INSTRUCTION BOOK

for

ANTENNA TUNING UNIT MODEL TAC

THE TECHNICAL MATERIEL CORPORATION Management, New York

SECTION 1-GENERAL DESCRIP	ном	SECTION III-INSTALLATION AND OPERAT	HON
Pangraph 1. Purpose and Busic Principles 2. Description of the Unit 3. Reference Data	Page 1-3 1-5 1-5	Installation Electrical Connections Operation and Controls Tuning Procedure Entemple Entemple Entemple Entemple	H H H H H H H H
SECTION BTHEORY OF OPER	ATION	SECTION IV-MAINTHNANCE	C
I. Theory of Operation	3-1	1. Malestracco Instructions 2. Parts Lin.	44
			4
LIST	OF ILLU	STRATIONS	everything4less

SICTION I-GINEAU DISCRIPTION		SECTION IV-MAINTENANCE	3
Figure 1-1, Model TAC1, Assesse Tuning Unit	Page 1-1	44. From and Bear Views, Model TAC-1 with Presentive Con., Model CTAC	**
1:0. The Assence Tuning Unit Mounted on TMC Model GPT-750 Radio Transmitter	1.0	6-2: Rear View, Ropez and Output Connections Between Unit and Cost 6-3: Press and Lek Sido View	40 43
		4-4 Right Side View 4-5, Right Side and Bese View	43
SECTION IN-INSTALLATION AND OPERATIO	ON	4-6. Top View 4-7. Contact Wheel and Shaft Assembly Z101 4-8. Single Loaf Switch Assembly Z103	446 41
3-1. Extended Fosquency Range Operation	332	4-9. Double Leaf Switch Assembly Z104 6-18. Schematic Diagram. Tracing Charts (Inside Back Co.	447 (vec)

www.everything4lessstore.com

www.everything4lessstore.com

ww.everything4lessstore.com

SECTION I GENERAL DESCRIPTION

1. PURPOSE AND BASIC PRINCIPLES.

The Assessme Tenning Unit, Model TAC-1 has been designed to comple the output of the GPT-798 seam-referen, at one transmitter with a nominal output impedance of 18 above, to balanced or unbalanced loads from 50 to 1200 above. The unit covers the frequency range of 2 to 18 mos, with very listle insertion loss and will, in addition, cover the range of 18 to 30 mes, to slightly lower efficiencies. Provisions are also included in the unit which will provid operation down to 1.7 mos, with a balanced load and 1.5 mos, with an unbalanced load. These loads are taken to meso sourcess or constraints into times.

The unit consists of a support inductance moved by a split seasor especienc. Percises of the induceance are showed out to the frequency of operation increases. A variable country on the induceance serves to vary the ratio of induceance in the tests circuit to the induceance in the test circuit to the induceance in the lead circuit based matching the lead to the tests as the tests as the tests of the tests

2. DESCRIPTION OF THE UNIT

The entire unit is bassed in a seed case with a presentable cover. However, the unit is so designed that all enconceines may be undo without removing the cover. The unit is 516 in. wide by 1456 in. high by 22 in. long and weight approximately 25 pounds.

Mounting channels are provided with holes appropriserly speed to castch transmister scale. All consols, and meters for monitoring the sections current are located on the front punct. Icontrol terminal puncwhich are easily reached through spectures on the rearof the cover permit connections to balanced or unbaltered loads. Particular case has been caben to insulate the unit from the high voltages which may occur in each a device.

3. REPRESENCE DATA.

a PREDUENCY RANGE

2 to 30 mcs. in seven bands, balanced/unbalanced leads.

1.7 to 2 sees, beloaced load using additional vacuum capacitor furnished.

1.5 to 2 mos, unbalanced load using shorring bar farabled.

INPUT IMPEDANCE.

Nominally 70 ohem.

6. OUTPUT IMPEDANCE.

Continuously adjustable 50 to 1200 ohms.

4. INPUT CONNECTIONS.

UHF entire UG-296/U receptable. (Same as 9O-235 but with Teffon insert.)

OUTPUT CONNECTIONS.

Insulated stand-oils at sear of unit.

L REFECTIONCY.

Decree chan 80% in the range 2 to 18 eyes. Slightly lower efficiency in the range 18 to 30 mos.

a. POWER.

Designed for 1000 wasts continuous carrier.

I. FRONT PANEL CONTROLS.

COUPLING switch

BAND awards

BAL/UNBAL LOAD switch

GND/UNGNO ROTOR switch

LOAD ADJUST indicator

TUNENC SEL

ANTENNA CURRENT thermocouple mesons 0 to

L COMPONENTS AND CONSTRUCTION.

All parts of the unit are examples used in accordance with LAN/MIL executions wherever assurable.

THEORY OF OPERATION

I. THICKY OF OPERATION.

In coupling a transmitter to a transmission line or ansense, the basic problem is one of impedance meching. The coupling device incodered between the transmister and the head should be expecte of transmisser emperinguitance of the load, so that the transmisser empertube is working into the proper resistance. The take is working into the proper resistance. The take is working into the proper resistance when the final tank circuit is tennel in reseguence, and the landing is such that the take is drawing asset place current. The optimizer value of lead resistance is, therefore, reached

Charge 2-1

value by the action of the rand resonant circuit.

Figure 2-6 is a simplified advantric diagram of the

Aperena Tuning Unit and a transmittee final. The

presentate final is link operated to the unit input

shoough a short length of RO-11/O counted cable. The coupling coil in the neis electer-magnetically coupling to the mak rimmit, composed of LL 12, CI and C1, which are tuned to the resonant frequency. The load is connected to the enit through a set of wheels which ride on the leader edges of L1 and L2. These wheels are on a common shall and are positioned by the LOAD ADJUST means! Since the colle L1 and L2 are oppositely would, the whork move in or our from the gooded police sympetrically. It is these wheels which can the code property for the desired impedance counformation. Note that this is a balanced system providing properly placed currents to a bulanced lead. In the event of an unbalanced load, one half of the system is used.

when the coupling is adjusted to bring the place cursees to die goppial operating value.

le is the property of a taxed parallel directi that a sevisites land supped across a portion of the circuit is constitutions to a higher value of resistance support across the whole discul-

Since the unleaded resonant impedance of the L/C combination is considerable higher than the load R. is in possible to mucch a range of impedances in this Management of the

When the connectation like or entrope possesses a sixactive component, in addition to the societive componcos, the reactive compounds being either inductive or organisists, they will appear as a series combination to shows in Figure 2-2.

This series combination may be transferred by anabriggi methods to it's equivalent parallel combination. as in Figure 3-3.

The reactive openion of the load is reflected into the rand circuit slong with the resistive portion. If the ked has an equivalent parallel combination of an inductive reservors, is will decree the tank circuit off resonant, and the capacitages of C must be increased to being the took back to resonance.

Shower 2-2

Figure 3-9

Source 2-4

INSTALLATION AND OPERATION

1. INSTALLATION.

A UNPACKING.

The Accesses Tening Unit is designed for nate of involtation and minimum effort in operation. The unit is packed, and preserved when required, in it's individual container. The equipment should be exefully especied and a close visual impressor small so accessin any physical classage that to rough handling during shipment.

A UHF type plug PL-159A has been provided as a seese icom, and is parked in a bug actached to the front seasel.

A MUUNTING

The Assesses Tuning Units is faceword security to the top of a transmitter by means of four wing costs. A shore bragith of RG-11/U coaxial cable serves to connect the suspex of the transmitter to the jopus of the nair. The input terminal has been placed on the rear-left corner of the tents to that the coanciling cable does not intention with coancilion operation. The input jack is a UG-296/U coancilors with Tellon intuitation capable of withstanding high voltage surges.

2. ILUCTRICAL COMMECTIONS.

After the unit has been installed on the transmisses, synch the lead. The lead serminal consections on the rear of the unit are shown in Figure 1-1. It is not necessary to remove the cover to seach the load. Ample holes in the rear of the cover give easy scene to the connectors. Note the difference between BALANCED and UNRALANCED load steminate as indicated by arrows. When working into an unbalanced lead, CONNECT NOTHERNG TO THE LEFT HAND MAIN TERMINAL.

Pinner 2:1

S. DRESAUDON AND CONTROLS.

All cosmols are identified by from panel markings for case of identification. Figure 1:1 dently shows all contrals promery for operation of the onit.

A. CONTROL PUNCTIONS.

The COUPLING switch allows for selection of the counter of rarus in the coupling cuit. These are 8 positions from MAX to BUN. The proper setting of the COUPLING switch is a function of Irequency and may be found in the coming charts.

In general, a law transmitter plate final current reading indicates insufficient coupling, and the COUPLING switch should be recessed toward MAX in stops of one until plate current has reached it's normal value when the transmitter is mand to resonance. Conversely, a place current means sending which is above normal is no indication of over-crupting, and the COUPLING switch should be remost toward MIN until the proper plate current is observed when the transmitter is traced to resonance.

The BAND SWITCH allows for the selection of tank independent, so that the frequency range is severed by the tuning capacitor. There are seven positions with LO indicating the lowest frequency and HI indicating the highest frequency. Proper positioning of this swinth is a function of frequency and may be obtained in the position charts.

The TUNING control is a calibrated control which serves to vary the sank capacity of the unit. It tunes to resonance the inductance selected by the BAND rainth. Approximate settings for this dist may be obtained by referring to the suning charts.

The LOAD ADJUST owned serves to sap the tack circuit or the peoper point for optimum impolator, matching. It's associated counter gives the relative petition of the whoels with respect to the ground red of the circuit. Approximate seeings for the various leads may be found in the moving there.

The LOAD switch serves to employ either the total case for beingood leads or built the total for unbelowered leads. Set the switch to BAL for belowered leads and UNBAL for unbelowered leads.

The ROTOR switch serves to ground or augment die recor of the tuning capacitor. In general, set to GND for unbalanced loads and UNGND for balanced loads. However, it may be possible that at the higher forquencies, 26 so 30 mes, become performances may be obtained if the ROTOR switch is set to UNGND. This is, in office, placing both below of the tuning capacitor is series across that portion of the make out which is being susted. This is advantageous at the higher frequencies since the condenses minimum, has been hallood; hence, the task inductance may be increased, resulting in a better L.C ratio.

SECTION III

1. INSTALLATION.

CHINDACKING.

The Assesses Tuning Unit is designed for cure of installation and minimum offset to operation. The unit is packed, and preserved when sequipmed, in a's individual container. The equipment should be executly unpacked and a close visual impaction made to secretain any physical desings due to rough heading during disputest.

A URIF type plug PL-239A has been provided as a touse item, and is pucked in a bag assailed to the from panel.

b. MOUNTING.

The Assessed Tuning Unit is farmed securely to the up of a transmitter by means of four wing over. A short length of RG-U/U exected cubic serves to outper; the curpus of the transmitter to the imput of the upit. The imput reconstal has been placed on the confet coward of the unit to that the encounting cubic does not insurface with transmitter operation. The input jack is a DG-256/U econocure with Tellon issurface cupable of withstanding high voltage corper.

2. ELECTRICAL COMMICTIONS.

After the unit has been installed on the transmisser, smach the lead. The lead treested consentions on the rear of the unit see shown in Figure 5-L. It is not necessary to remove the cover to attach the lead. Ample halts in the rear of the cover give one stores to the connectors. Note the difference between RALANCED and UNBALANCED lead remains as indicated by across. When working into an authentical lead, CON-NECT NOTHING TO THE LEFT HAND MAIN TERMINAL.

Digwee 3-1

3. DESIGNATION AND CONTROLS.

All controls are identified by front panel markings for ease of identification. Figure 1-1 clearly shows all concrols accounty for operation of the unit.

. CONTROL PUNCTIONS.

The COUPLING switch allows for selection of the number of turns in the coupling coil. These we 8 positions from MAX to MIN. The proper sessing of the CDUPLING switch is a function of frequency and may be found in the tuning obserts.

In general, a lew transmissur plant final custom reading indicates insufficient coupling, and the COUPLING worth should be received toward MAX in steps of one and plant current has reached it's normal value when the transmister is tuned to resonant. Conventely, a plant custom meter reading which is above normal to an indication of own-coupling, and the COUPLING switch should be received when the transmisser is tuned to resonance.

The BAND SWITCH allows for the selection of such inductions, so that the frequency range is covered by the saving capacitus. There are seven positions with LO indicating the lowest frequency and HI indicating the highest desquency. Proper positioning of this switch is a function of frequency and may be obtained in the tuning charts.

The TUNING essent is a calibrated essented which serves to very the tank capacity of the unit. It recent to resonance the inductance effected by the BAND switch. Approximate settings for this disk may be oboxided by referring to the tuning charts.

The LOAD ADJUST control serves to use the rank circuit at the proper point for optimum impedance marching. It's executed counter gives the relative position of the wheels with respect to the ground and of the circuit. Approximate settings for the various both way be found in the taking there.

The LOAD switch serves to employ either the total sack for balanced loads or bull the total for unbalanced loads. See the switch to RAL for balanced loads and UNBAL for unbalanced loads.

