Reasoning under Uncertainty Part II Artificial Intelligence, 2015 TIN172/DIT410

Prasanth Kolachina

based on slides by Poole, Mackworth and slides from 2015

(Licensed under Creative Commons BY-NC-SA v4.0)

Chalmers University of Technology

April 29, 2016

Quick recap: Random Variables

- Upper case: X.
- Value is subject to chance.
 - Values: lower case.
 - Could represent the outcome of an experiment.
- A probability $\in [0,1]$ is associated to each value that X can take.

Quick recap: Probability Distributions

- Describes the behaviour of a random variable.
- P(X) is the probability measure of X.
- More than one variable:
 - Joint: P(X, Y, Z)
 - Marginal:

$$P(X) = \sum_{Y} P(X, Y)$$

• Conditional:

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

Example: Probability Distributions

X - The outcome of a coin toss

•	This	is	called	the	Binomial	distributio
_	1 1113	13	Calleu	LITE	Dillollilai	uistributi

- P(X = heads) the probability that coin comes up heads
- P(X = tails) = 1 P(X = heads)

X	P(X)
heads	0.5
tails	0.5

Chain Rule for Probabilities

$$P(X,Y,Z) = P(X|Y,Z)P(Y,Z)$$

Chain Rule for Probabilities

$$P(X,Y,Z) = P(X|Y,Z)P(Y,Z)$$
$$= P(X|Y,Z)P(Y|Z)P(Z)$$

Conditional Independence

$$X\bot Y|Z\to P(X|Y,Z)=P(X|Z)$$

Probability Distributions ctd.

- Belief networks.
 - Nodes: random variables.
 - Arcs: causal dependence
 - Network encodes independence.
 - Flow of influence.

Example Belief Network

Alternate Formulation

Chain Rule for Bayesian Networks

Chain rule for Bayesian Networks:

$$P(X_1, X_2, X_3, ..., X_n) = \prod_{i} P(X_i | parents(X_i))$$

P factorizes over the network.

Conditional Independence

Defined by the semantics of belief networks

Example Belief Network

- Using the chain rule: P(Grass, Sprinkler, Rain) = P(Grass|Sprinkler, Rain)P(Sprinkler|Rain)P(Rain)
- A factorization of P.

Markov Blanket

Querying Belief Networks

- Query variable(s): Q
- Observed evidence: $E_1 = e_1, E_2 = e_2, \dots, E_n = e_n$
- How do you calculate P(Q|e)?

Inference in Belief Networks

- $\bullet \text{ Set observed evidence: } E_1 = e_1, E_2 = e_2, \dots, E_n = e_n$
- $oldsymbol{arrho}$ Marginalize out non-query variables W .
- 3 $P(Q|e) \propto \sum_{W} P(Q, W, E = e)$
- A Renormalize.

Renormalization

- $\tilde{P}(X)$ an unnormalized probability measure.
- $P(X) = \frac{\tilde{P}(X)}{\sum_X \tilde{P}(X)}$ renormalized probability distribution over X.
- The denominator, $\sum_X \tilde{P}(X)$ is merely a constant.

Example Belief Network

Factors in general

Function: $f(X_1, \ldots, X_j)$.

Assignments:

- $f(X_1 = x_1, X_2, ..., X_j)$, is a factor on $X_2, ..., X_j$.
- $f(X_1 = x_1, X_2 = x_2, \dots, X_j = x_j)$

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z)$$
: $egin{array}{c|c} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f \\ f & t \\ f & f \end{array}$

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z): egin{array}{c|c} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \\ \hline \end{array}$$

$$r(X=t,Y,Z=f)$$
:

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z): \begin{bmatrix} Y & Z & \mathsf{val} \\ \mathsf{t} & \mathsf{t} & \mathsf{0.1} \\ \mathsf{t} & \mathsf{f} & \mathsf{f} \\ \mathsf{f} & \mathsf{t} & \mathsf{f} \end{bmatrix}$$

$$r(X=t,Y,Z=f): \begin{array}{|c|c|}\hline Y & \mathsf{val}\\ t & \\ f & \\ \hline r(X=t,Y=f,Z=f) = \\ \hline \end{array}$$

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z): \begin{bmatrix} Y & Z & \mathsf{val} \\ \mathsf{t} & \mathsf{t} & \mathsf{0.1} \\ \mathsf{t} & \mathsf{f} & \mathsf{f} \\ \mathsf{f} & \mathsf{t} & \mathsf{f} \end{bmatrix}$$

$$r(X=t,Y,Z=f): \begin{array}{|c|c|}\hline Y & \mathsf{val} \\ \mathsf{t} & \mathsf{0.9} \\ \mathsf{f} & \mathsf{0.8} \\ \hline \\ r(X=t,Y=f,Z=f) = & \mathsf{0.8} \\ \hline \end{array}$$

Multiplying factors

The **product** of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	B	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	A	B	C	val
	t	t	t	0.03
	t	t	f	
	t	f	t	
$f_1 \times f_2$:	t	f	f	
v	f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	
	l .			

