

Theory of Computation (CS F351)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

Finite Automata and Regular Expression (Sec. 2.3 of T1)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

Summary of our understanding about the FA/RE/RL

- It is understood that the class of Languages accepted by FA remain same even with non-determinism.
- The class of Languages accepted by FA has a sort of stabilitymeaning that the two different approaches (DFA and NDFA) end up with defining the same class.
- Here in this section we have further proof about the stability.
- The class of languages accepted by DFA & NDFA is same as the class of Regular Languages.
- Regular Languages are those languages that can be described by Regular Expressions.

Properties of languages accepted by FA

- The class of languages accepted by FA are closed under
- UNION
- CONCATENATION
- INTERSECTION
- KLEENE STAR
- COMPLEMENTATION

UNION:

Let $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ be non-deterministic finite automata; we shall construct a nondeterministic finite automaton M such that $L(M) = L(M_1) \cup L(M_2)$.

$$M = (K, \Sigma, \Delta, s, F)$$
, where s is a new state not in K_1 or K_2 ,

$$K = K_1 \cup K_2 \cup \{s\},$$

 $F = F_1 \cup F_2,$
 $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, e, s_1), (s, e, s_2)\}.$

CONCATENATION:

Let $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ be non-deterministic finite automata; we shall construct a nondeterministic finite automaton M such that $L(M) = L(M_1) - L(M_2)$.

 M_1

M

M

KLEENE STAR:

Let $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$: be non-deterministic finite automata; we shall construct a nondeterministic finite automaton M such that $L(M) = L(M_1)^*$.

- (d) Complementation. Let $M=(K,\Sigma,\delta,s,F)$ be a deterministic finite automaton. Then the complementary language $\overline{L}=\Sigma^*-L(M)$ is accepted by the deterministic finite automaton $\overline{M}=(K,\Sigma,\delta,s,K-F)$. That is, \overline{M} is identical to M except that final and nonfinal states are interchanged.
- (e) Intersection. Just recall that

$$\bar{L}_1 \cap L_2 = \Sigma^* - ((\Sigma^* - L_1) \cup (\Sigma^* - L_2)),$$

Constructing FA from REs

Constructing complex FA for the entire RE in incremental way.

Constructing RE from FA

Constructing a RE for a given NDFA is simplified if we assume that the NDFA has two simple properties.

- 1. It has only one singe Final state.
- 2. There is no transition into the initial state.
- 3. No transition leaving final state.

EX:

