Российский университет дружбы народов им. П. Лумумба Факультет физико-математических и естественных наук

Лабораторная работа №2

Дисциплина: Вычислительные методы

Студент: Шуплецов Александр Андреевич

Группа: НФИбд-01-22

Москва

2024 г.

Оглавление

Задание	3
Теоретическая справка	
Полный программный код, с подробным описанием функции, реализующей полином	
Ньютона	5
Численные расчеты	8
Вывол	

Задание

Интерполяция

- 1. Построить равномерное разбиение отрезка [a,b] из задания на N=10 частей точками $a=x_0,\,x_1,\ldots,x_N=b$
 - * параметр N должен задаваться в одном месте в программе.
- 2. Рассчитать значения функции f(x) из задания в узлах интерполяции: $y_0 = f(x_0), y_1 = f(x_1), \dots, y_N = f(x_N).$
- 3. Построить интерполяционный полином Ньютона $P_{\scriptscriptstyle N}(x)$ согласно значениям из п.1, 2.
 - *полином должен быть оформлен в виде отдельной функции (или отдельного метода класса)
- 4. Построить равномерное разбиение отрезка [a,b] из задания на M=3N частей точками $a=\overline{x}_0,\,\overline{x}_1,\,\ldots,\overline{x}_M=b$
 - * параметр M должен задаваться в одном месте в программе.
- 5. Посчитать значения исходной функции f(x) из задания и построенного в п.3 полинома Ньютона $P_{\scriptscriptstyle N}(x)$ в точках $\overline{x}_{\scriptscriptstyle 0},\overline{x}_{\scriptscriptstyle 1},\ldots,\overline{x}_{\scriptscriptstyle M}$, полученных в п.4
 - * в программе вывести таблицу данных следующего вида:

$$\begin{array}{llll} \overline{x}_0 & f\left(\overline{x}_0\right) & P_{\scriptscriptstyle N}\left(\overline{x}_0\right) & \delta(\overline{x}_0) \\ \overline{x}_1 & f\left(\overline{x}_1\right) & P_{\scriptscriptstyle N}\left(\overline{x}_1\right) & \delta(\overline{x}_1) \\ \vdots & \vdots & \vdots & \vdots \\ \overline{x}_M & f\left(\overline{x}_M\right) & P_{\scriptscriptstyle N}\left(\overline{x}_M\right) & \delta(\overline{x}_M) \end{array}$$

где $\delta(\overline{x}_j) = |P_{N}(\overline{x}_j) - f(\overline{x}_j)|$ — погрешность интерполяции в точке \overline{x}_j .

6. Подобрать такое значение N , при котором $\max\left\{\delta\left(\overline{x}_{j}\right)\right\} \leq 10^{-1}$, $j=\overline{0,M}$.

Буду использовать вариант 1:

	f(x)	Отрезок
1.	$ x \sin(x)$	$x \in [0,1]$

Теоретическая справка

Данная лабораторная работа представляет собой дополнение к первой лабораторной работе. В ней нам нужно добавить в таблицу вывод работы с полиномом Ньютона.

Формула полинома Ньютона:

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots$$

+ $A_i(x - x_0) \dots (x - x_{i-1}) + \dots + A_n(x - x_0) \dots (x - x_{n-1})$

Где $x_0, x_1, ..., x_n$ - узлы интерполяции, A – числовой коэффициент.

Такое представление удобно для вычислителя, поскольку увеличение n на единицу требует только добавления к «старому» многочлену одного дополнительного слагаемого. Такое представление интерполяционного полинома P(x) называют интерполяционным полиномом в форме Ньютона.

Полный программный код, с подробным описанием функции, реализующей полином Ньютона.

```
import numpy as np
a = 0
b = 1
N = 10
M = 3 * N
x N = np.linspace(a, b, N + 1)
x M = np.linspace(a, b, M + 1)
# Определяем функцию f(x) вариант 1
def f(x):
    return np.abs(x) * np.sin(x)
# Расчитываем значения функции f(x) в точках x M
y M = f(x M)
# Функция для вычисления интерполяционного полинома Лагранжа
def lagrange polynomial(x, x points, y points):
    def basis polynomial(i):
        p = [(x - x_points[j]) / (x_points[i] - x_points[j]) for j in
range(len(x points)) if j != i]
        return np.prod(p, axis=0)
    L = sum(y_points[i] * basis_polynomial(i) for i in range(len(x points)))
    return L
# Функция для вычисления интерполяционного полинома Ньютона
def newton polynomial(x, x points, y points):
    def divided_diff(x_points, y_points):
        n = len(y points)
        coef = np.zeros([n, n])
        coef[:, 0] = y points
        for j in range (1,n):
            for i in range(n-j):
                coef[i][j] = (coef[i+1][j-1] - coef[i][j-1]) / (x points[i+j])
- x points[i])
        return coef[0, :]
    def newton_basis(x, xi, x points):
        n = x points.size
        newton terms = 1
        y interpolated = xi
        for i in range(1, n):
            newton terms = newton terms * (x - x points[i-1])
            y_interpolated = y_interpolated + xi * newton terms
        return y interpolated
    coeffs = divided diff(x points, y points)
    newton poly vals = np.zeros like(x)
    for i in range(len(x)):
        newton poly vals[i] = np.polyval(coeffs[::-1], x[i])
```

```
return newton poly vals
```

```
L_values = lagrange_polynomial(x_M, x_N, f(x_N)) # Значения полинома
Лагранжа в точках х М
N values = newton polynomial(x M, x N, f(x N)) # Значения полинома Ньютона в
точках х М
# Вычисляем погрешности
delta L values = np.abs(L values - y M)
delta N values = np.abs(N values - y M)
print(np.max(delta L values))
print(np.max(delta N values))
# Выводим таблицу данных
print(f"{'x_j':^10} | {'f(x_j)':^15} | {'L(x_j)':^15} | {'N(x_j)':^15} |
print('-' * 85)
for i in range(len(x M)):
   print(f"{x M[i]:^10.5f} | {y M[i]:^15.5f} | {L values[i]:^15.5f} |
{N values[i]:^15.5f} | {delta L values[i]:^15.5f} |
{delta N values[i]:^15.5f}")'
```

