US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

Inventor(s)

12390618

B2

August 19, 2025

Duindam; Vincent et al.

Catheters with control modes for interchangeable probes

Abstract

A medical system including a catheter, a sheath, and a control system. The catheter includes a lumen, a distal steerable segment, and a distal tip. The sheath is disposed within the lumen of the catheter and the sheath is extendable from the distal tip of the catheter. The control system is coupled to the catheter and includes a memory operable to store desired position coordinates and a plurality of modes including a stiffening mode in which the control system actively maintains the distal tip at the desired position coordinates.

Inventors: Duindam; Vincent (San Francisco, CA), Prisco; Giuseppe Maria (Calci Pisa, IT)

Applicant: INTUITIVE SURGICAL OPERATIONS, INC. (Sunnyvale, CA)

Family ID: 1000008767296

Assignee: INTUITIVE SURGICAL OPERATIONS, INC. (Sunnyvale, CA)

Appl. No.: 16/927332

Filed: July 13, 2020

Prior Publication Data

Document IdentifierUS 20210016061 A1

Publication Date
Jan. 21, 2021

Related U.S. Application Data

continuation parent-doc US 16283039 20190222 US 10744303 child-doc US 16927332 continuation parent-doc US 13274198 20111014 US 10238837 20190326 child-doc US 16283039

Publication Classification

Int. Cl.: A61M25/01 (20060101); A61B18/24 (20060101); A61B34/20 (20160101); A61B34/30

(20160101)

U.S. Cl.:

CPC **A61M25/0133** (20130101); **A61B34/30** (20160201); A61B18/24 (20130101); A61B2034/2061 (20160201); A61B2034/301 (20160201); A61M25/0113 (20130101); A61M25/0147 (20130101); A61M25/0158 (20130101); A61M2025/0166 (20130101)

Field of Classification Search

CPC: A61M (25/0133); A61M (25/0113); A61M (25/0147); A61M (25/0158); A61M (2025/0166); A61B (34/30); A61B (18/24); A61B (2034/2061); A61B (2034/301)

References Cited

U.S. PATENT DOCUMENTS

U.S. PATENT DOCUMENTS					
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC	
3096962	12/1962	Meijs	N/A	N/A	
3546961	12/1969	Marton	N/A	N/A	
4437114	12/1983	Larussa	N/A	N/A	
4644237	12/1986	Frushour et al.	N/A	N/A	
4748969	12/1987	Wardle	N/A	N/A	
4792715	12/1987	Barsky et al.	N/A	N/A	
4809191	12/1988	Domeier et al.	N/A	N/A	
4905082	12/1989	Nishigaki et al.	N/A	N/A	
4949927	12/1989	Madocks et al.	N/A	N/A	
5114403	12/1991	Clarke et al.	N/A	N/A	
5174276	12/1991	Crockard	N/A	N/A	
5201757	12/1992	Heyn et al.	N/A	N/A	
5251611	12/1992	Zehel et al.	N/A	N/A	
5280781	12/1993	Oku	N/A	N/A	
5285796	12/1993	Hughes	N/A	N/A	
5297536	12/1993	Wilk	N/A	N/A	
5307437	12/1993	Facq et al.	N/A	N/A	
5351693	12/1993	Taimisto et al.	N/A	N/A	
5408263	12/1994	Kikuchi et al.	N/A	N/A	
5417210	12/1994	Funda et al.	N/A	N/A	
5429604	12/1994	Hammersmark et al.	N/A	N/A	
5487757	12/1995	Truckai et al.	N/A	N/A	
5492131	12/1995	Galel	N/A	N/A	
5588949	12/1995	Taylor et al.	N/A	N/A	
5613946	12/1996	Mckeever	N/A	N/A	
5617515	12/1996	Maclaren et al.	N/A	N/A	
5624380	12/1996	Takayama et al.	N/A	N/A	
5631973	12/1996	Green	N/A	N/A	
5643175	12/1996	Adair	N/A	N/A	
5672877	12/1996	Liebig et al.	N/A	N/A	
5729129	12/1997	Acker	N/A	N/A	
5752112	12/1997	Paddock et al.	N/A	N/A	
5755713	12/1997	Bilof et al.	N/A	N/A	
5759151	12/1997	Sturges	N/A	N/A	
5792135	12/1997	Madhani et al.	N/A	N/A	
5797900	12/1997	Madhani et al.	N/A	N/A	
5817084	12/1997	Jensen et al.	N/A	N/A	
5855569	12/1998	Komi et al.	N/A	N/A	
5868760	12/1998	McGuckin, Jr.	N/A	N/A	
5876325	12/1998	Mizuno et al.	N/A	N/A	

5892860	12/1998	Maron et al.	N/A	N/A
5899425	12/1998	Corey Jr et al.	N/A	N/A
5899851	12/1998	Koninckx	N/A	N/A
5976071	12/1998	Sekiya	N/A	N/A
5982791	12/1998	Sorin et al.	N/A	N/A
6004016	12/1998	Spector	N/A	N/A
6013024	12/1999	Mitsuda	600/149	A61B 1/12
6030130	12/1999	Paddock et al.	N/A	N/A
6066090	12/1999	Yoon	N/A	N/A
6120433	12/1999	Mizuno et al.	N/A	N/A
6132368	12/1999	Cooper	N/A	N/A
6161032	12/1999	Acker	N/A	N/A
6171277	12/2000	Ponzi	N/A	N/A
6188355	12/2000	Gilboa	N/A	N/A
6191414	12/2000	Ogle et al.	N/A	N/A
6198974	12/2000	Webster, Jr.	N/A	N/A
6200274	12/2000	McNeirney	N/A	N/A
6203493	12/2000	Ben-Haim	N/A	N/A
6246200	12/2000	Blumenkranz et al.	N/A	N/A
6253770	12/2000	Acker et al.	N/A	N/A
6275628	12/2000	Jones et al.	N/A	N/A
6331181	12/2000	Tierney et al.	N/A	N/A
6332089	12/2000	Acker et al.	N/A	N/A
6335617	12/2001	Osadchy et al.	N/A	N/A
6347892	12/2001	Paddock et al.	N/A	N/A
6352503	12/2001	Matsui et al.	N/A	N/A
6366722	12/2001	Murphy et al.	N/A	N/A
6366799	12/2001	Acker et al.	N/A	N/A
6371952	12/2001	Madhani et al.	N/A	N/A
6380732	12/2001	Gilboa	N/A	N/A
6389187	12/2001	Greenaway et al.	N/A	N/A
6396574	12/2001	Lee et al.	N/A	N/A
6432041	12/2001	Taniguchi et al.	N/A	N/A
6441577	12/2001	Blumenkranz et al.	N/A	N/A
6451027	12/2001	Cooper et al.	N/A	N/A
6453190	12/2001	Acker et al.	N/A	N/A
6459926	12/2001	Nowlin et al.	N/A	N/A
6470205	12/2001	Bosselmann et al.	N/A	N/A
6471710	12/2001	Bucholtz	N/A	N/A
6478028	12/2001	Paolitto et al.	N/A	N/A
6484118	12/2001	Govari	N/A	N/A
6487352	12/2001	Sobiski et al.	N/A	N/A
6490467	12/2001	Bucholz et al.	N/A	N/A
6554793	12/2002	Pauker et al.	N/A	N/A
6571639 6572629	12/2002 12/2002	May et al. Kalloo et al.	N/A N/A	N/A N/A
6574355	12/2002	Green	N/A N/A	N/A N/A
6575644	12/2002	Paddock et al.	N/A N/A	N/A
6578967	12/2002	Paddock et al.	N/A	N/A
6618612	12/2002	Acker et al.	N/A	N/A
6645196	12/2002	Nixon et al.	N/A N/A	N/A
6648816	12/2002	Irion et al.	N/A	N/A
6671055	12/2002	Wavering et al.	N/A	N/A
6671581	12/2002	Niemeyer et al.	N/A	N/A
00. 1001			- ·/	

6695871	12/2003	Maki et al.	N/A	N/A
6720988	12/2003	Gere et al.	N/A	N/A
6743239	12/2003	Kuehn et al.	N/A	N/A
6758843	12/2003	Jensen et al.	N/A	N/A
6783491	12/2003	Saadat et al.	N/A	N/A
6790173	12/2003	Saadat et al.	N/A	N/A
6817974	12/2003	Cooper et al.	N/A	N/A
6833814	12/2003	Gilboa et al.	N/A	N/A
6837846	12/2004	Jaffe et al.	N/A	N/A
6837847	12/2004	Ewers et al.	N/A	N/A
6866671	12/2004	Tierney et al.	N/A	N/A
6899672	12/2004	Chin et al.	N/A	N/A
6902560	12/2004	Morley et al.	N/A	N/A
6936042	12/2004	Wallace et al.	N/A	N/A
6942613	12/2004	Ewers et al.	N/A	N/A
6960162	12/2004	Saadat et al.	N/A	N/A
6960163	12/2004	Ewers et al.	N/A	N/A
6984203	12/2005	Tartaglia et al.	N/A	N/A
6991602	12/2005	Nakazawa et al.	N/A	N/A
6994703	12/2005	Wang et al.	N/A	N/A
6997870	12/2005	Couvillon, Jr.	N/A	N/A
7007699	12/2005	Martinelli et al.	N/A	N/A
7041052	12/2005	Saadat et al.	N/A	N/A
7042573	12/2005	Froggatt	N/A	N/A
7090637	12/2005	Danitz et al.	N/A	N/A
7090683	12/2005	Brock et al.	N/A	N/A
7128708	12/2005	Saadat et al.	N/A	N/A
7139601	12/2005	Bucholz et al.	N/A	N/A
7197354	12/2006	Sobe	N/A	N/A
7233820	12/2006	Gilboa	N/A	N/A
7252660	12/2006	Kunz	N/A	N/A
7277120	12/2006	Gere et al.	N/A	N/A
7320700	12/2007	Cooper et al.	N/A	N/A
7371028	12/2007	Gordon et al.	N/A	N/A
7398116	12/2007	Edwards	N/A	N/A
7500947	12/2008	Kucklick	600/128	A61B 17/3423
7594912	12/2008	Cooper et al.	N/A	N/A
7607440	12/2008	Coste-Maniere et al.	N/A	N/A
7715105	12/2009	Forkey et al.	N/A	N/A
7720322	12/2009	Prisco et al.	N/A	N/A
7725214	12/2009	Diolaiti	606/1	A61B 1/06
7772541	12/2009	Froggatt et al. Edwards	N/A	N/A
7853307 7030000	12/2009		N/A	N/A
7920909 7922650	12/2010	Lyon et al.	N/A N/A	N/A N/A
7922650 7930065	12/2010 12/2010	McWeeney et al. Larkin et al.	N/A N/A	N/A N/A
7947000	12/2010	Vargas	600/587	A61M 25/0158
7962193	12/2010	Edwards et al.	N/A	N/A
8016749	12/2010	Clerc	600/128	A61B 5/065
8335557	12/2010	Maschke	N/A	N/A
8376934	12/2011	Takahashi et al.	N/A	N/A
8396595	12/2012	Dariush	N/A	N/A
8442618	12/2012	Strommer et al.	N/A	N/A
8506555	12/2012	Ruiz Morales	N/A	N/A
000000	,		- · · · -	- "

8554368	12/2012	Fielding et al.	N/A	N/A
8672837	12/2013	Roelle	604/528	A61B 1/009
8720448	12/2013	Reis et al.	N/A	N/A
8738181	12/2013	Greer et al.	N/A	N/A
8784303	12/2013	Laby	600/117	A61B 1/0055
8784435	12/2013	Cooper et al.	N/A	N/A
8827948	12/2013	Romo et al.	N/A	N/A
8858424	12/2013	Hasegawa et al.	N/A	N/A
8929631	12/2014	Pfister et al.	N/A	N/A
8945095	12/2014	Blumenkranz et al.	N/A	N/A
9014851	12/2014	Wong et al.	N/A	N/A
9060678	12/2014	Larkin et al.	N/A	N/A
9125639	12/2014	Mathis et al.	N/A	N/A
9129417	12/2014	Zheng et al.	N/A	N/A
9199372	12/2014	Henderson et al.	N/A	N/A
9226796	12/2015	Bowling et al.	N/A	N/A
9256940	12/2015	Carelsen et al.	N/A	N/A
9289578	12/2015	Walker et al.	N/A	N/A
9314306	12/2015	Yu	N/A	N/A
9345456	12/2015	Tsonton et al.	N/A	N/A
9358682	12/2015	Ruiz Morales	N/A	N/A
9387048	12/2015	Donhowe et al.	N/A	N/A
9452276	12/2015	Duindam et al.	N/A	N/A
9504604	12/2015	Alvarez	N/A	N/A
9522034	12/2015	Johnson et al.	N/A	N/A
9561083	12/2016	Yu et al.	N/A	N/A
9622827	12/2016	Yu et al.	N/A	N/A
9629595	12/2016	Walker et al.	N/A	N/A
9636184	12/2016	Lee et al.	N/A	N/A
9675422	12/2016	Hourtash et al.	N/A	N/A
9713509	12/2016	Schuh et al.	N/A	N/A
9727963	12/2016	Mintz et al.	N/A	N/A
9737371	12/2016	Romo et al.	N/A	N/A
9737373	12/2016	Schuh	N/A	N/A
9744335	12/2016	Jiang	N/A	N/A
9763741	12/2016	Alvarez et al.	N/A	N/A
9788910	12/2016	Schuh	N/A	N/A
9789608	12/2016	Itkowitz et al.	N/A	N/A
9818681	12/2016	Machida	N/A	N/A
9844353	12/2016	Walker et al.	N/A	N/A
9844412	12/2016	Bogusky et al.	N/A	N/A
9867635	12/2017	Alvarez et al.	N/A	N/A
9931025	12/2017	Graetzel et al.	N/A	N/A
9949749	12/2017	Noonan et al.	N/A	N/A
9955986	12/2017	Shah	N/A	N/A
9962228	12/2017	Schuh et al.	N/A	N/A
9980785	12/2017	Schuh	N/A	N/A
9993313	12/2017	Schuh et al.	N/A	N/A
10016900	12/2017	Meyer et al.	N/A	N/A
10022192	12/2017	Ummalaneni	N/A	N/A
10080576	12/2017	Romo et al.	N/A	N/A
10238837	12/2018	Duindam et al.	N/A	N/A
10299870	12/2018	Connolly et al.	N/A	N/A
10307205	12/2018	Ludwin et al.	N/A	N/A

