

Temporal Inference

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Basic Inference Tasks

Filtering

$$P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$

Posterior probability over the **current** state, given all evidence up to present

Prediction

$$P(\boldsymbol{X}_{t+k}|\boldsymbol{e}_{1:t})$$

Posterior probability over a **future** state, given all evidence up to present

Smoothing

$$P(\boldsymbol{X}_k|\boldsymbol{e}_{1:t})$$

Posterior probability over a **past** state, given all evidence up to present

Best Sequence

$$\operatorname{arg\,max}_{oldsymbol{X}_{1:t}} P(oldsymbol{X}_{1:t} | oldsymbol{e}_{1:t})$$

Best state sequence given all evidence up to present

$$P(X_t|e_{1:t})$$

Posterior probability over the **current** state, given all evidence up to present

Where am I now?

$$P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) \propto P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1}) \sum_{\text{observation model}} P(\boldsymbol{X}_{t+1}|\boldsymbol{X}_t) P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$

Can be computed with recursion (Dynamic Programming)

$$P(m{X}_{t+1}|m{e}_{1:t+1}) \propto P(m{e}_{t+1}|m{X}_{t+1}) \sum_{m{X}_t} P(m{X}_{t+1}|m{X}_t) P(m{X}_t|m{e}_{1:t})$$
 observation model $m{X}_t$ motion model

What is this?

Can be computed with recursion (Dynamic Programming)

called a belief distribution

sometimes people use this annoying notation instead: $Bel(x_t)$

a belief is a reflection of the systems (robot, tracker) knowledge about the state **X**

Can be computed with recursion (Dynamic Programming)

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Where does this equation come from?

(scary math to follow...)

Can be computed with recursion (Dynamic Programming)

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

just splitting up the notation here

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{t+1},e_{1:t})$$

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$$P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) = P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{t+1},\boldsymbol{e}_{1:t})$$
 Apply Bayes' rule (with evidence)

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$$\begin{split} P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) &= P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{t+1},\boldsymbol{e}_{1:t}) \\ &= \frac{P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1},\boldsymbol{e}_{1:t})P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t})}{P(\boldsymbol{e}_{t+1}|\boldsymbol{e}_{1:t})} \quad \text{Apply Markov assumption on observation model} \end{split}$$

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$$\begin{split} P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) &= P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{t+1},\boldsymbol{e}_{1:t}) \\ &= \frac{P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1},\boldsymbol{e}_{1:t})P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t})}{P(\boldsymbol{e}_{t+1}|\boldsymbol{e}_{1:t})} \\ &= \alpha P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1})P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t}) \end{split} \quad \begin{array}{l} \text{Condition on the previous state } \boldsymbol{X_t} \\ \end{split}$$

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$$\begin{split} P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) &= P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{t+1},\boldsymbol{e}_{1:t}) \\ &= \frac{P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1},\boldsymbol{e}_{1:t})P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t})}{P(\boldsymbol{e}_{t+1}|\boldsymbol{e}_{1:t})} \\ &= \alpha P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1})P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t}) \\ &= \alpha P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1})\sum_{\boldsymbol{X}_{t}} P(\boldsymbol{X}_{t+1}|\boldsymbol{X}_{t},\boldsymbol{e}_{1:t})P(\boldsymbol{X}_{t}|\boldsymbol{e}_{1:t}) \end{split}$$

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{t+1}, e_{1:t})$$

$$= \frac{P(e_{t+1}|X_{t+1}, e_{1:t})P(X_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})}$$

$$= \alpha P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t, e_{1:t})P(X_t|e_{1:t})$$

$$= \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t)P(X_t|e_{1:t})$$

Hidden Markov Model example

'In the trunk of a car of a sleepy driver' model

binary random variable (left lane or right lane)

$$egin{aligned} oldsymbol{x}_0 & \longrightarrow & oldsymbol{x}_1 & \longrightarrow & oldsymbol{x}_2 & \longrightarrow & oldsymbol{x}_3 & \longrightarrow & oldsymbol{x}_4 \ & oldsymbol{x} & = \{x_{\mathrm{left}}, x_{\mathrm{right}}\} \end{aligned}$$

From a hole in the car you can see the ground

binary random variable (center lane is yellow or road is gray)

$$e = \{e_{\text{gray}}, e_{\text{yellow}}\}$$

	$x_{ m left}$	x_{right}
$P(\boldsymbol{x}_0)$	0.5	0.5

$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	$ x_{ m left} $	$x_{ m right}$	
$x_{ m left}$	0.7	0.3	What needs to sum to
$x_{ m right}$	0.3	0.7	one?

