Panorama de ferramentas para gerenciamento de clusters*

Claudio Schepke, Tiarajú A. Diverio Programa de Pós-Graduação em Computação Instituto de Informática, UFRGS {cschepke,diverio}@inf.ufrgs.br Marcelo V. Neves, Andrea S. Charão Laboratório de Sistemas de Computação Curso de Ciência da Computação, UFSM {veiga,andrea}@inf.ufsm.br

Resumo

O uso de clusters tem sido uma das alternativas mais adotadas para o desenvolvimento de sistemas computacionais paralelos. No entanto, a configuração e manutenção deste tipo de arquitetura envolve diversos fatores, sendo simplificada pela existência de ferramentas específicas para cada problema. Neste trabalho serão apresentadas algumas ferramentas que facilitam a instalação de sistemas operacionais e programas que possibilitam o gerenciamento e monitoração de todo o sistema, buscando descrever as diferentes alternativas existentes para cada caso.

1. Introdução

Clusters são comumente utilizados em aplicações de simulação, biotecnologia, petroquímica, modelagem de mercados financeiros, mineração de dados, processamento de imagens e servidores de música e jogos para a Internet. Um cluster é um conjunto de computadores independentes conectados por rede que formam um sistema único através do uso de software [1]. Em geral clusters são classificados segundo alguns critérios. Um cluster é dito homogêneo quanto todos os nós da máquina possuem a mesma configuração; caso contrário eles são conhecidos como heterogêneos. Já o número de processadores existentes por máquina permite a classificação entre mono (um processador) ou multiprocessados (vários processadores), sendo frequente neste último caso a utilização de dois processadores. Uma terceira classificação leva em conta o modo de configuração do cluster. Neste caso, um cluster pode ser formado através de um determinado número de computadores ou até de constelações (cluster de clusters) [19].

O gerenciamento de *clusters* envolve diversos fatores, desde a instalação do sistema operacional, até a definição de ferramentas para a configuração, manutenção, monitoramento e escalonamento de tarefas. Este artigo busca apre-

sentar as características de algumas ferramentas que permitam realizar diferentes tarefas relacionadas ao gerenciamento de *clusters*. A próxima seção descreve alguns recursos que facilitam a instalação, utilização e manutenção do sistema. A seção 3 apresenta as ferramentas de escalonamento de tarefas. Na seqüência são discutidas as características de alguns programas de monitoração utilizados atualmente. Por fim são apresentadas as conclusões obtidas com a realização do trabalho.

2. Instalação do Sistema

2.1. Mecanismos de Instalação Automática

Clusters são geralmente formados por um número bastante grande de computadores. A instalação e configuração individual de cada sistema operacional para cada máquina pode levar muito tempo. Como em geral as máquinas utilizam o mesmo sistema operacional é possível fazer uso de um mecanismo automático de instalação. Para tanto existem diversas ferramentas. A seguir serão apresentadas algumas delas, buscando descrever as suas principais características.

- Kickstart [16]: é um sistema desenvolvido para RedHat Linux que permite colocar todas as seleções que o usuário faria na instalação manual, como seleção da linguagem, partições, pacotes a serem instalados, etc, em um arquivo de configuração, eliminando toda iteração com o usuário.
- FAI (Fully Automatic Installation) [7]: é um conjunto de scripts e arquivos de configuração para instalação automatizada de sistema Debian Linux em um agregado com um grande número de nós. FAI é um método escalável, onde cada nó realiza a sua própria instalação a partir de um arquivo de configuração de um servidor. Para tanto, um nó cliente carrega um sistema temporário, via rede ou disquete, que começa a instalação propriamente dita.

^{*} Este trabalho é fomentado pelo CNPq.

- *Replicator* [3]: outro recurso desenvolvido exclusivamente para sistemas *Debian Linux*, funcionando como um duplicador de instalação.
- ALICE [4]: é um sistema para SuSE Linux que permite instalar e configurar várias máquinas automaticamente com o mínimo possível de interação humana.
 Baseado em interfaces como syslinuxrc, YaST e suseconfig, além de instalar os sistema operacional, ALICE também pode criar grupos e usuários, ativar serviços, etc.
- OSCAR (Open Source Cluster Application Resources) [11]: É um ambiente para a instalação, configuração e gerenciamento de clusters. OSCAR apresenta de forma integrada os recursos mais utilizados em cluster, disponibilizando a configuração automática de componentes, bem como a instalação eficiente do ambiente básico como sistema operacional e ferramentas de administração e operação. A versão corrente de OSCAR possui suporte para as distribuições Linux Red Hat, Fedora e Mandriva.

