Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Arvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6 – Linguagens Livres do Contexto

6 Linguagens Livres do Contexto

- ◆ Estudo da Classe das Linguagens Livres do Contexto ou Tipo 2 é de fundamental importância
 - universo mais amplo de linguagens comparativamente com as LR
 - trata, adequadamente, questões típicas de linguagens de programação
 - * parênteses balanceados
 - * construções bloco-estruturadas, etc.
- Algoritmos reconhecedores e geradores
 - relativamente simples
 - eficiência razoável

Aplicações típicas

- centradas em linguagens artificiais
 - * em especial, nas linguagens de programação
- analisadores sintáticos
- tradutores de linguagens
- processadores de texto em geral

◆ Hierarquia de Chomsky

- Classe das Linguagens Livres do Contexto
- contém propriamente a Classe das Linguagens Regulares

◆ Entretanto, é uma classe relativamente restrita

fácil definir linguagens que não pertencem a esta classe

Abordagens

- Gramática Livre do Contexto (axiomático ou gerador)
 - * restrições na forma das regras de produção
 - * mais livre que na gramática regular
- Autômato com Pilha (operacional ou reconhecedor)
 - * análogo ao autômato finito não-determinístico
 - * adicionalmente: memória auxiliar tipo pilha
 - pode ser lida ou gravada

Relativamente às GLC

- Árvore de derivação
 - representa a derivação de uma palavra na forma de árvore
 - parte do símbolo inicial como a raiz
 - * termina em símbolos terminais como folhas
- Gramática Ambígua
 - pelo menos uma palavra com duas ou mais árvores de derivação
- Simplificação de Gramática (produções)
 - * sem reduzir o poder de geração
- Forma Normal: restrições rígidas na forma das produções
 - * sem reduzir o poder de geração da gramática

Autômato com pilha construído a partir de uma GLC

- construção de um reconhecedor a partir de sua gramática
 * simples e imediata
- estrutura de pilha é suficiente como única memória
 - * pode ser reconhecida por autômato com pilha com um estado
 - * estados não são necessários para "memorizar" o passado

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.1 Gramática Livre do Contexto

Def: Gramática Livre do Contexto (GLC)

$$G = (V, T, P, S)$$

qualquer regra de produção é da forma

$$A \rightarrow \alpha$$

- A é variável de V
- α é palavra de (V∪T)*

lado esquerdo = uma variável

Def: Linguagem Livre do Contexto (LLC) ou Tipo 2

Linguagem gerada pela gramática livre do contexto G

$$GERA(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

- ◆ Portanto, é livre do contexto
 - qualquer linguagem regular

◆ Relação entre as classes de linguagens estudadas

"Livre do contexto" ???

- mais geral classe de linguagens cuja produção é da forma A → α
- em uma derivação, a variável A deriva α
 - * sem depender ("livre") de qualquer análise
 - * dos símbolos que antecedem ou sucedem A (o "contexto")
 - * na palavra que está sendo derivada

Exp: GLC: Duplo Balanceamento

$$L_1 = \{ a^n b^n \mid n \ge 0 \}$$

$$G_1 = (\{S\}, \{a, b\}, P_1, S)$$

- $P_1 = \{ S \rightarrow aSb \mid S \rightarrow \epsilon \}$
- $GERA(G_1) = L_1$

Derivação da palavra aabb

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aa\varepsilon bb = aabb$$

◆ Importante: Duplo Balanceamento

- analogia com estruturas de duplo balanceamento
 - * em linguagens de programação
- linguagens bloco-estruturadas
 - * beginⁿ endⁿ e similares
- linguagens com parênteses balanceados

Exp: GLC: Expressões Aritméticas

L₂ - expressões aritméticas com colchetes balanceados, dois operadores e um operando

$$G_2 = (\{E\}, \{+, *, [,], x\}, P_2, E)$$

•
$$P_2 = \{ E \rightarrow E + E \mid E * E \mid [E] \mid x \}$$

Derivação da expressão [x+x]*x

$$E \Rightarrow E*E \Rightarrow [E]*E \Rightarrow [E+E]*E \Rightarrow [x+E]*E \Rightarrow [x+x]*E \Rightarrow [x+x]*x$$

- existe outra sequência de derivação? Quantas?
- quais produções controlam o duplo balanceamento de parênteses?

Obs: BNF: Backus Naur Form

Maneira usual de representar uma GLC

- variáveis
 - * palavras delimitadas pelos símbolos (e)
- terminais
 - palavras não-delimitadas
- representação de uma regra de produção A → α

$$A := \alpha$$

Exp: BNF: Identificador em Pascal

A variável (identificador) é o símbolo inicial

- (identificador) ::=
 (letra) | (identificador) (letra) | (identificador) (dígito)
- (letra) ::= a | b | ... | z
- (dígito) ::= 0 | 1 | ... | 9

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.2 Árvore de Derivação

- Derivação de palavras na forma de árvore
 - partindo do símbolo inicial como a raiz
 - terminando em símbolos terminais como folhas
- Conveniente em muitas aplicações
 - Compiladores
 - processadores de textos

Def: Árvore de Derivação

Raiz: símbolo inicial

Vértices interiores: variáveis

- se A é um vértice interior e X₁, X₂,...,X_n são os "filhos" de A
 - * A → X₁X₂...X_n é uma produção da gramática
 - * X₁, X₂,...,X_n são ordenados da esquerda para a direita

Vértice folha ou folha: terminal ou o símbolo vazio

se vazio: único filho de seu pai (A → ε)

Exp: Árvore de Derivação: aabb e [x+x]*x

- ◆ Uma árvore de derivação
 - pode representar derivações distintas de uma mesma palavra

Exp: Árvore de Derivação × Derivações: x+x*x

- $E \Rightarrow E + E \Rightarrow X + E \Rightarrow X + E \Rightarrow X + X * E \Rightarrow X + X * X$
- $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * X \Rightarrow E + X * X \Rightarrow X + X * X$
- $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow X + E * E \Rightarrow X + X * E \Rightarrow X + X * X$
- etc...

