SUMESH R - 20104169

Basic Analysis using NumPy and Pandas

Import Libraries

```
In [1]: import pandas as pd

In [2]: import numpy as np
```

Import Dataset

```
In [3]: data = pd.read_csv("3_Fitness-1.csv")
In [4]: display(data)
```

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To display top 10 rows

In [5]: data.head(10)

Out[5]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

8.76%

5.93%

100.00%

to display last 5 rows

```
    Row Labels
    Sum of Jan
    Sum of Feb
    Sum of Mar
    Sum of Total Sales

    4
    E
    25.28%
    10.57%
    11.82%
    179

    5
    F
    8.15%
    16.24%
    18.47%
    167
```

17.49%

13.79%

100.00%

171

170

1150

statistical summary

G

Grand Total

18.54%

25.56%

100.00%

```
In [7]: data.describe()
```

Out[7]: _	Sum of Total Sales			
	count	9.000000		
	mean	255.555556		
	std	337.332963		
	min	75.000000		
	25%	127.000000		
	50%	167.000000		
	75 %	171.000000		
	max	1150.000000		

To print number of elements

```
In [8]: data.size
```

Out[8]: 45

to print number of row and cols

In [9]: data.shape

Out[9]: (9, 5)

to find missing values

In [10]: data.isna()

Out[10]: Sum of Jan Sum of Feb Sum of Mar Sum of Total Sales 0 False **False False False** False 1 False **False False False False** False False **False** False **False** 3 False False **False** False **False** False False **False False False** False **False** False False **False** False False False False **False** 7 False False **False** False **False** 8 False False False **False False**

fill null values with a constant

In [11]: data.fillna(5)

Out[11]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	E	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150

to select a particular columns

```
In [12]:
    df=pd.DataFrame(data[['Sum of Jan','Sum of Total Sales']])
    import matplotlib.pyplot as plt
```

line plot

```
In [13]: df.plot.line()
```

Out[13]: <AxesSubplot:>

histogram

```
In [14]: df.plot.hist()
```

Out[14]: <AxesSubplot:ylabel='Frequency'>

bar chart

```
In [15]: df.plot.bar()
```

Out[15]: <AxesSubplot:>

area plot

```
In [16]: df.plot.area()
```

Out[16]: <AxesSubplot:>

box plot

```
In [17]: df.plot.box()
```

Out[17]: <AxesSubplot:>

pie plot

```
In [20]: df.plot.pie(y="Sum of Total Sales")
```

Out[20]: <AxesSubplot:ylabel='Sum of Total Sales'>

scatter plot

```
In [19]: df.plot.scatter(x="Sum of Jan",y="Sum of Total Sales")
```

Out[19]: <AxesSubplot:xlabel='Sum of Jan', ylabel='Sum of Total Sales'>

