### Buscas em conjunto conhecido

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

#### Árvore de busca binária (ABB)

Exemplo: n = 3 e  $e_1 = 10$ ,  $e_2 = 20$ ,  $e_3 = 40$ .

#### Qual a melhor das ABBs?



### **Exemplo**

Exemplo: n = 3 e  $e_1 = 10$ ,  $e_2 = 20$ ,  $e_3 = 40$ .



Qual a melhor das ABBs?

# **Exemplo**

Exemplo: n = 3 e  $e_1 = 10$ ,  $e_2 = 20$ ,  $e_3 = 40$ .



#### Número esperado de comparações:

$$\bullet$$
 10 · 3 + 20 · 2 + 40 · 1 = 110

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$\bullet$$
 10 · 1 + 20 · 3 + 40 · 2 = 150

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 2 = 170$$

# **Exemplo**

Exemplo: n = 3 e  $e_1 = 10$ ,  $e_2 = 20$ ,  $e_3 = 40$ .



#### Número esperado de comparações:

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$\bullet$$
 10 · 1 + 20 · 3 + 40 · 2 = 150

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 2 = 170$$

# Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de  $\{1,...,n\}$ .

# Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de  $\{1,...,n\}$ .

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto  $\{1, \ldots, n\}$  que minimiza o número

$$\sum_{i=1}^{n} h_i \, e_i,$$

onde  $h_i$  é o número de nós no caminho de i até a raiz da árvore.

# Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de  $\{1,...,n\}$ .

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto  $\{1, \ldots, n\}$  que minimiza o número

$$\sum_{i=1}^{n} h_i \, e_i,$$

onde  $h_i$  é o número de nós no caminho de i até a raiz da árvore.

Problema (ABB Ótima): Dado e[1..n], encontrar uma árvore de busca binária ótima com respeito a e.



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

c[i,j]: custo min de uma ABB para e[i...j]

s[i,j]: soma dos acessos em e[i..j]



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

c[i,j]: custo min de uma ABB para e[i ...j]

s[i,j]: soma dos acessos em e[i...j]

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{i}, \mathbf{j}]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

```
c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]
```

$$c[\mathbf{i},\mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \leq k \leq \mathbf{j}} \{c[\mathbf{i},k-1] + c[k+1,\mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \leq \mathbf{j} \end{cases}$$

```
c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]
```

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

#### Para calcular s:

```
1 s[0] = 0

2 para i \leftarrow 1 até n faça

3 s[i] \leftarrow s[i-1] + e[i]
```

c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

Como preencher a matriz c?

Em que ordem?

c[i,j]: custo min de uma ABB para e[i ...j]

s[j]: soma dos acessos em e[1...j]

s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

Como preencher a matriz *c*?

Em que ordem?

Como no problema da parentização! Pelas diagonais!

# Programação dinâmica



$$e[1]=10$$
  $e[2]=20$   $e[3]=30$   $e[4]=15$   $e[5]=30$ 

 $\dot{i}$ 

$$c[1, 1-1] + e[1] + c[1+1, 1] = 0+10+0 = 10$$

$$c[2, 2-1] + e[2] + c[2+1, 2] = 0 + 20 + 0 = 20$$

 $\dot{i}$ 

$$c[3, 3-1] + e[3] + c[3+1, 3] = 0+30+0 = 30$$

$$c[4, 4+1] + e[4] + c[4+1, 4] = 0+15+0 = 15$$

 $\iota$ 

$$c[5, 5+1] + e[5] + c[5+1, 5] = 0+3000+0 = 30$$

 $\dot{i}$ 

$$c[1, 1-1] + (e[1] + e[2]) + c[1+1, 2] = 0+30+20 = 50$$

$$c[1, 2-1] + (e[1] + e[2]) + c[2+1, 2] = 10+30+0 = 40$$

 $\dot{i}$ 

$$c[2, 2-1] + (e[2] + e[3]) + c[2+1, 3] = 0+50+30 = 80$$

$$c[2, 3-1] + (e[2] + e[3]) + c[3+1, 3] = 20+50+0 = 70$$

| e[ | 1]=10<br>0 | e[2]=20 | e[3] = 2 | e30 e[4 | [=15] | e[5]=30 | Ĵ |
|----|------------|---------|----------|---------|-------|---------|---|
| 1  | 0          | 10      | 40       |         |       |         |   |
| 2  |            | 0       | 20       | 70      |       |         |   |
| 3  |            |         | 0        | 30      | ??    |         |   |
| 4  |            |         |          | 0       | 15    |         |   |
| 5  |            |         |          |         | 0     | 30      |   |
| 6  |            |         |          |         |       | 0       |   |

