Problem 1. Consider a matrix $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ -1 & 3 & 2 & 1 \end{bmatrix}$.

- (a) Find the null space of A.
- (b) Find the dimension of $\ker(T_A)$ and the dimension of $\operatorname{ran}(T_A)$, where T_A is a linear transformation from \mathbb{R}^4 to \mathbb{R}^2 with the standard matrix A.

Problem 2. Let T be a linear operator on \mathbb{R}^3 that is the orthogonal projection onto the plane y = z in \mathbb{R}^3 . In other words, T maps a vector \mathbf{x} to a vector $T(\mathbf{x})$ on the plane y = z that minimizes $\|\mathbf{x} - T(\mathbf{x})\|$.

- (a) Find the standard matrix for the transformation T.
- (b) Find a vector \mathbf{a} which is orthogonal to the ran(T).
- (c) Find dim(\mathbf{a}^{\perp}).

Problem 3. (a) Show that any intersection of subspaces of \mathbb{R}^n is a subspace of \mathbb{R}^n .

- (b) Let S be the intersection of two planes x + y + 2z = 0 and x y + z = 0 in \mathbb{R}^3 . Find a basis $\{v_1, \ldots, v_d\}$ for S.
- (c) Find a basis for $v_1^{\perp} \cap v_2^{\perp} \cap \cdots \cap v_d^{\perp}$, where v_1, \ldots, v_d are the vectors you found in (b).

Problem 4. Let $A = \begin{bmatrix} 2 & 4 & t \\ t & -1 & 1 \\ 3 & 1 & -1 \end{bmatrix}$. Find all values of t that makes the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ positive. Find the dimension for each such t.

Problem 5. (a) Show that $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ ia a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -7 \\ 8 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(b) Express $\mathbf{v} = \begin{bmatrix} -9 \\ -15 \\ -3 \end{bmatrix}$ as a linear combination of the basis vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Problem 6. Prove each of the following statements.

- (a) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an one-to-one linear operator and if $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n , then $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ is also a basis for \mathbb{R}^n .
- (b) \mathbf{x} is an eigenvector of an $n \times n$ matrix A if and only if the subspace of \mathbb{R}^n spanned by \mathbf{x} and $A\mathbf{x}$ has dimension 1.

Problem 7. (MATLAB programming) In this problem, we make a function file CheckBasis.m to check that the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and \mathbf{v}_4 form a basis of \mathbb{R}^4 using the equivalent statements (a), (g), (h), and (o) of Theorem 7.2.7 in the textbook.

(a) Complete the shadow part (////) of the m-file given below referring to the comments and the execution results.

```
%-----%
function [Result]=CheckBasis(v1, v2, v3, v4, case_num)
 % if case_num=1, check the statement (a),
 % if case_num=2, check the statement (g),
 % if case_num=3, check the statement (h).
 % Construct the matrix V.
 % Use the switch statement to check
 % whether one of the statements (a), (g), and (h) holds.
 switch case_num
   case 1
     fprintf('* You enter %d: statement (a) *\n', case_num);
    disp(' Given vectors form a basis of 4 dimensional space.');
     else
      disp(' Given vectors do not form a basis of 4 dimensional space.');
     end
   case 2
    fprintf('* You enter %d: statement (g) *\n', case_num);
    Result=det(V);
     if Result~=0
      disp(' Given vectors form a basis of 4 dimensional space.');
      disp(' Given vectors do not form a basis of 4 dimensional space.');
   /////// % check statement (h)
```

```
end
end
The execution results will be as follows:
>> v1=[1 0 0 0]'; v2=[0 2 0 0]'; v3=[0 0 4 5]'; v4=[0 0 0 -1]'; v5=[0 0 0 1]';
>> C=CheckBasis(v1, v2, v3, v4,3)
* You enter 3: statement (h) *
 Given vectors are basis of 4 dimensional space.
C =
   1
   2
   -1
    4
>> CheckBasis(v1, v2, v4, v5, 1);
* You enter 1: statement (a) *
 Given vectors do not form a basis of 4 dimensional space.
>> determinant=CheckBasis(v1, v2, v3, v5, 2)
* You enter 2: statement (g) *
 Given vectors form a basis of 4 dimensional space.
determinant =
   8
```

- (b) Using CheckBasis.m from (a), check whether
 - i. $\mathbf{v}_1 = (-1, 0, 1, 0)^T$, $\mathbf{v}_2 = (2, 3, -2, 6)^T$, $\mathbf{v}_3 = (0, -1, 2, 0)^T$ and $\mathbf{v}_4 = (0, 0, 1, 5)^T$ form a basis of \mathbb{R}^4 .
 - ii. $\mathbf{v}_1 = (a, b, c, d)^T$, $\mathbf{v}_2 = (-b, a, d, -c)^T$, $\mathbf{v}_3 = (-c, -d, a, b)^T$ and $\mathbf{v}_4 = (-d, c, -b, a)^T$ form a basis of \mathbb{R}^4 . (Do not use the statement (h). Guess why not?)

Problem 8. Using the MATLAB command sym and magic, generate an 8×8 magic matrix A of symbolic numbers and find the basis for the null space Z using the command null. Verify that the result is correct by checking A * Z = 0.