MATHEMATICS

Pure mathematics is, in its way, the poetry of logical ideas.

ΒΑΣΙΚΈΣ ΣΥΝΑΡΤΉΣΕΙΣ ΚΑΙ ΟΙ ΓΡΑΦΙΚΈΣ ΤΟΥΣ ΠΑΡΑΣΤΆΣΕΙΣ

Στην παράγραφο αυτή δίνουμε τις γραφικές παραστάσεις μερικών βασικών συναρτήσεων, τις οποίες γνωρίσαμε σε προηγούμενες τάξεις.

Η σταθερή συνάρτηση $\mathbf{f}\left(\mathbf{x} ight)=\mathbf{c}$

Η γραφική παράσταση της σταθερής συνάρτησης είναι μια ευθεία παράλληλη στον άξονα x'x. Το ύψος της ευθείας καθορίζεται από τη σταθερά c.

Η πολυωνυμική συνάρτηση $\mathbf{f}\left(\mathbf{x}\right) = \alpha\mathbf{x} + \beta$

Η γραφική παράσταση της συνάρτησης $f\left(x\right)=\alpha x+\beta$ είναι ευθεία. Ο συντελεστής α ονομάζεται συντελεστής διεύθυνσης ή κλίση της ευθείας. Αν $\alpha=0$, τότε παίρνουμε τη σταθερή συνάρτηση. Η κλίση α της ευθείας ισούται με την εφαπτομένη της γωνίας φ που σχηματίζει η ευθεία με τον άξονα $x'x$.	

Η πολυωνυμική συνάρτηση $\mathbf{f}\left(\mathbf{x}\right)=lpha\mathbf{x^2},\ lpha\neq\mathbf{0}$

Η γραφική παράσταση της συνάρτησης $f\left(x\right)=\alpha x^2$ είναι μια καμπύλη που ονομάζεται παραβολή.

Η πολυωνυμική συνάρτηση $\mathbf{f}\left(\mathbf{x}\right)=lpha\mathbf{x^{3}},\ lpha
eq\mathbf{0}$

Η ρητή συνάρτηση $\mathbf{f}\left(\mathbf{x}\right)=rac{lpha}{\mathbf{x}},\ lpha
eq \mathbf{0}$

Η γραφική παράσταση της συνάρτησης $f\left(x\right)=\dfrac{\alpha}{x}$ είναι μια καμπύλη που ονομάζεται υπερβολή. Το πεδίο ορισμού της f είναι το $A=\mathbb{R}-\{0\}$

Η άρρητη συνάρτηση $\mathbf{f}\left(\mathbf{x}\right)=lpha\sqrt{\mathbf{x}}$

Το πεδίο ορισμού της άρρητης συνάρτησης $f\left(x\right)=\alpha\sqrt{x}$ είναι το $A=\left[0,+\infty\right)$

