

AD-A017 397

THE CALCULATION OF MILLIMETER AND SUBMILLIMETER WAVE
ABSORPTION LINE PARAMETERS FOR THE MOLECULAR OXYGEN
ISOTOPES: (16)O₂, (16)O(18)O, AND (18)O₂

M. Greenebaum

Riverside Research Institute

Prepared for:

Army Missile Command
Defense Advanced Research Projects Agency

15 August 1975

DISTRIBUTED BY:

328159

RIVERSIDE RESEARCH INSTITUTE

TECHNICAL REPORT T-1/306-3-14
THE CALCULATION OF MILLIMETER AND
SUBMILLIMETER WAVE ABSORPTION LINE
PARAMETERS FOR THE MOLECULAR OXYGEN
ISOTOPES: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, AND $^{18}\text{O}_2$

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

RIVERSIDE RESEARCH INSTITUTE

80 West End Avenue / New York, New York 10023 / (212) 873-4000

15 August 1975

TECHNICAL REPORT T-1/306-3-14
THE CALCULATION OF MILLIMETER AND
SUBMILLIMETER WAVE ABSORPTION LINE
PARAMETERS FOR THE MOLECULAR OXYGEN
ISOTOPES: $^{16}\text{O}_2$, $^{18}\text{O}^{16}\text{O}$, AND $^{18}\text{O}_2$

By M. Greenebaum

D D C

REF ID: A64291

SEP 23 1975

Prepared for

Commanding General
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809

Contract No. DAAH01-74-C-0419, Mod. P00009

Sponsored by

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

ARPA Order No. 2281

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

The views and conclusions contained in this document are those of the author(s) and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Govt.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Calculation of Millimeter and Submillimeter Wave Absorption Line Parameters for the Molecular Oxygen Isotopes: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$		5. TYPE OF REPORT & PERIOD COVERED Technical Report 19 Mar to 15 Aug 75
7. AUTHOR(s) M. Greenebaum		6. PERFORMING ORG. REPORT NUMBER T-1/306-3-14
9. PERFORMING ORGANIZATION NAME AND ADDRESS Riverside Research Institute 80 West End Avenue New York, N. Y. 10023		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency Arlington, Virginia 22209		12. REPORT DATE 15 August 1975
13. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U. S. Army Missile Command Redstone Arsenal, Alabama 35809		14. NUMBER OF PAGES 120
		15. SECURITY CLASS. (of this report) Unclassified
		16. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES ARPA Order No. 2281		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Millimeter waves Molecular spectroscopy Submillimeter waves Infrared spectroscopy Far infrared radiation Molecular oxygen isotopes Atmospheric attenuation		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Calculations are described which yield absorption line parameters for the three isotopes of molecular oxygen: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$, in the format of the AFCRL Atmospheric Absorption Line Parameters Compilation. The line parameters are: transition frequency, integrated line strength at 296K, line width, lower-state energy, and identifying quantum numbers. These parameters are required as input to the SLAM		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (Cont'd)

program (described elsewhere) which calculates the attenuation vs. altitude at any fixed frequency in the millimeter-to-submillimeter wave region.

The calculations were performed on the XDS Sigma 9 computer at RRI by means of APL programs which are listed and explained in the report. Several sets of published molecular constants were used to obtain an estimate of the degree of reliability of the resulting line parameters. Appendices include the predicted transition frequencies, transition moments, and lower state energies for each set of molecular constants employed; tabulations of rotational state sums vs. temperature; line parameters for each of the three isotopes studied, separately; and a list of the 318 absorption lines below 300 cm^{-1} whose strengths exceed $3.7 \times 10^{-30} \text{ cm}^{-1}$ per molecule cm^{-2} at 296K.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

RIVERSIDE RESEARCH INSTITUTE

AUTHORIZATION

This report describes work performed at Riverside Research Institute by M. Greenebaum with the assistance of D. Koppel and S. Rosenberg. The report was written by M. Greenebaum.

This project is sponsored by the Advanced Research Projects Agency of the Department of Defense and administered by the U. S. Army Missile Command, Redstone Arsenal, Alabama, under Contract No. DAAH01-74-C-0419, Mod. P00009.

Submitted by:

M. King
Manager, Optics
Laboratory

Approved by:

V. F. Konig, Jr.
Research Director

RIVERSIDE RESEARCH INSTITUTE

ABSTRACT

Calculations are described which yield absorption line parameters for the three isotopes of molecular oxygen: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$, in the format of the AFCRL Atmospheric Absorption Line Parameters Compilation. The line parameters are: transition frequency, integrated line strength at 296K, line width, lower-state energy, and identifying quantum numbers. These parameters are required as input to the SLAM program described elsewhere which calculates the attenuation vs. altitude at any fixed frequency in the millimeter-to-submillimeter wave region.

The calculations were performed on the XDS Sigma 9 computer at RRI by means of APL programs which are listed and explained in the report. Several sets of published molecular constants were used to obtain an estimate of the degree of reliability of the resulting line parameters. Appendices include the predicted transition frequencies, transition moments, and lower state energies for each set of molecular constants employed; tabulations of rotational state sums vs. temperature; line parameters for each of the three isotopes studied, separately; and a list of the 318 absorption lines below 300 cm^{-1} whose strengths exceed $3.7 \times 10^{-30} \text{ cm}^{-1}$ per molecule cm^{-2} at 296K.

RIVERSIDE RESEARCH INSTITUTE

TABLE OF CONTENTS

	<u>PAGE</u>
ABSTRACT	v
INTRODUCTION	1
MOLLLCULAR THEORY OF THE OXYGEN ISOTOPES	2
LINE POSITIONS AND LOWER STATE ENERGIES	7
LINE STRENGTHS	14
TRANSITION MATRIX ELEMENTS	20
LINE WIDTHS	27
LINE PARAMETERS IN 'AFCRL FORMAT'	29
SUMMARY AND COMMENTS	33
ACKNOWLEDGMENTS	35
APPENDIX A: BRIEF DESCRIPTION OF APL NOTATION AND OUTPUT FORMATS	37
APPENDIX B: MOLECULAR 'ROTATIONAL' PARAMETERS, MILLIMETER AND SUBMILLIMETER WAVE TRANSITION MATRICES, TRANSITION FREQUENCIES, AND LOWER STATE ENERGIES ...ACCORDING TO REFERENCES 1 THROUGH 7	41
APPENDIX C: ADDITIONAL APL PARAMETER-SETTING PROGRAMS	72
APPENDIX D: TEMPERATURE DEPENDENCE OF ROTATIONAL STATE SUM FOR MOLECULAR OXYGEN	75
APPENDIX E: COMPARISON OF $^{16}\text{O}^{16}\text{O}$ LINE STRENGTHS COMPUTED BY US WITH REF. 8	80
APPENDIX F: RRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES $^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, AND $^{18}\text{O}^{18}\text{O}$ (AFCRL FORMAT)	83
APPENDIX G: RRI ABSORPTION LINE PARAMETERS... WHOSE LINE STRENGTHS EXCEED 3.7 E-30	101
REFERENCES	109
LIST OF FIGURES	viii
LIST OF TABLES	viii

RIVERSIDE RESEARCH INSTITUTE

LIST OF FIGURES

	<u>Page</u>
Fig. 1: Listing of APL function PARAMSTEIN	8
Fig. 2: " " " " " GENGHZ	12
Fig. 3: " " " " " GENINVCM	13
Fig. 4: " " " " " SUBMM02	15
Fig. 5: " " " " " LINESTRENGTH2	18
Fig. 6: " " " " " ISOSTATESUM	19
Fig. 7: " " the APL functions ABCD and X REPLACE Y	24-25
Fig. 8: Allowed magnetic dipole transitions	26
Fig. 9: Listing of APL function AFCRLFILE	30
Fig. 10: " " " " " AFCRL60K15	31
Fig. C-1: " " " " " PARAMETERS	73
Fig. C-2: " " " " " PARAMSTEINUPPER	74

LIST OF TABLES

	<u>Page</u>
Table I: Relative Abundances of the Isotopes of O ₂	5
Table II: Normalized Magnetic Dipole Transition Matrix Elements	21
Table A-1: Directory of APL Functions Created for This Report	40

RIVERSIDE RESEARCH INSTITUTE

THE CALCULATION OF MILLIMETER AND SUBMILLIMETER WAVE ABSORPTION LINE PARAMETERS FOR THE MOLECULAR OXYGEN ISOTOPES: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, AND $^{18}\text{O}_2$

Introduction

This Technical Report describes a portion of the calculations performed at RRI on the atmospheric propagation characteristics of electromagnetic radiation of millimeter and submillimeter wavelengths. The calculations described here are those of a set of absorption line parameters for three isotopes of molecular oxygen: $^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}_2$. These line parameters are required by the SLAM program (described in a separate Tech. Report) to calculate the attenuation vs. altitude at any fixed frequency in the covered wavelength region. The line parameters are: frequency (cm^{-1}), strength at 296K (cm^{-1} per molecule per cm^2), linewidth (cm^{-1} per atm), and lower state energy (cm^{-1}) for each transition, labelled by the appropriate quantum numbers, date of calculation (month, year), isotope, and species (7 for oxygen). The calculations were done on the basis of several sets of published molecular constants¹⁻⁷ by means of AFL programs written for the XDS Sigma 9 computer at RRI. The programs are listed and explained in this report.

The succeeding sections of this report discuss the molecular theory of the oxygen molecule, the calculation of line positions, lower state energies, and integrated line strengths, evaluation of line widths, and the format of the line parameters listed in the Appendices. In addition to the line parameter listings (for all isotopes except $^{16}\text{O}^{17}\text{O}$), the Appendices contain the following:

RIVERSIDE RESEARCH INSTITUTE

a brief summary of APL notational conventions, predictions of transition frequencies and lower state energies to 9-digit accuracy (both in GHz and in cm^{-1}) for each set of molecular parameters employed, a tabulation of rotational state sums vs. temperature, and several other listings of general interest, but not required in the body of the report.

Molecular Theory of the Oxygen Isotopes

The first essentially correct theoretical treatment of the fine structure of the molecular oxygen ground state was that of Tinkham and Strandberg.¹ This theory (applicable to $^{16}\text{O}_2$ and $^{18}\text{O}_2$) predicted that, in addition to the well-known microwave spectrum, oxygen also possessed a "forbidden" submillimeter spectrum, and made predictions of the line strengths. The essential correctness of the theory (with the exception of the strength prediction for one type of "forbidden" transition) was shown by Gebbie, et al.,⁸ on the basis of laboratory measurements at low resolution, as well as by the observation of atmospheric absorption at high altitudes using the Sun as a source.^{9,10} In his recent thesis, Steinbach has succeeded in clarifying the theory with the aid of the transformation theory for spherical tensor operators,¹¹ and it is based on Steinbach's formulation that the RRI calculations of line strengths have been performed, especially since it places $^{16}\text{O}^{18}\text{O}$ on an equal footing with the homonuclear isotopes.^{7,11}

The basic physical features are as follows: None of the oxygen molecular isotopes possess a permanent electric dipole moment. For the $^{16}\text{O}_2$ and $^{18}\text{O}_2$ isotopes, this follows from the homonuclear symmetry, whereas for $^{16}\text{O}^{18}\text{O}$ (as well as $^{16}\text{O}^{17}\text{O}$), this is an experimental fact.¹¹ The electronic ground state being $^3\Sigma_g^-$, the average (electronic) orbital angular momentum vanishes ($\Lambda = 0$)--although there is an instantaneous non-zero value of the orbital angular momentum which produces a precessing magnetic dipole moment of orbital origin. Since the electronic

RIVERSIDE RESEARCH INSTITUTE

ground state is a triplet state, the total electronic spin is $S = 1$, so that molecular oxygen has a permanent magnetic dipole moment of approximately two Bohr magnetons.¹ The oxygen molecule interacts via this dipole moment with the magnetic field associated with an electromagnetic wave. It has been noted by several authors^{1, 11, 12} that oxygen is capable of very strong atmospheric absorption of electromagnetic radiation despite the weakness of magnetic dipole transitions relative to electric dipole transitions (by two or more orders of magnitude, in general) by virtue of its abundance (21% by volume of air at "all" altitudes). (By way of contrast, water, with the large electric dipole moment of 1.9 Debye units, decreases rapidly in concentration with altitude above 3 km.)

As is typical for microwave and submillimeter wave absorption, the molecular oxygen absorption frequencies in this region are associated with changes in the rotational energy of the molecule, with no change taking place either of the vibrational or of the electronic state. (At room temperature, both the ground vibrational state and the first excited vibrational state are significantly populated and are taken into account in these calculations.) The energy in any given rotational state is the sum of three terms: the pure-rotation term, $H_{\text{rot}} = \mathbf{B}\vec{\mathbf{N}}^2$ (where $\vec{\mathbf{N}}$ is the rotational angular momentum operator describing end-over-end rotations of the molecule, and B is the rotational parameter--itself a function of N when "stretching", i. e., rotation-vibration interaction, is taken into account); a spin-rotation (or spin-orbit¹) term, $H_{\text{s-r}} = \mu\vec{\mathbf{N}} \cdot \vec{\mathbf{S}}$ (where $\vec{\mathbf{S}}$ is the total electron spin operator, and μ is the spin-rotation coupling parameter--likewise N -dependent under centrifugal stretching); and a spin-spin term, $H_{\text{s-s}} = (2/3)\lambda(3S_z^2 - \vec{\mathbf{S}}^2)$ (where S_z is the body-fixed component of $\vec{\mathbf{S}}$ along the internuclear axis of the molecule, and λ is the spin-spin interaction parameter, comparable in magnitude to B). A spectroscopic convention is followed here: not only frequencies, but also energies and rotational,

RIVERSIDE RESEARCH INSTITUTE

spin-rotation and spin-spin interaction parameters, are expressed in frequency units: GHz or cm^{-1} . Note that the speed of light is $29.9792458(1.2)$ GHz per cm^{-1} ,¹³ so that $1 \text{ cm}^{-1} \approx 30 \text{ GHz}$.

Since the nuclear spins of ^{16}O and of ^{18}O are zero ($I = 0$), no hyperfine energy term appears in the Hamiltonian. For ^{17}O , however, $I = 5/2$, enormously complicating the spectrum of $^{16}\text{O}^{17}\text{O}$ relative to that of $^{16}\text{O}^{18}\text{O}$, $^{16}\text{O}_2$, or $^{18}\text{O}_2$.¹⁴⁻¹⁶ The hyperfine spectrum of $^{16}\text{O}^{17}\text{O}$ (as well as the Zeeman effect in the presence of a d-c magnetic field, for all isotopes¹¹) will be treated in another Technical Report,¹⁷ based on some results by Steinbach.¹⁸ The relative abundances of the various isotopic species of molecular oxygen are given in Table I.

Therefore, restricting our attention to oxygen molecules with $I = 0$, there are only three angular momentum operators to consider: \vec{N} , the rotational angular momentum, \vec{S} , the spin angular momentum, and $\vec{J} = \vec{N} + \vec{S}$, the total angular momentum. \vec{J} enters because the spin-rotation term may be rewritten as a function of \vec{N}^2 , \vec{S}^2 , and \vec{J}^2 alone, since $\vec{N} \cdot \vec{S} = (1/2)(\vec{N}^2 + \vec{S}^2 - \vec{J}^2)$. As is well-known,^{1, 8, 12, 18} the ordinary microwave absorption spectrum of $^{16}\text{O}_2$ can be explained to a good first approximation by assuming the spin tightly coupled to the rotation in a pure Hund's case (b) fashion. However, such a coupling scheme fails to predict the existence of the submillimeter absorption lines and also fails to reproduce all the details of the observed microwave spectrum.^{1, 19} Consequently, Tinkham and Strandberg performed the energy calculations in a Hund's case (a) basis (in which J , N , S , and M_S are good quantum numbers) and transformed to a Hund's case (b) basis (in which J , M_J , N , and S are good quantum numbers).¹ The calculations are fairly involved, and the expressions needed to calculate transition strengths contain typographical errors, but (with the exception noted by Gebbie et al,⁸ and independently by Steinbach¹¹) their numerical values for the transition matrix elements (line strengths)

RIVERSIDE RESEARCH INSTITUTE

Table I: Relative Abundances of the Isotopes of O₂

<u>Isotopic Species</u>	<u>Relative Abundance^a</u>
¹⁶ O ¹⁶ O	0.99519
¹⁶ O ¹⁸ O	4.07·10 ⁻³
¹⁶ O ¹⁷ O	7.38·10 ⁻⁴
¹⁸ O ¹⁸ O	4.16·10 ⁻⁶
¹⁷ O ¹⁸ O	1.51·10 ⁻⁶
¹⁷ O ¹⁷ O	1.37·10 ⁻⁷

^a Based upon the following isotopic abundances of atomic oxygen:
¹⁶O: 99.759%, ¹⁷O: 0.037%, ¹⁸O: 0.204%

Reference: Handbook of Chemistry and Physics, 52nd Edition,
1971-1972, Chemical Rubber Co., Cleveland, Ohio.

RIVERSIDE RESEARCH INSTITUTE

agree with those of later workers.¹¹ A different approach has been taken by Steinbach^{7,11} based on earlier (but incorrect^{1,3}) calculations by Hill and Mizushima.¹⁹ In this approach, all calculations are carried out in a Hund's case (b) basis, and one finds the matrix elements of S_z in this basis. Steinbach¹¹ performed the calculations by using the theory of irreducible tensor operators as summarized by Cok and DeLucia¹² to obtain explicit algebraic expressions for the eigenvectors describing the stationary energy states:

$$|\psi\rangle = \alpha|J, M_J, N=J-1, S\rangle + \beta|J, M_J, N=J, S\rangle + \gamma|J, M_J, N=J+1, S\rangle , \quad \dots(1)$$

in terms of the three parameters, α , β , and γ , using the Wigner 6-j symbols. The fact that (with one exception) either α or γ is nearly 1 while the other is almost (but not quite) zero¹¹ means that oxygen is "almost" Hund's case (b), but that N has ceased to be a "good quantum number" except for "diagonal" states (corresponding to $\alpha_0 = \gamma_0 = 0$, $\beta_0 = 1$ in Steinbach's notation¹¹), as noted earlier by Mizushima and colleagues^{3,4,6,19} and by Tinkham and Strandberg.¹ In these calculations, the molecular rotational, spin-spin, and spin-rotation parameters, B , λ , and μ , are assumed to depend as follows on N and J :^{3,6,11,19}

$$\begin{aligned} B &= B_0 + B_1N(N+1) + B_2N^2(N+1)^2 + \dots \\ \lambda &= \lambda_0 + \lambda_1N(N+1) + \dots \\ \mu &= \mu_0 + \mu_1N(N+1) + \dots \end{aligned} \quad \left. \begin{array}{l} \text{for } N = N' \\ \text{matrix elements,} \end{array} \right.$$

$$\lambda = \lambda_0 + \lambda_1(J^2+J+1) + \dots \quad \left. \begin{array}{l} \text{for } N \neq N', N = J+1 \\ \text{matrix elements.} \end{array} \right.$$

$\dots(2)$

The seven parameters, B_0 , B_1 , B_2 , λ_0 , λ_1 , μ_0 , and μ_1 are obtained by fitting observed transition frequencies to the model Hamiltonian,¹⁻⁷ supplemented by calculations of the isotopic

RIVERSIDE RESEARCH INSTITUTE

dependence¹⁸ of these parameters, where required.^{7,11,21} The separation between the lowest rotational levels in the ground vibrational state ($v = 0$) and in the first excited vibrational state ($v = 1$), denoted by $\Delta G_{1/2}$ by Herzberg,^{18,21} is taken to be 1556.378(7) cm⁻¹, based upon the re-evaluation by Albritton, et al⁵ of electron optical²¹ and microwave^{3,4} data.

These parameters, as given by Refs. 1 through 7, have been inserted into APL "functions" (programs) such as PARAMSTEIN, listed in Fig. 1. A brief description of the APL programming language is contained in Appendix A. In Appendix B, the parameters are explicitly given, together with the transition matrix elements, transition frequencies, etc., calculated from them as discussed in the ensuing sections. Listings of two similar APL parameter-setting programs used in the RRI calculations, PARAMSTEINUPPER and PARAMETERS, are given in Appendix C.

The parameters quoted for Tinkham and Strandberg¹ are based on the correspondences: $B_{(0)T-S} = B_0$, $4\epsilon^2 B_{(0)T-S} = B_1$, $B_2 = 0$, $\lambda_{(0)T-S} = \lambda_0$, $4\epsilon^2 \lambda_{1T-S} = \lambda_1$, $\mu_{0T-S} = \mu_0$, $\mu_1 = 0$. (See Ref. 1, footnote 41.) The parameters quoted for Albritton, et al⁵ are based on electronic optical data²¹ for $v = 0$, and on ground-state microwave data^{3,4} and upper-state electronic optical data²¹ for $v = 1$. (See Ref. 5, p. 116, Table IX.)

Line Positions and Lower State Energies

Except for an arbitrary additive constant, the eigenvalues of the Hamiltonian operator in the stationary states $|\psi_i\rangle$ are the allowed energy levels. (Different authors^{1,3,5} choose different additive constants.) We follow the calculational scheme of Mizushima, et al,^{3,4,6} and Steinbach and Gordy^{7,11} in which the eigenvalues are obtained by solving the secular determinantal equations:

$$|H_{11} - E| = 0, H_{11} = \langle J=0, M_J, N=1, S | H | 0, M_J, 1, S \rangle, \dots \quad (3a)$$

RIVERSIDE RESEARCH INSTITUTE

```

    V PARAMSTEIN;VECB0;VECB1;VECB2;VECLAM0;VECLAM1;VECMU0;VECMU1
[1]   A 'REFNO' IS 7, CORRESPONDING TO W. STEINBACH AND W. GORDY, PHYS.
[2]   A REV. A, VOL. 11, NO. 3, PP. 729 TO 731, MARCH 1975.
[3]   VECB0←43.10046 40.707408 38.31373
[4]   VECB1←0.00014501 -0.000129 -0.000115
[5]   VECB2←0 0 0
[6]   VECLAM0←59.501341 59.499097 59.496698
[7]   VECLAM1←5.848E-5 5.312E-5 5.211E-5
[8]   VECMU0←0.252586 -0.238488 -0.224439
[9]   VECMU1←-2.47E-7 -6.19E-7 -3.51E-7
[10]  REFNO←7
[11]  ISO←66 68 88
[12]  ISOTEXT←3 70 '
[13]  ISOTEXT[1;]←'016=016';ISOTEXT[2;]←'016=018';ISOTEXT[3;]←'018=018'
[14]  INPUT:'PLEASE TYPE ISOTOPE CODE: 66, 68, OR 88'
[15]  X←ISO[1]
[16]  +(X>0)ISO/INPUT
[17]  B0←VECB0[X]
[18]  B1←VECB1[X]
[19]  B2←VECB2[X]
[20]  LAM0←VECLAM0[X]
[21]  LAM1←VECLAM1[X]
[22]  MU0←VECMU0[X]
[23]  MU1←VECMU1[X]
[24] '

```

THE PARAMETERS OF MOLECULAR OXYGEN ACCORDING TO STEINBACH AND GORDY (1975),
REF. 7, ARE AS FOLLOWS FOR ';'ISOTEXT[X;];':

```

'
[25]  'B0 = ';B0;' GHZ; '
[26]  'B1 = ';B1;' GHZ; '
[27]  'B2 = ';B2;' GHZ;
'
[28]  'LAM0 = ';LAM0;' GHZ; '
[29]  'LAM1 = ';LAM1;' GHZ;
'
[30]  'MU0 = ';MU0;' GHZ; '
[31]  'MU1 = ';MU1;' GHZ.
'
[32]  TEMP←296
[33]  'TEMP = ';TEMP;'  REPNO = ';REPNO;'  ISOTOPE = ';ISO[X]
[34]  NINPUT←-1+2×(127)
[35]  +(X≠2)/0
[36]  NINPUT←-1+140
    V

```

Fig. 1: Listing of APL function PARAMSTEIN

RIVERSIDE RESEARCH INSTITUTE

$$\begin{vmatrix} a-E & 0 & d \\ 0 & b-E & 0 \\ d & 0 & c-E \end{vmatrix} = 0, \text{ where } J \neq 0, \text{ and,} \quad \dots(3b)$$

under the simplifying assumption^{4-7, 11} that $B_2 = 0$,

$$\begin{aligned} a &= \langle J, M_J, N=J-1, S | H | J, M_J, N=J-1, S \rangle \\ &= B_0 J(J-1) + B_1 J^2(J-1)^2 + \mu_0(J-1) + \mu_1 J(J-1)^2 \\ &\quad + [(2/3) - 2J/(2J+1)] [\lambda_0 + \lambda_1 J(J-1)], \\ b &= \langle J, M_J, N=J, S | H | J, M_J, N=J, S \rangle \\ &= B_0 J(J+1) + B_1 J^2(J+1)^2 - \mu_0 - \mu_1 J(J+1) \\ &\quad + (2/3) [\lambda_0 + \lambda_1 J(J+1)], \\ c &= \langle J, M_J, N=J+1, S | H | J, M_J, N=J+1, S \rangle \\ &= B_0(J+1)(J+2) + B_1(J+1)^2(J+2)^2 - \mu_0(J+2) - \mu_1(J+1)(J+2)^2 \\ &\quad + [(2/3) - 2(J+1)/(2J+1)] [\lambda_0 + \lambda_1(J+1)(J+2)], \text{ and} \\ d &= \langle J, M_J, N=J+1, S | H | J, M_J, N=J-1, S \rangle \\ &= 2\sqrt{J(J+1)} (2J+1)^{-1} [\lambda_0 + \lambda_1(J^2+J+1)]. \quad \dots(3c) \end{aligned}$$

In terms of a , b , c , and d , the energy eigenvalues and the corresponding eigenvector coefficients α , β , and γ in Eq. (1) are given by:¹¹

$$\begin{aligned} H_{11} &= 2(B_0 + 2B_1) - 2(\mu_0 + 2\mu_1) - (4/3)(\lambda_0 + 2\lambda_1), \\ \alpha_{11} &= \beta_{11} = \gamma_{11} = 0; \quad \dots(4a) \end{aligned}$$

$$E_0(J) = \text{?}, \quad \alpha_0 = 0, \quad \beta_0 = 1, \quad \gamma_0 = 0; \quad \dots(4b)$$

$$\begin{aligned} E_{\pm}(J) &= (1/2)(a+c) \pm \sqrt{(1/4)(a-c)^2 + d^2}, \\ \alpha_{\pm} &= d / \sqrt{(a-E_{\pm})^2 + d^2}, \quad \beta_{\pm} = 0, \quad \gamma_{\pm} = \alpha_{\pm}(E_{\pm} - a)/d. \quad \dots(4c) \end{aligned}$$

RIVERSIDE RESEARCH INSTITUTE

Eqs. (3) and (4) are contained within the APL program ABCD (lines 11-36 in Fig. 7, p. 24). (This program computes the transition matrix elements, as discussed in a later section.)

More generally, for $B_2 \neq 0$, the energy levels are given by Eqs. (5) of Ref. 3, as corrected by Steinbach⁷ and Mizushima²²:

$$E(J=N=n) = B_0 n(n+1) + B_1 n^2(n+1)^2 + B_2 n^3(n+1)^3 + 2\lambda_0/3 + 2\lambda_1 n(n+1)/3 - \mu_0 - \mu_1 n(n+1), \quad \dots (5a)$$

$$\begin{aligned} E(J=n-1) = & B_0(n^2-n+1) + B_1(n^4-2n^3+7n^2-6n+2) \\ & + B_2(n^6-3n^5+18n^4-31n^3+33n^2-18n+4) - \lambda_0/3 \\ & - \lambda_1(n^2-n+4)/3 - 3\mu_0/2 - \mu_1(7n^2-7n+4)/2 \\ & + \left[[B_0(2n-1) + B_1(4n^3-6n^2+6n-2) \right. \\ & \quad \left. + B_2(6n^5-15n^4+32n^3-33n^2+18n-4) - \lambda_0/(2n-1) \right. \\ & \quad \left. - \lambda_1(7n^2-7n+4)/(6n-3) - \mu_0(2n-1)/2 \right. \\ & \quad \left. - \mu_1(2n^3-3n^2+9n-4)/2] \right]^2 \\ & + 4 [\lambda_0 + \lambda_1(n^2-n+1)]^2 n(n-1)/(2n-1)^2 \Bigg]^{1/2}, \end{aligned} \quad \dots (5b)$$

$$\begin{aligned} E(J=n+1) = & B_0(n^2+3n+3) + B_1(n^4+6n^3+19n^2+30n+18) \\ & + B_2(n^6+9n^5+48n^4+153n^3+279n^2+270n+108) - \lambda_0/3 \\ & - \lambda_1(n^2+3n+6)/3 - 3\mu_0/2 - \mu_1(7n^2+21n+18)/2 \\ & - \left[[B_0(2n+3) + B_1(4n^3+18n^2+30n+18) \right. \\ & \quad \left. + B_2(6n^5+45n^4+152n^3+279n^2+270n+108) \right. \\ & \quad \left. - \lambda_0/(2n+3) - \lambda_1(7n^2+21n+18)/(6n+9) \right. \\ & \quad \left. - \mu_0(2n+3)/2 - \mu_1(2n^3+9n^2+21n+18)/2] \right]^2 \\ & + 4 [\lambda_0 + \lambda_1(n^2+3n+3)]^2 (n+1)(n+2)/(2n+3)^2 \Bigg]^{1/2}. \end{aligned} \quad \dots (5c)$$

where n (denoted 'n' by Steinbach¹¹ and K by Tinkham¹) is an

RIVERSIDE RESEARCH INSTITUTE

"effective³ (or pseudo¹¹) quantum number" such that $n \rightarrow N$ in the limit, $\lambda/B \rightarrow 0$. In the APL program GENGHZ, listed in Fig. 2, Eqs. (5) are used to compute the energy levels, $ENN = E(J=n) = E_0$, $ENNMIN1 = E(J=n-1) = E_+$, and $ENNPLU1 = E(J=n+1) = E_-$, all in gigahertz (GHz).

The microwave transition frequencies, f^\pm , are characterized by the selection rules,

$$\Delta K = 0, \Delta J = \pm 1 \text{ (Microwave spectrum)} \quad (6a)$$

and are given by:

$$f^+ = E_0 - E_- = FP = ENN - ENNPLU1 = ENN - ELP \quad (6b)$$

$$f^- = E_0 - E_+ = FM = ENN - ENNMIN1 = ENN - ELM \quad (6c)$$

These frequencies are included in Appendix B (following the output format governed by the APL program PRINT6002), together with the lower state energies, ELP and ELM, relative to the ground state, which is ($K = 1, J = 0$) in $^{16}\text{O}_2$ and $^{18}\text{O}_2$ and is ($K = 0, J = 1$) in $^{16}\text{O}^{18}\text{O}$. As is well known,^{18,21} the homonuclear symmetry of $^{16}\text{O}_2$ and $^{18}\text{O}_2$ permits only odd-K states to exist, whereas two sets of states, one even in K, the other odd in K, exist in $^{16}\text{O}^{18}\text{O}$.

The program GENINVCM (Fig. 3) converts the energies to the units of cm^{-1} , i. e., NUNN, NUNNMIN1, and NUNNPLU1 are in cm^{-1} relative to the ground state, and NUNPLU and NUNMIN are the transition frequencies in cm^{-1} .

The submillimeter absorption frequencies are characterized by the selection rules,

$$\Delta K = 2, \Delta J = 0, 1 \text{ (Submm spectrum)} \quad (7a)$$

and occur as triplets. With upper states denoted by a single prime (K', J'), and lower states by a double prime (K'', J''), we label the transition frequencies as follows:

V GENGHZ;N;ENJMINUS;ENJPLUS;AB0;AB1;AM1;BB1;BB2;BL11;BM0;BM1;MESS0;MESS1;MESS2;ARG1
 [1] A (5B), AND (5C) OF W. M. WELCH AND M. MIZUSHIMA. PHYS. REV. A.
 [2] A VOL. 5, NO. 6, PP. 2692 TO 2695, JUNE 1972. E(J=N=N) IS HERE
 [3] A LABELLED AS ENN; E(J=N-1) IS HERE LABELED ENNMIN1; AND
 [4] A E(J=N+1) IS HERE LABELED ENNPLU1.
 [5] A WITH B0, B1, B2, LAM0, LAM1, MU0, AND MU1 IN GIGAHERTZ.
 [6] A GENGHZ GENERATES AS OUTPUTS THE ENERGY LEVELS.
 [7] A ENN, ENNMIN1, AND ENNPLU1, IN GIGAHERTZ.
 [8] B1←-(|β1)
 [9] B2←-(|B2)
 [10] MU0←-(|MU0)
 [11] MU1←-(|MU1)
 [12] N←NINPUT,(NINPUT+2)
 [13] ENJ←(B0×N×(N+1)+(B1×(N*2)×(N+1)*2))+(2×LAM1×N×(N+1)+3)-(MU0+(MU1×N×(N+1)))
 [14] ENJ←ENJ+(B2×(N*3)×((N+1)*3))
 [15] ENN←((ρN)÷2)↑ENN
 [16] AB0←(N*2)+1-N
 [17] AB1←(N*4)+(7×(N*2))+2-((2×(N*3))+(6×N))
 [18] AB2←(N*6)+(18×(N*4))+(33×(N*2))+4-((3×(N*5))+(31×(N*3))+((18×N))
 [19] AL1←(N*2)+4-N
 [20] AM1←(7×(N*2))+4-(7×N)
 [21] BB1←(4×(N*3))+(6×N)-((6×(N*2))+2)
 [22] BB2←(6×(N*5))+(32×(N*3))+((18×N)-((15×(N*4))+(33×(N*2))+4))
 [23] BL1←(6×N)-3
 [24] BM0←N-0.5
 [25] BM1←(2×(N*3))+(9×N)-((3×(N*2))+4)
 [26] MESS0←(B0×4B0)+(B1×AB1)+(B2×AB2)-((LAM0÷3)+(LAM1×AL1÷3)+(3×MU0÷2)+(0.5×MU1×AM1))
 [27] MESS1←(30×((2×N)-1))+(B1×BB1)-((LAM0÷((2×N)-1))+(LAM1×AM1)÷BL11)+(MU0×BM0)+(0.5×MU1×BM1))
 [28] MESS1←MESS1+(B2×BB2)
 [29] MESS2←(LAM0)+(LAM1×AB0)
 [30] ARG1←(MESS1*2)^(4×(MESS2*2)×N×(N-1)×((2×N)-1)×(-2))
 [31] ENJMINUS+MESS0+(ARG1*0.5)
 [32] ENJMINUS+MESS1
 [33] E10←MESS0+MESS1
 [34] ENNMIN1←((ρN)÷2)↑ENNMINUS
 [35] →(N[1]≠0)/CONTINUE
 [36] ENNMIN1[2]→E10[2]
 [37] CONTINUE:ENNMIN1[1]→E10[1]
 [38] ENJPLUS+MESS0-(ARG1*0.5)
 [39] ENNPLU1←((ρN)÷2)→ENJPLUS
 [40] →(N[1]≠0)/0
 [41] ENN[1]→ENNMIN1[1]→ENNPLU1[1]

Fig. 2: Listing of APL function GENGHZ

RIVERSIDE RESEARCH INSTITUTE

```
V GENINVCM
[1]   THIS FUNCTION GENERATES THE ROTATIONAL ENERGY LEVELS
[2]   AND MICROWAVE TRANSITION FREQUENCIES IN INVERSE CENTIMETERS.
[3]   IT CALLS GENGHZ AS A SUBROUTINE, AND CONVERTS TO INVERSE CM
[4]   BY USING AS THE SPEED OF LIGHT. SPEEDOFLIGHT=29.9792458(1.2)
[5]   GIGAHERTZ PER INVERSE CENTIMETER (1973 VALUE).
[6]   THE ENERGY LEVELS ARE CALLED NUNN, NUNNMIN1, AND
[7]   NUNNPLU1, WHILE THE N+ AND N- TRANSITION FREQUENCIES ARE
[8]   CALLED NUNPLU AND NUNMIN, RESPECTIVELY. THE 1(0) STATE (FOR
[9]   WHICH N=1, J=0) IS TAKEN AS THE ZERO ENERGY LEVEL.
[10]  IN THE CASE OF O16=018, THE 0(1) STATE (FOR WHICH
[11]  N=0, J=1) IS TAKEN AS THE ZERO ENERGY LEVEL.
[12]  GENGHZ
[13]  SPEEDOFLIGHT←29.9792458 (UNITS: GHZ PER INVERSE CM)
[14]  +(NINPUT[1]≠0)/CONTINUE
[15]  E10[1]←ENNPLU1[1]
[16]  CONTINUE:NUNN←(ENN-E10[1])+SPEEDOFLIGHT
[17]  NUNNMIN1←(ENNMIN1-E10[1])+SPEEDOFLIGHT
[18]  NUNNPLU1←(ENNPLU1-E10[1])+SPEEDOFLIGHT
[19]  NUNPLU←NUNN-NUNNPLU1
[20]  NUNMIN←NUNN-NUNNMIN1
[21]  +(NINPUT[1]≠0)/0
[22]  NUNMIN[1]←NUNPLU[1]←NUNN[1]←NUNNMIN1[1]←NUNNPLU1[1]←0
    ▽
```

Fig. 3: Listing of APL function GENINVCM

RIVERSIDE RESEARCH INSTITUTE

$$\text{NUF: } K' = K'' + 2, \quad J' - 1 = J'' = K'' \quad (7b)$$

$$\text{NUG: } K' = K'' + 2, \quad J' = J'' = K'' + 1 \quad (7c)$$

$$\text{NUH: } K' = K'' + 2, \quad J' - 1 = J'' = K'' + 1 \quad (7d)$$

The program SUBMM02 (Fig. 4) calculates, in cm^{-1} , the transition frequencies, NUF, NUG, and NUH, as well as the respective lower state energies, ELF, ELG, and ELH = ELG, relative to the rotational ground state ($K = 1, J = 0$ for $^{16}\text{O}_2$ and $^{18}\text{O}_2$, $K = 0, J = 1$ for $^{16}\text{O}^{18}\text{O}$). The results of these calculations for the various sets of values of the molecular parameters, B_0, B_1, \dots , are included in Appendix B, together with the equivalents of NUF, NUG, and NUH in GHz.

For the rotational band lying above the first excited vibrational state, the lower state energy relative to the true ground state (for $v = 0$) is given by $\Delta G_{1/2}$ plus the energy relative to the rotational ground state, e. g., ELF. This consideration is important when computing the line strength, and is taken into account in our calculations (via LINESTRENGTHROTVIB, AFCRL5K15UPPER and AFCRL60K1UPPER (see Appendix A)).

In Appendix B, the "laser-magnetic-resonance" or Raman lines studied by Evenson, et al.^{4,6} are also listed. These lines are characterized by:

$$\text{ERL: } K' = K'' + 2, \quad J' = K', \quad J'' = K'' . \quad (8)$$

The root-mean-square deviation between the Raman lines observed to date⁶ and the various predicted frequencies is also given in Appendix B. These lines are of no concern in calculations of atmospheric absorption by molecular oxygen.¹⁷

Line Strengths

The general expression for the integrated line strength of an isolated magnetic dipole transition between an initial state, $|\psi_i\rangle$ (lower state in absorption), and a final state, $|\psi_f\rangle$ (upper state in absorption), taking into account both absorption and

RIVERSIDE RESEARCH INSTITUTE

```

V SUBMM02;N;ENJ;ENJMINUS;ENJPLUS;AB0;AB1;AB2;AL1;AM1;BB1;BB2;BL11;BM0;BM1;MESS0;MESS1;MESS2;ARG1;EDF;EDG;EDH
[1]   • THIS PROGRAM CALCULATES THE TRANSITION FREQUENCIES,
[2]   • NUF, NUG, AND NUH (IN THE SUBMM REGION), AND THE ENERGIES
[3]   • OF THE RESPECTIVE LOWER STATES, ELF, ELG, AND ELH.
[4]   • ALL GIVEN IN INVERSE CM. INPUTS REQUIRED: B0, B1, B2,
[5]   • LAM0, LAM1, MU0, AND NINPUT.
[6]   • (EXAMPLE: NINPUT=((2* 27)-1) PRODUCES 1 3 5 ...51 53.)
[7]   'REFNO = 'REFNO
[8]   'NINPUT: 'NINPUT
[9]   B1←-(|B1)
[10]  B2←-(|B2)
[11]  MU0←-(|MU0)
[12]  MU1←-(|MU1)
[13]  H←NINPUT,(NINPUT+2)
[14]  EN0←(B0×N×(N+1))+(B1×(N+2)×((N+1)×2))+(2×LAM0×3)+(2×LAM1×N×(N+1)×3)-(MU0×(MU1×N×(N+1)))
[15]  EN1←ENJ+(B2×(N+3)×((N+1)×3))
[16]  ENN=((pN)+2)+ENJ
[17]  AB0←(N+2)+1-N
[18]  AB1←(N+2)+(7×(N+2))+2-((2×(N+3))+(6×N))
[19]  AB2←(N+6)+(18×(N+4))+33×(N+2)+4-((3×(N+5))+(31×(N+3))+(18×N))
[20]  AL1←(N+2)+4-N
[21]  AM1←(7×(N+2))+4-(7×N)
[22]  BB1←(4×(N+3))+(6×N)-(6×(N+2))+2
[23]  BB2←(6×(N+5))+(32×(N+3))+(18×N)-(15×(N+4))+(33×(N+2))+4
[24]  BL11←(6×N)-3
[25]  BM0←N-0.5
[26]  BM1←(2×(N+3))+9×N)-(3×(N+2))+4
[27]  MESS0←(B0×AB0)+(B1×AB1)+(B2×AB2)-((LAM0+3)+(LAM1×AL1+3)+(3×MU0+2)+(0.5×MU1×AM1))
[28]  MESS1←(B0×((2×N)-1))+(B1×BB1)-((LAM0+((2×N)-1))+(LAM1×AM1)+BL11)+(MU0×BM0)+(0.5×MU1×BM1))
[29]  MESS1←MESS1+(B2×BB2)
[30]  MESS2←(LAM0)+(LAM1×AB0)
[31]  ARG1←(MESS1×2)+(4×(MESS2×2)×N×(N-1)×(((2×N)-1)×-2))
[32]  ENJMINUS←MESS0+(ARG1×0.5)
[33]  E10←MESS0+MESS1
[34]  ENNMIN1←((pN)+2)+ENJMINUS
[35]  ENNMIN1[1]←E10[1]
[36]  ENJPLUS←MESS0-(ARG1×0.5)
[37]  ENNPLU1←((pN)+2)+ENJPLUS
[38]  • EDF, EDG, AND EDH ARE IN GIGAHERTZ
[39]  EDF←((pN)+2)+ENJMINUS-ENN
[40]  EDG←((pN)+2)+ENJMINUS-ENNPLU1
[41]  EDH←((pN)+2)+ENJ-ENNPLU1
[42]  +(H[1]=0)/CONTINUE
[43]  ENNMIN1[2]←E10[2]
[44]  E10[1]←ENN[1]+ENNMIN1[1]-ENNPLU1[1]
[45]  EDF[1]=0
[46]  CONTINUE:SPEEDOFLIGHT←29.97924580 [GHZ PER INVERSE CM]
[47]  • ELF, ELG, ELH, NUF, NUG, AND NUH ARE IN INVERSE CM.
[48]  ELF←(ENN-E10[1])×SPEEDOFLIGHT
[49]  ELG←(ENNPLU1-E10[1])×SPEEDOFLIGHT
[50]  ELH←ELG
[51]  NUF←EDF×SPEEDOFLIGHT
[52]  NUG←EDG×SPEEDOFLIGHT
[53]  NUH←EDH×SPEEDOFLIGHT
    
```

Fig. 4: Listing of APL function SUBMM02

RIVERSIDE RESEARCH INSTITUTE

stimulated emission under equilibrium conditions at (Kelvin) temperature T, is as follows, in units of $\text{cm}^{-1}(\text{molecule cm}^{-2})^{-1}$:

$$S(T) = \frac{8\pi^3}{3hc} \nu_0 |\langle \psi_i | \vec{\mu} | \psi_f \rangle|^2 (e^{-E_i/kT} - e^{-E_f/kT})/Q(T), \quad (9a)$$

where h = Planck's constant = $6.626176(36) \cdot 10^{-27}$ erg sec,
 c = vacuum speed of light = $2.99792458(1.2) \cdot 10^{10}$ cm sec $^{-1}$,
 ν_0 = transition frequency (cm^{-1}),
 E_i = energy of initial (lower) state (ergs),
 E_f = energy of final (upper) state (ergs),
 $Q(T)$ = total partition function (state sum) (dimensionless),
and the dipole moment operator is summed over all degenerate levels possessing the same initial and final state energies.¹⁸
Rewriting Eq. (9a) in terms of the dimensionless transition strengths, $I(K'', J''; K', J')$,¹ and recalling that $E_f - E_i = hc\nu_0$,

$$S(T) = \frac{8\pi^3}{3hc} (g_s^e \beta_{\text{Bohr}})^2 I(K'', J''; K', J') \nu_0 e^{-E''(hc/kT)} \cdot [1 - e^{-\nu_0(hc/kT)}] / Q(T), \quad (9b)$$

where g_s^e = free-electron g factor = $2 \cdot 1.0011596567(35)$,
 β_{Bohr} = Bohr magneton = $9.274078(36) \cdot 10^{-21}$ erg gauss $^{-1}$,
 hc/k = second radiation constant = $1.438786(45)$ cm K,
 $E'' = E_i/hc$ = lower state energy (cm^{-1}),
and $Q(T) = \left[\sum_K (2K+1) \exp(-NUNN \cdot hc/kT) + (2K-1) \exp(-NUNNMIN1 \cdot hc/kT) + (2K+3) \exp(-NUNNPLU1 \cdot hc/kT) \right] \cdot Q_v(T)$,
 $Q_v(T) = [1 - \exp(-\Delta G_1/2 \cdot hc/kT)]^{-1}$ (p.123, Ref. 18),
since for each value of J , there are $(2J + 1)$ degenerate levels.¹
(Recall that $NUNN = (E_0 - E_{\text{grnd}})/c$, $NUNNMIN1 = (E_+ - E_{\text{grnd}})/c$,
and $NUNNPLU1 = (E_- - E_{\text{grnd}})/c$, in the notation of Eqs. (6).¹¹)
The values adopted for the fundamental constants are those of Ref. 13. The use of the free-electron g factor is consistent with our neglect of the Zeeman effect;^{1, 4, 11, 17} an error in $S(T)$ of less than 1 part in 10^4 is incurred thereby, while we only require answers correct to three decimal places--to be consistent

RIVERSIDE RESEARCH INSTITUTE

with the accuracy of the AFCRL Atmospheric Absorption Line Parameters Compilation²³ which these computations are intended to supplement.

In the microwave region (but not in the submillimeter wave region), $\nu_0 \ll kT/hc$, so that one may replace the factor in square brackets in Eq. (9b) by its linear approximation, leading to the well-known microwave approximation:^{1,11,12}

$$S(T) \approx \frac{8\pi^3}{3kT} (g_s e \beta_{Bohr})^2 I(K'', J''; K', J') \nu_0^2 \frac{\exp(-E''hc/kT)}{Q(T)}$$

(Microwave approximation) ... (9c)

(Note that in the optical region, the factor in square brackets in Eq. (9b) is approximately unity, i. e., the induced emission term may be neglected at 300K and below, as in Eq. (3) of Ref. 23.)

Choosing $T = T_s = 296K$, the standard temperature of the AFCRL compilation,²³ the thermal energy expressed in wavenumbers is $kT/hc = kT_s/hc = (296)/(1.438786(45)) = 205.729(6) \text{ cm}^{-1}$, so that Eq. (9b) becomes:

$$S(T_s=296K) \approx 1.4353 \cdot 10^{-22} I(K'', J''; K', J') \nu_0 \exp(-E''/205.729) \cdot [1 - \exp(-\nu_0/205.729)] / Q(T_s=296K).$$

... (9d)

Since we desire our computed line strengths to be consistent with those of AFCRL,²³ we must multiply $S(T_s)$ by the relative isotopic abundance of the molecule (our Table I, or Table 3 of Ref. 23), which is 0.99519 for the dominant isotope, $^{16}\text{O}_2$. Denoting the resulting quantity by $S_m(T_s)$, whose units are cm^{-1} per molecule of mixed oxygen per cm^2 , we obtain an expression like Eq. (9d) with the numerical factor in front replaced by the quantity, $1.4283967 \cdot 10^{-22}$ (retaining extra digits to avoid round-off error) which appears in line 22 of LINESTRENGTH2 (Fig. 5).

The rotational state sum $Q(T)/Q_v(T)$ is evaluated by summing Eq. (10) through $K = 79$ in the program ISOSTATESUM (Fig. 6), and

RIVERSIDE RESEARCH INSTITUTE

```

    ▽ LINESTRENGTH2
    THIS PROGRAM COMPUTES THE LINE STRENGTHS OF THE MICROWAVE
    AS WELL AS THE SUBMILLIMETER WAVE TRANSITIONS OF MOLECULAR
    OXYGEN. ELP, ELM, FP, AND FM MUST HAVE BEEN CALCULATED (E. G.
    BY 'PRINT 6002' OR A CALLING PROGRAM LIKE 'AFCRL60K25').
    THE ROTATIONAL PARTITION FUNCTION, 'SUM', CALCULATED
    BY 'ISOSTATESUM' IS ALSO REQUIRED. THIS PROGRAM CALLS
    'SUBMM02' TO OBTAIN THE SUBMILLIMETER FREQUENCIES AND
    LOWER STATE ENERGIES. THE MULTIPLICATIVE CONSTANT,
    SO, IS THE PRODUCT OF THE RELATIVE ISOTOPIC ABUNDANCE,
    (8/3) * ((PI)*3) * ((MAGNETIC MOMENT)*2) * (HPLANCK*SPEED-OFLIGHT),
    AND THE RECIPROCAL OF 'SUM', WHERE 'MAGNETIC MOMENT' IS THE
    PRODUCT OF THE BOHR MAGNETON AND TWICE THE FREE-ELECTRON G-
    FACTOR, AND HPLANCK IS PLANCK'S CONSTANT.
    KT+205.729*(TEMP+296)
    TEMP = :TEMP; 'K:   KT = ':KT:   INVERSE CM:   X = ':X
    S0←1
    +(X=1)/ONE;+(X=2)/TWO;+(X=3)/THREE
    →0; INCORRECT VALUE FOUND FOR ':X'; CALL ''PARAMSTEIN'''
    NLP←ELP+SPEEDOFLIGHT;NLM←ELM+SPEEDOFLIGHT
    THREE:S0←4.1616E-6+0.00407
    TWO:S0←S0×0.00407+0.99519
    ONE:S0←S0×1.4283967E-22+SUM
    SUBMM02
    NUF←FP+SPEEDOFLIGHT;NUM+FM+SPEEDOFLIGHT
    NLP←ELP+SPEEDOFLIGHT;NLM+ELM+SPEEDOFLIGHT
    ELP, ELM, FP AND FM ARE CALCULATED IN 'PRINT 6002' AND 'AFCRL60K25'
    SF←S0×F×NUF×((-ELF+KT))×(1-(*(-NUF+KT)))
    SG←S0×G×NUG×((-ELG+KT))×(1-(*(-NUG+KT)))
    SH←S0×H×NUH×((-ELH+KT))×(1-(*(-NUH+KT)))
    SP←S0×PP×NUP×((-NLP+KT))×(1-(*(-NUP+KT)))
    SM←S0×MM×NUM×((-NLM+KT))×(1-(*(-NUM+KT)))

```

Fig. 5: Listing of APL function LINESTRENGTH2

RIVERSIDE RESEARCH INSTITUTE

```

▽ ISOSTATESUM;KT;NINPUT;TERM1;TERM2;TERM3;TERM
[1]   A THIS PROGRAM COMPUTES THE ROTATIONAL PARTITION FUNCTION
[2]   OR STATE SUM FOR MOLECULAR OXYGEN. IT IS BASED ON THE ENERGY
[3]   LEVELS OF STEINBACH AND GORDY. THE PROGRAM SETS TEMP EQUAL
[4]   TO KELVIN TEMPERATURE TYPED IN RESPONSE TO 'QUAD' (.) PROMPT.
[5]   AT 296K, THE LAST TERM INCLUDED IN THE STATE SUM FOR 016=016
[6]   CONTRIBUTES ONLY 8.06E-17; FOR 016=018, THE LAST TERM IS 8.40E-16.
[7]   NINPUT←((2×140)-1)
[8]   →(X≠2)/SKIP
[9]   NINPUT←(180)-1
[10]  SKIP:GENINVCM
[11]  'PLEASE TYPE IN KELVIN TEMPERATURE: '
[12]  TEMP←.
[13]  KT←205.729×(TEMP+296)
[14]  TERM1←(1+2×NINPUT)×(*((-NUNN)÷KT))
[15]  TERM2←(-1+2×NINPUT)×(*((-NUNNMIN1)÷KT))
[16]  TERM3←(3+2×NINPUT)×(*((-NUNNPLU1)÷KT))
[17]  →(X≠2)/ADD
[18]  TERM1[1]←TERM2[1]←0;TERM3[1]←(TERM3[1])+3
[19]  ADD:TERM←TERM1+TERM2+TERM3
[20]  SUM←+/TERM
[21]  CLASSICAL←(1.5×KT×SPEEDOFLIGHT)÷B0
[22]  'ROTATIONAL STATE SUM = ',SUM,' (EXACT VALUE)'
[23]  →(X=2)/BYPASS
[24]  'CLASSICAL APPROXIMATION = (3÷2)×(KT÷B0)×SPEEDOFLIGHT = ',CLASSICAL
[25]  CONTINUE:RATIO←SUM÷CLASSICAL
[26]  'RATIO = ',RATIO
[27]  'TEMPERATURE = ',TEMP,'K; ISOTOPE = ',ISOTEXT[X;];'.'
[28]  →0
[29]  BYPASS:CLASSICAL←2×CLASSICAL
[30]  'CLASSICAL APPROXIMATION = (3×KT÷B0)×SPEEDOFLIGHT = ',CLASSICAL
[31]  →(X=2)/CONTINUE
▽

```

Fig. 6: Listing of APL function ISOSTATESUM

RIVERSIDE RESEARCH INSTITUTE

compared with the classical values,^{1,12,18} $3kT/2hcB_0$ for $^{16}\text{O}_2$ and $^{18}\text{O}_2$, and $3kT/hcB_0$ for $^{16}\text{O}^{18}\text{O}$. (The state sum contains twice as many rotational states in a heteronuclear diatomic molecule as in a homonuclear one.¹⁸) Appendix D lists some results.

The vibrational partition function $Q_V(T)$ has been approximated by unity at $T = T_s = 296\text{K}$. This is consistent with the AFCRL approximation of $Q_V(T_s) \approx 1.000$ (Table 2, Ref. 23). More precisely, in the harmonic oscillator approximation given by Eq. (10), $[Q_V(T_s=296\text{K})]^{-1} = 1 - \exp(-\Delta G_{1/2} \cdot hc/kT_s)$

$$= 1 - \exp(-1556.378/205.729)$$
$$\approx 1 - 5.1818 \cdot 10^{-4} \approx 0.999482, \quad (11)$$

leading to an overestimate of 5.2 parts in 10^4 in the values for $S_m(T_s)$ as given in this report. Thus, the third decimal place in the line strengths tabulated in this document will be in error by one unit, at most.

We now turn to the calculation of the normalized transition matrix elements (squared), $I(K'',J'';K',J')$, i. e., of the quantities F, G, H, PP, and MM in lines 27-31 of LINESTRENGTH2.

Transition Matrix Elements

Steinbach¹¹ has shown that the normalized magnetic-dipole transition matrix elements, both those for the microwave "fine structure" (or spin-reorientation¹⁸) transitions and those for the "forbidden" submillimeter rotational transitions, may be written in terms of the Wigner 6-j symbols^{20,24} and the eigenvector coefficients, α and γ , appearing in Eqs. (1) and (4). With $n'(J')$ denoting the final state, $n(J)$ the initial state, i. e., employing n instead of K and dropping the double primes, the results are displayed in Table II. These expressions may be simplified further: First, we note that for fixed $J \neq 0$, $\alpha_- = \gamma_+$ and $\alpha_+ = -\gamma_-$ (cf. Tables 8, 9, and 10 of Ref. 11). To prove this formally, let us first note that $d > 0$ from Eq. (3c).

RIVERSIDE RESEARCH INSTITUTE

Table II: Normalized Magnetic Dipole Transition Matrix Elements

Transition	Normalized Matrix Element ^a
$n(J) \rightarrow n'(J')$	$ \langle \psi_f \vec{\mu} \psi_i \rangle ^2 / (g_s^e \beta_{\text{Bohr}})^2$
Fine Structure Transitions:	
$n(n-1) \rightarrow n(n)$:	$6(2n-1)(2n+1) \gamma_i^2 \left\{ \begin{smallmatrix} 1 & n & n \\ n-1 & 1 & 1 \end{smallmatrix} \right\}^2$
$n(n+1) \rightarrow n(n)$:	$6(2n+1)(2n+3) \alpha_i^2 \left\{ \begin{smallmatrix} 1 & n & n \\ n+1 & 1 & 1 \end{smallmatrix} \right\}^2$
Rotational Transitions:	
$n(n) \rightarrow n+2 (n+1)$:	$6(2n+1)(2n+3) \alpha_f^2 \left\{ \begin{smallmatrix} 1 & n+1 & n \\ n & 1 & 1 \end{smallmatrix} \right\}^2$
$n(n+1) \rightarrow n+2 (n+1)$:	$6(2n+3)^2 \left[\alpha_i \alpha_f \left\{ \begin{smallmatrix} 1 & n+1 & n \\ n+1 & 1 & 1 \end{smallmatrix} \right\} + \gamma_i \gamma_f \left\{ \begin{smallmatrix} 1 & n+1 & n+2 \\ n+1 & 1 & 1 \end{smallmatrix} \right\} \right]^2$
$n(n+1) \rightarrow n+2 (n+2)$:	$6(2n+3)(2n+5) \gamma_1^2 \left\{ \begin{smallmatrix} 1 & n+2 & n+2 \\ n+1 & 1 & 1 \end{smallmatrix} \right\}^2$

^a After Table 2, Ref. 11. The quantities $\left\{ \begin{smallmatrix} j_1 & j_2 & j_3 \\ J_1 & J_2 & J_3 \end{smallmatrix} \right\}$ are Wigner's 6-j symbols (see Ref. 24).

RIVERSIDE RESEARCH INSTITUTE

Letting $(c - a)/2d = \xi$ in Eq. (4c), we find that

$$x_{\pm} \equiv (E_{\pm} - a)/d = \xi \pm \sqrt{1 + \xi^2},$$

so that $x_+ x_- = \xi^2 - 1 - \xi^2 = -1$, and $x_- = -1/x_+$. Letting $x_+ = \tan \theta$, Eq. (4c) then states that $\alpha_+ = \cos \theta$, $\gamma_+ = \alpha_+ x_+ = \sin \theta$. Since $x_- = -1/x_+ = -\cot \theta$, Eq. (4c) also states that $\alpha_- = \sin \theta$, $\gamma_- = \alpha_- x_- = -\sin \theta \cot \theta = -\cos \theta$. Thus, $\alpha_- = \gamma_+$, $\alpha_+ = -\gamma_-$, QED.*

Next, using Eq. (C.36) of Ref. 24 to evaluate the 6-j symbols, we obtain:

$$\left\{ \begin{matrix} 1 & n & n \\ n-1 & 1 & 1 \end{matrix} \right\}^2 = \frac{(n+1)}{6n(2n+1)} ; \left\{ \begin{matrix} 1 & n & n \\ n+1 & 1 & 1 \end{matrix} \right\}^2 = \frac{n}{6(n+1)(2n+1)} ;$$

$$\left\{ \begin{matrix} 1 & n+1 & n \\ n & 1 & 1 \end{matrix} \right\}^2 = \frac{n}{6(n+1)(2n+1)} ; \left\{ \begin{matrix} 1 & n+1 & n \\ n+1 & 1 & 1 \end{matrix} \right\}^2 = -\sqrt{\frac{(n+2)}{6(n+1)(2n+3)}} ;$$

$$\left\{ \begin{matrix} 1 & n+1 & n+2 \\ n+1 & 1 & 1 \end{matrix} \right\}^2 = \sqrt{\frac{(n+1)}{6(n+2)(2n+3)}} ; \left\{ \begin{matrix} 1 & n+2 & n+2 \\ n+1 & 1 & 1 \end{matrix} \right\}^2 = \frac{(n+3)}{6(n+2)(2n+5)} .$$

Inserting these results into the expressions in Table II, noting that $\left[\sqrt{\frac{n+2}{n+1}} + \sqrt{\frac{n+1}{n+2}} \right]^2 = (2n+3)^2(n+1)/(n+2)$, and replacing n by K once again, we obtain $I(K'', J''; K', J') = \frac{|\langle \psi_f | \mu | \psi_i \rangle|^2}{(g_s e \beta_{\text{Bohr}})^2}$:

$$MM = I(K, K-1; K, K) = [\gamma_+(K-1)]^2 (2K-1)(K+1)/K \quad (12)$$

$$PP = I(K, K+1; K, K) = [\alpha_-(K+1)]^2 (2K+3)K/(K+1) \quad (13)$$

$$F = I(K, K; K+2, K+1) = [\gamma_-(K+1)]^2 (2K+3) \cdot K/(K+1) \quad (14)$$

$$G = I(K, K+1; K+2, K+1) = [\gamma_-(K+1)]^2 (2K+3) \cdot [\alpha_-(K+1)]^2 \cdot (2K+3)^2(K+1)/(K+2) \quad (15)$$

$$H = I(K, K+1; K+2, K+2) = [\gamma_-(K+1)]^2 (2K+3) \cdot (K+3)/(K+2) \quad (16)$$

where the J -dependence of the alphas and gammas in Eqs. (12)-(16) is indicated explicitly by their arguments in parentheses.

* From Eq. (1), it is intuitively clear that θ represents the small (but non-zero) angle in Hilbert space through which $|\psi_{\pm}\rangle$ are rotated away from their Hund's case (b) approximations.

RIVERSIDE RESEARCH INSTITUTE

The equivalents of these six equations are contained in lines 41, 42, 45, and 46 of the program ABCD (Fig. 7). (To avoid possible division by zero, the dyadic APL function X REPLACE Y is used. It is listed following ABCD in Fig. 7. It replaces zero values of J and K by a small number during arithmetic operations (ABCD line 10) and, at the end of the calculations (line 41), it undoes the effects of this replacement.)

It is clear from Eqs. (14)-(16) that the submillimeter transitions would be strictly forbidden were γ_- actually zero (pure Hund's case (b) coupling) instead of merely small.¹¹ On the other hand, γ_+ (and a_-) are nearly equal to their case-(b) values of unity; thus, the microwave transitions (Eqs. (12)-(13)) are negligibly affected by the deviation from case (b) coupling.¹ The various types of allowed transitions^{1, 7, 8, 11} are shown in the energy level diagrams of Fig. 8.

The existence of a common factor in Eqs. (14)-(16) not only simplifies the calculation of the strengths of the "forbidden" lines, but also enables us to exhibit the asymptotic behavior of their relative strengths, since $a_-(K+1) \rightarrow 1$ as $K \rightarrow \infty$, i. e., $F : G : H \sim 1 : 4 : 1$. This is in agreement with the correspondence-principle argument of Gebbie, et al.⁸ On the other hand, in their final results (Table VII, column 6, and Eq. (63a)), Tinkham and Strandberg¹ (T-S) incorrectly and "unphysically" predicted "F"-type transitions to be much weaker than "H"-type transitions,⁸ an error carried over into the Russian literature.²⁵ Nevertheless, the intermediate results of T-S (Eqs. (60) and Table V) were essentially correct,¹ as pointed out by Gebbie, et al.⁸ Indeed, one easily deduces that $F : H = K(K+2)/(K+1)(K+3)$ both from our Eqs. (14), (16) as well as from the fifth and eighth of Eqs. (60) of T-S.¹ Thus, except for $I(K, K; K+2, K+1)$, our results for the transition matrix elements, given in Appendix B, are in close agreement with Table V of T-S.¹

To within the tabulated accuracy and limited spectral

RIVERSIDE RESEARCH INSTITUTE

V ABCD;J;Q;QQ;APC;AMC;ROOT;A;B;C;D;ALPHAG;BETAG;GAMMAG;COMMON

[1] THIS PROGRAM CALCULATES THE PARAMETERS A, B, C, D, AND THE VARIOUS ALPHAS, BETAS, AND GAMMAS

[2] APPEARING IN W. R. STEINBACH'S THERESIS. AND USES THEM TO COMPUTE THE TRANSITION MATRIX ELEMENTS

[3] FOR MOLECULAR OXYGEN. THE OUTPUTS ARE IN THE NOTATION OF TINKHAM AND STRANDBERG. I. E.

[4] I(K,J); J(K,J). SHORTHAND NOTATION: PP=I(K,K+1;K,K); MM=I(K,K-1;K,K); F=I(K,K;K+2,K+1);

[5] G=I(K,K+1;K+2,K+1); AND H=I(K,K+1;K+2,K+2).

[6] BETAP, BETAN, ALPHAG, ALPHAM, GAMMAP, GAMMAN, AND GAMMAO ARE AVAILABLE AS OUTPUT.

[7] THIS PROGRAM CALLS PARAMSTEIN AS A SUBROUTINE

[8] PARAMSTEIN

[9] J+(K+1)*K; K+NINPUT

[10] J+1E-4 REPLACE J; K+1E-4 REPLACE K

[11] Q+J*(J+1)

[12] A+(BU*x(J*(J-1))+(B1*x((J*(J-1))*2))*MU0*(J-1))+((MU1*x(J*(J-1))*2)+(2*i3)-(2*iJ*(1+2*xJ)))*(LAM0+(LAM1*x(J-1)))

[13] B+(B0*xQ)+(B1*xQ*2)+((2*i3)*(LAM0+LAM1*xQ))-(MU0+MU1*xQ)

[14] QQ+(J+1)*(J+2)

[15] L+(B0*xQ)+(B1*xQ*xQQ)+((2*i3)-(2*i(J+1)*(1+2*xJ)))*(LAM0+LAM1*xQQ))-(MU0*(J+2))+(MU1*xQQ*(J+2))

[16] D+(2*x(Q*0.5)+(1+2*xJ))*(LAM0+(LAM1*(Q+1)))

[17] WE NOW COMPUTE THE EIGENENERGIES AND EIGENVECTOR COEFFICIENTS IN TERMS OF A, B, C, AND D.

[18] EGEND+(2*x(B0+2*xB1))-(2*x(MU0+(2*xMU1)+((2*i3)*(LAM0+2*xLAM1))))

[19] EOJ+B

[20] APC+A+Q;AMC+A-Q

[21] ROOT+((AMC*2)+4)+D*2)*0.5

[22] EPJ+(APC*2)+ROOT;EMJ+(APC*2)-ROOT

[23] IN THE GROUND STATE. THE FOLLOWING SPECIAL VALUES HOLD:

[24] ALPHAG+0;BETAG+0;GAMMAG+1

[25] FOR STATES WITH N (= K) = J, ONLY BETA IS NONZERO.

[26] ALPHAO+(pK)0;BETA0+(pK)0;GAMMA0+(pK)0

[27] BETAP+;BETAN+(pK)0

[28] ALPHAP+D*((A-EPJ)*2)+D*2)*0.5

[29] ALPHAN+D*((A-EMJ)*2)+D*2)*0.5

[30] GAMMAP+ALPHAP*(EPJ-A)/D

[31] GAMMAN+ALPHAM*(EMJ-A)/D

[32] AT THIS POINT, THESE VECTORS ARE NOT YET IN PROPER CORRESPONDENCE TO NINPUT = K. WE NOW

[33] APPEND THE "GROUND STATE" VALUES AND THEN MAKE SURE THE DIMENSION IS THE SAME AS THAT OF K.

[34] ALPHAP+(pK)*(ALPHAG,ALPHAP);ALPHAM+(pK)*ALPHAM

[35] BETAP+(pK)*(BETAG,BETAP);BETAN+(pK)*BETAN

[36] GAMMAF+(pK)*(GAMMAP,GAMMAF);GAMMAN+(pK)*GAMMAN

[37] THE ALPHAS, BETAS, AND GAMMAS ARE GLOBAL VARIABLES (WHICH MAY BE OUTPUT AT WILL).

Fig. 7: Listings of the APL functions ABCD and X REPLACE Y

RIVERSIDE RESEARCH INSTITUTE

```

[38]    □ MAKE ARRAYS EOJ, EPJ, AND EMJ CONSISTENT WITH K+1 (=J FOR EPJ, EMJ) OR K (=J FOR EOJ).
[39]    EOJ←(0K)+B;EPJ←(0K)+EPJ;EMJ←(0K)+EMJ
[40]    □ WE NOW COMPUTE THE TRANSITION MATRIX ELEMENTS. NOTING THAT THE ALPHA AND GAMMA ARRAYS ARE SIMPLY RELATED.
[41]    PP←(ALPHAM*2)×K×(3+2×K)‡(K+1)
[42]    MM←(GAMMAP*2)×(K+1)×(-1+2×K)‡K
[43]    +(K[1]≥1)/SKIP
[44]    EOJ←(0K)+(1+EOJ);MM←(0K)+((GAMMAP*2)×(K+2)×(1+2×K)‡(K+1))
[45]    SKIP:COMMON←(GAMMA*2)×(3+2×K)
[46]    P←COMMON×K‡(K+1);G←COMMON×((ALPHAM×(3+2×K))×2)‡((K+1)×(K+2));H←COMMON×(K+3)‡(K+2)
[47]    K←0 REPLACE K;PP←0 REPLACE PP;MM←0 REPLACE MM;F←0 REPLACE F;G←0 REPLACE G;H←0 REPLACE H
[48]    'K = ' ;K;
[49]    'I(K,K+1;K,K)
[50]    ' ;PP
[51]    'I(K,K-1;K,K)
[52]    ' ;MM
[53]    ' ;
[54]    'I(K,K+2;K+2,K+1)
[55]    ' ;F
[56]    'I(K,K+1;K+2,K+1)
[57]    ' ;G
[58]    'I(K,K+1;K+2,K+2)
[59]    ' ;H

```

```

    □ RESULT←NEWZERO REPLACE VECTOR;ZERO;MASK;XSUB
[1]    ZERO←1E_40
[2]    MASK←(1 VECTOR)←ZERO
[3]    XSUB←MASK/MASK
[4]    VECTOR[XSUB]+NEWZERO
[5]    RESULT←VECTOR

```

Fig. 7 (Cont'd): Listings of the APL functions ABCD and REPLACE
T-1/306-3-14

RIVERSIDE RESEARCH INSTITUTE

Fig. 8: Allowed magnetic dipole transitions (After Ref. 11)

(a) Transitions allowed in $^{16}\text{O}_2$ and $^{18}\text{O}_2$ (b) Transitions allowed only in ^{18}O

RIVERSIDE RESEARCH INSTITUTE

coverage of Steinbach's thesis,¹¹ all of our transition matrix elements in Appendix B agree with those of his Tables 11-13. Steinbach has also noted¹¹ the discrepancy of these results with those tabulated by Tinkham and Strandberg.¹ We have been unable to ascertain whether or not our results also agree with those of Gebbie, et al, who only give integrated line strengths in units of $10^{-6} \text{ cm}^{-2} \text{ atm}^{-1}$.⁸ In Appendix E, we list our results for integrated line strengths in these units, taken to refer to 273K, so that $1(\text{cm-atm})_{\text{STP}} = 2.686754(84) \cdot 10^{19} \text{ molecules/cm}^2$.²³ The results in Appendix E exhibit discrepancies of as much as a factor of two with the results of Gebbie, et al.,⁸ but inasmuch as no temperature is specified in Ref. 8, the precise magnitude of the discrepancies is difficult to ascertain.

Line Widths

For molecular oxygen at pressures characteristic of altitudes below 40 km, pressure-broadening predominates.²⁶ Near an isolated transition frequency, pressure-broadened molecular absorption is well-approximated by a Lorentz line shape with half-width $\alpha = \alpha_0 \cdot p$ at half-maximum points, where p is the pressure.^{23,27} (Bold-face alphas are used to distinguish them from the quantities appearing in Eqs. (1), (4), (13), and Table II.) Then the absorption at the peak of the spectral line will be given by $S_0 = S(T)/\pi \alpha$, where $S(T)$ is given by Eq. (9),^{23,27*} and will fall off away from the peak in accordance with whatever lineshape is most suited to the particular spectral region:²⁸ Van Vleck-Weisskopf in the microwave region,¹² "kinetic" in the submillimeter region,^{29,30} and Lorentz or "super-Lorentz" in the infrared and visible regions.³¹

Of the line parameters required to perform atmospheric transmission calculations,²³ the linewidths for oxygen are the least accurately characterized ones, unfortunately. The experimental values of α_0 (in MHz/torr) measured for $^{16}\text{O}^{16}\text{O}$ in the microwave region by several investigators between 1952 and 1968 (at 300K)
* $S(T)$ actually should be replaced by $S_m(T)$. (See page 17.)

RIVERSIDE RESEARCH INSTITUTE

have been summarized conveniently in a review article by P. H. Krupenie.³² These experimental values, converted to $\text{cm}^{-1}/\text{atm}$ and rounded to two significant figures, have been employed in the line parameter compilations for molecular oxygen contained in this report. ($1 \text{ MHz/torr} = (760)/(29979.2458) \approx 0.02535 \text{ cm}^{-1}$ per atm.) To the degree of uncertainty (as much as 25%) inherent in the data,^{26,33} no correction has been made for a possible isotope effect in the line widths; instead, a crudely linear interpolation on K was made from Krupenie's Table 34,³² to describe the widths expected for the even-K states in $^{16}\text{O}^{18}\text{O}$ (see Fig. 8), and the tabulated values themselves³² were used for the odd-K states in all three isotopes considered.

Other than the relatively crude results in Ref. 8, no data are available in the literature concerning the widths of the submillimeter lines of molecular oxygen. If one assumes that the line widths depend on the value of K in the lower state, and one notes that "G" and "H" transitions with $K'' = n$ possess the same lower states as the microwave "+" transitions with the same n (see Fig. 8), then one may safely assume that these two types of submillimeter transition possess the same line widths as the associated microwave "+" transition. Somewhat arbitrarily, the line widths for "F" transitions have been taken as the arithmetic mean of the linewidths of the "+" and "-" transitions with the same value of n.

An alternative procedure of even less accuracy would have been to use the electron-optical data³⁴⁻³⁶ to deduce the submillimeter line widths. However, unlike the K-dependence found for the microwave line widths, the J-dependence exhibited by the line widths in the visible region³⁴⁻³⁶ is unlikely to be correct for the submillimeter lines.

For lines corresponding to higher values of K than have been measured in the microwave region, a lower limit of $0.032 \text{ cm}^{-1}/\text{atm}$ has been assumed. The line widths are entered in

RIVERSIDE RESEARCH INSTITUTE

lines 27-30 of AFCRLFILE (Fig. 9), lines 29-31 of AFCRL60K15 (Fig. 10), and similarly in the other "AFCRL"-format-setting programs listed (by name and short comment only) in Appendix A.

The determination of line widths near room temperature and 1 atm for molecular oxygen is complicated by the demonstrated breakdown of the independent-line approximation in the microwave region.^{26,33} The microwave line widths have been treated in the past by assuming ϵ_0 to be pressure-dependent,^{37,38} and more recently by means of several interacting-line theories.³⁹⁻⁴² Since the microwave-line-width situation in molecular oxygen is under current active study at several institutions,⁴³ it was decided to use the Krupenie compilation³² to obtain interim (± 10 to 25%) values for the line widths, pending further results expected during the next year.*

Line Parameters in "AFCRL Format"

McClatchey, et al²³ have described their compilation of molecular spectroscopic parameters for seven infrared-active molecules which occur naturally in the terrestrial atmosphere. As of 1 April 1975,⁴⁴ all of the submillimeter lines of oxygen were absent from the AFCRL computer tape, and the microwave lines were all represented as having the line width, 0.060 cm^{-1} per atm. It was in order to supply the data on molecular oxygen which was missing (and is required as input to the RRI SLAM program⁴⁵) that the calculations described in this Research Note were undertaken. Having performed the calculations described in the preceding sections, we therefore made use of the APL output-formatting program ΔFMT (described in Ref. 46) to cast our results into a form compatible with the AFCRL format.²³ This was accomplished by means of the eight APL programs whose names begin with "AFCRL" in the defined-function list in Appendix A. Two of these (for $^{16}\text{O}^{16}\text{O}$ in the vibrational ground state) are

* Since $S(T)$ has been calculated fairly precisely in this report, measurements of peak absorption in the submillimeter region should yield line-width values which can help clarify the microwave line-width situation (because of the relationships discussed above).

RIVERSIDE RESEARCH INSTITUTE

```

    ▶ AFCRLFILE;X;NU;S;EL;W;K;JU;KU;JL;TX;TEXT;CARD
    ▶   THIS PROGRAM LISTS THE FREQUENCY, LINE STRENGTH, LINEWIDTH, ENERGY
    [1]   OF LOWER STATE. QUANTUM NUMBERS OF UPPER AND LOWER STATE, LINE TYPE ID.
    [2]   DATE, ISOTOPE, AND MOLECULE. IN THE FORMAT OF THE AFCRL LINE PARAMETERS
    [3]   COMPILATION. UNITS ARE: INVERSE CM. INVERSE CM PER MOLECULE PER CM SQ.
    [4]   INVERSE CM/ATM. INVERSE CM. V'. J'. K'. (SF. SG. OR SH)
    [5]   MONTH AND YEAR. SECOND DIGITS OF ISOTOPIC SPECIES (66 MEANS 016=016).
    [6]
    [7]   AND MOLECULE (7 = OXYGEN).
    [8]   'REFNO' = 'REFNO'
    [9]   'TEMP' = 'TEMP'
    [10]  NU+(3*xP)ø0
    [11]  S+(3*xP)ø0
    [12]  EL+(3*xP)ø0
    [13]  X+1
    [14]  LOOP:NU[ (3*x)-2]~NU[X]
    [15]  NU[(3*x)-1]+NUG[X]
    [16]  NU[(3*x)]+NUH[X]
    [17]  S[(3*x)-2]+SP[X]
    [18]  S[(3*x)-1]+SG[X]
    [19]  S[(3*x)]+SH[X]
    [20]  EL[(3*x)-2]+ELF[X]
    [21]  EL[(3*x)-1]+ELG[X]
    [22]  EL[(3*x)]+ELH[X]
    [23]  X+X+1
    [24]  +(X*xP)/LOOP
    [25]  ▶ LINETHDS BASED ON KRUPENIE COMPILATION (1972):
    [26]  ▶ SEE PAGE 28 OF REPORT FOR DISCUSSION.
    [27]  W+0.048 0.045 0.045 0.044 0.044 0.043 0.042 0.042 0.041 0.041
    [28]  W+W.0.041 0.04 0.04 0.041 0.041 0.039 0.039 0.038 0.038 0.036 0.034
    [29]  W+W.0.037 0.036 0.036 0.036 0.036 0.035 0.035 0.035 0.035 0.035 0.032 0.032
    [30]  W-W.(-36+(3*xP))ø0.032)
    [31]  K+NINPUT
    [32]  JU~JU[(JU+(K+1). (K+1). (K+2))]
    [33]  KU~KU[(KU+(K+2). (K+2). (K+2))]
    [34]  JL~JL[(JL+(JL+K. (K+1). (K+1))]
    [35]  KL~KL[A(KL~K. K. K)]
    [36]  TX~(3*xP)p( P. G. H')
    [37]  TEXT~'F10.5.E10.3.BP5.3.F10.3.3 0  3.12.X1.12.X6.30  3.12.X1.12.3
    [38]  X+1
    [39]  LOOP2:CARD~TEXT AFMT(NU[X];S[X];W[X];EL[X];JU[X];KU[X];JL[X];KL[X];
    [40]  +(CARD[:21]*((ø(CARD[:21])ø'0'))/PRINT
    [41]  CARD[:21]~((ø(CARD[:21])ø'0'))ø'
    [42]  PRINT:@~CARD
    [43]  X+X+1
    [44]  +(X*xNU)/LOOP2
    [45]  ▶ CALLING SEQUENCE: ABCD. ISOSTATESUM. AFCRL60K15. AFCRLFILE.

```

Fig. 9: Listing of APL function AFCRLFILE

RIVERSIDE RESEARCH INSTITUTE

```

    V AFCRL60K15;Z;ZZ;NU;S;EL;W;K;JU;KU;JL;KL;TX;TEXT;CARD
    [1]   A THIS PROGRAM LISTS THE FREQUENCY, LINE STRENGTH, LINWIDTH, ENERGY
    [2]   A OF LOWER STATE, QUANTUM NUMBERS OF UPPER AND LOWER STATE, LINE TYPE ID,
    [3]   A DATE, ISOTOPE, AND MOLECULE, IN THE FORMAT OF THE AFCRL LINE PARAMETERS
    [4]   A COMPILATION. UNITS ARE: INVERSE CM. INVERSE CM PER MOLECULE PER CM SQ.
    [5]   A INVERSE CM/ATM. INVERSE CM. V*, J*, K*, V', J', K'. (K+ OR K-).
    [6]   A MONTH AND YEAR. SECOND DIGITS OF ISOTOPIC SPECIES (66 MEANS 016=016).
    [7]   A AND MOLECULE (7 = OXYGEN).
    [8]   +(X=1)/CONTINUE
    [9]   +0; 'WRONG ISOTOPE: THIS PROGRAM IS ONLY FOR 016=016.'
    [10]  ] CONTINUE:FP+ENN-ENNPLU1:FN+ENN-ENNMIN1:GENGHZ
    [11]  ] ELP AND FN ARE THE FREQUENCIES FOR THE K+ AND K- LINES (SEE 'PRINT 6002')
    [12]  ] ELP+ENNPLU1-ENNMIN1[1]:ELM+ENNMIN1-ENNMIN1[1]
    [13]  ] ELP AND ELM ARE THE LOWER STATE ENERGIES IN GIGAHERTZ (SEE 'PRINT 6002')
    [14]  ] LINESTRGTGHZ CALCULATES STRENGTHS, SP AND SM.
    [15]  ] FP AND MN MATRIX ELEMENTS FOR K+ AND K- LINES ARE COMPUTED BY ABCDLP.
    [16]  ] NU+(2*x*PP)0
    [17]  ] S+(2*x*PP)0
    [18]  ] EL+(2*x*PP)0
    [19]  ] Z*1
    [20]  ] LOOP:NU[(2*x*Z)-1]+(PP[Z])+SPEEDOFLIGHT
    [21]  ] NU[(2*x*Z)]+(FM[Z])+SPEEDOFLIGHT
    [22]  ] S[(2*x*Z)-1]+SP[Z]
    [23]  ] S[(2*x*Z)]+SM[Z]
    [24]  ] EL[(2*x*Z)-1]+(ELP[Z])+SPEEDOFLIGHT
    [25]  ] EL[(2*x*Z)]+(ELM[Z])+SPEEDOFLIGHT
    [26]  ] Z*Z+1
    [27]  ] +(2*x*PP)/LOOP
    [28]  ] LINWIDTHS BASED ON KRUPENIE COMPILATION (1972).
    [29]  ] W*0.045 0.05 0.044 0.047 0.042 0.044 0.041 0.044 0.04 0.039 0.038 0.039
    [30]  ] M*W 0.034 0.038 0.036 0.038 0.035 0.038 0.035 0.037 0.035 0.032 0.038
    [31]  ] B*W. (- 24+(2*x*PP))p0.032)
    [32]  ] K*MINPUT
    [33]  ] KL+KU~JU~JU[(JU-(K,K))]
    [34]  ] JL~*((2.(pK))(p((K+1).(K-1)))
    [35]  ] TX~*(2*x*PP)(-----)
    [36]  ] TEXT~,P10.5,E10.3,BF5.3,F10.3,] 0  J,X1,I2,X6,]0  J,I2,X1,I2,X1,I2,A1,X5,J75  66  7J,
    [37]  ] SORT~&NU
    [38]  ] ZZ*1
    [39]  ] LOOP2:Z~SORT[ZZ]
    [40]  ] CARD~TEXT AFMT(NU[Z];S[Z];W[Z];EL[Z];JU[Z];KU[Z];JL[Z];KL[Z];TX[Z])
    [41]  ] +(CARD[21]*((p(CARD[21])p'0;))/PRINT
    [42]  ] CARD[21]+((p(CARD[21]))p',-----)
    [43]  ] PRINT:J~CARD
    [44]  ] ZZ*ZZ+1
    [45]  ] +(ZZ*x*NU)/LOOP2

```

Fig. 10: Listing of APL function AFCRL60K15

RIVERSIDE RESEARCH INSTITUTE

listed in Figs. 9 and 10. The format specifications in line 37 of AFCRLFILE (Fig. 9) and line 36 of AFCRL60K15 (Fig. 10) are equivalent to the FORTRAN format:

```
FREQ  STRENGTH WIDTH  E''      V'      J'      K'  
(F10.5,  E10.3,  F5.3,  F10.3, 3X, I1, 3X, I2, 1X, I2, 6X,  
V''      J''      K''      ID      DATE      ISO      MO  
I1, 3X, I2, 1X, I2, 1X, A3, 5X,  I2, 2X, I2, 2X, I1)
```

This format is in accordance with the one given on page 6 of Ref. 23, except that the frequency is given to five decimal places (F10.5) instead of three (F10.3).

