Interleaver pattern modification

Publication number: JP2003179528 (A)

Publication date:

- international:

2003-06-27

Inventor(s):
Applicant(s):
Classification:

H04B7/005; H04B7/02; H04J99/00; H04L1/00; H04B7/005;

H04B7/02; H04J99/00; H04L1/00; (IPC1-7): H04B7/02;

H04L1/00

- European:

H04L1/00B7V; H04L1/00B

Application number: JP20020297831 20021010 **Priority number(s):** EP20010124165 20011010

Abstract of JP 2003179528 (A)

PROBLEM TO BE SOLVED: To reduce interference between streams by eliminating the correlation between interleaver processing in different streams.

Also published as:

JP3801972 (B2)

EP1303052 (A1)

EP1303052 (B1)

US2003072353 (A1)

US7230995 (B2)

more >>

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-179528

(P2003-179528A)

(43)公開日 平成15年6月27日(2003.6.27)

(51) Int.Cl.'	
H 0 4 B	7/02

識別記号

FΙ

テーマコート*(参考)

H04L 1/00

H 0 4 B 7/02 H04L 1/00 Z 5K014

F 5K059

審查請求 有 請求項の数49 〇L (全 11 頁)

(21) 出願番号

特願2002-297831(P2002-297831)

(22)出願日

平成14年10月10日(2002.10.10)

(31)優先権主張番号 01124165.0

(32)優先日

平成13年10月10日(2001.10.10)

(33)優先権主張国

欧州特許庁(EP)

(71) 出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 クリスティアン ヴェンゲルター

ドイツ国 ランゲン 63225 モンツァシ ュトラーセ 4シー パナソニック ヨー ロピアン ラボラトリーズ ゲーエムベー

ハー内

(74)代理人 100105050

弁理士 鷲田 公一

最終頁に続く

(54) 【発明の名称】 インタリーバ・パターンの修正

(57)【要約】

【課題】 異なるストリームにおけるインタリーバ 処理の相関をなくすことによってストリーム間の干渉を 減少させること。

【解決手段】 マザー・インタリーバ・パターンおよび インタリーバ・パラメータをアクセスする。マザー・イ ンタリーバ・パターンを前記インタリーバ・パラメータ を用いて修正する。次に、送信機で修正したインタリー バ・パターンを適用してソース・データ・ストリームの インタリーブを行う。前記マザー・インタリーバ・パタ ーンを修正するために送信機が使用するインタリーバ・ パラメータは、同じチャネルで同時にデータを送信する 少なくとも 1 台の他の送信機が同時に使用するインタリ ーバ・パラメータとは異なる。

【特許請求の範囲】

【請求項1】 送信機でインタリーバ・パターンを用いてソース・データ・ストリームのインタリーブを行う方法であって、前記方法は、

1

マザー・インタリーバ・パターンにアクセスし、 インタリーバ・パラメータにアクセスし、

前記インタリーバ・パラメータを用いて前記マザー・インタリーバ・パターンを修正し、

前記送信機で前記修正したインタリーバ・パターンを適用して前記ソース・データ・ストリームのインタリーブ 10を行う、ステップを有し、

前記マザー・インタリーバ・パターンを修正するために 送信機が使用する前記インタリーバ・パラメータは、同 じチャネルで同時にデータを送信する少なくとも1台の 他の送信機が同時に使用するインタリーバ・パラメータ とは異なることを特徴とする方法。

【請求項2】 前記マザー・インタリーバ・パターンを 修正するステップは、前記インタリーバ・パターンによって定まる量だけソース・データ・ストリームのベクト ル要素を周期的にシフトするステップを含むことを特徴 20 とする請求項1記載の方法。

【請求項3】 前記マザー・インタリーバ・パターンを 修正するステップは、データ・ストリームのベクトル要 素を折り返すステップを含むことを特徴とする請求項2 記載の方法。

【請求項4】 前記マザー・インタリーバ・パターンを 修正するステップは、前記インタリーバ・パラメータに よって定まるミラーリング位置を用いて、ソース・デー タ・ストリームのベクトル要素に対してバイアス・ミラ ーリングを実行するステップを含むことを特徴とする請 求項1記載の方法。

【請求項5】 前記マザー・インタリーバ・パターンを 修正するステップは、データ・ストリームのベクトル要 素を折り返すステップを含むことを特徴とする請求項4 記載の方法。

【請求項6】 前記修正したインタリーバ・パターンを 適用するステップは、

前記マザー・インタリーバ・パターンを適用し、

マザー・インタリーバ・パターンの適用の前または後に データ・ストリームのベクトル要素の系列を変更する、 ステップを含むことを特徴とする請求項1記載の方法。

【請求項7】 前記インタリーバ・パラメータは、データ・ストリーム I Dに対応することを特徴とする請求項1記載の方法。

【請求項8】 前記インタリーバ・パラメータは、経時変化することを特徴とする請求項1記載の方法。

【請求項9】 CDMA(符号分割多元接続)通信システムにおいて実行されるように構成された請求項1記載の方法。

【請求項10】 前記インタリーバ・パラメータは、拡 50

散符号に対応することを特徴とする請求項9記載の方 注

【請求項11】 HSDPA(高速下り回線パケットアクセス)システムにおいて動作するように構成された請求項1記載の方法。

【請求項12】 ソース・データ・ストリームの誤り訂正を実行するステップをさらに有する請求項1記載の方法。

【請求項13】 インタリーバ・パターンを用いてソース・データ・ストリームをインタリーブするインタリーバを有する送信機であって、

前記インタリーバは、マザー・インタリーバ・パターン にアクセスし、インタリーバ・パラメータにアクセス し、前記インタリーバ・パラメータを用いて前記マザー ・インタリーバ・パターンを修正し、前記修正したイン タリーバ・パターンを適用して前記ソース・データ・ス トリームのインタリーブを行うように構成され、

