Matematický model predikce výroby energie podle předpovědi počasí pro PV elektrárny

Autor: Bc. Jakub Hampejs

Vedoucí práce: prof. Ing. Martin Libra, CSc., dr. h. c.

Úvod

Proč je predikce výkonu FVE důležitá?

Zdroj: Mezinárodní agentura pro energetiku (IEA) [1].

"The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids." — Masa-Bote, Applied Energy, 2014 [2]

"Nejistota spojená s predikcí výroby fotovoltaické elektrárny je hlavní překážkou pro široké zavedení této technologie do elektrické sítě."

Obhajoba diplomové práce

Matematický model predikce výroby energie podle předpovědi počasí pro PV elektrárny

Cíl práce

- 1) Vytvořit matematický model pro krátkodobou predikci výkonu FVE využívající předpověď počasí
- 2) Otestovat model v provozu reálné FVE

Obhajoba diplomové práce

Matematický model predikce výroby energie podle předpovědi počasí pro PV elektrárny

Metodika

- Identifikace klíčových faktorů ovlivňujících výkon FVE
- Získání datové sady
 - Amper Meteo
 - Solarmon
 - Open-Meteo
- Rozdělení datové sady na trénovací (80 %) a testovací (20 %) sadu
- Tvorba modelů
 - Na historických průměrných hodnotách výkonu pro každou hodinu a den v roce
 - Fyzikální
 - Za využití knihovny pvlib
 - Modely založené na neuronových sítích

Fotovoltaická elektrárna ABA

Nominální výkon: 1 293 kWp

Počet panelů: 5 625

Aktivní plocha osvitu: 8 213,4 m²

Účinnost: 14,1 %

Sklon: 35°

Azimut: 180°

Použité hodnotící metriky pro porovnání modelů

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |\hat{y}_{(i)} - y_{(i)}|$$

Průměrná absolutní chyba.

$$MBE = \frac{1}{m} \sum_{i=1}^{m} \hat{y}_{(i)} - y_{(i)}$$

Průměrná systematická chyba.

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y_{(i)} - \hat{y}_{(i)})^{2}}{\sum_{i=1}^{m} (y_{(i)} - \bar{y})^{2}}$$

Koeficient determinace.

$$sMAPE = \frac{100}{m} \sum_{i=1}^{m} \frac{\left| \hat{y}_{(i)} - y_{(i)} \right|}{\left(\left| \hat{y}_{(i)} \right| + \left| y_{(i)} \right| \right) / 2}$$

Symetrická střední absolutní procentní chyba.

Kde:

- m počet prvků v datové sadě
- ŷ predikovaná hodnota pro daný vstup
- y skutečná hodnota pro daný vstup
- \bar{y} průměrná skutečná hodnota

Referenční model na základě historických průměrů výkonů pro každou hodinu a den v roce

Hodnoty hodnoticích metrik.

Metrika	Hodnota
sMAPE	80 %
MBE	-22,81 kW
R ²	0,64
MAE	77,78 kW

Referenční fyzikální model

$$P_{Teor} = E_{Celk} * \eta * S * \cos \beta$$

Výpočet výkonu solárního modulu.

Kde:

- P_{Teor} je výkon solárního modulu (W)
- E_{Celk} je celkové sluneční záření (W/m²), které dopadá kolmo na povrch země
- η je účinnost solárního modulu (-)
- *S* je plocha solárního modulu (m²)
- β je úhel sklonu solárního modulu vůči horizontu (°)

Referenční fyzikální model

Hodnoty hodnoticích metrik.

Metrika	Hodnota	
sMAPE	75,1 %	
MBE	-28,46 kW	1
R ²	0,93	1
MAE	34,02 kW	

Referenční fyzikální model s využitím knihovny pvlib

 $P_{Teor} = E_{Celk} * \eta * S * IAM$

Výpočet výkonu solárního modulu.

Kde:

- P_{Teor} je výkon solárního modulu (W)
- E_{Celk} je celkové sluneční záření (W/m²),

které dopadá kolmo na povrch země

- η je účinnost solárního modulu (-)
- *S* je plocha solárního modulu (m²)
- *IAM* je korekční faktor závislý na úhlu dopadu (AOI)

Výpočet AOI pomocí knihovny pvlib: AOI = f(zenit slunce, azimut slunce, sklon panelu, azimut panelu)Funkce: pvlib.irradiance.aoi(...)

