ΕΚΠΑ, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αλγόριθμοι και Πολυπλοκότητα Τμήμα Άρτιων

Εαρινό **Ε**ξάμηνο 2019-2020 **Ε**ργασία 1

Παραδώστε τις λύσεις όλων των ασκήσεων σε ένα αρχείο pdf (ή jpg) στο e-class, κατά προτίμηση δακτυλογραφημένες σε Latex (ή Word).

- **1.** Έχετε να επιλέξετε ανάμεσα στους παρακάτω αλγορίθμους, που επιλύουν το πρόβλημα P διάστασης n:
 - Τον αλγόριθμο A, που διαιρεί το αρχικό πρόβλημα σε 4 υποπροβλήματα διάστασης $\frac{n}{2}$, επιλύει αναδρομικά κάθε υποπρόβλημα και συνδυάζει τις λύσεις σε χρόνο $\Theta(\frac{n^2}{logn})$.
 - Τον αλγόριθμο B, που διαιρεί το αρχικό πρόβλημα σε 9 υποπροβλήματα διάστασης $\frac{n}{3}$, επιλύει αναδρομικά κάθε υποπρόβλημα και συνδυάζει τις λύσεις σε χρόνο $\Theta(n^2)$.
 - Τον αλγόριθμο C, που διαιρεί το αρχικό πρόβλημα σε \sqrt{n} υποπροβλήματα διάστασης \sqrt{n} , επιλύει αναδρομικά κάθε υποπρόβλημα και συνδυάζει τις λύσεις σε γραμμικό χρόνο.

Ποιοι είναι οι χρόνοι εκτέλεσης αυτών των αλγορίθμων; Δίνεται T(1)=1. Ποιον θα επιλέγατε;

- **2.** Υποθέστε ότι έχετε $k=2^r, r>0$, ταξινομημένες ακολουθίες, η καθεμία με n στοιχεία, και θέλετε να τις συνδυάσετε σε μία ταξινομημένη ακολουθία με kn στοιχεία. Δώστε μία αποδοτική λύση σε αυτό το πρόβλημα, χρησιμοποιώντας τη στρατηγική 'Διαίρει και Βασίλευε'. Ποια είναι η χρονική πολυπλοκότητα της λύσης σας;
- 3. Δίνονται n μη κενά κλειστά διαστήματα φυσικών αριθμών: $[a_1,b_1], [a_2,b_2],\ldots,[a_n,b_n]$. Δυο διαστήματα λέγονται φωλιασμένα όταν το ένα είναι υποσύνολο του άλλου. Να διατυπώσετε έναν αποδοτικό αλγόριθμο (σε φυσική γλώσσα) που υπολογίζει το πλήθος των ζευγών φωλιασμένων διαστημάτων στο $[a_1,b_1], [a_2,b_2],\ldots,[a_n,b_n]$. Να αιτιολογήσετε την ορθότητα του αλγορίθμου σας και να υπολογίσετε την πολυπλοκότητά του. Παράδειγμα: για τα διαστήματα [1,8],[2,3],[3,4],[7,12], το πλήθος είναι [2,3],[3,4],[3,4] ([1,8],[3,4]).
- **4.** Θεωρήστε ότι σας δίνεται ένας πίνακας με όλους τους ακέραιους από το 0 ως το n εκτός από έναν. Έστω επίσης ότι $n=2^k-1$ για κάποιο ακέραιο k. Σχεδιάστε αλγόριθμο τύπου 'Διαίρει και Βασίλευε', που βρίσκει τον αριθμό που λείπει. Δεν επιτρέπεται να χρησιμοποιήσετε αλγορίθμους ταξινόμησης.

Bοή $\partial \epsilon$ ια: Θεωρήστε γνωστό ότι μπορείτε να βρείτε τον διάμεσο ενός πίνακα σε χρόνο O(n).

5. Το πρόβλημα του Μέγιστου μερικού αθροίσματος (ΜΜΑ) ορίζεται ως εξής. Δίνεται πίνακας αριθμών $A[1,\ldots,n]$. Να βρεθούν οι τιμές i και j με $1\leq i\leq j\leq n$ που μεγιστοποιούν το άθροισμα

$$\sum_{k=1}^{j} A[k].$$

Παράδειγμα: Αν A = [4, -5, 6, 7, 8, -10, 5], τότε i = 3 και j = 5 (καθώς 6+7+8=21).

Για να σχεδιάσουμε έναν αποτελεσματικό αλγόριθμο για το MMA εισάγουμε το πρόβλημα A(x), το οποίο συνίσταται στην εύρεση του δείκτη $j:x\leq j\leq n$ που μεγιστοποιεί την ποσότητα

$$\sum_{i=1}^{j} A[k].$$

Όμοια, το πρόβλημα $\Delta(x)$, που συνίσταται στην εύρεση του δείκτη $i:1\leq i\leq x$ που μεγιστοποιεί την ποσότητα

$$\sum_{k=i}^{x} A[k].$$

Παράδειγμα: A = [4, -5, 6, 7, 8, -10, 5], τότε A(4) = 5 [7+8=15], $\Delta(7) = 3$ [6+7+8-10+5=16].

- (α΄) Σχεδιάστε αλγορίθμους που υπολογίζουν τις συναρτήσεις A, Δ σε χρόνο O(n).
- (β΄) Δοθέντος αλγορίθμου που υπολογίζει την A σε χρόνο O(n), σχεδιάστε έναν απλό αλγόριθμο χρόνου $O(n^2)$ για το MMA.
- (γ΄) Δοθέντων αλγορίθμων που υπολογίζουν τις A, Δ σε χρόνο O(n), σχεδιάστε έναν αλγόριθμο τύπου 'Διαίρει και Βασίλευε' που λύνει το MMA σε χρόνο $O(n\log n)$.

Διευκρίνηση: Οι αλγόριθμοι θα πρέπει να δοθούν σε φυσική γλώσσα και όχι σε κώδικα.