PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-169569

(43) Date of publication of application: 29.06.1990

(51)Int.CI.

C07D207/09
A61K 31/40
A61K 31/435
A61K 31/445
A61K 31/47
A61K 31/495
A61K 31/55
C07D211/08
C07D211/40
C07D295/10
C07D401/00
C07D405/12
C07D413/06
C07D471/04

(21) Application number: 63-324620

(22)Date of filing:

22.12.1988

(71)Applicant: EISAI CO LTD

(72)Inventor: SUGIMOTO HACHIRO

TSUCHIYA YUTAKA HIGURE KUNIZO KARIBE NORIO IIMURA YOICHI SASAKI ATSUSHI

YAMANISHI YOSHIHARU

OGURA HIROO ARAKI SHIN OZASA TAKASHI KUBOTA ATSUHIKO OZASA MICHIKO YAMATSU KIYOMI

(54) DRUG CONTAINING CYCLIC AMINE DERIVATIVE

(57) Abstract:

NEW MATERIAL: The compound of formula I [J is phenyl, pyridyl, indanyl, indanonyl, alkyl, etc.; B is group of formula II-formula V (R2 is H or methyl; R3 is H, alkyl, acyl, phenyl, etc.; R4 is H, alkyl or phenyl; n is 0-10), etc.; T is N or C; Q is N, C or N-O; K is H, phenyl, arylalkyl, cinnamyl, alkyl, pyridylmethyl, acyl, etc.; q is 1-3] and its salt.

EXAMPLE: 1-Benzyl-4-[2-[(1-indanon)-2-yl]]

ethylpiperidine hydrochloride.

USE: It has strong acetylcholine esterase inhibiting action and choline acetyltransferase activating action and is useful for the remedy and prevention of central nervous diseases. PREPARATION: A compound of formula I wherein B is group of formula V can be produced e.g. by reacting an

Ш

acid halide of formula VI with a cyclic amine derivative of formula VII in an organic solvent in the presence of a desalting agent.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

⑩日本固特許庁(JP)

10 特許出願公開

◎ 公 開 特 許 公 報 (A) 平2-169569

❷発明の名称 環状アミン誘導体を含有する医薬

②特 顕 昭63-324620

匈出 願 昭63(1988)12月22日

团発	朔	者	杉名	k	八	æ	茨城県牛久市柏田町3073-13
伊発	明	者	±	屋		裕	茨城県牛久市栄町 2 -35-16
砂発	玥	者	8 4	Ę.	邦	造	茨城県つくば市春日4-19-13 エーザイ紫山寮
伊発	明	者	计证	33	Ħ	夫	茨城県つくば市春日4-19-13 エーザイ索山寮
包発	明	者	飯 柞	Ŧ	津	_	茨娍県つくば市天久保 2 - 23 - 5 メゾン学園 103
⑦発	明	者	佐	7 7	木	淳	茨城県つくば市春日 4 - 19-13 エーザイ集山寮
⑦発	明	者	ul ē	9	靐	暔	茨城県竜ケ崎市松葉3-2-4
個発	朔	者	小 4	1	博	雄	茨城県土浦市永国1115—6
创出	願	人	z	ザイ	株式会	社	東京都文京区小石川 4 丁目 6 番10号
HO	理	人	弁理士	: a	谷	錖	
最終	項に	続く					

明 田 書

I. 発明の名称

1 -1

環状アミン誘導体を含有する医質

- 2. 特許請求の範囲
- 1 次の一般式

(式中、

」は個選換者しくは無魔換の次に示す器:① フェニル器、②ピリジル基、③ピラジル昌、④ キノリル基、⑤シクロヘキシル基、③キノキサ リル基スは①フリル群、

回フェニル基が盈倹されていてもよい次の群から選択された一位又は二個の番:①インダニル、②インデニル、④インデニル、⑥テトラロニル、
のペンズスペロニル、®インダノリル、⑨虫

(口及状アミド化合物から結婚される一個の基、 (山低板アルキル基、又は (回式 R'-CH=CH- (式中、R'は水果原子又は低 級アルコキシカルボエル基を意味する) で示される基を意味する。

特開平2-169569 (2)

0 || で示される基、史-O-C-NH-(CH)_--で示される基、 R⁹ 0

0 財 式-HH-C-(CH)。-で示される慈、式-CH,-CO-NH-(CH)。-し に は れ

で示される基、式-(CH₂)。-CD-RH-(CH),-で示さ | | R²

UH | | れる甚、式-CH-(CH)。~で示される路(以上の式 | ga

中、 nは 0 又は 1 ~10 の整数を意味する。 R*は 式 - (CH)。- で示されるアルキレン基が置換基を 。

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はノチル基を放映する。)、式=(CH-CH=CH)、-(式中、 bは1~3の整数を歴味する)で示される基、式=CII-([II,)。-(式中、 cは0又は1~9の整数を意味する)で示される菌、式=(CII-CH)。=(式中、 dは0又は1~5の整数を意味する)で示され

の る底、式 -C-CH-CK-CH₂-で示される基、式 Q OH CH₂-CH₂-CH₂-で示される基、式-CH-C-2H-CH₂-CH₂-CH₂-CH₂-CH₃-CH

|| で示される基、文 -Ch=CH-C-Hi-(CH₂) a-で示される基、式 -B+-で示される基、式 -B-で示される基、式 -B-で示される基、式 -B-で示される基、ジアルキルア !
ノアルキルカルボニル番又は低級アルコラシカルボニル番を意味する。

「は宝岩原子又は炭岩原子を意味する。 9は窒余原子、炭出原子又は式 → H→0 で 示される基を意味する。

Kは水素原子、膣換管しくは無限後のフェニル基、フェニル基が退換されてもよいアリールアルキル區、フェニル番が固換されてもよいシンナミル基、低級アルキル基、ピリジルメテル基、シクロアルキルアルキル器、アダマンタンメテル基、フリルメテル器、ンクロアルキル器、低級アルコキシカルボニル最又はアシル番を意

味する。

qは1~3の贷致を息味する。

式中、 …… は単結合若しくは二頭結合を息 株する。}

できるれる退収アミン誘導体及びその薬理学的 に許容で含る塩を有効成分とするコリンプセチ ルトランスフェラーゼ賦活作用に基づく疾患の 浩廃・予防剤。

2 一般式

(土中、

」はフュニル基が置換されていてもよい次の なから選択された一価又は二個の基:①インダ ニル、②インダノニル、③インデニル、①イン デノニル、⑤インダンジオニル、③テトラロニ ル、①ベンズスペロニル、⑥インダノリル、⑤

式 〇-CO-CH- で示される語、 CH,

原子、銭級アルキル為、アシル房、隻級アルキルスルホニル苗、競換されてもよいフェニル茲 又はペンジル茲を意味する)で示される道、式

ル基又はフュエル器を意味する)で示される猛、

0 | で示される医、로-O-C-NU-(CH) -で示される医、 !

ゾ 式-RH-C-(CH),-で示される茲、式-CH3-CU-∜H-(CH),-R? R? R?

特閒平2-169569(3)

で示される茲、式-(CH_{*}),-CG-HH-(CH)_{*}-で示さ R*

DH 1 れる話、式-CH-(CH)。-で示される話(以上の式 日

中、 aは 0 又は | ~10 の整数を意味する。 P'は 式 - (CH)。- で示されるアルキレン基が図換基を | |

で示される基、式 -Cll=CH-C-NH-(CH₂),-で示さ

れる益、式 -8H- で示される益、式 -6-で示される益、式 -6-で示される益、ジアルキルアミ ノアルキルカルポニル茲又は低級アルコキシガルボニル益を意味する。

「は宝森原子文は設業原子を意味する。

はは水素原子、便換若しくは無理検のフェニルが、フェニル基が関換されてもよいアリールアルギル基、フェニル基が関換されてもよいシンナミル基、低級アルキル路、ピリジルメチル ほ、シクロアルギルアルキル器、アグマンタンメチル器、フリルノチル器、シクロアルキルアルメチル器、アグマンのアルキル器、ほ扱アルコキシカルボニル器又はアシル器を窓 味する。

qは1~3の姓数を意味する。

式中、 ******** は単結合打しくは二重結合を稼味する。〕

で表される頃状アミン勝端体及びその薬理学的 に許容できる塩を有効成分とする第中項1配載 の治療・子防料。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、新規選択アミン誘導体を有効成分 とする函数に関する。

(発明に盃る背景及び従来技術)

老年人口が急感に増大する中で、アルツハイマー型老年痴呆などの老年痴呆の治療法を確立することが掲載されている。

しかしながら、現在のところ、老年痴呆を実 物で治療する試みは個々なされているが、これ らの戻患に根本的に有効とされる薬剤は今のと ころ存在しない。

これらの疾患の治療薬の開発は理々の方向から研究されているが、有力な方向としてアルツハイマー型老年が呆は、脳のコリン作動性機能低下を伴うことから、アセチルコリン的部物質、アセチルコリンエステラーゼ限害剤の方向から開発することが健康され、実際にも試みられている。代表的なものとして、抗コリンエステラーゼ取害剤として、フィゾスチグミン、チトラ

ヒドロアミノアクリジンなどがあるが、これらの薬剤は効果が十分でない、好ましくない創作 用があるなどの欠点を有しており、決定的な治療薬はないのが現状である。

更に、最近コリンアセチルトランスフェラーゼ(ChAT) 観話作用もこれらの疾患の治療に有効であることが注目されている。

そこで本発明者らは、この作用を有する化合物について長年にわたって観念研究を重ねてきた。.

その結果、後で述べる一般式 (i) で示される環状アミン誘導体が、所期の目的を達することが可能であることを見出した。

具体的には下記の構造式(1)で表される本発明化合物は、優れたコリンアセチルトランスフェラーゼ(ChAT) 試活作用を育し、更に強力かつ選択性の高い抗アセチルコリンエステラーゼ活性を有するため、脳内のアセチルコリンを増受すること、記憶確率モデルで有効であること、及び使来この分野で汎用されているフィブスチ

特朗平2-169569(4)

グミンと比較し、作用持続時間が長く、安全性 が高いという大きな特徴を有しており、本類明 の価値は極めて高い。

本発明化合物は、コリンアセチルトランスフェラーゼの献信作用に基づいて見出されたもので、従って中枢性コリン設能、即ち神経伝達物質としてのアセチルコリンの生体内の欠乏が原因とされる種々の疾患の治療・予防に有効である。

代表的なものとしては、アルツハイマー型を 年痴染に代表される各種痴呆があるが、そのは かハンチントン舞踏病、ピック病、晩発性運動 異効症などを挙げることができる。

徒って、本発明の目的は、医薬としてとりわけ中枢神経系の採虫の治療・予防に有効な新規 環状アミン誘導体を提供すること、この新規環 状アミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

〔発明の構成及び効果〕

(e)式 R*-CH=CH-(党中、R*は水器原子又は低級アルコキシカルポニル基を意味する)で示される話を意味する。

で示される基、式 - l-(CII) a- (式中、R⁹は水魚

原子、低級アルキル区、アシル店、低級アルキ ルスルホニル島、置換されてもよいフェニル器 文はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する)で示される墓、

で示される基、式-O-C-HB-(CB)。- で示される話、

本発明の目的化合物は、次の一般式 (J) で 表される退伏で、ン構媒体及びその基理学的に 許容できる塩である。

〔兌中、

」は回置換着しくは無置換の次に示す基:①フェニル基、②ピリジル基、③ピラジル基、④キノリル基、⑤シクロヘキシル基、@キノキサリル基又は⑦フリル基、

⑪フェニル基が置換されていてもよい次の野から選択された一個又は二個の基; ②インダニル、③インデニル、③インデニル、⑤インデンニル、⑥インダンジオニル、働テトラロニル、⑦ベンズスペロニル、⑥インダノリル、⑨式

心環状でもど化合物から誘導される一個の番、 砂低級アルキル磊、又は

C || | 丈-NH-C-(CH)。-で示される甚、式-CH₂-CG-NH-(CH)。-| R² R²

で示される基、式-(CH₇)₃-CO-NH-(CN)₃-で示さ っ

特たないか、又は1つ又は1つ以上のメチル基を育しているような形で水都原子又はメチル器を意味する。)、式 = (C8-CH=CH)。- (式中、 bは1~3の強数を意味する)で示される基、式=CH-(CH₂)。-(式中、 cは①又は1~9の整数を意味する)で示される基、式=(CH-CH)。=(式中、 dは①又は1~5の整数を意味する)で示され

V B る基、式 -C-CH=CH-CH₁-で示される基、式

特開平2-169569(5)

Q QH CK。 | -C-CH,-CH-CK,-で示される器、女-CH-C-NH-CH,-

İ

で示される基、式 -CH-CH-C-PH-(CH₂)₂-で示される基、式 -BH- で示される基、式 -B-で示される基、式 -B-で示される基、ジアルキルアミノアルキルカルボニル基文は低級アルコキシカルボニル基を意味する。

『は窒素原子又は炭素原子を怠嗾する。

Qは窒素原子、炭素原子又は式 → H→O で 示される基を意味する。

Kは水素原子、置換着しくは無器換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル画が置換されてもよいシンナミル基、低級アルキル基、ビリジルメテル基、シクロアルキル下ルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルボニル基又はアシル基を意味する。

qは1~3の整数を意味する。

エチルー2ーメチルプロビル基などを意味する。 これらのうち好ましい話としては、メチル基、 エチル基、プロピル基、イソプロピル基などを 挙げることができ、最も好ましいものはメチル 基である。

式中、 ・・・・・・ は単結合 持しくは二重結合を意味する。〕

本発明化合物(【)における上記の定義にな いて、J. K. B*, B* にみられる低級アルキル番と は、炭素数1~6の直鎖もしくは分枝状のアル キル苗、併えばメチル岳、エチル苺、プロピル 甚、イソプロピル品、ブチル苺、イソブテル基: sec ープチル基、tertープチル基、ペンチル基 (アミル呂) 、イソペンチル基、ネオペンチル 益、tertーベンチル基、1-メチルブチル基、 2-メチルブチル基、1.2 -ジメチルプロピル 盆、ヘキミル茲、イソヘキシル基、1ーメチル ペンチル基、2ーメチルペンチル基、3ーメチ ルペンチル基、1,1 ージメテルプチル基、1,2 ージメチルプチル基、2.2 ージメチルブチル基、 1,3 ージメチルプチル益、2,3 ージメテルプチ ル益、3,3 ージメチルブチル益、【一エテルブ チル基、2ーエチルプチル基、L.l.2 ート9メ チルプロピル基、1,2,2 ートリメチルプロピル 甚、1ーエチルー』-メチルプロピル基、1-

シカルポニル苗;アミノ苗;モノ低級アルギル Tミノ基(ジ低級アルキルアミノ基(カルバモ イル基;アセチルアミノ岳、プロピオニルアミ ノ邑、ブテリルアミノ基、イソブチリルザミノ 益、パレリルアもノ基、ピパロイルアミノ磊な と、炭素数1~6の脂肪族飽和モノカルギン酸 から誘導されるアシルアミノ基;シクロヘキシ ルオキシカルポニル茁などのシクロアルキルオ キシカルポニル甚;メチルアミノカルポニル菇、 エチルアミノカルポニル茲などの低級アルデル アミノカルポニル基ミメチルカルポニルオキシ 蘇、エチルカルポニルオキシ基、N一プロピル カルポニルオキン基など前記に定義した低級ア ル中ル茲に対応する低級アルキルカルポニルオ キシ基:トリフルオロメテル基などに代表され るハロゲン化征級アルキル基:水酸基:ホルミ ル茲:エトキシメチル苗、メトキシメデル茲、 メトキシエチル基などの低級アルコキシ低級ア ルキル路などを挙げることができる。上記の理 換絃の説明において、「低級アルキル茲」、

特朗平 2-169569 (6)

「低級アルコキシ基」とは、前記の定額から派 生する基をすべて合むものとする。 関換器は関 ー又は異なる 1 ~ 3 個で関換されていてもよい。 更にフェニル器の場合は、次の如き場合も躍 換されたフェニル器に含まれるものとする。即

♥ 又は式-CII--S- で示される基を意味する。 Bは 炭素原子又は窒素原子を意味する。 **

これらのうち、フェニル基に好ましい屋検裏 としては、低級アルキル基、循根アルコキシ基、 ニトロ基、ハロゲン化低級アルキル基、低根ア ルコキシカルボニル番、ホルミル器、水酸器、低級アルコキシ低級アルキル番、ハロゲン、ペンソイル器、ペンジルスルホニル基などを挙げることができ、最換器は同一又は相異なって?つ以上でもよい。

ピリジル基に好すしい悪としては、低級アル キル基、アミノ基、ハロゲン原子などを挙げる ことができる。

ピラジル基に好ましい話としては、低級アルコキシカルボニル器、カルボキシル器、アシルアミノ基、カルパモイル族、シクロアルキルオキシカルボニル器などを挙げることができる。

また、 Jとしてのビリジル基は、2ービリジル基、3ービリジル基又は4ービリジル基が望ましく、ピラジル基は2ーピラジル基又は3ーキノリル基が望ましく、キノリル基が望ましく、キノキサリル基は2ーキノキサリル基又は3ーキノキサリル基又は3ーキノキサリル基が望ましく、フリル基は2ーフリル基が望ましい。

Jの定義において、(D)グループに記載されて

いる①~②について、その代表例を示せば以下 のとおりである。

上記一選の式において、 tは 0 又は 1 ~ 4 の 整数を意味し、 Sは同一又は相異なる前記した J (4)の定義における置換基のうち 1 つ又は水素 原子を意味するが、好ましくは水素原子(無虚 良) 、 係級アルキル基又は低級アルコキシ島を あげることができる。 更に、フェニル最の誇り あう炭素間でメテレンジオキシ森、エチレンジ

特別平2-169569 (7)

オキッ基などのアルチレンジオキシ基で置換されていてもよい。

これらのうち最も好ましい場合は、無置換若 しくはメトキシ基が 1~3個置換されている場 合である。

なお、上記のインダノリデュルは JOJの定数 におけるフェニル基が直換されていてもよい二 値の基の例である。すなわち JOJの②のインダ ノニルから誘導される代表的な二個の基である。

Jの定能において、環状アミド化合物から誘導される一傷の甚とは、例えばキナゾロン、テトラハイドロイソキノリンーオン、テトラハイドロインキノリンーオン、テトラハイマロイン・カーオンなどを挙げることができるが、構造式中に現状アミドが存在すれば超らるが、のみに限定されない。単環もしくは合った。現合へテロ環が採ましい。この場合、フェニル環合へテロ環が採ましい。この場合、アェニノはは炭素数1~6の低級アルキル基、好ましくは

なお、式(j),(l) において、右側の頃は1員

メチル苺、炭条数1~6の低級アルコキシ雄、 好ましくはメトキシ基あるいはハロゲン原子に よって避免されていてもよい。

好ましい例を挙げれば次の通りである。

線であり、式(k) において右側の場は8長線である。

Jの上記の定義のうち最も好さしいものは、 フェニル場が置換されてもよいインダノンから 誘導される一価の基、現状アミド化合物から弱 譲される一価の基である。

Bの定義において、式 - (CH) n-で示される話

は、R*が水素原子である場合は式-(CB,)。で表され、更にアルキレン鎖のいずれかの炭素原子にしつ又はそれ以上のメチル基が結合していてもよいことを意味する。この場合、舒ましくはnは1~3である。

