实分析第十二周作业

涂嘉乐 PB23151786

2025年5月17日

作业 11A

T1.

证明 下面证明当 x 是 F 的密度点时, $\lim_{|y|\to 0} \frac{\delta(x+y)}{|y|} = 0$, 再由 a.e $x\in F$ 均为 F 的密度点即得证 *Claim:* 若 x 是闭集 F 的密度点, 则 $x \in F$

若 $x \notin F$, 则 $x \in F^c$, 而 F^c 是开集, 故 $\exists R > 0$, s.t. $B_R(x) \subset F^c$, 即 $B_R(x) \cap F = \emptyset$, 因此

$$\frac{m(F \cap B_r(x))}{m(B_r(x))} = 0, \forall r < R$$

令 $r \to 0$. 与 $x \neq F$ 的密度点矛盾, 故断言得证

当 y>0 时, $\delta(x+y)\leq y-m(F\cap[x,x+y])$; 当 y<0 时, $\delta(x+y)\leq |y|-m(F\cap[x+y,x])$, 所以

$$\begin{cases} y > 0 \ \text{Ft}, \lim_{y \to 0} \frac{\delta(x+y)}{|y|} \leq \lim_{y \to 0} \frac{y - m(F \cap [x,x+y])}{y} = \lim_{y \to 0} 1 - \frac{m(F \cap [x,x+y])}{m([x,x+y])} = 1 - 1 = 0 \\ y < 0 \ \text{Ft}, \lim_{y \to 0} \frac{\delta(x+y)}{|y|} \leq \lim_{y \to 0} \frac{y - m(F \cap [x,x+y])}{-y} = \lim_{y \to 0} -1 + \frac{m(F \cap [x,x+y])}{m([x,x+y])} = -1 + 1 = 0 \end{cases}$$

综上有
$$|y| \to 0$$
 时, $\frac{\delta(x+y)}{|y|} \to 0$

T2.

证明

1. At
$$\forall \delta > 0$$
, $\int_{\mathbb{R}^d} K_{\delta}(x) dx = \int_{\mathbb{R}^d} \frac{\varphi(\frac{x}{\delta})}{\delta^d} dx \xrightarrow{t = \frac{x}{\delta}} \int_{\mathbb{R}^d} \frac{\varphi(t)}{\delta^d} \cdot \delta^d dt = \int_{\mathbb{R}^d} \varphi(t) dt = 1$

2.
$$|K_{\delta}(x)| = \frac{|\varphi(\frac{x}{\delta})|}{\delta^d} \le \frac{Ce^{-\gamma}|\frac{x}{\delta}|}{\delta^d} \le \frac{C}{\delta^d}, \forall x \in \mathbb{R}^d, \forall \delta > 0$$

1. 对
$$\forall \delta > 0$$
, $\int_{\mathbb{R}^d} K_{\delta}(x) dx = \int_{\mathbb{R}^d} \frac{\varphi(\frac{x}{\delta})}{\delta^d} dx \xrightarrow{t = \frac{x}{\delta}} \int_{\mathbb{R}^d} \frac{\varphi(t)}{\delta^d} \cdot \delta^d dt = \int_{\mathbb{R}^d} \varphi(t) dt = 1$
2. $|K_{\delta}(x)| = \frac{|\varphi(\frac{x}{\delta})|}{\delta^d} \le \frac{Ce^{-\gamma|\frac{x}{\delta}|^2}}{\delta^d} \le \frac{C}{\delta^d}, \forall x \in \mathbb{R}^d, \forall \delta > 0$
3. $|K_{\delta}(x)| = \frac{|\varphi(\frac{x}{\delta})|}{\delta^d} \le \frac{Ce^{-\gamma|\frac{x}{\delta}|^2}}{\delta^d}$, 下面证明 $e^{-\gamma|t|^2} = O\left(\frac{1}{|t|^{d+1}}\right)$, 这是因为

$$\lim_{|t| \to \infty} \frac{e^{-\gamma |t|^2}}{|t|^{-(d+1)}} = \lim_{|t| \to \infty} \frac{|t|^{d+1}}{e^{\gamma |t|^2}} = 0$$

所以当 |t|>1 时,日 $C_1\gg 1$,s.t. $e^{-\gamma|t|^2}\leq \frac{C_1}{|t|^{d+1}}$,当 $t\in(0,1]$ 时, $e^{-\gamma|t|^2}\leq 1\leq \frac{1}{|t|^{d+1}}$,因此

$$|K_{\delta}(x)| \le \frac{Ce^{-\gamma\left|\frac{x}{\delta}\right|^2}}{\delta^d} \le \frac{C}{\delta^d} \cdot \frac{C_1\delta^{d+1}}{|x|^{d+1}} = \frac{\tilde{C}\delta}{|x|^{d+1}}, \forall \delta > 0, \forall x \ne 0$$

综上 $\{K_{\delta}\}_{\delta>0}$ 是一族恒等元逼近

T3.

