УТВЕРЖДЕНО Проректор по учебной работе А. А. Воронов 16 января 2024 года

ПРОГРАММА

по дисциплине: Общая физика:

термодинамика и молекулярная физика

по направлению подготовки:

03.03.01 «Прикладные математика и физика»

16.03.01 «Техническая физика»

27.03.03 «Системный анализ и управление»

09.03.01 «Информатика и вычислительная техника»

11.03.04 «Электроника и наноэлектроника»

физтех-школа: для всех физтех-школ кроме ФБВТ, ВШПИ

кафедра: общей физики

курс: $\frac{1}{2}$ семестр: $\frac{2}{2}$

<u>лекции – 30 часов</u> <u>Экзамен – 2 семестр</u>

практические (семинарские)

занятия - 30 часов

лабораторные занятия – 60 часов Диф. зачёт – 2 семестр

ВСЕГО АУДИТОРНЫХ ЧАСОВ – 120 Самостоятельная работа:

<u>теор. курс – 90 часов</u> физ. практикум – 75 часов

Программу и задание составили:

к.ф.-м.н., доц. Колдунов Л. М.

к. т. н., доц. Овчинкин В. А.

к.ф.-м.н., доц. Попов П.В.

доц. Савров М. А.

к.ф.-м.н., доц. Холин Д.И.

к.ф.-м.н., доц. Юдин И.С.

Программа принята на заседании кафедры общей физики 12 декабря 2023 г.

Заведующий кафедрой д.ф.-м.н., профессор

А. В. Максимычев

ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

1. Основные понятия, задачи и методы молекулярной физики. Макроскопические параметры, термодинамическая система, термодинамические параметры, термодинамическое равновесие. Нулевое начало термодинамики. Термическое и калорическое уравнения состояния.

Идеальный газ. Связь давления идеального газа с кинетической энергией молекул. Уравнение состояния идеального газа. Внутренняя энергия идеального газа. Идеально-газовое определение температуры.

Работа, внутренняя энергия, теплота. Первое начало термодинамики. Теплоёмкость. Теплоёмкости при постоянном объёме и постоянном давлении, соотношение Майера для идеального газа. Адиабатический и политропический процессы. Адиабата и политропа идеального газа.

Скорость звука в газах.

2. Циклические процессы. Тепловые машины. КПД тепловой машины. Цикл Карно. Теоремы Карно. Холодильная машина и тепловой насос. Обратимые и необратимые процессы. Второе начало термодинамики. Эквивалентные формулировки второго начала. Неравенство Клаузиуса.

Термодинамическое определение энтропии. Изменение энтропии в обратимых и необратимых процессах, закон возрастания энтропии. Энтропия идеального газа. Неравновесное расширение идеального газа в пустоту.

3. Термодинамические функции и их свойства. Термодинамические потенциалы: внутренняя энергия, энтальпия, свободная энергия, энергия Гиббса. Преобразования термодинамических функций. Соотношения Максвелла.

Максимальная работа системы при контакте с термостатом. Максимальная полезная работа системы.

4. Применение термодинамических потенциалов. Термодинамика излучения. Адиабатическое растяжение резинового и металлического стержней. Тепловое расширение твёрдых тел.

Поверхностные явления. Краевые углы, смачивание и несмачивание. Формула Лапласа. Свободная и внутренняя энергия поверхности.

5. Фаза и агрегатное состояние. Классификация фазовых переходов (I и II рода). Экстенсивные и интенсивные величины. Химический потенциал. Условия равновесия фаз для переходов I рода. Уравнение Клапейрона – Клаузиуса. Кривая фазового равновесия «жидкость—пар», зависимость давления насыщенного пара от температуры.

Фазовые диаграммы. Тройная точка. Диаграмма состояния «лёд–вода—пар». Критическая точка.

Метастабильные состояния. Перегретая жидкость и переохлаждённый пар. Зависимость давления пара от кривизны поверхности жидкости. Кипение. Роль зародышей в образовании фазы.

