IT2120 - Probability and Statistics

Lab Sheet 04

IT24103279

Dushmanthi W. D. H.

Exercise

1. Import the dataset ('Exercise.txt') into R and store it in a data frame called" branch data".

```
setwd("C:\\Users\\IT24103279\\Desktop\\IT24103279")
branch_data <-read.csv("Exercise.txt")</pre>
head(branch_data)
> branch_data <-read.csv("Exercise.txt")</pre>
> head(branch_data)
 Branch Sales_X1 Advertising_X2 Years_X3
1
     1 3.4
                           120
                          150
                                      7
2
     2
           4.1
    3 2.8
4 5.0
5 3.7
6 4.5
3
                           90
                                     3
4
                          200
                                    10
5
                          110
                                     5
6
                          175
> |
```

2. Identify the variable type and scale of measurement for each variable.

3. Obtain boxplot for sales and interpret the shape of the sales distribution.

Boxplot of Sales

4. Calculate the five number summary and IQR for advertising variable.

```
summary(branch_data$Advertising)

IQR_advertising <- IQR(branch_data$Advertising)
IQR_advertising

> summary(branch_data$Advertising)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    80.0 101.2 132.5 134.8 158.8 210.0
> IQR_advertising <- IQR(branch_data$Advertising)
> IQR_advertising
[1] 57.5
> |
```

5. Write an R function to find the outliers in a numeric vector and check for outliers in years variables.

```
find_outliers <- function(x) {
    Q1 <- quantile(x, 0.25)
    Q3 <- quantile(x, 0.75)
    IQR_value <- IQR(x)
    lower_bound <- Q1 - 1.5 * IQR_value
    upper_bound <- Q3 + 1.5 * IQR_value
    outliers <- x[x < lower_bound | x > upper_bound]
    return(outliers)
}

outliers_years <- find_outliers(branch_data$Years_X3)
outliers_years

</pre>

outliers_years <- find_outliers(branch_data$Years_X3)
> outliers_years
integer(0)
> |
```