

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2018)

PROVA DE QUÍMICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 58 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- 3. Para cada pergunta existem quatro alternativas de resposta. Só **uma** é que está correcta. Assinale **apenas** a alternativa correcta.
- 4. Para responder correctamente, basta marcar na alternativa escolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- 6. No fim da prova, entregue **apenas** a Folha de Respostas. **Não será aceite** qualquer folha adicional.
- 7. Não é permitido o uso da máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

1.	Considere os seguntes dados referentes aos átomos A, B e C: ${}_{20}A^{z}$; ${}_{21}B^{44}$; ${}_{x}C^{y}$. Sabendo que A e B, são isóbaros, B e C são isótopos e A e C são isótonos, os valores de x, y e z serão respectivamente:
Α.	44; 21; 45 B. 44; 45; 21 C. 21; 44; 45 D. 21; 45; 44
2.	Fogos de artifício utilizam sais de diferentes iões metálicos misturados com um material explosivo. Quando incendiados, emitem diferentes colorações. Essas cores são produzidas quando os electrões excitados dos iãos metálicos retornam para níveis de menor energia. O modelo atómico mais adequado para explicar esse fenómeno é o modelo de: A. Rutherford B. Rutherford-Bohr C. Thomson D. Dalton
3.	Um catião metálico trivalente tem 76 electrões e 118 neutrões. O átomo do elemento químico,
Α.	do qual se originou, tem número atómico e número de massa, respectivamente: 76 e 194 B. 76 e 197 C. 79 e 197 D. 79 e 194
4.	O número de electrões do catião X^{2+} de um elemento \mathbf{X} é igual ao número de electrões do átomo neutro de um gás nobre. Este átomo de gás nobre apresenta número atómico 10 e número de massa 20. O número atómico do elemento \mathbf{X} é: A. 8 B. 10 C. 12 D. 18
5.	Um átomo com a seguinte configuração electrónica, $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^{10}$ $4p^5$
Α.	apresenta na camada mais externa: 5 electrões B. 4 electrões C. 3 electrões D. 7 electrões
6. A.	O número de protões, electrões e neutrões do ião de 11 ²³ Na ⁺ é respectivamente: 11, 11 e 11 B. 10, 11 e 12 C. 23, 10 e 12 D. 11, 10 e 12
7. A.	O número máximo de electrões que cabem no nível de energia 3 é: 3 B. 8 C. 6 D. 16
8.	O elemento cuja configuração electrónica é: 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 5s² 4d¹0 5p³ pertence ao grupo:
Α.	IIIA B. III B C. VA D. VIIA
9. I. A.	Considere os seguintes compostos: NaCl II. HBr III. CO ₂ IV. CH ₃ CH ₂ OH V. Fe ₂ O ₃ Apresentam ligações covalentes os compostos: I e V B. III e V C. II, IV e V D. II, III e IV
	O sal de cozinha, o ácido clorídrico e a glicose, apresentam em suas estruturas, respectivamente, ligações do tipo:
	iónica, iónica e iónica D. iónica, covalente e covalente
В. С.	covalente, covalente e covalente metálica, covalente e covalente
11. A.	Indique qual dos óxidos apresentados a seguir é um óxido ácido? Ga ₂ O ₃ B. Na ₂ O ₂ C. CO D. CO ₂
12. A.	A reacção CO (g) + Cl_2 (g) = COCl_2 (g) decorre num recipiente fechado, a uma temperatura constante, em que os reagentes se encontram em quantidades equivalentes. Quando se restabelece o equilíbrio restam 50% da quantidade inicial de CO. Se a pressão da mistura inicial reagente era igual a 100 KPa, determine a pressão de equilíbrio da mistura gasosa (em kPa). 50 B. 75 C. 100 D. 125

