⑩ 日本国特許庁(JP)

①特許出願公告

許公 報(B2) ⑫特

平1-30008

@Int_Cl.4

識別記号

庁内整理番号

❷❸公告 平成1年(1989)6月15日

F 16 C C 21 D 33/34 7/04 8312-3J A-7371-4K

発明の数 1 (全5頁)

図発明の名称 軸受転動体

> 创特 願 昭59-146220

63% 開 昭61-24818

29出 阻 昭59(1984)7月14日 @昭61(1986)2月3日

砂発 明 者 前田 喜 久 男

三重県員弁郡大安町平塚974番地

砂発 明 者 杉 浦 郁 生 文 三重県四日市市小古曽1-7-11

眀 ⑫発 者 本 村 雅 静岡県磐田市中野1-105

の出 願 人 エヌ・テー・エヌ 東 大阪府大阪市西区京町堀1丁目3番17号

洋ベアリング株式会社

20代 理 人 弁理士 鎌田 文二

審査 官 ЛГ Е 益 喜

函参考文献 特開 昭58-91118(JP,A) 特公 昭57-4465(JP, B2)

1

切特許請求の範囲

1 軸受転動体において、転動面となる表面を Rmax0.3~1.5µmのランダムな方向のすり傷で粗 面にし、かつその表層に500MPa以上の残留応力 **圏を形成したことを特徴とする軸受転動体。**

発明の詳細な説明

〔産業上の利用分野〕

この発明は、軸受転動体、更に詳しくは、表面 が租面である相手部材に対して長寿命を示す転動 体の構造に関するものである。

【従来の技術】

転動体の転動寿命に対して転動面の表面相さが 重要な因子であることはよく知られており、転動 面の研削仕上げはできるだけ滑らかな面にするこ とが常識になつている。

一般的な軸受は、内輪、外輪、そして「玉」あ るいは「ころ」等の転動体から構成されている が、それぞれが単体として製造できる場合は、転 **動面の研削仕上げも容易であり、表面粗さは実用** 上問題のない範囲に納まつている。

しかしながら、軸受の構造において、例えば歯 **車を備えた軸の一部を内輪として使用する場合が** あり、軕は全体として複雑な形状をしているた め、転動体が接触する転動面部分の研削仕上げが 極めて困難であり、表面租さは例えばRmax3μm 25 潤滑油 4 を介して凹部に静油圧が作用し、同図に

2

程度の租面になり、これを相手に転動面が鏡面仕 上げされた転動体を使用すると、転動体の寿命が 実用上問題となる。

即ち、第5図に示す如く、転動面が粗面である 5 内輪 1 と鏡面の転動体 2 が接触するとき、潤滑油 膜の厚さが十分でないと、金属接触により粗面の 山が鏡面にぶつかり、この部分に応力が集中して 転動体 2 にピーリング損傷 3 が発生し、損傷部分 から剝離に至る破損状態が起こり、転動体2は計 10 算寿命に比して極めて短寿命になる。

上記ピーリング損傷3とは、深さ10um程度の 浅い小剝離および亀裂の密集をいうものである が、第6図で拡大した如く、租面の山が鏡面に対 して接触すると、応力の集中により、転動体2の…… 15 表層が転動疲労じ、これが原因で前述した通り、 転動体2にピーリング損傷3が生じるのである。

転動体 2 に発生する上記のような不都合を解消 する手段として、転動体2の表面研削仕上げを粗 くすることが考えられる。

しかし、転動体2の表面研削仕上げを単に狙く しても、ピーリング損傷の防止に大きな効果のな いことも後述するように事実である。

即ち、第7図のように、転動体2の転動面を内 輪1と同様の粗面にすると、双方の接触により、

矢印で示した如き引張応力により、転動体2ない し内輪 1 の凹部に亀裂が発生し、第 5 図で示した

鏡面と粗面の転動接触の場合と同様にピーリング

的処理と熱処理を複合的に組合せて実施してもよ

表 1 は、異なつた租面加工方法によつて製作し た四種類の試片転動体と従来品の転動寿命試験の 5 結果を示しており、何れの転動体も「ころ」であ . る。

〔発明が解決しようとする問題点〕

このように柤面を相手に転動する転動体では、 ヒーリング損傷による短寿命が問題である。

そこでこの発明は、粗面を相手に転動する転動 体において、ピーリング損傷の発生を防止し、長 **寿命を示す転動体を提供することが目的である。** [問題点を解決するための手段]

上記の問題点を解決するため、この発明は、転 動面となる表面をRmax0.3~1.5μmのランダムな 方向のすり傷で粗面にし、潤滑条件の改良を施 し、かつその表層に500MPa以上の残留応力層を 15 の後軽くスーパー仕上げを施したものである。 形成し、傷内に発生する静油圧的な引張応力に抗 することができるようにしたものである。

〔実施例と効果〕

損傷が生じる。

以下、この発明の実施例を、鏡面仕上げした従 来品の転動体及び比較用に製作した転動体と対比 20 試片B しながら説明する。

この発明の転動体11は、第1図と第2図に示 す如く、内輪となる租面軸12を支持するための ものであり、転動面となる表面が、ランダムな方 向のすり傷 (スクラツチ) で粗面13に形成さ 25 4図に示すように大略円形である。 れ、その表層に500MPa(50kg/째) 以上の残留 応力層を設けて構成されている。

