```
In [1]: # plotting
        %matplotlib inline
        from matplotlib import pyplot as plt;
        if "bmh" in plt.style.available: plt.style.use("bmh");
        # scientific
        import numpy as np;
        from scipy import linalg
        import matplotlib as mpl
        from matplotlib import colors
        from sklearn.discriminant analysis import LinearDiscriminantAnalysi
        from sklearn.discriminant analysis import QuadraticDiscriminantAnal
        ysis
        # rise config
        from notebook.services.config import ConfigManager
        cm = ConfigManager()
        cm.update('livereveal', {
                       'theme': 'simple',
                       'start slideshow at': 'selected',
        })
Out[1]: {u'start_slideshow_at': 'selected', u'theme': 'simple', u'transiti
        on': u'none'}
```

EECS 545: Machine Learning

Lecture 06: Probability Models and Logistic Regression

Instructor: Jacob Abernethy

• Date: January 27, 2016

Lecture Exposition Credit: Benjamin Bray, Saket Dewangan

HW2 + Kaggle

- Check out http://kaggle.com), an online platform for machine learning competitive challenges
- Homework 2 requires not one but two submissions to "in-class" Kaggle challenges
- There will be a performance requirement (i.e. need your_score > score_benchmark)
- · Winners will get bragging rights and a prize in lecture

Small Aside: check out the Michigan Data Science Team

- http://mdst.eecs.umich.edu)
- Like doing Kaggle competitions for fun? We give prizes!
- We got a little mention in <u>this morning's University Record</u>
 (http://record.umich.edu/articles/program-gives-undergraduates-use-high-performance-computing)

New Location for Lecture Content on Github

- EECS 545 Lectures now Open Source!
- Henceforth, lectures will be hosted at https://github.com/thejakeyboy/umich-eecs545-lectures
 (https://github.com/thejakeyboy/umich-eecs545-lectures)
- Will soon be using Github, not Canvas, for lecture notes
- We have an impressive lecture development team:
 - Ben Bray
 - Saket Dewangan
 - Valli Chockalingam
 - me

Extra Credit Opportunity #1: Lecture development

- · Imagine that you:
 - 1. Discover some bugs in the slides
 - 2. Find a way to make a better visualization
 - 3. Have some nice content that you want to contribute as additional material, etc.
- If so: clone the repository, make a contribution, and submit it as a pull request!
- Contributions that we deem are great receive 0-2pts extra credit on the final exam (up to a total of 10pts)

Extra Credit Opportunity #2: HW Solutions

- Starting now, you can help us develop the HW solutions. IF
 - you write up your HW in ET_EX AND
 - your solutions are really simple and beautiful AND
 - you submit your homework early (by Friday, 3 days before due date)
- · Then we may contact you to contribute your .tex file
- GSIs will compile the solutions, and for each contributed answer we'll give you roughly 1pt on your final exam (up to 10pts)

Outline

- Locally-Weighted Linear Regression
- Probabilistic Models
 - Generative Models
 - Discriminative Models
- Logistic Regression
 - Intuition, Motivation
 - Newton's Method

Locally-Weighted Linear Regression

Locally-Weighted Linear Regression

Main Idea: When predicting f(x), give high weights for *neighbors* of x.

Regular vs. Locally-Weighted Linear Regression

Locally weighted linear regression

Query

Regular vs. Locally-Weighted Linear Regression

Linear Regression

- 1. Fit w to minimize $\sum_{k} (t_k w^T \phi(x_k))^2$
- 2. Output $w^T \phi(x_k)$

Locally-weighted Linear Regression

- 1. Fit w to minimize $\sum_k r_k (t_k w^T \phi(x_k))^2$ for some weights r_k
- 2. Output $w^T \phi(x_k)$

Locally-Weighted Linear Regression

• The standard choice for weights r uses the Gaussian Kernel, with kernel width au

$$r_k = \exp\left(-\frac{||x_k - x||^2}{2\tau^2}\right)$$

- Note r_k depends on both x (query point); must solve linear regression for each query point x.
- Can be reformulated as a modified version of least squares problem.

Locally-Weighted Linear Regression

- · Choice of kernel width matters.
 - (requires hyperparameter tuning!)

