Лабораторная работа 7

Шибко Татьяна

Вариант 8

Задание 1

Найдите решение игры, заданной матрицей $\mathbf{A}_i:A_8=\left[\begin{array}{cc} -7 & 3 \\ 6 & -2 \end{array}\right]$

Решение:

Попробуем найти седловую точку данной платежной матрицы. Найдем наилучшую стратегию первого игрока: минимальное число в каждой строке обозначим $\alpha_i: \alpha_1 = -7, \alpha_2 = -2$.

Выберем максимальное из этих значений $\alpha = -2$ — нижняя цена игры, стратегия A_1 .

Аналогично для второго игрока. Найдем максимальные значения выигрыша по столбцам:

$$\beta_1 = 3, \beta_2 = 6.$$

Минимальное из этих чисел $\beta=3$. Это будет верхняя цена игры, стратегия $_2$.

Так как верхняя и нижняя цены игры различны, игра не имеет решения в чистых стратегиях (седловой точки нет), цена игры находится в промежутке от -2 до 6 (между нижней и верхней ценой игры).

Теперь найдем смешанные стратегии. Обозначим вероятности выбора стратегий первого игрока как x_1 и x_2 , а второго игрока как y_1 и y_2 .

Условие для первого игрока:

$$\begin{cases}
-7x_1 + 6x_2 = v, \\
3x_1 - 2x_2 = v, \\
x_1 + x_2 = 1.
\end{cases}$$

Условие для второго игрока:

$$\begin{cases}
-7y_1 + 3y_2 = v, \\
6y_1 - 2y_2 = v, \\
y_1 + y_2 = 1
\end{cases}$$

Составим систему уравнений и решим её.

Решение первой системы:

$$\begin{cases}
-7x_1 + 6x_2 = 3x_1 - 2x_2, \\
v = 3x_1 - 2x_2, \\
x_1 = 1 - x_2.
\end{cases}$$

$$\begin{cases}
-7x_1 + 6x_2 - 3x_1 + 2x_2 = 0, \\
v = 3x_1 - 2x_2, \\
y_1 = 1 - y_2.
\end{cases}$$

$$\begin{cases}
-10x_1 + 8x_2 = 0, \\
v = 3x_1 - 2x_2, \\
x_1 = 1 - x_2.
\end{cases}$$

$$\begin{cases}
-5x_1 + 4x_2 = 0, \\
v = 3x_1 - 2x_2, \\
x_1 = 1 - x_2.
\end{cases}$$

$$\begin{cases}
-5(1-x_2) + 4x_2 = 0, \\
v = 3x_1 - 2x_2, \\
x_1 = 1 - x_2.
\end{cases}$$

$$\begin{cases}
-5 + 5x_2 + 4x_2 = 0, \\
v = 3x_1 - 2x_2, \\
x_1 = 1 - x_2.
\end{cases}$$

$$\begin{cases} 9x_2 = 5, \\ v = 3x_1 - 2x_2, \\ x_1 = 1 - x_2. \end{cases}$$

$$\begin{cases} x_2 = \frac{5}{9}, \\ v = 3x_1 - 2x_2, \\ x_1 = 1 - x_2. \end{cases}$$

$$\begin{cases} x_2 = \frac{5}{9}, \\ v = 3x_1 - 2x_2, \\ x_1 = \frac{4}{9}. \end{cases}$$

$$\begin{cases} x_2 = \frac{5}{9}, \\ v = \frac{2}{9}, \\ x_1 = \frac{4}{9}. \end{cases}$$

