长度密度测量

张奥喆

2313447

- 一、实验目的
- 1、了解米尺、游标卡尺、螺旋测微器的测量原理和使用方法。
- 2、熟悉仪器的读数规则以及有效数字运算法则。
- 3、掌握直接测量、间接测量的数据处理方法及测量不确定度估计方法。
- 4、了解测定密度的基本方法和电子天平的使用方法。
- 5、掌握用静力称衡法测定不规则固体密度的原理和方法
- 二、实验原理
- 1、密度的测量

若物体质量为 m. 体积为 V. 则其密度为

$$\rho = m/V$$

对于形状规则、密度内匀的物体,通过测定其质量和体积后根据定义求得。对于形状不规则的物体,可用流体静力称衡法间接地测出其体积。

若不计空气浮力,则物体在空气中的重量 mg 与在液体中的视重 m1g 之差即为它在该液体中所受的浮力,即

$$F = (m - m_1)g$$

由阿基米德原理: 物体在液体中所受的浮力等于它排开液体的重量。若以 ρ 表示液体的密度, V 表示排开液体的体积亦即待测物体的体积, 则

$$F = \rho gV$$

可解得待测物体的密度

$$\rho_{1} = \frac{m\rho}{m - m_{1}}$$

- 2、长度的测量
- a)米尺

分度值为 0. 1cm, 读数规则为估读到到分度值的十分之一,即 0. 1mm,如果刻线较粗,也可以估读到分度值的五分之一。估读时,要尽可能把待测物体紧贴米尺的刻度线,以避免视差。并且读数时应当使待测物体断面在两眼的垂直平分线上。若米尺刻线是从端边开始的,测量时则不用端边作为测量的起点,以避免因磨损带来的误差。一般选择整刻度线作为起点,物体的长度为两端所

对应的读数之差。

b)游标卡尺

游标卡尺的读数由主尺读数与副尺读数两部分构成,主尺上读出毫米位的准确数,毫米以下的尾数由副尺读出。游标卡尺的测量原理基于游标尺分度值

与主尺分度值之间的关系。通过游标尺的 滑动,找到与主尺刻度线重合的游标尺刻 度线,再将两个读数相加,可得到精确的 测量值。

c)螺旋测微器

螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。测量时,当测砧和测微螺杆并拢时,可动刻度的零点若恰好与固定刻度的零点重合,旋出测微螺杆,并使测砧和测微螺杆的面正好接触待测长度的两端,注意不可用力旋转否则测量不准

确,马上接触到测量面时慢慢旋转左右面的 棘轮转柄直至传声咔咔的响声,那么测微螺 杆向右移动的距离就是所测的长度。

三、实验仪器用具

米尺、50 分度游标卡尺、螺旋测微器、金属杯、钢球、电子天平、铁架台、牛角扣、水、玻璃烧杯、细线、温度计。

四、实验步骤或内容

- 1、用米尺测量教科书的宽度,分别在不同起点,同一位置和不同起点不同位置各测 4 次。
- 2、用游标卡尺在不同方位测量半空心圆柱体的外径 D1,内径 D2,高度 H1,深度 H2 各四次,并求其体积。
- 3、用螺旋测微器在钢球不同位置的三互垂方向各测其直径两次,并求其体积。
- 4、用流体静力称衡法测定牛角扣的密度。
- ①调节天平至备用状态,测定牛角扣在空气中的质量 m 以及烧杯和水的质量 m1。

- ②然后测定其在水中的视质量。用细线拴住牛角扣,悬吊于烧杯的液体中,不要露出水面或接触烧杯底或杯壁。称出牛角扣完全浸没在水中的视质量 m2。
- ③本实验宜采用相同条件下的多次测量方法。为了掌握实验条件及求得水的 密度,还应在实验前后分别测水温和室温。

五、实验数据记录及处理

1、米尺测量教科书

2、单位: cm 允差 Δ_l =0.5mm $u_{Bl}=\frac{0.1}{\sqrt{3}}\approx 0.06mm$ =0.006cm

次数	l_1		l_2		l_3				l_4			
i	l_{1i}	$s_{l_{1i}}$	l_{2i}	$s_{l_{2i}}$	起点	终点	l_{3i}	$s_{l_{3i}}$	起点	终点	l_{4i}	$s_{l_{4i}}$
1	18. 46	0. 018	18. 46	0. 026	5. 00	23. 45	18. 45	0. 017	5. 00	23. 44	18. 44	0. 017
2	18. 49	$s_{ar{l}1}$	18. 40	$s_{ar{l2}}$	10. 00	28. 47	18. 47	$s_{ar{l}3}$	10. 00	28. 43	18. 43	$s_{ar{l}4}$
3	18. 50	0. 0091	18. 42	0. 013	15. 00	33. 49	18. 49	0. 0085	15. 00	33. 46	18. 46	0. 0085
4	18. 47	$u_{A_{l1}}$	18. 41	$u_{A_{l2}}$	20. 00	38. 46	18. 46	$u_{A_{l3}}$	20. 00	38. 42	18. 42	$u_{A_{l4}}$
平均	18. 48	0. 011	18. 4225	0. 018			18. 4675	0. 010			18. 4375	0. 010
	0.010		4.7				0.040					
u_x	0. (012	0. 0	1/	0. 012 0. 012				012			

