

MA3001 Overall Summary of Key Concepts Sep 2020 v2

Machine Element Design (Nanyang Technological University)

Scan to open on Studocu

MA3001

MACHINE ELEMENT DESIGN

Overall Summary of Key Concepts

for
Belt Drive
Chain Drive
Gears

Assoc Prof Hoon Kay Hiang

Tel: 6790 5523 Office: N3-02c-94

POWER

Power Equation

$$P = T \omega$$

same
$$P = T$$

same
$$P = T \downarrow \omega$$

Summary of Key Concepts

V-belt drive

• Transmitted Power,

$$P = T_1 \omega_1 = T_2 \omega_2$$

• Torque, $T_1 = (F_1 - F_2) D_1/2$, $T_2 = (F_1 - F_2) D_2/2$

SUMMARY

Torque and Direction of Rotation

DRIVER SHEAVE:

Input Torque **SAME** direction as rotational direction

DRIVEN SHEAVE:

Output/Resisting Torque **OPPOSITE** direction as rotational direction

SUMMARY

The Tighter side F_1 gives direction of η_2 rotation to **DRIVEN** sheave

Way of determining TIGHT side

SUMMARY

• For typical applications, the tight and slack tensions F_1 and F_2 are assumed to be parallel.

Driver Shaft Forces

$$F_{x} = (F_{1} + F_{2})$$

Belt Drive

- No of belts = $\frac{\text{Design Power}}{\text{Corrected Rated Power}}$
- Design Power needed to find the smallest belt cross to ensure that the required power is delivered to the driven machine:
 - Design power = Service Factor x Required Power of driven machine
- RP: rated power of belt given by manufacturer (catalogue data as shown below)

Table A-7a

kW-ratings per V-belt P [kW] at 180° arc of contact

SPZ

Pitch dia									RPM	l of sma	ller she	eave	1						
sheav [mm]	e ratio	720	950	1450	2850	200	400	800	1200	1600	2000	2400	3200	3600	4000	4500	5000	5500	6000
63	1,00 1,05 1,20 1,50 2,3,00	0.54 0.56 0.60 0.64 0.66	0.67 0.70 0.76 0.80 0.83	0.92 0.97 1.06 1.13 1.17	1.47 1.57 1.75 1.89 1.97	0.19 0.19 0.21 0.22 0.22	0.33 0.35 0.37 0.39 0.40	0.58 0.61 0.66 0.70 0.72	0.80 0.84 0.90 0.97 1.01	0.99 1.04 1.14 1.22 1.27	1.16 1.23 1.35 1.45 1.51	1.32 1.39 1.55 1.67 1.74	1.58 1.69 1.89 2.05 2.14	1.69 1.81 2.04 2.22 2.32	1.79 1.92 2.17 2.37 2.49	1.89 2.03 2.32 2.54 2.67	1.96 2.12 2.44 2.69 2.83	2.01 2.19 2.54 2.81 2.97	2.03 2.23 2.61 2.91 3.08
71	1.00 1.05 1.20 1.50 ≥3.00	0.72 0.75 0.79 0.83 0.85	0.90 0.94 1.00 1.05 1.07	1.27 1.32 1.41 1.49 1.53	2.12 2.21 2.39 2.53 2.61	0.24 0.25 0.26 0.27 0.28	0.44 0.46 0.48 0.50 cogcymer	0.79 0.81 0.86 0.90 nt ig aggla	1.10 1.13 1.21 1.27 ble 0.30	1.38 1.43 1.53 1.53	1.63 1.70 1.83 1.93 LUS	1.87 1.95 2.10 2.22 0.00	2.29 2.39 2.60 2.76 2.85	2.47 2.59 2.82 3.00 3.10	2.63 2.76 3.02 3.22 3.33	2.81 2.95 3.24 3.47 3.59	2.95 3.11 3.43 3.68 3.82	3.06 3.24 3.59 3.86 4.02	3.13 3.33 3.71 4.01 4.18
	1.00	0.93	1.18	1.67	2.82	0.31	025/6nl	oad @2 by	bra ha r	(brather@	g zopB wi	n) 2.48	3.07	3.32	3.55	3.80	4.01	4.17	4.29

Belt Drive

• Corrected rated power, $CRP = C_{\theta} C_{L} x RP$

 C_{θ} - correction factor for angle of contact on small pulley

$$\theta_1 = 180^o - 2\sin^{-1} \left[\frac{D_2 - D_1}{2C} \right]$$

Table A-5: Correction Factor for Arc of Contact C_{θ}

Arc of contact of smaller sheave	180°	174°	167°	163°	157°	15 1°	145°	139°	133°	127°	120°	11 3°	106°	99°	91°
$C_{ heta}$	1.00	0.99	0.97	0.96	0.94	0.93	0.91	0.89	0.87	0.85	0.82	0.79	0.77	0.73	0.70

