# Introduction to Program Synthesis (SS 25) Chapter 4 - Advanced Methodologies

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany





Neural Program Synthesis: Recurrent Neural Networks

- ► Feed-forward Neural Networks → uni directional dataflow
  - → Each input is treated independently

Recurrent Neural Networks (RNN)  $\rightarrow$  processing of sequential data via feedback loops

- → Sequence modelling of time series, speech, text, code, music, ...
- → Loop-like architecture
- → Memoisation of past input states

Neural Program Synthesis: Recurrent Neural Networks



Figure: Recurrent Neural Network (RNN)

Neural Program Synthesis: Recurrent Neural Networks

- ▶ A RNN can be considered a function  $f(x_t, h_t, \theta) \mapsto (y_t, h_{t+1})$ 
  - $\rightarrow x_t$ : input vector  $\rightarrow h_t$ : hidden vector  $\rightarrow y_t$ : output vector  $\rightarrow \theta$ : hyperparameters
- ▶ The input vector  $x_t$  is mapped into an output  $y_t$ 
  - $\sim$  hidden vector  $h_t$  serves as an *memory*
- ► Transformation of an input to an output at each step t
  - $\sim$  U, V and W  $\rightarrow$  weight matrices
  - $\rightarrow$  b and  $c \rightarrow$  bias vectors
  - $\sim$  step-wise update  $\rightarrow$  back-propagation through time (BPTT)

Neural Program Synthesis: Recurrent Neural Networks

▶ Update equations are applied from t = 1 to  $t = \tau$ 

$$\rightarrow a^t = b + Wh^{t-1} + Ux^t$$

$$\rightsquigarrow h^t = tanh(a^t)$$

$$\rightsquigarrow y^t = c + Vh^t$$

- ▶ RNNs are prone to the vanishing gradient problem
  - Long-term gradients that are back-propagated through time can vanish
- ► Long-short term memory (LSTM) → learning when to remember and when to forget information
  - Ability to decide when inputs should be remembered or ignored in the hidden state

- ▶ LSTM Architecture → gated memory cell
  - $\rightarrow$  Input gate  $I_t \rightarrow$  Decides when information is added to the cell
  - $\sim$  **Forget gate**  $F_t \rightarrow$  Resets the content of the cell
  - $\rightarrow$  **Output gate**  $O_t \rightarrow$  Determines the output of the cell
- ightharpoonup Hidden state ightarrow replaced with a memory cell



Figure: Long-short term memory (LSTM)

Neural Program Synthesis: Long-short term memory (LSTM)

▶ With *h* hidden units, *d* inputs and batch size is *b* 

$$\begin{array}{l}
\sim X_t \in \mathbb{R}^{n \times d} \\
\sim H_{t-1} \in \mathbb{R}^{n \times h} \\
\sim I_t \in \mathbb{R}^{n \times h} \\
\sim F_t \in \mathbb{R}^{n \times h} \\
\sim T_t \in \mathbb{R}^{n \times h}
\end{array}$$

▶ The gates are calculated as follows

Weights and biases are defined as follows

- ullet Candidate memory cell  $ilde{C}_t \in \mathbb{R}^{n imes h}$ 
  - $\rightsquigarrow \tanh(X_t W_{xc} + H_{t-1} W hc + b_c)$
- ▶ Memory cell C<sub>t</sub>

$$ightsquare$$
  $C_t = F_t \odot C_{t-1} + I_t \odot \tilde{C}_t$ 

- ▶ Hiden state *H<sub>t</sub>* 
  - $\rightsquigarrow H_t = O_t \odot \tanh(C_t)$
  - $\sim$  Values of  $H_t$  are then in the interval (-1,1)

Neural Program Synthesis: Autoencoders

- ► Type of neural network that are trained to copy given input to ihe corresponding output
  - $\sim$  General idea  $\rightarrow$  Map an input x to an output (namely reconstruction) via a latent representation or code h
- ▶ A hidden layer *h* represents the code
  - → Latent space reprensetation of the input
- Mainly consists of two parts:
  - $\rightarrow$  Encoder function h = f(x)
  - $\rightarrow$  Decoder that does reconstruction r = g(h)



Figure: Autoencoder (Source: Wikimedia (Creator: Michela Massi))

Neural Program Synthesis: Transformer

- Successor of RNN's and LSTM for automated natural language processing (NLP)
  - → Extension via attention mechanisms
  - $\sim$  Transformers neglect recurrent structures  $\rightarrow$  focus on attention mechanism
  - → Imitation of human cognitive attention
- ► Transformer calculate a weighting for each word in the context of the embedding
  - → Embedding is based on encoder-decoder architecture
  - → Embedding layer weights are adjusted during training
  - $\sim$  Transformation  $\rightarrow$  Word2Vec

Neural Program Synthesis: Transformer

- ► Tokenizer → preparation of the inputs for a model
- ► Word2Vec → vector representations of words
  - $\sim$  Words in similar contexts  $\rightarrow$  mapping to vectors
  - ightharpoonup Distance is measured with cosine similarity
  - $\sim$  *Text-to-token*  $\rightarrow$  Tokenizer
- $lackbox{ Positional encoding} 
  ightarrow ext{sequential order of the words is respected}$
- ► Attention mechanism → Weighting tokens based on their importance
  - $\sim$  Self attention  $\rightarrow$  Capturing of long-range dependencies without sequential processing
  - $\sim$  Multi-headed attention  $\rightarrow$  Enabling focus on various aspects of the input data simultaneously

Neural Program Synthesis: Transformer



Figure: Transformer (Source: Vaswani et al. (2017))