

Statistical Machine Learning

Lecture 2 – Linear regression, regularization

Sebastian Mair

https://smair.github.io/ Department of Information Technology Uppsala University

Course webpage

Summary of Lecture 1 (I/II)

What is this course about? Supervised machine learning

In one sentence:

Methods for automatically learning (training, estimating, ...) a model for the relationship between

- the input x, and
- the output y

from observed training data

$$\mathcal{T} := \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \}.$$

Summary of Lecture 1 (II/II)

Regression vs. classification

- Numerical variables take on numerical values (real numbers, integer values, ...).
- Categorical variables take on values in one of K distinct classes, e.g. "true or false", "disease type A, B or C".

Regression is when the output y is numerical.

Classification is when the output y is categorical.

Summary of Lecture 1 (II/II)

What maths do we need.

- Calculus Finding a parameter which minimizes the distance between two points.
- Matrix algebra For keeping track of sum of squares.
- Probability theory Estimating parameters. The normal distribution important.

One key idea that brings these together is maximum likelihood. Finding the model that is maximally likely (closest to data).

Outline – Lecture 2

Aim: To introduce linear regression and its regularized version.

Outline:

- 1. Summary of Lecture 1
- 2. Linear regression models
- 3. Maximum likelihood and least squares
- Regularization
 - Ridge regression
 - LASSO

Linear regression is the foundation of statistics and (supervised) machine learning.

The course book

This course was developed over the last years.

As a result, a book based on these notes was published as a textbook with Cambridge University Press.

Book website: smlbook.org

Feedback can be provided via the Github page.

Please read as part of your studies.

Regression

- Input variable x
- Output variable y

Regression: Learning a model explaining y from x, when y is numerical, i.e.,

$$y = f(\mathbf{x}; \beta) + \epsilon.$$

Here, β are the **parameters** of the model.

 $(y \text{ categorical} \rightarrow \text{classification})$

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg 1 = brown hair, 2 = red hair, 3 = blonde hair Adenine, Thymine, Cytosine, Guanine 1 bike, 2 bikes, 5 bikes

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg 1 = brown hair, 2 = red hair, 3 = blonde hair Adenine, Thymine, Cytosine, Guanine 1 bike, 2 bikes, 5 bikes Numerical

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg 1 = brown hair, 2 = red hair, 3 = blonde hair Adenine, Thymine, Cytosine, Guanine 1 bike, 2 bikes, 5 bikes

Numerical

Categorical

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg 1 = brown hair, 2 = red hair, 3 = blonde hair Adenine, Thymine, Cytosine, Guanine 1 bike, 2 bikes, 5 bikes Numerical Categorical Categorical

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg 1 = brown hair, 2 = red hair, 3 = blonde hair Adenine, Thymine, Cytosine, Guanine 1 bike, 2 bikes, 5 bikes Numerical Categorical Categorical Numerical

Numerical or categorical?

17.31 kg, 22.37 kg, 51.34 kg
1 = brown hair, 2 = red hair, 3 = blonde hair
Adenine, Thymine, Cytosine, Guanine
1 bike, 2 bikes, 5 bikes
Ni

Numerical Categorical Categorical Numerical

Categorical output variable? \rightarrow classification. (But can be done with regression!)

Categorical input variable? Still regression!

Regression example: car stopping distances

Regression example: car stopping distances

Regression example: car stopping distances

(in fact a linear regression model with nonlinear transformation of the input variables)

Regression example: Alpha Go zero

Regression example: Alpha Go zero

- Input: State of the game (19 x 19 grid, either black, white or blank)
- Output: Probability for the current player to win the game
- + reinforcement learning

Silver et al. Mastering the game of Go with deep neural networks and tree search, *Nature* 529, 484–489, 2016.

Regression example: Alpha Go zero

- Input: State of the game (19 x 19 grid, either black, white or blank)
- Output: Probability for the current player to win the game
- + reinforcement learning

Silver et al. **Mastering the game of Go with deep neural networks and tree search**, *Nature* 529, 484–489, 2016.

