

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

支持 PD 的多协议双向快充移动电源解决方案

1. 概述

SW6124 是一款高集成度的双向快充移动电源专用多合一芯片,其集成了 4A 高效率开关充电,18W 高效同步升压输出,PD/QC/AFC/FCP/PE/SFCP 等多种快充协议,电量计量,照明驱动以及相应的控制管理逻辑。外围只需少量的器件,即可组成完整的高性能双向快充移动电源解决方案。

2. 应用领域

- 移动电源
- 其它电池供电设备

3. 规格

• 开关充电

- ▶ 电流高达 4A,效率高达 96%
- ➤ 支持 4.2/4.3/4.35/4.4V 电池类型
- > 支持电池温度保护
- > 支持温度环控制

• 同步升压

- ▶ 输出功率高达 18W,效率高达 95%
- ▶ 支持线损补偿
- ▶ 自动负载检测
- ▶ 自动轻载检测

• 输出快充协议

- ➤ 支持 PD3.0/PD2.0
- ➤ 支持 QC3.0/QC2.0

(高通认证编号: 4788144154-2)

- ▶ 支持 AFC
- ▶ 支持 FCP
- ➤ 支持 PE2.0/PE1.1
- ▶ 支持 SFCP

• 输入快充协议

- ▶ 支持 PD3.0/PD2.0
- ▶ 支持 AFC
- ▶ 支持 FCP
- ➤ 搭配 SMB1351/1352 支持 QC3.0/QC2.0

• Type-C 接口

- ▶ 内置 USB Type-C 接口逻辑
- ▶ 支持 Try.SRC 功能

BC1.2 模块

- ➤ 支持 BC1.2 DCP 模式
- ▶ 支持苹果/三星模式

• Lightning 口解密

▶ 支持 Lightning 口解密功能

• 电量计量

- ➤ 内置 12bit ADC
- > 支持百分比电量
- ▶ 自适应各种类型电池
- ▶ 支持 3-5 个 LED
- ▶ 自动识别 LED 数量

• 照明驱动

▶ 内置照明 LED 驱动

• 快充指示灯

▶ 内置快充指示灯驱动

• 按键

> 支持机械按键

• 保护机制

- ▶ 输入过压保护
- ▶ 输出过流/短路保护
- ▶ 充电超时/过压保护
- ▶ 温度保护
- I2C 接口
- QFN-40(6x6mm) 封装

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

4. 功能框图

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

5. 引脚定义及功能描述

5.1 引脚定义

5.2 引脚描述

Pin	Name	Function Description	
1	DPB	Micro-B 口 DP 引脚。	
40	DMB	Micro-B □ DM 引脚。	
2, 3, 4, 5, 6	SW	开关节点。	
7	BST	上N管驱动 Bootstrap 引脚。	
8	VDRV	驱动电源。	
9	VOUT_C	Type-C 口轻载电流检测引脚。	
10	VBUS_C	Type-C 口输入输出电压检测引脚。	
11	VBUS_A	Type-A 口输出电压检测引脚。	
12	VOUT_A	Type-A 口轻载电流检测引脚。	
13	AGND	模拟地。	
14	BATCSP	电池电流检测引脚。	
15	BAT	电池电流电压检测引脚。	
16	NTC	电池温度检测引脚。	

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

17	BSET/HLED	电池目标电压设置及快充指示。		
18	VCC	内部工作电源。		
19	KEY	机械按键输入。		
20	WLED/DATA	照明输出,可设置为 Lightning 口的解密信号。		
21	LED1/SCK	电量指示灯接口 1,可复用 I2C 时钟信号。		
22	LED2/SDA	电量指示灯接口 2,可复用 I2C 数据信号。		
23	LED3/IRQ	电量指示灯接口3,可复用中断信号。		
24	LED4/I2C	电量指示灯接口 4, LED 或 I2C 设置信号。		
25, 26, 27, 28, 29	VOUT	充电电路输入,升压电路输出引脚。		
30	VBUS_B	Micro-B 口输入电压检测引脚。		
31	GATE_B	Micro-B 口通路控制。		
32	GATE_A	Type-A 口通路控制。		
33	GATE_C	Type-C 口通路控制。		
34	CC1	Type-C 配置通道 1。		
35	CC2	Type-C 配置通道 2。		
36	DMC	Type-C 口 DM 引脚。		
37	DPC	Type-C 口 DP 引脚。		
38	DMA	Type-A 口 DM 引脚。		
39	DPA	Type-A 口 DP 引脚。		
	EPAD	散热 PAD,接地。		

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VBUS_B/VBUS_C	-0.3	16	V
	VOUT			
输出电压	/VOUT_A/VOUT_C	-0.3	16	V
	/VBUS_A/VBUS_C			
SW 管脚电压	SW	-0.3	16	V
BST 管脚电压	BST-SW	-0.3	6	V
通路控制电压	GATE_A/GATE_B	-0.3	24	V
迪姆江 刚电压	/GATE_C	-0.3	24	V
其它管脚电压		-0.3	6	V
节温		-40	+150	°C
存储温度		-60	+150	°C
ESD (HBM)		-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

7. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VBUS_B/VBUS_C	4.5		13.5	V
电池电压	BAT	2.8		4.5	V

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

8. 电气特性

(V_{IN} = 5V, V_{BAT} = 3.7V, T_A = 25°C, 除特别说明。)

Parameters	Symbol	Test Conditions	MIN	TYP	MAX	UNIT
供电电源						
VBUS_B 输入电源	$V_{ m BUSB}$		4		13.5	V
VBUS_B 输入欠压门限	V _{BUSB_UVLO}	VBUS_B 输入电压下降		4		V
VBUS_B 输入欠压门限迟滞	VBUSB_UVLO_H YS	VBUS_B 输入电压上升		400		mV
VBUS_C 输入电源	$V_{ m BUSC}$		4		13.5	V
VBUS_C 输入欠压门限	V _{BUSC_UVLO}	VBUS_C 输入电压下降		4		V
VBUS_C 输入欠压门限迟滞	VBUSC_UVLO_H YS	VBUS_C 输入电压上升		400		mV
NCC 於山中正	V	Boost 或 V _{BUSB} /V _{BUSC} 接入		5		V
VCC 输出电压	V_{CC}	关机		V_{BAT}		V
VCC 输出电流	I_{CC}	Boost 或 V _{BUSB} /V _{BUSC} 接入		60		mA
	ICC	关机		60		mA
功率管内阻						
NMOS 上管	R _{DSON_H}			22		mΩ
NMOS 下管	R_{DSON_L}			16		mΩ
充电模式						
涓流截止电压	V _{TC}			3		V
识汰大山山汰	т	$1.5V < V_{BAT} < 3V$		300		mA
涓流充电电流	I_{TC}	V _{BAT} <1.5V		200		mA
		V_{BUSB} or $V_{BUSC} = 5V$		2.5		A
恒流充电电流	I_{CC}	V_{BUSB} or V_{BUSC} = 9V/12V		4		A
截止充电电流	I _{END}			10		%
充电目标电压	V _{BAT_FULL}			4.2		V
复充电电压	V _{BAT_RECH}			4.1		V
———————————————————— 开关频率	F _{CHG}			400		KHz
 涓流充电超时	t _{TC_OT}			40		Min
	t _{CC_OT}			33		Hour
恒温温度值	T _{REGU_CHG}			115		$^{\circ}$

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

升压模式						
VBAT 输入电压	V _{BAT}		2.9		4.5	V
VBAT 输入欠压门限	V _{BAT_UVLO}	VBAT 输入电压下降		2.9		V
VBAT 输入欠压门限迟滞	VBAT_UVLO_HY	VBAT 输入电压上升		500		mV
		V _{OUT} =5V		5.05		V
VOUT 输出电压	V _{OUT}	V _{OUT} =9V		9.05		V
		V _{OUT} =12V		12.05		V
		V _{OUT} =5V		3		A
VOUT 输出电流	$I_{ m OUT}$	V _{OUT} =9V		2		A
		V _{OUT} =12V		1.5		A
轻载电流检测门限值	ILIGHT_LOAD	R _{DS_PATH} =10m Ω		60		mA
轻载检测关机时间	t _{LIGHT_LOAD}			32		S
静态电流	I_Q	V _{BAT} =3.7V		40		uA
		0A <i<sub>OUT<1A</i<sub>		0		mV
线损补偿	V _{OUT_WDC}	1A <i<sub>OUT<2A</i<sub>		50		mV
		I _{OUT} >2A		100		mV
开关频率	F _{BST}			400		KHz
热控制环路门限值	T _{REGU_BST}			115		$^{\circ}$ C
Type-C 接口						
CC 管脚输出电流	I _{CC_SOURCE}	Power Level=3.0A		330		uA
CC 管脚端接电阻	R _D			5.1		kΩ
BC1.2						
DD/DM 中耳	DP	Apple 2.4A Mode		2.7		V
DP/DM 电压	DM	Apple 2.4A Mode		2.7		V
PE			•			
电流门限	$I_{ m REF}$			300		mA
退出时间	tplug_out			200		mS
LED 电量指示						
电量指示 LED 驱动电流	I_{LED}			4		mA
LED 闪烁频率	$f_{ m LED}$			1		Hz
LED 照明						

