

Projet 8 - Participez à une compétition Kaggle!

Aurélien Corroyer-Dulmont, PhD Ingénieur imagerie médicale

Cyril JAUDET, PhD *Physicien médical*

Ilyass MOUMMAD

Doctorant

Rappel de l'appel à projet

Contexte:

Le site Kaggle propose des compétitions informatiques sur des sujets différents

Objectif:

- Participer à une de ces compétitions réelle et en cours
- Obtenir des résultats mesurables avec un classement
- Collaborer avec d'autres compétiteurs ou en équipe pour améliorer les modèles
- Présenter un notebook explicatif de la démarche pour participer à l'évolution collective

Compétition choisie

Contexte :

- Un navire spatial comprenant 13 000 passagers a traversé une anomalie spatio-temporelle
- L'ordinateur de bord d'un précédent voyage ayant connu la même fin nous informe de données de passagers ayant ou non était transporté dans la faille spatio-temporelle

Objectif:

 A partir des informations de bord (nom des passagers, n° de cabin...), être capable de prédire avec des modèles de classification de machine learning ou de deep learning, si les passagers peuvent être sauvés ou non

Baclesse

URL de la compétition : https://www.kaggle.com/competitions/spaceship-titanic/overview

Compétition choisie

File and Data Field Descriptions

- train.csv Personal records for about two-thirds (~8700) of the passengers, to be used as training data.
 - PassengerId A unique Id for each passenger. Each Id takes the form gggg_pp where gggg indicates a group the passenger is travelling with and pp is their number within the group. People in a group are often family members, but not always.
 - HomePlanet The planet the passenger departed from, typically their planet of permanent residence.
 - CryoSleep Indicates whether the passenger elected to be put into suspended animation for the duration of the voyage.
 Passengers in cryosleep are confined to their cabins.
 - Cabin The cabin number where the passenger is staying. Takes the form deck/num/side, where side can be either P for Port or S for Starboard.
 - $\circ\hspace{0.1cm}$ Destination $\hspace{0.1cm}$ The planet the passenger will be debarking to.
 - Age The age of the passenger.
 - VIP Whether the passenger has paid for special VIP service during the voyage.
 - RoomService, FoodCourt, ShoppingMall, Spa, VRDeck Amount the passenger has billed at each of the Spaceship Titanic's many luxury amenities.
 - Name The first and last names of the passenger.
 - Transported Whether the passenger was transported to another dimension. This is the target, the column you are trying to predict.
- test.csv Personal records for the remaining one-third (~4300) of the passengers, to be used as test data. Your task is to predict the value of Transported for the passengers in this set.
- sample_submission.csv A submission file in the correct format.
 - PassengerId Id for each passenger in the test set.
 - Transported The target. For each passenger, predict either True or False.

Nettoyage des données

Pas de valeurs aberrantes

Gestion des NaN :

- Planète d'origine / Destination : mettre la planète la plus fréquente (Europa et Trappist-1e)
- Dépense totale : si cryosleep = True alors mettre 0 sinon mettre la valeur moyenne
- VIP : mettre à False car sont les non VIP sont très majoritaire
- Side/Deck : mettre de façon aléatoire une lettre car les proportions sont homogènes
- Cabin number : mettre un chiffre aléatoire entre 1 et 1894
- Cryosleep : mettre la situation la plus fréquente (False)

ccellence pour vaincre votre cancer

Features engineering

Informations crées :

- « Dépenses totales »
 - En utilisant les variables de frais de service utilisés
- « FirstName » et « LastName »
 - En utilisant la variable "Name" (supposant qu'une famille à plus de probabilité de rester ensemble)
- « Deck », « Side » et « Cabin number »
 - En utilisant la variable "Cabin" (car celle-ci regroupait plusieurs informations)

Modélisation

- Features utilisés pour l'entrainement des modèles :
 - Features quantitatifs :
 - Age
 - Cabin_number
 - Dépense_totale
 - RoomService
 - FoodCourt
 - ShoppingMall
 - Spa
 - VRDeck

- Features catégoriels :
 - Firstname
 - Lastname
 - Home Planet
 - Destination Planet
 - VIP
 - Cryosleep
 - Deck
 - Side

Utilisation d'un OneHotEncoder pour les variables catégorielles

Exploration des données

- Proportion des passagers transportés
 - Autant de passager dans une classe que dans une autre
- · VIP or not?
 - Très peu de VIP et cela n'a pas d'importance

- Distribution assez homogène dans les adultes
- Les plus jeunes ont cependant plus de chance de survivre

