Nadstavba Mendelizmu

Alelové varianty a funkcie génov

Od genotypu po fenotyp

Alelové varianty a funkcie génov

Gény môžu existovať vo viac ako dvoch alelových formách a každá alela má na fenotyp iný vplyv

Mendlové experimenty

- Každý znak, ktorý Mendel študoval bol kontrolovaný jedným génom s dvoma alelami.
- Gény možu existovať vo viac ako dvoch alelových formách.
- Rôzne alely môžu mať rôzny vplyv na fenotyp.

Neúplná dominancia

Phenotype	Genotype	Amount of gene product
Red	ww	2 <i>x</i>
Pink	Ww	x
White	ww	0

- Fenotyp
 heterozygota je
 presne medzi
 fenotypmi oboch
 homozygotov.
- Jedna alela je čiastočne alebo neúplne dominantná nad druhou.

Kodominancia

- Kodominancia je jav, pri ktorom heterozygot vyjadruje fenotypy oboch homozygotov.
 - žiadna alela nie je dominantná nad inou.

Kodominancia

- AB0 systém
- na krvnú skupinu nemá životné prostredie žiadny vplyv
- monogénne dedičný znak lokus príslušného génu autozómový
- alely určujúce skupiny A a B sú úplne dominantné a navzájom kodominantné, tzn. že v heterozygotnom genotype sú vo fenotype vyjadrené obidve
- Tretia alela pre krvné skupiny 0 je proti obidvom predchádzajúcim úplne recesívna.

Kodominancia

Znamená to, že lokus pre krvný systém AB0 je multialelický s tromi alelami **I_A, I_B a i**

Genotypy krvných skupín

```
genotyp

A IAIA alebo IAi

B IBIB alebo IBi

AB IAIB

0 ii
```

Gén, ktorý pomieňuje tvorbu antigénov A a B sa označuje písmenom I.

Frequency in Genotype	Blood Type	A Antigen Present	B Antigen Present	U.S. White Population (%)
I ^A I ^A or I ^A i	A	+	_	41
l ^B l ^B or l ^B i	В	_	+	11
I ^A I ^B	AB	+	+	4
ii	0	-	_	44

	Group A	Group B	Group AB	Group O
Red blood cell type	A		AB	
Antibodie present	s Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens present	A antigen	† B antigen	A and B antigens	None

Frekvencia krvných skupín v našej populácii SR 15.09.2007 Imunohematológia A pozit 36,7% 0 pozit 27,2% 6,3% 4,8% A negat 0 negat B pozit 15,3% AB pozit 6,8% B negat 2,7% AB negat 1,2%

Mnohonásobný alelizmus

	Genotype	Phenotype
Albino	сс	White hairs over the entire body
Himalayan	c ^h c ^h	Black hairs on the extremities; white hairs everywhere else
Chinchilla	c ^{ch} c ^{ch}	White hair with black tips on the body
Wild-type	c ⁺ c ⁺	Colored hairs over the entire body

- Najčastejšie sa vyskytujúce alely v prírode sú štandardné alebo wild-type alely.
- Všetky ostatné sú mutantné.

Série alel

Phenotype

Genotype

Light chinchilla

cchch

Light chinchilla with black tips

- Alelické série opisujú hierarchiu dominancie mnohonásobných alel.
- Alela albino nie je funkčná vôbec – nulová alela - amorfná.
- Hypomorfná alela má čiastočnú funkciu.

 $c^h c$

Himalayan

Testovanie recesívnych mutácií

Pokiaľ hybrid, ktorý nesie obe tieto alely vykazuje mutantný fenotyp

Phenotypes

Tests for allelism

Conclusion

cinnabar and scarlet are mutations in different genes.

cinnabar-2 and cinnabar are alleles of the same gene.

cinnabar-2 and scarlet are mutations in different genes.

Rozmanitosť účinkov jednotlivých mutácií

- Viditeľné mutácie
- Sterilné mutácie
- Letálne mutácie

Letálne gény u človeka - prejav v rôznych fázach života

Hungtingtonova choroba – autozomálne dominantné ochorenie letálny prejav € 50.roky života

Ichtyosis congenita gravis – autozomálne recesívne ochorenie letálny prejav intrauterinne,

do 3 dní po

narodení

Gény slúžia k tvorbe polypeptidov

Aspects of phenotype

Dominantné a recesívne mutácie

Wild-type allele produces a functional polypeptide.

