Departamento de Engenharia Elétrica Universidade Federal de Viçosa

ELT 372 – Automação Industrial II

Sistemas Supervisórios

Alexandre Santos Brandão, Prof. Dr.

Sistemas Supervisórios

- Quando se trabalha com sistemas automatizados complexos, surge a necessidade de se criar uma interface de maneira a facilitar o trabalho da equipe de operação
 - ☐ É muito difícil ou mesmo impossível avaliar o funcionamento de uma planta através do programa do CLP
- ☐ Inserção no processo de uma interface amigável, eficiente e ergonômica, que permita a supervisão e o comando de uma planta automatizada

Sistemas Supervisórios

☐ Funções de um sistema supervisório
☐ Traduzir os sinais provenientes do CLP em sinais gráficos de fácil entendimento
☐ Fornecer uma forma alternativa de controle de uma planta, que segue sendo guiada pelo CLP
☐ Comunicação com o CLP
Mensagens digitais denominadas tags, contendo o endereço do CLP, o tipo de tag e as informações do processo
☐ Classificação das tags
☐ Device: Dados do CLP
☐ DDE (Dynamic Data Exchange): Dados do servidor
Memory: Dados das variávies locais do supervisório

Modos de Operação

Modo de desenvolvimento
É o ambiente onde se criam as telas gráficas, isto é, onde se elabora um desenho a ser animado durante o modo operacional
Modo Run Time
É o ambiente onde se mostra a janela animada criada no modo de desenvolvimento e no qual se dará a operação integrada com o CLP, durante a operação da planta em tempo real
Atividades dos operadores: Operação Normal e de Contingência

Operação Normal

☐ Ativi	dade de Vigilância
	etecção de defeitos ou possíveis falhas, antes que possa causar onsequências graves
☐ Obse	ervação do processo com frequência diferente
gl	lguns são mais sintéticos e fornecem informações sobre o estado lobal da unidade. Ex: Analisar o nível de um tanque e não se reocupar com a vazão de entrada e saída do fluido
	lguns aparelhos são mais estáveis que outros. Ex: O operador onhecedor da linha sabe qual parte está mais sujeita a falhas
	lguma unidade específica está em modo de operação particular. Ex: quipamento em manutenção ou fora de operação

Operação Normal

- ☐ A vigilância do operador está condicionada à imagem que ele faz do estado do processo em um dado instante, ao conhecimento que tem do funcionamento da planta e do processo como um todo
 - ☐ Como confiar nos dados de um supervisório?
 - ☐ Os sinais são um espelho da realidade ou uma máscara que pode comprometer a segurança?
- ☐ Importante: A capacidade de vigília de um operador tende a diminuir com o decorrer do tempo que se passa sem ocorrências; em particular, em turnos noturnos.

Operação Normal

☐ Para diminuir o grau de incerteza do operador durante a	
operação do supervisório, adota-se:	
☐ Confrontar diversos indicadores	
Analisar os valores baseado na experiência profissional do opera	ıdoı
Conhecer as operações particulares em curso, como equipamen fora do ar ou em estado de manutenção	tos
Comparar o estado do supervisório com o que passa fora da sala operação da planta	ı de

Operação Sob Contingência

- ☐ É caracterizada pela simultaneidade de vários eventos simples causadores de perturbação no processo
- ☐ Nesta situação, o operador tem que optar por gerenciar várias atividades simultaneamente
 - ☐ Opção pelo modo de operação manual ou automático

Planejamento de um Sistema Supervisório

☐ Entendimento do processo a ser automatizado
☐ Tomada de dados (variáveis)
☐ Planejamento do banco de dados
☐ Planejamento dos alarmes
☐ Planejamento da hierarquia de navegação entre telas
☐ Desenho das telas
☐ Gráficos de tendência
☐ Acesso e segurança
☐ Padrão industrial

Entendimento do Processo

- ☐ Reunião de uma grande quantidade de informação
- ☐ Conversa com os operadores do sistema a ser automatizado (caso a planta já exista) ou com os especialistas de planejamento de operações futuras
- ☐ Conversar com a gerência e corpo administrativo para saber quais informações são necessárias ao suporte de decisão

