BACCALAURÉAT SESSION 2021

Épreuve de l'enseignement de spécialité

NUMÉRIQUE et SCIENCES INFORMATIQUES

Partie écrite

Classe terminale de la voie générale

Sujet zéro

DURÉE DE L'ÉPREUVE : 3 heures 30 min

Le sujet comporte 12 pages numérotées de 1/12 à 12/12. Dès que le sujet vous est remis, assurez-vous qu'il est complet.

Le candidat doit choisir 3 exercices qu'il traitera sur les 5 exercices proposés. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

L'usage de la calculatrice est interdit.

Cet exercice porte sur la notion de pile et sur la programmation de base en Python.

On rappelle qu'une pile est une structure de données abstraite fondée sur le principe « dernier arrivé, premier sorti \gg :

On munit la structure de données Pile de quatre fonctions primitives définies dans le tableau ci-dessous. :

Question 1 On suppose dans cette question que le contenu de la pile P est le suivant (les éléments étant empilés par le haut) :

Quel sera le contenu de la pile Q après exécution de la suite d'instructions suivante?

```
Q = creer_pile_vide()
while not est_vide(P):
empiler(Q, depiler(P))
```

Question 2

1. On appelle hauteur d'une pile le nombre d'éléments qu'elle contient. La fonction hauteur_pile prend en paramètre une pile P et renvoie sa hauteur. Après appel de cette fonction, la pile P doit avoir retrouvé son état d'origine.

Exemple: si P est la pile de la question 1: hauteur_pile(P) = 4.

Recopier et compléter sur votre copie le programme Python suivant implémentant la fonction hauteur_pile en remplaçant les ??? par les bonnes instructions.

```
def max_pile(P,i):
           def hauteur_pile(P):
                                                               Q=creer_pile_vide()
                 Q = creer_pile_vide()
2
                                                               index=0
                                                               while not(est_vide(P)):
3
                                                                if index = = i:
                 while not(est_vide(P)):
                                                                F=depiler(P)
                       _{777} \text{ n+=1}
                                                                empiler(Q,F)
                       x = depiler(P)
6
                                                                i=depiler(P)
                       empiler(Q,x)
                                                                empiler(Q,j)
                                                                index + = 1
                 while not(est_vide(Q)):
                                                               P=Q
                       ??? x=depiler(Q)
9
                                                               return P,F
                       empiler(P, x)
                                                              P = [8,5,2,4]
10
                 return ???n,P
                                                              résultat pour max_pile(P,i) retournera 5
```

2. Créer une fonction max_pile ayant pour paramètres une pile P et un entier i. Cette fonction renvoie la position j de l'élément maximum parmi les i derniers éléments empilés de la pile P. Après appel de cette fonction, la pile P devra avoir retrouvé son état d'origine. La position du sommet de la pile est 1.

Exemple: si P est la pile de la question 1: max_pile(P, 2) = 1

Question 3 Créer une fonction retourner ayant pour paramètres une pile P et un entier j. Cette fonction inverse l'ordre des j derniers éléments empilés et ne renvoie rien. On pourra utiliser deux piles auxiliaires.

Exemple : si P est la pile de laquestion 1(a), après l'appel de retourner(P, 3), l'état de la pile P sera :

Question 4 L'objectif de cette question est de trier une pile de crêpes.

On modélise une pile de crêpes par une pile d'entiers représentant le diamètre de chaque crêpe. On souhaite réordonner les crêpes de la plus grande (placée en bas de la pile) à la plus petite (placée en haut de la pile).

On dispose uniquement d'une spatule que l'on peut insérer dans la pile de crêpes de façon à retourner l'ensemble des crêpes qui lui sont au-dessus.

Le principe est le suivant :

- On recherche la plus grande crêpe.
- On retourne la pile à partir de cette crêpe de façon à mettre cette plus grande crêpe tout en haut de la pile.
- On retourne l'ensemble de la pile de façon à ce que cette plus grande crêpe se retrouve tout en bas
- La plus grande crêpe étant à sa place, on recommence le principe avec le reste de la pile.