The ROYOR switch serves to ground or empround the restor of the eating especiety. In general, set in GND for unbelianced leads and UNGND for balanced leads. However, it may be possible that at the higher frequencies. M so 90 max, becam performance may be obtained if the ROYOR, switch is set to UNGND. This is, in offer, placing both helices of the saning especiate in action across that position of the sank coil which is being moved. This is advantageous at the higher frequencies since the moderner minimum has been halled; hence, the mak industrate may be introduced, resolving in a beauty I, C rosin.

The ANTENNA CURRENT is measured by two external thereusesuple assentees, each being in series with the suspect lead connections. As the across indicate, both menter use used for belanced leads, each messer indicating the current in it's log of the load. In a truly belanced lead, respictable being equal, both messes will indicate identical currents. This will seldem happen as a study belanced load is receip obtained. As the single across indicates, each the left hand messes is used for unbalanced leads. Therefore, for unbalanced leads diverged leads of the right hand messer.

It should be noted that these messes are to save only so indicating devices. Their accuracy is acceptable at the lawer feequencies, but little reliance is to be placed on their indications as a measure of absolute lead as the higher frequencies. They are not, in one case, a conscingive indication of conjust.

4. TUNING PROCIFURE

CAUTION

THE TRANSMITTER, CHECK THAT THE FOLLOWING HAS BEEN DONE CORRECTLY.

ACCORDING TO THE TRANSMITTER TUNING CHARTS.

IS PROPER ANTENNA TUNING UNIT CONTROL SETTINGS AS OBTAINED PROSE THE UNIT TUNING CHARTS.

Floure 3-2. Extended Frequency Rouge Operation

In see operation of the Assense Tuning Unit, the frequency of operation and nature of the lead are honeye.

For a balanced load, set LOAD switch to BAL ROTOR switch to UNGNO

For an ambalanced load, set. LOAD switch to UNRAL ROTUR owisch to GND (except as noted in Sa.)

The ranking charts counts information for the approximete seeings of the BAND, TUNING, LOAD ADJUST and COUPLING reserves.

The charts are set up in 1000 kg, steps from 2000 to 50,000 kes, and for loads of 70, 500, 600 and 1200 chart.

Any variation from chart frequency and food will sequire an interpolation of the tables for the desired forquency and lead. To achieve this, set controls to the chart frequency nearest to the desired frequency. Then alone the TUNING and LOAD ADJUST controls for optimum output.

S. EXAMPLE.

To set up the Assessas Tuning Unit at a frequency of 1000 loss to work into a balanced transmission line of a numbed 600 ohm impedance.

Geomet transmission line to BALANCED terminals on year of unit.

See LOAD switch to BAL

See ROTOR switch to UNGNO.

Refer to tuning charts, Figure 1-11, for approximate treatest petriogs for a frequency of 5000 km, and a balsaired load of 600 alone.

See TUNING council to 34

See COUPLING switch to I

See BAND switch to 2

See LOAD ADRUST to 14?

When these seeings have been made, rane both the temporistic and the Austrona Toning Unit to optimum output on LOW POWER.

Switch transmitter to HROH POWER. Rendjust TUN-DIG and LOAD ADJUST controls as required. If the tenanticter plans current is above mental when raned to resonance, recess the COUPLING switch toward MIN. If the transmitter plans current is below enemal when sound to encounce, course the COUPLING reitch noward MAX. Remember, if the load is not truly belanced the ANTENNA CURRENT matters will not read identically.

CAMBRON

Most reseasisons have comput coupling networks which can be vacied. An exempte deviation from optimum coupling will small in large reseave currents in the reseasison conour-TAC input circuit.

If one does not already entire, it is presentated at the transmitter mapper arranged.

An executive transmitter E.E. corput current results in increased losses in the compling are works and lower transmission efficiency. If this condition appears to exist, adjustments should be made to the transmitter OUTPUT COUPLING network and the TAC COUPtains. TUNIONS and LOAD ADJUST contrals to reduce the TRANSMITTER OUT-PUT CURRENT to a minimum while entimining prepar transmitter looking.

6. EXTENDED PROGUENCY RANGE OPERATION.

The Assesses Tuning Unit is busically designed for a frequency mage of 2 to 15 mes, but will operate up to 30 mes. Keep transmitter on LOW POWER when tuning above 16 mes. The unit will take and put our approachible power at these higher frequencies, but variation of the control settings may be considerable.

A "horn gap", see to \$4 in. specing, on the rear of the unit, is provided to prevent damage to the unit in the event of improper adjustments.

For operation below 2.5 mm, with both balanced and unbeloased leads, remove vacuum capacitor CRS from it's storage clips in the upper front position of the unit. Place it in disce operating clips which are connected to the states places of the storing condenser CBO. (See Figure 3-2.) This lewest the operating range of the unit to below 2 mm.

For further refaction of the operating range, is the unbelanced condition only, replace the vacuum capacium CloS with the secal shorting ber Ellife, and disconnect the jumper (marked with sed does) between the ranking superiors CloB and the smoot-off insulator on the upper liefs hand postion of the unit. (See Figure 3-2.)

SECTION IV

I. MAINTENANCE INSTRUCTIONS.

- a. TOOLS FURNISHED.
- 1 TP-102 Peach, drive pia, to remove or replace
- 1 WR-100.5 Wrench, Allen, for \$5 and \$6 ac.
- I Wil-100-5 Wrench, Allen, for #18 and #12 on screen.
 - 1 WR-100 18 Waterch, Allers, for diff per screws.
 - b. GENERAL

Keep inserior of the unit thoroughly clean and dust

Manyord Received.

Sandpaper 40000.

Dry breath or line free cluck.

Carbon Tetrachioride for electrical engagerico.

Dev Cleaning Solvent for other parts.

Compressed six casy be used to comove dute from insuremable areas.

C PREVENTIVE.

Materials Biogulood.

Labritating Gampound, Silicone.

Innduing Compound. MIL-5-17304A, Type PR.

Monthly.

Inheless all sliding consent consound with the wheel assembly (LOAD ADJUST) with Inhelesting Compound, Stiesse.

Check and eighten bardware and are acrews where normany. (Tighten roots and screws excefully. Firrings eightened beyond the pressure for which they are intended will be damaged or broken.)

Ownered to

Check rwitches for dirt, contains or loose contacts.

Check variable condenser and coils for dire, corrasion, been places or disraged varion.

Absorbed Conditions.

In the event of encesive power input ar of writching the unit with POWER ON, as are over may occur, usually in the ROTOR or LOAD switch or both. Should this buppers, clean the affected area, and away all darbon deposits, tour uses lightly with Insulating Compound.

Figure 6-1. Frant and Roar Vienra, Madel TAC-1 with Prorestine case. Hadel CLAC.

