# MOBILE COMMUNICATION LABORATORY

ECED, SVNIT, Surat.

## AIM:

# Understand the Pathloss prediction formula.

# **Objectives:**

- Calculation of received signal strength as a function of distance separation between transmitter and receiver.
- Impact of parameters on received signal strength
  - Transmitter Power
  - Path Loss Exponent
  - Carrier Frequency
  - Receiver Antenna height
  - Transmitter Antenna height

- The design of a communication system involves selection of values of several parameters.
- Most important parameter is Transmit power.
- In terrestrial mobile communication system, electromagnetic waves propagation is affected by reflection, diffraction and scattering.
- These leads to dynamic variation of signal strength as a function of frequency, distance of separation, antenna height etc.

# Free Space Propagation Model



• Received Power at distance **d** is given by :

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

#### • Path Loss:

The reduction in power density of an electromagnetic wave as it propagates through space.

$$PL(dB) = 10\log \frac{P_t}{P_r} = -10\log \left[\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2}\right]$$

• Received Power at distance **d** is given by :

$$P_r(d) = P_r(d_0) \left(\frac{d_0}{d}\right)^2 \qquad d \ge d_0 \ge d_f$$

• Important Formula:

$$P_r(d) = P_r(d_0) + 10n_p \log_{10} \left(\frac{d_0}{d}\right)$$

$$PL(dB) = PL(d_0) + 10n_p \log_{10} \left(\frac{d}{d_0}\right)$$

• Two Ray Propagation Model:

A free space propagation model is inaccurate.

• A useful propagation model (Two Ray Propagation Model) considers both direct path and ground reflected path between transmitter and receiver.



$$PL = 10n_p \log_{10}(d) + 7.8 - 18 \log_{10}(h_{BS}) - 18 \log_{10}(h_{UT}) + 20 \log_{10}(f_c)$$

where,

- $d = T_x R_x$ , i.e.,  $T_x$  and  $R_x$  separation distance in meters.
- $h_{BS}$ = the base station antenna height in meters.
- $h_{UT}$  = the user terminal i.e. receiver antenna height in meters.
- $f_c$  is the carrier frequency in GHz.

| Environment                   | Path Loss Exponent |  |
|-------------------------------|--------------------|--|
| Free space                    | 2                  |  |
| Urban area cellular radio     | 2.7 to 3.5         |  |
| Shadowed urban cellular radio | 3 to 5             |  |
| In building line-of-site      | 1.6 to 1.8         |  |
| Obstructed in building        | 4 to 6             |  |
| Obstructed in factories       | 2 to 3             |  |

| Distance (m) | Pr (d) | Avg.<br>Pr(d) |
|--------------|--------|---------------|
| 100          |        |               |

$$P_r(d) = P_r(d_0) + 10n_p \log_{10} \left(\frac{d_0}{d}\right)$$

D = 500 m , 800 m , 1000 m , 1500 m

Path loss Exponent (n) = 2

#### EXPERIMENT 3:1 B

| Distance (m) | Pr (d) | Path Loss<br>Exponent<br>(n) | Path Loss<br>(PL) |
|--------------|--------|------------------------------|-------------------|
| 100          |        |                              |                   |
|              |        |                              |                   |

$$PL(dB) = PL(d_0) + 10n_p \log_{10} \left(\frac{d}{d_0}\right)$$

D = 500 m, 800 m, 1000 m, 1500 m

Tx Power = 50 dBm

#### EXPERIMENT 3:1 C

$$PL = 10n_p \log_{10}(d) + 7.8 - 18 \log_{10}(h_{BS}) - 18 \log_{10}(h_{UT}) + 20 \log_{10}(f_c)$$

Tx Power = 50 dBm

hTx = 30 m

hRx = 1 m

n = set it to fix value (any)

| Distance (m) | Pr (d) | Carrier<br>Frequency<br>(Fc) | Path Loss<br>(PL) |
|--------------|--------|------------------------------|-------------------|
| 1000         |        |                              |                   |
| 1000         |        |                              |                   |

#### EXPERIMENT 3:1 D

$$PL = 10n_p \log_{10}(d) + 7.8 - 18 \log_{10}(h_{BS}) - 18 \log_{10}(h_{UT}) + 20 \log_{10}(f_c)$$

Tx Power = 50 dBm

hTx = 30 m

Fc = 2.1 GHz, 2,3 GHz, 2.5 GHz

n = set it to fix value (any)

| Distance (m) | Pr (d) | Receiver<br>Antenna<br>Height<br>(hRx)(m) | Path Loss<br>(PL) |
|--------------|--------|-------------------------------------------|-------------------|
| 1000         |        |                                           |                   |

#### EXPERIMENT 3:1 E

$$PL = 10n_p \log_{10}(d) + 7.8 - 18 \log_{10}(h_{BS}) - 18 \log_{10}(h_{UT}) + 20 \log_{10}(f_c)$$

Tx Power = 50 dBm

hRx = 1 m

Fc = 2.1 GHz, 2,3 GHz, 2.5 GHz

n = set it to fix value (any)

| Distance (m) | Pr (d) | Transmitter Antenna Height (hTx)(m) | Path Loss<br>(PL) |
|--------------|--------|-------------------------------------|-------------------|
| 1000         |        |                                     |                   |