Lecture #9, Jan 26th, 2022

- Read Chapter 12.
- No Class this Friday
- Class will be in person next week with virtual option.
- Today: Continue Reference Voltage Design.
 - Current References
 - Process Voltage and Temperature Dependence.
 - Constant Voltage (Temp)
 - Proportional to Absolute Temperature (PTAT)
 - Constant Gm (Temp).

Self-Biased/Referenced Circuits"Bootstrapped" Biasing

F16. 12.2

Intuition Behind ΔV_{GS} Circuit CORRENT · Un Cor = un 2 Cox . SQ. LAW PEVICES JENORE 2=0. =) 6=1 · ALL XSISTORS IN SAT. ID1/2 = Mulor (W) (V65,,2 - V44) ASSUNE • FULTHED Von = Von CURRENT SOURCE 17 V651 - V652 - IOOT. R = 0 V65 = /2IO + V44 un Cox (W) + Vtn - / 2. I out - Vtn - I out Right
un Cox (W)
un Cox (W)

Intuition Behind ΔV_{GS} Circuit

Supply-Independent Biasing

- To uniquely define the currents, we add another constraint to the circuit as in Fig. (a)
- Resistor R_S decreases the current of M_2 while the PMOS devices need $I_{out} = I_{REF}$ due to identical dimensions and thresholds

ΔV_{GS} over R Bias Circuit

• We can write, $V_{GS1} = V_{GS2} + I_{D2}R_{S1}$

$$\sqrt{\frac{2I_{out}}{\mu_n C_{ox}(W/L)_N}} + V_{TH1} = \sqrt{\frac{2I_{out}}{\mu_n C_{ox} K(W/L)_N}} + V_{TH2} + I_{out} R_{S}$$

$$\sqrt{\frac{2I_{out}}{\mu_n C_{ox}(W/L)_N}} \left(1 - \frac{1}{\sqrt{K}}\right) = I_{out} R_S$$

Hence,

$$I_{out} = \frac{2}{\mu_n C_{ox}(W/L)_N} \cdot \frac{1}{R_S^2} \left(1 - \frac{1}{\sqrt{K}} \right)^2$$

 As expected, the current is independent of the supply voltage (but still a function of process and temperature)

Removing Body Effect

- The assumption $V_{TH1} = V_{TH2}$ introduces some error in the foregoing calculations because sources of M_1 and M_2 are at different voltages
- Simple remedy is to place the resistor at the source of M_3 while eliminating body effect by tying the source and bulk of each PMOS
- Relatively long channel lengths are used for all transistors in the circuit

Start-Up Circuitry

- Start-up problem can be solved by adding a mechanism to drive the circuit out of degenerate bias point when supply is turned on
- In Fig. (a), diode-connected device M_5 provides a current path from V_{DD} through M_3 and M_1 to ground upon start-up
- M_3 and M_1 , and hence M_2 and M_4 , cannot remain off
- This technique is practical only if $V_{TH1} + V_{TH5} + |V_{TH3}| < V_{DD}$ and $V_{GS1} + V_{TH5} + |V_{GS3}| > V_{DD}$ to ensure M_5 remains off after start-up

Start-Up Circuitry

Bipolar Primer

BiPolar Device Layout