また、Bの一連の基において、基内にアミド 基を有する場合も好ましい基の一つである。

更に好ましい甚としては、式=(CB-CH=CH)。-(式中、 bは 1 ~ 3 の整数を爆味する) で示される器、式=CH-(CH_{*})。-(式中、 cは 0 又は 1 ~ 9 の整数を意味する) で示される甚、式=(CE-CH)。= (式中、 dは 0 又は 1 ~ 5 の整数を意味する)

独開平2-169569(8)

で示される基文は式 -S-で示される基、式 -0-で示される基文は式 -S-で示される基をあげる ことができる。

をとりうる。具体的には - 11- 、 - 11- 11-

げることができるが、特に好ましい呉は式

-- N- (1=C 、Q=N)で扱されるピペリジンの場合である。

ドの定義における「圏換又は無菌換のフェニル基」、「圏換もしくは無路換のアリールアルキル基」において、関換基は前記のJの定義において(回の○○○において定録されたものと同一のものである。

アリールアルキル甚とは、フェニル辺が上記

本発明において、該理学的に許容できる塩とは、例えば塩酸塩、硫酸塩、臭化水素酸塩、蜂酸塩などの無機酸塩、雌酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩を挙げることができま

また橙牧基の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩のようなアルカリ 土類金属塩、トリメチルアミン塩、トリニチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、B.H. ージベンジルエチレンジアミン塩などの有微アミン塩、アンモニウム塩などを形成する場合もある。

なお、本発明化合物は、壁換基の磁類によっては不斉皮素を有し、光学異性体が存在しうるが、これらは本発明の徳囲に思することはいうまでもない。

具体的な例を一つ述べれば、 Jがインダノン

の置後基で歴換されるか、無置換のペンジル基、 フェネチル基などを意味する。

ピリジルメチル基とは具体的には、2ーピリジルメチル基、3ーピリジルメチル基、4ーピリジルメチル基、4ーピリジルメテル基はどを挙げることができる。

Bについては、フェニル基が収換されてもよいアリールアルキル芸、良良着しくは原置換のフェニル基、フェニル芸が買換されてもよいシンナミル番が最も好ましい。

好ましいアリールアルキル基は、具体的には 例えばペンジル基、フェネチル基などをいい、 これらはフェニル基が炭素数1~6の低級アル コキシ基、炭素数1~6の低級アルキル基、水 改基などで置換されていてもよい。

一一は母話合もしくは二重結合を怠棄する。 二度結合である場合の例をあげれば、上記で述べたフェニル頃が配換されてもよいインダノンから誘切される二価の甚の場合、すなわちインダノリアニル基である場合をあげることができま

骨格を有する場合、不斉炭素を有するので線何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の処囲に含まれる。

これらの定点を総合して特に好ましい化合物 群をあければ次のとおりである。

(式中、小はフェニル基が置換されていてもよい次のはから退収された一冊又は二価の基; ①
 インダニル、②インダノニル、③インデニル、
 ④インデノニル、③イングンジオニル、③テトラロニル、
のペンズスペロニル、⑥インダノリ

z.

B. T. Q. q. K は前記と同伝の風味を有する。) で表される場状でミン又は双理学的に許容できる場。

上記の!の定義中、最も好ましい甚としては、

持開平 2-169569(9)

フェニル基が置換されていてもよいインダノニ ル基、インダンジオニル基、インダノリデユル 基をあげることができる。また、この場合、フ ェニル爲は置換されていないか、同一又は相異 なる水酸器、ハロゲン、低級アルコキシ基で置 換されている場合が最も好ましい。低級アルコ キシ基とは、炭素数 1~6の例えばメトキシ基、 エトキシ苔、イソプロポキシ益、nープロポキ シ基、nープトキシ基などをいい、1~4 置換 をとりうるが、2環境の場合が好ましい。最も 好ましい場合はメトキシ基が2服後となってい る場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(8) をあげることができる。

(式中、) はフェニル基が歴換されていてもよ い次の群から選択された一価又は二価の基:①

(8) 文に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(C) をあけることができる。

🏗 で示される基、即ちピペリジンの場

合である。

(C)式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で安される化合 物(D) をあげることができる。

(土中、13はフェニル基が配換されてもよいイ ンダノニル、インダンジオニル、インダノリデ ニル基から選択された基を意味する。

インダニル、②インダノニル、③インデニル、 ④インデノニル、⑤インダンジオニル、⑥テト ラロニル、①ベンズスベロニル、®インダノリ

B'は式 -(CH),- (式中、 aは 0 又は 1~10の ・ ・ g²

ルキレン痣が置後基を持たないか、又は「つ又 はしつ以上のメチル基を有しているような形で 永鼎原子又はメチル甚を意味する。)で示され る益、式=(CH-CH=CH)。- (玄中、bは1~3の整 数を意味する) で示される益、式=CH-(CH,)e-(式中、 cは (又は)~9の整数を意味する) で示される基又は式=(CH-CH)a=(式中、 dは D 又は 1~5の整数を意味する)で示される基を 意味する。

t.Q.q.K は前記と同様の意味を有する。〕

K!は置後若しくは無置換のフェエル基、置換 されてもよいアリールアルキル基、置換されて もよいシンナミル基を意味する。

8'は前記と同様の意味を有する。)

本発明化合物の製造方法は理々考えられるが、 (式中、J', B', K は前記と同様の意味を有する。) 代数的な方法について述べれば以下の通りであ

(式中、6,82.80 は前記の意味を有する) で示 される甚を意味する場合〕。

$$J - C - Ra 1$$

$$+$$

$$R^{*}$$

$$KN - (CH) = T$$

$$CH_{*}$$

$$(CH_{*}) = T$$

$$(CH_{*}) = T$$

$$(CH_{*}) = T$$

$$(CH_{*}) = T$$

特開平2-169569 (10)

ら選択された選択でミド化合物から誘導される (IV) 一個の基である場合は次のような方法でも製造することができる。

$$Hal^{-}(CH)_{a} = I \qquad (VI)$$

(式中、J, 8*, R*, c, T, Q, q, K は前記の意味を育し、 Halはハロゲン原子を意味する。)

製 造 方 法 B

Jがキナゾロン、テトラハイドロイソキノリ ンーオン、テトラハイドロベンブジアゼピンー オン、ヘキサハイドロベンツアゾシンーオンか

【式中、R*,R* は水素原子、低粒アルキル基、低級アルコキシ基、ハロゲン原子であり、 pは 1~3の整数であり、 Zは式-Cll,- で示される

即ち、一般式 (V) で姿される収換-1.2.3.4 ーテトラハイドロー5Hー | ーベンツアゼピンー2ーオンを、例えばジメチルホルムアミド溶は中で、一般式 (V) で表される化合物と、例えばナトリウムハイドライドの存在下に確合して、目的物質の一つである (VI) を得ることができる。

划 选 方 法 C

かつ fが -(CH).-で示される私である場合は次

の製造方法によっても製造できる。

即ち、2 - ハイドロキシメチルニコチン酸ラクトン(YI)と、一般式(X)で表される化合物とキ、常法により反応せしめて、目的物質の一つである一般式(X)で表される化合物を得ることができる。反応温度は 200 で前後が舒ま

特開平セ-169569(11)

製 造 方 生 [

であり、 Bが式 -(CA)。-で表される基である場 | R²

合 (R*, R* は的記のR*, R* の定義と同様の意味を有する。a, R*は的記と同様の意味を有する。) は次の製造方法によっても製造できる。

即ち、2.3 ーピラジルカルボン酸線水物(XI)を、例えばイソプロピルアルコール中に加える 放する。アルコールを留去したのち、一般式 (以) で表される化合物と、例えばテトラヒド ロフランなどの熔煤中反応させることにより、 目的物質の一つである化合物(XI)を得ること

即ち、一般式 (XI) で去される値換2.3 - ジヒドロオキシピロロ(3.4-5) ペンゼンと、一般式 (VI) で表される化合物とを、例えば水素化ナトリウム存在下に、例えばジノテルホルムアミドなどの溶媒中、加熱下に反応せしめて、目的物質の一つである化合物 (XII) を得ることができる。

製造方法E

であり、 8が主 -COMH-(CF)。- で表されるほで | | 8°

ある場合は次の製造方法でも製造することがで まる。

ができる。

ある場合は、次の方法によっても製造することができる。下記の式中、RI® は前記の J(a)の定数における置換基を想味する。

即ち、例えばテトラヒドロフランなどの溶液中で、グイソプロピルアミン、 n ー ブチルリチウム/ヘキナン溶放を加え、約 - 80 七の温度にて、一般式 (XI) で表される T セトフェノンと、一般式 (XI) で表される 化合物 と縮合し、化合物 (期) を得る。これを、例えば p ー トルエンスルホン酸の存在下、例えば トルエンなどの溶媒中で熱水した後、常法により旋粒 遠元すると、到 資 方 法 G

本発明において、 Jが回で定義されるものの中で、フェニル基が設換されてもよい①インダニル、②インダノニル、③インダンジオニル、

$$1, -CH^{\circ} - H, -1$$
 $0 - K$ (XII)

(式中、小は Jが上記の定義である場合を示し、 B'は上記の Bの定義において最左端の炭素原子 に結合している基を除いた銭基を意味する。)

即ち、一般式(双)で表されるホスホナートに一般式(双)で表されるアルデヒド化合物を反応せしめて(wittig反応)、目的物質の一つである一般式(知)で表される化合物を得、次いでこれを接触還元して目的物質の一つである化合物(双列を得ることができる。

Bittig反応を行う版の触媒としては、例えば ナトリウムメチラート(MeONs) 、ナトリウムエ 持開平2-169569 (12)

動テトラロニル、①ベンズスペロニル又は⑨式

*(CH-CH=CH)。-(式中、 bは 1 ~ 3 の整数を意味する)で示される基、式=CH-(CH,)。-(式中、 c は 0 又は 1 ~ 3 の整数を意味する)で示される基、又は式=(CH-CH)。=(式中、 dは 0 又は 1 ~ 5 の整数を意味する)で示される基である場合は、例えば次の二つの方法によって製造できる。

OHC-B.-(CH*)*0-K (XX)

チラート(EtQNa)、t-BuOK、NaR などを挙げることができる。この際溶線としては、例えばチトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、エーテル、ニトロメタン、ジメチルスルホキシド(DMSO)などを挙げることができる。また、反応温度は窒温から100で理度が好ましい結果を与える。

侵触還元を行う際は、例えばパラジウム炭素、 ラニーニッケル、ロジウム炭素などを触媒とし て用いることが好ましい結果を与える。

届である場合を具体的に示せば、以下のとおり である。

特開平2-169569(13)

る話(式中、R'',R'" は Sの定義のうち、同一 又は相異なる水果原子、低級アルキル基、低級 アルコキシ基、ハロゲンである場合をいう)で あり、 Bが式-(CH₂)。-で示される基(式中、 n は1~6で示される基を意味する)であり、云

わされる場合であり、 Kが式 -Cll。 - Ri・Ri・Ct中、Ri*, B'*, B'* は、R'', B'* と同様の定義と

する) で示される基である場合を具体的に示せば次の通りである。 0 Q

$$1. + CH^{2} - B, -\frac{1}{4}$$
 $0 - K$ (XXB)

即ち、一般式 (双型)で表される置換差しくは 無配換のインダノンなどの化合物と一般式 (双) で表されるアルデヒド体と、常法によりアルド ール縮合を行い、目的物質の一つである一般式 (図) で表される化合物を得る。

本反応は、例えばテトラヒドロフランなどの 容録中でジイソプロピルアミンとホーブテルへ キサン溶液によりリチウムジイソプロピルアミ

$$0 \text{ HC} - \theta$$
, -1 $\frac{(CH^{2})}{d} - K$ (12)

ドを生成させ、好ましくは約-80℃の温度でこれに上記の一般式 (以間)で表される化合物を加える。次いで一般式 (以) で装されるアルデヒ

スる。 はいて一般な (A) で表される) ルナビ ド体を加えて常法により反応せしめ、 窓温虫で 昇温させることによって脱水させ、エノン体で ある一般式 (知) で表される化合物を得る。

本反応の別方法として、両者 ((双面)と(双)) をテトラヒドロフランほどの溶媒に溶剤し、約 りでにて、例えばナトリウムメチラートなどの 塩器を加えて、室温にて反応させることによる 方法によっても製造することができる。

上記の製造方法によって得られたエノン体 (1位)を前記に示したと同様の方法により最元 することにより、一般式(2011)で扱される化合 物を得ることができる。

あり、 8が吐-(CH1) - で示される爪であり、虫

時間平2-169569 (14)

る場合を具体的に示せば以下のとおりである。

製造方法)に記載したと同様に、一具体例を 示せば次の通りである。

製 造 方 法 H

Jがフェニル基の部分が置換されてもよいイングノリル基である場合は、以下の方法によって製造することができる。

$$8 - 1 \qquad (XX N)$$

即ち、化合物 (以間) を自じ一室温にて、例えば水器化ホウ素ナトリウムなどで遠元することにより、目的物質の一つである化合物 (以例) を得ることができる。この場合の応媒は、例えばメタノールなどが好ましい。

製造方法(

- 640 -

持閒平 2-169569 (15)

Jがフェニル基の部分が置換されていてもよいインデニル基を示す場合は、以下の方法によっても到過することができる。

即ち、化合物 (双N)を常法により塩酸などの存在下微水させて、目的物質の一つである化合物 (双V)を得ることができる。

製 造 方 法 」

Jがフェニル基の部分が置換されていてもよいインデノニル基を示す場合は、以下の方法によっても製造することができる。

ランなどの容謀中、 1.8-ジェデビンクロ (5.4.0] ウンデクーイーエン (DBU) とともに 加热遠流することによりβー脱離を行い、イン アノン化合物 (以間を得る。なお、上記のブロム体は、他のハロゲンでも反応は可能である。

なお、知識方法の一」において、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

. 即ち、一般式 (21)で表されるインダノン化合物を、例えば四塩化炭素などの溶媒中、 リープロムコハク酸イミド (NBS) と過酸化ペンプイルとともに加熱迅流してプロム化し、次にこのプロムは (双7)を、例えばチトラヒドロフ

一方、アルデヒド休は例えば以下の方法によ り製造することができる。

又は

即ち上記の如く、式(i)又は式(ii)で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィテッヒ反応などを繰り返したり、組み合わせたりすることにより増炭反応を行い、目的とする出発物質を得ることができる。

ウィテッヒ試薬としては、例えば1炭素増長のときはメトキシメチレントリフェニルホスホランを用い、2炭素増長のときはホルミルメチレントリフェニルホスホランを用いる。

メトキシメチレントリフェニルホスホランは、 メトキシメチレントリフェニルホスホニウムク ロライドとローブチルリチウムとから、例えば エーテル又はテトラヒドロフラン中で生成させ る。この中にケトン体又はアルデヒド体を加え てメトキシビニル体とした後、酸処理によって アルデヒドを合成することができる。

特定の場合の具体例を以下に示す。

素などが好ましい。

具 体 例 2

以上のようにして得られる一般式(I)の化合物及びその酸付加塩は各種老人性痴呆症、特にアルツハイマー型老年痴呆の治療に有用である。

一般式 (I) で示される化合物及びその酸付加塩の有用性を示すために、薬理試験結果を以下に説明する。

実験例1

In vitroアセチルコリンエステラーゼ阻害作用

一方、ホルミルメチレントリフェニルホスホ ランを用いる場合は、原料となるケトン体又は アルデヒド体のエーテル、テトラヒドロフラン 又はベンゼン溶液中にウィテッヒ試薬を加え、 室温から加熱量流することによって合成するこ とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触還元して飽和アルデヒド体とすることができる。この際の触媒としては、 パラジウム炭素、ラネーニッケル、ロジウム炭

アセチルコリンエステラーゼ源として、マウス脳ホモジネートを用いて、Ellmanらの方法りに増拠してエステラーゼ活性を測定した。マウス脳ホモジネートに、基質としてアセチルチオコリン、被検体及びDTNBを添加し、インキュペーション後、産生したチオコリンがDTNBと反応し、生じる黄色産物を412nmにおける吸光度変化として測定し、アセチルコリンエス・テラーゼ活性を求めた。

検体のアセチルコリンエステラーゼ阻害活性は50%阻害濃度(ICso)で表した。

結果を表しに示す。

1) Ellman, G. L., Courtney, K. D., Andres, V. and Featherstone, R. M. (1961) Biochem. Pharmacol., $7.88 \sim 95$

狩開平2-169569(17)

1 (統 會)

器

化合物	ACCE要考透析	化白物	AChe阻等原作
1	0. 23	32	0.8
1	0, 0953	35	0. 00082
5	0.10	36	0.0015
6	0, 017	39	0. 15
8	0, 013	41	Q. D25
9 ·	0, 051	· 43	0 030
10	0.009	55	0. 36
1)	0, 068	\$B	0, 019
12	0, 040	62	0. 80
13	0, 026	64	1.0
14	0, 038	56	e, 017
15	0.094	72	0, 0075
17	0.052	75	0.0016
18	0.68	17	Q 10
19	0, 064	80	0.29
20	0.54	82	0, 020
21	50	99	0.018
23	0.072	100	0,035
24	1.1	105	0, 085
28	24)11	0.31
27	0, 43	130	0, 19
30	0, 001	134	2.8
11	D, 094	186	0.004

化合物	ACBEIT 医香油	化合物	ACDEM在运行 ICso(BN)
188	0,081	215	0. 0042
189	0.012	216	0.017
190	0.02	217	0.14
191	0. 085	221	0.033
192	0. 013	222	C. 011
193	0.2	223	0.0054
194	c. 069	224	0.003
195	0. 6071	225	0.48
188	0.0013	226	0,0049
197	0, 38	227	0,01
198	0.0054	228	0.002
199	0, 023	229	0.04
203	0. 909	230	0.18
204	0. 035	231 .	0.004
205	0.014	232	0, 3
206	D, 41	233	0.046
207	0.049	234	0.0018
208	8. 062	235	0,22
209	0. 43	238	0.072
210	0.08	239	81.0

实验例2

Ex vive アセチルコリンエステラーゼ阻害作用 ラットに被検体を軽口投写し、その1時間後 に大脳半球を摂取し、ホモジナイズ後、アセチ ルコリンエステラーゼ活性を測定した。なお、 生理食塩水投与器を対照とした。

結果を表2に示す。

表 2

化合物和	用 量 (mg/kg)	ACBE阻害作用 (X)
Saline		0
	1	5 *
	3	17 **
4	10	35 **
	30	47 **
	10	5
1,5	30	14 **
	100	18 **

実效例3

212

213

214

スコポラミンの受動回費学習類部に対する作用・・

240

241

0. 5

9, 65

0.0084

n, coa9

0, 22

0.62

Histar A超性ラットを用い、 浅園としては stap through型の明暗箱を使用した。 試行の ? 時期前に検体を経口投与し、30分前にスコポラミン0.5 ag/kg(ip) を処置した。 訓禮試行では明金に動物を入れ、時窓に入った直後にギロチンドアを開め電気ショックを球のグリットから与えた。 6 時間後に保持試行として再び動物を明室に入れ、時室に入るまでの時間を確定し評価した。

効果は生食投与器とスコポラミン投与器の反応時間の整を 100%とし検体により何%店抗したか(Reverse%)で要した。

21 2, 80k01anecky & Jarvik: Int. J. Heuropharmacol
6. 217~222(1967)

結果を要3に示す。

特別平2-169569 (16)

Hefti! うの方法に単じてラット触児の脳神経細胞の培養を行った。ウィスター系健性ラット17日齢の胎児大脳半球をトリプシンの選した。細胞飲を2×10⁴個/0.5㎡に測整し、問時に被験化合物を添加してマイクロプレートに移し、37℃、5%CO₂-95%O₂で7日間培養した。マイクロプレート中の培養神経細胞のChAT活性はFoence! の方法に違じて測定した。神経細胞培養被に"C-Acetyl Coenzyme A を加えて1時間反応させ、生成した"C-Acetyl-Cholineをデトラフェニルボロン存在下トルエンにで抽出し、液体シンテレーションカウンターにて測定し、ChAT信性を求めた。検体のChAT酸活作用はコントロール%で表した。結果を養4に示す。

 F. Hefts, J. Baytskka, F. Eekenestein, H. Gnahn, B. Heuman and M. Schwab, Neuroscience, <u>14</u>, 55-68(1985)

e.

