

KNOWLEDGE BASED SYSTEMS

Knowledge Base (KB)

Reasoning Services

 General knowledge on the application domain

« Cats are Mammals »

Ontology (TBox in DL)

Factual Knowledge
 Description of specific individuals, situations, ...

Félix is a Cat

Factbase, Database (Abox in DL)

Knowledge expressed in a KR language

Fundamental tasks

- Analysing the ontology: satisfiability of a concept, classification of concepts,...
- Computing answers to a query over the KB

. . .

Reasoning algorithms associated with the KR language

WHAT KINDS OF LANGUAGES TO EXPRESS ONTOLOGIES?

Very light languages

Hierarchies of classes

Hierarchies of binary relations (called « roles » or « properties »)

Signatures of these relations (« domain » and « range »)

→ RDF Schema

More expressive fragments of first-order logics

Description Logics

Rule-based languages Datalog, existential rules,

RDF deductive rules, Answer Set Programming ...

From a logical viewpoint: an ontology is composed of

a finite set of predicates (to express concepts and relations)
a finite set of (closed) formulas over these predicates
of the form ∀X (condition[X,...] → conclusion[X,...])

DESCRIPTION LOGICS: STANDARD REASONING TASKS

Standard reasoning tasks on a KB (T, A)

w.r.t. = « with respect to »

- Concept subsumption $T \models C \sqsubseteq D$?
- Concept satisfiability is C satisfiable w.r.t. T?
- KB satisfiability is $(\mathcal{T}, \mathcal{A})$ satisfiable?
- Instance checking $(\mathcal{T},A) \models C(b)$, where b is a constant?

All these tasks can be expressed in terms of KB (un)satisfiability provided that the constructors in the considered DL allow for it

Concept subsumption $\mathcal{T} \models C \sqsubseteq D$ iff $(\mathcal{T}, \{C(a), \neg D(a)\})$ unsatisfiable Concept satisfiability C satisfiable w.r.t. \mathcal{T} iff $(\mathcal{T}, \{C(a), \neg D(a)\})$ satisfiable Instance checking $(\mathcal{T}, \mathcal{A}) \models C(b)$ iff $(\mathcal{T}, \mathcal{A} \cup \{\neg C(b)\})$ unsatisfiable

Query answering **beyond** instance checking?

QUERY ANSWERING BEYOND INSTANCE CHECKING?

Standard expressive DL ALC

Concepts:

$$C := \top \mid A \mid C_1 \sqcap C_2 \mid \exists R.C \mid \neg C \mid C_1 \sqcup C_2 \mid \forall R.C$$

TBox axioms: only concept inclusions

Query answering beyond instance checking?

Instance checking: \exists childOf.T (a)? « Does α have a parent? »

How to answer a more complex query (« conjunctive query »):

Q: $\exists x (childOf(a,x) \land childOf(b,x))$?

« Do a and b have a common parent? »

 $(T,A) \models Q$? cannot be reduced to a standard reasoning task basically because Q cannot be turned into a concept

Query answering with expressive DLs requires other techniques than « tableaux ». It has very high complexity and may even undecidable

ONTOLOGICAL KNOWLEDGE DESCRIBED BY RULES

Logical factbase

∃x (
Prof(Bob)	\wedge
PHS(#1)	\wedge
Comp(C)	\wedge
Pest(x)	\wedge
involvedIn(Bob,#	1) /
fundedBy(Bob,C)	\wedge
about(#1,P)	\wedge
produces(C,x)	\wedge
contains(x,P))	

Basic ontological knowledge

PublicHealthStudy **subclass of** PublicInterestStudy fundedBy **subproperty of** relatedTo

```
\forall x (PHS(x) \rightarrow PIS(x))
\forall x \forall y (fundedBy(x,y) \rightarrow relatedTo(x,y))
```

allows to infer: PIS(#1), relatedTo(Bob,C)

Knowledge Graph

(could be seen as RDF triples)

How to Infer Conflicts of Interest (CoI)?

Query: "Find all x, y, z such that x has a conflict for study y because of its relationships with company z"

q(x,y,z) = ConflictOfInterest(x,y,z)

Col pattern

What kind of **ontological knowledge** would allow to represent the notion of « conflict of interest »?

DEFINING CONFLICTS OF INTEREST

 R_1 : $\forall x \forall y \forall z \text{ (produces(x,y) } \land \text{ contains(y,z)}$ $\rightarrow \text{hasInterest(x,z))}$

 R_2 : $\forall x \forall y \forall z \forall u \ (involved In(x,y) \land PIS(y) \land about(y,u) \land related To(x,z) \land Company(z) \land has Interest(z,u)$

 \rightarrow Col(x,y,z))

We use here a ternary predicate.

