Some constructions on ω -groupoids

Thorsten Altenkirch ¹ Nuo Li ¹ Ondřej Rypáček ²

¹School of Computer Science University of Nottingham, UK

²University of Oxford, UK

17/07/14

Outline

- Introduction to weak ω -groupoids
- Basic syntax of $\mathcal{T}_{\infty-\mathrm{groupoid}}$ (describing the structure of weak ω -groupoids)
- Heterogeneous equality for syntactic terms
- Coherences constructions
- Semantic interpretation

Introduction to weak ω -groupoids |

What are weak ω -groupoids?

- A higher dimensional category (ω-category)
- Infinite levels of morphisms
- Generalization of setoids, groupoids
- Every morphism is an equivalence (generalization of isomorphism)
- Equalities are weak e.g. $(f \circ g) \circ h \to f \circ (g \circ h)$

Introduction to weak ω -groupoids II

Why are we interested in weak ω -groupoids?

- Interpretation of types in Homotopy Type Theory
- Isomorphic types are equal
- Abstract datatype, abstract reansoning
- Extensional concepts
- Weak ω-groupoid model

Introduction to weak ω -groupoids III

Formalizations of weak ω -groupoids in type theory

- Warren's strict ω -groupoid model
- Altenkirch and Rypacek's syntactic approach
- Brunerie's syntactic approach: $\mathcal{T}_{\infty-\text{groupoid}}$ (TIG)
- This paper:
 - implement $\mathcal{T}_{\infty-\text{groupoid}}$ in Agda
 - develop constructions

Agda

- Dependently typed programming languages, theorem prover
- An implementation of intensional Martin-Löf type theory

Basic syntax of $\mathcal{T}_{\infty- ext{groupoid}}$

• Fundamental elements (in Agda code)

```
\begin{array}{lll} \text{data Con} & : \; \mathsf{Set} \\ \text{data Ty } (\Gamma : \mathsf{Con}) & : \; \mathsf{Set} \\ \text{data Tm} & : \; \{\Gamma : \mathsf{Con}\}(\mathsf{A} : \mathsf{Ty}\; \Gamma) \to \mathsf{Set} \end{array}
```

• Types: basic objects, equality of objects, equality of equality...

$$\frac{\Gamma \vdash a, b : A}{\Gamma \vdash a =_A b \text{ type}}$$

Operations and equalities I

- Operations and equality in
 - Setoid:

id:
$$x = x$$
 $^{-1}: x = y \rightarrow y = x$
 $_{-} \circ _{-}: y = z \rightarrow x = y \rightarrow x = z$

Groupoid:

$$\lambda : id \circ p = p$$

$$\rho : p \circ id = p$$

$$\alpha : p \circ (q \circ r) = (p \circ q) \circ r$$

$$\kappa : p^{-1} \circ p = id$$

$$\kappa' : p \circ p^{-1} = id$$

Operations and equalities II

• **weak** ω -**groupoid**: we have much more operations e.g. vertical/horizontal composition, and provable equalities on higher dimensions e.g. interchange law, coherence laws Example: There are two ways to show $(f \circ id) \circ g = f \circ g$

- In general we call them **coherence constants** (or **coherences**)
- Infinitely many coherence constants, How can we encode them?

Contractible Contexts and Coherences I

 Fact: All coherences arising automatically from induction principle for identity type (or J eliminator)

contractible contexts

- €, *
- ϵ , x: *, y: *, α : x = y
- ... Γ , y : A, $\alpha : x = y$ (Given $\Gamma \vdash A$ and $\Gamma \vdash x : A$)
- Assume $\epsilon, x : * \vdash x = x$ (weakening) $\Rightarrow \epsilon, x : *, x : *, \alpha : x = x \vdash x = x$ (J-eliminator) $\Rightarrow \epsilon, x : *, y : *, \alpha : x = y \vdash y = x$
- How about coherences in non-cont contexts?
- In general

$$\frac{\vdash \Delta \text{ contractible} \quad \Delta \vdash B \quad \delta : \Gamma \to \Delta}{\Gamma \vdash \text{coh}_B : B[\delta]}$$

Reasoning about syntactic terms

- Using homogeneous equality to reason about syntactic terms, we have to eliminate **subst** in equalities like subst p = y, subst $p(\text{subst } p^{-1} x) = x$
- Heterogeneous equality (JM equality) for Tm

• Justification: The equality of inductively defined types are decidable, From Hedberg's Theorem, it is safe to assert Ty Γ are sets (in the sense of UIP)

Construction of Coherences I

- Now we can construct all these infinite number of coherences
- For each coherence, two versions:
 - 1 minimum version e.g.

$$\epsilon, x : *, y : *, \alpha : x = y, z : A, \beta : y = z \vdash x = z (_ \circ * _)$$

general version e.g.

$$\Gamma, x : A, y : A, \alpha : x = y, z : A, \beta : y = z \vdash x = z (_ \circ _)$$

- A minimum version is always in a contractible context and can be obtained by identity substitution
- General version is more complicated
- Replacement: to obtain the general version from minimum

$$\frac{\Gamma \vdash A \quad \vdash \Delta \text{ contractible} \quad \Delta \vdash \text{coh}_{B}^{*} : B}{\Gamma, \Delta^{A} \vdash \text{coh}_{B}^{A} : B^{A}}$$

Construction of Coherences II

- There is no Γ , $\Delta^A \Rightarrow \Delta$
- Solution: Filter out variables in Γ , Δ^A which are unnessary to build A
- Think reversely: build a "filtered" context using
- **Suspension**: Assume A is of level n. suspend Δ n times, i.e. add a stalk in front of Δ

$$\frac{\Gamma \vdash A \vdash \Delta \text{ contractible } \Delta \vdash B}{\sum_{A} \Delta \vdash \sum_{A} \text{coh}_{B} : \sum_{A} B}$$

Construction of Coherences III

and naturally we have a substitution called filter

filter_A:
$$\Gamma$$
, Δ ^A $\Rightarrow \Sigma$ _A Δ

- Case: Assume $\Delta = (x : *)$, B = (x = x) and in $\Gamma = (a : *, b : *, c : *)$, A = (a = b) (level 1) $\Sigma_A \Delta = (x_0 : *, x_1 : *, x : x_0 = x_1)$ $\Gamma, \Delta^A = (a : *, b : *, c : *, x : a = b)$ $x_0 \mapsto a, x_1 \mapsto b, x \mapsto x$
- Finally because suspension preserves contractibility, Σ_A Δ is contractible
- In general, $coh_B^A := (\Sigma_A (coh_B))[filter_A]$

Construction of Coherences IV

- Application: Reflexivity
 - 1st step: reflexivity (id) in a minimum contractible context

$$x : * \vdash \mathsf{coh}_{x=x} : x = x$$

2nd step: reflexivity for arbitrary type A in arbitrary context Γ
 By suspension:

$$\Sigma_A (x : *) \vdash \Sigma_A (\operatorname{coh}_{x=x}) : x = x$$

Replacement defined using filter

$$\operatorname{coh}_{X=X}^A := (\Sigma_A (\operatorname{coh}_{X=X}))[\operatorname{filter}_A]$$

Semantics

- A syntactic Grothendieck weak ω -groupoids is a globular set with an interpretation of syntactic coherence terms (coh)
- A globular set A consists coinductively of:
 - A set obj_A
 - For every x, y: obj_A, a globular set $Hom_A(x, y)$
- Example: the identity globular set $Id^{\omega}A$
 - $obj_{Id^{\omega}A} = A$
 - $\operatorname{Hom}_{Id^{\omega}A}(a,b) = Id^{\omega}A(a=b)$
- The interpretation of contexts, types and terms

Conclusion

- Types bear the structure of weak ω -groupoids: the tower of iterated identity types
- ullet An implementation of syntactic weak ω -groupoids in Agda
 - ullet Basic syntax of the type theory $\mathcal{T}_{\infty- ext{groupoid}}$
 - Heterogeneous equality for terms
 - Constructions of coherences
 - Semantic interpretation with globular sets
- ullet To complete a weak ω -groupoid model of type theory
- A computational interpretation of univalent axiom in Intensional Type Theory
- Question?