Figure 4-2, Secr View, Input and Output Consections Schweet Unit and Case

Pigers 4-3, front oud test Side View

Figure 6-4. Kight Side View

Physics 4-3, Right Side and Sear Viles

Figure 4-7. Contest Wines and Short Assembly 2307

Figure 4-6. Single Leaf Switch Assembly 2169

Figure 4-9. Double Leaf Switch Assembly 2364

SYM.	DESCRIPTION	FIGURE 1900.	OR PART NO		
A190	SUPPORT, phensitie: 56-9/56 x 3/4 x 3/4 ta. o/a.	4-5 A-713			
A301.	SUPPORT, planelle: 16-6/16 x 2/4 x 2/4 ts. o/s.	4-5	A-111		
A102	SUPPORT, phonolic: 16-9/16 x 2/4 x 1/4 in. o/s.	4-3	A-710		
A.393	SUPPORT, phonolics 4-1/2 x 5/6 x 1/2 in. o/s.	4-4, 4-5	PX-190		
A104	SUPPORT, phonestic: 10 x 8-1/2 x 1/2 in. o/s.	4-6	PX-198		
6.185	SUPPORT, phenolic: 1-1/16 x 2-1/16 x 1/2 tn. e/s.	4-3	PX-308		
A.106	SUPPORT, phenolic: 10 x 8-1/2 x 1/2 in. o/s.	4-3	PX-199		
A101	SUPPORT, phenotics 4-1/4 x 2-1/16 x 1/2 in.	4-9	PX-008		
A.908	SUPPORT, phenolic: 0-1/2 x 15/16 x 1/2 in. o/n.	4-3	PX-189		
A309	SUPPORT, phenolic: 4-5/8 x 2-1/16 x 1/2 to.	4-3, 4-5	PX-191		
A110	SUPPORT, phenolic: 7-1/05 x 2-1/16 x 1/2 in. o/s.	4-6	PX-001		
A181	EGRACIEST, brane: ethrer plates), /882 x 1-11/32 x 2/4 x 2-2/16 to. e/s.	4-6	MS-469		
Allz	PLATE, before 2 x 1-9/8 x 1/4 to. 6/4.	4-5	PX-256		
A.113	PLATE, tetlos: 3-85/36 x 1-1/6 x 1/4 ts. o/s.	4-3	PX-237		
A116	WASHEN, tetling 3/4 od x 7/33 kd x 1/6 ta. Usick.	4-4	PX-224-5		
ALIS	WASHER, tetler: 3/4 od x 7/35 id x 1/5 is. thick; flatted.	6-4	PX-226-1		
ALM	SPACER, bruse; cadmoles plated; 5 in. lg. z 5/16 in. clam.	4-3, 4-6	PM-596		
AHIT	WASHER, tellou: 1/8 in. od x 13/64 té. x 1/6 in. thick.	4-3, 4-5	PK-022		
C100 A,B	CAPACITOR, variable; sür; two section; 42-265 muid; each section, .250 is sir gap.	4-4	CB-115		
CIRE.	CAPACITOR, fixed; miss; .01 mid, a10%, 500 wwdc; char. B.	4-4	СМЗБНОВК		
C102	CAPACITOR, fixed: sales; .01 cdd, s19%, 100 wede; char. B. Basse as C101.	4-6	CMSSRIONE		

SYM.	DESCRIPTION	FIGURE NO.	OR PART NO.	
C100	CAPACTTOR, fixed: vacuum, 93 mmtd, 38 Kv penk; 65 angar max current.	4-6		
E100	THERMOCOUPLE, vertical recent: 2-6/8" 0.4. x 1-1/2" wide overall.	4-6	N-183-4	
E:101	THERMOCOUPLE, wortical mount: 2-5/8" 0.4. x 1-1/2" wide overall.	4-3	NOX-103-6	
8302	DEULATOR, feed thru; formale; white glassed streette; 3/4 in. lg. c/s x 1-1/6 in. stam. tapered flange; 3/4 in. diam. x 9/16 in. deep well; 12/64 in. diam. hole.	4-3, 4-5	N9-100-1	
E 103	INSULATOR, food thru: male; while glaced stratile; 1-1/2 in. ig. q/a x 1-1/8 in. diam. tapored flange; 2/4 in. diam. x 2/4 in. ig. insert; 15/64 in. diam. hole.	4-6	109-188-5	
E104	INSULATOR, occasio: 8-2/4 x 2/4 x 2/5 in.	4-6	p/o CB-135	
E1.08	INSULATOR, tellow 1-25/32 x 18/33 x 1/4 ts. o/s.	4-5, 4-5 PX-017		
E104	CONTACT, brass: other plated; 1/2 in diam. x 1-1/8 in, o/s; 10-22 thd.	4-3, 4-5	ам-325	
E100	1.00), terminal: bress; but tin dipped; \$1/64 x 1/6 x .000 to. e/a; 1/4 te. 65 hair.	4-3	TE-232	
ши	DESULATOR, beloe: 7-38/33 x 19/33 x 1/4 is. t/s.	4-3, 4-6	PX-218	
E309	DEFELATOR, telloss 7-25/33 x 18/32 x 1/4 fs. ty/s.	4-3	PX-219	
E130	LUG, terminal: copper; electro timed 1 to	4-6	TE-811-4	
mint.	LUG, terralisal: copper; electro tiused; 46/64	4-6	TH-041-3	
E153	BAR, shorting brant; ellow plated; 6-1/2 to, lg, x 2/4 in, diem.	4-4	MS-454	
E123	PLATE, cinic abundance; etched; 2-5/4 in. diam.; 0-50 ceale.	4-3	120-096	
E134	900, brane: other plated; 10-5/8 in. ig. x 5/16 in. diam. 10-22 x 2-1/2 in. ig. the each and.	4-6	PM-257	
E135	LDG, terminal: copper; electro timed; 46/64 in. lg; 5/32 in. ld helo.	4-7	TE-541-1	
E150	LUG, terrainal: copper; electro timest; 1-4/8 in hg; 3/8 in, id. hole.	4-4	7E-01-6	