In Appendix F, the contents of the eight files generated by AFCRLFILE, AFCRLK2,...,AFCRL60K35 are listed. (There are two files each for the three isotopes ($^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, $^{18}\text{O}^{18}\text{O}$) in the vibrational ground state ($v = 0$) and $^{16}\text{O}^{16}\text{O}$ in the first excited vibrational state ($v = 1$); one for the submillimeter lines, the other for the microwave lines.) As indicated by the heading at the beginning of each file listing, the line parameters were generated by using Steinbach and Gordy⁷ for the molecular parameters (B_0 , B_1 , B_2 , λ_0 ; λ_1 , μ_0 , μ_1) in the vibrational ground state, and Albritton, et al⁵ for those of $^{16}\text{O}^{16}\text{O}$ in the $v = 1$ state. The APL function LINESTRENGTH2 (Fig. 5) or its abbreviated form, LINESTRENGTH22 (see Appendix A), was used to compute the line strengths at 296K. (For convenience, the vibrational partition function was ignored, i. e., set equal to unity, as discussed above.) The line widths were derived from Krupenie's compilation³² in the manner indicated in the preceding section.

For clarity, at the top of each page in Appendix F, the columns have been labelled with the appropriate headings: frequency (cm^{-1}); line strength ($\text{cm}^{-1}/(\text{molecule cm}^{-2})$); line width ($\text{cm}^{-1} \text{ atm}^{-1}$); lower state energy E'' (cm^{-1}); upper state quantum numbers, V', J', and K'; lower state quantum numbers, V'', J'', and K''; shorthand line identification (K^+ or K^- for

RIVERSIDE RESEARCH INSTITUTE

the microwave lines; SF, SG, or SH for the submillimeter lines); month and last digit of year in date of computation (75 = July 1975); isotope code (66 = $^{16}\text{O}^{16}\text{O}$, 68 = $^{16}\text{O}^{18}\text{O}$, 88 = $^{18}\text{O}^{18}\text{O}$); and molecular constituent (7 = oxygen).

The eight files listed in Appendix F were merged into a single file, ordered by frequency by means of a FORTRAN program (SRWRTMERGE) which employed the XDS Sigma 9 MERGE processor. A threshold criterion was then applied to the resulting merged file to select only the most "significant" lines: only lines whose strengths exceeded $3.7 \cdot 10^{-30} \text{ cm}^{-1}$ per molecule cm^{-2} (the "Existing Intensity Minimum at $T = 296\text{K}$ " given for O_2 in Table 3 of McClatchey, et al²³) were to be retained. (The zero frequency "lines" of zero strength in the listings for $^{16}\text{O}^{18}\text{O}$ in Appendix F--artifacts arising from the manner in which the APL programs were executed--are removed at this stage.) The resulting file, OXYGENEXIST, is listed in Appendix G. (This file was created by means of another FORTRAN program, NOSIG, which allows one to remove "cards" whose strengths lie below a user-specified level from any card-image file written in "AFCRL format".)

The file OXYGENEXIST in Appendix G contains the parameters of all "fine-structure" and "rotational" lines of the molecules, $^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$, which can be expected to be of significance in atmospheric absorption problems. A deck of punched cards containing the card-image records in this file was sent to AFCRL on 28 July 1975.

Summary and Comments

Calculations performed at RRI have been described which give current best estimates of the line parameters of all significant microwave and submillimeter wave absorption lines of the molecular oxygen isotopes, $^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$, at zero magnetic field. The transition frequency (given to the

RIVERSIDE RESEARCH INSTITUTE

nearest .00001 cm⁻¹ ± 0.3 MHz) and energy of the lower state (quoted to the nearest .001 cm⁻¹) have absolute accuracies on the order of .001 cm⁻¹ as judged by the degree of consistency between measured³⁻⁷ and predicted values (Appendix B). These results are certainly in agreement with recent low-resolution stratospheric Fourier-transform spectroscopic measurements⁴⁶ of the submillimeter emission by the earth's atmosphere between 35 and 200 cm⁻¹. The rms deviation between our calculated frequencies and the twenty-seven observed lines of ¹⁶O¹⁶O short of 200 cm⁻¹ is .05 cm⁻¹, which is within the .07 cm⁻¹ (unapodized) resolution of the measurements.

Integrated line strengths at 296K, accurate to within one unit in the third decimal place, have been calculated; the new results are in apparent disagreement (Appendix E) with earlier published line strengths⁸ for ¹⁶O¹⁶O, by a factor of approximately two. We note that these earlier line strengths,⁸ together with the strength data on water and ozone lines from the AFCRL compilation,²³ have been used recently to deduce the temperature of the cosmic background radiation,⁴⁷ as well as to determine the water content of the stratosphere.^{48,49} A closer look at the data analyses may be warranted in both cases⁴⁶⁻⁴⁹ to determine whether the deduced results are significantly affected by the change in oxygen line strengths to the new values we report.

The least certain parameters are the line widths, for which we chose interim values, based on Ref. 32. The line widths in the microwave region are currently under intensive study⁴¹⁻⁴³ so that we should be able to improve on the line width estimates during the next year. We pointed out that direct study of the submillimeter line widths could help to clarify some of the issues attending the more complicated problem of the microwave line widths. The line widths which we give here must be viewed as uncertain to ±10 to 25%.

RIVERSIDE RESEARCH INSTITUTE

Acknowledgments

The author wishes to thank D. Koppel and S. Rosenberg of RRI for their help with certain aspects of the computer programming. It is a pleasure to acknowledge helpful conversations with F. C. De Lucia, W. Gordy (both of Duke Univ.), P. H. Krupenie (NBS), H. J. Liebe (OT/ITS), R. A. McClatchey (AFCRL), M. Mizushima (Univ. of Colorado), L. S. Rothman (AFCRL), W. R. Steinbach (AFOSR), M. W. P. Strandberg (MIT/RLE), and R. N. Zare (Columbia Univ.). In particular, the communication to the author of several results prior to publication by Drs. Liebe, Mizushima, and Steinbach is especially appreciated. The work reported here was sponsored by the Advanced Research Projects Agency through the U. S. Army Missile Command, Redstone Arsenal, Alabama, under Contract No. DAAH01-74C-0419.

RIVERSIDE RESEARCH INSTITUTE

APPENDIX A

Brief Description of APL Notation and Output Formats

The intent of this Appendix is to enable the reader unfamiliar with APL to verify that the algebraic expressions given in this report have been implemented properly within the APL "functions" (programs), and to explain the APL output formats in Appendices B and E.

APL⁵⁰⁻⁵² is an interactive, time-sharing-oriented, programming language which is especially suited to working with arrays in one or more dimensions with a minimum of looping or branching. It uses a special symbol set,^{51,52} many of whose elements have intuitively clear meanings (e. g., the parenthesis pairs, (and), or the binary operators, +, -, *, etc.), but the same symbol may play different roles, depending on the context (e. g., 0 or p). The following rules are of principal importance in following the APL programs listed in this report:

1. Operations are performed from right to left, with no hierarchy between addition, multiplication, etc. In most of the programs listed, parentheses have been used liberally to make the resulting expressions look more like ordinary algebra. Examples: + means "multiply by reciprocal of everything to the right"; -/ means "sum the alternating series resulting from the placement of a binary minus between all elements of the array sequence beyond the slash (/)".

2. Operators can be unary or binary (+B means "take reciprocal of B"; A+B means "A divided by B" where A and B are arrays of the same "rank" (dimensions) or scalar); functions can be

RIVERSIDE RESEARCH INSTITUTE

niladic (e. g., GENGHZ), monadic, or dyadic (e. g., REPLACE, or the intrinsic^{51,52} function ΔFMT).

3. Substitution is indicated by an arrow pointing left; $M \leftarrow 5$ (equivalent to FORTRAN: $M = 5$) is not the same as $M = 5$ in APL, the latter (equivalent to FORTRAN: $M.EQ.5$) having 0 or 1 ("no" or "yes") as a result. (If M is an array, the logical relations return arrays of the same dimensions, filled with zeros and ones.)

4. APL has two kinds of minus signs. Negative numbers, such as in the exponents in Appendix C or in front of the elements of VECB1 in PARAMSTEIN, are preceded by the unary, upper-case minus, $-$; negation or subtraction is indicated by the binary, ordinary-looking, minus, $-$. Example: If A is $-5\ 4\ 0\ -3$, the result of the operation $-A$ is: $5\ -4\ 0\ 3$.

5. While standard texts⁵⁰⁻⁵² should be referred to for the meanings and syntax of the special APL symbols, the following occur sufficiently often in our programs to merit discussion:

, (comma) used as a binary operator means "concatenate": $0\ 1\ 2$, $0\ 1$ produces the result $0\ 1\ 2\ 0\ 1$. (See lines 27-30 of AFCRLFILE.) Used as a unary operator (as in line 34 of AFCRL60-K15), it means "ravel", or string out as a vector. (The special symbol \boxtimes means "transpose".)

: (semi-colon) is used for separation of independent expressions, as well as (in headers--line 0) to indicate local variables defined only within the program (as opposed to global variables such as SPEEDOFLIGHT, defined "forever").

* (asterisk) denotes exponentiation: $A * B$ means A^B (binary operator); $* B$ means e^B (unary operator).

| (vertical) denotes absolute value: $| A$ means $| A |$.

↑ (iota) is the "index" operator, with unity as the origin: -1×5 produces the result $-1 \times (1\ 2\ 3\ 4\ 5)$ or $-1\ -2\ -3\ -4\ -5$.

RIVERSIDE RESEARCH INSTITUTE

ρ (rho) used monadically is the dimension operator: ρA returns an integer vector with the dimensions of A . Example: $\rho(2 \ 1 \ 5)$ returns 3. (The integer vector has one element in this case since A was a vector.) ρ (rho) used dyadically is the reshape operator: $A \rho B$ returns an array whose dimensions are given by the left (vector) argument A , and whose (initial) values are given by the right argument B . If B does not contain sufficient values, it is recycled. Example: $2 \ 5 \ \rho \ 3$ returns the 2-by-5 array, 3 3 3 3 3
3 3 3 3 3

\uparrow and \downarrow are the "take" and "drop" operators. Examples: Let A be the array 5 3 2 4 0 3. Then $3\uparrow A$ yields 5 3 2; $3\downarrow A$ yields 4 0 3. See also lines 34-39 of the function ABCD (Fig. 7).

[and] (brackets) enclose line numbers in program listings and also indicate array indices. Examples: If $A \leftarrow 2 \ 3 \ 1 \ 0$, then $A[3]$ is 1; if M is a two-dimensional matrix, $M[5;]$ picks out the fifth row (all columns) of M .

6. Branching is indicated by the arrow pointing right, and the syntax is illustrated by the example: $\rightarrow(x \neq 2)/NEXT$ which is equivalent to the FORTRAN statement IF (X.NE.2.0) GO TO NEXT.

7. The APL system carries out all calculations to approximately 16 significant digits. The results are displayed rounded off to the number of digits specified by a system command,)DIGITS. Even after output display is called for, the full 16-digit-accuracy is retained in the system memory.

8. The "default" output format for the vector quantities in Appendix B is to be understood as a list, in one-to-one correspondence with the array NINPUT given at the start of each page. In Appendix E, the "take 5" operation has been applied before printing out results relating to Ref. 8, so that these arrays refer to the first five values of NINPUT. (Similar comments hold for the experimental values of ERL in Appendix B.) Note that trailing zeros are suppressed on display.

RIVERSIDE RESEARCH INSTITUTE

TABLE A-1: DIRECTORY OF APL FUNCTIONS CREATED FOR THIS REPORT

<u>FUNCTION NAME</u>	<u>COMMENT</u>	<u>PAGE</u> ^{**}
ABCD	USED TO CALCULATE TRANSITION MATRIX ELEMENTS	24-25
ABCDLP	VERSION OF ABCD USED FOR LINE PRINTER OUTPUT	N/A
ABCDUPPER	VERSION OF ABCD FOR V = 1 STATES OF 016=016	N/A
AFCRLFILE	LISTS LINE PARAMETERS OF 016=016 FOR V = 0	30
AFCRLK2	VERSION OF AFCRLFILE FOR 016=018 (V = 0)	N/A
AFCRLK3	VERSION OF AFCRLFILE FOR 018=018 (V = 0)	N/A
AFCRL5K1UPPER	VERSION OF AFCRLFILE FOR 016=016 FOR V = 1	N/A
AFCRL6UK1UPPER	LISTS '60 GHZ' LINES OF 016=016 FOR V = 1	N/A
AFCRL60K15	LISTS '60 GHZ' LINES OF 016=016 FOR V = 0	N/A
AFCRL60K25	VERSION OF AFCRL60K15 FOR 016=018 (V = 0)	31
AFCRL6UK35	VERSION OF AFCRL60K15 FOR 018=018 (V = 0)	N/A
COMPARAMAN	COMPUTES RMS DIFFERENCES BETWEEN PREDICTED AND OBSERVED LASER 'RAMAN' LINES	N/A
FREQLIST	PRINTS OUTPUT OF PARAMSTEINLP, SUBMM02, PRINT6002, AND COMPARAMAN (SEE APPENDIX B)	N/A
GRBSTRENGTH	PRINTS OUTPUT OF LINESTRENGTH22 AND COMPARES WITH RESULTS OF REF. 8 (SEE APPENDIX E)	N/A
GENGHZ	GENERATES ENERGY LEVELS IN GIGAHERTZ	12
GENINVCM	CONVERTS GENGHZ OUTPUT TO INV CM AND GENERATES MICROWAVE TRANSITION FREQUENCIES (ALSO INV CM)	13
ISOSTATESUM	COMPUTES ROTATIONAL PARTITION FUNCTION	19
ISOSTATESUMLP	VERSION OF ISOSTATESUM FOR LINE PRINTER OUTPUT	N/A
LINESTRENGTHROTIVB	VERSION OF LINESTRENGTH2 FOR 016=016, V = 1	N/A
LINESTRENGTH2	COMPUTES LINE STRENGTHS FOR ALL OXYGEN LINES	18
LINESTRENGTH22	COMPUTES LINE STRENGTHS OF SUBMILLIMETER LINES	N/A
PARAMETERS	GIVES B0, B1, B2, LAM0, LAM1, MU0, MU1 ACCORDING TO ANY ONE OF REFS. 1 THROUGH 6 FOR 016=016	
PARAMETERSLP	VERSION OF PARAMETERS FOR LINE PRINTER OUTPUT	73
PARAMSTEIN	GIVES B0, B1, B2, LAM0, LAM1, MU0, MU1 ACCORDING TO REF. 7 FOR ANY OF THREE ISOTOPES; SETS NINPUT AND TEMPERATURE	N/A
PARAMSTEINLP	VERSION OF PARAMSTEIN FOR LINE PRINTER OUTPUT	8
PARAMSTEINUPPER	VERSION OF PARAMETERS FOR 016=016, V = 1 (REF. 5)	74
PRINTGHZ	PRINTS OUTPUT OF GENGHZ	N/A
PRINTINVCM	PRINTS OUTPUT OF GENINVCM	N/A
PRINTSTATESUM	PRINTS STATE SUM VS. TEMPERATURE (SEE APPENDIX D)	N/A
PRINTSTRENGTH2	PRINTS OUTPUT OF LINESTRENGTH2	N/A
PRINTSUBMM02	PRINTS OUTPUT OF SUBMM02	N/A
PRINT6002	CALCULATES MICROWAVE TRANSITIONS, LOWER STATE ENERGIES, AND LASER 'RAMAN' LINES (IN GHZ), AND PRINTS RESULTS (SEE APPENDIX B)	N/A
REPLACE	BINARY FUNCTION WHICH REPLACES 'ZERO' VALUES	25
SUBMM02	CALCULATES SUBMILLIMETER TRANSITION FREQUENCIES AND LOWER STATE ENERGIES (IN INVERSE CM)	15

^{**} LISTINGS OF APL FUNCTIONS MENTIONED HERE BUT NOT APPEARING EXPLICITLY (MARKED N/A IN THIS COLUMN) ARE AVAILABLE FROM THE AUTHOR UPON REQUEST.

RIVERSIDE RESEARCH INSTITUTE

APPENDIX B

Molecular "Rotational" Parameters, Millimeter and Submillimeter

Wave Transition Matrices, Transition Frequencies, and Lower State Energies in the Ground ($^3\Sigma_g^-$, $v = 0$) State of $^{16}\text{O}^{18}\text{O}$,
 $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$, and in the First Excited Vibrational
State ($v = 1$) of $^{16}\text{O}_2$. According to References 1 through 7

For each of the ten sets of parameters studied, there are three pages of computer printout. The first of the three pages gives the rotational parameters, B0, B1, B2, LAM0, LAM1, MU0, and MU1 in GHz and in cm^{-1} , the Reference number, isotope code, the array of K-values, and the corresponding arrays of normalized transition matrices. The second page repeats the Reference number and array of K-values (NINPUT), followed by the submillimeter frequencies (cm^{-1} and GHz) and lower state energies (cm^{-1}) with respect to the ground state. The third page repeats the Reference number and NINPUT, followed by the microwave transition frequencies and lower state energies with respect to the ground state (GHz) and the predicted and observed "laser-magnetic-resonance" lines⁶ and their rms difference in MHz and cm^{-1} .

The sequence of the ten sets of parameters is as follows: Ground vibrational state of $^{16}\text{O}^{18}\text{O}$ ($v' = v'' = 0$), in order of Reference number (1 through 7); Ground states of $^{16}\text{O}^{18}\text{O}$, $^{18}\text{O}^{18}\text{O}$ (Ref. 7); first excited vibrational state ($v' = v'' = 1$) of $^{16}\text{O}^{18}\text{O}$ (Ref. 5). (In the last case, $\Delta G_{1/2}$ is not included in the lower state energy, as discussed in the text on p. 14.)

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ACCORDING TO TINKMAN AND STRANOBERG (REF. 1) ARE AS FOLLOWS:

```

    C = +3.1029 GHZ = 1.0437757984 INVERSE CM;
    C = -0.0001-71499 GHZ = -0.000392325E-6 INVERSE CM;
    C = 0 GHZ = C INVERSE CM;

    A40 = 54.90157 GHZ = 1.0884758736 INVERSE CM;
    A41 = 5.678E-5 GHZ = 1.8893976993E-6 INVERSE CM;
    A42 = 0.025267 GHZ = -0.008428163993 INVERSE CM;

```

TEMP = 296 REFNO = 1 ISOTOPES = 66

REFNO = 1
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

T-1/306-3-14

THE SUBMILLIMETER TRANSITIONS OF C16=O16 ARE AS

FOLLOWS (IN UNITS OF INVERSE CM⁻¹):

NUF:	12.2925742	23.8643608	35.3972662	46.913959	58.4183923	69.9106627	81.389830*	92.85497	104.303035	115.733727
	127.14794	138.534423	149.90078	161.24201	172.59626	183.841665	195.096353	206.318453	217.506068	226.657342
	239.77056	250.84343	261.67424	272.861555	283.802943	294.696705	305.540958			
NUG:	14.1693627	25.8139385	37.3850231	48.9298923	60.498158	71.9721127	83.4716627	94.9554898	106.42347	117.872778
	123.302209	140.709998	152.094358	163.433477	174.785522	186.088649	197.361002	208.600721	219.80594	230.97479
	242.205397	253.195887	264.244383	275.249008	286.207883	297.119128	307.980862			
NUM:	16.2936938	27.8255334	39.3585222	50.8793555	62.3799059	73.8723506	85.351268	96.8166242	108.265427	119.696415
	131.107808	142.497792	153.864534	165.206182	176.52088	187.806762	199.061958	210.284595	221.472799	232.624692
	243.738394	254.812027	265.84371	276.831561	287.733699	298.6668241	309.513305			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CM⁻¹) ARE AS FOLLOWS:

ELF:	3.96109688	18.3380022	44.2139579	81.567231	130.444172	190.784295	262.595195	345.86509*	440.580325	546.72534
	664.282703	793.233095	933.555313	1085.22627	1248.22098	1422.5126	1608.07238	1804.86969	2012.87201	2232.0496
	2462.35224	2703.7557	2956.21527	3219.68902	3494.13313	3779.50189	4075.7477			
ELG:	2.08430838	16.3884244	42.226201	79.5688167	128.404389	188.722845	260.513367	343.763701	438.459913	544.586288
	662.125288	791.05782	931.361732	1083.0148	1248.99172	1420.26561	1605.80773	1802.58742	2010.57216	2229.72755
	2460.0173	2701.40384	2953.84631	3217.30157	3491.72819	3777.07946	4073.3078			
ELH:	2.08430838	16.3884244	42.226201	79.5688167	128.404389	188.722845	260.513367	343.763701	438.459913	544.586288
	662.125288	791.05752	931.361732	1083.0148	1245.99172	1420.26561	1605.80773	1802.58742	2010.57216	2229.72755
	2460.0173	2701.40324	2953.84531	3217.30157	3491.72819	3777.07946	4073.3078			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(GHz)	368.522103	715.435538	1061.1833*	1406.44591	1751.3393*	2095.8689*	2440.00585	2783.73779	3126.92432	3469.40988
		3811.70503	4153.15751	4493.91226	4833.91384	5173.10684	5511.43496	5848.84153	6189.27161	6520.66849	6854.97547
		7148.13745	7520.09686	7850.79772	8180.18364	8508.19819	8834.78495	9159.88747			
NUG	(GHz)	424.786807	773.882408	1120.7748	1466.88127	1812.49051	2157.66966	2502.41749	2846.70596	3190.49469	3533.737
		3876.38272	4218.37961	4559.67415	4900.21197	5239.93814	5578.79734	5916.73393	6253.623	6589.61632	6924.405
		7590.62173	7921.84732	8251.75768	8580.29648	8907.40737	9233.03396				
NUH	(GHz)	487.273481	834.188504	1179.93881	1525.20479	1870.10253	2214.63736	2558.7804	2902.48538	3245.71585	3580.40924
		3930.51319	4211.97634	4612.74267	4952.75675	5291.96285	5630.30507	5967.72734	6304.17357	6639.58708	6973.41241
		7307.09323	7639.0724	7969.79393	8299.20143	8627.23844	8953.84862	9278.97544			

RIVERSIDE RESEARCH INSTITUTE

REFNO: 1
NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

-44-

016-016 ARE AS FOLLOWS:

F _P :	56.267039	58.44687	59.5914529	60.4353529	61.151168	61.8007158	62.4116423	62.9981712	63.5683689	64.1271513
	64.6776855	65.2221038	65.7618944	66.2981279	66.8315937	67.3628869	67.8924649	68.4206844	68.978283	69.4741234
	69.999754	70.5248711	71.0496	71.674449	72.098294	72.6224218	73.1466918			
F _M :	116.750697	62.4866746	60.3060983	59.1640137	58.3235206	57.6120207	56.9676967	56.3429024	55.7834142	55.2211658
	54.671241	54.130473	53.5967293	53.0685218	52.54478	52.024743	51.807295	50.49333686	50.0081276	49.9711648
	49.4629121	48.9562325	48.4505748	47.9466139	47.4437453	46.919811	46.4412467			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ)
RELATIVE TO THE GROUND STATE 1 ARE:

ELP1:	62.4859932	491.312605	1265.90966	2385.41311	3845.44673	5657.76855	7809.99426	10305.7745	13144.6975	14324.2862
	19850.0167	23715.7078	27921.5223	32467.9668	37393.892	42578.492	48140.9046	54040.2112	60275.4437	66845.5503
	73749.4634	80986.0318	86554.0546	96452.2744	104679.378	113233.994	122114.696			
ELM1:	0.487	2728	1245.19501	2386.68445	3852.29438	5661.95725	7815.43821	10312.4118	13152.4823	16335.1922
	23726.3995	27933.6875	32481.1964	37368.1788	42593.8301	48157.2893	54057.6306	60277.9035	66865.0533	73770.0003
	81007.6006	88576.6035	96475.9019	104704.032	1132859.674	122141.101				
THE PREDICTED LMR AND RAMAN LINES CONNECTING STATES N=j WITH STATES N=j+1 ARE:										
ERL1:	431.008778	775.74636	1120.34736	1464.76943	1808.95136	2152.83664	2499.34875	2839.4912	3182.14748	3524.28109
	3865.83651	4206.75424	4546.98078	4886.45562	5225.13126	5562.94219	5899.03449	6235.75289	6570.63965	6900.43868
	7237.09348	7568.54753	7898.74433	8227.63738	8555.14017	8881.22619	9205.82895			

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES
OBSERVED EXPERIMENTALLY ARE (IN GIGAHERTZ):

430.980697 775.6975 1120.34632 1464.76943 1808.95136 2152.83664 2499.34875 2839.4912 3182.14748 3524.28109
THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REF. 1 AND THOSE OBSERVED IS:
0.0773961657 GHZ = 77.9761657 MHZ = 0.00260100491 INVERSE CM.

T-1/306-3-14

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ACCORDING TO WILMFIT AND BARRETT
(REF. 2) ARE AS FOLLOWS:

```

AC = 3.100589 GHz = 1.43768C897 INVERSE CM/
B1 = -0.0014 GHz = -0.649897333E-6 INVERSE CM/
B2 = - GHz = 0 INVERSE CM

LAM0 = 59.501346 GHz = 1.98475126* INVERSE CM/
LAM1 = 5.845E-5 GHz = 1.999682136E-6 INVERSE CM/
LAM2 = 0.2525917 GHz = -0.0008229552187 INVERSE CM/
WU0 = -0.2455E-7 GHz = -0.818899937E-9 INVERSE CM.

TEMP = 296 REFNO = 2 ISOTOPE = 66
K = 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

I(K,K+1|K,K)
2.045198293* 6.710351231 1C.0028898 1A.00505647 1B.007965041 22.09924837 26.913350*6 3B.92398409 3A.932228847
38.93895307 *2.9444*1965 4B.9489432 50.95285305 5A.95905*3* 6B.96157727 6B.96380492 70.96574661*
74.96755954 78.96915608 82.97060063 86.97191437 90.9731137 94.97421301 98.97522*21 102.976157* 106.9770213

I(K,K+1|K,K)
2.6.538621158 10.73656197 14.81539172 18.85785994 22.8844*2*74 26.902613*7 30.91564873 34.92591144 38.93381957
*2.9*019888 46.945*9253 50.9*9589429 54.95359559 58.95681449 62.95961309 66.962068*9 70.7642*002 74.966617*09
78.96790749 82.969*698 86.970888905 90.97217297 94.97334991 98.97442953 102.975423* 106.9763*11

I(K,K+2|K+1)
0.04801706559 0.03964876905 0.03C4*353*6* 0.0244*452*4 0.02C3*958707 0.017*1829286 0.01522096825 0.013b1=911*2
0.01215597389 0.0110*92815 0.01012380951 0.0093*9011909 0.008685*09*6 0.00811220*379 0.007612323816 0.00717233099
0.006783310856 0.006316079613 0.00612466761 0.0058*392*757 0.005589643656 0.00538353312 0.0051471665*5 0.004953659527

I(K,K+2|K+1)
0.004775785192 0.00421180167 0.00446021782
0.3924567513 0.22845733 0.1465856896 0.1119079375 0.09055055993 0.07607103898 0.0656811909 0.05769567543
0.05150383665 0.0465786833 0.0424429205 0.039030*972 0.03613A01055 0.03365601795 0.03150367101 0.0296200563*2
0.02795850377 0.02648243859 0.02516298531 0.0239769563 0.02290553312 0.02193328396 0.021647*3*9 0.02023732157
0.01949397123 0.018809780* 0.01817826352

I(K,K+1|K+2)
0.1240455082 0.0634803048 0.04175113322 0.0310289473 0.02466616615 0.020467484895 0.0174845994*3 0.0152652937
0.01354845387 0.0128207615 0.0110620791 0.0114571031 0.008702777993 0.008737494*4 0.0081284*12 0.0076247660*
0.007188547608 0.0067988856*5 0.00645148325 0.006139958468 0.005859138671 0.005604810225 0.00537349585* 0.00516230259
0.004968804121 0.004790950*58 0.004626997796

```

RIVERSIDE RESEARCH INSTITUTE

REFNO = 2
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE SUBMILLIMETER TRANSITIONS OF O₃O₂O ARE AS

NUF:	123-66331552	35-3957897	44-9125382	58-0-733647	62-9105379	81-3911871	92-8579938	104-309434	115-74288
NUG:	123-66331552	35-3957897	44-9125382	58-0-733647	62-9105379	81-3911871	92-8579938	104-309434	115-74288
NUH:	123-6043333	250-9984441	273-0650633	284-033998	290-957629	305-834166	308-275335	308-275335	221-570272
NUI:	123-6043333	250-9984441	273-0650633	284-033998	290-957629	305-834166	308-275335	308-275335	221-570272
NUJ:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUK:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUL:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUM:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUO:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUP:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUQ:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUR:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUS:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUT:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUU:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUV:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUW:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUX:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUY:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272
NUZ:	123-317099	253-351953	264-423331	275-453385	286-439929	297-381175	308-275335	308-275335	221-570272

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CM.)

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(GHz)	NUG	(GHz)	NUI	(GHz)
368.50004	753.199396	1061.13908	1406.40252	1751.200853	2095.81652
381.2.15018	453.577495	4494.37475	4874.07842	5174.40633	5553.00381
7192.15059	792.24.74394	7886.13971	8186.28463	8815.12504	9842.07277
424.76515	773.04957	1120.73006	1466.83729	1812.45611	2157.66537
3876.02909	9218.99851	4960.99949	4901.28044	5241.28921	5580.7324
7262.016759	7535.02847	7927.21203	8287.88474	8857.25304	9191.26335
487.251427	834.152043	1179.89427	1525.16118	1870.07159	2214.63258
3930.95905	4272.59418	4613.56625	4953.82268	5265.32040	5931.7674
7311.10212	7603.72331	7975.14013	8305.30703	8634.17034	8991.0764
369.60004	763.22935	1062.13908	1407.40252	1752.200853	2093.81652
3850.87909	9187.72694	5850.87909	6187.72694	6523.58789	6858.14442
7290.255942	9009.02006	2902.59442	3224.59006	3588.50965	4997.35466

RIVERSIDE RESEARCH INSTITUTE

REFNO: 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
NINPUT: 1

THE MICROWAVE TRANSITION FREQUENCIES (IN GMHZ) OF

O16=016 ARE AS FOLLOWS:

FP:	56.266745	58.4469748	59.5909771	60.4347779	61.1505671	61.800167	62.4112322	62.9979965	63.5685371	64.1277813
	64.6789074	65.2240593	65.7547369	66.3020243	66.8367167	67.369427	67.9066221	68.4306706	69.4959867	69.48845
	70.0146156	70.5445267	71.0723201	71.6001112	72.1280021	72.6560769	73.1844116			
EM:	118.750334	62.4862826	60.3060722	59.1642148	58.3238842	57.6124905	56.9682115	56.3633426	55.7838	55.2213565
	54.6711348	54.1299869	53.5956778	53.0667988	52.5422374	52.0211923	51.5030568	50.9873618	50.4737348	49.9618933
	48.4515865	48.9426226	48.4348385	47.9280975	47.4222834	46.9172963	46.4130501			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAMERTZ)
RELATIVE TO THE GROUND STATE, ARE:

ELP:	62.0855886	491.0290441	1265.85151	2385.311	3849.32161	5657.59303	7809.81538	10305.6384	13144.6643	16326.4446
	19850.4788	23746.2138	27923.0432	32270.3075	37357.2935	42583.234	48147.3101	54048.6465	60286.316	66859.3372
	73766.675	81007.2407	88579.8917	96483.4317	104716.611	113278.125	122166.617			
ELM1:	0.487.250733	1265.013641	2386.58156	3852.14829	5661.78371	7815.258	10312.273	13152.449	16335.351	19860.4866
	23727.3079	27935.2323	32483.5427	37371.5879	42598.5827	48163.7077	54066.0898	60304.6021	66878.8638	73787.2401
	81028.8426	88602.5292	96507.1027	104741.3116	113303.884	122193.388				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=j WITH STATES N=j+1 (IN GMHZ) ARE:

ERL1	430.986682	775.705468	1120.30329	1464.7264	1808.92102	2152.83341	2496.4098	2839.59642	3182.33953	3524.58535
	3866.28014	4207.37012	4547.80195	4887.52066	5226.47368	5564.60687	5901.86645	6238.19868	6573.54978	6907.86601
	7241.0936	7573.17878	7904.06781	8233.70691	8562.04234	8889.02032	9214.58711			

THE CORRESPONDING LASER MAGNETIC RESONANCE ON RAMAN LINES
OBSERVED EXPERIMENTALLY ARE (IN GIGAMERTZ):

*30.984697	775.6976	1120.3	1464.63	1808.81	2152.77	2496.283	2839.006	3182.07	3524.221	3865.81
	THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REF. 2 AND THOSE OBSERVED IS: 0.213373325 GMHz = 213.373325 MHz = 0.00711736 INVERSE CM.									

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ACCORDING TO WELCH AND MIYASHIMA (REF. 3) ARE AS FOLLOWS:

```

    000 = -0.02525965 GHz = -0.008425378733 INVERSE CM1
    001 = -2.1980192057 INVERSE CM1
    010 = -0.00149472 GHz = -0.00049472 CM1
    011 = -5.87E-05 GHz = -1.950349265E-0 INVERSE CM1
    100 = -0.02525965 GHz = -0.008425378733 INVERSE CM1
    101 = -1.984751131 INVERSE CM1
    110 = -0.001494629 GHz = -0.000494629 CM1
    111 = -5.87E-05 GHz = -1.950349265E-0 INVERSE CM1

```

```

    EMP = 296   REFNO = 3   ISOTOPES = 66
    1   3   5   7   9   11  13  15  17  19  21  23  25  27  29  31  33  35  37  39  41  43  45  47  49  51  53
( K,K=1,K,K )
2.0451942623  6.710350719  10.8026091  14.8505638  18.87964931  22.88924706  26.91323893  30.9239824706
3.893895039  42.94441724  46.988917  50.9528502  54.955617043  58.98805104  62.9615373  66.96380111
7.819691516  82.97059611  86.97190941  90.97310849  94.97420754  98.9752185  102.9761515  106.9770115
( K,K=1,K,K )
2   6.538620329  10.73656115  14.8153907;  18.8578588  22.884423*  26.90261193  30.91584698  34.925
42.94019647  46.94544991  50.94985144  54.95359251  58.95661119  62.95960556  66.96206473  70.956423
78.96790302  82.96946304  86.9708801  90.97216777  94.9733444/  98.97442384  102.9754174  106.976333

```

$I(K, K+2, K+1)$	0.44801737665	0.03964928145	0.0304423627	0.02443619659	0.02035069317	0.01741960881	0.01622249717	0.01351765574
$I(K, K+2, K+1)$	0.0121579357	0.0104210934	0.01012821187	0.009151637219	0.00868259511	0.008115281009	0.007615628933	0.007176268695
$I(K, K+2, K+1)$	0.006787079017	0.006440082532	0.006128907591	0.005848404223	0.0055994365158	0.005363319865	0.00515238029	0.00495912375
$I(K, K+2, K+1)$	0.004781503006	0.00461776319	0.004466452672					
$I(K, K+2, K+1)$	0.3924592439	0.2128484674	0.145890585	0.1119120552	0.0905534765	0.07607678176	0.06561478556	0.0577031181
$I(K, K+2, K+1)$	0.05151214579	0.04653705253	0.0424529877	0.0390410773	0.03614986694	0.03466818043	0.0315173475	0.02962468214
$I(K, K+2, K+1)$	0.027974703328	0.02649890784	0.0251804037	0.02395333368	0.02294487983	0.02195361086	0.0205964358	
$I(K, K+2, K+1)$	0.01951230928	0.01883414762	0.01820367366					
$I(K, K+2, K+1)$	0.1280463377	0.06343885032	0.04175209546	0.03103009091	0.02466750688	0.02046499496	0.01748835572	0.0152669943
$I(K, K+2, K+1)$	0.01355069041	0.01218448147	0.01107183409	0.01014055935	0.00937048776	0.008706048593	0.0081132373499	0.007632238846
$I(K, K+2, K+1)$	0.00792540088	0.0068014211	0.00645595256	0.00614466485	0.005864087812	0.005610004861	0.005378938856	0.005167996967
$I(K, K+2, K+1)$	0.004974753028	0.004797157194	0.00463345824					

REFNO: 3
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE SUBMILLIMETER TRANSITIONS OF 016-016 ARE AS
FOLLOWS (IN UNITS OF INVERSE CHI)

NUF:	12.291039	23.0629875	35.3953573	46.9116331	58.4157134	69.9078008	81.3869569	92.0517942	104.3007118	115.732026
	127.143957	138.534712	149.902445	161.245378	172.9561598	183.849261	195.106497	206.331426	217.522165	228.676821
	235.0793497	250.870291	261.905292	272.896585	283.842248	294.740355	305.58897			
NUD:	14.01485642	25.8125556	37.3830954	48.9275203	50.4554768	71.9692325	83.4687716	94.9531812	106.421136	117.871099
	129.30114	140.710352	152.096142	163.456977	174.751032	186.096465	197.371419	208.61403	219.822421	230.494709
	242.129004	253.223407	264.276014	275.284913	286.248185	297.163907	308.030146			
NUH:	16.2529117	27.8241494	39.3566041	50.8729957	62.3772226	73.8694876	85.3488521	96.08139287	108.262121	119.694732
	131.010695	132.649812	153.866259	165.209597	176.526272	187.814222	199.072174	210.297652	221.488969	232.60233
	243.761552	254.839017	265.874721	276.8866747	287.813175	298.712077	309.561517			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CHI) ARE AS FOLLOWS:

ELF:	3.046108467	1.8-3372061	4.0-2117874	8.1-5806504	13.0-437759	19.0-775218	26.2-583274	34.5-850311	44.0-562853	54.6-705557
	664.261217	793.210756	933.533226	1085.20581	1422.50065	1608.1786	1804.87512	2012.89016	2232.07888	
	2462.40522	2703.83127	2956.31717	3219.822117	3494.29959	3779.70683	4075.95379			
ELB:	2.03429436	1.6-3876336	4.2-2240463	79.5647631	128.397995	188.713786	260.501459	343.748924	438.442435	544.566485
	662.10376	791.035114	931.33955	1082.99421	1245.97437	1420.25344	1605.80294	1802.59251	2010.58991	2229.76099
	2460.06972	2701.47816	2953.94645	3217.43284	3491.89365	3777.28328	4073.55418			
ELH:	2.08229436	1.6-3876338	4.2-2240463	79.5647631	128.397995	188.713786	260.501459	343.748924	438.442435	544.566485
	662.10376	791.035114	931.33956	1082.99421	1245.97437	1420.25344	1605.80294	1802.59251	2010.58991	2229.76099
	2460.06972	2701.47816	2953.94645	3217.43284	3491.89365	3777.28328	4073.55418			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(GHz)	368.49901	715.394369	1061.12612	1406.37538	1751.25903	2095.78314	2439.91959	2783.62676	3126.85686
		3011.67995	4153.16617	4493.96285	4834.01484	5173.26656	5511.66219	5849.14562	6185.66054	6521.15044
		7188.82882	7520.90211	7851.72312	8181.23379	8509.37693	8836.09354	9161.32683		
NUG	(GHz)	424.763768	773.840949	1120.7171	1466.81016	1812.4096	2157.58331	2502.33082	2846.62476	3190.42254
		3876.35887	4218.39024	4552.72761	4900.31689	5240.10331	5579.03166	5917.0463	6255.09128	6590.11038
		7258.84491	7591.44676	7922.79857	8252.833406	8581.50471	8908.74982	9234.51146		
NUM	(GHz)	487.250035	834.147014	1179.88131	1525.13404	1870.02209	2214.55153	2558.69422	2902.40856	3245.69676
		3930.8883	4271.98592	4612.79441	4952.85912	5292.1245	5605.53471	5968.03364	6305.955	6600.07225
		7307.775	7639.88154	7970.72361	8300.25627	8699	9055.16277	9280.42081		

RIVERSIDE RESEARCH INSTITUTE

REFNO: 3 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
 INPUT: 016

THE MICROWAVE TRANSITION FREQUENCIES (IN GHZ) OF

STATE 016 ARE AS FOLLOWS:

F ₀₁ :	56.2647579	58.444658	59.5909792	60.34347785	61.1505671	61.8001671	62.0112332	62.9979985	63.5685016	64.1277886
	66.6789184	69.2240747	65.7647576	66.3020493	66.8367509	67.3694694	67.9006738	68.4307328	68.9599491	69.0088537
	70.5446437	71.0724542	71.0002647	72.1281752	72.6562718	73.1846301				
F ₁₁ :	116.750331	122.4862673	60.306065	59.1642114	58.3238834	57.6124916	56.9682142	56.3633964	55.7838046	55.2213614
	54.1299608	53.595681	53.0668003	52.5422365	52.0211885	51.5030491	50.9873496	50.4737211	49.9618692	
	48.9425826	48.04347891	47.9280374	47.4222114	46.9172111	46.4129503				

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ
 RELATIVE TO THE GROUND STATE) ARE:

ELP:	62.485573	491.289028	1265.84506	2385.29159	3849.27507	5657.49699	7809.63728	10305.3335	13144.1735	16325.6925
	19849.3714	23714.6361	27920.8573	32467.3497	37353.372	42578.1271	4810.7611	34040.364	60275.9691	66846.5528
	73751.0348	80986.2776	88557.0867	96456.2101	104684.3338	113240.104	122122.082			
ELP:	0.487249341	1265.12998	2386.56216	3852.10175	5661.68466	7815.0803	10311.9681	13151.9583	16334.5989	19859.3792
	23725.7302	27933.0264	32480.5849	37367.6665	42593.4753	48157.1587	54057.8074	60294.4553	66656.0794	73771.5999
	81309.8797	88579.7244	96479.8823	104709.044	113265.843	122148.854				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
 STATES N-J WITH STATES N'-J'-N''-J'' (IN GHZ) ARE:

ELR:	430.985277	775.70434	1120.29033	1464.69926	1808.87152	2152.75136	2496.28293	2839.41057	3182.07822	3524.23001
	3865.80991	4206.76185	4547.02965	4886.55707	5225.28775	5563.16524	5900.43297	6236.1326	6571.11231	6905.01018
	7237.77078	7569.3369	7899.65115	8228.656	8556.29375	8882.50649	9207.23618			

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES
 OBSERVED EXPERIMENTALLY ARE (IN GHZ):

430.984697 775.6975 1120.3 1464.63 1808.84 2152.77 2496.283 2839.4006 3182.07 3524.221 3865.01
 THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REF. 3 AND THOSE OBSERVED IS:
 0.0242882435 GHZ = 0.000010.68597 INVERSE CM.