- 6. Газ Ван-дер-Ваальса как модель реального газа. Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Изотермы газа Ван-дер-Ваальса и их связь с изотермами реальной системы. Правило Максвелла. Правило рычага. Критические параметры и приведённое уравнение состояния. Адиабата газа Ван-дер-Ваальса. Неравновесное расширение газа Ван-дер-Ваальса в пустоту.
- **7.** Уравнение Бернулли. Изоэнтропическое течение идеального газа, истечение газа из отверстия. Эффект Джоуля Томсона, температура инверсии.
- **8.** Элементы теории вероятностей. Дискретные и непрерывные случайные величины, плотность вероятности. Условие нормировки. Средние величины и дисперсия. Независимые случайные величины. Нормальный закон распределения. Зависимость дисперсии суммы независимых слагаемых от их числа («закон \sqrt{N} »).
- **9.** Распределение Максвелла: распределения частиц по компонентам скорости и абсолютным значениям скорости. Наиболее вероятная, средняя и среднеквадратичная скорости. Распределение Максвелла по энергиям.

Элементы молекулярно-кинетической теории. Плотность потока частиц, движущихся в заданном направлении. Среднее число и средняя энергия частиц, вылетающих в вакуум через малое отверстие в сосуде.

Распределение Больцмана в поле внешних сил. Барометрическая формула. Распределение Максвелла – Больцмана.

10. Элементы статистической физики классических идеальных систем. Фазовое пространство, макро- и микросостояния, статистический вес макросостояния. Статистическое определение энтропии. Статистическая сумма. Аддитивность энтропии независимых подсистем. Закон возрастания энтропии. Третье начало термодинамики (теорема Нернста). Понятие о каноническом распределении Гиббса. Распределение Гиббса – Больцмана для идеального газа.

Зависимость статистического веса и энтропии от числа частиц в системе. Изменение энтропии при смешении газов, парадокс Гиббса.

11. Приложения статистической физики. Классическая теория теплоёмкостей: закон равномерного распределения энергии теплового движения по степеням свободы. Теплоёмкость кристаллов (закон Дюлонга — Пти). Элементы квантовой теории теплоёмкостей. Замораживание степеней свободы, характеристические температуры. Зависимость теплоёмкости \mathcal{C}_V газов от температуры.

Статистическая температура. Свойства двухуровневой системы, инверсная заселённость.

- 12. Флуктуации. Связь вероятности флуктуации с изменением энтропии системы. Флуктуации аддитивных величин, зависимость флуктуаций от числа частиц. Флуктуация числа частиц в выделенном объёме. Флуктуация энергии системы в жёсткой термостатированной оболочке. Флуктуация объёма в изотермическом и адиабатическом процессах. Влияние флуктуаций на чувствительность измерительных приборов.
- **13.** Столкновения. Эффективное газокинетическое сечение. Длина свободного пробега. Распределение молекул по длинам свободного пробега. Число столкновений молекул в единице объёма.

Явления молекулярного переноса: диффузия, теплопроводность, вязкость. Законы Фика, Фурье и Ньютона. Коэффициенты переноса в газах. Уравнение диффузии и теплопроводности. Температуропроводность. Стационарные и квазистационарные распределения концентрации и температуры.

14. Диффузия как процесс случайных блужданий. Задача о случайных блужданиях, среднеквадратичное смещение частицы при большом числе шагов. Закон Эйнштейна — Смолуховского. Расплывание облака частиц. Распространение тепла за счёт теплопроводности.

Броуновское движение макроскопических частиц. Связь подвижности частицы и коэффициента диффузии облака частиц (соотношение Эйнштейна).

- **15.** Явления переноса в разреженных газах. Эффект Кнудсена (эффузия). Течение разреженного газа по прямолинейной трубе. Зависимость коэффициента теплопроводности разреженного газа от давления.
- 16. *Элементы неравновесной термодинамики. Локальное термодинамическое равновесие. Термодинамические силы и потоки, соотношения взаимности Онзагера, перекрёстные термодинамические явления (термодиффузия, термоэлектрический эффект, термомеханический и механокалорический эффекты). Производство энтропии, принципы минимума производства энтропии и наименьшего рассеяния энергии в необратимых термодинамических процессах. Нелинейная термодинамика, динамические структуры, "порядок из хаоса" (ячейки Бенара, реакция Белоусова Жаботинского).