What if we only have unary and binary predicates?

Reification: new object of type Col

R₂: $\forall x \forall y \forall z \forall u \ (body[x,y,z,u] \rightarrow \exists o$ (Col(o) \land in(x,o) \land on(o,y) \land with(o,z))

where body[x,y,z,u] is the CoI pattern

INFERRING CONFLICTS OF INTEREST

Prof(Bob), PHS(#1), Comp(C), Pest(x)
involvedIn(Bob,#1), fundedBy(Bob,C)
about(#1,P), produces(C,x), contains(x,P)

Rules (universal quantifiers omitted)

 $PHS(x) \rightarrow PIS(x)$ fundedBy(x,y) \rightarrow relatedTo(x,y)

R₁: produces(x,y) \land contains(y,z) \rightarrow hasInterest(x,z)

R₂: involvedIn(x,y) \land PIS(y) \land about(y,u) \land relatedTo(x,z) \land Company(z) \land hasInterest(z,u)

 $\rightarrow \exists o Col(o) \land in(x,o) \land on(o,y) \land with(o,z)$

Inferred facts

PIS(#1), relatedTo(Bob,C), hasInterest(C,P) Col(o₁), in(Bob,o₁), on(o₁,#1), with(o₁,C)

Query:

q(x,y,z) = $\exists o Col(o) \land in(x,o) \land on(o,y) \land with(o,z)$

Answer: (Bob,#1,C)

Cadre étudié dans ce cours

- Base de connaissances (KB) composée :
 - d'une base de faits
 (qu'on peut voir comme une base de données relationnelle)
 - d'une base de règles positives et conjonctives (Datalog)
- Requêtes conjonctives
 (correspondant à des requêtes de base en SQL / SPARQI)
- Problème fondamental : interrogation de la KB
 (calculer toutes les réponses à une requête conjonctive sur la KB)

Extensions

- Contraintes négatives
- (on évoquera les règles existentielles qui généralisent Datalog)
- Mappings pour extraire une partie d'une base de données relationnelle et la traduire en une base de faits

FACTBASE

Vocabulary : (\mathcal{P} , \mathcal{C}) where

 \mathcal{P} is a finite set of predicates

C is a possibly infinite set of constants

[Arity of a predicate = its number of arguments]

$$P = \{ Prof/1, PHS/1, involvedIn/2, ... \}$$

 $C = \{ Bob, #1, 456, ... \}$

Fact : a ground atom p(e1 ... ek) with p $\in \mathcal{P}$ and ei $\in \mathcal{C}$ [ground = no variables] involvedIn(Bob,#1)

Factbase: usually a set of ground atoms on the vocabulary

F = { Prof(Bob), PHS(#1), involvedIn(Bob,#1) }

logically seen as the conjunction of these atoms

BD RELATIONNELLE VUE COMME UNE BASE DE FAITS

o **Schéma** de BD : ensemble de relations (avec leurs attributs)

ex: Film [titre, directeur, acteur]

Pariscope [salle, titre, horaire]

Coordonnées [salle, adresse, téléphone]

On peut remplacer les attributs par une numérotation : 1,2,3

→ Vue logique : Film, Pariscope, Coordonnées sont des relations (prédicats) ternaires

- o Instance d'une relation (« table ») : ensemble de k-uplets (où k est l'arité de la relation)
- → Vue logique :

valeurs: constantes

instance de relation : ensemble d'atomes

o Instance de BD : ensemble des instances de relation

Une instance de la relation Film

titre	directeur	acteur
The trouble	Hitchcock	Green
The trouble	Hitchcock	Forsythe
The trouble	Hitchcock	MacLaine
The trouble	Hitchcock	Hitchcock
Cries and Whispers	Bergman	Anderson

Vue logique:

{ film(t,h,g), film(t,h,f), film(t,h,m), film(t,h,h), film(c,b,a) }

RELATIONAL DATABASE SEEN AS A FACTBASE

A relational database may naturally be viewed as a factbase

Relational **schema**: finite set R of relations \rightarrow predicates

infinite domain of values \rightarrow constants

Instance of a relation $r \in R$: finite set of tuples on $r \rightarrow atoms$ on r

```
r
attr1 attr2
a1 a2
a2 a3
a1 a1
```

Database instance = { instance for each r in R } → factbase

FACTBASES CAN BE EXTENDED TO UNKNOWN VALUES

Relational database

RDF

Etc.

