

3. 이변량 자료의 설명

3-1. 이변량 자료

① 한 실험 또는 조사에서 두 변수가 동시에 측정 『예』

3-2. 도표/그래프에 의한 설명

3-2-1. 막대도표와 원도표

3-2-2. 산점도(scatter plot)

- ① 한 양적변수를 수평축(x축)으로 잡고 다른 양적변수를 수직축(y축)으로 잡고 각 관측값을 (x, y) 평면에 점으로 나타낸 그림
- ② 두 변수 x, y 사이의 관계를 설명
 - 어떤 경향을 볼 수 있는가?
 - 직선경향을 따라 일정하게 증가 또는 감소하는가?
 - 곡선경향이 있는가?
 - 어떤 경향도 볼 수 없는가?
 - 경향은 어느 정도로 강한가? 모든 점들이 정확하게 경향을 따르는가? 혹은 관계가 약하게 보이는가?
 - 이상점이 있는가? 점들이 그룹을 형성하는가?
 - [[q]] A 지역에 거주하는 6가구, 가구원수 x와 주당 식료품비 지출액 y(단위: 천원) 측정

x	y
2	95.75
2	110.19
3	118.33
4	150.92
1	85.86
5	180.62

가구원수가 2이고 식료품비 지출액이 165인 가구가 있다고 가정한다면 그림 x가 다른 6점의 직선 적인 경향과 적합하지 않은 이상점으로 간주된다.

www.topgrade.co.kr 19/148 Park, Ph.D

3-3. 수치적 방법에 의한 설명

3-3-1. 공분산(covariance)

- ① 두 변수 X와 Y가 동시에 변하는 정도
- ② 두 변수들의 평균점인 \overline{X} , \overline{Y} 를 중심으로 변하는 정도를 계산

$$\sigma_{xy} = Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i Y_i - \frac{\left(\sum_{i=1}^{n} X_i\right) \left(\sum_{i=1}^{n} Y_i\right)}{n} \right]$$

3-3-2. 상관계수(correlation coefficient)

- ① 상관(correlation) : 두 변수가 변하는 정도
- ② 상관계수: 두 변수가 관계되어 있는 정도를 나타내는 지수, 하나의 변수가 변해감에 따라 다른 변수가 변하는 정도를 나타내는 지수, 즉, 두 변수가 동시에 함께 변하는 정도를 나타내는 지수

<음의 경향>

③ 모수치에 의한 상관계수는 $\rho(로우)$ 라 표기하고, 통계치에 의한 표현은 r로 표기

- \bigcirc σ_x 는 X의 표준편차
- \bigcirc σ_{y} 는 Y의 표준편차
- \Box σ_{xy} 는 X와 Y의 공분산(covariance)

(5) <양의 경향>

- \bigcirc I 과 III에 있을 때 σ_{xy} 와 r의 부호는 양수
- \bigcirc \square 과 \square 있을 때 σ_{xy} 와 r의 부호는 음수
- \square 점들이 네 영역에 흩어져있을 때는 s_{xy} 와 r은 0 가까움.
- ⑥ X와 Y에 대하여 n쌍의 표본자료가 주어졌다면, 표본 공분산(sample covariance) S_{xy} 와 표본 상관계수(sample correlation coefficient) r_{xy} 를 계산할 수 있다.

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

്രി	19าน	주거요	거모이	주거며전	r 2]	파매가격	n 0]	상관계수
(\Sigma_1)	14/ [エノフ	닌큰데	エクログラ	x - r	진베기주	y-1	ってカカエ

건물	<i>x</i> (제곱피트)	<i>y</i> (천만원)
1	1360	278.5
2	1940	375.7
3	1750	339.5
4	1550	329.8
5	1790	295.6
6	1750	310.3
7	2230	460.5
8	1600	305.2
9	1450	288.6
10	1870	365.7
11	2210	425.3
12	1480	268.8

[풀이]

① x와 y의 합과 표준편차를 구하면 각각

$$\sum_{i=1}^{n} x = 20,980 \,, \ S_x = 281.4842 \,, \ \sum_{i=1}^{n} y = 4043.5 \,, \ S_y = 59.7592 \,.$$

€ 공분산은

$$S_{xy} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right) / n \right]$$

$$= \frac{1}{11} \left[7,240,383 - (20,980)(4043.5) / 12 \right] = 15,545.19697$$

© 상관계수
$$r = \frac{S_{xy}}{S_x S_y} = \frac{15,545.19697}{(281.4842)(59.7592)} = 0.9241$$

3-3-3. 회귀직선

- ① 모든 점들이 직선 위에 존재하지는 않지만 직선적인 경향을 볼 수 있다면 이 점들을 관통하는 최선의 직선을 적합하여 설명 가능
- 2x에 대한 y의 최적적합직선을 회귀선(regression line) 또는 최소제곱직선이라 함
- ③ 산점도에 있는 모든 점들이 자료를 대표하는 직선 쪽으로 회귀한다는 이유
- ④ 회귀선은 \overline{X} 와 \overline{Y} 인 점을 반드시 지난다.
- ⑤ 자료와 직선과의 차의 제곱의 합이 최소가 되도록 하여 a와 b를 구함.

회귀등식
$$y = a + bx$$
, $b = r \left(\frac{s_y}{s_x} \right) = \frac{s_{xy}}{s_x^2}$, $a = \overline{y} - b\overline{x}$

- ⑥ X값을 회귀등식 y=a+bx에 대입하여 나타난 기대되는 값과 Y값과의 차이를 가장 작게 해야 함
- ⑦ $s_x>0$, $s_y>0$ 이므로 b와 r은 같은 부호를 갖음
- 9 r이 음수라면 b도 음수 \Rightarrow 직선은 x에 따라 감소
- @ r이 0에 가깝다면 b도 0에 가까움

[예] 근무경력 년 수 x와 시간당 초기임금 y(단위: 천 원)에 관한 자료

x	2	3	4	5	6	7
y	6.00	7.50	8.00	12.00	13.00	15.50

[풀이]

- $\bigcirc x$ 와 y에 대하여 필요한 계산을 하면 $\overline{x}=4.5$, $\overline{y}=10.333$, $s_x=1.871$, $s_y=3.710$, r=0.980
- ① 기술기 $b = r \left(\frac{s_y}{s_x} \right) = 0.980 \left(\frac{3.710}{1.871} \right) = 1.9432389 \approx 1.943$
- © y절편 $a = \overline{y} b\overline{x} = 10.333 1.943(4.5) = 1.590$
- ® 회귀직선은 x값을 알고 있는 경우 y값을 예측하는데 사용, 예를 들어 근무 경력이 3년인 사람의 초기임금은 $y=1.590+1.943\times 3=7.419$ 라 예측

【참고】 상관계수와 회귀직선 사용의 차이점

상관계수	회귀직선
실험단위가 임의로 추출되고 동시에 x 와 y 에 대하여 측정이 이루어질 때	x의 값을 미리 정하고 난 다음에 y 를 측정하는 경우