

NEXCOM

EtherCAT Master
CiA402 servo control API
用户手册

Manual Rev.: V1.4

Revision Date: February 24th, 2016

Revise note:

Ver	Description			
V0.1	2013/12/16: First beta version release			
V1.0	2014/8/19: Enhance API descriptions. Add torque control APIs			
V1.1	2015/5/15: Typo fix			
V1.2	2015/7/13: Add description of moving direction to Jog and JogA			
V1.3	2015/8/14:			
	Add Ch2.4.11 NEC_CoE402SetTargetVelocity() API			
	Add Ch2.4.12 NEC_CoE402GetActualVelocity() API			
V1.4	2016/2/24:			
	Add Ch2.7.4 NEC_CoE402ClearHomeStartBit() API			
	Add Ch2.7.5 NEC_CoE402CheckHomeStatus() API			

<u>目录</u>

NE	XCOM .		1
Re	vise no	te:	2
目:	录		i
1.	CoE (CiA402 操作说明	1
;	1.1.	流程图	1
:	1.2.	基本规格	1
	1.3.	注意事项	1
2.	CoE (CiA402 函式库	2
:	2.1.	API 总览	2
	2.2.	初始化相关函式	5
	2.2.1	. NEC_CoE402Reset	5
	2.2.2	. NEC_CoE402Close	6
	2.2.3	. NEC_CoE402GetAxisId	7
	2.2.4	. NEC_CoE402GetDefaultMapInfo	8
	2.2.5	. NEC_CoE402GetAxisIdEx	10
	2.2.6	. NEC_CoE402ResetPdoMapping	12
	2.2.7	. NEC_CoE402AddPdoMapping	13
	2.2.8	. NEC_CoE402UpdatePdoMapping	14
	2.3.	CiA402 状态控制函式	15
	2.3.1	. NEC_CoE402CyclicProcess	15
	2.3.2	. NEC_CoE402SetCtrlWord	17
	2.3.3	. NEC_CoE402GetCtrlWord	17
	2.3.4	. NEC_CoE402GetStatusWord	19
	2.3.5	. NEC_CoE402ChangeState	20
	2.3.6	. NEC_CoE402SetState	21

	2.3.7.	NEC_CoE402GetState	22
	2.3.8.	NEC_CoE402FaultReset	23
	2.3.9.	NEC_CoE402ServoOn	24
2.	4. Ci	A402 驱动器基本操作函式	25
	2.4.1.	NEC_CoE402SetOperationMode	25
	2.4.2.	NEC_CoE402GetOperationModeDisplay	26
	2.4.3.	NEC_CoE402SetParameter	27
	2.4.4.	NEC_CoE402GetParameter	28
	2.4.5.	NEC_CoE402GetActualPosition	29
	2.4.6.	NEC_CoE402SetTargetPosition	30
	2.4.7.	NEC_CoE402GetTargetPosition	30
	2.4.8.	NEC_CoE402SetQuickStopDec	31
	2.4.9.	NEC_CoE402SetSoftPosLimit	32
	2.4.10.	NEC_CoE402SetMaxVelLimit	33
	2.4.11.	NEC_CoE402SetTargetVelocity	34
	2.4.12.	NEC_CoE402GetActualVelocity	35
2.	5. 点	对点运动 (Profile Position mode)	36
	2.5.1.	NEC_CoE402Ptp	36
	2.5.2.	NEC_CoE402PtpV	36
	2.5.3.	NEC_CoE402PtpA	36
	2.5.4.	NEC_CoE402WaitTargetReached	38
2.	6. 速	度运动(Profile Velocity mode)	40
	2.6.1.	NEC_CoE402Jog	40
	2.6.2.	NEC_CoE402JogA	40
	2.6.3.	NEC_CoE402Halt	42
2.	7. 归	零运动 (Homing mode)	43
	2.7.1.	NEC_CoE402Home	43

	2.7.2.	NEC_CoE402HomeEx	43
	2.7.3.	NEC_CoE402WaitHomeFinished	45
	2.7.4.	NEC_CoE402ClearHomeStartBit	46
	2.7.5.	NEC_CoE402CheckHomeStatus	47
2.	8. 扭	L力控制 (Torque Control)	48
	2.8.1.	NEC_CoE402SetTargetTorque	48
	2.8.2.	NEC_CoE402GetTargetTorque	48
	2.8.3.	NEC_CoE402GetActualTorque	49
	2.8.4.	NEC CoE402SetTorqueProfile	50

1. CoE CiA402 操作说明

1.1. 流程图

1.2. 基本规格

- 1. 支持最高 32 轴
- 2. 支持标准 CoE402 EtherCAT 伺服驱动器

1.3. 注意事项

使用本函式库前,下列几点须注意:

- 1. ControlWord(0x6040)须设定为 RxPDO, Offset 不限制,但建议设定为 0
- 2. StatusWord(0x6041)须设定为 TxPDO, Offset 不限制, 但建议设定为 0
- 3. TargetPosition(0x607A) 建议设定为 RxPDO, Offset 建议设定为 2
- 4. Position actual value(0x6064) 建议设定为 TxPDO, Offset 建议设定为 2

2. CoE CiA402 函式库

2.1. API 总览

下表列出 CiA402 函式库 API 的列表,API 定义于 NexCoEMotion.h 头文件之中。

T:字段代表该函式可被呼叫的位置

C:只能在 Callback 函式中呼叫

X:不能再 Callback 函式中呼叫

B:没有限制

(T: Type → C: Callback only, X:Not for callback, B:Both)

函数名称	说明	Т
NEC_CoE402Reset	重置 CiA402 函式库	X
NEC_CoE402Close	关闭 CiA402 函式库	X
NEC_CoE402GetAxisId	注册并取得 CiA 伺服轴的标识符(单模块单轴)	Х
NEC_CoE402GetDefaultMapInfo	初始化 MapInfo 数据结构	Х
NEC_CoE402GetAxisIdEx	注册并取得 CiA 伺服轴的标识符(单模块多轴)	Х
NEC_CoE402ResetPdoMapping	重置 PDO mapping	Х
NEC_CoE402AddPdoMapping	新增 PDO mapping 设定	Х
NEC_CoE402UpdatePdoMapping	更新 PDO mappingg 设定	Х
	02 状态控制函式	
NEC_CoE402CyclicProcess	周期状态控制函式	С
NEC_CoE402SetCtrlWord	设定 CiA402 ControlWord (0x6040)	В
NEC_CoE402GetCtrlWord	读取 CiA402 ControlWord (0x6040)	В
NEC_CoE 402 GetStatusWord	读取 CiA402 StatusWord (0x6041)	В
NEC_CoE402ChangeState	改变控制轴的状态	Х
NEC_CoE 402 SetState	设定状态	В
NEC_CoE 402 GetState	读取驱动器状态	В
NEC_CoE 402 FaultReset	清除/重置伺服驱动器错误	Х
NEC_CoE 402 ServoOn	设定驱动器激磁/解激磁	Х
CiA402		
NEC_CoE402SetOperationMode	设定驱动器运动模式(0x6060)	Х
NEC_CoE402GetOperationModeDisplay	读取实际驱动器运动模式(0x6061)	Х
NEC_CoE 402 SetParameter	设定 CiA402 驱动器对象参数	Х
NEC_CoE402GetParameter	读取 CiA402 驱动器对象参数	Х
NEC_CoE402GetActualPosition	读取驱动器马达实际位置(0x6064)	*B

