## Mavzu (Amaliy 2) CHIZIQLI ALGEBRA VA ANALITIK GEOMERIYA FANIDAN TESTLAR

O'quv savollari

- 1. Talabalarning "Chiziqli algebra va analitik geomeriya" fanining Analitik geometriya va Vektorlar algebrasi boʻlimlaridan oʻtilgan nazariy mavzular orqali olgan bilimlarini misol va masalalar yechish orqali mustahkamlash
- 2.Talabalarda Analitik gemetriya va Vektorlar algebrasi boʻlimlaridan testlarni yechish koʻnikmalarini hosil qilish
- 50.  $\overline{a}$  va  $\overline{b}$  vektorlarning skalyar ko'paytmasi quyidagicha bo'ladi .

\* 
$$\overline{a}\overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \varphi$$
;

$$\overline{a}\overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \sin \varphi$$

$$\overline{a}\overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot tg\varphi$$

$$\overline{a}\overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \operatorname{ctg} \varphi$$

51.  $\bar{a}\,$  va  $\bar{b}\,$  vektorlar orasidagi burchak quyidagi formula yordamida aniqlanadi.

\* 
$$\cos \varphi = \frac{\overline{a}\overline{b}}{|\overline{a}| \cdot |\overline{b}|}$$

$$\sin \varphi = \frac{|\overline{a}||\overline{b}|}{\sqrt{a^2}\sqrt{b^2}}$$

$$ctg\,\varphi = \frac{\overline{a}\overline{b}}{\sqrt{a^2}\sqrt{b^2}}$$

$$tg\,\varphi = \frac{\overline{a}\overline{b}}{|\overline{a}||\overline{b}|}$$

52. Ixtiyoriy  $\overline{a}$  va  $\overline{b}$  vektorlar uchun quyidagi munosabatlardan qaysi biri o'rinli.

$$* (ab)^2 \le a^2b^2$$

$$(ab)^2 > a^2b^2$$

$$(ab)^2 \ge a^2b^2$$

$$(ab)^2 < a^2b^2$$

## 53. Koordinatalari bilan berilgan $\overline{a}$ va $\overline{b}$ vektorlarning vektor ko'paytmasi quyidagicha bo'ladi.

$$* \begin{bmatrix} \overline{a}, \overline{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & j & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\left[\vec{a}, \vec{b}\right] = |\vec{a}| |\vec{b}| \cos \varphi$$

$$[\vec{a}, \vec{b}] = \sqrt{a_1^2 + a_2^2 + a_3^3} \sqrt{b_1^2 + b_2^2 + b_3^3} \sin \varphi$$

$$\left[\vec{a}, \vec{b}\right] = \sqrt{a_1^2 + a_2^2 + a_3^3} \sqrt{b_1^2 + b_2^2 + b_3^3} \cos \varphi$$

54.  $\vec{a}$  va  $\vec{b}$  vektorlarning vektor ko'paytmasi bo'lgan vektorning uzunligi quyidagiga teng.

$$* \left| \left[ \vec{a}, \vec{b} \right] = \left| \vec{a} \right| \vec{b} \right| \sin \varphi$$

$$\left| \left[ \vec{a}, \vec{b} \right] \right| = \left| \vec{a} \right| \left| \vec{b} \right| tg \varphi$$

$$\left\| \left[ \vec{a}, \vec{b} \right] = \left| \vec{a} \right| \vec{b} \cos \varphi$$

$$\left\| \left[ \vec{a}, \vec{b} \right] = \left| \vec{a} \right| \vec{b} \left| ctg \, \varphi \right|$$

55.  $\vec{a}$  va  $\vec{b}$  vektorlarning ortogonallik shartini ko'rsating.

$$*\vec{a}\cdot\vec{b}=0$$

$$\left[\vec{a}\cdot\vec{b}\right]=0$$

$$\vec{a} + \vec{b} = 0$$

$$\vec{a} \cdot \vec{b} = 0$$

56.  $\vec{a}$  va  $\vec{b}$  vektorlarning kollinearlik shartini ko'rsating.

$$*[\vec{a},\vec{b}]=0$$

$$\vec{a} + \vec{b} + \vec{c} = 0$$

$$\vec{a}\vec{b}\vec{c} = 0$$

$$\vec{a} + \vec{b} = 0$$

57.  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  vektorlarning komplanarlik shartini ko'rsating.

