E0 298 | Linear Algebra and Its Applications Assignment 4

Deadline: 11.30 AM, 17-10-23 Full Marks: 25

1. Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be a complex inner-product space. Prove that if $\delta > 0$, then

(5)

$$\forall u, v \in \mathbb{V}: \quad |\langle u, v \rangle| \leqslant \frac{1}{2} \left(\frac{\|u\|^2}{\delta} + \delta \|v\|^2 \right),$$

where $\|\cdot\|$ is the norm induced by $\langle \cdot, \cdot \rangle$.

Notice that the right-hand side depends on δ but not the left-hand side. Minimizing the right-hand side over all possible $\delta > 0$, establish the Cauchy-Schwarz inequality:

$$\forall u, v \in \mathbb{V} : \quad |\langle u, v \rangle| \leqslant ||u|| \, ||v||.$$

2. (a) Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be an inner-product space. Let $v_1, \dots, v_m \in \mathbb{V}$ be linearly independent. (3) We define $q_1, \dots, q_m \in \mathbb{V}$ recursively as follows:

$$r_1 = v_1, \quad q_1 = \frac{r_1}{\|r_1\|},$$

and

$$\forall j = 2, \dots, m: \quad r_j = v_j - \sum_{i=1}^{j-1} \langle v_j, q_i \rangle q_i, \quad q_j = \frac{r_j}{\|r_j\|},$$

Show that q_1, \ldots, q_m are orthonormal vectors and $\operatorname{span}(e_1, \ldots, e_m) = \operatorname{span}(v_1, \ldots, v_m)$.

- (b) Use part (a) to show that every finite-dimensional inner-product space has an orthonormal basis. (2)
- 3. Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be an inner-product space and let $T \in \mathcal{L}(\mathbb{V})$ be injective. (3) Define $\langle u, v \rangle_* : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ to be

$$\forall u, v \in \mathbb{V} : \langle u, v \rangle_* = \langle T(u), T(v) \rangle.$$

Show that $\langle \cdot, \cdot \rangle_*$ is a valid inner-product on \mathbb{V} .

4. Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be a real inner-product space. Let $F : \mathbb{V} \to \mathbb{V}$ be a function such that (6)

$$\forall x, y \in \mathbb{V} : \langle F(x), F(y) \rangle = \langle x, y \rangle.$$

Prove that *F* must be linear.

On the other hand, give a simple counterexample to show that if

$$\forall x \in \mathbb{V}: \quad ||F(x)|| = ||x||,$$

where $\|\cdot\|$ is the norm induced by the inner-product on \mathbb{V} , then F need not be linear.

5. Let $A \in \mathbb{C}^{n \times n}$. Suppose that for all $x \in \mathbb{C}^n$, $\langle x, Ax \rangle_{\mathbb{C}^n} = 0$, where $\langle \cdot, \cdot \rangle_{\mathbb{C}^n}$ is the standard dot product on \mathbb{C}^n . Show that A = 0.

On the other hand, give a counterexample to show that if $A \in \mathbb{R}^{2 \times 2}$, then the condition

$$\forall x \in \mathbb{R}^2 : \langle x, Ax \rangle_{\mathbb{R}^2} = 0,$$

where $\langle \cdot, \cdot \rangle_{\mathbb{R}^2}$ is the standard dot product on \mathbb{R}^2 , does not imply that A = 0.
