### Introduction:

- An overhead gantry system is installed in a distribution centre of a bakery to store products from bakery and retrieve it according to sales orders
- Storage area has two zones, R101 and R102
- Each zone has their dedicated robots and only they can use it to store products, but they run with co-ordination and can exchange products to make a sales order

### **Business Task:**

- Run a high-level analysis on performance of Gantry system as a whole vs Gantry Performance by Each Robot (R101 and R102)
- Find out any trends and see if there are any, and ways we can improve it even further

# **Results:**



- Gantry system was running very smooth between January to March
- In December we had high downtime due to scheduled PM activities and in March, we had high downtime due to unexpected breakdown of gripper assembly
- After fixing the assembly, the downtime is still not back to the pre-breakdown levels
- Most common errors can be seen in the table along with count of instances
- R102 has almost double occurrence rate of errors since the beginning

## As per manager's request, Independent Robot Performances since Jan 2023:



As shown above, after the PM, R102 still creates 37% problems than R101.

After doing further analysis, I found out the errors that differ the most in those two robots. (Shown below)

| Error                                              | R101 | R102 | Diff | Times Diff |  |
|----------------------------------------------------|------|------|------|------------|--|
| z-axis collision (belts loosened)                  | 639  | 1126 | 487  | 1.8        |  |
| gripper guides collision                           | 28   | 256  | 228  | 9.1        |  |
| gripper on timeout                                 | 188  | 213  | 25   | 1.1        |  |
| stackheight changed during motion                  | 60   | 140  | 80   | 2.3        |  |
| guide cylinder timeout                             | 21   | 114  | 93   | 5.4        |  |
| gripper state and stackheight measurement conflict | 44   | 95   | 51   | 2.2        |  |
| gripper off timeout                                | 28   | 57   | 29   | 2.0        |  |
| gripper guides dropped                             | 10   | 26   | 16   | 2.6        |  |

- Overall R102 runs into more breakdowns than R101 with some exclusive errors that are more frequent in R102
- Highlighted alarms have much higher occurrence rates in R102 and they both are related to guides and share a same cause – uneven floor or nesting

#### Team Conclusion:

- It is possible that the floor is uneven on R102 side and causing stacks to lean after being stored
- If random positions are causing problems, then it could be due to something else but
  if certain positions are leading to these errors than we can block out those and see
  the progress
- I do not think blue trays have to do anything with more downtime

# **Business Task 2:**

• Find out the positions that cause the problems and see if there are any consistency

## Results:

| Row Labels | E44 | E43 | E46 | F41 | J43 | H44 | C40 | B41 | D49 | G44 | B40 | J40 | K47 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Sum of Cnt | 19  | 16  | 16  | 13  | 13  | 10  | 9   | 8   | 8   | 7   | 7   | 7   | 7   |

### **Team Conclusion:**

- Blocked the highlighted cells and will continue to monitor every month

# Update as of May 1st:

- Gripper guide collision error frequency drastically reduced to one fourth
- Average instances for the period of 3 months (Jan to Mar) was 73 per month and now for April month, it is only 16 instances

| Text                              | ▼ Counts ▼ Device ▼ |
|-----------------------------------|---------------------|
| safety stop active                | 238 R102            |
| z-axis collision (belts loosened) | 226 R102            |
| gripper guides collision          | 16 R102             |
| gripper on timeout                | 25 R102             |