Evolutionary Computation and Learning

Represented by: Vahid Ghasemi

v.ghasemi@kut.ac.ir

Outline

- What is Evolutionary Computation?
- Why Evolutionary Computation
- Key Design Issues in EC and Examples
- A Unified View of Evolutionary Algorithms

Evolution in Nature

- Darwin's Theory of Biological Evolution
 - "Survival of the fittest"
 - Breeding and random mutation
 - Natural selection
- Can we use evolution in computation?

Evolutionary Computation

- A group of techniques inspired by the biological evolution
 - A population (set) of individuals
 - Breeding process: new offspring generated, old died
 - Crossover, mutation
 - Natural selection (Survival of fittest)
 - Fitness evaluation
- What can EC do for you?

What Can EC Do For You?

- Optimisation
- Learning
- Creative design

•

Evolutionary Computation

- Included other related nature-inspired techniques and population-based approaches
 - Evolutionary algorithms (natural evolution-inspired)
 - Swarm intelligence (more social-inspired)
 - Others ...

Evolutionary Computation

- Included other related nature-inspired techniques and population-based approaches
 - Evolutionary algorithms (natural evolution-inspired)
 - Swarm intelligence (more social-inspired)
 - Others ...

Why Evolutionary Computation

- Can solve a problem without requiring domain knowledge
 - Incorporating domain knowledge can enhance its performance
- NO strict assumption
 - Continuous, differentiable, linear, convex, ...
- Easy to handle constraints
- Can simultaneously learn model structure and parameters
 - Genetic Program for Symbolic Regression
- Population-based search is ideal for multi-objective optimisation

Principles of Evolutionary System

- One or more populations of individuals competing for limited resources
- Dynamically changing populations due to the birth and death of individuals
- A concept of fitness which reflects the ability of an individual to survive and reproduce/breed
- A concept of variational inheritance: offspring closely resemble their parents, but are not identical

Key Design Issues in EC

- Representation: How does an individual look like?
 - The designed shape/topology
 - A machine learning model (e.g., neural network, rule-based system)
 - Solutions (e.g., packing plan, schedules, decision-making rules)
- Population structure
 - How many population? How many individuals in each population?
 - Fixed/Variable population size
- Fitness evaluation
 - How good an individual is (compared with another individual)?
- Breeding
 - How to generate offspring (new individuals) from parents (existing)?
 - Parent selection, genetic operators, ...
- Evolution
 - Which to survive, which to die?
 - When to stop?

Example: Genetic Algorithm

- Representation
 - Binary string: 011101000
- Population structure
 - A single population
 - Problem-specific population size parameter (e.g., 30, 50)
- Fitness evaluation: problem dependent
 - E.g., packing solution: minimize wasted space
- Breeding
 - Crossover/mutation operators
 - Elitism
- Evolution (Generational GA)
 - N parents generate N offspring (by crossover/mutation/elitism)
 - Parents are selected proportional to their fitness
 - N offspring replace the N parents to next generation

Example: Genetic Programming

- Representation: Tree/Graph/Linear ...
- Population structure
 - A single population
 - Problem-specific population size parameter (e.g., 500, 1000)
- Fitness evaluation: problem dependent
 - E.g., regression accuracy/error
- Breeding
 - Crossover/mutation/reproduction
- Evolution
 - N parents generate N offspring (by crossover/mutation/reproduction)
 - Parents are selected proportional to their fitness
 - N offspring replace the N parents to next generation


```
while b ≠ 0
  if a > b
    a := a - b
  else
    b := b - a
return a
```

Example: $(1+\lambda)$ -Evolutionary Strategy

- Representation
 - Continuous vector: [0.1, 0.5, -1,2, ...]
- Population structure
 - A single population, a single individual/parent
- Fitness evaluation: problem dependent
 - E.g., quality of the designed shape
- Breeding
 - For each number, add a noise from the normal distribution $\mathcal{N}(0,\sigma)$
- Evolution
 - Generate λ offspring from the single parent, and select the fittest offspring to replace the parent

Example: Particle Swarm Optimisation

Representation

Continuous vector: [0.1, 0.5, -1,2, ...]

