#### **DATASET**



Common Voice is a publicly available voice dataset, powered by the voices of volunteer contributors around the world.

Data used: Common Voice Delta Segment, contains clips of variable length

|          | Version | Number of speakers | Recorded hours |
|----------|---------|--------------------|----------------|
| Spanish  | 12.0    | 373                | 57             |
| Japanese | 14.0    | 77                 | 54             |
| Italian  | 12.0    | 65                 | 13             |

**Expectation**: Spanish and Italian to perform similarly, Japanese to perform very differently.

#### **PREPROCESSING**

Common voice Delta segments audio clips

5 seconds from start of clip if empty, add silence

 $\downarrow$ 

Convert to Mel spectrograms: visual representation of the frequency content of an audio signal.



- . Audio signal→short overlapping frames
- 2. Fourier Transform to obtain the frequency spectrum
- 3. Mel-frequency bins are used to align with human perception.
- 4. The mel filterbank to convert the linear frequency scale to the mel scale.



#### **MODELS**





#### EXTRACT and ANALYSE ENCODED SPACE

#### TRAINING PROCEDURE

- 1. Train model with Spanish (chosen as "native" language).
- 2. Pretrain the model with Spanish, Japanese or Italian low pass filtered (500 Hz), with a subset of the data;
  - Continue training with the whole dataset of Spanish.





#### PRE-TRAINING EFFECT ON TIME

We'll have a look of how:

- No pretraining
- ☐ Pre-training with same language as training
- ☐ Pre-training with different languages than training

affects the time to reach a certain threshold in the loss value.

#### PRE-TRAINING EFFECT ON LATENT SPACE



### **CNN AUTOENCODER**



Linear layer 3000 neurons

### CNN AUTOENCODER: Results



### CNN AUTOENCODER: Results

Is NATIVE language **distinguishable** from NON-NATIVE in the 3000dim - Latent Space?

| Pre-training        | Spanish | Italian | Japanese | None   |
|---------------------|---------|---------|----------|--------|
| Perceptron accuracy | 87.1 %  | 87.2 %  | 87.1%    | 87.1 % |

CLASSIFICATION TASK

# **CNN AUTOENCODER: Results**





### LSTM: Long Short Term Memory

<u>LSTM:</u> Type of recurrent neural network (RNN) architecture designed to handle long-term dependencies in sequential data.





- The LSTM will accept as input a series of time steps decompositions of a spectrogram and will adjust its weights in order to predict the next time step.
- $\Box$  The model given t predicts t+1

| Layer (type)         | Output Shape                                       | Param # |
|----------------------|----------------------------------------------------|---------|
| input_1 (InputLayer) | [(None, 216, 128)]                                 | 0       |
| lstm (LSTM)          | [(None, 216, 250),<br>(None, 250),<br>(None, 250)] | 379000  |
| dense (Dense)        | (None, 216, 128)                                   | 32128   |

Total params: 411128 (1.57 MB) Trainable params: 411128 (1.57 MB) Non-trainable params: 0 (0.00 Byte)







- 1.20 dB

- 1.00 dB

- 0.80 dB

- 0.60 dB

- 0.40 dB

- 0.20 dB



Threshold: 0.0044

#### SVM accuracy on last hidden state and cell state

|        | No pre-train | Spanish pre-train | Italian pre-train | Japanese pre-train |
|--------|--------------|-------------------|-------------------|--------------------|
| Cell   | 60.6%        | 62.8%             | 72.0%             | 61.9%              |
| Hidden | 60.9%        | 63.2%             | 71.7%             | 60.4%              |



No meaningful results in the encoded space