UHI Challenge

Josh, Leon, Bobby

Approach 1- Random Forest Regressor w/ Tiff Data

Approach 2- Neural Network w/ Generated Images

Process-

- Split the data by Manhattan points and Bronx points
- Utilized the <u>contextily</u>, <u>geopandas</u>, <u>and</u>
 <u>shapely</u> plotting packages to generate
 birds eye view mappings of the data within the <u>Manhattan</u> bounds
- <u>Trained</u> a neural network (nn_model1) to analyze the image of the Manhattan region
 - <u>Validated</u> with data points from the <u>Bronx</u>
 - <u>Tested</u> with points from <u>Sacramento</u>

```
nn_model1 = LearnInputsLayers()
```

Approach 2- Manhattan & Training

Training on Manhattan-

- Neural Network taking in RGBA data:
 - Using RGBA values to identify roads, water, vegetation, infrastructure, ect
 - Trains to meet data supplied in 'Training_data_uhi_index_2025-02-18.
 csv'
- Outputs an estimation of UHI based on RGBA

```
class LearnInputsLayers(nn.Module):
   def init (self):
        super(LearnInputsLayers, self). init ()
        self.hidden_layer = nn.Linear(4, 5) #take
       self.activation = nn.ReLU()
        self.next_layer = nn.Linear(5, 7)
        self.output_layer = nn.Linear(7, 1) #take
       #no activation after output layer
   def forward(self, x):
       x = self.hidden_layer(x)
       x = self.activation(x)
       x = self.next layer(x)
       x = self.activation(x)
       x = self.output layer(x)
       # no activation after output layer
        return x
```

Demonstration

Improve estimation through training data

Approach 2- Cont.

Validated the data with points front the Bronx

- Used eval to determine loss through MSE
 - Relatively low
- Now the big test was using the data on a west coast city

```
with torch.no_grad(): # Disable gradient computation for testing
    nn_model1.eval() # Set the model to evaluation mode
    val_preds = nn_model1(dataB) # Get predictions on the validation set
    val_loss = criterion(val_preds, targetsB) # Calculate loss
    print(f'Validation Loss: {val_loss.item():.4f}')
    volume
```

Validation Loss: 0.0003

Tale of the Tape: NY vs Sacramento

VS.

Data supplied by https://urbanheat-smaqmd.hub.arcgis.com/datasets/e1e96co3b4ae441 39edc87abfd487a3a/about.

Sacramento Data

Required some levels of cleaning:

- CSV from the <u>The Capital Region Urban Heat Island Mitigation Project</u>
 - <u>https://urbanheat-smaqmd.hub.arcgis.com/datasets/e1e96co3b4ae44139edc87abfd487a3a/abo</u> ut.
- Dropping irrelevant columns
 - Data provided was in degrees celsius
 - UHI calculated by temp/(mean-temp) to scale
- Image from Aerial Archives:
 - <u>https://www.aerialarchives.com/Aerial-Maps-of-Sacramento.htm.</u>

Approach 2 Tested- Sacramento

Despite the Numerous differences between the data values and images, the model still performed relatively well:

```
#try eval on model
with torch.no_grad(): # Disable gradient computation for testing
    nn_model1.eval() # Set the model to evaluation mode
    val_preds = nn_model1(dataS) # Get predictions on the validation set
    val_loss = criterion(val_preds, targetsS) # Calculate loss
    print(f'Validation Loss: {val_loss.item():.4f}')

    0.0s
```

Validation Loss: 0.0087

Approach 3: Fully Connected Neural Network

- Used training and validation csvs
- Preprocessing: extracted hour, month, day of week
 - Removed unnecessary columns
- Created own time-based values
 - Hour: 0-23 / Month: 1-12/ day of week: 0-6
- Architecture:
 - o 3 hidden layers
 - 1 output layer (linear activation for regression)
 - Adam optimizer
 - o 100 epochs with 20% validation split

Continued

- Model predicts UHI values based on time patterns
- Predictions were stored on a csv
- Error metrics:

Model Evaluation on Training Data
Mean Absolute Error (MAE): 0.1466
Mean Squared Error (MSE): 0.0328
Root Mean Squared Error (RMSE): 0.1812
R² Score: -0.0069

day_of_week	month	hour	UHI Index
1	5	6	1.0460359
1	5	6	1.0460359
1	5	6	1.0460359
1	5	6	1.0460359
1	5	6	1.0460359
1	5	6	1.0460359
1	5	6	1.0460359
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907
1	5	7	1.0459907

What this shows us

Infrastructure matters!

- Though this model just considers colors, the UHI is affected by proximity to certain colors:
 - These colors represent certain types of locations such as buildings, waterways, fields, ect
 - Location types are an effective predictor of UHI