

Parte II.1: Nível Físico (refs.)

Principios de comunicação digital

(Tanenbaum 2011, 2.1.(Intro), 2.1.2; Stallings 2.2)

- Efeitos do meio de transmissão
- Meios de transmissão e modulações
 (Tanenbaum 2011, 2.2-2.3, 2.5.1, 2.5.2; Stallings 2.1, 2.5)
 - Meios de transmissão guiados
 - Meios de transmissão sem fios
 - Modulações
- Partilha do meio de transmissão: Multiplexagem e comutação (Tanenbaum 2011, 2.5.3, 2.5.4; Stallings 2.5)

Parte II.1: Nível Físico (Questões)

Ligação direta.

- Como se transportam bits? Host
 (Que tecnologias e recursos se usam?)
- O que limita o ritmo (rapidez) a que se podem transmitir bits?
- O que afecta a sua transmissão?

- Como se partilha cada ligação?
 (Multiplexagem.)
- Como se partilham os recursos ao longo da rede? (Comutação.)

Ligação directa

- O nível físico lida com o transporte dos bits
 - Geração de sinais adequados ao meio de transmissão
- Lida com os efeitos na transmissão dos sinais
 - Capacidade de um canal (na ausência e presença de ruído)
 - Presença de erros
- Definição do meio de transmissão
 - Exemplos: suporte magnético, par entrançado, cabo coaxial, fibra óptica, sem fios (rádio, micro-ondas, infravermelhos)
- Partilha do meio de transmissão
 - Multiplexagem: na frequência e no tempo
 - Comutação: de circuito, de mensagens e de pacotes

Como se transportam bits?

Transporte de bits: transmissão de sinais

 As entidades de nível físico implementam a funcionalidade de transporte de bits ente elas através da transmissão de sinais (símbolos) sobre meios de transmissão.

Transmissão de 1 entre M símbolos possíveis para o envio de $log_2(M)$ bits.

- Características/grandezas dos símbolos
 - T_s Tempo (duração) de símbolo
 - R_s Ritmo de símbolo, R_s =1/ T_s [baud]
 - R_b Ritmo binário, $R_b = R_s \cdot log_2(M)$ [bps]

Largura de banda

• Tipicamente existe uma relação de proporcionalidade entre a largura de banda ocupada por um sinal, B, e o seu ritmo de símbolo (R_s).

Banda de Base vs. Banda Passante

- Os sinais a serem transmitidos têm de ser adequados ao meio de transmissão.
- Em alguns casos essa adequação implica a utilização de uma frequência portadora (modulação).

Que efeitos e limitações há na transmissão de bits?

Efeitos durante a transmissão Tempo de Propagação / Tempo de Transmissão

Tempo de propagação (propagation delay):

$$T_p = d / v_p$$

d - distância [m]

 v_p - velocidade de propagação [m/s]

Tempo de transmissão (transmission delay):

$$T_{tx} = L / R_b$$

L - comprimento (tamanho) da mensagem [bit]

 R_b - ritmo binário [bit/s]

Tempo de transferência (transfer delay):

$$T_{xfer} = T_p + T_{tx}$$

Tempo que toda a mensagem demora a chegar ao destino (*)

(* falta considerar outros efeitos, e.g., processamento e filas)

Exemplo transmissão de bits

• Exemplo (Série de Problemas n° 2 - Prob. I):

Qual o ritmo de símbolos, R_S ? Qual a sua taxa de codificação, m? Qual o ritmo binário, R_b ? Qual a duração de bit, T_b ?

• Exemplo (Série de Problemas n° 2 - Prob. II):

$$R_b = 100 \text{ Mbit/s}$$

 $v_p = 2 \times 10^8 \text{ m/s}$
 $d = 1000 \text{ km}$
 $L = 125 \text{ bytes}$

Qual o tempo de transmissão, T_{tx} ? Qual o tempo de propagação, T_p ? Qual o tempo de transferência, T_{xfer} ? Qual o tempo de ida e volta, T_{rtt} ?

Efeitos que um sinal sofre durante a sua transmissão

Atenuação: um sinal perde energia ao propagar--se (dB/km). A forma do sinal não se altera. O canal de transmissão é não distorcivo.

Distorção: nem todas as frequências sofrem a mesma atenuação nem viajam à mesma velocidade. A forma do sinal altera-se. O canal de transmissão é distorcivo.

Ruído: interferência de outras fontes de energia no sinal

Diafonia (crosstalk): interferência de outros condutores próximos

Existem meios de minorar estes efeitos não desejados!

Efeito "final": Erro de bit

Modelo de um sistema de comunicação Shannon-Weaver

O sinal recebido é resultado do sinal transmitido e das perturbações (ruído) sofrido durante a sua transmissão.

