Бум-тряс принцип за управления в симплекс

Александър Гудев

Дефиниция. Нека $I\subset\mathbb{R}, A(t)\in M_{n\times n} \forall t\in I.$ Фундаментална матрица на линейната система

$$\dot{x}(t) = A(t)x(t) \tag{1}$$

се нарича всяка матрица $\Phi:I\to M_n,$ чиито стълбове са линейно независими решения на системата.

1. Произволно решение има вида

$$x(t) = \sum_{i} \alpha_i \Phi_i(t) = \Phi(t) \alpha, \quad \alpha \in \mathbb{R}^n.$$

2. Поотделно всеки стълб на $\Phi(t)$ да е решение на (1), е еквивалентно на това

$$\dot{\Phi}(t) = A(t)\Phi(t)$$

стига $\det \Phi(t) \neq 0$ за всяко $t \in I$. Тоест, фундаменталните матрици на (1) се характеризират с последното уравнение. Тогава например началното условие $\Phi(0) = E$ задава еднозначно $\Phi(t) = e^{At}$.

Забележка. По-долу във всеки момент $t \in I$ състоянието на системата е вектор $x(t) \in \mathbb{R}^n$, а управлението – вектор $u(t) \in \mathbb{R}^m$.

Задача. Нека отново $A(t) \in M_{n \times n}$, а $B(t) \in M_{n \times m}$, $t \in [t_0, t_1]$. Да се реши системата

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

чрез фундаменталната матрица $\Phi(t) = \exp At$ на линейната част $\dot{x}(t) = A(t)x(t)$.

Решение (wiki books: Control Systems/Linear System Solutions). Прехвърляме $\dot{x} - Ax = Bu$ и умножаваме по $\Phi^{-1}(t) = \exp(-At)$, за да интегрираме директно:

$$e^{-At}\dot{x} + e^{-At}(-A)x = \Phi^{-1}Bu$$
$$\frac{d}{dt}(e^{-At}x) = \Phi^{-1}Bu$$
$$e^{-At}x = x(t_0) + \int_{t_0}^t \Phi^{-1}(s)B(s)u(s) \,\mathrm{d}s,$$

откъдето

$$x(t) = \Phi(t)x(t_0) + \Phi(t) \int_0^t \Phi^{-1}(s)B(s)u(s) ds.$$

По-долу за техническо удобство ще считаме $x(t_0)=0$ и $\Phi(t_0)=E,$ при което $x(t)=\int_{t_0}^t \Phi^{-1}(s)B(s)u(s)\,\mathrm{d} s$.

Теорема (Принципът *Бум-тряс*). Нека $C \subset \mathbb{R}^m$ е изпъкнал компакт на управленията. За системата

$$\dot{x} = A(t)x(t) + B(t)u(t)$$
$$x(0) = \vec{0}$$

всяка достижима с някакво управление за време t точка е достижима също и с екстремално управление $u^0:I\to \overline{\rm Ext}\,C.$

Няма да доказваме принципа в пълна общност, а само в частния случай, когато управленията заемат стойности в *симплекс*.

Лема 1. Нека X е топологично линейно пространство и $T: X^* \to \mathbb{R}^n$ е непрекъснато линейно изображение с компоненти $T_i \in X^{**}, i = 1, \ldots, n$, които се представят с елементи от X, тоест $\forall i \; \exists x_i : T_i(x^*) = x^*(x_i)$.

Тогава T е непрекъснат от (X^*, w^*) в \mathbb{R}^n .

Следващата лема е ясна, но все пак, да я ползваме изрично...

Лема 2. Нека X, Y са компактни хаусдорфови топологични пространства и $T: X \to Y$ е непрекъснат. Тогава праобразът $T^{-1}(y)$ на всяка точка $y \in Y$ е компакт.

