UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA IV: Introducción a las Matemáticas Discretas (525412)

Tarea 1

(Fecha de entrega: 31 de agosto de 2004.)

- 1. Estudie las propiedades de las siguientes relaciones. En caso de ser relación de orden, determine si es relación de orden total o parcial.
 - i) En \mathbb{N} : $x R y \iff \max\{x^2, y\} \le n$, para $n \in \mathbb{N}$ dado.
 - ii) En $M_n(\mathbb{R})$: $ARB \iff a_{ij} \leq b_{ij}, \ \forall i,j \in \{1,\ldots,n\}, \ \text{donde} \ A = (a_{ij}) \in M_n(\mathbb{R}) \ y$ $B = (b_{ij}) \in M_n(\mathbb{R}).$
 - iii) En \mathbb{N}^2 : $(a,b) R(a',b') \iff a+b=a'+b'$.
- 2. Sea X un conjunto no vacío y \mathcal{P} el conjunto de todas las particiones finitas de X. Es decir, los elementos de \mathcal{P} son las particiones $\{A_i\}_{i=1}^n$ donde $n \in \mathbb{N}$. Se define la relación \leq en \mathcal{P} como sigue:

$${A_i}_{i=1}^n \leq {B_j}_{i=1}^m \iff \forall j \in {1, \dots, m}, \ \exists i \in {1, \dots, n}, \ B_i \subseteq A_i.$$

- i) Pruebe que \leq es relación de orden.
- ii) Muestre que si |X| > 3, entonces \leq es relación de orden parcial.
- 3. Sean E y F dos conjuntos finitos no vacíos. Sea \leq la relación de orden en $P(E) \times P(F)$, definida por:

$$(A,B) < (A',B') \iff A \subseteq A' \land B' \subseteq B.$$

- i) Verifique que \leq es relación de orden.
- ii) Pruebe que $(P(E) \times P(F), \leq)$ es un latis.
- iii) Calcule el elemento máximo y el elemento mínimo de $P(E) \times P(F)$.
- 4. Sean R y S dos relaciones en E conjunto no vacío. Se definen las relaciones: R^{-1} , $R \cup S$, $R \cap S$ y $R \circ S$ como: $\forall a, b \in E$:

$$\begin{array}{lll} a\,R^{-1}\,b & \Longleftrightarrow & b\,R\,a, \\ a\,(R\cup S)\,b & \Longleftrightarrow & a\,R\,b \,\vee\, a\,S\,b, \\ a\,(R\cap S)\,b & \Longleftrightarrow & a\,R\,b \,\wedge\, a\,S\,b, \\ a\,(R\circ S)\,b & \Longleftrightarrow & \exists c\in E,\ a\,R\,c \,\wedge\, c\,S\,b. \end{array}$$

Pruebe que:

- i) Si R y S son relaciones de equivalencia, entonces $R \circ S$ es relación de equivalencia \iff $R \circ S = S \circ R$.
- ii) Si R y S son relaciones de equivalencia, entonces $R \cap S$ y $R \cup S$ son también relaciones de equivalencia.
- iii) Si R es relación de orden total, entonces R^{-1} es también relación de orden total.