PHIL 424: HW #2 Solutions

October 6, 2014

1 Propositons

State-Descriptions

List all eight state-descriptions available in a language with the three atomic sentences P, Q, and R.

- 1. *P* & *Q* & *R*
- 2. $P \& Q \& \sim R$
- 3. $P \& \sim Q \& R$
- 4. $P \& \sim Q \& \sim R$
- 5. $\sim P \& Q \& R$
- 6. $\sim P \& Q \& \sim R$
- 7. $\sim P \& \sim Q \& R$
- 8. $\sim P \& \sim Q \& \sim R$

Point Values

This question was worth 12.5 points. Equal weight was given to each of the eight state-descriptions.

Disjunctive Normal Form

Give the disjunctive normal form of $(P \lor Q) \supset R$

to express the sentence as a disjunction of conjunctions. First, let's draw the truth table for this sentence.

P	Q	R	state-description	$P \vee Q$	$(P \vee Q) \supset R$
T	T	T	P & Q & R	T	T
T	T	F	$P \& Q \& \sim R$	T	F
T	F	T	$P \& \sim Q \& R$	T	T
T	F	F	$P \& \sim Q \& \sim R$	T	F
F	T	T	~P & Q & R	T	T
F	T	F	~P & Q & ~R	T	F
F	F	T	$\sim P \& \sim Q \& R$	F	T
F	F	F	$\sim P \& \sim Q \& \sim R$	F	T

We see that $(P \lor Q) \supset R$ is true in states 1, 3, 5, 7, and 8. So the disjunctive normal form equivalent is

$$(P \& Q \& R) \lor (P \& \sim Q \& R) \lor (\sim P \& Q \& R) \lor (\sim P \& \sim Q \& R) \lor (\sim P \& \sim Q \& \sim R).$$

Point Values

This question was worth 12.5 points. Using a "good" method earned half credit, properly applying the method and getting the right answer earned the other half. Equal weight (1.25) was given to each of the five state-descriptions, with that many points deducted for each wrong state-description included.

5 Stochastic Truth-Tables

Consider the probabilistic credence distribution specified by this stochastic truth-table:

P	Q	R	cr(⋅)
T	T	T	0.1
T	T	F	0.2
T	F	T	0
T	F	F	0.3
F	T	T	0.1
F	T	F	0.2
F	F	T	0
F	F	F	0.1

Calculate each of the following values

$$\operatorname{cr}(P \equiv Q)$$
:

 $P \equiv Q$ is true just in case P has the same truth value as Q. This occurs on rows 1, 2, 7, and 8. So we have $cr(P \equiv Q) = 0.1 + 0.2 + 0 + 0.1 = 0.4$

$$\operatorname{cr}(R\supset Q)$$
:

 $R \supset Q$ is false just in case R is true and Q is false. This occurs on rows 3 and 7. So we have $\operatorname{cr}(\sim [R \supset Q]) = 0 + 0 = 0$. So by Negation, $\operatorname{cr}(R \supset Q) = 1 - \operatorname{cr}(\sim [R \supset Q]) = 1 - 0 = 1$.

$$cr(P \& R) - cr(\sim P \& R)$$
:

P & *R* is true on rows 1 and 3. So cr(P & R) = 0.1 + 0 = 0.1. *P* & ~*R* is true on rows 4 and 7. So $cr(P \& \sim R) = 0.1 + 0 = 0.1$. And their difference is 0.

$$cr(P \& Q \& R)/cr(R)$$
:

P & Q & R is true on row 1. So cr(P & Q & R) = 0.1. R is true on rows 1, 3, 5, and 7. So cr(R) = 0.1 + 0 + 0.1 + 0 = 0.2. And 0.1/0.2 = 1/2.

Point Values

This question was worth 25 points. Each part of the question was given equal weight.

6 Checking a Credence Distribution

Can a probabilistic credence distribution assign cr(P) = 0.5, cr(Q) = 0.5, and $cr(\sim P \& \sim Q) = 0.8$? Explain why or why not.

No.

Suppose there were a credence distribution with those values. P and $\sim P \& \sim Q$ are mutually exclusive, so by Finite Additivity $\operatorname{cr}(P \lor [\sim P \& \sim Q]) = \operatorname{cr}(P) + \operatorname{cr}(\sim P \& \sim Q) = 0.5 + 0.8 = 1.3$. However, by Maximality $\operatorname{cr}(P \lor [\sim P \& \sim Q]) \le 1$. Contradiction.

Point Values

This question was worth 25 points. Partial credit was given based on "goodness" of method used. Partial credit was deducted based on "badness" of method used.

7 Checking Another Credence Distribution

Can an agent have a probabilistic cr-distribution meeting all of the following constraints?

- The agent is certain of $A \supset (B \equiv Q)$.
- The agent is equally confident of B and $\sim B$.
- The agent is twice as confident of C as C & A.
- $cr(B \& C \& \sim A) = 1/5$.

If not, prove that it's impossible. If so, provide a stochastic truth-table and demonstrate that the resulting distribution satisfies each of the four constraints.

The easiest way to answer this problem is to try to construct a stochastic truth-table subject to the constraints. If you can do it, then you have your answer. If not, then you just have to explain what went wrong. First, by Non-Negativity, Negation, and Entailment, we

know that anything inconsistent with $A \supset (B \equiv Q)$ gets credence 0. By propositional logic, there are two such state-descriptions: $A \& B \& \sim C$ and $A \& \sim B \& C$.

\boldsymbol{A}	$\mid B \mid$	C	$\operatorname{cr}(\cdot)$
T	T	T	а
T	T	F	0
T	F	T	0
T	F	F	b
F	T	T	1/5
F	T	F	С
F	F	T	d
F	F	F	е

If this is probabilistic, then a+b+1/5+c+d+e=1. By the second constraint, a+1/5+c=b+d+e. cr(C & A) = a and cr(C) = a+1/5+d. So by the third constraint, a=1/5+d. The first and second constraints together imply that a+1/5+c=1/2=b+d+e. Doing some algebra reveals that this has several solutions. Here is one:

\boldsymbol{A}	$\mid B \mid$	C	cr(⋅)
T	T	T	1/4
T	T	F	0
T	F	T	0
T	F	F	1/5
F	T	T	1/5
F	T	F	1/20
F	F	T	1/20
F	F	F	1/4

This is a probability distribution: the credences add up to 1 and they are all non-negative. Verifying that it has the appropriate properties: All non-zero rows are state-descriptions where $A \supset (B \equiv Q)$ is true, and they add up to 1. So the agent is certain of $A \supset (B \equiv Q)$. $cr(B) = \frac{1}{4} + \frac{1}{5} + \frac{1}{20} = \frac{1}{2} = \frac{1}{5} + \frac{1}{20} + \frac{1}{4} = cr(\sim B)$. So the second condition holds. $cr(C) = \frac{1}{4} + \frac{1}{5} + \frac{1}{20} = \frac{1}{2} = 2 \times \frac{1}{4} = cr(C \& A)$. The last condition is obvious.

Point Values

This question was worth 25 points. A correct answer (with work) was worth 20 points. Verifying that your answer has the required properties is worth 5 points.