Shortest Path Problem I

SWE2016-44

Problem Statement

Find a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

A graph is a series of nodes connected by edges. Graphs can be weighted and directional.

Shortest Path Algorithms

- Dijkstra's algorithm: solves the single-source shortest path problem with non-negative edge weight.
- Bellman–Ford algorithm: solves the single-source problem if edge weights may be negative.
- A* search algorithm: solves for single pair shortest path using heuristics to try to speed up the search.
- Floyd-Warshall algorithm: solves all pairs shortest paths.
- Johnson's algorithm: solves all pairs shortest paths, and may be faster than Floyd–Warshall on sparse graphs.
- Viterbi algorithm: solves the shortest stochastic path problem with an additional probabilistic weight on each node.

Similar to Prim's Algorithm

- 1. Create an empty set (sptSet) that keeps track of vertices included in shortest path tree
- 2. Initialize all vertices distances as INFINITE except for the source vertex. Initialize the source distance=0.
- 3. While sptSet doesn't include all vertices
 - 1) Pick a vertex u which is not there in sptSet and has minimum distance value.
 - 2) Include u to the set.
 - 3) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u and weight of edge u-v, is less than the distance value of v, then update the distance value of v.

Update B: d[u]+4=4 < ∞

Update H: d[u]+8=8 < ∞

	distance	parent †
Vertex	d	π
×A	0	NIL
В	∞	NIL
С	∞	NIL
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	∞	NIL
Н	∞	NIL
	∞	NIL

Update B: d[u]+4=4 < ∞

Update H: d[u]+8=8 < ∞

	distance	parent †
Vertex	d	π
XA	0	NIL
В	4	A
С	∞	NIL
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	∞	NIL
Н	8	A
I	∞	NIL

Update C: d[u]+8=12 < ∞

Update H: d[u]+11=15 > 8

	distance	parent
Vertex	d	π
×A	0	NIL
XВ	4	A
С	∞	NIL
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	∞	NIL
Н	8	A
	8	NIL

Update C: d[u]+8=12 < ∞

Update H: d[u]+11=15 > 8

	distance	parent †
Vertex	d	π
XA	0	NIL
ΧB	4	Α
С	12	В
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	∞	NIL
Н	8	Α
	∞	NIL

Update G: d[u]+1=9 < ∞

Update I: d[u]+7=15 < ∞

	distance	parent †
Vertex	d	π
XA	0	NIL
ΧB	4	Α
С	12	В
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	∞	NIL
\times H	8	A
	∞	NIL

Update G: d[u]+1=9 < ∞

Update I: d[u]+7=15 < ∞

	distance	parent
Vertex	d	π
XA	0	NIL
ΧB	4	A
С	12	В
D	∞	NIL
E	∞	NIL
F	∞	NIL
G	9	Н
\times H	8	A
	15	Н

Update F: $d[u]+2=11 < \infty$

Update I: d[u]+6=15=15

Update F: $d[u]+2=11 < \infty$

Update I: d[u]+6=15=15

	distance	parent
Vertex	d	π
\times A	0	NIL
×в	4	A
С	12	В
D	∞	NIL
E	∞	NIL
×F	11	G
×G	9	н
\times H	8	Α
	15	Н

	distance	parent †
Vertex	d	π
\times A	0	NIL
×в	4	A
С	12	В
D	25	F
E	21	F
×F	11	G
×G	9	Н
\times H	8	A
	15	Н

Update D: d[u]+7=19 < 25

Update I: d[u]+2=14 < 15

	distance	parent
Vertex	d	π
XA	0	NIL
×в	4	A
×c	12	В
D	25	F
E	21	F
×F	11	G
×G	9	Н
\times H	8	A
	15	Н

Update D: d[u]+7=19 < 25

Update I: d[u]+2=14 < 15

	distance	parent
Vertex	d	π
\times A	0	NIL
×в	4	A
×c	12	В
D	19	C
E	21	F
×F	11	G
×G	9	Н
\times H	8	A
	14	C

Update E: d[u]+9=28 > 21

	distance	parent
Vertex	d	π
\times A	0	NIL
×в	4	Α
×c	12	В
\times D	19	C
XE	21	F
×F	11	G
×G	9	н
\times H	8	Α
XI	14	C

	distance	parent
Vertex	d	π
\times A	0	NIL
×в	4	Α
×c	12	В
\times D	19	С
XE	21	F
×F	11	G
×G	9	н
\times H	8	Α
XI	14	С

Complexity

Time Complexity: O(V²)

If the input graph is represented using adjacency list, it can be reduced to O(E log V) with the help of binary heap.

