

Adversarial Search

R&N: § 5.1-5.4

Michael Rovatsos

19 January 2016

Informatics 2D

Outline

- Games
- Optimal decisions
- α - β pruning
- Imperfect, real-time decisions

Games vs. search problems

- We're (usually) interested in zero-sum games of perfect information
 - Deterministic, fully observable
 - Agents act alternately
 - Utilities at end of game are equal and opposite
- Time limits → unlikely to find goal, must approximate

Game tree (2-player, deterministic, turns)

Optimal Decisions

- Normal search: optimal decision is a sequence of actions leading to a goal state (i.e. a winning terminal state)
- Adversarial search:
 - MIN has a say in game
 - MAX needs to find a contingent strategy which specifies:
 - MAX's move in initial state then...
 - MAX's moves in states resulting from every response by MIN to the move then...
 - MAX's moves in states resulting from every response by MIN to all those moves, etc...

minimax value of a node = utility for MAX of being in corresponding state:

```
MINIMAX(s) =
```

```
\begin{aligned} &\text{UTILITY(s)} & &\text{if TERMINAL-TEST(s)} \\ &\text{max}_{a \in \text{Actions(s)}} & &\text{MINIMAX(RESULT(s,a)) if PLAYER(s)} = \text{MAX} \\ &\text{min}_{a \in \text{Actions(s)}} & &\text{MINIMAX(RESULT(s,a)) if PLAYER(s)} = \text{MIN} \\ &&\text{Informatics 2D} \end{aligned}
```


NIVERO E

Minimax

- Perfect play for deterministic games
- Idea: choose move to position with highest minimax value = best achievable payoff against best play
- Example: 2-ply game:

Minimax algorithm

```
function MINIMAX-DECISION(state) returns an action
  \mathbf{return} \ \mathrm{arg} \ \mathrm{max}_{a \ \in \ \mathsf{ACTIONS}(s)} \ \mathsf{Min-Value}(\mathsf{Result}(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(s, a)))
   return v
function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow \infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(s, a)))
   return v
```

Idea: Proceed all the way down to the leaves of the tree then minimax values are backed up through tree

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(b^m)
- Space complexity? O(bm) (depth-first exploration)

- For chess, b ≈ 35, m ≈100 for "reasonable" games
 - → exact solution completely infeasible!
 - → would like to eliminate (large) parts of game tree

Are minimax value of root and, hence, minimax decision independent of pruned leaves?

Let pruned leaves have values u and v,

then MINIMAX(root) = $\max(\min(3,12,8), \min(2,u,v), \min(14,5,2))$ = $\max(3, \min(2,u,v), 2)$ = $\max(3,z,2)$ where $z \le 2$ = 3

Properties of α - β

- Pruning does not affect final result (as we saw for example)
- Good move ordering improves effectiveness of pruning (How could previous tree be better?)
- With "perfect ordering", time complexity = O(b^{m/2})
 - \rightarrow branching factor goes from b to \sqrt{b}
 - → (alternative view) doubles depth of search compared to minimax
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Why is it called α - β ?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for MAX
- If v is worse than α, MAX will avoid it
 - → prune that branch
- Define β similarly for MIN

MAX

MIN

..

MAX

MIN

The α - β algorithm

```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \geq \beta then return v
                                                Prune as this value is
      \alpha \leftarrow \text{MAX}(\alpha, v)
                                                worse for MIN and so
                                                won't ever be chosen by
   return v
                                                MIN!
```

 α is value of the best i.e. highest-value choice found so far at any choice point along the path for MAX

 β is value of the best i.e. lowest-value choice found so far at any choice point along the path for MIN Informatics 2D

The α - β algorithm

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow +\infty for each a in ACTIONS(state) do v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v \leq \alpha then return v Prune as this value is worse for MAX and so won't ever be chosen by MAX!
```


Resource limits

Suppose we have 100 secs, explore 10⁴ nodes/sec

→ 10⁶ nodes per move

Standard approach:

- cutoff test:
 - e.g., depth limit (perhaps add quiescence search, which tries to search interesting positions to a greater depth than quiet ones)
- evaluation function
 - = estimated desirability of position

Evaluation functions

For chess, typically linear weighted sum of features

EVAL(s) = $w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$ where each w_i is a weight and each f_i is a feature of state s

- Example
 - queen = 1, king = 2, etc.
 - $f_i = number of pieces of type i on board$
 - $w_i = value of the piece of type i$

Cutting off search

Minimax Cutoff is identical to Minimax Value except

- 1. TERMINAL-TEST is replaced by CUTOFF
- 2. UTILITY is replaced by EVAL

Does it work in practice?

$$b^{m} = 10^{6}, b=35 \rightarrow m=4$$

4-ply lookahead is a hopeless chess player!

- 4-ply ≈ human novice
- 8-ply ≈ typical PC, human master
- 12-ply ≈ Deep Blue, Kasparov

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In Go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Summary

- Games are fun to work on!
- They illustrate several important points about AI
- good idea to think about what to think about

