Lösung Optimierungsaufgabe Nr. 111

Der Querschnitt eines Strassentunnels ist ein Rechteck mit aufgesetztem Halbkreis und dem Flächeninhalt $A = 50 \text{ m}^2$. Der Querschnitt soll minimalen Umfang haben. Wie breit ist dieser Tunnel?

Lösung:

Halbkreisradius x m, Breite 2x m des Rechtecks, Höhe y m des Rechtecks

Schnitt: 0 < x, 0 < y

Zielfunktion: $u(x,y) = 2x + 2y + \pi x$ soll minimal werden

Nebenbedingung NB: $A = 2 \times y + 0.5 \times x^2 \pi = 50$

Aus NB:
$$4 \times y = 100 - x^2 \pi$$
, also $y = \frac{25}{x} - 0.25 \pi x$

$$u(x) = 2x + \frac{50}{x} - 0.5\pi x + \pi x = 2x + \frac{50}{x} + 0.5\pi x$$
 soll minimal werden.

$$u'(x) = 2 - \frac{50}{x^2} + 0.5\pi := 0 \rightarrow x^2 = 100 / (4 + \pi)$$

$$x < 0$$
 unbrauchbar, also $x = \sqrt{\frac{100}{4 + \pi}} \approx 3.74$

Kontrolle:
$$u''(x) = \frac{100}{x^3} > 0$$
 für alle $x > 0$, also u für $x = \sqrt{\frac{100}{4 + \pi}}$ minimal.

$$y^2 = r^2 - x^2 = 0.5 r^2$$
, also $y = x$.

Antwort:

Die Breite des Tunnels beträgt 2x m =
$$2\sqrt{\frac{100}{4+\pi}}$$
 m ≈ 7.48 m