PROBLEMA DE CLASIFICACION

In [108]:

```
import pandas as pd
from plotnine import ggplot, aes, geom_line
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

In [2]:

```
paises = pd.read_csv("adult.data", header = None)
```

In [3]:

paises

Out[3]:

	0	1	2	3	4	5	6	7	8	9	
0	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	1
1	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	
32556	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife	White	Female	
32557	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband	White	Male	
32558	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	
32559	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-child	White	Male	
32560	52	Self- emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	White	Female	1!
32561 ו	32561 rows × 15 columns										
4											

In [4]:

```
# 39 : variable edad.
# State-gov: Clase de trabajo(privado, trabaja para el gobierno local, trabaja para el
gobierno regional etc...)
# ¿?
# Nivel_eduacion
# Codigo nivel educacion
# Estado civil:
# Ocuapcion
# Relacion sentimental
# Raza
# Sexo
# Dinero_ganado
# Dinero_perdido
# Horas_semanales_trabajo
# Pais_origen
# Salario_futuro
lista_columnas = ["Edad", "Clase_trabajo", "¿?", "Nivel_eduacion", "Codigo_nivel_educac
ion",
                                                        "Estado_civil", "Ocupacion",
"Relacion sentimental", "Raza", "Sexo",
                                                       "Dinero_ganado", "Dinero_perd
ido", "Horas_semanales_trabajo", "Pais_origen",
                                                       "Salario_futuro"]
paises.columns = lista_columnas
paises.columns
Out[4]:
'Relacion_sentimental', 'Raza', 'Sexo', 'Dinero_ganado',
       'Dinero_perdido', 'Horas_semanales_trabajo', 'Pais_origen',
       'Salario futuro'],
```

dtype='object')

In [5]:

paises

Out[5]:

	Edad	Clase_trabajo	?خ	Nivel_eduacion	Codigo_nivel_educacion	Estado_civil	(
0	39	State-gov	77516	Bachelors	13	Never- married		
1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	ı	
2	38	Private	215646	HS-grad	9	Divorced		
3	53	Private	234721	11th	7	Married-civ- spouse		
4	28	Private	338409	Bachelors	13	Married-civ- spouse		
32556	27	Private	257302	Assoc-acdm	12	Married-civ- spouse		
32557	40	Private	154374	HS-grad	9	Married-civ- spouse		
32558	58	Private	151910	HS-grad	9	Widowed		
32559	22	Private	201490	HS-grad	9	Never- married		
32560	52	Self-emp-inc	287927	HS-grad	9	Married-civ- spouse	ı	
32561 rows × 15 columns								
→							•	

Analisis del dataframe en su conjunto

In [6]:

paises.describe()

Out[6]:

	Edad	٤?	Codigo_nivel_educacion	Dinero_ganado	Dinero_perdido
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000

In [7]:

En relacion a las variables cuantitavas, podemos ver que en la variable edad, hay eda des comprendidas entre los 17 y los 90 años,

Codigo nivel de educacion tiene 16 niveles

Horas semanales comprende desde 1 hora trabajada hasta las 99(algo extraño, ya que es o supone trabajar mas de 16 horas al dia)

In [8]:

paises.dtypes

Out[8]:

Edad	int64
Clase_trabajo	object
{ }	int64
Nivel_eduacion	object
Codigo_nivel_educacion	int64
Estado_civil	object
Ocupacion	object
Relacion_sentimental	object
Raza	object
Sexo	object
Dinero_ganado	int64
Dinero_perdido	int64
Horas_semanales_trabajo	int64
Pais_origen	object
Salario_futuro	object
dtype: object	

```
In [9]:
paises.shape
```

```
paises.shape
# tenemos 32561 filas y 15 columnas
```

Out[9]:

(32561, 15)

In [10]:

