Assignment 2

Due: Tuesday, February 11

Problem 1. Derive the dual quadratic program to the mean-variance portfolio optimization problem

sup
$$(1 - \lambda)\boldsymbol{\mu}^{\top}\boldsymbol{x} - \lambda\boldsymbol{x}^{\top}\boldsymbol{\Sigma}\boldsymbol{x}$$

s.t. $\boldsymbol{x} \in \mathbb{R}_{+}^{N}$
 $\mathbf{e}^{\top}\boldsymbol{x} = 1$.

Here, $\mu \in \mathbb{R}^N_+$ is the mean vector and $\Sigma \in \mathbb{S}^N_+$ is the covariance matrix of the asset returns. The parameter $\lambda \in [0,1]$ describes the risk aversion level of the investor. Implement the quadratic program in a MATLAB function portfolio_dual.m defined as follows:

[obj]=portfolio_dual(mu,Sigma,lambda)

The function takes the mean vector μ , covariance matrix Σ , and risk aversion level λ as inputs. It outputs the optimal objective value of the dual problem. Submit your implementation of portfolio_dual.m to Canvas.

Problem 2 (Uncertainty Quantification). The magnitude of an earthquake in Fukushima, Japan, can be represented by a univariate random variable $\tilde{\xi}$ that takes values in the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. This random variable has an unknown probability distribution \mathbb{P} . However, it is known that the random variable has mean 3 and variance 4. Given an input $t \in \mathbb{N}$, formulate two linear programs that find the upper and lower bounds on the probability

$$\mathbb{P}(\tilde{\xi} \ge t). \tag{1}$$

Implement both linear programs in a MATLAB function bounds.m defined as follows:

[lower,upper]=bounds(t)

Here, the function takes the number t as input and outputs the lower and upper bounds on the probability (1). Submit your implementation of bounds.m to Canvas.

Problem 3 (Conditional Value-at-Risk). Let $\tilde{\boldsymbol{\xi}}$ be a random vector supported on Ξ . The loss function $\ell(\boldsymbol{x},\boldsymbol{\xi})$ is known to be convex in \boldsymbol{x} for any fixed $\boldsymbol{\xi} \in \Xi$. Show that the function

$$g(\boldsymbol{x}) = \inf_{\beta \in \mathbb{R}} \beta + \frac{1}{\epsilon} \mathbb{E}_{\mathbb{P}} \left[\max\{\ell(\boldsymbol{x}, \tilde{\boldsymbol{\xi}}) - \beta, 0\} \right]$$

is convex in x. Hint: Use the convexity preserving operations that we discussed in class.