

UNIVERSIDADE FEDERAL DO ABC – UFABC CENTRO DE MATEMÁTICA, COMPUTAÇÃO E COGNIÇÃO BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

PLANO DE ENSINO

ANO LETIVO	QUADRIMESTRE	TURNO	CAMPUS
2021	Q2	Diurno/Noturno	Santo André

CÓDIGO	NOME	TPI
MCTA025-13	Sistemas Distribuídos	3-1-4
CÓDIGO DE TURMA	RECOMENDAÇÕES	
DA[nº], NA[nº]	Redes de Computadores	

EMENTA

Introdução e caracterização de sistemas distribuídos. Evolução histórica. Modelos arquiteturais, objetivos, aplicações e tendências modernas. Comunicação e sincronização em Sistemas distribuídos. Servidores remotos. Servidor de arquivos, diretórios, impressora, nomes, correio eletrônico, etc. Sistema de Arquivos: organização, segurança, confiabilidade e desempenho. Estudos de Casos.

OBJETIVOS

O objetivo geral do curso é apresentar aos alunos a importância dos sistemas distribuídos, conhecer os conceitos básicos referentes aos sistemas distribuídos; compreender a necessidade de estruturação adequada dos sistemas de informação distribuídos e conhecer os principais componentes dos sistemas de informação distribuídos e técnicas usadas para desenvolvê-los.

REQUISITOS PRELIMINARES

Os pré-requisitos para o estudante matriculado na disciplina são:

- a) Acesso a computador com Internet
- b) No computador, acesso a navegador de Internet, como Chrome, Mozilla, Edge, etc.
- c) No computador, acesso a usar programas como Java (java e javac) e Eclipse.
- d) Acesso ao sistema SIGAA e Moodle da UFABC.

Commented [VR1]: Importante!

RECOMENDAÇÕES DA DISCIPLINA

Por ser uma disciplina do último ano da matriz curricular sugerida pelo Bacharelado em Ciência da Computação, espera-se que a pessoa tenha adquirido (ou adquira durante o transcurso da disciplina) os seguintes conhecimentos:

- Entender a comunicação TCP e UDP (vista no curso de Redes de Computadores).
- Programar com Sockets (pode fazer esse tutorial https://youtu.be/watch?v=nysfXweTI7o)
- Conhecer e ter usado estruturas de dados, como listas, pilhas e filas.
- Ter maturidade na programação.

Esses conhecimentos servirá para implementar o projeto de programação distribuído.

AVALIAÇÕES

a) Avaliações Regulares:

Tipo	Realização	Data de entrega
Projeto de Programação	Entrega pelo Moodle	Até 19/7 às 23.00
Atividade de Avaliação	Entrega pelo Moodle	Até 2/8 às 23.00

Para ter uma ideia de como será o projeto de programação veja o link: https://www.dropbox.com/s/8pw0f2v2pw8p8c9/SD-EP-exemplo.docx. Cabe destacar que essa não é a versão final, podendo sofrer alterações.

A nota final será determinada pela <mark>média harmônica</mark> das notas obtidas nas avaliações. Note que uma nota zero em alguma das avaliações implicará na nota final zero.

b) Avaliação Substitutiva:

Estarão habilitados para a avaliação substitutiva somente os estudantes que se ausentarem a uma das avaliações e contemplados pelo benefício de acordo com a Resolução CONSEPE nº 227. Nesta hipótese, o estudante deverá entregar uma justificativa válida e original para o docente 72 horas antes do dia da prova. O conteúdo da avaliação substitutiva é o conteúdo integral da disciplina.

Tipo	Realização	Data de entrega
Avaliação substitutiva	Entrega pelo Moodle	Até 7/8 às 23.00

Caso o aluno se ausente a mais de uma avaliação do período regular, o conceito da avaliação substitutiva será concedido para UMA ÚNICA avaliação não realizada.

Commented [VR2]: Ver o projeto!

Commented [VR3]: Importante!

c) Avaliação de Recuperação:

Estarão habilitados para a avaliação de recuperação somente os estudantes que obtiverem conceito final **D** ou **F** na conclusão de todas as atividades e avaliações aplicadas antes da avaliação de recuperação, obedecendo as regras indicadas na Resolução CONSEPE nº 182. Para realizar a avaliação de recuperação, deverá avisar ao docente 72 horas antes do dia da prova. O conteúdo da avaliação de recuperação é o conteúdo integral da disciplina.

Tipo	Realização	Data de entrega
Avaliação de recuperação	Entrega pelo Moodle	Até 16/8 às 23.00

 A avaliação de recuperação constará da entrega do projeto de programação da avaliação regular mais uma nova atividade, na qual o projeto valerá 70% da nota de recuperação e a atividade 30% da nota de recuperação.

d) Composição da nota na recuperação:

Caso o estudante realize a prova de recuperação, aplica-se a seguinte regra para a composição da nota final:

- 50% trata-se da nota final obtida antes da Prova de Recuperação, e
- 50% trata-se da nota final obtida na Prova de Recuperação.

e) Atribuição do conceito:

A nota de qualquer avaliação será entregue com uma casa decimal (arredondamento para abaixo). Exemplo: 4.96 será 4.9.

