Galois Categories

Swayam Chube

April 29, 2025

§1 Preliminaries on Profinite Groups

Definition 1.1. A profinite group is an inverse limit of finite discrete topological groups. Note that a profinite group is always compact, Hausdorff, and totally disconnected.

Proposition 1.2. Let π be a profinite group acting on a set E. Then

- (1) The action is continuous if and only if for each $e \in E$, $\operatorname{Stab}_{\pi}(e)$ is open in π .
- (2) If *E* is finite, the action is continuous if and only if its kernel $\{\sigma \in \pi : \sigma e = e \ \forall \ e \in E\}$ is open in π .
- (3) Any finite transitive π -set is isomorphic to π/π' for a certain open subgroup π' of π .

Proof. (1) If the action is continuous, then the function $\pi \to E$ given by $\sigma \mapsto \sigma e$ is continuous and the preimage of e, which is precisely the stabilizer of e in π , is open.

Conversely, suppose every stabilizer is open. Let $A: \pi \times E \to E$ denote the action. Since E is discrete, it suffices to show that $A^{-1}(e)$ is open for each $e \in E$. Let $e' \in \pi \cdot e$ and suppose $\tau_{e'} \in \pi$ is such that $\tau_{e'}e = e'$. Then

$$\{\sigma\colon \sigma e'=e\}= au_{e'}^{-1}\operatorname{Stab}_\pi(e')$$
,

which is an open subset of π . Consequently,

$$\mathcal{A}^{-1}(e) = \bigcup_{e' \in \pi \cdot e} \left\{ (\sigma, e') \colon \sigma e' = e \right\} = \bigcup_{e' \in \pi \cdot e} \tau_{e'}^{-1} \operatorname{Stab}_{\pi}(e') \times \{e'\}$$

is an open subset of $\pi \times E$, as desired.

(2) The kernel of the action (denoted π') is the intersection of all the stabilizers. If E is finite, then since the stabilizers are open, the kernel is also open. Conversely, any open subgroup of π must have finite index, i.e., π' has finite index in π . Let τ_1, \ldots, τ_n be a collection of left coset representatives of π' in π , and supopse that for $1 \leqslant i \leqslant m$, we have $\tau_i e = e$, which implies

$$\pi_e = \bigcup_{i=1}^m \tau_i \pi',$$

and so the stabilizers of each $e \in E$ are open.

(3) This is trivial from (a) and (b).

§2 Galois Categories

§§ Statement of the Main Theorem

Definition 2.1. Let $\mathscr C$ be a category, X an object of $\mathscr C$, and G a subgroup of $\operatorname{Aut}_{\mathscr C}(X)$. The *quotient* of X by G is an object X/G of $\mathscr C$ together with a morphism $p:X\to X/G$ satisfying

- (i) $p = p \circ \sigma$ for all $\sigma \in G$.
- (ii) if $X \xrightarrow{f} Y$ is a morphism in $\mathscr C$ such that $f = f \circ \sigma$ for all $\sigma \in G$, then there is a unique morphism $X/G \xrightarrow{g} Y$ making

commute.

The quotient of an object by a group need not exist in a category, but when it does, it must be unique up to a unique isomorphism.

Definition 2.2. Let $\mathscr C$ be a category and $F:\mathscr C\to \textbf{FinSets}$ a (covariant) functor from $\mathscr C$ to the category of finite sets. We say that the pair $(\mathscr C,F)$ is a *Galois category*, or that $\mathscr C$ is a Galois category with *fundamental functor F*, if the following axioms are satisfied:

- (G1) There is a terminal object and $\mathscr C$ admits all fibred products.
- **(G2)** An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} , the quotient by a finite group of automorphisms exists.
- **(G3)** Any morphism u in $\mathscr C$ factors as $u=u'\circ u''$ where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $X\stackrel{f}{\to} Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y; i.e., there is an object $Z\stackrel{g}{\to} Y$ such that

is a coproduct diagram.

- (G4) The functor F sends terminal objects to terminal objects and commutes with fibred products.
- **(G5)** The functor F sends initial objects to initial objects, commutes with finite coproducts, sends epimorphisms to epimorphisms, and commutes with passage to the quotient by a finite group of automorphisms.
- **(G6)** If u is a morphism in $\mathscr C$ such that F(u) is an isomorphism, then u is an isomorphism.

Proposition 2.3. Let (\mathscr{C}, F) be a small Galois category and set $\mathscr{D} = [\mathscr{C}, \mathbf{FinSets}]$, the functor category between \mathscr{C} and the category of finite sets. Then $\mathrm{Aut}_{\mathscr{D}}(F)$ is a profinite group acting continuously on F(X) for every $X \in \mathscr{C}$.

Proof. An element of $\operatorname{Aut}_{\mathscr{D}}(F)$ is a natural isomorphism $\eta: F \Rightarrow F$, i.e, each $\eta_X: F(X) \to F(X)$ is an isomorphism. Hence, we can identify $\operatorname{Aut}_{\mathscr{D}}(F)$ with a subgroup of $\prod_{X \in \mathscr{C}} \mathfrak{S}_{F(X)}$, where $\mathfrak{S}_{F(X)}$ is the group of permutations of F(X). In particular,

$$\operatorname{Aut}_{\mathscr{D}}(F) = \left\{ (\eta_X)_X \in \prod_{X \in \mathscr{C}} \mathfrak{S}_{F(X)} \colon \text{ for each } Y \xrightarrow{f} Z \text{ in } \mathscr{C}, \ \eta_Z \circ F(f) = F(f) \circ \eta_Y \right\}.$$

2

Let $Y \xrightarrow{f} Z$ be a morphism in \mathscr{C} . Then the set

$$\mathfrak{A}_f = \left\{ (\eta_X)_X \in \prod_{X \in \mathscr{C}} \mathfrak{S}_{F(X)} \colon \eta_Z \circ F(f) = F(f) \circ \eta_Y \right\}.$$

is closed, as it is the finite union of the closed sets

$$\prod_{\substack{X \in \mathscr{C} \\ X \neq Y, Z}} \mathfrak{S}_{F(X)} \times \{\eta_Y\} \times \{\eta_Z\},$$

where $\eta_Y \in \mathfrak{S}_{F(Y)}$ and $\eta_Z \in \mathfrak{S}_{F(Z)}$ satisfy $\eta_Z \circ F(f) = F(f) \circ \eta_Y$. Now, since

$$\operatorname{\mathsf{Aut}}_{\mathscr{D}}(F) = \bigcap_{\substack{Y \stackrel{f}{\longrightarrow} Z \ \text{in }\mathscr{C}}} \mathfrak{A}_f,$$

it is a closed subgroup of $\prod_{X \in \mathcal{C}} \mathfrak{S}_{F(X)}$, so that it is a profinite group.