 $l_1 = (18.480 \pm 0.012)cm$

 $l_3 = (18.468 \pm 0.012)cm$

 $l_2 = (18.423 \pm 0.017)cm$

 $l_4 = (18.438 \pm 0.012)cm$

2、用游标卡尺测半空心圆柱的几何尺寸并求其体积

单位: cm 零点读数: x_0 =0.008cm 允差: Δ_x = 0.02mm u_{Bx} = $\frac{0.02}{\sqrt{3}}$ \approx 0.012mm=0.0012cm

次数 i	D_{1_i}	$s_{D_{1i}}$	H_{1_i}	$s_{H_{1i}}$	D_{2_i}	$s_{D_{2i}}$	H_{2_i}	$s_{H_{2i}}$
1	3. 004	0. 0019	3. 012	0. 0016	1. 772	0. 0050	2. 170	0. 0044
2	3. 006	$S_{\overline{D1}}$	3. 010	$S_{\overline{H1}}$	1. 766	$S_{\overline{D2}}$	2. 178	S _{H2}
3	3. 008	0. 00096	3. 008	0. 00082	1. 760	0. 0025	2. 180	0. 0022
4	3. 004	u_{A_D}	3. 010	u_{A_H}	1. 768	u_{A_D}	2. 174	u_{A_H}
平均	3. 0055	0. 0011	3. 010	0. 00098	1. 7665	0. 0030	2. 1755	0. 0027
u_x	0. 017		0. 0015		0. 0032		0. 0029	

注意我们要消除零点误差,即 D1=2.9975,H1=3.0020,D2=1.7585,H2=2.1675

$$V = \frac{\pi (D_1^2 H_1 - D_2^2 H_2)}{4} = 15.9203 \ cm^3$$

$$u_v = V \sqrt{\left(\frac{u_{H1}}{H1}\right)^2 + \left(2\frac{u_{D1}}{D1}\right)^2} + V \sqrt{\left(\frac{u_{H2}}{H2}\right)^2 + \left(2\frac{u_{D2}}{D2}\right)^2} = 0.17cm^3$$

结果表示为: $V = (15.92 \pm 0.17)cm^3$

3、用螺旋测微器测定钢球直径求体积

单位: cm 零点读数: $x_0 = 0.0000cm$ 允差: Δ_D =0.0004cm

$$u_{BD} = \frac{0.001}{\sqrt{3}} \approx 0.0006$$
mm=0.00006cm

次数 i	1	2	3	4	5	6	平均
三互垂	1. 9992	1. 9998	1. 9996	1. 9995	1. 9999	1. 9999	未修正零
方向D _i							点 $\overline{D'}$
$\overline{D_{D_l}}$		1. 99965					
s _D =0.00	057	$s_{\overline{D}} = 0.00$	0023				

$$\bar{V} = \frac{\pi D^3}{6} = 4.18659 \ cm^3 \qquad u_V = V \sqrt{\left(3 \frac{u_D}{D}\right)^2} = 0.0039$$

结果表达式: $V = (4.1866 \pm 0.0039)cm^3$

4、用流体静力称衡法测定牛角扣的密度

环境温度: 20℃ 水温 19℃

水的密度: 0.9984g/cm³

单位: g 允差
$$\Delta$$
m =0.015g $u_{Bm} \approx \frac{0.01}{\sqrt{3}} = 0.006g$

次数	m_i	s_{mi}	m_{1i}	s_{m1i}	m_{2i}	s_{m2i}	
1	3. 72	0. 0058	302. 62	0. 010	305. 74	0. 026	
2	3. 72	$s_{ar{m}}$	302. 61	$s_{ar{m}1}$	305. 73	$s_{ar{m}_2}$	
3	3. 71	0. 0033	302. 60	0. 0058	305. 69	0. 015	
平均	3. 717	<i>u_{Am}</i> =0. 0040	302. 61	<i>u</i> _{Am1} =0. 0069	305. 72	<i>u</i> _{Am2} =0. 018	
u_x	u_1	_m =0. 007	u_m	₁ =0. 009	<i>u</i> _{m2} =0. 019		

牛角扣的密度:
$$\bar{\rho} = \frac{m\rho}{m^2 - m^1} = 1.1910 \text{ g/cm}^3$$
 $u_{\rho} = 0.007 \text{ g/cm}^3$

$$u_0 = 0.007 \text{ g/cm}^3$$

结果表达式 $\rho = (1.191 \pm 0.007)g / cm^3$

六、考察题和思考题

- 1、一把钢尺在 20°C时标度, 若在-20°C时一次测得某物体长度为 1 000.0mm。 假定不锈钢尺的线膨胀系数为: $\beta = 1.2 \times 10^{-5} / \mathcal{C}$, 问:
- (1) 因热膨胀引入的系统误差是否需要修正? 需要修正,在-20℃时,钢尺会收缩,让测量结果偏大。
- (2) 写出该物体长度的结果表达式。

$$L_{\beta} = \frac{1000}{1 + \Delta t \beta} = \frac{1000}{1 + 40 \times 1.2 \times 10^{-5}} \approx 999.52mm$$

2、对于测定不规则形状物体的体积, 为何不利用量筒通过排水法直接测量物 体排开水的体积, 而用静力称衡法?哪个精度较高?原因是什么?

不规则的物体可能没有办法放入量筒,而且,静力称衡法的精度更高:电 子天平精度高,实验室用的电子天平精度可达 0.01g 或更高,超过量筒的精度。 不受液面读数和气泡的影响,不会产生气泡误差,也可以避免凹凸液面读数的 影响。