前記マザー・インタリーバ・パターンを修正するために 送信機が使用する前記インタリーバ・パラメータは、同 じチャネルで同時にデータを送信する少なくとも1台の 他の送信機が同時に使用するインタリーバ・パラメータ とは異なることを特徴とする送信機。

【請求項14】 前記インタリーバは、さらに、前記インタリーバ・パターンによって定まる量だけソース・データ・ストリームのベクトル要素を周期的にシフトすることによって、前記マザー・インタリーバ・パターンを修正するように構成されることを特徴とする請求項13記載の送信機。

【請求項15】 前記インタリーバは、さらに、データ・ストリームのベクトル要素を折り返すことによって、前記マザー・インタリーバ・パターンを修正するように 構成されることを特徴とする請求項14記載の送信機。

【請求項16】 前記インタリーバは、さらに、前記インタリーバ・パラメータによって定まるミラーリング位置を用いて、ソース・データ・ストリームのベクトル要素に対してバイアス・ミラーリングを実行することによって、前記マザー・インタリーバ・パターンを修正するように構成されることを特徴とする請求項13記載の送信機。

40 【請求項17】 前記インタリーバは、さらに、データ ・ストリームのベクトル要素を折り返すことによって、 前記マザー・インタリーバ・パターンを修正するように 構成されることを特徴とする請求項16記載の送信機。

【請求項18】 前記インタリーバは、さらに、前記マザー・インタリーバ・パターンを適用し、マザー・インタリーバ・パターンの適用の前または後にデータ・ストリームのベクトル要素の系列を変更することによって、前記修正したインタリーバ・パターンを適用するように構成されることを特徴とする請求項13記載の送信機。

【請求項19】 前記インタリーバ・パラメータは、デ

ータ・ストリーム I Dに対応することを特徴とする請求 項13記載の送信機。

【請求項20】 前記インタリーバ・パラメータは、経時変化することを特徴とする請求項13記載の送信機。

【請求項21】 CDMA (符号分割多元接続)通信システムにおいて動作するように構成される請求項13記載の送信機。

【請求項22】 前記インタリーバ・パラメータは、拡 散符号に対応することを特徴とする請求項21記載の送 信機。

【請求項23】 HSDPA(高速下り回線パケットアクセス)システムにおいて動作するように構成される請求項13記載の送信機。

【請求項24】 ソース・データ・ストリームの誤り訂正をさらに実行するように構成される請求項13記載の送信機。

【請求項25】 受信機でデインタリーバ・パターンを 用いてデータ・ストリームのデインタリーブを行う方法 であって、前記方法は、

マザー・デインタリーバ・パターンにアクセスし、デインタリーバ・パラメータにアクセスし、

前記デインタリーバ・パラメータを用いて前記マザー・ デインタリーバ・パターンを修正し、

前記受信機で前記修正したデインタリーバ・パターンを 適用して前記データ・ストリームのデインタリーブを行 う、ステップを有し、

前記マザー・デインタリーバ・パターンを修正するため に受信機が使用する前記デインタリーバ・パターンは、 同じチャネルで同時にデータを受信する少なくとも1台 の他の受信機が同時に使用するデインタリーバ・パラメ ータとは異なることを特徴とする方法。

【請求項26】 マザー・インタリーバ・パターンにアクセスし、

インタリーバ・パラメータにアクセスし、

前記インタリーバ・パラメータを用いて前記マザー・インタリーバ・パターンを修正し、

送信機で前記修正したインタリーバ・パターンを適用して前記ソース・データ・ストリームのインタリーブを行う、ステップによってインタリーブされたデータ・ストリームをデインタリーブするよう構成された請求項25 記載の方法であって、

前記マザー・インタリーバ・パターンを修正するために 送信機が使用する前記インタリーバ・パラメータは、同 じチャネルで同時にデータを送信する少なくとも1台の 他の送信機が同時に使用するインタリーバ・パラメータ とは異なることを特徴とする方法。

【請求項27】 前記マザー・デインタリーバ・パターンを修正するステップは、前記デインタリーバ・パターンによって定まる量だけデータ・ストリームのベクトル要素を周期的にシフトするステップを含むことを特徴と 50

する請求項25記載の方法。

【請求項28】 前記マザー・デインタリーバ・パターンを修正するステップは、データ・ストリームのベクトル要素を折り返すステップを含むことを特徴とする請求項27記載の方法。

【請求項29】 前記マザー・デインタリーバ・パターンを修正するステップは、前記デインタリーバ・パラメータによって定まるミラーリング位置を用いて、データ・ストリームのベクトル要素に対してバイアス・ミラーリングを実行するステップを含むことを特徴とする請求項25記載の方法。

【請求項30】 前記マザー・デインタリーバ・パターンを修正するステップは、データ・ストリームのベクトル要素を折り返すステップを含むことを特徴とする請求項29記載の方法。

【請求項31】 前記修正したデインタリーバ・パターンを適用するステップは、

前記マザー・デインタリーバ・パターンを適用し、 マザー・デインタリーバ・パターンの適用の前または後 20 にデータ・ストリームのベクトル要素の系列を変更す る、ステップを含むことを特徴とする請求項25記載の 方法。