上記相面軸 1 2 は表面粗さがRmax1~3μmで あるのに対し、転動体11の表面はランダムな方 Rmax0:3~0.8μmになっている。 ----

に助体11に対する粗面加工の方法としては、 タンプラー、研摩、ショット等の加工手段を採用 することができる。

ちなみに、研削によつて表面がRmax0.8~1μ 35 mに仕上げられた

転動体にみがきタンプラ加工を 施し、次に表面あらしタンプラ加工を施すことに より、Rmax0.3~0.8µmの表面阻さが得られる。

また、表層への圧縮残留応力の形成方法として AS処理 (マルストレツシング)、浸炭・窒化処理 のような熱処理をあげることができ、これら機械

従来品

従来品の転動体は表面が極めて滑らかであり、 その表面柤さはRmax0.2μπ以下である。

10 試片X

試片Xの転動体は、この発明による転動体の残 留応力層の効果を明確にするため、比較例として 製作したものであり、圧縮残留応力が付与されな いように研削仕上げで表面に無数の傷をつけ、そ 試片A

この転動体は表面にガラスピーズをショツトさ せ、その後軽くスーパー仕上げを施したものであ り、平均的な表面粗さはRmax5μmである。

この転動体は、表面にガラスピーズショツトに よる処理を施しただけであり、平均的な表面粗さ はRmax0.6μmである。

上記試片A及びBの表面に形成される傷は、第

試片C

この転動体は、タンプラー加工のみであり、表 面には細長い傷が無数に存在する。

上記各試片X、A、B、Cの各転動体は、従来 向のすり傷によつて、平均的な表面粗さが 30 品の転動体に比べて表面が非常に粗くなつてお - り、これらの表面粗さは前記のように、平均的に Rmax0.3~0.8μmであるが、部分的には、1.5μm 程度のすり傷が現れでおり、特に試片XとCには・・ ランダムな方向の細長い傷が多数見られる。

> 次に、従来品及び各試片X、A、B、Cの転動 体に対し、Rmax3μmの表面粗さをもつ円筒部材 を相手に、ヘルツ最大面圧3.1GPaの下で転動寿 命試験を行ない、その結果を表1に示した。

表 1 から分るように、従来品の転動体に比べて は、タンプラー、ショツトの如き機械的処理や 40 表面粗さの粗い転動体は、切削によつてすり傷を つけた試片X以外、転動寿命が大きいことが理解 される。

6

表 転動体の転動寿命試験結果

転動体の種類	加工の種類	Li。寿命 (×10 [°] 回)	L ₅ 。寿命 (×10'回)	Lı。寿命 の比
従来品	-	2190	3850	1
試片X	傷+スーパー仕上	357	1300	0.16
// A	ガラスピーズショツ トとスーパー仕上	2780	7970	1,27
// B	ガラスピーズショツ トのみ	3310	5690	1,51
// C	タンプラーのみ	8550	10100	3, 90

上記転動試験後の各転動体に対し、マルテンサ その結果を示している。

2. 麦 試験後の転動体表 面の半価幅低下

転動体の種類	半価幅低下		
従来品	1.1(潤滑性劣る)		
試片X	※0.7(// 良)		
" A	0.7(// 良)		
" B	0.9(// やや良)		
" C	※0.7(// 良)		

※ ランダムな細長い傷

動体は、半価幅低下が非常に大きいことがわか

ため、潤滑性の尺度に使用できると考えると、表 2の結果から、表面粗さの小さい従来品の転動体 35 図面の簡単な説明 は、試片X、A、B、Cの転動体に比べて潤滑性 が劣ることになる。

これに対して、試片X及びCの転動体の如く、 細長い傷で粗面にしたものは、半価幅の低下が小 さく、潤滑性が良好なことが分かる。

表1の転動寿命試験結果と対比すると、必ずし も潤滑性の良い転動体の転動寿命が大きいとはい えず、潤滑性がやや劣ると判断される試片Bの寿 命は、潤滑性の優れた試片Xより長寿命である。

第3図は、各転動体の転動試験前の表層の残留 イト面からの回折X線の半価幅を測定し、表 2 に 15 応力測定結果を示しており、試片X以外は表層に 圧縮の残留応力が生成されている。

> これらの圧縮残留応力は、表層深さ0.1㎜前後 において500MPa以上になつている。

第4図は各転動体の半価幅低下、残留応力及び 20 表面粗さと寿命の関係を示しており、従来品及び 試片Xの転動体に比べ、試片A、B、Cと順次転 動寿命が延びている。

以上のことにより、粗面相手の転動体に対して 疲労寿命を向上させるには、単に表面粗さを大き 25 くして潤滑性を向上させるだけでは不十分であ り、表層に圧縮残留応力を生成させることが必要 である。

更に、耐ビーリング強度に対する圧縮残留応力 の影響については、ピーリング損傷の発生よりも 表 2 から明らかな如く、鏡面をもつ従来品の転 30 進展を抑制する効果のあることが分かつており、 従って表面粗さを大きくしたとき、無数に存在す …… るすり傷の底に作用する応力集中を、この圧縮残 留応力が緩和し、ビーリング損傷の発生防止に著い、 しい効果を発揮するのである。

第1図はこの発明に係る転動体の使用状態を示 す縦断正面図、第2図は同上の拡大横断面図、第 3 図は転動体の表層における残留応力の測定図、 第4図は転動体の半価幅低下、残留応力及び表面 40 あらさと寿命の関係を示すグラフ、第5図乃至7 図の各々は転動体に対するピーリング発生の説明 図である。

11は転動体、12は粗面軸、13は粗面。