10568700	12/2019	Donhowe et al.	N/A	N/A
10653866	12/2019	Duindam et al.	N/A	N/A
10682070	12/2019	Duindam	N/A	N/A
10744303	12/2019	Duindam et al.	N/A	N/A
2001/0049509	12/2000	Sekine et al.	N/A	N/A
2002/0077550	12/2001	Rabiner et al.	N/A	N/A
2002/0087169	12/2001	Brock et al.	N/A	N/A
2002/0120252	12/2001	Brock et al.	N/A	N/A
2002/0143319	12/2001	Brock	N/A	N/A
2002/0151967	12/2001	Mikus et al.	N/A	N/A
2002/0156345	12/2001	Eppler et al.	N/A	N/A
2002/0161280	12/2001	Chatenever et al.	N/A	N/A
2002/0173786	12/2001	Kortenbach et al.	N/A	N/A
2003/0045778	12/2002	Ohline et al.	N/A	N/A
2003/0050649	12/2002	Brock et al.	N/A	N/A
2003/0182091	12/2002	Kukuk	N/A	N/A
2003/0233115	12/2002	Eversull et al.	N/A	N/A
2003/0236455	12/2002	Swanson et al.	N/A	N/A
2003/0236505	12/2002	Bonadio et al.	N/A	N/A
2004/0024311	12/2003	Quaid et al.	N/A	N/A
2004/0054355	12/2003	Gerbi et al.	N/A	N/A
2004/0083808	12/2003	Rambow et al.	N/A	N/A
2004/0116803	12/2003	Jascob et al.	N/A	N/A
2004/0138525	12/2003	Saadat et al.	N/A	N/A
2004/0138529	12/2003	Wiltshire et al.	N/A	N/A
2004/0147837	12/2003	MaCaulay et al.	N/A	N/A
2004/0153191	12/2003	Grimm et al.	N/A	N/A
2004/0202400	12/2003	Kochergin et al.	N/A	N/A
2004/0249367	12/2003	Saadat et al.	N/A	N/A
2004/0257021	12/2003	Chang et al.	N/A	N/A
2005/0004431	12/2004	Kogasaka et al.	N/A	N/A
2005/0043718	12/2004	Madhani et al.	N/A	N/A
2005/0049486	12/2004	Urquhart et al.	N/A	N/A
2005/0059960	12/2004	Simaan et al.	N/A	N/A
2005/0065397	12/2004	Saadat et al.	N/A	N/A
2005/0065398	12/2004	Adams	N/A	N/A
2005/0065400	12/2004	Banik et al.	N/A	N/A
2005/0096502 2005/0102062	12/2004 12/2004	Khalili Green	N/A N/A	N/A
2005/0102062	12/2004	Abrams et al.	N/A N/A	N/A N/A
2005/0192532	12/2004	Kucklick et al.	N/A	N/A N/A
2005/0192532	12/2004	Banik et al.	N/A	N/A N/A
2005/0197557	12/2004	Strommer et al.	N/A	N/A N/A
2005/0215983	12/2004	Brock	N/A	N/A
2005/0215565	12/2004	Wallace et al.	N/A	N/A
2005/0251176	12/2004	Swanstrom et al.	N/A	N/A
2005/0256398	12/2004	Hastings et al.	N/A	N/A
2005/0261551	12/2004	Couvillon, Jr.	N/A	N/A
2005/0272977	12/2004	Saadat et al.	N/A	N/A
2005/0284221	12/2004	Danisch et al.	N/A	N/A
2006/0004286	12/2005	Chang et al.	N/A	N/A
2006/0013523	12/2005	Childlers et al.	N/A	N/A
2006/0015026	12/2005	Hauck et al.	N/A	N/A
2006/0015050	12/2005	Vargas	N/A	N/A
_000,00 _000	, 000	, Duo	- 1/ - 1	11/11

2006/0041293	12/2005	Mehdizadeh et al.	N/A	N/A
2006/0095022	12/2005	Moll et al.	N/A	N/A
2006/0149418	12/2005	Anvari	N/A	N/A
2006/0161045	12/2005	Merril et al.	N/A	N/A
2006/0161136	12/2005	Anderson et al.	N/A	N/A
2006/0184016	12/2005	Glossop et al.	N/A	N/A
2007/0013336	12/2006	Nowlin et al.	N/A	N/A
2007/0016070	12/2006	Grunwald et al.	N/A	N/A
2007/0021738	12/2006	Hasser et al.	N/A	N/A
2007/0043455	12/2006	Viswanathan et al.	N/A	N/A
2007/0049908	12/2006	Boese et al.	N/A	N/A
2007/0055128	12/2006	Glossop et al.	N/A	N/A
2007/0055291	12/2006	Birkmeyer et al.	N/A	N/A
2007/0065077	12/2006	Childers et al.	N/A	N/A
2007/0083217	12/2006	Eversull et al.	N/A	N/A
2007/0089557	12/2006	Solomon et al.	N/A	N/A
2007/0106116	12/2006	Sugimoto	N/A	N/A
2007/0135803	12/2006	Belson	N/A	N/A
2007/0135886	12/2006	Maschke	N/A	N/A
2007/0137371	12/2006	Devengenzo et al.	N/A	N/A
2007/0150155	12/2006	Kawai et al.	N/A	N/A
2007/0151391	12/2006	Larkin et al.	N/A	N/A
2007/0156020	12/2006	Foley et al.	N/A	N/A
2007/0173694	12/2006	Tsuji et al.	N/A	N/A
2007/0197896	12/2006	Moll et al.	N/A	N/A
2007/0225554	12/2006	Maseda et al.	N/A	N/A
2007/0225559	12/2006	Clerc	600/113	A61B 1/018
2007/0232898	12/2006	Huynh et al.	N/A	N/A
2007/0249911	12/2006	Simon	N/A	N/A
2007/0253599	12/2006	White et al.	N/A	N/A
2007/0265503	12/2006	Schlesinger et al.	N/A	N/A
2007/0270642	12/2006	Bayer et al.	N/A	N/A
2007/0283970	12/2006	Mohr et al.	N/A	N/A
2007/0287884	12/2006	Schena	N/A	N/A
2007/0287889	12/2006	Mohr	N/A	N/A
2007/0287992	12/2006	Diolaiti et al.	N/A	N/A
2007/0293721	12/2006	Gilboa	N/A	N/A
2007/0299353	12/2006	Harlev et al.	N/A	N/A
2008/0015625	12/2007	Ventura	606/191	A61N 1/056
2008/0046122	12/2007	Manzo et al.	N/A	N/A
2008/0051704	12/2007	Patel et al.	N/A	N/A
2008/0058861	12/2007	Cooper et al.	N/A	N/A
2008/0064921	12/2007	Larkin et al.	N/A	N/A
2008/0064927	12/2007	Larkin et al.	N/A	N/A
2008/0064931	12/2007	Schena et al.	N/A	N/A
2008/0065097	12/2007	Duval et al.	N/A	N/A
2008/0065098	12/2007	Larkin et al.	N/A	N/A
2008/0065099	12/2007	Cooper et al.	N/A	N/A
2008/0065100	12/2007	Larkin	N/A	N/A
2008/0065101	12/2007	Larkin	N/A	N/A
2008/0065102	12/2007	Cooper	N/A	N/A
2008/0065103	12/2007	Cooper et al.	N/A	N/A
2008/0065104	12/2007	Larkin et al.	N/A	N/A
2008/0065106	12/2007	Larkin	N/A	N/A

2008/0065107	12/2007	Larkin et al.	N/A	N/A
2008/0065109	12/2007	Larkin et al.	N/A	N/A
2008/0065110	12/2007	Duval et al.	N/A	N/A
2008/0071288	12/2007	Larkin et al.	N/A	N/A
2008/0071289	12/2007	Cooper et al.	N/A	N/A
2008/0071290	12/2007	Larkin et al.	N/A	N/A
2008/0071291	12/2007	Duval et al.	N/A	N/A
2008/0091170	12/2007	Vargas	604/528	A61M 25/0158
2008/0097155	12/2007	Gattani et al.	N/A	N/A
2008/0103362	12/2007	Couvillon	600/148	A61B 1/00042
2008/0108870	12/2007	Wiita et al.	N/A	N/A
2008/0123921	12/2007	Gielen et al.	N/A	N/A
2008/0140087	12/2007	Barbagli	N/A	N/A
2008/0147089	12/2007	Loh et al.	N/A	N/A
2008/0151041	12/2007	Shafer et al.	N/A	N/A
2008/0156971	12/2007	Ogisu et al.	N/A	N/A
2008/0159653	12/2007	Dunki-Jacobs et al.	N/A	N/A
2008/0172049	12/2007	Bredno et al.	N/A	N/A
2008/0212082	12/2007	Froggatt et al.	N/A	N/A
2008/0231221	12/2007	Ogawa	N/A	N/A
2008/0249640	12/2007	Vittor et al.	N/A	N/A
2008/0255505	12/2007	Carlson et al.	N/A	N/A
2008/0287963	12/2007	Rogers et al.	N/A	N/A
2008/0312771	12/2007	Sugiura	N/A	N/A
2008/0319376	12/2007	Wilcox et al.	N/A	N/A
2009/0030307	12/2008	Govari et al.	N/A	N/A
2009/0076534	12/2008	Shelton, IV et al.	N/A	N/A
2009/0085807	12/2008	Anderson	N/A	N/A
2009/0088756	12/2008	Anderson	N/A	N/A
2009/0088774	12/2008	Swarup et al.	N/A	N/A
2009/0096443	12/2008	Anderson	N/A	N/A
2009/0105799	12/2008	Hekmat et al.	N/A	N/A
2009/0118620	12/2008	Tgavalekos et al.	N/A	N/A
2009/0123111	12/2008	Udd	N/A	N/A
2009/0137952	12/2008	Ramamurthy et al.	N/A	N/A
2009/0184825	12/2008	Anderson	N/A	N/A
2009/0198298	12/2008	Kaiser et al.	N/A	N/A
2009/0231419	12/2008	Bayer	348/76	A61B 1/00179
2009/0245600	12/2008	Hoffman et al.	N/A	N/A
2009/0248040	12/2008	Cooper et al.	N/A	N/A
2009/0275799	12/2008	Saadat et al.	N/A	N/A
2009/0281566	12/2008	Edwards et al.	N/A	N/A
2009/0287354	12/2008	Choi	N/A	N/A
2009/0314131	12/2008	Bailey	N/A	N/A
2009/0322001	12/2008	Luke et al.	N/A	N/A
2009/0326322	12/2008	Diolaiti	N/A	N/A
2009/0326552	12/2008	Diolaiti	N/A	N/A
2009/0326553	12/2008	Mustufa et al.	N/A	N/A
2010/0030115	12/2009	Fujimoto et al.	N/A	N/A
2010/0041949	12/2009	Tolkowsky	N/A	N/A
2010/0076263	12/2009	Tanaka et al.	N/A	N/A
2010/0076303	12/2009	McKinley	N/A	N/A
2010/0082041	12/2009	Prisco	N/A	N/A
2010/0121138	12/2009	Goldenberg et al.	N/A	N/A

2010/0121139	12/2009	Ouyang et al.	N/A	N/A
2010/0125284	12/2009	Tanner et al.	N/A	N/A
2010/0170519	12/2009	Romo et al.	N/A	N/A
2010/0210939	12/2009	Hartmann et al.	N/A	N/A
2010/0222647	12/2009	Hashimshony et al.	N/A	N/A
2010/0234856	12/2009	Stoianovici et al.	N/A	N/A
2010/0256812	12/2009	Tsusaka et al.	N/A	N/A
2010/0274087	12/2009	Diolaiti et al.	N/A	N/A
2010/0292535	12/2009	Paskar	N/A	N/A
2010/0298642	12/2009	Trusty et al.	N/A	N/A
2010/0331820	12/2009	Prisco et al.	N/A	N/A
2010/0332033	12/2009	Diolaiti et al.	N/A	N/A
2011/0021903	12/2010	Strommer et al.	N/A	N/A
2011/0028991	12/2010	Ikeda et al.	N/A	N/A
2011/0040305	12/2010	Gomez et al.	N/A	N/A
2011/0040404	12/2010	Diolaiti et al.	N/A	N/A
2011/0054309	12/2010	Edwards	N/A	N/A
2011/0063428	12/2010	Sonnenschein	348/294	A61B 17/29
2011/0082365	12/2010	McGrogan et al.	N/A	N/A
2011/0082462	12/2010	Suarez et al.	N/A	N/A
2011/0092808	12/2010	Shachar et al.	N/A	N/A
2011/0125032	12/2010	McIntyre et al.	N/A	N/A
2011/0130750	12/2010	Ormsby et al.	N/A	N/A
2011/0137122	12/2010	Kawai	N/A	N/A
2011/0152879	12/2010	Williams et al.	N/A	N/A
2011/0153252	12/2010	Govari et al.	N/A	N/A
2011/0160570	12/2010	Kariv et al.	N/A	N/A
2011/0160715	12/2010	Ostrovsky et al.	N/A	N/A
2011/0172680	12/2010	Younge et al.	N/A	N/A
2011/0172687	12/2010	Woodruff et al.	N/A	N/A
2011/0184241	12/2010	Zubiate et al.	N/A	N/A
2011/0184276	12/2010	Lyon et al.	N/A	N/A
2011/0196199	12/2010	Donhowe et al.	N/A	N/A
2011/0196419	12/2010	Cooper	N/A	N/A
2011/0201883	12/2010	Cooper et al.	N/A	N/A
2011/0201922	12/2010	Hezemans et al.	N/A	N/A
2011/0202068	12/2010	Diolaiti et al.	N/A	N/A
2011/0224684	12/2010	Larkin et al.	N/A	N/A
2011/0224685	12/2010	Larkin et al.	N/A	N/A
2011/0224686	12/2010	Larkin et al.	N/A	N/A
2011/0224687	12/2010	Larkin et al.	N/A	N/A
2011/0224688	12/2010	Larkin et al.	N/A	N/A
2011/0224689	12/2010	Larkin et al.	N/A	N/A
2011/0224825	12/2010	Larkin et al.	N/A	N/A
2011/0237889	12/2010	Tanaka	N/A	N/A
2011/0277576	12/2010	Cooper	N/A	N/A
2011/0277579	12/2010	Anderson et al.	N/A	N/A
2011/0277580	12/2010	Cooper et al.	N/A	N/A
2011/0277775	12/2010	Holop et al.	N/A	N/A
2011/0277776	12/2010	McGrogan et al.	N/A	N/A
2011/0282356	12/2010	Solomon et al.	N/A	N/A
2011/0282357	12/2010	Rogers et al.	N/A	N/A
2011/0282358	12/2010	Gomez et al.	N/A	N/A
2011/0282359	12/2010	Duval	N/A	N/A

