1. Exercises 15.3-5

Suppose that in the rod-cutting problem of Section 15.1, we also had limit l_i on the number of pieces of length i that we are allowed to produce, for i = 1, 2, ..., n. Show that the optimal-substructure property described in Section 15.1 no longer holds.

2. Exercises 15.5-2

Determine the cost and structure of an optimal binary search tree for a set of n = 7 keys with the following probabilities:

i	0	1	2	3	4	5	6	7
p_i		0.04	0.06	0.08	0.02	0.10	0.12	0.14
q_i	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05

3. Problems 15-5: Edit distance

Given two sequences x[1..m] and y[1..n] and set of transformation-operation costs, the edit distance from x to y is the cost of the least expensive operation sequence that transforms x to y. Describe a dynamic-programming algorithm that finds the edit distance from x[1..m] to y[1..n] and prints an optimal operation sequence. Analyze the running time and space requirements of your algorithm.

- transformation-operations
 - **Insert** a character into x
 - **Delete** a character from *x*
 - **Replace** a character from *x* by another character
 - **Twiddle** two adjacent characters from x

4. Find out all LCS of 《BADBCBA》 and 《ABACDBC》

5. An algorithm to solve the LCS problem of two strings X and Y has space complexity O(|X||Y|) typically.

- a. Design an algorithm to find the length of LCS of two string X and Y just using only $2 \cdot \min(|X|, |Y|)$ cells for working space.
- b. Design an algorithm to find the length of LCS of two string X and Y just using only $1+\min(|X|,|Y|)$ cells for working space.

6. String Alignment

Let σ be an alphabet set, β denote the blank character in σ , and a measure function F: $\sigma \times \sigma \to R$. Where F is defined as followings, for any x

and y in σ , F(x, y)<0 if x \neq y and F(x, y)>0 if x=y; whereas F(β , β)=- ∞ . Given X and Y be two strings of σ *, let X' and Y' denote two new strings made by inserting some β into X and Y respectively. The similarity of X and Y is defined by measuring the maximal value of $\sum_{a_i \in X, b_i \in Y} F(a_i, b_i)$ among all possible X' and Y'.

- a. Design an algorithm to find the similarity of X and Y.
- b. Design an algorithm that describe where the blank characters are inserted to get the similarity.

7. Exercises 15.4-2

Give pseudocode to reconstruct an LCS from the completed c table and the original sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ in O(m + n) time, without using the b table.