sto Daniel Alvarado ESFM p Introducción a las singularidades J 2024 aniel Alvarado ESFM

∠aniel Alvarado

12 de noviembre de 2024 Cristo Daniel Alvarado ES

Índice	e genera	Saure		
1. Nociones	s Básicas			
	liminares Algebraic	OS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	edades Algebraicas		. : 1	
		de Curvas Algebraica	as en $\mathbb{P}^2_{\mathbb{C}}$ (o en \mathbb{C}^2)	

Capítulo 1

Nociones Básicas

1.1. Preeliminares Algebraicos

Definición 1.1.1

Un anillo R es **graduado** (por \mathbb{N}) si R puede ser escrito como la suma directa (como grupo abeliano):

$$R = \bigoplus_{n=0}^{\infty} R_n$$

tal que para todos $m, n \in \mathbb{Z}_{\geq 0}$ tenemos que $A_n A_m \subseteq A_{n+m}$. Se sigue en particular que A_0 es un subanillo y que cada componente A_n es un A_0 -módulo.

1.2. Variedades Algebraicas

En síntesis, las singularidades abarcan muchas ramas de las matemáticas, como son la geometría algebraica, el álgebra conmutativa, el análisis compleo, la topología algebraica y cosas sobre teoría de nudos.

Considremos a K un campo (o cuerpo), en ocasiones este puede ser considerado simplemente como un anillo, el cuál siempre será de característica 0.

En el anillo de polinomios $K[x_1,...,x_n]$ tenemos los monomios

$$x^d = x_1^{d_1} \cdots x_n^{d_n}$$

donde $d_1 + ... + d_n = d$. Así que todo polinomio f se puede ver como:

$$f = \sum_{\text{finita}} c_d x^d$$

donde $c_d \in K \setminus \{0\}$. Se define el **grado de** f por:

$$\deg f = \max \left\{ d_1 + \dots + d_n \middle| c_d \neq 0 \right\}$$

Ejemplo 1.2.1

El anillo de polinomios $K[x_1, ..., x_n]$ es graduado, a saber los subgrupos abelianos que lo graduano son aquellas polinomios con todas sus componentes de mismo grado. En este caso,

Consideramos el **espacio afín** K^n de todas las tuplas $(a_1, ..., a_k)$. Podemos también ver el **espacio proyectivo** \mathbb{P}^n_k , con coordenadas homogéneas $[x_0 : x_1 : ... : x_n]$.

Observación 1.2.1

En las coordenadas homogéneas, $[x_0:x_1:...:x_n]$ es tal que x_i no es cero para todo i. En particular también se tiene que:

$$[x] = [\lambda x] = [\lambda x_0 : \lambda x_1 : \dots : \lambda x_n]$$

 $con \lambda \in K \setminus \{0\}$

Observación 1.2.2

Podemos descomponer a la variedad proyectiva \mathbb{P}^n_k como:

$$\mathbb{P}_k^n = K^n \cup \mathbb{P}_k^{n-1}$$

donde la primera parte es una variedad afín y la segunda es un hiperplano en el infinito (no sé a qué se refiera esto). Repitiendo este proceso podemos verlo como:

$$\mathbb{P}_k^n = K^n \cup K^{n-1} \cup \dots \cup K \cup p^t$$

Observación 1.2.3

Podemos también descomponer al espacio proyectivo como:

$$\mathbb{P}_k^n = \bigcup_{i=0}^n U_i$$

donde

$$U_i = \left\{ [x] \middle| x_i \neq 0 \right\}$$

cada uno de estos U_i es isomorfo a K^n , con isomorfismo dado por:

$$[x] = [x_0 : x_1 : \dots : x_{i-1} : x_i : x_{i+1} : \dots : x_n] \mapsto \left(\frac{x_0}{x_i}, \frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

Consideraremos variedades algebraicas:

$$V(f) = \left\{ x \in K^n \middle| f(x) = 0 \right\}$$

Definición 1.2.1

Decimos que un polinomio $F \in K[x_0, x_1, ..., x_n]$ es **homogéneo**, si todos sus monomios tienen el mismo grado.

Observación 1.2.4

La definición anterior es equivalente a que para todo $\lambda \in K$:

$$F(\lambda x) = \lambda^{\deg F} F(x)$$

para todo $x = (x_0, x_1, ..., x_n) \in K^{n+1}$

Definición 1.2.2

Si F es homogéneo, entonces V(F) es una hipersuperficie.

