MATH1019 MID-SEMESTER TEST

2018 Semester 1

Name:		
Student number:		
Please circle your worksho	op tutor and correspo	ending workshop time:
Samira Albrbar:	Monday 2–4pm	Thursday 4–6pm
Muhammad Kamran:	Monday 4–6pm	Wednesday 8–10am
Shuang Li:	Wednesday 10am-	-12pm Wednesday 2-4pm
Grant Keady:	Thursday 8–10am	Friday 2–4pm
Lydia Jiang:	Thursday 10am–12pm	
Mehdi Moghadam:	Friday 10am–12pr	m
Mikhail Dokuchaev:	Wednesday 4–6pm	n Friday 8–10am
	Friday 12–2pm	

1. Consider the following system of equations:

$$x - 3y + 2z = 1$$

$$2x - 5y + 6z = 5$$

$$-x + 5y + 2z = 5$$

(a) Write the system as an augmented matrix, and use the Gauss-Jordan method to manipulate the augmented matrix into reduced row echelon form.

[6 marks]

(b) State the number of solutions to the system. Find all solutions, or justify why there are none.

[4 marks]

2. If k is a real constant, then we can define a system by

(a) Write the system as an augmented matrix, and use Gaussian elimination to reduce the matrix to row-echelon form.

[6 marks]

- (b) Briefly justify for which value(s) of k, if any, the system has:
 - (i) a unique solution
 - (ii) infinitely many solutions
 - (iii) no solution

You do **not** need to solve the system in any of these cases.

[4 marks]

3. Consider the system of equations

$$x - 2y - 4z = 1$$
$$2x - 3y - 6z = 2$$
$$-3x + 6y + 15z = 3$$

(a) Express the system in the form $A\mathbf{x} = \mathbf{b}$, where A is the matrix of coefficients, \mathbf{x} is the column vector of variables, and \mathbf{b} is the column vector of constants.

[1 mark]

(b) Use the inverse of A to solve the system of equations, or justify why there are no solutions.

[9 marks]

4. Calculate the determinant of each of the following matrices, and justify if the matrix is invertible or singular. You do **not** need to find the inverse.

(a)
$$A = \begin{bmatrix} 1 & -3 & 7 \\ -3 & 9 & -21 \\ 2 & -6 & 14 \end{bmatrix}$$

[5 marks]

(b)
$$B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

[3 marks]

5. Use Cramer's rule to solve the following system:

$$3x_1 - 2x_2 = 6$$

$$-5x_1 + 4x_2 = 8$$

[7 marks]

(A total of 7 marks for Question 5)