PVM-1450QM/1454QM

SERVICE MANUAL

PVM-1450QM

PVM-1454QM

AEP Model

PVM-1450QM:

Chassis No. SCC-G62C-A

PVM-1454QM:

Chassis No. SCC-G62B-A

SPECIFICATIONS (PVM-1450QM)

Video signal

Color system Resolution

PAL, SECAM, NTSC, NTSC443 450 TV lines

Aperture correction Frequency response

0 dB - +6.0 dBLINE 9.0 MHz (-3 dB)

RGB 10.0 MHz (-3 dB) AFC time constant 1.0 msec.

Synchronization

Picture performance

Normal scan

7% over scan of CRT effective screen

H. linearity V. linearitý

Less than 8.0% (typical) Less than 7.0% (typical) H: 1.0%, V: 1.5%

Raster size stability

High voltage regulation

Color temperature

P22 phosphor 6,500K

Inputs and Outputs

Inputs

Y/C IN: 4-pin mini DIN connector

(See the pin assignment.) VIDEO IN: BNC connector 1Vp-p ±6 dB, sync negative AUDIO IN: phono jack, -5 dBs, more

than 47k ohms

R, G, B IN: BNC connector

0.7 Vp-p, ±6 dB Sync on green: 0.3 Vp-p, negative, 75 ohms terminated

RGB SYNC IN: BNC connector

Composite sync 4 Vp-p, ±6 dB, negative

Loop-through outputs Y/C OUT: 4-pin mini DIN connector

VIDEO OUT: BNC connector,

75 ohms terminated AUDIO OUT: phono jack

Speaker output

Output level 0.8 W

General

Mass

Power consumption 90 Wh

100 - 240 V AC, 50/60 Hz Power requirements

Operating temperature range

Storage temperature range

-10 − +40°C

Humidity 0 - 90%

Dimensións Approx. $346 \times 340 \times 411.5$ mm

(w/h/d)

 $(13^{5}/_{8} \times 13^{1}/_{2} \times 16^{1}/_{4} \text{ inches})$ not incl. projecting parts and controls Approx. 16.7 kg (36 lb 14 oz) AC power cord (1)

Accessory supplied

AC plug holder (1)

- Continued on page 2 -

TRINITRON® COLOR VIDEO MONITOR SONY

Pin assignment

Y/C IN connector (4-pin mini DIN)

Pin No.	Signal	Description
1	Y-input	1 Vp-p, sync negative, 75 ohms
2	CHROMA sub- carrier-input	300 mVp-p, burst Delay time between Y and C: within 0±100 nsec., 75 ohms
3	GND for Y-input	GND
4	GND for CHROMA-input	GND

Design and specifications are subject to change without notice.

SPECIFICATIONS (PVM-1454QM)

Video signal

Color system

PAL, SECAM, NTSC, NTSC1.43

Resolution

600 TV lines 0 dB - +6.0 dB

Aperture correction Frequency response

LINE 9.0 MHz (-3 dB)

RGB 10.0 MHz (-3 dB)

Synchronization

AFC time constant 1.0 msec.

Picture performance

Normal scan

7% over scan of CRT effective screen

Underscan

5% underscan of CRT effective screen

H. linearity

Less than 8.0% (typical)

V. linearity Convergence Less than 7.0% (typical) Central area:

0.6 mm (typical) Peripheral area:

Raster size stability

0.8 mm (typical) H: 1.0%, V: 1.5%

High voltage regulation

Color temperature

EBU phosphor 6,500K/9,300K (+8MPCD), selectable USER (3200K–10000K, factory setting

is 6500K)

Inputs and Outputs

Inputs

Y/C IN: 4-pin mini DIN connector (See the pin assignment on the next

page.)
VIDEO IN: BNC connector 1Vp-p ±6 dB, sync negative

AUDIO IN: phono jack, -5 dBs, more

than 47k ohms

R/R-Y, G/Y, B/B-Y IN: BNC

connector

R, G, B channels: 0.7 Vp-p, ±6 dB Sync on green: 0.3 Vp-p, negative,

75 ohms terminated

R-Y, B-Y channels: 0.7 Vp-p, ±6 dB Y channel: 0.7 Vp-p, ±6 dB (Standard color bar signal of 75%

chrominance)

EXT SYNC IN: BNC connector Composite sync 4 Vp-p, ±6 dB,

negative

Loop-through outputs

Y/C OUT: 4-pin mini DIN connector VIDEO OUT: BNC connector,

75 ohms terminated AUDIO OUT: phono jack R/R-Y, G/Y, B/B-Y OUT: BNC

connector, 75 ohms terminated EXT SYNC OUT: BNC connector,

75 ohms terminated

Remote input

REMOTE: 20-pin connector (See the pin assignment on the next page.)

Speaker output

Output level 0.8 W

General

Power consumption Power requirements

99 Wh (incl. SDI) 90 Wh (without. SDI) 100 - 240 V AC, 50/60 Hz

Operating temperature range 0-35°C

Storage temperature range

-10 - +40°C

Humidity Dimensions 0 - 90%

Approx. 346 × 340 × 411.5 mm

(w/h/d)

 $(13^{3}/8 \times 13^{1}/2 \times 16^{1}/4 \text{ inches})$

not incl. projecting parts and controls

Mass

Accessory supplied

Approx. 16.7 kg (36 lb 14 oz)
PVM-2054QM
AC power cord (1)
AC plug holder (1)
Tally label (1)
Cable with a 20-pin connector (1)

REMOTE connector (20-pin)

Pin assignment

Y/C IN connector (4-pin mini DIN)

Pin No.	Signal	Description
1	Y-input	1 Vp-p, sync negative, 75 ohms
2	CHROMA sub- carrier-input	300 mVp-p, burst Delay time between Y and C: within 0±100 nsec., 75 ohms
3	GND for Y-input	GND
4	GND for CHROMA-input	GND

Pin No.	Signal	Wire color
1	Blue only	Brown
2	H/V DELAY	Red
3	MAIN/SUB*	Orange
4	EXT SYNC	Yellow
5	DEGAUSS	Green
6	R ch ON/OFF*	Blue
7	TALLY	Purple
8	LINE B	Grey
9	GND	White
10	GND	Black
11	GND	Pink
12	GND	Light Blue
13	LINE A	Spiral Orange
14	LINE/RGB	Spiral Yellow
15	GND	Spiral Green
16	L ch ON/OFF*	Spiral Blue
17	REMOTE	Spiral Purple
18	LINEC	Spiral Grey
19	UNDER SCAN	Spiral Pink
20	16:9	Spiral Light Blue

^{(*} For digital audio control)

Design and specifications subject to change without notice.

TABLE OF CONTENTS

<u>Se</u>	<u>Title</u>	Page	Se	ction	<u>Title</u>	Page
1.	GENERAL		5.	CIRCUIT ADJU	JSTMENTS	
	1-1. General of PVM-1450QM·······	5		5-1. A Board Ad	ljustments ·····	31
	1-2. General of PVM-1454QM······			5-2. G Board Ad	ljustment ······	4
2.	DISASSEMBLY		6.	DIAGRAMS		
	2-1. Top Cover and Rear Cover Remo	val 19		6-1. Block Diagr	rams (1)	43
	2-2. Terminal Board Removal ·······	19		Block Diagr	rams (2) · · · · · · · · · · · · · · · · · · ·	48
	2-3. Picture Tube Removal ·····	20		6-2. Frame Schen	matic Diagram·····	53
				6-3. Circuit Boar	rds Location ·····	55
3.	SET-UP ADJUSTMENTS			6-4. Printed Wiri	ing Boards and Schematic Dia	grams 55
	3-1. Preparations (1)			 A Board (1 	1/3)	63
	Preparations (2) ·····				2/3)·····	
	3-2. Writing Model Data	23		• A Board (3	3/3)	73
	3-3. Picture Output·····	23		• Q Board…		78
	3-4. Landing Adjustment ······	23		• G Board…		80
	3-5. Convergence Adjustment	24		• J Board····		82
	3-6. Deflection Yoke Neck Rotation A	djustment ····· 25		• X Board…		82
	3-7. G2 Adjustment ·····	26		• H Board…		82
	3-8. White Balance Adjustment	26				
	3-9. Blue-Only White Balance Adjustr	ment 27		6-5. Semiconduc	ctons	89
	3-10.Sub Brt Adjustment ·····					
	3-11.Focus Adjustment ·····	27	7.	EXPLODED VIE	EWS	
				7-1. Chassis		9
				7-2. Picture Tube	e	
4.	SAFETY RELATED ADJUSTMENT	T ····· 29				
			R	FLECTRICAL P	PARTS LIST	9

(CAUTION)

SHORT CIRCUIT THE ANODE OF THE PICTURE TUBE AND THE ANODE CAP TO THE METAL CHASSIS, CRT SHIELD, OR CARBON PAINTED ON THE CRT, AFTER REMOVING THE ANODE.

WARNING!!

AN ISOLATION TRANSFORMER SHOULD BE USED DURING ANY SERVICE TO AVOID POSSIBLE SHOCK HAZARD, BECAUSE OF LIVE CHASSIS.

THE CHASSIS OF THIS RECEIVER IS DIRECTLY CONNECTED TO THE AC POWER LINE.

SAFETY-RELATED COMPONENT WARNING!!

COMPONENTS IDENTIFIED BY SHADING AND MARK \triangle ON THE SCHEMATIC DIAGRAMS, EXPLODED VIEWS AND IN THE PARTS LIST ARE CRITICAL TO SAFE OPERATION. REPLACE THESE COMPONENTS WITH SONY PARTS WHOSE PART NUMBERS APPEAR AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS PUBLISHED BY SONY. CIRCUIT ADJUSTMENTS THAT ARE CRITICAL TO SAFE OPERATION ARE IDENTIFIED IN THIS MANUAL. FOLLOW THESE PROCEDURES WHENEVER CRITICAL COMPONENTS ARE REPLACED OR IMPROPER OPERATION IS SUSPECTED.

SECTION 1 GENERAL

The operating instructions mentioned here are partial abstracts from the Operating Instruction Manual. The page numbers of the Operating Instruction Manual remein as in the manual.

1-1. GENERAL OF PVM-1450QM

Features

Fine Pitch Trinitron picture tube

Fine Pitch Trinitron tube provides a high resolution picture. Horizontal resolution is more than 450 TV lines at the center of the picture.

Four color systems available

The monitor can display PAL, SECAM, NTSC and NTSC_{4.43}* signals. The appropriate color system is selected automatically.

* A signal of NTSC4.43 is used for playing back NTSC recorded video cassettes with a video tape recorder/player especially designed for use with this system.

Analog RGB input connectors

Analog RGB signals from video equipment can be input through these connectors.

Y/C input connectors

The video signal, split into the chrominance signal (C) and the luminance signal (Y), can be input through this connector, eliminating the interference between the two signals, which tends to occur in a composite video signal, assuring video quality.

Beam current feedback circuit

The built-in beam current feedback circuit assures stable white balance.

Comb filter

When NTSC video signals are received, a comb filter activates to increase the resolution, resulting in fine picture detail without color spill or color noise.

Automatic termination (connector with $\wedge\!\!\!\!/ \sim$ mark only)

The input connector is terminated at 75 ohms inside when no cable is connected to the loop-through output connectors. When a cable is connected to an output connector, the 75-ohms termination is automatically released.

Blue only mode

In the blue only mode, an apparent monochrome display is obtained with all three cathodes driven with a blue signal. This facilitates color saturation and phase adjustments and observation of VCR noise.

Auto/manual degaussing

Degaussing of the screen can be performed automatically when the power is turned on, or manually by pressing the DEGAUSS button.

On-screen menus

You can set CHROMA SET UP and other settings by using the on-screen menus.

Five menu languages

You can select the menu language from among the five languages on the menu.

EIA standard 19-inch rack mounting

By using an MB-502B mounting bracket (not supplied), the monitor can be mounted in an EIA standard 19-inch rack. For details on mounting, see the instruction manual of the mounting bracket kit.

Location and function of parts and controls

1 POWER switch and indicator

Depress to turn the monitor on. The indicator will light up in green.

2 VOLUME control

Turn this control clockwise or counterclockwise to obtain the desired volume.

3 CONTRAST control

Turn clockwise to make the contrast higher and counterclockwise to make it lower.

4 PHASE control

This control is effective only for the NTSC and NTSC4.43 color systems. Turn clockwise to make the skin tones greenish and counterclockwise to make them purplish.

5 CHROMA control

Turn clockwise to make the color intensity higher and counterclockwise to make it lower.

6 BRIGHT (brightness) control

Turn clockwise for more brightness and counterclockwise for less.

7 APERTURE control

Turn clockwise for more sharpness and counterclockwise for less.

Note

The APERTURE, CHROMA, PHASE control settings have no effect on the pictures of RGB signals.

8 MENU (EXIT) button

Press to make the menu appear. Press to return to the previous screen in the menu.

9 ENTER (SELECT) button

Press to decide a selected item in the menu.

10 ↑ (+)/ ↓ (-) buttons

Press to move the cursor (>) or adjust selected value in the menu.

11 BLUE ONLY selector RESET button

Press (light on) to turn off the red and green signals. A blue signal is displayed as an apparent monochrome picture on the screen. This facilitates "chroma" and "phase*" control adjustments and observation of VCR noise.

 "Phase" control adjustment is effective only for the NTSC signals.

Press to reset the setting in the menu.

12 DEGAUSS button

Press this button momentarily. The screen will be demagnetized. Wait for 10 minutes or more before activating this button again.

13 input select buttons

Press (light on) to select the program to be monitored. **A:** for a signal fed through the LINE A connectors. **B:** for a signal fed through the LINE B connectors.

C: for a signal fed through the LINE C connectors.

RGB: for a signal fed through the RGB connectors.

1 AC IN socket

Connect the supplied AC power cord to this socket and to a wall outlet.

2 LINE A, LINE B connectors

Two groups (A and B) of line input connectors for the composite video and audio signals and their loop-through output connectors.

To monitor the input signal fed through these connectors, press the A or B button (light on) on the front panel.

VIDEO IN (BNC)

Connect to the video output of video equipment, such as a VCR or a color video camera. For a loop-through connection, connect to the video output of another monitor.

VIDEO OUT (BNC)

Loop-through output of the VIDEO IN connector. Connect to the video input for a VCR or another monitor.

When the cable is connected to this connector, the 75-ohms termination of the input is automatically released, and the signal input to the VIDEO IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or to a microphone via a suitable microphone amplifier. For a loop-through connection, connect to the audio output of another monitor.

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN jack. Connect to the audio input of a VCR or another monitor.

3 LINE C connectors

Y/C IN (4pin mini DIN)

Connect to the Y/C separate output of a video camera, VCR or other video equipment.

Y/C OUT (4pin mini DIN)

Loop-through output of the Y/C IN connector. Connect to the Y/C separate input of a VCR or another monitor. When the cable is connected to this connector the 75-ohms termination of the input is automatically released, and the signal input to the Y/C IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or a microphone (through a suitable microphone amplifier).

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN connector. Connect to the audio input of a VCR or another monitor.

4 RGB IN connectors

Connect to the analog RGB outputs of a video camera. To monitor the input signal fed through these connectors, press RGB button (light on) on the front panel.

R IN, G IN, B IN (BNC)

When you set RGB SYNC to SYNC ON G in the menu, the monitor operates on the sync signal from the G channel.

AUDIO IN (phono jack)

Connect to the audio output of video equipment when the analog RGB signal is input.

SYNC IN (BNC)

To use the sync signal fed through this connector, set RGB SYNC to EXT SYNC in the menu.

Using on-screen menus

The flow chart shows the different levels of on-screen menus that you can use to make various adjustments and settings. The boxed number is for instructions on the next page.

Operating through menus

There are five buttons for menu operations on the front of the monitor. To display the main menu, first press MENU. The buttons you can use appear at the bottom of the menu screen.

Functions of the buttons

Button	To select menu item	To adjust menu item selected
MENU EXIT	return to the previous menu	return to the previous menu
ENTER SELECT	decide a selected item	select an item
t +	move the cursor (►) upwards	increase selected value
.	move the cursor (►) downwards	decrease selected value
RESET		reset current adjustment value to the factory setting

(The above items in white type correspond to the marks in the menu.)

front of monitor

1 Main menu

Select an item and press $\ensuremath{\mathsf{ENTER}}$ to go to the following menu.

2 CHROMA SET UP menu

Set to ON to adjust the internal decoder for CHROMA and PHASE after AUTO ADJUST (5). {OFF}

3 USER CONFIG 1 menu

Select an item to adjust. To go to the USER CONFIG 2 menu select NEXT PAGE.

4 USER CONFIG 2 menu

Select an item to adjust. To go to the USER CONFIG 1 menu select PREVIOUS PAGE.

5 AUTO ADJUST screen

Select the color bar signal (full, SMPTE, EIA) and press ENTER to start auto adjusting for CHROMA SET UP (NTSC signal only).

6 COLOR SYSTEM DISPLAY menu

Select the color system display mode. In AUTO, the kind of color system being used appears on the screen each time you change the signal input. [AUTO]

7 V HOLD screen

Adjust the vertical hold if the picture rolls vertically. When you cannot read the display, select the input that is not connected.

8 RGB SYNC menu

Select SYNC ON G to operate the monitor on the sync signal from the displayed green signal.

Select EXT SYNC to operate the monitor on an external sync signal fed through the RGB SYNC connector.

[SYNC ON G]

9 NTSC SETUP LEVEL menu

Select the NTSC setup level from two modes. The 7.5 setup level is mainly used in north America. The 0 setup level is mainly used in Japan.

10 LANGUAGE menu

You can select the menu language from among the five languages (English, German, French, Italian, Spanish) on the menu. [ENGLISH]

([] indicates the factory setting position.)

Power sources

House current

Connect the AC power cord (supplied) to the AC IN socket and to a wall outlet.

To connect an AC power cord securely with an AC plug holder

To remove the AC power cord

Pull out AC plug holder by squeezing the left and right sides.

Features

HR (High Resolution) Trinitron picture tube

HR Trinitron tube provides a high resolution picture. Horizontal resolution is more than 600 TV lines at the center of the picture.

Four color systems available

The monitor can display PAL, SECAM, NTSC and NTSC 4.9* signals. The appropriate color system is selected automatically.

* A signal of NTSC1.13 is used for playing back NTSC recorded video cassettes with a video tape recorder/player especially designed for use with this system.

Blue only mode

In the blue only mode, an apparent monochrome display is obtained with all three cathodes driven with a blue signal. This facilitates color saturation and phase adjustments and observation of VCR noise.

Analog RGB/component input connectors

Analog RGB or component (Y, R-Y and B-Y) signals from video equipment can be input through these connectors.

Y/C input connectors

The video signal, split into the chrominance signal (C) and the luminance signal (Y), can be input through this connector, eliminating the interference between the two signals, which tends to occur in a composite video signal, assuring video quality.

Beam current feedback circuit

The built-in beam current feedback circuit assures stable white balance.

Comb filter

When NTSC video signals are received, a comb filter activates to increase the resolution, resulting in fine picture detail without color spill or color noise.

Automatic termination (connector with $\wedge \wedge_r$ mark only)

The input connector is terminated at 75 ohms inside when no cable is connected to the loop-through output connectors. When a cable is connected to an output connector, the 75-ohms termination is automatically released.

Underscan mode

The signal normally scanned outside of the screen can be monitored in the underscan mode.

Note

When the monitor is in the underscan mode, the dark RGB scanning lines may appear on the top edge of the screen. These are caused by an internal test signal, rather than the input signal.

Horizontal/vertical delay mode

The horizontal and vertical sync signals can be checked simultaneously in the H/V delay mode.

External sync input

When the EXT SYNC selector is in the on position, the monitor can be operated on the sync signal supplied from an external sync generator.

Auto/manual degaussing

Degaussing of the screen can be performed automatically when the power is turned on, or manually by pressing the DEGAUSS button.

On-screen menus

You can set color temperature, CHROMA SET UP, and other settings by using the on-screen menus.

Five menu languages

You can select the menu language from among the five languages on the menu.

EIA standard 19-inch rack mounting

By using an MB-502B (for PVM-1454QM) or SLR-103 (for PVM-2054QM) mounting bracket (not supplied), the monitor can be mounted in an EIA standard 19-inch rack. For details on mounting, see the instruction manual of the mounting bracket kit.

SDI (Serial Digital Interface) kit

By using SDI kit, the monitor can display SMPTE 259M 4:2:2 serial digital signal from a digital VTR. (ex. Sony 4:2:2 VTR)

SDI kit: 4:2:2 digital video board Digital audio board

Location and function of parts and controls

1 Tally lamp

Lights up when the video camera connected to this monitor is selected, indicating that the picture is being recorded.

2 POWER switch and indicator

Depress to turn the monitor on. The indicator will light up in green.

3 REMOTE indicator

Lights up when you set USER PRESET to ON in the menu, or when you connect a supplied cable to REMOTE connector (No. 17 pin is ground). The controls on the front panel do not work when this indicator lights up.

4 VOLUME control

Turn this control clockwise or counterclockwise to obtain the desired volume.

5 CONTRAST control

Turn clockwise to make the contrast higher and counterclockwise to make it lower.

6 PHASE control

This control is effective only for the NTSC and NTSC443 color systems. Turn clockwise to make the skin tones greenish and counterclockwise to make them purplish.

7 CHROMA control

Turn clockwise to make the color intensity higher and counterclockwise to make it lower.

8 BRIGHT (brightness) control

Turn clockwise for more brightness and counterclockwise for less.

9 APERTURE control

Turn clockwise for more sharpness and counterclockwise for less.

Note

The APERTURE, CHROMA, PHASE control settings have no effect on the pictures of RGB signals.

10 MENU (EXIT) button

Press to make the menu appear. Press to return to the previous screen in the menu.

11 ENTER (SELECT) button

Press to decide a selected item in the menu.

12 **↑** (+)/ **↓** (-) buttons

Press to move the cursor (>) or adjust selected value in the menu.

13 16:9 selector

Press (light on) for the signal of 16:9 picture.

14 H/V DELAY selector

Press (light on) to observe the horizontal and vertical sync signals at the same time.

The horizontal sync signal is displayed in the left quarter of the screen; the vertical sync signal is displayed near the center of the screen.

15 UNDER SCAN selector

Press (light on) for underscanning. The display size is reduced by approximately 5% so that four corners of the raster are visible.

16 BLUE ONLY selector RESET button

Press (light on) to turn off the red and green signals. A blue signal is displayed as an apparent monochrome picture on the screen. This facilitates "chroma" and "phase*" control adjustments and observation of VCR noise.

 "Phase" control adjustment is effective only for the NTSC signals.

Press to reset the setting in the menu.

17 DEGAUSS button

Press this button momentarily. The screen will be demagnetized. Wait for 10 minutes or more before activating this button again.

18 EXT SYNC (external sync) selector

Keep this button in the off position (light off) to operate the monitor on the sync signal from the displayed video signal.

Keep this button in the on position (light on) to operate the monitor on an external sync signal fed through the EXT SYNC connector on the rear panel.

19 LINE/RGB input selector

Select the program to be monitored. Keep this button in the off position (light off) to feed a signal through the LINE A, LINE B or LINE C connectors. Keep this button in the on position (light on) to feed a signal through the RGB connectors.

20 C/SDI selector

When the LINE/RGB input selector is set to LINE (light off), press this button (light on) to feed a signal through the LINE C connectors.

When the LINE/RGB input selector is set to RGB (light on), press this button (light on) to feed the SDI signal (optional board is needed).

21 B/COMPONENT selector

When the LINE/RGB input selector is set to LINE (light off), press this button (light on) to feed a signal through the LINE B connectors.

When the LINE/RGB input selector is set to RGB (light on), press this button (light on) to feed the component signal.

22 A/RGB selector

When the LINE/RGB input selector is set to LINE (light off), press this button (light on) to feed a signal through the LINE A connectors.

When the LINE/RGB input selector is set to RGB (light on), press this button (light on) to feed the RGB signal.

Location and function of parts and controls

1 AC IN socket

Connect the supplied AC power cord to this socket and to a wall outlet.

2 LINE A, LINE B connectors

Two groups (A and B) of line input connectors for the composite video and audio signals and their loop-through output connectors.

To monitor the input signal fed through these connectors, keep the LINE/RGB selector in the LINE position (light off) and press the A/RGB or B/COMPONENT selector (light on) on the front panel.

VIDEO IN (BNC)

Connect to the video output of a video equipment, such as a VCR or a color video camera. For a loop-through connection, connect to the video output of another monitor.

VIDEO OUT (BNC)

Loop-through output of the VIDEO IN connector. Connect to the video input for a VCR or another monitor.

When the cable is connected to this connector, the 75-ohms termination of the input is automatically released, and the signal input to the VIDEO IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or to a microphone via a suitable microphone amplifier. For a loop-through connection, connect to the audio output of another monitor.

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN jack. Connect to the audio input of a VCR or another monitor.

3 LINE C connectors

Y/C IN (4pin mini DIN)

Connect to the Y/C separate output of a video camera, VCR or other video equipment.

Y/C OUT (4pin mini DIN)

Loop-through output of the Y/C IN connector. Connect to the Y/C separate input of a VCR or another monitor. When the cable is connected to this connector, the 75-ohms termination of the input is automatically released, and the signal input to the Y/C IN connector is output from this connector.

AUDIO IN (phono jack)

Connect to the audio output of a VCR or a microphone (through a suitable microphone amplifier).

AUDIO OUT (phono jack)

Loop-through output of the AUDIO IN connector. Connect to the audio input of a VCR or another monitor.

4 REMOTE connector (20pin)

Connect to the tally output of a control console, specialeffect generator, etc. The tally lamp on the front panel will be turned on and off by the connected equipment. This connector can be used for connecting a remote controller. For the pin assignment of this connector, see "Specifications" on page 10.

[5] RGB/COMPONENT connectors

RGB signal or component signal input connectors and their loop-through output connectors.

To monitor the input signal fed through these connectors, keep the LINE/RGB selector in the RGB position (light on), and press the A/RGB or B/COMPONENT selector (light on) on the front panel.

R/R-Y IN, G/Y IN, B/B-Y IN (BNC)

When the EXT SYNC selector on the front panel is in the off position (light off), the monitor operates on the sync signal from the G/Y channel.

To monitor the RGB signal

Connect to the analog RGB signal outputs of a video camera.

To monitor the component signal

Connect to the R-Y/Y/B-Y component signal outputs of a Sony Betacam video camera.

R/R-Y OUT, G/Y OUT, B/B-Y OUT (BNC)

Loop-through outputs of the R/R-Y IN, G/Y IN, B/B-Y IN connectors

For RGB signal

Connect to the analog RGB signal inputs of a video printer or another monitor.

For component signal

Connect to the R-Y/Y/B-Y component signal inputs of a Betacam video recorder.

When the cables are connected to these connectors, the 75-ohms termination of the inputs is automatically released, and the signal inputs to the R/R-Y IN, G/Y IN, B/B-Y IN connectors are output from these connectors.

AUDIO IN (phono jack)

Connect to the audio output of video equipment when the analog RGB or component signal is input.

AUDIO OUT (phono jack)

Loop-through outputs of the AUDIO IN connector.

6 EXT SYNC (external sync) connectors

To use the sync signal fed through this connector, press the EXT SYNC selector (light on).

IN (BNC)

When this monitor operates on an external sync signal, connect the reference signal from a sync generator to this connector.

OUT (BNC)

Loop-through output of the EXT SYNC IN connector. Connect to the external sync input of video equipment to be synchronized with this monitor.

When the cable is connected to this connector, the 75-ohms termination of the input is released, and the signal input to the IN connector is output from this connector.

Using on-screen menus

The flow chart shows the different levels of on-screen menus that you can use to make various adjustments and settings. The boxed number is for instructions on the next page.

Operating through menus

There are five buttons for menu operations on the front of the monitor. To display the main menu, first press MENU. The buttons you can use appear at the bottom of the menu screen.

Functions of the buttons

Button	To select menu item	To adjust menu item selected
MENU EXIT	return to the previous menu	return to the previous menu
ENTER SELECT	decide a selected item	select an item
† +	move the cursor (►) upwards	increase selected value
:	move the cursor (►) downwards	decrease selected value
RESET		reset current adjustment value to the factory setting

(The above items in white type correspond to the marks in the menu.)

front of monitor

1 Main menu

Select an item and press ENTER to go to the following menu.

[2] CHROMA SET UP menu

Set to ON to adjust the internal decoder for CHROMA and PHASE (NTSC signal only) after AUTO ADJUST (6). [OFF]

3 COLOR TEMP/BAL menu

Select the color temperature from among 6500K, 9300K and USER. USER is set to 6500K in the factory setting. You can adjust or change the color temperature in USER mode (a measuring instrument is needed). [6500K]

4 USER CONFIG 1 menu

Select an item to adjust. To go to the USER CONFIG 2 menu, select NEXT PAGE.

5 USER CONFIG 2 menu

Select an item to adjust. To go to the USER CONFIG 1 menu select PREVIOUS PAGE.

6 AUTO ADJUST screen

Select the color bar signal (full, SMPTE, EIA) and press ENTER to start auto adjusting for CHROMA SET UP (NTSC signal only).

7 ADJUST GAIN screen

Adjust GAIN in USER mode.

8 ADJUST BIAS screen

Adjust BIAS in USER mode.

9 COLOR TEMP RANGE menu

Select the color temperature range in USER mode. [5000K-10000K]

10 COLOR SYSTEM DISPLAY menu

Select the color system display mode. In AUTO, the kind of color system being used appears on the screen each time you change the signal input. [AUTO]

11 358 TRAP FILTER menu

Color spill or color noise may be eliminated if you select ON (NTSC signal only). [OFF]

12 SUB CONTROL screen

You can finely adjust the controls on the front panel. CONTRAST, BRIGHT, CHROMA and PHASE control has a click at the center of its adjustment range. You can adjust the setting of the click position with this feature.

13 USER PRESET menu

You can preset each control to a desired level and set it. If you set USER PRESET to ON, the REMOTE indicator lights up and the controls on the front panel do not work. The monitor operates with the internal memory settings. For adjustment, select PRESET ADJUST. [OFF]

[14] PRESET ADJUST screen

Adjust CONTRAST, BRIGHT, CHROMA, PHASE, VOLUME, APERTURE in USER PRESET.

15 V HOLD screen

Adjust the vertical hold if the picture rolls vertically. When you cannot read the display, select the input that is not connected.

[6] COMPONENT LEVEL menu

Select the component level from among three modes. N10/SMPTE for 100/0/100/0 signal BETA 7.5 for 100/7.5/75/7.5 signal

BETA 7.5 BETA 0

for 100/0/75/0 signal

[N10/SMPTE]

17 NTSC SETUP LEVEL menu

Select the NTSC setup level from two modes. The 7.5 setup level is mainly used in north America. The 0 setup level is mainly used in Japan.

18 ACC menu

Set ACC (Auto Color Control) circuit on or off. When the fine adjustment is needed, set ACC to OFF. Normally set it to ON. [ON]

19 LANGUAGE menu

You can select the menu language from among the five languages (English, German, French, Italian, Spanish) on the menu.

[ENGLISH]

([] indicates the factory setting position.)

Power sources

House current

Connect the AC power cord (supplied) to the AC IN socket and to a wall outlet.

To connect an AC power cord securely with an AC plug holder

To remove the AC power cord

Pull out AC plug holder by squeezing the left and right sides.

SECTION 2 DISASSEMBLY

2-1. TOP COVER AND REAR COVER REMOVAL

2-2. TERMINAL BOARD REMOVAL

2-3. PICTURE TUBE REMOVAL

REMOVAL OF ANODE-CAP

NOTE: Short circuit the anode of the picture tube and the anode cap to the metal chassis, CRT shield or carbon paint on the CRT, after removing the anode.

REMOVING PROCEDURES

3 When one side of the rubber cap is separated from the anode button, the anode-cap can be removed by turning up the rubber cap and pulling up it in the direction of the arrow ©.

HOW TO HANDLE AN ANODE-CAP

direction indicated by the arrow @.

- Don't hurt the surface of anode-caps with sharp shaped material!
- Don't press the rubber hardly not to hurt inside of anode-caps! A material fitting called as shatter-hook terminal is built in the rubber.
- Don't turn the foot of rubber over hardly! The shatter-hook terminal will stick out or hurt the rubber.

SECTION 3 SET-UP ADJUSTMENTS

3-1. PREPARATIONS (1)

Service Mode

This set is provided with a switch for service on the front panel that can be used to make various adjustments. The operation method of this switch is explained in detail below.

1. ENTERING THE SERVICE MODE

Simultaneously press the [ENTER] key and the [DEGAUSS] key shown on the display of the menu.

2. SERVICE MODE DISPLAY

(1)	(5)	(4)	(3)	(6)
(2)		,		

Range of Sevice Mode Display

- The service items are largely classified into 16 types displayed by titles.
- (2) The names of the service items or READ / WRITE guidance, etc., are displayed. The names are dispalyed to the left and the guidance to the right.
- (3) This is the serial number for each of the service items. 1-120.
- (4) This is the adjustment data for the servise items that are now stored in the RAM. Adjustments can be made by changing these values, but as long as nothing is written to the ROM the adjustment values will be erased by turning off the power or by reading, so please be careful.
- (5) When the adjustment data than is now displayed is identical with the data in the ROM, the cursor (>) is displayed.
- (6) The present status is displayed.
 - [*]: Writing to the ROM. Make sure not to turn off the power while this display is on.
 - [?]: ROM reading error. In this case, an image is output with the standard adjustment data that the microcomputer itself possesses.
 - [¿]: Problem in the I 2C bus.

3. FINISHING THE SERVICE MODE

Simultaneously press the [ENTER] key and the [DEGAUSS] key shown on the display of the menu.

4. EASY ON / OFF OF THE SERVICE MODE

If once entering the service mode after having turned on the power, easy ON / OFF is possible by once more pressing the A, B or C switch on the front panel (the LED lights) as long as the power is not turned off or as long as the service mode is not finished.

5. CHANGE OF POSITION OF THE SERVICE MODE DISPLAY

If the switch is continuously pressed when turning on in the above easy mode, the display position moves in the V direction. This method is used when the display is outside of the effective screen area.

6. CHANGE OF SERVICE ITEMS

The items are returned with the [MENU] key and forwarded with the [ENTER] key. When a key is continuously pressed, the operation will be repeated.

7. CHANGE OF SERVICE DATA

The service data is made larger with the $[\uparrow]$ key and smaller with the $[\downarrow]$ key. When continuously pressing the keys, the operation will be repeated.

8. READING OF SERVICE DATA

When reading data from the ROM to the RAM, press the [B/D] key once and check than the READ display is shown in the guidance, and then press the [B/O] key once again. The adjustment data that is written will return to its previous state, so please be careful.

9. WRITING OF SERVICE DATA

When writing data from the RAM to the ROM, press the [DEGAUSS] key once and check that the WRITE display is shown in the guidance, and then press the [DEGAUSS] key once again. Not only the displayed data will be written, but all data, so please be careful.

10. CARRYING OUT FACTORY RESETTING

In case the adjustment data has been destroyed for some reason, and you keep pressing the [B / O] key at the beginning of the above reading, the READ guidance will change to FACTRY RESET guidance in approximately 3 seconds so that the factory resetting can be carried out. By once again pressing the [B / O] key after this, resetting will be carried out ([*] will be displayed as status) and factory resetting will be executed. However, in case the data available at the time of shipment from the factory has been destroyed, or if the ROM has been replaced, etc., or if factory setting mentioned later on has been carried out, factory resetting is executed.

11. CARRYING OUT FACTORY SETTING

Make sure to make possible the above factory resetting by making a copy of the adjustment data when replacing the ROM. If you keep pressing the [DEGAUSS] key at the beginning of the above writing, the WRITE guidance will change into FACTORY RESET guidance after approximately 3 seconds. By once again pressing the [DEGAUSS] key after this, setting will be carried out ([*]will be dispalyed as status) and the data will be copied. By carrying out this operation, the selection items of the menu and the adjustment values will be reset to the standard conditions, so please be careful. If this operation is carried out once, it cannot be carried out again, but the FACTORY SET FLAG (No. 120) in the service mode can be set to 1.

PVM-1450QM/1454QM

ROM INITIAL WRITING VALUE OF SERVICE DATA

SERVICE MAP Ver 5. x (1-120)

NO.	ICE MAP Ver	ERVICE ITEM	MAX	14"	20"	NO.		SERVICE ITEM	MAX	14"	20"
		H FREQUENCY	255		107	61		BIAS (RED)	1023		
2	NOR 30 DEI	VIDEO PHASE		141		62	C/11.:00K	BIAS (GREEN)	1023		
3		V SIZE		165		63	,	BIAS (BLUE)	1023		
						64		GAIN (RED)	1023		
4	NOD (0 DEE	V CENTER		122	112	65			1023		
	NOR 60 DEF	H FREQUENCY	255					GAIN (GREEN)	1023		
6		VIDEO PHASE		120		66		GAIN (BLUE)			
7		V SIZE		157		. 67		B / O (RED)		120	
8		V CENTER		128		68		B/O(GREEN)	255	125	-
	NOR DEF	H SIZE		111		69	C / T2 ??00K	3200K SW	1	0	
10		PIN PHASE		108		70		BIAS (RED)	1023		
11		PIN AMP		112		71		BIAS (GREEN)	1023		
12		U/L PIN		126		72		BIAS (BLUE)	1023		
13		SEXY	255	128	128	73		GAIN (RED)	1023		
14		V LINEARITY	255	132	82	74		GAIN (GREEN)	1023		
15		V BOW	* 63	32	32	75		GAIN (BLUE)	1023	656	656
16		V ANGLE	* 63	32	32	76		B/O(RED)	255	86	86
17	U/SDEF	V SIZE (50)	255	124	134	77		B/O(GREEN)	255	105	105
18		V SIZE (60)		116		78	W/B	SUB CON (4:3, NORMAL)	255	210	210
19		H SIZE		115	89	79		SUB CON (4:3, H/V DELAY)		122	
20		PIN PHASE		118		80		SUB CON (16: 9, NORMAL)			165
21		PIN AMP	255	74	96	81		SUB CON (16: 9, H / V DELAY)	255	93	
_	16:9 NOR DEF	V SIZE (50)	255	81	89	82		SUB BRIGHT	255	71	71
23	10.9 NOR DEI	V SIZE (60)	255		100	83		USER B / O (RED)			120
24		PIN PHASE		113		84				125	
						85	OTHER	USER B / O (GREEN)		129	
25		PIN AMP	255	64	68		OTHER	OSD POSITION			
26		U/L PIN	255		136	86		V HOLD		128	
	16:9 U/S DEF	V SIZE (50)	255	41	59	87		H BLANKING	255	68	68
28		V SIZE (60)	255	35	55	88	} 	V BLANKING (50)	255	63	
29		PIN PHASE		124		89		16:9 BLANKING START(50)	255	37	
30		PIN AMP	255	47	55	90		16:9 BLANKING END(50)			163
	COMPONENT			140		91		V BLANKING (60)		117	
32		SUB CHROMA (NORMAL)		104		92		16:9 BLANKING START(60)	255	40	
33		SUB CHROMA (SMPTE)	255	168		93		16:9 BLANKING END(60)			215
34		R-Y LEVEL		155		94		H DELAY			165
	NTSC .	BURST GATE PULSE WIDTH	255	22	22	95		V DELAY		101	
36		CRYSTAL	255	51	51	96		HP POSITION			130
37		PHASE (NORMAL)	255	103	103	97		HP WIDTH (NORMAL)	255		
38		PHASE (ACC OFF)	255	112	112	98		HP WIDTH (H / V DELAY)	255	35	
39		B-Y PHASE		141			SYSTEM	SDI AUDIO	7	5	
40		CHROMA (NORMAL)	255	123	123	100		358TRAP FILTER	1		
41		CHROMA (ACC OFF)	255	20	20	101		ACC	1	0	0
42		R-Y LEVEL	255	87	87	102		CAPTION VISION	7	0	
43	NTSC 443	CRYSTAL	255	65	65	103		COMPONENT LEVEL	3	2	
44		PHASE (NORMAL)	255	80		104		NTSC SETUP LEVEL	1	0	0
45		PHASE (ACC OFF)	255	75		105		CHROMA SET UP	1	0	0
46		B-Y PHASE			140	106		COLOR SYSTEM DISPLAY	3	0	0
47		CHROMA (NORMAL)		117		107		COLOR TEMPERATURE	3	0	
48		CHROMA (ACC OFF)	255	-		108		USER PRESET	1	+) (
49		R-Y LEVEL		100		109		LANGUAGE	7		-
	PAL	PHASE (NORMAL)		87		110		RGB SYNC	1	+	
51		PHASE (ACC OFF)	255		_	111		OPTION BOARD	+ - 7		
52	· · · · · · · · · · · · · · · · · · ·	B-Y PHASE				112	t	AGING MODE	1	+	
53		CHROMA (NORMAL)		141		113		PAL-M	 	+	
54		CHROMA (ACC OFF)		90		114		MODEL		4	* *
55		R-Y LEVEL		120		115		COLOR TEMP DISP 1	127		
	SECAM	CHROMA				116	 	COLOR TEMP DISP 2	127		
57	SECTIVI	R-Y LEVEL				117		REMOTE ADDRESS	127		
58								<u> </u>		4-	
1 3X I		COLOR BALANCE (R-Y)				118 119		RESERVED 1	1 1		
L											. (
59	C/T1 ??00K	COLOR BALANCE (B-Y) 3200K SW	255	98	·	120		RESERVED 2 FACTORY SET FLAG	1		

^{*} Among the data 8 bits (MAX255) only the upper 6 bits can be changed.

^{* * 4 :} PVM-1354Q, PVM-1351Q, PVM-1454Q, PVM-1454QM, PVM-1954Q, PVM-2054QM 1 : PVM-1450QM 7 : PVM-1350, PVM-1450. — **22** —

PREPARATIONS (2)

* When composite video or component signals are supplied, they must be supplied as below.

Signal		Signal Contents	Standard Level P-W
		100% WHITE	0.714V
		75% WHITE	0.536V
COMPOSITE VIDEO	358NT 443NT	BURST (GREEN) (This item only P-P)	268mV (623MV)
		100% WHITE	0.7∨
		75% WHITE	0.525V
	PAL SECAM	PAL BURST (GREEN) (This item only P-P)	300mV (664mV)
		100% WHITE Y	0.7∨
	[75% WHITE Y	0.525V
	ВЕТА 0	75% COLOR B-Y, R-Y (This item only P-P)	0.7V
COMPONENT		100% WHITE Y	0.7V
		75% WHITE Y	0.525V
	SMPTE	75% COLOR B-Y, R-Y (This item only P-P)	0.525V

* In this document, terms inside boxes _____ are names of service mode adjustments.

Example 60H-FREQ

- * After making adjustments in service mode, write the adjustment data before cutting off the power. If you cut off the power without writing, the results of your adjustments are all lost.
- * Standard inspection conditions

Unless specifically specified otherwise in this document, the following conditions are used for adjustments and inspections.

APERTURE BRIGHT

CHROMA

50% (Center click)

PHASE

50% (Center click) 50% (Center click)

CONTRAST

80% (Center click)

VOLUME

50%

3-2. WRITING MODEL DATA

1. In service mode, write in the following model data at No. 114 MODEL .

PVM-1450QM

1 0

PVM-1454OM 2. In service mode, write in the following data at No. 115

COLOR TEMP DISP 1 PVM-1450OM/1454OM

3. In service mode, write in the following data at No. 116 COLOR TEMP DISP 2

> PVM-1450QM/1454QM 93

3-3. PICTURE OUTPUT

- 1. Set the AC input voltage.
 - (1) Input the video and audio signals to the corresponding terminals on the connector panel.
 - (2) Set the sliduck AC voltage as shown on the right. (*1-1)

Model	Voltage
PVM-1450QM/1454QM	AC220 ± 3V (Distortion rate : 3% or less)

3-4. LANDING ADJUSTMENT

- 1. Preparations
- 1) To reduce the influence of geomagnetism, face the set's CRT screen east or west.
- 2) Loosen the deflection yoke fixture and lower the deflection yoke to the rear.
- 3) Switch on the Power switch and degauss with the degausser.
- 4) Adjust the deflection yoke tilt.
- 2. Adjustment
- 1) CONT ····· MIN
 - BRT..... Position providing good vision
- 2) The rough adjustments of the white balance, G2, and convergence must be completed already.
- 3) Set green-only.
- 4) Adjust the purity knob so that the green comes to the center of the screen. Make the red and blue about even. Fig. 1
- 5) Switch to blue only, red only, and green only and verify each. Fig. 1, 2, and 3
- 6) Bring the deflection yoke gradually forward and adjust the deflection yoke so that the R and B at both sides of the screen become green. Fig. $2 \rightarrow 3$
- 7) If the deflection yoke comes too far forward, you will see the pattern shown in Figure 4. If that happens, lower the deflection yoke to the rear. Fig. $4 \rightarrow 3$
- 8) Switch the single color switch to B and verify the single color. Fig. 6
- 9) Switch the single color switch to R and verify the single color. Fig. 9
- 10) When one of the colors does not become the single color correctly, check by repeating Items 7 and 8 based on the single color not coming into adjustment.
 - If you can not obtain landing in the corners, paste on magnets.
- 11) Switch to an all-white signal and check the uniformity.
- 12) When the deflection yoke position is determined, fasten it with the fixture.

3-5. CONVERGENCE ADJUSTMENT

Input a dot pattern signal.
 CONT ······ Position providing good vision

BRT MIN

- 2. Align the horizontal R, G, and B dots at the center of the screen with the H-STAT VR. (*1)
 - *I : If the H-CENTER adjustment was after the H-STAT adjustment, re-adjust the H-STAT.

(The H-CENT VR changes the H-STAT too.)

- 3. Align the R, G, and B at the center of the screen with the V-STAT magnets. (*2)
 - *2 : After the V-STAT adjustment, paint on the knobs to lock them.

X A Bad example

Good example

V-STAT magnet knobs While keeping the angles for A and B equal (1=I'), align the vertical convergence.

If the A and B knobs are not symmetrical $(l \neq l')$, this has bad effects. The focus may deteriorate and beam striking may occur.

4. For HMC, use the 6-pole magnet to adjust the R and B dots to be symmetrical left and right about the G dot. (*1)

*1:

A

I

I

B

6-pole magnet

The HMC adjustment changes the opening of the 6-pole magnet.

Adjust the 6-pole magnet so that A=A'. You must maintain the relationship $I \neq I'$ while moving the magnet.

5. For VMC, use the 6-pole magnet to adjust the R and B dots to be symmetrical above and below the G dot. (*2)

- 6. Adjust by repeating the adjustments in Items 2 through 5. (*3)
 *3: The above adjustment may affect the landing, so after this adjustment, check the landing again.
- After the adjustment is complete, paint on the knobs to lock them.

3-6. DEFLECTION YOKE NECK ROTATION ADJUSTMENT

If there is misconvergence at both sides on the X or Y axis of the screen, turn the neck of the deflection yoke in the direction of the arrow to reduce the misconvergence for the entire CRT screen to within the tolerance.

1. Reverse misconvergence pattern

Turn the deflection yoke neck down.

Positive misconvergence pattern Turn the deflection yoke neck up.

Pattern when deflection yoke too far to the left

Pattern when deflection yoke too far to the right

2. Insert the three wedges in the deflection yoke and CRT funnel surface to fasten the deflection yoke.

3. The pattern below can not be corrected by turning the neck.

* Gun rotation The beam is twisted at both sides on the X axis and Y

* HCR large (small) At both sides of the screen, the G raster horizontal component is wider (narrower) than those of the R and B rasters.

* VCR large (small) At both sides of the screen, the G raster vertical component is wider (narrower) than those of the R and B rasters.

3-7. G2 ADJUSTMENT

- 1. Input a 525 monoscope signal.
- 2. Connect the oscilloscope to A board TP403.
- 3. Of the three reference pulses, measure the lowest one.
- 4. With the Screen VR, adjust so that left end of the waveform is: $1.35 \text{ V} \pm 0.05$

Since the waveform is triangular as shown on the left, adjust the left end to be 1.35 V.

