1. Rings.

- (a) The *center* of a ring R is $Z(R) = \{z \in R \mid zr = rz \text{ for all } r \in R\}$ (i.e. the center of the underlying multiplicative semigroup).
 - (i) Show that Z(R) is a subring of R containing 0 and 1 (if it exists).

Proof. We know $Z(R) \subset R$ by definition by the set. In addition, we have that $Z(R) \neq \emptyset$ because 0r = 0 = r0 for all $r \in R$. Hence, $0 \in Z(R)$. Moreover, if 1 exists, then 1r = r = r1 for all $r \in R$, so $1 \in Z(R)$ as well. Now fix $a, b \in Z(R)$. Then ar = ra and br = rb for all $r \in R$. Hence,

$$(a-b)r = ar - br$$
$$= ra - rb$$
$$= r(a-b)$$

for all $r \in R$. Thus, $a - b \in Z(R)$ as well, and so Z(R) is closed under addition. Now, we will check multiplication,

$$(ab)r = a(br)$$

$$= a(rb)$$

$$= (ar)b$$

$$= (ra)b$$

$$= r(ab)$$

So for all $r \in R$, we have (ab)r = r(ab). Hence, $ab \in Z(R)$ and Z(R) is closed under multiplication. Thus, Z(R) is a subring of R

(ii) Is Z(R) necessarily an ideal of R?

Proof. Recall that Z(R) is an ideal of R if

$$rZ(R), Z(R)r \subset Z(R)$$

for every $r \in R$.

Let $r \in R$ such that there exists $r' \in R$ which r does not commute with. That is, $r \notin Z(R)$. If such an r exists, then consider rZ(R). Fix $a \in Z(R)$ and consider ra. We have that $r'(ra) \neq (ra)r'$ because r and r' do not commute. Hence, $ra \notin Z(R)$ and so $rZ(R) \notin Z(R)$. Thus, Z(R) is not necessarily an ideal of R.

Z(R) is an ideal of R if $Z(R) = \{0\}$ (i.e. the only element that commutes with everything in R is 0) or Z(R) = R (i.e. R is a commutative ring).

(iii) Show that the center of a division ring is a field.

Proof. Recall that division ring R is a ring with identity 1, where $1 \neq 0$, and with the property that every nonzero element $a \in R$ has a multiplicative inverse, i.e. there exists $b \in R$ such that ab = ba = 1. Since every element commutes with its inverse, we have that Z(R) is closed under multiplication, subtraction, and inverses.

Now recall Z(R) is a field if (Z(R), +) is an abelian group and $(Z(R) - \{0\}, \cdot)$ is also an abelian group, and the following distributive law holds:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

for all $a, b, c \in Z(R)$.

We have that (Z(R), +) is an abelian group based on the definition of rings and the fact that Z(R) is a subring of R. Now consider $(Z(R) - \{0\}, \cdot)$. From properties of rings, we know that \cdot is a well-defined operation and that is a associative. Hence, we just need to check that $(Z(R) - \{0\}, \cdot)$ has an identity element and is closed under inverses in order to show that it is a group.

In part (i), we proved that if 1 exists, we have that $1 \in Z(R)$. Hence, $1 \in Z(R) - \{0\}$. \square

(b) Decide which of the following are ideals in $\mathbb{Z} \times \mathbb{Z}$:

$$\{(a,a) \mid a \in \mathbb{Z}\}, \qquad \{(a,-a) \mid a \in \mathbb{Z}\}, \qquad \{(2a,0) \mid a \in \mathbb{Z}\}.$$

Proof. $\{(a,a) \mid a \in \mathbb{Z}\}$ is not an ideal in $\mathbb{Z} \times \mathbb{Z}$ because $(2,3) \in \mathbb{Z} \times \mathbb{Z}$ and $(1,1) \in \{(a,a) \mid a \in \mathbb{Z}\}$ but $(2,3) \cdot (1,1) = (2,3) \notin \{(a,a) \mid a \in \mathbb{Z}\}$. Hence,

$$(2,3) \cdot \{(a,a) \mid a \in \mathbb{Z}\} \subset \{(a,a) \mid a \in \mathbb{Z}\}$$

 $\{(a,-a)\mid a\in\mathbb{Z}\}\ \text{is also not an ideal in }\mathbb{Z}\times\mathbb{Z}\ \text{because}\ (2,3)\in\mathbb{Z}\times\mathbb{Z}\ \text{and}\ (1,-1)\in\{(a,-a)\mid a\in\mathbb{Z}\}\ \text{but}\ (2,3)\cdot(1,-1)=(2,-3)\notin\{(a,-a)\mid a\in\mathbb{Z}\}.$ Hence,

$$(2,3) \cdot \{(a,-a) \mid a \in \mathbb{Z}\} \not\subset \{(a,-a) \mid a \in \mathbb{Z}\}\$$