 $\dot{i}$ 

$$c[3, 3-1] + (e[3] + e[4]) + c[3+1, 4] = 0+45+15 = 60$$

$$c[3, 4-1] + (e[3] + e[4]) + c[4+1, 4] = 30+45+0 = 75$$

| e[ | 1]=10<br>0 | e[2]=20 | e[3]= | =30 e[4 | [-15] | e[5]=30 | J |
|----|------------|---------|-------|---------|-------|---------|---|
| 1  | 0          | 10      | 40    |         |       |         |   |
| 2  |            | 0       | 20    | 70      |       |         |   |
| 3  |            |         | 0     | 30      | 60    |         |   |
| 4  |            |         |       | 0       | 15    | ??      |   |
| 5  |            |         |       |         | 0     | 30      |   |
| 6  |            |         |       |         |       | 0       |   |

 $\dot{i}$ 

$$c[4, 4-1] + (e[4] + e[5]) + c[4+1, 5] = 0+45+30=75$$

1

$$c[4, 5-1] + (e[4] + e[5]) + c[5+1, 5] = 15+45+0 = 60$$

| e[ | 1]=10<br>0 | e[2]=20 | e[3]= | e = 30 $e = 4$ | [-15] | e[5]=30 | j |
|----|------------|---------|-------|----------------|-------|---------|---|
| 1  | 0          | 10      | 40    | ??             |       |         |   |
| 2  |            | 0       | 20    | 70             |       |         |   |
| 3  |            |         | 0     | 30             | 60    |         |   |
| 4  |            |         |       | 0              | 15    | 60      |   |
| 5  |            |         |       |                | 0     | 30      |   |
| 6  |            |         |       |                |       | 0       |   |

 $\dot{i}$ 

$$c[1, 1-1] + (e[1] + e[2] + e[3]) + c[1+1, 3] = 0 + 60 + 70 = 130$$

$$c[1, 2-1] + (e[1]) + e[2] + e[3]) + c[2+1, 3] = 10+60+30 = 100$$

$$c[1, 3-1] + (e[1] + e[2] + e[3]) + c[3+1, 3] = 40+60+0 = 100$$

| e[ | 1]=10 | e[2]=20 | e[3] =   | =30 e[4  | [-15]         | e[5]=30      | J            |
|----|-------|---------|----------|----------|---------------|--------------|--------------|
| 1  | 0     | 1       | <u> </u> | <u> </u> | <del>'1</del> | <del> </del> | <i>J</i><br> |
| 1  | 0     | 10      | 40       | 100      |               |              |              |
| 2  |       | 0       | 20       | 70       | ??            |              |              |
| 3  |       |         | 0        | 30       | 60            |              |              |
| 4  |       |         |          | 0        | 15            | 60           |              |
| 5  |       |         |          |          | 0             | 30           |              |
| 6  |       |         |          |          |               | 0            |              |

 $\dot{i}$ 

1

$$c[2, 2-1] + (e[2] + e[3] + e[4]) + c[2+1, 4] = 0 + 65 + 60 = 125$$

2

$$c[2, 3-1] + (e[2] + e[3] + e[4]) + c[3+1, 4] = 20 + 65 + 15 = 100$$

$$c[2, 4-1] + (e[2] + e[3] + e[4]) + c[4+1, 4] = 70 + 65 + 0 = 135$$

| e[ | 1]=10<br>0 | e[2]=20 | e[3] = 2 | =30 e[4] | [=15] | e[5]=30 $5$ | Ĵ |
|----|------------|---------|----------|----------|-------|-------------|---|
| 1  | 0          | 10      | 40       | 100      |       |             |   |
| 2  |            | 0       | 20       | 70       | 100   |             |   |
| 3  |            |         | 0        | 30       | 60    | ??          |   |
| 4  |            |         |          | 0        | 15    | 60          |   |
| 5  |            |         |          |          | 0     | 30          |   |
| 6  |            |         |          |          |       | 0           |   |

 $\dot{i}$ 

2

$$c[3, 3-1] + (e[3] + e[4] + e[5]) + c[3+1, 5] = 0 + 75 + 60 = 135$$

2

$$c[3, 4-1] + (e[3] + e[4] + e[5]) + c[4+1, 5] = 30+75+30 = 135$$

$$c[3, 5-1] + (e[3] + e[4] + e[5]) + c[5+1, 5] = 60 + 75 + 0 = 135$$

i

Exercício: Preencha o que falta!

