

CAI 4104/6108 — Machine Learning Engineering: Interpretable ML & Fairness

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

Final Exam

- When: May 2, 2024 7:30AM to 9:30AM
- Where: Online (Canvas + Honorlock)
- Note:
 - ★ The CAI4104 and CAI6108 exams will be (slightly) different
- Format:
 - Some Short answer questions (may include multiple choice)
 - Some multi-part problems
- Sample Final Exam (Practice Questions) Live on Canvas
 - Please use it to prepare but do not overfit to it
 - It will close at 6:30am the day of the final (so there is no confusion)

Administrivia

Course Evaluation

- Help us improve the course: complete evaluation by April 26
- Access the evaluation form:
 - Canvas: click on GatorEvals (left navigation panel)
 - or: https://ufl.bluera.com/ufl/
- Optional and anonymous

Reminder: Interpretable ML

- Most ML models are black-box in terms of their decisions
 - You feed an input x, you get an output y
 - Why did we get output y (and not some $y \neq y$)?
- We want human-understandable explanations
 - How?

Reminder: Taxonomy of Techniques

- Techniques for explaining processing
 - Explain how the model processed the data
 - "How did the model produce this output from this input?"
 - E.g.: proxy models, saliency mapping, etc.
- Techniques for explaining representations
 - Explain how the model represents information that influences the decision
 - "What information is represented by the model?"
 - E.g.: studying layers/neurons of a neural network
- Explanation-producing systems
 - We can design and use models themselves that produce simple interpretations of their behavior
 - E.g.: attention networks

Reminder: Explaining Processing

- Proxy models techniques
 - Idea: create (train) a proxy model that behaves similarly but is easier to explain
 - Linear proxy models (e.g., LIME)
 - Decision trees
 - Rule extraction (e.g., if-then rules, MofN)
- Saliency mapping
 - Identify and highlight the salient features
 - Shows a small portion that is the most relevant
 - Typically applied to the image domain, but can be used more generally

Reminder: LIME

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Why should I trust you?: Explaining the predictions of any classifier." KDD, 2016
 - Given an instance x
 - Idea: approximate the behavior of the model in a neighborhood of x using a proxy model
 - Choice for the proxy model:
 - Linear model, decision tree, falling rule list

- Decision function: blue-pink background
- Instance being explained: bold red cross
- Learned explanation: dashed line

Reminder: Saliency Maps

black one with a cow; for the bottom image it confuses parts of birds with a person. (Images taken from the PASCAL VOC dataset.)

Source: Petsiuk, Das, and Saenko. "RISE: Randomized input sampling for explanation of black-box models." BMVC, 2018.

Explaining Representations

- Focus on neural networks
 - Internal representations are hard to grasp
- Layers-focused analysis
 - Pick a layer: what information does this layer contain?
 - Razavian et al. CVPR, 2014: internal layers of image classification networks can be used for other tasks!
 - ★ E.g.: the feature vector can be reused directly for tasks such as classifying other species of birds
 - This is the insight used for transfer learning / use pre-trained models
- Neurons-focused analysis
 - Pick a single neuron: what information is in this neuron?

Producing Explanations

Attention Networks

- Attention mechanisms allows the network to focus on a subset of features (or inputs)
- Directly reveal information that passing through the neural net
 - This can serve as a form of explanation

Disentangled Representations

- Neural networks can learn entangled representations/latent factors
- To provide explanations we may force the network to learn disentangled representation
 - E.g.: auto-encoders

Explanation Synthesis

We can design neural nets so they produce explanations directly

Attention Example

■ E.g.: Lu, Jiasen, Jianwei Yang, Dhruv Batra, and Devi Parikh. "Hierarchical question-image co-attention for visual question answering." NIPS, 2016.

Explanation Synthesis

■ E.g.: Huk Park et al. "Multimodal explanations: Justifying decisions and pointing to the evidence." CVPR, 2018.

CAI 4104/6108 – Machine Learning Engineering: Fairness

Prof. Vincent Bindschaedler

Spring 2024

Interpretable ML vs. Fairness

Interpretable ML

E.g.: why was Alice's loan denied? if her credit score was higher, would she have been approved?

Fairness

E.g.: Was Alice discriminated against?

What is Fairness?

