

Natural Language Processing: Transformers

HSE Faculty of Computer Science Machine Learning and Data-Intensive Systems

Table of Content

- The power of transfer learning
- From word-specific to contextual embeddings
- Transformer architecture overview
- BERT
- GPT

Training a model on a simple task can benefit a downstream one

Training a model on a downstream task can be useful for another

Training a model on a downstream task can be useful for another

Train from scratch

What they will know:

May be not enough to learn relationships between words

 Take pretrained (Word2Vec, GloVe)

What they will know:

Know relationships between words, but are **not** specific to the task

 Initialize with pretrained, then fine-tune

What they will know:

Know relationships between words and adapted for the task

[&]quot;Transfer" knowledge from a huge unlabeled corpus to your task-specific model

Table of Content

- The power of transfer learning
- From word-specific to contextual embeddings
- Transformer architecture overview
- BERT
- GPT

Not just a cat, but the cat!

Train a "translator" from word-specific to "contextual" space

Multiple layers to capture low-level and high-level context

From embedding generator to a universal model

Table of Content

- The power of transfer learning
- From word-specific to contextual embeddings
- Transformer architecture overview
- BERT
- GPT

Transformer is an example of Encoder-Decoder architecture

Transformer is an example of Encoder-Decoder architecture

Transformer is an example of Encoder-Decoder architecture

There is always two of them: the Attention and the FFN

There is always two of them: the Attention and the FFN

Inside the self-Attention

Source: https://jalammar.github.io/illustrated-transformer/

Inside the self-Attention: Matrix View

Inside the self-Attention: Matrix View

A beast with many heads

A beast with many heads

A beast with many heads

1) Concatenate all the attention heads

	Z_0		Z_1			\mathbf{Z}_2			\mathbf{Z}_3		\mathbb{Z}_4		Z ₅		Z ₆			\mathbb{Z}_7				

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

A multi-head attention overview

Each head focuses on a specific representation

As opposed to RNNs, Transformers do not track the position implicitly

Absolute Positional Encoding

$$ext{PE}(pos, 2i) = \sin\Bigl(pos/10000^{2i/d_{model}}\Bigr)$$

$$ext{PE}(pos, 2i+1) = \cos\Bigl(pos/10000^{2i/d_{model}}\Bigr)$$

What it looks like

Skip Connection and Layer Normalization for a robust training

Bringing it all together

There is always two of them: the Attention and the FFN

Attention is all you need

Attention is all you need (but not really)

Table of Content

- The power of transfer learning
- From word-specific to contextual embeddings
- Transformer architecture overview
- BERT
- GPT

BERT

BERT is just an Encoder part

Using encoder as an embedding generator

Model architecture:

• Transformer's encoder

What is special about it:

- Training objectives
 - o MLM: Masked language modeling
 - o NSP: Next sentence prediction
- The way it is used
 - o No task-specific models

Objective one: tell whether the two sequences are consecutive

Using encoder as an embedding generator

Objective two: Masked Language Modeling

LM vs. MLM

Language Modeling

- Target: next token
- Prediction: $P(* | \mathbf{I} saw)$

left-to-right, does not see future

Masked Language Modeling

- Target: current token (the true one)
- Prediction: P(* |I [MASK] a cat)

sees the whole text, but something is corrupted

Single Sentence Classification

class label

No second sentence!

Sentence Pair Classification

class label

Question Answering

BERT Downstream 43

Input tagging

Table of Content

- The power of transfer learning
- From word-specific to contextual embeddings
- Transformer architecture overview
- BERT
- GPT

GPT is just a Decoder part

GPT

Decoder as a universal model

Decoder as a universal model