Применяя теорему об активных стратегиях при отыскании смешанной стратегии второго игрока, получаем, что при любой чистой стратегии первого игрока средний проигрыш второго игрока равен цене игры, то есть:

$$\begin{cases}
-7y_1 + 3y_2 = \frac{2}{9}, \\
6y_1 - 2y_2 = \frac{2}{9}, \\
y_1 + y_2 = 1
\end{cases}$$

$$\begin{cases}
-7y_1 = \frac{2}{9} - 3y_2, \\
6y_1 - 2y_2 = \frac{2}{9}, \\
y_1 + y_2 = 1
\end{cases}$$

$$\begin{cases} y_1 = -\frac{2}{63} + \frac{3}{7}y_2, \\ 6y_1 - 2y_2 = \frac{2}{9}, \\ y_1 + y_2 = 1 \end{cases}$$

$$\begin{cases} y_1 = -\frac{2}{63} + \frac{3}{7}y_2, \\ 6(-\frac{2}{63} + \frac{3}{7}y_2) - 2y_2 = \frac{2}{9}, \\ y_1 + y_2 = 1 \end{cases}$$

$$\begin{cases} y_1 = \frac{5}{18}, \\ y_2 = \frac{13}{18} \end{cases}$$

Оптимальные стратегии:

$$x = \begin{bmatrix} \frac{4}{9}, \frac{5}{9} \end{bmatrix}, \quad y = \begin{bmatrix} \frac{5}{18}, \frac{13}{18} \end{bmatrix}$$
$$v = \frac{2}{9}$$

Задание 2

Найдите решение игр, заданных матрицами A_{i1} и A_{i2} :

$$A_{8,1} = \begin{bmatrix} 3 & 2 & 0 & 1 \\ -2 & -3 & 3 & -1 \end{bmatrix}$$

$$A_{8,2} = \begin{bmatrix} 1 & 6 \\ 2 & 5 \\ 4 & 2 \end{bmatrix}$$

Решение:

Начнём с первой матрицы.

1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях. Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки	B_1	B_2	B_3	B_4	$a = \min(A_i)$
A_1	3	2	0	1	0
A_2	-2	-3	3	-1	-3
$b = \max(B_i)$	3	2	3	1	

Находим гарантированный выигрыш, определяемый нижней ценой игры $a=\max(a_i)=0$, которая указывает на максимальную чистую стратегию A_1 . Верхняя цена игры $b=\min(b_j)=1$, что свидетельствует об отсутствии седловой точки, так как $a\neq b$. Тогда цена игры находится в пределах $0\leq y\leq 1$. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии).

2. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы. Иногда на основании простого рассмотрения матрицы игры можно сказать, что некоторые чистые стратегии могут войти в оптимальную смешанную стратегию лишь с нулевой вероятностью. Говорят, что i-я стратегия 1-го игрока доминирует его k-ю стратегию, если $a_{ij} \geq a_{kj}$ для всех $j \in N$ и хотя бы для одного j $a_{ij} > a_{kj}$. В этом случае говорят также, что i-я стратегия (или строка) – доминирующая, k-я – доминируемая. Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех $j \in M$ $a_{ij} \leq a_{il}$ и хотя бы для одного i $a_{ij} < a_{il}$. В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю – доминируемой.

	B_2	B_3	B_4
A_1	2	0	1
A_2	-3	3	-1

С позиции проигрышей игрока В стратегия B_2 доминирует над стратегией B_1 (все элементы столбца 2 меньше элементов столбца 1), следовательно, исключаем 1-й столбец матрицы. Вероятность $q_1 = 0$.

В платежной матрице отсутствуют доминирующие строки. Мы свели игру 2×4 к игре 2×3 . Так как игроки выбирают свои чистые стратегии случайным образом, то выигрыш игрока I будет случайной величиной. В этом случае игрок I должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш. Аналогично, игрок II должен выбрать свои смешанные стратегии так, чтобы минимизировать математическое ожидание игрока I.