### Árvore de busca ótima

```
ABB-ÓTIMA (e, n)
       s[0] = 0
        para i \leftarrow 1 até n faça
 3
              s[i] \leftarrow s[i-1] + e[i]
 4
        para i \leftarrow 1 até n+1 faça
 5
              c[i][i-1] \leftarrow 0
        para \ell \leftarrow 1 até n faça
  6
              para i \leftarrow 1 até n-\ell+1 faça
  8
                     j \leftarrow i + \ell - 1
  9
                     c[i][j] \leftarrow c[i+1][j]
 9
                     para k \leftarrow i+1 até j faça
                           se c[i][k-1] + c[k+1][j] < c[i][j]
10
                           então c[i][j] \leftarrow c[i][k-1] + c[k+1][j]
                     c[i][j] \leftarrow c[i][j] + s[j] - s[i-1]
12
        devolva c[1, n]
13
```

### Árvore de busca ótima

Exercício: Como fazer para obter uma ABB ótima e não apenas o seu custo? Complete o serviço!

Vários exercícios na lista 5.

#### Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por  $x \cdot w$  o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Suponha dado um número inteiro não-negativo W e vetores positivos w[1...n] e v[1...n].

Uma mochila é qualquer vetor x[1..n] tal que

$$x \cdot w \leq W$$
 e  $0 \leq x[i] \leq 1$  para todo  $i$ 

O valor de uma mochila é o número  $x \cdot v$ .

Uma mochila é ótima se tem valor máximo.

#### Problema booleano da mochila

Uma mochila x[1..n] tal que x[i] = 0 ou x[i] = 1 para todo i é dita booleana.

Problema (Knapsack Problem): Dados (w, v, n, W), encontrar uma mochila boolena ótima.

Exemplo: W = 50, n = 4

|                  | 1   | 2   | 3   | 4   |
|------------------|-----|-----|-----|-----|
| w                | 40  | 30  | 20  | 10  |
| v                | 840 | 600 | 400 | 100 |
| $\boldsymbol{x}$ | 1   | 0   | 0   | 0   |
| $\boldsymbol{x}$ | 1   | 0   | 0   | 1   |
| $\boldsymbol{x}$ | 0   | 1   | 1   | 0   |

$$valor = 840$$
 $valor = 940$ 
 $valor = 1000$ 

### Subestrutura ótima

Suponha que x[1..n] é mochila boolena ótima para o problema (w, v, n, W).

Se 
$$x[n] = 1$$

então x[1..n-1] é mochila boolena ótima para (w,v,n-1,W-w[n])

senão x[1..n] é mochila boolena ótima para (w,v,n-1,W)

NOTA. Não há nada de especial acerca do índice n. Uma afirmação semelhante vale para qualquer índice i.

### Simplificação

Problema: encontrar o valor de uma mochila booleana ótima.

- t[i, Y] = valor de uma mochila booleana ótima para (w, v, i, Y)
  - = valor da expressão  $x \cdot v$  sujeito às restrições

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima

Possíveis valores de Y:  $0, 1, 2, \dots, W$ 

### Recorrência

t[i, Y] = valor da expressão  $x \cdot v$  sujeito à restrição

$$x \cdot w \leq Y$$

$$t[0, Y] = 0$$
 para todo Y

$$t[i,0]=0$$
 para todo  $i$ 

$$t[i, Y] = t[i-1, Y]$$
 se  $w[i] > Y$ 

$$t[i, Y] = \max\{t[i-1, Y], t[i-1, Y-w[i]] + v[i]\} \text{ se } w[i] \le Y$$

### Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow REC-MOCHILA (w, v, n-1, W)

6 b \leftarrow REC-MOCHILA (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Consumo de tempo no pior caso é  $\Omega(2^n)$ 

Por que demora tanto?

O mesmo subproblema é resolvido muitas vezes.

### Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

$$(w, v, \boldsymbol{i}, \boldsymbol{Y}),$$

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela *t*?

## Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela t?

