אינפי 2מ' | תרגול 4 - עם ניקה

שם: איל שטיין

April 18, 2023

נושאי השיעור: אינטגרביליות

תרגיל 1.

- [a,b] אינטגרבילית בקטע $f\left(x
 ight)$ תהי
- - . צ"ל: $g\left(x
 ight)$ רציפה ליפשיץ

פתרון:

- $|f\left(x
 ight) f\left(y
 ight)| \leq |x-y| \, K$ מתקיים $x,y \in I$ כך שלכל אם קיים 0 < K אם קיים בקטע בקטע ליפשיץ נקראת רציפה ליפשיץ בקטע $f\left(x
 ight)$
 - $p,s \in [a,b]$: ניקח שתי נקודות בקטע
 - p>s כניח בה"כ -

$$|g(p) - g(s)| = \left| \int_{a}^{p} f(t) dt - \int_{a}^{s} f(t) dt \right|$$
$$= \left| \int_{s}^{p} f(t) dt \right|$$

: אפשר לכתוב , $\left|\int_{a}^{b}f\left(t\right)dt\right|\leq\int_{a}^{b}\!\left|f\left(t\right)\right|dt$ אפשר לכתוב *

$$= \left| \int_{s}^{p} f(t) dt \right| \leq \int_{s}^{p} \left| f(t) \right| dt$$

 $|f\left(t\right)| < M$ ע כך סכך כך לכן קיים לכן חסומה. לכן אינטגרבילית אינטגרבילית לכן אינט לf

י ולכן מתקיים:

$$\int_{s}^{p} |f(t)| dt \le \int_{s}^{p} M dt = M(p - s)$$

 $0 < M \in \mathbb{R}$ לסיכום, קיבלנו שקיים •

$$|g(p) - g(s)| \le M(p - s)$$

.2 הערה

- תנאים מספיקים לאינטגרביליות:
- [a,b] מוגדרת בקטע $f\left(x
 ight)$.
- . אסומה ורציפה (פרט למספר סופי של נקודות) אזי היא אינטגרבילית (פרט למספר סופי של 1. חסומה ורציפה $f\left(x\right)$
- . אם $f\left(x
 ight)$ חסומה ומונוטונית למקוטעים (כלומר לא חייבת לשמור על כיוון המונוטוניות) בקטע סגור אזי היא אינטגרבילית רימן.

תרגיל 3.

[0,1] א. הראו כי הפונקציות הבאות אינטגרביליות הפונקציות •

$$f(x) = \begin{cases} \frac{1}{\left[\frac{1}{x}\right]} & x \neq 0\\ 0 & x = 0 \end{cases} .1$$

$$g\left(x\right) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases} . 2$$

[0,1] ב. תנו דוגמה לפונקציה שלא מקיימת את שני התנאים המספיקים שהבאנו אבל היא כן אינטגרבילית בקטע -

פתרון:

f(x) א. נצייר את •

. נשים לב כי $f\left(x\right)$ מונוטונית וחסומה ולכן אינטגרבילית –

. נשים לב כי $g\left(x\right)$ חסומה ורציפה פרט לנקודה אחת (x=0) ולכן היא אינטגרבילית.

 $f\left(x
ight) +g\left(x
ight)$ את ניקח את •

– זו לא פונקציה מונוטונית והיא גם לא רציפה במספר סופי של נקודות.

תרגיל 4.

 $f\left(x
ight)\geq0$ ו $\left[a,b
ight]$ אינטגרבילית $f\left(x
ight)$ כתון כי

:צ"ל

 $x\in I$ לכל $f\left(x
ight)<arepsilon$ כך ש $I=\left[lpha,eta
ight]\subset\left[a,b
ight]$ קיים תת קטע $\varepsilon>0$ אז לכל לכל אז לכל סיים תר כי אם - א. הראו כי אם

 $\int_{a}^{b}f\left(x\right)dx>0$ אז $f\left(x\right)>0$ מתקיים $x\in\left[a,b\right]$ אז לכל כי הוכיחו – ב. הוכיחו ה

פתרון:

א.

