

DFS - Edge Classification

Your task is to classify the edges of a directed graph determined by some dfs graph traversal. In order to have the output unique, we assume the vertices of the input graph are enumerated by $0, \ldots, n-1$, the main dfs loop processes the vertices in order $0, \ldots, n-1$, and the edges of each vertex are processed consistently with the neighbour's numbers (in the increasing order).

Your algorithm should work in time O(n+m), where n and m denote the sizes of the vertex set and of the edge set of the input graph.

Input

The first line contains integer z ($1 \le z \le 2 \cdot 10^9$) – the number of data sets. Each data set is as follows:

The first line contains the numbers n ($1 \le n \le 4000$) and m ($1 \le m \le 20000$) denoting the sizes of the vertex set and of the edge set of the input graph, respectively. Each of the next m lines contains a pair x y denoting the edge directed from x to y.

Output

The type of each edge e of the input graph, where the type is $\mathbf{T}/\mathbf{F}/\mathbf{B}/\mathbf{C}$ if e is a tree/forward/back/cross edge, respectively. We output the edges $e=(x\ y)$ sorted first by x and then by y.

Example

For the input:	the output is:
1	0 1 T
8 13	0 2 F
0 1	1 2 T
0 2	1 3 T
1 2	2 4 T
1 3	2 5 T
2 4	3 O B
2 5	3 5 C
3 0	5 6 T
3 5	6 4 C
5 6	6 5 B
6 4	7 O C
6 5	7 4 C
7 0	
7 4	