Cognome	
Nome	
Matricola	
Aula	

Domande a risposta multipla (indicare con X la risposta corretta nella tabella)

Quesito	1	2	3	4	
Risposta a				Χ	
Risposta b			Х		
Risposta c		Χ			
Risposta d	Х				
Punteggio totale					

- 1) Quale dei seguenti esempi rappresenta il calcolo dell'incertezza con espressione errata, associata al parametro in misura Y, secondo il modello deterministico?
 - a) $Y = X_1 \cdot X_2 \cdot X_3 \rightarrow \varepsilon_Y = \varepsilon_{X1} + \varepsilon_{X2} + \varepsilon_{X3}$
 - b) $Y = 10 \cdot X_1 \rightarrow \delta Y = 10 \cdot \delta X_1$
 - c) $Y = X_1 + X_2 \rightarrow \delta Y = \delta X_1 + \delta X_2$
 - d) $Y = X_1 + X_2 X_3 \rightarrow \delta Y = \delta X_1 + \delta X_2 \delta X_3$

Risposta corretta: d). Applicando la formula di propagazione delle incertezze al modello $Y = X_1 + X_2 - X_3$ si ottiene $\delta Y = \delta X_1 + \delta X_2 + \delta X_3$

- 2) Quale tra le seguenti affermazioni è vera per una sonda compensata passiva per oscilloscopi:
 - a) aumenta la frequenza del segnale in ingresso
 - b) si usa per filtrare i segnali di ingresso
 - c) diminuisce l'effetto del carico strumentale
 - d) può essere compensata solo dal costruttore

Risposta corretta: c) v. teoria

- Si sta eseguendo con un frequenzimetro numerico una misura diretta di frequenza che nominalmente è di 100 kHz. La frequenza di clock del frequenzimetro vale 10 MHz, ± 1·10⁻⁷. Quanto deve durare la misurazione per avere una incertezza relativa di quantizzazione pari a 1·10⁻⁶?
 - a) 0.1 s
 - b) <mark>10 s</mark>
 - c) 1 s
 - d) nessuna delle risposte proposte è corretta

Risposta corretta: b) $\delta f_x/f_x$ (quantizz.) = $10^{-6} \rightarrow \delta f_x$ (quantizz.) = $10^{-6} = 0.1 \text{ Hz} \rightarrow T_g = 10 \text{ s}$

- 4) Indicare quale dei seguenti amperometri può misurare una corrente di circa 5 A con una incertezza relativa non superiore allo 0.1%
 - a) digitale: portata I_p = 5 A e incertezza assoluta δI = 0.03% Lettura + 0.02% Portata
 - b) elettromeccanico: portata $I_p = 10 \text{ A}$ e classe 0.1
 - c) digitale: portata I_D = 10 A e incertezza assoluta δI = 0.3% Lettura + 0.02% Portata
 - d) elettromeccanico: portata $I_p = 5$ A e classe 1

Risposta corretta: a)

Elettromeccanico: lettura 5A, portata Ip = 5 A e classe 1 \rightarrow incertezza rel. 1% Digitale: portata Ip = 5 A e incertezza assoluta $\delta I = 0.03\%$ 5 + 0.02% 5 = 2.5 mV Quindi inc.relativa pari a: 2.5 mV / 5 *100 = 0.05% < 0.1%

Elettromeccanico: lettura 5A, portata Ip = 10 A e classe 0.1 \rightarrow inc.rel. 0.2% Digitale: portata Ip = 10 A e incertezza assoluta $\delta I = 0.3\%$ 5 + 0.02% 10 = 17 mV Quindi inc.relativa pari a: 17 mV / 5 *100 = 0.05% = 0.34 %

ESERCIZIO

La temperatura t in una camera climatica è misura tramite il sistema mostrato in figura, dove il sensore è caratterizzato da una sensibilità S = 0.5 mV/°C, $\pm 0.001\%$. Il resistore R_1 ha un valore nominale di 2.2 k Ω e una tolleranza relativa dello 0.1%, mentre per il resistore R_2 è disponibile un certificato di taratura che dichiara un valore nominale di 0.4764 M Ω e un'incertezza assoluta $\delta R_2 = 0.5 \text{ k}\Omega$.

La caratterizzazione della tensione di fuori zero dell'amplificatore (commutatore in posizione 1) è eseguita collegando a massa l'ingresso dell'amplificatore e misurando la sua tensione di uscita V_{out1} mediante un voltmetro con portata 10 V e incertezza assoluta $\delta V = (0.10\% \text{ lettura} + 0.05\% \text{ portata})$, ottenendo $V_{\text{out1}} = 0.20 \text{ V}$.

