Lab5. ALU와 JK 플립플롭

학번 : 20210273 이름 : 하태혁

1. 개요

(컴퓨터의 기초가 되는 산술 논리 장치(Arithmetic Logic Unit; ALU)와 정보를 저장할 수 있는 JK 플립플롭(Flip-flop)을 구현한다.)

CPU의 연산에 사용되는 ALU의 기능을 이해하고 adder의 input을 수정하여 원하는 연산을 구현해본다. Memory element가 가져야 하는 특징을 이해하고 값을 저장하기 위한 JK FF의 작동을 이해하고 구현해 본다.

2. 이론적 배경

1) ALU (Arithmetic Logic Unit)

산술 논리 장치 ALU는 입력에 따라 산술연산과 논리연산을 계산하는 디지털 회로이다. 본 실험에서 만드는 ALU는 select 인풋으로 기능을 조절하여 동작을 수행한다. ALU에서 산술연산 부분을 구현할 때는 Ripple adder를 사용하며 논리연산을 구현할때는 4:1 MUX를 사용한다. 최종적으로 두 부분 중 어떤 동작을 사용할지를 구현할때는 2:1 MUX를 사용한다.

2) 비동기 회로 / 동기 회로

클럭 신호에 따라 동기화가 진행되는 디지털회로를 동기 회로 그렇지 않은 회로를 비동기 회로라 부른다. 회로에서는 CK라는 값으로 나타냈다.

3) JK 래치 / JK 플립플롭

SR 래치에 추가적인 기능을 더하여 값의 toggle이 가능하게 한 래치를 JK래치라고 부른다. 그리고 JK 래치에 클럭 신호를 더해 만든 동기 회로는 JK 플립플롭이라 부른 다.

4) Master-slave JK 플립플롭

SR 래치 두개를 연결하고 클럭 신호를 더해서 만든 플립플롭이다. CK가 1일 때

master 부분에 값이 저장된 뒤 CK가 0이 될 때 slave 부분에 전달된다. Glitch가 발생했을 때도 CK = 1이면 값이 바뀌어 master에 저장되기 때문에 값이 바뀌는 문제가 발생한다.

3. 실험 준비

1) Lab5_1

	Select				동작	Adder 입력		
산술 장치	S_3	S_2	S_1	S_0	$out = A + B + C_{in}$	A	В	C_{in}
	0	0	0	0	\boldsymbol{x}	0000	\boldsymbol{x}	0
	0	0	0	1	x + 1	0000	\boldsymbol{x}	1
	0	0	1	0	x + y	y	\boldsymbol{x}	0
	0	0	1	1	x+y+1	y	\boldsymbol{x}	1
	0	1	0	0	$x + \overline{y}$	\overline{y}	x	0
	0	1	0	1	$x + \overline{y} + 1$	\overline{y}	x	1
	0	1	1	0	x-1	1111	x	0
	0	1	1	1	\boldsymbol{x}	1111	x	1
	Select				동작			
	S_3	S_2	S_1	S_0	out_i			
논리	1	0	0	0	$x_i \ AND \ y_i$			
장치	1	0	0	1	$x_i \ OR \ y_i$			
	1	0	1	0	$x_i \ XOR \ y_i$			
	1	0	1	1	$\overline{x_i}$			

A에 대한 Arithmetic equation을 만들기 위해 function table을 그리면 다음과 같고 K-map 으로 나타낸 뒤 식을 구하면,

S ₂	S ₁	Yi	A_{i}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$A = S_2 y_i' + S_1 y_i$$

$$B = x$$

$$C_{in} = S_0$$

산술 장치와 논리 장치를 구현한 뒤 2:1 MUX로 묶어서 회로도를 그리면 위 사진과 같다.

2) Lab5_2

¬) SR 래치의 회로도를 그리면 다음과 같다.

L) SR 래치를 사용해 Negative reset Master-slave JK 플립플롭의 회로도를 그리면 다음과 같다.

C) SR 래치와 비교해 Master-slave JK 플립플롭이 해결 가능한 글리치와 해결할 수 없는 글리치를 분석해보면,

4. 결과

1) Lab5_1

전체 회로도에 대한 그림은 위 그림과 같다.

산술 장치와 adder에 대한 회로도는 다음과 같다.

논리 장치 모듈과 4:1 MUX에 대한 회로도는 다음과 같다.

시뮬레이션 파형을 캡처하면 다음과 같다. CK=1일 때는 글리치 값이 반영되어 q값이 바뀌었지만, CK=0일 때는 글리치 값이 반영되지 않아서 q값이 바뀌지 않았음을 알 수 있다.

2) Lab5_2

구현한 회로도는 위 사진과 같다.

시뮬레이션 파형은 다음과 같다.

5. 논의

테스트벤치 코드도 작성해 보면서 베릴로그 문법에 대한 이해도를 높일 수 있었다.