- (3) R'=act & (m,n) | m teit n 3 = IN2; mln coap (FCEN) [h=c·u]
 - · R' reflexiv? Ja: h=1·n, d.h. h kilt n für alle ne-M
 - R' transitiv? Ja: Gilt lelm und mln, so gibtes $c_1, c_2 \in \mathbb{N}$ wit $m = c_1 \cdot k$ und $n = c_2 \cdot m$; somit gilt $n = c_2 \cdot c_1 \cdot k$, or.l. leln für alk le, $m, n \in \mathbb{N}$
 - · R' antisymmetrisch? Ja: Gilt mln und ulm, a.l. es gibt C1.C2 EIN wit h=C1:un und m=C2:n, al. h=C1.C2:u, a.l. C1=C2=1, a.l. h=m für alk m,nEIN
 - · R'linear? Nein: 213 und 312
- (4) $R'' = \alpha_{ij} \{ (A_iB) \mid A \subseteq B \} \subseteq P(x)^2$ for bound unerge x.

 R'' reflexiv: $A \subseteq A$ for $A \subseteq X$ ($A \subseteq P(x)$)
 - · R' transitiv: A & B Lind B & C , so auch A & C
 - · R" antisymmetrisch: A & B und B & A, so ist A = B
 - · R" nicht linear, falls 1x1=2: Es seien a,6 ex mit a +6.

 Danngilt faß n 869 = 0.

Definition 8.

- Es sei RE AXA eine loinoir Relation auf A.
- (1.) R heißt Halbordnung (oder partielle Ordnung), falls
 R vefteriv, transitiv, antisymmetrisch ist.
- (2.) R heifst Ordnung (oder totale l'heare ordnung), falls
 R Halbordnung und Zusäfzlich linear ist.
- (3.) 1st R eine Halbordnung, so heifst (A,R) halbgeordnete kenge (oder partiell geordnete Menge)
- (4.) 1st R eine Ordnung, so helfst (A,R) geordneke Leuge (oder total i linear geordnek Henge).

Beispicle:

R Ordnung, (N, \leq) geordnet kenge $(\leq \leq |N^2)$ R' Halbordnung, (N, 1) halbgeordnete kenge R' Halbordnung, $(P(X), \leq)$ halbgeordnete kenge

Definition 8.

Es seen Re AxA eine Halbordnung und KEA.

- (1.) Ein Elament $a \in \mathbb{R}$ heißt Minimum (bew. Maximum) von k, falls $a \leq_R b$ (bew. $b \leq_R a$) für all book gilt.
- (2.) Ein Element a 6 A heift lunkre Schranke (bew. bepa) für alle bek gilt.
- (3.) Ein Element ach heißt Infimum (bew. Supremum)

 Von K, falls a eine Unkre (bew. obere) Schranke

 von k ist und bega (bew. a e,b) für alle Unkren

 (bew. oberen) Schranken b von k gilt.

Proposition 10.

Es seien RC txt eine Halbordhung und KSA. Existict das Linimum (Laximum, Infimum, Supremum), so ist es eindentig.

Beweis: (nur fir Linimum)

(0,0') $\in \mathbb{R}$ Es Seten Q, Q' $\in \mathbb{R}$ Linima vou $\in \mathbb{R}$. Dann gilt $0 \leq Q'$, old a Lin. $v \in \mathbb{R}$, und $0 \leq Q'$, old a' Lin. $v \in \mathbb{R}$. We gen fut symmetric von $\in \mathbb{R}$ gilt 0 = 0!

Bemerkung:

- (1) min (K) Steht für Lünimum v. k

 max(K) u haximum v. k

 inf (k) u lufimum v. k

 sup(K) u supremum v. k
- (2) Infimum ist die größte untere Schroute Supremum ist die kleinste oben Schrouke
- 3.) Minimum, Haximum, Infimum, Suprembum Luissen wicht ex.

Beispide:

- (1) win (0), max (0) existincen vicut
- (2) A=Q, $R=\alpha + 2(x,y) | x = y = A \times A$; foir $K_{+}=\alpha + 2 \times | 0 = x = A$ $K_{-}=\alpha + 2 \times | x = 0 = A$

gilt

- min (k+) ex. wicht; min (k) ex. witht
- max (k+), max (k_) ex. wicht
- Menge d. Lunsen Schranken v. K+: K_U 209
- Menge d. Oberen Schranken v. k+: Ø
- Hange d. oberen 8chranben v. k_: k+ v 205
- Kenge d. Unken Schrauten v. K_: 0
- inf (k+) = max (k-u 209) =0
- Sup (k+) ex. wicht
- sup (k_) = min (k+ u 209) = 0
- inf (k_) ex. wicht

- (3.) Veräuderte Grundmenge A= Q\ 305, R, k+, k- Wie gehabt:
 - henge d. Untoen Echranken V. k+: k-
 - inf (k+) ex. vicut, do k_ kein Wax. besilet.
- 4) $A = \{0, 1, ..., 109, R = \}$ (m,n) | weng $\in A \times A$.

 Dann gilt:
 - inf (B) = max (A) = 10
 - sup (0) = min (A) =0

Definition U.

Es seien REAXA eine Halbordung und KEA.

Ein Element a.e.K. heißt minimal (bzw. maximal)

in K, falls für alle bek gilt:

18t $b \leq_R a$ (b 2w. $a \leq_R b$), so ist a = b.