### Кафедра Компьютерных технологий

### Проект по курсу «Численные методы», 2 семестр III курса

# Моделирование роста монокристаллического твердого раствора Al<sub>x</sub>Ga<sub>1-x</sub>N методом хлоридной эпитаксии

Курсовой проект нацелен на численное решение системы нелинейных алгебраических уравнений. С этой целью предлагается провести моделирование технологического процесса получения твердого раствора нитридов металлов III группы. Модель этого процесса как раз сводится к решению такой системы. Решение можно проводить любым численным методом, однако, рекомендуется использовать базовый метод Ньютона, возможно дополненный поиском локального минимума по Ньютоновским направлениям на каждом итерационном шаге.

#### Введение

Нитриды металлов III группы — алюминия, галлия и индия — в настоящее время рассматриваются как исключительно перспективные материалы для производства широкого класса полупроводниковых оптоэлектронных и силовых приборов нового поколения с уникальными рабочими характеристиками. К числу таких приборов относятся твердотельные лазеры, светодиоды, мощные высокочастотные транзисторы, диоды Шоттки и т.д. Важнейшая роль этих материалов была косвенно подчеркнута присуждением Нобелевской премии по физике 2014 г. трем японским ученым «за создание энергосберегающих и экологически безвредных источников света - синих светодиодов (LED)» — приборов, которые удалось разработать только на основе III-нитридов.

Среди III-нитридов особую роль играет твердый раствор нитрида алюминия (AlN) и нитрида галлия (GaN) — т.н. алган  $(Al_xGa_{1-x}N = (AlN)_x(GaN)_{1-x})$ . Этот материал служит основой для создания коротковолновых (до глубоко ультрафиолетового диапазона) оптоэлектронных приборов, которые находят применение в самых разных современных оптических технологиях. Однако, создание приборных структур на основе алгана требует управляемого выращивания очень тонких (до одного монослоя) монокристаллических слоев материала заданной толщины и состава, что является чрезвычайно сложной технологической задачей. Одним из перспективных подходов к решению этой задачи служит т.н. хлоридная эпитаксия.

Типовая схема технологического процесса хлоридной эпитаксии приведена на рис. 1 (см. работу [1]). В источники, содержащие твердый алюминий (Al) и жидкий галлий (Ga), нагретые до температур порядка 550 °C и 850 °C, соответственно, подается хлороводород (HCl), разбавленный химически инертным несущим газом — азотом ( $N_2$ ). При этом в источнике алюминия в результате (обратимых) поверхностных химических реакций

$$2Al(solid) + 2HCl \Leftrightarrow 2AlCl + H_2$$
 (R1)

$$Al(solid) + 2HC1 \Leftrightarrow AlCl_2 + H_2$$
 (R2)

$$2Al(solid) + 6HC1 \Leftrightarrow 2AlCl_3 + 3H_2 \tag{R3}$$

образуются газообразные хлориды алюминия – AlCl,  $AlCl_2$  и  $AlCl_3$  – активные летучие соединения, из которых далее растет AlN-составляющая алгана. В источнике галлия в результате аналогичных реакций

$$2Ga(liquid) + 2HCl \Leftrightarrow 2GaCl + H_2$$
 (R4)

$$Ga(liquid) + 2HCl \Leftrightarrow GaCl_2 + H_2$$
 (R5)

$$2Ga(liquid) + 6HCl \Leftrightarrow 2GaCl_3 + 3H_2$$
 (R6)

