9 Strombelastbarkeit von Kabeln und Leitungen DIN VDE 0298-4

Die Strombelastbarkeit ist der unter bestimmten Bedingungen höchstzulässige Strom, bei dem der Leiter an keiner Stelle über die zulässige Betriebstemperatur erwärmt wird.

9.1 Strombelastbarkeit von Leitungen

Die Strombelastbarkeit I_Z von Leitungen errechnet sich wie folgt:

$$I_{Z} = I_{r} \cdot \prod f. \tag{9.1}$$

Hierin bedeuten:

 $I_{\rm r}$ Belastbarkeit bei den der Tabelle 9.2 zugrunde gelegten Betriebsbedingungen, $\prod f$ Produkt aller erforderlichen Umrechnungsfaktoren.

Nach DIN VDE 0298-4, Strombelastbarkeit von Kabeln und Leitungen für feste Verlegung in Gebäuden, gelten unter folgenden Bedingungen die in den **Tabellen 9.1, 9.2** und **9.3** angegebenen Werte:

- Leitungen einzeln verlegt;
- Umgebungstemperatur wird durch die Verlustwärme der Leitung nicht merklich erhöht:
- isolierte Kupferleitungen;
- Grenztemperatur (zulässige Betriebstemperatur) des Isolierwerkstoffs 70 °C (PVC);
- Dauerbelastung;
- Umgebungstemperatur 30 °C⁵;
- Schutz gegen direkte Wärmebestrahlung durch Sonne usw.

Der Leiternennquerschnitt ist für die Beziehung

$$I_{Z} \ge I_{B} \tag{9.2}$$

zu dimensionieren, mit $I_{\rm B}$, der Belastung der Leitung im ungestörten Betrieb.

⁵ Bei der Planung in Gebäuden wird im Normalfall von einer Umgebungstemperatur von 25 °C ausgegangen.

C Verlegung auf einer Wand	ein- oder mehradriges Kabel oder ein- oder mehradrige ummantelte Installationsleitung	
B2 stallationsrohren	mehradriges Kabel oder ein- oder mehradriges mehradrige ummantelte Kabel oder ein- oder linstallationsleitung in mehradrige ummantel einem Elektroinstala- tionsrohr auf einer Wand	
B1 B2 Verlegung in Elektro-Installationsrohren	Aderleitungen im Elektroinstallationsrohr auf einer Wand	
A2 immten Wänden	Aderleitungen im mehradriges Kabel oder Aderleitungen im Elektroinstallationsrohr in einer wärmegedämm- Installationsleitung in auf einer Wand einem Elektroinstallationsrohr in einer wärmegedämmten Wand	
A1 A2 Verlegung in wärmegedämmten Wänden	Aderleitungen im mehradriges Kabel oder Elektroinstallationsrohr mehradrige ummantelte in einer wärmegedämm- einem Elektroinstallationsrohr in einer wärme gedämmten Wand	
Verlegeart A1		

Verlegeart				
D	Verlegung in Erde	mehradriges Kabel im Elektro- installationsrohr oder Kabel-	schacht im Erdboden	
田		nit Abstand Durch-	messer D zur Wand	
Ĭ S	Verlegung in Luft	einadrige Kabel mir Abstand vor zur Wand	mit Berührung	
G		ı mindestens $1 \cdot ext{Durchmesser} L$	mit Abstand D	

Tabelle 9.1 Referenzverlegearten A1, A2, B1, B2, C, D, E, F und G, für Kabel und Leitungen für feste Verlegung in Gebäuden, Betriebstemperatur 70 °C, Umgebungstemperatur 30 °C, nach DIN VDE 0298-4:1998-11 (zurückgezogen) [2, 4]