\* 
$$\vec{a}\vec{b}\vec{c} = 0$$

$$(\vec{a} - \vec{b}) \cdot \vec{c} = 0$$

$$(\vec{a} + \vec{b}) \cdot \vec{c} = 0$$
$$(\vec{a} \cdot \vec{b}) \vec{c} = 0$$

58.  $\vec{a}=4\vec{i}+7\vec{j}+3\vec{k}$  va  $\vec{b}=3\vec{i}-5\vec{j}+\vec{k}$  vektorlarning skalyar ko'paytmasi quyidagiga teng.

$$*\vec{a}\vec{b} = -20;$$

$$\vec{a}\vec{b} = 20$$
;

$$\vec{a}\vec{b} = -50;$$

$$\vec{a}\vec{b} = 30$$

59.  $\vec{a}=\vec{i}$  va  $\vec{b}=\vec{i}+\vec{j}$  vektorlar orasidagi burchak quyidagiga teng.

$$*\varphi = 45^{\circ};$$

$$\varphi = 90^{\circ};$$

$$\varphi = 30^{\circ};$$

$$\varphi = 0^0$$

60.  $\vec{a}=\vec{j}+\vec{k}$  va  $\vec{b}=\vec{k}$  vektorlarning vektor ko'paytmasi quyidagiga teng.

$$*[\vec{a}\vec{b}] = \vec{i}$$

$$\left| \vec{a}\vec{b} \right| = \vec{j}$$

$$\left| \vec{a} \vec{b} \right| = \vec{k}$$

$$\left| \vec{a}\vec{b} \right| = \vec{j} + \vec{k}$$

61.  $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$  va  $\vec{b} = \vec{j} + 2\vec{k}$ ,  $\vec{c} = \vec{k}$  vektorlarga yasalgan parallelopepedning hajmi quyidagiga teng .

$$*V = 1$$
;

$$V = 6$$

$$V = 12;$$

$$V = 4$$

62. Koordinata boshidan  $\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} - 1 = 0$  to'g'ri chiziqqacha bo'lgan masofa

quyidagiga teng:

$$*d = 1;$$

$$d = 2$$
;

$$d = \sqrt{2}$$
;

$$d = 8$$

63. M(1,2) nuqtadan  $2x-y-\sqrt{5}=0$  to'g'ri chiziqgacha bo'lgan masofa quyidagilardan biriga teng.

$$*d = 1$$

$$d = \sqrt{5}$$

$$d = 0$$

$$d = \frac{1}{\sqrt{5}}$$

64. 3x + 4y + 1 = 0 va 4x - 3y - 5 = 0 to'g'ri chiziqlar orasidagi burchak quyidagilardan biriga teng.

$$*\phi = 90^{\circ}$$
;

$$\varphi = 60^{\circ}$$
;

$$\varphi = 30^{\circ};$$

$$\varphi = 0^0$$

65. y = 3x - 5 to'g'ri chiziqning abuissasi  $x_0 = -4$  ga teng bo'lgan nuqtaning ordinatasi  $y_0$  ni toping.

$$*-17$$

$$-4$$

7

66. C(3;2) nuqtaga koordinata boshiga nisbatan simmetrik bo'lgan nuqtani toping.

$$(3; -2);$$

67.  $M\left(6; \frac{\pi}{2}\right)$  nuqta kutb koordinatalarida berilgan, uning dekart kordinatalarini toping.



(3; -4);

(2; -2)

72.Agar  $\vec{a} = \{1;3;-1\}$ ,  $\vec{b} = \{2;1;4\}$  bo'lsa  $\vec{c} = \vec{a} + \vec{b}$  ni toping.

 $*\vec{c} = \{3;4;3\}$ ;

 $\vec{c} = \{0;2;1\}$ ;

 $\vec{c} = \{5;0;3\}$ ;

 $\vec{c} = \{2;3;-1\}$ 

73. A = (3;1;5), B = (1;2;2) bo'lsa  $\overrightarrow{AB}$  vektorning koordinatalarini toping.

\*{-2;1;-3};

 ${1;2;3};$ 

{0;1;4};

 $\{-1;2;3\}$ 

74.  $\vec{a} = \{2; -1; 3\}, \vec{b} = \{-6; 3; -9\}$  vektorlar qanday o'zaro munosabatda bo'ladi?

 $*\vec{a}$  va  $\vec{b}$  kollinear bo'ladi.

