w02-Lec1

Mathematics and Computer Science:

Numbers

Assembled for 204111 by Kittipitch Kuptavanich

204111: Fundamentals of Computer Science

Integers

 $1, 2, 3, 4, \ldots, 101, 102, \ldots, n, \ldots, 2^{32582657} - 1, \ldots$

- Integer หรือจำนวนเต็ม
- เริ่มจากจำนวนนับ (Natural/Counting Number)
- Then we add o (zero), defined as

$$o + any integer n = o + n = n + o = n$$

- Negative integer: -n, defined as
 - -n is the number which when added to n gives zero

$$n + (-n) = (-n) + n = 0$$

Mathematics for Computer Scientists - Janacek and Close

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Mathematics for Computer Scientists
Gurdh J. Januards; Mark Lommon Close

Download free books at

bookboon.com

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

commutative

Simple Rules for Integers

For integers a and b

1. a + b = b + a

2. $a \times b = b \times a \text{ or } ab = ba$

3. $-a \times b = -ab$

4. $(-a) \times (-b) = ab$

5. a^k = shorthand for a multiplied by itself k times.

$$3^4 = 3 \times 3 \times 3 \times 3$$

Note: $a^n \times a^m = a^{n+m}$

6. $n^0 = 1$

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Factors and Primes [2]

Not all integers have factors such as

$$3, 5, 7, 11, 13, \ldots, 2^{216091}, \ldots$$

- These number are called primes (จำนวนเฉพาะ)
- พิจารณาการหาร (division)
 - ในกรณีหารไม่ลงตัว จะเหลือเศษของการหาร (remainder)

$$9 = 2 \times 4 + 1$$

Factors and Primes

• Many integers are products (ผลคูณ) of smaller integers, for example

$$2 \times 3 \times 7 = 42$$

- Here 2, 3 and 7 are called the <u>factors</u> (ตัวประกอบ)
 of 42
- factorization = การแยกตัวประกอบ

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Factors and Primes [3]

• เมื่อน้ำ 9 มาหารด้วย 4 จะเหลือเศษ 1

$$9 = 2 \times 4 + 1$$

ullet For any integers x and y

$$y = k \times x + r$$

- ullet where r is the remainder (เศษของการหาร)
 - ullet กรณี r เป็น o (ศูนย์) เรากล่าวได้ว่า \underline{x} หาร \underline{y} ลงตัว (x เป็นตัวหาร)
 - หรือ y หาร<mark>ด้วย x</mark> ลงตัว
 - $x \frac{divides}{d} y$ หรือ $x \mid y$ โดยเส้นตั้งใช้แสดงการหารลงตัว
 - เช่น 2 | 128, 7 | 49 (*ตัวหารอยู่ด้านหน้า)
 - กรณี 3 หาร 4 ไม่ลงตัว แทนด้วยสัญลักษณ์ 3 ∤ 4

Factorization

• ในการหาตัวประกอบของ integer n เราสามารถใช้ \overline{a} วิธีการลองหาร \overline{a} ด้วยจำนวนเฉพาะ

$$k = 2, 3, 5, 7, 11, 19, \dots$$

- ถ้า n หารด้วย k ลงตัว $\longrightarrow k$ เป็น factor ของ n
 - ullet ทำการหารอีกครั้งด้วย k
- ถ้า n <u>หารด้วย</u> k <mark>ไม่</mark>ลงตัว
 - ลองจำนวนเฉพาะตัวถัดไป

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

9

11

Factorization [3]

Notes:

- จำนวนเฉพาะมีมากมายไม่จำกัด
- เป็นไปไม่ได้ ที่จะมี list ของจำนวนเฉพาะทั้งหมด
- หรือไม่สามารถหา list ของจำนวนเฉพาะได้
- Solution:
 - ใช้เลขคี่ตัวถัดไป จากตัวหารปัจจุบัน
 - ทำไมถึงไม่ใช้เลขคู่?
- ทฤษฎี : ตัวประกอบเฉพาะ<u>ตัวแรก</u>ของจำนวนเต็มใด ๆ จะต้องมีค่าน้อยกว่า หรือเท่ากับรากที่สองของจำนวนเต็มนั้น ๆ
 - Why?
 - ดังนั้นหากตัวหาร k มากกว่า \sqrt{n} แล้วยังไม่สามารถหา k ที่ $k\mid n$ แสดง ว่า n เป็นจำนวนเฉพาะ (ควรหยุดหาตัวประกอบต่อ)

