

Europäisches Patentamt

European Patent Office

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

02078966.5

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Eur päisches Pat ntamt **European Patent Office**

Office eur péen des br v ts

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n°:

02078966.5

Anmeldetag: Date of filing: Date de dépôt:

19/09/02

Anmelder: Applicant(s): Demandeur(s):

Solvay Pharmaceuticals B.V.

1381 CP Weesp NETHERLANDS

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

1H-1,2,4-Triazole-3-Carboxamide derivatives as cannabinoid-CB1 Receptor ligands

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: State: Pays: Tag: Date: Date: Aktenzeichen: File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

A61K31/41, C07D249/10, A61P25/18

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: Etats contractants désignés lors du depôt:

AT/BG/BE/CH/CY/CZ/DE/DK/EE/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/

Bemerkungen: Remarks: Remarques:

SEE FOR THE ORIGINAL TITLE OF THE APPLICATION, PAGE 1 OF THE DESCRIPTION.

		-	
		-	
			4
			}
	 		; ; ;
			;
			1
			:

			- made achte? Mannes.
			de protection desired. Mr.
			1
			1

1H-1,2,4-Triazole-3-carboxamide derivatives having cannabinoid-CB_{.1} receptor agonistic, partial agonistic, inverse agonistic or antagonistic activity

1

The present invention relates to a group of 1H-1,2,4-triazole derivatives, to methods for the preparation of these compounds, and to pharmaceutical compositions containing one or more of these compounds as an active ingredient.

These 1H-1,2,4-triazole-carboxamide derivatives are potent cannabinoid- CB_1 receptor agonists, partial agonists, inverse agonists or antagonists, useful for the treatment of psychiatric and neurological disorders, as well as other diseases involving cannabinoid- CB_1 neurotransmission.

1,5-Diaryl-1H-1,2,4-triazole-3-carboxamide derivatives have been described in EP 0346620 and GB 2120665 as herbicides. Recently 1,2,4-triazoles were described as potential agonists and antagonists of cannabinoid-CB₁ and -CB₂ receptors (Jagerovic, N. *et al.*, *Drugs Fut.* 2002, 27(Suppl. A): XVIIth Int. Symp. on Medicinal Chemistry, P284)

It has now surprisingly been found that known and new 1,5-diaryl -1H-1,2,4-triazole-3-carboxamide derivatives of the formula (I), as well as prodrugs, salts, and stereo-isomers thereof, are potent antagonists, agonists, inverse agonists or partial agonists of the cannabinoid CB₁ receptor:

25

30

5

10

15

20

wherein

R and R₁ independently represent a phenyl, naphtyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl or triazinyl group, which groups may be substituted with 1-4 substituents X, which can be the same or different, from the group branched or unbranched (C₁₋₃)-alkyl or alkoxy, hydroxy, halogen,

5

10

15

20

25

30

35

trifluoromethyl, trifluoromethylthio, trifluoromethoxy, nitro, amino, mono- or dialkyl (C_{1-2})-amino, mono- or dialkyl (C_{1-2})-amido, (C_{1-3})-alkoxycarbonyl, trifluoromethylsulfonyl, sulfamoyl, (C_{1-3})-alkylsul-fonyl, carboxyl, cyano, carbamoyl, (C_{1-3})-dialkylaminosulfonyl, (C_{1-3})-monoalkylamino-sulfonyl and acetyl.

 R_2 represents a hydrogen atom or a branched or unbranched C_{1-8} alkyl or C_{1-8} cycloalkyl-alkyl group or a phenyl, benzyl or phenethyl group which aromatic rings may be substituted with 1-4 substituents X, wherein X has the meaning as indicated above, or R_2 represents a pyridyl or thienyl group,

 R_3 represents branched or unbranched C_{1-8} alkyl, C_{1-8} alkoxy, C_{3-8} cyclo- alkyl, C_{5-10} bicycloalkyl, C_{6-10} tricycloalkyl, C_{3-8} alkenyl, C_{5-8} cycloalkenyl, which groups may optionally contain one or more heteroatoms from the group (O, N, S), which groups may be substituted with a hydroxy group or 1-3 fluoro atoms, or R_3 represents a phenyl, benzyl or phenethyl group which aromatic rings may be substituted with 1-4 substituents X, wherein X has the meaning as indicated above, or R_3 represents a pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl or thienyl group which heteroaromat ic rings may be substituted with 1-2 substituents X, wherein X has the meaning as indicated above, or R_3 represents a group NR_4R_5 wherein

 R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S, which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C_{1-3} alkyl, hydroxy or trifluoromethyl group or a fluoro atom, or

R₂ and R₃, together with the nitrogen atom to which they are bonded, form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S₇ which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C₁₋₃ alkyl, hydroxy or trifluoromethyl group or a fluoro atom.

