La Teoría Clásica de los Tests y la Confiabilidad

Iwin Leenen, Ramsés Vázquez-Lira y José Luis Baroja-Manzano

Facultad de Psicología, UNAM Instituto Nacional para la Evaluación de la Educación

Curso Intersemestral: Introducción a los modelos psicométricos 15/01/2018 – 19/01/2018

Índice:

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas

El modelo clásico de la psicometría

Ecuación básica

$$X = T + E$$

El modelo clásico aplicado a una persona

Índice:

- 1 El modelo clásico aplicado a una persona
 - Conceptos básicos y supuestos
 - Confiabilidad
- 2 El modelo clásico aplicado a una población de personas

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

El modelo clásico aplicado a una persona

Conceptos básicos v supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su calificación X y la añadimos a una tabla
- Conocemos su "calificación verdadera" (T), gracias a Dios

$$X_{ih} = T_i + E_{ih}$$

$$X_{ih} = T_i + E_{ih}$$

h	X_{ih}	=	T_i	+	E_{ih}
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	:		:		÷
∞					

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T _i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	÷		:		:
∞					
8	37		37		0

$$X_{ih} = T_i + E_{ih}$$

h	X_{ih}	=	T_i	+	E_{ih}
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	:		:		:
∞					
8	37		37		0
Var	3				

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	:		:		:
· ∞	•		•		•
	07				
$\boldsymbol{\mathscr{E}}$	37		37		0
Var	3		0		3

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
÷	÷		÷		÷
∞					
€	37		37		0
Var	3		0		3

Supuestos:

•
$$Var(T_i) = 0$$

La Teoría Clásica de los Tests para una Persona

Xih	=	T_i	+	E

h	X _{ih}	=	T_i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	:		:		:
∞					
€	37		37		0
Var	3		0		3

Supuestos:

•
$$Var(T_i) = 0$$

•
$$\mathscr{E}(E_i) = 0$$
 y $\mathscr{E}(X_i) = T_i$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
:	÷		:		:
∞					
€	37		37		0
Var	3		0		3

Supuestos:

•
$$Var(T_i) = 0$$

•
$$\mathscr{E}(E_i) = 0$$
 y $\mathscr{E}(X_i) = T_i$

¿Cuál sería una medida de la confiabilidad?

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1.	39		37		+2
2.	36		37		-1
3.	34		37		-3
4.	37		37		0
5.	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
Var	3		0		3

Supuestos:

•
$$Var(T_i) = 0$$

•
$$\mathscr{E}(E_i) = 0$$
 y $\mathscr{E}(X_i) = T_i$

¿Cuál sería una medida de la confiabilidad?

$$Var(E_i)$$

Var

La Teoría Clásica de los Tests para una Persona

		Xih	$= I_i$ -	+ <i>E_{ih}</i>				
Persona <i>i</i>								
h	X _{ih}	=	T_i	+	Eih			
1.	39		37		+2			
2.	36		37		-1			
3.	34		37		-3			
4.	37		37		0			
5.	38		37		+1			
:	÷		÷		÷			
∞								
8	37		37		0			

0

3

$$X_{i'h} = T_{i'} + E_{i'h}$$

Persona i'								
h	X _{i'h}	=	$T_{i'}$	+	$E_{i'h}$			
1.	19		24		-5			
2.	23		24		-1			
3.	31		24		+7			
4.	26		24		+2			
5.	20		24		-4			
:	÷		÷		:			
∞								
8	24		24		0			
Var	10		0		10			

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término *E*:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: $F^{(alea)}$

Es decir, se puede descomponer E en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: $E^{(alea)}$

Es decir, se puede descomponer *E* en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: $F^{(alea)}$

Es decir, se puede descomponer *E* en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

Factores transitorios: E(trans)

2 Especificidad: E(espec)

Factores aleatorios: E(alea)

Es decir, se puede descomponer *E* en tres términos:

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- 2 Especificidad: E(espec)
- Factores aleatorios: E(alea)

Es decir, se puede descomponer *E* en tres términos:

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

Índice:

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - Confiabilidad y longitud del test
 - Métodos para estimar la confiabilidad

$$X_i = T_i + E_i$$

El modelo clásico aplicado a una población de personas

Conceptos básicos y supuestos

$$X_i = T_i + E_i$$

i	X_i	=	T_i	+	E_i
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	:		:		:

$$X_i = T_i + E_i$$

i	Xi	=	T_i	+	Ei
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	:		÷		÷
€	33		33		0

$$X_i = T_i + E_i$$

i	Xi	=	T_i	+	Ei
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	÷		÷		:
€	33		33		0
Var	30		24		6

