a)

Consider the data:

$$CNF_{K} = \begin{cases} \langle \phi \rangle | \phi \text{ is a satisfiable } cnf - \text{formula where each variable } \\ \text{appears in at most } k \text{ places} \end{cases}$$

CNF is Conjunctive normal form; it contains few rules.

- A literal is Boolean variable or negated Boolean variable in the form
- Clause contains several literals connected with vs and As.

Now have to show that $CNF_2 \in P$.

<u>Class-P</u>: P is a class of languages that are decidable in polynomial time on a deterministic single —tape Turing —machine.

Let T_n be the polynomial time decider for CNF_2 .

 T_s can be described as follows:

$$T_{m{p}} = {\bf "}$$
 on input $\langle {m \phi} \rangle {\bf "}$:

According to CNF rules, choose the clauses:

- 1. Consider the first clause of ϕ . If it is of the form x, and there is a clause $-\infty$ in ϕ , reject.
- 2. CNF is the form $x \lor A$, where A is CNF. If x does not appear negated in other clauses, remove every clause of the form $x \lor B$ of ϕ and calculate the result ϕ , if there is no clauses in ϕ then accept.
- 3. Solve CNF where c occurs in every clause, where negation of c does not appear.
- 4. When searching with ϕ , if clauses found in the form $x \vee A$ and $\sim x \vee B$ then remove. Add $A \vee B$ in ϕ
- 5. Go to step 1.

Every time T_p processes each variable and reaches either accept or reject. Because of this the number of clauses in ϕ might decrease by 1 or 2. Hence running time of T_p becomes polynomial time in terms of the number of variables.

So,
$$CNF_2 \in P$$

b)

Now have to show that CNF_3 is NP-complete.

NP-complete: A language B is NP-complete if is satisfies two conditions:

- 1. B is in NP
- Every A in NP is polynomial time reducible to B.

Step 1: $CNK_i \in NP$: If CNK_i is in NP

> V, is a verified in polynomial time and it is described as follows:

$$V_p = \text{``on input} \langle \langle \phi \rangle, x \rangle$$
''

According to CNF rules, verify the following clauses:

- ➤ Verify each variable in \$\phi\$ which occurs in at most 3 places.
- ➤ Verify whether x is a satisfying assignment in \$\phi\$.
- > If both conditions are satisfied, then accept.
- Otherwise, reject.

Step 2: $3SAT \le_p CNR_3$: It is best example for CNR_3 satisfying assignment.

Let r_n be the polynomial time reduction from 3SAT to CNF_n .

When an input instance ϕ of $3SAT_{r_a}(\langle \phi \rangle)$ is given then construct an instance of CNK, from the following:

- > First read from left to right, select the best example variable that access more than three times in the formula. Example variable as S occurs in m multiple places. $(x_i \vee A_i)$, $(x_i \vee A_i)$ where x_i is S or negated S.
- \triangleright If nothing results more than three times, then output is ϕ
- \triangleright Select variables $S_1,...,S_m$, If any $(x_i \lor A_i)$ remove from the formula
- $> (S_1 \lor A_1) \land (\neg S_1 \lor S_2) \land (S_2 \lor A_2) \land (\neg S_2 \lor S_3) \bot (S_{\blacksquare} \lor A_{\blacksquare}) \land (\neg S_{\blacksquare} \lor S_{\blacksquare})$ > Go to step 1

Obviously reduced polynomial time $r_{_{g}}\big(\langle\phi\rangle\big)$ is a formula identified that every variable occurs at most three times. It is also clear that ϕ is satisfiable if and only if $r_sig(\langle\phi
angleig)$ is satisfiable. The r_s is a reduced polynomial time in terms of the number of variable in \$\phi\$ from (1) and (2) \(\begin{aligned} \text{CNF}_3 & \text{is NP} - \text{complete} \end{aligned}.