

VLSI Testing 積體電路測試

Fault Simulation

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems (LaDS)
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (EDA Topics)

Motivating Problem

- Apply 3 test patterns: P₁, P₂, P₃: {0,1,0} {0,0,1} {1,0,0}
 - Your manager asks you: What is fault coverage?

Pat.	Input			Internal					Output
	A	В	С	E	F	L	J	Н	К
P ₁	0	1	0	1	1	1	0	0	1
P ₂	0	0	1	1	1	1	0	0	1
P_3	1	0	0	0	0	0	1	0	0

Why Am I Learning This?

- Fault simulation can
 - 1. Determine fault coverage
 - 2. Guide ATPG
 - 3. Diagnose failed circuits

"One sees qualities at a distance and defects at close range."

(Victor Hugo)

Fault Simulation

- Introduction
- Fault simulation techniques
- Comparison of fault simulation techniques
- Alternatives to fault simulation
- Issues of fault simulation
- Concluding remarks

What Is Fault Simulation?

- Given:
 - Circuit, fault model, test set
- **Determine:**
 - **Output responses of faulty circuits**
 - **Detected faults, Undetected faults**
 - Fault coverage

Applications of Fault Simulation

- 1. Evaluate quality of test sets (aka. Fault Grading)
 - Determine fault coverage of a test set
- 2. Automatic Test Pattern Generation (ATPG)
 - Identify detected faults and undetected faults
- 3. Diagnosis (See diagnosis chapter)
 - Generate fault dictionary
 - Find culprit fault responsible for failure
- Therefore, fault simulators can be used as either
 - Stand alone tool, or
 - Fault grading
 - Embedded tool
 - * ATPG
 - * Diagnosis

Fault Sim. Embedded in ATPG

- After each test pattern generation
 - fault simulation
- Fault dropping
 - Remove detected faults from fault list
 - Prevent repeated test generation for detected faults
 - No dropping for diagnosis (see diagnosis chapter)

Pick a target fault **Test pattern** generation Fault Sim. Yes **Fault Dropping** Any fault untried? No **Finish**

Fault Sim. Very Important for ATPG

Fault Simulation

- Introduction
- Fault simulation techniques
 - Serial fault simulation
 - Parallel fault simulation (1965)
 - PPSFP (1985)
 - Deductive fault simulation (1972)
 - Concurrent fault simulation (1974)
 - Differential fault simulation (1989)
- Alternatives to fault simulation
- Issues of fault simulation
- Concluding remarks

Serial Fault Simulation

- Simple Idea: Run a fault-free logic simulation, store good outputs
 - For every fault
 - Modify good circuit (fault injection) to obtain a faulty circuit
 - Run logic simulation on faulty circuit
 - Compare faulty outputs with stored good outputs
 - fault is detected if they are different
- Advantages
 - Easy to implement (regular logic simulator).
 - Ability to simulate many fault models (stuck-at, delay, Br, ...)
- Disadvantage
 - Long CPU time

Example

- Consider only 2 faults: f, g
 Assume no fault dropping
- Given 3 patterns: P₁, P₂, P₃

Pat. #	Input			Internal					Output		
	A	В	С	E	F	L	J	Н	K _{good}	K _f	K _g
P ₁	0	1	0	1	1	1	0	0	1	<u>0</u>	1
P ₂	0	0	1	1	1	1	0	0	1	<u>0</u>	1
P ₃	1	0	0	0	0	0	1	0	0	0	1

Serial Fault Simulation Flow

Inner loop: patterns

Outer loop: faults

Speedup with fault dropping

start $F \leftarrow$ collapsed fault list fault-free simulation for all patterns next fault? end yes 1. get next fault f from F 2. reset pattern counter no next pattern? 1. get next pattern p 2. fault simulation for pattern pno mismatch? yes delete f from F

(WWW Fig 3.23)

Quiz

Q: Apply 3 test patterns: P_1 , P_2 , P_3 : {0,1,0} {0,0,1} {1,0,0}. Please use serial fault simulation to determine fault coverage =? Consider all 18 faults.

A:

Pat.		Input			Output				
	A	В	С	E	F	L	J	Н	K
P ₁	0	1	0	1	1	1	0	0	1
P ₂	0	0	1	1	1	1	0	0	1
P_3	1	0	0	0	0	0	1	0	0

fault	Det. by
A /1	P ₁
A/0	•
B/1	
B/0	
C/1	
C/0	
E/1	
E/0	
K F/1	
F/0	
H/1	
H/0	
J/1	
J/0	
K/1	
K/0	
L/1	
L/0	ional Taiwan

13

/LSI Test 5.1 © National Taiwan Univ

Complexity of Fault Simulation

- Fault Simulation Complexity O(FxPxG)
 - F: number of faults
 - P: number of test patterns
 - G: number of gates
- Comparison
 - Logic simulation: O(G x P)
 - ATPG: O(G x 2^{number_of_Pl} x F)
- So, use fault simulation to guide ATPG makes sense

Fault Simulation

- Introduction
 - Fault simulation produces faulty circuit responses
 - Application: fault grading, ATPG, diagnosis
 - Fault simulation is polynomial time O(PxGxF)
- Serial fault simulation
 - Simulate one fault by one fault

FFT

- Q: why inner loop=patterns
 - why not inner loop=fault
 - So we can drop faster?

(WWW Fig 3.23)