【請求項32】 前記デインタリーバ・パラメータは、 データ・ストリーム I Dに対応することを特徴とする請 求項25記載の方法。

【請求項33】 前記デインタリーバ・パラメータは、 経時変化することを特徴とする請求項25記載の方法。

【請求項34】 CDMA(符号分割多元接続)通信システムにおいて実行されるように構成された請求項25 記載の方法。

【請求項35】 前記デインタリーバ・パラメータは、 拡散符号に対応することを特徴とする請求項34記載の 方法。

【請求項36】 HSDPA(高速下り回線パケットアクセス)システムにおいて動作するように構成された請求項25記載の方法。

【請求項37】 データ・ストリームの誤り訂正を実行するステップをさらに有する請求項25記載の方法。

【請求項38】 デインタリーバ・パターンを用いてデ 40 ータ・ストリームをデインタリーブするデインタリーバ を有する受信機であって、

前記デインタリーバは、マザー・デインタリーバ・パターンにアクセスし、デインタリーバ・パラメータにアクセスし、前記デインタリーバ・パラメータを用いて前記マザー・デインタリーバ・パターンを修正し、前記修正したデインタリーバ・パターンを適用して前記データ・ストリームのデインタリーブを行うように構成され、前記マザー・デインタリーバ・パターンを修正するために受信機が使用する前記デインタリーバ・パラメータは、同じチャネルで同時にデータを受信する少なくとも

1台の他の受信機が同時に使用するデインタリーバ・パラメータとは異なることを特徴とする受信機。

【請求項39】 前記デインタリーバは、さらに、前記デインタリーバ・パターンによって定まる量だけデータ・ストリームのベクトル要素を周期的にシフトすることによって、前記マザー・デインタリーバ・パターンを修正するように構成されることを特徴とする請求項38記載の受信機。

【請求項40】 前記デインタリーバは、さらに、データ・ストリームのベクトル要素を折り返すことによって、前記マザー・デインタリーバ・パターンを修正するように構成されることを特徴とする請求項39記載の受信機。

【請求項41】 前記デインタリーバは、さらに、前記デインタリーバ・パラメータによって定まるミラーリング位置を用いて、データ・ストリームのベクトル要素に対してバイアス・ミラーリングを実行することによって、前記マザー・デインタリーバ・パターンを修正するように構成されることを特徴とする請求項38記載の受信機。

【請求項42】 前記デインタリーバは、さらに、データ・ストリームのベクトル要素を折り返すことによって、前記マザー・デインタリーバ・パターンを修正するように構成されることを特徴とする請求項41記載の受信機。

【請求項43】 前記デインタリーバは、さらに、前記マザー・デインタリーバ・パターンを適用し、マザー・デインタリーバ・パターンの適用の前または後にデータ・ストリームのベクトル要素の系列を変更することによって、前記修正したデインタリーバ・パターンを適用するように構成されることを特徴とする請求項38記載の受信機。

【請求項44】 前記デインタリーバ・パラメータは、 データ・ストリーム I Dに対応することを特徴とする請求項38記載の受信機。

【請求項45】 前記デインタリーバ・パラメータは、 経時変化することを特徴とする請求項38記載の受信機

【請求項46】 CDMA (符号分割多元接続) 通信システムにおいて動作するように構成される請求項38記載の受信機。

【請求項47】 前記デインタリーバ・パラメータは、 拡散符号に対応することを特徴とする請求項46記載の 受信機。

【請求項48】 HSDPA(高速下り回線パケットアクセス)システムにおいて動作するように構成される請求項38記載の受信機。

【請求項49】 データ・ストリームの誤り訂正をさら に実行するように構成される請求項38記載の受信機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ソース・データ・ストリームのインタリーブ、インタリーブされたデータ・ストリームのデインタリーブ、ならびにその送信機および受信機に関し、特にブロックをベースとしたインタリーバに使用するのに好適である。

[0002]

【従来の技術】特に無線チャネル特性の変化による信号フェージングの影響を受ける無線通信システムにおいて、ある限定された形式の時間ダイバーシティを得るために、インタリーバを使用することは技術的によく知られている。送信機および受信機がそれぞれデータのインタリーブおよびデインタリーブを行う通信システムの例を図6に示す。

【0003】図6において、送信機100、110、120、および130は、チャネル140を介して受信機150、160、170、および180にデータを送信する。送信機は、信号源100よりデータを取得し、このデータにFEC(ForwardError Correction)符号器110により誤り訂正符号化(FEC)が施されることによって、畳み込み符号または畳み込み符号から派生する符号が得られる。FEC符号器110の出力は、ソース・データ・ストリームとしてインタリーバ120に送られる。

【0004】並び替え装置としても知られるインタリーバは、データ送信システムにおいて雑音バーストやフェージングの影響を最小限に抑えるために使用される。インタリーバは一般に、ブロック構造または畳み込み構造を用いて実現する。通信システムでは様々な種類のブロックインタリーバが使用される。その他のインタリーバとしては、Sランダム(S-Random)インタリーバ、ディザドゴールデン(Dithered-Golden)インタリーバ、擬似ノイズ(PN)インタリーバなどがある。

【0005】ブロックインタリーバは、符号化データを 矩形配列でフォーマットする。通常、配列の各行は列数 に相当する長さの符号語またはベクトルを構成する。ビ ットは列単位で読み出され、チャネルを介して送信され る。受信機において、デインタリーバは同じ矩形配列フ ォーマットでデータを格納するが、読み出しは一度に1 符号語ずつ行単位で行う。送信時のデータのこのような 並び替えの結果、誤りバーストはいくつかのバーストに 分解され、その数は符号化時の矩形配列の行数に相当す る。ベクトルを1つだけ使用するものなど、ブロックイ ンタリーバの他の実施例も存在する。

