From Dynamical Systems to Decidability of Logical Theories

Toghrul Karimov

Max Planck Institute for Software Systems, Germany

From Dynamical Systems to Decidability of Logical Theories

Toghrul Karimov

Max Planck Institute for Software Systems, Germany

(I work with Valérie Berthé)

First-order logical theories

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{Z}}_{\text{domain constants functions}}; \underbrace{0, 1}_{\text{constants functions}}, \underbrace{<, \text{ isAPowerOfTwo}}_{\text{predicates}} \rangle$$

First-order logical theories

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{Z}}_{\text{domain}}; \underbrace{0, 1}_{\text{constants functions}}, \underbrace{<, \text{ isAPowerOfTwo}}_{\text{predicates}} \rangle$$

Predicates of one variable \equiv subsets of \mathbb{N} :

isAPowerOfTwo
$$\equiv \{2^n : n \ge 0\} =: 2^{\mathbb{N}}$$

First-order logical theories

Mathematical structure:

$$S = \langle \underbrace{\mathbb{Z}}_{\text{domain}}; \underbrace{0,1}_{\text{constants functions}}, \underbrace{<, \text{ isAPowerOfTwo}}_{\text{predicates}} \rangle$$

Predicates of one variable \equiv subsets of \mathbb{N} :

isAPowerOfTwo
$$\equiv \{2^n : n \ge 0\} =: 2^{\mathbb{N}}$$

The first-order theory of S: the set of all sentences that are 1) true in S and 2) constructed using the constants, functions, predicates, quantifiers \forall , \exists over the elements of the domain, logical operations \neg , \land , \lor , and equality

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{N}}_{\text{domain}}; \underbrace{0,1}_{\text{constants functions}}, \underbrace{<, 2^{\mathbb{N}}}_{\text{predicates}} \rangle$$

The first-order theory of \mathcal{S} : all first-order sentences true in \mathcal{S}

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{N}}_{\text{domain}}; \underbrace{0,1}_{\text{constants functions}}, \underbrace{<, 2^{\mathbb{N}}}_{\text{predicates}} \rangle$$

The first-order theory of \mathcal{S} : all first-order sentences true in \mathcal{S}

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{N}}_{\mathrm{domain}}; \underbrace{0,1}_{\mathrm{constants}}, \underbrace{+}_{\mathrm{functions}}, \underbrace{<,2^{\mathbb{N}}}_{\mathrm{predicates}} \rangle$$

The first-order theory of \mathcal{S} : all first-order sentences true in \mathcal{S}

Mathematical structure:

$$\mathcal{S} = \langle \underbrace{\mathbb{N}}_{\mathrm{domain}}; \underbrace{0,1}_{\mathrm{constants}}, \underbrace{+}_{\mathrm{functions}}, \underbrace{<,2^{\mathbb{N}}}_{\mathrm{predicates}} \rangle$$

The first-order theory of \mathcal{S} : all first-order sentences true in \mathcal{S}

$$\forall x \,\exists y \colon \big(y > x \, \land \, y \in 2^{\mathbb{N}} \, \land \, \exists z \colon y = z + z + z + 1 \big)$$

$$\forall x \, \exists y \colon \big(y \le x \, \land \, y \in 2^{\mathbb{N}} \big)$$

The first-order theory of S is *decidable* if there exists an algorithm that takes a sentence and decides whether it belongs to the theory

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Proof. Every sentence can be equivalently written as

$$Qx_1 \cdots Qx_m : \varphi(x_1, \dots, x_m)$$

where $Q_i \in \{\exists, \forall\}$ and φ is a Boolean combination of $x_i \in U$, $x_i \notin U$, $x_i = \text{constant}$, $x_i < x_j$, and $x_i = x_j + x_k$.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Proof. Every sentence can be equivalently written as

$$Qx_1 \cdots Qx_m : \varphi(x_1, \dots, x_m)$$

where $Q_i \in \{\exists, \forall\}$ and φ is a Boolean combination of $x_i \in U$, $x_i \notin U$, $x_i = \text{constant}$, $x_i < x_j$, and $x_i = x_j + x_k$. Inductively build an automaton \mathcal{A} over $\{0,1\}^m$ that accepts $\langle x_1 \rangle_U \times \cdots \times \langle x_m \rangle_U$ iff $\varphi(x_1, \ldots, x_m)$ is true.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Proof. Every sentence can be equivalently written as

