

	Ph. St. Place hopfube gedrel	0.1	,	
0	> 1/9-com-250d 1037.1.			ne ilmagl
	Cinham: Thes und robot Rol mach			
	(robol 2 - 25 Oct 1330 >> 2 nochun quote telende)	in = 78020	0	
	voo ontoon (voo on one on one one one one one one one			
5	roles 2 - 25 Oct 1338, Lat 3	in = 2848	00	
Пв	100000000000000000000000000000000000000		00 (tile FM)	
	1/8-3p-10s-250d/350 @ 2 out	1 74%		
	Temperatur hot - Quich -2501 1522	-> T=		
	Magnelprimer relie	И		
	transl. mil "DC linear driv	e l		
	11 Peulerep.			
	8 0,00087	1. 0	0.00 (7.50)	* * * *
	R_250ct1739, Jat DC Linear	1 1	0.0013527	
	R_250ct1447. dat DC Linear	1	0.00133311	
	R_250ct1752. Jot DC Linear	1	0.00134492	
	R_250ct 1758. dot 600 linear		0.00130368	
ą.	R_250cf 1804. Jot DC Cinear	1	0.00124003	
	R_250ct 1810, Jot DC Cinear	f l	0.00 11 3905	
'a	R_250ct 1815. dot DC Linear a	1	0.00128194	
	R_250 of 1821. Sof DC Linear a	drive: 5	0.00119812	
	R-26010859	8	0.00135864	
	0 1 3 1	8.5	0,00135247	
				j

26. 10. 23		159
trans (X_260ct 1636 inf)	(Translation)	(= 15
transl X _ 260ct 1725 inf)	> Supermirror: Translation?	= 9
Current (DC) [A]	Coil A (Coox 3) ImT]	Coil B (Coax 5) [mT]
0.24	0.26	0.27
0.5	0.52	0,52
0.74	0.75	0.72
1.0	1.03	1.02
1.24	1.27	1.21
1.5	1.55	1.55
1.74	1.81	1.83
2.0	2.00	2.02
		* * * * * * * * * * * * * * * * * * *
9		
76		
J ₂		
200-MILLION DE LA CONTRACTOR DE LA CONTR		

1	Box our	l Calrove	1FM), 2 lono. 3 k	eltz				161
	Carle 1 d	losed 1	& Superin IN R	2700	1438	- luter P	eal weekt	ach 70%
12		(007		1451			
R	Fold liver (2 od wid	, IN		1504	luilie.	Peale halu	ner noch 10%
			un 2-Adre					
	0ς ω	i. 8,5 v	mil Superin. R.	270015	29			
1								Counts.
	./.	lin.	peach sep. It	Max in 5	1	0 01		falsel polerinent
~ V	1 8	,5	0,00135	1303		1 -21	DL 1529 38	
	6	5	0.00129	1310			44	45
	9,		0.00135	1313			53	40
:v D / 0	Traguel p		deldideed in diese I olan da	s GF un	sepoll lu	al - dalrer	Depolarine	rent
	whersteliend	- 1					(2))
	nono 5,5	ifm 4	0,00129	706	686	K-21	Oct (615	P
	4.5	4	0.00127	737	685		(63)	
	4.5	3	0.00127	745	701		1652	
	4.5	2	0.00124	662	691		1701	
	6.5	2	0,00123	746	745		1711	
	6.5	5	0.00128	687	737		1722	
9	6.5	4	0.00128	749	757		1731	
	6,5	6	0.00128	683	105		1741	1. Prisuma Oline Cd
	6,5	6	0,00133	610	596		1753	und Col
	5.5	6	0.00130	705	667		1807	WWI COL
	5.5	4	0.00131					
28.1	10.23			ot2	715		1816	
		ved an	, dem Strald gedr	4 ~ /	-	3 , super Mis	. W OUT	
	4		bank denen Ment	1 1 1 1				runland -35 Cul
, 50,000			unt 2 Zundzwagn.	R	-2800/16	28	(
			Supernivira	1/12	16	35 -> be	rie balant.	w. Neutrouen
							100710001	ou. Wennouly

