# Sperimentazioni di Fisica I mod. A – Lezione 1

#### Numeri Naturali

Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova

# Programma del Corso (1° semestre)

#### Teoria Informatica (24 h)

- Rappresentazione dei Numeri
- Algebra Booleana
- Linguaggio di Programmazione C/C++

#### Laboratorio Informatica (24 h)

Elementi di Statistica (24 h) (Prof.ssa C. Sada)

#### Laboratorio di Fisica (12 h) (Prof.ssa C. Sada)

- Esperimento con il Pendolo
- Esperimento con la Guidovia

Sito-web: https://elearning.unipd.it/dfa/

# Programma del Corso

**Testo**: Lippman, Lajoie, Moo, "C++ Primier", 5<sup>th</sup> Ed. (Capp. 1-6)

**Testo**: S. Prata, "C++ Primier Plus", 6<sup>th</sup> Ed., SAMS (Capp. 1-8)

| Settimana         | Lunedì     | Martedì     | Mercoledì   | Giovedì     | Venerdì    |
|-------------------|------------|-------------|-------------|-------------|------------|
|                   | 8:30-10:30 | 10:30-12:30 | 12:30-14:30 | 10:30-12:30 | 8:30-10:30 |
| Sept. 28 – Oct. 2 |            | Info (2)    | Info (2)    | Info (2)    | Info (2)   |
| Oct. 5 – Oct. 9   | Info (2)   | L. Info (2) | Info (2)    | L. Info (2) | Info (2)   |
| Oct. 12 – Oct. 16 | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Oct. 19 – Oct. 23 | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Oct. 26 – Oct. 30 | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Nov. 2 – Nov. 6   | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Nov. 9 – Nov. 13  | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Nov. 16 – Nov. 20 | Stat (2)   | L. Info (2) | Info (2)    | L. Info (2) | Stat (2)   |
| Nov. 23 – Nov. 27 | Stat (2)   | L. Info (2) | Stat (2)    | L. Info (2) | Stat (2)   |
| Nov. 30 – Dec. 4  | Stat (2)   |             | Stat (2)    | •••         | Stat (2)   |
| Dec. 7 – Dec. 11  | Stat (2)   | •••         | Stat (2)    | •••         | Stat (2)   |
| Dec. 14 - Dec. 18 | Stat (2)   | •••         | Stat (2)    | •••         | Stat (2)   |
| January           | •••        |             |             | ••••        | •••        |

# Rappresentazione dei Numeri

# Lezione I: Numeri Naturali 1. Introduzione Storica

#### I Sistemi di Numerazione

- Un sistema di numerazione è un modo di **esprimere** e **rappresentare** i numeri attraverso un insieme di simboli.
- I numeri riflettono la necessità di quantificare gli elementi di un insieme.
- Tutte le civiltà, sin dai tempi antichi, hanno ideato un sistema di numerazione, dapprima di tipo additivo e successivamente posizionale.
- Gli **antichi Romani** usavano un sistema basato essenzialmente sul **numero 5** (V), **additivo** e non posizionale.
- Con grande fatica, si è arrivati al sistema attualmente maggiormente in uso, decimale e posizionale.

#### Sistemi Posizionali e Additivi

#### Sistema Romano (Additivo):

V = 5 e X = 10, indipendentemente dalla posizione all'interno del numero.

#### Sistema Decimale (Posizionale)

- 2 = 2, se nella posizione relativa alle unità,
- 2 = 20, se nella posizione relativa alle decine,
- 2 = 200, se nella posizione relativa alle centinaia,
- 2 = 2000, se nella posizione relativa alle migliaia ...
- Questo sistema consente una comoda esecuzione di operazioni aritmetiche, incolonnando opportunamente i numeri da sommare uno sotto l'altro e addizionando, colonna per colonna.

