

Qualidade de Software

RELATÓRIO – TRABALHO FINAL QUALIDADE DE SOFTWARE Controle de estoque

Equipe:
Victor Emanuel Bernardino
Bruno Wallison
Professora:
Carla Ilane Moreira Bezerra

QUIXADÁ

agosto, 2021

SUMÁRIO

1	DESCRIÇÃO DO PROJETO	2
2	AVALIAÇÃO DO PROJETO	2
2.1	Medição 1 – Antes de refatorar o projeto	2
2.2	Detecção dos Code Smells	3
2.3	Medição 2 – Após Refatorar Code Smell X	4
2.4	Medição 3 – Após Refatorar Code Smell Y	4
2.5	Medição Z – Após a refatoração de todos os code smells do projeto	4
3	COMPARAÇÃO DOS RESULTADOS	4
RE	FERÊNCIAS	4
AP	ÊNDICE A	5

1 DESCRIÇÃO DO PROJETO

O projeto consiste em um controle de estoque feito na linguagem java, onde realiza o controle de produtos de mostruário, estoque e gerenciamento de preços

Link do projeto https://github.com/VictorLourencoo/QA-refactoringCodeSmells.git

Tabela 1 – Características do Projeto

Projeto	LOC	# de classes	# de releases
1	4771	165	

2 AVALIAÇÃO DO PROJETO

2.1 Medição 1 – Antes de refatorar o projeto

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema Coesão		Coesão	Comp	olexidad	le		Hera	nça		Acoplamento	Tamanl	10		
		LCOM2	ACC	SCC	EV	MaxNet	DIT	NOC	IFANIN	СВО	LOC	CL	NI	CDL
					G							OC	M	
S1	ante	2127	96	2653	97	303	32	0	48	147	4771	165	381	31
da														
re	fatoração													

Tabela 3 – Métricas dos atributos internos de qualidade (MCCABE, 1976; CHIDAMBER; KEMERER, 1994; LORENZ; KIDD, 1994; DESTEFANIS et al., 2014)

Atributos	Métricas	Descrição					
Coesão	Lack of Cohesion of Methods (LCOM2) (CHIDAMBER; KEMERER, 1994)	Mede a coesão de uma classe.					
Coesao	(CHIDAMBER, REMERER, 1994)	Quanto maior o valor dessa métrica, menos coesiva é a classe					
Acoplamento	Coupling Between Objects (CBO) (CHIDAMBER; KEMERER, 1994)	Número de classes que uma classe está acoplada					
Асоргатеню	(CHIDANDER; KEMERER, 1994)	Quanto maior o valor dessa métrica, maior é o acoplament de classes e métodos.					
Complexidade	Average Cyclomatic Complexity (ACC) (MCCABE, 1976)	Média da complexidade ciclomática de todos os métodos.					
Complexidade	(MCCABE, 1970)	Quanto maior o valor dessa métrica, mais complexa são classes e métodos.					
	Sum Cyclomatic Complexity (SCC) (MCCABE, 1976)	Somatório da complexidade ciclomática de todos os método					
	(MCCME, 1970)	Quanto maior o valor dessa métrica, mais complexos são a classes e métodos.					
	Nesting (MaxNest) (LORENZ; KIDD, 1994)	Nível máximo de aninhamento de construções de controle.					
Esse (MC		Quanto maior o valor dessa métrica, maior é a complexidade de classes e métodos.					
	Essential Complexity (EVG) (MCCABE, 1976)	Mede o grau na qual um módulo contém construtores nã estruturados. Quanto maior o valor dessa métrica mais complexas são a classes e métodos.					
	Number Of Children (NOC) (CHIDAMBER; KEMERER, 1994)	Número de subclasses de uma classe.					
rierança	(CHIDAWBER, REMERER, 1994)	Quanto maior o valor dessa métrica maior é o grau de heranç de un sistema.					
	Depth of Inheritance Tree (DIT) (CHIDAMBER; KEMERER, 1994)	O número de níveis que uma subclasse herda de métodos atributos de uma superclasse na árvore de herança. Quanto maior o valor dessa métrica maior é o grau de heranç de um sistema.					
	Bases Classes (IFANIN)	Número imediato de classes base.					
	(DESTEFANIS et al., 2014)	Quanto maior o valor dessa métrica, maior o grau de heranç de um sistema.					
Tamanho	Lines of Code (LOC) (LORENZ; KIDD, 1994)	Número de linhas de código, excluindo espaços e coment rios. Quanto maior o valor dessa métrica, maior é o tamanho d sistema.					
	Lines with Comments (CLOC) (LORENZ; KIDD, 1994)	Número de linhas com comentários.					
	10000016, BIDD, 1779)	Quanto maior o valor dessa métrica maior o tamanho do si tema.					
	Classes (CDL) (LORENZ; KIDD, 1994)	Número de classes. Quanto maior o valor , maior o tamanh do sistema.					
	Instance Methods (NIM) (LORENZ; KIDD, 1994)	Número de métodos de instância. Quanto maior o valor dess métrica maior é o tamanho do sistema.					