neuer Pola	u-helallblende zw. V user mil 2 Zusalz mag	Polarine and CIF-Senso welen am dusquig + 1	R-BS Oct 710 > Depolarines - Metallbleude, reun at Senson	X
	3 0 x 1			
K - 28	Och 1730 cm, 1% deg	rsic.		
DC Lin.	peak sep. H	Max in Ss		
6.5	0.00122	2562 2388	R_280c+1844	
7.5	0.00130	2632 2589	1853	
8.5	0.00134	2794 2619	1900	
→ 9.5	0.00135	2782 2720	1907	
10.5	0.00133	2893 2735	1913	
11.5	0.00 128	2762 2790	1919	
7	Lur_Box_280ct22	200		
	beide Spulen an mit	(46Hz, 1Vp0 = 90	Our A Pleth am Clip	
80.10.23	beide Spulen an mil mux 18°6 contr. bei 24.3°C		Our A Pleth air Clip.	
20.10.23 Aux Del	eldor i position = 2 periodujus bin	11 " Euperprigel 2	On A Pleth ain Clip. () gate 1 closed! PS-90-30 Oct 1136 heir Kontr.	gode 1 a
0.10.23 Aux Del Wtz 2	bei 24.5 C Celdon i prosition = 2 periodur/as bin 100,45 1,45	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	gode 1 2
0.10.23 Aux Del lette , 20	bei 24.3 C Leldon i prosition = 2 perioden/as bin 100,45 1/45 100,67 100,67	11 " Superpugel 2"	PS-90-30 Oct 1136 bein Konb.	gode 1 2
0.10.23 Aux Del lette , 20	bei 24.5 C Celdon i prosition = 2 periodur/as bin 100,45 1,45	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	gode 12
20.10.23 Aux Del ktz 20 30	bei 24.3 C Leldon: prosition = 2 periodus/us bin 100,45 1,45 100,45 1,45 100,67 50 0,5	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	gole 1 2
20.10.23 Aux Del htz 20 30 40	bei 24.3 C Eldon: prosition = 2 periodus/us bin 100,us 1ps 100,us 1ps 50 0,57 40 0.4	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	gove 1 2
20.10.23 Aux Del htz 20 30 40	bei 24.3 C Eldon: prosition = 2 periodus/us bin 100,us 1ps 100,us 1ps 50 0,57 40 0.4	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	godela
0.10.23 Aux Del letz & 20 30 40	bei 24.3 C Eldon: prosition = 2 periodus/us bin 100,us 1ps 100,us 1ps 50 0,57 40 0.4	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	goleta
0.10.23 Aux Del letz & 20 30 40	bei 24.3 C Eldon: prosition = 2 periodus/us bin 100,us 1ps 100,us 1ps 50 0,57 40 0.4	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	govela
0.10.23 Aux Del lette , 20 30 40	bei 24.3 C Eldon: prosition = 2 periodus/us bin 100,us 1ps 100,us 1ps 50 0,57 40 0.4	11 " Superpugel 2"	PS-90-30 Oct 1(36 bein Komb.	golela

Fregn-bul	_310d1218 10h	lts I blultz	Cond. = 222	18 n E
Freq_tes	t_310ct1437.int	10 HHz	60 hHz, C=	= 758 nF
16:00 54 MI	N			
Freq-test.	31 Oct 1702 inf ->	Freq_test_Lo	mg_310ct1702.in	f, C=758 nF
	1 + cos (x - 1 B sú			
		rein, dale 1		
f [hHz]			pl. @ Funktions	generator [V]
10 15 20 25 30 (fres) 35 36 37 38 39 40 41 42 43 44 45 50 55	I @ Stromzange [] 0.63 0.95 1.27 1.58 1.9 2.21 2.28 2.34 2.41 2.47 2.53 2.6 2.7 2.72 2.79 2.85 3.17 3.48 3.8	PPJ 7TM	2.1 2.0 1.6 1.0 0.8 1.55 1.75 2.0 2.25 2.5 2.8 3.05 3.4 3.6 3.45 4.25 6.0 1.8	
1.11.23 olpha-ifg-0	N/OFF - 07 Nov 1243.iv 43,5°/A € 0,34 mt	f Strong i abgegli A 5A 4A 3A 2A 1A	in Equile Au. B cuil 6	

3.11.23	[Coil A	22447		Cail B	Q2hH2		
		8 pF		C=1.133			
d	Ipp [mA]	[mVpp]	$[V_{pp}]^2$	Ipp [mA]	[mVpp]	1 [Vpp]2	
<u>Tr</u> 16	182.8	18.3	2.01	182.8	18.3	2.02	
17 (16 (17 (17 (17 (17 (17 (17 (17 (17 (17 (17	365.5	36,6	4.12	365.5	36.6	4.127	
<u> </u>	731	73.1	8.36	731	73.1	8.43	
x = 2/	is in at			Coil B 1			
1				C = 1.133		.1 - 2	
T = 40	660 603 · 10 ⁻³ · I		×	Ipp EmA	J EmVpp	J [Vpp]2	
8 ≈ 1	,03 , [0 - 1		17/16	183.7	18.4	1.337	
			7/8	367.3	36.7	2.74	
			17/4	734.7	73.5	5.57	
2 Amp TOF.	vs-chi-A	onpen. 1_19pt_p 1_19pt_p	i 16_1500	5-03 Nov 12. 03 Nov 1625. 03 Nov 2326	int In	of in the row $\rightarrow R_{-}C$	cking peak
ifg- TOF_ ifg-	vs_chi_B_ TOF_A_pi vs_chi_A. TOF_B_pi8	8_04 Nov _19pt_pi _04 Nov-	. 1712 8_1200s_ 2345	04 Nov 1031.	int		
70f.	-vs-chi-B-	-79pt - pi 8	7_1200s_	04Nov 2355	·int ->	t was skH	Z

5.11.23

R-05Nov1218 ifg_TOF_A+B_off_05Nov1230 TOF_vs_chi_B_19pt_pi8_1200s_05Nov1240.inf TOF_vs_chi_A_19pt_pi16_1200s_05Nov1913.inf

6.11.23

TOF_vs_chi_B_19pt_pi16_1200s_06Nov0126_inf ifg_TOF_A+B_off_06Nov1029 ifg_TOF_A+B_off_06Nov1058

R_ 06 Nov 1126

TOF_vs_cli_A_19pt_100s_06Nov1154.inf@pi8 TOF_vs_cli_B_19pt_100s_06Nov1229.inf@pi8 ifg_TOF_A+B_off_06Nov1325

ify--5105-105-06Nov 1347 → C≈63%

Temperatur_Box_Quick_06 Nov 1442 inf

Temperatur_Box_06Nov 1532.inf -> 24.2°C, C=73%

TOF_vs_di- 4-22pt_pi8_1200s_06Nov 1855.inf

4.11.23

ifa--2602-30s-07Nov1455.inf

TOF-Vs-Chi_A_22pt_pi16_1200s-07Nov1808.inf

9.11.23				
ing-Vs_B_3KHZB_09Nov	1137.	inf		1 18
ifg2 to2-15s-09 Nov				
ifgZto2-303-09 Nov 143	11			
rocking-09Nov1427-inf				
if82to1_30s_03Nov14:	38. inf			
rocking-03Nov 1558.inf				
ifg2to2_30s_09Nov160	09. inf			
rocking-09Nov 1626. inf				
ifq2 to 2-305-09 Nov 16	37.iv	f		
NEW SETTINGS (CAPACIT			VT VALUES	T, B/I,)
3.3 NF . 3.3 NF		T	CODENCE DE	00 00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON		URRENT PE	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-7	OLTAVE CURRE	
68 m F 69 mF		V PA V	OLTAGE FUN ENERATOR	
33 mF ON T 33 mF 15 mF ON 5 15 mF 6.3 mF			LIVERTOR	
	33 MF	COIL	A (2 18	42) 1
	55 M1			2
$\alpha = 2\mu B \sin(\omega T)$	2	IPP[mA]	VPP [mV]	VPP[V]
T= 24.5881 ms (=>	11/16	169.31	17.0	2.01
B ≈ 1.03 mT	11/8	3 3 8 82	34.0	4.12
\overline{I}_c A				
CURRENT	11/4	679.64	68.0	
(aupl, not Ph-Ph)		COIL	B (3 KH)	<u> </u>
TOF-A+B-pi16_1200.5c	2	IPP [mA]	VPP CmV3	V PPL V J
time = 1200 s period = 1000 ms	17/16	170,76	14.1	2.01
bin width=16.6667, EvigdiV=2	N/8	341,52	34.1	4.12
TOF_A+B_pi8_1200.SC	Tyu	683,04	69.3	9

2:45	957	MW			
2	IPP		IPP [m]		91 [mV] VAP [mV] VAB 2 [V]
1/16	163.	91	170.7	6 17	0 17.1 0.410/*0.415
1/8	339,	82	341.5	1 34	4.0 34.1 0.835/*0.843
17/4	679	.64	683.0	4 68	2.0 68.3 1.7
1/2	1356	3.28	1366.0	8 13	5.9 136.6 3.4
	2718	. 56	2732.1	6 24	1.86 273,2 6.85
Sĩ/4	3398).2	3415.2	33	3 3 4 1 . 5 8 . 5
rof_v	3-Ch1	- A+B	_122 pt_	Pi 8 - 12	200s-4P-10 Nov 2138 inf
.11.2	3				(Changed "2×bin" to "4P")
TOF_V	s.ch	I_A +B	3_22pt_	pi 16_1	1200s-4P-10 Nov \$6502.inf
Wrong	trigg	er set	lings, t	vigdiv=	2 instead of 4. Also a top deligate
eth			, changed rements	Vpp	- 0.415,0.843 for M/16, Mg.
-0F_v	1s_ch	i-A+1	3_22pt.	- pi 16 -	1200 s_4P_ 11 Nov 1354. inf
				100	value at 16:00 is ~ 56 MW
		- A+B	,_22pt	- Pi8-1	200s_4P_11 Nov 2118, inf
11.7 if q2	-	30s_1	2 Nov 2	143 1 inf	21.7.88
				7.1	0s-12 Nov 04 S5.inf
1			12 Nov 1		
TOF_V	s-chi	-A-2	2 pt _ Di	_12 No	ov 1232. inf

