MA 214: Introduction to Numerical Analysis Indian Institute of Technology Bombay Quiz 1

Time: 1 hour Instructors: S. Baskar and S. Sivaji Ganesh Marks: 15 Date: 23-01-2018

Instructions:

- (1) Write your Name, Roll Number, and Tutorial Batch clearly on your answer book as well as every supplement you may use. A penalty of -1 mark will be awarded for failing to do so.
- (2) Number the pages of your answer book and make a question-page index on the front page.
- (3) The answer to each question should start on a new page. If the answer for a question is split into two parts and written in two different places, the first part alone will be corrected.
- (4) Only scientific calculators are allowed. Any kind of programing device is not allowed.
- (5) Formulas used need not be proved but needs to be stated clearly.
- (6) The question paper contains 4 questions. Answer all the questions.
- (1) Let f(x) be continuous on [a, b], let x_1, \dots, x_n be points in [a, b], and let g_1, \dots, g_n be negative real numbers. Show that

$$\sum_{i=1}^{n} f(x_i)g_i = f(\xi)\sum_{i=1}^{n} g_i, \text{ for some } \xi \in [a, b].$$

[4 Marks]

- (2) Let $x_A = -3.14$ and $y_A = 0.512$ be obtained from the numbers x_T and y_T , respectively, using 4-digit rounding. For any such values of x_T and y_T , find the smallest interval that contains x_T/y_T .
- (3) Define the notion of number of significant digits. Obtain the number of significant digits of $x_A = 0.0140191$ present in x = 0.0140185? [4 Marks]
- (4) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions such that
 - there exists a constant M > 0 such that $|f'(x)| \ge M$ and $|g'(x)| \le M$ for all $x \in \mathbb{R}$,
 - the condition number of f is less than 1, and
 - the condition number of g is greater than 1.

Show that |g(x)| < |f(x)| for all $x \in \mathbb{R}$.

[3 Marks]

— End of the Question Paper —