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	÷		÷		÷
€	33		33		0
Var	30		24		6

$$X_i = T_i + E_i$$

Supuestos adicionales:

•
$$Corr(E, T) = 0$$

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	÷		:		:
€	33		33		0
Var	30		24		6

$$X_i = T_i + E_i$$

Supuestos adicionales:

- Corr(E, T) = 0
- Corr(E, W) = 0
 para cualquier variable W que no
 incluye E

La Teoría Clásica de los Tests para una Población de Personas

i	X_i	=	T_i	+	E_i
1.	39		37		+2
2.	19		24		-5
3.	26		29		-3
4.	43		41		+2
5.	37		37		0
:	÷		:		:
€	33		33		0
Var	30		24		6

$$X_i = T_i + E_i$$

Supuestos adicionales:

- Corr(E, T) = 0
- Corr(E, W) = 0
 para cualquier variable W que no
 incluye E

Nota: Es difícil explorar la plausibilidad de los supuestos

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

De los supuestos del modelo sigue:

$$Var(X) = Var(T) + Var(E)$$

Definición de la confiabilidad:

$$\rho_{XX} = \frac{\mathsf{Var}(T)}{\mathsf{Var}(X)}$$

o, equivalentemente

$$p_{XX} = 1 - \frac{\text{Var}(E)}{\text{Var}(X)}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

De los supuestos del modelo sigue:

$$Var(X) = Var(T) + Var(E)$$

Definición de la confiabilidad:

$$\rho_{XX} = \frac{\mathsf{Var}(T)}{\mathsf{Var}(X)}$$

o, equivalentemente:

$$\rho_{XX} = 1 - \frac{\mathsf{Var}(E)}{\mathsf{Var}(X)}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

Propiedades:

- Siempre se cumple: $0 \le \rho_{XX} \le 1$
- ρ_{XX} indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $\rho_{XX} = 0$ \implies Todas las diferencias que se observan en el examen se deben al error de medición
- $\rho_{XX} = 1 \implies$ Todas las diferencias que se observan en el examen son diferencias verdaderas.
 - Para todas las personas, la puntuación observada coincide con la verdadera

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

Propiedades:

- Siempre se cumple: $0 \leqslant \rho_{XX} \leqslant 1$
- ho_{XX} indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $ho_{XX}=0$ \implies Todas las diferencias que se observan en el examen se deben al error de medición
- $\rho_{XX}=1$ \implies Todas las diferencias que se observan en el examen son diferencias verdaderas.
 - Para todas las personas, la puntuación observada coincide con la verdadera

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

Propiedades:

- Siempre se cumple: $0 \leqslant \rho_{XX} \leqslant 1$
- ho_{XX} indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $\rho_{XX} = 0 \implies$ Todas las diferencias que se observan en el examen se deben al error de medición
- $\rho_{XX}=1$ \implies Todas las diferencias que se observan en el examen son diferencias verdaderas.
 - Para todas las personas, la puntuación observada coincide con la verdadera

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

Propiedades:

- Siempre se cumple: $0 \le \rho_{XX} \le 1$
- ρ_{XX} indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $\rho_{XX} = 0$ \implies Todas las diferencias que se observan en el examen se deben al error de medición
- $\rho_{XX} = 1$ \implies Todas las diferencias que se observan en el examen son diferencias verdaderas.
 - Para todas las personas, la puntuación observada coincide con la verdadera.

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Confiabilidad y el Error Estándar de Medición

La raiz cuadrada de la varianza del error, $\sqrt{{\sf Var}(E)}$ o σ_E , se conoce como el *error estándar de medida*.

Relación entre el error estándar de medida y la confiabilidad:

$$\sigma_E = \sigma_X \sqrt{1 - \rho_{XX}}$$

Confiabilidad y longitud del test

La Teoría Clásica de los Tests para una Población de Personas

La Confiabilidad y la Longitud del Test

En general, añadir preguntas a un test hace que la confiabilidad aumenta.

Spearman y Brown desarrollaron una fórmula que permite derivar para un test con confiabilidad ρ_{XX} :

- a qué valor cambiaría la confiabilidad si se añade o elimina preguntas
- cuántos ítems hay que añadir para obtener una confiabilidad deseable

Fórmula de Spearman-Brown

$$\rho_{XX}^{(n)} = \frac{n \cdot \rho_{XX}}{1 + (n-1) \cdot \rho_{XX}}$$

n: el factor de alargamiento

 ρ_{XX} : confiabilidad del test inicial

 $\rho_{XX}^{(n)}$: confiabilidad del test alargado *n* veces

Confiabilidad v longitud del test

La Teoría Clásica de los Tests para una Población de Personas

La Confiabilidad y la Longitud del Test

En general, añadir preguntas a un test hace que la confiabilidad aumenta.

