Problem Statement

Linear Regression

Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv("uber.csv")
a
```

Out[2]:

	id	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longit
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962
3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973
1)

To display top 10 rows

In [3]:

c=a.head(15)

Out[3]:

	id	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	drop
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	
3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	
5	44470845	2011- 02-12 02:27:09	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910	
6	48725865	2014- 10-12 07:04:00	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.693965	
7	44195482	2012- 12-11 13:52:00	2.5	2012-12-11 13:52:00 UTC	0.000000	0.000000	
8	15822268	2012- 02-17 09:32:00	9.7	2012-02-17 09:32:00 UTC	-73.975187	40.745767	
9	50611056	2012- 03-29 19:06:00	12.5	2012-03-29 19:06:00 UTC	-74.001065	40.741787	
10	2205147	2015- 05-22 17:32:27	6.5	2015-05-22 17:32:27 UTC	-73.974388	40.746952	
11	6379048	2011- 05-23 22:15:00	8.5	2011-05-23 22:15:00 UTC	0.000000	0.000000	
12	31892535	2011- 05-17 14:03:00	3.3	2011-05-17 14:03:00 UTC	-73.966378	40.804440	
13	13012786	2011- 06-25 11:19:00	10.9	2011-06-25 11:19:00 UTC	-73.953352	40.767382	
14	48411337	2010- 04-06 22:20:27	6.9	2010-04-06 22:20:27 UTC	-73.973370	40.755193	
4							•

To find Missing values

```
In [4]:
```

```
c.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 9 columns):
    Column
                       Non-Null Count Dtype
                       _____
0
    id
                       15 non-null
                                       int64
 1
                                       object
    key
                       15 non-null
 2
    fare_amount
                       15 non-null
                                       float64
 3
    pickup_datetime
                       15 non-null
                                       object
 4
    pickup_longitude
                       15 non-null
                                       float64
    pickup_latitude
                       15 non-null
                                       float64
    dropoff_longitude 15 non-null
 6
                                       float64
    dropoff_latitude
                       15 non-null
                                       float64
    passenger_count
                                       int64
                       15 non-null
dtypes: float64(5), int64(2), object(2)
memory usage: 1.2+ KB
```

To display summary of statistics

```
In [5]:
```

```
a.describe()
```

Out[5]:

	id	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dro
count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	19
mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	
std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	
min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	
25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	
50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	
75%	4.155530e+07	12.500000	-73.967153	40.767158	-73.963659	
max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	
4						•

To display column heading

In [6]:

```
a.columns
```

Out[6]:

Pairplot

In [7]:

```
s=a.dropna(axis=1)
s
```

Out[7]:

	id	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	
3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	
199995	42598914	2012- 10-28 10:49:00	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	
199996	16382965	2014- 03-14 01:09:00	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	
199997	27804658	2009- 06-29 00:42:00	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	
199998	20259894	2015- 05-20 14:56:25	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	
199999	11951496	2010- 05-15 04:08:00	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	
200000 rows × 7 columns							
4	•						

In [8]:

```
s.columns
```

Out[8]:

In [9]:

```
sns.pairplot(c)
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x2acb6166eb0>

Distribution Plot

In [10]:

```
sns.distplot(c['passenger_count'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='passenger_count', ylabel='Density'>

Correlation

In [11]:

Out[11]:

<AxesSubplot:>

Train the model - Model Building

```
In [12]:
```

```
g=c[['id']]
h=c['passenger_count']
```

To split dataset into training end test

In [13]:

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

In [14]:

```
from sklearn.linear_model import LinearRegression
```

```
In [15]:
```

```
lr=LinearRegression()
lr.fit(g_train,h_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

2.008954987118392

Coeffecient

In [17]:

```
coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[17]:

Co-effecient

id -1.933861e-08

Best Fit line

In [18]:

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x2acc75fcd00>

To find score

```
In [19]:
print(lr.score(g_test,h_test))
-0.318731485300195
```

Import Lasso and ridge

```
In [20]:
from sklearn.linear_model import Ridge,Lasso

Ridge
In [21]:
```

```
ri=Ridge(alpha=5)
ri.fit(g_train,h_train)
Out[21]:
```

```
Ridge(alpha=5)
```

In [22]:

```
ri.score(g_test,h_test)
```

```
Out[22]:
-0.31873148530019413
```

```
-0.318/3148330013413
```

```
ri.score(g_train,h_train)
```

```
Out[23]:
```

In [23]:

0.10491211106749343

Lasso

```
In [24]:
l=Lasso(alpha=6)
l.fit(g_train,h_train)
Out[24]:
Lasso(alpha=6)
```

```
In [25]:
1.score(g_test,h_test)
Out[25]:
-0.31873133509424334

In [26]:
ri.score(g_train,h_train)
Out[26]:
0.10491211106749343
```

ElasticNet

```
In [27]:
from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(g_train,h_train)
Out[27]:
ElasticNet()
```

Coeffecient, intercept

```
In [28]:
print(e.coef_)

[-1.93386088e-08]

In [29]:
print(e.intercept_)
```

2.0089548750338424

Prediction

```
In [31]:
```

```
print(e.score(g_test,h_test))
```

-0.31873147278302016

Evaluation

```
In [32]:
from sklearn import metrics
print("Mean Absolute error:",metrics.mean_absolute_error(h_test,d))

Mean Absolute error: 1.58324362262317

In [33]:
print("Mean Squared error:",metrics.mean_squared_error(h_test,d))

Mean Squared error: 4.6888230143396274

In [34]:
print("Mean Squared error:",np.sqrt(metrics.mean_squared_error(h_test,d)))

Mean Squared error: 2.165369024979259

In []:
```