PART 1) Code up gradient descent for logistic regression

Table 1 – Code

The added/changed code statement	Explanation
$part2 = 1/(1 + my_exp(-np.dot(X,w)))$	Implementation of this formula: $\sigma(\widetilde{x_p^T}\widetilde{w})$
part1 = part2 - y	Implementation of this formula: $\sigma(\widetilde{x}_{p}^{T}\widetilde{w}-y_{p})$
part3 = np.ones(y.shape) - part2	Implementation of this formula: $1 - \sigma(\widetilde{x_p^T}\widetilde{w})$
sumAll = 2 * np.sum(part1*part2*part3*X, axis=0)	Sum of multiplication all parts including X
grad = sumAll[np.newaxis,:].T	$\sum_{p=1}^{p} \sigma(\widetilde{x_{p}^{T}}\widetilde{w} - y_{p}\sigma(\widetilde{x_{p}^{T}}\widetilde{w})(1 - \sigma(\widetilde{x_{p}^{T}}\widetilde{w})))$ This is the gradient formula. Operations divided in parts to get this formula. It creates a new dimension and transpoze of it.

Screen shot of the solution

PART 2) Code up gradient descent for 12 regularized logistic regression

Table 2 – Code

The added/changed code statement	Explanation
$part2 = 1/(1 + my_exp(-np.dot(X,w)))$	Implementation of this formula: $\sigma(\widetilde{x}_p^T \widetilde{w})$
part1 = part2 - y	Implementation of this formula: $\sigma(\widetilde{x}_{p}^{T}\widetilde{w}-y_{p})$
part3 = np.ones(y.shape) - part2	Implementation of this formula: $1 - \sigma(\widetilde{x}_p^T \widetilde{w})$
sumAll = 2 * np.sum(part1*part2*part3*X, axis=0)	Sum of multiplication all parts including X to get the formula
w_regularization[:] = w[:]	It equals w_reg to entire w
$w_{regularization}[0] = 0$	It makes zero the bias.
grad = sumAll[np.newaxis,:].T + 2*lam*w_regularization	$\sum_{p=1}^{p} \sigma(\widetilde{x_{p}^{T}}\widetilde{w} - y_{p}\sigma(\widetilde{x_{p}^{T}}\widetilde{w})(1 - \sigma(\widetilde{x_{p}^{T}}\widetilde{w})))$ This is the gradient formula. Operations divided in parts to get this formula. And plus this formula $2\lambda\begin{bmatrix} 0\\ w \end{bmatrix}$ This normalises it.

Screen shot of the solution

