ECES-352 Summer 2014 Homework #7 Solutions

PROBLEM 7.1:

Suppose that a discrete-time system is described by the input-output relation

$$y[n] = (x[n])^3$$

(a) Determine the output when the input is the complex exponential signal

$$x[n] = Ae^{j\phi}e^{j\hat{\omega}n}$$

(b) Is the output of the form

$$y[n] = \mathcal{H}(\hat{\omega})Ae^{j\phi}e^{j\hat{\omega}n}$$

If not, why not?

7.1
$$y[n] = (x[n])^3$$

(a)
$$x[n] = Ae^{j\phi}e^{j\hat{\omega}n}$$

 $\Rightarrow y[n] = (Ae^{j\phi}e^{j\hat{\omega}n})^3 = A^3e^{j3\phi}e^{j3\hat{\omega}n}$

(b) The output cannot be expressed in the form $y[n] = \mathcal{H}(\hat{\omega}) A e^{j\Phi} e^{j\hat{\omega}n}$

Since the output frequency is $3\hat{\omega}$ instead of $\hat{\omega}$. This occurs because the system is nonlinear.

PROBLEM 7.2*:

A discrete-time system is defined by the input/output relation

$$y[n] = x[n+1] - 2x[n] + x[n-1].$$
(1)

- (a) Determine whether or not the system defined by Equation (1) is (i) linear; (ii) time-invariant; (iii) causal. Explain your answers.
- (b) Obtain an expression for the frequency response of this system.
- (c) Make a sketch of the frequency response (magnitude and phase) as a function of frequency. Hint: Use symmetry to simplify your expression before determining the magnitude and phase.
- (d) For the system of Equation (1), determine the output y₁[n] when the input is

$$x_1[n] = 2\cos(0.25\pi n) = e^{j0.25\pi n} + e^{-j0.25\pi n}.$$

Express your answer in terms of cosine functions.

(e) For the system of Equation (1), determine the output y₂[n] when the input is

$$x_2[n] = 1 + \cos(0.25\pi(n-1)).$$

Hint: use the linearity and time-invariance properties.

7.2 u [r

(a) The system is:

- -linear, because the output is computed by taking a linear combination of inputs;
- time-invariant, because the coefficients of the linear combination are all constants;
- non-causal, because the present value of the output depends on future input values.

(b)
$$\times [n] = Ae^{j\phi}e^{j\hat{\omega}n} \Rightarrow y[n] = \mathcal{H}(\hat{\omega})Ae^{j\phi}e^{j\hat{\omega}n}$$

where $\mathcal{H}(\hat{\omega}) = e^{j\hat{\omega}} - 2 + e^{-j\hat{\omega}}$

(c)
$$\mathcal{H}(\hat{\omega}) = 2 \cos \hat{\omega} - 2 = 2 (1 - \cos \hat{\omega}) e^{ij\pi}$$

$$\frac{/\mathcal{H}(\hat{\omega})}{\prod_{-\pi}}$$

(d)

$$X_{1}[n] = 2 \cos (\frac{\pi}{4}n)$$

 $H(\frac{\pi}{4}) = 2 (1 - \frac{1}{\sqrt{2}}) e^{j\pi}$
 $Y_{1}[n] = 4 (1 - \frac{1}{\sqrt{2}}) \cos (\frac{\pi}{4}n + \pi)$

(e)
$$X_{2}[n] = 1 + \cos(\overline{+}(n-1))$$

 $\mathcal{H}(0) = 0$
 $\mathcal{Y}_{2}[n] = \frac{1}{2}y_{1}[n-1] = 2(1-\frac{1}{\sqrt{2}})\cos(\overline{+}n + \frac{3\pi}{4})$

PROBLEM 7.3:

The diagram in Fig. 1 depicts a cascade connection of two linear time-invariant systems; i.e., the output of the first system is the input to the second system, and the overall output is the output of the second system.

Figure 1: Cascade connection of two LTI systems.

(a) Suppose that the two LTI systems are described by the impulse responses

$$h_1[n] = \delta[n] - \delta[n-1]$$
 and $h_2[n] = u[n] - u[n-10]$.

- (b) Determine H₁(û), the frequency response of the first system.
- (c) Determine H₂(\hat{\phi}), the frequency response of the second system.
- (d) By using numerical convolution, show that $h[n] = h_1[n] * h_2[n] = \delta[n] \delta[n-10]$.
- (e) From h[n] determine $H(\hat{\omega})$ the frequency response of the overall system (from x[n] to y[n]).
- (f) Show that your result in part (d) is the product of the results in parts (a) and (b); i.e., H₁(û)H₂(û) = H(û).

7.3

$$\times [n]$$
 $\downarrow \text{system # 1}$
 $\downarrow \text{hi[n]}$
 $\downarrow \text{hi[n]}$
 $\downarrow \text{hi[n]}$
 $\downarrow \text{hi[n]}$
 $\downarrow \text{hi[n]}$

(a)
$$h_1[n] = S[n] - S[n-1]$$
 $h_2[n] = u[n] - u[n-10]$
 V
 $\{b_0, b_1\}_{\#_1} = \{1, -1\}$ $\{b_0, ..., b_q\}_{\#_2} = \{1, ..., 1\}$

(b)
$$H_{1}(\hat{\omega}) = 1 - e^{-j\hat{\omega}}$$

(c)
$$H_{2}(\hat{\omega}) = 1 + e^{-j\hat{\omega}} + \dots + e^{-jq\hat{\omega}}$$

$$h[n] = S[n] - S[n-10] \Rightarrow \{b_0, ..., b_{10}\} = \{1, 0, ..., 0, -1\}$$

