A Comparative Evaluation of Proxy Estimation Methods for Racial Classification

S. Khan¹, L. Yu¹, Y. Kang¹, S. Venkatasubramanian¹ ¹Center for Tech Responsibility (CNTR), Brown University, USA

GitHub Link:

https://github.com/brown-cntr/RaceProxyBench

Introduction

- Bayesian Improved Surname Geocoding (BISG)¹
 - Method for predicting race given location and surname
 - Basis for newer variants (e.g., cBISG) that patch its limitations
 - Insights into effectiveness of proxy estimation methods
- Focus: North Carolina 2022 Voter Registration Dataset²
- Idea: Compare proxy method outcomes by varying noise for: a) ZCTA/Zip Code (α) b) Surname (γ)

Methods

BISG:

$$P(R = r \mid S = s, G = g) = \frac{P(S = s \mid R = r) P(R = r \mid G = g)}{\sum_{r'} P(S = s \mid R = r') P(R = r' \mid G = g)}$$

BIFSG³: augments BISG with a first-name factor to improve precision for minority groups

fBISG⁴: performs full posterior inference to handle surname coverage gaps and Census under-counting

cBISG⁵: adds contextual features (e.g. loan size, party affiliation) as extra priors

Zest Race Predictor⁶: trains XGBoost gradient-boosted trees on names and geographic context

Exploratory Data Analysis

Race Mix

Name Coverage

Geo Diversity

Geographic Diversity of Race Buckets Across North Carolina **ZCTAs** (2022 Voter Registration)

Results

		B	BISG			
α (%)	γ (%)	Acc	F 1	\mathbf{LL}	\mathbf{ECE}_{10}	Cov
0	0	0.7901	0.6143	2.9751	0.0190	1.0000
5	0	0.7868	0.6109	3.0031	0.0171	0.9968
10	0	0.7837	0.6077	3.0297	0.0152	0.9936
20	0	0.7770	0.6007	3.0855	0.0116	0.9871
0	5	0.7874	0.6066	2.9571	0.0217	1.0000
5	5	0.7841	0.6031	2.9852	0.0197	0.9968
10	5	0.7809	0.5998	3.0120	0.0177	0.9936
20	5	0.7742	0.5927	3.0680	0.0134	0.9871
0	10	0.7847	0.5985	2.9394	0.0245	1.0000
5	10	0.7814	0.5950	2.9676	0.0224	0.9968
10	10	0.7782	0.5917	2.9945	0.0203	0.9936
20	10	0.7714	0.5844	3.0509	0.0158	0.9871

BIFSG						
α (%)	γ (%)	Acc	F 1	LL	\mathbf{ECE}_{10}	Cov
0	0	0.8341	0.6593	3.6464	0.0104	1.0000
5	0	0.8318	0.6567	3.6719	0.0097	0.9968
10	0	0.8294	0.6544	3.6961	0.0090	0.9936
20	0	0.8247	0.6492	3.7473	0.0094	0.9871
0	5	0.8323	0.6549	3.6244	0.0107	1.0000
5	5	0.8300	0.6523	3.6500	0.0100	0.9968
10	5	0.8276	0.6499	3.6744	0.0093	0.9936
20	5	0.8229	0.6447	3.7257	0.0089	0.9871
0	10	0.8305	0.6504	3.6027	0.0109	1.0000
5	10	0.8281	0.6478	3.6285	0.0102	0.9968
10	10	0.8258	0.6453	3.6529	0.0095	0.9936
20	10	0.8210	0.6401	3.7046	0.0085	0.9871

