Multilevel Security Lecture 10 Computer Security DD2395

Roberto Guanciale robertog@kth.se

2016-11-29

Interactive lecture

https://twitter.com/roberto_kth @roberto_kth

http://www.quizsocket.com/ WYMYY7

Question 1: Does quizsocket work?

- A Yes!
- B,C,D No

Computer Security Models

- all complex systems have eventually revealed (design) flaws
- extraordinary difficult to implement (hw/sw) the design without introducing bugs
- methods to prove that a design satisfies a set of security requirements
- methods to prove that the implementation conforms the design

Computer Security Models

"A design without specification cannot be right or wrong, it can only be surprising!"

Young

Use formal methods to state properties, describe specifications and analyze designs

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

ullet s can do op on o if $op \in M[s,o]$

Formalize restrictions of accesses to resources

M	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

• s can do op on o if $op \in M[s, o]$

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	_	r
user3	r	-	r,w

ullet s can do op on o if $op \in M[s,o]$

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

• s can do op on o if $op \in M[s, o]$

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

• s can do op on o if $op \in M[s, o]$

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

- s can do op on o if $op \in M[s, o]$
- Discretionary AC: "owner" sets permissions
 - users make mistakes

Formalize restrictions of accesses to resources

М	file1	file2	directory
user1	r,w	r	r,w,x
user2	r,w	-	r
user3	r	-	r,w

- s can do op on o if $op \in M[s, o]$
- Discretionary AC: "owner" sets permissions
 - users make mistakes
- Mandatory AC: system-wide policies
 - DAC can not give more access than MAC

Multi-Level Security

- MLS uses ordered security classes, e.g.
 - hardware: restricted/unrestricted CPU modes
 - software: superuser/user Linux/Windows
 - military: top secret, secret, confidential, restricted, unclassified
 - business: strategic, sensitive, confidential, public

Bell-La Padula (BLP) Model

- developed in 1970s
- formal access control model
- subjects and objects have a security class
 - subject has a security clearance level
 - object has a security classification level
 - classes control how subject may access an object

Bell-La Padula (BLP) Model

- security levels (partially) ordered
 - L0 < L1 < L2 < L3
 - L0 < L1, L0 < L2, L1 < L3, L2 < L3
- captures confidentiality
 - information can not flow from more secure to less secure levels
- access modes:
 - r: read
 - a: append
 - w: write
 - x: execute

• state is a tuple (b, M, f)

- state is a tuple (b, M, f)
- current access set $b = \{(s_1, o_1, a_1), \dots, (s_n, o_n, a_n)\}$
 - (s_i, o_i, a_i) : the subject s_i is exercising the access a_i to the object o_i

- state is a tuple (b, M, f)
- current access set $b = \{(s_1, o_1, a_1), \dots, (s_n, o_n, a_n)\}$
 - (s_i, o_i, a_i) : the subject s_i is exercising the access a_i to the object o_i
- current access matrix M
 - s can do op on o if $op \in M[s, o]$

- state is a tuple (b, M, f)
- current access set $b = \{(s_1, o_1, a_1), \dots, (s_n, o_n, a_n)\}$
 - (s_i, o_i, a_i) : the subject s_i is exercising the access a_i to the object o_i
- current access matrix M
 - s can do op on o if $op \in M[s, o]$
- level functions $f = (f_o, f_s, f_c)$
 - $f_O(o)$: classification level of object o
 - $f_S(s)$: security clearance (max sec.level) of subject s
 - $f_C(s)$: current sec.level of subject s $(f_C(s) \le f_S(s))$

- ss-property: no read up
- a subject may read only if it has at least as high security clearance as the object
- $(s, o, read) \in b$ then $f_C(s) \ge f_O(o)$

- ss-property: no read up
- a subject may read only if it has at least as high security clearance as the object
- $(s, o, read) \in b$ then $f_C(s) \geq f_O(o)$
- confidentiality: information can not flow from more secure to less secure levels

