數值線性代數 HW2

b05502087 王竑睿

1

利用以下code製造出A矩陣

利用rand製造b向量

b = rand(60, 1)

(a)

利用以下code,以partial pivoting計算Ax=b

```
function x = Gaussian(A, b);
    [row, col] = size(A);
    n = row;
    x = zeros(n, 1);
    for k=1:n-1
        %select row
        \max \text{Row} = -1;
        for i = k:n
             if (A(i,k) > = \max Row)
                 \max Row = A(i,k);
                 \max Row Idx = i;
             end
        end
        %[maxRow, maxRowIdx] = max(A(k:n,k));
        %row change
        A([k, \max_{k}], :) = A([\max_{k}], :);
        b([k, maxRowIdx]) = b([maxRowIdx, k]);
```

```
for i=k+1:n
             xMultiplier = A(i,k)/A(k,k);
             for j=k:col
                 A(i,j) = A(i,j) - xMultiplier *A(k,j);
             end
             b(i) = b(i) - xMultiplier *b(k);
        end
    end
    % backsubstitution:
    x(n) = b(n)/A(n,n);
    for i=n-1:-1:1
        summation = b(i);
         for j=i+1:n
             summation = summation - A(i, j) * x(j);
        end
        x(i) = summation/A(i, i);
    end
end
```

Observe of useless result

計算 *norm(||Ax – b||)* 得到26.9380 誤差相當大

Perturbed A矩陣的結果

- 利用 rand 産生 δ ,用 $A_d = A + \delta$ 計算 $A_d x_d = b$ 的解
- 用partial pivoting計算 x_d 和 x 的差距 $||x_d x||$,可發現較Complete pivoting大

(b)

利用以下code,以complete pivoting計算Ax=b

```
function x = CompleteGaussian(A, b)
    [row, col] = size(A);
    n = row;
    x = zeros(n, 1);
    Colname = [1:col];
    for k=1:n-1
        %select row
        \max Val = -1;
        for i = k:n
             for j = k:n
                  if (A(i,j) > maxVal)
                      \max Row = A(i, j);
                      \max Row Idx = i;
                      \max ColIdx = j;
                 end
             end
        end
```

```
%row change
    [maxRowIdx maxColIdx]
    A([k, maxRowIdx], :) = A([maxRowIdx, k], :);
    b([k, maxRowIdx]) = b([maxRowIdx, k]);
    A(:,[k, \max ColIdx]) = A(:,[k, \max ColIdx]);
    Colname([k, maxColIdx]) = Colname([maxColIdx, k]);
    \mathbf{for} \quad i = k+1:n
         xMultiplier = A(i,k)/A(k,k);
         for j=k:col
             A(i,j) = A(i,j) - xMultiplier *A(k,j);
        end
         b(i) = b(i) - xMultiplier *b(k);
    end
    Colname
end
\% backsubstitution:
x(n) = b(n)/A(n,n);
for i=n-1:-1:1
    summation = b(i);
    for j=i+1:n
         summation = summation - A(i, j) * x(j);
    end
    x(i) = summation/A(i, i);
end
```

Observe of useless result

end

```
計算 norm(||Ax - b||)
得到1.2091
相較於partial pivoting,較為精確
```

Perturbed A矩陣的結果

- 利用 rand 産生 δ ,用 $A_d = A + \delta$ 計算 $A_d x_d = b$ 的解
- 用complete pivoting計算 x_d 和 x 的差距 $||x_d x||$,可發現較partial pivoting小

2

(a)

$$\begin{aligned} Let \ U &= L^{-1}A \\ &\Rightarrow ||U|| \leq ||L^{-1}||||A|| \\ &\Rightarrow \frac{||L||||U||}{||A||} \leq ||L^{-1}||||L|| = \kappa(L) \\ Same \ Let \ L &= AU^{-1} \\ &\Rightarrow ||L|| \leq ||A||||U^{-1}|| \\ &\Rightarrow \frac{||L|||U||}{||A||} \leq ||U^{-1}||||U|| = \kappa(U) \end{aligned}$$

