Задача А. Перевороты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На столе подряд лежат K листов бумаги. Дано число N. На каждом листе записаны все числа от 1 до N ровно по одному разу, но некоторые из них записаны на видимой стороне, а остальные на обратной. Ваша задача - перевернуть некоторые листы так, чтобы максимизировать количество различных чисел на видимых сторонах.

Формат входных данных

На первой строке даны N и K, так чтобы $N \times K \leqslant 10^6$ при этом $N \geqslant 1$ и $K \geqslant 1$.

На следующих K строках идут описания листов. На i+1 строке, первое число это m ($0 \le m \le N$) — количество чисел записанных на видимой стороне i-ого листа бумаги. Далее идут m чисел которые написаны на видимой стороне i-го листа, каждый от 1 до N.

Формат выходных данных

Выведите строку состоящий из K символов. $i(1 \le i \le K)$ символ равняется 1 если надо перевернут, иначе 0. Если существует несколько ответов, вывести любой.

Система оценки

Данная задача содержит пять подзадач:

- 1. $1 \le N \le 10, 1 \le K \le 10$. Оценивается в 11 баллов.
- 2. $1 \leqslant N \leqslant K$. Оценивается в 8 баллов.
- 3. $1 \le N \le 100$. Оценивается в 15 баллов.
- 4. $1 \le N \times K \le 5 \cdot 10^4$. Оценивается в 30 баллов.
- 5. $1 \le N \times K \le 10^6$. Оценивается в 36 баллов.

Примеры

стандартный ввод	стандартный вывод
5 4	1111
2 1 3	
2 3 4	
2 2 4	
3 1 2 3	
6 2	01
3 1 3 4	
3 1 2 4	

Задача В. Очередная дурацкая задача на дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано подвешенное бинарное дерево изначально состоящее из одной вершины с номером 1. Вам предстоит обработать M запросов следующих типов :

- $Grow\ V$. К каждому листу leaf в поддереве вершины V дописать две новые вершины с номерами $2 \cdot leaf$ и $2 \cdot leaf + 1$.
- $Sum\ V$, нужно подсчитать сумму номеров вершин в поддерево вершины V по модулю 10^9+7 .

Получится ли у Вас решить эту задачу?

Формат входных данных

Первая строка входного файла содержит целое число M ($1 \le M \le 2 \cdot 10^5$) — количество запросов. В последующих M строках содержится описания операций. Каждая операция описывается строкой $Op\ V$, где $Op\ —$ тип операции ($Grow\$ либо Sum), а $V\ —$ номер вершины для которой она выполняется.

Формат выходных данных

Для каждой операции типа Sum в выходной файл на отдельной строке необходимо вывести соответствующую сумму. Выводите операции в том же порядке в котором они идут во входном файле.

Система оценки

Данная задача содержит семь подзадач:

- 1. $1 \leqslant M \leqslant 20$. Оценивается в 15 баллов.
- 2. $1 \le M \le 2 \cdot 10^5$, V = 1 во всех запросах $Grow\ V$. Оценивается в 10 баллов.
- 3. $1 \le M \le 2 \cdot 10^5$, V = 1 во всех запросах $Sum\ V$. Оценивается в 10 баллов.
- 4. $1 \le M \le 10^3$. Оценивается в 15 баллов.
- 5. $1 \leqslant M \leqslant 2 \cdot 10^5$, гарантируется что все запросы Sum идут строго после всех запросов Grow. Оценивается в 15 баллов.
- 6. $1 \le M \le 2 \cdot 10^5$, $1 \le V \le 10^6$. Оценивается в 15 баллов.
- 7. $1 \le M \le 2 \cdot 10^5$, $1 \le V \le 10^9$. Оценивается в 20 баллов.

Пример

стандартный ввод	стандартный вывод
5	66
Grow 1	21
Grow 1	
Grow 2	
Sum 1	
Sum 4	

Задача С. Секретные алгоритмы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В стране Timart есть N городов и M двусторонних дорог. Города пронумерованы от 1 до N. Известно, что с каждого города можно добраться до любого другого по существующим дорогам. Андрей спрятал свитки с секретными алгоритмами в городах Timart. В i-ом городе хранится A_i свитков. Рамазан хочет украсть эти свитки. Он может украсть все свитки из города, в котором он находится. Рамазан может начать воровать с любого города. Чтобы не быть пойманным, он не будет использовать одну дорогу два раза **подряд**. Свитки каждого города можно украсть не более одного раза, посещать города можно по несколько раз. Помогите Рамазану украсть как можно больше свитков.

Формат входных данных

В первой строке входных данных содержится два целых числа N, M ($1 \le N \le 5 \cdot 10^5$, $0 \le M \le 5 \cdot 10^5$). Во второй строке находятся N целых чисел A_1, A_2, \ldots, A_N , где A_i — количество свитков в i-ом городе. В следующих M строках содержится по 2 целых положительных числа, разделенных пробелом, u_i, v_i ($1 \le u_i, v_i \le N, u_i \ne v_i$) — дорога соединяющая города u_i и v_i . Известно, что между двумя городами не может быть больше одной дороги, и что никакая дорога не соединяет город с самим собой. Гарантируется, что между любыми двумя городами существует путь состоящий из заданных дорог

Формат выходных данных

Выведите одно целое число $\,-\,$ максимальное количество свитков, которое может украсть Рамазан.

