Introduction à la K-théorie des C^* -algèbres Clément Dell'Aiera

FIGURE 1 – Pavage de Penrose généré avec http://www.spacegoo.com/penrose/

Table des matières

1	K-théorie des C^* -algèbres		
	1.1	La suite exacte à six termes	
	1.2	Produits croisés de C^* -algèbres	ļ
		1.2.1 Théorèmes généraux	
		1.2.2 Extension de Toeplitz	
	1.3	Suite exacte de Pimsner-Voiculescu	
		1.3.1 La preuve originale	8
		1.3.2 Un exemple : le tore non-commutatif	12
	Anı	nexes	1:
		Produits tensoriels de C*-algèbres	- `

Notations

Pour une C^* -algèbre A non nécessairement unitale, on note A^+ la C^* -algèbre unitale qui la contient en tant qu'idéal bilatère, définie par :

$$A = \{(a,\lambda) \in A \times \mathbb{C}\}$$

$$(a,\lambda)(b,\mu) = (ab + \lambda b + \mu a, \lambda \mu)$$

1 K-théorie des C^* -algèbres

Différentes définitions du foncteur K_0 :

- groupe de Grothendieck associé au semi-groupe des classes d'équivalences de projections dans $M_{\infty}(A)$ muni de la somme directe.
- groupe de Grothendieck associé par les sous-modules projectifs fermés de type fini de \mathcal{H}_A

Définition 1. Soit p et q deux projections dans une C^* -algèbre A.

 $p \sim q$ s'il existe une isométrie partielle u de A telle que $p = u^*u$ et $q = uu^*$. (équivalence de Murray-Von Neumann)

 $p \sim_u q$ s'il existe un unitaire u de A^+ tel que $p = uqu^*$. (Similitude)

 $p \sim_h q$ s'il existe un chemin continu en norme de projections de p à q. (Homotopie)

En général, on a : $\sim_h \Rightarrow \sim_u \Rightarrow \sim$. Pour avoir les implications inverses, on peut se placer dans $M_{\infty}(A)$. (Doubler la dimension à chaque fois suffit) On peut alors considérer l'ensemble des projections de $M_{\infty}(A)$ et quotienter par l'unique relation d'équivalence définie ci-dessus. L'ensemble obtenu est un semi-groupe pour l'opération de somme directe de projecteur, nommé V(A).

Définition 2. Le premier groupe de K-théorie de A est :

le groupe de Grothendieck de V(A) si A est unitale.

le noyau de $K_0(A^+) \to K_0(\mathbb{C})$ sinon.

Pour passer aux groupes de K-théorie d'indices supérieurs de A, on se servira du foncteur de suspension $S(A) = A \times C_0(\mathbb{R})$.

Définition 3. Les groupes de K-théorie d'ordre supérieurs de A sont définis par suspension :

$$\forall i \in \mathbb{N}, \quad K_i(A) = K_0(S(A)).$$

Ces foncteurs de la catégorie des C^* -algèbres dans celle des groupes abéliens sont semi-exacts, i.e. ils transforment toute suite exacte courte en suite exacte très courte.

1.1 La suite exacte à six termes

Théorème 1. Soit $0 \longrightarrow J \stackrel{\iota}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0$ une suite exacte de C^* -algèbres. Alors la suite à six termes suivantes est exacte :

$$K_0(J) \xrightarrow{\iota_*} K_0(A) \xrightarrow{\pi_*} K_0(B)$$

$$\downarrow^{\delta}$$

$$K_1(B) \xleftarrow{\pi_*} K_1(A) \xleftarrow{\iota_*} K_1(J)$$

C'est l'un des résultats fondamentaux en K-théorie, il permet des calculs effectifs. Le premier pas à faire est de construire l'indice associé à toute suite exacte $\partial: K_1(B) \to K_0(J)$, qui transforme toute suite exacte courte en suite exacte longue. On peut trouver 2 isomorphismes naturels qui donnent la périodicité de Bott :

$$K_{i+1}(A) \simeq K_i(A), i = 0, 1.$$

Ces isomorphismes sont donnés par l'application de Bott $\beta: K_0 \to K_1S$ et $\theta: K_1 \to K_0S$. La périodicité permet de conclure en enroulant la suite exacte longue grâce à l'application exponentielle $\delta: K_0(B) \to K_1(J)$ qui est la composition $\theta_J^{-1} \circ \partial \circ \beta_B$.

