Kvantummechanika A – gyakorlat

3. gyakorlat

Schrödinger-egyenlet, potenciálok és kötött állapotok

1. feladat

Az egydimenziós impulzusoperátor milyen Hilbert-altéren lesz hermitikus?

Vegyük az [a, b] intervallumon **négyzetesen integrálható függvények Hilbert-terét**: $\mathcal{L}_2(a, b)$. Az impulzus operátor szokásos alakja $\hat{p} = -i\hbar\partial_x$, és arra vagyunk kíváncsiak, hogy a $\hat{p}^{\dagger} = \hat{p}$ egyenlőség az $\mathcal{L}_2(a, b)$ milyen alterén teljesül. Tudjuk, hogy a skalárszorzat $\mathcal{L}_2(a, b)$ -n

$$\langle f|g\rangle = \int_{a}^{b} \mathrm{d}x \ f^{*}(x)g(x)$$

alakban írható. Ekkor

$$\langle f|\hat{p}g\rangle = -i\hbar \int_{a}^{b} dx \ f^{*}(x)g'(x) ,$$
$$\langle \hat{p}f|g\rangle = i\hbar \int_{a}^{b} dx \ f^{*\prime}(x)g(x) .$$

Ha \hat{p} hermitikus, akkor a fenti két skalárszorzat egyenlő. Parciálisan integráljunk az első skalárszorzatban:

$$\langle f|\hat{p}g\rangle = -i\hbar \left[\left[f^*(x)g(x) \right]_a^b - \int\limits_a^b \mathrm{d}x \ f^{*\prime}(x)g(x) \right] = \mathrm{hat} \mathrm{ártag} + \langle \hat{p}f|g\rangle \ .$$

Látható, hogy ha a határtag elhagyható (azaz pl. az f(a) = g(a) = f(b) = g(b) = 0 megkötéssel kapjuk meg az $\mathcal{L}_2(a,b)$ megfelelő alterét), akkor valóban teljesül, hogy $\hat{p}^{\dagger} = \hat{p}$.

2. feladat

Vizsgáljuk meg, hogy az egydimenziós Hamilton-operátor sajátfüggvényei is degeneráltak-e degenerált energia sajátérték esetén!

Írjuk fel az egydimenziós **Schrödinger-egyenlet**et $\psi_1(x) \neq \psi_2(x)$ hullámfüggvényekkel $(\psi_1, \psi_2 \in \mathcal{L}_2)$ úgy, hogy $E_1 = E_2 = E$, azaz a két különböző hullámfüggvényhez ugyanaz az energia tartozik.

$$-\frac{\hbar^2}{2m}\psi_1''(x) + V(x)\psi_1(x) = E\psi_1(x) ,$$

$$-\frac{\hbar^2}{2m}\psi_2''(x) + V(x)\psi_2(x) = E\psi_2(x) .$$

Szorozzuk meg a ψ_1 -re vonatkozó egyenletet ψ_2 -vel, a ψ_2 -re vonatkozót pedig ψ_1 -gyel, majd vonjuk ki az egyik egyenletet a másikból! Ekkor

$$\psi_1''(x)\psi_2(x) - \psi_2''(x)\psi_1(x) = 0.$$

Eszrevehetjük, hogy ez éppen azt jelenti, hogy

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\psi_1'(x)\psi_2(x) - \psi_2'(x)\psi_1(x) \right] = 0 \quad \Longrightarrow \quad \psi_1'(x)\psi_2(x) - \psi_2'(x)\psi_1(x) = \text{állandó}.$$