Exploration des données

- Critère sommeil cryogénique
 - Les personnes en sommeil cryogénique ont beaucoup plus survécu
- La planète d'origine a-t-elle un impact ?
 - Les passagers venant d'Europe semblent avoir été plus chanceux
- La destination a-t-elle un impact ?
 - Les passagers pour 55 Cancri e semblent avoir été plus chanceux

Modélisation

Choix des modèles de classification étudiés :

Machine Learning:

- LinearDiscriminant()
- Ridge()
- CatBoost()
- KNeighbors()
- GaussianNB()
- RandomForestClassifier()
- SVC()

Deep Learning:

- **■** Tensorflow()
- Pytorch()

Modélisation Machine Learning

- · Modèles testés:
 - · LinearDiscriminant, Ridge, KNeighbors, GaussianNB, RandForestClassifier, SVC
- Optimisation des hyperparamètres par Gridsearch et validation croisée

Evaluation des performances par études du score d'entrainement et de

prédiction

Les modèles RandomForestClassifier et SVC donnent les meilleurs résultats (0.82)

Modélisation Deep Learning n°1

- Modèle utlisé :
 - Tensorflow.Keras
- Architecture :
 - 1 couche de neurone d'entrée (relu, 30 features)
 - 2 couches de neurones cachées (relu, 782 neurones)
 - 1 couche de sortie (softmax, 2 output de prédiction)
- Paramètres d'optimisation :
 - optimizer = "Nadam";
 - loss = "BinaryCossentropy";
 - metrics = "BinaryAccuracy"
 - 641 242 paramètres entrainés

Le modèle de DL-01 avec des paramètres choisis nous donne une accuracy de 0.82

Modélisation Deep Learning n°2

- Modèle utlisé :
 - Tensorflow.Keras + tunning des hyperparamètres avec keras-tuner
- Hyperparamètres testés :
 - Activation couches cachées : "elu, gelu, relu, selu"
 - Activation couche sortie: "sigmoid, hard_sigmoid, softmax, swish, tanh"
 - Range nb neurone : "100=>len(X)/10" ;
 - Learning_rate: "0.0005 à 0.1"
- Meilleurs hyperparamètres :
 - 300 et 500 neurones avec relu, sigmoid en sortie, learning rate = 0.05

Le modèle de DL-02 avec des paramètres choisis nous donne une accuracy de 0.80

L'excellence pour vaincre votre cancer

Modélisation Deep Learning n°3

- Modèle utlisé :
 - Pytorch + MultiLayerPerceptron
- Architecture :
 - 1 couche de neurone d'entrée (relu, 30 features)
 - 3 couches de neurones cachées (relu, 256 neurones, dropout=0.2)
 - 1 couche de sortie (relu, 1 valeur de prédiction)
- Paramètres d'optimisation :
 - optimizer = "Adam";
 - loss = "BCEWithLogitsLoss";
 - metrics = "BinaryAccuracy"
 - 135 809 paramètres entrainés

Le modèle de DL-03 avec des paramètres choisis nous donne une accuracy de 0.82

L'excellence pour vaincre votre cancer

Prédiction et performance des modèles

Score dans la compétition :

Notre classement pour cette compétition est : 788/1932

Présenter un notebook explicatif / participer à l'évolution collective

- Travail en équipe :
 - Cyril JAUDET, PhD, Physicien médical / Ilyass MOUMMAD, Doctorant
 - Utilisation de GitHub pour suivi du code (utilisation de branch)
 - https://github.com/AurelienCD/Formation_OCR_Ing_Machine_Learning/blob/main/P8_ 01_notebook.ipynb
- Kernel Kaggle :
 - Kernel de présentation de notre approche dans un notebook :
 - https://www.kaggle.com/aureliencd/ocr-projet-8-iml-acdcjim
- Discussion avec d'autres participants :
 - Test et discussion d'une approche d'un autre kernel
 - https://www.kaggle.com/code/sardorabdirayimov/awesome-nn-titanic-disaster/notebook?scriptVersionId=90946453

excellence pour vaincre votre cancer

CONCLUSION

- Rappel de la problématique :
 - Participer à une compétition Kaggle
 - Travailler en équipe ou discuter avec d'autres participants

Résultats :

- Le modèle de ML avec SVC() propose de bons résultats
- Cependant le modèle de DL utilisant Pytorch nous donne les meilleurs résultats avec un score de 0.79588
- Notre place dans cette compétition est 788ème sur 1982 (à la date du 04 mai 2022)

'excellence pour vaincre votre cancer

Projet 8 - Participez à une compétition Kaggle!

Aurélien Corroyer-Dulmont, PhD Ingénieur imagerie médicale

Cyril JAUDET, PhD *Physicien médical*

Ilyass MOUMMAD

Doctorant

L'excellence pour vaincre votre cancer