- Input: Same
- Output: Probability for the current player to win the game and what move to make

Silver et al. **Mastering the game of Go without human knowledge**, *Nature* 550, 354–359, 2017.

Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, *Science*, 362(6419): 1140–1144, 2018.

Linear regression

"Linear regression = Regression with a linear model",

Output y is linear combination of k inputs x_1, \ldots, x_k plus some noise/error ϵ ,

$$y = \underbrace{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}_{f(\mathbf{x};\beta)} + \epsilon.$$

Workflow (for most methods, not only linear regression):

- 1. Learn/train/estimate model from training data \mathcal{T} : find $\widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_k$
- 2. Predict output for new test input \mathbf{x}_{\star} using the model $\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_{\star 1} + \widehat{\beta}_2 x_{\star 2} + \cdots + \widehat{\beta}_k x_{\star k}$

Linear regression (k = 1)

Linear regression (k = 1)

Learning the model from data

Linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

How to choose $\beta_0, \beta_1, \dots, \beta_k$ (= β , column vector)?

Use training data $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$!

$$\mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ik} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & -\mathbf{x}_1^\mathsf{T} - \\ 1 & -\mathbf{x}_2^\mathsf{T} - \\ \vdots & \vdots \\ 1 & -\mathbf{x}_n^\mathsf{T} - \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

What is a good model?

Learning a model from data is a matter of looking at the errors $\boldsymbol{\epsilon}!$

Learning a model from data is a matter of looking at the errors $\epsilon!$

Learning a model from data is a matter of looking at the errors $\epsilon!$

Learning a model from data is a matter of looking at the errors $\epsilon!$

Maximum likelihood: Think of ϵ (dotted) as random variables, and *choose the model* (solid) *such that the resulting* ϵ *are as likely as possible*.

Linear regression model in matrix form

Recall our linear regression model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma_{\boldsymbol{\epsilon}}^2 I).$$

Assumptions (for now):

- 1. y observed **random** variable.
- 2. β unknown **deterministic** variable.
- 3. X known **deterministic** variable.
- 4. ϵ unknown random variable.
- 5. σ_{ϵ} unknown/known **deterministic** variable.

Using the maximum likelihood principle

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmax}_{\boldsymbol{\beta}} p(\mathbf{y} \,|\, \mathbf{X}; \boldsymbol{\beta})$$

and assuming $\epsilon \sim \mathcal{N}(0,\sigma_\epsilon^2)$ independently for each data point i

$$\begin{split} &\Rightarrow p(y_i|\mathbf{x}_i;\beta) = \frac{1}{\sqrt{2\pi\sigma_\epsilon^2}} \exp\left(-\frac{1}{2\sigma_\epsilon^2}(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} - y_i)^2\right) \\ &\Rightarrow p(\mathbf{y}|\mathbf{X};\beta) = \prod_{i=1}^n p(y_i|x_i;\beta) \propto \exp\left(-\frac{1}{2\sigma_\epsilon^2} \sum_{i=1}^n (\beta_0 + \dots + \beta_k x_{ik} - y_i)^2\right) \\ &\Rightarrow \widehat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n (\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} - y_i)^2 = \underset{\beta}{\operatorname{argmin}} \underbrace{\|\mathbf{X}\beta - \mathbf{y}\|_2^2}_{\text{Loss function induced by maximum likelihood}}, \end{split}$$

the least squares problem is achieved.