$$Qx_1\cdots Qx_m: \varphi(x_1,\ldots,x_m)$$

where $Q_i \in \{\exists, \forall\}$ and φ is a Boolean combination of $x_i \in U$, $x_i \notin U$, $x_i = \text{constant}$, $x_i < x_j$, and $x_i = x_j + x_k$. Inductively build an automaton \mathcal{A} over $\{0,1\}^m$ that accepts $\langle x_1 \rangle_U \times \cdots \times \langle x_m \rangle_U$ iff $\varphi(x_1, \ldots, x_m)$ is true. Eliminate quantifiers by taking projections and complements.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Theorem (Semënov 1979)

Let U be a Perron numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ has a decidable first-order theory.

Theorem

Let U be a Pisot numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ is automatic and has a decidable first-order theory.

Theorem (Semënov 1979)

Let U be a Perron numeration system with an irreducible characteristic polynomial. The structure $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ has a decidable first-order theory.

The proof is by quantifier elimination. For non-Perron U and Perron U with a reducible characteristic polynomial, decidability remains a major open problem.

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

We can prove undecidability of the FO theory of $S = \langle \mathbb{N}; 0, 1, <, +, U \rangle$ by showing that multiplication is definable in S.

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

We can prove undecidability of the FO theory of $S = \langle \mathbb{N}; 0, 1, <, +, U \rangle$ by showing that multiplication is definable in S.

$$\triangleright \mathcal{S} = \langle \mathbb{N}; 0, 1, <, +, \{n^2 \colon n \ge 0\} \rangle.$$

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

We can prove undecidability of the FO theory of $S = \langle \mathbb{N}; 0, 1, <, +, U \rangle$ by showing that multiplication is definable in S.

▶ $S = \langle \mathbb{N}; 0, 1, <, +, \{n^2 : n \geq 0\} \rangle$. We have that $a \cdot b = c$ if and only if there exist pairs of consecutive squares (A, A'), (B, B'), (C, C') such that

$$A - A' = 2a + 1 \land B - B' = 2b + 1 \land C - C' = 2c + 1 \land C' - A' - B' = 2c.$$

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

We can prove undecidability of the FO theory of $S = \langle \mathbb{N}; 0, 1, <, +, U \rangle$ by showing that multiplication is definable in S.

▶ $S = \langle \mathbb{N}; 0, 1, <, +, \{n^2 : n \geq 0\} \rangle$. We have that $a \cdot b = c$ if and only if there exist pairs of consecutive squares (A, A'), (B, B'), (C, C') such that

$$A - A' = 2a + 1 \ \land \ B - B' = 2b + 1 \ \land \ C - C' = 2c + 1 \ \land \ C' - A' - B' = 2c.$$

 $ightharpoonup \mathcal{S} = \langle \mathbb{N}; 0, 1, <, +, \{p(n) \geq 0 \colon n \geq 0\} \rangle$ where $\deg(p) \geq 2$ and $p(\mathbb{N})$ is infinite.

Theorem (Gödel 1931)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, \cdot \rangle$ is undecidable

We can prove undecidability of the FO theory of $S = \langle \mathbb{N}; 0, 1, <, +, U \rangle$ by showing that multiplication is definable in S.

▶ $S = \langle \mathbb{N}; 0, 1, <, +, \{n^2 : n \geq 0\} \rangle$. We have that $a \cdot b = c$ if and only if there exist pairs of consecutive squares (A, A'), (B, B'), (C, C') such that

$$A - A' = 2a + 1 \ \land \ B - B' = 2b + 1 \ \land \ C - C' = 2c + 1 \ \land \ C' - A' - B' = 2c.$$

- $ightharpoonup \mathcal{S} = \langle \mathbb{N}; 0, 1, <, +, \{p(n) \geq 0 \colon n \geq 0\} \rangle$ where $\deg(p) \geq 2$ and $p(\mathbb{N})$ is infinite.
- $ightharpoonup \mathcal{S} = \langle \mathbb{N}; 0, 1, <, +, V_2, V_3 \rangle$ where $V_p(a, b) \Leftrightarrow b = p^{v_p(a)}$.

