An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

What is the Maximum Height of an AVL Tree?

Let n(h) = minimum number of nodes in an AVL tree of height h.

What is the Maximum Height of an AVL Tree?

Let n(h) = minimum number of nodes in an AVL tree of height h.

$$n(0) = 1$$
, $n(1) = 3$, $n(2) = 5$, $n(3) = 9$, $n(4) = 15$, ...
 $n(h) = 1 + n(h-1) + n(h-2) > 2n(h-2)$

Solve the recurrence equation for h even

$$n(0) = 1$$

 $n(h) > 2n(h-2)$
 $2n(h-2) > 2^{2}n(h-2\times2)$
 $2^{2}n(h-2\times2) > 2^{3}n(h-2\times3)$
...
 $2^{i}n(h-2\times i) > 2^{i+1}n(h-2\times(i+1))$
 $= 0$
Then, $n(h) > 2^{i+1}n(0) = 2^{i+1}$

Solve the recurrence equation for h even

```
Since h-2×(i+1) = 0, then i+1 = h/2 and so n(h) = n > 2^{i+1} = 2^{h/2} Therefore, taking logarithms on both sides we get h/2 \le \log_2 n and so height = h < 2 \log_2 n, \text{ so height is O(log n)}
```

To re-balance an AVL tree we always rebalance the smallest un-balanced subtree.

Single Rotations

Double Rotations

If the tree becomes unbalanced due to an insertion ONE rotation will re-balance the tree.

Insertion

- Insertion is as in a binary search tree
- Re-balance if needed

after insertion of 54

Insertion Example, continued

Algorithm putAVL (*r, k,* data) **In:** Root *r* of an AVL tree, record (*k*,data)

Out: {Insert (k,data) and re-balance if needed}

```
put(r,k,data) // Algorithm for binary search trees
Let p be the node where (k,data) was inserted
while (p \neq \text{null}) and (subtrees of p differ in height \leq 1) do
p = parent of p
```

if $p \neq \text{null then}$ rebalance subtree rooted at p by performing appropriate rotation

When a single and a double rotation can be applied to an un-balanced subtree the single rotation always re-balances the subtree.

If the tree becomes unbalanced due to a removal SEVERAL rotations might be needed to re-balance the tree.

Removal

- Removal begins as in a binary search tree, which means the node removed will become a leaf.
- Re-balance if needed.


```
Algorithm removeAVL (r, k)
In: Root r of an AVL tree, key k to remove
Out: {Remove k and re-balance if needed}
 remove(r,k) // Algorithm for binary search trees
 Let p be the parent of the node that was removed
 while (p \neq \text{null}) do {
     if subtrees of p differ in height > 1 then
         rebalance subtree rooted at p by performing
         appropriate rotation
     p = parent of p
```

AVL Tree Performance

- AVL tree storing n items
 - The data structure uses O(n) space
 - A single rotation takes O(1) time
 - using a linked-structure binary tree
 - Get takes O(log n) time
 - height of tree is O(log n), no re-balancing needed
 - Put takes O(log n) time
 - initial get operation takes O(log n) time
 - rebalancing the tree takes O(1) time, as at most one rebalancing operation is needed
 - Removal takes O(log n) time
 - initial get operation takes O(log n) time
 - rebalancing the tree needs O(log n) time as several rebalancing operations might be needed

