Laplace Transfolms

The knowledge of Laplace Teansform has in recent years become an essential part of mathematical background required of Engineers and scientists. This is because the teansform methods provide an easy means too the solution of many problems arising in Engineering.

The method of Laplace transams has the advantage of disectly giving the solution of differential Equations with given boundary values. The ready tables of Laplace transforms reduce the problem of solving differential Equations to mere algebraic manipulation.

Some of applications of taplace teansform are steady stare analysis of electrical circuits, analysis of impact and mechanical vibrations, froblems such as deflection of beams etc.

Defination:

Let f(t) be a given function and defined for all positive alues of t'. Then the Laplace teansform of f(t), denoted by L(f(t)) or f(s) and is defined by $L(f(t)) = f(s) = \int_{0}^{\infty} e^{-st} f(t) dt$ Here the parameter s' is a real of complex number.

with - for early month

1)
$$L\{k\} = \frac{k}{s}$$
 where k' is a constant

s)
$$L[\cos at] = \frac{S}{S^2 + a^2}$$

6) L[sin haty =
$$\frac{a}{s^2-a^2}$$

7) h [coshar] =
$$\frac{S}{s^2-a^2}$$

$$= \frac{1}{s-3} - 2\left(\frac{1}{s+2}\right) + \frac{2}{s^2+2^2} + \frac{s}{s^2+3^2} + \frac{3}{s^2-3^2} - 2\left(\frac{s}{s^2+2}\right) + 9\left(\frac{1}{s}\right)$$

$$=\frac{1}{s+2} - \frac{2}{s+2} + \frac{2}{s+4} + \frac{3}{s^2+9} + \frac{3}{s^2-9} - \frac{2s}{s^2-1b} + \frac{9}{s}$$

Note: - While finding the L.T. of elementary functions, it can be noticed that the integral exists under certain conditions, such as \$>0 or \$>a etc. In general, the tunc fit) must satisfy the following conditions for Existence of L.T

1) The func flt) must be piece-wise Continuous or Sectionally Continuous in any limited interval oxa < t < b 2) The func flt) is of Exponential order

Linearity property ?_

Statement: - If a,b,c be any constant and figih are any functions of t' then

hoatet) +bglt) +ch(t) = a L(11) +b L(g(t))+c h(h(t))

Proof! - Liasit)+bglt)+chlt) = jestafit)+bglt)+chlt)jdt

= Je-sta fle) at + Je-st b gle) at + Je-st chle) at

= a se-st fit) dt + b se-stgit) dt + c se-st hit) dt.

= a . L[f(+)] +b. L[g(+)]+c L[h(+)]

Hence proved.

2) find
$$L.\overline{r}$$
, of the following

$$(t^{2}+1)^{2}$$

$$8d!-(t^{2}+1)^{2} = t^{4}+2t^{2}+1$$

$$= L(t^{4}+2t^{2}+1) \Rightarrow L(t^{4})+2L(t^{2})+L(1)$$

$$= \frac{u!}{s^{5}}+2\frac{3!}{s^{3}}+\frac{1}{s} \Rightarrow \frac{2^{4}}{s^{5}}+\frac{4^{5}}{s^{3}}+\frac{1}{s}$$

$$= \frac{s^{4}+4s^{2}+2^{4}}{s^{5}}$$

$$= \frac{s^{4}+4s^{2}+2^{4}}{s^{5}}$$

$$= L(sint+cost)^{2} = Sm^{2}t+cos^{2}t+2Sm^{2}cost$$

$$= L+2Sint-cost$$

$$L(sint+cost)^{2} = L(sin2t)$$

$$= L(sin3t)$$

$$L\{f(1)\} = L\left[\frac{1}{2}(\sin 2t + \sin 8t)\right] = \frac{1}{2}\left[L(\sin 2t) + L(\sin 8t)\right]$$