 $\vec{a} \perp \vec{b}$ 

 $\vec{a} = \vec{b}$ 

 $\vec{a}$  va  $\vec{b}$  kollinear emas.

75.  $\vec{a} = \{-2; 0; 10\}, \vec{b} = \{0; -12; 0\}, \vec{c} = \{10; 0; 2\}$  vektorlar qanday o'zaro munosabatda bo'ladi?

 $*\vec{a}, \vec{b}, \vec{c}$  o'zaro ortogonal.

 $\vec{a}, \vec{b}, \vec{c}$  ortogonal

 $\vec{a}, \vec{b}, \vec{c}$  kollinear

 $\vec{a}, \vec{b}, \vec{c}$  komplanar.

76.  $\vec{a} = \{x_1 \ y_1 \ z_1\}$  va  $\vec{b} = \{x_2 \ ; y_2 \ ; z_2\}$  vektorlarning skalyar ko'paytmasi qanday formula yordamida topiladi?

$$*\vec{a}\vec{b} = x_1x_2 + y_1y_2 + z_1z_2$$

$$\vec{a}\vec{b} = x_1^2 x_2^2 + y_1^2 y_2^2 + z_1^2 z_2^2$$

$$\vec{a}\vec{b} = (x_1 + y_1 + z_1)(x_2 + y_2 + z_2)$$

$$\vec{a} \cdot \vec{b} = \sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}$$

77.Agar xy > 0 bo'lsa M(x, y) nuqta qaysi chorakda joylashgan?

\*I va III

II va III

III va IV

I va IV

78. Agar xy < 0 bo'lsa M(x, y) nuqta qaysi chorakda joylashgan?

\*II va IV

I va III

III va IV

I va IV

79. Ordinata o'qida A(1;-3;7) va B(5;7;-5) nuqtalardan bir xil uzoklikdagi nuqtani toping.

$$*C(0;2;0);$$

$$C(0;4;0)$$
;

$$C(0;-2;0);$$

$$C(0;-5;0)$$

80. Parallelogramm uchta uchining koordinatalari A(3;-5), B(5;-3), C(-1;3) berilgan, uning to'rtinchi uchi D nuqtaning koordinatalarini toping.

$$*D(-3;1);$$

$$D(0;-1);$$

$$D(-4;1);$$

$$D(-4;-1)$$

81.  $\vec{a}$  va  $\vec{b}$  o'zaro perpendikulyar vektorlar bo'lib agar,  $|\vec{a}|=3$ ,  $|\vec{b}|=4$  bo'lsa,  $|\vec{a}+\vec{b}|$  ni toping.

$$*|\vec{a} + \vec{b}| = 5 ;$$

$$\left| \vec{a} + \vec{b} \right| = 1$$
;

$$\left|\vec{a} + \vec{b}\right| = 0;$$

$$\left| \vec{a} + \vec{b} \right| = 2$$

82.  $|\vec{a}| = 3$ ,  $|\vec{b}| = 2$ ,  $(\vec{a}, \hat{b}) = 120^{\circ}$  bo'lsa  $|\vec{a} + 2\vec{b}|$  ni toping.

$$*\sqrt{13}$$
 :

$$\sqrt{15}$$
:

$$\sqrt{37}$$
:

$$\sqrt{23}$$

83.  $\vec{a}=\{2;1;0\}$  va  $\vec{b}=\{0;-2;1\}$  vektorlarga yasalgan parallelogrammning diagonallari orasidagi burchakni toping.

- $*90^{0}$
- 45°;
- $0^0$ ;
- $60^{0}$

84.  $\vec{a}=\{3;0;-4\}$  va  $\vec{b}=\{1;-2;2\}$  vektorlar orasidagi burchak sinusini toping.

- $*\frac{2\sqrt{2}}{3};$
- $\frac{2\sqrt{3}}{3}$ ;
- $\frac{2}{3}$ ;
- $\frac{3}{4}$ ;

85.  $\vec{a}\vec{b}=42$  bo'lgan holda,  $\overline{a}=\{4;2;-1\}$ , vektorga kollinear  $\overline{b}$  vektorni toping.

