CS7015 (Deep Learning): Lecture 2

McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm and Convergence, Multilayer Perceptrons (MLPs), Representation Power of MLPs

Mitesh M. Khapra

Department of Computer Science and Engineering Indian Institute of Technology Madras Module 2.8: Representation Power of a Network of Perceptrons

 \bullet We will now see how to implement ${\bf any}$ boolean function using a network of perceptrons \dots

• For this discussion, we will assume True = +1 and False = -1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons

 x_1 x_2

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

 x_1 x_2

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

 x_1 x_2

red edge indicates w = -1 blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

red edge indicates w = -1 blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

red edge indicates w = -1 blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights

red edge indicates w = -1blue edge indicates w = +1

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights
- The bias (w_0) of each perceptron is -2 (i.e., each perceptron will fire only if the weighted sum of its input is ≥ 2)

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights
- The bias (w_0) of each perceptron is -2 (i.e., each perceptron will fire only if the weighted sum of its input is ≥ 2)
- Each of these perceptrons is connected to an output perceptron by weights (which need to be learned)

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights
- The bias (w_0) of each perceptron is -2 (i.e., each perceptron will fire only if the weighted sum of its input is ≥ 2)
- Each of these perceptrons is connected to an output perceptron by weights (which need to be learned)

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights
- The bias (w_0) of each perceptron is -2 (i.e., each perceptron will fire only if the weighted sum of its input is ≥ 2)
- Each of these perceptrons is connected to an output perceptron by weights (which need to be learned)

red edge indicates w = -1blue edge indicates w = +1

- For this discussion, we will assume True = +1 and False = -1
- We consider 2 inputs and 4 perceptrons
- Each input is connected to all the 4 perceptrons with specific weights
- The bias (w_0) of each perceptron is -2 (i.e., each perceptron will fire only if the weighted sum of its input is ≥ 2)
- Each of these perceptrons is connected to an output perceptron by weights (which need to be learned)
- The output of this perceptron (y) is the output of this network

• This network contains 3 layers

red edge indicates w = -1 blue edge indicates w = +1

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**
- The outputs of the 4 perceptrons in the hidden layer are denoted by h_1, h_2, h_3, h_4

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**
- The outputs of the 4 perceptrons in the hidden layer are denoted by h_1, h_2, h_3, h_4
- The red and blue edges are called layer 1 weights

red edge indicates w = -1blue edge indicates w = +1

- This network contains 3 layers
- The layer containing the inputs (x_1, x_2) is called the **input layer**
- The middle layer containing the 4 perceptrons is called the **hidden layer**
- The final layer containing one output neuron is called the **output layer**
- The outputs of the 4 perceptrons in the hidden layer are denoted by h_1, h_2, h_3, h_4
- The red and blue edges are called layer 1 weights
- w_1, w_2, w_3, w_4 are called layer 2 weights

red edge indicates w = -1blue edge indicates w = +1

• We claim that this network can be used to implement **any** boolean function (linearly separable or not)!

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim!

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)
- \bullet the first perceptron fires for $\{-1,-1\}$

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)
- the second perceptron fires for $\{-1,1\}$

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)
- the third perceptron fires for $\{1,-1\}$

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)
- the fourth perceptron fires for $\{1,1\}$

red edge indicates w = -1blue edge indicates w = +1

- We claim that this network can be used to implement **any** boolean function (linearly separable or not)!
- In other words, we can find w_1, w_2, w_3, w_4 such that the truth table of any boolean function can be represented by this network
- Astonishing claim! Well, not really, if you understand what is going on
- Each perceptron in the middle layer fires only for a specific input (and no two perceptrons fire for the same input)
- Let us see why this network works by taking an example of the XOR function

red edge indicates w = -1 blue edge indicates w = +1

• Let w_0 be the bias output of the neuron (i.e., it will fire if $\sum_{i=1}^{4} w_i h_i \geq w_0$)

red edge indicates w = -1 blue edge indicates w = +1

• Let w_0 be the bias output of the neuron (i.e., it will fire if $\sum_{i=1}^4 w_i h_i \geq w_0$)

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^4 w_i h_i$
0	0	0	1	0	0	0	w_1

red edge indicates w = -1 blue edge indicates w = +1

• Let w_0 be the bias output of the neuron (i.e., it will fire if $\sum_{i=1}^4 w_i h_i \geq w_0$)

_	x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
	0	0	0	1	0	0	0	w_1
	0	1	1	0	1	0	0	w_2

red edge indicates w = -1 blue edge indicates w = +1

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^4 w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3

red edge indicates w = -1 blue edge indicates w = +1

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3
1	1	0	0	0	0	1	w_4

red edge indicates w = -1blue edge indicates w = +1

$\overline{x_1}$	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3
1	1	0	0	0	0	1	w_4

• This results in the following four conditions to implement XOR: $w_1 < w_0, w_2 \ge w_0, w_3 \ge w_0, w_4 < w_0$

red edge indicates w = -1blue edge indicates w = +1

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3
1	1	0	0	0	0	1	w_4

- This results in the following four conditions to implement XOR: $w_1 < w_0, w_2 \ge w_0, w_3 \ge w_0, w_4 < w_0$
- Unlike before, there are no contradictions now and the system of inequalities can be satisfied

red edge indicates w = -1blue edge indicates w = +1

x_1	x_2	XOR	h_1	h_2	h_3	h_4	$\sum_{i=1}^{4} w_i h_i$
0	0	0	1	0	0	0	w_1
0	1	1	0	1	0	0	w_2
1	0	1	0	0	1	0	w_3
1	1	0	0	0	0	1	w_4

- This results in the following four conditions to implement XOR: $w_1 < w_0, w_2 \ge w_0, w_3 \ge w_0, w_4 < w_0$
- Unlike before, there are no contradictions now and the system of inequalities can be satisfied
- Essentially each w_i is now responsible for one of the 4 possible inputs and can be adjusted to get the desired output for that input $_{\bigcirc,\bigcirc,\bigcirc}$

red edge indicates w = -1blue edge indicates w = +1

• It should be clear that the same network can be used to represent the remaining 15 boolean functions also

red edge indicates w = -1blue edge indicates w = +1

- It should be clear that the same network can be used to represent the remaining 15 boolean functions also
- Each boolean function will result in a different set of non-contradicting inequalities which can be satisfied by appropriately setting w_1, w_2, w_3, w_4

red edge indicates w = -1blue edge indicates w = +1

- It should be clear that the same network can be used to represent the remaining 15 boolean functions also
- Each boolean function will result in a different set of non-contradicting inequalities which can be satisfied by appropriately setting w_1, w_2, w_3, w_4
- Try it!

• What if we have more than 3 inputs?

- Again each of the 8 perceptorns will fire only for one of the 8 inputs
- Each of the 8 weights in the second layer is responsible for one of the 8 inputs and can be adjusted to produce the desired output for that input

ullet What if we have n inputs ?

Theorem

Any boolean function of n inputs can be represented exactly by a network of perceptrons containing 1 hidden layer with 2^n perceptrons and one output layer containing 1 perceptron

Theorem

Any boolean function of n inputs can be represented exactly by a network of perceptrons containing 1 hidden layer with 2^n perceptrons and one output layer containing 1 perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of $2^n + 1$ perceptrons is not necessary but sufficient. For example, we already saw how to represent AND function with just 1 perceptron

Theorem

Any boolean function of n inputs can be represented exactly by a network of perceptrons containing 1 hidden layer with 2^n perceptrons and one output layer containing 1 perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of $2^n + 1$ perceptrons is not necessary but sufficient. For example, we already saw how to represent AND function with just 1 perceptron

Catch: As n increases the number of perceptrons in the hidden layers obviously increases exponentially

• Again, why do we care about boolean functions?

- Again, why do we care about boolean functions?
- How does this help us with our original problem: which was to predict whether we like a movie or not?

- Again, why do we care about boolean functions?
- How does this help us with our original problem: which was to predict whether we like a movie or not? Let us see!

• We are given this data about our past movie experience

$$p_{1} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} & y_{1} = 1 \\ x_{21} & x_{22} & \dots & x_{2n} & y_{2} = 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{k1} & x_{k2} & \dots & x_{kn} & y_{i} = 0 \\ x_{j1} & x_{j2} & \dots & x_{jn} & y_{j} = 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

- We are given this data about our past movie experience
- For each movie, we are given the values of the various factors (x_1, x_2, \ldots, x_n) that we base our decision on and we are also also given the value of y (like/dislike)

- We are given this data about our past movie experience
- For each movie, we are given the values of the various factors $(x_1, x_2, ..., x_n)$ that we base our decision on and we are also also given the value of y (like/dislike)
- p_i 's are the points for which the output was 1 and n_i 's are the points for which the output was 0

- We are given this data about our past movie experience
- For each movie, we are given the values of the various factors $(x_1, x_2, ..., x_n)$ that we base our decision on and we are also also given the value of y (like/dislike)
- p_i 's are the points for which the output was 1 and n_i 's are the points for which the output was 0
- The data may or may not be linearly separable

- We are given this data about our past movie experience
- For each movie, we are given the values of the various factors $(x_1, x_2, ..., x_n)$ that we base our decision on and we are also also given the value of y (like/dislike)
- p_i 's are the points for which the output was 1 and n_i 's are the points for which the output was 0
- The data may or may not be linearly separable
- The proof that we just saw tells us that it is possible to have a network of perceptrons and learn the weights in this network such that for any given p_i or n_j the output of the network will be the same as y_i or y_j

• Networks of the form that we just saw (containing, an input, output and one or more hidden layers) are called Multilayer Perceptrons (MLP, in short)

- Networks of the form that we just saw (containing, an input, output and one or more hidden layers) are called Multilayer Perceptrons (MLP, in short)
- More appropriate terminology would be "Multilayered Network of Perceptrons" but MLP is the more commonly used name

- Networks of the form that we just saw (containing, an input, output and one or more hidden layers) are called Multilayer Perceptrons (MLP, in short)
- More appropriate terminology would be "Multilayered Network of Perceptrons" but MLP is the more commonly used name
- The theorem that we just saw gives us the representation power of a MLP with a single hidden layer

- Networks of the form that we just saw (containing, an input, output and one or more hidden layers) are called Multilayer Perceptrons (MLP, in short)
- More appropriate terminology would be "Multilayered Network of Perceptrons" but MLP is the more commonly used name
- The theorem that we just saw gives us the representation power of a MLP with a single hidden layer
- Specifically, it tells us that a MLP with a single hidden layer can represent **any** boolean function