Finally, the map $\operatorname{Aut}_{\mathscr{D}}(F) \times F(X) \to F(X)$ given by $((\eta_X)_{X \in \mathscr{C}}, a) \longmapsto \eta_X(a)$ defines an action of $\operatorname{Aut}_{\mathscr{D}}(F)$ on F(X). The stabilizer of each $a \in F(X)$ is precisely

$$\operatorname{\mathsf{Aut}}_{\mathscr{D}}(F) imes \left(\prod_{\substack{Y \in \mathscr{C} \\ Y
eq X}} \times \operatorname{\mathsf{Stab}}_{\mathfrak{S}_{F(X)}}(a) \right),$$

which is an open subgroup of $Aut_{\mathscr{D}}(F)$. Due to Proposition 1.2, this action is continuous.

Interlude 2.4 (Construction of the Main Functor). Let (\mathscr{C},F) be a small Galois category. Define the functor $H:\mathscr{C}\to \operatorname{Aut}(F)$ -sets sending each $X\in\mathscr{C}$ to F(X) with the $\operatorname{Aut}(F)$ -action as defined in the proof of Proposition 2.3. If $Y\stackrel{f}\to Z$ is a morphism in \mathscr{C} , then the induced morphism $F(f):F(Y)\to F(Z)$ is $\operatorname{Aut}(F)$ -linear: indeed, if $\eta=(\eta_X)_X\in\operatorname{Aut}(F)$, then for $y\in Y$,

$$F(f)(\eta y) = F(f)(\eta_Y y) = \eta_Z(F(f)(z)) = \eta F(f)(z).$$

Theorem 2.5 (Fundamental Theorem of Galois Categories). Let (\mathscr{C}, F) be an essentially small Galois category. Then

- (1) The functor $H: \mathscr{C} \to \operatorname{Aut}(F)$ -sets is an equivalence of categories.
- (2) If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent by an equivalence, that when composed with the forgetful functor π -sets \to FinSets yields the funtor F, then π is canonically isomorphic to $\operatorname{Aut}(F)$.
- (3) If F' is a second fundamental functor on \mathscr{C} , then F and F' are naturally isomorphic.
- (4) If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent, then there is an isomorphism of profinite groups $\pi \cong \operatorname{Aut}(F)$ that is canonically determined up to an inner automorphism of $\operatorname{Aut}(F)$.

Henceforth, let
$$(\mathscr{C}, F)$$
 be a small Galois category.

§§ Subobjects and connected objects

Definition 2.6. Lt $X \in \mathscr{C}$. Consider the set $\{Y \to X \text{ a monomorphism}\} / \sim \text{ where}$

$$Y \xrightarrow{f} X \sim Y' \xrightarrow{f'} X$$

if and only if there is an isomorphism $Y \xrightarrow{\cong} Y'$ making

$$Y \xrightarrow{\cong} Y'$$

$$f \downarrow \qquad \qquad f'$$

$$X$$

commute. Every equivalence class in the above is called a *subobject* of X.

Lemma 2.7. f is a monomorphism if and only if F(f) is injective.

Proof. Let $Y \xrightarrow{f} X$. We first show that f is a monomorphism if and only if the canonical map $p_1: Y \times_X Y \to Y$ is an isomorphism. If f is a monomorphism, then it is clear that Y = Y is a coproduct diagram, so that

 $p_1: Y \times_X Y \to Y$ is an isomorphism.

Conversely, suppose $p_1: Y \times_X Y \to Y$ is an isomorphism and consider the commutative diagram

Since p_1 is an isomorphism, it follows that $\theta = p_1^{-1}$ is an isomorphism. Further, since $p_2 \circ \theta = id_Y$, we must have that $p_1 = p_2$.

Now, suppose $h_1, h_2: Z \to Y$ are morphisms in $\mathscr C$ satisfying $f \circ h_1 = f \circ h_2$, then there is a morphism $\varphi: Z \to Y \times_X Y$ making the required diagram commute. But then

$$h_1 = p_1 \circ \varphi = p_2 \circ \varphi = h_2$$
,

so that f is a monomorphism.

Coming back to the proof of the Lemma, we have

$$F(f)$$
 is injective $\iff F(f)$ is a monomorphism $\iff F(p_1)$ is an isomorphism $\iff p_1$ is an isomorphism $\iff f$ is a monomorphism,

where the first equivalence follows from the classification of monomorphisms in **FinSets**, the second and last equivalences follow from what we just proved and (G4), and the third isomorphism follows from (G6).

Lemma 2.8. Two monomorphisms $Y \xrightarrow{f} X$ and $Y' \xrightarrow{f'} X$ are representative of the same subobject of X if and only if F(f)(F(Y)) = F(f')(F(Y')) as subsets of F(X).

Proof. Suppose the two objects represent the same subobject of X. Then there is an isomorphism $\theta: Y \xrightarrow{\sim} Y'$ such that $f = f' \circ \theta$. Then, $F(f)(F(Y)) = F(f') \circ F(\theta)(F(Y))$ but $F(\theta)$ is an isomorphism, so is surjective and hence F(f)(F(Y)) = F(f')(F(Y')).

Conversely, suppose F(f)(F(Y)) = F(f')(F(Y')). As F commutes with fibred products, we have the following pullback squares

$$\begin{array}{cccc} Y \times_X Y' \xrightarrow{p_1} Y & F\left(Y \times_X Y'\right) \xrightarrow{F(p_1)} Y \\ & \downarrow^{f} & F(p_2) \downarrow & \downarrow^{F(f)} \\ Y' \xrightarrow{f'} X & Y' \xrightarrow{F(f')} X \end{array}$$

Since the latter is a pullback square, we have

$$F(Y \times_X Y') = \{(y, y') \in F(Y) \times F(Y') : F(f)(y) = F(f')(y')\}.$$

As F(f) and F(f') are injective with the same image in X, it is clear that both $F(p_1)$ and $F(p_2)$ must be bijections, consequently, due to (G6), both p_1 and p_2 must be isomorphisms isomorphisms in \mathscr{C} . Finally, this gives $f = f' \circ (p_2 \circ p_1^{-1})$, as desired.

Definition 2.9. An object $X \in \mathscr{C}$ is said to be *connected* if it has exactly two subobjects, $0 \to X$ and $id_X : X \to X$. **Proposition 2.10.** Every object in $\mathscr{C} \neq 0$ is the coproduct of its connected subobjects.

