To,

IITD-AIA Foundation of Smart Manufacturing

Subject: Weekly Progress Report for Week 6

Dear Sir,

Based on my understanding and the topics covered, I have prepared the following progress report that addresses the relevant objectives of the project.

What happened last week – Week 5:

- Object detection and its associated algorithms
- Object detection with Faster R-CNN
- Explored about Lazy Predict tool
- Learned about Neural Style Transfer
- Annotated images using labelimg tool
- Implementation of YOLO Algorithm

What's happening this -week 6:

- Worked on the model to improve the model's accuracy
- Visualized the prediction of the model
- Created a custom classifier and trained it and test it on the images.
- Revised important concept of Deep Learning
- Visualized the prediction of the model
- Plotted the Accuracy and Loss Curves

Weekly Progress:

July 10:(Monday)

Created a custom classifier and trained it and test it on the images. Continued working on the project. Created a custom classifier and trained it and test it on the images.

July 11:(Tuesday)

Revised important concept of Deep Learning and Machine Learning. Continued my work on that project and trying to get more accuracy on the model than previous.

July 12:(Wednesday)

Continued the project work. Tried to handle overfitting to improve model's accuracy.

July 13:(Thursday)

Worked on the model to improve the model's accuracy. Tried to improve model's accuracy. Tried to improve accuracy of the model and saved the final model.

July 14:(Friday)

Visualized the prediction of the model. Worked on different visualizing techniques.

July 15:(Saturday)

Tried more visualization part in my project and continued my deployment process. Plotted the Accuracy and Loss Curves .

Visualized the prediction of the model. Worked on different visualizing techniques.

July 16:(Sunday)

Started learning about model deployment. Leaned about Deployment of Machine Learning Model With Flask .

GANTT CHART

ID	Name	Jun, 23				Jul, 23		
		04	11	18	25	02	09	16
1	Numpy/Pandas							
2	Basics of CNN Convoution Operation Padding							
3	PIL Library OpenCV	ш						
4	Image Manipulation with PIL							
5	Tensorflow Data Input Pipeline CNN		l					
6	Model Building using CNN		1					
7	CNN Classifiers		1					
8	KNN for Object Detection							
9	Fundamental Concepts DL							
10	Implementation DL Concepts							
11	Build a Model Using CNN							
12	Image Manipulation with OpenCV							
13	Implemented various functionalities of OpenCV			1				
14	Exploratory Data Analysis (EDA)			1				
15	Tensorflow framework for deep learning.			1				
16	YOLO algorithm for object detection.							
17	Semantic segmentation U-Net architecture							
18	Model Building							
19	Model Training using AC piston Dataset							
20	Checked the accuracy and loss of the model.							
21	Completed the abstract writing							
22	ResNet,AlexNet,MobileNet.				-			
23	created model by using Resnet Pretrained mo				-			
24	object detection algorithms.							
25	Fine-tuned the CNN model							
26	Experiment with various hyperparameters and							
27	Machine learning classification methods							
28	Explored about Lazy Predict tool							
29	Explored about implementation of YOLO Algori					1		
30	Bounding box predictions, intersection over uni					1		
31	Annotated images							
32	Learned about Neural Style Transfer.							
33	Object detection with Faster R-CNN							
34	Different Machine learning classification Methods							
35	Created a custom classifier and trained it						1	
36	Tried to handle overfitting						T	
37	Saved the model							
38	Visualized the result						1	
39	Deployement With Flask							
40	Revised important machine learning concepts.							