Remarque sur le nom d'application exponentielle. Soit J un idéal bilatère de la C^* -algèbre A. Si $p-p_n\in M_\infty(A/J)$ et $x\in M_\infty(A^+)$ est un relevé auto-adjoint de p, alors :

$$\delta([p] - [p_n]) = [\exp(-2i\pi x)].$$

De plus, si toutes les projections de $M_{\infty}(A/J^+)$ peuvent se relever en des projections de $M_{\infty}(A^+)$, alors l'application exponentielle est triviale :

$$\exp(-2i\pi x) = \sum_{n=0}^{\infty} \frac{(-2i\pi x)^n}{n!} = 1 + (e^{-2i\pi} - 1)x = 1$$

 $\operatorname{car} \, x = x^2.$

Preuve 1. Rappelons que δ est la composée donnée par :

$$K_0(A/J) \xrightarrow{\delta} K_1(J)$$

$$\downarrow^{\beta_{A/J}} \qquad \qquad \downarrow^{\theta_J}$$

$$K_1(SA/J) \xrightarrow{\partial} K_0(SJ)$$

Soient $p \in A/J$ et $x \in A$ un élément auto-adjoint tel que $\pi(x) = p$. Comme $e^{2i\pi tp} = 1 + (e^{2i\pi t} - 1)p$, $f_x(t) := 1 + (e^{2i\pi t} - 1)x$ relève $f_p(t) = e^{2i\pi tp}$.

Notons, dans un premier temps, que tout élément y d'une C^* -algèbre tel que le spectre de y^*y soit inclus dans [0;1] produit un unitaire $\begin{pmatrix} y & \sqrt{1-yy^*} \\ -\sqrt{1-y^*y} & y^* \end{pmatrix}$.

On peut alors affirmer que

$$w_{f_x} := \begin{pmatrix} f_x & \sqrt{1 - f_x f_x^*} \\ -\sqrt{1 - f_x^* f_x} & f_x^* \end{pmatrix}$$

est un relevé unitaire de $\begin{pmatrix} f_p & 0 \\ 0 & f_p^* \end{pmatrix}$, relevé qui nous donne l'indice de $[f_p]_1=\beta_{A/J}[p]_0$:

$$\partial [f_p]_1 = [w_{f_x} p_n w_{f_x^*}] - [p_n].$$

Soit $g_x(t):=(1-t)1_{A^+}+te^{2i\pi x}$ un chemin continu entre l'identité et $e^{2i\pi x}$. L'image de $e^{2i\pi x}$ par θ_J se calcule comme l'indice $[w_{g_x}p_nw_{g_x^*}]-[p_n]$. Montrer que f_x et g_x sont homotopes suffit donc à conclure.

Pour cela, remarquons que, t variant de 0 à 1 et le spectre de x étant inclus dans $\{0,1\}$, les éléments f_x et g_x ne dépendent que des valeurs des fonctions réelles

$$\begin{array}{ll} f(t,x) & = 1 + (e^{2i\pi t} - 1)x \\ g(t,x) & = 1 - t + te^{2i\pi x} = f(x,t) \end{array}$$

au voisinage du bord du carré $\partial[0;1] \times [0;1]$, homéomorphe au cercle \mathbb{S}^1 . Les classes d'homotopie de fonctions continues sur le cercle sont classifiée par leur nombre de tours, voir le livre d'Hatcher par exemple [1], et on vérifie que f et g sont ainsi homotopes, et donc que :

$$[w_{f_x}p_nw_{f_x^*}] = [w_{q_x}p_nw_{q_x^*}].$$

L'identité $\partial \circ \beta_B = \theta_J \circ \delta$ est démontrée, ce qui conclut.

1.2 Produits croisés de C^* -algèbres

1.2.1 Théorèmes généraux

Soit A une C^* -algèbre et Γ un groupe discret. On se donne de plus une action par automorphisme $\alpha: \Gamma \to Aut(A)$. On peut alors munir l'espace $C_c(\Gamma, A)$ des fonctions à support fini d'un produit de convolution tordu par α :

$$f *_{\alpha} g = \sum_{s,t \in \Gamma} f(s) \alpha_s(g(t)) st.$$

Soit $\lambda_{\Gamma,A}$ la représentation régulière gauche de $C_c(\Gamma,A)$ sur $l^2(\Gamma,A)=\{\eta:\Gamma\to A:\sum_s\eta^*(s)\eta(s)<\infty\}$:

$$(\lambda_{\Gamma,A}(f)\eta)(\gamma) = \sum_{s \in \Gamma} \alpha_{\gamma^{-1}}(f(s))\eta(\gamma^{-1}s)$$

pour tous $f \in C_c(\Gamma, A), \eta \in l^2(\Gamma, A)$ et $\gamma \in \Gamma$.