Proof. Let X be a non-initial object in $\mathscr C$. We shall argue by induction on #F(X). If #F(X)=1, then X is connected, for if $Y\stackrel{f}{\to} X$ is a subobject, then $F(Y)\stackrel{F(f)}{\longrightarrow} F(X)$ is injective, so that $F(Y)=\emptyset$ or F(Y)=F(X). In the latter case, F(f) is an isomorphism and hence, so is f; on the other hand, if $F(Y)=\emptyset$, then Y must be the initial object of $\mathscr C^1$. Suppose now that $\#F(X)\geqslant 2$; since there is nothing to prove when X is connected, we may suppose that X is not connected. Then there is a subobject $Y\stackrel{q_1}{\to} X$ of X which is neither initial, nor an isomorphism. Due to (G3), there is a morphism $Z\stackrel{q_2}{\to} X$ such that $X=Y\coprod Z$. This coproduct diagram transforms into a coproduct diagram in **FinSets**, so that $F(q_2)$ is injective, consequently due to Lemma 2.7, $F(q_2)$ is a monomorphism. It follows that $F(q_2)$ is another subobject of $F(q_2)$ is finite, it is clear that this is a finite coproduct.

It remains to show that X is the disjoint union of each of its connected subobjects. Suppose $X = \coprod_{i=1}^n X_i$ and Y a connected subobject of X. I shall treat F(Y) and $F(X_i)$ as subsets of F(X) for ease of notation. Since $F(X) = \coprod_i F(X_i)$, there is some index j such that $F(Y) \times_{F(X)} F(X_j) = F(Y) \cap F(X_j) \neq \emptyset$. As a result, $Y \times_X X_j$ is not the initial object of $\mathscr C$. Since $F(Y \times_X X_j) \to F(X_j)$ and $F(Y \times_X X_j) \to F(Y)$ are injective, due to Lemma 2.7, the maps $Y \times_X X_j \to X_j$ and $Y \times_X X_j \to Y$ must be monomorphisms, and hence, must be isomorphisms. It follows that X_j and Y are the same subobject of X.

Lemma 2.11. \mathscr{C} admits all equalizers.

Proof. Let $f, g: X \to Y$ be morphisms in \mathscr{C} . There are two fibred product diagrams

We claim that $W = (X \times_Y X) \times_{X \times X} X \to X$ is the equalizer of f and g. Clearly, we have the following equality of compositions:

$$W \to X \xrightarrow{f} Y = W \to X \xrightarrow{\operatorname{id}_X} X \xrightarrow{f} Y$$

$$= W \to X \to X \times X \xrightarrow{\pi_1} X \xrightarrow{f} Y$$

$$= W \to X \times_Y X \to X \times X \xrightarrow{\pi_1} X \xrightarrow{f} Y$$

$$= W \to X \times_Y X \xrightarrow{p_1} X \xrightarrow{f} Y$$

$$= W \to X \times_Y X \xrightarrow{p_2} X \xrightarrow{g} Y$$

$$= W \to X \times_Y X \to X \times X \xrightarrow{\pi_2} X \xrightarrow{g} Y$$

$$= W \to X \xrightarrow{\operatorname{id}_X} X \xrightarrow{g} Y$$

$$= W \to X \xrightarrow{\operatorname{id}_X} X \xrightarrow{g} Y$$

$$= W \to X \xrightarrow{g} Y.$$

¹Indeed, if 0 is "the" initial object of \mathscr{C} , then there is a unique morphism $0 \xrightarrow{u} Y$ in \mathscr{C} . But since F(u) is an isomorphism in **FinSets**, it follows from (G6) that u is an isomorphism.

If $h: Z \to X$ is such that $f \circ h = g \circ h$, then there is a unique map $\theta: Z \to X \times_Y X$ induced by $Z \xrightarrow{h} X$, which then induces a unique map $\phi: Z \to W$, as desired.

Proposition 2.12. Let A be a connected object in \mathscr{C} and $a \in F(A)$. Then for every $X \in \mathscr{C}$, the map

$$\mathscr{C}(A,X) \longrightarrow F(X) \qquad f \longmapsto F(f)(a)$$

is injective.

Proof. Let $f,g \in \mathscr{C}(A,X)$ be such that F(f)(a) = F(g)(a), and let (C,θ) be the equalizer of f,g, which is known to exist due to Lemma 2.11. Since F commutes with fibred products, it must commute with equalizers too, hence $(F(C), F(\theta))$ is an equalizer of $F(f), F(g) : F(A) \to F(X)$. In particular, $F(\theta)$ is injective, so that θ is a monomorphism due to Lemma 2.7. Moreover,

$$a \in F(C) = \{b \in F(A) \colon F(f)(b) = F(g)(b)\} \neq \emptyset,$$

and hence C is not the initial object of \mathscr{C} , whence $\theta: C \to A$ is an isomorphism, which implies f = g.

Interlude 2.13. Consider the set $I = \{(A, a): A \text{ connected}, a \in F(A)\} / \sim \text{ where } \sim \text{ is the equivalence relation:}$

$$(A, a) \sim (B, b) \iff \exists f : A \rightarrow B \text{ an isomorphism such that } F(f)(a) = b.$$

We can define a partial order on I by

$$(A, a) \ge (B, b) \iff \exists f : A \to B \text{ a morphism such that } F(f)(a) = b.$$

Note that due to Proposition 2.12 the above map f, if it exists, is unique. We claim that (I, \geq) is a directed set under this order relation:

Reflexivity: Taking $f = id_A$, we have $F(id_A)(a) = a$, so $(A, a) \ge (A, a)$.

Anti-symmetry: If $(A, a) \ge (B, b)$ and $(B, b) \ge (A, a)$, then there are morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} A$ such that F(f)(a) = b and F(g)(b) = a. Consequently, $F(g \circ f)(a) = a$ and $F(f \circ g)(b) = b$. Using Proposition 2.12, it follows that $g \circ f = \mathbf{id}_A$ and $f \circ g = \mathbf{id}_B$, that is, (A, a) = (B, b).

Transitivity: If $(A, a) \ge (B, b) \ge (C, c)$ and $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ are the corresponding maps, then $g \circ f : A \to C$ is such that

$$F(g \circ f)(a) = F(g) \circ F(f)(a) = F(g)(b) = c.$$

Directedness: Let $(A, a), (B, b) \in I$. Choose a connected subobject $C \to A \times B$ such that the image of F(C) in $F(A \times B) = F(A) \times F(B)$ contains $a \times b$; further, let $c \in C$ be the unique element in F(C) mapping to $a \times b$. Compose the monomorphism $C \to A \times B$ with the canonical projections $A \times B \xrightarrow{p_1} A$ and $A \times B \xrightarrow{p_2} B$ to obtain maps f_1 and f_2 . Then it is clear that $F(f_1)(c) = a$ and $F(f_2)(c) = b$, so that $(C, c) \supseteq (A, a), (B, b)$.

We shall write $(A, a) \ge_f (B, b)$ if we want to specify the morphism $A \xrightarrow{f} B$ satisfying F(f)(a) = b.

