Tema 4

Termen: săptămâna 8

1. Fie F_1, \ldots, F_n, G formule propoziționale. Arătați că

$$F_1,\dots,F_n\vDash G$$
dacă și numai dacă
$$(F_1\wedge\dots\wedge F_n\wedge\neg G) \text{ este nesatisfiabilă}.$$

- 2. Fie F și G formule propoziționale. Arătați că $F \sim G$ dacă și numai dacă $F \Leftrightarrow G$ este validă.
- 3. Fie P,Q,R formule propoziționale. Verificați dacă pentru următoarele are loc consecința logică \models :
 - (a) $Q \vee R, Q \Rightarrow \neg P, \neg (R \wedge P) \vDash \neg P,$
 - (b) $P \Rightarrow Q, Q \models P \land Q$.

Pentru aceasta, folosiți o variantă a teoremei de deducție.

- 4. Proiectați circuite digitale care implementează următoarele funcții booleene cu trei argumente:
 - (a) funcția prim care returnează \mathbb{A} dacă argumentele sunt reprezentarea binară a unui număr prim (folosim corespondența $\mathbb{A}=1,\,\mathbb{F}=0$),
 - (b) funcția pătrat perfect care returnează \mathbb{A} dacă argumentele sunt reprezentarea binară a unui pătrat perfect (folosim corespondența $\mathbb{A}=1,\,\mathbb{F}=0$),
 - (c) funcția par care returnează $\mathbb A$ dacă argumentele sunt reprezentarea binară a unui număr par.
- 5. Proiectați un circuit pentru adunarea pe biți. Circuitul are 3 intrări:
 - două intrări ce reprezintă biții ce trebuie adunați,
 - o intrare ce reprezintă bitul de transport ce intră în circuit,

și două ieșiri:

- una pentru suma biților de intrare,
- una pentru bitul de transport rezultat din adunarea intrărilor.

Folosim corespondența $\mathbb{A} = 1$, $\mathbb{F} = 0$.