#### Sistema Posizionale

Definizione più formale di sistema di numerazione posizionale:

- 1. Si sceglie un qualsiasi **numero naturale b** (diverso da 0 e da 1), che chiameremo **"base"**;
- 2. Si scelgono **b** simboli diversi, che chiameremo "cifre";
- 3. Si compongono i numeri tenendo presente che il valore di ogni cifra va moltiplicato per una **potenza di b**, corrispondente alla posizione della cifra;
- 4. La somma dei valori ottenuti restituisce il numero considerato.

$$2019_{base10} = 2*10^3 + 0*10^2 + 1*10^1 + 9*10^0 = 2000 + 10 + 9$$
 
$$10011_{base2} = 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 16 + 2 + 1 = 19_{base10}$$

#### Evoluzione dei Sistemi Numerici

- La rappresentazione dei numeri con dei simboli richiede una spiccata capacità di astrazione: la percezione della pluralità dissociata dalla natura degli oggetti considerati.
- Negli ideogrammi cinesi: **3 uomini = folla**, **3 alberi** = **foresta**. 男 = uomo,木= albero, 森 = foresta.
- Nel lessico indoeuropeo: "3" e "molti" sono quasi sinonimi, "trois" (3) e "tres" (molto) in francese, "vier" (4) e "viel" (molti) in tedesco.
- La pluralità veniva generalmente "gestita" tramite la conta per comparazione.
- Il passo successivo fu la **conta per successione**, tramite le parti del corpo (dita, polso, gomito, ...)

#### I Sistemi in Base-10 ed in Base-12

La base del sistema decimale è l'utilizzo delle dita delle due mani come strumento di conta:

- 1. E' facilmente adattabile alla memoria umana.
- 2. Tavola di **moltiplicazione** facilmente memorizzabile.
- L'origine del sistema in **base-12** sta nell'uso delle **falangi** (3 per ogni dito) computabili il pollice come cursore:
- 1. Ha un numero maggiore di divisori interi ("ridondanze").
- 2. L'anno avrebbe un numero di mesi uguale alla base.
- 3. Un giorno avrebbe un numero doppio di ore della base.
- 4. Un'ora ed un minuto avrebbero un numero di minuti e di secondi pari al quintuplo della base.
- 5. L'angolo giro sarebbe pari a 30 volte la base.

### Sistema Duodecimale e il Numero 13

Il 12 è il più piccolo numero con 6 divisori interi.

I sumeri erano soliti dividere il giorno e la notte in 12 parti ciascuno.

I babilonesi usavano un anno di 360 (24 divisori interi) giorni, un numero facilmente divisibile in 12 mesi, a loro volta divisibili in 4 stagioni, di 3 mesi ciascuno.

Gli zodiaci occidentale e cinese utilizzano 12 segni.

Alcune culture pagane utilizzavano calendari (su base lunare) di 13 mesi.

Triscaidecafobia: paura irrazionale del numero 13.

Parascevedecatriafobia: paura del Venerdì 13!

# **Zodiaco Cinese**



# Rappresentazione dei Numeri

# Lezione I: Numeri Naturali 2. Sistemi di Numerazione Posizionali

# I Sistemi Posizionali (I)

Ciascun numero è rappresentato da una sequenza di simboli, il cui valore è determinato, oltre che dal simbolo stesso, anche dalla posizione che occupa nella sequenza.

Il peso delle cifre aumenta, nella rappresentazione, da destra (LSB) verso sinistra (MSB).



Si definisce base (o radice)-R del sistema il numero di simboli messi a disposizione per la rappresentazione.

$$\{0, 1, \dots R-1\}$$
 Base-2 =  $\{0,1\}$ , Base-10 =  $\{0,1,2,3,4,5,6,7,8,9\}$ 

## I Sistemi Posizionali (II)

Un numero naturale  $d \in N$ , viene indicato in base-R tramite una sequenza ordinata di n simboli

$$\mathbf{d} = (\mathbf{d}_{n-1}\mathbf{d}_{n-2}...\mathbf{d}_2\mathbf{d}_1\mathbf{d}_0)_{\mathbf{R}}$$

dove  $d_i \in \{0, 1, ... R-1\}$ .

