Antoine Groudiev

ENS UIm

18 Janvier 2024

Plan

Introduction à l'informatique quantique

Notation de Dirac Représentation vectorielle Sphère de Bloch

Modèles de calcul quantiques

Circuits quantiques Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP

Rapport à la thèse de Church-Turing

Algorithme de Deutsch-Jozsa

Plan

Introduction à l'informatique quantique

Notation de Dirac Représentation vectorielle Sphère de Bloch

Introduction

Notation de Dirac

Représentation vectorielle

Visualisation avec la sphère de Bloch

Figure - Sphère de Bloch

Plan

Modèles de calcul quantiques

Circuits quantiques Langages, automates, grammaires quantiques

Circuits quantiques

Figure – Un exemple de circuit (Algorithme de Deutsch-Jozsa)

Porte X

$$X: \alpha|0\rangle + \beta|1\rangle \mapsto \beta|0\rangle + \alpha|1\rangle$$

Sous forme de matrice :

$$X \cong \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Porte Z

$$Z: \alpha|0\rangle + \beta|1\rangle \mapsto \alpha|0\rangle - \beta|1\rangle$$

Sous forme de matrice :

$$Z \cong \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Porte de Hadamard

$$H\cong rac{1}{\sqrt{2}}egin{pmatrix}1&1\1&-1\end{pmatrix}$$

Résultat direct :

$$egin{cases} H|0
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) \ H|1
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle) \end{cases}$$

$$c = 0$$

Langage quantique

Retour sur les langages classiques

Soit Σ un alphabet, et $L \subseteq \Sigma^*$ un langage. L peut être défini alternativement comme un sous-ensemble de Σ^* , ou par sa fonction caractéristique χ_L :

$$\chi_L(w) = \begin{cases} 1 & \text{si } w \in L \\ 0 & \text{sinon} \end{cases}$$

Langage quantique Définition

On peut par analogie définir un langage quantique comme une fonction associant des probabilités à des mots :

Définition (Langage quantique)

Un langage quantique sur l'alphabet Σ est une fonction f telle que :

$$f: \Sigma^{\star} \rightarrow [0,1]$$

Remarque

f est un langage classique lorsque $f(\Sigma^*) \subseteq \{0,1\}$.

Automate quantique fini

Définition (AQF)

Un Automate Quantique Fini $\mathcal{A} = (H, s_{\text{init}}, H_{\text{accent}}, \mathcal{P}_{\text{accent}}, \Sigma, \delta)$ consiste en :

- un espace de Hilbert H de dimension n
- un vecteur initial normalisé $s_{\text{init}} \in H$ (i.e. $||s_{\text{init}}||^2 = 1$)
- un sous-espace $H_{\text{accept}} \subseteq H$, et un opérateur P_{accept} projettant sur H_{accept}
- un alphabet Σ
- une fonction $\delta:\Sigma\to U_n(\mathbb{C})$, associant à chaque lettre une matrice unitaire U_a (c'est-à-dire $U_2U_2^{\dagger}=I_n$)

On note $\delta^*(w = w_1 \cdots w_{|w|}) = \delta(w_{|w|}) \cdots \delta(w_1) = U_{w_{|w|}} \cdots U_{w_1}$. Enfin, le langage reconnu par \mathcal{A} est :

$$f_{\mathcal{A}}: w \mapsto \|P_{\mathsf{accept}}\delta^{\star}(w)s_{\mathsf{init}}\|^2$$

Langage quantique régulier et propriétés

Définition (LQR)

Un Langage Quantique Régulier est un langage quantique reconnu par un automate quantique fini

Théorème (Clôture des LQR par produit)

Soient f, g des LQRs. Alors, le produit fg est un LQR.

Théorème (Clôture des LQR par combinaison linéaire)

Soient f_i des LQRs, et c_i des constantes telles que $\sum_i c_i \leq 1$. Alors, $\sum_i c_i f_i$ est un LQR.