【0006】ブロックインタリーバの代わりに畳み込みインタリーバをまったく同様の方法で使用することもでまる。

【0007】インタリーブの処理および実際のインタリーバの機能は、以下の例を考慮することで理解が容易に50 なる。インタリーバの対象となるソース・データ・スト

7

リームが入力系列x であると仮定すると、インタリーバの機能は入力系列x を以下の式に従って出力系列y に並び替えるものとして表現できる。

 $V_k = X_{f(k)} \quad , \quad$

ここで、f(k)は、例えば

 $f(k) = 1 + [(7^*k) \mod 54]$

となる順列関数であるが、k は 1 から 5 4 の範囲であり、5 4 はこの例では 1 符号ブロックの長さである。この関数例を適用すると、入力系列は、(y_1 y_2 … y_{54}) = (x_8 x_{15} x_{22} x_{23} x_{35} x_{45} x_{30} x_{3} x_{10} x_{17} … x_{41} x_{45} x_{1})に従って出力系列にマッピングされる。

[0008]

【発明が解決しようとする課題】従来のインタリーブ技術は、特に複数の異なる送信機のデータが1つのチャネルで同時に伝送される通信システムでは不利である。これについて図7を参照して詳細に説明する。

【0009】図7を参照すると、同じチャネル140でデータを送信する3つの送信装置が示されている。個々の送信機は実質的には同一の構成であるが、異なる信号源200、210、および220からデータを送信する。個々の信号源からのデータの各々は、まずそれぞれのFEC符号器110で誤り訂正符号化され、次にインタリーバ230でインタリーブされてから変調器130で変調される。

【0010】図7で説明した送信方式は、多数のデータ・ストリーム間である種の干渉が存在し、システムの性能に悪影響を与えるので不利である。これは同じ無線リソースを同時に共有する多数のデータ・ストリームが、完全直交性の一般的な要件を満たさないためである。特に、干渉によってバースト誤りが発生し、それぞれの受信機でデータを正しく受信できない場合がある。

【0011】発明の要約

ストリーム間の干渉を減少させることができる、ソース・データ・ストリームのインタリーブ方法、インタリーブされたデータ・ストリームのデインタリーブ方法、ならびにその送信機および受信機が提供される。

【0012】一実施例によれば、送信機におけるインタリーバ・パターンを用いたソース・データ・ストリームのインタリーブ方法が提供される。この方法は、マザー・インタリーバ・パターンにアクセスし、インタリーバ・40・パラメータにアクセスし、インタリーバ・パラメータを用いてマザー・インタリーバ・パターンを修正し、送信機で修正したインタリーバ・パターンを適用してソース・データ・ストリームのインタリーブを行う。送信機がマザー・インタリーバ・パターンの修正のために使用するインタリーバ・パラメータは、同時に同じチャネルを介してデータを送信する少なくとも1台の他の送信機が同時に使用するインタリーバ・パラメータとは異なる

【0013】他の実施例によれば、送信機は、インタリ 50

ーバ・パターンを用いてソース・データ・ストリームを インタリーブするインタリーバを有する。インタリーバ は、マザー・インタリーバ・パターンにアクセスし、イ ンタリーバ・パラメータにアクセスし、インタリーバ・ パラメータを用いてマザー・インタリーバ・パターンを 修正し、修正したインタリーバ・パターンを適用してソ ース・データ・ストリームのインタリーブを行うように 構成される。送信機がマザー・インタリーバ・パターン の修正に使用するインタリーバ・パラメータは、同時に 同じチャネルを介してデータを送信する少なくとも1台 の他の送信機が同時に使用するインタリーバ・パラメー タとは異なる。

8

【0014】さらに別の実施例によれば、受信機でデインタリーバ・パターンを使用してデータ・ストリームをデインタリーブする方法が提供される。この方法は、マザー・デインタリーバ・パターンにアクセスし、デインタリーバ・パラメータにアクセスし、デインタリーバ・パラメータを用いてマザー・デインタリーバ・パターンを修正し、受信機で修正したデインタリーバ・パターンを適用してデータ・ストリームのデインタリーブを行う。受信機がマザー・デインタリーバ・パターンの修正のために使用するデインタリーバ・パラメータは、同時に同じチャネルを介してデータを受信する少なくとも1台の他の受信機が同時に使用するデインタリーバ・パラメータとは異なる。

【0015】さらに別の実施例によれば、デインタリーバ・パターンを使用してデータ・ストリームをデインタリーブするデインタリーバを有する受信機が提供される。デインタリーバは、マザー・デインタリーバ・パターンにアクセスし、デインタリーバ・パラメータを用いてマザー・デインタリーバ・パターンを修正し、修正したデインタリーバ・パターンを修正し、修正したデインタリーバ・パターンをデータ・ストリームのデインタリーブに適用するように構成される。受信機がマザー・デインタリーバ・パターンの修正のために使用するデインタリーバ・パラメータは、同時に同じチャネルを介してデータを受信する少なくとも1台の他の受信機が同時に使用するデインタリーバ・パラメータとは異なる。

[0016]