$$d = \sum_{i=0}^{n-1} d_i R^i$$

Dati due numeri a e  $b \in N$  rappresentati come

$$a = \sum_{i=0}^{n-1} a_i R^i$$
  $b = \sum_{i=0}^{m-1} b_i R^i$ 

Possiamo calcolare le operazioni di somma e prodotto:

$$a+b=\sum_{k=0}^{h-1}(a_k+b_k)R^k$$
,  $h=\max\{m,n\}$   $a \bullet b=\sum_{i=0}^{h-1}\sum_{j=0}^{m-1}(a_i \bullet b_j)R^{i+j}$ 

## Il Sistema Numerico Binario (R=2)

Sistema numerico posizionale che utilizza solo 2 simboli, {0,1}.

Il sistema binario è usato in **informatica** per la rappresentazione interna dei numeri, grazie alla semplicità nella realizzazione di un elemento con **due soli stati** e per la corrispondenza con i **valori logici di vero e falso**.

Le tabelline di somma e prodotto sono le seguenti:

|         |   | + | 0 | 1     |   |   | $\times$ | 0 | 1 |   |       |   |  |
|---------|---|---|---|-------|---|---|----------|---|---|---|-------|---|--|
|         |   | 0 | 0 | 1     | - |   | 0        | 0 | 0 |   |       |   |  |
|         |   | 1 | 1 | 10    |   |   | 1        | 0 | 1 |   |       |   |  |
|         |   |   |   |       |   |   |          |   | 1 | 1 | $1_2$ | × |  |
| riporto | 1 | 1 | 1 |       |   |   |          |   | 1 | 0 | $1_2$ | = |  |
| прого   |   |   |   | $1_2$ | _ |   |          |   | 1 | 1 | 1     |   |  |
|         |   |   |   | 4     | = |   |          | 0 | 0 | 0 | _     |   |  |
|         | 1 | 1 | 0 | 00    | _ |   | 1        | 1 | 1 | _ |       |   |  |
|         | _ | - | 0 | 02    |   | 1 | 0        | 0 | 0 | 1 | 10    |   |  |

# Il Sistema Numerico Ottale (R=8)

Sistema numerico posizionale che utilizza 8 simboli, {0,1,2,3,4,5,6,7}.

Le tabelline che regolano somma e prodotto sono le seguenti:

| + | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | $\times$ | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|---|---|----|----|----|----|----|----|----|----------|---|---|----|----|----|----|----|----|
| 0 | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 0        | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 10 | 1        | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
| 2 | 2 | 3  | 4  | 5  | 6  | 7  | 10 | 11 | 2        | 0 | 2 | 4  | 6  | 10 | 12 | 14 | 16 |
| 3 | 3 | 4  | 5  | 6  | 7  | 10 | 11 | 12 | 3        | 0 | 3 | 6  | 11 | 14 | 17 | 22 | 25 |
| 4 | 4 | 5  | 6  | 7  | 10 | 11 | 12 | 13 | 4        | 0 | 4 | 10 | 14 | 20 | 24 | 30 | 34 |
| 5 | 5 | 6  | 7  | 10 | 11 | 12 | 13 | 14 | 5        | 0 | 5 | 12 | 17 | 24 | 31 | 36 | 43 |
| 6 | 6 | 7  | 10 | 11 | 12 | 13 | 14 | 15 | 6        | 0 | 6 | 14 | 22 | 30 | 36 | 44 | 52 |
| 7 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 7        | 0 | 7 | 16 | 25 | 34 | 43 | 52 | 61 |

#### Il Sistema Numerico Esadecimale (R=16)

Sistema numerico posizionale che utilizza 16 simboli, {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

E' molto utilizzato in **informatica**, una cifra esadecimale corrisponde direttamente a **quattro cifre binarie**:

1 byte è rappresentabile con due cifre esadecimali.