SYM.	DESCRIPTION	FEGURE NO.	TMC DWO. OR PART NO A-185	
EIH	BIGO, throughth bruse; other plated; 10-32 a.4 to, by w/brased out at center.	4.4		
E110	SHIKLD, flexible: copper: Henne; 1/16 ts. wd.	4-6, 4-7	WL-103-4	
ELIB	BullULATOH, piller: round; white glassed. simultie; 5/4 in. lg. x 1/2 in. discu; tapped 8-32 x 1/4 in. deep each end.	4-0	305 W(004	
E130	DiSULATOR, piline; round; white glassed. stratific; 1-1/4 in. ig. x 1/2 in. diam; tapped 8-32 x 3/8 in. deep each end.	1-3	N65W0030	
E121	STRAP, brauer, elliver plated; 2-1/25 x 5/6 x 1/32 in. e/s.	4-6	M3-500	
8 122	1900, brans, nickel plated; I-1/4 in. ig. x 1/6 in. diam.	4-0	PM-103	
E 523	LEAF, contact: nickel effvor: 2-5/16 x 2/16 x 2/16 x .606 in. o/s.	4-9	M5-690	
MEET	LEAF, pressure: sickel silver; 1-9/16 x 5/6 x 5/16 ts. o/s.	4-9	M5-690	
RESS	CLIP, electrical: phosphor brosse; silver plated; accomodates 3/4 in, dam.	4-0, 4-4	FH-104	
K126	COLLAR, braum effiver plated; 5/0 in. dlam. x 1/4 in. wd.	4-3	PM-251	
E120	WHEEL, branc rilver plated; 1/4 in, id. x 1-1/6 in, c.e.	4-7	PM-251	
E128	SUSSESS, brase: silver plated; 1-1/4 to. discs, x 2/8 to, wd. w/ 2/8 to, discs hole.	4-7	PM-254	
E129	POST, breast: coderdain platest; 1-5/6 in. lg. x 1/4 in discs.	4-6	PM-213	
E150	PLATE, brass: silver plated; 4-1/6 x 1-5/6 x .022 to, o/s.	-	105-443	
F131	STRAP, braue: silver plated; 6 x 7/6 x .002 fo. e/a.	4-5	365-452	
2332	STEAP, brace: ediver plated; 8-1/2 x 5/6 x .052 to. 0/s.	4-5	368-483	
120	LEAF, contact; michel aliver; 1-6/32 x 7/35 x 3014 ta. q/a.	4-6	MS-493	
184	LEAF, prespers: sickel silver, 28/33 x 3/5 x 1/35 is. o/s.	4-8	мян	
1136	INSULATOR, leed flew; male; white glaced steadin; 7/6 in. lg. c/n x 1/6 in. diam. lapered flamps; 1/2 in. diam. z 2/6 in. lg. lapert; 2/15 in. diam. hole.	4-4	M8-182-1	

SYM.	DESCRIPTION	PIGURE NO.	TMC DWG. OR PART NO		
E136	DEFULATOR, feed thru: female; white glaned stantite; 1/2 in. lg. c/s x 7/8 in. diam. toperred flamps; 1/2 in. diam. x 3/8 in. deep well; 1/16 in. diam. hole.	4-4	NS-110-2		
H166	CLAMP, "0" type: siskel stimer; 2/4 x 2/6 to. o/s; .005 ttdc.	4-4	MS-500		
Rite	CLAMP, "0" type; plastic; 7/8 x 1/2 is. o/s; 5/16 is. s.d.	4-3	CU-302-4		
B100	COUNTER: C.C.W. rotation to incr.; 006-986.	6-3	PO-113		
H100	GLAMP, "O" type: plastic; 11/16 x 1/2 in. e/ec , 186 in. 1.6.	4-3	CU-102-3		
2104 PCN, roll: steel; \$/9 to. lg, x 1/95 to. class.		4-7,4-3,4-9	PH-109-3		
H105	NUT, wing: beass; sickel plates; 10-32 ted.	4-3, 4-5	NT-110-1002ES		
Rice	CLAMP, "G" type; plantic; 5/4 x 1/2 in. o/s; .375 in. 1.4.	4-6 CU-169-6			
B100	PON, roll: steel; 15/16 in. lg. x 1/16 in. discs.	44	PH-108-4		
H106	GASKET, custions costs; 18/16 in. c.d. x 1/2 in. i.d. x 1/16 in. 68.	4-4, 4-5	GA-EIR		
H100	WASHER, spring: phosphur brosse; silver plates; \$/10 is, o.d. x 5/4 is, i.d. x .015 is, tisk.	4-9, 4-9	WA-119		
REID	CLIP, opring double unit; branz nickel plated; 1-4/2 x 5/6 x 3/6 in. o/s.	4-5, 4-9	CW-108-1		
H113	SPACER, stand off; bruss; cadmins plated; 1/4 in. lg. x 1/4 ts. diam.; 5/16 in. bols.	4-3	TE-117-1		
H112	GARKET, exchine cortq 1-5/16 is, o.d. x 3/4 is, i.d. x 3/32 is, thk	4-3	GA-117		
1900	CONNECTOR, receptucie: condul; female; VIII' series; teffon insolution.	4-1	DG-586/0		
1.000	COIL, link:copper; silver plated; 4-1/2 in. lg. x 1/4 in. disra. o/s three 1/2 turn. p/e A-474.	4-3, 4-6	CL-136		
LMI	OOM, links copper; silver plated; 3 in, 1.6. x 3-1/3 in, o.4.; 5-1/4 turns, p/o A-678.	4-4	CL-115-2		
1.182, 185	COML, sub-assembly; copper; silver platel; 1 in. L4. x 3-1/2 in. c.d.; 34 turns, p/o A-677.	4-4	CL-114-1		
1.183	COML, Hole copper; office plated; 4-1/2 in, lg. x 1/4 in, diam. e/s; three 1/2 turns; p/o A-604.	4-4	CL-118		

SYM.	DESCRIPTION	PEGURE 800.	OR PART NO	
L184	COIL, tank: coppor; allwer plated; 5 in. i.d. x 3-1/2 in. c.d.; 28-3/4 turns. p/o A-678.	4-4	CL-114-2	
L105	PART, of LHD	4-4	District Land	
M100	METER, BF: 0-2 amps; molded case; 2-1/2 in, diam, x 2 in, o/s.	4-3, 4-4	MR-301-3	
MIGI	METER, RF: 0-5 amps; molded case; 1-1/2 in. diam. x 2 in. q/x.	4-3, 4-4	MR-103-5	
MP100	COUPLING, flexible brass, etsattis incu- lation 1-1/4 x 11/16 in. o/s; 1/4 in. hole.	4-3	MC-121	
MP191	SPEESO, contacts phosphor brosse, silver plated 1-1/2 x 1-3/6 x .025 to. q/s.	4-3, 4-5	MS-451	
MP102	NNOB, instrument skirt type; white intl- cator line 2-1/16 in. dis. x 7/6 in. deep o/s; for 1/4 in. shaft.	4-3	MP-106-2	
MPLOS	LOCK, dial: brane, nickel plated; 1-1/8 is. ig. x 1/8 is. dis. o/s.	4-3 PO-528		
мрюч	COUPLING, version: 5 to 1 reduction 2-9/35 x 1-63/64 in, e.s.	4-6	DG-180	
MP105	NEXCH, instrument type: black balefilte, 1 in, x 2 in, dia, c/s.	4-3	MP-105	
MP300	HOLDER, spork gapt brans 2/4 in, bg. x 8-32 NC3 threads.	44	594-139	
мрит	STRUKE, case: steel 2-13/16 ta. lg, x 13/16 in. wide.	4-8	PO-131	
MP104	SHAFT, extension; brazes 6-1/16 in. ig. z 1/4 in. ids.	4-3, 4-5	PM-278	
MP100	SHAFT, extension brans 5-1/15 in. lg. x 1/4 in. dis.	4-6	PM-279	
MP210	SHAPP, double switch: beaut; cadmium plated 6-1/4 in. long x 1/4 in. dis.	4-5	PM-275	
MPSLI	SUPPORT, counter; alterational 2-1/6 x 1/2 x ,060 to, s/s.	4-5	b65-600	
MP182	SUPPOST, coil contert phonolic, I in. GD x 1/2 in. thick c/s.	4-4	PX-107	
MP133	SUPPORT, contact shaft: tellon; 5-6/16 x 5-11/16 x 1/4 ts. c/s.	4-3, 4-6	PX-410	
MP154	BRACKET, center support: alaminers, 1-15/55 x 1/2 z .081 in. n/s.	4-3	MB-458	

