RECEIVED CENTRAL FAX CENTER AUG 1 6 2006

Replacement Claim Amendment

1. (Currently amended) A method for the treatment of a cell proliferative disease comprising administering to an animal a pharmacologically effective dose of a compound having a structural formula

wherein X is oxygen, nitrogen or sulfur;

Y is oxygen, NH or NCH₃or NR⁶;

R¹ is -(CH₂)₁₋₅CO₂H, -(CH₂)₇CO₂H, -CH₂CONH₂, -CH₂CO₂CH₃,
CH₂CON(CH₂CO₂H)₂, -(CH₂)₂OH, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃R⁷, -C₁

4alkylene-O-C₁₋₄alkyl, -C₁₋₁₀alkylene-CO-SH, -C₁₋₄alkylene-CO-S(C₁₋₄alkyl), -C₁₋₄alkylene-CO-NH_(2-n)(C₁₋₄alkyl), wherein n is 2 or 1, -C₁₋₄alkylene-SO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OSO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OP(O-C₁₋₄alkyl)₃, or -C₁₋₁₀alkylene-CN; or

X and R¹-jointly symbolize N=NR⁹;

R², R³ and R⁴ are independently <u>H or -CH₃hydrogen</u>, C₁₋₄alkyl, -CH₂(C₆H₄)C₁₋₄alkylene-COO+CH₂(C₆H₅), -C₁₋₄alkylene-CO-NH-CH₂(C₆H₅), saccharide, C₁₋₄alkylene-C-NH_(2-n)(C₁₋₄alkyl)_n wherein n is 2 or 1;

R⁴ is C₁₋₄alkyl, -CH₂(C₆H₄)C₁₋₄alkylene-COOH) CH₂(C₆H₄)C₁₋₄alkyl-COOH, -C₁₋₄alkylenealkyl-CO-NH-CH₂(C₆H₅), saecharide, -

C₁₋₄alkylene CO NH_(2-n)(C₁₋₄alkyl)_n wherein n is 2 or 1;

R⁵ is phytyl, -C₁₇H₃₅ (unbranched), -C₁₃H₂₇ (unbranched), -C₂H₁₅ (unbranched), -CH₃, -C₂H₄,

<u>or</u>

with the proviso that R¹ can not be -(CH₂)₂₋₄CO₂H nor -(CH₂)₂OH when R², R³, R⁴ are each -CH₃, X and Y are each oxygen and R⁵ is phytyl, or a pharmacuetical composition thereof is methyl or R⁸;

R6 is hydrogen or -C1-4alkyl;

 R^7 is $-C_{1-10}$ alkylene COOH, C_{1-4} alkylene CONH₂, $-C_{1-4}$ alkylene CON(C_{1-4} alkylene COOH)₂, $-C_{1-4}$ alkylene OH, $-C_{1-4}$ alkylene OSO₂NH($-C_{$

R⁸ is—C₇₋₁₇alkyl, -COOH, C₇₋₁₇ olefinic group containing 3 to 5 ethylenic bonds, -C-C COO C₁₋₄alkyl, or -C₁₋₄alkylene COO-C₁₋₄ alkyl; or a pharmacuetical composition thereof;

wherein when X and Y are O,

 R^{+} -is R^{7} ,

R², R³-are independently hydrogen or C_{1.4}alkyl;

R4 is C1 4alkyl; and

R⁵ is R⁸;

with the provise that R^2 can not be $-C_2$ alkylene COOH _nor $-C_2$ alkylene OH when R^2 , R^3 , R^4 are each methyl and R^8 is a $-C_{16}$ alkyl.

