

OpenPAI: The Open Source Initiative for AI Platform in China

CQU CS1701

NLP Research Group

Background and Motivation

- Artificial Intelligence (AI) becomes one major focus and heated across academia and industries
- Major opportunity to democratize Al through innovations on Al infrastructure
 - Lower the entry bar for new comers
 - Facilitate AI education
 - Speed up Al research
 - Accelerate the penetration of Al across industries

Current Status and Challenges of Al Platform

- Still in early stage: ad hoc ways to build/deploy an AI platform
 - It is easy to build small-scale platforms with a narrowed, specific purpose
- Need an AI platform that works in different environment and application scenario
 - On-premise, cloud, and hybrid environment
 - Image/video, speech, language, vertical domain
 - High compatibility, extensibility, manageability, efficiency

The Importance of an Al Platform

- Infrastructure support for the advance of artificial intelligence
 - Deep learning algorithms and frameworks run on
 - Manage hardware
- A platform to boost AI innovation and productivity
 - Allow researchers/practitioners to focus on AI innovation, instead of the hassles of infra. construction, deployment, management, and optimization
 - Enable results sharing, build a community for mutual learning/leveraging, and rapid innovation

An Open Platform for Al R&D and Education

- The co-development of AI innovation, AI education, and AI platform evolution
 - Research, education, and production
- Design AI course project, perform training to grow AI talent pool
- Open source, result sharing, a community for collaborative innovation

Overview

Cognitive Ability

Visual Perception

NLU

Speech Recognition

Tools

Al Lifecycle Management

Management Integration

Compiling Optimization

Shared Resources

Practice

Curriculum

Data

Management and Intelligent Platform

Heterogeneous Cluster Management & Scheduling

→ System-level Intelligent Optimization

Deep Learning and **Intelligent Exploration**

Infrastructure

China Open Al Platform Alliance

Open Platform for AI (OpenPAI)

- A platform for GPU cluster management
 - Openness: open source (MIT), open collaboration model
 - Extensibility: support all deep learning frameworks, GPU/FPGA/ASIC
 - Modularity: micro-service, different component choice (storage, scheduler)
 - Efficiency: fine-grained GPU scheduling, support IB/RDMA
 - Manageability: job and platform monitoring, deployment, upgrade, etc.
 - Robust: fault tolerance
 - Practicability: leverage the mature design and practice in Microsoft

OpenPAI Architecture

Implementation

https://github.com/Microsoft/pai

OpenPAI – Modularized (containerized) AI Platform

- PAI marketplace
 - Al asset sharing
- PAI protocol resource specification
 - Data, code, docker image
 - Hardware requirement
- Job Launcher
 - Understand PAI protocol and execute the job accordingly
 - Onboard new AI workload w/o modifications to the platform
- Deployment in different environment
 - Single-box, cloud, on-prem, hybrid

An Open Ecosystem: Engage with China Al Community

Train models on OpenPAI

CQU CS1701 NLP Research Group


```
"jobName": "tensorflow-cifar10",
"image": "tensorflow/tensorflow:1.12.0-gpu-py3",
"taskRoles": [
  "name": "default",
  "taskNumber": 1,
  "cpuNumber": 4,
  "memoryMB": 8192,
  "gpuNumber": 1,
  "command": "apt update && apt install -y git && git clone https://github.com/tensorflow/models && cd
models/research/slim && python download_and_convert_data.py --dataset_name=cifar10 --dataset_dir=/tmp/data &&
python train_image_classifier.py --dataset_name=cifar10 --dataset_dir=/tmp/data --max_number_of_steps=1000"
```


Build a Docker Image

CQU CS1701 NLP Research Group

Regist a docker-hub account

Regist url: https://hub.docker.com/signup

Sign in url: https://hub.docker.com/signup

Docker Identification In order to get you started, let us get you a Docker ID. Already have an account? Sign In Enter a Docker ID Docker ID is require Password Email I agree to Docker's Terms of Service. I agree to Docker's Privacy Policy and Data Processing Terms. (Optional) I would like to receive email updates from Docker, including its various services and products. 进行人机身份验证 障私权 - 使用条款 Continue

Install Docker-CE(Ubuntu)

- Step0: Install the Windows Subsystem for Linux(If use windows 10)
- Step1: Uninstall old versions
- Step2: Install Docker Engine Community
 - Install using the repository
 - Install from a package

Install the Windows Subsystem for Linux

- 1. Open PowerShell as Administrator and run:
 - Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux
- 2. Restart your computer when prompted.
- 3. Download Ubuntu and install from the Microsoft
- 4. Run Ubuntu Subsystem

Run Linux on Windows

Install and run Linux distributions side-by-side on the Windows Subsystem for Linux (WSL).

Install from a package

- 1. Go to https://download.docker.com/linux/ubuntu/dists/, choose your Ubuntu version, browse to pool/stable/, choose amd64 and download the .deb file for the Docker Engine Community version you want to install.
- 2. Install Docker Engine Community, changing the path below to the path where you downloaded the Docker package.
 - sudo dpkg -i /path/to/package.deb
- 3. Verify that Docker Engine Community is installed correctly by running the helloworld image.
 - sudo docker run hello-world

Install Docker Desktop(Windows)

- Download Docker Desktop(CE version)
 - https://hub.docker.com/editions/community/dockerce-desktop-windows
- Install Docker Desktop for Windows desktop app
- Start Docker Desktop for Windows
 - Run Docker
 - Input command in Powershell

Build your own docker environment

- Download base Dockerfile
- Build Docker image
 - cd ../Dockerfiles/cuda8.0-cudnn6
 - sudo docker build -f Dockerfile.build.base -t pai.example.jupyter .
- Push the Docker image to Docker-Hub
 - sudo docker tag pai.example.jupyter USER/pai.example.jupyter
 - sudo docker push USER/pai.example.jupyter

Use your own Docker image to submit jobs

```
"jobName": "test_store",
"image": "lvyufengh/pai.example.jupyter",
"virtualCluster": "default",
"taskRoles": [
  "name": "test_store",
  "taskNumber": 1,
  "cpuNumber": 4,
  "memoryMB": 32000,
  "gpuNumber": 1,
  "command": "sleep infinity"
```

Some commands

- apt install nfs-common && mkdir /models && mount -t nfs4 <server address>:<server path> /models
- showmount -e 202.202.5.138

Thank you!