Skein realization of cluster algebras

with coefficients from marked surfaces

Watoru Yuasa (RIMS
JSPS research fellow)

with Tukasa Ishibashi (RIMS) Shunsuke Kano (Tohoku Univ.)

§ Introduction

@ For a "surface" Σ , show " \cong "

algebra of knots in $\Sigma \times [0,1]$ skein rel.

\(= \"\valled " today surface with coefficient

Skein algebra \cong quantum cluster algebra Skein alg. at g=1 \cong Cluster algebra

"trace of "
line op.

Hom (T1, G) / G

@ Application

- · positive elements
- · expansion formulae

 \leftrightarrow theta basis

bracelet

$$\Sigma := \{ 6...6 \}$$
 EM3: a set of special points

Tang
$$(\Sigma) := \{ \text{ tangle diagrams on } \Sigma \} / (R1') (R2) (R3) (mR) \}$$

$$(R2) \qquad \longleftrightarrow \qquad) \left($$

(mR)
$$\leftrightarrow$$
 7777 outside of I

$$T_1 \cdot T_2 :=$$

$$\emptyset$$
 Skein algebra $\mathcal{S}(\Sigma) := \mathbb{Z}_8 \operatorname{Tang}(\Sigma) / \text{"skein relation"}$

$$\mathcal{C}^{\frac{1}{2}} \quad \bigvee_{7/7/7} = \bigvee_{7/7/7} = \mathcal{C}^{\frac{1}{2}} \bigvee_{7/7/7}$$

Thm (Muller 2016)

- \bullet $\mathcal{A}_{s_{\mathfrak{g}}(\mathfrak{sl},\Sigma)} \subset \mathcal{S}(\Sigma)[\delta'] \subset \mathcal{U}_{s_{\mathfrak{g}}(\mathfrak{sl},\Sigma)} \subset \operatorname{Frac} \mathcal{S}(\Sigma)$
- \emptyset $A_{s_{i}(A_{i},\Sigma)} = \mathcal{U}_{s_{i}(A_{i},\Sigma)}$

$$\Rightarrow \mathcal{A}_{S_{2}(al_{1},\Sigma)} = \mathcal{S}(\Sigma)[\partial^{\cdot}] = \mathcal{U}_{S_{2}(al_{1},\Sigma)}$$

c.f. [Ishibashi - Y.]
$$S_{g}(\Sigma)[\partial^{-1}] \subset A_{s_{2}(g,\Sigma)}$$
 $g = sl_{3}$, sp_{4}

$$\sim \gamma e^{n_1}e^{n_2} = \sum a_i(s) f_i$$
 $e e^{r_i}$

the sticking trick

$$\frac{r}{r} = 2^{-1} - 2^{-2}$$

monomial in simple arcs = monomial in cluster var.'s

he cutting trick
$$\frac{1}{100} r = 2 \frac{111}{100} + 2^{-1} \frac{111}{100}$$

monomial in
$$=$$
 cluster $=$ monomial in C_{Δ}

$$\underline{eg}_{\underline{l}}$$
 $\mathcal{F}: a \text{ bracelet} \Rightarrow b_{i}(g) \in \mathbb{Z}_{+}[g^{\pm \frac{i}{2}}]$

§ The skein algebra of a walled surface

o walled surface Iw

 \sum : a surface with <u>marked points</u> $M = M_0 \coprod P$

a wall W = W_∞ ⊥ W_o of ∑

: a collection of <u>simple loops</u> & <u>simple arcs</u>

Wo Wa

s.t. {UW only has transverse double points $0.5 \in M$ for $0.5 \in W_{\infty}$

a chamber of Σ_{w} : a connected component of $\Sigma \setminus \cup w$

<u>e.g.</u> • $\Sigma_{w} =$

• W = an ideal triangulation ←→ principal coefficients

@ tangles in Σ_w : Tang (Σ_w)

a tangle diagram on Σw : a tangle diagram on Σ which intersects with UW transversally

