Recursion
STEPS: Assumption: Desich what your of should do! that it does it!
2. main Logie: Solve the problem using the solutions
3. Box Car:
Given N. Calculate N! [N70] N=5: $5!$: $5\times7\times2\times2\times1$: $120/$ N!: $1\times2\times3\times\times(N-1)\times N$
(N-D)!

int fat (N) {

// ASS: return N!

if (N==0) ret 1;

ret fat (N-1) x N; N! = (N-D! × N 4 x f(v)(fl) { (o) # for coly: N tim taken / for coll -> O(1) 9 TC= O(N)

= # f" als x fine taken / f MAX Spar at ANY

Fibonacci No 2 0 Given. N. finel Nth fib No! int f(N) { // (NC=2) rut N-17 + f(mr) f(N)=f(N-1) 7.t f(N-1) + f(N-2); BASE CASE: f(i) = f(i) + f(0) f(i) = f(i) + f(-1)

SC

SC= D(N)

Given N. Generate all biner string of len N.

N=3: \[\begin{align*}
 & 000 \\
 & 000 \end{align*}

N=2 N=3

List (string > gm (N) {

// Ass: Ret the list of the Nitret birmy string! if (N==1) { rot { "o", "1"};} N=3 List estrige = gr (N-1); List (striy) ons; f(s: p) { 117 ors. add ("0"+5); N=1 ("0") f(s: p) {
om. add ("1"+5);
}
tom; if (N==0)

Lit (int 7 gn (N) {

if (N==1) { ret (0,1);} List List 7 p= gn (N-1); List List 7 ars; N-1 110 x ((<< (NL1))