Verlegeart	A	.1	A	2	E	81	В	32	(C	
	wärm		gung in mten W	änden	Elekt	Verleg troinstal	Verleg einer	ung auf Wand			
Anzahl belasteter Adern	2	3	2	3	2	3	2	3	2	3	
Nennquerschnitt in mm ²		Belastbarkeit in A									
1,5 2,5 4 4 6 10 10 16 25 35 50 70	15,5 ²⁾ 19,5 26 - 34 46 - 61 80 99 119 151	13,5 18,0 24 - 31 42 - 56 73 89 108 136	15,5 ²⁾ 18,5 25 - 32 43 - 57 75 92 110 139	13,0 17,5 23 - 29 39 - 52 68 83 99 125	17,5 24 32 - 41 57 - 76 101 125 151 192	15,5 21 28 - 36 50 - 68 89 110 134 171	16,5 23 30 - 38 52 - 69 90 111 133 168	15,0 20 27 - 34 46 47,17 62 80 99 118 149	19,5 27 36 - 46 63 - 85 112 138 168 213	17,5 24 32 33,02 41 57 59,43 76 96 119 144 184	
95 120 150 185 240 300	182 210 240 273 321 367	164 188 216 245 286 328	167 192 219 248 291 334	150 172 196 223 261 298	232 269 300 341 400 458	207 239 262 296 346 394	201 232 258 294 344 394	179 206 225 255 297 339	258 299 344 392 461 530	223 259 299 341 403 464	

Verlegeart	I)	1	E		F		(3
	Verlegun	g in Erde			Verle	egung in	Luft		
Anzahl belasteter Adern	2	3	2	3	2		3		
Nennquerschnitt in mm²					stbarkei in A	t			
1,5	22	18	22	18,5	-	_	-	_	_
2,5	29	24	30	25	_	_	_	_	_
4	37	30	40	34	_	_	_	_	_
6	46	38	51	43	_	_	_	_	_
10	60	50	70	60	_	_	_	_	_
16	78	64	94	80	_	_	_	_	_
25	99	82	119	101	131	114	110	146	130
35	119	98	148	126	162	143	137	181	162
50	140	116	180	153	196	174	167	219	197
70	173	143	232	196	251	225	216	281	254
95	204	169	282	238	304	275	264	341	311
120	231	192	328	276	352	321	308	396	362
150	261	217	379	319	406	372	356	456	419
185	292	243	434	364	463	427	409	521	480
240	336	280	514	430	546	507	485	615	569
300	379	316	593	497	629	587	561	709	659

Tabelle 9.2 Belastbarkeit von Cu-Kabeln und -Leitungen für feste Verlegung in und an Gebäuden, Verlegeart A1, A2, B1, B2, C, D, E, F und G, Betriebstemperatur 70 °C, Umgebungstemperatur 30 °C, nach DIN VDE 0298-4:2013-06, Tabellen 3 und 4 [2, 4]

Zulässige Betriebs- temperatur	40 °C	60 °C	70 °C	80 °C	85 °C	90 °C					
Umgebungs- temperatur in °C	Umrechnungsfaktoren										
10	1,73	1,29	1,22	1,18	1,17	1,15					
15	1,58	1,22	1,17	1,14	1,13	1,12					
20	1,41	1,15	1,12	1,10	1,09	1,08					
25	1,22	1,08	1,06	1,05	1,04	1,04					
30	1,00	1,00	1,00	1,00	1,00	1,00					
35	0,71	0,91	0,94	0,95	0,95	0,96					
40	-	0,82	0,87	0,89	0,90	0,91					
45	_	0,71	0,79	0,84	0,85	0,87					
50	-	0,58	0,71	0,77	_	0,82					
55	_	0,41	0,61	0,71	_	0,76					
60	-	-	0,50	0,63	-	0,71					
65	_	_	0,35	0,55	_	0,65					
70	-	_	-	0,45	_	0,58					
75	_	_	_	0,32	_	0,50					
80	_	_	-	_	_	0,41					
85	_	_	_	_	_	0,29					

Tabelle 9.3 Umrechnungsfaktoren für abweichende Umgebungstemperaturen nach DIN VDE 0298-4:2013-06, Tabelle 17 [2, 4]

9.1.1 Strombelastbarkeit $I_{\rm Z}$ bei anderen Umgebungstemperaturen ab 30 °C

Die Strombelastbarkeit ist mithilfe der in der Tabelle 9.3 angegebenen Umrechnungsfaktoren zu errechnen. Die Strombelastbarkeit für die geforderte Umgebungstemperatur erhält man durch Multiplizieren des aus der Tabelle 9.2 entnommenen Werts $I_{\rm r}$ mit dem in der Tabelle 9.3 genannten Umrechnungsfaktor f.

$$I_Z = I_r \cdot f \,. \tag{9.3}$$

Beispiel 9a:

In einem Heizungsschacht treten Temperaturen bis 40 °C auf. In dem Schacht soll eine NYM-Leitung $5 \times 1,5 \text{ mm}^2$ Cu auf Putz verlegt werden.