Population structure

- A single swarm (population) with N particles (individuals)
- Fitness evaluation: problem dependent
 - E.g., quality of the designed shape

Breeding

- Based on movement of particles
- Each particle follows the best particle
- Each particle follows its historical best

Evolution

Continuous move the location of the particles

2-D PSO example

Phenotype vs Genotype

- Phenotypic representation
 - An individual correspond directly to a solution
 - E.g., a path/route: [A, D, E, B, C]
 - E.g., a numeric vector: [2, 5, 8, 1]
 - E.g., a clustering {{A, C}, {B, D}}
- Genotypic representation
 - An individual is an encoded solution, needs to be decoded
 - E.g., encoded path: [0.2, 0.6, 0.3, 0.7] -> [A, C, B, D]
 - E.g., binary code of numbers: 101 -> 5
 - E.g., encoded clustering [0, 1, 0, 1]
 - Genotype-Phenotype mapping
 - A slight change in the genotype can lead to a small or large permutation in the phenotype
 - We want to make the mapping smooth (small change in genotype always leads to small change in phenotype)
- Neither phenotypic nor genotypic representation is always better than the other. Depends on problem, and associated search operators

Constraint Handling

Fitness Function/Assignment

- Simple comparison
 - If A is feasible and B is infeasible, then A is better than B
 - If A and B are both feasible, then compare the objective value
 - If A and B are both infeasible, then compare the degree of violation
- Penalty method
 - $fitness = obj + \alpha * violation$
 - Special case: if α is much larger than obj, it will be simple comparison
 - Proper α setting is critical: balance between quality and feasibility
 - Can be very helpful when infeasible solutions contain promising building blocks
- Special representation that can always satisfy the constraint
 - Genotype + decoding (always decode to a feasible solution)
- Special search operator (modify individuals) that always satisfy the constraint

Understanding EC

- Population-based search in a space
 - Continuous space or discrete space
 - Constrained or unconstrained (Feasible/Infeasible regions)
- Different points/individuals explore different regions
- Different points interact with each other
 - Find better unexplored regions
- Each point exploits local regions around it
- KEY design principle
 - Balance between exploration/diversity/randomness and exploitation/convergence/greediness
 - Parent selection, survival selection, breeding operators

A Unified View of EAs

- A population of M individuals evolving over time
- The current population is used to produce N offspring
- The expanded population is reduced from M+N to M individuals
- M: the degree of parallel search an EA supports
- N: how long one is willing to continue to use the current parent population as the basis for generating new offspring without integrating the newly generated high-fitness offspring back into the parent population

Problem dependent

- How hard the problem is (more local optima requires larger M)
- How many resources we have (more resources can afford larger M and N)

A Unified View of EAs

Two selections

- Parent selection: select parents to generate offspring
- Survival selection: select M individuals from the M+N individuals into the next generation

Selection schemes

- Uniform
 - Each individual has the same chance to be selected, fitness is not used
- Fitness-proportional (roulette wheel)
 - The probability of selecting each individual is proportional with its fitness
- Size-K tournament selection
 - Randomly select K individuals, then select the one with the best fitness
- Truncate selection
 - Directly select the top individual(s) with the best fitness

Selection pressure (Greediness)

- Uniform < Fitness-proportional < Tournament selection < truncate
- Tournament selection: larger K is greedier

Summary

- Evolutionary computation is a group of techniques inspired by biological evolution (and also swarm intelligence)
- Evolutionary computation is good at solving complex problems
 - No domain knowledge required
 - Without strong assumptions
 - Can be easily tailored by incorporating domain knowledge
 - Constraint handling and multi-objective optimisation/decision making
- Balance between exploration and exploitation is the key
 - How to do parent selection and survival selection
- Suggested readings:
 - Kenneth A.. De Jong. (2006). Evolutionary Computation: A Unified Approach. MIT Press.