<u>Proof.</u> If $(\gamma - i\alpha)R(\gamma)\psi = \psi$ then $(\lambda - i\alpha)R(\lambda)\psi = \psi$ for all $\lambda \in D$. In particular, $\mu R(\mu + i\alpha)\psi = \psi$ $(\mu \in \mathbb{R}_+)$. For all $x \in M$ we obtain

$$|\psi(x)|^2 = |\langle \mu R(\mu + i\alpha)' x, \psi \rangle|^2 \le$$

 $\leq \|\psi\| < (\mu R(\mu + i\alpha x)'x) (\mu R(\mu + i\alpha x)'x)^*, \psi > \leq$

$$\leq \|\psi\| < \mu R(\mu)'(xx^*), |\psi| >$$

(D-I, Corollary 2.2). Since

$$\|\psi\| = \| |\psi| \| = |\psi|(1) =$$

$$= \langle \mu R(\mu)' 1, |\psi| \rangle = \| \mu R(\mu) |\psi| \| ,$$

we obtain $\mu R(\mu) |\psi| = |\psi|$ by the uniqueness theorem (*) mentioned at the beginning. Therefore $|\psi| \in Fix(R)$. Since

$$0 \leq (\mu R(\mu)'x) (\mu R(\mu)'x)^* \leq \mu R(\mu)'xx^*,$$

the map $R(\mu)$ is positive. Consequently $(\mu+i\alpha)R(\mu)\psi^* = \psi^*$ from which $|\psi^*| \in Fix(R)$ follows.

If $\phi \in Fix(R)$ is selfadjoint with Jordan decomposition $\phi = \phi^+ - \phi^-$, then $|\phi| = \phi^+ + \phi^-$ [Takesaki (1979), Theorem III.4.2.]. From this we obtain that ϕ^+ and ϕ^- are in Fix(R).

Corollary 1.5. Let T be an identity preserving semigroup of Schwarz type on M_{\star} with generator A and suppose $P\sigma(A) \cap i\mathbb{R} \neq \emptyset$.

- (a) If $\alpha \in \mathbb{R}$ and $\psi \in \ker(i\alpha A)$, then $|\psi|$ and $|\psi^*|$ are elements of $\operatorname{Fix}(T) = \ker(A)$.
- (b) Fix(T) is invariant under the involution of M . If $^{\psi}$ $^{\epsilon}$ Fix(T) is self adjoint, then the positive part $^{\psi}$ and the negative part $^{\psi}$ of $^{\psi}$ are elements of Fix(T).

The proof follows immediately from D-I, Corollary 2.2 and the fact that $\ker(A) = \operatorname{Fix}(\lambda R(\lambda,A))$ for all $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) > 0$.

If T is the semigroup of translations on $L^{1}(\mathbb{R})$ and A' the gene-