21-640 Intro to Functional Analysis Assignment 2

Spring 2013

Due on Monday, February 4.

Solutions to problems marked with an asterisk should be written up and handed in.

1. Let X be a linear space and $\mathcal C$ be a collection of linearly independent subsets of X such that

$$\forall S, T \in \mathcal{C}, \quad S \subset T \text{ or } T \subset S,$$

and put $C = \cup C$. Show that C is linearly independent.

- 2.* Let X be an infinite-dimensional normed linear space over \mathbb{K} . Show that there is a discontinuous linear mapping $L: X \to \mathbb{K}$.
 - 3. Prove or Disprove: Let X and Y be normed linear spaces over \mathbb{R} and $L: X \to Y$ be a continuous mapping such that

$$\forall x, y \in X, \quad L(x+y) = L(x) + L(y).$$

Then L is linear.

- 4.* Let X be an infinite-dimensional linear space. Show that there exist norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on X that are not equivalent.
- 5. Let X be a normed linear space. Show that if X has a Schauder basis, then X is separable.
- 6.* Let X be the set of all real-valued continuous functions on [0,1] equipped with the norm given by

$$||f||_{\infty} := \max \{|f(x)| : x \in [0,1]\},\$$

and put

$$K = \{ f \in X : f(x) \ge 0 \text{ for all } x \in [0, 1] \}.$$

Given $f \in X$, we write $f \geq 0$ if and only if $f \in K$. Let $L: X \to \mathbb{R}$ be a linear mapping such that

$$Lf \geq 0$$
 for all $f \in K$.

Show that L is continuous.

7. Prove or disprove: Let X be a normed linear space and let $x_0 \in X$ and $\delta > 0$ be given. Then

$$cl(B_{\delta}(x_0)) = \{ x \in X : ||x - x_0|| \le \delta \}.$$

8. Let l^{∞} denote the set of all K-valued sequences $x = (x_k | k \in \mathbb{N})$ that are bounded, equipped with the norm $\|\cdot\|_{\infty}$ defined by

$$||x||_{\infty} = \sup\{|x_k| : k \in \mathbb{N}\},\$$

and c denote the linear manifold in X consisting of all convergent \mathbb{K} -valued sequences. Prove or disprove: c is nowhere dense in l^{∞} .

- 9.* Let X be a normed linear space. Show that X is complete if and only if every absolutely summable sequence is summable.
- 10. Prove or Disprove: Let X be an infinite-dimensional Banach space. Then there is a linear manifold $V \subset X$ such that V is not closed.
- 11.* Give an example of a real Banach space X and a continuous mapping $f: X \to \mathbb{R}$ such that f is unbounded on $\{x \in X : ||x|| \le 1\}$.
- 12. Let $(X, \|\cdot\|)$ be a normed linear space over \mathbb{K} and $l: X \to \mathbb{K}$ be a linear functional. Show that l is continuous if and only if $\mathcal{N}(l)$ is closed.
- 13.* Prove or Disprove: Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces and $T: X \to Y$ be a linear mapping. Then T is continuous if and only if $\mathcal{N}(T)$ is closed.
- 14.* Let $\mathbb{K} = \mathbb{R}$ and let $X = C(\mathbb{R}; \mathbb{R})$, the set of all continuous functions (not necessarily bounded) from \mathbb{R} to \mathbb{R} . Does there exist a norm $\|\cdot\|$ on X such that for every $a \in \mathbb{R}$ the mapping

$$f \mapsto f(a)$$

is continuous from $(X, \|\cdot\|)$ to \mathbb{R} ? Explain.