The estimator is minimized when kernel includes as many training points as can be accommodated by the model. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

Let's back up a little...

Probabilistic Models & Bayesian Statistics

Disclaimer: These slides were written by a Bayesian :)

Probabilistic Models & Bayesian Statistics

Last time, there were several questions about priors.

- Represent prior beliefs about acceptable values for model parameters.
- Example: In linear regression, L_2 regularization can be interpreted as placing a Gaussian Prior on the regression coefficients.

Probabilistic Models & Bayesian Statistics

All statistical models and machine learning algorithms make assumptions.

- All reasoning is based on implicit assumptions.
- A **Bayesian** will tell you that his prior is a way of explicitly stating those assumptions.

Probabilistic Models & Bayesian Statistics

This can all get very philosophical, but...

- Bayesian reasoning is best seen as a useful tool.
- Many concepts in machine learning have Bayesian interpretations.
 - Choice of loss / error function, regularization, etc.

We'll mention these things as they come up.

Probabilistic Models & Bayesian Statistics

For a fully Bayesian take on machine learning, check out the **Murphy** textbook:

Review: Classification

- Goal: Assign each feature vector x to one of K distinct classes C_k , where $k=1,\ldots,K$.
 - Data X
 - Labels Y
- The case K=2 is **Binary Classification**
 - t = 1 means $x \in C_1$
 - t = 0 means $x \in C_2$ (or sometimes t = -1
- For the case K > 2, use **one-hot encoding**,

$$t = (0, 1, 0, \dots, 0, 0)^T \implies x \in C_2$$

Generative Models

A **generative model** learns a joint model $P(Y, X) = P(X \mid Y)P(Y)$.

• Perform inference using the posterior, via Bayes' Rule:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

- ullet Specifies how to generate observed features X if labels Y are known
- By comparing the synthetic data and real data, we get a sense of how good the generative model is.

Generative Models: Examples

Simple examples:

- Naive Bayes (Later)
- Gaussian Discriminant Analysis (Later)

More abstract examples:

- Linear Regression
- Most Bayesian models

Discriminative Models

Conversely, a **discriminative model** fits $P(Y \mid X)$ directly from data.

- Goal: select a hypothesis to discriminates between class labels
- Does not (necessarily) provide the ability to generate new random examples
- · allows us to focus purely on the classification task

We will discuss the pros and cons of each method later.

Discriminative Models

The discriminative approach will typically

- · have fewer parameters to estimate
- make fewer assumptions about data distribution
 - Linear (logistic regression) vs quadratic (GDA) in the input dimension
- make fewer generative assumptions about the data
 - However, reconstruction features from labels may require prior knowledge

Break Time!

Thanks to Bryan for the GIF!

Logistic Regression

Sigmoid and Logit Functions

The logistic sigmoid function is

$$\sigma(a) = \frac{1}{1 + \exp(-a)} = \frac{\exp(a)}{1 + \exp(a)}$$

```
In [2]: def sigmoid(a):
    return 1 / (1 + np.exp(-a));

xvals = np.linspace(-10,10,100);
plt.plot(xvals, sigmoid(xvals));
```


Sigmoid and Logit Functions

Its inverse is the logit function or the log-odds ratio,

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

```
In [3]: def logit(sigma):
    return np.log(sigma / (1-sigma));

xvals = np.linspace(0.001, 0.999, 100);
plt.plot(xvals, logit(xvals));
```


Sigmoid and Logit Functions

The sigmoid function generalizes to the **normalized exponential** or **softmax** function

Given any real numbers q_1,\dots,q_n , we can generate a distribution on n objects using:

$$p_k = \frac{\exp(q_k)}{\sum_j \exp(q_j)}$$

Logistic Regression

- Simpest discriminative model that is **linear** in the parameters.
- Models the class posterior using a sigmoid applied to a linear function of the feature vector:

$$y \sim \text{Bernoulli}[\sigma(w^T \phi(x))]$$

 $P(y|\phi(x)) = y(\phi(x)) = \sigma(w^T \phi(x))$

• We can solve the paramter w by maximizing the likelihood of the training data.

Logistic Regression: Why Sigmoid?