2.2. Carga Remota do Sistema

Para clusters formados por máquinas homogêneas é possível fazer a carga remota do sistema operacional. Para tanto, primeiramente é feita a instalação do sistema em uma das máquinas do agregado. A partir desta instalação é feita uma imagem que ficará armazenada em um servidor. Essa imagem é carregada automaticamente para as máquinas quando elas são iniciadas pela rede. É possível também criar várias imagens, com diferentes configurações e recursos de programação paralela, permitindo a escolha de uma delas no momento em que o sistema irá ser carregado. A seguir são apresentados alguns programas que permitem a carga remota do sistema.

- SystemImager [6]: um conjunto de scripts que simplificam os procedimentos para preparação da carga remota. Com ele também é possível atualizar as imagens já distribuídas para os nós. As atualizações são rápidas porque somente as partes modificadas são mandadas ao cliente. SystemImager também permite o armazenamento de várias imagens em um servidor, podendo estas serem associadas à nós específicos.
- Rembo Toolkit [22]: um inicializador remoto desenvolvido a partir da ferramenta BpBatch que utiliza o protocolo PXE e permite a execução de várias ações em tempo de boot, antes do sistema operacional ser iniciado. Assim, é possível desde particionar o disco rígido, até autenticar usuários, como também criar uma imagem de um disco rígido clonando o estrutura de partições.

- Ka-deploy [20]: é uma ferramenta que faz parte do Ka Clustering Tools, que permite replicar uma máquina Linux muitas vezes ao mesmo tempo. A carga remota em clusters cria uma corrente de dados entre os nós, cada nó copia os dados para seu disco local e envia para o resto da corrente.
- ClusterWorx [15]: é outro exemplo de ferramenta para auxiliar o processo de carga remota. Ele foi desenvolvido pela Linux NetworX, possuindo também um gerenciador de imagens.

2.3. Atualização e configuração do sistema

Instalar e configurar pacotes nos nós de um agregado de computadores pode ser outro grande problema, principalmente quando este é formado por algumas dezenas ou centenas de nós. A primeira alternativa é o compartilhamento dos arquivos por NFS (*Network File System*), mas isso pode congestionar a rede com o aumento do numero de nós. Assim é necessário ter um sistema que permita instalar, atualizar e configurar programas nos nós de forma automatizada e com boa escalabilidade. Alguns programas que auxiliam na configuração de *clusters* são:

- SCMS (Scalable Cluster Management System) [21]: é
 um sistema desenvolvido pela Universidade Kasetsart
 (Tailândia) que possui recursos úteis para configuração e atualização remota como, por exemplo, comandos UNIX paralelos, permitindo a execução da mesma
 tarefa em vários nós ao mesmo tempo e a instalação de
 pacotes RPMs em paralelo.
- xCAT [8]: desenvolvido pela IBM, é um sistema que automatiza alguns processos de instalação e configuração. Ele permite ligar e desligar as maquinas remotamente, acessar a BIOS através de um console e usar uma espécie de *shell* paralelo para executar o mesmo comando em vários nós.
- SHOC [24]: é um sistema que permite ao administrador, através de um shell bash, usar o agregado com se fosse uma única máquina.

3. Escalonamento

O escalonamento define como são utilizados os nós de um *cluster*, fornecendo, mediante requisição, a possibilidade de uso do mesmo por parte dos usuários. Os objetivos de um escalonador são maximizar a utilização do *cluster*, maximizar a quantidade de aplicações executadas, reduzir o tempo de resposta, mesclar requisições dos usuários com as ordens administrativas e dar a ilusão de uma máquina única e dedicada. Embora alguns pareçam ser contraditórios entre si, cabe ao escalonador definir a melhor po-

lítica de uso. Algumas ferramentas de escalonamento mais conhecidas são:

- CCS (Computing Center Software [10, 12]: desenvolvido pelo Centro de Computação Paralela de Paderborn (Alemanha), o objetivo de CCS é gerenciar sistemas MPP (Massively Parallel Computing) e clusters num sistema de planejamento. Para isso, a ferramenta permite o acesso aos recursos de forma exclusiva concorrentemente, processamento simultâneo do modo interativo e de fila, maximização do uso do sistema através do particionamento dinâmico e escalonamento, além de tolerância a falhas em acesso remotos. A arquitetura do CCS é modular, o que permite integrar um grande número de sistemas.
- PBS (Portable Batch System) [17]: Desenvolvido inicialmente pela NASA e posteriormente apresentado em uma versão comercial, PBS apresenta suporte a tarefas tanto de um único sistema como de múltiplos sistemas. Devido a flexibilidade do PBS, os sistemas podem ser agrupados de diferentes formas. O sistema de escalonamento utilizado adiciona as tarefas primeiramente a uma fila, para que, posteriormente, o escalonador analise as tarefas. Além da versão comercial existe também uma versão de código aberta conhecida como openPBS [12].
- Condor: é uma ferramenta que pode ser usada para gerenciar clusters e múltiplos clusters. Para a execução de tarefas é necessário primeiramente definir os recursos necessários. A seguir as tarefas são armazenadas em uma lista de espera. Algumas das características de Condor são a submissão distribuída de tarefas, prioridades para usuários e tarefas, suporte a múltiplos modelos de tarefas, checkpointing e migração, suspensão de tarefa e posterior continuação, autenticação e autorização, entre outros.
- Maui [9]: é um escalonador de tarefas configurável e otimizado, usado em clusters e supercomputadores, capaz de suportar diferentes técnicas de escalonamento, prioridades dinâmicas, reserva de recursos e compartilhamento justo. As técnicas de otimização adotadas em Maui permitem aumentar a utilização dos recursos e diminuir o tempo de resposta na execução de tarefas paralelas. Implementado em Java, o que permite a extensão e utilização da ferramenta em diversos ambientes, Maui necessita de uma JVM para ser instalado e utilizado.
- Crono [14]: possui como objetivo principal o gerenciamento de clusters pequenos e médios num sistema de planejamento, uma vez que a utilização do cluster ocorre por meio de de agendamentos. Ele foi desenvolvido pela PUC-RS, disponibilizando serviços necessários para compartilhar um cluster entre vários usuá-

rios. A arquitetura da ferramenta é composta de quatro partes, onde estas são responsáveis por realizar a interface com o usuário, gerenciar o acesso (validação das requisições), gerenciar as requisições (escalonar pedidos e preparar o ambiente de execução) e gerenciar o nó.

4. Monitoração

A monitoração é um processo que consiste em apresentar a utilização dos recursos de um *cluster* através da análise de dados recolhidos continuamente do sistema. Desta forma é possível obter informações sobre a existência de máquinas ociosas ou com problemas, utilização da rede, capacidade de processamento do processador e quantidade de memória utilizada, permitindo assim a tomada de decisões. Atualmente existem diversas ferramentas que permitem verificar o estado de um ambiente de maneira simples e intuitiva. Como exemplos de aplicações tempos *Ganglia*, SCMS e *RVision*, que serão vistas na seqüência.

- Ganglia [13]: é uma ferramenta de de monitoração para clusters e grids desenvolvida de forma distribuída e escalável. Um módulo centralizador coleta e atualiza as informações, enquanto que cada nó mantém uma cópia do estado corrente do sistema. Os dados coletados podem ser visualizados graficamente através de uma interface Web. Com Ganglia é possível monitorar qualquer tipo de informação, uma vez que o usuário pode definir métricas específicas através de outra aplicação, além daquelas já coletadas pelo próprio sistema.
- Parmon [2]: é uma ferramenta comercial que possui uma arquitetura centralizada, sendo dividida em duas partes: servidor, responsável por monitorar o nó, e cliente, onde é feita a centralização de todos os dados monitorados e a visualização gráfica e *on-line* ou textual das informações. Parmon permite adquirir informações dos recursos do sistema de vários nós, acompanhar processos e *logs* do sistema, além de definir eventos de alerta (*trigger*) ao administrador do *cluster*. Também é possível monitorar CPU, memória, rede e disco e executar alguns comandos paralelos.
- SCMS [21]: tem como objetivo monitorar de forma simples, eficiente e robusta clusters de pequeno e médio porte através de uma arquitetura centralizada organizada num módulo de monitoração e num módulo de centralização, o qual armazena os dados monitorados e atende as requisições dos clientes. A ferramenta permite monitorar o uso de CPU, memória, rede e disco, além de fornecer informações úteis sobre a configuração dos nós do cluster. A coleta de dados ocorre em ciclos ou por demanda, no caso das informações de con-

- figuração do sistema. Já a apresentação gráfica dos dados monitorados por SCMS ocorre no cliente.
- RVision [5]: é uma ferramenta de monitoração desenvolvida com o objetivo de ser adaptável à diferentes clusters, tendo uma arquitetura aberta e configurável. Para manter essas características, a ferramenta possui uma interface para a comunicação de clientes com o núcleo da ferramenta. A arquitetura de RVision é centralizada, sendo composta um de programa monitor e um programa centralizador. Ao invés do monitor, é possível utilizar um agente SNMP em seu lugar, sendo possível assim a adição de novas métricas. O tipo de visualização irá depender do cliente implementado.