La tabellina che governa la somma è la seguente:

| +            | 0 | 1            | 2               | 3            | 4            | 5            | 6            | 7            | 8            | 9            | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ |
|--------------|---|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 0            | 0 | 1            | 2               | 3            | 4            | 5            | 6            | 7            | 8            | 9            | Α            | В            | С            | D            | Е            | F            |
| 1            | 1 | 2            | 3               | 4            | 5            | 6            | 7            | 8            | 9            | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           |
| 2            | 2 | 3            | 4               | 5            | 6            | 7            | 8            | 9            | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           |
| 3            | 3 | 4            | 5               | 6            | 7            | 8            | 9            | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           |
| 4            | 4 | 5            | 6               | 7            | 8            | 9            | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           |
| 5            | 5 | 6            | 7               | 8            | 9            | A            | В            | $^{\rm C}$   | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           |
| 6            | 6 | 7            | 8               | 9            | $\mathbf{A}$ | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           |
| 7            | 7 | 8            | 9               | A            | В            | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           |
| 8            | 8 | 9            | A               | В            | $^{\rm C}$   | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           |
| 9            | 9 | A            | $_{\mathrm{B}}$ | $^{\rm C}$   | D            | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           |
| A            | Α | В            | $^{\rm C}$      | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           |
| В            | В | $^{\rm C}$   | D               | $\mathbf{E}$ | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 1A           |
| $^{\rm C}$   | С | D            | $\mathbf{E}$    | $\mathbf{F}$ | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 1A           | 1B           |
| $\mathbf{D}$ | D | $\mathbf{E}$ | $\mathbf{F}$    | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 1A           | 1B           | 1C           |
| $\mathbf{E}$ | E | $\mathbf{F}$ | 10              | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 1A           | 1B           | 1C           | 1D           |
| $\mathbf{F}$ | F | 10           | 11              | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 1A           | 1B           | 1C           | 1D           | 1E           |

#### Il Sistema Numerico Esadecimale (R=16)

La tabellina che regola la moltiplicazione:

| $\times$     | 0 | 1            | 2            | 3            | 4          | 5            | 6          | 7            | 8  | 9             | A  | В  | $^{\rm C}$ | D  | $\mathbf{E}$  | $\mathbf{F}$  |
|--------------|---|--------------|--------------|--------------|------------|--------------|------------|--------------|----|---------------|----|----|------------|----|---------------|---------------|
| 0            | 0 | 0            | 0            | 0            | 0          | 0            | 0          | 0            | 0  | 0             | 0  | 0  | 0          | 0  | 0             | 0             |
| 1            | 0 | 1            | $^2$         | 3            | 4          | 5            | 6          | 7            | 8  | 9             | A  | В  | $^{\rm C}$ | D  | $\mathbf{E}$  | $\mathbf{F}$  |
| 2            | 0 | 2            | 4            | 6            | 8          | A            | $^{\rm C}$ | $\mathbf{E}$ | 10 | 12            | 14 | 16 | 18         | 1A | 1C            | $1\mathrm{E}$ |
| 3            | 0 | 3            | 6            | 9            | $^{\rm C}$ | $\mathbf{F}$ | 12         | 15           | 18 | 1B            | 1E | 21 | 24         | 27 | 2A            | 2D            |
| 4            | 0 | 4            | 8            | $^{\rm C}$   | 10         | 14           | 18         | 1C           | 20 | 24            | 28 | 2C | 30         | 34 | 38            | 3C            |
| 5            | 0 | 5            | $\mathbf{A}$ | $\mathbf{F}$ | 14         | 19           | 1E         | 23           | 28 | 2D            | 32 | 37 | 3C         | 41 | 46            | 4B            |
| 6            | 0 | 6            | $^{\rm C}$   | 12           | 18         | 1E           | 24         | 2A           | 30 | 36            | 3C | 42 | 48         | 4E | 54            | 5A            |
| 7            | 0 | 7            | $\mathbf{E}$ | 15           | 1C         | 23           | 2A         | 31           | 38 | 3F            | 46 | 4D | 54         | 5B | 62            | 69            |
| 8            | 0 | 8            | 10           | 18           | 20         | 28           | 30         | 38           | 40 | 48            | 50 | 58 | 60         | 68 | 70            | 78            |
| 9            | 0 | 9            | 12           | 1B           | 24         | 2D           | 36         | 3F           | 48 | 51            | 5A | 63 | 6C         | 75 | $7\mathrm{E}$ | 87            |
| A            | 0 | Α            | 14           | 1E           | 28         | 32           | 3C         | 46           | 50 | 5A            | 64 | 6E | 78         | 82 | 8C            | 96            |
| В            | 0 | В            | 16           | 21           | 2C         | 37           | 42         | 4D           | 58 | 63            | 6E | 79 | 84         | 8F | 9A            | A5            |
| $^{\rm C}$   | 0 | $^{\rm C}$   | 18           | 24           | 30         | 3C           | 48         | 54           | 60 | 6C            | 78 | 84 | 90         | 9C | A8            | B4            |
| D            | 0 | D            | 1A           | 27           | 34         | 41           | 4E         | 5B           | 68 | 75            | 82 | 8F | 9C         | A9 | B6            | C3            |
| $\mathbf{E}$ | 0 | $\mathbf{E}$ | 1C           | 2A           | 38         | 46           | 54         | 62           | 70 | $7\mathrm{E}$ | 8C | 9A | A8         | B6 | C4            | D2            |
| $\mathbf{F}$ | 0 | F            | 1E           | 2D           | 3C         | 4B           | 5A         | 69           | 78 | 87            | 96 | A5 | B4         | C3 | D2            | E1            |

