CSCI B609: "Foundations of Data Science"

Lecture 11/12: Introduction to Machine Learning Continued

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev

http://grigory.us

Intro to ML

- Classification problem
 - Instance space $X: \{0,1\}^d$ or \mathbb{R}^d (feature vectors)
 - Classification: come up with a mapping $X \to \{0,1\}$
- Formalization:
 - Assume there is a probability distribution D over X
 - $-c^*$ = "target concept" (set $c^* \subseteq X$ of positive instances)
 - Given labeled i.i.d. samples from D produce $\mathbf{h} \subseteq X$
 - **Goal:** have \boldsymbol{h} agree with \boldsymbol{c}^* over distribution D
 - Minimize: $err_D(\mathbf{h}) = \Pr_D[\mathbf{h} \Delta \mathbf{c}^*]$
 - $-err_D(\mathbf{h})$ = "true" or "generalization" error

Intro to ML

- Training error
 - -S = labeled sampled (pairs $(x, l), x \in X, l \in \{0,1\}$)
 - Training error: $err_S(\mathbf{h}) = \frac{|S \cap (\mathbf{h} \triangle \mathbf{c}^*)|}{|S|}$
- "Overfitting": low training error, high true error
- Hypothesis classes:
 - H: collection of subsets of X called hypotheses
 - If $X = \mathbb{R}$ could be all intervals $\{[a, b], a \leq b\}$
 - If $X = \mathbb{R}^d$ could be linear separators: $\left\{ \{ \boldsymbol{x} \in \mathbb{R}^d \big| \boldsymbol{w} \cdot \boldsymbol{x} \ge w_0 \} | \boldsymbol{w} \in \mathbb{R}^d, w_0 \in \mathbb{R} \right\}$
- If S is large enough (compared to some property of H) then overfitting doesn't occur

Overfitting and Uniform Convergence

- PAC learning (agnostic): For $\epsilon, \delta > 0$ if $|S| \ge 1/2\epsilon^2 (\ln|H| + \ln 2/\delta)$
- then with probability 1δ :

$$\forall h \in H: |err_S(h) - err_D(h)| \leq \epsilon$$

- Size of the class of hypotheses can be very large
- Can also be infinite, how to give a bound then?
- We will see ways around this today

VC-dimension

- VC-dim $(H) \le \ln |H|$
- Consider database age vs. salary
- Query: fraction of the overall population with ages 35-45 and salary \$(50-70)K
- How big a database can answer with $\pm \epsilon$ error
- 100 ages \times 1000 salaries \Rightarrow 10^{10} rectangles
- $1/2\epsilon^2(10 \ln 10 + \ln 2/\delta)$ samples suffice
- What if we don't want to discretize?

VC-dimension

- **Def.** Concept class H **shatters** a set S if $\forall A \subseteq S$ there is $h \in H$ labeling A positive and $A \setminus S$ negative
- **Def. VC-dim**(*H*) = size of the largest shattered set
- Example: axis-parallel rectangles on the plane
 - 4-point diamond is shattered
 - No 5-point set can be shattered
 - VC-dim(axis-parallel rectangles) = 4
- **Def.** $H[S] = \{h \cap S : h \in H\} = \text{set of labelings of the points in } S \text{ by functions in } H$
- Def. Growth function $H(n) = \max_{|S|=n} |H[S]|$
- Example: growth function of a-p. rectangles is $O(n^4)$

Growth function & uniform convergence

• PAC learning via growth function: For $\epsilon, \delta > 0$ if $|S| = n \geq 8/\epsilon^2 (\ln|2H(2n)| + \ln 1/\delta)$ then with probability $1 - \delta$:

$$\forall h \in H: |err_S(h) - err_D(h)| \leq \epsilon$$

• Thm (Sauer's lemma). If VC-dim(H)= d then:

$$H(n) \le \sum_{i=0}^{d} \binom{n}{i} \le \left(\frac{en}{d}\right)^d$$

• For half-planes, VC-dim = 3, $H(n) = O(n^2)$

Sauer's Lemma Proof

• Let d = VC-dim(H) we'll show that if |S| = n:

$$|H[S]| \le \binom{n}{\le d} = \sum_{i=0}^{a} \binom{n}{i}$$

$$\bullet \ \binom{n}{\leq d} = \binom{n-1}{\leq d} + \binom{n-1}{\leq d-1}$$

Proof (induction by set size):

- $S \setminus \{x\}$: by induction $|H[S \setminus \{x\}]| \le {n-1 \choose \le d}$
- $|H[S]| |H[S \setminus \{x\}]| \le {n-1 \choose < d-1}$?

$$|H[S]| - |H[S \setminus \{x\}]| \le \binom{n-1}{\le d-1}$$

- If $H[S] > H[S \setminus \{x\}]$ then it is because of the sets that differ only on x so let's pair them up
- For $h \in H[S]$ containing x let $twin(h) = h \setminus \{x\}$ $T = \{h \in H[S]: x \in h \text{ and } twin(h) \in H[S]\}$
- Note: $|H[S]| |H[S \setminus \{x\}]| = |T|$
- What is the VC-dimension of T?
 - If VC-dim(T) = d' then $\mathbf{R} \subseteq S \setminus \{x\}$ of d' is shattered
 - All $2^{d'}$ subsets of R are 0/1 extendable on x
 - $-d \ge d' + 1 \Rightarrow VC\text{-dim}(T) \le d 1 \Rightarrow \text{apply induction}$

