

CLAIMS

1. Use of an antagonist of the CB1 receptor in the manufacture of a composition for the treatment of hepatic diseases.
5
2. Use according to claim 1 wherein the antagonist of the CB1 receptor is a specific antagonist of the CB1 receptor.
3. Use according to claims 1 or 2 wherein the hepatic disease results in hepatic fibrosis.
10
4. Use according to claims 1 to 3 wherein the hepatic disease is alcoholic liver cirrhosis.
5. Use according to claims 1 to 3 wherein the hepatic disease is chronic viral hepatitis.
- 15 6. Use according to claims 1 to 3 wherein the hepatic disease is non-alcoholic steatohepatitis.
7. Use according to claims 1 to 3 wherein the hepatic disease is primary liver cancer.
- 20 8. Use according to claims 1 to 7 wherein the antagonist is a compound of the formula II or one of its pharmaceutically acceptable salt, in which g_2 , g_3 , g_4 , g_5 and g_6 and w_2 , w_3 , w_4 , w_5 and w_6 are identical or different and are independently hydrogen, a chlorine or bromine atom, a (C₁-C₃) alkyl, a (C₁-C₃) alkoxy, a trifluoromethyl or a nitro group and g_4 is optionally a phenyl group; R₄ is hydrogen or a (C₁-C₃) alkyl; X is either a direct bond or a group -(CH₂)_x-N(R₃)-, in which R₃ is hydrogen or a (C₁-C₃) alkyl and x is zero or one; R is: a group -NR₁R₂ in which R₁ and R₂ are independently a (C₁-C₆)-alkyl; an non-aromatic (C₃-C₁₅) carbocyclic radical which is optionally substituted, said substituent(s) being other than a substituted carbonyl; an amino (C₁-C₄) alkyl group in which the amino is optionally disubstituted by a (C₁-C₃) alkyl; a cycloalkyl (C₁-C₃) alkyl in which the cycloalkyl is C₃-C₁₂; a phenyl which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C₁-C₅) alkyl or by a (C₁-C₅) alkoxy; a phenyl (C₁-C₃) alkyl; a diphenyl (C₁-C₃) alkyl; a naphthyl; an anthracenyl; a saturated 5- to 8-membered heterocyclic radical which is unsubstituted or substituted by a (C₁-C₃) alkyl, by a hydroxyl or by a benzyl; a 1-adamantylmethyl; an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C₁-C₅) alkyl or by a (C₁-C₅) alkoxy; a (C₁-C₃) alkyl which is substituted by an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C₁-C₅) alkyl or by a (C₁-C₅) alkoxy; or else R₁ is hydrogen and R₂ is as
25
- 30
- 35

defined above; or else R₁ and R₂ form a saturated 5- to 8-membered heterocyclic radical with the nitrogen atom to which they are bonded, said heterocyclic radical being other than morpholine when w₂, w₃, w₄, w₅, w₆, g₂, g₃, g₄, g₅ and g₆ are all hydrogen; a group R₂ as defined above when X is -(CH₂)_x N(R₃)-; a group R₅ when X is a direct bond, R₅ being a (C₁-C₃) alkyl; a (C₃-C₁₂) cycloalkyl which is unsubstituted or substituted by a (C₁-C₅) alkyl; a phenyl (C₁-C₃) alkyl which is unsubstituted or substituted by a halogen or by a (C₁-C₅) alkyl; a cycloalkyl (C₁-C₃) alkyl in which the cycloalkyl is C₃-C₁₂ and is unsubstituted or substituted by a (C₁-C₅) alkyl; or a 2-norbornylmethyl.

10

9. Use according to claims 1 to 7 wherein the antagonist is N-piperidono-3-pyrazolecarboxamide or one of its pharmaceutically acceptable salt.

15

10. Use according to claims 1 to 7 wherein the antagonist is N-piperidino-5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethylpyrazole-3-carboxamide or one of its pharmaceutically acceptable salt.

20

11. Use according to claims 1 to 7 wherein the antagonist is N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methylpyrazole-3- carboxamide or one of its pharmaceutically acceptable salt.

25

12. Use according to any of the preceding claims wherein the CB1 receptor is selected from the group consisting of:

a) a protein having an amino acid sequence comprising SEQ ID NO:1 or a portion of SEQ ID NO:1, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;

b) a protein having an amino acid sequence comprising SEQ ID NO:2 or a portion of SEQ ID NO:2, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;

30

- c) an allele of the protein having the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:2, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;
- 5 d) a protein having the amino acid sequence of SEQ ID NO:1 with a Phenylalanine to Leucine substitution at position 200; and/or an Isoleucine to Valine substitution at position 216; and/or a Valine to Alanine substitution at position 246;
- 10 e) a protein having the amino acid sequence of SEQ ID NO:2 with a Phenylalanine to Leucine substitution at position 139; and/or an Isoleucine to Valine substitution at position 155; and/or a Valine to Alanine substitution at position 185; and
- 15 f) a protein comprising the amino acid sequences of SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 and SEQ ID NO:9 or amino acid sequences 80 % homologous to these, said protein having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal.

13. Use according to claims 1 to 11 wherein the CB1 receptor is a protein having a homology at the amino acid level with SEQ ID NO:1 of at least 45%, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal.