Belt Drive

Pitch Length,
$$L = 2C + 1.57(D_2 + D_1) + \frac{(D_2 - D_1)^2}{4C}$$
 (m)

Centre Distance $C = \frac{B + \sqrt{B^2 - 32(D_2 - D_1)^2}}{16}$ (m)

where $B = 4L - 6.28(D_2 + D_1)$

C_L - correction factor for belt length

Table A-6: Standard Belt Length L (mm) and Belt Length Correction Factor C_L

Prof	ile SPZ	Pr	ofile SPA	Profile	SPB	Profile SPC			
L (mm)	Correction factor	L (mm)	Correction factor	L (mm)	Correction factor	L (mm)	Correction factor		
630	0.85	800	0.81	1250	0.83	2000	0.83		
710	0.87	900	0.83	1400	0.85	2240	0.85		
800	0.89	1000	0.85	1600	0.87	2500	0.87		
900	0.90	1120	0.87	1800	0.89	2800	0.89		
1000	0.92	1250	0.89 This document is available on	Studocu	0.90	3150	0.90		
1120	0.94	1400	0.90 Downloaded by bra the	2240	0.92	3550	0.92		
222					-				

Belt Drive

Select Standard Sheave Diameters

Speed ratio =
$$\frac{\text{Input Speed}}{\text{Output Speed}} = \frac{\eta_1}{\eta_2} = \frac{D_2}{D_1}$$

Table A-4: Standard Sheave Diameters (mm)

SPZ/3V	63	71	75	80	90	100	112	125	132	140	150	160	180	200	224	250	280	315	355	400	500	630			
SPA/4V	90	95	100	106	112	118	125	132	140	150	160	180	200	224	250	280	315	355	400	450	500	560	630	710	800
SPB/5V	140	150	160	170	180	200	224	250	280	315	355	400	450	500	560	600	710	750	800	900	1000	1120			
SPC/7V	224	236	250	265	280	300	315	335	355	400	450	500	560	600	630	710	1750	800	900	1000	1120	1250	1400	1600	2000

Check if speed requirement is satisfied!

Chain Drive

Very Slow Speed Applications (*less than 100 rpm***)**

- Strength is the design criterion for such applications.
- Allowable load is used for <u>very slow speed drives</u> or for applications in which the function of the chain is <u>to apply a tensile force</u> or support a load.

Table B-1

AMERICAN STANDARD ROLLER CHAINS-SINGLE STRAND

Upper dimension—inch Lower dimension—mm

	ANSI	Pitch	Roller	Width	L	ink Plate		·	Pin		Average	Maximum	Approx.	Number	Length
SUBAKI	No.	,	Diam.	between roller link plates	Thickness	Height	Height	Diam.	From Pin head to C.L.	From Pin end to C.L.	Tensile Strength	Allowable Load	Weight Lbs./ft	of Link per 10 Ft.	Per Carton Package
Chain No.		Р	R	W	T	H	h	D	L ₁	L ₂	Lbs./kg	Lbs./kg	kg/mt		(Ft.)
RS25 [*] ▲	25	1/4 6.35	.130 3.30		.030 0.75	.230 5.84	.199 5.05	.0905 2.31	.1 48 3.85	.179 4.80	1,050 480	140 65	.094 0.14	480	400
RS35 *	35	³ / ₈ 9.525	.200 5.08		.050 1.25	.354 9.0	.307 7.8	.141 3.59	.230 5.85	.270 6.85	2,500 1,150	480 220	.22 0.33	320	100
RS41 *	41	½ 12.70	.306 7.77		.050 1.25	386 This docume	.331 nt is availa 8.4	.141 3.59	S iffud	ဝငပုံ	2,600 1,200	500 230	.27 0.41	240	100
DC40	40	1/2	.312	5/16	.060	Dowr . 472	loaded by .409	bra ther (1 56 .	brather@googl.w 3,25	rin) .392	4,250	810	.43	040	400

Chain Drive (greater than 100 rpm)

Design Power per strand = $\frac{\text{Power to be transmitted x Service Factor}}{\text{Multiple Strand Factor}}$ (kW)

• Design Power per strand needed to find the proper smallest chain size and no. of smaller sprocket teeth to ensure that the required power is transmitted to the driven machine:

Table B-4

MAXIMUM KILOWATT RATINGS

Multi-Stra	nd Factor
Number of Roller Chain Strands	Multi-Strand Factor
2	1.7
3	2.5
4	3.3
5	3.9
6	4.6

