Στατιστική επεξεργασία αναλυτικών αποτελεσμάτων

- Σφάλματα στις μετρήσεις
- Κατανομές Στατιστικά στοιχεία πληθυσμών
- Στατιστικές δοκιμασίες σημαντικότητας

Student's test

F-test

Q-test

- Ανάλυση διακύμανσης (ANOVA)

Σφάλματα στις μετρήσεις (1/2)

Το αναλυτικό αποτέλεσμα δεν έχει την παραμικρή αξία αν δεν συνοδεύεται από κάποια **αντικειμενική** εκτίμηση του εμπεριεχόμενου πιθανού σφάλματος.

Ασαφείς εκφράσεις που δηλώνουν **υποκειμενικές** απόψεις και εκτιμήσεις, όπως οι παρακάτω:

"Μάλλον ..."

"Κατά τη γνώμη μου ..."

"Κατά πάσα πιθανότητα ..."

"Μου φαίνεται"

δεν έχουν **κ**αμία θέση σε μια επιστημονική αναφορά ενός αναλυτικού αποτελέσματος και γενικά μιας διαδικασίας **μέτρησης**!!

Σφάλματα στις μετρήσεις (2/2)

Τύποι αναλυτικών σφαλμάτων

- 1. **Συστηματικά** (systematic) ή **καθορισμένα** (determinate). Οφείλονται σε ένα ή περισσότερους λόγους γνωστής (ή -τουλάχιστον- προσδιορίσιμης) προέλευσης, όπως:
- Ακαθαρσίες ή αστάθεια αντιδραστηρίων
- Προσωπικά και συστηματικά επαναλαμβανόμενα σφάλματα
- Οργανολογικά προβλήματα μόνιμα ή παροδικά
- Ατέλειες της χρησιμοποιούμενης τεχνικής
- Τυχαία (random) ή ακαθόριστα (indeterminate) σφάλματα, που οφείλονται σε απροσδιόριστα αίτια και στο "στατιστικό" θόρυβο που ενυπάρχει σε κάθε διαδικασία μέτρησης.

Ολικό αναλυτικό σφάλμα = Συστηματικό σφάλμα + Τυχαίο σφάλμα

Τυπικά χαρακτηριστικά συστηματικών σφαλμάτων: Οι πρώτες ενδείξεις (1/3)

- Μονοκατευθυντικότητα στο πρόσημο του σφάλματος
- Ομαδοποιήσεις στο πρόσημο του σφάλματος κατά περιοχές τιμών
- Μια εξάρτηση της τιμής του σφάλματος από την περιοχή μέτρησης
- Γενικά: Η έλλειψη τυχαιότητας στο πρόσημο του σφάλματος

Σταθερό απόλυτο σφάλμα

Σταθερό αναλονικό σφάλμα

Πραγματική τιμή	Ευρεθείσα τιμή	Απόλυτο σφάλμα	Σφάλμα σχετικό
10,0	12,1	+2,1	+21,0%
20,0	23,1	+3,1	+15,5%
30,0	33,2	+3,2	+10,7%
40,0	42,8	+2,8	+7,0%
60,0	62,7	+2,7	+4,5%
80,0	83,6	+3,6	+4,5%
100,0	102,7	+3,1	+3,1%

Πραγματική τιμή	Ευρεθείσα τιμή	Απόλυτο σφάλμα	Σφάλμα σχετικό
10,0	9,5	-0,5	-5,0%
20,0	19,1	-0,9	-4,5%
30,0	28,7	-1,3	-4,3%
40,0	38,0	-2,0	-5,0%
60,0	57,3	-2,7	-4,5%
80,0	76,1	-3,9	-4,9%
100,0	95,9	-4,1	-4,1%

Τυπικά χαρακτηριστικά συστηματικών σφαλμάτων: Οι πρώτες ενδείξεις (2/3)

- Μονοκατευθυντικότητα στο πρόσημο του σφάλματος
- Ομαδοποιήσεις στο πρόσημο του σφάλματος κατά περιοχές τιμών
- Μια εξάρτηση της τιμής του σφάλματος από την περιοχή μέτρησης
- Γενικά: Η έλλειψη τυχαιότητας στο πρόσημο του σφάλματος

Μικτό σφάλμα (γραμμικό)

Μικτό σφάλμα (μη γραμμικό)

