微积分II(第一层次)期末试卷(2014 6 23)

- 一、简答题(6分×8=48分)
- 1. 求幂级数 $\sum_{n=1}^{\infty} (\ln x)^n$ 的收敛域.
- 2. 求积分 $I = \int_C \sqrt{y} \, ds$, 其中 C 为抛物线 $y = x^2$ 从点 (0,0) 到 (2,4) 的一段弧.
- 3. 求微分方程 $yy'' + (y')^2 = 0$ 的通积分.
- 4. 已知 f(x) 为 [0,2] 上的连续函数,证明 $\int_0^1 \int_0^1 f(x+y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^1 u [f(u) + f(2-u)] \, \mathrm{d}u$.
- 5. 求函数 $f(x) = \ln(1+x)$ 关于 x 的幂级数展式.
- 6. 判别广义积分 $\int_0^{+\infty} \frac{x^p}{1+x^2} dx \ (p \in \mathbb{R})$ 的敛散性.
- 7. 求函数项级数 $I(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^n$ 的和函数.
- 8. 计算曲面积分 $I=\iint_S x^2\,\mathrm{d}y\,\mathrm{d}z+y^2\,\mathrm{d}z\,\mathrm{d}x+z^2\,\mathrm{d}x\,\mathrm{d}y$, 其中 S 是球面 $x^2+y^2+z^2=R^2(R>0)$ 外侧在 $z\geq 0$ 的部分.
- 二、(10分) 求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} \cdot \frac{1}{2^n n!}$ 的和.
- 三、(10分) 计算曲线积分 $\int_{\Gamma} 2y \, \mathrm{d}x + x \, \mathrm{d}y + e^z \, \mathrm{d}z$, 其中积分曲线 Γ 为 $\begin{cases} x^2 + y^2 + z^2 = 1, \\ x + y = 1 \end{cases}$ 从 y 轴 正向看去是顺时针方向.
- 四、(10分) 计算曲面积分 $\iint_S (xy+yz+zx) \, \mathrm{d}S$,其中 S 为锥面 $z=\sqrt{x^2+y^2}$ 被柱面 $x^2+y^2=2x$ 所截得的有限部分.
- 五、(10分) 设 f(x) = |x|,
- 1. 求 f(x) 在 $[0,\pi)$ 上的正弦级数展式的前两项系数 b_1 和 b_2 ;
- 2. 证明: 对于二元函数 $F(a,b) = \int_0^{\pi} \left[f(x) a \sin x b \sin(2x) \right]^2 dx$, (b_1, b_2) 为其在 \mathbb{R}^2 上的最小值点.

商学院同学任选下列两题中一题,其他院系同学必须选做第七题.

六、(12分) (1) 求方程 $y'' - 5y' + 6y = e^x$ 的通解.

(2) 设 y = f(x) 为 $y''' - 5y'' + 6y' = e^x$ 的解,证明:y = f(x) 为 $y'' - 5y' + 6y = e^x$ 的解的充要条件为 $\lim_{x \to \infty} f(x) = 0$.

七、(12分) (1) 求方程 y'' - 5y' + 6y = f(x) 的通解, 其中 f(x) 为 R 上的连续函数.

(2) 若 $f(x) \ge 0$, 证明上述方程满足条件 y(0) = y'(0) = 0 的解必非负.