

НАУЧНАЯ ГРУППА (1995-2005)

С. И. Страхова

НИИЯФ МГУ

А. Н. Грум-Гржимайло

НИИЯФ МГУ, Отдел ядерно-спектроскопических методов

Е. В. Грызлова

НИИЯФ МГУ, Отдел электромагнитных процессов и взаимодействия атомных ядер

А. И. Магунов

Институт общей физики РАН, Москва.

I. Rotter

Max-Planck-Institut für Physik komplexer Systeme, Drezden, Germany

M. Meyer

LIXAM Centre Universitaire Paris-Sud, Orsey Cedex, France

Московский Государственный Университет им. М.В. Ломоносова

НОВАЯ КВАНТОВАЯ СИСТЕМА: «ATOM + ЛАЗЕРНОЕ ПОЛЕ»

ПЕРЕКРЫВАЮЩИЕСЯ И ВЫРОЖДЕННЫЕ КВАЗИСТАЦИОНАРНЫЕ СОСТОЯНИЯ

СПЕКТРОСКОПИЯ КВАЗИСТАЦИОНАРНЫХ СОСТОЯНИЙ и ТЕОРИЯ РАССЕЯНИЯ

Резонансу в сечении фотоионизации атома соответствует полюс S — матрицы в сечении процесса рассеянии электронов на остаточном ионе.

$$\sigma \sim \frac{\Gamma^2/2}{(E-E_{res})^2 + \Gamma^2/4}, \quad \varepsilon = E-E_{res} + i\Gamma/2$$

$$S \to \frac{-\Gamma/2}{E - E_{ras} + i\Gamma/2}$$

ЕДИНАЯ ТЕОРИЯ ЯДЕРНЫХ И АТОМНЫХ РЕАКЦИЙ

Ядерная физика

- H. Feshbach// Unified theory of nuclear reaction, Ann. Of Phys. 5 357 (1958);
- H. Feshbach// Unified theory of nuclear reaction III: Overlapping resonances, Ann. Of Phys. 43 410 (1967).

$$_{Z}^{N}A + \gamma \rightarrow_{Z}^{N}A^{*} \rightarrow_{Z}^{N-1}A + N$$

Атомная физика

- U.Fano// Phys.Rev. 124,1866-1879, 1961
- F. H. Mies// Configuration Interaction Theory. Effects of overlapping resonance, Phys. Rev.

175 164 (1968).

$$A + \gamma \rightarrow A^{**} \rightarrow A^+ + e^-$$

ПЕРЕКРЫВАНИЕ СОСТОЯНИЙ ДВУХ РИДБЕРГОВСКИХ СЕРИЙ В АТОМАХ

F. H. Mies// Configuration Interaction Theory. Effects of overlapping resonance, Phys. Rev. **175** 164 (1968).

$$A + e^- \leftrightarrow \sum A(n)^- \leftrightarrow A + e^-$$

Отношение полного сечения рассеяния к сечению упругого рассеяния

ЛАЗЕРНО ИНДУЦИРОВАННЫЕ РЕЗОНАНСЫ В НЕПРЕРЫВНОМ СПЕКТРЕ АТОМА

Ю.И.Геллер, А.К.Попов. Институт физики им. И.В.Киренского СО РАН, Красноярск. Phys.Lett. 82A, N1, p.4-6, 1981

ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ ПРОЦЕССЫ

ЛИНЕЙНАЯ ОПТИКА γ**+A**

$$\vec{P} = \kappa \vec{E}$$

НЕЛИНЕЙНАЯ ОПТИКА γ+**A**

$$\vec{\mathbf{P}} = \chi(-\omega_0; \omega_1, \omega_2, \dots) \vec{E}_1 \vec{E}_2 \dots$$

$$\omega_0 = \sum \omega_i$$

Генерация гармоник
 Многофотонная ионизация

ЧАСТОТЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И ПОТЕНЦИАЛЫ ИОНИЗАЦИИ АТОМОВ.

Название	Активное вещество	Длина волны, мкм Энергия фотона,	
Углекислый газ	CO ₂	10,6	0,11
Черный гранат	Cr ⁴⁺ : YAG	1,53	0,78
Форстерит	Cr ⁴⁺ : Mg ₂ SiO ₄	2,34	0,96
Неодим	Nd: стекло	1,05	1,14
Лисаф	Cr ³⁺ : LiSAF	0,85	1,41
Титан – сапфир	Ti^{2+} : Al_2O_3	0,78	1,54
Рубин	Cr^{3+} : Al_2O_3	0,69	1,74
Эксимер	XeF, XeCl, KrF, KrCl	0,35, 0,41, 0,25, 0,22	3,43, 3,87, 4,80, 5,45

FREE-ELECTRON LASERS

ВЗАИМОДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С АТОМОМ

ВОЗМОЖНО ЛИ ВООБЩЕ ПОГРУЗИТЬ АТОМ В ЛАЗЕРНОЕ ПОЛЕ БОЛЬШОЙ ИНТЕНСИВНОСТИ?

Напряженность поля «внутри» атома водорода $\sim 5*10^9$ В/см. Чтобы создать такую же напряженность, лазерное поле должно иметь интенсивность $\sim 3,5*10^{16}$ Вт/см², что соответствует плотности потока фотонов $\sim 10^{34}$ фотонов/(см²сек).

Интенсивность лазера

меняется:

t – время увеличения амплитуды до максимальной, Т – время удержания максимальной амплитуды.

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ СИЛЬНЫХ ————— ЛАЗЕРНЫХ ПОЛЕЙ

I<3,5*10 ¹⁶ Вт/см ²	Нелинейная атомная (электронная) физика. Стабилизация и пленение заселенности, короткие импульсы.			
I>10 ¹⁷ Вт/см ²	Высокотемпературная сверхплотная лазерная плазма (среда, в которой пытаются создать рентгеновский лазер)			
I>10 ¹⁹ Вт/см ²	Возможно влияние поля на состояние ядра. Релятивистская ядерная (лазерная) плазма. Ядерные реакции с участием электронов «атома».			
I>10 ²³ BT/cm ²	Нелинейная квантовая (лазерная) электродинамика. •Рассеяние фотонов на электронах в лазерных полях •Рождение электрон-позитронных пар •Влияние на состояние физического вакуума •Появление вакуумного черенковского излучения			

А. А. Андреев, А. А. Мак, В. Е. Яшин// Квантовая электроника 24, 2 (296) 99 1997

НАС БУДЕТ ИНТЕРЕСОВАТЬ ИНТЕНСИВНОСТЬ ЛАЗЕРНЫХ ПОЛЕЙ I<10¹⁶ BT/CM²

ИЗМЕНЕНИЕ СТРУКТУРЫ КОНТИНУУМА АТОМА ПРИ «ПОГРУЖЕНИИ» ЕГО В ЛАЗЕРНОЕ ПОЛЕ.

УПРАВЛЯЕМОЕ ПЕРЕКРЫВАНИЕ РЕЗОНАНСОВ В КОНТИНУУМАХ АТОМОВ

НАБЛЮДЕНИЕ ПЕРЕКРЫВАНИЯ РЕЗОНАНСОВ В КОНТНУУМЕ АТОМА МАГНИЯ, ВЗАИМОДЕЙСТВУЮЩЕГО С ЛАЗЕРНЫМ

ПОЛЕМ.

Выход ионов при двухфотонной ионизации Mg при фиксированной длине волны интенсивного лазерного излучения

СТРУКТУРА СПЕКТРА АТОМА ВОДОРОДА

2s и 5l состояния атома водорода находятся в поле двух лазеров: XeCl (308,5 нм) и Nd:YAG (1064 нм). В области энергий $E_1 + \omega_1 = E_2 + \omega_2$ возникает перекрывание ЛИР (лазерно индуцированных резонансов) с орбитальным моментом P, наведенных на состояниях 2s, 5s, 5d.

РЕЗУЛЬТАТЫ РАСЧЕТА ДВИЖЕНИЯ ПОЛЮСОВ И ВОДНОВЫХ ФУНКЦИЙ ПРИ ИЗМЕНЕНИИ ИНТЕНСИВНОСТИ ЛАЗЕРНЫХ ПОЛЕЙ ДЛЯ ВОДОРОДА

LICSs and double poles of the S-matrix

4

Table 2. The eigenvalues \mathcal{E}_i/Δ and corresponding eigenvectors $\Phi_i = \sum_{nl} c_{i,nl} \varphi_{nl}$ (i = 1, 2, 3, 4) of the effective Hamilton operator (12) for the 1s, 2s, 5s, 5d and 5g coupled states at $I_2 = 5.4524 \times 10^{-3} \Delta \approx I_2^{cr1}$ and three different values of I_1 .

	*			
Quasilevels	Φ_1	Φ_2	Φ3	Φ4
$I_1 = 0$				
\mathcal{E}_i/Δ	0.3321 - 0.0078i	0.1039 - 0.1635i	0.3796 - 0.1196i	0.2097 + 0i
Ci, 2s	0	0	0	1
Ci,5s	0.0046 - 0.0178i	-0.4541 - 0.0919i	0.8970 - 0.0464i	0
Ci,5d	-0.0227 + 0.0017i	-0.8968 + 0.0466i	-0.4539 - 0.0922i	0
C1,5g	0.9999 + 0.0001i	-0.0165 - 0.0051i	-0.0138 + 0.0148i	` 0
$I_1 = 1.389 \times 10^{-2} \Delta$	$\approx I_1^{cr1}$			
\mathcal{E}_i/Δ	0.3205 - 0.2092i	0.4600 - 0.0980i	0.4644 - 0.0972i	0.5163 - 0.0078i
Ci,28	0.5413 + 0.4142i	-4.8084 + 1.8738i	1.8644 + 4.7124i	-0.0203 + 0.0107i
Ci,5s	0.4415 + 0.2452i	-0.8152 - 3.2312i	-3.3625 + 0.8155i	0.0143 - 0.0302i
Ci,5d	0.9330 - 0.3563i	1.8244 + 3.4849i	3.4753 - 1.7337i	-0.0218 + 0.0096i
Ci.5g	0.0186 - 0.0043i	0.1051 + 0.1692i	0.1705 — 0.1089i	1 + 0.0009i
$I_1 = 2.778 \times 10^{-2} \Delta$	$\approx 2I_1^{cr1}$			
\mathcal{E}_i/Δ	0.5620 - 0.3463i	0.5271 - 0.1335i	0.7075 - 0.0457i	0.7005 - 0.0079i
C _{1,25}	0.9051 + 0.0391i	0.4222 - 0.4792i	0.5672 + 0.295i	-0.0122 + 0.0326i
Ci,58	0.5852 + 0.1298i	-0.0928 + 0.0134i	-0.8227 + 0.0908i	0.0008 - 0.0501i
C _i ,5d	0.2466 - 0.4516i	-1.0396 - 0.1955i	0.3937 - 0.2331i	-0.0098 + 0.0130i
Ci,5g	0.0019 - 0.0074i	-0.0238 - 0.0126i	0.0134 - 0.0634i	1.0017 + 0.0006i

СТРОЯЩИЕСЯ ЛАЗЕРЫ НА СВОБОДНЫХ ЭЛЕКТРОНАХ

(FEL – "FREE ELECTRON LASERS") - источники лазерного поля с перестраиваемой в широком диапазоне частотой

X – FEL Гамбург, Германия (первая очередь VUV – FEL заработала)

SPPS - Стэнфорд, США

MAX IV – Лунд, Швеция

BESSY – FEL - Гамбург, Германия

FERMI – Триест, Италия

4GLS - Дарсбери, Великобритания

НАБЛЮДАЕМЫЕ ХАРАКТЕРИСТИКИ

- 1. Полное сечение фотоионизации в области перекрывающихся резонансов
- 2. Спектр фотоэлектронов
- 3. Угловые распределения фотоэлектронов
- 4. Поляризация фотоэлектронов
- 5. Спектр, угловые распределения и поляризация вторичных фотонов ($A+h\omega_1+h\omega_2+h\Omega\to A^{**}\to A^*+h\Omega'$)

Параметрами являются интенсивность, частота, поляризация и направление распространения лазерных и пробного полей

ОСНОВНЫЕ ПУБЛИКАЦИИ:

Магунов А.И., Страхова С.И. Характеристики автоионизационных состояний атомов при их взаимодействии в сильном электромагнитном поле. **Вестник МГУ**, Сер 3. Физика. Астрономия. 5 **(1998)** 64 - 67.

Magunov A.I., Mueller M., Rotter I.(ΦΡΓ, MPI), Strakhova S.I.

Strong Laser Field Effects in Spectral Lines of Autoionizing Atomic States. Laser Physics 9 (1), 407-412, 1999.

Magunov A. I., Rotter I., Strakhova S. I.// Laser – induced resonance trapping in atoms, **J. Phys. B: At. Mol. Opt. Phys.,** 32, 1669 - 1684 (1999)

Magunov A. I., Rotter I., Strakhova S. I.// Strong field effects in autoionization, **J. Phys. B: At. Mol. Opt. Phys.**, 32 1489 - 1505 (1999).

Magunov A.I., Rotter I., Strakhova S.I. Avoided level crossing and population trapping in atoms. **Physica E** 9, 474 - 477, **2001.**

Magunov A. I., Rotter I., Strakhova S. I.// Laser – induced continuum structures and double poles of S – matrix, **J. Phys. B: At. Mol. Opt. Phys.,** 34, 29 - 47 **(2001)**.

Magunov A.I., Rotter I., Strakhova S.I. Avoided crossing in laser-induced continuum structures. Laser Physics 12 (2), 429-434, 2002.

Magunov A.I., Rotter U., Strakhova S.I. Fano resonances in the overlapping regime. **Phys. Rev. B** 68, N 24, p. 245305, **2003**

Magunov A.I., Rotter U., Strakhova S.I. Overlapping of Rydberg autoionizing states with broad resonance in argon. **J.Phys.B: At. Mol.Opt.Phys**. v.36, N21, L401-L408, **2003.**

ОСНОВНЫЕ ПУБЛИКАЦИИ (продолжение):

Магунов А.И., Страхова С.И. Об интерференции лазерно-индуцированных резонансов в непрерывном спектре атома гелия. **Квантовая электроника**, т.33, N3, с.231-234, **2003.**

Magunov A. I., Rotter I., Strakhova S. I.// Overlapping of Rydberg autoionizing states with a broad resonance in argon, **J. Phys. B: At. Mol. Opt. Phys.**, 36 L401 (2003).

Е.В. Грызлова, А.И. Магунов, И. Роттер, С.И. Страхова// Фотоионизация атома гелия с участием связанных циркулярно поляризованным лазерным полем автоионизационных состояний. **Квантовая электроника** 35 43 **2005.**

E. V. Gryzlova, A. I. Magunov, I. Rotter, S. I. Strakhova// Laser Polarization control of autoionizing in helium atom. «Laser Physics» 2005, 11 12 (Принято к печати).

А.Н. Грум-Гржимайло, Е.В. Грызлова, А.И. Магунов, С.И. Страхова, // Лазерно индуцированные эффекты с участием перекрывающихся ридберговских автоионизационных состояний ксенона. «Оптика и спектроскопия», 2006, 1, 102 (Принято к печати).

• Гранты РФФИ 97- 02-16689, 01 - 02-16293, 04 - 02-17236.

- Е.В. Грызлова. Кандидатская диссертация. Июнь 2005.
- А.И.Магунов. Докторская диссертация. 2006 (запланирована защита).