化合物版	用 型 (mg/kg)	ReverseX
	9. 125	\$5
1	0. 25	36 ~
	0. 25	39
13	0, 5	27
16	1,0	\$1
15	2. 0	30
	0, 5	37
19	1.0	39
70	0, 5	22
79	1, 0	38

実験例4

コリンナセチルトランスフェラーゼ(ChAT) 駅店 活性の製定

ラット胎児の脳神経細胞の培養並びに神経細胞中コリンアセチルトランスフェラーゼ(ChAT) 活体の測定

 F. Fonaum: J. Meurochem., <u>24</u>, 407-409 (1975) **A**

12. de 160	コリンアセチルトランス フェラーゼ (CMAT) 旅泛信注	
,	Corc.	\$ of Cont.
cu A g	10-7 M	95
CO CH CH.	10-* M	114*
cn,o	_10-* W	118**
6	10-1 31	107*
CH:0 PIP-CH:	10~4 X	. 109*
CH ₂ 0	€0-> N	101
0	10. , M	[9 3
CHCHCHC	10-e M	87**
	10-1 %	58**
0	J0−1 B	174 .
('`^_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 ⁻⁴ H	719**
	10-> 4	104
	10.7 #	112**
CH, CH, O H-CH, O	10-4 #	121-
CH, CH, O	10-1 W	138**
G 9 F	10-1 N	93
CII,0, -CII, -C	19*4 K	95
ca,a	10-4 N	73**

特局平 2-169569 (49)

2 4

化台物	コリンアセチ! フェラーゼ(トランス CDAT) 以岳忠性
	Conc.	% of Coat,
0ОСН,	10-1 8	108
CH40 TO CH. CH. CH. CH.	10-• n	105
CH.0	10~° B	110**
G 0 0	10-т и	101
CH. O - CH. O - CH.	10-* N	103"
CH,0	10-1 H	85**
SH O	[0-, 1	168**
CH, 0, -(CR,), -(CR,)	10- • 18	103
CH 10	10-6 11	84*
9	10-1 B	EDL
(CH ₄ ,0),-(CH ₄),-(CH ₄)	10-4 M	100
CH.0	10 R	B4**
0.0 1 0	k *-01	105**
CH. CH	10- ° H	99
Cite	[6. 4 A	70**
Cus	to n	.,,

上記の変理実験的から致力なアセチルコリン エスナラーゼ風容作用及びコリンアセチルトラ ンスフェラーゼ気活作用を有していることが明 らかとされた。

従って、本発明の目的は、コリンアセテルト ランスフェラーゼ放電作用に基づいて低々の角

及症、脳血管防害後退症に有効な化合物を有効 成分とする新規な医薬を提供するにある。

本発明化合物のコリンアセチルトタンスフェ ラーゼ政活作用がこれらの展単に有効なのは、 上記の作用により脳内のアセチルコリンが増盟 されることに基づくものと考えられる。

夏に、本発明化合物は強力かつ選択性の高い

抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

即ち、ナルツハイマー型老年貿易のほか、例えばハンチントン最額病、ピック病、協強性具 常症などにも有用である。

本発明化合物をこれらの医義として使用する場合は、経口投与君しくは非経口投与により投与されるが、通常は助服内、皮下、筋肉内など注射が、坐及者しくは舌下鏡など非経口投与により投与される。投与母は、症状の程度: 电到の年令、性別、体質、感受性差;投与方法、现与の時期、間隔、医蒸裂剤の使覚、飼育、投资、医蒸裂剂の使覚、饲料、稳质;有助成分の砌裂などによって異なり、特に限定されないが、通常成人 | 日あたり約0.1~300mg、行ましくは約1~100mg であり、これを通常 | 日1~4回にわけて投与する。

本発明化合物を以列化するためには、設剤の 技術分野における通常の方法で往射剤、坐耳、 舌下鏡、錠剤、カブセル剤はどの耐質とする。 注射剤を調製する場合には、主義に必要によ

りpB超数剂、数份系、整商化剂、容容辐动剂、

特開平2-169569 (20)

安定化解、存低化解、保存射などを過加し、常 法により砂臓、皮下、筋肉内性射刺とする。 そ の際必要により常法により波結乾燥物とするこ とも可能である。

膨肉剤としての例を挙げれば、例えばメチルセルロース、ポリソルペート80、ヒドロキシェチルセルロース、アラビアゴム、トラガント京、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルピタンモノタウレートはどを挙げることができる。

溶解相助剤としては、例えばポリオキシェテレン硬化ヒマン益、ポリソルペート80、ユコチン酸アミド、ポリオキシェチレンソルピタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エテルエステルなどを挙げることができる。
さた安定化剤としては、例えば一頭の酸サトリウム、エーテル等が、保存剤としては、例えばパラオキン安息等酸メチル、パリオキン安息等酸エチル、ソルピン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

溶出版を滅圧過縮した後、競技を強化メテレンに溶解し、10%塩酸一磷酸エチル溶液を加え、さらに減圧激縮して結晶を得た。これをメタノールー・IPE から再結晶化し、次の物性を有する 植簡化合物0.33g(収率60%)を得た。

・ 敗点 (七) ; 224 ~225

·元素分析値; C; , H; , NO· HCl として

C H N

理給值(%) 74.68 7.63 3.79 実調館(%) 74.66 7.65 3.71

实 協 例 2

1-ベンジル-4-[2-[(1-インダノン) -2-イリデニル)]エチルピペリジン・塩酸 塩

60%水泉化ナトリウム0.32gをヘキサンにて 洗浄後、THF 19mlを加えた。この中へりでにて ジェチル!—インダノンー2ーイルホスホナー 以下に実施例に従って本発明をさらに具体的に説明するが、本発明の技術的随田がこれらの 実施例の張田に限定されるものでないことはい うまでもない。

なお、下記の異語例において、HUR の値はす ペてフリー体での劇定包を示す。

实 箱 例 1

1-ペンジルー4- [2-((1-インダノン) -2-イル]] エチルピペリジン・塩酸塩

1ーペンジルー4ー(2-((1ーインダノン)-2-イリデエル)]エチルピペリジン 0.37gをメタノール10m1に溶解し、5%ロジウムー炭器 0.1gを加えた。窒温常氏にて24時間水素添加した後、触線を控制し、ជ液を破圧溶 時した。この残液をシリカゲルカラム(進化メチレン:メタノール= 200:1)にて精製し、

ト2.12gのTBF 30ml溶液を設下した。 宮温にて 30分撹拌した後、再びり℃に冷却し、1ーペン ジルー 4 - ピペリジンアセトアルデヒド3.43g のOMF 10ml 溶液を加えた。 宝温で 2 時間、50で で2時間さらに2時間加熱遠流した後、0℃に てメタノールと20%硫酸を加えた。10分後触和 水酸化ナトリウム水溶液にて遮蒸催とし、酢酸 エチルにて抽出した。有機圏を飽和食塩水にて 洗浄した後、硫酸マグネシウムで乾燥し、波圧 **叡瑜して得られた残避をシリカゲルカラム(塩** 化メチレン:メタノール=500 : 1) にて解製 した。協出版を設圧過路した後、段底を塩化メ チレンに容然し、10%医験-酢酸エテル袋校を 加え、城圧辺縮して4項組化合物0.78g(収率27 %) を得た。なお、ジエチル!-インダノン-2-イルダスホナートを1.378回収した。

- ·分子式:CzaR+aRO·HCI
- · 'H MMR (CDC1₃) Ø : 1, 10 ~ 2, 13 (7K, m) < 2, 28 (2H, t) < 2, 88 (2H, bd) < 3, 48 (2H, s) < 6, 72 ~ 1, 07 (2H, o) < 7, 30 (5H, s) < 7, 10 ~ 8, 00

特開手2-169569 (21)

(5H, m)

実 1 例 3

<u>| ーペンジルー4 - 【(5.6 -ジメトキシー1</u> <u>-インダノン) - 2 - イリデニル】メチルピベ</u> リジン・塩酸塩

(a) <u>トーペンジルー4ーピペリジンカルボアル</u> デヒドの合成

メトキシメチレントリフェニルホスホニウムクロライド26.0gを無水エーテル 200mlに懸滴させ、1.6M nープチルリテウムへキサン溶液を塗湯にて滝下した。室温にて30分間遅伴した彼、0でに冷却し、1ーペンジルー4ーピペリドン 14.35gの無水エーテル30ml溶液を加えた。室温にて3時間遠搾した後不存物を認別し、超液を減圧適縮した。これをエーテルに溶解し、

この反応はアルゴン雰囲気下行った。

紙水THP 10ml中にジイソプロピルアミン2.05 mlを加え、さらに O むにて1,6% nープチルリチ ウムヘキサン路被9.12mlを加えた。 0 セにて10 分撹拌した後、一78でまで冷却し、5.6 ージメ トキシー 1 ーインダノン2.55 g の無水THF 30ml 溶欲とヘキサメチルホスホルアミ Y2.31mlを加 えた。-18℃にて15分投掉した後、旬で降た1 ーペンジルー 4 - ピペリジンカルポアルデヒド 2.70 g の無水TBF 30mi 密接を加えた。 整温まで 徐々に昇温し、さらに宝温にて2時間批拌した 後、1%塩化アンモニウム水溶液を加え、有機 間を分離した。水圀を酢酸エチルにて抽出し、 さらに合わせた有識脳を略和食塩水にて洗浄し た。位政マグネシウムで乾燥後、減圧激縮し、 得られた残渣をシリカゲルカラム(塩化メテレ ン:メタノール=500 : 1~100 : 1)にて荷 型した。俗出液を流圧濃縮した後、残液を塩化 メチレンに恣辩し、10%塩酸-酢酸エチル溶液 を加え、さらに減圧進超して結晶を得た。これ |H垣酸にて抽出した。さらに水酸化ナトリウム水溶液にてpH 12 とした後、遠化メチレンにて抽出した。最酸マグネシウムにて乾燥後、頬圧波治し、得られた残盗をシリカゲルカラムにで類裂し、抽状物質5.50g (収率33%) を得た。

これをメタノール40mlに溶解し、18塩酸40mlを加えた。3時間が熱量流した後、減圧濃縮し、 銭渣を水に溶解後水酸化ナトリウム水溶液にて pH 12 とし、塩化メチレンにで抽出した。飽和 食塩水にて洗浄後、酸酸マグネシウムにて乾燥 し、燥圧温縮して得られた残渣をシリカゲルタ ラムにて精製し、環盤化合物2.77g(収率54%) を油状物質とした得た。

·分子式;C,,E,,NO

- 'H - NNP (COC) $_{4}$) δ : 1. 40 \sim 2. 40 (7H, m) $_{4}$ 2. 78 (2H, d1) $_{4}$ 3. 45 (2H, s) $_{5}$ 7. 20 (5H, s) $_{6}$ 9. 51 (1H, d)

(b) 1-ベンジルー4ー ((5.6-ジストキシー 1-インダノン) -2-イリデニル]メチル ビベリジン・塩酸塩の合成

を塩化メチレンー(PB から再結晶化し、次の物性を有する福超化合物3.40g(収率62%)を得た。

・融点 (で) :237 ~238 (分解)

・元素分析留;Caaliaa NOa・HClとして

c u a

· 理論位 (%) 69.64 6.82 3.38

突測值 (%) 69:51 6.78 3.30

災 施 例 4

| ーペンジルー 4 - 【 (5.6 - ジメトキシー 1 | -インダノン) - 2 - イル】メチルピペリジン | 塩酸塩

1-ベンジルー4-((5,6-ジチトキシー 1-インダノン)-2-イリデエル]メチルピペリジン0,40gをTBF [6m]に溶解し、10%パラジウム-炭素0,B4gを加えた。窒息常圧にて6助肌水器添加した後、触媒を譲到し、溶液を検

持期平2-169569 (22)

圧波縮した。この製造をシリカゲルカラム(塩化メチレン:メタノール=50:1)にで精製し、協出放を郊圧満端した後、残強を均化メチレンに溶解し、10%塩酸一耐酸エチル溶液を加え、さらに減圧連縮して結晶を得た。これをエタノールーIPE から再結晶化し、次の物性を有する 経路化合物0.36g(収率82%)を得た。

・缺点 (で) ; 211 ~212 (分解)

· 充毒分析館;Ca, Haa NOa・NCIとして

C fi

理論館 (%) 69.30 7.27 3.37 実測館 (%) 69.33 7.15 3.22

寒 植 例 5

2 - (4 - (1 - ペングルピベリグン) エチル) -2.3 - グヒドロー | - オキシピロロ (3.4 +b) アルガン、- 物動物

2-ヒドロキシメチルニコチン酸ラクトン12.6

哈却下、提择しながら水果化ナトリウム (80%) を0.21 g 加える。その後、2.1 ージヒドロー5,6 ージメトキシオキシピロロ (3,4 ー b) ペンゼン1 g を加え、80 でで 4 時間提牌する。終了後、H₂0 を加え、クロロホルム抽出し、クロロホルム層を水洗、乾燥 (MgSO₄)、溶媒を留去してシリカゲル糟離すると目的物の抽状物を得る。これを無法により塩酸塩にすることによりクリーム色の結晶を約0.28 得た。

·分子式:CreHreNaOs·2HCL

· 'H-HRR (CDCI) 8;

1. 12-3. 4(94. a), 2. 72 -3. 00(24. a), 3. 48(24. s), 3. 62(24. t), 3. 95(64. s),

4.26(28, s), 6.90(18, s), 7,28(6H, s)

寒 崎 何 7

ーペングルピペリジン

4 - [N- (o-Tミノベンジル) エチル] -1

CH, PHCH, CH,

AH. AHCH CH. WH-CH.

a、4-(2-アミノエチル) ペンジルピペラ ジン40gをシールドチューブ中で200 ℃、7時 間投弾する。その後、シリカゲルカラムで钢製 し、常法により塩酸塩にすることにより目的物 の二度酸塩6.31gを得た。

・敵点(で):143.5~145

・元素分析値:CaiBasNaO・2HCIとして

C 8 N

理論值(%) 61.77 6.88 10.29

実徴値 (%) 61.49 6.68 9.98

実施例8

2-(f'-(|'-ペンジルピペリジン) エチル) -2.3 -ジヒドロー5,6 -ジェトキシオキシピ ロロ (3,4 - b) ペンピン・塩酸塩

2.3 - ジヒドロー5.6 - ジメトキシオキシピロロ (3.4 - b) ベンゼン 0.5 g を触媒量のヨワ化カリウムとともにDNF に溶解する。これを

これをメタノール100ml に溶解し、10%パラジウムー炭素(含水)3gを用い4kg/cm² 圧力で水素添加を行い、模型化合物25.5gを得る。

·分子式; Cz, Hz, Ha

· 'H - NWR (COCL₃) & ; 1, 0 ~2, 1 (9H, m) , 2, 64 (2H, t) , 2, 90 (2H, m) , 3, 47 (2H, s) , 6, 65 (2H, m) , 7, 02 (2H, m) , 7, 30 (5H, s)

寒 施 例 8

 $\frac{3-(2-(1-\langle 2\rangle \nu-4-{\it E}\langle 1\rangle \nu)}{x+\nu-2-(1H, 3H)-++\gamma +\gamma +\gamma +\gamma}$

4- (N- (o-アミノベンジル) エチル)
-1-ベンジルピペリジン25.6g、1.1'-カルポニルジイミダゾール15g、メタノール100mlを12時間加熱量流を行う。反応後、水をあけ、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製 (5%MeOH-CH2Cl2) し、酢酸エチルより、2回再結晶を行い模題化合物3.0 gを得る。

·分子式; C22H27N3O

· 'H - NMR (CDC1₂) δ ; 1.0 ~ 2.1(9H, m) , 2.7 ~ 3.0(2H, m) , 3.2 ~ 3.6(4H, m) , 4.4 (2H, s) , 6.5 ~ 7.4(8H, m) , 7.75(1H, s)

せる。減圧下溶媒を留去し、シリカゲルクロマトグラフィーで精製後、常法で塩酸塩とする。 淡黄色非晶質0.17gを得る(収率13.5%)。

·分子式;CaaHaiNaO·2HCl

· 'H — NMR (CDCl₃) δ ; 1. 25 ~ 2. 02 (9H, m) , 2. 52 (3H, s) , 2. 79 ~ 2. 95 (2H, bd) , 3. 10 (2H, s) , 3. 48 (2H, s) , 3. 54 (2H, s) , 3. 91 (2H, bt) , 7. 14 ~ 7. 45 (9H, m)

実 施 例 10

1 - [4' - (1' - ベンジルピペリジン) エチル]
-1.2.3.4 - テトラハイドロー5H - 1 - ベンツ
アゼピン-2 - オン・塩酸塩

ナトリウムハイドライド0.27gをジメチルホルムアミド (DMF)0.5ml に懸濁させ、氷冷下撹拌する。これに1.2.3.4 ーテトラハイドロー5H ー1ーペンツアゼピンー2ーオン0.60gをDMF

実 施 例 9

1- [4'- (1'-ベンジルピペリジン) ェチル -1,2,3,4 -テトラハイドロ-4-メチル-5 H- [1,4] -ベンゾジアゼピン-2-オン・二 塩酸塩