IAM korekce (Ashrae model): pvlib.iam.ashrae(aoi)

Referenční fyzikální model s využitím knihovny pvlib

Hodnoty hodnoticích metrik.

Metrika	Hodnota
sMAPE	56,6 %
MBE	-6,43 kW
R ²	0,97
MAE	17,28 kW

Modely založené na neuronových sítích – vybrání vstupních rysů

Modely založené na neuronových sítích – normalizace rysů

Histogramy původních a normalizovaných rysů

Modely založené na neuronových sítích – strategie trénování

Model pro predikci výkonu na následujících 8 hodin na základě historických dat

Výčet hyperparametrů modelu.

Hyperparametr	Hodnota	Poznámka
Počet filtrů CNN	272	Velikost jádra 2
Počet LSTM jednotek	1472	Rekurentní dropout 10 %
Aktivační funkce CNN	ReLU	
Aktivační funkce výstupu	Lineární	
Optimalizátor	ADAM	Rychlost učení 0,0005
Ztrátová funkce	MAE	
Počet epoch (první běh)	45	
Počet epoch (další běhy)	35	
Velikost dávky	64	
Křížová validace	5 kroků	Rozšiřující se okno
Počet vstupních rysů	14	Časová řada 24 hodnot
Predikční horizon	8 hodin	

Architektura modelu.

Model pro predikci výkonu na následujících 8 hodin na základě historických dat

Hodnoty hodnoticích metrik.

Hodina	sMAPE (%)	MBE (kW)	R ²	MAE (kW)
1. hodina	3,60	5,49	1	6,90
2. hodina	16,21	1,71	0,95	25,42
3. hodina	20,76	-4,85	0,91	33,77
4. hodina	22,96	-6,70	0,89	38,29
5. hodina	24,52	-13,20	0,86	42,29
6. hodina	25,35	-13,10	0,84	45,26
7. hodina	26,54	-13,97	0,82	48,70
8. hodina	26,83	-14,22	0,82	49,26

Model pro predikci výkonu na následujících 8 hodin na základě historických dat

Model pro predikci výkonu na následujících 24 hodin se zahrnutím předpovědi počasí

Výčet hyperparametrů modelu.

Hyperparametr	Hodnota	Poznámka
Počet filtrů CNN	96	Velikost jádra 2
Počet LSTM jednotek	2816	Rekurentní dropout 10 %
Aktivační funkce CNN	ReLU	
Aktivační funkce výstupu	Lineární	
Optimalizátor	ADAM	Rychlost učení 0,0005
Ztrátová funkce	MAE	
Počet epoch (první běh)	40	
Počet epoch (další běhy)	50	
Velikost dávky	64	
Křížová validace	10 kroků	Rozšiřující se okno
Počet vstupních rysů	27	Časová řada 24 hodnot
Predikční horizon	24 hodin	

Model pro predikci výkonu na následujících 24 hodin se zahrnutím předpovědi počasí

Hodnotící metriky modelu.

Hodnotící metriky modelu.

Hodina	sMAPE (%)	MBE (kW)	R ²	MAE (kW)	Hodina	sMAPE (%)	MBE (kW)	R ²	MAE (kW)
1. hodina	3,95	2,20	1	5,31	13. hodina	3,59	0,11	1	4,29
2. hodina	4,49	3,55	1	6,54	14. hodina	3,46	0,34	1	4,10
3. hodina	4,12	3,61	1	5,86	15. hodina	3,50	1,32	1	4,35
4. hodina	3,90	3	1	5,29	16. hodina	3,45	2,15	1	4,62
5. hodina	3,89	1,45	1	4,95	17. hodina	3,40	2,31	1	4,70
6. hodina	3,78	0,34	1	4,69	18. hodina	3,29	2,38	1	4,37
7. hodina	3,72	1,40	1	4,69	19. hodina	3,43	1,47	1	4,26
8. hodina	3,65	-1,70	1	4,94	20. hodina	3,29	2,02	1	4,32
9. hodina	3,44	-0,88	1	4,68	21. hodina	3,14	2,47	1	4,38
10. hodina	3,58	-0,21	1	4,44	22. hodina	3,25	2,07	1	4,26
11. hodina	3,47	-0,79	1	4,46	23. hodina	3,32	2,03	1	4,33
12. hodina	3,50	1,34	1	4,65	24. hodina	3,41	-0,30	1	3,94