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

WLED 电阻	R _{WLED}			20		Ω	
KEY							
短按键	T _{SHORT}			32		mS	
长按键	T _{LONG}			2		S	
I2C	•						
速率	f_{CLK}			400		Kbit/S	
热关机保护	热关机保护						
过热关机门限	T_{SHDT}	温度上升		150		$^{\circ}$	
过热关机迟滞	T _{SHDT_HYS}	温度下降		70		$^{\circ}$	

9. 功能描述

9.1 充电模式

SW6124 集成了最高效率高达 96%的开关充电模块,其支持 4.2V/4.3V/4.35V/4.4V 等多种电池类型, 开关频率 400KHz,可以使用小体积的 2.2uH 电感。

充电流程分为如下三个过程: 涓流模式、恒流模式、恒压模式。当电池电压低于 3V 时,充电模块处于涓流模式,电池电压低于 1.5V 时,其充电电流为 200mA,电池电压处于 1.5V 和 3V 之间时,其充电电流为 300mA;当电池电压大于 3V 时,充电模块进入恒流模式,此时按照设定的目标电流全速充电;当电池电压上升到充电目标电压(比如 4.2V)时,充电模块进入恒压模式,此时电流逐渐减小,而电池端电压保持不变;当充电电流减小到充电截止电流,即设定值的 10%与 300mA 中最小值时,充电结束。充满后如果电池电压降低到比目标电压低 0.1V,则自动重新开始充电。

电池类型可通过 BSET/HLED Pin 设置。悬空时,设置 4.2V 电池;对地接 62K Ω 电阻时,设置 4.35V 电池;对地接 30K Ω 电阻时,设置 4.4V 电池;对地接 10K Ω 电阻时,设置 4.3V 电池。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

充电电流根据快充输入电压设置。当处于普通 5V 输入电压时,充电电流设置为 2.5A; 当处于快充输入电压时,充电电流设置为 4A。

充电模块支持 NTC 保护,NTC 温度保护模块会一直监测电池温度,典型情况下,使其在 0~50℃的正常温度范围内充电,当处于温度异常时,减小充电电流或者关闭充电。当温度低于 5℃时,充电电流减小一半,如果温度继续下降低于 0℃,则关闭充电,温度上升到 5℃后自动重新充电,充电电流减少一半,温度继续上升到 10℃时,恢复正常充电电流。当温度高于 45℃时,充电电流减小一半,如果温度继续升高高于 50℃,则关闭充电,温度下降到 45℃后自动重新充电,充电电流减少一半,温度继续下降到 40℃时,恢复正常充电电流。典型的应用使用 103AT NTC 电阻,在实际的应用中可通过串/并联电阻的方式改变温度范围。如果不需要 NTC 保护功能,将 NTC Pin 接地。

充电模块还包含一个温度控制环,当芯片温度超过 115℃时,充电电流开始下降,如果继续过温超过 150℃,则芯片进入过温关机模式。

充电模块还包含一个超时机制,当恒流充电时间超过33小时或是涓流充电超过40分钟时,充电停止,插拔适配器可解除此状态。

9.2 升压模式

SW6124集成了18W的升压模块,开关频率400KHz,最高效率可达95%。升压模块包含了PSM/PWM两种模式,在轻载下,工作于PSM模式;在较大负载下,工作于PWM模式。当负载接入时,系统自动侦测并启动升压模块;当负载移出后,系统监测到超过一定时间后,关闭升压输出。

当输出电压低于6V时,最大负载能力限制为3A;当输出电压高于6V时,最大输出功率限制为18W,输出电压升高,负载能力降低;当输出电压达到9V时,负载能力2A;当输出电压达到12V时,负载能力1.5A。