设定目标位置(0x607A,PP,CSP)	*B			
读取目标位置(0x607A,PP,CSP)	*B			
设定 Quick Stop 减速率(0x6085)	Х			
设定软件位置极限(0x607D)	Х			
设定最大速度限制(0x607F)	Х			
ofile Position mode)				
启动单轴点对点运动	Х			
启动单轴点对点运动,带速度参数	Х			
启动单轴点对点运动,带速度、加速度参数	Х			
等待目标位置到达	Х			
file Velocity mode)				
启动单轴指定速度运转	Х			
启动单轴指定速度运转,带加速度参数	Х			
停止/暂停运动	Х			
力(Homing mode)				
启动单轴原点归零运动(Homing)	Х			
启动单轴原点归零运动(Homing)带参数设定	Х			
等待归零运动结束	Х			
清除原点归零运动(Homing)启动位	В			
读取原点归零运动(Homing)状态	В			
扭力控制 (Torque Control)				
设定目标扭力(0x6071,PT,CST)	*B			
读取目标扭力(0x6071,PT,CST)	*B			
读取实际扭力值(0x6077)	*B			
设定目标扭力与变化率(0x6071, 0x6087, PT)	Х			
	读取目标位置(0x607A,PP,CSP) 设定Quick Stop 减速率(0x6085) 设定软件位置极限(0x607D) 设定最大速度限制(0x607F) ofile Position mode) 启动单轴点对点运动,带速度参数 启动单轴点对点运动,带速度参数 等待目标位置到达 file Velocity mode) 启动单轴指定速度运转 启动单轴指定速度运转 启动单轴指定速度运转,带加速度参数 停止/暂停运动 (Homing mode) 启动单轴原点归零运动(Homing) 启动单轴原点归零运动(Homing) 启动单轴原点归零运动(Homing)带参数设定 等待归零运动结束 清除原点归零运动(Homing)常动位 读取原点归零运动(Homing)状态 (Torque Control) 设定目标扭力(0x6071,PT,CST) 读取目标扭力(0x6077)			

(*B 表示需将该信息设定为 PDO mapping,才能在 Callback 中呼叫,否则回传错误码)

API 所使用的 C/C++数据型态定义于 nex_type.h 中,说明如下表:

= n					
型别	C/C++ 原型	说明	大小 byte	范围	
BOOL_T	BOOL_T Int		4	0:False, 1:True	
U8_T	unsigned char	无号整数	1	0 ~ 255	
U16_T	unsigned short	无号整数	2	0 ~ 65535	
U32_T	J32_T unsigned int		4	0 ~ 4294967295	
U64_T unsignedint64		无号整数	8	0~	
				18446744073709551615	

18_T	char	有号整数	1	-128 ~ 127	
I16_T	short	有号整数	2	-32768 ~ 32767	
132_T	int	有号整数	4	-2147483648 ~	
				2147483647	
164_T	int64	有号整数	8	-9223372036854775808 ~	
				9223372036854775807	
F32_T	float	浮点数	4	IEEE-754, 有效小数后7位	
F64_T	double	双精浮点数	8	IEEE-754, 有效小数后 15	
				位	
RTN_ERR	int	错误代码	4	-2147483648 ~	
				2147483647	

2.2. 初始化相关函式

2.2.1. NEC_CoE402Reset

重置 CiA402 函式库

C/C++语法:

RTN_ERR NEC_CoE402Reset();

参数:

<无参数>

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

使用其他 CoE402 函式库前,呼叫此函数进行函式库内部初始化工作。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402Close ();

2.2.2. NEC_CoE402Close

关闭 CiA402 函式库

C/C++语法:

RTN_ERR NEC_CoE402Close ();

参数:

<无参数>

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

应用程序结束前,调用此函数释放 CiA402 函式库内部资源。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402Reset();

2.2.3. NEC_CoE402GetAxisId

注册并取得 CiA 伺服轴的标识符

C/C++语法:

RTN_ERR NEC_CoE402GetAxisId(U16_T MasterId, U16_T SlaveAddr, CANAxis_T *pAxis);

参数:

U16_T MasterId: 指定目标 EC-Master 代号,单一 EC-Master 请设为 0 U16_T SlaveAddr: 指定目标 EC-Slave 代号,依网络配线顺序,从 0 开始依序增号 CANAxis_T *pAxis: 回传所对应的 CiA 伺服轴的控制标识符(Identification)。用于稍后其他函式。

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

初始化 CiA402 函式库后,使用本函式注册 CiA402 模块并取得 CiA 伺服轴的控制 代号。取得之轴代号用于尔后的其他 CiA402 函式库的呼叫。

此 API 适用于只有单一 CiA402 伺服轴的 Slave 装置,若单一 Slave 装置具有多轴 (*)需使用 NEC CoE402GetAxisIdEx()进行注册的动作。

注意! 禁止于 Callback 函式中调用此函数

(*)单一 Slave 装置具有多轴 例如 NEXCOM AXE-5904 (4 axes CoE step/servo interface module)

参阅:

NEC CoE402CyclicProcess(); NEC CoE402GetAxisIdEx()

2.2.4. NEC CoE402GetDefaultMapInfo

初始化 MapInfo 数据结构

C/C++语法:

RTN_ERR NEC_CoE402GetDefaultMapInfo(U16_T TypeOfSlave, U16_T SlaveAddr, EcCiA402AxisMapInfo T *pMapInfo);

参数:

U16_T TypeOfSlave: Slave 型态

EC_CIA402_SERVO_DRIVE (0):标准 CiA402 单轴模块 (单模块单轴) EC_MULTIPLE_CIA402_SLAVE (1):标准 CiA402 多轴模块 (单模块多轴)

U16_T SlaveAddr: 指定目标 EC-Slave 代号,依网络配线顺序,从 0 开始依序增号 EcCiA402AxisMapInfo_T *pMapInfo: CiA 轴 PDO 映像数据, 此数据结构的内容将被初始化如下述:

U16 T TypeOfSlave: Slave 型态,同上述并初始化为上述值。

U16_T SlaveAddr: 目标 EC-Slave 代号,同上述并初始化为上述值。

U16 T SlaveSlotNum: 单模块中之轴顺序,由零递增,初始化为 0

U16 T Reserved: 保留, 初始化为 0

U16 T CoeObjectOffset: 轴对映的 CoE object 偏移量,初始化为 0x0800

U16 T pdoMapOffset; 轴对映的 PDO map object 偏移量,初始化为 0x0010

U16 T MinRxPdoIndex: 第一轴的最小 RxPDO 号码,初始化为 0x1600

U16 T MaxRxPdoIndex: 第一轴的最大 RxPDO 号码,初始化为 0x1603

U16 T MinTxPdoIndex: 第一轴的最小 TxPDO 号码,初始化为 0x1A00

U16 T MaxTxPdoIndex: 第一轴的最大 TxPDO 号码,初始化为 0x1A03

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

在呼叫 NEC_CoE402GetAxisIdEx() 注册 CiA402 伺服轴时必须输入该轴所对应的 PDO 映像数据" EcCiA402AxisMapInfo_T",可利用本 API 先将" EcCiA402AxisMapInfo_T" 进行基本初始化后,再将此数据结构参数带入 NEC_CoE402GetAxisIdEx()

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402GetAxisIdEx()

2.2.5. NEC_CoE402GetAxisIdEx

注册并取得 CiA 伺服轴的标识符(单模块多轴)

C/C++语法:

RTN_ERR NEC_CoE402GetAxisIdEx(U16_T MasterId, EcCiA402AxisMapInfo_T *pInfo, CANAxis T *pAxis);

参数:

U16_T MasterId: 指定目标 EC-Master 代号,单一 EC-Master 请设为 0 EcCiA402AxisMapInfo_T *pMapInfo: CiA 轴 PDO 映像数据

U16 T TypeOfSlave: Slave 型态

EC_CIA402_SERVO_DRIVE (0):标准 CiA402 单轴模块 (单模块单轴) EC_MULTIPLE_CIA402_SLAVE (1):标准 CiA402 多轴模块 (单模块多轴)

U16 T SlaveAddr: 目标 EC-Slave 代号,由 0 开始依接线递增

U16 T SlaveSlotNum: 单模块中之轴顺序,由零递增,初始化为 0

U16 T Reserved: 保留, 初始化为 0

U16 T CoeObjectOffset: 轴对映的 CoE object 偏移量, 初始化为 0x0800

U16 T pdoMapOffset; 轴对映的 PDO map object 偏移量,初始化为 0x0010

U16 T MinRxPdoIndex: 第一轴的最小 RxPDO 号码,初始化为 0x1600

U16 T MaxRxPdoIndex: 第一轴的最大 RxPDO 号码,初始化为 0x1603

U16 T MinTxPdoIndex: 第一轴的最小 TxPDO 号码,初始化为 0x1A00

U16 T MaxTxPdoIndex: 第一轴的最大 TxPDO 号码,初始化为 0x1A03

CANAxis_T *pAxis: 回传所对应的 CiA 伺服轴的控制标识符(Identification)。用于稍后其他函式。

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

初始化 CiA402 函式库后,使用本函式注册 CiA402 模块并取得 CiA 伺服轴的控制 代号。取得之轴代号用于尔后的其他 CiA402 函式库的呼叫。

此 API 对于单一 CiA402 伺服轴的 Slave 装置和单一 Slave 装置具有多轴(*)皆适用

注意! 禁止于 Callback 函式中调用此函数

(*)单一 Slave 装置具有多轴 例如 NEXCOM AXE-5904 (4 axes CoE step/servo interface module)

参阅:

NEC_CoE402CyclicProcess(); NEC_CoE402GetAxisId()

2.2.6. NEC_CoE402ResetPdoMapping

重置 PDO mapping 设定

C/C++语法:

RTN_ERR NEC_CoE402ResetPdoMapping(CANAxis_T Axis);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得。

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

重置函式库内的 PDO mapping 设定,呼叫 NEC_CoE402Reset()时会自动呼叫此函数。当 CiA402 Slave 的状态再进入"OP"状态之前。使用者必须正确的设定 PDO mapping 方式。其设定方式有下列 2 种方式:

- 1. 使用 NEC CoE402AddPdoMapping()将 PDO 的 Mapping 方式输入置函式库
- 2. 使用 NEC_CoE402UpdatePdoMapping(), 直接由 CiA402 模块端读取 PDO mapping 的设定。

建议采用方法二叫简洁不易发生人为错误。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC CoE402AddPdoMapping()

2.2.7. NEC CoE402AddPdoMapping

新增 PDO mapping 设定

C/C++语法:

RTN_ERR NEC_CoE402AddPdoMapping(CANAxis_T Axis, U16_T Type, U16_T CANIndex, U8_T CANSubIndex, U8_T OffsetOfByte, U8_T LenOfByte);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U16_T Type, 指定新增的项目为 TYPE_RXPDO (0)或 TYPE_TXPDO (1) U16_T CANIndex: CAN 对象 Index,请参 CoE402 伺服马达使用说明 U8_T CANSubIndex: CAN 对象 sub-index,请参 CoE402 伺服马达使用说明 U8_T OffsetOfByte: 该对象在 Slave PDO Mapping 的位置偏移量,byte 为单位 U8 T LenOfByte: 该对象的长度大小,byte 为单位

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

使用 *NEC_CoE402SetParameter() / NEC_CoE402GetParameter()* Ec-Master 会根据 PDO mapping 规则自动判断以 SDO 或 PDO 的方式存取之。透过下列两种方式让 EC-Master 取得 CiA402 slave 模块的 PDO mapping 规则。

方法一:

使用本函数手动设定 EC-Slave 装置的 PDO mapping,在使用前先呼叫 NEC_CoE402ResetPdoMapping()清除 PDO mapping 的设定。上述方式是用户建立 该装置的 PDO mapping 规则,基本上必须依照 ENI 的内容设定,若设定不一致可能出现异常。

方法二:

另外也可用 NEC_CoE402UpdatePdoMapping()函数自动从 EC-Slave 上更新 PDO mapping 数据。

以上两种方式请择一使用。切勿混用。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC CoE402ResetPdoMapping(); NEC CoE402UpdatePdoMapping()

2.2.8. NEC_CoE402UpdatePdoMapping

更新 PDO mappingg 设定

C/C++语法:

RTN_ERR NEC_CoE402UpdatePdoMapping(CANAxis_T Axis);

参数:

CANAxis_T Axis, 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

使用 *NEC_CoE402UpdatePdoMapping*()函数自动从 CiA402 的 EC-Slave 上更新 PDO mapping 数据。注意在函数必须在 EC-Slave 状态为"PREOP","SAFEOP"或 OP 状态下方能呼叫此函数。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402AddPdoMapping();

2.3. CiA402 状态控制函式

2.3.1. NEC_CoE402CyclicProcess

周期状态控制函式

C/C++语法:

RTN_ERR NEC_CoE402CyclicProcess();

参数:

<无参数>

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

标准 CiA402 slave 模块可透过控制 ControlWord(0x6040) 和 StatusWord(0x6041) 来切换该模块的状态。

使用者除了可以自行控制 ControlWord 来切换 CiA402 的状态,亦可透过本函数来切换状态。

透过 NEC_CoE402GetAxisId()将 CoE 从站模块注册到系统中,所有已注册的模块的 状态将由 NEC CoE402CyclicProcess()管控。

本函数需周期性的执行,一般在 Callback 中呼叫执行本函数。本函数用于控制所有 CiA402 EC-Slaves 的状态,内部实作状态切换程序,用户可直接下达欲切换的 CiA402 状态, 无须自行处理状态切换。 切换状态相关函数请参考 NEC CoE402ChangeState(), NEC CoE402SetState()和 NEC CoE402ServoOn()

注意,本函数会控制 ControlWord(0x6060) 有关状态切换相关的(Bit0~3)。若用户使用本函数后又自行控制 ControlWord(0x6040)必须避免修改 bit0~3 的内容,否则可能造成竞争状态(Race condition)。

Bit NO.	Function	
0	Switch on	
1	Enable voltage	
2	Quick Stop	

3 Enable operation (CiA402 ControlWord bit0~3 定义)

注意! ControlWord(0x6040)必须被设定为 RxPDO mapping, StatusWord (0x6041)必须被设定为 TxPDO mapping。

参阅:

NEC_CoE402ChangeState(); NEC_CoE402SetState(); NEC_CoE402GetState(); NEC_CoE402ServoOn()

2.3.2. NEC_CoE402SetCtrlWord

2.3.3. NEC_CoE402GetCtrlWord

设定/读取 CiA402 ControlWord (0x6040)

C/C++语法:

RTN_ERR NEC_CoE402SetCtrlWord(CANAxis_T Axis, U16_T CtrlInBit);
RTN_ERR NEC_CoE402GetCtrlWord(CANAxis_T Axis, U16_T *CtrlInBit);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16_T CtrlInBit: 设定 CiA402 ControlWord, Object index = 0x6040 U16 T *CtrlInBit: 读取 CiA402 ControlWord, Object index = 0x6040

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数用于控制 CiA402 ControlWord,对象序号 0x6040,本函数可用于 Callback 函数之中。注意! ControlWord(0x6040)必须被设定为 RxPDO mapping。ControlWord 于 CiA402 中的定义如下:

Bit NO.	Function	
0	Switch on	
1	Enable voltage	
2	Quick Stop	
3	Enable operation	
4 ~ 6	<depend mode="" on="" operation=""> (*)</depend>	
7	Fault reset	
8	Halt	
9	<depend mode="" on="" operation=""> (*)</depend>	
10	Reserved	
11~15	<vendor specific=""> (*)</vendor>	

(*)请参与 CiA402 装置使用手册

若采用 NEC_CoE402CyclicProcess()来控制 CiA402 状态切换,该函式会控制 ControlWord(0x6040)的 Bit0~3。因此应避免 Bit0~3 的修改。若要同时使用,可先 读取 ControlWord 修改欲设定的 bit 后再写入。

参阅:

NEC_CoE402CyclicProcess()

2.3.4. NEC_CoE402GetStatusWord

读取 CiA402 StatusWord (0x6041)

C/C++语法:

RTN_ERR NEC_CoE402GetStatusWord(CANAxis_T Axis, U16_T *StatusInBit);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16_T *StatusInBit: 读取 CiA402 StatusWord, Object index = 0x6041

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数用于读取 CiA402 StatusWord(对象序号 0x6041),本函数可用于 Callback 函数之中。注意! StatusWord (0x6041)必须被设定为 TxPDO mapping。StatusWord 于 CiA402 中的定义如下:

Bit NO.	Function	Bit NO.	Function
0	Ready to switch on	8	<vendor specific=""> (*)</vendor>
1	switch on	9	Remote
2	Operatiion enable	10	<depend mode="" on="" operation=""> (*)</depend>
3	Fault	11	Internal limit active
4	Voltage enable	12	<depend mode="" on="" operation=""> (*)</depend>
5	Quick stop	13	
6	Swithc on disabled	14	<vendor specific=""> (*)</vendor>
7	Warning	15	

参阅:

2.3.5. NEC_CoE402ChangeState

改变控制轴的状态

C/C++语法:

RTN_ERR NEC_CoE402ChangeState(CANAxis_T Axis, U16_T TargetState, I32_T TimeoutMs);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U16 T TargetState: 欲切换之 CiA402 状态。

#define	CiA402 state	Note
COE_STA_DISABLE(0)	Switch on disable	Servo OFF
COE_STA_READY_TO_SWITCH_ON(1)	Ready to switch on	
COE_STA_SWITCH_ON (2)	Switched on	
COE_STA_OPERATION_ENABLE (3)	Operation enable	Servo ON
COE_STA_QUICK_STOP_ACTIVE (4)	Quick stop active	

I32_T TimeoutMs: 切换状态逾时等待时间,单位 millisecond。当 TimeoutMs 设定 为 0 时,等同于呼叫 *NEC_CoE402SetState*()函式。

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

设定马达状态,当函数成功返回表示已成功切换状态。若需在 Callback 之中切换马达状态必须使用 NEC_CoE402SetState()本函式必须配合 NEC CoE402CyclicProcess()一起使用。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC CoE402CyclicProcess(); NEC CoE402SetState();

2.3.6. NEC_CoE402SetState

设定驱动器状态

C/C++语法:

RTN_ERR NEC_CoE402SetState(CANAxis_T Axis, U16_T State);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U16_T State: 欲切换之 CiA402 状态。

#define	CiA402 state	Note
COE_STA_DISABLE(0)	Switch on disable	
COE_STA_READY_TO_SWITCH_ON(1)	Ready to switch on	
COE_STA_SWITCH_ON (2)	Switched on	
COE_STA_OPERATION_ENABLE (3)	Operation enable	Servo ON
COE_STA_QUICK_STOP_ACTIVE (4)	Quick stop active	

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,用于设定欲切换之马达状态,此函数设定完后立即返回不会等待马达状态改变,用户必须使用 *NEC_CoE402GetState()*确定马达的状态。注意! ControlWord(0x6040)必须被设定为 RxPDO mapping。本函式必须配合 *NEC_CoE402CyclicProcess()*一起使用。

参阅:

NEC CoE402CyclicProcess(); NEC CoE402ChangeState();

2.3.7. NEC_CoE402GetState

读取驱动器状态

C/C++语法:

RTN_ERR NEC_CoE402GetState(CANAxis_T Axis, U16_T *State);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16_T *State: 回传马达状态。

#define	CiA402 state	Note
COE_STA_DISABLE(0)	Switch on disable	
COE_STA_READY_TO_SWITCH_ON(1)	Ready to switch on	
COE_STA_SWITCH_ON (2)	Switched on	
COE_STA_OPERATION_ENABLE (3)	Operation enable	Servo ON
COE_STA_QUICK_STOP_ACTIVE (4)	Quick stop active	
COE_STA_FAULT(5)	Fault	Error
COE_STA_FAULT_REACTION_ACTIVE (6)	Fault reaction active	Error

