In [1]	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import sklearn.datasets %matplotlib inline</pre>
In [2]	print(hp2) {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00,, 1.5300e+01, 3.9690e+02,
	4.0300e+00],, [6.0760e-02, 0.0000e+00, 1.1930e+01,, 2.1000e+01, 3.9690e+02, 5.6400e+00], [1.0959e-01, 0.0000e+00, 1.1930e+01,, 2.1000e+01, 3.9345e+02, 6.4800e+00], [4.7410e-02, 0.0000e+00, 1.1930e+01,, 2.1000e+01, 3.9690e+02, 7.8800e+00]]), 'target': array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15., 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6, 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21., 12.7, 14.5, 13.2,
	13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7, 21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9, 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5, 19.4, 22., 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20., 20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2, 23.6, 28.7, 22.6, 22., 22.9, 25., 20.6, 28.4, 21.4, 38.7, 43.8, 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4, 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22., 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6, 23., 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14., 14.4, 13.4, 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
	17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7, 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4, 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. , 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3, 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4, 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. , 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3, 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1, 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6, 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,
	36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4, 32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22., 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1, 20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2, 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1, 21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6, 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7, 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1, 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8, 16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
	13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8, 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1, 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9, 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4, 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. , 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8, 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4, 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7, 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2, 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8, 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,
	23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]), 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype=' <u7'), "boston_dataset:\n\nboston="" \$10,000\n="" \$1000's\n\n="" %="" 'descr':="" (="1" (attribute="" (in="" (parts="" -="" 0="" 0.63)^2="" 10="" 1000(bk="" 13="" 14)="" 1940\n="" 25,000="" 506="" :attribute="" :creator:="" :missing="" :number="" \n="" \n\n="" \n\n\nthis="" a="" accessibility="" acres="" age="" and="" archive.ics.uci.edu="" at="" attribute="" attributes:="" average="" b="" bk="" black="" boston="" bounds="" built="" business="" by="" capita="" carnegie="" categorical="" centres\n="" characteristics:**="" charles="" chas="" concentration="" copy="" crim="" crime="" d.="" d.l.\n\nthis="" dataset="" dataset.\nhttps:="" dataset\n\n\n**data="" dis="" dummy="" dwelling\n="" employment="" five="" for="" from="" full-value="" harrison,="" highways\n="" homes="" hous="" house="" housing="" if="" in="" index="" indus="" information="" ing="" instances:="" is="" land="" library="" lots="" lower="" lstat="" machine-learning-databases="" maintained="" median="" medv="" mellon="" million)\n="" ml="" nitric="" non-retail="" none\n\n="" nox="" number="" numeric="" of="" order):\n="" otherwise)\n="" over="" owner-occupied="" oxides="" people="" per="" population\n="" predictive.