2011/0282491	12/2010	Prisco et al.	N/A	N/A
2011/0319714	12/2010	Roelle	600/118	A61B 1/008
2011/0319910	12/2010	Roelle et al.	N/A	N/A
2012/0000427	12/2011	Nilsson	N/A	N/A
2012/0010628	12/2011	Cooper et al.	N/A	N/A
2012/0046522	12/2011	Naito	N/A	N/A
2012/0059249	12/2011	Verard et al.	N/A	N/A
2012/0071752	12/2011	Sewell et al.	N/A	N/A
2012/0116393	12/2011	Jimenez et al.	N/A	N/A
2012/0123395	12/2011	Stoy	606/1	A61B 34/71
2012/0123441	12/2011	Au et al.	N/A	N/A
2012/0150075	12/2011	Ludwin et al.	N/A	N/A
2012/0165608	12/2011	Banik et al.	N/A	N/A
2012/0182409	12/2011	Moriyama et al.	N/A	N/A
2012/0209293	12/2011	Carlson et al.	N/A	N/A
2012/0215094	12/2011	Rahimian et al.	N/A	N/A
2012/0253276	12/2011	Govari et al.	N/A	N/A
2012/0289815	12/2011	Keast et al.	N/A	N/A
2012/0296166	12/2011	Kim	N/A	N/A
2012/0328077	12/2011	Bouvier	N/A	N/A
2013/0085330	12/2012	Ramamurthy et al.	N/A	N/A
2013/0090530	12/2012	Ramamurthy et al.	N/A	N/A
2013/0096385	12/2012	Fenech et al.	N/A	N/A
2013/0102846	12/2012	Sjostrom et al.	N/A	N/A
2013/0131503	12/2012	Schneider et al.	N/A	N/A
2013/0144124	12/2012	Prisco et al.	N/A	N/A
2013/0165854	12/2012	Sandhu et al.	N/A	N/A
2013/0165945	12/2012	Roelle et al.	N/A	N/A
2013/0169272	12/2012	Eichler et al.	N/A	N/A
2013/0172906	12/2012	Olson et al.	N/A	N/A
2013/0218005	12/2012	Desai et al.	N/A	N/A
2013/0223702	12/2012	Holsing et al.	N/A	N/A
2013/0303944	12/2012	Duindam	N/A	N/A
2013/0325030	12/2012	Hourtash et al.	N/A	N/A
2014/0114180	12/2013	Jain	N/A	N/A
2014/0135985	12/2013	Coste-Maniere et al.	N/A	N/A
2014/0142591	12/2013	Alvarez et al.	N/A	N/A
2014/0163664	12/2013	Goldsmith	N/A	N/A
2014/0296870	12/2013	Stern et al.	N/A	N/A
2014/0296872	12/2013	Cooper et al.	N/A	N/A
2014/0309649	12/2013	Alvarez et al.	N/A	N/A
2014/0316420	12/2013	Ballard et al.	N/A	N/A
2014/0357984	12/2013	Wallace et al.	N/A	N/A
2014/0364870	12/2013	Alvarez et al.	N/A	N/A
2015/0051592	12/2014	Kintz	N/A	N/A
2015/0088161	12/2014	Hata et al.	N/A	N/A
2015/0101442	12/2014	Romo	N/A	N/A
2015/0104284	12/2014	Riedel	N/A	N/A
2015/0119628	12/2014	Bharat et al.	N/A	N/A
2015/0119638	12/2014	Yu et al.	N/A	N/A
2015/0164594	12/2014	Romo et al.	N/A	N/A
2015/0164596	12/2014	Romo et al.	N/A	N/A
2015/0202015	12/2014	Elhawary et al. Walker et al.	N/A	N/A
2015/0223902	12/2014	waiker et al.	N/A	N/A

2015/0265359	12/2014	Camarillo	N/A	N/A
2015/0265807	12/2014	Park et al.	N/A	N/A
2015/0297864	12/2014	Kokish et al.	N/A	N/A
2015/0335480	12/2014	Alvarez et al.	N/A	N/A
2015/0342695	12/2014	He et al.	N/A	N/A
2015/0359597	12/2014	Gombert et al.	N/A	N/A
2015/0374956	12/2014	Bogusky	N/A	N/A
2016/0001038	12/2015	Romo et al.	N/A	N/A
2016/0005168	12/2015	Merlet	N/A	N/A
2016/0005220	12/2015	Weingarten et al.	N/A	N/A
2016/0005576	12/2015	Tsukamoto	N/A	N/A
2016/0016319	12/2015	Remirez et al.	N/A	N/A
2016/0029998	12/2015	Brister et al.	N/A	N/A
2016/0045269	12/2015	Elhawary et al.	N/A	N/A
2016/0051221	12/2015	Dickhans et al.	N/A	N/A
2016/0066794	12/2015	Klinder et al.	N/A	N/A
2016/0073928	12/2015	Soper et al.	N/A	N/A
2016/0081568	12/2015	Kolberg et al.	N/A	N/A
2016/0100772	12/2015	Ikuma et al.	N/A	N/A
2016/0228032	12/2015	Walker et al.	N/A	N/A
2016/0256216	12/2015	Chang	N/A	A61B 18/1492
2016/0270865	12/2015	Landey et al.	N/A	N/A
2016/0278865	12/2015	Capote et al.	N/A	N/A
2016/0287111	12/2015	Jacobsen	N/A	N/A
2016/0287279	12/2015	Bovay et al.	N/A	N/A
2016/0296294	12/2015	Moll et al.	N/A	N/A
2016/0331469	12/2015	Hall et al.	N/A	N/A
2016/0338787	12/2015	Popovic et al.	N/A	N/A
2016/0346924	12/2015	Hasegawa et al.	N/A	N/A
2016/0354057	12/2015	Hansen et al.	N/A	N/A
2016/0360947	12/2015	Iida et al.	N/A	N/A
2016/0360949	12/2015	Hyodo et al.	N/A	N/A
2016/0374541	12/2015	Agrawal et al.	N/A	N/A
2017/0007337	12/2016	Dan	N/A	N/A
2017/0056215	12/2016	Nagesh et al.	N/A	N/A
2017/0068796	12/2016	Passerini et al.	N/A	N/A
2017/0100199	12/2016	Yu et al.	N/A	N/A
2017/0119413	12/2016	Romo	N/A	N/A
2017/0119481	12/2016	Romo et al.	N/A	N/A
2017/0151027	12/2016	Walker et al.	N/A	N/A
2017/0165011	12/2016	Bovay et al.	N/A	N/A
2017/0165503	12/2016	Hautvast et al.	N/A	N/A
2017/0172673	12/2016	Yu et al.	N/A	N/A
2017/0202627	12/2016	Sramek et al.	N/A	N/A
2017/0209073	12/2016	Sramek et al.	N/A	N/A
2017/0251988	12/2016	Weber et al.	N/A	N/A
2017/0280978	12/2016	Yamamoto et al.	N/A	N/A
2017/0281049	12/2016	Yamamoto et al.	N/A	N/A
2017/0290631	12/2016	Lee et al.	N/A	N/A
2017/0304015	12/2016	Tavallaei et al.	N/A	N/A
2017/0325715	12/2016	Mehendale et al.	N/A	N/A
2017/0333679	12/2016	Jiang	N/A	N/A
2017/0340396	12/2016	Romo et al.	N/A	N/A
2017/0365055	12/2016	Mintz et al.	N/A	N/A

2017/0367782	12/2016	Schuh et al.	N/A	N/A
2018/0025666	12/2017	Ho et al.	N/A	N/A
2018/0177383	12/2017	Noonan et al.	N/A	N/A
2018/0177556	12/2017	Noonan	N/A	N/A
2018/0177561	12/2017	Mintz et al.	N/A	N/A
2018/0214011	12/2017	Graetzel et al.	N/A	N/A
2018/0221038	12/2017	Noonan et al.	N/A	N/A
2018/0221039	12/2017	Shah	N/A	N/A
2018/0250083	12/2017	Schuh et al.	N/A	N/A
2018/0250085	12/2017	Simi et al.	N/A	N/A
2018/0271616	12/2017	Schuh et al.	N/A	N/A
2018/0279852	12/2017	Rafii-Tari et al.	N/A	N/A
2018/0280660	12/2017	Landey et al.	N/A	N/A
2018/0289243	12/2017	Landey et al.	N/A	N/A
2018/0289431	12/2017	Draper et al.	N/A	N/A
2019/0192819	12/2018	Duindam et al.	N/A	N/A
2020/0023201	12/2019	Overweg	N/A	N/A
2020/0146757	12/2019	Fenech et al.	N/A	N/A
2020/0254223	12/2019	Duindam et al.	N/A	N/A
2020/0275860	12/2019	Duindam	N/A	N/A

FOREIGN PATENT DOCUMENTS

FURLIGN PAIL	INT DOCUMENTS		
Patent No.	Application Date	Country	CPC
1658789	12/2004	CN	N/A
101088451	12/2006	CN	N/A
101247847	12/2007	CN	N/A
101252870	12/2007	CN	N/A
101404921	12/2008	CN	N/A
101918073	12/2009	CN	N/A
102013100605	12/2013	DE	N/A
1566150	12/2004	EP	N/A
1800593	12/2006	EP	N/A
2158834	12/2009	EP	N/A
2392435	12/2010	EP	N/A
3025630	12/2015	EP	N/A
S57190549	12/1981	JP	N/A
H06285009	12/1993	JP	N/A
H07504363	12/1994	JP	N/A
H07505790	12/1994	JP	N/A
H1020214	12/1997	JP	N/A
2000093522	12/1999	JP	N/A
2000166936	12/1999	JP	N/A
2001046529	12/2000	JP	N/A
2003275223	12/2002	JP	N/A
2008018007	12/2007	JP	N/A
2008508987	12/2007	JP	N/A
2009530069	12/2008	JP	N/A
19990087101	12/1998	KR	N/A
WO-9313916	12/1992	WO	N/A
WO-9605768	12/1995	WO	N/A
WO-9729690	12/1996	WO	N/A
WO-9744089	12/1996	WO	N/A
WO-0051486	12/1999	WO	N/A
WO-0156457	12/2000	WO	N/A

WO-0207809	12/2001	WO	N/A
WO-2004016155	12/2003	WO	N/A
WO-2005087128	12/2004	WO	N/A
WO-2006039092	12/2005	WO	N/A
WO-2006122061	12/2005	WO	N/A
WO-2007109418	12/2006	WO	N/A
WO-2007109778	12/2006	WO	N/A
WO-2007146987	12/2006	WO	N/A
WO-2008028149	12/2007	WO	N/A
WO-2008111070	12/2007	WO	N/A
WO-2008147961	12/2007	WO	N/A
WO-2009002701	12/2007	WO	N/A
WO-2009120940	12/2008	WO	N/A
WO-2009148317	12/2008	WO	N/A
WO-2010039394	12/2009	WO	N/A
WO-2011001300	12/2010	WO	N/A
WO-2011008922	12/2010	WO	N/A
WO-2011085166	12/2010	WO	N/A
WO-2011100110	12/2010	WO	N/A
WO-2011132409	12/2010	WO	N/A
WO-2017048194	12/2016	WO	N/A

OTHER PUBLICATIONS

Al-Ahmad A., et al., "Early Experience with a Computerized Obotically Controlled Catheter System," Journal of Interventional Cardiac Electrophysiology, Apr. 2005, vol. 12(3), pp. 199-202. cited by applicant Amended Joint Claim Construction Chart, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 123-1, Nov. 13, 2019, 31 pages. cited by applicant

Amended Joint Claim Construction Chart, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 81, Aug. 29, 2019, 29 pages. cited by applicant

Amending Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 62, 2019, 14 pages. cited by applicant

Auris Health, Inc.'s Opposition to Motion for Reargument Regarding Mar. 11, 2019 Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Jury Trial Demanded, Case No. 18-1359-MN, Document 52, Mar. 29, 2019, 8 pages. cited by applicant

Compendium of Inventor Declarations in Support of Plaintiffs Intutive Surgical, Inc. and Intutive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, C.A. No. 18-1359-MN, Document 29, Dec. 11, 2018, 2 pages. cited by applicant Complaint for Patent Infringement, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Aug. 31, 2018, 14 pages. cited by applicant

Curriculum Vitae of Prof. Ron Alterovitz, Ph.D, Professor, Department of Computer Science, University of North Carolina at Chapel Hill, Jan. 14, 2019, 22 pages. cited by applicant

Declaration of Prof. Ron Alterovitz, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, 2019, 25 pages. cited by applicant

Declaration of Professor Mark E. Rentschler, Ph.D, Mar. 2018, 58 pages. cited by applicant Declaration of David Styka in Support of Defendant Auris Health, Inc.'s Opening Brief in Support of Its Motion to Transfer Venue Pursuant to 28 U.S.C. § 1404(A), United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case

No. 1:18-cv-01359-LPS, Jury Trial Demanded, Document 18, 2018, 3 pages. cited by applicant Declaration of Kelly E. Farnan in Support of Auris Health, Inc.'s Opposition to Motion for Reargument Regarding Mar. 11, 2019 Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 53, 2019, 3 pages. cited by applicant

Declaration of Laura E. Miller in Support of Plaintiffs' Opposition to Defendant's Motion to Stay, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Exihibit, Document 122, Nov. 13, 2019, 50 pages. cited by applicant

Declaration of Laura Miller in Support of Plaintiffs' Motion for Reargument Regarding Mar. 11, 2019 Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 44, 2019, 1 page. cited by applicant

Declaration of Nathan B. Sabri in Support of Defendant Auris Health, Inc.'s Opening Brief in Support of Its Motion to Transfer Venue Pursuant to 28 U.S.C. § 1404(A), United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-LPS, Jury Trial Demanded, Document 16, 2018, 7 pages. cited by applicant Declaration of Shaelyn K. Dawson in Support of Defendant Auris Health, Inc.'s Motion to Stay Case Pending Inter Partes Review, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 119, 2019, 3 pages. cited by applicant

Declaration of Shaelyn K. Dawson in Support of Defendant Auris Health, Inc.'s Reply in Support of Its Motion to Stay Case Pending Inter Partes Review, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 127, 2019, 2 pages. cited by applicant

Declaration of Taylor Patton in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Redacted—Public Version, C.A. No. 18-1359-MN, Document 30, Dec. 11, 2018, 15 pages. cited by applicant

Declaration of Vera Ranieri in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 28, Demand for Jury Trial, 2018, 4 pages. cited by applicant Defendant Auris Health, Inc.'s Amended Notice of Deposition of Catherine J. Mohr, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Demand for Jury Trial, Document 99, Oct. 9, 2019, 2 pages. cited by applicant

Defendant Auris Health, Inc.'s Amended Notice of Deposition of Vincent Duindam, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 100, Demand for Jury Trial, Oct. 9, 2019, 2 pages. cited by applicant

Defendant Auris Health, Inc.'s Answer to Plaintiffs' Complaint for Patent Infringement, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-LPS, Jury Trial Demanded, Document 12, Oct. 25, 2018, 12 pages. cited by applicant

Defendant Auris Health, Inc.'s Notice of 30(B)(6) Deposition of Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 120, Nov. 12, 2019, 10 pages. cited by applicant

Defendant Auris Health, Inc.'s Notice of Deposition of Catherine J. Mohr, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 94, Oct. 2, 2019, 2 pages. cited by applicant Defendant Auris Health, Inc.'s Notice of Deposition of Mark E. Rentschler, United States District Court for the