образуются газообразные хлориды галлия —  $GaCl_1$ ,  $GaCl_2$  и  $GaCl_3$ , из которых далее растет GaN-составляющая алгана. Параллельно по отдельным каналам в реактор подается аммиак ( $NH_3$ ) и несущий азот, которые могут быть разбавлены водородом ( $H_2$ ). Все подаваемые газы смешиваются и направляются в рабочую зону реактора, прогретую до температуры порядка  $1100\,^{\circ}C$ , где располагается монокристаллическая (обычно сапфировая) подложка. На этой подложке собственно и происходит рост алгана в результате параллельного протекания следующих поверхностных реакций

$$\begin{array}{l} \text{AlCl} + \text{NH}_3 \Leftrightarrow \text{AlN(solid)} + \text{HCl} + \text{H}_2 \\ \text{2AlCl}_2 + 2\text{NH}_3 \Leftrightarrow 2\text{AlN(solid)} + 4\text{HCl} + \text{H}_2 \\ \text{AlCl}_3 + \text{NH}_3 + \Leftrightarrow \text{AlN(solid)} + 3\text{HCl} \\ \text{GaCl} + \text{NH}_3 \Leftrightarrow \text{GaN(solid)} + \text{HCl} + \text{H}_2 \\ \text{2GaCl}_2 + 2\text{NH}_3 \Leftrightarrow 2\text{GaN(solid)} + 4\text{HCl} + \text{H}_2 \\ \text{GaCl}_3 + \text{NH}_3 \Leftrightarrow \text{GaN(solid)} + 3\text{HCl} \\ \end{array} \tag{R10}$$



Рис.1. Схема технологического процеса хлоридной эпитаксии алгана (рисунок из работы [1]).

Точное «предсказательное» моделирование хлоридной эпитаксии алгана требует детального описания газовой динамики, теплообмена, многокомпонентной диффузии, поверхностной кинетики и некоторых других физических процессов (см. работу [2]). Однако, как выяснилось в ходе расчетов, многие экспериментально наблюдаемые особенности процесса могут быть воспроизведены и объяснены в рамках простой приближенной модели, сводящейся к решению трех однотипных нелинейных систем алгебраических уравнений.

В данном курсовом проекте предлагается провести моделирование хлоридной эпитаксии алгана на основе приближенной модели процесса, которая подробно излагается ниже, и, в конечном счете, объяснить обнаруженное в [1] явление резкого смещения состава алгана в сторону компоненты AIN при незначительном добавлении водорода в несущий азот.

Для удобства работа разделяется на три части.

# Часть 1. Моделирование конверсии HCl в хлориды алюминия

Межфазные мольные потоки активных компонент  $G_i$  (кмоль/(м² · сек)) на поверхности твердого алюминия приближенно задаются соотношением

$$G_{i} = D_{i} \frac{\left(P_{i}^{g} - P_{i}^{e}\right)}{RT\delta} \tag{1}$$

где  $D_i = D_i(T)$  - коэффициенты диффузии (м²/сек), зависящие от температуры T (K), R = 8314 Дж/(кмоль·К) - универсальная газовая постоянная,  $\delta$  - условная толщина диффузионного пограничного слоя (м),  $P_i^g$  - парциальные давления компонент вне диффузионного пограничного слоя (Па),  $P_i^e$  - т.н. термодинамические давления компонент (Па), представляющие собой многокомпонентные обобщения давления однокомпонентного насыщенного пара, i = AlCl, AlCl<sub>2</sub>, AlCl<sub>3</sub>, HCl и H<sub>2</sub> – индексы компонент.

В рамках рассматриваемой приближенной модели все входящие в (1) величины кроме термодинамических давлений  $P_i^e$  считаются заданными. Неизвестные величины  $P_i^e$  находятся из следующих условий.

а. Условия приближенного термодинамического равновесия для «производящих» реакций (R1), (R2) и (R3) на поверхности твердого AlN – т.н. законы действующих масс

$$(P_{HCl}^e)^2 = K_1 (P_{AlCl}^e)^2 P_{H_2}^e$$
(2)

$$(P_{HCl}^{e})^{2} = K_{2} P_{AlCl_{2}}^{e} P_{H_{2}}^{e}$$
(3)

$$(P_{HCl}^e)^6 = K_3 (P_{AlCl_3}^e)^2 (P_{H_2}^e)^3 \tag{4}$$

где  $K_j = K_j(T)$  (j=1,2,3) — температурно-зависимые константы равновесия реакций (R1), (R2) и (R3).

