补充题参考答案:

1. 一公司班车载有 20 位员工自公司开出,中途有 10 个车站可以下车。在每一个车站若无人下车便不停车。设每位员工等可能地在各个车站下车并设各人是否下车相互独立,求停车次数的期望与方差。

解:设 X 表示停车次数,引入随机变量

$$X_i = \begin{cases} 0, & \text{第} i \text{ 个车站无人下车;} \\ 1, & \text{第} i \text{ 个车站无人下车.} \end{cases}$$
 $(i = 1, 2, \dots, 10)$,

则
$$X = \sum_{i=1}^{10} X_i$$
,有

$$E(X) = E\left(\sum_{i=1}^{10} X_i\right) = \sum_{i=1}^{10} E(X_i)$$
,

$$Var(X) = Var\left(\sum_{i=1}^{10} X_i\right) = \sum_{i=1}^{10} Var(X_i) + 2\sum_{1 \le i \le 10} Cov(X_i, X_j)$$
.

因每一位员工在第i个车站下车的概率为 0.1,不下车的概率为 0.9,则 20 人都不在第i个车站下车的概率为 0.9²⁰ ,即 $P\{X_i=0\}=0.9^{20}$, $P\{X_i=1\}=1-0.9^{20}$,可得

$$E(X_i) = 1 - 0.9^{20}$$
, $Var(X_i) = 0.9^{20}(1 - 0.9^{20})$.

故

$$E(X) = 10 \times (1 - 0.9^{20})$$

又因每一位员工在第i, j两个车站之一下车的概率为 0.2,都不下车的概率为 0.8,则 20 人都不在第i, j两个车站下车的概率为 0.8^{20} ,即 (X_i, X_i) 的概率分布为

X_i	0	1	p_{i} .
0	0.8^{20}	$0.9^{20} - 0.8^{20}$	0.9^{20}
1	$0.9^{20} - 0.8^{20}$	$1-2\times0.9^{20}+0.8^{20}$	$1-0.9^{20}$
$p_{\cdot j}$	0.9^{20}	$1 - 0.9^{20}$	

可得

$$E(X_i X_j) = 0 + 1 \times (1 - 2 \times 0.9^{20} + 0.8^{20}) = 1 - 2 \times 0.9^{20} + 0.8^{20}$$

$$Cov(X_i, X_j) = (1 - 2 \times 0.9^{20} + 0.8^{20}) - (1 - 0.9^{20})(1 - 0.9^{20}) = 0.8^{20} - 0.9^{40},$$

故

$$Var(X) = \sum_{i=1}^{10} Var(X_i) + 2 \sum_{1 \le i < j \le 10} Cov(X_i, X_j)$$

$$=10\times (0.9^{20}-0.9^{40})+90\times (0.8^{20}-0.9^{40})=10\times 0.9^{20}+90\times 0.8^{20}-100\times 0.9^{40}\ .$$

2. 掷一枚骰子 5 次,出现了 X 种不同的点数,求 X 的期望与方差。解:引入随机变量

$$X_i = \begin{cases} 0, & \text{第} i \text{点没有出现;} \\ 1, & \text{第} i \text{点出现.} \end{cases}$$
 $(i = 1, 2, \dots, 6)$,

则
$$X = \sum_{i=1}^{6} X_i$$
 , 有

$$E(X) = E\left(\sum_{i=1}^{6} X_i\right) = \sum_{i=1}^{6} E(X_i)$$
,

$$Var(X) = Var\left(\sum_{i=1}^{6} X_i\right) = \sum_{i=1}^{6} Var(X_i) + 2\sum_{1 \le i < j \le 6} Cov(X_i, X_j)$$

因每一次投掷第i 点出现的概率为 $\frac{1}{6}$,不出现的概率为 $\frac{5}{6}$,则 5 次投掷第i 点都不出现

的概率为
$$\left(\frac{5}{6}\right)^5$$
,即 $P\{X_i=0\} = \left(\frac{5}{6}\right)^5$, $P\{X_i=1\} = 1 - \left(\frac{5}{6}\right)^5$,可得

$$E(X_i) = 1 - \left(\frac{5}{6}\right)^5$$
, $Var(X_i) = \left(\frac{5}{6}\right)^5 \left[1 - \left(\frac{5}{6}\right)^5\right]$.

故

$$E(X) = 6 \times \left[1 - \left(\frac{5}{6} \right)^5 \right]$$

又因每一次投掷第i,j两点至少出现一点的概率为 $\frac{2}{6}$,都不出现的概率为 $\frac{4}{6}$,则 5 次投掷第i,j两点都不出现的概率为 $\left(\frac{4}{6}\right)^5$,即 (X_i,X_j) 的概率分布为

X_i	0	1	$p_{i\cdot}$
0	$\left(\frac{4}{6}\right)^5$	$\left(\frac{5}{6}\right)^5 - \left(\frac{4}{6}\right)^5$	$\left(\frac{5}{6}\right)^5$
1	$\left(\frac{5}{6}\right)^5 - \left(\frac{4}{6}\right)^5$	$1-2\times\left(\frac{5}{6}\right)^5+\left(\frac{4}{6}\right)^5$	$1 - \left(\frac{5}{6}\right)^5$
$p_{\cdot j}$	$\left(\frac{5}{6}\right)^5$	$1-\left(\frac{5}{6}\right)^5$	

可得

$$E(X_i X_j) = 0 + 1 \times \left[1 - 2 \times \left(\frac{5}{6} \right)^5 + \left(\frac{4}{6} \right)^5 \right] = 1 - 2 \times \left(\frac{5}{6} \right)^5 + \left(\frac{4}{6} \right)^5$$

$$Cov(X_i, X_j) = \left[1 - 2 \times \left(\frac{5}{6}\right)^5 + \left(\frac{4}{6}\right)^5\right] - \left[1 - \left(\frac{5}{6}\right)^5\right] \left[1 - \left(\frac{5}{6}\right)^5\right] = \left(\frac{4}{6}\right)^5 - \left(\frac{5}{6}\right)^{10},$$

故

$$Var(X) = \sum_{i=1}^{6} Var(X_i) + 2 \sum_{1 \le i < j \le 6} Cov(X_i, X_j)$$

$$= 6 \times \left[\left(\frac{5}{6} \right)^5 - \left(\frac{5}{6} \right)^{10} \right] + 30 \times \left[\left(\frac{4}{6} \right)^5 - \left(\frac{5}{6} \right)^{10} \right] = 6 \times \left(\frac{5}{6} \right)^5 + 30 \times \left(\frac{4}{6} \right)^5 - 36 \times \left(\frac{5}{6} \right)^{10} .$$