Unidade 04 Caminhos

Prof. Ricardo Moraes

Universidade Federal de Santa Catarina

.

O que trata?

- Problemas Eulerianos;
- Caminhos Hamiltonianos;
- Menor Caminho entre dois vértices.

Grafos Eulerianos

- Um grafo G é dito ser euleriano se há um ciclo em G que contenha todas as suas arestas.
- Este ciclo é dito ser um ciclo euleriano.

Grafos Eulerianos Teorema

- Existe um caminho euleriano em um grafo conexo se, e somente se, não houver nenhum ou existirem exatamente dois vértices de grau ímpar.
 - Nenhum vértice de grau ímpar: o caminho pode começar em qualquer vértice e terminará neste mesmo vértice;
 - □ Dois vértices de grau ímpar: o caminho deve começar em um vértice ímpar e terminar no outro.

Grafos Eulerianos Problema 1: Pontes de Königsberg

- Conjunto de sete pontes na Cidade de Königsberg; conectavam duas ilhas (A e D) entre si e as ilhas com as margens (B e C).
- Pergunta: é possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes por qualquer uma delas?

Grafos Eulerianos Problema 2: Desenho da casa

É possível por a ponta do lápis numa das bolinhas e com movimentos contínuos (sem levantar e sem retroceder o lápis) traçar as linhas que formam o desenho da casa, traçando cada linha uma única vez?

Exercício 14

Determine se existe ou n\u00e3o um caminho de Euler.
 Caso exista, informe uma rota poss\u00e1vel.

Grafos Hamiltonianos

É possível entrar na casa, passar por todas as portas somente uma vez e sair da casa?

Grafos Hamiltonianos

Um grafo G(V,A) é dito ser hamiltoniano se existe um ciclo que passa exatamente uma vez em cada um dos vértices de G

hamiltoniano

não hamiltoniano

м

Grafos Hamiltonianos

- Não existe uma caracterização para identificar grafos hamiltonianos como existe para os eulerianos;
- A busca de tal caracterização é um dos maiores problemas ainda não solucionados da teoria dos grafos;
- Muito pouco é conhecido dos grafos hamiltonianos;
- A maioria dos teoremas existentes são da forma:
 "Se G possui arestas suficientes, então G é hamiltoniano";

×

Grafos Hamiltonianos – Método Exato

- Este método envolve a geração de todos os caminhos simples por multiplicação sucessiva de matriz. Envolve os seguintes passos:
- P1. Construa inicialmente a matriz de adjacência A do grafo.
- P2. Construa a matriz B(n x n) da seguinte forma:

$$b_{ij} = \left\{ \begin{array}{c} v_j, \ \ \text{se existe a aresta} \ (v_i, \, v_j) \\ \\ 0, \ \ \text{Caso contrário} \end{array} \right.$$

■ P3. Faça P1 ← A;

•

Grafos Hamiltonianos – Método Exato

- P4. Para i=1,2,..., n-1 faça
 - $\square P_{i+1} \leftarrow B \times P_i$

OBS:

- Os elementos da matriz P são cadeias de caracteres (vértices) e não números. A operação multiplicação significa a concatenação do caracteres e a soma representa a divisão de duas ou mais cadeias de caracteres.
- Cada elemento da matriz Pi representa um caminho hamiltoniano de comprimento i + 1 entre os vértices s e t.
- Para todo P_{i +1} a diagonal é zero, assim como todo caminho de s até t contendo s.

m

Grafos Hamiltonianos – Exemplo

Determinar os caminhos hamiltonianos do grafo abaixo através do método algébrico:

A solução está no Moodle

Problema do Menor Caminho Relembrando Conceitos:

CADEIA

- Cadeia é qualquer seqüência de arestas onde o vértice final de uma aresta é o vértice inicial da próxima;
- Sendo o tamanho de uma cadeia dado pelo número de arestas percorridos.

CAMINHO

Um caminho é uma cadeia na qual todos os arcos possuem a mesma orientação.