2. (Previously presented) The method of claim 1, wherein said compound is selected from the group consisting of 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) hexanoic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) octanoic acid, 2,5,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,7,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,8-dimethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetate, 2-(N,N-(carboxymethyl)-2(2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethy

trimethylundecyl)chroman-6-yloxy)acetic acid, 2,5,7,8,-tetramethyl-2R-(2,6,10-trimethyl-1,3,5,9 E:Z decatetraen)chroman-6-yloxy)acetic acid, 3-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl)chroman-6-yloxy)propyl-1-ammonium chloride, 2-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl) chroman-6-yloxy)triethylammonium sulfate, 2,5,7,8-tetramethyl-(2R-(heptyl)chroman-6-yloxy)acetic acid, 2,5,7,8,-tetramethyl-(2R-(tridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8,-tetramethyl-(2R-(heptadecyl)chroman-6-yloxy) acetic acid, 2,5,7,8,-tetramethyl-2R-(4,8,-dimethyl-1,3,7 E:Z nonotrien)chroman-6-yloxy) acetic acid, (R)-2[(2,5,7,8-tetramethyl-2-(3 propene methyl ester)chroman-6-yloxy]acetic acid, 2,5,7,8-tetramethyl-(2R-(methylpropionate)chroman-6-yloxy)acetic acid, 1-aza- α -tocopherol-6-yloxyl-acetic acid, 1-aza- α -tocopherol-6-yloxyl-methyl acetate, 1-aza-N-methyl- α -tocopherol-6-yloxyl-methyl acetate, and 1-aza-N-methyl- α -tocopherol-6-yloxyl-acetic acid.

- 3. (Previously presented) The method of claim 1, wherein said compound exhibits an antiproliferative effect comprising apoptosis, DNA synthesis arrest, cell cycle arrest, or cellular differentiation.
- 4. (Previously presented) The method of claim 1, wherein said animal is a human.
- 5. (Previously presented) The method of claim 1, wherein said composition is administered in a dose of from about 1 mg/kg to about 60 mg/kg.
- 6. (Previously presented) The method of claim 1, wherein administration of said composition is selected from the group consisting of oral, topical, intraocular, intranasal, parenteral, intravenous, intramuscular, or subcutaneous.
- 7. (Previously presented) The method of claim 1, wherein said cell proliferative disease is a neoplastic disease, a non-neoplastic disease or a non-neoplastic disorder.
- 8. (Previously presented) The method of claim 7, wherein said neoplastic disease is selected from the group consisting of ovarian cancer, cervical cancer, endometrial cancer, bladder cancer, lung cancer, breast cancer, testicular cancer, prostate cancer, gliomas, fibrosarcomas, retinoblastomas, melanomas, soft tissue sarcomas, ostersarcomas, leukemias, colon cancer, carcinoma of the kidney, pancreatic cancer, basal cell carcinoma, and squamous

cell carcinoma.

- 9. (Withdrawn, previously presented) The method of claim 7, wherein said non-neoplastic disease is selected from the group consisting of psoriasis, benign proliferative skin diseases, ichthyosis, papilloma, restinosis, scleroderma, hemangioma, a viral disease, and an autoimmune disease.
- 10. (Withdrawn, previously presented) The method of claim 9, wherein said autoimmune disease is selected from the group consisting of autoimmune thyroiditis, multiple sclerosis, myasthenia gravis, systemic lupus erythematosus, dermatitis herpetiformis, celiac disease, and rheumatoid arthritis.
- 11. (Withdrawn, previously presented) The method of claim 7, wherein said non-neoplastic disorder is a viral disorder or an autoimmune disorder.
- 12. (Withdrawn, previously presented) The method of claim 11, wherein said viral disorder is Human Immunodeficiency Virus.
- 13. (Withdrawn, previously presented) The method of claim 11, wherein said autoimmune disorder is selected from the group consisting of the inflammatory process involved in cardiovascular plaque formation, ultraviolet radiation induced skin damage and a disorder involving an immune component.
- 14. (Currently amended) A method for the treatment of a cell proliferative disease comprising administering to an animal a pharmacologically effective dose of 6-(2,4-dinitrophenylazo)-2,5,7,8-tetramethyltridecyl)-1,2,3,4-tetrahydroquinoline, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-3-ene-6-yloxy) acetic Acid or 6-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl)chroman) acetic acid.
- 15. (Previously presented) The method of claim 14, wherein said compound exhibits an antiproliferative effect comprising apoptosis, DNA synthesis arrest, cell cycle arrest, or cellular differentiation.
- 16. (Previously presented) The method of claim 14, wherein said animal is a human.