- 3. Находим решение игры в смешанных стратегиях. Решим задачу геометрическим методом, который включает в себя следующие этапы:
 - 1. В декартовой системе координат по оси абсцисс откладывается отрезок, длина которого равна 1. Левый конец отрезка (точка x=0) соответствует стратегии A_1 , правый стратегии A_2 (x=1). Промежуточные точки x соответствуют вероятностям некоторых смешанных стратегий $S_1=(p_1,p_2)$.
 - 2. На левой оси ординат откладываются выигрыши стратегии A_1 . На линии, параллельной оси ординат, из точки 1 откладываются выигрыши стратегии A_2 .

Решение игры $(2 \times n)$ проводим с позиции игрока A, придерживающегося максиминной стратегии. Доминирующихся и дублирующих стратегий ни у одного из игроков нет. Выделяем нижнюю границу выигрыша B_2NB_3 . Максиминной оптимальной стратегии игрока A соответствует точка N, лежащая на пересечении прямых B_2B_2 и B_3B_3 , для которых можно записать следующую систему уравнений:

$$y = 0 + (3 - 0)p_2$$
$$y = 1 + (-1 - 1)p_2$$

Откуда

$$p_1 = \frac{4}{5}, \quad p_2 = \frac{1}{5}$$

Цена игры, $y=\frac{3}{5}$. Теперь можно найти минимаксную стратегию игрока B, записав соответствующую систему уравнений, исключив стратегию B_1 , которая дает явно больший проигрыш игроку B, и, следовательно, $q_1=0$:

$$q_3 = y$$
$$3q_2 - q_3 = y$$
$$q_2 + q_3 = 1$$

или

$$q_{3} = \frac{3}{5}$$
$$3q_{2} - q_{3} = \frac{3}{5}$$
$$q_{2} + q_{3} = 1$$

Решая эту систему, находим:

$$q_2 = \frac{2}{5}, \quad q_3 = \frac{3}{5}.$$

Ответ: Цена игры: $y = \frac{3}{5}$, векторы стратегии игроков:

$$Q(0, \frac{2}{5}, \frac{3}{5}), \quad P(\frac{4}{5}, \frac{1}{5})$$

Теперь вторая матрица.

1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях. Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки	B1	B2	$a = \min(A_i)$
A1	1	6	1
A2	2	5	2
A3	4	2	2
$b = \max(B_i)$	4	6	

Находим гарантированный выигрыш, определяемый нижней ценой игры $a=\max(a_i)=2$, которая указывает на максимальную чистую стратегию A2. Верхняя цена игры $b=\min(b_j)=4$. Это свидетельствует об отсутствии седловой точки, так как $a\neq b$. Тогда цена игры находится в пределах $2\leq y\leq 4$.

Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии).

2. Проверка на доминирующие стратегии

Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы.

Говорят, что і-я стратегия 1-го игрока доминирует его k-ю стратегию, если $a_{ij} \ge a_{kj}$ для всех $j \in N$ и хотя бы для одного j $a_{ij} > a_{kj}$. В этом случае говорят также, что і-я стратегия (или строка) — доминирующая, k-я — доминируемая.

Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех $i \in M$ $a_{ij} \le a_{il}$ и хотя бы для одного i $a_{ij} < a_{il}$. В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю — доминируемой.

В платежной матрице отсутствуют доминирующие строки и столбцы.

Так как игроки выбирают свои чистые стратегии случайным образом, то выигрыш игрока I будет случайной величиной. В этом случае игрок I должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш. Аналогично, игрок II должен выбрать свои смешанные стратегии так, чтобы минимизировать математическое ожидание игрока I.

3. Решение игры в смешанных стратегиях

Решим задачу геометрическим методом, который включает в себя следующие этапы:

1. В декартовой системе координат по оси абсцисс откладывается отрезок, длина которого равна 1. Левый конец отрезка (точка x=0) соответствует стратегии B1, правый — стратегии B2 (x=1). Промежуточные точки x соответствуют вероятностям некоторых смешанных стратегий $S_1=(p_1,p_2)$. 2. На левой оси ординат откладываются выигрыши стратегии B1. На линии, параллельной оси ординат, из точки 1 откладываются выигрыши стратегии B2.