3-8. WHITE BALANCE ADJUSTMENT

For measuring equipment, use a color analyzer. (for example from Minolta, etc.)

For the PVM-1450QM, Items 7, 8, 14, 15 and 16 are not necessary.

- 1. Input a 525 monoscope signal. (Input from Line A or Line B, with no burst.)
- 2. Set: CONT 0% BRT 50%
- 3. On a 20-tone gray scale, adjust service mode SUB BRIGHT so that
- 0 and 5 IRE → cut off 10 IRE → slight glow
- 4. Input 525 all-white (no burst, composite signal).
- 5. Set CONT to 80%.
- Adjust the all-white signal luminance so that the screen luminance is 3 NIT.
- 7. Press MENU and select COL TEMP/BAL.
- 8. Select 6500 K.
- 9. Put the unit into service mode. (*1)
 - *1 : Set 3200 K SW to 0 for both 9300K and 6500K.
- 10. Adjust to the standard values with C/T1 6500K BIAS . (G must be fixed at "512".) (*2)
 - *2: Adjust the cut-off to be 3 NIT.
- 11. Switch the all-white signal luminance to 100 IRE.
- 12. Adjust to the standard values with C/T1 6500K GAIN (G must be fixed at "700".)
- 13. Repeat Items 10, 11 and 12 until the adjustment is complete, then write the adjustment data.
- 14. Press MENU and select COL TEMP/BAL.
- 15. Select 9300 K.
- 16. In the same manner as in Items 10, 11, 12 and 13 make the C/T2 9300K BIAS and C/T2 9300K GAIN adjustments.

3-9. BLUE-ONLY WHITE-BALANCE ADJUSTMENT

For the PVM-1450QM, Items 3, 4, 5, 6, 7 and 8 are not necessary.

- Switch the user control SW Blue Only On (to set blue-only mode).
- Input an all-white signal (no burst composite signal). (*1)
 The luminance of the all-white signal must be 100 IRE.
 CONT 80%
 BRT...... 50%
- 3. Select COL TEMP/BAL.
- 4. Select 6500 K.
- 5. Adjust to the standard values with C/T1 6500K B/O (RED) and C/T1 6500K B/O (GREEN).
- 6. Select COL TEMP/BAL.
- 7. Select 9300 K.
- 8. Adjust to the standard values with C/T1 9300K B/O (RED) and C/T1 9300K B/O (GREEN).
- Check that the white balance is obtained when the all-white signal luminance is adjusted and the screen luminance is 8 NIT.

3-10 SUB BRT ADJUSTMENT

- 1. Input a 525 monoscope signal.
- 2. CONT MIN BRT..... CENTER (50%)
- 3. Put the unit into service mode and select SUB BRIGHT
- 4. Adjust SUB BRIGHT so that 10 IRE gives a slight glow and 10 IRE gives cut off.

3-11, FOCUS ADJUSTMENT

Note: PVM-1450QM are adjusted with RV707 on the C board.

PVM-1454QM are adjusted with the RV at the top of the FBT main nuit

- 1. Input a 525 monoscope signal.
- 2. Adjust the focus to optimize the focus on the characters "30" at the center of the screen.
- 3. Switch to an all-white signal and check the uniformity.

PVM-1450QM/1454QM

MEMO	
······································	
······································	
<u></u>	·

SECTION 4 SAFETY RELATED ADJUSTMENT

The following adjustments should always be performed when replacing the following components (marked with \blacksquare , \square on the schematic diagram).

Beam Current Protector

B+ Regulator Circuit..... A board R1535

✓ A board R1535✓ G board C603,IC602

B+ MAX VOLTAGE CONFIRMATION (RV601)

Standard: 115.0~117.0 VDC

Check Condition : Input voltage : 130~132 VAC

Note: Use NF Power Supply or make sure that distortion factor is 3% or less.

Input signal: ALL White

Controls : BRT & CONT ⇒ Minimum

HOLD-DOWN CIRCUIT VOLTAGE CONFIRMATION

Check Condition: Input voltage: 130~132 VAC

Input signal: monoscope signal Controls: BRT & PIC ⇒ initial reset B+ voltage: Less than 117.0 V (1) Hold down circuit (+B Actuation)

a) When IABL = $600 \pm 50 \mu$ A, raster goes out at less than 130.5 V of +B voltage (TP502) by adjusting \triangle R690 and RV601.

Input signal : ALL white △ R690 : 470-5.6k 1/4 W RN

b) When IABL = $120 \pm 20 \mu$ A, raster goes out at less than 134 Vof + B voltage (TP502) by adjusting \triangle R690 and RV601.

Input signal: Dot

(2) Hold down circuit (Tertiary coil detection voltage)
Confirmatory item: 110.0 V voltage should be applied to the (11) pin of IC500.

a) When IABL = $600 \pm 50 \mu$ A, raster goes out when applying less than DC 146.7 V voltage to the (11) pin (TP503) of IC500 from outside.

Input signal: ALL white

b) When IABL = $40 \pm 20 \mu$ A, raster goes out when applying less than DC 147.0 V voltage to the (11) pin (TP503) of IC500 from outside.

Input signal: Dot

(CONDUCTOR SIDE)

SECTION 5 CIRCUIT ADJUSTMENTS

5-1. A BOARD ADJUSTMENT

A BOARD - COMPONENT SIDE -

·					
	D516			. 1	
		•			
				Q363 E B	

I. Preparations

* When composite video or component signals are supplied from connector CN301, they must be supplied taking into account the effect of the Q board as indicated on the right.

The levels of the signals supplied must be within $\pm 2\%$ of the standard on the right.

Signal		Signal Contents	Standard Level (Pedestal-White)	Reduction Ratio	Connector Feed Level (Pedestal-White)
		100% WHITE	0.714V	93%	0.664V
	358NT 443NT	75% WHITE	0.536V	93%	0.498V
COMPOSITE VIDEO		BURST (GREEN) (This item only P-P)	286mV (632mV)	94% (94%)	269mV (594mV)
(75% COLOR BAR)	PAL SECAM	100% WHITE	0.7V	94%	0.651V
		75% WHITE	0.525V	94%	0.488V
		PAL BURST (GREEN) (This item only P-P)	300mV (664mV)	94% (94%)	282mV (624mV)
	BETA0	100% WHITE Y	0.7V	94.8%	0.664V
		75% WHITE Y	0.525V	94.8%	0.498V
COMPONENT		75% COLOR B-Y, R-Y (This item only P-P)	0.7V	94.8%	0.664V
(75% COLOR BAR)	SMPTE	100% WHITE Y	0.7V	94.8%	0.664V
		75% WHITE Y	0.525V	94.8%	0.498V
		75% COLOR B-Y, R-Y (This item only P-P)	0.525V	94.8%	0.498V

* The function or input can be selected by writing the corresponding data from the table below into microcomputer (IC101) RAM address 0006h.

BIT	FUNCTION	DATA
0-3	LINE A/RGB	1
	LINE B/COMPONENT	2
	LINE C/SDI	3
	LINE/RGB	4
	EXT SYNC	5
	DEGAUSS	6
	BLUE ONLY	7
	UNDER SCAN	8
	H/V DELAY	9
	16:9	10
4-7	MENU	1
	SELECT	2
	UP	3
	DOWN	4

* In this d	ocument, ten	ms inside boxes	are	names	,
	node adjustme				
Example	60H-FREQ				

* CONT 80% is the center click position for the user control.

II. Deflection System Adjustment

1. ADJUSTING THE HORIZONTAL OSCILLATION **FREQUENCY**

- 1. Input a 525 monoscope signal.
- 2. Set:

CONT 80%

BRT 50%

- 3. Put the unit into service mode.
- 4. Drop A board IC507 Pin 1 to ground with a $100\mu/16V$ electrolytic capacitor. (Ground must use CN505 Pin 3.) Or plug the H-FREQ tool into CN505.
- 5. Adjust 60H-FREQ so that the diagonal lines on the screen become vertical lines. (Fig. 1)
- 6. Input a 625 monoscope signal.
- 7. Adjust 50H-FREQ so that the diagonal lines on the screen become vertical lines. (Fig. 1)

Fig. 1

- 2-1. H-BLK Adjustment 1. Input a 525 monoscope signal.
- 2. Set:

CONT 80%

BRT 50%

- 3. Put the unit into service mode.
- 4. Observe the anode of D516 or TP300 with the oscilloscope and adjust H-BLK to obtain the waveform in Fig. 2.

Fig. 2

2-2. H-BLK Adjustment (PVM-1450QM only)

- 1. Put the unit into service mode.
- 2. Input an adjustment value of 70 for H-BLK.

3-1. PICTURE PHASE Adjustment (PVM-1454QM only)

- 1. Input a 525 monoscope signal.
- 2. Put the unit into under scan mode.
- 3. Set:

CONT Min.

BRT ····· Max.

- 4. Put the unit into service mode.
- 5. Use U/S H SIZE to adjust the size of the monoscope white frame to be about 1 cm to the inside of the limits of the effective screen
- 6. Turn RV501 (H-CENT) and adjust so that B=B'.
- 7. Adjust 60 VIDEO PHASE so that the signal region comes to the center (A=A') of the deflection region. (Fig. 3)

- 8. Input a 625 monoscope signal.
- 9. Adjust 50 VIDEO PHASE in the same manner.

3-2. PICTURE PHASE Adjustment (PVM-1450QM only)

- 1. Input a 525 monoscope signal.
- 2. Put the unit into service mode.
- 3. Input an adjustment value of 123 for 60 VIDEO PHASE.
- 4. Input an adjustment value of 137 for 50 VIDEO PHASE
- 5. Roughly adjust H-SIZE so that the horizontal size is 15.75 frames.
- Turn RV501 (H-CENT) and adjust so that the left and right over scan amounts are equal.

4-1. V•BLK Adjustment (PVM-1454QM only)

- 1. Input a 525 monoscope signal.
- 2. Put the unit into under scan mode.
- Set:

CONT Min.

BRT..... Max.

- 4. Put the unit into service mode.
- 5. Adjust V BLK (60) so that before 0.5H of the white frame on the top of the monoscope is barely unblocked.
- 6. End under scan mode and put the unit into Normal 16:9 mode.
- 7. Adjust 16: 9 BLK START (60) and 16: 9 BLK END (60) so that the vertical direction frame count is 11.75 for the light emitting section of the screen and at the same time the top and bottom block amounts are the same.

Note: This must be done before the 16:9 V-SIZE adjustment.

- 8. Input a 625 monoscope signal.
- 9. Adjust V BLK (50) in the same manner as in 5 above.

10. Adjust 16: 9 BLK START (50) and 16: 9 BLK END (50) in the same manner as in 7 and 8 above so that the vertical direction frame count is 11.2 for the light emitting section of the screen and at the same time the top and bottom block amounts are the same.

4-2. V-BLK Adjustment (PVM-1450QM only)

- 1. Put the unit into service mode.
- 2. Input an adjustment value of 116 for 60-V BLK
- 3. Input an adjustment value of 66 for 55-V BLK.

5. VERTICAL DEFLECTION SECTION Adjustment

* PVM-1450QM has no 16:9 mode.

Normal V. Size Standards

		525	625
4:3		11.75 ± 0.2 frames	11.2 ± 0.2 frames
16:9	14"	154 ± 2mm	4
	20 ″	217 ± 3 mm	

- 1. Input a 525 monoscope signal.
- 2. Set:

CONT 80%

BRT 50%

- 3. Put the unit into service mode.
- 4. Adjust the size to 12 frames with NOR 60 V SIZE

Adjust the vertical linearity with V LIN.

Adjust the vertical centering with 60 V CENT

Note: The V.CENT adjustment must be re-evaluated after the V.LIN adjustment.

Adjust the size to the standard value with NOR 60 V SIZE.

- 5. Put the unit into 16:9 mode.
- 6. Adjust in the same manner with 16:9 NOR V SIZE (60)
- 7. Put the unit into normal scan mode.
- 8. Input a 625 monoscope signal.
- 9. Roughly adjust NOR 50V SIZE so that the size is 11 frames.

 Adjust the vertical centering with 50 V CENT.

Note: The V.CENT adjustment must be re-evaluated after the V.LIN adjustment.

Adjust the size to the standard value with NOR 50 V SIZE.

- 10. Put the unit into 16:9 mode.
- 11. Adjust in the same manner with 16: 9 NOR V SIZE (50)

6. HORIZONTAL DEFLECTION SECTION ADJUSTMENT NORMAL SCAN Adjustment

- * PVM-1450QM has no 625 mode.
- 1. Input a 525 monoscope signal.
- 2. Set:

CONT..... 80%

BRT50%

- 3. Put the unit into service mode.
- 4. Roughly adjust NOR H SIZE so that the size is 15.75 frames.
- 5. Adjust the horizontal deflection section with

NOR PIN AMP, NOR PIN PHASE, NOR U/L PIN, SEXY, V BOW and V ANGLE.

(While adjusting the pincushion distortion and bow distortion with V-ANGL and BOW, adjust so that the horizontal and vertical of the screen are straight lines.)

- 6. Put the unit into 16: 9 mode.
- 7. Adjust with 16:9 NOR PIN AMP,
 16:9 NOR PIN PHASE, and 16:9 NOR U/L PIN in the same manner as in Item 5.

Normal H.Size Standards

	525	625
4:3	$15.75 \pm 0.2 \text{ frames}$	15.0 ± 0.2 frames
16:9	15.75 ± 0.2 frames	15.0 ± 0.2 frames

Fig. 4

7. HORIZONTAL DEFLECTION SECTION Adjustment (UNDER SCAN adjustment) (PVM-1454QM only)

Standard value

	525	625
U/S H-SIZE V-SIZE	252 ± 2mm 188 ± 2mm	
16:9 U/S V-SIZE	142 ± 2mm	

8. H/V DELAY Adjustment

- 1. H-DELAY adjustment
 - 1) Input a 525 monoscope signal.

2) Set:

CONT..... 80%

BRT 50%

- 3) Put the unit into H/V DELAY mode.
- 4) Put the unit into service mode.
- 5) Connect the oscilloscope probe to IC503 Pin 7, then adjust H DELAY so that the waveform is as in Fig. 5.
- 2. V-DELAY Adjustment
 - 1) Input a 525 monoscope signal.

2) Set:

CONT 80%

BRT 50%

- 3) Put the unit into H/V DELAY mode.
- 4) Put the unit into service mode.
- 5) Connect the oscilloscope probe to IC502 Pin 7, then adjust V DELAY so that the waveform is as in Fig. 6.
- 3. Picture verification (PVM-1454QM only)

Verify that the picture is as in Fig. 7.

9. OSD POSITION Adjustment

- 1. Input a 525 color bar signal.
- Connect the oscilloscope probes to TP300 (H-BLK) and IC104 Pin 14.
- 3. Adjust OSD POSITION so that the gap between the rising
- edge of the H-BLK waveform and the right edge character (the right edge of the " " " for service mode OSD POSITION) is: 57 μ S \pm 0.2 μ S

Fig. 8

10. WRITING THE ADJUSTMENT

1. Write the adjustment results into memory.

Note: If you cut off the power before writing, the results of your adjustments are all lost.

III. SIGNAL SYSTEM ADJUSTMENT

1. NORM AL AND H/V DL SUB CON ADJUSTMENT

- * PVM-1450QM has neither 16: 9 nor H/V-DL.
- 1. Input a vertical white line signal.

Note: Use a vertical white line signal (525 no burst, H width 3μ S, 100IRE).

2. Set:

CONT 80% BRT 50%

- 3. Connect the oscilloscope probe to A board CN401 Pin 3.
- 4. Put the unit into service mode.
- 5. Provisionally input an adjustment value of 69 for SUB BRT.
- 6. Adjust the pedestal or the distance between the sync tip and white with SUB CON (4:3 NOR), SUB CON (4:3 H/V DELAY), SUB CON (16:9 NOR), and SUB CON (16:9 H/V DELAY).

SUB CON (4:3 NOR).
SUB CON (16:9 NOR)
SUB CON (4:3 H/V DELAY)
SUB CON (16:9 H/V DELAY)
(Fig. 9)
(Fig. 9)

SUB-CON 4 : 3, NOR SUB-CON 16 : 9, NOR

Fig. 9

	20″	14"		
	20	PVM-1454QM	PVM-1450QM	
4:3	1.55	1.50	1.40	
	Vp-p	Vp-p	Vp-p	
16:9	1.40	1.33	1.24	
	Vp-p	Vp-p	Vp-p	

SUB-CON 4 : 3, H/V-DL SUB-CON 16 : 9, H/V-DL

Fig. 10

Г		20″	14"		
		20	PVM-1454QM	PVM-1450QM	
4	: 3	1.55 Vp-p	1.50 Vp-p	1.40 Vp-p	
1	6 : 9	1.40 Vp-p	1.33 Vp-p	1.24 Vp-p	

2-1. SUB PHASE Adjustment (PVM-1454QM only)

- Input a component color bar (R-Y) and EXT SYNC (Beta 0 level signal).
- 2. Put the unit into Ext Sync mode.
- 3. Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 4. Put the unit into service mode.
- 5. Adjust SUB PHASE to minimize the output waveform (15 mVp-p max.) (Fig. 11)

2-2. SUB PHASE Adjustment (PVM-1450QM only)

- 1. Input a NTSC color bar signal.
- Connect between L309 and ground and between TP507 and a 5V line (L320 line).
- 3. Put the unit into service mode.
- 4. Adjust SUB PHASE to minimize the output waveform (15 mVp-p max.) (Fig. 11)

3-1. SUB CHROMA Adjustment (PVM-1454QM only)

- Input a component color bar (R-Y, Y, B-Y). (Beta 0 level signal).
- 2. From the menu, make the Component Level Beta 0.
- 3. Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 4. Put the unit into service mode.
- 5. Using SUB CHROMA NORMAL, adjust so that the tops of the waveform line up as in the diagram below. (Fig. 12)

Adjust so that the levels of the first peak and the fourth peak are the same.

Fig. 12

3-2. SUB CHROMA Adjustment (PVM-1450QM only)

- 1. Put the unit into service mode.
- 2. Input an adjustment value of 98 for SUB CHROMA NORMAL. (Fig. 12)

4. R-Y LEVEL ADJUSTMENT (PVM-1454QM only)

- Input a component color bar (R-Y, Y, B-Y). (Beta 0 level signal).
- 2. From the menu, make the Component Level Beta 0.
- 3. Connect the oscilloscope probe to IC404 Pin 41 or TP401.
- 4. Put the unit into service mode.
- 5. Using R-Y LEVEL COMPONENT, adjust so that the tops of the waveform line up as in the diagram below. (Fig. 13)

Adjust so that B=D above (20 mV max.) Check that the difference between D and C is no greater than 30 mV

5. SUB CHROMA N10/SMPTE Adjustment (PVM-1454QM only)

- 1. Input a component color bar (R-Y, Y, B-Y). (SMPTE level signal).
- 2. From the menu, make the Component Level N10/SMPTE.
- 3. Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 4. Put the unit into service mode.
- 5. In the same manner as in 4-5, adjust SUB CHROMA N10/SMPTE.

6. BURST GATE PULSE WIDTH Adjustment

- 1. Input an NTSC color bar.
- 2. Connect the oscilloscope probes to TP301 (COMP-SYNC) and Q363 or IC305 Pin 1. (Be careful! IC305 Pin 1 is a high-impedance line.)
- 3. Put the unit into service mode.
- 4. Adjust BGP WIDTH so that the output waveform has the relationship shown in Fig. 14.

7. VXO Adjustment

1. X'tal 358

- 1) Input an NTSC color bar.
- 2) Connect the frequency counter to IC305 Pin 21.
- 3) Put the unit into service mode.
- 4) Connect the circuit on the right to IC305 Pin 1.
- 5) Adjust CRYSTAL 358 so that the counter reading meets the standard below. (You can also just adjust for where the color flicker stops.)

X'tal 358

Standard level 3.579545 ± 20 Hz

(For connecting to Pin 1, have the four diodes as close to Pin 1 as possible to reduce the length of the wires.)

2. X'tal 443

- 1) Input a 443 NTSC color bar.
- 2) Connect the frequency counter to IC305 Pin 21.
- 3) Put the unit into service mode.
- 4) Connect to IC305 Pin 1 in the same manner as in 1-4).
- 5) Adjust Crystal 443 in the same manner as in 1-5).

X'tal 443

Standard level

4.433619 ± 20Hz

8. NTSC COLOR DEMODULATION Adjustment

- * The adjustment in 8-1-3) is not necessary for PVM-1454QM.
- * The adjustment in 8-1-4) is not necessary for PVM-1450QM.
- 1. NT 358 PHASE (NORMAL)
- 1) Input an NTSC color bar.
- 2) Connect the oscilloscope probe to TP306.
- 3) Supply 4 VDC to IC305 Pin 4.
- 4) Put the unit into H/V delay mode.
- 5) Put the unit into service mode.
- Adjust PHASE NTSC 358 NOR so that the output waveform burst section is a straight line. (Fig. 15)

- 2. NT358 PHASE (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust in the same manner as in 8-1 above, but adjust with PHASE NTSC 358 ACC OFF. (Fig. 15)

PVM-1450QM/1454QM

3. NT358 B-Y PHASE

The phase adjustment must be carried out before the chroma adjustment.

- Input an NTSC color bar. (Input only the R-Y component. Have B-Y and Y off.)
- 2) Connect the oscilloscope probe to TP305.
- 3) Put the unit into service mode.
- 4) Adjust B-Y PHASE NTSC 358 so that the color components form a straight line.
- 4. NT358 CHROMA (NORMAL)
- 1) Input an NTSC color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 3) Put the unit into service mode.
- 4) Using CHROMA NTSC 358 NOR, adjust so that the tops of the waveform line up as in the diagram below. (Fig. 16)

Adjust so that the levels of the first peak and the fourth peak are the same.

- 5. NT 358 CHROMA (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust CHROMA NTSC 358 ACC OFF in the same manner as 8.-4 above. (Fig. 16)
- 6. NTSC 358 R-Y LEVEL
- 1) Input an NTSC358 color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 41 or TP401.
- 3) Put the unit into service mode.
- 4) Using R-Y LEVEL NTSC 358, adjust so that the tops of the waveform line up as in the diagram below. (Fig. 17)

Adjust so that B=D above (20 mV max.) Check that the difference between B and C is no greater than 60 mV.

7. NTSC 443 PHASE (NORMAL)

- * The adjustment in 8-7-3) is not necessary for PVM-1454QM.
- * The adjustment in 8-7-4) is not necessary for PVM-1450QM.
- 1) Input an NTSC 443 color bar.
- 2) Connect the oscilloscope probe to TP306.
- 3) Supply 4 VDC to IC305 Pin 4.
- 4) Put the unit into H/V delay mode.
- 5) Put the unit into service mode.
- 6) Adjust PHASE NTSC 443 NOR so that the output waveform burst section is a straight line. (Fig. 18)

- 8. NTSC 443 PHASE (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust PHASE NTSC 443 ACC OFF in the same manner as in 7-5). above. (Fig. 20)
- 9. NTSC 443 B-Y PHASE (PVM-1454QM only)

NTSC 443 CHROMA NOR

- 1) Input an NTSC 443 color bar.
- 2) Connect the oscilloscope probe to TP402.
- 3) Put the unit into service mode.
- 4) Adjust B-Y PHASE NTSC 443 and CHROMA NTSC 443

 NOR so that the tracking is normal and the tops of the waveform line up. (Fig. 19)

- 10. NTSC 443 CHROMA (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust CHROMA NTSC 443 ACC OFF in the same manner as 9-4). (Fig. 22)

- 11. NTSC 443 R-Y LEVEL (PVM-1454QM only)
- 1) Input an NTSC 443 color bar.
- 2) Connect the oscilloscope probe to TP401.
- 3) Put the unit into service mode.
- 4) Adjust R-Y LEVEL NTSC 443 in the same manner as 6-4). (Fig. 17)
- 12. PAL LINE CRAWLING (PVM-1450QM, PVM-1454QM)

Note: Perform before PAL PHASE ADJUSTMENT.

- 1) Input a PAL color bar.
- 2) Connect the oscilloscope probe to TP402 (B-OUT)
- 3) Adjust the coil of CP302 so that the shaking of MAZENTA wave form become minimum.

Do not touch the RV at this time.

- 13. PAL PHASE (NORMAL) (PVM-1454QM only)
- 1) Input a PAL SP color bar.
- 2) Connect the oscilloscope probe to TP306.
- 3) Put the unit into service mode.
- 4) Adjust PHASE PAL NOR so that the B-Y anti-PAL signal waveform is 0. (Fig. 21)

* Varies every H, although slightly, so adjust so that the average is 0.

Fig. 21

- 14. PLL PHASE (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust PHASE PAL ACC OFF in the same manner as 12-4).
- 15. PAL B-Y PHASE (PVM-1454QM only)
- 1) Input a PAL SP color bar.
- 2) Connect the oscilloscope probe to TP305.
- 3) Put the unit into service mode.
- 4) Adjust B-Y PHASE PAL so that the B-Y anti-PAL signal waveform is 0. (Fig. 22)

* Varies every H, although slightly, so adjust so that the average is 0.

- 16. PAL CHROMA (NORMAL) (PVM-1454QM only)
- 1) Input a PAL color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 3) Put the unit into service mode.
- 4) Adjust CHROMA PAL NOR so that the tops of the waveform line up. (Fig. 23)

PVM-1450QM/1454QM

- 17. PAL CHROMA (ACC OFF) (PVM-1454QM only)
- 1) Switch ACC Off with the menu.
- 2) Adjust CHROMA PAL ACC OFF in the same manner as 15.-4). (Fig. 23)
- 18. PAL R-Y LEVEL (PVM-1454QM only)
- 1) Input a PAL color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 41 or TP401.
- 3) Put the unit into service mode.
- 4) Adjust R-Y LEVEL PAL so that the tops of the waveform line up as in the diagram below. (Fig. 24)

9. SECAM Adjustmnet

* This must be done after the deflection adjustment.

Note: Varies with H-FREQ, H-BLK, VIDEO-PHASE, ANGLE, BOW, H-DELAY, etc.

1. HP EIDTH (NORMAL) ADJUSMTNET (PVM-1454QM only) The board adjustment in 9.-1. is a rough adjustment and this may also be managed with the IC317 Pin 10 pulse width.

- 1) Input a SECAM color bar.
- 2) Put the unit into under scan mode.
- 3) Put the unit into service mode.
- 4) Adjust HP WIDTH NOR so that the color of the color section at the top left of the screen almost disappears.
- 2. HP POSITIOM ADJUSMTNET (PVM-1454QM only)

Note: 9.-2. is the same as above. This adjustment can be managed with the phase relationship between the start of the pulse at IC317 Pin 10 and the input video signal.

- 1) Input a SECAM color bar.
- 2) Put the unit into H/V delay mode.
- 3) Put the unit into service mode.
- 4) Adjust HP POSITION as in the diagram on the right.
- 3. HP WIDTH (H/V -DL) ADJUSMTNET (PVM-1454QM only)
 - 1) Input a SECAM color bar.
- 2) Put the unit into H/V delay mode.
- 3) Put the unit into service mode.

 Adjust HP WIDTH H/V DELAY as in the diagram below.
 Note: Check the HP POSITION and if it is off, repeat 2 and 3.

- 4. SECAM COL BALANCE (PVM-1454QM only)
- 1) Input a SECAM color bar.
- 2) Connect the oscilloscope probe to TP306.
- 3) Put the unit into service mode.
- 4) Adjust SECAM COLOR BALANCE R-Y so that the non-color section forms a straight line.
- 5) Connect the oscilloscope probe to TP305.
- 6) Adjust SECAM COLOR BALANCE B-Y so that the non-color section forms a straight line.
- 5. SECAM CHROMA (PVM-1454QM only)
- 1) Input a SECAM color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 30 or TP402.
- 3) Put the unit into service mode.
- 4) Adjust CHROMA SECAM so that the tops of the waveform line up as in the diagram below. (Fig. 25)

IC404 30 pin

Adjust so that the B and D peaks are the same.

- 6. SECAM R-Y LEVEL (PVM-1454QM only)
- 1) Input a SECAM color bar.
- 2) Connect the oscilloscope probe to IC404 Pin 41 or TP401.
- 3) Put the unit into service mode.
- 4) Adjust R-Y LEVE SECAM so that the tops of the waveform line up as in the diagram below. (Fig. 26)

10. Writing the adjustment results

1. Write the adjustment results into memory.

5-2. G BOARD ADJUSTMENT

G BOARD - COMPONENT SIDE -

- 1. Checking the output lines
- 1) Input a color bar signal.
- 2) Adjust RV601 so that the +B voltage is 115 \pm 0.1 V.
- 3) Check that the output lines meet the standards below.

15V	$16.0 \pm 1.0 V$
5V(A)	$5.0 \pm 0.3V$
5V(B)	$5.0 \pm 0.5 V$
7V	$7.2 \pm 0.5 V$
15V	$-16.3 \pm 1.0V$

PVM-1450QM/1454QM

MEMO		
······································		
,		
	•	
······································		
· · · · · · · · · · · · · · · · · · ·	······································	······································
	<u></u>	
· · · · · · · · · · · · · · · · · · ·		
	······································	<u> </u>
· · · · · · · · · · · · · · · · · · ·		
	1	
	i	
· · · · · · · · · · · · · · · · · · ·		
······································		
		······································

SECTION 6 DIAGRAMS

6-1. BLOCK DIAGRAMS (1)

IC601 REF -- PWM

SOFT CLAMP

START Q605

CN606

H.P 4

DGC SW 5

G/Y

B/B-Y

A. RGB BUFFER Q2402

S. BUFFER Q2408

> 16:9 CONT Q2418

IC2401 SHIFT REGISTER 2 CURRENT Q603

6-3. CIRCUIT BOARDS LOCATION

6-4. PRINTED WIRING BOARDS AND SCHEMATIC DIAGRAMS

- All capacitors are in μF unless otherwise noted. pF: μμF 50 WV or less are not indicated except for electrolytics.
- · Indication of resistance, which does not have one for rating electrical power, is as follows.

Pitch: 5 mm Rating electrical power 1/4 W

- · All resistors are in ohms.
- : nonflammable resistor.
- : fusible resistor.
- : internal component. Δ
- : panel designation, and adjustment for repair.
- · All variable and adjustable resistors have characteristic curve B. unless otherwise noted
- The components identified by in this basic schematic diagram have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.
- ullet When replacing components identified by $oldsymbol{\square}$, make the necessary adjustments indicated. If results do not meet the specified value, change the component identified by A and repeat the adjustment until the specified value is achieved. (Refer to R690 adjust on Page 29 and 30.)
- When replacing the part in below table, be sure to perform the related adjustment.

Part replaced (☑)	Adjustment (►)
C506, C512, C513, C523, C549, C592, D501, D533, IC500, IC507, Q500, Q511,R506, R508, R515, R516, R517, R518,R519, R551, R1535, R1536, R1537, R1560, T501	R1535, R1536 (HOLD-DOWN)

- All voltages are in V.
- Voltage are dc with respect to ground unless otherwise noted.
- · Readings are taken with a color-bar signal input.
- Voltage variations may be noted due to normal production tolerances.
- R + hus
- ===: B bus.
- :: signal path.
- No mark ; with PAL colour-bar signal sreceived or common
 - voltage.
- For the respective voltage ratings in SECAM, NTSC 3.58, NTSC 4.43,

S-VIDEO, and ANALOG RGB modes, see the table

Reference information RESISTOR : RN METAL FILM

: RC SOLID NONFLAMMABLE CARBON : FPRD NONFLAMMABLE FUSIBLE : FUSE NONFLAMMABLE WIREWOUND NONFLAMMABLE METAL OXIDE : RS NONFLAMMABLE CEMENT · RR

COIL : LF-8L MICRO INDUCTOR

CAPACITOR : TA TANTALLIM : PS STYROL

· pp POLYPROPYLENE

: PT MYLAR METALIZED POLYESTER : MPS

METALIZED POLYPROPYLENE

: ALB BIPOLAR

: ALT HIGH TEMPERATURE

: ALR HIGH RIPPLE

Note: The components identified by shading and mark nare critical for safety. Replace only with part number specified.

A BOARD IC303 CXA1214P

A BOARD IC305 M51279FP

CHEMATIC DIAGRAMS

All voltages are in V.

Voltage are dc with respect to ground unless otherwise noted.

Readings are taken with a color-bar signal input.

Voltage variations may be noted due to normal production

• : B + bus.

• - B - bus.

• signal path.

 No mark : with PAL colour-bar signal sreceived or common voltage.

 For the respective voltage ratings in SECAM, NTSC 3.58, NTSC 4.43, S-VIDEO, and ANALOG RGB modes, see the table

Reference information

RESISTOR : RN METAL FILM : RC SOLID : FPRD NONFLAMMABLE CARBON : FUSE NONFLAMMABLE FUSIBLE NONFLAMMABLE WIREWOUND NONFLAMMABLE METAL OXIDE : RS NONFLAMMABLE CEMENT : RB COIL : LF-8L MICRO INDUCTOR CAPACITOR : TA TANTALUM : PS STYROL

POLYPROPYLENE : PP

MYLAR : MPS METALIZED POLYESTER

: MPP

METALIZED POLYPROPYLENE

BIPOLAR : ALB

HIGH TEMPERATURE : ALT

HIGH RIPPLE : ALR

Note: The components identified by shading and mark A are critical for safety. Replace only with part number specified.

for rating

tic curve chematic ch set in

take the

and ıchieved.

form the

(★)

536 WN)

A BOARD IC303 CXA1214P

A BOARD IC305 M51279FP

MICON, RGB-MATRIX, DAC,
ON SCREEN DISPLAY, ON/OFF MUTE,
VOL OFF SW, BLACK-SAMPLING, RGB SW] CHROMA DEMOD, SECAM CHROMA SELECT, SYSTEM SW,
SYNC SELECT, B/B-Y SW, R/R-Y SW, G/Y SW,
AUDIO SELECT, SECAM DECORDER, HOLD AMP

- A BOARD -

(Component Side)

[H/V OUT, DEFLECTION SYSTEM,]

Pattern of the rear side.

сомром	ENT SIDE							
10	?	IC503	G-6	Q410	D-4	D332	E-3	1
	,	IC504	C-7	Q411	B-5	D335	F-1	
IC101	B – 2	IC505	E-6	Q412	C-5	D336	F-1	
IC102	B-1	IC506	E-6	Q413	C-5	D338	E-3	
IC103	C-1	IC507	D-7	Q414	D-5	D339	E-2	
IC104	B – 1	IC508	C-7	Q415	D-5	D341	C-3	
IC105	B-3	IC509	C-7	Q416	D-5	D348	E-5	_
IC106	C-3	IC510	E-2	Q425	D-5	D349	E-5	
IC107	C-2	l		Q426	D-5	D350	E-4	1
IC109	C-3	TRANS	SISTOR	Q429	C-5	D351	B-3	
IC110	C - 3	Q102	C - 2	Q430	D-5	D352	E-4	
IC111	B-2	Q103	C - 2	0432	C-5	D360	C - 3	1
IC200	A-5	Q104	B - 2	Q433	C-4	D361	C-3	
IC301	G-2	Q105	A – 3	Q435	D-4	D362	E-2	
IC302	G-2	0107	A-3	Q436	D-4	D365	G-4	1
IC303	E-1	Q108	C – 2	Q437	D-4	D380	D – 2	-
IC304	G-1	Q109	B – 3	Q438	C-5	D381	D-2	
IC305	G-2	Q110	A – 1	Q440	C-4	D406	C-1	
IC306	F-3	Q112	D-5	Q441	C-4	D413	E-5	
IC309	F-3	Q200	A-6	Q442	C-4	D414	D-4)
IC310	D-3	0300	G – 2	Q445	C-5	D415	E-5	
IC311	E-3	Q308	G – 3	Q501	D-9	D416	D-4	1
IC312	E-3	Q311	G – 3	Q502	D-8	D417	D-4	1
IC313	F-2	Q314	F-4	Q503	B-7	D418	D-3	_
IC314	G – 4	Q316	F-5	Q512 ·	A - 10	D423	C-6	1
IC315	D-2	Q324	G-1	Q513	A-9	D424	B-5	
IC316	G-5	Q335	D-1	Q515	B-8	D502	E-9	
IC317	D - 1	Q341	E-3	Q518	B – 7	D504	D-8	
IC318	D-2	Q342	E-3	Q520	B – 7	D505	E - 10	
IC320	F-5	0343	E-4	Q523	B-6	D506	D-9	
IC321	F-5	Q346	F-1	Q524	A - 6	D510	F-6	1
IC322	E-5	Q347	E-2	Q525	A-6	D512	D-9	ł
IC323	E-5	Q348	E-2	Q527	B - 8	D514	E ~ 7	
IC324	E-4	Q353	D-3		l	D515	F 10	
IC325	E-4	Q354	E-3	DIC	DE	D520	E-6]
IC326	E-2	Q355	F-5	D104	B-1	D522	D-6	
IC350	D-2	Q356	D-2	D105	B - 1	D524	C-8	
IC401	B-4	Q357	G - 2	D109	A – 1	D525	C-9	
IC402	D-4	Q358	G ~ 1	D110	E-5	D527	B~8	
IC403	B-5	Q359	G-1	D112	A - 1	D528	A - 10	
IC404	D-4	Q360	D-2	D112	B – 4	D529	A - 8]
IC405	C-5	0362	D'~ 3	D113	F-2	D530	A - 10	
IC406	B-5	0365	E 3	D300	G-2	D533	G - 10	
IC407	C-5	Q366	E-3	D300	D-2	D535	B~6	1
IC408	C-6	Q372	C-3	D301	G-3	D537	A - 7	
IC409	C-6	Q373	D-3	D305	G-3 G-5	D538	D-6	1
IC410	B-4	Q374	C-3	D313	C-1	D539	B-7 .	
IC411	B-5	Q404	B-5	D314	E-4	D540	E-6	
IC412	B-4	Q406	B-5	D319	E-5	D541	F-3	_
IC413	C-4	Q408	B-5	D319	D-3			
IC502	G-6	1		0321	0-3]

The circuit indicated as left contains high voltage of over 600 Vp-p. Care must be paid to prevent an electric shock in inspection or repairing.

- Pattern from the side which enables seeing.

		Q345	D-8	Q517	C-4	D408	B-5
10	3	0349	E-9	Q519	C-4	D410	
IC101	A-9		1	1	1		C-5
IC102	B - 10	0350	D-8	Q520	B-4	D411	B-6
IC102	B - 8	0351	D-8	Q522	E-5	D421	C-5
IC200	A-5	Q352	D-8	Q524	A - 5	D422	C-5
		Q361	F-8	Q525	A – 4	D425	C-5
IC303	E-9	Q363	G-9	Q526	A - 3	D426	C-6
IC404	D-6	Q364	D-8	<u> </u>	L	D427	B-6
IC505	E-4	Q367	E-8	DIC	DE .	D500	G-5
IC507	D-4	Q368	E-8	D101	B - 10	D501	G – 2
	L	Q369	E-8	D101	B-10	D502	E – 2
TRANS	SISTOR	Q375	D-8	ŀ	1	D503	C - 2
		Q401	B-6	D103	B-9	D504	D-2
Q101	A-9	Q402	B-6	D107	B-9	D505	E-1
Q111	C-10	Q403	B-6	D200	A-4	D506	D-2
Q1·13	A-7	Q405	C-6	D301	G-8	D507	G - 5
Q201	A-6	Q407	C-7	D302	F-9	D508	G-5
Q301	G-8	Q409	D-7	D303	F-7	D509	G-5
Q302	G – 10	Q417	C-6	D304	G-7	D510	F-5
Q303	G-6	Q418	B-5	D307	G-8	D512	D-2
Q304	G-6	Q419	C-6	D309	G-8	D513	E-5
Q305	G-8	Q420	C-6	D310	G-8	D514	E-4
Q306	G-7	Q421	B-5	D311	G-9	D515	F-1
Q307	G-8	Q422	B-5	D315	E-8	D516	F-5
Q309	G-8	Q423	C-5	D317	D-9	D517	D-4
Q310	G-7	Q424	C-5	D320	D-9	D518	E-5
Q312	G-8	Q428	D-6	D322	D-9	D519	C-4
Q313	G-8	Q431	B-5	D323	C-9	D522	A - 4
Q315	G-8	Q434	C-5	D324	E-9	D523	A - 2
Q318	G-8	Q434 Q439	C-6	D325	D-8	D523	C-2
Q319	F-7	Q443	C-5	D326	E-9	D525	C-2
Q321	G-8	0444	B-5	D333	D-8	D525	B - 4
Q323	G-10	Q500	F-2	D337	E-8	D520	B - 3
Q325	F-8	0501	D-2	D344	D-8	1.	A - 1
Q326 .	F-6	Q502	D-3	D345	E-7	D528 D529	A - 1
Q327	F-6		1	D346	E-7		
Q328	G-9	Q503	B-3	D347	E-7	D530	A - 1
Q329	G-9	Q505	E-5	D353	D-8	D531	A - 4
Q330	F-9	Q506	B-4	D354	B-7	D532	A - 4
Q331	F-9	Q507	E-5	D355	C-7	D533	G-1
Q332	G-10	Q508	C-4	D363	E-8	D534	B - 4
Q333	D-9	Q509	G-5	D364	E-8	D536	A - 5
Q334	F-9	Q511	F-2	D401	B-7		
Q336	E-10	Q512	A - 1	D404	D-6	VARI	V DI L
	1	Q513	A - 1	D404	B-5		
0337	E - 10	Q514	B-4	D405	D-7	RESIS	STOR
Q338	C - 9	Q515	B-2	0401	1 0 - 1	RV501	B - 2
0339	D-8			L	<u> </u>	L	

Q519

Q520

Q522

Q524

Q525

Q526

D101

D102

D103

D107

D200

D301

D302

D303

D304

D307

D309

D310

D311

D315

D317

D320

D322

D323

D324

D325

D326

D333

D337

D344

D345

D346

D347

D353

D354

D355

D363

D364

D401

D404

D405

D407

C-4

B - 4

E - 5

A - 5

A – 4

A - 3

B - 10

B - 9

B - 9

B - 9

G - 8

F-9

F - 7

G – 8

G - 8

G - 8

E – 8

D-9

D - 9

D - 9

C-9

E - 9

D - 8

E - 9

D - 8

E – 8

D - 8

E – 7

E - 7

E – 7

D - 8

B - 7

C - 7

E - 8

E - 8

B - 7

D-6

B - 5

D - 7

DIODE

D410

D411

D421

D422

D425

D426

D427

D500

D501

D502

D503

D504

D505

D506

D507

D508

D509

D510

D512

D513

D514

D515

D516

D517

D518

D519

D522

D523

D524

D526

D527

D528

D529

D530

D531

D532

D534

0349

Q350

0351

Q352

0361

0363

Q364

Q367

Q368

0369

Q375

Q401

Q402

Q403

Q405

Q407

Q409

Q417

Q418

Q419

Q420

Q421

Q422

0423

Q424

Q428

Q431

Q434

Q439

Q443

Q444

Q500

Q501

Q502

Q503

Q505

Q506

Q507

Q508

Q509

Q511

Q512

Q513

Q514

Q515

)R

E-9

D - 8

D - 8

F - 8

G - 9

D - 8

E - 8

E - 8

E - 8

D - 8

B - 6

B - 6

B - 6

C - 6

C - 7

C - 6

C - 6

B - 5

C - 5

D-6

B - 5

C-6

B - 5

F - 2

D - 2

D - 3

B - 3

E - 5

B - 4

C - 4

F – 2

A - 1

B - 4

• A BOARD WAVEFORMS

:S-HICRO

8	6N0	
7	1K	
6	6N0	
5	12V	
4	B	0UT
2	R	0UT
1	V	P
TO C	BOARB	
CN701		

CN305 13P : BT0B-P

| SHOB-P | ON/OFF | 2 L1/L2 | 3 C/T | 4 GND | 5 YS | 6 R | 7 G | 8 B | 9 HP-2 | 10 Y1DED | 11 SY | 12 SV BACK | 13 S-RESET | TO S BOARD | CN801

C476 0.01 F:CHIP

4.3 Vp-p (H)	2 (1 0MHz)	3 4.8 Vp-p (V)
PAL 0.3 Vp-p (H) SECAH 0.32 Vp-p (H)	(4) NTSC3.58.4.43 0.28 Vp-p (H) 5-V1060 0.35 Vp-p (· H)	(5)
1553.58 Vp-p (H) NTSC4.58 Vp-p (H) NTSC4.50 Vp-p (H)	5-41000 (H)	6 POL 57 Vp-p (H) SECAM 0.45 Vp-p (H)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PAL 2. 4 Vp-p ( H ) SECAM 2. 3 Vp-p ( H )	7 NISC3.58 2.1 Vp-p(H) NISC4.43 2.2 Vp-p(H)
5-V1.0EO 2.4 Vp-p ( H )	7 	(B)  ANALOG RGB O. 6 Vp-p ( H )
ANALOG RGB O.6 Vp-p (H )	ANALOG ROB O. 6 Vp-p(H)	PAL 2.6 Vp-p ( H ) SECAH 2.5 Vp-p ( H )
NTSC3.58 2.4 Vp-p(H) 2.5 Vp-p(H)	5-V1060 2.4 Vp-p ( H )	ANALOG RGB 3.0 Vp-p(H)
4.6 Vp-p ( V )	PAL 1. 8 Vp-p ( H ) SECAM 1. 9 Vp-p ( H )	NTSC3.58 Vp-p(H) NTSC4.57 Vp-p(H)
<u>ттијити</u> , з-vi ⁰⁹ v₀-₀ ( н )	(3) ANALOG ROB 2.4 Vp-p(H)	3.7 Vp-p(H)
		High and the second of the sec

# A BOARD

3.6 Vp-p(V)

Ref	LOCATION	PVM1450QM	PVM-1454QM
C174	H – 3		47P
C489	E - 12	- "	330P
C496	H - 10	, - ·	82P
CN104	A - 1	-	3P
CN105	1-1	_	12P
CN305	F - 16	-	13P -
D114	H – 4		MA110-TX
D413	E - 12	10° <u>-</u> 10	MA110-TX
D426	J - 11	-	RD4.7SB
L105	F-3		100 µH
Q104	E-7	- 1	IMX 1T 110
Q105	B - 5	· -	DTA144EK
R107	H - 4	-	4.7K
R122	D - 3	_	0
R124	D - 3		0
R126	G - 5	_	0
R127	D-3	_	0
R139	J-7	_	0
R145	D-4	_	0
R152	J-6	_	0
R158	G - 7		0
R168	E - 7	_	33K
R169	E-6	_	270K
R171	E-7	-	180K
R172	G - 4	_ ,	0
R174	B-4	_	0
R184	B - 5	_	0
R186	1-5		0
R194	1-5		0
R404	H - 10		33K
R1101	D - 6		0
R1126	H-4		470
R1127	J-6	Jin .	0
R1130	F-3		1K
R1133	H-3	I -	6.8K
R1133	A – 2		10K
R1137	A - 2	la Ī	22K
	. 1		1M
R1161	A - 2		
R1162	A - 2	I	470K
R1167	E-3 E-3	- 1	100K
R1168	1		100K
R1169	E - 3	_	100K
R1173	J - 6	-	0
R1414	H - 12	2.2K	3.3K
R1423	G - 12	2.2K	3.3K
R1433	J - 11	= = = = = = = = = = = = = = = = = = = =	33K
R1434	H - 10	0	560
R1435	H - 10		1.8K
R1444	H - 10	2.2K	3.3K