Exemple:

Créer la fonction **tri_crepes** ayant pour paramètre une pile P. Cette fonction trie la pile P selon la méthode du tri crêpes et ne renvoie rien. On utilisera les fonctions créées dans les questions précédentes.

	7		5	
Exemple : Si la pile P est	14 12	, après l'appel de tri_crepes(P), la pile P devient	7 8].
	5		12	
	8		14	

Cet exercice porte sur la programmation en général et la récursivité en particulier.

On considère un tableau de nombres de n lignes et p colonnes.

Les lignes sont numérotées de 0 à n-1 et les colonnes sont numérotées de 0 à p-1. La case en haut à gauche est repérée par (0,0) et la case en bas à droite par (n-1,p-1).

On appelle *chemin* une succession de cases allant de la case (0,0) à la case (n-1,p-1), en n'autorisant que des déplacements case par case : soit vers la droite, soit vers le bas.

On appelle somme d'un chemin la somme des entiers situés sur ce chemin.

Par exemple, pour le tableau T suivant :

4	1	1	3
2	0	2	1
3	1	5	1

- Un chemin est (0,0), (0,1), (0,2), (1,2), (2,2), (2,3) (en gras sur le tableau);
- La somme du chemin précédent est 14.
- (0,0), (0,2), (2,2), (2,3) n'est pas un chemin.

L'objectif de cet exercice est de déterminer la somme maximale pour tous les chemins possibles allant de la case (0,0) à la case (n-1,p-1).

Question 1 On considère tous les chemins allant de la case (0,0) à la case (2,3) du tableau T donné en exemple.

- 1. Un tel chemin comprend nécessairement 3 déplacements vers la droite. Combien de déplacements vers le bas comprend-il?
- 2. La longueur d'un chemin est égal au nombre de cases de ce chemin. Justifier que tous les chemins allant de (0,0) à (2,3) ont une longueur égale à 6.

Question 2 En listant tous les chemins possibles allant de (0,0) à (2,3) du tableau T, déterminer un chemin qui permet d'obtenir la somme maximale et la valeur de cette somme.

Question 3 On veut créer le tableau T' où chaque élément T'[i][j] est la somme maximale pour tous les chemins possibles allant de (0,0) à (i,j).

1. Compléter et recopier sur votre copie le tableau T' donné ci-dessous associé au tableau

$$\mathtt{T} = \begin{bmatrix} 4 & 1 & 1 & 3 \\ 2 & 0 & 2 & 1 \\ \hline 3 & 1 & 5 & 1 \end{bmatrix}$$

$$\mathtt{T'} = egin{array}{c|cccc} 4 & 5 & 6 & ? \ \hline 6 & ? & 8 & 10 \ \hline 9 & 10 & ? & 16 \ \hline \end{array}$$

2. Justifier que si j est différent de 0, alors : T' [0] [j] = T [0] [j] + T' [0] [j-1]

Question 4 Justifier que si i et j sont différents de 0, alors : T'[i][j] = T[i][j] + max(T'[i-1][j], T'[i][j-1]).

Question 5 On veut créer la fonction récursive somme_max ayant pour paramètres un tableau T, un entier i et un entier j. Cette fonction renvoie la somme maximale pour tous les chemins possibles allant de la case (0,0) à la case (i,j).

- 1. Quel est le cas de base, à savoir le cas qui est traité directement sans faire appel à la fonction $somme_max$? Que renvoie-t-on dans ce cas?
- 2. À l'aide de la question précédente, écrire en Python la fonction récursive $\mathsf{somme_max}$.
- 3. Quel appel de fonction doit-on faire pour résoudre le problème initial?

Cet exercice porte sur les arbres binaires et les arbres binaires de recherche.

Dans cet exercice, on utilisera la convention suivante : la hauteur d'un arbre binaire ne comportant qu'un nœud est 1.

