HW 05 Soultions

Elijah Willie

November 08, 2018

Introduction

In this assignment, I will attempt to do the following tasks:

- Writing functions that are useful to analyze the gapminder dataset
- Work with a nested data frame

Load in required libraries

First we will load in all the libraries we will be using for this assignment.

```
library(gapminder)
suppressMessages(library("tidyverse"))
library(knitr)
suppressMessages(library(reshape2))
suppressMessages(library(Hmisc))
suppressMessages(library(gridExtra))
library(knitr)
suppressMessages(library(MASS))
suppressMessages(library(broom))
```

Part 1: Writing Functions

For this section, I will do the following:

- Fit a model model linear model that predicts life expectancy for year, pop or gdpPercap for a given country.
- Create a function to plot a linear fit

Create a function that fits a linear model

```
fit_model <- function(Country, variable, data){
#extract the data for the specific country
data_country <- as.data.frame(data) %>%
  filter(country == Country)

#fit the model
if(variable == "pop"){
  model_fit <- lm(lifeExp ~ pop, data_country)
}
if(variable == "gdpPercap"){
  model_fit <- lm(lifeExp ~ gdpPercap, data_country)
}
if(variable == "year"){
  model_fit <- lm(lifeExp ~ year, data_country)</pre>
```

```
return(model_fit)
}
```

Create a function that plots the a given regression fit

Test out the functions

Predict life expectancy for Liberia and Ghana using population.

```
#create a set of countries
countries <- c("Liberia", "Ghana")

#fit a linear model using population
res <- lapply(countries, fit_model, variable = "pop", data = gapminder)

#generate the plots
plots <- lapply(res, plotReg)

#put them on a grid
grid.arrange(plots[[1]], plots[[2]])</pre>
```


Intercept = 40.124 Slope = 9.6826e-07 P = 1.13e-06

Looking at the plots above, we see that population does a much better job at predicting life expectancy when for Ghana When compared with Liberia.

Now predict again, but this time use gdpPercap

```
#fit a linear model using gdpPercap
res <- lapply(countries, fit_model, variable = "gdpPercap", data = gapminder)

#generate the plots
plots <- lapply(res, plotReg)

#put them on a grid
grid.arrange(plots[[1]], plots[[2]])</pre>
```


Intercept = 49.888 Slope = 0.0023481 P = 0.85654

Here we see that gdpPercap does a pretty terrible job at predicting life xpectancy. Maybe using year would help.

```
#fit a linear model using population
res <- lapply(countries, fit_model, variable = "year", data = gapminder)

#generate the plots
plots <- lapply(res, plotReg)

#put them on a grid
grid.arrange(plots[[1]], plots[[2]])</pre>
```

Intercept = -147.54 Slope = 0.095994 P = 0.0089067

Intercept = -584.55 Slope = 0.32174 P = 2.5186e-10

That is much better indeed. We still see that it performs much better for Ghana than Liberia.

Part 2 Work with a nested data frame

In the part, I will attempt to do the following

- Nest the data by country (and continent).
- Fit a model of life expectancy against year. Possibly quadratic, possibly robust.
- Use functions for working with fitted models or the broom package to get information out of your linear models.
- Use the usual dplyr, tidyr, and ggplot2 workflows to explore, e.g., the estimated cofficients.
- I will be following the tutorial here closely, but with my own twists and turns.

```
#nest the gapminder dataset by country and continent
gap_nested <- gapminder %>%
   group_by(continent, country) %>%
   nest()
#lets get some information on the new dataset
gap_nested
## # A tibble: 142 x 3
##
      continent country
                            data
##
      <fct>
                <fct>
                             st>
##
   1 Asia
                Afghanistan <tibble [12 x 4]>
   2 Europe
                Albania
                             <tibble [12 x 4]>
   3 Africa
                             <tibble [12 x 4]>
                Algeria
```

```
## 4 Africa
               Angola
                           <tibble [12 x 4]>
## 5 Americas Argentina
                           <tibble [12 x 4]>
## 6 Oceania Australia
                           <tibble [12 x 4]>
                           <tibble [12 x 4]>
## 7 Europe
               Austria
## 8 Asia
               Bahrain
                           <tibble [12 x 4]>
## 9 Asia
               Bangladesh <tibble [12 x 4]>
## 10 Europe
               Belgium
                           <tibble [12 x 4]>
## # ... with 132 more rows
nrow(gap_nested)
## [1] 142
ncol(gap_nested)
## [1] 3
```