Least squares in matrix form

The least squares problem is given by

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \; \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2.$$

Least squares in matrix form

The objective of the least squares problem can be written as

$$V(\beta) = \|\mathbf{X}\beta - \mathbf{y}\|_2^2 = \beta^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X}\beta - 2\mathbf{y}^\mathsf{T} \mathbf{X}\beta + \mathbf{y}^\mathsf{T} \mathbf{y}.$$

Minimize by differentiating and setting

$$\frac{\partial V(\beta)}{\partial \beta} = 2\mathbf{X}^\mathsf{T} \mathbf{X} \beta - 2\mathbf{y}^\mathsf{T} \mathbf{X}$$

to zero. Therefore,

$$\mathbf{X}^\mathsf{T}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}^\mathsf{T}\mathbf{y}.$$

Least squares in matrix form

The least squares problem

$$\widehat{\boldsymbol{\beta}} = \mathop{\rm argmin}_{\boldsymbol{\beta}} \, \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2$$

is solved by the normal equations

$$\widehat{\beta} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}.$$

Remember $\mathbf{X}^\mathsf{T}\mathbf{X}$ is like sum of squares (similar to co-variances of input variables) and $\mathbf{X}^\mathsf{T}\mathbf{y}$ is similar to co-variance between input and output.

For k=1:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Linear regression: the key concepts

The linear regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

+

Maximum likelihood

$$\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$$
 iid

Our first learning tool

Example

- $x = \mathsf{Speed}$
- y = Distance

Example

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 8 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 39 & & 138 \\ 1 & 39 & & & 138 \\ 1 & 39 & & & & 138 \\ 1 & 39 & & & & & 134 \end{bmatrix}$$

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 8 \\ \vdots & \vdots \\ 1 & 39 \\ 1 & 39 \\ 1 & 40 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ \vdots \\ 138 \\ 110 \\ 134 \end{bmatrix}$$

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 8 \\ \vdots & \vdots \\ 1 & 39 \\ 1 & 39 \\ 1 & 40 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ \vdots \\ 138 \\ 110 \\ 134 \end{bmatrix}$$

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 8 \\ \vdots & \vdots \\ 1 & 39 \\ 1 & 39 \\ 1 & 40 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ \vdots \\ 138 \\ 110 \\ 134 \end{bmatrix}$$

The normal equations $\Rightarrow \widehat{\beta} = \begin{bmatrix} -20.1 \\ 3.1 \end{bmatrix}$

Use the model for predictions!

Transforming the inputs

"If the speed v is an input variable, why can't the kinetic energy $(\propto v^2)$ be an input variable?"

We can make arbitrary nonlinear transformations to the input variables!

The model is still a linear regression model, since

$$y = \beta_0 + \beta_1 v + \beta_2 v^2 + \beta_3 \cos(v) + \beta_4 \arctan(v) + \epsilon$$

is equivalent to

$$\begin{split} y &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon, \\ \text{with} \quad x_1 &= v \\ x_2 &= v^2 \\ x_3 &= \cos(v) \\ x_4 &= \arctan(v), \end{split}$$

where v = original input variable, x_i transformed input variables (features).

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 8 \\ \vdots & \vdots \\ 1 & 39 \\ 1 & 39 \\ 1 & 40 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ \vdots \\ 138 \\ 110 \\ 134 \end{bmatrix}$$

The normal equations $\Rightarrow \widehat{\beta} = \begin{bmatrix} -20.1 \\ 3.1 \end{bmatrix}$

- x = Speed
- y = Distance

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 4 & 16 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \\ 1 & 8 & 64 \\ \vdots & \vdots & \vdots \\ 1 & 39 & 1521 \\ 1 & 40 & 1600 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 8 \\ 8 \\ 7 \\ 7 \\ 8 \\ \vdots \\ 138 \\ 138 \\ 1318 \\ 134 \end{bmatrix}$$

The normal equations
$$\Rightarrow \widehat{\beta} = \begin{bmatrix} 1.58 \\ 0.42 \\ 0.066 \end{bmatrix}$$

Transforming the inputs

If the original input variable is v, we can use for instance:

ullet a polynomial in v

$$y = \beta_0 + \beta_1 \frac{v}{x_1} + \beta_2 \frac{v^2}{x_2} + \beta_3 \frac{v^3}{x_3} + \dots + \beta_p \frac{v^p}{x_p} + \epsilon$$

- radial basis function kernels (see book)
- ..