Factorization [2]

• ตัวอย่าง 2394

List of primes: 2, 3, 5, 7, 11, 19, 23, 29..... more at: http://primes.utm.edu/lists/small/1000.txt

- 1. 2394/2 = 1197
- 2. Can't divide by 2 again so try 3
- 3. 1197/3 = 399
- 4. 399/3 = 133
- 5. Can't divide by 3 again so try 5
- **6.** Can't divide by 5 so try 7
- 7. 133/7 = 19 (19 is prime so we are done)

 $2394 = 2 \times 3 \times 3 \times 7 \times 19$

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Modular Arithmetic [1]

- Operator ที่ใช้ในการหาร กรณีสนใจเศษของการ หาร คือ modulo หรือ mod
 - Operator: % (C/C++, Java, python)
- The operator simply gives the remainder after division. For example,

1.
$$25 \mod 4 = 1 \text{ because } 25 \div 4 = 6 \text{ remainder 1.}$$

2.
$$19 \mod 5 = 4 \text{ because} \ 19 = 3 \times 5 + 4$$
.

- 3. $24 \mod 5 = 4$.
- 4. $99 \mod 11 = 0$.

Mathematics for Computer Scientists - Janacek and Close

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Modular Arithmetic [2]

- We will ignore cases with negative number for now.
- These results can be written in a different wavs

$$25 = 1 \mod 4$$
 OR $25 \mod 4 = 1$

We will use this notation in this class

- Modular arithmetic is sometimes called clock arithmetic.
- 47 mod 4
 - Going around 11 times
 - And $\frac{1}{4}$
 - Stops at 3

Mathematics for Computer Scientists - Janacek and Close

The Euclidean Algorithm

- ในคณิตศาสตร์ ตัวหารร่วมมาก หรือ ห.ร.ม. (อังกฤษ: greatest common divisor: gcd) ของจำนวนเต็มสองจำนวนซึ่งไม่เป็นศูนย์พร้อมกัน คือจำนวนเต็มที่มากที่สุดที่หารทั้งสองจำนวนลงตัว เช่น
 - gcd ของ 15 และ 25 คือ 5
- The Euclidean algorithm for finding the gcd is one of the oldest algorithms known, it appeared in Euclid's Elements around 300 BC.

The Euclidean Algorithm [2]

• Suppose a is an integer smaller than b.

- 1. Divide b by a.
- 2. If the remainder is zero, then *b* is a multiple of a and we are done. (*a* is the gcd)
- 3. If not, divide the divisor *a* by the *remainder*.
- 4. Continue dividing the last divisor by the last remainder, until the *remainder* is zero
- 5. The last non-zero *remainder* is the gcd

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

17

19

The Euclidean Algorithm [4]

• Now let's try 1071 and 462

• So the gcd is

The Euclidean Algorithm [3]

• For example 246 and 72

• So the gcd of 246 and 72 is 6

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Rationals and Reals

• A rational number (จำนวนตรรกยะ) is a number that can be written as $\frac{P}{Q}$ where P and Q are integers. Examples are:

$$\frac{1}{2} \frac{3}{4} \frac{7}{11} \frac{7}{6}$$

• For every integer n, except zero, there is an inverse (อินเวอร์ส), written $\frac{1}{n}$ which has the property that

$$n \times \frac{1}{n} = \frac{1}{n} \times n = 1$$

• multiplying $\frac{1}{n}$ by m gives a fraction $\frac{m}{n}$. These are called rational numbers

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Notations

เครื่องหมายอื่น ๆ

- ullet If x is less than (น้อยกว่า) y
 - then we write x < y. If there is a possibility that they might be equal then $x \le y$ (น้อยกว่าหรือ เท่ากับ)
 - We can also write y > x or $y \ge x$
 - y is greater than (มากกว่า) x or greater than or equal to (มากกว่าหรือเท่ากับ) x

Rationals and Reals [2]

• นอกจากนี้ ยังมีตัวเลขที่ไม่ใช่ทั้งจำนวนเต็ม และ ไม่ใช่จำนวนตรรกยะ เช่น √2 ที่ไม่สามารถเขียนให้ อยู่ในรูปเศษส่วนได้ เรียกว่า จำนวนอตรรกยะ (irrational numbers)

- จำนวนจริง (real numbers)
 - Irrational: π , $\sqrt{2}$, $\sqrt{3}$, ...
 - Rational: $-3.4, \frac{3}{4}, 9.454545...,...$
 - Integer: -2, 5, -9, 0, ...
 - Whole: 0, 1, 2, 3, ...
 - Natural: 1, 2, 3, ...

