

CHAPTER 5 DIVIDE AND CONQUER

Iris Hui-Ru Jiang Fall 2017

Department of Electrical Engineering National Taiwan University

Preliminaries: Mathematical Induction

Weak Induction

- Given the propositional P(n) where $n \in \mathbb{N}$, a proof by mathematical induction is of the form:
 - Basis step: The proposition P(0) is shown to be true
 - Inductive step: The implication P(k) →P(k + 1) is shown to be true for every $k \in \aleph$
 - In the inductive step, statement P(k) is called the induction hypothesis

Strong Induction

- Given the propositional P(n) where $n \in \mathbb{N}$, a proof by second principle of mathematical induction (or strong induction) is of the form:
 - Basis step: The proposition P(0) is shown to be true
 - Inductive step: The implication $P(0) \land P(1) \land ... \land P(k) \rightarrow P(k+1)$ is shown to be true for every $k \in \aleph$

Example: A Defective Chessboard

- Any 8×8 defective chessboard can be covered with twenty-one triominoes
- Q: How?

Example: A Defective Chessboard

- Any 8×8 defective chessboard can be covered with twenty-one triominoes
- Any $2^n \times 2^n$ defective chessboard can be covered with $1/3(2^n \times 2^n-1)$ triominoes
- Prove by mathematical induction!

Mathematical Induction

- The first domino falls.
- If a domino falls, so will the next domino.
- All dominoes will fall!

Proof by Mathematical Induction

- Any $2^n \times 2^n$ defective chessboard can be covered with $1/3(2^n \times 2^n-1)$ triominoes
 - Basis step:
 - *n*=1

- Inductive step: 2^{n+1}

Proof vs. Algorithm

Based on the defective chessboard, we can see

Outline

- Content:
 - A first recurrence: the mergesort algorithm
 - Counting inversions
 - Finding the closest pair of points
- Reading:
 - Chapter 5

Warm Up: Searching

- Problem: Searching
- Given
 - A sorted list of *n* distinct integers
 - integer x
- Find
 - j if x equals some integer of index j
- Solution:
 - Naïve idea: compare one by one
 - Correct but slow: O(n)
 - Better idea?
 - Hint: input is sorted

Binary Search

- D&C paradigm
- Divide: Break the input into several parts of the same type.
- Conquer: Solve the problem in each part recursively.
- Combine: Combine the solutions to sub-problems into an overall solution

- Search a sorted array
- Divide: check the middle element
- Conquer: search the subarray recursively
- Combine: trivial

Mergesort

John von Neumann, 1945

http://en.wikipedia.org/wiki/File:Merge_sort_animation2.gif

Divide and Conquer

- Divide-and-conquer
 - Divide: Break the input into several parts of the same type.
 - Conquer: Solve the problem in each part recursively.
 - Combine: Combine the solutions to sub-problems into an overall solution.
- Complexity: recurrence relation
 - A divide and conquer algorithm is naturally implemented by a recursive procedure.
 - The running time of a divide and conquer algorithm is generally represented by a recurrence relation that bounds the running time recursively in terms of the running time on smaller instances.
- Correctness: mathematical induction
 - The basic idea is mathematical induction!

A Divide-and-Conquer Template

- Divide: divide the input into two pieces of equal size
- Conquer: solve the two subproblems on these pieces separately by recursion
- Combine: combine the two results into an overall solution
- Spend only linear time for the initial division and final recombining

Mergesort (1/2)

- Problem: Sorting
- Given
 - A set of *n* numbers
- Find
 - Sorted list in ascending order
- Solution: many!
- Mergesort fits the divide-and-conquer template
 - Divide the input into two halves.
 - Sort each half recursively.
 - Need base case

Stop recursion

Merge two halves into one.

Mergesort (2/2)

The base case: single element (trivially sorted)

```
Mergesort(A, p, r)

// A[p..r]: initially unsorted

1. if (p < r) then

2. q = \lfloor (p+r)/2 \rfloor

3. Mergesort(A, p, q)

4. Mergesort(A, q+1, r)

5. Merge(A, p, q, r)
```

Running time:

- T(n) for input size n
- Divide: lines 1-2, D(n)
- Conquer: lines 3-4, 2T(n/2)
- Combine: line 5, C(n)
- T(n) = 2T(n/2) + D(n) + C(n)

Implementation: Division and Merging

- Running time: *T*(*n*)
 - T(n) for input size n
 - Divide: lines 1-2, *D*(*n*)
 - O(1) for array
 - Combine: line 5, C(n)
 - Q: Linear time O(n)? How?
- Efficient merging
 - See the demonstration of Merge

```
Mergesort(A, p, r)
// A[p..r]: initially unsorted
```

- 1. if (p < r) then
- 2. $q = \lfloor (p+r)/2 \rfloor$
- 3. Mergesort(A, p, q)
- 4. Mergesort(A, q+1, r)
- 5. Merge(A, p, q, r)

Implementation: Division and Merging

- Running time: *T*(*n*)
 - T(n) for input size n
 - Divide: lines 1-2, D(n)
 - O(1) for array
 - Combine: line 5, C(n)
 - Q: Linear time O(n)? How?
- Efficient merging
 - Linear number of comparisons
 - Use an auxiliary array

- Merge sort is often the best choice for sorting a linked list
 - Q: Why? How efficient on running time and storage?