Spearman y Brown desarrollaron una fórmula que permite derivar para un test con confiabilidad ρ_{XX} :

- a qué valor cambiaría la confiabilidad si se añade o elimina preguntas
- cuántos ítems hay que añadir para obtener una confiabilidad deseable

Fórmula de Spearman-Brown:

$$\rho_{XX}^{(n)} = \frac{n \cdot \rho_{XX}}{1 + (n-1) \cdot \rho_{XX}}$$

n: el factor de alargamiento

 ρ_{XX} : confiabilidad del test inicial

 $\rho_{XX}^{(n)}$: confiabilidad del test alargado n veces.

Confiabilidad y longitud del test

La Teoría Clásica de los Tests para una Población de Personas

Fórmula de Spearman-Brown

$$\rho_{XX}^{(n)} = \frac{n \cdot \rho_{XX}}{1 + (n-1) \cdot \rho_{XX}}$$

Confiabilidad y longitud del test

La Teoría Clásica de los Tests para una Población de Personas

Fórmula de Spearman-Brown

$$\rho_{XX}^{(n)} = \frac{n \cdot \rho_{XX}}{1 + (n-1) \cdot \rho_{XX}}$$

Confiabilidad y longitud del test

La Teoría Clásica de los Tests para una Población de Personas

Fórmula de Spearman-Brown

$$\rho_{XX}^{(n)} = \frac{n \cdot \rho_{XX}}{1 + (n-1) \cdot \rho_{XX}}$$

Teoría Clásica de los Tests

El modelo clásico aplicado a una población de personas

Métodos para estimar la confiabilidad

Índice:

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - Confiabilidad v longitud del test
 - Métodos para estimar la confiabilidad

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad

Importante: El coeficiente de confiabilidad ρ_{XX} es un concepto teórico.

Para estimar la confiabilidad a partir de datos observados se han considerado diferentes métodos:

- Confiabilidad como equivalencia entre formas paralelas
- Confiabilidad como estabilidad temporal (o confiabilidad test-retest)
- Confiabilidad como consistencia interna
 - Correlación entre dos mitades
 - El coeficiente alfa de Cronbach

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Idea básica de formas paralelas:

$$X = T + E$$
$$X' = T + E'$$

y
$$\sigma_E^2 = \sigma_{E'}^2$$
 (o, de forma equivalente, $\sigma_X^2 = \sigma_{X'}^2$).

Sigue que:

$$Cov(X, X') = Cov(T + E, T + E')$$

$$= Cov(T, T) + Cov(T, E) + Cov(T, E') + Cov(E, E')$$

$$= Cov(T, T)$$

$$= \sigma_T^2$$

$$\rho_{XX'} = \frac{Cov(X, X')}{\sigma_X \sigma_{X'}}$$

$$= \frac{\sigma_T^2}{\sigma_X^2}$$

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Idea básica de formas paralelas:

$$X = T + E$$
$$X' = T + E'$$

y
$$\sigma_E^2 = \sigma_{E'}^2$$
 (o, de forma equivalente, $\sigma_X^2 = \sigma_{X'}^2$).

Sigue que:

$$Cov(X, X') = Cov(T + E, T + E')$$

$$= Cov(T, T) + Cov(T, E) + Cov(T, E') + Cov(E, E')$$

$$= Cov(T, T)$$

$$= \sigma_T^2$$

y que:
$$\rho_{XX'} = \frac{\mathsf{Cov}(X,X')}{\sigma_X\,\sigma_{X'}}$$

$$= \frac{\sigma_T^2}{\sigma_T^2}$$

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Idea básica de formas paralelas:

$$X = T + E$$
$$X' = T + E'$$

y
$$\sigma_E^2 = \sigma_{E'}^2$$
 (o, de forma equivalente, $\sigma_X^2 = \sigma_{X'}^2$).

• Sigue que:

$$\begin{aligned} \mathsf{Cov}(X,X') &= \mathsf{Cov}(T+E,T+E') \\ &= \mathsf{Cov}(T,T) + \mathsf{Cov}(T,E) + \mathsf{Cov}(T,E') + \mathsf{Cov}(E,E') \\ &= \mathsf{Cov}(T,T) \\ &= \sigma_T^2 \end{aligned}$$
 y que:
$$\rho_{XX'} = \frac{\mathsf{Cov}(X,X')}{\sigma_X \, \sigma_{X'}} \\ &= \frac{\sigma_T^2}{\sigma_E^2} \end{aligned}$$

