Technology Adoption in a Hierarchical Network

Xintong Han¹ Lei Xu²

¹Concordia University

²Toulouse School of Economics

Motivation

- ► Modern economy
 - Disaggregation, specialization
 - Hierarchical network (or vertical, input-output network)
 - Propogation of decisions and shocks
- ► Technology adoption
 - Network effects/externalities: u = f(n)
 - e.g. fax machine
 - Network structure matters

Overview

- Research Question: How technology adoption is affected by the network structure? What policies can be implemented to promote technology adoption?
- Setting: the Python programming language
- Model
 - Dynamic model of technology adoption
 - Incorporate the network structure
 - Estimation under various assumptions
- Findings
 - Package developers benefit from more user downloads
 - Decisions to adopt Python 3 propogate through the links between packages: lower adoption cost for others
- Counterfactuals
 - Targeted promotion

Literature

- Technology Adoption
 - Katz and Shapiro (1985) and many
 - Gowrisankaran and Stavins (2004): ACH financial transaction
 - Ryan and Tucker (2012): videocalling technology
- ► Social Networks: Matthew Jackson (2010)
- ► Hierchical or Input-Output Networks
 - Acemoglu et al. (2012):
 - Brancaccio, Kalouptsidi, Papageorgiou (2018): global trade network

What is Python?

- A general-purpose programming language
 - like C or Java
 - vs. domain-specific languages: Stata, Matlab
 - Third-party packages: >140,000 available
 - Almost all are open source software (OSS)
- One of the most popular programming languages in the world
 - Good choice as a first programming language

Python Popularity

Time

Python Popularity

Terminology - Packages

- Packages: A collection of tools that enables users to do advanced tasks.
- other names: libraries, modules, (sub)routine
- e.g. Matrix Multiplication

$$A = [1, 2, 3], \qquad B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- ▶ Pure Python: loop: $1 \times 1 + 2 \times 1 + 3 \times 0 = 3$
- with package NumPy: $A \times B = 3$

Technology Adoption: Python 2 to Python 3

- ▶ Python 2: 2000
- Python 3: 2008
- New features that require foundamental changes more details
- ▶ Not backward compatible → adoption/switching cost
- Painful & conscious decision
- Python 3 adoption decision for each package: add support to Python 3

Hierarchical Network - Dependencies

- Division of Labor: packages usually have specialties
- ▶ e.g. NumPy: linear algebra, random number generators, etc

•
$$\hat{\beta} = (X'X)^{-1}X'y$$

- ► StatsModels: OLS, GLM, MLE, GMM, etc
 - it requires matrix inversion & multiplications from NumPy
 - i.e. NumPy is StatsModels' dependency
 - i.e. in order to use StatsModels, one has to install NumPy first
 - installation system: automatic checks and installs dependencies

Dependency Network Example

Data - PyPI - Package

name pandas license BSD

summary Powerful data structures for data analysis

home_page http://pandas.pydata.org

author The PyData Development Team

author_email pydata@googlegroups.com

version 0.10.1

requires_dist numpy ($\geq 1.9.0$)

pytz (≥2011k) python-dateutil

Programming Language :: Python :: 2 Programming Language :: Python :: 3

Topic :: Scientific/Engineering

Data - PyPI - Package

name pandas license BSD

summary Powerful data structures for data analysis

home_page http://pandas.pydata.org

author The PyData Development Team

 $author_email \quad pydata@googlegroups.com$

version 0.10.1

requires_dist numpy ($\geq 1.9.0$)

pytz (≥2011k) python-dateutil

> Programming Language :: Python :: 2 Programming Language :: Python :: 3

Topic :: Scientific/Engineering

Data - PyPI - Package

name pandas license BSD

summary Powerful data structures for data analysis

home_page http://pandas.pydata.org

author The PyData Development Team

 $author_email \quad pydata@googlegroups.com$

version 0.10.1

requires_dist numpy ($\geq 1.9.0$)

pytz (≥2011k)

python-dateutil

classifiers Intended A

Intended Audience :: Science/Research Programming Language :: Python :: 2

Programming Language :: Python :: 3

Topic :: Scientific/Engineering

Data - PyPI - Downloads

Table: Downloads Statistics (Before 2015)

File 1 (for Python 2)		
upload_time	2013-01-22T05:42:07	
python_version	2.7	
downloads	41564	
filename	pandas-0.10.1.win-py2.exe	
size	2041220	
File 2 (for Python 3)		
File	2 (for Python 3)	
File upload_time	2 (for Python 3) 2013-01-22T05:54:10	
	, ,	
upload_time	2013-01-22T05:54:10	
upload_time python_version	2013-01-22T05:54:10 3.2	