2.2 Detecção dos Code Smells

Nessa Seção deve ser indicado quais e quantos code smells foram detectados no projeto. Faça uma Tabela indicando os code smells detectados pela ferramenta JSPirit e quantos code smells para cada tipo foram detectados.

Tabela 3 – Code smells do projeto.

Nome do Code Smell	Quantidade
Shotgun Surgery	14
Intensive Coupling	10
Feature Envy	18
Dispersed Coupling	9
Total	51

2.3 Medição 2 – Após Refatorar 20 Code Smells

Tabela 2 – Medição dos atributos antes de refatorar o projeto.

Sistema Coesã		Complexidade				Herança			Acoplamento	Tamanho			
	LCOM2	ACC	SCC	EV	MaxNet	DIT	NOC	IFANIN	CBO	LOC	CL	NI	CDL
				G							OC	M	
S1 após	2530	105	2517	99	286	37	0	56	147	5972	192	383	36
refat. CS													
X													

Tabela 4 – Code smells do projetoi após a 1 refatoração.

Nome do Code Smell	Quantidade	Técnica
Shotgun Surgery	5	Move MethodMove Field
Intensive Coupling	8	Criei Outras classes e reduzir acoplamento
Feature Envy	11	Move MethodExtract Method
Dispersed Coupling	7	
Total	31	

- Extract Method: Separei métodos em outras classes
- Move Method: Movi atributos para outra classes e chamei nas classes pai
- Move Field: Atribui os atributos da classe a classe de origem

2.4 Medição 3 – Após Refatorar 35 Code Smell

Nome do Code Smell	Quantidade	Técnica
Shotgun Surgery	0	Move MethodMove Field
Intensive Coupling	6	Criei Outras classes e reduzir acoplamento
Feature Envy	4	Move MethodExtract Method
Dispersed Coupling	6	
Total	16	

2.5 Medição 3 – Após a refatoração de 35 code smells do projeto

Sistema	Coesão	Comp	Complexidade				nça		Acoplamento	Tamanho			
	LCOM2	ACC	SCC	EV	MaxNet	DIT	NOC	IFANIN	CBO	LOC	CL	NI	CDL
				G							OC	M	
2° Refatoração	2880	121	2456	102	286	41	0	61	154	6027	203	393	40

3 COMPARAÇÃO DOS RESULTADOS

Refatoração	Quantidade	Smells
Projeto	51	☐ Shotgun Surgery ☐ Intensive Coupling ☐ Feature Envy ☐ Dispersed Coupling
1° refatoração	31	
2° Refatoração	16	

Sistema	istema Coesão Complexidade				Hera	nça		Acoplamento	Tamanl	Tamanho			
	LCOM2	ACC	SCC	EV	MaxNet	DIT	NOC	IFANIN	CBO	LOC	CL	NI	CDL
				G							OC	M	
Projeto	2127	96	2653	97	303	32	0	48	147	4771	165	381	31
Inicial													
1°	2530	105	2517	99	286	37	0	56	172	5972	192	383	36
refatoração													
2°	2880	121	2456	102	286	41	0	61	154	6027	203	393	40
refatoração													
Total	+753	+25	-197	+5	-17	+9	0	+13	+7	+1256	+38	+12	+9

REFERÊNCIAS

AZEEM, Muhammad. Machine learning techniques for code smell detection: A systematic literature review and meta-analysis. Information and Software Technology, v. 108, p. 115-138, 2019.

SABIR, Fatima. A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1, p. 3-39, 2019.