Session 7 – High Dimensional Fixed Effects

Data Skills for Research Kellogg Research Support

August 17, 2023

Northwestern Kellogg

Fixed Effects

Fixed effects / group-specific intercepts are frequently used in econometric models:

- Get rid of omitted variable bias
- Handle potential unobserved heterogeneity
- Increase precision

Roadmap

- Why use Fixed Effects?
- How to deal with "too many" fixed effects
 - de -meaning variables
- Data Examples and Computational Horse Races
 - Stata
 R
 Python
 Stata
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 <li
- Parallelizing Fixed Effect Code on KLC

But that's what we have computers for, isn't it?

An important equation:

$$\widehat{\beta} = (X'X)^{-1} X'Y$$

- X'X is a k by k matrix, where k is the number of regressors
- What does this mean if you have tens of thousands of fixed effects??

Frisch, Waugh and Lovell to the rescue

- It turns out that including a full set of fixed effects to your predictor variables is equivalent to subtracting the group mean from each observation for each dependent and ('other') predictor variable, and running a regression using the demeaned variables
- Many of the efficient fixed-effects algorithms use this trick

Which command/software is right for you?

- Is the researcher interested in the point estimates/standard errors of the fixed effects themselves?
- Are multiple levels of fixed effects used?
- Do you need clustered standard errors? Clustered at what level?

Package Comparison

Feature/Aspect	reghdfe (Stata)	felm (R)	feols (R)	fixedeffect (Python)
Developer	Sergio Correia (ftools)	Simen Gaure (felm)	-	-
Core Efficiency	Efficient reprogramming using Mata	Efficient C++ implementation	Efficient C implementation	Efficient Python implementation
Performance	Faster for one- level fixed effects	Fast for one- and two-level fixed effects	Fast for one- and two-level fixed effects	Fast for high- dimensional fixed effects
Multiple Fixed Effects	Allows multiple levels of fixed effects	Limited to one- and two-level fixed effects	Limited to one- and two-level fixed effects	Limited to one- and two-level fixed effects
Clustering	Supports various clustering options	Limited clustering options	Limited clustering options	Limited clustering options

Data Example

- Dataset on Madison, WI home sales (Hendel et al. 2009)
- Research Question: Are realized prices higher when using a realtor, or when sold by owner themselves?
 - Potential for selection?
 - Solution: home fixed effects only use within-home comparisons!
 - Contains 22,000 home sales and <u>16,000 fixed</u>
 <u>effects</u>

Stata Fixed Effect Models – KLC Run Time

reg log_sale_price list_fsbo age_home new i.month year i.home_id,
 cluster(home_id)

Did not Run

0.32 seconds

xtreg log_sale_price list_fsbo age_home new i.month year, fe cluster(home_id)

0.09 seconds

reghdfe log_sale_price list_fsbo age_home new i.month year, absorb(home_id)
 vce(cluster home_id)

1.00 seconds

R Fixed Effect Models - Run Time

lm(log_sale_price~ list_fsbo+ new + as.factor(month) + as.factor(home_id), data=homes_data)

library(lfe)

felm(log_sale_price ~ list_fsbo + age_home + new + as.factor(month) + year | home_id | 0 | home_id , data=homes_data)

library(fixest)

feols(log_sale_price ~ list_fsbo + age_home + new + as.factor(month) + year | home_id)

Python Fixed Effect Model - Run Time

```
fixedeffect(data_df = homes_data, dependent = log_sale_price, exog_x =
['list_fsbo', 'age_home', 'new'], category = ['home_id', 'month'], cluster =
home_id)
```


0.37 seconds

Creating a Fixed Effect Conda Environment

Using a text editor, create the following file on KLC called fe_env.yml

```
name: fe_env
channels:
    - conda-forge
    - defaults
dependencies:
    # R packages
    - r-base=4.1.1
    - r-felm
    - r-lfe

# Python packages
    - python=3.9
    - matplotlib
    - statsmodels
    - fixedeffect
```

You can run this file using the mamba module on KLC to create the environment module load mamba

```
mamba env create -f r_env.yml
```

Activating a Conda Environment

To activate the environment in the future, either load mamba:

module load mamba

OR any version of conda:

module load python-anaconda3/2019.10

Then run this line to activate the environment:

source activate fe_env

To leave the environment:

source deactivate fe_env

To output the yaml file so you can share your environment with others:

conda env export > fe env.yml

HD Fixed Effect Parallelization in R

Overview:

parallel library accelerates R computations by enabling simultaneous execution of tasks on multiple CPU cores.

