Contents

	Pref	ace		xvii
P	art I			1
1	Intro	oduction		3
	1.1	The co	ncept of a model	3
	1.2	Mather	matical programming models	5
2	Solv	ing math	ematical programming models	11
	2.1	Algorit	thms and packages	11
		2.1.1	Reduction	12
		2.1.2	Starting solutions	12
		2.1.3	Simple bounding constraints	12
		2.1.4	Ranged constraints	13
		2.1.5	Generalized upper bounding constraints	13
		2.1.6	Sensitivity analysis	13
	2.2	Practic	al considerations	13
	2.3	Decisio	on support and expert systems	16
	2.4	Constra	aint programming (CP)	17
3	Buile	ding linea	ar programming models	21
	3.1	The im	portance of linearity	21
	3.2	Definin	ng objectives	23
		3.2.1	Single objectives	24
		3.2.2	Multiple and conflicting objectives	26
		3.2.3	Minimax objectives	27
		3.2.4	Ratio objectives	28
		3.2.5	Non-existent and non-optimizable objectives	29
	3.3	Definin	ng constraints	29
		3.3.1	Productive capacity constraints	29
		3.3.2	Raw material availabilities	30
		3.3.3	Marketing demands and limitations	30
		3.3.4	Material balance (continuity) constraints	30

viii	ĺ	CONTENTS		
		3.3.5	Quality stipulations	31
		3.3.6	Hard and soft constraints	31
		3.3.7	Chance constraints	32
		3.3.8	Conflicting constraints	32
		3.3.9	Redundant constraints	34
		3.3.10	Simple and generalized upper bounds	35
		3.3.11	Unusual constraints	35
	3.4	How to	build a good model	36
		3.4.1	Ease of understanding the model	36
		3.4.2	Ease of detecting errors in the model	37
		3.4.3	Ease of computing the solution	37
		3.4.4	Modal formulation	38
		3.4.5	Units of measurement	40
	3.5		of modelling languages	40
		3.5.1	A more natural input format	41
		3.5.2	Debugging is made easier	41
		3.5.3	Modification is made easier	41
		3.5.4	Repetition is automated	41
		3.5.5	Special purpose generators using a high level	
			language	41
		3.5.6	Matrix block building systems	42
		3.5.7	Data structuring systems	42
		3.5.8	Mathematical languages	42
			3.5.8.1 SETs	43
			3.5.8.2 DATA	43
			3.5.8.3 VARIABLES	43
			3.5.8.4 OBJECTIVE	43
			3.5.8.5 CONSTRAINTS	43
4	Str	uctured line	ear programming models	45
	4.1		e plant, product and period models	45
	4.2		tic programmes	53
	4.3	Decomp	posing a large model	55
		4.3.1	The submodels	63
		4.3.2	The restricted master model	64
5	An	nlications a	nd special types of mathematical	
		gramming		67
	5.1		applications	67
	J.1	5.1.1	The petroleum industry	68
		5.1.2	The chemical industry	68
		5.1.3	Manufacturing industry	68
		5.1.4	Transport and distribution	69
		5.1.5	Finance	69
		5.1.6	Agriculture	70
			_	

				CONTENTS	ix
		5.1.7	Health		70
		5.1.8	Mining		70
		5.1.9	Manpower planning		71
		5.1.10	Food		71
		5.1.11	Energy		71
		5.1.12	Pulp and paper		72
		5.1.13	Advertising		72
		5.1.14	Defence		72
		5.1.15	The supply chain		72
		5.1.16	Other applications		73
	5.2	Econon	nic models		74
		5.2.1	The static model		74
		5.2.2	The dynamic model		80
		5.2.3	Aggregation		81
	5.3	Networ	k models		81
		5.3.1	The transportation problem		82
		5.3.2	The assignment problem		87
		5.3.3	The transhipment problem		88
		5.3.4	The minimum cost flow problem		89
		5.3.5	The shortest path problem		93
		5.3.6	Maximum flow through a network		93
		5.3.7	Critical path analysis		94
	5.4	Conver	ting linear programs to networks		98
6	Inter	preting a	and using the solution of a linear		
		ramming			103
	6.1	_	ing a model		103
		6.1.1	Infeasible models		103
		6.1.2	Unbounded models		104
		6.1.3	Solvable models		105
	6.2		nic interpretations		107
	0.2	6.2.1	The dual model		109
		6.2.2	Shadow prices		112
		6.2.3	Productive capacity constraints		114
		6.2.4	Raw material availabilities		114
		6.2.5	Marketing demands and limitations		114
		6.2.6	Material balance (continuity) constraints		114
		6.2.7	Quality stipulations		114
		6.2.8	Reduced costs		116
	6.3		vity analysis and the stability of a model		121
	0.5	6.3.1	Right-hand side ranges		121
		6.3.2	Objective ranges		125
		6.3.3	Ranges on interior coefficients		128
		6.3.4	Marginal rates of substitution		131
		6.3.5	Building stable models		132
		0.5.5			102

