Math115A 1/12 notes

Vincent

2023-01-13

3.1 Definition

A field F is a set on which one has two operations +, *, called addition and multiplication, are defined so that for each $x,y \in F$ corresponds a unique element in F denoted x+y and a unique element denoted x*y such that the following properties are satisfied for all elements a, b, c $\in F$:

(F1) a + b = b + a, a * b = b * a

(F2)
$$(a+b)+c=a+(b+c); (a*b)*c=a*(b*c)$$

- (F3) There exist distinct elements 0 and 1 in F such that 0+a=a and 1*a=a, $\forall a \in F$
- (F4) For each $a \in F$ and each $b \in F$, b!=0 there exist elements $c \in F$, $d \in F$ such that a+c=0, b*d=1
- (F5) a*(b+c) = a*b+a*c distributivity of multiplication.

The element x+y called the sum of x&y x*y called the product of x&y

The element 0 is called the identity element for addition

The element 1 called the identity element for multiplication

The element c in (F4) with property a + c = 0 called the addition inverse of a.

The element d in (F4) with property a*d = 1 called the multiplication inverse of c

Examples:

- 1. The set R of all real numbers with the usual +, * is a field.
- 2. The set Q of rational numbers with usual +, * is a field

indeed, because the sum, product and inverses of rational numbers are rational numbers.

- 3. The set Z of integers with the usual +, * operations is not a field: properties (F1), (F2), (F3), (F5) are satisfied and also exsitence of additive inverse in (F4) but not the existence of multiplicative inverse: for instance $z \in Z$ such that 2*d = 1
- 4. DEnote by Z_2 the set with two elements 0 and 1 on which we define the operations + and * as follows: 0+0=0,0+1=1,1+0=1,1+1=0,0\$0 = 0, 01 = 0, 10 = 0, 11 = 1

Then one clearly has (F1) - (F5) satisfied! $So(Z_2\$, +, *)$ is a field. It is called the field with two elements. Note: the additive inverse of 1 is 1 itself because 1+1=0.

One can show that Z_2 is the unique field with two elements.

3.4 Theorem(cancellation law in a field)

let(F,+,*) be a field. For any $a,b,c \in F$ we have:

- (1) if a+b=c+b Then a=c
- (2) if ab=cb and b!=0, then a=c.

Proof:

(1). By (F4) There exists $d \in F$ such that b+d=0. Since a+b=c+b, we can add to both sides the element to obtain:

(a+b)+d = (c+b)+d

So by (F2) a+(b+d) = c+(b+d) so a+0 = c+0 Thus a=c.

(2) has similar proof

3.5 Theorem:

The element 0 and 1 in a field are unique. Also the additive inverse of an element and the multiplicative inverse of a !=0 element are unique

proof:

if $0' \in F$ is another element with the property that $0' + a = a, \forall a \in F$, then we have 0' + 0 = 0, Since + is commutative, 0 + 0' = 0' + 0 and since 0 is identity for addition we also have 0 + 0' = 0' thus 0' = 0 similarly for multiplication if $1' \in F$ satisfies $1' * a = a \forall a \in F$ then 1'1 = 1

For uniqueness of addition ad multiply inverse use cancellation thus.

3.6 Theorem

If (F, +,) is a field then we have:

(1) $a\theta = \theta a = 0, \forall a \in F$

 $(2)(-a)b = a(-b) = -(ab) \ \forall \ a,b \in F$

(3)(-a)(-b) = a*b

Proof:

- (1) we have $a\theta = a(0+0) = a\theta + a0$. So by cancellation theorem, $a\theta = \theta$. Some for $\theta = a\theta$
- (2) Showing that (-a)b = -(ab) amount to showing that (-a)b is the additive inverse of ab(because of uniqueness of additive inverse in Theorem 3.5).

we have (-a)b+ab = (-a+a)b = 0b = 0

Some for a(-b)+ab=0

(3) Note that by (2) above we have (-1)a=-a=a(-1). Thus, by using (F1) we have (-a)(-b)=((-1)a)(-b)=a((-1)(-b)). Where we have used (-1)(-b)=b which in turn follows from the fact that (-1)(-1)=1. Conclusion from now on, we can just write in a field (F,+,+) -a for the additive inverse of $a \in F$

1/a or a^-1 for the multiplicative inverse of a!=0

Vector Space

Definition: A vector space V over a field F consists of a set V on which two operations (called addition and scalar multiplication) are defined, so that for each $x,y \in V$, we have a unique element x+y in V and for each $x\in V$ and $a\in F$ we have a unique element $ax\in V$ (scalar) such that the following conditions hold:

 $(VS1) x+y=y+x, \forall x,y\in V$

(VS2) $(x+y)+z=x+(y+z), \forall x,y,z\in V$

(VS3) There exists on element in V denoted 0 such that x+0=x, $\forall x \in V$

(VS4) For each $x \in V$ have exist $y \in V$ such that x+y=0

(VS5) For each $x \in V$ we have 1x = x

(VS6) For each $x \in V$, $a,b \in F$ we have (ab)x = a(bx)

(VS7) For each $x,y \in V$, $a \in F$ we have a(x+y) = ax + ay

(VS8) For each x \in V, a,b \in F we have (a+b)x=ay+bx