STM.	DESCRIPTION	PICTURE NO.	OR PART NO
MP119	BEARING, pavel: breez; olchel plated 1/2 in. ig. x 3/8 in. dts. 1/6 in. ID bele.	4-3, 4-5	BB-101
MPLH	COUPLING, flexible: non-insulated; brass 1-1/4 in, die, x 23/32 in, thick o/s.	4-3, 4-6	MC-119
MPLIT	COUDLING, flexible: stentite; 9000 T peak flashorer, 2-1/16 x 1-1/16 ta. o/a.	4-3, 4-6	MC-LL8
MPLIS	BRACKET, thermocouple, aluminum 2-15/16 x 5/6 x .004 in. c/s.	4-3	MS-485
MPLIS	SMAPT, wheel; bruns; cliver plated, 5-1/4 x 1-11/16 x 1/4 in. dis. c/n.	4-9	PM-255
MP 120	COUNTER SEAFT, brace, offiver plated 9-1/0 in ig. z 1/5 in dia.	4-1	PM-256
MPIZI	ROD, switch connecting brass 6-5/6 in. lg. x 1/4 in. dis.	4-6	PM-288
MP 122	BUSSESS, contact: tellon, 1/15 to. OD x 13/64 in ID x 11/32 to. wide.	4-1, 4-1	PK-323
MP123	BOSSING, connecting: phenolic, 1-5/16 x 1 x 3/6 ta. ID q/s.	4-4	A-716
MP124	BOD, connecting phensite, 1-3/16 x 1/2 in, a/a.	4-7	PX-197
MP125	BHARDIG, penci: brase, nickel plated, 2/8 in. long x 3/8 -32 NC2 threads x 1/4 in. ID hole.	4-9, 4-9	894-124
MP126	SPHING, copper, 1/16 ta. lg. x 1/k ta. OD.	4-7	SP-516-5
MP121	BASE, spark gage brane, nickel plated, 1-3/16 tr. lg. x 3/6 ta. dia.	4-6	PM-277
MPIE	RESG, meter specing: phesolic, 3-1/2 in, OD x 2-3/4 in, 30 x 5/16 in, thick.	4-5	PX-216
MP129	BUSHING, connecting brass; w/lockensher and out 11/16 in Ig. x 5/6-16 NCS threads x 7/6 in hex head.	4-5	PM-847
MP130	BUSHING, awitch: brane, 5/4 in. dis. x 5/36 in. thick.	4-6, 4-6	PM-284
MPIIL	SUSSING, capacitor emport: bellon, 1/8 is. OD x 3/16 in. ID x 8/10 is. ig.	44	PX-025
MP132	STATOR PLATE, capacitor.	4-6	EX-100
мріш	ROTOR PLATE, superior.	4-6	EX-101
N100	TUNING CHART.		CH-IP4
P 900	CONSECTOR, plug: contial; make; UHP series; tellos konletios, 1-6/16 in. lg. x 2/4 in. din. n/s.	Loane Beno	PL-259A

SYM.	BESCHIPTION	PIGURE 30.	OR PART NO.	
\$300	SWITCH EXPEX, 60 degree threw; steel 5-1/4 x 2-5/32 x 1-9/36 in, o/s, 1/6 in, flatted shaft.	4-1	SW-143	
8M 100	SWITCH, rotary: two sections; one pole; eight positions each section; steatite insulation.	4-1	EW-144	
SMIOI	SWITCH, rotary; two sections; one pole; seven positions each section; steatite insulation.	4-5	EM-149	
TL108	PUNCB, drive pin: steel, 4 in. ig. x 1/8 in. dia., inpered.	4-6	TP-100	
TLIOI	WRENCH, best steel, 1-34/ in ig. for #5,4 Alles bond not norwes.	4-6	WH-100-3	
TL102	WRENCE, here steel, 2 in, ig. for #16, 12 Allen bend not nerven.	4-6	WH-100-6	
TL183	WRENCE, hex: steel, 6 in. ig. fur #6 Allen. head not acrows.	4-6	WH-100-18	
2100	DOUBLE LEAF SWITCH SUB ASSEMBLY: Consisting of: E113, E117, H304, MP110 and MP430.	6-4 A-407		
2101	CONTACT WHEEL AND SHAPT ASSEMBLY: Consisting of: E125, E125, H104, MP119, MP120, MP124, MP128 and Z115.	4-7	A-466	
Z102	SINGLE LEAF SWITCH SUB ASSEMBLY: Consisting on E133, E334, B104, MP131 and MP130.	6-0	A-656	
2.180	SINGLE LEAF SWITCH ASSEMBLY: Con- stating of: E169, MP125 and 2.102,	6-8	A-472	
2104	DOUBLE LEAF SWITCH ASSEMBLY: Con- sisting of \$100, MP405 and \$100.	4-9	A-478	
2105	COLL ASSEMBLY: Consisting of: A300, A301, A305, A111, E105, E166, E166, E115, L300, MP112, MP132, E106, E107 and E300.	4-5	A-FM	
2.106	TANK COIL SUB ASSESSELY (clockwine)	4-3	A-676-677	
2,107	TANK COIL SUB ASSEMBLY (counterclock- wise)	4-3	A-876	
2.100	NOT USED.	E. Service	144	
2.109	LINE COIL BUB ASSEMBLY (counterclock- wise)	4-3	A-628	
2.199	SPARE BOD ASSEMBLY: Consisting of	4-6	A-488	

SYM.	DESCRIPTION	PIGURE NO,	OR PART NO	
EIII	EXTENSION SMAPT ASSEMBLY: coupling and band switch. Consisting of: MP988 and MP188.	4-3, 4-6	A-714	
Z112	COUPLING SWITCH BRACKET SUB- ASSEMBLY: Consisting of: A105, A117, RISS and MP132.	4-0	A-720	
2113	BAND SWITCH BRACKET SUB ASSEMBLY: Consisting of: A110, A117, MP223 and 2 103.	4-5	A-122	
2156	COVER ASSEMBLY.	1-1	A-644	
2.195	CHASSIS SUD ASSEMBLY.	4-3	A-645	
X116	GROUND STRAP ASSEMBLY: Countring of: Elil, Elis and Elis.	4-3, 4-1	A-725	
KHIT	DIPUT CONNECTOR ASSEMBLY: 9 to, lg. z 1-1/4 to, wide o/s.	4-3, 4-1 A-1959		
E118	GROUND LEAD ASSEMBLY: Consisting of: E115 and E118.	4-7	A-447	
X119	FUSINGLIDER STRAP ASSEMBLY: Con- sisting at E110, E111 and E113.	4-9	A-131	
E 520	FEED THRU CONNECTOR ASSESSELY: 5-1/2 in. ig. x 1-3/8 in. wide o/s.	4-3	A-726	
E LEI	CONSECTOR ASSESSED Y: coll to cell, 5-1/8 in. lg. x 7/6 in. wide o/a.	4-5	A-922	
2122	OUTPUT CONNECTOR ASSEMBLY: 6 ts. straight length, 2 ts. radios.	4-0	A-133	
E 133	CONDENSER STRAP ASSEMBLY: resr; 6-7/8 in. lg. x 1/2 in.	4-5	A-136	
Z184	PEED TERU STRAP ASSEMBLY: 4-1/8 to. lg. z 1/3 in. wide e/s.	4-4	A-135	
2128	COMMECTOR ASSEMBLY: condenser to feed- thre; 2-2/6 to. ig. o/s.	4-3	A-136	
2126	CONNECTOR ASSEMBLY: thereacouple to other rod; 8-3/4 m, Ig. o/s.	4-4	V-251	
2.157	CONNECTOR ASSEMBLY: thereascouple to coll; 5-3/6 ta. ig. o/s.	4-6	A-729-1	

NOTE: IN CASES WHERE A PART IS USED SEVERAL TIMES THROUGHOUT THE UNIT IT IS ONLY LISTED ONCE.

ALL HARDWARE ARE STANDARD COMMERCIAL ITEMS EXCEPT AS LISTED,

ANTENNA TURING UNIT

MODEL THE

TUNING CHART

2000-5000 ECS

			APPROXIMATE SETTINGS FOR RESISTIVE LOADS						
100	LOAD			MIANCED			THRAL	AHCED	
8	CEDAS	TUNE	TAP	BAND SY TAD	LOAD ADJ COUNT	COND	TAP	EV TAP	LOAD ADJ COUNTER
00	70	15	MAX	10	162		MAX	1.0	155
	300	17	MAX	LO	161		MAX	LO	190
104	9600	19	MAX	Lb	189		MAX	10	220
4)	1200	20	MAX	ro	208		MAX	1.0	260
20	70	17	MAX	10	147	15	MAX	LO	155
	200	17	BEX	LO	164	16	MAX	LO	182
	600	17	MAX	LO	174	16	MAX	LO	182
	1200	18	MAX	LO	183	10	MAX	LO	211
0	70	32	MAX	ro	161	32	MAX	LO	150
	300	33	MAX	TLO	159	32	MAX	LO	170
	600	34	MAX	LO	167	32	MAX	10	177
	1200	35	MAX	LO	177	33	MAX	LO	190
10	70	43	MAX	ro .	210	40	MAX	10	136
	300	43	MAX	LO	160	40	MAX	10	155
	600	43	MAX	1.0	171	42	MAXIQ	LO	172
	1200	35	WAX	LO	180	42	MAX	LO	172

SER PAGE 2.

ANTERNA TUNING UNIT

MODEL TAC

TUNING CHART

2000-5000 KCS

			APPROXIMATE SETTINGS FOR RESISTIVE LOADS HALANCED UNDALABORD						
FREE	LOAD		BALANCEO				USBAL	AMCED	
ECS	OHNS	TUNE	TAP	BAND SV TAP	ADJ COUNT	TUNE	TAP	EAMD EV TAP	LOAD ADJ COUNTER
2000	70	18	MAX	10	162	8	MAX	1.0	155
	300	17	MAX	10	181		MAX	LO	190
(Clos)		19	MAX	Lb	189		MAX	1.0	220
led)	1200	20	MAX	ь	208		MAX	1.0	260
2500	70	17	MAX	LO	147	1.5	MAX	1.0	155
	200	17	MAX	10	164	16	MAX	10	182
100	600	17	MAX	LO	174	16	MAX	1.0	182
	1200	18	MAX	LO	100	18	MAX	ro	211
3000	70	32	MAX	LO	141	32	MAX	LO	150
	300	33	MAK.	100	159	32	MAX	LO	170
	600	34	MAX	LO	167	32	MAX	LO	177
	1200	35	MAX	ro	177	33	MAX	I/O	190
8800	70	43	MAX	ro.	210	40	MAX	LO	158
	300	43	MAX	1.0	160	40	MAX	LO	155
- 33	600	43	MAX	1.0	171	42	MILES	LO	172
	1200	35	MAX	LO	180	42	MAX	LO	172

SHEE PAGE 2-

LOAD		BALANCE			UNDALANCED				
	COSD	TAP	BAND SW TAP	ADJ COUNT	TUKE	COUP	BAND SV TAP	COUNT TDJ TOYD	
70	9	2	2	122		MAX	2	128	
300	9	2	2	133		MAX	2	141	
600	16	2	2	137		MAX	2	1.50	
1200	10	2	2	143	10	2	2	168	
70	22	2	2	125	22	2	2	128	
300	22	2	2	131	22	2	2	142	
600	23	2	2	135	22	2	2	244	
1200	23	2	2	141	23	2	2	155	
70	32	2	2	129	32	2	2	129	
300	33	2	2	139	33	2	2	142	
600	34	2	2	147	34	2	2	1.50	
1200	35	2	2	150	34	2	2	152	
600	0	34	34 2	34 2 2	34 2 2 147	34 2 2 147 34	34 2 2 147 34 2	34 2 2 147 34 2 2	