Langage quantique régulier et propriétés

Théorème (Lemme de pompage quantique)

Si f est un LQR, alors pour tout mot $w \in \Sigma^*$ et tout $\varepsilon > 0$, il existe $k \in \mathbb{N}^*$ tel que $\|f(uw^kv) - f(uv)\| < \varepsilon$ pour tout mots u, v. De plus, si l'automate de f est de dimension n, alors il existe une constante c (indépendante de ε) telle que $k < (c\varepsilon)^{-n}$.

Grammaire quantique hors-contexte

Définition (Grammaire 1 Quantique Hors-Contexte)

Une Grammaire Quantique Hors-Contexte G = (V, T, I, P) de dimensionnalité n consiste en :

- un alphabet V de variables
- un alphabet T de terminaux
- une variable initiale $I \in V$
- un ensemble fini de productions P de la forme $\alpha \to \beta$, où $(\alpha, \beta) \in V \times (T \cup V)^*$.

À chaque production de P est associée un ensemble d'amplitudes complexes $(c_k(\alpha \to \beta))_{1 < k < n}$

On définit l'amplitude d'une suite de productions :

$$c_k(\alpha_1 \to \cdots \to \alpha_m = \beta) := \prod_{i=1}^{m-1} c_k(\alpha_i \to \alpha_{i+1})$$

Et l'amplitude d'une dérivation :

$$c_k(\alpha \Rightarrow \beta) := \sum_{\alpha = \alpha_1 \to \cdots \to \alpha_m = \beta} c_k(\alpha_1 \to \cdots \to \alpha_m)$$

Enfin, G génère le langage quantique f définit par :

$$f(w) = \sum_{k=1}^{n} \|c_k(I \Rightarrow w)\|^2$$

Automate à pile quantique

Définition (QPDA)

Un Automate à Pile Quantique $\mathcal{A} = (H = Q \otimes \Sigma, \Gamma, Q_{\text{accept}}, s_{\text{init}}, A, \delta)$ consiste en :

- un espace de Hilbertt H des configurations de A, avec $H = Q \otimes \Sigma$ pour Q, Σ
- chaque vecteur de base de Σ est un mot fini de l'alphabet de pile Γ
- un état initial sinit
- $-Q_{\text{acccept}} \subseteq Q$, tel que $H_{\text{acccept}} = Q_{\text{acccept}} \otimes \{\varepsilon\}$
- un alphabet d'entrée A
- une fonction de transition δ , telle que $\forall a \in A$, $\delta(a)$ est un endomorphisme unitaire

Automate à pile quantique (Suite)

Pour s'assurer du comportement LIFO de la pile, on ajoute les contraintes suivantes : Soient $a_1, a_2 \in Q$ des états de contrôle, et $\sigma_1, \sigma_2 \in \Gamma$ des états de la pile : l'amplitude de la transition (q_1, σ_1) to (q_2, σ_2) est non-nulle seulement s'il existe $t \in T$ tel que :

$$(\sigma_1 t = \sigma_2) \lor (\sigma_1 = \sigma_2 t) \lor (\sigma_1 = \sigma_2)$$

De plus, les amplitudes de transition peuvent dépendre uniquement de la dernière lettre de σ_1 et de σ_2 .

Le langage reconnu par A est la fonction :

$$f_{\mathcal{A}}: w \mapsto \|P_{\mathsf{accept}}\delta^{\star}(w)s_{\mathsf{init}}\|^2$$

Théorème (Équivalence entre GQHC et APQ)

Un langage quantique est généré par une grammaire quantique hors-contexte si et seulement si il est reconnu par un automate à pile quantique.

Machine de Turing quantique

Définition (MTQ)

Une Machine de Turing Quantique $M = (H, \Gamma, b, \Sigma, \delta, q_0, Q_{\text{accept}})$ consiste en :

- un espace de Hilbert Q des états
- un autre espace de Hilbert Γ de la bande
- un symbole blanc $\sqcup \in \Gamma$
- un alphabet d'entrée et de sortie Σ
- un état (vecteur) initial $q_0 \in Q$
- un sous-espace $Q_{\text{accept}} \subseteq Q$
- une fonction de transition δ telle que :

$$\delta: \Sigma \times Q \otimes \Gamma \to \Sigma \times Q \otimes \Gamma \times \{L, R\}$$