Padrão de erros, E, representação de erros usando "0" e "1"

Facilita a representação matemática do fenómeno: $R = T \otimes E$ (XOR bit a bit)

Probabilidade de Erro de bit

Modelo simplificado para a descrição do processo caracterizando-o estatisticamente.

 Erros independentes: a probabilidade de um bit, <u>i</u>, sofrer erros não depende do estado (erro/não erro) dos bits anteriores, <u>i-j</u>.

$$P(e_i = 1 | e_{i-j} = 0) = P(e_i = 1 | e_{i-j} = 1) = P_{eb}$$

 $P(e_i = 0 | e_{i-j} = 0) = P(e_i = 0 | e_{i-j} = 1) = 1 - P_{eb}$

Exemplo de padrão de erros ($P_{eb}=1/6$):

• Erros em rajada: erros não independentes.

Modelo de Gilbert-Elliot, canal pode 1 encontrar-se em dois estados: Good/Bad.

Exemplo de padrão de erros (P_{gb} =0.05; P_{bg} =0.1; P_e =0.5 => P_{eb} =1/6):

Nota: estes valores são totalmente irrealistas!

Que recursos usados para a transferência de bits?

Equipamentos de transmissão

Meios de Transmissão

15

Meios de Transmissão

	Gama de frequências	Atenuação	Atraso	BER
Par Entrançado (Cat.6)	0 (1) - 250 MHz	0,2 dB/Km (a 1kHz)	0.55 μs /100m	10 ⁻¹² (802.3an)
Multi-par	0 - 1 MHz	3 dB/Km (a 1 kHz)	5 μs/km	10 ⁻⁹ (HDSL)
Cabo Coaxial	0 - 500 MHz	7 dB/Km (a 10 MHz)	4 μs/km	10 -8
Fibra Óptica	180 - 370 THz	0,2 - 0,5 dB/Km	5 μs/km	10 -12

Outras Características

- Imunidade ao ruído
- Imunidade à diafonia
- Robustez física
- Preço

Glossário

• BER - Bit Error Ratio

Taxa de erro de bit, número de bits errados por número de bits transmitidos.

Modelizado por P_{eb} - Probabilidade de erro de bit. (Diferente de *Bit Error Rate*: número de bits errados por unidade de tempo).

 dB - deciBel
 Unidade logarítmica usada para comparar duas grandezas (ex., potência sinal emitido vs. recebido)

O Espectro Electromagnético

Equipamentos de transmissão

Codificador de linha.

Equipamento que transforma bits (ou grupos de bits) em sinais em banda de base, ex. codificador diferencial Manchester. (Diferente de *codificador de sinal*, ex. codificador MPEG para áudio ou vídeo).

Moduladores:

Equipamento que transforma bits (ou grupos de bits) em sinais em banda passante, ex. OFDM ou QAM. (Modem - modulador/demoduladores.)

Placas de rede.

Codificadores/descodificadores ou moduladores/demoduladores são elementos componentes das placas de rede, ex. Ethernet ou WiFi (que possuem outros componentes - ver capítulo seguinte).

Um dos parâmetros de maior interesse prático na descrição dos equipamentos de transmissão é o seu $Ritmo\ binário,\ R_b.$

• Como se partilham os recursos de transmissão(ligação)?

Multiplexagem na Frequência - FDM (Partilha do Meio de Tx por vários utilizadores)

 A largura de banda disponível no meio de transmissão é dividida em sub-bandas (canais) não sobrepostos.
 A cada fonte de tráfego é atribuído <u>estaticamente</u> um canal.

Multiplexagem no Tempo - TDM (Partilha do Meio de Tx por vários utilizadores)

- No canal é ciclicamente transmitida (ex. a cada 125 µs) uma <u>trama TDM</u> composta por um número fixo de <u>time slots</u> (ex., 32).
- A cada fonte de tráfego é atribuído <u>estaticamente</u> um (ou mais) time slots, os quais não podem ser usados por nenhuma outra fonte.

Multiplexagem no Tempo - TDM (Partilha do Meio de Tx por vários utilizadores)

Sistema TDM particularmente adequado a fontes de informação contínua e que produzem um ritmo constante de bits, ex. voz:

Canal (fonte) de voz = 8 bits x 8000 amostra/s = 64 kbit/s

- Europa (sistema E1): 32 canais de voz => r_b = 32 x 64 kbit/s = 2048 kbit/s
- Europa (sistema E2): 152 canais de voz => r_b = 152 x 64 kbit/s = 8192 kbit/s

Exemplo: multiplexer para 152 linhas telefónicas (entradas RJ-11) partilhando uma fibra óptica.

Fully populated VMX20 Chassis (152 Phone Lines)

Como se partilham os recursos de transmissão(rede)?

Comutação de circuitos

Comutação de Mensagens

Comutação de Pacotes

Informação de controlo Dados

Comutação de circuitos

Comutação de Mensagens

Comutação de Pacotes