Pembuktian Teorema Statistika Sebaran Percontohan dan Dalil Limit Pusat

STK473 - Praktikum 5

Sebaran Percontohan

→ Sebaran peluang dari suatu statistik tertentu ←

Teorema Limit Pusat

Misalkan X_1 , X_2 , ..., X_n adalah contoh acak dari populasi dengan nilai tengah μ dan ragam σ^2 (sebarannya tidak harus normal). Jika $\bar{X} = (X_1 + X_2 + \dots + X_n)/n$ dan n besar (secara matematis $n \rightarrow \infty$) maka \bar{X} akan menyebar NORMAL dengan nilai tengah μ dan ragam σ^2/n

• Dalil limit pusat sangat berguna sebagai dasar atau alasan mengapa kita sering menggunakan sebaran NORMAL dalam inferensi statistika walaupun sebaran datanya TIDAK NORMAL.

Teorema Limit Pusat

- Algoritme
 - Tentukan ukuran contoh (n)
 - Tentukan sebaran data
 - Ulang k kali
 - ullet Ambil n contoh acak dari sebaran data yang sudah ditentukan
 - Hitung rataannya lalu simpan
 - Periksa sebaran dari k rataan

- Kondisi:
 - Populasi tak terhingga
 - Populasi terhingga
- Faktor:
 - Banyaknya contoh (10, 30, 100)
 - Jenis distribusi (Normal, Exponential, Uniform)

Populasi Tak Terhingga

	n=10	n=30	n=100
Normal	k<-1000	k<-1000	k<-1000
	n<-10	n<-30	n<-100
	x11<-matrix(rnorm(n*k),k)	x12<-matrix(rnorm(n*k),k)	x13<-matrix(rnorm(n*k),k)
	x11<-apply(x11,1,mean)	x12<-apply(x12,1,mean)	x13<-apply(x13,1,mean)
	hist(x11); mean(x11); var(x11)	hist(x12); mean(x12); var(x12)	hist(x13); mean(x13); var(x13)
Eksponensial	k<-1000	k<-1000	k<-1000
	n<-10	n<-30	n<-100
	x21<-matrix(rexp(n*k),k)	x22<-matrix(rexp(n*k),k)	x23<-matrix(rexp(n*k),k)
	x21<-apply(x21,1,mean)	x22<-apply(x22,1,mean)	x23<-apply(x23,1,mean)
	hist(x21); mean(x21); var(x21)	hist(x22); mean(x22); var(x22)	hist(x23); mean(x23); var(x23)
Seragam	k<-1000	k<-1000	k<-1000
	n<-10	n<-30	n<-100
	x31<-matrix(runif(n*k),k)	x32<-matrix(runif(n*k),k)	x33<-matrix(runif(n*k),k)
	x31<-apply(x31,1,mean)	x32<-apply(x32,1,mean)	x33<-apply(x33,1,mean)
	hist(x31); mean(x31); var(x31)	hist(x32); mean(x32); var(x32)	hist(x33); mean(x33); var(x33)

```
windows();par(mfrow=c(3,3))
hist(x11);hist(x12);hist(x13);
hist(x21);hist(x22);hist(x23);
hist(x31);hist(x32);hist(x33);
```

Populasi Terhingga

```
y1<-rnorm(10000)
y2<-rexp(10000)
y3<-runif(10000)
hist(y1); mean(y1); var(y1)
hist(y2); mean(y2); var(y2)
hist(y3); mean(y3); var(y3)</pre>
```

• Populasi Terhingga

k<-1000	k<-1000	k<-1000
n<-10	n<-30	n<-100
z11<-matrix(sample(y1,	z12<-matrix(sample(y1,	z13<-matrix(sample(y1,
n*k),k)	n*k),k)	n*k),k)
z21<-matrix(sample(y2,	z22<-matrix(sample(y2,	<pre>z23<-matrix(sample(y2,</pre>
n*k),k)	n*k),k)	n*k),k)
z31<-matrix(sample(y3,	z32<-matrix(sample(y3,	z33<-matrix(sample(y3,
n*k),k)	n*k),k)	n*k),k)
z11<-apply(z11,1,mean)	z12<-apply(z12,1,mean)	z13 < -apply(z13,1,mean)
z21<-apply(z21,1,mean)	z22<-apply(z22,1,mean)	z23 < -apply(z23,1,mean)
z31 < -apply(z31, 1, mean)	z32 < -apply(z32,1,mean)	z33 < -apply(z33,1,mean)
hist(z11)	hist(z12)	hist(z13)
mean(z11)	mean(z12)	mean(z13)
var(z11)	var(z12)	var(z13)
hist(z21)	hist(z22)	hist(z23)
mean(z21)	mean(z22)	mean(z23)
var(z21)	var(z22)	var(z23)
hist(z31)	hist(z32)	hist(z33)
mean(z31)	mean(z32)	mean(z33)
var(z31)	var(z32)	var(z33)

```
windows();par(mfrow=c(3,3))
hist(z11);hist(z12);hist(z13);
hist(z21);hist(z22);hist(z23);
hist(z31);hist(z32);hist(z33);
```

Population Distributions

Sampling Distributions of x

$$n=5$$
 x

thank you!