O: TO BE MOUNT

# A BOARD * MARK

A BOA	ARD *	MARK	(			
	PAL	SECAM	NTSC 3.58	NTSC 4,43	S-VIDEO	ANALOG RGB
C101 ② ③	2.3 4.5	2.4 4.6	2.2 4.5	2.2 4.4	2.0 4.4	2.3 4.5
(b)	4,1 3,4	3.4 3.5	0 3.5	3.5	3.1	0 3.5
(9) 29:	0	0	0	0	4.8 0	0 4.9
<b>1</b> 0	4.9 5.0	5.0 5.0	0	5.0	0	0
<b>3</b>	5.0 0	5.0 5.0	0	0	0	0
39 39	0.1 5.0	0 5.0	0.1 5.0	0.1 5.0	4.9	0.1 5.0
39 39	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	4.9 5.0	0.1
39 38	4.2	4.1	4.6 4.6	5.0 5.0	3.9	3.9 3.7
9) S3	0.3	4.4	0.1	0.7	0.1	0.1
33	4.0	3.4	3.6	3.7	3.9	4.0
\$ \$	0.5 3.0	2.5	2.6	2.3	3.1	2.2
(§)	3.6 4.0	4.0	2.9 4.0	4.0	3.9 2.9	4.0
C103 ® C104 @	2.3	2.3	2.2	0.2 2.2	2.0	2.3
03 C105 ③	3.5 2.3	3.5 2.3	3.5 2.2	3.5 2.2	3.1	3.5 2.3
(S) (B)	0 2.6	2.7	0.1 2.7	2.6	11.8	2.6
(9 C106 ③	5.4 2.3	5.4 2.3	5.4 2.2	5.4 2.2	6.6 2.1	8.1 2.3
(S)	5.4 2.4	5.4 2.4	5.4 2.4	5.4 2.4	0.6	5.4 2.4
® 9	7.8 5.1	7.8 5.1	7.8 5.1	7.7 5.1	5.5 4.0	7.8 5.1
(B)	0.1 3.1	10.5 3.1	10.5 2.6	10.5 3.1	10.9	10.5
(B)	2.4 6.3	4.6 6.3	2.1	2.2 9.0	2.1	3.2 3.7
Ø 0	3.6 0.8	3.6 1.8	4.8 0.4	3.6 0.3	4.3	9.5 3.1
C107 ②	4.6	4.5 2.3	4.5	4.5	4.4	4.5
<u>(4)</u>	2.8	2.8	2.8	2.8	3.3	2.8
® ®	2.9	2.9	2.9 2.6	2.9	2.1	2.9
9	2.9	2.9	2.9	2.9	2.6	2.9
(3)	3.2 4.5	3.2 4.6	5.4 5.0	5.4	5.3	5.4
(3) (3)	6.3	6.3	6.1	6.1	6.0	6.1
C109 ② ③	4.6 2.3	4.5 2.3	4.5 2.2	2.2	2.1	2.3
(B)	11.9	11.9	0.1	0	0.1	0.1 11.8
C110 ③ ④	2.3 7.2	7.2	7.2	7.2	2.0 8.3	7.2
(G)	5.8 11.9	5.8 11.9	5.8 11.9	5.6 11.9	6.2 7.8	5.8 11.9
<b>⊕</b>	0 3.7	7.9 3.7	7.9 3.5	7.9 3.5	7.8	7.9 3.6
C111 @	0.3 0.2	0.3	0.3 0.1	0.3	0.1	0.3
<u>()</u>	0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	0	5.0 5.0
C402 ②	3.1	3.9 2.3	2.9 2.3	3.0	3.0 2.2	3.6 2.2
Ø C403 ①	2.9 0.8	2.9 0.8	2.9 0.8	0 0.8	2.9 0.8	2.9
2	1.2	1.2	0.8	0.8	1.2	0.9
<u>4</u>	0.8	0.8	0.9	0.9	0.8	1.4
6	0.5	0.6	0.6	0.6	0.6	0
9	1.0	1.0	1.0	1.0	0.8	1.1
0	0.9	1.4	1.0	1.0	0.8	1.5
(3) C404 (6)	0.6 3.0	0.6 3.0	3.0	3.0	4.5	0.6
⑦ •	4.9 5.6	4.9 5.6	4.9 5.6	4.9 5.6	4.7 5.6	6.1 5.8
(D)	5.6 0	5.6 0.1	5.6 0	5.6 0	5.6 0	5.8 4.4
<b>ॐ</b>	3.8 7.1	4.0 6.6	4.1 8.0	4.2 8.0	7.7	3.6 7.9
<b>8</b> 9	1.4 7.0	1.3 7.3	1.2 8.1	1.1	1.2 7.8	1.4 7.8
<u>\$</u>	1.4 7.8	1.3 7.8	1.2 7.7	1.1	1.2 8.0	1.5 7.7
	6.9	7.1	7.8	7.7	7.6	7.6
<u>49</u>	7.2	7.2	7.2	7.2	8.3 6.9	7.2
<b>4</b> D	6.6	6.6	6.6	6.6	5.5	0
C405 ①	1.6	1.5	0.9	0	1.4	1.6
<u>3</u>	1.2	1.2	1.0	0	1.1	1.2
(5) (0)	0.5	0.5	0.6	1.0	0.3	0.2
<u>0</u>	0.5	1.2	0.6	1.3	1.2	1.3
(t) (t)	1.4	1.3	0.9	1.3	1.3	1.4
(§) IC406 ①	4.8	1.3 5.1	1.0 4.8	1.3 4.8	4.8	1.5 5.1
③ ⑤	0.8 1.0	0.9	0.9	0.9	0.8	1.0
© ⑦	1.0 5.1	1.0 5.1	1.1 4.9	1.1 4.9	0.8	1.1 5.1
C407 ① ②	1.2 0.4	1.2 - 0.1	0.9 0.5	1.2 0.3	1.2 0.4	1.3 0.5
<u>3</u>	1.4 0.6	1.3	1.0	1.3 0.5	1.2 0.5	1.4 0.7
<u>\$</u>	2.0	1.8	2.0	2.C 11.3	2.0	2.0
8	5.5	5.5	5.5	5.5	5.4	8.5
<u> </u>	5.5 1.4	5.5 1.4	1.0	1.3	1.2	1.5
0	2.0	1.7	2.0	0.E 2.C	2.0	0.6 2.0
(3) IC408 (1)	2.0 3.1	2.9	2.0	2.C 3.1	3.7	3.4
① IC409 ①	4.1 0	3.8 8.8	3.9 9.0	9.4	0	7.5
3 \$	0 5.9	0.6 5.9	0.4 6.3	0.3	0.3 5.9	1.6 5.9
6	5.9	5.9	6.3 6.3	6.C 6.C	5.9 5.9	5.9 5.9
①	5.9	5.9	0.5	1.2	0.0	0

	DAI	650	NTSC	NTSC	674620	ANALO
	PAL	SECAM	3.58	4.43	S-VIDEO	RGB
IC410 ①	3.8	4.0	4.0	4.0	0	3.9
2	3.0	3.1	2.4	3.1	0	4.0
3	1.3	0.7	1.4	1.6	2.3	1.5
(4)	3.5	3.6	3.0	3.8	3.9	3.9
. ⑤	0.6	1.3	1.1	1.1	3.1	1.7
6	4.0	4.0	4.0	3.9	0	0
9	0	2.0	1.9	1.8	2.5	1.4
10411 (0)	2.0	2.3	2.3	2.0	1.8	3.0
IC411 ①	4.1	4.0	3.9	3.8	4.2	4.1
0	1.8	2.0	1.9	1.8	2.5	1.3
1C412 ②	0.4	0.5	0.4	0.4	1.8	3.0
	8.9	8.9	8.9	<del></del>	5.9	0.6
<u>(4)</u>	9.0	8.9		8.9	8.9	8.3
3			9.0		8.9	8.3
10	6.0	6.0	6.0	6.0	6.0	0
(3)	0.4	0.5	0.4	0.4!	5.9	0.5
IC413 ②	7.9	8.0	8.0	8.0	0	6.9
4	0	5.5	5.5	5.5	5.4	0
5	5.5	5.5	5.5	5.5	5.4	8.6
0	3.1	3.1	3.1	3.1	0	5.1
13	3.1	3.1	3.1	3.1	6.0	5.1
(5)	7.9	7.9	8.0	7.9	6.3	6.9
Q102 B	10.9	10.9	10.9	10.9	10.7	10.9
С	8.1	8.1	8.1	8.1	0	8.1
E	11.5	11.5	11.5	11.5	11.3	11.5
Q104-1 B	- 0.2	0	- 0.2	0	0	- 0.2
Q107 B	5.0	5.0	5.0	5.0	5.0	0.1
С	0	0	0	0	0	5.0
Q108 C	2.6	2.6	2.6	2.6	2.9	2.6
Ε	2.6	2.6	2.6	2.6	2.9	2.6
Q111 B	5.0	5.0	0	0	4.9	4.9
С	0.4	0.4	0	0	0.4	0.4
Q113 C	4.1	4.3	4.2	4.2	3.8	4.0
Q401 B	1.1	0.8	1.5	1.6	1.2	1.0
С	7.5	5.5	6.0	5.2	8.4	10.0
E	1,4	1.6	3.2	3.4	3.1	1.0
Q402 B	0.5	0.5	0.5	0.5	2.4	0.5
C	9.5	7.7	8.1	7.4	10.4	6.9
E	1.4	1.6	3.2	3.3	3.2	1.0
Q404 B	5.3	4.1	4.9	5.2	5.3	5.2
E	6.1	6.3	6.0	6.1	6.1	6.2
Q405 B	1.3	1.3	1.2	1.1	1.2	1.4
Q406 B	0.7	0.7	0	0.7	0.7	0.7
C	1.6	1.5	1.0	1.5	1.4	1.6
Q407 B	0	0	0 ,	0	- 0	0.6_
T .		, 41,	J.6	6.6	5.4	0
Q408 B	· - 5.5	4.7	4.9	5.0	5.2	5.2
E	6.0	6.2	5.9	6.1	6.0	6.1
Q409 B	1.9	1.6	1.6	1.6	1.7	1.6
E	2.0	2.2	2.2	2.2	2.3	2.2
Q411 C	1.4	1.4	0.9	1.3	1.3	1.4
Q412 B	1.3	1.3	1.0	1.3	1.1	1.4
E	2.0	1.9	1.7	1.9	1.8	2.0
Q413 G	2.0	- 15.1	1.6	- 2.2	1.8	- 2.1
D D	2.0	1.9	- 4.3	0	2.2	20
S	2.0	1.9	1.7	1.9	1.8	2.0
Q417 B	1.4	1.4		1.0		20
Q418 C			177			2.0
	21		1.2	1.2	1.2	1.4
	2.1	2.1	1.7	1.2 1.7	1.2	1.4 2.0
Q419 B	1.4	2.1 1.4	1.7 1.2	1.2 1.7 1.1	1.2 1.7 1.2	1.4 2.0 1.5
Q419 B	1.4 2.0	2.1 1.4 1.9	1.7 1.2 1.7	1.2 1.7 1.1 1.7	1.2 1.7 1.2 1.8	1.4 2.0 1.5 2.0
Q419 8 E Q420 B	1.4 2.0 1.2	2.1 1.4 1.9 1.2	1.7 1.2 1.7 1.0	1.2 1.7 1.1 1.7 1.0	1.2 1.7 1.2 1.8 1.2	1.4 2.0 1.5 2.0 1.3
Q419 B E Q420 B E	1.4 2.0 1.2 1.8	2.1 1.4 1.9 1.2 1.8	1.7 1.2 1.7 1.0 1.6	1.2 1.7 1.1 1.7 1.0 1.6	1.2 1.7 1.2 1.8 1.2 1.8	1.4 2.0 1.5 2.0 1.3 1.9
Q419 B E Q420 B E Q422 C	1.4 2.0 1.2 1.8 2.1	2.1 1.4 1.9 1.2 1.8 2.1	1.7 1.2 1.7 1.0 1.6	1.2 1.7 1.1 1.7 1.0 1.6 1.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8	1.4 2.0 1.5 2.0 1.3 1.9 2.0
Q419 8 E Q420 B E Q422 C Q423 B	1.4 2.0 1.2 1.8 2.1 0.5	2.1 1.4 1.9 1.2 1.8 2.1 0.3	1.7 1.2 1.7 1.0 1.6 1.7 0.4	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2
Q419 B E Q420 B E Q422 C Q423 B Q425 C	1.4 2.0 1.2 1.8 2.1 0.5 4.5	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5
Q419 B E Q420 B E Q422 C Q423 B Q425 C Q426 C	1.4 2.0 1.2 1.8 2.1 0.5 4.5	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5
Q419 B E Q420 B E Q422 C Q423 B Q425 C Q426 C	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0
Q419 8 E Q420 8 E Q422 C Q423 B Q425 C Q426 C Q429 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1
Q419 8 E Q420 8 E Q422 C Q423 B Q425 C Q426 C Q429 B E Q432 B	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 2.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9
Q419 8 E Q420 8 E Q422 C Q423 B Q425 C Q426 C Q429 B E Q432 B C	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8 11.6	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8	1.2 1.7 1.2 1.8 1.2 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 -0.3 11.9	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 0.8 - 2.3 - 3.8 11.6 - 0.1	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 2.7 11.8 0	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7
Q419 8	1,4 2.0 1,2 1,8 2,1 0,5 4,5 0,8 0,1 0 -0,3 11,9 0 3,0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8 11.6 - 0.1	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 2.7 11.8 0	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 - 0.1 12.0 0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0
Q419 8 E Q420 8 E Q422 C Q423 B Q425 C Q426 C Q426 C Q428 B C Q432 B C Q432 B C Q434 B	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 - 2.3 - 3.8 11.6 - 0.1	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 1.1 1.1 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 11.6 - 0.1 3.0 0 4.7	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 0 3.0 0	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0	1.2 1.7 1.2 1.8 1.8 1.8 1.8 0.4 4.7 0.7 0.1 0.4 0.4 0.4 12.0 0 4.5 0.1 2.9	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0
Q419 B	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6 - 0.4	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8 11.6 - 0.1 3.0 0 4.7 - 2.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 0 3.0 0 4.5 - 3.1	1.2 1.7 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4	1.2 1.7 1.2 1.8 1.8 1.8 0.4 4.7 0.7 0.1 0.4 - 0.1 12.0 0 4.5 - 0.1 2.9 0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
Q419 8     E Q420 8     E Q422 C Q423 B Q425 C Q426 C Q426 C Q428 B     E Q432 B     C Q434 B C Q434 B C Q438 B C Q438 B C Q438 B C	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6 - 0.4	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8 11.6 - 0.1 3.0 0 4.7 - 2.9 11.4	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 0 3.0 0 4.5 - 3.1	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 2.7 11.8 0 3.0 0 4.8 2.4	1.2 1.7 1.2 1.8 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0 - 2.4
Q419 8     E Q420 8     E Q422 C Q423 B Q425 C Q426 C Q426 C Q428 B     C Q432 B     C Q434 B     C Q434 B     C Q438 B     C Q439 B	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 - 0.1 3.0 - 0.1 3.6 - 1.7 2.0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 -3.8 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 0 4.5 - 3.1 11.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 2.7 11.8 0 0 3.0 0 4.8 2.1 1.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6 - 0.4 11.7 2.0 2.6	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -3.4 11.8 0 3.0 0 4.5 -3.1 11.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4 11.7 1.7 2.4	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0 0.4 0.4 - 3.9 11.6 2.7 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 - 0.1 3.0 - 0.1 3.6 - 1.7 2.0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 -3.8 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 0 4.5 - 3.1 11.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 2.7 11.8 0 0 3.0 0 4.8 2.1 1.7	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.4 11.7 2.0 2.6 - 1.1	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -3.4 11.8 0 3.0 0 4.5 -3.1 11.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4 11.7 1.7 2.4	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0 0.4 0.4 - 3.9 11.6 2.7 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6 - 0.4 11.7 2.0 2.6 2.6	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 0.8 -2.3 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5 2.5 2.5	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 3.0 0 4.5 - 3.1 11.7 11.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4 11.7 1.7 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.2 1.7 1.2 1.8 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 1.2 0.0 0.4 1.2 0.0 0.1 1.2 0.0 0.1 1.2 0.0 0.1 1.2 0.1 0.1 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0 0.4 0 - 2.4 11.7 2.6 2.7
Q419 8     E Q420 8     E C422 C Q423 B Q425 C Q426 C Q426 C Q428 B     E Q432 B     C Q434 B     C Q438 B     C Q434 B     C Q438 B     C Q439 B     E Q431 B	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.4 11.7 2.0 2.6 - 1.1	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 - 2.3 - 3.8 11.6 - 0.1 3.0 0 4.7 - 2.9 11.4 1.9 2.5 - 13.0	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 3.0 0 4.5 - 3.1 11.7 11.7 12.4 2.5 1.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4 11.7 1.7 1.7 2.4 2.5 -4.8	1.2 1.7 1.2 1.8 1.8 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8 0.0 4.5 -0.1 0.0 1.8 1.8 0.0 1.8 1.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0 0 - 2.4 11.7 2.0 2.6 2.7 - 0.7
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 -0.3 3.0 -0.1 3.6 -0.4 11.7 2.0 2.6 2.6 -1.1 2.0 2.0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 -3.8 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5 -13.0 1.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 0 4.5 - 3.1 11.7 1.8 2.4 2.5 1.7 - 8.1	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 2.7 11.8 0 3.0 0 4.8 - 2.4 1.7 1.7 2.4 2.5 1.7 1.7 2.4 1.7 1.7 1.8 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.2 1.7 1.2 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 0.4 -0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8 0.4 4.7 0.7 0.1 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.4 1.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.8 2.7 0 0.4 0 - 2.4 11.7 2.0 2.6 2.7 2.0 2.0 2.7 0.2 2.0 0.1 0.2 0.2 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Q419 8     E Q420 8     E Q422 C Q423 B Q425 C Q426 C Q426 C Q428 B     C Q432 B     C Q434 B     C Q438 B     C Q439 B     E Q440 B Q441 G D S	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 - 0.3 11.9 0 3.0 - 0.1 3.6 - 0.4 11.7 2.0 2.6 2.6 - 1.1 2.0 2.0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 -2.3 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5 2.5 -13.0 1.9 1.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 3.0 0 4.5 - 3.1 11.7 1.8 2.4 2.5 1.7 1.8	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 4.5 0.7 0.4 2.7 11.8 0 3.0 0 4.8 - 2.4 11.7 2.4 2.5 - 4.8 1.7 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.2 1.7 1.2 1.8 1.2 1.8 1.8 1.0 0.4 4.7 0.7 0.1 12.0 0 4.5 -0.1 2.9 0 11.6 1.8 0 2.4 0	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 11.8 2.7 0 0.4 0 - 3.9 11.8 2.7 0 0.4 0 - 2.4 11.7 2.0 2.6 2.7 0 - 2.4 11.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Q419 8	1.4 2.0 1.2 1.8 2.1 0.5 4.5 0.8 0.1 0 -0.3 3.0 -0.1 3.6 -0.4 11.7 2.0 2.6 2.6 -1.1 2.0 2.0	2.1 1.4 1.9 1.2 1.8 2.1 0.3 4.5 0.8 0.8 0.8 -2.3 11.6 -0.1 3.0 0 4.7 -2.9 11.4 1.9 2.5 2.5 -13.0 1.9 1.9	1.7 1.2 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 - 1.2 - 3.4 11.8 0 3.0 0 4.5 - 3.1 11.7 11.7 1.8 2.4 2.5 1.7	1.2 1.7 1.1 1.7 1.0 1.6 1.7 0.4 4.5 0.7 0.4 -1.2 -2.7 11.8 0 3.0 0 4.8 -2.4 11.7 1.7 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.2 1.7 1.2 1.8 1.8 1.2 1.8 1.8 0.4 4.7 0.7 0.1 1.20 0 4.5 - 0.1 12.0 0 11.6 1.8 0.4 4.7 0.7 0.1 12.0 0.1 12.0 0.1 13.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 1	1.4 2.0 1.5 2.0 1.3 1.9 2.0 0.2 4.5 0 0.1 0.4 - 3.9 11.6 2.7 0 0.4 0 - 2.4 11.7 2.6 2.7 - 0.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Schematic diagram

A BOA	ARD		
Ref	LOCATION	PVM-1450QM	PVM-1454QM
D303	D - 3	.J .=	DTZ6.2
D304	C - 5 J - 7	-	MA151WK
D312	G-7	MA110	1S2835 -
D314	A - 8	-	MA100
D318	J - 10	· -	MA157
D319 D324	J - 10 I - 14	_	MA157 1SV230TP HR3
D325	C - 11	_	MA151WK
D326	H - 14	-	1SV230TP HR3
D333	8 - 11	. <del>-</del>	MA110
D335 D336	l – 15 J – 16	_	MA110 MA110
D337	B - 13		MA110
D339	H - 15	-	MA110
D341	A - 12		DTZ3.6A
D344 D348	E - 12 J - 9	-	MA151WK
D349	J - 9	7 N _	MA157 MA157
D350	J - 9	_ '	MA157
D351	K - 9	-	MA157
D352	J - 9	· -	MA157
D353	K – 9	_	MA157 MA157
D355	K - 9	_	MA157
D362	B - 12	-	RD10SB1
D363	B - 12	-	RD10SB1
D364 D365	B - 12 B - 6		1S2835 MA110
FL300	B - 3	_	0
FL401	B - 4	-	0
IC301	H – 5 H – 14	·	BA7655AF CXA1214P
IC313	C - 6	MM1148XFF	MM1149XFF
IC315	B - 12	· -	XRU4053BF
IC316	B - 2	' i -	MM1148XFF
IC317 JFR306	B - 9 B - 3	0	MC1458BF
L301	1-13	-	15µH
L302	l – 15	_	15µH
L303	I 14	-	39 µH
L304 L306	H - 15 G - 14	<u> </u>	15µH
L307	H - 13	_	39 μH 15μH
L317	C - 9	- Control Table (All Control C	18mmH
L319 G302	B – 3 G – 2	-	100 µH
Q306	D-3	_	2SA1037K 2SC2412K
Q310	C - 3		2SA1037K
Q314	D - 4	_	DTA144EK
Q317 Q323	G - 7 I - 6	2SC2412K	DTC144EK
Q324	E-6		DTC144EK
Q328	H - 7	_	2SK94
Q332	H-8	-	DTC144EK
Q333 Q334	C - 8	_	2SC2412K 2SA1037K
Q335	B - 8	_	2SC2412K
Q336	I - 13	_	2SK94
Q337	1 - 13	-	2SC2412K
Q339 Q346	C - 10 1 - 15		2SA1037K
Q347	G - 15		2SC2412K DTC144EK
Q348	l – 16	-	2SA1037K
Q349	H - 16	n –	2SA1037K
Q355	B - 3	-	2SC2412K
Q:356 Q:357	C - 11	_	DTC144EK 2SC2412K
Q358	H – 3	_	2SC2412K 2SC2412K
C2359	H – 3	- 1	2SA1037K
Q362	E - 12	-	2SC2412K
Q366 Q367	B - 13 B - 13	_	2SA1037K 2SA1037K
Q368	B - 13		2SA1037K 2SA1037K
Q369	B - 12	-	DTA144EK
O:TO BE MO	UNT		

O:TO BE MOUNT -: NOT MOUNT

OSTO BE MOUNT
-: NOT MOUNT

Ref	LOCATION	PVM-1450QM	PVM-1454QM
FR301	D - 9		100
FR303	E - 9	-	100
PR305	K - 13	-	0
FR306	K - 13	-	0
FR311	K - 7	*.** -	1.8K
R319	1-5	*	6.8K
FR332	J - 7	-	100K
FR333	J – 7	_	100K
R337	J 15	-	10K
FR338	J - 15	-	56K
FR339	J – 13	-	8.2K
FR340	J - 14	-	47K
FR341	J - 15		8.2K
FR343	J 14	_	82K
F344	J - 13		120K
F1347	J - 13		4.7K
R348	1 - 12	_	180
F349	J-7	-	62K
IR351	J-7	_	3.3K
R352	1 - 15		10K
R353	1 - 13	_	1K
FR355	l - 13	_	2.7K
R356	J - 14		39K
R357	J - 7	_	1M
FR358	1 - 13		1.5K
R359	I - 15	_ "	4.7K
R360	l – 13		390
R361	J-1	_	100
F1362	1 - 12	_	5.6K
R363	I - 13		470K
R364	1 - 14	_	470K
R367	1 - 15	- N	1.2K
R368	H - 12		1.2K
R371	H - 16		6.8K
R372	H - 12	_	1.5K
R373	H - 2		560
F1374	G - 2		680
R375	H - 15		1.5K
R379	H - 18		6.8K
R380	G - 2		4.7K
R381	H - 7	_	39K
R383	H - 15		3.3K
R384	H - 15	_	10K
	H - 13	, <del>-</del>	
R385 R389	1	<u>-</u>	4.7K
	G - 2 H - 14	-	560
R391			470K
R395	G - 2	<del>-</del> :	680
R396	G - 14	- 1	470K
F1301	G - 13	- 2	150
R1302	G - 13	-	150
R1303	G - 14		390
R1315	B - 2	- 1	100
R1321	D - 3	-	820
R1322	D-3	-	2.2K
R1323	B-3	, <del>-</del> -	100K
R1324	D-3		3.3K

# A BOARD * MARK

	PAL	SECAM	NTSC 3.58	NTSC 4,43	S-VIDEO	ANALOG RGB		PAL	SECAM	NTSC 3.58	NTSC 4.43	S-VIDEO	ANALO
IC301 ①	2.8	0	2.8	3.0	3.0	2.3	IC326 10	6.2	6.2	6.2	6.2		
3	2.0	0	1.8									6.2	5.9
IC302 ①		2.9		1.7	1.7	3.5	. 0	6.2	6.2	6.2	6.3	6.2	5.9
	2.9		2.9	0.3	2.9	2.9	10	6.2	6.2	6.2	6.2	6.2	5.9
(5)	5.3	5.1	4.5	4.5	4.5	4.5	IC350 ①	6.6	6.5	6.4	6.3	6.1	6.9
0	10.5	8.4	0	0	0	0	2	6.2	6.2	6.2	6.3	6.0	6.4
IC303 ®	2.3	2.6	2.2	2.2	2.6	2.8	3	6.2	6.2	6.2	6.3	6.0	6.4
0	0.1	4.2	0.6	0.6	0.6	0.1	Q300 B	2.5	2.5	2.2	2.2	2.2	2.2
(6)	3.9	2.8	3.1	3.1	3.3	3.9	С	10.2	10.2	10.4	10.5	10.4	10.5
IC304 ④	2.2	2.6	2.2	2.2	2.2	2.2	E	1.9	1.9	1.6	1.6	1.6	1.6
9	9.4	0.1	9.4	9.4	9.4	9.4	Q301 E	8.6	8.5	8.2	8.3	8.5	9.8
10	7.3	7.3	2.5	2.5	2.6	2.5	0303 E	5.7	5.7	5.7	5.7	5.5	5.7
0	7.3	7.3	2.5	2.6	2.6	2.5	Q304 B	6.3	6.3	6.3	6.4	6.2	6.3
(0)	1.9	1.9	2.2	2.2	2.2	2.2	E	5.7	5.7	5.7	5.7	5.5	5.7
13	2.5	2.5	2.2	2.2	2.3	2.2	Q305 B	8.6	8.5	8.2	8.3	8.5	9.8
IC305 ①	2.8	2.8	2.8	0	2.8	2.8	E	7.9	7.9	7.6	7.7	7.9	9.1
•	2.5	1.1	2.5	2.4	2.4	1.3	Q307 E	1.4	1.4	1.1	1.2	1.4	2.7
0	4.1	4.1	4.1	4.1	4.2	4.5	Q309 B	1.4	1.4	1,1	1.2	1.4	2.6
9	0.4	0.2	0	0	0	0.1	C	0.1	0.1	0.2	0.1	0.1	
0	2.6	2.6	2.5	2.4	2.5	2.7	E		1.8	1.7	1.8		0
8	0	0	0.8	0.8	0.9	0.9		0.7	8.2			0	1.8
		2.7					Q312 C	8.2		8.6	8.3	8.3	8.1
39	2.1		1.9	1.9	1.9	2.7	Q313 B	8.2	8.2	8.6	8.3	8.2	8.1
IC306 ①	8.1	8.1	8.1	8.1	8.1	0	Ε	8.8	8.8	9.3	9.0	8.9	8.7
2	0	0	0	0.1	0.1	4,4	Q314 B	11.9	6.4	11.9	11.9	11.9	11.9
IC309 ②	3.6	0	3.6	· 3.6	3.6	3.6	C	0	11.9	0	0	0	0
•	0	0	0	0	0	4.4	Q315 B	3.3	3.2	2.9	3.1	3.2	3.3
IC310 ①	6.2	6.2	6.2	6.2	6.2	5.9	E	3.9	3.9	3.5	3.8	3.8	4.0
3	6.3	6.3	6.2	6.2	6.2	5.9	Q318 B	12.1	12.0	11.7	11.9	12.1	12.1
0	5.9	5.9	6.0	6.3	5.9	5.9	C	1.0	1.0	1.2	1.0	1.0	0.9
IC311 ①	0	6.2	6.2	6.2	6.2	6.2	Q322 B	2.4	2.4	2.3	2.3	5.6	2.4
2	6.2	6.2	6.2	6.2	6.2	5.9	Ε	1.8	1.8	1.8	1.8	5.0	1.8
<b>(4)</b>	6.2	6.3	6.3	6.2	6.2	5.9	Q323 B	5.0	5.0	0	0	0	0
6	3.3	3.3	2.9	2.9	2.9	0	С	0	0	3.5	3.5	3.5	3.6
0	5.9	5.9	5.9	6.2	5.8	5.9	Q324 B	4.1	4.2	0	0	0	0
0	0.4	0.4	0.4	0.4	0.5	0.7	C	0	0	0.8	0.8	0.8	0.9
IC312 ②	3.6	0.4	3.6	3.6	3.6	3.6	Q328 B	2.2	2.2	2.2	2.2	2.0	1.3
(C312 (C)	0	0	0	12.0	0.1	4.5	C	2.8	2.8	2.8	2.8	0	0
	0	6.3	0				Q329 D	2.1	2.1	2.2	2.4	0	
IC313 ①				6.3	6.3	6.3							2.2
IC314 ②	0	3.0	7.6	0	3.0	0	G	0	0	1.6	0	2.9	2.8
•	0	0	0	0	2.9	0.1	Q332 B	4.9	5.0	0	4.9	0	0
IC315 ①	0.4	0.4	0.4	0.4	0.4	0.6	С	0	0	4.4	0	4.3	4.4
•	0.6	0	0.6	0.6	0.6	0.6	Q333 B	1.7	1.7	1.9	1.8	1.7	1.7
• •	9.4	9.3	9.3	9.2	9,3	9.4	E	1.5	1.5	1.7	1.5	1.5	1.4
0	2.5	2.5	2.5	2.5	2.5	7.2	Q336 G	4.7	4.6	4.6	4.7	4.2	4.8
0	0.4	0.4	0.4	0.4	0.4	0.6	D	4.3	4.3	4.3	4.3	4.5	4.3
19	0.4	0.4	0.4	0.4	0.4	0.6	Q339 B	12.3	12.5	12.5	12.4	12.5	12.3
IC317 @	2.0	0	2.0	2.1	2.0	12.0	Q347 B	0.1	4.2	0.1	0.1 -	0.6	0.1
(8)	12.0	0	12.0	12.0	12.0	12.0	С	9.4	0.1	9.4	9.4	9.4	9.4
JIB. D	10.7	100	9.9	3 5 -	10.5	10.7	Q349 B	2.8	2.7	2.7	2.7	2.2	2.8
		CONT. OF THE PERSON NAMED IN	99	1 5	91	. 94	F	. 3.4	3.3	3.4	3.4	2.8	3.4
العا ما	11.5	11.5			11.4	11.4	Q354 B	12.0	0.6	0	0	0	0
IC320 ①	6.3	6.3	6.3	6.3	6.3	. 0	E	12.0	0.4	0	0	0	- 0.2
0	3.0	0	0	3.1	0	0	Q358 E	2.2	2.2	0	2.2	2.2	2.2
<b>④</b>	0	0	0	0	3.3	0	Q360 1	6.2	6.2	6.2	6.3	6.1	6.4
IC321 ②	0	0.1	0.1	0	2.9	0	3	6.2	6.2	6.2	6.3	6.0	6.4
•	0	0	0	0	0.1	2.7	5	1.3	4.7	2.2	4.1	5.3	3.8
IC322 ⑤	5.8	5.9	6.0	6.3	5.9	5.9	Q361 B	4.9	4.9	5.0	5.0	5.0	0.8
IC323 ⑤	6.2	6.3	6.2	6.2	6.2	5.9	С	0.1	0	0	0	0.1	4.9
0	0	5.6	5.6	5.6	5.6	5.6	Q362 C	9.0	9.0	9.0	9.5	9.2	8.5
IC324 ⑤	6.2	6.2	6.2	6.2	6.2	5.9	Q364 C	3.3	3.3	2.9	2.9	· 2.8	2.9
IC326 ①	5.9	5.9	6.0	6.3	5.9	5.9	Q365 B	0.4	0	0.3	0.3	0.4	0.4
②	5.9	5.9	5.9	6.2	. 5.8	5.9	Q369 B	0.8	0.9	0.8	0.8	0.9	4.9
3	5.9	5.9	5.9	6.2	5.8	5.9	Q372 B	0.5	0.5	0.5	0.5	0.5	4.9
5	1.7	1.9	1.6	1.6	2.1	2.1	C	11.7	11.7	11.8	11.8	11.7	0
							Q374 B	10.4	10.3				
6	2.4	1.0	2.3	2.3	2.3	4.6				10.1	10.3	10.7	6.4
0	0	- 0.1	10.8	0	- 0.1	0	C	0	0	0	0	6.2	6.7
(8)	6.3	6.3	6.3	6.3	6.2	5.9	E	6.4	6.4	6.3	6.3	6.1	6.7
9	6.3	6.3	6.3	6.3	6.2	5.9	Q375 B	10.7	10.8	10.7	10.7	10.7	5.9
•	6.3	6.3	6.2	6.2	6.2	5.9	С	0	0	0	0	6.3	6.4
							Ε	6.2	6.2	6.2	6.2	6.0	6.4

Ref	LOCATION	PVM1450QM	PVM-1454QM	
R1325	C - 3	-	1.1K	
R1327	B - 12	-	10K	
R1335	A - 4		47	
R1337	A - 4	-	3.3K	
R1338	A 4	, i = -	680	
R1360 R1398	B - 3 A - 9		4.7K	
R2302	A - 8	0	6.8K	
R2303	8 - 8		68K	
R2304	B - 8	-	220K	
R2305	A - 8	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	33K	
R2310	A 8		82K	
R2313	B - 9	- 1	1K	
R2314	C - 9	1 - 1 -	560	
R2318	C - 10	/ <del>-</del> /	6.8K	
R2319	C - 10	-	68K	
R2321	C - 10	- 1	2.2K	
R2322	C - 10	-	4.7K	
R2324	C - 10	-	10K	
R2333	C - 10	-	47K	
R2340 R2343	D - 7 C - 11	-	10K	
R2359	B – 3	_	8.2K 100K	
R2361	C - 11	-	120K	
R2363	D - 12		4.7K	
R2365	B - 11	_	33K	
R2368	E - 13	N. 14	4.7K	
R2385	H - 9	- 1	10K	
R2386	H - 9	-	10K	
R2387	J - 9	-	10K	
R2388	H - 11	-	10K	
R2390	8 - 3		680	
R2391	B - 3	- 1	680	
R2392	B - 3	-	10K	
R2393	B - 3	-	10K	
R2500 R3305	B - 2 E - 10	680	-	
R3305	F - 10		3.3K 3.9K	
R3309	F - 10	1 ]	10K	
R3310	E-8	-	1K	
R3315	C - 12	_	4.7K	
R3316	C - 12	[ · -	4.7K	
R3318	G - 7	4.7K	_	
R3319	G - 7	120	- 1	
R3320	A - 12	-	33K	
R3321	G - 7	12K	<b>-</b>	
R3322	G - 7	.10K		
R3334	E - 12	[ - 1 - may - 1	10K	
R3335	B - 9	-	470K	
R3355	A - 12	-	47K	
R3358	B - 13	_	1.2K	
R3357 R3358	B - 13 B - 13		1.2K 1.2K	
R3359	A - 12		1.2K 22K	
R3360	B - 12		10K	
R3361	B - 12		47K	
R3362	B - 13	-	1K	
R3363	B - 13	_	1K	
R3364	C - 11	-	10	
R3381	I – 6	-	470	
R3382	H - 6		820	
R3383	H - 4	ga	6.8K	
R3384	1 – 4	- 1	3.3K	
R3385	H - 2		2.2K	
R3386	H - 3		2.2K 2.2K	

	Ref	LOCATION	PVM1450QM	PVM-1454QM
	C357	G-4	, · · · ·	0.01
	C1303	G -7	0.1 / 25V	_
	C1308	A -2	-	10
	C1311	B - 3	-	47 / 25V
	C1313	B-4	-	0.01
	C1318	A -4 A -8	_	47 / 25V
	C1343	A -8		0.001 68P
	C1346	B-8	- 1	47 / 25V
	C1348	B-8	_	270P
	C1350	C - 9	-	0.01
	C1351	C-9	-	1
	C1352	C - 10		0.015
	C1362	C-11	-	82P
	C1364	B - 11	-	470P
	C1382	G - 10	-	100 / 10V
	C1383	F-10 H-4	_	47 / 25V
	C1385	1-5		0.1 / 25V 0.01
	C1386	1-5	_	0.01
	C1387	1-4		0.01
	CN303	L-9	-	12P
	D312	G-7	MA110-TX	- ·
	D314	A-8	-	MA100-TX
. '	D318	J - 10	-	MA157-TX
	D319	J - 10	- 1	MA157-TX
	D325 D333	C - 11	_	MA151WK
	D333	B - 11	-	MA110-TX
	D344	A - 12 E - 12		DTZ3.6A MA151WK
	D348	J-9		MA157-TX
	D349	J-9	_	MA157-TX
	D350	J - 9		MA157-TX
	D351	K-9	-	MA157-TX
	D352	J – 9	-	MA157-TX
	D353	K - 9	-	MA157-TX
	D354	K-9	-	MA157-TX
	D355	K-9	- "	MA157-TX
	D362	B - 12	-	RD10SB1-T1
	D363 D364	B - 12 B - 12	_	RD10SB1-T1 1S2835-T1
	IC301	H-5	_	BA7655AF-E2
	IC313	C-6	MM1148XFF	MM1149XFF
	IC315	B - 12	-	XRU4053BF-E2
	IC317	B-9		MC1458F-T2
	JR304	B-3	0	_
	JR305	B-2	0	
	JR306	G-4	0	-
- 1	L317	C-9	, , , <del>-</del>	18MMH
1	Q316	A-4		2SC2412K
	Q317	G - 7 B - 8	2SC2417K	-
.	Q335 Q338	B-8	-	2SC2412K
	Q339	C-10		2SC2412K 2SA1037K
.	Q355	B-3	_	2SC2412K
	Q356	C-11	_	DTC144EK
-	Q357	1-6	-	2SC2412K
	Q358	H-3	-	2SC2412K
	Q359	H-3	-	2SA1037K
1	Q362	E - 12	- 1	2SC2412K
.	Q366	B - 13	-	2SA1037K
	Q367 Q368	B - 13	-	2SA1037K
	Q369	B - 13 B - 12	, <del>-</del>	2SA1037K
[	4000	- 12	_	DTA144EK

-: NOT MOUNT

# **— 68 —**

O: TO BE MOUNT

-: NOT MOUNT

# • A BOARD WAVEFORMS

13	10	(7)
	The state of the s	Jana Jana
1.0 Vp-p ( H )	5-VIDEO 0.94 Vp-p(H)	0.85 Vp-p ( H
(7)	18	(9
alian lian	<b>10</b> -n • 10 · n • 10	<b>D</b>
5-VIDEO 0.94 Vp-p ( H )	5-VIDEO 0.6 Vp-p ( H )	5-V19E0 0.6 Vp-p ( H
20	20	
	<b>D-11</b>	
0.2 Vp-p ( H )	NTSC3.58 0.24 Vp-p(H) NTSC4.43 0.12 Vp-p(H)	
2)	2),,,	<b>(1)</b>
10 mm mm		<b>1 1 1</b>
PAL 0.27 Vp-p ( H )	SECAM 0.17 Vp-p ( H )	NTSC3.58.4.43 0.24 Vp-p ( H s-video 0.27 Vp-p ( H
22	23	23
January L	Jana Jana	1,151,1
0.4 Vp-p ( H ) SECAM 0.36 Vp-p ( H )	MTSC3.58 0.37 Vp-p(H) NTSC4.43 4.0 Vp-p(H)	S-VIDED 0.4 Vp-p ( H
23	23 Caraca	29
		<b>10</b> · · · · · · · · · · · · · · · · · · ·
ANALOG REB 1.9 Vp-p ( H )	1.0 Vp-p ( H )	PAL 0.26 Vp-p ( H
29	29	29
	<b>D4</b>	
SECAM 0.2 Vp-p ( H )	NTSC3.58. 4.43 0.23 Vp-p ( H )	s-vioeo 0.18 Vp-p ( H
29	<b>②</b>	27
	+Janahylu	man and
5.4 Vp-p(H)	PAL 1.0 Vp-p ( H )	NTSC3.58.4.43 S-VIDEO 1 1.1 Vp-p ( H
28	28	29
"I'M my my		7000 0000
0.8 Vp-p ( H ) NTSC3.58 0.85 Vp-p ( H )	0.73 Vp-p(H) s-vioe0 0.9 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H
30	(3)	3
		32
30	ANALOG RGB 0.7 Vp-p(H)	5-V10E0 Vp-p ( H
		Jhy Min M
ANALOG RGB 0.7 Vp-p ( H )	ANALOG RGB 0.7 Vp-p ( H )	5-VIDEO VP-P ( H
ANALOG RGB 0.7 Vp-p(H)	ANALOG RGB 0.7 Vp-p(H)	5-VIDEO VP-P ( H
ANALOG RGB 0.7 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )	32
ANALOG RGB 0.7 Vp-p(H)  32  ANALOG RGB 1.4 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )	S-VIDEO 1.7 Vp-p ( H  AMALOO ROB 1.4 Vp-p ( H
ANALOG RGB 1.4 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )	\$2)
ANALOG ROB ANALOG ROB ANALOG ROB 1.4 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )	33 Vp-p ( H 33 Vp-p ( H 35)
ANALOG RGB 0.7 Vp-p(H)  32  ANALOG RGB 1.4 Vp-p(H)  34  5-V10E0 1.3 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )  33  5-V10EQ 1.3 Vp-p ( H )  34  ANALOG RGB 1.4 Vp-p ( H )	33   Hard Hard Hard Hard Hard Hard Hard Hard
ANALOG RGB 0.7 Vp-p(H)  32  ANALOG RGB 1.4 Vp-p(H)  34  5-V10E0 1.3 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )  33  5-V10EQ 1.3 Vp-p ( H )  34  ANALOG RGB 1.4 Vp-p ( H )	33   Hangling 1. 7 Vp-p ( H 33   Hangling 1. 4 Vp-p ( H 35   Hangling 1. 4 Vp-p ( H 35
ANALOG RGB 0.7 Vp-p ( H )  32  ANALOG RGB 1.4 Vp-p ( H )  34  S-VIDED 1.3 Vp-p ( H )	ANALOG RGB 0.7 Vp-p ( H )  33  3-V10ED 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )	33   H   H   H   H   H   H   H   H   H
ANALOG RGB 0.7 Vp-p(H)  32  ANALOG RGB 1.4 Vp-p(H)  34  S-VIDED 1.3 Vp-p(H)  35  SECAM 0.1 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10EQ 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  35  NTSC3.58 0.15 Vp-p ( H )	33   Hangling   H 33   Hangling   H 33   Hangling   H 35   Hangling   H 35   Hangling   H 35   Hangling   H 35   Hangling   H 36   Hangling   H 37   H 38   Hangling   H 38   Hangling   H 39   H 30   H 30   H 30   H 31   H 32   H 33   H 34   H 35   H 36   H 37   H 38
ANALOG RGB 0.7 Vp-p(H)  32  ANALOG RGB 1.4 Vp-p(H)  34  S-VIDED 1.3 Vp-p(H)  35  SECAM 0.1 Vp-p(H)	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10E0 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  50  NTSC3.58 Vp-p ( H )	33   Hangling   H 33   Hangling   H 33   Hangling   H 35   Hangling   H 35   Hangling   H 35   Hangling   H 35   Hangling   H 36   Hangling   H 37   H 38   Hangling   H 38   Hangling   H 39   H 30   H 30   H 30   H 31   H 32   H 33   H 34   H 35   H 36   H 37   H 38
ANALOG RGB O. 7 Vp-p ( H )  32  ANALOG RGB 1. 4 Vp-p ( H )  34  S-VIDED 1. 3 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10EQ 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  35  NTSC3.58 0.15 Vp-p ( H )	33 VP-P(H 35) PAL 0.3 VP-P(H 35) NTSC4.43 VP-P(H 36)
ANALOG RGB O. 7 Vp-p ( H )  32  ANALOG RGB 1. 4 Vp-p ( H )  34  S-VIDED O. 1 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )  35  S-VIDED O. 2 Vp-p ( H )	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10EQ 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  35  ANALOG RGB 0.15 Vp-p ( H )  36  PAL 0.3 Vp-p ( H )	S-VIDEO 1.7 VP-P ( H  33
ANALOG RGB O. 7 Vp-p ( H )  32  ANALOG RGB 1. 4 Vp-p ( H )  34  S-VIDED O. 1 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )  35  S-VIDED O. 2 Vp-p ( H )	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10EQ 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  59  NT9C3.58 Vp-p ( H )  60  PALO 3 Vp-p ( H )  60	S-VIDEO 1.7 VP-P ( H  33
ANALOG ROB O. 7 Vp-p ( H )  32  ANALOG ROB 1. 4 Vp-p ( H )  34  S-VIOCO 1.3 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )  35  S-VIOCO O. 2 Vp-p ( H )  36	ANALOG RGB 0.7 Vp-p ( H )  33  S-V10EO 1.3 Vp-p ( H )  44  ANALOG RGB 1.4 Vp-p ( H )  55  NTSC3:55 Vp-p ( H )  66  PAL 0.3 Vp-p ( H )  36	S-V10E0 S-V10E0 1.7 Vp-p ( H 33 AMALOO ROB PAL O. 3 Vp-p ( H 35 NTSC4. 43 O. 3 Vp-p ( H 36 SECAH O. 1 Vp-p ( H 36
ANALOG RGB O. 7 Vp-p ( H )  32  ANALOG RGB 1. 4 Vp-p ( H )  34  S-VIDEO 1. 3 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )  35  STORY O. 2 Vp-p ( H )  36  NTSC3.58 O. 07 Vp-p ( H )	ANALOG RGB O. 7 Vp-p ( H )  33  S-V10EQ 1. 3 Vp-p ( H )  4 Vp-p ( H )  35  ANALOG RGB O. 15 Vp-p ( H )  36  PAL O. 3 Vp-p ( H )  36  NTSC4.43 O. 28 Vp-p ( H )	S-V10E0 S-V10E0 1.7 Vp-p ( H 33 AMALOO ROB PAL O. 3 Vp-p ( H 35 NTSC4. 43 O. 3 Vp-p ( H 36 SECAH O. 1 Vp-p ( H 36
ANALOG RGB O. 7 Vp-p ( H )  32  ANALOG RGB 1. 4 Vp-p ( H )  34  S-VIDEO 1. 3 Vp-p ( H )  35  SECAM O. 1 Vp-p ( H )  35  STORY O. 2 Vp-p ( H )  36  NTSC3.58 O. 07 Vp-p ( H )	ANALOG RGB O. 7 Vp-p ( H )  33  S-V10EQ 1. 3 Vp-p ( H )  4 Vp-p ( H )  35  ANALOG RGB O. 15 Vp-p ( H )  36  PAL O. 3 Vp-p ( H )  36  NTSC4.43 O. 28 Vp-p ( H )	S-V10E0 S-V10E0 1.7 Vp-p ( H 33 AMALOO ROB PAL O. 3 Vp-p ( H 35 NTSC4. 43 O. 3 Vp-p ( H 36 SECAH O. 1 Vp-p ( H 36













O: TO BE MOUNT

^{-:} NOT MOUNT













# Q BOARD

560 : CHIP

10K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP

10K : CHIP 47K : CHIP 10K : CHIP

47K : CHIP 10K : CHIP 47K : CHIP

10K : CHIP

47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 0 : CHIP 4.7K : CHIP 10K :CHIP 470K :CHIP 0 : CHIP 220K : CHIP 220K : CHIP 33K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 47K : CHIP 10K : CHIP 0

D2402	SPEED UP
D2404	PROTECT
D2405	PROTECT
D2406	PROTECT
D2407	PROTECT
D2408	PROTECT
D2409	PROTECT
D2410	PROTECT
D2411	PROTECT
D2415	PROTECT
D2416	PROTECT
D2417	PROTECT
D2418	PROTECT
D2420	PROTECT
D2421	PROTECT
D2422	PROTECT
D2423	PROTECT
IC2401	SHIFT REGISTER
IC2402	SHIFT REGISTER
IC2403	AUDIO SW
IC2404	AUDIO SW
IC2405	VIDEO SW
	•
Q2402	(A . RGB . BUFFER)
Q2403	(A . S . BUFFER)
O2404	(A . B . BUFFER)
Q2405	(A . A . BUFFER)
Q2408	(S . B . BUFFER)
Q2409	(8 . BUFFER)
Q2410	(G . BUFFER)
Q2411	(R . BUFFER)
Q2412	(C . BUFFER)
02414	(Y . BUFFER) ·
Q2415	(V . B . BUFFER)
Q2416	VIDEO IN BUFFER
Q2417	(V . A . BUFFER)











- G BOARD -





- G BOARD -





#### - H BOARD -



### (EXCEPT For PVM-1454QM)

- X BOARD -



#### - J BOARD -



0701 B DRIVE
0702 G DRIVE
0703 R DRIVE
0704 B BUFF
0705 G BUFF
0706 R BUFF
0707 B OUT

Q708 G OUT Q709 R OUT Q710 IK SW 1

4 140.1 0 141.8 4 106.6

8 145.0 9 143.7 0 141.8

0 173.5 1 161.3 0 173.5 5 161.4 8 173.5 6 183.8 2 173.9 4 174.1 3 145.7 9 148.5 7 145.0 7 139.4 1 141.8 6 138.4 6 138.4 6 141.2 9 143.8



[POWER SWITCH]

[R. G. B OUT]

- Q BOARD -



- H BOARD -



(EXCEPT For PVM-1454QM)

- X BOARD -



- J BOARD -



- C BOARD -



Schematic diagram



#### 6-5. SEMICONDUCTONS



ĐTZ11B

ĐTZ13C

ĐTZ3.6A ĐTZ5.6B

ĐTZ6.2

MA110 RĐ4.7SB 15V232-TPH3 15V230-TPHR3

Đ4SB60L

ERC06-15S RH-1A RH-1Z

RU-3AM SIB01-04 SIB01-06

0

60 97-CA

58-L 4-3 4-34

#### **SECTION 7 EXPLODED VIEWS**

The components identified by shading and mark A are critical for safety.

