10/570011 IAP9 Rec'd PCT/PTO 01 MAR 2006

205

253

0701012W01.ST25.txt SEQUENCE LISTING

<110>	Kureha	Chemical	Industry	Company,	Limited
	KAMATA,	Toru			
	MITSUSH	[TA, Junj [.]	i		

<120> Antibodies to Nox1 polypeptide, method for the detection of cancer using Nox1 gene and method for screening substances suppressing cancer growth

NOXI gene and method for screening substances suppressing cancer grow	
<130> 0701012w01	
<160> 27	
<170> PatentIn version 3.1	
<210> 1	
<211> 1734	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (71)(1618)	
<223> Human Nox1 polypeptide of SEQ NO:2	
<400> 1 ggacctctcc agaatccgga ttgctgaatc ttccctgttg cctagaaggg ctccaaacca	60
cctcttgaca atg gga aac tgg gtg gtt aac cac tgg ttt tca gtt ttg Met Gly Asn Trp Val Val Asn His Trp Phe Ser Val Leu 1 5 10	109
ttt ctg gtt gtt tgg tta ggg ctg aat gtt ttc ctg ttt gtg gat gcc Phe Leu Val Val Trp Leu Gly Leu Asn Val Phe Leu Phe Val Asp Ala 15 20 25	157

ctt ggg tca aca ttg gcc tgt gcc cga gcg tct gct ctc tgc ttg aat Leu Gly Ser Thr Leu Ala Cys Ala Arg Ala Ser Ala Leu Cys Leu Asn 50 55 60 Page 1

ttc ctg aaa tat gag aag gcc gac aaa tac tac tac aca aga aaa atc Phe Leu Lys Tyr Glu Lys Ala Asp Lys Tyr Tyr Tyr Thr Arg Lys Ile 30 40 45

ttt Phe	aac Asn	agc Ser	acg Thr 65	ctg Leu	atc Ile	ctg Leu	ctt Leu	cct Pro 70	gtg Val	tgt Cys	cgc Arg	aat Asn	ctg Leu 75	ctg Leu	tcc Ser	301
ttc Phe	ctg Leu	agg Arg 80	ggc Gly	acc Thr	tgc Cys	tca Ser	ttt Phe 85	tgc Cys	agc Ser	cgc Arg	aca Thr	ctg Leu 90	aga Arg	aag Lys	caa Gln	349
ttg Leu	gat Asp 95	cac His	aac Asn	ctc Leu	acc Thr	ttc Phe 100	cac His	aag Lys	ctg Leu	gtg Val	gcc Ala 105	tat Tyr	atg Met	atc Ile	tgc Cys	397
cta Leu 110	cat His	aca Thr	gct Ala	att Ile	cac His 115	atc Ile	att Ile	gca Ala	cac His	ctg Leu 120	ttt Phe	aac Asn	ttt Phe	gac Asp	tgc Cys 125	445
tat Tyr	agc Ser	aga Arg	agc Ser	cga Arg 130	cag Gln	gcc Ala	aca Thr	gat Asp	ggc Gly 135	tcc Ser	ctt Leu	gcc Ala	tcc Ser	att Ile 140	ctc Leu	493
tcc Ser	agc Ser	cta Leu	tct Ser 145	cat His	gat Asp	gag Glu	aaa Lys	aag Lys 150	ggg Gly	ggt Gly	tct Ser	tgg Trp	cta Leu 155	aat Asn	ccc Pro	541
atc Ile	cag Gln	tcc Ser 160	cga Arg	aac Asn	acg Thr	aca Thr	gtg Val 165	gag Glu	tat Tyr	gtg Val	aca Thr	ttc Phe 170	acc Thr	agc Ser	att Ile	589
gct Ala	ggt Gly 175	ctc Leu	act Thr	gga Gly	gtg Val	atc Ile 180	atg Met	aca Thr	ata Ile	gcc Ala	ttg Leu 185	att Ile	ctc Leu	atg Met	gta Val	637
act Thr 190	tca Ser	gct Ala	act Thr	gag Glu	ttc Phe 195	atc Ile	cgg Arg	agg Arg	agt Ser	tat Tyr 200	ttt Phe	gaa Glu	gtc val	ttc Phe	tgg Trp 205	685
tat Tyr	act Thr	cac His	cac His	ctt Leu 210	ttt Phe	atc Ile	ttc Phe	tat Tyr	atc Ile 215	ctt Leu	ggc Gly	tta Leu	ggg Gly	att Ile 220	cac His	733
ggc Gly	att Ile	ggt Gly	gga Gly 225	att Ile	gtc Val	cgg Arg	ggt Gly	caa Gln 230	aca Thr	gag Glu	gag Glu	agc Ser	atg Met 235	aat Asn	gag Glu	781
agt Ser	cat His	cct Pro 240	cgc Arg	aag Lys	tgt Cys	Ala	gag Glu 245	tct Ser	ttt Phe	gag Glu	atg Met	tgg Trp 250	gat Asp	gat Asp	cgt Arg	829
gac Asp	tcc Ser 255	cac His	tgt Cys	agg Arg	cgc Arg	cct Pro 260	aag Lys	ttt Phe	gaa Glu	ggg Gly	cat His 265	ccc Pro	cct Pro	gag Glu	tct Ser	877
tgg Trp 270	aag Lys	tgg Trp	atc Ile	ctt Leu	gca Ala 275	ccg Pro	gtc Val	att Ile	ctt Leu	tat Tyr 280	atc Ile	tgt Cys	gaa Glu	agg Arg	atc Ile 285	925
ctc Leu	cgg Arg	ttt Phe	tac Tyr	cgc Arg 290	tcc Ser	cag Gln	cag Gln	aag Lys	gtt Val 295	gtg Val	att Ile	acc Thr	aag Lys	gtt Val 300	gtt Val	973
atg Met	cac His	cca Pro	tcc Ser 305	aaa Lys	gtt Val	ttg Leu	gaa Glu	ttg Leu 310	cag Gln	atg Met	aac Asn	aag Lys	cgt Arg 315	ggc Gly	ttc Phe	1021
agc Ser	atg Met	gaa Glu	gtg Val	ggg Gly	cag Gln	tat Tyr	atc Ile	ttt Phe	Val	aat Asn age 2	Cys	ccc Pro	tca Ser	atc Ile	tct Ser	1069

												330				
ctc Leu	ctg Leu 335	gaa Glu	tgg Trp	cat His	cct Pro	ttt Phe 340	act Thr	ttg Leu	acc Thr	tct Ser	gct Ala 345	cca Pro	gag Glu	gaa Glu	gat Asp	1117
ttc Phe 350	ttc Phe	tcc Ser	att Ile	cat His	atc Ile 355	cga Arg	gca Ala	gca Ala	ggg Gly	gac Asp 360	tgg Trp	aca Thr	gaa Glu	aat Asn	ctc Leu 365	1165
ata Ile	agg Arg	gct Ala	ttc Phe	gaa Glu 370	caa Gln	caa Gln	tat Tyr	tca Ser	cca Pro 375	att Ile	ccc Pro	agg Arg	att Ile	gaa Glu 380	gtg Val	1213
gat Asp	ggt Gly	ccc Pro	ttt Phe 385	ggc Gly	aca Thr	gcc Ala	agt Ser	gag G1u 390	gat Asp	gtt Val	ttc Phe	cag Gln	tat Tyr 395	gaa Glu	gtg val	1261
gct Ala	gtg Val	ctg Leu 400	gtt Val	gga Gly	gca Ala	gga Gly	att Ile 405	ggg Gly	gtc Val	acc Thr	ccc Pro	ttt Phe 410	gct Ala	tct Ser	atc Ile	1309
ttg Leu	aaa Lys 415	tcc Ser	atc Ile	tgg Trp	tac Tyr	aaa Lys 420	ttc Phe	cag Gln	tgt Cys	gca Ala	gac Asp 425	cac His	aac Asn	ctc Leu	aaa Lys	1357
aca Thr 430	aaa Lys	aag Lys	gtt Val	ggt Gly	cat His 435	gca Ala	gca Ala	tta Leu	aac Asn	ttt Phe 440	gac Asp	aag Lys	gcc Ala	act Thr	gac Asp 445	1405
atc Ile	gtg Val	aca Thr	ggt Gly	ctg Leu 450	aaa Lys	cag Gln	aaa Lys	acc Thr	tcc Ser 455	ttt Phe	ggg Gly	aga Arg	cca Pro	atg Met 460	tgg Trp	1453
gac Asp	aat Asn	gag Glu	ttt Phe 465	tct Ser	aca Thr	ata Ile	gct Ala	acc Thr 470	tcc Ser	cac His	ccc Pro	aag Lys	tct Ser 475	gta Val	gtg Val	1501
gga Gly	gtt Val	ttc Phe 480	tta Leu	tgt Cys	ggc Gly	cct Pro	cgg Arg 485	act Thr	ttg Leu	gca Ala	aag Lys	agc Ser 490	ctg Leu	cgc Arg	aaa Lys	1549
tgc Cys	tgt Cys 495	cac His	cga Arg	tat Tyr	tcc Ser	agt Ser 500	ctg Leu	gat Asp	cct Pro	aga Arg	aag Lys 505	gtt Val	caa Gln	ttc Phe	tac Tyr	1597
ttc Phe 510	aac Asn	aaa Lys	gaa Glu	aat Asn	ttt Phe 515	tga	gtta	ıtagg	aa t	aagg	acgg	jt aa	ıtctg	catt	:	1648
ttgt	ctct	tt g	tato	ttca	ıg ta	attt	actt	ggt	ctcg	tca	ggtt	tgag	jca g	tcac	tttag	1708
gata	agaa	itg t	gcct	ctca	a go	cttg)									1734

