CPSC-354 Report

Your Name Chapman University

September 5, 2024

Abstract

(Delete and Replace:) You can safely delete and replace the explanations in this file as they will remain available on the course website. For example, you should replace this abstract with your own. The abstract should be a short summary of the report. It should be written in a way that makes it possible to understand the purpose of the report without reading it.

Contents

1	Introduction
	Week by Week 2.1 Week 1 2.2 Week 2 2.3
	Lessons from the Assignments
4	Conclusion

1 Introduction

(Delete and Replace): This report will document your learning throughout the course. It will be a collection of your notes, homework solutions, and critical reflections on the content of the course. Something in between a semester-long take home exam and your own lecture notes.¹

To modify this template you need to modify the source report.tex which is available in the course repo. For guidance on how to do this read both the source and the pdf of latex-example.tex which is also available in the repo. Also check out the usual resources (Google, Stackoverflow, LLM, etc). It was never as easy as now to learn a new programming lanuage (which, btw, LATEX is).

For writing LATEX with VSCode use the LaTeX Workshop extension.

There will be deadlines during the semester, graded mostly for completeness. That means that you will get the points if you submit in time and are on the right track, independently of whether the solutions are

¹One purpose of giving the report the form of lecture notes is that self-explanation is a technique proven to help with learning, see Chapter 6 of Craig Barton, How I Wish I'd Taught Maths, and references therein. In fact, the report can lead you from self-explanation (which is what you do for the weekly deadline) to explaining to others (which is what you do for the final submission). Another purpose is to help those of you who want to go on to graduate school to develop some basic writing skills. A report that you could proudly add to your application to graduate school (or a job application in industry) would give you full points.

technically correct. You will have the opportunity to revise your work for the final submission of the full report.

The full report is due at the end of the finals week. It will be graded according to the following guidelines. Grading guidelines (see also below):

- Is typesetting and layout professional?
- Is the technical content, in particular the homework, correct?
- Did the student find interesting references [BLA] and cites them throughout the report?
- Do the notes reflect understanding and critical thinking?
- Does the report contain material related to but going beyond what we do in class?
- Are the questions interesting?

Do not change the template (fontsize, width of margin, spacing of lines, etc) without asking your first.

2 Week by Week

2.1 Week 1

Notes

This week in class we mainly focused on learning Lean, setting up \LaTeX , and a brief lecture on the basis of Proof = Program. This idea shows how logical mathematical proofs are a constructive process, building on previously founded theorems and definitions. This idea transfers to theoretical programming in the sense that programs are also constructed proofs. The execution of a program is the execution of many logical steps in a proof. I enjoy how this relates to the "human" process as well - our activities are the execution of previously learned strategies in a logical way.

Homework

Level 5 - Adding Zero

In this level we prove the theorem that a+0=a using a+(b+0)+(c+0)=a+b+c. Here is how I solved this theorem.

```
repeat rw add zero
rfl
```

Level 6 - Adding Zero

In this level we built on the solution from the previous level to learn how to use precision rewriting.

```
rw add zero c
repeat rw add zero
rfl
```

Level 7 - Add Suc

In this level we prove the theorem that succ(a)=a+1.

```
rw one eq add zero
```

```
repeat rw add zero
rfl
```

Level 8 - Add Suc

In this level we prove the equation that **2+2=4**. This was the final level in the Tutorial World, and required the accumulation of definitions and theorems learned so far. I will provide the assumptions that I used when deciding my proof in Lean.

```
rw four eq succ three — Any number n = succ(pred(n))
rw three eq succ two — Any number n = succ(pred(n))
rw two eq succ one — Any number n = succ(pred(n))
rw one eq succ zero — Any number n = succ(pred(n))
repeat rw add succ — Using a + succb = succ(a + b)
rw add zero — Using a + 0 = a
rfl — Proves the goal X = X
```

Comments and Questions

Ask at least one **interesting question**² on the lecture notes. Also post the question on the Discord channel so that everybody can see and discuss the questions.

2.2 Week 2

Notes

Translating Lean into Math by matching each line in Lean to the corresponding mathematical equation and assumptions. Being able to reverse the proof and translate from Math into Lean is also important. Lean reads from the goal to the axioms, whereas Math is written from the axioms to the goal (usually).

Defining data types recursively (in terms of itself). Syntax varies by language.

Recursion example with the Tower of Hanoi. Breaking logical puzzles into iterative steps, then into recursive steps.

$2.3 \ldots$

. . .

3 Lessons from the Assignments

(Delete and Replace): Write three pages about your individual contributions to the project.

On 3 pages you describe lessons you learned from the project. Be as technical and detailed as possible. Particularly valuable are *interesting* examples where you connect concrete technical details with *interesting*

²It is important to learn to ask *interesting* questions. There is no precise way of defining what is meant by interesting. You can only learn this by doing. An interesting question comes typically in two parts. Part 1 (one or two sentences) sets the scene. Part 2 (one or two sentences) asks the question. A good question strikes the right balance between being specific and technical on the one hand and open ended on the other hand. A question that can be answered with yes/no is not an interesing question.

general observations or where the theory discussed in the lectures helped with the design or implementation of the project.

Write this section during the semester. This is approximately a quarter of apage per week and the material should come from the work you do anyway. Just keep your eyes open for interesting lessons.

Make sure that you use IATEX to structure your writing (eg by using subsections).

4 Conclusion

(Delete and Replace): (approx 400 words) A critical reflection on the content of the course. Step back from the technical details. How does the course fit into the wider world of software engineering? What did you find most interesting or useful? What improvements would you suggest?

References

[BLA] Author, Title, Publisher, Year.