Rado's Theorem

Jack, Chang

July 20, 2021

Introduction

- Last time Jack talked about Schur's theorem and Schur's Number.
- Schur's theorem was taken further by his Ph.D student Richard Rado.
- ▶ In 1930, Rado determined that linear equations in the form of $\sum_{i=1}^{k} c_i x_i = 0$ are guaranteed to have monochromatic solutions under any finite coloring of \mathbb{Z}^+ .

Definitions

Definition (Coloring)

An r-coloring of a set S is a function $\chi: S \to C$, where |C| = r.

We can think of an r-coloring of a set S as a partition of S into r subsets S_1, S_2, \ldots, S_r , by associating the subset S_i with the set $\{x \in S : \chi(x) = i\}$.

Definition (Monochromatic)

A coloring χ is monochromatic on a set S if χ is constant on S.

Definitions cont'd

Definition (Regularity)

For $r \geq 1$, a linear equation D is called r-regular if there exists n = n(D; r) such that for every r-coloring of [1, n] there is a monochromatic solution to D. The equation D is r-gular if it is r-regular for all $r \geq 1$.

Definition (Rado Number)

The Rado Number of an equation D is a theoretical quantity associated to D. For any equation D, the Rado Number $R_r(D)$ is the smallest N such that any r coloring $\chi:\{1,2,\ldots,N\} \to \{1,2,\ldots,r\}$ must induce a monochromatic solution to D.

Rado's Theorem

One of the initial discoveries of Rado was the following theorem:

Theorem

Let k3 and $c_i \in \mathbb{Z}^+ - \{0\}$ for $i = 1, 2, \ldots, k$. Let D represent the equation $\sum_{i=1}^k c_i x_i = 0$. If there exist some $i, j \in \{1, 2, \ldots, k\}$ such that $c_i < 0$ and $c_j > 0$, then D is 2-regular.

Proof

Proof

We start by rewriting D as $\sum_{i=1}^{m} \alpha_i y_i = \sum_{i=1}^{n} \beta_i z_i$, where $m \ge 2, n \ge 1$, all of the coefficients are positive.

We consider a subset of the solution to D, where

$$y = y_1 = y_2 = \cdots = y_{m-1}, w = y_m, \text{ and } z = z_1 = z_2 = \cdots = z_n.$$

The equation D now can be rewritten as ay + bw = cz, where $a = \sum_{i=1}^{m-1} \alpha_i, b = a_m, c = \sum_{i=1}^n \beta_i$.

We will now show that with any 2-coloring of \mathbb{Z}^+ , there must exists a monochromatic solution to D.

Let's consider all possible solution to D, for each of the solution (y,w,z), we want to determine the $\max(y,w,z)$. Let $(\bar{y},\bar{w},\bar{z})$ be solution where this maximum is minimal and we define $A=\max(\bar{y},\bar{w},\bar{z})$.

Note that [1, ..., A] contains a solution to D.

Proof Cont'd

Proof

Assume for the sake of contradiction, that there exists a 2-coloring of \mathbb{Z}^+ with no monochromatic solution to D. For the two colors, let them be red and blue.

Let $I=\text{lcm}\left(\frac{a}{\gcd(a,b)},\frac{c}{\gcd(b,c)}\right)$ so that $\frac{bI}{a},\frac{bI}{c}$ are positive integers. Without the loss of generality, we can assume that I is colored red. Let s be the smallest element in $\{i\cdot I:i=2,\ldots,A\}$ that is blue. s must exists since $\{i\cdot n:i=1,2,\ldots,A\}$ is not monochromatic for any $n\in\mathbb{Z}^+$, otherwise, $(n\bar{y},n\bar{w},n\bar{z})$ will be a monochromatic solution, contradict our assumption.

Now, for some $p \in \mathbb{Z}^+$, we have $t = \frac{b}{a}(s-l)p$ is blue, otherwise contradicting the above equation since $\frac{b}{a}(s-l)p$ is a positive integer.

Now, $q = \frac{b}{c}((s-l)p+s)$ must be red, otherwise (t,s,q) would be a solution to D and it is monochromatic(blue).

Proof Cont'd

Proof

To see this, let's plug (t, s, q) into D.

$$ay + bw = cz$$

$$a(\frac{b}{a}(s-l)p) + bs = c(\frac{b}{c}((s-l)p + s))$$

$$bsp - blp + bs = bsp - blp + bs$$

With similar reasoning, since we know that both l,q are red, $\frac{b}{a}(s-l)(p+1)$ must be blue, for otherwise $(\frac{b}{a}(s-l)(p+1),l,q)$ is another monochromatic(red) solution.

$$a(\frac{b}{a}(s-l)(p+1)) + bl = c(\frac{b}{c}((s-l)p+s))$$
$$bsp - blp + bs - bl + bl = bsp - blp + bs$$

Proof Cont'd

Proof.

From before, we know that $t=\frac{b}{a}(s-l)p$ and $\frac{b}{a}(s-l)(p+1)$. Since p was chosen randomly in \mathbb{Z}^+ , we can see that $\{i\cdot\frac{b}{a}(s-l):i=p,p+1,\dots\}$ is monochromatic. In particular, we arrive at the following:

$$\{i \cdot \frac{b}{a}(s-l) : i = 1, 2, \dots, A\}$$

is monochromatic, which contradicting our assumption.