Theorem (Schulz, 2022)

The structure $\langle \mathbb{N}; 0,1,<,+,2^{\mathbb{N}},3^{\mathbb{N}} \rangle$ does not define multiplication

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Theorem (Schulz, 2022)

The structure $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ does not define multiplication

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

 \Rightarrow Cobham's theorem: a sequence that is both 2-automatic and 3-automatic must be ultimately periodic

Theorem (Schulz, 2022)

The structure $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ does not define multiplication

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

 \Rightarrow Cobham's theorem: a sequence that is both 2-automatic and 3-automatic must be ultimately periodic

Step 1: construct a map from $3^\mathbb{N}\times 3^\mathbb{N}\times \mathbb{N}\times \mathbb{N}\to \mathbb{N}^*$ that is onto

Theorem (Schulz, 2022)

The structure $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ does not define multiplication

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

 \Rightarrow Cobham's theorem: a sequence that is both 2-automatic and 3-automatic must be ultimately periodic

Step 1: construct a map from $3^\mathbb{N}\times 3^\mathbb{N}\times \mathbb{N}\times \mathbb{N}\to \mathbb{N}^*$ that is onto

Step 2: Assume the FO theory is decidable. Given a two-counter machine \mathcal{M} , write a formula Φ saying "there exist $3^a, 3^b, t, r$ such that the corresponding finite sequence is a halting run of \mathcal{M} ." Check whether Φ is true.

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 1: construct a map from $3^\mathbb{N} \times 3^\mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}^*$ that is onto

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 1: construct a map from $3^\mathbb{N}\times 3^\mathbb{N}\times \mathbb{N}\times \mathbb{N}\to \mathbb{N}^*$ that is onto

Given
$$x$$
, define $\alpha(x)$, $\beta(x)$ by $2^{\alpha(x)} < x < 2^{\alpha(x)+1}$ and $\beta(x) = \alpha(x - 2^{\alpha}(x))$. E.g. $\langle 37 \rangle_2 = 100101$, $\alpha(37) = 5$, and $\beta(37) = 2$.

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 1: construct a map from $3^\mathbb{N}\times 3^\mathbb{N}\times \mathbb{N}\times \mathbb{N}\to \mathbb{N}^*$ that is onto

Given
$$x$$
, define $\alpha(x)$, $\beta(x)$ by $2^{\alpha(x)} < x < 2^{\alpha(x)+1}$ and $\beta(x) = \alpha(x - 2^{\alpha}(x))$. E.g. $\langle 37 \rangle_2 = 100101$, $\alpha(37) = 5$, and $\beta(37) = 2$.

Lemma

The map $(a, b, t, r) \rightarrow (\beta(3^n) - t)_{n=a}^b \cap [0, r]$ is onto \mathbb{N}^*

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 2: Given a two-counter machine \mathcal{M} , write a formula $\Phi \equiv$ "there exist $3^a, 3^b, t, r$ such that the corresponding sequence is a halting run of \mathcal{M} ." Check whether Φ is true.

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 2: Given a two-counter machine \mathcal{M} , write a formula $\Phi \equiv$ "there exist $3^a, 3^b, t, r$ such that the corresponding sequence is a halting run of \mathcal{M} ." Check whether Φ is true.

A two-counter machine is a program with two variables c_1, c_2 and instructions

- $ightharpoonup c_i = c_i + 1$,
- ▶ JUMP TO ℓ,
- ▶ IF $c_i > 0$ THEN $c_i = c_i 1$ ELSE JUMP TO ℓ , and
- ► HALT.

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Step 2: Given a two-counter machine \mathcal{M} , write a formula $\Phi \equiv$ "there exist $3^a, 3^b, t, r$ such that the corresponding sequence is a halting run of \mathcal{M} ." Check whether Φ is true.

A two-counter machine is a program with two variables c_1, c_2 and instructions

- $c_i = c_i + 1,$
- ▶ JUMP TO ℓ,
- ▶ IF $c_i > 0$ THEN $c_i = c_i 1$ ELSE JUMP TO ℓ , and
- ► HALT.

The run of \mathcal{M} is the instruction number and the values of c_1, c_2 after each step. It is undecidable whether a given two-counter machine has a finite run.

Theorem (K., Luca, Nieuwveld, Ouaknine, Worrell 2025)

The existential fragment of the first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is decidable. The exists-forall-exists fragment of the full theory is undecidable.

