1.1.1 Show that if Mm, Nn are smooth manifolds, then MmxNn is also a control dimensional smooth manifold. Hence, the n-dimensional torus or simply n - torus

 $T^{n} = S' \times \cdots \times S' \qquad T^{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}$ 

proof) we want to show :

[1] MmxNn is manifold [2] It is smooth manifold

[1]: O Housdorff

Since Mm, Nn are smooth manifold, those are Housdorf. Then, for any Um, Vm in Mm and Un. Vn in Nn, let UmxUn = Uc MmxNn and  $V_{M} \times V_{N} \subset N^{n}$ , then  $U_{M} \times U_{N} \cap V_{M} \times V_{N} = \phi$ . (\*)

(:)): (TMXTN) N VM = TM N UM X TM N UN = \$ because VMNUM = & since Mm is Hausdorff.

(2):  $(U_M \times U_N) \cap U_N = V_N \cap U_M \times V_N \cap U_N = \emptyset$ because VN NUN = & since Nn is Hausdorff.

 $(*) = (1) \times (2) = \phi$ 

Thus, Mm XNn is Hausdorff.

2 second countable By the assumption, MM, Nn have à countable basis BM, BN. Then

trivially BMXBNC MmXNn and we can pick BMXBN is a countable basis for MmxNn.

(°°°)  $x \in \mathcal{B}_N = g \in \mathcal{B}_N \Rightarrow (\pi, y) \in \mathcal{B}_M \times \mathcal{B}_N \subset M^m \times N^n$ and  $\mathcal{B}_M$ ,  $\mathcal{B}_N$  : open  $\Rightarrow \mathcal{B}_M \times \mathcal{B}_N$  : open.

BMXBN: countrible since BM, BN are countable.

pf) Let BMXBN: finite - trivial

We assume BM, BN: countably infinite

 $(\beta_{M}^{n}, \beta_{N}^{n})$   $(\beta_{M}^{n}, \beta_{N}^{n})$ 

First, we pick (Bm, Bn), then we pick (Bm, Bn), then we pick (Bm, Bn), then we pick (Bm, Bn), (Bm, Bn) (Bm, Bn) (Continue to this processes, then we can define the one-to-one correspondence between BmxBn -> IN (the set of natural #). Thus, by definition of countable, the assertion is proved.

3 Homeomorphism

Let  $\mathcal{P}_{N}: \mathcal{U} \to \mathbb{R}^{m} \& p \in \mathcal{P}_{N}(\mathcal{U})$  and  $\mathcal{P}_{N}: \mathcal{V} \to \mathbb{R}^{n} \& \mathcal{P}_{S} \in \mathcal{P}_{N}(\mathcal{V})$ , then we can define

9MN(r) = (9MX QN)(p, g) = (9MCP), PN(g)) if PMN: UXV→IRM+n. (i) insective 9MN(r1) = 9MN(r2) => (PM(P1), PN(P1)) = (PM(P2), PN(B2)) => PMCP1) = PMCP2) & PN(B1) = PNCB2) => p1=P2 & B1=B2 since PM, PN: insective. (ir) sursective For  $\forall y = q_{MN}(\overline{r}) \in \mathbb{R}^{m+n}, \exists (\overline{p}, \overline{q}) \in U \times V \text{ s.t.}$ y = PMN(T) = (QM(P), PN(B)) since 9M & PN we surjective. By (i), (ii), PMN: bisection on UXVCMMXN" Thus, = 9mn-1: inverse of 9mn. be open In case of continuity, for any O, B in IRM, IRM, PM(O), PN(B) are open by the assumption. Since OxB: open and its proimage PMN (OXB) is open. .. PMN is continuous -(:) if  $O = P_M(X)$ ,  $B = P_N(B)$  for any open sets  $\alpha$ ,  $\beta$  in U, V, then PMN (PMN (OxB)) = OxB = PM(x) x PN(B) : open

For PMN: inverse of PMN, QMN(OXB) is open

=> 9mn(9mn(0xB)) = 0xB is open

.. PMN is continuous.

