Embedding Similarity aided Relationship Prediction in Heterogeneous Networks

Pramod Srinivasan and Vipul Venkataraman Guided by Dr. Meng Jiang

Outline

- Problem Statement
- PathPredict: Recap + Issues
- Using Embedding Similarity
- Workflow of our approach
- Experiments + Results
- Future work

Introduction

- Link prediction: Important problem with varied applications
- Our goal: Efficient relationship prediction in heterogeneous networks
 - DBLP
 - Task: Future acceptance (author, venue)

Path Predict: Workflow

Facilitates testing significance of topological features

Issues with Path Predict

Intuition

- Challenge: Sparsity of the original network
 - 3-partite
 - Less informative meta-path features
- Key idea: Learn node similarity using network embedding
 - Construct richer meta-paths!
 - Can use any off-the-shelf embedding technique

LINE: Quick Recap

- LINE: Large-scale Information Network Embedding
- Embeds large networks into low dimensional vector spaces
- Highly parallelizable!
- Preserves both local and global network structures
 - First order proximity
 - Second order proximity

Similar Authors

Similar Authors

Similar Papers

Similar Papers

Similar Papers

Similar Venues

Similar Venues

Similar Venues

Heterogeneous Similarity

Densification of the original network

Workflow

Workflow

Experiments

Experiments: Author Productivity

apv-line-1st apv-line-2nd

path-predict

- 1st order proximity not as good as 2nd order proximity
- This is possibly due to the lack of AV and AA edges in the original network
- Can we circumvent this, and reduce sparsity even further?

Experiments: Head-to-head

Experiments: Author Productivity

av-line

av-line-1st av-line-2nd path-predict

- Introduction of AA and AV edges in the heterogeneous apv-line-2nd network improved accuracy even further!
 - Gains from both 1st-order and 2nd-order embedding

Experiments: Significant Features

apapv

av

aav avv

apv combined

- The following metapaths singlehandedly outperform path-predict: AV, AAV, AVV path-predict
 - These metapaths are not present in the original network
 - Illustrates why embedding is useful

Experiments: Significant Features

apapv

av

aav avv

apv combined

- The following metapaths singlehandedly outperform path-predict: AV, AAV, AVV path-predict
 - These metapaths are not present in the original network
 - Illustrates why embedding is useful

Future Work

- Use PTE instead of LINE
- Test performance with respect to change in network sparsity
- Extend method to other relationship prediction tasks:
 - Future co-authorship (a-p-a)
 - Future co-attendance (a-p-v-p-a)
- Testing model generalization
 - Different 5/10 years vs 5 years

Conclusion

- Combating network sparsity with node similarities obtained from embedding techniques
- Enriching the APV network with links to capture high first order proximity
- Significant features that capture latent information
- Achieved 47% increase in accuracy from PathPredict

Questions!

Supplementary Slides

Experiments: Significant Features

Experiments