Πραγματική τιμή	Ευρεθείσα τιμή	Απόλυτο σφάλμα	Σφάλμα σχετικό
10,0	12,1	+2,1	+21%
20,0	21,3	+1.3	+6,5%
30,0	30,2	+0,2	+0,7%
40,0	38,2	-1,8	-4,5%
60,0	57,5	-2,5	-4,2%
80,0	76,4	-3,6	-4,5%
100,0	96,0	-4,0	-4,0%

Πραγματική τιμή	Ευρεθείσα τιμή	Απόλυτο σφάλμα	Σφάλμα σχετικό
10,0	9,5	-0,5	-5,0%
20,0	21,2	+1.2	+6,0%
30,0	32,0	+2.0	+6,7%
40,0	42,7	+2,7	+6,8%
60,0	61,1	+1,1	+1,8%
80,0	79,0	-1,0	-1,3%
100,0	97,9	-2,1	-2,1%

Τυπικά χαρακτηριστικά συστηματικών σφαλμάτων: Οι πρώτες ενδείξεις (3/3)

Τα παραπλεύρως διαγράμματα συσχέτισης (correlation plots) αποκαλύπτουν τη μορφή σφάλματος και μπορούν να μας οδηγήσουν στην πηγή του.

Τυπικά χαρακτηριστικά συστηματικών σφαλμάτων: Μια επιπλέον πηγή συστηματικού σφάλματος (1/2)

Τάση (trend) ή Ολίσθηση (drift) τιμών

Σε περίπτωση ύπαρξης τάσης τιμών η μετρητική διαδικασία θεωρείται "εκτός ελέγχου". Η λήψη πολλών μετρήσεων δεν έχει πλέον νόημα και η μέση τιμή τους είναι στατιστικά άχρηστη.

Τυπικά χαρακτηριστικά συστηματικών σφαλμάτων: Μια επιπλέον πηγή συστηματικού σφάλματος (2/2)

Τάση (trend) ή ολίσθηση (drift)

Επιβεβαιώνεται (σε δεδομένο επίπεδο εμπιστοσύνης) εάν η κλίση (υπολογιζόμενη με τη μέθοδο ελάχιστων τετραγώνων) είναι σημαντικά διαφορετική από το μηδέν.

Precision και Accuracy: Ένα ιστορικό πρόβλημα ορολογίας και μετάφρασης

Be more precise : Γίνε περισσότερο ακριβής. Δώσε μου περισσότερες λεπτομέρειες.

Is that accurate? : Αυτό (που μου λες) είναι σωστό;

Precision: Ακρίβεια, λεπτομερής περιγραφή (όχι όμως κατ'ανάγκη σωστή)

Accuracy: Ορθότητα περιγραφής (όχι όμως κατ'ανάγκη ακριβής)

Ακριβής και ορθή

περιγραφή του ατομικού βάρους του ιωδίου

High precision - High accuracy

Precision και Accuracy: Ένα ιστορικό πρόβλημα ορολογίας και μετάφρασης

Απόδοση των όρων στα Ελληνικά			
	Accuracy	Precision	
-1990 (στη Χημική Ανάλυση)	Ακρίβεια	Επαναληψιμότητα	
1990-σήμερα (στη Στατιστική)	Ορθότητα	Ακρίβεια	
2002-σήμερα (Διαπίστευση- Ποιότητα)	Ακρίβεια	Πιστότητα	

Ορθότητα (accuracy). Μέτρο της εγγύτητας της μετρούμενης τιμής προς την πραγματική.

Εκφράζεται αποκλειστικά από το σφάλμα ή τη μέση τιμή των απόλυτων τιμών του σφάλματος (ή του σχετικού σφάλματος) σε περίπτωση γενικής αξιολόγησης πολλών μετρήσεων σε πολλά δείγματα.

Ακρίβεια (precision). Μέτρο της διασποράς μιας σειράς μετρήσεων από **μέτρηση σε μέτρηση** και μέσα στην **ίδια σειρά μετρήσεων** (within-run precision).

Εκφράζεται με ένα από τα στατιστικά μέτρα διασποράς (κυρίως με την τυπική απόκλιση).

