Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Skizzen müssen qualitativ und quantitativ richtig sein.

Abgabetermin: Diese Übung ist nicht abzugeben beinhaltet aber prüfungsrelevante Themen

Aufgabe 1: Fluss durch einen Zylinder

Ein Zylinder mit Radius R=2 und Höhe H=5, dessen Rotationsachse sich von (0,0,0) bis (0,0,5) erstreckt, wird vom Vektorfeld

$$\vec{v} = \left(\begin{array}{c} x^3 \\ -y \\ z \end{array}\right)$$

durchflutet. Das Ziel der Aufgabe ist, den Fluss von \vec{v} durch die gesamte Zylinderoberfläche mit dem Flussintegral (1) und mit dem Satz von Gauss (2) zu berechnen.

(1) Berechnung mit dem Flussintegral

- a) Bestimmen Sie das Vektorfeld der Flächennormalen \vec{n}_0 auf dem Mantel, das nach aussen gerichtet ist. *Hinweis:* Sie können die Zylinderfläche als Niveaufläche eines Skalarfeldes $\Phi(x,y)$ betrachten, oder einfach erraten!
- b) Geben Sie das Flächenelement dA in Zylinderkoordinaten an.
- c) Berechnen Sie das Flussintegral durch die Mantelfläche.
- d) Berechnen Sie das Flussintegral durch die Boden- und Deckfläche des Zylinders und geben Sie zusammen mit dem Ergebnis aus d) den gesamten Fluss an. (Lsg: $60\,\pi$)
- (2) Direkte Berechnung: Berechnen Sie nun den Flächendurchfluss direkt mit dem Satz von Gauss.

Aufgabe 2: Fluss durch eine Kugel

Berechnen Sie den Fluss des Vektorfeldes

$$\vec{v} = \left(\begin{array}{c} x^3 \\ y^3 \\ z^3 \end{array}\right)$$

durch die Kugeloberfläche $x^2+y^2+z^2=R^2$ mit dem Satz von Gauss und mit dem Oberflächenintegral. Hinweis: Verwenden Sie Kugelkoordinaten. (Lsg:12/5 π R^5)

Aufgabe 3:

Gegeben ist ein 3d-Skalarfeld $\Phi = \Phi(x, y, z)$.

a) Zeigen Sie, dass die folgende Identität gilt:

$$\Delta\Phi\,:=\,\mathrm{div}(\mathrm{grad}\,\Phi)=\frac{\partial^2\Phi}{\partial x^2}+\frac{\partial^2\Phi}{\partial y^2}+\frac{\partial^2\Phi}{\partial z^2}$$

Dabei definiert

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

den Laplace-Operator im Raum. Für die Ebene (2d) gilt entsprechend:

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

b) Wenden Sie den Laplaceoperator für den Raum und die Ebene auf das radiale Feld $\Phi(r) = 1/r$ an. (Lsg. Ebene $1/r^3$, Raum 0).

Aufgabe 4:

Ein Vektorfeld \vec{F} sei als Rotation eines weiteren Feldes \vec{E} darstellbar: $\vec{F} = \operatorname{rot} \vec{E}$. Dann verschwindet das Oberflächenintegral von \vec{F} für jede geschlossene Fläche A. D.h

$$\oint_{A} \left(\vec{F} \cdot \vec{n}_{0} \right) \, dA \, = \oint_{A} \left(\cot \vec{E} \cdot \vec{n}_{0} \right) \, dA \, = 0$$

Zeigen Sie diese Aussage mit dem Satz von Gauss.

Viel Spass!