Tarea #3 Cálculo Multivariable

Entrega, jueves 30 de enero

Nombre:______ Carnet: _____

Tema:	1	2	3	4	5	6	7	8	9	Total
Puntos:	20	10	10	10	20	10	10	10	0	100
Nota:										

Resuelva las siguientes ejercicios:

- 1. Diga si cada expresión tiene sentido. Si no, explique por qué. En caso afirmativo, diga si la expresión es un vector ó un escalar.
 - (a) (5 pts.) $(a \cdot b) \cdot c$
 - (b) (5 pts.) $(a \cdot b) \times c$
 - (c) (5 pts.) $(a \times b) \times c$
 - (d) (5 pts.) $(a \times c) \cdot b$
- 2. (10 pts.) Encuentre dos vectores unitarios ortogonales a (3,2,1) y (-1,1,0).
- 3. (10 pts.) Calcule el triple producto escalar entre $a=\langle 1,2,3\rangle,\ b=\langle 3,2,5\rangle,\ \ \ \ \ \ c=\langle 0,4,3\rangle.$ ¿Es $a\cdot (b\times c)=(a\times b)\cdot c$?
- 4. (10 pts.) Calcule el área del paralelogramo entre los puntos A(1,4,-7), B(2,-1,4) y C(0,-9,18).
- 5. Considere los puntos P = (1,0,1), Q = (-2,1,3) y R = (4,2,5).
 - (a) (10 pts.) Encuentre un vector no cero ortogonal al plano que contiene los tres puntos.
 - (b) (10 pts.) Determine el área del triángulo PQR.
- 6. (10 pts.) Encuentre el volumen del paralelepípedo determinado por los vectores $a=\langle 1,2,3\rangle,$ $b=\langle -1,1,2\rangle$ y $c=\langle 2,1,4\rangle.$
- 7. (10 pts.) ¿Están los puntos A(1,4-7), B(2,-1,4), C(0,-9,18) y D(0,0,0) sobre el mismo plano?
- 8. (10 pts.) Si $(a \cdot b) = \sqrt{3}$ y $(a \times b) = \langle 1, 2, 2 \rangle$ encuentre el ángulo entre $a \times b$.
- 9. BONO: (10 pts.) Utilice propiedades del producto punto y cruz para demostrar que
 - (a) $|a \times b|^2 = |a|^2 |b|^2 (a \cdot b)^2$
 - (b) $(a b) \times (a + b) = 2(a \times b)$

Propiedades del producto punto y del producto cruz

- Si \mathbf{a} , \mathbf{b} y \mathbf{c} son vectores y k es un escalar, entonces
 - $1. \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$

6. $\mathbf{a} \times \mathbf{a} = \mathbf{0}$

 $2. \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

7. $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$

3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

- 8. $\mathbf{a} \times (\mathbf{b} \pm \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \pm (\mathbf{a} \times \mathbf{c})$
- 4. $(k\mathbf{a}) \cdot \mathbf{b} = k(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (k\mathbf{b})$
- 9. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$

 $5. \ \mathbf{0} \cdot \mathbf{b} = 0$

10. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$