- ss-property: no read up
- a subject may read only if it has at least as high security clearance as the object
- $(s, o, read) \in b$ then $f_C(s) \geq f_O(o)$
- confidentiality: information can not flow from more secure to less secure levels
- Question 2: is ss-property sufficient to guarantee confidentiality?
 - A Yes
 - B No

BLP: Star Security

- *-property: no write down
- a subject can write (append) only if it has equal (at most as) security clearance as the object
- $(s, o, write) \in b$ then $f_C(s) = f_O(o)$
- $(s, o, append) \in b$ then $f_C(s) \leq f_O(o)$

BLP: Star Security

- *-property: no write down
- a subject can write (append) only if it has equal (at most as) security clearance as the object
- $(s, o, write) \in b$ then $f_C(s) = f_O(o)$
- $(s, o, append) \in b$ then $f_C(s) \leq f_O(o)$
- with the ss-property implies that:
 - can't read a high-level object while writing a lower-level object
 - $(s, o, read) \in b$ and $(s, o', write) \in b$ then $f_O(o) \le f_O(o')$

BLP: Discretionary Security

- ds-property: discretionary access control
- only (owner) permitted accesses are allowed
- $(s, o, a) \in b$ then $a \in M[s, o]$

ullet get access: add a triple (s, o, a) to b

- get access: add a triple (s, o, a) to b
- ullet release access: remove triple from b

- get access: add a triple (s, o, a) to b
- release access: remove triple from b
- change object level (f_O)

- get access: add a triple (s, o, a) to b
- release access: remove triple from b
- change object level (f_O)
- change current level of subject (f_C)

- get access: add a triple (s, o, a) to b
- release access: remove triple from b
- change object level (f_O)
- change current level of subject (f_C)
- give access permission (M)

- get access: add a triple (s, o, a) to b
- release access: remove triple from b
- change object level (f_O)
- change current level of subject (f_C)
- give access permission (M)
- rescind access permission (M)

BLP: system security

- a state S = (b, M, f) is secure if and only if
 - ss property(S)
 - *-property(S)
 - ds property(S)
- a transition $S \to S'$ is secure if both S and S' are secure
- a system is secure if the initial state(s) is secure and all transitions are secure

BLP: Example

Create an object

Subject	D1	
me	r,w,a	
s1	-	
s2	-	

Give access permission

Subject	D1
me	r,w,a
s1	
s2	-

Subject	D1
me	r,w,a
s1	-
s2	-

BLP: Example, D2 is the lab S report

Subject	D1	D1
me	r,w,a	-
s1	-	r,w,a
s2	-	-

- Create an object
- @ Give access permission

BLP: Example, D2 is the lab S report

Subject	D1	D2
me	r,w,a	-
s1	-	r,w,a
s2	-	-

BLP: Example, D2 is the lab S report

Subject	D1	D2
me	r,w,a	r,w,a
s1	-	r,w,a
s2	-	-

Give access permission

BLP: Example, C2 contains the comments to the report

Subject	D1	D2
me	r,w,a	r,w,a
s1	-	r,w,a
s2		-

Change current level

BLP: Example, C2 contains the comments to the report

Subject	D1	D2	C2
me	r,w,a	r,w,a	r,w,a
s1	•	r,w,a	r,w,a
s2	-	-	-

- Create an object
- @ Give access permission

BLP: Example, D2 contains the exam for the student

Subject	D1	D1
me	r,w,a	r,w,a
s1	-	-
s2	-	-

- Create an object
- @ Give access permission

BLP: Example, D2 contains the exam for the student

Subject	D1	D1
me	r,w,a	r,w,a
s1		r,w,a
s2	-	-

- Give access permission
- Change object level (declassification)

BLP Limitation

- No internal provision for downgrading
- Classification creep by consolidation of documents from different sources and levels
- trusted subjects: set of subjects which are allowed to break
 *-property (assuming they always "clean" the information)
- "trusted" means "can hurt you"