Theorem (K., Luca, Nieuwveld, Ouaknine, Worrell 2025)

The existential fragment of the first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is decidable. The exists-forall-exists fragment of the full theory is undecidable.

The ∃-fragment: solving systems of inequalities of the form

$$\exists x_1 \in D_1 \cdots \exists x_m \in D_m : A \cdot (x_1, \ldots, x_m) \sim \mathbf{b}$$

where D_i is one of $\mathbb{N}, 2^{\mathbb{N}}, 3^{\mathbb{N}}$, $A \in \mathbb{Z}^{k \times m}$, $\mathbf{b} \in \mathbb{Z}^{k \times 1}$, and \sim consists of (in)equalities.

Proof: Baker's theorem + Diophantine approximation arguments

Now consider $\langle \mathbb{N}; 0, 1, <, +, n \mapsto 2^n, n \mapsto 3^n \rangle$. In this structure we have access to numbers of the form $2^{2^n}, 2^{3^n}, 2^{2^n+3^n}$ etc.

Now consider $\langle \mathbb{N}; 0, 1, <, +, n \mapsto 2^n, n \mapsto 3^n \rangle$. In this structure we have access to numbers of the form $2^{2^n}, 2^{3^n}, 2^{2^n+3^n}$ etc.

Theorem (K., Luca, Nieuwveld, Ouaknine, Worrell 2025)

If the existential fragment of the first-order theory of $\langle \mathbb{N}; 0, 1, <, +, n \mapsto 2^n, n \mapsto 3^n \rangle$ is decidable, then we can effectively check whether a given finite word occurs (infinitely often) in the base-2 (or base-3) expansion of $\log_2(3)$.

Now consider $\langle \mathbb{N}; 0, 1, <, +, n \mapsto 2^n, n \mapsto 3^n \rangle$. In this structure we have access to numbers of the form $2^{2^n}, 2^{3^n}, 2^{2^n+3^n}$ etc.

Theorem (K., Luca, Nieuwveld, Ouaknine, Worrell 2025)

If the existential fragment of the first-order theory of $\langle \mathbb{N}; 0, 1, <, +, n \mapsto 2^n, n \mapsto 3^n \rangle$ is decidable, then we can effectively check whether a given finite word occurs (infinitely often) in the base-2 (or base-3) expansion of $\log_2(3)$.

Problem

Is the first-order theory of $\langle \mathbb{N}; 0, 1, <, n \mapsto 2^n, n \mapsto 3^n \rangle$ decidable?

The Ramanujan τ function

The function $\tau: \mathbb{N} \to \mathbb{Z}$ is defined by the generating function $q \prod_{m=1}^{\infty} (1-q^m)^{24}$ It is multiplicative, and has the values 1, -24, 252, -1472, 4830, -6048, -16744, ...

The Ramanujan au function

The function $\tau: \mathbb{N} \to \mathbb{Z}$ is defined by the generating function $q \prod_{m=1}^{\infty} (1 - q^m)^{24}$ It is multiplicative, and has the values 1, -24, 252, -1472, 4830, -6048, -16744, ...

Theorem (Bilu, Deshouillers, Gun, Luca, 2018)

Assume $\tau(n) \neq 0$ for all $n \geq 1$. Then for any permutation $\sigma \colon \{1, \dots, k\} \to \{1, \dots, k\}$, there exist infinitely many m such that

$$|\tau(m+\sigma(1))| < \cdots < |\tau(m+\sigma(k))|.$$

 \Rightarrow we can extract arbitrary finite permutations from the au function

The Ramanujan au function

The function $\tau\colon \mathbb{N} \to \mathbb{Z}$ is defined by the generating function $q\prod_{m=1}^\infty (1-q^m)^{24}$

It is multiplicative, and has the values 1, -24, 252, -1472, 4830, -6048, -16744, ...

Theorem (Bilu, Deshouillers, Gun, Luca, 2018)

Assume $\tau(n) \neq 0$ for all $n \geq 1$. Then for any permutation $\sigma \colon \{1, \dots, k\} \to \{1, \dots, k\}$, there exist infinitely many m such that

$$|\tau(m+\sigma(1))| < \cdots < |\tau(m+\sigma(k))|.$$

 \Rightarrow we can extract arbitrary finite permutations from the τ function

Corollary

The first-order theory of $\langle \mathbb{Z}; 0, 1, <, +, n \mapsto \tau(n) \rangle$ is undecidable.