Διεργαστηριακός έλεγχος μεθόδου

Ανακριβής αλλά ορθή

περιγραφή του ατομικού βάρους του ιωδίου

Low precision - High accuracy

Πληθυσμοί: Διακριτές και συνεχείς κατανομές

	ελέσματα σε δείγμα			
4,59	4,66	4,76	4,65	4,64
4,62	4,71	4,51	4,72	4,44
4,68	4,58	4,67	4,79	4,68
4,63	4,77	4,65	4,70	4,64
4,56	4,73	4,48	4,63	4,73
4,56	4,57	4,63	4,66	4,49
4,55	4,46	4,75	4,67	4,5
4,68	4,66	4,69	4,62	4,56
4,67	4,74	4,76	4,65	4,69
4,65	4,58	4.70	4.59	4.54

Περιγραφή κλάσης (mg SO₃/L)	Συχνότητα, f(x)	Σχετική συχνότητα, f _R (x)
4,40 < x ≤ 4,45	1	1/50 = 0,02
$4,45 < x \le 4,50$	3	3/50 = 0,06
$4,50 < x \le 4,55$	3	3/50 = 0,06
$4,55 < x \le 4,60$	9	9/50 = 0,18
$4,60 < x \le 4,65$	11	11/50 = 0,22
$4,65 < x \le 4,70$	13	13/50 = 0,26
$4,70 < x \le 4,75$	6	6/50 = 0,12
$4,75 < x \le 4,80$	4	4/50 = 0,08
4,40 < x ≤ 4,80	50	Σύνολο = 1,00

Πληθυσμοί: Διακριτές και συνεχείς κατανομές

Ποιος είναι ο ιδανικός αριθμός (k) κλάσεων ή ποιο πρέπει να είναι το εύρος κάθε κλάσης, δηλ. ο λόγος

(μέγιστη τιμή – ελάχιστη τιμή) / k

σε ένα ιστόγραμμα για δεδομένο αριθμό (Ν) μετρήσεων;

Κανόνας Sturges:

 $k = 1 + 3,322 \log_{10} N$

Για το προηγούμενο παράδειγμα, όπου ${\bf N}$ = 50 έχουμε:

 $k = 1 + 3,322 \times \log(50) = 6,64$

επομένως: k =7.

Στην πράξη επιλέγουμε **k = 8**, ώστε να έχουμε πιο εύχρηστο ("στρογγυλό") εύρος κλάσης (= 0,05).

Πληθυσμοί: Διακριτές και συνεχείς κατανομές

Ένας διαφορετικός τρόπος παρουσίασης μιας πληθυσμιακής κατανομής:

Η συνάρτηση σωρευτικής κατανομής (cumulative distribution function, cdf)

Περιγραφή κλάσης (mg SO₃/L)	Αριθμός μετρήσεων	Σωρευτική κατανομή, cdf
4,40 < x ≤ 4,45	1	0,02
$4,40 \le x \le 4,50$	4	0,08
$4,40 \le x \le 4,55$	7	0,14
$4,40 < x \le 4,60$	16	0,32
$4,40 \le x \le 4,65$	27	0,54
$4,40 \le x \le 4,70$	40	0,80
$4,40 < x \le 4,75$	46	0,92
$4,40 \le x \le 4,80$	50	1,00

Πληθυσμοί: Αριθμητική περιγραφή τους

• Παράμετροι θέσης

- Παράμετροι διασποράς
- Αριθμητική τιμή πληθυσμιακών στοιχείων
- Παράμετροι συμμετρίας

Πληθυσμοί: Αριθμητική περιγραφή τους

• Παράμετροι θέσης

1. Mésh timú (mean): $\overline{x} = (x_1 + x_2 + ... + x_n)/n = \sum_{i=1}^n x_i/n$

 $\textbf{2. Liamesh timh } (\text{median}): \qquad \text{median}(x_i) = x_{(n+1)/2} \qquad \qquad (\text{n: prittos})$

$$median(x_i) = \frac{x_{n/2} + x_{n/2+1}}{2} \qquad (n: \acute{\alpha}\rho\tau\iota\sigma\varsigma)$$

- 3. Ρυθμισμένη μέση τιμή (trimmed mean value)
- 4. Επικρατούσα τιμή (mode, MO)

