

Artificial Bee Colony (ABC) algorithm and Clustering

Yangzhuoran (Fin) Yang September 2, 2019

Outline

1 Artificial Bee Colony (ABC)

2 Comparison

3 Clustering

Outline

1 Artificial Bee Colony (ABC)

2 Comparison

3 Clustering

Phases

Figure 1: Phases of ABC. Source: Kumar, S. et al. (2014)

Initialization

- 1. Data
- 2. Generate the initial solution
- 3. Evaluate the nectar (fitness)

Parameters:

■ The number of initial food sources SN

Simulation:

- Initial solution input
- Initial food sources

Employed bees

- 4. While (Condition not met){
- 5. For each employed bee{
 Produce new solution
 Greedy selection }

Finding neighbour

$$\nu_{ij} = z_{ij} + \phi_{ij}(z_{ij} - z_{kj})$$

Employed bees

- 4. While (Condition not met){
- 5. For each employed bee{
 Produce new solution
 Greedy selection }

Calculate fitness

$$fit_i = \frac{1}{1/f}$$

Onlooker bees

- 6. Calculate the probabilities of solution
- 7. For each onlooker bee{
 Select a solution using probabilities
 Produce new solution
 Greedy selection }

Calculate probabilities

$$p_i = \frac{\text{fit}_i}{\sum_{i=1}^{SN} \text{fit}_i}$$

Scout bees

- 8. Abandon non-improving solution
- 9. Replace it with new solution

Parameter:

■ The limit

Scout bees

- 8. Abandon non-improving solution
- 9. Replace it with new solution

Parameter:

■ The limit

Finding new solution

$$z_i^j = z_{min}^j + \delta_i^j (z_{max}^j - z_{min}^j)$$

9

Stopping criteria

- 10. Record the best solution }
- 11. End

Parameters:

- Maximum number of iterations
- Maximum number of unimproved global minimum

Intensification vs Diversification

Local search

Creat new solution from neighbours

- The employed bee
- The onlooker bee (with tendency)

Intensification vs Diversification

Local search

Creat new solution from neighbours

- The employed bee
- The onlooker bee (with tendency)

Global search

Replace current solution using new solution found from solution space

- Abandon scheme
- The scout bee

Outline

1 Artificial Bee Colony (ABC)

2 Comparison

3 Clustering

Escaping local optim

Simulated annealing:

Being able to accept worse solution based on temperature

Escaping local optim

Simulated annealing:

Being able to accept worse solution based on temperature

ABC:

 Abandon solution that does not improve for many iteraions (combined with global search)

Reproduction

Genetic Algorithm:

- Selection
- Crossover
- Mutation
- Evaluation
- Update

Reproduction

Genetic Algorithm:

- Selection
- Crossover
- Mutation
- Evaluation
- Update

Each bee in ABC:

- Finding neighbour
- Creat new solution
- (Randomly)
- Calculate fitness
- Greedily select

Outline

1 Artificial Bee Colony (ABC)

- 2 Comparison
- 3 Clustering

Solution representation:

 $k \times D$ matrix

Solution representation:

 $k \times D$ matrix \Rightarrow vector

Solution representation:

 $k \times D$ matrix \Rightarrow vector

Standardization

$$Z_{ij}^* = \frac{z_{ij}}{\max_j |z_{ij}|}$$

Solution representation:

 $k \times D$ matrix \Rightarrow vector

Standardization

$$Z_{ij}^* = \frac{z_{ij}}{\max_j |z_{ij}|}$$

Initialize different foods sources

- Evenly assigned across the solution space ×
- Randomly sample between bounds ×

Solution representation:

 $k \times D$ matrix \Rightarrow vector

Standardization

$$Z_{ij}^* = \frac{z_{ij}}{\max_j |z_{ij}|}$$

Initialize different foods sources

- Evenly assigned across the solution space ×
- Randomly sample between bounds ×
- Sample from the existing data points

Constraint and Relexation

Minimum cluster size: $\frac{n}{2d}$

Too hard to find a solution so we:

- Simulate initial input solution up to 4000 times
- Initialize food sources up to 2500 times
- Globally search in the scout bee up to 2000 times

Constraint and Relexation

Minimum cluster size: $\frac{n}{2d}$

Too hard to find a solution so we:

- Simulate initial input solution up to 4000 times
- Initialize food sources up to 2500 times
- Globally search in the scout bee up to 2000 times

Minimum cluster size is relaxed to $\frac{n}{10d}$ if the algorithm reaches the first two condition

Result 1

Result 2

References i

Kumar, S., Sharma, V. K., & Kumari, R. (2014). Randomized memetic artificial bee colony algorithm. arXiv preprint arXiv:1408.0102.