



# Combinatory adjoints and differentiation

Martin Elsman (DIKU), Fritz Henglein (DIKU), Robin Kaarsgaard (U. Edinburgh), Mikkel Kragh Mathiesen (DIKU), Robert Schenck (DIKU)

DIKU

MSFP 2022 Munich, 2022-04-02



### What is a derivative? The SD view

• Leibniz:  $f: \mathbb{R} \to \mathbb{R}$ ,  $f'(x) = a \in \mathbb{R}$  if

$$\lim_{|dx| \to 0} \frac{|f(x + dx) - (f(x) + a \cdot dx)|}{|dx|} = 0$$

• Jacobi:  $f: \mathbb{R}^n \to \mathbb{R}^m$ ,  $f'(v) = M \in \mathbb{R}^{m \times n}$  if

$$\lim_{||dv|| \to 0} \frac{||f(v + dv) - (f(v) + M \star dv)||}{||dv||} = 0$$

• Fréchet (total):  $f:V \to W$  (Banach),  $f'(v)=h \in V \multimap W$  if

$$\lim_{||dv||_V \to 0} \frac{||f(v+dv) - (f(v) + A(dv))||_W}{||dv||_V} = 0$$

Observe: Input to derivative is a single value. Output is a *function* from input to output differentials.

### What is a derivative? The AD view

• Gateaux (directional) differential:  $f: V \to W$  (Banach),  $f'(v, dv) = dy \in W$  if

$$dy = \lim_{t \to 0} \frac{||f(v + t \cdot dv) - f(v)||_{W}}{||t||_{K}}$$

• Define  $f^{[fad]}(v, dv) = (f(v), f'(v, dv))$ . Then

$$(g \circ f)^{[fad]} = g^{[fad]} \circ f^{[fad]}.$$

- Idea: Interpret function f over dual tensors  $(v, dv) \in \mathbb{R}^{n_1 \times ... \times n_k} \times \mathbb{R}^{n_1 \times ... \times n_k}$  instead of  $v \in \mathbb{R}^{n_1 \times ... \times n_k}$ .
- Easy to implement for sequential source code:
  - Use your existing compiler or interpreter for the program that defines f.
  - Just replace standard abstract data type implementations for numbers, vectors, tensors by dual numbers, vectors, tensors.
  - But now we need two inputs: a primal value v and an input differential dv.



## Hilbert spaces

- Hilbert space: Vector space  $(V, +, \cdot, 0)$  + inner product  $\odot$  + limits; e.g. Euclidean space.
- Constructions:

$$U, V, W ::= 0 \mid K \mid \bigoplus_{x \in X} V_x \mid V \otimes W$$

where X is a set.

- Here: Finite sets  $X ::= \mathbf{n} | X_1 \times X_2 | \dots$  and  $K = \mathbb{R}$ .
- Direct sums  $\bigoplus_{x \in X} V_x$ , including  $V_1 \times \ldots \times V_n$  and copowers  $V^X$  (e.g.  $\mathbb{R}^n$ )
- Tensor products,  $V \otimes W =$ the *terms*

$$w ::= 0 \mid k \cdot w \mid w_1 + w_2 \mid u \otimes v,$$

treated modulo vector space axioms and

$$(k \cdot v) \otimes w = k \cdot (v \otimes w) = v \otimes (k \cdot w)$$
  
 $(v_1 + v_2) \otimes w = (v_1 \otimes w) + (v_2 \otimes w)$   
 $v \otimes (w_1 + w_2) = (v \otimes w_1) + (v \otimes w_3).$ 



## Fréchet differentiation calculus

#### **Theorem**

$$(g \circ f)'(v) = g'(f(v)) \bullet f'(v)$$

$$K_{w}'(v) = 0$$

$$h'(v) = h \qquad if h : V \multimap W$$

$$\diamond'(u, v) = (u \diamond) \bullet \pi_{2} + (\diamond v) \bullet \pi_{1} \qquad if \diamond : U \times V \to_{2} W$$

$$(\Pi_{x \in X} f_{x})'(v) = \Delta((\Pi_{x \in X} f_{x}')(v)) \qquad if f_{x} : V_{x} \to W_{x}$$

where 
$$\bullet$$
 linear composition,  $K_w(v) = w$ ,  $\diamond$  bilinear,  $(u\diamond)(v) = u \diamond v$ ,  $(\diamond v)(u) = u \diamond v$ ,  $\Delta(f_1, \ldots, f_n)(v_1, \ldots, v_n) = (f_1(v_1), \ldots, f_n(v_n))$ . Note:

- lote
  - 5 rules: 3 for multilinear functions (constant, linear, bilinear), plus sequential (chain rule) and parallel composition.
  - Special cases of parallel composition:

$$(f_1 \times f_2)'(v_1, v_2) = f_1'(v_1) \times f_2'(v_2)$$
  
 $(map f)'(v) = \Delta(map f'(v))$ 



# **Adjoints**

•  $f^*: W \multimap V$  is adjoint of  $f: V \multimap W$  if

$$f(v)\odot w=v\odot f^*(w)$$

for all  $v \in V, w \in W$ .