In the last measurement, Vpp (covert elip) . shows a lower value than expected: 268 mV instead of 271.86 mV (2=11) Same for the other values of a Ty 134 mV instead of 135.8 mV 5.7.2/67.8 mV instead of 68 mV My -Therefore I changed the amplitude of the function generator to 1.715 - TV4 6.36 - M 3.455 - M/2 ifg - - 2 to 2 _ 303_12Nov 1956_inf iAg - 2 to 2 _ 303_12Nov 2048. inf rocking 12 Nov 2037. inf (Left mearl) SPIN DOWN-TOF VS-Chi-A-22pt-pi4-SD-1200s-12Nov2101inf 13.11-23 ifg--2 to 2-30. Nov inf TOF_vs_chi_A_22pt_p;2_SD_1200s_13Nov0438.inf Snserted Indium in noth 1 (1.8 mm) ifg--2t-02-30s- 13 Nov 1149 inf rocking_ 13 Nov 1222. inf (Bright meak) SPIN UP -TOF-VS-chi_A_Im1_22p-pi16-1200s-13Nov1233.inf

INDIUM OUT 1 Pg - VS - A - 2 KHZB - 13 NOV 2003 : NP script, maybe There was a mistable in the can be used for IFGS iAg-VS-A-2KHZB-13 Nov 2128.inf INDIUM IN (1.8 mm), PATH 1 14.11.23 i Ag - VS-A-2 KHZB-14 NOV 0 1 29 inf ifg--2to2-30s-14 Nov 0308 inf Something went wrong, CONTRAST = 1.9%. Next measurement Seems of Brobably the function generator was still on TOF-Vs-chi-AIm1-22pt-pi8-1200s-14NoV0321.inf 183--2 to2-30s-14Nov 1046 inf CONTRASTED. 6137, but noisy IFG. TOF-VS-Chi-B-In1-22pt-pi16-12005-14 Nov 1116. inf From meliminary analysis it seems weird, interrupted to NOT VERY GOOD 18g-2 to 2-30s-14 Nov 1340. inf It's a bit nowy, proceed with measurement. The previous TOF-VS-chi and the next have to be merged 10F-VS-Chi-B-In1-22pt-pi16-1200s-14Nov 1353.inf 1 Fg - - 2 to 2 - 30s - 14 Nov 1814. inf 70F, VS-Chi_B_Im1_22pt_pi16_1200s_14Nov1827. inf 15.11.23 ifg- -2 to 2-30s-15 Nov 0151 inf TOF-VS-Chi-B-In1-22pt-pi8-1200s-15Nov0203 inf TOF_V3-Chi_A+B_Im1-22pt_pi16-1200s-4P-15Nov0927.inf TOF-NS-Chi-A+B-Im1-22pt-pi8-12005-4P-15 Nov 2121 inf KOD

In the lost meosweements, the intensity seems lower than expected. Run rolling curve and IFG. 10 CRing - 15 Nov 1653 inf Fg_ -2 to 2 - 30s _ 15 Nov. inf Plioling thelp. TOF_vs_chi_A+B_In1_22pt_pi8_1200s_4P_15 Nov 1739 inf 18g - 2 to 2 - 60s - 16 Nov 0106 inf CHANGED INDIUM, NEW THICKNESS = 0.8 mm 22 ≈ 0.808 ≈ 1.375 ifg--2602-60s-16 Nov 0142.inf TOF_VS_cni_A+B_In1_08mm_22pt_p:16_1200s_4P_16Nov0206.inf TOF VS Chi A+B. In 1_08 mm-22pt-pi8_1200s_4P_16Nov 0330.inf ifg--26-2-30s. 16 Nov 1655 inF Measurement with 18 mm Snolium has low intensity. Repeat with longer measurement time. CHANGED INDIUM, BACK TO 1.8 mm ifa - - 2 to 2 - 30s - 16 Nov 1720, inf TOF- vs. chi A+B - In1-22 pt. pi 16-2000 s. 4P-16 Nov 1733 inf