Strong Diophantine approximation properties ⇒ FO undecidability

Problem

Let U be a linear numeration system. Is $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ automatic? Does it have a decidable first-order theory?

Strong Diophantine approximation properties \Rightarrow FO undecidability

Problem

Let U be a linear numeration system. Is $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ automatic? Does it have a decidable first-order theory?

Theorem (K., Nieuwveld, Ouaknine)

Suppose U is defined by (the non-negative values of) a linear recurrence sequence with an irreducible characteristic polynomial and two non-real, non-repeated dominant roots.

Strong Diophantine approximation properties \Rightarrow FO undecidability

Problem

Let U be a linear numeration system. Is $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ automatic? Does it have a decidable first-order theory?

Theorem (K., Nieuwveld, Ouaknine)

Suppose U is defined by (the non-negative values of) a linear recurrence sequence with an irreducible characteristic polynomial and two non-real, non-repeated dominant roots. Then $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ defines arbitrary finite sequences over $\mathbb{N} \Rightarrow$ has an undecidable first-order theory and is not automatic.

The prized structure

Consider $\langle \mathbb{N}; 0, 1, <, +, P \rangle$ where *P* is the set of primes.

Goldbach's conjecture: $\forall x \geq 2$: $(\exists y : x = y + y \Rightarrow \exists p, q \in P : x = p + q)$

Twin primes: $\forall x \exists y > x : y \in P \land y + 2 \in P$

The prized structure

Consider $\langle \mathbb{N}; 0, 1, <, +, P \rangle$ where P is the set of primes.

Goldbach's conjecture: $\forall x \geq 2$: $(\exists y : x = y + y \Rightarrow \exists p, q \in P : x = p + q)$

Twin primes: $\forall x \exists y > x : y \in P \land y + 2 \in P$

Dickson's conjecture

Let $a_ix_i + b_i$, $1 \le i \le m$ be such that no prime p divides $(a_1x_1 + b_1) \cdots (a_mx_m + b_m)$ for all $x \in \mathbb{Z}$. Then there exist infinitely many $x \in \mathbb{Z}$ such that all $a_ix_i + b_i$ are prime.

The prized structure

Consider $\langle \mathbb{N}; 0, 1, <, +, P \rangle$ where P is the set of primes.

Goldbach's conjecture: $\forall x \geq 2$: $(\exists y : x = y + y \Rightarrow \exists p, q \in P : x = p + q)$

Twin primes: $\forall x \exists y > x : y \in P \land y + 2 \in P$

Dickson's conjecture

Let $a_ix_i + b_i$, $1 \le i \le m$ be such that no prime p divides $(a_1x_1 + b_1) \cdots (a_mx_m + b_m)$ for all $x \in \mathbb{Z}$. Then there exist infinitely many $x \in \mathbb{Z}$ such that all $a_ix_i + b_i$ are prime.

Theorem (Bateman, Jockusch, Woods 1993)

Assuming Dickson's conjecture, the first-order theory of $\langle \mathbb{N}; 0, 1, <, +, P \rangle$ is undecidable, but the existential fragment is decidable.

Summary

Problem

Let U be a linear numeration system. Is $\langle \mathbb{N}; 0, 1, <, +, U \rangle$ automatic? Does it have a decidable first-order theory?

Theorem (Hieronymi and Schulz, 2022)

The first-order theory of $\langle \mathbb{N}; 0, 1, <, +, 2^{\mathbb{N}}, 3^{\mathbb{N}} \rangle$ is undecidable

Problem

Is the first-order theory of $\langle \mathbb{N}; 0, 1, <, n \mapsto 2^n, n \mapsto 3^n \rangle$ decidable?

Problem

How to solve $c_1 \cdot (2^{n_1}, \dots, 2^{n_k}) + c_2 \cdot (3^{m_1}, \dots, 3^{m_k}) + c_3 \cdot (5^{l_1}, \dots, 5^{l_k}) = d$, where $c_1, c_2, c_3 \in \mathbb{Z}^k$ and $d \in \mathbb{Z}$ are given?

Problem

Prove anything about $\langle \mathbb{N}; 0, 1, <, +, P \rangle$ without assuming Dickson's conjecture