Inputs: F: The expectation of the global metric to optimize.

GBSD Optimization Scheme (Input F, Input K, Output U_i)

- K: The total number of different messages within the network.
- Output: U_i: The utility of message i.
 Objective: At each contact, maximize the gain Δ(F) on the global metric F

$F = \sum_{i=0}^{K(t)} f_i \quad \text{Where} \quad f_i \quad \text{is the per-message metric value (ex: message delivery probability or delivery delay)}$ • In the case of congestion (limited transfer opportunity) a DTN node should take the

drop (replication) decision leading to the best gain for F. To find this decision, we

differentiate **F** with respect to n_i , (number of copies of the message i), and then discretize and replace dn_i by $\Delta(n_i)$ to obtain: $\frac{K(t)}{c} \partial f_i$

$$\Delta(F) = \sum_{i=0}^{K(t)} \frac{\partial f_i}{\partial n_i} \Delta(n_i) = \sum_{i=0}^{K(t)} U_i \Delta(n_i) \text{ and } U_i = \frac{\partial f_i}{\partial n_i}$$

 $\begin{cases} \Delta(n_i) = -1 & \text{If we drop an already existing message i from the buffer} \\ \Delta(n_i) = 0 & \text{If no action for message i is taken} \\ \Delta(n_i) = +1 & \text{If we replicate message i during a contact (scheduling), or if we store a newly received message i (buffer management)} \end{cases}$

• Based on this, a DTN node should (i) replicate messages in the order of decreasing U_i (ii) drop the message with the lowest U_i when buffer is full