Problema do Menor Caminho Relembrando Conceitos

- Podemos deduzir que em grafos conexos não orientados e ponderados, sempre existe um caminho entre quaisquer dois vértices x e y.
- De fato, pode haver vários desses caminhos.
- A pergunta é como encontrar um caminho com o menor peso? Como os pesos geralmente representam distâncias, este problema ficou conhecido como problema do "caminho mínimo".

Problema do Caminho de Custo Mínimo

- O problema de encontrar o caminho de custo mínimo entre dois vértices de um grafo é o mais importante relacionado com a busca de caminhos em grafos em vista de sua aplicação à várias situações da realidade.
- Assim sendo, é importante termos soluções computacionais viáveis para resolver problemas desse tipo.

Problema do Caminho de Custo Mínimo

- Há um grande número de situações possível quando da obtenção deste caminho, a exemplo de: existência ou não de ciclos; determinação do caminho ou apenas do custo mínimo; etc.
- Dada esta diversidade de situações, há um número razoável de algoritmos que foram propostos ao longo do tempo, dentre os quais os algoritmos de Dijkstra e de Floyd se destacam.
- O problema do menor caminho consiste em determinar um menor caminho entre um vértice de origem s ∈ V e todos os vértices v de V.

M

Algoritmo de Floyd

Considere que a matriz de custo foi iniciada de tal modo que $d_{ii} = 0$ para todo i = 1, 2,....n e que $d_{ij} = \infty$, quando não existe a aresta (x_i, x_j) . $d_{ij} = C(x_i, x_j)$ se $\exists (x_i, x_j)$.

- P1. Faça $K \leftarrow 0$;
- P2. Faça $k \leftarrow k+1$;
- P3. Para todo $i \neq k$ tal que di $k \neq \infty$ e todo $j \neq k$ tal que d $kj \neq \infty$

Faça
$$d_{ij}^{k} = \min[d_{ij}^{k-1}, (d_{ik}^{k-1} + d_{kj}^{k-1})]$$

- P4. Teste de finalização
- a) Se algum d_{ii} >= 0, e k = n, a solução foi achada, e [d_{ij}] fornece os comprimentos de todos os menores caminhos. Pare.
- b) Se todo $d_{ii} \ge 0$ mas $k \le n$, então retorne a P2.

$$d_{ij}^{k} = \min[d_{ij}^{k-1}, (d_{ik}^{k-1} + d_{kj}^{k-1})]$$

Exemplo:

$$k = 2$$
 $i = 1$ $j = 2$

$$d_{12}^2 = \min \left[d_{12}^1, \left(d_{12}^1 + d_{22}^1 \right) \right]$$

$$d_{12}^2 = \min[5, (5+0)] = (5,5) = 5$$

D0 = D1 =

0	5	œ	3	œ
œ	0	3	%	8
œ	8	0	8	5
1	1	8	0	1
œ	1	8	1	0

novo valor

0	5	8	3	8
8	0	3	8	8
8	8	0	œ	5
1	1	4	0	1
8	1	4	1	0

$$d_{ij}^{k} = \min[d_{ij}^{k-1}, (d_{ik}^{k-1} + d_{kj}^{k-1})]$$

Exemplo:

k = 2 i = 1 j = 3

$$d_{13}^{2} = \min \left[d_{13}^{1}, \left(d_{12}^{1} + d_{23}^{1} \right) \right]$$

$$d_{13}^2 = \min[\infty, (5+3)] = (\infty, 8) = 8$$

D0 = D1 =

0	5	œ	3	œ
œ	0	3	8	8
œ	8	0	8	5
1	1	8	0	1
œ	1	8	1	0

D2=

novo valor/

0	5	8	3	8
œ	0	3	8	8
09/	8	0	%	5
1	1	4	0	1
œ	1	4	1	0

$$d_{ij}^{k} = \min[d_{ij}^{k-1}, (d_{ik}^{k-1} + d_{kj}^{k-1})]$$

Exemplo:

k = 2 i = 1 j = 4

$$d_{14}^{2} = \min \left[d_{14}^{1}, \left(d_{12}^{1} + d_{24}^{1} \right) \right]$$