30

【発明の実施の形態】以下、添付図面を参照して本発明 の実施の形態について説明するが、同じ要素や構成には 同じ参照番号を付して示すものとする。

【0017】図1を参照して、通信システムの送信機側に係る実施の形態について説明する。本発明の明瞭さを不必要に損なうことがないよう、受信機側については詳細に論じないものとする。送信機側において実施の形態がいかに機能するかを知れば、当業者は、送信機側の個々の装置に対応する構成部分を備えることによって、きわめて直接的に受信機側の設計を行うことができる。

【0018】図1に示すように、同じチャネル140で

10

データを送信する各データ送信装置には、それぞれ別個のインタリーバ300、310、および320、すなわち使用するインタリーバ・パターンが異なるインタリーバ300、310、および320が含まれる。以下に詳述するように、実施の形態におけるインタリーバ300、310、および320は、それぞれ対応するインタリーバ・パターンを生成するために使用するパラメータp. (i=1、2、3)を受信する。

【0019】これらのパラメータから異なるインタリーバ・パターンを取得するため数種類の方法がある。

【0020】インタリーバ・パターンを生成する一方法は、所定のマザー・インタリーバ・パターンを修正することである。インタリーバを起動する前に、インタリーバの入力において長さNの入力ベクトルを利用できなければならない。すなわち、入力にはNシンボルが必要となる。実施の形態について説明する上で、「シンボル」という用語はベクトルを分割するために使用できる任意のデータ要素またはデータ単位を意味する。Nはインタリーバ長であり、インタリーバを適用する通信システムによって与えられるパラメータである。実施の形態では202以上のインタリーバ長を使用することが好ましい。

【0021】マザー・インタリーバ・パターンの修正は、それぞれのインタリーバ・パラメータpiによって異なるアルゴリズムを適用することによって行う。そのようなアルゴリズムの実施の形態としては、シンボルの入力系列を周期的にシフトするものがある。これについて、図2を参照して以下に説明する。

【0022】ソース・データ・ストリームが位置x (k=0、…、N-1) である 1 続きのシンボルから 構成されているとすると、このデータ・ストリームに対 30 して、インタリーブの前に「周期的シフト」が施される。このため、周期的シフトのパラメータ π が各送信機 iにおいて導入される。

$p_i = \pi_i$

これにより、入力位置は周期的に π だけシフトするが、これは各ベクトル内でNより大きなビット位置が同じベクトルの対応する位置まで折り返されることを意味する。図2の例で、Nの値は10であり周期的シフト・パラメータ π は3に等しい。図2(a)に示す系列を起点として、シンボルが右側へ3つだけシフトすることにより、図2(b)に示す系列が得られ、さらにシンボルx、x が折り返され、図2(c)に示す系列が得られる。図2(b)に示した中間の系列は説明のためだけに示したものであって、図2(c)に示した系列は、一度の動作で図2(a)に示した最初の系列から得られる。

【0023】このように、入力シンボル位置は x_k から x_k へ、

 $\mathbf{x'}_{k} = [\mathbf{x}_{k} + \pi] \mod \mathbf{N}$

に従って変化している。ここで、modはよく知られた 50 よび図4を参照して以下に説明する。

モジュロ関数である。上記の関係式はNだけオフセットした任意の π の値に対して同一である。したがって、パラメータ π を変化させる範囲は一般性を損なうことなく0からN-1までの整数範囲に設定できる。

【0024】同一のマザー・インタリーバ・パターンを使用する場合、合計N個の異なるインタリーバ・パターンが得られる。さらに、インタリーバ・パラメータ π を0に設定するとマザー・インタリーバ・パターンそのものを使用する結果となる。

○【0025】図2に示す周期的シフト方式は、インタリーブの前のソース・データ・ストリームに対して実行するものとして説明したが、この方式は出力系列にも適用できる。出力系列のシンボル位置 yx は、関数 f をマザー・インタリーバの特性を表す関数として、

 $y_k = f(x_k)$

に従って入力シンボル位置 x k から得られるものとすると、出力系列の周期的シフトは、

 $y_k = [f(x_k) + \pi] \mod N$ と表すことができる。

【0026】別の実施の形態として、周期的シフト方式 は入力系列と出力系列の双方に対して実行しても良い。 これによって、異なるインタリーバの選択の柔軟性が高 まり、結果として、使用可能または選択可能な異なるインタリーバの数が多くなる。

【0027】周期的シフト方式をインタリーブ処理の前後で実行する場合、それらのアルゴリズムは互いに完全に独立して実行することができるが、同じパラメータを使用することも可能である。したがって、一実施の形態ではインタリーバのパラメータ p_i (i=1、2、3)を両方の周期的シフト処理に共通して使用され、また別の実施の形態ではパラメータ p_i (i=1、2、3)は、実質上2つの異なる値を含むデータ列であり、1つは入力系列の周期的シフトに使用し、もう1つは出力系列の周期的シフトに使用される。

 $p_{\scriptscriptstyle 1} = <\pi^{\scriptscriptstyle in} \ , \ \pi^{\scriptscriptstyle out} \ >_{\scriptscriptstyle i}$

異なるアルゴリズムを組み合わせるため、異なるインタリーバ・パターンのデータ列が特定の組み合わせになると、異なるストリームに対して同一のインタリーバ動作となってしまうことがある。これは、システムによって定められる所与のパラメータNに依存する。したがって、インタリーバ・パターンのパラメータ選択においては、同一のインタリーバとなるようなデータ列を回避することが好ましい。異なるストリームに対して同一のインタリーブ動作となるようなパラメータのデータ列が与えられたと判定された場合、このデータ列は別のデータ列と交換される。