1000 9mn is Homeomorphism -

Therefore, MMXNn is a manifold.

[2]: Since M<sup>m</sup>, N<sup>n</sup> are smooth manifold, they have & G<sup>oo</sup>-structure, so that the coordinate charts (U, 9m), (V, 9n) is G<sup>oo</sup>-compartible with all charts in the atlas of M<sup>m</sup>, N<sup>n</sup>, respectively. By [1], we defined the homeomorphism 9mn, hence we can write the coordinate chart of M<sup>m</sup>×N<sup>n</sup> that (U×V, 9mn). Consider another chart (U×V, 9mn), then

PMN O PMN\* = (PMXPN) O (PMXPN) T

= PM 0 PM - X PN 0 PN -

Since PM, PN, PM, PN+ are Coo,

PMN · PMN\* is Coo.

... Mm x Nn is a smooth manifold.

Thus, By the proof above, In is smooth manifold.

1.1.2 Let  $U \subset \mathbb{R}^n$  be open and  $f: U \to \mathbb{R}^m$  be continuous. Show that the graph of f

Tf = {(2,4) = 12 x 12 m : 2 = U and y = f(2) }

is an n-dimensional manifold.

**proof)** By the example 1. n. (i) of the lecture note of professor Han,  $IR^n$ ,  $IR^m$  are n, m dimensional smooth manifold and hence  $IR^n \times IR^m$  is smooth manifold by the exercise 1.1.1.

Thus, the graph of f It is the subspace topology of IR" XIR". Hence, If is Housdouff and 2nd-countable space.

So, we want to show that If has the locally Euclidean property only.

Let  $\pi_{\alpha} : \mathbb{R}^{n} \times \mathbb{R}^{m} \to \mathbb{R}^{n}$  is the projection onto  $\infty$ , and let  $\varphi : \mathbb{F}_{f} \to \mathbb{T}$  be the vestriction of  $\pi_{\alpha}$  to  $\mathbb{F}_{f}$  that  $\varphi(\mathfrak{N}, \mathfrak{Y}) = \mathfrak{N}$ ,  $(\mathfrak{N}, \mathfrak{Y}) \in \mathbb{F}_{f}$ . Since  $\pi_{\alpha}$  is continuous (clearly), the restriction of  $\pi_{\alpha}$   $\varphi$  is continuous, and bisective also. Thus  $\exists \varphi^{+}:$  inverse of  $\varphi$  and  $\mathbb{F}_{\alpha}$   $\mathbb{F}_{\alpha}$  inverse of  $\mathbb{F}_{\alpha}$  and  $\mathbb{F}_{\alpha}$  inverse of  $\mathbb{F}_{\alpha}$  and  $\mathbb{F}_{\alpha}$  inverse  $\mathbb{F}_{\alpha}$  inverse.

i. P: Homeomorphism.

· . If is n-dimensional manifold.

1.2.1 Complete the proof of proposition 1.14 : Suppose that  $\pi: M \to M/n$  is an open map. Then (ii) M/n is Hausdorff  $\Rightarrow R = S(p,q) : p_n g_1^2$  (3 closed in  $M \times M$ .

proof) Note that :

$$[\alpha]_{\sim} = \{ \alpha \in M : \alpha \sim \alpha, \alpha \in M \}.$$

OCM is open 
$$\Leftrightarrow \pi^{-1}(O) = \{x : \pi(x) = [x] \in O\}$$
  
is open in M.

Assume that M/n is Housdorff.

Claim: RCMXM is closed

Let (p, g) ∈ M×M-R, then π(p) ≠ π(g)

7 (p, g) & R. Thus we can take the

disjoint open sets TT(P) & U, TT(P) & U2

since M/n is Hoursdorff.

Let V1 = TT (V1) & V2 = TT (U2).

If (VixV2) NR + Ø, then = (V1, V2) EV, X V2

such that  $\pi(v_1) = \pi(v_2)$ ,  $\pi(v_1) \in U_1$ ,  $\pi(v_2) \in U_2$ .