ナトリウムハイドライド 0.35 g をジメチルホルムアミド (DMF) 0.5ml に懸濁させ、氷冷下撹拌、これに1.2.3.4 ーテトラハイドロー4ーメチルー5H-1.4 ーベンツジアゼピンー2ーオン 0.52 g をOMF 3mlに溶かして滴下し、窒温で30分間撹拌する。ここへ Nーベンジルー4ー (2ークロロエチル) ピペリジン塩酸塩0.81 g をDMF 3mlに溶かして滴下し、60~70℃で7時間撹拌する。氷水にあけ、塩化メチレンで抽出する。飽和食塩水で洗い、硫酸マグネシウムで乾燥さ

4回に溶かして滴下する。60℃で15分間加熱後、 氷冷し、Nーペンジルー4ー(2ークロロエチ ル)ピペリジン塩酸塩1.02gを加え、その後、 60℃で3時間30分撹拌する。放冷後、氷水にあ け、塩化メチレンで抽出する。水洗後、硫酸マ グネシウムで乾燥させ、減圧下溶媒を留去する。 シリカゲルクロマト精製後、常法で塩酸塩とし、 標題化合物1.40gを得る(収率94.8%)。

·分子式;C2.H2oN2O·HC1

• 'H — NMR (CDC1₃) δ ; 1. 20 ~ 1. 92 (11H, m) , 2. 20 ~ 2. 24 (4H, bs) , 2. 60 ~ 2. 88 (4H, m) , 3. 44 (2H, s) , 7. 12 ~ 7. 24 (9H, m)

実 施 例 11

N - (4 - (1'-ベンジルピペリジル) エチル) -5.6.11.12 -テトラヒドロジベンゾ (b,f) ア ゾミン-6-オン・塩酸塩

5.6.11.12ーテトラヒドロベング (b.f.) アゾミンー 6 ーオン2.24gと60%水素化ナトリウムをジメチルフォルムアミド20mlに入れ、60℃で1時間加熱撹拌後、1ーベンジルー4ークロロエチルピペリジン 0.7gを加え、さらに3.5。時間反応する。

反応液を水20mlにあけ、酢酸エチルで抽出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、減圧留去する。

残渣をシリカゲルカラムクロマトグラフィーにより (5% MeOH in CH_2Cl_2) 精製分離し、標題化合物0.6 gを得る。

·分子式;C29H32N2O·HC1

· 'H - NMR (CDC!₃) δ ; 1.1 ~ 2.2 (9H. m) , 3.7 ~ 4.1 (4H. m) , 4.15 ~ 4.5 (2H. m) , 4.46 (2H. s) , 6.8 ~ 7.4 (13H. m)

実 施 例 12

10- [4'- (1'-ベンジルピペリジン) ェチル]
-10.11 -ジハイドロ-5-メチル-5H-ジベ
ンゾ [b,e] [1.4] ジアゼピン-11-オン・塩

·分子式;CaaHaiNaO·HCI

· 'H - NMR (COC1,) & ; 1. 20 ~ 1. 91 (11H, m) ,

2. 60 ~ 3. 00 (2H, bs) , 3. 22 (3H, s) , 3. 41

(2H, s) , 6. 87 ~ 7. 08 (3H, m) , 7. 08 (9H, m) ,

7. 64 (1H, dd)

<u> 寒 施 例 1 3</u>

3- [[4'- (1'-ベンジルピベリジン) プロ ピオイル] アミノ] - 2-ピラジンカルポン酸 イソプロピルエステル・塩酸塩

2.3 ーピラジンカルボン酸無水物18gをイソプロピルアルコール 200mlに加え1時間還流する。その後アルコールを留去し、得られる固体をTHF に溶解して4ー(2ーアミノエチル)ペンジルピペリジン30.6g、1ーハイドロキシペンゾトリアゾル21gを加える。これを冷却下、撹拌し、DCC 29.7gを加え、室温で1晩反応させる。濾過後、THF を留去し、塩化メチレンを

酸塩

ナトリウムハイドライド0.25 gをジメチルホルムアミド (DMF) に懸濁させて氷冷下撹拌する。ここへ、10.11 ージハイドロー5ーメチルー5Hージベング [b,e] [1.4]ージアゼピンー11ーオン0.58 gをOMF 5mlに溶かして滴下する。40~50 Cで20分間撹拌し、次いで氷冷して、4ー(アミノエチル)ー1ーベンジルピペリジン0.71 gを加え、45~55 Cで6時間撹拌する。氷水にあけて塩化メチレンで抽出する。飽和食塩水で有機層を洗い、硫酸マグネシウムで乾燥させた後、減圧下溶媒を留去する。残渣をシリカゲルカラムで精製し、常法により塩酸塩として標題化合物0.78 gを淡黄色非晶質として得る(収率65.4%)

加える。これを飽和炭酸カリウム水溶液、食塩水で洗浄し、乾燥後、溶媒留去する。さらにシリカゲルカラムで精製し、得られた結晶をエーテルーへキサンで再結晶すると目的物の白い結晶8.81gを得た。これを常法により塩酸塩とした。

・元素分析値;C₂₃H₃₀N₄O₃・HCl・¹/₂H₂Oとして

C H N

理論值(%) 60.58 7.07 12.29

実測値(%) 60.54 7.00 12.29

実 施 例 1 4

N - [4' - (1' - (p-ハイドロキシベンジル) ピペリジン)エチル] - 2 - キノキサリンカル ポン酸アミド・塩酸塩

2 ーキノキサリンカルポン酸クロライド2g を1 ー(pーメトキシペンジル) ー 4 ーピペリジ ンエチルアミン2.52gをトリエチルアミン2g 存在下、室温でTHF 中で反応させた。これを常法により後処理してカラム精製することにより $N-(4'-(1'-(p-x)++ v \sim v))$ ピペリジン) ェチル]-2-+/+ サリンカルボン酸 アミド 2.5g を得た。

これを1g塩化メチレンに溶解しBBr。により 脱メチル化反応を行い、カラム精製することに より生成物0.3gを得た。これを塩酸塩とする ことによりクリーム色の結晶を0.2g得た。

- ·分子式;C23H24N4O2·HC1
- · 'H NMR (CDC1₃) 8 : 1.08 ~ 1.92 (9H, m) . 2.84 ~ 3.18 (2H, m) . 3.24 ~ 3.64 (2H, m) . 3.52 (2H, s) . 6.60 (2H, d) . 7.05 (2H, d) . 7.17 (2H, s) . 7.64 ~ 8.14 (4H, m) . 9.53 (1H, m)

実 施 例 15

N- (4'-(1'-ベンジルピベリジル) エチル]

- 2 - キノキサリンカルポン酸<u>アミド</u>

4 - (N-ペンゾイルピペリジル) 酢酸47gと 塩化チオニル 8 ml とペンゼン20ml 中 2 時間加熱 還流後、滅圧留去する。

これをTHF 20mlに溶解し、水冷撹拌下アニリン1.86g、トリエチルアミン10g、THF 30ml内に滴加する。室温で約11時間反応した後、水にあけメチレンクロライドで抽出する。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーで精製(5%NeOH in CH₂Cl₂)し4ー(Nーペンゾイルピペリジル)酢酸アニリド0.9gを得る。

この4-(N-ベンゾイルピペリジル) 酢酸アニリド 0.9gをTHF 10mlに溶解し、水冷撹拌下、THF 30ml中リチウムアルミニウムハイドライド 0.38gを滴下し、さらに1時間加熱凝流する。反応後、水を加え、沈殿雄去後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、1-ベンジル-4-(N'-フェニルアミノエチル) ピペ

1ーベンジルー4ーアミノエチルピペリジン4.6 g、ピリジン50ml、4ージメチルアミノピリジンを室温、撹拌下、2ーキノキサロイルクロライド40g加える。3時間反応後、水にあけメチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーで精製 (5 %UeOH-CH₂Cl₂) し、酢酸エチルより再結晶し、標題化合物3.0 gを得る。

- ·分子式;C23H26N4O2·HCI
- · 'H NMR (CDCI₃) δ : 1. 16 ~ 2. 20 (9 H. m) 、 2. 76 ~ 3. 04 (2 H. m) 、 3. 49 (2 H. s) 、 3. 48 ~ 3. 68 (2 H. t) 、 7. 13 ~ 7. 40 (5 H. m) 、 7. 70 ~ 8. 26 (4 H. m) 、 9. 64 (1 H. s)

実 施 例 16

1 - ベンジル- 4 - (N' - フェニルアミノエチル) ピペリジン

リジン0.7 gを得る。

- ·分子式;C2oH2eN2
- · 'H NWR (CDC1₃) 8: 1.0 ~2.2 (9H. m) , 2.85 (2H. m) , 3.10 (2H. t) , 3.44 (2H. s) , 3.7 (1H. bs) , 6.4 ~6.8 (3H. m) , 7.0 ~7.4 (7H. m)

奥施例17

N- (4'-(1'-ベンジルピペリジル) エチル) アセトアニリド

1 ーペンジルー 4 ー (N' ーフェニルアミノエチル) ピペリジン0.7 g、トリエチルアミン2.0g、THF 20mlを氷冷下撹拌下、アセチルクロライド0.4 gを滴下する。

室温で3時間反応後、水20mlを加え、メチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留

去する。残渣をカラムクロマトグラフィーで精製 (5.96MeOH in CH₂Cl₂) し、標題化合物を得る。

·分子式;C22H2eN2O

· 'H — NMR (CDC1₉) δ; 1.0 ~2.1(12H.m), 2.6 ~3.0(2H,m), 3.39(2H.s), 3.67(2H,t), 6.9 ~7.5(10H.m)

実 施 例 18

N-(3',5'-ジメトキシフェニル) -N- [4'-(1'-ベンジルピペリジル) エチル] - 4 - フ ロロけい皮酸アミド・塩酸塩

1 ーペンジルー 4 ー (N' ー(3'.5' ージメトキシフェニル) アミノエチル) ピペリジン 1.0g、トリエチルアミン2.0g、THF 20mlを氷冷撹拌下、 pーフロロけい皮酸クロライド0.51g加える。室温で2時間反応後水にあけ、酢酸エチル

下撹拌する。ここに、イソニコチン酸クロライド塩酸塩0.85gを加え、3時間30分撹拌する。 減圧下溶媒を留去し、シリカゲルカラムで精製する。常法により二塩酸塩とし、淡黄色非晶質として0.75gを得る(収率73.0%)

·分子式;C26H29N2O·2HC1

· 'H - NMR (CDCl₃) & ; 1. 13 ~ 2. 01 (9H, m) , 2. 81 (2H, bd) , 3. 44 (2H, s) , 3. 88 (2H, bt) , 6. 84 ~ 7. 26 (12H, m) , 8. 31 (2H, d)

寒 施 例 20

4- (1-ベンジルピペリジン) プロパンアニ リド・塩酸塩

アニリン 0.5 g、トリエチルアミン 1 gをTHF中に溶解する。この中に撹拌下、4 ー (1 ーペンジルピペリジン) プロピオン酸クロライドを1 g 満下し、窒温で 5 時間反応させる。その後、溶煤を留去し、塩化メチレンを加え、水洗、

で抽出し、飽和食塩水で洗浄し、無水硫酸マグ ネシウムで乾燥し、溶媒を減圧留去する。

この残盗をシリカゲルカラムクロマトグラフィーにより精製 (5 % MeOH in CH2Cl2) する。常法により塩酸塩として標題化合物0.9 gを得る。

·分子式;CaiHasNaOaf·HCI

- 'H - NMR (CDC1₃) 8; 1.1 ~2.1(9H.m) , 2.7 ~3.0(2H, bd) , 3.51(2H, s) , 3.83(8H, m) , 6.1 ~6.4(4H.m) , 6.9 ~7.8(10H.m)

実 施 例 19

N- (4'-(1'-ベンジルピペリジン) エチル] -N -フェニルニコチン酸アミド・二塩酸塩

N- (4' (1'ーベンジルピベリジン) エチル] アニリン0.70g、4- (N,N'ージメチルアミノ) ピリジン触媒盤をピリジン30mlに溶かし、氷冷

MgSO、で乾燥する。これを再び溶媒を留去して シリカゲルカラム精製することにより目的物の 油状物を得た。さらにこのものを常法に従い、 塩酸塩にすることにより白い結晶0.14gを得た。

・融点(セ);197.5 ~198

・元素分析値;C2:H2sN2C・HC1として

C H N

理論値 (%) 70.28 7.58 7.81

実測値 (%) 70.50 7.58 7.83

実 施 <u>例 21</u>

N- [3' -(1' - ベンジルピロリジン) メチル]

ベンジルクロライド0.74g、3-(2'-アミ ノメチル) -ベンジルピロリジン1gをトリエ チルアミン1.5g存在下THF中、室温で撹拌し 反応させた。これを常法により後処理しカラム 精製することにより、目的物を0.32g 得た。これを一般的方法により塩酸塩にした。

- ·分子式;C19H22N2O·HC1
- · 'H NMR (CDC1 a) 8 ;

1. 48~3. 08 (7H. m) 、 3. 44 (2H. d) 、 3. 62 (2 H. d) 、 7. 04~7. 88 (10H. m)

実 施 例 2 2

 $4 - (4' - (N - \angle y)) + (2 + y) + (N - 2 +$

窒素気流下、THF 7ml中にジイソプロピルアミン2mlを加え、0 ℃にて、1.6M nーブチルリチウムへキサン溶液7.6ml を加え、10分間撹拌後、-78℃まで冷却してワーメトキシアセトフェノン1.65gのTHF 10ml溶液を加え20分間撹拌する。さらに1ーペンジルー4ーピペリジンカルポアルデヒド2.4gのTHF 10ml溶液を加え、

シpーメトキシブチロフェノン0.54g、pートルエンスルホン酸0.1 g、トルエン30mlで加熱 遠流を5時間行う。反応後、炭酸カリウム水溶 被にあけ、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥し、減圧留去する。残 値をカラムクロマトグラフィーで精製 (3 % MeOHーCH2Cl2) し、1ーペンジルー4ー〔4ー(pーメトキシフェニル)ー4ーオキソブチル〕ピペリジン0.45gを得る。これをMeOH20mlに溶解し、10%パラジウムー炭素(含水)40mgを加える。室温常圧で1.5 時間水素添加する。不容物を滤去し、減圧留去する。常法により塩酸塩とし、MeOHーIPB より結晶化し、模類化合物0.2gを得る。

- ·分子式;C22H29NO2·HC1
- · 'H NMR (CDC1₅) δ ; 1.4 ~2.3 (11H.m) , 2.4 ~2.7 (2H,m) , 2.95 (2H,t) , 3.55 (2H,s) , 3.87 (3H,s) , 6.93 (2H,d) , 7.1 ~7.5 (5H,m) , 7.94 (2H,d)

実 施 例 24

10分間撹拌する。 1 %塩化アンモニウム水溶液を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、滅圧留去する。残渣をシリカゲルカラムクロマトグラフィーにより精製 (5 %MeOH — CH₂Cl₂)により精製し、標題化合物2.0 gを得る。

- ·分子式;C23H2sNOs
- · 'H NMR (CDCl₃) 8; 1.0 ~2.2 (9H, m) , 2.6 ~3.4 (5H, m) , 3.43 (2H, s) , 3.81 (3H, s) , 4.1 (1H) , 6.83 (2H, d) , 7.17 (5H, s) , 7.82 (2H, d)

寒 施 例 23

4 - [4'-N -ベンジル) ピペリジル] - p -メトキシブチロフェノン・塩酸塩

ディーン・スターク装置を用い、 4 - 〔4' - (N-ベンジル)ピペリジル〕 - 3 - ハイドロキ

N- [4'-(|'-ベンジルピペリジン) エチル] -3-フランカルポン酸アミド・塩酸塩

4-(2-アミノエチル)-1-ベンジルピペリジン1.64g、炭酸カリウム2.67gをクロロホルム40ml、水40mlの混液に加え、氷冷下1時間撹拌する。有機層を分離し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルカラムで精製、常法で塩酸塩とし、淡黄色非晶質として標題化合物1.60gを得る(収率61.1%)

- ·分子式;C19H24N2D2·HC1
- · 'H NMR (CDCl₃) 8; 1. 47~2. 10 (9H, m) 、 2. 81 (2H, bd) 、 3. 25~3. 47 (4H, m) 、 5. 80 (1H, bs) 、 6. 51 (1H, dd) 、 7. 15~7. 19 (6H, m) 、 7. 82 (1H, dd)

奥 施 例 25

N- [4'-(1'-ベンジルピベリジン) エチル] ベンツアミド

N-(1-ラダマンタンメチル)-4-(2-アミノエチル)ピペリジン1.47g、炭酸カリウム0.73gをクロロホルム15mlと水15mlの混液に加え、水冷下激しく撹拌する。ここにペンゾイルクロライド0.90gを満下し、室温で一夜撹拌する。有機層を分離し、水と飽和食塩水で洗い、硫酸マグネシウムで乾燥させ、溶媒を減圧下留去する。シリカゲルカラムで精製し、ペンゼンールーへキサンから再結晶し、淡黄色板状晶として標題化合物1.47gを得る(収率72.6%)。

- ·分子式;CasHasNaO
- 'H-NMR (CDC1₃) δ; 1.29~2.28(27H, m) ,
 2.72(2H, bs) , 3.43(2H, q) , 6.01(1H, bs) ,
 7.31~7.43(3H, m) , 7.67(1H, dd)

法で塩酸塩として標題化合物0.52gを黄色非晶質として得る(収率37.6%)。

- ·分子式;CzeHaeNaO·HCl
- 'H NMR (CDC1₃) δ ; 0. 92 ~ 3. 60 (63 H, m) , 7. 29 (5 H, s)

実 施 例 27

N- [4'-(1'-シクロヘキシルメチルピペリジ ル) エチル] N -メチルペンズアミド・塩酸塩

NーメチルーNー (4'ーピペリジルエチル) ベンズアミドO.6 g、シクロヘキシルブロマイド1.2 g、炭酸水素ナトリウム2.0 g、メチルエチルケトン30m1を7時間加熱遠流する。反応後、水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を滅圧留去する。この残渣をシリカゲルカラムクロマトグラフィーにより精製(5 %MeOHー

寒 施 例 26

N-メチルーN- (4' - (1' - ベンジルピペリジン) エチル) ベンツアミド・塩酸塩

ナトリウムハイドライド0.18gをテトラハイドロフラン (THF) 2回l に懸濁させ、水冷下撹拌する。ここに Nー〔4'ー (1'ーペンジルピペリジン) エチル〕ベンツアミド1.45gをTHF 5回l に溶かしたものを滴下する。室温で1時間撹拌した後、再び氷冷し、ヨウ化メチル0.36回lを加え、一夜室温で撹拌する。氷水にあけ、塩析下クロロホルム抽出し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルクロマトで精製する。0.60gの黄色油状物が得られる(収率47.0%)。

また、メチル化されていない原料0.22gを回収した(回収率15.2%)。得られた油状物を常

CH₂Cl₂). し、標題化合物0.3 gを得る。

- ·分子式;C22H34N2D·HC1
- · 'H NMR (CDCI₃) & : 0.8 ~ 1.1(20H, m) , 1.1 ~ 1.6(4H, m) , 1.8 ~ 2.6(5H, m) , 7.4 (5H, s)