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Tipos de parelelidad

Paralelidad	Propiedades
Paralelidad estricta	$T = T'$ y $\sigma_X^2 = \sigma_{X'}^2$

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Tipos de parelelidad

Paralelidad	Propiedades
Paralelidad estricta	$T = T'$ y $\sigma_X^2 = \sigma_{X'}^2$
Tau-equivalencia	T = T'

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Tipos de parelelidad

Paralelidad	Propiedades
Paralelidad estricta	$T = T'$ y $\sigma_X^2 = \sigma_{X'}^2$
Tau-equivalencia	T = T'
Tau-equivalencia esencial	$T = T' + \kappa$

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad por formas paralelas

Tipos de parelelidad

Paralelidad	Propiedades
Paralelidad estricta	$T=T'$ y $\sigma_X^2=\sigma_{X'}^2$
Tau-equivalencia	T = T'
Tau-equivalencia esencial	$T = T' + \kappa$
Paralelidad congenérica	$T = \lambda T' + \kappa$

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como estabilidad temporal (test-retest)

- Se aplica el mismo test dos veces para obtener mediciones X y X'.
 (Se considera el test parelelo a si mismo.)
- Se supone que
 - No hay efectos de aprendizaje o memoria
 - La característica que se desea medir no cambia entre las dos aplicaciones
- Entonces, la correlación $\rho_{XX'}$ es una estimación de la confiabilidad del test.

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como estabilidad temporal (test-retest)

- Se aplica el mismo test dos veces para obtener mediciones X y X'.
 (Se considera el test parelelo a si mismo.)
- Se supone que:
 - No hay efectos de aprendizaje o memoria
 - La característica que se desea medir no cambia entre las dos aplicaciones
- Entonces, la correlación $\rho_{XX'}$ es una estimación de la confiabilidad del test.

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como estabilidad temporal (test-retest)

- Se aplica el mismo test dos veces para obtener mediciones X y X'.
 (Se considera el test parelelo a si mismo.)
- Se supone que:
 - No hay efectos de aprendizaje o memoria
 - La característica que se desea medir no cambia entre las dos aplicaciones
- Entonces, la correlación $\rho_{XX'}$ es una estimación de la confiabilidad del test.

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna (split-half)

- Se realiza una aplicación del test
 Se divide el test en dos mitades para obtener mediciones X y X'
- ullet Se calcula la correlación $ho_{XX'}$ entre las dos mitades

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna (split-half)

- Se realiza una aplicación del test
 Se divide el test en dos mitades para obtener mediciones X y X'
- Se calcula la correlación $\rho_{XX'}$ entre las dos mitades

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna (split-half)

- Se realiza una aplicación del test
 Se divide el test en dos mitades para obtener mediciones X y X'
- Se calcula la correlación $\rho_{XX'}$ entre las dos mitades y se aplica la fórmula de Spearman-Brown para conocer la confiabilidad del test en su totalidad:

$$\rho_{XX'}^{(2)} = \frac{2 \cdot \rho_{XX'}}{1 + \rho_{XX'}}$$

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna: Coeficiente alfa de Cronbach

• Se define, para un test de *k* ítems:

$$\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} \operatorname{Var}(X_i)}{\operatorname{Var}(X)} \right]$$

 Bajo el supuesto que los k ítems son esencialmente tau-equivalentes, se puede comprobar matemáticamente:

$$\rho_{XX} \geqslant \alpha$$

Es decir, α es un límite inferior de la confiabilidad del test.

• α se puede interpretar aproximadamente como la media de todas las confiabilidades de dos mitades.

Métodos para estimar la confiabilidad

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna: Coeficiente alfa de Cronbach

• Se define, para un test de *k* ítems:

$$\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} \operatorname{Var}(X_i)}{\operatorname{Var}(X)} \right]$$

 Bajo el supuesto que los k ítems son esencialmente tau-equivalentes, se puede comprobar matemáticamente:

$$\rho_{XX} \geqslant \alpha$$

Es decir, α es un límite inferior de la confiabilidad del test.

• α se puede interpretar aproximadamente como la media de todas las confiabilidades de dos mitades.

La Teoría Clásica de los Tests para una Población de Personas

Estimar la Confiabilidad como consistencia interna: Coeficiente alfa de Cronbach

• Se define, para un test de *k* ítems:

$$\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} Var(X_i)}{Var(X)} \right]$$

 Bajo el supuesto que los k ítems son esencialmente tau-equivalentes, se puede comprobar matemáticamente:

$$\rho_{XX} \geqslant \alpha$$

Es decir, α es un límite inferior de la confiabilidad del test.

• α se puede interpretar aproximadamente como la media de todas las confiabilidades de dos mitades.