E + E * E * X

mais a esquerda mais a direita

Def: Derivação mais à Esquerda (Direita)

Sequência de produções aplicada sempre à variável mais à esquerda (direita) da palavra

Exp: Derivação mais à Esquerda (Direita): x+x*x

- $E \Rightarrow E + E \Rightarrow X + E \Rightarrow X + E \Rightarrow X + X * E \Rightarrow X + X * X$
- $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * X \Rightarrow E + X * X \Rightarrow X + X * X$

mais a esquerda mais a direita

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.3 GLC Ambigua

- Gramática ambígua
 - uma palavra associada a duas ou mais árvores de derivação
- Pode ser desejável que a gramática usada seja nãoambígua
 - desenvolvimento e otimização de alguns algoritmos de reconhecimento
- ♦ Nem sempre é possível eliminar ambigüidades
 - é fácil definir linguagens para as quais qualquer GLC é ambígua

Def: Gramática (Livre do Contexto) Ambígua

Existe pelo menos uma palavra que possui duas ou mais árvores de derivação

Exp: Gramática Ambígua: x+x*x

Mais de uma derivação à esquerda (direita)

$$X+X*X$$

Derivação mais à esquerda

*
$$E \Rightarrow E + E \Rightarrow X + E \Rightarrow X + E \Rightarrow X + X * E \Rightarrow X + X * X$$
* $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow X + E * E \Rightarrow X + X * E \Rightarrow X + X * X$

• Derivação mais à direita

$$* E \Rightarrow E+E \Rightarrow E+E*E \Rightarrow E+E*X \Rightarrow E+X*X \Rightarrow X+X*X$$

$$* E \Rightarrow E*E \Rightarrow E*X \Rightarrow E+E*X \Rightarrow E+X*X \Rightarrow X+X*X$$

Forma equivalente de definir gramática ambígua

- existe pelo menos uma palavra com duas ou mais derivações mais à esquerda
 - * alternativamente, mais à direita

Teorema: Gramática Ambígua

Uma GLC é uma Gramática Ambígua se existe pelo menos uma palavra

- duas ou mais derivações mais à esquerda ou
- duas ou mais derivações mais à direita

Def: Linguagem Inerentemente Ambígua

Qualquer GLC é ambígua

Exp: Linguagem Inerentemente Ambígua

```
\{ w \mid w = a^n b^n c^m d^m \text{ ou } w = a^n b^m c^m d^n, n \ge 1, m \ge 1 \}
```

Exp: Linguagem Inerentemente Ambígua: contraexemplo

Expressões aritméticas é não-ambígua (exercício)

Correto entendimento da solução é especialmente importante

- justifica a maneira aparentemente "estranha" de definir expressões
- na maioria das gramáticas das linguagens de programação

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
 - 6.4.1 Símbolos Inúteis
 - 6.4.2 Produções Vazias
 - 6.4.3 Produções que Substituem Variáveis
 - 6.4.4 Simplificações Combinadas
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.4 Simplificação de GLC

- ◆ Simplificação de alguns tipos de produções
 - sem reduzir o poder de geração das GLC
- **♦ Simplificações são importantes**
 - construção e otimização de algoritmos
 - demonstração de teoremas

Simplificações

- Símbolos inúteis
 - * exclusão de variáveis ou terminais não-usados
- Produções vazias, da forma A → ε
 - * se ε pertence à linguagem: incluída produção vazia específica
- Produções que substituem variáveis, da forma A → B
 - * substituem uma variável por outra
 - * não adicionam informação de geração de palavras

Provas omitidas

algoritmos de simplificação atingem os objetivos propostos

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
 - 6.4.1 Símbolos Inúteis
 - 6.4.2 Produções Vazias
 - 6.4.3 Produções que Substituem Variáveis
 - 6.4.4 Simplificações Combinadas
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.4.1 Símbolos Inúteis

Símbolos inúteis

símbolos não-usados na geração de palavras de terminais

Simplificação exclui

- produções que fazem referência a esses símbolos
- os próprios símbolos inúteis
- não é necessária qualquer modificação adicional

Algoritmo

- Etapa 1: qualquer variável gera terminais restringe o conjunto de variáveis
 - * considera todas as variáveis que geram terminais diretamente (exemplo: A → a)
 - * adiciona, sucessivamente, variáveis que geram terminais indiretamente (exemplo: B → Ab)
- Etapa 2: qualquer símbolo é atingível a partir do símbolo inicial analisa as produções da gramática a partir do símbolo inicial
 - * considera exclusivamente o símbolo inicial
 - * sucessivamente as produções da gramática são aplicadas:
 símbolos referenciados são adicionados aos novos conjuntos

Def: Algoritmo: Exclusão dos Símbolos Inúteis

$$G = (V, T, P, S)$$
 GLC

Etapa 1: qualquer variável gera terminais. Gramática resultante

$$G_1 = (V_1, T, P_1, S)$$

construção de V₁⊆V

```
V_1 = \emptyset; repita V_1 = V_1 \cup \{ A \mid A \rightarrow \alpha \in P \ e \ \alpha \in (T \cup V_1)^* \} até que o cardinal de V_1 não aumente;
```

- P₁ possui os mesmos elementos que P, excetuando-se
 - * produções cujas variáveis não pertencem a V₁

Etapa 2: qualquer símbolo é atingível a partir do símbolo inicial

Gramática resultante

$$G_2 = (V_2, T_2, P_2, S)$$

```
T_2 = \emptyset;

V_2 = \{ S \};

repita

V_2 = V_2 \cup \{ A \mid X \rightarrow \alpha \ A \ \beta \in P_1, X \in V_2 \};

T_2 = T_2 \cup \{ a \mid X \rightarrow \alpha \ a \ \beta \in P_1, X \in V_2 \}

até que os cardinais de V_2 e T_2 não aumentem;
```

- P₂ possui os mesmos elementos que P₁, excetuando-se
 - * produções cujos símbolos não pertencem a V₂ ou T₂

- ◆ Se as etapas forem executadas em ordem inversa (Etapa 2 antes da Etapa 1)
 - pode não atingir o resultado esperado
 - demonstração: apresentar um contra-exemplo (exercício)

Exp: Exclusão dos Símbolos Inúteis

$$G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$$

•
$$P = \{ S \rightarrow aAa \mid bBb, A \rightarrow a \mid S, C \rightarrow c \}$$