ЛИТЕРАТУРА

Основная

- 1. *Кириченко Н.А.* Термодинамика, статистическая молекулярная физика. Москва: Физматкнига, 2012.
- 2. *Сивухин Д.В.* Общий курс физики. Т. II. Термодинамика и молекулярная физика. Москва : Физматлит, 2006.
- Белонучкин В.Е., Заикин Д.А., Ципенюк Ю.М. Основы физики. Курс общей физики. Т. 2. Квантовая и статистическая физика / под ред. Ю.М. Ципенюка. Часть V. Главы 1–4. – Москва: Физматлит, 2001.
- 4. Белонучкин В.Е. Краткий курс термодинамики. Москва : МФТИ, 2010.
- 5. Лабораторный практикум по общей физике. Т. 1 / под ред. А.Д. Гладуна. Москва : МФТИ, 2012.
- 6. Сборник задач по общему курсу физики. Ч. 1 / под ред. В.А. Овчинкина (3-е изд., испр. и доп.). Москва : Физматкнига, 2013.

Дополнительная

- 1. *Щёголев И.Ф.* Элементы статистической механики, термодинамики и кинетики. М.: Янус, 1996; Москва: Интеллект, 2008.
- 2. Базаров И.П. Термодинамика. Москва: Высшая школа, 1983.
- 3. *Рейф Ф*. Статистическая физика (Берклеевский курс физики). Т. 5. Москва : Наука, 1972.
- 4. *Калашников Н.П., Смондырев М.А.* Основы физики. Москва : Лаборатория знаний, 2017.
- 5. *Пригожин И., Кондепуди Д.* Современная термодинамика. От тепловых двигателей до диссипативных структур. Москва: Мир, 2009.
- 6. *Корявов В.П.* Методы решения задач в общем курсе физики. Термодинамика и молекулярная физика. Москва : Высшая школа, 2009.
- 7. *Прут Э.В., Кленов С.Л., Овсянникова О.Б.* Введение в теорию вероятностей в молекулярной физике. Москва : МФТИ. 2002. Элементы теории флуктуаций и броуновского движения в молекулярной физике. Москва : МФТИ, 2002.
- 8. Прут Э.В. Теплофизические свойства твёрдых тел. Москва : МФТИ, 2009.
- Булыгин В.С. Теоремы Карно. Москва: МФТИ, 2012; Теплоёмкость и внутренняя энергия газа Ван-дер-Ваальса. – Москва: МФТИ, 2012; Некоторые задачи теории теплопроводности. – Москва: МФТИ, 2006; Теплоёмкость идеального газа. – Москва: МФТИ, 2019.
- 10. *Попов П.В.* Диффузия. Москва : МФТИ, 2016.

Электронные ресурсы

http://physics.mipt.ru/S II/method/

ЗАДАНИЕ ПО ФИЗИКЕ для студентов 1-го курса на весенний семестр 2023/2024 учебного года

Дата	№ нед.	Тема семинарских занятий	Задачи				
			0	I	II		
1-7 февр.	1	Первое начало термодинамики. Теплоёмкость. Адиабатический и политропический процессы.	⁰ 1 ⁰ 2 ⁰ 3	1.40 1.54 1.87 2.6	1.100 T1 1.75 1.83		
8–14 февр.	2	Тепловые машины. Второе начало термодинамики. Изменение энтропии в обратимых процессах.	⁰ 4 ⁰ 5 ⁰ 6	3.25 3.43 T2 4.80	3.52 3.47 4.15 4.73		
15-21 февр.	3	Изменение энтропии в необратимых процессах. Термодинамические потенциалы.	⁰ 7 ⁰ 8 ⁰ 9	4.75 4.43+44 5.75 5.38	4.47 T3 5.32 5.54		
22-28 февр.	4	Преобразования термодинамических функций. Поверхностное натяжение.	1.3 °10 °11 °12	5.16 5.28 12.8 5.42	5.63 T4 12.9 12.38		
29 февр. – 6 мар.	5	Фазовые превращения. Уравнение Клапейрона – Клаузиуса. Кипение.	⁰ 13 ⁰ 14 ⁰ 15	11.29 11.16 11.34 12.51	T5 11.74 11.78 12.48		
7–13 мар.	6	Реальные газы. Течение газов. Эффект Джоуля –Томсона.	⁰ 16 ⁰ 17 ⁰ 18	T6 6.52 2.11 6.68+69	6.41 6.73 6.87 2.20		
14-20 мар.	7	Контрольная работа по 1-му заданию (по группам).					
21–27 мар.	8	Сдача 1-го задания.					
28 мар. -3 апр.	9	Основы молекулярно-кинетиче- ской теории. Распределение Макс- велла.	⁰ 19 ⁰ 20 7.52	7.18 7.14 7.20 7.27	7.70 7.16 7.53 7.67		
4–10 апр.	10	Основы молекулярно-кинетической теории. Распределение Больц-мана.	⁰ 21 8.1 ⁰ 22	7.40 8.11 8.55 8.14	7.81 T7 8.74 8.25		

