Champ électrique

Seule la direction importe, le sens sera apporté par la charge sur laquelle on "appliquera" le champ.

Quand on a une surface avec une forme facile on peut faire :

$$\Phi_E = \int \overrightarrow{E(r)} \cdot d \vec{S} = rac{Q_{
m int}}{arepsilon_0}$$

En fait on va entourer nos charges avec une forme (par exemple une sphère), donc on aura $Q_{\rm int}$ et on va calculer $d\vec{S}$ est toujours orthogonal à la surface par laquelle les charges passent (donc si le champ est dans le même sens alors le produit scalaire fera 1).

Potentiel électrique

Ce n'est pas un vecteur. C'est comparable à la hauteur en méca.

Comment calculer *V* **en un point** ? Charge(s) ponctuelle(s) :

$$V(r) = \sum_{i}^{n} k \frac{Q_{i}}{r_{i}}$$

Pour une surface avec une distribution de charges continue :

$$V(r) = \int_{S} k \frac{d_q}{r}$$

Attention V est un scalaire, pas un vecteur!

$$E - \nabla V$$

Conservation de l'énergie

$$E = K + U$$

L'énergie cinétique et l'énergie potentielle d'une charge q dans un potentiel électrique V créé par d'autres charges :

$$K = \frac{1}{2}mv^2$$

$$U = V \cdot q$$

U s'exprime toujours comme une énergie potentielle entre une charge et une ou plusieurs autres charges.

En méca, l'énergie potentielle dépend du champ dans lequel la charge est introduite (en méca U=mgh). En électromag pareil, elle dépend des autres charges présentes autour.

L'énergie potentielle est définie à une constante près. En méca on dit que U(surface de la Terre) = 0 pour simplifier les calculs. En électromag on dit $U(\infty) = 0$ (quand les deux charges sont éloignées à l'infini alors l'énergie potentielle est nulle).

$$W_{A \to B} = \Delta U$$

(par exemple en méca $W_{A\to B}=mgh_a-mgh_b)$

Si $\nabla V = 0$, le potentiel est constant, ça signifie que le champ est nul dans la direction dans laquelle on effectue le travail, mais on peut avoir un champ perpendiculaire à la direction.

Propriété des conducteurs dans un cas électrostatique

- $\vec{E} = 0$ à l'intérieur
- à l'intérieur ce n'est pas chargé (il y a un équilibre)
- \vec{E} est \perp , car c'est à la surface que toutes les charges se trouvent (et toute composante du champ parallèle ferait bouger les charges, ce qui n'est pas autorisé).

Formule de Poisson

On part de la formule de Gauss:

$$\int_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{\rm int}}{\varepsilon_0}$$

Intégrer sur la surface c'est comme intégrer sur le volume en dérivant le vecteur :

$$\Leftrightarrow \int_V \vec{\nabla} \cdot \vec{E} \cdot dV = \frac{Q_{\rm int}}{\varepsilon_0}$$

On retrouve la charge:

$$\begin{split} \Leftrightarrow \vec{\nabla} \cdot \vec{E} \int_V dV &= \frac{1}{\varepsilon_0} \int_V \rho \cdot dV \\ \Leftrightarrow \vec{\nabla} \cdot \vec{E} \int_V dV &= \frac{\rho}{\varepsilon_0} \int_V dV \\ \Leftrightarrow \vec{\nabla} \cdot \vec{E} &= \frac{\rho}{\varepsilon_0} \\ \Leftrightarrow \vec{\nabla}^2 \cdot \vec{V} &= \frac{\rho}{\varepsilon_0} \end{split}$$