RIVERSIDE RESEARCH INSTITUTE

THE PARMETERS ACCORDING TO EVENSON AND MIZUSHIMA
REF. #1 ARE AS FOLLOWS:

```

L0 = -4.100516 GHz = 1.437678529 INVERSE CM-1
L1 = -0.3014496 GHz = -0.83535124E-6 INVERSE CM-1
L2 = -1.7E+10 GHz = -5.670589610E-12 INVERSE CM-1

LAM0 = 59.501342 GHz = 1.984751131 INVERSE CM-1
LAM1 = 5.847E+5 GHz = 1.990349265E-6 INVERSE CM-1

NU0 = -0.2525865 GHz = -0.008425378733 INVERSE CM-1
NU1 = -2.464E+7 GHz = -8.229019306E-9 INVERSE CM-1

TEMP = 296 REFNO = 1 ISOTOPE = 66
      1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

I(K,K+1)K(K+1)
 2.0451982623 6.710350713 10.8028891 14.8505638 18.87964931 22.89924706 26.91334843 30.92398235 34.93226651
 38.93695089 42.9444724 45.5129317 50.9528502 54.9561704 58.9590510 62.96157373 66.96380216 70.96578214
 74.96755531 78.9691516 82.57059611 86.97193094 90.97310549 94.97420755 98.97521835 102.9761515 106.977015

I(K,K+1)K(K+1)
 2.938620329 10.73656115 14.81539076 18.8578588 22.884423~ 26.90261193 30.91584698 34.92590947 38.9381776
 42.94019647 46.9454991 50.9498514 54.95359252 58.95681119 62.95960556 66.96206473 70.9423603 74.96616986
 78.96790302 82.96949509 86.9708801 90.97216778 94.97334447 98.9744238~ 102.9754174 106.9763349

I(K,K+1)K(K+1)
 0.014801737656 0.03944926124 0.03044423592 0.02443619611 0.02035069257 0.01741960807 0.0152224963 0.01351765475
 0.01215793458 0.0104910806 0.01012821049 0.009351635705 0.008688257864 0.008115279225 0.007615927019 0.00717626644
 0.00678707683 0.006440080208 0.006128905127 0.005888801619 0.0055936362411 0.005363316976 0.005152377295 0.0050912C575

I(K,K+1)K(K+1)
 0.004781499676 0.004617772839 0.004466449039
 0.3924592432 0.2128484662 0.1465890568 0.111912053 0.0905554738 0.07607677856 0.0656147818~ 0.05770311367
 0.0515121410~ 0.04653704725 0.04245298197 0.03904101~ 0.0361498609 0.0368687730~ 0.035151733957 0.02923467367
 0.02797402427 0.0269889828 0.02518039358 0.023995323 0.02292486F52 C.02195359903 C.02106874097 0.02025963C58

I(K,K+1)K(K+1)
 0.01951729569 0.01883413342 0.01820365885
 0.1280463375 0.06343884996 0.04175209498 0.0310300903 0.0206675061~ 0.02066675061~ 0.01748635473 0.01522673231
 0.01355063916 0.01218448009 0.01107183258 0.0101485577 0.0093704~/ 0.0093704~/ 0.0093704~/ 0.00763235e66
 0.007192538563 0.006803111756 0.006455949961 0.006455949961 0.006455949961 0.005864CA4Y33 0.005864CA4Y33 0.005864CA4Y33
 0.0305167993651 0.00497474953 0.00497474953 0.00497474953 0.00497474953 0.00497474953 0.00497474953 0.00497474953

```

RIVERSIDE RESEARCH INSTITUTE

REFNO: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE SUBMILLIMETER TRANSITIONS OF 016-016 ARE AS

NUF:	12.2918039	23.8629876	35.3953574	46.9116333	58.4157136	69.9078007	81.3869559	92.8517913	104.300711	115.732014
	127.143936	138.534677	149.90211	161.245298	172.561482	183.849099	195.106274	206.331126	217.521768	228.676304
	239.792834	250.86945	261.904237	272.899275	283.80637	294.738389	305.586591			
NUG:	14.1685942	25.8125557	37.3830985	48.9275206	60.455477	71.9692324	83.687706	94.9531783	106.4213	117.671087
	129.301393	140.710318	152.096088	163.456897	174.790916	186.096302	197.371196	208.61373	219.822024	230.99193
	242.12834	253.222566	264.274959	275.283603	286.246574	297.161942	308.027767			
NUM:	16.2529117	27.8241495	39.3566042	50.8729959	62.3772229	73.86694875	85.388511	96.8134257	108.263116	117.6972
	131.106974	142.498077	153.866206	165.209517	176.526156	187.814259	199.071951	210.297352	221.488573	232.643719
	243.760889	254.838176	265.873666	276.8865438	287.811564	298.710111	309.559138			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE

CHE) ARE AS FOLLOWS:

ELF:	3.96108467	18.3372061	44.2117875	81.5806506	130.437795	190.775219	262.583275	345.850311	440.56285	546.705548
	66.0261195	793.210712	933.533148	1085.20568	1248.2036	1422.50032	1608.06737	1804.88744	2012.88915	2232.07747
	2462.033	2703.82868	2956.31374	3219.81668	3494.29379	3779.69942	4075.98598			
ELQ:	2.08429436	16.387638	*2.22*0464	79.56*763*	128.397956	188.713787	260.50146	343.7*892*	438.4*231	544.566475
	662.103738	791.035071	931.339472	1082.99408	1249.9716	1420.25311	1605.80245	1802.5916	2010.58889	2229.75958
	2460.06779	2701.47956	2953.94302	3217.442336	3491.88786	3777.27587	4073.5448			
ELM:	2.048422436	16.387638	*2.22*0464	79.56*763*	128.397956	188.713787	260.50146	343.7*892*	438.4*231	544.566475
	662.103738	791.035071	931.339472	1082.99408	1249.9716	1420.25311	1605.80245	1802.5916	2010.58889	2229.75958
	2460.06779	2701.47956	2953.94302	3217.442336	3491.88786	3777.27587	4073.5448			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF (GHz)	364.49901	715.4394371	1061.12612	1406.37539	1751.25590	2095.91956	2439.91151	2783.62667	3126.85667	3463.5585
	3811.67931	4153.16513	4493.96124	4834.01243	5173.26309	5511.65732	5849.13893	6185.66514	6521.13855	6855.5431
	7188.80832	7520.8769	7851.69149	8161.19453	8509.32823	8836.03462	9161.25551			
NUG (GHz)	424.763768	773.840951	1120.7171	1466.81017	1812.4096	2157.58331	2502.33079	2846.62467	3190.02521	3533.68629
	3876.35823	4218.3892	*559.726*	*300.31448	5240.09984	5579.02679	5917.03961	6254.08228	6590.09849	6925.03168
	7258.82503	7591.42154	7922.76395	8252.7948	8581.45641	8900.6909	9234.4014			
NUM (GHz)	87.250035	834.147016	1179.88131	1525.1305	1870.0221	2214.55152	2558.69419	2902.40848	3242.40657	3545.35743
	3930.48819	4271.98688	4612.7928	4922.85672	5292.12103	5630.52984	5968.02696	6304.5548	6660.06036	6740.48323
	7307.76762	7639.85633	7970.69198	8300.217	8628.37362	8955.10384	9280.30949			

T-1/306-3-14

RIVERSIDE RESEARCH INSTITUTE

REFNO = 4
NAME = 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE MICROWAVE TRANSITION FREQUENCIES (IN GHz) OF
BIMOLECULES ARE AS FOLLOWS:

卷之三

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ)
RELATIVE TO THE GROUND STATE ARE:

RELATIVE TO THE GURU NANAK JI

STATES N-J WITH STATES N-J-ON-2 (IN GHZ) ARE:

ERL1	430.985278	775.700436	1120.23033	1464.69927	1808.87153	2152.75135	2496.28295	2839.41048	3182.07803	3522.22964
	3865.80926	7426.70926	11048.76081	14547.66156	18028.61567	21535.16055	24990.12628	28436.12527	31971.10042	35300.99469
	7927.80926	7426.70926	11048.76081	14547.66156	18028.61567	21535.16055	24990.12628	28436.12527	31971.10042	35300.99469

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES OBSERVED EXPERIMENTALLY ARE (IN GIGAHERTZ):

430.984697 775.6975 1120.3 1464.63 1808.84 2152.77 2496.283 2839.4006 3182.47 3524.221 3865.81
THE RMS DIFFERENCE BETWEEN RAPAN FREQUENCIES PREDICTED BY REF. 4 AND THOSE OBSERVED IS:
0.0242705979 GHZ = 24.2705979 MHZ = 0.00009180003 INVERSE CM.

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ACCORDING TO ALBRITTON, MARROP, SCHMELTEKOPF, AND ZARE
REF. 51 ARE AS FOLLOWS:

$\nu_0 = -3 \cdot 01 \cdot 0152$ GHz = $1 \cdot 037708$ INVERSE CM $^{-1}$
 $\nu_1 = -0 \cdot 001 \cdot 050995 \cdot 97$ GHz = $-4 \cdot 8 \cdot 10^{-6}$ INVERSE CM $^{-1}$
 $\nu_2 = -1 \cdot 1392134 \cdot 12$ GHz = $-3 \cdot 8 \cdot 10^{-4}$ INVERSE CM $^{-1}$

 LAM0 = $5 \cdot 9 \cdot 53 \cdot 28527$ GHz = $1 \cdot 98585$ INVERSE CM $^{-1}$
 LAM1 = 0 GHz = 0 INVERSE CM $^{-1}$

 $\nu_{U0} = -C \cdot 2529049176$ GHz = $-0 \cdot 008 \cdot 36$ INVERSE CM $^{-1}$
 $\nu_{U1} = 0$ GHz = 0 INVERSE CM $^{-1}$

 TEMP = 296 REFNO = 5 ISOTOPe = 66
 $\zeta = 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21 \cdot 23 \cdot 25 \cdot 27 \cdot 29 \cdot 31 \cdot 33 \cdot 35 \cdot 37 \cdot 39 \cdot 41 \cdot 43 \cdot 45 \cdot 47 \cdot 49 \cdot 51 \cdot 53$

 I(K,K+1)I(K,K)
 $2 \cdot 451932553 \quad 0 \cdot 710310398 \quad 10 \cdot 8024594 \cdot 3 \quad 14 \cdot 80505142 \quad 18 \cdot 87963217 \quad 22 \cdot 89923395 \quad 26 \cdot 91333908 \quad 30 \cdot 92397523 \quad 34 \cdot 93228177$
 $38 \cdot 9389 \cdot 826 \quad 42 \cdot 9 \cdot 4 \cdot 1652 \quad 46 \cdot 9 \cdot 898274 \quad 50 \cdot 9528529 \quad 54 \cdot 9 \cdot 95617469 \quad 58 \cdot 95905678 \quad 62 \cdot 9615809 \quad 66 \cdot 963805 \quad 70 \cdot 96756649$
 $78 \cdot 96912 \cdot 07 \quad 82 \cdot 9706098 \cdot 86 \cdot 9 \cdot 192 \cdot 69 \quad 90 \cdot 97312 \cdot 69 \quad 94 \cdot 97 \cdot 22496 \quad 98 \cdot 97523712 \quad 102 \cdot 9761713 \quad 106 \cdot 9770361$

 I(K,K+1)I(K,K)
 $2 \cdot 6 \cdot 93486807 \quad 10 \cdot 7364966 \cdot 1 \cdot 0 \cdot 81535008 \quad 18 \cdot 8573037 \quad 22 \cdot 88 \cdot 40263 \quad 26 \cdot 90259653 \quad 30 \cdot 91583566 \quad 34 \cdot 925901 \cdot 3 \quad 38 \cdot 93381249$
 $42 \cdot 9409357 \quad 46 \cdot 9454912 \quad 50 \cdot 9485258 \quad 54 \cdot 953564 \cdot 2 \quad 58 \cdot 95681576 \quad 62 \cdot 95961569 \quad 66 \cdot 96207235 \quad 70 \cdot 9642506 \quad 74 \cdot 9661803$
 $78 \cdot 96731481 \quad 82 \cdot 96947819 \quad 86 \cdot 97089449 \quad 90 \cdot 972183 \cdot 63 \quad 94 \cdot 97336138 \quad 98 \cdot 974 \cdot 199 \quad 102 \cdot 9754368 \quad 106 \cdot 9763555$

 I(K,K+2)I(K+1)
 $0 \cdot 0 \cdot 8047 \cdot 4729 \quad 0 \cdot 039689 \cdot 016 \quad 0 \cdot 030 \cdot 7389973 \quad 0 \cdot 02 \cdot 45855019 \quad 0 \cdot 02036782853 \quad 0 \cdot 0174227152 \cdot 0 \cdot 0152750882$
 $0 \cdot 01216267896 \quad 0 \cdot 01051 \cdot 42 \quad C \cdot 01012892962 \quad 0 \cdot 00935068927 \quad 0 \cdot 0086855541831 \quad 0 \cdot 00811025123 \quad 0 \cdot 00769887972 \quad 0 \cdot 007169101666$
 $0 \cdot 00677853388 \cdot 0 \cdot 006430198 \cdot 75 \quad 0 \cdot 00691171670 \cdot 0 \cdot 005835932795 \quad 0 \cdot 005586634682 \quad 0 \cdot 005386347788 \quad 0 \cdot 005136180639$
 $0 \cdot 0049441707621 \quad 0 \cdot 004762878929 \quad 0 \cdot 0059795061 \quad 0 \cdot 004445429668$

 I(K,K+2)I(K+2)
 $0 \cdot 3928604624 \quad 0 \cdot 213063637 \quad 0 \cdot 1467314882 \quad 0 \cdot 112014398 \quad 0 \cdot 09063164229 \quad 0 \cdot 076133978 \cdot 6 \cdot 0 \cdot 06565722833 \quad 0 \cdot 0577348298$
 $0 \cdot 05153223556 \quad 0 \cdot 04654813775 \quad 0 \cdot 04245599555 \quad 0 \cdot 039037033 \cdot 6 \quad 0 \cdot 03864443 \quad 0 \cdot 036512616 \quad 0 \cdot 0314935915 \cdot 0 \cdot 0266050889$
 $0 \cdot 02793881671 \quad 0 \cdot 0251343009 \quad 0 \cdot 0239441686 \cdot 4 \quad 0 \cdot 022868661181 \cdot 6 \quad 0 \cdot 02182329661 \quad 0 \cdot 0210025166 \quad 0 \cdot 020188809666$
 $0 \cdot 01944129252 \quad 0 \cdot 01875328972 \quad 0 \cdot 0181159592$

 I(K,K+1)I(K+2)
 $0 \cdot 12819859 \cdot 0 \cdot 06380336255 \quad 0 \cdot 0 \cdot 0 \cdot 173277678 \quad 0 \cdot 0 \cdot 0 \cdot 3108851 \cdot 53 \quad 0 \cdot 0 \cdot 2 \cdot 48827701 \quad 0 \cdot 0 \cdot 204839285 \quad 0 \cdot 0 \cdot 17497313 \quad 0 \cdot 0 \cdot 152750882$
 $0 \cdot 0 \cdot 1355592701 \quad 0 \cdot 0 \cdot 1218738 \cdot 67 \quad 0 \cdot 0 \cdot 107261872 \quad 0 \cdot 0 \cdot 101742206 \quad 0 \cdot 0 \cdot 09367539279 \quad 0 \cdot 0 \cdot 08126242995 \quad 0 \cdot 0 \cdot 07624616 \cdot 3$
 $0 \cdot 0 \cdot 07183485259 \quad 0 \cdot 0 \cdot 06792672984 \quad 0 \cdot 0 \cdot 0644464511 \quad 0 \cdot 0 \cdot 061315616666 \quad 0 \cdot 0 \cdot 05849695344 \quad 0 \cdot 0 \cdot 0559434147 \quad 0 \cdot 0 \cdot 0051484782$
 $0 \cdot 0 \cdot 04955376236 \quad 0 \cdot 0 \cdot 04776561344$

RIVERSIDE RESEARCH INSTITUTE

REFNO: 5
NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE SUBMILLIMETER TRANSITIONS OF 016-016 ARE AS

NUF:	12.291119*	23.08625055	35.3951905	46.9117578	58.161417	69.9085442	81.3880281	92.853265	104.302497	115.734198
	127.146558	138.537789	149.90608*	161.249618	172.5665559	183.855069	195.11330*	206.33941*	217.531557	228.647875
	233.806518	250.885631	261.92334	272.917849	283.867242	294.769683	305.62331*			
NU3:	1.0169100*	25.013227	37.3840592	48.9287333	60.4569396	71.9709405	83.4707204	94.9553689	106.423565	117.873778
	129.30436	140.713595	152.09972*	163.460958	174.795492	186.101508	197.377175	208.62066	219.830123	231.003719
	242.139602	253.23592*	264.290833	275.302078	286.269005	297.188561	308.05929			
NUM:	16.4254383*	27.8258095	39.3584545	50.8750218	62.3794057	73.8718082	85.3512921	96.81673	108.265761	119.697462
	131.109822	142.501053	153.869348	165.212882	176.592823	187.818333	199.07568	210.30268	221.494521	232.651135
	243.769782	254.843895	265.886662*	276.681113	287.830506	298.732947	309.586578			

THE RESPECTIVE OTHER STATE ENERGIES (ALSO IN INVERSE CM) ARE AS FOLLOWS:

ELF1	3.96326*	18.339464*	44.21751*	81.5843371	130.442383	190.780991	262.590403	345.859003	440.573314	546.718009
	664.275891	793.227791	933.553157	1086.22886	1248.23041	1422.5313	1608.10316	1804.91556	2012.93732	2232.13358
	2462.466887	2703.90557	2956.40417	3219.92332	3494.41981	3779.84895	4076.16262			
ELG:	2.08528301	16.388919	42.2258826	79.5673616	128.401585	188.712595	260.507711	343.756843	438.452248	544.578429
	662.118088	791.05210*	931.359517	1083.01752	1246.00147	1420.28486	1605.83932	1802.63464	2010.63874	2229.81174
	2460.13579	2701.55628	2954.0367	3217.5387	3492.01805	3777.42967	4073.72664			
ELM:	2.08528301	16.388919	42.2258826	79.5673616	128.401585	188.712595	260.507711	343.756843	438.452248	544.578429
	662.118088	791.05210*	931.359517	1083.01752	1246.00147	1420.28486	1605.83932	1802.63464	2010.63874	2229.81174
	2460.13579	2701.55628	2954.0367	3217.5387	3492.01805	3777.42967	4073.72664			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(GHz)	368.478459	715.381116	1061.121112	1406.379112	1751.27187	2095.80543	2439.9517	2783.66918	3126.9102	3469.62396
		3811.75791	4193.29844	4494.07133	4834.16193	5173.4153	5511.83631	5849.34969	6185.90007	6521.43202	6855.89002
		7189.21854	7521.362	7852.26479	8181.87127	8510.12582	8836.97277	9162.3564			
NUG	(GHz)	824.778943	773.862345	1120.7459	1436.84652	1812.45345	2157.63452	2502.38924	2846.69034	3190.49822	3533.76697
		3876.4472	4218.48747	4559.83501	4900.43625	5240.23703	5579.18284	5917.21885	6294.29005	6590.34128	6925.31727
NUM	(GHz)	7259.16265	7591.82201	7923.23585	8253.36066	8582.12887	8909.48891	9235.380517			
		487.294155	834.196781	1175.93678	1525.1978	1870.08754	2214.62109	2558.76737	2902.48484	3245.72587	3558.43963
		3930.57357	4272.07411	4612.887	4952.957	5292.23096	5630.65197	5968.16335	6304.71574	6640.24768	6974.70569
		7308.03421	7640.17666	7971.08045	8300.68694	8628.9149	8955.788843	9281.17211			

RIVERSIDE RESEARCH INSTITUTE

REFNO = 2
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

O1e=016 ARE AS FOLLOWS:

7P:	56.300+538	58.+812+99+	59.62+788	60.+67+059	61.+18158223	61.+82290861	62.+375+31	63.0211643	63.5880162	66.1+30052
	64.689258	65.2290252	65.76367+2	66.29+31+	66.82173+9	67.345303	67.8691575	68.3896731	68.9092597	69.+272+39
69.94+1099	70.+600086	70.975065	71.4893835	72.0030519	72.5161+48	73.0287257				
EHI:	118.815666	62.5152118	60.334+162	59.+1908806	58.+3+82598	57.6340833	56.9865795	56.3781226	55.79+992	55.227+99+
	54.6726604	54.+1263676	53.9866+04	53.051991+	52.5213512	51.9239307	51.+4691353	50.9+65081	50.+256925	49.+506+059
	49.3888+217	48.8715557	48.355657	47.8+06007	47.3262822	46.+8126137	46.2995208			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ)
RELATIVE TO THE GROUND STATE, ARE:

ELP:	62.5152118	491.328118	1265.90011	2385.36949	3889.38269	5657.6+11+	7809.82+69	10305.5709	13144+4677	16326.0506
	19849.0009	23715.1455	32921+4559	32468.0486	3735+184+	42979.0689	4814+8517	5+0+1.8271	60277+0+335	668+8.254
	73753.0156	80590.3898	94559+792+	964+59.383+	10+688.067	11324+4.93	1	122127+252		
EHI:	0 +87+29+155	1265+190+	2386+6+602	38852+21401	5661+1.561+	7815+27546	10312+2139	13192+2612	1633+9.659	19859+8.175
	23726.2481	27933.6329	32+81.2909	37368+48+	4259+4215	48158+2517	54059+0705	60295.9171	66867.7748	73773.5712
	81012.1782	88582.4118	964+83.0322	104712.74+	113270.196	122153.982				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=j WITH STATES N=j+1 IN GHz ARE:

ERL:	430.993701	775.715832	1120+312	1+64+72738	1808+90595	2152+79201	2+96+32982	2839+6366	3182+13785	3524+29662
	3845.88427	4206.84508	45+7.1233	4886+66328	5229+40923	5563+3054+	5900+2962	6236+32577	6571+338+2	6905+278+5
	7238.0901	7569.71766	7900+10539	8229+19756	8556+9384+	8883+27229	9208+1438			

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES
OBSERVED EXPERIMENTALLY ARE (IN GIGAHERTZ):

+30.98+697 775+6975 1120+3 1+64+63 1808+8+ 2152+77 2+96+283 2839+006 3182+07 3524+221 3865+81
THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REF. 5 AND THOSE OBSERVED IS:
0.0578997856 GHz = 57.8997856 MHz = 0.00193132896 INVERSE CH.

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ACCORDING TO TORUTA, MIZUSHIMA, HODARO, AND EVENSON
REF. 61 ARE AS FOLLOWS:

$\mu_0 = 3.1004608 \text{ GHz} = 1.0437676621 \text{ INVERSE CM}$
 $\mu_1 = -0.0050152 \text{ GHz} = -4.8433506626 \text{ INVERSE CM}$
 $\mu_2 = 0 \text{ GHz} = 0 \text{ INVERSE CM}$

$\lambda_{40} = 5.205013e2 \text{ GHz} = 1.98e751131 \text{ INVERSE CM}$

$\lambda_{41} = 5.8e7e-5 \text{ GHz} = 1.9503e9265e-6 \text{ INVERSE CM}$

$\mu_0 = -0.2525865 \text{ GHz} = -0.00842537e733 \text{ INVERSE CM}$

$\mu_1 = -2.46e-7 \text{ GHz} = -8.219019306e-9 \text{ INVERSE CM}$

TEMP = 296 REFNO = 6 ISOTOPe = 66
 $\kappa = 1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 14 \ 17 \ 19 \ 21 \ 23 \ 25 \ 27 \ 29 \ 31 \ 33 \ 35 \ 37 \ 39 \ 41 \ 43 \ 45 \ 47 \ 49 \ 51 \ 53$

λ	μ_0	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	μ_9	μ_{10}	μ_{11}	μ_{12}	μ_{13}	μ_{14}	μ_{15}	μ_{16}	μ_{17}	μ_{18}	μ_{19}	μ_{20}	μ_{21}	μ_{22}	μ_{23}	μ_{24}	μ_{25}	μ_{26}	μ_{27}	μ_{28}	μ_{29}	μ_{30}	μ_{31}	μ_{32}	μ_{33}	μ_{34}	μ_{35}	μ_{36}	μ_{37}	μ_{38}	μ_{39}	μ_{40}	μ_{41}	μ_{42}	μ_{43}	μ_{44}	μ_{45}	μ_{46}	μ_{47}	μ_{48}	μ_{49}	μ_{50}	μ_{51}	μ_{52}	μ_{53}	μ_{54}	μ_{55}	μ_{56}	μ_{57}	μ_{58}	μ_{59}	μ_{60}	μ_{61}	μ_{62}	μ_{63}	μ_{64}	μ_{65}	μ_{66}	μ_{67}	μ_{68}	μ_{69}	μ_{70}	μ_{71}	μ_{72}	μ_{73}	μ_{74}	μ_{75}	μ_{76}	μ_{77}	μ_{78}	μ_{79}	μ_{80}	μ_{81}	μ_{82}	μ_{83}	μ_{84}	μ_{85}	μ_{86}	μ_{87}	μ_{88}	μ_{89}	μ_{90}	μ_{91}	μ_{92}	μ_{93}	μ_{94}	μ_{95}	μ_{96}	μ_{97}	μ_{98}	μ_{99}	μ_{100}	μ_{101}	μ_{102}	μ_{103}	μ_{104}	μ_{105}	μ_{106}	μ_{107}	μ_{108}	μ_{109}	μ_{110}	μ_{111}	μ_{112}	μ_{113}	μ_{114}	μ_{115}	μ_{116}	μ_{117}	μ_{118}	μ_{119}	μ_{120}	μ_{121}	μ_{122}	μ_{123}	μ_{124}	μ_{125}	μ_{126}	μ_{127}	μ_{128}	μ_{129}	μ_{130}	μ_{131}	μ_{132}	μ_{133}	μ_{134}	μ_{135}	μ_{136}	μ_{137}	μ_{138}	μ_{139}	μ_{140}	μ_{141}	μ_{142}	μ_{143}	μ_{144}	μ_{145}	μ_{146}	μ_{147}	μ_{148}	μ_{149}	μ_{150}	μ_{151}	μ_{152}	μ_{153}	μ_{154}	μ_{155}	μ_{156}	μ_{157}	μ_{158}	μ_{159}	μ_{160}	μ_{161}	μ_{162}	μ_{163}	μ_{164}	μ_{165}	μ_{166}	μ_{167}	μ_{168}	μ_{169}	μ_{170}	μ_{171}	μ_{172}	μ_{173}	μ_{174}	μ_{175}	μ_{176}	μ_{177}	μ_{178}	μ_{179}	μ_{180}	μ_{181}	μ_{182}	μ_{183}	μ_{184}	μ_{185}	μ_{186}	μ_{187}	μ_{188}	μ_{189}	μ_{190}	μ_{191}	μ_{192}	μ_{193}	μ_{194}	μ_{195}	μ_{196}	μ_{197}	μ_{198}	μ_{199}	μ_{200}	μ_{201}	μ_{202}	μ_{203}	μ_{204}	μ_{205}	μ_{206}	μ_{207}	μ_{208}	μ_{209}	μ_{210}	μ_{211}	μ_{212}	μ_{213}	μ_{214}	μ_{215}	μ_{216}	μ_{217}	μ_{218}	μ_{219}	μ_{220}	μ_{221}	μ_{222}	μ_{223}	μ_{224}	μ_{225}	μ_{226}	μ_{227}	μ_{228}	μ_{229}	μ_{230}	μ_{231}	μ_{232}	μ_{233}	μ_{234}	μ_{235}	μ_{236}	μ_{237}	μ_{238}	μ_{239}	μ_{240}	μ_{241}	μ_{242}	μ_{243}	μ_{244}	μ_{245}	μ_{246}	μ_{247}	μ_{248}	μ_{249}	μ_{250}	μ_{251}	μ_{252}	μ_{253}	μ_{254}	μ_{255}	μ_{256}	μ_{257}	μ_{258}	μ_{259}	μ_{260}	μ_{261}	μ_{262}	μ_{263}	μ_{264}	μ_{265}	μ_{266}	μ_{267}	μ_{268}	μ_{269}	μ_{270}	μ_{271}	μ_{272}	μ_{273}	μ_{274}	μ_{275}	μ_{276}	μ_{277}	μ_{278}	μ_{279}	μ_{280}	μ_{281}	μ_{282}	μ_{283}	μ_{284}	μ_{285}	μ_{286}	μ_{287}	μ_{288}	μ_{289}	μ_{290}	μ_{291}	μ_{292}	μ_{293}	μ_{294}	μ_{295}	μ_{296}	μ_{297}	μ_{298}	μ_{299}	μ_{300}	μ_{301}	μ_{302}	μ_{303}	μ_{304}	μ_{305}	μ_{306}	μ_{307}	μ_{308}	μ_{309}	μ_{310}	μ_{311}	μ_{312}	μ_{313}	μ_{314}	μ_{315}	μ_{316}	μ_{317}	μ_{318}	μ_{319}	μ_{320}	μ_{321}	μ_{322}	μ_{323}	μ_{324}	μ_{325}	μ_{326}	μ_{327}	μ_{328}	μ_{329}	μ_{330}	μ_{331}	μ_{332}	μ_{333}	μ_{334}	μ_{335}	μ_{336}	μ_{337}	μ_{338}	μ_{339}	μ_{340}	μ_{341}	μ_{342}	μ_{343}	μ_{344}	μ_{345}	μ_{346}	μ_{347}	μ_{348}	μ_{349}	μ_{350}	μ_{351}	μ_{352}	μ_{353}	μ_{354}	μ_{355}	μ_{356}	μ_{357}	μ_{358}	μ_{359}	μ_{360}	μ_{361}	μ_{362}	μ_{363}	μ_{364}	μ_{365}	μ_{366}	μ_{367}	μ_{368}	μ_{369}	μ_{370}	μ_{371}	μ_{372}	μ_{373}	μ_{374}	μ_{375}	μ_{376}	μ_{377}	μ_{378}	μ_{379}	μ_{380}	μ_{381}	μ_{382}	μ_{383}	μ_{384}	μ_{385}	μ_{386}	μ_{387}	μ_{388}	μ_{389}	μ_{390}	μ_{391}	μ_{392}	μ_{393}	μ_{394}	μ_{395}	μ_{396}	μ_{397}	μ_{398}	μ_{399}	μ_{400}	μ_{401}	μ_{402}	μ_{403}	μ_{404}	μ_{405}	μ_{406}	μ_{407}	μ_{408}	μ_{409}	μ_{410}	μ_{411}	μ_{412}	μ_{413}	μ_{414}	μ_{415}	μ_{416}	μ_{417}	μ_{418}	μ_{419}	μ_{420}	μ_{421}	μ_{422}	μ_{423}	μ_{424}	μ_{425}	μ_{426}	μ_{427}	μ_{428}	μ_{429}	μ_{430}	μ_{431}	μ_{432}	μ_{433}	μ_{434}	μ_{435}	μ_{436}	μ_{437}	μ_{438}	μ_{439}	μ_{440}	μ_{441}	μ_{442}	μ_{443}	μ_{444}	μ_{445}	μ_{446}	μ_{447}	μ_{448}	μ_{449}	μ_{450}	μ_{451}	μ_{452}	μ_{453}	μ_{454}	μ_{455}	μ_{456}	μ_{457}	μ_{458}	μ_{459}	μ_{460}	μ_{461}	μ_{462}	μ_{463}	μ_{464}	μ_{465}	μ_{466}	μ_{467}	μ_{468}	μ_{469}	μ_{470}	μ_{471}	μ_{472}	μ_{473}	μ_{474}	μ_{475}	μ_{476}	μ_{477}	μ_{478}	μ_{479}	μ_{480}	μ_{481}	μ_{482}	μ_{483}	μ_{484}	μ_{485}	μ_{486}	μ_{487}	μ_{488}	μ_{489}	μ_{490}	μ_{491}	μ_{492}	μ_{493}	μ_{494}	μ_{495}	μ_{496}	μ_{497}	μ_{498}	μ_{499}	μ_{500}	μ_{501}	μ_{502}	μ_{503}	μ_{504}	μ_{505}	μ_{506}	μ_{507}	μ_{508}	μ_{509}	μ_{510}	μ_{511}	μ_{512}	μ_{513}	μ_{514}	μ_{515}	μ_{516}	μ_{517}	μ_{518}	μ_{519}	μ_{520}	μ_{521}	μ_{522}	μ_{523}	μ_{524}	μ_{525}	μ_{526}	μ_{527}	μ_{528}	μ_{529}	μ_{530}	μ_{531}	μ_{532}	μ_{533}	μ_{534}	μ_{535}	μ_{536}	μ_{537}	μ_{538}	μ_{539}	μ_{540}	μ_{541}	μ_{542}	μ_{543}	μ_{544}	μ_{545}	μ_{546}	μ_{547}	μ_{548}	μ_{549}	μ_{550}	μ_{551}	μ_{552}	μ_{553}	μ_{554}	μ_{555}	μ_{556}	μ_{557}	μ_{558}	μ_{559}	μ_{560}	μ_{561}	μ_{562}	μ_{563}	μ_{564}	μ_{565}	μ_{566}	μ_{567}	μ_{568}	μ_{569}	μ_{570}	μ_{571}	μ_{572}	μ_{573}	μ_{574}	μ_{575}	μ_{576}	μ_{577}	μ_{578}	μ_{579}	μ_{580}	μ_{581}	μ_{582}	μ_{583}	μ_{584}	μ_{585}	μ_{586}	μ_{587}	μ_{588}	μ_{589}	μ_{590}	μ_{591}	μ_{592}	μ_{593}	μ_{594}	μ_{595}	μ_{596}	μ_{597}	μ_{598}	μ_{599}	μ_{600}	μ_{601}	μ_{602}	μ_{603}	μ_{604}	μ_{605}	μ_{606}	μ_{607}	μ_{608}	μ_{609}	μ_{610}	μ_{611}	μ_{612}	μ_{613}	μ_{614}	μ_{615}	μ_{616}	μ_{617}	μ_{618}	μ_{619}	μ_{620}	μ_{621}	μ_{622}	μ_{623}	μ_{624}	μ_{625}	μ_{626}	μ_{627}	μ_{628}	μ_{629}	μ_{630}	μ_{631}	μ_{632}	μ_{633}	μ_{634}	μ_{635}	μ_{636}	μ_{637}	μ_{638}	μ_{639}	μ_{640}	μ_{641}	μ_{642}	μ_{643}	μ_{644}	μ_{645}	μ_{646}	μ_{647}	μ_{648}	μ_{649}	μ_{650}	μ_{651}	μ_{652}	μ_{653}	μ_{654}	μ_{655}	μ_{656}	μ_{657}	μ_{658}	μ_{659}	μ_{660}	μ_{661}	μ_{662}	μ_{663}	μ_{664}	μ_{665}	μ_{666}	μ_{667}	μ_{668}	μ_{669}	μ_{670}	μ_{671}	μ_{672}	μ_{673}	μ_{674}	μ_{675}	μ_{676}	μ_{677}	μ_{678}	μ_{679}	μ_{680}	μ_{681}	μ_{682}	μ_{683}	μ_{684}	μ_{685}	μ_{686}	μ_{687}	μ_{688}	μ_{689}	μ_{690}	μ_{691}	μ_{692}	μ_{693}	μ_{694}	μ_{695}	μ_{696}	μ_{697}	μ_{698}	μ_{699}	μ_{700}	μ_{701}	μ_{702}	μ_{703}	μ_{704}	μ_{705}	μ_{706}	μ_{707}	μ_{708}	μ_{709}	μ_{710}	μ_{711}	μ_{712}	μ_{713}	μ_{714}	μ_{715}	μ_{716}	<
-----------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	---

REF#0 = 0
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

-58-

THE SUBMILLIMETER TRANSITIONS OF 016-016 ARE AS FOLLOWS (IN UNITS OF INVERSE CHI):

NUF:	12.2917841	23.8629476	35.395291	46.911532	58.4195675	69.9076039	81.3866937	92.8514611	104.30313	115.731553
	127.14328	138.53415	149.901905	161.244881	172.561232	183.849124	195.106712	206.332149	217.523584	226.679166
	233.797041	250.875355	261.912253	272.905878	283.854375	294.755886	305.605553			
NUG:	14.1685748	25.8125159	37.3830222	48.9274194	60.4553314	71.9690328	83.4685085	94.9528483	106.420731	117.870626
	125.300885	140.705791	158.95185	163.456479	174.790667	186.096328	197.371635	208.614753	219.82384	230.97054
	242.1132547	253.225471	264.282974	275.294206	286.260311	297.179337	308.049729			
NUM:	16.02528919	27.8241064	36.3565377	50.8728446	62.3770771	73.8692877	85.3485889	96.8135956	108.262717	119.694258
	131.106466	142.4977581	153.865703	165.209099	176.525907	187.812485	199.07236	210.298375	221.046658	232.046658
	243.765096	254.844082	265.881682	276.876041	287.825302	298.727007	309.581101			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CHI) ARE AS FOLLOWS:

ELFI	3.96108467	18.3211059	44.211727	81.5805235	130.437531	190.774844	262.5827	345.849474	440.561683	546.703982
	664.2559167	793.206177	933.530087	1085.20211	1248.19561	1422.49609	1608.06317	1804.87064	2012.08641	2232.07654
	2462.40523	2703.83482	2956.32579	3219.83675	3494.32446	3779.74383	4076.04788			
ELG:	2.08429397	16.3876176	42.2239898	79.56466361	128.399767	188.713412	260.500885	343.748067	438.441264	54.4564909
	662.101711	791.032836	931.349471	1082.99052	1245.91018	1420.24888	1605.79825	1802.58883	2010.58615	2229.75885
	2460.06973	2701.48171	2953.95507	3217.44842	3491.91853	3777.32028	4073.60571			
ELH:	2.08429397	16.3876176	42.2239898	79.56466361	128.399767	188.713412	260.500885	343.748067	438.441264	54.4564909
	662.101711	791.032836	931.349471	1082.99052	1245.91018	1420.24888	1605.79825	1802.58883	2010.58615	2229.75885
	2460.06973	2701.48171	2953.95507	3217.44842	3491.91853	3777.32028	4073.60571			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(0MHz)	715.3293171	1061.12413	1406.37235	1751.25467	2095.77715	2439.91169	2783.61677	3126.84471	3469.54468
	3813.66403	4153.14935	4493.94441	5173.2556	5511.65809	5849.15209	6185.68221	6521.193	6855.62893	7231.11746
	7188.93444	7521.05394	7851.93181	8181.51241	8503.74008	8836.55915	9161.91394			
NUG	(0MHz)	424.763186	773.839758	1120.71511	1466.80713	1812.40524	2157.57732	2502.32293	286.61478	3533.67247
	3876.34302	4218.37342	4559.71094	4900.30192	5240.09236	5579.02756	5917.05276	6254.11294	6540.15294	6925.11746
	7258.95115	7591.59857	7923.00425	8253.11266	8581.86823	8909.2154	9235.09855			
NUM	(0MHz)	487.249442	834.145816	1179.87932	1412.77774	1652.13101	1870.01773	2214.54553	2558.0334632	2902.39858
	3930.47297	4271.9621	4612.77774	4952.24442	5292.11354	5630.53091	5968.04011	6304.58867	6640.11481	6940.56932
	7307.99374	7640.03337	7970.9323	8300.53448	8628.78546	8955.62837	9281.00792			

T-1/306-3-14

RIVERSIDE RESEARCH INSTITUTE

REFNO = 6
NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

TIME MICROWAVE TRANSITION FREQUENCIES (IN GHZ) OF
Q1e=016 ARE AS FOLLOWS:

RF:	56.2647695	58.4465871	59.5909848	60.4347834	61.1505718	61.8001717	62.4112376	62.9980032	63.5685058	64.12277927
	64.6789221	65.2240781	65.7647605	66.3020515	66.8367523	67.3694693	67.9046732	68.44307308	68.9599375	69.4889318
	70.0167097	70.5446343	71.0724424	71.6002502	72.1281576	72.6562509	73.1846056			
FR:	116.750331	62.4862556	60.306058	59.1642058	58.3238784	57.6124869	56.9682096	56.34333919	55.7830002	55.2213572
	54.6711356	54.129957	53.5956776	53.0667974	52.5422343	52.021187	51.5030486	50.9873502	50.4737231	49.9618727
	49.4915602	48.9425898	48.4347984	47.9280492	47.0222259	46.9172287	46.4129712			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ
RELATIVE TO THE GROUND STATE) ARE:

ELP:	62.4855614	491.288416	1265.84325	2385.28778	3849.26822	5657.48578	7809.62007	10305.3084	13144.1384	16325.6452
	19849.3099	23714.5588	27920.7632	32467.2389	37353.2463	42577.9904	48146.6203	5404.02297	60275.8584	69546.4827
	73751.035	80988.3841	88557.3448	946456.6771	104685.084	113241.213	122123.657			
ELM:	0.487248748	1265.12817	2386.65836	3852.09492	5661.67346	7815.0631	10311.943	13151.9232	16334.5517	19859.3177
	23725.6529	27932.9323	32460.4741	37367.5408	42593.3387	48157.0179	54057.6731	60294.3426	66866.0094	73771.6002
	81009.9862	88579.9827	96480.3493	104709.79	113266.952	122150.428				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=j WITH STATES N=j+N+2 (IN GHZ) ARE:

ERL:	430.984672	775.699229	1120.28833	1464.69623	1808.86716	2152.74536	2496.27509	2839.40657	3182.07	3524.21581
	3868.79405	4206.74502	4547.01298	4886.54215	5225.27679	5563.31611	5900.1394	6236.15594	6571.15487	6905.08049
	7237.87703	7569.48874	7899.85986	8228.93463	8556.6573	8882.97212	9207.82331			

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES
OBSERVED EXPERIMENTALLY ARE (IN GIGAHERTZ):

+30.984697 775.6975 1120.3 1464.63 1808.8 2152.77 2496.283 2839.4006 3182.07 3524.2221 3865.081
THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REF. 6 AND THOSE OBSERVED IS:
0.0237967896 GHZ = 22.7967896 MHZ = 0.00079377546 INVERSE CH.

