Convei-Lab Seminar

2021-08-03 Wonpyo Hong

Contents

- Concept Review: Novelty Detection
- Goal of the Research
 - Big Picture
 - Insights & Motivation
- Approach
 - Problems and Solutions
- Future Work

Concept Review

Novelty Detection

SETTING TASK	TRAINING	TESTING	GOAL	
Traditional Classification	Known known classes	Known known classes	Classifying known known classes	
Classification with Reject Option	Known known classes	Known known classes	Classifying known known classes & rejecting samples of low confidence	
One-class Classification (Anomaly Detection)	Known known classes & few or none outliers from KUCs	Known known classes & few or none outliers	Detecting outliers	
One/Few-shot Learning	Known known classes & a limited number of UKCs' samples	Unknown known classes	Identifying unknown known classes	
Generalized Few-shot Learning	Known known classes & a limited number of UKCs' samples	Known known classes & unknown known classes	Identifying known known classes & unknown known classes	
Zero-shot Learning	Known known classes & side-information ¹	Unknown known classes	Identifying unknown known classes	
Generalized Zero-shot Learning	Known known classes & side-information ¹	Known known classes & unknown known classes	Identifying known known classes & unknown known classes	
Open Set Recognition	Known known classes	Known known classes & unknown unknown classes	Identifying known known classes & rejecting unknown unknown classes	
Generalized Open Set Recognition	Known known classes & side-information ²	Known known classes & Unknown unknown classes	Identifying known known classes & cognizing unknown unknown classes	

Concept Review

Novelty Detection

Novelty detection is the identification of new or unknown data or signals that a machine learning system is not aware of during training.

용어	비정상 sample		
Novelty Detection	지금까지 등장하지 않았지만 충분히 등장할 수 있는 sample		
Outlier Detection + Anomaly	지금까지 등장하지 않았고 앞으로도 등장할 가능성이 없는, 데이터에 오염이 발생했을 가능성이 있는 sample		

Concept Review

Novelty Detection

Goal of the Research

- Open Set Recognition
 - Identify Unknown Classes (Missing Labels)

- Iterative Semi-Supervised Classification with Novelty Detection
 - Identify Unknown Classes (Unknown Labels)

Big Picture

What is done: Few-Shot Semi-Supervised Classification

Big Picture

What I'm doing: Anomaly Detection
What is done: Few-Shot Semi-Supervised Classification

Big Picture

What I can do in future
What I'm doing
What is done:

Identification
Anomaly Detection
Few-Shot Semi-Supervised Classification

Challenges

- Unknown Class Detection
 - How to Detect Unknown Classes in SSC environment?

- Class Identification
 - How to appropriately Group unknown documents, and then Name them?

- Lexical Synthesis
 - Set to Set Similarity

Assumption:

Lexical Synthesis

Assumption:

Lexical Synthesis

Assumption:

Each Lexicon of a class contains similar structure to one another.

Basketball

Lexicon₁

Basketball,
Basket,
Score,
NBA,
Assist,
Rebound,
Backboard,

Baseball

Lexicon₂

Baseball, Base, Score, MLB, Foul, Homerun, Mount,

Lexical Synthesis

Assumption:

Basketball	Baseball		
Lexicon ₁	Lexicon ₂		
Basketball, Basket, Score, NBA, Assist, Rebound, Backboard,	Baseball, Base, Score, MLB, Foul, Homerun, Mount,		

Lexical Synthesis

Assumption:

Lexical Synthesis

Assumption:

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

- Class Identification
 - Use Lexical Representation instead of Document Representation
 - Inference of Lexical Synthesis

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

- Unknown Class Detection
 - Iterative Semi-Supervised Classification

gold

Problem

Misunderstanding of SALNet

Figure 2: Our proposed method, using both attention-based classifier and lexicons. We set the t_1 = 3 and t_2 = 4 in our method and set 0.9 as the threshold to verify the high confidence.

Problem

Misunderstanding of SALNet

If we use more than two classifiers in SALNet, we can add the pseudo-labeled data by repeating the process of Case 1 and Case 2 for the additional classifiers. Once we obtain a new dataset after pseudo-labeling, the new dataset may have a different number of data in each class. This imbalance may make a classifier overfit to larger classes. We avoid this problem by selecting the same number of data from each class, which is the number of data in the smallest class, for the next training step.