But,  $U_1 \cap U_2 = \emptyset$ , that is contradiction.

. R is closed in MXM.

1.2.2 Let  $f:S^n \to S^n$  be the antipodal map defined by  $f(n) = -\infty$ . Define an relation n on  $S^n$  by x n y iff  $y = \infty$  or  $y = f(\infty)$ . Show that n is an equivalence relation and  $S^n/n = IRP^n$ .

proof) (1) Equivalence relation

$$y = 2c \Leftrightarrow y - 2c = 0 \Leftrightarrow -(2c - y) = 0$$

$$\iff 2L - V) = 0 \iff 2L = V$$

$$y = -\alpha \iff -y = \infty \iff n = f(y)$$

(iii) if any & y ~ Z, then

$$z = y = 2L \iff 2L \sim z$$
.

$$Z = -y = -(-\infty) = \infty \iff \infty \sim Z$$

 $S_{\infty}^{n} = (RP^{n})$ 

(Additional Information i thought)
$$S^{n} = S(x_{1}, \dots, x_{n+1}) : x_{1}^{2} + \dots + x_{n+1}^{2} = r^{2} S.$$

$$(o, o, \dots, o) \notin S^{n} \subset M = |R^{n+1} - S \circ S^{n}|.$$

$$[x]_{M} = S \times M : x \times y \iff y = x \times for \text{ some } x \neq o S^{n}$$

$$[x]_{S^{n}} = S \times S^{n} : x \sim y \iff y = \pm x S^{n}$$

$$\Rightarrow [x]_{S^{n}} \subset [x]_{M} . (::[x]_{S^{n}} = S^{n} - x, x S^{n})$$

$$\Rightarrow [x]_{S^{n}} \in M_{N} = |RP^{n}|.$$

$$S^{n}_{N} \subset M_{N} = |RP^{n}|.$$

1.2.3. The complex prosective space  $\mathbb{CP}^n$  is the set of all line through the origin in  $\mathbb{C}^{n+1}$ , i.e., the set of 1-dimensional subspaces of  $\mathbb{C}^{n+1}$ . If we define an equivalence veloction on  $M = \mathbb{C}^{n+1} - 503$  by  $\neq n \omega \iff \omega = \lambda \neq 1$  for some  $\lambda \in \mathbb{C}^n$ , then  $\mathbb{CP}^n = M/n$ . Show that  $\mathbb{CP}^n$  is a 2n-dimensional smooth manifold.

proof) @ 2nd-countable

Since M is 2nd-countable, the quotient set of M is 2nd-countable.

2) Housdorff.

 $[Z_1]$ ,  $[Z_2]$  G  $U_j$  for some j  $\Rightarrow$   $[Z_1]$  and  $[Z_2]$  are disjoint open set, (::)  $P_j(Z_1)$ ,  $P_j(Z_2)$  G  $C^n$ .

Claim: # Us containing [X1] & [X2]

Given  $j \neq k$ , let  $A_{j,k} = f[Z]: |Z^{j}| > |Z^{k}|^{2} \subset \mathbb{CP}^{n}$ .

Then  $A_{j,k}$  is open since  $\pi^{-1}(A_{j,k})$  is open in  $\mathbb{C}^{n+1} - fo^{2}$ .

By the assumption,  $\exists j \neq k$  s.t.  $[Z_{i}] \in U_{j}$  and  $[Z_{2}] \in U_{k}$ , but  $Z_{i}^{j} = Z_{2}^{k} = 0$ .

: ZIGA; K, ZZGAK, J.

