Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики \mathbb{N} 4.3.3

Исследование разрешающей способности микроскопа методом Аббе

Автор:

Лепарский Роман Б01-003

Долгопрудный, 2022

1 Аннотация

Цель работы: определение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

2 Теоретические сведения

Для иммерсионного микроскопа разрешающая способность объектива при некогерентном освещении

$$\ell_{min} \approx \frac{0.61\lambda}{\sin u},\tag{1}$$

где u – апертурный угол объектива микроскопа (угол между оптической осью и лучом, направленным из центра объекта в край линзы).

Метод Аббе для оценки разрешающей способности состоит в разделении хода лучей на две части: сначала рассматривается картина в задней фокальной плоскости F объектива – она называется первичным изображением. Это первичное изображение рассматривается как источник волн, создающий вторичное изображение в плоскости P_2 , сопряжённой плоскости предмета.

Первичное изображение есть картина дифракции Фраунгофера (на дифракционной решётке), если её период d, то для направления максимальной интенсивности φ_m

$$d\sin\varphi_m = m\lambda. \tag{2}$$

При этом проходят пучки только с $\varphi_m < u$. Можно условием разрешения считать, что $u > \varphi_1$, иначе говоря

$$\sin u > \lambda/d$$
.

или

$$d \ge \frac{\lambda}{\sin u} \approx \frac{\lambda}{D/2f},\tag{3}$$

где D – диаметр линзы, f – фокусное расстояние.

Сетку можно рассматривать как две перпендикулярные друг другу решетки, для максимумов которых выполняется соотношение

$$d\sin\varphi_x = m_x\lambda, \quad d\sin\varphi_y = m_y\lambda. \tag{4}$$

3 Экспериментальная установка

Рис. 1: Схема установки

Схема установки приведена на Рис. 1. Предметом P_1 служат сетки в кассете C. Линза Π_1 длиннофокусная, а Π_2 короткофокусная. В F устанавливаются диафрагмы D, с помощью сеток с разными d и щелевой диафрагмы можно проверить соотношение (3). Период сеток может быть измерен либо по расстоянию между дифракционными максимумами на экране, либо по увеличенному с помощью микроскопа изображению. Пространственную фильтрацию (получение наклонного изображение решётки) можно получить с помощью подбора угла наклона и ширины вспомогательной щели.

4 Обработка результатов

Запишем данные лабораторной установки:

λ , HM	f_1 , mm	f_2 , MM
532	110	25

4.1 Определение периода решеток по их пространственному спектру

Расстояние от дифракционной решетки до экрана $H=1257\pm3$ мм. Погрешность учитывает невозможность определить точное положение решетки в кассете. Для каждой сетки определим расстояние между максимумами l, их количество n и посчитаем период сетки d. Погрешность измерения расстояния обусловлена невозможностью достоверно определить центр пятна. Так же, для последней решетки тяжело точно посчитать количество максимумов.

N	l, mm	$\mid n \mid$	d, hm
1	202±2	6	20000
2	247±2	11	30000
3	269±2	24	61000
4	274±1	49	122000
5	276±1	66±1	163000

Максимальная погрешность периода решетки по формуле косвенных измерений $\sigma_d = 1$ мкм.

4.2 Определение периода решеток по изображению, увеличенному с помощью микроскопа

Запишем параметры настроенного микроскопа.

a_1 , MM	$b_1 + a_2$, MM	b_2 , MM
115 ± 5	562 ± 5	424 ± 5

Погрешность обусловлена невозможностью точно определить центр линзы. Приняв $a_2=f_2$ найдем $b_1=380\pm 5$ мм. Увеличение получившейся системы:

$$\Gamma = \frac{b_1 b_2}{a_1 a_2} = 79 \pm 5$$

Запишем количество периодов сетки и расстояние между ними, а так же посчитаем период по формуле $d=l/(n\Gamma)$

N	l, mm	n	d, hm	σ_d , HM
1	112	67	21000	1480
2	157	65	30000	1991
3	160	33	61000	3884
4	205	21	123000	7820
5	203	15	170000	10842

Видно, что значения совпадают в пределах погрешности.

4.3 Определение периодов решеток по оценке разрешающей способности микроскопа

Если поместить в фокальную плоскость линзы Π_1 щелевую диафрагму, то при минимальном раскрытии, при котором будет видна решетка, ее период будет определяться так

$$d = \frac{2\lambda f_1}{D}$$

Примем погрешность измерения $\sigma_D = 0.02$ мм. Запишем результаты в таблицу

N	D, mm	d, hm	σ_d
2	4,2	27800	132
3	1,92	60900	634
4	0,93	125000	2706
5	0,66	177000	5373

Видно, что результаты совпадают с предыдущими экспериментами. Теперь проверим справедливость этой формулы построив график d = f(1/D)

Данные хорошо аппроксимируются прямой, поэтому можно говорить о справедливости этой формулы.

5 Вывод

В этой работе мы познакомились с устройством и принципом действия микроскопа, а так же нашли периоды дифракционных решеток 3 способами. Данные соответствуют друг другу в каждом эксперименте.