fBISG							
α (%)	γ (%)	Acc	F 1	LL	\mathbf{ECE}_{10}	Cov	
0	0	0.7753	0.5816	3.0659	0.0077	1.0000	
5	0	0.7722	0.5786	3.0712	0.0059	0.9968	
10	0	0.7692	0.5758	3.0732	0.0043	0.9936	
20	0	0.7628	0.5701	3.0866	0.0036	0.9871	
0	5	0.7729	0.5729	3.0434	0.0104	1.0000	
5	5	0.7699	0.5699	3.0489	0.0083	0.9968	
10	5	0.7668	0.5671	3.0517	0.0066	0.9936	
20	5	0.7604	0.5613	3.0643	0.0036	0.9871	
0	10	0.7706	0.5640	3.0213	0.0131	1.0000	
5	10	0.7675	0.5608	3.0279	0.0107	0.9968	
10	10	0.7644	0.5580	3.0297	0.0089	0.9936	
20	10	0.7579	0.5521	3.0433	0.0051	0.9871	

ZRP

α (%)	$\gamma~(\%)$	Acc	F 1	${f LL}$	\mathbf{ECE}_{10}	Cov
0	0	0.8564	0.6535	0.4986	0.0210	1.0000
5	0	0.8564	0.6535	0.4986	0.0210	1.0000
10	0	0.8229	0.5998	0.6229	0.0463	1.0000
20	0	0.8229	0.6223	0.5933	0.0429	1.0000
0	5	0.8185	0.6109	0.6082	0.0446	1.0000
5	5	0.8185	0.6110	0.6081	0.0446	1.0000
10	5	0.8185	0.6109	0.6082	0.0446	1.0000
20	5	0.8185	0.6109	0.6081	0.0446	1.0000
0	10	0.8140	0.5998	0.6231	0.0462	1.0000
5	10	0.8141	0.5998	0.6229	0.0463	1.0000
10	10	0.8141	0.5998	0.6229	0.0463	1.0000
20	10	0.8141	0.5998	0.6229	0.0463	1.0000

cBISG*

α (%)	γ (%)	Acc	$\mathbf{F1}$	\mathbf{LL}	\mathbf{ECE}_{10}	Cov
0	0	0.8074	0.5749	6.7127	0.0157	1.0000
0	5	0.8050	0.5635	6.6880	0.0148	1.0000
0	10	0.8027	0.5523	6.6640	0.0140	1.0000
0	20	0.7979	0.5285	6.6151	0.0123	1.0000

*Due to cBISG's dependence on census tract for geographical context rather than ZCTA or zipcode, we applied noise to surname while maintaining the noise proportion for the geoID at zero. The input dataset for the cBISG experiments was a subset of the one used for the other four methods due to the lack of census tract availability for every sample.

References

Contributions

S. Khan - Introduction, Methods, Exploratory Data Analysis, Results (ZRP); L. Yu - Results (cBISG); Y. Kang - Results (BISG, BIFSG, fBISG); S. Venkatasubramanian - Advisor

Elliott, M. N., Morrison, P. A., Fremont, A., McCaffrey, D. F., Pantoja, P., & Lurie, N. (2009). Using the Census Bureau's surname list to improve estimates of race/ethnicity and associated disparities. Health Services and Outcomes Research Methodology, 9(2), 69–83. https://doi.org/10.1007/s10742-009-0047-1 Data available at https://www.ncsbe.gov/results-data/voter-registration-data Bayesian Improved First Name and Surname Geocoding (BIFSG) Voicu, I. (2018). Using first name information to improve race and ethnicity classification. Statistics and Public Policy, 5(1), 1–13.

https://doi.org/10.1080/2330443X.2018.1427012 4. Imai, K., Olivella, S., & Rosenman, E. T. R. (2022). Addressing Census data problems in race imputation via fully Bayesian Improved Surname Geocoding and name supplements. Science Advances, 8, eadc9824. Kwegyir-Aggrey, K., Durvasula, N., Wang, J., & Venkatasubramanian, S. (2024). Observing Context Improves Disparity Estimation when Race is Unobserved (arXiv:2409.01984). https://doi.org/10.48550/arXiv.2409.01984 6. Zest AI. (2020). Zest Race Predictor (ZRP) [Computer software]. GitHub repository. https://github.com/zestai/zrp