

THE HASTINGS ALGORITHM AT FIFTY

Paper discussion

Ola Rasmussen & Khanh Truong

January 24, 2024

Contents

Summary

- 1. INTRODUCTION
- 2. SOME KEY HISTORICAL DEVELOPMENTS
- 3. CHALLENGING APPLICATIONS
- 4. EMERGING AREAS & 5. OPEN ARES AND ONGOING CHALLENGES

Questions

Summary

- ▶ 1970, W. K. Hastings, Markov chain algorithms, sampling
- Stationary distribution is target distribution
- Hastings improved Metropolis, allowed asymmetry
- Bayesian posterior distributions

- lacktriangle Study, characteristics, probability distribution $f\left(\cdot\right)$
- ► If simple, analytically
- If complicated, numerical integration, issues, accuracy, stability, and scalability to higher dimensions
- Solution, Monte Carlo algorithms, estimate features, samples
- **Example:**
 - Estimate mean
- Solution:
 - With samples $x_t \sim f$, we can estimate the mean of f(x) as $\hat{\mu} = \frac{1}{T} \sum_{t=1}^T x_t$

- Key challenge, efficiently generate samples
- Univariate case, many, inverse cumulative distribution function algorithm is popular
- Arbitrary multivariate distributions, challenging
- Rejection sampling attempts to solve this problem
- ightharpoonup Problem, how to select good $g\left(x\right)$ that is easy to sample from

- Markov chain Monte Carlo algorithms
- Markov chain $\{x_t\}_{t=1}^T$, transition kernel $K(x_t \mid x_{t-1})$
- ightharpoonup Samples $\{x_t\}$, converge, stationary distribution is target distribution
- Burn in, isn't stationary at the beginning
- Particularly popular in Bayesian inference

- Metropolis, 1953, built on rejection sampling
- ightharpoonup Samples candidate \tilde{x} from proposal density (symmetric)
- Set $x_t = \tilde{x}$ with probability $\alpha\left(\tilde{x} \mid x_{t-1}\right) = min\left\{1, \frac{f(\tilde{x})}{f(x_{t-1})}\right\}$ and $x_t = x_{t-1}$ otherwise
- Big problem, only symmetric distributions

- ► Hastings, 1970
- ► Improved, asymmetry
- ▶ Set $x_t = \tilde{x}$ with probability $\alpha\left(\tilde{x} \mid x_{t-1}\right) = min\left\{1, \frac{f(\tilde{x})}{f(x_{t-1})} \cdot \frac{g(x_{t-1}|\tilde{x})}{g(\tilde{x}|x_{t-1})}\right\}$ and $x_t = x_{t-1}$ otherwise
- Most popular MCMC algorithm
- Most common approach to modern Bayesian computation

- ▶ Top 10 most important algorithms of the 20th century
- Hydrogen bomb, "mathematical analyzer, numerical integrator, and computer"
- Didn't mention Bayesian statistics, but is most prominent today
- Made Bayesian statistics feasible

2.1. Overview

- How to choose a good proposal having high computational efficiency?
 - (i) Computational cost per iteration of the sampler
 - (ii) Mixing rate of the Markov chain $\{x_t\}$
- (i), dependent, cost of sampling, calculating acceptance probability
- ightharpoonup (ii), samples are not independent, x_t and $x_{t+\Delta}$ are correlated
- ▶ Slow mixing, correlation between x_t and $x_{t+\Delta}$ decreases slowly, samples contribute less information
- ► Effective sample size

2. Extensions

- Gibbs
- Metropolis-within-Gibbs
- Blocking
- Adaptive algorithms
- Gradient-based algorithms
 - Metropolis-adjusted Langevin
 - ► Hamiltonian Monte Carlo

3. CHALLENGING APPLICATIONS

Other Pdf

4. EMERGING AREAS & 5. OPEN ARES AND ONGOING CHALLENGES

Other Pdf

Questions

- 1. Adaptive algorithms
- **2.** What are some advantages of gradient-based algorithms compared to other MCMC methods?
- **3.** What is the best proposal distribution? Should we choose the one that is similar to prior distribution?

