MATRIX EQUATION - Example 2

Also note, that we can write
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

• as this:
$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

The above expression is called **Linear Combination** of columns of A.

Linear Combination

Definition: If A is an m by n matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbb{R}^n , then the **product of** A **and** \mathbf{x} , denoted by $A\mathbf{x}$, **is the linear combination of the columns of** A **using the corresponding entries in** \mathbf{x} **as weights**; that is,

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \downarrow & \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$$

• Note that Ax is defined only if the number of columns of A equals the number of entries in x.

Example

EXAMPLE 4 Figure 8 identifies selected linear combinations of $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and

 $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. (Note that sets of parallel grid lines are drawn through integer multiples of \mathbf{v}_1 and \mathbf{v}_2 .) Estimate the linear combinations of \mathbf{v}_1 and \mathbf{v}_2 that generate the vectors \mathbf{u} and \mathbf{w} .

FIGURE 8 Linear combinations of v_1 and v_2 .

Span

• The span of one vector forms a line that passes through the origin.

Span{v

 ${\bf v}_1 + {\bf v}_2$

 $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$

The span of non-colinear vector forms a plane that passes through the origin.