

CLAIMS

1. A path error monitoring method for monitoring for an error in a communication path in a synchronous network by using an error detection code inserted into a first predetermined byte in an overhead of transmitted information, comprising the steps of:

10 performing an error detection code operation for a predetermined range of the transmitted information in a sender side;

15 inserting the obtained error detection code into a second predetermined byte different from said first predetermined byte in the overhead of the transmitted information and sending the inserted transmitted information;

20 performing an error detection code operation for a predetermined range of the inserted transmitted information received in a receiver side; and

25 monitoring for an error in a communication path between the sender side and the receiver side by comparing the obtained error detection code with the second predetermined byte in the inserted transmitted information.

30 2. A sender side apparatus to which a path error monitoring method for monitoring for an error in a communication path in a synchronous network by using an error detection code inserted into a first predetermined byte in an overhead in transmitted information is applied, comprising:

35 a second predetermined byte inserting part performing an error detection code operation for a

predetermined range in the transmitted information
and inserting the obtained error detection code into
a second predetermined byte different from said
first predetermined byte in the overhead in the
5 transmitted information.

10 3. A receiver side apparatus to which a
path error monitoring method for monitoring for an
error in a communication path in a synchronous
network by using an error detection code inserted
into a first predetermined byte in an overhead in
15 transmitted information is applied, comprising:

16 a second predetermined byte comparing part
performing an error detection code operation for a
predetermined range in the transmitted information
received and comparing the obtained error detection
20 code with a second predetermined byte in the
transmitted information received.

25 4. The sender side apparatus as claimed
in claim 2, wherein said second predetermined byte
inserting part has an inverting part inverting the
error detection code obtained through the error
30 detection code operation alternatively at a
predetermined period and inserting the resulting
error detection code into said second predetermined
byte.

5. The receiver side apparatus as claimed
in claim 3, further comprising a synchronizing part
taking synchronization when a comparison result of
said second predetermined byte comparing part
5 indicates switching from a status where all bits
coincide to a status where neither bit coincides.

10

6. The sender side apparatus as claimed
in claim 2, wherein said second predetermined byte
is within an operation range of said first
predetermined byte, further comprising a first
15 correcting part computing difference information
between original contents in the second
predetermined byte and said error detection code
obtained through said error detection code operation
and correcting contents in said first predetermined
20 byte by inserting a difference between said
difference information and original contents in the
first predetermined byte into said first
predetermined byte.

25

7. The receiver side apparatus as claimed
in claim 3, wherein said second predetermined byte
30 is within an operation range of said first
predetermined byte, further comprising a second
correcting part computing difference information
between contents in the second predetermined byte in
the transmitted information received and the error
35 detection code obtained through said error detection
code operation and correcting contents in said first
predetermined byte by inserting a difference between

5 said difference information and contents in the
 first predetermined byte in the transmitted
 information received into said first predetermined
 byte, and a fixed value inserting part inserting a
 fixed value into the second predetermined byte in
 the transmitted information received.

10

8. The receiver side apparatus as claimed
in claim 7, wherein said fixed value inserting part
is capable of variably setting said fixed value.

15

20 9. The sender side apparatus as claimed
 in claim 6, further comprising a first path alarm
 detecting part detecting a path alarm from contents
 of the overhead in transmitted information, wherein
 said second predetermined byte inserting part and
 said first correcting part are halted when said path
 alarm is detected.

25

30 10. The receiver side apparatus as
 claimed in claim 3, further comprising a second path
 alarm detecting part detecting a path alarm from
 contents of the overhead in transmitted information
 received, wherein said second correcting part and
 said fixed value inserting part are halted when said
 path alarm is detected.