【0028】マザー・パターンから異なるインタリーバ・パターンを取得する方法の別の実施の形態として、バイアス・ミラーリング方式があり、これについて図3および図4を参照して以下に説明する。

11

【0029】ミラーリングそのものは、単に位置の順序を逆転する処理である。すなわち、

 $\mathbf{x'}_{k} = (N-1) - \mathbf{x}_{k}$

である。

【0030】多様性を増加させるために、中心位置のパラメータγが各送信機 i において導入される。

 $p_1 = y_1$

パラメータ y は 0.5の整数倍である。パラメータ y が整数の場合はミラーリング点として動作し、また、整数以外の場合は 2 つの位置 [y - 0.5; y + 0.5] の 10間をミラーリングの中心として設定する。ミラーリング位置はベクトルの中心ではなくなるので、本ミラーリング方式は「バイアス・ミラーリング」と呼ばれる。

【0031】図3は、中心位置のパラメータγが整数であるバイアス・ミラーリング方式を示している。図3の例では、yは3に等しい。第1ステップで系列にミラーリングを施して図3(b)に示す系列を得、シンボル位置 x_s 、 x_s 、および x_r を折り返して図3(c)に示す系列を得る。図4の例では、中心位置のパラメータyは2.5に等しく、ミラーリング軸は位置 x_s と x_s の間に設定される。

【0032】このように、ミラーリング後のベクトルが境界を越える場合、位置の折り返しを伴うミラーリングが施される。パラメータyは、0から(N-0.5)の範囲の0.5の整数倍である。バイアスをかけないミラーリング処理を得るには、パラメータyをN/2に設定する。

【0033】ここで、図3(b)および図4(b)に示した系列は説明のためのものであって、必ずしも明示的に実行されるとは限らない。

【0034】さらに、バイアス・ミラーリングは、入力 系列に対して実行することが好ましいが、別の実施の形態では、入力系列の代わりに、あるいはそれに加えて出力系列を修正しても良い。

 $p_1 = \langle y^{in}, y^{out} \rangle_i$

異なるインタリーバ・パターンを得る別の実施の形態としては、様々な擬似ランダム雑音生成多項式を利用するものがある。本実施の形態は、特に相関がないPNインタリーバ(または擬似雑音インタリーバまたは擬似ランダム・インタリーバ)に使用することができる。上述で一タは、行列式構成の1組のメモリ要素の行に沿って書き込まれた後、列に沿って読み出される。PNインタリーバは、従来のブロックインタリーバの1種であり、データは順次メモリに書き込まれ、擬似ランダムな順序で読み出される。ランダム・インタリーバの1種であり、データは順次メモリに書き込まれ、擬似ランダムな順序で読み出される。ランダム・インタリーバである。例えば、ある長さの雑音でクトルがを連びられ、雑音ベクトルをある順序に並べ替える順列を使用してインタリーバを生成する。実施の際には、雑音

ベクトルそのものは、擬似ランダム雑音生成器で生成することができる。

12

【0035】擬似ランダム雑音生成器の技術としては、図5に示すような線形フィードバック・シフト・レジスタ(LFSR)を使用するものが知られている。LFSRは、データ値 x^1 (j=0、1、2、3、4)を格納するDフリップフロップ700、710、720、730、および740などの一連の遅延素子から構成されている。格納されたデータ値は、それぞれの重み係数 c_j に従ってLFSRの入力にフィードバックされる。このようにフィードバックは次のような多項式で表すことができる。

 $v (x) = \sum_{i=0}^{k-1} c_i x^i$

ここで、Lはタブの数、すなわちLFSRの段数である。図 5 の例では、 $c_1 = 0$ および $c_0 = c_2 = c_3 = c_4 = 1$ であるので、多項式は $v(x) = x^4 + x^3 + x^4 + x^6$ となる。

【0036】このようなレジスタからPN系列を導く方20 法の一例として、各タップの内容を使用し、これを整数の2進表示として解釈する方法がある。他の方式については当業者にとっては明白であるのでここでは詳細な説明を省略する。

【0037】このように、本実施の形態におけるインタリーバ・パターンのパラメータ p. は、固有な生成多項式であってデータ・ストリームごとに異なる。

 $p_1 = v_1(x) = \{c_1 \mid j = 0, \dots, L-1\}$

擬似ランダム系列の周期は少なくともNでなければならないので、実施の形態では、擬似ランダム系列がNより30 大きい場合に擬似ランダム雑音ベクトルを取得するために使用されるN個の値が用意されている。好ましくは、最小のNが選択される。

【0038】さらに上述したような妥当な生成多項式をできるだけ多く選択することが好ましい。しかし、実施を容易にするためには、最小のメモリ長L、すなわち段数で必要条件を満たす多項式を選択する。

【0039】さらに別の実施の形態においては、LFSRは前述とほとんど同じ方法で使用されるが、インタリーバ・パターンのパラメータ p_1 は、ストリームごとに固有な初期値を示すようにしても良い。m系列がL段の線形フィードバック・シフト・レジスタと定義されることはよく知られている。同レジスタの最大周期は、qとなり、qは2進LFSRでは2に設定される。シフト・レジスタは、 $0 < \kappa < q^1$ を満たす設定値 κ で初期化する必要がある。この初期値は雑音ベクトルを持つ値の系列に直接影響する。したがって κ 値はインタリーバ・パターンのパラメータ p_1 として用いられる。

