IME I	Br.
Prezime:	DK.
I REZIVIE.	IND.

Univerzitet u Nišu Elektronski fakultet

6.02.2019.

ISPIT IZ PREDMETA RAČUNARSKE MREŽE

1. Povezati pojmove iz Tabele 1 sa pojmovima iz Tabele 2 popunjavajem odgovarajućeg broja iz Tabele 2 u I kolonu Tabele 1.

14	Računarska mreža koja pokriva veliko geografsko područje
6	Računarska mreža koja je ograničena na jednu ili nekoliko zgrada.
11	Uređaj data link nivoa koji pamti i prolsleđuje Ethernet ramove
4	Uređaj fizičkog nivoa koji pojačava i proslđuje signal
1	Tehnika koja se koristi da ne postoji nikakva zabrana u pogledu sadržaja polja
	podataka koji se prenose.
3	Informacija koja sadrži listu svih poznatih čvorova sa procenjenim
	rastojanjima u autonomnom sistemu (AS) koja se šalje susednim čvorovima
7	Informacija o svim susedima i procenjenim kašnjenjima do njih koja se šalje
	svim čvorovima u autonomnom sistemu (AS)
2	Nivo u protokol steku koji prenosi ram od jednog čvora do susednog čvora
	preko komunikacionog kanala.
12	Nivo u protokol steku koji prenosi segmente od procesa na jednom hostu do
	procesa na drugom hostu
10	32 –bitna sekvenca koja se sastji od niza jedinica iza kojih slede nule a koristi
	se da odredi da li IP adresa pripda određenoj podmreži.

Tabela 1

1	Byte-stuffing
2	Data link nivo
3	Distance vector
4	Hub
5	IP adresa
6	LAN (local area network)
7	Link state
8	Mrežni nivo
9	Router
10	Subnet maska
11	Bridge/Switch
12	Transportni nivo
13	Tunelovanje
14	WAN (wide area network)

Tabela 2

2. Razmotrimo mrežu prkazanu na Sl.1 koja koristi Distance vector algoritam rutiranja. **Intersuje nas samo najkraći put do čvora S**. Pretpostavimo da se cena veze AB poveća sa 2 na 20.

- a) Pokazati kako se menjaju informacije za čvor S u tablicama rutiranja u čvorovima B i C, ako se ne koristi split horizon.
- b) Pokazatikako se menjaju informacije za čvor S u tablicama rutiranja u čvorovima B i C, ako se koristi split horizon.

Odgovor dati popunjavanjem sledeće tablice dok se ne dostigne stabilno stanje

Bez split horizon	Sa split horizon
-------------------	------------------

korak	В	C	korak	В	С		
0	22	23	0	22	23		
1	24	28	1	40	28		
2	29	25	2	29	28		
3	26	28	3	29	28		
4	29	27	4				
5	28	28	5				
6	29	28	6				
7	29	28	7				
8			8				

- 3. Četiri čvora A,B, C i D koriste CDMA za pristup zajedničkom komunikacionom kanalu. Čvorovi redom koriste sledeće kodne sekvence (čipove) za kodiranje svojih signala
 - A: (-1, 1, -1, -1, -1, 1, -1)
 - B: (-1, 1,-1, 1, 1, 1,-1,-1)
 - C: (-1, -1, 1, -1, 1, 1, 1, -1)
 - D: (-1,-1,-1, 1, 1, -1, 1,1)

CDMA prijemnik prima signal (0, 2, -2, 2, 0, 0, -2, 0). Koje stanice su prenosile podatke i koji bit je svaka od njih prenela?

Rešenje:

- A: $(0, 2, -2, 2, 0, 0, -2, 0) \times (-1, 1, -1, -1, -1, -1, 1, -1)/8 = 0/8 = 0$ A ne šalje ništa
- B: $(0, 2, -2, 2, 0, 0, -2, 0) \times (-1, 1, -1, 1, 1, 1, -1, -1)/8 = 8/8 = 1$ B šalje 1
- C: $(0, 2, -2, 2, 0, 0, -2, 0) \times (-1, -1, 1, -1, 1, 1, 1, 1, -1)/8 = -8/8 = -1$ C šalje 0
- D: $(0, 2, -2, 2, 0, 0, -2, 0) \times (-1, -1, -1, 1, 1, -1, 1, 1) 8 = 0/8 = 0$ D ne šalje ništa
- 4. Nacrtati dijagram promene veličine prozora TCP izvora ako je inicijalno prag sporog starta postavljen na 8. Kada veličina prozora dostigne vrednost 14 u izvor pristignu tri duplikata ACK. Kasnije, kada veličina prozora izvora dostigne vrednost 12 nastupi time out.

Rešenje:

5. U sledećem primeru izvršenja DNS protokola, navesti koji će se zapisi vratiti u odgovorima 3, 6, 7 i 8 kada host surf.eurecom.fr želi da pristupi hostu gaia.cs.umass.edu. Navesti tip zapisa i dati izgled odgovarajućih polja u zapisu. Kao oznaku IP adrese nekog hosta A pisati IP(A). Odgovor dati u obliku (name, value, type)

Rešenje:

Poruka 3:

(umas.edu, dns.umas.edu, NS) (dns.umas.edu, IP(dns.umas.edu), A)

Poruka 6: (gaia.cs.umas.edu, IP(gaia.cs.umas.edu), A)

Poruka 7: (gaia.cs.umas.edu, IP(gaia.cs.umas.edu), A))

Poruka 8: (gaia.cs.umas.edu, IP(gaia.cs.umas.edu), A)

Predmetni nastavnik