Assignment 13

1

Matish Singh Tanwar

Abstract—This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment_13

1 Problem

Let **A** be a $m \times n$ matrix and **B** be a $n \times m$ matrix over real numbers, with

$$m < n \tag{1.0.1}$$

Then,

- 1) AB is always nonsingular
- 2) AB is always singular
- 3) BA is always nonsingular
- 4) **BA** is always singular

2 SOLUTION

$$rank(\mathbf{A}) \le \min(m, n) \qquad (2.0.1)$$

$$\implies \le m, \because m < n \qquad (2.0.2)$$

$$rank(\mathbf{R}) \le \min(n, m) \qquad (2.0.3)$$

$$rank(\mathbf{B}) \le \min(n, m) \tag{2.0.3}$$

$$\implies \le m, \because m < n$$
 (2.0.4)

We also know that **AB** will be a $m \times m$ matrix and **BA** will be a $n \times n$ matrix.

$$rank(\mathbf{AB}) \le \min(rank(\mathbf{A}), rank(\mathbf{B}))$$
 (2.0.5)

$$\implies \le m$$
 (2.0.6)

$$rank(\mathbf{BA}) \le \min(rank(\mathbf{B}), rank(\mathbf{A}))$$
 (2.0.7)

$$\implies \le m$$
 (2.0.8)

Options	Explanation
AB is always nonsingular	$ran\hat{k}(\mathbf{AB}) \leq m$
	$\text{Let}, rank(\mathbf{AB}) = k, k < m.$
	So, there are $m - k$ linearly dependent columns or rows
	So, AB will be singular
	Hence, incorrect
	(1, 2, 3) $(1, 3)$
Example	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 3 \\ 2 & 6 \\ 5 & 6 \end{pmatrix}$
_	$(2 \ 4 \ 6) \ (5 \ 6)$
	AB $\begin{pmatrix} 20 & 33 \end{pmatrix}$
	$\mathbf{AB} = \begin{pmatrix} 20 & 33 \\ 40 & 66 \end{pmatrix}, rank(\mathbf{AB}) = 1$
	2^{nd} row is linearly dependent on 1^{st} row.
	AB is singular
AB is always singular	$rank(\mathbf{AB}) \leq m$
	$Let, rank(\mathbf{AB}) = m$
	So, there are 0 linearly dependent columns or rows
	So, AB will be nonsingular
	Hence, incorrect
	(1, 2, 3) $(1, 3)$
Example	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 6 \end{pmatrix}$
	$(2 \ 4 \ 3) \ (5 \ 6)$
	$\mathbf{AB} = \begin{pmatrix} 20 & 29 \\ 35 & 52 \end{pmatrix}, rank(\mathbf{AB}) = 2$
	$\mathbf{AB} = \begin{pmatrix} 35 & 52 \end{pmatrix}, rank(\mathbf{AB}) = 2$
	AB is nonsingular
BA is always nonsingular	$rank(\mathbf{BA}) \le m.rank(\mathbf{BA})$ can be atmost m
	BA is $n \times n$ matrix. $n > m$.
	So, there are at least $n-m$ linearly dependent columns or rows.
	So, BA will be singular always.
	Hence,incorrect
	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix}$
Example	$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 6 \end{pmatrix}$
	(5 6)
	$\mathbf{BA} = \begin{pmatrix} 7 & 14 & 18 \\ 10 & 20 & 26 \\ 17 & 34 & 45 \end{pmatrix}, rank(\mathbf{BA}) = 2$
	$\mathbf{BA} = \begin{bmatrix} 10 & 20 & 26 \end{bmatrix}, rank(\mathbf{BA}) = 2$
	2^{nd} column is linearly dependent on 1^{st} column
	BA is singular
BA is always singular	$rank(\mathbf{BA}) \leq m.rank(\mathbf{BA})$ can be atmost m
	BA is $n \times n$ matrix. $n > m$.
	So, there are at least $n-m$ linearly dependent columns or rows.
	So, BA will be singular always.
	Hence, correct
Example	Same example as above.
	BA is always singular.

TABLE 1: Finding Correct Option