11–17 апр.	11	Элементы статистической физики. Теория теплоёмкостей. Статистический смысл энтропии.	⁰ 23 ⁰ 24 ⁰ 25	8.58+59 8.52 T9 9.45	T8 8.70 8.61 9.46
18–24 апр.	12	Флуктуации	°26 °27 °28	9.6 9.8 9.28 9.11	9.40 9.31 9.35
25 апр.– –1 мая.	13	Столкновения, длина свободного пробега. Явления переноса.	10.2 ⁰ 29 ⁰ 30 ⁰ 31	10.15 10.36 10.134 10.106	10.8 10.16 10.143 10.25 T10
2–8 Мая	14	Броуновское движение. Течение газов. Явления в разреженных газах.	⁰ 32 ⁰ 33 ⁰ 34 ⁰ 35	T11 10.92 10.68+69 10.120	T12 10.30 10.54 10.77
10–22 мая	15/16	Сдача 2-го задания.	•		

Примечание

Номера задач указаны по "Сборнику задач по общему курсу физики. Ч. 1. Механика, термодинамика и молекулярная физика" / под ред. В.А. Овчинкина (4-е изд., испр. и доп.). — Москва: Физматкнига, 2016.

Все задачи обязательны для сдачи задания, их решения должны быть представлены преподавателю на проверку. В каждой теме семинара задачи разбиты на 3 группы:

- задачи, которые студент должен решать в течение недели для подготовки к семинару;
- задачи, рекомендованные для разбора на семинаре (преподаватель может разбирать на семинарах и другие равноценные задачи по своему выбору);
- задачи для самостоятельного решения.

Задачи 0 группы

1. В комнате объёмом V в течение некоторого времени был включён нагреватель. В результате температура воздуха увеличилась от T_1 до T_2 . Давление в комнате не изменилось. Найти изменение внутренней ΔU энергии воздуха, содержащегося в комнате.

2. Найти работу, которую совершает моль воздуха, расширяясь от объёма V_0 до $V_1=2V_0$ в изотермическом процессе при комнатной температуре.

Ответ: 1,7 кДж.

3. Температура воздуха равна $T=273~{\rm K}.$ Найти изменение скорости звука при изменении температуры на $\Delta T=1~{\rm K}.$

Otbet:
$$\Delta c_s \approx \frac{1}{2} \frac{\Delta T}{T} c_s = 0.61 \text{ m/c}.$$

4. Вычислить КПД цикла, состоящего из изобарного сжатия, изохорного нагревания и адиабатического расширения, если отношение максимального и минимального объёмов равно 2. Рабочее тело – двухатомный идеальный газ.

Ответ: 0,15.

5. Тепловая машина с неизвестным веществом в качестве рабочего тела совершает обратимый термодинамический цикл, представленный на рисунке в координатах TS. $T_2=\frac{3}{2}T_1,\ T_3=\frac{3}{4}T_1,\ T_4=\frac{1}{20}T_1.$ Найти КПД цикла.

Ответ: 0,68.

6. Идеальная тепловая машина, работающая по обратному циклу (тепловой насос), отбирает от первого резервуара 65 Дж теплоты и передаёт количество теплоты 80 Дж второму резервуару при $T=320~{\rm K}$. Определить температуру первого резервуара.

Ответ: 260 К.

