Ejercicio 1
Describa como se va actualizando la tabla auxiliar que maneja el algoritmo de Dijkstra al buscar todos los caminos de costo mínimo usando como origen al vértice 2 en el siguiente grafo.

orden	V	Costo de	anterior	Conoc.
		camino		
5°	0	10-7	3	1
4°	1	6	4	1
1°	2	0	0	1
3°	3	7-6	4	1
2°	4	4	2	1
1	l	l	l	

- 1°. Buscamos adyacentes de inicio y vemos costo
- 2° Agarramos el de menor costo
- 3°Calculamos costo de adyacentes desde el que estamos ahora, sumando también lo que costo este vértice. Si este costo es menor al anterior actualizamos, sino dejamos como esta.
- 4° Agarramos el de menor costo

Repetimos 3 y 4.

Orden	V	Costo de camino	Anterior	Marcado
7°	Α	10	D	1
2°	В	1	E	1
3°	С	5	E	1
4°	D	9-7-6	E-B-C	1
1°	E	0	1	1
6°	F	15-9	B-G	1
5°	G	9-8	E-B	1

Ejercicio 5

Describa como se va actualizando la tabla auxiliar que maneja el algoritmo de Prim al buscar todos los caminos de costo mínimo usando como origen al vértice 1 en el siguiente grafo.

Dado un grafo G=(V, E) no dirigido y conexo

El árbol de expansión mínima es un árbol formado por las aristas de G que conectan todos los vértices con un costo total mínimo.

Orden	٧	Costo de arista	W	Conoc.
1°	1	0	-	1
3°	2	1	3	1
2°	3	2	1	1
4°	4	2	3	1
5°	5	5	2	1
6°	6	4	5	1

- 1° Calcula el costo de los adyacentes al origen
- 2° Tomas la arista de menos costo
- 3° Calculas el costo de los adyacentes al que estas ahora

Repetís 2 y 3 hasta terminar

Ejercicio 6

Aplicar el algoritmo de Kruskal sobre el siguiente grafo, mostrando el orden en que son añadidas las aristas a la solución

Aristas ordenadas por su costo de menor a mayor:

$$(8,7) = 1$$
 $(3,4) = 7$

$$(7,6) = 2$$
 $(1,8) = 9$

$$(9,3) = 2$$
 $(2,3) = 9$.

$$(3,6) = 4$$
 $(2,8) = 11.$

$$(9,7) = 6.$$
 $(6,5) = 11.$

$$(8,9) = 7.$$
 $(4,6) = 15.$

- . Inicialmente cada vértice está en su propio conjunto.
- . Se deben agregar las aristas que no pertenezcan al mismo conjunto conexo, de forma tal que no se generen ciclos.