This is filtering!

$P(\boldsymbol{e}_t \boldsymbol{x}_t)$	$x_{ m left}$	x_{righ}
$e_{ m yellow}$	0.9	0.2
e_{gray}	0.1	8.0

What's the probability of being in the left lane at t=4?

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	$ x_{\text{left}} $	$x_{ m right}$	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
	•		$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Prediction step:
$$p({m x}_1) = \sum_{{m x}_0} p({m x}_1|{m x}_0) p({m x}_0)$$

Update step: $p(\boldsymbol{x}_1|\boldsymbol{e}_1) = \alpha \; p(\boldsymbol{e}_1|\boldsymbol{x}_1)p(\boldsymbol{x}_1)$

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	$ x_{\text{left}} $	$x_{ m right}$	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
	•		$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Prediction step:
$$p(\boldsymbol{x}_1) = \sum_{\boldsymbol{x}_0} p(\boldsymbol{x}_1 | \boldsymbol{x}_0) p(\boldsymbol{x}_0)$$

$$= \begin{bmatrix} 0.7 & 0.3 \end{bmatrix} (0.5) + \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} (0.5)$$

$$= \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	x_{left}	x_{right}	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
			$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Update step: $p(\boldsymbol{x}_1|\boldsymbol{e}_1) = \alpha \ p(\boldsymbol{e}_1|\boldsymbol{x}_1)p(\boldsymbol{x}_1)$

$P(\boldsymbol{x}_0)$	$x_{ m left}$	$x_{ m right}$	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	x_{left}	x_{right}	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
			$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

What is the belief distribution if I see **yellow** at t=1 $p(x_1|e_1 = e_{\text{vellow}}) = ?$

Update step:
$$p(\boldsymbol{x}_1|\boldsymbol{e}_1) = \alpha \ p(\boldsymbol{e}_1|\boldsymbol{x}_1)p(\boldsymbol{x}_1)$$
 $= \alpha \ (0.9 \ 0.2).*(0.5 \ 0.5)$ observed yellow $= \alpha \ \begin{bmatrix} 0.9 & 0.0 \\ 0.0 & 0.2 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.1 \end{bmatrix}$

$$pprox \left[egin{array}{c} 0.818 \\ 0.182 \end{array}
ight]$$
 more likely to be in which lane?

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(oldsymbol{x}_t oldsymbol{x}_{t-1})$	$ x_{\text{left}} $	$x_{ m right}$	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	$x_{ m right}$
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
			$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Summary

Prediction step:
$$p(\bm{x}_1) = \sum_{\bm{x}_0} p(\bm{x}_1|\bm{x}_0) p(\bm{x}_0)$$

$$= \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Update step:
$$p(m{x}_1|m{e}_1) = lpha \; p(m{e}_1|m{x}_1)p(m{x}_1)$$
 $pprox \left[egin{array}{c} 0.818 \\ 0.182 \end{array}
ight]$

$P(\boldsymbol{x}_0)$	x_{left}	$x_{ m right}$	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	x_{left}	$x_{ m right}$	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	$x_{ m right}$
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
	•		$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	0.8

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	$ x_{\text{left}} $	x_{right}	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
			$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Prediction step:
$$p(\boldsymbol{x}_2|e_1) = \sum_{\boldsymbol{x}_1} p(\boldsymbol{x}_2|\boldsymbol{x}_1) p(\boldsymbol{x}_1|e_1)$$