$$= \frac{1}{2}\left[\frac{9}{s^{2} + 9^{2}} + \frac{8}{s^{2} + 8^{2}}\right]$$

$$L\{f(1)\} = \frac{1}{s^{2} + 4} + \frac{4}{s^{2} + 64}$$

$$\frac{1}{s^{2} + 4} + \frac{4}{s^{2} + 64}$$

$$\frac{1}{s^{2} + 4} + \frac{24}{s^{4} + 64}$$

$$\frac{1}{s^{2} + 2} + \frac{24}{s^{4}} + \frac{3(s^{2} + 2)}{s^{4} + 9}$$

$$\frac{1}{s^{4}} + \frac{2(s^{2} + 2)}{s^{4} + 9}$$

$$\Rightarrow Sin^{2}t \cos 3t + 3\cos 3t + 3\cos 3t + \frac{2(s^{2} + 2)}{(s^{2} + 2)}$$

$$\Rightarrow L\{3\cos 3t \cdot \cos 4t\}$$

$$\left[A^{3}! - \frac{3s(s^{2} + 2)}{(s^{2} + 4)}\right]$$

$$\left[A^{3}! - \frac{3s(s^{2} + 2)}{(s^{2} + 4)}\right]$$

Theorem:
$$= \mathfrak{P}_1 + f_1(x) = f(x) + f(x) = f(x) = f(x)$$
, $x = x > 0$

Theorem: $= \mathfrak{P}_1 + f_1(x) = f(x) + f(x) + f(x) = f(x) = f(x) = f(x)$

Proof: $= g_1 + f_1(x) = f(x) + f(x) = f(x) = f(x) = f(x)$
 $= f(x) = f(x)$

By thest shifting thm,
$$L[e^{44} \text{ Sin2t cost}] = \frac{1}{2} \left[\frac{3}{s^2+9} + \frac{1}{s^2+1} \right]_{S \to S^{\frac{1}{4}}4}$$

$$= \frac{1}{2} \left[\frac{3}{(s-4)^2+9} + \frac{1}{(s-4)^2+1} \right]$$

$$= \frac{1}{2} \left[\frac{3}{s^2-8s+2s} + \frac{1}{s^2-8s+17} \right]$$

- 2) e-at Sinh bt
- 3) L[e3+ Sin2+].
- 4) e-3+ (cosut + 35m 4+).

multiplication by E' :-Formulae :- If fit) is sectionally continuous and of Exponential order and if Lifter) = I(s) then [[th f(t)] = (-1) do [f(s)] where n=12,3,--.. -> Evaluate L[tsinat] Soll- we know that $L[sin at] = \frac{a}{s^2 + a^2} = \overline{f(s)}$ a ['i by muli by t.] [(2)] = (-1) = [toni2+]] = (-1) d (s2+a2) = -a d [[s2+a2]-]]. = (-a) (-1) (sq a2)-2, 2s $= \frac{8as}{(s^{2}+a^{2})^{2}}$ -> Evaluate L& t2 cos 3tg. we know that L[los 3t] = $\frac{s}{(3+9)} = \frac{f(s)}{s}$ $L[t^2\cos 3t] = (-1)^2 \frac{d^2}{ds^2} [f(s)]$ 15000 $= (-1)^2 \frac{d^2}{ds^2} \left[\frac{S}{S^2+9} \right]$ $= \frac{d^2}{ds^2} \left[\frac{s}{s^2 + 9} \right] \Rightarrow \frac{d}{ds} \left[\frac{d}{ds} \left(\frac{s}{s^2 + 9} \right) \right]$

$$= \frac{d}{ds} \left[\frac{(s^{2}+q)(1)-s(2s)}{(s^{2}+q)^{2}} \right] \qquad \frac{d}{ds} \left[\frac{q-s^{2}}{(s^{2}+q)^{2}} \right]$$

$$= \frac{d}{ds} \left[\frac{s^{2}+q-2s^{2}}{(s^{2}+q)^{2}} \right] \implies \frac{d}{ds} \left[\frac{q-s^{2}}{(s^{2}+q)^{2}} \right]$$