Решение игры (m x 2) проводим с позиции игрока B, придерживающегося максиминной стратегии. Доминирующихся и дублирующих стратегий ни у одного из игроков нет. Выделяем верхнюю границу выигрыша A_2A_3 . Максиминной оптимальной стратегии игрока B соответствует точка N, лежащая на пересечении прямых A_2A_2 и A_3A_3 , для которых можно записать следующую систему уравнений:

$$y = 2 + (5 - 2)q_2$$
$$y = 4 + (2 - 4)q_2$$

Откуда

$$q_1 = \frac{3}{5}, \quad q_2 = \frac{2}{5}$$

Цена игры:

$$y = \frac{16}{5}$$

Теперь можно найти минимаксную стратегию игрока A, записав соответствующую систему уравнений, исключив стратегию A1, которая дает явно больший проигрыш игроку A, и, следовательно, $p_1 = 0$.

$$2p_2 + 4p_3 = y$$

$$5p_2 + 2p_3 = y$$

$$p_2 + p_3 = 1$$

или

$$2p_2 + 4p_3 = \frac{16}{5}$$

$$5p_2 + 2p_3 = \frac{16}{5}$$

Решая эту систему, находим:

$$p_2 = \frac{2}{5}, \quad p_3 = \frac{3}{5}.$$

Ответ

Цена игры: $y=\frac{16}{5},$ векторы стратегии игроков: $P(0,\frac{2}{5},\frac{3}{5}),$ $Q(\frac{3}{5},\frac{2}{5}).$

Задание 3

Фермеру необходимо определить, в каких пропорциях засевать свое поле 5 культур. Если урожайность этих культур, а значит, и прибыль, зависит, в том числе, от погоды: радужно, дождливо, морозно, или жарким с летом.

Фермер подсчитает численность каждой культуры j в зависимости от погоды i:

	Погода 1	Погода 2	Погода 3	Погода 4	Погода 5
Культура 1	2	3	5	4	2
Культура 2	4	3	2	3	1
Культура 3	3	2	4	5	3
Культура 4	2	4	3	5	4
Культура 5	4	3	4	2	3

Здесь у фермера нет реального противника.

Если фермер планирует свои действия в зависимости от наихудших погодных условий, то можно считать природу активным субъектом, который пытается создать наихудшие условия (в точном смысле игры).

Матрицу A можно смоделировать как матричную игру:

5	9	5	1	1
5	3	3	6	7
3	9	7	5	2
4	1	6	9	7
4	2	1	8	8

Решение:

Файл var8.dat

Файл var8.mod

```
\begin{array}{l} \textbf{set } n; \\ param \ A\{n, \ n\}; \\ var \ y\{n\}; \\ minimize \ z1: \ \textbf{sum}\{i \ \textbf{in} \ n\} \ y[i]; \\ subject \ to \ usl1\{j \ \textbf{in} \ n\}: \ \textbf{sum}\{i \ \textbf{in} \ n\} \ A[i,j]*y[i] >= 1; \\ subject \ to \ ogranich1\{i \ \textbf{in} \ n\}: \ 0 <= y[i]; \\ \end{array}
```

Файл var8.run

```
reset;
model var8.mod;
data var8.dat;
option solver cplex;
solve;
display z1;
display y;
```

Результат:

```
ampl: include var8.run;

CPLEX 22.1.1: optimal solution; objective 0.2131147541

4 simplex iterations

z1 = 0.213115

y [*] :=
1  0.0819672
2  0.0655738
3  0
4  0.0655738
5  0
;
```

Сведем эту матричную игру к задаче линейного программирования. Получим следующие 2 задачи:

$$\sum_{i=1}^{m} y_i \longrightarrow min$$

$$\sum_{i=1}^{n} a_{iJ} y_i \ge 1, \quad J = 1, \dots, n$$

$$y_i \ge 0, \quad i = 1, \dots, m$$

В нашем случае n=m=5.