実 施 例 28

 $\frac{1 - \overset{\checkmark}{\sim} \cancel{\vee} \cancel{\vee} \cancel{\wedge} \cancel{\vee} - 4 - \{(5, 6 - \overset{\checkmark}{\vee} \cancel{\vee} + + \cancel{\vee} - 1 - \cancel{\vee} \cancel{\vee} \cancel{\vee} - 2 - 4 \cancel{\vee}\} - \cancel{\vee} \cancel{\vee} + \cancel{\vee} - 2 - 4 \cancel{\vee}\} - \cancel{\vee} +

5.6ージメトキシー1ーインダノン0.85gと 1ーベンゾイルー4ーピペリジンーカルボアルデヒド1.38gを無水THF 20ml に溶解し、0 でにて28%ナトリウムメチラート1.02gを加えた。室温にて2時間撹拌した後、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、1ーベング イルー 4 ー ((5.6-ジメトキシー1ーインダノン) ー 2 ーイリデニル] メチルピペリジン1.23 g (収率71%) を得た。

この化合物1.23gをTHF 20ml に溶解し、10%パラジウムー炭素 0.3gを加えた。室温常圧にて1日水素添加した後、触媒を違別し、違液を減圧濃縮した。これを塩化メチレンーへキサンから再結晶化し、次の物性を有する標題化合物1.10g(収率89%)を得た。

・融点 (で):151~152

・元素分析値; C24H27NO4 として

C H N

理論値 (%) 73.26 6.92 3.56

実測值 (%) 73.30 6.85 3.32

実 施 例 29

<u>4- [(5,6-ジメトキシー1-インダノン) -</u> 2-イル] メチルピペリジン・塩酸塩

チルピペリジン・塩酸塩

4-〔(5,6-ジメトキシー1-インダノン)
-2-イル〕メチルピペリジン0.25gをTHF6m1に溶解し、トリエチルアミン0.29m1と3ーフルオロペンジルブロミド0.13m1を加えた。2時間加熱還流した後、減圧濃縮し、酢酸エチルにて希釈し、10%炭酸ナトリウム水溶液、飽和食塩水にて洗浄した。硫酸マグネシウムにで乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製した。さらに常法により塩酸塩とし、塩化メチレンーIPEから再結晶化し、次の物性を有する標題化合物0.27g(収率72%)を得た。

・触点(で);230~232 (分解)

・元森分析位;C24H24NO3・HC1として

C H N

理論値(%) 66.43 6.74 3.23

実測値 (%) 66.18 6.79 3.11

1ーベンゾイルー4ー 【(5,6ージメトキシー1ーインダノン)ー2ーイル】メチルピペリジン9.00gをジオキサン90m1に溶解し、6N塩酸90mlを加えた。10時間加熱還流した後、滅圧濃縮し、水で希釈した後、酢酸エチルにて抽出した。水層を50%水酸化ナトリウム水溶液にてpH12とした後、塩化メチレンにで抽出し、さらに飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥、滅圧濃縮し、得られた残渣を常法により塩酸塩とし、メタノールーエーテルから再結晶化し、次の物性を有する標題化合物6.30g(収率85%)を得た。

· 融点 (℃) ; 249 ~250 (分解)

・元素分析値:C. 7H22NO3・HCIとして

C H N

理論値(%) 62.67 7.42 4.30

実測値 (%) 62.75 7.31 4.52

実 施 例 30

実 施 例 31

1-ベンジルー4- [(5,6-ジメトキシー1-インダノン) -2-イル] メチルピペラジン・ 2 塩酸塩

5.6ージメトキシー1ーインダノン1.00g、パラホルムアルデヒド0.31g、1ーベンジルピペラジン0.90mlをエタノール30ml、水2mlに懸濁し、微塩酸を加えてplf3とした。3時間加熱 遺流した後、放冷し、白色固体を違別した。これを塩化メチレンにて懸濁させ、10%炭酸 サトリウム水溶液と飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製した。ら再結晶化し、次の物性を有する標題化合物0.55g(収率23%)を得た。

・融点 (で) ; 227 ~228 (分解)

・元素分析値;C23H23N2O3・2HClとして

C H ?

理論值 (%) 60.79 6.88 6.16

実測値 (%) 60.31 6.95 6.06

寒 施 例 32

4- ((5,6-ジメトキシー1-インダノン) -2-イル) メチルー1-エトキシカルボニルピ

ペリジン

1ーベンジルー4ー〔(5.6ージメトキシー1ーインダノン)ー2ーイル〕メチルピペリジン0.50gをベンゼン8mlに溶解し、クロルギ酸エチル0.15mlを加えた。3時間加熱還流した後、酢酸エチルにて希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣を酢酸エチルーへキサンから再結晶化し、次の物性を有する標題化合物0.45g(収率94%)を得た。

この残渣をTHF 20ml に溶解し、1.8 ージアザビシクロ〔5.4.0〕 ウンデクー 7 ーェン1.66mlを加えた。30分間加熱湿流した後、減圧濃縮し、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、標題化合物1.12g(収率56%)を油状物質として得た。

- ·分子式;CzoHzsNOs
- · 'H-NMR(CDCl₃) 8;

1. 23 (3H, t). 1. 41~2.90 (11H, m). 3.84 (3H, s). 3.88 (3H, s). 4.10 (2H, q). 6.60 (1H, s). 6.97 (1H, s). 7.03 (1H, s)

寒 施 例 3 4 `

1 - ペンジル- 4 - [(1,3-インダンジオン) - 2 - イリデニル] メチルピペリジン

無水THF 3ml中にジイソプロピルアミン

・ 融点 (で) ;132 ~133

・元素分析値;CaaHanNOs として

C H N

理論值(%) 66.46 7.53 3.88

実測値 (%) 66.79 7.53 4.00

寒 施 例 33

4 - [(5,6-ジメトキシー1-インデノン) --イル] メチルー1-エトキシカルボニルピ ベリジン

4- 【(5,6-ジメトキシー1-インダノン)
-2-イル】メチルー1-エトキシカルボニルピペリジン2,00gを四塩化炭素30mlに溶解し、
N-ブロムコハク酸イミド0,98gと過酸化ペン
ゾイル0,02gを加えた。5時間加熱環流した後、
四塩化炭素で希釈し、飽和重曹水、飽和食塩水
にて洗浄した。硫酸マグネシウムにて乾燥後、
滅圧濃縮した。

0.17mlを加え、さらに 0 でにて 1.6 M n - ブチルリチウムへキサン溶液 0.75mlを加えた。 0 でにて10 分間撹拌した後、-78 でまで冷却し、1.3 - インダンジオン0.18 g の無水THF 8ml溶液とヘキサメチルホスホルアミド 0.21mlを加えた。-78 でにて15 分間撹拌した後、1 - ベンジルー 4 - ピペリジンカルボアルデヒド 0.35 g の無水THF 3ml溶液を加えた。室温まで徐々に昇温し、さらに室温にて一晩撹拌した後、塩化メチレンで希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣を塩化メチレンー I P E から再結晶化し、次の物性を有する標題化合物 0.12 g (収率29%)を得た。

・融点(で):173~174 (分解)

・元素分析値:C22H21NO2 として

C H N

理論值(%) 79.73 6.39 4.23

実測値 (%) 79.43 6.20 4.31

実 施 例 35

1-ベンジル-4-[(5.6-ジメトキシインデン) -2-イル] メチルピペリジン・塩酸塩

1-ベンジルー4- ((5.6-ジメトキシー1 ーインダノール) -2-イル] メチルピペリジン0.24gを塩化メチレン5mlに溶解し、10%塩酸-酢酸エチル溶液を加え、液圧濃縮した。得られた残渣を塩化メチレン-1PEから再結晶化し、次の物性を有する標題化合物0.24g(収率95%)を得た。

・融点 (で) :216 ~217 (分解)

・元素分析値:CauHanNOa・HCI として

C · H N

理論値(%) 72.07 7.56 3.50

実測值 (%) 71.82 7.63 3.33

寒 施 例 36

 $\frac{1 - \langle x \rangle \cup \langle y \rangle - 4 - [3 - [(5, 6 - \cup \langle y \rangle + 4 +))]}{-1 - (4 \rangle \cup (4 \rangle \cup (4 \rangle + 4))} - \frac{1 - \langle y \rangle \cup (4 \rangle \cup (4 \rangle + 4)}{-1 - (4 \rangle \cup (4 \rangle \cup (4 \rangle + 4))} - \frac{1 - \langle y \rangle \cup (4 \rangle \cup (4 \rangle \cup (4 \rangle + 4))}{-1 - (4 \rangle \cup ($

- ·分子式:CaeHa,NO,·HC1
- · 'H-NMR(CDCl₂) 8;

1.10~3.00(13H.m), 3.45(2H.s), 3.50(2H.s), 3.90(3H.s), 3.95(3H.s), 6.58~7.20
(3H.m), 7.27(5H.s)

実 施 例 37

1-ベンジル-4-[3-[(5,6-ジメトキシ -1-インダノン) -2-イル]] プロピルピ ペリジン・塩酸塩

1 ーベンジルー4 ー (3 ー ((5,6 ー ジメトキシー1 ーインダノン) ー 2 ーイリデニル]) プロピルピペリジン0.40gをTHF 15ml に溶解し、10%パラジウムー炭素 0.1gを加えた。室温常圧にて2時間水素添加した後、触媒を練別し、濾液を滅圧濃縮した。得られた残渣をシリカゲルカラムにて精製し、常法により塩酸塩とし、標題化合物0.37g (収率84%) を油状物質

ロピルピペリジン・塩酸塩

無水THF 5ml中にジイソプロピルアミン 0.31mlを加え、さらに 0 ℃にて 1.6M nーブチ ルリチウムヘキサン溶液1.39mlを加えた。 0℃ にて10分間撹拌した後、-78℃まで冷却し、5. 6 - ジメトキシー 1 - インダノン0,39gの無水 THF 5ml 容被とヘキサメチルホスホルアミド 0.35mlを加えた。-78℃にて15分間撹拌した後、 3-(1-ベンジルー4-ピペリジン)プロピ オンアルデヒドO.50gの無水THF 5ml溶液を 加えた。室温まで徐々に昇温し、さらに室温に て 3 時間撹拌した後、酢酸エチルで希釈し、飽 和食塩水にて洗浄した。硫酸マグネシウムにて 乾燥後、減圧濃縮し、得られた残渣をシリカゲ ルカラムにて精製し、常法により塩酸塩とし、 標題化合物0.55g (収率61%) を油状物質とし て得た。

として得た。

- ·分子式;C26H3;NO3·HC1
- · 'H-NUR (CDCl3) &;

1.00~3.30(18H,m). 3.38.3.43(total 2H. each s). 3.85(3H,s). 3.90(3H,s). 6.77. 6.83(total 1H, each s). 7.05.7.10(total 1H, each s), 7.18.7.20(total 5H, each s)

寒 施 例 38~249

実施例1~37と同様にして合成した化合物 を表5~10に示す。

実施例	极 造 式	物 理 化 学 恒 致 (融点、元粲分析位、NUR など)
38	CH = 0	融点(で);247~248 (分解) 元森分析値(C:::H:::NO:: +HC1 として) C H N
	Q.	理論値(A) 68.73 7.02 3.48 実別値(A) 68.70 6.99 3.35 融点(C):196~197 元器分析値(C _{2.2} H _{2.5} NO・HCIとして)
39	CHCHCH. HCI	理給值(%) 74.24 7.36 3.94 更測值(%) 74.25 7.56 3.80
40	CH30 CH3 -CH3 -CH3 - HC1	映点(で);203~204 (分解) 元素分析位(C;;H;;NO;・HC1 として) C H N 理論値(X) 71.58 7.31 3.63 実利値(X) 71.58 7.25 3.65
41	CH=0 0 CH= -CH= -CH= · HC1	'H-NMR(CDC1 ₂)
42	CH=0 CH= -CH= - HC1	'H-NMR(CDC1。) ð: 1.05~3.40(14H.m), 3.45(2H.s), 3.80(3H.s), 3.85(3H.s), 6.75(2H.ABq), 7.22(5H.s)

表 5 (統 音)

実施例	福 造 式	物 理 化 学 恒 数 (融点、元案分析位、RMR など)
43	CH = 0 - CH = CH = - CH = - CH = - HCI	融点(て):201~202 (分解) 元素分析値(C₂sH₂1NO₂・HC1 として) 理論値(X) 69.83 7.50 3.26 実調値(X) 69.13 7.42 3.31 以H₂0 (X) 69.25 7.53 3.23
44	CH = O HO H-CH = -CH	'H-NWR(CDC1 ₂) &; 1.10~3.40(11H.m), 3.50(2H.s), 3.85(3H.s), 3.93(3H.s), 4.25(1H.bs), 6.81(1H.s), 7.07 (1H.s), 7.22(5H.s) 分子式:C ₂₂ H ₂₁ NO ₄
45	CH,0 . HC1	政点 (で) ; 225~226 (分解) 元素分析値(C₃, H₃, NO₃・HC1 として) C H N 理論値(%) 69.08 6.55 3.50 実調値(%) 68.78 6.43 3.50
46	N-CH ₂ HC1	欧点 (で) ; 169~170 (分解) 元器分析値(C ₃ H ₃ NO·HC1 として) C H N 理論値(X) 74.67 6.84 3.96 実別値(X) 74.42 6.61 3.76
47 .	CH+0 . HC1	融点 (で):120~122 元素分析位(C ₃ ,H ₃ ,NO ₃ ・HCI として) で R N N P N N N P N N N N N N N N N N N N

実施例	- 機 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
48	CH = 0 O O O O O O O O O O O O O O O O O O	'H-HMR (CDC1 ₃) &; 1.40-2.40 (7H, m), 2.90 (2H, bd), 3.48 (2H, s), 3.51 (2H, bd), 3.82 (3H, s), 3.86 (3H, s), 6.30 (1H, bd), 6.43 (1H, bd), 6.50 (1H, bt), 7.23 (5H, s)
` 		分子式;CsaHanNOo・HCI
49	CH ₂ O O	1H-NWR (COC1,) 8; 1.40~2.50 (7H, m), 2.86 (2H, bd), 3.50 (4H, s), 3.90 (3H, s), 3.94 (3H, s), 6.59 (1H, dt), 6.78 (2H, ABq), 7.22 (5H, s)
·	CH • Ó	分子式;CacHanNOa・HCI
50	CH3O CH4 CH4 - CH2 - CH2 CCH=CHCO3H	H-NMR(CDC13)
		分子式;C24H31NO3·C4H4O4
51	CH=0 CH= CH= - H-CH= - HCI	'H-NMR(CDC1,) &; 1. 10~2. 32(9H.m). 2. 90 (2H.bd). 3. 52 (4H.s). 3. 89 (3H.s), 3. 93 (3H.s), 6. 71 (1H.tt). 6. 84 (1H.s). 7. 20 (1H.s). 7. 24 (5H.s)
	ungu	分子式;CzsHzaNOa・HC1
	<u>o</u>	敵点 (で) :149~150
52	()-C-CH₃CH₃CH₃-()x-CH₃-() · HC1	元素分析位(C**H**NO・HC1 として)
		理論值(%) 73.83 7.88 3.91 妄动質(%) 71.29 8.00 3.80 %。H。D(%) 71.31 8.00 3.78

表 5 (統 き

実施例	. 枫 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
53	OH CHCH₃CH₃CH₃-√N-CH₃-√N + KC1.	'H-NMR(CDC1 ₃) <i>ð</i> ; 1.80~2.03(13H,m), 2.80(3H,bd), 3,43(2H,s), 4.60(1H,t), 7.28(5H,s), 7.30(5H,s)
54	O N-CH - CHCH - N-CH - N-CH - HCI	'H-NMR (CDC1 ₃)
55	N	融点 (で):176~178 元素分析値(C2:H2:N20・2HC1として) 理論値(X) 63.80 7.14 7.09 実現値(X) 63.13 7.43 6.88 光:H20(X) 62.94 7.19 6.99
56	N	'H-NNR(CDC1 ₂)
57	N	'H-NMR(CDC1;) 8; 1.10~2.10(7H,m). 2.25(2H,bd), 2.85(2H,bd), 3.45(2H,bs). 6.59 ~7.10(2H,m). 7.20(5H,s). 7.56(2H,dd). 8.67(2H,dd)

実施例	梅 造 式	物 理 化 学 恒 数 (触点、元素分析値、MUR など)
58	N NHCCH, CH, -CH, -CH, -CH, -CH, -CH, -CH,	融点 (で):240~240.7 元素分析値(C₂oH₂sN₃O・2HC1として) 円 N 理論値(X) 66.75 7.28 11.68 実明値(X) 66.26 7.42 11.37 火oH₂O(X) 66.25 7.31 11.59
59	N NICCH = - N-C HCI	'H-MMR(CDC1 ₃) が: 1.80~2.24(9H,m). 2.96(2H,d). 3.64(1H,m). 4.60(1H,m). 7.20~7.58(6H,m). 8.34(2H,d) 分子式:C.sHz:N3O3・HC1
60	0 - М - СН - СН - СН - СН - НС1	'H-HMR (CDC1 ₃) &; 1, 12~2, 20 (7H, m), 2, 34 (2H, d), 2, 74~3, 01 (2H, m), 3, 50 (2H, s), 7, 29 (2H, s), 7, 71 (2H, d), 8, 20 (2H, d)

表 6

実施例	. 橘 造 式	物 理 化 学 恒 数 (敗点、元素分析値、NUR など)
61	N-CH°CH°	融点 (で):135~140 (分解) 元素分析値(C,,H,,N,0 - 2HC1として) 理論値(%) 62.86 6.47 10.00 実調値(%) 59.22 6.63 9.14 %H,0 (%) 59.06 6.76 9.39
62	N-CH _a CH _a -CH _a	鼓点(て):80~82(分解) 元素分析値(C _{3.8} H _{3.7} N ₃ O·2HC1として) C H N 理論値(X) 62.56 6.92 9.95 実研数(X) 60.14 7.313 9.21 1・H ₃ O(X) 60.00 7.09 9.54
63	N-CH°CH°	'H-NWR(CDC1,) ð; 1.1 ~2.2(9H, m), 2.7~3.1(2H, m), 3.50(2H, s), 4.03(2H, t), 6.50(1H, m), 6.9 ~7.9(9H, m), 8.47(1H, d) 分子式; C,,H,*N,O・HC1
64	N-CHªCHª-CHª-CHª-CH	'H-NMR(CDC1,)
65	N - CH₂ CH₃ -	'H-HMR(CDC1 ₃) ð: 1.10~2.20(11H,m), 2.27(3H,m), 2.93(2H,bd), 3,48~3.70(4H,m), 7.27(5H,s), 7.28~8.12(4H,m) 分子式:CooHoons

実施例	. 梅 进 式	物 理 化 学 恒 数 (酸点、元素分析値、NMR など)
66	N-CH°CH°- N-CH°- N-CH°	'H-MNR (CDC1 ₃) & ; 1.10~2.20(9H, m). 2.93(2H, bd). 3.40 ~3.65 (6H, m). 4.43(2H, s). 7.00~7.50(4H, m). 7.31 (5H, s)
	•	分子式;CzəHzeNzO·HCI
67	N-CH _a CH _a -CH _a -CH _a -C	H-HMR (CDC1 ₂) & ; 1, 10~2, 20(9H, m), 2, 22~2, 97(8H, m), 3, 45(2H, s), 3, 55(2H, s), 6, 90~7, 20(4H, m), 7, 20(5H, s)
		分子式:C**H*aN*·2HC1
68	H-CH=CH=-N-CH=-N-CH	'H-NMR(CDC1.) Ø; 1.10~2.16(13H.m), 2.16~2.50(2H.m), 2.87 (2H.bd), 3.03~3.43(4H.m), 3.48(2H.s), 7.27 (5H,s)
LI		分子式;CieHeeNeO·HCI
69	N-CH ₉ -CH ₉ -N-CH ₉ -CH ₉ · HCI	'H-NWR (COC1,)
		分子式:C3eH3oN3O·HCI
· 70	CH,CH,	'H-MMR (CDCI ₃) <i>д</i> ; 1.20~2.84 (21H. m). 3.44 (2H. s). 7.14 ~7.25 (9H. m)
		分子式;CasHaaNaO·HCI

表 6 (統 各)

		,
実施例	横 造 式	物 理 化 学 恒 致 (融点、元素分析値、NAR など)
71	CH*CH*-€N-CH*-€	'H-NWR (CDC1,) δ: 1.44~1.80 (15H, m). 2.96 (2H, bs). 2.56 (2H, s). 7.08~7.40 (9H, m)
	• •	分子式;C,,H,,,H,O·HCl
72	CH.CH. — N-CH. — HCI	'H-NNR (CDC1,) ð; 1.24~2.50 (5H.m). 2.18 (2H.bs), 2.54 ~2.88 (4H.m), 3.44 (2H.s). 3.76 (3H.s). 6.64~6.76 (2H.m). 6.99 (1H.d). 7.20 (5H.s)
	11300	
73	CH =	'H-HMR (CDC1 ₃) ð; 1.25~2.20(154m), 2.58(2H,bt), 2.86(2H,bs), 3.48(2H,s), 3.75(3H,s), 6.56~6.68(2H,m), 7.00(1H,d), 7.21(5H,s)
74	CH ₃ CH ₃ -CH ₃ -C	'H-MWR (CDC1 ₃)
75	CH,CH, — N-CH, — HC1	'H-HMR (COC1.)

