(المحاضرة 2)

√ الفقرات الرئيسية المط<mark>لوبة بهذه المحاضرة</mark>

- خوارزمية Simplex (<mark>المتحولات الراكدة)</mark>
 - الصياغة الق<mark>ياسية لمسألة EP</mark>
 - متحولات الق<mark>اعدة.</mark>
- المبادئ الأساسية لخوارزمية Simplex.
- خطوات خوارزمية Simplex لمسألة Max (الصياغة النظامية).

• بعض الأسئلة المهمة:

- اكتب خصائص الصياغة القياسية لمسالة البرمجة الخطية.
- اكتب المبادئ الأساسية لخوارزمية السمبلكس.
- متى يتحقق شرط الأمثلية بجدول السمبلكس من أجل مسألة Max. (Page 54)
- كيف يتم اختيار المتحول الداخل بجدول السمبلكس لمسألة Max. (Page 54)
- كيف يتم اختيار المتحول الخارج بجدول السمبلكس.

المحاضرة 2

♦ خوارزمية Simplex (المتحولات الراكدة)

وبِمكننا التعبير عن الصياغة القياسية لم<mark>سألة البرمجة الخطية كالأتي:</mark>

 $\max (or \min) \ Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

 $.b_1, b_2, ..., b_m \ge 0$ حيث

نستطيع كتابة الصياغة القياسية لمسألة البرمجة الخطية بمعالجة أمرين هما:

• معالجة القيود

أ- عندما يكون القيد معادلة (أو متباينة) طرفها الأيمن ثابت قيمته سالبة، يتم ضرب الطرفين بـ 1-.

ب-تحويل القيد الذي يعبر عنه بمتباينة من النوع (≥) إلى معادلة، ويتم إجراء ذلك بإضافة متحول إلى الطرف الأيسر، وبسمى المتحول الراكد (slack variable).

ت-تحويل القيد الذي يعبر عنه بمتباينة من النوع (≤) إلى معادلة، ويتم إجراء ذلك بطرح متحول من الطرف الأيسر، ويسمى المتحول الفائض (surplus variable). (())

معالجة المتحولات غير محددة الإشارة

تتم معالجة كل متحول غير محدد الإشارة باستخدام متحولين غير سالبين، مثلاً إذا كان المتحول غير محدد الإشارة، $x_i = x_i' - x_i'' \; ; \; x_i', x_i'' \geq 0$ عندئذ يمكن التعبير عنه كالآتي $x_i = x_i' - x_i'' \; ; \; x_i', x_i'' \geq 0$

وتتلخص خطوات خوارزمية السمبلكس لمسألة Max ذات الصياغة النظامية وبحيث تكون قيم الطرف الأيمن من القيود غير سالبة كالآتي:

الخطوة 1: كتابة الصياغة القياسية.

الخطوة 2: كتابة جدول السمبلكس الأول وتكون القاعدة هي المتحولات الراكدة.

الخطوة 3: اختبار أمثلية حل القاعدة، واذا تحقق شرط الأمثلية نتوقف ويكون حل القاعدة الحالى هو الحل الأمثل.

الخطوة 4: اختيار المتحول الداخل والم<mark>تحول الخارج، وإذا لم نتمكن من تحديد ا</mark>لمتحول الخارج نتوقف ويكون لدينا حل غير محدود.

الخطوة 5: كتابة جدول السمبلكس الجديد (يأخذ المتحول الداخل مكان المتحول الخارج في القاعدة)، ونعود للخطوة 3.

الصفحة 2 من 6

المحاضرة 2

تمارین تتعلق بالمحاضرة 2

تمرين 1: استخدم خوارزمية السمبلكس لحل مسألة البرمجة الخطية الآتية<mark>:</mark>

$$\max z = 3x_1 + 2x_2$$

subject to

$$4x_1 + 3x_2 \le 12$$

$$4x_1 + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

الحل: نكتب الصياغة القياسية، وهي كالآتي:

$$\max z = 3x_1 + 2x_2$$

subject to

$$4x_1 + 3x_2 + x_3 = 12$$

$$4x_1 + x_2 + x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

نكتب جدول السمبلكس الأول:

المحوري	ود	العم
,		

		القاعدة	x_1	x_2	x_3	x_4	الحل
دالة الهدف	→ سطر	Z	-3	-2	0	0	0
x_3 المتحول	→ سطر	x_3	4	3	1	0	12
لر المحور <i>ي</i>	→ السط	X_4	4	Ō	0	1	8

جدول السمبلكس الأول

 $\varepsilon = \min\{-3, -2\} = -3$ المتحول الداخل هو x_1 لأنه يمتلك أصغر المعاملات السالبة في سطر دالة الهدف $\theta = \min\{\frac{12}{4}, \frac{8}{4}\} = \frac{8}{4}$ المتحول الخارج هو x_4 لأنه يحقق قاعدة النسبة الأصغر $\theta = \min\{\frac{12}{4}, \frac{8}{4}\} = \frac{8}{4}$ نكتب جدول السمبلكس الثاني بتنفيذ العمليات التالية:

يأخذ x_1 مكان x_4 في عمود القاعدة -1

-2 نقسم السطر المحوري على العنصر المحوري وهو القيمة 4 لنجد سطر المتحول x_1 في الجدول الثاني.

