O Recall:
1. Cramer's Rule solves $Ax = b$ by $x_i = B_i / A = \frac{ a_i - b - b }{ A }$
2. Let C be ofactor matrix of A. Then At = CT detA 3. The volume of a box is Idet Al, when the box edges are rows of A
3. The volume of a box is Ide+ Al, when the har adversar
rows of A. $\omega_i = (a,b)$
4. In IR3, the cross produt uxv is perpendraler to u and v
$\int u \times v$
n Fills
Chapter 6 Eigenvalues and Eigenvectors
\$6.1 Introduction to Eigenvectors
Let A be a square matrix.
Consider the difference equation
Uky = A Uk
ariven what is U2019?
U2019 = A 2019 40
Question, how to compute 12019 2
ergenvalues of 1
(First explain eigenvecture)
Those are eigenvectors x are in the same direction as Ax .
The basic equation is $A \times = A \times$. The number A is an eigenvalue

(a)
$$(A-\lambda I) x = 0$$
 Fact: $B x = 0$ has no zero solution

$$\Rightarrow \det(A - \lambda T) = 0 \qquad \iff \det(B) = 0.$$

$$E_{x} 1.$$
 Let $A = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$

$$\begin{vmatrix} .8 - \lambda & .3 \\ .2 & .7 - \lambda \end{vmatrix} = 0 \lambda^2 - \frac{3}{2} \lambda + \frac{1}{2}$$

$$= (\lambda - 1) (\lambda - \frac{1}{2})$$

$$(A-I) \times_i = 0 \Rightarrow \times_i = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$$

$$(A - \frac{1}{2}I) \times_2 = 0 \implies \times_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$A^2 x_i = x_i$$

$$A^{2} \times_{1} = (\frac{1}{2})^{2} \times_{2}$$

When A is squared, the eigenvalues are squared. Then eigenvectors are the same

Consider

By Bsolving linear equations, we have

Thus,
$$u_{2019} = A^{2019}u_0$$

= $A^{2019} [x_1 + (.2) x_1]$
= $A^{2019}x_1 + A^{2019}x_2$

 $= x_1 + (.2) (\frac{1}{2})^{2019} x_2$

 $u_{2019} \approx \chi_1$ Note: 10 AD In Ex 1, A is a Markov matrix, whose sum of each column is equal to 1. 2° Please read Ex 1~2 in the textbook. The equation for the eigenvalues Let A be a square matrix. Eigenvalue à is en eigenvalue of $A \rightleftharpoons A - \lambda I$ is signed Equation for the eigenvalues det (A-1I)=0 Note: det (A-XI) is the characteristic polynomial of degree n for A. West The roots of it are rigenvalues For each eigenvalue & solve (A-AI) x=0 to find an eigenvector x. Ex 4. A=[12]. Find sits a's mel x's $A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix}$ det(A-17)= 12=51 = 1(1-5) = 1=6, 1=5

 $\mathcal{R}(A-oI)\chi=0 \Rightarrow \chi=\begin{bmatrix} 7\\-1\end{bmatrix}$

 $(A-5I) \times = 0 = > \times = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (mention the summary in the page 293 of the text book)

Determinant and Trace

Ent. Let A be an nxn square matrix.

The sum of entries along the diagonal is the trace of A.

Fact 1. the sum of eigenvalues of A is equal to the trave 1,+12+...+ In = an + azz + ... + ann. Fact is the product of eigenvalues of A is equal to the determinant of A. $\lambda_1 \cdots \lambda_n = det(A)$ Note: we can use Fact IN 2 to compate eigenvalues of 2x2 matrices. $E_X: A = \begin{bmatrix} 1 & 9 \\ 0 & 2 \end{bmatrix}$ $\begin{cases}
\lambda_{1} \cdot \lambda_{2} = 1 \times 2 = 2 \\
\lambda_{1} + \lambda_{2} = 1 + 2 = 3
\end{cases}$ $\begin{cases}
\lambda_{1} = 3 - \lambda_{2} \\
(3 - \lambda_{2}) \cdot \lambda_{2} = 2
\end{cases}$ $\begin{cases}
\lambda_{1} = 1 \\
\lambda_{2} = 2
\end{cases}$ Imaginary Eigenvalues (Since we need to solve a polynomial to get eigenvalues of a matrix), the eigenvalues might not be real numbers E_{x} 5. The 90° rotation $Q = \begin{bmatrix} 0 & -1 \end{bmatrix}$ has no real eigenvalues $det(Q - \lambda I) = \lambda^2 + 1 = 0$ 0 7 => \(\lambda = 2'\), - i $(Q - iI) x = 0 \Rightarrow x = \begin{bmatrix} i \\ 1 \end{bmatrix}$ $(Q+iI) \times = 0 \Rightarrow \times = \begin{bmatrix} 1 \\ i \end{bmatrix}$