Real Numbers

Rational

Integer

Whole

Natural

Natural

Real Numbers

Irrational

There are more irrationals than rationals than rationals

Image: http://leferemath.weebly.com/rational-numbers.html

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

22

24

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Notations [2]

- Floor function (ฟังก์ชันพื้น) of a real number x, denoted by $\lfloor x \rfloor$ or floor(x), เป็นฟังก์ชันที่ให้ผลลัพธ์เป็นจำนวนเต็มที่มากที่สุดที่ น้อยกว่า หรือเท่ากับ x เช่น
 - floor(2.7) หรือ $\lfloor 2.7
 floor$ มีค่าเท่ากับ 2
 - แต่ floor(-3.6) หรือ \[-3.6] มีค่าเท่ากับ -4
 - ปัดลงไปทาง<u>ด้านซ้าย</u>ของเส้นจำนวนหากไม่ใช**่ integer**
- Ceiling function (ฟังก์ชันเพดาน) $\lceil x \rceil$ ทำหน้าที่ตรงข้ามกับ floor
 - ceiling(2.7) หรือ $\lceil 2.7
 ceil$ มีค่าเท่ากับ 3
 - ปัดขึ้นไปทาง<u>ด้านขวา</u>ของเส้นจำนวนหากไม่ใช่ integer

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

25

27

Notations [4]

- We met a^b when we discussed integers and in the same way we can have x^y when x and y are not integers e.g. $2.5^{3.67}$ or $0.25^{1/2}$
- Note however that

 a^{o} =1 for all a except zero o^{b} = o for all values of b where b > o o^{o} is undefined mathematically (in python/C you might get 1)

Notations [3]

- The absolute value (ค่าสัมบูรณ์ หรือ modulus) of x written |x| is just x when $x \ge 0$ and -x when x < 0 so |2| = 2 and |-6| = 6
- ullet The famous result about the absolute value is that for any x and y

$$|x+y| \le |x| + |y|$$

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Number Systems

- ระบบจำนวนที่เราคุ้นเคยและพบมากที่สุดใน ชีวิตประจำวันคือเลขฐาน 10 (Decimal System)
- 3459 is shorthand (ฐปย่อ) for

$$3 \times 1000 + 4 \times 100 + 5 \times 10 + 9$$
OR

$$3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 9 \times 10^0$$

• ตำแหน่ง (position) ของตัวเลขมีความสำคัญ

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

29

31

Number Systems [3]

- Today the common number systems are
 - Decimal number system: ใช้สัญลักษณ์ 0 9; ฐาน (base) 10
 - Binary number system: ใช้สัญลักษณ์ 0,1; ฐาน 2
 - Hexadecimal number system: ใช้สัญลักษณ์ 0-9 และ A-F; ฐาน 16
 - here A \equiv 10 , B \equiv 11 , C \equiv 12 , D \equiv 13 E \equiv 14 , F \equiv 15.
 - Octal number system: ใช้สัญลักษณ์ 0-7; ฐาน 8

Number Systems [2]

- เราทราบว่า $10^3 = 1000$ กรณีเลขยกกำลังเป็นจำนวน ลบ (negative) เช่น 10^{-3} หมายถึงเศษส่วนในรูป $\frac{1}{10^3}$
- ในเลขฐานสิบ เราใช้จุดทศนิยม (Decimal Point) และตำแหน่งตัวเลขหลังจุดทศนิยมเพื่อแสดง เศษส่วนในกรณีที่มีส่วนเป็น 10ⁿ
- เราสามารถเขียน **123.456** ในรูป $1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + . + 4 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$ Decimal Point