- $*\overline{b} = \{8;4;-2\}$
- $\overline{b} = \{2;1;-1\}$
- $\overline{b} = \{-4; -2; 1\}$
- $\overline{b} = \{2;4;-1\}$

ko'paytmasini toping \*0: 6; 12; 4; 87.  $\overline{a} = \{-1; 3; 4\}, \quad \overline{b} = \{2; 5; 2\}, \quad \overline{c} = \{1; 2; 3\}$  vektorlarga yasalgan parallelipepedning hajmini toping. \*27; -27; 54; 13.5 88. Parallelogramm uchta uchining koordinatalari berilgan; A(-2;3), B(4;-5), C=(-3;1) parallelogrammning yuzi nimaga teng. \*20: 22; 16; 49: 89.  $\overline{a} = \{2; -3; -1\}$  vektor oxirining koordinatalari (1;-1;2) nuqtada bo'lsa, boshining koordinatalarini toping. \*(-1;2;3);(-1;3;2): (0;-1;2);

**86.**  $\overline{a} = \{-2; -1; 1\}, \quad \overline{b} = \{4; -4; 1\}, \quad \overline{c} = \{4; -6; 2\}$  vektorlarning aralash

$$(3; 2; -1)$$

90. M(0;-4) nuqtaning kutb koordinatasini toping.

$$*\left(4;\frac{3\pi}{2}\right);$$

$$\left(4;\frac{\pi}{4}\right);$$

$$\left(4;\frac{\pi}{2}\right);$$

$$(4;45^{0});$$

91. A(-2;2), M(1;-1) nuqtalar berilgan. Koordinata boshidan va  $\overline{AB}$  kesmanin o'rtasidan o'tuvchi to'g'ri chiziq tenglamasini tuzing.

$$*x + y = 0$$

$$x-2y=0$$

$$x + 2y = 0$$

$$x + y = 7$$

92. Uchburchak uchlarining koordinatalri berilgan: A(5;-3), B(-3;4), C=(-2;-5). S uchidan tushirilgan balandligining tenglamasini tuzing.

$$*8x - 7y - 19 = 0$$

$$x+3y-3=0$$

$$x + y - 1 = 0$$

$$x - y = 0$$

93. M(5;2) nuqtadan o'tib koordinata o'qlaridan bir xil kesma ajratadigan to'g'ri chiziq tenglamasini yozing.

$$*x + y - 7 = 0$$

$$x - y - 1 = 0$$

$$x+3y-8=0$$

$$x + y - 1 = 0$$

94.M(1;2) nuqtaning 5x+2y+20=0 to'g'ri chiziqdagi proekuiyasini toping.

- \*(-4;0);
- (0;10);
- (1; 1);
- (4; 0);

95. 12x-5y-26=0 va 12x-5y-39=0 parallel to'g'ri chiziqlar orasidagi masofani toping.

$$*d = 1;$$

$$d = 13$$
;

$$d = 2$$
;

$$d = 5$$
;

96. Qanday shart berilganda ax + by + c = 0 to'g'ri chiziq Oy o'qinig musbat yarim o'qini kesib o'tadi?

$$*bc < 0;$$

$$ab < 0$$
;

$$bc > 0$$
;

$$ac < 0$$
;

97.  $\beta$  ning qanday kiymatida  $\beta x + 3y + 5 = 0$  va 3x - 5y + 6 = 0 to'g'ri chiziqlar o'zaro perpendikulyar bo'ladi?

$$*\beta=5$$
;

$$\beta = 1$$
;

$$\beta = 3$$
;

$$\beta = 4$$
;

98.M(3;-4) nuqtaga x+y=0 to'g'ri chiziqga nisbatan simmetrik bo'lgan nuqtaning koordinatalari topilsin.

- \*(4; -3);
- (-4; 3);
- (4; 3);

$$(-3; -4);$$

99. Koordinata boshidan 7x-8y+15=0 to'g'ri chiziqga tushirilgan perpendikulyar tenglamasini tuzing.

$$*8x + 7y = 0$$
;

$$8x = 15$$
;

$$7x + 8y = 0$$
;

$$y = 15$$
;

100. 12x - 5y + 52 = 0 to'g'ri chiziq tenglamasini normal ko'rinishga keltiring.

$$*\frac{5}{13}y - \frac{12}{13}x - 4 = 0$$

$$\frac{12}{13}x - \frac{5}{13}y + 4 = 0$$

$$\frac{12}{13}x - \frac{5}{13}y - 52 = 0$$

$$5y - 12x - 4 = 0$$

Mashg'ulot rahbari

Fizika-matematika fanlari nomzodi , dotsent

T.T. Raxmonov