Глава 1: Кинематика точки

§ 2 Косоугольные координаты

Здесь можно немного добавить строгости, а то ничерта не понятно. Пусть V — евклидово пространство (линейное со скалярным произведением). Как нам определяли, $q_{ik} = e_i \cdot e_k$,

$$\mathbf{a} \cdot \mathbf{b} = \sum_{ij} a^i b^j g_{ij}$$

Здесь a^k — коэффициенты разложения по e_k — называются контравариантными координатами.

Пусть V^* — сопряжённое к V, его базисом являются координатные функции f_k :: $f_k(x) = x^k$. Поскольку задано скалярное произведение, задан канонический изоморфизм $V \to V^*$. Нам, правда, потребуется $V^* \to V$.

Введём ещё одну систему *векторов* в $V: e^k = f_k^*$, то есть $f_k(x) = e^k \cdot x$. Она и называется взаимным базисом, коэффициенты разложения по ней — ковариантные координаты. Из линейности скалярного произведения, ровно такие же координаты будут у соответствующей формы в V^* . Линейную независимость легко получить из ЛНЗ f_k , а раз их $\dim V$, то полученные векторы являются базисом.

Так что можно сформулировать правило:

- Контравариантные координаты коэффициенты разложения по базису линейного пространства.
- Ковариантные координаты коэффициенты разложения по базису пространства линейных форм.

Ещё можно определить $g^{ij}={m e}^i\cdot{m e}^j$, и перенести это на соответствующие линейные формы. Обобщая дальше, можно вообще сказать, что $g^k_i=\delta_{ij}$. Тогда g будет задавать действие формы на вектор. Вроде физикам это зачем-то надо.

А после тирады выше уже развлекаться с индексами.

Утверждение 1. $e^k \cdot e_j = \delta_{kj}$

▼

Следует из определения координатной функции, ведь $e^k \cdot x = \mathsf{f}_\mathsf{k}(x)$

Утверждение 2. $a \cdot b = \sum_{i} a^{i} b_{i}$

Утверждение 3. Пусть $\pmb{r} = \sum_k \xi^k \pmb{e_k}$ и $= \sum_k \xi_k \pmb{e^k}$. Тогда $\xi_k = \pmb{r} \cdot \pmb{e_k} = \sum_i \xi^j g_{jk}$

ightharpoonup Hy, $m{r}\cdotm{e_k}=\sum_j \xi_j\,m{e^j}\cdotm{e_k}=\sum_j \xi_j\,\delta_{jk}=\xi_k$. Вроде всё.

-Аналогичная ситуация с ξ^k .

Утверждение 4. $\xi^k = r \cdot e^k = \sum_j \xi_j g^{jk}$.

Утверждение 5.

$$e^k = \sum_j g^{jk} e_j, \quad e_k = \sum_j g_{jk} e^j$$

. Первое домножить на $oldsymbol{e}^i$, второе на $oldsymbol{e}_i$.

Утверждение 6. $\sum_i g^{i\ell} g_{ik} = \delta_{\ell k}$

 \blacktriangledown

$$\sum_{i} g^{i\ell} g_{ik} = \sum_{i} g^{i\ell} e_{i} \cdot e_{k} = e^{\ell} \cdot e_{k} = \delta_{\ell k}$$

тут не опечатка, а отсыл- Как ка к известной картинке

;)

Как видно, когда определения безкоординатные, жызнъ прекрасна!.

Глава А: Обозначения

f — линейная форма. $\langle \mathbf{x} - \mathbf{x} \rangle$ \mathbf{x} — вектор. $\langle \mathbf{x} \rangle$