

Sequential Core-Set Monte Carlo

Boyan Beronov*, Christian Weilbach, Frank Wood Department of Computer Science

Trevor Campbell Department of Statistics * beronov@cs.ubc.ca

Background

Sequential Monte Carlo

- generic & recursive Bayesian inference
- reweighting & resampling updates to particle population
- rejuvenation: variance reduction via interleaved Markov chain Monte Carlo moves, requires access to *all past data* for asymptotic consistency

Bayesian core-sets

- core-set compression: data pre-processing for accelerating inference [1]
- generalization to *online belief representation* for variance reduction

Information geometric perspective

- centered log-likelihood functions as transportable tangent vectors to the statistical manifold of core-set posteriors
- Fisher information metric as similarity measure between observations for adaptive compression [4]
- online sparse approximation of density ratio (logarithmic map) current belief / prior

Motivation

Necessity of *streaming memory* mechanisms

- online inference & continual learning
- *large-scale* data (limited working memory)
- analysis by *synthesis* (dictionary, sketching)
- model interpretation by examples

Problems of previous approaches

- repeated access to all data
- heuristic approximations
- model-specific methods
- opaque representations

Contributions

Online sequential Monte Carlo (SMC) variant for generic exchangeable Bayesian models

- *higher accuracy* under resource bounds via Bayesian core-set [1] rejuvenation
- first generic & statistically sound *streaming* Bayesian core-set compression
- generalization of projection filtering [2] to core-set posterior exponential family

Algorithm

Rejuvenation in sequential Monte Carlo (SMC) leverages core-set memory

prior
$$p_0(\theta)$$
; exact MCMC target $p(\theta \mid x_1, \dots, x_N) \propto p_0(\theta) \cdot \prod_{j=1}^N p(x_j \mid \theta)$ likelihood $p(x \mid \theta)$; approximate MCMC target $\approx p_0(\theta) \cdot \prod_{j=1}^C p(\bar{x}_j \mid \theta)^{\bar{w}_j}$

Recompression in core-set projection filter (CPF) leverages SMC particles

- sparse non-negative least squares objectives in log-likelihood function space at **each filtering step**
- non-uniform (and hence recursively applicable) generalization of [5]

Objective for recompressed core-set weights \widehat{w}_i of centered potentials $f_i^{(t)}$ at belief state p_t under memory constraint M

$$\underset{\widehat{w} \in \mathbb{R}^{\bar{C}^{(t)}}}{\operatorname{argmin}} \ \mathbb{E}_{p_t} \left[\left(\sum_{j=1}^{\bar{C}^{(t)}} (\widehat{w}_j - \bar{w}_j^{(t)}) \cdot f_j^{(t)}(\cdot \; ; p_t) \right)^2 \right]$$
s.t. $\widehat{w} \geq 0$, $\|\widehat{w}\|_0 \leq M$,
$$f_j^{(t)}(\theta; q) \coloneqq \log p(\bar{u}_j^{(t)} | \theta) - \mathbb{E}_q \left[\log p(\bar{u}_j^{(t)} | \cdot) \right]$$

Experiments

Method comparison

Rejuvenation	Memory	Time	Error	
SMC-full (oracle)	O(T)	$O(T^2)$	none	filtering steps T
SMC-reservoir (baseline)	O(M)	O(MT)	stoch.	memory size M
SCMC (ours)	O(M)	O(MT)	det.	

Autoregressive model (synthetic)

Posterior KDE, 1 parameter

Normal-inverse-Wishart (synthetic)

Cost vs. posterior error, 27 parameters

Bayesian logistic regression (real data)

Cost vs. posterior error, 11 parameters

References

[1] Campbell, Broderick. 'Automated Scalable Bayesian Inference via Hilbert Coresets'. JMLR (2019).

[2] Brigo, Hanzon, LeGland. 'A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter'. IEEE Transactions on Automatic Control (1998).

[3] http://www.robots.ox.ac.uk/~fwood/talks/2015/agi-keynote-2015-probabilistic-programming.pdf [4] Campbell, Beronov. 'Sparse Variational Inference: Bayesian Coresets from Scratch'. NeurIPS (2019).

[5] Campbell, Broderick. 'Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent'. ICML (2018).