

STD47N10F7AG

Automotive-grade N-channel 100 V, 12.5 mΩ typ., 45 A, STripFET™ F7 Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order	code	V _{DS}	R _{DS(on)} max.	I _D	Ртот	
STD47N	10F7AG	100 V	18 mΩ	45 A	60 W	

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code Marking		Package	Packing	
STD47N10F7AG	47N10F7	DPAK	Tape and reel	

Contents STD47N10F7AG

Contents

1	Electrical ratings			
2	Electric	al characteristics	4	
	2.1	Electrical characteristics (curves)	6	
3	Test cir	cuits	8	
4	Packag	e information	9	
	4.1	DPAK (TO-252) type A2 package information	10	
	4.2	DPAK (TO-252) packing information	13	
5	Revisio	n history	15	

STD47N10F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	100	V	
V_{GS}	Gate-source voltage	±20	V	
	Drain current (continuous) at T _C = 25 °C			
l _D	Drain current (continuous) at T _C = 100 °C	32	A	
I _{DM} ⁽¹⁾	Drain current (pulsed)	180	Α	
Ртот	Total dissipation at T _C = 25 °C	60	W	
TJ	Operating junction temperature range	55 to 475		
T _{stg}	Storage temperature range			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb 50			

Notes:

⁽¹⁾Pulse width is limited by safe operating area

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2 Oz copper board.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	100			V
		$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$			10	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 22.5 A		12.5	18	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1640	-	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	ı	360	•	pF
Crss	Reverse transfer capacitance	V63 - 0 V	-	25	-	pF
Qg	Total gate charge $V_{DD} = 50 \text{ V}, I_D = 45 \text{ A},$		-	25	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see <i>Figure 14: "Test</i>	ı	5.1	•	nC
Q _{gd}	Gate-drain charge	circuit for gate charge behavior")	-	12.2	-	nC

⁽¹⁾Defined by design, not subject to production test.

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 50 \text{ V}, I_D = 22.5 \text{ A},$	ı	15	1	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	ı	17	ı	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	24	-	ns
t f	Fall time	and Figure 18: "Switching time waveform")	-	8	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		45	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		ı		180	Α
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 45 \text{ A}$	1		1.1	V
t _{rr}	Reverse recovery time	$I_{SD} = 45 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	53		ns
Qrr	Reverse recovery charge	V _{DD} = 80 V, T _J = 150 °C (see <i>Figure 15: "Test circuit for</i>	-	67		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	1	2.5		А

Notes:

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics AM16109v1 ID(A) VGS=10V 160 9۷ 140 120 8V 100 7V 80 60 6V 40 20 5V VDs(V)

Figure 9: Normalized gate threshold voltage vs temperature

VGS(th) (norm)

1.2

1

0.8

0.6

0.4

0.2

-75 -50 -50 0 25 50 75 100 125 150 TJ(°C)

RDS(on) | ID=22.5A | VGS=10 V | ID=22.5A | I

Test circuits STD47N10F7AG

3 Test circuits

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12200 VG 47 KΩ VG AM01469v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

DPAK (TO-252) type A2 package information 4.1

Figure 19: DPAK (TO-252) type A2 package outline

Table 8: DPAK (TO-252) type A2 mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

STD47N10F7AG Package information

4.2 DPAK (TO-252) packing information

Figure 21: DPAK (TO-252) tape outline

40mm min. access hole at slot location С Ν G measured Tape slot at hub in core for Full radius tape start 2.5mm min.width

Figure 22: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

AM06038v1

Таре				Reel		
Dim	mm		Dim	r	nm	
Dim.	Min.	Max.	Dim.	Min.	Max.	
A0	6.8	7	А		330	
B0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1	Bas	e qty.	2500	
P1	7.9	8.1	Bull	k qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

STD47N10F7AG Revision history

5 Revision history

Table 10: Document revision history

Date	Revision Changes	
23-Feb-2015	1	First release
17-Jun-2015	2	Updated Section 4: Package mechanical data.
17-Jun-2015		Minor text changes
		Updated title and features on cover page.
01-Feb-2017	3	Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics".
		Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

