EXERCICES: POLYNÔMES

1 L'algèbre $\mathbb{K}[X]$

1.1 Équations sur $\mathbb{R}[X]$

1. Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que :

$$P(2X) = P'(X) P''(X)$$

2. Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que :

$$X(X+1)P'' + (X+2)P' - P = 0$$

1.2 Coefficients binomiaux

On donne un entier $n \ge 1$.

- 1. Pour $a, b \in \mathbb{R}$, calculer la dérivée *n*-ième du polynôme $P = (X a)^n (X b)^n$.
- 2. En déduire une expression simplifiée de la somme

$$S = \sum_{k=0}^{n} \binom{n}{k}^2$$

1.3 Polynômes de Tchebychev

On définit la suite de polynômes (P_n) par :

$$P_0 = 1$$
 $P_1 = X$ et $[\forall n \in \mathbb{N} \ P_{n+2} = 2XP_{n+1} - P_n]$

- 1. Calculer les premiers polynômes P_n (pour $n \leq 5$).
- 2. Montrer que pour tout $n \in \mathbb{N}$, P_n est l'unique polynôme tel que :

$$\forall x \in \mathbb{R} \quad P_n\left(\cos x\right) = \cos\left(nx\right)$$

3. En déduire les racines de P_n .

2 Arithmétique des polynômes

2.1 Division euclidienne

1. Trouver le reste et le quotient de la division euclidienne de A par B dans les cas suivants :

--
$$A = X^3 - 2X + 1$$
 et $B = X^2 - 1$
-- $A = X^4 - 2X^3 + 1$ et $B = X + 1$

2. Trouver les restes dans la division de $(X-3)^{2n} - (X-2)^n - 2$ par (X-2)(X-3) et $(X-3)^3$.

- 3. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Déterminer le reste de la division du polynôme $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$.
- 4. Soit $n \in \mathbb{N}^*$. Trouver le reste de la division euclidienne de $X^n + nX^{n-1} + X^2 + 1$ par $(X+1)^2$.

2.2 Calculs de pgcd

- 1. Calculer le pgcd des polynômes $X^5 4X^4 + 6X^3 6X^2 + 5X 2$ et $X^4 + X^3 + 2X^2 + X + 1$.
- 2. Soit p et q deux entiers naturels.
 - (a) Calculer le reste de la division euclidienne de $X^p 1$ par $X^q 1$.
 - (b) En déduire le pgcd de $X^p 1$ et $X^q 1$.

2.3 Calcul de coefficients

Soit $n \in \mathbb{N}^*$.

1. Montrer qu'il existe un unique couple (P,Q) de polynômes de degrés strictement inférieurs à n tels que :

$$(1-X)^n P(X) + X^n Q(X) = 1$$

2. Montrer que:

$$P(X) = Q(1 - X)$$
 et $Q(X) = P(1 - X)$

3. Montrer qu'il existe une constante k telle que :

$$(1-X)P'(X) - nP(X) = kX^{n-1}$$

4. En déduire les coefficients de P.

2.4 Factorisation sur $\mathbb{Q}[X]$

Soit $a_0, \ldots, a_n \in \mathbb{Z}$ et P le polynôme :

$$P = a_0 + a_1 X + \dots + a_n X^n$$

- 1. Montrer que si r = p/q (avec (p,q) = 1) est racine de P, alors $q|a_n$ et $p|a_0$. Que dire si $a_n = 1$?
- 2. Montrer que si r est une racine de P, alors :

$$\forall m \in \mathbb{Z} \quad p - mq | P(m)$$

3. En déduire la décomposition en facteurs irréductibles sur $\mathbb{Q}[X]$ des polynômes :

$$X^3 - X - 1$$
 $3X^3 - 2X^2 - 2X - 5$

$$6X^4 + 19X^3 - 7X^2 - 26X + 12$$

3 Racines d'un polynôme

3.1 Racines d'un polynôme

- 1. Soit $P \in \mathbb{R}[X]$. Montrer que P X divise $P \circ P X$.
- 2. Résoudre sur $\mathbb C$ l'équation :

$$(z^2 - 3z + 1)^2 = 3z^2 - 8z + 2$$

3.2 Calculs trigonométriques

Soit $n \ge 2$. On définit le polynôme P_n dans $\mathbb{C}[X]$ par :

$$P_n = (X+1)^n - (X-1)^n$$

- 1. Factoriser P_n dans $\mathbb{C}[X]$
- 2. En déduire pour tout $p \in \mathbb{N}^*$ la valeur de :

$$\sum_{k=1}^{p} \cot^{2} \left(\frac{k\pi}{2p+1} \right) \quad \text{et} \quad \prod_{k=1}^{p} \cot \left(\frac{k\pi}{2p+1} \right)$$

3.3 Factorisation dans $\mathbb{R}[X]$

Factoriser dans $\mathbb{R}[X]$:

$$X^3 - 1$$
 $X^6 + 1$ et $X^8 + X^4 + 1$

3.4 Racines doubles

Quelles sont les valeurs de $n \in \mathbb{N}$ pour les quelles le polynôme

$$(X-1)^n - (X^n-1)$$

admet une racine double?

3.5 Résolution d'une équation polynomiale

Déterminer les polynômes P non constants de $\mathbb{C}[X]$ vérifiant :

$$P(X^2) = P(X)P(X+1)$$

3.6 Relations entre coefficients et racines

- 1. Soit p, q et r trois nombres complexes et a, b, c les trois racines du polynôme $X^3 + pX^2 + qX + r$. Calculer en fonction de p, q et r l'expression $a^3b + a^3c + b^3c + b^3a + c^3a + c^3b$.
- 2. On considère le polynôme :

$$X^4 + pX^2 + qX + r$$

avec $r \neq 0$. On note x_1, \ldots, x_4 ses racines. Calculer les expressions suivantes en fonction de p, q et r:

$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$$

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} + \frac{1}{x_4^2}$$