Podemos hacer un proceso para deshomogeneizar un polinomio homogéneo, de la siguiente manera:

$$F\left(1, \frac{x_1}{x_0}, ..., \frac{x_n}{x_0}\right) = f(x_1, ..., x_n)$$

y, podemos homogeneizar un polinomio haciendo:

$$F(x_0, x_1, ..., x_n) = x^{\deg f} f\left(\frac{x_1}{x_0}, ..., \frac{x_n}{x_0}\right)$$

Ejemplo 1.2.2

Considere el polinomio $f = 3 + x_1 + x_2$, entonces F homogéneo sería:

$$F(x_0, x_1, x_2) = x_0^1 f\left(\frac{x_1}{x_0}, \frac{x_2}{x_0}\right)$$
$$= 3x_0 + x_1 + x_2$$

Observación 1.2.5

En ocasiones interesa que K sea algebraicamente cerrado. En este caso, se nos permite escribir un polinomio como:

$$f = c \cdot (x - a_1)(x - a_2) \cdot \cdot \cdot (x - a_d), \quad a_i \in K$$

donde d es el grado del polinomio, esto para polinomios en una variable.

Observación 1.2.6

En el caso en que F sea un polinomio homogéneo en varias variables, podemos escribirlo como:

$$F = c \cdot (b_1 x - a_1 y) \cdot \cdot \cdot (b d_x - a_d y), \quad a_i, b_i \in K$$

por lo que resulta importante tener la noción de polinomio homogéneo.

Definición 1.2.3

Dados $f = a_0 x^m + a_1 x^{m-1} + \cdots + a_{m-1} x + a_m$ y $g = b_0 x^n + b_1 x^{n-1} + \cdots + b_{n-1} x + b_n$. Se define el **resultante de** f **y** g, como:

$$Res(f,g) = \det A_{m+n}(a_i,b_j)$$

Esta matriz se vería de esta manera:

Proposición 1.2.1

Res(f,g) = 0 si y sólo si f y g tienen una raíz común.

Demostración:

 \Rightarrow):

 \Leftarrow): Suponga que existe $r \in K$ tal que f(r) = g(r), entonces:

$$f(x) = (x - r)p(x)$$
 y $g(x) = (x - r)q(x)$

donde $\deg p = m - 1$ y $\deg q = n - 1$. Se cumple además la igualdad:

$$fq - gp = 0$$

la ecuación anterior, la podemos ver como la matriz cuadrada $B_{m+n}(a_i,b_j)$ de tamaño m+n. Si hacemos

$$p(x) = \alpha_0 x^{m-1} + \dots + \alpha_{m-1}$$

у,

$$q(x) = \beta_0 x^{n-1} + \dots + \beta_{n-1}$$

Se reduciría todo a un sistema:

$$B_{n+m}(a_i, b_j) \left[\begin{array}{c} \alpha_i \\ \beta_j \end{array} \right] = \left[\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right]$$

(completar la demostración).

Ejercicio 1.2.1

Hacer lo de la proposición anterior cuando $f_1 = f_2 = x^2 - 3x + 2$ y $g_1 = x - 1$ (calcular los sistemas necesarios).

Solución:

Eiemplo 1.2.3

Considere los polinomios $f = x^3 - 3x^2 + 2x + 1$ y $g = x^2 - x + 2$. Entonces m = 3 y n = 2, por lo que:

$$A_5 = \begin{pmatrix} 1 & -3 & 2 & 1 & 0 \\ 0 & 1 & -3 & 2 & 1 \\ 1 & -1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 2 & 0 \\ 0 & 0 & 1 & -1 & 2 \end{pmatrix}$$

sería la matriz asociada al resultante de los polinomios f y g.

Para la siguiente proposición, K es un campo algebraicamente cerrado.

Proposición 1.2.2

Sean $f, g \in K[\underline{x}]$ (anillo de polinomios en varias variables). Entonces:

1. V(f) = V(g) si y sólo si f y g tienen las mismas componentes irreducibles.

5

2. $V(f) \neq \emptyset$ si y sólo si $f \in K \setminus \{0\}$.

Demostración:

Definición 1.2.4

Sea $p \in V(f) \subseteq K^n$. Decimos que p es un **punto singular de** V(f), si

$$f(p) = \frac{\partial f}{\partial x_i}(p) = 0$$

para todo i=1,...,n. El conjunto de puntos singulares de f se denota por Sing(V(f)). Si $p \notin Sing(V(f))$, se dice que p es **no singular** o **liso**.

Si V(f) es tal que $Sing(V(f)) = \emptyset$, se dice que V(f) es **no singular**.

Ejemplo 1.2.4

Considere el polinomio f = ax + by, $a, b \in K$ no ambas nulas. Entonces, V(f) es no singular.