Mergesort(A, p, r)
// A[p..r]: initially unsorted

- 1. if (p < r) then
- 2. $q = \lfloor (p+r)/2 \rfloor$
- 3. Mergesort(A, p, q)
- 4. Mergesort(A, q+1, r)
- 5. Merge(A, p, q, r)

Recurrence Relation

- Running time: *T*(*n*)
 - 1. Base case: for $n \le 2$, $T(n) \le c$
 - 2. T(n) = 2T(n/2) + D(n) + C(n)
 - T(n) = 2T(n/2) + O(1) + O(n)
 - $T(n) \le 2T(n/2) + cn$

```
Mergesort(A, p, r)
// A[p..r]: initially unsorted
```

- 1. if (p < r) then
- 2. $q = \lfloor (p+r)/2 \rfloor$
- 3. Mergesort(A, p, q)
- 4. Mergesort(A, q+1, r)
- 5. Merge(A, p, q, r)
- A recursion corresponds to a recurrence relation
 - Recursion is a function defined by itself
- Q: Why not $T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$?
- A: Asymptotic bounds are not affected by ignoring □ & □.

Solving Recurrences

- Two basic ways to solve a recurrence
 - Unrolling the recurrence (recursion tree)
 - Substituting a guess
- Initially, we assume n is a power of 2 and replace ≤ with =.
 - T(n) = 2T(n/2) + cn
 - Simplify the problem by omitting floors and ceilings
 - Solve the worst case

Unrolling – Recursion Tree

Procedure

- Analyzing the first few levels
- Identifying a pattern
- 3. Summing over all levels

Substituting

- Any function T(.) satisfying this recurrence
 T(n) ≤ 2T(n/2) + cn when n > 2, and T(2) ≤ c is bounded by O(n log₂ n), when n > 1.
- Pf: Guess and proof by induction assume n is a power of 2
- Suppose we believe that $T(n) \le cn \log_2 n$ for all $n \ge 2$
 - 1. Base case: n = 2, $T(2) \le c \le 2c$. Indeed true.
 - 2. Inductive step:
 - Inductive hypothesis: $T(m) \le cm \log_2 m$ for all m < n.
 - $T(n/2) \le c(n/2) \log_2(n/2)$; $\log_2(n/2) = (\log_2 n) 1$
 - $T(n) \le 2T(n/2) + cn$ $\le 2c(n/2) \log_2(n/2) + cn$ $= cn [(\log_2 n) - 1] + cn$ $= (cn\log_2 n) - cn + cn$ $= cn\log_2 n$.

Counting Inversions

Counting Inversions

- Music site tries to match your song preferences with others.
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two rankings.
 - My rank: 1, 2, ..., n.
 - Your rank: $a_1, a_2, ..., a_n$.
 - Songs *i* and *j* inverted if i < j, but $a_i > a_i$.

• Brute force: check all $\Theta(n^2)$ pairs *i* and *j*.

Divide and Conquer

Counting inversions

- Divide: separate the list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

Conquer: 2*T*(*n*/2)

9 red-green inversions (5,3), (4,3), (8,6), (8,3), (8,7), (10,6), (10,9), (10,3), (10,7)

Combine: ??

Total: 5 + 8 + 9 = 22 inversions

Combine?

- Inversions: inter and intra
 - Intra: inversions within each half done by conquer
 - Inter: inversions between two halves done by combine
 - The "combine" in Mergesort is done in O(n); goal: $O(n \log_2 n)$
 - Assume each half is sorted. ← to maintain sorted invariant
 - Count inversions where a_i and a_i are in different halves.
 - Merge two sorted halves into sorted whole.