 $\it Забележска.$ Оттук нататък фиксираме краен затворен интервал $\it I$, изпъкналия компакт

$$C = \left\{ x \in \mathbb{R}_+^m : \sum_i x_i = 1 \right\},\,$$

както и матрично-значна функция $Y \in L_1(I, M_{n \times m})$ (за горната система $Y(s) := \Phi^{-1}(s)B(s)$).

В доказателството на бум-mpsc принципа по-нататък ще се позовем на следното твърдение за отделимост:

Лема 3. Нека $E \subset \mathbb{R}$ е непренебрежимо и $u(t) \in \mathbb{R}^m \setminus \mathcal{C}$ п.н. в E. Тогава съществува вектор η , разделящ строго \mathcal{C} и u(t) п.н. в някое непренебрежимо $E' \subset E$, тоест,

$$\exists \, \varepsilon, B > 0, \eta \in \mathbb{R}^m : \begin{array}{ll} \langle \eta, x \rangle \geq B & \forall x \in \mathcal{C} \\ \langle \eta, u(t) \rangle < B - \varepsilon & \forall t \in E' \end{array}$$

Доказателство. Бидейки симплекс, $C = \bigcap_{i=1}^{n} H_i$ за някои затворени полупространства $H_i = f_i^{-1}((-\infty,1]), f_i \in (\mathbb{R}^m)^*$. Сега можем да представим допълнението му като *изброимото* обединение

$$\mathbb{R}^m \setminus \mathcal{C} = \bigcup_{i=1}^n \bigcup_{k \in \mathbb{N}} G_{i,k}, \ G_{i,k} := f_i^{-1} \left[1 + 1/k, \infty \right).$$

Тогава образите на непренебрежимо много $t \in E$ трябва да лежат в някое полупространство $G_{i,k}$, и именно векторът, отговарящ на функционала f_i , и удължен с $1 + \frac{1}{2k}$, върши работа за търсеното η .

Дефиниция. Означаваме съответно множествата от *допустимите* и *екстремалните* управления

$$\Psi := L_{\infty}(I, \mathcal{C}) \subset L_{\infty}(I, \mathbb{R}^m)$$

$$\Psi_e := L_{\infty}(I, \operatorname{Ext} \mathcal{C}) \subseteq \Psi$$

и казваме, че ynpasлението $u\in \Psi$ води в точката $\xi=Tu$, където $T:\Psi\to \mathbb{R}^n$ е линейния оператор

$$Tu := \int_I Y(s)u(s) \, \mathrm{d}s \quad \forall u \in \Psi.$$

 $^{^1}$ В учебника на Hermes не е предложено доказтелство, а твърдението се ползва в основната теорема с думите *One may readily establish the existence of...*, което не ми изглежда особено неочевидно. Затова и си позволих да предложа някакво обяснение.

 $3 a \delta \epsilon$ лежска. T е непрекъснат по норма, тъй като за $\varepsilon>0$, с $\delta\coloneqq \frac{\varepsilon}{\mu(I)\int_{-Y}Y}$ при $\|h\|_{\infty}<\delta$ имаме

$$|T(u+h) - Tu| = \left| \int_I Y(s)h(s) \, \mathrm{d}s \right| \le \mu(I) \, ||h||_{\infty} \, \left| \int_I Y \right| < \varepsilon.$$

Забележка. Нататък ще говорим за пространството L_{∞} , което, разглеждано като дуалното на L_1 (в крайния затворен интервал I), е снабдено с w^* топологията.

