Problem

A subset of the nodes of a graph G is a dominating set if every other node of G is adjacent to some node in the subset. Let

$DOMINATING\text{-}SET = \{\langle G, k \rangle | G \text{ has a dominating set with } k \text{ nodes} \}.$

Show that it is NP-complete by giving a reduction from VERTEX-COVER.

Step-by-step solution

Step 1 of 3

NP-Complete:

A language B is NP-Complete if it satisfies 2 conditions.

- 1. B is in NP
- 2. Every A in NP is polynomial time reducible to B.

Comment

Step 2 of 3

1. DOMINATING - SET is in NP:

- Consider an instance $\langle G, k \rangle$ of the *DOMINATING-SET* and a covering *D*.
- Check that each node of G is adjacent to some node in D.
- This can be done in polynomial time.
- Therefore, DOMINATING-SET is in NP.

Comment

Step 3 of 3

2 VERTEX - COVER ≤_P DOMINATING - SET

Now show that VERTEX-COVER reduces to DOMINATING-SET.

- Consider an instance $\langle (V,E),k \rangle$ of VERTEX-COVER.
- $\cdot \text{Construct an instance } \left\langle \left(\left(V S \right) \cup V', E \cup E' \right), k \right\rangle \text{ of } \textit{DOMINATING-SET} \text{ where } S \subseteq V \text{ are nodes of degree 0.}$
- For each edge $(u,v) \in E$, there are edges (u,w) and (w,v) in E where $w \in v$ in new vertex corresponding to (u,v).
- Let $G = \langle V, E \rangle$ and $G' = \langle (V S) \cup V', E \cup E' \rangle$
- Suppose $(\langle V, E \rangle, k)$ is in VERTEX-COVER.
- . There exits $C \subseteq V$ of size k where each edge $(u,v) \in E$ has either $u \in C$ or $v \in C$.
- If $v \in (V S)$ then the degree of v is one or more then there exists a node u such that $(u, v) \in E$ which implies that at least one of u or v is in C. Thus, v is covered.
- If $w \in V$ then w is adjacent to both u and v where $(u,v) \in E$ which implies that at least one of u or v is in C. Thus, w is covered.

In other direction, suppose that $\left\langle \left((V-S) \cup V', E \cup E' \right), k \right\rangle$ is in *DOMINATING-SET*.

- Then there exists $C \subseteq ((V-S) \cup V')_{\text{of size } k}$.
- \cdot In such cases in which multiple such $\ C$ exist, it can be said that at least one includes no vertices in $\ V'$.

- This is always exists since $w \in (C \cap V')$ that corresponds to edge (u,v) covers only nodes u,v,w, but using u instead of w covers u,v,w, and possibly more.
- Therefore, $C \subseteq (V-S)$ and C is a vertex cover for G .
- This is because C is a *DOMINATING-SET* for G' implying that all nodes of V' are covered. Thus, every edge $(u,v) \in E$ has at least one of u,v in c.

Therefore, VERTEX - $COVER \le_{P} DOMINATING$ - SET.

From (1) and (2), DOMINATING-SET is NP-complete.

Comment