

SET POWERS

Why

We want to consider all the subsets of a given set.

Definition

We do not yet have a principle stating that such a set exists, but our intuition suggests that it does.

Principle 1 (powers). For every set, there exists a set of its subsets.

We call the existence of this set the *principle of powers* and we call the set the *power set*.¹ As usual, the principle of extension gives uniqueness (see Set Equality). The power set of a set includes the set itself and the empty set.

Notation

Let A denote a set. We denote the power set of A by $\mathcal{P}(A)$, read aloud as "powerset of A." $A \in \mathcal{P}(A)$ and $\emptyset \in \mathcal{P}(A)$. However, $A \subset \mathcal{P}(A)$ is false.

Examples

Let a, b, c denote distinct objects. Let $A = \{a, b, c\}$ and $B = \{a, b\}$. Then $B \subset A$. In other notation, $B \in \mathcal{P}(A)$. Showing each of the following is straightforward.

- 1. The empty set: $\mathcal{P}(\emptyset) = \{\emptyset\}$
- 2. Singletons: $\mathcal{P}(\{a\}) = \{\emptyset, \{a\}\}\$
- 3. Pairs: $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
- 4. Triples:

$$\mathcal{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\}\}$$

 $^{^{1}\}mathrm{This}$ terminology is standard, but unfortunate. Future editions may change these terms.

Properties

We can guess the following easy properties.²

Proposition 1. $\emptyset \in \mathcal{P}(A)$

Proposition 2. $A \in \mathcal{P}(A)$

We call A and \varnothing the improper subsets of A. All other subsets we call proper.

Basic fact

Proposition 3. $E \subset F \longrightarrow \mathcal{P}(E) \subset \mathcal{P}(F)$

²Future editions will expand this account.

