Sivas Cumhuriyet Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

Bil2109 Ayrık İşlemsel Yapılar 2018-Güz Bütünleme Sınavı

1. "Yağmur yağarsa ıslanırım. Yağmur yağıyor. O halde ıslanacağım" çıkarımı önermesel mantıkla $(p \Rightarrow q) \land p \Rightarrow q$ ile gösterilebilir.

"Kar yağarsa okul tatil olur. Kar yağmıyor. O halde okul tatil olmaz" çıkarımını yukarıdaki gibi önermesel mantıkla gösteriniz. Ortaya çıkan birleşik önermenin totoloji olup olmadığını doğruluk tablosu çizerek gösteriniz.(15 puan)

Çözüm.

p: kar yagması

q: okulun tatil olması

$$(p \Rightarrow q) \land \sim p \Rightarrow \sim q$$

p	q	$p \Rightarrow q$	~p	$(p \Rightarrow q) \land \sim p$	~q	$(p \Rightarrow q) \land \sim p \Rightarrow \sim q$
D	D	D	Y	Y	Y	D
D	Y	Y	Y	Y	D	D
Y	D	D	D	D	Y	Y
Y	Y	D	D	D	D	D

 $(p \Rightarrow q) \land \sim p \Rightarrow \sim q$ kolonu tamamı doğrulardan oluşmadığı için önerme totoloji değildir.

2. Girilen bir n pozitif tamsayısı için 2'nin kuvvetini hesaplayan <u>rekürsif</u> bir algoritma yazınız. Bu algoritmanın doğru çalıştığını tümevarımla gösteriniz (20 puan).

Çözüm.

ustAl(n)

- 1. if n==0
- 2. return 1
- 3. else
- 4. return 2*ustAl(n-1)

n=1 için ustAl(n)= 2*ustAl(0)=2*1=2 olup n=1 için algoritma doğru sonuç verir.

n>1 olmak uzere n-1 için algoritma dogru sonuç versin, yani ust $Al(n-1)=2^{n-1}$ olsun.

ust Al(n)= 2^n olduğunnu göstereceğiz.

ust $Al(n)=2*ustAl(n-1)=2*2^{n-1}=2^n$ olduğundan algoritma doğru çalışır.

3. Diyelim ki, bir arama algoritması n uzunluğundaki bir dizinin içindeki bir elemanı $8n^2 + 5n + 7$ adımda buluyor. Öte yandan ikinci bir arama algoritması yine n uzunluğundaki bir dizinin içindeki bir elemanı n^3 adımda buluyor. Birinci algoritma mı yoksa ikinci algoritma mı daha hızlıdır? Cevabınızı asimptotik analiz yardımıyla açıklayınız.(15 puan)

Çözüm.

Bir algoritmanin digerinden daha hizli olmasi icin daha az adimda çalismasi gerekir.

 $8n^2 + 5n + 7 = O(n^3)$ olduğunu gösterirsek n^3 fonksiyonun $8n^2 + 5n + 7$ fonksiyonu için bir ust sinir olduğunu göstermis oluruz. Böylece $8n^2 + 5n + 7$ adimda çailisan birinci algoritmanın n^3 adimda çalisan ikinci algoritmadan daha hizli olduğunu göstermis olururuz.

Genel olarak f(n) = O(g(n)) ise

$$\exists c > 0 \ ve \ \exists \ n_0 \ge 0 : \forall \ n \ge n_0 \ icin \ f(n) \le c \cdot g(n)$$

olur. Pozitif bir c ve bir n_0 değeri için $8n^2 + 5n + 7 \le c \cdot n^3$ olduğunu göstereceğiz.

Pozitif n değerleri için $8n^2 + 5n + 7 \le 8n^3 + 5n^3 + 7n^3 = 20n^3$ olur. O halde c = 20 ve $n_0 = 1$ alınırsa $8n^2 + 5n + 7 = 0(n^3)$ olur.

4. 4 adet nükleobaz vardır. Bunlar Adenin (A), Guanin (G), Citozin (C), ve Timin (T) dir. Bu nükleobazlar bir araya gelerek çeşitli uzunluklarda genetik dizileri oluştururlar. Varsayalım ki 5 uzunluğundaki genetik dizilerde ilk üç nükleobaz ve son üç nükleobaz aynı olamaz (örneğin AAACB gibi yada CBAAA gibi bir dizi olmaz). Buna göre 5 uzunluğunda olup kabul edilmeyen kaç tane genetik dizi vardır? (15 puan)

Çözüm.

Ilk üç nükleobazın aynı olduğu 5 uzunluğundaki dizilerin sayısı: $4 \cdot 1 \cdot 1 \cdot 4 \cdot 4 = 64$ Son üç nükleobazın aynı olduğu 5 uzunluğundaki dizilerin sayısı: $4 \cdot 4 \cdot 4 \cdot 1 \cdot 1 = 64$ AAAAA,GGGGG,CCCCC ve TTTTT her iki grupta da bulunur. Çunku bu dizilierin hem ilk uç nukleobazi hemde son uc nukleobazı aynıdır. O halde toplama kurali geregi cevap: 64 + 64 - 4 = 124.

5. Bir kampüsteki öğrencilerin %3'ünün bilgisayar mühendisliği öğrencisi olduğu biliniyor. Bilgisayar mühendisliği öğrencilerinin %80'ninin instagram hesabı olduğu ve kampüsteki tüm öğrencilerin %20'sinin instagram hesabı olduğu biliniyor. Buna göre instagram hesabı olduğu bilinen birinin bilgisayar mühendisliği öğrencisi olma olasılığı nedir? (15 puan)

Çözüm.

P(bilgisayar) = 0.03

P(instagram|bilgisayar) = 0.8

P(instagram) = 0.2

P(bilgisayar|instagram) =? Bayes teoremi yardımıyla

$$P(bilgisayar|instagram) = \frac{P(instagram|bilgisayar) \cdot P(bilgisayar)}{P(instagram)} = \frac{0.8 \cdot 0.03}{0.2} = 0.12$$

- **6.** Aşağıdaki graf Artvin, Mersin, Ordu, Sivas, Trabzon ve Van şehirleri arasındaki tren hatlarını göstermektedir. Buna göre,
 - a. Sivas'tan tren ile ulaşlabilecek şehirleri genişlik öncelikli arama (BFS) kullanarak bulunuz,(10 puan)
 - **b.** bu grafın düzlemsel bir graf olup olmadığını nedeniyle açıklayınız. (10 puan)

S
S
A
V
V
О
0
M
M
T

b. Verilen graf aşağıdaki şekilde bağlar birbirini kesmeyecek şekilde yeniden düzenlenebileceğinden, graf düzlemsel bir graftır.

Süre 60 dk.

Başarılar dilerim.

Dr. Öğr. Üyesi. Fırat İsmailoğlu