Esercitazione 2

Programmazione Avanzata ed Elementi di Ingegneria del Software

Esercizio 1:

Scrivere due file, un file calcolo.c e un file calcolo.h, che contengano:

- calcolo.c:
 - o una funzione check_triangle(punto x, punto y, punto z) che restituisca True se i 3 punti in ingresso formano un triangolo e False in caso contrario.¹
 - una funzione get_perimeter(punto x, punto y, punto z)
 che ritorni il valore del perimetro del triangolo associato ai 3 punti in ingresso o, se non ne esiste nessuno (cioè check_triangle ha reso False), ritorna 0.²
 - l'inizializzazione di una costante pi = 3.14159, che deve essere poi resa disponibile al main.
- · calcolo.h:
 - la firma delle funzioni da rendere disponibili al main.
 - la dichiarazione della costante pi.
 - la dichiarazione e la definizione della struttura punto.

Il dato punto è una struttura dati definita come typedef struct { float x; float y } punto; e rappresenta un punto bidimensionale.

A scopo di prova:

I punti $x = \{0, 0\}$, $y = \{1, 1\}$ e $z = \{2, 2\}$ NON formano nessun triangolo. I punti $x = \{0, 0\}$, $y = \{2, 0\}$ e $z = \{1, 1\}$ formano un triangolo il cui perimetro è (circa) uguale a 4.83.

¹ Tre punti formano un triangolo se rispettano la diseguaglianza triangolare, di cui a: https://it.wikipedia.org/wiki/Disuguaglianza_triangolare

² La distanza tra due punti (e quindi la lunghezza del lato associato a quei due punti) si calcola con la formula classica della distanza fra due punti di cui a: https://www.youmath.it/formulari/formulari-di-geometria-analitica/426-distanza-tra-due-punti-nel-piano.html

Esercizio 2:

Reimplementare il codice dell'esercizio 1 ma avvalendosi dell'ADT design pattern.

Esercizio 3:

Implementare uno stack³ di numeri interi avvalendosi dell'ADT design pattern. Scrivere 2 file, stack.c e stack.h, che contengano:

- stack.c:
 - l'implementazione dello stack mediante l'uso delle liste concatenate, cioè le funzioni per creare lo stack, inserirvi un elemento oppure eliminarlo.
- stack.h:
 - le funzioni che devono essere rese disponibili al main

Come prova di correttezza rispetto al requisito dell'uso dell'ADT: implementare una seconda versione di stack.c, che contenga l'implementazione dello stesso stack ma mediante l'uso di array, e verificare che i file main.c e stack.h non cambiano.

³ Uno stack è una struttura dati, anche chiamata pila, che funziona come a: https://it.wikipedia.org/wiki/Pila_(informatica)