Department of Computer Science and Engineering (CSE) BRAC University

Summer 2022
CSE250 – Circuits and Electronics

Nodes, Branches, Voltage & Current Division rules

Purbayan Das, C. Lecturer Department of Computer Science and Engineering (CSE) BRAC University

Series and Parallel Configuration

• Using series/parallel resistance combination, find the equivalent resistance seen by the source in the circuit below.

Ans: $\mathbf{R}_{eq} = 250 \ \Omega$

• Find the equivalent resistance between terminals **a** and **b**.

Ans: $R_{ab} = 12 \Omega$

• If $R_{\rm eq} = 50 \Omega$ in the circuit, find R.

Ans: $\mathbf{R} = \mathbf{16} \, \mathbf{\Omega}$

Nodes, Branches, & Loops

- A branch represents a single element such as a voltage source or a resistor. In other words, a branch represents a two-terminal element.
- A node is the point of connection between two or more branches.
- A loop is a closed path formed by starting at a node, passing through a set of nodes, and returning to the starting node without passing through any node more than once.

• Determine the number of **branches**, **nodes**, and **loops** in the following circuits

<u>Ans</u>:

- 1. b = 6; n = 4; l = 3 + 3
- 2. b= 5; n = 3; l = 3 + 3
- 3. b = 6; n = 2; l = 5 + 10

• Find the equivalent resistance between terminals **a** and **b**.

Ans:
$$\mathbf{R}_{ab} = \frac{10}{3} \, \mathbf{\Omega}$$

• Find the equivalent resistance between terminals **a** and **b**.

Ans: $\mathbf{R}_{AB} = 1 \Omega$

Series and Parallel Configuration (Revised)

- Two or more elements are in series if they exclusively share a single node and consequently carry the same current.
- Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.

Voltage and Current Division Rules

Thank you for your attention

