Imersion, Regularity, Decey

peut Gren 5: IR-> IR with appropriate regularity i decay:

(1)
$$\hat{f}(1) = \int_{-\infty}^{+\infty} f(x)e^{iSx} dx$$
 "Fourter"

Transform"

is the fourier Transform of f, which subsifies

(2)
$$f(x) = \frac{1}{2n} \int_{-\infty}^{+\infty} f(1) e^{i3x} d3.$$
 Transform"

Romphy speaking, smoothness in & heads to decay in F and vice versu. We define $f \in F_{\alpha}$

Thm I If f & Sc for some a 20, then

By imposing regularity on f, we can control the decay of f to ensure that (2) is well-defined. This allows us to establish (1)-(2) for feg.

Theorem 2] If f & In for some a 20, then

 $f(x) = \frac{1}{2n} \int_{-\infty}^{+\infty} f(x) e^{iSx} dx$, for all $x \in \mathbb{R}$.

 $|Pf| = \frac{1}{2n} \int_{-\infty}^{\infty} (f)e^{i7x} df = \frac{1}{2n} \int_{-\infty}^{\infty} (f)e^{i7x} df + \frac{1}{2n} \int_{-\infty}^{\infty} (f)e^{i7x} df$ $= \frac{1}{2n} \int_{-\infty}^{\infty} (f)e^{i7x} df = \frac{1}{2n} \int_{-\infty}^{\infty} (f)e^{i7x} df$

Since fé 5a, choose och ca and agree as in proof of Theorem 1 to express (3>>>)

f(3) 2 | f(y-ib) e is(y-ib) dy.

- 2 delor]

- contour

Substitute this into II and culculate

$$\frac{1}{2n} \int_{0.5}^{\infty} (5) e^{i5x} d5 = \int_{0.5}^{\infty} \int_{-\infty}^{+\infty} (y - i5) e^{i5(y - i5 - x)} dy d5$$

$$=\frac{1}{2n}\int_{-20}^{2\pi} \frac{f(y-ib)}{f(y-ib)} \lim_{k\to\infty} \left[\frac{e^{-i\xi(y-ib-x)}}{-b-i(y-x)}\right]_{\xi=0}^{\xi=1} dy$$

$$\lim_{k\to\infty} \left[\frac{e^{-i\xi(y-ib-x)}}{-b-i(y-x)}\right]_{\xi=0}^{\xi=1} = \lim_{k\to\infty} \left[\frac{1-e^{-bk}e^{-ik(y-x)}}{b+i(y-x)}\right]$$

$$=\frac{1}{b+i(y-x)}$$

$$=\frac{1}{b+i(y-x)}$$

$$=\frac{1}{2\pi i}\int_{-\infty}^{2\pi i} \frac{f(y-ib)}{b+i(y-x)} dy = \frac{1}{2\pi i}\int_{-\infty}^{2\pi i} \frac{f(y-ib)}{y-ib-x} dy$$

$$=\frac{1}{2\pi i}\int_{k}^{2\pi i} \frac{f(\xi)}{\xi-x} d\xi \quad \text{where } k_1: \{\text{Im } z=-b\}.$$
Similarly, for $1:20$,
$$\frac{1}{2\pi}\int_{-\infty}^{2\pi i} \frac{f(\xi)}{y-x} d\xi \quad \text{where } k_1: \{\text{Im } z=-b\}.$$
Now, consider the contour R and use
$$-R*ib$$

$$-R*ib$$

$$-R*ib$$

$$-R*ib$$

$$-R*ib$$

the Cauchy's integral formule to write

As R-100, the integral over vertical sides-20:

Therefore, in the houst R-soo, we have

$$f(x) = \frac{1}{2\pi i} \left(\frac{f(x)}{5-x} dx + \frac{1}{2\pi i} \right) \left(\frac{f(x)}{5-x} dx \right)$$

by colc.

above =
$$\frac{1}{2n} \int_{3}^{\infty} \hat{f}(s) e^{isx} ds + \frac{1}{2n} \int_{-\infty}^{3} (s) e^{isx} ds$$

$$=\frac{1}{2n}\left(\widehat{\mathfrak{s}}(1)e^{i\mathfrak{I}x}d\mathbf{1}\right).$$

In practice, Fourier inversion holds under much milder conditions. For example,

Thm 3 Let f:1R->1R be precente continuous, absolutely integrable, with precente continuous f:

=)
$$\lim_{\xi \to 0} \frac{f(x+\xi) + f(x-\xi)}{2} = \frac{1}{\ln 1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y) e^{i\xi(x-y)} dy dy$$

This shows that (1)-(2) hold at points of continuity of f and that Fourier inversion recovers the average at isolated Isrontimethes.

Bandhorital Functions

In signal processing and inverse problems, functions composed of Fourter nodes of bull range of frequencies are called buellanted:

In other words, $\hat{F}(3) = 0$ when $151 \ge B$.

This is an extreme case of "decay" in the Fourter Transform of F, so we night ask - "what regularly makes & bandlimited"?