Ogloblin Ivan

Using genetic algorithm for search of optimal schemes of entangling transformations in linear quantum optics

Final qualifying work

Scientific advisor: S. S. Sysoev

11 may 2023

Faculty of mathematics and computer scince SPbSU program «Modern programming»

Introduction

- Protocol KLM
- CX with probability 1/9
- Genetic algorithms for search

My task

- 1. Find a criterion for the entanglement of the state of the system and the gate
- 2. Find a criterion for fidelity of a matrix
- 3. Find a continuous criterion for how unitary is matrix
- 4. Write a cost function for genetic algorithm
- 5. Get schemes
- 6. Characterize results

fidelity criterion

- Probability of getting vectors should be equal
- Conditional probabilities of each vector should be 1

$$A_{base} = |00\rangle, |01\rangle, |10\rangle, |11\rangle$$

$$B_{base} = b_2b_4, b_2b_3, b_1b_4, b_1b_3, b_1^2, b_1b_2, b_2^2, b_3^2, b_3b_4, b_4^2$$

$$\frac{P_a}{P_b} = 1 \Rightarrow P_a = P_b$$

entanglement criterion

for approximating entanglement of a transformation we find entanglement on 12 basis vectors $Z:|0\rangle,|1\rangle$; $X:|+\rangle=\frac{|0\rangle+|1\rangle}{2},|-\rangle=\frac{|0\rangle-|1\rangle}{2}$; $Y:|y_1\rangle=\frac{|0\rangle+i|1\rangle}{2},|y_2\rangle=\frac{|0\rangle-i|1\rangle}{2}$

$$\rho = \rho_{AB} = |\phi\rangle \langle \phi|_{AB}$$

$$\rho_A = Tr_A(\rho_{AB})$$

$$E(\rho) = S(\rho_A)$$

$$S(\rho) = Tr(\rho^2)$$

Unitary criterion

For quantum computation it is necessary that a transform be Unitary

$$M_{in} * M_{in}^{\dagger} = Id$$

- Let us see $M_{in} * M_{in}^{\dagger} Id$
- Get sum of squares of its elements

Formation of fitness function

parameters

Runs without ancillary photons

Two photons encode two qubits, however without ancillary photons the conditional probability of transform won't get to 1.

$$egin{aligned} |00
angle &
ightarrow ((0.5-0.5j))|00
angle \ |01
angle &
ightarrow ((0.5+0.5j))|00
angle \ |10
angle &
ightarrow ((0.5-0.5j))|11
angle \ |11
angle &
ightarrow ((-0.5-0.5j))|11
angle \end{aligned}$$

Search of maximum entangled state

It is necessary to use at least 4 photons

First result of unitary matrix

With addition of unitary criterion and search of entanglement by all basis vectors.

Other transforms

All other runs already had fidelity criterion and made sure that transform satisfies such criterion

Characterization of two qubit gate

Can we get any already known gate from our by application of local operation?

Conclusion

- A convenient criterion for entanglement of transform was found
- entanglement search algorithm was implemented.
- Scheme for generation of maximum entanglement state and new implementation of CX gate were found.
- Schemes were analyzed using Weyls Chamber
- A useful hypothesis was made