Alela so stratou funkcie amorfná cinnabar

Alela s čiastočnou stratou funkcie hypomorfná

himalayan

Dominantne negatívne alely so ziskom funkcie

Antennapedia

Recessive amorphic loss-of-function allele does not produce a functional polypeptide.

Recessive hypomorphic loss-of-function allele produces a partially functional polypeptide.

Dominant-negative allele produces a polypeptide that interferes with the wild-type polypeptide.

Severe

Genotype	Polypeptides present	Phenotype	Nature of mutant allele
a ⁺ a		Wild-type	Recessive
a+ ah	JAAA	Wild-type	Recessive
a ⁺ a ^D	W. C.	Mutant	Dominant

Najdôležitejšie poznatky

- Gény sa často vyskytujú vo viacerých alelách.
- Mutatné alely môžu byť dominantné, recesívne, neúplne dominantné alebo kodominantné.
- Pokiaľ hybrid, ktorý zdedil inú recesívnu mutantnú alelu od každého zo svojich rodičov, vykazuje mutantný fenotyp, potom tieto recesívne alely sú alelami toho istého génu, ak tento hybrid vykazuje štandardný fenotyp, sú mutantné alely alelami rôznych génov

Najdôležitejšie poznatky

- Väčšina génov kóduje polypeptidy.
- Recesívna mutantná alela v homozygotnom stave vedie často ku strate alebo zníženiu aktivity polypeptidu
- Niektoré dominantné mutácie vedú k tvorbe polypeptidu, ktorý interferuje s aktivitou polypeptidu kódovaného štandardou alelou.

Od genotypu ku fenotypu

Fenotyp závisí na prostredí aj na genetických faktoroch

Vplyv prostredia

- Gény musia fungovať v kontexte vnútorného aj vonkajšieho prostredia
- Príklady
 - Drosophila shibire mutácia (teplota) paralýza (japonsky)
 - Phenylketonúria (dieta, fenylalanín)
 - Predčasná plešatosť (testosterón)

Neúplná penetrancia Príklad: Polydactylia

 Ak sa u jedincov neprejavuje určitý znak, aj keď majú zodpovedajúci genotyp

Variabilná expresivita Príklad: *Lobe* mutácia

Keď sa znak
 nemanifestuje
 rovnakým
 spôsobom u
 všetkých jedincov,
 ktorí ho majú.

Úplná penetrancia 100% rovnaký fenotyp

Neúplná penetrancia <100% rovnaký fenotyp

Konštantná expresivita

Neúpná penetrancia s variabilnou expresivitou

Variabilná expresivita

Génové Interakcie Nezmenený štiepny pomer Príklad: hrebene u sliepok

- Rozličné kombinácie alel z dvoch génov poskytujú rozličné fenotypy
- Príklad

 R-P- orechovitý

 R-pp ružicovitý

 rrP- hráškovitý

 rrpp jednoduchý

9:3:3:1

F₁ genotypes: All R/r P/p

F₁ phenotypes: All walnut comb

Walnut

Summary: 9/16 walnut, 3/16 rose, 3/16 pea, 1/16 single

Génové Interakcie komplementárne faktory

Gene	$egin{array}{c} {\cal C} \\ {\sf Precursor} & ightarrow {} \end{array}$	$\begin{matrix} P \\ \text{Intermediate} \rightarrow \end{matrix}$	Anthocyanin
Genotyp			or the second se
C- P-	+	+	+
cc P-	+	_	_
C-pp	+	+	-
cc pp	+	-	-

