I. Linear Algebra

I.9. Fundamental Theorem of Linear Algebra

Lecture based on

https://github.com/gwthomas/math4ml (Garrett Thomas, 2018)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

(modified from https://en.wikipedia.org/wiki/Singular_value_decomposition)

Theorem (Fundamental Theorem of Linear Algebra)

If $\mathbf{A} \in \mathbb{R}^{m \times n}$, then

3

- $\mathbf{0} \text{ null}(\mathbf{A}) = \text{range}(\mathbf{A}^{\top})^{\perp}$
- \mathbf{m} null(\mathbf{A}) \oplus range(\mathbf{A}^{\top}) = \mathbb{R}^n
- $\underbrace{\dim \operatorname{range}(\mathbf{A})}_{\operatorname{rank}(\mathbf{A})} + \dim \operatorname{null}(\mathbf{A}) = n \quad \textit{(rank-nullity)}$
- $\begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$

Subspace	Columns
$range(\mathbf{A}^{T})$	The first r columns of ${f U}$
$\mathrm{null}(\mathbf{A})$	The last $m-r$ columns of ${f U}$
$range(\mathbf{A})$	The first r columns of ${f V}$
$\mathrm{null}(\mathbf{A}^{\! op})$	The last $n-r$ columns of ${f V}$
where $r = \operatorname{rank}(\mathbf{A})$	

Big Picture 04.12.2020

 $\mathrm{null}(\mathbf{A}) = \mathrm{range}(\mathbf{A}^\top)^\perp$