Introducción a los Sistemas Distribuidos (75.43 / 75.33 / 95.40)

Evaluación Parcial 1C 2021 – Primera oportunidad

TEMA 1

Padrón:	
Apellido:	
Nombre:	

Criterio de aprobación:

El alumno debe demostrar conocimiento de todos los puntos que componen el parcial. Se deben resolver correctamente al menos 3 ejercicios prácticos y responder correctamente al menos 3 preguntas teóricas.

P1 - Latencia

Resolver

Se quiere calcular el RTT para medir la latencia entre dos host bajo la siguiente configuración:

Datos:

Packet Size = 1000 bytes

	L1	L2	L3	L4	L5	L6	L7	L8
Distancia	100 m	10 km	4 km	6 km	2 km	10 km	6 km	50 m
Ancho de Banda	10 Mbps	200 Mbps	200 Mbps	100 Mbps	100 Mbps	50 Mbps	200 Mbps	10 Mbps
Velocidad de Propagación	1.7x 10 ⁵ km/s	2 x 10 ⁵ km/s	2 x 10 ⁵ km/s	1.7x 10 ⁵ km/s	2 x 10 ⁵ km/s	2 x 10 ⁵ km/s	2 x 10 ⁵ km/s	1.7x 10 ⁵ km/s

1 Mbps = 10^6 bits / seg

El RTT se debe calcular utilizando un segmento de prueba de tamaño **1000 Bytes**, y será el mismo para la ida y la vuelta.

Tener en cuenta la asimetría de caminos siendo:

 $\begin{array}{ll} \text{Ruta A} \rightarrow \text{B:} & L_1 \rightarrow L_2 \rightarrow L_5 \rightarrow L_8 \\ \text{Ruta B} \rightarrow \text{A:} & L_8 \rightarrow L_7 \rightarrow L_4 \rightarrow L_1 \end{array}$

Los tiempos de encolado y procesamiento son despreciables.

Detallar los pasos del cálculo obtenido y expresar la solución en milisegundos

T1 - Latencia

Responder

- a. ¿Qué es la latencia?
- b. ¿Cuáles son sus componentes? Describirlos brevemente.
- c. ¿Qué métrica conoce para medirla?
 - c. ¿Qué componente tiene mayor incidencia en el cálculo de la latencia?

P2 - TCP

Por medio de una conexión TCP se transfiere desde un host A a un host B un archivo de 27326 B. De acuerdo con las tecnologías de enlace que utiliza el host A, MSS=1500B. Además, sabemos que su sistema operativo opera con TCP Tahoe, con una IW=2MSS. El sistema utiliza ssthresh=4MSS y el rwnd=16MSS. Sabemos que la conexión sufrirá la pérdida del séptimo segmento de datos transmitido.

Completar la tabla como justificación para responder las siguientes preguntas:

- a. ¿Cuál es el valor de cwnd(n) antes de finalizar la transmisión? Es decir, el valor de la ventana de congestión durante la última ráfaga de segmentos transmitidos.
- b. ¿El algoritmo entra en la etapa de Fast Retransmit? ¿Y Fast Recovery? En caso de entrar en Fast Retransmit, ¿cuál es el número del último segmento enviado antes de realizarlo?

RTT	CWND	RWND	FlightSize	Recv Bytes	SSTH	Comments

T2 - Capa de Transporte

- a. ¿Es posible para una aplicación tener transmisión de datos confiable aún cuando la aplicación utilice UDP?. ¿Cómo?
- b. ¿Qué significa que un protocolo de transporte implemente un servicio de entrega confiable? Dé un ejemplo.

P3 - IP Routing

Un ISP tiene como clientes a la empresa A y a la empresa B. La asignación de prefijos es la siguiente:

Empresa A: 122.50.80.0/26 Empresa B: 122.50.64.0/18

El ISP tiene un único router con tres puertos:

- P1 conecta al resto de Internet, siendo la IP de salida IP_{dfqw}
- P2 conecta a Empresa A, con IP de router IPA
- P3 conecta a Empresa B , con IP de router IPB
- a) Graficar topología y completar la tabla de ruteo del ISP.