District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Demand for Jury Trial, Document 103, Oct. 15, 2019, 2 pages. cited by applicant

Defendant Auris Health, Inc.'s Notice of Deposition of Tim Soper, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 18-1359-MN, Document 87, Sep. 13, 2019, 2 pages. cited by applicant Defendant Auris Health, Inc.'s Notice of Deposition of Vincent Duindam, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 93, Oct. 2, 2019, 2 pages. cited by applicant

Defendant Auris Health, Inc.'S Opening Brief in Support of Its Motion to Stay Case Pending Inter Partes Review, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Jury Trial Demanded, Document 118, Oct. 30, 2019, 18 pages. cited by applicant

Defendant Auris Health, Inc.'s Opening Brief in Support of Its Motion to Transfer Venue Pursuant to 28 U.S.C. § 1404(A), United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-LPS, Jury Trial Demanded, Document 15, Oct. 29, 2018, 25 pages. cited by applicant

Defendant Auris Health, Inc.'s Preliminary Invalidity Contentions, Demand for Jury Trial, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, 2019, 38 pages. cited by applicant

Defendant Auris Health, Inc.'s Reply Brief in Support of Its Motion to Stay Pending Inter Partes Review, United States District Court for the District of Delaware, Demand for Jury Trial, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 126, Nov. 15, 2019, 13 pages. cited by applicant

Defendant Auris Health, Inc.'s Reply Brief in Support of Its Motion to Transfer Venue Pursuant to 28 U.s.c. § 1404(a), United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, C.A. No. 18-1359-MN, Document 31, Nov. 18, 2018, 14 pages. cited by applicant

Defendant Auris Health, Inc.'s Supplemental Corporate Disclosure Statement Per F.r.c.p. 7.1, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Jury Trial Demanded, Case No. 18-1359-MN, Apr. 17, 2019, 2 pages. cited by applicant

Defendant's Corporate Disclosure Statement per F.R.C.P. 7.1(a), United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-LPS, Jury Trial Demanded, Document 13, Oct. 25, 2018, 1 page. cited by applicant Excerpts from Merriam-Webster's Collegiate Dictionary, 2003, 11th Edition, 3 pages. cited by applicant Excerpts from the deposition of Mark Edwin Rentschler, Ph.D., Oct. 21, 2019, 35 pages. cited by applicant Exhibit 1, Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Preliminary Election of Asserted Claims, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Demand for Jury Trial, Document 119-1, Aug. 9, 2019, 5 pages. cited by applicant

Exhibit 1, Before Ulrike W. Jenks, Tina E. Hulse, and James A. Worth, Administrative Patent Judges, Petitioner: *Auris Health, Inc* v. *Patent Owner. Intuitive Surgical Operations, Inc.*, IPR2019-01173, Document 215-1, Entered Dec. 16, 2019, 197 pages. cited by applicant

Exhibit 1, Declaration, Annual Report Pursuant to Section 13 or 15(D) of the Securities Exchange Act of 1934, United States Securities and Exchange Commission, Form 10-K, Case 1:18-cv-01359-MN, Intuitive Surgical, Inc, Document 28-1, 2018, 12 pages. cited by applicant

Exhibit 1, Fox Chase Cancer Center Among First in U.S. to Use Innovative Technology for Lung Cancer Diagnosis, Temple Health, Retrieved from the Internet: (https://www.foxchase.org/news/2018-08-15-Monarch-Robotic-Bronchoscopy), Case 1:18-cv-01359-MN, Document 23-3, Aug. 15, 2018, 4 pages. cited by applicant Exhibit 1, Morrison & Foerster, via Email, *Intuitive Surgical, Inc.* v. *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Sep. 9, 2019, Document 127-1, 22 pages. cited by applicant

Exhibit 1, [Proposed] Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury

```
Trial, Case No. 1:18-cv-01359-MN, Document 43-2, 2019, 14 pages. cited by applicant
Exhibit 1, Redacted in its Entirety, Demand for Jury Trial, Defendant Auris Health, Inc.'s First set of Requests for
production to Plaintiffs, C.A. No. 18-1359-MN, Document 233-1, 2019, 1-70 pages. cited by applicant
Exhibit 10, "Auris Health Lands $220M to Expand Sales of Lung Testing Medical Robot," exome, Frank Vinluan.
Case 1:18-cv-01359-MN, Document 28-10, 2018, 4 pages. cited by applicant
Exhibit 10, From: Dawson, Shaelyn K, Subject: Intuitive v. Auris: Summary of Sep. 26, 19 meet- and-confer re:
Intuitive's deficient production, Case 1:18-cv-01359-MN, Document 119-10, 2019, 4 pages. cited by applicant
Exhibit 11, "Auris Health Lands $220M to Expand Sales of Lung Testing Medical Robot," Xcomony, Nov. 28,
2018, Auris, Auris Health, Inc., Case 1:18-cv-01359-MN, Document 28-11, 2018, 4 pages. cited by applicant
Exhibit 11, U.S Food and Drug Administration, Case 1:18-cv-01359-MN, Document 119-11, Auris Surgical
Robotics, Inc, Mar. 22, 2018, 12 pages. cited by applicant
Exhibit 12, United States Securities and Exchange Commission, Form D, Notice of Exempt Offering of
Securities, Case 1:18-cv-01359-MN, Document 28-12, 2018, 7 pages. cited by applicant
Exhibit 13, United States Securities and Exchange Commission, Form D, Notice of Exempt Offering of
Securities, Case 1:18-cv-01359-MN, Document 28-13, 2018, 7 pages. cited by applicant
Exhibit 14, "Auris Surgical Robotics Agrees to Acquire Hansen Medical," Market Wired, Source: Hansen
Medical, Inc, The Global Leader in Intravascular Robotics, Case 1:18-cv-01359-MN, Document 28-14, Apr. 20,
2016, 2018, 4 pages. cited by applicant
Exhibit 15, Declaration, Delaware, U.S. District Court, Case 1:18-cv-01359-MN, Document 28-15, 2018, 3
pages, cited by applicant
Exhibit 2, Declaration, "Pairing Human Ingenuity with Technology," Intuitive, Case 1:18-cv-01359-MN,
Document 28-2, 2018, 13 pages. cited by applicant
Exhibit 2, Petition for Inter Partes Review of U.S. Pat. No. 8,801,601, USPTO, Petitioner: Auris Health, Inc.
Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN, Document 119-2, Inter Partes Review
No. IPR2019-01173, Jun. 12, 2019, 85 Pages. cited by applicant
Exhibit 2, [proposed] Scheduling Order, United States District Court for the District of Delaware, Plaintiffs:
Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc., V. Defendant: Auris Health, Inc, Case No. 1:18-cy-
01359-MN, Document 43-3, 2019, 19 pages. cited by applicant
Exhibit 2, UPMC Hamot First in U.S. to Use Innovative Robotic Technology to Detect Lung Cancer Earlier,
UPMC Life Changing Medicine, Case No. 1:18-cv-01359-MN, Document 23-4, 2018, 3 pages. cited by applicant
Exhibit 3, Declaration, Contact Intuitive, Office locations and contact Information, Case 1:18-cv-01359-MN,
Document 28-3, 2018, 5 pages. cited by applicant
Exhibit 3, Letter, Careers Audacious goals. Audacious challenges, Auris Health Inc, Retrieved from the Internet:
(https://www.aurishealth.com/jobs?gh_jid=1256912), 2018, Case 1:18-cv-01359-MN, Document 23-5, 7 pages.
cited by applicant
Exhibit 3, Petition for Inter Partes Review of U.S. Pat. No. 6,800,056, USPTO, Petitioner: Auris Health, Inc.
Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN, Document 119-3, Inter Partes Review
No. IPR2019-01189, Jun. 13, 2019, 73 Pages. cited by applicant
Exhibit 4, "da Vinci Robotic Surgery," Christiana Care Health System, Helen F. Graham Cancer Center &
Research Institute, Case 1:18-cv-01359-MN, Document 28-4, 2018, 3 pages. cited by applicant
Exhibit 4, Letter, Robotic Bronchoscopy for Peripheral Pulmonary Lesions, Clinical Trials.gov, Document 23-6,
Retrieved from the Internet: (https://clinicaltrials.gov/ct2/show/NCT03727425), Auris Health, Inc, Case 1:18-cv-
01359-MN, Document 23-6, ClinicalTrials.gov Identifier: NCT03727425, 2018, 9 pages. cited by applicant
Exhibit 4, Petition for Inter Partes Review of U.S. Pat. No. 6,246,200, USPTO, Before the Patent Trial and Appeal
Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN,
Inter Partes Review No. IPR2019-01448, Document 119-4, Aug. 5, 2019, 86 pages. cited by applicant
Exhibit 5, "Auris Health, Ethicon's Neuwave Ink Robot-assisted Bronchoscope Ablation Dev Deal," May 16,
2018, by Fink Densford, Retrieved from the Internet: (https:// https://www.massdevice.com/auris-health-ethicons-
neuwave-ink-robot-assisted-bronchoscope-ablation-dev-deal/), Case 1:18-cv-01359-MN, Document 23-7, 2018,
Massdevice Medical Network, 12 pages. cited by applicant
Exhibit 5, Declaration, "Beebe Healthcare Introduces the da Vinci® Xi™ Robotic Surgical System," Submitted
by Rachel on Jun. 8, 2018, Case 1:18-cv-01359-MN, Document 28-5, 4 Pages. cited by applicant
Exhibit 5, Petition For Inter Partes Review of U.S. Pat. No. 9,452,276, USPTO, Before the Patent Trial and
Appeal Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-
```

```
01359-MN, Inter Partes Review No. IPR2019-01496, Document 119-5, Aug. 15, 2019, 72 pages. cited by applicant
```

Exhibit 6, Declaration, "Fox Chase Cancer Center Among First in U.S. to Use Innovative Technology for Lung Cancer Diagnosis," Philadelphia International Medicine® News Bureau, Fox Chase Cancer Center Temple Health, for Immediate Release, Case 1:18-cv-01359-MN, Document 28-6, Aug. 23, 2018, 3 pages. cited by applicant

Exhibit 6, Letter, Nathan, Morrison & Foerster LLP, *Intuitive Surgical, Inc. et al* v. *Auris Health, Inc.*, C.A. No. 18-1359-LPS, Document 23-8, 2018, 4 pages. cited by applicant

Exhibit 6, Petition for Inter Partes Review of U.S. Pat. No. 8,142,447, Before the Patent Trial and Appeal Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN, Inter Partes Review No. IPR2019-01533, Document 119-6, Aug. 29, 2019, 84 pages. cited by applicant Exhibit 7, Petition for Inter Partes Review of U.S. Pat. No. 6,491,701, Before the Patent Trial and Appeal Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN, Inter Partes Review No. IPR2019-01532, Document 119-7, Aug. 29, 2019, 79 Pages. cited by applicant Exhibit 7, "UPMC Hamot First in U.S. to Use Innovative Robotic Technology to Detect Lung Cancer Earlier," UPMC Life Changing Medicine, Case No. 1:18-cv-01359-MN, Document 28-7, 2018, 3 pages. cited by applicant Exhibit 8, Careers Audacious goals. Audacious challenges, Auris, Retrieved from the Internet:

(URL:http://https://www.aurishealth.com/jobs?gh_jid=1256912), Case 1:18-cv-01359-MN, Document 28-8, 2018, 8 pages. cited by applicant

Exhibit 8, Petition for Inter Partes Review of U.S. Pat. No. 6,522,906, USPTO, Before the Patent Trial and Appeal Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, Case 1:18-cv-01359-MN, IPR2019-01547, Document 119-8, Aug. 30, 2019, 82 pages. cited by applicant

Exhibit 9, "Robotic Bronchoscopy for Peripheral Pulmonary Lesions," ClinicalTrials.gov, U.S National Library of Medicine, ClinicalTrials.gov Identifier: NCT03727425, Auris Health, Inc, Case 1:18-cv-01359-MN, Document 28-9, 2018, 8 pages. cited by applicant

Exhibit 9, Trial Statistics, USPTO, Case 1:18-cv-01359-MN, Document 119-9, 2019, 12 pages. cited by applicant Exhibit A, Da Vinci by Intuitive, enabling Surgical care to get patients back to what matters, Aug. 29, 2019, Case 1:18-cv-01359-MN, Document 114-1, Retrieved from the internet: URL: [https://www.intuitive.com/en-us/products-and-services/da-vinci], pp. 4 pages. cited by applicant

Exhibit A, Intuitive, Annual Report 2017, Intuitive Surgical, Inc, www.intuitivesurgical.com, Case 1:18-cv-01359-MN, Document 16-1, 2018, 144 pages. cited by applicant

Exhibit A, "Johnson & Johnson Announces Agreement to Acquire Auris Health, Inc, "Auris Health's Robotic Platform Expands Johnson & Johnson's Digital Surgery Portfolio, New Brunswick, NJ—Feb. 13, 2019, Case 1:18-cv-01359-MN, Document 36-1, 2019, 4 pages. cited by applicant

Exhibit A, Letter, *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.* v. *Auris Health, Inc.*, Case 1:18-cv-01359-MN, Doc 53-1, 2019, 86 pages. cited by applicant

Exhibit A, Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Notice of Deposition under Fed. R. Civ. P. 30(B)(6) Directed to Defendant Auris Health, Inc.'s Motion to Transfer, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18- cv-01359-LPS, Demand for Jury Trial, Document 23-1, Dec. 3, 2018, 7 pages. cited by applicant

Exhibit B, Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s First Set of Requests for Production of Documents to Defendant Auris Health, Inc, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-LPS, Document 23-2, Dec. 3, 2018, 9 pages. cited by applicant Extended European Search Report for Application No. EP19174999.3 mailed on Nov. 26, 2019, 10 pages. cited by applicant

Hagn U., et al., "DLR MiroSurge: A Versatile System for Research in Endoscopic Telesurgery," International Journal of Computer Assisted Radiology and Surgery, 2010, vol. 5 (2), 11 pages. cited by applicant Hansen Medical, Inc., "Bibliography", Jun. 22, 2005, 1 page, retrieved from the internet [URL: https://web.archive.org/web/20060714042735if_/http://hansenmedical.com/bibliography.aspx]. cited by applicant Hansen Medical, Inc., "Sensei: Discover Your Sixth Sense", Brochure, 2007, 10 pages. cited by applicant Hansen Medical, Inc., "Sensei-X:Robotic Catheter System", Brochure, 2009, 5 pages. cited by applicant Hansen Medical, Inc., "System Overview", 2005, 2 pages, retrieved from the internet [URL:

https://web.archive.org/web/20060714043118if_/http://hansenmedical.com/system.aspx]. cited by applicant Hansen Medical, Inc., "Technology Advantages", 2005, 1 page, retrieved from the internet [URL:

https://web.archive.org/web/20060713011151if_/http://hansenmedical.com/advantages.aspx]. cited by applicant International Search Report and Written Opinion for Application No. PCT/US2018/039604 dated Sep. 14, 2018, 6 pages. cited by applicant