- 17. (Previously presented) The method of claim 14, wherein said composition is administered in a dose of from about 1 mg/kg to about 60 mg/kg.
- 18. (Previously presented) The method of claim 14, wherein administration of said composition is selected from the group consisting of oral, topical, intraocular, intranasal, parenteral, intravenous, intramuscular, or subcutaneous.
- 19. (Previously presented) The method of claim 14, wherein said cell proliferative disease is a neoplastic disease, a non-neoplastic disease or a non-neoplastic disorder.
- 20. (Withdrawn, previously presented) The method of claim 19, wherein said neoplastic disease is selected from the group consisting of ovarian cancer, cervical cancer, endometrial cancer, bladder cancer, lung cancer, breast cancer, testicular cancer, prostate cancer, gliomas, fibrosarcomas, retinoblastomas, melanomas, soft tissue sarcomas, ostersarcomas, leukemias, colon cancer, carcinoma of the kidney, pancreatic cancer, basal cell carcinoma, and squamous cell carcinoma.
- 21. (Withdrawn, previously presented) The method of claim 19, wherein said non-neoplastic disease is selected from the group consisting of psoriasis, benign proliferative skin diseases, ichthyosis, papilloma, restinosis, scleroderma, hemangioma, a viral disease, and an autoimmune disease.
- 22. (Withdrawn, previously presented) The method of claim 21, wherein said autoimmune disease is selected from the group consisting of autoimmune thyroiditis, multiple sclerosis, myasthenia gravis, systemic lupus erythematosus, dermatitis herpetiformis, celiac disease, and rheumatoid arthritis.
- 23. (Withdrawn, previously presented) The method of claim 19, wherein said non-neoplastic disorder is a viral disorder or an autoimmune disorder.
- 24. (Withdrawn, previously presented) The method of claim 23, wherein said viral disorder is Human Immunodeficiency Virus.
- 25. (Withdrawn, previously presented) The method of claim 23, wherein said autoimmune

disorder is selected from the group consisting of the inflammatory process involved in cardiovascular plaque formation, ultraviolet radiation induced skin damage and disorders involving an immune component.

26. (Currently amended) A method of inducing apoptosis of a cell, comprising the step of contacting said cell with a pharmacologically effective dose of a compound having a structural formula

wherein X is oxygen, nitrogen or sulfur;

Y is oxygen, NH or NCH3 or NR6;

R¹ is -(CH₂)₁₋₅CO₂H, -(CH₂)₇CO₂H, -CH₂CONH₂, -CH₂CO₂CH₃,
CH₂CON(CH₂CO₂H)₂, -(CH₂)₂OH, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃R⁷, -C₁

4alkylene-O-C₁₋₄alkyl, -C₁₋₁₀alkylene-CO-SH, -C₁₋₄alkylene-CO-S(C₁₋₄alkyl), -C₁₋₄alkylene-CO-NH_(2-n)(C₁₋₄alkyl), wherein n is 2 or 1, -C₁₋₄alkylene-SO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OSO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OSO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OSO₂-O(C₁₋₄alkyl), -C₁₋₄alkylene-OP(O-C₁₋₄alkyl)₃, or -C₁₋₁₀alkylene-CN; or

X and R¹ jointly symbolize N=NR⁹;

R², R³ and R⁴ are independently <u>H or -CH₃hydrogen</u>, C₁₋₄alkyl, -CH₂(C₆H₄)C₁₋₄alkylene COOH), C₁₋₄alkylene COO CH₂(C₆H₅), -C₁₋₄alkylene-CO NH-CH₂(C₆H₅), saccharide, C₁₋₄alkylene-C-NH_(2-n)(C₁₋₄alkyl)_n wherein n is 2 or 1;

R⁴-is C₁₋₄alkyl, -CH₂(C₆H₄)C₁₋₄alkylene COOH)-CH₂(C₆H₄)C₁₋₄alkyl-COOH, -C₁₋₄alkylenealkyl-CO NH-CH₂(C₆H₅), saccharide, -C₁₋₄alkylene CO-NH_(2-n)(C₁₋₄alkyl), wherein n is 2 or 1;