```
paises.info()
# No hay valores nulos en el df
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype			
0	Edad	32561 non-null	int64			
1	Clase_trabajo	32561 non-null	object			
2	¿ ?	32561 non-null	int64			
3	Nivel_eduacion	32561 non-null	object			
4	Codigo_nivel_educacion	32561 non-null	int64			
5	Estado_civil	32561 non-null	object			
6	Ocupacion	32561 non-null	object			
7	Relacion_sentimental	32561 non-null	object			
8	Raza	32561 non-null	object			
9	Sexo	32561 non-null	object			
10	Dinero_ganado	32561 non-null	int64			
11	Dinero_perdido	32561 non-null	int64			
12	Horas_semanales_trabajo	32561 non-null	int64			
13	Pais_origen	32561 non-null	object			
14	Salario_futuro	32561 non-null	object			
dtvpes: int64(6), object(9)						

dtypes: int64(6), object(9) memory usage: 3.7+ MB

Nos encontramos con variables categoricas y varaibles cuantitativas

Variables categoricas: Clase_trabajo, Nivel_eduacion, Estado_civil, Ocupacion, Relacion_sentimental, Raza, Sexo, Pais_origen, Salario_futuro

Variables numericas: Edad, ¿?, Dinero_ganado, Dinero_perdido, Horas_semanales_trabajo

Analisis univariable de variables cuantitativas

1 - EDAD

In [11]:

```
# Analisis de la variable Edad

paises.Edad.hist()

# Como puede verse en el histograma, las edades que se repiten mas en este dataset, son las comprendidas en la franja de
# 17 a 45años
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x12912375370>

In [12]:

```
# Vamos a ver un diagrama de caja, para ver si existen valores atipicos
plt.boxplot(paises.Edad)
# Tenemos valores atipicos por encima de los 82 años
```

Out[12]:

¿Que edades son las que tienen un salario mayor y cuales menor?

Podemos crear una nueva variable que contenga varias franjas de edad, para poder analizar como respondoden al salario

Para ello, vamos a crear las franjas de edad -25, 25-40, 41-65, +65

In [13]:

```
bins = [17,24, 40, 65, 90]

names = ["-25", "25-40", "41-65", "+65"]

paises["Rango_edad"] = pd.cut(paises["Edad"], bins, labels = names)

paises
```

Out[13]:

	Edad	Clase_trabajo	۶;	Nivel_eduacion	Codigo_nivel_educacion	Estado_civil	(
0	39	State-gov	77516	Bachelors	13	Never- married	
1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	ı
2	38	Private	215646	HS-grad	9	Divorced	
3	53	Private	234721	11th	7	Married-civ- spouse	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	
32556	27	Private	257302	Assoc-acdm	12	Married-civ- spouse	
32557	40	Private	154374	HS-grad	9	Married-civ- spouse	
32558	58	Private	151910	HS-grad	9	Widowed	
32559	22	Private	201490	HS-grad	9	Never- married	
32560	52	Self-emp-inc	287927	HS-grad	9	Married-civ- spouse	ı
32561 rows × 16 columns							
4							•

In []:

In [14]:

Out[14]:

Rango_edad	-25	25-40	41-65	+65
Salario_futuro				
<=50K	98.821256	77.657219	63.207163	79.879102
>50K	1.178744	22.342781	36.792837	20.120898

In [15]:

En este grafico podemos ver que los que cobran menos de 50k son mayoria los menores de 25 años, seguidos de los mayores de 65 y los que cobran mas de 50k son los que tienen una edad comprendida entre los 41 y 65 años, seguidos de los que tienen entre 25 y 40 años.

Podemos decir que ser menor de 25 años es determinante a la hora de tener un salario mas bajo. Mientres que tener una edad media 40-65 años, lo es para tener una sueldo alto.

2 - Dinero_ganado

In [16]:

```
paises.Dinero_ganado.hist()
# Podemos ver que la gran mayoria de los analizados en este dataset tienen un capital e
ntre 0 y 10000
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1291557cfa0>

In [17]:

plt.boxplot(paises.Dinero_ganado)

Nos encontramos con un diagrama de caja muy extraño, donde no hay percentiles. Esto p uede deberse a que la mayoria de los datos # que tenemos de dinero ganado es 0, que puede deberse a que se desconoce o que se ha g anado nada

Out[17]:

In [18]:

```
print("El ", len(paises[paises["Dinero_ganado"] == 0]["Dinero_ganado"]) / len(paises) *
100, "de las personas analizadas presentan 0euros ganados")
```

El 91.67101747489328 de las personas analizadas presentan 0euros ganados

Estamos ante una variable que en la mayoria de casos es 0, puede que no sea muy util

In [19]:

```
paises["Dinero_ganado"].describe()
```

Out[19]:

```
32561.000000
count
mean
          1077.648844
std
          7385.292085
min
             0.000000
25%
             0.000000
50%
             0.000000
75%
             0.000000
         99999.000000
max
```

Name: Dinero_ganado, dtype: float64

In [20]:

```
# Para ver una tabla de frecuencias de como se comporta esta variable, vamos a generar
unos rangos de dinero ganado
# estos rangos seran de 0 - 1, 2-10000, 10001 - 50000, 50001 - 99999
bins = [0,0.9, 10000, 50000, 99999]
names = ["0", "1-10000", "10001 - 50000", "50001 - 99999"]
paises["Rango_dinero_ganado"] = pd.cut(paises["Dinero_ganado"], bins, labels = names)
```

In []:

In [21]:

```
# ¿Son los que han ganado mas dinero, los que tendran un salario mas alto?
pd.crosstab(index=paises['Salario_futuro'], columns=paises['Rango_dinero_ganado']
           ).apply(lambda r: r/r.sum() *100,
                                axis=0)
```

Out[21]:

1-10000 10001 - 50000 50001 - 99999 Rango_dinero_ganado Salario_futuro

<=50K	52.574665	2.291326	0.0
>50K	47.425335	97.708674	100.0

In [22]:

Como puede observarse en la tabla y en el grafico, los que han ganado menos dinero, tendran un empleo peor pagado y casi todos los que han ganado mas de 10000 euros, tendran un salario mayor de 50000.

Por lo tanto esta variable parece bastante significativa, el problema es que hay muchos valores no reflejados.

3 - Dinero_perdido

In [23]:

```
paises["Dinero_perdido"].hist()
# igual que antes, la moyoria parece que tienen perdidas cercanas a 0
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x12905acf250>

In [24]:

```
print("El ", len(paises[paises["Dinero_perdido"] == 0]["Dinero_perdido"]) / len(paises)
* 100, "de las personas analizadas presentan 0euros perdidos")
```

El 95.33490986149073 de las personas analizadas presentan 0euros perdidos

4 - Horas_semanales_trabajo

In [25]:

```
# vamos a analizar ahora la variable hora de trabajo semanales, que comprenden las hora
s de trabajo que realizan cada uno de
# las personas que se incluyen en este dataset.
# En primer lugar, vamos a ver como se distribuyen las horas semanales
paises["Horas_semanales_trabajo"].describe()
# Vemos que el minimo trabajado es 1 hora y el que mas horas ha realizado son 99
```

Out[25]:

count	32561.000000
mean	40.437456
std	12.347429
min	1.000000
25%	40.000000
50%	40.000000
75%	45.000000
max	99.000000

Name: Horas_semanales_trabajo, dtype: float64

In [26]:

```
paises["Horas_semanales_trabajo"].hist()
# La frecuencia de horas mas habitaul es la de 30-40 horas semanales
```

Out[26]:

<matplotlib.axes. subplots.AxesSubplot at 0x1291574f7f0>

In [27]:

```
# vamos a ver un grafico de cajas
plt.boxplot(paises["Horas_semanales_trabajo"])
# Vemos como la gran mayoria de las horas trabajadas se concrentran entre las 30 - 50 y
tenemos muchos valores atipicos.
```

Out[27]:

In [28]:

```
# ¿Afectan Las horas semanales al salario?, los que mas horas trabajan tienen un salari
o mayor ? Vamos a verlo

# Igual que antes, creamos una nueva variable que contenga los rangos de horas trabajad
as: 1 - 25, 26 - 40, 41 - 60, 60 - 99

bins = [1, 25, 40, 60, 99]

names = ["1 - 25", "26 - 40", "41 - 60", "60 - 99"]

paises["Rango_h/semanales"] = pd.cut(paises["Horas_semanales_trabajo"], bins, labels = names)
```

In [29]:

Out[29]:

Rango_h/semanales	1 - 25	26 - 40	41 - 60	60 - 99
Salario_futuro				
<=50K	93.448891	80.427588	59.249203	63.603604
>50K	6.551109	19.572412	40.750797	36.396396

In [30]:

Como se puede observar en la grafica, las personas que tienen un salario mayor de 50k son aquellos que pertenecen a la categoria de mas horas trabajadas(41-60 y 60-99).

Por lo tanto las horas trabajadas si son relevantes a la hora del futuro salario, a mas horas trabajadas, mayor salario.

5 - Clase_trabajo

In [31]:

```
paises.Clase_trabajo.unique()
```

Out[31]:

```
' Never-worked'], dtype=object)
```

In [33]:

```
# Vamos a ver las frecuencias de las distintas clases de trabajo
paises.Clase_trabajo.hist()
plt.xticks(rotation=45)
# Podemos ver como el trabajo privado(en sector privado) es el que destaca entre las pe
rsonas de este dataset
```

Out[33]:

([0, 1, 2, 3, 4, 5, 6, 7, 8], <a list of 9 Text major ticklabel objects>)

In [34]:

Out[34]:

	Clase_trabajo	?	Federal- gov	Local-gov	Never- worked	Private	Self-emp- inc	Self-emp- not-inc	Sta
	Salario_futuro								
_	<=50K	89.59695	61.354167	70.520784	100.0	78.132711	44.265233	71.507281	72.8
	>50K	10.40305	38.645833	29.479216	0.0	21.867289	55.734767	28.492719	27.
4									•

In [43]:

6 - Nivel_eduacion

In [44]:

```
paises["Nivel_eduacion"].unique()
Out[44]:
```

In [46]:

```
pd.value_counts(paises["Nivel_eduacion"])
```

Out[46]:

HS-grad	10501	
Some-college	7291	
Bachelors	5355	
Masters	1723	
Assoc-voc	1382	
11th	1175	
Assoc-acdm	1067	
10th	933	
7th-8th	646	
Prof-school	576	
9th	514	
12th	433	
Doctorate	413	
5th-6th	333	
1st-4th	168	
Preschool	51	
Manage Middle Total		

Name: Nivel_eduacion, dtype: int64

In [62]:

Out[62]:

<ggplot: (79800455159)>

In [63]:

```
# ¿Es el nivel de educacion determinante a la hora de tener un salario mayor de 50k? qu
e estudios son necesarios??
pd.crosstab(index=paises['Salario_futuro'], columns=paises["Nivel_eduacion"]
           ).apply(lambda r: r/r.sum() *100,
                                axis=0)
```

Out[63]:

Nivel_eduacion	10th	11th	12th	1st-4th	5th-6th	7th-8th	9th	
Salario_futuro								
<=50K	93.35477	94.893617	92.378753	96.428571	95.195195	93.80805	94.747082	-
>50K	6.64523	5.106383	7.621247	3.571429	4.804805	6.19195	5.252918	2
4								•

In [64]:

```
plot = pd.crosstab(index=paises["Nivel_eduacion"],
            columns=paises["Salario_futuro"]
                  ).apply(lambda r: r/r.sum() *100,
                          axis=1).plot(kind='bar', stacked=True)
# Podemos ver en el grafico que las personas que son mas propensas a tener un salario m
ayor de 50k son aquellos que tienen
# un doctorado, masters o estudios en escuela profesional
```


7 - Raza

In [65]:

```
paises["Raza"].unique()
pd.value_counts(paises["Raza"])
```

Out[65]:

White 27816 Black 3124 Asian-Pac-Islander 1039 Amer-Indian-Eskimo 311 0ther 271 Name: Raza, dtype: int64

In [66]:

```
(p9.ggplot(data=paises,
           mapping=p9.aes(x='factor(Raza)'))
    + p9.geom_bar()
)
```


Out[66]:

<ggplot: (79828547708)>

In [67]:

```
# ¿Es la raza determinante a la hora de tener un salario mayor a 50k?
pd.crosstab(index=paises['Salario_futuro'], columns=paises["Raza"]
           ).apply(lambda r: r/r.sum() *100,
                                axis=0)
```

Out[67]:

Raza	Amer-Indian-Eskimo	Asian-Pac-Islander	Black	Other	White
Salario_futuro					
<=50K	88.424437	73.435996	87.612036	90.774908	74.414006
>50K	11.575563	26.564004	12.387964	9.225092	25.585994

In [68]:

```
plot = pd.crosstab(index=paises["Raza"],
            columns=paises["Salario_futuro"]
                  ).apply(lambda r: r/r.sum() *100,
                          axis=1).plot(kind='bar', stacked=True)
# Las razas que alcanzan de forma mas habitual salarios mayores a 50k son la blanca y l
a asiatica
```


8 - Sexo

```
In [69]:
```

```
pd.value_counts(paises["Sexo"])
```

Out[69]:

Male 21790 Female 10771

Name: Sexo, dtype: int64

In [70]:

```
(p9.ggplot(data=paises,
           mapping=p9.aes(x='factor(Sexo)'))
    + p9.geom_bar()
)
```


Out[70]:

<ggplot: (79832036241)>

In [71]:

```
pd.crosstab(index=paises['Salario_futuro'], columns=paises["Sexo"]
           ).apply(lambda r: r/r.sum() *100,
                                axis=0)
```

Out[71]:

Sexo	Female	Male
Salario_futuro		
<=50K	89.053941	69.426342
>50K	10.946059	30.573658

In [74]:

```
plt.figure(figsize=(8,4))
plot = pd.crosstab(index=paises["Sexo"],
            columns=paises["Salario_futuro"]
                  ).apply(lambda r: r/r.sum() *100,
                          axis=1).plot(kind='bar', stacked=True)
# Claramente los hombres son mas propensos a alcanzar un salario de mas de 50k
```

<Figure size 576x288 with 0 Axes>

Tendriamos que analizar todas las variables pero como estamos practicando no lo vamos a hacer y directamente vamos a pasar a otra parte

Estamos ante un dataset con una variable dependiente, Salario futuro, de tipo categorico por lo tanto si quieremos predecir si el salario será mayor o menor de 50k, tenemos que aplicar uno de los metodos o algoritos de clasifiacion del aprendizaje supervisado.

Entre estos algoritmos nos encontramos con:

- 1 Regresion logistica: Es un algoritmo sensible a los autliers o valores atipicos, hay que estandarizar datos
- 2 KNN: Se usa cuando el df es pequeño y tiene pocas variables
- 3 Arboles de decision: Los datos no hay que estandarizarlos, NO son sensible a outliers, no hay que dummificar las variables categoricas.
- 4 Random forest: No es necesaria una interpretacion de los datos, es uno de los mejores algoritmos por rendimiento y rapidez
- 5 XGBOOST: es un algoritmo caja negra, es una de los mejores, no es necesario mucho procesamiento de datos
- 6 Maquina de soporte vectorial: Necesita tiempo para ejecutarse, modelo caja negra, es util para dataset pequeños

In [77]:

paises.dtypes

Out[77]:

Edad	int64
Clase_trabajo	object
53	int64
Nivel_eduacion	object
Codigo_nivel_educacion	int64
Estado_civil	object
Ocupacion	object
Relacion_sentimental	object
Raza	object
Sexo	object
Dinero_ganado	int64
Dinero_perdido	int64
Horas_semanales_trabajo	int64
Pais_origen	object
Salario_futuro	object
Rango_edad	category
Rango_dinero_ganado	category
Rango_h/semanales	category
dtype: object	

localhost:8888/nbconvert/html/IMF Practicas/Modulo 6 - Unidad 3 - Aprend Supervisado/Practica aprendizaje supervisado.jpynb?download=false 29/37

In [76]:

```
# Creamos los valores X e y
paises.columns
```

Out[76]:

```
Index(['Edad', 'Clase_trabajo', '¿?', 'Nivel_eduacion',
         'Codigo_nivel_educacion', 'Estado_civil', 'Ocupacion',
         'Relacion_sentimental', 'Raza', 'Sexo', 'Dinero_ganado',
        'Dinero_perdido', 'Horas_semanales_trabajo', 'Pais_origen', 'Salario_futuro', 'Rango_edad', 'Rango_dinero_ganado',
         'Rango_h/semanales'],
       dtype='object')
```

In [98]:

```
paises = paises.astype({"Sexo": 'category', "Pais_origen": 'category', "Salario_futuro"
: "category"})
paises.dtypes
```

Out[98]:

```
Edad
                               int64
Clase_trabajo
                            category
? ځ
                               int64
Nivel eduacion
                            category
Codigo_nivel_educacion
                               int64
Estado_civil
                            category
Ocupacion
                            category
Relacion_sentimental
                            category
Raza
                            category
Sexo
                            category
Dinero_ganado
                               int64
Dinero perdido
                               int64
Horas_semanales_trabajo
                               int64
Pais origen
                            category
Salario_futuro
                            category
Rango edad
                            category
Rango_dinero_ganado
                            category
Rango_h/semanales
                            category
dtype: object
```

Intento 1 - Random forest

En este primer intento SOLO vamos a utilizar las variables numericas de tipo INT, ya que el random forest, no permite variables que contengan string

