Example 10

ABCD is a parallelogram. $DE \perp AB$ at $E.AD = \frac{1}{2}FC.$ Show that $\angle DAB = 3\angle ACD.$ Solution:

Draw DN, the median of triangle CDF. Since DN is the median, by Theorem 1.3, DN=FN=NC. Since $AD=\frac{1}{2}FC, AD=DN$.

Thus triangle AND is an isosceles triangle with $\angle DAN = \angle DNA$.

We also know that DN = NC, so $\angle NDC = \angle NCD$. $\angle DNA$ is the exterior angle of triangle DNC. So $\angle DNA = \angle NDC + \angle NCD = 2\angle NCD$.

Note that $\angle CAB = \angle NCD$. Therefore $\angle DAB = \angle DCA + \angle CAB = \angle DNA + \angle NCD$ = $2\angle NCD + \angle NCD = 3\angle NCD = 3\angle ACD$.