Therefore

$$\gamma_2 \leq min(\kappa(L), \kappa(U))$$

(b)

$$\gamma_1 = \frac{\left\| |L||U| \right\|}{\|A\|}$$

$$\leq \frac{\left\| |L| \right\| \left\| |U| \right\|}{\|A\|}$$

$$= \frac{\|L\| \|U\|}{\|A\|}$$

$$= \gamma_2$$

(c)

In 2-norm case

$$\gamma_2 = \frac{\|L\|_2 \|U\|_2}{\|A\|_2}$$

$$= \frac{\|L\|_2 \|U\|_2}{\|U\|_2}$$

$$= \frac{\|L\|_2 \|U\|_2}{\|U\|_2} \qquad \text{(because L is unitary and preserve norm)}$$

$$= \|L\|_2$$

$$= 1 \qquad (2\text{-norm of unitary matrix is 1)}$$

$$\gamma_1 = \frac{\|L\|U\|_2}{\|A\|_2}$$

$$\leq \frac{\|L\|_2 \|U\|_2}{\|A\|_2}$$

$$= \sqrt{n} \times \frac{\|L\|_F \|U\|_F}{\|A\|_F} \qquad \text{(norm equivalence)}$$

$$= \sqrt{n} \times \frac{\|L\|_F \|U\|_F}{\|A\|_F} \qquad \text{(Frobenius norm is not influenced by absolute value)}$$

$$= \sqrt{n} \times \frac{\|L\|_F \|U\|_F}{\|U\|_F} \qquad \text{(because L is unitary and preserve norm)}$$

$$= \sqrt{n} \times \|L\|_F$$

$$= \sqrt{n} \times \sqrt{n}$$

$$= n$$

In Frobenius-norm case

$$\gamma_2 = \frac{\|L\|_F \|U\|_F}{\|A\|_F}$$

$$= \frac{\|L\|_F \|U\|_F}{\|LU\|_F}$$

$$= \frac{\|L\|_F \|U\|_F}{\|U\|_F} \qquad \text{(because L is unitary and preserve norm)}$$

$$= \|L\|_F$$

$$= \sqrt{n} \qquad \text{(Frobenius-norm of unitary matrix is } \sqrt{n}\text{)}$$

$$\gamma_{1} = \frac{\|L\|U\|_{F}}{\|A\|_{F}}$$

$$\leq \frac{\|L\|_{F}\|U\|_{F}}{\|A\|_{F}}$$

$$= \frac{\|L\|_{F}\|U\|_{F}}{\|A\|_{F}} \qquad \text{(Frobenius norm is not influenced by absolute value)}$$

$$= \gamma_{2}$$

$$= \sqrt{n}$$

(d)

verify the result in (a)

- $kappaL_norm1 = 120$
- $kappaU_norm1 = 3$
- $gamma2_norm1 = 3$
- kappaL_norm2 = 77.0072
- $kappaU_norm2 = 3.6731$
- $gamma2_norm2 = 3.0474$
- $kappaL_normInf = 120$
- $kappaU_normInf = 6$
- $gamma2_normInf = 3$

所以, $\gamma_2 \leq \min(\kappa(L), \kappa(U))$

verify the result in (b)

- $gamma1_norm1 = 2.9667$
- $gamma2_norm1 = 3$
- gamma1_normInf = 2.9667
- $gamma2_normInf = 3$

所以, $\gamma_1 \leq \gamma_2$, for 1-norm, ∞ -norm

3

(a)

$$A = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

(b)

令variable數n為20, k為6

random取得x並且建構b = Ax

$$x = \begin{bmatrix} 0.4173 \\ 0.0497 \\ 0.9027 \\ 0.9448 \\ 0.4909 \\ 0.4893 \\ 0.3377 \\ 0.9001 \\ 0.3692 \\ 0.1112 \\ 0.7803 \\ 0.3897 \\ 0.2417 \\ 0.4039 \\ 0.0965 \\ 0.1320 \\ 0.9421 \\ 0.9561 \\ 0.5752 \\ 0.0598 \end{bmatrix} b = \begin{bmatrix} 0.5491 \\ 0.5358 \\ 0.6776 \\ 0.5887 \\ 0.4497 \\ 0.4980 \\ 0.4814 \\ 0.4654 \\ 0.3827 \\ 0.3372 \\ 0.3407 \\ 0.3676 \\ 0.4620 \\ 0.5176 \\ 0.4603 \end{bmatrix}$$

