Introduction to Nuclear and Particle Physics

 β decay

Mass parabola - discussed related to the binding energy

β decay

Figure 3.18 Mass chains for A=125 and A=128. For A=125, note how the energy differences between neighboring isotopes increase as we go further from the stable member at the energy minimum. For A=128, note the effect of the pairing term; in particular, ¹²⁸I can decay in either direction, and it is energetically possible for ¹²⁸Te to decay directly to ¹²⁸Xe by the process known as double β decay.

β decay - continuous energy distribution

Figure 9.1 The continuous electron distribution from the β decay of ²¹⁰Bi (also called RaE in the literature).

β decay - continuous energy distribution

Table 9.1 Typical β -Decay Processes

Decay	Type	Q (MeV)	t _{1/2}
23 Ne \rightarrow 23 Na + e ⁻ + $\bar{\nu}$	$oldsymbol{eta}^-$	4.38	38 s
$^{99}\text{Tc} \rightarrow ^{99}\text{Ru} + e^- + \bar{\nu}$	$\boldsymbol{\beta}^{-}$	0.29	$2.1 \times 10^{5} \text{ y}$
$^{25}\text{Al} \rightarrow ^{25}\text{Mg} + e^+ + \nu$	$oldsymbol{eta}^+$	3.26	7.2 s
$^{124}I \rightarrow ^{124}Te + e^{+} + \nu$	$\boldsymbol{\beta}^+$	2.14	4.2 d
$^{15}O + e^{-} \rightarrow ^{15}N + \nu$	ε	2.75	1.22 s
41 Ca + e ⁻ \rightarrow 41 K + ν	ε	0.43	$1.0 \times 10^5 \text{ y}$

β decay - continuous energy distribution

Figure 9.2 Expected electron energy and momentum distributions, from Equations 9.24 and 9.25. These distributions are drawn for Q = 2.5 MeV.

Figure 9.3 Momentum and kinetic energy spectra of electrons and positrons emitted in the decay of ⁶⁴Cu. Compare with Figure 9.2; the differences arise from the Coulomb interactions with the daughter nucleus. From R. D. Evans, *The Atomic Nucleus* (New York: McGraw-Hill, 1955).

β decay - Fermi - Kurie plot

Figure 9.4 Fermi – Kurie plot of allowed $0^+ \rightarrow 0^+$ decay of 66 Ga. The horizontal scale is the relativistic *total* energy ($T_{\rm e} + m_{\rm e}c^2$) in units of $m_{\rm e}c^2$. The deviation from the straight line at low energy arises from the scattering of low-energy electrons within the radioactive source. From D. C. Camp and L. M. Langer, *Phys. Rev.* **129**, 1782 (1963).

β decay - Fermi - Kurie plot

Uncorrected

corrected

Figure 9.5 Uncorrected Fermi-Kurie plot in the β decay of ⁹¹Y (top). The linearity is restored if the shape factor S(p,q) is included; for this type of first-forbidden decay, the shape factor $p^2 + q^2$ gives a linear plot (bottom). Data from L. M. Langer and H. C. Price, *Phys. Rev.* **75**, 1109 (1949).

β decay

Table 9.2 ft Values for 0 ⁺ → 0 ⁺ Superallowed Decays

Decay	ft (s)		
¹⁰ C → ¹⁰ B	3100 ± 31		
$^{14}O \rightarrow ^{14}N$	3092 ± 4		
18 Ne \rightarrow 18 F	3084 ± 76		
22 Mg \rightarrow 22 Na	3014 ± 78		
$^{26}\text{Al} \rightarrow ^{26}\text{Mg}$	3081 ± 4		
26 Si \rightarrow 26 Al	3052 ± 51		
$^{30}S \rightarrow ^{30}P$	3120 ± 82		
$^{34}\text{C1} \rightarrow ^{34}\text{S}$	3087 ± 9		
$^{34}Ar \rightarrow ^{34}Cl$	3101 ± 20		
38 K \rightarrow 38 Ar	3102 ± 8		
38 Ca \rightarrow 38 K	3145 ± 138		
42 Sc \rightarrow 42 Ca	3091 ± 7		
42 Ti \rightarrow 42 Sc	3275 ± 1039		
46 V \rightarrow 46 Ti	3082 ± 13		
46 Cr \rightarrow 46 V	2834 ± 657		
50 Mn \rightarrow 50 Cr	3086 ± 8		
54 Co \rightarrow 54 Fe	3091 ± 5		
62 Ga \rightarrow 62 Zn	2549 ± 1280		

β decay - neutrino mass

Figure 9.6 Expanded view of the upper 1-keV region of the momentum and energy spectra of Figure 9.2. The normalizations are arbitrary; what is significant is the difference in the shape of the spectra for $m_{\nu} = 0$ and $m_{\nu} \neq 0$. For $m_{\nu} = 0$, the slope goes to zero at the endpoint; for $m_{\nu} \neq 0$, the slope at the endpoint is infinite.

