Công thức chứng minh đường thẳng song song với mặt phẳng

1. Lý thuyết

a) Vị trí tương đối của đường thẳng d và mặt phẳng (α) .

Tùy theo số giao điểm chung của d và (α) , ta có 3 trường hợp sau:

b) Tính chất

Định lý 1:

Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nào đó trong (P) thì a song song với (P).

Tức là:
$$\begin{cases} a \not\subset (P) \\ a \mathbin{/\!\!/} d \implies a \mathbin{/\!\!/} (P). \\ d \subset (P) \end{cases}$$

Định lý 2:

Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo một giao tuyến d thì a song song với d.

Tức là:
$$\begin{cases} a \mathbin{/\!\!/} (P) \\ a \subset (Q) \implies a \mathbin{/\!\!/} d. \\ (Q) \cap (P) = d \end{cases}$$

Hệ quả:

Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến (nếu có) của chúng song song với đường thẳng đó.

Tức là:
$$\begin{cases} (P) \cap (Q) = d \\ (P) /\!\!/ a \implies d /\!\!/ a. \\ (Q) /\!\!/ a \end{cases}$$

Định lý 3:

Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

2. Công thức

Phương pháp chứng minh đường thẳng song song với mặt phẳng

Để chứng minh đường thẳng a song song với (P), ta chứng minh a song song với một đường thẳng d nằm trong (P)

Tức là:
$$\begin{cases} a \not\subset (P) \\ a \mathbin{/\!\!/} d \implies a \mathbin{/\!\!/} (P). \\ d \subset (P) \end{cases}$$

3. Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD. Lấy G là trọng tâm tam giác ABD. Gọi M là một điểm trên cạnh BC sao cho MB = 2MC. Chứng minh MG // (ACD).

Lời giải

Gọi N là trung điểm của AD

+ Vì G là trọng tâm tam giác ABD nên $\frac{BG}{BN} = \frac{2}{3}$

+ Xét tam giác BCN có: $\frac{BM}{BC} = \frac{BG}{BN} = \frac{2}{3}$ nên MG // NC

Ta có:
$$\begin{cases} MG \not\subset (ACD) \\ MG//NC \Rightarrow MG//(ACD). \\ NC \subset (ACD) \end{cases}$$

Ví dụ 2: Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm tam giác SAB, I là trung điểm của AB và M là điểm trên cạnh AD sao cho

$$AM = \frac{1}{3}AD.$$

- a) Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh NG // (SCD).
- b) Chứng minh MG // (SCD).

Lời giải

a) + Hình bình hành ABCD có MJ // AB // CD và
$$\frac{AM}{AD} = \frac{1}{3}$$

Nên
$$\frac{IN}{IC} = \frac{BJ}{BC} = \frac{AM}{AD} = \frac{1}{3}$$

+ G là trọng tâm tam giác SAB nên
$$\frac{IG}{IS} = \frac{1}{3}$$

+ Xét tam giác ISC có:
$$\frac{IG}{IS} = \frac{IN}{IC} = \frac{1}{3}$$
 nên GN // SC

Ta có:
$$\begin{cases} GN \not\subset \big(SCD\big) \\ GN//SC & \Rightarrow GN//\big(SCD\big) \\ SC \!\subset \!\big(SCD\big) \end{cases}$$

b) Kéo dài MI cắt CD tại E

+ Ta có AI // ED nên
$$\frac{IM}{IE} = \frac{AM}{MD} = \frac{1}{2}$$

+ Xét tam giác SIE có:
$$\frac{IM}{EM} = \frac{IG}{GS} = \frac{1}{2}$$
 nên MG // SE

Ta có:
$$\begin{cases} MG \not\subset \big(SCD\big) \\ MG / / SE & \Rightarrow MG / / \big(SCD\big). \\ SE \subset \big(SCD\big) \end{cases}$$

4. Bài tập tự luyện

Câu 1. Cho hình chóp tứ giác S.ABCD. Gọi M và N lần lượt là trung điểm của SA và SC. Khẳng định nào sau đây đúng?

A. MN // (ABCD)

B. MN // (SAB)

C. MN // (SCD)

D. MN // (SBC)

Câu 2. Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, Q thuộc cạnh AB sao cho AQ = 2QB, P là trung điểm của AB. Khẳng định nào sau đây đúng?

A. MN // (BCD)

 $\mathbf{B.}\ \mathrm{QG}\ /\!/\ \mathrm{(BCD)}$

C. MN cắt (BCD)

D. Q thuộc mặt phẳng (BCD)

Đáp án 1A, 2B.