Talking Negative Probability with AI and an Axiom Violation

Marilyn Hsiao
With commentary by ChatGPT

July 12, 2025

Abstract

In this brief philosophical and mathematical musing, we explore an unconventional approach to interpreting negative probabilities: what if they arise naturally from the presence of an **odd number of logical negations** in a mathematical statement? We propose the Negation Sign Inversion Principle (NSIP) and discuss its potential implications in classical and quantum probabilistic reasoning.

1 The Core Idea

We define a new rule:

Negation Sign Inversion Principle (NSIP):

A probabilistic statement that contains an **odd number of logical negations** is assigned a **negative sign**. A statement with an even number of negations retains a positive sign.

The following table summarizes the behavior:

Statement	Negation Count	Assigned Probability
A	0 (even)	+p
$\neg A$	1 (odd)	-p
$\neg \neg A$	2 (even)	+p
$\neg\neg\neg A$	3 (odd)	-p

2 Why It Violates the Axioms

In classical probability theory, the Kolmogorov axioms require:

- $0 \le P(A) \le 1$
- $P(\neg A) = 1 P(A)$

Assigning -p to $P(\neg A)$ contradicts the second axiom and introduces negative measures, thus violating standard assumptions. Yet, in quantum theory, negative probabilities appear — not as literal frequencies, but as artifacts in quasiprobability distributions (e.g., Wigner functions).

3 Interpretation and Potential

The odd-negation framework can be viewed as a symbolic or logical abstraction rather than a numerical measure. It offers possible metaphoric or structural explanations for:

- Interference patterns in quantum mechanics
- Signed measures in mathematical logic
- Semantic reversals in language and cognition

Example Questions Arising

- How does $P(A \land \neg A)$ behave under this model?
- Can this negation principle aid in modeling quantum contextuality?
- What happens to Bayes' rule under sign-inverted conditionals?

4 Conclusion

This proposal is not a revision of probability theory, but a provocation — to think differently about negation, contradiction, and the edge cases where intuition breaks. The Negation Sign Inversion Principle (NSIP) may have metaphorical power, or it may be formalizable in a new logic for uncertain reasoning — possibly one suited to the post-classical, AI-assisted world.

Contact

For thoughts, questions, or theoretical expansions, reach out to: marilyn@open-experiments.org