A Scalable Multi-Chiplet Deep Learning Accelerator with Hub-Side 2.5D Heterogeneous Integration

Zhanhong Tan¹, Yifu Wu², Yannian Zhang², Haobing Shi², Wuke Zhang², Kaisheng Ma¹

¹Tsinghua University, ²Polar Bear Tech

Abstract

With the slowdown of Moore's law, the scenario diversity of specialized computing, and the rapid development of application algorithms, an efficient chip design requires modularization, flexibility, and scalability. In this study, we propose a Chiplet-based deep learning accelerator prototype that contains one HUB Chiplet and six extended SIDE Chiplets integrated on an RDL layer for the 2.5D package. The SIDE and the HUB contain one and four AI cores, respectively.

Given that our Chiplet-system targets diverse scenarios via scalable connected SIDE Chiplets, we need to handle three challenges: a) devise a flexible architecture design supporting diverse shapes, b) search for a workload mapping with low die-to-die communication, and c) adopt a high-bandwidth die-to-die interface to maintain efficient data transfer.

This study proposes a flexible neural core (FNC) featuring dynamic bit-width computing and flexible parallelism. Next, we use a hierarchy-based mapping scheme to decouple different parallelism levels and help analyze the communication. A 12Gbps D2D interface is introduced to achieve 192Gb/s bandwidth per D2D port with 1.04pJ/bit efficiency and 55µm bump pitch.

The proposed seven-Chiplet accelerator achieves a peak performance of **10/20/40 TOPS for INT16/8/4**. When enabling 0~6 SIDE Chiplets, the system power ranges from 4.5W to 12W. The power efficiency of the FNC is **2.02TOPS/W** while that of the overall system is **1.67TOPS/W**.

Background and Challenges

■ Decouple a monolithic SoC into Chiplets

Better die yield

- Scalability for diverse scenarios
 M×Chiplet1+N×Chiplet2+K×Chiplet3
- Rapid development pace to deliver new products

Background and Challenges

■ Decouple a monolithic SoC into Chiplets

- Better die yield
- Scalability for diverse scenarios
- Rapid development pace to deliver new products

■ Challenges

high-density package

D2D

Overall Architecture

■ Flexible Neural Core (FNC)

 Reconfigurable architecture for the shape diversity

■ Mapping dataflow

 Die-to-Die communicationaware workload generator

■ Interconnection

- High-bandwidth Die-to-Die based on 2.5D package
- Efficient chiplet routing unit (CLRU)

Flexible Neural Core

Flexible Interconnect

Arbitrary tile-based workload assignment to 8 cores via a configurable interconnect fabric

Flexible Neural Core

The MAC Pair Supporting for Dynamic Bit-width

- Support three quantization modes
 - ➤ 8b-Acitvation × 4b-Weight
 - ➤ 8b-Acitvation × 8b-Weight
 - ➤ 16b-Acitvation × 8b-Weight
- Each INT-8 MAC-Pair has eight 4×4 multipliers for mode reuse
- In three modes, the bandwidth and compute resources of one MAC-pair are fully utilized

Flexible Neural Core

Flex-Interconnect and Configurable Weight Buffer

- Support diverse eight-PE compositions
 - 8-tile mode: share weights across 8 PEs for independent output in height/width
 - → 4-tile mode: share weights across 4 PEs and 2 4-PE groups process 2 chunks of output channels
 - 2-tile mode: 4 2-PE groups for 4 chunks of output channels
 - 1-tile mode: 8 PEs for 8 chunks of output channels

Each bank has 16 sub-banks for 16 columns of MACs

Dynamic Workload Parallelism


```
Hierarchy-1
  (HO_+, WO_+, CO_+) =
   temporal(spatial(H0,W0,C0))
                                                          FNC-1
                                                        (output cube)
                                                                         execution for a FNC
                                                        HO×WO×CO
                                                                            HO,×WO,×CO,
Hierarchy-2
                                                         PE-0 PE-1
  (HO_c, WO_c, CO_c) =
                                                         For For
   temporal(spatial(HO<sub>+</sub>,WO<sub>+</sub>,CO<sub>+</sub>))
                                                        PE-2 PE-3
                                                                         1 execution for a PE
                                                        (output cube)
                                                       HO<sub>t</sub>×WO<sub>t</sub>×CO<sub>t</sub>
                                                                            HO,×WO,×CO,
Hierarchy-3
                                                                            Weight-Stationary to
                                                          W0 W1 W2
                                                                             reduce data access
  Primitive(HO_n=1,WO_n=1,CO_n=16)=
   temporal(spatial(HO<sub>c</sub>, WO<sub>c</sub>, CO<sub>c</sub>)) c=2 CIT MAC MAC MAC
                                                                           PE
Workload Loop
```

- Critical Position for the "X" buffer: the inner-most loop related to the index of the X-buffer data (decide the data size on-core)
- Reuse Region for the "X" buffer: indicate the <u>reuse efficiency</u> when caching the data in inner loops decided by *critical position*
- Search for an optimized loop range with the highest memory utilization (<u>the largest</u> data size that can be buffered on-core) and reuse efficiency for each buffer

```
// Package-Level for Chiplet Parallelism (HO_t, WO_t, CO_t) = temporal(spatial(HO, WO, CO))

for c2 = [0 : C2): high data access overhead for h2 = [0 : H2): // H2 * HO_t = HO for w2 = [0 : W2): // W2 * WO_t = WO for c2 = [0 : C2): // C2 * CO_t = CO

// Chiplet-Level for PE Parallelism (HO_c, WO_c, CO_c) = temporal(spatial(HO_t, WO_t, CO_t))

for c1 = [0 : C1): low data access overhead for h1 = [0 : H1): // H1 * HO_c = HO_t for w1 = [0 : W1): // W1 * WO_c = WO_t for c1 = [0 : C1): // C1 * 8 = CO_t
```

