Forcing over choiceless models (4/4)

Philipp Schlicht

120 Years of the Axiom of Choice, Leeds, 8-12 July 2024

Outline

- 0. Introduction
- 1. Adding Cohen subsets by Add(A, 1)
 - Preliminaries
 - · Cohen's first model and Dedekind finite sets A
 - Properties of $Add(\kappa, 1)$ and fragments of DC
 - Adding Cohen subsets over $L(\mathbb{R})$
- 2. Chain conditions and cardinal preservation
 - · Variants of the ccc
 - · An iteration theorem
 - A ccc₂ forcing that collapses ω_1
- 3. Generic absoluteness principles inconsistent with choice
 - Hartog numbers
 - · Very strong absoluteness and consequences
 - · Gitik's model
- 4. Random algebras without choice
 - Completeness
 - CCC₂*

We analyse random algebras in ZF and show they can be iterated while preserving cardinals.

We analyse random algebras in ZF and show they can be iterated while preserving cardinals.

Let μ denote Lebesgue measure on 2^{ω} .

Random forcing consists of all Borel subsets of 2^{ω} with positive measure. Let $A \leq B$ if $A \subseteq_{\mu} B$ (i.e., $\mu(B \setminus A) = 0$).

We analyse random algebras in ZF and show they can be iterated while preserving cardinals.

Let μ denote Lebesgue measure on 2^{ω} .

Random forcing consists of all Borel subsets of 2^{ω} with positive measure. Let $A \leq B$ if $A \subseteq_{\mu} B$ (i.e., $\mu(B \setminus A) = 0$).

Fact

Any random real over V is random over every inner model $M \subseteq V$ of ZF.

Any Borel subset A of 2^{α} with the product topology has a countable support, so its Lebesgue measure $\mu(A)$ is well-defined.

In ZFC, the random algebra on α consists of Borel subsets of 2^{α} . Let $A \leq B$ if $A \subseteq_{\mu} B$.

Any Borel subset A of 2^{α} with the product topology has a countable support, so its Lebesgue measure $\mu(A)$ is well-defined.

In ZFC, the random algebra on α consists of Borel subsets of 2^{α} . Let $A \leq B$ if $A \subseteq_{\mu} B$.

 $\mathbb{R}_{\omega+\omega}$ is

- · a "product" of random reals with "random support"
- · a 2-step iteration of random forcing

Always suppose that α is multiplicatively closed.

Definition

An α -Borel code (for a subset of 2^{α}) is an element x of 2^{α} .

- If $x_0x_1 = 00$, then x codes a basic open set in the rest of x
- If $x_0x_1 = 01$, then x codes the complement of the set in the rest of x
- If $x_0x_1 = 10$, then x codes the union of the sets listed in the rest of x

A Borel code for a subset of 2^{α} is an α -Borel code with countable support.

• Let B_X denote the Borel (α -Borel) set coded by x.

Always suppose that α is multiplicatively closed.

Definition

An α -Borel code (for a subset of 2^{α}) is an element x of 2^{α} .

- If $x_0x_1 = 00$, then x codes a basic open set in the rest of x
- If $x_0x_1 = 01$, then x codes the complement of the set in the rest of x
- If $x_0x_1 = 10$, then x codes the union of the sets listed in the rest of x

A Borel code for a subset of 2^{α} is an α -Borel code with countable support.

• Let B_X denote the Borel (α -Borel) set coded by x.

Definition

The random algebra on α is the set of Borel codes for subsets of 2^{α} . It is quasi-ordered by $x \leq y$ if $B_x \subseteq_{\mu} B_y$.

Fact

- If 2^ω is a countable union of countable sets, then every subset of 2^ω is Borel
- If ω_1 is singular, then there exists a Borel subset of 2^ω without a Borel code.

Proposition

The random algebra on any α is

- · complete
- · locally complete
- $\cdot \ \ uniformly \ narrow$

Proposition

The random algebra on any α is

- · complete
- · locally complete
- · uniformly narrow

Local completeness is a property reminiscent of the fact that a maximal antichain in random forcing in an inner model is an antichain in *V*.

It is used to show that random algebras are narrow.

Proposition

The random algebra on any α is

- · complete
- · locally complete
- · uniformly narrow

Local completeness is a property reminiscent of the fact that a maximal antichain in random forcing in an inner model is an antichain in *V*.

It is used to show that random algebras are narrow.

Corollary

- · Random algebras can be iterated without collapsing cardinals.
- \cdot \mathbb{R}_* -absoluteness implies that all uncountable cardinals are singular.

 \mathbb{R}_* -absoluteness states that any \mathbb{R}_{κ} -generic extension has the same theory as V.