 $\{(2a,0\mid a\in\mathbb{Z})\}$ is an ideal in $\mathbb{Z}\times\mathbb{Z}$. Fix $(b_1,b_2)\in\mathbb{Z}\times\mathbb{Z}$ and fix $(2a,0)\in\{(2a,0\mid a\in\mathbb{Z})\}$. Then we have,

$$(b_1, b_2) \cdot (2a, 0) = (b_1 \cdot 2a, b_2 \cdot 0)$$

= $(2(b_1a), 0)$

We are able to make the last change because multiplication in \mathbb{Z} is commutative. In addition, since b_1, a in \mathbb{Z} and \mathbb{Z} is closed under multiplication, we have that $b_1 a \in \mathbb{Z}$ as well. Hence, $(2(b_1 a), 0) \in \{(2a, 0 \mid a \in \mathbb{Z}\}. \text{ Since } b_1, b_2, a \in \mathbb{Z} \text{ were chosen to be arbitrary in } \mathbb{Z}, \text{ we have that } \{(2a, 0 \mid a \in \mathbb{Z}\} \text{ is a left ideal of } \mathbb{Z} \times \mathbb{Z}.$

Now fix $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$. Then we have,

$$(a,b) \cdot (c,d) = (a \cdot c, b \cdot d)$$
$$= (c \cdot a, d \cdot b)$$
$$= (c,d) \cdot (a,b)$$

by the commutativity of multiplication in \mathbb{Z} . Hence, $\mathbb{Z} \times \mathbb{Z}$ is a commutative ring and we have that the notions of left ideals and right ideals are the same. As a result, we have shown that $\{(2a,0 \mid a \in \mathbb{Z}\} \text{ is closed under left and right multiplication by elements from } \mathbb{Z} \times \mathbb{Z}$, and hence $\{(2a,0 \mid a \in \mathbb{Z}\} \text{ is an ideal of } \mathbb{Z} \times \mathbb{Z}$.

- 2. Nilpotent elements. We call an element $x \in R$ nilpotent if $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$.
 - (a) Explain why the only nilpotent element of any integral domain is 0.

Proof. Recall that an integral domain is a commutative ring with identity $1 \neq 0$ and no zero divisors. That is, there are no nonzero elements a, b in R such that ab = 0 (so at least one of a or b must be 0).

Now let $x \in R$ and suppose x is nilpotent. That is, $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$. Since R is closed under multiplication, we have $x^{n-1} \in R$. Moreover,

$$x \cdot x^{n-1} = x^n$$
$$= 0$$

However, this implies that x is a 0 divisor in R since $x \cdot x^{n-1} = 0$. But since R is an integral domain, we know that either x^{n-1} or x is 0. If x = 0 we are done, so let us assume that $x \neq 0$. Thus, by the fact that R is an integral domain, we have $x^{n-1} = 0$. Since n was arbitrary, this holds for any $n \in \mathbb{Z}_{>0}$. Thus, by induction we have,

$$x^2 = x \cdot x = 0$$

And hence, x = 0. Thus, 0 is the only nilpotent element in an integral domain.

(b) Prove that if R is commutative, then the nilradical, defined by

$$\mathfrak{N}(R) = \{ x \in R \mid x \text{ is nilpotent } \},$$

is an ideal of R. [You may use the Binomial Theorem given in Exercise 7.3.25 without proof to show closure under addition or subtraction.]

Proof. Let $x, y \in \mathfrak{N}(R)$. Then $x^n = y^m = 0$ for some n, m. We need to show that $(x-y)^\ell = 0$ for some ℓ in order to show that $\mathfrak{N}(R)$ is closed under subtraction. Let us reformulate this as $(x + (-y))^\ell$ and apply the Binomial Theorem from Exercise 7.3.25,

$$(x + (-y))^{\ell} = \sum_{k=0}^{\ell} {\ell \choose k} x^k (-y)^{\ell-k}$$

(c) Prove that if R is commutative, then the only nilpotent element of $R/\mathfrak{N}(R)$ is 0. Conclude that $\mathfrak{N}(R/\mathfrak{N}(R)) = 0$. [Namely, modding out by the nilradical removes all nilpotent elements.]

Proof. Let $r \in R$ and suppose,

$$\begin{split} \bar{0} &= \bar{r}^{\ell} \\ &= (r + \mathfrak{N}(R))^{\ell} \\ &= r^{\ell} + \mathfrak{N}(R) \end{split}$$

for some $\ell \in \mathbb{Z}_{>0}$.

Since $0 + \mathfrak{N}(R) = r^{\ell} + \mathfrak{N}(R)$, we have that $r^{\ell} \in \mathfrak{N}(R)$. Hence, there exists $n \in \mathbb{Z}_{>0}$ such that $(r^{\ell})^n = r^{\ell n} = 0$. Since $\ell, n \in \mathbb{Z}_{>0}$, we have that $\ell n \in \mathbb{Z}_{>0}$. Thus, r is nilpotent and hence is in $\mathfrak{N}(R)$. As a result, $\bar{r} = \bar{0}$ and the only nilpotent element of $\mathfrak{N}(R/\mathfrak{N}(R))$ is $\bar{0}$.