Ion by Intuitive, A New Robotic Endoluminal Platform for Minimally Invasive Peripheral Lung Biopsy, Aug. 29, 2019, Retrived from the internet: [https://www.intuitive.com/en-us/products-andservices/ion], 5 pages. cited by applicant

Joint Claim Construction Brief, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 113, Oct. 29, 2019, 103 pages. cited by applicant

Joint Claim Construction Chart, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 76, Aug. 2, 2019, 31 pages. cited by applicant

Kenneth Salisbury Jr., "The heart of microsurgery," The American Society of Mechanical Engineers , 1998, 12 pages. cited by applicant

Kukuk M., et al., "TBNA-protocols: Guiding TransBronchial Needle Aspirations Without a Computer in the Operating Room", International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Oct. 5, 2001, LNCS 2208, pp. 997-1006. cited by applicant

Le Roux, P.D., et al., "Robot-assisted Microsurgery: A Feasibility Study in the Rat," Neurosurgery, Mar. 2001, vol. 48 (3), pp. 584-589. cited by applicant

Letter Response, Kelly E. Farnan, by CM/ECF, Richards Layton & Finger, Case 1:18-cv-01359- MN, Document 24, RLF1 20392700v.1, Document 24, Dec. 4, 2018, 3 pages. cited by applicant

Letter, Shaw Keller LLP, by CM/ECF & Hand Delivery, Case 1:18-cv-01359-MN, Oct. 29, 2019, Document 112, 1 page. cited by applicant

Markman Hearing, Before: The Honorable Maryellen Noreika, Case No. 18-1359(MN), Plaintiffs: *Intuitive Surgical, Inc.*, Defendant: *Auris Health, Inc.*, held on Nov. 20, 2019, pp. 1-162. cited by applicant Marrouche N.F., et al., "AB32-1: Preliminary Human Experience Using a Novel Robotic Catheter Remote Control", May 6, 2005, 1 page. cited by applicant

Memorandum Opinion, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359 (MN), May 31, 2019, 13 pages. cited by applicant

Memorandum Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc.* and *Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359 (MN), 2019, 16 pages cited by applicant

Minute Entry for proceedings held before Judge Maryellen Noreika, Telephone Conference held on Aug. 21, 2019, 1 page. cited by applicant

Motion to Stay, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 117, Oct. 30, 2019, 2 pages. cited by applicant

Nambi M., et al., "A Compact Telemanipulated Retinal-Surgery System that Uses Commercially Available Instruments with a Quick-Change Adapter," Journal of Medical Robotics Research, 2016, vol. 1 (2), 14 pages. cited by applicant

Oh S., et al., "P5-75: Novel Robotic Catheter Remote Control System: Safety and Accuracy in Delivering RF Lesions in All 4 Cardiac Chambers", 2005, pp. S277-S278. cited by applicant

Olympus, Your Vision, Our Future, "Endoscope Overview 2008," Evis Exera II, HDTV 1080, Case 1:18-cv-01359-MN, Document 114-1, 6 pages. cited by applicant

Oral Order, *Intuitive Surgical, Inc. et al* v. *Auris Health, Inc,* 1-18-cv-01359 (DED), docket entry 25, 2018, 1 Page. cited by applicant

Oral Order, re 37 Proposed Scheduling Order, *Intuitive Surgical*, *Inc. et al* v. *Auris Health*, *Inc*, 1-18-cv-01359 (DED), 2019, 1 page. cited by applicant

Order Conduct of the Proceeding, Before the Patent Trial and Appeal Board, Case IPR2019-01173, Case IPR2019-01189, Case IPR2019-01496, Case IPR2019-01547, Dated Dec. 9, 2019, 04 pages. cited by applicant Order Regarding Access to Source Code, United States District Court for the District of Delaware, Plaintiffs:

Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc., V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Mar. 21, 2019, 3 pages. cited by applicant

Order Scheduling Adr Teleconference, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 142, 2019, 4 pages. cited by applicant

Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359 (MN), Document 70, 2019, 1 page. cited by applicant

Partial European Search Report for Application No. EP19174999.3 mailed on Aug. 21, 2019, 11 pages. cited by applicant

Patent Owner's Mandatory Notices of U.S. Pat. No. 9,452,276, Before The Patent Trial and Appeal Board, Petitioner: Auris Health, Inc, Patent Owner: Intuitive Surgical Operations, Inc, IPR2019-01496, Sep. 3, 2019, 6 pages. cited by applicant

Patent Owner's Preliminary Response for U.S. Pat. No. 9,452,276, Review No. IPR2019-01496 dated Nov. 22, 2019, 33 pages. cited by applicant

Patent Owner's Response to Supplemental Paper Regarding Claim Construction Arguments and Rulings in a Related District Court Action of U.S. Pat. No. 9,452,276, Review No. IPR2019-01496 dated Dec. 20, 2019, 4 pages. cited by applicant

Petitioner's Updated Exhibit List of U.S. Pat. No. 9,452,276, review No. IPR2019-01496 dated Oct. 15, 2019, 04 pages. cited by applicant

Petitioner's Updated Exhibit List of U.S. Pat. No. 9,452,276, review No. IPR2019-01496 dated Dec. 5, 2019, pp. 1-4. cited by applicant

Petitioner's Request for Rehearing of the Institution Decision of U.S. Pat. No. 9,452,276, Review No. IPR2019-01496 dated Mar. 16, 2020, 9 pages. cited by applicant

Petitioner's Updated Exhibit List of U.S. Pat. No. 9,452,276, review No. IPR2019-01496 dated Dec. 9, 2019, pp. 1-4. cited by applicant

Plaintiffs' First Notice of Rule 30(B)(6) Deposition of Defendant Auris Health, Inc, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Document 129, Case No. 18-1359-MN, 2019, 14 Pages. cited by applicant Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Corporate Disclosure Statement, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Aug. 31, 2018, 1 page. cited by applicant Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Notice of Subpoenas to Produce Documents, Information, or Objects or to Permit Inspection of Premises in a Civil Action, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 82, 2019, 20 pages. cited by applicant Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc. and Intuitive Surgical Operations, Inc., V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 26, Dec. 11, 2018, 23 pages. cited by applicant

Plaintiffs' Motion for Reargument Regarding Mar. 11, 2019 Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 43, Mar. 15, 2019, 8 pages. cited by applicant Plaintiffs' Opposition to Defendant's Motion to Stay, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 121, Nov. 13, 2019, 21 pages. cited by applicant

[Proposed] Amended Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 61, 2019, 14 pages. cited by applicant

[Proposed] Order Regarding Access to Source Code, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 46, Mar. 21, 2019, 3 pages. cited by applicant

Proposed Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, C.A. No. 18-1359-MN, Document 43-1,

2019, 1 page. cited by applicant

Proposed Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case 1:18-cv-01359-MN, Document 37, 2019, 17 pages. cited by applicant

Proposed Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case 18-1359-MN, Document 41, 2019, 17 pages. cited by applicant

[Proposed] Stipulated Protective Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-MN, Document 45, Mar. 21, 2019, 31 pages. cited by applicant

PTAB Teleconference for review No. IPR2019-01496 dated Dec. 6, 2019, Petitioner Auris Health, Inc, pp. 1-33. cited by applicant

Rassweiler J., et al., "The Role of Imaging and Navigation for Natural Orifice Translumenal Endoscopic Surgery," Journal of Endourology, May 2009, vol. 23 (5), pp. 793-802. cited by applicant

Reddy V.Y., et al., "P1-53: Porcine Pulmonary VEIN Ablation Using a Novel Robotic Catheter Control System and Real-time Integration of CT Imaging with Electroanatomical Mapping", 2005, p. S121. cited by applicant Report on the Filing or Determination of an Action Regarding a Patent or Trademark, to: Mail Stop 8, Director of USPTO, Alexandria, VA, Case 1:18-cv-01359-MN, Document 3, 2018, 2 pages. cited by applicant Rosenberg J.M., Artificial Intelligence & Robotics, 1986, 3 pages. cited by applicant

Rule 7.1.1 Certificate, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-01359-MN, Document 117-2, Oct. 30, 2019, 2 pages. cited by applicant

Scheduling Order, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, C.A. No. 18-1359-MN, Document 42, 2019, 17 pages. cited by applicant

Shaw Keller LLP, Letter, Karen E. Keller, Case 1:18-cv-01359-MN, *Intuitive Surgical, Inc.*, *et al.* v. *Auris Health, Inc.*, Document 23, by CM/ECF & Hand Delivery, Dec. 3, 2018, 4 pages. cited by applicant

Shaw Keller LLP, Letter Proposed Scheduling Order, by CM/ECF & Hand Delivery, Case 1:18-cv-01359-MN, Document 39, Feb. 28, 2019, 1 page. cited by applicant

Shaw Keller LLP, Letter to Request Scheduling of a Discovery Teleconference, by CM/ECF & Hand Delivery, Case 1:18-cv-01359-MN, Document 20, Nov. 8, 2018, 1 page. cited by applicant

Shaw Keller LLP, Letter, Written to Advise the Court that Auris has "Entered into a Definitive Agreement", by CM/ECF & Hand Delivery, Case 1:18-cv-01359-MN, Document 36, Feb. 20, 2019, 1 page. cited by applicant Shaw Keller LLP, Responsive Letter to Honorable Maryellen Noreika from David M. Fry, Plaintiffs: *Intuitive Surgical, Inc.* vs Defendant: *Auris Health, Inc*, Redacted—Public Version, C.A. No. 18-1359-MN, Document 236, Apr. 1, 2020, 1-117 pages. cited by applicant

Shaw Keller LLP, Letter, The Honorable Maryellen Noreika from David M. Fry, Case No. 18-1359(MN), Plaintiffs: Intuitive Surgical, Inc., Defendant: Auris Health, Inc., held on Mar. 31, 2020, pp. 1-77. cited by applicant

Sheila Weller, He Helped Pioneer Robotic Surgery. Now He Wants to Reinvent Lung Cancer Care, JNJ.com, Apr. 2019, Case 1:18-cv-01359-MN, Document 114-2, Retrived from the internet: [https://www.jnj.com/personal-stories/why-robotic-surgery-pioneer-frederic-moll-is-now-tackling-lung-cancer-care], 6 pages. cited by applicant Slepian M.J., "Robotic Catheter Intervention: The Hansen Medical SenseiTM Robotic Catheter System," 2010, 28 pages. cited by applicant

Stipulation Regarding U.S. Pat. No. 8,142,447, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, C.A. No. 18-1359-MN, Mar. 20, 2020, 2 pages. cited by applicant

Sturges R.H. Jr., et al., "A Voice-Actuated, Tendon-Controlled Device for Endoscopy", 1996, pp. 603-617. cited by applicant

Super Dimension, "How it Works", 2005, 2 pages, retrieved from the internet [URL:

https://web.archive.org/web/20070510094239/http://www.superdimension.com/new_resources.html]. cited by applicant

Super Dimension, "Overview", 2005, 2 pages, retrieved from the internet [URL:

https://web.archive.org/web/20070510094239/http://www.superdimension.com/new_resources.html]. cited by

applicant

Super Dimension, "System Elements", 2005, 2 pages, retrieved from the internet [URL:

https://web.archive.org/web/20070510094239/http://www.superdimension.com/new_resources.html]. cited by applicant

Supplemental Briefing Regarding Claim Construction Arguments and Rulings in Parallel District Court Action of U.S. Pat. No. 9,452,276, Review No. IPR2019-01496 dated Dec. 13, 2019, 5 pages. cited by applicant Tab 1, "Declaration of Stephen J. Blumenkranz in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations*, *Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Demand for Jury Trial, Case 1:18-cv-01359-MN, Document 29-1, 2018, 3 pages. cited by applicant

- Tab 2, "Declaration of Thomas G. Cooper in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-2, 2018, 3 pages. cited by applicant
- Tab 3, "Declaration of Nicola Diolaiti in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-3, 2018, 3 pages. cited by applicant
- Tab 4, "Declaration of Vincent Duindam in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," Demand for Jury Trial, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 1:18-cv-01359-MN, Document 29-4, Demand for Jury Trial, 2018, 3 pages. cited by applicant
- Tab 5, "Declaration of Carolyn M. Fenech in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-5, 2018, 3 pages. cited by applicant
- Tab 6, "Declaration of Gary S. Guthart in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-6, 2018, 3 pages. cited by applicant
- Tab 7, "Declaration of Catherine J. Mohr in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," Demand for Jury Trial, Case 1:18-cv-01359-MN, Document 29-7, 2018, 3 pages. cited by applicant
- Tab 8, "Declaration of Robert Matthew Ohline in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer,"United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-8, 2018, 3 pages. cited by applicant
- Tab 9, "Declaration of David J. Rosa in Support of Plaintiffs Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.'s Opposition to Defendant Auris Health, Inc.'s Motion to Transfer," United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Demand for Jury Trial, Case No. 1:18-cv-01359-MN, Document 29-9, 2018, 3 pages. cited by applicant

The Da Vinci Surgical system, Retrieved from the internet:

[http://web.archive.org/web/20080724022504/http:/www.intuitivesurgical.com/products/davinci_surgicalsystem/] 2 pages. cited by applicant

Transcript Teleconference, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc,* Case No. 18-1359(MN), Document

58, 2019, 11 pages. cited by applicant

Transcript, United States District Court for the District of Delaware, Plaintiffs: *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*, V. Defendant: *Auris Health, Inc*, Case No. 18-1359-(MN), Document 83, 9 pages. cited by applicant

Verdaasdonk R., et al., "Effect of Microsecond Pulse Length and Tip Shape on Explosive Bubble Formation of 2.78 um Er, Cr; YSGG and 2.94 μ m Er; YAG Laser", Proceedings of SPIE, Jan. 23, 2012, vol. 8221 (12), 1 page. cited by applicant

Waldman H., Dictionary of Robotics, 1985, 4 pages. cited by applicant

Exhibit I, Plaintiffs *Intuitive Surgical, Inc. and Intuitive Surgical Operations, Inc.*'s vs Defendant *Auris Health, Inc*, United States District Court for the District of Delaware, Claim Construction, Case No. 18-1359 (MN), Nov. 20, 2019, 59 pages. cited by applicant

Exhibit J, Decision Denying Institution of Inter Partes Review 35 U.S.C. § 314, Before the Patent Trial and Appeal Board, Petitioner: Auris Health, Inc, Patent Owner Intuitive Surgical Operations, Inc, IPR2019-01496 U.S. Pat. No. 9,452,276 B2, Before Ulrike W. Jenks, Tina E. Hulse, and James A. Worth, Administrative Patent Judges, Feb. 13, 2020, 21 pages. cited by applicant

Exhibit K, Declaration of William Cimino Regarding U.S. Pat. No. 9,452,276, Sep. 27, 2016, in the United States Patent and Trademark, inventors: Vincent Duindam et al., 126 pages. cited by applicant

