

14-14	Page
5d)	A hollow weightless hemisphere filled with liquid is suspended from a point on the rim of its base. Show that the ratio of the thrust on the plane base to the weight of the contained liquid is 12:173. (8 m)
	Let 'a' be the radius of the hemisphere and O the point of n'm from which it is suspended. If is suspended. If in be the (.G. of the hemisphere, then CG = 3 a
	and OG must be vertical. If α be the inclination of the bake to the vertical, then $\tan \alpha = \frac{3}{8}$ The whole pressure (thrust) on the base $\omega = \omega \cdot \pi a^2$ (accord)
	(Here $w = w eight per unit volume of liquid- Depth of the (.6. of the boxe below the surface of liquid = c M = a cs x.) Scanned with CamScanner$
	Dote
	rdeight of the liquid contained = w. (2 Tra3)

Date Page
Weight of the liquid contained $= W. \left(\frac{9}{3} \pi a^3\right)$
: Required ratio is W. Hat (dasx)
= 3.84 = 12 2 \sqrt{773} = \sqrt{773}
$\sqrt{\frac{1}{1000}}$ $\sqrt{\frac{3}{8}}$ $\sqrt{\frac{3}{173}}$ $\sqrt{\frac{1}{173}}$ $\sqrt{\frac{1}{173}}$ $\sqrt{\frac{1}{173}}$