MAT257 Notes

Jad Elkhaleq Ghalayini

November 16 2018

We begin by recalling two definitions for a manifold which we discussed last time

Definition 1. A set $M \subseteq \mathbb{R}^n$ is a \mathcal{C}^r submanifold of \mathbb{R}^n of dimension k if

3. For all $a \in M$, there is an open neighborhood U of a in \mathbb{R}^n , an open subset $V \subset \mathbb{R}^n$ and a \mathcal{C}^r diffeomorphism $h: U \to V$ such that

$$h(M \cap U) = V \cap (\mathbb{R}^k \times \{\mathbf{0}\})$$

- 4. For all $a \in M$, there is an open neighborhood U of a in \mathbb{R}^n , an open $W \subset \mathbb{R}^n$ and a \mathcal{C}^r mapping $\varphi: W \to \mathbb{R}^n$ such that
 - $-\varphi$ is a bijection
 - $-\varphi(W) = M \cap U$
 - $-\varphi$ has rank k at every point of W
 - " $\varphi^{-1}:\varphi(W)\to W$ is continuous" i.e. for every open subset Ω of W,

$$\varphi(\Omega)=\varphi(W)\cap \widetilde{U}$$

where U is open in \mathbb{R}^n .

We'll now show that the fourth definition implies the third:

Proof. Say $a = \varphi(b)$ for some $b \in W$. We can assume

$$\frac{\partial(\varphi_1,...,\varphi_k)}{\partial(y_1,...,y_k)}$$

has rank k on W. Define $\psi: W \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ by

$$(y,z)\mapsto \varphi(y)+(0,z)$$

Then we get the block matrix

$$\psi'(y,z) = \begin{pmatrix} \frac{\partial(\varphi_1,\dots,\varphi_k)}{\partial(y_1,\dots,y_k)} & 0\\ * & I \end{pmatrix}$$

This shows that ψ has rank n for all $y \in W$, since it's determinant is nonzero. But that means that we can apply the inverse function theorem. So by the inverse function theorem, there are open neighborhoods V_1' of (b,0) and U_1' of $\psi(b,0) = \varphi(b) = a$ such that $\psi: V_1' \to U_1'$ has a \mathcal{C}^r inverse $\psi^{-1}: U_1' \to V_1'$.

We have that

$$\psi^{-1}(\varphi(y)) = (y,0) \in V_1' = \varphi(W) \cap \widetilde{U}$$

where U is open in \mathbb{R}^n . Take $U_1 = U_1' \cap \widetilde{U}$ and $V_1 = \psi^{-1}(U_1)$. We have

$$M \cap U_1 = \{ \varphi(y) : (y,0) \in V_1 \}$$

So

$$h = \psi^{-1}|_{U_1}$$

satisfies the conditions implied by (3) since

$$h(M \cap U_1) = \psi^{-1}(M \cap U_1) = \{(y,0) : (y,0) \in V_1\} = V_1 \cap (\mathbb{R}^k \times \{\mathbf{0}\})$$

This is quite a delicate topological argument, and gi

2