Le produit croisé réduit de A par Γ , noté $A \times_{\alpha} \Gamma$, est défini comme la fermeture pour la norme d'opérateur de $\lambda_{\Gamma,A}(C_c(\Gamma,A))$ dans $B(l^2(\Gamma,A))$.

Les actions habituelles de A et de Γ sur $l^2(\Gamma, A)$ sont combinées.

$$(\pi(a)\eta)(s) = \alpha_{s^{-1}}(a)\eta(s)$$

$$(\lambda(\gamma)\eta)(s) = \eta(\gamma^{-1}s)$$

On parle pour la paire (λ, π) de représentation covariante du système $\{A, \Gamma, \alpha\}$, car la relation :

$$\lambda(\gamma)\pi(a)\lambda(\gamma^{-1}) = \pi(\alpha_{\gamma}(a))$$

est vérifiée.

Théorème 2 (Pimser-Voiculescu). Soit A une C^* -algèbre et $\alpha \in Aut(A)$. Il existe alors une suite exacte à six termes :

$$K_0(A) \xrightarrow{1-\alpha_*} K_0(A) \xrightarrow{\iota_*} K_0(A \times_{\alpha} \mathbb{Z})$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_1(A \times_{\alpha} \mathbb{Z}) \xleftarrow{\iota_*} K_1(A) \xleftarrow{1-\alpha_*} K_1(A)$$

Théorème 3 (Connes-Thom). Soit $\alpha : \mathbb{R} \to Aut(A)$ un morphisme, alors :

$$K_i(A \times_{\alpha} \mathbb{R}) \cong K_{1-i}(A)$$
 , $i = 0, 1$.

La première chose que l'on peut, et que l'on va, dire à propos des produits croisés est que les générateurs de leurs groupes de K-théorie prennent une forme sympathique, qui va nous permettre de faire des calculs explicites dans la preuve de la suite de Pimsner-Voiculescu.

Lemme 1. Soit B une C^* -algèbre unitale, $1_B \in A$ une sous- C^* -algèbre de B, et u un unitaire de B tels que A et u engendrent B et $uAu^* = A$. Alors $K_1(B)$ est engendré par les inversibles de la forme :

$$1_B \otimes 1_n + x(u^* \otimes 1_n)$$
 , $x \in A \otimes \mathfrak{M}_n$.

De plus, si $B = A \times_{\alpha} \mathbb{Z}$, alors on peut se limiter aux classes d'unitaires de la forme :

$$1_B \otimes 1_n - F + Fx(u^* \otimes 1_n)F \quad F, x \in A \otimes \mathfrak{M}_n$$

où F désigne une projection auto-adjointe.

La remarque suivante est importante pour la preuve du lemme 4 : dans le cas $B = A \times_{\alpha} \mathbb{Z}$, les classes concernées sont stables par somme, donc tout élément de $K_1(B)$ est la différence de deux générateurs.

1.2.2 Extension de Toeplitz

Soient A et C deux C^* -algèbres.

Par extension de A par C, on entend un triplet (B, α, β) d'une C^* -algèbre et de deux morphismes telle que la suite :

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

soit exacte.

Cette section présente la construction d'une extension de $A \otimes \mathbb{K}$ par $A \times_{\alpha} \mathbb{Z}$ qui sera utile dans la preuve de l'exactitude de la suite de PV : l'extension de Toeplitz. Dans tout le document \mathcal{H} dénote un espace de Hilbert, l_2 par exemple, dont on fixe une base hilbertienne (e_n) , et \mathbb{B} et \mathbb{K} sont respectivement l'algèbre des opérateurs bornés et compacts sur \mathcal{H} . \mathbb{K} est un idéal bilatère et :

$$\pi: \mathbb{B} \to \mathbb{B}/\mathbb{K}$$

est la projection naturelle sur l'algèbre de Catkin.

Soit $S \in \mathbb{B}$ l'opérateur de shift unilatéral, qui envoie e_n sur e_{n+1} . On note $C^*(S)$ la C^* -algèbre unitale engendrée par S. On voit que S^* envoie e_1 sur 0 et e_n sur e_{n-1} lorsque $n \geq 2$. Si on note $E_{ij}(x) = \langle x, e_j \rangle e_i$, on a :

$$E_{ij} = S^{i-1}S^{*j-1} - S^iS^{*j} \in C^*(S)$$

 \mathbb{K} est donc un idéal bilatère de $C^*(S)$ et $P=1-SS^*=E_{11}$ est de rang 1 donc compact. On en déduit que S est essentiellement normal et

$$Spec(\pi S) \subset \mathbb{S}^1$$

Montrons que c'est en fait une égalité. Par l'absurde, si l'inclusion est stricte, alors A FINIR