b. Условия «невхождения» элементов H и Cl в твердый алюминий через поверхность – т.н. стехиометрические соотношения. С учетом (1) эти соотношения принимают вид

$$D_{HCl}\left(P_{HCl}^{g} - P_{HCl}^{e}\right) + 2D_{H_{2}}\left(P_{H_{2}}^{g} - P_{H_{2}}^{e}\right) = 0$$

$$D_{AlCl}\left(P_{AlCl}^{g} - P_{AlCl}^{e}\right) + 2D_{AlCl_{2}}\left(P_{AlCl_{2}}^{g} - P_{AlCl_{2}}^{e}\right) + 3D_{AlCl_{3}}\left(P_{AlCl_{3}}^{g} - P_{AlCl_{3}}^{e}\right) + D_{HCl}\left(P_{HCl}^{g} - P_{HCl}^{e}\right) = 0$$

$$(6)$$

Пять уравнений (2)-(6) образуют замкнутую систему для нахождения пяти неизвестных термодинамических давлений  $P^e_{AlCl}$ ,  $P^e_{AlCl_2}$ ,  $P^e_{AlCl_3}$ ,  $P^e_{HCl}$  и  $P^e_{H_2}$ . В результате решения этой системы можно определить межфазные потоки компонент на поверхности твердого алюминия по формуле (1) и найти скорость испарения алюминиевого источника как

$$V_{Al}^{e} = \left(G_{AlCl} + G_{AlCl_{2}} + G_{AlCl_{3}}\right) \left(\mu_{Al} / \rho_{Al}\right) \cdot 10^{9}$$
(HM/cek)

где  $\mu_{Al}$  - молярная масса алюминия,  $\rho_{Al}$  - плотность твердого алюминия.

Входными данными задачи в данной модели считаются парциальные давления компонент  $P_i^g$  и температура T - эти величины задаются «рецептурой» самого технологического процесса. Зная эти величины, требуется сначала рассчитать константы равновесия реакций и коэффициенты диффузии компонент по термодинамическим и молекулярно-кинетическим соотношениям, приведенным в Приложении, а потом собственно решить систему уравнений (1)-(5).

### Задание 1

Найти межфазные потоки  $G_i$  Аl-содержащих компонент (i = AlCl, AlCl $_2$  и AlCl $_3$ ) на поверхности твердого алюминия и скорость испарения источника алюминия  $V_{Al}^e$  в зависимости от температуры T, для чего решить систему уравнений (2)-(6) при разных значениях температуры. Построить графики полученных зависимостей в координатах  $\ln(\dots)$ -1/T (т.н. диаграммы Аррениуса). Расчеты провести при следующих значениях входящих в систему величин:  $P_{AlCl}^g = P_{AlCl}^g = P_{H_2}^g = 0$ ,  $P_{H_2}^g = 0$ ,  $P_{HCl}^g = 10000$  Па,  $P_{N_2}^g = 90000$  Па (полное давление в источнике  $P = P_{HCl}^g + P_{N_2}^g$  - атмосферное, т.е. примерно 100000 Па),  $\delta$  =0.01 м, T меняется в диапазоне 350-650 °C $^1$ . Показать, что преобладающим Al-содержащим компонентом, выходящим из источника, является трихлорид алюминия (AlCl $_3$ ).

