

Inżynierskie zastosowania statystyki

Ćwiczenia Semestr zimowy 2020/21

ĆWICZENIA 3 I 4

Testowanie hipotez

dr inż. Agata Kirjanów-Błażej

Wydział Elektroniki Katedra Systemów i Sieci Komputerowych

Test statystyczny

Test statystyczny to procedura pozwalająca oszacować prawdopodobieństwo spełnienia pewnej hipotezy statystycznej w populacji na podstawie danych pochodzących z próby losowej

Rodzaje testów

Testy parametryczne – weryfikują hipotezy dotyczące wartości parametrów rozkładu badanej populacji (najczęściej średnie, wariancje, odsetki). W większości przypadków statystyki testowe obliczane są przy wykorzystaniu bezpośrednich danych pochodzących z próby, a ich rozkład zależy od rozkładu analizowanych zmiennych.

Testy nieparametryczne – służą do weryfikacji różnorakich hipotez, lecz nie są one bezpośrednio powiązane z parametrami rozkładu (bywają wyjątki). Dotyczą one raczej samej postaci rozkładu (kształtu), podobieństwa pomiędzy rozkładami, losowości. Testy te operują na danych "przekształconych" – najczęściej rang, wobec czego rozkład statystyki z próby nie zależy bezpośrednio od rozkładu danych.

Hipotezy statystyczne mogą dotyczyć

- wartości badanych zmiennych: średni wzrost kobiet w wieku 25 lat wynosi 165 cm
- różnicy między grupami osobników w zakresie rozpatrywanej cechy: suplement A skuteczniej zwiększa poziom magnezu niż suplement B
- zależności między badanymi cechami: istnieje silna zależność pomiędzy ilością wypitego alkoholu a zachorowalnością na marskość wątroby
- porównania rozkładu zmiennych: zmienna masa ciała ma rozkład normalny

Weryfikacja hipotez

Weryfikacja hipotez statystycznych polega na zastosowaniu określonego schematu postępowania zwanego testem statystycznym, który rozstrzyga, przy jakich wynikach z próby sprawdzoną hipotezę należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Testowanie hipotez: etapy

- 1. Sformułowanie tezy rzeczowej i ustaleniu hipotez H₀ i H_a;
- 2. Wyboru właściwej funkcji testowej (statystyki z próby);
- 3. Przyjęciu stosownego poziomu istotności α ;
- 4. Odczytaniu wartości krytycznych w tablicach dystrybuanty właściwego rozkładu i ustaleniu obszaru krytycznego;
- 5. Odrzuceniu hipotezy zerowej na korzyść hipotezy alternatywnej, gdy funkcja testowa obliczona z próby znajduje się w obszarze krytycznym i nie odrzucenie jej, gdy funkcja testowa jest poza obszarem krytycznym.

Testowanie hipotez: Błędy

Błąd I rodzaju polega na odrzuceniu hipotezy zerowej, w przypadku gdy była hipotezą prawdziwą. Prawdopodobieństwo błędu I rodzaju jest zadane z góry i jest małą liczbą dodatnią – rzędu 0,1 lub mniej (jest to tzw. poziom istotności testu α).

Znajomość ryzyka błędu I rodzaju upoważnia do podejmowania decyzji o odrzuceniu hipotezy zerowej.

Błąd II rodzaju polega na przyjęciu hipotezy zerowej, w przypadku gdy była hipotezą fałszywą. Prawdopodobieństwo błędu II rodzaju β zwykle nie jest znane. W testach istotności nie podejmujemy decyzji o przyjęciu hipotezy zerowej, ponieważ nie znamy ryzyka błędu II rodzaju.

Test dla proporcji służy do weryfikacji hipotezy o udziale w całej populacji jednostek posiadających wyróżniony wariant danej cechy, co jest określane mianem frakcji, proporcji lub wskaźnika struktury. Zakłada się, że populacja ma rozkład dwumianowy z parametrem **p** oraz próbka jest liczna n>50.

Przypuśćmy, że obserwujemy pewną cechę dychotomiczną, którą przekształcamy w zmienną zero-jedynkową, tj. przyjmującą wartość 1 dla jednego wariantu cechy oraz wartość 0 dla drugiego wariantu cechy.

Niech p oznacza frakcję elementów populacji, które charakteryzują się wyróżnionym wariantem (tj. frakcję jedynek w populacji). Tak zdefiniowany parametr p reprezentuje jednocześnie średnią wartość zmiennej zerojedynkowej, a iloczyn p(1-p) wariancję tej zmiennej.

W n-elementowej próbie losowej frakcję jedynek wyraża iloraz $\frac{m}{n}$, gdzie m jest liczbą jedynek w próbie. Iloraz ten jest też średnią arytmetyczną w próbie, natomiast iloczyn $\frac{m}{n}$ $(1-\frac{m}{n})$ – wariancją w próbie.