(4,3), (5,3), (8,6), (10,3), (8,6), (10,6), (8,7), (10,7), (10,9) 9 red-green inversions

1 2 3 4 5 6 7 8 9 10 11 12 Merge: O(n)

Combine: O(n)Total: $O(n \log_2 n)$

Divide-and-conquer

Implementation: Counting Inversions

 Similar to Mergesort, extra effort on counting interinversions

```
Sort-and-Count(L, p, q)

// L[p..q]: initially unsorted

1. if (p = q) then return 0

2. else

3. m = \lfloor (p+q)/2 \rfloor

4. r_p = \text{Sort-and-Count}(L, p, m)

5. r_q = \text{Sort-and-Count}(L, m+1, q)

6. r_m = \text{Merge-and-Count}(L, p, m, q)

7. return r = r_p + r_q + r_m
```

Closest Pair of Points

M. I. Shamos and D. Hoey, 1975

M. I. Shamos and D. Hoey. "Closest-point problems." In *Proc. 16th Annual IEEE Symposium on Foundations of Computer Science* (FOCS), pp. 151—162, 1975

Closest Pair of Points

- The closest pair of points problem
- Given
 - A set of *n* points on a plane, p_i is located at (x_i, y_i) .
- Find
 - A pair with the smallest Euclidean distance between them
 - Euclidean distance between p_i and $p_j = [(x_i x_j)^2 + (y_i y_j)^2]^{1/2}$

Closest Pair of Points: First Attempt

- Q: How?
- A: Brute-force? $\Theta(n^2)$ comparisons.
- Q: What if 1-D version?

- Q: What if 2-D version?
- A: Non-trivial.

to make presentation cleaner

Assumption: No two points have same x-coordinate.

Divide-and-Conquer

- Divide: draw vertical line L so that half points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side; return best of 3 solutions.
 - Q: How to "combine" in O(n)?

Combining the Solutions (1/4)

- Find closest pair with one point in each side.
 - $-L = \{(x, y): x = x^* = x \text{-coordinate of the rightmost point in } Q\}.$
 - $-\delta$ = the smaller one of these two pairs.
- Observation: only need to consider points within δ of line L.

Combining the Solutions (2/4)

- If $\exists q \in Q$ and $r \in R$ for which $d(q, r) < \delta$, then each of q and r lies within a distance δ of L.
- Pf: Suppose such q and r exist; let $q = (q_x, q_y)$ and $r = (r_x, r_y)$.
 - By definition, $q_x \le x^* \le r_x$.
 - $x^* q_x \le r_x q_x \le d(q, r) < \delta; r_x x^* \le r_x q_x \le d(q, r) < \delta.$

Combining the Solutions (3/4)

- Observation: only need to consider points within δ of line L.
 - Sort points in 2δ -strip by their *y*-coordinate.
 - Only check distances of those within 15 positions in sorted list of ycoordinates!
 - Q: Why?

 $\delta = \min(12, 21)$ 0 4

Combining the Solutions (4/4)

- If $s, s' \in S$ are of $d(s, s') < \delta$, then s, s' are within 15 positions of each other in the sorted list S_v of y-coordinates of S.
- Pf: S contains all points within δ of line L, we partition S into boxes, each box contains at most one point.
 - Partition the region into boxes, each of area $\delta/2*\delta/2$; we claim
 - 1. s and s' lies in different boxes
 - Suppose *s* and *s'* lies in the same box
 - These two points both belong either to Q or to R
 - $d(s, s') \le 0.5*\delta*(2)^{1/2} < \delta \rightarrow \leftarrow$
 - 2. s and s' are within 15 positions
 - Suppose $s, s' \in S$ of $d(s, s') < \delta$ and they are at least 16 positions apart in S_v .
 - Assume WLOG s has the smaller y-coordinate; since at most one point per box, at least 3 rows of S lying between s and s'.
 - $d(s, s') \ge 3\delta/2 > \delta \rightarrow \leftarrow$

Closest Pair Algorithm

Closest-Pair(P)

- 1. construct P_x and P_y
- 2. $(p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)$

Closest-Pair-Rec(P_x , P_y)

- 1. if $|P| \le 3$ then return closest pair measured by all pair-wise distances
- 2. $x^* = (\lceil n/2 \rceil)$ -th smallest x-coordinate in P_x
- 3. construct Q_x , Q_y , R_x , R_y
- 4. $(q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)$
- 5. $(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$
- 6. $\delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))$
- 7. $L = \{(x, y): x = x^*\}; S = \{\text{points in } P \text{ within distance } \delta \text{ of } L\}$
- 8. construct S_v
- 9. for each $s \in S$ do
- 10. compute distance from s to each of next 15 points in S_v
- 11.d(s, s') = min distance of all computed distances
- 12.if $d(s, s') < \delta$ then return (s, s')
- 13.else if $d(q_0^*, q_1^*) < d(r_0^*, r_1^*)$ then return (q_0^*, q_1^*)
- 14.else return (r_0^*, r_1^*)