	Lubricating Methods
A	Manual lubrication or drip lubrication.
8	Oil bath lubrication or lubrication by slinger disc
С	Lubrication using a pump

NO.	25	M.	AXII	MUN	A KII	LOW	/AT	T RA	TIN	GS																
No. of											Maxir	num r	/min	-Sma	all Spr	ocket	:									
Teeth	50	100	300	500	700	900	1200	1500	1800	2180	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	8500	9000	10000	
Small												Lub	ricatio	n Sys	tem											
Spkt.						Α												8	3							
9	0.02	0.03	0.08	0.13	0.18	0.23	0.30	0.36	0.43	0.49	0.57	0.67	0.78	0.76	0.64	0.54	0.47	0.42	0.37	0.33	0.30	0.27	0.25	0.22	0.19	ĺ
10	0.02	0.04	0.10	0.15	0.20	0.26	0.33	0.41	0.48	0.55	0.64	0.76	0.87	0.89	0.75	0.64	0.55	0.48	0.43	0.39	0.35	0.31	0.29	0.26	0.22	ĺ

Chain Drive

Select the Sprocket Teeth Numbers

Speed ratio =
$$\frac{\text{Input Speed}}{\text{Output Speed}} = \frac{\eta_1}{\eta_2} = \frac{N_2}{N_1}$$

For quiz, there is **no restriction** on the number of larger sprocket teeth subject to the requirements specified in the question. The available number of teeth on the smaller sprocket is given in the power rating tables

Check if speed requirement is satisfied!

Chain Drive

Pitch diameters of the sprockets

$$D_1 = p / \sin (180^{\circ}/N_1), \quad D_2 = p / \sin (180^{\circ}/N_2)$$

Chain Pitch Length
$$L = 2C + \frac{N_2 + N_1}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C}$$
 pitches

- Specify an even number of pitches for the chain length, L according to requirement of centre distance or space.
- Pitch length in millimetres = L.p mm

Centre Distance

$$C = \frac{1}{4} \left\{ L - \frac{N_2 + N_1}{2} + \sqrt{\left[L - \frac{(N_2 + N_1)}{2}\right]^2 - \frac{8(N_2 - N_1)^2}{4\pi^2}} \right\}$$
 pitches

- Centre distance in millimetres = C.p mm; p=chain pitch

Torque and Direction of Rotation (similar to belt)

DRIVER SPROCKET:

Input Torque **SAME** direction as rotational direction

DRIVEN SPROCKET:

Output/Resisting Torque **OPPOSITE** direction as rotational direction

TIGHT TENSION SIDE

- How to determine which side is tight? (similar to belt)
 - Look at rotation of **driven sprocket** tight side gives direction of rotation to driven sheave

SHAFT LOAD

Shaft Load

is determined in the same way as belt drives, ie.

tension is assumed parallel (normal practice adopted in this course and industry)

 $F_2 = 0 - ZERO$ tension on slack side

Driver Sprocket Forces

- Spur/helical gears
 - \sim Pitch diameters, D = mN mm
 - ~ Outside diameter, Do = D + 2a = m(N+2)
 - ~ Centre Distance, $C = (D_G + D_P)/2 = (N_G + N_P)m/2$
 - ~ Gear in mesh, tip to tip dimension = $D_G + D_P + 2a = m(N_G + N_P + 2)$ NOTE: for helical gears, $m = m_n/\cos\psi$
- Speed Ratio (SR) = input speed/output speed
 - = (No. of teeth in driven gears)/(No. of teeth in driving gears)
 - $= SR_1 SR_2 SR_3 etc$

Spur Gear Forces

$$W_t = T/(D/2)$$
 $W_r = W_t \tan \phi$

- direction of W_t can be derived from the rotation of the driven gear
- W_r always acts towards the centre of the gear

Helical Gear Forces

For the parallel shaft arrangement, the helix angle is the same on each gear, but one gear must have a right hand helix and the other a left hand helix

$$W_t = T/(D/2)$$
 $W_r = W_t \tan \phi_t$, $\tan \phi_t = \tan \phi_n / \cos \psi$ $W_a = W_t \tan \psi$

- ~ directions of W_t and W_r as in spur gears
- ~ direction of W_a use Right Hand Thumb rule for RH *driver* gear,
 use Left Hand Thumb for LH *driver* gear

 This document is available on studocu

FORCES ON THE DRIVER AND DRIVEN GEARS

- Bevel Gear
 - \sim SR = (No. of teeth in driven gears)/(No. of teeth in driving gears)
- Worm and worm gear
 - $\sim SR = N_G/N_W$
 - ~ direction as shown:

