Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009

# Modeling collective interactions in social systems

Frank Schweitzer

fschweitzer@ethz.ch

ETH

Chair of Systems Design http://www.sg.ethz.ch/

Methodological overview

**Chair of Systems Design** 

Collective interactions in social systems Frank Schweitzer

• research on *socio-economic systems* (firms, organizations, ...)

• major focus: collective effects: emergence of features

basis: theory of complex systems



▶ How are the properties of the elements and their interactions ("microscopic" level) related to the dynamics and the properties of the whole system ("macroscopic" level)?

### **Complex Networks**

☐ Methodological overview

- agents  $\Rightarrow$  nodes, interactions  $\Rightarrow$  links
- the physics approach: add nodes, draw lines ...

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009



- the real challenges in socio-economic systems:
  - heterogeneous agents: firms, banks, individuals, ...
  - weighted, directed links: ownership, credit relations, ...
  - strategic link formation/deletion
  - feedback between agent dynamics and link dynamics

ETH

Chair of Systems Design http://www.sg.ethz.ch/

Collective interactions in social systems Frank Schweitzer Cost and benefits of social interaction

Workshop · Munich, Germany

#### Costs and benefits

- social system: large number of interacting agents
- agent i: utility from social interaction with agents j:

$$\text{utility}_i(t) = \sum_i \text{benefits}_{ij}(t) - \text{costs}_{ij}(t)$$

- ▶ aim: (i) increase benefits, (ii) reduce costs, (iii) do both
- benefits:
  - reach a private goal (purchase the best product)
  - reach a common goal (optimal use of resources)
  - exchange of knowledge (R&D network)
- costs:
- exploration costs (search for partners)
- transaction costs (costs for interaction)
- friction from differences in 'behavior', 'opinion', ...
- costs for maintenance of connections

ETH

Chair of Systems Design http://www.sg.ethz.ch/

# Convergence toward shared behavior

agent i: social behavior  $x_i(t) \in [0,...,1]$ 

- **assumption**: utility increases if everyone shares same behavior
  - ▶ benefit:  $b = \text{const...} \text{ costs: } \sim \Delta x$

$$u_i(t) = \sum_j b - c |x_i - x_j|$$

2 assumption: interaction ij occurs only iff  $u_{ii}(t) > u_{thr}$ 

$$|x_i - x_j| < \varepsilon = (b - u_{\text{thr}})/c$$

- ightharpoonup possibility of interaction depends on 'open-mindedness'  $\varepsilon$
- bounded confidence model (Deffuant et al., 2000)
- assumption: interaction leads to more similar behavior

$$x_i(t+1) = x_i(t) + \mu [x_j(t) - x_i(t)]$$
  
 
$$x_i(t+1) = x_i(t) + \mu [x_i(t) - x_i(t)]$$

 $\mu = 0.5$ : both agents adopt the 'mean' behavior

ETH

Chair of Systems Design

Workshop · Munich, Germany

Emergence of common behavior

Influence of emerging in-groups

Collective interactions in social systems Frank Schweitzer

### Influence of emerging in-groups

- interacting agents added to each other's in-group  $I_i$  and  $I_i$ 
  - partnership relations from past interactions
- evidence that in-groups constrain agent behaviour
  - ▶ game theory (Fehr & Fischerbacher 2004)
  - group theory (French 1956, Lehrer 1956, Wagner 1978)
  - ▶ social impact theory (Latané 1981, Latané & Nowak 1997)
- influence of *emerging in-groups* on agent's *i* behaviour  $x_i$ ?
  - effective behaviour  $x_i^{\text{eff}}$  considers mean in-group behaviour  $\bar{x}_i^l$

$$x_i^{\text{eff}} = (1 - \alpha_i)x_i + \alpha_i \bar{x}_i^I$$

- $\triangleright$  group influence  $\alpha_i$  increases with group size
- permanent influence of in-group on interaction:  $\left|\mathbf{x}_{i}^{\mathrm{eff}}-\mathbf{x}_{i}^{\mathrm{eff}}\right|<arepsilon$ 
  - ▶ search for new partners is costly → keep past partners
  - keep behavior close to past partners to allow further interaction

