

Achieving 15 TOPS/s Equivalent Performance in Less Than 10 W Using Neural Network Pruning on Xilinx Zynq

Nick Ni May 23, 2018

Wide Range of Rapidly Changing Vision Guided Systems

Embedded Vision Systems

Vision Guided Autonomous Systems

Mandates: From Embedded Vision to Autonomous Systems

Intelligent and Immediate Response with Efficiency

Flexibility to Upgrade to Latest Algorithms & Sensors

Always Connected to Other Machines and the Cloud

Xilinx Unique Application Advantages

Xilinx Unique Application Advantages

Barrier to Broad Adoption:

Software Defined Programming, Libraries and Frameworks

Software development environment for Embedded Vision

Frameworks & Libraries

Application specific

C-U OpenCV DEEPHI DNNDK Machine Learning

Foundational

Math.h, BLAS...

C/C++ Development tools

Ready-to-develop boards

ML inference flow on Xilinx Zynq

Efficient Platform
Stack
for Deep Learning

Deep Learning

DL Framework

Xilinx Zynq-7000 or MPSoC

Network Pruning: Achieve same with less

30x – 50x compression rate without hurting accuracy e.g. AlexNet

Performance Boost Using Pruning

Pruning speedup on DPU (SSD+VGG)

Pruning results on SSD (Object detection CNN)

ML flow with pruning

DECENT (Deep Compression Tool)

Final results and comparisons with GPU

	GOPs	ZU9	ZU5	ZU2	Z 7020	Jetson TX2 ¹⁾
Power		8W	5W	3W	2W	10W
GoogLeNet	3.2	313 img/s	156 img/s	81 img/s	38 img/s	139 img/s
GoogLeNet pruned	1.6	481 img/s	244 img/s	144 img/s	65.6 img/s	N/A
SSD(480x360)	117	20 FPS	10 FPS	4 FPS	2 FPS	10 FPS
SSD(480x360) pruned	11.6	129 FPS	65 FPS	33 FPS	14 FPS	N/A

Only convolutional / feature extraction parts are calculated and compared

Putting it Together: Multi-sensor + Multi CNN

- 4 CNN models
 - Face detect, Joint detect, Traffic SSD, Ped SSD
 - 14, 11, 7, 10 FPS respectively
- 3 Live inputs + file / HDMI output
- Under 10 Watts
- Available in Jun, 2018

Demo Video

Conclusion

- ML in embedded vision needs high perf, low latency and scalable power
- Network pruning can reduce the network complexity up to 10x while maintaining accuracy
- Xilinx partnered with Deephi to offer ML inference toolchain
- Now you can develop a full EV system using SW development environment, SDSoC with ML and OpenCV support
- https://www.xilinx.com/products/design-tools/embedded-vision-zone.html