R⁵ is phytyl, -C₁₇H₃₅ (unbranched), -C₁₃H₂₇ (unbranched), -C₇H₁₅ (unbranched), -CH₃, -C₀₂H,

<u>or</u>

with the proviso that R¹ can not be –(CH₂)₂₋₄CO₂H nor –(CH₂)₂OH when R², R³, R⁴ are each –CH₃, X and Y are each oxygen and R⁵ is phytyl, or a pharmacuetical composition thereof is methyl or R⁸;

R⁶ is hydrogen or G_{1.4}alkyl;

 \mathbb{R}^7 -is— \mathbb{C}_{1-10} alkylene- $\mathbb{C}OOH$, \mathbb{C}_{1-4} alkylene- $\mathbb{C}OOH_2$, \mathbb{C}_{1-4} alkylene- $\mathbb{C}OOH_2$, \mathbb{C}_{1-4} alkylene- $\mathbb{C}OOH_3$, \mathbb{C}_{1-4} alkylene- $\mathbb{C}OOH_4$

-C1-4alkylene-OSO2NH(C1-4alkyl); and

R⁸-is-C₇₋₁₇alkyl, COOH, C₇₋₁₇ olefinic group containing 3 to 5 ethylenic bonds, -C-C-COO C₁₋₄alkyl, or -C₁₋₄alkylene COO C₁₋₄ alkyl; or a pharmacuetical composition thereof;

wherein when X and Y are O.

R⁺-is R²-

R², R³-are independently hydrogen or C₁₋₄alkyl;

R4 is C1 4alkyl; and

R5 is R8;

with the proviso that R⁷ can not be -C_{2.4}alkylene COOH_nor C₃alkylene OH when R², R³, R⁴ are each methyl and R⁸ is a C₁₆ alkyl.

27. (Previously presented) The method of claim 26, wherein said compound is selected from the group consisting of 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)hexanoic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) octanoic acid, 2,5,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,7,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,8-dimethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetamide, methyl 2,5,7,8-tetramethyl-2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetate, 2-(N,N-(carboxymethyl)-2(2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2RS-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid, 2,5,7,8-tetramethyl-(2R-(4R,8R,12-tr

2,5,7,8-tetramethyl-2R-(2RS,6RS,10acid, (carboxy)chroman-6-yloxy))acetic trimethylundecyl)chroman-6-yloxy)acetic acid, 2,5,7,8,-tetramethyl-2R-(2,6,10-trimethyl-1,3,5,9 3-(2,5,7,8-tetramethyl-(2R-(4R,8,12acid, decatetraen)chroman-6-yloxy)acetic E:Z trimethyltridecyl)chroman-6-yloxy)propyl-1-ammonium chloride, 2-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl) chroman-6-yloxy)triethylammonium sulfate, 2,5,7,8-tetramethyl-(2R-(heptyl)chroman-6-yloxy)acetic acid, 2,5,7,8,-tetramethyl-(2R-(tridecyl)chroman-6-yloxy) acetic acid, 2,5,7,8,-tetramethyl-(2R-(heptadecyl)chroman-6-yloxy) acetic acid, 2,5,7,8,tetramethyl-2R-(4,8,-dirnethyl-1,3,7 E:Z nonotrien)chroman-6-yloxy) acetic acid, (R)-2[(2,5,7,8tetramethyl-2-(3 propene methyl ester)chroman-6-yloxy]acetic acid, 2,5,7,8-tetramethyl-(2R-(methyl propionate)chroman-6-yloxy)acetic acid, 1-aza-α-tocopherol-6-yloxyl-acetic acid, 1-1-aza-N-methyl-α-tocopherol-6-yloxyl-methyl aza-α-tocopherol-6-yloxyl-methyl acetate, acetate, and 1-aza-N-methyl-α-tocopherol-6-yloxyl-acetic acid.

- 28. (Previously presented) The method of claim 26, wherein said method is useful in the treatment of a cell proliferative disease.
- 29. (Currently amended) A method of inducing apoptosis of a cell, comprising the step of contacting said cell with a pharmacologically effective dose of 6-(2,4-dinitrophenylazo)-2,5,7,8-tetramethyltridecyl)-1,2,3,4-tetrahydroquinoline.

 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-3-ene-6-yloxy) acetic Acid or 6-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl)chroman) acetic acid.
- 30. (Previously presented) The method of claim 29, wherein said method is useful in the treatment of a cell proliferative disease.

31. (New) The method for of claim 1, wherein the compound has a structural formula

wherein X is oxygen;

Y is oxygen, NH or NCH₃;

R¹ is -(CH₂)₁₋₃CO₂H, -CH₂CON(CH₂CO₂H)₂, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃;

R², R³ and R⁴ are independently -H or -CH₃;

R⁵ is phytyl, -C₁₇H₃₅ (unbranched),

with the proviso that R^1 can not be $-(CH_2)_{2-3}CO_2H$ when R^2 , R^3 , R^4 are each $-CH_3$, Y is each oxygen and R^5 is phytyl, or a pharmaceutical composition thereof.

32. (New) The method of claim 31, wherein Y is oxygen in the structural formula for the

compound.

- 33. (New) The method of claim 31, wherein Y is NH in the structural formula for the compound.
- 34. (New) The method of claim 33, wherein the compound is 1-aza-α-tocopherol-6-yloxylacetic acid.
- 35. (New) The method of claim 31, wherein Y is NCH₃ in the structural formula for the compound.
- 36. (New) The method of claim 35, wherein the compound is 1-aza-N-methyl-α-tocopherol-6-yloxyl-acetic acid.
- 37. (New) The method of claim 31, wherein R⁵ in the structural formula for the compound is:

- 38. (New) The method of claim 37, wherein the compound is 2,5,7,8,-tetramethyl-2R-(4,8,-dimethyl-1,3,7 E:Z nonotrien)chroman-6-yloxy) acetic acid.
- 39. (New) The method of claim 31, wherein R^5 in the structural formula for the compound is $-C_{17}H_{35}$ (unbranched).
- 40. (New) The method of claim 39, wherein the compound is 2,5,7,8,-tetramethyl-(2R-(heptadecyl)chroman-6-yloxy) acetic acid.
- 41. (New) The method of claim 31, wherein R⁵ in the structural formula for the compound is:

- 42. (New) The method of claim 41, wherein the compound is 2,5,7,8-tetramethyl-2R-(2RS,6RS,10-trimethylundecyl)chroman-6-yloxy)acetic acid.
- 43. (New) The method of claim 31, wherein R⁴ is -CH₃ in the structural formula for the compound.
- 44. (New) The method of claim 31, wherein R³ is -H in the structural formula for the compound.
- 45. (New) The method of claim 44, wherein the compound is 2,5,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 46. (New) The method of claim 44, wherein the compound is 2,8-dimethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid.
- 47. (New) The method of claim 31, wherein R² is –H in the structural formula for the compound.
- 48. (New) The method of claim 47, wherein the compound is 2,7,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 49. (New) The method of claim 31, wherein, R¹ is CH₂CO₂H in the structural formula for the compound.
- 50. (New) The method of claim 49, wherein the compound is 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 51. (New) The method of claim 49, wherein the compound is 2,5,7,8-tetramethyl-(2RS-(4RS,8RS,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 52. (New) The method of claim 31, wherein, R¹ is -CH₂CON(CH₂CO₂H)₂ in the structural

formula for the compound.

- New) The method of claim 52, wherein the compound is 2-(N,N-(carboxymethyl)-2(2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid.
- New) The method of claim 31, wherein, R¹ is -(CH₂)₃NH₃Cl in the structural formula for the compound.
- (New) The method of claim 54, wherein the compound is 3-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl)chroman-6-yloxy)propyl-1-ammonium chloride.
- 56. (New) The method of claim 31, wherein R¹ is -(CH₂)₂OSO₃NHEt₃ in the structural formula for the compound.
- 57. (New) The method of claim 56, wherein the compound is 2-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl) chroman-6-yloxy)triethylammonium sulfate.
- 58. (New) The method for of claim 25, wherein the compound has a structural formula

wherein X is oxygen;

Y is oxygen, NH or NCH₃;

R¹ is -(CH₂)₁₋₃CO₂H, -CH₂CON(CH₂CO₂H)₂, -(CH₂)₃NH₃Cl, or -(CH₂)₂OSO₃NHEt₃;

R², R³ and R⁴ are independently -H or -CH₃;

R⁵ is phytyl, -C₁₇H₃₅ (unbranched),

with the proviso that R^1 can not be $-(CH_2)_{2\cdot3}CO_2H$ when R^2 , R^3 , R^4 are each $-CH_3$, Y is each oxygen and R^5 is phytyl, or a pharmaceutical composition thereof.