With a p=n-1 degree polynomial, we can fit n data points perfectly.

With a p=n-1 degree polynomial, we can fit n data points perfectly.

Is this desired?

With a p=n-1 degree polynomial, we can fit n data points perfectly.

Is this desired? Overfit!

"Keep eta small unless the data really convinces us otherwise"

Least squares

$$\widehat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{oldsymbol{eta}} \| \mathbf{X} oldsymbol{eta} - \mathbf{y} \|_2^2$$

"Keep β small unless the data really convinces us otherwise"

Ridge regression = Least squares with ℓ_2 regularizer

$$\widehat{\boldsymbol{\beta}} = \mathop{\mathrm{argmin}}_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 + \gamma \|\boldsymbol{\beta}\|_2^2$$

"Keep β small unless the data really convinces us otherwise"

Ridge regression = Least squares with ℓ_2 regularizer

$$\begin{split} \widehat{\boldsymbol{\beta}} &= \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 + \gamma \|\boldsymbol{\beta}\|_2^2 \\ \Rightarrow (\mathbf{X}^\mathsf{T}\mathbf{X} + \gamma\mathbf{I}_{p+1})\widehat{\boldsymbol{\beta}} &= \mathbf{X}^\mathsf{T}\mathbf{y} \end{split}$$

Here, $\gamma \geq 0$ is the regularization parameter.

Regularization can help us to avoid overfitting!

Ridge regression

$$\widehat{\boldsymbol{\beta}} = \mathop{\rm argmin}_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 + \gamma \|\boldsymbol{\beta}\|_2^2$$

(has a closed-form solution for $\widehat{\beta}$)

LASSO

$$\widehat{\boldsymbol{\beta}} = \mathop{\rm argmin}_{\boldsymbol{\beta}} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 + \gamma \|\boldsymbol{\beta}\|_1$$

(lacks a closed-form solution for $\widehat{\beta}$)

Regularization can be used in many methods, not only linear regression!

Dummy variables for categorical inputs

For a categorical input with 2 different classes/levels/labels A and B: Create a dummy variable

$$\begin{split} x &= \begin{cases} 0 & \text{if A} \\ 1 & \text{if B} \end{cases} \\ \Rightarrow y &= \beta_0 + \beta_1 x + \varepsilon = \begin{cases} \beta_0 + \varepsilon & \text{if A} \\ \beta_0 + \beta_1 + \varepsilon & \text{if B} \end{cases} \end{split}$$

Dummy variables for categorical inputs

For a categorical input with k=4 different classes/levels/labels A, B, C, D: Create k-1=3 dummy variables

$$x_1 = \begin{cases} 1 & \text{if B} \\ 0 & \text{if not B} \end{cases}, \quad x_2 = \begin{cases} 1 & \text{if C} \\ 0 & \text{if not C} \end{cases}, \quad x_3 = \begin{cases} 1 & \text{if D} \\ 0 & \text{if not D} \end{cases}$$

$$\Rightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon = \begin{cases} \beta_0 + \varepsilon & \text{if A} \\ \beta_0 + \beta_1 + \varepsilon & \text{if B} \\ \beta_0 + \beta_2 + \varepsilon & \text{if C} \\ \beta_0 + \beta_3 + \varepsilon & \text{if D} \end{cases}$$

A few concepts to summarize lecture 2

Regression is about learning a model that describes the relationship between an input variable \mathbf{x} (both numerical and categorical) and a numerical output variable y.

Linear regression corresponds to regression with a linear model.

Maximum likelihood with a Gaussian iid assumption on ϵ \Rightarrow **least squares** and **normal equations**.

Nonlinear transformations can be applied to the input variables.

Overfitting is when the model adapts (too much) to noise in the data.

Regularization can help against overfitting.

Categorical variables are handled by dummy variables.