Valutare la misura (valore e incertezza) della temperatura t quando il voltmetro fornisce la misura $V_{\text{out2}} = 6.90 \text{ V}$ (commutatore in posizione 2).

Modello di misura

Quando il commutatore è in posizione 1, il voltmetro misura la tensione di fuori zero dell'amplificatore, ossia:

$$V_{OFF} = V_{Out1}$$

Quando il voltmetro è in posizione 2, la tensione V_{out2} misurata dal voltmetro può essere espressa come:

$$V_{\text{out2}} = V_{\text{S}} \cdot \left(1 + \frac{R_2}{R_1}\right) + V_{\text{OFF}} = S \cdot t \cdot \left(1 + \frac{R_2}{R_1}\right) + V_{\text{out1}}$$

Invertendo la precedente espressione, si ottiene il seguente modello di misura:

$$t = \frac{V_{\text{out2}} - V_{\text{out1}}}{S} \cdot \frac{R_1}{R_1 + R_2}$$

Valutazione del misurando

Sostituendo i valori numerici nel modello di misura si ottiene:

$$t = \frac{6.90 - 0.20}{5 \cdot 10^{-4}} \cdot \frac{2200}{478600} \approx 61.5963 \dots ^{\circ}C$$

Valutazione dell'incertezza

Dal modello di misura si può osservare che l'incertezza con cui è valutata la temperatura t dipende dall'incertezza della sensibilità S del sensore, dall'incertezza delle due misure di tensione e dall'incertezza delle due resistenze R_1 ed R_2 .

L'incertezza della misura di *t* è valutata come:

$$\begin{split} \delta t &= \left| \frac{\partial t}{\partial S} \right| \cdot \delta S + \left| \frac{\partial t}{\partial V_{\text{out1}}} \right| \cdot \delta V_{\text{out1}} + \left| \frac{\partial t}{\partial V_{\text{out2}}} \right| \cdot \delta V_{\text{out2}} + \left| \frac{\partial t}{\partial R_1} \right| \cdot \delta R_1 + \left| \frac{\partial t}{\partial R_2} \right| \cdot \delta R_2 \\ & \left| \frac{\partial t}{\partial S} \right| = \left| -\frac{V_{\text{out2}} - V_{\text{out1}}}{S^2} \cdot \frac{R_1}{R_1 + R_2} \right| = 1.23 \cdot 10^5 \frac{\text{°C}}{\text{V/°C}} \\ & \left| \frac{\partial t}{\partial V_{\text{out1}}} \right| = \left| -\frac{1}{S} \cdot \frac{R_1}{R_1 + R_2} \right| = 9.19 \frac{\text{°C}}{V} \\ & \left| \frac{\partial t}{\partial V_{\text{out2}}} \right| = \left| \frac{1}{S} \cdot \frac{R_1}{R_1 + R_2} \right| = 9.19 \frac{\text{°C}}{V} \\ & \left| \frac{\partial t}{\partial R_1} \right| = \left| \frac{V_{\text{out2}} - V_{\text{out1}}}{S} \cdot \frac{R_2}{(R_1 + R_2)^2} \right| = 0.028 \frac{\text{°C}}{\Omega} \\ & \left| \frac{\partial t}{\partial R_2} \right| = \left| -\frac{V_{\text{out2}} - V_{\text{out1}}}{S} \cdot \frac{R_1}{(R_1 + R_2)^2} \right| = 1.29 \cdot 10^{-4} \frac{\text{°C}}{\Omega} \\ \delta S = 5 \cdot 10^{-4} \cdot 1 \cdot 10^{-5} = 5 \cdot 10^{-9} \frac{\text{V}}{\text{°C}} \\ \delta V_{\text{out1}} = 0.001 \cdot 0.20 + 0.0005 \cdot 10 = 0.0052 V \\ \delta V_{\text{out2}} = 0.001 \cdot 6.90 + 0.0005 \cdot 10 = 0.012 V \\ \delta R_1 = 0.001 \cdot 2200 = 2.2 \ \Omega; \quad \delta R_2 = 500 \ \Omega \end{split}$$

Sostituendo i valori numerici nell'espressione dell'incertezza assoluta δt si ottiene:

$$\delta t = 0.0006 + 0.048 + 0.109 + 0.061 + 0.064 \approx 0.28$$
 °C

Dichiarazione finale della misura

$$t = (61.60 \pm 0.28)$$
 °C