Récapitulons : $C^*(S)/\mathbb{K}$ est *-isomorphe à l'algèbre des fonctions continues sur le tore $C(\mathbb{S}^1)$, et l'image de S est la fonction identité sur \mathbb{S}^1 , notéz. On a donc une extension, écrite sous la forme d'une suite exacte :

$$0 \longrightarrow \mathbb{K} \longrightarrow C^*(S) \longrightarrow C(\mathbb{S}^1) \longrightarrow 0$$

On définit l'algèbre de Toeplitz \mathcal{T} associée à la paire (A,α) comme la C^* -sous-algèbre de $(A \times_{\alpha} \mathbb{Z}) \otimes C^*(S)$ engendré par $A \otimes I$ et $u \otimes S$. Rappelons que l'on voit A comme une sous-*-algèbre de $A \times_{\alpha} \mathbb{Z}$, et que l'on note u l'unitaire qui rend intérieure l'action de α :

$$\forall a \in A, n \in \mathbb{Z}, \quad \alpha(n)a = u^{*n}au^n$$

Observons maintenant $A \times_{\alpha} \mathbb{Z}$, dont on va montrer qu'elle se réalise comme un quotient de \mathcal{T} par un idéal bilatère fermé. Soit donc J l'idéal bilatère fermé engendré par la projection $1 \otimes P$. La première chose à remarquer, c'est que l'on a un *-morphisme :

$$\phi \left\{ \begin{array}{ccc} \mathbb{K} & \to & \mathcal{T} \\ e_{ij} & \to & S^i P S^{*j} \end{array} \right..$$

Il est ici défini sur le système d'unités de K,

$$e_{ij}(x) = \langle x, e_i \rangle e_j$$

ce qui permet facilement de l'étendre à $\mathbb K$ entier.

L'identité suivante permet d'étendre ϕ à $A \otimes \mathbb{K}$:

$$(u \otimes S)^i (a \otimes P)(u \otimes S)^{*j} = (u^i a u^{*j}) \otimes \phi(e_{ij})$$

définit l'extension de ϕ à $A \otimes \mathbb{K}$. Alors $\phi(A \otimes \mathbb{K}) = J \subset \mathcal{T}$.

1.3 Suite exacte de Pimsner-Voiculescu

1.3.1 La preuve originale

Maintenant que le décor est planté, nous pouvons passer à la K-théorie. Nous allons d'abord démontré le :

Lemme 2. Les diagrammes suivant :

sont commutatifs pour $i \in \{0,1\}$, et $d_*: K_1(A) \to K_1(\mathcal{T})$ est injectif.

L'isomorphisme $K_1(A) \to K_1(A \otimes \mathbb{K})$ associe à une classe $[v] \in K_1(A)$ l'élément $[v \otimes e_{00} + (I - 1 \otimes e_{00})]$, dont l'image par ψ_* est :

$$\psi_*[v \otimes e_{00} + (I - 1 \otimes e_{00})] = [v \otimes P] + [1 \otimes I - 1 \otimes P] = [v \otimes P] + [1 \otimes SS^*]$$
 (1)

Maintenant:

$$d_* \circ (id_A - \alpha(-1))_* [v] = [v \otimes I] - [u^*vu \otimes I] \tag{2}$$

Soit l'unitaire:

$$\Omega = \begin{pmatrix} u \otimes S & Q \\ 0 & u^* \otimes S^* \end{pmatrix} \in \mathcal{T} \otimes M_2$$

On remarque que:

$$\Omega \begin{pmatrix} u^*vu \otimes I & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega^* = \begin{pmatrix} v \otimes SS^* + QQ^* & Q(u \otimes S) \\ (u^* \otimes S^*)Q^* & 1 \otimes I \end{pmatrix}$$
$$= \begin{pmatrix} v \otimes SS^* + QQ^* & 0 \\ 0 & 1 \otimes I \end{pmatrix}$$

Mais la classe dans K_1 est invariante par augmentation, i.e. $[x] = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix}$, et par conjugaison par un unitaire, donc :

$$\left[\Omega\begin{pmatrix} u^*vu\otimes I & 0\\ 0 & 1\otimes I\end{pmatrix}\Omega^*\right]=[u^*vu\otimes I]$$