The overhead bias helps to search for a low D2D communication mapping

Critical Positions

```
for h2 = [0 : H2):

for w2 = [0 : W2):

for c2 = [0 : C2):

for h1 = [0 : H1):

for w1 = [0 : W1):

for c1 = [0 : C1):
```

Reuse Region

```
for c2 = [0 : C2):
  for h2 = [0 : H2):
    for w2 = [0 : W2):
  for h1 = [0 : H1):
    for w1 = [0 : W1):
    for c1 = [0 : C1):
```

```
for h2 = [0 : H2):
    for w2 = [0 : W2):
        for c2 = [0 : C2):
for h1 = [0 : H1):
    for w1 = [0 : W1):
        for c1 = [0 : C1):
```

```
for c2 = [0 : C2):

for h2 = [0 : H2):

for w2 = [0 : W2):

for h1 = [0 : H1):

for w1 = [0 : W1):

for c1 = [0 : C1):
```

Example-4 for the L1-Buf analysis

Example-1 for the W-Buf analysis Example-2 for the W-Buf analysis Example-3 for the L1-Buf analysis

Notation: HO, WO, CO: height, width, and channel of the output tensor; X.: the tile for a Chiplet; X.: the sub-tile for a PE

Loop order in the temporal primitive

Chiplet Interconnection and Package

High-Bandwidth D2D Interface

Bandwidth per D2D	RX: 192Gb/s TX: 192Gb/s	RX(TX) Lane	2(2)
		Data width per lane	8bit
		Data Rate	12Gbps
Bump Pitch	55µm	Package	2.5D
Area	2.2×0.5mm	Power	1.04pJ/bit

■ Chiplet Router Unit (CLRU)

- Four FIFO queues to deal with burst transfer
- Data parser: support the data request from another Chiplet (access memory / other CLRU)
 - The head packages indicate the transfer mode

Chiplet Interconnection and Package

- Non-conflict IO layout in the HUB Chiplet to improve the fan-out efficiency
- 2.5D integration with a **high-density 65nm RDL** layer providing 55µm bump pitch
- The RDL layer contributes to a simpler 8-layer substrate of 3-2-3

Software Stack

Pre-Integrated Solutions Rule Checker **Application** Enablement Model Zoo NN-Profiler NN APIs Full-Stack PyTorch **TensorFlow** ONNX **PaddlePaddle** Supported Frameworks Model Optimization (quantization, pruning, op-tuning) **Dev-AIDS Graph Optimization** Scheduler Chip Func/Cyc-Simulator Acc. Analyzer **Enablement** IR Gen. NN Lib. Code Gen. Testbench Design Explorer

Latency-Constraint Optimization

Sample-per-Sec Optimization

Batch-level Parallelism

Query-Per-Sec Optimization

Workload pipeline for high throughput

Response Time Optimization

Multi-level parallelism for high utilization

Evaluation

■ Evaluations on one Flexible Neural Core

■ Evaluation on computing-bound workload

Evaluation on IO-bound workload

System Board and Demo

■ System PCle-based Board

Demo for running concurrent 4 models

Model 4: DeepLab v3+

Chip Summary

HUB Chiplet

RDL Layer for 2.5D Package

Items		Specifications	
Technology		CMOS 12nm	
Die Area	HUB Chiplet	$8.5 \text{mm} \times 6.8 \text{mm} = 57.8 \text{mm}^2$	
	SIDE Chiplet	$3.5 \text{mm} \times 2.8 \text{mm} = 9.8 \text{mm}^2$	
Supply Voltage		0.8V ~ 1.2V	
Frequency		100MHz – 1GHz	
Peak Performance	INT4	40TOPS (8b-A × 4b-W)	
	INT8	20TOPS (8b-A × 8b-W)	
	INT16	10TOPS (16b-A × 8b-W)	
NPU Core Efficiency		2.02TOPS/W	
Power		4.5W ~ 12W	
D2D Bandwidth		6×24GB/s for TX/RX	
External Memory Bandwidth		64GB/s (GDDR6)	
Bump Pitch for 2.5D Pkg		55µm	

Comparison with Prior Multi-Chiplet Accelerator Works

	Simba (NVIDIA)	CHIMERA (Stanford)	NetFlex (A*STAR)	Ours
Year	2019	2021	2022	2023
Technology	16nm	40nm	22nm	12nm
Area	6mm²	29.2mm²	11.1mm²	HUB: 57.8mm² Side: 9.8mm²
Memory Size	752KB SRAM	0.5MB SRAM 2MB RRAM	2492KB SRAM	HUB: 1.7MB Side: 439KB
Voltage	0.42V ~ 1.2V	1.1V	0.6V ~ 0.89V	0.8V ~ 1.2V
Frequency	161MHz – 2001MHz	200MHz	190.3 – 492.3MHz	600MHz – 1.2GHz
Power	30 – 4160mW	126mW	57.6 – 499.8mW	Side: 0.72W Hub: 4.75W
Performance (TOPS)	0.32 – 4.01 (INT8)	2.2 (INT8, FP16)	0.41 – 1.07 (INT16)	Side Die: 1/2/4 for INT16/8/4, Hub Die: 4/8/16 for INT16/8/4, Total: 10/20/40 for INT16/8/4
Package	Organic MCM	PCB	HD-FOWLP	2.5D RDL
D2D I/O	GRS	C2C Links	AIB	12Gbps Parallel Interface
I/O Energy	0.82 – 1.75pJ/b	77pJ/b	3.07pJ/b	1.04pJ/bit

Thank You

tanzh@mails.tsinghua.edu.cn

