```
In [6]:
         import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.svm import SVC
         from sklearn.metrics import confusion matrix, classification report, accuracy score
         file_path = r"C:\Users\s monisi prabha\Downloads\credit_customers (DS).csv"
         data = pd.read csv(file path)
         data.drop_duplicates(inplace=True)
         categorical_columns = data.select_dtypes(include=['object']).columns.tolist()
         categorical_columns.remove('class')
         data encoded = pd.get dummies(data, columns=categorical columns, drop first=True)
         X = data_encoded.drop(columns=['class'])
         y = data_encoded['class'].apply(lambda x: 1 if x == 'good' else 0)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_stat
         model_lr = LogisticRegression(max_iter=1000)
         model lr.fit(X train, y train)
         y_pred_lr = model_lr.predict(X_test)
         model_knn = KNeighborsClassifier(n_neighbors=5)
         model_knn.fit(X_train, y_train)
         y_pred_knn = model_knn.predict(X_test)
         model_svm_linear = SVC(kernel='linear')
         model_svm_linear.fit(X_train, y_train)
         y_pred_svm_linear = model_svm_linear.predict(X_test)
         model_svm_rbf = SVC(kernel='rbf')
         model svm rbf.fit(X train, y train)
         y_pred_svm_rbf = model_svm_rbf.predict(X_test)
         print(confusion_matrix(y_test, y_pred_lr))
         print(classification report(y test, y pred lr))
         print(confusion_matrix(y_test, y_pred_knn))
         print(classification_report(y_test, y_pred_knn))
         print(confusion_matrix(y_test, y_pred_svm_linear))
         print(classification_report(y_test, y_pred_svm_linear))
         print(confusion_matrix(y_test, y_pred_svm_rbf))
         print(classification_report(y_test, y_pred_svm_rbf))
         acc_lr = accuracy_score(y_test, y_pred_lr)
         print(f"\nLogistic Regression Accuracy: {acc_lr:.4f}")
         acc_knn = accuracy_score(y_test, y_pred_knn)
         print(f"KNN Accuracy: {acc_knn:.4f}")
         acc_svm_linear = accuracy_score(y_test, y_pred_svm_linear)
         print(f"SVM Linear Accuracy: {acc_svm_linear:.4f}")
         acc_svm_rbf = accuracy_score(y_test, y_pred_svm_rbf)
         print(f"SVM RBF Accuracy: {acc_svm_rbf:.4f}")
```

best_model = max(acc_lr, acc_knn, acc_svm_linear, acc_svm_rbf)
print(f"\nBest Model Accuracy: {best_model:.4f}")

[[32 27] [16 125]]				
[10 125]]	precision	recall	f1-score	support
0	0.67	0.54	0.60	59
1	0.82	0.89	0.85	141
accuracy	0.74	0.71	0.79	200
macro avg weighted avg	0.74 0.78	0.71 0.79	0.73 0.78	200 200
[[13 46]				
[19 122]]	precision	recall	f1-score	support
	•			
0 1	0.41 0.73	0.22 0.87	0.29 0.79	59 141
	0175	0.07		
accuracy macro avg	0.57	0.54	0.68 0.54	200 200
weighted avg	0.63	0.68	0.64	200
[[28 31] [17 124]]				
[17 124]]	precision	recall	f1-score	support
0	0.62	0.47	0.54	59
1	0.80	0.88	0.84	141
accuracy			0.76	200
macro avg weighted avg	0.71 0.75	0.68 0.76	0.69 0.75	200 200
	0.75	0.70	0.75	200
[[3 56] [1 140]]				
[110]]	precision	recall	f1-score	support
0	0.75	0.05	0.10	59
1	0.71	0.99	0.83	141
accuracy			0.71	200
macro avg weighted avg	0.73 0.72	0.52 0.71	0.46 0.61	200 200
0	5., <u>L</u>	0.71	0.01	_30

Logistic Regression Accuracy: 0.7850

KNN Accuracy: 0.6750

SVM Linear Accuracy: 0.7600 SVM RBF Accuracy: 0.7150

Best Model Accuracy: 0.7850

In []: