Amanda Cabral, Camila Oliveira, Pedro Branquinho

INFERÊNCIA ÓTICA

Lorena, São Paulo 2019

Amanda Cabral, Camila Oliveira, Pedro Branquinho

INFERÊNCIA ÓTICA

CINÉTICA DO GÁS HCL

Universidade de São Paulo – USP Escola de Engenharia de Lorena Ciências Básicas e Ambiental

> Lorena, São Paulo 2019

RESUMO

Por meio de um elaborado aparato experimental, utilizando-se diversas lentes, conseguimos com que a luz vermelha ficasse em condições nítidas de interferência. Por conseguinte, demonstramos o caracter de onda das ondas eletromagnéticas.

Palavras-chaves: Interferência; Onda eletromagnética.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Experimento, com prismas, de Newton	7
Figura 2 -	Representação moderna do experimental de Newton	7
Figura 3 -	Experimento sobre interferência ondular de Young	8
Figura 4 -	Representação do aparato experimental	10

LISTA DE TABELAS

Tabela 1 -	Memória de cálculo	10
Tabela 2 -	Tabela com os valores de separação lateral medidos por uma escala	
	milimétrica	10
Tabela 3 -	Tabela com os valores de separação lateral medidos por uma escala	
	micrométrica	11

SUMÁRIO

1	OBJETIVO
2	INTRODUÇÃO 7
3	PROCEDIMENTO EXPERIMENTAL 9
4	RESULTADOS 10
5	CONCLUSÃO
	REFERÊNCIAS

1 OBJETIVO

O aparato experimental foi feito especialmente para que um feixe de luz se comportasse como duas fontes. E, à partir disso, impomos a condição, por meio do aparato experimental, de que esses dois feixes de luz se encontrassem. E, então magnificamos o que acontece em escalas microscópicas, exatamente no ponto de encontro dos feixes. Por fim, objetivamos mostrar que há interferência, e que a superposição é válida, assim, mostrando-se que essa luz possui comportamento ondular, como previsto na literatura (RUBINOWICZ, 1957).

2 INTRODUÇÃO TEÓRICA

O estudo da luz originou-se em uma série de experimentos no séculos XVII, XVIII e XIX, com Francesco Grimaldi, Isaac Newton, Thomas Young e Augustin-Jean Fresnel. Isaac Newton acreditava, pelo resultado dos seus experimentos, que a luz branca deveria ser composta por corpúsculos, pois viajam em linha reta, e podem ser refratados. Vemos alguns de seus experimentos, esquematicamente, na Figura 1 e Figura 2.

Figura 1 – Experimento, com prismas, de Newton

Fonte: http://www.webexhibits.org/colorart/bh.html

Figura 2 – Representação moderna do experimental de Newton

Fonte: Helen Klus, http://www.thestargarden.co.uk/Newtons-theory-of-light.html

Porém, T. Young especulava, à partir de conhecimentos físicos, e situações hipotéticas de que a luz deveria se comportar como onda, sob certas condições. Em seu livro, *A course of lectures on natural philosophy and the mechanical arts: in two volumes*, Young descreve experimentos para que seja observada a natureza ondular da luz (YOUNG, 1807). Podemos ver uma das imagens em seu livro, descrevendo um experimento de interferência na Figura 3.

Figura 3 – Experimento sobre interferência ondular de Young

Fonte: A course of lectures on natural philosophy and the mechanical arts: in two volumes

Iremos utilizar, para a medida da distância entre duas interferências contrutivas, consecutivas, a fórmula,

$$\Lambda = \frac{\lambda}{2\sin\left(\frac{\theta}{2}\right)}$$

(AL., 2013).

3 PROCEDIMENTO EXPERIMENTAL

- Utilizou-se um laser e um divisor de feixe e ajustou-o de tal forma que os dois feixes emergentes estivessem aproximadamente paralelos entre si, horizontais, e separados por ≈2 cm. Com isso, produziu-se uma diferença de caminho óptico entre dois feixes provenientes de uma mesma fonte corrente (laser de He/Ne)
- 2. Posicionou-se quatro espelhos (planos) sobre a bancada para que o feixe principal percorra ≈5 metros antes de iluminar o centro de uma escala micrométrica, posicionada no centro da bancada. Ajustou-se os espelhos (altura e inclinação) para que o feixe incidisse próximo ao centro dos espelhos e estivesse sempre horizontal, mantendo a mesma altura em relação à bancada. Bloqueou-se o feixe secundário do divisor para não se confundir durante esse alinhamento.
- 3. Posicionou-se um espelho plano para que o feixe transmitido através da escala micrométrica percorresse ≈2m até o centro de um anteparo, mantendo-se sempre no plano horizontal
- 4. Posicionou-se uma lente de distância focal 5 ou 6 cm após a escala micrométrica de tal forma que esta esteja próxima ao foco da lente. Ajustou-se lateralmente a lente, de modo que o feixe do laser passasse pelo seu centro. Nessa condição, a parte mais brilhante do feixe ampliado deve estar centralizado no anteparo. Observou-se a imagem da escala micrométrica projetada no anteparo.
- 5. Desbloqueou-se o feixe secundário do divisor de feixes e ajustou-se a orientação do espelho 100% refletor do divisor de modo que os dois feixes pudessem se superpor na escala micrométrica. Fez-se o ajuste fino observando o aparecimento de um padrão de interferência nítido no anteparo.
- 6. Mediu-se a distância percorrida pela feixe entre o divisor de feixes e a escala micrométrica e a separação de feixes no divisor. Com isso determinou o ângulo entre os feixes.
- 7. Realizou-se a medida da separação entre máximos consecutivos e calculou-se o comprimento de onda do laser. Repetiu-se para mais duas separações entre os feixes após o divisor, preenchendo a tabela dada.
- 8. Focalizou-se nitidamente o retículo, medindo a distância lente-retículo (S) e lente-anteparo (S'), e a distância entre máximos no anteparo. Com isso, calculou-se a separação entre máximos no retículo e determinou-se o comprimento de onda do laser. Repetiu-se para mais duas separações entre os espelhos.