<210> 2

<211> 515

<212> PRT

<213> Homo sapiens

<400> 2

0701012W01.ST25.txt

Met Gly Asn Trp Val Val Asn His Trp Phe Ser Val Leu Phe Leu Val

1 5 10 15 Val Trp Leu Gly Leu Asn Val Phe Leu Phe Val Asp Ala Phe Leu Lys 20 25 30 Tyr Glu Lys Ala Asp Lys Tyr Tyr Tyr Thr Arg Lys Ile Leu Gly Ser Thr Leu Ala Cys Ala Arg Ala Ser Ala Leu Cys Leu Asn Phe Asn Ser 50 60Thr Leu Ile Leu Leu Pro Val Cys Arg Asn Leu Leu Ser Phe Leu Arg 65 70 75 80 Gly Thr Cys Ser Phe Cys Ser Arg Thr Leu Arg Lys Gln Leu Asp His $85 \hspace{1cm} 90 \hspace{1cm} 95$ Asn Leu Thr Phe His Lys Leu Val Ala Tyr Met Ile Cys Leu His Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$ Ala Ile His Ile Ile Ala His Leu Phe Asn Phe Asp Cys Tyr Ser Arg 115 120 125 Ser Arg Gln Ala Thr Asp Gly Ser Leu Ala Ser Ile Leu Ser Ser Leu 130 140 Ser His Asp Glu Lys Lys Gly Gly Ser Trp Leu Asn Pro Ile Gln Ser 145 150 155 160 Arg Asn Thr Thr Val Glu Tyr Val Thr Phe Thr Ser Ile Ala Gly Leu 165 170 175 Thr Gly Val Ile Met Thr Ile Ala Leu Ile Leu Met Val Thr Ser Ala 180 185 190 Thr Glu Phe Ile Arg Arg Ser Tyr Phe Glu Val Phe Trp Tyr Thr His 195 200 205 His Leu Phe Ile Phe Tyr Ile Leu Gly Leu Gly Ile His Gly Ile Gly 210 215 220Gly Ile Val Arg Gly Gln Thr Glu Glu Ser Met Asn Glu Ser His Pro 225 230 235 240 Arg Lys Cys Ala Glu Ser Phe Glu Met Trp Asp Asp Arg Asp Ser His $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Cys Arg Arg Pro Lys Phe Glu Gly His Pro Pro Glu Ser Trp Lys Trp 260 265 270