Etapa 1: qualquer variável gera terminais

Iteração	Variáveis
início	Ø
1	{ A, C }
2	{ A, C, S }
3	{ A, C, S }

• S → bBb é excluída: B não pertence ao novo conjunto de variáveis

gramática resultante da etapa 1

$$G_1 = (\{A, C, S\}, \{a\}, \{S \rightarrow aAa, A \rightarrow a \mid S, C \rightarrow c\}, S)$$

Etapa 2: qualquer símbolo é atingível a partir do símbolo inicial

Iteração	Variáveis	Terminais
início	{S}	Ø
1	{ S, A }	{ a }
2	{ S, A }	{a}

- C → c é excluída: C e c não pertencem aos novos conjuntos
- gramática resultante da etapa 2

$$G_2 = (\{S, A\}, \{a\}, \{S \rightarrow aAa, A \rightarrow a \mid S\}, S)$$

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
 - 6.4.1 Símbolos Inúteis
 - 6.4.2 Produções Vazias
 - 6.4.3 Produções que Substituem Variáveis
 - 6.4.4 Simplificações Combinadas
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.4.2 Produções Vazias

- ♦ Exclusão de produções vazias (da forma $A \rightarrow ε$)
 - pode determinar modificações diversas nas produções

Algoritmo

- Etapa 1: variáveis que constituem produções vazias
 - * A → ε: variáveis que geram diretamente ε
 - * B → A: sucessivamente, variáveis que indiretamente geram ε
- Etapa 2: exclusão de produções vazias
 - * considera apenas as produções não-vazias
 - * cada produção cujo lado direito possui uma variável que gera ε, determina uma produção adicional, sem essa variável
- Etapa 3: geração da palavra vazia, se necessário

Def: Algoritmo: Exclusão das Produções Vazias

$$G = (V, T, P, S)$$
 GLC

Etapa 1: variáveis que constituem produções vazias

V_ε, conjunto das variáveis que geram ε

```
\begin{split} &V_{\epsilon} = \{ \text{ A } \mid \text{ A} \to \epsilon \ \}; \\ &\text{repita} \\ &V_{\epsilon} = V_{\epsilon} \cup \{ \text{ X } \mid \text{ X} \to \text{X}_{1}...\text{X}_{n} \in P \\ &\text{tal que X}_{1},..., \text{ X}_{n} \in V_{\epsilon} \ \} \\ &\text{at\'e que o cardinal de } V_{\epsilon} \text{ n\~ao aumente}; \end{split}
```

Etapa 2: exclusão de produções vazias

Gramática resultante

$$G_1 = (V, T, P_1, S)$$

construção de P₁

```
P_1 = \{ A \rightarrow \alpha \mid \alpha \neq \epsilon \};
repita

para toda A \rightarrow \alpha \in P_1, X \in V_{\epsilon} tal que

\alpha = \alpha_1 \ X \ \alpha_2, \alpha_1 \ \alpha_2 \neq \epsilon

faça P_1 = P_1 \cup \{ A \rightarrow \alpha_1 \ \alpha_2 \}

até que o cardinal de P_1 não aumente;
```

Etapa 3: geração da palavra vazia, se necessário

- se ε pertence à linguagem
 - ∗ introduz a produção S → ε
- gramática resultante

$$G_2 = (V, T, P_2, S)$$

$$* P_2 = P_1 \cup \{S \rightarrow \varepsilon\}$$

Exp: Exclusão das Produções Vazias

$$G = (\{S, X, Y\}, \{a, b\}, P, S)$$

•
$$P = \{ S \rightarrow aXa \mid bXb \mid \epsilon, X \rightarrow a \mid b \mid Y, Y \rightarrow \epsilon \}$$

Etapa 1: variáveis que constituem produções vazia

Iteração	$\bigvee_{oldsymbol{\epsilon}}$	
início	{ S, Y }	
1	{ S, Y, X }	
2	{ S, Y, X }	

Etapa 2: exclusão de produções vazias

Iteração	Produções
início	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid Y\}$
	$\{S \rightarrow aXa \mid bXb \mid aa \mid bb, X \rightarrow a \mid b \mid Y\}$
2	$\{S \rightarrow aXa \mid bXb \mid aa \mid bb, X \rightarrow a \mid b \mid Y\}$

Gramática resultante

$$G_1 = (\{S, X, Y\}, \{a, b\}, \{S \rightarrow aXa \mid bXb \mid aa \mid bb, X \rightarrow a \mid b \mid Y\}, S)$$

Etapa 3: geração da palavra vazia, se necessário.

palavra vazia pertence à linguagem: S → ε é incluída

Gramática resultante

$$G_2 = (\{ S, X, Y \}, P_2, S)$$

• $P_2 = \{a, b\}, \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \epsilon, X \rightarrow a \mid b \mid Y\}$

Observe

- Y, originalmente um símbolo útil, resultou em um símbolo inútil
- exclusão de produções vazias gerou símbolo inútil

◆ Conclusão

não é qualquer combinação de simplificações de gramática que atinge o resultado desejado

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
 - 6.4.1 Símbolos Inúteis
 - 6.4.2 Produções Vazias
 - 6.4.3 Produções que Substituem Variáveis
 - 6.4.4 Simplificações Combinadas
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.4.3 Produções que Substituem Variáveis

- Produção que substitui uma variável por outra
 - tipo A → B
 - * não adiciona informação em termos de geração de palavras
 - se B → α, então
 * A → B pode ser substituída por A → α
 - generalização da idéia: algoritmo proposto

Algoritmo

- Etapa 1: fecho transitivo de cada variável
 - * conjunto de variáveis que podem substituí-la transitivamente
 - * ex: se A → B e B → C, então B e C pertencem ao fecho de A

- Etapa 2: exclusão das produções que substituem variáveis
 - * se α é atingível a partir de A através de seu fecho
 - * Substitui $A \rightarrow B$ por $A \rightarrow \alpha$

Def: Algoritmo: Exclusão das Produções que Substituem Variáveis

$$G = (V, T, P, S)$$
 GLC

Etapa 1: fecho transitivo de cada variável

```
para toda A \in V
faça FECHO-A = \{ B \mid A \neq B \in A \Rightarrow^+ B \text{ usando} \}
exclusivamente produções de P da forma X \to Y \};
```

