1 - intoduction - direction fields

introduction

rates -> Jerivatives containing derivatives

relations -> equations differential equations: equations

The F=mg-Yo m,9,Y are constants
$$\frac{du}{dt} = g - Yu$$

The many row to find a function $\frac{du}{dt} = g - Yu$

The many row $\frac{du}{dt} = mg - yu$
 $\frac{du}{dt} = mg - yu$

If when we are given a certain value of it, we can find the slope of the function

t= independent variable U-dependent variable

* Solutions of a differential equation are functions, not numbers

System of differential equations—Several equations containing several variables interrelated with each other.

$$ex: \frac{dx}{dt} + y = t$$
 $\frac{dy}{dt} + xy = sin(t)$

solution \Rightarrow (x(t), y(t)) \Rightarrow pair of functions

ordinary differential equations (ODE) = when there is only one independent variable (others are partial differential equations)

order of the equation = the highest devivative appearing in diff. equ

solution of first order ODE's

a function y(t) that satisfies the equation at all points t in an open interval (a,b) -> must be differentiable (so contin.)

example:

$$\frac{dy}{dt} = \sin(t) \longrightarrow \int \sin(t) dt \longrightarrow -\cos(t) + C$$

example:

dy =y -> Sydt -> we do not know how to integrate

it, be it is on func, with respect to t

initial condition = y(to)= yo the solution becomes unique

direction fields

y(0)<0	t-100 -> 0 t-1-00 -> 0	increasing
0/y(0)/1	t > 00 -> 0 t > -00 -> 1	decreasing
1 (5(0)	t-)-00 ->1	Increasing

example

 $d^2u_{xx} = u_t$ verify that $u_1(x,t) = e^{-\alpha^2 t}$ sinx is one of its solution

with respect with respect to x two to to one times derivative time derivative

$$\frac{2^{2}-\alpha^{2}t}{\alpha^{2}-\alpha^{2}t} = \frac{2^{2}}{\sin(-\alpha^{2})}$$

$$\frac{2^{2}-\alpha^{2}t}{\alpha^{2}-\alpha^{2}t} = \frac{2^{2}}{\sin(-\alpha^{2})}$$

$$\frac{2^{2}-\alpha^{2}t}{\alpha^{2}-\alpha^{2}t} = \frac{2^{2}}{\sin(-\alpha^{2})}$$

$$\frac{2^{2}-\alpha^{2}t}{\alpha^{2}-\alpha^{2}t} = \frac{2^{2}}{\sin(-\alpha^{2})}$$