

R Graph Basics Part I

Pilsung Kang
School of Industrial Management Engineering
Korea University

• Basic functions that are provided by "graphics" package

Graphics package function	Description
barplot	Bar and column charts
dotchart	Cleveland dot plots
hist	Histograms
density	Kernel density plots
stripchart	Strip charts
qqnorm (in stats package)	Quantile-quantile plots
xplot	Scatter plots
smoothScatter	Smooth scatter plots
qqplot (in stats package)	Quantile-quantile plots
pairs	Scatter plot matrices
image	Image plots
contour	Contour plots
persp	Perspective charts of three-dimensional data
interaction.plot	Summary of the response for two-way combinations of factors
sunflowerplot	Sunflower plots

- Fisher's Iris dataset (default dataset provided by R)
 - ✓ Five variables
 - sepal length in cm, sepal width in cm, petal length in cm, petal width in cm, and
 - Species: Iris Setosa, Iris Versicolour, and Iris Virginica.

Setosa Versicolor Virginica

- Polymorphism of R graph functions
 - ✓ polymorphic function: has different operations for different arguments

✓ ex: plot()

• Titles and labels in a graph

√ title: main, x-axis label: xlab, y-axis label: ylab

The comparison between length and width

• Some options for basic R graphs

✓ pch: shape, cex: size, col: color

```
# Scatter plot with different shapes for different classes
plot(iris[,1],iris[,2],pch=as.integer(iris[,5]))
```

The comparison between length and width

• Symbols in graphs

✓ pch: shape, cex: size, col: color

Options for better readability

KOREA UNIVERSITY

A: Plot symbols and text; specify colors and/or character expansion; draw rectangle par(fig=c(0, 1, 0.415, 1))

```
plot(0, 0, xlim=c(0, 13), ylim=c(0, 19), type="n")
xpos \leftarrow rep((0:12)+0.5, 2); ypos \leftarrow rep(c(14.5,12.75), c(13,13))
points(xpos, ypos, cex=2.5, col=1:26, pch=0:25)
text(xpos, ypos, labels=paste(0:25), cex=0.75)
 0
 (D3)
       14
                                                                          25/
## Plot characters, vary cex (expansion)
text((0:4)+0.5, rep(9*ht, 5), letters[1:5], cex=c(2.5,2,1,1.5,2))
 a
          C
                   d
                                                          above (3)
## Position label with respect to point
                                                   left (2) • right (4)
xmid \leftarrow 10.5; xoff \leftarrow c(0, -0.5, 0, 0.5)
ymid < -5.8; yoff < -c(-1,0,1,0)
                                                        below (pos=1)
col4 <- colors()[c(52, 116, 547, 610)]
points(xmid+xoff, ymid+yoff, pch=16, cex=1.5, col=col4)
posText <- c("below (pos=1)", "left (2)", "above (3)", "right (4)")
text(xmid+xoff, ymid+yoff, posText, pos=1:4)
rect(xmid-2.3, ymid-2.3, xmid+2.3, ymid+2.3, border="red")
```

Options for better readability

```
# Predefined shapes and colors
plot(0,0, xlim=c(0,13), ylim=c(0,4), type="n")
xpos <- rep((0:12)+0.5,2)
ypos <- rep(c(3,1), c(13,13))
points(xpos, ypos, cex=seq(from=1,to=3,length=26), col=1:26, pch=0:25)
text(xpos, ypos, labels = paste(0:25), cex=seq(from=0.1,to=1,length=26))</pre>
```


• Bar Plot: Usage

Bar Plot:Arguments

Arguments

height either a vector or matrix of values describing the bars which make up the plot. If height is a vector, the plot consists of a sequence of rectangular bars

with heights given by the values in the vector. If height is a matrix and beside is FALSE then each bar of the plot corresponds to a column of height, with the values in the column giving the heights of stacked sub-bars making up the bar. If height is a matrix and beside is TRUE, then the values in each

column are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars drawn. Specifying a single value will have no visible effect unless | XIIIm | is specified.

space the amount of space (as a fraction of the average bar width) left before each bar. May be given as a single number or one number per bar. If height is a matrix and beside is TRUE, space may be specified by two numbers, where the first is the space between bars in the same group, and the second the

space between the groups. If not given explicitly, it defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2 otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this argument is omitted, then the names are taken from the names attribute of

height if this is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot, or a logical indicating whether a legend should be included. This is only useful when height is a

matrix. In that case given legend labels should correspond to the rows of height; if legend.text is true, the row names of height will be used as labels if

they are non-null.

beside a logical value. If FALSE, the columns of height are portrayed as stacked bars, and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the left. If TRUE, the bars are drawn horizontally with the first at the bottom.

density a vector giving the density of shading lines, in lines per inch, for the bars or bar components. The default value of NULL means that no shading lines are

drawn. Non-positive values of $\ \mbox{density} \ \ \mbox{also inhibit the drawing of shading lines}.$

angle the slope of shading lines, given as an angle in degrees (counter-clockwise), for the bars or bar components.

col a vector of colors for the bars or bar components. By default, grey is used if height is a vector, and a gamma-corrected grey palette if height is a matrix.

border the color to be used for the border of the bars. Use | border = NA | to omit borders. If there are shading lines, | border = TRUE | means use the same colour for

the border as for the shading lines.

main, sub overall and sub title for the plot.

