Class09

Natalie Ogg A
91030809

The PDB Database

```
stats <- read.csv("Data Export Summary.csv", row.names=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Nther
Protein (only)	158,844			197	73	32
· ·	•	•	•	8		0
Protein/Oligosaccharide	9,260	2,054	34	_	1	U
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
x <- stats$X.ray
x
[1] "158,844" "9,260" "8,307" "2,730" "164" "11"
```

```
as.numeric(gsub(",","", x))
[1] 158844
              9260
                             2730
                                     164
                     8307
                                              11
  rm.comma <- function(x) {</pre>
    as.numeric(gsub(",","", x))
  }
  rm.comma(stats$EM)
[1] 11759
          2054 3667
                         113
                                  9
                                         0
  pdb.data <- apply(stats, 2, rm.comma)</pre>
  rownames(pdb.data) <- rownames(stats)</pre>
  pdb.data
                                          NMR Multiple.methods Neutron Other
                           X.ray
                                    EM
Protein (only)
                          158844 11759 12296
                                                            197
                                                                      73
                                                                            32
Protein/Oligosaccharide
                                 2054
                                                              8
                                                                       1
                                                                             0
                            9260
                                           34
Protein/NA
                                                              7
                            8307
                                 3667
                                          284
                                                                       0
                                                                             0
Nucleic acid (only)
                            2730
                                   113 1467
                                                             13
                                                                       3
Other
                             164
                                     9
                                                              0
                                                                       0
                                                                             0
                                           32
Oligosaccharide (only)
                              11
                                     0
                                            6
                                                              1
                                                                       0
                                                                             4
                          Total
Protein (only)
                          183201
Protein/Oligosaccharide 11357
Protein/NA
                           12265
Nucleic acid (only)
                            4327
Other
                             205
Oligosaccharide (only)
                              22
round(totals)
  totals <- apply(pdb.data, 2, sum)</pre>
  round(totals/totals["Total"]*100,2)
                                 EM
                                                  NMR Multiple.methods
           X.ray
           84.83
                               8.33
                                                 6.68
                                                                   0.11
         Neutron
                              Other
                                                Total
            0.04
                               0.02
                                               100.00
```

Q2: What proportion of structures in the PDB are protein?

```
round(pdb.data[,"Total"] / sum(pdb.data[,"Total"]) *100, 2)

Protein (only) Protein/Oligosaccharide Protein/NA
86.67 5.37 5.80
Nucleic acid (only) Other Oligosaccharide (only)
2.05 0.10 0.01
```

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

(skip)

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

In MolStar, we can't see hydrogens because they are smaller than the resolution.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

Yes, it is water number 308.

Q6:

Here is a lovely figure of HIP-Pr with the catalytic ASP residues, the MK1 compound and the all-important water 308. The Asp residues are in ball and stick representation.

Reading PDB file data in R

We will use the Bio3D package for structural bioinformatics.

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb</pre>
```

```
Call: read.pdb(file = "1hsg")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                    Х
                                                                z o
1 ATOM
                                          <NA> 29.361 39.686 5.862 1 38.10
          1
                N < NA >
                         PRO
                                Α
                                      1
2 ATOM
          2
               CA <NA>
                         PRO
                                Α
                                      1 <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
          3
              C <NA>
                         PRO
                               Α
                                     1 <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
                         PRO
                                      1 <NA> 28.600 38.302 3.676 1 43.40
          4
                O <NA>
                                Α
5 ATOM
          5
               CB <NA>
                         PRO
                               Α
                                     1 <NA> 30.508 37.541 6.342 1 37.87
                             A 1
                                          <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
               CG <NA>
                         PRO
 segid elesy charge
1 <NA>
           N
               <NA>
2 <NA>
           C <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
5 <NA>
           C <NA>
           C
6 <NA>
               <NA>
```

Q7: How many amino acid residues are there in this pdb object?

198

Q8: Name one of the two non-protein residues?

MK1, the Merck drug.

Q9: How many protein chains are in this structure?

2: A and B.

We are finishing part 1 today with a calculation...

Predicting functional motions of a single structure

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

m <- nma(adk)

Building Hessian... Done in 0.014 seconds.
Diagonalizing Hessian... Done in 0.283 seconds.

plot(m)</pre>
```


mktrj(m, file="adk_m7.pdb")