First Read on Linear Algebra, Lecture 4

Apiros3

First Version: September 22, 2025 Last Updated: September 22, 2025

4 Matrices

4.1 Basic Definitions

Definition 4.1.1. Let m nand n be nonnegative integers and \mathbb{F} be a field. A m-byn matrix A is a rectangular array of elements of \mathbb{F} with m rows and n columns, written

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$$

where we write $A_{i,j}$ to denote the entry in row i, column j of A. When it is not clear, we write $A = (a_{i,j})$ to represent that A is a matrix with entries given by $a_{i,j}$. The set of all $m \times n$ matrices given by entries in \mathbb{F} is given by $\mathcal{M}_{m \times n}(\mathbb{F})$.

Definition 4.1.2. Given $A, B \in \mathcal{M}_{m \times n}(\mathbb{F})$, we define A + B to be the matrix whose entries are given by $(A + B)_{i,j} = A_{i,j} + B_{i,j}$.

Proposition 4.1.3. Matrices addition is commutative and associative. That is, given matrices L, M, N where addition is well-defined, we have

$$M + N = N + M$$

and

$$L + (M+N) = (L+M) + N$$

Proof. This is a consequence of the fact that addition over a field is commutative and associative. \Box

Remark 4.1.4. The $m \times n$ **zero matrix** is the matrix with m rows and n columns with entries all 0. We write 0 to denote this matrix or $0_{m,n}$ when the dimension is not clear. Then, the zero matrix is the additive identity on matrices.

Definition 4.1.5. Given $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$, we define λA to be the matrix whose entries are given by $(\lambda A)_{i,j} = \lambda A_{i,j}$.

Proposition 4.1.6. Given a matrix A and $\lambda, \mu \in \mathbb{F}$, We have the following identities:

$$0A = 0_{m,n} \qquad A + (-A) = 0_{m,n} \qquad 1A = A$$
$$(\lambda + \mu)A = \lambda A + \mu A \qquad \lambda (A + B) = \lambda A + \lambda B \qquad \lambda (\mu A) = (\lambda \mu)A$$

Proof. Straightforward by checking what happens to each entry.

Remark 4.1.7. The above proposition shows that $\mathcal{M}_{m,n}(\mathbb{F})$ is a vector space over \mathbb{F} .

Definition 4.1.8. Given $A \in \mathcal{M}_{m \times k}(\mathbb{F})$ and $B \in \mathcal{M}_{k \times n}(\mathbb{F})$, we define AB to be the matrix whose entries are given by $(AB)_{i,j} = \sum_{\ell=1}^k a_{i,\ell} b_{\ell,j}$.

Definition 4.1.9. The $n \times n$ identity matrix I_n is the matrix with entries

$$\delta_{i,j} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

We write I to denote the identity matrix when the dimension is clear. The entries $\delta_{i,j}$ is also called the **Kronecker delta**.

Proposition 4.1.10. Let A be an $m \times n$ matrix. Then,

$$A0_{n,p} = 0_{n,p}$$
 $0_{l,m}A = 0_{l,n}$ $AI_n = A$ $I_MA = A$

Proof. Is a straightforward check by seeing what the entries are.

Proposition 4.1.11. Matrix multiplication is associative and distributive. That is, for matrix A, B, C where the operations are defined, we have

$$A(BC) = (AB)C$$

and

$$A(B+C) = AB + AC$$
 $(A+B)C = AC + BC$

Proof. Is a straightforward check by seeing what the entries are. For associativity we note that finite sums can be swapped. \Box

Remark 4.1.12. Matrix multiplication is in general not commutative, and cannot deduce from AB = 0 that A = 0 or B = 0. For instance,

$$\begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

and

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Definition 4.1.13. For a square matrix A, we write A^2 for the product AA and A^n for

$$\underbrace{AA\cdots A}_{n \ times}$$

where $A^0 = I$. Then, given a polynomial $p(x) = a_k x^k + \cdots + a_0$, define

$$p(A) = a_k A^k + \dots + a_0 I$$

Definition 4.1.14. Let A be a square matrix. We say that B is an **inverse** of A if BA = AB = I, and we write A^{-1} to represent such inverse. A matrix with an inverse is **invertible** and otherwise is called **singular**.

Proposition 4.1.15. We have the following properties about invertible matrices:

1. Matrix inverses are unique

- 2. If A, B are invertible matrices, then AB is invertible with $(AB)^{-1} = B^{-1}A^{-1}$
- 3. If A is invertible, then so is A^{-1} with $(A^{-1})^{-1} = A$

Proof. (i) Suppose B and C are inverses for A. Then,

$$C = I_n C = (BA)C = B(AC) = BI_n = B$$

(ii) We have

$$AB(B^{-1}A^{-1}) = AA^{-1} = I$$
 $(B^{-1}A^{-1})AB = B^{-1}B = I$

(iii) We note that

$$(A^{-1})A = A(A^{-1}) = I$$

and so $(A^{-1})^{-1} = A$ by uniqueness.

Definition 4.1.16. Given $A \in \mathcal{M}_{m \times n}(\mathbb{F})$, we define the **transpose** of A, written A^T to be the $n \times m$ matrix given by $(A^T)_{i,j} = A_{j,i}$.

Proposition 4.1.17. Given matrices A, B and $\lambda \in \mathbb{F}$, we have the following properties (when operations make sense):

- $(A+B)^T = A^T + B^T$ and $(\lambda A)^T = \lambda A^T$
- $(AB)^T = B^T A^T$
- $\bullet \ (A^T)^T = A$
- A square matrix A is invertible if and only if A^T is invertible. Then, we have $(A^T)^1 = (A^{-1})^T$.

4.2 ERO Decomposition

Definition 4.2.1. A **elementary row operation** or **ERO** is an operation that is of the following form:

- $S_{i,j}$: swapping rows i and j
- $M_i(\lambda)$: multiplies row i by $\lambda \neq 0$
- For $i \neq j$, $A_{i,j}(\lambda)$: adds λ times row i to row j.

Proposition 4.2.2. On a $m \times n$ matrix A, applying EROs is equivalent to premultiplying A by certain matrices, which we give by $S_{I,J}$, $M_I(\lambda)$, and $A_{I,J}(\lambda)$ by:

the
$$(i, j)$$
th entry of $S_{I,J} = \begin{cases} 1 & i = j \neq I, J, \\ 1 & i = J, j = I, \\ 1 & i = I, j = J, \\ 0 & otherwise. \end{cases}$

the
$$(i,j)$$
th entry of $M_I(\lambda) = \begin{cases} 1 & i = j \neq I, \\ \lambda & i = j = I, \\ 0 & otherwise. \end{cases}$

the
$$(i, j)$$
th entry of $A_{I,J}(\lambda) = \begin{cases} 1 & i = j, \\ \lambda & i = J, \ j = I, \\ 0 & otherwise. \end{cases}$

These matrices are known as elementary matrices.

Proof. By explicitly calculating what happens to each entry after the premultiplication.

Proposition 4.2.3. Elementary matrices are invertible.

Proof. Follows from the fact that

$$(S_{i,j})^{-1} = S_{j,i} = S_{i,j}$$
 $(A_{i,j}(\lambda))^{-1} = A_{i,j}(-\lambda)$ $(M_i(\lambda))^{-1} = M_i(\lambda^{-1})$