Ifi

Aprendizagem 2024

Lab 1: Univariate Data Analysis

Practical exercises

I. Univariate statistics

Consider the following dataset:

	У1	y 2	У 3
<i>X</i> 1	0.2	0.5	Α
Х2	0.1	-0.4	Α
Х3	0.2	-0.1	Α
<i>X</i> 4	0.9	0.8	В
<i>X</i> 5	-0.3	0.3	В
<i>X</i> 6	-0.1	-0.2	В
<i>X</i> 7	-0.9	-0.1	С
X8	0.2	0.5	С
X9	0.7	-0.7	С
X10	-0.3	0.4	С

- 1. Approximate y_1 distribution using a histogram with 4 bins in [-1,1]. Using the histogram, approximate the probability function.
- 2. Compute the boxplot of y_1 variable. Are there any outliers?
- 3. Are y_1 and y_2 variables correlated? Compare Pearson and Spearman coefficients.
- 4. Identify the probability mass function of y_3 .
- 5. Assume y_3 class-conditional distributions of y_2 follow a Gaussian distribution.
 - a) Identify their parameters and plot by hand the distributions.
 - b) Visually annotate the discriminant rules for the classification of y_3 using y_2 values.

II.

Data preprocessing

Consider the following dataset:

	y_1	y_2	y_3	y_4	y_{out}
<i>x</i> ₁	0.2	0.5	Α	Α	А
Х2	0.1	-0.4	Α	Α	Α
х3	0.2	0.6	Α	В	С
Х4	0.9	0.8	В	В	С
<i>x</i> 5	-0.3	0.3	В	В	В
<i>X</i> 6	-0.1	-0.2	В	В	В

where y_1 and y_2 are numeric variables in [-1,1], y_3 and y_4 are nominal, and yout is ordinal

- **6.** On unsupervised feature importance:
 - a) Considering variability, which numeric variable is less relevant?
 - **b)** Considering entropy, which nominal variable is less relevant?
- **7.** On supervised feature importance:
 - a) According to Spearman, which numeric variable is less relevant?
 - **b)** According to information gain, which nominal variable is less relevant?
- 8. Normalize y_2 using min-max scaling and standardization. Compare the results
- **9.** Binarize y_1 considering
 - a) equal-width/range discretization
 - b) equal-depth/frequency discretization

Programming quest

10. Given the *breast.w.arff* dataset and the provided Jupyter notebook on *Data Exploration*, explore the dataset and rank input variables according to their information gain (*mutual_info_classif*).