20 14. Use according to the preceding claim wherein the homology is at least 60%, preferably 70 %, more preferably 80 %, even more preferably 90 % and more preferably 95 %.

25 15. Use according to any of the preceding claims wherein the daily dosage of CB1 receptor antagonist is from 0.01mg to 500mg, preferably from 1 mg to 100 mg.

30 16. Use of a nucleic acid sequence coding for a protein comprising SEQ ID NO:1 or SEQ ID NO:2 or a portion of SEQ ID NO:1 or a portion of SEQ ID NO:2, for the preparation of a composition for the treatment of hepatic diseases by the downregulation or suppression of the CB1 receptor.

35 17. A method of treatment of hepatic diseases in a mammal comprising the administration of a therapeutically effective amount of at least one CB1 receptor antagonist to a mammal in need thereof.

40 18. A method of treatment of hepatic diseases according to claim 17 wherein the CB1 receptor antagonist is a compound of the formula II or one of its pharmaceutically

acceptable salt, in which g_2 , g_3 , g_4 , g_5 and g_6 and w_2 , w_3 , w_4 , w_5 and w_6 are identical or different and are independently hydrogen, a chlorine or bromine atom, a (C_1 - C_3) alkyl, a (C_1 - C_3) alkoxy, a trifluoromethyl or a nitro group and g_4 is optionally a phenyl group; R_4 is hydrogen or a (C_1 - C_3) alkyl; X is either a direct bond or a group $-(CH_2)_x-N(R_3)-$, in which R_3 is hydrogen or a (C_1 - C_3) alkyl and x is zero or one; R is: a group $-NR_1R_2$ in which R_1 and R_2 are independently a (C_1 - C_6)-alkyl; an non-aromatic (C_3 - C_{15}) carbocyclic radical which is optionally substituted, said substituent(s) being other than a substituted carbonyl; an amino (C_1 - C_4) alkyl group in which the amino is optionally disubstituted by a (C_1 - C_3) alkyl; a cycloalkyl (C_1 - C_3) alkyl in which the cycloalkyl is C_3 - C_{12} ; a phenyl which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C_1 - C_5) alkyl or by a (C_1 - C_5) alkoxy; a phenyl (C_1 - C_3) alkyl; a diphenyl (C_1 - C_3) alkyl; a naphthyl; an anthracenyl; a saturated 5- to 8-membered heterocyclic radical which is unsubstituted or substituted by a (C_1 - C_3) alkyl, by a hydroxyl or by a benzyl; a 1-adamantylmethyl; an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C_1 - C_5) alkyl or by a (C_1 - C_5) alkoxy; a (C_1 - C_3) alkyl which is substituted by an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C_1 - C_5) alkyl or by a (C_1 - C_5) alkoxy; or else R_1 is hydrogen and R_2 is as defined above; or else R_1 and R_2 form a saturated 5- to 8-membered heterocyclic radical with the nitrogen atom to which they are bonded, said heterocyclic radical being other than morpholine when w_2 , w_3 , w_4 , w_5 , w_6 , g_2 , g_3 , g_4 , g_5 and g_6 are all hydrogen; a group R_2 as defined above when X is $-(CH_2)_x-N(R_3)-$; a group R_5 when X is a direct bond, R_5 being a (C_1 - C_3) alkyl; a (C_3 - C_{12}) cycloalkyl which is unsubstituted or substituted by a (C_1 - C_5) alkyl; a phenyl (C_1 - C_3) alkyl which is unsubstituted or substituted by a halogen or by a (C_1 - C_5) alkyl; a cycloalkyl (C_1 - C_3) alkyl in which the cycloalkyl is C_3 - C_{12} and is unsubstituted or substituted by a (C_1 - C_5) alkyl; or a 2-norbornylmethyl.

19. A method of treatment of hepatic diseases according to claim 17 wherein the CB1 receptor antagonist is N-piperidono-3-pyrazolecarboxamide or one of its pharmaceutically acceptable salt.

20. A method of treatment of hepatic diseases according to claim 17 wherein the CB1 receptor antagonist is N-piperidino-5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethylpyrazole-3-carboxamide or one of its pharmaceutically acceptable salt.

5

21. A method of treatment of hepatic diseases according to claim 17 wherein the CB1 receptor antagonist is N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methylpyrazole-3- carboxamide or one of its pharmaceutically acceptable salt.

10 22. A method of treatment of hepatic diseases according to claims 17 to 21 wherein the hepatic disease is liver fibrosis.

23. A method of treatment of hepatic diseases according to claims 17 to 21 wherein the hepatic disease is alcoholic liver cirrhosis.

15

24. A method of treatment of hepatic diseases according to claims 17 to 21 wherein the hepatic disease is chronic viral hepatitis.

20

25. A method of treatment of hepatic diseases according to claims 17 to 21 wherein the hepatic disease is non-alcoholic steatohepatitis.

26. A method of treatment of hepatic diseases according to claims 17 to 21 wherein the hepatic disease is primary liver cancer.

25

27. A method of treatment of hepatic diseases according to claims 17 to 26 wherein the daily dosage of CB1 receptor antagonist is from 0.01mg to 500mg, preferably from 1 mg to 100 mg.

30