How a Machine Learned to Recognize Human Emotions

By: Omar Ozgur

The Study

- A study done at Shanghai Jiao Tong University
- 15 students watched 15 videos
- 62 electrodes recorded brain activity
- Students rated clips as positive, negative, or neutral
- Level of emotional arousal was rated between 1 and 5

No.	Labels	Film clips sources	#clips
1	negative	Tangshan Earthquake	2
2	negative	Back to 1942	3
3	positive	Lost in Thailand	2
4	positive	Flirting Scholar	1
5	*	Just Another Pandora's Box	2
6	neutral	World Heritage in China	5

The Idea

- The researchers used knowledge based on the field of affective neuroscience, which involves the study of neural patterns associated with emotions
- Studies have shown that specific brain structures, such as those of the limbic system, are linked to a human's emotional state

Feature Extraction

- 5 Brainwaves: Alpha, Beta, Delta, Theta, Gamma
- Brainwaves were used to determine features that would be useful for emotion recognition
- 6 Features that were analyzed:
 - Power spectral density (PSD)
 - Differential entropy (DE)
 - Differential asymmetry (DASM)
 - Rational asymmetry (RASM)
 - Asymmetry (ASM)
 - Differential caudality (DCAU)

Emotion Recognition

- Supervised learning is a machine-learning technique that uses pre-labelled data to train an algorithm
- The researchers built used software that attempts to "learn" in similar ways as humans
- Emotion recognition was done through the use of a feedforward
 noural network

neural network

Neural Networks

- A neural network typically transmits data through layers of "neurons"
- At each neuron, a weighted summation is performed on incoming data, and an activation function (typically a sigmoid function) is applied
- O A final weighted summation is performed at the output neuron to produce a result $\sum_{x_1} \sigma \left[\sum_{x_j \in \Sigma} w_j x_j + b_j\right]$

Neural Networks (Cont.)

- At first, the neural network may give seemingly random results
- The network must be trained by comparing results to desired outputs
- By adjusting the weight matrix, the weighted sums at each neuron are also adjusted
- After sufficient training, the neural network can give consistently accurate results

Results

- The machine-learning algorithm in this study was able to categorize emotions with approximately 80% accuracy
- The team plans to further train the algorithm to gauge emotions in individuals of different ages and genders

Worldwide Applications

- Trained algorithms have been shown to solve problems and analyze patterns much more efficiently than most humans
- Machine-learning has profound impacts on the study of topics such as:
 - Human behavior
 - Medicine
 - System security
 - Economic analysis
- The continued development of machine-learning techniques will allow for quicker analysis and resolution of complex problems in the world

References

[1] Peng, Y., Wang, S., Long, X., Lu, B. (2013). "Discriminative graph regularized extreme learning machine and its application to face recognition". *Science Direct.* doi:10.1016/j.neucom.2013.12.065

[2] Emerging Technology From the arXiv (2016). "How One Intelligent Machine Learned to Recognize Human Emotions". *MIT Technology Review*. Retrieved from http://www.technologyreview.com/view/545986/how-one-intelligent-machine-learned-to-recognize-human-emotions/

[3] Zheng, W., Zhu, J., Lu, B. (2016). "Identifying Stable Patterns over Time for Emotion Recognition from EEG". *Cornel University Library*. Retrieved from http://arxiv.org/pdf/1601.02197v1.pdf

[4] "Neural Networks Documentation". *Wolfram Mathematica Documentation Center.* Retrieved from http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.5.1.html

Image sources:

http://cdn.tinybuddha.com/wp-content/uploads/2015/06/Emotions.png

http://www.icon2s.com/wp-content/uploads/2014/08/Seo-blue-video-marketing-icon.png

http://png.clipart.me/graphics/thumbs/169/head-with-a-heart-beat-icon_169630502.jpg

https://www.seoclerk.com/pics/322221-1IIVpT1422549531.png

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.5.1.html

http://icons.iconarchive.com/icons/graphicloads/flat-finance/256/ideas-icon.png

http://www.technologyreview.com/sites/default/files/styles/view_body_embed/public/images/Emotional%20states.PNG?itok=wY5oDBua

http://www.clker.com/cliparts/N/v/x/U/2/W/simple-globe-hi.png

http://arxiv.org/pdf/1601.02197v1.pdf