#### **Confronto Sinottico**

I primi 20 numeri naturali nelle basi decimale (R=10), binario (R=2), ottale (R=8) ed esadecimale (R=16).

| R = 10 | R = 2 | R = 8 | R = 16       |
|--------|-------|-------|--------------|
| 0      | 0     | 0     | 0            |
| 1      | 1     | 1     | 1            |
| 2      | 10    | 2     | 2            |
| 3      | 11    | 3     | 3            |
| 4      | 100   | 4     | 4            |
| 5      | 101   | 5     | 5            |
| 6      | 110   | 6     | 6            |
| 7      | 111   | 7     | 7            |
| 8      | 1000  | 10    | 8            |
| 9      | 1001  | 11    | 9            |
| 10     | 1010  | 12    | A            |
| 11     | 1011  | 13    | В            |
| 12     | 1100  | 14    | $^{\rm C}$   |
| 13     | 1101  | 15    | D            |
| 14     | 1110  | 16    | $\mathbf{E}$ |
| 15     | 1111  | 17    | $\mathbf{F}$ |
| 16     | 10000 | 20    | 10           |
| 17     | 10001 | 21    | 11           |
| 18     | 10010 | 22    | 12           |
| 19     | 10011 | 23    | 13           |

# Alcune Proprietà (I)

- 1. La potenza n-esima di una base R è sempre rappresentata dal numero 1 seguito da n zeri
  - 1.  $2^4 = 10000_2 = 16_{10}$
  - 2.  $8^3 = 1000_8 = 512_{10}$
  - 3.  $10^6 = 1000000_{10}$
  - 4.  $16^3 = 1000_{16} = 4096_{10}$
- 2. Data una base R, il massimo numero rappresentabile con n cifre è R<sup>n</sup> -1.
  - 1. R = 2, n = 7,  $2^7 = 128_{10} \rightarrow [0,127_{10}]$  (C: char)
  - 2. R = 2, n = 15,  $2^{15} = 32768_{10} \rightarrow [0,32767_{10}]$  (C: int)