Request for Ex Parte Reexamination of U.S. Pat. No. 9,452,276, Filed: Oct. 14, 2011, 113 pages. cited by applicant

Abbott, Daniel J. et al., "Design of an Endoluminal NOTES Robotic System," Conference on Intelligent Robots and Systems, 2007, pp. 410-416. cited by applicant

Anisfield, Nancy; "Ascension Technology Puts Spotlight on DC Field Magnetic Motion Tracking," HP Chronicle, Aug. 2000, vol. 17, No. 9, 3 Pages. cited by applicant

Ascari, Luca et al., "A New Active Microendoscope for Exploring the Sub-Arachnoid Space in the Spinal Cord," Proc. IEEE International Conference on Robotics and Automation, 2003, pp. 2657-2662, vol. 2, IEEE. cited by applicant

Barnes Industries, Inc., "How a Ball Screw Works," 4 pages, Copyright 2007; Internet:

http://www.barnesballscrew.com/ball.htm. cited by applicant

Berthold III, John W., "Historical Review of Microbend Fiber-Optic Sensors," Journal of Lightwave Technology, vol. 13, No. 7, Jul. 1995, pp. 1193-1199. cited by applicant

Blue Road Research, "Overview of Fiber Optic Sensors," 40 pages, first posted Dec. 8, 2004. Internet www.bluerr.com/papers/Overview_of_FOS2.pdf. cited by applicant

Cao, Caroline G.L., "Designing Spatial Orientation in Endoscopic Environments," Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, 2001, pp. 1259-1263. cited by applicant

Cao, Caroline G.L., "Disorientation in Minimal Access Surgery: A Case Study," Proceedings of the IEA 2000/HFES 2000 Congress, pp. 4-169-4-172. cited by applicant

Childers, Brooks A., et al., "Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure," SPIE 8th International Symposium on Smart Structures and Materials, Mar. 4-8, 2001, Newport Beach, California, 10 Pages. cited by applicant

Choi, Dong-Geol et al., "Design of a Spring Backbone Micro Endoscope," Conference on Intelligent Robots and Systems, 2007, pp. 1815-1821. cited by applicant

Co-pending U.S. Appl. No. 11/762,185, filed Jun. 13, 2007. cited by applicant

Co-pending U.S. Appl. No. 60/813,028, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,029, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,030, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,075, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,125, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,126, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,129, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,131, filed Jun. 13, 2006. cited by applicant

co pending 5.5. Appl. 10. 60/015,151, including 15, 2000. Cited by applicant

Co-pending U.S. Appl. No. 60/813,172, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,198, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,207, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 60/813,328, filed Jun. 13, 2006. cited by applicant

Co-pending U.S. Appl. No. 61/334,978, filed May 14, 2010. cited by applicant

Co-pending U.S. Appl. No. 60/813,173, filed Jun. 13, 2006. cited by applicant

Cowie, Barbara M., et al., "Distributive Tactile Sensing Using Fibre Bragg Grating Sensors for Biomedical Applications," 1st IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006), Feb. 2006, pp. 312-317. cited by applicant

Danisch, Lee et al., "Spatially continuous six degree of freedom position and orientation sensor," Sensor Review, 1999, vol. 19, Issue 2, pp. 106-112. cited by applicant

Dario, Paolo et al., "A Miniature Device for Medical Intracavitary Intervention," Micro Electro Mechanical Systems '91 Proc IEEE 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots', 1991, pp. 171-175, IEEE. cited by applicant

Duncan, Roger, "Sensing Shape: Fiber-Bragg-grating sensor arrays monitor shape at a high resolution," 2005, pp. 18-21, SPIE. cited by applicant

Extended European Search Report for Application No. 12840613.9 mailed on Oct. 6, 2015, 9 pages. cited by applicant

Extended European Search Report for Application No. EP20070798487, mailed on Jan. 30, 2015, 8 pages. cited by applicant

Gagarina, T. et al., "Modeling and experimental analysis of a new bellow type actuators for active catheter end-effector," Proc. 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 612-617, IEEE. cited by applicant

Gander, M.J. et al., "Bend measurement using Bragg gratings in multicore fibre," Electronics Letter, Jan. 20, 2000, vol. 36, No. 2, 2 Pages. cited by applicant

Hill, Kenneth O., "Fiber Bragg grating technology fundamentals and overview," IEEE Journal of Lightwave Technology, vol. 15, Issue 8, Aug. 1997, pp. 1263-1276. cited by applicant

Ikuta, Koji et al., "Development of remote microsurgery robot and new surgical procedure for deep and narrow space," Proc. IEEE International Conference on Robotics & Automation, 2003, pp. 1103-1108, vol. 1, IEEE. cited by applicant

Ikuta, Koji et al., "Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope," Proc. IEEE International Conference on Robotics and Automation, 1988, pp. 427-430, vol. 1, IEEE. cited by applicant

International Search Report and Written Opinion for Application No. PCT/US2012/059889, mailed on Mar. 29, 2013, 14 pages. cited by applicant

International Search Report for application No. PCT/US07/71085, Mailed on Sep. 17, 2008, 2 pages. cited by applicant

Jin, Long et al., "Two-dimensional bend sensing with a cantilever-mounted FBG [Fiber Bragg Grating]," Meas. Sci. Technol., 2006, pp. 168-172, vol. 17, Institute of Physics Publishing. cited by applicant

Kreger, Stephen et al., "Optical Frequency Domain Reflectometry for High Density Multiplexing of Multi-Axis Fiber Bragg Gratings," 16th International Conference on Optical Fiber Sensors (OFS-16), Oct. 2003, Nara, Japan, pp. 526-529. cited by applicant

Lertpiriyasuwat, Vatchara et al., "Extended Kalman Filtering Applied to a Two-Axis Robotic Arm with Flexible Links," International Journal of Robotics Research, 2000, vol. 19., No. 3, pp. 254-270. cited by applicant Lunwei Z., et al., "FBG Sensor Devices for Spatial Shape Detection of Intelligent Colonoscope," IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, Louisiana, pp. 835-840. cited by applicant

Martinez, A. et al., "Vector Bending Sensors Based on Fibre Bragg Gratings Inscribed by Infrared Femtosecond Laser," Electronics Letters, 2005, pp. 472-474, vol. 41—Issue 8. cited by applicant

Measurand, "Shape Tape Overview," Measurand Shape Tape Advantage, pp. 1-3, first posted Nov. 3, 2004. Internet www.measurand.com/products/ShapeTape_overview.html. cited by applicant

Meltz, Gerald, "Overview of Fiber Grating-Based Sensors," Proceedings of SPIE Distributed Multiplexed Fiber Optic Sensors VI, Nov. 27, 1996, Eds. Kersey et al., vol. 2838, pp. 2-22. cited by applicant

Office Action mailed Jun. 17, 2014 for Japanese Application No. 20130179563 filed Aug. 30, 2013, 7 pages. cited by applicant

Olympus Medical Systems, "Olympus ScopeGuide Receives FDA Clearance," Press Release dated May 24, 2011, 2 pages. cited by applicant

Partial European Search Report for Application No. EP20120840613, mailed on Jun. 5, 2015, 5 pages. cited by

applicant

PCT/US07/71085 Written Opinion, mailed Sep. 17, 2008, 5 pages. cited by applicant

PCT/US09/46446 International Search Report and Written Opinion of the International Searching Authority, mailed Dec. 14, 2009, 21 pages. cited by applicant

PCT/US09/46446 Partial International Search Report and Invitation to Pay Additional Fees, mailed Sep. 18, 2009, 9 pages. cited by applicant

PCT/US2011/035113 International Search Report and Written Opinion of the International Searching Authority, mailed Aug. 4, 2011, 13 pages. cited by applicant

Shang, J. et al., "An Articulated Universal Joint Based Flexible Access Robot for Minimally Invasive Surgery," 2011 IEEE Conference on Robotics and Automation (ICRA), May 9-13, 2011, London, UK, pp. 1147-1152. cited by applicant

Stieber, Michael E. et al., "Vision-Based Sensing and Control for Space Robotics Applications," IEEE Transactions on Instrumentation and Measurement, Aug. 1999, vol. 48, No. 4, pp. 807-812. cited by applicant Sturges, Robert H. et al., "A Flexible, Tendon-Controlled Device for Endoscopy," The International Journal of Robotics Research, 1993, vol. 12(2), pp. 121-131. cited by applicant

Szewczyk, Jerome et al., "An active tubular polyarticulated micro-system for flexible endoscope," Lecture Notes in Control and Information Sciences, vol. 271, Experimental Robotics VII, 2000, pp. 179-188, Springer-Verlag. cited by applicant

Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. cited by applicant Wang, Yi-Ping et al., "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sensors Journal, 2005, pp. 839-843, vol. 5—Issue: 5, IEEE. cited by applicant Webster, Robert J. III et al., "Toward Active Cannulas: Miniature Snake-Like Surgical Robots," 2006, 7 pages. cited by applicant

Wong, Allan C. L. et al., "Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform," Measurement Science and Technology, 2006, pp. 384-392, vol. 17—Issue 2, Institute of Physics Publishing. cited by applicant

Primary Examiner: Santos Rodriguez; Joseph M

Assistant Examiner: Aldarraji; Zainab Mohammed

Attorney, Agent or Firm: Haynes & Boone, LLP.

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This patent application is a continuation of U.S. patent application Ser. No. 16/283,039, filed Feb. 22, 2019, which is a continuation of U.S. patent application Ser. No. 13/274,198, filed Oct. 14, 2011, both of which are incorporated by reference herein in their entireties. U.S. patent application Ser. No. 13/274,198 is related to and incorporates by reference the following patent applications: U.S. patent application Ser. No. 13/274,208; U.S. patent application Ser. No. 13/274,229; U.S. Pat. App. No. 13/274,237, all filed on Oct. 14, 2011, which are also incorporated by reference herein in their entireties.

BACKGROUND

(1) Medical devices that navigate body lumens need to be physically small enough to fit within the lumen. Lung catheters, for example, which may be used to perform minimally invasive lung biopsies or other medical procedures, may need to follow airways that decrease in size as the catheter navigates branching passages. To reach a target location in a lung, a catheter may need to follow passages having diameters as small as 3 mm or less. Manufacturing a catheter that includes the mechanical structures suitable for remote or robotic operation and that has a diameter that is sufficiently small to navigate such small lumens can be challenging. In particular, one desirable configuration for remotely operated catheter would provide a tool mounted on a flexible distal tip; tendons or pull wires that extend down the length of the catheter to an

external drive system that pulls on the tendons to actuate the tool or distal tip; lumens for suction and/or irrigation; a vision system for viewing of the target location; and sensors to identify the location of the instrument relative to a patient's body. Accommodating all of the desired features and elements of a lung catheter or other device having a diameter about 3 mm or less can be difficult.

SUMMARY

- (2) In accordance with an aspect of the invention, a catheter control system has a control mode (sometimes referred to herein as a holding mode) that actively maintains the catheter in a working configuration desired for a medical procedure. This holding mode facilitates use of the catheter system with interchangeable probes. In particular, a vision probe can be deployed in the catheter while the catheter navigates to a work site, to view the work site, or to assist in identifying the desired working configuration for the catheter during performance of a medical task. The catheter control system can then switch into the holding mode, and the vision system can be removed. A medical probe can then be deployed through the catheter in place of the removed vision probe, and the control system maintains the working configuration and allows performance of a medical task without the vision probe, while the desired working configuration is fixed and held. In one implementation, the control system actively keeps the catheter in the desired working configuration while the medical probe is inserted through the catheter, reaches the work site, and performs a medical function. In an alternative implementation, the control system returns the catheter to the recorded working configuration before the medical function is performed. Since the catheter only needs to accommodate the vision or medical probe and not both, the diameter of the catheter may be smaller than might otherwise be possible for a convention system that provides similar functionality.
- (3) In accordance with another aspect of the invention, a feedback control method and system for a robotically controlled flexible device implements multiple different modes of closed-loop device actuation or stiffening for different applications and usage scenarios. The different stiffening modes can cause the device to respond in a desired way in case of externally applied forces, for example, tissue reaction forces as the device navigates through a clinical space or as the device interacts with tissue as part of a medical procedure. Details concerning feedback control methods and systems for robotically controlled flexible devices may be found in U.S. patent application Ser. No. 12/780,417 (filed May 14, 2010; disclosing "Drive Force Control in Medical Instrument Providing Position Measurements") and in U.S. patent application Ser. No. 12/945,734 (filed Nov. 12, 2010; disclosing "Tension Control in Actuation of Multijoint Medical Instrument"), both of which are incorporated herein by reference.
- (4) In one embodiment, a flexible device such as a catheter uses real-time feedback from a sensor system in generation of signals for actuators attached to tendons that are used to articulate a distal portion of the device. For example, a catheter may include a flexible section at its distal tip that can bend in two directions (pitch and yaw). A fiber-optic shape sensor can measure the bending of the flexible section and return measurement data indicating the position and orientation of the distal tip relative to a base of the shape sensed. The position of the base may be determined, for example, using electromagnetic sensors that provide measurements of a position and orientation of the base relative to an external reference that may be attached to a patient. Multiple actuation tendons (e.g., pull wires or cables) attach to the distal tip and run along the length of the catheter to the actuators. Control logic that controls the actuators to pull the tendons and hence move the distal tip in any pitch/yaw direction can operate in different modes for different purposes. In particular, for a holding mode, the control logic can use the sensor data and fixed information on a target shape of the catheter to compute control signals for the actuators.
- (5) The control logic for a robotic catheter or other flexible system may have multiple modes of operation including one or more of the following: 1.) A position stiffness mode in which the control system controls actuators to minimize a difference between desired and measured positions of the distal tip of the catheter or probe; 2.) An orientation stiffness mode in which the control system controls the actuators to minimize a difference between desired and measured pointing directions of the distal tip; 3.) A target position stiffness mode in which the control system uses a combination of the measured tip position and pointing direction to control the distal tip to always point towards a specified target point; and 4.) A target axial motion stiffness mode in which the control system uses a combination of the measured tip position and pointing direction, together with sensor measurements from other parts of the device, and controls actuators to ensure that the distal tip is positioned on a specific line in space and has a pointing direction also along that line. The selection of which of the available modes the control system uses can be made through user selection, according to the type of probe being used (e.g. forceps, camera, laser, brush, or needle), or according to the