Rado's Theorems

- ► The above theorem cannot be extended to 3 colors, since it is known that x + 2y 4z = 0 is not 3—regular.
- ► This hints that there must exists a stronger condition on the equation's coefficients to guarantee regularity.

Theorem (Rado's Single Equation Theorem)

Let $k \geq 2$, Let $c_i \in \mathbb{Z} \setminus \{0\}$, for all $i \in \{1, 2, ..., k\}$, be constants. Then

$$\sum_{i=1}^k c_i x_i = 0$$

is regular if and only if there exists a nonempty subset $C_s \subset \{c_i : 1 \le i \le k\}$ such that $\sum_{d \in C_s} d = 0$.

Rado's Theorem

- ▶ In Rado's original paper, he conjectured that for all $r \in \mathbb{Z}^+$, there must exists equations that are r-regular but not (r+1)-regular.
- This conjecture has been resolved with a very recent paper with the following theorem:

Theorem

For every $r \in \mathbb{Z}^+$, the equation

$$\sum_{i=1}^{r} \frac{2^{i}}{2^{i} - 1} x_{i} = \left(\sum_{i=1}^{r} \frac{2^{i}}{2^{i} - 1} - 1\right) x_{r} + 1$$

is r-regular but not (r+1)-regular.

Another View to Rado's Theorem

We can also view Rado's theorem in a different way.

Definition

Let A be an $m \times n$ matrix with rational entries. A is partition regular(PR) if whenever \mathbb{N} is finitely colored, there exists a monochromatic solution $x \in \mathbb{N}^n$ where Ax = 0.

Example

A = [1, 1, -1] is partition regular. Let x = [a, b, c]

$$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a + b - c = 0.$$

By Schur's theorem, there will exists solution x that is monochromatic, thus A is PR.

Another View to Rado's Theorem

Lemma

A is PR if and only if λA is PR for all $\lambda \in \mathbb{Q} \setminus \{0\}$.

Proof.

It is easy to see that assume A is PR, then there will exists a monochromatic solution $x \in \mathbb{N}^n$ such that Ax = 0. The associative law implies that $(\lambda A)x = \lambda(Ax) = 0$. Thus, λA is PR. The other direction can be proven simply replacing multiplication with division.

- ▶ There are some consequences of this lemma, hinting that if a particular equation having x as its Rado Number, then any constant multiple to this equation would have the same Rado Number. As long as the constant is in $\mathbb{Q} \setminus \{0\}$.
- Jack will talk more about computed Rado's number and some symmetries within them.

Blank

Rado numbers $R_3(a(x - y) = bz)$

ba	1	2	3	4	5	6	7	8
1	14	14	27	64	125	216	343	512
2	43	14	31	14	125	27	343	64
3	94	61	14	73	125	14	343	512
4	173	43	109	14	141	31	343	14
5	286	181	186	180	14	241	343	512
6	439	94	43	61	300	14	379	73
7	638	428	442	456	470	462	14	561
8	889	173	633	43	665	109	644	14
9	1198	856	94	892	910	61	896	896
10	1571	286	1171	181	43	186	1190	180

Italicized numbers denote equations that are multiples of an equation whose Rado number is already computed.

Rado numbers $R_3(a(x - y) = bz)$

ba	1	2	3	4	5	6	7	8
1	14	14	27	64	125	216	343	512
2	43	14	31	14	125	27	343	64
3	94	61	14	73	125	14	343	512
4	173	43	109	14	141	31	343	14
5	286	181	186	180	14	241	343	512
6	439	94	43	61	300	14	379	73
7	638	428	442	456	470	462	14	561
8	889	173	633	43	665	109	644	14
9	1198	856	94	892	910	61	896	896
10	1571	286	1171	181	43	186	1190	180

[Myers '15]
$$R_3(x - y = bz) = (b+2)^3 - (b+2)^2 - (b+2) - 1$$

Definition

The generalized Schur number S(k, m) is the Rado number

$$R_k(x_1 + x_2 + \cdots + x_{m-1} = x_m).$$

$$S(k, m) = m^3 - m^2 - m - 1.$$

Definition

The generalized Schur number S(k, m) is the Rado number

$$R_k(x_1 + x_2 + \cdots + x_{m-1} = x_m).$$

$$S(k, m) = m^3 - m^2 - m - 1.$$

The equation x - y = (m - 2)z is equivalent to $x_1 + (m - 2)x_{m-1} = x_m$

Definition

The generalized Schur number S(k, m) is the Rado number

$$R_k(x_1 + x_2 + \cdots + x_{m-1} = x_m).$$

$$S(k, m) = m^3 - m^2 - m - 1.$$

- The equation x y = (m 2)z is equivalent to $x_1 + (m 2)x_{m-1} = x_m$
- ► Setting $x_2 = x_3 = \cdots = x_{m-1}$ shows that $S(k, m) \le R_k(x_1 + (m-2)x_{m-1} = x_m)$

Definition

The generalized Schur number S(k, m) is the Rado number

$$R_k(x_1 + x_2 + \cdots + x_{m-1} = x_m).$$

$$S(k, m) = m^3 - m^2 - m - 1.$$

- The equation x y = (m 2)z is equivalent to $x_1 + (m 2)x_{m-1} = x_m$
- Setting $x_2 = x_3 = \cdots = x_{m-1}$ shows that $S(k, m) \le R_k(x_1 + (m-2)x_{m-1} = x_m)$
- Myers's conjecture implies the conjecture for generalized Schur numbers