 $(3) \times (x_1) \times (x_1) \times (x_1) \times (x_1) \times (x_1) \times (x_1) \times (x_1)$ سطر z

-4- سطر المتحول x_3 الجديد = سطر المت<mark>حول x_3 القديم + (سطر المتحول -4)×(x_1).</mark>

فنحصل على الجدول الآتي:

				_			
			ري	ود المحو ↓			
		القاعدة	X_1	x_2	x_3	X_4	الحل
سطر دالة الهدف	\rightarrow	Z	0	-5/4	0	3/4	6
السطر المحوري	\leftarrow	x_3	0	2	1	-1	4
X_1 سطر المتحول	\rightarrow	x_1	1	1/4	0	1/4	2

جدول السمبلكس الثاني

 $\theta = \min\left\{\frac{4}{2}, \frac{2}{1/4}\right\} = \frac{4}{2}$ المتحول الداخل هو x_2 والمتحول الخارج هو x_3 هو المتحول الداخل هو الخارج ال

القاعدة	x_1	x_2	x_3	x_4	الحل
z	0	0	5/8	1/8	17/2
x_2	0	T	1/2	-1/2	2
x_1	1	0	-1/8	3/8	3/2

جدول السمبلكس الثالث (الأمثل)

نلاحظ أن الجدول الثالث يعطينا الحل الأمثل لأن جميع معاملات متحولات غير القاعدة في سطر دالة الهدف غير سالبة. والحل الأمثل هو: $x_1 = \frac{3}{2}, x_2 = 2$ ، أما القيمة المثلي فهي: $z = \frac{17}{2}$

تمرين 2: استخدم خوارزمية السمبلكس لحل مسألة البرمجة الخطية الآتية:

$$\max z = 4x_1 + 3x_2$$

subject to

$$2x_1 + x_2 \le 10$$

$$5x_1 + 3x_2 \le 26$$
$$x_1 + x_2 \le 8$$

$$x_1 + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

الحل: نكتب الصياغة القياسية، وهي كالآتي:

$$\max z = 4x_1 + 3x_2$$

subject to

$$2x_1 + x_2 + x_3 = 10$$

$$5x_1 + 3x_2 + x_4 = 26$$

$$x_1 + x_2 + x_5 = 8$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

وجدول السمبلكس الأول هو:

القاعدة	x_1	x_2	x_3	x_4	x_5	الحل
Z	-4	-3	0	0	0	0
x_3	2	1	1	0	0	10
x_4	5	3	0	1	0	26
<i>X</i> ₅	1	1	0	0	1	8

جدول السمبلكس الأول

مو المتحول الداخل لأنه يمتلك أصغر المعاملات السالبة في سطر دالة الهدف، ولدينا قاعدة النسبة الأصغر x_1 هو المتحول الخارج. x_3 هو المتحول الخارج.

باستخدام التحويلات الأولية المناسبة وبحيث يأخذ المتحول الداخل مكان المتحول الخارج في عمود القاعدة نجد:

القاعدة	x_1	x_2	x_3	<i>X</i> ₄	x_5	الحل
z	0	<u></u> 1<	2	0	0	20
x_1	1	0.5	0.5	0	0	5
x_4	0	0.5	<u>-</u> 2.5	1	0	1
x_5	0	0.5	-0.5	0	1	3

جدول السمبلكس الثاني

هو المتحول الداخل، ولدينا قاعدة النسبة الأصغر $\frac{1}{0.5} = \frac{1}{0.5}, \frac{3}{0.5} = \frac{1}{0.5}$ هو المتحول الخارج. x_2

القاعدة	x_1	X ₂	X3	x_4	x_5	الحل
Z	0	0	-3	2	0	22
x_1	1	0	3	-1	0	4
x_2	0	1	_5	2	0	2
x_5	0	0	2	- 1	1	2

جدول السمبلكس الثالث

هو المتحول الداخل، ولدينا قاعدة النسبة الأصغر $\frac{2}{2}$, $\frac{2}{2}$ هو المتحول الخارج. x_3

القاعدة	x_1	x_2	x_3	x_4	x_5	الحل
Z	0	0	0	0.5	1.5	25
x_1	1	0	0	0.5	<mark>-1</mark> .5	1
x_2	0	1	0	-0.5	2.5	7
x_3	0	0	1	-0.5		1

جدول السمبلكس الرابع (الأمثل)

z=25 الحل الأمثل هو: $x_1=1, x_2=7, x_3=1$ والقيمة المثلى هي: z=25

الصفحة 5 من 6

تمرين 3: استخدم خوارزمية السمبلكس لحل مسألة البرمجة الخطية الآتية:

$$\max z = 2x_1 + 3x_2$$

subject to

$$-x_1 + x_2 \le 3$$

$$-2x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

الحل:

القاعدة	x_1	x_2	x_3	x_4	الحل
Z	-2	-3	0	0	0
x_3	-1	1	1	0	3
x_4	-2	1	0	1	2

جدول السمبلكس الأول

القاعدة	x_1	x_2	x_3	x_4	الحل
Z	-8	0	0	3	6
x_3	1	0	1	-1	1
x_2	-2	1	0	1	2

جدول السمبلكس الثاني

القاعدة	x_1	x_2	$\int x_3$	x_4	الحل
Z	0	0	8	-5	14
x_1	1	0	15	-1	1
x_2	0	1	2	-1	4
		1	1		

جدول السمبلكس الثالث

نلاحظ أن المتحول الداخل هو x_4 ، وبذلك يتحدد العمود المحوري، ونلاحظ أن معاملات القيود للمتحول الداخل غير موجبة، وبالتالي تفشل قاعدة النسبة الأصغر في تحديد المتحول الخارج لذلك نتوقف عن متابعة الحل تنفيذاً لخوارزمية السمبلكس، ويكون للمسألة حل غير محدود. ويمكننا التأكد من ذلك بيانياً.

الصفحة 6 من 6