Question 1 Déterminer la taille et la hauteur de l'arbre binaire suivant : 5

 ${f Question~2}$ On décide de numéroter en binaire les nœuds d'un arbre binaire de la façon suivante :

- la racine correspond à 1;
- la numérotation pour un fils gauche s'obtient en ajoutant le chiffre 0 à droite au numéro de son père;
- la numérotation pour un fils droit s'obtient en ajoutant le chiffre 1 à droite au numéro de son père :

Par exemple, dans l'arbre ci-dessous, on a utilisé ce procédé pour numéroter les nœuds A,B,C,E et F.

- 1. Dans l'exemple précédent, quel est le numéro en binaire associé au nœud G? 1000
- 2. Quel est le nœud dont le numéro en binaire vaut 13 en décimal?
- 3. En notant h la hauteur de l'arbre, sur combien de bits seront numérotés les nœuds les plus en bas? 4 bit par noeud soit 12 bit en tout

4. Justifier que pour tout arbre de hauteur h et de taille $n \geq 2$, on a :

$$h \leqslant n \leqslant 2^h - 1$$

Question 3 Un arbre binaire est dit complet si tous les niveaux de l'arbre sont remplis.

On décide de représenter un arbre binaire complet par un tableau de taille n+1, où n est la taille de l'arbre, de la façon suivante :

- La racine a pour indice 1;
- Le fils gauche du nœud d'indice i a pour indice $2 \times i$;
- Le fils droit du nœud d'indice i a pour indice $2 \times i + 1$;
- On place la taille n de l'arbre dans la case d'indice 0.
- 1. Déterminer le tableau qui représente l'arbre binaire complet de l'exemple précédent.
- 2. On considère le père du nœud d'indice i avec $i \geq 2$. Quel est son indice dans le tableau?

Question 4 On se place dans le cas particulier d'un arbre binaire de recherche complet où les nœuds contiennent des entiers et pour lequel la valeur de chaque noeud est supérieure à celles des noeuds de son fils gauche, et inférieure à celles des noeuds de son fils droit.

Écrire une fonction recherche ayant pour paramètres un arbre arbre et un élément element. Cette fonction renvoie True si element est dans l'arbre et False sinon. L'arbre sera représenté par un tableau comme dans la question précédente.

Cet exercice porte sur les bases de données relationnelles et le langage SQL.

L'énoncé de cet exercice utilise les mots du langage SQL suivant :

SELECT, FROM, WHERE, JOIN, INSERT INTO, VALUES, COUNT, ORDER BY.

Dans un lycée imaginaire, les données relatives aux élèves de secondes sont regroupées dans un fichier nommé seconde_lyc.csv. Un extrait de son contenu est représenté figure 1.

num_eleve	nom	prenom	datenaissance		langue2	option	classe
133310FE	ACHIR	Mussa	01/01/2005	anglais	espagnol		2A
156929JJ	ALTMEYER	Yohan	05/05/2005	allemand	anglais	théâtre	2D
500633KH	BELEY	Thibaut	05/05/2005	anglais	espagnol		2A
911887GA	BELEY	Marie	05/05/2005	anglais	espagnol		2A
906089JJ	BELEY	Manon	10/01/2005	anglais	allemand		2E
488697GA	CAILLE	Marie	30/03/2004	italien	anglais		2D
193514FB	CHARPENTIER	Jules	26/12/2005	espagnol	anglais		2C
321188FA	CLAUDEL	Benjamin	09/09/2005	espagnol	anglais		2E
081282GF	EISEN	Carla	23/06/2004	anglais	allemand		2A
026946KB	EL AYAR	Amir	11/09/2005	anglais	arabe	cinéma	2D
108303KG	GEHIN	Arthur	26/02/2005	allemand	anglais		2D
057934BK	GROSJEAN	Alexandre	09/11/2005	anglais	espagnol		2C
571113KE	HENRY	Paul	12/03/2005	allemand	anglais		2E
488820DE	JACQUEY	Marc	13/11/2005	anglais	italien		2D
024810CE	JULIANO	Alberto	21/04/2005	anglais	espagnol		2C
249992EJ	KLEIBER	Gusti	20/02/2005	anglais	espagnol	cinéma	2E
492698AF	LACOUR	Julie	06/04/2005	italien	anglais		2D
026454FA	LARBI	Nourdine	14/07/2005	espagnol	anglais		2C
309341GD	LEFZA	Yasmina	26/11/2005	espagnol	anglais		2E
076725HD	MARTIN	Victor	13/03/2005	anglais	espagnol		2A
815183CB	NGUYEN	Ngong	16/03/2005	anglais	espagnol		2D
094002FC	PELTIER	Romane	14/06/2005	allemand	anglais		2D
321262HD	RENAULT	Zoé	06/08/2005	anglais	espagnol	latin	2E
075421AK	ROTH	Ursule	03/01/2005	anglais	allemand		2A
121001CK	SERHANI	Sabrina	01/09/2005	italien	anglais		2D
538965DJ	TUDJANE	Yourk	31/01/2005	espagnol	anglais		2D
389873GC	VIALET	Priscille	28/02/2005	espagnol	anglais		2C
980306CA	WADE	Marcelin	03/05/2005	allemand	anglais		2E
807158DH	WENGER	Alexandre	20/08/2005	allemand	anglais		2A
666702FA	YAMAN	Elamine	23/04/2005	anglais	arabe		2D