Replace only with part number specified.

(11)

(15)

#### ●: + BVTP3 O: +B4 × 12

7-2. PICTUF







REF.NO.	PART	NO.

1 2	*3-704-37 X-4031-7
3 4	X-4031-7 4-043-68 *4-043-67
5	*A-1390-3

*4-043-68: 1-544-06 *A-1371-9' *A-1371-9 56 57 58

59 60 61 X-4030-1 4-043-68 4-043-68 ▲ 1-692-92 *A-1388-1

64 65 66 X-4031-7 4-042-60; A 8-734-62; A 8-736-25;

67 3-703-96

- Items with no part number and no description are not stocked because they are seldom required for routine service.
  The construction parts of an assembled
- part are indicated with a collation number in the remark column.
- · Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.

▲:	+ BVTP3 × 8	7-685-646-79
•:	+ BVTP3 × 12	7-685-648-79
. 🔳 :	+ BVTP4 × 16	7-685-663-79
$\Delta$ :	+ PS4 × 8	7-682-661-09







RÐ10SBL

155184

SEL3810ÐLC05

SLP281C-50

TLG123A

ERC38-06

FML-G12S

V19E V19G



















#### **SECTION 7 EXPLODED VIEWS**

- NOTE:
   Items with no part number and no description are not stocked because they are seldom required for routine service.
   The construction parts of an assembled part are indicated with a collation number in the remark column.
- Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.

#### The components identified by shading and mark A are critical for safety. Replace only with part number

specified.

#### 7-1. CHASSIS

<b>A</b> : + BVTP3 × 8	7-685-646-79
<b>O</b> : + BVTP3 × 12	7-685-648-79
<b>II</b> : + BVTP4 × 16	7-685-663-79
$\triangle$ : + PS4 × 8	7-682-661-09
$\Box$ : + BVTT4 × 8 (S)	7-682-561-04



1 2 3 4	X-4031-775-2 4-391-825-01 4-847-802-11 *A-1297-194-A *A-1297-195-A	COVER ASSY, TOP RIVET, NYLON SCREW (OS), CASE, A BOARD, COMPLETE A BOARD, COMPLETE	(PVM-1450QM)
7	\$\langle 1-453-163-11 *4-043-690-01 *4-043-689-01 \$\langle 1-576-231-11 *A-1316-174-A	TRANSFORMER ASSY, BRACKET, MAIN BRACKET, G FUSE (H.B.C.) (4.1 G BOARD, COMPLETE	

	10 11 12	1-537-735-21 4-043-688-01	TERMINAL BOARD ASSY, I/O(A) (PVM-1454QM)
:	13 14 15 16	4-386-618-01	TERMINAL, GROUND COVER, REAR RIVET, T TYPE SHEET METAL, G REINFORCEMENT

#### 7-2. PICTURE TUBE



REF.N	O. PART NO.	DESCRIPTION	REMARK	REF.N	O. PART NO.	DESCRIPTION	REMARK
51 52 53 54	*3-704-372-01 X-4031-757-1 X-4031-756-1 4-043-680-01 *4-043-679-01	BEZEL ÁSSY (PVM-1450QM) BEZEL ASSY (PVM-1454QM) HANDLE, PROTECTOR (PVM-1454QM)	53,54 53,54 (M)	68 69 70 71 72	<b>★</b> 1-451-329-11 *4-382-050-01 *A-1331-299-A *4-374-912-01 *4-374-913-01	BAND, C PC BOARD C BOARD, COMPLETE COVER (MAIN), CV VOL	,
55 56 57 58	*4-043-682-01 1-544-063-12 *A-1371-971-A	X BOARD, COMPLETE (PVM-1454QM) REFLECTOR, LED (PVM-1454QM) SPEAKER H BOARD, COMPLETE (PVM-1454QM) H BOARD, COMPLETE (PVM-1450QM)		73 74 75 76 77	▲ 1-426-442-21 4-033-681-01 4-391-833-01 4-365-808-01 4-308-870-00	CLOTH, PROTECTION SCREW (5), TAPPING	
59 60 61 62 63	X-4030-162-2 4-043-681-01 4-043-683-01 A 1-692-921-11 *A-1388-166-A	COVER, AC SWITCH BUTTON, POWER SWITCH SWITCH, PUSH (A.C. POWER)	· · · · · · · · · · · · · · · · · · ·	78 79 80 81	1-452-032-00 1-452-094-00 X-4309-608-0 4-044-606-01	MAGNET, ROTATABLE DIS PERMALLOY ASSY, CONVE	K; 10MM ∮
64 65 66	4-042-608-01 ▲8-734-622-05	CABINET ASSY, BOTTOM NUT, PLATE PICTURE TUBE (M34KBE21X) (PVM-14 PICTURE TUBE (A34JHS12X) (PVM-14 SPACER, DY					

#### **SECTION 8 ELECTRICAL PARTS LIST**

### $oldsymbol{\mathsf{A}}$ (PVM-1450QM)

#### NOTE:

- The components identified by The components identified and shading and mark it are critical cal for safety.
- cal for satety. Replace only with part number specified.

44667 W/ ii

AND THE RESERVE OF THE PARTY OF THE PARTY.

- Items marked " * " are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.
- All variable and adjustable resistors have characteristic curve B, unless otherwise noted.

#### RESISTORS

- · All resistors are in ohms
- F : nonflammable

When indicating parts by reference number, please include the board name.

CAPACITORS

COILS

• MF : μF, PF : μμF

• MMH : inH, UH : μH

- The components identified by | in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used.
- * : Selected to yield optimum performance.

REF.NO. PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
A-1297 · 194-A	A BOARD, COMPLETE (PVM-1450QM	)	C201	1-106-383-00 1-163-017-00	MYLAR 0.047MF CERAMIC CHIP 0.0047MF ELECT 4.7MF	10% 10% 20%	100V 50V 50V
*4 030 359 01 *4 043 154 01 *4 043 154 01 4 363 414 00 4 382 854 11	SUCKET, IC HEAT SINK, H. PIN HOLDER, IC SPACER, MICA SCREW (M3X10), P. SW (+)		C204 C205 C206 C207 C208	1-124-907-11 1-124-360-00 1-126-375-11 1-124-478-11 1-124-907-11	ELECT 10MF ELECT 100MF ELECT 100MF ELECT 100MF ELECT 10MF	20% 20% 20% 20% 20%	50V 16V 25V 25V 50V
' BAN	ID PASS FILTER>		C209 C300	1-124-927-11	ELECT 4.7MF	20%	50Y 50Y
	FILTER, BAND PASS		C304 C305 C306	1-163-031-71 1-163-125-00 1-163-031-11	ELECT 4.7MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.1MF CERAMIC CHIP 220PF CERAMIC CHIP 0.01MF	10% 5%	25V 50V 50V
C105 1-163 251 11	ACITUR>	FOV	C309 C310	1-163-031-11	CERAMIC CHIP O.OIMF CERAMIC CHIP O.IMF	109	50V 25V
C106 1-163 251-11 C114 1-163 031-11 C115 1-163-031-11 C116 1-163-031-11	CERAMIC CHIP 100PF 5% CERAMIC CHIP 100PF 5% CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	50V 50V 50V 50V 50V	C311 C312 C313	1-163-809-11 1-124-925-11 1-163-145-00	CERAMIC CHIP 0.047MF ELECT 2.2MF CERAMIC CHIP 0.0015MF	10% 20% 5%	25V 50V 50V
C117 1-163-031-11	CERAMIC CHIP O.OIMF	507	C314 C315	1-163-249-11 1-124-907-11	CERAMIC CHIP 82PF ELECT 10MF	5% 20%	50 <b>V</b> 50 <b>V</b>
C118 1 163 125 00 C119 1-165-319-11 C121 1-163-237-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 220PF 5% CERAMIC CHIP 0.1MF CERAMIC CHIP 27PF 5% CERAMIC CHIP 0.1MF	50V 50V 50V	C316 C317 C318	1-124-477-11 1-163-097-00 1-124-907-11	CERAMIC CHIP 82PF ELECT 10MF ELECT 47MF CERAMIC CHIP 15PF ELECT 10MF	20% 5% 20%	25V 50V 50V
C123 1-165-319 11	CERAMIC CHIP O.1MF	507	C319	1-163-222-11	CERAMIC CHIP 5PF	0.25PF	
C124	CERAMIC CHIP 100PF 5% CERAMIC CHIP 0.001MF 5%	50V 50V	C320 C322	1-163-031-11 1-163-119-00	CERAMIC CHIP 5PF CERAMIC CHIP 0.01MF CERAMIC CHIP 120PF CERAMIC CHIP 15PF CERAMIC CHIP 22PF	5%	50V 50V
C133 1-163-251-11 C134 1-163-251-11 C135 1-163-251-11	CERAMIC CHIP 100PF 5% CERAMIC CHIP 0.001MF 5% CERAMIC CHIP 100PF 5% CERAMIC CHIP 100PF 5% CERAMIC CHIP 100PF 5%	50Y 50Y 50Y	C323 C324	1-163-097-00	CERAMIC CHIP 15PF CERAMIC CHIP 22PF	5% 5%	50 <b>V</b>
		50Y	C325 C326	1-124-907-11 1-164-004-11	ELECT 10MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF CERAMIC CHIP 100PF	20% 10%	50V 25V
C141 1-164-161-11 C142 1-163 125-00 C143 1-165 319-11	CERAMIC CHIP 100PF 5% CERAMIC CHIP 0.0022MF 10% CERAMIC CHIP 220PF 5% CERAMIC CHIP 0.1MF	50¥ 50¥ 50¥	C327 C328	1-164-004-11 1-163-031-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF	10%	25V 50V
C144 1-165 319-11	CERAMIC CHIP O.IMF CERAMIC CHIP O.IMF	50V	C329 C330	1-163-251-11	CERAMIC CHIP 100PF	5% 5%	50V 50V
C145 1-165-319 11 C154 1-163-037-11	CERAMIC CHIP 0.1MF  CERAMIC CHIP 0.1MF  CERAMIC CHIP 0.022MF  10%	50V 25V 50V	C331 C332	1-163-097-00	CERAMIC CHIP 47PF CERAMIC CHIP 15PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF	5% 5% 10%	25V
C155 1-163-023 00 C156 1-163-019-00 C157 1 163-019-00	CERAMIC CHIP 0.015MF 10%	50V	C333 C334	1-163-031-11 1-163-141-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.001MF	5%	50 V 50 V
C158 1-163-809-11	CERAMIC CHIP 0.047MF 10%	50V 25V	C335 C336	1-163-141-00 1-124-477-11	CERAMIC CHIP 0.001MF ELECT 47MF CERAMIC CHIP 0.01MF	5% 20%	50 V 25 V
C161 1-124-477-11	CERAMIC CHIP 0.022MF 10% ELECT 47MF 20%	25V 16V	C337	1-163-031-11 1-163-119-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 120PF CERAMIC CHIP 15PF	5% 5%	50V 50V
C164 1-165-319-11	CERAMIC CHIP 0.001MF 5% CERAMIC CHIP 0.1MF	50V 50V	C339				50V
C165 1 165-319 11 C166 1-164 004 11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF ELECT 470MF 20% ELECT 470MF 20% CERAMIC CHIP 0.01MF 10%	50V 25V	C340 C341 C342	1-163-119-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 120PF CERAMIC CHIP 0.0056MF	5% 10%	50¥ 50¥ 50¥
C167 1-124-472 11 C168 1 124 472 11	ELECT 470MF 20% ELECT 470MF 20%	10V 10V	C343 C344	1-163-031-11 1-163-141-00	CERAMIC CHIP 0.0056MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.001MF	5%	50V 50V
C169 1-164-232-11	CERAMIC CHIP 0.01MF 10%	507	C345	1-163-141-00	CERAMIC CHIP O.OOIMF	5%	50V
C171 1 163 251 11 C200 1 124 927 11	CERAMIC CHIP 100PF         5%           ELECT         4.7MF         20%	50V 50V	C346 C347	1-124-903-11 1-163-243-11	ELECT IMF CERAMIC CHIP 47PF	20% 5%	50 <b>V</b> 50 <b>V</b>

### PVM-1450QM/1454QM

	PART NO.	DESCRIPTION		REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
C348 C349 C350 C351 C352	1-164-004-11 1-163-141-00 1-163-141-00 1-124-477-11 1-163-031-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.001MF CERAMIC CHIP 0.001MF ELECT 47MF CERAMIC CHIP 0.01MF	10% 5% 5% 20%	25V 50V 50V 25V 50V	C417 C418 C419 C420 C421	1-164-182-11 1-124-472-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.0033MF ELECT 470MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.22MF	10% 10% 20% 10%	50V 50V 10V 25V 25V
C353 C354 C355 C356 C358	1-165-319-11 1-163-121-00 1-124-903-11 1-124-927-11 1-163-031-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 150PF ELECT 1MF ELECT 4.7MF CERAMIC CHIP 0.01MF	5% 20% 20%	50 V 50 V 50 V 50 V 50 V	C422 C423 C424 C425 C426	1-124-903-11 1-163-809-11 1-163-809-11 1-163-031-11 1-163-243-11	CERAMIC CHIP 0.047MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.01MF CERAMIC CHIP 47PF	20% 10% 10% 5%	50V 25V 25V 50V 50V
C359 C360 C361 C362 C363	1-124·477-11 1-164-232-11 1-163-031-11 1-163-031-11 1-163-099-00	ELECT 47MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 18PF CERAMIC CHIP 0.01MF	20% 10% 5%	25V 50V 50V 50V 50V	C427 C428 C429 C430 C431 C431 C432	1-124-119-00	CERAMIC CHIP O.OMF  ELECT 330MF CERAMIC CHIP O.OMF ELECT 330MF CERAMIC CHIP O.IMF CERAMIC CHIP O.IMF	20% 20%	50V 16V 50V 16V 50V 25V
C365 C366 C367 C368	1-106-343-00 1-163-031-11 1-163-031-11 1-124-907-11 1-164-298-11	MYLAR 0.001MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF ELECT 10MF	10% 20% 10%	100V 50V 50V 50V 25V	C433 C434 C435 C436 C437	1-163-235-11 1-163-031-11 1-163-089-00 1-164-004-11 1-164-004-11	CERAMIC CHIP 22PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF	5% 0.25PF 10% 10%	50V 50V
C371 C372 C373	1 · 124 · 477 · 11 1 · 124 · 477 · 11 1 · 163 · 031 · 11 1 · 163 · 141 · 00 1 · 124 · 903 · 11	ELECT 47MF ELECT 47MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.001MF ELECT 1MF	20% 20% 5% 20%	25V 25V 50V 50V	C438 C439 C440 C441 C442	1-163-809-11 1-163-809-11 1-163-031-11 1-126-962-11 1-163-809-11	CERAMIC CHIP 0.047MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.01MF BLECT 3.3MF CERAMIC CHIP 0.047MF	10% 10% 20% 10%	25V 25V 50V 50V 25V
C375 C376 C377 C378 C379 C380	1 · 163 - 125 - 00 1 - 124 - 902 - 00 1 - 163 - 809 · 11 1 - 163 - 809 - 11	CERAMIC CHIP 220PF ELECT 0.47MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.01MF ELECT 470MF	5% 20% 10% 10%	50V 50V 25V 25V 50V	C443 C444 C445 C446 C447	1-163-243-11 1-165-319-11 1-163-809-11 1-163-089-00 1-163-263-11	CERAMIC CHIP 47PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.047NF CERAMIC CHIP 6PF CERAMIC CHIP 330PF	5% 10% 0.25PF 5%	50V 50V 25V 50V 50V
C381 C382 C383 C384 C385	1-124-472-11 1-163-031-11 1-163-243-11 1-124-477-11 1-163-249-11 1-124-477-11	ELECT 470MF CERAMIC CHIP 0.01MF CERAMIC CHIP 47PF ELECT 47MF CERAMIC CHIP 82PF ELECT 47MF	20% 5% 20% 5% 20%	10V 50V 50V 25V 50V 25V	C448 C449 C450 C451 C452	1-163-243-11 1-163-227-11 1-163-809-11 1-164-004-11 1-163-263-11	CERAMIC CHIP 47PF CERAMIC CHIP 10PF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.1MF CERAMIC CHIP 330PF	5% 0.5PF 10% 10% 5%	50V 50V 25V 25V 50V
C386 C387	1-124-907-11 1-163-141-00 1-124-907-11 1-124-477-11	ELECT 10MF CERAMIC CHIP 0.001MF ELECT 10MF	20% 5% 20% 20% 20%	50V 50V 50V 50V 25V 50V	C453 C454 C455 C456 C457	1-163-031-11 1-163-243-11 1-163-263-11 1-163-089-00 1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 47PF CERAMIC CHIP 330PF CERAMIC CHIP 6PF CERAMIC CHIP 0.01MF	5% 5% 0.25PF	50V 50V 50V 50V 50V
C391 C392 C393	1-124-477-11 1-164-298-11	ELECT 47MF CERAMIC CHIP 0.15MF CERAMIC CHIP 0.15MF	20% 10% 10% 20%	25 V 25 V 25 V 25 V 25 V	C458 C459 C460 C461 C462	1-163-119-00	CERAMIC CHIP 82PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 120PF CERAMIC CHIP 0.01MF	5% 10% 5%	50V 50V 25V 50V 50V
C396 C397 C398 C399 C400	1-164 · 299-11 1-124 · 477-11 1-124-477-11 1-124 · 477-11 1-164 · 232-11	CERAMIC CHIP 0.22MF ELECT 47MF ELECT 47MF ELECT 47MF CERAMIC CHIP 0.01MF	10% 20% 20% 20% 10%	25V 25V 25V 25V 25V 50V	C463 C464 C465 C466 C467	1-163-031-11 1-164-299-11 1-163-097-00 1-163-119-00 1-163-119-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.22MF CERAMIC CHIP 15PF CERAMIC CHIP 120PF CERAMIC CHIP 120PF	10% 5% 5% 5%	50V 25V 50V 50V 50V
C401 C402 C403 C406 C407	1-164-346-11 1-124-910-11 1-164-232-11 1-124-916-11 1-124-477-11	CERAMIC CHIP INF ELECT 47MF CERAMIC CHIP 0.01MF ELECT 22MF ELECT 47MF	20% 10% 20% 20%	16V 50V 50V 50V 25V	C469 C470 C471 C472 C473	1-163-037-11 1-163-243-11 1-163-105-00 1-163-031-11 1-163-031-11	CERAMIC CHIP 0.022MF CERAMIC CHIP 47PF CERAMIC CHIP 33PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	10% 5% 5%	25V 50V 50V 50V 50V
C408 C409 C410 C411 C414	1-164-232-11 1-163-031-11 1-124-916-11 1-164-004-11 1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF ELECT 22MF  CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF	10% 20% 10%	50V 50V 50V 25V 50V	C475 C476 C477 C478 C479	1-163-031-11 1-163-031-11 1-164-299-11 1-124-907-11 1-163-121-00	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.22MF ELECT 10MF CERAMIC CHIP 150PF	10% 20% 5%	50V 50V 25V 50V 50V
C415 C416	1-124-907-11 1-164-232-11	ELECT 10MF CERAMIC CHIP 0.01MF	20% 10%	50V 50V	C482 C483	1-124-472-11 1-163-249-11	ELECT 470MF CERAMIC CHIP 82PF	20% 5%	10V 50V

The components identified by shading and mark  $\hat{\Phi}$  are critical for safety.
Replace only with part number specified.

	PART NO.				REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK
C484			68PF	5%	50V	C559	1-136-173-00		0.47MF	5%	50V
C485 C486 C487 C488	1-163-113-00 1-163-113-00 1-163-249-11 1-163-235-11 1-163-097-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	68PF 82PF 22PF 15PF	5% 5% 5%		C561 C562 C564 C565	1-136-159-00 1-163-249-11 1-124-907-11 1-124-903-11 1-106-367-00				50 V 50 V 50 V 50 V
C490 C491 C492 C493 C494	1-164-336-11 1-164-336-11 1-164-336-11 1-104-760-11 1-104-760-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.33MF 0.33MF 0.33MF 0.047MF 0.047MF	10% 10%	25V 25V 25V 50V 50V	C566 C568 C569 C570 C571	1-106-367-00 1-124-903-11 1-131-351-00 1-124-360-00 1-164-232-11 1-104-709-11	MYLAK ELECT TANTALUM ELECT CFRAMIC CHIP	0.01MF 1MF 4.7MF 1000MF 0.01MF	10% 20% 10% 20%	100V 50V 25V 16V 50V
C495 C497 C498 C499 C500	1-124-907-11 1-163-011-11 1-124-925-11 1-163-031-11 1-164-004-11	CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP	0.0015MF 2.2MF 0.01MF 0.1MF	20% 10% 20% 10%	50V 50V 50V 50V 25V	C573 C574 C575 C576	1-104-709-11 1-136-173-00 1-249-383-11 1-163-031-11 1-102-244-00	FILM CARBON CERAMIC CHIP	0.47MF 1.5 5% 0.01MF	5% 1/4W	160V 50V F 50V 500V
C501 C502 C503 C504 C505	1-164-182-11 1-163-141-00 1-163-251-11 1-136-175-00 1-163-135-00	CERAMIC CHIP CERAMIC CHIP FILM CERAMIC CHIP	0.001MF 100PF 0.068MF 560PF		50V 50V 50V 50V 50V	C577	1-124-907-11 1-136-540-11 1-126-804-11 1-136-756-11 1-124-927-11 1-102-002-00		220PF 10MF 0.82MF 100MF 0.24MF 4.7MF		200V 200V 50V 200V 50V
C506 C507 C508 C509 C511	1-124-902-00 1-126-375-11 1-130-495-00 1-124-935-11 1-108-700-11	ELECT ELECT MYLAR ELECT MYLAR	0.47MF 100MF 0.1MF 470MF 0.047MF	20% 20% 5% 20% 10%	50V 25V 50V 100V 200V		1-102-002-00 1-136-569-11 1-123-267-00 1-124-666-11 1-124-557-11 1-102-030-00				200V 200V 160V 250V 25V
C512 C513 C514 C515 C516	1-124-902-00 1-126-096-11 1-129-718-00 1-163-809-11 1-102-030-00				50V 25V 630V 25V 500V	C587 C588 C589 C590 C591	1-102-030-00 1-124-667-11 1-102-030-00 1-126-387-11 1-106-371-00 1-123-932-00	CERAMIC ELECT CERAMIC ELECT MYLAR	330PF 10MF 330PF 2.2MF 0.015MF	10% 20% 10% 20% 10%	500V 500V 500V 200V
C517 C518 C519 C520 C521	1-163-024-00 1-107-995-11 1-163-017-00 1-163-257-11 1-162-114-00	CERAMIC CHIP CERAMIC CHIP CERAMIC	100MF 0.0047MF 180PF 0.0047MF	0 10% 5%	50V 160V 50V 50V 2KV		1-123-932-00 1-165-319-11 1-163-229-11 1-126-336-11 1-124-478-11 1-164-346-11			20%	160V 50V 50V 25V 25V
	1-126-375-11 1-126-801-11 1-136-545-11 1-162-116-91 1-104-797-11				25V 50V 2KV 2KV 50V	C598 C599 C1300	1-164-346-11 1-126-157-11 1-124-477-11	CERAMIC CHIP ELECT ELECT FIFCT	1MF 10MF 47MF	20% 20% 20%	16V 16V 16V 25V 25V
C530 C531 C532 C533 C534	1-124-120-11 1-124-477-11 1-163-031-11 1-102-212-00 1-123-948-00	ELECT ELECT CERAMIC CHIP CERAMIC ELECT	220MF 47MF 0.01MF 820PF 22MF	20% 20% 10% 20%	25V 25V 50V 500V 250V	C1302 C1303 C1304 C1305	1-163-133-00 1-164-004-11 1-124-477-11 1-124-477-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT	470PF 0.1MF 47MF 47MF	10% 20% 20%	50V 25V 25V 25V 50V
C535 C537 C538 C539 C540	1-163-125-00 1-124-913-11 1-106-367-00 1-130-480-00 1-163-133-00	CERAMIC CHIP ELECT MYLAR FILM CERAMIC CHIP	470MF 0.01MF 0.0056MF	5% 20% 10% 5%	50V 50V 100V 50V 50V	C1307 C1309 C1310 C1312	1-163-031-11 1-163-257-11 1-163-031-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF 180PF 0.01MF 0.01MF	5%	50V 50V 50V 50V
C541 C542 C543 C544 C545	1-124-927-11 1-106-351-00 1-106-351-00 1-106-367-00 1-102-212-00	ELECT MYLAR MYLAR MYLAR CERAMIC	4.7MF 0.0022MF 0.0022MF 0.01MF 820PF	20% 10% 10% 10% 10%	50V 100V 100V 100V 500V	C1314 C1315 C1316 C1317 C1319	1-124-477-11 1-124-477-11 1-163-031-11 1-124-477-11 1-163-037-11	ELECT ELECT CERAMIC CHIP ELECT CERAMIC CHIP	47MF 0.022MF	20% 20% 20% 10% 20%	25V 25V 50V 25V 25V 25V
C547 C548 C549 C550 C551	1-163-251-11 1-102-212-00 1-124-667-11 1-126-163-11 1-106-375-12	CERAMIC CHIP CERAMIC ELECT ELECT MYLAR	100PF 820PF 10MF 4.7MF 0.022MF	5% 10% 20% 20% 10%	50V 500V 50V 50V 100V	C1320 C1321 C1322 C1323 C1324	1-124-477-11 1-124-477-11 1-124-120-11 1-163-031-11 1-163-031-11	ELECT ELECT CERAMIC CHIP CERAMIC CHIP		20% 20% 20%	25V 16V 50V 50V
C552 C556 C557 C558	1-126-336-11 1-124-907-11 1-106-381-12 1-124-903-11	ELECT ELECT MYLAR ELECT	220MF 10MF 0.039MF 1MF	20% 20% 10% 20%	25V 50V 100V 50V	C1325 C1326 C1327 C1328	1-163-031-11 1-124-477-11 1-163-031-11 1-163-031-11	CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP	0.01MF 47MF 0.01MF	20%	50V 25V 50V 50V

-1	(PV	WI- 145U	GIVI)								
	REF.NO.	PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION		REMARK
	C1330 C1331 C1332	1-124-907-11 1-163-031-11 1-124-477-11 1-124-477-11 1-124-477-11	CERAMIC CHIP	10MF 0.01MF 47MF 47MF 47MF	20% 20% 20% 20%	50V 50V 25V 25V 25V	C1519		CERAMIC CHIP 0.022MF 1	0%	25 <b>V</b>
	C1334 C1335 C1336 C1338	1-163-227-11 1-124-477-11 1-124-477-11		10PF 47MF 47MF 0.01MF		50V 25V 25V 50V 50V	CN102 CN201 CN301 CN302	*1-564-514-11 *1-564-506-11 *1-564-514-11 *1-564-510-11	CONNECTOR, BOARD TO BOARD PLUG, CONNECTOR 11P PLUG, CONNECTOR 3P PLUG, CONNECTOR 11P PLUG, CONNECTOR 7P	11P	
	C1344 C1345	1-102-963-00 1-163-083-00 1-124-907-11	CERAMIC CHIP	.33PF 1PF 10MF	5% 0.25PF 20%	50V 50V 50V 50V	CN402 CN501 CN502 CN503	*1-564-515-11 *1-580-798-11 *1-573-964-11 *1-573-964-11	PLUG, CONNECTOR 8P PLUG, CONNECTOR 12P CONNECTOR PIN (DY) 6P PIN, CONNECTOR (PC BOARD) PIN, CONNECTOR (PC BOARD)	6P 6P	
	C1353 C1354 C1355	1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF 150PF 220PF	5% 5% 5%	50V 50V 50V 50V	CN505 CN506	*1-564-506-11 1-249-383-11 *1-535-419-00	TAB, FASTEN (PCB)	1/4W	F
	C1358 C1359 C1360	1-164-161-11		0.0022MF	20% 20% 5% 10% 5%	16V 25V 50V 50V 50V	CP301	1-236-366-11 1-236-365-11 1-808-654-21	MODULE, TRAP		
	C1366 C1367 C1369	1-124-477-11 1-124-477-11 1-163-237-11	CERAMIC CHIP ELECT ELECT CERAMIC CHIP CERAMIC CHIP	47MF 47MF 27PF	0.5PF 20% 20% 5% 5%	50V 25V 25V 50V 50V	D101 D102 D103 D104	<pre><dioi 8-719-045-70="" 8-719-800-76="" 8-719-800-76<="" pre=""></dioi></pre>	DIODE 1SS226 DIODE 1SS226 DIODE 1SV230TPH3		
	C1373 C1374 C1375	1-124-477-11 1-124-927-11	ELECT ELECT ELECT ELECT CERAMIC CHIP	47MF 47MF 47MF 4.7MF 15PF	20% 20% 20% 20% 5%	25V 25V 25V 50V 50V	D105 D106 D107 D108 D109	8-719-800-76 8-719-800-76 8-719-800-76 8-719-901-33 8-719-801-78	DIODE 1SS226  DIODE 1SS133 DIODE 1SS226 DIODE 1SS133		
	C1381 C1393 C1400	1-163-101-00 1-163-251-11	CERAMIC CHIP	22PF 100PF	5% 5% 5%	50V 50V 50V 50V 50V	D110 D111 D112 D113	8-719-404-46 8-719-977-05 8-719-404-46	DIODE MA110 DIODE DTZ6.2 DIODE MA110 DIODE RD4.7SB-T2		
	C1403 C1404 C1405	1-163-235-11	FILM CERAMIC CHIP	4411	5% 10% 5% 0.25PF	50V 50V 25V 50V 50V	D115 D116 D200 D300 D301 D302	8-719-404-46 8-719-977-46	DIODE MA110 DIODE DTZ13C DIODE 1SV232-TPH3		
	C1408 C1500 C1501	1-163-113-00 1-124-473-11 1-124-472-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT CERAMIC	2PF 68PF 1000MF 470MF 0.0022MF	0.25PF 5% 20% 20%	50V 50V 10V 10V 500V	D303 D304 D305 D307 D308	8-719-977-05 8-719-801-78	DIODE DTZ6.2  DIODE 1SS184 DIODE 1SS226 DIODE MAIIO DIODE ISS133		
	C1504 C1506 C1507	1-164-004-11 1-124-907-11 1-124-119-00 1-163-141-00 1-124-927-11	CERAMIC CHIP ELECT ELECT CERAMIC CHIP ELECT	10MF 330MF	10% 20% 20% 5% 20%	25V 50V 16V 50V 50V	D309 D310 D311 D312 D313	8-719-404-46 8-719-104-34 8-719-045-70 8-719-404-46 8-719-801-78	DIODE MAIIO DIODE 1S2836 DIODE 1SV230TPH3 DIODE MAIIO DIODE 1SS184		
	C1511 C1512 C1513	1-124-927-11 1-164-182-11 1-124-927-11 1-163-133-00 1-130-477-00	ELECT CERAMIC CHIP ELECT CERAMIC CHIP MYLAR	4.7MF	20% 10% 20% 5% 5%	50V 50V 50V 50V 50V	D315 D317 D320 D322	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE MAIIO		
	C1516 C1517	1-124-907-11 1-163-063-00 1-126-101-11 1-124-477-11	ELECT CERAMIC CHIP ELECT ELECT	10MF 0.022MF 100MF 47MF	20% 10% 20% 20%	50V 50V 10V 16V	D323 D324 D326 D327	8-719-045-70	DIODE MAIIO DIODE ISV230TPH3 DIODE ISV230TPH3 DIODE IS2836		

						<b>/~~</b> (Γ	7 V WI - 1 450 W WI)
REF.NO.	PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTION	REMARK
D332 D335 D336 D337 D338	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110		D535 D536 D538 D539	8-719-404-46 8-719-800-76 8-719-800-76 8-719-404-46	DIODE 1SS226 DIODE 1SS226 DIODE MA110	
D339 D345 D346 D347 D361	8-719-404-46 8-719-104-34 8-719-104-34 8-719-104-34 8-719-104-34	DIODE 152836 DIODE 152836 DIODE 152836		D540 DL300		DIODE MA110  AY LINE>  DELAY LINE, Y	
D365 D381 D401 D404 D405	8-719-404-46 8-719-404-46 8-719-404-46 8-719-800-76 8-719-801-78	DIODE MAIIO DIODE MAIIO DIODE MAIIO DIODE 155226		DL301	1-415-632-11 1-409-547-11 <fil< td=""><td>DELAY LINE, Y DELAY LINE</td><td></td></fil<>	DELAY LINE, Y DELAY LINE	
D406 D407 D408 D410 D411	8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MA110 DIODE MA110		FL300 FL401	1-236-547-11 1-236-364-11 <1C>	FILTER, BAND PASS	
D414 D415 D416 D417 D418	8-719-801-78 8-719-801-78 8-719-801-78 8-719-801-78 8-719-801-78	DIODE 1SS184 DIODE 1SS184 DIODE 1SS184 DIODE 1SS184		IC102 IC103 IC104	8-759-168-37 8-759-008-48 8-759-262-59		2
D421 D422 D423 D424 D425	8-719-404-46 8-719-404-46 8-719-800-76 8-719-404-46 8-719-800-76	DIODE MAIIO DIODE MAIIO DIODE 1SS226 DIODE MAIIO		IC108 IC109	8-759-196-70 8-759-042-02 8-759-196-70	IC M62358FP-E1 IC M62358FP-E1 IC S-80743AL-A7-S IC M62358FP-E1 IC M62358FP-E1	
D427 D500 D501 D502 D503	8-719-404-46 8-719-404-46	DIODE MAIJO DIODE MAIJO DIODE DTZ5.6B DIODE UF5406		1C200 1C302 1C303	8-759-009-22 8-759-420-04 8-759-998-98 8-752-056-67 8-759-509-19	IC LM358D	
D504 D505 D506 D507 D508		DIODE 1SS83 DIODE RGP02-17EL-6433 DIODE ERCO6-15S DIODE 1SS226 DIODE 1SS226		1C306 1C309 1C310	8-759-631-08 8-759-711-32 8-759-711-32 8-759-509-19 8-759-509-05	IC M51279FP IC NJM2245M IC NJM2245M IC XRU4053BCF-E2 IC XRU4066BCF	
D510 D511 D512 D513 D514	8-719-302-43 8-719-404-46 8-719-979-80 8-719-404-46 8-719-971-20	DIODE EL1Z DIODE MA110 DIODE UF5406		10313 10314 10316	8-759-711-32 8-759-048-09 8-759-501-21 8-759-048-09 8-759-509-57	IC MM1148XF IC MM1149XF IC MM1148XF	
D515 D516 D517 D518 D519	8-719-971-20 8-719-404-46 8-719-404-46 8-719-404-46 8-719-404-46	DIODE ERC38-06 DIODE MA110 DIODE MA110 DIODE MA110 DIODE MA110		1 C321 1 C322 1 C323	8-759-501-21 8-759-501-21 8-759-501-21 8-759-501-21 8-759-501-21	IC MM1149XF IC MM1149XF IC MM1149XF IC MM1149XF IC MM1149XF	
D520 D522 D523 D524 D525	8-719-801-78 8-719-977-05 8-719-404-46 8-719-200-02 8-719-200-02	DIODE 1SS184 DIODE DTZ6.2 DIODE MA110 DIODE 10E-2 DIODE 10E-2		1C325 1C326 1C350 1C401 1C402	8-759-501-21 8-759-060-00 8-759-100-96 8-759-196-69 8-752-053-21	IC MM1149XF IC BA10324AF IC UPC4558G2 IC BA7655AF-E2 IC CXA1211M	
D526 D527 D528 D529 D530	8-719-404-46 8-719-200-02 8-719-300-76 8-719-200-02 8-719-300-76	DIODE MA110 DIODE 10E-2 DIODE RH-1A DIODE 10E-2 DIODE RH-1A		IC403 IC404 IC405 IC406 IC407	8-759-509-05 8-752-052-62 8-759-509-19 8-759-998-98 8-759-509-05	IC XRU4066BCF IC CXA1478S IC XRU4053BCF-E2 IC LM358D IC XRU4066BCF	
D531 D532 D533 D534	8-719-977-32 8-719-800-76 8-719-302-43 8-719-404-46	DIODE DTZ11B DIODE 1SS226 DIODE EL1Z DIODE MAI10		IC408 IC409 IC410 IC411 IC412	8-759-509-91 8-759-060-00 8-759-932-64 8-759-008-92 8-759-509-19	IC XRA10393F IC BA10324AF IC BU4052BCF IC MC14024BF IC XRU4053BCF-E2	

The components identified by shading and mark  $\Delta$  are critical for safety.
Replace only with part number specified.

REF.NO.	. PART NO.	DESCRIPTION	<u> </u>	REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
IC413 IC500 IC502 IC503 IC504	8-759-509-19 8-749-010-07 8-759-009-51 8-759-009-51 8-752-053-21	1C XRU4053BCF-E2 IC H8D724B IC MC14538BF IC MC14538BF IC CXA1211M					TRANSISTOR 2SA11 TRANSISTOR 2SA11 TRANSISTOR DTA14 TRANSISTOR 2SC16		
1 C505 1 C507 1 C508 1 C509	8-759-520-07 8-759-100-60 8-752-053-21 8-759-998-98	IC XRU4053BCF-E2 IC H8D7248 IC MC14538BF IC CXA1211M IC XRA17812T IC UPC1377C IC CXA1211M IC LM358D  L> INDUCTOR 47 INDUCTOR 48 INDUCTOR 49 INDUCTOR 41 INDUCTOR 15 INDUCTOR 41 INDUCTOR 17 INDUCTOR 1			Q109 Q110 Q111 Q112 Q113	8-729-120-28 8-729-120-28 3-729-901-06 8-729-120-28 8-729-120-28	TRANSISTOR 2SC16: TRANSISTOR 2SC16: TRANSISTOR DTA14: TRANSISTOR 2SC16: TRANSISTOR 2SC16:	23-L5L6 23-L5L6 4EK 23-L5L6 23-L5L6	
	<001	L>			Q114 Q200	8-729-119-78 8-729-140-96	TRANSISTOR 2SC278 TRANSISTOR 2SD77	85-HFE 4-34	
L101 L102 L104	1-408-609-41 1-408-417-00 1-408-425-00	INDUCTOR 33 INDUCTOR 47 INDUCTOR 22	3UH 7UH 2OUH		0300 0301	8-729-120-28 8-729-120-28	TRANSISTOR 2SC16: TRANSISTOR 2SC16: TRANSISTOR 2SC16:	23-L5L6 23-L5L6 23-L5L6	
L300 L301	1-410-478-11 1-408-411-00	INDUCTOR 47 INDUCTOR 15	7UH 5UH		Q302 Q303 Q304	8-729-216-22 8-729-120-28 8-729-120-28	TRANSISTOR 2SA110 TRANSISTOR 2SC162 TRANSISTOR 2SC162	23-L5L6	
L302 L303 L304	1-412-008-31 1-408-416-00 1-412-008-31	INDUCTOR CHIP 15 INDUCTOR CHIP 15	5UH 9UH 5UH		0305 0306	8-729-120-28 8-729-120-28	TRANSISTOR 2SC162 TRANSISTOR 2SC162	23-L5L6 23-L5L6	
L305 L306	1-410-196-11 1-408-416-00	INDUCTOR CHIP 2. INDUCTOR 39	. 2UH 9UH		0307 0308 0309	8-729-120-28 8-729-120-28 8-729-216-22	TRANSISTOR 2SC162 TRANSISTOR 2SC162 TRANSISTOR 2SA116	23-L5L6 52-G	•
L307 L308 L309	1-408-411-00 1-410-466-41 1-410-470-11	INDUCTOR 15 INDUCTOR 4. INDUCTOR 10	50H . 70H OUH	1 1 1 1	Q310 Q311	8-729-216-22 8-729-216-22	TRANSISTOR 2SA116 TRANSISTOR 2SA116		
L311 L312	1-410-470-11	INDUCTOR CHIP 27	7UH 		Q312 Q313 Q314 Q315	8-729-120-28 8-729-216-22 8-729-901-06	TRANSISTOR 2SC162 TRANSISTOR 2SA116 TRANSISTOR DTA144	1EK	
L316 L319	1-412-011-31 1-412-011-31 1-408-421-00	INDUCTOR CHIP 27 INDUCTOR CHIP 27 INDUCTOR 10	70H 20UH		Q317	8-729-120-28	TRANSISTOR 2SA116 TRANSISTOR 2SC162		
L320 L401 L402	1-410-478-11 1-410-478-11 1-410-216-31	INDUCTOR 47 INDUCTOR CULP 10	70H	i i i i	Q318 Q319 Q320	8-729-216-22 8-729-120-28 8-729-119-78	TRANSISTOR 2SA116 TRANSISTOR 2SC162 TRANSISTOR 2SC162 TRANSISTOR 2SC162 TRANSISTOR 2SC162	22-6 23-L5L6 35-HFE	
L403 L404 L405	1-410-216-31 1-410-216-31 1-408-419-00	INDUCTOR 4. INDUCTOR 10 INDUCTOR CHIP 27 INDUCTOR 47 INDUCTOR 47 INDUCTOR CHIP 10 INDUCTOR CHIP 68 INDUCTOR 22 INDUCTOR CHIP 68 COIL (WITH CORE) COIL, CHOKE INDUCTOR 33 INDUCTOR 33 INDUCTOR 18 INDUCTOR 18 INDUCTOR 18	OOUH COUH RIIH	1	0321 0322 0323		TRANSISTOR 25C162 TRANSISTOR DTC144		
L406 L407	1-408-419-00 1-408-413-00	INDUCTOR 68	BÜH 211H	1 1 1 1	0323 0324 0325 0326	8-729-901-01 8-729-120-28	TRANSISTOR DTC144	1EK 23-1516	
L408 L409 L500	1-408-413-00 1-410-214-31 1-459-155-00	INDUCTOR 22 INDUCTOR CHIP 68 COIL (WITH CORE)	20H 30H 450H	] 	0326 0327 0328		TRANSISTOR 2SC162 TRANSISTOR 2SA116 TRANSISTOR 2SK94		
L501 L502	1-407-365-00 1-407-365-00	COIL, CHOKE		i   	Q328 Q329 Q330 Q331	8-729-216-22	TRANSISTOR 2SK94- TRANSISTOR 2SK94- TRANSISTOR 2SA110 TRANSISTOR 2SA110	52-G	•
L503 L504 L505	1-410-093-11 1-410-666-31 1-410-671-31	INDUCTOR 33 INDUCTOR 18 INDUCTOR 47	3MMH Buh 7uh	) 1 1		8-729-120-28	TRANSISTOR 2SA116 TRANSISTOR DTC144 TRANSISTOR 2SC16		
L508		INDUCTOR 1M INDUCTOR 27	MMH 70H	! !	Q334 Q336 Q337	8-729-216-22 8-729-109-44 8-729-120-28	TRANSISTOR 2SA110 TRANSISTOR 2SK94- TRANSISTOR 2SC16	-X4 23-L5L6	
L509 L511 L512	1-459-075-11 1-459-106-00 1-459-155-00	COIL, DYNAMIC CON COIL, DUST CORE COIL (WITH CORE)	45UH	1	Q341 Q342	8-729-920-39 8-729-920-39	TRANSISTOR IMT1US TRANSISTOR IMT1US	5 5	
L513	1-412-447-11	COIL, DUST CORE	. 9MMH	i.	Q345 Q346	8-729-920-39 8-729-120-28 8-729-120-28	TRANSISTOR IMT10: TRANSISTOR 2SC16: TRANSISTOR 2SC16:	23-L5L6 23-L5L6	
L515 L516 <i>d</i> L517	1-459-059-00 1-459-760-13 1-412-547-21	COIL, DUST CORE COIL, HORIZONTAL INDUCTOR 68	LINEARITY BOUH		Q348	8-729-216-22	TRANSISTOR DTC14	62-G	
	<neo!< td=""><td>N LAMP&gt;</td><td>•</td><td></td><td>Q350 Q351</td><td>8-729-216-22 8-729-216-22 8-729-120-28 8-729-120-28</td><td>TRANSISTOR 2SA110 TRANSISTOR 2SA110 TRANSISTOR 2SC160 TRANSISTOR 2SC160</td><td>62-G 23-L5L6</td><td></td></neo!<>	N LAMP>	•		Q350 Q351	8-729-216-22 8-729-216-22 8-729-120-28 8-729-120-28	TRANSISTOR 2SA110 TRANSISTOR 2SA110 TRANSISTOR 2SC160 TRANSISTOR 2SC160	62-G 23-L5L6	
NL500	1-519-526-11	LAMP, NEON		- 1	Q353	8-729-120-28	TRANSISTOR 2SC16	23-L5L6	
0101		NSISTOR>	AFW.		Q360 Q361	8-729-120-28 8-729-907-26 8-729-901-06	TRANSISTOR 2SC167 TRANSISTOR IMX1 TRANSISTOR DTA14	4EK	
Q101	6-149-901-01	TRANSISTOR DTC144	4r.K	• }	Q363	8-729-120-28	TRANSISTOR 2SC16	45-L5L <b>6</b>	

REF.NO.	PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTI	ON 		REMARK
0364 0365 0372 0401 0402	8-729-901-01 8-729-901-01 8-729-901-01 8-729-120-28 8-729-120-28	TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		Q522 Q523 Q524 Q525	8-729-120-28 8-729-120-28 8-729-119-78 8-729-119-76	TRANSISTOR TRANSISTOR TRANSISTOR TRANSISTOR	2SC1623-L5 2SC1623-L5 2SC2785-HF 2SA1175-HF	5L6 5L6 E	
Q403 Q404 Q405 Q406	8-729-901-01 8-729-216-22 8-729-216-22 8-729-120-28	TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6		Q526 Q527	8-729-216-22 8-729-120-28 <res< td=""><td>TRANSISTOR TRANSISTOR ISTOR&gt;</td><td>2SA1162-G 2SC1623-L5</td><td>5L6</td><td></td></res<>	TRANSISTOR TRANSISTOR ISTOR>	2SA1162-G 2SC1623-L5	5L6	
Q408 Q409 Q410 Q411 Q412	8-729-216-22 8-729-216-22 8-729-907-26 8-729-120-28 8-729-216-22	TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR ZSC1623-L5L6 TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR ZSA1162-G TRANSISTOR ZSA1162-G TRANSISTOR ZSC1623-L5L6		JR122 JR123 JR302 JR304 JR305	1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00	METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	E 0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	
Q413 Q414 Q415 Q416 Q417	8-729-141-53 8-729-216-22 8-729-216-22 8-729-216-22 8-729-216-22	TRANSISTOR 2SK94-X2X3X4 TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G		JR306 R101 R102 R103 R104	1-216-295-00 1-216-025-00 1-216-025-00 1-216-025-00 1-216-073-00	METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	E 0 5 100 5 100 5 100 5 10K	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	
0418 0419 0420 0421 0422	8-729-120-28 8-729-216-22 8-729-216-22 8-729-901-01 8-729-120-28	TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6		R105 R106 R108 R109 R110	1-216-059-00 1-216-065-00 1-216-065-00 1-216-065-00 1-216-073-00	METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	2.7K 4.7K 4.7K 4.7K 10K	7 1/10W 7 1/10W 7 1/10W 7 1/10W 7 1/10W	
Q423 Q424 Q425 Q426 Q428	8-729-120-28 8-729-901-01 8-729-901-01 8-729-901-01 8-729-216-22	TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G		R111 R112 R113 R114 R115	1-216-295-00 1-216-295-00 1-216-085-00 1-216-295-00 1-216-295-00	METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	E 0 0 E 33K E 0	7 1/10W 7 1/10W 7 1/10W 7 1/10W 7 1/10W	
Q429 Q430 Q431 Q432 Q433	8-729-216-22 8-729-120-28 8-729-120-28 8-729-120-28 8-729-901-01	TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144FK		R116 R117 R118 R119 R120	1-218-761-11 1-216-089-91 1-216-295-00 1-216-689-11 1-216-295-00	METAL CHIP METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	240K ( 247K 5 0 5 39K 5	1.50% 1/10W % 1/10W % 1/10W % 1/10W % 1/10W	
0436	8-729-901-01	TRANSISTOR DTC144EK		R128	1-216-295-00	METAL GLAZI	0	1/10W	
Q439 Q440 Q441 Q442 Q443	8-729-216-22 8-729-120-28 8-729-141-53 8-729-120-28 8-729-216-22	TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SK94-X2X3X4  TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SA1162-G		R130 R131 R132 R133 R134	1-216-099-00 1-216-295-00 1-216-065-00 1-216-091-00 1-216-065-00	METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI METAL GLAZI	E 120K E 0 E 4.7K E 56K E 4.7K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W	
Q444 Q445 Q500 Q501 Q502	8-729-120-28 8-729-901-01 8-729-216-22 8-729-800-35 8-729-119-80	TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G TRANSISTOR 2SD1397-CA TRANSISTOR 2SC2688-LK		R135 R136 R137 R138 R140	1-216-085-00 1-216-295-00 1-216-065-00 1-216-295-00 1-216-033-00	METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ	E 0   E 4.7K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W	
Q503 Q504 Q505 Q506 Q507	8-729-313-42 8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR 2SD1134-C TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		R141 R142 R143 R144 R147	1-216-085-00 1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00	METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ		5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W	
4508 9511 9512 9513 9514	8-729-216-22 8-729-120-28 8-729-195-82 8-729-122-03 8-729-901-00	TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC2958-L TRANSISTOR 2SA1220A-P TRANSISTOR DTC124EK		R148 R149 R150 R151 R153	1-216-295-00 1-216-065-00 1-216-295-00 1-216-061-00 1-216-295-00	METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ METAL GLAZ	E 0 E 3.3K E 0	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W	
4515 4517 4519 4520	8-729-169-02 8-729-901-06 8-729-901-01 8-729-905-67	TRANSISTOR 2SC2690A-Q TRANSISTOR DTA144EK TRANSISTOR DTC144EK TRANSISTOR 2SD1944-K		R154 R155 R156 R157 R159	1-216-065-00 1-249-434-11 1-216-295-00 1-216-065-00 1-216-063-00	METAL GLAZ CARBON METAL GLAZ METAL GLAZ METAL GLAZ	E 4.7K 27K E 0 E 4.7K E 3.9K	5% 1/10W 5% 1/4W 5% 1/10W 5% 1/10W 5% 1/10W	

A (PVIVI-1450QIVI)														
	REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
	R160 R162	1-216-061-00 1-216-065-00	METAL GLAZE	3.3K 4.7K	5% 5%	1/10W 1/10W		R332	1-216-097-00	METAL GLAZE	100K		1/10W	
	R163 R164 R165 R167	1-216-065-00 1-216-067-00 1-216-295-00 1-216-061-00	METAL GLAZE METAL GLAZE METAL GLAZE	3.3K 4.7K 4.7K 5.6K 0		1/10W 1/10W 1/10W 1/10W		R333 R334 R335 R336 R337	1-216-097-00 1-216-093-00 1-216-083-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	100K 68K 27K 4.7K 10K	. 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
	R170	1-216-295-00 1-216-295-00 1-216-295-00 1-216-065-00	METAL GLAZE METAL GLAZE	3.3K 0 0 0 4.7K	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R338 R339 R340	1-216-073-00 1-216-091-00 1-216-071-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE	56K 8.2K 47K		1/10W 1/10W 1/10W	
	R180 R181 R183 R185 R187	1-216-295-00 1-216-065-00 1-216-295-00 1-216-073-00 1-216-061-00	METAL GLAZE METAL GLAZE	0 4.7K 0 10K 3.3K	57 52	1/10W 1/10W 1/10W 1/10W 1/10W		R342 R343 R344 R345	1-216-673-11 1-216-065-00 1-216-095-00 1-216-099-00 1-216-063-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 4.7K 82K 120K 3.9K 2.2K 4.7K	5%	1/10W 1/10W 1/10W 1/10W	
	R188 R189 R190	1-216-295-00 1-216-073-00 1-216-049-00		0 10K 1K 10K	5% 5% 5%	1/10W 1/10W 1/10W		R346 R347 R348	1-216-057-00 1-216-065-00 1-216-031-00	METAL GLAZE METAL GLAZE	180	5% 5% 5% 0.50%	1/10W 1/10W 1/10W	
	R193 R195 R197	1-216-071-00 1-216-061-00	METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 3.3K		1/10W 1/10W 1/10W 1/10W		R349 R350 R351 R352	1-216-694-11 1-216-085-00 1-216-061-00 1-216-675-11	METAL GLAZE	62K 33K 3.3K 10K	5% 5% 0.50%	1/10W 1/10W	
	R200	1-216-295-00 1-216-295-00 1-216-686-11 1-216-049-00	METAL CHIP	0 0 30K 1K	5% 0.50%	1/10W 1/10W 1/10W 1/10W		R353 R354 R355 R356 R357	1-216-049-00 1-259-877-11 1-216-059-00 1-216-689-11 1-216-121-00	METAL GLAZE CARBON METAL GLAZE METAL GLAZE METAL GLAZE	1K 1.2M 2.7K 39K 1M	5% 5% 5% 5%	1/10W 1/4W 1/10W 1/10W 1/10W	
	R202 R203 R204 R205	1-212-857-00 1-260-095-11 1-260-072-11 1-216-647-11	FUSIBLE CARBON CARBON METAL CHIP	10 470 4.7 680	5% 5% 0.50%	1/4W   1/2W 1/2W	F	R358 R359 R360	1-216-053-00 1-216-065-00 1-216-039-00 1-216-017-00	METAL GLAZE METAL GLAZE METAL GLAZE	1.5K 4.7K 390 47 5.6K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
	R207 R208 R209		METAL GLAZE METAL GLAZE METAL GLAZE	10K 4.7K 4.7K 10K 3.3K	57	1/10W 1/10W 1/10W 1/10W 1/10W		R362 R363 R364 R366	1-216-067-00 1-216-113-00 1-216-113-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	5.6K 470K 470K 4.7K 1.2K 1.K		1/10W 1/10W 1/10W 1/10W	
	R301		CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10 47K 100 100	5% 5% 5%	1/4W 1 1/10W 1/10W 1/10W 1/10W	F	R367 R368 R371 R372 R373	1-216-051-00 1-216-049-00 1-216-069-00 1-216-053-00 1-216-645-11	METAL GLAZE METAL GLAZE	6.8K 1.5K		1/10W 1/10W 1/10W 1/10W 1/10W	
	R304 R305 R306	1-216-025-00 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE	100 0 0 560K 4.7K		1/10W 1/10W 1/10W		R374 R375 R376	1-216-647-11 1-216-053-00 1-216-111-00	METAL CHIP METAL GLAZE METAL GLAZE	680 1.5K	0.50% 5%	1/10W 1/10W 1/10W	
	R307 R308 R311 R312	1-216-115-00 1-216-065-00 1-216-055-00 1-216-073-00		4.7K 1.8K 10K	5% 5%	1/10W 1/10W 1/10W 1/10W		R378 R379 R380	1-259-881-11 1-216-111-00 1-216-069-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K	5%	1/4W 1/10W 1/10W 1/10W	
	R313 R314 R315	1-216-649-11 1-216-099-00 1-216-099-00 1-216-049-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	820 120K 120K 1K	5%	1/10W 1/10W 1/10W 1/10W		R381 R382 R383 R384 R385	1-216-689-11 1-216-107-00 1-216-061-00 1-216-073-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	39K 270K 3.3K 10K 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
	R316 R317 R318 R319 R320	1-216-057-00 1-216-049-00 1-216-069-00 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 1K 6.8K 2.2K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R386 R387 R388 R389	1-249-438-11 1-216-029-00 1-216-033-00 1-216-645-11	CARBON METAL GLAZE METAL GLAZE METAL CHIP	56K 150 220 560	5% 5% 5% 0.50%	1/4W 1/10W 1/10W	
	R321 R322 R323 R325	1-216-051-00 1-216-035-00 1-216-109-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2K 270 330K 330	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R390 R391 R393	1-249-393-11 1-216-113-00 1-216-073-00	CARBON METAL GLAZE METAL GLAZE	10 470K 10K	5% 5% 5% 5%	1/4W 1/10W 1/10W	F
	R326 R328 R329 R330	1-216-033-00 1-216-121-00 1-216-055-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 1M 1.8K 47K	5% 5%	1/10W 1/10W 1/10W 1/10W		R394 R395 R396	1-216-083-00 1-216-647-11 1-216-113-00 1-216-113-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE	27K 680 470K 470K	0.50% 5%	1/10W 1/10W 1/10W	
	R331	1-216-093-00	METAL GLAZE	68K		1/10W		R398	1-216-105-00	METAL GLAZE	220K	5% 5%	1/10W	

								] 4	~ (г	- A 1A	I- i 4	
REF.NO.	PART NO.	DESCRIPTION			REMARK	REF. NO.	PART NO.	DESCRIPTION			···	REMARK
R399 R401 R402 R403 R406	1-216-111-00 1-216-053-00 1-216-053-00 1-216-069-00 1-216-083-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	390K 1.5K 1.5K 6.8K 27K		} } }	R474 R475 R476 R477 R478	1-216-649-11 1-216-025-00 1-216-061-00 1-216-061-00 1-216-073-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE	820 100 3.3K 3.3K 10K	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R407 R408 R410 R411 R412	1-216-085-00 1-216-689-11 1-216-069-00 1-216-033-00 1-216-089-91 1-216-668-11	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	39K 6.8K 220 47K	5% 1/100 0.50% 1/100 5% 1/100 5% 1/100 5% 1/100 0.50% 1/100		R479 R480 R481 R482 R483 R484	1-216-085-00 1-216-077-00 1-216-033-00 1-216-057-00 1-216-025-00 1-216-651-11		33K 15K 220 2.2K 100 1K		1/10W 1/10W 1/10W 1/10W 1/10W	
R416 R417 R418 R419	1-216-113-00 1-216-665-11 1-216-667-11 1-216-065-00 1-216-689-11	METAL GLAZE METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	470K 3.9K 4.7K 4.7K	5% 1/10V 0.50% 1/10V 0.50% 1/10V 5% 1/10V 5% 1/10V	 	R485 R486 R487 R488 R489	1-216-033-00 1-216-681-11 1-216-653-11 1-216-073-00 1-216-077-00		220 18K		1/10W 1/10W	
R422 R423 R424 R425	1-216-073-00 1-216-073-00 1-216-033-00 1-216-049-00 1-216-039-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 220 1K	5% 1/10% 5% 1/10% 5% 1/10%	! !	R490 R491 R492 R493 R494	1-216-057-00 1-216-061-00 1-216-085-00 1-216-295-00 1-216-085-00		2.2K 3.3K 33K 0 33K		1/10W 1/10W 1/10W 1/10W 1/10W	
R427 R428 R429 R430	1-216-097-00 1-216-073-00 1-216-119-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	820K	5% 1/10w 5% 1/10w 5% 1/10w 5% 1/10w 5% 1/10w 5% 1/10w		R495 R496 R497	1-216-651-11 1-216-073-00 1-216-653-11 1-216-061-00 1-216-033-00	METAL CHIP METAL GLAZE METAL CHIP METAL GLAZE	1 K 10 K 1 . 2 K	0.50%	1/10W 1/10W	
R432 R434 R435 R436	1-216-105-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 47K 330K 220K 470K	5% 1/1UW		R500 R501 R502 R503	1-216-689-11 1-216-077-00 1-216-677-11 1-216-677-11 1-216-111-00	METAL GLAZE	39K 15K 12K 12K	5%	1/10W	
R438 R439 R440 R441	1-216-053-00 1-216-033-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	220 1K 560	5% 1/10W 5% 1/10W 5% 1/10W 0.50% 1/10W		R505 R506 R507 R508 R509	1-216-067-00 1-216-073-00 1-216-083-00 1-216-105-00 1-216-089-91	METAL GLAZE		57	1/10W 1/10W 1/10W 1/10W 1/10W	
R444 R445 R447 R448	1-216-049-00 1-216-105-00 1-216-095-00 1-216-069-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1 K 220 K 82 K 6.8 K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R510 R511 R512 R513	1-216-097-00 1-216-099-00 1-216-055-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE		5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R450 R451 R452 R453	1-216-073-00 1-216-121-00 1-216-037-00 1-216-651-11 1-216-097-00	METAL GLAZE METAL GLAZE	1 K	5% 1/10W 5% 1/10W 0.50% 1/10W		R515 R516 R517 R518 R519	1-216-675-11 1-216-103-91 1-214-888-00 1-260-123-11 1-216-017-00	METAL CHIP METAL GLAZE		0.50%		
R455 R456 R457 R458	1-216-085-00 1-216-053-00 1-216-025-00 1-216-113-00 1-216-649-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	33K 1.5K 100 470K 820	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 0.50% 1/10W		R520 R521 R522 R523 R524	1-249-423-11 1-216-065-00 1-260-111-11 1-215-892-11 1-216-093-00	CARBON METAL GLAZE CARBON METAL OXIDE METAL GLAZE	3.3K 4.7K 10K 1K 68K	5% 5% 5% 5%	1/4W 1/10W 1/2W	F
R460 R462 R463 R464	1-216-073-00 1-216-651-11 1-216-065-00 1-216-065-00 1-216-025-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	10K 1K	5% 1/10W 0.50% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R525 R528 R529 R530 R531	1-216-069-00 1-216-089-91 1-216-089-91 1-216-367-11 1-216-077-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL OXIDE METAL GLAZE	6.8K 47K 47K 0.68	5% 5% 5% 5%	1/10W 1/10W 1/10W	F
R466 R467 R468 R469	1-216-077-00 1-216-121-00 1-216-105-00 1-216-063-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	15K 1M 220K 3.9K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R532 R533 R534 R535 R538	1-215-919-11 1-247-723-11 1-216-085-00 1-249-448-11 1-216-077-00	METAL OXIDE CARBON METAL GLAZE CARBON METAL GLAZE	2.2K 6.8K 33K 1.2	5% 5% 5% 5%		
R471 R472 R473	1-216-109-00 1-216-077-00 1-216-121-00	METAL GLAZE METAL GLAZE METAL GLAZE	330K 15K 1M	5% 1/10v 5% 1/10v 5% 1/10v 5% 1/10v		R539 R540	1-216-065-00 1-216-113-00	METAL GLAZE METAL GLAZE	4.7K 470K	5% 5%	1/10W 1/10W	

### PVM-1450QM/1454QM

REF.NO. PART NO. DESCRIPTION REMARK REF.NO. PART NO.														
		PART NO.	DESCRIPTION				REMARK	REF. NO.	PART NO.	DESCRIPTION				REMARK
	R541 R542 R543	1-249-383-11 1-216-057-00 1-212-883-00	CARBON METAL GLAZE	1.5 2.2K 120 82K 10K	5% 5%	1/4W 1/10W 1/4W			1-216-049-00	METAL GLAZE	1K	5% 0.50%	1/10W	
	R544 R545	1-216-095-00 1-216-073-00	METAL GLAZE METAL GLAZE			1/10W 1/10W	•	R1117 R1118 R1119	1-216-677-11 1-216-069-00 1-216-113-00 1-216-694-11 1-216-089-91	METAL GLAZE METAL GLAZE METAL CHIP	6.8K 470K 62K	5% 5% 0.50%	1/10W 1/10W 1/10W	
	R546 R547 R548	1-249-425-11 1-249-438-11 1-216-057-00	CARBON METAL GLAZE	4.7K 56K 2.2K	5%	1/4W 1/4W 1/10W	F.	R1120 R1123	1-216-089-91 1-216-071-00	METAL GLAZE	47K	5%	1/10W 1/10W	
	R550	1-216-677-11 1-216-053-00	METAL GLAZE	1.5K	5%	1/10W 1/10W		R1124 R1125 R1128	1-216-071-00 1-216-113-00 1-216-049-00 1-216-065-00 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 470K 1K 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
	R552 R553	1-216-077-00 1-216-033-00 1-216-083-00 1-216-095-00	METAL GLAZE METAL GLAZE	15K 220 27K 82K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R1129	1-216-071-00 1-216-071-00 1-216-071-00 1-216-073-00 1-216-295-00		8.2K		1/10W 1/10W 1/10W	
	R555		METAL CHIP	51K	0.50%	1/10W 1/10W	F	R1134 R1135 R1136	1-216-071-00 1-216-073-00 1-216-295-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE	1K 8.2K 10K 0 100K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
	R559	1-216-081-00 1-247-711-11 1-216-109-00	METAL GLAZE CARBON METAL GLAZE	18K 22K 680 330K 56K	5% 5% 5%	1/10W 1/4W 1/10W				METAL GLAZE METAL CHIP	1.8K 1.2K	5% 0.50%	1/10W 1/10W	
	R561	1-216-091-00	METAL GLAZE		5%	1/10W		R1141 R1142 R1143	1-216-055-00 1-216-653-11 1-216-083-00 1-216-653-11 1-216-653-11	METAL GLAZE METAL CHIP METAL CHIP	27K 1.2K 1.2K	5% 0.50% 0.50%	1/10W 1/10W 1/10W	
	R563 R564 R565 R567	1-216-107-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1 K 47 270 K 220 22 K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R1144 R1145	1-216-073-00 1-216-067-00 1-216-057-00 1-216-057-00		10K 5.6K 2.2K 2.2K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W	
	R568 R569	1-216-073-00 1-260-114-11	METAL GLAZE CARBON	10K 18K	5%	1/10W		K1148	1-216-057-00 1-216-065-00	METAL GLAZE METAL GLAZE			1/10W 1/10W	
	R571 R572 R573	1-216-059-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 18K 4.7K 2.7K 8.2K	5% 5% 5%	1/10W 1/10W 1/10W		R1150 R1151 R1155	1-216-037-00 1-216-081-00 1-216-133-00		330 22K 3.3M 220 1K	5% 5%	1/10W 1/10W 1/10W	
	R578	1-216-689-11 1-216-693-11 1-216-105-00	METAL GLAZE	39K 56K	5% 0.50%	1/10W 1/10W		R1163 R1164	1-216-033-00 1-216-049-00	METAL GLAZE	220 1K 1K		1/10W 1/10W 1/10W	
	R582		METAL GLAZE METAL GLAZE	33K 390	5% 5% 5%	1/10W 1/10W 1/10W		R1166 R1170	1-216-081-00 1-216-133-00 1-216-033-00 1-216-049-00 1-216-049-00 1-216-295-00 1-216-085-00 1-216-085-00 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE	0 47K 33K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
	R585 R586	1-216-071-00 1-216-033-00 1-216-686-11	METAL GLAZE METAL GLAZE METAL CHIP	8.2K 220 30K	5% 5% 0.50%	1/10W 1/10W 1/10W		R1172 R1176	1-216-085-00	METAL GLAZE METAL GLAZE	33K		1/10W 1/10W	
	R588	1-216-675-11 1-216-077-00 1-216-067-00	METAL CHIP METAL GLAZE	10K 15K	0.50% 5%	1/10W 1/10W		R1177 R1178 R1179	1-216-085-00 1-216-295-00 1-216-071-00 1-216-295-00 1-216-041-00 1-216-089-91 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE	0 8.2K 0 470 47K	5% 5%	1/10W 1/10W 1/10W 1/10W	
	R590 R591	1-216-081-00 1-216-683-11	METAL GLAZE METAL CHIP CARBON	22K 22K 10	5% 0.50% 5%	1/10W 1/10W 1/10W	F	R1181 R1182	1-216-295-00 1-216-131-11 1-216-071-00	METAL GLAZE METAL GLAZE	0 2.7M 8.2K		1/10W 1/10W 1/10W	
	R593 R594	1-216-647-11 1-260-104-91	CARBON	2.7K	5%	1/2W		1 L1104	1-216-071-00 1-216-131-11 1-216-071-00	MEIAL GLAZE	8.2K 2.7M 8.2K	5% 5% 5%	1/10W 1/10W 1/10W	
	R595 R596 R597	1-216-689-11 1-214-754-00 1-249-417-11	METAL GLAZE METAL CARBON	39K 11K 1K	5% 1% 5%	1/10W 1/4W 1/4W	F	R1186 R1187	1-216-131-11 1-216-071-00	METAL GLAZE METAL GLAZE	2.7M 8.2K	5% 5%	1/10W 1/10W	
	R598 R599 R1102	1-216-085-00 1-216-645-11 1-216-295-00	METAL GLAZE METAL CHIP METAL GLAZE	33K 560 0	5% 0.50% 5%	1/10W 1/10W 1/10W		R1188 R1189 R1190	1-216-131-11 1-216-071-00 1-216-131-11	METAL GLAZE METAL GLAZE METAL GLAZE	2.7M 8.2K 2.7M	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W	
	R1103 R1104	1-216-077-00 1-216-699-11 1-216-073-00	METAL GLAZE METAL CHIP METAL GLAZE	15K 100K 10K	5% 0.50% 5%	1/10W	,	R1191 R1192 R1193	1-216-071-00 1-216-131-11 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 2.7M 100	5% 5% 5% 5%	1/10W 1/10W 1/10W	
	R1107	1-216-097-00 1-216-059-00	METAL GLAZE METAL GLAZE	100K 2.7K	5% 5%	1/10W 1/10W		R1194 R1195	1-216-085-00 1-216-025-00	METAL GLAZE METAL GLAZE	33K 100		1/10W 1/10W	
	R1109	1-216-681-11 1-216-295-00 1-216-295-00	METAL CHIP METAL GLAZE METAL GLAZE	18K 0 0	0.50% 5% 5%	1/10W 1/10W 1/10W		R1196 R1197 R1198 R1301	1-216-085-00 1-216-025-00 1-216-085-00 1-216-029-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	33K 100 33K 150	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
	R1112	1-216-065-00 1-216-065-00 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 4.7K 22K	5% 5% 5% 5%	1/10W 1/10W 1/10W		R1302	1-216-029-00 1-216-039-00	METAL GLAZE METAL GLAZE	150		1/10W 1/10W 1/10W	
		1-216-049-00	METAL GLAZE	22K 1K	5%	1/10W		R1304	1-216-689-11	METAL GLAZE	390 39K	5% 5%	1/10W	

									<b>~</b> (r	- A 1A	!- 14	JUI
REF. NO.	PART NO.	DESCRIPTION			REMARK		PART NO.	L				REMA
R1306 R1307	1-216-033-00 1-216-645-11 1-216-091-00 1-216-645-11 1-216-025-00	METAL GLAZE METAL CHIP METAL GLAZE METAL CHIP METAL GLAZE	560 56K	5% 1/10W 0.50% 1/10W 5% 1/10W 0.50% 1/10W 5% 1/10W		R1378 R1379 R1380	1-216-645-11	METAL GLAZE METAL GLAZE	1.8K 4.7K 330 560 680	5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W	
R1311 R1312 R1313	1-216-025-00 1-216-089-91 1-216-027-00 1-216-097-00 1-216-081-00		100 47K 120 100K 22K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		! R1382	1-216-647-11 1-216-073-00 1-216-681-11 1-216-091-00 1-216-073-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE	10K 18K	0.50% 5% 5%	1/10W	
R1316 R1317 R1318	1-216-025-00 1-216-065-00 1-216-041-00 1-216-061-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 4.7K 470 3.3K 33K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1388 R1389 R1390 R1391	1-216-077-00 1-216-653-11 1-216-689-11 1-216-657-11 1-216-647-11 1-216-025-00	METAL CHIP METAL CHIP METAL CHIP	1.2K 39K 1.8K 680	0.50% 0.50% 0.50% 0.50%	1/10W 1/10W 1/10W	
R1321 R1322 R1324 R1325	1-216-652-11	METAL CHIP METAL GLAZE METAL GLAZE	2.2K	0.50% 1/10W 5% 1/10W 5% 1/10W		R1392	1-216-041-00	METAL GLAZE	470 3.9K 470 8.2K 8.2K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1328 R1329 R1330 R1331	1-216-081-00 1-216-679-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	10K 1.5M 180K 22K 15K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 0.50% 1/10W		R1397 R1398 R1399 R1401 R1402	1-216-071-00 1-216-071-00 1-216-071-00 1-216-065-00 1-216-073-00 1-216-085-00 1-216-085-00 1-216-085-11 1-216-071-00 1-216-653-11 1-216-653-11 1-216-061-00 1-216-113-00 1-216-295-00 1-216-053-00 1-216-053-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 10K 33K 0	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1333 R1334 R1336 R1339	1-216-049-00 1-216-063-00 1-216-095-00 1-216-033-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	6.8K 1K 3.9K 82K 220	0.50% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1403 R1404 R1405 R1406 R1407	1-216-651-11 1-216-681-11 1-216-071-00 1-216-653-11 1-216-061-00	METAL CHIP METAL CHIP METAL GLAZE METAL CHIP METAL GLAZE	18K 8.2K	0.50% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W	
R1341 R1342 R1343 R1344	1-216-033-00 1-216-033-00 1-216-083-00 1-216-037-00 1-216-093-00	METAL GLAZE	780	5% 1/10W		R1408 R1409 R1410 R1413 R1414	1-216-113-00 1-216-295-00 1-216-053-00 1-216-081-00 1-216-057-00 1-216-093-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 0 1.5K 22K 2.2K 68K		1/10W 1/10W 1/10W 1/10W 1/10W	
R1346 R1347 R1348 R1349	1-216-035-00	METAL GLAZE METAL GLAZE METAL GLAZE	330K 100K 10K 8.2K 270	5% 1/10W 5% 1/10W 5% 1/10W		R1415 R1416 R1417 R1418 R1419	1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE		5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1351 R1352 R1353	1-216-073-00 1-216-033-00 1-216-065-00 1-216-065-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 220 4.7K 4.7K 47K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1420 R1421 R1422 R1423 R1424	1-216-089-91 1-216-649-11 1-216-085-00 1-216-057-00 1-216-081-00			0.50% 5% 5%	1/10W	
R1355 R1356 R1358 R1359 R1361	1-216-033-00 1-216-105-00 1-216-071-00 1-216-099-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 220K 8.2K 120K 470K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W			1-216-013-00 1-216-113-00 1-216-681-11 1-216-061-00 1-216-668-11	METAL GLAZE  METAL GLAZE  METAL CHIP  METAL GLAZE  METAL CHIP	470K 18K 3.3K 5.1K	5% 5% 5% 0.50% 5% 0.50%	1/10W 1/10W 1/10W 1/10W	
R1362 R1363 R1364 R1365 R1366	1-216-676-11 1-216-113-00 1-216-073-00 1-216-131-11 1-216-081-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	11K 470K 10K 2.7M 22K	0.50% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1430 R1431 R1432 R1434 R1436	1-216-073-00 1-216-129-00 1-216-089-91 1-216-295-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K" 2.2M 47K 0 10K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1367 R1368 R1369 R1370 R1371	1-216-057-00 1-216-059-00 1-216-051-00 1-216-105-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 2.7K 1.2K 220K 470K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		R1437 R1438 R1439 R1440	1-216-069-00 1-216-073-00 1-216-059-00 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	6.8K 10K 2.7K 470	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R1372 R1373 R1375 R1376	1-249-437-11 1-216-063-00 1-216-645-11 1-216-647-11	CARBON METAL GLAZE METAL CHIP METAL CHIP	47K 3.9K 560 680	5% 1/4W 5% 1/10W 0.50% 1/10W 0.50% 1/10W		R1441 R1442 R1443 R1444	1-216-033-00 1-216-073-00 1-216-013-00 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 10K 33 2.2K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	

 The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation. Should replacement be required, replace only with the value originally used. The components identified by shading and mark  $\triangle$  are critical for safety.

Replace only with part number specified.

	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R1446 R1447 R1448	1-216-071-00 1-216-071-00 1-216-081-00 1-216-085-00 1-216-057-00	METAL GLAZE METAL GLAZE	8.2K 8.2K 22K 33K 2.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1513 R1514 R1515	1-216-647-11 1-247-756-11 1-247-711-11 1-216-350-11	CARBON CARBON METAL OXIDE	680 2.2K 680 1.2	5% 5%	1/2W 1/4W 1W	F F
R1451 R1452 R1453	1-216-129-00 1-216-093-00 1-216-085-00 1-216-013-00 1-216-065-00	METAL GLAZE	2.2M 68K 33K 33 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1518 R1519 R1520 R1521 R1522 R1523	1-215-867-00 1-216-355-11 1-216-007-00 1-216-029-00 1-249-400-11 1-216-350-11	METAL OXIDE METAL OXIDE METAL GLAZE METAL GLAZE CARBON METAL OXIDE	470 3.3 18 150 39 1.2	5% 5% 5% 5% 5%	1W 1/10W 1/10W 1/4W	F F
R1456 R1457 R1458	1-216-113-00 1-216-129-00 1-216-089-91 1-216-085-00 1-216-133-00	METAL GLAZE METAL GLAZE METAL GLAZE	470K 2.2M 47K 33K 3.3M	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1524 R1525 R1526 R1527	1-216-427-00 1-216-083-00 1-216-089-91 1-249-413-11 1-215-869-11	METAL OXIDE METAL GLAZE METAL GLAZE METAL GLAZE CARBON METAL OXIDE	120 27K 47K 470 1K	5% 5% 5% 5% 5% 5%	1W 1/10W 1/10W 1/4W	F
R1461 R1462 R1463 R1464	1-216-057-00	METAL CHIP METAL CHIP METAL CHIP METAL GLAZE	560 560 560 2.2K	0.50% 0.50% 0.50% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1530	1-216-115-00 1-247-697-11 1-216-059-00 1-249-414-11 1-216-659-11	METAL GLAZE	560K 56 2.7K 560		1/10W 1/4W 1/10W 1/4W	F
R1466 R1467	1-216-097-00 1-216-055-00 1-216-073-00 1-249-438-11	METAL GLAZE METAL GLAZE METAL GLAZE CARBUN	100K 1.8K 10K 56K 2.2K	5% 5% 5%	1/10W 1/10W 1/10W 1/4W		R 1536 A			4.7	5%	1/4W	F
R1469 R1470 R1471 R1472	1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 2.2K 1K 33K 22K		1/10W 1/10W 1/10W 1/10W 1/10W		R1539 R1540 R1541	1-216-073-00 1-216-689-11 1-216-105-00 1-216-081-00 1-216-111-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 39K 220K 22K 390K	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1474 R1475 R1477 R1478	1-216-687-11 1-216-677-11 1-216-057-00 1-216-061-00	METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	33K 12K 2.2K 3.3K	0.50%	1/10W 1/10W 1/10W 1/10W		R1544 R1547	1-216-027-00 1-216-117-00 1-216-393-00 1-260-094-11 1-216-105-00	METAL GLAZE METAL GLAZE METAL OXIDE CARBON METAL GLAZE	120 680K 2.2 390 220K	5% 5% 5% 5%	1/10W 1/10W 3W 1/2W 1/10W	F
R1480 R1481 R1482 R1483	1-216-089-91 1-216-115-00 1-216-089-91 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE	0 47K 560K 47K 47K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1552 R1554	1-249-393-11 1-216-049-00 1-216-059-00 1-216-295-00 1-216-071-00	CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10 1K 2.7K 0 8.2K	5% 5% 5% 5%	1/4W 1/10W 1/10W 1/10W 1/10W	F .
R1485 R1486 R1487 R1488	1-216-121-00 1-216-113-00 1-216-083-00	METAL GLAZE METAL GLAZE	22K 470K 1M 470K 27K	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1559 R1560	1-218-760-11 1-249-393-11 1-249-393-11 1-216-049-00 1-216-681-11	CARBON CARBON METAL GLAZE	220K 10 10 1K 18K	0.50% 5% 5% 5% 0.50%	1/4W 1/4W 1/10W	F
R1490 R1491 R1492 R1493	1-216-069-00 1-216-035-00 1-216-035-00 1-216-035-00 1-216-083-00	METAL GLAZE METAL GLAZE	27K 6.8K 270 270 270 27K		1/10W 1/10W 1/10W 1/10W 1/10W 1/10W 1/10W		R1563 R1564	1-214-964-00 1-214-964-00 1-216-681-11 1-216-089-91 1-216-073-00	METAL METAL CHIP METAL GLAZE METAL GLAZE	1 M 1 M 1 8 K 4 7 K 1 O K	1% 1% 0.50% 5%	1/4W 1/4W 1/10W 1/10W 1/10W	
R1494 R1495 R1497 R1498 R1499	1-216-081-00 1-216-089-91 1-216-113-00 1-247-839-31 1-216-057-00	METAL GLAZE	470K 2.2K 2.2K	5% 5% 5%	1/10W 1/4W 1/10W		R1567 R1574 R1575 R1576 R1577	1-216-089-91 1-216-041-00 1-216-025-00 1-216-025-00 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 470 100 100 100	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1501 R1502 R1503 R1504	1-216-647-11 1-216-071-00 1-260-105-11 1-216-063-00 1-216-686-11	METAL CHIP METAL GLAZE CARBON METAL GLAZE METAL CHIP	680 8.2K 3.3K 3.9K 3.0K	0.50% 5% 5% 0.50%	1/10W 1/2W 1/10W 1/10W		R1578 R1579 R2300 R2301 R2306	1-216-065-00 1-216-689-11 1-216-065-00 1-216-065-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 39K 4.7K 4.7K 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1508	1-247-688-11 1-216-037-00 1-216-065-00 1-216-689-11 1-216-077-00	CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10 330 4.7K 39K 15K	5% 5% 5% 5% 5% 5%	1/4W 1/10W 1/10W 1/10W 1/10W	<b>Y</b>	R2307 R2308 R2309 R2311 R2312	1-216-033-00 1-216-103-91 1-216-049-00 1-216-073-00 1-216-053-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 180K 1K 10K 1.5K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
	1-216-360-11	METAL OXIDE	8.2	5%	1W	F	R2315		METAL CHIP	15K 22K		1/10W 1/10W	

										<i>F</i> A (†	ZVN	1-14	SUCIM)
REF.NO.	PART NO.	DESCRIPTION				REMARK	REF. NO.	PART NO.	L				REMARK
R2317 R2320	1-216-049-00 1-216-677-11	METAL GLAZE METAL CHIP	1 K 1 2 K	5% 0.50%	1/10W 1/10W		R2556	1-216-051-00	METAL GLAZE	1.2K	5%	1/10W	
R2323 R2325	1-216-683-11 1-216-063-00 1-216-041-00	METAL CHIP METAL GLAZE	22K 3.9K 470	0 509	1/10W 1/10W 1/10W		R2557 R2558 R2559 R2560	1-216-067-00 1-216-057-00 1-216-039-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	5.6K 2.2K 390 6.8K	5% 5%	1/10W 1/10W 1/10W 1/10W	
R2327 R2328 R2329	1-216-059-00 1-216-049-00 1-216-059-00	METAL GLAZE	2.7K 1K 2.7K	5%	1/10W 1/10W 1/10W			1-216-001-00	METAL GLAZE METAL GLAZE	6.8K 10		1/10W	
R2330 R2331	1-216-049-00 1-216-059-00	METAL GLAZE METAL GLAZE	1K 2.7K	5% 5%	1/10W 1/10W		R2563 R3301 R3302	1-216-057-00 1-216-073-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	10 2.2K 10K 4.7K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W	
R2334 R2335	1-216-049-00 1-216-041-00 1-216-061-00	METAL GLAZE METAL GLAZE	1K 470 3.3K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W			1-216-065-00 1-216-065-00	METAL GLAZE			1/10W 1/10W	
R2336 R2337	1-216-065-00 1-216-037-00	METAL GLAZE METAL GLAZE	330	5%	1/10W 1/10W		R3308	1-216-097-00 1-216-091-00 1-216-105-00		4.7K 100K 56K 220K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W	
R2338 R2339 R2341	1-216-073-00 1-216-037-00 1-216-037-00	METAL GLAZE	10K 330 330 8.2K 1M	5% 5% 5%	1/10W 1/10W 1/10W		R3315	1-216-065-00	METAL GLAZE			1/10W 1/10W	
R2342	1-216-071-00 1-216-121-00	METAL GLAZE	8.2K 1M	5% 5%	1/10W 1/10W		R3318 R3319	1-216-065-00	METAL GLAZE	4.7K 4.7K 120 12K	5% 5% 5%	1/10W 1/10W 1/10W	
R2346	1-216-681-11 1-216-061-00	METAL GLAZE	18K 3.3K	0.50% 5%	1/10W		R3322	1-216-073-00	METAL GLAZE	10K	5%	1/10W	
R2348	1-216-061-00 1-216-061-00 1-216-679-11	METAL GLAZE		5% 0.50%	1/10W 1/10W 1/10W		R3337 R3338	1-216-113-00 1-216-099-00 1-218-759-11 1-216-093-00	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	470K 120K 200K 68K	5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W	
R2350 R2351 R2352	1-216-061-00 1-216-061-00 1-216-061-00	METAL GLAZE	3.3K 3.3K 3.3K 470	5% 5%	1/10W 1/10W 1/10W		R3340	1-216-099-00	METAL GLAZE	120K 22K	5% 5%	1/10W 1/10W	
R2353		METAL GLAZE METAL GLAZE	470 100	5% 5%	1/10W 1/10W		R3345	1-216-033-00 1-216-025-00	METAL GLAZE METAL GLAZE	220 100	5% 5% 5% 5%	1/10W 1/10W	
		METAL GLAZE METAL GLAZE	47K 56K	5%	1/10W 1/10W		R3348	1-216-025-00 1-216-025-00	METAL GLAZE METAL GLAZE	100 100	5%	1/10W 1/10W	·
R2362	1-216-025-00 1-216-081-00 1-216-025-00	METAL GLAZE	100 22K 100	5% 5% 5%	1/10W 1/10W 1/10W		R3349 R3350 R3351	1-216-025-00 1-216-113-00 1-216-119-00	METAL GLAZE METAL GLAZE METAL GLAZE	100 470K 820K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R2366 R2367	1-216-067-00 1-216-095-00	METAL GLAZE METAL GLAZE	5.6K 82K 36K	5% 5%	1/10W 1/10W		R3365	1-216-081-00 1-216-081-00	METAL GLAZE METAL GLAZE	22K 22K	5% 5%	1/10W 1/10W	
R2370 R2371	1-216-086-00 1-216-049-00 1-216-113-00	METAL GLAZE METAL GLAZE	36K 1K 470K	5%	1/10W 1/10W 1/10W		R3377 R3378 R3390	1-216-107-00 1-216-115-00 1-216-057-00	METAL GLAZE METAL GLAZE METAL GLAZE	270K 560K 2.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R2374	1-216-097-00 1-216-089-91	METAL GLAZE			1/10W 1/10W		R3394	1-216-089-91 1-249-417-11	METAL GLAZE CARBON	47K 1K	5% 5%	1/10W 1/4W	
R2376 R2377	1-216-089-91 1-216-033-00	METAL GLAZE METAL GLAZE	100K 47K 47K 220 47K	5% 5%	1/10W 1/10W		R3397	1-216-041-00 1-216-041-00	METAL GLAZE	470 470	5% 5% 5%	1/10W 1/10W	
R2379	1-216-089-91 1-216-033-00	METAL GLAZE	220		1/10W 1/10W		R4401 R4402 R4404	1-216-085-00 1-216-113-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	33K 470K 10K	5% 5% 5%	1/10W 1/10W 1/10W	
R2380 R2381 R2382	1-216-089-91 1-216-089-91 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 47K	5% 5% 5% 5%	1/10W 1/10W 1/10W		R4405 R4407	1-216-067-00 1-216-061-00	METAL GLAZE METAL GLAZE	5.6K 3.3K	5% 5%	1/10W 1/10W	
R2383 R2384	1-216-033-00 1-216-689-11	METAL GLAZE METAL GLAZE	220 39K	5%	1/10W 1/10W		R4408 R4409 R4410	1-216-059-00 1-216-059-00 1-216-059-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.7K 2.7K 2.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R2389 R2394 R2396	1-216-033-00 1-216-081-00 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE	220 22K 470	5% 5% 5% 5%	1/10W 1/10W 1/10W		R4411 R4412	1-216-113-00 1-216-113-00	METAL GLAZE METAL GLAZE	470K 470K	5% 5%	1/10W 1/10W	
R2397	1-216-113-00	METAL GLAZE	470K	5%	1/10W		R4413 R4414	1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE	0	5% 5% 5%	1/10W 1/10W	
R2398 R2399 R2500	1-216-109-00 1-216-073-00 1-216-647-11	METAL GLAZE METAL GLAZE METAL CHIP	330K 10K 680	5% 5% 0.50%	1/10W 1/10W 1/10W		1	1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE	0	5% 5%	1/10W 1/10W	
R2501 R2502	1-216-083-00 1-216-077-00	METAL GLAZE METAL GLAZE	27K 15K	5% 5%	1/10W 1/10W			<var< td=""><td>IABLE RESISTO</td><td>R&gt;</td><td></td><td></td><td></td></var<>	IABLE RESISTO	R>			
R2551 R2552 R2553	1-216-091-00 1-216-085-00 1-216-083-00	METAL GLAZE METAL GLAZE METAL GLAZE	56K 33K 27K	5% 5% 5%	1/10W 1/10W 1/10W		RV501	1-223-102-00			120		
R2555	1-216-055-00	METAL GLAZE	1.8K	5%	1/10W		1						

### **A** (PVM-1450QM/1454QM)

The components identified by shading and mark  $\Lambda$  are critical for safety.

Replace only with part number

specified.