A atribuição do conceito utiliza a seguinte conversão:

- A = [8.5 10] ⇒ excelente compreensão da disciplina
- B = [7.5 8.5) \Rightarrow boa compreensão da disciplina
- C = [6 7.5) ⇒ compreensão do conteúdo mais importante da disciplina e capacidade para seguir estudos mais avançados
- D = [5 6) ⇒ compreensão mínima do conteúdo da disciplina e deficiências para prosseguir estudos avançados
- F = [0 5) ⇒ insuficiente compreensão do conteúdo. A disciplina deve ser cursada novamente.
- O ⇒ ver seção de frequência.

f) Forma de entrega das avaliações:

Para qualquer avalição, outra forma de entrega além da especificada (e.g., por email) não será considerada.

FREQUÊNCIA

O controle da frequência será realizado pela entrega das avaliações. O conceito será 'O' se não entregar nenhuma avaliação regular.

CANAL DE COMUNICAÇÃO

Todas as informações (avisos, notícias, slides das aulas, etc.) serão realizadas **somente no SIGAA**. Portanto, cabe ao estudante entrar e olhar constantemente o SIGAA para manter-se informado. Assim, quando o professor enviar alguma informação, assume-se que o estudante ficou ciente dela.

PLANEJAMENTO PRELIMINAR DE AULAS

Aula	Tópico	Recurso
Semana	Apresentação da disciplina	Slides da aula no SIGAA com
1	Capítulo 1 → Módulo 1	Gravação assíncrona no Youtube
Semana	Capítulo 1	Slides da aula no SIGAA com
2	Programação com Sockets (opcional)	Gravação assíncrona no Youtube
Semana	Capítulo 2 → Módulo 2	Slides da aula no SIGAA com
3	Videoconf. pelo Meet do Google (10/6)	Gravação assíncrona no Youtube
Semana	Capítulo 3 → Módulo 3	Slides da aula no SIGAA com
4	Entrega parcial projeto (opcional, sem nota)	Gravação assíncrona no Youtube
Semana	Capítulo 4 → Módulo 4	Slides da aula no SIGAA com
5		Gravação assíncrona no Youtube
Semana	Capítulo 5 → Módulo 5	Slides da aula no SIGAA com
6		Gravação assíncrona no Youtube
Semana	BitTorrent → Módulo 6	Gravação assíncrona no Youtube
7	Videoconf. pelo Meet do Google (8/7)	
Semana	Capítulo 6 → Módulo 7	Slides da aula no SIGAA com
8		Gravação assíncrona no Youtube
Semana	Entrega do Projeto de Prog. (19/7)	Slides da aula no SIGAA com
9	Capítulo 7 → Módulo 8	Gravação assíncrona no Youtube
Semana	Blockchain → Módulo 9	Slides da aula no SIGAA com
10	Hadoop/BigData → Módulo 10	Gravação assíncrona no Youtube
Semana	Entrega da atividade (2/8)	
11	Prova substitutiva (7/8)	
Semana	Hadoop/Exemplo → Módulo11 (opcional)	Gravação assíncrona no Youtube
12	Prova de recuperação (16/8)	

As videoconferências pelo Meet serão para tirar dúvidas e não precisarão ser acompanhadas pelo estudante nem serão gravadas. O Meet requer a criação de uma conta gratuita no Google.

ATIVIDADES DE APOIO

Esta disciplina prevê um horário de atendimento extraclasse para atividades de apoio aos estudantes regulares desta turma, conforme disposto na Resolução CONSUNI nº 183, de 31 de outubro de 2017.

O horário de atendimento semanal terá carga horária total de 3 horas, sendo realizada no seguinte dia, local e horário:

- Sextas-feiras, das 10:00h às 11:30h e das 19.00h às 20.30, por meio de:
 - Mensagem via SIGAA (menu Participantes -> botão "Enviar mensagem").
 - Email a vladimir.rocha@ufabc.edu.br (envie seu nome e código de turma obrigatoriamente).

Eventuais dúvidas e questionamentos poderão ser enviados em outros horários.

BIBLIOGRAFIA RECOMENDADA

Bibliografia Básica

- TANEMBAUM, A. S. Sistemas distribuídos: princípios e paradigmas. São Paulo, SP: Prentice-Hall, 2007.
- COULOURIS, G. F.; DOLLIMORE, J.; KINDBERG, T. Distributed systems: concepts
- and design. 4a edição. Harlow, UK: Addison-Wesley, 2005.
- DEITEL, H. Java: como programar. São Paulo, SP: Prentice-Hall, 2006

Bibliografia Complementar

- TANENBAUM, A. S. Sistemas operacionais modernos. 3º edição. São Paulo, SP: Pearson Prentice Hall, 2009.
- BEN-ARI, M. Principles of concurrent and distributed programming. 2a edição. Harlow, UK: Addison-Wesley, 2006.
- GRAMA, A. Introduction to parallel computing. 2a edição. Harlow, UK: AddisonWesley, 2003.
- PACHECO, P. S. Parallel programming with MPI. San Francisco, California, USA: Morgan Kaufmann Publishers, 1997.
- GHOSH, S. Distributed systems: an algorithmic approach. Boca Raton, USA: CRC Press, 2007.

PROFESSOR(ES) RESPONSÁVEL(IS)

Prof. Dr. Vladimir Moreira Rocha

Commented [VR4]: Importante!