Assignmenta Piroject Examel Help

Add WeChat powcoder

https://powcoder.com

Systematic vs Idiosyncratic Risk

$$s_{ABC} = s_p + s_i$$

- $s_p = \beta s_M$: systematic risk non-diversifiable
- s_i : idiosyncratic risk diversifiable
- $\beta \equiv x$: share invested in the market portfolio to replicate e

Capital Asset Pricing Model

Assignment of the Example Help determine an appropriate expected return of any asset

- only systematic risk is valued
- It places any desired expected set the turn of using the market portfolio fraction β_j) and the risk-free asset (fraction $1-\beta_j$)

Add & We Chat powcoder

What if $e_j < r_f$

Negative β

Still the same

$$e_j = \beta_j e_M + (1 - \beta_j) r_f = r_f + \beta_j (e_M - r_f)$$

Alternative interpretation of β

To infer β_j , regress the actual (historical) excess asset return, $R_j - r_f$, on excess market return $R_M - r_f$:

Assignment Project Exam Help

From econometrics, we remember that regression coefficient

https://pow/conder.com

Therefore, β_j indicates how the specific asset co-moves with the market and we chat powcoder

- $\beta > 1$ asset is more volatile than the market
- $0 < \beta < 1$ asset is less volatile than the market
- $\beta < 0$ asset moves in opposite direction rare and useful

What about α_i ? It should be 0 in theory. "Chasing" α .

Security market line

With different β value, the required return for any asset is $e = r_f + \beta(e_M - r_f)$

Assignment Project Exam Help

Example: security market line Country stock market indices averaged over 1988-2017

Example: pricing with CAPM

Assignment Project Exam Help

 $P_{j} = \frac{D_{j}}{e_{j} - g_{j}},$ **https://powcoder.com** $D_{j} \text{ current dividend } e_{j} \text{ expected rate of return } g_{j} \text{ expected rate of dividend growth}$

Can Add, We Chatherows coder

The standard deviation

Assorgamment open the expected return, what Assorgamment open to be a constant of the expected return, what has a constant open to be a constant of the expected return, what has a constant open to be a constant of the expected return, what has a constant of the expected return, which is a constant of the expected return.

The standard deviation of R_j : $s_j = \beta_j s_m + s_i$

- reflects an idiosyncratic risk in addition to systematic risk
- reality Smarke Protest Can Can Can Can Sharpe ratio
- any other securities are stochastically dominated by M and rArchitective Chat powcoder
- this does not necessarily mean other securities will cease from the market, as they will be traded to construct M.

Arbitrage Pricing Theory (APT)

CAPM provides good benchmark, but reality is more complicated: market risk is just one factor, but there are others

Assignment Project Exam Help

- R_i is the expected return of the asset (or portfolio) j
- ε_i idiosyncratic, unexplained part of return https://powcoder.com
- r_f is the risk-free rate
- f_k is the factor risk premium
- BA is the number of factors.

 BA is the number of factors.

Assumptions (similar to standard OLS):

- exogeneity: ε_i and factors f_k are independent
- ε_i for different assets are independent

This is not pure arbitrage, but statistical arbitrage

Example: applying the model to sector and region

Assignment Project Exam Help

- f_m is the market risk premium (e_m-r_f) ; hittle Sk prepin W Crantal setters ASX
- f_r is the risk premium for a particular region, e.g., MSCI A de lic We Chat powcoder

 B's are sensitivities to the factors

Example: Fama and French Model – 3 Factor Model

$$R_{j} = r_{f} + \beta_{j,m} f_{m} + \beta_{j,SMB} f_{SMB} + \beta_{j,HML} f_{HML} + \varepsilon_{j},$$

Assignment Project Exam Help

- f_{SMB} is the size factor attributable to the company's market capitalisation, Small minus Big
- httips valve from Wwn of the ference of typen High minus low book-to-market stocks

Extensions:

- Add WeChat powcoder
- operating profitability
- firm investment factor (agressive vs conservative)
- time-varying factors dynamic factor models

Smart Betas: Bridge between Active and Passive Portfolios

Assignment Project Exam Help

https://poweoder.com

Add WeChat powcoder

Benefits of smart beta products

- Customisable products
- Lower transaction costs relatively to active portfolio

Wrap up

Assignment Project Exam Help

- Optimal risky is independent from individual preferences –
- the same market portfolio for all

 Intto Sciving Olympotrate COM
- CAPM is based on replicating portfolio
- takes into account systematic risk
 Factor nodel Vifer alu il Zexten in Wasing CAPM