Key Features:

parLapply: parallelizing tasks that require significant computation or when data needs to be shared across cores.

mclapply: Suited for scenarios with minimal data sharing and when independent tasks can be executed in parallel.

```
# Load the required packages
library(parallel)

# Define a function to estimate fixed effects model
estimate_fe_model <- function(df) {
   library(felm)
   model <- felm(y ~ x | id, data = df)
   return(summary(model))
}

# Using parLapply for parallel fixed effects estimation
fe_model_results <- parLapply(data, estimate_fe_model)</pre>
```

Northwestern Kellogg

HD Fixed Effect Example Studies

Environmental Economics

Study: Impact of Green Regulations on Firm Emissions

Method: Fixed effects control for unobserved firm-specific characteristics and regulatory effects.

Labor Economics

Study: Gender Wage Gap Over Time

Method: Fixed effects capture gender-specific wage differentials by controlling for time-invariant factors.

Health Economics

Study: Effects of Universal Healthcare on Health Outcomes

Method: Fixed effects account for unobserved health-related characteristics and policy impacts.

Finance

Study: Determinants of Stock Returns Across Industries

Method: Fixed effects control for industry-specific factors influencing stock performance.

Takeaways:

Accounting for Rich Heterogeneity

Challenge: Complex interactions in multi-dimensional data.

Solution: High-dimensional fixed effects capture diverse unobserved

factors.

Efficiently Handling Big Data

Challenge: Large datasets with numerous variables.

Solution: High-dimensional fixed effects manage high-dimensional control

variables.

Uncovering Granular Insights

Challenge: Exploring nuanced effects in detailed contexts.

Solution: High-dimensional fixed effects reveal fine-grained patterns and

relationships.

Proof

Proof:

$$Y = X\beta + Z\gamma + U$$

Let $\widehat{\beta}$, $\widehat{\gamma}$ denote the OLS estimates of β and γ in the above model. Since $Y=\widehat{Y}+\widehat{U}$, we can write $Y=X\widehat{\beta}+Z\widehat{\gamma}+\widehat{U}$ wlog.

The procedure in 3, regressing M_XY on M_XZ , means that these two take the place of the dependent variable (normally, Y) and the regressor matrix (normally, X) in our expression for the OLS estimator:

$$\widetilde{\gamma} = \left[(M_X Z)' M_X Z \right]^{-1} (M_X Z)' M_X Y$$

$$= \left[Z' M_X' M_X Z \right]^{-1} Z' M_X' M_X Y$$

$$= \left[Z' M_X Z \right]^{-1} Z' M_X Y \text{ (symmetry, idempotency)}$$

Proof – Cont'd

Now plug in our expression for Y to see what the estimator will be

$$\widetilde{\gamma} = \left[Z' M_X Z \right]^{-1} Z' M_X Y
= \left[Z' M_X Z \right]^{-1} Z' M_X \left(X \widehat{\beta} + Z \widehat{\gamma} + \widehat{U} \right)
= \left[Z' M_X Z \right]^{-1} Z' \underbrace{M_X X}_{=0} \widehat{\beta} + \left[Z' M_X Z \right]^{-1} Z' M_X Z \widehat{\gamma} + \left[Z' M_X Z \right]^{-1} Z' M_X \widehat{U}
= \underbrace{\left[Z' M_X Z \right]^{-1} Z' M_X Z \widehat{\gamma} + \left[Z' M_X Z \right]^{-1} Z' M_X \widehat{U}}_{=I}
= \widehat{\gamma} + \left[Z' M_X Z \right]^{-1} Z' \left(I_n - X \left(X' X \right)^{-1} X' \right) \widehat{U}
= \widehat{\gamma} + \left[Z' M_X Z \right]^{-1} \underbrace{Z' \widehat{U}}_{=0} - \left[Z' M_X Z \right]^{-1} Z' X \left(X' X \right)^{-1} \underbrace{X' \widehat{U}}_{=0}
= \widehat{\gamma}.$$

due to FOC (normal equations) for Z and X.