Stat. UEM

(1) $X_{1},...,X_{n}$ iid ~ $\mathcal{N}(\mu,\sigma^{2})$, H_{0} : $\mu=\mu_{0}$. $\mathcal{T}(\mu,\sigma^{2})$, $\mathcal{T}(\mu$

do) Ampact on the test power: The test power is a monotonously increasing function of Mo, n, α and a m. decreasing function of μ and σ.

(a) Data 1: 8,8 10,5 12,5 9,7 9,6 13,2 Dede 2: 8,4 10,1 12,0 9,3 9,0 13,0

We have paired samples and assume that the differences are NNJyy, σ_{2}^{2}). Ho: $y_{d}=0$. We know that $t=\frac{J-0}{s_{1}/m_{1}}\approx_{Ho}t_{m-1}$; we choose $\alpha=0,05$ and decide to reject Ho if $|t|>t_{1-\alpha/2}$, $n-1\Leftrightarrow 7,68...>2,57...\Leftrightarrow T$. The p-value is $P(|t|>7,68...)=F_{t}(-7,68...)+(1-F_{t}(7,68...))\approx0,0006$, which supports our conjecture that $y_{d}\neq0$.

(4) Independent samples: 2 Sn = 5.275 $\sqrt{X_2} = 5.240$ $\sqrt{X_2} = 400$, $\sqrt{X_1} = \sqrt{2} = 400$. [LM/32] (A) Use 95% CI to cohmode $\sqrt{N_1 - N_2}$: $\sqrt{X_1} - \sqrt{X_2} \pm 2\sqrt{\frac{S_1^2 + S_2^2}{M}} \approx [10,5; 59,4]$ Independent of the regard the experiment and calculate the CI every time, 14 noill condain the time value in 95% of the experiments.

(b) Test H₀: $\mu_1 - \mu_2 = 0$ Ns. H₁: $\mu_1 - \mu_2 \neq 0$: $2 = \frac{\overline{x_1 - x_2 - 0}}{\sqrt{\frac{5x_1^2 + 5x_2^2}{N}}} \approx_{H_0} N(0, 1). \quad \text{Reject if } |z| > 2_{1-4/2} \iff 2_{1,8} > 1_{1,96} \iff T.$ $p - \text{value} = P_{H_0} (|z| > 2_{1,8} \dots) = 2p(-2_{1,8}) = 0_{1,005}.$

Interprehation: Of Ho is due, the probability of observed is \$20,5%.

(c) Test Ho vs H₁:
$$\mu_1 - \mu_2 > 0$$
:
The p-value is now $\mathbb{P}_{H_0}(z > 2,8) = 1 - \overline{\Phi}(2,6) \approx 0,0026$ which is smaller, so we reject Ho.

(d) Test Ho:
$$\mu_1 - \mu_2 = 25$$
 vs. $\mu_1 - \mu_2 \neq 25$. Compare to (b).
$$2 = \frac{\overline{x}_1 - \overline{x}_2 - 25}{\sqrt{\frac{s_1^2 + s_1^2}{m}}} = 0.8 \quad \text{on } |z| = 0.8 \not = 1.57 \implies \text{ne don't reject Ho}.$$

2 3

Me have sample rice 5<30 and assume unequal variances.

The 95% CI is $\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2}(\gamma) \sqrt{\frac{S_1^2 + S_2^{-1}}{n}} \approx [18,0; 79,2] \subseteq \mathbb{R}^t$.

(high five for 3 seconds). but based on common sense and not