En remplaçant dans (2), on obtient :

$$[v \otimes I] - [v \otimes SS^* + Q] = [(v \otimes I)(v \otimes SS^* + Q)^{-1}]$$
$$= [v^* \otimes SS^* + Q]$$
$$= [1 \otimes SS^* + v \otimes P]$$

qui est l'expression que l'on avait trouvé pour l'image de [v] par ψ_* dans (1). La commutativité du diagramme i=0 suit la même preuve : il suffit de remarquer que si l'on prend une projection auto-adjointe $q\in A$, alors dans $K_0(\mathcal{T})$:

$$\begin{aligned} [(\alpha(-1)q)\otimes I] &= \left[\Omega\begin{pmatrix} (\alpha(-1)q)\otimes I & 0\\ 0 & 0 \end{pmatrix}\Omega^* \right] \\ &= \left[\begin{pmatrix} q\otimes SS^* & 0\\ 0 & 0 \end{pmatrix}\right] \\ &= [q\otimes SS^*]. \end{aligned}$$

Ceci assure que:

$$d_* \circ ((id_A)_* - \alpha(-1)_*) [q \otimes e_{00}] = [q \otimes I] - [(\alpha(-1)q) \otimes I] = [q \otimes P] = \psi_* [q \otimes e_{00}].$$

Les diagrammes commutent bien, il reste à montrer l'injectivité de d_* .

Pour cela, montrons que si v_0 et v_1 sont des unitaires de A, et $t \mapsto w_t$ un chemin continu dans les unitaires de \mathcal{T} d'origine $v_0 \otimes I$ et d'arrivée $v_1 \otimes I$, alors $[v_0] = [v_1]$ dans $K_1(A)$.

Calculons:

$$\begin{pmatrix} w_t & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega \begin{pmatrix} \tilde{\alpha}(-1)w_t^* & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega^* = \begin{pmatrix} w_t(1 \otimes S)w_t^*(1 \otimes S^*) + w_tQ & 0 \\ 0 & 1 \otimes I \end{pmatrix}.$$

Le chemin unitaire $y_t = w_t(1 \otimes S)w_t^*(1 \otimes S^*) + w_tQ \in \mathcal{T}$ vérifie :

$$\forall t, y_t \in 1 \otimes I + J.$$

En effet:

$$y_t - 1 \otimes I = (w_t - 1 \otimes I)Q + w_t ((1 \otimes S)w_t^* - w_t^*(1 \otimes S))(1 \otimes S^*),$$

mais un élément de la forme $(1 \otimes S)w - w(1 \otimes S)$ est toujours dans $B \otimes \phi(\mathbb{K})$, si $w \in \mathcal{T}$. Si w est dans $A \otimes I$ ou vaut $u \otimes S$, on obtient 0, et si $w = u^* \otimes S^*$, le commutateur vaut $u^* \otimes P \in B \otimes \phi(\mathbb{K})$. Ces éléments génèrent un algèbre dense dans \mathcal{T} : l'assertion en découle.

On a donc un chemin continu d'unitaires de $1 \otimes SS^* + v_0 \otimes P$ à $1 \otimes SS^* + v_1 \otimes P$, qui reste dans $1 \otimes I + J$. Comme ψ établit un isomorphisme de $\mathbb{C}1 \otimes I + J$ sur $A \otimes \mathbb{K}$, on a donc, dans $K_1(A \otimes \mathbb{K})$:

$$[\tilde{I} - 1 \otimes e_{00} + v_0 \otimes e_{00}] = [\tilde{I} - 1 \otimes e_{00} + v_1 \otimes e_{00}]$$

donc :
$$[v_0] = [v_1]$$
 dans $K_1(A)$, et l'injectivité de d_* est démontrée.

En passant l'extension de Toeplitz en K-théorie, et en combinant avec le lemme 2, on obtient le diagramme suivant :

$$K_1(A \otimes \mathbb{K}) \xrightarrow{\psi_*} K_1(\mathcal{T}) \xrightarrow{\pi_*} K_1(A \times_{\alpha} \mathbb{Z}) \xrightarrow{\delta} K_0(A \otimes \mathbb{K})$$

$$\stackrel{\simeq}{\cong} \downarrow \qquad \qquad \downarrow^{\iota_*} \downarrow \qquad \downarrow^{\iota_*} \downarrow$$

dont la première ligne est exacte, et le carré commute.

Lemme 3. $d_*: K_1(A) \to K_1(\mathcal{T})$ est un isomorphisme.

Montrons que Ker $\delta \subset \text{Im } \iota_*$. Cela suffit puisque si d_* n'est pas surjectif, il existe un élément $x \in K_1(\mathcal{T}) \setminus \text{Im } d_*$, dont l'image par π_* n'est pas dans l'image de ι_* . Pourtant : $\delta \circ \pi_*(z) = 0$.

Nous allons montrer que tout élément de Ker δ s'écrit :

$$w = [1 \otimes 1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1]_1 - [1 \otimes 1_n - F_2 + F_2 x_2 (u^* \otimes 1_n) F_2]_1$$

pour certains x_1 , x_2 , F_1 et F_2 dans $A \otimes \mathfrak{M}_n$ tels que F_i soient des projections auto-adjointes unitairement équivalentes : il existe un unitaire $v \in A \otimes \mathfrak{M}_n$ les entrelaçant $F_1 = vF_2v^*$.

Montrons que cela conclut. Dans $K_1(A \times_{\alpha} \mathbb{Z})$, on a l'égalité :

$$[1 \otimes 1_n - F_2 + F_2 x_2 (u^* \otimes 1_n) F_2]_1 = [1 \otimes 1_n - F_1 + F_1 v x_2 (u^* \otimes 1_n) v^* F_1]_1$$
$$= [1 \otimes 1_n - F_1 + F_1 y (u^* \otimes 1_n) F_1]_1$$

où $y = vx_2(\alpha(-1) \otimes id_n)v^* \in A \otimes \mathfrak{M}_n$. Alors:

$$w = [(1 \otimes 1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1) (1 \otimes 1_n - F_1 + F_1 y (u^* \otimes 1_n) F_1)^*]_1$$

= $[1 \otimes 1_n - F_1 + F_1 x_1 (\alpha(-1) \otimes id_n) F_1 y^* F_1]_1$

L'élément entre crochets est dans $A \otimes \mathfrak{M}_n$, ce qui veut dire que sa classe w est dans l'image de ι_* : Ker $\delta \subset \operatorname{Im} \iota_*$ est démontré.

Montrons maintenat la remarque. Le lemme 1 nous permet d'affirmer que tout élément de $K_1(A\times_{\alpha}\mathbb{Z})$ s'écrit comme une différence de générateurs unitaires de la forme $[1_n-F+Fx(u^*\otimes 1_n)F]_1$. Si n=1, un tel élément a un relevé $w=(1-F)\otimes I+Fxu^*F\otimes S^*\in\mathcal{T}$. Mais alors :

$$ww^* = (1 - F) \otimes I + Fxu^*Fux^*F \otimes S^*S$$

$$= (1 - F) \otimes I + F \otimes I$$

$$= 1 \otimes I$$

$$w^*w = (1 - F) \otimes I + Fux^*Fu^*xF \otimes SS^*$$

$$= (1 - F) \otimes I + F \otimes (I - P)$$

$$= 1 \otimes I - F \otimes P$$

L'index est donc facilement calculable :

$$\delta[1_n - F + Fx(u^* \otimes 1_n)F]_1 = [1 \otimes I - w^*w]_0 - [1 \otimes I - ww^*]_0$$
$$= [F \otimes P]_0$$
$$= [F \otimes e_{00}]_0$$

Ce calcul assure que

$$[1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1]_1 - [1_m - F_2 + F_2 x_2 (u^* \otimes 1_m) F_2]_1 \in \text{Ker } \delta$$
ssi $[F_1]_0 = [F_2]_0$ dans $K_0(A)$.

Quitte à remplacer F_i et x_i par $0_p \oplus F_i$ et $I_p \oplus x_i$, on peut supposer m=n. De même, quitte à remplacer F_i et x_i par $F_i \oplus 1 \otimes 1_p$ et $x_i \oplus 1 \otimes 1_{n+p}$, on peut supposer que F_1 et F_2 sont unitairement équivalentes.

On a donc montré que d_* induisait un isomorphisme en K_1 -théorie. On obtient donc une suite exacte à 6 termes à partir de l'extension de Toeplitz, dont on voudrait déduire le théorème, ce que l'on peut faire à condition de montrer que d_* induit un isomorphisme au niveau des K_0 -groupes.

Lemme 4. $d_*: K_0(A) \to K_0(\mathcal{T})$ est un isomorphisme.

La suite exacte $0 \longrightarrow SA \longrightarrow C(A \otimes \mathbb{S}^1) \longrightarrow A \longrightarrow 0$ est scindée, et induit, modulo la périodicité de Bott, le diagramme commutatif suivant :

$$K_{1}(A) \longrightarrow K_{0}\left(C(A \otimes \mathbb{S}^{1})\right) \longrightarrow K_{0}(A)$$

$$\uparrow \qquad \qquad \downarrow \qquad .$$

$$K_{0}(A) \longleftarrow K_{1}\left(C(A \otimes \mathbb{S}^{1})\right) \longleftarrow K_{1}(A)$$

Mais, la suite étant scindée, tout élément de $K_i(A)$ se relève, et les flèches connectantes, qui mesurent l'obstruction à être relevé, sont donc nulles : on obtient deux suites exactes scindées :

$$0 \longrightarrow K_{1-i}(A) \longrightarrow K_i\left(C(A \otimes \mathbb{S}^1)\right) \longrightarrow K_i(A) \longrightarrow 0$$

et donc $K_i(C(A \otimes \mathbb{S}^1)) \simeq K_0(A) \oplus K_1(A)$.