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS OF MOLECULAR OXYGEN ACCORDING TO STEINBACH AND GORDY (1975),
REF. 7, ARE AS FOLLOWS FOR O16-O16:

$$\mu_0 = 4.3 \cdot 10^{-6} \text{ GHz} = 1.43767659 \text{ INVERSE CM}^{-1}$$

$$\mu_1 = 4.0 \cdot 10^{-14.501} \text{ GHz} = 4.48370129 \cdot 4 \cdot 10^{-14} \text{ INVERSE CM}^{-1}$$

$$\mu_2 = 0 \text{ GHz} = 0 \text{ INVERSE CM}^{-1}$$

$$\lambda_{A0} = 5.9 \cdot 10^{12} \text{ GHz} = 1.984751097 \text{ INVERSE CM}^{-1}$$

$$\lambda_{A1} = 5.8 \cdot 10^{12} \text{ GHz} = 1.950682829 \cdot 10^{-6} \text{ INVERSE CM}^{-1}$$

$$\mu_0 = -0.252256 \text{ GHz} = -0.008425362055 \text{ INVERSE CM}^{-1}$$

$$\mu_1 = -2.47 \cdot 10^{-7} \text{ GHz} = -8.239033151 \cdot 10^{-9} \text{ INVERSE CM}^{-1}$$

$$\text{TEMP} = 296 \quad \text{REFNO} = 7 \quad \text{ISOTOPE} = 66$$

$$k = 1 \quad 3 \quad 5 \quad 7 \quad 9 \quad 11 \quad 13 \quad 15 \quad 17 \quad 19 \quad 21 \quad 23 \quad 25 \quad 27 \quad 29 \quad 31 \quad 33 \quad 35 \quad 37 \quad 39 \quad 41 \quad 43 \quad 45 \quad 47 \quad 49 \quad 51 \quad 53$$

I(K, K+1, K, K)	2.451952494	6.0710250609	10.08288901	14.085056373	18.087964924	22.0899247	26.091334858	30.092348229	34.093228646
	38.93895084	42.94441719	46.094896164	50.095285015	54.095617038	58.095905098	62.096157368	66.096380111	70.096578205
	74.96755524	78.96915153	82.97039605	86.97190934	90.097310842	94.097420747	98.097521843	102.09761514	106.0977015
I(K, K+1, K, K)	2.6.536619985	10.073656097	14.081539064	18.085785587	22.088442332	26.090261186	30.091584691	34.092590941	38.093381772
	42.94019641	46.094544985	50.09985138	54.095359246	58.095681114	62.09596095	66.096206467	70.096423597	74.09661698
	78.96790296	82.96946503	86.97088003	90.097216771	94.09733444	98.097442377	102.09754173	106.09763348	

I(K, K+2, K+1)	0.04801750574	0.03964939083	0.03044432343	0.02443627	0.02035075795	0.01741966803	0.01522455279	0.01351770909
	0.0121579877	0.01104916066	0.0102826303	0.009351688615	0.008688311458	0.008115333765	0.00761568271	0.00717632369
	0.006787135344	0.006440140344	0.006128967005	0.0058486653345	0.005594428082	0.00536338666	0.005152447077	0.004954192592
	0.004781573962	0.004617349.66	0.004466528076					
I(K, K+2, K+1)	0.3924602786	0.2128490511	0.146589477	0.1119123908	0.09055576444	0.07607704021	0.0651502519	0.05770334572
	0.051512366	0.04653726862	0.04245320216	0.03904162226	0.03615008305	0.0336689927	0.03151757002	0.02963.90913
	0.02797426541	0.026499157	0.02518064778	0.02399558444	0.02292513767	0.02195387615	0.021065C2646	0.0202594277
	0.0195175989	0.01883444594	0.01882038096					
I(K, K+2, K+1)	0.12804646821	0.06344390222	0.04175221499	0.03103018413	0.0246675854	0.0204650454	0.01748641962	0.01526705468
	0.01355069836	0.01218453807	0.01014861512	0.009370504803	0.008706105189	0.008132430925	0.00763229731	
	0.007192600572	0.006803175282	0.00645601514	0.006144729068	0.00586415377	0.005610072657	0.00537900858	0.005164068702
	0.004974826852	0.004797223185	0.004633544048					

REFNO: 7
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

T-1/306-3-14

THE SUBMILLIMETER TRANSITIONS OF 016=016 ARE AS FOLLOWS (IN UNITS OF INVERSE CM⁻¹):

NUF:	12.2917867	23.8629518	35.3953043	44.9115624	58.9156257	69.9076988	81.3863469	92.8516174	104.300632	115.731988
	127.14000	138.53895	149.60285	161.246052	172.562669	183.850662	195.108792	206.336612	217.526475	228.682531
	233.80093	250.87982	261.917348	272.91166	283.860902	294.76322	305.616758			
NUG:	14.1685753	25.81252	37.3830454	48.9274496	60.4553389	71.9691304	83.4686615	94.9530743	106.42105	117.871061
	140.710535	152.096527	163.457651	174.792103	186.058066	197.373715	208.617216	219.882731	231.00042	242.136438
	253.232937	264.218071	275.299989	286.26684	297.186774	308.057937				
NUH:	16.2528925	27.021136	35.3565511	50.872925	62.3771349	73.8693856	85.3487422	96.8138219	108.293037	119.69469
	131.107042	142.498295	153.866645	165.210271	176.527393	187.816023	196.07447	210.300388	221.49328	232.649947
	243.768897	254.888548	265.826778	276.881824	287.88183	298.734943	309.589308			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CM⁻¹) ARE AS FOLLOWS:

ELFI	3.96108462	18.03371865	44.2117319	21.50505419	130.43758	190.774951	262.582905	345.849833	440.562268	546.704887
	664.260508	793.210093	933.532747	1085.20572	1248.20439	1482.5023	1608.07112	1804.88066	2012.69866	2232.09192
	2462.42398	2703.85746	2956.35289	3219.86895	3494.26244	3779.78833	4076.09972			
ELGI	2.084294	16.3876183	42.2239908	79.5646547	128.397816	188.71352	240.501091	343.748446	438.44185	544.565814
	662.103051	791.034452	931.339071	1082.99412	1245.97495	1420.25505	1605.0505	1802.59806	2010.59864	2229.77403
	2460.08847	2701.850434	2953.98217	3217.48062	3491.98565	3777.36478	4073.69848			
ELHI	2.084294	16.3876183	42.2239908	79.5646547	128.397816	188.71352	240.501091	343.748446	438.44185	544.565814
	662.103051	791.034452	931.339071	1082.99412	1245.97495	1420.25505	1605.0505	1802.59806	2010.59864	2229.77403
	2460.08847	2701.850434	2953.98217	3217.48062	3491.98565	3777.36478	4073.69848			

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE!

NUF (GHz)	3.684488434	715.393298	1061.12453	1406.37326	1751.2564	2095.78009	2439.91629	2783.62356	3126.85429	3469.55772
	3811.68135	4153.17164	4493.9744	4834.03503	5173.29866	5511.71019	5849.21207	6185.75605	6521.27966	6855.52982
	7189.05104	7521.1878	7852.08455	8181.689573	8509.93575	8836.77902	9162.15992			
NUG (GHz)	424.763201	773.439882	1120.71551	1466.80804	1912.40697	2157.58025	2502.32752	2846.62255	3190.42257	3533.68551
	3876.36027	4218.39571	4559.73916	4900.33708	5240.0351	5579.07967	5917.11511	6254.91679	6590.023961	6925.21837
	7259.06778	7591.73247	7923.15704	8253.28603	8582.06397	8909.43529	9235.3446			
NUH (GHz)	487.249458	834.145942	1179.87972	1525.13192	1870.01946	2214.54847	2558.69092	2902.4537	3245.042253	3588.35995
	3930.49024	4271.9914	4612.80597	4952.87433	5292.15661	5630.58273	5968.0247	6254.91679	6590.023961	6925.21837
	7308.01037	7640.16726	7997.108508	8300.70828	8628.98118	8955.84828	9281.23395			

RIVERSIDE RESEARCH INSTITUTE

REFNO: 7
NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE MICROWAVE TRANSITION FREQUENCIES (IN GHZ) OF
016-016 ARE AS FOLLOWS:

FPI:	56.2647671	58.4446535	59.5909801	60.4347778	61.1505654	61.8001648	62.4112304	62.997996	63.5685289	64.1277864
	64.6789168	65.2240741	65.7647584	66.3020516	66.8367551	67.36976	67.900683	68.430745	68.959866	69.488564
	70.0167406	70.544672	71.0724876	71.6003038	72.1282203	72.6563234	73.1846888			
FMI:	118.750329	62.4862566	60.3060604	52.1642098	58.3238638	57.6124937	56.9682178	55.7834013	55.2213685	
	54.6711476	54.1259695	53.5956903	53.06681	52.8422465	52.0211985	51.503059	50.9873591	50.4737301	49.9618713
	49.451562	48.9425882	48.4347929	47.9280392	47.4222108	46.9172079	46.4129441			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ
RELATIVE TO THE GROUND STATE) ARE:

ELP:	62.4855623	491.288437	1265.8434	2385.28834	3849.2697	5457.48899	7809.62623	10305.3192	13144.156	16325.6724
	19849.3501	2374.6163	2792.8429	32467.3468	37383.3894	42578.1766	48140.8586	54040.5303	60276.2309	66846.9438
	73751.597	80989.0627	88558.1975	96457.6423	104686.2222	113242.547	122125.211			
ELM:	0 487.24876	1265.12932	2386.55891	3852.09638	6661.67666	7815.06924	10311.9537	13151.907	16334.9788	19859.3579
	23725.7104	27933.012	32480.5821	37367.6839	42893.5248	48157.2562	54057.9737	60294.7171	64246.4705	73772.1622
	81010.6648	88580.7952	96481.3148	104710.928	113268.286	122151.982				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=J WITH STATES N=J-N=2 (IN GHZ) ARE:

ERL:	430.984691	775.699359	1120.28874	1464.69714	1808.86889	2152.7483	2496.27949	2839.40737	3182.07566	3524.22887
	3865.81132	4206.76733	4547.04121	4886.57728	5229.31985	5563.21325	5900.20179	6236.22978	6571.24153	6905.18138
	7237.99363	7869.62859	7900.01259	8229.10794	8556.89296	8883.19196	9208.06926			

THE CORRESPONDING LASER MAGNETIC RESONANCE OR RAMAN LINES
OBSERVED EXPERIMENTALLY ARE (IN GIGAHERTZ):

430.984697 778.6975 1120.3 1464.63 1808.84 2152.77 2496.283 2839.4006 3182.07 3524.2221 3865.81
THE RMS DIFFERENCE BETWEEN RAMAN FREQUENCIES PREDICTED BY REP. 7 AND THOSE OBSERVED IS:
0.023542295 GHZ = 23.942295 MHZ = 0.000-85285099 INVERSE CH.

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS OF MOLECULAR OXYGEN ACCORDING TO STEINBACH AND GOROV (1975),
REF. 7, ARE AS FOLLOWS FOR 016-018:

LAM0 = 59.459097 GHz = 1.98e+67e246 INVERSE CM ₁	LAM1 = 5.0312E-5 GHz = 1.071892e+7e-6 INVERSE CM ₁
NU0 = -0.238488 GHz = -0.00795510339* INVERSE CM ₁	NU1 = -6.19E-7 GHz = -2.0647617e-9 INVERSE CM ₁
TEMP = 296 REFNO = 7 ISOTOPE = 68	
K = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
K = 34 35 36 37 38 39	
L1(K,K+1)K(J,K)	
0 2.446198334 4.615752304 6.705561725 8.761263232 10.79921037 12.82673301 14.84761116 16.86399319 18.87719087	
20.88805071 22.89714305 24.90486797 26.91151147 28.91728559 30.92151953 32.92356203 34.93082053 36.93439649	
38.93761962 40.94593985 42.95319787 44.95562744 46.95785676 48.95990958 50.95180602 52.95356208 54.95519609	
56.95671719 58.95813766 60.95946712 62.96071403 64.96188882 66.96298907 68.96402959 70.96501257 72.96594263	
74.966682392 76.96766016 78.9684547	
L1(K,K-1)K(J,K)	
0 2 4.224386818 6.5523195558 8.654535571 10.72889876 12.77684221 14.81034565 16.83508707 18.85410541 20.86919157	
22.88144349 24.89399376 26.900473603 28.90743603 30.91373625 32.91923182 34.92406761 36.92835564 38.93218399	
40.93562272 42.93872841 44.94154715 46.9411692 48.944646927 50.94863064 52.95062334 54.95246635 56.95417549	
58.95576592 60.95724852 62.9586342 64.95993215 66.9611504 68.96229607 70.96333754 72.96439405 74.96535691	
76.966676844 78.96713262	
L1(K,K+2)K(J,K)	
0 0.05380166567 0.0509136228 0.04443827522 0.03873676759 0.03412296277 0.0304984941 0.027388483993 0.02489570295	
0.02820912326 0.02104019776 0.01952321971 0.01820895648 0.01705996352 0.01604734018 0.01514846881 0.01434541979	
0.01362381097 0.01297198005 0.01238037594 0.01184110501 0.011375887 0.01089430205 0.01047657189 0.01039341947	
0.009732436558 0.009399681109 0.009096623449 0.008860047735 0.008529010289 0.0082748173 0.0080836971163 0.00781116348	
0.007599165675 0.007398980046 0.007207651539 0.007030339091 0.006860286326 0.006698811181 0.00654323700*	
L1(K,K+2,K+1)	
0.7761977944 0.4386984831 0.3084481116 0.238386878 0.1944381872 0.1642461838 0.1422096174 0.1254095305 0.1121762574	
0.101481457 0.09265887135 0.07895613672 0.07352994791 0.06880777085 0.064666119556 0.0604932722	
0.65772051315 0.0521234834 0.04974516501 0.0475622596 0.04556757849 0.04373676014 0.0425091671	
0.04049361572 0.039050583396 0.0377104968 0.03646218331 0.03526683747 0.03206556 0.0318440398 0.0322202831*	
0.03132079568 0.030469146438 0.02966511982 0.02890485928 0.02818497283 0.02750239621 0.02685436808	
L1(K,K+2,K+2)	
0.2756131817 0.1434711084 0.0710124036 0.0564911194 0.0467920602 0.03941592735 0.0326177947-27	
0.030804324 0.0276472213 0.0250290234 0.02293637001 0.0250290234 0.02293637001 0.0195970863 0.0182617744 0.0171515149	
0.01608878678 0.01518443324 0.014727789 0.0136525449 0.01299830391 0.01240481746 0.011864066 0.01115613753,	
0.01091511721 0.01049613306 0.010104982831 0.00975132554 0.00941846326 0.0094107730676 0.009415777348 0.00722635631 0.0070706973077	
0.008292163633 0.008053141807 0.007828169248 0.007616064328 0.007415777348 0.00722635631 0.0070706973077	
0.00687659892	

RIVERSIDE RESEARCH INSTITUTE

REFNO: /
NINPUT: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39

THE SUBMILLIMETER TRANSITIONS OF 016=018 ARE AS
FOLLOWS (IN UNITS OF INVERSE CM):

NUF:	0 11.5045583 16.9782804 22.4332147 27.849008 33.3240663 38.7438636 44.2008027 49.635091 55.0667776 60.4958227
	65.022133 71.03455817 76.7760197 82.1832836 87.5971991 93.0075849 98.4142539 103.817015 109.215676 114.610038
	115.399904 125.385076 130.765301 136.140529 141.510407 146.8874783 152.233453 157.586213 162.93286 168.273188
	173.606954 178.93071 184.255216 189.567223 194.872886 200.171001 205.461361 210.73761 216.017996
NUQ:	7.080360459 13.0006023 18.05C96143 24.03897005 29.05563868 35.0315094 40.07684152 46.02175756 51.6631968 57.1055838
	62.9548633 67.04810553 73.011126 78.08394 82.02704288 89.06934251 95.01127768 100.0523316 105.939869 111.37253
	116.0750253 122.108768 127.502517 132.931335 138.315026 143.693391 149.066231 154.0033346 159.794535 165.149596
	170.0498328 175.080526 181.175989 186.504512 191.0325892 197.139924 202.00604 207.75127 213.03589 218.318886
NUH:	9.055599302 15.04699833 20.937261 26.03946879 31.0842085 37.02856152 42.0725607 48.01624549 53.5968051 59.0285605
	64.04576813 69.0884742 75.03076123 80.07261467 86.0455138 91.05595394 96.0700421 102.0376835 107.0779727 113.017525
	118.0573032 123.096305 129.083379 134.072882 140.1017 145.077227 150.0838789 156.0197651 161.0550611 166.08766
	172.0238006 177.572031 182.099336 188.2191715 193.0532962 198.0388873 204.0137243 209.0427864 214.0710533 219.0915043

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CM) ARE AS FOLLOWS:

ELF:	0 0.052471002 0.95599302 1.0-1026533 2.0-9.9603852 4.2-5.607754 5.0-8.313077 7.7-8.353625 9.9-5.522168 12.3-9.81044 15.1-12.0916
	16.0-9.70799 21.3-529557 2-R.795951 28.6-7.68638 32.7-0.6173 37.0-8.27007 41.6-9.09486 46.5-6.91857 51.7-17.2259 57.1-34.8731
	62.8-219207 68.7-781518 75.0-C33392 81.4-9.72455 88.2-9.96228 95.2-9.02129 102.5-8.6747 110.1-5.947 117.9-8.8523 126.0-8.9176
	13.4-5.66596 14.30-9.00463 15.19-9.0446 16.11-5.6204 17.05-5.7358 18.02-8.3634 19.02-0.4371 20.0-4.69618 21.09-5.8981
ELG:	0 2.0-6.3267001 8.0-0.0246591 16.0-14.60875 26.0-9.888992 40.0-5.697473 56.0-8.267561 75.0-8.185895 97.0-5.32-11.09 121.0-9.42238 149.0-7.1875
	17.6-9.11876 21.1-4.61026 24.6-7.18026 28.0-6.681493 32.5-3.9947 36.8-7.21815 41.0-7.9542 46.3-5.69003 51.5-0.04682 56.9-20.8486
	62.6-0.70343 68.5-6.20076 74.7-5.67408 81.2-7.97759 88.0-4.13225 95.0-7.06881 102.3-6.8758 109.9-3.4115 117.7-6.6849 125.8-6.6662
	13.4-2.33243 14.28-6.6271 15.17-6.5416 16.09-3.0338 17.03-6.0684 18.00-5.6093 19.00-1.6195 20.02-4.0605 21.07-2.8932
ELH:	0 2.0-6.3267001 8.0-0.0246591 16.0-14.60875 26.0-9.888992 40.0-5.697473 56.0-8.267561 75.0-8.185895 97.0-5.32-11.09 121.0-9.42238 149.0-7.1875
	17.6-9.11876 21.1-4.61026 24.6-7.18026 28.0-6.681493 32.5-3.9947 36.8-7.21815 41.0-7.9542 46.3-5.69003 51.5-0.04682 56.9-20.8486
	62.6-0.70343 68.5-6.20076 74.7-5.67408 81.2-7.97759 88.0-4.13225 95.0-7.06881 102.3-6.8758 109.9-3.4115 117.7-6.6849 125.8-6.6662
	13.4-2.33243 14.28-6.6271 15.17-6.5416 16.09-3.0338 17.03-6.0684 18.00-5.6093 19.00-1.6195 20.02-4.0605 21.07-2.8932

THESE SUBHM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	0 345.017897 508.939604 672.530854 835.80379 999.030374 1162.11139 1325.10673 1488.62259 1650.08604 1813.61914
	1976.29583 2138.08673 2301.38738 2663.79286 2626.09796 2788.29725 2950.38511 3112.35562 3274.02058 3435.92249
	357.50663 3758.95 3920.2-66 4081.39038 4242.37929 4403.19523 4563.04411 4724.31583 4884.60426 5044.70327
	5204.60673 5364.3585 5523.80243 5683.08236 5842.14215 6000.97563 6159.57664 6317.93902 6476.05659
NUQ	1 GHZ
	23.0-9.4618 401.739949 566.095974 731.0-8.7224 895.0-7.1997 1058.7199 1222.20634 1385.56806 1548.82368 1711.98233
	1875.0-7.083 2038.02077 2200.0-89973 2363.0-68194 2526.0-36339 2688.0-9412 2851.0-9.931 3013.76311 3175.99737 3336.10667
	350.0-0.85542 3661.92794 3823.62847 3985.18118 4146.0-58013 4307.81948 4466.0-89317 4629.79523 4790.0-5.964 4951.0-0.603

RIVERSIDE RESEARCH INSTITUTE

REFNO = 7
INPUT: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

THE TRANSITION ECONOMIES 11

0145011 ARE AS EDITION

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAHERTZ) RELATIVE TO THE GROUND STATE ARE:

卷之三

37679-6428	40187-88806	42775-9974	44026-65052	179-113038	426-432269	753-23606	1-000101	194-6-566	360-0-31905
37679-6428	40187-88806	42775-9974	44026-65052	179-113038	426-432269	753-23606	1-000101	194-6-566	360-0-31905
37679-6428	40187-88806	42775-9974	44026-65052	179-113038	426-432269	753-23606	1-000101	194-6-566	360-0-31905
37679-6428	40187-88806	42775-9974	44026-65052	179-113038	426-432269	753-23606	1-000101	194-6-566	360-0-31905
37679-6428	40187-88806	42775-9974	44026-65052	179-113038	426-432269	753-23606	1-000101	194-6-566	360-0-31905

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS OF MOLECULAR OXYGEN ACCORDING TO STEINBACH AND GORDY (1975),
REF. 7, ARE AS FOLLOWS FOR 018-018:

```

H0 = 38.01373 GHz = 1.278008468 INVERSE CM1
R1 = -0.000115 GHz = -3.835987095E-6 INVERSE CM1
S2 = J GHz = 0 INVERSE CM1

LAM0 = 59.0496698 GHz = 1.984596224 INVERSE CM1
LAM1 = 5.211E-5 GHz = 1.7382025E-6 INVERSE CM1

MU0 = -0.222439 GHz = -0.307486479196 INVERSE CM1
MU1 = -3.51E-7 GHz = -1.170809974E-8 INVERSE CM1

TEMP = 296 REFNO = 7 ISOTOPe = 88
K = 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

II(K,K+1)K(K)
2.434329238 6.499814898 10.79482301 14.14408852 18.87426122 22.89463278 26.90931812 30.9204057 34.92907031
38.936029777 42.974138 46.94651283 50.95055832 54.950357 58.95704575 62.95968604 66.96201776 70.96409186
74.96594865 78.96762044 82.96913344 86.97050914 90.9717653 94.97291675 98.97397597 102.9749535 106.9758584

II(K,K+1)K(K)
2 6.504877968 10.71974784 14.80432871 18.84963621 22.87788755 26.89719095 30.91121671 34.92186869 38.93023317
42.93697519 46.94292474 50.94717218 54.9512068 58.9551663 62.95746821 66.960571 70.9623461 74.9643843 78.96621054
82.96785637 86.96934691 90.9707031 94.97194221 98.9730768 102.9741247 106.9750905

II(K,K+2)K(K+1)
0.06067076183 0.05014510241 0.03851031879 0.03091148398 0.02574277528 0.02203388254 0.0192531333 0.01709543128
0.01537413188 0.0139702289 0.0128040739 0.01182050365 0.01058014123 0.0102541458 0.00962093863 0.0096395777
0.008570470644 0.008130359069 0.007735561107 0.007379560416 0.007057033318 0.00676358823 0.006495570518

II(K,K+1)K+2,K+1
0.006249914307 0.00602428705 0.005815709375 0.00562309151
0.4332198775 0.268771928 0.1892888108 0.145026267 0.1145161729 0.09620934192 0.08297671577 0.07294720524
0.06513289983 0.05883591923 0.05366567463 0.04934588714 0.04568380927 0.04254086893 0.03981468265 0.03742454
0.035322362675 0.03348205972 0.03178060269 0.03027630538 0.02891816751 0.02768486631 0.02656048081 0.0255325981

II(K,K+1)K+2,K+2
0.02458878625 0.02371978353 0.02291738357
0.1617886982 0.08023216386 0.05281415149 0.03925267807 0.03120336398 0.0258859599 0.0221166266 0.01930778122
0.0173525935 0.01540576621 0.0139940004 0.01282781614 0.01184228565 0.0100061488 0.0102372337 0.009439569073
0.00908272786 0.00858867274 0.008148338796 0.00773384302 0.0073972599 0.00707467839 0.00678119149 0.006513154293
0.0066267496852 0.006041624834 0.0058333331428

```

RIVERSIDE RESEARCH INSTITUTE

THE SUBMILLIMETER TRANSITIONS OF O₁₈O₁₈ ARE AS FOLLOWS (IN UNITS OF INVERSE CM⁻¹)

REFNO = 7
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE) ARE AS FOLLOWS:

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:										
NUF	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	(GHz)	
321.56694	629.689362	936.938699	1243.882643	1550.43313	1856.75938	2162.78104	2468.49424	2773.77073	3074.65987	
3383.08983	3687.01802	3920.040363	4223.19649	4529.35984	4829.68769	5197.61624	5497.62164	5796.81082	6095.11663	
6392.61893	6689.13178	6984.06649	7279.16378	7572.5648	7864.90649	8156.09649	8456.90649	8756.74633	9056.58079	
378.83616	688.589107	996.75014	1304.03225	1611.10088	1918.2116	2224.9613	2531.16473	2836.96491	3142.34326	
3647.75572	3751.66424	4055.52386	4358.76265	4662.35895	4964.06257	5264.06257	5565.51624	5866.07609	6163.58079	
NUG	6491.50571	6758.48755	7054.48674	7349.58016	7643.35895	7936.14473	8227.07145	8521.51729	8822.57453	9121.74207
NUH	440.36173	748.4460577	1055.71217	1362.04227	1669.21357	1975.54453	2281.5172	2587.26129	2892.57453	3193.74207

RIVERSIDE RESEARCH INSTITUTE

REFNO: 7
NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

THE MICROWAVE TRANSITION FREQUENCIES (IN GHZ) OF
01 & 018 ARE AS FOLLOWS:

RF:	57.2399223	58.8997409	59.6114151	60.3058186	61.1076961	61.6617782	62.1880871	62.696935	63.1961781	63.6833923
	64.1668875	64.6462245	65.1224977	65.5964993	66.0688177	66.5399008	67.0100965	67.4796001	67.9488733	68.4178573
	68.8867822	69.3557745	69.824914	70.2943757	70.76415	71.2343584	71.7050407			
FM:	118.769165	61.5298572	59.8714692	58.9620532	58.2707236	57.6727397	57.1233711	56.6025552	56.1001002	55.6100297
	55.1288077	54.6541245	54.1844193	53.7185974	53.255867	52.7956395	52.337467	51.8810016	51.425968	50.9721445
	50.5193501	50.067263	49.616271	49.1657526	48.7157667	48.26662928	47.8171998			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAMERTZ)
RELATIVE TO THE GROUND STATE, ARE:

ELP:	61.5292425	442.990971	1131.64013	2126.84648	3428.34176	5035.89355	4949.24999	9168.12478	11692.1616	14521.08338
	17654.3886	21091.6532	24832.3794	28876.0254	33222.0054	37869.6898	42818.4048	48067.4328	53616.0108	59463.3338
	65608.5511	72050.7685	78789.0474	858822.4051	93149.8149	100770.2046	108682.463			
ELM:	0 440.360058	1131.98008	2128.39025	3431.1773	5039.88259	6954.31471	9174.25912	11699.286	14529.1568	17663.267
	21101.6453	2484.3175	2887.9033	33234.8184	37883.4341	42833.0774	48083.0311	53632.5337	59480.7795	65626.9186
	72070.0569	78809.2561	85843.5337	93171.8633	100793.174	108706.351				

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=j WITH STATES N=j+N (IN GHZ) ARE:

ENR:	383121551	689.560832	995.900752	1302.09715	1608.10587	1913.88275	2219.38364	2524.56436	2829.38076	3133.78868
	3427.74396	3741.20244	4044.11996	4344.45236	4648.15548	4949.18516	5249.49724	5549.0756	5847.79196	6145.68628
	6442.68637	6738.74805	7033.82217	7327.87557	7620.86109	7912.72757	8203.443485			

RIVERSIDE RESEARCH INSTITUTE

THE PARAMETERS ARE AS FOLLOWS ACCORDING TO
ALBRITTON, MARRO, SCHMELTEKOPF, AND ZARE (REF. 5),
FOR V. = V₁ = 1:

B0 = 42.62790931 GHz;
B1 = -0.500145105555 GHz;

B2 = 0 GHz;

LAM0 = 59.75013584 GHz;
LAM1 = 0 GHz;

MU0 = -0.268891388348 GHz;
MU1 = 0 GHz.

IN UNITS OF INVERSE CM, THE ABOVE PARAMETERS ARE:

1.421914 -0.840256 0 1.99305 0 -0.00897 0

K = 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

I(K,K+1|K,K)

2.45052694	6.709147694	10.80196626	14.882434	18.87902487	22.89872258	26.91289212	30.92357824	34.93192463
38.93862361	42.94411885	46.94870781	50.95259738	54.9593594	58.9583264	62.9613696	66.96360978	70.96560223
74.96738578	78.96899154	82.97044472	86.97176598	90.97297243	94.97407832	98.97509564	102.9760346	106.9769037

I(K,K+1|K,K)

2.6534738507	10.73463631	14.81412516	18.8569198	22.88367663	26.90199576	30.91532223	34.92645307	38.93341444
42.93935566	46.94512371	50.94955421	54.95331984	58.95655962	62.95937634	66.96184763	70.96403322	74.96597981
78.96772446	82.96929693	86.9707214	90.97201775	94.97320242	98.97428917	102.9752896	106.9762135	

I(K,K+2|K,K)

0.04947308999	0.04085230595	0.03136/0688	0.02517565708	0.02096513066	0.01794408389	0.01567930775	0.0139217548
0.01251981759	0.0137639303	0.01042660661	0.009625526731	0.008941081205	0.00834979073	0.007834028313	0.007380397727
0.006598458373	0.00661998976	0.00629842385	0.006008461358	0.005745759202	0.005506743555	0.005288438234	

I(K,K+1|K+2,K+2)

0.404168877	0.2192673234	0.15101957	0.1152928698	0.09328653298	0.07836553065	0.06758266681	0.05942734528
0.0530485924	0.04791511549	0.043/042297	0.04018461288	0.03720161578	0.036452114	0.03242107516	0.03047754256
0.0286275174	0.02723910034	0.02587680726	0.02465197984	0.02354522724	0.022506481	0.02162507967	0.0207833279

I(K,K+1|K+2,K+2)

0.13192816	0.06534348952	0.04301769435	0.03196908835	0.02541277959	0.02101110224	0.01572339818
0.0139397626	0.01254539582	0.0139862959	0.01044578901	0.009643121656	0.008957617396	0.008365591969
0.007395353288	0.00693162945	0.006312829945	0.006022781058	0.0057600253	0.0055207994	0.0057600253

0.005102574108 0.0049188601759 0.00474894845

REFNO: 3
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

FOLLOWS (IN UNITS OF INVERSE CM⁻¹):
THE SUBMILLIMETER TRANSITIONS OF 016-016 ARE AS

NUF:	12.1311775	23.5757022	34.582251*	46.373412	57.7523122	69.11929**	80.473395	91.813216	103.13716	114.443527
	125.730561	136.996473	148.239452	159.45767*	170.649307	181.81251	192.945**	204.04625	215.11309	226.144109
	237.0137455	248.091273	259.0003709	269.872908	280.69701*	291.474171	302.202522			
NUG:	14.0216227	25.5377415	36.9830915	48.4029048	59.806963	71.1940099	82.5713768	93.931659*	105.275521	116.001627
	127.907709	139.192666	150.45561*	161.691482	172.901755	184.083513	195.234929	206.35165	217.434383	228.048737
	239.503881	250.472467	261.031**	272.290559	283.13286	293.928193	304.67470*			
NUL:	16.1083075	27.5528322	38.959891*	50.350542	61.729422	73.09642**	84.450525	95.79036*	107.11429	118.420657
	129.707691	140.973603	152.216582	163.4380*	174.626437	185.7896*	196.92257	208.02338	219.09022	230.12139
	241.114585	252.068403	262.980839	273.850038	284.67414*	295.451301	306.179652			

THE RESPECTIVE LOWER STATE ENERGIES (ALSO IN INVERSE CM⁻¹) ARE AS FOLLOWS:

ELF:	3.97713	18.195592*	43.7863852	80.7453265	129.064376	188.71634*	259.761343	342.113886	435.785788	540.761716
	657.024478	784.955021	923.332437	1073.33399*	1234.53495	1406.9089*	1590.42278	1785.046066	1990.77612	2207.5005
	2435.31666	2674.06832	2923.75553	3184.033693	3455.76932	3738.00762	4031.0049			
ELQ:	2.08728484	16.233553	41.7857451	78.7158337	127.012192	186.664918	257.663361	339.995442	433.647427	538.633821
	654.84733	782.35883*	921.117375	1071.10015	1232.012851	1404.6379*	1588.13809	1782.75274	1988.44483	2205.19542
	2432.95373	2671.68713	2921.35609	3181.61928	3453.33308	3735.5536	4028.53272			
ELW:	2.08728484	16.233553	41.7857451	78.7158337	127.012192	186.664918	257.663361	339.995442	433.647427	538.633821
	654.84733	782.35883*	921.117375	1071.10015	1232.012851	1404.6379*	1588.13809	1782.75274	1988.44483	2205.19542

THESE SUBMM TRANSITION FREQUENCIES, EXPRESSED IN GIGAHERTZ, ARE:

NUF	(GHz)	363.683553	706.78177	1048.74751	1390.23992	1731.37076	2072.1432	2412.53169	2752.49057	3091.97424
		3769.3074*	4107.0509*	4444.10697	4780.42052	5115.93751	5450.60192	5784.35877	6117.15267	6448.92802
		7109.20204	7437.58925	7764.73586	8090.588625	8415.08479	8738.17582	9059.80369		6779.62983
NUG	(GHz)	420.339686	765.60223	1108.72519	1451.08258	1792.95365	2134.0268	2475.4276	2816.00031	3156.08073
		3834.57665	4172.89098	4510.51287	4847.38667	5183.4642	5518.6849	5852.99592	6188.30225	6518.66871
		7180.0408	7508.97566	7836.66509	8163.06559	8488.10961	8811.74556	9133.91785		6849.52001
NUM	(GHz)	482.914911	826.013128	1167.97887	1509.47728	1850.60212	2191.37567	2531.76305	2871.72233	3211.20962
		3888.53875	4226.2823	4563.33833	4899.65217	5235.16887	5569.83328	5903.59013	6236.38403	6595.115956
		7228.4334	7556.82091	7883.96722	8209.81761	8534.31614	8857.40718	9179.03505		6951.016195

RIVERSIDE RESEARCH INSTITUTE

REFNO: 2
INPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

016=016 AND AS FOLLOWS:

ELP:	56.4751325	58.82046	59.9776816	40.3426626	61.5824923	62.2583648	62.8959113	63.5043368	64.1064849	64.6420826
ELP:	65.2692485	65.8400372	66.9678557	67.52666906	68.0829759	69.1895748	69.6371552	70.2901789	70.7405093	71.0241599
FRI:	70.8387624	71.3864063	71.9332322	72.4793414	73.0248193	73.5697382	74.1141599			
FRI:	119.231358	62.5752253	60.4408978	59.2536763	58.388953	57.648454	56.972993	56.3354466	55.7220213	55.12888
FRI:	54.5392753	53.9621093	53.391206	52.8254646	52.2655022	51.7046672	51.1483819	50.5942027	50.041783	49.4908485
FRI:	48.9411789	48.3925955	47.8449515	47.2981256	46.7520464	46.2065385	45.96661699			

THE RESPECTIVE LOWER STATE ENERGIES (IN GIGAMERTZ
RELATIVE TO THE GROUND STATE) ARE:

ELP:	62.5752253	48.6669676	1252.70512	2359.84133	380.72971	5596.07347	7724.55323	10192.8469	13000.4228	16146.9363
ELP:	19631.8291	23454.5278	27614.4042	32110.7747	3694.25001	47611.1822	53445.5827	59612.2262	61110.0956	
72938.118	80095.165	87580.0524	95331.5403	103528.333	111989.079	120772.373				
ELH:	0 482911911	1252.27191	2361.43031	3810.92391	5600.68336	7330.47615	10159.9808	13008.8072	16156.5035	19642.559
ELH:	23466.0057	27627.4188	32124.9171	36958.1633	42126.3943	47628.6709	53464.1781	59633.925	66130.8899	72960.0156
80118.1588	87604.1407	9516.7215	103554.606	112016.4443	120800.825					

THE PREDICTED LMR AND RAMAN LINES CONNECTING
STATES N=j WITH STATES N=j+1 ARE:

ELR:	426.258778	767.192668	1104.00119	1448.62861	1789.01923	2129.11731	2468.85714	2808.21299	3147.09915	3485.0699
ELR:	3622.26951	4160.44226	4496.93364	4832.68432	5167.64218	5501.7503	5834.95297	6167.15006	6498.41904	66228.57101
7157.59464	7485.4342	7812.03399	8137.33827	8461.29133	8783.83744	9104.92089				

RIVERSIDE RESEARCH INSTITUTE

APPENDIX C

ADDITIONAL APL PARAMETER-SETTING PROGRAMS

The parameter-setting program PARAMSTEIN (Fig. 1, p. 8) gave B_0 , B_1 , B_2 , λ_0 , λ_1 , μ_0 , and μ_1 for $^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$, according to Steinbach and Gordy,⁷ for the vibrational ground state, $v = 0$. These seven parameters (for $^{16}\text{O}^{18}\text{O}$ only) according to Refs. 1 through 6 (for $v = 0$) are contained in the APL program PARAMETERS (Fig. C-1). The APL program containing the parameters for the upper vibrational state, $v = 1$, in $^{16}\text{O}_2$, according to Ref. 5, is PARAMSTEINUPPER (Fig. C-2). In this program, $\Delta G_{1/2}$ is represented as GV.