升压模块支持 NTC 保护,NTC 保护模块会一直监测电池温度,使其在-15~58℃的正常温度范围内放电,当不处于以上温度范围时,关闭升压模块停止放电。典型的应用使用 103AT NTC 电阻,在实际的应用中可通过串/并联电阻的方式改变温度范围。如果不需要 NTC 保护功能,将 NTC Pin 接地。

升压模块还包含一个温度控制环,当芯片温度超过115℃时,输出电压开始下降;如果继续过温超过150℃,则芯片进入过温关机模式。进入过温关机模式后,即使温度降低到过温门限以下,芯片也不会自动开机,而需要检测到负载插入或是短按键动作发生。

升压模块包含了输入欠压/输出过压/输出过载/输出短路等保护。

9.3 通路控制

SW6124 支持 Type-A+Type-C+Micro-B 三口, 其中 Type-A 支持 QC3.0/QC2.0/AFC/FCP/PE2.0/PE1.1/SFCP 快充输出; Type-C 支持 PD3.0/PD2.0/QC3.0/QC2.0/AFC/FCP/PE2.0/PE1.1/SFCP 快充输出, 支持 PD3.0/PD2.0/AFC/FCP 快充输入; Micro-B 支持 AFC/FCP 快充输入, 搭配 SMB1351/1352 可实现 QC 快充输入。

短按键及负载接入打开 Type-A 口对外放电, 空载检测关闭 Type-A 口, 空载检测电流门限与 Type-A 通路管内阻相关, 在通路管内阻 $10m\Omega$ 时, 空载电流约 60mA。DFP 接入打开 Type-C 口进行充电; UFP 接入打开 Type-C 口对外放电, UFP 移出关闭 Type-C 口,另外 Type-C 口支持轻载检测, 在 UFP 设备轻

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

载时,也将关闭 Type-C 口,进入低功耗模式。适配器接入打开 Micro-B 口进行充电。

SW6124 支持边充边放。在单口工作时支持快充输入输出,多口工作时支持 5V 输入输出。

SW6124 支持 Type-A 及 Type-C 口同时对外放电,此时输出电压为 5V。

9.4 Type-C 接口

SW6124集成了Type-C接口控制器,不但支持输入输出双向,还支持try.SRC角色。当适配器连接时,芯片自动开机并进行充电;当适配器拔除,自动停止充电。当用电设备接入时,升压模块打开工作,如果用电设备拔除,则自动关闭升压模块。

当用电设备连接,且升压功能开启时,SW6124 将会在 CC 引脚上广播 3A 电流能力。如果 VBUS_B 接入,也会在 CC 上广播 3A 电流能力。

9.5 PD 快充

SW6124 集成了 PD3.0/PD2.0 快充协议,支持输入输出双向快充,输入支持 5V/9V/12V 电压,输出支持 5V/9V/12V 电压。

9.6 QC3.0/QC2.0 快充

SW6124 集成了 QC 快充协议, 支持 QC3.0/QC2.0, 支持 Class A。QC2.0 支持 5V/9V/12V 输出电压。QC3.0 支持 5V~12V 输出电压, 200mV/Step。

QC2.0/QC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入	设备	SW6124		
DP	DM	VOUT	Note	
3.3V	3.3V	保持原有电压	不响应	
0.6V	0.6V	12V		
3.3V	0.6V	9V		
0.6V	3.3V	连续模式	0.2V/Step	
0.6V	GND	5V		

SW6124 搭配 SMB1351/1352 可实现 QC 快充输入, 支持 5V/9V/12V 输入。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

9.7 AFC 快充

SW6124 集成了 AFC 快充协议, 支持 5V/9V/12V 输出电压, 支持 5V/9V 输入电压。

9.8 FCP 快充

SW6124 集成了 FCP 快充协议, 支持 5V/9V/12V 输出电压, 支持 5V/9V 输入电压。

9.9 PE 快充

SW6124 集成了 PE2.0 及 PE1.1 快充协议, PE2.0 支持 5V~12V 输出电压, 500mV/Step。PE1.1 支持 5V/7V/9V/12V 输出电压。

