Magnusson entrepreneurial experience

- Co-founder and Chief Technical Officer, Resonant Optics Incorporated
- Co-founder and Chief Technical Officer, Resonant Sensors Incorporated
- Founder, Tiwaz Technologies LLC

RSI: provides next-generation optical sensor systems for pharmaceutical and biotech customers including COVID-19.

Commercial system

ResoSensTM system including ResoVuTM analysis software

- Label-free operation in a microarray format
- Automation compatible
- Windows 8 based, exportable CSV data files
- User selected plate layout and beam size—easy to use!

96- & 384-well microarray plates

- Bare and pre-activated
- Custom assay kits and/or reagents
- Method development and/or testing services
- Detect an array of analytes in a single well
 - custom multiplexed kits (4- or 8-plex)

http://resonantsensors.com/

384 wells

High-throughput ResoSens COVID-19 tests

- Patient serum/blood/saliva tests for antibodies against COVID-19 antigen
- Tests are performed using COVID-19 receptor binding domain (RBD) antigen.

Scientists exploring how coronaviruses like COVID-19 infect human cells have shown that the SARS-CoV-2 spike (S) glycoprotein binds to the cell membrane protein angiotensin-converting enzyme 2 (ACE2) to enter human cells.

S-protein=Key ACE2=Lock

Patient serum testing for antibodies against the COVID-19 antigen (RBD)

Results measured in quadruplicate and averaged. Reference buffer subtracted from data.

4 wells/sample; 24 tests in a single run; ~30 minutes/run; <2 min/test

WORKS GREAT!

New system design and color scheme

HEX color 0a014F for metal housing on system and incubator.

New project: LWIR optical components

Multi-layer film stacks versus single-layer resonance devices

Fig. 2.9. (a) An example of a Bragg stack. Thicknesses, d (SiO₂)=303.82 nm, d (TiO₂)=180.04 nm; refractive indices n_c =1.00, n (SiO₂)=1.44, n (TiO₂)=2.43, n_s =3.46; incident angle ϑ_{in} =0°, (b) Calculated spectral response of a Bragg stack for TE polarized waves.

Fig. 2.10. (a) Configuration of a GMR high reflector. Thickness, d = 490 nm; refractive indices η_c = 1.00, η_h = 3.48, η_L = 1.00, η_s = 1.48; grating period Λ = 766 nm; filling factor f = 0.726; incident angle ϑ_{in} = 0°, (b) Calculated spectral response of a GMR device for TM polarized waves [from reference 14].

Beyond thin-film optics:

Resonant-grating-based optical component technology

NSF-SBIR Phase I 2023-2024

Optical component business ~\$5-10B/year

This year: Phase I is 275k, Phase II 1M at NSF=National Science Foundation

The electromagnetic band from ~ 8 to 12 μ m covers a region of atmospheric transparency important for long-range terrestrial imaging, spectroscopic applications, night-vision systems, and medical and industrial laser technologies. To utilize this spectral band for applications, effective components including reflectors, filters, and polarizers must be available.

Preliminary results LWIR optical components