RIVERSIDE RESEARCH INSTITUTE

```

V PARAMETERS;X;VECB0;VECB1;VECB2;VECLAM0;VECLAM1;VECMU0;VECMU1;REFTEXT1;REFTEXT2;REFTEXT3;REFTEXT4;REFTEXT5;
REFTEXT6;REFTEXTX
[1] • 'REFNO' IS AN INTEGER FROM 1 TO 6, CORRESPONDING TO ONE
[2] • OF THE SIX REFERENCES LISTED IN 'REFTEXT'.
[3] VECB0←43.1029 43.100589 43.100518 43.100518,(1.437708*SPEEDOFLIGHT),43.1004608
[4] VECB1←0.0001471499 0.00014 0.0001449629 0.00014496,(-4.84E-6*SPEEDOFLIGHT),-0.0001452
[5] VECB2←0 0 1.57E-10 -1.7E-10 0 0
[6] VECLAM0←59.50157 59.501346 59.501342 59.501342,(1.5×1.3239*SPEEDOFLIGHT),59.501342
[7] VECLAM1←5.678E-5 5.845E-5 5.847E-5 5.847E-5 0 5.847E-5
[8] VECMU0←0.25267 -0.2525917 -0.2525865 -0.2525865,(-0.008436*SPEEDOFLIGHT),-0.2525865
[9] VECMU1←0 2.455E-7 2.464E-7 2.464E-7 0 2.464E-7
[10] REFTEXT1←'TINKHAM AND STRANDBERG'
[11] REFTEXT2←'WILHEIT AND BARRETT'
[12] REFTEXT3←'WELCH AND MIZUSHIMA'
[13] REFTEXT4←'EVENSON AND MIZUSHIMA'
[14] REFTEXT5←'ALBRITTON, HARROP, SCHMELTEKOPF, AND ZARE'
[15] • BASED ON THEIR TABLES II AND X, AND DO VALUE ON P. 118.
[16] REFTEXT6←'TOMUTA, MIZUSHIMA, HOWARD, AND EVENSON'
[17] • BASED ON PRIVATE COMMUNICATION FROM M. MIZUSHIMA TO M. GREENBAUM, 7/7/75.
[18] 'PLEASE TYPE REFERENCE NUMBER'
[19] X←REFNO↓
[20] B0←VECB0[X]
[21] B1←VECB1[X]
[22] B2←VECB2[X]
[23] LAM0←VECLAM0[X]
[24] LAM1←VECLAM1[X]
[25] MU0←VECMU0[X]
[26] MU1←VECMU1[X]
[27] REFTEXTX←6 42o '
[28] REFTEXTX[1;1;0REFTEXT1]←REFTEXT1
[29] REFTEXTX[2;1;0REFTEXT2]←REFTEXT2
[30] REFTEXTX[3;1;0REFTEXT3]←REFTEXT3
[31] REFTEXTX[4;1;0REFTEXT4]←REFTEXT4
[32] REFTEXTX[5;1;0REFTEXT5]←REFTEXT5
[33] REFTEXTX[6;1;0REFTEXT6]←REFTEXT6
[34] ' THANK YOU.

[35] 'THE PARAMETERS ACCORDING TO ',REFTEXTX[X;],'
(REF. ',X,') ARE AS FOLLOWS:

[36] 'B0 = ',B0,' GHZ; '
[37] 'B1 = ',B1,' GHZ; '
[38] 'B2 = ',B2,' GHZ;

[39] 'LAM0 = ',LAM0,' GHZ; '
[40] 'LAM1 = ',LAM1,' GHZ;

[41] 'MU0 = ',MU0,' GHZ; '
[42] 'MU1 = ',MU1,' GHZ.

[43] 'TEMPERATURE IS ASSUMED TO BE 296K; IF THIS IS INCORRECT, WRITE:'
[44] 'TEMP←( ) WHERE DESIRED NUMBER IS INSERTED.'
[45] TEMP←296
[46] • REVISED 10 JULY 1975
    '

```

Fig. C-1: Listing of APL function PARAMETERS

RIVERSIDE RESEARCH INSTITUTE

```

    ▽ PARAMSTEINUPPER;X;VECB0;VECB1;VECB2;VECLAM0;VECLAM1;VECMU0;VECMU1;REFTEXT5;VECGV
[1]   △ 'REFNO' IS 5, CORRESPONDING TO 'REFTEXT5'; 'V' IS 0 OR 1,
[2]   △ CORRESPONDING TO 'V''. (ONLY V'=V'' TRANSITIONS CONSIDERED.)
[3]   VECB0←(1.437708 1.421914)×SPEEDOFLIGHT
[4]   VECB1←(-4.84E-6 -4.8402E-6)×SPEEDOFLIGHT
[5]   VECB2←0 0
[6]   VECLAM0←1.5×(1.3239 1.3287)×SPEEDOFLIGHT
[7]   VECLAM1←0 0
[8]   VECMU0←(-8.436 -8.97)×0.001×SPEEDOFLIGHT
[9]   VECMU1←0 0
[10]  VECGV←0 1556.378 INVERSE CM
[11]  REFTEXT5←'ALBRITTON, HARROP, SCHMELTEKOPF, AND ZARE (REF. 5),
FOR V'' = V''' = '
[12]  VV←1;REFNO←5
[13]  X←VV+1
[14]  B0←VECB0[X]
[15]  B1←VECB1[X]
[16]  B2←VECB2[X]
[17]  LAM0←VECLAM0[X]
[18]  LAM1←VECLAM1[X]
[19]  MU0←VECMU0[X]
[20]  MU1←VECMU1[X]
[21]  CV←VECGV[X]
[22]  'THE PARAMETERS ARE AS FOLLOWS ACCORDING TO
';REFTEXT5;VV;':
'
[23]  'B0 = ';B0; ' GHZ; '
[24]  'B1 = ';B1; ' GHZ;
[25]  'B2 = ';B2; ' GHZ;
'
[26]  'LAM0 = ';LAM0; ' GHZ;
[27]  'LAM1 = ';LAM1; ' GHZ;
'
[28]  'MU0 = ';MU0; ' GHZ;
[29]  'MU1 = ';MU1; ' GHZ.
'
[30]  'IN UNITS OF INVERSE CM, THE ABOVE PARAMETERS ARE:'
[31]  +PARAMVEC←(B0,B1,B2,LAM0,LAM1,MU0,MU1)+SPEEDOFLIGHT
[32]  'TEMPERATURE IS ASSUMED TO BE 296K; IF THIS IS INCORRECT, WRITE:'
[33]  ' ' 'TEMP←( )' WHERE DESIRED NUMBER IS INSERTED.'
[34]  TEMP←296
[35]  X←1n CALCULATION FOR 016=016 ONLY, FOR V'=V''=1 ONLY.
[36]  △ THIS IS A MODIFIED FORM OF 'PARAMUPPER' FOR USE WITH 'ABCD' OR
[37]  △ 'ABCDLP' (THEORY OF W. R. STEINBACH INSTEAD OF TINKHAM AND STRANDBERG)
[38]  △ VERSION OF 28 JULY 1975.
▽

```

Fig. C-2: Listing of APL function PARAMSTEINUPPER

RIVERSIDE RESEARCH INSTITUTE

APPENDIX D

Temperature Dependence of Rotational
State Sum for Molecular Oxygen

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, 016=016
EMPLOYING THE PARAMETERS OF REF. 1 (V = 0)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64467	55.83416	1.01452
100K	73.32311	72.51190	1.01119
125K	91.45851	90.63987	1.00903
150K	109.59893	108.76785	1.00764
175K	127.74352	126.89582	1.00668
200K	145.89184	145.02380	1.00599
225K	164.04365	163.15177	1.00547
250K	182.19881	181.27975	1.00507
273K	198.90444	197.95748	1.00478
275K	200.35724	199.40772	1.00476
296K	215.61279	214.63522	1.00455
300K	218.51886	217.53570	1.00452
325K	236.68364	235.66367	1.00433

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, 016=016
EMPLOYING THE PARAMETERS OF REF. 2 (V = 0)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64683	55.83716	1.01450
100K	73.32569	72.51579	1.01117
125K	91.46140	90.64473	1.00901
150K	109.60200	108.77368	1.00762
175K	127.74661	126.90263	1.00665
200K	145.89481	145.03157	1.00595
225K	164.04635	163.16052	1.00543
250K	182.20110	181.28947	1.00503
273K	198.90622	197.96810	1.00474
275K	200.35896	199.41841	1.00472
296K	215.61392	214.64673	1.00451
300K	218.51987	217.54736	1.00447
325K	236.68380	235.67631	1.00427

RIVERSIDE RESEARCH INSTITUTE

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_16$
EMPLOYING THE PARAMETERS OF REF. 3 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64740	55.83725	1.01451
100K	73.32662	72.51591	1.01118
125K	91.46282	90.64488	1.00902
150K	109.60401	108.77386	1.00763
175K	127.74932	126.90284	1.00667
200K	145.89832	145.03181	1.00597
225K	164.05077	163.16079	1.00545
250K	182.20653	181.28976	1.00506
273K	198.91267	197.96842	1.00477
275K	200.36551	199.41874	1.00475
296K	215.62149	214.64708	1.00454
300K	218.52765	217.54772	1.00450
325K	236.69291	235.67669	1.00431

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_16$
EMPLOYING THE PARAMETERS OF REF. 4 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64740	55.83725	1.01451
100K	73.32662	72.51591	1.01118
125K	91.46282	90.64488	1.00902
150K	109.60401	108.77386	1.00763
175K	127.74932	126.90284	1.00667
200K	145.89832	145.03181	1.00597
225K	164.05077	163.16079	1.00545
250K	182.20653	181.28976	1.00506
273K	198.91268	197.96842	1.00477
275K	200.36551	199.41874	1.00475
296K	215.62150	214.64708	1.00454
300K	218.52765	217.54772	1.00450
325K	236.69291	235.67669	1.00431

RIVERSIDE RESEARCH INSTITUTE

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_16$
EMPLOYING THE PARAMETERS OF REF. 5 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64484	55.83610	1.01448
100K	73.32372	72.51442	1.01116
125K	91.45955	90.64302	1.00901
150K	109.60038	108.77163	1.00762
175K	127.74532	126.90023	1.00666
200K	145.89396	145.02884	1.00597
225K	164.04605	163.15744	1.00545
250K	182.20144	181.28605	1.00505
273K	198.90725	197.96436	1.00476
275K	200.36006	199.41465	1.00474
296K	215.61574	214.64268	1.00453
300K	218.52183	217.54326	1.00450
325K	236.68672	235.67186	1.00431

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_16$
EMPLOYING THE PARAMETERS OF REF. 6 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64749	55.83732	1.01451
100K	73.32675	72.51600	1.01118
125K	91.46299	90.64500	1.00902
150K	109.60423	108.77400	1.00763
175K	127.74958	126.90300	1.00667
200K	145.89863	145.03200	1.00598
225K	164.05114	163.16100	1.00546
250K	182.20695	181.29001	1.00506
273K	198.91315	197.96869	1.00477
275K	200.36599	199.41901	1.00475
296K	215.62202	214.64737	1.00454
300K	218.52818	217.54801	1.00451
325K	236.69350	235.67701	1.00431

RIVERSIDE RESEARCH INSTITUTE

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_16$
EMPLOYING THE PARAMETERS OF REF. 7 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	56.64748	55.83732	1.01451
100K	73.32672	72.1600	1.01118
125K	91.46295	90.64500	1.00902
150K	109.60416	108.77401	1.00763
175K	127.74949	126.90301	1.00667
200K	145.89851	145.03201	1.00597
225K	164.05098	163.16101	1.00545
250K	182.20676	181.29001	1.00506
273K	198.91292	197.96869	1.00477
275K	200.36575	199.41901	1.00475
296K	215.62175	214.64737	1.00454
300K	218.52791	217.54801	1.00450
325K	236.69317	235.67701	1.00431

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, $O_16=O_18$
EMPLOYING THE PARAMETERS OF REF. 7 ($V = 0$)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	116.28488	118.23962	0.98347
100K	151.60712	153.55795	0.98730
125K	190.01360	191.94744	0.98993
150K	228.42996	230.33693	0.99172
175K	266.85466	268.72642	0.99303
200K	305.28693	307.11590	0.99404
225K	343.72634	345.50539	0.99485
250K	382.17263	383.89488	0.99551
273K	417.54915	419.21321	0.99603
275K	420.62564	422.28437	0.99607
296K	452.93128	454.53154	0.99648
300K	459.08526	460.67386	0.99655
325K	497.55143	499.06334	0.99697

RIVERSIDE RESEARCH INSTITUTE

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, 018=018
EMPLOYING THE PARAMETERS OF REF. 7 (V = 0)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	63.28076	62.81336	1.00744
100K	82.04495	81.57580	1.00575
125K	102.44779	101.96975	1.00469
150K	122.85599	122.36370	1.00402
175K	143.26871	142.75765	1.00358
200K	163.68549	163.15160	1.00327
225K	184.10612	183.54555	1.00305
250K	204.53043	203.93950	1.00290
273K	223.32398	222.70193	1.00279
275K	224.95834	224.33344	1.00279
296K	242.12053	241.46436	1.00272
300K	245.38980	244.72739	1.00271
325K	265.82476	265.12134	1.00265

ROTATIONAL PARTITION FUNCTION FOR MOLECULAR OXYGEN, 016=016
EMPLOYING THE PARAMETERS OF REF. 5 (V = 1.)

TEMP	EXACT SUM	CLASSICAL	RATIO
77K	57.22604	56.45631	1.01363
100K	74.09050	73.31988	1.01051
125K	92.42815	91.64985	1.00849
150K	110.77088	109.97982	1.00719
175K	129.11783	128.30979	1.00630
200K	147.46858	146.63976	1.00565
225K	165.82288	164.96973	1.00517
250K	184.18059	183.29969	1.00481
273K	201.07261	200.16327	1.00454
275K	202.54161	201.62966	1.00452
296K	217.96740	217.02684	1.00433
300K	220.90590	219.95963	1.00430
325K	239.27341	238.28960	1.00413

RIVERSIDE RESEARCH INSTITUTE

APPENDIX E

Comparison of $^{16}\text{O}^{16}\text{O}$ ($v = 0$) Line Strengths

Computed by Us at 273 and 296K with Theoretical

Results Given in Ref. 8

See text, pp. 27 and 34 for discussion of this Appendix, which was computed using the APL program GBBSTRENGTH. It is assumed that the cm-atm quoted in Ref. 8 refers to 273K and 1 atm, so that $1 \text{ (cm-atm)}_{\text{STP}} = 2.686754(84) \text{ E19 molecule cm}^{-2}$ (Loschmidt's constant, L_0).^{13,23}

NOTE ADDED IN PROOF: The factor L_0 used in the APL program GBBSTRENGTH should have been replaced by $L_0/0.99519$ in computing the integrated line strength in units of cm^{-1} per $(\text{cm-atm})_{\text{STP}}$ (see p. 17 of text). The 0.5% change in our computed line strengths does not affect the conclusions to be drawn from the comparison, i. e., that the results of Ref. 8 may be in error by as much as a factor of 2. Note also that the APL program GBBSTRENGTH was used only in generating this Appendix; the line strengths elsewhere in this report, given in units of cm^{-1} per molecule cm^{-2} , have been calculated correctly.

RIVERSIDE RESEARCH INSTITUTE

TEMP = 273K KT = 189.7 INVERSE CM⁻¹ X = 1
 REF'G = ?
 NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
 39 41 43 45 47 49 51 53

THE LINESTRENGTHS OF THE SUBMILLIMETER TRANSITIONS OF O16=O16, IN UNITS OF 1.0E-6 INVERSE CM PER CM=ATM (AT STP), ARE AS FOLLOWS:

SF:	0.6996	1.959	2.803	3.152	3.057	2.65	2.09	1.514	1.015	0.6316
	0.3661	0.1981	0.1902	0.04744	0.02105		0.008763	0.003424	0.001257	
	0.0004336	0.0001406	4.293E-5	1.233E-5		3.338E-6	8.5E-7	2.041E-7		
	4.622E-8	9.868E-9								
SG:	7.636	12.37	15.14	15.79	14.68	12.33	9.529	6.801	4.504	2.777
	1.597	0.8586	0.432	0.2036	0.09	0.03733	0.01454	0.005324	0.001832	
	0.0005931	0.0001807	5.181E-5	1.399E-5	3.561E-6	8.541E-7	1.931E-7			
	4.12E-8									
SH:	3.26	4.261	4.754	4.71	4.228	3.479	2.643	1.862	1.221	0.7465
	0.4264	0.2279	0.1141	0.05357	0.02359	0.009757	0.00379	0.001384		
	0.0004752	0.0001536	4.668E-5	1.337E-5	3.604E-6	9.159E-7	2.194E-7			
	4.956E-8	1.056E-8								

GEBBIE, BURROUGHS, AND BIRD, PROC. ROY. SOC. (LONDON) A, VOL. 310, PP. 579 TO 590 (1969) GIVE FOR THE FIRST SEVERAL LINES (IN THE SAME UNITS):

SF:	0.62	1.5	1.8	1.8	1.6
SG:	3.7	8.7	9.5	8.3	6.3
SH:	2.1	2.9	2.9	2.4	1.8

RATIOS OF OUR RESULTS FOR K = 1 THROUGH 9 TO THOSE OF GEBBIE, ET AL:

F:	1.128	1.306	1.557	1.751	2.183
G:	1.34	1.422	1.593	1.902	2.325
H:	1.553	1.469	1.639	1.962	2.349

RIVERSIDE RESEARCH INSTITUTE

TEMP = 296KJ KT = 205.7 INVERSE CMJ X = 1

REFNO = 7

NINPUT: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
39 -1 43 45 47 49 51 53

THE LINE STRENGTHS OF THE SUBMILLIMETER TRANSITIONS OF O16=O16, IN UNITS OF 1.0E-6 INVERSE CM PER CM-ATM (AT STP), ARE AS FOLLOWS:

SF: 0.0577 1.687 2.446 2.799 2.775 2.471 2.081 1.511 1.055 0.686E
0.4185 0.2391 0.1283 0.06477 0.03078 0.01378 0.00582 0.002319
0.008725 0.0003101 0.0001041 3.307E-5 9.933E-6 2.823E-6 7.596E-7
1.935E-7 4.671E-8

SQ: 6.521 10.65 13.2 14.01 13.29 11.5 9.165 6.781 4.678 3.018 1.825
1.036 0.553 0.2778 0.1315 0.05869 0.02471 0.009818 0.003685
0.01307 0.000438 0.0001389 4.165E-5 1.182E-5 3.176E-6 8.083E-7
1.949E-7

SH: 2.786 3.67 4.148 4.182 3.838 3.244 2.543 1.857 1.268 0.8115
0.4874 0.2751 0.1461 0.07312 0.03449 0.01834 0.00644 0.002553
0.009559 0.0003383 0.0001132 3.583E-5 1.073E-5 3.041E-6 8.16E-7
2.074E-7 4.995E-8

GEBBIE, BURROUGHS, AND BIRD, PROC. ROY. SOC. (LONDON) A, VOL. 310, PP. 579 TO 590 (1969) GIVE FOR THE FIRST SEVERAL LINES (IN THE SAME UNITS):

SF: 0.62 1.5 1.8 1.8 1.4

SQ: 5.7 8.7 9.5 8.3 6.3

SH: 2.1 2.9 2.9 2.4 1.8

RATIOS OF OUR RESULTS FOR K = 1 THROUGH 9 TO THOSE OF GEBBIE, ET AL:

F: 0.964 1.125 1.359 1.555 1.982

G: 1.144 1.224 1.39 1.688 2.11

H: 1.326 1.266 1.43 1.742 2.132

RIVERSIDE RESEARCH INSTITUTE

APPENDIX F

RRI Absorption Line Parameters

for Molecular Oxygen Isotopes

$^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$ (AFCRL Format)

In the following eight file listings, the contents are labelled at the top of each page with the file names as well as brief descriptions of the contents. The units are as follows:

FREQ: Transition frequency: (cm^{-1})

STRENGTH: Line strength at 296K: $(\text{cm}^{-1}/\text{molecule cm}^{-2})$

WIDTH: Line half-width at half-maximum: $(\text{cm}^{-1} \text{ atm}^{-1})$

E'': Energy of lower state of the transition, with respect to the ground state, including $\Delta G_{1/2}$: (cm^{-1})

The sequence of the eight file listings is as follows:

AF760K15V0: Microwave fine structure lines of $^{16}\text{O}^{16}\text{O}$, $v = 0$.

AF7K15V0: Submillimeter rotational lines of $^{16}\text{O}^{16}\text{O}$, $v = 0$.

AF760K25V0: Microwave fine structure lines of $^{16}\text{O}^{18}\text{O}$, $v = 0$.

AF7K25V0: Submillimeter rotational lines of $^{16}\text{O}^{18}\text{O}$, $v = 1$.

AF760K35V0: Microwave fine structure lines of $^{18}\text{O}^{18}\text{O}$, $v = 0$.

AF7K35V0: Submillimeter rotational lines of $^{18}\text{O}^{18}\text{O}$, $v = 0$.

AF560K15V1: Microwave fine structure lines of $^{16}\text{O}^{16}\text{O}$, $v = 1$.

AF5K15V1: Submillimeter rotational lines of $^{16}\text{O}^{16}\text{O}$, $v = 1$.

RIVERSIDE RESEARCH INSTITUTE

RFI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRF FORMAT)

AF760KISVO BU, B1, ETC+1 REF: 7, 016-016 MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	W10TH	E1'	V1	J1' K1'	V1' J1' K1' ID	DATE	ISO	NC	
1	1.54817	2.06E-33	.032	074.552	0	53 53	0	52 53 53	75	66	7
2	1.56499	8.55E-33	.032	3778.223	0	51 51	0	50 51 51	75	66	7
3	1.58183	3.36E-32	.032	3492.781	0	49 49	0	48 49 49	75	66	7
4	1.59871	1.25E-31	.032	3218.270	0	47 47	0	46 47 47	75	66	7
5	1.61561	4.91E-31	.032	2954.737	0	45 45	0	44 45 45	75	66	7
6	1.63255	1.47E-30	.032	2702.225	0	43 43	0	42 43 43	75	66	7
7	1.64953	4.62E-30	.032	2460.774	0	41 41	0	40 41 41	75	66	7
8	1.66655	1.38E-29	.032	2230.425	0	39 39	0	38 39 39	75	66	7
9	1.68362	3.87E-29	.032	2011.215	0	37 37	0	36 37 37	75	66	7
10	1.70076	1.03E-28	.032	1803.180	0	35 38	0	34 35 35	75	66	7
11	1.71796	2.58E-28	.032	1606.353	0	33 33	0	32 33 33	75	66	7
12	1.73524	6.09E-28	.032	1420.767	0	31 31	0	30 31 31	75	66	7
13	1.75262	1.36E-27	.032	1246.452	0	29 29	0	28 29 29	75	66	7
14	1.77012	2.85E-27	.032	1083.436	0	27 27	0	26 27 27	75	66	7
15	1.78776	5.63E-27	.032	931.745	0	25 28	0	24 25 25	75	66	7
16	1.80558	1.05E-26	.038	791.405	0	23 23	0	22 23 23	75	66	7
17	1.82363	1.83E-26	.035	662.437	0	21 21	0	20 21 21	75	66	7
18	1.84199	3.00E-26	.037	544.863	0	19 19	0	18 19 19	75	66	7
19	1.86075	4.60E-26	.038	438.702	0	17 17	0	16 17 17	75	66	7
20	1.87679	2.74E-26	.045	2.084	0	1 1	0	2 1 1	75	66	7
21	1.88808	6.58E-26	.038	343.970	0	15 18	0	14 15 15	75	66	7
22	1.90026	8.77E-26	.039	260.683	0	13 13	0	12 13 13	75	66	7
23	1.92175	1.08E-25	.041	188.853	0	11 11	0	10 11 11	75	66	7
24	1.94548	1.22E-25	.043	128.492	0	9 9	0	8 9 9	75	66	7
25	1.94957	7.55E-26	.044	16.388	0	3 3	0	4 3 3	75	66	7
26	1.97351	1.26E-25	.044	79.607	0	7 7	0	6 7 7	75	66	7
27	1.98774	1.11E-25	.042	42.224	0	5 5	0	6 5 5	75	66	7
28	2.01159	1.13E-25	.044	42.200	0	5 8	0	4 5 5	75	66	7
29	2.01589	1.31E-25	.041	79.565	0	7 7	0	8 7 7	75	66	7
30	2.03976	1.38E-25	.040	128.398	0	9 9	0	10 9 9	75	66	7
31	2.06143	1.25E-25	.039	188.714	0	11 11	0	10 11 11	75	66	7
32	2.08181	1.05E-25	.038	260.501	0	13 13	0	12 13 13	75	66	7
33	2.08432	8.41E-26	.047	16.253	0	3 3	0	2 3 3	75	66	7
34	2.10139	8.23E-26	.034	343.748	0	15 19	0	16 15 15	75	66	7
35	2.12042	5.97E-26	.036	438.442	0	17 17	0	18 17 17	75	66	7
36	2.13907	4.04E-26	.035	544.866	0	19 19	0	20 19 19	75	66	7
37	2.15746	2.56E-26	.035	662.103	0	21 21	0	22 21 21	75	66	7
38	2.17564	1.52E-26	.032	791.934	0	23 23	0	24 23 23	75	66	7
39	2.19368	8.49E-27	.032	931.339	0	25 28	0	26 25 25	75	66	7
40	2.21160	4.45E-27	.032	1082.994	0	27 27	0	28 27 27	75	66	7
41	2.22943	2.20E-27	.032	1245.975	0	29 29	0	30 29 29	75	66	7
42	2.24720	1.02E-27	.032	1420.755	0	31 31	0	32 31 31	75	66	7
43	2.26492	4.48E-28	.032	1605.806	0	33 33	0	34 33 33	75	66	7
44	2.28260	1.85E-28	.032	1802.598	0	35 38	0	36 35 35	75	66	7
45	2.30026	7.24E-29	.032	2010.599	0	37 37	0	38 37 37	75	66	7
46	2.31789	2.67E-29	.032	2229.774	0	39 39	0	40 39 39	75	66	7
47	2.33551	9.29E-30	.032	2460.088	0	41 41	0	42 41 41	75	66	7

RIVERSIDE RESEARCH INSTITUTE

RNI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCHL FORMAT)

AF760<15v0 BC, B1, ETC+1 REF# 7, 016#016 MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

FREQ	STRENGTH	WIDTH	E _{II}	V _I	J _I K _I	V _{II}	J _{II} K _{II}	ID	DATE	ISO	NO
48	2.35312	3.06E-30	-0.032	2701.504	0 43 43	0	44 43 43+		75	66	7
49	2.37072	9.51E-31	-0.032	2953.982	0 45 45	0	46 45 45+		75	66	7
50	2.38833	2.80E-31	-0.032	3217.481	0 47 47	0	48 47 47+		75	66	7
51	2.40594	7.80E-32	-0.032	3491.957	0 49 49	0	50 49 49+		75	66	7
52	2.42355	2.06E-32	-0.032	3777.365	0 51 51	0	52 51 51+		75	66	7
53	2.44116	5.13E-33	-0.032	4073.659	0 53 53	0	54 53 53+		75	66	7
54	2.46108	1.00E-21	-0.050	0.000	0 1 1	0	0 1 1+		75	66	7

RIVERSIDE RESEARCH INSTITUTE

NRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCR1 FORMAT)

AF7415V0 BC, B1, ETC+1 REF# 7, 016H016 SUBMM LINES, KRUPENKE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E''''	V'	J1	K1	V''''	J1''K1''	ID	DATE	ISO
1	12.29178	2.22E-26	.038	3.961	0	2	3	0	1	1	SF	75 66 7
2	14.16858	2.43E-25	.045	2.084	0	2	3	0	2	1	SG	75 66 7
3	16.25289	1.04E-25	.045	2.084	0	3	3	0	2	1	SM	75 66 7
4	23.86295	6.28E-26	.045	18.337	0	4	8	0	3	3	SF	75 66 7
5	25.81252	3.96E-25	.044	16.388	0	4	5	0	4	3	SG	75 66 7
6	27.82411	1.37E-25	.044	16.388	0	5	5	0	4	3	SM	75 66 7
7	35.39530	9.10E-26	.043	44.212	0	6	7	0	5	5	SF	75 66 7
8	37.38305	4.91E-25	.042	42.224	0	6	7	0	6	5	SG	75 66 7
9	39.35655	1.54E-25	.042	42.224	0	7	7	0	6	5	SM	75 66 7
10	46.91156	1.04E-26	.042	81.581	0	8	9	0	7	7	SF	75 66 7
11	48.92748	5.22E-25	.041	79.565	0	8	9	0	8	7	SG	75 66 7
12	50.87292	1.56E-25	.041	79.565	0	9	9	0	8	7	SM	75 66 7
13	58.41563	1.03E-25	.041	130.438	0	10	11	0	9	9	SF	75 66 7
14	60.46539	4.95E-25	.040	128.398	0	10	11	0	10	9	SG	75 66 7
15	62.37713	1.43E-25	.040	128.398	0	11	11	0	10	9	SM	75 66 7
16	69.90770	9.19E-26	.041	190.775	0	12	13	0	11	11	SF	75 66 7
17	71.96913	4.28E-25	.039	188.714	0	12	13	0	12	11	SG	75 66 7
18	73.86939	1.21E-25	.039	188.714	0	13	13	0	12	11	SM	75 66 7
19	81.38685	7.48E-26	.038	262.583	0	14	15	0	13	13	SF	75 66 7
20	83.46866	3.44E-25	.038	260.501	0	14	15	0	14	13	SM	75 66 7
21	85.34874	9.44E-26	.038	260.801	0	15	18	0	14	13	SM	75 66 7
22	92.85169	5.62E-26	.036	345.850	0	16	17	0	15	15	SF	75 66 7
23	94.95307	2.52E-25	.034	343.748	0	16	17	0	16	15	SG	75 66 7
24	96.81382	6.91E-26	.034	343.748	0	17	17	0	16	15	SM	75 66 7
25	104.30063	3.92E-26	.037	440.562	0	18	19	0	17	17	SF	75 66 7
26	106.42108	1.74E-25	.036	438.442	0	18	19	0	18	17	SG	75 66 7
27	108.26304	4.72E-26	.036	438.442	0	19	19	0	18	17	SM	75 66 7
28	115.73199	2.56E-26	.036	546.705	0	20	21	0	19	19	SF	75 66 7
29	117.87106	1.12E-25	.035	544.566	0	20	21	0	20	19	SG	75 66 7
30	119.69469	3.02E-26	.035	544.566	0	21	21	0	20	19	SM	75 66 7
31	127.14000	1.56E-26	.035	664.261	0	22	23	0	21	21	SF	75 66 7
32	129.30146	6.79E-26	.035	662.103	0	22	22	0	22	21	SG	75 66 7
33	131.10704	1.81E-26	.035	662.103	0	22	22	0	22	21	SM	75 66 7
34	138.53489	8.90E-27	.035	793.210	0	24	28	0	23	23	SF	75 66 7
35	140.71053	3.86E-26	.032	791.034	0	24	28	0	24	23	SG	75 66 7
36	142.49829	1.02E-26	.032	791.034	0	25	28	0	24	23	SM	75 66 7
37	149.90225	4.78E-27	.032	933.533	0	26	27	0	25	25	SF	75 66 7
38	152.09653	2.06E-26	.032	931.339	0	26	27	0	26	25	SG	75 66 7
39	153.86664	5.44E-27	.032	931.339	0	27	27	0	26	25	SM	75 66 7
40	161.24605	2.41E-27	.032	1085.206	0	28	29	0	27	27	SF	75 66 7
41	163.45765	1.03E-26	.032	1082.994	0	28	29	0	28	27	SG	75 66 7
42	165.21027	2.72E-27	.032	1082.994	0	29	29	0	28	27	SM	75 66 7
43	172.56267	1.15E-27	.032	1248.204	0	30	31	0	29	29	SF	75 66 7
44	174.79210	4.89E-27	.032	1245.975	0	30	31	0	30	29	SG	75 66 7
45	176.52734	1.28E-27	.032	1245.975	0	31	31	0	30	29	SM	75 66 7
46	183.85086	5.13E-28	.032	1422.802	0	32	33	0	31	31	SF	75 66 7
47	186.09807	2.18E-27	.032	1420.255	0	32	33	0	32	31	SG	75 66 7

RIVERSIDE RESEARCH INSTITUTE

HFI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

4F7K15VC B0, B1, ETC.: REF. 7, 016=016 SUBMM LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E''	V'	J' K'	V'''	J''' K'''	ID	DATE	ISO	NO
48	147.81602	5.71E-28	.032	1470.255	0	33 33	0	32 31	SH	75	66	7
49	155.10679	2.17E-28	.032	1478.071	0	34 35	0	33 33	SF	75	66	7
50	157.37371	9.19E-28	.032	1605.806	0	34 35	0	34 33	SO	75	66	7
51	159.07447	2.40E-28	.032	1605.804	0	35 35	0	34 33	SH	75	66	7
52	206.33461	8.63E-29	.032	1804.881	0	36 37	0	35 25	SF	75	66	7
53	208.61722	3.65E-28	.032	1802.598	U	36 37	0	36 35	SO	75	66	7
54	210.30084	9.50E-29	.032	1802.598	0	37 37	0	36 35	SH	75	66	7
55	217.52647	3.29E-29	.032	2012.899	0	38 39	0	37 37	SF	75	66	7
56	219.82673	1.37E-28	.032	2010.599	0	38 39	0	38 37	SO	75	66	7
57	221.49328	3.56E-29	.032	2010.599	0	39 39	0	38 37	SH	75	66	7
58	228.68253	1.15E-29	.032	2232.092	0	40 41	0	39 39	SF	75	66	7
59	231.00042	4.86E-29	.032	2229.774	0	40 41	0	40 39	SO	75	66	7
60	232.64995	1.26E-29	.032	2229.774	0	41 41	0	40 39	SH	75	66	7
61	239.80093	3.88E-30	.032	2462.424	0	42 43	0	41 41	SF	75	66	7
62	242.13644	1.63E-29	.032	2460.088	0	42 43	0	42 41	SO	75	66	7
63	243.76899	4.21E-30	.032	2460.088	0	43 43	0	42 41	SH	75	66	7
64	250.87982	1.23E-30	.032	2703.857	0	44 45	0	43 43	SF	75	66	7
65	253.23294	5.17E-30	.032	2701.504	0	44 45	0	44 43	SO	75	66	7
66	254.84855	1.33E-30	.032	2701.504	0	45 45	0	44 43	SH	75	66	7
67	261.91735	3.70E-31	.032	2956.353	0	46 47	0	45 45	SF	75	66	7
68	264.28807	1.55E-30	.032	2953.982	0	46 47	0	46 45	SO	75	66	7
69	265.88678	3.99E-31	.032	2953.982	0	47 47	0	46 45	SH	75	66	7
70	272.91166	1.05E-31	.032	3219.869	0	48 49	0	47 47	SF	75	66	7
71	275.29999	4.40E-31	.032	3217.481	0	48 49	0	48 47	SO	75	66	7
72	276.88182	1.13E-31	.032	3217.481	0	49 49	0	48 47	SH	75	66	7
73	283.86090	2.83E-32	.032	3499.362	0	50 51	0	49 49	SF	75	66	7
74	286.26684	1.18E-31	.032	3491.957	0	50 51	0	50 49	SO	75	66	7
75	287.83183	3.04E-32	.032	3491.957	0	51 51	0	50 49	SH	75	66	7
76	294.76322	7.20E-33	.032	3779.788	0	52 53	0	51 51	SF	75	66	7
77	297.18677	3.01E-32	.032	3777.365	0	52 53	0	52 51	SO	75	66	7
78	298.73494	7.72E-33	.032	3777.365	0	53 53	0	52 51	SH	75	66	7
79	305.61676	1.74E-33	.032	4076.100	0	54 55	0	53 53	SF	75	66	7
80	308.05794	7.25E-33	.032	4073.659	0	54 55	0	54 53	SO	75	66	7
81	309.58931	1.86E-33	.032	4073.659	0	55 55	0	54 53	SH	75	66	7

RIVERSIDE RESEARCH INSTITUTE

RNI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFGL FORMAT)

AF76CK25v0 60, B1, ETC+1 REF. 7, 016#018 MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E ^{II}	V ^I	J ^I	K ^I	V ^{II}	J ^{II}	K ^{II}	ID	DATE	ISO	MO
1	0.00000	0.00E0	.050	0.000	0	0	0	0	1	0	0+	75	68	7
2	0.00000	0.00E0	.050	0.000	0	0	0	0	-1	0	0-	75	68	7
3	1.68274	4.96E-32	.032	2107.907	0	39	39	0	38	39	39-	75	68	7
4	1.69084	8.12E-32	.032	2003.007	0	38	38	0	37	38	38-	75	68	7
5	1.69895	1.31E-31	.032	1900.747	0	37	37	0	36	37	37-	75	68	7
6	1.70707	2.09E-31	.032	1801.129	0	36	36	0	35	36	36-	75	68	7
7	1.71520	3.29E-31	.032	1704.159	0	35	36	0	34	35	35-	75	68	7
8	1.72335	5.11E-31	.032	1609.839	0	34	34	0	33	34	34-	75	68	7
9	1.73150	7.82E-31	.032	1518.173	0	33	33	0	32	33	33-	75	68	7
10	1.73968	1.18E-30	.032	1429.165	0	32	32	0	31	32	32-	75	68	7
11	1.74787	1.76E-30	.032	1342.818	0	31	31	0	30	31	31-	75	68	7
12	1.75608	2.58E-30	.032	1259.136	0	30	30	0	29	30	30-	75	68	7
13	1.76431	3.73E-30	.032	1178.121	0	29	29	0	28	29	29-	75	68	7
14	1.77256	5.33E-30	.032	1099.777	0	28	28	0	27	28	28-	75	68	7
15	1.78084	7.99E-30	.032	1024.107	0	27	27	0	26	27	27-	75	68	7
16	1.78914	1.00E-29	.032	951.113	0	26	26	0	25	26	26-	75	68	7
17	1.79748	1.44E-29	.032	880.799	0	25	25	0	24	25	25-	75	68	7
18	1.80586	1.91E-29	.035	813.167	0	24	24	0	23	24	24-	75	68	7
19	1.81428	2.53E-29	.038	748.219	0	23	23	0	22	23	23-	75	68	7
20	1.82275	3.32E-29	.037	685.959	0	22	22	0	21	22	22-	75	68	7
21	1.83127	4.28E-29	.035	626.388	0	21	21	0	20	21	21-	75	68	7
22	1.83966	5.43E-29	.036	569.809	0	20	20	0	19	20	20-	75	68	7
23	1.84852	6.78E-29	.037	515.324	0	19	19	0	18	19	19-	75	68	7
24	1.85727	8.34E-29	.038	463.835	0	18	18	0	17	18	18-	75	68	7
25	1.86611	1.01E-28	.038	415.043	0	17	17	0	16	17	17-	75	68	7
26	1.87539	1.20E-28	.038	368.952	0	16	16	0	15	16	16-	75	68	7
27	1.88420	1.44E-28	.038	325.562	0	15	18	0	14	15	15-	75	68	7
28	1.89204	5.00E-29	.045	2.633	0	1	1	0	2	1	1+	75	68	7
29	1.89350	1.62E-28	.039	284.875	0	14	14	0	13	14	14-	75	68	7
30	1.90302	1.83E-28	.039	246.893	0	13	13	0	12	13	13-	75	68	7
31	1.91282	2.03E-28	.040	211.617	0	12	12	0	11	12	12-	75	68	7
32	1.92298	2.21E-28	.041	179.448	0	11	11	0	10	11	11-	75	68	7
33	1.93133	1.03E-28	.047	8.025	0	2	8	0	3	2	2+	75	68	7
34	1.93361	2.36E-28	.042	149.187	0	10	10	0	9	10	10-	75	68	7
35	1.94488	2.46E-28	.043	122.036	0	9	9	0	8	9	9-	75	68	7
36	1.95657	1.98E-28	.044	16.146	0	3	3	0	4	3	3+	75	68	7
37	1.95708	2.50E-28	.044	97.595	0	8	8	0	7	8	8-	75	68	7
38	1.97052	2.48E-28	.044	75.865	0	7	7	0	6	7	7-	75	68	7
39	1.97549	1.87E-28	.043	26.989	0	4	4	0	5	4	4+	75	68	7
40	1.98602	2.39E-28	.044	56.845	0	6	6	0	5	6	6-	75	68	7
41	1.99103	2.19E-28	.042	40.850	0	5	5	0	6	5	5+	75	68	7
42	2.00495	2.44E-28	.041	56.827	0	6	6	0	7	6	6+	75	68	7
43	2.00491	2.21E-28	.044	40.836	0	5	5	0	4	5	5-	75	68	7
44	2.01677	2.61E-28	.041	75.819	0	7	7	0	8	7	7+	75	68	7
45	2.02811	2.69E-28	.041	97.824	0	8	8	0	9	8	8+	75	68	7
46	2.03011	1.95E-28	.045	26.934	0	4	4	0	3	4	4-	75	68	7
47	2.03881	2.71E-28	.040	121.942	0	9	9	0	10	9	9+	75	68	7

RIVERSIDE RESEARCH INSTITUTE

NRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFTRL FORMAT)
45760<25v0 BO, B1, ETC+ REF. 7, 016=01B MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

FREQ	STRENGTH WIDTH	E''	V'	J'	K'	VII	JII	KII	ID	DATE	ISD	MO
48	2.04904	2.65E-28	.039	149.072	0	10 10	0	11 10 10+	75	68	7	
49	2.05892	2.54E-28	.039	178.912	0	11 11	0	12 11 11+	75	68	7	
50	2.06853	2.38E-28	.039	211.461	0	12 12	0	13 12 12+	75	68	7	
51	2.06938	1.61E-28	.047	16.033	0	3 3	0	2 3 3+	75	68	7	
52	2.07792	2.18E-28	.038	246.718	0	13 13	0	14 13 13+	75	68	7	
53	2.08715	1.97E-28	.036	284.681	0	14 14	0	15 14 14+	75	68	7	
54	2.09623	1.74E-28	.034	325.350	0	15 15	0	16 15 15+	75	68	7	
55	2.10519	1.52E-28	.035	368.722	0	16 16	0	17 16 16+	75	68	7	
56	2.11406	1.30E-28	.036	414.795	0	17 17	0	18 17 17+	75	68	7	
57	2.12285	1.09E-28	.036	463.569	0	18 18	0	19 18 18+	75	68	7	
58	2.13158	9.03E-29	.035	515.041	0	19 19	0	20 19 19+	75	68	7	
59	2.14024	7.35E-29	.035	569.208	0	20 20	0	21 20 20+	75	68	7	
60	2.14886	5.90E-29	.035	626.070	0	21 21	0	22 21 21+	75	68	7	
61	2.15239	1.18E-28	.048	7.804	0	2 2	0	1 2 2+	75	68	7	
62	2.15744	4.66E-29	.034	685.624	0	22 22	0	23 22 22+	75	68	7	
63	2.16598	3.62E-29	.032	747.867	0	23 23	0	24 23 23+	75	68	7	
64	2.17450	2.78E-29	.032	812.798	0	24 24	0	25 24 24+	75	68	7	
65	2.18298	2.10E-29	.032	880.413	0	25 25	0	26 25 25+	75	68	7	
66	2.19145	1.56E-29	.032	950.711	0	26 26	0	27 26 26+	75	68	7	
67	2.19989	1.14E-29	.032	1023.688	0	27 27	0	28 27 27+	75	68	7	
68	2.20632	8.28E-30	.032	1099.341	0	28 28	0	29 28 28+	75	68	7	
69	2.21674	5.90E-30	.032	1177.668	0	29 29	0	30 29 29+	75	68	7	
70	2.22514	4.15E-30	.032	1258.667	0	30 30	0	31 30 30+	75	68	7	
71	2.23353	2.87E-30	.032	1342.332	0	31 31	0	32 31 31+	75	68	7	
72	2.24192	1.96E-30	.032	1428.663	0	32 32	0	33 32 32+	75	68	7	
73	2.25030	1.32E-30	.032	1517.654	0	33 33	0	34 33 33+	75	68	7	
74	2.25867	8.79E-31	.032	1609.303	0	34 34	0	35 34 34+	75	68	7	
75	2.26704	5.76E-31	.032	1703.607	0	35 35	0	36 35 35+	75	68	7	
76	2.27540	3.72E-31	.032	1800.561	0	36 36	0	37 36 36+	75	68	7	
77	2.28377	2.38E-31	.032	1900.162	0	37 37	0	38 37 37+	75	68	7	
78	2.29213	1.49E-31	.032	2002.004	0	38 38	0	39 38 38+	75	68	7	
79	2.30049	9.28E-32	.032	2107.289	0	39 39	0	40 39 39+	75	68	7	
80	3.96140	1.94E-28	.050	0.563	0	1 1	0	0 1 1+	75	68	7	

RIVERSIDE RESEARCH INSTITUTE

RHI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

	AF7K25V0	80, B1, ETC+1 REF. 7,	016-01E SUBMM LINES, KRUPENIE WINTHES, V = 0	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V'''	J'''K'''	ID	DATE	ISO	NO
1	0.00000	0.00E0	.050	0.000	0	1	2	0	0	0	SF	75	68	7		
2	7.80360	2.91E-28	.070	0.000	0	1	2	0	1	0	SG	75	68	7		
3	9.95599	1.67E-28	.050	0.000	0	2	3	0	1	0	SH	75	68	7		
4	11.50856	4.25E-29	.048	4.525	0	2	3	0	1	1	SF	75	68	7		
5	13.40060	4.72E-28	.045	2.633	0	2	3	0	2	1	SG	75	68	7		
6	15.46998	2.05E-28	.045	2.633	0	3	3	0	2	1	SH	75	68	7		
7	16.97828	8.41E-29	.048	9.956	0	3	4	0	2	2	SF	75	68	7		
8	18.90961	6.35E-28	.047	8.025	0	3	4	0	3	2	SG	75	68	7		
9	20.93973	2.40E-28	.047	8.025	0	4	4	0	3	2	SH	75	68	7		
10	22.43321	1.22E-28	.045	18.103	0	4	5	0	3	3	SF	75	68	7		
11	24.38978	7.75E-28	.044	16.146	0	4	8	0	4	3	SG	75	68	7		
12	26.39469	2.69E-28	.044	16.146	0	5	5	0	4	3	SH	75	68	7		
13	27.88690	1.53E-28	.044	28.964	0	5	8	0	4	4	SF	75	68	7		
14	29.85639	8.87E-28	.043	26.989	0	5	8	0	5	4	SG	75	68	7		
15	31.8421	2.92E-28	.043	26.989	0	6	6	0	5	4	SH	75	68	7		
16	33.32407	1.78E-28	.043	42.541	0	6	7	0	5	5	SF	75	68	7		
17	35.31509	9.69E-28	.042	40.550	0	6	7	0	6	5	SG	75	68	7		
18	37.28563	3.06E-28	.042	40.550	0	7	7	0	6	5	SH	75	68	7		
19	38.76386	1.96E-28	.043	58.831	0	7	8	0	7	6	SG	75	68	7		
20	40.76842	1.02E-27	.041	56.827	0	7	8	0	7	6	SH	75	68	7		
21	42.72546	3.13E-28	.041	56.827	0	8	8	0	7	6	SF	75	68	7		
22	44.20080	2.07E-28	.042	77.835	0	8	9	0	7	7	SG	75	68	7		
23	46.21758	1.04E-27	.041	75.819	0	8	9	0	8	7	SG	75	68	7		
24	48.16245	3.12E-28	.041	73.819	0	9	9	0	8	7	SH	75	68	7		
25	49.63509	2.11E-28	.042	99.852	0	9	10	0	8	8	SF	75	68	7		
26	51.66320	1.03E-27	.041	97.524	0	9	10	0	9	8	SG	75	68	7		
27	53.59681	3.04E-28	.041	97.824	0	10	10	0	9	8	SH	75	68	7		
28	55.06678	2.08E-28	.041	123.981	0	10	11	0	9	9	SF	75	68	7		
29	57.10558	1.00E-27	.040	121.942	0	10	11	0	10	9	SG	75	68	7		
30	59.02856	2.9CE-28	.040	121.942	0	11	11	0	10	9	SH	75	68	7		
31	60.49582	2.01E-28	.041	151.121	0	11	18	0	10	10	SF	75	68	7		
32	62.54486	9.49E-28	.039	149.072	0	11	18	0	11	10	SG	75	68	7		
33	64.45768	2.72E-28	.039	149.072	0	12	18	0	11	10	SH	75	68	7		
34	65.92213	1.89E-28	.041	180.971	0	12	19	0	11	11	SF	75	68	7		
35	67.98106	8.82E-28	.039	178.912	0	12	19	0	12	11	SG	75	68	7		
36	69.88407	2.50E-28	.039	178.912	0	13	19	0	12	11	SH	75	68	7		
37	71.34558	1.74E-28	.040	213.530	0	13	19	0	12	12	SF	75	68	7		
38	73.41411	8.03E-28	.039	211.461	0	13	19	0	13	12	SG	75	68	7		
39	75.30761	2.25E-28	.039	211.461	0	14	14	0	13	12	SH	75	68	7		
40	76.76602	1.57E-28	.038	248.796	0	14	15	0	13	13	SF	75	68	7		
41	78.84394	7.18E-28	.038	246.718	0	14	19	0	14	13	SG	75	68	7		
42	80.72815	2.00E-28	.038	246.718	0	15	19	0	14	13	SH	75	68	7		
43	82.18328	1.39E-28	.038	286.769	0	15	16	0	14	14	SF	75	68	7		
44	84.27043	6.30E-28	.036	284.681	0	16	16	0	15	14	SG	75	68	7		
45	86.14551	1.74E-28	.036	284.681	0	16	16	0	15	14	SH	75	68	7		
46	87.59720	1.21E-28	.036	327.446	0	16	17	0	15	15	SF	75	68	7		
47	89.69343	5.44E-28	.034	325.355	0	16	17	0	16	15	SG	75	68	7		

