

Prática de Circuitos Eletrônicos 1

Tutorial 08

Análise de Circuitos Resistivos

Professor: Marcus Vinícius Chaffim Costa **Tutora:** Camila Ferrer

Conversor D/A

Universidade de Brasília

 Por meio de análise teórica do circuito abaixo, encontre o valor da saída V_o para cada uma das 8 palavras binárias de 3bits possíveis (000 a 111). Para tal, considere V_{bat} = 5V.

\bigvee

Universidade de Brasília

 Para a palavra binária 001, tem-se o seguinte circuito:

\bigvee

Universidade de Brasília

- Ao invés de resolver o circuito oito vezes, resolveu-se apenas para as palavras binárias 000, 001, 010 e 100.
- Para a palavra binária 000, tem-se o seguinte circuito:

• Logo $V_0 = V_{000} = 0V$.

\bigvee

Universidade de Brasília

Programa Tutoria

 Para a palavra binária 001, tem-se o seguinte circuito:

• Logo $V_0 = V_{001} = 0.4167V$.

\bigvee

Universidade de Brasília

 Para a palavra binária 010, tem-se o seguinte circuito:

• Logo $V_o = V_{010} = 0.8333V$.

Universidade de Brasília

 Para a palavra binária 010, tem-se o seguinte circuito:

• Logo $V_o = V_{010} = 0.8333V$.

 $\begin{cases} 2V_A - 1V_B + 0V_C = 2.5\\ -1V_A + 2.5V_B - 1 = 0\\ 0V_A - 1V_B + 2V_C = 0 \end{cases}$

• Para a palavra binária 100, tem-se o seguinte

 Para a palavra binária 100, tem-se o seguinte circuito:

circuito:

• Logo $V_0 = V_{100} = 1,6667V$.

Universidade de Brasília

- A seguir, aplicou-se o teorema da superposição para encontrar o resultado para as demais palavras binárias.
- Para a palavra binária 011, tem-se:

$$V_{011} = V_{001} + V_{010} = 0.4167 + 0.8333 = 1.25V$$

• Para a palavra binária 101, tem-se:

$$V_{101} = V_{001} + V_{100} = 0.4167 + 1.6667 = 2.0834V$$

• Para a palavra binária 110, tem-se:

$$V_{110} = V_{010} + V_{100} = 0.8333 + 1.6667 = 2.5V$$

• Para a palavra binária 111, tem-se

$$V_{111} = V_{001} + V_{010} + V_{100} = 0.4167 + 0.8333 + 1.6667 = 2.9167$$

Abra um novo esquemático.

Universidade de Brasília

• Na aba Componentes, vá em componentes agrupados e coloque sete resistores no esquemático.

Universidade de Brasília

• Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício. Neste caso, assumiu-se R=50 Ω . Nomeie o nó para medir a tensão $V_{\rm o}$.

Universidade de Brasília

 Copie o circuito sete vezes e na aba Componentes, vá em Fontes e coloque sete fontes de tensão DC.

 Ajustou-se as conexões das fontes para que gera-se todas as palavras binárias.

Programa Tutoria

 Coloque a Simulação DC no esquemático, salve e simule.

 Assim, verifica-se que para os valores pedidos no exercício.

Universidade de Brasília

Teoremas de Norton e Thévenin

\bigvee

Universidade de Brasília

• Para os circuitos da figura abaixo, assuma $R_1 = 100\Omega$, $R_2 = 4.7k\Omega$, $R_3 = R_4 = 1k\Omega$, $V_1 = 3V$ e $V_2 = 2V$. Use um resistor de carga RL = 2,2 k Ω .

Universidade de Brasília

 Encontrando os valores de tensão V_{AB} e corrente i_{AB} sobre o resistor de carga para o circuito (a).
Calculou-se também a corrente sobre o resistor R₃.

$$\begin{cases} \frac{V_c - V_1}{R_1} + \frac{V_c}{R_2} + \frac{V_c - V_A}{R_3} = 0 \\ \frac{V_A - V_c}{R_3} + \frac{V_A - V_2}{R_4} + \frac{V_A}{R_1} = 0 \end{cases} \rightarrow \begin{cases} \left(\frac{1}{R_3} + \frac{1}{R_3}\right) V_c + \left(\frac{-1}{R_3}\right) V_c + \left(\frac{-1}{R_3}\right) V_c = \frac{V_1}{R_4} \\ \left(\frac{-1}{R_3}\right) V_c + \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_4}\right) V_A = \frac{V_2}{R_4} \end{cases}$$

 Para resolver o sistema linear Ax = b, utilizou-se o Octave:

$$A = \begin{bmatrix} 11.213 & -1 \\ -1 & 2.4545 \end{bmatrix} \qquad x = \begin{bmatrix} V_c \\ V_A \end{bmatrix} \qquad b = \begin{bmatrix} 30 \\ 2 \end{bmatrix}$$

$$V_c = 2.8518V \qquad i_{R3} = \frac{V_c - V_A}{R_3} = 0.8751mA$$

$$V_A = 1.9767V \qquad i_{AB} = \frac{V_A}{R_3} = 0.8985mA$$

Universidade de Brasília

 Obteve-se as expressões de V_{Th} e R_{Th} para o circuito equivalente (b).