Extrait du fichier seconde_lyc.csv

Pour les besoins de l'organisation du lycée, le chef d'établissement exploite la base de données par des requêtes en langage SQL. Il a pour cela créé une table (ou relation) SQL dénommée seconde dans son système de gestion de bases de données dont la structure est la suivante :

L'attribut num_eleve est un entier, les autres sont des chaines de caractère (le type CHAR).

Question 1

Pouvoir récupérer et afficher de manière plus organisée des données (ici issues

- 1. Dans le modèle relationnel, quel est l'intérêt de l'attribut num_eleve.d'un tableau)
- 2. Écrire une requête SQL d'insertion permettant d'enregistrer l'élève ACHIR Mussa dans la table seconde. Les informations relatives à cet élève sont données dans la ligne 1 du fichier seconde_lyc.csv.

get_num_eleve=get_nom=prenom=get_daten=get_langue1=get_langue2=get_option=get_classe="" selectors=["num_eleve","nom,prenom","datenaissance","langue1","langue2","option","classe"] inserters=[get_num_eleve,get_nom,prenom,get_daten,get_langue1,get_langue2,get_option,get_classe] for i in range(len(inserters)): if selectors[i]=="num_eleve":

inserters[i]==int(input("Entrez la valeur pour '{}':".format(selectors[i])))

else:

inserters[i]=input("Entrez la valeur pour '{}':".format(selectors[i]))

for i in range(len(inserters)):

SELECT selectors[i] INSERT inserters[i]

page 9 de 12

Get_id=int(input("Entrez le numéro de l'élève"))
Get_sect=input("Entrez le nom de la colonne que vous désirez modifier")
Get_new=input("Entrez la nouvelle donnée"))
FROM num_eleve[Get_id] select Get_sect[num_eleve[Get_id]]
INSERT Get_new INTO Get_sect[num_eleve[Get_id]]

3. Lors de l'insertion de l'élève ALTMEYER Yohan (ligne 2 du fichier seconde_lyc.csv), une erreur de saisie a été commise sur la première langue, qui devrait être allemand. Écrire une requête SQL de mise à jour corrigeant les données de cet élève.

Question 2 On suppose maintenant que la table seconde contient les informations issues de la figure 1 (ni plus, ni moins, même si la figure 1 n'est qu'un extrait du fichier seconde_lyc.csv).

1. Quel est le résultat de la requête

SELECT num_eleve FROM seconde ; ?

2. On rappelle qu'en SQL, la fonction d'agrégation COUNT() permet de compter le nombre d'enregistrements dans une table.

Quel est le résultat de la requête

SELECT COUNT(num_eleve) FROM seconde ;?

3. Écrire la requête permettant de connaître le nombre d'élèves qui font allemand en langue1 ou langue2.