If $(A, a) \ge_f (B, b)$, then the morphism $f : A \to B$ induces a natural transformation of functors $\mathscr{C}(B, -) \xrightarrow{-\circ f} \mathscr{C}(A, -)$. This gives us a projective system of functors in the functor category $[\mathscr{C}, \mathsf{FinSets}]$.

Theorem 2.14. There is an isomorphism of functors

$$\varinjlim_{(A,a)\in I}\mathscr{C}(A,-)\longrightarrow F(-)\qquad f\longmapsto F(f)(a)$$

Proof. Consider the maps $\phi_{(A,a)}: \mathscr{C}(A,X) \to F(X)$ given by $f \mapsto F(f)(a)$. If $(A,a) \geq_{\psi} (B,b)$, then it is clear that the diagram

commutes. This clearly induces a map $\phi: \varinjlim_{(A,a)\in I} \mathscr{C}(A,X) \to F(X)$ given by

$$\phi(f) = \phi_{(A,a)}(f)$$
 if $f \in \mathscr{C}(A,X)$.

It suffices to show that this map is a bijection of sets, since then it would follow that ϕ is an isomorphism of functors.

First, we show injectivity. Suppose F(f)(a) = F(g)(b) for some $(A, a), (B, b) \in I$ and $f \in \mathcal{C}(A, X)$ and $g \in \mathcal{C}(B, X)$. Let $C \to A \times B$ be a connected subobject such that $(a, b) \in f(C)$, and let p'_1, p'_2 be the compositions of the projection maps $p_1 : A \times B \to A$ and $p_2 : A \times B \to B$ with the monomorphism $C \to A \times B$. It is then clear that $(C, C) \supseteq (A, a)$ and $(C, C) \supseteq (B, b)$.

Under the map $\mathscr{C}(A,X) \to \mathscr{C}(C,X)$, the morphism f maps to $f \circ p_1'$ and under the map $\mathscr{C}(B,X) \to \mathscr{C}(C,X)$, the morphism g maps to $g \circ p_2'$. We contend that these two maps are the same. Indeed, since $F(fp_1')(c) = F(gp_2')(c)$, due to Proposition 2.12, $fp_1' = gp_2'$. This shows that f and g are equal in $\varinjlim_{(A,a) \in I} \mathscr{C}(A,X)$.

Finally, to see surjectivity, take $x \in F(X)$ and consider $f: A \to X$, the connected component of X such that $x \in F(A)$. Then $(A, x) \in I$ and F(f)(x) = x. This completes the proof.

§§ Galois Objects

If A is a connected object, then we have the inequalities:

$$\# \operatorname{Aut}_{\mathscr{C}}(A) \leqslant \# \mathscr{C}(A, A) \leqslant \# F(A),$$

where the second inequality follows from Proposition 2.12. In particular, the set of automorphisms of A is finite, and therefore, it makes sense to talk about the quotient of a connected object by its group of automorphisms.

Definition 2.15. An object $A \in \mathscr{C}$ is called a *Galois object* if $A/\operatorname{Aut}_{\mathscr{C}}(A)$ is a terminal object.

Proposition 2.16. Let $X \in \mathscr{C}$. There exists $(A, a) \in I$ with A Galois such that the map $\mathscr{C}(A, X) \to F(X)$ given by $f \mapsto F(f)(a)$ is bijective.

Proof. Let $Y = X^{\#F(X)}$ be the product of #F(X) copies of X. As F commutes with products, we have $F(Y) = F(X)^{\#F(X)}$. Let us index the coordinates of Y by the elements of F(X), and let $a \in F(Y)$ be the element having in the X-th coordinate the element $X \in F(X)$. Let A be the connected component of Y suc that $A \in F(A)$ and $A \in F(A)$ in its coordinates, then as $A \in F(A)$ and $A \in F(A)$ and $A \in F(A)$ and $A \in F(A)$ and so the map is bijective (since we already know about injectivity from Proposition 2.12).

Moreover, we have also obtained that the only morphisms in $\mathscr{C}(A,X)$ are the ones of the form f_x for a certain $x \in f(X)$. We contend that A is Galois. Let $a' \in F(A)$, $a' \neq a$. The map $\mathscr{C}(A,X) \to F(X)$ given by $f \mapsto F(f)(a')$ is bijective as it is injective and we have just seen that the two sets cardinality. As for all $g \in \mathscr{C}(A,X)$, $g = f_x$ for a certain x, this proves that a' has all the elements of F(X) in its coordinates.

We shall show that there is an automorphism of Y sending a to a'. Let $a=(a_x)_{x\in F(X)}$ and $a'=(a_{\sigma(x)})_{x\in F(X)}$ where σ is a permutation of the set F(X). Note that $\mathscr{C}(Y,Y)=\prod_{x\in F(X)}\mathscr{C}(Y,X)$ and consider the map $f=\prod_{x\in F(X)}p_{\sigma(x)}$. Then $F(f)(a)=\prod_{x\in F(X)}F(p_{\sigma(x)})(a)=(a_{\sigma(x)})_{x\in F(X)}=a'$. Taking the inverse permutation to σ we see that f is an isomorphism. Then the map $A\to Y\xrightarrow{\sigma} Y$ is a monomorphism, which induces an automorphism $A\xrightarrow{\tau} A'$ from A to another connected component A' of Y. Moreover, as $a'\in F(A)\cap F(A')$, and A,A' are connected, we must have F(A)=F(A'), so that A=A' and therefore τ is an automorphism of A which sends A to A. In conclusion A acts transitively on A and therefore A is Galois.

Remark 2.17. The above result shows that the subset $J \subseteq I$ corresponding to connected Galois objects is a cofinal subset of I, so

$$\lim_{X \to X} \mathscr{C}(A, -) \cong \lim_{X \to X} \mathscr{C}(A, -) \cong F.$$

§§ Construction of the Equivalence

Lemma 2.18. Let A be a connected Galois object, and B a connected object such that $\mathscr{C}(A, B) \neq \emptyset$. Then, the action

$$\operatorname{Aut}_{\mathscr{C}}(A) \times \mathscr{C}(A, B) \to \mathscr{C}(A, B) \qquad (\sigma, f) \mapsto f \circ \sigma$$

is transitive.

Proof. Let $f \in \mathscr{C}(A, B)$, then we can factor f = gh where h is an epimorphism and g is a monomorphism. Since B is connected, g must be an isomorphism since both A and B are connected. In particular, this means that F(f) is an isomorphism. Thus, given $f': A \to B$, there exists an $a' \in F(A)$ such that F(f)(a') = F(f')(a). Since A is Galois, there exists a unique $\sigma \in \operatorname{Aut}_{\mathscr{C}}(A)$ such that $F(\sigma)(a) = a'$. Then $F(f\sigma)(a) = F(f')(a)$, and due to Proposition 2.12, we have that $f \circ \sigma = f'$.

