Prof. Bruno Travençolo

# SQL Structured Query Language

- Desenvolvida e implementada pelo laboratório de pesquisa da IBM em San Jose – início da década de 70
- Inicialmente chamada de SEQUEL (Structured English QUEry Language)
- Criada como interface entre usuários e o primeiro SGBDR – SYSTEM R



# SQL

# Structured Query Language

- Uma das mais importantes linguagens relacionais
- Exemplos de SGBD que utilizam SQL

- Oracle
- Informix
- Ingress
- MS SQL Server
- Interbase/Firebird

- Sybase
- DB2
- MySQL
- PostgreSQL



# SQL Structured Query Language

- Atrativo: pequena quantidade de comandos para realizar todas as operações necessárias para definição e manipulação de relações
  - Simplicidade
  - Grande poder de consulta
- Padrão facilita migração



# SQL

# Structured Query Language

- O padrão SQL
  - American National Standard Institute (ANSI) e International Organization for Standardization (ISO)
  - Versão mais recente:
    - ▶ SQL 2011
  - Versões anteriores
    - SQL 3 → SQL 99
    - $\rightarrow$  SQL 2  $\rightarrow$  SQL 92
    - $\rightarrow$  SQL 1  $\rightarrow$  SQL 86



- Linguagem de Definição dos Dados (DDL)
  - comandos para a definição, a modificação e a remoção de relações, além da criação e da remoção de índices
- Linguagem Interativa de Manipulação dos Dados (DML)
  - comandos para a consulta, a inserção, a remoção e a modificação de tuplas no banco de dados



- Linguagem de Manipulação dos Dados Embutida
  - pode ser utilizada a partir de linguagens de programação de propósito geral
- Definição de visões
  - SQL DDL inclui comandos para a criação e a remoção de visões
- Restrições de integridade
  - SQL DDL possui comandos para a especificação de restrições de integridade



## Autorização

 SQL DDL inclui comandos para a especificação de direitos de acesso a relações e visões

## Gerenciamento de transações

 introduz comandos para a especificação do início e do fim das transações

## Recuperação de falhas

 introduz comandos para utilização do arquivo de log



- Linguagem de Definição dos Dados (DDL)
  - CREATE
  - ALTER
  - DROP



- Comandos DDL
  - CREATE Cria uma definição
    - ▶ CREATE TABLE tab ...
  - ALTER Altera uma definição
    - ALTER TABLE tab ADD ...
  - DROP Exclui uma definição
    - ▶ DROP TABLE tab



#### CREATE TABLE

#### **Exemplo:**



#### Identificadores

- Iniciam com letras (a-z) ou underscore (\_)
  - Caracteres subsequentes: letras, dígitos (0-9), \_
- Identificadores e palavras-chave não são case-sensite
  - ▶ UPDATE MY\_TABLE SET A = 5;
  - uPDaTE my\_TabLE SeT a = 5;
- Convenção adotada
  - Palavras-chave em maiúscula
  - Identificadores em minúsculo
    - UPDATE my\_table SET a = 5;
- Identificadores com aspas
  - Aceitam quaisquer caracteres
    - UPDATE "my\_table" SET "a" = 5;



#### Identificadores

- Ao colocar aspas em um identificador ele torna-se casesensitive
- Identificadores sem aspas são sempre transformados em minúsculo (embora o padrão SQL defina que se transforme em maiúscula)
- Se você criar um esquema ou tabela usando a interface gráfica do pgAdmin e, caso o identificador deste objeto não seja composto por letras minúsculas, o objeto será identificado somente por meio de aspas.
  - Faça o teste, criando esquemas e tabelas por meio da interface gráfica e utilizando letras maiúsculas.
- Mais informações e referência:
  - http://www.postgresql.org/docs/8.4/static/sql-syntax-lexical.html



 CREATE TABLE – cria uma tabela, seus campos e as restrições de campo

Onde <definição de coluna> pode ser <nome atributo> <tipo de dado> <restrições de integridade>