7. Два теплоизолированных сосуда равного объёма соединены трубкой с краном. В одном сосуде содержится 10 г водорода H_2 , второй откачан до высокого вакуума. Кран открывают и газ расширяется на весь объём. Считая газ идеальным, найти изменение его энтропии к моменту установления равновесия.

Ответ: $\Delta S = 28.8 \text{ Дж/К}$.

8. Кусок льда массой 90 г, имеющий температур 0 °С, положили в пустую алюминиевую кастрюлю массой 330 г, нагретой до 100 °С. Пренебрегая теплообменом с окружающей средой, найти изменение энтропии системы к моменту установления равновесия. Теплота плавления льда 330 Дж/г, теплоёмкость алюминия 0,9 Дж/(г ⋅ К).

Ответ: $\Delta S = 16,1 \text{ Дж/К}.$

9. Найти изменение свободной энергии ΔF и термодинамического потенциала Гиббса ΔG для 1 кг водяного пара при изотермическом ($T=298~{\rm K}$) увеличении давления от 1,0 до 2,0 мбар. Водяной пар считать идеальным газом.

Ответ: $\Delta G = \Delta F = 95.4$ кДж.

10. Уравнение состояния резиновой полосы имеет вид $f=aT\left[\frac{l}{l_0}-\left(\frac{l_0}{l}\right)^2\right]$, где f— натяжение, $a=1,3\cdot 10^{-2}$ Н/К, l — длина полосы, длина недеформированной полосы $l_0=1$ м. Найти изменение свободной и внутренней энергии резины при её изотермическом растяжении до $l_1=2$ м. Температура T=300 К.

Ответ: $\Delta F = 3.9 \, \text{Дж}, \, \Delta U = 0.$

11. Определить работу, которую необходимо совершить, чтобы разделить сферическую каплю масла массой m=1 г на капельки диаметром $d=2\cdot 10^{-4}$ см, если процесс дробления изотермический. Поверхностное натяжение масла $\sigma=26$ дин/см, плотность масла $\rho=0.9$ г/см³.

Ответ: 8,7·10⁵ эрг.

12. На какую высоту поднимается вода между двумя плоскими параллельными пластинами, расстояние между которыми h=0.1 мм, если краевой угол смачивания $\theta=60^\circ$. Поверхностное натяжение воды $\sigma=73\cdot 10^{-3}$ H/м.

Ответ: 7,5 см.

13. Молярная теплота парообразования воды в точке кипения при t = 100 °C равна $\Lambda = 40.7$ кДж/моль. Считая водяной пар идеальным газом, найти разность молярных внутренних энергий жидкой воды и водяного пара при данной температуре.

Ответ: $u_{\pi} - u_{\pi} = 37.6 \text{ кДж/моль.}$

14. Определить температуру кипения воды на вершине Эвереста, где атмосферное давление составляет 250 мм рт. ст. Теплоту парообразования воды считать не зависящей от температуры и равной $\Lambda = 2,28$ кДж/г.

Ответ: 71 °С.

15. Оценить относительный перепад давления $\Delta P/P$ паров воды на высоте подъёма воды в полностью смачиваемом капилляре диаметром d=1 мкм. Поверхностное натяжение $\sigma=73\cdot 10^{-3}$ H/м, температура t=20 °C.

Otbet:
$$\Delta P/P \approx 2 \cdot 10^{-3}$$
.

16. Во сколько раз давление газа Ван-дер-Ваальса больше его критического давления, если известно, что его объём в 5 раз, а температура в 5,7 раза больше критических значений этих величин?

Ответ:
$$\pi = 3,14$$
.

17. Найти изменение энтропии идеального газа, подвергнутого дросселированию через пористую перегородку, если начальное давление равно $P_1 = 4$ атм, конечное $P_2 = 1$ атм.

18. Оценить максимально возможную скорость истечения воздуха при нормальных условиях через отверстие, выходящее в вакуум.

19. Скорости частиц с равной вероятностью принимают все значения от 0 до v_0 . Определить среднюю и среднеквадратичную скорости частиц, а также абсолютную и относительную среднеквадратичные флуктуации скорости.

Ответ:
$$0.5v_0$$
; $v_0/\sqrt{3}$; $v_0/2\sqrt{3}$; $1/\sqrt{3}$.