Plan

Introduction à l'informatique quantique

Notation de Dirac

Représentation vectorielle

Sphère de Bloch

Modèles de calcul quantiques

Circuits quantiques

Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP

Rapport à la thèse de Church-Turing

Algorithme de Deutsch-Jozsa

Classe BQP (Bounded-error Quantum Polynomial time)

Définition (BQP)

La classe Bounded-error Quantum Polynomial time (BQP) est l'ensemble des problèmes de décision qui peuvent être résolus en temps polynomial par une machine de Turing quantique, avec une erreur maximale de $\frac{1}{3}$.

Un problème Promise-BQP-complet

Définition (Problème APPROX-QCIRCUIT-PROB)

Entrée : α, β tels que $0 \le \beta < \alpha \le 1$, et la description d'un circuit quantique C tel que :

- le circuit prend en entrée n qubits
- le circuit contient *m* portes
- m est polynomial en n
- la probabilité P de mesurer le premier qubit du circuit initialisé à $|0\rangle^{\otimes n}$, est telle que $P \geq \alpha$ ou $P \leq \beta$

Sortie : Déterminer si $P \ge \alpha$ ou $P \le \beta$.

Théorème (Complétude)

Tout problème BQP se réduit en APPROX-QCIRCUIT-PROB.

Positionnement par rapport aux classes de complexité classiques

၀၀

Théorie de la complexité quantique

Figure – Inclusions connues et supposées de BQP

Rapport à la thèse de Church-Turing

Théorie de la complexité quantique

Thèse (Thèse de Church-Turing)

Une fonction sur les entiers naturels peut être calculée si et seulement si elle est calculable par une machine de Turing.

Thèse (Thèse étendue de Church-Turing)

Une machine de Turing probabiliste peut efficacement simuler tout modèle de calcul réaliste.

Thèse (Thèse quantiquement-étendue de Church-Turing)

Tout système de calcul physique peut être efficacement simulé par une machine de Turing quantique.

Plan

Introduction à l'informatique quantique

Notation de Dirac

Représentation vectorielle

Sphère de Bloch

Modèles de calcul quantiques

Circuits quantiques

Langages, automates, grammaires quantiques

Théorie de la complexité quantique

Classe BQP

Rapport à la thèse de Church-Turing

Algorithme de Deutsch-Jozsa

Description du problème

On considère une fonction f fonctionnant sur n bits ou qubits :

$$f: \{0,1\}^n \to \{0,1\}$$

Cette fonction est supposée être soit constante, soit équilibrée :

$$|f^{-1}(\{0\})| = n \vee |f^{-1}(\{1\})| = n \vee \left(|f^{-1}(\{0\})| = |f^{-1}(\{1\})| = \frac{n}{2}\right)$$

(C'est à dire qu'elle produit soit que des 0, soit que des 1, soit exactement la moitié de 0 et l'autre moitié de 1.)

Solution classique

Dans le pire cas, un algorithme classique déterministe doit mesurer plus de la moitié des valeurs de f pour les 2^n valeurs entrées possibles, i.e. $2^{n-1}+1$; la meilleure complexité en temps est dès lors exponentielle. (Néanmoins, ce problème peut être résolu avec une probabilité élevée avec un algorithme probabiliste, le problème est donc dans BPP.)

Algorithme de Deutsch

On suppose que f est implémentée par une porte sous la forme :

$$f:|x\rangle|y\rangle\mapsto|x\rangle|f(x)\oplus y\rangle$$

Figure – Circuit de l'algorithme de Deutsch

Algorithme de Deutsch

L'état du premier qubit est finalement :

$$\frac{1}{2}\big[\big(1+(-1)^{f(0)\oplus f(1)}\big)|0\rangle+(1-(-1)^{f(0)\oplus f(1)})|1\rangle\big]$$

qui vaut $|0\rangle$ si et seulement $f(0) \oplus f(1) = 0$.

Cas général (*n* quelconque)

Figure – Circuit de l'algorithme de Deutsch