Tomada de Dados (Variáveis)

- ☐ Escolha dos dados essenciais na representação do processo
- ☐ É necessário ter em mente um limite superior do número de dados, pois um grande volume de dados pode prejudicar o desempenho dos sistemas que envolvam redes de computadores

Planejamento do Banco de Dados

Designação das variáveis do sistema supervisório
Diagrama de instrumentação da planta
☐ Fluxo de processo
Lista de endereços dos registradores do CLP
Escolher a classe de varredura (SCAN), i.e, velocidade de
leitura das variáveis
Desenvolver um sistema de nome das variáveis
Usar pastas de arquivos para organizar variáveis
Agrupar conjuntos de tags que se referem a uma mesma
etapa do processo

Planejamento dos Alarmes

☐ Definir
Condições de acionamento dos alarmes
Escolha da forma de notificação dos operadores
☐ Envio de mensagens
Providência de ações
☐ Funções
Chamar a atenção do operador para uma modificação do estado do processo
☐ Sinalizar uma ação atingida
☐ Fornecer indicação global sobre o estado do processo

Planejamento dos Alarmes

ACETOFENONA

DATA

01/18/2008 10:53:01 DSC **OPERADOR** 01/18/2008 10:53:01 DSC OPERADOR 01/18/2008 10:58:51 DSC

TIPO

HORA

OPERADOR

OPERADOR

BOMBA LIGADA P-2012A BOMBA LIGADA P-1166 FIQ-9159 PV FALHA COMUNICAÇÃO

DESCRIÇÃO

EAL-2012A EAL-1166 FIQ-9159_FC

TAG

ON ON ACK ON ON ACK ON ON ACK

ESTADO

VALOR/LIMITE

Planejamento da Hierarquia das Telas

- □ A hierarquia de navegação consiste em uma série de telas que fornecem progressivamente detalhes das plantas à medida que se navega no aplicativo
- ☐ Barras de navegação com botões sugestivos da tela a ser chamada na sequência

Desenho das Telas

☐ Consistência
☐ Uso de símbolos e cores
☐ Nome dos botões
☐ Posição dos botões nas telas
☐ Utilização de símbolos que facilitem o entendimento

04/26/05 16:36:17.940 04/26/05 16:35:53.890			800 800		
	SVC OFF from VBE (fast protection trip)	(VBE)	492	_	

04/26/05	16:36:17.940			800	_
04/26/05	16:35:53.890			800	_
04/26/05	16:35:53.080	SVC OFF from VBE (fast protection trip)	(VBE)	492	▼

Gráficos de Tendência

l Mostram como variáveis do processo mudam ao longo do
tempo através de sua imagem gráfica

- ☐ Tendência são utilizadas para
 - ☐ Analisar a evolução de uma variável do processo
 - ☐ Monitorar a eficiência da produção
 - ☐ Armazenar dados para futuras auditorias

Acesso, Segurança e Padrão Industrial

- ☐ Restrição do pessoal ao sistema
- ☐ Adequação do sistema supervisório com outros aplicativos do sistema operacional utilizado

FORNO DE RECOZIMENTO EM CAIXA

E DECAPAGEM

LAMINADOR SENOZIMIR

ACABAMENTO

BOBINAS E CHAPAS A FRIO DE AÇO INOX

E DECAPAGEM

LAMINADOR SENOZIMIR

RECOZIMENTO CONTINUO E REVESTIMENTO

FORNO DE RECOZIMENTO EM CAIXA

CARLITE

ACABAMENTO

BOBINAS E CHAPAS A FRIO DE AÇO SILÍCIO

BOBINAS E CHAPAS A QUENTE DE AÇOS PLANOS EM INOX E CARBONO

14:47:50 Selecao por chave - CADLIGA - 6 14:46:04 RELPR FP => Fim da rotina - Variávei

AM PRD

:46:04 RELPR_FP => Fim da rotina - Variáveis p relatório calculadas