9:7

Summary: 9/16 purple, 7/16 white

Génové Interakcie epistáza dominantná

F_2	F_2	Výsledný F ₂	Očakávané		
fenotypový	fenotypový	štiepny pomer	fenotypy v F ₂	12	2:3:1
štiepny	štiepny		generácii		
pomer pre	pomer pre				
Cc x Cc	$Dd \times Dd$				
	³ / ₄ D -	9/16 <i>C-D</i> -	9/16 biele tekvice	12/16	E
³ / ₄ C-					
	¹⁄₄ <i>dd</i>	3/16 <i>C-dd</i>	3/16 biele tekvice		
	2/ D	2/1 C D	2/1 C Y1 / / 1 ·	246	
1/	³⁄₄ D-	3/16 ccD-	3/16 žlté tekvice	3/16	
¹⁄₄ <i>cc</i>	½ dd	1/16 <i>ccdd</i>	1/16 zelené	1/16	
	, 4 0000	2, 20 0000	tekvice	2,20	
			CILVICO		

Génové Interakcie dominantná epistáza

Summary: 12/16 white, 3/16 yellow, 1/16 green

b) Yellow fruit-producing pathway

a) White fruit-producing pathway

c) Green fruit-producing pathway

Génové Interakcie recesívna epistáza

F2	F2	Výsledný F2	Očakávané	0.2.4
fenotypový	fenotypový	štiepny pomer	fenotypy v F2	9:3:4
štiepny	štiepny		generácii	
pomer pre	pomer pre			
Ss x Ss	Tt x Tt			
	³ / ₄ T-	9/16 S-T-	9/16 zelené	
³ / ₄ S-			rybičky	
	¹⁄₄ tt	3/16 S-tt	3/16 biele	
			rybičky	
	³ / ₄ T-	3/16 ssT-	3/16 žlté rybičky	
1/4 SS	½ tt	1/16 sstt	1/16 biele	
			rybičky	

Génové Interakcie recesívna epistáza

Veľké množstvo antigénov, medzi ktoré patria aj aglutinogény nachádzajúce sa na vonkajšej strane plazmatickej membrány červených krviniek, sú charakteru oligosacharidov, resp. glykolipidov.

Ich špecifickosť je určená prítomnosťou konkrétnych monosacharidových zvyškov a ich usporiadaním (vetvenie oligosacharidového reťazca).

Génové Interakcie recesívna epistáza

Za tvorbu krvných skupín sú zodpovedné dve glykozyltransferázy, čo sú enzýmy, ktoré sa podieľajú na prenose špecifického monosacharidu na základnú oligosacharidovú "kostru"

(alela i nepridáva žiadny monosacharid)

Glykozyltransferázy a krvné skupiny človeka

Glykozyltransferázy a krvné skupiny človeka

Obr. Zloženie antigénov krvných skupín AB0 systému u človeka

Krvné skupiny človeka

Aj základný oligosacharidový prekurzor krvnej skupiny 0 nevzniká "z ničoho", ale je k tomu potrebný enzým, ktorý je odlišný od lokusu AB0 systému

Jeho alela H zabezpečuje syntézu kompletného prekurzoru.

Krvné skupiny človeka

▶ Recesívna alela h vo veľmi vzácnom homozygotnom stave zapríčiňuje tzv.
 Bombay fenomén, ktorý sa prejavuje neočakávaným výskytom fenotypu krvnej skupiny 0 u detí rodičov, z ktorých aspoň jeden má genotyp AA, BB alebo AB.
 Y.M. Bhende in 1952

0.0004% (4/1 000 000) Mumbai **0.01%** (1/10 000)

"Pravú nulku" od Bombay fenoménu vieme rozlíšiť pomocou produkcie protilátok voči antigénu H (jedinci iiH- protilátky neprodukujú, hh produkujú) (imunitná reakcia).

Génové Interakcie recesívna epistáza

9:3:4

Génové Interakcie Inhibícia

F2	F2	Výsledný F2	Očakávané	13:3
fenotypový	fenotypový	štiepny pomer	fenotypy v F2	
štiepny	štiepny		generácii	
pomer pre	pomer pre Ii			
Aa x Aa	x Ii			m m
	³ / ₄ I-	9/16 A-I-	9/16 biele perie	(m)
³ / ₄ A-	½ ii	3/16 A-ii	3/16 červené peric	
	³ / ₄ I-	3/16 aaI-	3/16 biele perie	M
¹⁄₄ aa	½ ii	1/16 aaii	1/16 biele perie	

