MTH 100: Lecture 24

Ex: Fix $1 \le i \le n$ Let $P_i : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be defined by $P_i(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) = (0, 0, \dots, 0, x_i, 0, \dots)$ Then P_i is a Linear transformation:

- Let $x = (x_1, x_2, ..., x_n)$ and $y = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ Now $P_i(u+v) = P_i((x_1, ..., x_n) + (x_1, ..., x_n))$ $= P_i((x_1+x_2, ..., x_n+x_n))$ $= (0, ..., 0, x_i+x_i, 0, ..., 0)$ $= (0, ..., 0, x_i, 0, ..., 0) + (0, ..., 0, x_i, 0, ..., 0)$ $= P_i(x) + P_i(v)$
- Next let $u = (x_1, ..., x_n) \in \mathbb{R}^n$ and let $c \in \mathbb{R}$ Then $P_i(cu) = P_i(c(x_1, ..., x_n)) = P_i((cx_1, ..., cx_n))$ $= (0, ..., 0, cx_i, 0, ..., 0) = c(0, ..., 0, x_i, 0, ..., 0)$ $= cP_i(u)$

Therefore Pi is a linear transformation.

Ex: Let us take n=2.

Then we will get two linear townsformations $P_1, P_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $P_1((x_1, x_2)) = (x_1, 0)$ $P_1((x_1, x_2)) = (x_1, 0)$ and $P_2((x_1, x_2)) = (x_1, x_2)$ $P_1((x_1, x_2)) = (x_1, x_2)$ $P_2((x_1, x_2)) = (x_1, x_2)$ $P_2((x_1, x_2)) = (x_1, x_2)$

Ex: Look at the transformation for R3

Ex: Define $P_{12}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $P_{12}((x_1,x_2,x_3)) = (x_1,x_2,0)$ Show that P_{12} is a linear transformation

Similarly define transformations P_{23} and P_{31} .

Ex: Fix i,j such that
$$1 \le i < j \le n$$

Define $P_{ij}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by

 $P_{ij}((x_1,...,x_i,...,x_j,...,x_n))$
 $= (0,...,0,x_i,0,...,0,x_j,0,...,0)$

Show that P_{ij} is a linear transformation.

Remarks:

(1) If
$$T: V \rightarrow W$$
 is linear, then
(a) $T(0) = 0$ (b) $T(-v) = -T(v)$

 $\frac{f_{roof}:}{(a)} T(v) = T(v+0) = T(v) + T(0)$ (Since T is linear) $\Rightarrow (-T(v)) + T(v) = (-T(v)) + T(v) + T(0)$ $\Rightarrow 0 = 0 + T(0) \Rightarrow T(0) = 0$

(b)
$$T((-v)+v) = T(0) = 0$$
 (By (a))
 $\Rightarrow T(-v) + T(v) = 0$ (Since T is linear)
 $\Rightarrow T(-v) + T(v) + (-T(v)) = 0 + (-T(v))$
 $\Rightarrow T(-v) + 0 = -T(v) \Rightarrow T(-v) = -T(v)$

(2) If T is linear, T preserves linear Combinations. i.e. $T(c_1v_1 + c_2v_2 + \cdots + c_Kv_K)$ $= c_1 T(v_1) + c_2 T(v_2) + \cdots + c_K T(v_K)$

Proof: Exercise

Two important Subspaces associated with a Linear Transformation:

- (1) Let $T: V \longrightarrow W$ be a linear transformation.
- . Then the Kernel of T, KerT = {v ∈ V : T(v) = 0 ∈ W} is a subspace of V Kert is also called the null space of T, denoted by NulT.
- Range $T = \tilde{\xi} \omega \in W : \omega = T(v)$ for some $v \in V$? · The range of T, is a subspace of W.

Proof:

If u, v E Kert, then T(u) = 0, T(v) = 0 Now, T(u+v) = T(u) + T(v) = 0 + 0 = 0→ u+ve KerT

If $u \in \ker T$ and $c \in F$ then T(u) = DNow T(cw) = cT(w) = c.0 = 0 = cu EkerT Hence Kert is a subspace of V.

If w_1 , $w_2 \in RangeT$, then there exist u, $v \in V$ such that $T(u)=w_1$ and $T(v)=ev_2$ Now, $w_1+w_2=T(u)+T(v)=T(u+v)$ (Since V is a vector space)

So, $w_1+w_2 \in RangeT$ If $w \in RangeT$ and $c \in F$, then there exists $v \in V$ such that T(v)=evNow, c v = c T(v)=T(cv) (Since V is a vector space)

So, $v \in V$ such that $v \in V$ is a vector space)

So, $v \in V$ such that $v \in V$ (Since $v \in V$ is a vector space)

And $v \in V$ (Since $v \in V$ is a vector space)

So, $v \in V$ such that $v \in V$ is a vector space)

So, $v \in V$ such that $v \in V$ is a vector space)

So, $v \in V$ such that $v \in V$ is a vector space)

Note: For any linear transformation T, kert $\neq \phi$ since $O \in \text{KerT}$ (since T(0) = 0)

Definition: A linear transformation T: V -> W is called injective (1-1) if Tu=Tv ⇒ u=v + u,v ∈ W (or equivalently $u \neq v \Rightarrow Tu \neq Tv \forall u, v \in V$) Important Remark: If T: V -> W is a linear transformation, then T is injective (1-1) if and only if kerT= \ \ 03. =>: Assume that T is 1-1. We have seen that $0 \in \text{Ker}(T) \left(\text{Since } T(0) = 0 \right)$ Now let $v \in V$, $v \neq 0 \Rightarrow T(v) \neq T(v)$ (since T is 1-1) \Rightarrow T(v) \neq 0 >> v € KerT 50, KerT = {0} E: Assume that KerT= 303 Now T(u) = T(v) > T(v)-T(v)=0 $\Rightarrow T(u-v) = 0$ (Since T is linear) → u-v ∈ KerT $\Rightarrow U-v=0 \text{ (since KerT= <math>\{0\}\)}$ $\Rightarrow U=v \Rightarrow T \text{ is } 1-1 \text{ (QED)}$