

# Dávid Gyulai Curriculum Vitae

December 2018

- Institute for Computer Science and Control (SZTAKI)

  Hungarian Academy of Sciences (MTA)

  Kende 13-17, H-1111 Budapest, Hungary
- david.gyulai@sztaki.mta.hu
- +36 1 279 6181
- **1** +36 30 450 2766
- www.github.com/dgyulai
- in www.linkedin.com/in/davidgyulai

## **Personal**

Born: February 3, 1988, Berettyóújfalu, Hungary

Marital status: married, 1 child

## **Education and qualifications**

| 2018 | Ph.D. in Mechanical Engineering                  | Budapest University of Technology and Economics |
|------|--------------------------------------------------|-------------------------------------------------|
| 2015 | Graduate Certificate, Lean Production Specialist | Budapest University of Technology and Economics |
| 2012 | M.Sc. in Mechatronics Engineering                | Budapest University of Technology and Economics |
| 2010 | B.Sc. in Mechatronics Engineering                | Budapest University of Technology and Economics |

# **Current positions**

2018-pres. Industrial Data Analytics Expert EPIC InnoLabs Ltd.

2018-pres. Research Fellow EPIC Centre of Excellence in Production Inf. and Control at MTA SZTAKI

## **Experience**

| 2013-2018 | Ph.D. Candidate    | Budapest University of Technology and Economics (BME)   |
|-----------|--------------------|---------------------------------------------------------|
|           |                    | Doctoral School for Mechanical Engineering Sciences     |
| 2012-2018 | Research Associate | Research Institute for Automation and Control (SZTAKI), |
|           |                    | Hungarian Academy of Sciences (MTA)                     |
| 2010-2012 | Graduate Intern    | MTA SZTAKI                                              |
| 2010      | Intern             | Tecnoweld Kkt.                                          |
| 2009      | Intern             | Continental Automotive Hungary, EBS R&D                 |

# **Memberships**

2018-pres. Member of Public Body MTA Committee of Automation and Computing

#### **PhD Thesis**

Production and capacity planning methods for flexible and reconfigurable assembly systems

- ➤ Budapest University of Technology and Economics, 2018
- > Supervisor: Prof. László Monostori, academician
- Topics: industrial engineering, production & operations management, optimization, simulation, data analytics
- ➤ https://github.com/dgyulai/PhD

### **Interests**

- ➤ Data analytics for production planning and control
- ➤ Manufacturing and operations management
- ➤ Capacity and production planning methods for assembly systems
- ➤ Modular and reconfigurable manufacturing systems
- ➤ Discrete-event simulation
- ➤ Mathematical modeling
- ➤ Statistical learning
- ➤ Robust production planning and control

Curriculum Vitae: Dávid Gyulai

#### Honours and awards

- 2017 MTA SZTAKI Award for outstanding research
- 2015 Young Scientist Scholarship of Hungarian Academy of Sciences
- 2015 Young Researcher Award of MTA SZTAKI
- 2015 Annual Scientific Forum of PhD students, MTA SZTAKI; 1st place
- 2015 Annual Scientific Forum of PhD students, Budapest Univ. of Techn. and Economics; 2nd place
- 2014 Annual Scientific Forum of PhD students, MTA SZTAKI; 1st place
- 2011 Conference of Scientific Students' Associations; 1st prize
- 2011 Siemens PLM Student Design Contest; 1st prize
- 2009 FESTO Robotino Olimpia: 4th prize

#### **Skills**

**Software skills:** FICO XPress, Gurobi, R, Python, Microsoft .NET, NoSQL (MongoDB, Cassandra), SQL, Siemens Plant Simulation, Siemens Preactor, Apache technologies (Spark, Filnk etc.), MATLAB, LabVIEW, Wolfram Mathematica

#### Language skills:

English: fluent CEFR Level: C1 (TOEFL iBT 102 scores, 2015)

