Exercise 6.1 Data processing inequality for the total variation distance (EE5139)

Let P_X, Q_X be two distributions over some finite set \mathcal{X} . Let $\{T(y|x)\}_{y\in\mathcal{Y},x\in\mathcal{X}}$ be some conditional pmf, where \mathcal{Y} is some finite set. Suppose $P_Y(y) = \sum_{x\in\mathcal{X}} T(y|x) \cdot P_X(x)$ and $Q_Y(y) = \sum_{x\in\mathcal{X}} T(y|x) \cdot Q_X(x)$ for each $y \in \mathcal{Y}$. Prove that

$$\delta_{\text{tvd}}(P_Y, Q_Y) \leq \delta_{\text{tvd}}(P_X, Q_X).$$

Exercise 6.2 Empirical typical set (all)

Let P_X be a probability distribution over some finite set \mathcal{X} . Recall that the empirical typical set (of length n and tolerance ϵ) w.r.t. P_X is defined as

$$\mathcal{A}^{(n)}_{\mathrm{emp},\epsilon}(P_X) := \{ \boldsymbol{x}^n \in \mathcal{X}^n : \, \delta_{\mathrm{tvd}}(f_{\boldsymbol{x}^n}, P_X) \leq \epsilon \}$$

where $f_{\boldsymbol{x}^n}$ is the empirical distribution on \mathcal{X} induced by the sequence $\boldsymbol{x}^n, \ i.e.,$

$$f_{\mathbf{x}^n}(x) := \frac{1}{n} |\{i \in \{1, \dots, n\} : x_i = x\}|.$$

Prove that, for any $\epsilon \in (0, 1]$,

$$\lim_{n \to \infty} P\left[X^n \in \mathcal{A}_{\mathrm{emp},\epsilon}^{(n)}(P_X)\right] = 1.$$

Exercise 6.3 Hypothesis testing (all)

Consider the three pmfs P and Q, and S given by the probability vectors $p=(\frac{1}{2},\frac{1}{4},\frac{1}{4}),\ q=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ and $s=(0,\frac{1}{2},\frac{1}{2})$, respectively.

- a.) Compute the symmetric error probabilities $\epsilon_{\text{sym},1}^*$ for hypothesis tests for all three pairs.
- b.) Consider the problem of ternary hypothesis testing between the three distributions, when all three have equal priors. Can you find the minimal error probability and optimal test?
- c.) Compute D(P||Q) and D(P||S).
- d.) Consider asymmetric hypothesis testing for P and S. For each $\epsilon > 0$, find $N_0(\epsilon) \in \mathbb{N}$ such that $\beta_n(\epsilon) = 0$ for all $n \geq N_0(\epsilon)$. What does that say about the limit $\lim_{n \to \infty} -\frac{1}{n} \log \beta_n(\epsilon)$? Interpret your result in item c) in this light.

Exercise 6.4 A simple parity check code (EE5139)

In the first lecture we encountered a code that stores k=4 bits in n=8 bits by computing the parities $x_1 \oplus x_2$, $x_3 \oplus x_4$, $x_1 \oplus x_3$ and $x_2 \oplus x_4$.

- a.) Give the codewords for this code and compute the minimal distance. How many errors can it detect and correct?
- b.) Is it a linear code? If so, compute matrices G and H.
- c.) Use the Hamming bound to determine if this code is perfect or not.
- d.) Construct the dual code for this code.

Exercise 6.5 Asymptotic property of the smooth min-entropy (EE6139)

Given a random variable X on \mathcal{X} distributed according to P_X , we recall that the min-entropy of X is defined as

$$H_{\min}(X) := -\log \max_{x \in \mathcal{X}} P_X(x) = \min_{x \in \mathcal{X}} -\log P_X(x).$$

For each $\epsilon \in [0,1)$, the ϵ -smooth min-entropy of X is defined as

$$H^{\epsilon}_{\min}(X) := \max_{\delta_{\mathrm{tvd}}(P_X, \tilde{P}_X) \leq \epsilon} H_{\min}(X)_{\tilde{P}_X} = \max_{\delta_{\mathrm{tvd}}(P_X, \tilde{P}_X) \leq \epsilon} \left\{ -\log \max_{x \in \mathcal{X}} \tilde{P}_X(x) \right\}.$$

We are interested in showing $\frac{1}{n}H_{\min}^{\epsilon}(X^n) \to H(X)$ as $n \to \infty$, $\epsilon \to 0$ (in that order), where X^n consists of n i.i.d. copies of X, namely $P_{X^n} = \prod_{i=1}^n P_{X_i}$.

a.) For each $\epsilon > 0$, let $\mathcal{A}_{\epsilon}^{(n)}(X)$ denote the ϵ -typical set of X (see eq. (2.52) from the lecture notes). For each positive integer n, define a distribution on \mathcal{X}^n as

$$\hat{P}_{X^n}(\boldsymbol{x}^n) := \begin{cases} P_{X^n}(\boldsymbol{x}^n) & \boldsymbol{x}^n \in \mathcal{A}_{\epsilon}^{(n)}(X) \\ \frac{1 - P_{X^n}(\mathcal{A}_{\epsilon}^{(n)}(X))}{|\mathcal{X}|^n - |\mathcal{A}_{\epsilon}^{(n)}(X)|} & \boldsymbol{x}^n \notin \mathcal{A}_{\epsilon}^{(n)}(X) \end{cases}$$

Prove that for n large enough, $\delta_{\text{tvd}}(P_{X^n}, \hat{P}_{X^n}) \leq \epsilon$.

b.) Using \hat{P}_{X^n} from the previous step, show that

$$\frac{1}{n}H_{\min}^{\epsilon}(X^n) \ge H(X) - \epsilon$$

for n large enough.

c.) Continuity of entropy. For any two distributions P_X , \tilde{P}_X (on the same set) such that $\delta_{\text{tvd}}(P_X, \tilde{P}_X) \leq \epsilon$, prove that for all $\epsilon < 1/2$

$$\left| H(X)_{P_X} - H(X)_{\tilde{P}_X} \right| \le h(\epsilon) + \epsilon \cdot \log |\mathcal{X}|.$$

where $h: t \mapsto -t \log t - (1-t) \log (1-t)$. **Hint:** Construct a pair of joint random variables (X_1, X_2) with marginals $P_{X_1} = P_X$, $P_{X_2} = \tilde{P}_X$, and $P[X_1 = X_2]$ large. Use Fano's inequality.

d.) Using the previous step, show that

$$\frac{1}{n}H_{\min}^{\epsilon}(X^n) \le H(X) + \frac{1}{n} \cdot h(\epsilon) + \epsilon \cdot \log|\mathcal{X}|$$

for $0 < \epsilon < 1/2$.