Tang $(\Sigma_w) := \frac{1}{2} + \frac{1}{2} +$

Remark We forbid the following moves:

$$@$$
 The skein algebra $\mathcal{S}(\Sigma_w)$ of Σ_w ($P = \emptyset$)

$$\mathcal{R}_{w} := \mathbb{Z} \left[g^{\pm \frac{1}{2}}, \mathcal{Z}_{\xi, +}^{\pm 1}, \mathcal{Z}_{\xi, -}^{\pm 1}, \alpha_{\zeta}^{\pm 1} \mid \xi \in W_{\infty}, \zeta \in W_{0} \right]$$

$$\mathcal{S}(\Sigma_w) = R_w \operatorname{Tang}(\Sigma_w) / \underline{\operatorname{skein}} \operatorname{relations}$$

skein rol.
$$\begin{cases} \left\langle = 8 \right\rangle \left(+ 8^{-1} \right) & 0 = -\left(8^{1} + 8^{-1} \right) & \emptyset \\ \left\langle 8^{-\frac{1}{2}} \right\rangle \left\langle = \left\langle 8^{\frac{1}{2}} \right\rangle \left\langle \alpha_{\nu} = Z_{\nu,+} Z_{\nu,-} \right\rangle & \mathcal{O} = 0 \end{cases}$$

$$\Rightarrow \left\langle \left(\alpha_{\nu} = Z_{\nu,+} Z_{\nu,-} \right) & \mathcal{O} \in W_{\infty} \right\rangle$$

$$\Rightarrow \left\langle \left(\alpha_{\nu} = Z_{\nu,+} Z_{\nu,-} \right) & \mathcal{O} \in W_{\infty} \right\rangle$$

$$\frac{\text{e.g.}}{a_{\xi}} = a_{\xi}$$

$$Z_{\xi,+} = Z_{\xi,+} Z_{\xi,-}$$

$$Z_{\xi,+} = Z_{\xi,+} Z_{\xi,-}$$

$$= \alpha_{\S}^{-1} = \alpha_{\S}^{-1} \times_{\S,+} \times_{\S,-} = \cdots$$

(WR)
$$\frac{1}{2} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$$

<u>Proposition</u> • $\mathcal{S}(\Sigma_{W})$ is an Rw-free module

- simple arcs are non-zero divisors. $\cdot \text{S}(\Sigma_w) \subset \text{Frac S}(\Sigma_w) \ (\text{if } w \text{ is an ideal triangulation})$

§ Integral X - laminations & Coefficients

 \triangle : an ideal triangulation

$$I = I_f \sqcup I_{uf} \longleftrightarrow e(\Delta)$$
: the set of edges of Δ

1 Integral X-lamination L

$$\mathcal{L} = \coprod_{i} Y_{i} / \underset{\text{isotopy}}{\sim} \text{isotopy}$$
vel. to Ma

- s.t. Y_i is a simple loop or simple arc $\partial Y_i \in \partial \Sigma \setminus M_{\partial}$
 - · Y; does not bound a disk
 - { }; } : mutually disjoint curves

- the coordinate $\chi^{\triangle} = (\chi_{\hat{i}}^{\triangle})_{i \in Iuf}$ of L

$$\chi_{\hat{i}}^{\Delta}(L) := \sum_{\hat{i}} \widehat{Int}_{\Delta}(e_{\hat{i}}, \gamma_{\hat{i}})$$

- a multi lamination $L = (L_i)_{i \in J}$ is a tuple of integral X - laminations.

$$\emptyset$$
 coefficients $p_{\perp}^{\Delta} = (p_{\perp,\hat{i}}^{\Delta})_{\hat{i} \in I}$ $p_{\perp,\hat{i}}^{\Delta} \in Trop(u_{\hat{j}} | \hat{j} \in J)$

$$P_{L,\hat{i}}^{\triangle} := \begin{cases} \prod_{\hat{i} \in J} U_{\hat{i}}^{x_{\hat{i}}^{\triangle}(L_{\hat{i}})} & \text{if } \hat{i} \in L_{uf} \\ 1 & \text{if } \hat{i} \in I_{f} \end{cases}$$

$$P_{\mu,i}^{\Delta} = u_{i}^{-2} u_{2}^{-2}$$

$$P_{L,i_2}^{\Delta} = u_i^3 u_2^{-2}$$

e.g. (Principal coefficients)

$$\mathbb{P} = \operatorname{Trop} (u_{\overline{i}} | \overline{i} \in I)$$

$$\mathbb{L}^{+}(\Delta) := (\mathcal{L}_{\overline{i},+} | \overline{i} \in I)$$

e.g. (Coefficients associated with a wall W)

shear coord of L $\widetilde{B}_{\Delta} = \left(B_{\Delta} \mid \underline{\square} \right)$

