По следам Колмогорова

- 1. Про выпуклый пятиугольник RADOS известно, что RS = SO и $\angle ARS =$ $\angle DOS = 90^{\circ}.$ Внутри RADOSвзята точка Tтак, что $RT \perp AS$ и $TO \perp$ DS. Докажите, что $ST \perp AD$.
- **2.** Окружности s_1 и s_2 касаются внешним образом. Их линия центров пересекает s_1 в точках A и P, и пересекает s_2 в точках B и P. Общая внешняя касательная касается s_1 и s_2 в точках A_1 и B_1 соответственно. Прямые AA_1 и BB_1 пересекаются в точке Q. Докажите, что PQ является общей касательной для s_1 и s_2 .
- 3. Точка O_a середина дуги BC описанной окружности треугольника ABC, не содержащей точку A. Окружность ω_a с центром в точке O_a касается прямой BC. Окружности ω_b и ω_c определяются аналогично. К окружностям ω_b и ω_c проведена общая внешняя касательная l_a , относительно которой эти окружности и отрезок BC лежат в разных полуплоскостях. Прямые l_b и l_c определяются аналогично. Докажите, что прямые l_a , l_b и l_c пересекаются в одной точке.
- Трапеция ABCD с основаниями AD и BC вписана в окружность ω . Диагонали трапеции пересекаются в точке K. На лучах KA и KB выбраны точки X и Y соответственно так, что отрезок XY касается ω в своей середине Z. Докажите, что Z лежит на продолжении средней линии трапеции ABCD.
- **5.** На сторонах BC, CA и AB треугольника ABC выбраны точки A_1 , B_1 и C_1 соответственно. Четырёхугольники $AB_1A_1C_1$, $BC_1B_1A_1$ и $CA_1C_1B_1$ описаны около окружностей с центрами I_A , I_B и I_C соответственно. Докажите, что площади треугольников $A_1B_1C_1$ и $I_AI_BI_C$ отличаются в четыре раза.