Ejemplo 1.2.5

Considere f = xy. Entonces:

$$Sing(V(f)) = \{(0, 0, *, *, ..., *) \in K^n\}$$

En el caso de $K^n = \mathbb{C}^2$, se tiene que:

$$Sing(V(f)) = \{(0,0)\} \subseteq \mathbb{C}^2$$

se dice **singularidad aislada**.

Si estamos en \mathbb{C}^3 , entonces

$$Sing(V(f)) = \{(0,0,*)\} \subseteq \mathbb{C}^3$$

es no aislada.

Ejemplo 1.2.6

En el caso en que $f = f_1 \cdot f_2$, se tiene que $V(f_1) \cap V(f_2) \subseteq Sing(V(f))$.

Ejemplo 1.2.7

Los siguientes tienen puntos singulares de diferentes tipos:

- $g = y^2 x^3$.
- $h = y^2 x^2(x+1)$.
- $k = z^2 xy^3.$

1.3. Geometría y Topología de Curvas Algebraicas en $\mathbb{P}^2_{\mathbb{C}}$ (o en \mathbb{C}^2).

En esta parte, tendremos como objetivos dos cosas:

- (1) Entender la topología abstracta de $C = V(F) \subseteq \mathbb{P}^2_{\mathbb{C}}$.
- (2) Entender la geometría de $C=V(F)\subseteq \mathbb{P}^2_{\mathbb{C}}$.

Teorema 1.3.1 (Teorema de Bezout)

Sean C = V(P) y D = V(Q) curvas contenidas en $\mathbb{P}^2_{\mathbb{C}}$ con deg P = n y deg Q = m. Entonces, $C \cap D$ es un conjunto de $n \cdot m$ puntos (contando multiplicidades).

Teorema 1.3.2 (Fórmula de género-grado)

Sea $C = V(P) \subseteq \mathbb{P}^2_{\mathbb{C}}$ no singular y de grado n irreducible. Entonces, C es topológicamente una superficie (dimensión 2 sobre \mathbb{R}) conexa, compacta, orientable y sin borde con $\chi = 2 - (n-1)(n-2)$ (siendo χ la característica de Euler de la superficie).

Luego hubo una explicación sobre la característica de Euler para superficices (en particular, algunas triangulaciones de la 2-esfera).

Teorema 1.3.3 (Teorema de Clasificación de Superficies)

La característica de Euler de toda superficie compacta, orientable, conexa y sin borde es:

$$\chi = 2 - 2g$$

donde g es el género de la superficie.

Notemos que:

n	$g = \frac{(n-1)(n-2)}{2}$
1	0
2 3	0
3	1
4 5	3
5	6
6	10

por lo que no todos los géneros se pueden obtener a partir de curvas $C \subseteq \mathbb{P}^2_{\mathbb{C}}$.

Uno puede construir todas las superifices orientables, conexas, compactas y sin borde a partir de la identificación usual que se hacía con la esfera, el toro, el 2-toro, etc...

Hablaremos del teorema de Bezout pero desde el punto de vista de resultantes con polinomios en varias variables. Recordemos que si $f, g \in \mathbb{C}[x]$, entonces

$$Res(f,g) = \det A_{m+n}(a_i,b_j)$$

siendo

con deg f = m y deg g = n (siendo a_i los coeficientes de f y b_j los de g). Si consideramos ahora polinomios en 3 variables:

$$f(x, y, z) = a_0(x, y)z^m + a_1(x, y)z^{m-1} + \dots + a_m(x, y)$$

y.

$$g(x, y, z) = b_0(x, y)z^n + b_1(x, y)z^{n-1} + \dots + b_n(x, y)$$

tomamos a los polinomios $f, g \in \mathbb{C}[x,y][z] = \mathbb{C}[x,y,z]$ homogéneos. En este caso, los grados de f y g son m y n, respectivamente, por lo que $a_i(x,y)$ y $b_j(x,y)$ son polinomios homogéneos de grado i y j, respectivamente.

Definición 1.3.1

Sean $F, G \in \mathbb{C}[x,y][z]$ polinomios homogéneos de grados m y n, respectivamente. Entonces:

$$Res_z(F,G) = \det A_{m+n}(a_i(x,y),b_j(x,y))$$

con el A dado como se hizo anteriormente.

Observación 1.3.1

Se tiene que $Res_z(F,G) \in \mathbb{C}[x,z]$ es un polinomio homogéneo de grado $n \cdot m$ (a lo más ya que puede ser cero). Por tanto,

$$Res_z(F,G) = \prod_{i=n}^{n \cdot m} (b_i x + a_i y)$$

(por ser \mathbb{C} algebraicamente cerrado).

