Cambridge (CIE) A Level Chemistry

Amino Acids

Contents

- * Amino Acids
- * Peptide Bonds
- * Electrophoresis

Amino Acids

Acid / Base Properties of Amino Acids, **Zwitterions & the Isoelectric Point**

- Amino acids are organic compounds that contain two functional groups:
 - A basic **amino** (-NH₂) group
 - An acidic carboxylic acid (-COOH) group
- Due to the presence of both a **basic** and **acidic** group in amino acids, they are said to be amphoteric
 - They can act as both acids and bases

Naturally occurring amino acids

- 2-aminocarboxylic acids are a type of amino acid where the amine (-NH₂) group is bonded to the carbon atom next to the -COOH group
- These types of amino acid form the 'building blocks' that make up **proteins**
- There are 20 naturally occurring amino acids with the general structural formula of RCH(NH2)COOH

General structural formula of amino acids

In most amino acids, the amine group is bonded to the carbon directly adjacent to the carboxylic acid group

- The R group varies in different amino acids and can be:
 - Acidic
 - Basic
 - Neutral

Example amino acids with different R groups

The R group in amino acids can be acidic (aspartic acid), basic (serine) or neutral (alanine)

Acid / base properties of amino acids

- Amino acids will undergo most reactions of amines and carboxylic acids including acidbase reactions of:
 - Amines with acids
 - Carboxylic acids with bases
- However, they can also interact **intramolecularly** (within themselves) to form a zwitterion
- Azwitterion is an ion with both a **positive** (-NH₃+) and a **negative** (-COO⁻) charge
- Because of these charges in a zwitterion, there are **strong intermolecular forces of** attraction between amino acids
 - Amino acids are therefore soluble crystalline solids

Zwitterion formation within an amino acid

An amino acid molecule can interact within itself to form a zwitterion

Isoelectric point

- A solution of amino acids in water will exist as **zwitterions** with both **acidic** and **basic** properties
- They act as **buffer solutions** as they resist any changes in pH when **small** amounts of acids or alkali are added

- If an acid is added (and thus the pH is **lowered**):
 - The -COO⁻ part of the zwitterion will **accept** an H⁺ ion to reform the -COOH group
- Your notes

- This causes the zwitterion to become a **positively charged ion**
- If a base is added (and thus the pH is **raised**):
 - The $-NH_3^+$ part of the zwitterion will **donate** an H^+ ion to reform the $-NH_2$ group
 - This causes the zwitterion to become a **negatively charged ion**

The effect of changing pH on zwitterions

An amino acid solution can act as a buffer solution by resisting any small changes in pH

- The pH can be slightly adjusted to reach a point at which neither the **negatively charged** or **positively charged** ions dominate and the amino acid exists as a **neutral zwitterion**
 - This is called the **isoelectric point** of the amino acid

The isoelectric point of an amino acid

The isoelectric point of amino acids is the pH at which the amino acid exists as a neutral zwitterion

Peptide Bonds

Formation of Peptide Bonds

- Each amino acid contains an amine (-NH₂) and carboxylic acid (-COOH) group
- The -NH₂ group of **one amino acid** can react with the -COOH group of **another amino** acid in a condensation reaction to form a dipeptide
 - The new **amide bond** between two amino acids is also called a **peptide link** or peptide bond
- Since this is a condensation reaction, a small molecule (in this case H₂O) is **eliminated**
- The **dipeptide** still contains an -NH₂ and -COOH group at each end of the molecule which can again participate in a condensation reaction to form a tripeptide

Peptide bonds

A peptide bond is an amide bond between two amino acids

• A **polypeptide** is formed when **many** amino acids join together to form a long chain of molecules

Showing polypeptides

A polypeptide is a long chain of amino acid molecules joined together

Electrophoresis

Electrophoresis

- Electrophoresis is an analytical technique which separates ions by placing them in an electrical field
 - This method is often used in **biochemical analysis** to **identify** and **purify** proteins
- A sample of amino acids is placed between **two oppositely charged electrodes**
 - The positively charged ions will move towards the **negative electrode**
 - The negatively charged ions will move towards the **positive electrode**
- The rate (how fast) at which the ions move towards the electrodes depends on:
 - The size of the ions: larger ions move more slowly
 - The charge of the ions: highly charged ions move more quickly
- An electropherogram is the series of bands which are observed on the paper or gel after electrophoresis has occurred
 - Each band in the electropherogram corresponds to a particular species

Separating mixtures of amino acids by varying the Hq

- The charge on the **amino acid ions** depends on the pH of the solution
- The movement of the ions to the electrodes during electrophoresis will therefore be affected by the pH
- Consider a sample which consists of a mixture of three amino acids at pH7
 - Amino acid A: lysine, side-chain is positively charged
 - Amino acid **B**: glycine, side chain is **neutral**
 - Amino acid C: glutamic acid, side chain is negatively charged

The different amino acids within the sample

AMINO ACID C

The sample consists of a mixture of three amino acids which are separated using electrophoresis

- The amino acids in this mixture can be separated by electrophoresis
 - Amino acid **C** will move towards the **positive** electrode
 - Amino acid **B** will remain in the **well** where the sample is applied to the gel
 - Amino acid **A** will move towards the **negative** electrode
- Since glutamic acid is **larger** than lysine, it will travel towards the positive electrode at a slower rate compared to lysine

Separation of a mixture of amino acids by electrophoresis

During electrophoresis, positive amino acids move to the negative electrode and negative amino acids move to the positive electrode