20. Найти наиболее вероятную, среднюю и среднеквадратичную скорости молекул азота при T = 300 К. Сравнить полученные значения со скоростью звука.

Otbet:
$$v_{\text{H.B.}} = 421 \text{ M/c}, v_{\text{CD}} = 476 \text{ M/c}, v_{\text{KB}} = 517 \text{ M/c}; c_{\text{3B}} = 353 \text{ M/c}.$$

- **21.** Определить, на какой высоте в изотермической атмосфере её плотность уменьшится в 5 раз, если на высоте 5,5 км она уменьшается в 2 раза. Ответ: 12,8 км.
- **22.** Молекула может находиться на двух энергетических уровнях: основном и возбуждённом. Разность энергий между ними составляет $\Delta E = 6.0 \cdot 10^{-21}$ Дж. Какова доля молекул, находящихся в возбуждённом состоянии при $t = 250\,^{\circ}\text{C}$?

23. Определить температуру, при которой средняя поступательная энергия молекулы H_2 будет равна энергии возбуждения её первого вращательного уровня. Расстояние между атомами равно $d=0.74\cdot 10^{-8}$ см.

Ответ: 116 К.

24. Собственная частота колебаний атомов в молекуле Cl_2 равна 10^{14} с⁻¹. Оценить характеристическую температуру, выше которой колебательную теплоёмкость молекулы можно рассчитывать по классической теории. Какова будет при этом молярная теплоёмкость газа?

Ответ: 760 К, 7*R*/2.

25. Два твёрдых тела с температурами 299 К и 300 К приведены в соприкосновение. Оценить, во сколько раз более вероятна передача порции энергии 10^{-11} эрг от тела с большей температурой к телу с меньшей температурой, чем в обратном направлении. Теплоёмкости тел достаточно велики, так что изменением их температуры можно пренебречь.

Ответ: 5.

26. Небольшой груз массой 1 г подвешен на лёгкой нити длиной 1 м. Оценить среднеквадратичное отклонение груза от положения равновесия из-за тепловых флуктуаций при комнатной температуре.

Ответ:
$$\sqrt{\langle \Delta r^2 \rangle} \approx 0.9$$
 нм.

27. Оценить среднеквадратичную относительную флуктуацию числа молекул воздуха в объёме $1\,$ мкм $^3\,$ при нормальных условиях.

Ответ: 0,02%.

28. Кантилевер (чувствительный элемент) атомносилового микроскопа представляет собой кремниевую пластинку с острой иглой на конце (см. рис.). Вертикальное смещение конца иглы пропорцио-

нально приложенной силе с коэффициентом $\kappa=1\,\mathrm{H/m}$ («силовая константа» кантилевера). Найдите среднеквадратичную флуктуацию положения иглы при комнатной температуре.

Ответ:
$$0,64 \cdot 10^{-10}$$
 м.

29. Вязкость азота при комнатной температуре и атмосферном давлении составляет $\eta=18\cdot 10^{-6}$ Па·с. Оценить коэффициенты теплопроводности и самодиффузии азота, а также диаметр молекулы азота.

Otbet:
$$\kappa \sim 10^{-2} \text{ Bt/m} \cdot \text{K}$$
, $D \sim 0.15 \text{ cm}^2/\text{c}$, $d \sim 4 \cdot 10^{-10} \text{ m}$.

30. Оценить количество тепла в расчёте на 1 м², теряемое комнатой в единицу времени через однокамерный стеклопакет. Расстояние между стёклами h=23 мм. Разность температур между комнатой и улицей составляет $\Delta T=30$ °C. Теплопроводность воздуха $\kappa=2,3\cdot 10^{-2}\frac{\rm BT}{\rm M\cdot K}$ считать не зависящей от температуры.

Otbet: $q = 30 \text{ Bt/m}^2$.

