Лабораторная работа 4

Задание для самостоятельного выполнения

Ощепков Дмитрий Владимирович НФИбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3 4	Выполнение лабораторной работы	7
	Выводы	13

Список иллюстраций

3.1	Фрагмент кода	7
3.2	Схема модели	8
3.3	Изменение размера окна ТСР на линке 1-го источника при N=30 .	Ć
3.4	Изменение размера окна ТСР на всех источниках при N=30	10
3.5	Изменение размера длины очереди на линке (R1–R2) при N=30,	
	qmin = 75, qmax = 150	11
3.6	Изменение размера средней длины очереди на линке (R1–R2) при	
	N=30. gmin = 75. gmax = 150	12

Список таблиц

1 Цель работы

Самостоятельно реализовать модель

2 Задание

Описание моделируемой сети: — сеть состоит из N TCP-источников, N TCP-приёмников, двух маршрутизаторов R1 и R2 между источниками и приёмниками (N — не менее 20); — между TCP-источниками и первым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между TCP-приёмниками и вторым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между маршрутизаторами установлено симплексное соединение (R1—R2) с пропускной способностью 20 Мбит/с и задержкой 15 мс очередью типа RED, размером буфера 300 пакетов; в обратную сторону — симплексное соединение (R2—R1) с пропускной способностью 15 Мбит/с и задержкой 20 мс очередью типа DropTail; — данные передаются по протоколу FTP поверх TCPReno; — параметры алгоритма RED: qmin = 75, qmax = 150, qw = 0, 002, pmax = 0.1; — максимальный размер TCP-окна 32; размер передаваемого пакета 500 байт; время моделирования — не менее 20 единиц модельного времени.

3 Выполнение лабораторной работы

Рис. 3.1: Фрагмент кода

Схема модели

Рис. 3.2: Схема модели

Изменение размера окна TCP на линке 1-го источника при N=30

Рис. 3.3: Изменение размера окна TCP на линке 1-го источника при N=30

Изменение размера окна TCP на всех источниках при N=30

Рис. 3.4: Изменение размера окна TCP на всех источниках при N=30

Изменение размера длины очереди на линке (R1–R2) при N=30, qmin = 75, qmax = 150

Рис. 3.5: Изменение размера длины очереди на линке (R1–R2) при N=30, qmin = 75, qmax = 150

Изменение размера средней длины очереди на линке (R1–R2) при N=30, qmin = 75, qmax = 150

Рис. 3.6: Изменение размера средней длины очереди на линке (R1–R2) при N=30, qmin = 75, qmax = 150

4 Выводы

Самостоятельно реализовал модель в NS-2