Etapa 2: exclusão das produções que substituem variáveis

Gramática resultante

$$G_1 = (V, T, P_1, S)$$

construção de P₁

```
P_1 = \{ A \rightarrow \alpha \mid A \rightarrow \alpha \in P \in \alpha \notin V \};
para toda A \in V \in B \in FECHO-A
faça se B \rightarrow \alpha \in P \in \alpha \notin V
então P_1 = P_1 \cup \{ A \rightarrow \alpha \};
```

Exp: Exclusão das Produções que Substituem Variáveis

$$G = (\{S, X\}, \{a, b\}, P, S)$$
 GLC

• $P = \{ S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid S \mid \epsilon \}$

Etapa 1: fecho transitivo da cada variável

- FECHO-S = Ø
- FECHO-X = { S }

Etapa 2: exclusão das produções da forma *A* → *B*

Iteração	Produções
inicial	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon\}$
S	$\{ S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon \}$
X	$\{S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon \mid aXa \mid bXb\}$

Gramática resultante

$$G_1 = (\{ S, X \}, \{ a, b \}, P_1, S)$$

•
$$P_1 = \{ S \rightarrow aXa \mid bXb, X \rightarrow a \mid b \mid \epsilon \mid aXa \mid bXb \}, S \}$$

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
 - 6.4.1 Símbolos Inúteis
 - 6.4.2 Produções Vazias
 - 6.4.3 Produções que Substituem Variáveis
 - 6.4.4 Simplificações Combinadas
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.4.4 Simplificações Combinadas

- ◆ Não é qualquer combinação de simplificações de GLC
 - que atinge o resultado desejado
- Exemplo: gramática sem símbolos inúteis, mas com produções que substituem variáveis
 - algoritmo para excluir produções que substituem variáveis pode gerar símbolos inúteis (por quê?)
- Seqüência de simplificação recomendada
 - Exclusão das produções vazias
 - Exclusão das produções que substituem variáveis
 - Exclusão dos símbolos inúteis

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
 - 6.5.1 Forma Normal de Chomsky
 - 6.5.2 Forma Normal de Greibach
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.5 Formas Normais

Formas normais

- restrições rígidas na forma das produções
- sem reduzir o poder de geração das GLC
 - * excetuando-se a geração da palavra vazia

Aplicações

- desenvolvimento de algoritmos
 - * destaque para reconhecedores de linguagens
- prova de teoremas

◆ Forma Normal de Chomsky: produções são da forma

$$A \rightarrow BC$$
 ou $A \rightarrow a$

◆ Forma Normal de Greibach: produções são da forma

$$A \rightarrow a\alpha$$

α palavra de *variáveis*

- Algoritmos de conversão
 - provas omitidas
 - de que os algoritmos atingem os objetivos propostos

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
 - 6.5.1 Forma Normal de Chomsky
 - 6.5.2 Forma Normal de Greibach
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.5.1 Forma Normal de Chomsky

Def: Forma Normal de Chomsky (FNC)

$$G = (V, T, P, S)$$
 GLC

Todas produções são da forma (A, B e C são variáveis, a é terminal)

$$A \rightarrow BC$$
 ou $A \rightarrow a$

Palavra vazia

• não pertence à linguagem gerada por uma gramática na FNC

Algoritmo: três etapas

Etapa 1: simplificação da gramática

- * A → ε
 * A → B
 linguagem não possui ε
 um símbolo no lado direito: terminal
- * símbolos inúteis opcional
- Etapa 2: variáveis no lado direito das produções
 - * lado direito de comprimento ≥ 2: exclusivamente variáveis
 - * se for um terminal?
- Etapa 3: exatamente duas variáveis no lado direito das produções
 - * como transformar produções da forma A → B₁B₂...B_n (n ≥ 2) ?

Def: Algoritmo - Forma Normal de Chomsky

$$G = (V, T, P, S)$$
 GLC tal que $\varepsilon \notin GERA(G)$

Etapa 1: simplificação da gramática

$$G_1 = (V_1, T_1, P_1, S)$$
 gra

gramática resultante

- simplificações combinadas
 - * produções vazias
 - produções que substituem variáveis
 - * símbolos inúteis (opcional)

(algoritmos estudados)

Etapa 2: transformação do lado direito das produções de comprimento maior ou igual a dois

$$G_2 = (V_2, T_1, P_2, S)$$
 gramática resultante

construção de V₂ e P₂ (para cada variável a, suponha Ca ∉ V₂)

```
\begin{array}{lll} V_2 = V_1; \\ P_2 = P_1; \\ para & toda \ A \rightarrow X_1 X_2 ... X_n \in P_2 \ tal \ que \ n \geq 2 \\ faça & se \ para \ r \in \{\ 1,...,n\ \}, \ X_r \ \'e \ um \ s\'imbolo \ terminal \\ & ent\~ao \ (suponha \ X_r = a) \\ & V_2 = V_2 \ U \ \{\ C_a\ \}; \\ & substitui \ a \ por \ C_a \ em \ A \rightarrow X_1 X_2 ... X_n \in P_2; \\ & P_2 = P_2 \ U \ \{\ C_a \rightarrow a\ \}; \end{array}
```

Etapa 3: transformação do lado direito das produções de comprimento maior ou igual a três em produções com exatamente duas variáveis

$$G_3 = (V_3, T_1, P_3, S)$$
 gramática resultante

construção de V₃ e P₃
* a cada ciclo, suponha D₁ ∉ V₃,...,D_{n-2} ∉ V₃)

```
V_3 = V_2;

P_3 = P_2;

para toda A 	oup B_1B_2...B_n \in P_3 tal que n \ge 3

faça P_3 = P_3 - \{A 	oup B_1B_2...B_n\};

V_3 = V_3 \cup \{D_1,...,D_{n-2}\};

P_3 = P_3 \cup \{A 	oup B_1D_1, D_1 	oup B_2D_2,...,D_{n-3} 	oup B_{n-2}D_{n-2}, D_{n-2} 	oup B_{n-1}B_n\};
```