Question 3 Le chef d'établissement souhaite faire évoluer la structure de sa base de données. Pour ce faire, il créé une nouvelle table eleve dont la structure est la suivante :

eleve
num_eleve (clef primaire,
clef étrangère de la table seconde)
nom
prenom
datenaissance

Là encore, l'attribut num_eleve est un entier, les autres sont des chaines de caractère (le type CHAR).

- 1. Expliquer ce qu'apporte l'information clef étrangère pour l'attribur num_eleve de cette table en termes d'intégrité et de cohérence.
- 2. On suppose la table eleve correctement créée et complétée. Le chef d'établissement aimerait lister les élèves (nom, prénom, date de naissance) de la classe 2A.

Écrire la commande qui permet d'établir cette liste à l'aide d'une jointure entre eleve et seconde.

Question 4 Proposer la structure d'une table coordonnees dans laquelle on pourra indiquer, pour chaque élève, son adresse, son code postal, sa ville, son adresse mail. Préciser la clef primaire et/ou la clé étrangère en vue de la mise en relation avec les autres tables.

Cet exercice porte sur les réseaux en général et les protocoles RIP et OSPF en particulier.

On considère un réseau composé de plusieurs routeurs reliés de la façon suivante :

Le protocole RIP

Le protocole RIP permet de construire les tables de routage des différents routeurs, en indiquant pour chaque routeur la distance, en nombre de sauts, qui le sépare d'un autre routeur. Pour le réseau ci-dessus, on dispose des tables de routage suivantes :

Table de routage				
	du routeur A			
Destination	Routeur suivant	Distance		
В	В	1		
С	С	1		
D	D	1		
Е	С	2		
F	С	2		
G	С	3		

Table de routage					
	du routeur B				
Destination Routeur suivant Distance					
A	A	1			
С	A	2			
D	D	1			
Е	D	2			
F	A	3			
G	D	3			

Table de routage				
	du routeur C			
Destination Routeur suivant Distance				
A	A	1		
B A		2		
D	E	2		
Е	E	1		
F	F	1		
G	F	2		

Table de routage					
	du routeur D				
Destination	Routeur suivant	Distance			
A	A	1			
В	В	1			
С	E	2			
Е	E	1			
F	A	3			
G	Е	2			

Table de routage				
	du routeur E			
Destination	Routeur suivant	Distance		
A	С	2		
В	D	2		
С	С	1		
D	D	1		
F	G	2		
G	G	1		

Table de routage				
	du routeur F			
Destination	Routeur suivant	Distance		
A	С	2		
В	С	3		
С	С	1		
D	С	3		
Е	G	2		
G	G	1		

Question 1

- 1. Le routeur A doit transmettre un message au routeur G, en effectuant un nombre minimal de sauts. Déterminer le trajet parcouru.
- 2. Déterminer une table de routage possible pour le routeur G obtenu à l'aide du protocole RIP.

Question 2 Le routeur C tombe en panne. Reconstruire la table de routage du routeur A en suivant le protocole RIP.

Le protocole OSPF

Contrairement au protocole RIP, l'objectif n'est plus de minimiser le nombre de routeurs traversés par un paquet. La notion de distance utilisée dans le protocole OSPF est uniquement liée aux coûts des liaisons. L'objectif est alors de minimiser la somme des coûts des liaisons traversées.

Le coût d'une liaison est donné par la formule suivante :

$$coût = \frac{10^8}{d}$$

où d est la bande passante en bits/s entre les deux routeurs.

On a rajouté sur le graphe représentant le réseau précédent les différents débits des liaisons.

On rappelle que 1 Gb/s = $1~000~\mathrm{Mb/s} = 10^9~\mathrm{bits/s}$.

Question 3

- 1. Vérifier que le coût de la liaison entre les routeurs A et B est 0,01.
- 2. La liaison entre le routeur B et D a un coût de 5. Quel est le débit de cette liaison?

Question 4 Le routeur A doit transmettre un message au routeur G, en empruntant le chemin dont la somme des coûts sera la plus petite possible. Déterminer le chemin parcouru. On indiquera le raisonnement utilisé.