Pseudo-Code

```
d[s] \leftarrow 0
for each v \in V - \{s\}:
     do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V
while Q \neq \emptyset:
     do u \leftarrow \text{Extract} - \text{Min}(Q):
         S \leftarrow S \cup \{u\}
          for each v \in Adj[u]:
               if d[v] > d[u] + w(u, v):
                  d[v] = d[u] + w(u, v)
```

Implementation

```
int minDistance(int dist[], bool sptSet[])
    // Initialize min value
    int min = INT MAX, min index;
    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)</pre>
             min = dist[v], min index = v;
    return min index;
int main()
   /* Let us create the example graph discussed above */
   int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
                       { 4, 0, 8, 0, 0, 0, 0, 11, 0 },
                       { 0, 8, 0, 7, 0, 4, 0, 0, 2 },
                       { 0, 0, 7, 0, 9, 14, 0, 0, 0 },
                       { 0, 0, 0, 9, 0, 10, 0, 0, 0 },
                       { 0, 0, 4, 14, 10, 0, 2, 0, 0 },
                       { 0, 0, 0, 0, 0, 2, 0, 1, 6 },
                       { 8, 11, 0, 0, 0, 0, 1, 0, 7 },
                       { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
    dijkstra(graph, 0);
    return 0;
```

```
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
    int dist[V]; // The output array. dist[i] will hold the shortest
    // distance from src to i
    bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
    // path tree or shortest distance from src to i is finalized
    // Initialize all distances as INFINITE and stpSet[] as false
    for (int i = 0; i < V; i++)</pre>
        dist[i] = INT MAX, sptSet[i] = false;
    // Distance of source vertex from itself is always 0
    dist[src] = 0;
    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++) {
        // Pick the minimum distance vertex from the set of vertices not
        // yet processed. u is always equal to src in the first iteration.
        int u = minDistance(dist, sptSet);
        // Mark the picked vertex as processed
        sptSet[u] = true;
        // Update dist value of the adjacent vertices of the picked vertex.
        for (int v = 0; v < V; v++)
            // Update dist[v] only if is not in sptSet, there is an edge from
            // u to v, and total weight of path from src to v through u is
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v] && dist[u] != INT MAX
                && dist[u] + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    // print the constructed distance array
    printSolution(dist);
```

- 1. Initialize distances from source to all vertices as infinite and distance to source itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src is source vertex.
- 2. Calculate shortest distances. Do following |V|-1 times for each edge u-v:
 - 1) If dist[v] > dist[u]+weight of edge uv, then update dist[v] (=dist[u]+weight of edge uv).
- 3. This step reports if there is a negative weight cycle in graph. Do following for each edge u-v
 - 1) If dist[v] > dist[u]+weight of edge uv, then "Graph contains negative weight cycle"

	distance	parent
Vertex	d	π
A	0	NIL
В	∞	NIL
С	∞	NIL
D	∞	NIL
E	∞	NIL

Let all edges are processed in following order: (B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

	distance	parent
Vertex	d	π
Α	0	NIL
В	∞	NIL
С	∞	NIL
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, E), (D, B), (B, D): $d[u]+edge(u,v)=\infty = \infty$

	distance	parent
Vertex	d	π
Α	0	NIL
В	∞	NIL
С	∞	NIL
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, B): $d[u]+edge(u,v)=0+(-1) < \infty$

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	∞	NIL
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, B): $d[u]+edge(u,v)=0+(-1) < \infty$

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	Α
С	∞	NIL
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, C): $d[u]+edge(u,v)=0+4 < \infty$

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	Α
С	4	A
D	∞	NIL
E	8	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, C): $d[u]+edge(u,v)=0+4 < \infty$

	distance †	parent †
Vertex	d	π
Α	0	NIL
В	-1	A
С	4	A
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(D, C): $d[u]+edge(u,v)=\infty > 4$

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	4	A
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, C): d[u]+edge(u,v)=(-1)+3 < 4

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, C): d[u]+edge(u,v)=(-1)+3=2 < 4

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(E, D): $d[u]+edge(u,v)=\infty=\infty$

	distance	parent †
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	Α
C	2	В
D	∞	NIL
E	∞	NIL

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, E): $d[u]+edge(u,v)=(-1)+2=1 < \infty$

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	Α
С	2	В
D	∞	NIL
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, E): $d[u]+edge(u,v)=(-1)+2=1 < \infty$