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,读取马达目前实际状态。

参阅:

NEC_CoE402SetState();

2.3.8. NEC_CoE402FaultReset

清除/重置伺服驱动器错误

C/C++语法:

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 I32_T TimeoutMs: 逾时等待时间,单位 millisecond。当 TimeoutMs 设定为 0 或小于 0 时等待时间设定为 5000ms

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

当驱动器状态进入 Fault 状态时,先确认驱动器的错误状态并施以排除后,使用此函数解除 Fault 状态。

注意! 禁止于 Callback 函式中调用此函数

参阅:

2.3.9. NEC_CoE402ServoOn

设定驱动器激磁/解激磁

C/C++语法:

RTN_ERR NEC_CoE402ServoOn(CANAxis_T Axis, U16_T OnOff);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U16 T OnOff:

0: Servo off (Switch on disable)1 Servo ON (Operation enable)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

设定驱动器激磁(ServoOn)与解激磁(ServoOff)
ServoOn 相当于 CiA 状态: Operation Enable
ServoOff 相当于 CiA 状态: Switch on disable

本函式必须配合 NEC CoE402CyclicProcess()一起使用。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402CyclicProcess(); NEC_CoE402SetState(); NEC_CoE402ChangeState();

2.4. CiA402 驱动器基本操作函式

2.4.1. NEC CoE402SetOperationMode

设定驱动器运动模式(0x6060)

C/C++语法:

RTN_ERR NEC_CoE402SetOperationMode(CANAxis_T Axis, I8_T MotionMode, I32_T CheckTimeoutMs);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 I8 T MotionMode: 设定运动模式。其支持的模式请参考驱动器使用手册

Define	CiA402 运动模式
CiA402_OP_MODE_PROFILE_POSITION (1)	Profile Position mode
CiA402_OP_MODE_PROFILE_VELOCITY (3)	Profile Velocity mode
CiA402_OP_MODE_TORQUE_PROFILE (4)	Torque Profile mode
CiA402_OP_MODE_HOMING (6)	Homing mode
CiA402_OP_MODE_INTERPOLATED_POSITION (7)	Interpolated Position mode
CiA402_OP_MODE_CYCLIC_POSITION (8)	Cyclic Sync Position mode
CiA402_OP_MODE_CYCLIC_VELOCITY (9)	Cyclic Sync Velocity mode
CiA402_OP_MODE_CYCLIC_TORQUE (10)	Cyclic Sync Torque mode

I32_T CheckTimeoutMs: 逾时等待时间,单位 millisecond。

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

设定驱动器运动模式(Mode of operation),对象序号 0x6060。函数成功返回代表已成功切换驱动器的运动模式。

注意! 禁止于 Callback 函式中调用此函数

参阅:

2.4.2. NEC_CoE402GetOperationModeDisplay

读取实际驱动器运动模式(0x6061)

C/C++语法:

RTN_ERR NEC_CoE402GetOperationModeDisplay(CANAxis_T Axis, I8_T *MotionMode);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 I8 T*MotionMode:回传目前驱动器的运动状态

Define	CiA402 运动模式
CiA402_OP_MODE_PROFILE_POSITION (1)	Profile Position mode
CiA402_OP_MODE_PROFILE_VELOCITY (3)	Profile Velocity mode
CiA402_OP_MODE_TORQUE_PROFILE (4)	Torque Profile mode
CiA402_OP_MODE_HOMING (6)	Homing mode
CiA402_OP_MODE_INTERPOLATED_POSITION (7)	Interpolated Position mode
CiA402_OP_MODE_CYCLIC_POSITION (8)	Cyclic Sync Position mode
CiA402_OP_MODE_CYCLIC_VELOCITY (9)	Cyclic Sync Velocity mode
CiA402_OP_MODE_CYCLIC_TORQUE (10)	Cyclic Sync Torque mode

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

读回驱动器运动模式(Mode of operation display),对象序号 0x6061。

注意! 禁止于 Callback 函式中调用此函数

参阅:

2.4.3. NEC_CoE402SetParameter

设定 CiA402 驱动器对象参数

C/C++语法:

RTN_ERR NEC_CoE402SetParameter(CANAxis_T Axis, U16_T Index, U8_T SubIndex, U8_T LenOfByte, I32_T Value);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16_T Index: CiA 对象参数序号,请参阅驱动器手册

U8 T SubIndex: CiA 对象参数子序号,请参阅驱动器手册

U8_T LenOfByte: 物件的大小(1~4 bytes), 单位 byte

I32 T Value: 物件参数值

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

设定 CiA402 驱动器参数。使用本函数存取 CiA402 模块参数,本函数会自动根据该模块目前 PDO mapping 的方式自动采用 PDO 或者 SDO 的方式存取。若对象参数为 PDO mapping 参数,本指令以 PDO 存取。若非 PDO mapping 参数则采用 SDO方式存取。使用本函数必须前必须在程序初始化的过程中呼叫 NEC CoE402UpdatePdoMapping()。

驱动器的相关参数请参阅驱动器使用手册。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402GetParameter (); NEC_CoE402UpdatePdoMapping()

2.4.4. NEC_CoE402GetParameter

读取 CiA402 驱动器对象参数

C/C++语法:

RTN_ERR NEC_CoE402GetParameter(CANAxis_T Axis, U16_T Index, U8_T SubIndex, U8_T LenOfByte, void *pRetValue);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16 T Index: CiA 对象参数序号,请参阅驱动器手册

U8 T SubIndex: CiA 对象参数子序号,请参阅驱动器手册

U8_T LenOfByte: 物件的大小(1~4 bytes), 单位 byte

void *pRetValue: 回传对象参数值,给入指针的数据值的大小必需符合 LenOfByte

以避免指标存取错误.

