* Probabilidad y estadística

MAT 041, Primer semestre

Francisco Cuevas Pacheco 14 de noviembre de 2022

Propiedades de los estimadores

Respecto a lo visto anteriormente podmeos preguntarnmos ¿Qué es mejor, un estimador máximo verosímil o un estimador de momentos? o más específicamente, ¿Como puedo medir la calidad de un estimador?

Algunas características que podemos medir en los etimadores son:

- * Error cuadrático medio.
- Varianza del estimador.
- Sesgo.
- Consistencia.

Error cuadrático medio

Una manera básica de comparar o medir cuán lejos está el estimador puntual $\hat{\theta}$ del verdadero valor de θ es usar el *error al cuadrado* $(\hat{\theta} - \theta)^2$.

Recordemos que $\hat{\theta}$ es una variable aleatoria antes de reemplazar los datos y que θ es una constante desconocida. Luego, para evaluar el error cometido en el proceso de estimación puntual se suele emplear el valor esperado de estos errores al cuadrado.

Definición (Error Cuadrático Medio (ECM))

Dado que la siguiente esperanza existe, el **error cuadrático medio** del estimador $\hat{\theta}$ se define como,

$$ECM(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

Claramente se escogerá aquel estimador que tenga menor error cuadrático medio. Esto es, si $ECM(\hat{\theta}_1) < ECM(\hat{\theta}_2)$ entonces se escogerá como mejor estimador de θ a $\hat{\theta}_1$ en vez de $\hat{\theta}_2$.

Esta idea lleva a definir el concepto de eficiencia relativa.

Definición

Si $\hat{\theta}_1$ y $\hat{\theta}_2$ son dos estimadores de θ , entonces la **eficiencia relativa** entre $\hat{\theta}_1$ y $\hat{\theta}_2$ se define como

$$eff(\hat{ heta}_1, \hat{ heta}_2) = rac{ECM(\hat{ heta}_1)}{ECM(\hat{ heta}_2)}$$

Se dice que $\hat{ heta}_1$ es más eficiente en error cuadrático medio que $\hat{ heta}_2$ para estimar heta si

$$eff(\hat{ heta}_1,\hat{ heta}_2) < 1$$

La siguiente descomposición facilita el cálculo del estimador:

Descomposición

Si existen la esperanza $E(\hat{\theta})$ y la varianza $Var(\hat{\theta})$ del estimador $\hat{\theta}$, entonces.

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

La siguiente descomposición facilita el cálculo del estimador:

Descomposición

Si existen la esperanza $E(\hat{\theta})$ y la varianza $Var(\hat{\theta})$ del estimador $\hat{\theta}$, entonces.

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

Demostración: Usa un poco de álgebra y propiedades de la esperanza.

$$ECM(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

$$= E[\hat{\theta}^2 - 2\hat{\theta}\theta + \theta^2] \quad \text{(cuadrado de un binomio)}$$

$$= E(\hat{\theta}^2) - 2\theta E(\hat{\theta}) + \theta^2 \quad \text{(linealidad de la esperanza)}$$

$$= E(\hat{\theta}^2) - E(\hat{\theta})^2 + E(\hat{\theta})^2 + 2\theta E(\hat{\theta}) + \theta^2 \quad \text{(sumando un cero)}$$

$$= Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

A la cantidad $E(\hat{\theta}) - \theta$ se le conoce como el sesgo del estimador.

Lo importante de lo anterior es que podemos expresar el error cuadrático medio en términos de la varianza del estimador y su sesgo al cuadrado.

Ejemplo

Determine el error cuadrático medio de $\hat{\lambda}=\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ del parámetro λ de una población Poisson.