Ennek tetszőleges x-re teljesülnie kell. Mivel a hullámfüggvényeink négyzetesen integrálható függvények, így jó lenne, ha a végtelenben eltűnnének, azaz $\psi_{1,2}(x \to \pm \infty) \to 0$. Továbbá annak is örülnénk, ha egy hullámfüggvényre hattatva a \hat{p} operátort nem lépnénk ki az \mathcal{L}_2 -ből, ennélfogva a hullámfüggvények deriváltja is tűnjön el a végtelenben: $\psi'_{1,2}(x \to \pm \infty) \to 0$. Ez alapján a fenti állandó csakis 0 lehet, így

$$\psi_1'(x)\psi_2(x) = \psi_2'(x)\psi_1(x)$$

$$\frac{\psi_1'(x)}{\psi_1(x)} = \frac{\psi_2'(x)}{\psi_2(x)}$$

$$\int \frac{1}{\psi_1} \frac{d\psi_1}{dx} dx = \int \frac{1}{\psi_2} \frac{d\psi_2}{dx} dx$$

$$\ln \psi_1 = \ln \psi_2 + \ln \alpha$$

$$\psi_1(x) = \alpha \psi_2(x)$$

ahol $\ln \alpha$ egy integrálási konstans. Látható, hogy degenerált energia esetén a két hullámfüggvény csak egy α faktorban különbözhet. A $\psi_1(x)$ és $\psi_2(x)$ normáltsága miatt azonban $|\alpha| = 1$, azaz $\alpha = e^{i\varphi}$, ennélfogva azt mondhatjuk, hogy két hullámfüggvény ekvivalensnek tekinthető, ha csak egy komplex fázisban különböznek¹.

3. feladat

Számítsuk ki a koordináta és az impulzus operátorok kommutátorát!

Az ilyen feladatokat legegyszerűbben úgy számíthatjuk ki, hogy ha hattatjuk a kommutátort valamilyen f(x) próbafüggvényre.

$$[\hat{x}, \hat{p}]f(x) = \hat{x}\hat{p}f(x) - \hat{p}\hat{x}f(x) = \hat{x}(-i\hbar)f'(x) + i\hbar\partial_x(xf(x))$$
$$= -i\hbar x f'(x) + i\hbar f(x) + i\hbar x f'(x) = i\hbar f(x) ,$$

azaz $[\hat{x}, \hat{p}] = i\hbar \mathbf{1}$.

Kötött állapotok véges potenciálgödör esetén

Az alábbi feladatok nem feltétlenül szükségesek a véges potenciálgödör problémájának megoldásához és a kötött állapotok megtalálásához, azonban látni fogjuk, hogy felhasználva az végeredményeiket a feladat és a számolások részletei lényegesen leegyszerűsödnek.

¹A későbbiekben előadáson hallani fogunk a Hilbert-téren definiálható sugarakról, itt most éppen őket értük tetten.

4. feladat

Konstans potenciál mellett határozzuk meg a kötött és szorásállapotok hullámfüggvényeit!

A Schrödinger-egyenlet konstans $V(x) = V_0$ potenciál mellett:

$$-\frac{\hbar^2}{2m}\psi''(x) + V_0\psi(x) = E\psi(x) .$$

Ekkor két esetet különböztethetünk meg: ha $E > V_0$, akkor **szórásállapot**ról, míg ha $E < V_0$, akkor **kötött állapot**ról beszélhetünk. Kezdjük az előbbivel:

 $\bullet\,$ ha $E>V_0,$ akkor átrendezhetjük a Schrödinger-egyenletet mint

$$\psi''(x) = -\frac{2m}{\hbar^2} (E - V_0)\psi(x) = -k^2 \psi(x) ,$$

ahol $k^2 = 2m(E - V_0)/\hbar^2 > 0$ pozitív mennyiség írható fel. Ekkor a megoldandó differenciálegyenletben felismerhető a harmonikus oszcillátor egyenlete, azaz az általános szórásállapot hullámfüggvénye

$$\psi(x) = A\cos(kx) + B\sin(kx) .$$

• Ha $E < V_0$, akkor az előbbi esethez hasonlóan a Schrödinger-egyenletet felírhatjuk mint

$$\psi''(x) = -\frac{2m}{\hbar^2}(E - V_0)\psi(x) = \frac{2}{\hbar^2}(V_0 - E)\psi(x) = \kappa^2\psi(x) ,$$

ahol $\kappa^2 = 2m(V_0 - E)/\hbar^2 > 0$ pozitív mennyiség definiálható. A kötött állapot hullámfüggvénye (a differenciálegyenlet a harmonikus oszcillátor egyenletével teljesen analóg módon oldható meg)

$$\psi(x) = Ae^{\kappa x} + Be^{-\kappa x} .$$

5. feladat

Hogyan viselkedik a hullámfüggvény $\psi'(x)$ deriváltja az $x = x_0$ pontban, ha a potenciál véges nagyot ugrik x_0 -ban?

