Monitoria MCMC 2020

Victor Garritano 2020-03-20

\sim	, ~	-4
()1	ıestão	- 1

Questão 2

Questão 3

Questão 4

Eventos

- C_1 : Cobra está em I_1
- C_2 : Cobra está em I_2
- C_3 : Cobra está em I_3
- E_1 : Algoritmo detecta cobra em I_1
- \bullet E_2 : Algoritmo detecta cobra em I_2
- E_3 : Algoritmo detecta cobra em I_3

O que sabemos

• $P[E_i|C_i] = \alpha_i$: Algoritmo detecta cobra na imagem I_i com prob. α_i

O que queremos descobrir

• $P[C_i|\neg E_i]$: Prob. da cobra estar em I_i , dado que o algoritmo não a encontrou lá

O que podemos assumir para ajudar

- $P[C_i] = \frac{1}{3} \ \forall i$ A prob. da cobra estar em qualquer uma das imagens é uniforme
- $P[C_i|E_i]=1$ Ou seja, o algoritmo não tem falsos positivos. Ele não encontra a cobra quando ela não está na imagem

Dicas

Usar regra de Bayes e Lei da Probabilidade Total

Questão 5

- Seja s+k o número de rodadas que precisamos esperar até o evento de interesse ocorrer.
- Memoryless property: P[X > s + k | X > k] = P[X > s]
- $\bullet\,$ Queremos mostrar que P[X>s] segue uma distribuição geométrica

Dicas

• Aplicar definição de probabilidade condicional em P[X>s+k|X>k]

Questão 6

Dicas

- Tempo base da distribuição: 1 hora = 60 minutos
- Taxa de chegada: $\lambda=10$ ônibus por hora
- A cada unidade do tempo base (ou seja, 60 minutos), chegam em média 10 ônibus
- Expressar os tempos de interesse como frações do tempo base

Questão 7

Dica

• Law of Total Expectation

Questão 8

Variáveis aleatórias que podem ajudar

- N_k : Número de vezes que a moeda precisa ser jogada para obtermos k caras (C) consecutivas
- Y: 1^a ocorrência de uma coroa (O).

Dicas

- ullet A v.a. Y segue qual distribuição?
- Quais valores ela pode assumir?
- Será que podemos utilizar algum conhecimento sobre uma realização de Y para nos ajudar a calcular $E[N_k]$?
- $E[N_k] = E[E[N_k|Y]]$

•

$$E[N_k|Y] = \begin{cases} y + E[N_k] &, y \le k \\ k &, y \ge k + 1 \end{cases}$$
 (1)

•

$$E[N_k] = E_Y[E[N_k|Y]] \tag{2}$$

$$= \sum_{y=1}^{\infty} E[N_k | Y = y] P[Y = y]$$
 (3)

$$= \sum_{y=1}^{k} (y + E[N_k])P[Y = y] + \sum_{y=k+1}^{\infty} kP[Y = y]$$
 (4)