 $p_1 = \kappa_1$

【0040】以上、異なるインタリーバ・パターンを得るために使用できるいくつかの実施の形態について説明

J

したが、各パラメータはそれぞれ独立して設定できるため、上記の方式のいくつかまたはすべてを組み合わせて使用し、異なるインタリーバ数を増加させることができる。これは、インタリーバ・パターンのパラメータ p_1 (i=1、2、3)が、1つ以上の周期的シフト・パラメータ π 、 π^{out} 、10以上のバイアス・ミラーリング・パラメータ π 、 π^{out} 、10以上のバイアス・ミラーリング・パラメータ π 、 π^{out} 、 π^{out} 、 π^{out} 、 π^{out} 、固有な擬似ランダム雑音生成多項式 π^{out} 、または固有な初期値 π^{out} 、要を10以上含む多値データ列であることを意味している。 π^{out} 、 π^{out

13

また、異なるLFSRの系列長Lを使用できる。実施の 形態のシステムには、同一のインタリーバになるような パラメータの組み合わせを回避するメカニズムが含まれ ることがわかる。

【0041】また、図1においてインタリーバ300、310、および320は、図7のマザー・インタリーバ230に置き換わるものとして説明したが、送信機およびその逆の受信機においては、図中変更された異なるインタリーバ300、310、および320のブロックにマザー・インタリーバ230にブロックを加える、あるいはストリームごとにマザー・インタリーバ230にブロックを加える、あるいはストリームごとにマザー・インタリーバ230に置き換わるインタリーバ300、310、および320を提供する実施の形態である。同様に、マザー・インタリーバの前または後にブロックを追加するか、マザー・インタリーバを上記の機能を明らかに満足する異なるインタリーバのブロックで置き換えることによって実現できる。

【0042】さらに、別の実施の形態によれば、インタリーバ機能は時間変化を伴う。インタリーバ・パターンのパラメータ p. が複数の値を含むデータ列の場合、時間変化はこれらの値の全部、またはその一部にのみ適用できる。

【0043】データ・ストリームにおいて個々のインタリーバが同一となってしまうパラメータの組み合わせを回避することができない場合、同一となるインタリーバ数をできるだけ小さくするようにパラメータを選択することが好ましい。

【0044】当業者には明らかなように、上記の技術は同期データ送信のためにインタリーバ間の相関をなくすことができる。誤り訂正復号(FEC)を含む通信システムにおいて、干渉バーストは多数の分散した信号誤りよりも大きな影響を復号器の性能に及ぼす。したがって、本実施の形態は、FEC符号の復号前に2つのストリーム間に存在するバースト干渉を、各ストリームのより小さなバーストあるいは単一誤りに分散することができるようにする。これは、上記の実施の形態では例えば汎用インタリーバ、すなわちマザー・インタリーバから多数のインタリーバを得ることによって実現する。

【0045】異なるインタリーバ・パターンを用いて誤りの相関をなくすことは、データ・ストリームが符号ブロック長、拡散率、符号率等に関してお互いの差がない場合に特に有利である。したがって、本実施の形態は、特に3GPPをベースとしたマルチコード伝送によるHSDPA(高速下り回線パケットアクセス)に適している。

【0046】CDMA(符号分割多元接続)システムに おいて、パラメータを選択する簡単な方法は拡散符号数 10 σを使用することである。

 $p_i = \sigma_i$

3 G P P をベースとした例において、各拡散符号が1つのデータ・ストリームを表すとして、現在最大512の拡散符号が1つのセル内で同時に使用される。

【0047】別の実施の形態は、インタリーバ・パターンのパラメータρ、特にシフト・パラメータπとデータ・ストリームIDの間の簡単な関係を使用する。

 $p_1 = \pi_1 = g$ (データ・ストリーム I D) ここで、 g は整数データ・ストリーム I Dをインタリー 0 バ・パターンのパラメータ p_1 に変換する任意の関数で ある。この関数は入力または出力系列をシフトするため の周期的シフト・パラメータ π^{in} 、 π^{out} を得るために も適用できる。

【0048】ミラーリング・パラメータ y 、 y ^{**} 、 y の場合、整数であるデータ・ストリーム I Dを 0.5のバイアス・ミラーリングのパラメータの整数倍に変換するために任意の関数 h が選択される。

 $p_1 = y_1 = h$ (データ・ストリーム I D) ここでも、この関数は入力および出力系列のミラーリン グに使用できる。

【0049】別の実施の形態においては、関数gおよび hは識別関数、すなわち、

 $p_1 = \pi_1 = \overline{r} - \beta \cdot \overline{\lambda} + \overline{J} - \overline{\Delta} \cdot \overline{J}$ $\overline{a} = \overline{\lambda} \cdot \overline{J} + \overline{J} \cdot \overline{J}$

 $p_1 = y_1 = \overline{r} - y \cdot Z + y - \Delta I D$ として選択される。

【0050】前述の説明から明らかなように、各実施の 形態は送信機でインタリーバ・パターンを使用したソー ス・データ・ストリームをインタリーブする方法を提供 40 する。マザー・インタリーバ・パターンとインタリーバ ・パラメータがアクセスされる。マザー・インタリーバ ・パターンは、インタリーバ・パラメータが用いられる ことにより修正される。次に修正されたインタリーバ・パターンを送信機におけるソース・データ・ストリーム のインタリーブに適用する。送信機におけるマザー・インタリーバ・パターンの修正に使用されるインタリーバ・パラメータは、同時に同じチャネルでデータを送信す る少なくとも1台の他の送信機で同時に使用するインタリーバ・パラメータとは異なる。さらに対応するデイン タリーブ方法が提供される。異なるストリーム間でイン タリーバ処理の相関をなくすことによって、ストリーム 間の干渉を減少することができる。