Data - PyPI - BigQuery

Table: Downloads Statistics (After 2015)

timestamp	2018-09-26 08:15:13.000 UTC
$country_{L}code$	FR
filename	pandas-0.10.1-cp32-macosx.whl
project	pandas
version	0.10.0
python	3.2
system	Mac OS X

Python Packages with Python 3 Support

- (a) Total Number of Packages
- (b) % of Packages with Py3 Support

Total Downloads of Top Packages as Percentage of All Downloads in 2017

Data Selection

- ► Total: 140k packages
 - Time Duration (Last Release First Release Date) \geq 1 Year: 12.9%
 - Downloads Per year \geq 2000: 30.8%
 - Total Number of Releases ≥ 5 : 38.9%
 - Total Releases / Time Duration ≥ 1 : 92.4%
 - Some Python 2/3 Support Info Available: 59.9%
 - Initial Support is Python 2 Only: 50.7%
- ▶ 4005 packages (3%) and 23267 observations

Utility Function - Downloads

- Motivations of OSS Contribution: altruism, ego gratification, career concerns
- Maximize the number of downloads per period
- Assume package developers make Python 3 adoption decisions collectively
- ▶ Denote $x_{i,t} = log(Downloads_{i,t})$
- ► AR1 Process:

$$x_{i,t} = \rho_0 + \rho_{ar} \cdot d_{i,t} \cdot AR_t + \rho_1 \cdot x_{i,t-1} + \epsilon_{i,t}$$

 AR_t : Python 3 adoption rates by packages $d_{i,t} \in \{0,1\}$: Package i's adoption decision

Python 3 Adoption Decision

- ▶ $d_{i,t} \in \{0,1\}$: package i's decision to add Python 3 support. i.e. support both Python 2 and Python 3
- Irreversible decision
- ► Note: this is package *i*'s adoption decision

Adoption Cost - Dependencies

Adoption Costs

- 1. update one's own codebase
- 2. dependencies without Python 3 support
 - find an alternative depedency that support Python 3
 - change the required code by oneself

Adoption Cost - Dependencies

- $V_i = \{A, B, C\}$
- $d_{A,t} = 0$ $d_{B,t} = 0$ $d_{C,t} = 1$

- $\mu_{i,t} = \sum_{j \in \mathcal{U}_i} \mathbf{1}\{d_{j,t} = 0\}$ number of dependencies without Python 3 support. in this example, $\mu_{i,t} = 2$
- $\blacktriangleright \mu_{i,t} = \sum_{j \in \mathcal{U}_i} \mathbf{1}\{d_{j,t} = 0\} \cdot ln(Size_{j,t})$
- $C_{i,t} = AC_0 + \alpha^{\mu} \cdot 2$

Assumption 1: At time t, a package i observes Python 3 adoption decisions made by its dependencies, namely, $d_{j,t}$ for all $j \in U_{i,t}$.

Reduced-Form Evidence

Model - Flow Utility

$$u_{i,t}(d) = \underline{\alpha}^{\times} x_{i,t}(d) - C_{i,t}(d) + \nu_{i,t}^{d}$$

where

$$C_{i,t}(d) = \begin{cases} \underline{AC_0} + \underline{\alpha^{\mu}} \mu_{i,t} & \text{if package } i \text{ adopts Py3: } d = 1 \\ 0 & \text{otherwise} \end{cases}$$

Assumption 2: $d_{j,t}$ affects $u_{i,t}$ for $j \in U_{i,t}$; not vice versa.

empirical evidence

Model - Timeline

Model

State variables:
$$S_{i,t} \equiv (x_{i,t-1}, d_{i,t-1}, \nu_{i,t}, \{d_{j,t}, S_{j,t}\}_{j \in U_{i,t}})$$

Value function & Bellman equation:

$$\begin{split} &V(\mathcal{S}_{i,t}, d_{i,t-1} = 0, v_{i,t}; \theta) \\ &= \max_{\{d_{i,t+\tau}\}_{\tau=0}^{\infty}} \mathbf{E}_t \{ \sum_{\tau=0}^{\infty} \beta^{\tau} u_{i,t+\tau}(S_{i,t+\tau}, d_{i,t+\tau}) | \mathcal{S}_{i,t}, d_{i,t}; \theta \} \\ &= \max_{d_{i,t} \in \{0,1\}} u_{i,t}(S_{i,t}, d_{i,t}; \theta) + v_{i,t}^{d_{i,t}} + \beta \mathbf{E}_t V(\mathcal{S}_{i,t+1}, v_{i,t+1} | \mathcal{S}_{i,t}, v_{i,t}, d_{i,t}; \theta) \end{split}$$

