

Exercises – Representing pose in 2D

OsloMet ELVE3610 Introduction to Robotics

1) Consider the following diagram

- a) Using the diagram, determine the positions of the points 1 and 2, denoted by red circles in the following reference frames
 - a. Determine vectors ${}^{o}p_{1}$, ${}^{A}p_{1}$, ${}^{B}p_{1}$, ${}^{C}p_{1}$
 - b. Determine vectors ${}^{O}p_{2}$, ${}^{A}p_{2}$, ${}^{B}p_{2}$, ${}^{C}p_{2}$
- b) Determine the homogeneous transformation matrices $\,^{O}T_{A}$, $\,^{O}T_{B}$, $\,^{O}T_{C}$
- c) Determine the homogeneous transformation matrices $\,^BT_{\it C}$, $\,^CT_{\it A}$, $\,^AT_{\it B}$
- d) Using the obtained transformation matrices ${}^{o}T_{A}$, ${}^{o}T_{B}$, ${}^{o}T_{C}$, and ${}^{o}p_{1}$, ${}^{o}p_{2}$ from the diagram, determine the position vectors
 - a. Ap_1 , Bp_1 , Cp_1
 - b. Ap_2 , Bp_2 , Cp_2

and verify that the results are the same as in (a). HINT: For instance, to determine Ap_1 use the transformation formula ${}^A\tilde{p}_1 = {}^AT_O{}^O\tilde{p}_1 = \left({}^OT_A\right)^{-1}{}^O\tilde{p}_1$, where \tilde{p} denotes the homogeneous representation of vector p.

2) Determine if the following are valid rotation matrices. HINT: A rotation matrix satisfies det(R) = 1 and $R^T R = I$

a.
$$R = \begin{bmatrix} 0.995 & -0.0998 \\ 0.0998 & 0.995 \end{bmatrix}$$

b.
$$R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

c.
$$R = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

d. $R = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$
e. $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

d.
$$R = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

e.
$$R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

f.
$$R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

g. $R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$

g.
$$R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

h.
$$R = \begin{bmatrix} -0.5 & -0.866 \\ 0.866 & -0.5 \end{bmatrix}$$

i. $R = \begin{bmatrix} -0.5 & -0.866 \\ 0.866 & 0.5 \end{bmatrix}$

i.
$$R = \begin{bmatrix} -0.5 & -0.866 \\ 0.866 & 0.5 \end{bmatrix}$$

3) Consider a rotation matrix

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- a) Show that $R(0) = I_2$ where I_2 is the identity matrix of dimension 2.
- b) Show that $det(R(\theta)) = +1$ for any angle θ
- c) Show that $R(\theta)^T R(\theta) = I_2$
- d) Show that $R(-\theta) = R(\theta)^T$
- e) Show that R(a)R(b) = R(a+b)
- f) Show that the columns of $R(\theta)$ are orthonormal (orthogonal and unit norm)
- g) Show that the rows of $R(\theta)$ are orthonormal
- 4) Consider the transforms

$$T_1 = \begin{bmatrix} R_1 & t_1 \\ 0_{1 \times 2} & 1 \end{bmatrix}, T_2 = \begin{bmatrix} R_2 & t_2 \\ 0_{1 \times 2} & 1 \end{bmatrix}$$

Where

$$t_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$
, $t_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$, $0_{1 \times 2} = \begin{bmatrix} 0 & 0 \end{bmatrix}$

 $t_1=\begin{bmatrix}x_1\\y_1\end{bmatrix}, t_2=\begin{bmatrix}x_2\\y_2\end{bmatrix}, 0_{1\times 2}=\begin{bmatrix}0&0\end{bmatrix}$ Show that $T_1T_2=\begin{bmatrix}R_1R_2&t_1+R_1t_2\\0_{1\times 2}&1\end{bmatrix}$ 5) Show that $T^{-1}=\begin{bmatrix}R^T&-R^Tt\\0_{1\times 2}&1\end{bmatrix}$ is the inverse transform of $T=\begin{bmatrix}R&t\\0_{1\times 2}&1\end{bmatrix}$. HINT: Show that $TT^{-1} = I_3$.

6) Consider the following diagram:

- a) Determine the associated homogeneous transformation matrices $\,^BT_W$, $\,^BT_T$ b) Using $\,^BT_W$, $\,^BT_T$ determine $\,^WT_T$
- c) Determine the coordinates of the point p in frame $\{W\}$ denoted by $\ ^{W}p$
- d) Using ${}^{B}T_{W}$, ${}^{B}p$

RADAR target localization

Consider the problem of determining the position of a target from relative position measurements obtained from a ship mounted radar system. The objective is to determine the position of a target $^{O}p_{T}$ with respect to a reference frame $\{O\}$ when only the relative position measured with respect to a RADAR antenna on a ship is known. The position of the ship with respect to the origin reference frame is denoted by $^{O}p_{S}$.

You have a file with measurement data "radar_data.csv" in canvas which contains the following 5 columns:

- 1. ${}^{O}x_{S}$: X position of ship with respect to $\{O\}$ in meters.
- 2. ${}^{O}x_{S}$: Y position of the ship with respect to $\{O\}$ in meters
- 3. θ : Rotation angle from $\{0\}$ to $\{S\}$ in degrees.
- 4. ${}^{S}x_{T}$: X position of target with respect to $\{S\}$ in meters
- 5. ${}^{S}x_{T}$: Y position of the target with respect to $\{S\}$ in meters

The file contains 40 data samples. (NOTE: Angle θ is related to the ship heading ψ by $\theta=-\psi$. We have chosen for simplicity X as East and Y as North which makes a counterclockwise rotation θ as positive. The standard in marine navigation is to take X as North, and Y as East, which makes a clockwise rotation positive)

- 1) Write a python script that reads the measurement data file and plots the following information:
 - a. Ship position
 - b. Ship heading
 - c. Relative target position measurements

2) Write a python script that uses the available measurements to estimate the trajectory of the target with respect to the origin reference frame $\{O\}$. Plot the estimated target trajectory in world reference frame. HINT: Use the relationship ${}^{O}\tilde{p}_{T} = {}^{O}T_{S} {}^{S}\tilde{p}_{T}$ or ${}^{O}p_{T} = {}^{O}R_{S} {}^{S}p_{T} + {}^{O}p_{S}$ where ${}^{O}R_{S} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$.

