German Credit Risk Score

Group 3

Wahad Latif, Bradley Childs, Siu Sing Li, Neerja Natu, Kuangzhong Niu

Background

- Used by financial institutions, employers, insurance companies to determine an individual's creditworthiness
- They are a huge determining factor for whether you can:
 - Get a loan
 - Buy a house
 - Get a job
- It is important that these scores are an accurate representation of an individual

Dataset

- German Credit dataset from UCI Machine Learning Repository
- 1000 instances and 20 attributes, binary label indicating good or bad credit risk
 - \circ 1 = good, 2 = bad

Attribute 1	Integer	Checking account
Attribute 2	Categorical	Duration
Attribute 3	Integer	Credit history
Attribute 4	Categorical	Purpose
Attribute 5	Categorical	Credit amount
Attribute 6	Integer	Savings account
Attribute 7	Categorical	Employment
Attribute 8	Integer	Installment rate
		Marital status
Attribute 20	Binary	Foreign worker

Data Preprocessing

- Converting primarily categorical data into numeric or one-hot encoding for easier use
- For variables like employment history or savings, we could use numeric label encoding
- For variables like sex and marital status we used one-hot encoding
- We chose to split the dataset into 10 sub-datasets based on the attribute 'purpose of loan', models were trained and tested on these sub-datasets separately

Models

Logistic Regression

- Hyperparameter tuning
- Separate hyperparameters for each purpose to develop different models for different types of loans

Purpose	C, penalty, solver, tol	
Business	0.01, l2, liblinear, 1e-3	
New Car	1, l2, saga, 1e-4	
Used Car	0.1, l2, saga, 1e-3	
Education	0.001, l2, liblinear, 1e-3	
Furniture	0.1, l2, liblinear, 1e-3	
Radio/TV	1, l1, liblinear, 1e-3	
Repairs	0.001, l1, liblinear, 1e-3	

Random Forest

- The following were the hyperparameters we selected
- We again decided to split the dataset by purpose and build separate models

Purpose	estimators, split, leaf
Appliance	50, 5, 1
Business	300, 5, 2
New Car	50, 2, 3
Used Car	100, 2, 1
Education	50, 2, 3
Furniture	300, 2, 2
Other	50, 2, 1
Radio/TV	150, 5, 1
Repairs	50, 2, 2

Multilayer Perceptron (ANN)

 Because our dataset was only 1000 entries, we decided not to further split it up for the Neural Network

Results

Logistic regression produced the following accuracies:

Purpose	Accuracy	MSE
Business	0.750	0.250
New Car	0.702	0.298
Used Car	0.952	0.048
Education	0.600	0.400
Furniture	0.730	0.270
Radio/TV	0.839	0.161
Repairs	0.800	0.200

Average Accuracy across all the logistic regression models: **77%**

 Random Forest produced the following accuracies:

Purpose	Accuracy	MSE
Appliance	0.667	0.333
Business	0.750	0.250
New Car	0.809	0.191
Used Car	0.904	0.095
Education	0.500	0.500
Furniture	0.702	0.297
Other	0.333	0.667
Radio/TV	0.768	0.232
Repairs	0.400	0.600

Average Accuracy across all the random forest models: **65%**

Neural network produced the following results:

```
Accuracy: 0.752
Mean Square Error: 0.248
Confusion Matrix for each label :
[[68 86]
  [ 38 316]]
 [[316 38]
  [ 86 60]]]
Classification Report :
             precision
                          recall f1-score support
                  0.79
                                     0.84
                                                354
                  0.61
                           0.41
                                     0.49
                                                146
   micro avg
                  0.75
                           0.75
                                     0.75
                                                500
                  0.70
                                     0.66
   macro avg
                           0.65
                                                500
weighted avg
                  0.74
                           0.75
                                     0.74
                                                500
                  0.75
                           0.75
                                     0.75
                                                500
 samples avg
```

Average Accuracy on the ANN model: **75%**

Video Demo