# Alcune Proprietà (II)

1. La moltiplicazione di un numero naturale rappresentato in base-R per la base stessa, si ottiene traslando tutte le cifre significative verso sinistra ed inserendo uno 0 come LSB.

```
1. FE8_{16} \times 16^{1}_{10} = FE80_{16}
```

- 2.  $65403_8 \times 8_{10}^3 = 65403000_8$
- 3.  $11001_2 \times 2_{10}^3 = 11001000_2$
- 2. La (parte intera della) divisione di un numero naturale rappresentato in base-R per la base stessa si ottiene eliminando la cifra meno significativa (LSB) e traslando tutte le altre cifre verso destra.
  - 1.  $65403_8 / 81_{10} = 65403_8 / 10_8 = 6540_8$
  - 2.  $65403_8 / 8_{10}^3 = 65403_8 / 1000_8 = 65_8$
  - 3.  $11001_2 / 2^3_{10} = 11001_2 / 1000_2 = 11_2$

# Rappresentazione dei Numeri

# Lezione I: Numeri Naturali 3. Cambiamenti di Base

#### Cambiamento di Base

La conversione, o cambiamento, di base è il passaggio dalla rappresentazione di un numero da una base all'altra.

Dato un numero naturale  $q \in N$ , espresso in base- $R_1$  con dei coefficienti  $a_i$ . Trovare la sua rappresentazione in base- $R_2$  significa determinare i coefficienti  $b_j$  del polinomio nella nuova base.

$$q = \sum_{i=0}^{n-1} a_i R_1^i = \sum_{j=0}^{m-1} b_j R_2^j$$

Supponiamo di voler esprimere il numero  $17_{10}$  nei sistemi di numerazione binario, ottale ed esadecimale.

$$17_{10} = 1 \cdot 2^4 + 1 \cdot 2^0 = 16 + 1 \rightarrow 10001_2$$
  
 $17_{10} = 2 \cdot 8^1 + 1 \cdot 8^0 = 16 + 1 \rightarrow 21_8$   
 $17_{10} = 1 \cdot 16^1 + 1 \cdot 16^0 = 16 + 1 \rightarrow 11_{16}$ 

# Formula Ricorsiva (I)

$$q = q_0 = b_0 + b_1 R_2 + b_2 R_2^2 + \dots + b_{m-2} R_2^{m-2} + b_{m-1} R_2^{m-1}$$

$$q_0 = b_0 + R_2 (b_1 + b_2 R_2 + \dots + b_{m-2} R_2^{m-3} + b_{m-1} R_2^{m-2})$$

$$q_0 = b_0 + R_2 (b_1 + R_2 (b_2 + \dots + b_{m-2} R_2^{m-4} + b_{m-1} R_2^{m-3}))$$

$$q_2$$

Possiamo individuare una formula ricorsiva:

$$q_{j} = b_{j} + R_{2}q_{j+1}$$

$$\text{Con j} = 0, 1, ..., \text{m-1 e } q_{m} = 0.$$

$$q = q_{0} = b_{0} + R_{2}q_{1}$$

$$q = q_{0} = b_{0} + R_{2}(b_{1} + q_{2}R_{2})$$

$$q = q_{0} = b_{0} + R_{2}(b_{1} + R_{2}(b_{2} + q_{3}R_{2}))$$

$$q = q_{0} = \sum_{j=0}^{m-1} b_{j}R_{2}^{j}$$

# Formula Ricorsiva (II)

$$q_j = b_j + q_{j+1}R_2$$

**Dividendo** ambo i membri **per**  $\mathbb{R}_2$ , si individua un metodo ricorsivo per calcolare i **parametri**  $\mathbf{b}_i$ , partendo da  $\mathbf{q}_0 = \mathbf{q}$ .

$$\frac{q_j}{R_2} = \underbrace{q_{j+1}}_{j+1} + \underbrace{b_j}_{k_2}$$
 Resto Quoziente