- 59. (New) The method of claim 58, wherein Y is oxygen in the structural formula for the compound.
- 60. (New) The method of claim 58, wherein Y is NH in the structural formula for the compound.
- 61. (New) The method of claim 60, wherein the compound is 1-aza-α-tocopherol-6-yloxylacetic acid.
- 62. (New) The method of claim 58, wherein Y is NCH₃ in the structural formula for the compound.
- 63. (New) The method of claim 62, wherein the compound is 1-aza-N-methyl-α-tocopherol-6-yloxyl-acetic acid.

64. (New) The method of claim 58, wherein R⁵ in the structural formula for the compound is:

- 65. (New) The method of claim 64, wherein the compound is 2,5,7,8,-tetramethyl-2R-(4,8,-dimethyl-1,3,7 E:Z nonotrien)chroman-6-yloxy) acetic acid.
- 66. (New) The method of claim 58, wherein R⁵ in the structural formula for the compound is -C₁₇H₃₅ (unbranched).
- 67. (New) The method of claim 66, wherein the compound is 2,5,7,8,-tetramethyl-(2R-(heptadecyl)chroman-6-yloxy) acetic acid.
- 68. (New) The method of claim 58, wherein R⁵ in the structural formula for the compound is:

- 69. (New) The method of claim 68, wherein the compound is 2,5,7,8-tetramethyl-2R-(2RS,6RS,10-trimethylundecyl)chroman-6-yloxy)acetic acid.
- 70. (New) The method of claim 58, wherein R⁴ is -CH₃ in the structural formula for the compound.
- 71. (New) The method of claim 58, wherein R³ is -H in the structural formula for the compound.
- 72. (New) The method of claim 71, wherein the compound is 2,5,8-trimethyl-(2R-(4R,8R,12-

trimethyltridecyl)chroman-6-yloxy)acetic acid.

- 73. (New) The method of claim 71, wherein the compound is 2,8-dimethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid.
- 74. (New) The method of claim 58, wherein R² is -H in the structural formula for the compound.
- 75. (New) The method of claim 74, wherein the compound is 2,7,8-trimethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 76. (New) The method of claim 58, wherein, R¹ is CH₂CO₂H in the structural formula for the compound.
- 77. (New) The method of claim 76, wherein the compound is 2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 78. (New) The method of claim 76, wherein the compound is 2,5,7,8-tetramethyl-(2RS-(4RS,8RS,12-trimethyltridecyl)chroman-6-yloxy)acetic acid.
- 79. (New) The method of claim 58, wherein, R¹ is -CH₂CON(CH₂CO₂H)₂ in the structural formula for the compound.
- 80. (New) The method of claim 79, wherein the compound is 2-(N,N-(carboxymethyl)-2(2,5,7,8-tetramethyl-(2R-(4R,8R,12-trimethyltridecyl) chroman-6-yloxy) acetic acid.
- 81. (New) The method of claim 58, wherein, R¹ is -(CH₂)₃NH₃Cl in the structural formula for the compound.
- 82. (New) The method of claim 81, wherein the compound is 3-(2,5,7,8-tetramethyl-(2R-(4R,8,12-trimethyltridecyl)chroman-6-yloxy)propyl-1-ammonium chloride.
- 83. (New) The method of claim 58, wherein R¹ is -(CH₂)₂OSO₃NHEt₃ in the structural formula for the compound.
- 84. (New) The method of claim 83, wherein the compound is 2-(2,5,7,8-tetramethyl-(2R-

(4R,8,12-trimethyltridecyl) chroman-6-yloxy)triethylammonium sulfate.