Wie hoch ist die Strombelastbarkeit I_Z der Leitung?

Lösung:

 $I_r = 17.5 \text{ A}$, da NYM-Leitung auf Putz Gruppe C entspricht.

f = 0.87, da NYM-Leitung aus PVC besteht.

$$I_Z = I_r \cdot f = 17,5 \text{ A} \cdot 0,87 = 15,2 \text{ A}.$$

9.1.2 Strombelastbarkeit I_Z von gehäuft verlegten Leitungen

Werden mehrere Stromkreise gemeinsam verlegt, so reduziert sich aufgrund der Verlustwärme der benachbarten Stromkreise die Strombelastbarkeit der Leitungen. Die erforderlichen Umrechnungsfaktoren f sind aus der **Tabelle 9.4** zu entnehmen. Ist sichergestellt, dass die gehäuft verlegten Leitungen nicht gleichzeitig mit ihrem vollen Betriebsstrom belastet werden, so kann auf eigene Verantwortung ein höherer Belastungswert gewählt werden.

Für die Strombelastbarkeit von gehäuft verlegten Leitungen gilt:

$$I_Z = I_r \cdot f \tag{9.4}$$

Dabei ist I_r die Strombelastbarkeit nach Tabelle 9.2.

Anordnung	Anzahl der mehradrigen Leitungen									
	1	2	3	4	5	7	9	12	16	20
gebündelt auf Wand, Boden, Rohr oder Kanal	1,00	0,80	0,70	0,65	0,60	0,54	0,50	0,45	0,41	0,38
einlagig auf Wand oder Fußboden	1.00	0,85	0,79	0,75	0,73	0,72	0,70	0,70	0,70	0,70
einlagig auf Wand, mit Zwischenraum	1,00	0,94	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90
einlagig unter der Decke mit Berührung	0,95	0,81	0,72	0,68	0,66	0,63	0,61	0,61	0,61	0,61
ungelochte Kabelrinne, einlagig, mit Berührung	0,97	0,84	0,78	0,75	_	_	0,68	-	-	_
gelochte Kabelrinne, mit Berührung	1,0	0,88	0,82	0,79	_	_	0,73	_	_	_

Tabelle 9.4 Umrechnungsfaktor f bei Häufung von Leitungen (Auszug) DIN VDE 0298-4:2013-06, Tabelle 22 [4]

Beispiel 9b:

Die Anschlussleitungen (Mantelleitungen, NYM) zu vier Heizgeräten sollen auf einer Wand mit einer Umgebungstemperatur bis 50 °C verlegt werden. Jedes der Heizgeräte nimmt einen Betriebsstrom von 13 A auf.

Welcher Querschnitt ist im Hinblick auf die Strombelastbarkeit für die Anschlussleitungen erforderlich?

Bei den Heizgeräten handelt es sich um Drehstromverbraucher.

Rechengang:

Annahme 1: erforderlicher Querschnitt 2,5 mm 2 Cu. I_r aus Tabelle 9.2, Gruppe C, Drehstromverbraucher ist 24 A.

Umrechnungsfaktor f aus Tabelle 9.3 für 50 °C ist 0,71;

Umrechnungsfaktor f aus Tabelle 9.4 für vier Leitungen ist 0,65.

$$I_Z = I_r \cdot \prod f = 24 \text{ A} \cdot 0,71 \cdot 0,65 = 11 \text{ A}.$$

Der Wert ist kleiner als der Betriebsstrom der Heizgeräte, somit ist ein größerer Leitungsquerschnitt erforderlich.

Annahme 2: erforderlicher Querschnitt 4 mm 2 Cu. I_r ist dann 32 A.

$$I_Z = 32 \text{ A} \cdot 0,71 \cdot 0,65 = 14,76 \text{ A}.$$

Der Wert ist größer als der Betriebsstrom der Heizgeräte. Ein Leiterquerschnitt von 4 mm² Cu ist somit für den Anschluss der Heizgeräte ausreichend.