Biba Integrity Model

- deals with integrity
- uses integrity levels
- reverses permitted flows: no "dirty" low-integrity info may flow to "clean" high-level info, but other way OK

Biba Policy

- simple integrity
 - no write up
 - $(s, o, write) \in b$ then $i_C(s) \ge i_O(o)$

Biba Policy

- simple integrity
 - no write up
 - $(s, o, write) \in b$ then $i_C(s) \ge i_O(o)$
- integrity confinement
 - no read down
 - $(s, o, read) \in b$ then $i_C(s) \leq i_O(o)$

Biba Policy

- simple integrity
 - no write up
 - $(s, o, write) \in b$ then $i_C(s) \ge i_O(o)$
- integrity confinement
 - no read down
 - $(s, o, read) \in b$ then $i_C(s) \leq i_O(o)$
- invocation property
 - invocation property
 - $(s, s', invoke) \in b$ then $i_C(s) \ge i_C(s')$

Chinese Wall model

- inspired by commercial applications
- conflict of interest
- hierarchical
 - objects ($O \in DS$): individual item of information
 - dataset (DS ∈ CI): all objects that concern the same corporation
 - conflict of interest class (CI): corporations in competition
- information can not flow between two corporations in competition

Chinese Wall policy

• keep access list H

Chinese Wall policy

- keep access list H
- simple security rule if $(s, o, read) \in b$ then
 - $\exists o \in DS(o).(s, o', read) \in H$ or
 - $\not\exists o' \in CI(o).(s,o',read) \in H$
 - read allowed if the subject already accessed the dataset or he has not accessed any information from the CI

Chinese Wall policy

- keep access list H
- simple security rule if $(s, o, read) \in b$ then
 - $\exists o \in DS(o).(s, o', read) \in H$ or
 - $\not\exists o' \in CI(o).(s,o',read) \in H$
 - read allowed if the subject already accessed the dataset or he has not accessed any information from the CI
- *-property rule if $(s, o, write) \in b$ then
 - simple security rule ss(s, o) and
 - $\forall o'.ss(s,o') \Rightarrow DS(o') = DS(o)$
 - write allowed if the subject can read the object and can not read outside the DS

Chinese Wall: Writing

Question 3: Can I write into B1?

A No

B Yes

Chinese Wall: Writing

Question 3: Can I write into B1?

A No

B Yes

- complete mediation
- isolation
- verifiability

MLS and (relational)-databases

Department Table - U		
Did	Name	Mgr
4	accts	Cathy
8	PR	James

Employee-R			
Name	Did	Salary	Eid
Andy	4	43K	2345
Calvin	4	35K	5088
Cathy	4	48K	7712
James	8	55K	9664
Ziggy	8	67K	3054

(a) Classified by table

Department Table			
Did - U	Name - U	Mgr - R	
4	accts	Cathy	
8	PR	James	

Employee				
Name - U Did - U		Salary - R	Eid - U	
Andy	4	43K	2345	
Calvin	4	35K	5088	
Cathy	4	48K	7712	
James	8	55K	9664	
Ziggy	8	67K	3054	

(b) Classified by column (attribute)

MLS and (relational)-databases

Department Table			
Did	Name	Mgr	
4	accts	Cathy	R
8	PR	James	U

	Employee			
Name	Did	Salary	Eid	
Andy	4	43K	2345	U
Calvin	4	35K	5088	U
Cathy	4	48K	7712	U
James	8	55K	9664	R
Ziggy	8	67K	3054	R

(c) Classified by row (tuple)

Department Table			
Did	Name	Mgr	
4 - U	accts - U	Cathy - R	
8 - U	PR - U	James - R	

Employee					
Name	Did	Salary	Eid		
Andy - U	4 - U	43K - U	2345 - U		
Calvin - U	4 - U	35K - U	5088 - U		
Cathy - U	4 - U	48K - U	7712 - U		
James - U	8 - U	55K - R	9664 - U		
Ziggy - U	8 - U	67K - R	3054 - U		

(b) Classified by element

 ${\sf Questions?}$