Exp: Algoritmo: Forma Normal de Chomsky

$$G = (\{E\}, \{+, *, [,], x\}, P, E)$$
 expr. aritméticas

•
$$P = \{ E \rightarrow E + E \mid E * E \mid [E] \mid x \}$$

Etapa 1: simplificação da gramática

já está simplificada

Etapa 2: lado direito das produções de comprimento ≥ 2

- E → x está OK
- demais produções

$$* C_{\lceil} \rightarrow [$$

$$* C_{]} \rightarrow]$$

Etapa 3: exatamente duas variáveis no lado direito das produções

• produções

$$E \rightarrow E C_{+} E \mid E C_{*} E \mid C_{[} E C_{]}$$

substituídas por

```
* E \rightarrow E D_1 \mid E D_2 \mid C_E D_3

* D_1 \rightarrow C_+ E

* D_2 \rightarrow C_* E

* D_3 \rightarrow E C_1
```

Gramática resultante, na Forma Normal de Chomsky

$$G_{FNC} = (\{ E, C_+, C_*, C_[, C_], D_1, D_2, D_3 \}, \{ +, *, [,], x \}, P_{FNC}, E)$$

Produções de P_{FNC}

```
* E \rightarrow E D_1 \mid E D_2 \mid C_{[} D_3 \mid x,

* D_1 \rightarrow C_+ E

* D_2 \rightarrow C_* E

* D_3 \rightarrow E C_{],

* C_+ \rightarrow +

* C_* \rightarrow *

* C_{[} \rightarrow [

* C_{[} \rightarrow [
```

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
 - 6.5.1 Forma Normal de Chomsky
 - 6.5.2 Forma Normal de Greibach
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.5.2 Forma Normal de Greibach

Def: Forma Normal de Greibach (FNG)

$$G = (V, T, P, S)$$
 GLC

Todas as suas produções são da forma

(α é uma palavra de V*)

$$A \rightarrow a\alpha$$

Palavra vazia

• não pertence à linguagem gerada por uma gramática na FNG

Algoritmo (etapas)

Etapa 1: simplificação da gramática. Análoga à FNC

• A → ε

linguagem não possui ε

• A → B

primeiro símbolo no lado direito: terminal

símbolos inúteis

opcional

Etapa 2: renomeação das variáveis em uma ordem crescente

• exemplo: A₁, A₂,..., A_n

#V = n

- diferentes critérios de renomeação
 - * diferentes gramáticas na FNG
 - * todas equivalentes (geram a mesma linguagem)

Etapa 3: produções na forma $A_r \rightarrow A_S \alpha$, em que $r \leq s$

- $A_r \rightarrow A_s \alpha$ tais que r > s são modificadas
 - * substitui A_S pelas suas produções (A_S → β₁ | ... | β_m)
 - * resulta em $A_r \rightarrow \beta_1 \alpha$ | ... | $\beta_m \alpha$
 - * e assim sucessivamente
- conjunto de variáveis é finito: limite para produções crescentes
 - geração de terminal

 $A_r \rightarrow a\alpha$

* geração de recursão

 $A_r \rightarrow A_r \alpha$

Etapa 4: exclusão das recursões da forma $A_r \rightarrow A_r \alpha$

- podem existir originalmente na gramática
- ou serem geradas pela etapa anterior
- eliminação da recursão à esquerda
 - * introduz variáveis auxiliares
 - * inclui recursão à direita

$$B_r \rightarrow \alpha B_r$$

Etapa 5: um terminal no início do lado direito de cada produção

- produções da forma $A_r \rightarrow A_s \alpha$ são tais que r < s
- portanto, produções da maior variável An
 * obrigatoriamente iniciam por terminal no lado direito
- A_{n-1} → A_nα: substituí A_n pelas suas produções (A_n → aβ)
 * lado direito das produções de A_{n-1} também inicia por terminal
 * exemplo: A_{n-1} → aβα
- repetição para A_{n-2},...,A₁
 ∗ resulta em produções exclusivamente da forma A_r → aα

Etapa 6: produções na forma $A \rightarrow a\alpha$, α palavra de variáveis

• análoga à correspondente etapa do algoritmo relativo à FNC

Def: Algoritmo: Forma Normal de Greibach

$$G = (V, T, P, S)$$

GLC tq $\varepsilon \notin GERA(G)$

Etapa 1: simplificação da gramática

$$G_1 = (V_1, T_1, P_1, S)$$

gramática resultante

simplificações combinadas

(algoritmos estudados)

- * produções vazias
- * produções que substituem variáveis
- símbolos inúteis (opcional)

Etapa 2: renomeação das variáveis em uma ordem crescente qualquer.

$$G_2 = (V_2, T_1, P_2, A_i)$$
 gramática resultante

suponha que A_i corresponde à renomeação de S

Etapas 3 e 4: transformação de produções para a forma $A_r \rightarrow A_s \alpha$, na qual $r \le s$ e exclusão das recursões da forma $Ar \rightarrow A_r \alpha$

$$G_3 = (V_3, T_1, P_3, A_i)$$
 gramática resultante

- construção de V₃ e P₃ supondo
 - * cardinal de V₂ é n
 - ∗ a cada ciclo, B_r ∉ V₃

```
P3 = P2
para r variando de 1 até n
faça
     para S variando de 1 até r-1
                                                                        Etapa 3
     faça para toda A_r \rightarrow A_s \alpha \in P_3
               faça excluir A_r \rightarrow A_s \alpha de P_3;
                          para toda A_s \rightarrow \beta \in P_3
                          faça P_3 = P_3 \cup \{A_r \rightarrow \beta \alpha \}
              toda A_r \rightarrow A_r \alpha \in P_3
     para
                                                                        Etapa 4
              excluir A_r \rightarrow A_r \alpha de P_3;
     faça
               V_3 = V_3 \cup \{B_r\};
               P_3 = P_3 \cup \{ B_r \rightarrow \alpha \} \cup \{ B_r \rightarrow \alpha B_r \};
              toda A_r \rightarrow \phi \in P_3 tq \phi não inicia por A_r e
     para
               alguma A_r \rightarrow A_r \alpha foi excluída
              P_3 = P_3 \cup \{A_r \rightarrow \phi B_r\};
     faça
```

Etapa 5: um terminal no início do lado direito de cada produção

$$G_4 = (V_3, T_1, P_4, A_i)$$
 gramática resultante

construção de P₄

```
\begin{array}{lll} P_4 = P_3; \\ \text{para} & \text{r variando de n-1 até 1 e toda } A_r \to A_s \alpha \in P_4 \\ \text{faça} & \text{excluir } A_r \to A_s \ \alpha \ \text{de } P_4; \\ & \text{para} & \text{toda } A_s \to \beta \ \text{de } P_4 \\ & \text{faça} & P_4 = P_4 \cup \{\ A_r \to \beta \ \alpha\ \}; \end{array}
```