Theorem · For a walled surface Iw.

$$\mathcal{S}(\Sigma_{\mathsf{W}})[\delta^{-1}]|_{g=1} \cong \mathcal{A}_{\Sigma}[L(\mathsf{W})]$$

$$\mathcal{L}\left(\Sigma_{W^{\dagger}(\mathbb{L})}\right)\left[\partial^{-1}\right] \left| \begin{array}{c} \mathcal{L}_{\S,-} = 1 \\ \mathcal{L}_{\S,+} = \mathcal{E}_{J}\left(\S \in L_{J}\right) \\ \mathcal{L}_{\eta} = \mathcal{L}_{J}\left(\gamma \in \mathcal{L}_{J}\right) \end{array} \right.$$

sketch of proof:
$$\{S[\eth'] \to A$$
, expansion by the sticking trick $A \to S[\eth']$, $A_{\bar{\imath}} \mapsto e_{\bar{\imath}}$
Compare skein & exchange relations

© Exchange & skein relations (examples)

 $\chi^{\triangle}_{\downarrow}(\downarrow_{\downarrow,+}) = + 1$ $\chi^{\Delta}_{i}(L_{i,t}) = 0$ (i + 1)

$$A_1A_1' = u_1 A_2A_4 + A_3A_5$$

$$P_{L,1}^+ = u_{1,+} u_{2,+} u_{2,-} u_{3,-}$$
 $P_{L,1}^- = u_{1,-}$

A,A, = U1,+ U2,+ U2,- U3- A2 A4 + U1,- A3 A5

$$= Z_{3,-} Q_2 Z_{1,+} + Z_{1,-} + Z_{1,-}$$

$$e_1e_1' = Z_{1,+}Z_{2,+}Z_{2,-}Z_{3,-}e_2e_4 + Z_{1,-}e_3e_5$$

§ punctured case (in progress)

For a puncture
$$\bigvee_{p}^{\xi_{n}} = \bigvee_{p}^{W_{p}}$$

$$\mathcal{Z}_{\mathsf{P}} :=
\begin{bmatrix}
\prod_{i} \mathcal{Z}_{\xi_{i},+} & = \prod_{i} \mathcal{Z}_{\xi_{i},-}
\end{bmatrix}$$

o skein relation

$$\begin{array}{c} \begin{array}{c} W_{p} \\ \end{array} = \left(\begin{array}{c} 2 + 2^{-1} \end{array} \right) \, Z_{p} \, \end{array} \, , \\ \begin{array}{c} V_{p} \\ \end{array} = \left(\begin{array}{c} 2 + 2^{-1} \end{array} \right) \, Z_{p} \, \end{array} \, + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array} + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array} + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array} + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array} + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array} + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \, W_{p} \\ \end{array}$$

Musiker - Williams (2013) "Matrix formulae and Skein ... "

$$A_1 A_2 A_3 A_4 = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix}$$

$$= Z_{1234,-}$$

$$A_1A_2A_3^2$$

$$+ Z_{134,-} Z_{2,+}$$

$$A_2A_3A_4$$

$$+ Z_{14,-} Z_{23,+}$$

$$A_3A_4A_5 A_6 A_8$$

$$A_4A_5A_6 A_8$$

$$A_4A_6A_6 A_8$$

$$\longrightarrow \mathcal{F}_{n+1} = \sum_{k=0}^{n} \mathcal{Z}_{+,1\cdots n-k} \mathcal{Z}_{-,n+n-n} A_{n-k}^{-1} A_{n-k+1}^{-1} A_{n+1} A_{n+k}^{\prime} A_{0}$$