Solución

Se sabe que si X tiene distribución Poisson, entonces su esperanza es $E(X) = \lambda$. Luego, para la muestra aleatoria X_1, X_2, \ldots, X_n se tiene que $E(X_i) = \lambda$ para cada i = 1, 2, ..., n.

$$E(\hat{\lambda}) = E(\bar{X}) = E\left(\sum_{i=1}^{n} \frac{X_i}{n}\right)$$

$$= \sum_{i=1}^{n} \frac{E(X_i)}{n} \qquad \text{(linealidad de la esperanza)}$$

$$= \sum_{i=1}^{n} \frac{E(X_i)}{n} = \left(\frac{\sum_{i=1}^{n} \lambda}{n}\right) = \frac{n\lambda}{n} = \lambda$$

Por otra parte, la varianza de este estimador está dada por

$$Var(\hat{\lambda}) = Var(\bar{X}) = Var\left(\sum_{i=1}^{n} X_i/n\right)$$
$$= \sum_{i=1}^{n} Var(X_i)/n^2$$
$$= \left(\sum_{i=1}^{n} \lambda\right)/n^2 = n\lambda/n^2 = \lambda/n$$

Entonces, el error cuadrático medio está dado por

$$ECM(\hat{\lambda}) = Var(\hat{\lambda}) + [E(\hat{\lambda}) - \lambda]^{2}$$
$$= \lambda/n + [\lambda - \lambda]^{2} = \lambda/n$$

Definición

Se dice que $\hat{\theta}$ es un estimador **insesgado** para θ si $E(\hat{\theta}) = \theta$.

Definición

Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ se dice que el estimador es **asintóticamente insesgado**.

Definición

Se dice que $\hat{\theta}$ es un estimador **insesgado** para θ si $E(\hat{\theta}) = \theta$.

Definición

Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ se dice que el estimador es **asintóticamente insesgado**.

En el ejemplo anterior, $\hat{\lambda}$ es un estimador insesgado para λ .

Algunos comentarios

- * $E(\hat{\theta}) \theta$ se llama **sesgo** e indica cuán lejos y en qué dirección está en promedio el estimador puntual $\hat{\theta}$ del verdadero valor de θ .
- ❖ Si $E(\hat{\theta}) \theta > 0$ se dice que en promedio $\hat{\theta}$ sobreestima a θ .
- * Si $E(\hat{\theta}) \theta < 0$ se dice que en promedio $\hat{\theta}$ subestima a θ .
- * Idealmente $E(\hat{\theta}) \theta = 0$. Esto es, se desea que en promedio $\hat{\theta}$ no sobre-estime ni sub-estime el valor verdadero de θ . Esta propiedad se llama insesgamiento.
- * Recordemos que lo que se desea es minimizar el error cuadrático medio de un estimador $ECM(\hat{\theta})$. Esto se consigue minimizando conjuntamente el sesgo y la varianza del estimador.
- Cuando se anula el sesgo el procedimiento de estimación alcanza la máxima exactitud. Cuando se minimiza la varianza el procedimiento alcanza la máxima precisión.

Estimadores consistentes

Un buen estimador debería disminuir el error de estimación aumentando el tamaño de la muestra n. Si esto es posible, se dice que el estimador es consistente.

Definición

Si $\lim_{n\to\infty} ECM(\hat{\theta})=0$ se dice que el estimador es consistente en error cuadrático medio.

Antes de evaluar este límite conviene descomponer $ECM(\hat{\theta})$ usando la formula:

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

Ejemplo

(Poisson) Determine si el estimador del parámetro λ de una población Poisson obtenido en el ejemplo anterior es consistente en error cuadrático medio.

Ejemplo

(Poisson) Determine si el estimador del parámetro λ de una población Poisson obtenido en el ejemplo anterior es consistente en error cuadrático medio.

Solución

Aquí $\hat{\lambda} = \bar{X} = \sum_{i=1}^{n} X_i / n$ y se mostró en ese ejemplo que ese estimador es insesgado. Es decir, se mostró que $E(\hat{\lambda}) = \lambda$

La varianza de este estimador es,

$$Var(\hat{\lambda}) = Var(\bar{X}) = Var\left(\sum_{i=1}^{n} X_i/n\right)$$
$$= \sum_{i=1}^{n} Var(X_i)/n^2$$
$$= \left(\sum_{i=1}^{n} \lambda\right)/n^2 = n\lambda/n^2 = \lambda/n$$

Entonces, el error cuadrático medio está dado por

$$ECM(\hat{\lambda}) = Var(\hat{\lambda}) + [E(\hat{\lambda}) - \lambda]^{2}$$
$$= \lambda/n + [\lambda - \lambda]^{2} = \lambda/n$$

Luego, $\lim_{n\to\infty} ECM(\hat{\lambda}) = \lim_{n\to\infty} \lambda/n = 0$ y el estimador resulta ser consistente en error cuadrático medio.

- * Suponga que $\hat{\theta}_1$ y $\hat{\theta}_2$ son dos estimadores del parámetro θ . Se sabe que $E(\hat{\theta}_1) = \theta$, $E(\hat{\theta}_2) = \theta/2$, $Var(\hat{\theta}_1) = 10$ y $Var(\hat{\theta}_2) = 4$. ¿Cuál de los dos estimadores es mejor?. Justifique su respuesta.
- Con frecuencia es factible suponer que la duración X de una batería tiene una distribución exponencial de la forma

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} & , x > 0 \\ 0 & , eoc \end{cases}$$

donde $\beta > 0$. Sea $\hat{\beta} = \sum_{i=1}^{n} X_i / n = \hat{X}$ un estimador de β

- a) ¿El estimador obtenido es insesgado? Justifica con cálculos adecuados.
- b) ¿El estimador es consistente? Justifica con cálculos adecuados.
- c) ¿El estimador es eficiente? ¿Es EIVUM?
- * Se toman dos muestras independientes para estimar la media poblacional μ . Sean \hat{X}_1 y \hat{X}_2 los estimadores obtenidos y $\sigma_{\hat{X}_1}$ y $\sigma_{\hat{X}_2}$ los respectivos errores estándar. Suponga también que \hat{X}_1 y \hat{X}_2 son insesgados. Sea $\tilde{\mu}=\hat{X}_1$ y \hat{X}_2 un tercer estimador de μ .
 - a) Encuentre condiciones sobre las constantes α y β para que $\widetilde{\mu}$ sea insesgado.
 - b) ¿Cómo deben elegirse α y β para que la varianza de $\widetilde{\mu}$ sea mínima sujeto a la condición de que $\widetilde{\mu}$ sea insesgado?.

Ejercicios

- Obtenga los estimadores de momento y de máxima verosimilitud para los parámetros de las siguientes poblaciones.
 - a) Bernoulli(p)
 - b) Binomial(n, p)
 - c) Geometrica(p)
 - d) Normal(4, σ^2)
 - e) $Gamma(\alpha, 5)$
 - f) $Gamma(\alpha, \beta)$
- Suponga que X₁, X₂,..., X_n es una muestra aleatoria de una población Uniforme con densidad de probabilidad dada por:

$$f(x) = \begin{cases} \frac{1}{\theta} & , 0 < x < \theta \\ 0 & , eoc \end{cases}$$

con $\theta > 0$.

- a) Obtenga estimadores de momento y máximo verosímil para θ .
- b) Suponga que una muestra aleatoria de tamaño 8 da como resultado los datos

Obtenga una estimación para θ .

Suponga que X₁, X₂,..., X_n es una muestra aleatoria de una población Pareto con densidad de probabilidad dada por:

$$f(x) = \begin{cases} \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} & , x \ge \beta \\ 0 & , x < \beta \end{cases}$$

con $\alpha > 0$ y $\beta > 0$

- a) Obtenga estimadores para α y β .
- b) Suponga que una muestra aleatoria de tamaño 8 da como resultado los datos

Obtenga una estimación para lpha si eta=1

El tiempo t en minutos que toma realizar una determinada tarea dentro de un cierto proceso productivo, es una variable aleatoria T con función de densidad:

$$f(t) = \begin{cases} \frac{t}{\alpha^2} e^{-t/\alpha} & , t > 0 \\ 0 & , eoc \end{cases}$$

donde $\alpha > 0$ es un parámetro.

- a) Suponga que T_1, T_2, T_3 es una muestra aleatoria de tamaño n=3 de la población T. Basándose en esta muestra, obtenga el Estimador Máximo Verosímil (EMV) del parámetro α
- b) Una muestra aleatoria ha entregado los siguientes tiempos en minutos de la tarea dentro del proceso productivo: 7,4 8,3 2,3. Calcule la estimación de α usando esta muestra.