Problem 1

$$\frac{1}{a_{j}} = \max \left\{ \frac{1}{Z} \phi_{i}(a_{i}) \cdot \phi_{j}(a_{i}) \psi_{ij}(a_{i}, a_{j}) \left(\prod_{k \in N(i)} M_{k-i}(a_{i}) \right) \right\}$$

$$= \max \left\{ \frac{1}{Z} \phi_{i}(a_{i}) \cdot \phi_{j}(a_{i}) \psi_{ij}(a_{i}, a_{j}) \left(\prod_{k \in N(i)} M_{k-j}(a_{j}) \right) \right\}$$

$$= \frac{1}{Z} \phi_{i}(a_{i}) \left(\prod_{k \in N(i)} M_{k-i}(a_{i}) \right)$$

$$= \frac{1}{Z} b_{i}^{*}(a_{i}) * C(\phi, \psi) \left\{ C(\phi, \psi) \text{ is a constably for any given } \phi \neq \psi. \right\}$$

$$= \frac{1}{Z} b_{i}^{*}(a_{i}) * C(\phi, \psi) \left\{ C(\phi, \psi) \text{ is a constably } \phi \text{ and } \phi \text{ and } \phi \text{ of } \phi \text{ and } \phi \text{ of } \phi \text$$

2: Similar

$$\max_{\mathbf{z}} p(\mathbf{x}) = \lim_{T \to 0} \left(\sum_{\mathbf{z}} (p(\mathbf{x}))^{t} \right)^{T} - 1$$

$$P^{(x)} = \frac{1}{Z} \prod_{i \in V} b_i(x_i) \cdot \prod_{c} \frac{b_c(x_c)}{\prod_{i \in C} b_i(x_i)}$$

from sum-product we get a return value of
$$Z$$
 and the converged beliefs $b_i^{\dagger}(\eta_i)$ and $b_i^{\dagger}(\eta_i)$.

$$P(x) = \frac{1}{Z} \frac{\pi}{i e^{V}} b_{i}^{*}(A_{i}) \cdot \pi \frac{b_{c}^{*}(x_{c})}{\pi} - 3$$

May
$$f(T) = \lim_{T \to 0} \left(\sum_{x} (p(x))^{y} \right)^{T}$$

Use the matlab limit (f(T), T, 0) to calculate max p(x).

Problem 3

em 3

$$p(n) = \frac{1}{Z} \prod_{i \in V} exp(h_i : \pi_i) \prod_{(i,j) \in E} exp(J_i : \pi_i : \pi_j)$$

$$h_i = 0 \quad \text{for all verticus.} \quad 4 \quad J_{ij} = J \quad \forall i,j$$

$$\Rightarrow p(n) = \frac{1}{Z} \prod_{(i,j) \in E} exp(J_{\pi_i} : \pi_j).$$

$$\log(p(n)) = -\log Z + \sum_{(i,j) \in E} J_{\pi_i} : \pi_j$$

$$= \left[\sum_{m} J_{(i,j) \in E} : \pi_i : \pi_j \right] - \sum_{m} \log(Z).$$

$$= J \left[\sum_{m} \sum_{(i,j) \in E} (\pi_i : \pi_i) \right] - \sum_{m} \log(Z).$$

$$= J \left[\sum_{m} \sum_{(i,j) \in E} (\pi_i : \pi_i) \right] - \sum_{m} \log(Z).$$

$$\lim_{x \to \infty} J_{\pi_i} : \pi_i : \pi_i$$

$$\frac{1}{2} \log_{2} \mathcal{L}(T) = 7 - 5 \cdot \frac{1}{2} \log_{2}(Z)$$

$$\frac{1}{2} \log_{2} \mathcal{L}(T) = 7 - 5 \cdot \frac{1}{2} \log_{2}(Z)$$

$$\frac{1}{2} \log_{2}(Z) = \frac{1}{2} \sum_{z \in z} \frac{1}{z} \left(\frac{1}{z} \log_{2}(Z) + \frac{1}{z} \log_{2}(Z) \right)$$