Лема 4. $\Psi := L_{\infty}(I,\mathcal{C})$ е изпъкнал w^* -компакт. Тук е съществено, че \mathcal{C} е по-горе дефинираният симплекс

Доказателство. Очевидно Ψ е изпъкнало, т.к. за $u_1, u_2 \in \Psi$, $\lambda u_1 + (1-\lambda)u_2$ е отново функция от L_{∞} , и то със стойности отново в $\mathcal C$ поради изпъкналостта на $\mathcal C$. Освен това, Ψ е и ограничено (по норма) с

$$\|u\|_{\infty} = \int_{I} \|u(s)\| \, \mathrm{d}s \le I \cdot \max_{y \in \mathcal{C}} \|y\| \quad \forall u \in \Psi.$$

За да бъде Ψ w^* -компакт остава само да проверим, че е w^* -затворено, тоест 2 , че произволно $u^0 \in L_\infty(I,\mathbb{R}^m) \setminus \Psi$ е w^* -отделимо от Ψ . За да w^* -отделим u^0 от Ψ , ни е нужен подходящ функционал $\varphi \in (L_\infty)^* \cap L_1$, с който

$$\varphi(u^0) < B - \varepsilon$$
 и $\forall u \in \Psi : \varphi(u^0) \ge B$.

Щом $u^0 \notin \Psi$, то в непренебрежимо $E \subseteq I$, $u^0(t) \notin \mathcal{C}$. Тогава по лема 3 съществуват $\varepsilon > 0, B > 0, \eta \in \mathbb{R}^m, E' \subset E$ със свойството

$$\langle \eta, x \rangle \ge B \qquad \forall x \in \mathcal{C}$$

 $\langle \eta, u^0(t) \rangle < B - \varepsilon \quad \forall t \in E'$.

Полагаме $\varphi(t)=\begin{cases} \frac{1}{\mu(E')}\eta, & t\in E'\\ 0, & \text{иначе} \end{cases}$, и тогава $\varphi\in L_1$ и изпълнява нужните условия:

$$\varphi(u^0) = \int_I \varphi u^0 = \int_{E'} \varphi u^0 = \frac{1}{\mu(E')} \int_{E'} \eta u^0$$

$$< \frac{1}{\mu(E')} \int_{E'} (B - \varepsilon) = B - \varepsilon$$

и аналогично $\varphi(u)=\int_I \varphi u=rac{1}{\mu(E')}\int_{E'} \eta u\geq B \quad \forall u\in \Psi.$

Щом Ψ се w^* -разделя от произволно $u^0 \notin \Psi$, то Ψ е w^* -затворено, и понеже е $\|\cdot\|_{\infty}$ -ограничено – значи е w^* -компакт.

Теорема (Принципът бум-тряс за управления в симплекс).

$$T(\Psi) = T(\Psi_e).$$

Освен това, двете множества са изпъкнали компакти.

Доказателство. Очевидно $T\Psi_e \subseteq T\Psi$, трябва да докажем обратната посока. Доказателството на теоремата протича по следните стъпки:

1. T е непрекъснат в L_{∞} нормата (лесно проверимо), тогава по лема 1 е и w^* -непрекъснат, и значи образът $T\Psi \subset \mathbb{R}^n$ на w^* -компакта Ψ отново е изпъкнал компакт (второто твърдение на теоремата).

 $^{^2}$ В учебника на Hermes допускат, че има $u^0 \in \partial \Psi \setminus \Psi$, и стигат до противоречие със същия аргумент нататък. Този стил ми се вижда излишно утежняващ, затова подходих с отвореност на допълнението.

- 2. T е непрекъснато изображение между компакти, тогава възможните управления $T^{-1}(\xi) \subset \Psi$ за пристигане в коя да е точка $\xi \in \mathbb{R}^n$ образуват изпъкнал w^* -компакт (лема 2 с $Y = \{\xi\}$), имащ задължително екстремна точка $u \in T^{-1}(\xi) \subset \Psi$ (Krein-Milman).
- 3. Оказва се, че въпросната екстремала и е бум-тряс управление.

Ако допуснем противното, то в в някое непренебрежимо множество $E \subset I$ управленията са далеч от $\operatorname{Ext} \mathcal C$ и от непосредствено следващата лема (5) следва, че u е среда на същинска отсечка управления $[u-h,u+h] \subset \Psi$, водещи в същото ξ , и това противоречи на екстремността на u.

Лема 5. Нека $n \in \mathbb{N}$, $Y(t) \in M_{n \times m}$, $E \subset I$ е непренебрежимо, а управлението $u \in \Psi$ води в $\xi := Tu$ и удовлетворява $\operatorname{dist}(u(E),\operatorname{Ext}\mathcal{C}) > \varepsilon > 0$.

Тогава съществува отместване $h \in L_{\infty}(I, \mathbb{R}^m)$ със следните свойства:

- 1. $h(t) \neq 0 \ \forall t \in E$ (и се влага в същинска отсечка)
- 2. $||h||_{\infty} \le \varepsilon$ (moecm, $u(t) \pm h(t) \in \mathcal{C}$, $t \in I$);
- 3. $\int_{I} Yh = 0$ (moecm, $u \pm h$ отново води в ξ).

C други думи, $u \in [u-h, u+h] \subset T^{-1}(\xi)$.

Доказателство. Тъй като трудно ще дефинираме директно ненулево h с нулев интеграл $\int_I Yh$, то първо ще построим h, удовлетворяващо само 1. и 2., върху някакво разбиване на E, а с подходящо претегляне на рестрикциите върху разбиването ще осигурим и $\int_I Yh = 0$.

По-точно, от неатомичността на лебеговата мярка можем да разбием за кое да е $k \in \mathbb{N}^+$ $E = \bigcup_{j=1}^k E_k$, т.ч. $E_i \cap E_j = \emptyset \ \forall i \neq j$ и $\mu(E_j) \ngeq 0 \ \forall j$. Подходящото k ще определим по-късно. Следва построението на k.

Да разгледаме поведението на u в проблемните точки $E \subset I$. Ехt \mathcal{C} се състои от m върха r_1, \ldots, r_m . Във всеки момент $t \in E, \ u(t)$ е най-близо до $none\ edun$ от тях – избираме първия в редицата и полагаме за $j=1,\ldots,m$

$$F_j = \left\{ t \in E: \begin{array}{l} \operatorname{d}\left(u(t), r_j\right) = \operatorname{dist}\left(u(t), \operatorname{Ext} \mathcal{C}\right) \\ \operatorname{if} \operatorname{d}\left(u(t), r_j\right) > \operatorname{d}\left(u(t), r_i\right) \forall i < j \end{array} \right\}.$$

 F_j са измерими (т.к. u(t) е измерима и
 $\operatorname{d}(\cdot,\cdot)$ е непрекъсната) и разбиват E. Дефинираме

$$\tilde{h}(t) := \begin{cases} \frac{1}{2m} \left(u(t) - r_j \right) & t \in F_j, j = 0, \dots, m \\ 0 & t \in I \setminus E \end{cases}.$$

 \tilde{h} очевидно удовлетворява условия 1. и 2., обаче $\int_I \tilde{h} \neq 0$ в общия случай.

Сега във всяко $E_j, j=1,\dots,k$ ще претеглим рестрикцията на \tilde{h} с подходящо $\alpha_j\in\mathbb{R}$ така, че $\int_I Y h=0$:

$$h(t) \coloneqq egin{cases} lpha_j \tilde{h}(t), & t \in E_j \\ 0, & \text{иначе} \end{cases}.$$

Тогава условието $\int_I Y h = 0$ е еквивалентно на хомогенната линейна система с n уравнения и k неизвестни

$$\int_I Yh = \sum_{j=1}^k \alpha_j \int_{E_j} Yh = 0.$$

За да не нарушим условия 1. и 2., ни стига кое да е нетривиално решение за коефициентите α_i , каквото съществува винаги при $k \geq n+1$.

Следователно $u\pm h\in \Psi=L_{\infty}(I,\mathcal{C})$ и $u\in [u-h,u+h]$ от изпъкналостта на $\Psi.$