

COMPUTER PROJECT MAS291

Presented by Group 2

MEMBERS:

Lê Thị Chí Thương Vũ Ngọc Ánh Võ Công Huy Nguyễn Trung Dũng Nguyễn Ngô Chiến

- Select a sample has 100 random countries to test this hypothesis.
- Test hypotheses:

H0:
$$\mu = 70$$

H1:
$$\mu \neq 70$$

$$t_{\mathsf{STAT}} = \frac{X - \mu}{\frac{S}{\sqrt{n}}}$$

Construct a confidence interval

$$\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$

Test the hypothesis that the	average life ex	pactance of male in ra	andom 10	0 countries	is 70 (wit	$h \alpha = 0.05$
	H0	μ 0 = 70				
	H1	μ0 ≠ 70				
	α	0.05				
Sample mean	X	70.162				
Sample variance	S	7.6694169				
Sample size		100				
Test statistic	t0	0.21122857				
Critical value	$t(\alpha/2,n-1)$	0.96022313		Fail to reje	ct H0	
Lower-Confidence Interval		69.42568				
Upper-Confidence Interval		70.89832				

=> Fail to reject H0 mean we do not have effective evidence to conclude that the average life expectancy of male is different from 70.

30% of the countries have a mean household incomes greater than \$7,500 (with confidence level is 95%).

1.Test a hypothesis:

- Choose total samples = 189 countries to test hypothesis:
- Create table Sample Statistics with Confidence Level (95%) for Proportion

We have:

Total samples	n	189
Sample satisfies the condition	X	66
Signficance level	α	0.05
Critical value	Z(α/2)	1.96
Hypothesis probability	P=X/n	0.349
	H0	p0 = 0.3
	H1	p0 ≠ 0.3 (Two-tail test)

1.Test a hypothesis:

Tradition method: H0: p0 = 0.3; H1: p0 ≠ 0.3 From Sample Statistics, we find test statistic:

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

$$= \frac{0.349 - 0.3}{0.3 \times (1 - 0.3)} = 1.47$$

$$= \sqrt{\frac{0.3 \times (1 - 0.3)}{189}}$$

Z0 = 1.47 → -Critical Values ≤ Z0 ≤ Critical Values → Fail to reject H0

Conclussion: At significance level of 0.05, there is not effective evidence that mean household income greater than \$7,500 is different from 30% of 189 countries.

2. Construct a confidence interval:

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$0.349 - 1.96 \times \sqrt{\frac{0.349 \times (1 - 0.349)}{189}} \le p \le 0.349 + 1.96 \times \sqrt{\frac{0.349 \times (1 - 0.349)}{189}}$$

2. Construct a confidence interval:

We have:

Lower - confidence interval	0.2810439109
Upper - confidence interval	0.4169560891

Conclussion: We are 95% confident that the proportion of countries with a mean household income greater than \$7,500 is between 0.2810439109 and 0.4169560891.

Test a hypothesis and construct a confidence interval for the difference in means of two populations.

The mean household incomes in countries with male's life expectancy greater than or equal to 70 are different from the mean household incomes in countries with male's life expectancy less than 70 (with confidence level is 95%)?

1.Test a hypothesis:

Choose random 75 samples of Mean household incomes of male's life expectancy >= 70 is N1 and 75 samples of Mean household incomes of male's life expectancy < 70 is N2 to test hypothesis:

N:	1
Mean	13208.66667
Standard Error	932.3796028
Median	11200
Mode	20200
Standard Deviation	8074.64422
Sample Variance	65199879.28
Kurtosis	0.489120481
Skewness	0.850209213
Range	37670
Minimum	1130
Maximum	38800
Sum	990650
Count	75
Confidence Level(95.0%)	1857.806913

N2	2
Mean	3017.826667
Standard Error	342.6662366
Median	2300
Mode	1430
Standard Deviation	2967.576659
Sample Variance	8806511.226
Kurtosis	9.287168528
Skewness	2.793058589
Range	15789
Minimum	411
Maximum	16200
Sum	226337
Count	75
Confidence Level(95.0%)	682.7773807

Test a hypothesis and construct a confidence interval for the difference in means of two populations.

From Sample Statistics: We find test statistic T0

Based on

$$T_0^* = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$\nu = \left| \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right|$$

То	10.25902299
٧	93.63211377

Because we choose Confidence Level (95.0%) for Mean:

=T.INV.2T(2*probability,deg_freedom)

T0 is in rejection region, then we reject H0.

1.985523442

Test a hypothesis and construct a confidence interval for the difference in means of two populations.

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

Lower Confidence Interval	10188.85448
Upper Confidence Interval	10192.82552

Test a hypothesis and construct a confidence interval for the difference in proportions of two populations.

In this, there are 48 countries that have male ratio >= 70

$$p1 = 48/89$$

In this, there are 41 countries that have male ratio >= 70

$$p2 = 41/100$$

Test a hypothesis and construct a confidence interval for the difference in proportions of two populations.

Construct confidence interval:

A $100(1-\alpha)\%$ confidence interval for p_1-p_2 is

$$\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \leq p_1 - p_2 \leq \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution.

From this: Lower confidence interval:-0.012155914 Upper confidence interval: 0.270807599

Test a hypothesis and construct a confidence interval for the difference in proportions of two populations.

Test a hypothesis: Ho: pl - p2 = 0; Hl: pl - p2 \neq 0

Test statistic:

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\overline{p}(1-\overline{p})}{n_1} + \frac{\overline{p}(1-\overline{p})}{n_2}}}.$$

$$Zo = 1,78$$

Identify the acceptance region (95% confidence interval)
-1.96 <= z0 <= 1.96

Make decision: Fail to reject Ho

Identify two random variables X and Y		
X	Mean household income	
Υ	Female	

Have a linear realationship here

Regression Statistics		
Multiple R	0.733813276	
R Square	0.538481924	
Adjusted R Square	0.536013913	
Standard Error	5.35529824	
Observations	189	

	Coefficients
Intercept	68.57400253
Mean household income (thousand \$)	0.775292911

=> r = 0.7338

=> Strong positive correlation

	Coefficients
Intercept	68.57400253
Mean household income (thousand \$)	0.775292911

=> Female = 68.5740 + 0.7753 * Mean household income

Estimate Line

=> Female = 68.5740 + 0.7753 * Mean household income

Mean household income	68.5740 + 0.7753 * Mean household income	Female
23.7	86.94844451	86.3
15.5	80.59104264	79.5
16.1	81.05621839	75.7
12.4	78.18763462	77.8
8.81	75.40433307	75.1
8.22	74.94691025	
1.63	69.83772997	