$$= \left[\frac{(s^{2}+q)^{2}+2ss}{(s^{2}+q)^{2}} - (q-s^{2}) \cdot 2(s^{2}+q)(2ss) \right]$$

$$= \frac{2s(s^{2}+q)^{2}-4s(s^{2}+q)(q-s^{2})}{(s^{2}+q)^{4}}$$

$$= \frac{2s(s^{2}+q)\left[-(s^{2}+q)-2s(q-s^{2})\right]}{(s^{2}+q)^{4}}$$

$$= \frac{2s(s^{2}+q)\left[-(s^{2}+q)-2s(q-s^$$

$$\begin{array}{l} \Rightarrow L\left[te^{2t}sm3t\right] = (-1)\frac{d}{ds}\left[\frac{3}{s^{2}-us+13}\right]^{-1} \\ = (-3)\frac{d}{ds}\left[(s^{2}-us+13)^{-1}\right] \\ = (-3)\left[(-1)(s^{2}-us+13)^{-2}\right].(2s-u) \\ = 3\left[\frac{2s-u}{(s^{2}-us+13)^{2}}\right] = \frac{6s-12}{(s^{2}-us+13)^{2}} \\ = 3\left[\frac{2s-u}{(s^{2}-us+13)^{2}}\right] = \frac{6s-12}{(s^{2}-us+13)^{2}} \\ \Rightarrow \frac{1}{(s^{2}-us+13)^{2}} \\ = \frac{1}{(s^{2}+1)} \\ = \frac{1}{s^{2}-us+u+1} = \frac{1}{s^{2}-us+5} \\ L\left[t^{3}e^{2t}smt\right] = (-1)^{3}\frac{d^{3}}{ds^{3}}\left[\frac{1}{s^{2}-us+5}\right] \\ = (-1)\frac{d^{2}}{ds}\left[\frac{1}{ds}\left(\frac{1}{s^{2}-us+5}\right)\right] \\ = -\frac{d^{2}}{ds^{2}}\left[\frac{1}{ds}\left(\frac{1}{s^{2}-us+5}\right)\right] \\ = -\frac{d^{2}}{ds^{2}}\left[\frac{1}{(s^{2}-us+5)^{2}},(2s-u)\right] \\ = \frac{1}{ds^{2}}\left[\frac{2s-u}{(s^{2}-us+5)^{2}}\right] \\ = \frac{1}{(s^{2}-u}s+5) \\ = \frac{1}{(s^{2}-u}$$

$$= \frac{d}{ds} \left[\frac{d}{ds} \left(\frac{as - u}{(s^2 - us + s)^2} \right) \right]$$

$$= \frac{d}{ds} \left[\frac{(s^2 + us + s)^2}{(s^2 + us + s)^2} \right]$$

$$= \frac{d}{ds} \left[\frac{(s^2 + us + s)^2}{(s^2 + us + s)^3} \right]$$

$$= \frac{au_1(s - u)}{(s^2 + us + s)^4}$$

$$= \frac{au_1(s - u)}{(s^2 + u)}$$

Division by t

gatement:
$$g$$
 Lift) = g Is then g Lift g = g Is g It from the integral exists.

I find the Lit. of

Sint Ey division by t we have

Lift g = g Is g It g

$$= \frac{1}{2} \left[0 - 109 \left(\frac{s^{2}+y}{s^{2}+9} \right) \right]$$

$$= \frac{1}{2} \left[109 \left(\frac{s}{s} \right) \right]$$

$$= \frac{1}{2} \left(\frac{1}{1} \cos^{-1} \frac{s}{y} + \frac{1}{1} \cos^{-1} \frac{s}{y} \right)$$

$$= \frac{1}{2} \left[\frac{1}{1} \cos^{-1} \cos + \frac{1}{1} \cos^{-1} \frac{s}{y} + \frac{1}{1} \cos^{-1} \frac{s}{y} \right]$$