Ile Leu Ala Pro Val Ile Leu Tyr Ile Cys Glu Arg Ile Leu Arg Phe 275 280 285

Tyr Arg Ser Gln Gln Lys Val Val Ile Thr Lys Val Val Met His Pro 290 295 300

Ser Lys Val Leu Glu Leu Gln Met Asn Lys Arg Gly Phe Ser Met Glu 305 310 315 320

Val Gly Gln Tyr Ile Phe Val Asn Cys Pro Ser Ile Ser Leu Leu Glu 325 330 335

Trp His Pro Phe Thr Leu Thr Ser Ala Pro Glu Glu Asp Phe Phe Ser 340 345 350

Ile His Ile Arg Ala Ala Gly Asp Trp Thr Glu Asn Leu Ile Arg Ala 355 360 365

Phe Glu Gln Gln Tyr Ser Pro Ile Pro Arg Ile Glu Val Asp Gly Pro 370 380

Phe Gly Thr Ala Ser Glu Asp Val Phe Gln Tyr Glu Val Ala Val Leu 385 390 395 400

Val Gly Ala Gly Ile Gly Val Thr Pro Phe Ala Ser Ile Leu Lys Ser 405 410 415

Ile Trp Tyr Lys Phe Gln Cys Ala Asp His Asn Leu Lys Thr Lys Lys 420 425 430

Val Gly His Ala Ala Leu Asn Phe Asp Lys Ala Thr Asp Ile Val Thr 435 440 445

Gly Leu Lys Gln Lys Thr Ser Phe Gly Arg Pro Met Trp Asp Asn Glu 450 460

Phe Ser Thr Ile Ala Thr Ser His Pro Lys Ser Val Val Gly Val Phe 465 470 475 480

Leu Cys Gly Pro Arg Thr Leu Ala Lys Ser Leu Arg Lys Cys His 485 490 495

Arg Tyr Ser Ser Leu Asp Pro Arg Lys Val Gln Phe Tyr Phe Asn Lys 500 505 510

Glu Asn Phe 515

<210> 3

<211> 2577

<212	:> [ONA														
<213	> F	Rattu	is no	rveg	jicus	;										
<220)>															
<221	> (DS														
<222	!> ((128)	(1	L819)	1											
<223	'> F	Rat N	lox1	poly	/pept	ide	of s	SEQ N	10:4							
<400 ttct		•	gtgtg	catt	t ga	ıgtgt	cata	a aag	jacat	ata	tctt	gago	cta g	gacag	gaagtt	60
								_	_					_	ctcca	120
tttg	aca	atg Met 1	gga Gly	aac Asn	tgg Trp	ctg Leu 5	gtt Val	aac Asn	cac His	tgg Trp	ctc Leu 10	tca Ser	gtt Val	ttg Leu	ttt Phe	169
ctg Leu 15	gtt Val	tct Ser	tgg Trp	ttg Leu	ggg G1y 20	ctg Leu	aac Asn	att Ile	ttt Phe	ctg Leu 25	ttt Phe	gtg Val	tac Tyr	gtc val	ttc Phe 30	217
ctg Leu	aat Asn	tat Tyr	gag Glu	aag Lys 35	tct Ser	gac Asp	aag Lys	tac Tyr	tat Tyr 40	tac Tyr	acg Thr	aga Arg	gaa Glu	att Ile 45	ctc Leu	265
gga Gly	act Thr	gcc Ala	ttg Leu 50	gcc Ala	ttg Leu	gcc Ala	aga Arg	gca Ala 55	tct Ser	gct Ala	ttg Leu	tgc Cys	ctg Leu 60	aat Asn	ttt Phe	313
aac Asn	agc Ser	atg Met 65	gtg Val	atc Ile	ctg Leu	att Ile	cct Pro 70	gtg Val	tgt Cys	cga Arg	aat Asn	ctg Leu 75	ctc Leu	tcc Ser	ttc Phe	361
ctg Leu	agg Arg 80	ggc Gly	acc Thr	tgc Cys	tca Ser	ttt Phe 85	tgc Cys	aac Asn	cac His	acg Thr	ctg Leu 90	aga Arg	aag Lys	cca Pro	ttg Leu	409
gat Asp 95	cac His	aac Asn	ctc Leu	acc Thr	ttc Phe 100	cat His	aag Lys	ctg Leu	gtg Val	gca Ala 105	tat Tyr	atg Met	atc Ile	tgc Cys	ata Ile 110	457
ttc Phe	aca Thr	gct Ala	att Ile	cat His 115	atc Ile	att Ile	gca Ala	cat His	cta Leu 120	ttt Phe	aac Asn	ttt Phe	gaa Glu	cgc Arg 125	tac Tyr	50!
agt Ser	aga Arg	agc Ser	caa Gln 130	cag Gln	gcc Ala	atg Met	gat Asp	gga Gly 135	tct Ser	ctt Leu	gcc Ala	tct Ser	gtt Val 140	ctc Leu	tcc Ser	553
agc Ser	cta Leu	ttc Phe 145	cat His	ccc Pro	gag Glu	aaa Lys	gaa Glu 150	gat Asp	tct Ser	tgg Trp	cta Leu	aat Asn 155	ccc Pro	atc Ile	cag Gln	60:
tct Ser	cca Pro 160	aac Asn	gtg Val	aca Thr	gtg Val	atg Met 165	tat Tyr	gca Ala	gca Ala	ttt Phe	acc Thr 170	agt Ser	att Ile	gct Ala	ggc Gly	649