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t f	f	0.9
	f	t	0.2
	f	f	0.8

	B	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	$\mid A \mid$	B	C'	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Variable Elimination Algorithm

Compute the distribution of some query variable X_q

- Use chain rule to get factorization.
- Set observed variables.
- **3** Elimination: Marginalize all variables except X_q :
 - "Push in" the summations:

$$\sum_{Y} P(X)P(Y) = P(X)\sum_{Y} P(Y)$$

- Multiply the remaining factors.
- 6 Renormalize.

Variable elimination example: P(D|H)

Variable Elimination example: P(D|H)

$$P(D, H = h) = \frac{\sum_{A,B,C,E,F,G,I} P(A,B,C,D,E,F,G,H = h,I)}{Z}$$

$$= \underbrace{\sum_{A,B,C,E,F,G,I} P(I|G)P(H=h|G)P(G|F,E)P(F|D)P(E|C)P(D|B,C)P(C)P(B|A)P(A)}_{Z}$$

$$= \underbrace{\sum_{I,G} P(I|G)P(H=h|G)\sum_{E,F} P(G|F,E)P(F|D)\sum_{C} P(E|C)\sum_{B} P(D|B,C)P(C)\sum_{A} P(B|A)P(A)}_{Z}$$

Z is the (re)normalizing constant.

Variable Elimination example, ctd.

$$\underbrace{\sum_{G} f_{4}(G) f_{3}(G) \sum_{E,F} P(G|F,E) P(F|D) \sum_{B} f_{2}(B,D,E) f_{1}(B)}_{f_{5}(D,E)}$$

$$\underbrace{\sum_{G} f_{4}(G) f_{3}(G) \sum_{E,F} P(G|F,E) P(F|D) \sum_{B} f_{2}(B,D,E) f_{1}(B)}_{f_{5}(D,E)}$$

$$P(D, H = h) = \frac{f_7(D)}{Z}$$

Z is the (re)normalizing constant. f_1, f_2, f_3 , see previous slide.

Variable Elimination example

Query: P(G|f); elimination ordering: A, H, E, D, B, C

$$P(G|f) \propto$$

Variable Elimination example

Query: P(G|f); elimination ordering: A, H, E, D, B, C

$$\begin{array}{ccc} P(G|f) & \propto & \displaystyle \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A) P(B|A) P(C|B) \\ & & P(D|C) P(E|D) P(f|E) P(G|C) P(H|E) \end{array}$$

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A)P(B|A) \right) P(C|B) \right) P(G|C)$$
$$\left(\sum_{D} P(D|C) \left(\sum_{E} P(E|D)P(f|E) \sum_{H} P(H|E) \right) \right)$$

Markov chain

A Markov chain is a special case of belief network:

What probabilities need to be specified? What Independence assumptions are made?

Markov chain

A Markov chain is a special case of belief network:

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(S_{t+1}|S_0,\ldots,S_t) = P(S_{t+1}|S_t).$
- Often S_t represents the **state** at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Stationary Markov chain

- A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'})$.
- We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

Hidden Markov Model

A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

Hidden Markov Model

A Hidden Markov Model (HMM) is a belief network:

The probabilities that need to be specified:

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(O_t|S_t)$ specifies the sensor model

Approximate Inference

- Complexity of Belief networks are connected to CSP
- In polytrees, linear to the size of the network
- In multiply connected, exponential in the worst case!
- Approximate inference through sampling
 - Rejection Sampling
 - Gibbs Sampling

Rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
\begin{aligned} & \textbf{function } & \textbf{REJECTION-SAMPLING}(X, \mathbf{e}, bn, N) \ \textbf{returns} \ \textbf{an estimate of} \ P(X|\mathbf{e}) \\ & \textbf{local variables:} \ \mathbf{N}, \ \textbf{a vector of counts over} \ X, \ \textbf{initially zero} \\ & \textbf{for} \ j = 1 \ \textbf{to} \ N \ \textbf{do} \\ & \textbf{x} \leftarrow \text{PRIOR-SAMPLE}(bn) \\ & \textbf{if} \ \textbf{x} \ \textbf{is consistent with} \ \textbf{e} \ \textbf{then} \\ & \textbf{N}[x] \leftarrow \textbf{N}[x] + 1 \ \textbf{where} \ x \ \textbf{is the value of} \ X \ \textbf{in} \ \textbf{x} \\ & \textbf{return} \ \text{NORMALIZE}(\textbf{N}[X]) \end{aligned}
```

```
E.g., estimate P(Rain|Sprinkler = true) using 100 samples 27 samples have Sprinkler = true Of these, 8 have Rain = true and 19 have Rain = false.
```

```
\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle
```

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$\begin{split} \hat{\mathbf{P}}(X|\mathbf{e}) &= \alpha \mathbf{N}_{PS}(X,\mathbf{e}) & \text{(algorithm defn.)} \\ &= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) & \text{(normalized by } N_{PS}(\mathbf{e})) \\ &\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) & \text{(property of PRIORSAMPLE)} \\ &= \mathbf{P}(X|\mathbf{e}) & \text{(defn. of conditional probability)} \end{split}$$

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!