REF.NO. PART NO.	DESCRIPTION	j	REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK																																																																																																																																		
<tr 1-406-781-11="" 1-426-668-11="" 1-453-163-11<="" a="" t300="" t500="" t501="" td=""><td>ANSFORMER&gt;  COIL  TRANSFORMER, FERRITE (HI  TRANSFORMER ASSY, FLYRA</td><td>DT) CK</td><td></td><td>C165 C166 C167 C168</td><td>1-165-319-11 1-164-004-11 1-124-472-11 1-124-472-11</td><td>CERAMIC CHIP CERAMIC CHIP ELECT ELECT</td><td>0.1MF 0.1MF 470MF 470MF</td><td>10% 20% 20%</td><td>50 V 25 V 10 V 10 V</td></tr> <tr><td><thi TH500 1-807-970-11</thi </td><td>ERMISTOR&gt; Thermistor</td><td>•</td><td></td><td>C169 C171 C174 C200 C201</td><td>1-164-232-11 1-163-251-11 1-163-243-11 1-124-927-11 1-106-383-00</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP ELECT MYLAR</td><td>0.01MF 100PF 47PF 4.7MF 0.047MF</td><td>10% 5% 5% 20% 10%</td><td>50V 50V 50V 50V 100V</td></tr> <tr><td>X101 1-579-175-11 X300 1-577-259-11 X301 1-577-723-00</td><td>ANSFORMER&gt;  COIL TRANSFORMER, FERRITE (HI TRANSFORMER ASSY, FLYBAGE ERMISTOR&gt; THERMISTOR  (STAL&gt; VIBRATOR, CERAMIC VIBRATOR, CRYSTAL OSCILLATOR, CRYSTAL</td><td></td><td></td><td>C202 C203 C204 C205 C206</td><td>1-163-017-00 1-124-927-11 1-124-907-11 1-124-360-00 1-126-375-11</td><td>CERAMIC CHIP ELECT ELECT ELECT ELECT</td><td>0.0047MF 4.7MF 10MF 1000MF 1000MF</td><td>107 207 207 207 207 207</td><td>50V 50V 50V 16V 25V</td></tr> <tr><td>*A-1297-195-A</td><td>A BOARD, COMPLETE (PVM-1</td><td>1454QM)</td><td></td><td>C209 C300 C304</td><td>1-124-478-11 1-124-907-11 1-124-927-11 1-163-031-11 1-164-004-11</td><td>ELECT ELECT ELECT CERAMIC CHIP CERAMIC CHIP</td><td>100MF 10MF 4.7MF 0.01MF 0.1MF</td><td>20% 20% 20% 10%</td><td>25V 50V 50V 50V 25V</td></tr> <tr><td>1-540-044-11 *4-030-359-01 *4-043-154-01 *4-043-994-01 4-363-414-00</td><td>SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA</td><td></td><td></td><td>C305 C306 C309 C310 C311</td><td>1-163-125-00 1-163-031-11 1-163-031-11 1-164-004-11 1-163-809-11</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP</td><td>220PF 0.01MF 0.01MF 0.1MF 0.047MF</td><td>5% 10% 10%</td><td>50V 50V 50V 25V 25V</td></tr> <tr><td>4-382-854-11 <ban< td=""><td>SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA SCREW (M3XIO), P, SW (+) ID PASS FILTER&gt; FILTER, BAND PASS</td><td></td><td></td><td>C312 C313 C314 C315 C316</td><td>1-124-925-11 1-163-145-00 1-163-249-11 1-124-907-11 1-124-477-11</td><td>CERAMIC CHIP CERAMIC CHIP ELECT</td><td>82PF</td><td>20% 5% 5% 20% 20%</td><td>50V 50V 50V 50V 25V</td></ban<></td></tr> <tr><td><pre><cap 1-163-251-11<="" c105="" pre=""></cap></pre></td><td>ACITOR&gt;</td><td>E.</td><td>EON</td><td>C317 C318 C319 C320 C322</td><td>1-163-097-00 1-124-907-11 1-163-222-11 1-163-031-11 1-163-119-00</td><td>CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP</td><td>15PF 10MF 5PF 0.01MF</td><td>5% 20% 0.25PF</td><td>50V 50V 50V 50V 50V</td></tr> <tr><td>C106 1-163-251-11 C114 1-163-031-11 C115 1-163-031-11 C116 1-163-031-11</td><td>CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF</td><td>5%</td><td>50V 50V 50V 50V</td><td>C323</td><td>1-163-097-00 1-163-235-11 1-124-907-11 1-164-004-11 1-164-004-11</td><td>CERAMIC CHIP</td><td>15PF</td><td></td><td>50V 50V 50V 25V</td></tr> <tr><td>C117 1-163-031-11 C118 1-163-125-00 C119 1-165-319-11 C121 1-163-237-11 C123 1-165-319-11</td><td>CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 20PF CERAMIC CHIP 27PF CERAMIC CHIP 27PF CERAMIC CHIP 100PF</td><td>5% 5%</td><td>50V 50V 50V 50V 50V</td><td></td><td>1-164-004-11 1-163-031-11 1-163-251-11 1-163-243-11 1-163-097-00 1-164-004-11</td><td></td><td></td><td></td><td>50V 50V 50V 50V 50V</td></tr> <tr><td>0132 1-163-141-00</td><td>CERAMIC CHIP 100PF CERAMIC CHIP 0.001MF CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 100PF</td><td>5%</td><td>50V 50V 50V 50V 50V 50V</td><td>C333 C334 C335</td><td>1-163-031-11 1-163-141-00 1-163-141-00</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP</td><td>0.01MF 0.001MF 0.001MF</td><td>5% 5%</td><td>50V 50V 50V</td></tr> <tr><td>C136 1-163-251-11 C140 1-164-004-11 C141 1-164-161-11 C142 1-163-125-00 C143 1-165-319-11</td><td>CERAMIC CHIP 100PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.0022MF CERAMIC CHIP 220PF CERAMIC CHIP 0.1MF</td><td>5% 10% 10% 5%</td><td>50V 25V 50V 50V 50V</td><td>C336 C337 C338 C339 C340</td><td>1-124-477-11 1-163-031-11 1-163-119-00 1-163-097-00 1-163-031-11</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP</td><td>120PF 15PF 0.01MF</td><td>20% 5% 5%</td><td>25V 50V 50V 50V</td></tr> <tr><td>C144 1-165-319-11 C145 1-165-319-11 C154 1-163-037-11 C155 1-163-023-00 C156 1-163-019-00</td><td>CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.022MF CERAMIC CHIP 0.015MF CERAMIC CHIP 0.0068MF</td><td>10% 10% 10%</td><td>50V 50V 25V 50V 50V</td><td>C341 C342 C343 C344 C345</td><td>1-163-119-00 1-163-018-00 1-163-031-11 1-163-141-00 1-163-141-00</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP</td><td>120PF 0.0056MF 0.01MF 0.001MF 0.001MF</td><td>5% 10%</td><td>50V 50V 50V 50V</td></tr> <tr><td>C157 1-163-019-00 C158 1-163-809-11 C159 1-163-037-11 C161 1-124-477-11 C162 1-163-141-00</td><td>CERAMIC CHIP 0.0068MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.022MF ELECT 47MF CERAMIC CHIP 0.001MF</td><td>10% 10% 10% 20% 5%</td><td>50V 25V 25V 16V 50V</td><td>C346 C347 C348 C349 C350</td><td>1-124-903-11 1-163-243-11 1-164-004-11 1-163-141-00 1-163-141-00</td><td>CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP</td><td>0.1MF 0.001MF 0.001MF</td><td>20% 5% 10% 5%</td><td>50V 50V 25V 50V 50V</td></tr> <tr><td>C164 1-165-319-11</td><td>CERAMIC CHIP 0.1MF</td><td>-</td><td>50V</td><td>C351 C352</td><td>1-124-477-11 1-163-031-11</td><td>ELECT CERAMIC CHIP</td><td>47MF</td><td>20%</td><td>25V 50V</td></tr>	ANSFORMER>  COIL  TRANSFORMER, FERRITE (HI  TRANSFORMER ASSY, FLYRA	DT) CK		C165 C166 C167 C168	1-165-319-11 1-164-004-11 1-124-472-11 1-124-472-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT	0.1MF 0.1MF 470MF 470MF	10% 20% 20%	50 V 25 V 10 V 10 V	<thi TH500 1-807-970-11</thi 	ERMISTOR> Thermistor	•		C169 C171 C174 C200 C201	1-164-232-11 1-163-251-11 1-163-243-11 1-124-927-11 1-106-383-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP ELECT MYLAR	0.01MF 100PF 47PF 4.7MF 0.047MF	10% 5% 5% 20% 10%	50V 50V 50V 50V 100V	X101 1-579-175-11 X300 1-577-259-11 X301 1-577-723-00	ANSFORMER>  COIL TRANSFORMER, FERRITE (HI TRANSFORMER ASSY, FLYBAGE ERMISTOR> THERMISTOR  (STAL> VIBRATOR, CERAMIC VIBRATOR, CRYSTAL OSCILLATOR, CRYSTAL			C202 C203 C204 C205 C206	1-163-017-00 1-124-927-11 1-124-907-11 1-124-360-00 1-126-375-11	CERAMIC CHIP ELECT ELECT ELECT ELECT	0.0047MF 4.7MF 10MF 1000MF 1000MF	107 207 207 207 207 207	50V 50V 50V 16V 25V	*A-1297-195-A	A BOARD, COMPLETE (PVM-1	1454QM)		C209 C300 C304	1-124-478-11 1-124-907-11 1-124-927-11 1-163-031-11 1-164-004-11	ELECT ELECT ELECT CERAMIC CHIP CERAMIC CHIP	100MF 10MF 4.7MF 0.01MF 0.1MF	20% 20% 20% 10%	25V 50V 50V 50V 25V	1-540-044-11 *4-030-359-01 *4-043-154-01 *4-043-994-01 4-363-414-00	SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA			C305 C306 C309 C310 C311	1-163-125-00 1-163-031-11 1-163-031-11 1-164-004-11 1-163-809-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	220PF 0.01MF 0.01MF 0.1MF 0.047MF	5% 10% 10%	50V 50V 50V 25V 25V	4-382-854-11 <ban< td=""><td>SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA SCREW (M3XIO), P, SW (+) ID PASS FILTER&gt; FILTER, BAND PASS</td><td></td><td></td><td>C312 C313 C314 C315 C316</td><td>1-124-925-11 1-163-145-00 1-163-249-11 1-124-907-11 1-124-477-11</td><td>CERAMIC CHIP CERAMIC CHIP ELECT</td><td>82PF</td><td>20% 5% 5% 20% 20%</td><td>50V 50V 50V 50V 25V</td></ban<>	SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA SCREW (M3XIO), P, SW (+) ID PASS FILTER> FILTER, BAND PASS			C312 C313 C314 C315 C316	1-124-925-11 1-163-145-00 1-163-249-11 1-124-907-11 1-124-477-11	CERAMIC CHIP CERAMIC CHIP ELECT	82PF	20% 5% 5% 20% 20%	50V 50V 50V 50V 25V	<pre><cap 1-163-251-11<="" c105="" pre=""></cap></pre>	ACITOR>	E.	EON	C317 C318 C319 C320 C322	1-163-097-00 1-124-907-11 1-163-222-11 1-163-031-11 1-163-119-00	CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP	15PF 10MF 5PF 0.01MF	5% 20% 0.25PF	50V 50V 50V 50V 50V	C106 1-163-251-11 C114 1-163-031-11 C115 1-163-031-11 C116 1-163-031-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	5%	50V 50V 50V 50V	C323	1-163-097-00 1-163-235-11 1-124-907-11 1-164-004-11 1-164-004-11	CERAMIC CHIP	15PF		50V 50V 50V 25V	C117 1-163-031-11 C118 1-163-125-00 C119 1-165-319-11 C121 1-163-237-11 C123 1-165-319-11	CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 20PF CERAMIC CHIP 27PF CERAMIC CHIP 27PF CERAMIC CHIP 100PF	5% 5%	50V 50V 50V 50V 50V		1-164-004-11 1-163-031-11 1-163-251-11 1-163-243-11 1-163-097-00 1-164-004-11				50V 50V 50V 50V 50V	0132 1-163-141-00	CERAMIC CHIP 100PF CERAMIC CHIP 0.001MF CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 100PF	5%	50V 50V 50V 50V 50V 50V	C333 C334 C335	1-163-031-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF 0.001MF 0.001MF	5% 5%	50V 50V 50V	C136 1-163-251-11 C140 1-164-004-11 C141 1-164-161-11 C142 1-163-125-00 C143 1-165-319-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.0022MF CERAMIC CHIP 220PF CERAMIC CHIP 0.1MF	5% 10% 10% 5%	50V 25V 50V 50V 50V	C336 C337 C338 C339 C340	1-124-477-11 1-163-031-11 1-163-119-00 1-163-097-00 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	120PF 15PF 0.01MF	20% 5% 5%	25V 50V 50V 50V	C144 1-165-319-11 C145 1-165-319-11 C154 1-163-037-11 C155 1-163-023-00 C156 1-163-019-00	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.022MF CERAMIC CHIP 0.015MF CERAMIC CHIP 0.0068MF	10% 10% 10%	50V 50V 25V 50V 50V	C341 C342 C343 C344 C345	1-163-119-00 1-163-018-00 1-163-031-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	120PF 0.0056MF 0.01MF 0.001MF 0.001MF	5% 10%	50V 50V 50V 50V	C157 1-163-019-00 C158 1-163-809-11 C159 1-163-037-11 C161 1-124-477-11 C162 1-163-141-00	CERAMIC CHIP 0.0068MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.022MF ELECT 47MF CERAMIC CHIP 0.001MF	10% 10% 10% 20% 5%	50V 25V 25V 16V 50V	C346 C347 C348 C349 C350	1-124-903-11 1-163-243-11 1-164-004-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.1MF 0.001MF 0.001MF	20% 5% 10% 5%	50V 50V 25V 50V 50V	C164 1-165-319-11	CERAMIC CHIP 0.1MF	-	50V	C351 C352	1-124-477-11 1-163-031-11	ELECT CERAMIC CHIP	47MF	20%	25V 50V
ANSFORMER>  COIL  TRANSFORMER, FERRITE (HI  TRANSFORMER ASSY, FLYRA	DT) CK		C165 C166 C167 C168	1-165-319-11 1-164-004-11 1-124-472-11 1-124-472-11	CERAMIC CHIP CERAMIC CHIP ELECT ELECT	0.1MF 0.1MF 470MF 470MF	10% 20% 20%	50 V 25 V 10 V 10 V																																																																																																																																			
<thi TH500 1-807-970-11</thi 	ERMISTOR> Thermistor	•		C169 C171 C174 C200 C201	1-164-232-11 1-163-251-11 1-163-243-11 1-124-927-11 1-106-383-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP ELECT MYLAR	0.01MF 100PF 47PF 4.7MF 0.047MF	10% 5% 5% 20% 10%	50V 50V 50V 50V 100V																																																																																																																																		
X101 1-579-175-11 X300 1-577-259-11 X301 1-577-723-00	ANSFORMER>  COIL TRANSFORMER, FERRITE (HI TRANSFORMER ASSY, FLYBAGE ERMISTOR> THERMISTOR  (STAL> VIBRATOR, CERAMIC VIBRATOR, CRYSTAL OSCILLATOR, CRYSTAL			C202 C203 C204 C205 C206	1-163-017-00 1-124-927-11 1-124-907-11 1-124-360-00 1-126-375-11	CERAMIC CHIP ELECT ELECT ELECT ELECT	0.0047MF 4.7MF 10MF 1000MF 1000MF	107 207 207 207 207 207	50V 50V 50V 16V 25V																																																																																																																																		
*A-1297-195-A	A BOARD, COMPLETE (PVM-1	1454QM)		C209 C300 C304	1-124-478-11 1-124-907-11 1-124-927-11 1-163-031-11 1-164-004-11	ELECT ELECT ELECT CERAMIC CHIP CERAMIC CHIP	100MF 10MF 4.7MF 0.01MF 0.1MF	20% 20% 20% 10%	25V 50V 50V 50V 25V																																																																																																																																		
1-540-044-11 *4-030-359-01 *4-043-154-01 *4-043-994-01 4-363-414-00	SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA			C305 C306 C309 C310 C311	1-163-125-00 1-163-031-11 1-163-031-11 1-164-004-11 1-163-809-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	220PF 0.01MF 0.01MF 0.1MF 0.047MF	5% 10% 10%	50V 50V 50V 25V 25V																																																																																																																																		
4-382-854-11 <ban< td=""><td>SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA SCREW (M3XIO), P, SW (+) ID PASS FILTER&gt; FILTER, BAND PASS</td><td></td><td></td><td>C312 C313 C314 C315 C316</td><td>1-124-925-11 1-163-145-00 1-163-249-11 1-124-907-11 1-124-477-11</td><td>CERAMIC CHIP CERAMIC CHIP ELECT</td><td>82PF</td><td>20% 5% 5% 20% 20%</td><td>50V 50V 50V 50V 25V</td></ban<>	SOCKET, IC HEAT SINK, H. PIN HOLDER, IC PLATE (CF), SHIELD SPACER, MICA SCREW (M3XIO), P, SW (+) ID PASS FILTER> FILTER, BAND PASS			C312 C313 C314 C315 C316	1-124-925-11 1-163-145-00 1-163-249-11 1-124-907-11 1-124-477-11	CERAMIC CHIP CERAMIC CHIP ELECT	82PF	20% 5% 5% 20% 20%	50V 50V 50V 50V 25V																																																																																																																																		
<pre><cap 1-163-251-11<="" c105="" pre=""></cap></pre>	ACITOR>	E.	EON	C317 C318 C319 C320 C322	1-163-097-00 1-124-907-11 1-163-222-11 1-163-031-11 1-163-119-00	CERAMIC CHIP ELECT CERAMIC CHIP CERAMIC CHIP	15PF 10MF 5PF 0.01MF	5% 20% 0.25PF	50V 50V 50V 50V 50V																																																																																																																																		
C106 1-163-251-11 C114 1-163-031-11 C115 1-163-031-11 C116 1-163-031-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	5%	50V 50V 50V 50V	C323	1-163-097-00 1-163-235-11 1-124-907-11 1-164-004-11 1-164-004-11	CERAMIC CHIP	15PF		50V 50V 50V 25V																																																																																																																																		
C117 1-163-031-11 C118 1-163-125-00 C119 1-165-319-11 C121 1-163-237-11 C123 1-165-319-11	CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 20PF CERAMIC CHIP 27PF CERAMIC CHIP 27PF CERAMIC CHIP 100PF	5% 5%	50V 50V 50V 50V 50V		1-164-004-11 1-163-031-11 1-163-251-11 1-163-243-11 1-163-097-00 1-164-004-11				50V 50V 50V 50V 50V																																																																																																																																		
0132 1-163-141-00	CERAMIC CHIP 100PF CERAMIC CHIP 0.001MF CERAMIC CHIP 100PF CERAMIC CHIP 100PF CERAMIC CHIP 100PF	5%	50V 50V 50V 50V 50V 50V	C333 C334 C335	1-163-031-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF 0.001MF 0.001MF	5% 5%	50V 50V 50V																																																																																																																																		
C136 1-163-251-11 C140 1-164-004-11 C141 1-164-161-11 C142 1-163-125-00 C143 1-165-319-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.0022MF CERAMIC CHIP 220PF CERAMIC CHIP 0.1MF	5% 10% 10% 5%	50V 25V 50V 50V 50V	C336 C337 C338 C339 C340	1-124-477-11 1-163-031-11 1-163-119-00 1-163-097-00 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	120PF 15PF 0.01MF	20% 5% 5%	25V 50V 50V 50V																																																																																																																																		
C144 1-165-319-11 C145 1-165-319-11 C154 1-163-037-11 C155 1-163-023-00 C156 1-163-019-00	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.022MF CERAMIC CHIP 0.015MF CERAMIC CHIP 0.0068MF	10% 10% 10%	50V 50V 25V 50V 50V	C341 C342 C343 C344 C345	1-163-119-00 1-163-018-00 1-163-031-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	120PF 0.0056MF 0.01MF 0.001MF 0.001MF	5% 10%	50V 50V 50V 50V																																																																																																																																		
C157 1-163-019-00 C158 1-163-809-11 C159 1-163-037-11 C161 1-124-477-11 C162 1-163-141-00	CERAMIC CHIP 0.0068MF CERAMIC CHIP 0.047MF CERAMIC CHIP 0.022MF ELECT 47MF CERAMIC CHIP 0.001MF	10% 10% 10% 20% 5%	50V 25V 25V 16V 50V	C346 C347 C348 C349 C350	1-124-903-11 1-163-243-11 1-164-004-11 1-163-141-00 1-163-141-00	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.1MF 0.001MF 0.001MF	20% 5% 10% 5%	50V 50V 25V 50V 50V																																																																																																																																		
C164 1-165-319-11	CERAMIC CHIP 0.1MF	-	50V	C351 C352	1-124-477-11 1-163-031-11	ELECT CERAMIC CHIP	47MF	20%	25V 50V																																																																																																																																		

						A (	HAMI-14	154WM	
REF. NO.	PART NO.	DESCRIPTION		REMARK	REF. NO.	PART NO.	DESCRIPTION		REMARK
C353 C354	1-165-319-11 1-163-121-00	CERAMIC CHIP 0.1MF CERAMIC CHIP 150PF	5%	50V 50V	1		CERAMIC CHIP 0.22M		25₹
C355 C356 C357	1-124-903-11 1-124-927-11 1-163-031-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 150PF ELECT 1MF ELECT 4.7MF CERAMIC CHIP 0.01MF	20% 20%	50V 50V 50V	C422 C423 C424	1-124-903-11 1-163-809-11 1-163-809-11	CERAMIC CHIP 0.047	20% MF 10% MF 10%	50V 25V 25V
C358 C359	1-124-477-11	CERAMIC CHIP 0.01MF ELECT 47MF	20% 10%	50V 25V 50V	C425 C426	1-163-031-11 1-163-243-11	CERAMIC CHIP 0.01M CERAMIC CHIP 47PF	5%	50V 50V
C360 C361 C362	1-163-031-11 1-163-031-11	CERAMIC CHIP 0.01MF	•	50V 50V 50V	C427 C428 C429	1-163-031-11 1-124-119-00 1-163-031-11	CERAMIC CHIP 0.01M ELECT 330MF CERAMIC CHIP 0.01M	20%	50V 16V 50V 16V
C363 C364 C365	1-163-099-00 1-163-031-11	CERAMIC CHIP 18PF CERAMIC CHIP 0.01MF MYLAR 0.001MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	5%	50V 50V 100V	C430 C431 C432	1-124-119-00 1-165-319-11	ODMINITO CHIT GITIN		50 <b>Y</b>
C366 C367	1-163-031-11 1-163-031-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	10%	50V 50V	C433 C434 C435	1-164-004-11 1-163-235-11 1-163-031-11 1-163-089-00	CERAMIC CHIP 0.1MF CERAMIC CHIP 22PF CERAMIC CHIP 0.01MI CERAMIC CHIP 6PF CERAMIC CHIP 0.1MF	5% 5% 0.25PF	50V 50V 50V
C368 C369 C3 <b>70</b>	1-124-907-11 1-164-298-11 1-124-477-11	ELECT 10MF CERAMIC CHIP 0.15MF ELECT 47MF ELECT 47MF CERAMIC CHIP 0.01MF	20% 10%	50V 25V 25V	C436				25V 25V
C371 C372	1-124-477-11 1-163-031-11	ELECT 47MF CERAMIC CHIP 0.01MF	20%	25V 50V	C438 C439 C440	1-163-809-11 1-163-809-11 1-163-031-11	CERAMIC CHIP 0.1MF CERAMIC CHIP 0.047 CERAMIC CHIP 0.047 CERAMIC CHIP 0.01M	4F 10%	25V 25V 50V
C373 C374 C375	1-163-141-00 1-124-903-11 1-163-125-00	CERAMIC CHIP 0.001MF ELECT 1MF CERAMIC CHIP 220PF	5% 20% 5%	50V 50V 50V	C441	1-126-962-11	ELECT 3.3MF	20%	50 V 25 V
C376 C377	1-124-902-00 1-163-809-11	ELECT 0.47MF CERAMIC CHIP 0.047MF	20% 10%	50V 25V	C443 C444 C445	1-163-243-11 1-165-319-11 1-163-809-11	CERAMIC CHIP 0.0471 CERAMIC CHIP 47PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.0471	5% 5%	50 V 50 V
C378 C379 C380	114202111	CERAMIC CHIP 0.047MF CERAMIC CHIP 0.01MF ELECT 470MF	10%	25V 50V 10V	C446	1-163-089-00	CERAMIC CHIP 0.0471 CERAMIC CHIP 6PF		50V 50V
C381 C382	1-163-031-11 1-163-243-11	CERAMIC CHIP 0.01MF	5%	50V 50V	C448 C449 C450		CERAMIC CHIP 330PF CERAMIC CHIP 47PF CERAMIC CHIP 10PF CERAMIC CHIP 0.047		50 V
C383 C384 C385	1-124-477-11 1-163-249-11 1-124-477-11	ELECT 47MF CERAMIC CHIP 82PF FLECT 47MF	20% 5%	25V 50V 25V	C451 C452	1-164-004-11	CERAMIC CHIP O.1MF	10%	25 <b>V</b>
C386 C387	1-124-907-11 1-163-141-00	ELECT 47MF CERAMIC CHIP 82PF ELECT 47MF ELECT 10MF CERAMIC CHIP 0.001MF	20% 5%	50V 50V	C453 C454 C455	1-163-031-11 1-163-243-11 1-163-263-11	CERAMIC CHIP 330PF CERAMIC CHIP 0.01MI CERAMIC CHIP 47PF CERAMIC CHIP 330PF CERAMIC CHIP 6PF	5% 5%	50 V 50 V 50 V
C388 C389 C390	1-124-907-11 1-124-477-11 1-163-243-11	ELECT 10MF ELECT 47MF CERAMIC CHIP 47PF ELECT 47MF CERAMIC CHIP 0.15MF	20% 20% 5%	50V 25V 50V	C456 C457	1-163-089-00 1-163-031-11	CERAMIC CHIP 6PF	0.25PF	50V 50V
C391 C392	1-124-477-11 1-164-298-11	ELECT 47MF CERAMIC CHIP 0.15MF	207 107	25V 25V	C458 C459 C460	1-163-249-11 1-165-319-11 1-164-004-11	CERAMIC CHIP 0.01MI CERAMIC CHIP 82PF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.1MF CERAMIC CHIP 120PF	5 <b>%</b> 10 <b>%</b>	50V 50V 25V
C393 C394 C395	1-164-298-11 1-124-477-11 1-163-235-11	CERAMIC CHIP 0.15MF ELECT 47MF CERAMIC CHIP 22PF CERAMIC CHIP 0.22MF	10% 20% 5%	25V 25V 50V	C461				50V 50V
C396 C397	1-164-299-11 1-124-477-11	CERAMIC CHIP 0.22MF ELECT 47MF	107 207	25V 25V	C463 C464 C465	1-163-031-11 1-164-299-11 1-163-097-00	CERAMIC CHIP 0.01MI CERAMIC CHIP 0.01MI CERAMIC CHIP 0.22MI CERAMIC CHIP 15PF	F 10% 5%	50V 25V 50V
C398 C399 C400	1-124-477-11 1-124-477-11 1-164-004-11	ELECT 47MF ELECT 47MF CERAMIC CHIP 0.1MF	20% 20% 10%	25V 25V 25V	C466 C467	1-163-119-00 1-163-119-00	CERAMIC CHIP 120PF CERAMIC CHIP 120PF	5% 5%	50V
C401 C402	1-164-346-11 1-124-910-11	CERAMIC CHIP IMF ELECT 47MF	20%	16 <b>V</b> 50 <b>V</b>	C469 C470 C471	1-163-037-11 1-163-243-11 1-163-105-00	CERAMIC CHIP 0.022 CERAMIC CHIP 47PF CERAMIC CHIP 33PF		25V 50V 50V
C403 C406 C407	1-164-232-11 1-124-916-11 1-124-477-11	CERAMIC CHIP 0.01MF ELECT 22MF ELECT 47MF	10% 20% 20%	50V 50V 25V	C472 C473	1-163-031-11 1-163-031-11	CERAMIC CHIP 0.01M CERAMIC CHIP 0.01M	F	50V 50V
C408 C409	1-164-232-11 1-163-031-11	CERAMIC CHIP O.OIMF CERAMIC CHIP O.OIMF	10%	50 <b>v</b> 50 <b>v</b>	C475 C476 C477	1-163-031-11 1-163-031-11 1-164-299-11	CERAMIC CHIP 0.01M CERAMIC CHIP 0.01M CERAMIC CHIP 0.22M	F F	50V 50V 25V
C410 C411 C414	1-124-916-11 1-164-004-11 1-163-031-11	ELECT 22MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF	20% 10%	50 <b>V</b> 25 <b>V</b> 50 <b>V</b>	C478	1-124-907-11 1-163-121-00	CERAMIC CHIP 150PF	20% 5%	50 <b>V</b> 50 <b>V</b>
C415 C416	1-124-907-11 1-164-232-11	ELECT 10MF CERAMIC CHIP 0.01MF	20% 10%	50 <b>V</b> 50 <b>V</b>	C482 C483 C484	1-124-472-11 1-163-249-11 1-163-113-00	ELECT 470MF CERAMIC CHIP 82PF CERAMIC CHIP 68PF	20% 5% 5% 5%	10V 50V 50V
C417 C418 C419	1-164-232-11 1-164-182-11 1-124-472-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.0033MF ELECT 470MF	10% 10% 20%	50V 50V 10V	C485	1-163-113-00 1-163-249-11	CERAMIC CHIP 68PF CERAMIC CHIP 82PF	5% 5% 5%	50 <b>V</b> 50 <b>V</b>
C420	1-163-809-11	CERAMIC CHIP 0.047MF	10%	25 <b>V</b>	C487	1-163-235-11	CERAMIC CHIP 22PF	5%	50V

The components identified by shading and mark  $ilde{\Delta}$  are critical for safety.
Replace only with part number specified.

REF.NO. PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION			REMARK
C488 1-163-097-00 C490 1-164-336-11	CERAMIC CHIP	0.33MF	5%	50V 25V	C561	1-136-159-00		0.033MF	5%	50 <b>V</b>
C491 1-164-336-11 C492 1-164-336-11 C493 1-104-760-11	CERAMIC CHIP	0.33MF	10%	25V 25V 50V	C562 C564 C565	1-163-249-11 1-124-907-11 1-124-903-11	CERAMIC CHIP ELECT ELECT MYLAR	82PF 10MF 1MF 0.01MF	5% 20% 20% 10%	50V 50V 50V 100V
C494 1-104-760-11 C495 1-124-907-11 C496 1-163-249-11	CERAMIC CHIP ELECT CERAMIC CHIP	10MF	10% 20% 5%	50V 50V 50V	C566 C567 C568	1-106-367-00 1-136-499-11 1-124-903-11	FILM	0.047MF	5% 20%	50V
C497 1-163-011-11 C498 1-124-925-11	CERAMIC CHIP ELECT	0.0015MF 2.2MF	10% 20%	50V 50V	C569 C570 C571	1-131-351-00 1-124-360-00 1-164-232-11	TANTALUM ELECT CERAMIC CHIP	4.7MF 1000MF 0.01MF	10% 20% 10%	25V 16V 50V
C499 1-163-031-11 C500 1-164-004-11 C501 1-164-182-11	CERAMIC CHIP	0.1MF 0.0033MF	10% 10%	50V 25V 50V	C572	1-104-709-11 1-136-173-00	FILM	4.7MF 0.47MF	0 5%	160V 50V
C502 1-163-141-00 C503 1-163-251-11 C504 1-136-175-00	CERAMIC CHIP	0.001mr 100PF 0.068MF	5% 5%	50V 50V	C574 C575 C576	1-249-383-11 1-163-031-11 1-102-244-00	CERAMIC	220PF	1/4W 10%	F 50V 500V 50V
C504 1-136-175-00 C505 1-163-135-00 C506 1-124-902-00 C507 1-126-375-11	CERAMIC CHIP ELECT ELECT		5% 5% 20%	50V 50V 50V 25V	C577 C578 C579	1-124-907-11 1-136-540-11 1-126-804-11	FILM ELECT	10MF 0.82MF 100MF	20% 5% 20%	200 <b>V</b> 50V
C508 1-130-495-00 C509 1-124-935-11	MYLAR ELECT	0.1MF 470MF	20% 5% 20%	50V 100V	C580 C581 C582	1-136-756-11 1-124-927-11 1-102-002-00	FILM ELECT CERAMIC	0.24MF 4.7MF 680PF	5% 20% 10%	200V 50V 500V
C511 1-108-700-11 C512 1-124-902-00 C513 1-126-096-11	MYLAR ELECT ELECT	0.047MF 0.47MF 10MF	10% 20% 20%	200V 50V 25V	C583 C584	1-136-569-11 1-123-267-00	FILM ELECT.	1.2MF 2.2MF	5% 20%	200V 160V
C514 1-129-718-00 C515 1-163-809-11			10% 10%	630V 25V	C585 C586 C587	1-124-666-11 1-124-557-11 1-102-030-00	ELECT ELECT CERAMIC	4.7MF 1000MF 330PF	20% 20% 10%	250 <b>V</b> 25 <b>V</b> 500 <b>V</b>
C516 1-102-030-00 C517 1-163-024-00 C518 1-107-995-11 C519 1-163-017-00		100MF	10% 10% 0	500V 50V 160V	C588 C589	1-124-667-11 1-102-030-00	ELECT CERAMIC	10MF 330PF	20% 10%	50 V 500 V 50 V
C519 1-163-017-00 C520 1-163-257-11 C521 1-162-114-00	CERAMIC CHIP CERAMIC		10% 5%	50V 50V 2KV	C590 C591 C592	1-126-387-11 1-106-371-00 1-123-932-00	ELECT MYLAR ELECT	2.2MF 0.015MF 4.7MF	20% 10% 20%	200V 160V
C522 1-126-375-11 C523 1-126-801-11 C525 <b>1</b> -136-545-11	ELECT	100MF 1MF 0.0078MF	20% 20% 3%	25V 50V 2KV	C593 C594 C595	1-165-319-11 1-163-229-11 1-126-336-11	CERAMIC CHIP CERAMIC CHIP ELECT	0.1MF 12PF 220MF	5% 20%	50V 50V 25V
C526 A 1-162-116-91 C529 1-104-797-11		680PF 0.47MF	10% 20%	2KV 50V	C596 C597	1-124-478-11 1-164-346-11	ELECT CERAMIC CHIP	100MF	20%	25V 16V
C530 1-124-120-11	ELECT Elect	220MF 47MF	20% 20%	25V 25V 50V	C598 C599 C1300	1-164-346-11 1-126-157-11 1-124-477-11	CERAMIC CHIP ELECT ELECT	1MF 10MF 47MF	20% 20%	16V 16V 25V 25V
C533 1-102-212-00 C534 1-123-948-00	CERAMIC ELECT	820PF 22MF	10% 20%	500V 250V	C1301 C1302	1-124-477-11 1-163-133-00	ELECT CERAMIC CHIP		20% 5%	50V
C537 1-124-913-11 C538 1-106-367-00 C539 1-130-480-00	ELECT MYLAR FILM	470MF 0.01MF 0.0056MF	20% 10% 5%	50V 100V 50V	C1306	1-124-477-11 1-124-477-11 1-163-031-11	CERAMIC CHIP	47MF 47MF 0.01MF	20% 20%	25V 25V 50V
C540 1-163-133-00 C541 1-124-927-11 C542 1-106-351-00	CERAMIC CHIP	4.7MF	5% 20%	50V 50V	C1308	1-124-443-00	CERAMIC CHIP ELECT	100MF	20% 5%	50V 10V 50V
C543 1-106-351-00 C544 1-106-367-00	MYLAR MYLAR MYLAR	0.0022MF 0.0022MF 0.01MF	10% 10% 10%	100 <b>V</b> 100 <b>V</b> 100 <b>V</b>	C1309 C1310 C1311 C1312	1-163-257-11 1-163-031-11 1-124-477-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP ELECT CERAMIC CHIP	0.01MF 47MF	20%	50V 25V 50V
C545 1-102-212-00 C546 1-163-119-00 C547 1-163-251-11	CERAMIC CHIP CERAMIC CHIP	820PF 120PF 100PF	10% 5% 5%	500V 50V 50V	C1313	1-163-031-11	CERAMIC CHIP	0.01MF 47MF	20%	50 <b>V</b>
C548 1-102-212-00 C549 1-124-667-11	CERAMIC ELECT	820PF 10MF	10% 20%	500V 50V	C1315 C1316 C1317	1-124-477-11 1-163-031-11 1-124-477-11	ELECT CERAMIC CHIP ELECT	47MF	20% 20%	25V 25V 50V 25V 25V
C550 1-126-163-11 C551 1-106-375-12 C552 1-126-336-11	ELECT MYLAR ELECT	4.7MF 0.022MF 220MF	20% 10% 20% 5%	50 <b>V</b> 100V 25 <b>V</b>	C1318	1-124-477-11 1-163-037-11	ELECT CERAMIC CHIP		20% 10%	25V 25V 25V
C554 1-130-736-11 C555 1-124-907-11	FILM ELECT	0.01MF 10MF	20%	50V 50V	C1320 C1321 C1322	1-124-477-11 1-124-477-11 1-124-120-11	ELECT ELECT ELECT	47MF 47MF 220MF	20% 20% 20%	25 <b>V</b> 16 <b>V</b>
C556 1-124-907-11 C557 1-106-381-12 C558 1-124-903-11 C559 1-136-173-00	ELECT MYLAR ELECT	10MF 0.039MF 1MF 0.47MF	20% 10% 20% 5%	50V 100V 50V 50V	C1323	1-163-031-11 1-163-031-11 1-163-031-11	CERAMIC CHIP CERAMIC CHIP CERAMIC CHIP	0.01MF		50V 50V 50V
		O TIN	J.n.	JU1	C1325	וו ונט נטו ו	CERTAIN CHIL	A. Olin.		,

							1 4	A (PVI	VI-74	454QM)
REF.NO.	PART NO.	DESCRIPTION		REMARK	REF. NO.	PART NO.	<u> </u>			REMARK
C1326 C1327	1-124-477-11	ELECT 47MF CERAMIC CHIP 0.01MF	20%	25V 50V	C1408	1-163-113-00	CERAMIC CHIP	68PF	5%	50 <b>V</b>
C1328 C1329 C1330	1-163-031-11 1-124-907-11 1-163-031-11	CERAMIC CHIP O.O1MF ELECT 10MF CERAMIC CHIP O.O1MF	20%	50V 50V 50V	C1500 C1501 C1502 C1503	1-124-473-11 1-124-472-11 1-101-821-00 1-164-004-11	CERAMIC	1000MF 470MF 0.0022MF 0.1MF	20% 20% 10%	10V 10V 500V 25V
C1331 C1332 C1333 C1334 C1335	1-124-477-11 1-124-477-11 1-124-477-11 1-163-227-11 1-124-477-11	ELECT 47MF ELECT 47MF ELECT 47MF CERANIC CHIP 10PF ELECT 47MF	20% 20% 20% 0.5PF 20%	25V 25V 25V 50V 25V	C1504 C1505 C1506 C1507	1-124-907-11 1-136-165-00 1-124-119-00 1-163-141-00	FILM ELECT CERAMIC CHIP	10MF 0.1MF 330MF 0.001MF	20% 5% 20% 5%	50Y 50Y 16Y 50Y
C1336 C1338	1-124-477-11 1-163-031-11	ELECT 47MF CERANIC CHIP 0.01MF CERANIC CHIP 0.01MF	20%	25V 50V 50V	C1509	1-124-927-11 1-124-907-11 1-124-927-11	ELECT	4.7MF	20% 20% 20%	50V 50V
C1340 C1341	1-163-031-11 1-163-275-11	CERAMIC CHIP 0.01MF CERAMIC CHIP 0.001MF	5%	50 <b>V</b> 5 <b>0V</b>	C1511 C1512	1-124-927-11 1-164-182-11 1-124-927-11 1-163-133-00	CERAMIC CHIP	0.0033MF 4.7MF	10%	507 507 507 507
C1342 C1343 C1344 C1345 C1346	1-102-963-00 1-163-113-00 1-163-083-00 1-124-907-11 1-124-477-11	CERAMIC 33PF CERAMIC CHIP 68PF CERAMIC CHIP 1PF ELECT 10MF ELECT 47MF	5% 5% 0.25PF 20% 20%	50V 50V 50V 50V 25V	C1514 C1515 C1516 C1517	1-130-477-00 1-124-907-11 1-163-063-00 1-126-101-11	MYLAR ELECT CERAMIC CHIP ELECT	0.0033MF 10MF 0.022MF 100MF	5% 5% 20% 10% 20%	50V 50V 50V 10V
G1347 C1348	1-163-031-11 1-163-127-00			50V 50V	C1519	1-124-477-11 1-163-037-11	CERAMIC CHIP		20% 10%	16V 25V
C1350	1-163-117-00 1-164-232-11 1-124-903-11	CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF ELECT 1MF	5% 5% 10% 20%	50V 50V 50V	C1521	1-163-243-11			5%	50¥
C1352	1-163-023-00	CERAMIC CHIP 0.015MF	10%	50 <b>V</b>	į					
		CERAMIC CHIP 0.015MF CERAMIC CHIP 0.01MF CERAMIC CHIP 150PF CERAMIC CHIP 220PF CERAMIC CHIP 22PF		50V 50V 50V 50V	CN102 CN104 CN105	*1-573-979-11 *1-564-514-11 *1-564-506-11 *1-565-503-11 *1-564-506-11	PLUG, CONNECT PLUG, CONNECT CONNECTOR, BO	'OR 11P 'OR 3P Iard to Boari		
		ELECT 330MF ELECT 47MF CERAMIC CHIP 330PF CERAMIC CHIP 0.0022MF CERAMIC CHIP 82PF		16V 25V 50V 50V 50V	CN301 CN302 CN303 CN304	*1-564-514-11 *1-564-510-11 *1-564-515-11 *1-564-509-11 *1-565-504-11	PLUG, CONNECT PLUG, CONNECT PLUG, CONNECT PLUG, CONNECT	OR 11P OR 7P OR 12P OR 6P	D 13P	
C1363 C1364 C1365 C1366 C1367	1-163-235-11 1-163-133-00 1-163-227-11 1-124-477-11 1-124-477-11	CERAMIC CHIP 22PF CERAMIC CHIP 470PF CERAMIC CHIP 10PF ELECT 47MF ELECT 47MF		50V 50V 50V 25V 25V	CN401 CN402 CN501 CN502	*1-564-511-11 *1-564-515-11 *1-580-798-11 *1-573-964-11 *1-573-964-11	PLUG, CONNECT PLUG, CONNECT CONNECTOR PIN PIN, CONNECTO	OR 8P OR 12P (OY) 6P OR (PC BOARD)	) 6P	
C1370 C1372 C1373	1-163-237-11 1-163-237-11 1-124-477-11 1-124-477-11 1-124-477-11	CERAMIC CHIP 27PF CERAMIC CHIP 27PF ELECT 47MF ELECT 47MF ELECT 47MF	20%	50V 50V 25V 25V 25V	CN504 : CN505 : CN506	*1-564-508-11 *1-564-506-11 1-249-383-11 *1-535-419-00	PLUG, CONNECT PLUG, CONNECT CARBON.	TOR 5P TOR 3P 1.5 5%		F
C1378	1-124-927-11 1-163-097-00	CERAMIC CHIP 15PF	20% 5%	50 <b>V</b> 50 <b>V</b>		<com< td=""><td>POSITION CIRCU</td><td>JIT BLOCK&gt;</td><td></td><td></td></com<>	POSITION CIRCU	JIT BLOCK>		
C1381	1-163-101-00 1-163-101-00 1-124-443-00	CERAMIC CHIP 22PF CERAMIC CHIP 22PF ELECT 100MF	5% 5% 5% 20%	50V 50V 10V	CP301	1-236-366-11 1-236-365-11 1-808-654-21	MODULE, TRAP MODULE, TRAP MODULE			
C1384 C1385 C1386		ELECT 47MF CERAMIC CHIP 0.1MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF CERAMIC CHIP 0.01MF	20%	25V 25V 50V 50V 50V	CP303	1-466-162-61 <dio< td=""><td>FILTER BLOCK, DE&gt;</td><td>COM (CFB-4</td><td><b>)</b> -</td><td></td></dio<>	FILTER BLOCK, DE>	COM (CFB-4	<b>)</b> -	
C1400 C1401 C1402	1-163-251-11 1-163-031-11 1-136-173-00 1-163-031-11 1-136-173-00	CERAMIC CHIP 100PF CERAMIC CHIP 0.01MF FILM 0.47MF CERAMIC CHIP 0.01MF FILM 0.47MF	5% 5% 5%	50 <b>V</b> 50 <b>V</b> 50 <b>V</b> 50 <b>V</b> 50 <b>V</b>	D101 D102 D103 D104 D105	8-719-800-76 8-719-800-76 8-719-045-70 8-719-800-76 8-719-800-76	DIODE 1SS226 DIODE 1SS226 DIODE 1SV2301 DIODE 1SS226 DIODE 1SS226	ГРНЗ		
C1404 C1405 C1406	1-164-299-11 1-163-235-11 1-163-090-00	CERAMIC CHIP 0.22MF CERAMIC CHIP 22PF CERAMIC CHIP 7PF CERAMIC CHIP 2PF	10% 5% 0.25PF 0.25PF	25¥ 50¥ 50¥	D106 D107 D108 D109 D110	8-719-901-33 8-719-800-76 8-719-901-33 8-719-801-78 8-719-404-46	DIODE 1SS133 DIODE 1SS226 DIODE 1SS133 DIODE 1SS184 DIODE MA110			

- L	- ₩	1717 1 TOT	Givi)				
	.NO.	PART NO.	DESCRIPTION	}	PART NO.	DESCRIPTION	REMARK
D 1 D 1 D 1	111 112 113 114	8-719-404-46 8-719-159-06 8-719-404-46	DIODE DTZ6.2 DIODE MA110 DIODE RD4.7SB-T2 DIODE MA110 DIODE DTZ6.2	D408 D410 D411	8-719-404-46 8-719-404-46 8-719-404-46 8-719-801-78	DIODE MAIIO DIODE MAIIO	
D1 D2 D3 D3	116 200 300 301	8-719-404-46 8-719-977-46 8-719-025-07 8-719-404-46	DIODE MA110 DIODE DTZ13C DIODE 1SY232-TPH3 DIODE MA110 DIODE RD4.7SB-T2	D415 D416 D417 D418	8-719-801-78 8-719-801-78 8-719-801-78 8-719-801-78	DIODE 155184 DIODE 155184 DIODE 155184 DIODE 155184	
D3 D3 D3	302 303 304 305 306	8-719-977-05 8-719-801-78 8-719-800-76 8-719-104-34	DIODE 153226 DIODE 152836	D424	8-719-800-76	DIODE MA110 DIODE 1SS226 DIODE MA110 DIODE 1SS226	
D3 D3 D3	08 09 10	8-719-404-46 8-719-104-34	DIODE 188133 DIODE MA110	D426 D427 D500 D501 D502	8-719-404-46 8-719-404-46	DIODE MA110 DIODE DTZ5.6B	
D3 D3	13 14 15	8-719-801-78 8-719-404-46 8-719-404-46	DIODE 1SS184 DIODE MA110	D503 D504 D505	8-719-404-46 8-719-901-83 8-719-028-72	DIODE MAIIO	
D3 D3	18 19 20	8-719-800-76 8-719-800-76 8-719-404-46 8-719-404-46	DIODE 155226 DIODE 155226 DIODE MAILO DIODE MAILO	D507 D508 D509 D510	8-719-800-76 8-719-800-76 8-719-404-46 8-719-302-43	DIODE 1SS226 DIODE 1SS226 DIODE MAIIO DIODE EL1Z	
D3 D3 D3	23 24 25	8-719-404-46 8-719-045-70 8-719-801-78	DIODE MAIIO DIODE ISV230TPH3 DIODE ISS184 DIODE ISV230TPH3 DIODE ISV230TPH3 DIODE IS2836	D512 D513 D514 D515 D516		DIODE MA110 DIODE ERC38-06 DIODE ERC38-06	
D3 D3	32 33 35	8-719-104-34 8-719-404-46 8-719-404-46 8-719-404-46	DIODE MAIIO DIODE MAIIO DIODE MAIIO	D517 D518 D519 D520 D521	8-719-404-46 8-719-404-46 8-719-404-46 8-719-801-78 8-719-901-33	DIODE MA110 DIODE MA110 DIODE 1SS184	
D3 D3 D3	37 38 39	8-719-404-46 8-719-404-46 8-719-404-46 8-719-159-06	DIODE MAILO	D522 D523 D524 D525	8-719-901-33 8-719-977-05 8-719-404-46 8-719-200-02 8-719-200-02	DIODE DTZ6.2 DIODE MAIIO DIODE 10E-2	
D3 D3 D3	45 46 47	8-719-104-34 8-719-104-34 8-719-104-34	DIODE ISS184 DIODE IS2836 DIODE IS2836 DIODE IS2836 DIODE ISS226	D526 D527 D528 D529	8-719-404-46 8-719-200-02 8-719-300-76 8-719-200-02	DIODE MA11G DIODE 10E-2 DIODE RH-1A DIODE 10E-2	
D3 D3 D3	50 51 52	8-719-800-76 8-719-800-76 8-719-800-76 8-719-800-76 8-719-800-76	DIODE 1SS226 DIODE 1SS226 DIODE 1SS226 DIODE 1SS226 DIODE 1SS226	D530 D531 D532 D533	8-719-300-76 8-719-977-32 8-719-800-76 8-719-302-43	DIODE DTZ11B DIODE 1SS226 DIODE EL1Z	
D3 D3 D3	54 55 60	8-719-800-76 8-719-800-76 8-719-104-34	DIODE 188226 DIODE 188226 DIODE 182836	D534 D535 D536	8-719-404-46 8-719-404-46 8-719-800-76 8-719-800-76	DIODE MA110 DIODE MA110 DIODE 1SS226	
D3 D3 D3	62 63 64	8-719-104-34 8-719-158-40 8-719-158-40 8-719-104-34	DIODE 152836 DIODE RD105B1 DIODE RD105B1 DIODE 152836	D538 D539 D540 D541	8-719-800-76 8-719-404-46 8-719-404-46 8-719-801-78	DIODE 1SS226 DIODE MA110 DIODE MA110 DIODE ISS184	
D3 D4	81 101	8-719-404-46 8-719-404-46 8-719-404-46	DIODE MAIIO DIODE MAIIO DIODE MAIIO	D542		DIODE 188133 AY LINE>	
D4 D4	105 106	8-719-800-76 8-719-801-78 8-719-404-46 8-719-404-46	DIODE 1SS226 DIODE 1SS184 DIODE MA110 DIODE MA110	DL301	1-415-633-11 1-415-632-11 1-409-547-11	DELAY LINE, Y DELAY LINE, Y DELAY LINE	

The components identified by shading and mark  $\hat{\Delta}$  are critical for safety.
Replace only with part number specified.

