Section 1.6 - Precise Definition of a Limit

Example

Consider the function y = 2x - 1 near $x_0 = 4$. Intuitively it appears that y is close to 7 when x is close to 4, so $\lim_{x \to 4} (2x - 1) = 7$. However, how close to $x_0 = 4$ does x have to be so that y = 2x - 1 differs from 7 by, say less than 2 units?

Solution

We need to find the values of x for |y-7| < 2.

$$|y-7| = |2x-1-7| = |2x-8|$$

$$|2x-8| < 2$$

$$-2 < 2x-8 < 2$$

$$-2+8 < 2x-8+8 < 2+8$$

$$6 < 2x < 10$$

$$\frac{6}{2} < \frac{2x}{2} < \frac{10}{2}$$

$$3 < x < 5$$

$$3-4 < x-4 < 5-4$$

$$-1 < x-4 < 1$$

Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$

Definition

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that **the limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L$$

If, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$

The challenge: Make $|f(x) - L| < \epsilon = \frac{1}{10}$

 $\left|x - x_0\right| < \delta_{1/10}$ (a number)

 $|x-x_0|<\delta_{1/100}$

New challenge: $\epsilon = \frac{1}{1000}$

Response:
$$|x - x_0| < \delta_{1/1000}$$

New challenge: $\epsilon = \frac{1}{100,000}$

Response:
$$|x - x_0| < \delta_{1/100,000}$$

New challenge:

$$\epsilon = \cdots$$

Example

Show that
$$\lim_{x \to 1} (5x - 3) = 2$$

Solution

Let
$$x_0 = 1$$
, $f(x) = 5x - 3$, and $L = 2$.

For any given $\varepsilon > 0$, there exists a $\delta > 0$ so that $x \neq 1$ and x is within distance δ of $x_0 = 1$, that is

$$0 < |x-1| < \delta \implies |f(x)-2| < \varepsilon$$

$$\left| \left(5x - 3 \right) - 2 \right| < \varepsilon$$

$$|5x-5|<\varepsilon$$

$$5|x-1| < \varepsilon$$

$$\left|x-1\right| < \frac{\mathcal{E}}{5}$$

Thus, we can take: $\delta = \frac{\mathcal{E}}{5}$

If
$$0 < |x-1| < \delta = \frac{\mathcal{E}}{5}$$

$$|(5x-3)-2| = |5x-5|$$

$$= 5|x-1|$$

$$= 5\frac{\mathcal{E}}{5}$$

$$= \mathcal{E} |$$

Which proves that $\lim_{x \to 1} (5x - 3) = 2$

Example

Prove the results presented graphically
$$\lim_{x \to x_0} x = x_0$$

Solution

Let $\varepsilon > 0$ be given, we must find $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |x - x_0| < \varepsilon$$

This implication will hold if $\delta = \varepsilon$ or any smaller number.

Example

For the limit $\lim_{x\to 5} \sqrt{x-1} = 2$, find a $\delta > 0$ that works for $\varepsilon = 1$. That is, find a $\delta > 0$ such that for all x:

$$0 < |x-5| < \delta \implies \left| \sqrt{x-1} - 2 \right| < 1$$

Solution

$$\left| \sqrt{x-1} - 2 \right| < 1$$

$$-1 < \sqrt{x-1} - 2 < 1$$

$$-1 + 2 < \sqrt{x-1} - 2 + 2 < 1 + 2$$

$$1 < \sqrt{x-1} < 3$$

$$1 < x - 1 < 9$$

$$1 + 1 < x - 1 + 1 < 9 + 1$$

$$2 < x < 10$$

The inequality holds for all x in the open interval (2, 10).

So it holds for all $x \neq 5$ in the interval as well.

Finding δ value.

$$5 - \delta < x < 5 + \delta$$

Centered at $x_0 = 5$ inside the interval (2, 10)

$$\begin{cases} 5 - \delta = 2 \\ 5 + \delta < 10 \end{cases} \rightarrow \delta = 3 \text{ (to be centered)}$$

$$0 < |x - 5| < 3 \quad \Rightarrow \quad \left| \sqrt{x - 1} - 2 \right| < 1$$

How to Find Algebraically a δ for a Given f, L, x_0 , and $\varepsilon > 0$

The process of finding a $\delta > 0$ such that for all x:

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$

Can be accomplished in two steps

- 1. Solve the inequality $|f(x)-L| < \varepsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \ne x_0$.
- 2. Find a value of $\delta > 0$ that places the open interval $\left(x_0 \delta, x_0 + \delta\right)$ centered at x_0 inside the interval (a, b). The inequality $\left|f(x) L\right| < \varepsilon$ will hold for all $x \neq x_0$ in this δ -interval.

Example

Prove that $\lim_{x \to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & x \neq 2 \\ 1, & x = 2 \end{cases}$$

Solution

We need to show that given $\varepsilon > 0$ there exists a $\delta > 0$ such that for all x:

$$0 < |x-2| < \delta \implies |f(x)-4| < \varepsilon$$

1. Solve the inequality $|f(x)-4| < \varepsilon$ to find an open interval containing $x_0 = 2$ on which the inequality holds for all $x \neq x_0$.