Lemma 2.19. Let $(A, a), (B, b) \in J$, $(A, a) \ge_f (B, b)$. Given $\sigma \in \operatorname{Aut}_{\mathscr{C}}(A)$, there exists a unique $\tau \in \operatorname{Aut}_{\mathscr{C}}(B)$ such that $\tau \circ f = f \circ \sigma$ and the mapping $\sigma \mapsto \tau$ is a surjective group homomorphism $\operatorname{Aut}_{\mathscr{C}}(A) \to \operatorname{Aut}_{\mathscr{C}}(B)$.

Proof. Let $a' := F(\sigma)(a)$ and b' := F(f)(a'). Then, since B is Galois, there exists a unique $\tau \in \operatorname{Aut}_{\mathscr{C}}(B)$ such that $F(\tau)(b) = b'$ due to Proposition 2.16. So, we have

$$F(f\sigma)(a) = b' = F(\tau f)(a) \implies f \circ \sigma = \tau \circ f$$

due to Proposition 2.12. It remains to show that such a $\tau \in \operatorname{Aut}_{\mathscr{C}}(B)$ is unique. Indeed, if there were two automorphisms $\tau_1, \tau_2 \in \operatorname{Aut}_{\mathscr{C}}(B)$ satisfying the property, i.e., $\tau_1 \circ f = f \circ \sigma = \tau_2 \circ f$, then $F(\tau_1)(b) = F(\tau_2)(b)$. Due to Proposition 2.12, it follows that $\tau_1 = \tau_2$.

Finally, we must show that the association $\sigma \mapsto \tau$ is a surjective group homomorphism $\operatorname{Aut}_{\mathscr{C}}(A) \to \operatorname{Aut}_{\mathscr{C}}(B)$. Indeed, if $\sigma_1 \mapsto \tau_1$ and $\sigma_2 \mapsto \tau_2$, then we have

$$f\sigma_1\sigma_2=\tau_1f\sigma_2=\tau_1\tau_2f,$$

and so $\sigma_1\sigma_2\mapsto \tau_1\tau_2$. This proves that the association $\sigma\mapsto \tau$ is a group homomorphism. Further, due to Lemma 2.18, the action of $\operatorname{Aut}_{\mathscr{C}}(A)$ on $\mathscr{C}(A,B)$ is transitive, and hence, given $\tau\in\operatorname{Aut}_{\mathscr{C}}(B)$, there exists a $\sigma\in\operatorname{Aut}_{\mathscr{C}}(A)$ such that $\tau\circ f=f\circ\sigma$, whence the association $\sigma\mapsto \tau$ is surjective, thereby completing the proof.

Note that the above result gives rise to an inverse system indexed by J. Set

$$\pi \coloneqq \varprojlim_J \operatorname{\mathsf{Aut}}_\mathscr{C}(A) \subseteq \prod_J \operatorname{\mathsf{Aut}}_\mathscr{C}(A).$$

Proposition 2.20. For all $X \in \mathcal{C}$, the action

$$\varprojlim_{J} \operatorname{Aut}_{\mathscr{C}}(A) \times \varinjlim_{J} \mathscr{C}(A, X) \longrightarrow \varinjlim_{J} \mathscr{C}(A, X) \qquad ((\sigma_{A})_{A \in J}, f) \longmapsto f \circ \sigma^{-1}$$

defines a functor $H':\mathscr{C}\to\pi\text{-sets}$.

Proof. First, we must check that this action is well-defined. Let $f_A \in \mathscr{C}(A,X)$ and $f_B \in \mathscr{C}(B,X)$ be representatives of the same element in $\varinjlim_J \mathscr{C}(A,X)$. This means that there exists a $(C,c) \in J$ such that $(C,c) \geqq_{f_1} (A,a)$ and $(C,c) \geqq_{f_2} (B,b)$ and $f_B \circ f_2 = f_C = f_A \circ f_1$. Let $(\sigma_A)_{A \in J} \in \varprojlim_J \operatorname{Aut}_{\mathscr{C}}(A)$. Then we have

$$f_A f_1 \sigma_C^{-1} = f_C \sigma_C^{-1} = f_B f_2 \sigma_C^{-1}$$
.

But $\sigma_A^{-1}f_1 = f_1\sigma_C^{-1}$ and $\sigma_B^{-1}f_2 = f_2\sigma_C^{-1}$. Therefore,

$$f_C \sigma_C^{-1} = f_A \sigma_A^{-1} f_1 = f_B \sigma_B^{-1} f_2,$$

whence $f_A \sigma_A^{-1} = f_B \sigma_B^{-1}$ in $\varinjlim_B \mathscr{C}(A, X)$.

It is easy to check that the above action is continuous. We shall show functoriality. Let $f: X \to Y$ be a morphism in \mathscr{C} , then H'(f) maps $(f_A)_{A \in J}$ to $(f \circ f_A)_{A \in J}$. Then it is clear that H' preserves compositions and maps the identity to the identity.

Remark 2.21. We have defined a functor $H': \mathscr{C} \to \pi\text{-sets}$ by endowing the functor $\varinjlim_J \mathscr{C}(A, -) \cong F(-)$. This isomorphism of functors induces a π -action on F(X) for each $X \in \mathscr{C}$, which induces a functor $\mathscr{C} \to \pi\text{-sets}$, which, upon composing with the forgetful functor $\pi\text{-sets} \to \text{Sets}$ recovers F. All that remains is to show that H' is an equivalence of categories.

Proposition 2.22. Let B be a connected object in \mathscr{C} . Then $B \cong A/G$ for some Galois object A and G a finite subgroup of $\text{Aut}_{\mathscr{C}}(A)$.

Proof. Due to Proposition 2.16 there exists a Galois object A and $a \in F(A)$ such that the map

$$\mathscr{C}(A,B) \longrightarrow F(B) \qquad f \longmapsto F(f)(a)$$

is bijective. But since $F(B) \cong \varinjlim_J \mathscr{C}(A,B)$ and $\operatorname{Aut}_{\mathscr{C}}(A)$ acts transitively on $\mathscr{C}(A,B)$, we have that $\operatorname{Aut}_{\mathscr{C}}(A)$ acts transitively on H'(B), and therefore, $H'(B) \cong \operatorname{Aut}_{\mathscr{C}}(A)/G$, where G is the stabilizer of a certain element $f \in H'(B)$.

In particular, we have $\#F(B)=\#\operatorname{Aut}_{\mathscr{C}}(A)/G$. Further, for each $\sigma\in G$, we have $f\circ\sigma=\sigma$, consequently, there is a morphism $g:A/G\to B$ induced by f. Since F(f) is surjective, so is F(g). Moreover, $\#F(A/G)=\#F(A)/G=\#\operatorname{Aut}_{\mathscr{C}}(A)/G$, so that F(g) is an isomorphism. It follows from (G6) that $B\cong A/G$, as desired.

