# Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} -5\\5 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -2\\-2 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -2\\4 \end{pmatrix} \tag{1}$$

### 1 Vectors

| parameters     | values                                   | description      |
|----------------|------------------------------------------|------------------|
| $\mathbf{m}_1$ | $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$  | AB               |
| $\mathbf{m}_2$ | $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$   | ВС               |
| m <sub>3</sub> | $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$  | CA               |
| A - B          | 6                                        | length of AB     |
| B-C            | 7.61                                     | length of BC     |
| C - A          | 3.16                                     | length of CA     |
|                | 3                                        | non collinear    |
| n <sub>1</sub> | $\begin{pmatrix} -7 \\ -3 \end{pmatrix}$ | AB               |
| $c_1$          | 20                                       |                  |
| n <sub>2</sub> | $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$   | ВС               |
| $c_2$          | -12                                      |                  |
| n <sub>3</sub> | $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$   | CA               |
| $c_3$          | 10                                       |                  |
| Area           | 9                                        | Area of Triangle |
| ∠A             | 48.36°                                   |                  |
| ∠B             | 23.19°                                   | Angles           |
| ∠C             | 108.43°                                  |                  |

TABLE 1: Vectors.

### 2 Median

| parameters                                                              | value                                         | description                |
|-------------------------------------------------------------------------|-----------------------------------------------|----------------------------|
| D                                                                       | $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$        | BC midpoint                |
| E                                                                       | (-1.5, 4.5)                                   | CA midpoint                |
| F                                                                       | $\begin{pmatrix} -3.5\\1.5 \end{pmatrix}$     | AB midpoint                |
| $\mathbf{m}_4$                                                          | $\begin{pmatrix} 5 \\ -4 \end{pmatrix}$       | AD                         |
| n <sub>4</sub>                                                          | $\begin{pmatrix} -4 \\ -5 \end{pmatrix}$      | AD                         |
| $c_4$                                                                   | -5                                            |                            |
| m <sub>5</sub>                                                          | $\begin{pmatrix} 0.5 \\ 6.5 \end{pmatrix}$    | D.F.                       |
| n <sub>5</sub>                                                          | $\begin{pmatrix} 6.5 \\ -0.5 \end{pmatrix}$   | BE                         |
| $c_5$                                                                   | -12                                           |                            |
| m <sub>6</sub>                                                          | $\begin{pmatrix} -5.5 \\ -2.5 \end{pmatrix}$  | G.F.                       |
| n <sub>6</sub>                                                          | $\begin{pmatrix} -2.5 \\ 5.5 \end{pmatrix}$   | CF                         |
| <i>C</i> <sub>6</sub>                                                   | 17                                            |                            |
| G                                                                       | $\begin{pmatrix} -1.66 \\ 2.33 \end{pmatrix}$ | Centroid                   |
| $\frac{BG}{GE}$                                                         |                                               |                            |
| CG<br>GF<br>AG<br>GD                                                    | 2                                             | Division ratio by <b>G</b> |
| $ \begin{array}{c cccc}         & & & & \\         & & & & \\         $ | 2                                             | collinear                  |
|                                                                         |                                               |                            |

TABLE 2: Median.



Fig. 1: triangle plotted using python



Fig. 2: medians plotted using python

### 3 ALTITUDE

### 4 Perpendicular Bisector

| parameters            | value                                          | description                    |
|-----------------------|------------------------------------------------|--------------------------------|
| $\mathbf{D_1}$        | $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$        | Foot of altitude from A        |
| $\mathbf{E_1}$        | $\begin{pmatrix} -0.2 \\ 3.4 \end{pmatrix}$    | Foot of altitude from <b>B</b> |
| $\mathbf{F_1}$        | $\begin{pmatrix} -4.17 \\ 3.06 \end{pmatrix}$  | Foot of altitude from C        |
| m <sub>7</sub>        | $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$         | A.D.                           |
| $\mathbf{n}_7$        | $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$        | $AD_1$                         |
| <i>c</i> <sub>7</sub> | -15                                            |                                |
| m <sub>8</sub>        | $\begin{pmatrix} 1.8 \\ 5.4 \end{pmatrix}$     | R.F.                           |
| $n_8$                 | $\begin{pmatrix} 5.4 \\ -1.8 \end{pmatrix}$    | $BE_1$                         |
| $c_8$                 | -7.2                                           |                                |
| <b>m</b> <sub>9</sub> | $\begin{pmatrix} -2.17 \\ -0.93 \end{pmatrix}$ | CE                             |
| n <sub>9</sub>        | $\begin{pmatrix} -0.93 \\ 2.17 \end{pmatrix}$  | $CF_1$                         |
| C9                    | 10.55                                          |                                |
| Н                     | $\begin{pmatrix} 0.33 \\ 5 \end{pmatrix}$      | Orthocentre                    |

