Organizační úvod

Poznámka

Jako vždycky, jen v implikacích u zkoušky budou i pojmy z předchozích semestrů.

1 Stejnoměrná konvergence posloupností a řad funkcí

1.1 Bodová a stejnoměrná konvergence posloupnosti funkcí

Definice 1.1

Nechť $J \subset \mathbb{R}$ je interval a nechť máme funkce $f: J \to \mathbb{R}$ a $f_n: J \to \mathbb{R}$ pro $n \in \mathbb{N}$. Řekneme, že posloupnost funkcí $\{f_n\}$

• konverguje bodově k f na J, pokud $\forall x \in J : \lim_{n \to \infty} f_n(x) = f(x)$, neboli:

$$\forall x \in J \ \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : |f_n(x) - f(x)| < \varepsilon;$$

- konverguje stejnoměrně kf na J (značíme $f_n \rightrightarrows f$ na J), pokud

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |f_n(x) - f(x)| < \varepsilon;$$

• konverguje lokálně stejnoměrně, pokud pro každý omezený uzavřený $[a,b] \subset J$ platí $f_n \rightrightarrows f$ na [a,b] (značíme $f_n \stackrel{\text{Loc}}{\rightrightarrows} f$ na J).

Věta 1.1 (Kritérium stejnoměrné konvergence)

Nechť $f, f_n: J \to \mathbb{R}, pak$

$$f_n \rightrightarrows f \text{ na } J \Leftrightarrow \lim_{n \to \infty} \sup_{x \in J} |f_n(x) - f(x)| = 0.$$

Důkaz

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |f_n(x) - f(x)| \le \varepsilon \Leftrightarrow$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : \sup_{x \in J} |f_n(x) - f(x)| \le \varepsilon \Leftrightarrow$$

$$\Leftrightarrow \lim_{n \to \infty} \sup_{x \in J} |f_n(x) - f(x)| = 0.$$

Poznámka (Pro spojité funkce)

$$\Leftrightarrow ||f_n - f||_{\mathcal{C}(J)} \to 0 \Leftrightarrow f_n \stackrel{\mathcal{C}(J)}{\to} f.$$

Věta 1.2 (Bolzano-Cauchyova podmínka pro stejnoměrnou konvergenci)

Necht $f_n: J \to \mathbb{R}$, pak

 $(\exists f: f_n \Rightarrow f \ na \ J) \Leftrightarrow (\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \geq n_0 \ \forall x \in J: |f_n(x) - f_m(x)| < \varepsilon).$

Důkaz

" \Longrightarrow ": Víme $\forall \varepsilon > 0 \ \exists n_0 \ \forall n \geq n_0 \ \forall x \in J : |f_n(x) - f(x)| < \varepsilon$. Tedy

$$\forall m, n > n_0 \ \forall x \in J : |f_n(x) - f_m(x)| < |f_n(x) - f(x)| + |f(x) - f_m(x)| < 2\varepsilon.$$

" = ": Víme $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall m,n \geq n_0 \; \forall x \in J : |f_n(x) - f_m(x)| < \varepsilon$. Toto použijeme pro pevné $x \in J$. Pro posloupnost $a_n = f_n(x)$ máme splněnou BC podmínku pro posloupnost reálných čísel, tj. $a_n \to a \in \mathbb{R}$.

Označíme si $f(x) = \lim_{n\to\infty} f_n(x)$. Nyní v BC podmínce provedeme limitu $n\to\infty$. Tím dostaneme přesně definici stejnoměrné konvergence.

Věta 1.3 (Moore-Osgood)

Nechť $x_0 \in \mathbb{R}^*$ je krajní bod intervalu J. Nechť $f_n, f: J \to \mathbb{R}$ splňují

- $f_n \Longrightarrow f \ na \ J$,
- existuje $\lim_{x\to x_0} f_n(x) = a_n \in \mathbb{R} \ \forall n \in \mathbb{N}$.

Pak existují $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a jsou si rovny.

 $D\mathring{u}kaz$

Příště.

Dusledek

Necht $f_n \Rightarrow f$ na I a necht f_n jsou spojité na I. Pak f je spojitá na I.