実施例	操 选 式	物 理 化 学 恒 数 (敵点、元素分析値、NUR など)
76	CH30 CH3CH= CH3CH= - HC1	1H-NNR (COC1,) 8: 1.10~2 10 (11H.m). 2.60 ~3.00 (4H.m). 3.45 (2H.s). 3.45~3.80 (1H.m). 3.86 (6H.s). 6.22 (1H.bs). 6.57 (1H.s). 7.20 (5H.s). 7.46 (1H.s)
		分子式; CgsHggHgOg・HCI 「H-HMR(CDCIg) き;
77	CH-0 CH-CH- N-CH- · HCI	1.08~2.10(11H,m), 2.50~2.95(4H,m), 3.01 (3H, 5), 3.45(2H, s), 3.45~3.60(1H,m), 3.85 (6H, s), 6.52(1H, s), 7.10(1H, s), 7.20(5H, s)
	<u> </u>	分子式;CzeHzeNzOz·HCI
78	CH*0 CH*-CH*-CH*- HC1	'H-NMR (COC1.)
		分子式;CaeHaoNaOa・HCl
79	CH,CH,- ← N-CH,- ← 2HC1	'H-NWR (CDCI ₃) <i>ð</i> ; 1. 17 (3H, t), 1. 10—2. 15 (9H, m), 2. 68 (2H, q), 2. 89 (2H, bd), 3. 14 (2H, s), 3. 51 (2H, s), 3. 55 (2H, s), 3. 87 (2H, bt), 7. 07 —7. 35 (9H, m)
	CH ₂ CH ₃	分子式:CasHaaNaO·2HC1

表 7

実施例	・ 機 造 式	物 理 化 学 恒 数 (触点、元素分析値、NUR など)
80	CH 2 CH 2 - CH 2	'H-NMR(CDC1 ₉) ま; (フリー体) 1,01〜2.40(9H,m), 2.70〜3.30(4H,m), 3.46(3H,s), 3,54(2H,s), 3.90〜4.20(2H,m), 6.90〜8.20(9H,m)
81	N-CH, CH, -CH, -CH, -CH, -CH	'H-NMR (CDC1,) 8; 1, 12~2, 12 (9H, ф), 2, 76~3, 00 (2H, ф), 3, 50 (2H, s), 3, 56 (2H, t), 4, 36 (2H, s), 7, 08~7, 92 (9H, ф)
82	COOC348 CNHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR(CDC1 ₂) &; 1,08—2,16(9H, m), 1,42(3H, t), 2,76—3,00(2H, m), 3,32—3,62(2H, m), 3,50(2H, m), 4,53(q, 2H), 7,12—7,40(5H, m), 7,48—7,72(1H, m), 8,58(1H, d), 8,73(1H, d)
83	COUCH*CH*CH*CH* ← HCI	'H-NMR(CDC1,) &; 0.95(3H, t), 1.04—2.10(13H, m), 3.68—4.00 (2H, m), 4.28—4.60(2H, m), 4.48(2H, s), 5.46 (3H, t), 7.74(5H, s), 7.48—7.72(1H, m), 8.57 (1H, d), 8.71(1H, d)

実施例	排 造 式	物 理 化 学 恒 数 (触点、元素分析値、NAR など).
84	CH. CONCH.CH CH CH HCI	'H-NWR (CDC1,) & ; 1.00~2.06(9H, m). 2.70~2.92(2H, m). 3.00~ 3.13(2H, m). 3.34~3.60(4H, m). 7.26(5H, s). 8.52(1H, d). 8.62(1H, d). 8.91(1H, d)
85	CH. CONCH. CH CH CH HCI	'H-NWR (CDC1 3)
86	COOCH. HCI	H-NWR (CDC1
87	CH CONHCH*CH*-CH*-CH*	'H-NNR (CDC13) &; 1. 04~2. 28 (9H, m). 2. 36 (3H, s). 3. 44 (2H, s). 3. 50~3. 76 (2H, m). 7. 12~7. 25 (5H, m). 9. 03 (2H, s)
88	CONHCH CONHCH CH -	*H-NMR (CDC1,)

表 7 (統 各)

実施例	機 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
89	CONHCH*CH*- W-CH*- W-C	'H-NWR (CDC1;) &; 1.04~2, 24 (9H, m), 2.76~3.00 (2H, m), 3.34~ 3.66 (2H, m), 3.50 (2H, s), 5.04~5, 28 (1H, m), 7.10~7, 36 (5H, m), 7.48~7.72 (1H, m), 8.54 (1H, d), 8.54 (1H, d)
90	CONHCH, CH, -CH, -CH, -CH, -CH, -CH, -CHCI	H-NWR (COC13) 3 ; 1.08~2.16 (9H. m). 2.76~3.06 (2H. m). 3.24~ 3.68 (2H. m). 3.54 (2H. s). 7.18~7.46 (6H. m). 8.00~8.18 (1H, m). 8.28~8.54 (1H, m)
91	CH, CONCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -C	'H-MMR (COC1,) &; 0,98~2,16(9H,m), 2,60~3.00(2H,m), 3,14(3H,s), 3,32~3,72(4H,m), 7,04~7,32(5H,m), 7,60 ~7.82(1H,m), 7.84~8.15(2H,m), 9,05(1H,s)
92	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ · 2HC1	'H-NMR(CDCI ₃) & ; 1.00~2.05(9H.m). 2.56~3.00(2H.m). 3.08. 3.12(total 3H.each s). 3.30 ~3.70(4H.m). 7.18.7.21(total 5H.each s). 7.33~8.22(6H.m)
93	N CNHCH,CH, -CN, -CH, -CH, -CH, -CH, -CH, -CH, -CH, -CH	'H-NMR(CDC1,) ð; 1.11~2.09(9H,m), 2.87(2H,bd), 3.20~3.62 (4H,m), 7.22(5H,s), 7.41~7.64(3H,m), 8.00 (1H,dd), 8.20(2H,s) 分子式; C.4H.7N.3O·2HC1

実施例	极 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
94	CNHCH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	融点 (で) : 197.5 ~198.5 元素分析値(C ₃₊ H ₃₊ N ₃ O・2HC1として) C H N 理論値(X) 64.57 6.55 9.41 実調値(X) 64.26 6.58 9.35
95	O CHHCH3CH3-CH4-CH4-CH4-OCH3 . HC1	融点 (で) ; 174~176.5 元素分析館(C。4k。840。 + HC1 として) C H N 理論館(%) 65.37 6.63 12.71 実調館(%) 64.96 6.63 12.60 火。11.0 (%) 64.97 6.66 12.63

歩 8

奥施例	柳 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
96	CONHEFT ON - CH 3 - CH	'H-NMR(CDCl,) δ; 0.96~2.24(9H, m), 1.25(3H, t), 2,60~3,08(2H, m), 3.44(2H, s), 3.12~3.15(4H, m), 7.20(5H, s), 8.44(2H, s)
97	CNCH ₂ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	「H-NWR (CDC1 ₃) る: 1.00~2.08(9H,m).2.70(2H,bd).3.04(3H,bd). 3.40(2H,bd).7.17(5H,s).7.40 ~7.61(2H,m).7.66~7.82(2H,m).7.99~8.11(2H,m).7.83(1H,d). 分子式:C34H39N3O・2HC1
98	0 N - CH 2 - CH	'H-NWR(COC1 ₉) る; 1.1 ~2.1(9H.m). 2.7~3.0(2H.m). 3.50(2H.s). 3.90(2H.t). 6.9 ~7.6(12H.m). 8.03(2H.d) 分子式:C ₂₇ H ₂₉ N ₃ O ₃ ・HC1
99	P - CH, CH, - CH,	'H-NWR(COCI ₃) &; 1.1 ~2.1(9H, m), 2.7~3.0(2H, m), 3.48(2H, s), 3.8 ~4.0(2H, m), 6.6~7.4(14H, m) 分子式; C ₂ ,H ₂ ,N ₂ OF·HC1
100	- HCI	'H-NHR(CDC1,)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
101	CH ₂ CH ₃ NCH ₂ CH ₂ N-CH ₃	「H-NMR (CDC1。) が: 1.16(3H. t). 1.1 ~2.2(9H. m). 2.7~3.0(2H. m). 3.1 ~3.4(4H. m). 3.52(2H. s). 6.5~7.4(10H. m) 分子式: C, 2H, n N,
102	CH ₂ O CH ₂ CH ₂ CH ₃ -CH ₃ -C	'H-NMR(CDCI,) &; 1.10~2.06(9H, m), 2.82(2H, bd), 3.43(2H, s), 3.58(3H, s), 3.88(2H, bt), 6.50(2H, d), 6.69 (2H, d), 6.98(5H, bs), 7.19(5H, s) 分子式; CHN.O.
103	CH ₃ CNCH ₃ CH ₂ — M-CH ₃ — HC1	「H-NUR(COC1,) ð; 1.78(3H.s). 1.0 ~2.1(9H.m), 2.6~3.0(2H.m), 3.43(2H.s). 3.75(2H.m). 3.73(3H.s). 6.64(4H. dd). 7.26(5H.s)
104	CH3CNCH3CH3-CH3-CH3-C	'H-NMR(COC1 ₃) る; 1.1 ~2.1(9H, m). 1.84(3H, s). 2.7~3.0(2H, m). 3.44(2H, s). 3.5 ~3.8(2H, m). 3.80(3H, s). 6.5 ~6.9(3H, m). 7.22(6H, s) 分子式; C ₂ 3H ₂ N ₂ O ₂
105	N C-N-CH ₂ CH ₃ - N-CH ₃ - HC1	'H-NWR (CDC1.) 8: 1.16~2.16 (9H.m). 2.68~2.98 (2H.m). 3.49 (2H.s). 3.84~4.09 (2H.t). 6.91~7.40 (10H.m). 8.22~8.44 (2H.m). 8.62 (1H.s)

数 8 (統 き)

実施例	- 神 造 式	物 理 化 学 恒 数 (融点、元素分析値、MUR など)
106	H C-H-CH, CH, - N-CH, - HCI	'H-NUR(CDC1,) が: 1.98~2.26(20H, m). 2.85(2H, bd). 3.48(2H, s). 3.62(2H, bt). 6.96 ~7.40(9H, m) 分子式: C22H, sk10・HC1
107	CH3-S-NCH2CH3-N-CN3-N-CH3-N-CH3-N-CN	'H-NMR(CDC1;) &; 0,90~2.10(9H,m), 2.65~2.98(2H,m), 2.83(3H,s), 3.47(2H,s), 3.52~3.92(2H,m), 7.26(5H,s) 7.26~7.43(5H,m) 分子式: C ₂ ,H ₂ ,N ₂ O ₂ S·HC1
108	CH-CH-CH-CH	「H-NMR(CDC1;) ま; 1.02(3H,t), 1.10~2.00(9H,m), 1.98(2H,q), 2.80(2H,bd), 3.43(2H,s), 3.55~3.80(2H,m), 6.97~7.40(5H,m), 7.20(5H,s)
109	CH3 NCH3CNCH3CH2 N-CH3 - 2HC1	H-NMR(COC1 ₃)
110	CH*CH*CH*CH*-CH*	'H-HWR(CDC1 ₉) ð; 1.17(3H, t), 1.1 ~2.1(9H, m), 2.6~2.9(2H, m), 3.40(2H, s), 3.4 ~3.8(2H, m), 4.08(2H, t), 7.19(10H, s) 分子式; C _{2.9} H _{2.0} N ₂ O ₂ ·HC1

		物理化学复数
実施例		(敗点、元素分析館、NUR など)
111	CH°CH°CH°CH°-CH°-CH°-CH°-CH°-CH°-CH°-CH°	'H-NMR(CDC1 ₃) ð ; 1,24~1.81(9H,m), 2.0(3H,s), 2.82~2.96(2H,d), 3.54(2H,s), 3.80(2H,m), 7.18(2H,dd), 7.36(5H,s), 8.70(2H,dd)
112	CH 3 CHCH 4 CH 4 - CH 4	'H-NMR(CDC1 ₃) る: 1.83(3H.s). 1.0 ~2.2(9H.m). 2.6~3.0(2H.m). 3.43(2H.s). 3.66(3H.t). 6.8 ~7.4(9H.m). 分子式: C ₂₂ H ₂₁ N ₂ DC1·HC1
113	CH, = CHCNCH, CH, - N-CH, - N-CH, - HC1	'H-NNR(CDC1 ₃)
114	CH,CH,CH,	'H-NNR(CDC1 ₂) ð: 1. 14~2. 03(12H, m). 2. 83(2H, bd), 3. 44(2H, s). 3. 64(2H, bt), 7. 00(2H, s), 7. 08(2H, s), 7. 22 (5H, s) 分子式; C ₁₂ H ₂₇ FN ₂ O·HCI
115	CH3CNCH3CH3	'H-NMR(CDC1 ₂)

表 8 (統 音)

実施例	祷 造 式	物 理 化 学 恒 数 (歴点、元素分析館、NKR など)
116	N — CNCH	'H-NNR(CDC1:) が; 1.0~2.1(9H,m). 2.6~3.0(2H,m). 3.43(2H,s). 3.85(2H,m). 6.4~6.7(3H,m). 6.9~7.3(9H,m). 8.34(2H,d).
117	H	"H-NMR (COC1 ₃) る; 1.0 ~2.1 (9H. m). 2.6~3.0 (2H. m). 3.41 (2H. s). 3.84 (2H. m). 6.6~7.2 (5H. m). 7.22 (5H. s). 8.37 (2H. d).
118	CH3O OCH3 - N-CH3- SHCI	1H-NNR (CDC13) & ; 1.0 ~2.1 (9H, m). 2.6~3.0 (2H, m). 3.43 (2H, s). 3.57 (6H, s). 3.83 (2H, m). 6.0 ~6.2 (3H, m). 7.0 ~7.4 (7H, m). 8.35 (2H, d)
119	CH.	'H-NMR(COC1 ₃)
120	CH,OCH,CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-C	'H-NWR(COC1 ₃)

実施例	祝 造 式	物 理 化 学 恒 数 (融点、元素分析値、&MR など)
121	N CHCHaCHa-CHa-CHa-CHa-CHa-CHa-CHa-CHa-CHa	'H-NNR (CDC1,) ð: 1.1 ~2.1 (9H.m), 2.6~3.0 (2H.m), 3.50 (2H.s), 3.83 (2H.m), 6.58 (4H.dd), 7.04 (2H.d), 7.19 (5H.s), 8.28 (2H.d)
122	N CNCH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	「H-NHR (CDC1) ð; 1.07~2.35(9H.m), 2.99(2H.bd), 3.62(2H.s), 3.81(2H.bt), 6.31~6.56(3H.m), 6.84~7.11 (3H.m), 7.25(5H.s), 8.31(2H.bs) 分子式; CHN.O.・2HC1
123	N CHCH, CH, - CH, - CH, - CH, - 2HC1	'H-NNR (CDC1 ₃) ð: 1 1 ~2 1 (9H, m), 2 5~3 0 (2H, m), 3 44 (2H, s), 3 68 (3H, m), 3 85 (2H, m), 6 78 (4H, dd), 7 02 (2H, d), 7 23 (5H, s), 8 37 (2H, d) 分子式: C ₂₇ H ₂₁ N ₃ O ₂ ·2HC1
124	N-CH ₂ -CH ₂	'H-NMR (CDCI ₃) ð; 7. 20 (1 i H. m), 8. 05 (1 H. m), 1. 2~1. 83 (9 H. m), 2. 65~2. 81 (2 H. d), 3. 4 (2 H. s), 3. 90 (2 H. m), 6. 20~6. 52 (2 H. m) 分子式; Cashaana · 2 HC1