### Часть 2. Моделирование конверсии HCl в хлориды галлия

Межфазные потоки активных компонент на поверхности жидкого галлия приближенно определяются по той же формуле (1), где теперь i = GaCl,  $\text{GaCl}_2$ ,  $\text{GaCl}_3$ , HCl и  $\text{H}_2$ . Неизвестные термодинамические давления  $P_i^e$  здесь удовлетворяют законам действующих масс для «производящих» реакций (R4)-(R6)

$$\left(P_{HCl}^{e}\right)^{2} = K_{4} \left(P_{GaCl}^{e}\right)^{2} P_{H_{2}}^{e} \tag{8}$$

$$(P_{HCl}^e)^2 = K_5 P_{GaCl_2}^e P_{H_2}^e \tag{9}$$

и аналогичным стехиометрическим соотношениям, определяющим «невхождение» элементов H и Cl в жидкий галлий

$$D_{HCl} \left( P_{HCl}^g - P_{HCl}^e \right) + 2D_{H_2} \left( P_{H_2}^g - P_{H_2}^e \right) = 0 \tag{11}$$

<sup>&</sup>lt;sup>1</sup> Не путайте – в заданиях температура дана в °С, а в формулах – в К.

$$D_{GaCl}\left(P_{GaCl}^{g} - P_{GaCl_{2}}^{e}\right) + 2D_{GaCl_{2}}\left(P_{GaCl_{2}}^{g} - P_{GaCl_{2}}^{e}\right) + 3D_{GaCl_{3}}\left(P_{GaCl_{3}}^{g} - P_{GaCl_{3}}^{e}\right) + D_{HCl}\left(P_{HCl}^{g} - P_{HCl}^{e}\right) = 0$$

$$(12)$$

Пять уравнений (8)-(12) образуют замкнутую систему для нахождения пяти неизвестных термодинамических давлений  $P^e_{GaCl_2}$ ,  $P^e_{GaCl_2}$ ,  $P^e_{GaCl_3}$ ,  $P^e_{HCl}$  и  $P^e_{H_2}$ . В результате решения этой системы межфазные потоки компонент находятся по формуле (1), а скорость испарения источника галлия определяется как

$$V_{Ga}^{e} = \left(G_{GaCl} + G_{GaCl_{2}} + G_{GaCl_{3}}\right) \left(\mu_{Ga} / \rho_{Ga}\right) \cdot 10^{9}$$
(13)

где  $\mu_{Ga}$  - молярная масса галлия  $\rho_{Ga}$  - плотность жидкого галлия.

Как и в ч. 1, парциальные давления  $P_i^g$  и температура T считаются заданными, а константы равновесия реакций и коэффициенты диффузии компонент рассчитываются по формулам, приведенным в Приложении.

### Задание 2

Найти межфазные потоки  $G_i$  Ga-содержащих компонент (i = GaCl, GaCl $_2$  и GaCl $_3$ ) на поверхности жидкого галлия и скорость испарения источника галлия  $V_{Ga}^e$  в зависимости от температуры T, для чего решить систему уравнений (8)-(12) при различных значениях температуры. Построить графики полученных зависимостей в координатах  $\ln(\dots)$ -1/T. Расчеты провести при следующих значениях входящих в систему величин:  $P_{GaCl}^g = P_{GaCl}^g = P_{H_2}^g = 0$ ,  $P_{H_Cl}^g = 10000$  Па,  $P_{N_2}^g = 90000$  Па (полное давление в источнике  $P = P_{HCl}^g + P_{N_2}^g$  - атмосферное),  $\delta$  =0.01 м, T =650-950 °C. Показать, что преобладающим Ga-содержащим компонентом, выходящим из источника, является монохлорид галлия (GaCl).

### Часть 3. Моделирование роста твердого раствора Al<sub>2</sub>Ga<sub>1.2</sub>N – алгана

Из решения задач, приведенных в частях 1 и 2, должно следовать, что преобладающими Al- и Ga-содержащими компонентами над поверхностью растущего алгана являются  $AlCl_3$  и GaCl, соответственно. Тогда рост алгана в основном происходит в результате «производящих» реакций (R9) и (R10). Межфазные потоки активных компонент на поверхности растущего алгана как и ранее приближенно определяются по формуле (1), где теперь  $i = AlCl_3$ , GaCl, NH $_3$ , HCl и H $_2$ . Неизвестные термодинамические давления  $P_i^e$  при этом удовлетворяют законам действующих масс для реакций (R9) и (R10), учитывающих концентрации компонент AlN и GaN в растворе, который считается идеальным $^2$ 