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	Α
С	2	В
D	∞	NIL
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(D, B): $d[u]+edge(u,v)=\infty = \infty$

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
C	2	В
D	∞	NIL
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, D): $d[u]+edge(u,v)=(-1)+2=1 < \infty$

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	Α
C	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, D): $d[u]+edge(u,v)=(-1)+2=1 < \infty$

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, B): d[u]+edge(u,v)=0+(-1)=-1=-1

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, C): d[u]+edge(u,v)=0+4=4 > 2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(D, C): d[u]+edge(u,v)=1+5=6 > 2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, C): d[u]+edge(u,v)=(-1)+3=2 > 2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	1	В
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(E, D): d[u]+edge(u,v)=1+(-3)=-2 < 1

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(E, D): d[u]+edge(u,v)=1+(-3)=-2 < 1

	distance	parent †
Vertex	d	π
Α	0	NIL
В	-1	Α
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, E): d[u]+edge(u,v)=(-1)+2=1=1

	distance †	parent †
Vertex	d	π
Α	0	NIL
В	-1	Α
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(D, B): d[u]+edge(u,v)=(-2)+1=-1=-1

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, D): d[u]+edge(u,v)=(-1)+2=1 > -2

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	Α
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, B): d[u]+edge(u,v)=0+(-1)=-1=-1

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(A, C): d[u]+edge(u,v)=0+2=2=2

	distance	parent
Vertex	d	π
Α	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(D, C): d[u]+edge(u,v)=(-2)+5=3 > 2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(B, C): d[u]+edge(u,v)=(-1)+3=2=2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	Α
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

(E, D): d[u]+edge(u,v)=1+(-3)=-2=-2

	distance	parent
Vertex	d	π
A	0	NIL
В	-1	A
С	2	В
D	-2	E
E	1	В

(B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D)

Complexity

Time Complexity: O(VE)

Bellman-Ford in practice

Distance-vector routing protocol

- Repeatedly relax edges until convergence
- Relaxation is local!

On the Internet

- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP)

Complexity

Time Complexity: O(VE)

Pseudo-Code

```
for v in V:
   v.d = \infty
   v.\pi = \text{None}
s.d = 0
for i from 1 to |V| - 1:
   for (u, v) in E:
      relax(u, v):
         if v.d > u.d + w(u,v):
             v.d = u.d + w(u,v)
             v \cdot \pi = u
```

Implementation

```
// a structure to represent a weighted edge in graph
struct Edge {
    int src, dest, weight;
};
// a structure to represent a connected, directed and
// weighted graph
struct Graph {
    // V-> Number of vertices, E-> Number of edges
    int V, E;
    // graph is represented as an array of edges.
    struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
    struct Graph* graph = new Graph;
    graph->V = V;
    graph->E = E;
    graph->edge = new Edge[E];
    return graph;
```

```
void BellmanFord(struct Graph* graph, int src)
   int V = graph -> V;
   int E = graph->E;
   int dist[V];
   // Step 1: Initialize distances from src to all other vertices
   // as INFINITE
   for (int i = 0; i < V; i++)</pre>
       dist[i] = INT MAX;
   dist[src] = 0;
   // Step 2: Relax all edges |V| - 1 times. A simple shortest
   // path from src to any other vertex can have at-most |V| - 1
   // edges
   for (int i = 1; i <= V - 1; i++) {
       for (int j = 0; j < E; j++) {
            int u = graph->edge[j].src;
           int v = graph->edge[j].dest;
            int weight = graph->edge[j].weight;
           if (dist[u] != INT_MAX && dist[u] + weight < dist[v])</pre>
                dist[v] = dist[u] + weight;
   // Step 3: check for negative-weight cycles. The above step
   // guarantees shortest distances if graph doesn't contain
   // negative weight cycle. If we get a shorter path, then there
   // is a cycle.
   for (int i = 0; i < E; i++) {
        int u = graph->edge[i].src;
       int v = graph->edge[i].dest;
       int weight = graph->edge[i].weight;
       if (dist[u] != INT MAX && dist[u] + weight < dist[v]) {</pre>
            printf("Graph contains negative weight cycle");
            return; // If negative cycle is detected, simply return
   printArr(dist, V);
    return;
```

Reference

• Charles Leiserson and Piotr Indyk, "Introduction to Algorithms", September 29, 2004

https://www.geeksforgeeks.org

https://en.wikipedia.org/wiki