c++	act	003	ata	atc	200	ac+		0701					a+3	26+	+62	607
Leu 175	Thr	Gly	val	val	Ala 180	Thr	val	gct Ala	Leu	val 185	Leu	Met	Val	Thr	Ser 190	697
gct Ala	atg Met	gag Glu	ttt Phe	atc Ile 195	cgc Arg	agg Arg	aat Asn	tat Tyr	ttt Phe 200	gag Glu	ctc Leu	ttc Phe	tgg Trp	tat Tyr 205	aca Thr	745
cat His	cac His	ctt Leu	ttc Phe 210	atc Ile	atc Ile	tat Tyr	atc Ile	atc Ile 215	tgc Cys	tta Leu	ggg Gly	atc Ile	cat His 220	ggc Gly	ctg Leu	793
ggg Gly	ggg Gly	att Ile 225	gtc Val	cgg Arg	ggt Gly	caa Gln	aca Thr 230	gaa Glu	gag Glu	agc Ser	atg Met	agt Ser 235	gaa Glu	agt Ser	cat His	841
ccc Pro	cgc Arg 240	aac Asn	tgt Cys	tca Ser	tac Tyr	tct Ser 245	ttc Phe	cac His	gag Glu	tgg Trp	gat Asp 250	aag Lys	tat Tyr	gaa Glu	agg Arg	889
agt Ser 255	tgc Cys	agg Arg	agt Ser	cct Pro	cat His 260	ttt Phe	gtg Val	ggg Gly	caa Gln	ccc Pro 265	cct Pro	gag Glu	tct Ser	tgg Trp	aag Lys 270	937
tgg Trp	atc Ile	ctc Leu	gcg Ala	ccg Pro 275	att Ile	gct Ala	ttt Phe	tat Tyr	atc Ile 280	ttt Phe	gaa Glu	agg Arg	atc Ile	ctt Leu 285	cgc Arg	985
ttt Phe	tat Tyr	cgc Arg	tcc Ser 290	cgg Arg	cag Gln	aag Lys	gtc Val	gtg Val 295	att Ile	acc Thr	aag Lys	gtt Val	gtc Val 300	atg Met	cac His	1033
cca Pro	tgt Cys	aaa Lys 305	gtt val	ttg Leu	gaa Glu	ttg Leu	cag Gln 310	atg Met	agg Arg	aag Lys	cgg Arg	ggc Gly 315	ttt Phe	act Thr	atg Met	1081
gga Gly	ata Ile 320	gga Gly	cag Gln	tat Tyr	ata Ile	ttc Phe 325	gta Val	aat Asn	tgc Cys	ccc Pro	tcg Ser 330	att Ile	tcc Ser	ttc Phe	ctg Leu	1129
gaa Glu 335	tgg Trp	cat His	ccc Pro	ttt Phe	act Thr 340	ctg Leu	acc Thr	tct Ser	gct Ala	cca Pro 345	gag Glu	gaa Glu	gaa Glu	ttt Phe	ttc Phe 350	1177
tcc Ser	att Ile	cat His	att Ile	cga Arg 355	gca Ala	gca Ala	ggg Gly	gac Asp	tgg Trp 360	aca Thr	gaa Glu	aat Asn	ctc Leu	ata Ile 365	agg Arg	1225
aca Thr	ttt Phe	gaa Glu	caa Gln 370	cag Gln	cac His	tca Ser	cca Pro	atg Met 375	ccc Pro	agg Arg	atc Ile	gag Glu	gtg Val 380	gat Asp	ggt Gly	1273
ccc Pro	ttt Phe	ggc Gly 385	aca Thr	gtc Val	agt Ser	gag Glu	gat Asp 390	gtc Val	ttc Phe	cag Gln	tac Tyr	gaa Glu 395	gtg Val	gct Ala	gta Val	1321
ctg Leu	gtt Val 400	ggg Gly	gca Ala	ggg Gly	att Ile	ggc Gly 405	gtc Val	act Thr	ccc Pro	ttt Phe	gct Ala 410	tcc Ser	ttc Phe	ttg Leu	aaa Lys	1369
tct Ser 415	atc Ile	tgg Trp	tac Tyr	aaa Lys	ttc Phe 420	cag Gln	cgt Arg	gca Ala	cac His	aac Asn 425	aag Lys	ctg Leu	aaa Lys	aca Thr	caa G1n 430	1417
aag Lys	atc Ile	tat Tyr	ttc Phe	tac Tyr 435	tgg Trp	att Ile	tgt Cys	aga Arg	G1u 440	acg Thr	Gly	gcc Ala	ttt Phe	gcc Ala 445	tgg Trp	1465