German: good CEFR Level: B1

## **Key projects**

- ➤ StaProZell Stabile Produktion in wandlungsfähigen zellenorientierten Montagesystemen durch einen Digital Twin, FFG Austrian Research Promotion Agency (2018 2021)
- ➤ EXCELL Big Data Applications for Cyber-Physical Systems in Prod. and Log. Networks, EU H2020, (2016-2018)
- ➤ EPIC Centre of Excellence in Production Informatics and Control, EU H2020, (2017-2024)
- ➤ Hitachi Yokohama Research Laboratory MTA SZTAKI collaborative research project (2017-2019)
- ➤ iKOMP project, Layout planning and optimization workpackage, (2015-2017)
- ➤ RobustPlaNet, Shock-robust Design for Plants and their Supply Chain Networks, EU FP7, (2013-2016)
- ➤ E.ON service planning, Optimization-based planning of electricity network services (2012-2013)
- ➤ Milkrun Planner, Development of a shop-floor logistics software with Fraunhofer Austria (2012-2013)
- ➤ Knorr-Bremse Benchmark Factory, Reorganization of the low-volume assembly segment, (2012-2013)
- ➤ Knorr-Bremse SampleShop, Design and evaluation of modular assembly systems, (2010-2012)

## **Publications**

ORCID ID: https://orcid.org/0000-0003-1422-1130

Scopus ID: 55769676800 Mendeley Profile: dvid-gyulai MTMT publication database link

Google Scholar link

➤ All publications: 32

➤ Cumulative impact factor (published): 17.2

➤ h-index: 6

Published journal papers: 7
 Published conference papers: 22
 Independent citations: 80+

➤ Patents: 1

## **Journal papers**

- 1. Carvajal Soto, J. A., F. Tavakolizadeh, D. Gyulai, and E. Zudor (2018). An online machine learning framework for early detection of product failures in the Industry 4.0. *International Journal of Computer Integrated Manufacturing*. Accepted.
- 2. Manzini, M., J. Unglert, D. Gyulai, M. Colledani, J. M. Jauregui-Becker, L. Monostori, and M. Urgo (2018). An integrated framework for design, management and operation of reconfigurable assembly systems. *Omega* **78**. IF: 4.31, 69–84. DOI: 10.1016/j.omega.2017.08.008.
- 3. Tsutsumi, D., D. Gyulai, A. Kovács, B. Tipary, Y. Ueno, Y. Nonaka, and L. Monostori (2018). Towards joint optimization of product design, process planning and production planning in multi-product assembly. *CIRP Annals-Manufacturing Technology* **67**(1). IF: 3.33, 441–446. DOI: 10.1016/j.cirp.2018.04.036.

- 4. Gyulai, D. and L. Monostori (2017). Capacity management of modular assembly systems. *Journal of Manufacturing Systems* **43**(1). IF: 2.77, 88–99. DOI: 10.1016/j.jmsy.2017.02.008.
- 5. Gyulai, D., A. Pfeiffer, and L. Monostori (2017). Robust production planning and control for multi-stage systems with flexible final assembly lines. *International Journal of Production Research* **55**(13). IF: 2.32, 3657–3673. DOI: 10.1080/00207543.2016.1198506.
- Colledani, M., D. Gyulai, L. Monostori, M. Urgo, J. Unglert, and F. Van Houten (2016). Design and management of reconfigurable assembly lines in the automotive industry. CIRP Annals-Manufacturing Technology 65(1). IF: 2.54, 441–446. DOI: 10.1016/j.cirp.2016.04.123.
- 7. Szaller, Á., D. Gyulai, and Z. J. Viharos (2016). Gyártórendszerek elrendezésének tervezése sztochasztikus paraméterek figyelembevételével. GÉP **67**(7-8), 107–110.
- 8. Gyulai, D., B. Kádár, A. Kovács, and L. Monostori (2014). Capacity management for assembly systems with dedicated and reconfigurable resources. *CIRP Annals Manufacturing Technology* **63**(1). IF: 2.25, 457–460. DOI: 10.1016/j.cirp.2014.03.110.
- 9. Gyulai, D. and L. Monostori (2013). Vehicle Routing Approach for Lean Shop-Floor Logistics. *Hungarian Journal of Industry and Chemistry* **41**(1), 1–6.