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

读取 CiA402 驱动器的参数,驱动器的相关参数请参阅驱动器使用手册。使用本函数存取 CiA402 模块参数,本函数会自动根据该模块目前 PDO mapping 的方式自动采用 PDO 或者 SDO 的方式存取。若对象参数为 PDO mapping 参数,本指令以 PDO 存取。若非 PDO mapping 参数则采用 SDO 方式存取。使用本函数必须前必须在程序初始化的过程中呼叫 NEC_CoE402UpdatePdoMapping()。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402SetParameter (); NEC_CoE402UpdatePdoMapping();

2.4.5. NEC_CoE402GetActualPosition

读取驱动器马达实际位置(0x6064)

C/C++语法:

RTN_ERR NEC_CoE402GetActualPosition(CANAxis_T Axis, I32_T *Position);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I32_T *Position: 回传马达实际位置(对象序号:0x6040)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,必须将对象 0x6064 设定为 TxPDO mapping 对象。

参阅:

- 2.4.6. NEC_CoE402SetTargetPosition
- 2.4.7. NEC_CoE402GetTargetPosition

设定/读取目标位置(0x607A,PP,CSP)

C/C++语法:

RTN_ERR NEC_CoE402SetTargetPosition(CANAxis_T Axis, I32_T TargetPos);
RTN ERR NEC CoE402GetTargetPosition(CANAxis T Axis, I32_T *TargetPos);

参数:

CANAxis TAxis: 指定控制轴代号。轴代号由 NEC CoE402GetAxisId()取得

I32_T TargetPos: 设定目标位置(CoE: 0x607A)
I32_T *TargetPos: 回传目标位置(CoE: 0x607A)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,必须将对象 0x607A 设定为 RxPDO mapping 对象。TargetPositon 被用于 Profile Position mode(PP)和 Cyclic Sync Position mode(CSP)运动模式,可用 NEC CoE402SetOperationMode()切换运动模式

参阅:

NEC_CoE402SetOperationMode()

2.4.8. NEC_CoE402SetQuickStopDec

设定 Quick Stop 减速率(0x6085)

C/C++语法:

RTN_ERR NEC_CoE402SetQuickStopDec(CANAxis_T Axis, U32_T QuickStopDec);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U32_T QuickStopDec: 设定 Quick Stop 减速率(0x6085)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

此函数等同呼叫 NEC_CoE402SetParameter(Axis, 0x6085, 0, 4, (I32_T) QuickStopDec);

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402SetParameter ();

2.4.9. NEC_CoE402SetSoftPosLimit

设定软件位置极限(0x607D)

C/C++语法:

RTN_ERR NEC_CoE402SetSoftPosLimit(CANAxis_T Axis, I32_T MinPositionLimit, I32_T MaxPositionLimit);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I32_T MinPositionLimit: 负软件极限位置 (0x607D:01) I32_T MaxPositionLimit: 正软件极限位置 (0x607D:02)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

若要解除软件正负极限的功能将正负极限同时设定为0。

此函数等同呼叫 NEC_CoE402SetParameter(Axis, 0x607D, 1, 4, MinPositionLimit) 设定负极限 and NEC_CoE402SetParameter(Axis, 0x607D, 2, 4, MaxPositionLimit) 设定正极限.

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402SetParameter ();

2.4.10. NEC_CoE402SetMaxVelLimit

设定最大速度限制(0x607F)

C/C++语法:

RTN_ERR NEC_CoE402SetMaxVelLimit(CANAxis_T Axis, U32_T MaxVelocityLimit);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U32_T MaxVelocityLimit: 设定最大速度限制(0x607F)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

在 Profile Position mode (P2P), Profile Velocity mode(Jog) 等模式中设定最大速度限制。此函数等同呼叫 NEC_CoE402SetParameter(Axis, 0x607F, 0, 4, (I32_T) MaxVelocityLimit);

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402SetParameter ();

2.4.11. NEC_CoE402SetTargetVelocity

设定目标速度(0x60FF,PV,CSV)

C/C++语法:

RTN_ERR NEC_CoE402SetTargetVelocity (CANAxis_T Axis, I32_T TargetVel);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I32_T TargetVel: 设定目标速度(CoE: 0x60FF)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,必须将对象 0x60FF 设定为 RxPDO mapping 对象。TargetVelocity 被用于 Profile Velocity mode(PV)和 Cyclic Sync Velocity mode(CSV)运动模式,可用 NEC_CoE402SetOperationMode()切换运动模式

参阅:

NEC_CoE402SetOperationMode()

2.4.12. NEC_CoE402GetActualVelocity

读取当前速度(0x606C,PV,CSV)

C/C++语法:

RTN_ERR NEC_CoE402GetActualVelocity(CANAxis_T Axis, I32_T *ActualVel);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I32_T *ActualVel: 读取当前速度(CoE: 0x606C)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,必须将对象 0x606C 设定为 TxPDO mapping 对象。ActualVelocity 被用于 Profile Velocity mode(PV)和 Cyclic Sync Velocity mode(CSV)运动模式,可用 NEC CoE402SetOperationMode()切换运动模式

参阅:

NEC_CoE402SetOperationMode()

2.5. 点对点运动 (Profile Position mode)

2.5.1. NEC CoE402Ptp

2.5.2. NEC_CoE402PtpV

2.5.3. NEC_CoE402PtpA

启动单轴点对点运动(Profile Position mode)

C/C++语法:

RTN_ERR NEC_CoE402Ptp(CANAxis_T Axis, U32_T Option, I32_T TargetPos);
RTN_ERR NEC_CoE402PtpV(CANAxis_T Axis, U32_T Option, I32_T TargetPos, U32_T MaxVel);

RTN_ERR NEC_CoE402PtpA(CANAxis_T Axis, U32_T Option, I32_T TargetPos, U32_T MaxVel, U32_T Acc, U32_T Dec);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U32 T Option: 功能选项,采 bit 形式。两个功能以上,以 OR 方式输入

OPT_ABS (0x00000000): TargetPos 为绝对位置坐标OPT_REL(0x00000040): TargetPos 为相对位置坐标OPT_WMC (0x00010000): 等待 PTP 运动位置到达OPT_IMV(0x10000000): 忽略 MaxVel 输入参数

OPT_IAC (0x20000000): 忽略 Acc 输入参数 OPT IDC (0x4000000): 忽略 Dec 输入参数

I32_T TargetPos: 绝对或相对目标位置(CoE: Target Position 0x607A), 由 Option 设定决定 TargetPos 代表绝对或相对位置。

U32_T MaxVel: 最大速度 (CoE: Profile Velocity 0x6081)
U32_T Acc: 加速率 (CoE: Profile Acceleration 0x6083)
U32_T Dec: 减速率 (CoE: Profile Deceleration 0x6084)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函式使用"Profile Position mode"来完成点对点运动,因此须确认 CiA402 模块是 否支持 Profile Position (PP)模式。呼叫本函式时会检查并自动切换 Operation Mode 是否为 PP 模式。而 Ptp, PtpV 和 PtpA 的差别在于输入参数不同:

NEC_CoE402Ptp()只设定目标位置 TargetPos (CoE: Target Position 0x607A) 并启动 点对点运动,最大速度 MaxVel (CoE: Profile Velocity 0x6081)及加减速度 Acc, Dec (CoE: Profile Acceleration 0x6083, Profile Deceleration 0x6084) 基本上是依照 CiA402 模块目前的设定值。

NEC_CoE402PtpV() 设定目标位置 TargetPos (CoE: Target Position 0x607A) 和最大速度 MaxVel (CoE: Profile Velocity 0x6081)并启动点对点运动,而加减速度 Acc, Dec (CoE: Profile Acceleration 0x6083, Profile Deceleration 0x6084)是依照 CiA402 模块目前的设定值。

