$$\int_{-1}^1 dx \ P'_\ell(x) P'_{\ell'}(x) = rac{2}{2\ell+1} \delta_{\ell\ell'}$$

Part a

$$f(x) = \sum a_\ell P'_\ell(x)$$

For some i, by orthogonality,

$$egin{aligned} \Longrightarrow \int_{-1}^1 dx \ P_i(x) f(x) &= rac{2a_i}{2i+1} \ \Longrightarrow \ a_i &= rac{2i+1}{2} \int_{-1}^1 dx \ P_i(x) f(x) \ a_i &= rac{2i+1}{2} \left[\int_{-1}^0 dx \ P_i(x) (x+1) + \int_0^1 dx \ P_i(x) (1-x)
ight] \end{aligned}$$

We solve for i = 0, 1, 2, using desmos

$$a_0 = rac{1}{2} igg[\int_{-1}^0 dx \ (x+1) + \int_0^1 dx \ (1-x) igg] = 0.5$$
 $a_1 = rac{3}{2} igg[\int_{-1}^0 dx \ x(x+1) + \int_0^1 dx \ x(1-x) igg] = 0$ $a_2 = rac{5}{2} igg[\int_{-1}^0 dx \ rac{3x^2 - 1}{2} (x+1) + \int_0^1 dx \ rac{3x^2 - 1}{2} (1-x) igg] = -0.625$

We arrive at $a_0 = 0.5, \quad a_1 = 0, \quad a_2 = -0.625$

Part b

Blows up to $+\infty$ or $-\infty$ at a polynomial rate

For first 3 terms, blows up to $-\infty$. For fourth, blows up to $+\infty$.

The sign of the infinity depends on the parity of the last nonzero term's exponent, as that term will dominate as $|x| \to \infty$.

Part c

We repeat the process, but now the x term has a 1/2 in front

$$a_0 = \frac{1}{2} \left[\int_{-1}^0 dx \, (\frac{1}{2}x + 1) + \int_0^1 dx \, (1 - \frac{1}{2}x) \right] = 0.75$$

$$a_1 = \frac{3}{2} \left[\int_{-1}^0 dx \, x (\frac{1}{2}x + 1) + \int_0^1 dx \, x (1 - \frac{1}{2}x) \right] = 0$$

$$a_2 = \frac{5}{2} \left[\int_{-1}^0 dx \, \frac{3x^2 - 1}{2} (\frac{1}{2}x + 1) + \int_0^1 dx \, \frac{3x^2 - 1}{2} (1 - \frac{1}{2}x) \right] = -0.3125$$

Our constructed series is then

$$a_0=0.75, \quad a_1=0, \quad a_2=-0.3125$$

$$0.75 - 0.3125 \left(rac{3x^2 - 1}{2}
ight)$$

Part d

Repeating the process, we get

$$a_0 = rac{1}{2} igg[\int_{-1}^1 dx \ (1 - x^2) igg] = rac{2}{3}$$
 $a_1 = rac{3}{2} igg[\int_{-1}^0 dx \ x (1 - x^2) igg] = 0$ $a_2 = rac{5}{2} igg[\int_{-1}^0 dx \ rac{3x^2 - 1}{2} (1 - x^2) igg] = -rac{2}{3}$ $a_0 = 2/3, \quad a_1 = 0, \quad a_2 = -2/3$

This is identical to the original function, which is to be expected.