$$\sum_{J=1}^{n} y_{J} \longrightarrow max$$

$$\sum_{J=1}^{n} a_{iJ}x_{J} \ge 1, \quad i = 1, \dots, m$$

$$y_{J} \ge 0, \quad J = 1, \dots, n$$

Решим эту задачу:

$$\mathbf{y}^* = \begin{pmatrix} 0.082 \\ 0.066 \\ 0 \\ 0.066 \\ 0 \end{pmatrix}, \quad \mathbf{x}^* = \begin{pmatrix} 0.075 \\ 0.036 \\ 0.049 \\ 0 \\ 0.052 \end{pmatrix}$$
$$J = \frac{1}{\sum \mathbf{y_1}^*} = \frac{1}{0.213} = 4.695$$
$$v(A) = J = 4.695$$

Оптимальные стратегии игрока 1:

$$\mathbf{p} = J \cdot \mathbf{y}$$

Оптимальные стратегии игрока 2:

$$\mathbf{q} = J \cdot \mathbf{x}$$

Задание 4

Магазин имеет некоторый запас товаров ассортиментного минимума. Если запас товаров недостаточен, то необходимо завести его с базы; если запас превышает спрос, то магазин несет расходы по хранению нереализованного товара. Пусть спрос на товары лежит в пределах S ($5 \le S \le 8$ единиц), расходы по хранению одной единицы товара составляют c руб., а расходы по завозу единицы товара k руб., цена за единицу товара составляет p руб.

Составить платежную матрицу, элементами которой является прибыль магазина (доход от продажи с учетом расходов по хранению или по завозу). Определить оптимальную стратегию магазина по завозу товаров, используя критерии Вальда, Сэвиджа, Гурвица при $\alpha=0.5$, Лапласа.

$$p = 210, c = 20, k = 60$$

Решение:

	5	6	7	8	min	max	среднее
5	1050	1200	1350	1500	1050	1500	1275
6	1030	1260	1410	1560	1030	1560	1315
7	1010	1240	1470	1620	1010	1620	1355
8	990	1220	1450	1680	990	1680	1335
max	1050	1260	1470	1680			

```
a_{55} = 5 \times 210 = 1050 (в магазин завезли 5 единиц товара, которые все раскупили);
a_{56} = 5 \times 210 + 210 - 60 = 1200 (завезли 5 единиц, потребовалось привезти одну и заплатить за доставку);
a_{57} = 5 \times 210 + 2 \times (210 - 60) = 1350 (завезли 5 единиц, привезли и оплатили доставку двух единиц);
a_{58} = 5 \times 210 + 3 \times (210 - 60) = 1500 (завезли 5 единиц, привезли и оплатили доставку трёх единиц);
a_{65} = 5 \times 210 - 20 = 1030 (завезли 6 единиц, оплатили хранение непроданной одной единицы);
a_{66} = 6 \times 210 = 1260 (в магазин завезли 6 единиц товара, которые все раскупили);
a_{67} = 6 \times 210 + 210 - 60 = 1410 (завезли 6 единиц, потребовалось привезти одну и заплатить за доставку);
a_{68} = 6 \times 210 + 2 \times (210 - 60) = 1560 (завезли 6 единиц, привезли и оплатили доставку двух единиц);
a_{75} = 5 \times 210 - 2 \times 20 = 1010 (завезли 7 единиц, продали 5, оплатили хранение оставшихся двух);
a_{76} = 6 \times 210 - 20 = 1240 (завезли 7 единиц, продали 6, оплатили хранение оставшейся);
a_{77} = 7 \times 210 = 1470 (в магазин завезли 7 единиц товара, которые все раскупили);
a_{78} = 7 \times 210 + 210 - 60 = 1620 (завезли 7 единиц, потребовалось привезти одну и заплатить за доставку);
a_{85} = 5 \times 210 - 3 \times 20 = 990 (завезли 8 единиц, продали 5, оплатили хранение оставшихся трёх);
a_{86} = 6 \times 210 - 2 \times 20 = 1220 (завезли 8 единиц, продали 6, оплатили хранение оставшихся двух);
a_{87} = 7 \times 210 - 20 = 1450 (завезли 8 единиц, продали 7, оплатили хранение оставшейся);
a_{88} = 8 \times 210 = 1680 (в магазин завезли 8 единиц товара, которые все раскупили).
```