## Lógico

Table B-1. PostgreSQL Logical Data Type

| SQL Name | PostgreSQL Alternative Name | Notes                                                                                                                                                                           |
|----------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| boolean  | bool                        | Holds a truth value. Will accept values such as TRUE, 't', 'true', 'y', 'yes', and '1' as true. Uses 1 byte of storage, and can store NULL, unlike a few proprietary databases. |

Fonte: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress

#### Números exatos

 Table B-2. postgresql Exact Number Types

| SQL Name     | PostgreSQL<br>Alternative Name | Notes                                                                                                 |
|--------------|--------------------------------|-------------------------------------------------------------------------------------------------------|
| smallint     | int2                           | A signed 2-byte integer that can store –32768 to +32767.                                              |
| integer, int | int4                           | A signed 4-byte integer that can store –2147483648 to +2147483647.                                    |
| bigint       | int8                           | A signed 8-byte integer, giving approximately 18 digits of precision.                                 |
| bit          | bit                            | Stores a single bit, 0 or 1. To insert into a table, use syntax such as INSERT INTO VALUES(B'1');.    |
| bit varying  | varbit(n)                      | Stores a string of bits. To insert into a table, use syntax such as INSERT INTO VALUES (B'011101'); . |

Fonte: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress

## Números aproximados

 Table B-3. PostgreSQL Approximate Number Types

| SQL Name                   | PostgreSQL<br>Alternative Name | Notes                                                                                                                                      |
|----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| numeric (precision, scale) |                                | Stores an exact number to the precision specified. The user guide states there is no limit to the precision that may be specified.         |
| real                       | float4                         | A 4-byte, single-precision, floating-point number.                                                                                         |
| double precision           | float8                         | An 8-byte, double-precision, floating-point number.                                                                                        |
| money                      |                                | Equivalent to numeric(9,2), storing 4 bytes of data. Its use is discouraged, as it is deprecated and support may be dropped in the future. |

Fonte: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress

## Dados temporais

 Table B-4. PostgreSQL Types for Date and Time

| SQL Name  | PostgreSQL<br>Alternative Name | Notes                                                                                                                                                                                                |
|-----------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| timestamp | datetime                       | Stores dates and times from 4713 BC to 1465001 AD, with a resolution of 1 microsecond. You may also see timestamptz used sometimes in PostgreSQL, which is a shorthand for timestamp with time zone. |
| interval  | interval                       | Stores an interval of approximately $\pm 178,000,000$ years, with a resolution of 1 microsecond.                                                                                                     |
| date      | date                           | Stores dates from 4713 BC to 32767 AD, with a resolution of 1 day.                                                                                                                                   |
| time      | time                           | Stores a time of day, from 0 to 23:59:59.99, with a resolution of 1 microsecond.                                                                                                                     |

Fonte: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress

#### Caracteres

 Table B-5. PostgreSQL Character Types

| SQL Name                        | PostgreSQL<br>Alternative Name | Notes                                                                                                                                                           |
|---------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| char, character                 | bpchar                         | Stores a single character.                                                                                                                                      |
| char(n)                         | <pre>bpchar(n)</pre>           | Stores exactly $n$ characters, which will be padded with blanks if fewer characters are actually stored.                                                        |
| <pre>character varying(n)</pre> | varchar(n)                     | Stores a variable number of characters, up to a maximum of $n$ characters, which are not padded with blanks. This is the standard choice for character strings. |
|                                 | text                           | A PostgreSQL-specific variant of varchar, which does<br>not require you to specify an upper limit on the number<br>of characters.                               |

Fonte: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress

- Existem outros tipos de dados além dos apresentados anteriormente. Consulte o manual do PostgreSQL:
- http://www.postgresql.org/docs/8.4/static/datatype.ht ml
- Livro: Beginning databases with PostgreSQL: Matthew and Stones, 2<sup>nd</sup> ed. Apress



#### CREATE TABLE

#### **Exemplo:**



#### Create Table

- Sintaxe completa: consultar manual PostgreSQL
- https://www.postgresql.org/docs/9.5/static/sql-createtable.html

```
CREATE [[GLOBAL|LOCAL]{TEMPORARY|TEMP}|UNLOGGED] TABLE [IF NOT EXISTS]
  table_name ( [
    { column_name data_type [COLLATE collation] [column_constraint [ ... ]]
    | table_constraint
    | LIKE source_table [ like_option ... ] }
    [, ... ]
] )
[ INHERITS ( parent_table [, ... ] ) ]
[ WITH ( storage_parameter [= value] [, ... ] ) | WITH OIDS|WITHOUT OIDS]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE tablespace_name ]
```

## Create Table - column\_constraint

Especificando a restrição em frente à coluna

```
where column constraint is:
 CONSTRAINT constraint name ]
 NOT NULL
 NULL
  CHECK ( expression ) [ NO INHERIT ]
 DEFAULT default expr
 UNIQUE index parameters
 PRIMARY KEY index parameters
 REFERENCES reftable [ ( refcolumn ) ]
     [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ]
     ON DELETE action | ON UPDATE action |
              NOT DEFERRABLE][INITIALLY DEFERRED
```

(continua no próximo slide)

- Restrição de chave primária (PRIMARY KEY) na coluna
- Restrição de chave estrangeira (FOREIGN KEY) na coluna
  - □ Observe que a palavra chave REFERENCES é usada
- Restrição de unicidade (UNIQUE) coluna

#### **Exemplo:**



Adicionando um nome à restrição

#### **Exemplo:**

## Create Table - table\_constraint

- Especificando a restrição na tabela
  - Observe a mudança na sintaxe de algumas restrições (de chave primária, chave estrangeira)

```
[ CONSTRAINT constraint_name ]

{ CHECK ( expression ) [ NO INHERIT ] |

UNIQUE ( column_name [, ... ] ) index_parameters |

PRIMARY KEY ( column_name [, ... ] ) index_parameters |

FOREIGN KEY ( column_name [, ... ] )

REFERENCES reftable [ ( refcolumn [, ... ] ) ]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ]

[ ON DELETE action ] [ ON UPDATE action ]

}

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
```



and table constraint is:

- Restrição de chave primária (PRIMARY KEY) na tabela
- Restrição de chave estrangeira (FOREIGN KEY) na tabela
- Restrição de unicidade (UNIQUE) na tabela

#### **Exemplo:**



Adicionando um nome à restrição

**CONSTRAINT uqdnome UNIQUE(DNOME),** 

**CONSTRAINT dptogerfk FOREIGN KEY (GERSSN)** 

REFERENCES EMPREGADO(SSN)

**)**;

**Exemplo:** 

## Como ler a sintaxe

| Convenção                |                                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| UPPERCASE (maiúsculo)    | Palavra-chave SQL.                                                                                                                  |
| lowercase<br>(minúsculo) | Identificadores ou constantes SQL informadas pelo usuário                                                                           |
| itálico                  | Nome de um bloco de sintaxe. Essa convenção é usada para indicar blocos longos de sintaxe que podem ser usados em mais de um local. |
| (barra<br>vertical)      | Separa elementos opcionais da sintaxe dentro de colchetes ou chaves.<br>Somente um dos itens pode ser escolhido.                    |
| [] (colchetes)           | Item de sintaxe opcional. Os colchetes não fazem parte do comando.                                                                  |
| { } (chaves)             | Item da sintaxe obrigatório. As chaves não fazem parte do comando.                                                                  |
| [,]                      | O item precedente pode ser repetido N vezes. A separação entre os itens é feita por uma vírgula                                     |
| []                       | O item precedente pode ser repetido N vezes. A separação entre os itens é feita por um espaço em branco.                            |



