Project Development Phase Model Performance Test

Date	13 November 2022
Team ID	PNT2022TMID08772
Project Name	Project — Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot In [32] Acceptable the closel/dicertion request of the earlier priority area of the learning priority area of the learning area.		
I.	Metrics	Classification Model:			
		Gradient Boosting Classification	predictor recall flictore support -1 8.59 8.50 8.57 876 1 6.07 8.50 9.50 4.50 1228		
		Accuray Score- 97.4%	#ELEPHONY 0.00 0.07 2211 weighted ong 0.57 0.57 2211		
2.	Tune the Model	Hyperparameter Tuning - 97%	Wilcoxon signed-rank test is (A) which and areas an intrans must the print speet speet address the claim state and address the claim sensition speet address the claim sensition speet addresserting intrate the claim sensition of the claim sensition of the claim the claim sensition of the claim sensition of the claim the claim sensition of the claim sensition of the claim the claim sensition of the		
		Validation Method — KFOLD &			
		Cross Validation Method	# sloat the demonst # = land_relat_cable # = land_relat_cable		
			A frame would, and offers I are Three miles are proposed to the control of the co		

1. METRICS:

CLASSIFICATION REPORT:

In [52]:

#computing the classification report of the model
print(metrics. lassification_report(y_test, y_test_gbc))

	precision	recall fl-score		support
-1 1	e. gg e. 97	9699	0.97 e.98	976 1235
accuracy macro avg	e.98	e. 97	e.97 e.97	2211 2211

weighted avg e. **97** 0.97 0.97

2211

PERFORMANCE:

Out 33 J:

ML Model Accuracy fl _score Recall Precision

Gradient Boosting ClassifierCatBoost Classifier		0.974	0.977	0.994	0.986
		0.972	0.975	0.994	0.989
2	Random Forest	0.969	0.972	0.992	0.991
3	Support Vector Machine	0.964	0.968	0.980	0.965
4	Decision Tree	0.958	0.962	0.991	0.993
5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
6	Logistic Regression	0.934	0.941	0.943	0.927
	Naive Bayes Classifier	0.605	0454	0292	0.997
8	XGBoost Classifier	0.548	0.548	0.993	0.984
9	Multi-layer Perceptron	0.543	0.543	0.989	0983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

```
In [58]: #HYPERPARAMETER TUNING
         grid.fit(X_train, y_train)
Out[58]:
                                                            GridSearchCV
          GridSearchCV(cv=5,
                       estimator=GradientBoostingClassifier(learning_rate=0.7,
                                                           max depth=4),
                       param_grid={'max_features': array([1, 2, 3, 4, 5]),
                                   'n_estimators': array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
                 140, 150, 160, 170, 180, 190, 200])})
                                               estimator: GradientBoostingClassifier
                                    GradientBoostingClassifier(learning rate=0.7, max_depth=4)
                                                     GradientBoostingClassifier
                                    GradientBoostingClassifier(learning_rate=0.7, max_depth=4)
  In [59]:
  print("The best parameters are %s with a score of %0.2f"
        X (grid best_params_, grid.best_score_))
```

VALIDATION METHODS: KFOLD & Cross Folding

The best parneters are {'max_features': 5, 'n_estimators': 20) with a score of 0.97

Wilcoxon signed-rank test

In [78]: #KFOLD and Cross Validation from scipy . stats import wilcoxon from sklearn. datasets import load_iris from sklearn .ensemble import GradientBoostingC1assifier from xgboost import # Load the dataset X = load_iris().data y = load_iris().target X6BC1assifier from sklearn .model selection import cross_val_score, KF01d |modell Prepare models and select your CV method mode12 kf g Extract results for each model on the same folds results modell = cv=kf) results_mode12 — cross_va1_score(mode12, X, y, cv=kf) p = stat, results_mode12, zsplit•);

5x2CV combined F test

outt78J: 9S.ø

In [891: from mlxtend. evaluate import combined ftest_5x2cv from sklearn. tree import DecisionTreeClassifier, ExtraTreeClassifier from sklearn.ensemble import GradientBoostingC1as5ifier from mlxtend.data import iris_data # Prepare data and c Ifs

clfl GradientBoostingC1assifier() clf2 •
DecisionTreeClassifier()
Calculate p-value f, p cortined
estimator2=c1f2,