13.	O número máximo de orbitais por nível (n) é dado por:
A.	n ² B. n C. 2n D. 2n+1
14.	A normalidade de uma solução aquosa de ácido sulfúrico 98% em massa e densidade 1,84Kg/l
Α.	é igual a: 8,38 B. 1,80 C. 0,038 D. 36,76
15.	Para preparar 1.2 litros de solução 0.4M de HCl, a partir do ácido concentrado (16M), o
A.	volume de água, em litros, a ser utilizado será de: 0.03 B. 0.47 C. 0.74 D. 1.17
A.	Os produtos da electrólise de uma solução aquosa de cloreto de sódio são: Sódio metálico e cloro gasoso C. Hidrogénio e oxigénio sódio metálico e gás hidrogénio D. Hidrogénio e cloro
A.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	O filme "O Náufrago", o personagem teve de iniciar uma fogueira a partir do aquecimento de cascas secas de coco através do calor gerado pelo atrito de pedaços de madeira. Quimicamente, o atrito desses pedaços de madeira serve como: Catalizador B. energia de activação C. calor de combustão D.inibidor
	Para a reacção: FeO (s) + CO (g) = Fe (s) + CO ₂ (g) a expressão da lei de velocidade é dada por: V=K[FeO] B. V=K[FeO][CO] C. V=K[CO ₂] D. V=K[CO]
20. A. B.	A elevação de temperatura aumenta a velocidade das reacções químicas porque aumenta os factores apresentados nas alternativas, EXCEPTO : A energia cinética média das moléculas D. O número de colisões por segundo entre as moléculas A frequência das colisões efectivas.
21. A.	Considere a equação: $2N_2O_5$ (g) \rightarrow $4NO_2$ (g) + O_2 (g). Massas atómicas: N =14; O =16. Admita que a formação do O_2 tem uma velocidade média constante igual a 0,05 mol/l.s. A massa de NO_2 formada em 1 minuto é: P
22.	O óxido nítrico (NO) e o monóxido de carbono (CO) são duas das mais nocivas substâncias poluentes originadas de indústrias químicas e de sistemas de exaustão de veículos automotores. Um método eficiente para reduzir suas concentrações consiste no uso do catalisador de Monel (uma liga de níquel-cobre), o qual viabiliza cineticamente a reacção de transformação desses poluentes em N_2 e CO_2 , de acordo com a equação da reacção: $NO (g) + CO (g) = \frac{1}{2} N_2 (g) + CO_2 (g).$
Éc	orrecto afirmar que:
А. В.	Os catalisadores não afectam as velocidades das reacções químicas (directa e inversa) O catalisador de Monel actua na reacção, diminuindo sua energia de activação

23. Quantos gramas de cloreto de sódio (NaCl) e de água, são necessaries para preparar 400g de solução deste mesmo sal a 20%?

D. A expressão que representa correctamente a constante de equilíbrio é dada por

C. A reacção ocorre mais lentamente com o uso do catalisador

 $K=[NO].[CO]/[N_2]^{1/2}.[CO]$

A. 20g de NaOH e 380g de água

B. 50g de NaOH e 350g de água

Para este reacção o reagente limitante é:

e formação de
a 2,7 x 10 ⁻³⁹ . g/mol, o valor
= CO ₂ (g).
co a 25° C é o, na mesma
:
e em litros de
negativo positivo
evar a cabo a

24. Faz se reagir 11,2 litros de hidrogénio com igual quantidade de oxigénio para formar água, de

acordo com a equação da reacção não balanceada: $H_2(g) + O_2(g) = H_2O(g)$.

60g de NaOH e 340g de água

D. 80g de NaOH e 320g de água

33.	Considere a electrólise em solução aquosa e a electrólise ígnea do BaCl ₂ . Com relação ao produto em ambos os casos, podemos afirmar que obtiveram:
Α.	H ₂ e O ₂ nos ânodos C. Cl ₂ e Ba nos eléctrodos
В	H ₂ e Ba nos ânodos D. Cl ₂ nos ânodos.
ъ.	D. Ciz nos anodos.
	1 11771 1 1 1 0177
	A solubilidade de AgCl (Kps=1,8x10 ⁻¹⁰) numa solução 0,01M de NaCl é:
Α.	1,34 \times 10 ⁻⁵ B. 1 \times 10 ⁻⁵ C. 1,8 \times 10 ⁻¹² D. 1,8 \times 10 ⁻⁸
35.	O pH e o pOH de uma solução de NaOH (Massa molar = 40g/mol) obtida pela dissolução de
	4g deste soluto em 10 litros de solução é:
Δ	•
11.	4 e 10 B. 12 e 2 C. 10 e 4 D. 2 e 12
36.	Assumindo que a K _w da água a 30°C é 10 ⁻¹³ , então o pH da água neutra é igual a:
Α.	7 B. 13 C. 10 D. 6,5
37	Quais dos seguintes sais sofre hidrólise:
	NaCl B. NH ₄ Br C. CaCl ₂ D. KBr
	A expressão da constante do produto de solubilidade para o sal PbBr ₂ , é:
Α.	$KPs = S^2$ B. $KPs = S^3$ C. $KPs = 4S^2$ D. $KPs = 4S^3$
39.	A velocidade da reacção 2CO(g) + O ₂ (g) = 2CO ₂ (g) se processa com a velocidade X. Se a
	concentração de CO for duplicada e a de O2 for reduzida a metade, a reacção passa a se
	processar com a velocidade:
A.	The state of the s
Λ .	X B. 2X C. 4X D. 8X
40.	O volume de CO2 libertado na decomposição de 10 Kg de calcário, de acordo com a equação
	da reacção $CaCO_3$ (s) = CaO (s) + CO_2 (g) é: [Massas atómicas: $Ca=40$; $C=12$; $O=16$]
A.	10 litros B. 44 litros C. 240 litros D. 440 litros
41	A velocidade de formação do NH3 para a reacção de síntese do amoníaco
1 2.	$(N_{2(g)}+3H_{2(g)}=2NH_{3(g)})$ é 0,06 M. A velocidade média para a mesma reacção é:
Δ	· ·
Λ .	0,06 B. 0,12 C. 0,006 D. 0,20
42.	Para uma dada reacção se verifica que a soma das entalpias dos reagentes é superior que a dos
	produtos. Deste modo pode se afirmar que:
A.	Trata-se de reacção endotérmica;
В.	A variação da entalpia para a reacção é maior que zero (ΔH°>0);
	Nessa reacção há libertação de calor
D.	A esta reacção foi adicionado um catalisador
43	Considere o seguinte equilíbrio: C (s) + CO ₂ (g) = 2 CO (g). O efeito da adição de mais C(s)
15.	é:
Λ	
Λ.	O aumento da concentração de CO. C. A diminuição da concentração de CO
В.	O aumento da concentração de CO ₂ D. Nulo
44.	O tempo necessário para a deposição de 10,8g de prata durante a electrólise de uma solução de
	AgNO ₃ , quando se aplica uma corrente de 9,65 A (1F=96500; Massa atómica da $Ag = 108$) é:
Δ	
11.	3000 s B. 965s C. 10s D. 1000s
90000	
45.	Considere a seguinte pilha: $Cu/Cu^{2+} \mid \mid Ag^{+}/Ag$. Sabendo que os $E^{\circ}(Cu^{2+}/Cu) = +0,34V$ e
	$E^{o}(Ag^{+}/Ag) = +0,80V$, a equação da reacção balanceada desta pilha é:
A.	Ag^{+} (aq) + Cu^{2+} (aq) = Ag (s) + Cu (s) B. $2Ag$ (s) + Cu^{2+} (aq) = $2Ag^{+}$ (aq) + Cu (s)

