UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

$\frac{\textbf{Discussion 13}}{\text{Fall 2023}}$

1. Orthogonal LLSE

a. Consider zero-mean random variables X,Y,Z with Y,Z orthogonal. Show that

$$\mathbb{L}(X \mid Y, Z) = \mathbb{L}(X \mid Y) + \mathbb{L}(X \mid Z).$$

b. Now, for any zero-mean random variables X, Y, Z, explain why it holds that

$$\mathbb{L}(X \mid Y, Z) = \mathbb{L}(X \mid Y) + \mathbb{L}[X \mid (Z - \mathbb{L}(Z \mid Y))].$$

2. Hypothesis Testing for Bernoulli Random Variables

Suppose that

- The null hypothesis is X = 0: $Y \sim \text{Bernoulli}(\frac{1}{4})$, and
- The alternative hypothesis is X = 1: $Y \sim \text{Bernoulli}(\frac{3}{4})$.

Using the Neyman–Pearson formulation of hypothesis testing, find the optimal randomized decision rule \hat{X} with respect to the criterion

min
$$\mathbb{P}(\hat{X} = 0 \mid X = 1)$$

s.t. $\mathbb{P}(\hat{X} = 1 \mid X = 0) \le \beta$,

where $\beta \in [0,1]$ is a given upper bound on the probability of false alarm (PFA).

(Note that the Neyman–Pearson decision rule may change depending on the value of β . In particular, consider the two separate cases of $\beta \leq \frac{1}{4}$ and $\beta > \frac{1}{4}$.)

3. Gaussian LLSE

Let X, Y, Z be i.i.d. $\mathcal{N}(0, 1)$.

- a. Find $\mathbb{L}(X^2 + Y^2 \mid X + Y)$.
- b. Find $\mathbb{L}(X + 2Y \mid X + 3Y + 4Z)$.
- c. Find $\mathbb{L}((X+Y)^2 \mid X-Y)$.