表 9

実施例	神 造 式	物 理 化 学 恒 数 (融点、元榮分析値、NMR など)
125	CH3 CH3 CH3 CH3 CH3 . HC1	'H-NMR(CDC1,) &; 0.80~2.12(12H,m), 2.52 ~3.64(8H,m), 7.06~ 7.52(10H,m)
126	H₃N - CH₃CH₃- N-CH₃- 2HCI CH₃	「H-HMR(CDC1」)
127	OH3 CH3 CH3 · HCI	'H-NKR(CDC1,) る; 1.0~2.1(9H, m), 2.31(3H, s), 2.5~3.1(5H, m), 3.1~3.6(4H, m), 7.0~7.4(9H, m) 分子式; C.2.H.3.N.20・HC1
128	O 	'H-NMR(CDC1 ₃) &; 1.0~2.2(9H.m). 2.7~3.0(2H.m). 3.29(2H.m). 3.50(2H.s), 3.81(2H.s). 5.8(1H.s). 7.25(5H.s). 7.3~7.7(3H.m). 8.05(1H.d) 分子式; C ₂₂ H ₂₇ N ₃ O ₃ ·HC1
129	0 	'H-NMR(CDC1 ₃) る: (フリー体) 1,10~2.06(17H,m), 2.10~2.32(3h,m), 2.96 (3H,s), 3.20~3.52(4H,m), 4.08~4.16(2H,d), 7.36~7.76(5H,m) 分子式: C _{2.2} H _{2.8} N ₂ O・HC1
130	CH. CH. CH. CH. CH. CH. CH.	'H-NMR(CDC1 ₃) <i>δ</i> : 1,20~2.08(9H,m). 2,80~2.92(2H,d). 3,12(3H,s). 3,46~3.64(4H,m). 6.42(1H,dd). 7.00(1H,dd). 7.26~7.45(6H,m) 分子式: C ₂₀ H ₂₀ N ₂ O ₂ ·HC1

表 9 (統 き)

実施例	禄 造 式	物 理 化 学 恒 数 (股点、元素分析位、NVR など)
131	. O	'H-NHR (CDC1.) 8; 1.02~2.06 (9H. m), 2.71~3.57 (9H. m). 6.16~ 6.54 (2H. m), 7.10~7.55 (10H. m)
	CH;	分子式;C2aH2aN2O·HCI
132	O N-CH2-CH2 · HC1	'H-NMR (CDC1,)
		分子式:CzaHzaNzOz·HCl
133	(- H-CH°CH°- ← H-CH°CH°- ← HCI	'H-NWR (COC1)
	CH,	分子式;CzaHzoNzO·HCI
134	O-CNHCH,CH,	'H-NWR (CDC1+)
		分子式;C19H24H2O2·HCI
135	0 II —0COCH•——N-CH•—— · HC1	'H-MUR (CDC1.) δ; 1.1 ~2.2 (9H, α). 2.8~3.1 (2H, α). 3.50 (4H, s). 7.30 (10H, s)
		分子式;CzoHzzNOz·HCl
136	CH*O II CNHCH*CH* - W-CH* - W-CH*	'H-HWR (CDC1,) 6; (7')-) 1, 20-2, 16 (9H, m), 2, 64-3, 0 (2H, bd), 3, 46 (2H, s), 3, 36-3, 60 (2H, m), 3, 80 (6H, s), 5, 60 (1H, bs), 6, 50 ~6, 60 (2H, d), 7, 16-7, 40 (6H, m)
	OCH,	分子式;CzaHzoNzDa·HCI

安 9 (統 音)

奥施例	. 祷 造 式	物 理 化 学 恒 数 (触点、元素分析値、NUR など)
137	HO I CNHCH, CH, -CH, -CH, -CH · HCI	'H-NMR (CDC1;) か: (フリー体) 1,12~2,16(9H,m), 2,76~3,0(2H,bd), 3,48(2H,s), 3,32~3,60(2H,m), 3,92(3H,s), 6,32~7,40 (8H,m), 8,26(1H,bs), 14,0(1H,s)
	OCH.	分子式;CzzHzaNzOs·HCl
138	OCNHCH*CH*-CH*-CH*-CH*-	'H-NMR (CDC1 ₃) δ ; 1.1 ~2.2 (9H, m), 2.7~3.0 (2H, m), 3.1~3.4 (2H, m), 3.46 (2H, s), 4.90 (1H), 6.9 ~7.4 (10H, m)
		分子式;C2,H2eN2O2·HCl
139	CH,CNHCH,CH, -CH, -CH, -CH, - HC1	'H-NMR(CDC1 ₃)
140	CH = CHCNHCH, CH, -CH, -CH, -CH, -CH	'H-NMR(CCC1s) ð; 1.1~2.2(9H, m).2.7~3.0(2H, m),3.2~3.4 (2H, m),3.40(2H, s),5.9(1H),6.39(1H,d),7.1~7.8(11H,m)
141	CNHCH3CH3-CH3-CN-CH3-CD · HCI	'H-NMR(CDC1 ₃) る; (フリー体) 1,1~2,2(9H, m), 2.6~3,0(2H, bd), 3.44(2H, s), 3.36~3,6(2H, m), 3.90(3H, s), 6.9~8.30 (10H, m)
	OCH.	分子式;C,,H,eN,O,·HCl

実施例	神 造 式	物 理 化 学 恒 数 (政点、元素分析館、NMR など)
142	CH3CH3CNHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-HNR (CDC1,) δ; 1.1 ~2.2 (9H, m), 2.3 ~2.7 (4H, m), 2.7 ~3.0 (2H, m), 3.0 ~3.5 (4H, m), 6.1 (1H), 7.0 ~7.7 (10H, m)
		分子式:Cz=HaoNzO・HCI
143	O II CH-CH-CNHCH-CH	'H-NWR (COC1.) # ; 1. 17 (3H, t) 1, 2 -2. 1 (9H, m) 2. 17 (2H, q) 2. 7 -3. 0 (2H, m) 3. 1 -3. 4 (2H, m) 3. 45 (2H, s) 5. 3 (1H) 7. 21 (5H, s)
		分子式;C ₁ -H ₂ aN ₂ D・IICl
144	CHCNHCH,CH, CH, -CH, -CH, -CH, -CH	"H-NMR (CDC1 ₃) σ : 1.1 \sim 2.0 (12H, ϖ), 2.6 \sim 3.0 (2H, ϖ), 3.0 \sim 3.3 (2H, ϖ), 3.41 (2H, s), 3.3 \sim 3.4 (1H, ϖ), 7.23 (10H, s)
	City City	分子式;CaaHaoNaO·HCI
145	CH, - N-CH, - CH, - HCI	*H-HMR (CDC1 ₃) & ; 0, 90~2, 10 (9H, m), 2, 78 (2H, bd), 3, 00 ~3, 70 (2H, m), 3, 43 (2H, s), 4, 40~4, 85 (2H, m), 7, 27 (10H, s), 7, 38 (5H, s)
	~ uni - Ch	分子式;CzaHəzNəO·HCl
146	COCH,CH,-CH,-CH,-C	"H-NNR (COCI ₃) σ ; 1.0 ~2.1(9H, m). 2.7~3.0(2H, m). 3.48(2H. s). 4.36(2H, t). 7.0 ~7.7(8H, m). 7.8~8.2(2H, m)
		分子式;C:H:sNO:

表 9 (続き)

実施例	福 造 式	物 理 化 学 恒 数 (数点、元素分析値、NMR など)
147	C-N-CH ₂ CH ₂	H-NUR(COC1.) 8: 0.86~1.90(9H,m), 2.56~3.05(4H,m), 3.38(2H,d), 4.56(1H,s), 4.68(1H,s), 7.00~7.56(12H,m), 8.10(2H,m)
	0*N, 0 m. P	分子式; CaallaiNaOa・HCl
148	0 	H-HMR (CDC1 ₃) δ ; 1.0 ~2.1 (9H, m). 2.7~3.0 (2H, m). 3.1~3.4 (2H, m). 3.47 (2H, s). 5.58 (1H, dd). 5.9~6.1 (2H, m). 7.29 (5H, s)
1		分子式;CiaHaiNaO·HCI
149	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	'H-NKR (COC1.) 8; 1.00~4.08(16H.m). 7.38(10H.s)
	Chi	分子式;CzaHzaNzOz
150	CH ₂ CH ₂ - CN ₂ CH ₃ - CN ₂ CH ₃ CH	'H-NMR(COC1,) &; 0,90~2,10(9H,m), 2.55~3.50(7H,m), 3.52(2H,s), 7.38(5H,s), 7.80(4H,ABq)
		分子式;CsaHzrNzOs·HC1
151	CH3 CH3 CH3	'H-NMR (CDC1 ₃) З ; 0,96~2.08 (3H, m), 2.60~3.10 (6H, m), 3.48 (2H, d), 7.16~7.92 (14H, m)

実施例	禍 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
152	CHRCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -C	'H-NUR (COC1 ;) 8; 0.80~2.04 (9H, m), 2.48~2.88 (2H, m), 3.12~ 3.52 (4H, m), 7.03~7.72 (14H, m)
153	CHCHachacha — H-CHa — CHa — HC1 CHa	'H-HMR(COC1,) ð; 1.01~2.01(19H.m), 2.33(3H.s), 2,63~3.04 (5H,bd), 3.42(2H,bd), 7.15(4H,bs), 7.35(5H, s) 分子式; C,,H,,N,O・HC1
154	CH, CH, CH, CH,	'H-NMR(CDC1 ₂)
155	CH, O2N	'H-NWR(COC1,) が; 0,90~2,18(9H,m), 2,52~3,70(7H,m), 3,72(2H,s), 7,10~7,88(4H,m), 7,38(5H,s) 分子式; C2+H2-N2O2
156	CH3 HC1	助点(て):216~217 (分解) 元素分析値(C::H::N::O:- HCI として) C H N 理給値(X) 62.23 6.75 10.05 実測値(X) 62.95 6.69 9.88

表 9 (続き)

実施例	・ 横 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
157	0 CNCH,CH, - CN-CH, - C ← CH,	'H-NMR (CDC1 ₃) δ; 0,82 (9H, s). 1,02~2,28 (9H, α). 2.60~3.60 (9H, α). 7.28 (5H, s)
	\$ 5113	分子式;CacHaaNaO·HCI
158	O CNHCH: CH: -CH: -C CH: · HCI	'H-NUR (CDC1 ₃) ∂; 0.85 (9H, s). 1.12~2.28 (9H, ∞). 2.76 (2H, bd). 3.42 (2H, q). 7.38 (3H, ∞). 7.87 (2H, dd)
	•	分子式;C,sHaoNzO·HCl
159	O CHCH. CH CH CH F CH. CH.	'H-NMR(CDC1 ₅) &; 1.0 ~2.2(9H, m). 1.6~2.1(5H, m), 2.2~2.6 (4H, m). 6.8 ~7.7(9H, m)
	Cn ₃	分子式;C,,H,,,N,2O·IICI
160	0 CHCH,CH, - CH,	「H-NUR (CDC1 ₂)
	0	
161	CH, CH; -CH, -CH, -CH, -CH, -CH, -CH, -CH, -CH,	H-NMR(CDC1,) &; 1.00~2.08(9H, m), 2.78(2H, bd), 2.88(3H, s), 3.19~3.45(2H, m), 3.43(2H, s), 3.57(2H, s), 7.22(10H, s)
		分子式;C,,H,,N,O·HCI

実施例	格 造 式	物理 化学 恒数 (触点、元素分析値、NMRなど)
162	CH3CH3CH3CH3	H-HMR (CDC1.) 5; 1.00~2.00 (9H, m), 2.03 (3H, s), 2.80 (2H, bd), 2.88, 2.91 (total 3H, each s), 3.05 ~3,40 (2H, m), 3.43 (3H, s), 7.20 (5H, s)
	LNS	分子式:C:=H:eN:O·HCl
163	CH =CHCNCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	'H-HMR(CDC1.) 0: 1.1 ~2.2(9H.m). 2.6~3.2(5H.m). 3.2~3.6 (4H.m). 6.8 ~7.1(1H.m). 7.3(5H.s). 7.5 ~ 7.8(3H.m). 8.24(2H.d)
	O ₃ N ČH ₃	分子式;CzeHzzNzOz・HCI
164	O . HC1	'H-NWR(COC1,) 8: 1.00~2.08(10H.m), 2.72 ~3.08(5H.m), 3.33 (2H, bd), 6.16(1H, bs), 7.07(7H, bs)
		分子式;CzaHzsNzOz,HCI
165	CNCH, CH, -CH, -CH, - HCI	1H-NMR (CDC1.) 7: 0.15 (2H. m). 0.56 (2H. m). 0.90~2.23 (10H. m). 3.00 (5H. m). 3.34 (4H. m). 7.40 (5H. s)
-	·	分子式;C,sHzeNzO·HCI
166	CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	'H-NWR (CDC1;) 5; 1,00~2,02(9H, m), 2,64~3,00(5H, m), 3,41(4H, m), 7,15(1H, m), 7,27(5H, s), 7,50(1H, d), 8,41 (2H, m)
]		分子式;C2:H27N3O·2HCI

农	9 (統 き)	
実施例	禄 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
167	O CNCH,CH,-CH,-CH,-W · 2HC1	1H-HMR (CDC1.) &; 1.04~1.04(11H,m), 2.64.~3.00(5H,m), 3.58 (2H,s), 7.01(1H,m), 7.27(5H,s), 7.58(2H,m), 8.44(1H,d)
	•	分子式: C:,H:,N:0・2HC1 'H-NUR(CDCl:) 8: 1 00~2 00(4H.m) 2 83(2H.bd) 3 24(2H.bd).
168	CH, CNHCH, CH, -CH, -CH, -HCI	1.00~2.00(4H, m), 2.83(2H, bd), 3.24(2H, bd), 3.45(2H, s), 3.59(2H, s), 5.85(1H, bs), 7.27 (5H, s), 7.77(4H, ABq)
	UzN	分子式;C22H27N3O3・HC1 「H-NNR(CDC13) る;
169	CNCH, CH, -CH, -CH, -CH, -CH	1.0 ~2.1 (9H. m). 2.6~3.2 (5H. m). 3.2~3.7 (4H. m). 7.25 (5H. s). 7.3 ~8.1 (7H. m)
	CH ₃	分子式:CaaHaoNaO·HCI
170	CH-SCH-SCH-S-CH-S-CH-S-CH-S-CH-S-CH-S-C	'H-NWR (COCI,) ♂; 1.00~2.10(9H, m), 2.25(3H, s), 2.81(2H, bd), 2.97(3H, bs), 3.10 ~3.45(2H, m), 3.43(2H, s), 7.23(4H, ABq), 7.27(5H, s)
	CH3C00	分子式;CzeHsoN:Os·HCl
171	0 	1.06~1.92(9H, m). 2.70~2,99(5H, m). 3,44(2H, s). 7.22(2H, d). 7.38(5H, s). 8.50(2H, d)
		分子式;C.,H.,H.O·2HCl

実施例	褥, 造 式	物 理 化 学 恒 数 (融点、元素分析值、NMR など)
172	CH3CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH	H-NHR (CDC1) 8; 0.90~1.05(9H.m), 2.70(3H.s), 3.00(2H.d), 3.22(2H.s), 3.37(1H.s), 3.46(1H.s), 7.18~ 7.60(9H.m), 7.78(3H.m)
		分子式;CzeHzoNzO・HCI
173	CNHCH = CH = -CH = -CH = -CH	'H-HMR (COC1.) δ: 0.7 ~-2.2 (20H, α), 2.8 ~-3,2 (4H,), 3.55 (2H, α), 6.95 (1H, s), 8.02 (2H, d), 8.34 (2H, d)
	O*N_	分子式; CaiHaiNaOa
174	Broocch—Chchachachachachachachachachachachachacha	'H-NMR(CDCl ₃)
175	CH3 CH3 · HCI	'H-NMR (CDC13) Ø; 0.56~3.36 (23H, m), 3.40 ~3.68 (2H, m), 4.28 (2H, s), 7.18 (5H, s), 8.34 (2H, d), 8.58 (2H, d)
176	N-CH _* CH _* -\\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	'H-NWR (COCI ₃) & ; 1.16~2.12(9H, m), 2.89(2H, bd), 3.47(2H, s), 4.35(2H, bt), 7.08 ~7.74(11H, m), 8.08(1H, bd), 8.23(1H, dd)

表 , 9 (統 き)

実施例	構 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
177	CH. N-CH HC1	'H-NMR (CDC1.) 8: 1.08~1.94(9H, m), 2.68~3.02(7H, m), 3.40(2H, d), 7.27(5H, s), 7.41(2H, d), 7.78(2H, d), 10.0 (1H, s)
	CHO	分子式;CaaHzaNaOa・HCl
178	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ · HC1	'H-NUR (CDC1 3) 8; 1.10—1.98 (15H.m). 2.77 —2.98 (6H.m). 3.12— 3.46 (4H.m). 7.26 (9H.m)
	CH3 CH	分子式; CasHacNaO・HC1
179	CHCH2CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	'H-NMR(CDC1;) ð; 1,00~2,00(9H,m), 2,60~3,00(7H,m), 3,45(2H,m), 6,95(2H,d), 7,26(5H,s), 7,90(2H,d)
180	CH2 CH3	'H-NNR (CDCI ;)
	HO CITY	分子式;C+2H+4N2O2·HC1
181	CHCH, CH, -CH, -CH, -CH, - HCi	'H-NMR (CDC1,) \$\delta\$; 1.10\subseteq 1.88(12H, \alpha), 2.80(2H, \alpha), 2.98(3H, \s), 3.23\subseteq 3.44(4H, \alpha), 4.02(2H, \alpha), 6.84(2H, \alpha), 7.26(7H, \alpha)
	BtO Chi	分子式:CgaHggHgOg·HCl

表 9 (統 き)

実施例	胡 造 式	物 理 化 学 恒 数 (酸点、元素分析値、NMR など)
182	N	'H-NWR (CDC1-)
183	N	'H-NUR (CDC1 3) <i>б</i> : 1. 04—1. 98 (7Н, ш). 2. 20—3. 80 (7Н, ш). 6. 60— 7. 34 (7Н, ш). 8. 67 (2Н, d)
184	CH30C - CHCH3CH3- N-CH3 HCI	"H-NWR (CDC1:) が: 0.90~2.20(11H, m), 2.60 ~3.30(2H, m), 2.85, 3.03(total 3H, each bs), 3.48, 3.55(total 2H, each bs), 3.88(3H, s), 7.19, 7.21(total 5H, each s), 7.67(4H, ABq) 分子式: C.4H20N2O2・HC1
185	CH3CH2OCH3 - CHCH2CH3 - N-CH3 - HC1	H-NNR(COC1)) か 。 0.90~2.06(9H, s) 。2.70~3.02(10H, m) 。3.20 ~ 3.62(4H, m) 。4.50(2H, s) 。7.21~7.30(9H, d) 分子式:C25H24N202・HC1

安 9 (統 き)

実施例	福 选 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
186	CH, CH, -CH, -CH, -CH	'H-NNR(CDC1 ₃) <i>ð</i> ; 0.90~2.10(9H, m). 2.81(2H, bd), 3.45(2H, s), 4.11(2H, t), 6.98~7.82(8H, m), 7.21(5H, s)
187	CH, CH-O -CHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH	'H-NMR(CDC1;) ð; 1.29(3H,s), 1.40(3H,s), 1.40~2.20(9H,m), 2.83(2H,bd), 3.00(3H,s), 3.20~3.50(2H,m), 3.48(2H,s), 4.56(1H,quirtet), 7.08(4H,ABq), 7.28(5H,s) 分子式; C ₂₅ H ₂₄ N ₂ O ₂ ·HC1