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Binary

• เช่นเดียวกันกับในกรณีเลขฐาน 10 ที่ตำแหน่งแต่ละ ตำแหน่งแทน 10ⁿ ในระบบเลขฐานสอง แต่ละ ตำแหน่งแทนด้วย 2ⁿ

Decimal		in powers of 2	pe	owe	r of	2	Binary number
number			3	2	1	0	
8	=	2^{3}	1	0	0	0	1000
7	=	$2^2 + 2^1 + 2^0$	0	1	1	1	111
6	=	$2^2 + 2^1$	0	1	1	0	110
5	=	$2^2 + 2^0$	0	1	0	1	101
4	=	2^2	0	1	0	0	100
3	=	$2^1 + 2^0$	0	0	1	1	11
2	=	2^{1}	0	0	1	0	10
1	=	2°	0	0	0	1	1

remainder

Binary Conversion

- เราสามารถใช้ modulo (การ หารเอาเศษ) ในการเปลี่ยน เลขฐาน 10 เป็นเลขฐาน 2 ตัวอย่างเช่น 88
- เมื่อ x/2 = 0 ให้เขียน column สุดท้ายจากล่างขึ้นบน
- จะได้ว่า
 - 88₁₀ = 1011000₂
- วิธีนี้สามารถใช้ แปลงเลข ฐาน 10 เป็นฐานอื่น ๆ เช่นกัน

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Binary Decimals

- การเปลี่ยนเลขทศนิยม จากฐาน 10 เป็น ฐาน 2 เราจะใช้ฟังก์ชัน floor
- เมื่อ x × 2 = 1 ให้เขียน column สุดท้ายจาก<u>บน</u>
 - <u>ลงล่าง</u>

• จะได้ว่า

• 0.6875₁₀ = 0.1011₂

 x
 x ×2
 x × 2

 0.6875
 1.375
 1

 0.375
 0.75
 0

 0.75
 1.5
 1

 0.5
 1
 1

Binary Conversion [2]

• Let's try with 95

There are 10 types of people.

Those who understand binary and those who don't.

 $\chi/2$

Mathematics for Computer Scientists - Janacek and Close

 \mathbf{X}

204111: Fundamentals of Computer Science

 $x \times 2$

 $|x \times 2|$

34

Binary Decimals [2]

- Let's try with 0.4
- ในบางกรณีเราจะได้ ทศนิยมไม่รู้จบ
- 0.4₁₀ =

Addition in Binary

O+O = O
O+1 = 1
1+1 = 10 (เนื่องจาก 1 + 1 มีค่าเกิน 1 ใส่ 0 และ ทดไปหลักถัดไป)
1+1+1 = 1+(1+1) =1+10 =11

• การบวกเลขในเลขฐาน 2 มีลักษณะคล้ายในฐาน 10

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Multiplication in Binary

การคูณเลขฐาน 10

ตัวตั้ง	8	7	6	5	2	1			
ตัวคูณ	7	8	3					×	
คูณ 7	6	4	7	9	7	8			Π
ขยับซ้าย 1 ตำแหน่งแล้วคู่ณ 8		4	2	4	5	0	0	1	
ขยับซ้าย 2 ตำแหน่งแล้วคู่ณ 3			4	3	0	7	7	3	
ผลบวกสามบรรทัด	6	8	3	7	3	6	8	4	

การคูณเลขฐาน 2

			1	0	0	1	1	1	0	Multiplicand
×							1	0	1	Multiplier
			1	0	0	1	1	1	0	times 1
		0	0	0	0	0	0	0		Shift left one and times 0
	1	0	0	1	1	1	0			Shift left two and times 1
	1	1	0	0	0	0	1	1	0	Add to get the product

Subtraction in Binary

1 1 0 1 0 1 - 1 0 1 1 0 0 1 0 0 0 1 1 1 difference

• การลบเลขในเลขฐานสองมีลักษณะคล้ายในฐาน 10 หากตัวตั้งในหลักใด ๆ ไม่พอสำหรับการลบ ก็ให้ "ขอยืม" จากหลักถัดไป

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Tips

<u>ข้อสังเกต</u>

$$111_2 = 7$$
 and $111_2 \times 2 = 14 = 1110_2$
 $101_2 = 5$ and $101_2 \times 2 = 10 = 1010_2$