Examples

- Intervals of the reals:
 - Shatter 2 points, don't shatter $3 \Rightarrow VC$ -dim = 2
- Pairs of intervals of the reals:
 - Shatter 4 points, don't shatter $5 \Rightarrow VC$ -dim = 4
- Convex polygons
 - Shatter any n points on a circle $\Rightarrow VC$ -dim = ∞
- Linear separators in *d* dimensions:
 - Shatter d + 1 points (unit vectors + origin)
 - Take subset S and set $w_i = 0$ if $i \in S$: separator $w^T x \le 0$

VC-dimension of linear separators

No set of d+2 points can be shattered

• Thm (Radon). Any set $S \subseteq \mathbb{R}^d$ with |S| = d + 2 can be partitioned into two subsets A, B s.t.:

 $Convex(A) \cap Convex(B) \neq \emptyset$

- Form $d \times (d + 2)$ matrix A, columns = points in S
- Add extra all-1 row ⇒ matrix B
- $x = (x_1, x_2, ..., x_{d+2})$, non-zero vector: Bx = 0
- Reordering: $x_1, x_2, ..., x_s \ge 0, x_{s+1}, ..., x_{d+2} < 0$
- Normalize: $\sum_{i=1}^{s} |x_i| = 1$

Radon's Theorem (cont.)

- b_i , a_i = i-th columns of B and A
- $\sum_{i=1}^{S} |x_i| \, \boldsymbol{b_i} = \sum_{i=S+1}^{d+2} |x_i| \, \boldsymbol{b_i}$ $\sum_{i=1}^{S} |x_i| \, \boldsymbol{a_i} = \sum_{i=S+1}^{d+2} |x_i| \, \boldsymbol{a_i}$ $\sum_{i=1}^{S} |x_i| = \sum_{i=S+1}^{d+2} |x_i| = 1$
- Convex combinations of two subsets intersect
- Contradiction

Growth function & uniform convergence

• PAC learning via growth function: For $\epsilon, \delta > 0$ if $|S| = n \ge 8/\epsilon^2 (\ln|2H(2n)| + \ln 1/\delta)$

then with probability $1 - \delta$:

$$\forall h \in H: |err_S(h) - err_D(h)| \leq \epsilon$$

Assume event A:

$$\exists h \in H: |err_S(h) - err_D(h)| > \epsilon$$

• Draw S' of size n, event B:

$$\exists h \in H: |err_S(h) - err_D(h)| > \epsilon$$

 $|err_{S'}(h) - err_D(h)| < \epsilon/2$

$Pr[B] \ge Pr[A]/2$

- Lem. If $n = \Omega(1/\epsilon^2)$ then $Pr[B] \ge \Pr[A]/2$.
- Proof:

$$Pr[B] \ge Pr[A, B] = Pr[A] Pr[B|A]$$

• Suppose *A* occurs:

$$\exists \mathbf{h} \in H: |err_S(\mathbf{h}) - err_D(\mathbf{h})| > \epsilon$$

• When we draw S':

$$\mathbb{E}_{S'}[err_{S'}(\boldsymbol{h})] = err_D(\boldsymbol{h})$$

By Chernoff:

$$Pr_{S'}[|err_{S'}(\boldsymbol{h}) - err_D(\boldsymbol{h})| < \epsilon/2] \ge \frac{1}{2}$$

 $Pr[B] \ge Pr[A] \times 1/2$

VC-theorem Proof

- Suffices to show that $Pr[B] \leq \delta/2$
- Consider drawing 2n samples S'' and then randomly partitioning into S' and S
- B^* : same as B for such $(S',S) \Rightarrow \Pr[B^*] = \Pr[B]$
- Will show: \forall fixed S'' $Pr_{S,S'}[B^*|S'']$ is small
- **Key observation:** once S'' is fixed there are only $|H[S'']| \le H(2n)$ events to care about
- Suffices: for every fixed $h \in H[S'']$:

$$\Pr_{S,S'}[B^* \text{ occurs for } h | S^{"}] \leq \frac{\delta}{2H(2n)}$$

VC-theorem Proof (cont.)

- Randomly pair points in S'' into (a_i, b_i) pairs
- With prob. $\frac{1}{2}$: $a_i \to S$, $b_i \to S'$ or $a_i \to S'$, $b_i \to S$
- Diff. between $err_S(\mathbf{h})$ and $err_{S'}(\mathbf{h})$ for $i=1,\ldots,n$
- Only changes if mistake on only one of (a_i, b_i)
 - With prob. $\frac{1}{2}$ difference changes by ± 1
 - By Chernoff:

$$\Pr\left[|err_{S}(\boldsymbol{h}) - err_{S'}(\boldsymbol{h})| > \frac{\epsilon n}{4}\right] = e^{-\Omega(\epsilon^{2}n)}$$

• $e^{-\Omega(\epsilon^2 n)} \le \frac{\delta}{2H(2n)}$ for n from the Thm. statement