We see that the new dataframe has 142 rows and 3 columns

Now lets take a look at some of the elements of the new nested dataframe

```
#we can use indices to get information about the data
kable(gap_nested[[1, "data"]])
```

year	life Exp	pop	gdpPercap
1952	28.801	8425333	779.4453
1957	30.332	9240934	820.8530
1962	31.997	10267083	853.1007
1967	34.020	11537966	836.1971
1972	36.088	13079460	739.9811
1977	38.438	14880372	786.1134
1982	39.854	12881816	978.0114
1987	40.822	13867957	852.3959
1992	41.674	16317921	649.3414
1997	41.763	22227415	635.3414
2002	42.129	25268405	726.7341
2007	43.828	31889923	974.5803

```
#let see if we can get the country
gap_nested$country[[1]]
## [1] Afghanistan
## 142 Levels: Afghanistan Albania Algeria Angola Argentina ... Zimbabwe
#we can even get data for a specific country
gap_nested[gap_nested$country == "Liberia",][["data"]]
## [[1]]
## # A tibble: 12 x 4
##
      year lifeExp
                        pop gdpPercap
##
                                <dbl>
      <int>
              <dbl>
                      <int>
##
   1 1952
               38.5 863308
                                 576.
              39.5 975950
   2 1957
##
                                 621.
##
   3 1962
              40.5 1112796
                                 634.
  4 1967
##
              41.5 1279406
                                 714.
## 5 1972
               42.6 1482628
                                 803.
## 6 1977
              43.8 1703617
                                 640.
```

```
##
   7 1982
               44.9 1956875
                                 572.
##
   8 1987
               46.0 2269414
                                 506.
               40.8 1912974
##
   9 1992
                                 637.
## 10 1997
               42.2 2200725
                                 609.
## 11
       2002
               43.8 2814651
                                 531.
## 12 2007
               45.7 3193942
                                 415.
#lets try it for another country
gap_nested[gap_nested$country == "Ghana",][["data"]]
## [[1]]
## # A tibble: 12 x 4
##
       year lifeExp
                         pop gdpPercap
##
      <int>
              <dbl>
                       <int>
                                 <dbl>
   1 1952
##
               43.1 5581001
                                  911.
   2 1957
##
               44.8 6391288
                                 1044.
##
   3 1962
               46.5 7355248
                                 1190.
##
   4 1967
               48.1 8490213
                                 1126.
##
   5 1972
               49.9 9354120
                                 1178.
##
   6 1977
               51.8 10538093
                                  993.
  7 1982
##
               53.7 11400338
                                  876.
##
   8 1987
               55.7 14168101
                                  847.
## 9 1992
               57.5 16278738
                                  925.
               58.6 18418288
## 10 1997
                                 1005.
## 11 2002
               58.5 20550751
                                 1112.
## 12 2007
               60.0 22873338
                                 1328.
Now lets fit some models to the data and see how they behave
#fit a linear model
lin_fit <- lm(lifeExp ~ year, data = gap_nested[[1, "data"]])</pre>
paste("linear fit summary: ")
## [1] "linear fit summary: "
summary(lin_fit)
##
## Call:
## lm(formula = lifeExp ~ year, data = gap_nested[[1, "data"]])
##
## Residuals:
                1Q Median
                                30
                                       Max
## -1.5447 -0.9905 -0.2757 0.8847
                                    1.6868
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -507.53427
                            40.48416
                                     -12.54 1.93e-07 ***
## year
                  0.27533
                             0.02045
                                       13.46 9.84e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.223 on 10 degrees of freedom
## Multiple R-squared: 0.9477, Adjusted R-squared: 0.9425
## F-statistic: 181.2 on 1 and 10 DF, p-value: 9.835e-08
```

```
#compute the AIC and BIC for this model
paste("linear fit AIC and BIC are: ", AIC(lin_fit), BIC(lin_fit))
## [1] "linear fit AIC and BIC are: 42.6938696916089 44.1485896409729"
#fit a quadratic
quad_fit <- lm(lifeExp ~ poly(year, 2), data = gap_nested[[1, "data"]])</pre>
paste("Quad fit summary: ")
## [1] "Quad fit summary: "
summary(quad fit)
##
## lm(formula = lifeExp ~ poly(year, 2), data = gap_nested[[1, "data"]])
## Residuals:
       Min
                  1Q
                     Median
                                            Max
                                    30
## -0.75900 -0.51487 0.02653 0.51654 0.62231
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                               0.1691 221.693 < 2e-16 ***
## (Intercept)
                   37.4788
## poly(year, 2)1 16.4623
                               0.5856 28.110 4.44e-10 ***
## poly(year, 2)2 -3.4446
                               0.5856 -5.882 0.000234 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5856 on 9 degrees of freedom
## Multiple R-squared: 0.9892, Adjusted R-squared: 0.9868
## F-statistic: 412.4 on 2 and 9 DF, p-value: 1.41e-09
#compute the AIC and BIC for this model
paste("Quad fit AIC and BIC are: ", AIC(lin_fit), BIC(lin_fit))
## [1] "Quad fit AIC and BIC are: 42.6938696916089 44.1485896409729"
#fit a robust regression
#note that we will need to use the MASS library to do this
robust_fit <- rlm(lifeExp ~ year, data = gap_nested[[1, "data"]])</pre>
paste("Robust fit summary: ")
## [1] "Robust fit summary: "
summary(robust_fit)
##
## Call: rlm(formula = lifeExp ~ year, data = gap_nested[[1, "data"]])
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -1.5447 -0.9905 -0.2757 0.8847
                                    1.6868
##
## Coefficients:
##
                         Std. Error t value
               Value
## (Intercept) -507.5343
                           40.4842
                                     -12.5366
## year
                            0.0205
                                      13.4629
                  0.2753
##
```

```
## Residual standard error: 1.526 on 10 degrees of freedom
#compute the AIC and BIC for this model
paste("Robust fit AIC and BIC are: ",AIC(robust_fit), BIC(robust_fit))
```