(e)
$$H(\hat{\omega}) = 1 - e^{-j \cdot l \cdot \hat{\omega}}$$

(f)
$$H_{1}(\hat{\omega}) + (1 - e^{-j\hat{\omega}}) (1 + e^{-j\hat{\omega}} + ... + e^{-jq\hat{\omega}})$$

$$= 1 + e^{-j\hat{\omega}} + ... + e^{-jq\hat{\omega}} - (e^{-j\hat{\omega}} + ... + e^{-j(0\hat{\omega})})$$

$$= 1 - e^{-j(0\hat{\omega})}$$

PROBLEM 7.4*:

Suppose that three systems are hooked together in "cascade." In other words, the output of S_1 is the input to S_2 , and the output of S_2 is the input to S_3 . The three systems are specified as follows:

$$S_1$$
: $\mathcal{H}_1(\hat{\omega}) = e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$

$$S_2$$
: $y_2[n] = x_2[n] + x_2[n-2]$

$$S_2$$
: $y_2[n] = x_2[n] + x_2[n-2]$
 S_3 : $y_3[n] = 2x_3[n-1] + 2x_3[n-2]$

NOTE: the output of S_i is $y_i[n]$ and the input is $x_i[n]$.

The objective in this problem is to determine the equivalent system that is a single operation from the input x[n] (into S_1) to the output y[n] which is the output of S_3 . Thus x[n] is $x_1[n]$ and y[n] is $y_3[n]$.

- (a) Determine the difference equation for S_1 , i.e., express $y_1[n]$ in terms of $x_1[n]$, $x_1[n-1]$, $x_1[n-2]$, etc.
- (b) Determine the frequency response of the other two systems: H_i(û) for i = 2,3.
- (c) Determine the frequency response of the overall cascaded system.
- (d) Write one difference equation that defines the overall system in terms of x[n] and y[n] only.

$$\frac{x_1[n]}{s_1} \xrightarrow{s_1[n]} \frac{y_1[n] = x_2[n]}{s_2} \xrightarrow{y_2[n]} \frac{y_3[n]}{s_3} \xrightarrow{y_3[n]}$$

(a)
$$S_1: \mathcal{H}_{1}(\hat{\omega}) = e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$$

$$\Rightarrow \{b_{\kappa}\}_{\#_{1}} = \{0, 1, -1\}$$

$$\forall [n] = x, [n-1] - x, [n-2]$$

(6)
$$S_2: Y_2[n] = X_2[n] + X_2[n-2]$$

$$\Rightarrow \{b_K\}_{+2} = \{1,0,1\}$$

$$H_2(\hat{\omega}) = 1 + e^{-j2\hat{\omega}}$$

$$S_3$$
: $y_3[n] = 2x_3[n-1] + 2x_3[n-2]$
 $\Rightarrow \{b_k\}_{\#_3} = \{0,2,2\}$
 $\mathcal{H}_3(\hat{\omega}) = 2e^{-j\hat{\omega}} + 2e^{-j2\hat{\omega}}$

(c)
$$H(\hat{\omega}) = H_{1}(\hat{\omega}) H_{2}(\hat{\omega}) H_{3}(\hat{\omega})$$

$$= (e^{-j\hat{\omega}} - e^{-j2\hat{\omega}})(1 + e^{-j2\hat{\omega}})(2e^{-j\hat{\omega}} + 2e^{-j2\hat{\omega}})$$

$$= 2(e^{-j2\hat{\omega}} - e^{-j6\hat{\omega}})$$

(d)
$$\{b_k\} = \{0, 0, 2, 0, 0, 0, -2\}$$

 $y[n] = 2 \times [n-2] - 2 \times [n-6]$

The frequency response of a linear time-invariant filter is given by the formula

$$H(\hat{\omega}) = (1 + e^{-j\hat{\omega}})(1 - e^{-j\pi/3}e^{-j\hat{\omega}})(1 - e^{j\pi/3}e^{-j\hat{\omega}}).$$
 (2)

- (a) Write the difference equation that gives the relation between the input x[n] and the output y[n]. Hint: Multiply out the factors to obtain a sum of powers of $e^{-j\hat{\omega}}$.
- (b) What is the impulse response of this system?
- (c) If the input is of the form x[n] = Ae^{jφ}e^{jω̂n}, for what values of −π ≤ ω̂ ≤ π will y[n] = 0 for all n?
- (d) Use superposition to determine the output of this system when the input is

$$x[n] = 2 - 3\delta[n - 4] + 7\cos(\pi/3n)$$
 for $-\infty < n < \infty$

Hint: Divide the input into three parts and find the outputs separately each by the easiest method and then add the results.

$$\begin{array}{l} \sqrt{3} \int_{0}^{1} \ln z = \frac{1}{3} \int_{0}^{1} e^{-jz} \int_{0}^{1} e^$$

so one of these 3 terms must be zero.

$$e^{-j\frac{\pi}{4}} + 1 = 0 \Rightarrow e^{-j\frac{\pi}{4}}$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = -\pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-jw} = 0 \Rightarrow w = \pi/3$$

$$1 - e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}}$$

$$1 - e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}}$$

$$1 - e^{-j\frac{\pi}{4}} e^{-j\frac{\pi}{4}}$$