ANTERNA TUNISC UNIT

MODEL TAC

TUNING CHART

6000-12000 Ken

APPROXIMATE SETTINGS FOR RESISTIVE LOADS

PREC	LOAD		D45.40	BALANCED UNBALANCED					
ecs.		TUNE	COUP	BAMD SW TAP	COUNT	COND	COUP	BAND SW TAP	ADJ COUN
8000	70	42	2	2	129	41	2	2	128
	300	43	2	2	131	42	2	2	139
	600	44	2	2	134	42	2	2	142
_	1200	44	2	2	139	43	2	2	153
7000	70	10	2	3	122	1.5	2	3	128
	300	21	2	3	133	21	2	3	139
	600	27	2	3	135	22	2	3	137
	1200	31	2	3	141	24	2	3	142
8000	70	28	2	3	127	26	2	3	125
	300	- 37	2	3	131	30	2	3	128
	600	27	2	3	135	33	2	3	140
	1200	31	2	3	141	24	2	3	147
9000	70	28	3	3	131	40	3	3	127
	300	38	3	3	129	46	3	3	130
	600	43	3	3	130	48	3	3	133
	1200	44	3	3	134	50	3	3	132

PREQ	LOAD OHMS	TUNE	COUP	BAND SW TAP	LOAD ABJ COUNT	TUNE	COUP	BAND SW TAP	LOAD
10000	70	41	8	3	121	40	3	3	126
	300	41	3	3	126	42	3	3	133
	600	42	3	3	127	44	3	3	132
H.	1200	44	3	3	129	34	3	a	135
1000	70	50		3	128	19		4	117
	300	24		4	119	21	8	4	125
	600	22	7	4	111	21	6		123
	1200	24	7	•	116	22	6	•	122
2000	70	26		4	122	26	6		120
	300	26			126	27			120
	600	32	6	4	123	28	6	4	120
	1200	36	6	4	123	30	6	4	121
									3 100

ANTENNA TUNING UNIT

MODEL TAC

TUNING CHART

13000-19000 Kos

APPROXIMATE SETTINGS FOR RESISTIVE LOADS

FREQ	CORES				100	UNBAL ANCED				
ECS		COND	TAP	BAND SV TAP	LOAD ADJ COUNT	TUNING	TAP	BAND TAP	COUNT	
13000	70	14	6	4	124	25	4	4	190	
	300	22	4	4	115	32	4	4	135	
	600	34	4		113	42	7	4	120	
	1200	24	4	•	114	43	7	4	118	
14000	70	30	6	•	123	34	6	4	122	
	300	40		4	120	38	6	4	122	
	600	45	6	4	120	38	5	4	116	
	1200	47	6	4	120	40	6	•	116	
15000	70	36	6		190	40	4	4	120	
	300	43	7	4	117	43	4	4	122	
	600	47	7	4	115	45	4	4	120	
	1200	50	7	4	114	45	4	4	117	
8000	703	30	MIN	8	119	32	6	5	119	
	300	41	MIN	5	112	34	6	5	116	
	600	42	MIN	5	111	36	6	5	116	
	1200	39	MIN	5	111	37	6	5	116	

REQ ICS	LOAD	TURE	COUP	BAMD SW TAP	LOAD	TUNE DOND	COUP	BAND SW TAP	LOAD ADJ COUTT
7000	70	35	7	5	120	36	6	5	119
	300	41	MIN	5	114	39		5	119
	600	42	MEN	5	111	42	4	5	114
	1290	48	MIN	5	111	42		5	115
8000	70	40	7	8	118	43	5	5	120
	300 .	40	7	5	115	42	6	5	117
	600	39	7	5	115	44	6		118
	1200	45	7	5	115	50	6	5	114
9000	70	14	7	6	202	34	3	6	168
	300	10	7	6	199	24		6	176
	600	11	7	6	199	25	6	6	176
	1200	11	7	6	201	25	6	6	176

	LOVE		BALA	TUNINO 2000		UNBALANCED			
35	CHRES	COND	COUP	BAND SW TAP	LOAD ADJ COUNT	TUNE	COUP	BAND SW TAP	LOAD ADJ COURT
1000	70	33	5	6	155	30		8	190
	300	14	7	6	178	29	4	6	174
	600	14	7	6	178	30	4	6	174
	1200	13	7	6	173	30	4	6	174
1000	70	26	7	6	202	31	6	6	192
	300	24	7	6	200	32	6	6	182
	600	25	7	6	200	33	6	6	180
	1200	25	7	6	194	33	6	6	179
1000	70	37	7	6	181	34	6		182
	300	20	7	6	100	35	5	6	176
	600	22	7	6	170	35	5		179
	1200	22	7	6	185	35	5	4	168
1000	70	30	7	6	198	36	7		185
	300	32	7	6	194	36	7		183
	600	33	7	6	186	24	7		182
	1200	30	7	6	186	36	7	6	182
000	70	30	7	6	180	39	7	6	184
	300	30	7	6	182	39	7	6	181
	600	30	7	6	182	40	7	6	180
	1200	30	7	6	182	40	7	6	180

10	LOAD ORDIS	TUNE COSD;	COUP	RAND SW TAP	LOAD ADJ COUNT	TURE	COUP TAP:	BAND SW TAP	LOAD ADJ COUNT
100	70	35	7	6	188	13	7	6	197
	300	40	7	6	194	13	7	6	197
	600	40	7	6	194	13	7	6	197
	1200	40	7	6	194	13	7	6	191
00	70	35	7		197	20	6	6	150
	300	35	7		188	25	6	6.	141
	600	35	7		188	25	6	6	151
	1200	35	7	6	168	13	6	6	160

1.7

0.00		BA BA	LANCED	TUNIN	TUNING CHART			UNBALANCED		
29	COMES	COMD	COUP	BAND SNITCH TAP	LOCAL ADJ COUNT	TUNE COND	COUP	BAND SW TAP	LOCAL ADJ COUNT	
00	70	37	8	6	129	40	6	6	128	
	300	42	6	6	124	47		6	132	
	600	42	6	6	124	38	6	6	132	
	1200	42 2	. 6	4	128	19	5	6	109	
100	70	44	7	6	129	44	6	6	133	
	300	44	7	6	129	50	6	6	132	
	600	84	7	6	129	50	6	6	132	
	1200	44	7	6	129	50	6	6	132	
100	70	40	7	6	132	45	5	6	143	
	300	49	7	6	132	50	5	6	132	
	600	40	7	6	132	48	5	6	133	
	1200	40	7	6	132	35	5	6	131	
ю	70	50	7	6	149	20		н	130	
	300	50	MIN	6	127	22		HI	120	
	600	50	ein	6	127	22	4	ш	120	
	1200	50	MIN	6	127	15	4	HI	123	

Figure 4.10. Sciencetic Diagram, Antenue Texting Vett, Model TA