31. (2019) В процессе дыхания организм человека извлекает кислород из воздуха и использует его для получения энергии при окислении органических молекул. Считая, что на один моль O_2 выделяется энергия E=470 кДж/моль, а мощность, вырабатываемая человеком при активной физической нагрузке,

$$\frac{\stackrel{\circ}{\wedge} \stackrel{\alpha_0}{\wedge} \stackrel{\circ}{\wedge} \stackrel{\circ}{\wedge}$$

составляет W=1 кВт, оценить рабочую площадь поверхности его легких S. Мольную долю кислорода в воздухе внутри лёгких принять постоянной и равной $\alpha_0=0.14$, а концентрацию O_2 в крови — $c_1=2$ моль/м 3 . Толщина барьера между воздухом и кровью h=1 мкм, коэффициент диффузии в нём $D=10^{-7}$ см 2 /с.

<u>Ответ:</u> 60 м²

32. Оценить коэффициент диффузии капель тумана радиусом $R\sim 10$ мкм в воздухе при нормальных условиях. Вязкость воздуха $\eta\sim 2\cdot 10^{-5}~{\rm Ha\cdot c.}$

Ответ: 10^{-8} см 2 /с.

33. Оценить, за какое время молекула HCN смещается в воздухе при комнатной температуре от исходного положения на расстояние порядка 10 см. Длину свободного пробега принять равной $\lambda \sim 10^{-5}$ см.

Ответ: 10² с.

34. Два сосуда с идеальным газом соединены трубкой, диаметр которой заметно меньше длины свободного пробега в обоих сосудах. Температура в сосудах поддерживается постоянной и равной соответственно T_1 и $T_2 = 2T_1$. Найти отношение давлений P_2/P_1 .

Ответ: $\sqrt{2}$.

35. Оценить коэффициент диффузии сильно разреженного воздуха по длинной трубке диаметром 1 см при комнатной температуре. Считать, что разрежение таково, что длина пробега молекул ограничивается диаметром трубки (высокий вакуум).

<u>Ответ:</u> $\sim 1,6 \text{ м}^2/\text{c}.$

Текстовые задачи

T-1. (2022) С одним молем идеального газа проводится процесс $1 \rightarrow 2 \rightarrow 3$, изображённый на рисунке. Найдите изменение теплоёмкости газа при переходе через точку 2.

Otbet:
$$\Delta C \approx -3R$$
.

Т-2. В двух одинаковых изолированных сосудах находится по молю воздуха при $T_0=300~\rm K$. Сосуды используются в качестве тепловых резервуаров для тепловой машины, работающей по обратному циклу. Найти минимальную работу, которую должна затратить машина, чтобы охладить газ в одном из сосудов до $T_1=200~\rm K$. Какова будет конечная температура газа во втором сосуде? Теплоёмкостью сосудов и зависимостью теплоёмкости воздуха от температуры пренебречь.

<u>Ответ:</u> $A \approx 1$ кДж, $T_2 = 450$ К.

Т-3. (2018) Горизонтально расположенный теплоизолированный цилиндрический сосуд разделён на две части поршнем, прикреплённым пружиной к правой стенке сосуда (см. рис.). Слева от поршня

находится 1 моль азота при комнатной температуре, справа — вакуум. Вначале пружина не деформирована, а поршень удерживается защёлкой. Защёлку убирают, и когда система приходит в равновесие, давление газа оказывается в n=3 раза меньше исходного. Считая газ идеальным, найдите изменение его энтропии в этом процессе.

<u>Ответ:</u> 0,75*R*.

Т-4. (2019) В одной из теоретических моделей теплоёмкость C_V кристалла при низких температурах равна $C_V = aVT^3$, где V — объём кристалла, a — постоянная величина. Изотермический модуль всестороннего сжатия кристалла равен K. Найдите разность теплоёмкостей $C_P - C_V$ кристалла как функцию его объёма и температуры.

Ответ: $a^2VT^7/9K$.

Т-5. (2019) Закрытый сосуд с жёсткими стенками полностью заполнен водой при нормальных условиях. После помещения сосуда в морозильную камеру и установления равновесия 10% воды превратилось в лёд. Найти температуру t в камере. Теплота плавления льда $q=330~\rm{Дж/r}$, начальная плотность воды $\rho_{\rm B}=1.0~\rm{r/cm^3}$, сжимаемость воды β В = 4,8 ·

 10^{-5} атм $^{-1}$, плотность образовавшегося льда $\rho_{\pi}=0.92$ г/см 3 . Деформацией стенок пренебречь.

