Multiplication

37

Multiplication of Unsigned Numbers

- Multiplication requires substantially more hardware than addition.
- Multiplication of two *n*-bit number generates a 2*n*-bit product.
- We can use shift-and-add method.
 - Repeated additions of shifted versions of the multiplicand.

			1	0	1	0
			1	1	0	1
		-				
			1	0	1	0
		0	0	0	0	
	1	0	1	0		
1	0	1	0			
1 0	0	0	0	0	1	0

Multiplicand M (10) Multiplier Q (13)

Product P (130)

A General Case

- Each $A_i.B_j$ is called a *partial* product.
- Generating the partial products is easy.
 - Requires just an AND gate for each partial product.
- Adding all the *n*-bit partial products in hardware is more difficult.

39

39

Design of a Combinational Array Multiplier

- We can directly map the multiplication process as discussed to hardware.
 - We use an array of cells to generate the partial products.
 - Instead of adding the partial products at the end, we add the partial products at every stage of the multiplication.
- The required multiplication cell is as shown.
 - Combines capabilities of partial product generation and also addition of partial products.

40

- Extremely inefficient, and requires very large amount of hardware.
- Requires n² multiplication cells for an n x n multiplier.
- Advantage is that it is very fast.

product: p₇ p₆ p₅ p₄ p₃ p₂ p₁ p₀

41

Unsigned Sequential Multiplication

- Requires much less hardware, but requires several clock cycles to qerform multiplication of two *n*-bit numbers.
 - Typical hardware complexity: O(n)
 - Typical time complexity: O(n)
- In the "hand multiplication" that we have seen:
 - If the *i*-th bit of the multiplier is **1**, the multiplicand is shifted left by *i* bit positions, and added to the partial product.
 - The relative position of the partial products do not change; it is the multiplicand that gets shifted left.

- In the "shift-and-add" multiplication that we discuss now, we make the following modifications.
 - We do not shift the multiplicand (i.e., keep its position fixed).
 - We right shift an 2*n*-bit partial product at every step.

43

	C	A	Q		
Example 1 : (10) x (13)	0	0 0 0 0 0	0 1 1 0 1	Initialization	
Assume 5-bit numbers.	0	0 1 0 1 0	0 1 1 0 1	A = A + M	
M: (0 1 0 1 0) ₂	0	0 0 1 0 1	0 0 1 1 0	Shift	Step 1
Q: (0 1 1 0 1) ₂	0	00101	0 0 1 1 0	A = A + 0	Step 2
product = 130	0	0 0 0 1 0	1 0 0 1 1	Shift	
= (0 0 1 0 0 0 0 0 1 0) ₂	0	0 1 1 0 0	1 0 0 1 1	A = A + M	Step 3
	0	0 0 1 1 0	0 1 0 0 1	Shift	
	0 0	1 0 0 0 0	0 1 0 0 1	A = A + M	Step 4
	•	0 1 0 0 0	0 0 1 0 0	Shift	
	0 0	0 1 0 0 0	0 0 1 0 0	A = A + 0 Shift	Step 5
					45

```
C
                                  Α
                                                Q
Example 2: (29) x (21)
                        0
                             0 0 0 0 0
                                            1 0 1 0 1
                                                          Initialization
Assume 5-bit numbers.
                        0
                             1 1 1 0 1
                                            1 0 1 0 1
                                                          A = A + M
                                                                              Step 1
                             0 1 1 1 0
                                            1 1 0 1 0
M: (11101)_2
                        0
                                                          Shift
Q: (10101)_2
                             0 1 1 1 0
                        0
                                            1 1 0 1 0
                                                          A = A + 0
                                                                              Step 2
                             0 0 1 1 1
                                            0 1 1 0 1
                                                          Shift
                        0
product = 609
= (1001100001)_2
                        1
                             0 0 1 0 0
                                            0 1 1 0 1
                                                          A = A + M
                                                                              Step 3
                             1 0 0 1 0
                        0
                                            0 0 1 1(0)
                                                          Shift
                        0
                             1 0 0 1 0
                                            0 0 1 1 0
                                                          \mathbf{A} = \mathbf{A} + \mathbf{0}
                                                                              Step 4
                        0
                             0 1 0 0 1
                                            0 0 0 1 1
                                                          Shift
                        1
                             0 0 1 1 0
                                            0 0 0 1 1
                                                          A = A + M
                                                                              Step 5
                             1 0 0 1 1
                                            0 0 0 0 1
                                                          Shift
                                                                               46
```