• Bar Plot: Arguments

```
xlab
              a label for the x axis.
ylab
              a label for the y axis.
xlim
              limits for the x axis.
ylim
              limits for the v axis.
              logical. Should bars be allowed to go outside region?
pax
log
              string specifying if axis scales should be logarithmic; see plot.default
              logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.
axes
              logical. If TRUE, and if there are names.arg (see above), the other axis is drawn (with Ity = 0) and labeled.
axisnames
              expansion factor for numeric axis labels.
cex.axis
              expansion factor for axis names (bar labels).
cex.names
              logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will be drawn. Only applies when space = 0 (which it partly is when beside = TRUE).
inside
plot
              logical. If FALSE, nothing is plotted.
axis.lty
              the graphics parameter Ity applied to the axis and tick marks of the categorical (default horizontal) axis. Note that by default the axis is suppressed.
offset
              a vector indicating how much the bars should be shifted relative to the x axis.
add
              logical specifying if bars should be added to an already existing plot; defaults to FALSE
              logical specifying if the default annotation ( main , sub , xIab , yIab ) should appear on the plot, see title
args.legend list of additional arguments to pass to legend(); names of the list are used as argument names. Only used if legend. text is supplied.
formula
              a formula where the y variables are numeric data to plot against the categorical x variables. The formula can have one of three forms:
                   v ~ x1 + x2
                   cbind(y1, y2) ~ x
              , see the examples.
              a data frame (or list) from which the variables in formula should be taken.
data
subset
              an optional vector specifying a subset of observations to be used.
              a function which indicates what should happen when the data contain 🚻 values. The default is to ignore missing values in the given variables.
              arguments to be passed to/from other methods. For the default method these can include further arguments (such as axes, asp and main) and
              graphical parameters (see par ) which are passed to plot.window(), title() and axis
```


• Bar Plot: Example

√ "longley" dataset: A macroeconomic data set which provides a well-known example
for a highly collinear regression.

*	GNP.deflator [‡]	GNP [‡]	Unemployed [‡]	Armed.Forces [‡]	Population [‡]	Year [‡]	Employed [‡]
1947	83.0	234.289	235.6	159.0	107.608	1947	60.323
1948	88.5	259.426	232.5	145.6	108.632	1948	61.122
1949	88.2	258.054	368.2	161.6	109.773	1949	60.171
1950	89.5	284.599	335.1	165.0	110.929	1950	61.187
1951	96.2	328.975	209.9	309.9	112.075	1951	63.221
1952	98.1	346.999	193.2	359.4	113.270	1952	63.639
1953	99.0	365.385	187.0	354.7	115.094	1953	64.989
1954	100.0	363.112	357.8	335.0	116.219	1954	63.761
1955	101.2	397.469	290.4	304.8	117.388	1955	66.019
1956	104.6	419.180	282.2	285.7	118.734	1956	67.857
1957	108.4	442.769	293.6	279.8	120.445	1957	68.169
1958	110.8	444.546	468.1	263.7	121.950	1958	66.513
1959	112.6	482.704	381.3	255.2	123.366	1959	68.655
1960	114.2	502.601	393.1	251.4	125.368	1960	69.564
1961	115.7	518.173	480.6	257.2	127.852	1961	69.331
1962	116.9	554.894	400.7	282.7	130.081	1962	70.551


```
# Basic plot 1: bar plot
View(longley)
barplot(GNP ~ Year, data = longley)
barplot(cbind(Employed, Unemployed) ~ Year, data = longley)
```



```
data(Titanic)
View(Titanic)
summary(d.Titanic <- as.data.frame(Titanic))</pre>
```



```
> summary(d.Titanic <- as.data.frame(Titanic))
 Class
                                 Survived
              Sex
                         Age
                                               Freq
 1st :8
        Male :16
                      Child:16
                                 No :16
                                          Min.
                                                    0.00
 2nd :8
        Female:16
                      Adult:16
                                Yes:16
                                          1st Qu.:
                                                    0.75
 3rd:8
                                          Median: 13.50
 Crew:8
                                          Mean
                                                 : 68.78
                                          3rd Qu.: 77.00
                                                 :670.00
                                          Max.
```



```
barplot(Freq ~ Class + Survived, data = d.Titanic,
    subset = Age == "Adult" & Sex == "Male",
    main = "barplot(Freq ~ Class + Survived, *)",
    ylab = "# {passengers}", legend = TRUE)
```



```
class
Survived 1st 2nd 3rd Crew
No 118 154 387 670
Yes 57 14 75 192

, , Sex = Female

Class
Survived 1st 2nd 3rd Crew
No 4 13 89 3
Yes 140 80 76 20
```