## Papers in refereed conference proceedings

- 1. Gyulai, D., A. Pfeiffer, and V. Gallina (2018). Online lead time prediction supporting situation-aware production control. *Procedia CIRP* **78**. *6th CIRP Global Web Conference CIRPe* 2018, 190–195. DOI: 10.1016/j.procir.2018.09.071.
- 2. Gyulai, D., A. Pfeiffer, G. Nick, V. Gallina, W. Sihn, and L. Monostori (2018). Lead time prediction in a flow-shop environment with analytical and machine learning approaches. In: *Proceedings of the 16th IFAC Symposium on Information Control Problems in Manufacturing, Bergamo, Italy*. In Print. IFAC.
- 3. Lingitz, L., V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer, and W. Sihn (2018). Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer. *Procedia CIRP* **72**. 51st CIRP Conference on Manufacturing Systems–CIRP CMS 2018, Stockholm, Sweden, 1051–1056. DOI: 10.1016/j.procir.2018.03.148.
- 4. Pfeiffer, A., D. Gyulai, Á. Szaller, and L. Monostori (2018). Production Log Data Analysis for Reject Rate Prediction and Workload Estimation. Proceeding of the 2018 Winter Simulation Conference. Winter Simulation Conference 2018, Gothenburg, Sweden, Accepted.
- 5. Szaller, Á., F. Béres, É. Piller, D. Gyulai, and A. Pfeiffer (2018). Real-time prediction of manufacturing lead times in complex production environments. EurOMA 2018 Proceedings. 25th Annual EurOMA Conference EurOMA 2018, Budapest, Hungary, In Print.
- 6. Gyulai, D., B. Kádár, and L. Monostori (2017). Scheduling and operator control in reconfigurable assembly systems. Procedia CIRP 63. 50th CIRP Conference on Manufacturing Systems – CIRP CMS 2017, Taichung City, Taiwan, 459–464. DOI: 10.1016/j.procir.2017.03.082.
- 7. Pfeiffer, A., D. Gyulai, and L. Monostori (2017). Improving the Accuracy of Cycle Time Estimation for Simulation in Volatile Manufacturing Execution Environments. In: Proceedings of ASIM Simulation in Production and Logistics 2017 Conference. ASIM Simulation in Production and Logistics 2017, Kassel, Germany. ASIM, pp.177–186.
- 8. Tavakolizadeh, F., J. Á. Carvajal Soto, D. Gyulai, and C. Beecks (2017). Industry 4.0: Mining Physical Defects in Production of Surface-Mount Devices. In: *Proceedings of the 17th Industrial Conference*, *Advances in Data Mining*, *ICDM* 2017, New York, USA, pp.146–151. http://www.data-mining-forum.de/books/icdmposter2017.pdf.
- 9. Becker, J. M. J., B. Kádár, M. Colledani, N. Stricker, M. Urgo, J. Unglert, D. Gyulai, and E. Moser (2016). The Robust-PlaNet Project: Towards Shock-Robust Design Of Plants And Their Supply Chain Networks. *IFAC-PapersOnLine* **49**(12). 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016, Troyes, France, 29–34. DOI: 10.1016/j.ifacol.2016.07.545.
- 10. Egri, P., D. Gyulai, B. Kádár, and L. Monostori (2016). Production Planning on Supply Network and Plant Levels: The RobustPlaNet Approach. *ERCIM (European Research Consortium for Informatics & Mathematics)* News (105), 14–15.
- 11. Gyulai, D., A. Pfeiffer, B. Kádár, and L. Monostori (2016). Simulation-based Production Planning and Execution Control for Reconfigurable Assembly Cells. *Procedia CIRP* **57**. 49th CIRP Conference on Manufacturing Systems–CIRP CMS 2016, Stuttgart, Germany, 445–450. DOI: 10.1016/j.procir.2016.11.077.
- 12. Gyulai, D., Á. Szaller, and Z. J. Viharos (2016). Simulation-based Flexible Layout Planning Considering Stochastic Effects. Procedia CIRP **57**. 49th CIRP Conference on Manufacturing Systems–CIRP CMS 2016, Stuttgart, Germany, 177–182
- 13. Pfeiffer, A., D. Gyulai, B. Kádár, and L. Monostori (2016). Manufacturing Lead Time Estimation with the Combination of Simulation and Statistical Learning Methods. *Procedia CIRP* **41**. 48th CIRP Conference on Manufacturing Systems-CIRP CMS 2015, Ischia, Italy, 75–80. DOI: 10.1016/j.procir.2015.12.018.

