Question ID: 720_q5

Question: Table in {type1} {entry1} shows nominal and measured composition and density of the six- and seven-oxide glass samples produced and analysed in this work. An example of a material composition is 75% \ce{SiO_2}, 15% \ce{B_2O_3} and 10% \ce{Na_2O}. A material id is a name/number given to such a material composition. Are there any material ids present in the table?

Keywords: table-questions, material-composition,
difficulty-basic, requires-knowledge, requires-ocr
Options:

- Yes: Incorrect

- No: Incorrect

Image:

Compound	Glass sample							
	Α		ANa		ACs		ANaV	
	Nominal (wt%)	XRF-EDS (wt%)	Nominal (wt%)	XRF-EDS (wt%)	Nominal (wt%)	XRF-EDS (wt%)	Nominal (wt%)	XRF-EDS (wt%
SiO ₂	50	51 ± 0.5	47.5	48 ± 0.5	43.63	44 ± 1	45	44.8 ± 0.5
B ₂ O ₃	16	16 ± 0.5	15.2	15 ± 0.5	13.96	-	14.4	14 ± 0.5
Na₂O	16	14 ± 0.5	15.2	14.7 ± 0.5	13.96	14 ± 2	14.4	14.6 ± 0.5
Al ₂ O ₃	7	7.4 ± 0.5	6.65	6.5 ± 0.5	6.11	6 ± 0.5	6.3	6.5 ± 0.5
CaO	5	5.4 ± 0.4	4.75	5 ± 0.4	4.36	4 ± 0.4	4.5	4.8 ± 0.4
Fe ₂ O ₃	6	6.5 ± 0.4	5.7	5.2 ± 0.4	5.24	5.2 ± 0.4	5.4	5.2 ± 0.4
				Added compou	nds			
Na ₂ SO ₄	-		5	0.7 ± 0.1 (SO ₃)	-		5	0.9 ± 0.1 (SO ₃)
Cs ₂ SO ₄	-		-		12.74	0.55 ± 0.1 (SO ₃)	-	
V ₂ O ₅	-		-		-		5	4.9 ± 0.2
			<u> </u>	 Structural param	eters			
R	1.12 ± 0.05	1.12 ± 0.05	1.298 ± 0.05	1.298 ± 0.05	1.298 ± 0.1	1.298 ± 0.1	1.123 ± 0.05	1.123 ± 0.05
K	3.62 ± 0.05	3.62 ± 0.05	3.62 ± 0.05	3.62 ± 0.05	3.62 ± 0.1	3.62 ± 0.1	3.62 ± 0.05	3.62 ± 0.05
R * = 3K/16	0.726 ± 0.01	0.726 ± 0.01	0.726 ± 0.01	0.726 ± 0.01	0.726 ± 0.02	0.726 ± 0.02	0.726 ± 0.01	0.726 ± 0.01
r	2.56 ± 0.001	2.56 ± 0.001	2.56 ± 0.001	2.56 ± 0.001	2.62 ± 0.001	2.62 ± 0.001	2.56 ± 0.001	2.56 ± 0.001