X	CO	NTENTS			
	6.4	Further	r investigations using a model	133	
	6.5	Present	tation of the solutions	135	
7	Non-linear models				
	7.1	Typica	l applications	137	
	7.2	Local a	and global optima	140	
	7.3	Separa	ble programming	147	
	7.4	Conve	rting a problem to a separable model	153	
8	Integer programming				
	8.1	Introdu	action	155	
	8.2	The ap	plicability of integer programming	156	
		8.2.1	Problems with discrete inputs and outputs	156	
		8.2.2	Problems with logical conditions	158	
		8.2.3	Combinatorial problems	158	
		8.2.4	Non-linear problems	160	
		8.2.5	Network problems	161	
	8.3	Solving	g integer programming models	162	
		8.3.1	Cutting planes methods	162	
		8.3.2	Enumerative methods	163	
		8.3.3	Pseudo-Boolean methods	163	
		8.3.4	Branch and bound methods	164	
9			ger programming models I	165	
	9.1	The us	es of discrete variables	165	
		9.1.1		165	
		9.1.2		165	
		9.1.3	Indicator variables	166	
	9.2	Logica	l conditions and 0–1 variables	172	
	9.3	Special	l ordered sets of variables	177	
	9.4	Extra c	conditions applied to linear programming models	182	
		9.4.1	Disjunctive constraints	183	
		9.4.2	Non-convex regions	184	
		9.4.3	Limiting the number of variables in a solution	186	
		9.4.4	Sequentially dependent decisions	186	
		9.4.5	Economies of scale	187	
		9.4.6	Discrete capacity extensions	188	
		9.4.7	Maximax objectives	188	
	9.5	-	l kinds of integer programming model	189	
		9.5.1	Set covering problems	189	
		9.5.2	Set packing problems	191	
		9.5.3	Set partitioning problems	193	
		9.5.4	The knapsack problem	195	
		9.5.5	The travelling salesman problem	195	
		9.5.6	The vehicle routing problem	198	

			CONTENTS	xi
		9.5.7	The quadratic assignment problem	199
	9.6	Column	generation	201
10	D:1.4		on macanamina modela II	207
10	10.1		er programming models II and bad formulations	207
	10.1	10.1.1	The number of variables in an IP model	207
		10.1.1		211
	10.2		ying an integer programming model	218
	10.2	10.2.1		218
		10.2.1	Simplifying a single integer constraint to another	210
		10.2.2	single integer constraint	220
		10.2.3	Simplifying a single integer constraint to a collection	220
		10.2.3	of integer constraints	222
		10.2.4	Simplifying collections of constraints	226
		10.2.5	1 0	228
		10.2.5		220
		10.2.0	constraints	229
		10.2.7	Symmetry	230
	10.3		ic information obtainable by integer programming	231
	10.4		ity analysis and the stability of a model	238
	10.1	10.4.1	Sensitivity analysis and integer programming	238
		10.4.1	Building a stable model	239
	10.5		nd how to use integer programming	240
4.4	7D1 •			
11		_	tation of a mathematical programming system	242
	of pla	_		243
	11.1		ance and implementation	243
	11.2		fication of organizational functions zation versus decentralization	245
	11.3			247
	11.4	The con	lection of data and the maintenance of a model	249
Pa	rt II			251
12	The n	roblems		253
			anufacture 1	253
	12.2		anufacture 2	255
	12.3		planning 1	255
	12.4	•	planning 2	256
	12.5	•	ver planning	256
		12.5.1	Recruitment	257
		12.5.2	Retraining	257
		12.5.3	Redundancy	258
		12.5.4	Overmanning	258
		12.5.5	Short-time working	258