Abstraction in first-order logic (FOL)

∃x (movie(m1) ∧ movie(m2) ∧ movie(x)
actor(a) ∧ actor(b) ∧ actor(c)
play(a,m1) ∧ play(a,m2) ∧ play(c,x))

We generalize here the classical notion of a fact by existential variables

factbase = existentially closed conjunction of atoms

LABELLED HYPERGRAPH / GRAPH REPRESENTATION

• A fact or a set of facts can be seen as a **set of atoms**

movie(m1), movie(m2), movie(x), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), play(c,x)

- → hence a hypergraph or its associated bipartite (multi-)graph
- one (labelled) node per term
- one (labelled) node per atom (~ hyperedge)
- totally ordered edges

movie(m1), movie(m2), movie(x), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), play(c,x)

If predicates are at most binary: atom nodes can be replaced by **labels** and **directed edges**

CONJUNCTIVE QUERIES (CQ)

```
q(x) = \exists y \text{ (movie(y) } \land \text{ play(x, y))} \quad \text{``find all those who play in a movie "}
      q() = \exists y (movie(y) \land play(a, y))  « does a play in a movie?»
      A CQ is an existentially quantified conjunction of atoms
      The free variables are the answer variables
      If closed formula: Boolean CQ
Simplified notation
          q(x) = \{ movie(y), play(x,y) \}
Rule notation
          ans(x) \leftarrow movie(y), play(x, y)
                                                  classical Datalog notation
          movie(y), play(x, y) \rightarrow ans(x)
                                           alternative notation
Basic SQL queries (on relational databases)
          SELECT ... FROM ... WHERE <equalities: restrictions and joins>
Basic SPARQL (on RDF triples)
          SELECT ... WHERE <basic graph pattern>
```

REQUÊTES CONJONCTIVES EN SQL

En SQL: « SELECT ... FROM ... WHERE conditions de jointure »

Film [titre, directeur, acteur]
Pariscope [salle, titre, horaire]
Coordonnées [salle, adresse, tel]

« trouver les noms des films où Hitchcock joue »

SELECT Film.Titre FROM Film
WHERE Film.Acteur = « Hitchcock »

Vue logique?

 $q(x) = \exists y \text{ Film}(x,y,\text{Hitchcock})$

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

- Requête SQL ?
- Vue logique?

« trouver les noms des salles dans lesquelles on joue un film de Bergman »

```
SELECT Pariscope.Salle
FROM Film, Pariscope
WHERE
Film.Directeur = « Bergman »
AND Film.Titre=Pariscope.Titre
```

Vue logique:

 $q(z) = \exists x \exists y \exists t (Film(x, Bergman, y) \land Pariscope(z, x, t))$

KEY NOTION: HOMOMORPHISM

$$q(x) = \exists y (movie(y) \land play(x, y))$$

movie(y) play(x, y)

movie(m1)

movie(m2)

movie(m3)

actor(a)

actor(b)

actor(c)

play(a,m1)

play(a,m2)

play(c,m3)

substitution of var(q) by terms(F) such that
$$h(q) \subseteq F$$

Homomorphism *h* from *q* to *F*:

$$h1: x \rightarrow a$$

 $y \rightarrow m1$

 $h1(q) = movie(m1) \land play(a, m1)$

 $h2: x \rightarrow a$ $y \rightarrow m2$

 $h2(q) = movie(m2) \land play(a, m2)$

$$h3: x \rightarrow c$$

 $y \rightarrow m3$

 $h3(q) = movie(m3) \land play(c, m3)$

Answers: obtained by restricting the domains of homomorphisms to answer variables

x = ax = c

Answers to a Conjunctive Query

Let F be a factbase

- The **answer** to a Boolean CQ q in F is yes if $F \models q$ yes = ()
- Let the CQ $q(x_1,...,x_k)$. A tuple $(a_1,...,a_k)$ of constants is an answer to q on a factbase F if $F \models q[a_1,...,a_k]$, where $q[a_1,...,a_k]$ is the Boolean CQ obtained from $q(x_1,...,x_k)$ by replacing each x_i by a_i
- Let F and q be seen as sets of atoms. A **homomorphism** h from q to F is a mapping from variables(q) to terms(F) such that $h(q) \subseteq F$

```
F \models q() iff q can be mapped by homomorphism to F
```

 $(a_1, ..., a_k)$ is an answer to $q(x_1, ..., x_k)$ on F iff there is a homomorphism from q to F that maps each x_i to a_i

EXEMPLE: INTERROGATION D'UNE BASE DE FAITS

BF F

p(a,b)
p(b,a)
p(a,c)
q(b,b)
q(a,c)
q(c,b)

$$Q_1() = \{ p(x,y), p(y,z), q(z,x) \}$$

 $Q_2(x) = \{ p(x,y), p(y,z), q(z,x) \}$

Homomorphismes de Q_1 et Q_2 dans F?

$$x \mapsto b$$
 $x \mapsto b$
 $y \mapsto a$ $y \mapsto a$
 $z \mapsto c$ $z \mapsto b$

Donc ensembles des réponses à Q₁ et Q₂ dans F :

$$Q_1(F) = \{()\}$$
 « yes » $Q_2(F) = \{ (b) \}$

Ne pas confondre $Q_1(F) = \{()\}$ avec $Q_1(F) = \{\}$

Règles positives a la Datalog (« range-restricted »)

 $\forall x_1 ... \forall x_n (B \rightarrow H)$ B for Body, H for Head

Pour les DECOL : attention, en module IA, H était l'hypothèse, ici c'est la conclusion!

où:

- B est une conjonction d'atomes (hypothèse, prémisses, condition, corps)
- H est un atome (conclusion, tête)
- x₁ ...x_n sont les variables du corps B
- o toutes les variables de la tête H apparaissent dans le corps B

 $R_1: \forall x \forall y \forall z \text{ (produces}(x,y) \land \text{contains}(y,z) \rightarrow \text{hasInterest}(x,z) \text{)}$

R₂: $\forall x \forall y \forall z \forall u \ (involvedIn(x,y) \land PIS(y) \land about(y,u) \land relatedTo(x,z) \land Company(z) \land hasInterest(z,u) \rightarrow Col(x,y,z))$ Datalog

R'₂: $\forall x \forall y \forall z \forall u \text{ (involvedIn(x,y) } \land PIS(y) \land about(y,u) \land pas Datalog relatedTo(x,z) <math>\land Company(z) \land hasInterest(z,u) \rightarrow \exists o \text{ (CoI(o)} \text{ (" règle existentielle ")} } \land in(x,o) \land on(o,y) \land with(o,z))$

Notation simplifiée : sans ∀ et des virgules à la place des ∧

QUERY ANSWERING ON A KB

Knowledge Base

The answer to a Boolean CQ Q in K is yes if $K \models Q$

A tuple $(a_1, ..., a_k)$ of *constants* is an answer to $Q(x_1, ..., x_k)$ with respect to K if $K \models Q[a_1, ..., a_k]$,

where $Q[a_1,...,a_k]$ is obtained from $Q(x_1,...,x_k)$ by replacing each x_i by a_i .

In our framework: K = (F, R) where:

F is a (ground) factbase R is a set of rules

K is logically seen as the conjunction of F and all rules in $\mathcal R$

How to actually compute the answers to a query on a KB?

Forward chaining: starting from F, we iteratively compute all the facts that are consequences of the current factbase and the rules.

```
F = { fundedBy(Bob,C), Company(C) }

R = \forall x \forall y (fundedBy(x,y) \rightarrow relatedTo(x,y))

F,R \models relatedTo(Bob,C)
```

A rule $R: B \rightarrow H$ is applicable to a factbase F if there is a homomorphism h from B to F

Applying R to F according to h consists of adding h(H) to F

$$\begin{array}{c} h: body(R) \rightarrow F \\ x \mapsto Bob \\ y \mapsto C \end{array}$$

Properties of datalog rules

• $K = (F, \mathcal{R})$ where

F is a set of (ground) facts

 ${\mathcal R}$ is a set of Datalog rules

By applying rules from \mathcal{R} starting from F, a unique result is obtained:

the saturation of F by \mathcal{R} (denoted here by F^*)

F* is finite since no new variable is created

F* allows to compute the answers to a CQ on K:

 $(a_1, ..., a_k)$ is an answer to $q(x_1, ..., x_k)$ on K iff there is a homomorphism from q to K that maps each x_i to a_i

If k=0: () is an answer means « yes »

EXEMPLE (PISTES CYCLABLES)

F Direct(A,B)
Direct(B,C)
Direct(C,D)
Direct(D,B)

Direct(X,y) \rightarrow Chemin(x,y)

Chemin(x,y) \rightarrow Chemin(x,z)

 $Q(x) = Chemin(A,x) \land Chemin(x,D)$

« trouver tous les x qui sont sur un chemin de A à D »

On cherche les homomorphismes de Q dans F*

$$x \mapsto B$$
 $x \mapsto C$ $x \mapsto D$

$$Q(F^*) = \{ (B), (C), (D) \}$$

EXERCICE: HOMOMORPHISMES

Ces graphes représentent des requêtes (q_i) où les variables réponses sont x1 et x2 et une base de faits (F).

Il y a un seul prédicat binaire p.

Trouver tous les homomorphismes des q_i dans F. En déduire les différents ensembles de réponses.