1. 求不定积分

$$(1) \int \frac{1}{e^x (1+e^x)} dx ;$$

(2)
$$\int \frac{x + \arctan x}{1 + x^2} dx ;$$

$$(3) \quad \int e^x \ln(1+e^x) dx \; ;$$

$$(4) \quad \int \frac{\arctan e^x}{e^{2x}} dx \; ;$$

$$(5) \quad \int \frac{xe^x}{\left(e^x+1\right)^2} dx \; ;$$

$$(6) \quad \int \frac{xe^x}{\left(e^x+1\right)^2} dx$$

$$(7) \quad \int e^{\sqrt{x}} dx \; ;$$

(8)
$$\int \frac{x+2}{(2x+1)(x^2+x+1)} dx;$$

$$(9) \quad \int x^3 e^x dx \; ;$$

(10)
$$\int \frac{x+5}{x^2-6x+13} dx.$$

3. 设函数
$$f(x) = x - \int_0^1 e^x f(x) dx$$
,则 $\int_0^1 e^x f(x) dx =$ _______.

4. 极限
$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} e^{\frac{i}{n}} = \underline{\qquad}$$

5. 设函数
$$f(x)$$
 具有二阶连续导数,并且 $f(0) = 3$, $f(\pi) = 2$, 计算
$$\int_0^{\pi} [f(x) + f''(x)] \sin x dx.$$

6. 设在闭区间
$$[a,b]$$
上, $f(x) > 0$, $f'(x) > 0$, $f''(x) < 0$, $\diamondsuit S_1 = \int_a^b f(x) dx$,

$$S_2 = f(a)(b-a), S_3 = \frac{b-a}{2}[f(a)+f(b)]$$
,则必有(

7. 求不定积分
$$\int \frac{1}{\sqrt{e^x+1}} dx$$
.

8.
$$\Re \lim_{x\to 0} \frac{\int_{\cos x}^{1} e^{-t^2} dt}{\ln(1+x^2)}$$

9. 己知
$$f'(e^x) = xe^{-x}$$
,且 $f(1) = 0$,则______.

如图,连续函数 y = f(x) 在区间[-3,-2],[2,3]上的图形分别是直径为 1 的 上、下半圆周,在区间[-2,0],[0,2]的图形分别是直径为2的下、上半圆周,

设 $F(x) = \int_0^x f(t)dt$.则下列结论正确的是(

(A)
$$F(3) = -\frac{3}{4}F(-2)$$

$$(B) F(3) = \frac{5}{4}F(2)$$

(C)
$$F(-3) = \frac{3}{4}F(2)$$

(D)
$$F(-3) = -\frac{5}{4}F(-2)$$
.

11. 设函数 y = f(x)在区间[-1,3]上的图形

则函数
$$F(x) = \int_0^x f(t) dt$$
 的图形为(

12. 已知两曲线 y = f(x) 与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在点 (0,0) 处的切线相同. 求此切线的方程,并求极限 $\lim_{n \to \infty} nf(\frac{2}{n})$.

14. 设函数
$$f(x)$$
 连续,则 $\frac{d}{dx} \int_0^x t f(t^2 - x^2) dt =$ ______.

15. (积分第一中值定理)设 f(x) 在区间[a,b]上连续,g(x) 在区间[a,b]上连续且不变号,证明:至少存在一点 $\xi \in [a,b]$,使得 $\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx$.

16. 己知
$$f'(x) = \frac{1}{x(1+2\ln x)}$$
,且 $f(1)=1$, 令 $f(x)=$ ()

 $(A) \ln(1+2\ln x)+1$

 $(B) \frac{1}{2} \ln(1 + 2 \ln x) + 1$

(C) $\frac{1}{2}\ln(1+2\ln x)+\frac{1}{2}$

 $(D) 2\ln(1+2\ln x)+1$

17. 下列等式中,正确的结果是()

 $(A) \int f'(x)dx = f(x)$

- $(B) \int df(x) = f(x)$
- $\left(C\right)\frac{d}{dx}\int f(x)dx = f(x)$
- $(D) d \int f(x) dx = f(x)$

18. 设 F(x) 是连续函数 f(x) 的一个原函数,则必有(

- (A) F(x) 是偶函数 $\Leftrightarrow f(x)$ 是奇函数
- (B) F(x) 是奇函数 $\Leftrightarrow f(x)$ 是偶函
- (C) F(x) 是周期函数 $\Leftrightarrow f(x)$ 是周期函数
- (D) F(x) 是单调函数 ⇔ f(x) 是单调函数
- 19. 设 f(x) 在 [a,b] 上连续,证明: $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$

- 20. 过坐标原点作曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x$ 及 x 轴围成平面图 形 D 。
- (1)求D的面积A;
- (2)求D绕直线x=e旋转一周所得旋转体的体积V
- 21. 已知曲线 $y = \frac{\sqrt{x}}{e}$ 与曲线 $y = \frac{1}{2} \ln x$ 在点 (x_0, y_0) 处有公切线,求: (1)切点的坐标 (x_0, y_0) ;(2)两曲线与 x 轴所围成的平面图形 S 的面积 A;(3)平面图形 S 绕 x 轴旋转一周所得旋转体的体积 V .

22. 设函数 f(x) 在[0,1] 上连续,在(0,1) 内可导,且 $f(1) = 6\int_{\frac{1}{3}}^{\frac{1}{2}} x^2 f(x) dx$,证明:在(0,1) 内至少存在一点 ξ ,使得 $2f(\xi) + \xi f'(\xi) = 0$.

23. 求下列定积分

$$(1) \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx (a > 0) ;$$

(2)
$$\int_0^4 \frac{x+2}{\sqrt{2x+1}} dx \; ;$$

(3)
$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx \; ;$$

$$(4) \quad \int_1^e \sin(\ln x) dx \;;$$

(5)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3x^2 \sin x + \sin^2 x \cos^2 x) dx ;$$

(6)
$$\int_0^{+\infty} \frac{1}{e^{x+1} + e^{3-x}} dx$$

24. 当k 为何值时,反常积分 $\int_{2}^{+\infty} \frac{1}{x(\ln x)^{k}} dx$ 收敛? 当k 为何值时,该反常积分发散? 又当k 为何值时,该反常积分取得最小值?

25. 计算下列导数

$$(1) \frac{d}{dx} \int_0^x \sqrt{1+t^2} dt;$$

(2)
$$\frac{d}{dx} \int_{x^2}^{x^3} \frac{1}{\sqrt{1+t^4}} dt$$
;

$$(3) \frac{d}{dx} \int_{\sin x}^{\cos x} \cos(\pi t^2) dt.$$