<sup>&</sup>lt;sup>2</sup> В реальных твердых растворах III-нитридов условия равновесия могут существенно смещаться по сравнению с моделью идеального раствора из-за влияния энергии смешения компонент и упругой энергии рассогласования кристаллических решеток раствора и подложки. Однако, для алгана эти эффекты слабы и

$$P_{AICI_3}^e P_{NH_3}^e = K_9 x \left( P_{HCI}^e \right)^3 \tag{14}$$

$$P_{GaCl}^{e}P_{NH_{3}}^{e} = K_{10}(1-x)P_{HCl}^{e}P_{H_{2}}^{e}$$
(15)

Стехиометрические соотношения на ростовой поверхности, как и ранее, должны обеспечивать «невхождение» элементов H и Cl в алган, что в данном случае приводит к соотношениям

$$D_{HCI}(P_{HCI}^g - P_{HCI}^e) + 2D_{H_2}(P_{H_2}^g - P_{H_2}^e) + 3D_{NH_3}(P_{NH_3}^g - P_{NH_3}^e) = 0$$
(16)

$$3D_{AlCl_3} \left( P_{AlCl_3}^g - P_{AlCl_3}^e \right) + D_{GaCl} \left( P_{GaCl}^g - P_{GaCl}^e \right) + D_{HCl} \left( P_{HCl}^g - P_{HCl}^e \right) = 0 \tag{17}$$

Однако, при моделировании роста алгана к ним добавляются еще два аналогичных условия, связанных с составом твердого раствора.

а. Равенство суммарного межфазного потока элементов Al и Ga и межфазного потока элемента N

$$D_{AlCl_3} \left( P_{AlCl_3}^g - P_{AlCl_3}^e \right) + D_{GaCl} \left( P_{GaCl}^g - P_{GaCl}^e \right) = D_{NH_3} \left( P_{NH_3}^g - P_{NH_3}^e \right)$$
(18)

b. Связь межфазных потоков элементов Al и Ga и доли компонент AlN и GaN в твердом растворе  ${\rm Al_xGa_{1-x}N}$ 

$$\frac{D_{AlCl_3}(P_{AlCl_3}^g - P_{AlCl_3}^e)}{D_{GaCl}(P_{GaCl}^g - P_{GaCl}^e)} = \frac{x}{1 - x}$$
(19)

Шесть уравнений (14)-(19) образуют замкнутую систему относительно шести неизвестных - пяти термодинамических давлений  $P^e_{AlCl_3}$ ,  $P^e_{GaCl}$ ,  $P^e_{NH_3}$ ,  $P^e_{HCl}$ ,  $P^e_{H_2}$  и доли x AlN компоненты в твердом растворе  $Al_xGa_{1-x}N$ . Решение этой системы позволяет найти межфазные потоки компонент по формуле (1) и определить скорость роста кристалла как

$$V_{AlGaN}^{g} = \left[ G_{AlCl_{3}} \left( \mu_{AlN} / \rho_{AlN} \right) + G_{GaCl} \left( \mu_{GaN} / \rho_{GaN} \right) \right] \cdot 10^{9}$$
(20)

где  $\mu_{AlN}$  ,  $\mu_{GaN}$  и  $\rho_{AlN}$  ,  $\rho_{GaN}$  - молярные массы и плотности AlN и GaN компонент раствора, соответственно.

Как и в ч. 1 и 2, парциальные давления  $P_i^s$  и температура T считаются заданными, а константы равновесия реакций и коэффициенты диффузии компонент рассчитываются по формулам, приведенным в Приложении.

могут не учитываться (в отличие, например, от раствора  $Al_xIn_{1-x}N$ , для которого они преобладают над всеми остальными эффектами).

### Задание 3

Найти межфазные потоки  $G_i$  компонент AlCl $_3$  и GaCl на ростовой поверхности, а также скорость роста слоя  $V_{AlGaN}^g$  и долю AlN-составляющей в твердом растворе X в зависимости от доли AlCl $_3$  в газообразных хлоридах — величины  $x^g = P_{AlCl_3}^g / (P_{AlCl_3}^g + P_{GaCl}^g)$ . С этой целью решить систему уравнений (14)-(19) при различных значениях  $x^g$  из полного диапазона от 0 до 1. Построить графики полученных зависимостей в координатах (...)- $x^g$ , в частности, график  $x=f(x^g)$  — т.н. диаграмму вхождения алюминия в кристалл. Расчеты провести при следующих значениях входящих в систему величин:  $P_{HCl}^g = 0$ ,  $P_{AlCl_3}^g + P_{GaCl}^g = 30$  Па,  $P_{NH_3}^g = 1500$  Па,  $P_{H_2}^g + P_{N_2}^g = 98470$  Па (полное давление в реакторе  $P = P_{AlCl_3}^g + P_{GaCl}^g + P_{NH_3}^g + P_{N_2}^g + P_{N_2}^g = 30$  (несущий газ — атмосферное), S = 0.01 м, S = 0.01

# Приложение

#### а. Расчет констант равновесия реакций

Согласно правилу Гиббса, для расчета равновесия химической реакции нужно заменить символы веществ в уравнении реакции на соответствующие химические потенциалы. Для всех газообразных веществ химические потенциалы определяются как функции их термодинамических давлений и температуры

$$G_i(P_i^e, T) = G_i^0(T) + RT \ln(P_i^e/P_A)$$
(21)

Для компонент идеального твердого раствора – в данном случае твердых AlN и GaN – химические потенциалы определяются как функции их мольных долей и температуры

$$G_{AlN}(x,T) = G_{AlN}^{0}(T) + RT \ln(x) \quad G_{GaN}(x,T) = G_{GaN}^{0}(T) + RT \ln(1-x)$$
(22)

Наконец, для чистых конденсированных веществ – здесь твердого Al и жидкого Ga – они определяются как функции только температуры

$$G_{AI}(T) = G_{AI}^{0}(T) \quad G_{Ga}(T) = G_{Ga}^{0}(T)$$
(23)

В уравнениях (21)-(23)  $G_i^0(T)$  - т.н. энергия Гиббса i-го компонента (Дж/моль), зависящая только от температуры, и  $P_A = 100000~\Pi a$  – атмосферное давление.

Возьмем для примера реакцию (R9). Применение правила Гиббса для нее дает

$$[G_{AlCl_3}(T) + RT \ln(P_{AlCl_3}^e / P_A)] + [G_{NH_3}(T) + RT \ln(P_{NH_3}^e / P_A)] =$$

$$[G_{AlN(s)}(T) + RT \ln(x)] + 3[G_{HCl}(T) + RT \ln(P_{HCl}^e / P_A)]$$
(24)

откуда после простых преобразований получаем закон действующих масс для этой реакции – соотношение (14), причем для константы равновесия имеем

$$K_9(T) = \exp[-\Delta G_9(T)/RT]/P_A$$
 (1/ $\Pi a$ ) (25)

где

$$\Delta G_9(T) = G_{AlCl_3}(T) + G_{NH_3}(T) - G_{AlN(s)}(T) - 3G_{HCl}(T)$$
(26)

Аналогично находятся константы равновесия других реакций.