$$\begin{split} \frac{V_A - V_{Th}}{R_{Th}} + \frac{V_A}{R_L} &= 0 \quad \rightarrow \quad \frac{V_A}{R_{Th}} + \frac{V_A}{R_L} = \frac{V_{Th}}{R_{Th}} \\ &\frac{(R_{Th} + R_L)}{R_{Th}R_L} V_A = \frac{V_{Th}}{R_{Th}} \\ &V_{Th} = \frac{(R_{Th} + R_L)}{R_L} V_A \end{split}$$

$$\begin{split} \frac{V_A - V_{Th}}{R_{Th}} + \frac{V_A}{R_L} &= 0 \quad \rightarrow \quad \frac{-V_A + V_{Th}}{R_{Th}} = \frac{V_A}{R_L} \\ R_{Th} &= \frac{(V_{Th} - V_A)}{V_A} R_L \end{split}$$

Universidade de Brasília

• Obteve-se as expressão de I_{No} e de R_{No} para o circuito equivalente (c).

$$\begin{split} \frac{V_A}{R_{No}} + \frac{V_A}{R_L} &= I_{No} \\ I_{No} &= \frac{(R_{No} + R_L)}{R_{No}R_L} V_A \\ I_{No} &= \frac{V_{Th}}{R_{mo}} \end{split}$$

$$\begin{split} \frac{V_A}{R_{No}} + \frac{V_A}{R_L} &= I_{No} \quad \rightarrow \quad \frac{V_A}{R_{No}} = I_{No} - \frac{V_A}{R_L} \\ R_{No} &= \frac{V_A R_L}{I_{No} R_L - V_A} \\ R_{No} &= R_{Th} \end{split}$$

- Para calcular R_{Th}, deve-se eliminar todas as fontes independentes (substituindo as fontes de tensão por curtos-circuitos e as fontes de corrente por circuitos abertos) e em seguida determinar a resistência equivalente entre os terminais escolhidos.
- Para calcular V_{Th}, deve-se determinar a diferença de potencial entre os terminais escolhidos, em aberto (circuito aberto).

· Abra um novo esquemático.

Universidade de Brasília

Universidade de Brasília

Programa Tutoria

 Na aba Componentes, vá em componentes agrupados e coloque cinco resistores no esquemático. Vá em Fontes e coloque duas fontes de tensão DC. Vá em Ponteiras e coloque uma ponteira de corrente e uma ponteira de tensão.

Univ

Universidade de Brasília

 Conecte os componentes sem esquecer da referência do terra e ajuste seus valores para os pedidos no exercício.

 Coloque a Simulação DC no esquemático, salve e simule.

 Vá em Diagramas e insira uma tabela. Coloque o valor da corrente i_{R3}.I e da tensão V_{AB}.V.

Assim, verifica-se os valores pedidos no exercício.

- Coloque V₁ em repouso e, mantendo V₂ ligada, meça a tensão no resistor R_I e a corrente no resistor
- Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a próxima simulação.

Universidade de Brasília

- Agora, coloque V₂ em repouso e, mantendo V₁ ligada, meça a tensão no resistor R₁ e a corrente no resistor R₃.
- Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a próxima simulação.

Universidade de Brasília

Programa Tutoria

- Mediu-se a tensão entre os terminais A e B, bem como a corrente na carga R₁.
- Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a próxima simulação.

Universidade de Brasília

 \bullet Encontre a tensão de circuito aberto V_{oc} para o circuito. Para isso remova a carga e meça a tensão entre os pontos A e B. A seguir, meça a corrente de curto-circuito i_{sc}.

• Desative a fonte V₁ como circuito fechado utilizando a ferramenta Desativar/Ativar e clicando duas vezes sobre a fonte, até a marcação ficar verde.

Universidade de Brasília

• Ative a fonte V_1 e desative a fonte V_2 . Deixe a fonte V₁ desativa como circuito fechado, utilizando a marcação verde.

Universidade de Brasília

• Ative a fonte V₂ e insira uma ponteira de corrente para medir i_{RI}.

Universidade de Brasília

- Calcule a corrente de curto-circuito esperada a partir de V_{oc} e R_{eq}.
- Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a próxima simulação.

- Montou-se o circuito equivalente de Thévenin utilizando uma fonte de tensão em série com um resistor R_{Th} e o resistor de carga. Ajustou-se a fonte de acordo com a tensão de Thévenin medida e o resistor R_{Th} de acordo com a resistência equivalente medida.
- Montou-se o circuito equivalente de Norton utilizando uma fonte de corrente em paralelo com um resistor R_{No} e o resistor de carga. Ajustou-se a fonte de acordo com a corrente de Norton medida e o resistor R_{No} de acordo com a resistência equivalente medida.
- Vá em Arquivo > Salvar como... e mude o nome do arquivo para utilizar o esquemático já montado para a próxima simulação.