เรื่อง

พีชคณิตแบบบูลเลียน(Boolean Algebra)

สาระการเรียนรู้

- 1.การใช้เครื่องหมายเชื่อมของคำ AND
- 2.การใช้เครื่องหมายเชื่อมของคำ OR
- 3.การใช้เครื่องหมายเชื่อมของคำ NOT
- 4.การใช้แผนผังวงจรลอจิก

จุดประสงค์การเรียนรู้

- 1.สามารถบอกการทำงานของ Boolean Algebra ในทุกขั้นตอน
- 2.สามารถบอกการทำงานของ
 - -Equation
 - -Black Boxes
 - -Gate
 - -Truth Table
 - -Circuit
 - -Venn Diagram
- 3.สามารถหาค่า Output ในรูปของ Gate และ Logic Diagram ได้
- 4.สามารถหาค่าของ Boolean Algebra ได้

นักคณิตศาสตร์และตรรกวิทยาชาวอังกฤษชื่อ George S. Boolean ผู้ซึ่งมีชีวิตอยู่ระหว่างค. ศ. 1815-1884 ได้ เขียนหนังสือ 2 เล่มคือ

- -The Mathematical Analysis of Logic เมื่อค. ศ. 1847
- -An Investigation of the Laws of Thought เมื่อค. ศ. 1854

แนวคิดจากหนังสือดังกล่าวเขาได้สนใจในด้านความคิดและจิตใจของมนุษย์ดังปรากฏเห็นชัดจากชื่อหนังสือ ของเขาทั้งยังพิสูจน์ให้เห็นว่า Boolean Algebra ซึ่งเป็นพืชคณิตที่ใช้หาข้อเท็จจริงจากหลักเหตุผลต่าง ๆ และ เกี่ยวกับการใช้เครื่องหมายเชื่อมของคำ AND, OR, NOT ทางตรรกวิทยานั้นสามารถประยุกต์นำมาใช้ได้กับ ข้อความทางตรรกศาสตร์ (Logic) และพืชคณิตแบบบูลเลียนนั้นเป็นแรงกระตุ้นให้พิสูจน์พบว่าสามารถพัฒนา ประยุกต์ออกแบบใช้กับวงจรอิเลคทรอนิคซึ่งก็คือความคิดทางอีเลคทรอนิคหรือเครื่องคอมพิวเตอร์นั่นเอง

ในการศึกษาผลการทำงานของ Boolean Algebra นี้อาจประกอบด้วยเครื่องมือหลายอย่างแล้วแต่ความ สะดวกและความถนัดซึ่งเครื่องมือเหล่านี้ประกอบด้วย

Equation คือการพิสูจน์โดยอาศัยสมการทางพีชคณิต

Black Boxes คือพิสูจน์โดยอาศัย Diagram รูปสี่เหลี่ยมจัตุรัส

Gate คือการพิสูจน์โดยอาศัยวงจรทางไฟฟ้าที่ทำหน้าที่เหมือนกับสวิทปิดและเปิดกระแสไฟฟ้า

Truth Table คือการพิสูจน์โดยอาศัยตารางกระจายค่าของ Variable ซึ่งเป็น Input ผลการกระจายเป็น Out put

Venn Diagram คือการพิสูจน์โดยอาศัยแผนภาพวงกลม

AND

ถ้า C มีค่าเท่ากับ A และ B

Equation
$$C = A \wedge B$$

Black Boxes

Gate

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array}\right\} \xrightarrow{AND} \xrightarrow{0001}$$
 Output

Truth Table

Α	В	A^B
1	1	1
1	0	0
0	1	0
0	0	0

Venn Diagram

ถ้า C มีค่าเท่ากับ A หรือ B

Equation $C = A \cup B$

หรือ C = A + B

Black Boxes

Gate

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array}\right\} \xrightarrow{OR} \xrightarrow{0111} Output$$