[1] "Robust fit AIC and BIC are: 42.6938696916086 44.1485896409726"

We see that for lifeEXp, there is no difference in using a linear, quadratic, or robust model. They all return the same AIC and BIC values.

Now all this seems cumbesome, so lets create another function to fit the linear and the robust for us. :relieved:

```
nested_fit <- function(Country, type = "linear", variable = "pop"){
   country_dat <- as.data.frame(gap_nested[gap_nested$country == Country,][["data"]])
   if(type == "robust"){
     if(variable == "pop") fit <- rlm(lifeExp ~ pop, data = country_dat)
        if(variable == "year") fit <- rlm(lifeExp ~ year, data = country_dat)
        if(variable == "gdpPercap") fit <- rlm(lifeExp ~ gdpPercap, data = country_dat)
   }
   if(type == "linear"){
     if(variable == "pop") fit <- lm(lifeExp ~ pop, data = country_dat)
        if(variable == "year") fit <- lm(lifeExp ~ year, data = country_dat)
        if(variable == "gdpPercap") fit <- lm(lifeExp ~ gdpPercap, data = country_dat)
   }
   return(fit)
}</pre>
```

Lets test this function out. :smirk:

```
#compute a fit for liberia using a regular linear model
res <- nested_fit("Liberia", variable = "pop")
#summarize the model
summary(res)</pre>
```

```
##
## Call:
## lm(formula = lifeExp ~ pop, data = country_dat)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -1.9374 -1.3067 -0.2875 1.1579 2.3414
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.766e+01 1.237e+00 30.447 3.42e-11 ***
## pop
              2.655e-06 6.368e-07
                                   4.169 0.00192 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.533 on 10 degrees of freedom
## Multiple R-squared: 0.6348, Adjusted R-squared: 0.5982
## F-statistic: 17.38 on 1 and 10 DF, p-value: 0.001922
#compute AIC and BIC
#using the function defined earlier, plot this fit
plotReg(res)
```

Intercept = 37.661 Slope = 2.6546e-06 P = 0.0019217


```
#now fit a robust model
res_rob <- nested_fit("Liberia", type = "robust", variable = "pop")</pre>
#show some summary
summary(res_rob)
##
## Call: rlm(formula = lifeExp ~ pop, data = country_dat)
## Residuals:
       Min
                1Q Median
                                 3Q
                                        Max
## -1.9374 -1.3067 -0.2875
                            1.1579
                                     2.3414
##
## Coefficients:
##
               Value
                        Std. Error t value
```

##
Residual standard error: 1.973 on 10 degrees of freedom

That was fun, now lets use the map function to do this for a few countries from part 1. :wink:

30.4470 4.1688

```
#use the map function to fit to two countries using year as predictor
fits <- map(countries,nested_fit)
fits</pre>
```

```
## [[1]]
##
## Call:
## lm(formula = lifeExp ~ pop, data = country_dat)
```