Observación 1.3.2

Dados $a, b \in \mathbb{C}$, hacemos:

$$F(a, b, z) = f(z)$$
 y $G(a, b, z) = g(z)$

entonces,

$$Res_z(F,G)(a,b) = Res(f,q)$$

Recordemos que Res(f,g)=0 si existe $c\in\mathbb{C}$ tal que f(c)=g(c).

Por tanto, de las observaciones anteriores, se tiene que para cada $i=1,...,n\cdot m$ existen c_i tales que

$$f(c_i) = g(c_i) = 0$$

esto es que

$$F(a, b, c_i) = G(a, b, c_i)$$

Observación 1.3.3

Se tiene que $C \cap D \neq \emptyset$;?.

Proposición 1.3.1

 $Res_z(F,G) = 0 \in \mathbb{C}[x,y]$ si y sólo si F y G tienen una componente común.

Demostración:

Procederemos por reducción al absurdo. Supongamos que

- $Res_z(F,G) \in \mathbb{C}[x,y]$ y es no constante.
- F y G tienen al menos $n \cdot m + 1$ puntos comunes.

Podemos tomar coordeadas de modo que cada punto común a F y G induce un factor lineal $b_i x + a_i y$ de $Res_z(F, G)$ y son no proporcionales dos a dos. Por lo cual al menos hay $n \cdot m + 1$ factores lineales# $_c$.

Definición 1.3.2

Sean C, D dos curvas en $\mathbb{P}^2_{\mathbb{C}}$ tales que:

- $[0:0:1] \notin C \cup D$.
- [0:0:1] no pertenece a una recta por dos puntos de $C \cap D$.
- [0:0:1] no pertenece a la tangente de C ni a la tangente a D por un punto común $Q \in C \cap D$.

y, sea $O = [a:b:c] \in \mathbb{P}^2_{\mathbb{C}}$. Definimos la multiplicidad de intersección de O

$$I_O(C,D) = \begin{cases} 0 & \text{si} & 0 \notin C \cap D \\ \max\{k\} & \text{t.q.} & (bx - ay)^k \mid Res_z(F,G) \\ \infty & \text{si} & O \text{ pertenece a una componente común a } C \neq D \end{cases}$$

Con la definición anterior se sigue que:

$$Res_z(F,G) = \prod_{O=[a,b,c]\in C\cap D} (bx - ay)^k$$

por lo cual:

$$\sum_{I \in C \cap D} I_O(F, G) = n \cdot m$$

Un puede definir la multiplicidad de un punto en una curva C, a partir de ver la mínima derivada parcial donde el punto no se anula, denotada por $mult_O(C)$. Se tiene que:

$$I_O(C, D) \ge mult_O(C) + mult_O(D)$$

Ahora hablaremos de la fórumla de grado-género.

Teorema 1.3.4 (Teorema de la función implícita)

Sea $\underline{0} = (0,0,z) \in C = V(f) \subseteq \mathbb{C}^2$ tal que $f_y(\underline{0}) \neq 0$, entonces existen entornos abiertos $O_1 \in V \subseteq \mathbb{C}$ y $\underline{O} \in U \subseteq C$ y una función analítica $g: V \to U$ tal que

$$f(x,g(x)) = 0, \quad \forall x \in V$$

Por tanto, una curva lisa C y $p \in C$ implica que $\frac{\partial f}{\partial x}(p) \neq 0$ o bien $\frac{\partial f}{\partial y}(p) \neq 0$, por lo que del teorema de la función implícita se sigue que un entorno de p en C es homeomorfo a un entorno de \mathbb{C} (de \mathbb{R}^2).

Por lo que, C es efectivamente una superficie.

Se sabe de cursos de topología de conexión por arcos implica conexión.

Considere puntos en la curva $p, q \in C$. Se tiene que existe $\gamma : [0, 1] \to C$ continua tal que $\gamma(0) = q$ y $\gamma(1) = p$.

Tenemos la curva C = V(f). Podemos suponer que

$$f = y^n + a_1(x)y^{n-1} + \dots + a_{n-1}(x)y + a_n(x)$$

se tiene que $f(x_0, y) \in \mathbb{C}[y]$ es tal que deg $f(x_0, y) = n$. Si consideramos la proyección $\pi_1 : C \to \mathbb{C}$, entonces $\pi^{-1}(x_0)$ nos dará las raíces distinas de $f(x_0, y)$.

Se define:

$$Disc(f(x_0, y)) = Res(f(x_0, y), f_y(x_0, y))$$

entonces

$$\left|\pi^{-1}(x_0)\right| = n \iff Disc(f(x_0, y)) \neq 0$$

En conclusión, $C \setminus \bigcup_{q \in \mathbb{C}} \pi_1^{-1}(q)$ donde q es raíz del discriminante, es un recubrimiento de n-hojas. Lo demás se deduce de forma más sencilla.