- Example:  $+^* = dup$ .
- Adjoint of linear map expressed as matrix is its transpose:

$$(M\star)^* = (M^T\star).$$

- Standard approach: Represent linear maps as matrices.
   Perform transposition to implement adjoint.
  - Bad idea for high-dimensional vector spaces!
  - Adjoint of id is id, but matrix representation may be huge. (Worse for other linear maps whose matrices have no zero entries.)
- Better idea: Symbolic representation of linear functions; calculus for computing adjoints symbolically.



# **Adjoint calculus**

#### Theorem

Let X, Y be finite sets,  $R \subseteq X \times Y$ , and  $R^T = \{(y, x) \mid (x, y) \in R\}$ .

$$id^* = id$$

$$(g \bullet f)^* = f^* \bullet g^*$$

$$0^* = 0$$

$$(v^*)^* = (v^T^*)$$

$$(*w)^* = (*w^T)$$

$$(\iota_x^X)^* = \pi_x^X$$

$$(\Pi_{x \in X} f_x)^* = \Pi_{x \in X} f_x^*$$

$$red_R^* = red_{R^T}$$

Furthermore, the inverses of unitary operators are also their adjoints.

where  $(u \otimes v) * (v' \otimes w) = (v \odot v') \cdot (u \otimes w)$  is tensor contraction;  $\operatorname{red}_R(v) = \bigoplus_{y \in Y} \sum_{(x,y) \in R} v_x$  is relational reduction.



## **Adjoint affine interpretation**

Compute value and symbolic (not matrix) adjoint derivative of function at given input x. (No additional input required.)

$$(g \circ f)^{[1r]}(x) = \text{let } (fx, f'xa) = f^{[1r]}(x) \text{ in }$$
 
$$\text{let } (gfx, g'fxa) = g^{[1r]}(fx) \text{ in }$$
 
$$(gfx, f'xa \bullet g'fxa)$$
 
$$\mathcal{K}_{w}^{[1r]}(x) = (w, 0)$$
 
$$h^{[1r]}(x) = (h(x), h^{*})$$
 
$$\diamond^{[1r]}(x) = \text{let } (u, v) = x \text{ in }$$
 
$$(u \diamond v, \iota_{2}^{2} \bullet (u \diamond)^{*} + \iota_{1}^{2} \bullet (\diamond v)^{*})$$
 
$$(\Pi_{y \in Y} f_{y})^{[1r]}(x) = \text{let } (w, d) = unzip((\Pi_{y \in Y} (\lambda x. f_{y}^{[1r]}(x)))(x)) \text{ in }$$
 
$$(w, \Delta(d))$$

#### Theorem

If 
$$f^{[1r]}(x) = (y, h)$$
 then  $y = f(x)$  and  $h = f'(x)^*$ .

where f'(x) is Fréchet derivative.

## Why adjoints?

- "Cheap gradients": Efficiently Computing gradient  $\nabla f$  of scalar function  $f: \mathbb{R}^n \to \mathbb{R}$  for  $n \gg 0$ .
  - Using derivative to compute gradient requires application of derivative to each basis vector of  $\mathbb{R}^n$ :

$$\nabla f(x) = (f'(x)(e_1), \ldots, f'(x)(e_n))$$

where  $e_i = (0, \dots, 0, 1, 0, \dots 0)$  with 1 in *i*-th position.

 Using adjoint to compute gradient requires only one application to (single) basis vector 1 of ℝ:

$$\nabla f(x) = f'(x)^*(1).$$

- Applications independent of differentiation:
  - Computational science (PDEs, error estimation, inverse problems, etc)
  - Physics (quantum field theory)



### More information and future work

- More details in the paper:
  - Relation of derivatives to each other
  - Expression swell myth debunked
  - Tensor decomposition/tensor products as efficient data structures for low-rank matrices
  - Examples (including neural networks)
- Future work:
  - DSL for binary relations (to avoid enumeration)
  - Fréchet: Functional DSL with affine (adjoint) interpretation, embedded in Haskell
  - Caddy: DSL embedded in Standard ML
  - Second-order/higher-order differentiation based on quadratic/polynomial (adjoint) interpretation
  - Generating Futhark code for high-performance (parallel, GPU) execution of (adjoint) derivatives.

Thank you!