Signed Multiplication

- We can extend the basic shift-and-add multiplication method to handle signed numbers.
- One important difference:
 - Require to sign-extend all the partial products before they are added.
 - Recall that for 2's complement representation, sign extension can be done by replicating the sign bit any number of times.

```
0101 = 0000 0101 = 0000 0000 0000 0101 = 0000 0000 0000 0000 0000 0000 0000 0101

1011 = 1111 1011 = 1111 1111 1111 1011 = 1111 1111 1111 1111 1111 1111 1011
```

48

An Example: 6-bit 2's complement multiplication

Note: For *n*-bit multiplication, since we are generating a 2*n*-bit product, overflow can never occur.

49

49

Booth's Algorithm for Signed Multiplication

- In the conventional shift-and-add multiplication as discussed, for *n*-bit multiplication, we iterate *n* times.
 - Add either 0 or the multiplicand to the 2*n*-bit partial product (defending on the next bit of the multiplier).
 - Shift the 2n-bit partial product to the right.
- Essentially we need *n* additions and *n* shift operations.
- Booth's algorithm is an improvement whereby we can avoid the additions whenever consecutive 0's or 1's are detected in the multiplier.
 - Makes the process faster.

Basic Idea Behind Booth's Algorithm

- We inspect two bits of the multiplier (Q_{i,} Q_{i-1}) at a time.
 - If the bits are same (00 or 11), we only shift the partial product.
 - If the bits are 01, we do an addition and then shift.
 - If the bits are 10, we do a subtraction and then shift.
- Significantly reduces the number of additions / subtractions.
- Inspecting bit gairs as mentioned can also be expressed in terms of **Booth's Encoding**.
 - Use the symbols +1, -1 and 0 to indicate changes w.r.t. Q_i and Q_{i-1} .
 - $01 \rightarrow +1$, $10 \rightarrow -1$, $00 \text{ or } 11 \rightarrow 0$.
 - For encoding the least significant bit Q_0 , we assume $Q_{-1} = 0$.

51

51

- Examples of Booth encoding:
 - a) 01110000 :: +1 0 0 -1 0 0 0 0 b) 01110110 :: +1 0 0 -1 +1 0 -1 0 c) 00000111 :: 0 0 0 0 +1 0 0 -1 d) 01010101 :: +1 -1 +1 -1 +1 -1
- The last example illustrates the *worst case* for Booth's multiplication (alternating 0's and 1's in multiplier).
 - In the illustrations, we shall show the two multiplier bits explicitly instead of showing the encoded digits.

	_		
Example 1 : (-10) x (13)	Α	Q Q ₋₁	
Assume 5-bit numbers.	0 0 0 0 0	0 1 1 0 1 0 Initializat	ion
	0 1 0 1 0	$0 \ 1 \ 1 \ 0 \ 1 $ $0 \ A = A - M$	Step 1
M: (10110) ₂ -M: (01010) ₂	0 0 1 0 1	0 0 1 1 0 1 Shift	
Q: (0 1 1 0 1) ₂	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 2
,			
product = -130 = (1 1 0 1 1 1 1 1 1 0) ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 3
, ,,,			Step 4
	0 0 0 0 1	1 1 1 1 0 1 Shift	Step 4
	1 0 1 1 1	1 1 1 0 0 1 A = A + M 1 1 1 1 0 0 Shift	Step 5
U		11110 0 shife	
			54

Design of Fast Multiplier

a) Bit-pair Recoding of Booth's Multiplication

- A technique that halves the maximum number of summands; derived directly from the Booth's algorithm.
- If we group the Booth-coded multiplier digits in pairs, we observe:

• (+1, -1):

$$(+1, -1) * M = 2 * M - M = M$$

• (0, +1):

$$(0, +1) * M = M$$

- We need a single addition instead of a pair of addition & subtraction.
 - Other similar rules can be framed.
 - · Shown on next slide.