xii	CO	NTENTS	
	12.6	Refinery optimisation	258
		12.6.1 Distillation	258
		12.6.2 Reforming	259
		12.6.3 Cracking	259
		12.6.4 Blending	260
	12.7	Mining	261
		Farm planning	262
		Economic planning	263
		Decentralisation	265
	12.11	Curve fitting	266
	12.12	Logical design	266
	12.13	Market sharing	267
	12.14	Opencast mining	269
	12.15	Tariff rates (power generation)	270
		Hydro power	271
		Three-dimensional noughts and crosses	272
		Optimising a constraint	273
	12.19	Distribution 1	273
	12.20	Depot location (distribution 2)	275
	12.21	Agricultural pricing	276
	12.22	Efficiency analysis	278
	12.23	Milk collection	278
	12.24	Yield management	282
	12.25	Car rental 1	284
	12.26	Car rental 2	287
	12.27	Lost baggage distribution	287
		Protein folding	289
	12.29	Protein comparison	290
Pa	rt III		293
13	Form	ulation and discussion of problems	295
	13.1	Food manufacture 1	296
		13.1.1 The single-period problem	296
		13.1.2 The multi-period problem	297
	13.2	Food manufacture 2	299
	13.3	Factory planning 1	300
		13.3.1 The single-period problem	300
		13.3.2 The multi-period problem	301
	13.4	Factory planning 2	302
		13.4.1 Extra variables	302
		13.4.2 Revised constraints	303
	13.5	Manpower planning	303
		13.5.1 Variables	304

304

			CONTENTS	X111
	13.5.2	Constraints		305
	13.5.3	Initial conditions		305
13.6		optimization		306
		Variables		307
		Constraints		308
		Objective		310
13.7	Mining	- · J · · · · ·		310
		Variables		310
		Constraints		311
		Objective		312
13.8	Farm pla	3		312
10.0		Variables		312
		Constraints		313
		Objective function		315
13.9		ic planning		316
10.7				316
	13.9.2	Variables Constraints		316
	13.9.3	Objective function		317
13.10	Decentra			317
10.10		Variables		318
		Constraints		318
		Objective		319
13.11	Curve fit	3		319
	Logical			320
	Market s			322
	Opencas			324
		tes (power generation)		325
		Variables		325
	13.15.2	Constraints		325
		Objective function (to be minimized)		326
13.16	Hydro p	•		326
		Variables		326
	13.16.2	Constraints		326
		Objective function (to be minimized)		327
13.17		mensional noughts and crosses		327
		Variables		327
		Constraints		328
	13.17.3	Objective		328
13.18		ing a constraint		328
13.19	Distribut			330
	13.19.1	Variables		331
	13.19.2	Constraints		331
	13.19.3	Objectives		332
13.20		ocation (distribution 2)		332
		ural pricing		333

xiv	CC	ONTENTS	
	13.22	Efficiency analysis	335
		Milk collection	336
		13.23.1 Variables	336
		13.23.2 Constraints	336
		13.23.3 Objective	337
	13.24	Yield management	337
		13.24.1 Variables	338
		13.24.2 Constraints	338
		13.24.3 Objective	340
	13.25	Car rental 1	340
		13.25.1 Indices	340
		13.25.2 Given data	340
		13.25.3 Variables	341
		13.25.4 Constraints	341
		13.25.5 Objective	342
		Car rental 2	342
	13.27	Lost baggage distribution	343
		13.27.1 Variables	343
		13.27.2 Objective	344
		13.27.3 Constraints	344
		Protein folding	344
	13.29	Protein comparison	345
Pa	rt IV		347
11	Caluti	ong to puoblema	349
14	14.1	ons to problems Food manufacture 1	349
		Food manufacture 2	349
		Factory planning 1	350
	14.4	Factory planning 2	351
	14.5	Manpower planning	354
	14.6	Refinery optimization	356
	14.7	Mining	357
	14.8	Farm planning	358
	14.9	Economic planning	359
		Decentralization	361
		Curve fitting	361
		Logical design	363
		Market sharing	363
		Opencast mining	364
		Tariff rates (power generation)	364
		Hydro power	366
		Three-dimensional noughts and crosses	368
		Optimizing a constraint	369

		CONTENTS	XV
14.19	Distribution 1		369
14.20	Depot location (distribution 2)		371
14.21	Agricultural pricing		371
14.22	Efficiency analysis		372
14.23	Milk collection		374
14.24	Yield management		376
14.25	Car rental		379
14.26	Car rental 2		380
14.27	Lost baggage distribution		380
14.28	Protein folding		382
14.29	Protein comparison		382
References Author index			383
			397
Subject in	Subject index		401