· For two classes, Bayes' theorem says:

$$p(C_1|x) = \frac{p(x|C_1) \cdot p(C_1)}{p(x|C_1) \cdot p(C_1) + p(x|C_2) \cdot p(C_2)}$$

• The log odds is defined to be:

$$a = \ln \frac{p(C_1|x)}{p(C_2|x)} = \ln \frac{p(x|C_1) \cdot p(C_1)}{p(x|C_2) \cdot p(C_2)}$$

• In terms of the log odds, the posterior is defined as:

$$p(C_1|x) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

Logistic Regression: Intuition

• Given data x and learned weights w, pick the label with the largest **posterior probability**

$$P(t = 1|x, w) = \sigma(w^T \phi(x))$$

$$P(t = 0|x, w) = 1 - \sigma(w^T \phi(x))$$

- This is equivalent to setting a threshold at p = 0.5.
 - Classify x as positive (y = 1) if $\sigma(w^T \phi(x)) > 0.5$
 - This creates a **linear decision boundary** in the feature space! (for $\phi(x) \in \mathbb{R}^d$)

Logistic Regression: Intuition

• Classify x as positive if $\sigma(w^T \phi(x)) > 0.5$.

$$\sigma(w^T \phi(x)) = \frac{\exp(w^T \phi(x))}{1 + \exp(w^T \phi(x))} > 0.5$$

$$\implies w^T \phi(x) > 0$$

• This is the equation for a half-plane in \mathbb{R}^d , with **normal vector** w!

Logistic Regression: Linear Decision

```
In [4]: # source code for plot on NEXT SLIDE!
        def plot linear boundary():
            # random data + normal
            x = np.random.randn(2,50);
            w = np.random.randn(2);
            # classify based on w
            labels = np.dot(w.T, x) > 0;
            blue, red = x[:,labels==0], x[:,labels==1];
            # grid over plot window
            xx = np.linspace(min(x[0])-1, max(x[0])+1, 100);
            yy = np.linspace(min(x[1])-1, max(x[1])+1, 100);
            X,Y = np.meshgrid(xx, yy);
            # compute w.T*x for each point on grid
            Z = np.array([X.ravel(), Y.ravel()]);
            Z = np.dot(w.T, Z).reshape(X.shape) < 0;
            plt.contourf(X, Y, Z, cmap="RdBu", alpha=0.5);
            plt.plot(blue[0], blue[1], 'ob', red[0], red[1], 'or');
```

Logistic Regression: Linear Decision

```
In [5]: plt.figure(figsize=(10,6))
   plot_linear_boundary();
```


Logistic Regression: Likelihood

· We saw before that the likelihood for each binary label is:

$$P(t = 1|x, w) = \sigma(w^{T}\phi(x))$$

$$P(t = 0|x, w) = 1 - \sigma(w^{T}\phi(x))$$

· With a clever trick, this

$$P(t|x, w) = \sigma(w^T \phi(x))^t \cdot (1 - \sigma(w^T \phi(x)))^{1-t}$$

Logistic Regression

• For a data set $\{(\phi(x_n),t_n)\}$ where $t_n\in\{0,1\}$, the **likelihood function** is

$$P(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$

- where $y_n = P(C_1 | \phi(x_n)) = \sigma(w^T \phi(x_n))$
- Minimize the loss or negative log-likelihood, $E(w) = -\ln P(t|w)$
 - maximizes the likelihood

Derivation: $\nabla_w \ln P(t|w)$

$$= \sum_{n=1} \nabla_{w} \left[t_{n} \ln \sigma(w^{T} \phi(x_{n})) + (1 - t_{n}) \ln(1 - \sigma(w^{T} \phi(x_{n}))) \right]$$

$$= \sum_{n=1}^{N} \left(t_n \frac{y_n (1 - y_n)}{y_n} - (1 - t_n) \frac{y_n (1 - y_n)}{1 - y_n} \right) \nabla_w \left[w^T \phi(x_n) \right]$$

$$= \sum_{n=1}^{N} (t_n(1 - y_n) - (1 - t_n)y_n) \nabla_w [w^T \phi(x_n)]$$

$$= \sum_{n=1}^{N} (t_n - y_n) \phi(x_n) = \sum_{n=1}^{N} \left[t_n - \sigma(w^T \phi(x_n)) \right] \phi(x_n)$$

Logistic Regression: Gradient Descent

We have just shown that the gradient of the loss is

$$\nabla_w E(w) = \sum_{n=1}^N (y_n - t_n) \phi(x_n)$$
$$y_n = P(C_1 | \phi(x_n)) = \sigma(w^T \phi(x_n))$$

• This resembles the gradient expression from linear regression with least squares!

