การเรียนรู้ของเครือข่ายฟังก์ชันฐานรัศมี Learning of Radial Basis Function Network

เครือข่ายฟังก์ชันฐานรัศมี (radial basis function network หรือ RBF network) เป็นเครือข่ายไปข้างหน้าประเภท หนึ่ง ที่ได้รับการยอมรับว่ามีประสิทธิภาพสูงเครือข่ายหนึ่ง เครือข่าย RBF แตกต่างไปจากเครือข่ายเพอร์เซ็พต รอนแบบหลายชั้น (multi-layer perceptron) ตรงที่เครือข่าย RBF นั้นมีชั้นช่อนเร้นเพียงชั้นเดียว David Broomhead และ David Lowe [Broomhead and Lowe, 1988] ถือเป็นผู้บุกเบิกนำเอา RBF มาประยุกต์ใช้ เครือข่ายฟังก์ชันฐานรัศมีสามารถพิจารณาเป็นฟังก์ชันการส่ง (mapping function) ของความสัมพันธ์ระหว่างคู่ รูปแบบอินพุตและเอาต์พุตได้ โดยการเรียนรู้ของเครือข่ายเป็นการปรับค่าน้ำหนักประสาทให้ได้ฟังก์ชันการส่งที่ เหมาะที่สุด ดังนั้นเราสามารถกล่าวได้ว่าเครือข่าย RBF คือกระบวนการปรับเส้นโค้ง (curve fitting) ระหว่างข้อมูล อินพุตกับเอาต์พุตนั่นเอง

15.1 สถาปัตยกรรมของเครือข่าย RBF

รูปที่ 15.1 แสดงเครือข่าย RBF ทั่วๆ ไป ซึ่งประกอบไปด้วยชั้นของนิวรอน 3 ชั้นดังนี้

- ชั้นอินพุต แต่ละอินพุตจะแทนคุณลักษณะของเวกเตอร์อินพุต เหมือนกับในเครือข่ายเพอร์เซ็พตรอนแบบ หลายชั้นทั่วๆ ไป ในที่นี้เวกเตอร์อินพุตมีขนาดเท่ากับ R
- ชั้นช่อนเร็น แต่ละนิวรอนในชั้นช่อนเร้นจะมีฟังก์ชันถ่ายโอนซึ่งมีลักษณะพิเศษ ที่ซึ่งให้ผลตอบสนองของ ฟังก์ชันที่ขึ้นอยู่กับระยะห่างระหว่างอินพุตกับจุดศูนย์กลายของฟังก์ชัน กล่าวคือถ้าเวกเตอร์อินพุตอยู่ใกล้ จุดศูนย์กลางมาก เอาต์พุตที่ได้จะมาก ถ้าเวกเตอร์อินพุตอยู่ห่างออกจากจุดศูนย์กลาง เอาต์พุตที่ได้จะลดลง ตามลำดับ ในที่นี้จำนวนนิวรอนในชั้นช่อนเร้นมีขนาดเท่ากับ S
- ชั้นเอาต์พุต มีหน้าที่รวมเอาต์พุต ที่ได้จากแต่ละนิวรอนในชั้นซ่อนเร้น เครือข่ายให้เอาต์พุตในรูปของ เวกเตอร์ขนาดเท่ากับ M

ร**ูปที่ 15.1:** เครือข่าย RBF ที่มีขนาดของอินพุตเท่ากับ R จำนวนนิวรอนในชั้นซ่อนเร้นเท่ากับ S และขนาดของ เอาต์พุตเท่ากับ M

ดังนั้นเราสามารถพิจารณาเครือข่าย RBF เป็นการฟังก์ชันการส่งระหว่างปริภูมิของอินพุต $\mathbf{p} \in \mathbb{R}^{R imes 1}$ ไปยังปริภูมิของเอาต์พุต $\mathbf{y} \in \mathbb{R}^{M imes 1}$ ได้ จากเครือข่าย RBF ในรูปข้างต้น จะได้ว่าเอาต์พุตตัวที่ i ของเครือข่ายมีค่าเท่ากับ

$$y_i = \sum_{k=1}^{S} w_{ik} \phi_k(\mathbf{p}, \mathbf{c}_k)$$
 (15.1)

$$= \sum_{k=1}^{S} w_{ik} \phi_k(\|\mathbf{p} - \mathbf{c}_k\|_2)$$
 (15.2)

โดยที่

 $\phi_k(\cdot)$ = ฟังก์ชันส่งค่าจาก \mathbb{R}^+ ไปยัง \mathbb{R} ของนิวรอนตัวที่ k ในชั้นซ่อนเร้น

 $\|\cdot\|_2$ = ฟังก์ชันระยะทางแบบยุคลิด

 \mathbf{w}_{ik} = ค่าน้ำหนักประสาทของนิวรอนตัวที่ k ในชั้นซ่อนเร้น

S = จำนวนนิวรอนทั้งหมดในชั้นซ่อนเร้น

 $\mathbf{c}_k \in \mathbb{R}^{R imes 1}$ = เวกเตอร์จุดศูนย์กลางในปริภูมิของเวกเตอร์อินพุตสำหรับนิวรอนตัวที่ k ในชั้นซ่อนเร้น สำหรับแต่ละนิวรอนในชั้นซ่อนเร้น ค่าระยะทางยุคลิดระหว่างเวกเตอร์จุดศูนย์กลาง \mathbf{c}_k กับเวกเตอร์อินพุต \mathbf{p} จะถูกคำนวณ เอาต์พุตของนิวรอนในชั้นซ่อนเร้นนี้จะได้จากฟังก์ชัน $\phi_k(\cdot)$ ซึ่งเป็นฟังก์ชันแบบไม่เป็นเชิงเส้น สุดท้ายแล้วเอาต์พุตของเครือข่ายจะได้จากผลรวมของค่าน้ำหนักประสาท กับเอาต์พุตของนิวรอนจากชั้นซ่อนเร้น ตัวอย่างของฟังก์ชัน $\phi_k(\cdot)$ ที่ใช้ในเครือข่าย RBF เช่น

- ฟังก์ชันเชิงเส้น $\phi(p)=p$
- ฟังก์ชันประมาณกำลังสาม $\phi(p)=p^3$
- ฟังก์ชัน thin-plate-spline $\phi(p)=p^2\ln p$
- ฟังก์ชันเกาส์เซียน $\phi(p)=e^{-p^2/\sigma^2}$
- ฟังก์ชันรากกำลังสอง $\phi(p) = \sqrt{p^2 + \sigma^2}$
- ฟังก์ชันรากกำลังสองผกผัน $\phi(p)=rac{1}{\sqrt{p^2+\sigma^2}}$

ร**ูปที่ 15.2**: ฟังก์ชันฐานรัศมีแบบเกาส์เซียน (แสดงตัวอย่างใน 2 มิติสำหรับปริภูมิของอินพุตเวกเตอร์ $\mathbf{p}=[p_1 \ p_2]^T)$

ร**ูปที่ 15.3**: ผลของพารามิเตอร์การกระจาย σ กับความกว้างของ RBF

การปรากฏของฟังก์ชัน ϕ ดังกล่าวเป็นที่มาของชื่อ Radial Basis Function หรือ RBF นั่นเอง ฟังก์ชันที่นิยมใช้ ใน RBF มากที่สุดก็คือฟังก์ชันเกาส์เซียน รูปร่างของฟังก์ชันเกาส์เซียนมีแสดงในรูปที่ 15.2 โดยที่พารามิเตอร์ σ เป็นตัวควบคุมความกว้างของ RBF หรือเรียกว่าพารามิเตอร์การกระจาย (spread parameter)

เวกเตอร์ศูนย์กลาง \mathbf{c}_k ของนิวรอนซ่อนเร้นตัวที่ k จะรับอินพุตจากเวกเตอร์ \mathbf{p} ที่มีมิติเท่ากับ R พารามิเตอร์ σ_k ทำหน้าที่ควบคุมความกว้างของแต่ละ RBF โดยปกติแล้ว ถ้าเวกเตอร์อินพุต \mathbf{p} มีระยะห่างจากจุดศูนย์กลาง \mathbf{c}_k มากขึ้น กล่าวคือ $\|\mathbf{p} - \mathbf{c}_k\|$ 2 มีค่ามากขึ้น ค่าที่ได้จากฟังก์ชัน ϕ_k จะลดลง (ดูรูปที่ 15.3) พื้นที่ของฟังก์ชัน ϕ เรียก ว่าสนามรับ (receptive field) ของนิวรอนนั้นๆ [Wasserman, 1993] เอาต์พุต y_j ของเครือข่ายได้จากผลรวมของ เอาต์พุตของฟังก์ชัน ϕ จากทุกนิวรอนในชั้นซ่อนเร้น โดยปกติแล้วเวกเตอร์จุดศูนย์กลาง \mathbf{c}_k จะถูกเลือกจากปริภูมิ ของเวกเตอร์อินพุต ที่ซึ่งจะต้องมีจำนวนเวกเตอร์จุดศูนย์กลาง (หรือจำนวนนิวรอนในชั้นซ่อนเร้น) เพียงพอและ ครอบคลุมปริภูมิของอินพุตได้ รายละเอียดพารามิเตอร์ต่างๆ ของเครือข่าย RBF จะได้กล่าวถึงในหัวข้อต่อไป

15.2 การฝึกสอนเครือข่าย RBF

การฝึกสอนเครือข่าย RBF นั้นได้มีผู้นำเสนอไว้หลายรูปแบบ ในลักษณะเดียวกันกับการฝึกสอนเครือข่ายประสาท เทียมแบบอื่นๆ การฝึกสอนเครือข่าย RBF ก็คือการค้นหาพารามิเตอร์ของเครือข่ายซึ่งประกอบไปด้วย

- ullet ค่าน้ำหนักประสาท w_{ik} สำหรับ $i=1,\ldots,M$ และ $k=1,\ldots,S$
- ullet เวกเตอร์จุดศูนย์กลางของนิวรอนตัวที่ k ในชั้นซ่อนเร้น \mathbf{c}_k สำหรับ $k=1,\ldots,S$

• ค่าพารามิเตอร์การกระจาย σ_k สำหรับ $k=1,\ldots,S$

ในที่นี้จะได้นำเสนอวิธีการฝึกสอนแบบจุดศูนย์กลางคงที่ (fixed center) และแบบเกรเดียนต์เฟ้นสุ่ม (stochastic gradient) ซึ่งในการฝึกสอนแบบแรกเวกเตอร์จุดศูนย์กลางจะถูกสุ่มมาจากเวกเตอร์อินพุต และจะไม่มีการ เปลี่ยนแปลงตำแหน่งของจุดศูนย์กลางในระหว่างการฝึกสอน ในขณะที่การฝึกสอนแบบที่สองจะมีการปรับพารามิเตอร์ของเครือข่ายทั้งหมด รายละเอียดการฝึกสอนทั้งสองแบบมีดังต่อไปนี้ [Ham and Kostanic, 2001]

15.2.1 การฝึกสอนเครือข่าย RBF แบบจุดศูนย์กลางคงที่

พิจารณาความสัมพันธ์เอาต์พูตตัวที่ i ของเครือข่าย RBF ต่อไปนี้

$$y_i = \sum_{k=1}^{S} w_{ik} \phi_k(\mathbf{p}, \mathbf{c}_k)$$
 (15.3)

$$= \sum_{k=1}^{S} w_{ik} \phi_k(\|\mathbf{p} - \mathbf{c}_k\|_2)$$
 (15.4)

จะเห็นได้ว่าพารามิเตอร์ที่ควบคุมการส่งค่าระหว่างอินพุตกับเอาต์พุตของเครือข่ายก็คือค่าน้ำหนักประสาท w_{ik} ในชั้นเอาต์พุตและเวกเตอร์จุดศูนย์กลาง \mathbf{c}_k ของ RBF (ในที่นี้คือฟังก์ชันเกาส์เซียน) ดังนั้นการฝึกสอนเครือข่าย RBF ที่ง่ายที่สุดก็คือกำหนดให้เวกเตอร์จุดศูนย์กลางมีค่าคงที่ โดยปกติแล้วในขั้นตอนการฝึกสอนจะทำการสุ่ม เลือกเวกเตอร์จุดศูนย์กลางจากเวกเตอร์อินพุต [Broomhead and Lowe, 1988] สิ่งสำคัญอย่างหนึ่งในการฝึกสอน แบบนี้ก็คือ จำนวนเวกเตอร์จุดศูนย์กลางที่สุ่มเลือกมาจะต้องมี*จำนวนเพียงพอ*ที่จะครอบคลุมปริภูมิของอินพุต ที่ซึ่งไม่มีวิธีการที่แน่นอนในการหาว่าจำนวนของเวกเตอร์ดังกล่าวควรจะมีค่าเป็นเท่าไร หลักการอย่างหนึ่งก็คือ เลือกเวกเตอร์จุดศูนย์กลางให้มีจำนวนมากพอที่จะครอบคลุมปริภูมิของอินพุต แล้วในขณะฝึกสอนเราสามารถ กำจัดเวกเตอร์จุดศูนย์กลาง (นั่นก็คือนิวรอนในชั้นซ่อนเร้น) ออกจากเครือข่าย โดยที่ไม่ทำให้เครือข่ายลดประสิทธิภาพลงแต่อย่างใด รายละเอียดการฝึกสอนเครือข่ายหลังจากที่กำหนดจำนวนเวกเตอร์จุดศูนย์กลาง (นั่นคือ จำนวนนิวรอนในชั้นซ่อนเร้น) แล้วมีดังต่อไปนี้

⊳ อัลกอริทึมการฝึกสอนเครือข่าย RBF แบบจุดศูนย์กลางคงที่

1. กำหนดให้จำนวนคู่เวกเตอร์อินพุต/เอาต์พุตมีทั้งหมด Q คู่ จะได้ว่าเอาต์พุต $ilde{y}_q$ ของนิวรอนตัวที่ q ของ เครือข่ายคือ

$$\tilde{y}_q = \sum_{k=1}^S w_{ik} \phi(\mathbf{p}_q, \mathbf{c}_k), \ q = 1, \dots, Q$$
(15.5)

สำหรับเวกเตอร์อินพุต \mathbf{p}_q ชุดที่ q และเวกเตอร์จุดศูนย์กลาง \mathbf{c}_k ของนิวรอนตัวที่ k ในชั้นซ่อนเร้น

2. เขียนให้อยู่ในรูปเมตริกซ์ได้ดังนี้

$$\begin{bmatrix} \tilde{y}_1 \\ \vdots \\ \tilde{y}_Q \end{bmatrix} = \begin{bmatrix} \phi(\mathbf{p}_1, \mathbf{c}_1) & \cdots & \phi(\mathbf{p}_1, \mathbf{c}_S) \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{p}_Q, \mathbf{c}_1) & \cdots & \phi(\mathbf{p}_Q, \mathbf{c}_S) \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_S \end{bmatrix}$$
(15.6)

(15.7)

หรือ

โดยที่ $ilde{\mathbf{y}} \in \mathbb{R}^{Q imes 1}$ = เอาต์พุตของเครือข่าย

 $\mathbf{w} \in \mathbb{R}^{S imes 1}$ = เวกเตอร์น้ำหนักประสาทในชั้นช่อนเร้น

 $\Phi \in \mathbb{R}^{Q imes S}$ = เมตริกซ์ของ RBF ในชั้นซ่อนเร้น

3. เนื่องจากจุดศูนย์กลางของ RBF ถูกกำหนดให้คงที่ ดังนั้นการฝึกสอนจะทำการคำนวณหาเพียงค่าของน้ำหนัก ประสาท โดยใช้ค่าวัตถุประสงค์เป็นค่าความผิดพลาดเฉลี่ยกำลังสอง (MSE หรือ Mean-Squared Error) ระหว่างเอาต์พุตของเครือข่าย $\hat{\mathbf{y}}$ กับข้อมูลเอาต์พุตจริง $\hat{\mathbf{y}}$ ดังนั้นฟังก์ชันวัตถุประสงค์สำหรับฝึกสอนเครือข่าย คือ

$$J(\mathbf{w}) = \frac{1}{2} \sum_{q=1}^{Q} [\hat{y}_q - \tilde{y}_q]^2$$
 (15.8)

$$= \frac{1}{2} (\hat{\mathbf{y}} - \tilde{\mathbf{y}})^T (\hat{\mathbf{y}} - \tilde{\mathbf{y}})$$
 (15.9)

โดยที่ $\hat{\mathbf{y}} \in \mathbb{R}^{Q imes 1}$ คือเวกเตอร์ของเอาต์พุตที่ต้องการ (จากคู่อินพุต/เอาต์พุต)

4. แทนสมการที่ 15.7 ลงในสมการที่ 15.9 จะได้

$$J(\mathbf{w}) = \frac{1}{2} (\hat{\mathbf{y}} - \Phi \mathbf{w})^T (\hat{\mathbf{y}} - \Phi \mathbf{w})$$
 (15.10)

5. ทำการอนุพันธ์เพื่อหาค่าน้อยที่สุดของ $J(\mathbf{w})$

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \tag{15.11}$$

จะได้

$$-\Phi^T \hat{\mathbf{y}} + \Phi^T \Phi \mathbf{w} = 0 \tag{15.12}$$

แก้สมการข้างต้นด้วยเมตริกซ์ผกผันเทียม จะได้ค่าน้ำหนักประสาทของเครือข่ายจากค่าความผิดพลาดที่ น้อยที่สุดคือ

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \hat{\mathbf{y}} \tag{15.13}$$

$$= \Phi^{+}\hat{\mathbf{y}} \tag{15.14}$$

โดยที่ Φ^+ คือเมตริกซ์ผกผันเทียมของฟังก์ชัน Φ

จะเห็นได้ว่า ในกรณีที่กำหนดจุดศูนย์กลาง RBF ให้คงที่ การฝึกสอนเครือข่ายจะให้ผลลัพธ์เป็นผลเฉลยรูปแบบ ปิด ดังนั้นการฝึกสอนจะสามารถทำได้อย่างรวดเร็ว จึงทำให้มีผู้สนใจนำเอาเครือข่าย RBF ไปใช้งานอย่างมากมาย นอกไปจากนั้นแล้ว ขนาดของเครือข่าย RBF ยังมีผลจากสมการที่ 15.12 ที่ซึ่งจะทำให้สามารถหาคำตอบของ สมการได้แบบหนึ่งคำตอบอย่างเป็นเอกลักษณ์ แบบหาได้ขาด (underdetermined) หรือแบบหาได้เกิน (overdetermined) กล่าวคือถ้าจุดศูนย์กลาง (หรือนิวรอนในชั้นซ่อนเร้น) มีจำนวนมากกว่าหรือเท่ากับจำนวนของคู่ตัวอย่าง อินพุต/เอาต์พุตสำหรับฝึกสอน ค่าความผิดพลาดที่ได้จากการฝึกสอนเครือข่ายจะมีค่าน้อย โดยเฉพาะถ้าใช้สมการ ที่ 15.14 แล้ว ค่าความผิดพลาดจะเป็นศูนย์

การตั้งค่าพารามิเตอร์การกระจาย

ในกรณีที่ใช้ฟังก์ชันเกาส์เซียนเป็น RBF พารามิเตอร์ที่สำคัญอย่างหนึ่งก็คือพารามิเตอร์การกระจาย σ ซึ่งโดยปกติ แล้วจะกำหนดด้วยความสัมพันธ์ต่อไปนี้

$$\sigma = \frac{d_{max}}{\sqrt{K}} \tag{15.15}$$

โดยที่ d_{max} คือค่าระยะทางยุคลิดที่มากที่สุดระหว่างจุดศูนย์กลางที่กำลังพิจารณาและ K คือจำนวนของจุดศูนย์กลาง ดังนั้นจะได้ RBF ของนิวรอนในชั้นซ่อนเร้นคือ

$$\phi(\mathbf{p}, \mathbf{c}_k) = e^{-\frac{K}{d_{max}^2} \|\mathbf{p} - \mathbf{c}_k\|^2}$$
(15.16)

15.2.2 การฝึกสอนเครือข่าย RBF แบบเกรเดียนต์เฟ้นสุ่ม

การฝึกสอนแบบจุดศูนย์กลางคงที่มีขั้นตอนที่ง่าย แต่มีข้อจำกัดที่จำนวนของนิวรอนหรือจุดศูนย์กลางจะต้องมาก เพียงพอ เป็นผลให้เครือข่าย RBF อาจมีขนาดใหญ่เกินไปได้ แม้จะใช้กับงานที่ไม่ซับซ้อนก็ตาม การฝึกสอนแบบ เกรเดียนต์เฟ้นสุ่ม (stochastic gradient) เป็นการฝึกสอนที่ทำการปรับพารามิเตอร์ทั้งหมดของเครือข่าย ซึ่งได้แก่ น้ำหนักประสาท จุดศูนย์กลางนิวรอนและความกว้างของ RBF ทำให้การปรับเส้นโค้งระหว่างอินพุตกับเอาต์พุตมี ความยืดหยุ่นมากยิ่งขึ้น และนำไปสู่ขนาดของเครือข่ายที่เหมาะสมกับปัญหา รายละเอียดขั้นตอนการฝึกสอนแบบ เกรเดียนต์เฟ้นสุ่มสามารถสรุปได้ดังนี้ (t คือหน่วยเวลา)

> อัลกอริทึมการฝึกสอนเครือข่าย RBF แบบเกรเดียนต์เฟ้นสุ่ม

1. พิจารณาฟังก์ชันวัตถุประสงค์ของเครือข่ายต่อไปนี้

$$J(t) = \frac{1}{2}|e(t)|^2 (15.17)$$

$$= \frac{1}{2}|\hat{y}(t) - \tilde{y}(t)|^2 \tag{15.18}$$

$$= \frac{1}{2} \left[\hat{y}(t) - \sum_{k=1}^{S} w_k(t) \phi(\mathbf{p}(t), \mathbf{c}_k(t)) \right]^2$$
 (15.19)

โดยที่ ϕ คือ RBF และ \hat{y} เป็นค่าเอาต์พุตที่ต้องการให้เครือข่ายเรียนรู้ $e(t)=\tilde{y}(t)-\hat{y}(t)$ เป็นค่าความ แตกต่างระหว่างเอาต์พุตที่ต้องการให้เครือข่ายเรียนรู้กับเอาต์พุตที่ได้จริงจากเครือข่าย ส่วนเทอม $\tilde{y}(t)=\sum_{k=1}^S w_k(t)\phi\left(\mathbf{p}(t),\mathbf{c}_k(t)\right)$ เป็นเอาต์พุตจริงที่ได้จากเครือข่าย ณ เวลารอบการเรียนรู้ t

2. ถ้าเลือกใช้ฟังก์ชันเกาส์เซียนเป็น RBF จะได้

$$J(t) = \frac{1}{2} \left[\hat{y}(t) - \sum_{k=1}^{S} w_k(t) e^{-\frac{\|\mathbf{p}(t) - \mathbf{c}_k(t)\|_2^2}{\sigma_k^2(t)}} \right]^2$$
 (15.20)

- 3. ทำการปรับพารามิเตอร์ต่างๆ ของเครือข่ายดังต่อไปนี้
 - น้ำหนักประสาท

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \mu_w \frac{\partial}{\partial \mathbf{w}} J(t) \bigg|_{\mathbf{w} = \mathbf{w}(t)}$$
(15.21)

$$= \mathbf{w}(t) + \mu_w e(t)\Psi(t) \tag{15.22}$$

(15.23)

• จุดศูนย์กลาง

$$\mathbf{c}_{k}(t+1) = \mathbf{c}_{k}(t) - \mu_{c} \frac{\partial}{\partial \mathbf{c}_{k}} J(t) \bigg|_{\mathbf{c}_{k} = \mathbf{c}_{k}(t)}$$
(15.24)

$$= \mathbf{c}_k(t) + \mu_c \frac{e(t)w_k(t)}{\sigma_k^2(t)} \phi\left(\mathbf{p}(t), \mathbf{c}_k(t), \sigma_k\right) \left[\mathbf{p}(t) - \mathbf{c}_k(t)\right]$$
(15.25)

(15.26)

ร**ูปที่ 15.4**: โครงสร้างเครือข่าย RBF ทั่วไปสำหรับการประมาณค่าฟังก์ชัน 1 มิติ

• พารามิเตอร์การกระจาย

$$\sigma_k(t+1) = \sigma_k(t) - \mu_\sigma \frac{\partial}{\partial \sigma_k} J(t) \bigg|_{\sigma_k = \sigma_k(t)}$$
(15.27)

$$= \sigma_k(t) + \mu_\sigma \frac{e(t)w_k(t)}{\sigma_k^3(t)} \phi\left(\mathbf{p}(t), \mathbf{c}_k(t), \sigma_k\right) \|\mathbf{p}(t) - \mathbf{c}_k(t)\|^2$$
 (15.28)

โดยที่ $\Psi(t) = \left[\phi\left(\mathbf{p}(t), \mathbf{c}_1, \sigma_1\right) \dots \phi\left(\mathbf{p}(t), \mathbf{c}_S, \sigma_S\right)\right]^T$ และ $e(t) = \tilde{y}(t) - \hat{y}(t)$ เป็นค่าความผิดพลาด หรือค่าความแตกต่าง ระหว่างเอาต์พุตที่ต้องการกับเอาต์พุตที่ได้จริงของเครือข่าย โดยที่ $\hat{y}(t)$ เป็นค่า เอาต์พุตที่ต้องการ (จากคู่เวกเตอร์อินพุต/เอาต์พุตสำหรับฝึกสอน) และ μ_w μ_c และ μ_σ เป็นค่าคงที่ การเรียนรู้สำหรับปรับค่าน้ำหนักประสาท ค่าเวกเตอร์จุดศูนย์กลางและค่าพารามิเตอร์การกระจายตาม ลำดับ (นั่นคือสำหรับพารามิเตอร์แต่ละตัว ไม่จำเป็นจะต้องมีอัตราการเรียนรู้ที่เท่ากัน)

4. วนรอบการฝึกสอนจนกระทั่งเครือข่ายลู่เข้าสู่ค่าความผิดพลาด e(t) ที่ยอมรับได้

ความสามารถในการปรับค่าจุดศูนย์กลางและพารามิเตอร์การกระจายของนิวรอนในชั้นซ่อนเร้น เป็นการเพิ่มประ-สิทธิภาพของเครือข่ายขึ้นอย่างชัดเจน ถ้าเปรียบเทียบเครือข่ายขนาดเดียวกันแล้ว เครือข่ายที่ฝึกสอนด้วยวิธีเก รเดียนต์เฟ้นสุ่มจะมีประสิทธิภาพเหนือกว่าที่ได้จากการฝึกสอนแบบจุดศูนย์กลางคงที่ แต่การฝึกสอนแบบเกรเดี ยนต์เฟ้นสุ่มจะมีความยุ่งยากซับซ้อนมากกว่ามาก นั่นคือเครือข่ายจะต้องใช้เวลาในการประมวลผลมากกว่า การ ฝึกสอนเครือข่าย RBF แบบอื่นๆ นั้นได้มีผู้นำเสนอไว้หลากหลาย ผู้อ่านที่สนใจสามารถศึกษาเพิ่มเติมจากตำรา เครือข่ายประสาทเทียมที่เกี่ยวข้องได้

■ ตัวอย่างที่ 15.1 การประมาณค่าฟังก์ชันของเครือข่าย RBF

ตัวอย่างนี้จะกล่าวถึงการทำงานและการฝึกสอนเครือข่าย RBF ด้วยการพิจารณาเครือข่าย RBF ให้เป็นฟังก์ชัน การประมาณ ซึ่งเป็นคุณสมบัติเด่นอย่างหนึ่งของเครือข่ายประสาทเทียมหลายๆ แบบ โดยเฉพาะเครือข่าย RBF โครงสร้างเครือข่าย RBF สำหรับเป็นฟังก์ชันประมาณ 1 มิติแสดงในรูปที่ 15.4 เครือข่ายมีอินพุตและเอาต์พุต ขนาด 1×1 จำลองสถานการณ์การทำงานด้วยโปรแกรม MATLAB พิจารณาข้อมูลคู่อินพุต/เอาต์พุตในรูปที่ 15.5 จำนวน 41 คู่ ซึ่งได้มาจากฟังก์ชันสี่เหลี่ยมที่ถูกประมาณด้วยอนุกรมฟูริเยร์จำนวน 3 เทอม ดังนี้

$$y = 0.5 + \frac{2}{\pi} \left(\cos\frac{\pi p}{2} - \cos\frac{3\pi p}{2} + \cos\frac{5\pi p}{2}\right) \tag{15.29}$$

รูปที่ 15.5: ค่าชักตัวอย่างฟังก์ชันสี่เหลี่ยมจากอนุกรมฟูริเยร์จำนวน 3 เทอม

ทำการสร้างเครือข่าย RBF ด้วยคำสั่ง

```
[net,tr] = newrb(P,T,GOAL,SPREAD,MN,DF)
```

โดยที่

 ${ t P} = { t I}$ มตริกซ์ขนาด R imes Q ของเวกเตอร์อินพุตขนาด R จำนวน Q เวกเตอร์

 $_{
m T}$ = เมตริกซ์ขนาด S imes Q ของเวกเตอร์เอาต์์พูตขนาด S จำนวน Q เวกเตอร์

GOAL = ค่าความผิดพลาดกำลังสองเฉลี่ย ค่าปกติ =0.0

 ${\tt SPREAD}$ = ค่าพารามิเตอร์การกระจายของ RBF ค่าปกติ = 1.0

 ${
m MN}$ = จำนวนนิวรอนสูงสุด ค่าปกติ =Q

 $_{
m DF}$ = จำนวนนิวรอนที่จะเพิ่มในเครือข่ายระหว่างการแสดงผลการฝึกสอน ค่าปกติ =25

โดยปกติแล้ว ฟังก์ชัน newrb ในกล่องเครื่องมือของ MATLAB จะเริ่มสร้างเครือข่ายจากจำนวนนิวรอนในชั้น ซ่อนเร้นเป็น 1 แล้วทำการเพิ่มจำนวนนิวรอนจนกระทั่งได้ค่าความผิดพลาดของเครือข่ายตามที่กำหนด หรือสูงสุด เท่ากับจำนวนเวกเตอร์อินพุต Q ที่ป้อนให้กับเครือข่าย ดังนั้นเราสามารถเลือกจำนวนนิวรอนสำหรับฝึกสอนได้ รวมทั้งค่าพารามิเตอร์การกระจาย ซึ่งทั้งสองพารามิเตอร์มีผลต่อประสิทธิภาพของเครือข่าย RBF โดยตรง

รูปที่ 15.6 แสดงผลการฝึกสอนพร้อมทั้งทดสอบผลการประมาณค่าฟังก์ชัน จากเครือข่ายที่มีพารามิเตอร์ต่างๆ ค่าอินพุตที่ใช้ในการทดสอบยังคงเป็นชุดเดียวกับที่ใช้ในการฝึกสอน เราจะทำการทดสอบด้วยชุดอินพุตนอกเหนือ ไปจากชุดข้อมูลที่ใช้ฝึกสอน เพื่อทดสอบการทำให้เป็นทั่วไป (generalization) ของเครือข่ายในภายหลัง ในที่นี้เรา กำหนดให้เป้าหมายค่าความผิดพลาดของเครือข่าย GOAL=0.02 และค่าพารามิเตอร์การกระจาย SPREAD=0.5

เราจะเห็นได้ว่า ผลการฝึกสอนได้ค่าความผิดพลาดแบบผลรวมกำลังสอง (sum-squared error หรือ SSE) ต่ำ สุดเท่ากับ 0.2623 ที่จำนวนนิวรอนเท่ากับ 7 นิวรอน ไม่ว่าจะทำการเพิ่มจำนวนนิวรอนขึ้นจนกระทั่งเท่ากับจำนวน ของคู่อินพุต/เอาต์พุต (นั่นคือ 41) ค่า SSE ของเครือข่ายก็ยังคงเดิม ดังนั้นเราจะทำการทดลองปรับค่าพารามิเตอร์ การกระจาย σ เพื่อให้เครือข่ายลู่เข้าสู่สภาวะที่ดีขึ้น ผลการทดลองแสดงในรูปที่ 15.7 จะเห็นได้ชัดเจนว่าเมื่อทำ การปรับพารามิเตอร์การกระจายที่เหมาะสม เครือข่ายสามารถลู่เข้าสู่ค่า SSE ที่ดีขึ้นได้ (0.1822) ถึงแม้ว่าจะใช้ จำนวนนิวรอนเพียง 8 ตัว

ในกล่องเครื่องมือของ MATLAB มีฟังก์ชัน newrbe ที่ใช้ในการสร้างเครือข่าย RBF พร้อมกับฝึกสอนเพื่อให้ ได้โครงสร้างของเครือข่ายเป็นไปตามข้อกำหนด (ตัวย่อ e คือ exact) เครือข่ายที่ได้จากฟังก์ชันดังกล่าวจะมีการ ปรับพารามิเตอร์ทุกๆ ส่วน เพื่อให้ได้ค่าความผิดพลาดของเครือข่ายที่น้อยที่สุด รูปที่ 15.8 แสดงตัวอย่างการใช้

รูปที่ 15.6: ผลการประมาณค่าฟังก์ชันด้วยเครือข่าย RBF ด้วยจำนวนนิวรอนต่างๆ ($\sigma=0.5$) สัญลักษณ์ '+' แทนข้อมูลอินพุต/เอาต์พุตที่ใช้ฝึกสอน สัญลักษณ์ 'o' แทนเอาต์พุตที่ได้จากเครือข่ายที่ผ่าน การฝึกสอนแล้ว และเส้นประด้านล่างของกราฟแสดงผลรวมค่ากำลังสองของความผิดพลาด (SSE) ระหว่างเอาต์พุตจากข้อมูลจริงและเอาต์พุตที่ได้จากเครือข่าย