A $\psi(x)$ hullámfüggvény legyen folytonos. A potenciál legyen

$$V(x) = \begin{cases} V_0 , & \text{ha } x < x_0 \\ V_1 , & \text{ha } x \ge x_0 \end{cases} .$$

A Schrödinger-egyenletet fel tudjuk írni mint

$$-\frac{\hbar^2}{2m}\psi''(x) + V(x)\psi(x) = E\psi(x) .$$

Integráljuk a Schrödinger-egyenletet az x_0 körül valamilyen $\varepsilon \ll 1$ sugarú tartományon:

$$\int_{x_0 - \varepsilon}^{x_0 + \varepsilon} dx \ \psi''(x) = \frac{2m}{\hbar^2} \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} dx \ [V(x) - E] \psi(x)$$
$$\psi'(x_0 + \varepsilon) - \psi'(x_0 - \varepsilon) = \frac{2m}{\hbar^2} [I_1 + I_2]$$

A bal oldalon az $\varepsilon \to 0$ limeszben éppen a $\psi'(x)$ ugrását kapjuk x_0 helyen. A két integrál

$$I_1 = (V_0 - E) \int_{x_0 - \varepsilon}^{x_0} dx \ \psi(x) = \varepsilon (V_0 - E) \psi(x_0)$$
$$I_2 = (V_1 - E) \int_{x_0}^{x_0 + \varepsilon} dx \ \psi(x) = \varepsilon (V_1 - E) \psi(x_0)$$

Látható, hogy ha $\varepsilon \to 0$, akkor mindkét integrál 0-hoz tart, azaz a hullámfüggvény deriváltjának x_0 -beli ugrása is 0-hoz tart, így beláttuk, hogy $\psi'(x)$ folytonos marad, ha a potenciál véges nagyot ugrik.

6. feladat

Keressük meg a paritásoperátor sajátfüggvényeit!

Vegyünk valamilyen [-a,a] szimmetrikus intervallumot, és legyen paritásoperátor hatása valamilyen függvényre \hat{P} : $f(x) \to f(-x)$. Ha f(x) sajátfüggvénye \hat{P} -nek, akkor

$$\hat{P}f(x) = f(-x) = \lambda f(x) ,$$

ahol λ lesz \hat{P} sajátértéke. Ha kétszer hattatjuk $\hat{P}\text{-t}$ egymás után f(x)-re,akkor

$$\hat{P}\hat{P}f(x) = f(x) = \lambda^2 f(x) ,$$

ahonnan látjuk, hogy $\lambda=\pm 1$, azaz

$$\hat{P}f(x) = \begin{cases} f(-x) = f(x) \\ f(-x) = -f(x) \end{cases},$$

így a \hat{P} paritásoperátor sajátfüggvényei a tisztán pár
os vagy a tisztán páratlan függvények lehetnek.

7. feladat

Mutassuk meg, hogy ha két operátor kommutál egymással, akkor létezik közös sajátfüggvény rendszerük!