Przy sprawdzaniu hipotezy dotyczącej parametru **p**, hipoteza zerowa zakłada, ze frakcja **p** jest równa pewnej, określonej wartości, natomiast hipoteza alternatywna stwierdza, że przyjmuje wartość inną niż zakładana w hipotezie zerowej.

Możemy rozważać trzy zestawy hipotez:

1.
$$H_0: p = p_0, H_1: p > p_0$$

2.
$$H_0: p = p_0, H_1: p < p_0,$$

3.
$$H_0: p = p_0, H_1: p \neq p_0.$$

gdzie p₀ oznacza domniemaną wartość parametru p.

Rozważać będziemy test weryfikujący hipotezę H₀ przeciwko jednej z trzech hipotez H₁. Test ten nazywać będziemy testem dla jednej frakcji.

Konstrukcja statystyki testu jest analogiczna do statystyki testu U dla jednej średniej:

Zmienna U ma przy założeniu prawdziwości hipotezy zerowej graniczny rozkład N(0, 1).

Przykład 1.

W 2017 roku firma Coca-Cola wypróbowywała nowy napój. Instytut badawczy firmy ustalił, że jeżeli więcej niż 60% konsumentów, którzy spróbują napoju, polubi go, to roczna sprzedaż osiągnie satysfakcjonujący poziom.

Postawiono sprawdzić, czy frakcja osób pozytywnie nastawionych do napoju jest większa od 0,6. W losowej próbie 1000 osób, której podano do picia nowy napój, 680 osób wyraziło się o nim pozytywnie.

Czy na tej podstawie można twierdzić, że odsetek osób pozytywnie reagujących na napój wśród ogółu potencjalnych konsumentów – jest wyższy niż 60%? Zweryfikować odpowiednią hipotezę, przyjmując poziom istotności 0,01.

u	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936

Przykład 1.

Niech p oznacza frakcję potencjalnych konsumentów, którzy zaakceptują nowy napój.

$$H0: p = 0.6,$$

m-680

$$\int = \frac{1000 - 0.6}{1000} =$$

Budujemy prawostronny obszar odrzucenia dla α = 0, 01. Jest nim przedział: [2, 32, ∞).

Odrzucamy hipotezę zerową na rzecz alternatywnej, co pozwala sądzić, że odsetek konsumentów, którzy polubią napój, przekroczy 60%. Ryzyko tego, że odrzuciliśmy hipotezę prawdziwą jest bardzo małe, równe 0,01.

Przykład 2.

Pewne ugrupowanie polityczne było przekonane, że poparcie Polaków dla jednego z kandydatów na prezydenta miasta X nigdy nie przekroczy 53%. Po przeprowadzeniu ankiety wśród 1000 mieszkańców tego miasta poparcie dla tego kandydata przedstawiło 570 ankietowanych. Przetestować hipotezę, że poparcie będzie równe 53% przy alternatywie, że przekroczy \$3%. Przy istotności równej 0.05.

Testujemy hipotezę:

$$H_0$$
: p = 53%
Przy alternatywie: H_1 : p > 53%

Dane: m = 570 n = 1000

$$U = \frac{540}{1000} - 0.59 = \frac{6.04}{0.2491} = 1.53$$

Budujemy prawostronny obszar odrzucenia dla $\alpha = 0$, 05. Jest nim przedział: $[1.64, \infty)$.

Przykład 3.

W magazynie żywnościowym wylosowano niezależnie 150 składowanych tam skrzynek z warzywami. Po zbadaniu ich okazało się, że w 12 skrzynkach znaleziono zepsute warzywa.

Na poziomie istotności alfa=0,05 zweryfikować hipotezę, że przechowywana partia zawiera więcej niż 5% skrzynek z zepsutymi warzywami.

Przy sprawdzaniu hipotezy dotyczącej dwóch frakcji, hipoteza zerowa zakłada, ze frakcje p1 i p2 elementów wyróżnionych w dwóch populacjach są jednakowe, natomiast hipoteza alternatywna przyjmuje, że frakcje te różnią się. Możemy tu sformułować trzy zestawy hipotez:

$$\begin{array}{lll} H_0: & p_1=p_2, & H_1: & p_1>p_2, \\ H_0: & p_1=p_2, & H_1: & p_1< p_2, \\ H_0: & p_1=p_2, & H_1: & p_1\neq p_2. \end{array}$$

Rozważać będziemy test weryfikujący hipotezę H_0 przeciwko jednej z trzech wersji hipotezy H_1 . Test ten nazywać będziemy testem dla dwóch frakcji.