Ответ: −1.5 °С

Т-6. (ГКЭ-2019) Эфир в запаянной ампуле охлаждается из критического состояния. При некоторой температуре Т 50% объёма ампулы заполняет жидкий эфир, а 50% – его пары. Плотность жидкости в этом состоянии $\rho_{\rm ж}(T)=1,9\rho_{\rm kp}$, где $\rho_{\rm kp}$ – критическая плотность эфира. Определить температуру T, если критическая температура эфира $T_{\rm kn} = 467 \; {\rm K.}$ Считать, что и в жидком и в газообразном состояниях эфир описывается моделью Вандер-Ваальса.

Ответ: 373 К.

Т-7. (2021) Сколько молей идеального газа содержится в бесконечно высокой конусообразной воронке, стоящей вертикально в однородном поле силы тяжести, если давление при её вершине равно P_0 ? Молярная масса газа равна μ , температура T, угол раствора конуса 2α , ускорение свободного падения д. Найдите наиболее вероятную высоту молекулы в сосуде.

Ответ: $2\pi P_0 t g^2 \alpha (RT)^2 / (\mu g)^3$, $2RT/\mu g$.

Т-8. (2022) Характеристическая вращательная температура молекулы окиси азота NO равна $\theta_{\rm BP} \approx 3$ K, колебательная $\theta_{\rm кол} \approx 2.6 \cdot 10^3$ K. Кроме того, молекула NO имеет низколежащее возбуждённое состояние, энергия которого на $\varepsilon = 0.015$ эВ больше энергии основного состояния. Найдите количество теплоты, которое нужно сообщить молю газообразного NO при изохорном увеличении его температуры от $T_1 = 50 \text{ K}$ до $T_2 = 300 \text{ K}$.

<u>Ответ:</u> Q = 5,7 кДж/моль.

Т-9. (2017) Ионы солей иттербия имеют спин s = 7/2. Во внешнем магнитном поле В энергия иона зависит от ориентации спина и может принизначения $E_m = m\mu B$, где μ — известная m = -s, -s + 1, ..., s - 1, s. Найти изменение энтропии ΔS и количество теплоты Q, поглощаемое 1 молем соли при её квазистатическом изотермическом размагничивании от очень большого ($B_0 \gg kT/\mu$) до нулевого поля $(B_1 = 0)$ при температуре T = 1 К. Взаимодействием ионов между собой пренебречь.

Ответ: $\Delta S = 17,3$ Дж/К, Q = 17,3 Дж.

T-10. (2022) Стальной шар, имеющий температуру $t_2 = 250$ °C, окружён теплоизолирующей оболочкой с наружным радиусом $R_1 = 0.7$ м и внутренним $R_2 = 0.5$ м. Коэффициент теплопроводности оболочки $\kappa = 0.2 \frac{\text{Вт}}{\text{м·к}}$. Температура окружающей среды $t_1 = 0$ °C. Определите

производство энтропии в системе (скорость изменения dS/dt) из-за теплопередачи в оболочке. Распределение температур в оболочке считать квазистационарным.

Ответ: 1,9 Вт/К

T-11. «Пьяный матрос» совершает случайные блуждания по площади, смещаясь каждые $\tau=1$ с на расстояние $\lambda=0.5$ м в случайном направлении. Найти среднеквадратичное смещение матроса от исходного положения $\sqrt{\Delta r^2}$ за t=1 час и определить коэффициент диффузии D толпы пьяных матросов, не взаимодействующих между собой.

Ответ:
$$\sqrt{\Delta r^2} = 7,5$$
 м, $D \approx 225$ м²/ч.

Т-12. (2018) Вертикально расположенная пробирка высотой h=5 см заполнена водой, в которой диспергированы в небольшом количестве сферические наночастицы плотностью $\rho=4$ г/см³ каждая. Система исходно находится в равновесии при температуре $T_0=300$ K, а отношение максимальной и минимальной концентраций наночастиц равно $n_{\rm max}/n_{\rm min}=1,1$. На дне сосуда размещают адсорбент, поглощающий все попадающие на него наночастицы. Оценить время, требуемое для очистки воды от примеси. Вязкость воды $\eta=10^{-3}$ Па · с.

<u>Ответ:</u> ~ 9 мес.