1 Model Selection and Validation

- (a) S_{train} accuracy: 22/24. S_{test1} accuracy: 8/10. S_{test2} accuracy: 16/20.
- (b) S_{train} accuracy: 24/24. S_{test1} accuracy: 8/10. S_{test2} accuracy: 15/20.
- (c) Let $m = \frac{(n_{01} n_{10})^2}{n_{01} + n_{10}}$ where $n_{01} = 1$ corresponds to the number of cases which were missclassified by the decision tree hypothesis and not the linear hypothesis, and $n_{10} = 1$ corresponds to the number of cases which were missclassified by the linear hypothesis and not the decision tree hypothesis. For S_{test1} , m = 0. Thus we can't say that one model generalizes any better than the other because m is much less than the critical value 3.84.
- (d) For S_{test2} , $n_{01} = 2$ and $n_{10} = 3$, so $m = \frac{1}{5} = .2$. Similarly, we can't say that one model generalizes any better than the other because m is much less than the critical value 3.84.
- (e) The accuracy for S_{test1} stays the same for both the decision tree hypothesis and linear hypothesis. The accuracy for S_{test2} is different for the decision tree hypothesis and linear hypothesis. The χ^2 statistic for the McNemar test the same for both S_{test1} and S_{test2} .

2 Model Averaging with Decision Trees

- (a)
- (b)
- (c)
- (d)

3 Text Categorization with Decision Trees

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)