Proposition 2.23. The functor H' maps connected objects to connected objects.

Proof. For every connected object B, choose a Galois object A such that $\mathscr{C}(A,B) \cong F(B)$. Then $\operatorname{Aut}_{\mathscr{C}}(A)$ acts transitively on $\mathscr{C}(A,B)$. Further, since the maps in the inverse system $(\operatorname{Aut}_{\mathscr{C}}(A))_{A\in J}$ are surjective, it follows that π acts transitively on H'(B), so that H'(B) is a connected object in the category π -sets.

Lemma 2.24. Let $f: X \to Z$ be an epimorphism in $\mathscr C$ and $g: W \to Z$ a non-trivial subobject. Then $W \times_Z X \to Z$ is a non-trivial subobject. In particular, if $X \to Z$ is an epimorphism and X is connected, then Z is connected.

Proof. First, we show that the map $p_2: W \times_Z X \to X$ is a monomorphism. Indeed, let $s, t: Y \to W \times_Z X$ satisfy $p_2 s = p_2 t$.

Composing with f, we have $fp_2s=fp_2t$, and hence $gp_1s=gp_2t$. As g is a monomorphism, this implies that $p_1s=p_1t$. Thus $s,t:Y\to W\times_Z X$ makes the above diagram commute. Hence, s=t by uniqueness. This proves that p_2 is a monomorphism.

It remains to check that it is a non-trivial subobject. For this, it is enough to check that $F(W \times_Z X)$ is neither the empty set, nor all of F(X). Note that

$$F(W \times_Z X) = F(W) \times_{F(Z)} F(X) = \{(a, b) \in F(W) \times F(X) : F(f)(b) = F(g)(a)\}.$$

- If $F(W \times_Z X) = F(X)$, then since f is an epimorphism, this means that for all $z \in F(Z)$, there exists a pair $(a,b) \in F(W) \times F(X)$ such that F(f)(b) = z, and F(g)(a) = z, so that F(g) is surjective. Since F(g) is also injective, it must be an isomorphism, whence, due to (G6), so is g, i.e., $W \to Z$ is the full subobject, a contradiction.
- If $F(W \times_Z X) = 0$, then there is no pair $(a, b) \in F(W) \times F(X)$ satisfying F(g)(a) = F(f)(b). But as f is an epimorphism, we must have that F(W) = 0, so that W is the initial object in \mathscr{C} , a contradiction.

Lemma 2.25. If $f, g: X \to Y$ are two morphisms in $\mathscr C$ satisfying F(f) = F(g), then f = g.

Proof. Let $E \to X$ denote the equalizer of (f,g). As we have seen earlier, $F(E) \to F(X)$ is the equalizer of (F(f), F(g)). But since F(f) = F(g), we must have that $F(E) \to F(X)$ is an isomorphism, whence due to (G6), $E \to X$ is an isomorphism, so that f = g, as desired.

Theorem 2.26. The functor $H': \mathscr{C} \to \pi$ -sets is an equivalence of categories.

Proof. It suffices to show that H' is fully-faithful and essentially surjective. Any π -set is a disjoint union of transitive orbits, so it suffices to show that every transitive π -set is of the form H'(X) for some $X \in \mathscr{C}$ (this is because H' preserves coproducts).

Note that every trasitiv $e\pi$ -set is of the form $\operatorname{Aut}_{\mathscr{C}}(A)/G$ for some $G\subseteq\operatorname{Aut}_{\mathscr{C}}(A)$ and A connected Galois. Note that the map

$$Aut_{\mathscr{C}}(A) \longrightarrow H'(A) \qquad f \longmapsto F(f)(a)$$

is bijective. Therefore the map

$$H'(A) \longrightarrow \operatorname{Aut}_{\mathscr{C}}(A) \qquad F(f)(a) \longmapsto f^{-1}$$

is a bijection, and $F(f\sigma^{-1}) \longmapsto \sigma f^{-1}$, so the map respects the π -action, and it is therefore an isomorphism of π -sets. Thus

$$H'(A/G) \cong H'(A)/G \cong Aut_{\mathscr{C}}(A)/G$$

thereby proving essential surjectivity.

As for fully-faithfulness, we already know that $\mathscr{C}(X,Y) \to \pi\text{-sets}(H'(X),H'(Y))$ is injective due to Proposition 2.12. Therefore it would suffice to show that the sets have the same cardinality. First, we reduce this to the case of connected objects.

• For all $X \in \mathcal{C}$, we can write a decomposition $X = \coprod_{i=1}^{n} X_i$, and due to the universal property of coproducts, we have

$$\mathscr{C}(X,Y)\cong\prod_{i=1}^n\mathscr{C}(X_i,Y).$$

As H' commutes with finite coproducts, we also have that

$$\pi$$
-sets $(H'(X), H'(Y)) \cong \prod_{i=1}^n \pi$ -sets $(H'(X_i), H'(Y))$,

whence we can reduce to the case that X is connected.

■ Let $X \to Y$ be a morphism. Using (G3), we can factor it as $X \xrightarrow{\text{epi}} Z \xrightarrow{\text{mono}} Y$. If X is connected, due to Lemma 2.24, we know that Z is connected too, and hence $Z \to Y$ is a connected component of Y. This shows that any morphism $X \to Y$ factors through connected components of Y, so that

$$\mathscr{C}(X,Y)\cong\coprod_{i=1}^n\mathscr{C}(X,Y_i)$$

for X connected. Using that H' maps connected components to connected components, we also have that

$$\pi$$
-sets $(H'(X), H'(Y)) \cong \coprod_{i=1}^{n} \pi$ -sets $(H'(X), H'(Y_i))$.

Now choose $A \in \mathscr{C}$ so that $X \cong A/G_1$ and $Y \cong A/G_2$. This can always be done: For example, one can take A a connected component of $X^{\#F(X)} \times Y^{\#F(Y)}$ and repeat the same proof of Proposition 2.16, and then use Proposition 2.22.

Then we have that $H'(X) \cong \operatorname{Aut}_{\mathscr{C}}(A)/G_1$ and $H'(Y) \cong \operatorname{Aut}_{\mathscr{C}}(A)/G_2$. Consider a morphism of π -sets, $f: \operatorname{Aut}_{\mathscr{C}}(A)/G_1 \to \operatorname{Aut}_{\mathscr{C}}(A)/G_2$. Then, $f(\tau G_1) = \tau \sigma G_2$, for a certain σ that completely characterizes f. The morphism is well-defined \iff two representatives of the same class are mapped to the same element \iff for all $g \in G_1$, $gG_1 \mapsto \sigma G_2 \iff$ for all $g \in G_1$, $g\sigma G_2 = \sigma G_2 \iff$ for all $g \in G_1$, $g\sigma \in \sigma G_2 \iff$ $G_1\sigma \subseteq \sigma G_2$. Then

$$\#\pi$$
-sets $(H'(X), H'(Y)) = \# \{ \sigma G_2 : G_1 \sigma \subseteq \sigma G_2 \}$.