Model pro predikci výkonu na následujících 24 hodin se zahrnutím předpovědi počasí

Výsledky a jejich zhodnocení

Přehled hodnotících metrik pro vytvořené modely.

Model	Časový	Průměrná sMAPE	Průměrná MBE	Průměrná	Průměrná
	horizont	(%)	(kW)	R ²	MAE (kW)
Historické průměry	-	80	-22,81	0,64	77,78
Fyzikální model	1 hodina	75,1	-28,46	0,93	34,02
Fyzikální model s využitím IAM	1 hodina	56,6	-6,43	0,97	17,28
Neuronové sítě – historická data	8 hodin	20,84	-7,35	0,88	36,23
Neuronové sítě – s předpovědí	24 hodin	3,58	1,32	1	4,68
počasí					

Výsledky a jejich zhodnocení – nasazený model

https://huggingface.co/spaces/Kubas126cz/FVEABA

Obhajoba diplomové práce

Matematický model predikce výroby energie podle předpovědi počasí pro PV elektrárny

Závěr

- Splněné cíle
 - Implementace modelu
 - Otestování modelu pro konkrétní FVE
- Možné způsoby zlepšení predikcí:
 - Trénování modelu na přesnějších meteorologických datech
 - Trénování modelu na kratších časových intervalech
 - Trénování modelu na větší datové sadě
- Výsledky mohou přispět pro další vývoj predikčních modelů

Použité technologie:

Spolupráce:

Hugging Face

Obhajoba diplomové práce

Přístrojové desky a multifunkční volanty

Děkuji za pozornost

Odpovědi na otázky oponenta RNDr. Jana Sedláčka, Ph.D.

1) Vysvětlete pojem "standardní sluneční spektrum AM 1.5" uvedený na str. 5.

Standardizované podmínky pro stanovení nominálního výkonu panelu:

- Dopadající sluneční záření: 1 000 W/m²
- Teplota panelu: 25 ° C
- Standardní sluneční spektrum: AM 1.5

Slunce v závislosti na čase prostupuje různou tloušťkou atmosféry. Nejkratší je při zenitovém úhlu slunce 0 stupňů, kterou pokládáme rovnou jedné a značíme AM1. Pro střední zeměpisné šířky byla zvolena celoroční průměrná hodnota AM1.5, která odpovídá zenitovému úhlu slunce 48.2 stupňů. Ve vyšších zeměpisných šířkách byla zvolena hodnota AM2, v tropických oblastech AM1.1. Sluneční záření při průchodu atmosférou se částečně absorbuje a rozptyluje. Absorpce závisí na vlnových délkách (např. ozonová vrstva absorbuje především ultrafialové záření, vodní pára infračervené), takže hodnotám AM odpovídá příslušné sluneční spektrum.

Odpovědi na otázky oponenta RNDr. Jana Sedláčka, Ph.D.

2) Jaký je poměr jednotlivých složek slunečního záření, které dopadají na solární modul? Viz str. 6.

Obhajoba diplomové práce

Matematický model predikce výroby energie podle předpovědi počasí pro PV elektrárny

Zdroje uvedené v prezentaci

- [1] https://www.iea.org/energy-system/renewables/solar-pv
- [2] MASA-BOTE, D., M. CASTILLO-CAGIGAL, E. MATALLANAS, E. CAAMAÑO-MARTÍN, A. GUTIÉRREZ, F. MONASTERIO-HUELÍN a J. JIMÉNEZ-LEUBE. Improving photovoltaics grid integration through short time forecasting and self-consumption. Applied Energy [online]. 2014, vol. 125, s. 103–113. ISSN 0306-2619.