$$d_{14}^2 = \min[3, (5+\infty)] = (3, \infty) = 3$$

$$D0 = D1 =$$

0	5	œ	3	œ
∞	0	3	8	8
œ	8	0	8	5
1	1	8	0	1
%	1	8	1	0

novo valor

0	5	8	3	8
œ	0	3	8	8
o	8	0	8	5
1	1	4	0	1
œ	1	4	1	0

novo valor

$$d_{ij}^{k} = \min[d_{ij}^{k-1}, (d_{ik}^{k-1} + d_{kj}^{k-1})]$$

Exemplo 2:

$$k = 2$$
 $i = 4$ $j = 3$

$$d_{43}^2 = \min \left[d_{43}^1, \left(d_{42}^1 + d_{23}^1 \right) \right]$$

$$d_{43}^2 = \min \left[\infty, (1+3) \right] = (\infty, 4) = 4$$

$$D0 = D1 =$$

0	5	%	3	8
∞	0	3	8	8
œ	8	0	œ	5
1	1	8	0	1
œ	1	8	1	0

0	5	8	3	8
œ	0	3	8	8
œ	8	0	8	5
1	1	* 4	0	1
00	1	4	1	0

.

Exercício 15

Aplicar o algoritmo de Floyd para o grafo abaixo, encontrando o menor caminho entre todos os pontos.

Matriz de Roteamento

- Em diversas situações deseja-se saber qual o menor caminho de um vértice a outro.
- Uma maneira de se conhecer esse caminho é através da matriz de roteamento.
- Baseia-se nos moldes do algoritmo de Floyd.

M

Fim

Matriz de Roteamento

```
Entrada: Matriz de Custos D
Saída:
            A → Matriz com os comprimentos dos menores caminhos
            R → Fornece o vértice k que é o primeiro a ser visitado no menor caminho de vi
    até vj.
Início
    Para i =1 até n Faça
            Para j = 1 até n Faça
                         A[i,j] \leftarrow D[i,j];
                         R[i,j] \leftarrow 0;
    Para i = 1 até n Faça
                                                                                         d_{ii}^{k} = MIN[d_{ii}^{k-1}, (d_{ii}^{k-1} + d_{ki}^{k-1})]
            A[i,i] \leftarrow 0;
    Para k = 1 até n Faça
             Para i = 1 até n Faça
                         Para j = 1 até n Faça
                                      Se A[i,k] + A[k,i] < A[i,i] então {aplica-se a função
                                                   A[i,j] \leftarrow A[i,k] + A[k,j];
                                                   R[i,j] \leftarrow k;
```

Matriz de roteamento - Exemplo

A partir da matriz de custo D, aplicando o algoritmo de Floyd Modificado, pode-se obter a matriz A, com os comprimentos dos menores caminhos e a matriz de roteamento R.

$$D = \begin{bmatrix} 0 & 1 & \infty & 5 & \infty \\ \infty & 0 & 1 & \infty & 1 \\ \infty & \infty & 0 & \infty & 5 \\ 1 & 3 & \infty & 0 & 1 \\ \infty & \infty & \infty & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 3 & 0 & 1 & 2 & 1 \\ 7 & 8 & 0 & 6 & 5 \\ 1 & 2 & 3 & 0 & 1 \\ 2 & 3 & 4 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 2 \\ 3 & 0 & 1 & 2 & 1 \\ 7 & 8 & 0 & 6 & 5 \\ 1 & 2 & 3 & 0 & 1 \\ 2 & 3 & 4 & 1 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} v1 & v2 & v2 & v5 & v2 \\ v5 & v2 & v3 & v5 & v5 \\ v5 & v5 & v3 & v5 & v5 \\ v1 & v1 & v2 & v4 & v5 \\ v4 & v4 & v4 & v4 & v5 \end{bmatrix}$$

Agora, por exemplo, para determinar a rota de v2 a v1, toma-se R[2,1] = v5, R[5,1] = v4, R[4,1] = v1.

Logo, a rota de v2 a v1 é v2 - v5 - v4 v1.

Exercício

- Apresente as seguintes rotas (baseado no exemplo anterior):
 - □ a) de v5 até v3;
 - □ b) de v4 até v2;
 - □ c) de v1 até v4;
 - □ d) de v3 até v2;
 - □ E) de v2 até v1.

Exercício 16