Функция newton_polynomial

python def newton_polynomial(x, x_points, y_points):

Определяет функцию newton_polynomial, которая принимает аргументы:

х: точки, в которых мы хотим оценить полином.

х points: узлы интерполяции (x i).

у points: значения функции в узлах интерполяции (у і).

Вложенная функция divided_diff

```
python def divided_diff(x_points, y_points): n = len(y_points) coef = np.zeros([n, n]) coef[:,0] = y_points
```

divided_diff вычисляет разделенные разности для заданных узлов интерполяции и значений функции.

Инициализируется двумерный массив coef, где будут храниться коэффициенты разделенных разностей.

В первый столбец coef[:,0] заносятся значения функции (y_i).

```
python for j in range(1, n): for i in range(n - j): coef[i][j] = (coef[i+1][j-1] - coef[i][j-1]) / (x_points[i+j] - x_points[i])
```

Двойной цикл вычисляет разделенные разности. Это рекуррентное уравнение даёт возможность вычислять все коэффициенты в таблице.

Возвращает первую строку массива coef, содержащую все необходимые коэффициенты (a_0 , a_1 , dots, a_n).

Вычисление значений полинома Ньютона

```
python coeffs = divided_diff(x_points, y_points)
```

Вызывается функция divided_diff, чтобы получить коэффициенты полинома Ньютона.

```
python newton_poly_vals = np.zeros_like(x) for i in range(len(x)):
newton_poly_vals[i] = np.polyval(coeffs[::-1], x[i])
```

newton_poly_vals инициализируется массивом нулей такого же размера, как х.

В цикле для каждой точки х_i вычисляется значение полинома Ньютона, используя коэффициенты, рассчитанные функцией divided diff.

python return newton_poly_vals

Возвращается массив значений полинома в точках х.

Численные расчеты

6.23945339839338e-13 0.03602031244608911								
x_j	f(x_j)	L(x_j)	N(x_j)	δ_L(x_j)	δ_N(x_j)			
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			
0.03333	0.00111	0.00111	0.00442	0.00000	0.00331			
0.06667	0.00444	0.00444	0.01102	0.00000	0.00657			
0.10000	0.00998	0.00998	0.01975	0.00000	0.00977			
0.13333	0.01773	0.01773	0.03060	0.00000	0.01287			
0.16667	0.02765	0.02765	0.04351	0.00000	0.01586			
0.20000	0.03973	0.03973	0.05845	0.00000	0.01872			
0.23333	0.05395	0.05395	0.07538	0.00000	0.02142			
0.26667	0.07027	0.07027	0.09423	0.00000	0.02396			
0.30000	0.08866	0.08866	0.11495	0.00000	0.02630			
0.33333	0.10906	0.10906	0.13749	0.00000	0.02842			
0.36667	0.13145	0.13145	0.16178	0.00000	0.03032			
0.40000	0.15577	0.15577	0.18775	0.00000	0.03198			
0.43333	0.18196	0.18196	0.21533	0.00000	0.03337			
0.46667	0.20996	0.20996	0.24445	0.00000	0.03449			
0.50000	0.23971	0.23971	0.27502	0.00000	0.03531			
0.53333	0.27115	0.27115	0.30697	0.00000	0.03582			
0.56667	0.30420	0.30420	0.34022	0.00000	0.03602			
0.60000	0.33879	0.33879	0.37467	0.00000	0.03589			
0.63333	0.37483	0.37483	0.41024	0.00000	0.03541			
0.66667	0.41225	0.41225	0.44683	0.00000	0.03458			
0.70000	0.45095	0.45095	0.48434	0.00000	0.03339			
0.73333	0.49086	0.49086	0.52269	0.00000	0.03183			
0.76667	0.53187	0.53187	0.56177	0.00000	0.02990			
0.80000	0.57388	0.57388	0.60147	0.00000	0.02759			
0.83333	0.61681	0.61681	0.64171	0.00000	0.02489			
0.86667	0.66055	0.66055	0.68236	0.00000	0.02181			
0.90000	0.70499	0.70499	0.72333	0.00000	0.01833			
0.93333	0.75003	0.75003	0.76451	0.00000	0.01447			
0.96667	0.79556	0.79556	0.80579	0.00000	0.01022			
1.00000	0.84147	0.84147	0.84706	0.00000	0.00559			

Как можно заметить значение N=10, указанное в задание, уже удовлетворяет нашему условию из пункта 6.

Вывод

Я построил интерполяционный полином Ньютона на языке программирования Python.