Complex Number Law Of Sines https://github.com/Nazgand/nazgandMathBook

Mark Andrew Gerads: Nazgand@Gmail.Com

October 1, 2022

Abstract

The goal of this paper is to appreciate The Law of Sines rewritten in the form of complex numbers.

0.1 The obvious single variable case where $z \in \mathbb{C}, \neg[z \in \{0,1\}]$:

$$\frac{\sin\left(\Im(\ln(z))\right)}{|1-z|} = \frac{\sin\left(\Im(\ln(1-\bar{z}))\right)}{|z|} = \sin\left(\Im(\ln(z) + \ln(1-\bar{z}))\right) \tag{0.1}$$

For $x \in \mathbb{R}$.

$$\sin\left(\Im(\ln(z) + \ln(1-\bar{z}))\right) = \sin\left(\Im\left(\ln\left(z - |z|^2\right)\right)\right) = \sin\left(\Im\left(\ln\left(z|z|^x - |z|^{2+x}\right)\right)\right)$$

$$(0.2)$$

A nice substitution is $x \to -2$:

$$\sin\left(\Im\left(\ln\left(z|z|^{x}-|z|^{2+x}\right)\right)\right) = \sin\left(\Im\left(\ln\left(z|z|^{-2}-1\right)\right)\right) = \sin\left(\Im\left(\ln\left(\bar{z}^{-1}-1\right)\right)\right)$$

$$(0.3)$$

0.2 The distinct 3 variable case where $\{z_0, z_1, z_2\} \subset \mathbb{C}, z_0 \neq z_1, z_1 \neq z_2, z_2 \neq z_0$:

$$\frac{\sin\left(\Im\left(\ln\left(\frac{z_2-z_0}{z_1-z_0}\right)\right)\right)}{|z_2-z_1|} = \frac{\sin\left(\Im\left(\ln\left(\frac{z_0-z_1}{z_2-z_1}\right)\right)\right)}{|z_0-z_2|} = \frac{\sin\left(\Im\left(\ln\left(\frac{z_1-z_2}{z_0-z_2}\right)\right)\right)}{|z_1-z_0|} \quad (0.4)$$

is a formula with a symmetry rotating of the 3 variables, that is, substituting $z_0 \to z_1, z_1 \to z_2, z_2 \to z_0$. Furthermore, swapping 2 variables negates the value, so

$$\left| \frac{\sin\left(\Im\left(\ln\left(\frac{z_2 - z_0}{z_1 - z_0}\right)\right)\right)}{z_2 - z_1} \right| \tag{0.5}$$

is invariant under any permutation of the 3 variables.