Deep Learning

Perceptron to sigmoid neuron

Puneet Kumar Jain

CSE Department

National Institute of Technology Rourkela

The Slides are prepared from the following major source:

"CS7105-Deep Learning" by Mitesh M. Khapra, IIT Madras.

http://www.cse.iitm.ac.in/~miteshk/CS7015_2018.html

Enough about boolean functions!

What about arbitrary functions of the form

y = f(x) where $x \in \mathbb{R}^n$ (instead of $\{0, 1\}^n$) and

 $y \in \mathbb{R}$ (instead of $\{0, 1\}$)?

Can we have a network which can (approximately) represent such functions?

The thresholding logic used by a perceptron is very harsh!

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51?

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51? (like)

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51? (like)

What about a movie with criticsRating = 0.49?

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51? (like)

What about a movie with *criticsRating* = 0.49 ? (dislike)

The thresholding logic used by a perceptron is very harsh!

For example, let us return to our problem of deciding whether we will like or dislike a movie

Consider that we base our decision only on one input ($x_1 = criticsRating$ which lies between 0 and 1)

If the threshold is 0.5 ($w_0 = -0.5$) and $w_1 = 1$ then what would be the decision for a movie with criticsRating = 0.51? (like)

What about a movie with *criticsRating* = 0.49 ? (dislike)

It seems harsh that we would like a movie with rat- ing 0.51 but not one with a rating of 0.49

It is a characteristic of the perceptron function itself which behaves like a step function

There will always be this sudden change in the decision (from 0 to 1) when $\sum_{i=1}^{n} w_i x_i$ crosses the threshold (- w_0)

For most real world applications we would expect a smoother decision function which gradually changes from 0 to 1

Sigmoid neuron

Introducing sigmoid neurons where the output function is much smoother than the step function Here is one form of the sigmoid function called the logistic function

$$y = \frac{1}{1 + e^{-(w_0 + \sum_{i=1}^n w_i x_i)}}$$

We no longer see a sharp transition around the threshold $-w_0$

Sigmoid neuron

Introducing sigmoid neurons where the output function is much smoother than the step function Here is one form of the sigmoid function called the logistic function

$$y = \frac{1}{1 + e^{-(w_0 + \sum_{i=1}^n w_i x_i)}}$$

We no longer see a sharp transition around the threshold $-w_0$

Also the output y is no longer binary but a real value between 0 and 1 which can be interpreted as a probability

Instead of a like/dislike decision we get the probability of liking the movie

Perceptron vs sigmoid neuron

$$y = 1 \quad \text{if } \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad \text{if } \sum_{i=0}^{n} w_i * x_i < 0$$
$$= 0$$

Sigmoid (logistic) Neuron

Perceptron vs sigmoid neuron

Not smooth, not continuous (at w0), **not differentiable**

Smooth, continuous, differentiable

Typical Supervised ML Setup

Earlier we mentioned that a single perceptron cannot deal with this data because it is not linearly separable

We would probably end up with a line like this ...

This line doesn't seem to be too bad

Sure, it misclassifies 3 blue points and 3 red points but we could live with this error in **most** real world applications

From now on, we will accept that it is hard to drive the error to 0 in most cases and will instead aim to reach the minimum possible error

Data: $\{x_i, y_i\}_{i=1}^n$

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \mathbf{x})}}$$

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x})}}$$
or
$$\hat{y} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
or
$$\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{W}\mathbf{x}$$

or just about any function

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x})}}$$
or
$$\hat{y} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
or
$$\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{W}\mathbf{x}$$

or just about any function

Parameters: In all the above cases, w is a parameter which needs to be learned from the data

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x})}}$$
or
$$\hat{y} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
or
$$\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{W}\mathbf{x}$$

or just about any function

Parameters: In all the above cases, w is a parameter which needs to be learned from the data

Learning algorithm: An algorithm for learning the parameters (w) of the model (for example, perceptron learning algorithm, gradient descent, etc.)

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x})}}$$
or
$$\hat{y} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
or
$$\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{W}\mathbf{x}$$

or just about any function

Parameters: In all the above cases, w is a parameter which needs to be learned from the data

Learning algorithm: An algorithm for learning the parameters (w) of the model (for example, perceptron learning algorithm, gradient descent, etc.)

Objective/Loss/Error function: To guide the learning algorithm

Data: $\{x_i, y_i\}_{i=1}^n$

Model: Our approximation of the relation between **x** and *y*. For example,

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}}\mathbf{x})}}$$
or
$$\hat{y} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
or
$$\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{W}\mathbf{x}$$

or just about any function

Parameters: In all the above cases, w is a parameter which needs to be learned from the data

Learning algorithm: An algorithm for learning the parameters (*w*) of the model (for example, perceptron learning algorithm, gradient descent, etc.)