ALTER TABLE – Altera as definições de campos e de restrições.

```
ALTER TABLE < nome da tabela >
ADD <definição de Coluna>
ADD <Restrição de integridade> -- Chaves primárias, Estrangeiras
ALTER <definição de Coluna>
ALTER < definição de Coluna > DEFAULT < default-value >
ALTER <definição de Coluna> [ NOT ] NULL
DROP <definição de Coluna>
DROP CONSTRAINT <nome da restrição> -- Remove uma restrição
RENAME TO <novo nome> -- Renomeia a tabela
RENAME < Atributo > TO < novo atributo >
Onde <definição de coluna> pode ser:
<Nome Atributo> <Tipo de Dado> [NULL ] |
[ DEFAULT default-value ] -- nao vale [NOT NULL]
```





#### Sintaxe ALTER TABLE

http://www.postgresql.org/docs/8.4/static/sqlaltertable.html

```
ALTER TABLE [ ONLY ] name [ * ]

action [, ... ]

ALTER TABLE [ ONLY ] name [ * ]

RENAME [ COLUMN ] column TO new_column

ALTER TABLE name

RENAME TO new_name

ALTER TABLE name

SET SCHEMA new_schema
```



#### Sintaxe ALTER TABLE

where action is one of:

```
ADD [ COLUMN ] column type [ column_constraint [ ... ] ]
DROP [ COLUMN ] column [ RESTRICT | CASCADE ]
ALTER [ COLUMN ] column [ SET DATA ] TYPE type [ USING expression ]
ALTER [ COLUMN ] column SET DEFAULT expression
ALTER [ COLUMN ] column DROP DEFAULT
ALTER [ COLUMN ] column { SET | DROP } NOT NULL
ALTER [ COLUMN ] column SET STATISTICS integer
ALTER [ COLUMN ] column SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
ADD table constraint
DROP CONSTRAINT constraint_name [ RESTRICT | CASCADE ]
DISABLE TRIGGER [ trigger_name | ALL | USER ]
ENABLE TRIGGER [ trigger_name | ALL | USER ]
ENABLE REPLICA TRIGGER trigger_name
ENABLE ALWAYS TRIGGER trigger name
```



## (continuação)

```
DISABLE RULE rewrite rule name
ENABLE RULE rewrite_rule_name
ENABLE REPLICA RULE rewrite_rule_name
ENABLE ALWAYS RULE rewrite rule name
CLUSTER ON index name
SET WITHOUT CLUSTER
SET WITH OIDS
SET WITHOUT OIDS
SET ( storage_parameter = value [, ... ] )
RESET (storage_parameter [, ... ])
INHERIT parent_table
NO INHERIT parent_table
OWNER TO new_owner
SET TABLESPACE new tablespace
```



DROP TABLE – Exclui uma tabela existente de um banco de dados. Não pode ser excluída a tabela que possui alguma referência. Neste caso, devese primeiro excluir a tabela que possui algum campo que a está referenciando e depois excluir a tabela inicial.

DROP TABLE < nome da tabela >

#### **Exemplo:**

/\* Apaga tabela Departamento \*/
DROP TABLE Departamento;



#### Sintaxe DROP

DROP TABLE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]



ALTER TABLE – Altera as definições de campos e de restrições.

```
ALTER TABLE < nome da tabela >
ADD <definição de Coluna>
ADD <Restrição de integridade> -- Chaves primária, Secund. Estrang.
ALTER <definição de Coluna>
ALTER < definição de Coluna > DEFAULT < default-value >
ALTER <definição de Coluna> [ NOT ] NULL
DROP <definição de Coluna>
DROP CONSTRAINT <nome da restrição>
RENAME <novo nome>
RENAME < Atributo > TO < novo atributo >
Onde <definição de coluna> pode ser:
<Nome Atributo> <Tipo de Dado> [NULL ] |
[ DEFAULT default-value ]
```



# Removendo/Adicionando uma restrição

ALTER TABLE Empregado DROP CONSTRAINT ChaveEmpregado

ALTER TABLE Empregado ADD CONSTRAINT ChaveEmpregado PRIMARY KEY (SSN);



## Referências

Slides adaptados da aula da Profa. Josiane M. Bueno (in memoriam)/ e Prof. Humberto Luiz Razante

