Vorlesung 4 – 20.10.2023

- $f:\mathbb{C} \to \mathbb{C}$ komplex differenzierbar in $z \in \mathbb{C}$ wenn $f'(z) := \lim_{h \to 0} \frac{f(z+h) f(z)}{h} \in \mathbb{C}$ existiert
- ullet f heißt holomorph wenn f überall komplex differenzierbar
- Produktregel, Quotientenregel, Kettenregel
- Reihen: Sei $(z_k)_{k\in\mathbb{N}}$ ein Folge. Die Reihe $\sum_{k=0}^\infty z_k$ konvergiert, falls die Partialsummen $s_n=\sum_{k=0}^n z_k$ eine konvergente Folge in $\mathbb C$ bilden. Dann ist $\sum_{k=0}^\infty z_k=\lim_{n\to\infty} s_n$.
- ullet Reihe heißt absolut konvergent, falls $\sum_{k=0}^{\infty}|z_k|$ konvergiert.
- Satz: Absolut konvergente Reihen konvergieren.
- $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert.
- $\sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergiert absolut.
- $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$ konvergiert, aber nicht absolut.
- Geometrische Reihe $\sum_{k=0}^{\infty} z_0^k$ mit $z_0 \in \mathbb{C}$ konvergiert absolut gegen $\frac{1}{1-z_0}$, falls $|z_0| < 1$. Sie divergiert, falls $|z_0| \geq 1$.