A group of four 1,5-diaryl-1H-1,2,4-triazole-3-carboxamide derivatives in which the amide N-atom is part of an unsubstituted piperidinyl or morpholinyl group is decribed by D. Clerin and J.P. Fleury in *Bull. Soc. Chim. Fr.*, **1975**, 1-2, Pt.2, 211-217.

Due to the potent cannabinoid-CB1 receptor agonistic, partial agonistic, inverse agonistic or antagonistic activity the compounds of the invention are suitable for use in the treatment of psychosis, anxiety, depression, attention deficits, memory disorders, cognitive disorders, appetite disorders, obesity, addiction, appetence, drug dependence, neurodegenerative disorders, dementia, dystonia, muscle spasticity, tremor, epilepsy, multiple sclerosis, traumatic brain injury, stroke, Parkinson's disease, Alzheimer's disease, epilepsy, Huntington's disease, Tourette's syndrome, cerebral ischaemia, cerebral apoplexy, craniocerebral trauma, stroke, spinal cord viral encephalitis, plaque sclerosis, disorders, neuroinflammatory demyelinisation related disorders, as well as for the treatment of pain disorders, including neuropathic pain disorders, septic shock, glaucoma, diabetes, cancer, nausea, gastrointestinal disorders, gastric ulcers, diarrhoea cardiovascular disorders.

5

10

15

20

25

30

35

The affinity of the compounds of the invention for cannabinoid CB₁ receptors was determined using membrane preparations of Chinese hamster ovary (CHO) cells in which the human cannabinoid CB₁ receptor is stably transfected in conjunction with [³H]CP-55,940 as radioligand. After incubation of a freshly prepared cell membrane preparation with the [³H]-ligand, with or without addition of compounds of the invention, separation of bound and free ligand was performed by filtration over glassfiber filters. Radioactivity on the filter was measured by liquid scintillation counting.

The cannabinoid CB₁ receptor antagonistic, agonistic or partial agonistic activity of compounds of the invention was determined by functional studies using CHO cells in which human cannabinoid CB₁ receptors are stably expressed. Adenylyl cyclase was stimulated using forskolin and measured by quantifying the amount of accumulated cyclic AMP. Concomitant activation of CB₁ receptors by CB₁ receptor agonists (e.g. CP-55,940 or (R)-WIN-55,212-2) can attenuate the forskolin-induced accumulation of cAMP in a concentration-dependent manner. This CB₁ receptor-mediated response can be antagonised by CB₁ receptor antagonists or partial agonists such as the compounds of the invention.

Cannabinoid agonistic of partial agonistic activity of compounds of the invention can be determined according to published methods, such as assessment of *in vivo* cannabimimetic effects (Wiley, J. L.; Jefferson, R. G; Grier, M. C.; Mahadevan, A.; Razdan, R. K.; Martin, B. R. *J. Pharmacol. Exp. Ther.* **2001**, 296, 1013).

The invention relates both to racemates, mixtures of diastereomers and the individual stereoisomers of the compounds having formula (I).

The compounds of the invention can be brought into forms suitable for administration by means of usual processes using auxiliary substances and/or liquid or solid carrier materials.

Suitable synthetic routes for the compounds of the invention are the following:

10 Synthetic route A

Step 1: Ester hydrolysis of a compound having formula (II) wher ein R_6 represents a leaving group such as a branched or unbranched (C_{1-4})-alkyl group or a benzyl group,

15

yields a compound having formula (III)

20 wherein R and R₁ have the meanings as described above.

The compounds of the invention having formula (II), wherein R₈ represents an alkyl group (C₁₋₄) or benzyl group can be obtained according to methods known, for example:

- 25 a) Sawdey, G.W. J. Am. Chem. Soc. 1957, 79, 1955
 - b) Czollner, L. et al., Arch. Pharm. (Weinheim) 1990, 323, 225
 - c) Eicher, T. and Hauptmann, S. *The Chemistry of Heterocycles*, Thieme Verlag, Stuttgart, **1995** (ISBN 313 100511 4), p. 208- 212.

11.01.2002

Step 2: reaction of a compound having formula (III) with a compound having formula R₂R₃NH wherein R₂ and R₃ have the meanings as described above *via* activating and coupling methods such as formation of an active ester, or in the presence of a coupling reagent such as DCC, HBTU, BOP, CIP (2-chloro- 1,3-dimethylimidazolinium hexafluorophosphate) or PyAOP (7-azabenzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate). Activating and coupling methods of this type are described in

- M. Bodanszky and A. Bodanszky: The Practice of Peptide Synthesis, Springer-Verlag, New York, 1994; ISBN: 0-387-57505-7;
 - b) K. Akaji et al., Tetrahedron Lett. (1994), 35, 3315-3318);
 - c) F. Albericio et al., Tetrahedron Lett. (1997), 38, 4853-4856).
- 15 This reaction gives a 1H-1,2,4-triazole derivative having formula (I).

Synthetic route B

A compound having formula (III) is reacted with a halogenating agent such as thionyl chloride (SOCl₂). This reaction yields the corresponding acid chloride (IV).

Reaction of a compound having formula (IV) with a compound having formula R_2R_3NH wherein wherein R_2 and R_3 have the meanings as described above gives a 1H-1,2,4-triazole derivative having formula (I). This reaction is preferably carried out in the presence of an organic base such as dilsopropyl- ethylamine (DIPEA) or triethylamine.

Synthetic route C

A compound having formula (II) is reacted in an amidation reaction with a compound having formula R₂R₃NH wherein R₂ and R₃ have the meanings as described hereinabove to give a 1H-1,2,4-triazole derivative having formula (I).

Example I

5

15

Part A: To a stirred solution of dimethyl aminomalonate hydrochloride (25 gram, 0.136 mol) in dichloromethane (200 mL) triethylamine (41.4 mL, 2.2 molar 10 equivalent) is added at 0 °C. 4-Chlorobenzoyl chloride (23.8 gram, 0.136 mol) is slowly added and the resulting solution is allowed to stand at room temperature overnight. Water is added and the organic layer is separated. The water layer is extracted twice with dichloromethane. The collected organic layers are washed with water, dried over MgSO₄, filtered and concentrated in vacuo. The residue is recrystallised from methanol (400 mL) to give dimethyl 2-(4chlorobenzoylamino)malonate (30.5 gram, 79 % yield). Melting point: 146 -148 °C. 1H-NMR (200 MHz, CDCI₃): \Box 3.86 (s, 6H), 5.38 (d, J = 6 Hz, 1H), 7.15 (br d, J ~ 6 Hz, 1H), 7.43 (d, J = 8 Hz, 2H), 7.79 (d, J = 8 Hz, 2H).

20 Part B: To a stirred suspension of 2,4-dichloroaniline (19.44 gram, 0.12 mol) in concentrated HCI (25 mL) and acetic acid (75 mL) at 0 °C is added a solution of NaNO₂ (9.0 gram, 0.13 mol) in water (50 mL) and the resulting solution is stirred for 15 minutes. A solution of dimethyl 2-(4-chlorobenzoylamino) -malonate (28.55 gram, 0.10 mol) in acetone (200 mL) is slowly added while keeping the temperature below 0 °C. A solution of K2CO3 (120 gram) in water (200 mL) is slowly added and the 25 resulting black mixture is stirred for 30 minutes at 0 °C. The mixture is extracted three times with EtOAc. The collected organics are washed with water, aqueous NaHCO3 and water, respectively, dried over MgSO₄, filtered and concentrated in vacuo. The residue is dissolved in methanol (500 mL) and a solution of sodium (1 gram) in methanol (75 mL) is added. The resulting stirred mixture is allowed to stand overnight 30 at room temperature and cooled in a refrigerator. The formed precipitate is collected by filtration and washed with methanol to give methyl 5-(4-chlorophenyl)- 1-(2,4dichlorophenyl)-1H-1,2,4-triazole-3-carboxylate (11.4 gram, 30 % yield). Melting point: 153-154 °C. ¹H-NMR (200 MHz, CDCl₃): \$\Quad 4.07 (s, 3H), 7.28-7.60 (m, 7H).