Page 7

ttc aac aac tta ttg aat tcc ctg gaa caa gag atg gac gaa tta ggc Phe Asn Asn Leu Leu Asn Ser Leu Glu Gln Glu Met Asp Glu Leu Gly 450 455 460	1513
aaa ccg gat ttc cta aac tac cga ctc ttc ctc act ggc tgg gat agc Lys Pro Asp Phe Leu Asn Tyr Arg Leu Phe Leu Thr Gly Trp Asp Ser 465 470 475	1561
aac att gct ggt cat gca gca tta aac ttt gac aga gcc act gac gtc Asn Ile Ala Gly His Ala Ala Leu Asn Phe Asp Arg Ala Thr Asp Val 480 485 490	1609
ctg aca ggt ctg aaa cag aaa acc tcc ttt ggg aga cca atg tgg gac Leu Thr Gly Leu Lys Gln Lys Thr Ser Phe Gly Arg Pro Met Trp Asp 495 500 505 510	1657
aat gag ttt tct aga ata gct act gcc cac ccc aag tct gtg gtg ggg Asn Glu Phe Ser Arg Ile Ala Thr Ala His Pro Lys Ser Val Val Gly 515 520 525	1705
gtt ttc tta tgc ggc cct ccg act ttg gca aaa agc ctg cgc aaa tgc Val Phe Leu Cys Gly Pro Pro Thr Leu Ala Lys Ser Leu Arg Lys Cys 530 535 540	1753
tgt cgg cgg tac tca agt ctg gat cct agg aag gtt caa ttc tac ttc Cys Arg Arg Tyr Ser Ser Leu Asp Pro Arg Lys Val Gln Phe Tyr Phe 545 550 555	1801
aac aaa gaa acg ttc tga attggaggaa gccgcacagt agtacttctc Asn Lys Glu Thr Phe 560	1849
catcttcctt ttcactaacg tgtgggtcag ctactagata gtccgttgtc gcacaaggac	1909
ttcactccca tcttaaagtt gactcaactc catcattctt gggctttggc aacatgagag	1969
ctgcataact cacaattgca aaacacatga attattattg gggggattgt aaatccttct	2029
gggaaacctg cctttagctg aatcttgctg gttgacactt gcacaattta acctcaggtg	2089
tcttggttga tacctgataa tcttccctcc cacctgtccc tcacagaaga tttctaagta	2149
gggtgatttt aaaatattta ttgaatccac gacaaaacaa taatcataaa taataaacat	2209
aaaattacca agattcccac tcccatatca tacccactaa gaacatcgtt atacatgagc	2269
ttatcatcca gtgtgaccaa caatttatac tttactgtgc caaaataatc ttcatctttg	2329
cttattgaac aattttgctg actttcccta gtaatatctt aagtatatta actggaatca	2389
aatttgtatt atagttagaa gccaactata ttgccagttt gtattgtttg aaataactgg	2449
aaaggcctga cctacatcgt ggggtaattt aacagaagct ctttccattt tttgttgttg	2509
ttgttaaaga gttttgttta tgaatgtgtt ataaaaagaa aataaaaagt tataattttg	2569
acggaaaa	2577