- 14. Gyulai, D., B. Kádár, and L. Monostori (2015). Robust production planning and capacity control for flexible assembly lines. In: *Proceedings of the 15th IFAC/IEEE/IFIP/IFORS Symposium, Information Control Problems in Manufacturing, Ottawa, Canada*. IFAC, pp.2380–2385. DOI: 10.1016/j.ifacol.2015.06.432.
- 15. Gyulai, D. (2014). Bilevel Capacity Management with Reconfigurable and Dedicated Resources. In: XIX. International Scientific Conference of Young Engineers. In Hungarian. EME. http://eda.eme.ro/handle/10598/28228.
- 16. Gyulai, D. (2014). Novel capacity planning methods for flexible and reconfigurable assembly systems. In: 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications SIMULTECH. SCITEPRESS. http://eprints.sztaki.hu/8142.
- 17. Gyulai, D., B. Kádár, and L. Monostori (2014). Capacity Planning and Resource Allocation in Assembly Systems Consisting of Dedicated and Reconfigurable Lines. *Procedia CIRP* **25**. 8th International Conference on Digital Enterprise Technology–CIRP DET 2014, Stuttgart, Germany, 185–191. DOI: 10.1016/j.procir.2014.10.028.
- 18. Gyulai, D. and L. Monostori (2014). Capacity analysis and planning for flexible assembly lines. In: *Proceedings of International Automation Congress* 2014. MATE, pp.38–47. http://eprints.sztaki.hu/id/eprint/8086.
- 19. Gyulai, D., A. Pfeiffer, T. Sobottka, and J. Váncza (2013). Milkrun Vehicle Routing Approach for Shop-floor Logistics. *Procedia CIRP* **7**. 46th CIRP Conference on Manufacturing Systems–CIRP CMS 2018, Setubal, Portugal, 127–132. DOI: 10.1016/j.procir.2013.05.022.
- 20. Gyulai, D. and Z. Vén (2012). Order-stream-oriented system design for reconfigurable assembly systems. In: *Proceedings of the Factory Automation 2012 Conference*. University of Pannonia, pp.138–143. http://eprints.sztaki.hu/id/eprint/7374.
- 21. Gyulai, D., Z. Vén, A. Pfeiffer, J. Váncza, and L. Monostori (2012). Matching Demand and System Structure in Reconfigurable Assembly Systems. *Procedia CIRP* **3**. 45th CIRP Conference on Manufacturing Systems–CIRP CMS 2012, Athens, Greece, 579–584. DOI: 10.1016/j.procir.2012.07.099.
- 22. Popovics, G., C. Kardos, L. Kemény, D. Gyulai, and L. Monostori (2012). Uniform data structure for production simulation. In: Proceedings of the 14th International Conference on Modern Information Technology in the Innovation Processes of the Industrial Enterprises, MITIP 2012, pp.168–177. http://eprints.sztaki.hu/id/eprint/7445.

#### **Patents**

1. Tsutsumi, D., Y. Ueno, Y. Nonaka, T. Nakano, J. Váncza, G. Erdős, D. Gyulai, A. Kovács, and B. Tipary (n.d.). "Product design and process deign device". Patent 2017-218851 (JP).