REF.NO.	PART NO.	DESCRIPTION	REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
Flann	<f1l 1-236-547-11</f1l 	TER> TRAP, LC FILTER, BAND PASS		IC507 IC508 IC509 IC510	8-759-100-60 8-752-053-21 8-759-998-98 8-759-009-51	IC CXA1211M IC LM358D		
FL401	1-236-364-11	FILTER, BAND PASS			<c01< td=""><td>L&gt;</td><td></td><td></td></c01<>	L>		
	<1C>			L101 L102	1-408-609-41 1-408-417-00	INDUCTOR	33UH 47UH	
IC103 IC104	8-759-196-71 8-759-168-37 8-759-008-48 8-759-262-59	TER> TRAP, LC FILTER, BAND PASS  IC UPD78013YCW-Y03 IC ST24C01B1 IC MC74HC86F IC UPD6451AGT-632-E2 IC M62358FP-E1 IC MC14094BF IC AM5265 IC CXA121IM IC LM358D IC CXA121IM IC LM358D IC CXA1214P  IC XRU4053BCF-E2 IC M51279FP IC NJM2245M IC NJM2245M IC XRU4063BCF-E2 IC XRU4066BCF		L104 L105 L300	1-408-425-00 1-410-482-31 1-410-478-11	INDUCTOR INDUCTOR	220UH 100UH 47UH	
10106	8-759-196-70 8-759-196-70	IC M62358FP-E1		L301 L302 L303	1-408-411-00 1-412-008-31 1-408-416-00	INDUCTOR CHIP	150H 150H 390H	
IC107 IC108 IC109	8-759-196-70 8-759-042-02 8-759-196-70	IC M62358FP-E1 IC S-80743AL-A7-S IC M62358FP-E1		L304 L305	1-412-008-31 1-410-196-11	INDUCTOR CHIP INDUCTOR CHIP	15UH 2.2UH	
10111	8-759-196-70 8-759-009-22	1C M62358FP-E1 1C MC14094BF		L306 L307 L308	1-408-416-00 1-408-411-00 1-410-466-41	INDUCTOR Inductor	39UH 15UH 4.7UH	
10200 10301 10302	8-759-420-04 8-752-053-21 8-759-998-98	IC AN5265 IC CXA1211M IC LM358D		L309 L311	1-410-470-11 1-410-470-11	INDUCTOR INDUCTOR	10UH 10UH	
10303 10304	8-752-056-67	IC CXA1214P IC XRU4053BCF-E2		L312 L314	1-412-011-31 1-412-011-31 1-412-011-31	INDUCTOR CHIP INDUCTOR CHIP INDUCTOR CHIP	27UH 27UH 27UH	
10305 10306	8-759-631-08 8-759-711-32	1C M51279FP 1C NJM2245M		L317 L319	1-412-011-31 1-410-090-41 1-408-421-00	INDUCTOR INDUCTOR	18MMH 100UH	
	8-759-711-32 8-759-509-19.	IC XRU4053BCF-E2		L320 L401	1-410-478-11 1-410-478-11	INDUCTOR INDUCTOR	47UH 47UH	
10311 10312 10313	8-759-711-32 8-759-501-21	IC XRU4066BCF IC NJM2245M IC MM1149XF		L402 L403 L404	1-410-216-31 1-410-216-31 1-410-216-31	INDUCTOR CHIP INDUCTOR CHIP INDUCTOR CHIP	100UH 100UH 100UH	
10314 10315	8-759-501-21 8-759-509-19	IC MM1149XF IC XRU4053BCF-E2	ı	L405 L406	1-408-419-00	INDUCTOR INDUCTOR	68UH 68UH	
10316 10317 10318	8-759-009-51	IC MM1148XF IC MC14538BF IC XRU4584BF		L407 L408 L409	1-408-419-00 1-408-413-00 1-408-413-00 1-410-214-31	INDUCTOR INDUCTOR INDUCTOR CHIP	22UH 22UH	
10320 10321	8-759-501-21	IC XRU4053BCF-E2 IC M51279FP IC NJM2245M IC NJM2245M IC XRU4063BCF-E2 IC XRU4066BCF IC NJM2245M IC MM1149XF IC MM1149XF IC XRU4053BCF-E2 IC MM1149XF IC XRU4053BCF-E2 IC MM149XF		L500 L501	1-459-155-00 1-407-365-00	COIL (WITH COR		
10322 10323 10324	8-759-501-21	IC MM1149XF IC MM1149XF IC MM1149XF		L502 L503 L504	1-407-365-00 1-410-093-11 1-410-666-31	COIL, CHOKE INDUCTOR INDUCTOR	33MMH 18UH	
10325 10326	8-759-501-21	IC MM1149XF IC BA10324AF		L505	1-410-671-31	INDUCTOR	47UH	
10401	8-759-196-69	IC UPC4558G2 IC BA7655AF-E2		L507 L508 L509	1-410-686-11 1-412-530-31 1-459-075-11	INDUCTOR INDUCTOR COIL, DYNAMIC	1MMH 27UH CONVERSION CHOKE	
1C403	8-752-053-21 8-759-509-05 8-752-052-62	IC CXA1211M IC XRU4066BCF IC CXA1478S		1 1717	1-459-155-00	COIL, DUST COR	E) 45UH	
1C405 1C406	8-759-509-19 8-759-998-98	IC XRU4053BCF-E2 IC LM358D		1 L514	1-412-447-11 1-459-104-00 1-459-059-00	INDUCTOR COIL, DUST COR COIL, DUST COR		
1C407 1C408 1C409	8-759-509-05 8-759-509-91 8-759-060-00	IC XRU4066BCF IC XRA10393F IC BA10324AF		L516 ▲	1-459-760-13	COIL, HORIZONT	AL LINEARITY 680UH	
10410	8-759-932-64	1C BU4052BCF 1C MC14024BF				IN LAMP>		
IC412 IC413	8-759-509-19 8-759-509-19 8-749-010-07	IC XNU4053BCF-E2 IC XRU4053BCF-E2 IC H8D7248		NL500	1-519-526-11			
10503	8-759-009-51 8-759-009-51	IC MC14538BF IC MC14538BF				NSISTOR>		
10505	8-752-053-21 8-759-520-07 8-759-009-51	IC CXA1211M IC XRA17812T IC MC14538BF		Q101 Q102 Q103 Q104	8-729-216-22 8-729-216-22	TRANSISTOR DTC TRANSISTOR 2SA TRANSISTOR 2SA TRANSISTOR IMX	1162- <b>G</b> 1162- <b>G</b>	

REF. NO.	PART NO.	DESCRIPTION	REMARK	REF. NO.	PART NO.	DESCRIPTION	REMARK
Q105 Q107 Q108 Q109 Q110	8-729-901-06 8-729-901-06 8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR DTA144EK TRANSISTOR DTA144EK TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		0356 0357 0358 0359		TRANSISTOR DTC144EK  TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G TRANSISTOR IMX1 TRANSISTOR DTA144EK	
Q111 Q112 Q113 Q114 Q200	8-729-901-06 8-729-120-28 8-729-120-28 8-729-119-78 8-729-140-96	DESCRIPTION		Q361 Q362 Q363 Q364 Q365	8-729-120-28	TRANSISTOR DTA144EK  TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SC1623-L5L6  TRANSISTOR DTC144EK  TRANSISTOR DTC144EK  TRANSISTOR 2SA1162-G	
9201 9300 9301 9302 9303	8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6		Q366 Q367 Q368 Q369 Q372		TRANSISTOR 2SA1162-G  TRANSISTOR 2SA1162-G  TRANSISTOR 2SA1162-G  TRANSISTOR DTA144EK  TRANSISTOR DTC144EK  TRANSISTOR DTC144EK	
Q304 Q305 Q306 Q307 Q308	8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		Q376 Q377 Q378 Q401 Q402	8-729-001-06	TRANSISTOR DTC144EK  TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144EK	
Q309 Q310 Q311 Q312 Q313	8-729-216-22 8-729-216-22 8-729-216-22 8-729-120-28 8-729-216-22	TRANSISTUR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G		Q404 Q405 Q406 Q407	8-729-216-22 8-729-216-22 8-729-120-28 8-729-120-28	TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSTSTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6	
Q314 Q315 Q316 Q318 Q319	8-729-901-06 8-729-216-22 8-729-120-28 8-729-216-22 8-729-120-28	TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		Q409 Q410 Q411 Q412	8-729-216-22	TRANSISTOR 2SA1162-G  TRANSISTOR 1MX1 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G TRANSISTOR 2SK94-X2X3X4	
Q320 Q321 Q322 Q323 Q324	8-729-119-78 8-729-120-28 8-729-120-28 8-729-901-01 8-729-901-01	TRANSISTOR 25C2/85-HPE TRANSISTOR 25C1623-L5L6 TRANSISTOR 25C1623-L5L6 TRANSISTOR DTC144EK TRANSISTOR DTC144EK		Q414 Q415 Q416 Q417		TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6	
Q325 Q326 Q327 Q328 Q329	8-729-120-28 8-729-120-28 8-729-216-22 8-729-141-53 8-729-141-53	TRANSISTUR 25C1623-L5L6 TRANSISTOR 25C1623-L5L6 TRANSISTOR 25A1162-G TRANSISTOR 25K94-X2X3X4 TRANSISTOR 25K94-X2X3X4		Q418 Q419 Q420 Q421 Q422	8-729-216-22 8-729-216-22 8-729-901-01	TRANSISTOR 2SC1623-L5L6  TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6	
Q330 Q331 Q332 Q333 Q334	8-729-216-22 8-729-216-22 8-729-901-01 8-729-120-28 8-729-216-22	TRANSISTOR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G		Q423 Q424 Q425 Q426 Q428	8-729-901-01 8-729-901-01 8-729-901-01	TRANSISTOR 25C1623-L5L6  TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 25A1162-G	
Q335 Q336 Q337 Q338 Q339	8-729-120-28 8-729-109-44 8-729-120-28 8-729-120-28 8-729-216-22	TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SK94-X4 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SA1162-G		Q429 Q430 Q431 Q432 Q433	8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR 2SA1162-G  TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144EK	
Q341 Q342 Q343 Q345 Q346	8-729-920-39 8-729-920-39 8-729-920-39 8-729-120-28 8-729-120-28	TRANSISTOR IMT1US TRANSISTOR IMT1US TRANSISTOR IMT1US TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		Q434 Q435 Q436 Q437 Q438	8-729-120-28 8-729-901-01 8-729-901-01 8-729-901-01	TRANSISTOR 2SC1623-L5L6  TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR DTC144EK TRANSISTOR 2SC1623-L5L6	
Q347 Q348 Q349 Q350 Q351	8-729-901-01 8-729-216-22 8-729-216-22 8-729-216-22 8-729-120-28	TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G TRANSISTUR 2SA1162-G TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6		Q439 Q440 Q441 Q442	8-729-216-22 8-729-120-28 8-729-141-53 8-729-120-28	TRANSISTOR 2SA1162-G  TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SK94-X2X3X4 TRANSISTOR 2SC1623-L5L6	
Q352 Q353 Q354 Q355	8-729-120-28 8-729-120-28 8-729-120-28 8-729-120-28	TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6 TRANSISTOR 2SC1623-L5L6		Q443 Q444 Q445 Q500		TRANSISTOR 2SA1162-G TRANSISTOR 2SC1623-L5L6 TRANSISTOR DTC144EK TRANSISTOR 2SA1162-G	

Δ	(PVM-1454QM)
A	(PVM-1454QM)

									A (I	ZVN	1-14	54QM)	Ì
	PART NO.				REMARK	REF. NO.	PART NO.	DESCRIPTION				REMARK	-
9501 9502 9503 9505 9506	8-729-800-35 8-729-119-80 8-729-313-42 8-729-120-28	TRANSISTOR 2: TRANSISTOR 2: TRANSISTOR 2: TRANSISTOR 2:	5D1397- 5C2688- 5D1134- 5C1623-	CA LK C L5L6		R135 R136 R137	1-216-085-00 1-216-295-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	33K 0 4.7K	57 57 57	1/10W 1/10W 1/10W		
9507 9508 9509 9510	8-729-120-28 8-729-216-22 8-729-901-06 8-729-900-89	TRANSISTOR 25 TRANSISTOR 25 TRANSISTOR DT TRANSISTOR DT	5C1623- 5A1162- FA144EK FC144ES	LSL6 G		R139 R140 R141 R142	1-216-295-00 1-216-295-00 1-216-033-00 1-216-085-00 1-216-295-00		0 0 220 33K 0		1/10W 1/10W 1/10W 1/10W 1/10W		
Q511 Q512 Q513 Q514 Q515	8-729-120-28 8-729-195-82 8-729-122-03 8-729-901-00 8-729-169-02	TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR DT TRANSISTOR 2S	5C1623- 5C2958- 5A1220A 5C124EK	L5L6 L -P -0		R143 R144 R145 R147 R148	1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 0 0 0	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		
Q517 Q518 Q519 Q520	8-729-901-06 8-729-901-01 8-729-901-01 8-729-905-67	TRANSISTOR DT TRANSISTOR DT TRANSISTOR DT TRANSISTOR 28	A144EK C144EK C144EK D1944-	K		R149 R150 R151 R152 R153	1-216-065-00 1-216-295-00 1-216-061-00 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 0 3.3K 0	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		
Q522 Q523 Q524 Q525 Q526	8-729-119-78 8-729-119-78 8-729-119-76 8-729-216-22	TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S	C1623- C1623- C2785- A1175- A1162-	LSL6 LSL6 HFE HFE		R154 R155 R156 R157 R158	1-216-065-00 1-249-434-11 1-216-295-00 1-216-065-00 1-216-295-00	METAL GLAZE	4.7K 27K 0 4.7K 0	5% 5% 5% 5% 5%	1/10W 1/4W 1/10W 1/10W 1/10W		
Q527		TRANSISTOR 2S	C1623-	L5L6		R159 R160	1-216-063-00 1-216-061-00 1-216-065-00	METAL GLAZE	3.9K 3.3K 4.7K 4.7K 5.6K		1/10W 1/10W 1/10W		
JR122 JR123	1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE	0	5% 5%	1/10W 1/10W	R163 R164	1-216-065-00 1-216-067-00	METAL GLAZE METAL GLAZE			1/10W 1/10W		
JR302 R101 R102	1-216-295-00 1-216-295-00 1-216-295-00 1-216-025-00 1-216-025-00			5% 5% 5%	1/10W	R165 R167 R168	1-216-295-00 1-216-061-00 1-216-085-00 1-216-107-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 3.3K 33K 270K 0	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		
R105	1-216-025-00 1-216-073-00 1-216-059-00 1-216-065-00 1-216-065-00	METAL GLAZE	100 10K 2.7K 4.7K 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	R170 R171 R172 R173	1-216-295-00 1-216-031-00 1-216-295-00 1-216-295-00	METAL GLAZE	180	52	1/10W 1/10W 1/10W 1/10W		
R108 R109	1-216-065-00 1-216-065-00 1-216-073-00	METAL GLAZE		5% 5%	1/10W 1/10W	R174 R175	1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0	5%	1/10W 1/10W		
R111 R112	1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE	4.7K 4.7K 10K 0	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	R177 R180 R181 R183	1-216-065-00 1-216-295-00 1-216-065-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 0 4.7K 0	つる	1/10W 1/10W 1/10W 1/10W		
R114	1-216-085-00 1-216-295-00 1-216-295-00 1-218-761-11 1-216-089-91	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	33K 0 0 240K 47K	5%	1/10W 1/10W 1/10W 1/10W 1/10W	R186 R187	1-216-073-00 1-216-295-00 1-216-061-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	820	0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W		
R118 R119 R120 R121	1-216-295-00 1-216-689-11 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 39K 0	5% 5% 5%	1/10W 1/10W 1/10W	R188 R189	1-216-295-00 1-216-073-00 1-216-049-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 10K 1K 10K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		
R121 R122 R123	1-216-295-00	METAL GLAZE METAL GLAZE	0	5% 5%	1/10W 1/10W 1/10W 1/10W	R193 R194 R195	1-216-295-00 1-216-295-00 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	0 0 8.2K	5% 5%	1/10W 1/10W 1/10W		
R124 R125 R126 R127	1-216-295-00 1-216-295-00 1-216-295-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 0 0	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	R197 R198 R199 R200	1-216-061-00 1-216-295-00 1-216-295-00 1-216-686-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	3.3K 0 0 30K	5% 5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W		
R128 R129 R130 R131 R132	1-216-295-00 1-216-295-00 1-216-099-00 1-216-295-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 ·0 120K 0 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R201 R202 R203 R204	1-216-049-00 1-212-857-00 1-260-095-11	METAL GLAZE FUSIBLE CARBON CARBON	1K 10 470 4.7	5% 5% 5%	1/10W 1/4W 1/2W 1/2W	F	
R133 R134	1-216-091-00 1-216-065-00	METAL GLAZE METAL GLAZE	56K 4.7K	5% 5%	1/10W 1/10W	R205 R206	1-260-072-11 1-216-647-11 1-216-073-00	METAL CHIP METAL GLAZE	680 10K	0.50% 5%	1/10W 1/10W		

### PVM-1450QM/1454QM

	DART NO				DEWARY	ince vo	0407 110	DECEDIDATON.				D8111011
KEP.NU.	PART NO.	DESCRIPTION			KEMAKK	KEF.NU.	PART NO.	DESCRIPTION				REMARK
R207 R208 R209 R210 R211	1-216-065-00 1-216-065-00 1-216-073-00 1-216-061-00 1-249-393-11	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 4.7K 10K 3.3K 10	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/4W F	R362 R363 R364 R366 R367	1-216-067-00 1-216-113-00 1-216-113-00 1-216-065-00 1-216-051-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	5.6K 5 470K 5 470K 5 4.7K 5 1.2K 5	5 <b>9</b>	1/10W 1/10W 1/10W 1/10W 1/10W	
R237 R301 R302 R303 R304	1-216-089-91 1-216-025-00 1-216-025-00 1-216-025-00 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE		5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R368 R371 R372 R373 R374	1-216-051-00 1-216-049-00 1-216-069-00 1-216-053-00 1-216-645-11 1-216-647-11	METAL GLAZE	6.8K 5		1/10W 1/10W 1/10W 1/10W	
R305 R306 R307 R308 R311	1-216-295-00 1-216-295-00 1-216-115-00 1-216-065-00 1-216-055-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	0 0 560K 4.7K 1.8K		1/10W 1/10W 1/10W 1/10W 1/10W	R375 R376 R378 R379 R380	1-216-053-00 1-216-111-00 1-216-111-00 1-216-069-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	680 0 1.5K 5 390K 5 390K 5 6.8K 5 4.7K 5 39K 5	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R312 R313 R314 R315 R316	1-216-099-00 1-216-049-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 820 120K 120K 1K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R381 R382 R383 R384 R385	1-216-689-11 1-216-107-00 1-216-061-00 1-216-073-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	39K 5 270K 5 3.3K 5 10K 5 4.7K 5 56K 5		1/10W 1/10W 1/10W 1/10W 1/10W	
R317 R318 R319 R320 R321	1-216-069-00 1-216-057-00 1-216-051-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 1K 6.8K 2.2K 1.2K		1/10W 1/10W 1/10W 1/10W 1/10W	R386 R387 R388 R389 R390	1-249-438-11 1-216-029-00 1-216-033-00 1-216-645-11 1-249-393-11	CARBON  METAL GLAZE  METAL GLAZE  METAL CHIP  CARBON	150 5 220 5	7 7 1. 50%	1/4W	F
R322 R323 R324 R325 R326	1-216-101-00 1-216-037-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	270 330K 150K 330 220			R391 R393 R394 R395 R396	1-216-113-00 1-216-073-00 1-216-083-00 1-216-647-11 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	10K 5 27K 5 680 0 470K 5	7 7 7.50%	1/10W	
R328 R329 R330 R331 R332	1-216-093-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1 M 1 . 8 K 47 K 68 K 100 K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	R397 R398 R399 R401 R402	1-216-113-00 1-216-105-00 1-216-111-00 1-216-053-00 1-216-053-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 5 220K 5 390K 5 1.5K 5 6.8K 5	7 7 7	1/10W 1/10W 1/10W 1/10W 1/10W	
R333 R334 R335 R336 R337	1-216-083-00 1-216-065-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 68K 27K 4.7K 10K	5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R403 R404 R406 R407 R408 R410	1-216-069-00 1-216-029-00 1-216-083-00 1-216-085-00 1-216-689-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	150 5 27K 5 33K 5	Ž	1/10W 1/10W 1/10W 1/10W 1/10W	
R338 R339 R340 R341 R342	1-216-065-00	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE		5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W	R411 R412 R413	1-216-069-00 1-216-033-00 1-216-089-91	METAL CHIP	6.8K 5 220 5 47K 5 5.1K 0 470K 5	5% 5% 1.50%	1/10W 1/10W	
R344 R344 R345 R346 R347	1-216-095-00 1-216-099-00 1-216-063-00 1-216-057-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	82K 120K 3.9K 2.2K 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	R417 R418 R419 R420 R422	1-216-665-11 1-216-667-11 1-216-065-00 1-216-689-11 1-216-073-00	METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	3.9K 0 4.7K 0 4.7K 5 39K 5 10K 5	).50% 5%		
R348 R349 R350 R351 R352	1-216-031-00 1-216-694-11 1-216-085-00 1-216-061-00 1-216-675-11	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE METAL CHIP	180 62K 33K 3.3K 10K	5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W	R423 R424 R425 R426 R427	1-216-073-00 1-216-033-00 1-216-049-00 1-216-039-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220 5	7 7 7	1/10W 1/10W 1/10W 1/10W 1/10W	
R353 R354 R355 R356 R357	1-216-049-00 1-259-877-11 1-216-059-00 1-216-689-11 1-216-121-00	METAL GLAZE CARBON METAL GLAZE METAL GLAZE METAL GLAZE	1K 1.2M 2.7K 39K 1M	5% 5%	1/10W 1/4W 1/10W 1/10W 1/10W	R428 R429 R430 R431 R432	1-216-097-00 1-216-073-00 1-216-119-00 1-216-097-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE		2 2 3 4	1/10W 1/10W 1/10W 1/10W 1/10W	
R358 R359 R360 R361	1-216-053-00 1-216-065-00 1-216-039-00 1-216-017-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.5K 4.7K 390 47	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	R434 R435 R436	1-216-109-00 1-216-105-00 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE		5%	1/10W 1/10W 1/10W	

									H (1	<b>-</b> A 18	1-14	34WIYI)
REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R437 R438 R439 R440 R441	1-216-097-00 1-216-053-00 1-216-033-00 1-216-049-00 1-216-645-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	100K 1.5K 220 1K 560	5% 1/ 5% 1/ 5% 1/ 5% 1/ 0.50% 1/	10W 10W 10W 10W 10W	R504 R505 R506 R507	1-216-111-00 1-216-067-00 1-216-073-00 1-216-083-00	METAL GLAZE METAL GLAZE METAL GLAZE	390K 5.6K 10K 27K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R442 R443 R444 R445 R447	1-216-647-11 1-216-049-00 1-216-105-00 1-216-095-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1K 220K 82K 6.8K	5% 1/ 5% 1/ 5% 1/		R508 R509 R510 R511 R512 R513	1-216-105-00 1-216-089-91 1-216-097-00 1-216-099-00 1-216-055-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	220K 47K 100K 120K 1.8K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W 1/10W	
R448 R449 R450 R451 R452	1-216-049-00 1-216-073-00 1-216-121-00 1-216-037-00 1-216-651-11 1-216-097-00	METAL GLAZE METAL GLAZE	1K	5% 1/ 5% 1/ 5% 1/ 0.50% 1/	10M 10M 10M	R514 R515 R516 R517 R518 R519	1-216-295-00 1-216-675-11 1-216-103-91 1-214-888-00 1-260-123-11 1-216-017-00	METAL CHIP METAL CHIP METAL GLAZE METAL CARBON METAL GLAZE	0 10K 180K 10K 100K 47	5% n 50%	1/10W	
R455 R456 R457 R458	1-216-085-00 1-216-053-00 1-216-025-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 33K 1.5K 100 470K	5% 1/ 5% 1/ 5% 1/ 5% 1/ 5% 1/ 0.50% 1/	10W 10W 10W	R520 R521 R522 R523 R524	1-249-423-11 1-216-065-00 1-260-111-11 1-215-892-11 1-216-093-00		3.3K 4.7K 10K 1K 68K		1/4W 1/10W 1/2W	F
R460 R462 R463 R464	1-216-073-00 1-216-651-11 1-216-065-00 1-216-065-00 1-216-025-00	METAL GLAZE METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	10K 1K 4.7K 4.7K	5% 1/ 0.50% 1/ 5% 1/ 5% 1/	OM OM OM	R525 R526 R527 R528 R529	1-216-069-00 1-216-089-91 1-216-089-91 1-216-089-91 1-216-089-91		6.8K 47K 47K 47K 47K 47K		1/10W 1/10W 1/10W 1/10W 1/10W	
R467 R468 R469	1-216-121-00 1-216-105-00 1-216-063-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	3.9K	5% 1/1 5% 1/1 5% 1/1 5% 1/1 5% 1/1	OM OM OM	R530 R531 R532 R533 R534	1-216-367-11 1-216-077-00 1-215-919-11 1-247-723-11 1-216-085-00		0.68 15K 2.2K 6.8K 33K			F F
R472 R473 R474 R475	1-216-077-00 1-216-121-00 1-216-649-11 1-216-025-00	METAL GLAZE	820	5% 1/1 5% 1/1 5% 1/1 5% 1/1 0.50% 1/1	OM OM OM	R535 R536 R537 R539 R540	1-249-448-11 1-216-101-00 1-216-089-91 1-216-065-00 1-216-113-00	CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2 150K 47K 4.7K 4.7K		1/4W 1/10W 1/10W 1/10W 1/10W	F
R477 R478 R479 R480	1-216-061-00 1-216-073-00 1-216-085-00 1-216-077-00	METAL GLAZE	100 3.3K 3.3K 10K 33K		OM OM	R543	1-212-883-00 1-216-095-00	CARBON METAL GLAZE FUSIBLE METAL GLAZE METAL GLAZE	1.5 2.2K 120 82K 10K	5% 5% 5% 5% 5%	1/4W 1/10W 1/4W 1/10W 1/10W	
R482 R483 R484	1-216-033-00 1-216-057-00 1-216-025-00 1-216-651-11 1-216-033-00 1-216-681-11	METAL GLAZE METAL GLAZE	1K (	5% 1/1 0.50% 1/1 5% 1/1	OM OM OM OM	R546 R547 R548 R549 R550	1-249-425-11 1-249-438-11 1-216-057-00 1-216-677-11 1-216-053-00	CARBON CARBON METAL GLAZE METAL CHIP METAL GLAZE	4.7K 56K 2.2K 12K 1.5K	5% 5%	1/4W 1/4W 1/10W 1/10W 1/10W	F
R487 R488 R489	1 - 216 - 653 - 11 1 - 216 - 653 - 11 1 - 216 - 073 - 00 1 - 216 - 077 - 00 1 - 216 - 061 - 00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2K 10K 15K	0.50% 1/1 0.50% 1/1 5% 1/1 5% 1/1 5% 1/1	OW OW OW	R551 R552 R553 R554 R555	1-216-077-00 1-216-033-00 1-216-083-00 1-216-095-00 1-216-692-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	15K 220 27K 82K 51K	5% 5% 5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W	
	1-216-085-00 1-216-295-00 1-216-085-00 1-216-651-11 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	33K 0 33K 1K	5% 1/5% 1/5% 1/5% 1/5% 1/5% 1/5% 1/5% 1/	OM OM OM	R556 R558 R559 R560 R561	1-216-464-11 1-247-711-11 1-216-109-00 1-216-091-00 1-216-049-00	METAL OXIDE CARBON METAL GLAZE METAL GLAZE METAL GLAZE	18K 680 330K 56K 1K	5% 5% 5% 5%	2W 1/4W 1/10W 1/10W 1/10W	F F
R497 R498 R499 R500 R501	1-216-653-11 1-216-061-00 1-216-033-00 1-216-689-11 1-216-077-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2K 3.3K 220	0.50% 1/ 5% 1/: 5% 1/	IOM IOM	R563 R564 R565 R566 R567	1-216-017-00 1-216-107-00 1-216-033-00 1-216-685-11 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	47 270 K 220 27 K 22 K	5% 5% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R502 R503	1-216-677-11 1-216-677-11	METAL CHIP	12K	0.50% 1/ 0.50% 1/	LOW	R568 R569	1-216-073-00 1-260-114-11	METAL GLAZE Carbon	10K 18K	5% 5%	1/10W 1/2W	

### PVM-1450QM/1454QM

REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R571	1-216-065-00	METAL GLAZE		5 <b>%</b>	1/10W		R1142	1-216-653-11	METAL CHIP	1.2K	0.50%	1/10W	
R572 R573 R574 R576	1-216-065-00 1-216-059-00 1-216-071-00 1-216-689-11 1-216-101-00	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 2.7K 8.2K 39K 150K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R1143 R1144 R1145 R1146	1-216-653-11 1-216-073-00 1-216-067-00 1-216-057-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	_	0 50%		
R578 R580 R582 R583 R584	1-216-693-11 1-216-105-00 1-216-085-00 1-216-039-00 1-216-071-00	METAL GLAZE METAL GLAZE	56K 220K 33K 390 8.2K	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1147 R1148 R1150 R1151	1-216-653-11 1-216-653-11 1-216-073-00 1-216-067-00 1-216-057-00 1-216-057-00 1-216-037-00 1-216-081-00 1-216-133-00 1-218-776-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 4.7K 330 22K 3.3M		1/10W 1/10W 1/10W 1/10W	
R585 R586 R587 R588 R589	1-216-033-00 1-216-686-11 1-216-675-11 1-216-077-00 1-216-067-00	METAL GLAZE METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	10K	5% 0.50% 0.50% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1161 R1162 R1163 R1164	1-218-776-11 1-218-768-11 1-216-033-00 1-216-049-00 1-216-049-00 1-216-295-00	METAL CHIP METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	IW	0.50%	1/10W 1/10W 1/10W	
R590 R591 R592 R593 R594	1-216-081-00 1-216-683-11 1-247-688-11 1-216-647-11 1-260-104-91	METAL GLAZE METAL CHIP CARBON METAL CHIP CARBON	22K 22K 10 680 2.7K	5% 0.50% 5% 0.50% 5%	1/10W 1/10W 1/4W 1/10W 1/2W	F	R1165 R1166 R1167 R1168 R1169	1-216-049-00 1-216-295-00 1-216-097-00 1-216-097-00 1-216-097-00 1-216-089-91 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100K 100K 100K 100K 47K 33K	5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R595 R596 R597 R598 R599	1-216-689-11 1-214-754-00 1-249-417-11 1-216-085-00 1-216-645-11	CARBON METAL GLAZE	1 1 K 1 K 3 3 K	5%	1/10W 1/4W 1/4W 1/10W		R1170 R1171 R1172 R1173	1-216-085-00 1-216-295-00		47K 33K 33K 0 0 8.2K		1/10W 1/10W 1/10W 1/10W 1/10W	
R1101 R1102 R1103	1-216-295-00 1-216-295-00 1-216-077-00 1-216-699-11	METAL GLAZE	0	5%	1/10W		R1178	1-216-041-00 1-216-089-91				1/10W 1/10W 1/10W 1/10W 1/10W	
R1105 R1106 R1107 R1108	1-216-073-00 1-216-097-00 1-216-059-00 1-216-681-11	METAL CHIP	18K	0.50%	1/10W 1/10W 1/10W 1/10W		R1181 R1182 R1183 R1184	1-216-295-00 1-216-131-11 1-216-071-00 1-216-131-11		470 47K 0 2.7M 8.2K 2.7M		1/10W 1/10W 1/10W 1/10W	
R1110 R1111 R1112	1-216-295-00 1-216-295-00 1-216-065-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	0 0 4.7K 4.7K		1/10W 1/10W 1/10W 1/10W		R1185 R1186 R1187 R1188	1-216-131-11 1-216-071-00 1-216-131-11	METAL GLAZE	2.7M 8.2K 2.7M 8.2K 2.7M	5%	1/10W 1/10W 1/10W 1/10W	
R1114 R1115 R1116	1-216-081-00 1-216-049-00 1-216-049-00 1-216-677-11	METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 4.7K 22K 1K 1K	5% 5% 5% 0.50%	1/10W		R1193	1-216-131-11 1-216-071-00 1-216-131-11 1-216-025-00	METAL GLAZE	8.2K 2.7M 8.2K 2.7M 100	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1118 R1119 R1120	1-216-069-00 1-216-113-00 1-216-694-11 1-216-089-91	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	6.8K 470K 62K 47K	5% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W		R1194 R1195 R1196 R1197	1-216-071-00 1-216-131-11 1-216-025-00 1-216-085-00 1-216-025-00 1-216-085-00 1-216-085-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	33K 100 33K 100	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R1123 R1124 R1125 R1126 R1127	1-216-071-00 1-216-113-00 1-216-049-00 1-216-041-00 1-216-295-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	8.2K 470K 1K 470 0	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1301 R1302 R1303 R1304	1-216-029-00 1-216-029-00 1-216-039-00 1-216-689-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	33K 150 150 390 39K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1128 R1129 R1130 R1131 R1132	1-216-065-00 1-216-071-00 1-216-049-00 1-216-049-00 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 8.2K 1K 1K 8.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1305 R1306 R1307 R1308	1-216-033-00 1-216-645-11 1-216-091-00 1-216-645-11	METAL GLAZE  METAL CHIP METAL GLAZE METAL CHIP	220 560 56K 560	0.50% 5% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1133 R1134 R1135 R1136	1-216-069-00 1-216-073-00 1-216-295-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	6.8K 10K 0 100K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R1309 R1310 R1311 R1312	1-216-025-00 1-216-025-00 1-216-089-91 1-216-027-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 100 47K 120	5% 5%	1/10W 1/10W 1/10W 1/10W	
R1137 R1138 R1139 R1140	1-216-073-00 1-216-081-00 1-216-055-00 1-216-653-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	10K 22K 1.8K 1.2K	5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W	·	R1313 R1314 R1315 R1316	1-216-097-00 1-216-081-00 1-216-025-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	100K 22K 100	5% 5% 5% 5% 5% 5%	1/10W 1/10W 1/10W	
R1141	1-216-083-00	METAL GLAZE	27K	5%	1/10W		R1317	1-216-041-00	METAL GLAZE	470	5%	1/10W	

									•	~ /r	AIA	- 1 -	
REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
R1319	1-216-061-00 1-216-085-00	METAL GLAZE METAL GLAZE	3.3K 33K	5% 5%	1/10W 1/10W		R1383	1-216-681-11	METAL CHIP	18K	0.50%		
R1321	1-216-065-00 1-216-649-11 1-216-057-00	METAL GLAZE METAL CHIP METAL GLAZE	4.7K 820 2.2K	0.50% 5%	1/10W 1/10W 1/10W		R1384 R1385 R1386	1-216-681-11 1-216-091-00 1-216-073-00 1-216-077-00 1-216-653-11 1-216-689-11 1-216-647-11 1-216-047-11 1-216-045-00	METAL GLAZE METAL GLAZE METAL GLAZE	56K 10K 15K	5% 5% 5%	1/10W 1/10W 1/10W	
R1325	1-216-061-00 1-216-652-11	METAL GLAZE METAL CHIP	3.3K 1.1K	5% 0.50%	1/10W 1/10W		R1387 R1388	1-216-653-11 1-216-689-11	METAL CHIP	1.2K 39K	0.50%	1/10W	
R1327	1-216-073-00 1-216-073-00 1-216-125-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 10K 1.5M	5% 5% 5%	1/10W 1/10W 1/10W		R1389 R1390 R1391	1-216-657-11 1-216-647-11 1-216-025-00 1-216-041-00 1-216-063-00	METAL CHIP METAL CHIP METAL GLAZE		0.50% 0.50% 5%	1/10W 1/10W 1/10W	
R1330	1-216-103-91 1-216-081-00	METAL GLAZE	180K 22K	5% 5%	1/10W 1/10W		R1392 R1393	1-216-041-00 1-216-063-00	METAL GLAZE METAL GLAZE	470 3.9K	5%	1/10W 1/10W	
R1332	1-216-679-11 1-216-671-11 1-216-049-00	METAL CHIP METAL CHIP METAL GLAZE	15K 6.8K 1K	0.50% 0.50% 5%	1/10W 1/10W 1/10W		R1394 R1395 R1396	1-216-063-00 1-216-041-00 1-216-071-00 1-216-071-00 1-216-065-00 1-216-073-00	METAL GLAZE METAL GLAZE METAL GLAZE	470 8.2K 8.2K 4.7K 10K	5% 5%	1/10W 1/10W 1/10W	
R1335	1-216-063-00 1-249-401-11	METAL GLAZE CARBON	3.9K 47 82K 3.3K	5% 5%	1/10W 1/4W	F	R1397	1-216-065-00	METAL GLAZE	4.7k 10K		1/10W 1/10W	
R1337	1-216-095-00 1-216-061-00 1-216-647-11	METAL GLAZE METAL GLAZE METAL CHIP	82K 3.3K 680	5% 0.50%	1/10W 1/10W 1/10W		R1401 R1402 R1403	1-216-085-00 1-216-295-00 1-216-651-11	METAL GLAZE METAL GLAZE METAL CHIP	33K 0 1K	5% 5% 0.50%	1/10W	
R1340	1-216-033-00 1-216-033-00	METAL GLAZE METAL GLAZE	220 220	5% 5%	1/10W 1/10W		R1404 R1405	1-216-681-11	METAL CHIP	18K 8.2K	0.50% 5%	1/10W	
R1342	1-216-033-00 1-216-083-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE	27K 330	5% 5%	1/10W 1/10W 1/10W		R1406 R1407 R1408	1-216-653-11 1-216-061-00 1-216-113-00	METAL GLAZE METAL GLAZE	1.2K 3.3K 470K 0 1.5K	0.50% 5% 5%	1/10W 1/10W	
R1345	1-216-093-00 1-216-109-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE	68K 330K 100K 10K 8.2K	5% 5%	1/10W 1/10W 1/10W		R1410	1-216-073-00 1-216-085-00 1-216-295-00 1-216-651-11 1-216-681-11 1-216-071-00 1-216-053-11 1-216-061-00 1-216-113-00 1-216-295-00 1-216-053-00 1-216-073-00	METAL GLAZE	1.5K		1/10W 1/10W 1/10W	
R1347	1-216-073-00 1-216-071-00	METAL GLAZE	10K 8.2K	5% 5%	1/10W 1/10W		R1412 R1413	1-216-073-00 1-216-107-00 1-216-081-00 1-216-057-00 1-216-093-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 270K 22K 2.2K 68K	5% 5% 5%	1/10W 1/10W 1/10W	
R1350	1-216-035-00 1-216-073-00 1-216-033-00	METAL GLAZE	270 10K 220 4.7K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W		R1415	1-216-093-00	METAL GLAZE	68K 470K		1/10W 1/10W	
R1352	1-216-065-00 1-216-065-00	METAL GLAZE			1/10W 1/10W		R1417 R1418 R1419	1-216-113-00 1-216-033-00 1-216-033-00 1-216-025-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE	220 220 100	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R1355 R1356	1-216-089-91 1-216-033-00 1-216-105-00	METAL GLAZE METAL GLAZE	47K 220 220K 150K 8.2K	5% 5% 5%	1/10W 1/10W 1/10W		R1420 R1421	1-216-089-91	METAL GLAZE METAL CHIP		0.502		
R1358	1-216-101-00 1-216-071-00	METAL GLAZE		5% 5%	1/10W 1/10W		R1422 R1423 R1424	1-216-089-91 1-216-649-11 1-216-085-00 1-216-057-00 1-216-081-00 1-216-013-00	METAL GLAZE METAL GLAZE METAL GLAZE	33K 2.2K 22K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R1360 R1361	1-216-099-00 1-216-065-00 1-216-113-00	METAL GLAZE	120K 4.7K 470K	<b>7</b> 7	1/10W 1/10W 1/10W		R1425 R1426	1-216-013-00 1-216-113-00	METAL GLAZE	33 470K	.5%	1/10W	
R1363	1-216-676-11 1-216-113-00			0.50% 5%			K1429	1-216-113-00 1-216-681-11 1-216-061-00 1-216-668-11	METAL CHIP	5. IK	0.50% 5% 0.50%	1/10W	
R1364 R1365 R1366	1-216-073-00 1-216-131-11 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 2.7M 22K	5% 5% 5% 5%	1/10W 1/10W 1/10W		R1430	1-216-073-00	METAL GLAZE	10K 2.2M	5%	1/10W	
R1367 R1368 R1369	1-216-057-00 1-216-059-00 1-216-051-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.2K 2.7K 1.2K	5% 5%	1/10W 1/10W 1/10W		R1432 R1433 R1434 R1435	1-216-089-91 1-216-085-00 1-216-645-11 1-216-055-00	METAL GLAZE METAL GLAZE METAL CHIP METAL GLAZE	47K 33K 560 1.8K	5% 5% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W	
R1370	1-216-105-00 1-216-113-00 1-249-437-11	METAL GLAZE METAL GLAZE CARBON	220K 470K 47K	5% 5% 5%	1/10W 1/10W 1/10W 1/4W		R1436 R1437	1-216-073-00 1-216-069-00	METAL GLAZE METAL GLAZE	10K 6.8K		1/10W 1/10W	
H1373	1-216-063-00	METAL GLAZE	3.9K 150K	5% 5%	1/10W 1/10W		R1438 R1439 R1440	1-216-073-00 1-216-059-00 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 2.7K 470	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R1375 R1376 R1377	1-216-645-11 1-216-647-11 1-216-055-00	METAL CHIP METAL CHIP METAL GLAZE	560 680 1.8K	0.50%	1/10W 1/10W 1/10W 1/10W		R1441 R1442	1-216-033-00 1-216-073-00	METAL GLAZE METAL GLAZE	220 10K		1/10W 1/10W 1/10W	
R1378 R1379	1-216-065-00	METAL GLAZE METAL GLAZE	4.7k 330	5% 5%	1/10W 1/10W		R1443 R1444 R1445	1-216-013-00 1-216-057-00 1-216-071-00	METAL GLAZE METAL GLAZE METAL GLAZE	33 2.2K 8.2K	5% 5% 5% 5%	1/10W 1/10W 1/10W	
R1380 R1381 R1382	1-216-645-11 1-216-647-11 1-216-073-00	METAL CHIP METAL CHIP METAL GLAZE	560 680 10K	0.50%	1/10W 1/10W 1/10W 1/10W		R1446	1-216-071-00 1-216-081-00	METAL GLAZE METAL GLAZE	8.2K 22K	5% 5%	1/10W 1/10W	
				· · •									

#### PVM-1450QM/1454QM

### **A** (PVM-1454QM)

 The components identified by in this manual have been carefully factory-selected for each set in order to satisfy regulations regarding X-ray radiation.
 Should replacement be required, replace only with the value originally used. The components identified by shading and mark A are critical for safety.
Replace only with part number specified.