9.1.3 Strombelastbarkeit I_Z von vieladrigen Leitungen

Die Tabelle 9.2 gilt nur für Leitungen mit zwei bzw. drei belasteten Adern. Werden vieladrige Leitungen verwendet, so muss die Strombelastbarkeit der Leitungen mit drei belasteten Adern (Tabelle 9.2) mit dem Umrechnungsfaktor f der **Tabelle 9.5** multipliziert werden.

Anzahl der belasteten Adern	5	7	10	14	19	24	40	61
${\it Umrechnungsfaktor} f$	0,75	0,65	0,55	0,50	0,45	0,40	0,35	0,30

Tabelle 9.5 Umrechnungsfaktor f für vieladrige Kabel und Leitungen mit Leiterquerschnitt bis 10 mm² nach DIN VDE 0298-4:2013-06, Tabelle 26 [2, 4]

Es gilt wieder:

$$I_{Z} = I_{r} \cdot f \tag{9.5}$$

 $I_{\rm r}$ ist dabei die Strombelastbarkeit einer Leitung mit drei belasteten Adern nach Tabelle 9.2.

Beispiel 9c:

Über eine Leitung, NYM $7 \times 1.5 \text{ mm}^2$ Cu, auf Putz verlegt, sollen ein Drehstrom- und ein Wechselstromverbraucher versorgt werden. Wie hoch ist die Strombelastbarkeit der Leitung, wenn fünf Adern betriebsmäßig zur Stromführung verwendet werden.

Rechengang:

 $I_{\rm r}$ nach Tabelle 9.2, Gruppe C, bei drei belasteten Adern ist 17,5 A. Umrechnungsfaktor f bei fünf belasteten Adern nach Tabelle 9.5 ist 0,75.

$$I_Z = I_r \cdot f = 17,5 \text{ A} \cdot 0,75 = 13,1 \text{ A}$$
.

9.2 Strombelastbarkeit von Kabeln

Für die Strombelastbarkeit von Kabeln gilt DIN VDE 0276-603.

Tabelle 9.6 zeigt einen Auszug aus dieser Norm für Kabel im Drehstrombetrieb bei Verlegung in Luft. Den Werten liegen Dauerbetrieb und eine Umgebungstemperatur von 30 °C zugrunde.

Nennquerschnitt	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
in mm²		Belastbarkeit in A													
NYY	19,5	25	34	43	59	79	106	129	157	199	246	285	326	374	445
NYCWY	19,5	26	34	44	60	80	108	132	160	202	249	289	329	377	443
NAYY	_	_	_	_	_	_	82	100	119	152	186	216	246	285	338
NAYCWY	-	-	_	-	_	_	83	101	121	155	189	220	249	287	339

Tabelle 9.6 Strombelastbarkeit I_r von Kabeln bei Verlegung in Luft [10]

Die Strombelastbarkeit von Kabeln bei Verlegung in Erde zeigt **Tabelle 9.7**. Sie gilt für Drehstrom- und Dauerbetrieb.

Die Werte der Tabelle 9.7 gelten für eine Erdbodentemperatur von 20 °C und einen spezifischen Erdbodenwärmewiderstand von 1 K \cdot m/W, einer Verlegetiefe von 0,7 m und einem Belastungsgrad von 0,7. Mit diesen Bedingungen kann im Normalfall gerechnet werden.

Nennquerschnitt	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
in mm ²	Belastbarkeit in A														
NYY	27	36	47	59	79	102	133	159	188	232	290	318	359	406	473
NYCWY	27	36	47	59	79	102	133	160	190	234	280	319	357	402	463
NAYY	-	-	-	-	-	-	102	123	144	179	215	245	275	313	364
NAYCWY	_	_	-	_	_	-	103	123	145	180	216	246	276	313	362

Tabelle 9.7 Strombelastbarkeit I_r von Kabeln bei Verlegung in Erde [10]

Die Strombelastbarkeit I_Z von Kabeln errechnet sich wie folgt:

$$I_{Z} = I_{r} \cdot \prod f \tag{9.6}$$

Hierin bedeuten:

- $I_{\rm r}$ Belastbarkeit bei den der Tabelle 9.6 und 9.7 zugrunde gelegten Betriebsbedingungen,
- $\prod f$ Produkt aller erforderlicher Umrechnungsfaktoren.