Максимальный критерий Вальда. При максимальном критерии Вальда оптимальной считается та стратегия лица, принимающего решение, которая обеспечивает ему максимум минимального выигрыша:

$$W = \max \min a_{i,j}$$
.

B нашем случае $W = \max(1050, 1030, 1010, 990) = 1050.$

Следовательно, по критерию Вальда лучше выбрать первую стратегию и завезти в магазин 5 единиц товара.

Риском r_{ij} игрока при использовании стратегии A_i в условиях P_j называется разность между выигрышем, который он получил бы, если бы знал P_j , и выигрышем, который он получит в тех же условиях при принятии решения A_i . Иначе, риск — мера несовпадения между разными возможными результатами принятия определенных стратегий. Выразим риск в виде элементарной матрицы выигрышей $a_{i,j}$. Очевидно, что если игрок заранее знает состояние (природу) P_j , то

$$r_{ij} = b_i - a_{i,j}$$
.

Тогда, согласно определению, риск вычисляется как разность максимального выигрыша b_j и минимального элемента строки.

	5	6	7	8	max
5	0	60	120	180	180
6	20	0	60	120	120
7	40	20	0	60	60
8	60	40	20	0	60

Критерий минимального риска Сэвиджа

Данный критерий предполагает, что оптимальной стратегией является стратегия, при которой величина риска в наихудшем случае минимальна. Риск. Согласно критерию Свиддка лицо, принимающее решение, должно выбрать действие, при котором риск будет минимален в самой неблагоприятной ситуации, т.е.

$$r_i = \max_j a_{ij}.$$

У нас $W = \min(180, 120, 60, 60) = 60 \Rightarrow$ лучше выбрать третью стратегию.

Критерий пессимизм-оптимизма Гурвица

Этот критерий предлагает учитывать не только оптимистические, но и пессимистические оценки. Он формулируется следующим образом:

$$W = \alpha \max_{i} a_{ij} + (1 - \alpha) \min_{i} a_{ij},$$

где α — коэффициент, принимающий значения от 0 до 1.

 $\alpha=0.5$, значит

$$0.5 * 1050 + (1 - 0.5) * 1500 = 1275$$

 $0.5 * 1030 + (1 - 0.5) * 1560 = 1295$

$$0.5 * 1010 + (1 - 0.5) * 1620 = 1315$$

$$0.5 * 990 + (1 - 0.5) * 1680 = 1335$$

Тогда $W = \max(1275, 1295, 1315, 1335) = 1335 \Rightarrow$ лучше выбрать последнюю стратегию и завезти в магазин 8 единиц товара.

Критерий Лапласа

При неизвестных вероятностях состояний «природы» можно принять, что все они равновероятны, т.е. $p(\Pi) = \frac{1}{n}, j = 1, \ldots, n$, и выбор решения определяется критерием Лапласа, при котором ЛПР выбирает такую стратегию A_i , что

$$W = \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} a_{ij} \right).$$

У нас $W = \max(1275, 1315, 1355, 1335) = 1355 \Rightarrow$ лучше выбрать третью стратегию и завести в магазин 7 единиц товара.

Ответ Критерий Вальда рекомендует 5 единиц; критерий Сэвиджа 7 единиц; критерий Гурвица – 8 единиц; критерий Лапласа – 7 единиц.