0.0000 0.0000

(Intercept) 37.6612 1.2369

pop

```
##
## Coefficients:
## (Intercept)
                        pop
     3.766e+01
##
                  2.655e-06
##
##
## [[2]]
##
## Call:
## lm(formula = lifeExp ~ pop, data = country_dat)
## Coefficients:
## (Intercept)
                        pop
                  9.683e-07
     4.012e+01
##
We can finally do this for all countries in our dataset. :muscle:
#apply this function to all countries in the dataset
gap_nested <- gap_nested %>%
   mutate(fit = map(country, nested_fit))
#show the result
gap nested
## # A tibble: 142 x 4
##
      continent country
                            data
                                               fit
##
      <fct>
                <fct>
                            st>
                                               st>
##
   1 Asia
                Afghanistan <tibble [12 x 4]> <S3: lm>
## 2 Europe
                            <tibble [12 x 4]> <S3: lm>
                Albania
## 3 Africa
                Algeria
                            <tibble [12 x 4]> <S3: lm>
## 4 Africa
                Angola
                            <tibble [12 x 4] > <S3: lm>
## 5 Americas Argentina
                            <tibble [12 x 4]> <S3: lm>
  6 Oceania
                Australia
                            <tibble [12 x 4] > <S3: lm>
                            <tibble [12 x 4]> <S3: lm>
## 7 Europe
                Austria
##
   8 Asia
                Bahrain
                            <tibble [12 x 4]> <S3: lm>
## 9 Asia
                            <tibble [12 x 4]> <S3: lm>
                Bangladesh
## 10 Europe
                Belgium
                            <tibble [12 x 4]> <S3: lm>
## # ... with 132 more rows
Finally, we will use the broom library to tidy up the results
#apply broom to each country
gap_nested <- gap_nested %>%
  mutate(tidy = map(fit, tidy))
#have a look at the result
gap_nested
## # A tibble: 142 x 5
##
      continent country
                            data
                                               fit
                                                        tidy
##
      <fct>
                <fct>
                            t>
                                               t>
                                                        t>
   1 Asia
                Afghanistan <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
##
   2 Europe
                Albania
##
   3 Africa
                Algeria
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
## 4 Africa
                Angola
## 5 Americas Argentina
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
## 6 Oceania
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
                Australia
```

```
## 7 Europe
                Austria
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
## 8 Asia
                Bahrain
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
                Bangladesh <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
## 9 Asia
                            <tibble [12 x 4]> <S3: lm> <tibble [2 x 5]>
## 10 Europe
                Belgium
## # ... with 132 more rows
#lets have a look at the tidy table for one of the countries
gap_nested[gap_nested$country == "Liberia",][["tidy"]]
## [[1]]
## # A tibble: 2 x 5
                    estimate
                               std.error statistic p.value
##
     <chr>>
                       <dbl>
                                   <dbl>
                                             <dbl>
                                                      <dbl>
## 1 (Intercept) 37.7
                             1.24
                                             30.4 3.42e-11
## 2 pop
                  0.00000265 0.000000637
                                              4.17 1.92e- 3
#we can finally return to the original data type for which we started using all the information we have
gap_coefs <- gap_nested %>%
   dplyr::select(continent, country, tidy) %>%
   unnest(tidy)
#show the final table
gap_coefs
## # A tibble: 284 x 7
      continent country
                                                 std.error statistic p.value
                           term
                                       estimate
                                                                         <dbl>
##
      <fct>
                <fct>
                           <chr>
                                          <dbl>
                                                     <dbl>
                                                                <dbl>
## 1 Asia
                Afghanist~ (Interce~
                                        2.83e+1
                                                   2.31e+0
                                                                12.2 2.41e- 7
## 2 Asia
                                                                4.30 1.57e- 3
                Afghanist~ pop
                                        5.77e-7
                                                   1.34e-7
## 3 Europe
                Albania
                           (Interce~
                                        4.96e+1
                                                   1.94e+0
                                                               25.6 1.87e-10
## 4 Europe
                                                                10.2 1.37e- 6
                Albania
                                        7.29e-6
                                                   7.17e-7
                           pop
## 5 Africa
                Algeria
                                                               21.8 9.09e-10
                                        3.57e+1
                                                   1.63e+0
                           (Interce~
## 6 Africa
                Algeria
                           pop
                                        1.18e-6
                                                   7.59e-8
                                                               15.5 2.55e-8
## 7 Africa
                Angola
                                        2.86e+1
                                                   1.92e+0
                                                               14.9 3.84e-8
                           (Interce~
## 8 Africa
                Angola
                                        1.28e-6
                                                   2.48e-7
                                                                5.14 4.35e- 4
                           pop
## 9 Americas Argentina
                                                                     8.10e-18
                          (Interce~
                                        5.32e+1
                                                   3.78e-1
                                                              141.
## 10 Americas Argentina pop
                                        5.53e-7
                                                   1.28e-8
                                                               43.1 1.08e-12
## # ... with 274 more rows
```

Now isn't that beautiful!! :smiley: