MIDTERM SOLUTION

Notation: We use $\mathbb{N} = \{0, 1, 2, \ldots\}$ to denote the set of all positive integers.

1. Solution: It follows from corollary 3.5 that if there is an injective linear map $V \to W$, then $\dim(V) < \dim(W)$.

We then prove suthe converse. Let (e_1,\ldots,e_m) be a basis for V and (f_1,\ldots,f_n) be a basis for W, with $m \leq n$. We define a linear map $T:V \to W$ by $T(c_1e_1+\cdots+c_me_m)=c_1f_1+\cdots+c_mf_m$. We prove that T is injective. Suppose $T(c_1e_1+\cdots+c_me_m)=0$, then $c_1f_1+\cdots+c_mf_m=0$. Since (f_1,\ldots,f_m) is linearly independent, it follows that $c_1=\cdots=c_m=0$. Therefore $\operatorname{null}(T)=\{0\}$, T is injective.

To sum up, the proof is complete.

2. Solution: We first show that if $T^2=I$, then $V=\operatorname{null}\ (T+I)\oplus\operatorname{null}\ (T-I)$. For any vector $v\in V$, consider the decomposition $v=\frac{1}{2}(v-Tv)+\frac{1}{2}(v+Tv)$. Using the condition that $T^2=I$, for the first component, we have $(T+I)(\frac{1}{2}(v-Tv))=\frac{1}{2}(I-T^2)v=0$, i.e. $\frac{1}{2}(v-Tv)\in\operatorname{null}\ (T+I)$. For the second component, we have $(T-I)(\frac{1}{2}(v+Tv))=\frac{1}{2}(T^2-I)v=0$, i.e. $\frac{1}{2}(v+Tv)\in\operatorname{null}\ (T-I)$. Therefore it follows that $V=\operatorname{null}\ (T+I)+\operatorname{null}\ (T-I)$. To show that the sum is direct, we only need to show that $\operatorname{null}\ (T+I)\cap\operatorname{null}\ (T-I)=\{0\}$. Suppose $v\in\operatorname{null}\ (T+I)\cap\operatorname{null}\ (T-I)$. Then (T+I)v=0 and (T-I)v=0, i.e. Tv+v=0, Tv-v=0. Hence $v=\frac{1}{2}((Tv+v)-(Tv-v))=0$. This shows that $\operatorname{null}\ (T+I)\cap\operatorname{null}\ (T-I)=\{0\}$, as desired. To sum up, we have $V=\operatorname{null}\ (T+I)\oplus\operatorname{null}\ (T-I)$.

We then show that if $V=\text{null}\ (T+I)+\text{null}\ (T-I),$ then $T^2=I.$ Take $v\in V$, since $V=\text{null}\ (T+I)+\text{null}\ (T-I),$ there exists $v_1\in\text{null}\ (T+I)$ and $v_2\in\text{null}\ (T-I),$ such that $v=v_1+v_2.$ Since $v_1\in\text{null}\ (T+I),$ we have $(T^2-I)v_1=(T-I)(T+I)v_1=(T-I)0=0,$ i.e. $T^2v_1=v_1.$ Similarly, $v_2\in\text{null}\ (T-I)$ implies that $(T^2-I)v_2=(T+I)(T-I)v_2=(T+I)0=0,$ i.e. $T^2v_2=v_2.$ It follows that $T^2v=T^2v_1+T^2v_2=v_1+v_2=v,$ for any vector $v\in V.$ Hence $T^2=I,$ as desired.

To sum up, the proof is complete.

- 3. Solution: (i) It follows from the definition of T that (T-I)(x,y)=(x-y,x-y). Therefore $(x,y)\in \operatorname{null}(T-I)$ if and only if x-y=0, x-y=0, i.e. x=y. Therefore ((1,1)) is a basis for $\operatorname{null}(T-I)$ and 1 is an eigenvalue of T.
- (ii) The answer is negative. We prove that for any $\lambda \neq 1$, λ is not an eigenvalue for T. Proof by contradiction, suppose $\lambda \neq 1$ is an eigenvalue for T, then there exists a vector $(x,y) \neq (0,0)$ such that $T(x,y) = \lambda(x,y)$, i.e. $(2x-y,x) = (\lambda x, \lambda y)$. Rearranging, we get $(2-\lambda)x-y=0$, $x=\lambda y$. Substitute $x=\lambda y$ into the first equation to get $(2\lambda-\lambda^2-1)y=0$, i.e. $-(1-\lambda)^2y=0$. Since $\lambda \neq 1$, we must have y=0. It then follows from $x=\lambda y$ that x=0. Hence (x,y)=(0,0), a contradiction. This completes the proof.

1

- 2
- 4. Solution: (i) Let $p(z) = a_n z^n + \cdots + a_0$ be a polynomial in \mathbb{F} . Let λ be an eigenvalue of $T, v \neq 0$ be a corresponding eigenvector, i.e. $Tv = \lambda v$. An easy induction argument shows that $T^k v = \lambda^k v$ for any $k \in \mathbb{N}$. Then $p(T)v = \sum_{i=0}^n a_i T^i v = \sum_{i=0}^n a_i \lambda^i v = p(\lambda)v$. Therefore $p(\lambda)$ is an eigenvalue with a corresponding eigenvector $v \neq 0$. This completes the proof.
- (ii) Suppose $p(z) = a_n z^n + \cdots + a_0$ is a polynomial in \mathbb{F} such that p(T) = 0 and let λ be an eigenvalue of T with a corresponding eigenvector $v \neq 0$. Using the fact that $\lambda^k v = T^k v$ for all $k \in \mathbb{N}$, we get $p(\lambda)v = \sum_{i=0}^n a_i \lambda^i v = \sum_{i=0}^n a_i T^i v = p(T)v = 0v = 0$. Since $v \neq 0$, we must have $p(\lambda) = 0$. Hence λ is a root of p, which completes the proof.
- 5. Solution: (i) It follows from the definition of T that $T(t^2) = (t+1)^2 = t^2 + 2t + 1$, T(t) = t + 1, T(1) = 1. Therefore the matrix for T with respect to the basis

$$(1, t, t^2)$$
 is given by $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$.

- (ii) Let $S \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ be given by (Sp)(t) = p(t-1). Then clearly ST = TS = I, so $B = \mathcal{M}(S)$ satisfies $AB = BA = \mathcal{M}(I)$, by formula 3.11.
- 6. Solution: (i) It suffices to show that for any $v \in U_k$, we have $v \in U_{k+1}$. The condition that $v \in U_k$ means that $T^k v = 0$. Therefore $T^{k+1}v = T(T^k v) = T0 = 0$, hence $v \in U_{k+1}$. This completes the proof.
- (ii) It suffices to show that for any $v \in U_k$, we have $Tv \in U_k$. The condition that $v \in U_k$ means that $T^kv = 0$. Therefore $T^k(Tv) = T^{k+1}v = T(T^kv) = T0 = 0$, hence $Tv \in U_k$. This completes the proof.
- (iii) It follows from Proposition 2.15, Exercise 2-11 and the condition $U_n \neq V$ that $\dim U_n \leq n-1$. Using part (i), it follows that $U_0 \subset U_1 \subset \cdots \subset U_n$. Therefore it follows from the above observation and Homework 2-8 that $U_{k-1} = U_k$ for some $1 \leq k \leq n$. This completes the proof.
- (iv) By part (i), we have $U_k \subset U_{k+1}$, so it suffices to show that $U_{k+1} \subset U_k$. Let v be a vector in U_{k+1} , then $T^{k+1}v=0$, i.e. $T^k(Tv)=0$. Hence $Tv\in U_k$. By the condition that $U_k=U_{k-1}$ we have $Tv\in U_{k-1}$. It follows from the definition of U_{k-1} that $T^{k-1}(Tv)=0$, i.e. $T^kv=0$, $v\in U_k$ for any vector v in U_{k+1} . This completes the proof.
- (v) It follows from part (iii) that $U_k = U_{k-1}$ for some $k \le n$. Therefore by part (iv), $U_r = U_{k-1}$ for any $r \ge k-1$. Since $k \le n$, we have $U_k = U_n$ for any $k \ge n$. Using the condition that $U_n \ne V$, we conclude that $U_k \ne V$ for any $k \ge n$.
- (vi) Proof by contradiction. Suppose $T^n \neq 0$, then $U_n \neq V$. It follows from part (v) that $U_k \neq V$ for any $k \geq n$. Using part (i), we conclude that $U_k \neq V$ for any $k \geq 0$. It follows from the definition of U_k that $T^k \neq 0$ for any k, a contradiction. This completes the proof.

References

[A] S. Axler, Linear Algebra Done Right.