证明 由平移连续性, 对 $\forall \varepsilon>0, \exists \eta>0, \mathrm{s.t.} \ \forall |y|<\eta,$ 有 $||f_y-f||_1\leq \frac{\varepsilon}{2},$ 另一方面, 因为

$$\int_{|y|>\eta} |K_{\delta}(y)| \mathrm{d}y \xrightarrow{t=\frac{y}{\delta}} \int_{|t|>\frac{\eta}{\delta}} |\varphi(t)| \mathrm{d}t$$

由 $\varphi \in L^1(\mathbb{R}^d)$ 知, $\exists N \gg 1$, s.t. $\forall \int_{B_N(0)^c} |\varphi(t)| \mathrm{d}t < \frac{\varepsilon}{4||f||_1}$, 因此取 δ 足够小使得 $\frac{\eta}{\delta} > N$, 则当 $\delta < \frac{\eta}{N}$ 时, 有

$$\begin{split} \int_{\mathbb{R}^d} ||f_y - f||_1 |K_{\delta}(y)| \mathrm{d}y &= \int_{|y| < \eta} ||f_y - f||_1 |K_{\delta}(y)| \mathrm{d}y + \int_{|y| \ge \eta} ||f_y - f||_1 |K_{\delta}(y)| \mathrm{d}y \\ &\leq \frac{\varepsilon}{2} \int_{\mathbb{R}^d} |K_{\delta}(y)| \mathrm{d}y + 2||f||_1 \int_{|y| \ge \eta} |K_{\delta}(y)| \mathrm{d}y \\ &< \frac{\varepsilon}{2} \cdot 1 + 2||f||_1 \cdot \frac{\varepsilon}{4||f||_1} = \varepsilon \end{split}$$

作业 11B

T1.

证明 (a). 设 $P_1: a = t_0 < t_1 < \dots < t_n = c, P_2 = c = s_0 < s_1 < \dots < s_m = b$, 记 $s_i = t_{n+i}, 0 \le i \le m$, 则

$$P_1 \cup P_2 : a = t_0 < t_1 < \dots < t_{n+m} = b$$

且

$$V(f, P_1 \cup P_2) = \sum_{i=1}^{n+m} |f(t_{i-1}) - f(t_i)|$$

$$= \sum_{i=1}^{n} |f(t_{i-1}) - f(t_i)| + \sum_{i=n+1}^{n+m} |f(t_{i-1}) - f(t_i)|$$

$$= \sum_{i=1}^{n} |f(t_{i-1}) - f(t_i)| + \sum_{j=1}^{m} |f(s_{j-1}) - f(s_j)|$$

$$= V(f, P_1) + V(f, P_2)$$

(b). 设 $P: a = t_0 < \cdots < t_n = b$, 则

$$V(\alpha f, P) = \sum_{i=1}^{n} |\alpha f(t_{i-1}) - \alpha f(t_i)|$$
$$= |\alpha| \sum_{i=1}^{n} |f(t_{i-1}) - f(t_i)|$$
$$= |\alpha| V(f, P)$$

$$V(f+g,P) = \sum_{i=1}^{n} |f(t_{i-1}) + g(t_{i-1}) - f(t_i) + g(t_i)|$$

$$\leq \sum_{i=1}^{n} |f(t_{i-1}) - f(t_i)| + |g(t_{i-1}) - g(t_i)|$$

$$= V(f,P) + V(g,P)$$

T2.

