Lecture 30: Comparing estimators

Ciaran Evans

Course so far

- Maximum likelihood estimation
- Logistic regression
- Asymptotics
- Asymptotic properties of MLEs
- Hypothesis testing
- Confidence intervals

Common theme: Likelihoods and MLEs

Question: Why maximum likelihood estimation?

Today:

- Another approach to estimation: method of moments
- What makes a good estimator?

Suppose $X_1,...,X_n \stackrel{iid}{\sim} Uniform(0,\theta)$. How could I estimate θ ?

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} Uniform(a, b)$. How could I estimate a and b?

Method of moments

Let $X_1,...,X_n$ be a sample from a distribution with probability function $f(x|\theta_1,...,\theta_k)$, with k parameters $\theta_1,...,\theta_k$.

Suppose $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$.

What makes a good estimator?

Suppose $X_1,...,X_n \stackrel{iid}{\sim} Uniform(0,\theta)$. Two possible estimates:

MLE:
$$\hat{\theta} = X_{(n)}$$
 MoM: $\hat{\theta} = 2\overline{X}$

Question: How would I choose between these estimators?

Bias, variance, and MSE

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} \textit{Uniform}(0, \theta)$.

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Consider two estimates of σ^2 :

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$