I coefficienti di q nella nuova base,  $b_j$ , si ottengono dividendo il numero di partenza (ricordando che  $q_0 = q$ ) per la nuova base e associando ai coefficienti il resto delle divisioni. Il processo si arresta quando si ottiene un quoziente nullo.

$$\frac{q_0}{R_2} = \frac{q}{R_2} = q_1 + \frac{b_0}{R_2}$$

# Formula Ricorsiva (III)

$$\frac{q_0}{R_2} = \frac{q}{R_2} = q_1 + \frac{b_0}{R_2}$$

 $b_0$  è il **resto** della divisione di  $q / R_2$ ,  $q_1$  è il **quoziente** (intero) della divisione  $q / R_2$ .

$$\frac{q_1}{R_2} = q_2 + \frac{b_1}{R_2}$$

 $b_1$  è il **resto** della divisione di  $q_1$  /  $R_2$ ,  $q_2$  è il **quoziente** (intero) della divisione  $q_1$  /  $R_2$ .

Si itera il procedimento finché il quoziente  $q_m$  è nullo.



$$46 (q_0) / 2 (R_2) = 23 (q_1) + 0 (b_0) / 2$$

$$23 (q_1) / 2 (R_2) = 11 (q_2) + 1 (b_1) / 2$$

$$11 (q_2) / 2 (R_2) = 5 (q_3) + 1 (b_2) / 2$$

$$5 (q_3) / 2 (R_2) = 2 (q_4) + 1 (b_3) / 2$$

$$2 (q_4) / 2 (R_2) = 1 (q_5) + 0 (b_4) / 2$$

$$1 (q_5) / 2 (R_2) = 0 (q_6) + 1 (b_5) / 2$$

$$32 + 0 + 8 + 4 + 2 + 0 = 46$$



$$7 (q_0) / 2 (R_2) = 3 (q_1) + 1 (b_0) / 2$$

$$3 (q_1) / 2 (R_2) = 1 (q_2) + 1 (b_1) / 2$$

$$1 (q_2) / 2 (R_2) = 0 (q_3) + 1 (b_2) / 2$$

 $q_3 = 0$ , il procedimento termina.

$$7_{10} = b_2b_1b_0 = 111_2$$
  
 $1*2^2 + 1*2^1 + 1*2^0 = 4 + 2 + 1 = 7$ 





Convertire il numero 58 in binario.

Soluzione: 111010<sub>2</sub>

Verifica:  $1*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 32 + 16 + 8 + 2 = 58_{10}$ 

Convertiamo il numero 19<sub>10</sub> in base-2:

$$19_{10} = 10011_2$$

Convertiamo il numero 1632<sub>10</sub> in base-8:

$$1632_{10} = 3140_8$$

#### Conversione dalla base-2 alla base-8/16

E' utile approfondire le conversione tra due basi nel caso in cui una sia potenza dell'altra.

#### 1. Conversione dalla base 2 alle base 8:

$$q = \sum_{i=0}^{n-1} a_i 2^i = \sum_{j=0}^{l-1} (a_{3j} 2^0 + a_{3j+1} 2^1 + a_{3j+2} 2^2) \bullet 8^j$$

dove l è la parte intera della divisione n/3.

#### 2. Conversione dalla base 2 alle base 16:

$$q = \sum_{i=0}^{n-1} a_i 2^i = \sum_{j=0}^{l-1} (a_{4j} 2^0 + a_{4j+1} 2^1 + a_{4j+2} 2^2 + a_{4j+3} 2^3) \bullet 16^j$$

dove l è la parte intera della divisione n/4.

