Scientific computing and data visualization in Python

Adrian Kania¹

 $^{1}\mathsf{Department}$ of Computational Biophysics and Bioinformatics

2023

Derivatives

derivative of f - function, describes the f (its monotonicity, enable to localize the maximum and minimum values)

Example:

$$f(x) = x^2 - 4x + 5$$

then

$$f'(x) = 2x - 4$$

- f'(x) < 0 if x < 2 (f decreases)
- f'(x) > 0 if x > 2 (f increases)
- f'(x) = 0 if x = 2 (f has a minimum value here)

Derivatives

- $(x^n)' = nx^{n-1}$, for example: $(x^5)' = 5x^4$,
- (ax)' = x, for example: (5x)' = 5,
- (a)' = 0, for example: (5)' = 0,
- $\bullet (\sin x)' = \cos x,$
- $\bullet (\cos x)' = -\sin x,$
- $(e^x)' = e^x$.

Compund functions

- for $f(x) = x^4$, $f'(x) = 4x^3$,
- for $f(x) = (5x 4)^4$, $f'(x) = 4(5x 3)^3 \cdot 5$,
- for $f(x) = (x^3 5)^2$, $f'(x) = 2(x^3 5) \cdot 3x^2$.

Consider the following dependence:

- $\bullet \ 3 \rightarrow 7,$
- $2 \rightarrow 5,$
- $-2 \to -3$,
- ullet 0 \rightarrow 1,

Questions:

- $1 \rightarrow ?$,
- General rule y(x) = ?

Consider the following dependence:

- 3 → 7,
- 2 → 5,
- $-2 \to -3$,
- \bullet 0 \rightarrow 1,

Questions:

- \bullet 1 \rightarrow 3,
- General rule y(x) = 2x + 1

Unfortunately, practical examples are not such straightforward.

Let's say we have pairs of observations (3,5), (4,7) and (1,3). We want to find a linear dependence y = ax + b

that suits the best to this data (not exact match but good approximation).

Let's say we have pairs of observations (3,5), (4,7) and (1,3). We want to find a linear dependence

$$y = ax + b$$

Consider the following expression (which refelcts the difference between observed y and predcited based on ax + b relation)

$$L(a,b) = \frac{1}{3}[(5-(3a+b))^2+(7-(4a+b))^2+(3-(1a+b))^2].$$

The aim is to minimize L(a, b) - find a, b for which L have the minimize value. We calculate derivatives for variables a and b.

•
$$\frac{\partial L}{\partial a} = \frac{1}{3}[2(5-3a-b)\cdot(-3)+2(7-4a-b)\cdot(-4)+2(3-1a-b)\cdot(-1)],$$

•
$$\frac{\partial L}{\partial b} = \frac{1}{3}[2(5-3a-b)\cdot(-1)+2(7-4a-b)\cdot(-1)+2(3-1a-b)\cdot(-1)].$$

Let's say we have pairs of observations (3,5), (4,7) and (1,3). We want to find a linear dependence

$$y = ax + b$$

We set derivatives to zero:

•
$$\frac{\partial L}{\partial a} = 2(5 - 3a - b) \cdot (-3) + 2(7 - 4a - b) \cdot (-4) + 2(3 - 1a - b) \cdot (-1) = 0$$

•
$$\frac{\partial L}{\partial b} = 2(5 - 3a - b) \cdot (-1) + 2(7 - 4a - b) \cdot (-1) + 2(3 - 1a - b) \cdot (-1) = 0.$$

straight calculations result in linear system of equations:

- 13a + 4b = 23
- 5a + 3b = 12.

and finally $a = \frac{21}{10}$ and $b = \frac{41}{10}$ (how do we know there is a minimum?). It menas that

$$y = \frac{21}{19}x + \frac{41}{19} \approx 1.1x + 2.2$$

is the best linear approximation for these data.

Linear regression - 2D case

Consider the following observations ((1,2),4), ((5,6),-2), ((-3,2),1) and ((5,2),3). We want to find a linear dependence between y and (x_1,x_2) .

$$y = w_1 x_1 + w_2 x_2 + w_0$$

where w_1 , w_2 and w_0 are parameters we are searching for. Similarly to the previous case, we are considering the function

$$L(w_1, w_2, w_0) = \frac{1}{4}[(4 - (1w_1 + 2w_2 + w_0))^2 + (-2 - (5w_1 + 6w_2 + w_0))^2 + (1 - (-3w_1 + 2w_2 + w_0))^2 + (3 - (5w_1 + 2w_2 + w_0))^2].$$

By calculating $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_2}$ and $\frac{\partial L}{\partial w_0}$, and set them to zero we may calculate w_1 , w_2 and w_0 .