$$= \frac{1}{2} \left[\frac{1}{1} \cos + \frac{1}{2} \cos + \frac{1}{2$$

Evaluation of Integrals by Lit Evaluate jte-3t dt. Sail- 1 + 6-3+ 9+ - (1) By def of L.T Je-St + 11-1 dt ____(2) : from (1) & (2) S=3. +(+)=+. NOW [[[[]] = [[]] = [[]] Now Sub. 5=3. in (3) .: $\int_{0}^{\infty} t e^{-3t} dt = \frac{1}{s^{2}} = \frac{1}{3^{2}} = \frac{1}{9}$ Evaluate Je e 4+ sin3+ dt. -) USM LIT Evaluele o tetsint di Here S=1.

Ste-st sint dt = Jest [tsint] dt. Hue functis mul. by -t' so apply multiplication by [+sint] = (-1) d T(s) => (-1) ds [3+1] = -1 [25 (.57.1) -1]

L[+sint] =
$$\frac{2s}{(s^{2}+1)^{2}}$$

= $\frac{2s}{(s^{2}+1)^{2}}$

= $\frac{2s}{(s^{2}+1)^{2}}$

= $\frac{2s}{(s^{2}+1)^{2}}$

Put s=1:

= $\frac{2s}{(s^{2}+1)^{2}}$

= $\frac{2s}{(s^{2}+1)^{$

$$= -4 \left[\frac{(s^{2}+u)^{2}(1) - s^{2}(s^{2}+u) 2s}{(s^{2}+u)^{4}} \right]$$

$$= -4 \left[\frac{(s^{2}+u)^{2} - 4s^{2}(s^{2}+u)}{(s^{2}+u)^{4}} \right]$$

$$= -4 \left[\frac{(s^{2}+u)^{2}}{(s^{2}+u)^{4}} \right]$$

$$= -4 \left[\frac{(s^{2}+u)^{4}}{(s^{2}+u)^{4}} \right]$$

$$= -4 \left[\frac{(s^{2}+u)^{4}$$

Evaluate
$$\int_{0}^{\infty} \frac{e^{+} - e^{-2t}}{t} dt$$
.

Sol! Here $s = 0$ by det of 1. The follow of division by t .

The given $tsansherm$ is in the follow of division by t .

Sol. $L(e^{+} - e^{-2t}) = \frac{1}{s+1} - \frac{1}{s+2} = \frac{1}{s+2}$

$$L(\frac{e^{+} - e^{-2t}}{t}) = \int_{0}^{\infty} f(s) ds$$

$$= \int_{0}^{\infty} \frac{1+0}{s+2} - \frac{1}{s+2} ds$$

$$= \log \left(\frac{1+0}{1+0}\right) - \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+0}\right) - \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+0}\right) - \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

$$= \log \left(\frac{1+0}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right) + \log \left(\frac{1+1}{1+2}\right)$$

Laplace Transtom of Periodic Functions Theorem: - If III) is a periodic function with period I then Lifth) = 1 Jest fit) dt. > find the Lit. of Somme - wave function of Pensod ·2a defined as flt)= k when octa. = -k when act<2a Since flt) is a periodic function with Period $L(fl+1) = \frac{1}{e^{1-e^{-ST}}} \int_{0}^{\infty} e^{-St} f(t) dt \qquad [i] by def$ $= \frac{1}{1-e^{2as}} \int_{0}^{\infty} e^{-St} f(t) dt.$ = 1-e-2as [] e-st flt) dt +] est flt) dt] = 1-e-201 | 0 Ke-St dt +) (-K) e-St dt] = 1 | K | e-St dt + K | e-St dt]. $=\frac{1}{1-e^{-2\alpha s}}\left[K\cdot\left[\frac{e^{-S+}}{-s}\right]_{0}^{\alpha}+K\left[\frac{e^{-S+}}{-s}\right]_{\alpha}^{\alpha}\right]$

$$= \frac{k}{T(1-e^{-ST})} \circ \frac{\int \frac{1}{k} e^{-Sk} dk}{\int \frac{1}{k} e^{-Sk} dk} = \frac{1}{\int \frac{1}{k} e^{-Sk} dk} = \frac$$