Olhe a recorrência e pense...

$$t[i, Y] = t[i-1, Y]$$
 se  $w[i] > Y$ 

$$t[i, Y] = \max\{t[i-1, Y], t[i-1, Y-w[i]] + v[i]\} \text{ se } w[i] \le Y$$

# Programação dinâmica

|   | 0 | 1 | 2 | 3 | 4 | 5  | 6 | 7 | Y |
|---|---|---|---|---|---|----|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 |   |
| 1 | 0 |   |   |   |   |    |   |   |   |
| 2 | 0 | * | * | * | * | *  |   |   |   |
| 3 | 0 |   |   |   |   | ?? |   |   |   |
| 4 | 0 |   |   |   |   |    |   |   |   |
| 5 | 0 |   |   |   |   |    |   |   |   |
| 6 | 0 |   |   |   |   |    |   |   |   |
| 7 | 0 |   |   |   |   |    |   |   |   |

## **Exemplo**

$$W = 5 e n = 4$$

|   | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| w | 4   | 2   | 1   | 3   |
| v | 500 | 400 | 300 | 450 |

|   | 0 | 1   | 2   | 3   | 4   | 5   | Y |
|---|---|-----|-----|-----|-----|-----|---|
| 0 | 0 | 0   | 0   | 0   | 0   | 0   |   |
| 1 | 0 | 0   | 0   | 0   | 500 | 500 |   |
| 2 | 0 | 0   | 400 | 400 | 500 | 500 |   |
| 3 | 0 | 300 | 400 | 400 | 700 | 800 |   |
| 4 | 0 | 300 | 400 | 450 | 750 | 850 |   |

### Algoritmo de programação dinâmica

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
MOCHILA-BOOLEANA (w, v, n, W)
        para Y \leftarrow 0 até W faça
              t[\mathbf{0}, \mathbf{Y}] \leftarrow 0
 3
              para i \leftarrow 1 até n faça
                     a \leftarrow t[i-1, Y]
 5
                     se w[i] > Y
                           então b \leftarrow 0
  6
                           senão b \leftarrow t[i-1, Y-w[i]] + v[i]
 8
                     t[i, Y] \leftarrow \max\{a, b\}
 9
        devolva t[n, W]
```

Consumo de tempo é  $\Theta(nW)$ .

#### Conclusão

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é  $\Theta(nW)$ .

#### NOTA:

O consumo  $\Theta(n2^{\lg W})$  é exponencial!

Explicação: o "tamanho" de W é  $\lg W$  e não W (tente multiplicar  $w[1], \ldots, w[n]$  e W por 1000)

Se  $W \in \Omega(2^n)$  o consumo de tempo é  $\Omega(n2^n)$ , mais lento que o algoritmo força bruta!

### Obtenção da mochila

```
\begin{array}{ll} \mathsf{MOCHILA}\;(w,n,W,t) \\ 1 & Y \leftarrow W \\ 2 & \mathsf{para}\;i \leftarrow n \;\mathsf{decrescendo}\;\mathsf{at\acute{e}}\;1\;\mathsf{faça} \\ 3 & \mathsf{se}\;t[i,Y] = t[i-1,Y] \\ 4 & \mathsf{ent\~{ao}}\;x[i] \leftarrow 0 \\ 5 & \mathsf{sen\~{ao}}\;x[i] \leftarrow 1 \\ 6 & Y \leftarrow Y - w[i] \\ 7 & \mathsf{devolva}\;x \end{array}
```

Consumo de tempo é  $\Theta(n)$ .

#### Versão recursiva

```
MEMOIZED-MOCHILA-BOOLEANA (w, v, n, W)

1 para i \leftarrow 0 até n faça

2 para Y \leftarrow 0 até W faça

3 t[i, Y] \leftarrow \infty

3 devolva LOOKUP-MOC (w, v, n, W)
```

#### Versão recursiva

```
LOOKUP-MOC (w, v, i, Y)
     se t[i, Y] < \infty
          então devolva t[i, Y]
     se n = 0 ou Y = 0 então t[i, Y] \leftarrow 0
      senão
          se w[n] > Y
              então
                  t[i, Y] \leftarrow \mathsf{LOOKUP\text{-}MOC}(w, v, n-1, Y)
5
              senão
                  a \leftarrow \mathsf{LOOKUP\text{-}MOC}\ (w, v, i-1, Y)
6
                  b \leftarrow \mathsf{LOOKUP\text{-}MOC}\left(w, v, i-1, Y-w[i]\right) + v[i]
8
                  t[i, Y] \leftarrow \max\{a, b\}
9
     devolva t[i, Y]
```