="" prices="" prior="" property-tax="" proportion="" ptrat="" pupil-teacher="" rad="" radial="" rate="" ratio="" residential="" river="" river;="" rm="" rooms="" rubinfeld,="" set="" sq.ft.\n="" statlib="" status="" taken="" tances="" target.\n\n="" tax="" th="" the="" to="" town\n="" tract="" uci="" units="" univers<="" usually="" value="" values:="" variable="" was="" weighted="" where="" which="" zn="" zoned=""></u7'),>
In [3]	#LUauling the dataset linto pandas datarrame
In [4] In [5] Out[5] In [6]	hpp2d.shape (506, 13)
Out[6]	
In [7] In [8]	hpp2d['price']=hp2.target
Out[8]	CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT price 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7 3 0.03237 0.0 2.18 0.0 0.458 6.988 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4 4 0.06905 0.0 2.18 0.0622 3.0 222.0 18.7 396.90 5.33 36.2
In [9] Out[9] In [10]	(506, 14)
Out[10] In [11] Out[11]	hpp2d.describe()
	mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 12.653063 22.532806 std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 7.141062 9.197104 min 0.006320 0.000000 0.460000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.730000 5.000000 25% 0.082045 0.000000 5.190000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 6.950000 17.025000 50% 0.256510 0.00000 9.690000 0.053800 6.208500 77.500000 5.188425 24.000000 66.000000 29.00000 19.055000 396.225000 16.955000 25.000000
In [12]	hpp2d.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 506 entries, 0 to 505</class>
	Data columns (total 14 columns): # Column Non-Null Count Dtype
In [13]	8 RAD 506 non-null float64 9 TAX 506 non-null float64 10 PTRATIO 506 non-null float64 11 B 506 non-null float64 12 LSTAT 506 non-null float64 13 price 506 non-null float64 dtypes: float64(14) memory usage: 55.5 KB #checkng correalaton of data
	CRIM ZN INDUS CHAS NOX RM AGE \ CRIM 1.000000 -0.200469 0.406583 -0.055892 0.420972 -0.219247 0.352734 ZN -0.200469 1.000000 -0.533828 -0.042697 -0.516604 0.311991 -0.569537 INDUS 0.406583 -0.533828 1.000000 0.062938 0.763651 -0.391676 0.644779 CHAS -0.055892 -0.042697 0.062938 1.000000 0.091203 0.091251 0.086518 NOX 0.420972 -0.516604 0.763651 0.091203 1.000000 -0.302188 0.731470 RM -0.219247 0.311991 -0.391676 0.091251 -0.302188 1.000000 -0.240265 AGE 0.352734 -0.569537 0.644779 0.086518 0.731470 -0.240265 1.000000
	DIS -0.379670
	ZN 0.664408 -0.311948 -0.314563 -0.391679 0.17520 -0.412995 0.360445 INDUS -0.708027 0.595129 0.720760 0.383248 -0.356977 0.603800 -0.483725 CHAS -0.099176 -0.007368 -0.035587 -0.121515 0.048788 -0.053929 0.175260 NOX -0.769230 0.611441 0.668023 0.188933 -0.380051 0.590879 -0.427321 RM 0.205246 -0.209847 -0.292048 -0.355501 0.128069 -0.613808 0.695360 AGE -0.747881 0.456022 0.506456 0.261515 -0.273534 0.602339 -0.376955 DIS 1.000000 -0.494588 -0.534432 -0.232471 0.291512 -0.496996 0.249929 RAD -0.494588 1.000000 0.910228 0.464741 -0.444413 0.488676 -0.381626 TAX -0.534432 0.910228 1.000000 0.460853 -0.441808 0.543993 -0.468536 PTRATIO -0.232471 0.464741 0.460853 1.000000 -0.177383 0.374044 -0.5607787 B 0.291512 -0.444413 -0.441808 -0.177383 1.000000 -0.3360087 0.333461
In [14] Out[14]	LSTAT -0.496996 0.488676 0.543993 0.374044 -0.366087 1.000000 -0.737663 price 0.249929 -0.381626 -0.468536 -0.507787 0.333461 -0.737663 1.000000 #constructing the heatmap for better understanding plt.figure(figsize=(12,12)) sns.heatmap(cor,annot=True,cbar=True,cmap='Blues') <pre></pre>
	8 - 1
	No. 1
	Sector - 0.38 0.66 -0.71 -0.099 -0.77 0.21 -0.75 1 -0.49 -0.53 -0.25 -0.25 -0.00 Eg 0.63 -0.31 0.6 -0.0074 0.61 -0.21 0.46 -0.49 1 0.91 0.46 -0.44 0.49 -0.38 Eg 0.58 -0.31 0.72 -0.036 0.67 -0.29 0.51 -0.53 0.91 1 0.46 -0.44 0.54 -0.47 0.2
	- 0.29 - 0.39
In [15] In [16]	crim zn indus chas nox rm age dis rad tax pratio è Lstat price from sklearn.model_selection import train_test_split x=hpp2d.drop(['price'], axis=1) y=hpp2d['price']
	CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \ 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0
	PTRATIO B LSTAT 0 15.3 396.90 4.98 1 17.8 396.90 9.14 2 17.8 392.83 4.03 3 18.7 394.63 2.94 4 18.7 396.90 5.33
In [17]	503
	2 34.7 3 33.4 4 36.2 501 22.4 502 20.6 503 23.9 504 22.0 505 11.9 Name: price, Length: 506, dtype: float64
In [18] In [19] In [20]	#Model training from xgboost import XGBRFRegressor
In [21] Out[21]	XGBRFRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
In [22]	xtrain=xgb.predict(X_train) print(xtrain) [21.359539 31.949036 16.358376 23.985476 20.87934 20.513628 21.008251 35.500256 30.289135 32.37274 21.630157 49.01347 14.28925 8.37607 22.245953 9.860197 25.320978 18.44369
	21.536407
	21.676022 20.288391 31.680279 20.843147 31.858261 30.595032
	18.967703 26.51944 14.433957 19.656963 17.318403 42.15245 24.68092 20.949781 25.097628 19.365797 19.941952 20.261227 21.910706 24.927464 17.687996 14.996196 20.98887 21.649143 10.9047785 18.977985 20.86647 20.800322 20.499264 9.686793 23.00317 20.675829 16.163366 24.246872 30.541475 22.47135 14.539515 19.333937 26.1184 20.833256 46.642105 20.625093 31.509129 49.675377 16.364782 17.06529 9.306274 20.450657 16.54414 15.975145 16.45014 20.719223 30.400991 26.744152 19.783861 20.380949 23.785767 10.345345 25.695774 47.715683 21.310078 23.663565 20.595682 12.522885 19.287668 15.046336
	14.754101 21.836653 15.626396 20.838627 25.994751 17.18033 23.761559 15.021115 20.965496 20.344646 25.115036 27.417168 22.822905 18.867483 23.832256 24.9051 16.07872 18.35211 23.995325 15.696151 23.796996 29.579174 15.28884 25.361557 16.229267 14.352384 10.906681 23.786533 14.598803 36.131226 20.536888 41.91707 8.915807 20.986912 15.20648 14.875705 16.842052 23.548777 22.413055 46.44488 19.077103 29.602041 25.452595 20.101028 26.087448 10.46756 40.287495 20.101856 18.442308 25.504972 19.093922 23.972528 9.064347 23.822748 20.144272 20.9435 23.878283 21.799805 18.647684 18.572191 15.083117 25.256178 14.608524 23.080055 20.957628 14.919534
	17.747595 23.423494 24.230808 22.276403 23.660397 30.671024 20.646704 20.238401 27.88154 23.691572 12.538449 22.613531 12.039306 9.405318 21.082556 9.45362 47.181843 24.482382 12.559799 16.94203 14.984181 26.839815 19.395615 20.068163 9.495608 20.720642 21.075245 20.3332 23.808512 24.4084 26.837273 14.4747 19.296026 21.735142 18.490437 25.03376 14.461924 23.110962 32.898174 27.118092 24.10951 20.250067 20.442606 12.530785 23.746943 16.089817 20.942444 20.76243 21.857718 18.562317 12.50955 32.778164 20.696022 48.49776 20.794088 22.404352 21.246395 19.106588 9.123306 19.604073 23.723051 21.215036 18.035936 22.904167 20.772095 26.349993
In [23]	14.875896 49.0149 31.054253 23.15839 22.616316 17.075817 32.144157 16.353508 23.13484 20.761852 20.445658 21.772152] # R Squared Error from sklearn import metrics sc=metrics.r2_score(y_train,xtrain) #MSE sc1=metrics.mean_absolute_error(y_train,xtrain)
In [24]	print("The calculated MSE are",sc1) The calculated R squared error are 0.9648485826144998 The calculated MSE are 1.3390544627345886 **Wisulizing actual vs predicted prices plt.scatter(y_train,xtrain) plt.xlabel("Actual Price")
	plt.ylabel("predicted Price") plt.title("Actual Vs Predicted Price") plt.show() Actual Vs Predicted Price 50 40
	20 - 10 - 20 30 40 50 Actual Price
In [26]	xtest=xgb.predict(X_test) print(xtest) [20.934166
	19.573997 20.651598 30.442425 24.580706 12.353749 16.638952 10.235276 20.469995 21.328396 21.552038 24.595903 15.713804 31.472038 9.1368475 21.178349 14.596579 34.601826 16.239532 31.169796 15.070799 29.275543 27.726635 8.643508 32.567085 31.5166 20.341454 20.374031 20.046034 17.196047 20.250797 19.960463 22.163408 19.835064 28.982603 31.317839 24.694933 47.819523 27.754173 10.706607 22.811312 16.296736 9.432871 20.702284 18.19916 25.422634 25.572319 20.877977 21.140223 20.76536 22.83164 33.552704 18.020735 21.866024 29.380175 46.806908 35.86994 20.048134 22.839872 30.55053 20.572489
	20.718298
In [27] In [28]	# R Squared Error sc=metrics.r2_score(y_test,xtest) #MSE sc1=metrics.mean_absolute_error(y_test,xtest)
	The calculated R squared error are 0.8854102642208632 The calculated MSE are 2.258268358832911