NEC_CoE402PtpA()设定所有相关参数包含目标位置 TargetPos (CoE: Target Position 0x607A),最大速度 MaxVel (CoE: Profile Velocity 0x6081), 加速度 Acc (CoE: Profile Acceleration 0x6083) 和减速度 Dec (CoE: Profile Deceleration 0x6084)并启动点对点运动。

Option "OPT REL (0x00000040)" 决定 Target Position 参数为相对位置或绝对位置

当 Option:OPT_WMC (Wait motion complete) 至能(enable), 此函数会等待点对点运动完成后或错误发生时返回, 其效果等同于呼叫 NEC CoE402WaitTargetReached()

OPT_IMV(0x10000000), OPT_IAC (0x20000000)和 OPT_IDC (0x4000000)是适用于 NEC CoE402PtpA(),表示忽略输入参数使用模块内部设定值。

呼叫 NEC_CoE402Halt() 可以暂停或从启 PTP 运动。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC CoE402WaitTargetReached(); NEC CoE402Halt()

2.5.4. NEC_CoE402WaitTargetReached

等待目标位置到达

C/C++语法:

RTN_ERR NEC_CoE402WaitTargetReached(CANAxis_T Axis);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

此函数为同步函数,通常配合 NEC_CoE402Ptp(), NEC_CoE402PtpV(), NEC_CoE402PtpA(),NEC_CoE402Jog() 和 NEC_CoE402JogA() 函式使用。若在 PTP 后呼叫,呼叫后直到 PTP 运动结束后才返回。若在 Jog 后呼叫,呼叫后直到到达 Target Velocity 速度后才返回。若返回错误代码表示运动失败或者暂停。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402Ptp(); NEC_CoE402PtpV();
NEC_CoE402PtpA();NEC_CoE402Jog();NEC_CoE402JogA();

2.6. 速度运动(Profile Velocity mode)

2.6.1. NEC CoE402Jog

2.6.2. NEC_CoE402JogA

启动单轴指定速度运转(Profile velocity mode)

C/C++语法:

RTN_ERR NEC_CoE402Jog(CANAxis_T Axis, U32_T Option, I32_T MaxVel);
RTN_ERR NEC_CoE402JogA(CANAxis_T Axis, U32_T Option, I32_T MaxVel, I32_T Acc,
I32_T Dec);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U32_T Option: 功能选项,采 bit 形式。两个功能以上,以 OR 方式输入 OPT_WMC (0x00010000): 等待到达所设定的最大速度后函式返回 OPT_IAC (0x20000000): 忽略 Acc 输入参数 OPT_IDC (0x4000000): 忽略 Dec 输入参数

I32_T MaxVel: 目标速度 (CoE: Target Velocity 0x60FF) 数值正负决定运动方向。

U32_T Acc: 加速率 (CoE: Profile Acceleration 0x6083) U32_T Dec: 减速率 (CoE: Profile Deceleration 0x6084)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函式使用"Profile Velocity mode"来完成 Jog 运动,因此须确认 CiA402 模块是否支持 Profile Velocity(PV)模式。呼叫本函式时会检查并自动切换 Operation Mode 是否为 PV 模式。而 Jog,和 JogA 的差别在于输入参数不同:

NEC_CoE402Jog()只设定目标速度 "MaxVel" (CoE: Target Velocity 0x60FF) 并启动 Jog 运动,加减速度(CoE: Profile Acceleration and Deceleration: 0x6083, 0x6084) 基本上是依照 CiA402 模块目前的设定值。

NEC_CoE402JogA() 设定所有相关参数包含目标速度"MaxVel" (CoE: Target Velocity 0x60FF),加速度 "Acc" (CoE: Profile Acceleration 0x6083) 和减速度"Dec" (CoE: Profile Deceleration 0x6084)并启动 Jog 运动。

当 Option:OPT_WMC (Wait motion complete) 至能(enable),此函数会等待 Jog 运动到达设定的速度后或错误发生时返回,其效果等同于呼叫 NEC_CoE402WaitTargetReached()

OPT_IAC (0x20000000)和 OPT_IDC (0x4000000)是适用于 *NEC_CoE402JogA* (),表示 忽略输入参数使用模块内部设定值。

呼叫 NEC CoE402Halt() 可以暂停或从启 Jog 运动。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402WaitTargetReached(); NEC_CoE402Halt()

2.6.3. NEC_CoE402Halt

停止/暂停运动

C/C++语法:

RTN_ERR NEC_CoE402Halt(CANAxis_T Axis, I32_T OnOff);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I32_T OnOff: 0:解除, 1:停止或暂停

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本含式主要控制 Controlword bit8:Halt (CoE: 0x6040), 用于停止或暂停目前的运动,停止的动作行为通常搭配 Halt option code (CoE:0x605D)参数的设定。详细的动作规格需参阅该模块说明书。

NEC_CoE402Halt()指令适用于所有操作模式(mode of operation), 当参数"OnOff" 设定为 1 时表示停止或暂停运动,若要重启运动必须先解除 Halt 状态,须将参数"OnOff"设定为 0。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC CoE402SetCtrlWord(); NEC CoE402GetCtrlWord()

2.7. 归零运动 (Homing mode)

2.7.1. NEC CoE402Home

2.7.2. NEC_CoE402HomeEx

启动单轴原点归零运动(Homing)

C/C++语法:

RTN_ERR NEC_CoE402Home(CANAxis_T Axis, U32_T Option);
RTN_ERR NEC_CoE402HomeEx(CANAxis_T Axis, U32_T Option, I8_T Method, I32_T Offset, U32_T MaxVel, U32_T ZeroVel, U32_T Acc);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得 U32 T Option: 功能选项,采 bit 形式。两个功能以上,以 OR 方式输入

OPT_WMC (0x00010000): 等待 Home 运动完成 OPT_MTD (0x08000000): 忽略 Method 输入参数 OPT_IMV (0x10000000): 忽略 MaxVel 输入参数

OPT_IAC (0x20000000): 忽略 Acc 输入参数 OPT_IZV (0x40000000): 忽略 ZeroVel 输入参数 OPT_IOF (0x80000000): 忽略 Offset 输入参数

18 T Method: 归零模式(CoE: 0x6098),请参与 CiA402 驱动器手册

I32_T Offset: 原点位置偏移量(CoE: 0x607C)

U32_T MaxVel: 归零运动最大速度(CoE: 0x6099:1) U32_T ZeroVel: 靠近寻找原点速度(CoE: 0x6099:2)

U32 T Acc: 归零运动加速率(CoE: 0x609A)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函式使用 CoE "Homing mode"来完成归零运动(Homing),因此须确认 CiA402 模块是否支持 Homing(HM)模式。呼叫本函式时会检查并自动切换 Operation Mode 是否为 HM 模式。而 Home,和 HomeEx 的差别在于输入参数不同:

NEC_CoE402Home() 单纯用来启动归零运动(Homing),相关的 Homing 参数如归零模式(CoE: 0x6098),原点位置偏移量(CoE: 0x607C)等基本上是依照 CiA402 模块目前的设定值。可使用 NEC CoE402SetParameter()单独设定相关参数值。

NEC_CoE402HomeEx() 设定所有相关参数包含归零模式 "Method " (CoE: 0x6098), 原点位置偏移量 "Offset " (CoE: 0x607C), 归零运动最大速度 "MaxVel" (CoE: 0x6099:1), 靠近寻找原点速度 "ZeroVel" (CoE: 0x6099:2)和归零运动加速率 "Acc" (CoE: 0x609A)并启动 Homing 运动。

当 Option:OPT_WMC (Wait motion complete) 至能(enable),此函数会等待 Homing 运 动 到 完 成 后 或 错 误 发 生 时 返 回 , 其 效 果 等 同 于 呼 叫 NEC_CoE402WaitHomeFinished()

Option: OPT_MTD (0x08000000), OPT_IMV (0x10000000), OPT_IAC (0x20000000), OPT_IZV (0x40000000), OPT_IOF (0x80000000)只适用于 *NEC_CoE402HomeEx*(),表示忽略输入参数使用模块内部设定值。

呼叫 NEC_CoE402Halt() 可以暂停或从启 Homing 运动。

注意!

禁止于 Callback 函式中调用此函数

除了引用"OPT_WMC"选项外,此函数返回时,不会清除归零运动启动位。我们建议用户在归零运动程序完成后,调用 NEC_CoE402ClearHomeStartBit 函数清除归零运动启动位。

参阅:

NEC_CoE402WaitHomeFinished(); NEC_CoE402Halt();
NEC CoE402ClearHomeStartBit();

2.7.3. NEC_CoE402WaitHomeFinished

等待单轴原点归零运动(Homing)结束

C/C++语法:

RTN_ERR NEC_CoE402WaitHomeFinished(CANAxis_T Axis);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

此函数为同步函数,呼叫后直到归零运动结束后才返回。若返回错误代码表示归零运动失败或者暂停。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402Home();NEC_CoE402HomeEx();

2.7.4. NEC_CoE402ClearHomeStartBit

清除单轴原点归零运动(Homing)启动位

C/C++语法:

RTN_ERR NEC_CoE402ClearHomeStartBit (CANAxis_T Axis);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

此函数用于清除原点归零运动启动位。当马达正处在归零运动种态下时,调用此函数,马达的行为会依据驱动器的设计,立即停止或继续执行归零运动。

参阅:

NEC_CoE402Home(); NEC_CoE402HomeEx();

2.7.5. NEC_CoE402CheckHomeStatus

检查当前归零运动状态

C/C++语法:

RTN_ERR NEC_CoE402CheckHomeStatus(CANAxis_T Axis, U16_T *pStatus);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

U16_T *pStatus: 传回当前归零运动状态

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

此函数用以取得当前归零运动状态。用户可在执行归零运动后,调用此函数已得知当前归零运动状态。此函数可能回传的状态如下所列:

#define HOMING_IN_PROGRESS	(0)
#define HOMING_TARGET_NOT_REACH	(1)
#define HOMING_COMPLETE	(2)
#define HOMING_INTERRUPTED	(3)
#define HOMING_ERR_VEL_ZERO	(4)
#define HOMING_ERR_VEL_NON_ZERO	(5)

除了归零运动仍处在"HOMING_IN_PROGRESS"之外,此函数在返回前,会一并清除归零运动启动位。

参阅:

NEC_CoE402Home();NEC_CoE402HomeEx();

2.8. 扭力控制 (Torque Control)

2.8.1. NEC CoE402SetTargetTorque

2.8.2. NEC_CoE402GetTargetTorque

设定/读取目标扭力 (CoE: 0x6071, PT, CST)

C/C++语法:

RTN_ERR NEC_CoE402SetTargetTorque(CANAxis_T Axis, I16_T TargetTorque);
RTN_ERR NEC_CoE402GetTargetTorque(CANAxis_T Axis, I16_T *TargetTorque);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I16_T TargetTorque: 设定目标扭力(CoE: 0x6071)
I16_T * TargetTorque: 回传目标扭力(CoE: 0x6071)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,但必须将对象 0x6071 设定为 RxPDO mapping 对象。

TargetTorque 通常被用于 Profile Torque mode(PT)和 Cyclic Sync Torque mode(CST) 运动模式,可用 NEC_CoE402SetOperationMode()切换运动模式。

Torque 单位视驱动器容量而定,通常一刻度为 0.1%,详细请参阅相关手册。

参阅:

NEC_CoE402SetOperationMode();NEC_CoE402GetActualTorque()

2.8.3. NEC_CoE402GetActualTorque

读取实际扭力 (CoE: 0x6077, PT, CST)

C/C++语法:

RTN_ERR NEC_CoE402GetActualTorque(CANAxis_T Axis, I16_T *TorqueActualValue);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I16_T *TorqueActualValue: 回传实际扭力 (CoE: 0x6077)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函数可于 Callback 函式中使用,但必须将对象 0x6077 设定为 TxPDO mapping 对象。

Torque 单位视驱动器容量而定,通常一刻度为 0.1%,详细请参阅相关手册。

参阅:

NEC_CoE402SetTargetTorque(); NEC_CoE402GetTargetTorque();

2.8.4. NEC_CoE402SetTorqueProfile

设定目标扭力与变化率(0x6071, 0x6087)

C/C++语法:

RTN_ERR NEC_CoE402SetTorqueProfile(CANAxis_T Axis, I16_T TargetTorque, U32_T TorqueSlope);

参数:

CANAxis_T Axis: 指定控制轴代号。轴代号由 NEC_CoE402GetAxisId()取得

I16_T TargetTorque: 设定目标扭力 (CoE: 0x6071)
U32_T TorqueSlope: 设定扭力变化率 (CoE: 0x6087)

回传值:

回传错误代码。

调用函数成功回传"ECERR_SUCCESS" (0),反之函数调用失败回传错误代码,错误代码定义于EcErrors.h头文件中。

用法:

本函式使用"Profile Torque mode"来完成 Torque 控制,因此须确认 CiA402 模块是 否支持 Profile Torque (PT)模式。呼叫本函式时会检查并自动切换 Operation Mode 是否为 PT 模式。

本函式会同时设定目标扭力 "TargetTorque" (CoE: 0x6071)与扭力变化率 "TorqueSlope" (CoE: 0x6087),并自动判断相关的 CoE 对象使用 PDO 或 SDO 存取。

Torque 单位视驱动器容量而定,通常一刻度为 0.1%,详细请参阅相关手册。

注意! 禁止于 Callback 函式中调用此函数

参阅:

NEC_CoE402SetOperationMode(); NEC_CoE402SetTargetTorque(); NEC_CoE402GetActualTorque()