Update step:
$$p(\boldsymbol{x}_1|e_1,e_2) = \alpha \ p(\boldsymbol{e}_1|\boldsymbol{x}_1)p(\boldsymbol{x}_1)$$

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	x_{left}	$x_{ m right}$	$P(oldsymbol{e}_t oldsymbol{x}_t)$	$x_{ m left}$	x_{right}
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
	•		$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Prediction step:
$$p(\boldsymbol{x}_2|e_1) = \sum_{\boldsymbol{x}_1} p(\boldsymbol{x}_2|\boldsymbol{x}_1) p(\boldsymbol{x}_1|e_1)$$

$$= \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix} \begin{bmatrix} 0.818 \\ 0.182 \end{bmatrix} = \begin{bmatrix} 0.627 \\ 0.373 \end{bmatrix}$$

Why does the probability of being in the left lane go down?

$P(\boldsymbol{x}_0)$	x_{left}	x_{right}	$P(\boldsymbol{x}_t \boldsymbol{x}_{t-1})$	x_{left}	x_{right}	$P(oldsymbol{e}_t oldsymbol{x}_t)$	x_{left}	$x_{ m right}$
	0.5	0.5	$x_{ m left}$	0.7	0.3	$e_{ m yellow}$	0.9	0.2
	•		$x_{ m right}$	0.3	0.7	$e_{ m gray}$	0.1	8.0

Filtering:
$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

Update step:
$$p(\boldsymbol{x}_2|e_1,e_2) = \alpha \ p(e_2|\boldsymbol{x}_2)p(\boldsymbol{x}_2|e_1)$$

$$= \alpha \ \begin{bmatrix} 0.9 & 0.0 \\ 0.0 & 0.2 \end{bmatrix} \begin{bmatrix} 0.627 \\ 0.373 \end{bmatrix}$$

$$\approx \begin{bmatrix} 0.883 \\ 0.117 \end{bmatrix}$$

Why does the probability of being in the left lane go up?

Basic Inference Tasks

Filtering

$$P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$

Posterior probability over the **current** state, given all evidence up to present

Prediction

$$P(\boldsymbol{X}_{t+k}|\boldsymbol{e}_{1:t})$$

Posterior probability over a **future** state, given all evidence up to present

Smoothing

$$P(\boldsymbol{X}_k|\boldsymbol{e}_{1:t})$$

Posterior probability over a **past** state, given all evidence up to present

Best Sequence

$$\operatorname{arg\,max}_{oldsymbol{X}_{1:t}} P(oldsymbol{X}_{1:t} | oldsymbol{e}_{1:t})$$

Best state sequence given all evidence up to present

Prediction

$$P(X_{t+k}|e_{1:t})$$

Posterior probability over a **future** state, given all evidence up to present

Where am I going?

Prediction

same recursive form as filtering but...

What happens as you try to predict further into the future?

Prediction

$$P(oldsymbol{X}_{t+k+1}|oldsymbol{e}_{1:t}) = \sum_{oldsymbol{x}_{t+k}} P(oldsymbol{X}_{t+k+1}|oldsymbol{x}_{t+k}) P(oldsymbol{x}_{t+k}|oldsymbol{e}_{1:t})$$
 no new evidence

What happens as you try to predict further into the future?

Approaches its 'stationary distribution'

Basic Inference Tasks

Filtering

$$P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$

Posterior probability over the **current** state, given all evidence up to present

Prediction

$$P(\boldsymbol{X}_{t+k}|\boldsymbol{e}_{1:t})$$

Posterior probability over a **future** state, given all evidence up to present

Smoothing

$$P(\boldsymbol{X}_k|\boldsymbol{e}_{1:t})$$

Posterior probability over a **past** state, given all evidence up to present

Best Sequence

$$\argmax_{\boldsymbol{X}_{1:t}} P(\boldsymbol{X}_{1:t}|\boldsymbol{e}_{1:t})$$

Best state sequence given all evidence up to present

Smoothing

$$P(X_k|e_{1:t})$$

Posterior probability over a **past** state, given all evidence up to present

Wait, what did I do yesterday?

