

# Exercice XIV-2 : Chimie du bore Enoncé

La chimie du bore est très riche. Cet élément peut s'associer à un grand nombre de métaux pour former des composés de stœchiométrie très variée : TiB2, V3B2, Ni4B3, CeB4, AsB6, BaB15,..., mais aussi avec d'autres éléments comme l'azote pour donner des composés réfractaires résistant à de hautes températures.

Dans le borure de zirconium, les atomes sont organisés suivant une alternance de plans compacts d'atomes de Zirconium où la figure de base est un triangle équilatéral, et de plans d'atomes de Bore où les atomes en contact avec trois autres atomes forment des hexagones réguliers. Dans les différentes structures les atomes sont assimilés à des sphères.

Les rayons des atomes de Zirconium et de Bore, que l'on notera R<sub>Zr</sub> et R<sub>B</sub>, permettent un empilement où chaque atome de Bore se trouve au contact de 3 atomes de Zirconium du plan inférieur et de 3 autres atomes de Zirconium du plan supérieur.

- **I-1***a* Représenter un plan formé par les atomes de Zirconium.
- **I-1***b* Représenter un plan formé par les atomes de Bore.
- **I-1***c* Représenter l'empilement de deux plans successifs formés par les atomes de Zirconium et de Bore.
- **I-1***d* Représenter la maille du borure de zirconium (on prendra comme maille élémentaire un prisme droit à base losange ; on appellera *a* le côté du losange et *c* la hauteur du prisme.
- **I-2***a* En raisonnant sur l'atomicité de la maille, déterminer la formule du borure de zirconium.
- **I-2b** Quelle relation y-a-t-il entre  $R_{Zr}$  et  $R_B$ ? En déduire une relation entre a et c.
- **I-2***c* Calculer la masse volumique de ce solide. On donne la valeur : a = 330 pm.
- **I-2d** Quelle est la taille du gros site d'insertion dans cette structure ?
- **I-2***e* Déterminer la compacité de cette structure.
- I-3 Dans d'autres borures métalliques de formule M<sub>y</sub>B, les atomes métalliques M occupent les nœuds d'un réseau cubique faces centrées (cfc) et les atomes de Bore occupent les sites octaédriques (tous ou une partie selon le cas).





- **I-3***a* Représenter les sites octaédriques d'une structure cfc. Quelle est la valeur minimale de y?
- **I-3***b* Quelle est la valeur minimale de y si le Bore occupe en alternance un centre de maille sur deux.
- **I-3**c Quelle inégalité doivent vérifier les rayons des atomes R<sub>B</sub> et R<sub>M</sub> ?
- **I-3***d* Montrer que la mesure de la masse volumique permet de déterminer la valeur de y. On exprimera la masse volumique en fonction de y, des masses molaires MM, MB, du rayon de l'atome métallique R<sub>M</sub> et de la constante d'Avogadro N.
- **I-4** Dans le borure d'azote de formule BN, les atomes de Bore et d'Azote sont en alternance stricte et constituent une structure de type graphite avec une longueur de liaison B-N égale à a = 145 pm et une distance entre deux plans successifs égale à c/2 = 334 pm.
- **I-4***a* Quelle est l'atomicité du prisme droit à base hexagonale ?
- **I-4***b* Exprimer le volume de ce prisme en fonction de *a* et c.
- **I-4**c Déterminer la masse volumique de cette variété allotropique du borure d'azote.

#### Données:

- Masses molaires en g.mol<sup>-1</sup>: Zr: 91,22; B: 10,81; N: 14,01;
- Constante d'Avogadro :  $N = 6.02.10^{23}$  mol<sup>-1</sup>



# Correction:

I-1a Plan formé par les atomes de Zirconium :



**I-1***b* Plan formé par les atomes de Bore :



I-1c Représentation de l'empilement de deux plans successifs formés par les atomes de Zirconium et de Bore:





**I-1***d* Représentation la maille du borure de zirconium en prenant comme maille élémentaire un prisme droit à base losange :



В



**I-2***a* Il y a 8 x  $\frac{1}{8}$  de Zr et 2 B : d'où la formule brute ZrB<sub>2</sub>.

**I-2***b* Il y a contact entre les atomes de Zr : donc :

$$a = 2R_{Zr}$$
;  $R_B = 2 \cdot GH = 2 \cdot \frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot a = \frac{a}{\sqrt{3}}$ ;  
on en déduit :  $R_B = \frac{R_{Zr}}{\sqrt{3}}$ .