Legyen \hat{A} , \hat{B} valamilyen Hilbert-térre ható egymással kommutáló operátor, azaz $[\hat{A}, \hat{B}] = 0$. Írjuk fel az \hat{A} operátor sajátérték-egyenletét mint

$$\hat{A}|\alpha\rangle = a|\alpha\rangle ,$$

ahol $|\alpha\rangle$ jelölje a sajátfüggvényt (sajátvektort) és a az (egyelőre) nem-degenerált sajátértéket. Hattassuk \hat{B} -t a sajátérték-egyenletre balról és használjuk ki, hogy \hat{A} és \hat{B} kommutál:

$$\hat{B}\hat{A}|\alpha\rangle = a\hat{B}|\alpha\rangle = \hat{A}\hat{B}|\alpha\rangle$$

ahol észrevehetjük, hogy $\hat{B}|\alpha\rangle$ is sajátfüggvénye lesz \hat{A} -nak ugyanolyan a sajátértékkel. Ez nem-degenerált sajátérték esetén azt fogja jelenteni, hogy $\hat{B}|\alpha\rangle$ és $|\alpha\rangle$ között csak lineáris kapcsolat lehet, azaz

$$\hat{B}|\alpha\rangle = b|\alpha\rangle$$
,

ami éppen egy sajátérték-egyenlet \hat{B} -re $|\alpha\rangle$ sajátfüggvénnyel és b sajátértékkel, azaz beláttuk, hogy \hat{A} -nak és \hat{B} -nek közös sajátfüggvényei lesznek (de sajátértékeik továbbra is eltérhetnek).

Előfordulhat, hogy az a sajátérték n-szeresen degenerált. Ekkor (ld. az első gyakorlatot vagy az első házi feladatot) egy n-dimenziós sajátalteret kapunk, ahonnan ki kell választanunk n db lineárisan független $|\alpha_i\rangle$ vektort ($i=1,\ldots,n$). Ezek után a korábbiakkal analóg számolással megmutathatjuk, hogy $|\alpha_i\rangle$ és $\hat{B}|\alpha_i\rangle$ ugyanazt az alteret feszíti ki és létezik majd egy olyan lineáris transzformáció, hogy $\sum_j U_{ij} |\alpha_j\rangle = \hat{B}|\alpha_i\rangle$.

8. feladat

Keressük meg véges mélységű potenciálgödörben a kötött állapotok energiaszintjeit!

Véges potenciálgödör esetén a potenciál felírható mint

$$V(x) = \begin{cases} V_0 , & \text{ha } x < -a \\ 0 , & \text{ha } x \in [-a, a] \\ V_0 , & \text{ha } x > a \end{cases} .$$

Kötött állapotok esetén $E < V_0$, azaz klasszikusan nem tudunk kijönni a gödörből. Definiáljuk az alábbi hasznos mennyiségeket (ld. 3. feladat):

$$k^2 = \frac{2m}{\hbar^2}E$$
, $q^2 = \frac{2m}{\hbar^2}V_0$, $\kappa^2 = q^2 - k^2 = \frac{2m}{\hbar^2}(V_0 - E)$.

Osszuk fel V(x) változása szerint három tartományra az x-tengelyt. Az 1. és 3. tartományban E < V(x), míg a 2.-ban E > V(x). A 3. feladat alapján ekkor a hullámfüggvények az egyes tartományokban (általános esetben)

$$\psi_1(x) = Ae^{\kappa x} + Be^{-\kappa x}$$

$$\psi_2(x) = C\cos(kx) + D\sin(kx)$$

$$\psi_3(x) = Ee^{\kappa x} + Fe^{-\kappa x}$$

Vegyük észre, hogy ha normált megoldásokat szeretnénk kapni, akkor B=E=0 feltételt teljesítenünk kell. Ellenkező esetben esetben $\psi_1(x\to-\infty)$ és $\psi_3(x\to\infty)$ végtelen nagy járulékokat adnának.

Mielőtt folytatnánk a számolást, vegyünk észre, hogy a potenciál páros függvénye x-nek, azaz kommutálni fog a paritásoperátorral, és ebből kifolyólag $[\hat{H},\hat{P}]=0$ kommutáció is teljesülni fog (ld. 5. feladat). A kommutáció következtében \hat{H} -nak és \hat{P} -nek közös sajátfüggvény rendszere lesz (ld. 6. feladat), tehát a véges potenciálgödör problémájának hullámfüggvényeit kereshetjük a tisztán páros vagy a tisztán páratlan függvények között². Kezdjük a páros esettel!