action the catheter is performing (e.g., navigating or performing a biopsy). Any of these modes can be used to hold the catheter for a medical procedure by fixing the desired location, direction, target point, or line.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** shows a robotic catheter system in accordance with an embodiment of the invention having multiple control modes.
- (2) FIG. **2** shows an embodiment of an actuated distal tip that can be employed in the system of FIG. **1**.
- (3) FIGS. **3**A and **3**B show cross-sectional views of proximal and distal sections of a catheter in accordance with an embodiment of the invention.
- (4) FIG. **4** shows a cross-sectional view of a vision probe that may be deployed in the catheter of FIGS. **3**A and **3**B and swapped out for use of medical probes in the catheter shown in FIGS. **3**A and **3**B.
- (5) FIG. **5** is a flow diagram of a process for using the catheter system with a removable vision system and multiple control modes.
- (6) FIG. **6** is a flow diagram of a catheter control process in a steering mode.
- (7) Use of the same reference symbols in different figures indicates similar or identical items. DETAILED DESCRIPTION
- (8) A catheter system can employ a vision probe that is interchangeable with one or more medical probes or tools. The vision probe can be removed and replaced with a medical probe used in a medical procedure. The interchanging of the vision and medical probes may permit the catheter system to have a smaller diameter and thus navigate smaller passages than would a similar system that simultaneously accommodates both vision and medical systems. Alternatively, interchanging probes allow more space for vision and medical systems having greater functionality than might a catheter that must simultaneously accommodate both vision and medical systems.
- (9) One method for using a catheter system includes steering a catheter along a body lumen for at least part of the path to a work site for a medical procedure. A vision system may then be deployed in the catheter during the steering and/or used to view the work site reached when navigation is complete. The vision system can also be used to help identify a desired working configuration for the catheter and when manipulating the catheter into the desired working configuration. The control system of the catheter can then record the working configuration and may be placed in a "holding" mode in which the pose of the catheter relative to a patient is monitored and the catheter is actuated to actively maintain or return to the recorded working configuration. The control system may provide different types of control modes, which may be useful for different types of medical probes or different types of medical procedures. For example, if the medical probe includes a laser, a combination of the location and orientation of the distal tip of the catheter can be controlled so that the distal tip remains targeted on a specific location in the patient. An alternative holding mode can maintain the location of the distal tip of the catheter while permitting the orientation of the distal tip to change or maintain a distal tip along a line.
- (10) FIG. **1** schematically illustrates a catheter system **100** in accordance with one embodiment of the invention. In the illustrated embodiment, catheter system **100** includes a catheter **110**, a drive interface **120**, control logic **140**, an operator interface **150**, and a sensor system **160**.
- (11) Catheter **110** is a generally flexible device having one or more lumens including a main lumen that can accommodate interchangeable probes such as described further below. Flexible catheters can be made using a braided structure such as a woven wire tube with inner or outer layers of a flexible or low friction material such as polytetrafluoroethylene (PTFE). In one embodiment, catheter **110** includes a bundle of lumens or tubes held together by a braided jacket and a reflowed (i.e., fused by melting) jacket of a material such as Polyether Block Amide (Pebax). An additional tip section (e.g., a metal structure such as shown in FIG. **2** and described further below) can be attached at the distal end of catheter **110**. Alternatively, an extrusion of a material such as Pebax can similarly be used to form multiple lumens in catheter **110**. Catheter **110** particularly includes a main lumen for interchangeable probe systems and smaller lumens for pull wires and sensor lines. In the illustrated embodiment, catheter **110** has a proximal section **112** attached to drive interface **120** and a distal section **114** that extends from the proximal section **112**. Pull wires extend from drive system **120** through proximal section **112** and distal section **114** and connect to a steerable distal steerable segment **116**.

(12) The overall length of catheter **110** may be about 60 to 80 cm or longer with distal section **114** being about 15 cm long and steerable segment **116** being about 4 to 5 cm long. In accordance with an aspect of the invention, distal section **114** has a smaller diameter than does proximal section **112** and thus can navigate smaller natural lumens or passages. During a medical procedure, at least a portion of proximal section **112** and all of distal section **114** may be inserted along a natural lumen such as an airway of a patient. The smaller diameter of distal section **114** permits use of distal section **114** in lumens that may be too small for proximal section **112**, but the larger diameter of distal section **114** facilitates inclusion of more or larger structures or devices such as electromagnetic (EM) sensors **162** that may not fit in distal section

- (13) Steerable segment **116** is remotely controllable and particularly has a pitch and a yaw that can be controlled using pull wires. Steerable segment **116** may include all or part of distal section **114** and may be simply implemented as a multi-lumen tube of flexible material such as Pebax. In general, steerable segment **116** is more flexible than the remainder of catheter **110**, which assists in isolating actuation or bending to steerable segment **116** when drive interface **120** pulls on actuating tendons. Catheter **110** can also employ additional features or structures such as use of Bowden cables for actuating tendons to prevent actuation from bending proximal section **112** (or bending any portion the section of **114** other than steerable segment **116**) of catheter **110**. FIG. **2** shows one specific embodiment in which steerable segment **116** is made from a tube **210** that in catheter **110** of FIG. **1** contains multiple tubes defining a main lumen for a probe system and smaller lumens for actuation tendons 230 and a shape sensor not shown in FIG. 2. In the illustrated embodiment, tendons **230** are placed 90° apart surrounding lumen **312** to facilitate steering catheter **110** in pitch and yaw directions defined by the locations of tendons **230**. A reflowed jacket, which is not shown in FIG. 2 to better illustrate the internal structure of steerable segment 116, may also cover tube 210. As shown in FIG. 2, tube 210 is cut or formed to create a series of flexures 220. Tendons 230 connect to a distal tip **215** of steerable segment **116** and extend back to a drive interface **120**. Tendons **230** can be wires, cables, Bowden cables, hypotubes, or any other structures that are able to transfer force from drive interface **120** to distal tip **215** and limit bending of proximal section **112** when drive interface **120** pulls on tendons **230**. In operation, pulling harder on any one of tendons **230** tends to cause steerable segment **116** to bend in the direction of that tendon **230**. To accommodate repeated bending, tube **210** may be made of a material such as Nitinol, which is a metal alloy that can be repeatedly bent with little or no damage. (14) Drive interfaces **120** of FIG. **1**, which pulls on tendons **230** to actuate distal steerable segment **116**, includes a mechanical system or transmission 124 that converts the movement of actuators 122, e.g., electric motors, into movements of (or tensions in) tendons 230 that run through catheter 110 and connect to distal steerable segment **116**. (Push rods could conceivably be used in catheter **110** instead of pull wires but may not provide a desirable level of flexibility.) The movement and pose of distal steerable segment 116 can thus be controlled through selection of drive signals for actuators 122 in drive interface 120. In addition to manipulating tendons **230**, drive interface **120** may also be able to control other movement of catheter **110** such as range of motion in an insertion direction and rotation or roll of the proximal end of catheter 110, which may also be powered through actuators 122 and transmission 124. Backend mechanisms or transmissions that are known for flexible-shaft instruments could in general be used or modified for drive interface **120**. For example, some known drive systems for flexible instruments are described in U.S. Pat. App. Pub. No. 2010/0331820, entitled "Compliant Surgical Device," which is hereby incorporated by reference in its entirety. Drive interface **120** in addition to actuating catheter **110** should allow removal and replacements of probes in catheter **110**, so that the drive structure should be out of the way during such operations.
- (15) A dock 126 in drive interface 120 can provide a mechanical coupling between drive interface 120 and catheter 110 and link actuation tendons to transmission 124. Dock 126 may additionally contain electronics for receiving and relaying sensor signals from portions of sensor system 160 in catheter 110 and an electronic or mechanical system for identifying the probe or the type of probe deployed in catheter 110. (16) Control logic 140 controls the actuators in drive interface 120 to selectively pull on the tendons as needed to actuate and steer distal steerable segment 116. In general, control logic 140 operates in response to commands from a user, e.g., a surgeon or other medical personnel using operator interface 150, and in response to measurement signals from sensor system 160. However, in holding modes as described further below, control logic 140 operates in response to measurement signals from sensor system 160 to maintain or acquire a previously identified working configuration. Control logic 140 may be implemented using a

general purpose computer with suitable software, firmware, and/or interface hardware to interpret signals from operator interface **150** and sensor system **160** and to generate control signals for drive interface **120**. (17) In the illustrated embodiment, control logic **140** includes multiple modules **141**, **142**, **143**, and **144** that implement different processes for controlling the actuation of catheter **110**. In particular, modules **141**, **142**, **143**, and **144** respectively implement a position stiffening mode, an orientation stiffening mode, a target position mode, and a target axial mode, which are described further below. A module **146** selects which control process will be used and may base the selection on user input, the type or status of the probe deployed in catheter **110**, and the task being performed. Control logic **140** also includes memory storing parameters **148** of a working configuration of distal steerable segment **116** that is desired for a task, and each of the modules **141**, **142**, **143**, and **144** can uses their different control processes to actively maintain or hold the desired working configuration.

- (18) Operator interface **150** may include standard input/output hardware such as a display, a keyboard, a mouse, a joystick, or other pointing device or similar I/O hardware that may be customized or optimized for a surgical environment. In general, operator interface **150** provides information to the user and receives instructions from the user. For example, operator interface **150** may indicate the status of system **100** and provide the user with data including images and measurements made by system **100**. One type of instruction that the user may provide through operator interface **150**, e.g., using a joystick or similar controller, indicates the desired movement or position of distal steerable segment **116**, and using such input, control logic **140** can generate control signals for actuators in drive interface **120**. Other instructions from the user can select an operating mode of control logic **140**.
- (19) Sensor system **160** generally measures a pose of distal steerable segment **116**. In the illustrated embodiment, sensor system **160** includes EM sensors **162** and a shape sensor **164**. EM sensors **162** include one or more conductive coils that may be subjected to an externally generated electromagnetic field. Each coil of EM sensors **162** then produces an induced electrical signal having characteristics that depend on the position and orientation of the coil relative to the externally generated electromagnetic field. In an exemplary embodiment, EM sensors **162** are configured and positioned to measure six degrees of freedom, e.g., three position coordinates X, Y, and Z and three orientation angles indicating pitch, vaw, and roll of a base point. The base point in system **100** is at or near the end of proximal section **112** and the start of distal section **114** of catheter **110**. Shape sensor **164** in the exemplary embodiment of the invention includes a fiber grating that permits determination of the shape of a portion of catheter **110** extending from the base point, e.g., the shape of distal section **114** or distal steerable segment **116**. Such shape sensors using fiber gratings are further described in U.S. Pat. No. 7,720,322, entitled "Fiber Optic Shape Sensor," which is hereby incorporated by reference in its entirety. An advantage of the illustrated type of sensor system **160** is that EM sensors **162** can provide measurements relative to the externally generated electrical field, which can be calibrated relative to a patient's body. Thus, system **160** can use EM sensors **162** to reliably measure the position and orientation of a base point for shape sensor **164**, and shape sensor **164** need only provide shape measurement for a relatively short distance. Additionally, distal section **114** only contains shape sensor **164** and may have a diameter that is smaller than the diameter of proximal section **112**. More generally, sensor system **160** need only be able to measure the pose of distal steerable segment **116**, and other types of sensors could be employed.
- (20) FIGS. 3A and 3B respectively show cross-sections of the proximal and distal sections 112 and 114 of catheter 110 in one embodiment of the invention. FIG. 3A shows an embodiment of catheter 110 having a body 310 that includes a main lumen 312 for a vision or medical probe, lumens 314 containing tendons 230, lumens 316 containing EM sensors 162 or associated signal wires, and a lumen 318 containing a fiber shape sensor 164. Main lumen 312, wire lumens 314, and a shape sensor lumen 318 extend into distal section 114 as shown in FIG. 3B, but lumens 316 for EM sensors 162 are not needed in distal section 114 because EM sensors 162 are only in proximal section 112. Accordingly, distal section 114 can be smaller than proximal section 112. In an exemplary embodiment, body 310 in proximal section 112 has an outer diameter of about 4 mm (e.g., in a range from 3 to 6 mm) and provides main lumen 312 with a diameter of about 2 mm (e.g., in a range from 1 to 3 mm) and in distal section 114 has an outer diameter of about 3 mm (e.g., in a range from 2 to 4 mm) while maintaining the diameter of main lumen 312 at about 2 mm. A smooth taper (as shown in FIG. 1) or an abrupt step in body 310 can be used at the transition from the larger diameter of proximal section 112 to the smaller diameter of distal section 116.
- (21) The specific dimensions described in above are primarily for a catheter that accommodates probes

having a diameter of about 2 mm, which is a standard size for existing medical tools such as lung biopsy probes. However, alternative embodiments of the invention could be made larger or smaller to accommodate medical probes with a larger or smaller diameter, e.g., 1 mm diameter probes. A particular advantage of such embodiments is that a high level of functionality is provided in a catheter with relative small outer diameter when compared to the size of probe used in the catheter.

- (22) FIGS. 3A and 3B also show a sheath 360 that may be employed between catheter body 310 and a probe in main lumen 312. In one embodiment of catheter 110, sheath 360 is movable relative to body 310 can be extended beyond the end of distal steerable segment 116. This may be advantageous in some medical procedures because sheath 360 is even smaller than distal section 114 and therefore may fit into smaller natural lumens or passages. For example, if catheter 110 reaches a branching of lumens that are too small to accommodate distal steerable segment 116, distal steerable segment 116 may be pointed in the direction of the desired branch, so that sheath 360 can be pushed beyond the end of distal steerable segment 116 and into that branch. Sheath 360 could thus reliably guide a medical probe into the desired branch. However, sheath 360 is passive in that it is not directly actuated or steerable. In contrast, distal section 116 accommodates pull wires 230 that connect to distal steerable segment 116 and can be manipulated to steer or pose distal steerable segment 116. In some medical applications, the active control of distal steerable segment 116 is desirable or necessary during a medical procedure, and passive sheath 360 may not be used in some embodiments of the invention.
- (23) Main lumen **312** is sized to accommodate a variety of medical probes. One specific probe is a vision probe **400** such as illustrated in FIG. **4**. Vision probe **400** has a flexible body **410** with an outer diameter (e.g., about 2 mm) that fits within the main lumen of catheter **110** and with multiple inner lumens that contain the structures of vision probe **400**. Body **410** may be formed using an extruded flexible material such as Pebax, which allows creation of multiple lumens. In the illustrated embodiment, the structure of vision probe **400** includes a CMOS camera **420**, which is at the distal end of the probe and connected through one or more signal wires (not shown) that extend along the length of vision probe **400**, e.g., to provide a video signal to control logic **140** or operator interface **150** as shown in FIG. **1**. Vision probe **400** also includes illumination fibers **430** that provide light for imaging within a body lumen and fluid ports **326** for suction and irrigation that may be useful, for example, for rinsing of a lens of camera **420**. Additionally, vision probe **400** may include an electromagnetic sensor (not shown) embedded just proximally to camera **420** to provide additional pose information about the tip of vision probe **400**.
- (24) Vision probe **400** is adapted to be inserted or removed from catheter **110** while catheter **110** is in use for a medical procedure. Accordingly, vision probe **400** is generally free to move relative to catheter **110**. While movement relative to catheter **110** is necessary or desirable during insertion or removal of vision probe **400**, the orientation of a vision probe **400** (and some medical probes) may need to be known for optimal or easier use. For example, a user viewing video from vision probe **400** and operating a controller similar to a joystick to steer catheter **110** generally expects the directions of movement of the controller to correspond to the response of distal steerable segment **116** and the resulting change in the image from vision probe **400**. Operator interface **150** needs (or at least can use) information on the orientation of vision probe **400** relative to tendons **230** in order to provide a consistency in directions used in the user interface. In accordance with an aspect of the invention, a keying system (not shown) can fix vision probe **400** into a known orientation relative to catheter **110** and tendons **230**. The keying system may, for example, include a spring, fixed protrusion, or latch on vision probe **400** or distal steerable segment **116** and a complementary notch or feature in distal steerable segment **116** or vision probe **400**.
- (25) Vision probe **400** is only one example of a probe system that may be deployed in catheter **110** or guided through catheter **110** to a work site. Other probe systems that may be used include, but are not limited to, biopsy forceps, biopsy needles, biopsy brushes, ablation lasers, and radial ultrasound probes. In general, catheter **110** can be used with existing manual medical probes that are commercially available from medical companies such as Olympus Europa Holding GmbH.
- (26) The catheter system **100** of FIG. **1** can be used in procedures that swap a vision probe and a medical probe. FIG. **5** is a flow diagram of one embodiment of a process **500** for using the catheter system **100** of FIG. **1**. In process **500**, vision probe **400** is deployed in catheter **110** in step **510**, and catheter **110** is inserted along a path including a natural lumen of a patient. For example, for a lung biopsy, distal steerable segment **116** of catheter **110** may be introduced through the mouth of a patient into the respiratory tract of the patient. Vision probe **400** when fully deployed in catheter **110** may fit into a keying structure that keeps