<210> 4

<211> 563

<212> PRT

<213> Rattus norvegicus

<400> 4

Met Gly Asn Trp Leu Val Asn His Trp Leu Ser Val Leu Phe Leu Val 1 5 10

Ser Trp Leu Gly Leu Asn Ile Phe Leu Phe Val Tyr Val Phe Leu Asn 20 30

Tyr Glu Lys Ser Asp Lys Tyr Tyr Tyr Thr Arg Glu Ile Leu Gly Thr 35 40 45

Ala Leu Ala Leu Ala Arg Ala Ser Ala Leu Cys Leu Asn Phe Asn Ser 50 60

Met Val Ile Leu Ile Pro Val Cys Arg Asn Leu Leu Ser Phe Leu Arg 65 70 75 80

Gly Thr Cys Ser Phe Cys Asn His Thr Leu Arg Lys Pro Leu Asp His 85 90 95

Asn Leu Thr Phe His Lys Leu Val Ala Tyr Met Ile Cys Ile Phe Thr 100 105 110

Ala Ile His Ile Ile Ala His Leu Phe Asn Phe Glu Arg Tyr Ser Arg 115 120 125

Ser Gln Gln Ala Met Asp Gly Ser Leu Ala Ser Val Leu Ser Ser Leu 130 140

Phe His Pro Glu Lys Glu Asp Ser Trp Leu Asn Pro Ile Gln Ser Pro 145 150 155 160

Asn Val Thr Val Met Tyr Ala Ala Phe Thr Ser Ile Ala Gly Leu Thr 165 170 175

Gly Val Val Ala Thr Val Ala Leu Val Leu Met Val Thr Ser Ala Met 180 185 190

Glu Phe Ile Arg Arg Asn Tyr Phe Glu Leu Phe Trp Tyr Thr His His 195 200 205

Leu Phe Ile Ile Tyr Ile Ile Cys Leu Gly Ile His Gly Leu Gly Gly 210 215 220

Ile Val Arg Gly Gln Thr Glu Glu Ser Met Ser Glu Ser His Pro Arg 225 230 235 240

Asn Cys Ser Tyr Ser Phe His Glu Trp Asp Lys Tyr Glu Arg Ser Cys 255 Page 9

Arg Ser Pro His Phe Val Gly Gln Pro Pro Glu Ser Trp Lys Trp Ile 260 265 270 Leu Ala Pro Ile Ala Phe Tyr Ile Phe Glu Arg Ile Leu Arg Phe Tyr 275 280 285 Arg Ser Arg Gln Lys Val Val Ile Thr Lys Val Val Met His Pro Cys 290 295 300 Lys Val Leu Glu Leu Gln Met Arg Lys Arg Gly Phe Thr Met Gly Ile 305 310 315 320Gly Gln Tyr Ile Phe Val Asn Cys Pro Ser Ile Ser Phe Leu Glu Trp 325 330 335 His Pro Phe Thr Leu Thr Ser Ala Pro Glu Glu Glu Phe Phe Ser Ile 340 345 350His Ile Arg Ala Ala Gly Asp Trp Thr Glu Asn Leu Ile Arg Thr Phe 355 360 365 Glu Gln Gln His Ser Pro Met Pro Arg Ile Glu Val Asp Gly Pro Phe 370 380 Gly Thr Val Ser Glu Asp Val Phe Gln Tyr Glu Val Ala Val Leu Val 385 390 395 400 Gly Ala Gly Ile Gly Val Thr Pro Phe Ala Ser Phe Leu Lys Ser Ile $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415$ Trp Tyr Lys Phe Gln Arg Ala His Asn Lys Leu Lys Thr Gln Lys Ile 420 425 430 Tyr Phe Tyr Trp Ile Cys Arg Glu Thr Gly Ala Phe Ala Trp Phe Asn 435 440 445 Asn Leu Leu Asn Ser Leu Glu Gln Glu Met Asp Glu Leu Gly Lys Pro 450 460 Asp Phe Leu Asn Tyr Arg Leu Phe Leu Thr Gly Trp Asp Ser Asn Ile 465 470 475 480 Ala Gly His Ala Ala Leu Asn Phe Asp Arg Ala Thr Asp Val Leu Thr 485 490 495 Gly Leu Lys Gln Lys Thr Ser Phe Gly Arg Pro Met Trp Asp Asn Glu 500 510 Phe Ser Arg Ile Ala Thr Ala His Pro Lys Ser Val Val Gly Val Phe Leu Cys Gly Pro Pro Thr Leu Ala Lys Ser Leu Arg Lys Cys Cys Arg 530 540