Statystyka testu ma postać:

$$U=\frac{\frac{m_1}{n_1}-\frac{m_2}{n_2}}{\sqrt{\frac{\bar{p}\bar{q}}{n}}},$$

gdzie m_1, m_2 oznaczają liczby elementów wyróżnionych w obu próbach, $\bar{p} = \frac{m_1 + m_2}{n_1 + n_2}, \quad \bar{q} = 1 - \bar{p}, \quad n = \frac{n_1 \cdot n_2}{n_1 + n_2}.$

Przykład 1.

Porównywano trafność dwóch procedur diagnostycznych stosowanych do diagnozowania pewnej choroby. W tym celu badaniu poddano dwie losowe próby chorych, liczące po 100 osób.

W pierwszej próbie zastosowano pierwszą procedurę diagnostyczną, która dostarczyła 80% poprawnych diagnoz. Druga procedura – zastosowana w drugiej próbie – dostarczyła 85% trafnych diagnoz.

Czy można twierdzić, że obie procedury są porównywalne, jeśli chodzi o poprawność diagnozowania danej choroby? Przyjąć poziom istotności 0,1.

Formulujemy hipotezy: $H_0: p_1 = p_2$,

Przykład 1.

Niech p₁ oraz p₂ oznacza frakcję chorych właściwie zdiagnozowanych za pomocą

pierwszej i drugiej procedury.

$$M_1 = 80$$
 $M_2 = 85$

M1=100 m=100

$$H_1: p_1 \neq p_2.$$

$$p = \frac{80 + 85}{400 + 100} = 0.825$$

$$\frac{1}{9} = 1 - 0.825 = 0.175$$

$$M = \frac{100 \cdot 100}{100 + 100} = 20$$

$$U = \frac{0.80 - 0.85}{50.815 \cdot 0.175} = -0.99$$

Budujemy dwustronny obszar odrzucenia dla α = 0, 1.

Jest nim suma przedziałów: $(-\infty, -1, 64]$ ∪ $[1, 64, \infty)$.

Nie ma podstaw do odrzucenia hipotezy zerowej na rzecz alternatywnej. Nie udało się potwierdzić, że jedna z tych procedur jest lepsza.

Przykład 2.

Pewien importer owoców cytrusowych twierdzi, że owoce zawijane w papierki mniej się psują w transporcie od owoców, które importuje się starą metodą bez zawijania. Jednak wprowadzenie nowej metody wiąże się ze zwiększeniem kosztów. Dlatego importer przeprowadził eksperyment, który miał udowodnić, że owoce zawijane w papierki mniej się psują od nie zawijanych. Pobrał próbę losową 200 owoców zawijanych w papierki, z których uległo zepsuciu 85, oraz 150 owoców nie zawijanych w papierki, w których znaleziono 60 owoców zepsutych. Na poziomie istotności 0.05 oceń czy badania importera potwierdzają jego twierdzenie.

Testujemy hipotezę: H0: p1 = p2 H1: p1 < p2

Estymatory dla frakcji owoców popsutych w partii zawijanej i nie zawijanej w papierki

są postaci:

$$P_{1} = \frac{M_{1}}{M_{1}} = \frac{20}{200} = 0.40$$

$$P_{2} = \frac{M_{1}}{M_{2}} = \frac{20}{200} = 0.40$$

$$U = \frac{0.43 - 0.40}{0.41 (1 - 0.41) (\frac{1}{100} + \frac{1}{150})} = 0.47$$

Zbiór krytyczny jest postaci [1.9€, ∞)

Nie mamy podstaw do odrzucenia hipotezy o równości frakcji. Można przyjąć, że frakcje zepsutych owoców w obu metodach są takie same. Czyli zawijanie owoców w papierki nie zmienia ich podatności na psucie.

Testy frakcji

Zadania:

- 1. Wysunięto przypuszczenie, że jakość produkcji pewnego wyrobu po wprowadzeniu nowej, tańszej technologii nie uległa zmianie. Wylosowano próbę 120 sztuk tego wyrobu spośród wyprodukowanych starą technologią i otrzymano 12 sztuk złych. Wśród 160 wylosowanych sztuk wyprodukowanych nową technologią było 20 sztuk wadliwych. Czy wysunięte przypuszczenie można w świetle uzyskanych wyników uznać za uzasadnione?
- 2. W losowej próbie 700 mieszkańców pewnego rejonu będących w wieku produkcyjnym znalazło się 122 bezrobotnych. Czy na poziomie istotności 0,05 można stwierdzić, że stopa bezrobocia w tym rejonie jest większa od 20%?
- 3. Zbadano n=140 wylosowanych gospodarstw domowych w pewnym mieście ze względu na wysokość miesięcznych opłat za energię elektryczną. Spośród nich 84 gospodarstwa domowe płaciły miesięcznie za energię co najmniej 80 zł. Czy na poziomie istotności α=0,05 można stwierdzić, że % gospodarstw domowych, których miesięczne opłaty za energię elektryczną wynosiły co najmniej 80 zł jest mniejszy niż 70%?