Πληθυσμοί: Αριθμητική περιγραφή τους

- Παράμετροι διασποράς
- 1. Εύρος ή περιοχή τιμών (range, R): $R = x_n x_1$
- 2. Τυπική απόκλιση (standard deviation, s). $s = \sqrt{\frac{\sum\limits_{i=1}^{n}\left(\overline{x}-x_{i}\right)^{2}}{n-1}}$ s \rightarrow σ, sάν n
- 3. Σχετική τυπική απόκλιση (relative standard deviation, s_{t}): s_{r} = $s\,/\,\bar{x}$
- 4. Σχετική τυπική απόκλιση επί τοις εκατό (relative standard deviation per cent, RSD %): $RSD,\% = (s/\overline{x}) \times 100$
- 5. Διακύμανση (variance) (γνωστή και ως διασπορά ή μεταβλητότητα) (τελεστής: Var): $v=s^2$ ή σ^2 $Var(A\pm B)=Var(A)+Var(B) \quad \text{και} \quad [Var(A\cdot B)]/(A\cdot B)=[Var(A)]/A+[Var(B)]/B$
- 6. Μέση απόλυτη απόκλιση (absolute mean deviation, amd): $\text{amd} = \frac{\sum\limits_{i=1}^{n} \left| \overline{x} x_{i} \right|}{n}$
- 7. Τυπικό σφάλμα (standard error, S.E.): $S.E. = \sqrt{\frac{\sum_{i=1}^{n}(x_i \overline{x})}{n(n-1)}} = \frac{s}{\sqrt{n}}$
- 8. Εύρος μεταξύ ποσοστημοριακών σημείων (interpercentile range).

Πληθυσμοί: Αριθμητική περιγραφή τους

- Παράμετροι συμμετρίας
- 1. Asummetria (skewness, $g_l)$: $g_l = \frac{\sum\limits_{i=1}^n (x_i \overset{-}{x})^3}{(n-1)(n-2)\,s^3}$
- 2. Kúρτωση (kurtosis, g2): $g_2 = \frac{1}{n} \sum_{i=1}^n \left[\frac{x_i \overline{x}}{s} \right]^4 3$

Πληθυσμοί: Αριθμητική περιγραφή τους

Παράδειγμα αριθμητικής περιγραφής κατανομής

Περιγραφικό στατιστικό στοιχείο	Τιμή
Γενικά στοιχεία	
Μέγεθος δείγματος (size)	50
Παράμετροι θέσης	
Μικρότερη τιμή (minimum)	4,4400
Μεγαλύτερη τιμή (maximum)	4,7900
Μέση τιμή (mean)	4,6382
Διάμεση τιμή (median)	4,6500
Επικρατούσα τιμή (mode)	4,6611
Παράμετροι διασποράς	
Εύρος τιμών (range)	0,3500
Τυπική απόκλιση (standard deviation)	0,0829
Σχετική τυπική απόκλιση (relative stand. deviation)	0,0179
Σχετική τυπική απόκλιση % (RSD %)	1,79
Διακόμανση (variance)	0,0069
Μέση απόλυτη απόκλιση (mean absol. deviation)	0,0657
Τυπικό σφάλμα (standard error)	0,0117
Περιοχή μεταζό τεταρτημορίων (interquartile range)	0,115
Παράμετροι συμμετρίας	
Ασυμμετρία (skewness)	-0,4358
Κύρτωση (kurtosis)	2,7768

Πληθυσμοί: Αριθμητική περιγραφή τους

Συσχετίσεις περιγραφικών παραμέτρων με διαγράμματα συχνότητας και cdf

Κανονική (κατά Gauss) κατανομή: Γιατί την βρίσκουμε σχεδόν παντού; (1/2α)

Κανονική (κατά Gauss) κατανομή: Γιατί την βρίσκουμε σχεδόν παντού; (1/2β)

Κανονική (κατά Gauss) κατανομή: Γιατί την βρίσκουμε σχεδόν παντού; (2/2)

Θεώρημα κεντρικού ορίου (μία από τις διατυπώσεις):

Το άθροισμα τιμών προερχόμενων από ένα ή περισσότερους πληθυσμούς με οποιαδήποτε κατανομή, τείνει να αποτελέσει στοιχείο πληθυσμού με κανονική κατανομή, όσο αυξάνει ο αριθμός των αθροιζόμενων τιμών.

Bλέπε applet: http://www.chem.uoa.gr/applets/AppletCentralLimit/Appl_CentralLimit1.html