Part C: To a stirred suspension of methyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-35 1H-1,2,4-triazole-3-carboxylate (11.3 gram, 0.0295 mol) in methanol (100 mL) is added KOH (45 % aqueous solution, 7.5 mL) and the resulting mixture is heated at

11.01.4004

reflux temperature for 4 hours. The mixture is concentrated in vacuo and water (150 mL) and concentrated HCl are added. The yellow precipitate is collected by filtration, washed with water and dried in vacuo to give 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,4-triazole-3-carboxylic acid (10.0 gram, 92 % yield). Melting point: 141-144 °C (decomposition).

5

25

Part D: To a stirred solution of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,4triazole-3-carboxylic acid (1.48 gram, 4.0 mmol) in acetonitrile (20 mL) is successively added diisopropylethylamine (DIPEA) (1.5 mL, 2.1 molar equivalent), Obenzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophos- phate (HBTU) (1.66 10 gram, 1.1 molar equivalent) and 1-aminopiperidine (0.44 gram, 1.1 molar equivalent). After stirring overnight an aqueous NaHCO₃ solution is added. The resulting mixture is three times extracted with dichloromethane. The combined organic layers are washed with water, dried over Na₂SO₄, filtered and concentrated in vacuo to give a crude oil (3.6 gram). This oil is further purified by flash chromatography (silica gel; EtOAc / petroleum ether (40-60 °C) = 7/3 (v/v)). The purified material is treated with 15 ethanolic HCI (1M solution) to give 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(piperidin-1-yi)-1H-1,2,4-triazole-3-carboxamide hydrochloride (1.50 gram, 77 % yield). Melting point: 238-240 °C (decomposition). ¹H-NMR (400 MHz, DMSO-d₆): Ç 1.46-1.54 (m, 2H), 1.78-1.85 (m, 4H), 3.22-3.28 (m, 4H), 7.50 (s, 4H), 7.70 (dd, J=8and 2 Hz, 1H), 7.85-7.87 (m, 1H), 7.91 (d, J = 8 Hz, 1H), (NH not visible). 20 Analogously were prepared the examples 2-12:

- 2. 5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-N-(pyrrolidin-1-yl)-1H-1,2,4-triazole-3-carboxamide hydrochloride. Melting point: 248-255 °C (decomposition).
 - 3. 5-(4-Chlorophenyl)-N-cyclohexyl-1-(2,4-dichlorophenyl)-1H-1,2,4-triazole-3-carboxamide. Melting point: 186-188 °C.
- 4. N-t-Butoxy-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,4-triazole-3-carboxamide. Melting point: 150-152 °C.
- 5. 5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-N-(n-pentyl)-1H-1,2,4-triazole-3-carboxamide. ¹H-NMR (400 MHz, CDCl₃): □ 0.92 (t, J = 7 Hz, 3H), 1.35-1.44 (m, 4H), 1.62-1.70 (m, 2H), 3.48-3.56 (m, 2H), 7.20-7.25 (m, 1H), 7.34 (dt, J = 8 and 2 Hz, 2H), 7.42-7.50 (m, 4H), 7.54 (d, J = 2 Hz, 1H).
- 6. 5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-N-(morpholin-4-yl)-1H-1,2,4triazole-3-carboxamide. Melting point: 184-186 ° C.
 - 7. 1-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-N-(piperidin-1-yl)-1H-1,2,4-triazole-3-carboxamide hydrochloride. Melting point: 234-237 °C (decomposition).