证明 (\Longrightarrow) : 由 γ 可求长知, $\exists M>0$, s.t. $\forall [a,b]$ 的划分 $P:a=t_0<\dots< t_n=b$, 都有

$$\sum_{j=1}^{n} ||z(t_j) - z(t_{j-1})|| \le M$$

若 z=(x,y), 则 $||z||=\sqrt{x^2+y^2}\geq |x|,|y|$, 因此对任意划分 P

$$\begin{cases} \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})| \le \sum_{j=1}^{n} ||z(t_j) - z(t_{j-1})|| \le M \\ \sum_{i=1}^{n} |y(t_i) - y(t_{i-1})| \le \sum_{j=1}^{n} ||z(t_j) - z(t_{j-1})|| \le M \end{cases}$$

取上确界即得 $V_a^b(x) \leq M, V_a^b(y) \leq M$, 即 $x(t), y(t) \in BV[a, b]$

(\iff) : 若 $x(t),y(t)\in BV[a,b],$ 记 $V_a^b(x)=X,V_a^b(y)=Y$ 则对任意的划分 $P:a=t_0<\cdots< t_n=b,$ 均有

$$\begin{cases} \sum_{j=1}^{n} |x(t_{j-1}) - x(t_j)| \le V_a^b(x) = X \\ \sum_{j=1}^{n} |y(t_{j-1}) - y(t_j)| \le V_a^b(y) = Y \end{cases}$$

又因为 $||z||=\sqrt{x^2+y^2}\leq |x|+|y|$,所以

$$\sum_{j=1}^{n} ||z(t_j) - z(t_{j-1})|| = \sum_{j=1}^{n} \sqrt{[x(t_{j-1}) - x(t_j)]^2 + [y(t_{j-1}) - y(t_j)]^2}$$

$$\leq \sum_{j=1}^{n} |x(t_{j-1}) - x(t_j)| + \sum_{j=1}^{n} |y(t_{j-1}) - y(t_j)|$$

$$\leq X + Y < +\infty$$

故 γ 为可求长曲线

T3.

证明 (\Longrightarrow) : 首先 $\lim_{x\to 0} f(x)=0$. 取 [0,1] 的一个划分 $P_n:1=x_0>x_1>\cdots>x_{2n}=0$, 其中

 $\forall 1 \le i \le n-1, x_{2i} = \left(\frac{1}{2k\pi + \frac{\pi}{2}}\right)^{\frac{1}{b}}, x_{2i-1} = \left(\frac{1}{2k\pi}\right)^{\frac{1}{b}},$ 因此

$$V(f, P_n) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| = \sum_{i=1}^{n} \left(\frac{1}{2i\pi + \frac{\pi}{2}}\right)^{\frac{a}{b}}$$
$$= 1 + \sum_{i=2}^{2n-1} |f(x_i) - f(x_{i-1})| = 1 + 2\sum_{i=2}^{n-1} \left(\frac{1}{2k\pi + \frac{\pi}{2}}\right)^{\frac{a}{b}}$$

所以令 $n\to\infty$, $V(f,P_n)\to 1+2\sum\limits_{i=2}^\infty\left(\frac{1}{2k\pi+\frac{\pi}{2}}\right)^{\frac{a}{b}}$, 级数部分为调和级数,由 $f(x)\in BV[0,1]$ 知,调和级数收敛,故 $\frac{a}{b}>1$,即 a>b

(⇐=): 若 a > b, 因为 $f'(x) = ax^{a-1}\sin\left(\frac{1}{x^b}\right) - bx^{a-b-1}\cos\left(\frac{1}{x^b}\right)$, 因为 $f(t_{j-1}) - f(t_j) = \int_{t_{j-1}}^{t_j} f'(x) \mathrm{d}x$, 所以

$$|f(t_{j-1}) - f(t_j)| = \left| \int_{t_{j-1}}^{t_j} f'(x) dx \right| \le \int_{t_{j-1}}^{t_j} |f'(x)| dx$$

对于任意 $P:0=t_0 < t_1 < \cdots < t_n = 1$, 因为 f 在 $[t_1,1]$ 上导数存在, 所以我们有

$$V(f, P) = \sum_{i=1}^{n} |f(t_{i-1}) - f(t_i)| = |f(t_1) - 0| + \sum_{i=2}^{n} |f(t_{i-1}) - f(t_i)|$$

$$\leq 1 + \int_{t_1}^{1} |f'(x)| dx \leq 1 + \int_{0}^{1} \left| ax^{a-1} \sin\left(\frac{1}{x^b}\right) - bx^{a-b-1} \cos\left(\frac{1}{x^b}\right) \right| dx$$

$$\leq 1 + \int_{0}^{1} ax^{a-1} dx + \int_{0}^{1} bx^{a-b-1} dx$$

$$= 1 + 1 + \frac{b}{a-b} < +\infty$$

因此 $f \in BV[0,1]$