Génové Interakcie Kompenzácia

F2	F2	Výsledný F2	Očakávané	
fenotypový	fenotypový	štiepny pomer	fenotypy v F2	10:3:3
štiepny	štiepny		generácii	10.0.0
pomer pre	pomer pre			
Vv x Vv	Dd x Dd			^
	³ / ₄ D-	9/16 V-D-	9/16 rovné	
³ / ₄ V-			struky	
	1/4 dd	3/16 V-dd	3/16 zakrivené	
			nadol	A
	³ / ₄ D-	3/16 vvD-	3/16 zakrivené	
1/4 VV			nahor	
	1/4 dd	1/16 vvdd	1/16 rovné	3
			struky	

Génové Interakcie Duplicita

Duplicita nekumulatívna s dominanciou

15:1

Summary: 15/16 triangular, 1/16 ovoid

Genotype			
A- B-	+	+	triangular
aa B-	+	+	triangular
A- bb	+	+	triangular
aa bb	+		ovoid

Génové Interakcie Duplicita

Duplicita kumulatívna s dominanciou

F2	F2	Výsledný F2	Očakávané	0.6.4
fenotypový	fenotypový	štiepny pomer	fenotypy v F2	9: 6 : 1
štiepny	štiepny		generácii	
pomer pre	pomer pre			
P1p1xP1p1	P2p2xP2p2			
	³ / ₄ P2-	9/16 P1-P2-	9/16 tmavohnedé	
³ / ₄ P1-			zrná	
	½ p2p2	3/16 P1-p2p2	3/16	
			hnedočervené	
			zrná	
	³ / ₄ P2-	3/16 p1p1P2-	3/16	
½ p1p1			hnedočervené	
			zrná	
	½ p2p2	1/16 p1p1p2p2	1/16 žlté zrná	

1:4:6:4:1

Génové Interakcie Duplicita

Duplicita kumulatívna bez dominancie

F2 fenotypový	F2 fenotypový	Výsledný F2 štiepny	Očakávané fenotypy v	Výsledný fe	notyp
štiepny pomer	štiepny pomer pre	pomer	F2 generácii		
pre R1r1xR1r1	R2r2xR2r2				
	1/4 R2R2	1/16 R1R1R2R2	1/16 tmavočervené zrná	1/16	
½ R1R1-	2/4 R2r2	2/16 R1R1R2r2	2/16 červené zrná	4/16	
	½ r2r2	1/16 R1R1r2r2	1/16 svetločervené zrná		
	½ R2R2	2/16 R1r1R2R2	2/16 červené zrná	6/16	
2/4 R1r1-	2/4 R2r2	4/16 R1r1R2 r2	4/16 svetločervené zrná		
	½ r2r2	2/16 R1r1r2r2	2/16 ružové zrná	4/16	
	½ R2R2	1/16 r1r1R2R2	1/16 svetločervené zrná		
½ r1r1	2/4 R2r2	2/16 r1r1R2r2	2/16 ružové zrná	1/16	
	¹ / ₄ r2r2	1/16 r1r1r2r2	1/16 biele zrná		

Boy with untreated PKU

Pleiotropia

- Ak gén môže ovplyvniť viac fenotypových znakov.
- Mutácia v géne pre fenylketonúriu zapríčiňuje mentálne postihnutie ako aj svetlé vlasy a prítomnosť metabolitov v krvi a moči
- Mutácia v *singed* géne u *drozofily* spôsobuje zmenu chĺpkov a vajíčok.

Najdôležitejšie poznatky

- Pôsobenie génov je ovplyvnené faktormi vonkajšieho prostredia a biologickými vlastnosťami organizmu.
- Jeden znak môže byť ovplyvnený dvoma alebo viacerými génmi.
- Interakcie génov.
- Gén sa označuje ako pleiotropný pokiaľ ovplyvňuje viacero fenotypových znakov súčasne.

Inbriding: Iný pohľad na rodokmene

Genetici používajú jednoduchú štatistiku – koeficient inbridingu k analýze dôsledkov párenia.

Príbuzenské sobáše a recesívne ochorenia

Inbredná depresia

Hybrid Inbred 1 Inbred 2

Inbredné línie sú menej životaschopné

Heteróza

- Ak dve rozličné inbredné línie pokrížime hybridi sú heterozygoti pre mnoho génov.
- Hybridi sú životaschopnejší