Práctica 2 FSI: Redes Convolucionales

JESUS LOPEZ GONZALEZ DANIEL REYES GARCÍA

Modificaciones Realizadas

Se adjunta junto a este informe dos archivos ".ipynb", siendo

"Practica2FSI_Entrenamientos" donde se encuentras algunas de las redes que hemos, cambiando los hiperpárametros, los parámetros del data source y el modelo, como por ejemplo cambiando los filtros de las capas, el tamaño de las imágenes, el tamaño de los lotes, añadiendo o removiendo capas ... y en "Red_Convolutiva_FSI" se encuentra el proyecto final, con los hiperparámetros, parámetros del source y el modelo que mejores valores de validación obtuvimos.

Tablas Comparativas de las Redes Probadas

Parámetros Data Source:

Entrenamientos	Heigh x Width	Batch size	Epochs	Seed
1	150x150	20	200	None
2	150x150	20	200	None
3	150x150	20	200	None
4	224x224	15	200	None
5	224x224	15	100	None
6	224x224	10	100	None
7	150x150	10	100	None
8	224x224	15	100	None
9	150x150	10	100	None
10	200x200	10	100	None
Red Final	224x224	10	100	42

Data Source (valores dados al Data Augmentation):

Entrenamientos	Rotation Range	Zoom Range	Width Shift Range	Height Shift Range	Vertical Flip
1	15	0.1	0	0	False
2	15	0.1	0	0	False
3	40	0.1	0.1	0.1	True
4	15	0.1	0	0	False
5	15	0.1	0	0	False
6	15	0.1	0	0	False
7	15	0.1	0	0	False
8	15	0.1	0	0	False
9	15	0.1	0	0	False
10	15	0.1	0	0	False
Red Final	15	0.2	0.1	0.1	False

Hiperparámetros del modelo:

Entrenamientos	Conv2D	MaxPooling2D	DroupOut	Dense	Flatten
1	32, 64	2x2, 2x2	0.25, 0.5	128, 10	True
2	32, 64, 128, 256	2x2, 2x2, 2x2,	0.25, 0.5	256, 10	True
		2x2			
3	64, 128, 256, 512	2x2, 2x2, 2x2,	0.5, 0.5	512, 10	True
		2x2			
4	32, 64, 128, 256	2x2, 2x2, 2x2,	0.25, 0.5	256, 10	True
		2x2			
5	64, 128, 256, 512	2x2, 2x2, 2x2,	0.5, 0.5	512, 10	True
		2x2			
6	64, 128, 256, 512	2x2, 2x2, 2x2,	0.5, 0.5	1024, 10	True
		2x2			
7	64, 128, 256, 512	2x2, 2x2, 2x2,	0.5, 0.5	1024, 10	True
		2x2			
8	64, 128, 256, 512,	2x2, 2x2, 2x2,	0.5, 0.5	512, 10, Kernel	True
	Kernel regulatizer	2x2		regulatizer	
9	64, 128, 256, 512,	2x2, 2x2, 2x2,	0.5, 0.5	1024, 10	True
	1024	2x2, 2x2			
10	64, 128, 256, 512,	2x2, 2x2, 2x2,	0.5, 0.5	1024, 10	True
	1024	2x2, 2x2			
Red Final	164, 128, 256, 512	2x2, 2x2, 2x2,	0.5, 0.5	1024, 10	True
		2x2			

Cantidad de Capas del modelo:

Entrenamientos	Conv2D	MaxPooling	DroupOut	Dense	Flatten
		2D			
1	2	2	2	2	1
2	4	4	2	2	1
3	4	4	2	2	1
4	4	4	2	2	1
5	4	4	2	2	1
6	4	4	2	2	1
7	4	4	2	2	1
8	4	4	2	2	1
9	5	5	2	2	1
10	5	5	2	2	1
Red Final	4	4	2	2	1

Resultados obtenidos durante el entrenamiento:

Entrenamientos	Loss	Accuracy	Val-Loss	Val-	Patience	Epochs
				Accuracy		
1	0.7721	0.7350	0.9823	0.6875	3	15
2	0.1811	0.9408	0.5573	0.7316	3	22
3	0.6644	0.7778	0.9821	0.6912	3	13
4	0.6996	0.7769	0.2031	0.7316	10	32
5	0.0232	0.9918	0.0000e+0	0.8088	10	34
			0			
6	0.0295	0.9909	0.0000e+0	0.8162	10	49
			0			
7	0.0813	0.9699	4.0124e-	0.8051	10	27
			04			
8	0.1345	0.9763	0.0762	0.7721	10	36
9	0.0506	0.9836	0.0000e+0	0.8346	10	46
			0			
10	0.0713	0.9791	0.0000e+0	0.8015	10	46
			0			
Red Final	0.0814	0.9791	9.5137e-	0.8566	10	52
			04			

Al colab además le hemos agregado varias pruebas y tablas para observar tanto el contenido del dataset como el funcionamiento del data augmentation en las imágenes.

Resultado del Data Augmentation final en una imagen

Tabla demostrativa del dataset

Subplots que muestra cinco monos de cada especie con sus nombres como títulos.

Predicciones

Plot que muestra la predicción realizada por nuestra red neuronal sobre una imagen, el proyecto final consta de tres de estas predicciones.

Diseño y Demostración del funcionamiento de la Red Final

Imagen realizada a partir de los "diseños" de las distintas capas, en esta imagen podemos ver como la foto pasa por las distintas capas hasta llegar a los nodos de salida donde finalmente se obtiene el resultado de la clasificación.

¿Qué es y cómo funciona Categorical Crossentropy?

La pérdida de entropía cruzada o perdida de registro crossentropy, mide el rendimiento de un modelo de clasificación en el que se están midiendo dos distribuciones de probabilidades, en nuestro caso las precisiones del entrenamiento y la validación, esta aumenta a medida que la probabilidad pronostica difiere de la etiqueta real, por ejemplo, si el valor se está aproximando a 0 y la etiqueta real es 1 esto sería malo y da como resultado un alto valor de loss o perdida. En el caso de que la probabilidad pronostica se acerca a la etiqueta real este valor de perdida disminuye. Hay que añadir que en nuestro caso es Categorical debido a que tenemos más de 2 clases

Se usa para determinar con más precisión las perdidas en cuanto la diferencia de medida que está sacando la red con la que debería sacar.