Algorytmy i struktury danych Lista 5

Zadanie 1.

Opisz budowę struktury danych o nazwie Skip List. Podaj pseudokod i wytłumacz operacje wstawiania, usuwania i wyszukiwania elementów w skip liście, podaj ich złożoność obliczeniową i porównaj z analogicznymi operacjami na drzewach BST i drzewach czerwono-czarnych.

Zadanie 2.

Opisz budowę struktury danych o nazwie drzewo AVL. Podaj pseudokod i wytłumacz operacje wstawiania, usuwania i wyszukiwania elementów w drzewie AVL, podaj ich złożoność obliczeniową i porównaj z analogicznymi operacjami na drzewach BST i drzewach czerwono-czarnych.

Zadanie 3.

Wykaż, że najdłuższa prosta ścieżka z węzła x do liścia w drzewie czerwono-czarnym jest co najwyżej dwa razy dłuższa niż najkrótsza ścieżka z węzła x do pewnego liścia.

Zadanie 4.

Jak wyznaczyć i-ty następnik zadanego węzła x w drzewie statystyk pozycyjnych w czasie $O(\log n)$, gdzie n oznacza rozmiar drzewa.

Zadanie 5.

Zaproponuj strukturę danych $\mathcal Q$ dla dynamicznych zbiorów liczb, w której można wykonywać operację Min-Luka wyznaczającą odległość między dwoma najbliższymi sobie liczbami w $\mathcal Q$. Jeśli np. $\mathcal Q=\{1,5,9,15,18,22\}$, to $Min-Luka(\mathcal Q)$ daje w wyniku 18-15=3. Zaimplementuj jak najefektywniej operacje Insert, Delete, Search oraz Min-Luka i wykonaj analizę ich złożoności czasowej.

Zadanie 6.

Opisz drzewo czerwono-czarne o n kluczach, w którym występuje największy możliwy stosunek liczby czerwonych węzłów wewnętrznych do liczby czarnych węzłów wewnętrznych. Jaki jest ten stosunek? Dla jakiego drzewa ten stosunek jest możliwie najmniejszy i ile wynosi?

Zadanie 7

Wykaż, że operacja rotacji zachowuje porządek inorder kluczy w drzewie binarnym.

Zadanie 8.

Czy głębokość węzłów w drzewie czerwono-czarnym można efektywnie utrzymywać jako dodatkową wartość pola każdego z węzłów w drzewie? Pokaż, jak to zrobić lub uzasadnij dlaczego nie można tego zrobić.