

Fundamentos Computacionais

Exercícios - Lógica Proposicional

- 1. Use lógica proposicional para provar a validade dos seguintes argumentos:
- a. Se Edecio é o autor, então o livro é de suspense. Mas o livro não é de suspense. Portanto, Edecio não é o autor.

A = Edecio é o Autor

S = O Livro é de Suspense

Fórmula: (A -> S) ^ ~S -> ~A

1. A -> S hip

2. ~S hip

3. ... ~A conc

4. ~A 1,2 mt

A→B
→B
→B
→A Modus Tollens / mt

- **b**. Se tivesse dinheiro, iria ao cinema. Se fosse ao cinema, me encontraria com João. Não me encontrei com João. Portanto, não tinha dinheiro.
 - **D** = Ter **D**inheiro
 - C = Ir ao Cinema
 - E = Ir me Encontrar com João

Fórmula: (D -> C) ^ (C -> E) ^ ~E -> ~D

- 1. D -> C hip
 2. C -> E hip
 3. ~E hip
 4. ... ~D conc
 5. D -> E 1,2 sh
 6. ~D 5,3 mt
- $A \rightarrow B$ $\rightarrow B$ $\rightarrow A$ Modus Tollens / mt

Ou então:

- D → C
 D → D
 D → D
 D → D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 D ← D
 <li
- c. Ou voltamos ao baile ou ficamos na rua conversando. Decidimos não voltar ao baile. Logo, ficamos na rua conversando.

B = Voltar ao **B**aile

R = Ficar na **R**ua conversando

Fórmula: $B \vee R \wedge {}^{\sim}B \rightarrow R$

1. B v R hip
2. ~B hip
3. ∴ R conc
4. R 1,2 sd

A ∨ B ¬A

B

Silogismo Disjuntivo / sd

Unisenac Centro Universitário RS

d. Se estudo, sou aprovado em lógica.

Se não jogo vôlei, então estudo.

Não fui aprovado em lógica. Portanto, joguei vôlei.

E = **E**studar

L = Ser aprovado em Lógica

V = Jogar **V**ôlei

Fórmula: (E -> L) ^ (~V -> E) ^ ~L -> V

1. E -> L

hip

2. ~V -> E

hip

3. ~L

hip

4. ... V

conc

5. **~E**

1,3 mt

6. **~~V**

2,5 mt

7. **V**

6 dn

Para a expressão	Podemos deduzir	Nome/Abreviação
$\begin{array}{c} A \to B \\ A \end{array}$	В	Modus Ponens / mp
$\begin{array}{c} A \rightarrow B \\ \neg B \end{array}$	¬A	Modus Tollens / mt
A B	$A \wedge B$	Conjunção / conj
$A \wedge B$	A B	Simplificação / simp
Α	$A \vee B$	Adição / ad
A∨B ⊸A	В	Silogismo Disjuntivo / sd
$A \rightarrow B$ $B \rightarrow C$	$A \to C$	Silogismo Hipotético / sh

e. Se o time joga bem, então ganha o campeonato.

Se o time não joga bem, então o técnico é culpado.

Se o time ganha o campeonato, então os torcedores ficam contentes.

Os torcedores não estão contentes. Logo, o técnico é culpado.

B = O time joga Bem

G = O time **G**anha o campeonato

T = O Técnico é o culpado

C = Os torcedores ficam **C**ontentes

Fórmula: $(B -> G) \land (^{\sim}B -> T) \land (G -> C) \land (^{\sim}C -> T)$

- 1. B -> G
- hip
- 2. ~B -> T
- hip
- 3. G-> C
- hip
- 4. ~C
- hip
- 5. **.:. T**
- conc
- 6. **B** -> **C**
- 1,3 sh
- 7. **~B**
- 6,4 mt
- 8. **T**
- 2,7 mp

Ou

- 6. ~G
- 3,4 mt
- 7. ~B
- 1,6 mt
- 8. T
- 2,7 mp

Unisenac Centro Universitário RS

f. Se segurança é um problema, então o controle será aumentado. Se segurança não é um problema, então os negócios na internet irão aumentar. Portanto, se o controle não for aumentado, os negócios na Internet crescerão.