Система оценки

Данная задача содержит пять подзадач:

- 1. $1\leqslant N\leqslant 100, M=\frac{N\cdot (N-1)}{2},\ 1\leqslant A_i\leqslant 300,$ для всех $1\leqslant i\leqslant N.$ Оценивается в 15 баллов.
- 2. $1 \leqslant N \leqslant 12, 0 \leqslant M \leqslant 66, 1 \leqslant A_i \leqslant 300$, для всех $1 \leqslant i \leqslant N$. Оценивается в 17 баллов.
- 3. $1\leqslant N\leqslant 10^5,\, M=N-1,\, 1\leqslant A_i\leqslant 10^9,$ для всех $1\leqslant i\leqslant N.$ Оценивается в 17 баллов.
- 4. $3 \leqslant N \leqslant 10^5, \, M=N, \, 1 \leqslant A_i \leqslant 10^9, \,$ для всех $1 \leqslant i \leqslant N.$ Оценивается в 25 баллов.
- 5. $1\leqslant N\leqslant 5\cdot 10^5,\, 0\leqslant M\leqslant 5\cdot 10^5,\, 1\leqslant A_i\leqslant 10^9,$ для всех $1\leqslant i\leqslant N.$ Оценивается в 26 балла.

Пример

стандартный ввод	стандартный вывод
8 8	35
1 2 3 4 5 6 7 8	
1 2	
2 3	
2 4	
2 5	
5 6	
6 7	
7 8	
8 5	

Задача D. Тима и сумма степеней

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

 ${\mathbb Y}$ Тимы есть целое число N и массив A из N целых чисел. Также у него есть два целых числа M и K. Для каждого i от 1 до N-M+1 Тима хочет посчитать значение выражения $1^K \cdot A_i + 2^K \cdot A_{i+1} + \dots + M^K \cdot A_{i+M-1}$. Помогите ему решить эту задачу.

Формат входных данных

В первой строке находятся три целых числа $N(1 \le N \le 10^5), M(1 \le M \le N)$ и $K(0 \le K \le 20)$. Во второй строке находятся N целых числа $A_1, A_2, \dots, A_N \ (1 \le A_i \le 10^9)$.

Формат выходных данных

Выведите N-M+1 строк, в i-ой строке выведите остаток $1^K \cdot A_i + 2^K \cdot A_{i+1} + \cdots + M^K \cdot A_{i+M-1}$. при делении на $10^9 + 7$.

Система оценки

Данная задача содержит пять подзадач:

- 1. $1 \le N \le 100, 0 \le K \le 3, 1 \le A_i \le 10$. Оценивается в 17 баллов.
- 2. $1 \leqslant N \leqslant 10^4, 0 \leqslant K \leqslant 20, 1 \leqslant A_i \leqslant 10^9$. Оценивается в 15 баллов.
- 3. $1 \leqslant N \leqslant 10^5, 0 \leqslant K \leqslant 1, 1 \leqslant A_i \leqslant 10^9$. Оценивается в 17 баллов.
- 4. $1 \leq N \leq 10^5, K = 2, 1 \leq A_i \leq 10^9$. Оценивается в 20 баллов.
- 5. $1 \le N \le 10^5, 0 \le K \le 20, 1 \le A_i \le 10^9$. Оценивается в 31 баллов

Примеры

стандартный ввод	стандартный вывод
5 3 2	36
1 2 3 4 5	50
	64
3 2 0	10
7 3 2	5

Замечание

Пояснение к примеру 1:

При
$$i=1,\,1^K\cdot A_1+2^K\cdot A_2+3^K\cdot A_3=1^2\cdot 1+2^2\cdot 2+3^2\cdot 3=1+8+27=36.$$
 При $i=2,\,1^K\cdot A_2+2^K\cdot A_3+3^K\cdot A_4=1^2\cdot 2+2^2\cdot 3+3^2\cdot 4=50.$ При $i=3,\,1^K\cdot A_3+2^K\cdot A_4+3^K\cdot A_5=1^2\cdot 3+2^2\cdot 4+3^2\cdot 5=64.$

$$\text{При } i = 2 \cdot 1^K \cdot A_2 + 2^K \cdot A_2 + 3^K \cdot A_4 = 1^2 \cdot 2 + 2^2 \cdot 3 + 3^2 \cdot 4 = 50$$

При
$$i = 3, 1^{\mathbf{A}} \cdot A_3 + 2^{\mathbf{A}} \cdot A_4 + 3^{\mathbf{A}} \cdot A_5 = 1^2 \cdot 3 + 2^2 \cdot 4 + 3^2 \cdot 5 = 64$$