# Digital Forensics File System Forensics Masterclass

Fraser Brown

Heriot-Watt University

March 11, 2018

#### Outline

- What is Digital Forensics?
- 2 Forensic Process
- Forensic Imaging
- File Systems
- 5 File System Analysis
- 6 Forensic Tools
- Additional Resources
- 8 Careers

## What is Digital Forensics

#### **Digital Forensics:**

"Computer [Digital] Forensics is the practice of determining the past actions that have taken place on a computer system using forensic techniques and understanding artefacts." - David Cowen

#### Artefact:

"An Artefact is a reproducible file, setting or system change that occurs every time an application or operating system performs a specific action" - David Cowen

The artefacts we will be dealing with in the lab are files and file systems.

## Why File System Analysis? I

- There are many different forms of digital forensic analysis:
  - ► Network Analysis,
  - Live memory (RAM) Analysis,
  - ► File system analysis,
  - Database Analysis,
  - Application/OS Analysis
- File system analysis allows:
  - Introduction to a new field using a common ground
  - Insight into how OS files relate to memory and what creation and deletion features actual do

## Why File System Analysis? II



Figure: Layers of Analysis

## **Forensic Process**

#### Forensic Process

Digital forensics results can be used in a court of law therefore accuracy, integrity and an unbiased approach towards evidence is required. As a result similar approaches to evidence handling and procedure from traditional forms of forensics are utilised.

#### Scientific Method

Defining a hypothesis based on evidence then proceeding search for evidence which disproves our hypothesis.

#### Digital Forensic Investigation

"A digital forensic investigation is a process that uses science and technology to analyse digital objects and that develops and tests theories, which can be entered into a court of law, to answer questions about events that occurred. In other words, a digital forensic investigation is a more restricted form of digital investigation." - Brian Carrier

## Digital Crime Scene Investigation Process Overview

There are three major areas in digital crime scene investigations:

- System Preservation
- Evidence Searching
- Event Reconstruction



Figure: Diagram of Digital Forensics Investigation Phases

#### **PICL Guidelines**

While each forensic investigator/team may have their own procedures and work flow the PICL guidelines below provide a good staring structure:

- Preservation: Preservation of the system being investigated.
- Isolation: Keeping analysis environment is separate from both the suspect data and the outside world.
- Correlation: Correlate data with other independent sources. Reduces risk of forged data.
- Logging: Log/document your actions. This helps identify what searches you have not yet conducted and what your results were.

## **Analysis Types**

#### Live Analysis:

"A live analysis occurs when you use the operating system or other resources of the system being investigated to find evidence." - Brian Carrier

#### Dead Analysis:

"A dead analysis occurs when you are running trusted applications in a trusted operating system to find evidence." - Brian Carrier

## **Forensic Imaging**

## **Evidence Acquisition/Imaging**

- In order to perform analysis on digital artefacts a forensic duplicate of the media must be created.
- Forensic Duplicates are bit-for-bit copies of the original disk and can encompass the full disk or a single partition.
- This process is known as imaging or acquisition.
- Contents of a disk are always changing therefore Write Blockers are used to preserve the disk state.
- Hash functions such as SHA-256, SHA-1, MD5 are used to verify the image against the original artefact.

#### Write Blockers

#### Write Blockers

Are hardware or software devices that allow gathering of information without damaging the disk contents by blocking write commands but allowing read commands.

- Write Blockers are customisable:
  - Blocking of all or specific commands.
  - Can control the read and write speed.
- Write Blockers come in two forms:
  - ▶ *Native*: Same interface for input and output e.g. IDE-to-IDE
  - ► *Tailgate*: uses different interfaces for input and output e.g. firewire/USB-to-SATA

## Imaging Challenges with Solid State Drives (SSD)

While an SSD can be imaged with the same tools as a traditional hard disk drive (HDD), there are technology specific issues that cause problems for forensic investigators.

- Program-Erase cycles
  - Sequence of events that result in data being written to a solid state flash memory cell, then erased and rewritten (e.g flash memory USB sticks).
  - ► These P/E cycles result in a small amount of physical damage to the medium, which can result in bad sectors.
- Wear Levelling
  - prolongs the life of solid state/flash memory
  - Distributes rewrites evenly across the medium, so no single block dies prematurely.
- These two technologies due to the evolution of memory results in unallocated space being overwritten earlier than it would on a HDD.
   This could overwrite valuable hidden information by accident

## Image Types

- Raw Format (.dd .raw .img)
  - only contain data from the original artifact
  - meta data is no included however can be generated into a separate file by tools.
  - Tools: dd, dcfldd, dd\_rescue, rdd, df3dd, guymager
- EnCase Evidence Format (Expert Witness .E01)
  - Expert Witness images use headers and footers to hold metadata about the image.
  - metatdata can include: drive type, source disk OS, timestamps, hashes, CRCs over blocks.

# File Systems

## What are File Systems? I

#### File System:

File systems manage how data is stored and retrieved in a computer system. They consist of structural and user data which can be organised and understood by users and computers.

- File system architectures (FAT32, Ext3 etc.) provide different methods of tracking data on physical media each has their own data structures, look up tables and allocation methods.
- Modern operating systems contain support for many different file systems providing an interface with physical storage.

## What are File Systems? II

File systems are made up of 2/3 layers:

- Logical Layer: Provides a user application level API for commands such as read, write and chmod etc.
- Virtual Layeroptional: Allows access to multiple physical file systems e.g. block based: FAT32, NTFS or network based: NFS
- Physical Layer: Interacts with hardware, performing block and memory management and interacting with device drivers etc.

### What are File Systems? III



## File Systems Terminology

#### Sector:

Smallest addressable section of memory, which holds static amount of data (512/2048/4096-bytes)

#### • INode:

Data structure in a file system that contains meta data (a.k.a Meta Data Pointers/Structures)

#### Data Unit:

Standard sized container for storing *content* data, which consists of multiple **sectors**. Different file systems have different names for these data units e.g. (Cluster or Block).

## File System Aspects/Categories

Each file system contains elements from the following categories:

#### • File System:

Contains file system structure overview and where to find other structures and important data.

#### Content:

Contains data relating to actual file contents, these are usual organised into containers called data units (block/cluster).

#### Meta data:

Data that describes files such as access times, file size, users.

#### • File Name:

Contains the data that assigns a name to a file, is used by users instead of a meta data address.

#### Application:

Special features/additional functionality such as quota data or journalling.

## File System Categories Interaction



Figure: File System Categories Interaction

## File System Categories By Example



Figure: File System Example

## File System Architectures

There are numerous file system architectures available, some are operating system specific others are designed to be more universal.

- Examples include:
  - FAT File Allocation Table (FAT8/16/32) Commonly found on Removable Media
  - NTFS New Technology File System Default For Windows
  - Ext Extended File System (Ext2/3/4) Default for Linux

We will focus on FAT32 in this lecture due to the lab being structured around applying forensic techniques on removable media.

### File Allocation Table 32 - FAT32

There are

## File System Analysis

## File System Analysis Techniques

There are many different techniques and theory for the aforementioned categories. In the respect of time and scope of the lecture I will only cover the ones that are relevant to the lab materials.

## **Forensic Tools**

(Used in Accompanying Lab)

## Guymager - Forensic Imaging

#### Guymager

Guymager is a GUI based forensic imaging tool, that allows for the creation of various image types such as Raw (dd) and EnCase (E01).



## Foremost - Data Carving

#### **Foremost**

Foremost is a command line tool that utilises data carving techniques to recover files.

- Data Carving is a process where files are recovered from a disk image based on common information such as file headers, footers and data structures.
- Performing data carving for large forensic images can be rather tedious if done by hand, tools such as Foremost have been developed to help digital forensic investigators automating this process.

## The Sleuth Kit (TSK)<sup>1</sup>

#### The Sleuth Kit (TSK)

The Sleuth Kit is a series of command line tools that allow users to inspect and analyse disk images and the file systems therein.

- The tools provided in TSK are divided into the 5 file system categories discussed previously, file system, content (data unit), meta data, file name.
- Due to the wide variety of tools within TSK I will discuss those of which we will use in the accompanying lab.
- Other features of TSK can befound in the tool overview: http: //wiki.sleuthkit.org/index.php?title=TSK\_Tool\_Overview

<sup>&</sup>lt;sup>1</sup>http://www.sleuthkit.org/

## TSK - File System Layer Tools

 fsstat: shows file system details and statistics including layout, sizes and labels

#### TSK - File Name Tools

Allow for processing of file name structures.

- **ffind**: finds allocated and unallocated file names that point to a given meta data structure
- fls lists allocated and deleted file names in a directory

## TSK - Meta Data Layer Tools

- icat: Extracts the data units of a file, which is specified by its meta data address.
- ifind: Finds the meta data structure that has a given file name pointing to it or the meta data structure that points to a given data unit.
- **ils**: Lists the meta data structures and their contents in a pipe delimited format.
- **istat**: Displays the statistics and details about a given meta data structure in an easy to read format.

#### TSK - Data Unit Tools

These file system tools process the data units where file content is stored.

- blkcat: Extracts the contents of a given data unit.
- **blkls**: Lists the details about data units and can extract the unallocated space of the file system.
- blkstat: Displays the statistics about a given data unit in an easy to read format.
- blkcalc: Calculates where data in the unallocated space image (from blkls) exists in the original image. This is used when evidence is found in unallocated space.

## TSK - Volume System Tools

These tools take a disk (or other media) image as input and analyse its partition structures.

- mmls: Displays the layout of a disk, including the unallocated spaces.
- mmstat: Display details about a volume system (typically only the type).
- mmcat: Extracts the contents of a specific volume to STDOUT.

## Additional Resources

### Careers