T-1/306-3-14

RIVERSIDE RESEARCH INSTITUTE

RRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

AF7K25VC BU, B1, ETC+1 REF# 7, 016=018 SUBMM LINES, KRUPENIE WIOTHS, V = 0

FREQ	STRENGTH WIOTH	E''	V'	J' K'	VII	WIK''	IO	DATE ISO	"O
48	91·55954	1·49E·28	·034	325·35	0	17 17	0	16 15	SH
49	93·00758	1·03E·28	·037	370·82	0	17 18	0	16 16	SF
50	95·11278	·61E·28	·035	368·72	0	17 16	0	17 16	SG
51	96·97004	1·26E·28	·035	368·722	0	18 18	0	17 16	SH
52	98·41425	8·67E·29	·037	416·909	0	18 19	0	17 17	SF
53	100·52832	3·85E·28	·036	414·795	0	18 19	0	18 17	SG
54	102·37684	1·05E·28	·036	414·795	0	19 19	0	18 17	SH
55	103·81702	7·16E·29	·037	465·692	0	19 20	0	18 18	SF
56	105·93987	3·17E·28	·036	463·569	0	19 20	0	19 18	SG
57	107·77973	8·56E·29	·036	463·569	0	20 20	0	19 18	SH
58	109·21568	5·82E·29	·036	517·172	0	20 21	0	19 19	SF
59	111·34725	2·56E·28	·027	515·041	0	20 21	0	20 19	SG
60	113·17852	6·90E·29	·035	515·041	0	21 21	0	20 19	SH
61	114·61004	4·65E·29	·036	571·349	0	21 22	0	20 20	SF
62	116·75028	2·04E·28	·035	569·208	0	21 22	0	21 20	SG
63	118·57303	5·47E·29	·035	569·208	0	22 22	0	21 20	SH
64	119·99290	3·66E·29	·025	628·219	0	22 23	0	21 21	SF
65	122·14877	1·60E·28	·035	626·070	0	22 23	0	22 21	SG
66	123·96305	4·28E·29	·035	626·070	0	23 23	0	22 21	SH
67	125·38508	2·84E·29	·036	687·782	0	23 24	0	22 22	SF
68	127·54252	1·24E·28	·034	685·624	0	23 24	0	23 22	SG
69	129·34838	3·30E·29	·034	685·624	0	24 24	0	23 22	SH
70	130·76535	2·17E·29	·035	750·033	0	24 25	0	23 23	SF
71	132·93134	9·44E·29	·032	747·867	0	24 28	0	24 23	SG
72	134·72882	2·50E·29	·032	747·867	0	25 28	0	24 23	SH
73	136·14053	1·63E·29	·034	814·972	0	25 26	0	24 24	SF
74	138·31503	7·06E·21	·032	812·798	0	25 26	0	25 24	SG
75	140·10417	1·87E·23	·032	812·798	0	26 26	0	25 24	SH
76	141·51041	1·21E·29	·032	882·896	0	26 27	0	25 25	SF
77	143·69339	5·22E·29	·032	880·413	0	26 27	0	26 25	SG
78	145·47423	1·38E·29	·032	880·413	0	27 27	0	26 25	SH
79	146·87478	8·85E·30	·032	952·902	0	27 28	0	26 26	SF
80	149·06623	3·81E·29	·032	950·711	0	27 28	0	27 26	SG
81	150·83879	1·01E·29	·032	950·711	0	28 28	0	27 26	SH
82	152·23345	6·37E·30	·032	1025·887	0	28 29	0	27 27	SF
83	154·43335	2·74E·29	·032	1023·688	0	28 29	0	28 27	SG
84	156·19765	7·21E·30	·032	1023·688	0	29 29	0	28 27	SH
85	157·58621	4·52E·30	·032	1101·849	0	29 30	0	28 28	SF
86	159·79453	1·94E·29	·032	1099·341	0	29 30	0	29 28	SG
87	161·55061	5·10E·30	·032	1099·341	0	30 30	0	29 28	SH
88	162·93286	3·17E·30	·032	1179·885	0	30 31	0	29 29	SF
89	165·14960	1·35E·29	·032	1177·668	0	30 31	0	30 29	SG
90	166·89746	3·56E·30	·032	1177·668	0	31 31	0	30 29	SH
91	168·27319	2·19E·30	·032	1260·892	0	31 32	0	30 30	SF
92	170·49833	9·33E·30	·032	1258·667	0	31 32	0	31 30	SG
93	172·23801	2·45E·30	·032	1258·667	0	32 32	0	31 30	SH
94	173·60699	1·49E·30	·032	1344·866	0	32 33	0	31 31	SF

RIVERSIDE RESEARCH INSTITUTE

RRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFTRL FORMAT)

AF7K25V0 80, B1, ETC+1 REF+ 7, 016=018 SUBMM LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E ¹¹	V ¹	J ¹ K ¹	V ¹¹	J ¹¹ K ¹¹	ID	DATE	ISO	NO
95	175.84053	6.30E-30	.032	1342.332	0	32 33	0	32 31	SG	75	68	7
96	177.57203	1.66E-30	.032	1342.332	0	33 33	0	32 31	SH	75	68	7
97	178.93407	9.99E-31	.032	1430.905	0	33 34	0	32 32	SF	75	68	7
98	181.17599	4.25E-30	.032	1428.663	0	33 39	0	33 32	SG	75	68	7
99	182.89934	1.11E-30	.032	1428.663	0	34 39	0	33 32	SH	75	68	7
100	184.25422	6.61E-31	.032	1519.904	0	34 38	0	33 33	SF	75	68	7
101	186.50451	2.81E-30	.032	1517.654	0	34 38	0	34 33	SG	75	68	7
102	188.21971	7.33E-31	.032	1517.654	0	35 38	0	34 33	SH	75	68	7
103	189.56722	4.32E-31	.032	1611.862	0	38 36	0	34 34	SF	75	68	7
104	191.82589	1.83E-30	.032	1609.303	0	35 38	0	35 34	SG	75	68	7
105	193.53296	4.77E-31	.032	1609.303	0	36 38	0	35 34	SH	75	68	7
106	194.87289	2.78E-31	.032	1705.874	0	36 37	0	35 35	SF	75	68	7
107	197.13992	1.18E-30	.032	1703.607	0	36 37	0	36 35	SG	75	68	7
108	198.83887	3.07E-31	.032	1703.607	0	37 37	0	36 35	SH	75	68	7
109	200.17100	1.77E-31	.032	1802.836	0	37 38	0	36 36	SF	75	68	7
110	202.44640	7.47E-31	.032	1800.861	0	37 38	0	37 36	SG	75	68	7
111	204.13724	1.94E-31	.032	1800.861	0	38 38	0	37 36	SH	75	68	7
112	205.46136	1.11E-31	.032	1902.446	0	38 39	0	37 37	SF	75	68	7
113	207.74513	4.68E-31	.032	1900.162	0	38 39	0	38 37	SG	75	68	7
114	209.42786	1.21E-31	.032	1900.162	0	39 39	0	38 37	SH	75	68	7
115	210.74376	6.84E-32	.032	2004.698	0	39 40	0	38 38	SF	75	68	7
116	213.03589	2.89E-31	.032	2002.406	0	39 41	0	39 38	SG	75	68	7
117	214.71053	7.49E-32	.032	2002.406	0	40 40	0	39 38	SH	75	68	7
118	216.01800	4.17E-32	.032	2109.890	0	40 41	0	39 39	SF	75	68	7
119	218.31849	1.76E-31	.032	2107.209	0	40 41	0	40 39	SG	75	68	7
120	219.98504	4.56E-32	.032	2107.209	0	41 41	0	40 39	SH	75	68	7

RIVERSIDE RESEARCH INSTITUTE

RMI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

AF760K35v0 BO, B1, ETC.: REF. 7, 018=018 MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

FREQ	STRENGTH	WIDTH	E''	V'	J'' K''	VII	J'' K'' ID	DATE	ISO	MO
1	1.59501	7.2UE-38	.032	3626.05	0 53 53	0	52 53 53-	75	88	7
2	1.60999	2.55E-37	.032	3362.098	0 51 51	0	50 51 51-	75	88	7
3	1.62498	8.58E-37	.032	3107.879	0 49 49	0	48 49 49-	75	88	7
4	1.63999	2.75E-36	.032	2863.432	0 47 47	0	46 47 47-	75	88	7
5	1.65502	8.40E-36	.032	2628.794	0 45 48	0	44 45 45-	75	88	7
6	1.67007	2.44E-35	.032	2403.998	0 43 43	0	42 43 43-	75	88	7
7	1.68514	6.73E-35	.032	2189.078	0 41 41	0	40 41 41-	75	88	7
8	1.70025	1.77E-34	.032	1984.065	0 39 39	0	38 39 39-	75	88	7
9	1.71539	4.41E-34	.032	1788.989	0 37 37	0	36 37 37-	75	88	7
10	1.73056	1.04E-33	.032	1603.877	0 35 35	0	34 35 35-	75	88	7
11	1.74579	2.35E-33	.032	1428.758	0 33 33	0	32 33 33-	75	88	7
12	1.76107	5.01E-33	.032	1263.655	0 31 31	0	30 31 31-	75	88	7
13	1.77642	1.01E-32	.032	1108.594	0 29 29	0	28 29 29-	75	88	7
14	1.79186	1.95E-32	.032	963.997	0 27 27	0	26 27 27-	75	88	7
15	1.80740	3.54E-32	.032	828.684	0 25 28	0	24 25 25-	75	88	7
16	1.82307	6.08E-32	.038	703.875	0 23 23	0	22 23 23-	75	88	7
17	1.83890	9.89E-32	.035	589.188	0 21 21	0	20 21 21-	75	88	7
18	1.85495	1.52E-31	.037	484.641	0 19 19	0	18 19 19-	75	88	7
19	1.87130	2.19E-31	.038	390.246	0 17 17	0	16 17 17-	75	88	7
20	1.88206	2.97E-31	.038	306.019	0 15 18	0	14 15 15-	75	88	7
21	1.90543	3.77E-31	.029	231.971	0 13 13	0	12 13 13-	75	88	7
22	1.90932	1.05E-31	.045	2.052	0 1 1	0	2 1 1+	75	88	7
23	1.92376	4.46E-31	.041	168.112	0 11 11	0	10 11 11-	75	88	7
24	1.94370	4.87E-31	.043	114.452	0 9 9	0	8 9 9-	75	88	7
25	1.96468	2.87E-31	.044	14.777	0 3 3	0	4 3 3+	75	88	7
26	1.96676	4.84E-31	.044	70.995	0 7 7	0	6 7 7-	75	88	7
27	1.99809	4.27E-31	.042	37.747	0 5 5	0	6 5 5+	75	88	7
28	1.99710	4.25E-31	.044	37.745	0 5 5	0	4 5 5-	75	88	7
29	2.01326	5.11E-31	.041	70.944	0 7 7	0	8 7 7+	75	88	7
30	2.01433	5.37E-31	.040	114.357	0 9 9	0	10 9 9+	75	88	7
31	2.01242	3.04E-31	.047	14.689	0 3 3	0	2 3 3-	75	88	7
32	2.01682	9.11E-31	.039	167.979	0 11 11	0	12 11 11+	75	88	7
33	2.07437	4.44E-31	.038	231.802	0 12 12	0	14 13 13+	75	88	7
34	2.09134	3.65E-31	.034	305.816	0 15 15	0	16 15 15+	75	88	7
35	2.10793	2.78E-31	.036	390.010	0 17 17	0	18 17 17+	75	88	7
36	2.12425	1.99E-31	.035	484.371	0 19 19	0	20 19 19+	75	88	7
37	2.14038	1.34E-31	.035	588.887	0 21 21	0	22 21 21+	75	88	7
38	2.15637	8.52E-32	.032	703.842	0 23 23	0	24 23 23+	75	88	7
39	2.17225	5.12E-32	.032	828.319	0 25 28	0	26 25 25+	75	88	7
40	2.18806	2.91E-32	.032	963.201	0 27 27	0	28 27 27+	75	88	7
41	2.20382	1.56E-32	.032	1108.167	0 29 29	0	30 29 29+	75	88	7
42	2.21953	7.97E-33	.032	1263.197	0 31 31	0	32 31 31+	75	88	7
43	2.23522	3.85E-33	.032	1478.268	0 33 33	0	34 33 33+	75	88	7
44	2.25088	1.77E-33	.032	1603.357	0 35 38	0	36 35 35+	75	88	7
45	2.26653	7.70E-34	.032	1788.438	0 37 37	0	38 37 37+	75	88	7
46	2.28217	3.19E-34	.032	1983.983	0 39 39	0	40 39 39+	75	88	7
47	2.29782	1.25E-34	.032	2188.466	0 41 41	0	42 41 41+	75	88	7

RIVERSIDE RESEARCH INSTITUTE

RMI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFTRL FORMAT)

AF760435v0 BC, B1, ETC.; REF: 7, C18*018 MICROWAVE LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E''	V'	J1' K1'	VII	J1' K1' ID	DATE	ISO	NO
48	2.31346	4.69E-35	.032	2.03+355	0	43 43	0	44 43 43+	75	88	7
49	2.32911	1.67E-35	.032	2628+120	0	45 45	0	46 45 45+	75	88	7
50	2.34477	5.64E-36	.032	2862+727	0	47 47	0	48 47 47+	75	88	7
51	2.36044	1.81E-36	.032	3107+143	0	49 49	0	50 49 49+	75	88	7
52	2.37612	5.56E-37	.032	3361+332	0	51 51	0	52 51 51+	75	88	7
53	2.39182	1.62E-37	.032	3625+287	0	53 53	0	54 53 53+	75	88	7
54	3.96171	3.73E-31	.050	0.000	0	1 1	0	0 1 1-	75	88	7

RIVERSIDE RESEARCH INSTITUTE

NRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

AF7K35V0 B0, B1, ETC.1 REF. 7, 618=018 SUBMM LINES, KHUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	VII	J''	K''	ID	DATE	ISO	MO
1	10.72714	8.00E-32	.048	3.962	0	2	3	0	1	1	SF	75	88	7
2	12.63646	9.07E-31	.045	2.052	0	4	3	0	2	1	SG	75	88	7
3	14.68388	4.00E-31	.045	2.052	0	3	3	0	2	1	SM	75	88	7
4	21.00418	2.32E-31	.045	16.741	0	4	5	0	3	3	SF	75	88	7
5	22.96886	1.50E-30	.044	14.777	0	4	5	0	4	3	SG	75	88	7
6	24.93696	5.26E-31	.044	14.777	0	5	5	0	4	3	SM	75	88	7
7	31.25291	3.45E-31	.043	39.743	0	6	7	0	5	5	SF	75	88	7
8	33.24801	1.89E-30	.042	37.747	0	6	7	0	6	5	SG	75	88	7
9	35.21477	6.01E-31	.042	37.747	0	7	7	0	6	5	SM	75	88	7
10	41.43958	4.05E-31	.042	72.962	0	8	9	0	7	7	SF	75	88	7
11	43.50784	2.05E-30	.041	70.944	0	8	9	0	8	7	SG	75	88	7
12	45.45154	6.18E-31	.041	70.944	0	9	9	0	8	7	SM	75	88	7
13	51.71688	4.15E-31	.041	116.396	0	10	11	0	9	9	SF	75	88	7
14	53.75522	2.00E-30	.040	114.357	0	10	11	0	10	9	SG	75	88	7
15	55.67897	5.83E-31	.040	114.357	0	11	11	0	10	9	SM	75	88	7
16	61.93483	3.83E-31	.041	170.036	0	12	13	0	11	11	SF	75	88	7
17	63.99164	1.79E-30	.039	167.979	0	12	13	0	12	11	SG	75	88	7
18	65.89707	5.10E-31	.039	167.979	0	13	13	0	12	11	SM	75	88	7
19	72.14261	3.25E-31	.038	233.876	0	14	15	0	13	13	SF	75	88	7
20	74.21698	1.49E-30	.038	231.802	0	14	15	0	14	13	SG	75	88	7
21	76.10504	4.16E-31	.038	231.802	0	15	15	0	14	13	SM	75	88	7
22	82.33910	2.56E-31	.035	307.907	0	16	17	0	15	15	SF	75	88	7
23	84.43045	1.15E-30	.034	305.816	0	16	17	0	16	15	SG	75	88	7
24	86.30175	3.19E-31	.034	305.816	0	17	17	0	16	15	SM	75	88	7
25	92.52303	1.89E-31	.037	392.117	0	18	19	0	17	17	SF	75	88	7
26	94.63096	8.42E-31	.036	390.010	0	18	19	0	18	17	SG	75	88	7
27	96.48591	2.29E-31	.036	390.010	0	19	19	0	18	17	SM	75	88	7
28	102.69304	1.31E-31	.036	484.495	0	20	21	0	19	19	SF	75	88	7
29	104.81729	5.77E-31	.035	484.371	0	20	21	0	20	19	SG	75	88	7
30	106.65619	1.56E-31	.035	484.371	0	21	21	0	20	19	SM	75	88	7
31	112.84773	8.51E-32	.035	591.027	0	22	23	0	21	21	SF	75	88	7
32	114.98811	3.72E-31	.035	588.887	0	22	23	0	22	21	SG	75	88	7
33	116.81117	9.98E-32	.035	588.887	0	23	23	0	22	21	SM	75	88	7
34	122.98568	5.23E-32	.035	705.698	0	24	25	0	23	23	SF	75	88	7
35	125.14205	2.27E-31	.032	703.542	0	24	25	0	24	23	SG	75	88	7
36	126.94945	6.05E-32	.032	703.542	0	25	25	0	24	23	SM	75	88	7
37	133.10546	3.03E-32	.032	830.491	0	26	27	0	25	25	SF	75	88	7
38	135.27771	1.31E-31	.032	828.319	0	26	27	0	26	25	SG	75	88	7
39	137.06957	3.47E-32	.032	828.319	0	27	27	0	26	25	SM	75	88	7
40	143.20562	1.66E-32	.032	965.389	0	28	29	0	27	27	SF	75	88	7
41	145.39368	7.16E-32	.032	963.201	0	28	29	0	28	27	SG	75	88	7
42	147.17011	1.89E-32	.032	963.201	0	29	29	0	28	27	SM	75	88	7
43	153.28470	8.56E-33	.032	1110.371	0	30	31	0	29	29	SF	75	88	7
44	155.48852	3.71E-32	.032	1108.167	0	30	31	0	30	29	SG	75	88	7
45	157.24960	9.75E-33	.032	1108.167	0	31	31	0	30	29	SM	75	88	7
46	163.34126	4.27E-33	.032	1265.416	0	32	33	0	31	31	SF	75	88	7
47	165.56079	1.82E-32	.032	1263.197	0	32	33	0	32	31	SG	75	88	7

RIVERSIDE RESEARCH INSTITUTE

NMR ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCR1 FORMAT)

AF7K35vC B0, B1, ETC.1 REF. 7, 018=018 SUMM LINES, KRUPENIE WIDTHS, V = 0

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V''	J''	K''	ID	DATE	ISO	PO
48	167.30658	4.77E-33	.032	1263.197	0	33	33	0	32	31	SH	75	88	7
49	173.37382	1.99E-33	.032	1430.503	0	34	35	0	33	33	SF	75	88	7
50	175.60903	8.49E-33	.032	1428.268	0	34	35	0	34	33	SG	75	88	7
51	177.33960	2.22E-33	.032	1428.268	0	35	35	0	34	33	SH	75	88	7
52	183.38092	8.85E-34	.032	1605.608	0	36	37	0	35	35	SF	75	88	7
53	185.63180	3.76E-33	.032	1603.357	0	36	37	0	36	35	SG	75	88	7
54	187.34718	9.79E-34	.032	1603.357	0	37	37	0	36	35	SH	75	88	7
55	193.36110	3.73E-34	.032	1790.704	0	38	39	0	37	37	SF	75	88	7
56	195.62763	1.58E-33	.032	1788.438	0	39	39	0	38	37	SG	75	88	7
57	197.32787	4.10E-34	.032	1788.438	0	39	39	0	38	37	SH	75	88	7
58	203.31288	1.49E-34	.032	1985.765	0	40	41	0	39	39	SF	75	88	7
59	205.59506	6.31E-34	.032	1983.483	0	40	41	0	40	39	SG	75	88	7
60	207.28620	1.64E-34	.032	1983.483	0	41	41	0	40	39	SH	75	88	7
61	213.23811	5.68E-35	.032	2190.764	0	42	43	0	41	41	SF	75	88	7
62	215.53263	2.40E-34	.032	2188.446	0	42	43	0	42	41	SG	75	88	7
63	217.20270	6.20E-35	.032	2188.446	0	43	43	0	42	41	SH	75	88	7
64	223.12542	2.06E-35	.032	2405.668	0	44	45	0	43	43	SF	75	88	7
65	225.43888	8.65E-35	.032	2403.355	0	44	45	0	44	43	SG	75	88	7
66	227.09390	2.24E-35	.032	2403.355	0	45	45	0	44	43	SH	75	88	7
67	232.98323	7.08E-36	.032	2630.449	0	46	47	0	45	45	SF	75	88	7
68	235.31234	2.98E-35	.032	2628.120	0	46	47	0	46	45	SG	75	88	7
69	236.95233	7.68E-36	.032	2628.120	0	47	47	0	46	45	SH	75	88	7
70	242.83677	2.32E-36	.032	2865.072	0	48	49	0	47	47	SF	75	88	7
71	245.15154	9.73E-36	.032	2862.727	0	48	49	0	48	47	SG	75	88	7
72	246.77652	2.91E-36	.032	2862.727	0	49	49	0	48	47	SH	75	88	7
73	252.59457	7.24E-37	.032	3109.504	0	50	51	0	49	49	SF	75	88	7
74	254.95501	3.03E-36	.032	3107.143	0	50	51	0	50	49	SG	75	88	7
75	256.56500	7.80E-37	.032	3107.143	0	51	51	0	50	49	SH	75	88	7
76	262.30517	2.15E-37	.032	3363.708	0	52	53	0	51	51	SF	75	88	7
77	264.72129	8.99E-37	.032	3361.332	0	52	53	0	52	51	SG	75	88	7
78	266.31630	2.31E-37	.032	3361.332	0	53	53	0	52	51	SH	75	88	7
79	272.05709	6.08E-38	.032	3627.649	0	54	55	0	53	53	SF	75	88	7
80	274.44891	2.54E-37	.032	3625.257	0	54	55	0	54	53	SG	75	88	7
81	276.02896	6.52E-38	.032	3625.257	0	55	55	0	54	53	SH	75	88	7

RIVERSIDE RESEARCH INSTITUTE

RRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

AF560<15v1 80, 81, ETC.; REF. 5, 016=016 MICROWAVE LINES, KRUPENIE WIDTHS, V = 1

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V''	J''	K''	ID	DATE	I80	M0
1	1.52311	1.27E-36	.032	5585.860	1	53 53		1	52 53	53-		75	66	7
2	1.54128	5.21E-36	.032	5292.844	1	51 51		1	50 51	51-		75	66	7
3	1.55948	2.02E-35	.032	5010.588	1	49 49		1	48 49	49-		75	66	7
4	1.57770	7.43E-35	.032	4739.137	1	47 47		1	46 47	47-		75	66	7
5	1.59594	2.58E-34	.032	4478.538	1	45 45		1	44 45	45-		75	66	7
6	1.61420	8.50E-34	.032	4228.832	1	43 43		1	42 43	43-		75	66	7
7	1.63250	2.65E-33	.032	3990.062	1	41 41		1	40 41	41-		75	66	7
8	1.65084	7.80E-33	.032	3762.267	1	39 39		1	38 39	39-		75	66	7
9	1.66921	2.17E-32	.032	3545.485	1	37 37		1	36 37	37-		75	66	7
10	1.68764	5.71E-32	.032	3339.751	1	35 35		1	34 35	35-		75	66	7
11	1.70613	1.42E-31	.032	3145.099	1	33 33		1	32 33	33-		75	66	7
12	1.72468	3.33E-31	.032	2961.562	1	31 31		1	30 31	31-		75	66	7
13	1.74332	7.36E-31	.032	2789.170	1	29 29		1	28 29	29-		75	66	7
14	1.76207	1.53E-30	.032	2627.950	1	27 27		1	26 27	27-		75	66	7
15	1.78094	3.01E-30	.032	2477.929	1	25 25		1	24 25	25-		75	66	7
16	1.79998	5.57E-30	.038	2339.133	1	23 23		1	22 23	23-		75	66	7
17	1.81923	9.67E-30	.035	2211.583	1	21 21		1	20 21	21-		75	66	7
18	1.83877	1.58E-29	.037	2095.301	1	19 19		1	18 19	19-		75	66	7
19	1.85869	2.41E-29	.038	1990.305	1	17 17		1	16 17	17-		75	66	7
20	1.87915	3.43E-29	.038	1896.613	1	15 15		1	14 15	15-		75	66	7
21	1.88985	1.42E-29	.045	1558.465	1	1 1		1	2 1	1+		75	66	7
22	1.90041	4.56E-29	.039	1814.239	1	13 13		1	12 13	13-		75	66	7
23	1.92295	5.61E-29	.041	1743.197	1	11 11		1	10 11	11-		75	66	7
24	1.94764	6.33E-29	.043	1683.497	1	9 9		1	8 9	9-		75	66	7
25	1.96204	3.92E-29	.044	1572.612	1	3 3		1	4 3	3+		75	66	7
26	1.97649	6.48E-29	.044	1635.147	1	7 7		1	6 7	7-		75	66	7
27	2.00064	5.80E-29	.042	1598.164	1	5 5		1	6 5	5+		75	66	7
28	2.01519	5.84E-29	.044	1598.149	1	5 5		1	5 5	5-		75	66	7
29	2.02949	6.85E-29	.041	1635.094	1	7 7		1	6 7	7+		75	66	7
30	2.05418	7.06E-29	.040	1683.390	1	9 9		1	10 9	9-		75	66	7
31	2.07672	6.55E-29	.039	1743.043	1	11 11		1	12 11	11-		75	66	7
32	2.08728	4.32E-29	.047	1572.486	1	3 3		1	2 3	3-		75	66	7
33	2.09798	5.56E-29	.038	1814.041	1	13 13		1	14 13	13-		75	66	7
34	2.11894	4.37E-29	.034	1896.373	1	15 15		1	16 15	15-		75	66	7
35	2.13836	3.19E-29	.036	1990.025	1	17 17		1	18 17	17-		75	66	7
36	2.15790	2.17E-29	.035	2094.982	1	19 19		1	20 19	19-		75	66	7
37	2.17715	1.39E-29	.035	2211.225	1	21 21		1	22 21	21-		75	66	7
38	2.19619	8.29E-30	.032	2338.737	1	23 23		1	24 23	23-		75	66	7
39	2.21506	4.66E-30	.032	2477.495	1	25 25		1	26 25	25-		75	66	7
40	2.23381	2.07E-30	.032	2627.478	1	27 27		1	28 27	27-		75	66	7
41	2.25245	1.23E-30	.032	2788.661	1	29 29		1	30 29	29-		75	66	7
42	2.27100	5.78E-31	.032	2561.016	1	31 31		1	32 31	31-		75	66	7
43	2.28949	2.56E-31	.032	3144.516	1	33 33		1	34 33	33-		75	66	7
44	2.30792	1.07E-31	.032	3339.131	1	35 35		1	36 35	35-		75	66	7
45	2.32629	4.22E-32	.032	3544.828	1	37 37		1	38 37	37-		75	66	7
46	2.34463	1.58E-32	.032	3761.573	1	39 39		1	40 39	39-		75	66	7
47	2.36293	5.56E-33	.032	3989.332	1	41 41		1	42 41	41-		75	66	7

RIVERSIDE RESEARCH INSTITUTE

NRI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRF FORMAT)
 AF960K15v1 B0, B1, ETC.; REF. 5, C16=016 MICROWAVE LINES, KRUPENIE WIDTHS, V = 1

FREQ	STRENGTH RATIO	E''	V'	J' K'	V''	J'' K''	ID	DATE	I80	M0
48	2.38119	1.85E-33	.032	~228.065	1	43 43				
49	2.39943	5.85E-34	.032	~477.730	1	45 45				
50	2.41765	1.75E-34	.032	~738.297	1	47 47				
51	2.43585	4.94E-35	.032	5009.711	1	49 49				
52	2.45402	1.32E-35	.032	5291.932	1	51 51				
53	2.47218	3.36E-36	.032	5584.911	1	53 53				
54	3.97713	5.17E-29	.050	1556.378	1	1 1		0 1 1-	75	66 7

RIVERSIDE RESEARCH INSTITUTE

RMI ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRL FORMAT)

AF5K1Dv1 BOA B1A ETC+1 REF+ 5/ 016=016 SUBMM LINES, KRUPENIE WIDTHMS, V = 1

	FREQ	STRENGTH	WIDTH	E''	V'	U' K'	VII	U' K''	ID	DATE	ISO	NO
1	12.13118	1.1E-29	.008	1560.355	1	2 3	1	1 1	SF	75	66	7
2	14.02102	1.25E-28	.045	1558.465	1	2 3	1	2 1	SG	75	66	7
3	16.10831	5.38E-29	.045	1558.465	1	3 2	1	2 1	SH	75	66	7
4	23.57570	3.24E-29	.045	1574.574	1	4 8	1	3 3	SF	75	66	7
5	25.53774	2.05E-28	.044	1572.612	1	4 9	1	4 3	SG	75	66	7
6	27.55283	7.08E-29	.044	1572.612	1	5 5	1	4 2	SH	75	66	7
7	34.98245	4.71E-29	.043	1600.164	1	6 7	1	5 5	SF	75	66	7
8	36.98309	2.55E-28	.042	1598.164	1	6 7	1	6 5	SG	75	66	7
9	38.95958	8.01E-29	.042	1598.164	1	7 7	1	6 5	SH	75	66	7
10	46.37341	5.00E-29	.042	1637.123	1	8 9	1	7 7	SF	75	66	7
11	48.00290	2.71E-28	.041	1635.094	1	8 9	1	8 7	SG	75	66	7
12	50.35054	8.09E-29	.041	1635.094	1	9 9	1	8 7	SH	75	66	7
13	57.75231	5.37E-29	.041	1685.444	1	10 11	1	9 9	SF	75	66	7
14	59.80650	2.58E-28	.040	1683.390	1	10 11	1	10 9	SG	75	66	7
15	61.72944	7.04E-29	.040	1683.390	1	11 11	1	10 9	SH	75	66	7
16	69.11929	4.80E-29	.041	1745.120	1	12 13	1	11 11	SF	75	66	7
17	71.19601	2.24E-28	.039	1743.043	1	12 13	1	12 11	SG	75	66	7
18	73.09642	6.32E-29	.039	1743.043	1	13 13	1	12 11	SH	75	66	7
19	80.47340	3.92E-29	.038	1816.139	1	14 15	1	13 13	SF	75	66	7
20	82.57138	1.79E-28	.038	1814.041	1	14 15	1	14 13	SG	75	66	7
21	84.45053	4.97E-29	.038	1814.041	1	15 16	1	14 13	SH	75	66	7
22	91.81322	2.96E-29	.036	1898.492	1	16 17	1	15 15	SF	75	66	7
23	93.93166	1.33E-28	.034	1896.373	1	16 17	1	16 15	SG	75	66	7
24	95.79035	3.65E-29	.034	1896.373	1	17 17	1	16 15	SH	75	66	7
25	103.13716	2.08E-29	.037	1992.164	1	18 19	1	17 17	SF	75	66	7
26	105.27552	9.23E-29	.036	1990.025	1	18 19	1	18 17	SG	75	66	7
27	107.11429	2.50E-29	.036	1990.025	1	19 19	1	18 17	SH	75	66	7
28	114.44353	1.36E-29	.036	2097.140	1	20 21	1	19 19	SF	75	66	7
29	116.60142	5.99E-29	.035	2094.982	1	20 21	1	20 19	SG	75	66	7
30	118.42066	1.61E-29	.035	2094.982	1	21 21	1	20 19	SH	75	66	7
31	125.73056	8.35E-30	.035	2213.402	1	22 23	1	21 21	SF	75	66	7
32	127.90771	3.64E-29	.035	2211.225	1	22 23	1	22 21	SG	75	66	7
33	129.70769	9.73E-30	.035	2211.225	1	23 23	1	22 21	SH	75	66	7
34	136.99447	4.80E-30	.035	2340.933	1	24 28	1	23 23	SF	75	66	7
35	139.19266	2.08E-29	.032	2338.737	1	24 28	1	24 23	SG	75	66	7
36	140.97360	5.53E-30	.032	2338.737	1	25 28	1	24 23	SH	75	66	7
37	148.23945	2.60E-30	.032	2479.710	1	26 27	1	25 25	SF	75	66	7
38	150.45451	1.12E-29	.032	2477.495	1	26 27	1	26 25	SG	75	66	7
39	152.21658	2.96E-30	.032	2477.495	1	27 27	1	26 25	SH	75	66	7
40	159.45767	1.32E-30	.032	2629.712	1	28 29	1	27 27	SF	75	66	7
41	161.69148	5.68E-30	.032	2627.478	1	28 29	1	28 27	SG	75	66	7
42	163.43480	1.49E-30	.032	2627.478	1	29 29	1	28 27	SH	75	66	7
43	170.64931	6.34E-31	.032	2790.913	1	30 31	1	29 29	SF	75	66	7
44	172.90175	2.71E-30	.032	2788.661	1	30 31	1	30 29	SG	75	66	7
45	174.62644	7.11E-31	.032	2788.661	1	31 31	1	30 29	SH	75	66	7
46	181.81251	2.86E-31	.032	2963.287	1	32 33	1	31 31	SF	75	66	7
47	184.08351	1.22E-30	.032	2941.016	1	32 33	1	32 31	SG	75	66	7

RIVERSIDE RESEARCH INSTITUTE

NMR ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCRF FORMAT)

AF5K15V1 B0, B1, ETC.; REF. 5; 016-016 SUBMM LINES, KRUFENIE WIDTHS; V = 1

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V'''	J'''K'''	ID	DATE	ISO	MO
48	185.78964	3.19E-31	.032	2961.016	1	33 33		1	32 31	SH	75	66	7
49	192.9544	1.22E-31	.032	3146.806	1	34 35		1	33 33	SF	75	66	7
50	195.2393	5.19E-31	.032	3144.516	1	34 35		1	34 33	SG	75	66	7
51	196.92257	1.35E-31	.032	3144.516	1	35 35		1	34 33	SH	75	66	7
52	204.04625	4.92E-32	.032	3341.439	1	36 37		1	35 35	SF	75	66	7
53	206.35417	2.08E-31	.032	3339.131	1	36 37		1	36 35	SG	75	66	7
54	208.02338	5.12E-32	.032	3339.131	1	37 37		1	36 35	SH	75	66	7
55	215.11309	1.87E-32	.032	3547.154	1	38 39		1	37 37	SF	75	66	7
56	217.43938	7.91E-32	.032	3544.828	1	38 39		1	38 37	SG	75	66	7
57	219.09022	2.05E-32	.032	3544.828	1	39 39		1	38 37	SH	75	66	7
58	226.14411	6.73E-33	.032	3763.918	1	40 41		1	39 39	SF	75	66	7
59	228.48874	2.84E-32	.032	3761.573	1	40 41		1	40 39	SG	75	66	7
60	230.12124	7.35E-33	.032	3761.573	1	41 41		1	40 39	SH	75	66	7
61	237.13745	2.29E-33	.032	3991.695	1	42 43		1	41 41	SF	75	66	7
62	239.50038	9.63E-33	.032	3989.332	1	42 43		1	42 41	SG	75	66	7
63	241.11458	2.09E-33	.032	3989.332	1	43 43		1	42 41	SH	75	66	7
64	248.09127	7.36E-34	.032	4230.446	1	44 45		1	43 43	SF	75	66	7
65	250.47247	3.09E-33	.032	4228.065	1	44 45		1	44 43	SG	75	66	7
66	252.06840	7.98E-34	.032	4228.065	1	45 45		1	44 43	SH	75	66	7
67	259.00371	2.24E-34	.032	4480.134	1	46 47		1	45 45	SF	75	66	7
68	261.40314	9.40E-34	.032	4477.734	1	46 47		1	46 45	SG	75	66	7
69	262.98084	2.42E-34	.032	4477.734	1	47 47		1	46 45	SH	75	66	7
70	269.87291	6.46E-35	.032	4740.715	1	48 49		1	47 47	SF	75	66	7
71	272.29056	2.71E-34	.032	4738.297	1	48 49		1	48 47	SG	75	66	7
72	273.85004	6.96E-35	.032	4738.297	1	49 49		1	48 47	SH	75	66	7
73	280.69701	1.76E-35	.032	5012.147	1	50 51		1	49 49	1F	75	66	7
74	283.13286	7.38E-35	.032	5009.711	1	50 51		1	50 49	SG	75	66	7
75	284.67414	1.90E-35	.032	5009.711	1	51 51		1	50 49	SH	75	66	7
76	291.47417	4.56E-36	.032	5294.386	1	52 53		1	51 51	SF	75	66	7
77	293.92819	1.91E-35	.032	5291.932	1	52 53		1	52 51	SG	75	66	7
78	295.45130	4.89E-36	.032	5291.932	1	53 53		1	52 51	SH	75	66	7
79	302.20252	1.12E-36	.032	5587.763	1	54 55		1	53 53	SF	75	66	7
80	304.67470	4.67E-36	.032	5584.911	1	54 55		1	54 53	SG	75	66	7
81	306.17965	1.20E-36	.032	5584.911	1	55 55		1	54 53	SH	75	66	7

RIVERSIDE RESEARCH INSTITUTE

APPENDIX G

RRI Absorption Line Parameters

for Molecular Oxygen Isotopes

$^{16}\text{O}^{16}\text{O}$, $^{16}\text{O}^{18}\text{O}$, and $^{18}\text{O}^{18}\text{O}$ Whose

Line Strengths Exceed 3.7 E-30

See text, page 33 for discussion of the relationship of
the file OXYGENEXIST to the eight files listed in Appendix F.
The units are the same as in Appendix F.

RIVERSIDE RESEARCH INSTITUTE

OXYGEN EXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFTRL FORMAT)

ALL LINES OF 016-016, 016-018, AND 018-018 WITH V = 0 OR 1
AND WHOSE STRENGTHS EXCEED 3.7E-30 INV CM PER MOLECULE PER CM SQ
AT 296K. LINETHDTS INTERPOLATED FROM KRUPENIE'S COMPILATION
B0, B1, B2, ETC., FROM REF. 7 FOR V = 0, FROM REF. 5 FOR V = 1.