• การคูณเลขใด ๆ ในฐาน 2 ด้วย 2 ให้ขยับเลขนั้นไป ทางซ้าย 1 ตำแหน่งแล้วเติม 0

Octal

- การเปลี่ยนเลขฐาน 2 เป็นฐาน 8 (= 2³) ให้แบ่งเลขฐาน เป็นกลุ่ม กลุ่มละ <u>3</u> ตัวเริ่มจากหลัก 2º
- เช่น 11000010001
- แล้วจึงเปลี่ยนเลขในแต่ละกลุ่มเป็นค่าในฐาน 10 (0-7)

0 = 000 1 = 001	11 <u>000</u> 010 <u>001</u>
2 = 010	
3 = 011	11 000 010 001
4 = 100	
5 = 101	
6 = 110	3021
7 = 111	

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Binary Conversion Tips

- ในกรณีการแปลงเลขฐาน 10 จำนวนที่ไม่มากนักเป็นฐาน 2 เราอาจใช้วิธีการลบเลขแทน
- เชน 213
 - จากตารางพบว่า 213 มากกว่า 2⁷ (1 ตามด้วย 0 ทั้งหมด 7 ตัว)
 - ใส่ **1**
- เหลือ 213 128 = 85
 เหลือ 21 16 = 5
 - พบว่า 85 มากกว่า 2⁶
 - ใส**่ 1 1**
- เหลือ 85 64 = 21
 - พบว่า 21 มากกว่า 2⁴

- พบว่า 5 มากกว่า 2²
 - ใส่ 1 1 _ 1 _ <u>1</u> _ _
- เหลือ 5 4 = 1
 - ใส่ 1 1 1 1 1
- ใส่ 1 1 _ 1 _ _ _ _ ได้ 1101 0101

Hexadecimal

- การเปลี่ยนเลขฐาน 2 เป็นฐาน 16 (= 2⁴) ให้แบ่งเลข ฐานเป็นกลุ่ม กลุ่มละ 4 ตัวเริ่มจากหลัก 2⁰
- เช่น 0101111010110101010
- แล้วจึงเปลี่ยนเลขในแต่ละกลุ่มเป็นค่าในเลขฐาน 16

	<u>101</u> 1110 <u>1011</u> 0101 <u>0010</u>)
A = 10		
B = 11	101 1110 1011 0101 0010	
C = 12	101 1110 1011 0101 0010	
D = 13	5 14 11 5 2	
E = 14	5 14 11 5 2	
F = 15	rEDro.	J
	5ED52	ノ
	5EB52	ال

204111: Fundamentals of Computer Science

Conversion Exercise

28	2 ⁷	2 ⁶	25	24	2 ³	2 ²	2 ¹	2º
256	128	64	32	16	8	4	2	1

Fill in the missing entries

Decimal	Binary	Hexadecimal
0	0000 0000	0x00
167		
62		
188		
	0011 0111	
	1000 1000	
	1111 0011	
		0x52
		OxAC
		0xE7

Final Notes

[Math] is a little like programming, it takes time to understand a lot of code and you never understand how to write code by just reading a manual - you have to do it!

Mathematics is exactly the same, you need to do it.

Mathematics for Computer Scientists - Janacek and Close

204111: Fundamentals of Computer Science

Summary

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Homework

• Memorize these table

28	2 ⁷	2 6	2 ⁵	24	2 ³	2 ²	2 ¹	20
256	128	64	32	16	8	4	2	1

		Malary
He	t pe	inal Binary 0000
0	0	0000 0001 0010
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	0111 1000 1001 1010 1011
9	9	1001
Α	10	1010
В	11	1011
C	12	TIOO
0 1 2 3 4 5 6 7 8 9 A B C D E	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1101
Е	14	1110
F	15	1101 1110 1111

Think Python: How to Think Like a Computer Scientist

204111: Fundamentals of Computer Science

Conversion Exercise [KEY]

Fill in the missing entries

Decimal	Binary	Hexadecima
0	0000 0000	0x00
167	1010 0111	0xA7
62	0011 1110	0x3E
188	1011 1100	0xBC
55	0011 0111	0x37
136	1000 1000	0x88
243	1111 0011	0xF3
82	0101 0010	0x52
172	1010 1100	OxAC
231	1110 0111	0xE7

