

Kirill
Shcherbakov
MSc 1-year Space
Engineering
Systems
student

for trucks which need to be serviced

- 1. Unnecessary checks done by a mechanic \$10
- 2. Missing a faulty truck, which may cause a breakdown in the future \$500

Lifecycle of trucks without ML model

A truck is working

Sensors reading

A truck is working

Breaking Phase Breaking of a truck

Lifecycle of trucks with ML model

APS Failure prediction by our ML model

A truck is working

Sensors reading

Service maintenance A truck is working

A truck is working

Dataset preparation

Barchart of not missed values in each features

We decided to drop features which have missing values of more than 60%

Using median imputation

Source:

https://www.researchgate.net/publication/309195602 Prediction of Failures in the Air Pressure System of Scania Trucks Using a Random Forest and Feature Engineering

Exploratory analysis of the data

Distribution of class labels

Test dataset

Using downsampling and upsampling to balance our dataset

Code of downsampling and upsampling

Exploratory analysis of the data

Our hypothesis 1 is the following: features with few unique values and little correlation with the target variable do not contain useful information and do not help classification

Exploratory analysis of the data

Plot of correlation matrix

Pairplot with 4 most correlated features

Our hypothesis 2 is the following: the features in the dataset are quite dependent on each other and their simultaneous presence is redundant.

Skoltech

Metrics

The F β score, which uses the parameter β to control the balance of recall and precision and is defined as

$$F_{\beta} = \frac{(1 + \beta^2)(Precision \times Recall)}{(\beta^2 \times Precision + Recall)}$$

As β decreases, precision is given greater weight. With β = 1, we have the commonly used F1 score, which balances recall and precision equally and reduces to the simpler equation 2TP/(2TP + FP + FN).

Measure of quality

Cost associated with our model = 500 * FN + 10 * FP

Comparison ML models performance

Logistic Regression performance

XGBoost performance

Best model performance is Random Forest

Building Random Forest to validate hypothesis 1

Random Forest with dropping less useful features

	precision	recall	f1-score	support	
-1	1.00	0.42	0.59	15625	
1	0.04	0.98	0.08	375	
accuracy			0.44	16000	
macro avg	0.52	0.70	0.33	16000	
weighted avg	0.98	0.44	0.58	16000	

```
In [36]: from sklearn.metrics import confusion_matrix,f1_score
    con_mat =confusion_matrix (y_test, y_pred_rf)
    print("-"*117)
    print("Confusion Matrix: ', '\n',con_mat)
    print("Type 1 error (False Positive) = ", con_mat[0][1])
    print("Type 2 error (False Negative) = ", con_mat[1][0])
    print("-"*117)
    print("Total cost = ", con_mat[0][1] * 10 + con_mat[1][0] * 500)
    print("-"*117)

Confusion Matrix:
    [[6601 9024]
    [ 8 367]]

Type 1 error (False Positive) = 9024
    Type 2 error (False Negative) = 8
Total cost = 94240
```


Random Forest without dropping less useful features

Results from	Grid Search	RandomFo	rest best m	model		
	precision	recall	f1-score	support		
0	1.00	0.98	0.99	15625		
U						
1	0.52	0.94	0.67	375		
accuracy			0.98	16000		
macro avg	0.76	0.96	0.83	16000		
weighted avg	0.99	0.98	0.98	16000		

```
Results from Grid Search RandomForest best model

Confusion Matrix:
[[15296 329]
[ 21 354]]

Type 1 error (False Positive) = 329

Type 2 error (False Negative) = 21

Total cost = 13790
```

Building Random Forest to validate hypothesis 2

Random Forest with PCA performance

Random Forest without PCA performance

Results from Grid Search RandomForest best model						
	precision	recall	f1-score	support		
0 1	1.00 0.52	0.98 0.94	0.99 0.67	15625 375		
accuracy macro avg weighted avg	0.76 0.99	0.96 0.98	0.98 0.83 0.98	16000 16000 16000		

```
Results from Grid Search RandomForest best model

Confusion Matrix:
[[15296 329]
[ 21 354]]

Type 1 error (False Positive) = 329
Type 2 error (False Negative) = 21

Total cost = 13790
```

Building Random Forest to validate hypothesis 2 Optimal threshold

Random Forest with PCA with optimal threshold

```
# Finding the best threshold
scores = proverka.predict proba(data test pca)[:,1]
fpr, tpr, thresholds = roc_curve(y_test, scores)
# Algorithm to find the best threshold
min cost = np.inf
best threshold = 0.5
costs = []
for threshold in thresholds:
  y pred threshold = scores > threshold
   tn, fp, fn, tp = confusion matrix(y test, y pred threshold).ravel()
   cost = 10*fp + 500*fn
   costs.append(cost)
   if cost < min cost:
     min cost = cost
      best threshold = threshold
print("Best threshold: {:.4f}".format(best threshold))
print("========")
print("Min cost: {:.2f}".format(min cost))
y pred test final pr = proverka.predict proba(data test pca)[:,1] > best threshold
tn, fp, fn, tp = confusion matrix(y test, y pred test final pr).ravel()
print("Total cost = ",10*fp + 500*fn)
print("=============")
```

Random Forest without PCA with optimal threshold

```
# Finding the best threshold
scores = clf rf best.predict proba(test impMedian)[:,1]
fpr, tpr, thresholds = roc curve(y test, scores)
# Algorithm to find the best threshold
min cost = np.inf
best threshold = 0.5
costs = []
for threshold in thresholds:
   y pred threshold = scores > threshold
   tn, fp, fn, tp = confusion matrix(y test, y pred threshold).ravel()
   cost = 10*fp + 500*fn
   costs.append(cost)
   if cost < min cost:
      min cost = cost
      best threshold = threshold
print("======="")
print("Best threshold: {:.4f}".format(best threshold))
print("======"")
print("Min cost: {:.2f}".format(min cost))
print("========"")
y pred test final = clf rf best.predict proba(test impMedian)[:,1] > best threshold
tn, fp, fn, tp = confusion matrix(y test, y pred test final).ravel()
print("Total cost = ".10*fp + 500*fn)
print("========"")
```

Best threshold: 0.2244

Min cost: 9050.00

Total cost = 9050

Obtained results

Interesting findings: finding optimal threshold make great result, many highly correlated with the target features not useful together.

Remarks on ML experiments: non-linear models take large amount of time in comparison with linear, which can be used for changing the performance after manipulations with dataset

The applicability of the model in a real-life scenario: we have a working classifier which is able to tell a fleet operator whether or not a truck needs to be serviced, based solely on sensor readings from the APS, load program to computer in operator center, when the operator receives data from the truck sensor, the program based on our model analyzes them and in the case of unstable operation of this system and the risk of breakage associated with it, makes it possible to take the necessary measures and prevent breakdowns.

Overall conclusions

Main goal reached, obtained performance is good enough.

The cost reduction estimation: as you can see the difference between cost for working without model and with is huge. It means that problem solved and roughly the half of money saved.

Costs without our model:

≈ \$347500

for trucks which need to be serviced

- 1. Unnecessary checks done by a mechanic \$10
- 2. Missing a faulty truck, which may cause a breakdown in the future \$500

Costs with our model:

 \approx \$196800

for trucks which need to be serviced

Profit from implementation of our model:

Thank you for your attention!