Par ailleurs:

$$\left(\frac{c}{2}\right)^2 + (GH)^2 = OC^2 = \left(R_B + R_{Zr}\right)^2$$

$$avec GH = \frac{a}{\sqrt{3}} \text{ soit :}$$

$$\left(\frac{c}{2}\right)^2 + \left(\frac{a}{\sqrt{3}}\right)^2 = R_{Zr}^2 \cdot \left(1 + \frac{1}{\sqrt{3}}\right)^2 = \left(\frac{a}{2}\right)^2 \cdot \left(1 + \frac{1}{\sqrt{3}}\right)^2$$

$$d'où c = a \cdot \sqrt{\frac{2}{\sqrt{3}}}$$



<u>Q</u> c/2

Page 4 Claude ANI ES © EduKlub S.A.



**Application numérique :** a = 330 pm; c = 355 pm et  $R_{Zr} = 165 \text{ pm}$ ;  $R_B = 95,3 \text{ pm}$ .

### **I-2***c* La masse volumique de ce solide vaut :

$$\mu = \frac{2 \cdot M_B + M_{Zr}}{N_a \cdot a^2 \cdot c \cdot \frac{\sqrt{3}}{2}} = 5606 \text{ kg} \cdot \text{m}^{-3}$$

## **I-2***d* Il y a deus sites interstitiels, notés i<sub>1</sub> et i<sub>2</sub>.

La taille du site i<sub>1</sub> vaut :

$$\frac{c}{2} = R_B + R_{i_1} + x \text{ et } x^2 + \left(\frac{a}{\sqrt{3}}\right)^2 = \left(R_{i_1} + R_{Zr}\right)^2$$

on en déduit  $R_{i_1} = 32 \text{ pm}$ 

La taille du site i<sub>2</sub> vaut :  $R_{Zr} + R_{i_2} = \frac{c}{2}$  d'où  $R_{i_2} = 12$ , 5 pm



### **I-2***e* La compacité de cette structure vaut :

$$C = \frac{2 \cdot \frac{4}{3} \cdot \pi \cdot R_{B}^{3} + \frac{4}{3} \cdot \pi \cdot R_{Zr}^{3}}{a^{2} \cdot c \cdot \frac{\sqrt{3}}{2}} = 0,78.$$

Il s'agit d'un réseau compact.



**I-3***a* Représentation des sites octaédriques d'une structure cfc :



Il y a donc en tout 4 sites octaédriques, 1 au centre du cube et 12 comptant pour 1/4 au milieu des arêtes. La formule brute est : MB.

- **I-3***b* Si le Bore occupe en alternance un centre de maille sur deux, il y a moitié moins d'atomes de bore dans la maille, donc on a comme formule brute BM2.
- $\mathbf{I-3}c$  On a les relations :

$$R_B + R_M \le a/2$$

$$avec \ 2R_M = a \cdot \frac{\sqrt{2}}{2}$$

$$d'où \ R_B \le R_M \cdot (\sqrt{2} - 1)$$

**I-3d** L'expression de la masse volumique permet de déterminer la valeur de y, une maille contenant 4M et  $\frac{4}{y}$ B:

$$\mu = \frac{4 \cdot M_M + \frac{4}{y} \cdot M_B}{N_a \cdot 16 \cdot \sqrt{2} \cdot R_m^3}$$





**I-4a** L'atomicité du prisme droit à base hexagonale est de 2 : 6 atomes comptant pour 1/6 et 1 comptant pour 1 ou 6 comptant pour 1/6 et 3 comptant pour 1/3 :



**I-4***b* Le volume du prisme vaut :

$$V = 3 \cdot \frac{\sqrt{3}}{2} a^2 \cdot c$$

**I-4**c La masse volumique de cette variété allotropique du borure d'azote vaut :

$$\mu = \frac{2 \cdot M_M + 2 \cdot M_B}{N_a \cdot V} = 2260 \text{ kg} \cdot \text{m}^{-3}$$