- 8. 1-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-N-(pyrrolidin-1-yl)-1H-1,2,4-triazole-3-carboxamide hydrochloride. Melting point: 234-236 °C (decomposition).
- 9. 1-(4-Chlorophenyl)-N-cyclohexyl-5-(2,4-dichlorophenyl)-1H-1,2,4-triazole-3-carboxamide. Amorphous.
 - 10. N-t-Butoxy-1-(4-chlorophenyl)-5-(2,4-dichlorophenyl)-1H-1,2,4-triazole-3-carboxamide. Amorphous.
 - 11. 1-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-N-(n-pentyl)-1H-1,2,4-triazole-3-carboxamide. Oil.
- 10 12. 1-(4-Chlorophenyl)-5-(2,4-dichlorophenyl)-N-(morpholin-4-yl)-1H-1,2,4-triazole-3-carboxamide hydrochloride. Melting point: 224-226 ° C.

SPW0211 P

Claims

1. A method of treating disorders involving CB₁ cannabinoid neurotransmission such as psychosis, anxiety, depression, attention deficits, memory disorders, cognitive disorders, appetite disorders, obesity, addiction, appetence, drug dependence, neurodegenerative disorders, dementia, dystonia, muscle spasticity, tremor, epilepsy, multiple sclerosis, traumatic brain injury, stroke, Parkinson's disease, Alzheimer's disease, epilepsy, Huntington's disease, Tourette's syndrome, cerebral ischaemia, cerebral apoplexy, craniocerebral trauma, stroke, spinal cord injury, neuroinflammatory disorders, plaque sclerosis, viral encephalitis, demyelinisation related disorders, as well as for the treatment of pain disorders, including neuropathic pain disorders, septic shock, glaucoma, diabetes, cancer, emesis, nausea, gastrointestinal disorders, gastric ulcers, diarrhoea and cardiovascular disorders, characterized in that a compound of formula (I) is used

15

25

30

10

5

wherein

R and R₁ independently represent a phenyl, naphtyl, thienyl, pyridyl,
 pyrimidyl, pyrazinyl, pyridazinyl or triazinyl group, which groups may be substituted with 1-4 substituents X, which can be the same or different, from the group branched or unbranched (C₁₋₃)-alkyl or alkoxy, hydroxy, halogen, trifluoromethyl, trifluoromethylthio, trifluoromethoxy, nitro, amino, mono- or

dialkyl (C_{1-2})-amino, mono- or dialkyl (C_{1-2})-amido,

 (C_{1-3}) -alkoxycarbonyl, trifluoromethylsulfonyl, sulfamoyl, (C_{1-3}) -alkylsul-fonyl, carboxyl, cyano, carbamoyl, (C_{1-3}) -dialkylaminosulfonyl, (C_{1-3}) -monoalkylamino-sulfonyl and acetyl,

R₂ represents a hydrogen atom or a branched or unbranched C₁₋₈ alkyl or C₁₋₈ cycloalkyl-alkyl group or a phenyl, benzyl or phenethyl group which aromatic rings may be substituted with 1-4 substituents X, wherein X has the meaning as indicated above, or R₂ represents a pyridyl or thienyl group,

R₃ represents branched or unbranched C₁₋₈ alkyl, C₁₋₈ alkoxy,C₃₋₈ cyclo- alkyl, C₅₋₁₀ bicycloalkyl, C₆₋₁₀ tricycloalkyl, C₃₋₈ alkenyl, C₅₋₈ cycloalkenyl, which groups may optionally contain one or more heteroatoms from the group (O, N, S), which groups may be substituted with a hydroxy group or 1-3 fluoro atoms, or R₃ represents a phenyl, benzyl or phenethyl group which aromatic rings may be substituted with 1-4 substituents X, wherein X has the meaning as indicated above, or R₃ represents a pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl or thienyl group which heteroaromatic rings may be substituted with 1-2 substituents X, wherein X has the meaning as indicated above, or R₃ represents a group NR₄ R₅ wherein

 R_4 and R_5 , together with the nitrogen atom to which they are bonded, form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S, which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C_{1-3} alkyl, hydroxy or trifluoromethyl group or a fluoro atom, or

 R_2 and R_3 , together with the nitrogen atom to which they are bonded, form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S, which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C_{1-3} alkyl, hydroxy or trifluoromethyl group or a fluoro atom,

and prodrugs, stereoisomers and salts thereof.

