Probabilités - Résumé

October 18, 2023

THEVENET Louis

Table des matières

1.	Notions	. 1
	1.1. Fonction de répartition	. 1
	1.2. Fonction caractéristique	. 1
	1.3. Lois conditionnelles	
	1.4. Indépendance	. 2
	1.5. Corrélation	. 2
	1.6. Espérance conditionnelle	. 2
2.	Vecteurs Gaussiens	. 2
	2.1. Transformation affine	. 2
	2.2. Lois marginales	. 3
3.	Convergence	. 3
4.	Théorèmes	. 3
5.	Lois qui vont pas te servir mais c'est bien de savoir que ça existe	. 4
6.	Méthodes	. 5
	6.1. Changements de variables	. 5
7.	Astuces	. 5

1. Notions

1.1. Fonction de répartition

Définition 1.1.1:

$$F: \begin{cases} \mathbb{R} \to [0,1] \\ x \mapsto P[X < x] \end{cases}$$

$$p(x) = F'(x)$$

Pour les VAC : $F(x) = \int_{-\infty}^{x} p(u)du$

1.2. Fonction caractéristique

Définition 1.2.1: $\Phi_X(t) = E[\exp(itX)]$

1.3. Lois conditionnelles

Définition 1.3.1: Loi conditionnelle VAD

$$P\big[X=x_i\mid Y=y_j\big]=\tfrac{p_{ij}}{p_{.j}}$$

Définition 1.3.2: Loi conditionnelle VAC

Densité de $X|(Y=y):p(x|y)=\frac{p(x,y)}{p(.,y)}$ Où $p_{i.}$ et p(x,.) sont les lois marginales, i.e. $p(x,.)=\int_{\mathbb{R}}p(x,y)dy$

1.4. Indépendance

Théorème 1.4.1:

Pour X et Y indépendantes et α et β continues, on a $\alpha(X)$ et $\beta(Y)$ indépendantes. (réciproque vraie si bijectivité)

1.5. Corrélation

Définition 1.5.1:

- cov(X, Y) = E[XY] E[X]E[Y]
- $\bullet \ E\big[VV^T\big] = \begin{pmatrix} \operatorname{var}(X) & \operatorname{cov}(X,Y) \\ \operatorname{cox}(\mathbf{X},\mathbf{Y}) & \operatorname{var}(Y) \end{pmatrix}$
- $r(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$

1.6. Espérance conditionnelle

Théorème 1.6.1: $E[\alpha(X,Y)] = E_X[E_Y[\alpha(X,Y) \mid X]]$

2. Vecteurs Gaussiens

2.1. Transformation affine

Théorème 2.1.1:

Pour $X\sim\mathcal{N}_n(m,\Sigma)$ un vecteur Gaussien et $Y=AX+b,\,A\in\mathcal{M}_{p,n}(\mathbb{R}),$ Si $\operatorname{rg}(A)=p,$ on a :

Yest un vecteur Gaussien et $Y \sim \mathcal{N}_p(Am+b, A\Sigma A^T)$

2.2. Lois marginales

Théorème 2.2.1:

$$X=({\scriptscriptstyle X'}\ {\scriptscriptstyle X''})\sim \mathcal{N}_n(m,\Sigma),\, m=({\scriptscriptstyle m'}\ {\scriptscriptstyle m''}),\, \Sigma=\begin{pmatrix} {\scriptscriptstyle \Sigma'}\ {\scriptscriptstyle M}\\ {\scriptscriptstyle M^T}\ {\scriptscriptstyle \Sigma''}\end{pmatrix},\, \text{alors on a}:$$

$$X' \sim \mathcal{N}_p(m', \Sigma')$$

où $\Sigma' \in \mathcal{M}_p(\mathbb{R})$

3. Convergence

Définition 3.1:

En loi : $X_n \xrightarrow[n \to \infty]{\mathcal{L}} X \Leftrightarrow F_n[X_n < x] \xrightarrow[n \to \infty]{\mathcal{CS}} F(x) = P[X < x]$

En probas : $X_n \xrightarrow[n \to \infty]{\mathcal{P}} X \Leftrightarrow \forall \varepsilon > 0, P[|X_n - X| > \varepsilon] \xrightarrow[n \to \infty]{0} 0$

En moyenne quadratique : $X_n \xrightarrow[n \to \infty]{\mathcal{MQ}} X \Leftrightarrow E[(X_n - X)^2] \xrightarrow[n \to \infty]{} 0$

 $\text{Presque sûrement}: \hspace{1cm} X_n \overset{\mathcal{PS}}{\underset{n \to \infty}{\longrightarrow}} X \Leftrightarrow X_n(\omega) \underset{n \to \infty}{\longrightarrow} X(\omega), \forall \omega \in A \mid P(A) = 1$

4. Théorèmes

Théorème 4.1: Loi faible des grands nombres

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty,$ alors

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{\mathcal{P}} m$$

Théorème 4.2: Loi forte des grands nombres

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty,$ de variances $\sigma^2<\infty$ alors

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k \underset{n \to \infty}{\overset{\mathcal{MQ}}{\longrightarrow}} m$$

Théorème 4.3: Théorème central limite

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty,$ de variances $\sigma^2<\infty$ alors

$$Y_n = \frac{\sum_{k=1}^n X_k - nm}{\sqrt{n\sigma^2}} \xrightarrow[n \to \infty]{\mathcal{L}} X \sim \mathcal{N}(0,1)$$

5. Lois qui vont pas te servir mais c'est bien de savoir que ça existe

Les résultats liés aux lois sont donnés sur l'énoncé du partiel

Théorème 5.1: Chi2

 $X_1,...,X_n$ n VA indépendantes de loi $\mathcal{N}(0,1)$ Alors

$$Y = \sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

Théorème 5.2: Student

 $X \sim \mathcal{N}(0,1), Y \sim \chi_n^2, \, X$ et Y indépendantes, alors $Z = \frac{X}{\sqrt{\frac{Y}{n}}} \sim t_n$

Théorème 5.3: Fisher

 $X \sim \chi_n^2, \, Y \sim \chi_m^2, \, X$ et Y indépendantes, alors

$$Z = \frac{\frac{X}{n}}{\frac{Y}{m}} \sim f_{n,m}$$

6. Méthodes

6.1. Changements de variables

Théorème 6.1.1: VAD

$$P\big(y=y_j\big) = \sum_{i|y_j=g(x_i)} P[X=x_i]$$

Théorème 6.1.2: VAC

Si g est **bijective** et **différentiable**, alors Y = g(X) est une VAC et

$$p_Y(y) = p_X\big(g^{-1}(y)\big) \bigg| \frac{dx}{dy} \bigg|$$

Théorème 6.1.3: Changement de $\mathbb{R}^2 \to \mathbb{R}^2$

Si
$$g:\mathbb{R}^2\to\mathbb{R}^2,$$
 on a : $p_{U,V}(u,v)=p_{X,Y}\big(g^{-1}(u,v)\big)|\mathrm{det}(J)|$

7. Astuces

• Changement de variable type $Z=\alpha(X,Y)$, on peut poser T=Y par exemple pour utiliser les théorèmes sur les changements de $\mathbb{R}^2 \to \mathbb{R}^2$