数	付款金额	找零:一张	找零:一张	Pass
	据	=50 元	10 元	10 元	
		商品价格			
		=40 元			
1-10	输入合法数	付款金额	找零:一张	找零:一张	Pass
	据	=40 元	2元,一张	2元,一张	
		商品价格	1元	1元	
		=37 元			

表 3.2 等价类划分测试用例

3.2 边界值分析法

边界值分析是一种常用的黑盒测试方法,是对等价类划分方法的补充;所谓边界值,是指相对于输入等价类和输出等价类而言,稍高于其最高值或稍低于最低值的一些特定情况。 边界值分析是通过选取指定数据域的"上点""内点""离点"来测试输入或输出的边界。

上点:就是边界上的点,无论域是开区间还是闭区间。若是开区间,上点在域外;若是闭区间,上点就在域内。

离点:是指离"上点"最近得点,这里跟待测数据域是闭区间还是开区间有关系。如果是开区间,那么离点就在域内;如果是闭区间,那么离点就在域外。

内点:域内的任意点都是内点。

3.2.1 测试用例设计

测试用例	操作	数据	期望结果	实际结果	测试状态
2-1	输入最大金	付款金额	找零:0元	找零:0元	Pass
	额	=100			
		商品价格			
		=100			
2-2	输入最大金	付款金额	提示非法输	提示非法输	Pass
	额+1	=101	入	入	
2-3	输入最小金	付款金额=0	找零:0元	找零:0元	Pass
	额	商品价格=0			

2-4	输入最小金 额-1	付款金额= - 1	提示非法输入	提示非法输入	Pass
2-5	找零0元	付款金额 =55 商品价格 =55	找零: 0元	找零: 0元	Pass
2-6	找零1元	付款金额 =15 商品价格 =14	找零: 1 张 1 元	找零: 1 张 1 元	Pass
2-7	找零2元	付款金额 =25 商品价格 =23	找零: 1 张 2 元,	找零: 1 张 2 元,	Pass
2-8	找零5元	付款金额 =35 商品价格 =30		找零: 2 张 2 元, 1 张 1 元	Pass
2-9	找零9元	付款金额 =25 商品价格 =16		找零: 1 张 5 元, 2 张 2 元,	Pass
2-10	找零 10 元	付款金额 =45 商品价格 =35	找零: 1 张 10 元	找零: 1 张 10 元	Pass
2-11	找零 20 元	付款金额 =45 商品价格 =25	找零: 1 张 20 元	找零: 1 张 20 元	Pass
2-12	找零 49 元	付款金额 =50 商品价格=1	找零: 2 张 20 元, 1 张 5 元, 2 张 2 元	找零: 2 张 20 元, 1 张 5 元, 2 张 2 元	Pass
2-13	找零 50 元	付款金额 =70 商品价格 =20	找零: 1 张 50 元	找零: 1 张 50 元	Pass

表 3.3 边界值测试用例设计

3.3 因果图测试

因果图方法最终生成的是判定表。它适合于检查程序输入条件的各种组合情况。

3.3.1 测试样例设计

- 1) 输入先导 0
- 2) 输入超过付款金额的商品价格数
- 3) 输入0到100之间的整数
- 4) 非法输入
- 5) 输入小数

编	号	3-1	3-2	3-3	3-4	3-5	3-6	3-7
	1	0	1	0	0	1	1	0
原	2	0	0	1	1	1	1	1
因	3	1	1	0	1	1	1	0
	4	0	0	0	0	0	0	0
	(5)	0	0	1	0	0	1	1
测记		付款金 额:10 商品价 格:5	付款金 额:010 商品价 格 5	付款金 额:20.5 商品价 格:10	付款金 额:70 商品价 格:80	付款金 额:050. 5 商品价 格:30	付款金 额:040. 5 商品价 格:60	付款金 额:70.5 商品价 格:80
预期 果		找零: 5 元纸币 1张	提示输入错误	提示输入错误	提示消 费金额 超出付 款金额	提示输入错误	提示输 入错误	提示输 入错误
实际		找零: 5 元纸币 1 张	提示输入错误	提示输入错误	您的消 费金额 超出付 款金额	提示输入错误	提示输 入错误	提示输 入错误
测记 态		Pass	Pass	Pass	Pass	Pass	Pass	Pass

表 3.4 因果图测试用例设计

4. 测试结果概述

4.1 对被测试软件的总体评估

软件应该能够正确处理用户的查询请求,对于非法的输入应该进行判断并进行错误提示。

4.2 测试环境的影响

与具体的系统环境无关

4.3 改进建议

测试用例覆盖程度有待改进

5. 软件评价

5.1 整体评价

程序能够满足用户需求,操作简单,健壮性良好,对于软件需求基本能够实现,能够处理大部分非法输入。

5.2 缺点与不足

- 1、使用不便、必须使用一些 IDE (集成开发环境) 中运行、具有一定的使用门槛。
- 2、对于输入格式限制较为严格。

5.3 总结

程序基本实现了计算找零钱最佳组合预设的需求,当用户时候能够返回正确结果,对于大部分非法输入能够正确判断并进行错误提示。 在软件测试的过程中能够完成大部分测试,基本满足需求。

6. 测试记录

测试项目	测试日期	测试时间	测试人员	测试环境
功能测试	2023.11.1	10:00	杨帅棋	华硕无畏 pro15 2022
->1101/1104	2023.11.1	10.00	12471175	win11, version 22H2