Fonctions usuelles Corrigé

DARVOUX Théo

Septembre 2023

Exercices.

Expo	onentielle and friends.	1
Ex	xercice 3.1	1
E	xercice 3.2	2
E	xercice 3.3	2

Exercice 3.1 $[\Diamond \Diamond \Diamond]$

Résoudre $2 \ln \left(\frac{x+3}{2}\right) = \ln(x) + \ln(3)$, sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$. On a : $2 \ln \left(\frac{x+3}{2}\right) = \ln(x) + \ln(3)$ $\iff \ln \left(\left(\frac{x+3}{2}\right)^2\right) = \ln(3x)$ $\iff \frac{(x+3)^2}{4} = 3x$ $\iff x^2 - 6x + 9 = 0$ $\iff x = 3$ Ainsi, 3 est l'unique solution.

Résoudre l'équation ch(x)=2. Que dire des solutions ? Soit $x\in\mathbb{R}$.

On a:

$$\frac{e^x + e^{-x}}{2} = 2$$

$$\iff e^x + e^{-x} = 4$$

$$\iff e^{2x} - 4e^x + 1 = 0$$

$$\iff e^x = 2 \pm \sqrt{3}$$

$$\iff x = \ln(2 \pm \sqrt{3})$$

Ainsi, $\ln(2-\sqrt{3})$ et $\ln(2+\sqrt{3})$ sont les uniques solutions dans \mathbb{R} . On remarque que :

$$\ln(2+\sqrt{3}) = -\ln\left(\frac{1}{2+\sqrt{3}}\right) = -\ln\left(2-\sqrt{3}\right)$$

Les solutions sont opposées.

Exercice 3.3 $[\Diamond \Diamond \Diamond]$

Résoudre sur \mathbb{R}_+^* l'équation $x^{\sqrt{x}} = \sqrt{x}^x$.

Soit $x \in \mathbb{R}_+^*$.

On a:

$$x^{\sqrt{x}} = \sqrt{x}^{x}$$

$$\iff e^{\sqrt{x} \ln x} = e^{x \ln(\sqrt{x})}$$

$$\iff \sqrt{x} \ln(x) = \frac{x}{2} \ln(x)$$

$$\iff \ln(x)(\sqrt{x} - \frac{x}{2}) = 0$$

$$\iff \ln(x) = 0 \text{ ou } \sqrt{x} = \frac{x}{2}$$

$$\iff x = 1 \text{ ou } \sqrt{x} = 2$$

$$\iff x = 1 \text{ ou } x = 4$$

Les uniques solutions sont donc 1 et 4.