57

57

Original Booth-coded pair	Equivalent Recoded pair
(+1, 0)	(0, +2)
(-1, +1)	(0, -1)
(0, 0)	(0, 0)
(0, 1)	(0, 1)
(+1, 1)	
(+1, -1)	(0, +1)
(-1, 0)	(0, -2)

- Every equivalent recoded pair has at least one 0.
- Worst-case number of additions or subtractions is 50% of the number of multiplier bits.
- Reduces the worst-case time required for multiplication.

```
Example:
         (+13) X (-22) in 6-bits.
                                                  0
     Original:
               Multiplier --
                               1
                                   0
                                       1
                                          0
                                              1
     Booth:
                Multiplier -- -1 +1 -1 +1 -1
                                                  0
     Recoded:
                Multiplier --
                               0 -1
                                       0 -1
                                              0 -2
              0 0 1 1 0 1
               . -1 . -1 . -2
                                              M = 001101 (+13)
                                              -1*M = 110011
       1 1 1 1 1 1 1 0 0 1 1 0
                                              -2 * M = 100110
       1 1 1 1 1 1 0 0 1 1
       1 1 1 1 0 0 1 1
       1 1 0 1 1 1 1 0 0 0 1 0
                                                                59
```

b) Carry Save Multiplier

- We have seen earlier how carry save adders (CSA) can be used to add several numbers with carry propagation only in the last stage.
- The partial products can be generated in parallel using n² AND gates.
- The n partial products can then be added using a CSA tree.

 \mathbf{m}_3

• Instead of letting the carries ripple through during addition, we *save* them and feed it to the next row, at the correct weight positions.

60

Wallace Tree Multiplier

- A Wallace tree is a circuit that reduces the problem of summing n n-bit numbers to the problem of summing two $\Theta(n)$ -bit numbers.
- It uses n/3 (floor of) carry-save adders in parallel to convert the sum of n numbers to the sum of 2n/3 (ceiling of) numbers.
- It then recursively constructs a Wallace tree on the 2n/3 (ceiling of) resulting numbers.
- The set of numbers is progressively reduced until there are only two numbers left.
- By performing many carry-save additions in parallel, Wallace trees allow two n-bit numbers to be multiplied in $\Theta(\log_2 n)$ time using a circuit of size $\Theta(n^2)$.

- The partial product $m^{(i)}$ consists of (n + i) bits.
- Each line represents an entire number the label of an edge indicates the number of bits.
- The carry-lookahead adder at the bottom adds two (2n-1)-bit numbers to give the 2n-bit product.

Division

Introduction

- Division is more complex than multiplication.
- <u>Example</u>: Typical values in Pentium-3 processor →
 - Not easy to construct high-speed dividers.
- The ratios have not changed much in later processors.

Instruction	Latency	Cycles / Issue
Load / Store	3	1
Integer Multiply	4	1
Integer Divide	36	36
Floating-point Add	3	1
Floating-point Multiply	5	2
Floating-point Divide	38	38

65

65

• Latency:

• Minimum delay after which the first result is obtained, starting from the time when the first set of inputs is applied.

• Cycles/Issue:

- Whenever a new set of inputs is applied to a functional unit (e.g. adder), it is called an *issue*.
- Pipelined implementation of arithmetic unit reduces the number of clock cycles between successive issues.
- For non-pipelined arithmetic units (e.g. divider), the number of clock cycles between successive issues is much higher.
 - Next input can be applied only after the previous operation is complete.

The Process of Integer Division

- In integer division, a *divisor M* and a *dividend D* are given.
- The objective is to find a third number Q, called the quotient, such that

```
D = Q \times M + R
```

where R is the remainder such that $0 \le R < M$.

- The relationship $D = Q \times M$ suggests that there is a close correspondence between division and multiplication.
 - Dividend, quotient and divisor correspond to product, multiplicand and multiplier, respectively.
 - Similar algorithms and circuits can be used for multiplication and division.

67

67

• One of the simplest division methods is the sequential digit-by-digit algorithm similar to that used in pencil-and-paper methods.

```
0 1 1 0
                                                  Quotient Q = Q_0Q_1Q_2Q_3
                             1 0 0 1 0 1
                    1 1 0
                                                 Dividend D = R_0
   Divisor M
                                                  Q_0.M
                                                             (Does not go; Q_0 = 0)
                              1 0 0 1 0 1
                                                  R_1
D = 37 = (100101)_2
                                                  Q_1.2^{-1}.M
                                                            (Does go; Q_1 = 1)
M = 6 = (1 1 0)_2
                                0 1 1 0 1
                                                  R_2
Quotient Q = 6
                                                  Q_2.2^{-2}.M
                                  1 1 0
                                                            (Does go; Q_2 = 1)
Remainder R = 1
                                  0 0 0 1
                                                  \mathbf{R}_3
                                                  Q_3.2^{-3}.M
                                    1 1 0
                                                              (Does not go; Q_3 = 0)
                                     0 0 1
                                                  R_4 = Remainder R
```

- In the example, the quotient $Q = Q_0Q_1Q_2$... is computed one bit at a time.
 - At each step i, the divisor shifted i bits to the right (i.e. $2^{-i}.M$) is compared with the current partial remainder R_i .
 - The quotient bit Q_i is set to 0 (1) if $2^{-i}M$ is greater than (less than) R_i .
 - The new partial remainder R_{i+1} is computed as:

$$R_{i+1} = R_i - Q_i \cdot 2^{-i} \cdot M$$

69

- Machine implementation:
 - For hardware implementation, it is more convenient to shift the partial remainder to the left relative to a fixed divisor; thus

$$R_{i+1} = 2R_i - Q_{i}M$$
 (instead of $R_{i+1} = R_i - Q_{i}2^{-i}M$)

• The final partial remainder is the required remainder shifted to the left, so that $R = 2^{-3}.R_4$ (see next slide).

Two alternatives approaches for division

- We shall discuss two approaches:
 - a) Restoring division
 - b) Non-restoring division

Basic Steps (Restoring Division) Repeat the following steps *n* times: a) Shift the dividend left one bit at a time into register A. b) Subtract the divisor *M* from this register *A* (*trial subtraction*). c) If the result is negative (i.e. not going): Add the divisor *M* back into the register *A* (*i.e.* restoring back). Record 0 as the next quotient bit. d) If the result is positive: Α Q Do not restore the intermediate result. Record 1 as the next quotient bit. М

• Analysis:

• For *n*-bit divisor and *n*-bit dividend, we iterate *n* times.

• Number of trial subtractions:

• Number of restoring additions: n/2 on the average

• Best case: 0

• Worst case: n

76

A Simple Example: 8/3 for 4-bit representation (n=4)

Initially:	0 0	0 0 0	1 0 0 0)
Shift:	0 0	0 0 1	0 0 0 -	-
Subtract:	0	0 1 1		
Set Qo:	1 1	1 1 0		
Restore:	0	0 1 1		
	0 0	0 0 1	0 0 0	
Shift:	0 0	0 1 0	0 0 0 -	-
Subtract:	0	0 1 1		
Set Qo:	1 1	1 1 1		
Restore:	0	0 1 1		
	0 0	0 1 0	0 0 0	

G1 : C1	0 0 1 0 0	0 0 0
Shift:	00100	0 0 0 -
Subtract:	0011	
Set Q ₀ :	00001	
	00000	0 0 0 (1)
Shift:	0 0 0 1 0	0 0 1 -
Subtract:	0011	
Set Q ₀ :	1 1 1 1 1	
Restore:	0 0 1 1	
	0 0 0 1 0	0 0 1 0
	Remainder	Quotient
	00010 = 2	0010 = 2

77

(b) Non-Restoring Division

- The performance of restoring division algorithm can be improved by exploiting the following observation.
- In restoring division, what we do actually is:

Shift left means multiplying by 2.

- If A is positive, we shift it left and subtract M.
 - That is, we compute 2A M.
- If A is negative, we restore is by doing A + M, shift it left, and then subtract M.
 - That is, we compute 2(A + M) M = 2A + M.
- We can accordingly modify the basic division algorithm by eliminating the restoring step → NON-RESTORING DIVISION.

78

• Basic steps in non-restoring division:

- a) Start by initializing register A to 0, and repeat steps (b)-(d) n times.
- b) If the value in register A is positive,
 - Shift A and Q left by one bit position.
 - Subtract *M* from *A*.
- c) If the value in register A is negative,
 - Shift A and Q left by one bit position.
 - Add M to A.
- d) If A is positive, set $Q_0 = 1$; else, set $Q_0 = 0$.
- e) If A is negative, add M to A as a final corrective step.

79

79

High Speed Dividers

- Some of the methods used to increase the speed of multiplication can also be modified to speed up division.
 - High-speed addition and subtraction.
 - · High-speed shifting.
 - Combinational array divider (implementing restoring division).
- The main difficulty is that it is very difficult to implement division in a pipeline to improve the performance.
 - Unlike multiplication, where carry-save Wallace tree multipliers can be used for pipeline implementation.

84