vision probe 400 in a desired orientation at or even extending beyond distal steerable segment 116 to provide a good forward view from the distal steerable segment **116** of catheter **110**. As noted above, distal steerable segment **116** of catheter **110** is steerable, and vision probe **320** can provide video of the respiratory tract that helps a user when navigating catheter **110** toward a target work site. However, use of vision probe **400** during navigation is not strictly necessary since navigation of catheter **110** may be possible using measurements of sensor system **160** or some other system with or without vision probe **400** being deployed or used in catheter **110**. The path followed to the work site may be entirely within natural lumens such as the airways of the respiratory track or may pierce and pass through tissue at one or more points. (27) When steerable segment **116** reaches the target work site, vision probe **400** can be used to view the work site as in step **530** and to pose steerable segment **116** for performance of a task at the target work site as in step **540**. Posing of steerable segment **116** may use images or visual information from vision probe **400** and measurements from sensor system **160** to characterize the work site and determine the desired working configuration. The desired working configuration may also depend on the type of tool that will be used or the next medical task. For example, reaching a desired working configuration of catheter **110** may bring the distal tip of steerable segment **116** into contact with tissue to be treated, sampled, or removed with a medical tool that replaces vision probe **400** in catheter **110**. Another type of working configuration may point steerable segment **116** at target tissue to be removed using an ablation laser. For example, tissue could be targeted in one or more 2D camera views while vision probe **400** is still in place in catheter **110**, or target tissue can be located on a virtual view of the work site using pre-operative 3D imaging data together with the position sensing relative to patient anatomy. Still another type of working configuration may define a line for the insertion of a needle or other medical tool into tissue, and the working configuration includes poses in which the distal tip of steerable segment **116** is along the target line. In general, the desired working configuration defines constraints on the position or the orientation of the distal tip of steerable segment **116**, and the shape of more proximal sections of catheter **110** is not similarly constrained and may vary as necessary to accommodate the patient.

(28) Step **550** stores in memory of the control logic parameters that identify the desired working configuration. For example, the position of a distal tip or target tissue can be defined using three coordinates. A target line for a need can be defined using the coordinates of a point on the line and angles indicating the direction of the line from that point. In general, control logic **120** uses the stored parameters that define the desired working configuration when operating in a holding mode that maintains distal steerable segment **116** of catheter **110** in the desired working configuration as described further below. (29) Step **560** selects and activates a holding mode of the catheter system after the desired working configuration has been established and recorded. Control logic **140** for catheter **110** of FIG. **1** may have one or more modules **141**, **142**, **143**, and **144** implementing multiple stiffening modes that may be used as holding modes when the desired configuration of steerable segment **116** has fixed constraints. The available control modes may include one or more of the following. 1.) A position stiffness mode compares the position of the distal tip of steerable segment **116** as measured by sensor system **160** to a desired tip position and controls the actuators to minimize the difference in desired and measured tip positions. The position stiffness mode may particularly be suitable for general manipulation tasks in which the user tries to precisely control the position of the tip and for situations where the distal tip contacts tissue. 2.) An orientation stiffness mode compares the measured orientation or pointing direction of the distal tip to a desired pointing direction of the distal tip and controls the actuators to minimize the difference in desired and actual tip pointing direction. This orientation stiffening that may be suitable, e.g., when controlling an imaging device such as vision probe **400** attached steerable segment **116**, in which case the viewing direction is kept as desired, while the exact position of steerable segment **116** may be less important. 3.) A target position stiffness mode uses a combination of the measured tip position and pointing direction to control catheter **110** to always point the distal tip of steerable segment **116** towards a specified target point some distance in front of steerable segment **116**. In case of external disturbances, control logic **140** may control the actuators to implement this target position stiffening behavior, which may be suitable, e.g., when a medical probe inserted though the catheter contains an ablation laser that should always be aimed at a target ablation point in tissue. 4.) A target axial motion stiffness mode uses a combination of the measured tip position and pointing direction to ensure that the distal tip of steerable segment **116** is always on a line in space and has a pointing direction that is also along that line. This mode can be useful, e.g., when inserting a biopsy needle along a specified line into tissue. Tissue reaction forces could cause the flexible

section of catheter **110** to bend while inserting the needle, but this control strategy would ensure that the needle is always along the right line.

- (30) The selection of a mode in step **560** could be made through manual selection by the user, based on the type of probe that is being used (e.g., grasper, camera, laser, or needle) in catheter **110**, or based on the activity catheter **110** is performing. For example, when a laser is deployed in catheter **110**, control logic **120** may operate in position stiffness mode when the laser deployed in catheter **110** is off and operate in target position stiffness mode to focus the laser on a desired target when the laser is on. When "holding" is activated, control logic **140** uses the stored parameters of the working configuration (instead of immediate input from operator interface **150**) in generating control signals for drive interface **120**.
- (31) The vision probe is removed from the catheter in step 570, which clears the main lumen of catheter 110 for the step 580 of inserting a medical probe or tool through catheter 110. For the specific step order shown in FIG. 5, control logic 140 operates in holding mode and maintains distal steerable segment 116 in the desired working configuration while the vision system is removed (step 570) and the medical probe is inserted (step 580). Accordingly, when the medical probe is fully deployed, e.g., reaches the end of distal steerable segment 116, the medical probe will be in the desired working configuration, and performance of the medical task as in step 590 can be then performed without further need or use of the removed vision probe. Once the medical task is completed, the catheter can be taken out of holding mode or otherwise relaxed so that the medical probe can be removed. The catheter can then be removed from the patient if the medical procedure is complete, or the vision or another probe can be inserted through the catheter if further medical tasks are desired.
- (32) In one alternative for the step order of process **500**, catheter **110** may not be in a holding mode while the medical probe is inserted but can be switched to holding mode after the medical probe is fully deployed. Once holding mode is initiated, control logic **140** will control the drive interface **130** to return distal steerable segment **116** to the desired working configuration if distal steerable segment **116** has moved since being posed in the desired working configuration. Thereafter, control logic **140** monitors the pose of distal steerable segment **116** and actively maintains distal steerable segment **116** in the desired working configuration while the medical task is performed in step **590**.
- (33) FIG. **6** shows a flow diagram of a process **600** of a holding mode that can be implemented in control logic **140** of FIG. **1**. Process **600** begins in step **610** with receipt of measurement signals from sensor system **160**. The particular measurements required depend on the type of holding mode being implemented, but as an example, the measurements can indicate position coordinates, e.g., rectangular coordinates X, Y, and Z, of the distal tip of steerable segment **116** and orientation angles, e.g., angles θ.sub.X, θ.sub.Y, and θ.sub.Z of a center axis of the distal tip of steerable segment **116** relative to coordinate axes X, Y, and Z. Other coordinate systems and methods for representing the pose of steerable segment **116** could be used, and measurements of all coordinates and direction angles may not be necessary. However, in an exemplary embodiment, sensor system **160** is capable of measuring six degrees of freedom (DoF) of the distal tip of steerable segment **116** and of providing those measurements to control logic **140** in step **610**. (34) Control logic **140** in step **620** determines a desired pose of distal steerable segment **116**. For example,
- control logic **140** can determine desired position coordinates, e.g., X', Y', and Z', of the end of distal steerable segment **116** and desired orientation angles, e.g., angles θ' .sub.X, θ' .sub.Y, and θ' .sub.Z of the center axis of distal steerable segment **116** relative to coordinate axes X, Y, and Z. The holding modes described above generally provide fewer than six constraints on the desired coordinates. For example, position stiffness operates to constrain three degrees of freedom, the position of the end of distal steerable segment **116** but not the orientation angles. In contrast, orientation stiffness mode constrains one or more orientation angles but not the position of end of distal steerable segment **116**. Target position stiffness mode constrains four degrees of freedom, and axial stiffness mode constrains five degrees of freedom. Control logic **610** can impose further constraints to select one of set of parameters, e.g., X', Y', and Z' and angles θ' .sub.X, θ' .sub.Y, and θ' .sub.Z, that provides the desired working configuration. Such further constraints include but are not limited to mechanical constraints required by the capabilities of distal steerable segment **116** and of catheter **110** generally and utilitarian constraints such as minimizing movement of distal steerable segment **116** or providing desired operating characteristics such as smooth, non-oscillating, and predictable movement with controlled stress in catheter **110**. Step **620** possibly includes just keeping a set pose distal steerable segment **116** by finding smallest movement from the measured pose to a pose

satisfying the constraints, e.g., finding the point on the target line closest to the measure position for axial

motion stiffness or finding some suitable pose from registered pre-op data that is close to the current pose. (35) Control logic **140** in step **630** uses the desired and/or measured poses to determine corrected control signals that will cause drive interface **120** to move distal steerable segment **116** to the desired pose. For example, the mechanics of catheter **110** and drive interface **120** may permit development of mappings from the desired coordinates X', Y', and Z' and angles θ' .sub.X, θ' .sub.Y, and θ' .sub.Y to actuator control signals that provide the desired pose. Other embodiments may use differences between the measured and desired pose to determine corrected control signals. In general, the control signals may be used not only to control actuators connected through tendons to distal steerable segment **116** but may also control (to some degree) insertion or roll of catheter **110** as a whole.

- (36) A branch step **650** completes a feedback loop by causing process **600** to return to measurement step **610** after control system **140** applies new control signals drive interface **120**. The pose of distal tip is thus actively monitored and controlled according to fixed constraints as long as control system **120** remains in the holding mode. It may be noted, however, that some degrees of freedom of distal steerable segment **116** may not require active control. For example, in orientation stiffness mode, feedback control could actively maintain pitch and yaw of distal steerable segment **116**, while the mechanical torsional stiffness of catheter **110** is relied on to hold the roll angle fixed. However, catheter **110** in general may be subject to unpredictable external forces or patient movement that would otherwise cause catheter **110** to move relative to the work site, and active control as in process **600** is needed to maintain or hold the desired working configuration.
- (37) Some embodiments or elements of the above invention can be implemented in a computer-readable media, e.g., a non-transient media, such as an optical or magnetic disk, a memory card, or other solid state storage containing instructions that a computing device can execute to perform specific processes that are described herein. Such media may further be or be contained in a server or other device connected to a network such as the Internet that provides for the downloading of data and executable instructions. (38) Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as defined by the following claims.

Claims

- 1. A medical system comprising: a catheter comprising a lumen, a distal steerable segment, and a distal tip; a sheath disposed within the lumen of the catheter; and a control system coupled to the catheter, wherein the control system includes: a memory operable to store desired position coordinates; and a plurality of modes including a stiffening mode in which the control system actively maintains the distal tip at the desired position coordinates, wherein the sheath is extendable from the distal tip of the catheter while the control system actively maintains the distal tip at the desired position coordinates in the stiffening mode.
- 2. The medical system of claim 1, further comprising at least one sensor operable to determine measured position coordinates of the distal tip.
- 3. The medical system of claim 2, wherein the at least one sensor includes at least one electromagnetic sensor.
- 4. The medical system of claim 2, wherein during operation in the stiffening mode, the control system is configured to: receive the measured position coordinates of the distal tip; determine a difference between the measured position coordinates and the desired position coordinates; and without user input directing movement of the catheter, move the distal steerable segment to minimize a difference between the measured and desired position coordinates.
- 5. The medical system of claim 4, wherein during operation in the stiffening mode, the control system constrains three degrees of freedom of the distal tip.
- 6. The medical system of claim 4, wherein during operation in the stiffening mode, the control system constrains at least four degrees of freedom of the distal tip.
- 7. The medical system of claim 1, further comprising at least one sensor operable to determine a measured orientation angle of the distal tip.
- 8. The medical system of claim 7, wherein the at least one sensor includes an optical fiber shape sensor.
- 9. The medical system of claim 7, wherein the memory is further operable to store a desired orientation

angle of the distal tip, and wherein the control system is further operable to actively maintain the distal tip in the desired orientation angle during operation in the stiffening mode.

- 10. The medical system of claim 9, wherein during operation in the stiffening mode, the control system is further configured to: receive the measured orientation angle of the distal tip; determine a difference between the measured orientation angle and the desired orientation angle; and rotate the distal steerable segment to minimize a difference between the measured and desired orientation angles.
- 11. The medical system of claim 9, wherein during operation in the stiffening mode, the control system constrains three or more degrees of freedom of the distal tip.
- 12. The medical system of claim 1, wherein the plurality of modes further includes a mode in which the control system steers the catheter in response to commands received from an operator interface.
- 13. The medical system of claim 1, wherein the sheath is sized for extension into a natural passage during operation in the stiffening mode, the natural passage having a diameter less than an outer diameter of the catheter.
- 14. The medical system of claim 1, wherein the sheath comprises a passive sheath.
- 15. The medical system of claim 1, wherein the control system is configured to: steer the catheter to point in a direction of a natural passage, wherein the sheath is extendable into the natural passage after the catheter points in the direction of the natural passage.
- 16. The medical system of claim 1, further comprising at least one removable probe deployable through the lumen and the sheath.
- 17. The medical system of claim 16, wherein the at least one removable probe comprises a laser.
- 18. The medical system of claim 16, wherein the at least one removable probe comprises a biopsy needle.
- 19. The medical system of claim 16, wherein the at least one removable probe comprises a camera.