1. Determine a so that the line

$$\frac{x-3}{a} = \frac{y+5}{2} = \frac{z+1}{4}$$

is parallel to the plane 2x + 3y - 5z = 14.

Direction vector u= (a, 2, 4) Normal to the plane $\vec{n} = \langle 2, 3, -5 \rangle$ The line and plane are parallel when i. n=2 a+6-20=0.

A.
$$a = -4$$

B.
$$a = 3$$

C.
$$a = -14$$

D.
$$a = -5$$

$$E. \ a=7$$

2. The line through (3,2,1) and (5,1,2) intersects the plane x+y+z=14 at the point

Direction vector: "= (5,1,2) - (3,2,1) = (2,-1,1> Parametric equations:

x=3+2t, y=2-t, z=1+t

$$A. (11, -2, 5)$$

B.
$$(8,4,2)$$

C.
$$(15, 0, -1)$$

D.
$$(10, -1, 5)$$

E. $(9, -3, 8)$

£ = 4

X+y+z=(3+2t)+(2-t)+(1+t)=14 $X = 11, \quad y = -2, \quad z = 5$

3. The vector-valued function $\vec{r}(t) = \vec{i} + (t\cos t)\vec{j} + (t\sin t)\vec{k}$, $0 \le t < \infty$ describes a

x=1, y=t cost, z=t sint

A. circle in a horizontal plane

The curve belongs to the vertical plane x=1.

- B. circle in a vertical plane
- C. spiral in a horizontal plane
- spiral in a vertical plane

In polar coords

 $(y,z)=(r\cos\theta,r\sin\theta)$ the curve is a spiral $r = \theta$

4. In spherical coordinates the two equations $\rho = 2$, $\phi = \pi/6$ describe

In cylindrical words z = p cos p = 13

This is a unit circle in the horizontal plane z= 13

A. a cone

a circle

C. a plane

D. a sphere

E. a cylinder

Alternatively, this is an intersection of the sphere p=2 and the upper half-cone \$= 11/6.

5. The curves $\vec{r}_1(t) = \langle t, t^2, 1 \rangle$ and $\vec{r}_2(t) = \langle \sin t, \sin 2t, 1 \rangle$ intersect at (0, 0, 1) at an angle θ , where $\cos \theta =$

Intersection point at
$$t=0$$
.

 $\vec{r}_{1}'(t) = \langle 1, 2t, 0 \rangle$, $\vec{r}_{1}'(0) = \langle 1, 0, 0 \rangle$
 $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(0) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(0) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle 1, 2, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 0 \rangle$, $\vec{r}_{2}'(t) = \langle ust, 2us2t, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 2us2t, 0 \rangle$
 $\vec{r}_{3}'(t) = \langle ust, 2us2t, 2us$

6. The level surfaces of the function $f(x, y, z) = x - y^2 - z^2$ are

The level surfaces: $x-y^2-z^2=k$ $(x-k)=y^2+z^2$

elliptic (circular) paraboloids

- A. ellipsoids
- B cones
- C. cylinders
- D. elliptic paraboloids
- E. hyperbolic paraboloids

7. Let $f(x,y) = e^{xy} \sin(x^2)$. Then $\frac{\partial^2 f}{\partial x \partial y}(\sqrt{\pi},0) =$

$$\frac{\partial f}{\partial y} = x e^{xy} \sin(x^2)$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) =$$

$$A. -2\pi$$

$$R = -2.\sqrt{\pi}$$

B.
$$-2\sqrt{\pi}$$
C. 0

E.
$$\sqrt{2\pi}$$

 $e^{xy} \sin(x^2) + xy e^{xy} \sin(x^2) + 2x^2 e^{xy} \cos(x^2)$

$$\frac{\partial^2 f}{\partial x \partial y} (\sqrt{\pi}, 0) = e^{\circ} \sin(\pi) + 0 \cdot e^{\circ} \sin(\pi) + 2\pi e^{\circ} \cos(\pi)$$

$$= -2\pi$$
One can start with $\frac{\partial f}{\partial x}$, too.

8. The area of the triangle with vertices (1,0,1), (1,1,0) and (0,1,1) is

Let
$$P = (1,0,1)$$
, $Q = (1,1,0)$, $R = (0,1,1)$

$$PQ = (0,1,-1)$$
, $PR = (-1,1,0)$

$$A = \frac{1}{2}$$

$$Area = \frac{1}{2} |PQ \times PR|$$

$$E = \sqrt{5}$$

9. A particle has acceleration $\vec{a}(t) = 6t\vec{j} + 2\vec{k}$. The initial position is $\vec{r}(0) = \vec{j}$ and the initial velocity is $\vec{v}(0) = \vec{i} - \vec{j}$. The distance from the position of the particle at time t=1 to the point (2,2,3) is

10. The curvature of the curve defined by the intersection of the cylinder $x^2 + y^2 = 1$ with the plane y + z = 2 at (0, 1, 1) is

(you may use the formula $\kappa = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}$)

Parametric equations: x=cost, y=sint, z=2-sint A. 1 Vector equation: F= Lost, sint, 2-sint> $P' = \angle - \sin t$, cost, - cost> E. 2 F" = <-cost, -sint, sint> $\vec{r} = \langle 0, 1, 1 \rangle$ corresponds to t = T/2 $\vec{r}'(\pi/2) = \langle -1, 0, 0 \rangle, \quad \vec{r}''(\pi/2) = \langle 0, -1, 1 \rangle$ Since \(\varphi'(\pi/2)\cdot\varphi'(\pi/2)=0, \|\varphi'(\pi/2)\x\varphi'(\pi/2)\|\varphi'(\pi) x = \v2/13 = \v2 Since | r (1/2) =1,