FREQ	STRENGTH	WIDTH	EII	V1	J1 K1	VII	J1' K1'	I0	DATE	ISO	NO
1	1.64953	4.62E-30	.032	2460.774	0 41 41	0	40 41 41		75	66	7
2	1.66655	1.38E-29	.032	2230.425	0 39 39	0	38 39 39		75	66	7
3	1.68362	3.87E-29	.032	2011.215	0 37 37	0	36 37 37		75	66	7
4	1.70076	1.03E-28	.032	1803.180	0 35 35	0	34 35 35		75	66	7
5	1.71796	2.58E-28	.032	1606.353	0 33 33	0	32 33 33		75	66	7
6	1.73524	6.09E-28	.032	1420.767	0 31 31	0	30 31 31		75	66	7
7	1.75262	1.36E-27	.032	1246.452	0 29 29	0	28 29 29		75	66	7
8	1.76431	3.73E-30	.032	1178.121	0 29 29	0	28 29 29		75	66	7
9	1.77012	2.85E-27	.032	1083.436	0 27 27	0	26 27 27		75	68	7
10	1.77256	5.93E-30	.032	1059.777	0 28 28	0	27 28 28		75	66	7
11	1.78084	7.49E-30	.032	1024.107	0 27 27	0	26 27 27		75	69	7
12	1.78776	5.63E-27	.032	931.748	0 25 28	0	24 25 25		75	68	7
13	1.78914	1.04E-29	.032	951.113	0 26 26	0	25 26 26		75	66	7
14	1.79748	1.42E-29	.032	880.799	0 25 25	0	24 25 25		75	68	7
15	1.79998	5.57E-30	.038	2339.133	1 23 23	1	22 23 23		75	68	7
16	1.80558	1.05E-26	.038	791.405	0 23 23	0	22 23 23		75	66	7
17	1.80586	1.91E-29	.035	813.167	0 24 24	0	23 24 24		75	66	7
18	1.81428	2.54E-29	.038	748.219	0 23 23	0	22 23 23		75	68	7
19	1.81923	9.67E-30	.035	2211.583	1 21 21	0	20 21 21		75	68	7
20	1.82275	3.32E-29	.037	685.959	0 22 22	0	21 22 22		75	66	7
21	1.82363	1.83E-26	.035	662.037	0 21 21	0	20 21 21		75	68	7
22	1.83127	4.28E-29	.035	626.388	0 21 21	0	20 21 21		75	66	7
23	1.83877	1.58E-29	.037	2095.301	1 19 19	1	18 19 19		75	68	7
24	1.83986	5.43E-29	.036	569.509	0 20 20	0	19 20 20		75	66	7
25	1.84199	3.00E-26	.037	544.863	0 19 19	0	18 19 19		75	68	7
26	1.84852	6.78E-29	.037	515.324	0 19 19	0	18 19 19		75	68	7
27	1.85727	8.34E-29	.038	463.835	0 18 18	0	17 18 18		75	68	7
28	1.85869	2.41E-29	.038	1990.305	1 17 17	1	16 17 17		75	68	7
29	1.86075	4.60E-26	.038	438.702	0 17 17	0	16 17 17		75	66	7
30	1.86611	1.01E-28	.038	415.043	0 17 17	0	16 17 17		75	66	7
31	1.87509	1.20E-28	.038	368.952	0 16 16	0	15 16 16		75	68	7
32	1.87679	2.74E-26	.045	2.084	0 1 1	0	2 1 1		75	68	7
33	1.87915	3.43E-29	.038	1896.813	1 15 18	1	14 15 18		75	66	7
34	1.88008	6.58E-26	.038	343.970	0 15 18	0	14 15 18		75	66	7
35	1.88420	1.041E-28	.038	325.562	0 15 18	0	14 15 18		75	66	7
36	1.88985	1.042E-29	.045	1558.465	1 1 1	1	2 1 1		75	68	7
37	1.89204	5.40E-29	.045	2.633	0 1 1	0	2 1 1		75	66	7
38	1.89350	1.62E-28	.039	284.875	0 14 14	0	13 14 14		75	68	7
39	1.90026	8.77E-26	.039	260.683	0 13 13	0	12 13 13		75	68	7
40	1.90041	4.56E-29	.039	1814.239	1 13 13	1	12 13 13		75	66	7
41	1.90302	1.83E-28	.039	246.893	0 13 13	0	12 13 13		75	66	7
42	1.91282	2.03E-28	.040	211.617	0 12 12	0	11 12 12		75	68	7
43	1.92175	1.08E-25	.041	188.853	0 11 11	0	10 11 11		75	68	7
44	1.92295	5.61E-29	.041	1743.197	1 11 11	1	10 11 11		75	66	7

RIVERSIDE RESEARCH INSTITUTE

OXYGEN-EXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (APNLN FORMAT)

FREQ	STRENGTH	WIDTH	E'''	V'	J1 K1	VII	J1 K1 II	ID	DATE	ISO	NO
•5	1.92298	2.21E-28	•041	179.048	0 11 11	0	10 11 11-		75	65	7
•6	1.93133	1.03E-28	•047	8.025	0 2 2	0	3 2 2+		75	68	7
•7	1.93361	2.36E-28	•042	149.187	0 10 10	0	9 10 10-		75	58	7
•8	1.94488	2.46E-28	•043	122.036	0 9 9	0	5 9 9-		75	64	7
•9	1.94548	1.92E-25	•043	128.492	0 9 9	0	8 9 9-		75	64	7
50	1.94764	6.33E-29	•043	1683.497	1 9 9	1	8 9 9-		75	64	7
51	1.94957	7.55E-26	•044	16.388	0 3 1	0	4 3 3+		75	65	7
52	1.95057	1.44E-28	•044	16.146	0 3 1	0	4 3 3+		75	68	7
53	1.95705	2.50E-28	•044	97.595	0 8 8	0	7 8 8-		75	68	7
54	1.96204	3.92E-29	•044	1572.612	1 3 3	1	4 3 3+		75	66	7
55	1.97052	2.48E-28	•044	75.865	0 7 7	0	6 7 7-		75	65	7
56	1.97351	1.26E-25	•044	79.607	0 7 7	0	6 7 7-		75	66	7
57	1.97549	1.87E-28	•043	26.989	0 4 4	0	5 4 4+		75	64	7
58	1.97649	6.48E-29	•044	1635.147	1 7 7	1	6 7 7-		75	66	7
59	1.98602	2.39E-28	•044	56.845	0 6 6	0	5 6 6-		75	64	7
60	1.98774	1.11E-25	•042	42.224	0 5 5	0	6 5 5+		75	66	7
61	1.99103	2.19E-28	•042	40.550	0 5 5	0	6 5 5+		75	68	7
62	2.00064	5.40E-29	•042	1598.164	1 5 5	1	6 5 5+		75	66	7
63	2.00455	2.44E-28	•041	56.827	0 6 6	0	7 6 6+		75	64	7
64	2.00491	2.21E-28	•044	40.536	0 5 5	0	4 5 5-		75	68	7
65	2.01159	1.13E-25	•044	42.200	0 5 5	0	4 5 5-		75	66	7
66	2.01509	5.44E-29	•044	1598.149	1 5 5	1	4 5 5-		75	66	7
67	2.01589	1.31E-25	•041	79.565	0 7 7	0	8 7 7+		75	66	7
68	2.01677	2.61E-28	•041	75.819	0 7 7	0	8 7 7+		75	68	7
69	2.02811	2.69E-28	•041	97.524	0 8 8	0	9 8 8+		75	63	7
70	2.02949	6.85E-29	•041	1635.094	1 7 7	1	9 7 7+		75	66	7
71	2.03011	1.95E-28	•045	26.934	0 4 4	0	3 4 4-		75	68	7
72	2.03821	2.71E-28	•040	121.942	0 9 9	0	10 9 9+		75	68	7
73	2.03976	1.35E-25	•040	128.398	0 9 9	0	10 9 9+		75	66	7
74	2.04904	2.65E-28	•039	149.072	0 10 10	0	11 10 10+		75	68	7
75	2.05418	7.06E-29	•040	1683.390	1 9 9	1	10 9 9+		75	66	7
76	2.05892	2.54E-28	•039	178.912	0 11 11	0	12 11 11+		75	68	7
77	2.06143	1.25E-25	•039	188.714	0 11 11	0	12 11 11+		75	66	7
78	2.06853	2.38E-28	•039	211.461	0 12 12	0	13 12 12+		75	68	7
79	2.06938	1.61E-28	•047	16.033	0 3 3	0	2 3 3-		75	68	7
80	2.07672	6.55E-29	•039	1743.043	1 11 11	1	12 11 11+		75	66	7
81	2.07792	2.18E-28	•038	246.718	0 13 13	0	14 13 13+		75	68	7
82	2.08181	1.05E-25	•038	260.501	0 13 13	0	14 13 13+		75	66	7
83	2.08432	8.01E-26	•047	16.253	0 3 3	0	2 3 3-		75	66	7
84	2.08715	1.97E-28	•036	284.681	0 14 14	0	15 14 14+		75	68	7
85	2.08728	4.32E-29	•047	1572.486	1 3 3	1	2 3 3-		75	66	7
86	2.09623	1.74E-28	•034	325.350	0 15 15	0	16 15 15+		75	68	7
87	2.09798	5.56E-29	•038	1814.041	1 13 13	1	14 13 13+		75	66	7
88	2.10139	8.23E-26	•034	343.748	0 15 15	0	16 15 15+		75	66	7
89	2.10519	1.52E-28	•035	368.722	0 16 16	0	17 16 16+		75	68	7
90	2.11406	1.30E-28	•036	414.795	0 17 17	0	18 17 17+		75	68	7
91	2.11644	4.37E-29	•034	1896.373	1 15 15	1	16 15 15+		75	66	7
92	2.12042	5.97E-26	•036	438.442	0 17 17	0	18 17 17+		75	66	7
93	2.12285	1.09E-28	•036	463.569	0 18 18	0	19 18 18+		75	68	7
94	2.13158	9.03E-29	•035	515.041	0 19 19	0	20 19 19+		75	68	7

RIVERSIDE RESEARCH INSTITUTE

OXYGEN EXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCR1 FORMAT)

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V'''	J'''K'''	ID	DATE	ISO	NO
95	2.13836	3.19E-29	.036	1990.025	1	17	17	1	18 17 17+		75	66	7
96	2.13907	4.04E-26	.035	544.566	0	19	19	0	20 19 19+		75	66	7
97	2.14024	7.35E-29	.035	569.208	0	20	20	0	21 20 20+		75	64	7
98	2.14886	5.90E-29	.035	626.070	0	21	21	0	22 21 21+		75	64	7
99	2.15239	1.18E-28	.048	7.804	0	2	2	0	1 2 2+		75	62	7
100	2.15744	4.66E-29	.034	685.624	0	22	22	0	23 22 22+		75	68	7
101	2.15746	2.56E-26	.035	662.103	0	21	21	0	22 21 21+		75	56	7
102	2.15790	2.17E-29	.035	2094.982	1	19	19	1	20 19 19+		75	66	7
103	2.15698	3.62E-29	.032	747.867	0	23	23	0	24 23 23+		75	64	7
104	2.17450	2.78E-29	.032	812.798	0	24	24	0	25 24 24+		75	62	7
105	2.17564	1.52E-26	.032	791.034	0	23	23	0	24 23 23+		75	56	7
106	2.17715	1.39E-29	.035	2211.225	1	21	21	1	22 21 21+		75	66	7
107	2.18298	2.10E-29	.032	880.413	0	25	25	0	26 25 25+		75	68	7
108	2.19145	1.56E-29	.032	950.711	0	26	26	0	27 26 26+		75	64	7
109	2.19368	8.49E-27	.032	931.339	0	25	25	0	26 25 25+		75	66	7
110	2.19619	8.29E-30	.032	2338.737	1	23	23	1	24 23 23+		75	66	7
111	2.19989	1.14E-29	.032	1023.688	0	27	27	0	28 27 27+		75	68	7
112	2.20832	8.28E-30	.032	1099.341	0	28	28	0	29 28 28+		75	68	7
113	2.21160	4.45E-27	.032	1082.994	0	27	27	0	28 27 27+		75	66	7
114	2.21506	4.66E-30	.032	2477.495	1	25	25	1	26 25 25+		75	66	7
115	2.21674	5.90E-30	.032	1177.668	0	29	29	0	30 29 29+		75	68	7
116	2.22514	4.15E-30	.032	1258.667	0	30	30	0	31 30 30+		75	68	7
117	2.22943	2.20E-27	.032	1245.975	0	29	29	0	30 29 29+		75	66	7
118	2.24720	1.02E-27	.032	1420.255	0	31	31	0	32 31 31+		75	66	7
119	2.26492	4.48E-28	.032	1605.806	0	33	33	0	34 33 33+		75	66	7
120	2.28260	1.85E-28	.032	1802.598	0	35	35	0	36 35 35+		75	66	7
121	2.30026	7.24E-29	.032	2010.599	0	37	37	0	38 37 37+		75	66	7
122	2.31789	2.67E-29	.032	2229.774	0	39	39	0	40 39 39+		75	66	7
123	2.33551	9.29E-30	.032	2460.088	0	41	41	0	42 41 41+		75	66	7
124	3.96108	1.00E-25	.050	0.000	0	1	1	0	0 1 1+		75	66	7
125	3.96140	1.94E-28	.050	0.363	0	1	1	0	0 1 1+		75	68	7
126	3.97713	5.17E-29	.050	1556.378	1	1	1	1	0 1 1+		75	66	7
127	7.80360	2.91E-28	.050	0.000	0	1	2	0	1 0 SH		75	68	7
128	9.95599	1.67E-28	.050	0.000	0	2	2	0	1 0 SH		75	68	7
129	11.50856	4.25E-29	.048	4.525	0	2	3	0	1 1 SF		75	68	7
130	12.13118	1.14E-29	.048	1560.355	1	2	3	1	1 1 SF		75	66	7
131	12.29178	2.22E-26	.048	3.961	0	2	3	0	1 1 SF		75	66	7
132	13.40060	4.72E-28	.045	2.633	0	2	3	0	2 1 EQ		75	68	7
133	14.02102	1.25E-28	.045	1558.465	1	2	3	1	2 1 EQ		75	66	7
134	14.16858	2.43E-29	.045	2.084	0	2	2	0	2 1 EQ		75	66	7
135	15.44698	2.05F-28	.045	2.633	0	3	3	0	2 1 EQ		75	68	7
136	16.10831	5.38E-29	.045	1558.465	1	3	3	1	2 1 SH		75	66	7
137	16.25289	1.04E-25	.045	2.084	0	3	2	0	2 1 SH		75	66	7
138	16.97828	8.41E-29	.048	9.956	0	3	4	0	2 2 SF		75	68	7
139	18.90961	6.35E-28	.047	8.025	0	3	4	0	3 2 EQ		75	68	7
140	20.93973	2.40E-28	.047	8.025	0	4	4	0	3 2 SH		75	68	7
141	22.43321	1.22E-28	.045	18.103	0	4	5	0	3 3 SF		75	68	7
142	23.57570	3.24E-29	.045	1574.574	1	4	5	1	3 3 SF		75	66	7
143	23.86295	6.28E-26	.045	18.337	0	4	8	0	3 3 SF		75	66	7
144	24.38978	7.75E-28	.044	16.146	0	4	5	0	4 3 EQ		75	68	7

RIVERSIDE RESEARCH INSTITUTE

OXYGEN-18 ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCHL FORMAT)

	FREQ	STRENGTH	WIDTH	E'''	V'	J''	K''	V'''	J'''	K'''	ID	DATE	ISO	PC
145	25.53774	2.05E-28	.044	1572.612	1	•	8	1	•	3	SG	75	66	7
146	25.81252	3.96E-25	.044	16.388	0	•	5	0	•	3	SG	75	66	7
147	26.39469	2.69E-28	.044	16.146	0	5	5	0	•	3	SH	75	68	7
148	27.55283	7.08E-29	.044	1572.612	1	5	5	1	•	3	SH	75	65	7
149	27.82411	1.37E-25	.044	16.388	0	5	5	0	•	3	SM	75	63	7
150	27.88090	1.53E-28	.044	28.964	0	5	6	0	•	3	SF	75	64	7
151	29.85639	8.87E-28	.043	26.989	0	5	6	0	5	•	SG	75	68	7
152	31.84241	2.92E-28	.043	26.989	0	6	6	0	5	4	SH	75	68	7
153	33.32407	1.78E-28	.043	42.541	0	6	7	0	5	5	SF	75	64	7
154	34.98245	4.71E-29	.043	1600.164	1	6	7	1	5	5	SF	75	66	7
155	35.31609	9.69E-28	.042	40.050	0	5	7	0	6	5	SG	75	68	7
156	35.39530	9.10E-26	.043	44.212	0	6	7	0	5	5	F	75	66	7
157	36.98309	2.55E-28	.042	1598.164	1	6	7	1	6	5	SG	75	66	7
158	37.28562	3.06E-28	.042	40.550	0	7	7	0	6	5	SH	75	68	7
159	37.38305	4.91E-25	.042	42.224	0	6	7	0	6	5	SG	75	66	7
160	38.76386	1.96E-28	.043	58.831	0	7	8	0	6	6	SF	75	68	7
161	38.95558	8.01E-29	.042	1598.164	1	7	7	1	6	5	SH	75	66	7
162	39.35655	1.54E-25	.042	42.224	0	7	7	0	6	5	SH	75	66	7
163	40.76842	1.02E-27	.041	56.827	0	7	8	0	7	6	SG	75	68	7
164	42.72546	3.13E-28	.041	56.827	0	8	8	0	7	6	SH	75	68	7
165	44.20080	2.07E-28	.042	77.835	0	8	9	0	7	7	SF	75	68	7
166	46.21758	1.04E-27	.041	75.819	0	8	9	0	8	7	SG	75	68	7
167	46.37341	5.40E-29	.042	1637.123	1	8	9	1	7	7	SF	75	66	7
168	46.91156	1.04E-25	.042	81.581	0	8	9	0	7	7	SF	75	66	7
169	48.16245	3.12E-28	.041	75.819	0	9	9	0	8	7	SH	75	68	7
170	48.40290	2.71E-28	.041	1635.094	1	8	9	1	8	7	SG	75	66	7
171	48.92745	5.22E-25	.041	79.565	0	8	9	0	8	7	SG	75	66	7
172	49.63509	2.11E-28	.042	99.552	0	9	10	0	8	8	SF	75	68	7
173	50.35054	8.09E-29	.041	1635.094	1	9	9	1	8	7	SH	75	66	7
174	50.87292	1.56E-25	.041	79.565	0	9	9	0	8	7	SH	75	66	7
175	51.66320	1.03E-27	.041	97.524	0	9	10	0	9	8	60	75	68	7
176	53.59681	3.04E-28	.041	97.524	0	10	10	0	9	8	SH	75	68	7
177	55.06678	2.08E-28	.041	123.981	0	10	11	0	9	9	SF	75	68	7
178	57.10558	1.00E-27	.040	121.942	0	10	11	0	10	9	SG	75	68	7
179	57.75231	5.37E-29	.041	1685.444	1	10	11	1	9	9	SF	75	66	7
180	58.41563	1.03E-25	.041	130.438	0	10	11	0	9	9	SF	75	66	7
181	59.02856	2.90E-28	.040	121.942	0	11	11	0	10	9	SH	75	68	7
182	59.80650	2.58E-28	.040	1683.390	1	10	11	1	10	9	SG	75	66	7
183	60.45539	4.95E-25	.040	128.398	0	10	11	0	10	9	SG	75	66	7
184	60.49582	2.01E-28	.041	151.121	0	11	12	0	10	10	SF	75	68	7
185	61.72944	7.45E-29	.040	1683.390	1	11	11	1	10	9	SH	75	66	7
186	62.37713	1.43E-25	.040	128.398	0	11	11	0	10	9	SH	75	66	7
187	62.54486	9.49E-28	.039	149.072	0	11	12	0	11	10	SG	75	68	7
188	64.45768	2.72E-28	.039	149.072	0	12	12	0	11	10	SH	75	68	7
189	65.92213	1.89E-28	.041	180.971	0	12	13	0	11	11	SF	75	68	7
190	67.98106	8.82E-28	.039	178.912	0	12	13	0	12	11	SP	75	68	7
191	69.11929	4.80E-29	.041	1745.120	1	12	13	1	11	11	SF	75	66	7
192	69.88407	2.50E-28	.039	178.912	0	13	13	0	12	11	SH	75	68	7
193	69.90770	9.19E-26	.041	190.775	0	12	13	0	11	11	SF	75	66	7
194	71.19601	2.24E-28	.039	1743.043	1	12	13	1	12	11	SG	75	66	7

T-1/306-3-14

-105-

RIVERSIDE RESEARCH INSTITUTE

OXYGEN-18 ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFGL FORMATTED)

FREQ	STRENGTH	WIDTH	E'	V'	J'	K'	V"	J"	K"	ID	DATE	ISO	NO
145	7.034558	1.07E-28	.040	213.530	0	13 14	0	12 12	SF	75	68	7	
146	7.0346913	4.28E-25	.039	188.714	0	12 13	0	12 11	SG	75	66	7	
147	7.0346942	6.32E-29	.039	174.3043	1	13 13	1	12 11	SH	75	66	7	
148	7.0347111	8.03E-28	.039	211.461	0	13 14	0	13 12	SO	75	68	7	
149	7.03486939	1.021E-25	.039	188.714	0	13 13	0	12 11	SH	75	66	7	
207	7.530761	2.25E-28	.039	211.461	0	14 14	0	13 12	SH	75	66	7	
211	7.676602	1.057E-28	.038	248.796	0	14 15	0	13 13	SF	75	68	7	
208	7.848394	7.018E-28	.038	246.718	0	14 15	0	14 13	SG	75	64	7	
203	8.047340	3.92E-29	.038	1816.139	1	14 15	1	13 13	SC	75	68	7	
210	8.072815	2.00E-28	.038	246.718	0	15 15	0	14 13	SH	75	66	7	
215	8.138685	7.008E-26	.038	262.583	0	14 15	0	13 13	SF	75	64	7	
206	8.218328	1.039E-28	.038	286.769	0	15 16	0	14 14	SF	75	66	7	
207	8.257138	1.079E-28	.038	1814.041	1	14 15	1	14 13	SG	75	64	7	
208	8.346866	3.01E-25	.038	260.501	0	14 15	0	14 13	SG	75	66	7	
209	8.4027043	6.30E-28	.036	284.681	0	15 16	0	14 13	SG	75	66	7	
210	8.4445053	4.97E-29	.038	1814.041	1	15 15	1	15 14	SG	75	64	7	
211	8.534874	9.06E-26	.038	260.501	0	15 15	0	14 13	SH	75	66	7	
212	8.614551	1.07E-28	.036	284.681	0	16 16	0	15 14	SH	75	66	7	
213	8.759720	1.021E-28	.036	327.046	0	16 17	0	15 15	SF	75	68	7	
214	8.9469343	5.00E-28	.034	325.150	0	16 17	0	16 15	SG	75	68	7	
215	9.155954	1.005E-28	.034	325.150	0	17 17	0	16 15	SG	75	68	7	
216	9.181322	2.96E-29	.036	1898.492	1	16 17	0	16 15	SH	75	68	7	
217	9.285169	5.62E-26	.036	345.850	0	16 17	1	15 15	SF	75	66	7	
218	9.300758	1.03E-28	.037	370.827	0	17 18	0	15 15	SF	75	66	7	
219	9.3093166	1.033E-28	.034	1896.373	1	16 17	0	16 16	SF	75	65	7	
220	9.495307	2.052E-25	.034	343.748	0	16 17	1	16 15	SG	75	66	7	
221	9.511278	4.61E-28	.035	368.722	0	16 17	0	16 15	SG	75	66	7	
222	9.579045	3.65E-29	.034	1896.373	1	17 18	0	17 16	SG	75	68	7	
223	9.681382	6.91E-26	.034	343.748	0	17 17	1	16 15	SH	75	66	7	
224	9.697004	1.026E-28	.035	368.722	0	18 18	0	16 15	SH	75	66	7	
225	9.841425	8.67E-29	.037	416.909	0	18 19	0	17 16	SH	75	68	7	
226	1.0052832	3.85E-28	.036	414.795	0	18 19	0	17 17	SF	75	68	7	
227	1.0237684	1.05E-28	.036	414.795	0	19 19	0	18 17	SG	75	68	7	
228	1.0313716	2.08E-29	.037	1992.164	1	18 19	0	18 17	SH	75	68	7	
229	1.0381702	7.16E-29	.037	465.692	0	19 20	1	17 17	SF	75	66	7	
230	1.0440063	3.92E-26	.037	440.562	0	18 19	0	18 18	SF	75	68	7	
231	1.0527552	9.23E-29	.036	1990.025	1	18 19	1	17 17	SF	75	66	7	
232	1.0593987	3.17E-28	.036	463.569	0	19 20	0	18 18	SG	75	66	7	
233	1.0642105	1.074E-25	.036	438.442	0	18 19	0	18 17	SG	75	68	7	
234	1.0711129	2.50E-29	.036	1990.025	1	19 19	1	18 17	SG	75	66	7	
235	1.0777973	8.56E-29	.036	463.569	0	20 20	0	19 18	SH	75	66	7	
236	1.0826304	4.72E-26	.036	438.442	0	19 19	0	18 17	SH	75	68	7	
237	1.0921568	5.82E-29	.036	517.172	0	20 21	0	19 19	SH	75	66	7	
238	1.1134725	2.56E-28	.035	515.041	0	20 21	0	20 19	SF	75	68	7	
239	1.1317852	6.90E-29	.035	515.041	0	21 21	0	20 19	SG	75	68	7	
240	1.1444353	1.36E-29	.036	2097.140	1	20 21	1	19 19	SF	75	68	7	
241	1.1561004	4.65E-29	.036	571.349	0	21 22	0	20 20	SF	75	66	7	
242	1.1573199	2.56E-26	.036	546.705	0	20 21	0	19 19	SF	75	68	7	
243	1.1660142	5.99E-29	.035	2094.982	1	20 21	1	20 19	SG	75	66	7	
244	1.17075028	2.04E-28	.035	569.208	0	21 22	0	21 20	SG	75	68	7	

RIVERSIDE RESEARCH INSTITUTE

OXYGEN-EXIST ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFCHL FUNCTION)

	FREQ	STRENGTH	WIDTH	E''	V'	J'	K'	V''	J''	K''	I0	DATE	ISO	TC
245	117.87106	1.012E-29	.035	544.566	0	20	21	0	20	19	S0	75	66	7
246	118.42066	1.061E-29	.035	2094.982	1	21	21	1	20	19	SH	75	66	7
247	118.57303	5.007E-29	.035	569.208	0	22	22	0	21	20	SH	75	68	7
248	119.69469	3.002E-26	.035	544.566	0	21	21	0	20	19	SH	75	66	7
249	119.99990	3.066E-29	.035	628.219	0	22	23	0	21	21	SF	75	68	7
250	122.14877	1.060E-28	.035	626.070	0	22	23	0	22	21	SG	75	68	7
251	123.96305	4.028E-29	.035	626.070	0	23	23	0	22	21	SH	75	68	7
252	125.38508	2.048E-29	.036	687.782	0	23	24	0	22	22	SF	75	64	7
253	125.73056	8.035E-30	.035	2213.402	1	22	23	1	21	21	SF	75	66	7
254	127.14400	1.056E-26	.035	664.261	0	22	23	0	21	21	SF	75	66	7
255	127.54252	1.024E-28	.034	685.624	0	23	24	0	23	22	SG	75	68	7
256	127.90771	3.064E-29	.035	2211.225	1	22	23	1	22	21	S0	75	66	7
257	129.30146	6.079E-26	.035	662.103	0	22	23	0	22	21	S0	75	66	7
258	129.34838	3.300E-29	.034	685.624	0	24	24	0	23	22	SH	75	68	7
259	129.70769	9.073E-30	.035	2211.225	1	23	23	1	22	21	SH	75	66	7
260	130.76935	2.017E-29	.035	750.033	0	24	25	0	23	23	SF	75	69	7
261	131.10704	1.081E-26	.035	662.103	0	23	23	0	22	21	SH	75	66	7
262	132.93134	9.041E-29	.032	747.867	0	24	25	0	24	23	SG	75	64	7
263	134.72882	2.050E-29	.032	747.867	0	25	25	0	24	23	SH	75	68	7
264	136.14053	1.063E-29	.034	814.972	0	25	26	0	24	24	SF	75	64	7
265	136.99647	4.080E-30	.035	2340.933	1	24	25	1	23	23	SF	75	66	7
266	138.31503	7.006E-29	.032	812.798	0	25	26	0	25	24	SG	75	68	7
267	138.53489	8.054E-27	.035	793.210	0	24	23	0	23	23	SF	75	66	7
268	139.19266	2.008E-29	.032	2338.737	1	24	25	1	24	23	SG	75	66	7
269	140.10417	1.047E-29	.032	812.798	0	26	26	0	25	24	SH	75	63	7
270	140.71053	3.086E-26	.032	791.034	0	24	25	0	24	23	SG	75	66	7
271	140.97360	5.053E-30	.032	2338.737	1	25	25	1	24	23	SH	75	66	7
272	141.51641	1.021E-29	.032	882.596	0	26	27	0	25	25	SF	75	68	7
273	142.49829	1.002E-26	.032	791.034	0	25	25	0	24	23	SH	75	66	7
274	143.69339	5.022E-29	.032	880.413	0	26	27	0	26	25	SG	75	68	7
275	145.47423	1.038E-29	.032	880.413	0	27	27	0	26	25	SH	75	63	7
276	146.87478	8.085E-30	.032	952.902	0	27	28	0	26	26	SF	75	68	7
277	149.06623	3.081E-29	.032	950.711	0	27	28	0	27	26	S0	75	68	7
278	149.90285	4.078E-27	.032	933.533	0	26	27	0	25	25	SF	75	66	7
279	150.45451	1.012E-29	.032	2477.095	1	26	27	1	26	25	SG	75	66	7
280	150.83879	1.001E-29	.032	950.711	0	28	28	0	27	26	SH	75	64	7
281	152.09653	2.006E-26	.032	931.339	0	26	27	0	26	25	SG	75	61	7
282	152.23345	6.037E-30	.032	1025.887	0	28	29	0	27	27	SF	75	68	7
283	153.86664	5.044E-27	.032	931.339	0	27	27	0	26	25	SH	75	66	7
284	154.43335	2.074E-29	.032	1023.688	0	28	29	0	28	27	S0	75	68	7
285	156.19765	7.021E-30	.032	1023.688	0	29	29	0	28	27	SH	75	68	7
286	157.58621	4.052E-30	.032	1101.549	0	29	30	0	28	28	SF	75	68	7
287	159.79453	1.094E-29	.032	1099.341	0	29	30	0	29	28	S0	75	68	7
288	161.24605	2.041E-27	.032	1085.206	0	28	29	0	27	27	SF	75	66	7
289	161.55061	5.010E-30	.032	1099.341	0	30	30	0	29	28	SH	75	68	7
290	161.69148	5.068E-30	.032	2627.478	1	28	29	1	28	27	S0	75	66	7
291	163.45765	1.003E-26	.032	1082.994	0	28	29	0	28	27	S0	75	66	7
292	165.14960	1.035E-29	.032	1177.668	0	30	31	0	30	29	S0	75	68	7
293	165.21027	2.072E-27	.032	1082.994	0	29	29	0	28	27	SH	75	66	7
294	170.49833	9.033E-30	.032	1258.667	0	31	32	0	31	30	S0	75	68	7

T-1/306-3-14

-107-

RIVERSIDE RESEARCH INSTITUTE

OXYGEN-18 ABSORPTION LINE PARAMETERS FOR MOLECULAR OXYGEN ISOTOPES (AFGL FORMATTED)

	FREQ	STRENGTH	WIDTH	EII	VII	J1 K1	VIII	J11 K11	IO	DATE	ISL	NU
295	172.56267	1.15E-27	.032	12.81204	0	30 31	0	29 29	SF	75	66	7
296	174.79210	4.89E-27	.032	12.51975	0	30 31	0	30 29	SG	75	66	7
297	175.84053	6.34E-30	.032	13.21332	0	32 33	0	32 31	SG	75	65	7
298	176.52734	1.28E-27	.032	12.51975	0	31 31	0	30 29	SH	75	66	7
299	181.17599	4.02E-30	.032	14.28163	0	33 34	0	33 32	SG	75	64	7
300	183.85086	5.13E-28	.032	14.221502	0	32 33	0	31 31	SF	75	66	7
301	186.09867	2.18E-27	.032	14.201255	0	32 33	0	32 31	SG	75	66	7
302	187.81662	5.71E-28	.032	14.201255	0	33 33	0	32 31	SH	75	66	7
303	195.10879	2.17E-28	.032	16.01071	0	34 35	0	33 33	SF	75	66	7
304	197.37371	9.15E-28	.032	16.010806	0	34 35	0	34 33	SG	75	66	7
305	199.07447	2.40E-28	.032	16.051806	0	35 35	0	34 33	SH	75	66	7
306	206.33461	8.63E-29	.032	18.011881	0	36 37	0	35 35	SF	75	66	7
307	208.61722	3.65E-28	.032	18.021598	0	36 37	0	36 35	SG	75	66	7
308	210.30084	9.50E-29	.032	18.021598	0	37 37	0	36 35	SH	75	66	7
309	217.52647	3.25E-29	.032	20.121899	0	38 39	0	37 37	SF	75	66	7
310	219.82673	1.37E-28	.032	20.101599	0	38 39	0	38 37	SG	75	65	7
311	221.49328	3.56E-29	.032	20.101599	0	39 39	0	38 37	SH	75	66	7
312	228.64253	1.15E-29	.032	22.321092	0	40 41	0	39 39	SF	75	66	7
313	231.00042	4.86E-29	.032	22.291774	0	40 41	0	40 39	SG	75	66	7
314	232.64995	1.26E-29	.032	22.291774	0	41 41	0	40 39	SH	75	66	7
315	239.80093	3.88E-30	.032	24.621124	0	42 43	0	41 41	SF	75	65	7
316	242.13644	1.63E-29	.032	24.601088	0	42 43	0	42 41	SG	75	66	7
317	243.76899	4.21E-30	.032	24.601088	0	43 43	0	42 41	SH	75	66	7
318	253.23294	5.17E-30	.032	27.011504	0	44 45	0	44 43	SG	75	66	7

RIVERSIDE RESEARCH INSTITUTE

REFERENCES

1. M. Tinkham and M. W. P. Strandberg, "Theory of the Fine Structure of the Molecular Oxygen Ground State," *Phys. Rev.*, 97 (4), 937-951 (1955).
2. T. T. Wilheit, Jr. and A. H. Barrett, "Microwave Spectrum of Molecular Oxygen," *Phys. Rev. A*, 1 (1), 213-215 (1970).
3. W. M. Welch and M. Mizushima, "Molecular Parameters of the O₂ Molecule," *Phys. Rev. A*, 5 (6), 2692-2695 (1972).
4. K. M. Evenson and M. Mizushima, "Laser Magnetic Resonance of the O₂ Molecule Using 119- and 78- μm H₂O Laser Lines," *Phys. Rev. A*, 6 (5), 2197-2204 (1972).
5. D. L. Albritton, W. J. Harrop, A. L. Schmeltekopf, and R. N. Zare, "Calculation of Centrifugal Distortion Constants for Diatomic Molecules from RKR Potentials," and "Resolution of the Discrepancies Concerning the Optical and Microwave Values for B₀ and D₀ of the X $^3\Sigma^g$ State of O₂," *J. Molec. Spectrosc.*, 46 (1), 25-36, 103-118 (1973).
6. L. Tomuta, M. Mizushima, C. J. Howard, and K. M. Evenson, "Rotational Structure and Magnetic g Factors for O₂ (X $^3\Sigma^g$, $\nu = 0$) from Laser-Magnetic-Resonance Spectra," *Phys. Rev. A*, (to be published August 1975).
7. W. Steinbach and W. Gordy, "Millimeter and Submillimeter Wave Spectrum of ¹⁸O₂," *Phys. Rev. A*, 8 (4), 1753-1758 (1973); "Microwave Spectrum and Molecular Constants of ¹⁶O¹⁸O," *Phys. Rev. A*, 11 (3), 729-731 (1975).
8. H. A. Gebbie, W. J. Burroughs, and G. R. Bird, "Magnetic Dipole Rotation Spectrum of Oxygen," *Proc. Roy. Soc. (London)* A 310, 579-590 (1969).
9. H. A. Gebbie, "Detection of Submillimeter Solar Radiation," *Phys. Rev.*, 107, 1194-1195 (1957).
10. H. A. Gebbie and W. J. Burroughs, "Observations of Atmospheric Absorption in the Wavelength Range 2mm to 300 μm ," *Nature (London)*, 217, 1241-1242 (1968).
11. W. R. Steinbach, "Millimeter and Submillimeter Wave Spectra of the Oxygen Isotopes: ¹⁶O₂, ¹⁸O₂, and ¹⁶O¹⁸O," PhD. thesis, Department of Physics, Duke University, Durham, N. C., 1974.
12. J. H. Van Vleck, "The Absorption of Microwaves by Oxygen," *Phys. Rev.*, 71 (7), 413-424 (1947).
13. E. R. Cohen and B. N. Taylor, "The 1973 Least-Squares Adjustment of the Fundamental Constants," *J. Phys. Chem. Ref. Data*, 2 (4), 663 ff. (1973).

RIVERSIDE RESEARCH INSTITUTE

14. R. A. Frosch and H. M. Foley, "Magnetic Hyperfine Structure in Diatomic Molecules," Phys. Rev., 88 (6), 1337-1349 (1952).
15. S. L. Miller and C. H. Townes, "The Microwave Absorption Spectrum of $(O^{16})_2$ and $O^{16}O^{17}$," Phys. Rev., 90 (4), 537-541 (1953).
16. W. R. Steinbach, private communication.
17. M. Greenebaum, Tech. Report T-4/306-3-14, Riverside Research Institute, New York, N. Y. (in preparation).
18. G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, Van Nostrand Reinhold Co., New York, 1950.
19. M. Mizushima and R. M. Hill, "Microwave Spectrum of O_2 ," Phys. Rev., 93 (4), 745-748 (1954).
20. R. L. Cook and F. C. De Lucia, "Application of the Theory of Irreducible Tensor Operators to Molecular Hyperfine Structure," Amer. J. Phys., 39 (12), 1433-1454 (1971).
21. H. D. Babcock and L. Herzberg, "Fine Structure of the Red System of Atmospheric Oxygen Bands," Astrophys. J., 108, 167-190 (1948).
22. M. Mizushima, private communication.
23. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing, "AFCRL Atmospheric Absorption Line Parameters Compilation." AFCRL-TR-73-0096, Environmental Research Paper No. 434, Air Force Cambridge Research Laboratories, Bedford, Mass., 26 January 1973.
24. A. Messiah, Quantum Mechanics, Volume II, North-Holland Publ. Co., Amsterdam; John Wiley and Sons, New York, 1962. (Appendix C: "Vector Addition Coefficients and Rotation Matrices," Sec. 8, "Racah Formula and Tables.")
25. A. G. Kislyakov and K. S. Stankevich, "A Study of the Tropospheric Absorption of Radio Waves by Radio-Astronomy Methods," (in Russian), Izv. V. U. Z. Radiofiz., 10 (9-10), 1244-1265 (1967); K. S. Stankevich, "The Absorption of Submillimeter Radio Waves in a Dry Atmosphere," (in Russian), Izv. V. U. Z. Radiofiz., 17 (5), 764-766 (1974). (Follow Ref. 1.)
26. H. J. Liebe, "Molecular Transfer Characteristics of Air Between 40 and 140 GHz," IEEE Trans. MTT-23 (4), 380-386 (1975).
27. R. M. Goody, Atmospheric Radiation. I. Theoretical Basis, Oxford Univ. Press, London, 1964. (Chapter 3. "Theory of Gaseous Absorption," Sec. 3.6.4, "Pressure Broadening.")
28. R. G. Breene, Jr., The Shift and Shape of Spectral Lines,

RIVERSIDE RESEARCH INSTITUTE

- Pergamon Press, New York, 1961.
- 29. E. P. Gross, "Shape of Collision-Broadened Spectral Lines," Phys. Rev., 97 (2), 395-403 (1955).
 - 30. S. A. Zhevakin and A. P. Naumov, "Coefficient of Absorption of Electromagnetic Waves by Water Vapor in the Range 10μ to 2 cm," Izv. V. U. Z. Radiofiz., 6 (4), 674-694 (1963); Available from CFSTI in translation as JPRS:23436, Feb. 1964.
 - 31. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, "The Strengths, Widths, and Shapes of Infrared Lines. I. General Considerations," Can. J. Phys., 34 (8), 830-849 (1956). (Appendix A: pp. 847-848.)
 - 32. P. H. Krupenie, "The Spectrum of Molecular Oxygen," J. Phys. Chem. Ref. Data, 1 (2), 423-534 (1972). (Table 34, p. 479.)
 - 33. H. J. Liebe and W. M. Welch, "Molecular Attenuation and Phase Dispersion Between 40 and 140 GHz for Path Models from Different Altitudes," OT Report 73-10, Institute for Telecommunication Sciences (Office of Telecommunications), Boulder, Colo., May 1973.
 - 34. D. Q. Wark and D. M. Mercer, "Absorption in the Atmosphere by the Oxygen 'A' Band," Appl. Optics, 4 (7), 839-845 (1965).
 - 35. D. E. Burch and D. A. Gryvnak, "Strengths, Widths, and Shapes of the Oxygen Lines near $13,100 \text{ cm}^{-1}$ (7620 Å)," Appl. Optics, 8 (7), 1493-1499 (1969).
 - 36. J. H. Miller, R. W. Boese, and L. P. Giver, "Intensity Measurements and Rotational Intensity Distribution for the Oxygen A-Band," J. Quant. Spectrosc. Radiat. Transfer, 9, 1507-1517 (1969).
 - 37. M. L. Meeks and A. E. Lilley, "The Microwave Spectrum of Oxygen in the Earth's Atmosphere," J. Geophys. Res., 68 (6), 1683-1703 (1963).
 - 38. C. J. Carter, R. L. Mitchell, and E. E. Reber, "Oxygen Absorption Measurements in the Lower Atmosphere," J. Geophys. Res., 73 (10), 3113-3120 (1968).
 - 39. T. A. Dillon and J. T. Godfrey, "Pressure Broadening of the O_2 Microwave Spectrum," Phys. Rev. A, 5 (2), 599-605 (1972).
 - 40. U. Minelgrin, "Classical Scattering Calculations for Diatomic Molecules: A General Procedure and Application to the Microwave Spectrum of O_2 ," OT/TRR 32, Institute for Telecommunication Sciences, Boulder, Colo., July 1972.
 - 41. P. W. Rosenkranz, "Shape of the 5 mm Oxygen Band in the Atmosphere," IEEE Trans. AP-23 (4), 498-506 (1975).
 - 42. H. J. Liebe, "Studies of Oxygen and Water Vapor Microwave Spectra Under Simulated Atmospheric Conditions," OT Report

RIVERSIDE RESEARCH INSTITUTE

75-65, Institute for Telecommunication Sciences, Boulder,
Colo., June 1975.

43. H. J. Liebe, private communication.
44. R. A. McClatchey, private communication.
45. D. Koppel, Tech. Report T-2/306-3-14, Riverside Research Institute, New York, N. Y. (in preparation).
46. E. Bussoletti and J. P. Baluteau, "Determination of H₂O/O₂ Stratospheric Mixing Ratio from High Resolution Spectra in the Far Infrared," *Infrared Physics*, 14 (4), 293-302 (1974).
47. D. P. Woody, J. C. Mather, N. S. Nishioka, and P. L. Richards, "Measurement of the Spectrum of the Submillimeter Cosmic Background," *Phys. Rev. Letters*, 34 (16), 1036-1039 (1975).
48. J. E. Harries and W. J. Burroughs, "Measurements of Submillimetre Wavelength Radiation Emitted by the Stratosphere," *Q. J. Roy. Meteorol. Soc.*, 97 (414), 519-536 (1971); J. E. Harries, "Measurements of Stratospheric Water Vapor Using Far-Infrared Techniques," *J. Atmos. Sci.*, 30, 1691-1698 (1973).
49. J. E. Beckman and J. E. Harries, "Submillimeter-Wave Atmospheric and Astrophysical Spectroscopy," *Appl. Optics*, 14 (2), 470-485 (1975).
50. K. E. Iverson, A Programming Language, John Wiley and Sons, New York, 1962.
51. L. Gilman and A. J. Rose, APL/360, An Interactive Approach, John Wiley and Sons, New York, 1970.
52. Anonymous, Xerox APL, Sigma 5/7/9 Computers, Language and Operations Reference Manual, Publication No. 90 19 31B, Xerox Corporation, El Segundo, Calif., October 1973.
(Documents the B00 version of APL system for CP-V.)