Insper

Modelagem e Simulação do Mundo Físico

Farmacocinética

Farmacocinética ou Farmacodinâmica?

Farmacocinética (PK): como o corpo atua sobre a droga. Estuda o percurso temporal de como a droga se movimenta através do corpo

Farmacodinâmica (PD): como a droga atua no corpo. Estuda os efeitos fisiológicos e bioquímicos da droga no corpo

Farmacocinética ou Farmacodinâmica?

Farmacocinética (PK): como o corpo atua sobre a droga. Estuda o percurso temporal de como a droga se movimenta através do corpo

Objetivo é uma vez que a droga chegue ao sitio de ação, ter o máximo efeito com a menor toxicidade.

- Demasiada droga → efeitos tóxicos
- Pouca droga → sem efeito terapêutico

Perguntas a responder:

- Que rota de administração é a melhor?
- Que intervalos deveria ser administrada a droga?
- Qual dose causaria toxicidade?
- Deve administrar a droga em jejum?

O que determina a PK de uma droga?

Quatro processo controlam a PK (ADME):

- 1. Absorção
- 2. Distribuição
- 3. Metabolização
- 4. Eliminação

Fatores que afetam a concentração da droga no corpo:

- · Habilidade de metabolizar e eliminar a droga: genética
- Variações na absorção da droga (ex: jejum)
- Doenças ou estados fisiológicos
- Interações com outras drogas

Onde monitoramos a concentração da droga no corpo?

- Sangue ou plasma
- Urina
- Saliva

Via de administração mais comuns de drogas

Oral

- IV (Intravascular)
- IM (Intramuscular)
- SC (subcutânea)

- Mais comum
- Mais variável
- Não invasiva
- Rápido: 15-30 s para IV, 3-5m para IM & SC
- 100% Biodisponibilidade
- Boa alternativa para drogas não absorbidas no GIT ou que causam muita irritação
- IV pode ser administrada continuamente
- Outras: Inalação, Intranasal, Tópica, Transdérmica

Absorção

Como é a entrada da droga na corrente sanguínea?

- Para a maioria das drogas é por difusão passiva
 - Movimento é na direção da alta concentração para baixa concentração
 - Modelada como uma reação de primeira ordem

Distribuição

- Uma vez que a droga chega à corrente sanguínea, como é distribuída pelo corpo?
- Fatores que afetam a distribuição da droga:
 - Presença de barreiras de tecido específico (barreira hematoencefálica (blood-brain barrier), barreira da placenta)
 - Ligação à proteínas do plasma (droga livre, não ligada é quem tem efeito terapêutico)

Metabolização

Como a droga é metabolizada pelo organismo?

- O fígado é o principal órgão envolvido no metabolismo
- O processo é mediado por enzimas

Eliminação

- Varias rotas, mas eliminação renal é a mais comum
- Geralmente modelada como uma reação de primeira ordem
- Eliminação total é a soma dos diferentes mecanismos

Modelos Farmacocinéticos

- Um-, dois-, ou multi-compartimentos
- Os compartimentos não representam um tecido específico.
 Órgãos e tecidos no qual a distribuição da droga é similar são agrupados num compartimento

Volume de distribuição (V_D)

- Parâmetro indicador da distriuição da droga no corpo
- Volume teórico, não representa um espaço anatômico

 V_D =quantidade da droga/concentração no plasma

Table 1-3. Approximate Volumes of Distribution of Commonly Used Drugs	
Drug	Volume of Distribution (L)
Nortriptyline	1300
Digoxin	440
Propranolol	270
Lidocaine	77
Phenytoin	45
Theophylline	35
Gentamicin	18

Dose unica vs multiples doses

Aplica principio de superposição

Plot of plasma concentration versus time showing accumulation after multiple administration of drugs

MTC: Minimal toxic concentration

MEC: Minimal effective concentration

Modelo de Michaelis-Menten

E: Enzima

S: Substrato

 V_{max} : velocidade máxima da reação enzimática [massa/tempo], representa a quantidade máxima de uma droga que pode ser eliminada num determinado período de tempo

 $k_{\rm M}$: Constante de Michaelis-Menten [massa/vol] (é uma medida inversa da afinidade da enzima pelo substrato)

Como atua a enzima?

$$v = \frac{d[P]}{dt} = \frac{V_{\text{max}}[S]}{K_{\text{M}} + [S]}.$$

Determinação gráfica de k_m e v_{max} de uma rx que obedececinética de MM

Que preciso saber para modelar meu sistema?

- Como a droga é administrada?
- Sitio de ação:
 - como chega lá?
 - deve atravessar alguma barreira?
- Mecanismo de metabolização e eliminação: tem alguma enzima envolvida?

Fontes úteis

- FDA (US Food and Drug Administration, <u>www.fda.gov</u>)
- Site do fabricante da droga
- Bula da droga
- Artigos científicos

Exemplo: Toxicidade neonatal devido ao uso materno de Codeine

Em 2006 foi reportado na Canada um caso fatal de toxicidade devido a opioides num bebé que amamentava. Sua mãe estava tomando codeína, um analgésico muito usado para controlar dor pós-parto. O que aconteceu?

Mãe tinha uma variação genética ultra rápida da enzima que converte codeína em morfina (CYP2D6)

Para que modelamos?

- Entender o que aconteceu
- Determinar quanto tempo depois da mãe ingerir codeína, ela pode amamentar seu bebé
- Analisar os fatores críticos que controlam a concentração de morfina no bebé
- Quanto tempo leva para o bebé atingir concentrações tóxicas de morfina na sangue

Que preciso saber para modelar meu sistemas

- Como a droga é administrada?
 Via oral
- Sitio de ação: cérebro do bebé
 - como chega lá?
 Ingesta → sangue mãe → leite materna → sangue
 bebé → cérebro bebé
 - deve atravessar alguma barreira?
 Leite materna?
 - Barreira hematoencefálica?
- Mecanismo de metabolização e eliminação: tem alguma enzima envolvida?
 - enzima CYP2D6 que cataliza a conversão de codeína em morfina

Etapas relevantes:

- 1. Codeína é administrada e absorbida pela sangue da mãe
- 2. Codeína é biotransformada em morfina no fígado materno pela enzima CYP2D6
- 3. Codeína e morfina são excretadas na leite materna
- 4. Codeína e morfina são ingeridas durante a amamentação e absorbidas pelo bebé
- 5. Codeína é biotransformada em morfina no fígado do bebé

Quais são os estoques que queremos monitorar?

C_S: Codeína na sangue da mãe C_L: Codeína no leite materno

M_S: Morfina na sangue da mãe M_L: Morfina no leite materno

C_b: Codeína na sangue do bebé

M_b: Morfina na sangue da bebé