Truth Table

Α	В	ΑvΒ
1	0	1
1	0	1
0	1	1
0	0	0

Venn Diagram

NOT

ถ้า C มีค่าเท่ากับไม่ใช่ A

 $\text{Equation} \quad \text{C} = \overline{A}$

Black Boxes

Gate

Input $\xrightarrow{0011}$ NOT $\xrightarrow{1100}$ Output

Truth Table

А	A'
1	0
0	1

Venn Diagram

NAND

เป็น Complement ของ AND หรือเรียกว่า NOT AND ซึ่งแสดงได้โดย Gate ดังนี้

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array} \right] \xrightarrow{AND} \xrightarrow{0001} \boxed{NOT} \xrightarrow{1110}$$
 Output

หรือ

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array}\right] \xrightarrow{NAND} \xrightarrow{1110}$$
 Output

NOR

เป็น Complement ของ OR หรือเรียกว่า NOT OR ซึ่งแสดงได้โดย Gate ดังนี้

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array} \right] \xrightarrow{OR} \xrightarrow{0111} \xrightarrow{NOT} \xrightarrow{1000}$$
 Output

หรือ

Input
$$\left\{\begin{array}{c} A \xrightarrow{0011} \\ B \xrightarrow{0101} \end{array}\right] \xrightarrow{1000}$$
 Output

ตัวอย่าง จงหาค่า Output ต่อไปนี้ โดยกำหนด

A = 0011

B = 0101

<u>ตัวอย่าง</u> การหาค่า Output โดยวิธีไม่ได้กำหนดค่าของ Input แต่หาค่า Output ในรูปแบบความ สัมพันธ์ของ Input ในรูป Equation

จงหาค่า Output ต่อไปนี้ โดยกำหนดให้

$$A = 0011$$
 $B = 0101$

จงหาค่า Output ในรูปของความสัมพันธ์

AND

0011

จงเลือกคำตอบที่ถูกต้องที่สุด

กำหนด A = 0011

B = 0101

จงตอบคำถามข้อ 1. และข้อ 2.

ก. 1000

ข. 1001

ค. 1011

۹. **1111**

ค. 1011

۹. **1111**

$$\cap. \quad (\overline{A} + \overline{B} + \overline{C})(A + D)$$

$$\mathfrak{A}.(A+B+C)(\overline{A}+\overline{D})$$

$$\cap . \quad (\overline{A + B + C})(A + D)$$

$$A. (A + B + C)(\overline{A + D})$$

$$\cap. \quad A+B+C+D$$

ข.
$$\overline{A + B + C} + D$$

$$A + B + C + \overline{D}$$

$$\cap.\quad (\overline{A}B)*(\overline{B}C)*(\overline{A}\overline{C})$$

$$\mathfrak{A}.(\overline{A}B)+(\overline{B}C)+(\overline{A}\overline{C})$$

$$\text{\tiny P.} \quad (\overline{A}+B)+(\ \overline{B}+C)+(\ A+\overline{C})$$

$$\mathfrak{A}.(\overline{A}+B)*(\overline{B}+C)*(A+\overline{C})$$

Black Boxes

การแสดงโดย Diagram รูปสี่เหลี่ยมจัตุรัส

แบบ Combination 2

AB	ĀB
$A\overline{B}$	\overline{AB}

แบบ Combination 3

ABŪ	ĀBC
ABC	ĀBC
AB€C	Ā₿C
ABC	ABC

จงแสดงค่าของ Black Boxes ต่อไปนี้

1. A * C

2. B+C

3. A*(B+C)

4. A • B

แบบ Combination 4

Α

В

C

D

ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD

จงหาค่าของ Black Boxes คังต่อไปนี้

1. BC

3. C + D

4. A • D

กิจกรรมเสนอเชิงเจตคติ

กำหนดให้

จงหาค่า โดยแสดงด้วย Black Boxes

1.
$$\overline{A} + \overline{B}$$

2.
$$A\overline{B} + \overline{A}B$$

2. กำหนดให้

Α

В

จงหาค่าโดยแสดงด้วย Black Boxes

- ก. ABC
- ข. A + B + C
- ค. AB +AC + BC
- $4. (A + B) \overline{AB}$
- จ. AB+ AC
- 3. กำหนดให้

Α

В

C

จงหาค่า โดยแสดงด้วย Black Boxes

- 1. AC $\overline{A} + \overline{B}$
- 2. BD
- 3. (A+B) (C+D)
- 4. AB + AC + AD
- 5. ให้เติมตารางนี้ให้ครบ 16 ช่อง

ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD
ABCD	ABCD	ĀBCD	ĀBCD

การใช้แผนผังวงจรลอจิก (Logic Diagram)

คือการใช้สัญลักษณ์แทนมีดังนี้

ตัวอย่าง การหาค่าของ Output ของวงจรลอจิก

จงใช้แผนผังวงจรลอจิก (Logic Diagram) หาค่าของ Output

จงเลือกคำตอบที่ถูกต้องที่สุด

ก. (A +
$$\overline{B}$$
) • \overline{A} • B

$$v.(A + \overline{B}) \cdot \overline{A} \cdot \overline{B}$$

$$4. \overline{(A + \overline{B}) \cdot \overline{A} \cdot \overline{B}}$$

ก.
$$\overline{A} + \overline{B} \cdot A \cdot B$$

$$\Theta$$
. $(\overline{A} + \overline{B}) + (A + B)$

$$4.(\overline{A} + \overline{B}) \bullet (\overline{A} + \overline{B})$$

C 4.

$$n. (\overline{\overline{A \cdot C}}) \cdot (\overline{A \cdot B})$$

$$v.(\overline{\overline{A} \cdot \overline{C}) \cdot (\overline{A} \cdot \overline{B})}$$

$$PA.(\overline{A \cdot C}) \cdot (\overline{A \cdot B})$$

$$\mathfrak{A}.(\overline{\mathsf{A}}\bullet\overline{\mathsf{C}})\bullet(\overline{\mathsf{A}}\bullet\overline{\mathsf{B}})$$

n. (
$$\overline{A} + B$$
) • ($A + \overline{B}$) • ($\overline{A} + \overline{B}$)

$$v.(\overline{A} + B) \bullet (A + \overline{B}) \bullet (A + B)$$

$$\Theta$$
. $(\overline{A} + B) \cdot (A + \overline{B}) \cdot (\overline{A} + \overline{B}) \cdot (A + B)$

$${\tt 1.}\;(\;\overline{\sf A}+{\sf B}\;)\bullet(\;{\sf A}+\overline{\sf B}\;)\bullet(\;\overline{\sf A}+\overline{\sf B}\;)\bullet(\;\overline{\sf A}+{\sf B}\;)$$

Basic Law of Boolean Algebra มี 24 ข้อ ดังนี้

$$1. A + 0 = A$$

А	0	∴ A+0
1	0	1
0	0	0

$$2. A + 1 = 1$$

А	1	∴ A+1
1	1	1
0	1	1

3.
$$A + A = A$$

А	А	∴ A+A
1	1	1
0	0	0

$4. A + \overline{A} = 1$

А	Ā	∴ A+Ā
1	0	1
0	1	1

5. $A \cdot 0 = 0$

А	0	∴ A•0
1	0	0
0	0	0

6. A • 1 = A

А	1	 A•1
1	1	1
0	1	0

7. $A \cdot A = A$

А	А	 A•A
1	1	1
О	0	0

8.
$$A \bullet \overline{A} = 0$$

А	Ā	∴ A•Ā
1	0	0
0	1	0

9. = = A

А	Ā	∴Ā
1	0	1
0	0	0

10. 0 = 1 และ 1 = 0

0	Ю	1	1
0	1	0	0
0	1	0	

11. A + B = B + A

А	В	A + B	B + A		
1	1	1	1		
1	0	1	1		
0	1	1	1		
0	0	O	O		

12. A • B = B • A

А	В	A • B	B • A
1	1	1	1
1	0	O	0
0	1	О	0
0	0	0	0

13.A + AB = A

А	В	A • B	B • A	
1	1	1	1	
1	0	0	0	
0	1	0	0	
0	0	0	O	

14. $A + \overline{A} + B$

А	В	Ā	$\overline{A} \cdot B$ $A + \overline{A} \cdot B$		∴ A + B		
1	1	0	0	1		1	
1	0	0	0	1		1	
0	1	1	1	1		1	
0	0	1	0	C)	0	

15.
$$A(A + B) = A$$

А	A B A + B		∴ A (A + B)
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	O

16. $A \cdot B + A \cdot \overline{B} = A$

А	В	A · B	$\overline{\mathrm{B}}$	A · B	∴ A	$\cdot B + A$	· B
1	1	1	0	0		1	
1	0	0	1	0		1	
0	1	0	0	1		1	
0	0	0	0	0		1	