【0051】実施の形態によれば、各インタリーバは同じチャネルでデータを送信する他の送信機が同時に使用するインタリーバ・パターンとは異なるインタリーバ・パターンを使用する。インタリーバ・パターンはインタリーバの特性を表現するものであることが知られている。例えば、上記の順列例において、インタリーバ・パターンは関数 f(k) に相当する。チャネルは、干渉が発生するような異なる送信機のデータを送信するために使用される、物理的あるいは論理的なものである。

【0052】複数のデータ送信装置のそれぞれに異なるインタリーバ・パターンを使用することによって、ストリーム間のバースト誤りは多数の短いバースト誤りあるいは単一誤りに変換される。このように、実施の形態は特にバースト誤りがストリーム間の干渉の結果として生じる場合に有利である。

【0053】これは一般にストリーム間の干渉が、その 性質上多少バースト性を持っているため、すなわち1情 報単位を超える長さの誤りブロックとなるためである。 バースト干渉を多数の短い誤りに変換することによっ て、実施の形態はインタリーバの相関をなくすことがで きるため、図7に示したシステムに比較して改善されて いる。従来のシステムにおいて、すべてのデータ・スト リームは同一のインタリーバおよびFEC符号を使用す る。FEC復号器で訂正不可能な誤りパターンが発生し た場合、誤りパターンは同一である、すなわち、十分な 相関性があるので誤りパターンはすべてのデータ・スト リームに発生する。異なるインタリーバを使用すること によって、誤りパターンの相関がなくなり、データ・ス トリームの一部において誤りパターンは訂正不可能のま まであり、一方異なる誤りパターンを持つ他のデータ・ ストリームでは訂正が可能である。このように、本実施 の形態はシステム性能を向上する。

【0054】さらに各実施の形態は、これらの技術が単一誤り(例えば畳み込み符号、ターボ符号)あるいはバースト誤り(例えば、リード・ソロモン符号)に対してもっとも有効であるように設計されているので、従来のFEC方式を改善する。従来のFEC方式とは対照的に、各実施の形態は発生したバースト誤りを一続きのより小さなバーストあるいは単一誤りに分散できるようにするので有利である。

【0055】さらに、各実施の形態は特にインタリーバ機能が時間的に一定である場合、送信機および受信機において容易に実現できる。しかし、実施の形態は、通信システムの設計の観点から必要である場合、時間変化を伴うインタリーバ機能で使用できる。このように、各実施の形態は異なるシステム設計に対応して柔軟に容易に

構成できる。

【0056】異なるインタリーバ・パターンを使用する 誤りの相関をなくすことは、特に符号ブロック長、拡散 率、符号率等のその他のパラメータに関してデータ・ス トリーム間に差がないシステムで適用可能であるので、 各実施の形態は特に3GPP(第3世代パートナーシッ プ・プロジェクト)内でのマルチコード伝送によるHS DPAに適している。

【0057】また、各実施の形態は、構成を変更することなく干渉除去または干渉打ち消し技術に有益な影響を及ぼす。これらの方式を用いていくつかの点で送信データの推定を行う。ここでも、例えば畳み込みFEC符号を使用する場合、誤った推定があると、これはバースト性のものである可能性がもっとも高い。このように、各実施の形態に係る異なるインタリーバを具備することにより上記のバースト性のある誤った推定の相関をなくすことを可能にし、それによってFEC復号器に対する悪影響も少なくなる。

【0058】各実施の形態は、特にITUのIMT-2 20 000の枠組み内でETSIが開発中の第3世代(3 G)移動システムであるUMTS(ユニバーサル移動電 話システム)のような直接拡散CDMAシステムに適用 可能である。

【0059】本発明はそれに従って構成された物理的な実施の形態に関して説明したが、当業者にとって本発明に対する種々の変更、バリエーション、および改良は、上記の教示内容に鑑み、かつ付属の請求項の範囲内で、本発明の趣旨や適用範囲から逸脱することなく実行可能であることは明白である。さらに、当業者が熟知する分野は、ここに説明した発明の明瞭性を不必要に損なうことがないように説明を省いた。したがって、当然のことながら本発明は特定の説明を目的とした実施の形態に限定されず、付属する請求項の範囲によってのみ限定されるものである。

【図面の簡単な説明】

【図1】実施の形態による通信システムの送信側を示す

【図2】実施の形態の周期的シフト方式を示す図

【図3】整数ミラー位置を有する実施の形態によるバイ 40 アス・ミラーリング方式を示す図

【図4】小数ミラー位置を使用した実施の形態による別のバイアス・ミラーリング方式を示す図

【図5】実施の形態で使用できるLFSRを示す図

【図 6】インタリーブ技術を用いた通信システムを示す 図

【図7】多数のソースからのデータを1つの同じチャネルで送信する従来の技術による通信システムの送信機側を示す図

フロントページの続き

(72)発明者アレクサンダー エドラー フォン エルプバルト ゴリチェクドイツ国 ランゲン 63225 モンツァシュトラーセ 4シー パナソニック ヨーロピアン ラボラトリーズ ゲーエムベーハー内

(72)発明者 エイコ ザイデル ドイツ国 ランゲン 63225 モンツァシ ュトラーセ 4シー パナソニック ヨー ロピアン ラボラトリーズ ゲーエムベー ハー内

Fターム(参考) 5K014 AA01 EA08 FA11 FA16 5K059 CC07