◆□ > ◆□ > ◆ 를 > ◆ 를 는 ※의 ♥ ○

Model

Assuming $v_{i,t}^{d_{i,t}}$ are iid logit errors,

$$\begin{split} &EV(\mathcal{S}, d = 0; \theta) \\ &= \int_{\mathcal{S}'} \log \{ \sum_{d' \in \{0,1\}} \exp(u(\mathcal{S}', d'; \theta) + \beta EV(\mathcal{S}', d'; \theta)) \} d\mathbf{P}_{\mathcal{S}'|\mathcal{S}} \end{split}$$

$$\begin{split} \widehat{\rho}_{i,t}^{1} \equiv & P(d_{i,t} = 1 | \mathcal{S}_{i,t}, d_{i,t-1} = 0, v_{i,t}; \theta) \\ = & \frac{\exp\{v(\mathcal{S}_{i,t}, v_{i,t}, d_{i,t} = 1; \theta)\}}{\sum_{d' \in \{0,1\}} \exp\{v(\mathcal{S}_{i,t}, v_{i,t}, d'; \theta)\}} \end{split}$$

$$\mathsf{MLE} \colon \theta^* = \arg\max_{\theta} \mathit{I}(\theta) = \prod_{i=1}^{N} \prod_{t=1}^{T} \widehat{p}_{i,t}^{0, \frac{1}{4}(d_{i,t}=0)} \widehat{p}_{i,t}^{1, \frac{1}{4}(d_{i,t}=1)}$$

Model - Transition Matrix

$$EV(S, d = 0; \theta)$$

$$= \int_{S'} \log \{ \sum_{d' \in \{0,1\}} \exp(u(S', d'; \theta) + \beta EV(S', d'; \theta)) \} d\underline{\mathbf{P}_{S'|S}}$$

State Variables: $S_{i,t} \equiv (x_{i,t-1}, d_{i,t-1}, \nu_{i,t}, \{d_{j,t}, S_{j,t}\}_{j \in U_{i,t}})$ LOM of two important elements: $x_{i,t}$, $\mu_{i,t}$

- \triangleright $x_{i,t}$: AR1 process
 - AR_t : perfect foresight
- $\mu_{i,t} \equiv \sum_{j \in U_{i,t}} \mathbb{1}(d_{j,t} = 0) \cdot ln(Size_{j,t})$: the number of Python 3 incompatible dependencies (weighted by size)

Intuition - Intertemporal Tradeoffs

current period t

- $\mu_{i,t} = 2$
- $C_{i,t}(d=1) = AC_0 + \alpha^{\mu} \cdot 2$
- e.g. package *i*'s belief: $\widehat{p}_{A,t+1}^1 = 0$, $\widehat{p}_{B,t+1}^1 = 1$

Intuition - Intertemporal Tradeoffs

current period t

- $\mu_{i,t} = 2$
- $C_{i,t}(d=1) = AC_0 + \alpha^{\mu} \cdot 2$
- e.g. package *i*'s belief: $\hat{p}_{A,t+1}^1 = 0$, $\hat{p}_{B,t+1}^1 = 1$

forecast t+1

- $\mu_{i,t+1} = 1$
- $C_{i,t}(d=1) = AC_0 + \alpha^{\mu}$

Model - Transition Matrix - Example

$$\mu_{i,t} = 2 \Longrightarrow \mu_{i,t+1} = \begin{cases} 2 & \text{$\widehat{p}_{B,t+1}^1 = b$} \end{cases}$$
 Probability
$$\mu_{i,t} = 2 \Longrightarrow \mu_{i,t+1} = \begin{cases} 2 & \text{A} & \text{B} & \text{C} & (1-a)\,(1-b) \\ 1 & \text{A} & \text{B} & \text{C} & (1-a)\,b \\ 0 & \text{A} & \text{B} & \text{C} & a\,b \end{cases}$$

Model - Transition Matrix

Assumption 3: Package i holds myopic expectations regarding the future Python 3 adoption probabilities by its dependencies, i.e. $\widehat{\rho}_{j,t+\tau}^1 = \widehat{\rho}_{j,t}^1$ for all $\tau \in \mathbb{N}$.

