Transfer Theorems

Igor Walukiewicz Bordeaux University

Recursion \equiv stacks

$$F \equiv \lambda x$$
. if $x = 0$ then 1 else $F(x - 1) \cdot x$.

[Courcelle PhD]:

Recursive schemes \equiv deterministic pushdown automata.

Thm [Senizergues]:

Equivalence of schemes (in terms of trees they generate) is decidable.

Thm [Courcelle]:

MSOL theory of trees generated by schemes is decidable.

WHAT ABOUT HIGHER-ORDER SCHEMES?

SECOND-ORDER SCHEME

 $Map \equiv \lambda f. \lambda x.$ if x = nil then nil else $f(hd(x)) \cdot Map(f, tl(x))$

Thm [Knapik, Niwiński, Urzyczyn]:

 $\mbox{Higher-order pushdown automata} \equiv \mbox{higher-order safe schemes}$

Thm [Parys]:

Safety is a true restriction

HERE:

On decidability of MSO theory of trees generated by higher-order schemes.

IN THIS TALK

Consider an operation \mathcal{F} on models

Transfer property for \mathcal{F}

For every φ one can effectively construct $\widehat{\varphi}$, s.t., for every M:

$$\mathcal{F}(M) \vDash \varphi$$
 iff $M \vDash \widehat{\varphi}$.

We say in this case that \mathcal{F} is **MSO-compatible**.

Transfer theorems

Transduction

MSO INTERPRETATIONS

Graph with labelled edges: $G = \langle V, \{E_a\}_{a \in \Sigma} \rangle$

Graph with edge labels from Σ graph with edge labels form Δ

determined by formulas: $\{\varphi_a(x,y)\}_{a\in\Delta}$

MSO-interpretations are MSO compatible. For every φ one can effectively construct $\widehat{\varphi}$, s.t., for every M:

$$\mathcal{I}(M) \vDash \varphi$$
 iff $M \vDash \widehat{\varphi}$.

$$\widehat{\varphi} \equiv \varphi[\varphi_a(x,y) \mapsto E_a(x,y)]$$

k-copying

Duplicating k-times a graph $G = \langle V, \{E_a\}_{a \in \Sigma} \rangle$.

$$G' = \langle V', \{E'_a\}_{a \in \Sigma}, \{E_i\}_{i \in [k]} \rangle$$
; where

- $\bullet \ V' = V \times [k];$
- $E'_a((v,i),(w,i))$ for $(v,w) \in E_a$ and $i \in [k]$;
- $E_i((v,i),(v,j))$ for $v,w\in V$ and $j\in [k]$.

The operation of k-copying is MSO compatible.

MSO-TRANSDUCTIONS

MSO-transduction is a sequence of copying and MSO interpretations

Fact: MSO-transduction is MSO compatible.

Example: from one node graph we can construct any finite graph.

Remark: Actually it suffices to do one copying and one interpretation.

Unfolding: the tree of all the paths in the graph from a given node.

$$\mathit{Unf}(\mathit{G}, \mathit{v}_0) = \langle \mathit{V}^\mathit{U}, \{E_a^*\}_{a \in \Sigma} \rangle$$
 where

- $V^U =$ paths in G starting from v_0
- $E_a^*(\mathbf{w}v, \mathbf{w}vu)$ if $E_a(v, u)$, and $\mathbf{w} \in V^U$.

Theorem [Courcelle & W., Muchnik]:

Unfolding is MSO-compatible.

For every $\varphi(x)$ there is (effectively) $\widehat{\varphi}(v_0)$ such that for every graph G and its vertex v_0 :

$$G \vDash \widehat{\varphi}(v_0)$$
 iff $Unf(G) \vDash \varphi(v_0)$

Remark 1: Unfolding cannot be defined by a transduction.

Remark 2: MSO-compatibility of the unfolding implies Büchi and Rabin's Theorems.

Tree with substitutions: function symbols a, f, g, ...; variables x, y, ...; and explicit substitutions sub_x .

$$eval(sub_x(s,t)) = s[t/x]$$

Theorem[Courcelle & Knapik]: For fixed finite set of variables: eval is MSO-compatible

STUPP ITERATION

$$St(\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc)$$
 is

$$St(G) = \langle V^+, \{E_a^*\}_{a \in \Sigma}, son \rangle$$
 where for $\mathbf{w} \in V^*$, $u, v \in V$:

- $son(\mathbf{w}, \mathbf{w}v)$,
- $E_a^*(\mathbf{w}u, \mathbf{w}v)$ when $E_a(u, v)$.

Remark 1: Stupp iteration of the two node graph gives two full binary infinite trees.

Remark 2: Unfolding of a graph may not be definable in the Stupp iteration of the graph.

Remark 3: Stupp iteration of the full binary tree is MSO definable in the full binary tree.

MUCHNIK ITERATION

$$G^+ = \langle \, V^+, \{E^*\}_{a \in \Sigma}, \underline{E_\#}, son \rangle$$

• $E_{\#}(wu, wuu)$ for $w \in V^*$ and $u \in V$.

Theorem[Muchnik,W.]: Muchnik iteration is MSO-compatible.

2-tree: Muchnik iteration of the full binary tree.

Some things interpretable in k-trees

Interpreting n(n+1)/2 in the iteration of the sequence.

Some other things interpretable in *k*-trees [Fratani & Senizergues]:

- $\langle \mathbb{N}, +1, n\sqrt{n} \rangle$
- $\langle \mathbb{N}, +1, n \log(n) \rangle$
- $\langle \mathbb{N}, +1, n^{k_1}, n^{k_1 k_2}, \dots, n^{k_1 \dots k_m} \rangle$

CAUCAL HIERARCHY

- Level-0: finite graphs
- Level-k: MSO-transductions of k-tree.

Equivalently:

ullet Level-k: MSO transductions of unfoldings of Level-(k-1) graphs.

$$\mathcal{T}(k-tree) \equiv \mathcal{T}(Unf(\dots(\mathcal{T}(Unf(finite\ graph)\dots)$$

Cor: All graphs in the Caucal hierarchy have decidable MSO-theory.

Caucal hierarchy is infinite

For a function $f: \mathbb{N} \to \mathbb{N}$ we define graph T_f :

Thm[Engelfriet, Carayol & Wöhrle]:

 T_{exp_k} graph is a k-level graph but not (k-1)-level graph.

Let
$$\exp_{\omega}(n) = \exp_n(n)$$
.

Cor: $T_{\text{exp}_{ad}}$ graph is not in the Caucal hierarchy but has decidable MSO theory.

GENERAL IDEA

A graph of configurations of a machine:

- nodes are configurations of the machine;
- edges represent a step of the computation.

Finite automaton: its graph of configurations is just graph of the automaton

Pushdown automaton: nodes $qa_1 \dots a_k$ edges $qa\mathbf{w} \to q\mathbf{w}$ or $qa\mathbf{w} \to qba\mathbf{w}$.

Configuration graph of a pushdown automaton is interpretable in a tree **Cor:** It has decidable MSO-theory

Rem: Turing Machine graphs may have undecidable MSO-theory.

2-ND ORDER STACK: EXAMPLE

A 2-stack is a stack of stacks. $[a_1^1\dots a_{k_1}^1][a_1^2\dots a_{k_2}^2]\dots [a_1^n\dots a_{k_n}^n]$

New operation of copying the top-most stack: $q[w_1] \dots [w_i] \to q[w_1][w_1] \dots [w_i].$

A system where all paths are of the form $q_1^k q_2^k q_3^k$.

Remark: The 2-stack gives additional power.

Remark: The above automaton recognizes $\{a^k b^k c^k : k \in \mathbb{N}\}.$

Higher order pushdowns ≡ Caucal Hierarchy

- Configuration graph of a pushdown automaton is interpretable in a tree
- Configuration graph of a k-pushdown automaton is interpretable in a k-tree.

Cor: All these graphs have decidable MSO-theory.

Thm[Carayol & Wöhrle]:

Graphs of Caucal level k are configuration graphs of k-th order pushdown automata. (when ε -transitions are contracted).

Schemes

Languages, Higher-order pushdowns

- + lanov'58 "The logical schemas of algorithms"
- + Park PhD'68 Recursive schemes
- + Scott, Elgot

- + Aho'68 indexed languages
- + Maslov'74 '76 higher-order indexed languages and higher order pushdown automata.

- + Courcelle'76 for trees: 1-st order schemes=CFL
- + Engelfriet Schmidt'77 10/01
- + Damm'82 for languages: rec schemes= higher-order pusdowns
- + Kanpik Niwinski Urzyczyn'02 Safe schemes = higher-order pusdown
- + Senizergues'97 Equivalence of 1st order schemes is decidable
 - +Statman'04 Equivalence of PCF terms is undecidable
 - +Loader'01: Lambda-definability is undecidable

SIMPLY TYPED λ -CALCULUS WITH FIXPOINTS

- Types: 0 is a type, and $\alpha \to \beta$ is a type if α, β types.
- Constants: c^{α} of type α .
- Terms: c^{α} , x^{α} , MN, $\lambda x^{\alpha}.M$.

Example: $c, d: 0, g: 0 \rightarrow 0, f: 0 \rightarrow 0 \rightarrow 0$

$$f(gc)d:0 \qquad f \qquad \qquad \lambda x. f(gx)d:0 \rightarrow 0 \qquad \lambda x. f$$

$$g \qquad d \qquad \qquad g \qquad d$$

$$| \qquad \qquad | \qquad \qquad |$$

$$c \qquad \qquad \lambda z. z(gc)d:(0 \rightarrow 0 \rightarrow 0) \rightarrow 0 \qquad \lambda z. z$$

$$g \qquad d$$

$$\beta$$
-reduction: $(\lambda x.M)N =_{\beta} M[N/x]$

$$(\lambda x. f(gx)d)c \to_{\beta} f(gc)d$$
$$(\lambda z. z(gc)d)(\lambda xy. y) \to_{\beta} (\lambda xy. y)(gc)d \to_{\beta} d$$

Substitution is as in logic: one should avoid variable capture

$$(\lambda h.\lambda x.g(hx))(fx) \rightarrow_{\beta} \lambda y.g(fxy)$$

and not $\lambda x.g(fxx)$

$$f: 0 \to 0 \to 0, \quad g, h: 0 \to 0$$

A Böhm tree of a term M:

- We reduce M to head normal form: $M \to_{\beta}^* \lambda \vec{x}.KN_1...N_i$ with K a variable or a constant.
- \bullet BT(M) is $\lambda x.K$ $BT(N_1) \cdots BT(N_i)$

Where are trees?

$$c:0, g:0\to 0, f:0\to 0\to 0$$

If M:0 is a closed term, and M in head normal form then $M\equiv KN_1\dots N_i$ with K a constant. So it is either:

with $N_0, N_1 : 0$. Hence BT(M) is a ranked tree.

Order of type: Ord(0) = 0, $Ord(\alpha \rightarrow \beta) = \max(Ord(\alpha) + 1, Ord(\beta))$.

First order signature: all constants of order ≤ 1 .

Remark: For closed M:0 over a first order signature BT(M) is a ranked tree.

λY -CALCULUS

We add constants $Y^{(\alpha \to \alpha) \to \alpha}$ and ω^{α} , for every type α .

New reduction rule $\mathit{YM} \to_{\delta} \mathit{M}(\mathit{YM}).$

Example: YM with $M = (\lambda x.ax)$

$$YM \to_{\delta} M(YM) \equiv (\lambda x. ax)(YM)$$

 $\to_{\beta} a(YM)$
 $\to_{\delta} a(M(YM))$
 $\to_{\beta} a(a(YM)) \to \dots$

A Böhm tree of a λY -term M is:

- If M has no head normal form then ω^{α} .
- Otherwise $\lambda \vec{x}.KN_1 \dots N_i$ is the head normal form and BT(M) is

$$BT(N_1) \qquad BT(N_i)$$

For closed terms of type 0 over first-order signatures, Böhm tree is a tree.

RECURSIVE PROGRAM SCHEMES

FIRST EXAMPLE

- $F \equiv \lambda x$. if x = 0 then 1 else $F(x 1) \cdot x$.
- Abstract form: $F = \lambda x. \ c \ (zx) \ a \ (m \ (F(px)) \ x).$

Another program with the same abstract form:

 $Rev \equiv \lambda x$. if $x = \text{nil then nil else } Rev(\text{tl}(x)) \cdot hd(x)$

SECOND-ORDER SCHEME

 $Map \equiv \lambda f. \lambda x.$ if x = nil then nil else $f(hd(x)) \cdot Map(f, tl(x))$

Order of a scheme: maximal order of a "nonterminal".

SEMANTICS

Example:

$$\mathcal{F} = \lambda x. \ a(\mathcal{F}(bx))$$

$$\mathcal{F}(c) \to_{\beta,\delta} a(\mathcal{F}(bc)) \to_{\beta,\delta} a(a(\mathcal{F}(b(bc)))) \to_{\beta,\delta} \dots$$

SEMANTICS AS A TREE OF EXECUTION

Recursion schemes $\equiv \lambda Y$ -calculus

$$F_1 = \lambda \vec{x}.M_1$$

$$\vdots$$

$$F_n = \lambda \vec{x}.M_n$$

$$\begin{split} T_1 &= Y(\lambda F_1.M_1) \\ T_2 &= Y(\lambda F_2.M_2)[T_1/F_1]) \\ &\vdots \\ T_n &= Y(\lambda F_n.(\dots((M_n[T_1/F_1])[T_2/F_2])\dots)[T_{n-1}/F_{n-1}]) \end{split}$$

FACT

The tree generated from F_n is $BT(T_n)$.

There is also a translation from λY -terms to schemes.

Theorem[Courcelle]:

The meanings of 1-st order recursive schemes \equiv unfoldings of pushdown graphs.

Theorem [Knapik, Niwiński & Urzyczyn]:

n-th order safe schemes \equiv unfoldings of n-th order pushdown graphs.

Safe \approx no parameters in recursion \approx no problems with static links

SAFETY

Variables that occur free in a safe λ -term have orders no smaller than that of the term itself.

Safe \Rightarrow no need to perform variable renaming when doing β -reduction.

$$(\lambda x^{\alpha}.M)N^{\alpha} \rightarrow_{\beta} M[N^{\alpha}/x^{\alpha}]$$

$$(\lambda y^{\beta}.K)^{\beta \to \gamma} [N^{\alpha}/x^{\alpha}]$$
 β has smaller order than α

Tree with substitutions: function symbols a, f, g, ...; variables x, y, ...; and explicit substitutions sub_x .

$$eval(sub_x(s,t)) = s[t/x]$$

$$eval$$
 $\left|\begin{array}{c} f \\ sub_x \\ sub_x \\ a \end{array}\right|$
 $\equiv Unf \left|\begin{array}{c} f \\ sub_x \\ sub_x \\ a \end{array}\right|$

Theorem[Courcelle & Knapik]: For fixed finite set of variables: eval is MSO-compatible

WHAT ABOUT SCHEMES THAT ARE NOT SAFE?

New operation of panic on 2-stack, and then collapse on a higher-order stack. [Urzyczyn, Knapik & Niwiński & Urzyczyn & W., Hague & Murawski & Ong & Serre]

Theorem[Hague & Murawski & Ong & Serre]:

n-th order schemes \equiv unfoldings of n-th order collapse pushdown graphs.

Theorem[Parys]:

Urzyczyn's scheme is not equivalent to a safe scheme.

Theorem[Ong]:

MSO theory of the tree generated by a recursive scheme is decidable.

Signature $\Sigma = (B, C)$

- B a set of base types
- C a set of constants with types in Types(B).

Terms over Σ defined as usual.

Homomorphism, for two signatures $\Sigma_1 = (B_1, C_1)$, $\Sigma_2 = (B_2, C_2)$, is a function

$$h: B_1 \to \mathit{Types}(B_2) \qquad h: C_1 \to \mathit{Terms}(\Sigma_2)$$

with the restriction that $h(c^{\alpha})$ is term of type $h(\alpha)$.

First-order signature $\Sigma=(B,C)$: all constants in C have types of order ≤ 1

$$c: \beta_1 \to \cdots \to \beta_k \to \gamma$$
 with $\beta_1, \ldots, \beta_k, \gamma \in B$.

Applicative tree: well typed term (infinite) of a base type constructed only from constants.

Rem: Applicative trees are just ranked trees so we can talk about their MSO-theories.

First-order signatures $\Sigma_1=(B_1,\,C_1),\,\Sigma_2=(B_2,\,C_2)$ and a homomorphism

$$h: B_1 \to Types(B_2)$$
 $h: C_1 \to Terms(\Sigma_2)$

such that $h(\gamma)$ is a base type.

If $t: \gamma$ is an applicative tree over Σ_1 then BT(h(t)) is an applicative tree over Σ_2 .

Tree operation $t \mapsto BT(h(t))$.

Tree operation $t \mapsto BT(h(t))$

Thm[Salvati & W.]: Operation $t \mapsto BT(h(t))$ is MSO compatible.

For every φ there is $\widehat{\varphi}$ s.t. for every applicative tree t of type γ :

$$BT(h(t)) \vDash \varphi \qquad \text{iff} \qquad t \vDash \widehat{\varphi}$$

Take an λY -term M and $c: \gamma$. Set h(c) = M. We get:

$$BT(h(c)) \vDash \varphi$$
 iff $c \vDash \widehat{\varphi}$

This is Ong's theorem: BT(M) has decidable MSO-theory.

Remark: Every tree in a Caucal hierarchy is $\mathcal{I}(BT(M))$ for some M.

Thm[Parys]: BT(M) may be outside Caucal hierarchy.

Scheme of recursive calls

Each call represents a procedure $h(c_i) = M_i$.

Given a property φ we can say at which recursive calls it holds.

We have modules M_1,\dots,M_k . Can we write a program with these modules whose execution satisfies φ ?

Take homomorphism $h(c_i) = M_i$:

$$BT(h(t)) \vDash \varphi$$
 iff $t \vDash \widehat{\varphi}$

- Any $t \vDash \widehat{\varphi}$ gives a program h(t) satisfying φ .
- If $\widehat{\varphi}$ is satisfiable then there is a regular t
- Using the fixpoint combinator we get a finite program h(t).