Si on note $\phi^A:SA\oplus A\to A\otimes C(\mathbb{S}^1)$ l'isomorphisme obtenu à partir des suites exactes scindées, alors :

$$(id_{C(\mathbb{S}^1)} \otimes d)_* \circ \phi_*^A = \phi_*^{\mathcal{T}} \circ d_*. \tag{3}$$

Le lemme 4 appliqué à $id_{C(\mathbb{S}^1)} \otimes d : A \otimes C(\mathbb{S}^1) \to \mathcal{T}(A \otimes C(\mathbb{S}^1))$, et le fait que $\mathcal{T}(A \otimes C(\mathbb{S}^1)) = \mathcal{T}(A) \otimes C(\mathbb{S}^1)$, assurent que $(id_{C(\mathbb{S}^1)} \otimes d)_*$ établit un isomorphisme de $K_1(A \otimes C(\mathbb{S}^1))$ sur $K_1(\mathcal{T} \otimes C(\mathbb{S}^1))$, ce qui, avec la remarque (3) conclut.

Le théorème 2 découle directement des lemmes précédents : on passe l'extension de Toeplitz en K-théorie et on se sert de la stabilité $K_i(A \otimes \mathbb{K}) \simeq K_i(A)$ et de l'isomorphisme $K_i(A) \simeq K_i(\mathcal{T})$.

1.3.2 Un exemple : le tore non-commutatif

Si on se fixe un automorphisme $\alpha \in Aut(A)$, on peut construire le produit croisé $A \times_{\alpha} \mathbb{Z}$ comme la C^* -algèbre universelle engendrée par A et un unitaire u vérifiant :

$$\forall a \in A, uau^* = \alpha(a).$$

Pour la construire effectivement, considérons A[u]. La relation de commutation nous donne le produit suivant :

$$au^nbu^m = a\alpha^n(b)u^{n+m} \quad \forall a, b \in A, \forall n, m \in \mathbb{Z}$$

Avec $A=C(\mathbb{S}^1)$ et α l'automorphisme induit par $z\mapsto e^{2i\pi\theta z}$, on obtient le tore non-commutatif A_{θ} . Le chemin $\phi_t:z\mapsto e^{2it\pi\theta z}$ montre que α est homotope

à l'identité et la suite exacte de Pimser-Voiculescu se transforme alors en :

$$K_0(C(\mathbb{S}^1)) \xrightarrow{0} K_0(C(\mathbb{S}^1)) \xrightarrow{\iota_*} K_0(A_\theta)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(A_\theta) \xleftarrow{\iota_*} K_1(C(\mathbb{S}^1)) \xleftarrow{0} K_1(C(\mathbb{S}^1)).$$

Mais $K_i(C(\mathbb{S}^1)) = K_i(S\mathbb{C} \oplus \mathbb{C}) = K_{1-i}(\mathbb{C}) \oplus K_i(\mathbb{C}) = \mathbb{Z}$, d'où : $K_i(A_\theta) = \mathbb{Z} \oplus \mathbb{Z}$, i = 0, 1. Nous avons donc calculé les groupes de K-théorie du tore non-commutatif, mais nous allons dire plus. On peut en effet calculer les générateurs de ces groupes.

Définition 4. Une projection de Rieffel de $A \times_{\alpha} \mathbb{Z}$ est un idemptotent autoadjoint de la forme $x_0 + x_1 u + u^* x_1^*$, où $x_0, x_1 \in A$.

Proposition 1. Soit $p = x_0 + x_1 u + u^* x_1^* \in A \times_{\alpha} \mathbb{Z}$ une projection de Rieffel et Δ le support à gauche de x_1 . Alors l'unitaire $\exp(2i\pi x_0 \Delta)$ est dans A et :

$$\delta[p]_0 = [\exp(2i\pi x_0 \Delta)]_1.$$

Soit $p = x_0 + x_1 u + u^* x_1^* \in A \times_{\alpha} \mathbb{Z}$ une projection de Rieffel. Montrons par récurrence que le relevé autoadjoint $a = u^* x_1 \otimes S^* + x_0 \otimes I + x_1 u \otimes S \in \mathcal{T}$ de p vérifie :

$$\forall n \ge 1, \quad a^n = a + (x_0^n - x_0)\Delta \otimes P.$$

Si c'est vrai au rang n,

$$a^{n+1} = a^2 + a(x_0^n - x_0)\Delta \otimes P$$

= $a + a(x_0^2 - x_0)\Delta \otimes P + x_0(x_0^n - x_0)\Delta \otimes P + x_1u(x_0^n - x_0)\Delta \otimes SP$
= $a + (x_0^{n+1} - x_0)\Delta \otimes P + u(\alpha(-1)x_1)(x_0^n - x_0)\Delta \otimes SP$

Le dernier terme étant nul, le principe de récurrence conclut.