Páros esetben A = F és nincs $\propto \sin(kx)$ tag, azaz

$$\psi_1(x) = Ae^{\kappa x}$$

$$\psi_2(x) = C\cos(kx)$$

$$\psi_3(x) = Ae^{-\kappa x}$$

Illesztenünk kell a megoldásokat a tartományok határain (de most elegendő csak az egyik oldalon kiszámolnunk ezt). A hullámfüggvény folytonos lesz (-a)-ban, így

$$\psi_1(-a) = \psi_2(-a)$$

$$Ae^{-\kappa x} = C\cos(-ka) = C\cos(ka)$$

Ezen felül a hullámfüggvény deriváltja is folytonos, ha a potenciál csak véges nagyot ugrik (ld. 4. feladat), így

$$\psi_1'(-a) = \psi_2'(-a)$$

$$\kappa A e^{-\kappa x} = -kC\sin(-ka) = kC\sin(ka)$$

Osszuk el a deriváltra vonatkozó egyenletet a hullámfüggvényre vonatkozóval:

$$\kappa = k \operatorname{tg}(ka)$$

$$\frac{\kappa}{k} = \frac{\sqrt{q^2 - k^2}}{k} = \sqrt{\frac{q^2 a^2}{k^2 a^2} - 1} = \operatorname{tg}(ka)$$

$$\sqrt{\frac{z_0^2}{z^2} - 1} = \operatorname{tg}(z)$$

Ez egy transzcendens egyenlet z = ka-ra valamilyen $z_0 = qa$ konstans paraméter mellett.

Páratlan esetben hasonlóan járhatunk el. Ekkor A = -F és nincs $\propto \cos(kx)$ tag, azaz

$$\psi_1(x) = Ae^{\kappa x}$$

$$\psi_2(x) = D\sin(kx)$$

$$\psi_3(x) = -Ae^{-\kappa x}$$

Az illesztés ekkor a hullámfüggvény folytonosságából adódóan

$$\psi_1(-a) = \psi_2(-a)$$

$$Ae^{-\kappa a} = D\sin(-ka) = -D\sin(ka)$$

 $^{^2}$ Általánosan igaz a legtöbb fizikai számolásban, hogy érdemes megkeresni a Hamilton-operátor lehető legtöbb szimmetriáját, mert az esetek többségében ez lényegesen leegyszerűsítheti a számolást.

és a hullámfüggvény deriváltjának folytonosságából

$$\psi_1'(-a) = \psi_2'(-a)$$

$$\kappa A e^{-\kappa a} = kD \cos(-ka) = kD \cos(ka)$$

Újra osszuk el a kapott két egyenletet, majd vezessük be a z = ka és $z_0 = qa$ mennyiségeket. A transzcendens egyenlet az energia sajátértékekre a páratlan esetben:

$$-\sqrt{\frac{z_0^2}{z^2} - 1} = \text{ctg}(z) \ .$$

A transzcendens egyenleteket megoldhatjuk numerikusan vagy grafikusan. Utóbbi az 1. ábrán látható.

Általánosan azt mondhatjuk, hogy legalább 1 db páros megoldás mindig van, illetve egészen addig nincs páratlan megoldás, míg $z_0 < \pi/2$. A z_0 paraméter növelésével – azaz a potenciálgödör mélyítésével – egyre több megoldást kapunk (párost és páratlant felváltva).

Nagyon fontos, hogy – a klasszikus esettel ellentétben – a 2a széles potenciálgödrön kívül is nem-zérus valószínűséggel találhatjuk meg a részecskét, amit a hullámfüggvény leír $|\psi_1(x)|^2 \neq 0$ és $|\psi_3(x)|^2 \neq 0$.

1. ábra. A véges potenciálgödör energiaszintjeire kapható páros és páratlan megoldások grafikusan ábrázolva adott z_0 , azaz adott mély potenciálgödör esetén.