REF.NO.	PART NO.	DESCRIPTION				REMARK	REF. NO.	PART NO.	DESCRIPTION				REMARK
R1448 R1449 R1450 R1451 R1452	1-216-085-00 1-216-057-00 1-216-129-00 1-216-093-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	33K 2.2K 2.2M 68K 33K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1514 R1515 R1516	1-247-752-11 1-247-711-11 1-216-350-11 1-247-883-00	CARBON METAL OXIDE CARBON	1K 680 1.2 150K	5% 5% 5% 5%	1/2W 1/4W 1W 1/4W	F
R1453 R1454 R1455 R1456 R1457	1-216-013-00 1-216-065-00 1-216-113-00 1-216-129-00 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	33 4.7K 470K 2.2M 47K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1518 R1519 R1520 R1521 R1522	1-215-867-00 1-216-355-11 1-216-007-00 1-216-029-00 1-249-400-11	METAL OXIDE METAL OXIDE METAL GLAZE METAL GLAZE CARBON	470 3.3 18 150 39	5% 5% 5% 5% 5% 5%		F
R1458 R1459 R1460 R1461 R1462	1-216-085-00 1-216-133-00 1-216-097-00 1-216-645-11 1-216-645-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP METAL CHIP	33K 3.3M 100K 560 560	5% 5% 5% 0.50% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W		R1523 R1524 R1525 R1526 R1527	1-216-350-11 1-216-427-00 1-216-083-00 1-216-089-91 1-249-413-11	METAL OXIDE METAL OXIDE METAL GLAZE METAL GLAZE CARBON	1.2 120 27K 47K 47O	5% 5% 5% 5% 5%	1W 1W 1/10W 1/10W 1/4W	
R1463 R1464 R1465 R1466 R1467	1-216-645-11 1-216-057-00 1-216-097-00 1-216-055-00 1-216-073-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	560 2.2K 100K 1.8K 10K	0.50% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1528 R1529 R1530 R1531 R1532	1-215-869-11 1-202-829-11 1-216-115-00 1-247-697-11 1-216-059-00	METAL OXIDE SOLID METAL GLAZE CARBON METAL GLAZE	1K 8.2K 560K 56 2.7K	20% 5% 5%	1W 1/2W 1/10W 1/4W 1/10W	
	1-249-438-11 1-216-057-00 1-216-057-00 1-216-049-00 1-216-085-00	CARBON METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	56K 2.2K 2.2K 1K 33K	5% 5% 5% 5%	1/4W 1/10W 1/10W 1/10W 1/10W		R1533 R1534 MR1535 4 R1536 4		CARBON METAL CHIP CARBON	560 2.2K 4.7	5% 0.50%	1/4W 1/10W	
R1473 R1474 R1475 R1476 R1477	1-216-081-00 1-216-687-11 1-216-677-11 1-216-063-00 1-216-057-00	METAL GLAZE METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	22K 33K 12K 3.9K 2.2K	5% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W		R1538 R1539 R1540 R1541	1-216-073-00 1-216-689-11 1-216-105-00 1-216-081-00 1-216-111-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 39K 220K 22K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	•
R1478 R1479 R1480 R1481	1-216-061-00 1-216-295-00 1-216-089-91 1-216-115-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	3.3K 0 47K 560K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R1542 R1543 R1544 R1545 R1547	1-216-027-00 1-216-117-00 1-216-101-00 1-216-393-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL OXIDE	390K 120 680K 150K 2.2	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 3W	F
R1482 R1483 R1484 R1485 R1486	1-216-089-91 1-216-081-00 1-216-113-00 1-216-121-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 22K 470K IM	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1548 R1549 R1550 R1551 R1552	1-216-057-00 1-260-094-11 1-216-105-00 1-249-393-11 1-216-091-00	METAL GLAZE CARBON METAL GLAZE CARBON METAL GLAZE	2.2K 390 220K 10 56K	5% 5% 5% 5%	1/10W 1/2W 1/10W 1/4W 1/10W	F
R1487 R1488 R1489 R1490 R1491	1-216-113-00 1-216-083-00 1-216-069-00 1-216-035-00 1-216-035-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 27K 6.8K 270 270	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1553 R1554 R1555 R1556 R1557	1-216-091-00 1-216-059-00 1-216-295-00 1-216-071-00 1-218-760-11	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL CHIP	56K 2.7K 0 8.2K 220K	5% 5% 5% 5% 0.50%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1492 R1493 R1494 R1495 R1497	1-216-035-00 1-216-083-00 1-216-081-00 1-216-089-91 1-216-113-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	270 27K 22K 47K 470K 2.2K	5%	1/10W 1/10W 1/10W 1/10W 1/10W		R1558 R1559 R1560 R1561 R1562	1-249-393-11 1-249-393-11 1-216-049-00 1-216-681-11 1-214-964-00	CARBON CARBON METAL GLAZE METAL CHIP METAL	10 10 1K 18K 1M	5% 5% 5% 0.50% 1%	1/4W 1/4W 1/10W 1/10W 1/4W	F
R1498 R1499 R1500 R1501	1-247-839-31 1-216-057-00 1-216-647-11 1-216-071-00	METAL GLAZE METAL CHIP METAL GLAZE	2.2K 680 8.2K	5% 0.50%	1/4W 1/10W 1/10W 1/10W		R1563 R1564 R1567 R1568 R1569	1-214-964-00 1-216-681-11 1-216-089-91 1-216-081-00 1-216-073-00	METAL METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	1M 18K 47K 22K 10K	1% 0.50% 5% 5%	1/4W 1/10W 1/10W 1/10W 1/10W	
R1502 R1503 R1504 R1505 R1506	1-260-105-11 1-216-063-00 1-216-686-11 1-247-688-11 1-216-037-00	METAL GLAZE METAL CHIP CARBON METAL GLAZE	3.3K 3.9K 30K 10 330	5% 5% 5% 0.50% 5% 5% 5%	1/2W 1/10W 1/10W 1/4W 1/10W	F	R1570 R1571 R1572 R1573 R1574	1-216-073-00 1-216-103-91 1-216-101-00 1-216-073-00 1-216-041-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	10K 180K 150K 10K 470	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1507 R1508 R1509 R1510 R1511	1-216-065-00 1-216-689-11 1-249-439-11 1-216-077-00 1-216-360-11	METAL GLAZE METAL GLAZE CARBON METAL GLAZE METAL OXIDE	4.7K 39K 68K 15K 8.2	5% 5%	1/10W 1/10W 1/4W 1/10W 1W	<b>c</b> .	R1575 R1576 R1577 R1577	1-216-025-00 1-216-025-00 1-216-025-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	100 100 100 4.7K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R1512	1-216-647-11	METAL CHIP	680	5% 0.50%	1/100	F		1-216-689-11 1-216-065-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	39K 4.7K 4.7K	5% 5%	1/10W 1/10W 1/10W	

										H (1		I- I4:	54WIVI
REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	<u> </u>	<del></del>			REMARK
R2303	1-216-671-11 1-216-093-00 1-216-105-00	METAL GLAZĒ	6.8K 68K 220K	0.50% 5% 5%	1/10W 1/10W		R2369	1-216-089-91 1-216-686-11		47K 30K	0.50%	1/10W	
R2305 R2306	1-216-085-00 1-216-089-91	METAL GLAZE METAL GLAZE	68K 220K 33K 47K		1/10W 1/10W		R2371 R2372 R2374	1-216-049-00 1-216-113-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE	1K 470K 100K	5% 5% 5%	1/10W 1/10W 1/10W	
R2308 R2309 R2310	1-216-033-00 1-216-103-91 1-216-049-00 1-216-095-00 1-216-073-00	METAL GLAZE METAL GLAZE	220 180K 1K 82K 10K	5%	1/10W 1/10W 1/10W 1/10W 1/10W		R2376 R2377 R2378	1-216-089-91 1-216-089-91 1-216-033-00 1-216-089-91 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 220 47K 220	5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R2313 R2314	1-216-053-00 1-216-049-00 1-216-645-11 1-216-679-11	METAL GLAZE METAL CHIP	1.5K 1K 560 15K	5% 5% 0.50% 0.50%	1/10W 1/10W 1/10W 1/10W		R2380	1-216-089-91 1-216-089-91 1-216-089-91	METAL GLAZE METAL GLAZE METAL GLAZE	47K 47K 47K 47K		1/10W 1/10W 1/10W	
R2316 R2317	1-216-081-00 1-216-049-00 1-216-069-00	METAL GLAZE	22K 1K 6.8K	5%	1/10W		R2383	1-216-033-00 1-216-689-11	METAL GLAZE METAL GLAZE METAL GLAZE	220 39K 10K	5% 5%	1/10W 1/10W 1/10W	
R2319 R2320 R2321	1-216-093-00 1-216-677-11 1-216-057-00	METAL GLAZE METAL CHIP METAL GLAZE	68K 12K 2.2K	5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W		R2387 R2388	1-216-073-00 1-216-073-00 1-216-073-00 1-216-033-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 10K 10K 220	5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R2323 R2324 R2325	1-216-065-00 1-216-683-11 1-216-073-00 1-216-063-00 1-216-041-00	METAL CHIP METAL GLAZE METAL GLAZE	4.7K 22K 10K 3.9K 470	0.50% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R2391 R2392 R2393	1-216-647-11 1-216-073-00 1-216-073-00	METAL CHIP METAL CHIP METAL GLAZE METAL GLAZE	680 10K 10K	5%	1/10W 1/10W 1/10W	
R2328 R2329 R2330	1-216-059-00 1-216-049-00 1-216-059-00 1-216-049-00 1-216-059-00	METAL GLAZE METAL GLAZE METAL GLAZE	2.7K 1K 2.7K 1K 2.7K	5% 5%				1-216-081-00 1-216-041-00 1-216-113-00 1-216-109-00	METAL GLAZE	22K 470 470K 330K		1/10W 1/10W 1/10W 1/10W	
R2332 R2333	1-216-049-00 1-216-089-91	METAL GLAZE METAL GLAZE	1 K 47 K	5% 5%	1/10W 1/10W		R2502	1-216-073-00 1-216-083-00 1-216-077-00	METAL GLAZE METAL GLAZE METAL GLAZE	470K 330K 10K 27K 15K	5% 5% 5%	1/10W 1/10W 1/10W	
R2335 R2336	1-216-041-00 1-216-061-00 1-216-065-00	METAL GLAZE METAL GLAZE	470 3.3K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W		R2553	1-216-091-00 1-216-085-00 1-216-083-00 1-216-055-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	56K 33K 27K 1.8K	5% 5%	1/10W 1/10W 1/10W 1/10W	
R2338 R2339 R2340	1-216-037-00 1-216-073-00 1-216-037-00 1-216-073-00 1-216-037-00	METAL GLAZE METAL GLAZE METAL GLAZE	330 10K 330 10K 330	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W		R2557 R2558 R2559	1-216-051-00 1-216-067-00 1-216-057-00 1-216-039-00 1-216-069-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	1.2K 5.6K 2.2K 390 6.8K		1/10W 1/10W 1/10W 1/10W 1/10W	
R2343 R2344 R2345	1-216-071-00 1-216-081-00 1-216-121-00 1-216-681-11 1-216-061-00	METAL GLAZE METAL GLAZE METAL CHIP	8.2K 22K 1M 18K	5% 5% 5% 0.50% 5%	1/10W 1/10W 1/10W 1/10W		R2561	1-216-001-00 1-216-001-00 1-216-057-00 1-216-073-00	METAL GLAZE	10 2. 2K	5% 5%	1/10W 1/10W 1/10W 1/10W	
R2347 R2348	1-216-061-00 1-216-061-00	METAL GLAZE METAL GLAZE	3.3K 3.3K	5% 5%	1/10W 1/10W		R3303	1-216-065-00	METAL GLAZE	4.7K 4.7K	5% 5%	1/10W 1/10W	
R2349 R2350 R2351 R2352	1-216-679-11 1-216-061-00 1-216-061-00 1-216-061-00	METAL CHIP METAL GLAZE METAL GLAZE METAL GLAZE	15K 3.3K 3.3K 3.3K	0.50% 5% 5%	1/10W 1/10W 1/10W		R3304 R3305 R3306 R3307 R3308	1-216-065-00 1-216-061-00 1-216-063-00 1-216-111-00 1-216-097-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	4.7K 3.3K 3.9K 390K 100K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W 1/10W	
R2353 R2354 R2356 R2357	1-216-041-00 1-216-025-00 1-216-089-91 1-216-091-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470 100 47K 56K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R3309 R3310 R3311	1-216-073-00 1-216-049-00 1-216-091-00	METAL GLAZE METAL GLAZE METAL GLAZE	10K 1K 56K	5% 5%	1/10W 1/10W 1/10W	
R2358 R2361 R2362	1-216-025-00 1-216-099-00 1-216-081-00	METAL GLAZE METAL GLAZE METAL GLAZE	100 120K 22K	5% 5% 5% 5% 5%	1/10W 1/10W 1/10W		R3312 R3317 R3320	1-216-105-00 1-216-111-00 1-216-085-00	METAL GLAZE METAL GLAZE METAL GLAZE	220K 390K 33K		1/10W 1/10W 1/10W	
R2363 R2364 R2365	1-216-065-00 1-216-025-00 1-216-687-11	METAL GLAZE METAL GLAZE METAL CHIP	4.7K 100 33K		1/10W 1/10W 1/10W		R3333 R3334 R3335 R3337	1-216-113-00 1-216-073-00 1-216-113-00 1-216-099-00	METAL GLAZE METAL GLAZE METAL GLAZE METAL GLAZE	470K 10K 470K 120K	5% 5% 5% 5%	1/10W 1/10W 1/10W 1/10W	
R2366 R2367 R2368	1-216-067-00 1-216-099-00 1-216-065-00	METAL GLAZE METAL GLAZE METAL GLAZE	5.6K 120K 4.7K	5% 5% 5%	1/10W 1/10W 1/10W 1/10W		R3338 R3339	1-218-759-11 1-216-093-00	METAL CHIP METAL GLAZE	200K 68K	0.50% 5%		

The components identified by shading and mark A are critical for safety. Replace only with part number specified.

REF.NO. PART NO.	DESCRIPTION		REMARK	REF. NO.	PART NO.	DESCRIPTION			REMARK
R3340 1-216-099-00 R3341 1-216-089-91 R3342 1-216-111-00 R3343 1-216-089-91 R3344 1-216-081-00	METAL GLAZE 120K METAL GLAZE 47K METAL GLAZE 390K METAL GLAZE 47K METAL GLAZE 22K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		TH500	1-807-970-11				
R3345 1-216-033-00 R3346 1-216-025-00 R3347 1-216-025-00 R3348 1-216-025-00 R3349 1-216-025-00	METAL GLAZE 220 METAL GLAZE 100 METAL GLAZE 100 METAL GLAZE 100 METAL GLAZE 100	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		X300 X301	1-579-175-11 1-577-259-11 1-527-722-00	VIBRATOR, CR OSCILLATOR,	YSTAL CRYSTAL	*****	*****
R3350 1-216-113-00 R3351 1-216-119-00 R3355 1-216-089-91 R3356 1-216-051-00 R3357 1-216-051-00	METAL GLAZE 470K METAL GLAZE 820K METAL GLAZE 47K METAL GLAZE 1.2K METAL GLAZE 1.2K	5% 1/10W		 	*A-1316-174-A 1-533-189-11 4-363-414-00	G BOARD, COM ************* HOLDER, FUSE	PLETE *****		
R3358 1-216-051-00 R3359 1-216-081-00 R3360 1-216-073-00 R3361 1-216-089-91 R3362 1-216-049-00	METAL GLAZE 1.2K METAL GLAZE 22K METAL GLAZE 10K METAL GLAZE 47K METAL GLAZE 1K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W			4-382-854-11 <cap< td=""><td>SCREW (M3X10 ACITOR&gt;</td><td>), P, S₩ (+</td><td></td><td>4004</td></cap<>	SCREW (M3X10 ACITOR>	), P, S₩ (+		4004
R3363 1-216-049-00 R3364 1-216-073-00 R3365 1-216-081-00 R3376 1-216-081-00 R3377 1-216-107-00	METAL GLAZE 1K METAL GLAZE 10K METAL GLAZE 22K METAL GLAZE 22K METAL GLAZE 270K	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		C602 A	\$ 1-161-953-71 \$ 1-161-953-71 \$ 1-161-953-71 \$ 1-161-953-71 \$ 1-104-706-51	CERAMIC CERAMIC CERAMIC FILM	0.0047MF 0.0047MF 0.0047MF 0.0047MF 0.22MF	20% 20% 20% 20% 20%	400V 400V 400V 400V 250V
R3378 1-216-115-00 R3381 1-216-041-00 R3382 1-216-647-11 R3383 1-216-069-00 R3384 1-216-063-00	METAL GLAZE 560K METAL GLAZE 470 METAL CHIP 680	5% 1/10W 5% 1/10W 0.50% 1/10W 5% 1/10W 5% 1/10W	4-	C606 C607 C608 C609 C610	1-124-907-11 1-124-798-11 1-129-765-00 1-124-126-00 1-124-902-00	ELECT FILM	10MF 1MF 0.047MF 47MF 0.47MF	20% 20% 10% 20% 20%	50V 160V 200V 10V 50V
R3385 1-216-057-00 R3386 1-216-057-00 R3390 1-216-057-00 R3394 1-216-089-91 R3395 1-249-417-11		5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/4W		C613 A C614	1-130-729-00 1-107-722-11 1-104-706-51 1-102-978-00 1-104-706-51	ELECT FILM CERAMIC FILM	0.0027MF 470MF 0.22MF 220PF 0.22MF	5% 20% 20% 5% 20%	50V 400V 250V 50V 250V
R3396 1-216-041-00 R3397 1-216-041-00 R3398 1-216-101-00 R4401 1-216-085-00 R4402 1-216-113-00	METAL GLAZE 470 METAL GLAZE 470 METAL GLAZE 150K METAL GLAZE 33K METAL GLAZE 470K	5% 1/10W 5% 1/10W		C616 C618 C619 C620 C621	1-162-318-11 1-124-907-11 1-162-116-00 1-162-116-00 1-136-153-00	ELECT Ceramic	0.001MF 10MF 680PF 680PF 0.01MF	10% 20% 10% 10% 5%	500V 50V 2KV 2KV 50V
R4404	METAL GLAZE 10K METAL GLAZE 5.6K METAL GLAZE 3.3K METAL GLAZE 2.7K	5% 1/10W 5% 1/10W 5% 1/10W		C622 C623 C624 C625 C627	1-126-773-11 1-162-318-11 1-124-477-11 1-161-973-00 1-136-066-00	CERAMIC ELECT CERAMIC	47MF 0.001MF 47MF 220PF 0.003MF	20% 10% 20% 10% 3%	250V 500V 16V 400V 2KV
R4410 1-216-059-00 R4411 1-216-113-00 R4412 1-216-113-00 R4413 1-216-295-00 R4414 1-216-295-00	METAL GLAZE 2.7K METAL GLAZE 470K METAL GLAZE 470K METAL GLAZE 0 METAL GLAZE 0	5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W 5% 1/10W		C628 C629 C630 C631 C632	1-136-067-00 1-124-887-00 1-102-973-00 1-161-973-00 1-162-599-12	FILM CERAMIC CERAMIC CERAMIC CERAMIC	0.0036MF 0.001MF 100PF 220PF 0.0047MF	3% 10% 5% 10% 20%	2KV 3KV 50V 400V 400V
R4415 1-216-295-00 R4416 1-216-295-00	METAL GLAZE O	5% 1/10W 5% 1/10W		C633 C634 C635 C636 C637	1-162-599-12 1-102-125-00 1-124-903-11 1-126-801-11 1-102-030-00	CERAMIC CERAMIC ELECT ELECT CERAMIC	0.0047MF 0.0047MF 1MF 1MF 330PF	20% 10% 20% 20% 10%	400V 50V 50V 50V 500V
RV501 1-223-102-00	TABLE RESISTOR> RES, ADJ, WIREWOUND			C638 C639 C640 C641	1-102-030-00 1-104-783-51 1-128-386-11 1-106-343-00	CERAMIC ELECT ELECT MYLAR	330PF 1000MF 1000MF 0.001MF	10% 20% 20% 10%	500V 25V 25V 100V
T300 1-406-781-11 T500 1-426-668-11	NSFORMER> COIL TRANSFORMER, FERRIT TRANSFORMER ASSY, F			C642 C643 C644 C645 C646 C647	1-102-030-00 1-104-884-11 1-102-030-00 1-162-131-11 1-102-973-00 1-126-385-11	CERAMIC ELECT CERAMIC CERAMIC CERAMIC ELECT	330PF 470MF 330PF 220PF 100PF 390MF	20% 10% 10% 10% 5% 20%	500V 500V 500V 2KV 50V 16V

The components identified by shading and mark  $\hat{\Lambda}$  are critical for safety.
Replace only with part number specified.



REF.NO. PART NO.	DESCRIPTION		REMARK	REF.NO.	PART NO.	DESCRIPTION				REMARK
C649 1-126-803-11 C650 1-126-103-11 C651 1-126-101-11 C652 1-124-667-11 C653 1-136-169-00 C654 1-161-953-71 C655 1-161-953-71 C656 1-161-953-71	ELECT 47MF ELECT 470MF ELECT 100MF ELECT 10MF FILM 0.22MF  CERAMIC 0.0047MF CERAMIC 0.0047MF CERAMIC 0.0047MF	20% 20% 20% 20% 5% 20% 20% 20%	16V 16V 16V 50V 50V 400V 400V	] 	<001 1-410-645-31 1-407-365-00 1-410-645-31	L> INDUCTOR COIL, CHOKE INDUCTOR	100U			
C658 ▲ 1-161-953-71	CERAMIC 39PF CERAMIC 0.0047MF  CERAMIC 0.0033MF ELECT 1MF MYLAR 470PF	5% 20% 10% 20% 5%	50V 400V 50V 100V 50V	РН602 РН606	8-749-923-50 8-749-923-50	TO COUPLER> PHOTO COUPLER PHOTO COUPLER INSISTOR>	PC111'	YS YS		
CN601 1-691-960-11 CN602 *1-695-561-11 CN603 1-508-765-00 CN605 *1-573-964-11 CN606 *1-564-508-11	NECTOR> PIN, CONNECTOR (PC BOARD PIN, CONNECTOR (PC BOARD PIN, CUNNECTOR (5MM PITC PIN, CUNNECTOR (PC BOARD PLUG, CONNECTOR 5P PIN, CUNNECTOR 2P	) 3P ) 7P H) 3P ) 6P		Q601 Q602 Q603 Q605 Q606	8-729-119-80 8-729-119-80 8-729-119-80 8-729-802-14		C2688-1 C2688-1 C2688-1 C3460	LK LK LK		
CN609 *1-506-371-00	<b>ሀ</b> ይ>			Q609 Q610 Q611	8-729-209-03 8-729-200-17	TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S TRANSISTOR 2S	C2551-I	RO		
D604 8-719-110-90 D605 8-719-109-97	DIODE RU-3AM DIODE RD39ESB4 DIODE RD39ESB4 DIODE RD6.8ESB2			R604 A	1-260-123-91 1-260-123-91 1-249-427-11 1-214-937-55 1-249-434-11	CARBON CARBON CARBON METAL	100K 100K 6.8K 1M 27K	5% 5% 1% 5%	1/2W 1/2W 1/4W 1/2W 1/4W	
	DIUDE 10E-2 DIODE RU-3AM		•	R606 R607 R608 R609 R610	1-260-111-11 1-205-943-11 1-260-127-11 1-215-922-11 1-215-922-11	WIREWOUND	10K 1 220K 6.8K 6.8K	5% 5% 5% 5%	1/2W 20W 1/2W 3W 3W	F F
D616 8-719-911-19 D617 8-719-911-19 D618 8-719-908-03 D619 8-719-110-41 D620 8-719-045-48	DIODE 1SS119 DIODE 1SS119 DIODE GPO8D DIODE RD15FSR2			R611 R612 R613 R614 R615	1-215-457-00 1-202-719-00 1-202-720-00 1-249-423-11 1-260-324-11	METAL SOLID SOLID CARBON CARBON	33K 1M 1.2M 3.3K 470	1% 20% 20% 5%	1/4W 1/2W 1/2W 1/4W 1/2W	
D621     8-719-911-19       D622     8-719-979-58       D623     8-719-045-48       D625     8-719-016-42       D626     8-719-109-71	DIODE RD3.9ESB1			R616 R617 R618 R619 R620	1-247-710-11 1-214-716-00 1-249-496-11 1-216-444-11 1-216-444-11	METAL CARBON METAL OXIDE METAL OXIDE		5% 1% 5% 5% 5%	1/4W 1/4W 1/2W 1W 1W	F F F
D628 8-719-979-50 D629 8-719-979-85 D630 8-719-911-19 D631 8-719-911-19	DIODE EGP30D DIODE EGP20G DIODE ISS119 DIODE ISS119			R621 R622 R623 R624 R625	1-249-427-11 1-217-190-21 1-249-393-11 1-247-887-00 1-247-887-00	CARBON WIREWOUND CARBON CARBON	6.8K 0.15 10 220K 220K	5% 10% 5% 5% 5%	1/4W 2W 1/4W 1/4W 1/4W	F
FB601 A 1-543-190-11 FB602 A 1-543-190-11	BEAD, FERRITE BEAD, FERRITE FERRITE BEAD INDUCTOR O. BEAD, FERRITE	45UH		R626 R627 R628 R629 R630	1-249-436-11 1-249-429-11 1-214-777-00 1-247-891-00 1-249-424-11 1-249-429-11	CARBON CARBON METAL CARBON CARBON CARBON	39K 10K 100K 330K 3.9K	5% 1% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W	
<1C> 1C601 8-759-100-75 1C602 8 759-255-41				R632 R633 R634 R635	1-247-885-00 1-249-412-11 1-211-867-11 1-249-441-11 1-247-753-11	CARBON CARBON WIREWOUND CARBON	180K 390 180 100K	5% 5% 5% 5% 5%	1/4W 1/4W 10W 1/4W	F
IC603 8-759-927-49 IC604 8-759-924 12	IC 1R9431 IC LM7805CT			R637 R638	1-216-491-11 1-216-491-11	METAL OXIDE	56K 56K	5% 5%	3₩ 3₩	F F

G	C
RE	F.NO. PA

* : Selected to yield optimum performance.

The components identified by shading and mark A are critical for safety.
Replace only with part number specified.

REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION		<b>W</b>	REMARK
R641 R642 R643 R644 R645	1-211-868-11 1-247-807-31 1-249-423-11 1-249-417-11 1-218-265-11	WIREWOUND CARBON CARBON CARBON METAL GLAZE	2.2K 100 3.3K 1K 8.2M	5% 5% 5% 5% 5%	10W 1/4W 1/4W 1/4W 1W				NSFORMER>		n (10m)	
R646 R647 R648 R649 R650	1-249-417-11 1-260-121-11 1-249-443-11 1-260-097-11 1-249-422-11	CARBON CARBON CARBON CARBON CARBON	1K 68K 0.47 680 2.7K	5% 5% 5% 5%	1/4W 1/2W 1/4W 1/2W 1/4W	F	T601 4 T602 4 T603 T604	1-426-716-11 1-426-716-11 1-437-090-00 1-426-665-11	TRANSFORMER, HDT TRANSFORMER,	LINE FILTE	R (LFT)	
R652 R653 R654 R655 R656	1-247-895-00 1-260-124-11 1-215-924-00 1-249-440-11 1-247-883-00	CARBON CARBON METAL OXIDE CARBON CARBON	470K 120K 15K 82K 150K	5% 5% 5% 5%	1/4W 1/2W 3W 1/4W 1/4W	F	TH602 THP601	1-807-973-11 1-807-973-11 <b>A</b> 1-808-059-32	THERMISTOR THERMISTOR,			
R659 R660 R661 R662	1-249-443-11 1-215-427-00 1-215-412-00 1-260-123-11	CARBON METAL METAL CARBON	0.47 1.8K 430 100K 150	5% 1% 1% 5%	1/4W 1/4W 1/4W 1/2W 1/2W	F		*A-1331-299-A	C BOARD, COM	PLETE *****	******	
R663 R664 R665 R666 R667	1-260-089-11 1-216-390-11 1-216-390-11 1-216-368-11 1-205-943-11	CARBON  METAL OXIDE  METAL OXIDE  METAL OXIDE  WIREWOUND	1.2 1.2 0.82	5% 5% 5% 5%	3W 3W 2W 20W	F F		*4-374-912-01 *4-374-913-01 <cap< td=""><td></td><td></td><td></td><td></td></cap<>				
R669 R670 R671 R672 R673	1-215-415-00 1-249-435-11 1-249-429-11 1-215-469-00 1-249-437-11	METAL CARBON CARBON METAL CARBON	560 33K 10K 100K 47K	5% 5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1/4W		C701 C702 C703 C704 C705	1-102-157-00 1-102-157-00 1-102-157-00 1-102-121-00 1-126-101-11	CERAMIC CERAMIC CERAMIC CERAMIC ELECT	560PF 560PF 560PF 0.0022MF 100MF	10% 10% 10% 10% 20%	500V 500V 500V 50V 16V
R674 R675 R676 R677	1-247-889-00 1-249-429-11 1-247-883-00 1-260-120-11	CARBON CARBON CARBON CARBON	270K 10K 150K 56K	5% 5% 5% 5% 5% 5%	1/4W 1/4W 1/4W 1/2W		C706 C707 C708 C710 C711	1-102-074-00 1-162-116-00 1-136-601-11 1-101-880-00 1-101-880-00	CERAMIC CERAMIC FILM CERAMIC CERAMIC	0.001MF 680PF 0.01MF 47PF 47PF	10% 10% 5% 5%	50Y 2KV 630V 50V 50V
R678 ** R690 ** R690 ** R690 ** R690	1-249-436-11 1-214-721-00 1-215-414-00 1-214-723-00 1-214-127-00	CARBON METAL METAL METAL METAL	39K 470 510 560 620	1% 1% 1% 1% 1% 1%	1/4W 1/4W 1/4W 1/4W 1/4W		C712 C713 C714 C715 C716	1-123-946-00	CERAMIC ELECT CERAMIC CERAMIC CERAMIC	47PF 4.7MF 180PF 180PF 180PF	5% 20% 5% 5%	50V 250V 50V 50V 50V
*R690 *R690 *R690 *R690 *R690	1-214-725-00 1-215-418-00 1-214-727-00 1-214-728-11 1-214-729-00	METAL METAL METAL METAL METAL	680 750 820 910 1K	17 17 17 17 17 17	1/4W 1/4W 1/4W 1/4W 1/4W		C717 C718 C720 C734 C735	1-106-399-00 1-106-399-00 1-108-700-11 1-102-973-00 1-102-816-00	MYLAR MYLAR MYLAR CERAMIC CERAMIC	0.22MF 0.22MF 0.047MF 100PF 120PF	10% 10% 10% 5%	200 V 200 V 200 V 50 V 50 V
*R690 *R690	1-214-730-00 1-214-731-00	METAL METAL	1.1K 1.2K		1/4W 1/4W		C736	1-102-816-00		120PF	5%	50V
* R690 * R690 * R690 * R690 * R690	1-214-732-00 1-214-733-00 1-215-426-00 1-214-735-00 1-215-428-00	METAL METAL METAL METAL METAL	1.3K 1.5K 1.6K 1.8K 2K	1% 1% 1% 1% 1%	1/4W 1/4W 1/4W 1/4W 1/4W		CN702	<pre><con *1-564-511-11="" *1-573-964-11="" *1-691-134-11<="" pre=""></con></pre>	PIN, CONNECT	OR (PC BOAR		
*R690 *R690 *R690 *R690 *R690	1-214-737-00 1-214-739-00 1-214-741-00 1-214-743-00 1-214-745-00	METAL METAL METAL METAL METAL	2. 2K 2. 7K 3. 3K 3. 9K 4. 7K	17 17 17 17 17	1/4W 1/4W 1/4W 1/4W 1/4W		D701	<d10< td=""><td>DE&gt;</td><td>· ·</td><td>u) 21</td><td></td></d10<>	DE>	· ·	u) 21	
*R690 *R690	1-214-747-00 1-214-749-00	METAL METAL	5.6K 6.8K		1/4W 1/4W		D702 D703 D704 D705	8-719-911-19 8-719-911-19 8-719-911-19 8-719-911-19	DIODE 1SS119 DIODE 1SS119 DIODE 1SS119 DIODE 1SS119	) <del>)</del>		
	<var< th=""><th>IABLE RESISTOR</th><th>&gt;</th><th></th><th></th><th></th><th>D706</th><th>8-719-911-19</th><th>DIODE 188119</th><th></th><th></th><th></th></var<>	IABLE RESISTOR	>				D706	8-719-911-19	DIODE 188119			
RV601	1-241-759-21 <rel< th=""><th></th><th>BON 22</th><th>20</th><th></th><th></th><th>D707 D708 D709 D713</th><th>8-719-901-83 8-719-901-83 8-719-901-83 8-719-901-83</th><th>DIODE 1SS83 DIODE 1SS83 DIODE 1SS83 DIODE 1SS83</th><th></th><th></th><th></th></rel<>		BON 22	20			D707 D708 D709 D713	8-719-901-83 8-719-901-83 8-719-901-83 8-719-901-83	DIODE 1SS83 DIODE 1SS83 DIODE 1SS83 DIODE 1SS83			

The components identified by shading and mark A are critical for safety.
Replace only with part number specified.

i e e e e e													П
REF.NO.	PART NO.	DESCRIPTION			REMARK	REF.NO.	PART NO.	DESCRIPTION			·	REMARK	(
D715 D716	8-719-901-83 8-719-901-83					R740	1-249-429-11	CARBON	10K	5%	1/4W	F	
D717	8-719-901-83					R741 R742	1-249-429-11 1-249-429-11	CARBON CARBON	10K 10K	5% 5%	1/4W 1/4W	F F	
	<jac< td=""><td>K&gt;</td><td></td><td></td><td></td><td>R744 R745 R746</td><td>1-249-429-11 1-249-429-11 1-215-879-11</td><td>CARBON CARBON METAL OXIDE</td><td>10K 10K 47K</td><td>5% 5% 5% 5%</td><td>1/4W 1/4W 1W</td><td>F</td><td></td></jac<>	K>				R744 R745 R746	1-249-429-11 1-249-429-11 1-215-879-11	CARBON CARBON METAL OXIDE	10K 10K 47K	5% 5% 5% 5%	1/4W 1/4W 1W	F	
J701 A	1-526-819-11	SOCKET, PITU	RE TUBE			R747	1-247-725-11	CARBON	10K	5%	1/4W	F	
	<c01< td=""><td>L&gt;</td><td></td><td></td><td></td><td>R748 R749 R750</td><td>1-247-713-11 1-215-902-11 1-249-400-11</td><td>CARBON METAL OXIDE CARBON</td><td>1 K 47 K 39</td><td>5% 5% 5%</td><td>1/4W 2W 1/4W</td><td>F F F</td><td></td></c01<>	L>				R748 R749 R750	1-247-713-11 1-215-902-11 1-249-400-11	CARBON METAL OXIDE CARBON	1 K 47 K 39	5% 5% 5%	1/4W 2W 1/4W	F F F	
L701 L705	1-410-667-31 1-412-532-11		22UH 39UH			R751	1-247-887-00	CARBON	220K	5% 5%	1/4W		
	<tra< td=""><td>NSISTOR&gt;</td><td></td><td></td><td></td><td>R753</td><td>1-247-887-00 1-247-887-00</td><td>CARBON CARBON</td><td>220K 220K</td><td>5% 5%</td><td>1/4W 1/4W</td><td>,</td><td></td></tra<>	NSISTOR>				R753	1-247-887-00 1-247-887-00	CARBON CARBON	220K 220K	5% 5%	1/4W 1/4W	,	
9701 9702	8-729-119-78 8-729-119-78	TRANSISTOR 2					<var< td=""><td>IABLE RESISTOR</td><td><b>?&gt;</b></td><td></td><td></td><td></td><td></td></var<>	IABLE RESISTOR	<b>?&gt;</b>				
0703 0704 0705	8-729-119-78 8-729-200-17 8-729-200-17	TRANSISTOR 2 TRANSISTOR 2 TRANSISTOR 2	SC2785-HF SA1091-0	FE		¦ RV708 ▲	1-230-641-11 1-230-798-21 1-230-641-11	RES, ADJ, MET	TAL GLA	ZE 90M			
Q706 Q707	8-729-200-17 8-729-326-11	TRANSISTOR 2: TRANSISTOR 2:	SC2611			1	*********					******	:*
Q708 Q709 Q710	8-729-326-11 8-729-326-11 8-729-200-17	TRANSISTOR 2: TRANSISTOR 2: TRANSISTOR 2:	SC2611			1	*A-1371-971-A *A-1371-972-A	**********	****				
Q711	8-729-200-17	TRANSISTOR 2	SA1091-0			 		*******		(FYH41)	(Mpoc		
0712 0713 0714	8-729-200-17 8-729-255-12 8-729-255-12	TRANSISTOR 2: TRANSISTOR 2: TRANSISTOR 2:	SC2551-0			1	4-348-208-00	HOLDER, LED					
Q715	8-729-119-78	TRANSISTOR 2	SC2785-HF					NECTOR>					
Q716 Q717	8-729-119-78 8-729-119-78	TRANSISTOR 2: TRANSISTOR 2:				CN105 : CN106 :	*1-564-527-11 *1-564-526-11	PLUG, CONNECT PLUG, CONNECT	OR 12P	•			
	<res< td=""><td>ISTOR&gt;</td><td></td><td></td><td></td><td>   </td><td>&lt;010</td><td>DE&gt;</td><td></td><td></td><td></td><td></td><td></td></res<>	ISTOR>				 	<010	DE>					
R702 R704	1-247-903-00 1-215-405-00	CARBON METAL	220 1	5% 1/4W 1% 1/4W			8-719-920-05 8-719-812-32			454QM)			
R705 R706 R707	1-215-405-00 1-215-405-00 1-249-431-11	METAL METAL CARBON	220 1 220 1	1% 1/4W 1% 1/4W 5% 1/4W		D2104	8-719-901-33	DIODE 1SS133	(PVM-1	(454QM)			
R708	1-249-431-11	CARBON	15K 5	5% 1/4W				ISTOR>					
R709 R710 R711	1-249-431-11 1-215-391-00 1-215-394-00	CARBON METAL METAL	56 1	5% 1/4W 1% 1/4W 1% 1/4W		R2107	1-249-419-11 1-249-430-11 1-249-414-11	CARBON	1.5K 12K 560	5% 5% 5%	1/4W 1/4W 1/4W		•
R712 R715	1-215-392-00	METAL	62 1	1% 1/4W		1	1-249-414-11	CARBON	560	5 <b>%</b>	(PVM 1/4W	-1454QM)	
R716 R717	1-216-486-00 1-202-818-00	SOLID METAL OXIDE SOLID	8.2K 5	20% 1/2W 5% 3W 20% 1/2W	F	R2138	1-249-414-11	CARBON	560	5%	1/4W	I-1454QM)	,
R718 R719	1-216-486-00 1-202-818-00	METAL UXIDE SULID	8.2K 5	5% 3W 20% 1/2W	F	R2139	1-249-414-11 1-249-414-11	CARBON	560	5% 5% 5%	1/4W	I-1454QM)	)
R720 R722 R723	1-216-486-00 1-202-883-11	METAL OXIDE SOLID	8.2K 5 680K 2	5% 3W 20% 1/2W	F		1-249-414-11	CARBON CARBON	560 560	5% 5%	1/4W 1/4W (PV)	I-1454QM)	)
R723 R724 R725	1-202-838-00 1-202-842-11 1-202-719-00	SOLID SOLID SOLID	100K 2	20% 1/2W 20% 1/2W 20% 1/2W		R2142 R2143	1-249-414-11 1-249-414-11	CARBON CARBON	560 560	5% 5%	1/4W 1/4W		
R731	1-249-409-11	CARBON				R2144 R2145	1-249-414-11 1-249-414-11	CARBON CARBON	560 560	5% 5% 5% 1%	1/4W 1/4W		
R732 R733 R734	1-249-409-11 1-249-409-11 1-249-409-11	CARBON CARBON CARBON	220	5% 1/4W 5% 1/4W 5% 1/4W 5% 1/4W 5% 1/4W	F	R2147	1-215-427-00	METAL	1.8K	1%	1/4W (PV)	I-1454QM)	)
R735	1-249-409-11	CARBON			F		1-215-419-00	METAL	820	1%		(-1454QM)	)
R736 R737 R738	1-247-807-31 1-247-807-31	CARBON CARBON CARBON	220 100 100	5% 1/4W 5% 1/4W 5% 1/4W 5% 1/4W	r	}	1-215-414-00	METAL METAL	510 330	1% 1%	1/4W (PVN 1/4W	I-1454QM)	)
R739	1-247-807-31	CARBON	100	5% 1/4W		1							



The components identified by shading and mark A are critical for safety. Replace only with part number

H∥J	X								specifie	d.
REF.NO.	PART NO.	DESCRIPTION				REMARK	REF.NO.	PART NO.	DESCRIPTION	REMARK
R2152 R2153 R2154	1-215-407-00 1-215-404-00 1-215-401-11 1-215-399-00 1-215-397-00		270 200 150 120 100	17 17 17 17 17	1/4W 1/4W 1/4W 1/4W 1/4W		*****	MIS	CELLANEOUS	***************
R2156 R2157 R2158 R2159	1-215-421-00 1-215-416-00 1-215-410-00 1-215-405-00 1-215-421-00	METAL METAL METAL METAL	1K 620 360 220	17 17 17 17 17	1/4W 1/4W 1/4W 1/4W		<u>A</u>	1-426-442-21 1-451-329-11 1-537-735-11 1-537-735-21 1-544-063-12	DEFLECTION YOKE (Y14 TERMINAL BOARD ASSY, TERMINAL BOARD ASSY,	FZA) I/O (A)(PVM-1454QM)
		TABLE RESISTOR	_	1.0	1/ 44		¦ V901 <b>∆</b>	8-734-622-05	FUSE (H.B.C.) (40.A/PITURE TUBE (M34KBE2 PITURE TUBE (A34JHS1	1X) (PVM-1454QM)
RV2101	1-241-846-11	RES, VAR, CAR	BON 20	)K			   *****	******	*********	*********
RV2103 RV2105 RV2109	1-241-845-11 1-241-845-11 1-241-845-11	RES, VAR, CAR RES, VAR, CAR RES, VAR, CAR RES, VAR, CAR	BON 20 Bon 20 Bon 20	OK OK OK			1 	******	IES AND PACKING MATER	****
	1-241-846-11	RES. VAR. CAR					Æ	1-765-268-11 3-170-078-01 3-758-528-41	HOLDER (B), PLUG MANUAL, INSTRUCTION	M-1454QM) (PVM-1450QM)
	<swi< td=""><td>TCH&gt;</td><td></td><td></td><td></td><td></td><td>! ! !</td><td>3-758-531-41</td><td>MANUAL, INSTRUCTION</td><td>(PVM-1454QM)</td></swi<>	TCH>					! ! !	3-758-531-41	MANUAL, INSTRUCTION	(PVM-1454QM)
S2102 S2103 S2104	1-570-101-41 1-570-101-41 1-570-101-41	SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO	DARD DARD DARD	(PVM-14!	54QM)			4-044-450-01	CUSHION (UPPER) (ASS CUSHION (LOWER) (ASS LABEL, TALLY (PVM-14 INDIVIDUAL CARTON (P INDIVIDUAL CARTON (P	Y) 54QM) VM-1454QM)
S2108 S2109	1-570-101-41 1-570-101-41	SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO SWITCH, KEY BO	DARD DARD DARD	(PVM-14!	54QM)			<b>*</b> 4-381-155-01	BAG, PROTECTION	
\$2112 \$2113	1-570-101-41 1-570-969-11	SWITCH, KEY BESWITCH, KEY BESW	DARD ( Dard							
*****	**********	*********	*****	*****	*****	******	 			•
	*A-1388-166-A	J BOARD, COMP					1 1 1 1 1 1 1		÷	
	<con< td=""><td>NECTOR&gt;</td><td></td><td></td><td></td><td></td><td>! !</td><td></td><td></td><td></td></con<>	NECTOR>					! !			
CN608	<b>*1</b> -695-561-11	PIN, CONNECTO	R (PC	BOARD)	7P		, , , , ,			
	<swi< td=""><td>TCH&gt;</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></swi<>	TCH>					<u> </u>			
S601 A	1-692-921-11	SWITCH, PUSH	(A.C.	POWER)			i    -			
*****	***********	*********	*****	******	******	******	i   			
	*A-1390-390-A	X BOARD, COMP.		(PVM-14	54QM)		i i i i			
	<con< td=""><td>NECTOR&gt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></con<>	NECTOR>								
CN108	*1-564-518-11	PLUG, CONNECT	OR 3P							

**Sony Corporation Display Products Group** 

D001 D002 D003 D004

<D10DE>

8-719-023-78 DIODE SEL3810DLC05 8-719-023-78 DIODE SEL3810DLC05 8-719-023-78 DIODE SEL3810DLC05 8-719-023-78 DIODE SEL3810DLC05

# PVM-1450QM/1454QM

## SONY. SERVICE MANUAL

### **AEP Model**

PVM-1450QM Serial No. 2,004,951 and Higher Chassis No. SCC-G62C-A PVM-1454QM Serial No. 2,004,901 and Higher Chassis No. SCC-G62B-A

### **SUPPLEMENT-1**

File this supplement with the service manual.

#### INTRODUCTION

Set, having CE mark (Safety mark), have been applied to the above Serial No. and changed G Block. New G Block shows on next pages.



#### - G BOARD -



The components identified by shading and mark A are critical for safety.
Replace only with part number specified.

REF.NO. PART NO.	DESCRIPTION		REMARK	REF.NO.	PART NO.	DESCRIPTION		REMARK
* A-1316-213-A	G BOARD, COMPLETE (PVM-1 ************************************	354Q) 954Q) 454PM)		D606 D607 D608 D609 D610	8-719-300-33 8-719-300-33 8-719-911-19 8-719-300-33 8-719-300-33	DIODE RU-3AM DIODE RU-3AM DIODE ISS119-25 DIODE RU-3AM DIODE RU-3AM		
* A-1316-214-A	G BOARD, COMPLETE (PVM-1: ******************** (PVM-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		D612 D613 D614 D615 D616	8-719-045-48 8-719-971-65 8-719-045-48 8-719-971-65 8-719-300-33	DIODE FML-G12S DIODE RGP15J-6040 DIODE FML-G12S DIODE RGP15J-6040 DIODE RU-3AM			
<cap.< td=""><td>ACITOR&gt;</td><td></td><td></td><td>D617</td><td>8-719-110-46</td><td>DIODE RD16ESB3</td><td></td><td></td></cap.<>	ACITOR>			D617	8-719-110-46	DIODE RD16ESB3		
C602 A 1-136-360-51 C603 A 1-136-360-51 C604 A 1-161-741-21 C605 A 1-161-741-21 C606 A 1-161-741-21	FILM 0.22MF FILM 0.22MF CERAMIC 0.001MF CERAMIC 0.001MF CERAMIC 0.001MF	20% 20% 10% 10% 10%	250V 250V 400V 400V 400V		<pre><fus <="" pre=""> <pre>&lt;</pre></fus></pre>	FUSE, GLASS TUBE HOLDER, FUSE	1.6A/125V 1.6A/125V	
C609 A 1-161-953-71 C610 A 1-161-953-71	CERAMIC 0.001MF CERAMIC 0.0047MF CERAMIC 0.0047MF CERAMIC 0.0047MF	10% 20% 20% 20%	400V 400V 400V 400V		1-533-189-11	HOLDER, FUSE		
C612	CERAMIC 0.0047MF  FILM 0.47MF  FILM 0.033MF  FILM 0.0016MF  ELECT 47MF	20% 10% 10% 10% 3% 20%	400V 630V 630V 630V 2KV 35V	FB601 FB602 FB603 FB604 FB605		FERRITE BEAD INDUC FERRITE BEAD INDUC FERRITE BEAD INDUC FERRITE BEAD INDUC FERRITE BEAD INDUC	CTOR 0.45UH CTOR 0.45UH CTOR 0.45UH	
C617 1-136-557-11 C618 1-126-096-11 C619 1-124-911-11 C620 1-161-754-00	FILM 0.0033MF ELECT 10MF ELECT 220MF CERAMIC 0.001MF ELECT(BLOCK) 560MF	10% 20% 20% 10% 20%	630V 25V 50V 2KV 160V	I C602	8-749-924-69 4-382-854-11 8-749-010-47 4-382-854-11	SCREW (M3X10), P, IC STR-S3115 SCREW (M3X10), P,		
C624 1-102-038-00 C625 1-124-557-11	CERAMIC 0.001MF ELECT 3300MF CERAMIC 0.001MF ELECT 1000MF CERAMIC 0.001MF	20% 20%	500V 25V 500V 25V 500V		4-382-854-11 8-759-231-53	1C NJM78M05FA  SCREW (M3X10), P. 1C TA7805S  SCREW (M3X10), P.		
C628 1-102-038-00 C629 1-124-922-11 C630 1-124-907-11	ELECT 1000MF CERAMIC 0.001MF ELECT 1000MF ELECT 10MF FILM 0.56MF	20% 20% 20% 5%	50V 500V 50V 50V 200V	JW609	<jum 1-410-679-31</jum 		DUH (PVM-1353MI	D)
C634 1-124-911-11 C636 1-124-910-11	ELECT 47MF ELECT 100MF ELECT 220MF ELECT 47MF FILM 0.47MF	20% 20% 20% 20% 10%	160V 50V 50V 50V 630V	L601 L1601 L1602	<011 1-411-215-11 1-410-679-31 1-421-421-00	COIL, CHOKE 200UH INDUCTOR 270	OUH (PVM-1453MI	0)
<cont< td=""><td>NECTOR&gt;</td><td></td><td>   </td><td></td><td>&lt;<b>PHO</b>1</td><td>O COUPLER&gt;</td><td></td><td></td></cont<>	NECTOR>		 		< <b>PHO</b> 1	O COUPLER>		
CN602 *1-695-561-11 CN603 *1-508-765-00 CN604 *1-564-506-11	PIN, CONNECTOR (PC BOARD PIN, CONNECTOR (PC BOARD PIN, CONNECTOR (5MM PITC PLUG, CONNECTOR 3P PIN, CONNECTOR (PC BOARD	) 7P H) 3P	1 1 1 1 1 1 1	PH601		PHOTO COUPLER PC11	1YS	
CN606 *1-564-508-11		) OP	! ! ! !		8-729-303-61	TRANSISTOR 2SD774- TRANSISTOR 2SC3851 SCREW (M3X10), P.	-G	
1010>	DE>	 				₩ (·/, <b>ૡ</b> 00/		
D601 & 8-719-032-39 D602 & 8-719-032-39 D603 & 8-719-032-39 D604 & 8-719-032-39 D605 8-719-971-65	DIODE DSA3A4-F3 DIODE DSA3A4-F3 DIODE DSA3A4-F3		1 1 1 1 1 1 1		- 1-202-885-91 1-216-489-11		20% 1/2W 5% 3W I	7

#### PVM-1450QM/1454QM



The components identified by shading and mark are critical for safety.
Replace only with part number specified.

REF.NO.	PART NO.	DESCRIPTION				REMARK
R603 R604 R605	1-216-491-11 1-249-418-11 1-249-415-11	METAL OXIDE CARBON CARBON	56K 1.2K 680	5% 5% 5%	3W 1/4W 1/4W	F
R606 R607 R608 R609 R610	1-207-642-00 1-249-423-11 1-249-426-11 1-249-426-11 1-249-421-11	WIREWOUND CARBON CARBON CARBON CARBON	0.15 3.3K 5.6K 5.6K 2.2K	10% 5% 5% 5% 5%	3W 1/4W 1/4W 1/4W 1/4W	F
R611 R612 R613 R614 R615	1-249-417-11 1-249-404-00 1-249-419-11 1-249-385-11 1-218-265-11	CARBON CARBON CARBON CARBON METAL	1K 82 1.5K 2.2 8.2M	5% 5% 5% 5%	1/4W 1/4W 1/4W 1/4W 1W	F
R616 R617 R618 R619 R620	1-216-341-11 1-216-341-11 1-249-443-11 1-216-341-11 1-249-443-11	METAL OXIDE METAL OXIDE CARBON METAL OXIDE CARBON	0.22 0.22 0.47 0.22 0.47	5% 5% 5% 5%	1W 1W 1/4W 1W 1/4W	F F F F
R621 R622 R623 R624 R625	1-215-877-11 1-247-700-11 1-249-417-11 1-216-341-11 1-216-341-11	METAL OXIDE CARBON CARBON METAL OXIDE METAL OXIDE	22K 100 1K 0.22 0.22	5% 5% 5% 5%	1W 1/4W 1/4W 1W 1W	F
R626 R631 R1602 R1603	1-247-895-00 1-247-807-31 1-215-869-11 1-202-846-00	CARBON CARBON METAL OXIDE SOLID	470K 100 1K 470K	5% 5% 5% 20%	1/4W 1/4W 1W 1/2W	F

<RELAY>

RY601A 1-515-738-11 RELAY

<TRANSFORMER>

T601 \$\triangle 1-426-716-11\$ TRANSFORMER, LINE FILTER (LFT) T602 \$\triangle 1-426-716-11\$ TRANSFORMER, LINE FILTER (LFT) TRANSFORMER, CONVERTER (SRT)

<THERMISTOR>

THP601A1-808-059-32 THERMISTOR, POSITIVE

<VARISTOR>

VDR601A1-809-942-71 VARISTOR

English 95EZ24078-1 Printed in Japan ©1995. 5