the fact that the effective coordination number increases monotonically as a function of L_z .

The use of periodic boundary conditions in the z direction minimizes finite-size effects, so that for a given L_z , $W(S_{(L_z)_P},q)$ would be expected to be closer to W(sc,q) than $W(S_{(L_z)_F},q)$ [30]. Again, to the extent that the lower bounds are close to the actual W functions for these respective slabs, one would expect $W(S_{(L_z)_P},q)_\ell$ to be closer than $W(S_{(L_z)_F},q)_\ell$ to W(sc,q). Our results agree with this expectation. In contrast to $W(S_{(L_z)_F},q)$, $W(S_{(L_z)_P},q)$ is not, in general, a non-increasing function of L_z , as was discussed in general in [30] (see Fig. 1 therein). Thus, values of $W(S_{(L_z)_P},q)$, and hence, a fortiori, $W(S_{(L_z)_P},q)_\ell$, may actually lie slightly below those for W(sc,q), as is evident for the $W(S_{3_P},q)_\ell$ entries in Table I.

VIII. CONCLUSIONS

In this paper we have calculated rigorous lower bounds for the ground state degeneracy per site W, equivalent to the ground state entropy $S_0 = k_B \ln W$, of the q-state Potts antiferromagnet on slabs of the simple cubic lattice that are infinite in two directions and finite in the third. Via comparison with large-q expansions and numerical evaluations, we have shown how the results interpolate between the square (sq) and simple cubic (sc) lattices.

Acknowedgments: This research was supported in part by the NSF grant PHY-06-53342. RS expresses his gratitude to coauthors on previous related works, in particular, S.-H. Tsai and J. Salas, as well as N. Biggs, S.-C. Chang, and M. Roček.

IX. APPENDIX

We note the following results on \mathbb{E}^d lattices and lattice sections: $W(\Lambda_{bip.},2)=1$ for any bipartite lattice; $W(sq,3)=(4/3)^{3/2}$ [37]; and $W(\{L\},q)=W(\{C\},q)=q-1$, where L_n and C_n denote the n-vertex line and circuit graphs. For the infinite-length square-lattice strip of width 2, $W(sq[2_F\times\infty],q)=W(sq[2_P\times\infty],q)=\sqrt{q^2-3q+3}$, where, as in the text, the subscripts F and P denote free and periodic boundary conditions in the direction in which the strip is finite. For the infinite-length strip of the square lattice with (transverse) width 3 and free transverse boundary conditions, $sq[3_F\times\infty]$ [31–33]

$$W(sq[3_F \times \infty], q) = (\lambda_{3_F, max})^{1/3} \tag{9.1}$$

where

$$\lambda_{3_F,max} = \frac{1}{2} \left[(q-2)(q^2 - 3q + 5) + \sqrt{R_3} \right]$$
 (9.2)

with

$$R_3 = (q^2 - 5q + 7)(q^4 - 5q^3 + 11q^2 - 12q + 8)$$
. (9.3)

For the infinite-length strip of the square lattice with width 4 and free transverse boundary conditions, $sq[4_F \times \infty]$ [31, 35]

$$W(sq[4_F \times \infty], q) = (\lambda_{4_F,max})^{1/4} \tag{9.4}$$

where $\lambda_{4_F,max}$ is the largest root of the cubic equation

$$x^{3} + b_{4_{F},1}x^{2} + b_{4_{F},2}x + b_{4_{F},3} = 0 (9.5)$$

with

$$b_{4_F,1} = -q^4 + 7q^3 - 23q^2 + 41q - 33 (9.6)$$

$$b_{4F,2} = 2q^6 - 23q^5 + 116q^4 - 329q^3 + 553q^2 - 517q + 207$$
(9.7)

and

$$b_{4_F,3} = -q^8 + 16q^7 - 112q^6 + 449q^5 - 1130q^4 + 1829q^3$$
$$- 1858q^2 + 1084q - 279.$$
 (9.8)