ฟังก์ชัน newrbe ในการสร้างเครือข่าย RBF สำหรับประมาณค่าฟังก์ชัน ผลลัพธ์ที่ได้เป็นเครือข่ายที่มีจำนวนนิว รอนเท่ากับ 41 (เท่ากับจำนวนข้อมูลอินพุต) ค่า SSE ที่ได้มีค่าน้อยมาก แสดงถึงประสิทธิภาพในการประมาณค่า ฟังก์ชันที่ดีขึ้นด้วย

รูปที่ 15.9 แสดงผลการทดสอบเครือข่ายกับข้อมูลอินพุตที่ไม่ได้อยู่ในชุดฝึกสอน ข้อมูลดังกล่าวถูกซักตัวอย่าง ด้วยความถี่เพิ่มขึ้น 2.5 เท่า ผลลัพธ์ที่ได้แสดงถึงความทำให้เป็นทั่วไปของเครือข่าย RBF ได้เป็นอย่างดี นอก ไปจากนั้น รูปที่ 15.10 แสดงผลการทดสอบกับเครือข่ายเมื่อข้อมูลอินพุต/เอาต์พุตสำหรับฝึกสอนถูกรบกวนด้วย

ร**ูปที่ 15.7**: ผลการประมาณค่าฟังก์ชันด้วยเครือข่าย RBF ขนาด 8 นิวรอนด้วย σ ค่าต่างๆ สัญลักษณ์ '+' แทน ข้อมูลอินพุต/เอาต์พุตที่ใช้ฝึกสอน สัญลักษณ์ 'o' แทนเอาต์พุตที่ได้จากเครือข่ายที่ผ่านการฝึกสอน แล้ว และเส้นประด้านล่างของกราฟแสดงผลรวมค่ากำลังสองของความผิดพลาด (SSE) ระหว่าง เอาต์พุตจากข้อมูลจริงและเอาต์พุตที่ได้จากเครือข่าย

สัญญาณสุ่มที่มีการกระจายแบบสม่ำเสมอขนาด 0.2 (ประมาณ 15% ของขนาดสูงสุดของข้อมูลอินพุต/เอาต์พุต) ผลที่ได้ยังคงแสดงให้เห็นความสอดคล้องของการประมาณฟังก์ชันด้วยเครือข่าย RBF ถึงแม้จะมีสัญญาณรบกวน ก็ตาม ดังนั้นเครือข่าย RBF มีความทนทานต่อสัญญาณรบกวนได้ในระดับหนึ่ง ซึ่งเป็นคุณสมบัติที่ดีเหมือนกับ เครือข่ายประสาทเทียมแบบอื่นๆ ทั่วไป

ตัวอย่างข้างต้นแสดงประสิทธิภาพในการใช้เครือข่าย RBF เป็นฟังก์ชันการประมาณค่า เครือข่าย RBF เป็นที่ ยอมรับว่าสามารถใช้ประมาณค่าฟังก์ชันใดๆ ได้เป็นอย่างดี จึงได้มีการนำเอาเครือข่าย RBF ไปประยุกต์ใช้อย่าง มากมาย

15.3 สรุป

เครือข่ายฟังก์ชันฐานรัศมีหรือ RBF เป็นเครือข่ายที่มีโครงสร้างที่ไม่ซับซ้อน องค์ประกอบภายในเครือข่ายและอัล กอริทึมการเรียนรู้ของเครือข่าย RBF เองแสดงให้เห็นถึงความสามารถในการเป็นฟังก์ชันประมาณแบบเลขจำนวน จริง ได้เป็นอย่างแม่นยำ เมื่อเทียบกันกับเครือข่ายเพอร์เซ็พตรอนแบบหลายชั้นแล้ว การฝึกสอนเครือข่าย RBF จะใช้เวลาเร็วกว่าเครือข่ายแบบหลายชั้นมาก แต่เนื่องจากการที่เป็นเครือข่ายชั้นเดียว (ชั้นซ่อนเร้น) จำนวนนิว

ร**ูปที่ 15.8:** ผลการประมาณค่าฟังก์ชันด้วยเครือข่าย RBF ขนาด 41 นิวรอนจากการฝึกสอนด้วยคำสั่ง newrbe ให้ค่า SSE = 3.6575×10^{-7} สัญลักษณ์ '+' แทนข้อมูลอินพุต/เอาต์พุตที่ใช้ฝึกสอน สัญลักษณ์ 'o' แทนเอาต์พุตที่ได้จากเครือข่ายที่ผ่านการฝึกสอนแล้ว และเส้นประด้านล่างของกราฟแสดงผลรวมค่า กำลังสองของความผิดพลาด (SSE) ระหว่างเอาต์พุตจากข้อมูลจริงและเอาต์พุตที่ได้จากเครือข่าย

ร**ูปที่ 15.9**: ตัวอย่างผลการประมาณค่าฟังก์ชันด้วยข้อมูลที่ไม่ใช่ข้อมูลในการฝึกสอน สัญลักษณ์ '+' แทนข้อมูล อินพุต/เอาต์พุตที่ใช้ฝึกสอนและสัญลักษณ์ 'o' แทนเอาต์พุตที่ได้จากเครือข่ายที่ผ่านการฝึกสอนแล้ว

รอนที่ต้องการสำหรับปัญหาหนึ่งๆ อาจจะต้องมีจำนวนที่มากกว่า อย่างไรก็ดี เครือข่าย RBF ได้เป็นที่ยอมรับและ ถูกนำเอามาประยุกต์ใช้อย่างหลากหลาย