For $x \neq x_0 = 2$, $f(x) = x^2$, and the inequality to solve is $\left| x^2 - 4 \right| < \varepsilon$: $\left| x^2 - 4 \right| < \varepsilon$ $-\varepsilon < x^2 - 4 < \varepsilon$ $4 - \varepsilon < x^2 < 4 + \varepsilon$ $\sqrt{4 - \varepsilon} < \left| x \right| < \sqrt{4 + \varepsilon}$ Assume $\varepsilon < 4$ $\sqrt{4 - \varepsilon} < x < \sqrt{4 + \varepsilon}$

The inequality $|f(x)-4| < \varepsilon$ holds for all $x \ne 2$ in the open interval $(\sqrt{4-\varepsilon}, \sqrt{4+\varepsilon})$

2. Find a value of $\delta > 0$ that places the open interval $(2 - \delta, 2 + \delta)$ inside the interval $(\sqrt{4 - \varepsilon}, \sqrt{4 + \varepsilon})$.

Take δ to be the distance from $x_0 = 2$ to the nearer endpoint of $(\sqrt{4-\varepsilon}, \sqrt{4+\varepsilon})$.

$$\Rightarrow \delta = \min\left(2 - \sqrt{4 - \varepsilon}, \sqrt{4 + \varepsilon} - 2\right).$$

$$0 < |x - 2| < \delta$$

$$-\left(2 - \sqrt{4 - \varepsilon}\right) < x - 2 < \sqrt{4 + \varepsilon} - 2$$

$$-2 + \sqrt{4 - \varepsilon} < x - 2 < \sqrt{4 + \varepsilon} - 2$$

$$\sqrt{4 - \varepsilon} < x < \sqrt{4 + \varepsilon}$$

$$\therefore 0 < |x - 2| < \delta \Rightarrow |f(x) - 4| < \varepsilon$$

Example

Given that $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, prove that $\lim_{x \to c} (f(x) + g(x)) = L + M$

Solution

We need to show that given $\varepsilon > 0$ there exists a $\delta > 0$ such that for all x:

$$0 < |x - c| < \delta \implies |f(x) + g(x) - (L + M)| < \varepsilon$$

$$|f(x)+g(x)-(L+M)|=|f(x)+g(x)-L-M|$$

$$= \left| \left(f(x) - L \right) + \left(g(x) - M \right) \right|$$

$$\leq \left| \left(f(x) - L \right) \right| + \left| \left(g(x) - M \right) \right|$$
Triangle Inequality $|a + b| \leq |a| + |b|$

Since $\lim_{x\to c} f(x) = L$, there exists a number $\delta_1 > 0$ such that for all x:

$$0 < |x - c| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{2}$$

Similarly, since $\lim_{x\to c} g(x) = M$, there exists a number $\delta_2 > 0$ such that for all x:

$$0 < |x - c| < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{2}$$

Let $\delta = \min \left\{ \delta_1, \ \delta_2 \right\}$, the smaller of δ_1 and δ_2 . If $0 < |x - c| < \delta$ then $0 < |x - c| < \delta_1$, so

$$|f(x)-L| < \frac{\varepsilon}{2}$$
 and $|x-c| < \delta_2$, so $|g(x)-M| < \frac{\varepsilon}{2}$. Therefore

$$|f(x)+g(x)-(L+M)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This show that $\lim_{x\to c} (f(x) + g(x)) = L + M$

Exercises Section 1.6 – Precise Definition of Limits

Sketch the interval (a, b) on the x-axis with the point x_0 inside. Then find a value of $\delta > 0$ such that for all x, $0 < |x - x_0| < \delta \implies a < x < b$ for

1.
$$a = 1$$
, $b = 7$, $x_0 = 5$

2.
$$a = -\frac{7}{2}$$
, $b = -\frac{1}{2}$, $x_0 = -\frac{3}{2}$

3. Use the graph to find a $\delta > 0$ such that for all $x \mid 0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$

(4-8) Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for $\delta > 0$ such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds.

4.
$$f(x) = x + 1$$
, $L = 5$, $x_0 = 4$, $\varepsilon = 0.01$

5.
$$f(x) = 2x - 1$$
, $L = 3$, $x_0 = 2$, $\varepsilon = 0.1$

6.
$$f(x) = \sqrt{x+1}$$
, $L = 1$, $x_0 = 0$, $\varepsilon = 0.1$

7.
$$f(x) = \sqrt{x-7}$$
, $L = 4$, $x_0 = 23$, $\varepsilon = 1$

8.
$$f(x) = x^2$$
, $L = 3$, $x_0 = \sqrt{3}$, $\varepsilon = 0.1$

9.
$$f(x) = \frac{120}{x}$$
, $L = 5$, $x_0 = 24$, $\varepsilon = 1$

(9-14) Give a formal proof that

10.
$$\lim_{x \to 4} (9-x) = 5$$

11.
$$\lim_{x \to 1} \frac{1}{x} = 1$$

12.
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10$$

13.
$$\lim_{x \to 0} f(x) = 0$$
 if $f(x) = \begin{cases} 2x, & x < 0 \\ \frac{x}{2}, & x \ge 0 \end{cases}$

14.
$$\lim_{x \to 1} (5x - 2) = 3$$

15.
$$\lim_{x \to 2} \frac{1}{(x-2)^4} = \infty$$

16. Prove that $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$