β decay - neutrino mass

Figure 9.7 Experimental determination of the neutrino mass from the β decay of tritium (3 H). The data at left, from K.-E. Bergkvist, *Nucl. Phys. B* **39**, 317 (1972), are consistent with a mass of zero and indicate an upper limit of around 60 eV. The more recent data of V. A. Lubimov et al., *Phys. Lett. B* **94**, 266 (1980), seem to indicate a nonzero value of about 30 eV; however, these data are subject to corrections for instrumental resolution and atomic-state effects and may be consistent with a vanishing mass.

β decay - ratios

Table 9.3 Ratio of Fermi to Gamow-Teller Matrix Elements

	Decay	$y = g_{\rm F} M_{\rm F}/g_{\rm GT} M_{\rm GT}$	%F	%GT
Mirror	n → p	0.467 ± 0.003	18	82
decays	$^{3}\text{H} \rightarrow ^{3}\text{He}$	0.479 ± 0.001	19	81
	$^{13}N \rightarrow ^{13}C$	1.779 ± 0.006	76	24
	21 Na \rightarrow 21 Ne	1.416 ± 0.012	67	33
	41 Sc \rightarrow 41 Ca	0.949 ± 0.003	47	53
Nonmirror	24 Na \rightarrow 24 Mg	-0.021 ± 0.007	0.044	99.956
decays	$^{41}Ar \rightarrow ^{41}K$	$+0.027 \pm 0.011$	0.073	99.927
	46 Sc \rightarrow 46 Ti	-0.023 ± 0.005	0.053	99.947
	52 Mn \rightarrow 52 Cr	-0.144 ± 0.006	2	98
	. 65 Ni →65 Cu	-0.002 ± 0.019	< 0.04	> 99.96

$\beta\beta$ decay

Figure 9.10 The decay of 48 Ca. The superallowed $\beta\beta$ decay to 48 Ti is an alternative to the fourth-forbidden single- β decay to 48 Sc.

$\beta\beta$ decay

Figure 9.11 Single- β decay of ¹²⁸Te is energetically forbidden, but $\beta\beta$ decay to ¹²⁸Xe is possible. See Figure 3.18 to understand the relative masses of these nuclei.

$\beta\beta$ decay-

Figure 9.12 Cloud chamber photograph of a suspected $\beta\beta$ -decay event from ⁸²Se. The horizontal lines are strips of ⁸²Se source material. The $\beta\beta$ -decay event is the pair of curved tracks originating from one of the strips in the exact center of the photograph at left. There are also background events due to natural radioactivity; these produce two β -decay electrons in succession (as in the natural radioactive chain of decays, Figure 6.10) and an α particle. Note the two electron tracks and the heavy α track originating from a common point near the center of the photograph on the right. A magnetic field perpendicular to the plane of the photos curves the tracks, so that the electron momentum can be deduced. From M. K. Moe and D. D. Lowenthal, *Phys. Rev. C* 22, 2186 (1980).

β -delayed nucleon emission

Figure 9.13 Schematic of β -delayed nucleon emission. The β decay of the precursor populates highly excited states in the emitter that are unstable with respect to nucleon emission. Note that the energy of the excited state in the emitter equals the sum of the energy of the emitted nucleon plus the nucleon separation energy between X' and X" (plus the small correction for the recoil of the emitting nucleus).

β -delayed nucleon emission

Figure 9.14 Beta-delayed neutrons following the decay of ¹⁷N. The neutron energy spectrum is shown at the left;

Internal conversion

Figure 10.7 A typical electron spectrum such as might be emitted from a radioactive nucleus. A few discrete conversion electron peaks ride on the continuous background from β decay.

Internal conversion

Full spectrum

Figure 10.8 Electron spectrum from the decay of 203 Hg. At top, the continuous β spectrum can be seen, along with the K and unresolved L and M conversion lines. In the middle is shown the conversion spectrum at higher resolution; the L and M lines are now well separated, and even L_{III} is resolved. At yet higher resolution (bottom) L_I and L_{II} are clearly separated. *Sources*: (top) A. H. Wapstra et al., *Physica* **20**, 169 (1954); (middle) Z. Sujkowski, *Ark. Fys.* **20**, 243 (1961); (bottom) C. J. Herrlander and R. L. Graham, *Nucl. Phys.* **58**, 544 (1964).

Stability

- Chart of nuclides (isotopes) by binding energy, depicting the valley of stability.
- The diagonal line corresponds to equal numbers of neutrons and protons.
- Dark blue squares represent nuclides with the greatest binding energy, hence they correspond to the most stable nuclides.
- The binding energy is greatest along the floor of the valley of stability.

Stability

- Chart of nuclides by half life.
- Black squares represent nuclides with the longest half lives hence they correspond to the most stable nuclides.
- The most stable, long-lived nuclides lie along the floor of the valley of stability.
- Nuclides with more than 20 protons must have more neutrons than protons to be stable.

Stability

- Chart of nuclides by type of decay.
- Black squares are stable nuclides.
- Nuclides with excessive neutrons or protons are unstable to β (light blue) or β + (green) decay, respectively.
- At high atomic number, alpha emission (orange) or spontaneous fission (dark blue) become common decay modes.