Ricorsione

Luca Becchetti

Presentazione tratta dalle slide che accompagnano il testo Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Ricerca binaria

- Se target = data[mid] → trovato
- Se target < data[mid] → cerchiamo in metà inferiore
- Se target > data[mid] → cerchiamo in metà superiore

Ricerca binaria

```
/**
     * Returns true if the target value is found in the indicated portion of the data array.
     * This search only considers the array portion from data[low] to data[high] inclusive.
 4
     */
    public static boolean binarySearch(int[] data, int target, int low, int high) {
      if (low > high)
 6
        return false:
                                                              // interval empty; no match
      else {
        int mid = (low + high) / 2;
 9
        if (target == data[mid])
10
11
          return true:
                                                              // found a match
        else if (target < data[mid])
12
          return binarySearch(data, target, low, mid -1); // recur left of the middle
13
14
        else
          return binarySearch(data, target, mid + 1, high); // recur right of the middle
15
16
17
```

Analisi

 Dopo ogni tentativo fallito la dimensione della porzione di array da esaminare è pari a uno dei seguenti valori:

$$(\operatorname{mid} - 1) - \operatorname{low} + 1 = \left\lfloor \frac{\operatorname{low} + \operatorname{high}}{2} \right\rfloor - \operatorname{low} \le \frac{\operatorname{high} - \operatorname{low} + 1}{2}$$

$$= \left\lfloor \frac{\operatorname{low} + \operatorname{high}}{2} \right\rfloor - \left\lfloor \operatorname{low} + \operatorname{high} \right\rfloor = \left\lfloor \frac{\operatorname{high} - \operatorname{low} + 1}{2} \right\rfloor$$

$$\mathsf{high} - (\mathsf{mid} + 1) + 1 = \mathsf{high} - \left\lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \right\rfloor \leq \frac{\mathsf{high} - \mathsf{low} + 1}{2}.$$

 Si dimezza spazio di ricerca → O(log n) chiamate ricorsive

Ricorsione lineare

- Si ha quando il corpo del metodo contiene al massimo un'invocazione ricorsiva
- Il metodo binarySearch implementa una ricorsione lineare
- Scrivere un algoritmo/metodo che ricorsivamente calcoli la somma degli elementi di un array

Somma degli elementi in un array

```
return 15 + data[4] = 15 + 8 = 23
linearSum(A. n)
                                           linearSum(data, 5)
                                                               return 13 + data[3] = 13 + 2 = 15
if n = 0 then
                                             linearSum(data, 4)
 return 0
                                                                return 7 + data[2] = 7 + 6 = \vec{13}
                                              linearSum(data, 3)
else
                                                                  return 4 + data[1] = 4 + 3 = 7
 return
                                               linearSum(data, 2)
linearSum(A, n - 1) + A[n - 1]
                                                                   return 0 + data[0] = 0 + 4 = 4
                                                 linearSum(data, 1)
                                                                    return 0
                                                  linearSum(data, 0)
       /** Returns the sum of the first n integers of the given array. */
 34
 35
       public static int linearSum(int[] data, int n) {
 36
         if (n == 0)
 37
            return 0:
         else
 38
            return linearSum(data, n-1) + data[n-1];
 39
 40
```

Inversione di un array

```
Algorithm reverseArray(A, i, j):
Input: array A e indici non-negativi i e j
Output: Thearray contenente gli elementi di A
compresi tra gli indici i e j, in ordine invertito

if i < j then
```

Swap A[i] and A[j]
reverseArray(A, i + 1, j - 1)
return

Inversione di un array (cont.)

- Definizione dei metodi che faciliti la ricorsione
- Per esempio, definiamo il metodo reverseArray(A, i, j) e non reverseArray(A)

Attenzione ai costi

Calcolo della funzione p(x,n)=xn

$$p(x,n) = \begin{cases} 1 & \text{if } n=0\\ x \cdot p(x,n-1) & \text{else} \end{cases}$$

- Scrivere algoritmo corrispondente
 - Qual è il costo computazionale?
 - Il costo è polinomiale?
 - Possiamo fare meglio?