9.2.1 Strombelastbarkeit I_Z von Kabeln bei Verlegung in Luft und besonderen Umgebungsbedingungen

Bezüglich der Strombelastbarkeit von Kabeln bei Verlegung in Luft gelten die gleichen Umrechnungsfaktoren wie für Leitungen, wenn die Umgebungstemperatur von 30 °C abweicht (siehe 9.1.1), die Kabel gehäuft verlegt sind (siehe 9.1.2) oder vieladrige Kabel verwendet werden (9.1.3).

9.2.2 Strombelastbarkeit I_Z von in Erde verlegten Kabeln, die durch Abdeckhauben oder Rohre geschützt werden

Bei Verlegung in Rohrsystemen ist eine Reduktion der Belastbarkeit um den Faktor f = 0.85 anzuraten.

Es gilt:

$$I_{Z} = I_{r} \cdot f; \tag{9.7}$$

 $I_{\rm r}$ ist die Strombelastbarkeit aus Tabelle 9.7.

Werden anstatt von Rohren Abdeckhauben verwendet, bei denen Lufteinflüsse nicht auszuschließen sind, so empfiehlt sich ein Faktor 0,9.

9.2.3 Strombelastbarkeit I_Z von gehäuft verlegten Kabeln im Erdreich

Tabelle 9.8 nennt den Umrechnungsfaktor für mehrere in Erde verlegte Kabel bei einem Abstand von 7 cm von Kabel zu Kabel. Die Tabellenwerte gelten für PVC-Kabel, z. B. NYY, NYCWY, eine Erdbodentemperatur von 20 °C und einem Erdbodenwärmewiderstand von 1 K·m/W.

Anzahl der Kabel	2	3	4	5	6	8	10
${\bf Umrechnungs faktor} f$	0,86	0,76	0,71	0,67	0,64	0,60	0,57

Tabelle 9.8 Umrechnungsfaktor f für Häufung von in Erde verlegten Kabeln (Auszug: DIN VDE 0276-1000) [11]

Es gilt:

$$I_{Z} = I_{r} \cdot f; \tag{9.8}$$

 I_r ist die Strombelastbarkeit der Kabel nach Tabelle 9.7.

9.2.4 Strombelastbarkeit I_Z von vieladrigen Kabeln bei Verlegung im Erdreich

Werden in einem vieladrigen Kabel mehr als drei Adern belastet, so reduziert sich deren Strombelastbarkeit um die Faktoren der **Tabelle 9.9**.

Anzahl der belasteten Adern	5	7	10	14	19	24	40	61
${\bf Umrechnungsfaktor} f$	0,70	0,60	0,50	0,45	0,40	0,35	0,30	0,25

Tabelle 9.9 Umrechnungsfaktor f für vieladrige Kabel bei Verlegung in Erde (DIN VDE 0276-1000) [11]

Es gilt:

$$I_{Z} = I_{r} \cdot f; \tag{9.9}$$

 $I_{\rm r}$ ist die Strombelastbarkeit der Kabel nach Tabelle 9.7.

9.3 Strombelastbarkeit I_Z für Leitungen und Kabel mit anderen Grenztemperaturen als 70 °C

Für Leitungen, deren Isolierung für eine höhere Grenztemperatur als 70 °C ausgelegt ist, kann die Strombelastbarkeit I_Z wie folgt ermittelt werden:

$$I_{Z} = I_{\rm r} \cdot 0.17 \sqrt{\vartheta_{\rm L} - \vartheta_{\rm u}} ; \qquad (9.10)$$

- $I_{\rm r}$ aus Tabelle 9.2,
- $\vartheta_{\rm L}$ Grenztemperatur der Leitung in °C,
- $\vartheta_{\rm u}$ Umgebungstemperatur in °C.