Influence of emerging in-groups

### Co-evolution of social network and behavior

- randomly choose agents i, j at time t
- link dynamics (considers existing in-group)
  - $ightharpoonup \Delta x^{\text{eff}}(t) < \varepsilon \Rightarrow \text{link formation (interaction)}$
  - $ightharpoonup \Delta x^{\text{eff}}(t) > \varepsilon \Rightarrow$  no link created or existing link is removed
- **2** dynamics in individual behavior (considers  $x_i(t)$ ,  $x_i(t)$ )
  - interacting agents become more similar
- adjustment of effective behavior
  - ▶ agent  $i, j: x_i \to x_i^{\text{eff}}, x_i \to x_i^{\text{eff}}$
  - in-groups of i and j:  $x_i^{\text{eff}}$ ,  $x_i^{\text{eff}}$  affected by changed  $\bar{x}^{l_i(t)}$ ,  $\bar{x}^{l_j(t)}$

Result: feedback between agents' behavior and their in-group  $structure \Rightarrow | Computer simulation$ 

ETH

Chair of Systems Design http://www.sg.ethz.ch/

Frank Schweitzer Workshop · Munich, Germany Emergence of common behavior

Results of computer simulations

### Group Influence: two nearly separated components...



t = 300



t = 350

- 50 agents,  $\varepsilon = 0.3$ 
  - green link: agents would not interact without group influence
  - ▶ red link: agents would not interact anymore

Results of computer simulations

#### ... finally united





t = 500

- ullet group influence (on average and a large range of arepsilon)
  - fosters coalescence of components
  - ▶ increases maximum component size
  - ⇒ consensus toward a common behavior

Eigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Chair of Systems Design http://www.sg.ethz.ch/

er Workshop · Munich, Germany 30 November 2009

009 10

Collective interactions in social systems

Emergence of common behavior

Costs and behavioral consensus

Influence of interaction costs on behavioral consensus?

large costs  $\Leftrightarrow$  small 'open-mindedness'  $\varepsilon = (b - u^{\text{thr}})/c$ )





- large costs (0  $< \varepsilon < 1/3$ )
  - ▶ in-group influence increases probability to reach consensus
  - size of largest component increases
- small costs  $(1/3 < \varepsilon < 1/2)$ 
  - with in-group influence, consensus becomes less probable
  - but size of largest component is not affected by in-group influence

genössische Technische Hochschule Zürich

Chair of Systems Design http://www.sg.ethz.ch/ Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009 11 / 20

Trust-based social web

Extending the social brain

### Beyond the Social Brain Hypothesis

- Dunbar: social interaction is restricted by our brain capacities
- reason: human evolution based on interaction in 'small' groups
- ▶ size of the social network for permanent interaction: 150
- ▶ allows person-person emotional relations
- Social networking sites (SNS):
   allow to establish/manage more contacts
  - release the restrictions of the 'social brain'
- ⇒ 'global village': interaction networks of 1000's of people
- ⇒ large-scale and real-time self-organization of citizen

"The social brain hypothesis is about the ability to manipulate information, not simply to remember it.", R. Dunbar (1998), The social brain hypothesis. Evol. Anthrop. 6: 178-190:

EITH

Eidgenössische Technische Hochschule Züric
Swiss Federal Institute of Technology Zurich

\_\_Trust-based social web

Chair of Systems Design http://www.sg.ethz.ch/

Workshop · Munich, Germany 30 November 2009

sche Hechschulte Türlich
http://www.sg.ethz.ch/

Collective interactions in social systems Frank Schweitzer

The long tail of human interactions



- Web 2.0 allows to reach more users instantaneously
- advantage: new resources, disadvantage: new risks
  - ▶ large number of 'loose contacts': de facto *anonymity*
  - economics of attention: exaggeration to raise attention/response
  - ▶ subtle amplification mechanisms: impersonal interaction lowers the threshold for verbal abuses

ETH Eidgenössische Technische Hochschule Zürich Chair of Systems Design http://www.sg.ethz.ch/