$$\frac{1}{z} \sum_{z \in z} \frac{1}{z} \left(\frac{1}{z} \log_{2}(Z) + \frac{1}{z} \log_{2}(Z) \right)$$

$$\frac{1}{z} \sum_{z \in z} \frac{1}{z} \left(\frac{1}{z} \log_{2}(Z) + \frac{1}{z} \log_{2}(Z) \right)$$

$$\frac{1}{z} \sum_{z \in z} \frac{1}{z} \exp_{2}(Z) \sum_{z \in z} \frac{1}{z} \exp_{2}(Z) \sum_{z \in z} \frac{1}{z} \exp_{2}(Z) \right)$$

$$\frac{1}{z} \sum_{z \in z} \frac{1}{z} \exp_{2}(Z) \sum_{z \in z} \exp_{2}(Z) \sum_{z \in z} \frac{1}{z} \exp_{2}(Z) \sum_{z \in z} \frac{1$$

2)
$$q \exp(3\tau) - 2 \exp(-\tau) = 7$$
 $3 \exp(3\tau) + 2 \exp(-\tau)$

2) $95 \exp(3\tau) - 10 \exp(-\tau) = 21 \exp(3\tau) + 219 \exp(-\tau)$

2) $29 \exp(3\tau) = 29 \exp(-\tau)$

3) $29 \exp(3\tau) = 29 \exp(-\tau)$

4) $29 \exp(3\tau) = 29 \exp(-\tau)$

3) $29 \exp(3\tau) = 29 \exp(-\tau)$

4) $29 \exp(3\tau) = 29 \exp(-\tau)$

3) $29 \exp(3\tau) = 29 \exp(-\tau)$

4) $29 \exp(3\tau) = 29 \exp(-\tau)$

3) $29 \exp(3\tau) = 29 \exp(-\tau)$

4) $29 \exp(3\tau) = 29 \exp(-\tau)$

5) $29 \exp(3\tau) = 29 \exp(-\tau)$

7) $29 \exp(3\tau) = 29 \exp(-\tau)$

7) $29 \exp(3\tau) = 29 \exp(-\tau)$

7) $29 \exp(3\tau) = 29 \exp(-\tau)$

8) $29 \exp(3\tau) = 29 \exp(-\tau)$

9) $29 \exp(3\tau) = 29 \exp(-\tau)$

10) $29 \exp(3\tau) = 29 \exp(-\tau)$

11) $29 \exp(3\tau) = 29 \exp(-\tau)$

12) $29 \exp(3\tau) = 29 \exp(-\tau)$

13) $29 \exp(3\tau) = 29 \exp(-\tau)$

14) $29 \exp(3\tau) = 29 \exp(-\tau)$

15) $29 \exp(3\tau) = 29 \exp(-\tau)$

16) $29 \exp(3\tau) = 29 \exp(3\tau)$

17) $29 \exp(3\tau) = 29 \exp(3\tau)$

18) $29 \exp(3\tau) = 29 \exp(3\tau)$

19) $29 \exp(3\tau) = 29 \exp(3\tau)$

20) $29 \exp(3\tau) = 29 \exp(3\tau)$

21) $29 \exp(3\tau) = 29 \exp(3\tau)$

22) $29 \exp(3\tau) = 29 \exp(3\tau)$

23) $29 \exp(3\tau) = 29 \exp(3\tau)$

24) $29 \exp(3\tau) = 29 \exp(3\tau)$

25) $29 \exp(3\tau) = 29 \exp(3\tau)$

26) $29 \exp(3\tau) = 29 \exp(3\tau)$

27) $29 \exp(3\tau) = 29 \exp(3\tau)$

28) $29 \exp(3\tau) = 29 \exp(3\tau)$

29) 29