 \mathbb{R}_{α} is a quasi-Boolean algebra. Its quotient by $=_{\mu}$ is a Boolean algebra. To show that \mathbb{R}_{α} is complete, it suffices to show that every subset has a supremum.

 \mathbb{R}_{α} is a quasi-Boolean algebra. Its quotient by $=_{\mu}$ is a Boolean algebra. To show that \mathbb{R}_{α} is complete, it suffices to show that every subset has a supremum.

Theorem (Lebesgue's density theorem)

Suppose that A is a Lebesuge measurable subset of 2^{ω} . The set

$$D(A) := \{ x \in 2^{\omega} \mid \lim_{n \to \infty} \frac{\mu(A \cap N_t)}{\mu(N_t)} = 1 \}$$

of its density points satisfies $\mu(A\triangle D(A)) = 0$.

Hence A can be reconstructed up to a nullset from relative measures on basic open sets.

6

We modify this reconstruction to 2^{α} . Let $2^{(\alpha)}$ denote the set of finite partial functions $f: \alpha \to 2$.

Definition

For any $A \in \mathbb{R}_{\alpha}$, call

$$\underline{\mu_{\mathsf{A}}} = \langle \mu_{\mathsf{A},\mathsf{t}} := \frac{\mu(\mathsf{A} \cap \mathsf{N}_{\mathsf{t}})}{\mu(\mathsf{N}_{\mathsf{t}})} \mid \mathsf{t} \in 2^{(\alpha)} \rangle$$

its footprint.

We have $A \leq B \Leftrightarrow \mu_{A,t} \leq \mu_{B,t}$ for all $t \in 2^{(\alpha)}$.

Definition

Suppose that $x \in 2^{\alpha}$ and $\vec{\mu} = \langle \mu_t \mid t \in 2^{(\alpha)} \rangle$ is a sequence in $\mathbb{R}_{\geq 0}$.

1. For any $\epsilon > 0$, x is an ϵ -density point of $\vec{\mu}$ if

$$\exists s \ \forall t \supseteq s \ \mu_t > 1 - \epsilon.$$

2. x is a density point of $\vec{\mu}$ if x is an ϵ -density point of $\vec{\mu}$ for all $\epsilon \in \mathbb{Q}^+$.

8

Definition

Suppose that $x \in 2^{\alpha}$ and $\vec{\mu} = \langle \mu_t \mid t \in 2^{(\alpha)} \rangle$ is a sequence in $\mathbb{R}_{\geq 0}$.

1. For any $\epsilon > 0$, x is an ϵ -density point of $\vec{\mu}$ if

$$\exists s \ \forall t \supseteq s \ \mu_t > 1 - \epsilon.$$

2. x is a density point of $\vec{\mu}$ if x is an ϵ -density point of $\vec{\mu}$ for all $\epsilon \in \mathbb{Q}^+$.

Let $D(\mu)$ denote the α -Borel code induced by 2. Its definition is absolute between transitive models of ZF.

 $D(\mu)$ is not a Borel code, but we can reduce it to one.

Any lpha-Borel code A can be reduced to a Borel code as follows.

Definition

The reduct re(A) of A is the following Borel code.

- 1. If A codes a basic open set, then re(A) = A.
- 2. If A_0 codes $\neg A_1$, then $re(A_0)$ codes $\neg re(A_1)$.
- 3. If A codes $\bigcup_{i < \alpha} A_i$, then re(A) codes $\bigcup_{i \in I} re(A_i)$, where
 - *I* is the largest subset of α such that for each $j \in I$, A_j adds measure to $\bigcup_{j \in I \cap j} \operatorname{re}(A_i)$.

Any lpha-Borel code A can be reduced to a Borel code as follows.

Definition

The reduct re(A) of A is the following Borel code.

- 1. If A codes a basic open set, then re(A) = A.
- 2. If A_0 codes $\neg A_1$, then $re(A_0)$ codes $\neg re(A_1)$.
- 3. If A codes $\bigcup_{i < \alpha} A_i$, then re(A) codes $\bigcup_{i \in I} re(A_i)$, where
 - *I* is the largest subset of α such that for each $j \in I$, A_j adds measure to $\bigcup_{j \in I \cap j} \operatorname{re}(A_i)$.

Fact

In every outer model M where lpha is countable,

- $\operatorname{re}(A) =_{\mu} A$
- $D(\mu_A) =_{\mu} A$ by Lebesgue's density theorem in M.

 $\operatorname{re}(A) =_{\mu} A$ may fail in V, since A may be an ω_1 length union of singletons and CH holds.

By the previous fact, $A^* := \operatorname{re}(D(\mu_A)) =_{\mu} A$ in V. The map $A \mapsto A^*$ picks a representative in each equivalence class.

• We can replace \mathbb{R}_{α} by the set of A^* . This definition of \mathbb{R}_{α} is absolute between transitive models of ZF.

By the previous fact, $A^* := \operatorname{re}(D(\mu_A)) =_{\mu} A$ in V. The map $A \mapsto A^*$ picks a representative in each equivalence class.

• We can replace \mathbb{R}_{α} by the set of A^* . This definition of \mathbb{R}_{α} is absolute between transitive models of ZF.

Given a subset X of \mathbb{R}_{α} , we construct its supremum. Let

$$egin{aligned} \mu_{\mathsf{X},\mathsf{t}} &:= \sup_{\mathsf{A} \in \mathsf{X}} \mu_{\mathsf{A},\mathsf{t}} \ \\ \mu_{\mathsf{X}} &:= \langle \mu_{\mathsf{X},\mathsf{t}} \mid \mathsf{t} \in 2^{(lpha)}
angle \end{aligned}$$

By the previous fact, $A^* := \operatorname{re}(D(\mu_A)) =_{\mu} A$ in V. The map $A \mapsto A^*$ picks a representative in each equivalence class.

• We can replace \mathbb{R}_{α} by the set of A^* . This definition of \mathbb{R}_{α} is absolute between transitive models of ZF.

Given a subset X of \mathbb{R}_{α} , we construct its supremum. Let

$$\mu_{X,t} := \sup_{A \in X} \mu_{A,t}$$

$$\mu_{X} := \langle \mu_{X,t} \mid t \in 2^{(\alpha)} \rangle$$

Fact

In any outer model M of V where α is countable, $D(\mu_X)$ is a least upper bound for X.

Proof. If B is an upper bound for X, then $\mu_A \leq \mu_B$ for all $A \in X$ and hence $\mu_X \leq \mu_B$. Then $D(\mu_X) \leq D(\mu_B) =_{\mu} B$.

By the previous fact, $A^* := \operatorname{re}(D(\mu_A)) =_{\mu} A$ in V. The map $A \mapsto A^*$ picks a representative in each equivalence class.

• We can replace \mathbb{R}_{α} by the set of A^* . This definition of \mathbb{R}_{α} is absolute between transitive models of ZF.

Given a subset X of \mathbb{R}_{α} , we construct its supremum. Let

$$\mu_{X,t} := \sup_{A \in X} \mu_{A,t}$$

$$\mu_{X} := \langle \mu_{X,t} \mid t \in 2^{(\alpha)} \rangle$$

Fact

In any outer model M of V where α is countable, $D(\mu_X)$ is a least upper bound for X.

Proof. If B is an upper bound for X, then $\mu_A \leq \mu_B$ for all $A \in X$ and hence $\mu_X \leq \mu_B$. Then $\mathcal{D}(\mu_X) \leq \mathcal{D}(\mu_B) =_{\mu} B$.

Fact

 \mathbb{R}_{α} is complete.

Proof. $\operatorname{re}(D(\mu_X))$ is a least upper bound for X in some outer model and hence in V. \square

Definition

A forcing $\mathbb P$ is locally ccc if it is ccc in HOD_x for all finite x containing $\mathbb P$.

Definition

A forcing \mathbb{P} is locally ccc if it is ccc in HOD_x for all finite x containing \mathbb{P} .

The next property is weaker than the existence of definable suprema.

- · It holds for random algebras and all well-ordered forcings.
- It implies that any \mathbb{P} -generic filter over V is $(\mathbb{P} \cap \mathsf{HOD}_X)$ -generic over HOD_X .
- With locally ccc, it implies uniformly narrow. Hence well-ordered locally ccc forcings and random algebras can be iterated while preserving cardinals

Definition

A forcing \mathbb{P} is locally ccc if it is ccc in HOD_x for all finite x containing \mathbb{P} .

The next property is weaker than the existence of definable suprema.

- · It holds for random algebras and all well-ordered forcings.
- It implies that any \mathbb{P} -generic filter over V is $(\mathbb{P} \cap \mathsf{HOD}_X)$ -generic over HOD_X .
- With locally ccc, it implies uniformly narrow. Hence well-ordered locally ccc forcings and random algebras can be iterated while preserving cardinals

Definition

A forcing $\mathbb P$ is locally complete if there exists a finite set containing $\mathbb P$ such that: For any nonempty $A\subseteq \mathbb P$, there exists some $p\leq \sup(A)$ in $\mathbb P\cap HOD_{x\cup\{A\}}$.

Lemma

Suppose θ is an infinite ordinal and \mathbb{P} is a locally complete forcing.

- 1. If \mathbb{P} is ccc, then it is narrow.
- 2. If \mathbb{P} is locally ccc, then it is uniformly narrow.

Lemma

Suppose θ is an infinite ordinal and $\mathbb P$ is a locally complete forcing.

- 1. If \mathbb{P} is ccc, then it is narrow.
- 2. If \mathbb{P} is locally ccc, then it is uniformly narrow.

Proof sketch. We prove 2. The proof of 1 is similar.

Suppose that $f: \mathbb{P} \to \mu$ is a partial \parallel -homomorphism (generalised antichain).

Let
$$A := \operatorname{dom}(f)$$
, $A_{\alpha} := f^{-1}(\{\alpha\})$ and $\vec{A} = \langle A_{\alpha} \mid \alpha \in \operatorname{ran}(f) \rangle$.

Let $H := HOD_{x \cup \{\vec{A}\}}$, where x witnesses that $\mathbb P$ is locally complete.

Lemma

Suppose θ is an infinite ordinal and \mathbb{P} is a locally complete forcing.

- 1. If \mathbb{P} is ccc, then it is narrow.
- 2. If \mathbb{P} is locally ccc, then it is uniformly narrow.

Proof sketch. We prove 2. The proof of 1 is similar.

Suppose that $f: \mathbb{P} \to \mu$ is a partial \parallel -homomorphism (generalised antichain).

Let
$$A := \operatorname{dom}(f)$$
, $A_{\alpha} := f^{-1}(\{\alpha\})$ and $\vec{A} = \langle A_{\alpha} \mid \alpha \in \operatorname{ran}(f) \rangle$.

Let $H := HOD_{x \cup \{\vec{A}\}}$, where x witnesses that \mathbb{P} is locally complete.

For each $\alpha \in \operatorname{ran}(f)$, there exists some $p_{\alpha} \in \mathbb{P} \cap H$ with $p_{\alpha} \leq \sup(A_{\alpha})$. We can assume that p_{α} is least such p in the canonical well-order of H.

• Then $p_{\alpha} \perp p_{\beta}$ for all $\alpha \neq \beta$.

Lemma

Suppose θ is an infinite ordinal and \mathbb{P} is a locally complete forcing.

- 1. If \mathbb{P} is ccc, then it is narrow.
- 2. If \mathbb{P} is locally ccc, then it is uniformly narrow.

Proof sketch. We prove 2. The proof of 1 is similar.

Suppose that $f: \mathbb{P} \to \mu$ is a partial \parallel -homomorphism (generalised antichain).

Let
$$A := \operatorname{dom}(f)$$
, $A_{\alpha} := f^{-1}(\{\alpha\})$ and $\vec{A} = \langle A_{\alpha} \mid \alpha \in \operatorname{ran}(f) \rangle$.

Let $H := HOD_{x \cup \{\vec{A}\}}$, where x witnesses that \mathbb{P} is locally complete.

For each $\alpha \in \operatorname{ran}(f)$, there exists some $p_{\alpha} \in \mathbb{P} \cap H$ with $p_{\alpha} \leq \sup(A_{\alpha})$. We can assume that p_{α} is least such p in the canonical well-order of H.

• Then $p_{\alpha} \perp p_{\beta}$ for all $\alpha \neq \beta$.

Let $\lambda \leq \theta^+$ be the chain condition of $\mathbb{P} \cap H$ in H, i.e., the least ν such that there exists no antichain of size ν . This is always a regular cardinal in models of ZFC.

• Then $|\operatorname{ran}(f)|^H < \lambda \le \theta^+$.

Let G(f) be the least injective function $F: \operatorname{ran}(f) \to \theta$ in H.

Problem

Is \mathbb{R}_{κ} ccc₂ for every infinite cardinal κ ? Can there be Dedekind finite antichains?

Problem

Is \mathbb{R}_{κ} ccc_2 for every infinite cardinal κ ? Can there be Dedekind finite antichains?

Problem

Is \mathbb{R}_{ω_1} σ -linked in ZFC?

Problem

Is \mathbb{R}_{κ} CCC_2 for every infinite cardinal κ ? Can there be Dedekind finite antichains?

Problem

Is $\mathbb{R}_{\omega_1} \sigma$ -linked in ZFC?

Problem

Over Gitik's model, does every atomless σ -closed forcing collapse ω_1 ?

Problem

Is \mathbb{R}_{κ} CCC_2 for every infinite cardinal κ ? Can there be Dedekind finite antichains?

Problem

Is $\mathbb{R}_{\omega_1} \sigma$ -linked in ZFC?

Problem

Over Gitik's model, does every atomless σ -closed forcing collapse ω_1 ?

Problem

Over Gitik's model, can you add fresh subsets of some uncountable cardinal?