

<u>Homework 3: Introduction to</u>

2. Concept Check: Hypothesis Test ☐ Using a Single Observation

课程 🗆 Unit 2 Foundation of Inference 🗅 Hypothesis Testing

2. Concept Check: Hypothesis Test Using a Single Observation

Let X be a single Gaussian random variable with unknown mean μ and variance 1. Consider the following hypotheses:

$$H_0: \mu=0 \quad \mathrm{vs} \quad H_1: \mu
eq 0.$$

(a)

1.0/1 point (graded)

Define a test $\,\psi:\mathbb{R} o\{0,1\}\,$ with level $\,5\%\,$ that is of the form

$$\psi = \mathbf{1}\{f(X) > 0\},\,$$

for some function $f: \mathbb{R} \to \mathbb{R}$.

We want our test ψ to be symmetric in X and its "acceptance region" to be an interval.

(The **acceptance region** of a test is the region in which the null hypothesis is **not rejected**, i.e. the complement of its rejection region.)

(If applicable, enter $\mathsf{abs}(\mathsf{x})$ for |x|, $\mathsf{Phi}(\mathsf{x})$ for $\Phi\left(x\right) = \mathbf{P}\left(Z \leq x\right)$ where $Z \sim \mathcal{N}\left(0,1\right)$, and $\mathsf{q}(\mathsf{alpha})$ for q_{lpha} , the 1-lpha -quantile of a standard normal distribution, e.g. enter q(0.01) for $q_{0.01}$.)

$$f(X) =$$
abs(X) - q(0.025)

STANDARD NOTATION

Solution:

Since our test should be symmetric about zero and its "acceptance region" an interval, it must be of the form

$$\psi = \mathbf{1}\{|X| - q > 0\}.$$

Hence, it remains to determine q such that

$$egin{aligned} \mathbf{P}_{\mu=0} \left(|X| > q
ight) = & 0.05 \ \iff 2 \left(1 - \Phi \left(q
ight)
ight) = & 0.05 \ \iff \Phi \left(q
ight) = & 0.975 \ \iff q = q_{0.025} pprox & 1.96. \end{aligned}$$

Hence, we can set

$$f(X) = |X| - 1.96.$$

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

(b) 3.0/3 points (graded) Assume you observe $\emph{X}=1.32$. What is the value of your test?

$$\psi\left(X\right) =oxed{0}$$
 \Box Answer: 0

What is the p-value of your test (keeping in mind the symmetry and interval requirements)? (If applicable, enter abs(x) for |x|, Phi(x) for $\Phi(x) = P(Z \le x)$ where $Z \sim \mathcal{N}(0,1)$, and q(alpha) for q_{α} , the $1-\alpha$ -quantile of a standard normal distribution, e.g. enter q(0.01) for $q_{0.01}$.)

$$p$$
-value = 0.1868 \Box Answer: 2*(1-Phi(1.32))

What is the conclusion of the test?

- \circ Accept H_0
- ullet Do not reject H_0 \Box
- \circ Accept H_1
- O not reject H_1

STANDARD NOTATION

Solution:

First, since |1.32| < 1.96 , $\psi\left(1.32\right) = 0$.

Next, under the requirements for the test, the p-value is defined as

$$\inf\{\alpha:\psi_{\alpha}\left(X\right)=1\},$$

where

$$\psi_{lpha}\left(X
ight)=\mathbf{1}\{\left|X\right|>q\left(lpha
ight)\}.$$

In other words, the p-value is the smallest value so that we could still reject H_0 given the observation, when picking our hypothesis test from a family of hypothesis tests indexed by α . In this case, by the requirement of ψ_{α} having confidence level α ,

$$egin{aligned} \mathbf{P}_{\mu=0}\left(\psi_{lpha}\left(X
ight)>q\left(lpha
ight)
ight) &=& 2\left(1-\Phi\left(q
ight)
ight) =lpha\ &\iff \Phi\left(q
ight) =& 1-rac{lpha}{2} \end{aligned}$$

and hence

$$q\left(lpha
ight) =q_{lpha /2},$$

the 1-lpha/2 quantile of a Normal variable. Now, by the form of the test $\,\psi_lpha$, we see that we get the infimum of $\,lpha\,$ if $\,|X|=q_{lpha/2}$, i.e., if

$$lpha=2\left(1-\Phi\left(|X|
ight)
ight)=2-2\Phi\left(1.32
ight)pprox0.19.$$

	ot reject H_0 because there is not enough evidence for doing so. That does not necessarily mean that we think $$ d not $$ "accept" it.	H_0 true, so
提交	你已经尝试了1次(总共可以尝试3次)	
□ Ans	wers are displayed within the problem	
讨论		显示讨论
	2 Foundation of Inference:Homework 3: Introduction to Hypothesis Testing / 2. Concept othesis Test Using a Single Observation	
	认证证书是什么?	© 保留所有权利