A short Introduction to Sliding Mode Control Robust Control for Nonlinear Systems

Dr. Rainer Nitsche¹

¹Dept. Robotics System Design Group

Control Methods in Robotics, August 2021

Sliding Mode Objectives

Objectives of this class of nonlinear control?

- Robustness versus uncertainties / perturbations
- Finite time convergence towards the control objectives

Sliding Mode Objectives

Objectives of this class of nonlinear control?

- Robustness versus uncertainties / perturbations
- Finite time convergence towards the control objectives

Features for this class of control?

- Discontinuous control law
- For standard sliding mode (first order): chattering effect, robustness
- For higher order sliding mode: accuracy, finite time convergence, robustness

Sliding Mode Objectives

Objectives of this class of nonlinear control?

- Robustness versus uncertainties / perturbations
- Finite time convergence towards the control objectives

Features for this class of control?

- Discontinuous control law
- For standard sliding mode (first order): chattering effect, robustness
- For higher order sliding mode: accuracy, finite time convergence, robustness

Remark

Sliding mode as a phenomenon may appear in a dynamic system governed by ordinary differential equation with *discontinuous right hand side*

This is a text in second frame. For the sake of showing an example.

• Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

A motivating Example for SMC

Example

Sliding mode of the system [1]:

$$\ddot{x} = \sin(3t) + u \tag{1}$$

with sliding surface

$$s = c\dot{x} + x \tag{2}$$

with control law

$$u = -M\operatorname{sgn}(s) \tag{3}$$

Simulation results for M=3 and $c=1~{\rm s}^{-1}$

Remark

If the system is in sliding mode, *i. e.* s=0, the dynamics is $\dot{s}=\dot{x}+x=0$ and therefore indepentend of system parameters or disturbance \rightsquigarrow robust !

Sample frame title

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

TikZ Test

References

[1] Vadim I. Utkin et al. Road map for sliding mode control design. 6330 Cham, Switzerland: Springer, 2020. ISBN: 978-3030417086. DOI: 10.1007/978-3-030-41709-3.