- produções relativas às variáveis auxiliares B_r
 - * iniciam por um terminal do lado direito

```
para toda B_r \to A_S \beta_r

faça excluir B_r \to A_S \beta_r de P_4;

para toda A_S \to a \alpha

faça P_4 = P_4 \cup \{ B_r \to a \alpha \beta_r \};
```

Etapa 6: produções na forma $A \rightarrow a\alpha$, α palavra de variáveis

análoga à correspondente etapa da Forma Normal de Chomsky

Exp: Algoritmo: Forma Normal de Greibach

$$G = (\{S, A\}, \{a, b\}, P, S)$$
 GLC

•
$$P = \{ S \rightarrow AA \mid a, A \rightarrow SS \mid b \}$$

Etapa 1: simplificação da gramática

já está simplificada

Etapa 2: renomeação das variáveis em uma ordem crescente qualquer

- S e A são renomeadas para A₁ e A₂
 - * $A_1 \rightarrow A_2A_2 \mid a$
 - * $A_2 \rightarrow A_1A_1 \mid b$

Etapas 3 e 4: transformação de produções para a forma $A_r \rightarrow A_S \alpha$, na qual $r \le s$ e exclusão das recursões da forma $Ar \rightarrow A_r \alpha$

A₂ → A₁A₁ necessita ser modificada, resultando em

*
$$A_1 \rightarrow A_2A_2 \mid a$$

* $A_2 \rightarrow A_2A_2A_1 \mid aA_1 \mid b$

A₂ → A₂A₂A₁ contém recursão

(variável auxiliar B)

*
$$A_1 \rightarrow A_2A_2 \mid a$$

*
$$A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$$

*
$$B \rightarrow A_2A_1 \mid A_2A_1B$$

Etapa 5: um terminal no início do lado direito de cada produção

- lado direito das produções da maior variável A₂
 * inicia por um terminal
- substitui A₂ em A₁ → A₂A₂ pelas correspondentes derivações

```
* A_1 \rightarrow aA_1A_2 \mid bA_2 \mid aA_1BA_2 \mid bBA_2 \mid a

* A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB

* B \rightarrow A_2A_1 \mid A_2A_1B
```

produções referentes à variável B

$$B \rightarrow aA_1A_1 \mid bA_1 \mid aA_1BA_1 \mid bBA_1 \mid$$

 $aA_1A_1B \mid bA_1B \mid aA_1BA_1B \mid bBA_1B$

Etapa 6: produções na forma $A \rightarrow a\alpha$, α composta por variáveis

produções já estão nessa forma

Gramática resultante, na Forma Normal de Greibach

```
G_{FNG} = (\{A_1, A_2, B\}, \{a, b\}, P_{FNG}, A_1),
• P_{FNG} = \{

* A_1 \rightarrow aA_1A_2 \mid bA_2 \mid aA_1BA_2 \mid bBA_2 \mid a,

* A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB,

* B \rightarrow aA_1A_1 \mid bA_1 \mid aA_1BA_1 \mid bBA_1 \mid aA_1A_1B \mid bA_1B \mid aA_1BA_1B \mid bBA_1B \}
```

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Arvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha

6.6 Recursão à Esquerda

◆ Recursão à esquerda

$$A \Rightarrow^+ A\alpha$$

- Freqüentemente é desejável que a gramática não seja recursiva à esquerda
 - exemplo: desenvolvimento de algoritmos reconhecedores
- Algoritmo
 - quatro primeiras etapas do algoritmo Forma Normal de Greibach

Def: Algoritmo: Gramática sem Recursões à Esquerda

$$G = (V, T, P, S)$$
 GLC

Etapa 1: simplificação da gramática

Etapa 2: renomeação das variáveis em uma ordem crescente qualquer

Etapa 3: produções na forma $A_r \rightarrow A_S \alpha$, na qual $r \leq s$

Etapa 4: exclusão das recursões da forma $A_r \rightarrow A_r \alpha$

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- **6.5 Formas Normais**
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha
 - 6.7.1 Definição do Autômato com Pilha
 - 6.7.2 Autômato com Pilha e Linguagens Livres do Contexto
 - 6.7.3 Número de Pilhas e o Poder Computacional

6.7 Autômato com Pilha

- Classe das Linguagens Livres do Contexto
 - pode ser associada a um formalismo do tipo autômato
 - Autômato com Pilha
- Autômato com pilha
 - análogo ao autômato finito
 - incluindo uma pilha como memória auxiliar
 - não-determinismo

◆ Pilha

- independente da fita de entrada
- não possui limite máximo de tamanho
 - * "tão grande quanto se queira"
 - * baseada na noção de conjunto infinitamente contável

◆ Estrutura de uma pilha

- último símbolo gravado é o primeiro a ser lido
- base: fixa e define o seu início
- topo: variável e define a posição do último símbolo gravado

◆ Não-determinismo: importante e necessário

- aumenta o poder computacional dos AP
- exemplo

```
{ ww<sup>r</sup> | w é palavra sobre { a, b } }
```

* reconhecimento só é possível por um AP Não-Determinístico

◆ AP × Número de estados

- qualquer LLC pode ser reconhecida por um AP
 - * com somente um estado
 - (ou três estados, dependendo da definição)
- pilha é suficiente como única memória
 - estados não são necessários
 - para "memorizar" informações passadas
- estados no AP
 - poderiam ser excluídos
 - * sem se reduzir o poder computacional
- como a pilha não possui tamanho máximo
 - * AP pode assumir tantos estados quanto se queira

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- 6.5 Formas Normais
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha
 - 6.7.1 Definição do Autômato com Pilha
 - 6.7.2 Autômato com Pilha e Linguagens Livres do Contexto
 - 6.7.3 Número de Pilhas e o Poder Computacional