ร**ูปที่ 15.10**: ผลการประมาณค่าฟังก์ชันด้วยข้อมูลที่มีสัญญาณรบกวน สัญลักษณ์ '+' แทนข้อมูลอินพุต/เอาต์พุต ที่ใช้ฝึกสอนและสัญลักษณ์ 'o' แทนเอาต์พุตที่ได้จากเครือข่ายที่ผ่านการฝึกสอนแล้ว

โจทย์คำถาม

- 15.1. จงออกแบบพร้อมทั้งอธิบายรายละเอียดเครือข่าย RBF พร้อมทั้งฝึกสอนเครือข่ายให้เรียนรู้การประมาณค่า ฟังก์ชันในรูปที่ 15.11
 - ใช้ค่าชักตัวอย่างจากอนุกรมฟูริเยร์ (ประมาณ 2-3 เทอมแรก)
 - ใช้ค่าชักตัวอย่างจากรูปคลื่นสามเหลี่ยมโดยตรง
 - ทดลองปรับพารามิเตอร์ของเครือข่าย วิเคราะห์และสรุปผลการทดลองที่ได้
 - ทดลองใส่สัญญาณรบกวนแบบเกาส์เซียนขาว (Gaussian white noise) ที่มีค่าเฉลี่ยเท่ากับศูนย์และ ค่าเบี่ยงเบนมาตรฐานเท่ากับหนึ่งเข้าไปในระบบ พร้อมทั้งทำการทดลองเครือข่ายทั้งหมดใหม่อีกครั้ง วิเคราะห์และอภิปรายผลที่ได้

รูปที่ 15.11: รูปคลื่นสามเหลี่ยม

- 15.2. จงออกแบบการฝึกสอนเครือข่าย RBF ด้วยวิธีการค้นหาคำตอบแบบชาญฉลาดต่อไปนี้ (ใช้ตัวอย่างข้อมูลใน โจทย์คำถามข้อที่ 1 ในการทดสอบการฝึกสอนเครือข่าย)
 - จีนเนติกอัลกอริทึม (GA)
 - การค้นหาแบบตาบูเชิงปรับตัว (ATS)
 - การหาค่าเหมาะที่สุดด้วยการเคลื่อนที่ของกลุ่มอนุภาพ (PSO)
- 15.3. เครือข่าย RBF และความสามารถในการปรับเส้นโค้งสามารถนำมาประยุกต์ใช้ในการระบุเอกลักษณ์ได้ ดัง แผนผังในรูปที่ 15.12 การระบุเอกลักษณ์นั้นมีหลายรูปแบบ พิจารณาการระบุเอกลักษณ์แบบเชิงเส้น (Linear System Identification หรือ LSI) โดยระบบมีฟังก์ชันถ่ายโอนคือ (ผลตอบสนองฟังก์ชันขั้นบันไดหนึ่ง หน่วยของระบบแสดงในรูปที่ 15.13)

$$H(s) = \frac{1.11 \times 10^{-16} s + 0.01}{s^2 + 0.5s + 2.0}$$

- ให้ทำการจำลองระบบด้วยฟังก์ชันถ่ายโอนที่กำหนดให้ พร้อมทั้งบันทึกค่าอินพุต/เอาต์พุตของระบบเอา ไว้
- ให้ออกแบบใช้เครือข่าย RBF สำหรับระบุเอกลักษณ์ระบบข้างต้น โดยใช้ค่าอินพุต/เอาต์พุตที่บันทึกเอา ไว้ในการฝึกสอนเครือข่าย วิเคราะห์พารามิเตอร์ต่างๆ ของระบบพร้อมทั้งอภิปรายผลที่ได้
- ทดลองฝึกสอนเครือข่ายด้วยวิธีการเรียนรู้แบบต่างๆ เปรียบเทียบผลที่ได้
- ทดลองป้อนอินพุตแบบอื่นๆ ให้กับระบบ (นอกเหนือไปจากฟังก์ชันขั้นบันไดหนึ่งหน่วย) เพื่อทดสอบ การเป็นทั่วไปของเครือข่าย รวมไปทั้งเพิ่มสัญญาณรบกวนแบบต่างๆ ให้กับระบบ วิเคราะห์ผลที่ได้

ร**ูปที่ 15.12**: แผนผังการระบุเอกลักษณ์ด้วยแบบจำลองเครือข่าย RBF

รูปที่ 15.13: ผลตอบสนองฟังก์ชันขั้นบันไดหนึ่งหน่วยของระบบ

รูปที่ 15.14: ข้อมูลสำหรับการจับกลุ่ม

- 15.4. พิจารณาเครือข่าย RBF (Radial Basis Function) และ MLP (Multi-Layer Perceptron)
 - จงอธิบายความแตกต่างระหว่างเครือข่ายทั้งสอง
 - จงแสดงอธิบายการออกแบบสร้างเครือข่าย RBF จากเครือข่าย MLP
 - ทดสอบเครือข่าย RBF ที่สร้างจากเครือข่าย MLP กับโจทย์ปัญหาข้อที่ 1
- 15.5. เครือข่าย RBF สามารถถูกออกแบบให้ทำหน้าที่จับกลุ่มข้อมูลได้ (clustering) จงออกแบบเครือข่าย RBF พร้อมทั้งเลือกพารามิเตอร์ต่างๆ ให้เหมาะสม ทดสอบการจับกลุ่มข้อมูลในรูปที่ 15.14

บรรณานุกรม

- D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. In *Complex Systems*, volume 2, pages 269--303, 1988.
- F. M. Ham and I. Kostanic. *Principles of neurocomputing for science & engineering*. McGraw-Hill, 2001.
- P.D. Wasserman. Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York, 1993.