実施例	存 选 式	物 理 化 学 恒 数 (数点、元素分析値、NMR など)
188	CH ₉ O CH ₉ -CH ₉ -CH ₉ - HCI	'H-MMR (CDC1₃) ♂; 1.00~3.40(14H, m). 3.47(2H, s). 3.78(3H, s). 6.90~7.50(3H, m). 7.23(5H, s)
		分子式;C29H21NO2・HC1
189	СН Он-СН Он-С1	'H-NMR (CDC1 3) 8; 1.05~2.12(9H, m); 2.50~3.40(5H, m); 3.48 (2H, s); 3.88(3H, s); 6.98(1H, q); 7.15~7.32 (2H, m); 7.23(5H, s)
	CH3 Q	分子式;C12H27HO2·HCI
	^	飲点(で);199~200 (分解)
190	сн.о сн.о сн.о сн.о сн.о сн.о сн.о сн.о	元素分析値(CzeHseNOs・HCl として)
		T理論值(K) 69.30 7.27 3.37 実測値(K) 69.24 7.40 3.38
	CH-O O	助点 (で) ;198~199
191	CH = O - CH = - CH = - HCI	元素分析値(CaeHaaNOa・HCI として)
		で H N 理論値(X) 69.30 7.27 3.37 実現値(X) 69.15 7.42 3.47
	CH=O Q	融点(で);200~201
192	СН ₉ О - СН, - СН	元素分析値(CzzHzzHOz・HCI として)
		で H N 理論値(X) 67.33 7.23 3.14 実践値(X) 67.10 7.16 3.00

実施例	梅 造 式	. 物理 化学 恒数 (融点、元素分析値、NNRなど)
193	Р СН, -СН, -СН, -СН - НС1	'H-NMR (CDC! 1) が: 1.05~2.15(9H.m), 2.55~3.43(5H.m), 3.48 (2H.s). 7.23(5H.s). 7.23~7.43(3H.m)
194	CH3 - CH3 - CH3 - CH3 - HC1	映点 (で) : 175~177 元素分析値(CasHasNO・HC1 として) 理論値(X) 74.68 7.63 3.79 更測値(X) 72.77 7.64 3.62 火川30 (X) 72.90 7.71 3.70
195	СН, -СН, -СН, -ССН, -ССН, -ССН,	酸点(で):211~213 (分解) 元素分析館(C ₃ -H ₃ -NO·HC1 として) C H N 理論値(N) 74.68 7.63 3.79 実現値(N) 72.68 7.49 3.70 火川。O(N) 72.90 7.71 3.70
196	сн, о Сн, -Сн, -Сн, -С	融点(で):153~154 元素分析館(CュョHュッNOュとして) で H N 理論値(X) 75.59 7.45 3.83 実調値(X) 75.77 7.28 3.64
197	CH ₉ O — CH ₉ — CH ₉ — CH ₉ — .	映点 (で) ; 170~171 (分解) 元素分析値(C ₃ ,H ₃ ,NO ₃ として) C H N 理論値(X) 75.59 7.45 3.83 実測値(X) 75.61 7.47 3.55

実施例	福 浩 式	物理化学恒数
×1001	119 44 24	(融点、元素分析値、NMR など)
		敗点(で);175~176
198	CH,CH,O CH, - N-CH, - N-CH	元集分析位(CaeHaaNDa・HCI として)
	CH*CH*O	C H N 理論値(A) 70.33 7.72 3.15 実践値(A) 70.20 7.46 3.35
	1	敬点(て);236~237 (分解)
199	CH, -CH, -CH, -CH, -CH,	元چ分析値(CasHasNOa・HC1 として)
133	d — L	で H N 理論値(3) 69.08 6.55 3.50 実践値(3) 68.97 6.82 3.29
	0	融点 (で) :195~196
200	СН СН СН НСІ	元紫分析値(C₂∍H₂¬NO・HCI として)
200		TEA C H N TA 68 7.63 3.79 实现值(K) 72.72 7.77 3.78
	0 CH 2 - CH 2 - CH 2 - CH 3 -	'H-NWR(CDC1,)
201	• нст	
		分子式;CaeHaaNO·HCl
		'H-NMR (CDC1 ₃)
202	СН, - СН, - СН, - СН . НС1	(2H, m), 3, 41 (2H, s), 3, 51 (1H, q), 7, 20 (5H, s), 7, 30~7, 92 (5H, m)
	CH.	分子式;CaaHaaNO·HCl

実施例	神 造 式	物 理 化 学 恒 数 (酸点、元素分析値、NUR など)
		破点 (で) ;126~127
	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ · HCI	元素分析値(CaeHaaNOa・HCl として)
203	CH ₂ CH ₃ CH ₃ · HL I	C H N
	CH	理論值(X) 70.33 7.72 3.15 実測值(X) 70.41 7.48 2.85
204	CH3O CH3CH3CH3CH3CH3 - N-CH3 - HCI	H-NNR (CDC1 ₃) & ; 1.00~3.40(20H.m). 3.50(2H.s). 3.90(3H.s). 3.97(3H.s). 6.88(1H.s). 7.18(1H.s). 7.31 (5H.s)
	CH ₃ 0	分子式;CanHasNOa·HCI
205	CH ₂ O CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	1H-NUR (CDC1-) # ; 1.05~3.36 (22H, m). 3.45 (2H, s). 3.85 (3H, s). 3.90 (3H, s). 6.78 (1H, s). 7.08 (1H, s). 7.21 (5H, s)
	CH³0, △	分子式:C2aH2xNOx・HC1
206	CH ₃ O CH-CH, CH, HCI	1H-NWR (CDC1;)
	•	分子式;CzaHzaNOz·HCI
207	0 - СН - СН• - СН• - НСІ	H-NHR (CDC1;) 8; 1.50~3.57(17H,m), 3.48.3,50(total 2H, each s), 3.83,3.85(total 3H, each s), 6.57 ~7.39(4H,m), 7.22(5H,m)
	CH30	分子式;C,,H,, NO,·HCl

実施例	禄 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
208	CH-OH-CH- CH- HCI	'H-NWR(CDC1,) &; 1.58~2.55(7H, m), 2.79~3.02(2H, m), 3.50 (2H, s), 3.63(2H, d), 3.90(6H, s), 6.63(1H, dt), 6.93(1H, d), 7.22(5H, s), 7.57(1H, d)
	CH³Q	分子式;CzeHzyNOs·HCI
209	CH = CH - CH = - CH - HC1	'H-NMR (COC1.) 8: 1.50~2.55(7H.m). 2.78~3.03(2H.m). 3.48 (2H.s). 3.56(2H.d). 3.85(3H.s). 4.00(3H.s). 6.62(1H.dt). 7.07(1H.d). 7.21(1H.d). 7.22 (5H.s)
	,	分子式;CzeHzzNOz·HCI
210	CH = 0	'H-NWR (CDC1,) & ; 1,50~2.50 (7H, m), 2.78~3.03 (2H, m), 3.48 (2H, s), 3.53 (2H, d), 3.82 (3H, s), 3.90 (3H, s), 4.03 (3H, s), 6.58 (1H, dt), 6.51 (1H, s), 7.25 (5H, s)
	Cn ₂ U	分子式;C ₂₅ H ₂₉ NO ₄ ·HCI
211	Р — СН — СН. — СН. — НС1	'H-NWR (CDC1 ₃) & ; 1,52~2.55(7H,m). 2.78~3.02(2H,m). 3.50 (2H,s). 3.59(2H,s). 6.72(1H,dt), 7.05~7.55 (3H,m), 7.22(5H,s)
		分子式;C ₂₂ H ₂₂ NOP·HC!
212	CH. CH. CH. CH. HC1	'H-NNR (CDC1 ₂) & ; 1,50~2,55(7H,m), 2,38(3H,s), 2,78~3,02 (2H,m), 3,48(2H,s), 3,57(2H,s), 6,66(1H,dt), 7,38~7,60(3H,m), 7,21(5H,s)
	·	分子式;CzaHzaNO·HCI

表 10 (統. 音)

実施例	視 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
213	CH HC1	'H-NMR (CDC1 ₃) δ; 1.48~2.60 (7H, m), 2.32 (3H, s), 2.77~3.02 (2H, m), 3,49 (4H, s), 6.69 (1H, dt), 7.10 ~ 7.67 (3H, m)
	CH,	分子式: C:=H:=NO·HCI
214	HO H-CH.	融点 (で) : 174~175 元素分析値(C ₂₃ H ₂₅ NO ₃ として)
	CH ₉ O	で H N 現論(ない) 69.08 6.55 3.50 実別遺(な) 69.12 6.41 3.43
	CH = 0	般点(セ):175~176
215		元案分析値(CaoHanNOaとして)
		C H N T T T T T T T T T T T T T T T T T T
	CH3CH30	融点 (で) :180~181
216		元素分析値(CeeHaiNOa・HCl として)
		C H N 理論値(X) 70.65 7.30 3.17 実調値(X) 70.34 7.05 3.07
217	. нст	融点 (で) : 228~230 (分解)
		元粲分析値(CュュHュュNOュ・HCI として) C H N
		理論館(A) 69.43 6.08 3.52 実調館(A) 67.89 5.97 3.45 八H.O(X) 67.89 6.19 3.44

実施例	福 造 式	物 理 化 学 恒 数 (酸点、元素分析值、NUR など)
218	CH - CH - CH - CH - HC1	'H-HMR (CDC1;) ♂; 2.48~3.02(13H, m), 3.48(2H, s), 6.73(1H, dt), 7.10~8.10(4H, m), 7.22(5H, s)
		分子式;CaaHaaNO·HCI
		岐点(で);211~213 (分解)
219	QCH -{	元素分析値(C24H27NO・HC1 として)
619	· HCI	C H N 理論值(%) 75.47 7.39 3.67 実過值(%) 75.22 7.41 3.57
220	CH - CH - CH - HC1	'H-NWR (CDC1;) Ø; 1,20~2.60(7H.m), 1.96(3H.d), 2.70~2.97 (2H.m), 3.46(3H,s), 6.07(1H.dd), 7.21(5H.s), 7.21~7.61(5H,m)
		分子式;C ₂₂ H ₂₅ NO・HCl
	g	放点 (で) :170~171
221	CH ³ CH ³ CH CH ³ CH	元条分析値(CzeHs,NOsとして) C H N 理論値(X) 77.01 7.70 3.45 実測値(X) 77.10 7.67 3.43
222	CH ₂ O CHCH ₂ CH ₃ CH ₃ CH ₃ - N-CH ₃ - HCI	TH-NWR (CDC1,) # : 1,10~2.40(13H,m), 2.70 ~3.00(2H,m), 3.45 (2H,s), 3.48(2H,s), 3.86(3H,s), 3.91(3H,s), 6.68(1H,tt), 6.80(1H,s), 7.20(6H,s)
	CH³O ~ .	分子式; C,,H,,NO, · HCl

実施例	福 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
223	CH ₂ O . HC1	'H-NMR(CDC1;) &; 1, 10~2.40(15H,m), 2,68 ~3.00(2H,m), 3.46 (2H,s), 3.50(2H,s), 3.88(3H,s), 3.93(3H,s), 6.58(1H,tt), 6.83(1H,s), 7.19(1H,s), 7.21 (5H,s)
		分子式;C₂₂H₃₅NO₂・HC1
224	CH=0 CH-CH=CH-CH=CH-CH, -CH, -CH, -CH, -CH, -CH, -CH, -CH	融点 (で) ; 130~135 元衆分析値(CseHseNos・HC1 として) C H N 理論値(X) 70.98 5.87 3.18 実測値(X) 70.81 6.72 3.10
225	CH ₉ O CH ₉ -H CH ₉ - HCI	'H-NWR(COC1 ₂)
226	CH ₃ O CH ₃ -CH	原点(で):186~188 (分解) 'H-NMR(CDC1) る: 1.65~2.10(7H, m), 2.65~2.75(2H, m), 3.25~ 3.83(5H, m), 3.92(3H, s), 3.98(3H, s), 4.60 (2H, s), 6.88(1H, s), 7.19(1H, s), 7.26~7.60 (5H, m) 分子式:C ₃ H ₃ NO ₄
227	CH=0 CH= CH= CH= CH= · HCI	融点 (で) : 220~221 元素分析値(CsaHs,NOs・HC1 として) C H N 理論値(30) 69.83 7.50 3.26 実現値(31) 70.03 7.51 3.26

実施例	福 选 式	物理化学值数
		(融点、元素分析値、NMR など)
1	O CH ₃	融点(℃):212~213
228	CH ₃ O. HC1	元架分析位(C,,H,,NO,・HCl として)
220	CH ₉ O CH ₉ O · nc1	C H N 理論館(X) 69.83 7.50 3.26 実測位(X) 69.62 7.38 3.15
	_	融点 (で) ; 229~230 (分解)
000	СН ₃ 0 У-СН ₃ - Он-СН ₃ - НСІ	元桒分析館(CssHs;NOs·HCl として)
229	CH ₃ O CH ₃ - M-CH ₃ - CH ₃ · HCI	ERIAL DE CONTRA
		理論値(X) 69.83 7.50 3.26 実測値(X) 69.91 7.48 3.28
230	CH = 0 CH - CH	'H-NWR(COC1,)
	CD3U	分子式;CaaHaaNaOs·HCl
	O NO	敢点(で);210~211
231	CH-0 CH, -CH, -CH, - HCI	元素分析位(C₂₄H₂₀N₂Os・HCI として)
231		C H N 理論館(X) 62.54 6.34 6.08 実測館(X) 62.48 6.34 5.96
232	CH*0 CH* - CH* - CH* - NO* · HCI	敢点 (で) :234~236 (分解)
		元衆分析値(Ca 4H a eN a Os・HC1 として)
		で H N 理論値(な) 62.54 6.34 6.08 実践値(な) 62.56 6.25 5.83

改 10 (統 き)

実施例	神 造 式	物 理 化 学 恒 数 (融点、元素分析館、NMR など)
233	CH ₃ O CH ₃ -	'H-NMR(CDC1 ₃) ま; 1.10~3.43(14H,m), 3.52(2H,s), 3.84(3H,s), 3.91(3H,s), 6.35~7.08(7H,m) 分子式; C ₃₄ H ₂₃ NO ₄ ・HC1
234	CH.O CH CH CH OH · HC1	放点 (t): 146~148 元素分析値(C, H, NO, ・HC) として) 理論値(X) 66.51 7.29 3.53 実調値(X) 66.73 7.00 3.24
235	CH-0 CH-CH-CH-CH-CH- HC1	融点 (で):193~194. 元素分析値(C2sH2,NO,・HC1 として)
236	CH = 0 CH = -CH = -CH = - OCH = · HC1	融点(で):226~228 (分解) 元素分析値(CssHsiNOs・HC1 として) C H N 理論値(X) 67.33 7.23 3.14 実調値(X) 67.21 7.29 2.97
237	CH30 CH3 CH3 CH3 CH3 CH3 CH3	「H-NWR(COC1。) み; 0.78~3.40(14H.m), 3.46(2H.s), 3.85(3H.s), 3.91(3H.s), 5.01(2H.s), 6.78(1H.s), 6.80~ 7.43(9H.m), 7.09(1H.s) 分子式; C3.H3:NO4・HC1

実施例	構 造 式	物 理 化 学 恒 数 (<u>陸</u> 点、元衆分析値、NAR など)
238	CH30 CH3 - CH3 - CH3 - 2HC1	融点(で);224~226 (分解) 元衆分析位(C,,H,,N,O,・2HC1として)
239	CH ³ O CH ³ -CH ³	融点 (で) ; 253~256 (分解) 元素分析値(C.sH.,NO,・HC1 として) C H N 理論値(X) 69.83 7.50 3.26 実現値(X) 69.60 7.49 3.27
240	CH=0 CH=	融点(で);225~226 (分解) 元染分析館(C,・H,・NO,・HC1 として) C H N 理論館(X) 68.31 8.60 3.32 実調館(X) 68.17 8.49 3.51
241	CH=0 CH=	融点(で):226~227 (分解) 元素分析値(C.aH.,NO. · HCI として) C H N 理論値(X) 72.17 6.92 3.01 実調値(X) 71.71 7.07 2.85
242	CH ₉ 0 CH ₉ - CH ₉ - CH ₉ - HC1	融点(で);243~245 (分解) 元素分析値(C,,H,,NO,・HC1 として) C H N 理論値(X) 72.17 6.92 3.01 実調値(X) 71.75 6.92 2.01

実施例	福 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
		(政点、九条ガリロ、nax セン) 政点 (で) ;191~192
243	CH30 CH3 CH3 - CH3 - CH3 - CH3 - CH3	元素分析値(CasHasNOs・HC) として)
		C H N 理論値(%) 65.60 7.20 2.94 実調値(%) 65.34 7.27 2.79
	CH3O CH3 CH3 OCH3 OCH3	融点 (で) ;219~221
244		元素分析位(Ca+HasNOs・HC1 として)
		理論位(X) 64.09 7.17 2.77 実訓位(X) 63.27 7.19 2.51 公(X) 62.96 7.24 2.72
245	CH = O CH = - HCI	「H-NNR(D ₂ O) ð: 1.10~3.12(14H,m), 3.84(3H,s), 6.70(1H,s), 6.84(1H,s) 分子式: C,sH ₂ ,NO ₂ ・HC1
	NO ₃	融点(で):182~183
	CH20 CH2 - CH2 - CH2 - CH2	元衆分析位(CaoHaaNaOa として)
246		C H N T P P P P P P P P P P P P P P P P P P
247		敗点 (で) :240~241 (分解)
		元霈分析値(CaeHaaNDaSa・HCl として)
	CH ₉ 0 CH ₉ CH ₉ CH ₉ · HC1	理給值(%) 63.46 6.96 2.85 実調値(%) 63.18 6.78 2.80

実施例	探 造 式	物 理 化 学 恒 数 (数点、元素分析値、NMR など)
248	CH ₂ O	駐点 (で) ;180~185 (分解)
		元چ分析値(CaaHaaNaOa・2HC1として) C H N 理論値(X) 60.73 6.45 6.25 実別値(X) 60.92 6.67 6.18
	(CH ₃ 0)	触点(で);230~232 (分解)
249		元素分析値(CasHasNOs・HC! として)
		理論值(%) 69.35 6.65 2.31 実測值(%) 69.21 6.59 2.33

第1頁の続き								
®Int. Cl. ⁵			į	識別記号			庁内整理番号	
Α	61		31/445 31/47 31/495 31/55					7375-4C
С	07	D 2 2 4 4 4	11/08 11/40 95/10 01/00 05/12 13/06 71/04		1 0	4	Н	7180-4C 7180-4C 6742-4C 6742-4C 6742-4C 6742-4C 8829-4C
個発	明	者	荒	木			伸	茨城県つくば市竹園 2-11-6 柏マンション401号
⑩発	明	者	小	笹		貫	史	茨城県つくば市吾婁 4 -14-5 ヴイラ・エスポワール 206号
@発	明	者	窪	Ħ		篤	彦	茨城県つくば市並木 4-15-1 ニユーライフ並木406
@発	明	者	小	笹	美	智	子	· 茨城県つくば市吾婁 4 -14-5 ヴイラ・エスポワール 206号
個発	明	者	山	津		滑	實	神奈川県鎌倉市今泉台7-23-7