- lacksquare package i calculates $\widehat{p}_{j,t}^1$ given current state $S_{i,t}$
- huge simplification
- Future version: AR1? like inclusive value function

Identification & Estimation

$$\theta = \{\underbrace{\rho_0, \rho_1, \rho_{ar}}_{\theta_D}; \underbrace{\alpha^x, AC_0, \alpha^\mu, \alpha^{size}, \beta}_{\theta_S}\}.$$

- Step 0: Model Primitive
 - Time Period: Half Year
 - Initial estimate of θ_D^0 from AR1 process:

$$\mathbf{x}_{i,t} = \rho_0 + \rho_{\mathsf{ar}} \cdot \mathbf{d}_{i,t} \cdot AR_t + \rho_1 \cdot \mathbf{x}_{i,t-1} + \epsilon_{i,t}$$

► Step 1: Model Estimation using MLE:

$$\theta_S^1 = \arg\max_{\theta_S} I(\theta_S, \theta_D^0) = \prod_{i=1}^N \prod_{t=1}^T \widehat{p}_{i,t}^{0, 1_{\{d_{i,t}=0\}}} \widehat{p}_{i,t}^{1, 1_{\{d_{i,t}=1\}}}$$

Step 2: Re-estimate the AR1 process using $\widehat{\rho}_{i,t}^1(\theta_S^1,\theta_D^0)$ as IV for $d_{i,t}$

Estimation - Layered Hierarchical Network

Parameter Estimates of User Downloads

	(1)	(2)
	OLS	IV
$(\rho_{ar}) \ d_{i,t} \times AR_t$	0.165***	0.074***
	(0.01)	(0.01)
$(\rho_1) x_{i,t-1}$	0.898***	0.902***
	(0.00)	(0.00)
(ho_0) Constant	1.069***	1.061***
	(0.02)	(0.02)
N	54230	54230
R^2	0.804	0.803

Parameter Estimates of Adoption Model

Nonlinear	β	0.705***
Parameters (θ_S)		(0.074)
	α^{x}	3.461***
		(1.21)
	AC_0	-2.484***
		(0.099)
	$lpha^{\mu}$	-0.145***
		(0.021)
	$lpha^{\it size}$	-0.045**
		(0.015)
Log Likelihood		-8143
Number of Packages		4005
Number of Observations		23267

Parameter Estimates of Adoption Model

Nonlinear	β	0.705***
Parameters (θ_S)		(0.074)
	α^{x}	3.461***
		(1.21)
	AC_0	-2.484***
		(0.099)
	α^{μ}	-0.145***
		(0.021)
	$\alpha^{\it size}$	-0.045**
		(0.015)
Log Likelihood		-8143
Number of Packages		4005
Number of Observations		23267

- Six-month discount factor $\beta = 0.705$
- Equivalent to monthly $\beta_m = 0.943$
- ► Comparison to literature Lee (2013): 0.934 De Groote and Verboven (2018):

0.988

Parameter Estimates of Adoption Model

Nonlinear	β	0.705***
Parameters (θ_S)		(0.074)
	α^{x}	3.461***
		(1.21)
	AC_0	-2.484***
		(0.099)
	$lpha^{\mu}$	-0.145***
		(0.021)
	$\alpha^{\it size}$	-0.045**
		(0.015)
Log Likelihood		-8143
Number of Packages		4005
Number of Observations		23267

Figure: Adoption cost due to one incompatible dependency (convert α_{μ} to the same scale as AC0)

Actual vs. Simulated Adoption Rates

Counterfactual

Sponsorship

- ➤ Katz and Shapiro (1985) prediction: a new technology is more likely to succeed and spread faster with sponsorship (i.e. someone willing to promote it)
- Python Software Foundation
- ► Model costly promotion effort. Q: given limited resources, which packages should be targeted?
- ► Ideas of good targets:
 - low promotion cost
 - promotion is effective
 - key players in the network

Differences Between Simulated & Counterfactual AR

	Name	Number of Downstream Pkg
package 1	django	71
package 2	requests	23

Conclusion

Conclusion

- Dynamic model of technology adoption with a hierarchical network
- Estimation using a unique dataset of Python packages
- How the adoption inertia can be caused through incompatible "neighbors"

Future Work

- Data cleaning
- Relax the myopic assumption of future adoption probability
- Adoption rate in the AR1 download process
- More counterfactual policies

Thank you!

$$|Py3AdoptionDate_i - Py3AdoptionDate_j|$$
 $= \alpha + \beta \frac{DL_i}{DL_j} + \gamma 1(j \in U_i) \frac{DL_i}{DL_j}$

	(1)
	Adoption Date Gap
DL_i/DL_i	-4.801***
•	(0.04)
$1(j \in U_i) imes rac{DL_i}{DL_i}$	-1.214
J	(1.97)
Constant	24.907***
	(0.02)
Number of observations	2603384
R2	0.006

Back to model.

Python 3 New Features

- Default Encoding System
 - Python 2: ASCII
 - e.g. "café" → UnicodeEncodeError
 - Python 3: Unicode
 - ullet e.g. "café" \longrightarrow café
- Division
 - Python 2: 5/2 = 2
 - Python 3: 5/2 = 2.5

Back to Overview.