Wi-Fi & Bluetooth Bluetooth

Bluetooth

❖ Bluetooth

- WPAN (Wireless Personal Area Network) protocol designed by the Bluetooth SIG (Special Interest Group)
- Used to replace cables connecting many different types of devices
 - Mobile Phones & Headsets
 - Heart Monitors & Medical Equipment

Bluetooth SIG Standardization

- Bluetooth SIG was formed in 1998
- First specification Bluetooth 1.0 was released in 1999
- Bluetooth 5 was released in Dec. 2016
- Earlier standards (Bluetooth 1.1 and 1.2)
 were ratified as the IEEE 802.15.1 standard
 - No longer maintain as an IEEE standard

Bluetooth

Bluetooth Characteristics

- Operates in the 2.4 GHz unlicensed ISM band
- Uses adaptive Frequency Hopping scheme
 - FHSS (Frequency Hoping Spread Spectrum)
 - Avoids interference with other non-hopping (i.e., Wi-Fi, ZigBee) ISM wireless networks
 - Improves co-existence within the ISM band
- Forms a Piconet in a Star topology
 - One Master node and multiple Slave nodes

Bluetooth Characteristics

- Components of a Piconet
 - Master node
 - Maximum 1 node in a piconet
 - Provides packet exchange, reference clock time, and frequency hopping pattern
 - Slave node
 - Connected to the Master node
 - Synchronizes to the Master's clock and frequency hopping pattern

Bluetooth

Bluetooth Characteristics

Example of Bluetooth piconet

Bluetooth Characteristics

Example of Bluetooth piconet

- · A is the Master of Piconet A
- · B, C, and D are Slaves of Piconet A

Bluetooth

Bluetooth Characteristics

Example of Bluetooth piconet

 C serves as a Master in Piconet C although it is a Slave in Piconet A

Bluetooth Characteristics

Example of Bluetooth piconet

 As a Master, F broadcasts information to D and other Slaves in Piconet F

Bluetooth

Bluetooth Characteristics

Example of Bluetooth piconet

 No nodes are in the range of G, so G keeps scanning for other devices to form a piconet

Bluetooth Operations

- Bluetooth specification includes2 major types of operation
 - Classic Bluetooth
 - Before Bluetooth 4.0
 - BR: Basic Rate
 - EDR: Enhanced Data Rate
 - LE (Low Energy)
 - Newly introduced technology in Bluetooth v4.0
 - BLE (Bluetooth Low Energy)

Bluetooth

❖ BR/EDR Channel Specifications

- Total 79 channels, each channel is 1 MHz
- Total Bandwidth 2.4 ~ 2.4835 GHz
- TDD (Time Division Duplex) scheme

BR system channel bandwidth

❖ BR/EDR operation

Modulation mode

BR: GFSK

• EDR: $\pi/4$ -DPSK or 8DPSK

Data rate

• BR: 1 Mbps

• EDR: 2~3 Mbps

 One Master node can interconnect up to 7 slave nodes

Bluetooth

❖ BLE Operations

- Each channel uses a 2 MHz bandwidth between
 2.402 ~ 2.480 GHz → Total 40 channels
 - 3 channels for primary advertising channels: 37, 38, 39
 - 37 channels for data channels
 - Used as secondary advertising channels in Bluetooth 5

Bluetooth LE system channel bandwidth

❖ BLE Operations

- TDMA and FDMA multiple access scheme
- Modulation mode: GFSK
- Data Rate
 - Before Bluetooth 5: 1 Mbps
 - After Bluetooth 5: 125 kbps ~ 2 Mbps
 - · Differs in PHY coding method
 - Bluetooth 5 supports error correction coding resulting in lowered data rate but more secure data transmission

Bluetooth

❖ BLE Operations

- Data is transmitted being positioned on a time duration called an 'Event'
- Two types of Events
 - Advertising
 - Advertise messages without connection
 - Connection
 - Build a connection to send data between the Master and Slave devices

❖ BLE Advertising Event

- Purpose of Advertising channels
 - 1. Set up connection between devices
 - 2. Communicate information between unconnected devices

Bluetooth

❖ BLE Advertising Event

- Device Types
 - Advertiser
 - Device that transmits an advertising packet
 - Scanner
 - Receiver without intention to connect
 - Initiator
 - Listens for 'Connectable Advertising Packet' to initiate connection

❖ BLE Advertising Event

- Advertising event occurs in Advertising Channels
 - Advertising Channels 37, 38, and 39
- Either can Broadcast or conduct
 Unidirectional Communication

Bluetooth

❖ BLE Advertising Event

 Scanner node may send back a response message

❖ BLE Connection Event

- A series of one or more pairs of interleaving data packets sent between a Master and a Slave on the same physical channel
- Initiator listens for a 'connectable advertising packet' from an Advertiser, and requests for connection initiation
- Initiator becomes the Master device, and Advertiser becomes the slave device

Bluetooth

❖ BLE Connection Event

 An Initiator detects a connectable message from an Advertiser during the Advertising Event on the Advertising Channel

❖ BLE Connection Event

- Advertiser (Slave) and the Initiator (Master) operate during the Connection Event
- Connection Event occurs within the data channel

Wi-Fi & Bluetooth

References

References

- C. Bisdikian, "An Overview of the Bluetooth Wireless Technology," IEEE Communication Magazine, vol. 39, no. 12, pp. 86-94, Dec. 2001.
- E. Ferro and F. Potorti, "Bluetooth and Wi-Fi wireless protocols: a survey and a comparison," IEEE Wireless Communications, vol. 12, no. 1, pp. 12-26, Feb. 2005.
- Bluetooth SIG, http://www.bluetooth.org
- · Wikipedia, http://www.wikipedia.org
- A. Buda, V. Schuermann and J. F. Wollert, "Wireless Technologies in Factory Automation," in Factory Automation, 1st ed. 2010, ch. 2, sec. 4.3, pp. 29-50.
- "Connectivity of the Internet of Things," sparkfun, [Online] Available from: https://learn.sparkfun.com/tutorials/connectivity-of-the-internet-of-things/bluetooth [Accessed Feb. 22, 2018]

Image sources

• Bluetooth Logo, By Bluetooth Special Interest Group. (SVG rendering drawn by me, =Nichalp «Talk»=) [Public domain], via Wikimedia Commons