| TABL | E 3: | Altitude. |
|------|------|-----------|
|      |      |           |

| parameters                    | value                                      | description                |
|-------------------------------|--------------------------------------------|----------------------------|
| m <sub>10</sub>               | $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$     | $AD_1$                     |
| n <sub>10</sub>               | $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$     |                            |
| $c_{10}$                      | 6                                          |                            |
| m <sub>11</sub>               | $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$   | D.E.                       |
| n <sub>11</sub>               | $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$    | $BE_1$                     |
| c <sub>11</sub>               | -15                                        |                            |
| m <sub>12</sub>               | $\binom{7}{3}$                             | CE                         |
| n <sub>12</sub>               | $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$    | $CF_1$                     |
| c <sub>12</sub>               | 21                                         |                            |
| О                             | $\begin{pmatrix} -4.66 \\ 1 \end{pmatrix}$ | Circumcentre               |
| $\ \mathbf{O} - \mathbf{A}\ $ |                                            |                            |
| $  \mathbf{O} - \mathbf{B}  $ |                                            | OA = OB = OC = R           |
| O - C                         | 4.01                                       |                            |
| R                             |                                            |                            |
| ∠BOC                          | 96.73°                                     | DOG - DI-                  |
| ∠BAC                          | 48.36°                                     | $\angle BOC = 2\angle BAC$ |
| ∠AOC                          | 46.39°                                     | $\angle AOC = 2\angle ABC$ |
| ∠ABC                          | 23.19°                                     |                            |
| ∠AOB                          | 217°                                       | 10P 2 PG:                  |
| ∠BCA                          | 108.43°                                    | $\angle AOB = 2\angle BCA$ |

TABLE 4: Perpendicular Bisector.



Fig. 3: altitudes plotted using python



Fig. 4: perpendicular bisectors plotted using python

## 5 Angle Bisector



Fig. 5: Angle bisectors plotted using python

|                                 | T                                              |                           |
|---------------------------------|------------------------------------------------|---------------------------|
| parameters                      | value                                          | description               |
| m <sub>13</sub>                 | $\begin{pmatrix} -1.34 \\ 1.23 \end{pmatrix}$  | 47                        |
| n <sub>13</sub>                 | (1.23)<br>(1.34)                               | AI                        |
| c <sub>13</sub>                 | 0.53                                           |                           |
| m <sub>14</sub>                 | $\begin{pmatrix} -0.39 \\ 1.91 \end{pmatrix}$  | D.I.                      |
| m <sub>14</sub>                 | $\begin{pmatrix} -1.91 \\ -0.39 \end{pmatrix}$ | BI                        |
| $c_{14}$                        | 4.626                                          |                           |
| m <sub>15</sub>                 | $\begin{pmatrix} 0.94 \\ 0.68 \end{pmatrix}$   | CI                        |
| n <sub>15</sub>                 | $\begin{pmatrix} -0.68 \\ -0.94 \end{pmatrix}$ | CI                        |
| c <sub>15</sub>                 | 5.16                                           |                           |
| I                               | $\begin{pmatrix} -3.07 \\ 3.22 \end{pmatrix}$  | Incentre                  |
| D <sub>3</sub>                  | $\begin{pmatrix} -2\\3.22 \end{pmatrix}$       | Point of contact with BC  |
| E <sub>3</sub>                  | $\begin{pmatrix} -2.73 \\ 4.24 \end{pmatrix}$  | Point of contact with AC  |
| F <sub>3</sub>                  | $\begin{pmatrix} -4.05 \\ 2.8 \end{pmatrix}$   | Point of contact with AB  |
| $  \mathbf{I} - \mathbf{D}_3  $ |                                                |                           |
| $  \mathbf{I} - \mathbf{E}_3  $ | ]                                              |                           |
| $  \mathbf{I} - \mathbf{F_3}  $ | 1.07                                           | $ID_3 = IE_3 = IF_3 = r$  |
| r                               |                                                |                           |
| ∠BAI                            | 24.100                                         | (DAI (CAI                 |
| ∠CAI                            | 24.18°                                         | $\angle BAI = \angle CAI$ |
| ∠ABI                            | 11.500                                         | $\angle ABI = \angle CBI$ |
| ∠CBI                            | 11.59°                                         | $\angle ADI = \angle CDI$ |
| ∠ACI                            | 54.21°                                         | $\angle ACI = \angle BCI$ |
| ∠BCI                            |                                                |                           |

TABLE 5: Angle Bisectors.