17. A · B + A · \overline{B} + \overline{A} · B + \overline{A} · \overline{B} = 1

А	В	Ā	B	A · B	$A \cdot \overline{B}$	$\overline{A} \cdot B$	$\overline{A} \cdot \overline{B}$	$\therefore \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \overline{\mathbf{B}} + \overline{\mathbf{A}} \cdot \mathbf{B} + \overline{\mathbf{A}} \overline{\mathbf{B}}$
1	1	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	1
0	1	1	0	0	0	1	0	1
0	0	1	1	0	0	0	1	1

18. $\overline{A}B + \overline{A}\overline{B} = \overline{A}$

А	В	Ā		$\overline{\mathrm{B}}$	$\overline{A} \cdot B$	$\overline{A} \cdot \overline{B}$	$\therefore \overline{A}B + \overline{A}\overline{B}$		
1	1		0		0	0	0		0
1	0		0		1	0	0		O
0	1		1		0	1	0		1
0	0		1		1	0	1		1

19. $A\overline{B} + \overline{A}\overline{B} = (A + B) (\overline{A} + \overline{B})$

A	В	Ā	$\overline{\mathbf{B}}$	$A \cdot \overline{B}$	$\overline{A} \cdot B$	$\therefore A\overline{B} + \overline{A}B$		(A + B)	$(\overline{A} + \overline{B})$	∴ Ā	$\overline{A}B + \overline{A}\overline{B}$	
1	1	0	0	0	0	(0	1	0		0	
1	0	0	1	1	0	1	1	1	1		1	
0	1	1	0	0	1	1	1	1	1		1	
0	0	1	1	0	0	(0	0	1		0	
0	0	1	1	0	0	(0	0	1		0	

20. $AB + A + \overline{A}B = A + B$

Α	В	Ā	$\overline{\mathrm{B}}$	AB	$A\overline{B}$	ĀB	\therefore AB + AB + AB		- AB	∴ A + B		
1	1	0	0	1	0	0		1			1	
1	0	0	1	0	1	0		1			1	
0	1	1	0	0	0	1		1			1	
0	0	1	1	0	0	0		0			0	

21. A + (B + C) = (A + B) + C

Α	В	С	(B + C)	∴ A + (B -	- C)	(A + B)		A + B) -	+ C
1	1	1	1	1		1		1	
1	1	0	1	1		1		1	
1	0	1	1	1		1		1	
1	0	0	0	1		1		1	
0	1	1	1	1		1		1	
0	1	0	1	1		1		1	
0	0	1	1	1		0		1	
0	0	0	0	O		0		0	

22. $A \cdot (B \cdot C) = (AB)C$

Α	В	С	(B · C)	$\therefore A \cdot (B \cdot C)$	(A · B)	∴ (AB)C
1	1	1	1	1	1	1
1	1	0	0	0	1	O
1	0	1	0	0	0	O
1	0	0	0	0	0	O
0	1	1	1	0	0	O
0	1	0	0	0	0	O
0	0	1	0	0	0	O

0	0	0	0	0	0	0	

23. A(B+C) = AB + AC

A	В	С	(B + C)	∴ A + (l	3 + C)	AB	AC	∴ AB + AC		'C
1	1	1	1	1		1	1		1	
1	1	0	1	1		1	0		1	
1	0	1	1	1		0	1		1	
1	0	0	0	0		0	0		0	
0	1	1	1	0		0	0		0	
0	1	0	1	0		0	0		0	
0	0	1	1	0		0	0		0	
0	0	0	0	0		0	0		0	

24.
$$(A + B)(A + C) = A + BC$$

Α	ВС	(A + B)	(A + C)	$\therefore (A + B)(A + C)$	B·C	∴ A + BC
---	----	---------	---------	-----------------------------	-----	----------

1	1	1	1	1	1	1	1	
1	1	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	0	0	1	1	1	0	1	
0	1	1	1	1	1	1	1	
0	1	0	1	0	0	0	0	
0	0	1	0	1	0	0	0	
0	0	0	0	0	0	0	0	