

Vorlesung Computational Intelligence

Teil 4: Evolutionäre und Memetische Algorithmen 4.9 Empfehlungen zum EA-Einsatz

Ralf Mikut, Wilfried Jakob, Markus Reischl

Institut für Automation und angewandte Informatik (IAI) / Campus Nord

4.9 Empfehlungen zum EA-Einsatz

Übersicht

- Voraussetzungen für den Einsatz von Metaheuristiken
- Auswahlkriterien für Optimierungsverfahren beim Praxiseinsatz
- Empfehlungen für die Anwendung von EAs und MAs
- EAs an Universitäten und Forschungseinrichtungen

Empfehlungen zum EA-Einsatz – Voraussetzungen

Voraussetzungen für den Einsatz von Metaheuristiken:

- Voraussetzungen für den Einsatz von Metaheuristiken wie den EAs, MAs oder Ameisenalgorithmen (Ant Colony Optimization, ACO):
 - Keine mathematischen oder andere Verfahren verfügbar oder zielführend
 - Keine Online-Reaktionen erforderlich
 - Es muss möglich sein, die Qualität einer Vielzahl von Lösungen zu berechnen.

Abhilfen:

- Führung eines Lösungsarchivs, um hinreichend ähnliche Lösungen nur einmal bewerten zu müssen.
- Parallelisierung
 - der Metaheuristik
 - der Bewertungen

Empfehlungen zum EA-Einsatz – Auswahlkriterien

Auswahlkriterien für Optimierungsverfahren beim Praxiseinsatz (1):

Kriterium	EA, MA, AMMA	ACO
Klare Abgrenzung des Einsatzgebiets siehe die No-free-Lunch-Theoreme, Kap.4.2 [Wol95, Wol97]		
Spezialisierungen von EAs für kontinuierliche oder kombinatorische Optimierung	✓	\checkmark
problemspezifische LSVs oder Heuristiken für MAs / AMMAs oder ACO	✓	\checkmark
Robustheit		
 funktionsfähig auch in ungünstigen Situationen 		
 geringe Sensitivität gegenüber Strategieparametern 		
EAs gelten als sehr robust	\checkmark	\checkmark
MAs: Mögliche Einschränkungen der Robustheit durch Meme; ACO integriert Heuristik(en)	✓	\checkmark

ACO: Ant Colony Optimization, siehe auch Kap. 4.2

Empfehlungen zum EA-Einsatz – Auswahlkriterien

Auswahlkriterien für Optimierungsverfahren beim Praxiseinsatz (2):

Kriterium	EA, MA, AMMA	ACO
Einfachheit		
 möglichst wenig Vorwissen erforderlich 	??	??
möglichst wenig Verfahrensparameter		
AMMA: wenig Strategieparameter, Unterstützung der Meme-Auswahl	V	•
Einbeziehung existierender Lösungen		
Wegen Anwenderakzeptanz und Nutzung von Vorwissen	√	/
Aufnahme in die Startpopulation	•	•
Geschwindigkeit		
Verfügbare und benötigte Zeit sind anwendungsabhängig.	??	??
EA, AMMA und ACO sind keine Realzeitverfahren.	• •	
<u>Verfügbarkeit von Software</u>	freie SW vorhanden	

Empfehlungen zum EA-Einsatz – Auswahlkriterien

Auswahlkriterien für Optimierungsverfahren beim Praxiseinsatz (3):

Aktuell: Inflation von "biologie-inspirierten Optimierungsverfahren", welche meist das Jagdverhalten oder die Suche nach Futter oder Partnern imitieren:

- bees algorithm, artificial bee colony algorithm
- grey wolf algorithm
- glowworm swarm algorithm
- firefly algorithm
- bacterial colony optimization

- - -

Vorteil gegenüber EAs, ACOs oder Partikelschwarm-Optimierung? Nur schwer erkennbar!

- > Vielleicht befriedigen die Verfahren eher das Publikationsbedürfnis ihrer Erfinder?
- > Motiv der Mittelvergabe basierend auf Publikationslisten und Häufigkeit der Zitierung

Empfehlung: Einsatz bewährter und gut erforschter Metaheuristiken

Empfehlungen zum EA-Einsatz

Empfehlungen für die Anwendung von EAs und MAs:

- Keine Kompromisse!
 - Optimierung der Aufgabenstellung ohne Abstriche
 - Vereinfachungen nur, wenn die Evaluationen sonst unakzeptabel lang andauern.
- Geeignete Metaheuristik mit passender Codierung auswählen
 - Binärcodierte GAs sind nur für Aufgaben mit entsprechenden Entscheidungsvariablen gut geeignet.
- Verfügbare Heuristiken einbinden!
 - Zur Initialisierung der Startpopulation
 - Als Meme für MAs (siehe Kap. 4.8)
- Strukturierte Populationen gemäß dem Nachbarschaftsmodell verwenden! Je nach Aufgabe ein- oder zweidimensionale Nachbarschaften (siehe Kap. 4.4)
- Pareto-Optimierung in Betracht ziehen bei nachgelagerter menschlicher Entscheidung und geeigneter Kriterienanzahl. (siehe Kap. 4.2)

Empfehlungen zum EA-Einsatz – Forschung

EAs an Universitäten und Forschungseinrichtungen (1):

- Prof. Dr. Günter Rudolph, Universität Dortmund. ES, GA, EA ls11-www.cs.uni-dortmund.de/people/rudolph/index.jsp
- Prof. Dr. Ingo Rechenberg, TU Berlin. ES www.bionik.tu-berlin.de/institut/
- Prof. Dr. Hans-Georg Beyer, FH Vorarlberg, Österreich. ES, GA homepages.fhv.at/hgb/
- Prof. Dr. Thomas Bartz-Beielstein, FH Köln, Campus Gummersbach. ES, GP, MA www.th-koeln.de/personen/thomas.bartz-beielstein/
- Prof. Dr. Jürgen Branke, University of Warwick, GB Nature inspired optimisation, scheduling, simulation-based optimisation www.wbs.ac.uk/about/person/juergen-branke/
- Prof. Dr. A.E. Eiben, Vrije Universiteit Amsterdam. EA, MA www.few.vu.nl/~gusz/

Empfehlungen zum EA-Einsatz – Forschung

EAs an Universitäten und Forschungseinrichtungen (2):

- Prof. Dr. Hartmut Schmeck, KIT, AIFB. EA www.aifb.kit.edu/web/Evolutionäre_Algorithmen
- Dr. Hartmut Pohlheim, Daimler AG, Forschung und Technologie. EA-Matlab-Toolbox (GEATbx) www.pohlheim.com
- Prof. Dr. Bernhard Sendhoff, Honda R&D Europe GmbH, TU Darmstadt. EA
 <u>www.sendhoff.eu</u> <u>www.mendeley.com/profiles/bernhard-sendhoff/</u>
- Dr. Wilfried Jakob, KIT, IAI. GLEAM, MA www.iai.kit.edu/~wilfried.jakob/

Umfangreiche und kommentierte Liste von EA-Softwarepaketen gd.tuwien.ac.at/opsys/linux/DE-HOWTO/HOWTO-test/DE-Al-Alife-HOWTO-4.html

Diese Liste erhebt keinen Anspruch auf Vollständigkeit. Ergänzungsvorschläge werden dankend entgegengenommen.