Objective/Loss/Error function: Toguide the learning algorithm

the learning algorithm should aim to minimize the loss function

Data:
$$\{x_i = movie, y_i = like/dislike\}_{i=1}^n$$

Data: $\{x_i = movie, y_i = like/dislike\}_{i=1}^n$

Model: Our approximation of the relation between \mathbf{x} and y (the probability of liking a movie).

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \mathbf{x})}}$$

Data: $\{x_i = movie, y_i = like/dislike\}_{i=1}^n$

Model: Our approximation of the relation between \mathbf{x} and y (the probability of liking a movie).

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \mathbf{x})}}$$

Parameter: w

Data: $\{x_i = movie, y_i = like/dislike\}_{i=1}^n$

Model: Our approximation of the relation between \mathbf{x} and y (the probability of liking a movie).

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathsf{T}} \mathbf{x})}}$$

Parameter: w

Learning algorithm: Gradient Descent [we will see soon]

Supervised ML setup: example

As an illustration, consider our movie example

Data: $\{x_i = movie, y_i = like/dislike\}_{i=1}^n$

Model: Our approximation of the relation between \mathbf{x} and y (the probability of liking a movie).

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \mathbf{x})}}$$

Parameter: w

Learning algorithm: Gradient Descent [we will see soon]

Objective/Loss/Error function: One Possibility is

$$L(\mathbf{w}) = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

The learning algorithm should aim to find a w which minimizes the above function (squared error between y and \hat{y})

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Keeping this supervised ML setup in mind, we will now focus on this **model** and discuss an **algorithm** for learning the **parameters** of this model from some given **data** using an appropriate **objective function**

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

For ease of explanation, we will consider a very simplified version of the model having just 1 input Further to be consistent with the literature, from now on, we will refer to w_0 as b (bias)

Lastly, instead of considering the problem of predicting like/dislike, we will assume that we want to predict criticsRating(y) given imdbRating(x) (for no particular reason)

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Input for training

$$\{x_i, y\}_{i=1}^N \to N \text{ pairs of } (x, y)$$

Training objective

Find *w* and *b* such that:

$$\underset{w,b}{\text{minimize } L \ (w,b)} = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

What does it mean to train the network?

Suppose we train the network with (x, y) = (0.5, 0.2) and (2.5, 0.9)

$$f(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

What does it mean to train the network?

Suppose we train the network with (x, y) = (0.5, 0.2) and (2.5, 0.9)

At the end of training we expect to find w*, b* such that:

$$f(0.5) \rightarrow 0.2 \text{ and } f(2.5) \rightarrow 0.9$$

Can we try to find such a w^* , b^* manually Let us try a random guess.. (say, w = 0.5, b = 0)

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

Can we try to find such a w^* , b^* manually Let us try a random guess.. (say, w = 0.5, b = 0) Clearly not good, but how bad is it? Let us revisit L(w, b) to see how bad it is ...

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$L(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$L(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$L(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$L(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$= 0.073$$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$L(w,b) = \frac{1}{2} * \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \frac{1}{2} * (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2$$

$$= \frac{1}{2} * (0.9 - f(2.5))^2 + (0.2 - f(0.5))^2$$

$$= 0.073$$

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

We want L(w, b) to be as close to 0 as possible

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

W	b	L(w, b)
0.50 -0.10		0.0730 0.1481

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

Oops!! this made things even worse...

W	b	L(w, b)
0.50	0.00	0.0730
-0.10 0.94	0.00 -0.94	0.1481 0.0214

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

Perhaps it would help to push w and b in the other direction...

W	b	L(w, b)
0.50	0.00	0.0730
-0.10	0.00	0.1481
0.94	-0.94	0.0214
1.42	-1.73	0.0028
1.65	-2.08	0.0003
1.78	-2.27	0.0000

$$\sigma(x) = \frac{1}{1 + e^{-(wx+b)}}$$

With some guess work and intuition we were able to find the right values for w and b

Let us look at the geometric interpretation of our "guess work" algorithm in terms of this error surface

Since we have only 2 points and 2 parameters (w, b) we can easily plot L (w, b) for different values of (w, b) and pick the one where L (w, b) is minimum

But of course this becomes intractable once you have many more data points and many more parameters!!

Further, even here we have plotted the error surface only for a small range of (w, b) [from (-6, 6) and not from $(-\inf, \inf)$]

End of topic