- Definition (Merriam-Webster):
 - the quality or state of being fair
 - especially : fair or impartial treatment : lack of favoritism toward one side or another

- Definition (Cambridge Vocabulary):
 - the quality of treating people equally or in a way that is right or reasonable

- Definition (dictionary.com):
 - the state, condition, or quality of being fair, or free from bias or injustice; evenhandedness

Fairness & Discrimination in Law

- Discrimination (Merriam Webster)
 - 1: (a) prejudiced or prejudicial outlook, action, or treatment
 - // racial discrimination
 - 1: (b) the act, practice, or an instance of discriminating categorically rather than individually
 - 2: the quality or power of finely distinguishing
- (United Nation) Universal Declaration of Human Rights
 - Protected characteristic/group
 - * race, color, sex, language, religion, political (or other opinion), national or social origin, property, birth (or other status)
- US Employment Discrimination Law
 - Protected class status (aka "sensitive attribute")
 - * race, age (≥40), religion, sex (incl. pregnancy, sexual orientation, gender identity), disability, national origin, or genetic information (GINA 2008)

Fairness & Discrimination in Law

- Is it ever legal to discriminate?
 - Yes, for example: Hodgson v. Greyhound Lines, Inc., 499 F.2d 850 (7th Cir. 1974)
 - Greyhound Lines, Inc refused to hire bus driver applicants if they were over 35
 - Cited reason: passenger safety (statistically sound information)
 - Called a Bona Fide Occupational Qualification
 - Legal ≠ Moral
- Should we discriminate if statistical information justifies it?
 - Car rental for drivers less than 25 [drivers under 25 are riskier (statistically)]
 - You have to pay an additional Young Driver Fee / Under-25 Fee
 - Restrictions on the kind of car you can rent (no luxury cars or passenger vans)
 - Is it okay to discriminate in this case?

Discussion: What is Fair?

- Should we discriminate if statistical information justifies it?
 - Fairness in Car Rental vs. Likelihood of Accident
 - Let's look at some statistical information
 - Females cause fewer accidents that men (especially ≤ 30)
 - Should we discriminate based on this information?

Car insurance

- Factors that impact cost:
 - Credit score
 - Education level (get a PhD, save on car insurance!)
 - Marital status
- Is that okay?

Table 2Single-car fatal and non-fatal crash counts by driver age, gender, and time of day in Great Britain. 2002–2012.

	Fatal crash counts			Nonfatal crash counts		
	Day	Evening	Night	Day	Evening	Night
Males						
17-20	16	10	44	2,081	938	2,251
21-29	35	16	66	4,101	1,347	2,616
30-39	40	16	35	4,702	1,218	1,637
40-49	28	10	19	4,251	948	1,112
50-59	17	7	12	3,086	591	578
60-69	12	2	5	1,682	286	234
70+	19	2	2	1,188	155	101
Females	1970	3501	50000	050000000	5355560	5565555
17-20	3	1	6	949	342	568
21-29	6	2	7	2,069	539	610
30-39	6	2	4	2,228	426	324
40-49	6	1	2	1,831	333	215
50-59	3	1	1	1,079	182	108
60-69	2	0	0	553	79	40
70 +	6	0	0	474	50	22

Source: Regev et al. "Crash risk by driver age, gender, and time of day using a new exposure methodology." Journal of safety research 66, 2018.

Sources of ML Unfairness

- Why worry about ML fairness?
 - Learning algorithms are objective; models are trained from data and don't have biases (like humans do)
- Models trained can be unfair. Why?
- Sources of unfairness in ML
 - Data
 - Training data could reflect some historical bias
 - Training data might not be representative of the population
 - Preprocessing
 - Data collection and cleaning
 - Feature engineering may aggregate, summarize, or select features that lead to unfairness
 - Model selection
 - Choice of model could be unfair
 - Model could have learned to "ignore" or make suboptimal predictions for some protected group

ML Fairness: Ingredients

Metrics

- Need metrics to quantify fairness
- Tons of metrics have been proposed (e.g., statistical parity, predictive equality, rawlsian fairness, etc.)
 - * There is little to no consensus
 - They are largely incompatible with each other

Techniques

- Detection: determine whether a model is fair
- Fairness-aware:
 - Preprocessing modify training data so any model trained on it will be fair
 - Algorithm modification change an existing algorithm to make it fair no matter the training data
 - Postprocessing take the output of any model (possibly an unfair one) and make it fair
- Note: ensuring fairness may have a negative impact on accuracy

Fairness Notions & Metrics

- Many metrics have been proposed
 - anti-classification, statistical parity, conditional statistical parity, individual fairness, counterfactual fairness, rawlsian fairness, odds ratio, etc...
 - Categories
 - Individual fairness: e.g., similar individuals fairness
 - Group fairness: e.g., statistical parity, disparate impact, calibration, etc.
 - Most definitions are incompatible
 - Though some metrics are correlated
 - There is no concensus on a "right" definition