```
In [118]:
X = paises[['Edad', '¿?',
       'Codigo_nivel_educacion','Dinero_ganado',
       'Dinero_perdido', 'Horas_semanales_trabajo']]
y = paises['Salario_futuro']
In [124]:
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
In [125]:
clf=RandomForestClassifier(n estimators=100)
In [126]:
params = {"n_estimators" : [10,50,100,200],
         "max_depth" : [5,7,9],
         "max_features": [10, "sqrt"]}
In [145]:
clf_grid = GridSearchCV(clf, params, cv=3, n_jobs = -1)
In [146]:
clf_grid.fit(X_train,y_train)
Out[146]:
GridSearchCV(cv=3, estimator=RandomForestClassifier(), n jobs=-1,
             param_grid={'max_depth': [5, 7, 9], 'max_features': [10, 'sqr
t'],
                         'n_estimators': [10, 50, 100, 200]})
In [149]:
print("Mejores parametros del modelo: {}".format(clf grid.best estimator .score))
print("Acurrancy de los datos de train: {} \n - Acurracy de los datos de test: {}"\
      .format(clf_grid.score(X_train,y_train),
     round(clf_grid.score(X_test, y_test),2)))
Mejores parametros del modelo: <bound method ClassifierMixin.score of Rand
omForestClassifier(max_depth=9, max_features='sqrt', n_estimators=200)>
Acurrancy de los datos de train: 0.8432841932841932

    Acurracy de los datos de test: 0.84

In [161]:
clf_grid.predict([[31, 13600, 9, 30000, 5000, 40]])
Out[161]:
array([' >50K'], dtype=object)
```

INTENTO 2 - REGRESION LOGISTICA

In [170]:

```
# para poder realizar regresion logistica, necesitamos dumificar las variables categori
cas o mapearlas
# Ejemplo de dumificacion
pd.get_dummies(paises, columns = ["Sexo"])
```

Out[170]:

	Edad	Clase_trabajo	٤?	Nivel_eduacion	Codigo_nivel_educacion	Estado_civil	(
0	39	State-gov	77516	Bachelors	13	Never- married	
1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	ı
2	38	Private	215646	HS-grad	9	Divorced	
3	53	Private	234721	11th	7	Married-civ- spouse	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	
32556	27	Private	257302	Assoc-acdm	12	Married-civ- spouse	
32557	40	Private	154374	HS-grad	9	Married-civ- spouse	
32558	58	Private	151910	HS-grad	9	Widowed	
32559	22	Private	201490	HS-grad	9	Never- married	
32560	52	Self-emp-inc	287927	HS-grad	9	Married-civ- spouse	ı
32561	rows ×	19 columns					
4							•

In [176]:

```
# Ejemplo de mapeo de variables
paises.Clase_trabajo.unique()
codigo_trabajo = {' State-gov':1, ' Self-emp-not-inc':2, ' Private':3, ' Federal-gov':4
,' Local-gov':5, ' ?':6, ' Self-emp-inc':7, ' Without-pay':8, ' Never-worked':9}
```

In [179]:

```
# trabajo
paises["Codigo_trabajo"] = paises["Clase_trabajo"].map(codigo_trabajo)
```

In [227]:

paises

Out[227]:

	Edad	Clase_trabajo	?خ	Nivel_eduacion	Codigo_nivel_educacion	Estado_civil	C
0	39	State-gov	77516	Bachelors	13	Never- married	
1	50	Self-emp-not- inc	83311	Bachelors	13	Married-civ- spouse	ı
2	38	Private	215646	HS-grad	9	Divorced	
3	53	Private	234721	11th	7	Married-civ- spouse	
4	28	Private	338409	Bachelors	13	Married-civ- spouse	
				•••			
32556	27	Private	257302	Assoc-acdm	12	Married-civ- spouse	
32557	40	Private	154374	HS-grad	9	Married-civ- spouse	
32558	58	Private	151910	HS-grad	9	Widowed	
32559	22	Private	201490	HS-grad	9	Never- married	
32560	52	Self-emp-inc	287927	HS-grad	9	Married-civ- spouse	ı
32561 ı	rows ×	24 columns					
4							•

In [206]:

```
#Educacion
list(paises['Nivel_eduacion'].value_counts().index)
codigo_educacion = {' HS-grad':1,
 ' Some-college':2,
 ' Bachelors':3,
 ' Masters':4,
 ' Assoc-voc':5,
 ' 11th':6,
 ' Assoc-acdm':7,
 ' 10th':8,
 ' 7th-8th':9,
 ' Prof-school':10,
 ' 9th':11,
 ' 12th':12,
 ' Doctorate':13,
 ' 5th-6th':14,
 ' 1st-4th':15,
 ' Preschool':15}
paises["Codigo_educacion"] = paises['Nivel_eduacion'].map(codigo_educacion)
```

In [209]:

```
# raza
list(paises['Raza'].value_counts().index)
codigo_raza = {' White':1, ' Black':2, ' Asian-Pac-Islander':3, ' Amer-Indian-Eskimo':4
, ' Other':5}
paises["Codigo_raza"] = paises['Raza'].map(codigo_raza)
```

In [214]:

```
# sexo
list(paises['Sexo'].value counts().index)
codigo_sexo = {' Male':0, ' Female':1,}
paises["Codigo_sexo"] = paises['Sexo'].map(codigo_sexo)
```

In [223]:

```
# pais
list(paises['Pais_origen'].value_counts().index)
codigo_pais = {' United-States':1,
 ' Mexico':2,
 '?':3,
 ' Philippines':4,
 ' Germany':5,
 ' Canada':6,
 ' Puerto-Rico':7,
 ' El-Salvador':8,
 ' India':9,
 ' Cuba':10,
 ' England':11,
 ' Jamaica':12,
 ' South':13,
 ' China':14,
 ' Italy':15,
 ' Dominican-Republic':16,
 ' Vietnam':17,
 ' Guatemala':18,
 ' Japan':19,
 ' Poland':20,
 ' Columbia':21,
 ' Taiwan':22,
 ' Haiti':23,
 ' Iran':24,
 ' Portugal':25,
 ' Nicaragua':26,
 ' Peru':27,
 ' Greece':28,
 'France':29,
 ' Ecuador':30,
 ' Ireland':31,
 ' Hong':32,
 ' Cambodia':33,
 ' Trinadad&Tobago':34,
 ' Laos':35,
 ' Thailand':36,
 ' Yugoslavia':37,
 ' Outlying-US(Guam-USVI-etc)':38,
 ' Hungary':39,
 ' Honduras':40,
 ' Scotland':41,
 ' Holand-Netherlands':42}
paises["Codigo_pais"] = paises["Pais_origen"].map(codigo_pais)
```

In [226]:

```
# salario
paises["Salario_futuro"].unique()
codigo_salario = {' <=50K':0, ' >50K':1}
paises["Codigo_salario"] = paises["Salario_futuro"].map(codigo_salario)
```

Creamos la division en X e y

```
In [237]:
```

```
X = paises[['Edad', '¿?',
       'Dinero_ganado', 'Dinero_perdido', 'Horas_semanales_trabajo',
       'Codigo_trabajo', 'Codigo_educacion',
       'Codigo_raza', 'Codigo_sexo', 'Codigo_pais']]
y = paises["Codigo_salario"]
```

In [257]:

```
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score, precision_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25, random_state=12
34, stratify = y)
```

In [239]:

```
modelo = LogisticRegression()
```

In [240]:

LogisticRegression()

```
modelo.fit(X_train, y_train)
```

```
C:\Users\jaime\anaconda3\lib\site-packages\sklearn\linear model\ logistic.
py:762: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-reg
ression
Out[240]:
```

```
In [254]:
y_test_pred = modelo.predict(X_test)
y_test_prob = modelo.predict_proba(X_test)
print("Ejemplo de prediccion: {}". format(y_test_prob[:1]))
Ejemplo de prediccion: [[0.80108911 0.19891089]]
In [258]:
print("Precision: ", round(precision_score(y_test, y_test_pred),2))
Precision: 0.73
In [ ]:
In [ ]:
```