(d) Show that, in $M_2(\mathbb{R})$,

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

are both nilpotent, but x + y is not. Conclude that the nilradical $\mathfrak{N}(R)$ is not necessarily an ideal if R is not commutative.

Proof. We have,

$$x^{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

and,

$$y^{2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence, both x and y are nilpotent. Now let us consider,

$$x + y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Now we will check the powers of x + y to see if $(x + y)^n = 0$ for any $n \in \mathbb{Z}_{>0}$,

$$(x+y)^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= I_2$$

and so,

$$(x+y)^3 = (x+y) \cdot (x+y)^2$$
$$= (x+y) \cdot I_2$$
$$= x+y$$

$$(x+y)^4 = (x+y) \cdot (x+y)^3$$
$$= (x+y) \cdot (x+y)$$
$$= I_2$$

Hence, $(x+y)^n = x+y, I_2$ for any $n \in \mathbb{Z}_{n>0}$. Thus, x+y is not nilpotent.

3. Homomorphisms.

(a) Show that $2\mathbb{Z}$ and $3\mathbb{Z}$ are isomorphic as groups but not as rings. [Hint: Note that any ring homomorphism has to also be an additive group homomorphism. So the additive generators of $2\mathbb{Z}$ have to map to additive generators of $3\mathbb{Z}$.]

Proof. Define $\varphi: 2\mathbb{Z} \to 3\mathbb{Z}$ by $x \mapsto 3/2 \cdot x$. Now fix $a, b \in 2\mathbb{Z}$. We have,

$$\varphi(a+b) = 3/2 \cdot (a+b)$$
$$= 3/2 \cdot a + 3/2 \cdot b$$
$$= \varphi(a) + \varphi(b)$$

As a result, we have that φ is a group homomorphism on the additive groups. Now let $b \in 3\mathbb{Z}$. Then b = 3x for some $x \in 3\mathbb{Z}$. Let $a = 2/3 \cdot b = 2/3 \cdot 3x = 2x$. Then $a \in 2\mathbb{Z}$ and we have $\varphi(a) = 3/2 \cdot a = 3/2 \cdot 2/3b = b$. Hence, φ is surjective.

Now fix $a_1, a_2 \in 2\mathbb{Z}$ and assume $\varphi(a_1) = \varphi(a_2)$. Then we have,

$$3/2 \cdot a_1 = 3/2 \cdot a_2$$

$$\implies a_1 = a_2$$

Thus, φ is also injective and hence is a bijection. As a result, we have that φ is an isomorphism of the additive groups. However, note now that,

$$\varphi(ab) = 3/2(ab)$$

$$\neq (3/2)^2 ab$$

$$= \varphi(a) \cdot \varphi(b)$$

Hence, φ is not a ring isomorphism.

(b) Let R be the set of (weakly) upper-triangular matrices in $M_2(\mathbb{Z})$. Prove that

$$\varphi: R \to \mathbb{Z} \times \mathbb{Z}$$
 defined by $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto (a, d)$

is a surjective homomorphism and calculate its kernel.

Proof. Fix $a, b \in R$ with,

$$a = \begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix}$$

and,

$$b = \begin{pmatrix} b_1 & b_2 \\ 0 & b_3 \end{pmatrix}$$

Then, we have,

$$a+b = \begin{pmatrix} a_1 + b_1 & a_2 + b_2 \\ 0 & a_3 + b_3 \end{pmatrix}$$

and,

$$ab = \begin{pmatrix} a_1b_1 & a_1b_2 + a_2b_3 \\ 0 & a_3b_3 \end{pmatrix}$$

Now we will check the additive homomorphism property,

$$\varphi(a + b) = (a_1 + b_1, a_3 + b_3)$$

= $(a_1, a_3) + (b_1, b_3)$
= $\varphi(a) + \varphi(b)$

And the multiplication property,

$$\varphi(ab) = (a_1b_1, a_3b_3)$$

$$= (a_1, a_3) \cdot (b_1, b_3)$$

$$= \varphi(a) \cdot \varphi(b)$$

Now let $(a,d) \in \mathbb{Z} \times \mathbb{Z}$ and define $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ where $a,b,d \in \mathbb{Z}$. Then $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in R$ and $\varphi \left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right) = (a,d)$

Hence, φ is surjective. Now we need to find the kernel of φ , which is the set of elements that map to $(0,0) \in \mathbb{Z} \times \mathbb{Z}$. Note that, in the general matrix,

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

we must have a,d=0 in order for $\varphi\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\right)=(0,0).$ Thus,

$$\ker(\varphi) = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{Z} \right\}$$

(c) Let R and S be rings with identities 1_R and 1_S , respectively. Let $\varphi: R \to S$ be a non-zero ring homomorphism. Prove that if $\varphi(1_R) \neq 1_S$, then $\varphi(1_R)$ is a zero divisor in S.

Proof. Suppose $\varphi: R \to S$ is a non-zero ring homomorphism and $\varphi(1_R) \neq 1_S$.