Una definizione alternativa

$$p(x,n) = egin{cases} 1, n = 0 \ x \cdot p(x, (n-1)/2)^2, n > 0 \ dispari \ p(x, n/2)^2, n > 0 \ pari \end{cases}$$

Esempio

$$2^4 = 2^{(4 < 2)2} = (2^4 < 2)^2 = (2^2)^2 = 4^2 = 16$$

$$2^5 = 2^{1+(4\sqrt{2})^2} = 2(2^4\sqrt{2})^2 = 2(2^2)^2 = 2(4^2) = 32$$

$$2^6 = 2^{(6 < 2)2} = (2^6 < 2)^2 = (2^3)^2 = 8^2 = 64$$

$$2^7 = 2^{1+(6 < 2)2} = 2(2^{6} < 2)^2 = 2(2^3)^2 = 2(8^2) = 128$$

Metodo alternativo: algoritmo

```
Algorithm Power(x, n):
    Input: A number x and integer n = 0
    Output: The value xn
    if n = 0 then
        return 1
    if n is odd then
        y = Power(x, (n - 1)/2)
        return x · y ·y
   else
        y = Power(x, n/2)
        return y · y
```

Complessità computazionale

- Siamo in presenza di ricorsione lineare
- Ad ogni invocazione ricorsiva:
 - n → (n 1)/2 oppure
 - $n \rightarrow n/2$
- In ogni caso: secondo argomento dell'algoritmo dimezza (almeno)
- Conseguenza → O(log n) invocazioni ricorsive

Ricorsione in coda

```
/** Reverses the contents of subarray data[low] through data[high] inclusive. */
   public static void reverseArray(int[] data, int low, int high) {
                                                // if at least two elements in subarray
     if (low < high) {
                                                // swap data[low] and data[high]
       int temp = data[low];
      data[low] = data[high];
   data[high] = temp;
   reverseArray(data, low + 1, high - 1); // recur on the rest
Algorithm IterativeReverseArray(A, i, j ):
   while i < j do
        Swap A[i] and A[j]
        i = i + 1
        i = i - 1
    return
```

Ricorsione in coda → facile conversione in algoritmo iterativo

Ricorsione doppia (ed errori comuni)

Numeri di Fibonacci

```
- F<sub>0</sub> = 0
- F<sub>1</sub> = 1
- F<sub>i</sub> = F<sub>i-1</sub> + F<sub>i-2</sub>, i > 1

/** Returns the nth Fibonacci number (inefficiently). */
public static long fibonacciBad(int n) {
   if (n <= 1)
      return n;
   else
      return fibonacciBad(n-2) + fibonacciBad(n-1);
}</pre>
```

Complessità computazionale?

Versione efficiente (ricorsione lineare)

- Costo O(n) → E' lineare?
- Prova
 - Ricorsione lineare
 - Argomento diminuisce di 1 a ogni invocazione

Versione iterativa (Python-like)

```
def f(n):
    a = 0
    b = 1
    for i = 0 to n:
        temp = a
        a = b
        b = b + temp
return a
```

Un esercizio di esame

Il seguende codice Java implementa un algoritmo che determina incrementa un contatore binanario avente un numero di cifre costante.

```
static int[] modIncr(int[] arr) {
 1
      return modIncr(arr, arr.length-1);
 2
 3
 4
    static int[] modIncr(int[] arr, int i) {
 5
      if(i < 0) return arr;</pre>
 6
     if(arr[i] == 0) {
 7
      arr[i] = 1;
 8
     return arr;
 9
   } else {
10
        arr[i] = 0;
11
        return modIncr(arr, i-1);
12
13
14
```

Si risponda ai seguenti quesiti:

 Determinare il costo temporale asintotico di caso peggiore dell'algoritmo descritto da modIncr(int[]) in funzione della dimensione dell'input.

Svolgimento

- Si supponga che l'array contenga n elementi
- Nel caso peggiore la generica invocazione di modincr(int[] arr, int i):
 - Esegue O(1) operazioni
 - Invoca ricorsivamente la funzione su un sottoarray di dimensione i-1
- $T(n) \le c + T(n-1) \le c + c + T(n-2) \le ... \le cn$