# Idea: Design of Social Network Interaction

- use existing (real/virtual) social network structure of agents to inquire recommendations for objects
- design artificial algorithm to update weights of links between neighboring agents dependent on success



- reach distributed knowledge
- filter incoming information

ETH Eidgenössische Technische Mochschule zur Swiss Federal Institute of Technology Zuric Chair of Systems Design http://www.sg.ethz.ch

Collective interactions in social systems Frank Schweitzer

Workshop · Munich, Germany 30 November 2009

\_\_Trust-based social web

• utility increases if recommendation  $r_k$  matches preference  $v_i$ 

$$u_i(t) = b - c |v_i - r_k|$$

- $ightharpoonup r_k$ : chosen out of different recommendations obtained through different 'social paths' with specific weights  $\hat{T}_{a_1,...,a_k}$
- decision process

$$P \sim \frac{\exp(\beta \, \hat{T}_{a_i,...,a_k})}{\sum_R \exp(\beta \, \hat{T}_{a_i,...,a_l})}$$

- "trust": weights reliability of former recommendations
  - ▶ trust relationships evolve through feedback from experiences



Chair of Systems Design http://www.sg.ethz.ch/

Trust-based social web └Network density

#### Critical Network Density

- $\triangleright$  special case: only two preferences  $\{-1, +1\}$
- social network: directed random graph with density p

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009

- complete search: return responses more than once
- performance measure: aggregated utility of agents



(blue):  $N_c = 10$ , (red):  $N_c = 50 \rightarrow$  sparseness of knowledge, (black): frequency based recommendation

ETH

Chair of Systems Design http://www.sg.ethz.ch/

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009

\_\_Trust-based social web Evolving networks based on trust

### Social networks evolving based on trust

- ullet special case: only two preferences  $\{-1,+1\}$
- real networks are not fixed, but evolve
- assumption: keep trustworthy and rewire untrustworthy links

$$P_{\text{rewire}} = 1 - T_{a_i, a_i}$$
;  $P_{\text{keep}} = T_{a_i, a_i}$ 

- random rewiring mechanism:
  - $\blacktriangleright$  role of  $\beta$ : exploratory behavior of agents

### **Disconnected Clusters**

(a) 
$$t=t_{start},\ \beta=0$$
 (b)  $t=...,\ \beta=0$  (b)  $t=t_{\mathrm{end}},\ \beta=0$ 







ETH

Chair of Systems Design http://www.sg.ethz.ch

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009 Trust-based social web

Evolving networks based on trust

#### Interconnected Clusters

(a) 
$$t=t_{start},~eta=1$$
 (b)  $t=...,~eta=1$  (b)  $t=t_{
m end},~eta=1$ 







Chair of Systems Design http://www.sg.ethz.ch/

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009

#### **Conclusions**

- agents form/keep/change social network to optimize utility
  - ▶ increase benefits: reach personal/common goal
  - decrease costs: delete unused links, match preferences
- How do *costs/benefits* shape structure of social network?
  - ▶ agent-based modeling, computer simulations, analytical results
- model 1: emergence of common behavior ( $\sim$  social norm)
  - utility: common behavior reduces costs of interaction (friction)
  - ightharpoonup in-group evolves ightharpoonup modifies individual behavior ightharpoonup feeds back to interaction, social network
  - decreasing c does not increase probability of (full) consensus
  - application: local cultures in economic clusters (in-group model)

ETH

Conclusions

Chair of Systems Design http://www.sg.ethz.ch/

Collective interactions in social systems Frank Schweitzer Workshop · Munich, Germany 30 November 2009

- model 2: evolving trust relationships
  - utility: good recommendations match preferences
  - 'trust' evolves: weight of reliability of recommendations
  - exploratory behavior results in separated clusters
  - ► Application: implementation of the algorithm in electronic devices, "Web 2.0"

#### **Summary:**

- costs/benefits/preferences significantly change dynamics/structure of social network
- comparison between empirical networks and simulations allow to implicitely deduce agent's utility function

ETH

Chair of Systems Design http://www.sg.ethz.ch/