

Aula #17 Regressão Linear – Feature Engineering

Contexto ESTUDO DE CASO

- Fonte da base de dados : kaggle
- Link: https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings
- Notas de videogame compiladas pelo Metacritic
- Objetivo do Caso: Utilizar os conceitos aprendidos na aula e no e-learning para explicar a relação entre as vendas de jogos e a crítica de notas, tentar ajustar um modelo de regressão com uma variável explicativa.

Crítica especializada afeta a venda de produtos de entretenimento?

Pratica Conclusões das Análises das Bases de Videogames??

Como tratar as variáveis

T

Conceito:

O que fazer com as variáveis categóricas?

Variáveis Ordinais - Existe uma relação de Ordem? (Classificação A, B, C e outras?)

R: Transformar em Números Ordenados

Variáveis Nominais – Sem relação de Ordem? (Sexo, Nomes e Cidades)

R: Transformar em Dummy Variables

Τ

Conceito:

O que fazer com as variáveis categóricas?

	first_name	last_name	sex
0	Jason	Miller	male
1	Molly	Jacobson	female
2	Tina	Ali	male
3	Jake	Milner	female
4	Amy	Cooze	female

Dummy

	first_name	last_name	sex	female	male
0	Jason	Miller	male	0.0	1.0
1	Molly	Jacobson	female	1.0	0.0
2	Tina	Ali	male	0.0	1.0
3	Jake	Milner	female	1.0	0.0
4	Amy	Cooze	female	1.0	0.0

Utilizar Variável Categórica no estudo?

	first_name	last_name	sex
0	Jason	Miller	male
1	Molly	Jacobson	female
2	Tina	Ali	male
3	Jake	Milner	female
4	Amy	Cooze	female

Create a set of dummy variables from the sex variable
df_sex = pd.get_dummies(df['sex'])

Join the dummy variables to the main dataframe
df_new = pd.concat([df, df_sex], axis=1)
df_new

	first_name	last_name	sex	female	male
0	Jason	Miller	male	0.0	1.0
1	Molly	Jacobson	female	1.0	0.0
2	Tina	Ali	male	0.0	1.0
3	Jake	Milner	female	1.0	0.0
4	Amy	Cooze	female	1.0	0.0

Utilizar Variável Missing no estudo?

- Criar Flag (dummy) de Missing
- Inputar com valor imparcial (moda e mediana)
- Criar Modelo para prever o Valor da Variável Missing Xi <-Modelo

```
(x1,x2,...xi-1,xi+1,...Xn)
```

Outliers e Regressão Linear?

Outliers e Regressão Linear?

Outliers e Regressão Linear?

Detecção multivariada de outliers

Distância de Mahalanobis

$$D^{2} = (x_{i} - vetor_{m\acute{e}dias})^{T} \Sigma^{-1} (x_{i} - vetor_{m\acute{e}dias})$$

- Métodos de Cluster : analisar elementos fora dos clusters
- Métodos de regressão : ajuste linerar e busca pelos maiores erros ou gráfico de residuos
- Conselho Prático: Foque mais em outliers univariados

Alternativas para colocar variáveis categóricas

- Label Encoding
- Atribuir um valor numérico para a variável categórica (válido para ordinais)
- Criar uma terceira variável que é a frequencia da categoria
- Criar novas categorias com maior poder preditivo/ correlacionadas com a variável resposta (comum em regressão logística), cada categoria se torna uma dummy ao final. Aumenta a perfomance do Modelo

Alternativas para colocar variáveis numéricas

Alternativas para colocar variáveis numéricas

- Variáveis numéricas não significativas para modelos lineares, categorizar de acordo otimizando a correlação entre as a variável resposta e variável explicativa
- Transformação LOG
- Padronização Z, MinMax (evita distorções em escala. Serve para "Clusterização"

Exemplo: $X_{novo} = (X_{antigo} - media X_antigo) / Desvio_padrao_X$

$$X_{new} = \frac{X_{old} - MIN(X_{old})}{\max(X_{old}) - \min(X_{old})}$$

Outros Tratamentos – Combinações de Variávei

$$-Z = X1 + X2$$

$$Z = X1 \times X2$$

DÚVIDAS?!