S = Segurança é um problema

C = **C**ontrole será aumentado

I = Negócios na Internet irão aumentar

Fórmula: S -> C ^ ~S -> I ^ ~C -> I

1. S -> C

hip

2. **~S -> I**

hip

3. **~C**

hip

4. .:.

conc

5. **~S**

1,3 mt

6. I

2,5 mp

g.

Se o anúncio for bom então o volume de vendas aumentará. Ou o anúncio é bom ou a loja vai fechar.

O volume de vendas não vai aumentar então, a loja vai fechar.

A = Anúncio for bom

V = Volume de vendas aumentará

F = A loja vai **F**echar

Fórmula: A -> V ^ A v F ^ ~V -> F

1. A -> V

hip

2. A v F

hip

3. ~V

hip

4. .:. F

conc

5. ~A

1,3 mt

6. F

2,5 sd

h. Se Julia ganhou dinheiro então comprará um tênis ou um relógio.

Sei que Julia não comprará um relógio. Portanto, se Julia não comprar um tênis, não ganhou dinheiro.

D = Julia ganhou **D**inheiro

T = Julia comprou Tênis

R = Julia comprou Relógio

Fórmula: D -> (T v R) ^ ~R ^ ~T -> ~D

1. D -> T v R hip

2. ~R hip

3. ~T hip

4. ~D conc

5. ~T ^ ~R 3,2 conj

6. ~(T v R) 5 De Morgan

7. ~D 1,6 mt

2. Marque a resposta correta

a. Considere as seguintes premissas

"Daniel é elegante e inteligente, ou Daniel é simpático".

"Daniel não é simpático".

A partir dessas premissas, conclui-se que Daniel

A () "não é elegante ou não é inteligente".

B (x) "é elegante e inteligente".

C () "é elegante e não é inteligente".

D () "não é elegante e não é inteligente".

E () "não é elegante e é inteligente".

D - Daniel ser elegante e inteligente

S - Daniel ser Simpático

 $D_{(?)} \ V \ S_{(?)} \ V$

~S_(?) V

 $D_{(V)}$ V $S_{(F)}$ V

v 3(F) ~S(V)

Unisenac Centro Universitário RS

b. Vanilza é inocente ou Cleber é inocente. Se Cleber é inocente, então Fabiana é culpada. Fabiana é inocente se e somente se Dener é culpado. Ora, Dener é culpado. Logo,

A () Fabiana e Cleber são inocentes

B (x) Vanilza e Fabiana são inocentes

- C () Vanilza e Cleber são inocentes
- D () Fabiana e Dener são culpados
- E () Vanilza e Dener são culpados

~**D**(v)

3. Prove, a partir da construção de tabelas-verdade, a validade das deduções das seguintes regras de inferência:

a. Modus Tollens

Modus Tollens p -> q -> ~q -> ~p

р	q	(p -> q)
V	>	V
V	F	F
F	V	٧
F	F	V

р	q	~ q	∼ p	~q -> ~p
٧	٧	F	F	V
/	F	V	F	V
F	V	F	V	٧
F	F	V	V	V

<mark>p -> q</mark> -> <mark>~q -> ~p</mark>
V
٧
V
V

b. Silogismo Disjuntivo

Silogismo Disjuntivo ((p v q) ^ ~p) -> q

р	q	p v q	~ p	(p v q) ^ ~p)
V	٧	V	F	F
V	F	V	F	F
F	٧	V	٧	V
F	F	F	V	F

q	
٧	
F	
٧	
F	

(<mark>(p v q) ^ ~p</mark>) -> <mark>q</mark>
V
V
V
V

c. Silogismo Hipotético

Silogismo Hipotético ((p -> q) ^ (q -> r)) -> (p -> r)

р	q	r	p -> q	q -> r	(p -> q) ^ (q -> r)
V	V	V	V .	V	V
V	V	F	V	F	F
V	F	V	F	V	F
V	F	F	F	V	F
F	V	V	V	V	V
F	V	F	V	F	F
F	F	٧	V	V	V
F	F	F	V	V	V

p -> r
V
F
V
F
V
V
V
V

$((p -> q) \land (q -> r)) -> (p -> r)$
V
V
V
V
V
V
V
V