Network Prefix	Subnet Mask	Next Hop	Outgoing Interface

b) ¿Qué prefijo agregado debe anunciar el ISP al resto de Internet para las empresas A y B?

T3 - IP Routing

Dada una tabla de ruteo, se busca optimizar la configuración de las entradas. Explicar y dar un ejemplo de los siguientes casos:

- a. La tabla de ruteo contiene 3 entradas que se pueden agregar en una única entrada.
- b. La tabla de ruteo contiene una entrada ya contenida en otra entrada.
- c. La tabla de ruteo contiene una entrada mal configurada, donde el prefijo es más específico de lo que la máscara permite.

Pregunta. Si tenemos el siguiente prefijo: 182.64.46.0/x. ¿Cuál es el mínimo valor que puede tomar x?. *Justificar*.

P4 - Subnetting

Dada la siguiente configuración de hosts y routers, y el espacio 193.0.0.0/23, se pide separar en subredes minimizando la cantidad de IPs sin usar.

Ante igualdad de condiciones para ubicar varias subredes:

- 1. Asignar bloques utilizando los prefijos en orden de numeración ascendente (Ej: si tenemos la opcion de usar 117.0.1.0/24 o 117.0.0.0/24, debemos utilizar primero el espacio de direcciones 117.0.0.0/24).
- 2. Asignar bloques de direcciones priorizando las redes con mayor cantidad de hosts (Ej: si se deben asignar dos bloques de 64 direcciones IP para dos subredes distintas S_x y S_y , donde x e y representan la cantidad de hosts de cada subred y con 32 x 4 y 64, y 64, y debe asignarse en un espacio de direcciones de menor numeración).
- 3. Si dos subredes necesitan la misma cantidad de IPs, ubicar primero la subred cuya letra viene primero en el abecedario (Ej: si las redes P y J tienen necesitan un bloque de 32 IPs, ubicar primero la J y luego la P).

Estas aclaraciones definen una única resolución posible de la configuración. Cualquier otra solución será considerada incorrecta.

SubNet	# Host	# Router	Block	Prefix/Mask
А				
В				
С				
D				
E				
F				
G				
Н				
I				
J				

T4 - Subnetting

Responda Verdadero o Falso. Justifique en caso de que la afirmación sea falsa. Aclaración: Se debe responder correctamente TODOS los items del ejercicio.

- 1. Classful routing es el mecanismo por el cual se particionan las redes debido a que aprovecha mejor el espacio de direcciones.
- 2. Al subnetear un espacio de direcciones de clase C, un host puede tener asignada cualquiera de las 256 direcciones posibles.
- 3. Con classful routing las clases de red se pueden identificar sin necesidad de conocer la máscara.
- 4. Todas las direcciones asignadas a un mismo dispositivo deben pertenecer a la misma subred.

P5 - Fragmentación

Dada la siguiente configuración, el *host A* envía un paquete cuya IP destino corresponde al *host B*. El router conectado directamente al *host A* por el enlace L1 tiene configurada su tabla de ruteo de manera tal que el paquete es forwardeado por la interfaz <if1>.

Teniendo en cuenta los siguientes datos:

Datagram Header Fields	IP Dest (host B)	Header Size	Datagram Length	Identifier	Do Not Fragment
	200.27.155.1	20 Bytes	1400 Bytes	0XF1B1	0

Enlace	L1	L2	L3	L4	L5	L6	L7	L8
MTU (bytes)	1500	1280	1180	1080	600	500	400	1500

Se pide describir a continuación **los campos del header IP** de los paquetes en cada enlace por el que atraviesa la red completando la siguiente tabla:

				Datagram Header					
Link	MTU (Bytes)	Datagram ID	Payload Size	Total Length		IP F	Fragment		
					ID	Do Not Fragment	More Fragments	Offset	

T5 - Fragmentación

Un paquete P es fragmentado en n paquetes F_i al atravesar una red IPv4 antes de llegar al host destino. En el camino, uno de los paquetes F_i se pierde en el camino. ¿Qué consecuencia tiene la pérdida del paquete F_i sabiendo que el protocolo de la capa de transporte utilizado es TCP?