- arepsilonיהי 0 < 3.
- מכיוון שהפונקציה אינטגרבילית, זה אומר שהאינפימום של סכומי דרבו עליונים וסופרמום של סכומי דרבו תחתונים שווים.
 - האינטגרל שווה לאפס ולכן שניהם שווים לאפס.
 - . לכן כל סכומי דרבו עליון שואפים לאפס.

$$U\left(f,p
ight) עך ע
 $P=\left\{x_{1},\ldots,x_{n}
ight\}$ הלוקה ליימת חלוקה יכלומר כלומר פיימת חלוקה י$$

arepsilon גדול מ- $|f\left(x
ight)|$ גדול מעבור מתקיים אבורו קטע של החלוקה שבכל אדול אבורו אדול מתקיים אבורו אדול מר $p_{[x_{i-1},x_i]}$ אדול מ- $sup_{[x_{i-1},x_i]}$ אדול מ- $sup_{[x_{i-1},x_i]}$

- נבחן את סכום דרבו עליון:

$$U(f,P) = \sum_{i=1}^{n} Sup_{[x_{i-1},x_i]} |f| \cdot \Delta x_i$$
$$\geq \varepsilon \cdot \sum_{i=1}^{n} (x_i - x_{i-1})$$
$$= \varepsilon \cdot (b-a)$$

- זו סתירה.
- $Sup_{[x_{i-1},x_i]}\left|f
 ight|<arepsilon$ מתקיים מתקיים לפחות אחד וכך $I\subset [a,b]$ אחד •
- $f\left(x
 ight)<arepsilon$ מתקיים $x\in I$ מתקיים שלכל מ-arepsilon מתקיים אוון שהסופרמום אווים –

ב.

 $f\left(x
ight)>0$ מתקיים $x\in\left[a,b
ight]$ • נתון כי לכל

- כלומר הפונקציה חיובית.

 $\int_{a}^{b}f\left(x\right) dx\geq0$ מתקיים – לכן מתקיים –

 $\int_{a}^{b}f\left(x
ight) dx=0$ נניח בשלילה ש: •

: מתקיים (α,β] \subseteq [a,b] תת קטע , $f\left(x\right)>0$ מתקיים –

$$0 \le \int_{\alpha}^{\beta} f(x) dx \le \int_{a}^{b} f(x) dx = 0$$

$$\int_{\alpha}^{\beta} f(x) \, dx = 0$$

- $f\left(x
 ight) < 1$ ומתקיים בו 1-שאורכו שאורכו ומתקיים בו $\left[lpha,eta
 ight]$ שאורכו לפי סעיף א', קיים תת
- $a(x)<rac{1}{n+1}$ ובתוכו מתקיים $rac{1}{n+1}$ ובתוכו קטן כך שאורכו (מ $a_{n+1},eta_{n+1}]\subset [lpha_n,eta_n]$ באינדוקציה: נמצא תת קטע
 - . קיבלנו סדרה של קטעים את המקיימים את קטעים של הלמה אל קיבלנו $_{\star}$
 - $x_0 \in \bigcap_{n=1}^\infty \left[lpha_n, eta_n
 ight]$ לכן קיימת נקודה x_0 בחיתוך של כל הקטעים.
 - . בגלל אופן בניית הקטעים לכל $f\left(x_{0}\right)<\frac{1}{n}$ בניית מתקיים יובפרט י
 - $f(x_0) = 0$ לכן מתקיים ·
 - $x \in [a,b]$ לכל f(x) > 0 כי לנתון יו סתירה לנתון הי

תרגיל 5.

- [a,b] רציפה ואי שלילית בקטע $f\left(x
 ight)$ תהי
 - $\int_a^b f(x) dx = 0$: נתון
 - $x \in [a,b]$ לכל f(x) = 0 •

פתרון:

- $f\left(c
 ight)
 eq0$ כך ע כך כך נניח בשלילה שקיימת נקודה $c\in\left[a,b
 ight]$
- $f\left(c
 ight)>0$ ולכן $x\in\left[a,b
 ight]$ לכל $f\left(x
 ight)\geq0$ יתון כי
 - f(c) = k נסמן *
- : (לפי ערך הביניים) מתקיים $|x-c|<\delta$ המקיים $x\in[a,b]$ כך שלכל $\delta>0$ מתקיים (לפי ערך הביניים) f(x)

$$f(x) > \frac{f(c)}{2} = \frac{k}{2} > 0$$

: את האינטגרל ולכתוב ליתן וולכן וולכן מתקיים שבו $[c-\delta,c+\delta]\subseteq [a,b]$ שבו - יצרנו את קטע

$$\int_{a}^{b} f(x) dx = \int_{a}^{c-\delta} + \int_{c-\delta}^{c+\delta} + \int_{c+\delta}^{b}$$

$$\geq \int_{c-\delta}^{c+\delta} \leq \frac{k}{2} \cdot 2\delta = k \cdot \delta > 0$$

- סתירה לנתון.