C.	$Ag^{+}(aq) + Cu(aq) = Ag(s) + Cu^{2+}(s)$ D. $2Ag^{+}(aq) + Cu(s) = 2Ag(s) + Cu^{2+}(aq)$
16.	A constante de equilíbrio da reacção: CH ₃ COOH + CH ₃ CH ₂ OH = CH ₃ COOCH ₂ CH ₃ + H ₂ O a 25 °C é igual a 3,8. Se a mesma temperatura, as concentrações de CH ₃ COOH e CH ₃ CH ₂ OH
Α.	forem reduzidas a metade, a nova constante de equilíbrio passa a ser: 3,8 B. 100 C. 4 D. 0,125
17.	Considere as seguintes reacções espontâneas: Ag ⁺ + H ₂ (g) = Ag (s) + 2 H ⁺
	$Cu^{2+} + H_2(g) = Cu(s) + 2H^+$
	$Ag^{+} + Cu(s) = Ag(s) + Cu^{2+}$
	$Mg(s) + 2H^{+} = Mg^{2+} + H_{2}(g)$
	Os potenciais de redução dos metais obedece a ordem:
A.	Mg <ag<cu ag<cu<mg="" ag<mg<cu<="" b.="" c.="" d.="" mg<cu<ag="" td=""></ag<cu>
	A fórmula do monómero do polímero policloreto de vinil (PVC) é:
	CH_3-CH_3 $C.$ $H_2C=CH-Cl$ $H_2C=CH_3-CH_3$
	O HBr reage com 3,4-dimetil-2-penteno, formando:
, ,	A. 2-bromo-3,4-dimetilpentano C. 3-bromo-3-etilpentano
	B. 3-bromo-2,3-dimetilpentano D. 4-bromo-2,3-dimetilpentano
50	O produto da combustão completa do butano são:
٥٠. ٩.	Carbono e água Completa do Butano são: Carbono e água C. água e carbono
3.	Dióxido de carbono e água D. propano e metano
1	A
51. 4.	Apresenta isomeria cis-trans o composto H ₂ C=CH ₂ C. H ₃ C(CH ₂) ₃ CH ₃
3.	H ₃ C-CH ₂ -CH=CHCH ₃ D. CH ₃ CH ₃
	O número de isómeros do trimetilbenzeno é:
Α.	8 B. 3 C. 6 D. 5
53.	O composto orgânico pertencente à função éter é:
	CH ₃ COOH C. CH ₃ OCH ₂ CH ₃
В.	CH ₃ COCH ₃ D. CH ₃ COOCH ₂ CH ₃
54.	Da oxidação de um álcool secundário obtêm-se:
4.	Um aldeido C. Um ácido orgânico
3.	Um éter D. Uma cetona
55.	A reacção entre o benzeno e o cloro é classificada como sendo:
A.	Adição B. Substituição C. Eliminação D. Precipitação
56.	Substituindo um dos hidrogénios da água pelo radical fenil, obtém-se:
	Um ácido B. Um álcool C. Um fenol D. Um éster