5.11

I/O-bound programs are more likely to have voluntary context switches, while *CPU-bound* programs are more likely to have *non-voluntary* context switches. This is because voluntary context switches occur when processes require resources that are unavailable, so it gives up control of the CPU. A non-voluntary context switch happens when a process gets stripped of its control of the CPU because of an expired time slice or because it has been preempted by a higher-priority process.

<u>5.15</u>

Equation:
$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$$

a.
$$\tau_1 = 0 + (1 * 100) = 100$$

b.
$$\tau_1 = (1 * t_0) + (1 - 1) * 10 = \mathbf{t_0}$$

5.16

The regressive round-robin scheduler favors **CPU-bound** processes because if they can consume an entire time quantum, they get rewarded with higher priority and/or longer time quantum. I/O-bound processes will not change their priority and they will block before using their entire time quantum.

<u>5.17</u>

Part a:

FCFS:

P1	P2	P3	P4	P5
----	----	----	----	----

SJF:

P3	P2	P5	P1	P4

Non-preemptive priority:

P1	P5 P3	P4	P2
----	-------	----	----

RR:

P1	P2	Р3	P4	P5	P1	P2	P4	P5	P1	P4	P4

Part b:

FCFS:

SJF:

$$P1 = 13, P2 = 4, P3 = 1, P4 = 20, P5 = 8$$

Non-preemptive priority:

$$P1 = 5, P2 = 20, P3 = 10, P4 = 17, P5 = 9$$

RR:

Part c:

FCFS:

$$P1 = 0, P2 = 5, P3 = 9, P4 = 13, P5 = 12$$

SJF:

$$P1 = 8, P2 = 1, P3 = 0, P4 = 13, P5 = 4$$

Non-preemptive priority:

$$P1 = 0, P2 = 17, P3 = 9, P4 = 10, P5 = 5$$

RR:

$$P1 = 11, P2 = 9, P3 = 4, P4 = 13, P5 = 12$$

<u>5.20</u>

The correct answer is that **priority scheduling** can result in starvation.