(i)

$$A^T = QR$$

	_							-0 -							_
	-0.41	0.62	-0.07	-0.07	-0.08	-0.09	-0.11	-0.35	0.05	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	-0.41	-0.12	0.61	-0.07	-0.08	-0.09	-0.11	0.07	-0.35	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	-0.41	-0.12	-0.13	0.60	-0.08	-0.09	-0.11	0.07	0.07	0.34	-0.06	-0.06	-0.07	-0.07	-0.07
	-0.41	-0.12	-0.13	-0.15	0.58	-0.09	-0.11	0.07	0.07	-0.08	0.34	-0.06	-0.07	-0.07	-0.07
	-0.41	-0.12	-0.13	-0.15	-0.17	0.57	-0.11	0.07	0.07	-0.08	-0.08	0.33	-0.07	-0.07	-0.07
	-0.41	-0.12	-0.13	-0.15	-0.17	-0.19	0.55	0.07	0.07	-0.08	-0.08	-0.09	0.33	0.33	0.33
	0.00	-0.74	-0.07	-0.07	-0.08	-0.09	-0.11	-0.35	0.05	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	-0.74	-0.07	-0.08	-0.09	-0.11	0.07	-0.35	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	0.00	-0.75	-0.08	-0.09	-0.11	0.07	0.07	0.34	-0.06	-0.06	-0.07	-0.07	-0.07
Q =	0.00	0.00	0.00	0.00	-0.75	-0.09	-0.11	0.07	0.07	-0.08	0.34	-0.06	-0.07	-0.07	-0.07
V —	0.00	0.00	0.00	0.00	0.00	-0.76	-0.11	0.07	0.07	-0.08	-0.08	0.33	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	-0.76	0.07	0.07	-0.08	-0.08	-0.09	0.33	0.33	0.33
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.84	0.05	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.84	-0.05	-0.06	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.84	-0.06	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.85	-0.06	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.85	-0.07	-0.07	-0.07
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.85	-0.85	-0.85
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	<u>-</u> Г														7
$R = \frac{1}{2}$	-0.41	-0.34	-0.27	-0.20	-0.14	-0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	-0.23	-0.21	-0.18	-0.16	-0.14	-0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	-0.22	-0.20	-0.18	-0.16	-0.13	-0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	-0.22	-0.20	-0.17	-0.15	-0.14	-0.12	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	-0.22	-0.19	-0.17	-0.15	-0.14	-0.12	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	-0.22	-0.19	-0.17	-0.16	-0.14	-0.13	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	-0.22	-0.20	-0.18	-0.16	-0.15	-0.13	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.19	0.17	0.16	0.15	0.14	0.14	0.14
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.19	0.17	0.16	0.15	0.15	0.15
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.20	-0.18	-0.17	-0.16	-0.16	-0.16
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.20	-0.18	-0.17	-0.17	-0.17
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.20	-0.18	-0.18	-0.18
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.20	-0.20	-0.20
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

$$x = A^T (AA^T)^{-1}b = QR^{-T}b$$

(ii)

利用matlab左除 $x = A \setminus b$ 得到

$$x = \begin{bmatrix} 0 \\ -0.0101 \\ 0 \\ 3.7715 \\ 0 \\ -0.4669 \\ -0.0795 \\ 0.8403 \\ -0.5335 \\ 2.9380 \\ 0.2894 \\ -0.5664 \\ -0.1756 \\ 0.3441 \\ -0.8063 \\ 2.9587 \\ 0.4512 \\ 0 \\ 0.1579 \\ 0 \end{bmatrix}$$

(iii)

- 利用QR分解以及左除所得到的x都能夠滿足Ax=b的逼近
- 但QR分解和左除得到的x的norm不一樣,QR分解的norm比較短
- 左除是在所有滿足Ax=b的x中選擇一個,QR分解則是選擇norm最短的那一個