6.7.1 Definição do Autômato com Pilha

- Duas definições universalmente aceitas
 - estados finais
 - pára aceitando ao atingir um estado final
 - * inicialmente a pilha é vazia
 - pilha vazia
 - * pára aceitando quando a pilha estiver vazia
 - * inicialmente, a pilha um símbolo inicial da pilha
 - * não existem estados finais
 - definições equivalentes (possuem o mesmo poder computacional)
 - * adotada a definição que usa estados finais

◆ AP Não-Determinístico ou simplesmente AP

- Fita
 - análoga à do autômato finito
- Pilha
 - * memória auxiliar
 - pode ser usada para leitura e gravação
- Unidade de Controle
 - * reflete o estado corrente da máquina
 - * possui: cabeça de fita e cabeça de pilha
- Programa, Função Programa ou Função de Transição comanda
 - * leitura da fita
 - leitura e gravação da pilha
 - * define o estado da máquina

◆ Pilha

- cada célula armazena um símbolo do alfabeto auxiliar
 pode ser igual ao alfabeto de entrada
- leitura ou gravação é sempre no topo
- não possui tamanho fixo, nem máximo
 - * tamanho corrente: tamanho da palavra armazenada
 - * valor inicial: vazio (palavra vazia)

Unidade de controle

- número finito e predefinido de estados
- Cabeça da Fita
 - * unidade de leitura: acessa uma célula da fita de cada vez
 - * move exclusivamente para a direita
 - * pode testar se a entrada foi completamente lida
- Cabeça da Pilha
 - * unidade de leitura e gravação

Cabeça da Pilha: leitura e gravação

Leitura

- * move para a direita ("para baixo") ao ler um símbolo
- * acessa um símbolo de cada vez, sempre do topo
- * exclui o símbolo lido
- pode testar se a pilha está vazia

Gravação

- * move para a esquerda ("para cima") ao gravar
- * pode gravar uma palavra composta por mais de um símbolo
- * símbolo do topo é o mais à esquerda da palavra gravada

◆ Controle Finito?

- Unidade de controle: número finito e predefinido de estados
- Mas não é dita de controle finito
 - * (em oposição aos autômatos finitos)
 - * conteúdo da pilha também caracteriza o estado do sistema

Programa é uma função parcial

- dependendo
 - * estado corrente
 - * símbolo lido da fita
 - * símbolo lido da pilha
- determina
 - * novo estado
 - palavra a ser gravada (na pilha)
- possui a facilidade de movimento vazio
 - * permite mudar de estado sem ler da fita

Def: Autômato com Pilha (Não-Determinístico)

$$M = (\Sigma, Q, \delta, q_0, F, V)$$

- Σ alfabeto de símbolos) de entrada
- Q conjunto de estados possíveis o qual é finito
- **\delta** (função) programa ou função de transição
 - função parcial

$$\delta: Q \times (\Sigma \cup \{\epsilon, ?\}) \times (V \cup \{\epsilon, ?\}) \rightarrow 2^{Q \times V^*}$$

$$\delta(p, x, y) = \{(q_1, v_1), ..., (q_n, v_n)\}$$
 transição

- q₀ elemento distinguido de Q: estado inicial
- F subconjunto de Q: conjunto de estados finais
- V alfabeto auxiliar ou alfabeto da pilha

Características da função programa

- função parcial
- "?" indica teste de
 - * pilha vazia
 - * toda palavra de entrada lida
- leitura de ε indica
 - * movimento vazio da fita ou pilha (não lê, nem move a cabeça)
 - * não-determinístico: basta que o movimento seja vazio na fita
- gravação de ε
 - * nenhuma gravação é realizada na pilha (e não move a cabeça)

- Exemplo: $\delta(p, ?, \varepsilon) = \{ (q, \varepsilon) \}$
 - no estado p, se a entrada foi completamente lida, não lê da pilha
 - assume o estado q e não grava na pilha
- ♦ Programa como diagrama: $\delta(p, x, y) = \{(q, v)\}$

◆ Computação de um AP

- sucessiva aplicação da função programa
 - para cada símbolo da entrada (da esquerda para a direita)
 - * até ocorrer uma condição de parada
- é possível que nunca atinja uma condição de parada
 - * processa indefinidamente (loop infinito)
 - exemplo: empilha e desempilha um mesmo símbolo indefinidamente, sem ler da fita
- definição formal
 - estende a definição da função programa
 - * argumento: um estado e uma palavra
 - * exercício

Parada de um AP

Aceita

- * pelo menos um dos caminhos alternativos atinge um estado final
- * não importa se leu ou não toda a entrada

Rejeita

- * todos os caminhos alternativos rejeitam a entrada
- * a função programa é indefinida para cada caso

Loop

- * pelo menos um caminho alternativo está em loop infinito
- * demais: rejeitam ou também estão em loop infinito

Def: Linguagem Aceita, Rejeitada, Loop

 $M = (\Sigma, Q, \delta, q_0, F, V)$ autômato com pilha

Linguagem Aceita ou Linguagem Reconhecida: ACEITA(M) ou L(M)

todas as palavras de Σ* aceitas por M, a partir de q₀

Linguagem Rejeitada: REJEITA(M)

todas as palavras de Σ* rejeitadas por M, a partir de q₀

Linguagem Loop: LOOP(M)

 todas as palavras de Σ* para as quais M fica processando indefinidamente a partir de q₀

◆ Partição de ∑* induzida por um AP M

- algum conjunto vazio?
 - * partição induzida contém um conjuntos a menos
 - * uma classe de equivalência não pode ser vazia

Exp: Autômato com Pilha: Duplo Balanceamento

 $M_1 = (\{a, b\}, \{q_0, q_1, q_f\}, \delta_1, q_0, \{q_f\}, \{B\})$

Exp: Autômato com Pilha: Duplo Balanceamento

$$M_1 = (\{a, b\}, \{q_0, q_1, q_f\}, \delta_1, q_0, \{q_f\}, \{B\})$$

AP determinístico

ACEITA(
$$M_1$$
) = L_1
LOOP(M_1) é vazio?

- δ_1 (q₀, a, ϵ) = { (q₀, B) }
- δ_1 (q₀, b, B) = { (q₁, ϵ) }
- δ_1 (q₀, ?, ?) = { (q_f, ϵ) }
- δ_1 (q₁, b, B) = { (q₁, ϵ) }
- δ_1 (q₁,?,?) = { (q_f, ϵ) }

Exp: Autômato com Pilha: Palavra e sua Reversa

$$L_3 = \{ ww^r \mid w \text{ pertence a } \{ a, b \}^* \}$$

 $ACEITA(M_3) = L_3$ $LOOP(M_3) \neq vazio?$

AP não-determinístico (por quê?)

Exp: Autômato com Pilha: anbman+m

$$L_4 = \{ a^n b^m a^{n+m} \mid n \ge 0, m \ge 0 \}$$

 $ACEITA(M_4) = L_4$ LOOP(M₄) é vazio?

AP não-determinístico (por quê?)

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Arvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- 6.5 Formas Normais
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha
 - 6.7.1 Definição do Autômato com Pilha
 - 6.7.2 Autômato com Pilha e Linguagens Livres do Contexto
 - 6.7.3 Número de Pilhas e o Poder Computacional

6.7.2 AP e Linguagens Livres do Contexto

- ◆ Classe linguagens aceitas por AP = Classe LLC
 - classe das linguagens geradas pelas GLC
- Construção de um AP a partir de uma GLC qualquer, permite concluir
 - construção de um reconhecedor para uma LLC a partir de sua gramática é simples e imediata
 - qualquer LLC pode ser aceita por um AP com somente um estado
 - * estados não aumentam o poder computacional

Teorema: GLC → AP

Se L é uma LLC, então existe M, AP M tal que ACEITA(M) = L

Prova: Suponha que ε∉L

Construção de um AP a partir da gramática na FNG

• produções da forma $A \rightarrow a\alpha$, α palavra de variáveis

AP resultante simula a derivação mais à esquerda

- lê o símbolo a da fita
- lê o símbolo A da pilha
- empilha a palavra de variáveis α

AP M a partir da gramática G = (V, T, P, S)

G_{FNG} = (V_{FNG}, T_{FNG}, P_{FNG}, S), é G na Forma Normal de Greibach

$$M = (T_{FNG}, \{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, V_{FNG})$$

- $\delta(q_0, \varepsilon, \varepsilon) = \{ (q_1, S) \}$
- $\delta(q_1, a, A) = \{ (q_1, \alpha) \mid A \rightarrow a\alpha \in P_{FNG} \}$
- $\delta(q_1, ?, ?) = \{ (q_f, \epsilon) \}$

A demonstração de que $ACEITA(M) = GERA(G_{FNG})$

- indução no número de movimentos de M (ou derivações de G_{FNG})
 * exercício
- como o AP pode ser modificado para tratar a palavra vazia?

Exp: GLC \rightarrow AP: L₅ = { $a^nb^n \mid n \ge 1$ }

Gramática na Forma Normal de Greibach

- $G_5 = (\{S, B\}, \{a, b\}, P_5, S)$
- $P_5 = \{ S \rightarrow aB \mid aSB, B \rightarrow b \}$

Correspondete AP

$$M_5 = (\{a, b\}, \{q_0, q, q_f\}, \delta_5, q_0, \{q_f\}, \{S, B\})$$

Corolário: AP × Número de Estados

Se L é uma LLC, então existe M

- AP com controle de aceitação por estados finais, com três estados, tal que ACEITA(M) = L
- AP com controle de aceitação por pilha vazia, com um estado tal que ACEITA(M) = L

Corolário: Existência de um AP que Sempre Pára

Se L é uma LLC, então existe M, AP, tal que

- ACEITA(M) = L
- REJEITA(M) = Σ^* L
- LOOP(M) = ∅

Teorema: AP → GLC

Se L é aceita por um AP, então L é LLC

demonstração omitida

Obs: Estados × Poder Computacional dos AP

A combinação dos resultados:

Corolário: AP x Número de Estados

Corolário: Existência de um AP que Sempre Pára

Teorema: AP → GLC

comprovam que o uso dos estados como "memória" não aumenta o poder de reconhecimento do AP

6 – Linguagens Livres do Contexto

- 6.1 Gramática Livre do Contexto
- 6.2 Árvore de Derivação
- 6.3 Gramática Livre do Contexto Ambígua
- 6.4 Simplificação de Gramática Livre do Contexto
- 6.5 Formas Normais
- 6.6 Recursão à Esquerda
- 6.7 Autômato com Pilha
 - 6.7.1 Definição do Autômato com Pilha
 - 6.7.2 Autômato com Pilha e Linguagens Livres do Contexto
 - 6.7.3 Número de Pilhas e o Poder Computacional

6.7.3 Número de Pilhas e o Poder Computacional

Modelo autômato com pilha

- Adequado para estudos aplicados e formais
 - * pilha é adequada para implementação em computadores
 - poucas modificações na definição determinam significativas alterações no poder computacional
- principais estudos de linguagens e computabilidade
 - * podem ser desenvolvidos usando-se exclusivamente AP
 - * variando o número de pilhas
 - * com ou sem não-determinismo

Autômato com Pilha, sem usar a estrutura de pilha

- estados: única forma de memorizar informações passadas
- muito semelhante ao autômato finito
- AP, sem usar a pilha, com ou sem não-determinismo
 - * reconhecem a Classe das Linguagens Regulares

Autômato com Pilha Determinístico

- aceita a Classe das Linguagens Livres do Contexto Determinísticas
 importante subconjunto próprio da Classe das LLC
- implementação de um AP determinístico é simples e eficiente
 - facilita o desenvolvimento de analisadores sintáticos
- algumas propriedades da Classe das LLC Determinísticas
 - existe um tipo de gramática que gera exatamente tal classe (exercício de pesquisa)
 - * é fechada para a operação de complemento
 - * não é fechada para as operações de união, intersecção e concatenação

Autômato com (uma) Pilha Não-Determinístico

aceitam exatamente a Classe das LLC

Autômato com Duas Pilhas

- mesmo poder computacional da Máquina de Turing
 - considerada o dispositivo mais geral de computação
- se existe um algoritmo para resolver um problema
 - * pode ser expresso como um autômato com duas pilhas
- não-determinismo não aumenta o poder computacional

Autômato com Múltiplas Pilhas

- poder computacional de um autômato com mais de duas pilhas
 * equivalente ao do autômato com duas pilhas
- se um problema é solucionado por um autômato com múltiplas pilhas
 - * pode ser solucionado por um autômato com duas pilhas

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

