Simulazione prova parziale LOGICA 14 novembre 2018

nome: cognome:

- Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati.
- NON si considerano le BRUTTE copie.
- Ricordatevi di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente (se non lo fate perdete punti!).
- Ricordatevi di ETICHETTARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- La risoluzione degli esercizi tramite la costruzione di tabelle di verità non verrà considerata.
- Se il punteggio x ottenuto in questa prova parziale è superiore o uguale a 18 allora tale punteggio sarà SOMMATO al punteggio del primo appello di logica dell'anno 2018/2019 di cui il candidato consegnerà l'elaborato SOLO nel caso in cui il candidato riporterà nell'elaborato dell'appello un punteggio superiore o uguale a 18 e sulla somma di tale punteggio sarà conteggiato il voto finale di superamento dell'esame di logica.
- Se il punteggio **x** ottenuto in questa prova parziale è inferiore strettamente a **18** allora il candidato potrà superare *uno dei primi due appelli invernali* SOLO SE negli esercizi sulla logica proposizionale (ovvero sugli argomenti di questa prova parziale) avrà riportato un punteggio superiore a

$$(18 - x)/6$$

• Mostrare se i sequenti elencati qui sotto sono tautologie o opinioni o paradossi in logica classica. Nel caso il sequente sia un'opinione esibire una riga della tabella di verità in cui il sequente è falso e una riga in cui il sequente è vero.

Nel caso di paradossi o opinioni i punti vengono raddoppiati.

(3 punti)
$$B \vdash \neg \neg (\neg B \lor M)$$

(3 punti)

$$\vdash \neg (\ (\ A\ \lor (A\ \to\ B)\ \to\ B\)\ \to\ B\)$$

• Formalizzare in sequente le argomentazioni di seguito. Si provi se il sequente ottenuto è tautologia, opinione o paradosso motivando la risposta. Nel caso il sequente sia un'opinione esibire una riga della tabella di verità in cui il sequente è falso e una riga in cui il sequente è vero (nel caso di opinioni o paradossi i punti vengono raddoppiati):

- (4 punti)

Non si può girare a destra nè a sinistra se la strade sono bloccate.

Solo se si può girare a destra le strade non sono bloccate.

si consiglia di usare:

D = si può girare a destra

S= si può girare a sinistra

B= le strade sono bloccate

• Esercizio teoria

Sia T_{vel} la teoria ottenuta estendendo LC_p con la formalizzazione dei seguenti assiomi: (la formalizzazione di ogni assioma conta 1 punto)

- Non si dà il caso che Sara vada in barca ma non ci vada Emma.
- Non si dà il caso che nè Filippo, nè Emma e nè Michele non vadano in barca a vela.
- Emma va in barca a vela solo se tira vento.
- Michele non va in barca a vela se e solo se non tira vento.
- Solo se Filippo non va in barca ci va Michele invece.
- Filippo va in barca a vela solo se tira vento.

Si consiglia di usare:

T="tira vento"

E="Emma va in barca a vela"

F="Filippo va in barca a vela"

M="Michele va in barca a vela"

S="Sara va in barca a vela"

Derivare poi in T_{bar} i teoremi corrispondenti alla formalizzazione delle seguenti affermazioni (ciascuna vale 4 punti quando non indicato altrimenti):

- Se Filippo va in barca a vela allora ci va anche Michele.
- Se non tira vento allora Michele non va in barca a vela e neanche Emma.
- Filippo non va in barca a vela. (5 punti)
- Emma o Michele vanno in barca a vela.
- Non si dà il caso che nè Emma nè Michele non vadano in barca a vela.
- Tira vento. (5 punti)
- Negli esercizi che seguono il punteggio è riferito all'analisi della validità di ciascuna regola. Si consiglia di affrontare questi esercizi dopo aver svolto almeno un esercizio dei primi due gruppi o di un teorema della teoria.

- (6 punti) la regola

è valida? Sono valide le sue inverse? È regola sicura?

- (6 punti) la regola

$$\frac{A \vdash Q, \neg Q \lor M}{A \lor M \vdash \neg M \And \neg Q} \ 1$$

è valida? Sono valide le sue inverse? È regola sicura?

- (6 punti) Formalizzare la regola seguente

Non piove ⊢ Nessuno ha l'ombrello aperto. 2 Il cielo è nuvoloso ⊢ Non c'è il sole

Il cielo è nuvoloso ⊢ Piove e non c'è il sole, oppure nessuno ha l'ombrello aperto.

ove

S="c'é il sole"

P = "Piove"

N="il cielo è nuvoloso"

A="Nessuno ha l'ombrello aperto.

La regola ottenuta è valida? È valida la sua inversa? È regola sicura?

Logica classica- LC_p

TAUTOLOGIE CLASSICHE

associatività ∨	$(A \lor B) \lor C$	\leftrightarrow	$A \lor (B \lor C)$
associatività &	(A&B)&C	\leftrightarrow	A&(B&C)
commutatività \vee	$A \lor B$	\leftrightarrow	$B \vee A$
commutatività &	A&B	\leftrightarrow	B&A
distributività \vee su &	$A \vee (B \& C)$	\leftrightarrow	$(A \lor B) \& (A \lor C)$
distributività & su \vee	$A \& (B \lor C)$	\leftrightarrow	$(A \& B) \lor (A \& C)$
idempotenza \vee	$A \vee A$	\leftrightarrow	A
idempotenza &	$A \ \& \ A$	\leftrightarrow	A
leggi di De Morgan	$\neg (B \lor C)$	\leftrightarrow	$\neg B \& \neg C$
	$\neg (B\&C)$	\leftrightarrow	$\neg B \vee \neg C$
legge della doppia negazione	$\neg \neg A$	\leftrightarrow	A
implicazione classica	$(A \rightarrow C)$	\leftrightarrow	$\neg A \lor C$
disgiunzione come antecendente	$(A \lor B \to C)$	\leftrightarrow	$(A \rightarrow C) \& (B \rightarrow C)$
congiunzione come antecendente	$(A\&B \rightarrow C)$	\leftrightarrow	$(A \rightarrow (B \rightarrow C))$
legge della contrapposizione	$(A \rightarrow C)$	\leftrightarrow	$(\neg C \rightarrow \neg A)$
legge del modus ponens	$A \& (A \rightarrow C)$	\rightarrow	C
transitività	$(A \rightarrow B) \& (B \rightarrow C)$	\rightarrow	$(A \rightarrow C)$
congiunzione sotto ipotesi	$(A \rightarrow B) \& (A \rightarrow C)$	\leftrightarrow	$(A \rightarrow B \& C)$
prima proiezione	$A \ \& \ B \ \rightarrow \ A$		
seconda proiezione	$A \& B \rightarrow B$		
legge della NON contraddizione	$\neg (A\& \neg A)$		
legge del terzo escluso	$A \vee \neg A$		
significato negazione	$\neg A$	\leftrightarrow	$(A \rightarrow \perp)$
equivalente del falso		\leftrightarrow	$(A \& \neg A)$

Regola di composizione

$$\frac{\vdash \mathtt{fr} \qquad \qquad \Gamma, \mathtt{fr}, \Gamma' \vdash \nabla}{\Gamma, \Gamma' \vdash \nabla} \ \mathrm{comp}$$