Ayant exhibé un relevé autoadjoint de p, on est en mesure de calculer son indice. Mais :

$$\exp(2i\pi a) = 1 \otimes I + \sum_{n \ge 1} \frac{1}{n!} (a + (x_0^n - x_0)\Delta \otimes P)$$
$$= (e^{2i\pi} - 1)(a - x_0\Delta \otimes P) + \exp(2i\pi x_0\Delta) \otimes P + 1 \otimes (I - P)$$
$$= \psi \left(\exp(2i\pi x_0\Delta) \otimes e_{00} + 1 \otimes (I - e_{00})\right).$$

Il vient:

$$\partial[p]_0 = [\exp(2i\pi a)]_1 = [\exp(2i\pi x_0 \Delta) \otimes e_{00} + 1 \otimes (I - e_{00})]_1$$

Le *-homomorphisme δ étant la composition du connectant $\partial: K_0(A \times_{\alpha} \mathbb{Z}) \to K_1(A \times \mathbb{K})$ avec l'isomorphisme $K_1(A \times \mathbb{K}) \simeq K_1(A)$, on en déduit :

$$\delta[p]_0 = [\exp(2i\pi x_0 \Delta)]_1.$$

Nous avons vu que la suite exacte à 6 termes donnait deux suites exactes courtes, dont :

 $0 \longrightarrow K_0(C(\mathbb{S}^1)) \longrightarrow K_0(A_\theta) \stackrel{\delta}{\longrightarrow} K_1(C(\mathbb{S}^1))) \longrightarrow 0 \quad \text{On sait que les groupes à gauche et à droite sont tous les deux \mathbb{Z}, l'un étant généré par la classe de la projection <math>1 \in C(\mathbb{S}^1)$, l'autre par la classe de l'unitaire $v = id_{\mathbb{S}^1} \in C(\mathbb{S}^1)$. Si l'on trouve un projecteur p tel que $\delta[p]_0 = [v]_1$, on peut dire que $K_0(A_\theta)$ est engendré par $[1]_0$ et $[p]_0$.

2 Annexes

2.1 Produits tensoriels de C^* -algèbres

Lemme 5. Soient E et F deux espaces vectoriels sur un corps K. S'il existe deux K-espaces vectoriels V_1 et V_2 munis d'applications bilinéaires $\pi_j: E \times F \to V_j$ telles que, pour tout espace vectoriel W, toute application bilinéaire $E \times F \to W$, se factorise uniquement via π_1 et π_2 , alors V_1 et V_2 sont isomorphes en tant que K-espaces vectoriels.

Preuve 2. En factorisant π_j via π_j , il existe deux uniques applications linéaires $\phi_1: V_2 \to V_1$ et $\phi_2: V_1 \to V_2$ telles que :

$$\pi_1 = \phi_1 \circ \pi_2$$

$$\pi_2 = \phi_2 \circ \pi_1.$$

Montrons que ces deux applications sont inverses. Comme:

$$\phi_1 \circ \phi_2 \circ \pi_1 = \phi_1 \circ \pi_2 = \pi_1,$$

 $\phi_1 \circ \phi_2 = id_{V_1}$ par unicité de la factorisation de π_1 via π_1 . Symétriquement, on démontre que : $\phi_2 \circ \phi_1 = id_{V_2}$, et le résultat est démontré.

Références

- [1] A. Hatcher. Algebraic Topology. 2001.
- [2] D. Voiculescu M. Pimsner. Exact sequences for k-groups and ext-groups of certain cross-products of c^* -algebras. Operator theory, 4:93–118, 1980.
- [3] Alain Connes Paul Baum. Geometric k-theory for lie groups and foliations. *Enseign. Math.*, 46:3–42, 2000.
- [4] Nigel Higson Paul Baum, Alain Connes. Classifying space for proper actions and k-theory of group c^* -algebras. Contemporary Mathematics, 197:241–291, 1994.
- [5] N.E. Wegge-Olsen. K-theory and C*-algebras, a friendly approach. Oxford University Press, 1993.