Bar Plot: Example 3 (Coloring)

```
# Coloring bar charts
require(grDevices) # for colours
tN <- table(Ni <- stats::rpois(100, lambda = 5))
r <- barplot(tN, col = rainbow(20))
#- type = "h" plotting *is* 'bar'plot
lines(r, tN, type = "h", col = "red", lwd = 2)</pre>
```


• Bar Plot: Example 5 (Space between bars)

Bar Plot: Example 6

√ "VADeath" dataset: Death rates per 1000 in Virginia in 1940.

```
# VADeaths dataset
View(VADeaths)
barplot(VADeaths)
```

^	Rural [‡] Male	Rural [‡] Female	Urban [‡] Male	Urban [‡] Female
50-54	11.7	8.7	15.4	8.4
55-59	18.1	11.7	24.3	13.6
60-64	26.9	20.3	37.0	19.3
65-69	41.0	30.9	54.6	35.1
70-74	66.0	54.3	71.1	50.0


```
# Border color
barplot(VADeaths, border = "blue")
bar_VA <- barplot(VADeaths, border = "blue")
tot <- colMeans(VADeaths)
text(bar_VA, tot + 3, format(tot), xpd = TRUE, col = "red")</pre>
```



```
# Log scales
barplot(tN, col = heat.colors(12), log = "y")
barplot(tN, col = gray.colors(20), log = "xy")
```


Dot chart as an alternative to a bar chart

• Dot chart: Example 1

```
# Basic plot 3: dotchart
vectorToPlot <- c(1:6)
names(vectorToPlot) <- c(LETTERS[1:6])
dotchart(vectorToPlot, cex = 1.5)</pre>
```


• Dot chart: Example 1

• Dot chart: Example 1

Groups of Things

- Dot chart: Example 2
 - √ "WorldPhones" dataset: The number of telephones in various regions of the world (in thousands).

•	N.Amer [‡]	Europe [‡]	Asia [‡]	S.Amer [‡]	Oceania [‡]	Africa [‡]	Mid.Amer [‡]
1951	45939	21574	2876	1815	1646	89	555
1956	60423	29990	4708	2568	2366	1411	733
1957	64721	32510	5230	2695	2526	1546	773
1958	68484	35218	6662	2845	2691	1663	836
1959	71799	37598	6856	3000	2868	1769	911
1960	76036	40341	8220	3145	3054	1905	1008
1961	79831	43173	9053	3338	3224	2005	1076

Dot chart: Example 2

• Dot chart: Example 2

World Phones by Country

- Histogram: Example 1
 - √ "island" dataset: The areas in thousands of square miles of the landmasses which
 exceed 10,000 square miles.

*	V1 †
Africa	11506
Antarctica	5500
Asia	16988
Australia	2968
Axel Heiberg	16
Baffin	184
Banks	23
Borneo	280
Britain	84
Celebes	73
Celon	25
Cuba	43
Devon	21
Ellesmere	82
Europe	3745
Greenland	840

Hainan	13
Hispaniola	30
Hokkaido	30
Honshu	89
Iceland	40
Ireland	33
Java	49
Kyushu	14
Luzon	42
Madagascar	227
Melville	16
Mindanao	36
Moluccas	29
New Britain	15
New Guinea	306
New Zealand (N)	44

Newfoundland 43 North America 9390 Novaya Zemlya 32 Prince of Wales 13
Novaya Zemlya 32
,.
Prince of Wales
Sakhalin 29
South America 6795
Southampton 16
Spitsbergen 15
Sumatra 183
Taiwan 14
Tasmania 26
Tierra del Fuego 19
Timor 13
Vancouver 12
Victoria 82

• Histogram: Example 1

```
# Basic plot 4: histogram
View(islands)
hist(islands, col = "gray", labels = TRUE)
hist(sqrt(islands), breaks = 12, col = "lightblue", border = "pink")
```


• Histogram: Example 1

```
# Basic plot 4: histogram
View(islands)
hist(islands, col = "gray", labels = TRUE)
hist(sqrt(islands), breaks = 12, col = "lightblue", border = "red")
```

Histogram of sqrt(islands)

• Histogram: Example 2

```
# Histogram with the estimated distribution
samp <- rgamma(500,2,2)
hist(samp, 20, prob=T)
lines(density(samp))</pre>
```


Histogram: Example 3

```
# Save the plot as a png format
png("Hist_dist.png")
hist(samp, 20, prob=T)
lines(density(samp))
dev.off()

# Save the plot as a pdf format
pdf("Hist_dist.pdf")
hist(samp, 20, prob=T)
lines(density(samp))
dev.off()
```