Poznámka

Obdobně lze definovat stejnoměrnou spojitost i pro libovolnou množinu $A \subset \mathbb{R}^n$ a $f_n : A \to \mathbb{R}$ a platí, že stejnoměrná limita je spojitá (stejnoměrná limita spojitých funkcí je spojitá).

Důkaz (Moore-Osgood)

Z BC podmínky

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : |f_n(x) - f_m(x)| < \varepsilon.$$

Provedeme $\lim_{x\to x_0}$ a dostaneme

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n > n_0 : |a_n - a_m| < \varepsilon.$$

Tedy a_n splňuje BC podmínku, a tudíž $\exists \lim_{n\to\infty} a_n = a \in \mathbb{R}$.

Necht $\varepsilon \geq 0$. Z definice $f_n \Rightarrow f$

$$\exists n_0 \ \forall x \in J : |f_{n_0}(x) - f(x)| < \varepsilon.$$

Zároveň předpokládejme $|a_{n_0} - a| < \varepsilon$ (zvolíme si n_0 jako maximum). Máme pevnou funkci f_{n_0} a $\lim_{x\to x_0} f_{n_0}(x) = a_{n_0}$. Tedy

$$\exists \delta > 0 \ \forall x \in P(x_0, \delta) \cap J : |f_{n_0}(x) - a_{n_0}| < \varepsilon.$$

Nyní $\forall x \in P(x_0, \delta) \cap J$ platí

$$|f(x) - a| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - a_{n_0}| + |a_{n_0} - a| \le \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

Věta 1.4 (O záměně limity a derivace)

Nechť funkce f_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

- $\exists x_0 \in (a,b) : \{f_n(x_0)\}_{n=1}^{\infty} \text{ konverguje,}$
- pro derivace f'_n platí $f'_n \stackrel{Loc}{\Rightarrow} na \ (a,b)$.

Potom existuje funkce f tak, že $f_n \stackrel{Loc}{\Longrightarrow} f$ na (a,b), f má vlastní derivaci a platí $f'_n \stackrel{Loc}{\Longrightarrow} f'$ na (a,b).

Důkaz

Necht $x_0 \in [c,d] \subset (a,b)$. Víme $f'_n \rightrightarrows$ na [c,d]. Chceme ukázat $f_n \rightrightarrows f$ na [c,d] ($\Longrightarrow f_n \stackrel{\text{Loc}}{\rightrightarrows} f$ na (a,b)). Necht $\varepsilon > 0$. Z BC podmínky pro $f'_n \rightrightarrows$

$$\exists n_0 \ \forall m, n \geq n_0 \ \forall x \in [c, d] : |f'_n(x) - f'_m(x)| < \varepsilon$$

a zároveň $\forall m, n \geq n_0 : |f_n(x_0) - f_m(x_0)| < \varepsilon$. Nyní $\forall x \in [c, d]$:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)| \le$$

$$\le |h(x) - h(x_0)| + \varepsilon \le |x - x_0| \cdot |h'(\xi)| + \varepsilon \le (d - c) \cdot \varepsilon + \varepsilon,$$

kde $h = f_n - f_m$ a $\xi \in (x_0, x)$ resp. (x, x_0) z Lagrangeovy věty (cvičení: předpoklady jsou splněné).

Zbývá dokázat " $f'_n \rightrightarrows f'$ na [c,d]": Zvolme $z \in [c,d]$ a položme $\varphi_n(x) = \frac{f_n(x) - f_n(z)}{x - z}$ pro $x \in [c,d] \setminus \{z\}$. Nechť $\varepsilon > 0$. Z BC podmínky pro $f'_n \rightrightarrows$

$$\exists n_0 \ \forall n, m \ge n_0 \ \forall x \in [c, d] : |f'_n(x) - f'_m(x)| < \varepsilon.$$

Podobně jako v první části důkazu

$$|f_n(x) - f_m(x) - (f_n(z) - f_m(z))| = |f'_n(\xi) - f'_m(\xi)| \cdot |x - z| < \varepsilon \cdot |x - z|.$$

Nyní $\forall m, n \geq n_0 \ \forall x \in [c, d] \setminus \{z\}$:

$$|\varphi_n(x) - \varphi_m(x)| = \left| \frac{f_n(x) - f_m(z) - (f_m(x) - f_m(z))}{x - z} \right| < \frac{\varepsilon \cdot |x - z|}{|x - z|} = \varepsilon.$$

Podle BC $\varphi_n \implies \text{na } [c,d] \setminus \{z\}$. Tedy φ_n splňuje předpoklady Moore-Osgoodovy věty $(\lim_{x\to z} \varphi_n(x) = \lim_{x\to z} \frac{f_n(x) - f_n(z)}{x-z} = f'(z))$. Tedy

$$\lim_{n \to \infty} \lim_{x \to z} \frac{f_n(x) - f_n(z)}{x - z} = \lim_{x \to z} \lim_{n \to \infty} \frac{f_n(x) - f_n(z)}{x - z} \Leftrightarrow$$

$$\Leftrightarrow \lim_{n \to \infty} f'_n(z) = \lim_{x \to z} \frac{f(x) - f(z)}{x - z} = f'(z).$$

A jelikož víme, že $f_n' \rightrightarrows$, tak $f_n' \to f' \implies f_n' \rightrightarrows f'$.

1.2 Stejnoměrná konvergence řady funkcí

Definice 1.2

Řekněme, že řada funkcí $\sum_{k=1}^{\infty} u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na intervalu J, pokud posloupnost částečných součtů $s_n(x) = \sum_{k=1}^n u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na J.

Věta 1.5 (Nutná podmínka stejnoměrné konvergence řady)

Necht $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaných na intervalu J. Pokud $\sum_{n=1}^{\infty} u_n(x) \Rightarrow$ na J, pak posloupnost funkcí $u_n(x) \Rightarrow 0$ na J.

Důkaz

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : |s_n(x) - s_m(x)| < \varepsilon$$

speciálně pro m = n + 1:

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 \ \forall x \in J : |\sum_{i=1}^{n+1} u_i - \sum_{i=1}^n u_i| = |u_{n+1}(x)| < \varepsilon \implies u_n \rightrightarrows 0.$$

Věta 1.6 (Weierstrassovo kritérium)

Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaných na intervalu J. Pokud pro

$$\sigma_n = \sup\{|u_n|(x) : x \in J\}$$

platí, že číselná řada $\sum_{n=1}^{\infty} \sigma_n$ konverguje, pak $\sum_{n=1}^{\infty} u_n(x) \Rightarrow na J$.

 $D\mathring{u}kaz$

L

Nechť $\varepsilon>0.$ Z BC podmínky pro konečnou $\sum_{k=1}^\infty \sigma_k$

$$\exists n_0 \ \forall m, n \ge n_0, m > n : |\sum_{k=n+1}^m \sigma_k| < \varepsilon.$$

Chceme ověřit BC podmínku pro $s_n(x) = \sum_{k=1}^n u_k(x)$:

$$\forall m, n \ge n_0, m > n \ \forall x \in J : |s_m(x) - s_n(x)| = \left| \sum_{k=1}^m u_k(x) - \sum_{k=1}^n u_k(x) \right| =$$

$$= \left| \sum_{k=n+1}^{m} u_k(x) \right| \le \sum_{k=n+1}^{m} |u_k(x)| \le \sum_{k=n+1}^{m} \sigma_k < \varepsilon.$$

Tedy podle BC podmínky $\sum u_k \rightrightarrows$.

Věta 1.7 (O spojitosti a derivování řady funkcí)

Necht $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu (a,b).

- Necht u_n jsou spojité na (a,b) a necht $\sum_{n=1}^{\infty} u_n(x) \stackrel{Loc}{\Rightarrow} na(a,b)$. Pak $F(x) = \sum_{n=1}^{\infty} u_n(x)$ je spojitá na (a,b).
- Nechť funkce u_n , $n \in \mathbb{N}$, mají vlastní derivaci na (a,b) a nechť $\exists x_0 \in (a,b)$:

 $\sum_{n=1}^{\infty} u_n(x_0) \text{ konverguje a } \sum_{n=1}^{\infty} u'_n(x) \overset{Loc}{\rightrightarrows} \text{ na } (a,b). \text{ Pak je funkce } F(x) = \sum_{n=1}^{\infty} u_n(x)$ $dob\check{r}e \text{ definovan\'a a diferencovateln\'a na } (a,b) \text{ a nav\'ic } \sum_{n=1}^{\infty} u_n(x) \overset{Loc}{\rightrightarrows} F(x) \text{ a } \sum_{n=1}^{\infty} u'_n(x) \overset{Loc}{\rightrightarrows} F(x) \text{ na } (a,b).$

"První bod": Funkce $s_n(x) = \sum_{n=1}^k u_n(x)$ jsou spojité a $s_k \stackrel{\text{Loc}}{\rightrightarrows}$ na (a,b). Tedy podle důsledku věty z dřívějška (stejnoměrná limita spojitých funkcí je spojitá) je jejich limita lokálně spojitá, tedy spojitá.

"Druhý bod": Na s_k použijeme větu z dřívějška (pokud mají derivace stejnoměrnou limitu, pak i funkce ji mají a shoduje se až na derivaci). Ověříme podmínky, tedy že $s_k(x) = \sum_{n=1}^k u_n(x)$ konverguje a $s_k' = \sum_{n=1}^k u_k' \stackrel{\text{Loc}}{\Rightarrow}$ na (a,b). Podle tamté věty tedy $\exists F(x) = \lim_{k \to \infty} s_k(x) = \sum_{n=1}^\infty u_n(x)$ a tato funkce je diferencovatelná a

$$\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{Loc}}{\Rightarrow} F(x) \quad \wedge \quad \sum_{n=1}^{\infty} u'_n(x) \stackrel{\text{Loc}}{\Rightarrow} F'(x) \quad \text{na } (a,b).$$

Věta 1.8 (Abel-Dirichletovo kritérium pro stejnoměrnou konvergenci)

Nechť $\{a_n(x)\}_{n=1}^{\infty}$ je posloupnost funkcí definovaných na intervalu J a nechť $\{f_n(x)\}_{n=1}^{\infty}$ je posloupnost funkcí na J taková, že $f_1(x) \geq f_2(x) \geq \ldots \geq 0$. Jestliže je splněna některá z následujících podmínek, pak $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x) \rightrightarrows na J$.

- $(A) \sum_{n=1}^{\infty} a_n(x) \Rightarrow na \ J \ a \ b_1 \ je \ omezen\'a.$
- (D) $b_n \rightrightarrows 0$ na J a $\sum_{n=1}^{\infty} a_n(x)$ má omezené částečné součty, tedy

$$\exists K > 0 \ \forall m \in \mathbb{N} \ \forall x \in J : |s_n(x)| = \left| \sum_{i=1}^m a_i(x) \right| < K.$$

Důkaz

"Dirichlet": Nechť $\varepsilon>0$. Nalezneme n_0 $\forall n\geq n_0$ $\forall x\in J: |f_n(x)|<\varepsilon$. Nechť $m,n\geq n_0$. Označme $\sigma_i(x):=\sum_{j=m}^i a_j(x)$. Pak

$$|\sigma_i(x)| \le \left| \sum_{j=1}^i a_j(x) - \sum_{j=1}^{n_0 - 1} a_j(x) \right| \le K + K.$$

$$\forall m, n \ge n_0 \ \forall x \in J : \left| \sum_{j=n}^m a_j(x) \cdot b_j(x) \right| = \left| a_n \cdot b_n + (\sigma_{n+1} - \sigma_n)b_{n+1} + \ldots + (\sigma_m - \sigma_{m-1})b_m \right| \le \sup_{j=n,\ldots,m} \left| \sigma_{m-1} \right| = \sup_{j=n,\ldots,m} \left$$

A z BC podmínky už $\sum a_i(x)b_i(x) \rightrightarrows$ na J.

"Abel": Nechť $\varepsilon > 0$. Z BC podmínky pro \Rightarrow

$$\exists n_0 \ \forall m, n \geq n_0 : \left| \sum_{j=n}^m a_j(x) \right| < \varepsilon.$$

Tedy pro $\sigma_1(x)=\sum_{j=n}^m a_j(x)$ platí $|\sigma_i(x)|<\varepsilon.$ Analogicky odhadu výše

$$\left| \sum_{j=n}^{m} a_j(x) \cdot b_j(x) \right| \le \sup_{j=n,\dots,m} |\sigma_j(x)| \cdot |b_n(x)| \le \varepsilon \sup_{x \in J} (b_1(x)) \le \varepsilon \cdot K.$$

Tedy $\sum a_i(x) \cdot b_i(x)$ splňuje BX podmínku.