Определения по матану, семестр 4

11 марта 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	2
2	Сходимость почти везде	2
3	Сходимость по мере	2
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	2
5	Интеграл ступенчатой функции	2
6	Интеграл неотрицательной измеримой функции	9
7	Суммируемая функция	9
8	Интеграл суммируемой функции	9
9	Произведение мер	4
10	Теорема Фубини	4
11	Образ меры при отображении	
12	Взвешенный образ меры	
13	Плотность одной меры по отношению к другой	
14	Заряд, множество положительности 14.1 Заряд	

1 Свойство, выполняющееся почти везде

 (X,\mathbb{A},μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x. $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

 (X,a,μ) - пространство с мерой, $\mu\cdot X<+\infty$ $f_n,f:X\to \overline{R}$ - п.в. конечны Говорят, что f_n сходится к f по мере μ (при $n\to+\infty$) (обозначается $f_n\stackrel{\mu}{\Rightarrow}f$) если $\forall \epsilon>0$ $\mu(X(|f_n-f|>\epsilon))\stackrel{n\to+\infty}{\to}0$

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,a,μ) - пространство с мерой $f_n,f:X\to R$ - п.в. конечны, измеримы $f_n\to f$. Тогда эта сходимость "почти равномерная"

5 Интеграл ступенчатой функции

< $\mathbb{X},$ $\mathbb{A},$ $\mu>$ - пространство с мерой $f=\sum\limits_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве $\mathbb X$ назовём

$$\int_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

6 Интеграл неотрицательной измеримой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${\bf X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sup(\int\limits_{\mathbb{X}} g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

7 Суммируемая функция

< X, A, $\mu>$ - пространство с мерой f—измерима, $\int\limits_{X} f^+$ или $\int\limits_{X} f^-$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< $\mathbb{X}, \mathbb{A}, \mu>$ - пространство с мерой f- измерима, $E\in\mathbb{A}$ Тогда интегралом f на множестве E назовём

$$\int_{\mathbb{E}} f d\mu := \int_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E, если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны

9 Произведение мер

 $< \mathbb{X}, \alpha, \mu >, < \mathbb{Y}, \beta, \nu >$ - пространства с мерой μ, ν - σ -конечные меры $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$ $m_0 : \alpha \times \beta \to \overline{R}$ $m_0(A \times B) = \mu A \cdot \nu B$

m - называется произведением мер μ и ν , если m - мера, которая ялвяется Лебеговским продолжением m_0 с полукольца $\alpha \times \beta$ на некоторую σ -алгебру $\alpha \otimes \beta$. $m = \mu \times \nu$ - обозначение $< \mathbb{X} \times \mathbb{Y}, \alpha \otimes \beta, \mu \times \nu >$ - произведение пространств с мерой

10 Теорема Фубини

< $X, A, \mu>, <$ $Y, B, \nu>$ - пространство с мерой, $\mu, \nu-\sigma$ -конечные и полные, $m=\mu\times\nu,$ f — суммируемая на $X\times Y$ по m.

Тогда:

• при «почти всех» x функция $f_x \in \mathbb{L}(\mathbb{Y}, \nu)$, то есть суммируема на \mathbb{Y} по ν при «почти всех» y функция $f^y \in \mathbb{L}(\mathbb{X}, \mu)$

$$x \mapsto \phi(x) \mid \phi(x) = \int_{\mathbb{Y}} f_x d\nu \in \mathbb{L}(\mathbb{X}, \mu)$$

$$x \mapsto \psi(x) \mid \psi(x) = \int_{\mathbb{X}} f^y d\mu \in \mathbb{L}(\mathbb{Y}, \nu)$$

Это есть эти функции суммируемы в некотором контексте (\mathbb{X}, μ и \mathbb{Y}, ν соответсвено)

$$\int\limits_{\mathbb{X}\times\mathbb{Y}} fdm = \int\limits_{\mathbb{X}} \phi(x)d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} fd\nu(y))d\mu(x)$$

$$\int_{\mathbb{X}\times\mathbb{Y}} f dm = \int_{\mathbb{Y}} \psi(x) d\nu = \int_{\mathbb{Y}} (\int_{\mathbb{X}} f d\mu(x)) d\nu(y)$$

11 Образ меры при отображении

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, \underline{\ })$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}). Пусть для $\forall E \in \mathbb{B} \ \nu(E) = \mu(\Phi^{-1}(E))$. ν является мерой на Y и называется образом меры μ при отображении Φ .

12 Взвешенный образ меры

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, _)$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}). $\omega: X \to \overline{\mathbb{R}}, \ \omega \geq 0$ — измеримая. Пусть для $E \in \mathbb{B}$ $\nu(E) = \int\limits_{\Phi^{-1}(E)} \omega \ d\mu$.

 ν является мерой на Y и называется взвешенным образом меры μ . При $\omega \equiv 1$ взвешенный образ меры является обычным образом меры.

13 Плотность одной меры по отношению к другой

 (X,\mathbb{A},μ) — пространство с мерой. $\omega:X\to\overline{\mathbb{R}},\ \omega\geq 0$ — измеримая. $\nu(E)=\int_E\omega(x)\ d\mu.\ \nu$ — мера на X. ω называется плотностью ν относительно $\mu.$

14 Заряд, множество положительности

14.1 Заряд

 $(X, \mathbb{A}, _)$ — пространство с σ -алгеброй. $\phi : \mathbb{A} \to \mathbb{R}$ (конечная, не обязательно неотрицательная). ϕ счётно аддитивна. Тогда ϕ — заряд.

14.2 Множество положительности

 $A \subset X$ — множество положительности, если $\forall B \subset A, B$ измеримо: $\phi(B) \geq 0$.е