4 RESULTADOS

Primeiramente definimos o valor de θ , que é dado pelo $\arctan{(\frac{D}{5m})}$, pela relação trigonométrica de triângulos retângulos. Na Figura 4 é possível ver que a distância do semiespelho até a escala micrométrica é um dos catetos do triângulo, e a distância entre os dois espelhos é o outro cateto.

Espelho 100%

Lente

Escala micrométrica

Semiespelho 50%

Figura 4 – Representação do aparato experimental

Fonte: Os autores

As tabelas dos dados referentes à esse aparato experimental,

Tabela 1 – Memória de cálculo

D(m)	$\tan O = \frac{D}{5}$	0	$2\sin(2O)$
0.0136	0.00272	0.155844	0.01879
0.0103	0.00206	0.118029	0.008239
0.012	0.00240	0.137509	0.009599

Fonte: Produzido pelos autores

Tabela 2 – Tabela com os valores de separação lateral medidos por uma escala milimétrica

Separação lateral entre os feixes (cm)		os feixes (cm)	Distância entre os máximos (mm)	Comprimento de ondas (nm)	
$\overline{d_1}$	d_2	d_3	d_4		
1.4	1.4	1.3	1.360	0.3	3263.48
1	0.9	1.2	1.103	0.2	1647.99
1.200	1.200	1.200	1.200	0.25	2399.98
				$\lambda = 2437.15 \pm 660.4nm$	

Fonte: Produzido pelos autores

Para calcular a distância entre o comprimento de onda utilizamos a Figura 2, onde pegamos o valor do θ calculado anteriormente e utilizamos o valor da separação lateral entre os pontos de máximo Λ , Figura 2.

Para medir a distância lateral entre os máximos nessa parte do experimento utilizamos a escala micrométrica, e os valores obtidos são apresentados na Tabela 3.

O primeiro método para se obter o valor de λ foi o menos preciso pois o seu desvio padrão foi bem grande e o menos exato considerando a que o valor médio experimental está muito distante do valor real conhecido. O segundo método foi mais preciso com o valor do desvio padrão menor, mas ainda assim não é exato pois o valor médio experimental ser muito superior ao valor real.

Na segunda parte do experimento, utilizamos o artifício da ampliação lateral feita com uma lente, calculamos o valor da ampliação M, que é dado pela razão entre a distância da lente até o objeto e a distância da imagem até a lente, e depois com o valor da ampliação e o valor do tamanho lateral da imagem, calculamos o valor do tamanho lateral do objeto, que é equivalente a distância entre dois máximos, que são aprensetados na Tabela 3.

Tabela 3 – Tabela com os valores de separação lateral medidos por uma escala micrométrica

Separação lateral entre feixes (cm)		al entre feixes (cm)	Distância entre máximos (mm)	$\frac{S}{S'}$	Comprimento de ondas (nm)	
d_1	d_2	d_3	d_4			
1.4	1.4	1.3	1.36	1.0	30.73	3263.49
1	0.9	1.2	1.103	0.2	30.73	536.28
1.2	1.2	1.2	1.2	0.25	30.73	780.99
	$\lambda = 2437.15 \pm 660.4nm$					

Fonte: Produzido pelos autores

5 CONCLUSÃO

No experimento esperávamos poder definir o comprimento de onda de uma luz polarizada. Contudo, devido a escala do resultado que esperávamos, que é muito pequena, e os diversos erros a serem considerados nas medidas de comprimento durante a atividade experimental, não conseguimos chegar a um resultado satisfatório próximo ao real.

REFERÊNCIAS

AL., T. B. B. et. *Laboratório de Física IV: livro de práticas*. São Carlos: Instituto de Física de São Carlos, 2013. Citado na página 8.

RUBINOWICZ, A. Thomas young and the theory of diffraction. *Nature*, Springer, v. 180, n. 4578, p. 160–162, 1957. Citado na página 6.

YOUNG, T. A course of lectures on natural philosophy and the mechanical arts: in two volumes. [S.I.]: Johnson, 1807. v. 2. Citado na página 8.