Smoothing

$$\begin{split} P(\boldsymbol{X}_k|\boldsymbol{e}_{1:t}) &= P(\boldsymbol{X}_k|\boldsymbol{e}_{1:k},\boldsymbol{e}_{k+1:t}) \\ &= \alpha P(\boldsymbol{X}_k|\boldsymbol{e}_{1:k}) P(\boldsymbol{e}_{k+1:t}|\boldsymbol{X}_k,\boldsymbol{e}_{1:k}) \\ &= \alpha P(\boldsymbol{X}_k|\boldsymbol{e}_{1:k}) P(\boldsymbol{e}_{k+1:t}|\boldsymbol{X}_k) \\ &\quad \text{`forward'} \quad \text{`backward'} \\ &\quad \text{message} \quad \text{message} \end{split}$$

this is just filtering

this is backwards filtering
Let me explain...

Backward message

$$P(m{e}_{k+1:t}|m{X}_k) = \sum_{m{x}_{k+1}} P(m{e}_{k+1:t}|m{X}_k,m{x}_{k+1}) P(m{x}_{k+1}|m{X}_k)$$
 conditioning $= \sum_{m{x}_{k+1}} P(m{e}_{k+1:t}|m{x}_{k+1}) P(m{x}_{k+1}|m{X}_k)$ Markov Assumption $= \sum_{m{x}_{k+1}} P(m{e}_{k+1:t}|m{x}_{k+1}) P(m{x}_{k+1}|m{X}_k)$ split $= \sum_{m{x}_{k+1}} P(m{e}_{k+1},m{e}_{k+2:t}|m{x}_{k+1}) P(m{x}_{k+1}|m{X}_k)$ observation model observation model

This is just a 'backwards' version of filtering where

initial message
$$P(\boldsymbol{e}_{t-1:t}|\boldsymbol{X}_t)=\mathbf{1}$$

recursive message

Basic Inference Tasks

Filtering

$$P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$

Posterior probability over the **current** state, given all evidence up to present

Prediction

$$P(\boldsymbol{X}_{t+k}|\boldsymbol{e}_{1:t})$$

Posterior probability over a **future** state, given all evidence up to present

Smoothing

$$P(\boldsymbol{X}_k|\boldsymbol{e}_{1:t})$$

Posterior probability over a **past** state, given all evidence up to present

Best Sequence

$$\underset{\boldsymbol{X}_{1:t}}{\operatorname{arg\,max}} P(\boldsymbol{X}_{1:t}|\boldsymbol{e}_{1:t})$$

Best state sequence given all evidence up to present

Best Sequence

$$\underset{oldsymbol{X}_{1:t}}{\operatorname{arg\,max}} P(oldsymbol{X}_{1:t} | oldsymbol{e}_{1:t})$$

Best state sequence given all evidence up to present

I must have done something right, right?

'Viterbi Algorithm'

Best Sequence

$$\max_{\boldsymbol{x}_1,...,\boldsymbol{x}_t} P(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t,\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1})$$

$$= \alpha P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1}) \max_{\boldsymbol{x}_t} \left[P(\boldsymbol{X}_{t+1}|\boldsymbol{x}_t) \max_{\boldsymbol{x}_1,...,\boldsymbol{x}_{t-1}} P(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_{t-1},\boldsymbol{X}_t|\boldsymbol{e}_{1:t}) \right]$$
recursive message

Identical to filtering but with a max operator

Recall: Filtering equation

$$P(\boldsymbol{X}_{t+1}|\boldsymbol{e}_{1:t+1}) \propto P(\boldsymbol{e}_{t+1}|\boldsymbol{X}_{t+1}) \sum_{\boldsymbol{X}_t} P(\boldsymbol{X}_{t+1}|\boldsymbol{X}_t) P(\boldsymbol{X}_t|\boldsymbol{e}_{1:t})$$
 recursive message

Now you know how to answer all the important questions in life:

Where am I now?

Where am I going?

Wait, what did I do yesterday?

I must have done something right, right?