Энергия Гиббса і-ой компоненты как функция температуры определяется как

$$G_i(T) = H_i - \Phi_i(T)T \tag{27}$$

где  $H_i$  - энергия образования i-ой компоненты (Дж/моль),  $\Phi_i(T)$  - т.н. приведенная энергия Гиббса i-ой компоненты, задаваемая аппроксимацией

$$\Phi_{i}(T) = \varphi_{i1} + \varphi_{i2} \ln(x(T)) + \frac{\varphi_{i3}}{x(T)^{2}} + \frac{\varphi_{i4}}{x(T)} + \varphi_{i5}x(T) + \varphi_{i6}x(T)^{2} + \varphi_{i7}x(T)^{3}, \quad x(T) = T/10^{4}$$
(28)

Энергии образования и коэффициенты аппроксимации  $\varphi_{ij}$  в формулах (27), (28) для всех компонент в рассматриваемой системе приведены в таблице в прилагаемом текстовом файле Bank\_TD\_Fragment.dat.

**Внимание!** Термодинамические данные, приведенные в файле Bank\_TD\_Fragment.dat, соответствуют энергиям Гиббса компонент в расчете на 1 моль, поэтому и универсальную газовую постоянную формулах (21)-(28) следует брать как  $R=8.314~\rm{Д} \mbox{ж/(моль} \cdot \mbox{K})$  (в отличие от формулы (1), где она берется как  $R=8314~\rm{Д} \mbox{ж/(кмоль} \cdot \mbox{K})$ ).

### b. Расчет коэффициентов диффузии газообразных компонент

Коэффициент диффузии i-ой газообразной компоненты приближенно рассматривается как бинарный коэффициент диффузии этой компоненты в преобладающем несущем газе  $N_2$  и рассчитывается по соответствующей формуле молекулярно-кинетической теории газов как функция температуры

$$D_{i}(T) = 2.628 \cdot 10^{-2} \frac{T^{3/2}}{P\sigma_{i,N_{2}}\Omega_{1,1}(T/\varepsilon_{i,N_{2}})\mu_{i,N_{2}}^{1/2}}$$
(M<sup>2</sup>/cek) (29)

Здесь  $\sigma_{i,N_2} = (\sigma_i + \sigma_{N_2})/2$  - сечение столкновений молекул i-ой компоненты и  $N_2$  (ангстремы),  $\varepsilon_{i,N_2} = (\varepsilon_i \varepsilon_{N_2})^{1/2}$  - глубина потенциальной ямы энергии взаимодействия этих молекул (К),  $\mu_{i,N_2} = 2\mu_i \mu_{N_2}/(\mu_i + \mu_{N_2})$  - средняя молярная масса этих молекул (кг/кмоль),  $\Omega_{1,1}(T/\varepsilon_{i,N_2}) = 1.074 \cdot (T/\varepsilon_{i,N_2})^{0.1604}$  - аппроксимация интеграла столкновений для переноса массы, P - полное давление в системе (Па) (в рассматриваемом случае — атмосферное). Параметры  $\sigma_i$ ,  $\varepsilon_i$  и молярные массы всех компонент  $\mu_i$  приведены в таблице в прилагаемом файле Bank\_TD\_Fragment.dat. В этом же файле приведены необходимые для расчетов плотности конденсированных компонент — Al, Ga, AlN и GaN.

### с. Численное решение нелинейных систем алгебраических уравнений

Возникающие в этой задаче системы можно решать различными методами, но практика показывает, что наилучшими методами в данном случае является метод Ньютона и метод спуска (или их комбинация – «универсальный» метод). Перед решением уравнения можно как-нибудь эквивалентно преобразовать – здесь можно поэкспериментировать. Точно нужно все величины собрать в левых частях уравнений и в уравнении (19) избавиться от знаменателя.

### Литература

- [1] Бахвалов Н.С. Численные методы (анализ, алгебра, обыкновенные дифференциальные уравнения). М.: Наука, 1975.
- [2] Калиткин Н.Н. Численные методы. М.: Наука, 1978.
- [3] T. Yamane, F. Satoh, H. Murakami, Y Kumagai, and A. Koukitu. J. Cryst. Growth 300 (2007) 164–167.
- [4] A.S. Segal, D.S. Bazarevskiy, M.V. Bogdanov, and E.V. Yakovlev. Phys. Stat. Solidi (c) 6 (2009) S329-S332.