25 2. A compound of formula (I)

wherein

30

5

10

15

20

- R and R₁ have the meanings as given in claim 1,

- R₂ represents a hydrogen atom or a branched or unbranched C₁₋₈ alkyl group
- R₃ represents branched or unbranched C ₂₋₈ alkoxy, C₃₋₈ cycloalkyl, C₅₋₁₀ bicycloalkyl, C₆₋₁₀ tricycloalkyl, C₄₋₈ alkenyl, C₅₋₈ cycloalkenyl, which groups may optionally contain one or more heteroatoms from the group (O, N, S), which groups may optionally be substituted with a hydroxy group or 1 -3 fluoro atoms, or R₃ represents a benzyl or fenethyl group which aromatic rings may be substituted with 1-4 substituents X, wherein X has the meaning as given in claim 1, or R₃ represents a pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl or thienyl group which heteroaromatic rings may be substituted with 1-2 substituents X, wherein X has the meaning as given in claim 1, or R₃ represents a group NR₄R₅ wherein

R₄ and R₅ together with the nitrogen atom to which they are bonded form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S, which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C₁₋₃ alkyl, hydroxy or trifluoromethyl group or a fluoro atom, or

- R₂ and R₃, together with the nitrogen atom to which they are bonded, form a saturated or unsaturated, monocyclic or bicyclic, heterocyclic moiety having 4 to 10 ring atoms, which heterocyclic group contains one or two heteroatoms from the group N, O or S, which heteroatoms can be the same or different, which heterocyclic moiety may be substituted with a branched or unbranched C₁₋₃ alkyl, hydroxy or trifluoromethyl group or a fluoro atom, with the proviso that this heterocyclic moiety is not an unsubstituted piperidinyl or unsubstituted morpholinyl group,

and prodrugs, stereoisomers and salts thereof.

3. A compound of formula (I)

5

10

15

20

25

30

wherein

R and R₁ independently represent a phenyl, naphtyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl or triazinyl group, which groups are substituted with 1-4 substituents X, wherein X has the meaning as given in claim 1,

12

 R₂ and R₃ have the meanings as given in claim 2, and prodrugs, stereoisomers and salts thereof.

10

20

5

- 4. Pharmaceutical compositions containing a pharmacologically active amount of at least one compound of one of the claims 1-3 as an active ingredient.
- 5. A method of preparing pharmaceutical compositions as claimed in claim 4,
 15 characterized in that a compound of one of the claims 1-3 is brought in a form suitable for administration.
 - Use of a compound of one of the claims 1-3 for the preparation of a pharmaceutical composition for the treatment of disorders involving cannabinoid neurotransmission.
- 7. Use as in claim 6 characterised in that said disorders are: psychosis, anxiety, depression, attention deficits, memory disorders, cognitive disorders, appetite disorders, obesity, addiction, appetence, drug dependence, neurodegenerative disorders, dementia, dystonia, muscle spasticity, tremor, epilepsy, multiple sclerosis, traumatic brain injury, stroke, Parkinson's disease, Alzheimer's disease, epilepsy, Huntington's disease, Tourette's syndrome, cerebral ischaemia, cerebral apoplexy, craniocerebral trauma, stroke, spinal cord injury, neuroinflammatory disorders, plaque sclerosis, viral encephalitis, demyelinisation related disorders, as well as for the treatment of pain disorders, including neuropathic pain disorders, septic shock, glaucoma, diabetes, cancer, emesis, nausea, gastrointestinal disorders, gastric ulcers, diarrhoea and cardiovascular disorders.

Abstract

The present invention relates to a group of 1H-1,2,4-triazole-3-carboxamide derivatives, to methods for the preparation of these compounds, and to pharmaceutical compositions containing at least one of these compounds as an active ingredient.

These 1H-1,2,4-triazole-3-carboxamide derivatives are potent cannabinoid-CB₁ receptor agonists, partial agonists, inverse agonists or antagonists, useful for the treatment of disorders involving cannabinoid neurotransmission.

The compounds have the general formula (I)

15

10

wherein R and R_1 - R_3 have the meanings given in the specification .

			•
			-
			• • •
			;
	- · · · · · · ·		
			. 3
			į
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			. b

		·	,
•,			