Arg Tyr Ser Ser Leu Asp Pro Arg Lys Val Gln Phe Tyr Phe Asn Lys 545 550 560

Glu Thr Phe

<210> 5

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for Nox1 gene

<400> 5

ggagcaggaa ttggggtcac

20

<210> 6

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> Reverse primer for Nox1 gene

<400> 6

ttgctgtccc atccggtgag

20

<210> 7

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Forward primer for human Nox1 gene

<400> 7

ccactgtagg cgccctaagt t

21

<210>	8	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for human Nox1 gene	
<400> aagaat	8 gacc ggtgcaagga	20
<210>	9	
<211>	25	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	TaqMan probe	
<400> aagggc	9 atcc ccctgagtct tggaa	25
<210>	10	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA for human Nox1 gene	
<400>	10 cttc agcatggaat tcaagagatt ccatgctgaa gccacgcttt tttggaaa	58
		,
<210>	11	
	58	
<212>		
<213>	Artificial sequence	
.220		
<220>		

<223>	siRNA for human Nox1 gene	
<400> gggctt	11 tcga acaacaatat tcaagagata ttgttgttcg aaagcccttt tttggaaa	58
<210>	12	
<211>	59	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA for rat Nox1 gene	
<400>	12 agaa gtctgacaag ttcaagagac ttgtcagact tctcataatt ttttggaaa	59
greaty	agaa geergacaag eecaagagae eegecagaee eeccacaace eeelggaaa	33
<210>	13	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA for rat Nox1 gene	
<400> gattct	13 tggc taaatcccat tcaagagatg ggatttagcc aagaatcttt tttggaaa	58
<210>	14	
<211>	58	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA for rat Nox1 gene	
<400> ggacat	14 cttga acaacagcat tcaagagatg ctgttgttca aatgtccttt tttggaaa	58
<210>	15	
<211>	20	
.212.	DNA	

<213>	Artificial sequence	
<220>		
<223>	Forward primer for Nox1 gene	
	15 tccc tttgcttcca	20
<210>	16	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for rat Nox1 gene	
<400> ggcaaa	16 ggca cctgtctctc t	21
<210>	17	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	TaqManMGB probe	
<400> tccagt	17 agaa atagatcttt	20
<210>	18	
<211>	65	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA construction	
<400>	18 gtta tgagaagtct gacaagttca agagacttgt cagacttctc ataattttt	60
ggaaa		65

<210>	19	
<211>	65	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA construction	
<400> agcttt	19 tcca aaaaattatg agaagtctga caagtctctt gaacttgtca gacttctcat	60
aacgg		65
<210>	20	
<211>	64	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA construction	
<400> gatccc		60
gaaa		64
<210>	21	
<211>	64	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	siRNA construction	
<400> agcttt	21 tcca aaaaagattc ttggctaaat cccatctctt gaatgggatt tagccaagaa	60
tcgg		64
<210>	22	
<211>	64	
~212 \	DNA	

<213>	Artificial sequence	
<220>		
	siRNA construction	
<400>		60
gaaa		64
<210>	23	
	64	
<212>		
	Artificial sequence	
<220>		
<223>	siRNA construction	
<400>	23 tcca aaaaaggaca tttgaacaac agcatctctt gaatgctgtt gttcaaatgt	60
ccgg	J J J J J J J J J J J J J J J J J J J	64
<210>	24	
<211>		
<212>		
	Artificial sequence	
	The second sequence	
<220>		
<223>	M13 primer	
<400>	24	
gttttc	ccag tcacgac	17
<210>	25	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	3.0 Rev primer	
<400>	25	

0701012WO1.ST25.txt gagttagctc actcattagg c		21
<210>	26	
<211>	19	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for Nox1 gene	
<400> atgggaa		
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for Nox1 gene	
	27 cgtt tctttgttga a	21