Linear regression - 2D case

Consider the following observations ((1,2),4), ((5,6),-2), ((-3,2),1) and ((5,2),3). We want to find a linear dependence between y and (x_1,x_2) .

$$y = w_1 x_1 + w_2 x_2 + w_0$$

where w_1 , w_2 and w_0 are parameters we are searching for. Similarly to the previous case, we are considering the function

$$L(w_1, w_2, w_0) = \frac{1}{4}[(4 - (1w_1 + 2w_2 + w_0))^2 + (-2 - (5w_1 + 6w_2 + w_0))^2 + (1 - (-3w_1 + 2w_2 + w_0))^2 + (3 - (5w_1 + 2w_2 + w_0))^2].$$

By calculating $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_2}$ and $\frac{\partial L}{\partial w_0}$, and set them to zero we may calculate w_1, w_2 and w_0 .

Conclusion: If we have enough number of set of paris $((x_1, x_2, ..., x_n), y)$ we may find a linear dependence $y = w_1x_1 + w_2x_2 + + w_nx_n + w_0$ that minimize the average difference between the real y and prediction (analytical solution exists). More precisely, $W = (X^TX)^{-1}X^TY$, where X - matrix of data $x_1, ..., x_n$, Y - vector of y.

Proof - supplementary

$$L(W) = |XW - Y|^{2}$$

$$L(W) = (XW - Y)^{T}(XW - Y)$$

$$L(W) = Y^{T}Y - Y^{T}XW - W^{T}X^{T}Y + W^{T}X^{T}XW$$

then

$$\frac{\partial L(W)}{\partial W} = \frac{\partial (Y^TY - Y^TXW - W^TX^TY + W^TX^TXW)}{\partial W} = -2X^TY + 2X^TXW$$

setting the gradient to zero

$$-2X^TY + 2X^TXW = 0$$

results in

$$X^TXW = X^TY$$

and finlly

$$W = (X^T X)^{-1} X^T Y$$

Some exercises

• Implement a linear model for 1D case (y = ax + b) according to the following dependencies:

$$a = rac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2}$$
 and $b = \overline{y} - a\overline{x}$

• Implement a linear model in general case according to:

$$W = (X^T X)^{-1} X^T Y$$

- Given (3,5) (4,6), (5,9) and (6,7) find the linear curve y=ax+b that approximate the data. Visualize the data and model.
- Given ((3,2),1), ((4,-2),7), ((5,1),3) and ((-2,3),-4) find the linear dependence $y=w_1x_1+w_2x_2+w_0$ that approximate the data the best.

Gradient Descent

Sometimes, it is not easy to solve a system of equations (especially when they are not linear). There is an another method for finding parameters that **minimize** a given function.

$$w_{new} = w_{old} - \alpha \frac{\partial L}{\partial w}$$
.

ALPHA IMPACT

LOCAL MINIMUM

Gradient Descent for Linear Regression

Consider once again, the following observations ((1,2),4), ((5,6),-2), ((-3,2),1) and ((5,2),3). We want to find a linear dependence between y and (x_1,x_2) .

$$y = w_1 x_1 + w_2 x_2 + w_0$$

where w_1, w_2 and w_0 are parameters we are searching for. The algorithm is the following:

- Start with some random parameters w_1 , w_2 and w_0 .
- Set α (for example $\alpha = 0.01$).
- Calculate $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_2}$ and $\frac{\partial L}{\partial w_0}$.
- Update parameters w_1, w_2, w_0 according to:

$$w_{\text{new}} = w_{\text{old}} - \alpha \frac{\partial L}{\partial w}$$

• Repeat two last steps till converge.

Is linear model appropriate?

• Pearson correlation coefficient - measure the linear correlation

$$r = \frac{cov(x,y)}{s(x) \cdot s(y)}$$

If we have a model we may use

- Loss function introdcued earlier, measure the average square error between predicted and real value $L(w_1, w_2, ..., w_0) = \frac{1}{n} \sum_i (y_i^{pred} y_i)^2$ This function is alsko know ans MSE (mean square error).
- Coefficient of determination measure of the goodness of fit of a model

$$R^2 = \frac{\sum_{i} (y_i^{pred} - \overline{y})^2}{\sum_{i} (y_i - \overline{y})^2}$$

or

$$R^2 = 1 - \frac{\sum_{i} (y_i^{pred} - y_i)^2}{\sum_{i} (y_i - \overline{y})^2}.$$

Non linear dependence

Sometimes, we observe more intricate dependence between variables x and y. In this case, simple linear approximation is illegitimate.