Die Rechenmethode empfiehlt sich für alle Leitungen mit erhöhter Wärmebeständigkeit. Zu diesen zählen u. a.:

•	PVC-Verdrahtungsleitung NYFAW	$\vartheta_{\rm L}$ = 90 °C,
•	Gummiaderleitung N4GA	$\vartheta_{\rm L}$ = 120 °C,
•	Silikon-Aderleitung H05SJ	$\vartheta_{\rm L}$ = 180 °C,
•	Sonder-Gummiaderleitung NSGAÖU	$\vartheta_{\rm L}$ = 90 °C,
•	Gummi-Schlauchleitung NSSHÖU	$\vartheta_{\rm L}$ = 90 °C,
•	Silikon-Schlauchleitung N2GMH2G	$\vartheta_{\rm L}$ = 180 °C.

Beispiel 9d:

In einem Heizgerät ist mit Umgebungstemperaturen von 160 °C zu rechnen. Für die innere Verdrahtung des Heizgeräts sollen Silikon-Aderleitungen H05SJ verwendet werden, deren Strombelastbarkeit mindestens 16 A betragen muss.

Welcher Mindestquerschnitt ist erforderlich?

Lösungsweg:

Annahme 1: Mindestquerschnitt 1,5 mm² Cu.

Dann ist I, aus Tabelle 9.2, Gruppe B1, 17,5 A und $\vartheta_L = 180 \,^{\circ}\text{C}$; $\vartheta_u = 160 \,^{\circ}\text{C}$.

$$I_Z = I_{\rm r} \cdot 0.17 \, \sqrt{\vartheta_{\rm L} - \vartheta_{\rm U}} = 17.5 \cdot 0.17 \, \sqrt{180 \, ^{\circ}{\rm C} - 160 \, ^{\circ}{\rm C}} = 13.3 \, {\rm A} \, .$$

Die Strombelastbarkeit I_Z einer 1,5 mm² Cu starken H05SJ-Leitung reicht nicht aus. Deshalb ist ein größerer Querschnitt zu wählen.

Annahme 2: Mindestquerschnitt 2,5 mm² Cu.

Dann ist I_r aus Tabelle 9.2, Gruppe B1, 24 A und

$$I_Z = I_r \cdot 0.17 \sqrt{\vartheta_L - \vartheta_U} = 24 \cdot 0.17 \sqrt{180 \text{ °C} - 160 \text{ °C}} = 18.2 \text{ A},$$

$$I_Z = 18, 2 \text{ A} > 16 \text{ A}$$
.

Ein Querschnitt von 2,5 mm² Cu ist ausreichend.

9.4 Strombelastbarkeit als quadratischer Mittelwert

Nehmen elektrische Verbraucher zeitweilig einen höheren Strom auf, z. B. Motore mit längeren Anlaufzeiten oder besonderer Anlasshäufigkeit, so ist der quadratische Mittelwert des Stroms $I_{\rm M}$ für die Bemessung des Leiterquerschnitts zu ermitteln.

Dieser Mittelwert ergibt die anzusetzende Strombelastung von Kabeln und Leitungen, wenn die Einschaltdauer des Spitzenstroms abhängig vom Querschnitt der Leitung folgende Zeiten nicht überschreitet:

Nennquerschnitt bis 6 mm² Cu 4 s Nennquerschnitt von 10 mm² bis 25 mm² Cu 8 s Nennquerschnitt von 35 mm² bis 50 mm² Cu 15 s Nennquerschnitt von 70 mm² bis 150 mm² Cu 30 s

Die Strombelastbarkeit I_Z eines Kabels oder einer Leitung muss dabei mindestens so groß sein wie der quadratische Mittelwert des Betriebsstroms, der über das Kabel oder die Leitung fließt.

Es gilt somit:

$$I_{\rm Z} \ge I_{\rm M}. \tag{9.11}$$

Der quadratische Mittelwert des Stroms $I_{\rm M}$ ergibt sich aus folgender Beziehung:

$$I_{\rm M} = \sqrt{\frac{I_1^2 \cdot t_1 + I_2^2 \cdot t_2 + \dots I_n^2 \cdot t_n}{t_1 + t_2 + \dots t_n}}. \tag{9.12}$$