5. Tendências e Conclusão

De uma forma geral as ferramentas de gerenciamento tem evoluído no sentido de incluir diversas funcionalidades em um único componente, contemplando assim todas as necessidades exigidas na administração de *clusters*. Este é o caso das ferramentas ROCKS e OpenSCE [23, 18], que apresentam diferentes funcionalidades ou buscam a integração entre vários *softwares*, disponibilizando em um único recurso a possibilidade de instalação e configuração de *software*, a monitoração e gerenciamento do estado do *cluster*, o balanceamento de carga, além de ferramentas que auxiliem no desenvolvimento de aplicações.

A administração de *clusters* envolve diversas questões, muitas das quais com a existência de soluções bem definidas. A escolha de recursos e ferramentas certas para cada tipo de tarefa torna a implementação do sistema mais simples. Este trabalho apresentou diversas ferramentas que auxiliam na automatização das tarefas de instalação do sistema operacional, configuração e manutenção do sistema Cada uma dessas ferramentas apresenta características específicas, apresentando soluções definidas para determinados tipos de problema. Já na monitoração, as ferramentas apresentam-se bastante dinâmicas, possibilitando a filtragem de novas métricas, além da possibilidade de extensão e gerenciamento de mais de um agregado.

Referências

- R. Buyya. High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
- [2] R. Buyya. PARMON: A portable and scalable monitoring system for clusters. *Software Practice and Experience*, 30(7):723–739, jun 2000.
- [3] S. Chaumat. Replicator 2.0 for Debian/GNU Linux 2.2 Manual, 2000.
- [4] A. F. F. Herschel, P. Hollants. ALICE: Automatic Linux Installation and Configuration Environment, 2000. http://www.suse.de/ fabian/alice/.

- [5] T. C. Ferreto, C. A. F. de Rose, and L. de Rose. Rvision: An open and high configurable tool for cluster monitoring. *2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID'02)*, page 75, 2002.
- [6] B. Finley. Systemimager, 2003. http://systemimager.org.
- [7] M. Gärtner, T. Lange, and J. Rühmkorf. The fully automatic installation of a Linux cluster, 1999.
- [8] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley. XCAT 2.0: A Component Based Programming Model for Grid Web Services. In *Grid* 2002, 3rd International Workshop on Grid Computing, 2002.
- [9] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the Maui Scheduler. *Lecture Notes in Computer Science*, 2221:87–94, 2001.
- [10] A. Keller and A. Reinefeld. CCS Resource Management in Networked HPC Systems, 1998.
- [11] B. Li. OSCAR: Open Source Cluster Application Resources, 2005. http://oscar.openclustergroup.org.
- [12] R. Magrin, A. Santos, R. Ávila, and P. Navaux. Gerenciamento de agregados openpbs x ccs. Escola Regional de Alto Desempenho (ERAD), 2003.
- [13] M.L. Massie and B.N. Chun and D.E. Culler. The Ganglia Distributed Monitoring System: Design, Implementation, and Experience. *Parallel Computing*, 30(7), July 2004.
- [14] M. A. S. Netto and C. A. F. D. Rose. Crono: a configurable management system for linux clusters. In *The Third LCI International conference on linux clusters: the hpc revolu*tion, 2002.
- [15] L. Networx. Clusterworx, 2005.
- [16] J. O'Kane. Kickstart. Sys Admin: The Journal for UNIX Systems Administrators, 9(1):33–34, 36, Jan. 2000.
- [17] OpenPBS.org. The Portable Batch System, 2003. http://www.openpbs.org.
- [18] OpenSCE Project. OpenSCE. Open Scalable Cluster Environment, May 2005. http://www.opensce.org.
- [19] M. Pasin and D. L. Kreutz. Arquitetura e administração de aglomerados. In *Terceira Escola Regional de Alto Desempe*nho, Santa Maria, 2003. Sociedade Brasileira de Computação - UNISINOS / UFSM / UNILASSALE.
- [20] Philippe Augerat and Wilfrid Billot and Simon Derr and Cyrille Martin. A scalable file distribution and operating system installation toolkit for clusters, 2003. http://katools.sourceforge.net/publications/file-distribution.pdf.
- [21] Putchong Uthayopas and Arnon Rungsawang. SCMS: An Extensible Cluster Management Tool for Beowulf Cluster. In *Proceedings of Supercomputing'99 (CD-ROM)*, Portland, OR, nov 1999. ACM SIGARCH and IEEE. Department of Computer Engineering, Kasetsart University.
- [22] Rembo Technology. Rembo Toolkit, 2005. http://www.rembo.com.
- [23] Rocks Cluster Distribution. ROCKS, May 2005. http://www.rocksclusters.org.
- [24] C. M. Tan, C. P. Tan, and W. F. Wong. Shell over a cluster (SHOC): Towards achieving single system image via the shell, Sept. 30 2002.