3 local Euclidean

For 
$$\mathcal{L} = (\mathcal{Z}^{\circ}, \dots, \mathcal{Z}^{n}) \in \mathbb{C}^{n+1}$$
, define

define 
$$\varphi_{\lambda}:U_{\lambda}\to\mathbb{C}^n$$
 by

$$Q_{i}([X]) = \left(\frac{X^{0}}{Z^{i}}, \dots, \frac{Z^{i-1}}{Z^{i}}, \frac{Z^{i+1}}{Z^{i}}, \dots, \frac{Z^{n}}{Z^{i}}\right) - \frac{Z^{n}}{Z^{n}}$$

For a prosection 
$$\pi: M \to M_{h}$$
 by  $\pi(X) = [X],$ 

$$Q_{\bar{n}}^{-1}(V)$$
 is open for any open  $V \subset \mathbb{C}^n$ 

$$\Leftrightarrow \pi^{-1}(\nabla) = (\varphi_i \circ \pi)^{-1}(\nabla)$$
 is open in  $\mathbb{C}^{n+1}$ .

Since 9:0 TT is clearly continuous, (: Zi +0)

(1) injective

con tîmu

ous

$$Q_{\vec{\lambda}}([\vec{z}_1]) = Q_{\vec{\lambda}}([\vec{z}_2]) \rightarrow \frac{\vec{z}_1^{\dot{\delta}}}{\vec{z}_2^{\dot{\delta}}} = \frac{\vec{z}_1^{\dot{\delta}}}{\vec{z}_2^{\dot{\delta}}}, \quad j \neq i$$

$$\exists [x_1] = [x_2]. (: x_1^j = Ax_2^j \text{ for } \forall j)$$

$$\Im V = (V', \dots, V'') \in \mathbb{C}^n$$
, then

$$Q_{\lambda}^{-1}(V) = \pi(v', \dots, v^{i-1}, 1, v^{i}, \dots, v^{n})$$

Since TI is continuous, Pit is continuous.

(a) assuming w.r.o.g, i < j', the transition maps  $\varphi_j \circ \varphi_i^{-1} : \varphi(U_i \cap U_j) = \{ Z = (Z', \dots, Z'') \in \mathbb{C}^n : Z^j \neq 0 \}$ 

 $P_{j} \circ P_{i}^{-1} \left( \underbrace{Z'_{i}, \dots, Z'_{i}}_{j} \right) = P_{j} \left( \left[ \left( \underbrace{Z'_{i}, \dots, Z'_{i}}_{j-1}, 1, \underbrace{Z'_{i}}_{j} \right) \right] \right)$   $= \left( \underbrace{Z'_{i}}_{Z'_{i}}, \dots, \underbrace{Z'_{i}}_{Z'_{i}}, \underbrace{Z'_{i}}_{Z'_{i}}, \underbrace{Z'_{i}}_{j} \right) \dots, \underbrace{Z'_{i}}_{j}, \underbrace{Z'_{i}}_{j} \right)$ 

 $\rightarrow \mathcal{Q}(U_{i} \cap U_{i})$ 

is smooth,

Thus, for  $S(U_i, P_i)$ ,  $i = 1, \dots, n+1$  A = A, is  $C^{\infty}$  atlas.

00 CPn 14 2 2n-dimensional smooth manifold.

1.3.1. Let N = M = IRP' and write a point in IRP' as [(n,y)] for  $(n,y) \in IR^2$ . Show that the map  $F: N \rightarrow M$  given by  $F([(n,y)]) = [(n^2, y^2)]$  is smooth.

**proof)** For  $f(U, P)^2 = \int_N and f(V, Y)^2 = \int_M$ , let  $P = Y = \pi^-$ , i.e.  $P: N \to (R^2 \text{ by } P([(x,y)]) = (x,y)$   $Y: M \to (R^2 \text{ by } Y([x,y]) = (x,y)$ Then, These can be a homeomorphism.

Thus,

 $f = \gamma_{\circ} F \circ P^{-1} = \gamma(F([(n, y)]))$   $R^{2} \rightarrow R^{2} = \gamma([(x^{2}, y^{2})]) = (x^{2}, y^{2}).$ Since the components of f is smooth,  $f = \gamma_{\circ} F - P^{-1} \text{ is smooth, and therefore,}$   $F : N \rightarrow M \text{ is smooth mapping.}$ 

1.3.2 Prove that (ii) of Theorem 1.29. proof)