Sol- since the if a periodic func with period 1-(+(+))= 1-0-2xs Je-st +(+) dt the state of the s while the contract of the state = 1 - e-2xs (of e-strusint dt) io word with altitus of order of the strust of the sample of the strust of the sample of the sa is appeared ast to the mole portion of the series some $\frac{1}{11 + 12 + 15} \left[\frac{e^{-\pi S}}{15 + 15} \left(-\pi \sin \pi - \cos \pi \right) - \frac{e^{-0}}{5^{2} + 1} \left(-s \sin \theta - \cos \theta \right) \right]$ 201 - 1 10 2 10 10 - 100 $= \frac{1}{1 - e^{-2\pi S}} \left(\frac{e^{-\pi S}}{1 - e^{-2\pi S}} (1) + \frac{1}{S^{\frac{3}{4}}} \right)$ we alread the public of the state of the (s71) (1-e-xs) (1+e-xs) (1+e-xs) (s²+1) (1-e-75) of the line

Inverse Laplace Teansloom		
Inverse 1.7 is useful in schving differential Emphions		
And Deliger Consider and albited Consider		
A CONTRACTOR TOURS OF THE CONTRACTOR OF THE CONT		
selination: If \$(s) is called the inverse Lit. of \$(s) is called the inverse and is denoted by [[fish]. Lis called the Inverse		
and is denoted by L [70]. Laplace Teansform Operator.		
= -	Formulae (1-1) (1-1)] = f(t)	3/1
100		
2	1 2da 1 12da 2	
	s^{n+1} $n!$	
3)	s-a ent	(1+2)2 t
h)	1 e-a4	-10
-,/	· Sta	(held)
5)	$\frac{1}{c^2+a^2}$	√6 . 41
	cosat	
6)) s2+02	
7)	$\frac{1}{c^2}$ $\frac{1}{\alpha}$	
1 - 1	s cas hat	
8)	$\frac{3}{c^2-a^2}$	
	5-11	Was and

Note: - Inverse I.T of a given function Fish can be obtained either by use of the above standard results of by splitting the given tunc into partial fractions and then applying above sesuls -> find the Inverse of (1+1') by your of him Soll- L' (25-4) - L' (5-4) = QL' \(\frac{\s}{\s^2 - 4} \] - 5 L' \(\frac{\s^2 - 4}{\s^2 - 4} \] 2 cos hat - 5.1 sinhat > &S+1 SIS+1) $L^{-1}\left\{\frac{2(S+1)}{S(S+1)}\right\} = L^{-1}\left\{\frac{S+1(S+1)}{S(S+1)}\right\}$ = [(1 + 1) = e-++1.

$$= \frac{1}{1 - e^{2as}} \left(\frac{k}{s} \left[e^{st} \right]_{0}^{a} + \frac{k}{s} \left[e^{2st} \right]_{a}^{2a} \right)$$

$$= \frac{1}{1 - e^{2as}} \left(\frac{k}{s} \left[-e^{-as} + e^{0} \right] + \frac{k}{s} \left[e^{2as} - e^{-as} \right] \right)$$

$$= \frac{1}{1 - e^{2as}} \left(\frac{k}{s} \left[-e^{-as} + 1 + e^{-2as} - e^{-as} \right] \right)$$

$$= \frac{1}{1 - e^{2as}} \left(\frac{k}{s} \left[1 - 2e^{-as} + e^{-2as} \right] \right)$$

$$= \frac{1}{1 - e^{2as}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left(\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right)$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$

$$= \frac{1}{1 - (e^{-as})^{2}} \left[\frac{k}{s} \left[1 - e^{-as} \right]^{2} \right]$$