Logistic
$$y_n - t_n = \sigma(w^T \phi(x_n)) - t_n$$

Linear $y_n - t_n = w^T \phi(x_n) - t_n$

Newton's Method: Overview

• Goal: Minimize a general function F(w) in one dimension by solving for

$$f(w) = \frac{\partial F}{\partial w} = 0$$

• Newton's Method: To find roots of f, Repeat until convergence:

$$w \leftarrow w - \frac{f(w)}{f'(w)}$$

Newton's Method: Geometric Intuition

• Find the roots of f(w) by following its **tangent lines**. The tangent line to f at w_{k-1} has equation

$$\ell(w) = f(w_{k-1}) + (w - w_{k-1})f'(w_{k-1})$$

• Set next iterate w_{k+1} to be **root** of tangent line:

$$f(w_{k-1}) + (w - w_{k-1})f'(w_{k-1}) = 0$$

$$\implies w = w_{k-1} - \frac{f(w_{k-1})}{f'(w_{k-1})}$$

Newton's Method: Geometric Intuition


```
In [6]: # custom newton's method -- see Canvas
from newton_plot import *;

def fn(x): return np.exp(x) - x**2;
def d1(x): return np.exp(x) - 2*x;
def d2(x): return np.exp(x) - 2;

lst = [];
print("Newton's Method:", newton_exact(d1, d2, 10, lst=lst, max n=4));
plot_optimization(plt.gca(), fn, d1, lst, xlim=(6,12), ylim=(-4000, 30000), tangents=True);
```

Newton's Method did not converge. ("Newton's Method:", 6.018373602193873)


```
In [7]: # custom newton's method -- see Canvas
from newton_plot import *;

def fn(x): return x**3;
    def d1(x): return 3 * x**2;
    def d2(x): return 6 * x;

lst = [];
    print("Newton's Method:", newton_exact(d1, d2, -1, lst=lst, max n=4));
    plot_optimization(plt.gca(), fn, d1, lst, xlim=(-1.5,1.5), ylim=(-2,2), tangents=True);
```

Newton's Method did not converge. ("Newton's Method:", -0.0625)

Newton's Method: Recap

To minimize F(w), find roots of F'(w) via Newton's Method.

Repeat until convergence:

$$w \leftarrow w - \frac{F'(w)}{F''(w)}$$

Newton's Method: Multivariate Case

Replace second derivative with the Hessian Matrix,

$$H_{ij}(w) = \frac{\partial^2 F}{\partial w_i \partial w_j}$$

Newton update becomes:

$$w \leftarrow w - H^{-1} \nabla_w F$$

Recall: Linear Regression

• For linear regression, least squares has a closed-form solution:

$$w_{ML} = (\Phi^T \Phi)^{-1} \Phi^T t$$

• This generalizes to weighted least squares, with diagonal weight matrix R,

$$w_{WLS} = (\Phi^T R \Phi)^{-1} \Phi^T R t$$

Logistic Regression: Newton's Method

• For logistic regression, however, $\nabla_w E(w) = 0$ is **nonlinear**, and no closed-form solution exists.

We must iterate!

• Newton's method is a good choice in many cases.

Iterative Solution

- Apply Newton's method to solve $\nabla_w E(w) = 0$
- This involves least squares with weights $R_{nn}=y_n(1-y_n)$
- Since R depends on w, and vice-versa, we get...

Iteratively-Reweighted Least Squares (IRLS)

Repeat Until Convergence:

1.
$$w^{(new)} = w_{WLS} = (\Phi^T R \Phi)^{-1} \Phi^T R z$$

2.
$$z = \Phi w^{(old)} - R^{-1}(y - t)$$

Merging the two steps, a more computationally efficient version is obtained:

$$w^{(new)} = w^{(old)} + (\Phi^T R \Phi)^{-1} \Phi^T (t - y)$$