Thinking about Fairness

- Suppose we have a classifier to decide whether to approve a loan
 - Binary classification (labels $\in \{0, +1\}$) loan denied (0), loan approved (1)
 - Features:
 - * age, sex, race, credit score, yearly income
 - Logistic regression: $h_{\theta}(x) = 1 / [1 + \exp{-(w x + b)}]$
 - * $h_{\theta}(x) = 1/(1 + e^{-z})$ where z = w x + b

- How do we know if it's fair?
 - Look at the weights/coefficients for protected attributes (age, sex, race) and see if they are ≠ 0

Fairness Notions & Metrics

Setup

- Binary classification (labels $\in \{0, 1\}$)
 - * E.g.: loan denied (0), loan approved (1)
- Classifier h trained on some dataset
- ullet Each data point x contains (unprotected) attributes x_u and protected attributes (x_p)
 - * Often we consider the single protected attribute binary case x_p =0 vs x_p = 1
- Data points from the training set have an associated label y

Notation

• Prediction: $h(x) = h((x_u, x_p)) = y'$

Fairness Notion: Anti-Classification

- Anti-classification (aka "Fairness through Unawareness")
 - Idea: protected attributes are not explicitly used to make decisions (not part of the input)
 - ★ E.g.: we can remove protected attributes (at training time or prediction time)
 - More formally for all x, x' such that $x_u = x_u'$: h(x) = h(x')
 - Does that solve the problem?
 - No because some (other) non-protected attribute could be used as a proxy
 - * For example: geographic information (neighboorhood) could be used as a proxy for race ("redlining")

- Should ML even use protected attributes? We could just avoid collecting the data
 - Example: classifier for loan applications should sex be included? what about age?
 - If we can't collect them, we can't use them to enforce (or check) fairness

Fairness Notion: Statistical Parity

- Statistical Parity (aka "Demographic Parity")
 - Idea: proportion of positive predictions should be equal for each group
 - More formally $\Pr\{y'=1 \mid x_p=0\} = \Pr\{y'=1 \mid x_p=1\}$
- Is this a good metric? What do you think?
 - Criticism: different groups could have very different base rates (rates of y=1)
 - E.g.: young drivers cause more car accidents

- We can also consider false positive parity instead
 - $\Pr\{y'=1 \mid y=0, x_p=0\} = \Pr\{y'=1 \mid y=0, x_p=1\}$
 - Idea: when false positives results in a high cost to the protected group, we want parity

Fairness Notion: Individual Fairness

- Individual Fairness (aka "Fairness through Awareness")
 - Dwork et al. "Fairness through awareness." ITCS, 2012.
 - Idea: model should give similar predictions to similar individuals
 - More formally: given distance metric d()
 - * If individuals are similar, i.e., $d(x_i, x_j)$ is small, then predictions are similar: $h(x_i) \approx h(x_j)$
- Is this a good metric? What do you think?
 - Criticism: it depends on the distance metric d() and how it behaves with respect to protected attributes

Incompatibility of Fairness Notions

- Researchers have proposed lots of fairness metrics
 - Quite a few may seem reasonable
 - Are they compatible?
 - Unfortunately: No!
 - For details, see:
 - Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. "Inherent trade-offs in the fair determination of risk scores." arXiv, 2016.
 - Friedler, Sorelle A., Carlos Scheidegger, and Suresh Venkatasubramanian. "On the (im) possibility of fairness." arXiv, 2016.
 - Chouldechova, Alexandra. "Fair prediction with disparate impact: A study of bias in recidivism prediction instruments." Big data 5, 2017.
 - Berk, Richard, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. "Fairness in criminal justice risk assessments: The state of the art." Sociological Methods & Research, 2018.

Ensuring Fairness

- Suppose we decide on some notion of fairness
 - How do we ensure that our predictions conform to it?
- Fairness-aware techniques:
 - Preprocessing: modify training data so any model trained on it will be fair
 - Algorithm modification: change an existing algorithm to make it fair no matter the training data
 - Postprocessing: take the output of any model (possibly an unfair one) and make it fair
- Example: threshold adjustment
 - Postprocessing technique
 - Idea: adjust the threshold for the decision for each protected group (i.e., use a per-group threshold)
 - More formally Let $x = (x_u, x_p)$ and consider binary classification
 - # If $x_p = 0$ then y' = 1 if $h(x) \ge t_0$, 0 otherwise
 - * If $x_p = 1$ then y' = 1 if $h(x) \ge t_1$, 0 otherwise $(t_1 \ne t_0)$
 - Is this fair?

Next Time

- Monday (4/22): Lecture
- Upcoming:
 - Project due 4/24