§14. Определение передаточных функций замкнутой САУ по ее структурной схеме.

Пользуясь полученными правилами структурных преобразований, произвольные структурные схемы реальных замкнутых САУ можно преобразовать к одноконтурному виду, приведенному на рис. 2.16.

Рис. 2.16. Обобщенная структура замкнутой САУ

Здесь: $Y_3(s)$ - задающее воздействие; Y(s) - управляемая величина; F(s) - возмущающее воздействие; $U_3(s)$ - сигнал задания; $U_{\rm oc}(s)$ - сигнал обратной связи; $\Delta U(s)$ - сигнал рассогласования; $X_1(s)$, $X_2(s)$, X(s) - промежуточные сигналы.

Установим правила эквивалентной замены приведенной обобщенной схемы более простой структурой.

В соответствии с рисунком, управляемая величина зависит как от $Y_3(s)$, так и от F(s). Определим эту зависимость.

На основе схемы можем записать:

$$\Delta U(s) = U_3(s) - U_{oc}(s) = Y_3(s)W_1(s) - Y(s)W_5(s); \tag{2.57}$$

$$Y(s) = [\Delta U(s)W_2(s) + F(s)W_3(s)] \cdot W_4(s) . \tag{2.58}$$

Подставим уравнение (2.57) в (2.58):

$$Y(s) = [(Y_3(s)W_1(s) - Y(s)W_5(s)) \cdot W_2(s) + F(s)W_3(s)] \cdot W_4(s) =$$

$$= Y_3(s)W_1(s)W_2(s)W_4(s) - Y(s)W_2(s)W_4(s)W_5(s) + F(s)W_3(s)W_4(s).$$
(2.59)

Преобразовав (2.59), получим:

$$Y(s) = Y_3(s) \frac{W_1(s)W_2(s)W_4(s)}{1 + W_2(s)W_4(s)W_5(s)} + F(s) \frac{W_3(s)W_4(s)}{1 + W_2(s)W_4(s)W_5(s)}.$$
 (2.60)

Или:

$$Y(s) = Y_3(s) \frac{W_{\Pi}(s)}{1 + W_{D}(s)} + F(s) \frac{W_3(s)W_4(s)}{1 + W_{D}(s)},$$
(2.61)

где $W_{\Pi}(s) = W_1(s)W_2(s)W_4(s)$ - передаточная функция прямой цепи (эквивалентная передаточная функция между точкой приложения задающего воздействия и управляемой величиной при разомкнутом контуре обратной связи); $W_{\rm p}(s) = W_2(s)W_4(s)W_5(s)$ - передаточная функция разомкнутого контура, получаемая при мысленном размыкании контура (чаще всего, на участке действия сигнала обратной связи) относительно точек размыкания, вычисленная без учета передаточной функции элемента сравнения.

Уравнение (2.61) представим в виде:

$$Y(s) = Y_{Y_3}(s) + Y_F(s),$$
 (2.62)

где $Y_{Y_3}(s)$ - составляющая управляемой величины, обусловленная действием задающего воздействия; $Y_F(s)$ - составляющая управляемой величины, обусловленная действием возмущающего воздействия.

Обозначим:

$$\frac{Y_{Y_3}(s)}{Y_3(s)} = \frac{W_{\Pi}(s)}{1 + W_{p}(s)} = W_{Y,Y_3}(s). \tag{2.63}$$

Величину $W_{Y,Y_3}(s)$ называют передаточной функцией замкнутой системы по задающему воздействию.

Аналогичным образом полученную величину

$$\frac{Y_F(s)}{F(s)} = \frac{W_3(s)W_4(s)}{1 + W_P(s)} = W_{Y,F}(s)$$
 (2.64)

называют передаточной функцией замкнутой системы по возмущающему воздействию.

С учетом (2.63) и (2.64) уравнение (2.61) принимает вид:

$$Y(s) = Y_3(s)W_{Y,Y}(s) + F(s)W_{Y,F}(s)$$
.

Таким образом, исходная структурная схема может быть представлена в следующем эквивалентном виде:

Рис. 2.17. Эквивалентная структура замкнутой САУ

Передаточные функции (2.63) и (2.64) являются основными передаточными функциями САУ, так как они устанавливают связь управляемой величины со входными воздействиями. Если же в процессе расчета требуется определение передаточной функции замкнутой системы между произвольными величинами, то следует применять следующее общее правило: передаточная функция между любыми величинами схемы равняется дроби, у которой числитель представляет собой произведение передаточных функций звеньев, включенных между точками приложения входной и выходной величин, а знаменатель — увеличенную на единицу передаточную функцию разомкнутого контура.

Кроме функций (2.63) и (2.64) к основным передаточным функциям замкнутых САУ относят также функции, устанавливающие связь сигнала рассогласования $\Delta U(s)$ с входными воздействиями. Применив общее правило, получим:

 для передаточной функции по сигналу рассогласования, вызванному задающим воздействием

$$W_{\Delta U, Y_s}(s) = \frac{\Delta U(s)}{Y_s(s)} = \frac{W_1(s)}{1 + W_p(s)};$$
 (2.65)

для передаточной функции по сигналу рассогласования, вызванному возмущающим воздействием

$$W_{\Delta U,F}(s) = \frac{\Delta U(s)}{F(s)} = -\frac{W_3(s)W_4(s)W_5(s)}{1 + W_p(s)}.$$
 (2.66)

Пример 2.7.

Преобразовать к одноконтурному виду и определить основные передаточные функции САУ, приведенной на рис. 2.18:

Рис. 2.18. Исходная структура САУ

Решение.

Перенесем узел разветвления сигнала X_3 через звено $W_3(s)$ вперед и поменяем его местом с узлом разветвления сигнала Y (см. рис. 2.19).

Рис. 2.19

Заменим второй блок суммирования на эквивалентное соединение двух более простых аналогичных блока (см. рис. 2.19).

Рис. 2.20

Тогда эквивалентная одноконтурная структура САУ может быть представлена в виде, приведенном на рис. 2.21.

Рис. 2.21

Передаточные функции системы имеют вид:

$$\begin{split} W_{Y,U_3}(s) &= \frac{\frac{W_1(s)W_2(s)W_3(s)}{1+W_2(s)W_3(s)W_5(s)}}{1+\frac{W_1(s)W_2(s)W_3(s)W_5(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}} = \frac{W_1(s)W_2(s)W_3(s)}{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)} \,; \\ W_{Y,F}(s) &= \frac{\frac{W_2(s)W_3(s)}{1+W_2(s)W_3(s)W_5(s)}}{1+\frac{W_1(s)W_2(s)W_3(s)W_5(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}} = \frac{W_2(s)W_3(s)}{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)} \,; \\ W_{\Delta U,U_3}(s) &= \frac{1}{1+\frac{W_1(s)W_2(s)W_3(s)W_4(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}} = \frac{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)}{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)} \,; \\ W_{\Delta U,U_3}(s) &= \frac{1}{1+\frac{W_1(s)W_2(s)W_3(s)W_4(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}} = \frac{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)}{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)} \,; \\ \end{split}$$

$$W_{\Delta U,F}(s) = \frac{-\frac{W_2(s)W_3(s)W_4(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}}{1+\frac{W_1(s)W_2(s)W_3(s)W_4(s)}{[1+W_2(s)W_3(s)W_5(s)]\cdot W_3(s)}} = -\frac{W_2(s)W_4(s)}{1+W_2(s)W_3(s)W_5(s)+W_1(s)W_2(s)W_4(s)}\,.$$

Заметим, что вариантов преобразования структурных схем существует всегда несколько. В нашем случае, например, можно сначала перенести первый блок суммирования через звено $W_1(s)$, а затем блоки суммирования поменять местами.

Пример 2.8.

Пусть структурная схема САУ имеет вид, приведенный на рис. 2.22.

Рис. 2.22

Найдем передаточную функцию замкнутой системы по задающему воздействию.

Решение.

Применив правило перестановки сумматоров 1 и 2 и переноса узла D с выхода на вход пятого звена $W_5(s)$, а затем перестановки его с узлом C, получим структурную схему без перекрестных связей.

Воспользовавшись формулами (2.54-2.56) для преобразованной схемы можем последовательно записать:

$$W_{12}(s) = \frac{W_1(s)}{1 + W_1(s)W_2(s)};$$
 $W_{34}(s) = W_3(s) + W_4(s);$

$$W_{3457}(s) = \frac{W_{34}(s)}{1 + W_{34}(s)W_5(s)W_7(s)}; W_{xy}(s) = \frac{W_{12}(s)W_{3457}(s)}{1 + W_{12}(s)W_{3457}(s)W_6(s)}W_5(s).$$