9.10 SFCP 快充

SW6124 集成了 SFCP 快充协议, 支持 5V/9V/12V 输出电压。

9.11 BC1.2 功能

SW6124 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.12 Lightning 口解密

SW6124 支持 Lightning 口解密功能,此解密功能与照明驱动功能共用 WLED/DATA 管脚,应用中只能选用其中一种功能。

9.13 电量指示灯

SW6124 支持 3-5 个 LED 灯电量指示。

五灯状态下其连接方式如下:

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

5 灯放电状态下 LED 指示表:

Capacity	LED1	LED2	LED3	LED4	LED5
80~100%	On	On	On	On	On
60~80%	On	On	On	On	Off
40~60%	On	On	On	Off	Off
20~40%	On	On	Off	Off	Off
5~20%	On	Off	Off	Off	Off
1~5%	Flicker	Off	Off	Off	Off
0%	Off	Off	Off	Off	Off

5 灯充电状态下 LED 指示表:

Capacity	LED1	LED2	LED3	LED4	LED5
100%	On	On	On	On	On
80~99%	On	On	On	On	Flicker
60~80%	On	On	On	Flicker	Off
40~60%	On	On	Flicker	Off	Off
20~40%	On	Flicker	Off	Off	Off
0~20%	Flicker	Off	Off	Off	Off

四灯状态下的连接方式:

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

4 灯放电状态下电池电量指示表:

Capacity	LED1	LED2	LED3	LED4
75~100%	On	On	On	On
50~75%	On	On	On	Off
25~50%	On	On	Off	Off
5~25%	On	Off	Off	Off
1~5%	Flicker	Off	Off	Off
0%	Off	Off	Off	Off

4 灯充电状态下电池电量指示表:

Capacity	LED1	LED2	LED3	LED4
100%	On	On	On	On
75~99%	On	On	On	Flicker
50~75%	On	On	Flicker	Off
25~50%	On	Flicker	Off	Off
0~25%	Flicker	Off	Off	Off

三灯状态下的连接方式:

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

3 灯放电状态下的指示表:

Capacity	LED1	LED2	LED3
66~100%	On	On	On
33~66%	On	On	Off
5~33%	On	Off	Off
1~5%	Flicker	Off	Off
0%	Off	Off	Off

3 灯充电状态下的指示表:

Capacity	LED1	LED2	LED3
100%	On	On	On
66~99%	On	On	Flicker
33~66%	On	Flicker	Off
0~33%	Flicker	Off	Off

在低电状态下, LED1 闪烁 5 次后系统关机。

9.14 照明驱动

SW6124 内部集成照明 LED 驱动,通过长按按键打开和关闭。

9.15 快充指示灯

SW6124 内部集成快充指示灯驱动 BSET/HLED Pin,在快充输入或输出时,BSET/HLED 拉高,打开快充指示灯。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

9.16 按键

SW6124 支持机械按键,内部弱拉高,支持短按、长按及双击。

短按动作时,打开 Type-A 口以及轻载的 Type-C 口对外放电及电量显示;

长按动作时,打开或关闭照明驱动;

双击动作时,关闭 Type-A 口及 Type-C 输出口、电量显示;如果有外部电源存在,则只关闭输出口。

9.17 I2C 接口

SW6124 支持 I2C 接口, 支持 100K/400K 通信速率。Master 可通过 I2C 接口读取芯片的状态信息。 I2C 接口与 LED 模块复用, 当设置为 I2C 接口时,将 LED4/I2C 接地。

读操作:

Slave address: 0x3C Register address: 0xB0

写操作:

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

Slave address: 0x3C Register address: 0xB0

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

10. 典型应用电路图

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

11. 机械尺寸

11.1 封装图

11.2 封装尺寸

Symbol	Dimension in Millimeters			
	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1	-	0.02	0.05	
b	0.18	0.25	0.30	
С	0.18	0.20	0.25	
D	5.90	6.00	6.10	
D2	4.10	4.20	4.30	
e	0.50BSC			
Ne		4.50BSC		
Nd		4.50BSC		
Е	5.90	6.00	6.10	
E2	4.10	4.20	4.30	
L	0.35	0.40	0.45	
h	0.30	0.35	0.40	

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

12. 版本历史

- V1.0 初始版本;
- V1.1 增加对按键动作的描述;
- V2.0 增加 AFC/FCP 快充协议、Lightning 口解密功能、Type-C 口轻载检测等描述;