On the other hand, the choice of A implies that $\operatorname{Aut}_{\mathscr{C}}(A)$ acts transitively on both $\mathscr{C}(A,X)$ and $\mathscr{C}(A,Y)$. Then, cosnider the projection morphisms $A \xrightarrow{h_1} A/G_1$ and $A \xrightarrow{h_2} A/G_2$. Given $f: X \to Y$, there exists a $\sigma \in \operatorname{Aut}_{\mathscr{C}}(A)$ such that $h_2\sigma = fh_1$.

$$A \xrightarrow{h_1} A/G_1 = X$$

$$\downarrow f$$

$$A \xrightarrow{h_2} A/G_2 = Y$$

Note that $h_2\sigma=h_2\sigma'\iff \sigma'\sigma^{-1}\in G_2\iff G_2sigma=G_2\sigma'$, so f uniquely determines the coset $G_2\sigma$. Reciprocially, an element $\sigma\in \operatorname{Aut}_{\mathscr{C}}(A)$ gives rise to a morphism $f:X\to Y$ if and only if $h_2\sigma$ factors through A/G_1 , that is, if and only if $h_2\sigma\tau=h_2\sigma$, for all $\tau\in G_1$ if and only if $\sigma\in G_2\subseteq G_2\sigma$. This proves that

$$#\mathscr{C}(X,Y) = \# \{G_2\sigma \colon \sigma G_2 \subseteq G_2\sigma\}.$$

In conclusion, $\#\mathscr{C}(X,Y) = \#\pi\text{-sets}(H'(X),H'(Y))$, thereby completing the proof.

§§ Proof of the Main Theorem

Lemma 2.27. Let π be a profinite group, $F: \pi$ -sets \to Sets the forgetful functor. Then $Aut(F) \cong \pi$.

Proof. Note that given $\theta \in \operatorname{Aut}(F)$, the action of θ on every π -set is determined by its action on the transitive π -sets, and as every transitive π -set is isomorphic to one of the form π/π' , with π' an open subgroup of π , the action of θ is totally determined by the action on the sets of this form.

Moreover, we know that in a compact totally disconnected group, every neighborhood of 1 contains an open normal subgroup. Therefore, there exists π'' an open normal subgroup of π such that $\pi'' \subseteq \pi'$. Consider the natural morphism of π -sets $f: \pi/\pi'' \twoheadrightarrow \pi/\pi'$. The automorphism θ of F has to commute with f. Let $\sigma \in \pi$ be such that $\theta_{\pi/\pi''}(\tau\pi'') = \tau\sigma\pi''$. Then we have $f \circ \theta_{\pi/\pi''}(\tau\pi'') = \tau\sigma\pi'$, and so $\theta_{\pi/\pi'} \circ f(\tau\pi') = \tau\sigma\pi'$. As $f(\tau\pi'') = \tau\pi'$, we have then $\sigma_{\pi/\pi'}(\tau\pi') = \tau\sigma\pi'$. Thus, the action of $\theta \in \operatorname{Aut}(F)$ is totally determined by the morphisms $\theta_{\pi/\pi'}$ where π' runs over open (and hence, finite index) normal subgroups of π .

Let π' be an open normal subgroup of π . Note that π -sets $(\pi/\pi') \cong \pi/\pi'$, with the following isomorphism

$$\operatorname{Aut}_{\pi\operatorname{-sets}}(\pi/\pi') \to \pi/\pi' \qquad f \mapsto \tau^{-1}\pi' \text{ if } f(\pi') = \tau\pi'.$$

Now let $f: \pi/\pi' \to \pi/\pi$ be a set theoretic map commuting with all π -set automorphisms. Then $f(\tau\pi')\sigma = f(\tau\pi'\sigma)$ if and only if $f(\pi'\tau)\sigma = f(\pi'\tau\sigma)$. Let $f(\pi') = a\pi'$. Then $f(\pi'\sigma) = f(\sigma\pi') = f(\pi')\sigma = a\pi'\sigma$, so f is given by left multiplication by an element of π/π' . Therefore, we can define a map $\psi: \pi \to \operatorname{Aut}(F)$ given by

$$\psi(\sigma)_{\pi/\pi'}(\pi') = \sigma\pi'$$

for every open normal subgroup of π . We shall now show that this is an isomorphism of groups.

Well-defined: To see that $\psi(\sigma) \in \operatorname{Aut}(F)$, it is enough to check that it commutes with every morphism of π -sets, and this can clearly be reduced to proving that it commutes with every morphism $\pi/\pi' \to \pi/\pi''$, where π' and π'' are open normal subgroups of π . Let $f: \pi/\pi' \to \pi/\pi''$ be given by $f(\pi') = a\pi''$. Let $x \in \pi' \setminus \pi''$. Then $xa\pi''f(x\pi') = f(\pi') = a\pi''$ and hence $x\pi''a = \pi''a$ for all $x \in \pi'$. This implies $\pi'' \supseteq \pi'$, and it is clear that $\psi(\sigma)$ commutes with f, so ψ is well-defined.

Injectivity: This is clear because an element $\theta \in \operatorname{Aut}(F)$ is totally characterized by the coordinates $\theta_{\pi/\pi'} \in \pi/\pi'$, and

$$\pi \cong \varprojlim_{\pi' \text{ open normal}} \pi/\pi'.$$

Surjective: The fact that every morphism $\pi/\pi' \to \pi/\pi'$ commuting with π -set automorphisms is given by left product by an element of π/π' implies that every element of π/π' has to be defined by left product by an element of $\pi/\pi' \cong \pi$.

This completes the proof.

Proof of Theorem 2.5. (b) Let π be a profinite group, and $H: \mathscr{C} \to \pi$ -sets an equivalence that composed with the forgetful functor $F_1: \pi$ -sets \to Sets yields F. Then we have $\operatorname{Aut}(F_1) \cong \pi$ by Lemma 2.27. Therefore, it would be enough to check that $\operatorname{Aut}(F) \cong \operatorname{Aut}(F_1)$.