# Esempi di Conversione (I)

1. Esempio di conversione dalla base 2 alle base 8:

$$19_{10} = 10011_{2}$$

$$= (1 * 2^{4} + 0 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 1 * 2^{0})$$

$$= (1 * 2^{1} + 0 * 2^{0}) * 2^{3} + (0 * 2^{2} + 1 * 2^{1} + 1) * 2^{0}$$

$$= (1 * 2^{1} + 0 * 2^{0}) * 8^{1} + (0 * 2^{2} + 1 * 2^{1} + 1) * 8^{0}$$

$$= 2 * 8^{1} + 3 * 8^{0} = 23_{8}$$

2. Esempio di Conversione dalla base 2 alle base 16:

$$42_{10} = 101010_{2}$$

$$= (1 * 2^{5} + 0 * 2^{4} + 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0})$$

$$= (1 * 2^{1} + 0 * 2^{0}) * 2^{4} + (1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0) * 2^{0}$$

$$= (1 * 2^{1} + 0 * 2^{0}) * 16^{1} + (1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0) * 16^{0}$$

$$= 2 * 16^{1} + 10 * 16^{0} = 2A_{16}$$

# Esempi di Conversione (II)

Convertiamo il numero  $101011_2 (= 43_{10})$  in base-8 e -16. **Si raggruppa** il numero di partenza, a partire dalla cifra meno significativa, **a gruppi di 3 e 4 cifre**.

$$101011_2 = 101_2 \ 011_2 = 53_8 ,$$
  
 $101011_2 = 10_2 \ 1011_2 = 2B_{16}$ 

Convertiamo il numero  $1DA_{16}$  (=  $474_{10}$ ) in base-2 ed -8. Si convertono **singolarmente le cifre** nelle corrispondenti **sequenze binarie**.

$$1DA_{16} = 1_2 \ 1101_2 \ 1010_2 = 111011010_2$$
  
 $111011010_2 = 111_2 \ 011_2 \ 010_2 = 732_8$ 

#### **Confronto Sinottico**

Dalla tavola sinottica si evince come convertire "a gruppi" i valori tra i sistemi binario (R=2), ottale (R=8) ed esadecimale (R=16).

| R = 10 | R = 2           | R = 8 | R = 16          |
|--------|-----------------|-------|-----------------|
| 0      | 0               | 0     | 0               |
| 1      | 1               | 1     | 1               |
| 2      | 10              | 2     | 2               |
| 3      | 11              | 3     | 3               |
| 4      | 100             | 4     | 4               |
| 5      | 101             | 5     | 5               |
| 6      | 110             | 6     | 6               |
| 7      | 111             | 7     | 7               |
| 8      | 1000            | 10    | 8               |
| 9      | 1001            | 11    | 9               |
| 10     | 1010            | 12    | A               |
| 11     | $\bigcirc$ 1011 | 13    | $_{ m B}$       |
| 12     | 1100            | 14    | $^{\mathrm{C}}$ |
| 13     | 1101            | 15    | D               |
| 14     | 1110            | 16    | $\mathbf{E}$    |
| 15     | 1111            | 17    | $\mathbf{F}$    |

# Esempi di Conversione (III)

#### Conversione del numero 361<sub>8</sub> in base-2:

$$361_{8}$$
 $3_{8}6_{8}1_{8}$ 
 $011_{2}110_{2}001_{2}$ 
 $11110001_{2}$ 

#### Conversione del numero 1101001101<sub>2</sub> in base-8:

$$1101001101_{2}$$

$$(00)1_{2}101_{2}001_{2}101_{2}$$

$$1_{8}5_{8}1_{8}5_{8}$$

$$1515_{8}$$

# Esempi di Conversione (IV)

#### Conversione del numero A16BC9<sub>16</sub> in base-2:

$$A16BC9_{16}$$

$$A_{16}1_{16}6_{16}B_{16}C_{16}9_{16}$$

$$1010_{2}0001_{2}0110_{2}1011_{2}1100_{2}1001_{2}$$

$$101000010110101111001001_{2}$$

#### Conversione del numero 1001011111111001011<sub>2</sub> in base-16:

 $1001011111111001011_{2}$   $(00)10_{2}0101_{2}1111_{2}1100_{2}1011_{2}$   $2_{16}5_{16}F_{16}C_{16}B_{16}$   $25FCB_{16}$