Problem

Misunderstanding of SALNet

	Class 0	Class 1	Class 2	Class 3
Count	1000	800	400	100
1	950	750	350	-50 50
1	920	720	320	-30 20
3	900	700	300	- 20 0

Problem

Misunderstanding of SALNet

	Class 0	Class 1	Class 2	Class 3
Count	1000	800	400	100
				-50
1	950	750	350	50
				-30
1	920	720	320	20
3	900	700	300	- 20 0

1. Give up SALNet?

1. Give up SALNet?

A Unifying Review of Deep and Shallow Anomaly Detection | EEE 2021.2

This article deals with application of deep learning techniques to anomaly detection. Furthermore, connections between classic "shallow" and novel deep approaches are established, and it is shown how this relation might cross-fertilize or extend both directions.

By Lukas Ruff[©], Jacob R. Kauffmann[©], Robert A. Vandermeulen[©], Grégoire Montavon[©], Wojciech Samek[©], Member IEEE, Marius Kloft[©], Senior Member IEEE, Thomas G. Dietterich[©], Member IEEE, and Klaus-Robert Müller[©], Member IEEE

First to approach Novelty Detection through iterative approach using Attention

- 1. Give up SALNet?
- 2. Removal of finished classes

1. Give up SALNet?

2. Removal of finished classes

1. Give up SALNet?

Class 0

Class 1

Class 2

2. Removal of finished classes

Count 10

1. Give up SALNet?

2. Removal of finished classes

1. Give up SALNet?

Class 0

Class 1

Class 2

2. Removal of finished classes

Count 90

900

700

300

-200

1

700

500

100

-70

-30

1

630

430

30

3

600

400

0

1. Give up SALNet?

2. Removal of finished classes

Class 0 Class 1 Class 2 900 700 300 Count -200 700 500 100 -70 630 430 30 -30 3 600 400

- 1. Give up SALNet?
- 2. Removal of finished classes
- 3. Proportional Selection

1	Give	un	SAI	Net?
	CIVC	чΡ		_1 1 \ \ \ \ .

2. Removal of finished classes

3. Proportional Selection

	Class 0	Class 1	Class 2	Class 3
Count	1000	800	400	100
1	950	750	350	- 50 50
1	920	720	320	-30 20
3	900	700	300	- 20 0

\sim \cdot			
(-11/0	un		NAT/
 Give	up	\mathcal{I}	ニハモし

2. Removal of finished classes

Count

3

3. Proportional Selection

Class 0	Class 1	Class 2	Class 3
1000	800	400	100
	10:8:	:4:1	
700	560	280	70
500	400	200	50
350	280	140	35

Up to this point...

- 1. Give up SALNet?
- 2. Removal of finished classes
- 3. Proportional Selection

Class Imbalance & Accuracy

HockeyTeam, RugbyClub, Basketballteam, CricketTeam, CyclingTeam

sports hockey team hockey team champions cup hockey team arena hockey team ice torino rugby sevens team teams league captained cricket team pakistan cricket league premier sporting cricket rugby union tournament cup t20 stadium team cup coach matches team cricket cup team cricket team england cricket stadium twenty20 cricket tournaments club cricket league team finals cricket lanka league team cricket

Inaccurate Lexicons

hockey games team league hockey team ice championship teams hockey games club sponsored trophy team cricket matches club cricket teams team tournament cricket league team premier cricket rugby club tournament rugby union tournament stadium pakistan team t20 games: team zealand cricket bangladesh cricketers bowling t20 twenty20 cup cricketer league team cricket rugby league cricket rugby team league football league club cricket

Up to this point...

1. Give up SALNet?

2. Removal of finished classes

3. Proportional Selection

Class Imbalance & Accuracy

HockeyTeam, RugbyClub, Basketballteam, CricketTeam CyclingTeam

cycling learn

Inaccurate

Lexicons

basketball team league star) basketball club blue basketball team club basketball in club championship basketball league club championship basketball multi-sports league basketball womens club based competitions cup handball basketball developmental team league dukla basketball club basketball sponsorship) club team club basketball) basketball men club league) basketball thunders arena sports kabaddi team league liga games play cup champions league

basketball club) league (serbian basketball team montenegrin basketball womens team basketball championship club league basketball club league basketball cup league kosovan basketball team spelling: basketball club basketball monferrato team pallacanestro league) basketball samsung yongin sport colours club basketball team fiba basketball sponsorship clubs club mursa basketball womens club amateur club (sports kabaddi stadium team league flags union players national

Future Work

- Removal of Finished Classes
 - What is the most optimal Lexicon? At which iteration should the optimal Lexicon be created?
 - Optimal Lexicon can be created from known documents.
 (if trained data is stacked enough)
 - How do we know 'no more remaining known documents' in test-case?
 - Confidence and attention weights of Lexicons