Разбор выполнил: Каргаполов Руслан, КМБО-01-20

Электронная почта: <u>rkargapolov@yandex.ru</u>

Телеграм: Ruslan_Kargapolov

Вычисление приближённых тригонометрических факторов для кватернионного представления

Разобранный алгоритм описывает способ вычисления приближённых тригонометрических факторов для кватернионного представления поворотов Гивенса, используемых в процессе QR-факторизации матрицы B для извлечения ортогональной матрицы U и диагональной матрицы Σ в SVD-разложении. В этом контексте, алгоритм предлагает оптимизированный способ вычисления поворотов без необходимости использования тяжёлых арифметических операций, таких как вычисление квадратного корня или тригонометрических функций, что делает его идеально подходящим для векторных процессоров.

Теоретические сведения

Кватернионы — это система гиперкомплексных чисел, обобщающая комплексные числа. Они часто используются для представления вращений в трёхмерном пространстве благодаря своим вычислительным преимуществам перед матрицами вращения и углами Эйлера.

Вращения Гивенса — это простой численный метод для нулификации элементов матрицы, часто используемый в алгоритмах QR-разложения. Вращение Гивенса можно представить как вращение в двумерной плоскости, встроенной в многомерное пространство, которое обнуляет определённые элементы матрицы, сохраняя при этом её сингулярные значения.

QR-разложение — это разложение матрицы на произведение ортогональной матрицы Q и верхнетреугольной матрицы R. Это разложение используется во многих численных методах, включая решение систем линейных уравнений и вычисление собственных значений и сингулярных значений матриц.

Разбор алгоритма «Вычисление приближенного заданного кватерниона»

Этот алгоритм показывает, как эффективно аппроксимировать повороты Гивенса для использования в процессе QR-факторизации, минимизируя необходимость в сложных арифметических операциях.

Обозначения:

- *a11*, *a12*, *a22* Элементы матрицы, участвующие в вычислении вращения Гивенса.
- γ Константа, используемая для определения, когда использовать фиксированное значение угла вращения.
- c* и s* Косинус и синус угла $\pi/8$ соответственно. Используются при выборе фиксированного угла для аппроксимации вращения.
- *ch* (*cos half*) Представляет собой аппроксимацию косинуса половины угла вращения.
- *sh* (*sin half*) Представляет собой аппроксимацию синуса половины угла вращения.
- b Булева переменная, определяющая, какой набор значений (ch и sh или c^* и s^*) использовать для кватерниона.
- ω Масштабирующий множитель, используемый для нормализации кватерниона.

Шаги алгоритма:

1. Определение констант

 γ устанавливается равным $3+2\sqrt{2}$. Эта константа используется для определения, какая аппроксимация будет применяться — через фиксированный угол или через вычисленный.

 c^* и s^* устанавливаются равными косинусу и синусу угла $\pi/8$ соответственно. Эти значения используются в качестве фиксированных аппроксимаций для косинуса и синуса угла вращения.

2. Инициализация переменных

Инициализируются ch и sh как 2(a11 - a22) и a12 соответственно. Это предварительные значения для косинуса и синуса угла вращения.

3. Выбор аппроксимации

Вычисляется булева переменная b, которая определяет, какая аппроксимация будет использоваться.

Если $\gamma s^2 h < c^2 h$, то b принимает значение истина, иначе — ложь.

4. Нормализация и выбор значений

Вычисляется ω как обратный квадратный корень суммы квадратов ch и sh, что служит для нормализации кватерниона.

Если b истинно, то значения ch и sh умножаются на ω для нормализации. В противном случае, для ch и sh принимаются значения c^* и s^* соответственно.

5. Формирование кватерниона

Возвращается кватернион с компонентами (ch, 0, o, sh). Этот кватернион представляет собой приближённое вращение Гивенса, которое может быть использовано в процессе QR-факторизации.

Алгоритм позволяет эффективно вычислить кватернионы для приближенных вращений Гивенса, минимизируя использование сложных арифметических операций и улучшая производительность вычислений на современных архитектурах. Эти кватернионы могут быть применены для вычисления SVD 3х3 матриц с высокой эффективностью и минимальной потерей точности.

Псевдокод:

```
АЛГОРИТМ Кварт(а11, а12, а22)
КОНСТАНТЫ
 \gamma \leftarrow 3 + 2\sqrt{2}
 c^* \leftarrow \cos(\pi/8)
 s^* \leftarrow \sin(\pi/8)
НАЧАЛО
 ch \leftarrow 2(a11 - a22) // Аппроксимация косинуса
 sh \leftarrow a12
                   // Аппроксимация синуса
 // Определение, использовать ли фиксированный угол или аппроксимацию
 если \gamma s^2 h < c^2 h то
  b ← истина
 иначе
  b \leftarrow ложь
 // Вычисление обратного квадратного корня для нормализации
 \omega \leftarrow RSQRT(c^2h + s^2h)
```

```
// Условное присваивание для финальных значений если b то  ch \leftarrow \omega * ch \\ sh \leftarrow \omega * sh \\ иначе  ch \leftarrow c* \\ sh \leftarrow s*  // Возврат кватерниона вернуть (ch, 0, 0, sh) КОНЕЦ
```