Note that an automorphism $\varepsilon \in \operatorname{Aut}(F_1)$ induces naturally an automorphism of F, $\psi(\varepsilon) = (\varepsilon_{H(X)})_{X \in \mathscr{C}}$. Indeed, for $A, B \in \pi$ -sets and $f : A \to B$, there is a commutative diagram

$$F_{1}(A) \xrightarrow{F_{1}(g)} F_{1}(B)$$

$$\downarrow^{\varepsilon_{A}} \qquad \qquad \downarrow^{\varepsilon_{B}}$$

$$F_{1}(A) \xrightarrow{F_{1}(g)} F_{1}(B)$$

Given $Y, Z \in \mathscr{C}$ and $f: Y \to X$, we can take A = H(X), B = H(Y), and g = H(f) and substituting into the diagram above, taking into account that $F_1 \circ H = F$, it yields

$$F(Y) \xrightarrow{F(f)} F(Z)$$

$$\varepsilon_{H(Y)} \downarrow \qquad \qquad \downarrow \varepsilon_{H(Z)}$$

$$F(Y) \xrightarrow{F(f)} F(Z)$$

Reciprocially, we shall show that every automorphism of F will induce an automorphism of F_1 . As H is an equivalence of categories, we have that there exists a functor $G: \pi\text{-sets} \to \mathscr{C}$, and an isomorphism of functors $\theta: \mathbf{id} \Rightarrow HG$:

$$\begin{array}{ccc}
A & \xrightarrow{g} & B \\
 & \downarrow_{\theta_{B}} & \downarrow_{\theta_{B}} \\
HG(A) & \xrightarrow{HG(g)} HG(B)
\end{array}$$

Then let $\sigma \in Aut(F)$, and take Y = G(A), Z = G(B), f = G(g). We have commutative diagrams:

Then, we can define $\varphi(\sigma) := (\varphi(\sigma)_A)_{A \in \pi\text{-sets}} = (F_1(\theta_A^{-1})\sigma_{G(A)}F_1(\theta_A))_A$. We contend that $\varphi(\sigma)$ is an automorphism of functors. Indeed, $F_1(g) = F_1(\theta_B^{-1} \circ HG(g) \circ \theta_A)$ by the diagram of the equivalence of categories. Then

$$F_1(g)\circ\varphi(\sigma)_A=F_1\left(\theta_B^{-1}\circ HG(g)\circ\theta_A\right)F_1(\theta_A^{-1})\sigma_{G(A)}F_1(\theta_A)=F_1(\theta_B^{-1})\circ F_1(HG(g))\circ\sigma_{G(A)}\circ F_1(\theta_A),$$
 and similarly,

$$\varphi(\sigma)_B F_1(g) = F_1(\theta_B^{-1}) \circ \sigma_{G(B)} \circ F_1(HG(g)) \circ F_1(\theta_A).$$

Using that σ is a natural transformation, we have that $\sigma_{G(B)}F_1HG(g)=F_1HG(g)\sigma_{G(A)}$, and so $F_1(g)\circ \varphi(\sigma)_A=\varphi(\sigma)_B\circ F_1(g)$ and hence $\varphi(\sigma)$ is a well-defined automorphism of the functor F_1 .

It remains to show that $\varphi\psi$ and $\psi\varphi$ are identities. Let $\sigma\in \operatorname{Aut}(F)$, then

$$\psi\varphi(\sigma) = (\psi\varphi(\sigma)_X)_X = \left(F_1(\theta_{H(X)}^{-1})\sigma_{GH(X)}F_1(\theta_{H(X)})\right).$$

As σ is a natural isomorphism, it commutes with the morphism $\theta_{H(X)}$, and hence $\sigma_{GH(X)}F_1(\theta_{H(X)}) = F_1(\theta_{H(X)})\sigma_X$, and therefore $\psi\varphi(\sigma)_X = \sigma_X$, i.e., $\psi\varphi(\sigma) = \mathrm{id}_{\mathrm{Aut}(F)}$. Similarly, one can show that $\varphi\psi = \mathrm{id}_{\mathrm{Aut}(F_1)}$. This completes the proof of (b).

- (a) Applying (b) to the profinite group $\pi = \varprojlim_{(A,a) \in J} \operatorname{Aut}_{\mathscr{C}}(A)$ and recall the functor H' constructed earlier which we have shown is an equivalence of categories in Theorem 2.26 which when composed with the forgetful functor F_1 yields F. Then $\pi \cong \operatorname{Aut}(F)$ and via this isomorphism we can identify H' and the previously defined $H : \mathscr{C} \to \operatorname{Aut}(F)$ -sets. Therefore, H is an equivalence of categories.
- (c) Let $F': \mathscr{C} \to \mathbf{Sets}$ be a second fundamental functor. Then we have $\varinjlim_J \mathscr{C}(A, -) \cong F$, $\varinjlim_{J'} \mathscr{C}(A, -) \cong F'$. Note that all the pairs $(A, a) \in J$ with the same A are isomorphic so we can replace J by $J_0 \subseteq J$ with exactly one pair (A, a) for each A Galois; similarly, we replace J' by $J_0' \subseteq J$ with exactly one pair (A, a) for each A Galois. Note here that the notion of Galois objects is independent of the fundamental functor.

Now given $(A, a), (B, b) \in J_0$ and $g : A \to B$ a morphism, there exists a unique $\beta \in \operatorname{Aut}_{\mathscr{C}}(B)$ such that $F(\beta)(F(g)(a)) = b$. Then $f := \beta g$ satisfies F(f)(a) = b, so $(A, a) \geq_f (B, b)$ in J_0 , and this happens if and only if $(A, a') \geq_{f'} (B, b')$ in J'_0 but the morphisms $f, f' : A \to B$ are not necessarily the same.

But it is true that for all $\alpha \in \operatorname{Aut}_{\mathscr{C}}(A)$, there exists a $\gamma \in \operatorname{Aut}_{\mathscr{C}}(B)$ making the following diagram commute:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
 \downarrow & \downarrow & \uparrow \\
 A & \xrightarrow{f'} & B
\end{array}$$

Now mapping $\alpha \mapsto \gamma$ we obtain a system of morphisms between the finite non-empty groups $\operatorname{Aut}_{\mathscr{C}}(A)$ giving rise to a projective sstem. This limit is non-empty. This implies that we can make a simultaneous choice $(\alpha_A)_{(A,a)\in J_0}$ such that all the diagrams commute. This induces an isomorphism

$$\varinjlim_{J_0} \mathscr{C}(A,-) \cong \varinjlim_{J_0'} \mathscr{C}(A,-),$$

so that $F \cong F'$.

(d) Let $H':\mathscr{C}\to\pi$ -sets be an equivalence, and F' the composite of H' with the forgetful functor. Then $\pi\cong\operatorname{Aut}(F')$ by (b) and $F'\cong F$ by (c). The isomorphism between the functors F and F' induces an isomorphism $\sigma:\operatorname{Aut}(F)\to\operatorname{Aut}(F')$ by letting $\varepsilon'\in\operatorname{Aut}(F')$ correspond to $\varepsilon:=\sigma\varepsilon'\sigma^{-1}$. In conclusion, $\pi\cong\operatorname{Aut}(F)$ canonically, thereby completing the proof.