However, linear regression may be still useful. How?

Non linear dependence

Sometimes, we observe more intricate dependence between variables x and y. In this case, simple linear approximation is illegitimate.

However, linear regression may be still useful. We may introduce new variables. Instead of using only y and x, we mamy consider $x_1 = x$ and $x_2 = x^2$ and then looking for:

$$y = w_1 x_1 + w_2 x_2 + w_0.$$

Transformations

In general, both Y and X may be transformed, and then linear model is fitted to f(Y) and g(X). Example:

Exercise

- Using the quadratic transformation, fit the model to the data
 - x = 1, 2, 3, 4, 5, 6
 - y = -1.68, -0.27, 3.93, 12.64, 25.91, 43.11

Visualize the data and model.

Regularization

To avoid large paramteres $w_1, w_2, ..., w_0$ which may results in overfitting, regularization is applied.

• Ridge Regression (L2)

$$L^2 = \beta \sum_i w_i^2$$

• Lasso Regresssion (L1)

$$L^1 = \beta \sum_i |w_i|$$

and finally new cost function is:

$$L = \frac{1}{n} \sum_{i} (y_i - y_i^{pred})^2 + L^1 \text{ or } L = \frac{1}{n} \sum_{i} (y_i - y_i^{pred})^2 + L^2$$

Logistic regression

Assume we have a variable Y which takes only two values - 0 and 1 (categories). Based on features $X_1, X_2, ..., X_M$ we want to predict the probability of occurring category 1. More precisely, we want to approximate p = P(Y = 1). Notice that p is a function of variables $X_1, X_2, ..., X_M$. We are searching for a function which values are between 0 and 1 - may be interpreted as a probability. An example is

$$f(x) = \frac{1}{1 + e^{-x}}$$

Finally, P(Y = 1) may be modelled as:

$$\frac{1}{1+e^{-(w_1x_1+w_2x_2+...+w_0)}}$$

This expression will be denoted later as y_{pred} .

${\sf Example}$

X1	X2	Υ
0	-1	0
0,4	-2	0
-0,5	-2	0
-0,4	-1	0
4	-2	0
-2	0	0
2,5	2	0
0	2	0
0,5	3	1
1	3	1
3	-1	1
1	-2	1
2	3	1
2	2	1
2	-1	1

Example

Random (initial) parameters

$$w_1 = w_2 = w_0 = 0$$

For
$$(0, -1)$$

•
$$P(Y=1) = \frac{1}{1+e^{-(0.0+0.(-1)+0)}} = \frac{1}{1+e^0} = \frac{1}{1+1} = \frac{1}{2}$$
,

•
$$P(Y=0)=1-\frac{1}{2}=\frac{1}{2}$$

After the learning step

$$w_1 = 0.5861$$
, $w_2 = 0.4331$, $w_0 = -0.9011$

For
$$(0, -1)$$

•
$$P(Y=1) = \frac{1}{1+e^{-(0.5861 \cdot 0 + 0.4331 \cdot (-1) - 0.9011)}} = \frac{1}{1+e^{1.3342}} = \frac{1}{1+3.8} = 0.21$$
,

•
$$P(Y = 0) = 1 - 0.21 = 0.79$$
 (more probable)

How to compare two distributions

Cross Entropy

$$H(P,Q) = -\sum_{x} p(x) \log q(x)$$

Properties:

- $H(P, Q) \geqslant H(P, P)$,
- H(P,Q) = H(P,P) only if P = Q.

Example:

X	-1	2	3
P	0.2	0.3	0.5
Q	0.6	0.2	0.2

$$H(P, Q) = -(0.2 \log 0.6 + 0.3 \log 0.2 + 0.5 \log 0.2) = 0.6$$

$$H(P, P) = -(0.2 \log 0.2 + 0.3 \log 0.3 + 0.5 \log 0.5) = 0.45$$

Binary Cross-Entropy (BCE)

If random a variable Y describes the category, it posses only two values: 0 and 1. If true probability y = P(X = 1) and 1 - y = P(X = 0) and model $y_{pred} = P(Y = 1)$ and $1 - y_{pred} = P(Y = 0)$. Then:

$$H(y, y_{pred}) = -(y \log y_{pred} + (1 - y) \log(1 - y_{pred}))$$

Now we consider n data which has assigned categories y_1, y_2, y_n. Our model predict the probabilities y_1^{pred} , y_2^{pred} , ..., y_n^{pred} . To validate our model we should have

$$BCE = -\frac{1}{N} \sum_{i} y_{i} \log(y_{i}^{pred}) + (1 - y_{i}) \log(1 - y_{i}^{pred})$$

as small as possible. To find optimal parameters we use gradient descent method

$$w_{new} = w_{old} - \frac{\partial BCE}{\partial w}$$
.

