

P3 | Basic tools for data visualization

In bioinformatics

Marta Coronado Zamora 4 October 2023

Keep in touch

🖊 marta.coronado@prof.esci.upf.edu

@geneticament

@marta-coronado

🖊 Institut de Biologia Evolutiva (IBE-UPF-CSIC)

Session content

- Short introduction to bioinformatics visualization
- Exercise: Making sense of the data: common visualizations in bioinformatics (P3_exercises.Rmd)
- Group project: finishing parts A and B

Biological data

- Quantitative and qualitative data: scatterplots, barplots, boxplots, heatplots, ...
- Molecular sequences: alignments, motifs, genome browsers, ...
- Species relationships: trees, networks
- Molecular pathways and interactions: cell diagrams, networks, ...
- Molecular structures: 3D molecular viewers, ...
- Anatomical structures: anatograms, ...

• ...

Specialised libraries and software

- Integrated software suites
- Javascript
 - BioJS
- R libraries
 - Specialised repositories bioconductor
 - ggplot2 extensions
 - htmlwidgets, some using BioJS libraries

Exercise | Which ggplot2 extensions and htmlwidgets are designed to cover specific needs of biological data?

Answer:

Static visualizations: ggplot2 extensions

Phylogenetic trees: ggtree

Anatomical structures: gganatogram

Sequence logos: ggseqlogo

Show intersections: UpSetR

```
library(UpSetR)

mutations 

read.csv( system.file("extdata", "mutations.csv", package = "UpSetR"), header=T, sep = ",")

upset(mutations, sets = c("PTEN", "TP53", "EGFR", "PIK3R1", "RB1"), sets.bar.color = "#56B4E9",
 order.by = "freq", empty.intersections = "on")
```


Interactive visualizations

Multiple alignment: msaR

```
library(msaR)
seqfile ← system.file("sequences","AHBA.aln", package="msaR")
msaR(seqfile)
```

```
Import Sorting Filter Selection Vis.elements Color scheme Extras Export Help
```

Protein structure

Example using NGL: a web application for molecular visualization: display molecules like proteins and DNA/RNA with a variety of representations.

Genome browsers

Examples by González lab at Institute of Evolutionary Biology: DrosOmics

Coronado-Zamora M, Salces-Ortiz J, González J. 2023. DrosOmics: A Browser to Explore -omics Variation Across High-Quality Reference Genomes From Natural Populations of *Drosophila melanogaster*. Mol Biol Evol 40:msad075.

Shiny applications

Example by my group at UAB: PopHumanVar

Colomer-Vilaplana A, Murga-Moreno J, Canalda-Baltrons A, Inserte C, Soto D, Coronado-Zamora M, Barbadilla A, Casillas S. PopHumanVar: an interactive application for the functional characterization and prioritization of adaptive genomic variants in humans. Nucleic Acids Res. 2022;50(D1):D1069-D1076.

Wrap-up

- Most basic exploratory and communication graphs in Bioinformatics can be achieved with general-purpose statistical graphics tools
- The complexity and characteristics of some biological data requires specialized tools
 - If static requirements, ggplot2 extensions may help
 - If interactive requirements, htmlwidgets may help (next week!)
 - Check tools used in similar studies

Making sense of the data: common visualizations in bioinformatics

- Open the document P3_exercises.Rmd in RStudio and complete the exercises.
- Upload the completed document to Aul@-ESCI at the end of the session.

Group project

Parts

- Part A | Understand the origin of our data set and the meaning of the variables
- Part B | Visually describe our data set
- Part C | 3

Group project

Part A

- Describe your data set:
 - Where and why was the information collected?
 - Which is the meaning of each variable?
 - Do the variables have unit? Which one?
 - Does the data set have a long format?

Group project

Part B

- Write the code to:
 - Read it into R
 - Reshape the data if necessary into long format
 - Check the variable classes and update them if necessary

Group project

Part B

- Write the code to:
 - Read it into R
 - Reshape the data if necessary into long format
 - Check the variable classes and update them if necessary
- Explore your data using ggplot2 graphics
 - Represent the distribution of the variables: pick one continuous variable and one discrete variable and use histograms or bar graphs to show their distribution
 - Summarize the data: use one geom to summarize data (e.g.: geom_smooth, boxplots, ...) of two variables
- Explain your data with graphics and text
 - Choose the three graphics that better describe your data
 - Customize and annotate them
 - Accompany the figures with your hypothesis and/or interpretation

Add everything (tidy) to the initial R Markdown document and submit the final project: 20 October 2023.