MIDTERM ASSESSMENT

CM1020

BSc EXAMINATION

COMPUTER SCIENCE

Discrete Mathematics

INSTRUCTIONS TO CANDIDATES:

This assignment consists of five questions. You should answer all five questions.

Full marks will be awarded for complete answers to a total of Five questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

© University of London 2024

UL24/1020

- (a) Let $A=\{1,2,3,4\}, B=\{3k|k\in\mathbb{Z}-\{-1,1\}\}$ and $C=\{n\in\mathbb{Z}|n^2+n=0\}$. Which one of the following statements is True? Explain your answer
 - i. $A \cap B = \emptyset$
 - ii. $B C = \emptyset$
 - iii. $B \cap C = \emptyset$
 - iv. $A \cup C = \emptyset$

[4]

- (b) Let A and B be two sets. Show that if $A \subseteq B$, then
 - i. $A \cup B = B$
 - ii. $A \cap B = A$

[6]

- (c) Let $A,\,B$ and C be three sets. Draw the Venn diagrams for each of these combinations:
 - i. $\overline{A} \cap \overline{B} \cap \overline{C}$
 - ii. $(A B) \cup (A C) \cup (B C)$

[6]

(d) Let A and B be subsets of a universal set U. Show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$.

- (a) Let f and g be two functions defined from $\mathbb{R} \to \mathbb{R}$ with $f(x) = x^3 + 1$ and $g(x) = \sqrt[3]{x-1}$. Find (gof)(1), (gof)(2) and (gof)(x). [4]
- (b) One of the following function $f: \mathbb{R} \to \mathbb{R}$ below is a bijection. Which one is it? Explain your answer.

i.
$$f(x) = x^2 + x$$
 for all $x \in \mathbb{R}$

ii.
$$f(x) = x^3 + x$$
 for all $x \in \mathbb{R}$

iii.
$$f(x) = x^2 - x$$
 for all $x \in \mathbb{R}$

iv.
$$f(x) = x^3 - x$$
 for all $x \in \mathbb{R}$

[6]

(c) Solve the following logarithmic equation $2\log_9(\sqrt{x}) - \log_9(6x - 1) = 0$. Show your work.

[2]

(d) Let
$$f: \mathbb{R} - \{1\} \to \mathbb{R}$$
 with $f(x) = \frac{5x-3}{x-1}$.

- i. What is the image of f?
- ii. Find $d\in\mathbb{R}$ such that the function $f:\mathbb{R}-\{1\}\to\mathbb{R}-\{d\}$ is a bijection. Explain your answer
- iii. Construct the inverse function of f.

[8]

- (a) Let p, q and r be three propositions.
 - i. Construct a truth table for the compound proposition

$$((p \to q) \land (r \to \neg p) \land r) \to \neg q$$

ii. Is the compound proposition in question (i) a tautology? Explain your answer.

[5]

(b) Let p, q, r and s be four propositions. Assuming that p and r are false and that q and s are true, find the truth value of the following proposition

$$((p \lor q) \land (q \lor s)) \to ((\neg r \lor p) \land (q \lor s))$$

[2]

- (c) Define a set of at most three atomic propositions. Then use them to translate all of these sentences.
 - i. It's time for bed only if it is after 9 PM and I'm tired
 - ii. I'm not tired unless it is after 9 PM.
 - iii. It's time for bed and after 9 PM if and only if I am tired

[6]

(d) Give the contrapositive, the converse and the inverse of the following statement:

$$\forall x \in \mathbb{R}, \text{ if } x(x+2) > 0 \text{ then } x > 0 \text{ or } x < -2$$

[3]

(e) A tautology is a proposition that is always true. Let p, q and r be three propositions. Using the laws of propositions or the truth table, show that $(p \to (q \lor r)) \Leftrightarrow ((p \land \neg q) \to r)$ is a tautology. [4]

UL24/1020

- (a) Given the following propositions:
 - d: it is day
 - n: it is night
 - s: the sun shines
 - m: the moon shines

Give propositions that respectively resemble the meaning of the following two sentences:

- i. The sun only shines when it is day, but the sun doesn't shine now although it is day.
- ii. Either it is day, or it is night, but when the sun shines it is not night.

[6]

- (b) Indicate which of the following statements are true and which are false. Justify your answer.
 - i. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{R} \{0\}$ such that xy < 1
 - ii. $\forall x \in \mathbb{R} \{0\}, \forall y \in \mathbb{Z} \text{ such that } xy < 1$
 - iii. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } xy = 1$

[6]

(c) Let p, q, r and s be three propositions: Say whether or not the following argument is a valid argument. Explain your answer.

$$\begin{array}{l} s \rightarrow r \\ (p \lor q) \rightarrow \neg r \\ (\neg s) \rightarrow (\neg q \rightarrow r) b \\ p \end{array}$$

 $\therefore q$ [4]

- (d) Let P(x) and Q(x) be two predicates and suppose D is the the domain of x. Simplify each of the following propositions. In your answer, the \neg operator should be applied only to individual predicates.
 - i. $\neg \exists x \in D(P(x) \land Q(x))$
 - ii. $\neg \forall x \in D(P(x) \to Q(x))$

[4]

- (a) Use DeMorgan's laws to simplify the following expressions:
 - i. $\overline{(\overline{a.b.\overline{c}}) + \overline{(\overline{c}.d)}}$
 - ii. $\overline{a+b}$. $\overline{b+\overline{c}}$. $\overline{\overline{c}+d}$

[6]

(b) Given the following logic circuit:

[4]

- i. Find a Boolean expression for the output Q for this logic circuit
- ii. Use the laws of boolean algebra and give to simplify this expression
- (c) Use the duality principle to find out the dual of the following equation:

$$a.b + c.\overline{d} = (a+c).(a+\overline{d}).(b+c).(b+\overline{d})$$

[2]

(d) For the following Boolean expression, give:

$$F(a,b,c,d) = (\overline{a} + b.\overline{d}).(c.b.a. + \overline{c}.d)$$

- i. The truth table
- ii. The Karnaugh map
- iii. The minimal sum of products expression

[8]

END OF PAPER

.

UL24/1020

Page 6 of 6