More than two categories

$$P(Y=k) = \frac{e^{z_k}}{\sum_j e^{z_j}}$$

where $z_s = \sum_k w_{sk} x_k + w_{s0}$.

Loss function

$$CE = -\frac{1}{n} \sum_{i} \sum_{k} y_{ik} \log(y_{ik}^{pred})$$

where k = 1, ..., M (number of categories).

Model evaluation

Model evaluation

- Accuracy
- Sensitivity
- Specificity
- Precision
- Recall

$$A = \frac{TP + TN}{TP + FN + TN + FP}$$

$$S_n = \frac{TP}{TP + FN}$$

$$S_p = \frac{TN}{TN + FP}$$

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2}{P^{-1} + R^{-1}} = \frac{2TP}{2TP + FP + FN}$$

Model evaluation - example

Supose we have the following actual data and predictions (0 - negative, 1 - positive).

Observation	Actual y	Predicted y
1	0	0
2	0	0
3	0	0
4	0	1
5	0	0
6	1	1
7	1	0
8	1	0
9	1	1
10	1	1

Calculate: A, S_n , S_p , P, R and F_1 .

Model evaluation - example

Supose we have the following actual data and predictions (0 - negative, 1 - positive).

Observation	Actual y	Predicted y
1	0	0
2	0	0
3	0	0
4	0	1
5	0	0
6	1	1
7	1	0
8	1	0
9	1	1
10	1	1

•
$$TP = 3$$
,

•
$$TN = 4$$
,

•
$$FP = 1$$
,

•
$$FN = 2$$
.

We may change the critical value

Till now, we assumed that if p > 0.5 we choose the first (1) category. But in general, we may change this critical value. It may be beneficial, especially, when we want to have one category predicted better.

Observation	Actual y	y_pred	Predicted y if pc = 0.5	Predicted y if pc = 0.4
1	0	0.03	0	0
2	0	0.10	0	0
3	0	0.44	0	1
4	0	0.52	1	1
5	0	0.23	0	0
6	1	0.74	1	1
7	1	0.49	0	1
8	1	0.47	0	1
9	1	0.85	1	1
10	1	0.90	1	1

In the second case, all 1-category observations are found.

We may change the critical value

Till now, we assumed that if p > 0.5 we choose the first (1) category. But in general, we may change this critical value. It may be beneficial, especially, when we want to have one category predicted better.

Observation	Actual y	y_pred	Predicted y if pc = 0.5	Predicted y if pc = 0.4
1	0	0.03	0	0
2	0	0.10	0	0
3	0	0.44	0	1
4	0	0.52	1	1
5	0	0.23	0	0
6	1	0.74	1	1
7	1	0.49	0	1
8	1	0.47	0	1
9	1	0.85	1	1
10	1	0.90	1	1

In the second case, all 1-category observations are found.

ROC curve

ROC - dependence between $1 - S_p$ and S_n .

Questions

- Why all classifiers begin at (0,0) and end at (1,1).
- Where is the best classifier?

It's worth splitting the data

Validation data may be used to specify **hyperparameters**. In simple models, we divide data only into train and test sets.

It's worth splitting the data

Scientific paper reading

Consider the paper Prediction of Gene Expression Patterns With Generalized Linear Regression Model. Read at least the abstract and then, try to answer the following questions:

- What is the function of Oct4? (Introduction, page2)
- What did the authors model? Which variables? (Introduction, page2)
- What kind of data they used and where did they find them? (Materials and methods, page3)
- How Oct4 combination intensities were expressed? (Materials and methods, page3)
- How many cell development stages (days) were considered for gene analysis? (Materials and methods, page3)
- Which variables (Oct4 combination intensities) have the strongest correlation with expression levels of considered genes? (Table2, page4)
- How many models were considered? (page4).
- Which model was used to describe expression patterns of the Cnbp gene? What was the R^2 in this case? (page6; Table5, page7). According to the estimated parameters, which part of the model seems to have the lowest impact on the expression? Compare it with Table2. Make a comment on it.