Corrigé Exercice 1:

On arrête le moteur synchrone et on permute 2 phases de l'induit.

Corrigé Exercice 2:

1- Convention récepteur

 $\pi/2>\phi>0$ P=3V_sI_scos $\phi>0$ En convention récepteur P>0 est une puissance absorbée par la machine. Elle fonctionne bien en moteur. Q=3V_sI_ssin $\phi>0$ En convention récepteur Q>0 est une puissance absorbée par la machine.

2- Diagramme des forces magnétomotrices

Convention récepteur : $e=+d\phi/dt$ $e_r=+d\phi_r/dt$ Les fmm sont en retard sur les tensions.

F en avance sur Fr dans le sens de rotation. F entraîne bien Fr dans le sens de rotation et exerce un couple moteur sur Fr. C'est bien un fonctionnement en moteur. F perpendiculaire à Fr. Fonctionnement à la limite du décrochage.

Corrigé Exercice 3:

1- Convention générateur

 ϕ =0 P=3V_sI_s>0 En convention générateur P>0 est une puissance produite par la machine. Elle fonctionne bien en générateur. Q=0. En convention générateur Q>0 est une puissance produite par la machine. Aucune puissance réactive échangée entre la machine synchrone et le réseau.

2- Diagramme des forces magnétomotrices

Convention générateur : $e=-d\phi/dt$ $e_r=-d\phi_r/dt$ Les fmm sont en avance sur les tensions. Fr en avance sur F dans le sens de rotation. F exerce bien un couple résistant sur Fr. C'est bien un fonctionnement en générateur.

Corrigé Exos CH2 @ P.Viarouge 2007

Corrigé Exercice 4:

Question 1	resultat	unite	Expression litterale
fs_	60	Hz	
p_	2		
Ns_	1800	rpm	fs_*60/p_
Us_	208	V	
Vs_	120	V	Us_/RACINE(3)
Nso_	900	rpm	
Knso_	60		
Kccnso_	10		
Xsnso_	6	Ohm	Knso_/Kccnso_
K_	120		Knso_*Ns_/Nso_
Xs	12	Ohm	Xsnso *Ns /Nso

Diagramme question 2

Question 2	resultat	unite	Expression litterale
Pu1_	4000	W	
Pu2_	4000	W	
lr1_	2	Α	
lr2_	2	Α	
P1_	4000	W	Pu1_
P2_	4000	W	Pu2_
Ptot_	8000	W	P1_+P2_
E1_	240	V	K_*lr1_
sinteta1_	0,56		P1_*Xs_/3/Vs_/E1_
costeta1_	0,83		RACINE(1-sinteta1_^2)
ls1_	12,93	Α	RACINE((E1_*costeta1Vs_)^2+(E1_*sinteta1_)^2)/Xs_
E2_	240	V	K_*lr2_
cosphi1_	0,86		P1_/3/Vs_/Is1_
sinphi1_	0,51		RACINE(1-cosphi1_^2)
sinteta2_	0,56		P2_*Xs_/3/Vs_/E2_
costeta2_	0,83		RACINE(1-sinteta2_^2)
ls2_	12,93	Α	RACINE((E2_*costeta2Vs_)^2+(E2_*sinteta2_)^2)/Xs_
cosphi2_	0,86		P2_/3/Vs_/Is2_
sinphi2_	0,51		RACINE(1-cosphi2_^2)
		_	RACINE((Is1_*cosphi1_+ls2_*cosphi2_)^2+(Is1_*sinphi1_+ls2_*sinphi2_)^2
ls_		Α	
cosphi_	0,8586528 2		Ptot /3/Vs /Is
Q1_	2387,7293	VAR	3*Vs_*ls1_*sinphi1_

	2		
	2387,7293		
Q2_	2	VAR	3*Vs_*ls2_*sinphi2_
	4775,4586		
Qtot	5	VAR	Q1 +Q2

Diagramme question 3

		1	Diagramme question 5
Question 3	resultat	unite	Expression litterale
Pu1_	6000	W	
Pu2_	2000	W	
Ir1_	2	Α	
lr2_	2	Α	
P1_	6000	W	Pu1_
P2_	2000	W	Pu2_
Ptot_	8000	W	P1_+P2_
E1_	240	V	K_*lr1_
sinteta1_	0,83		P1_*Xs_/3/Vs_/E1_
costeta1_	0,55		RACINE(1-sinteta1_^2)
ls1_	16,69	Α	RACINE((E1_*costeta1Vs_)^2+(E1_*sinteta1_)^2)/Xs_
E2_	240	V	K_*lr2_
cosphi1_	1,00		P1_/3/Vs_/ls1_
sinphi1_	0,06		RACINE(1-cosphi1_^2)
sinteta2_	0,28		P2_*Xs_/3/Vs_/E2_
costeta2_	0,96		RACINE(1-sinteta2_^2)
ls2_	10,75	Α	RACINE((E2_*costeta2Vs_)^2+(E2_*sinteta2_)^2)/Xs_
cosphi2_	0,52		P2_/3/Vs_/ls2_
sinphi2_	0,86		RACINE(1-cosphi2_^2)
ls_	24,47	Α	RACINE((ls1_*cosphi1_+ls2_*cosphi2_)^2+(ls1_*sinphi1_+ls2_*sinphi2_)^2

cosphi_	0,91		Ptot_/3/Vs_/Is_
Q1_	384,25	VAR	3*Vs_*ls1_*sinphi1_
Q2_	3316,86	VAR	3*Vs_*ls2_*sinphi2_
Qtot_	3701,12	VAR	Q1_+Q2_

Question 4 : les courants I_{s1} et I_{s2} sont minimaux lorsqu'on ajuste I_{r1} et I_{r2} tels que cosphi $_1$ =cosphi $_2$ =1. On en déduit la valeur de I_{s1} et I_{s2} à partir de P_{u1} et P_{u2} . Tracer le diagramme vectoriel pour cosphi $_1$ =cosphi $_2$ =1. On en déduit la valeur de E_1 à partir de Vs et XsIs $_1$ (Pythagore) et celle de E_2 à partir de Vs et XsIs $_2$ (Pythagore). On déduit de E_1 et E_2 les valeurs de I_{r1} et I_{r2} .

Question 4	resultat	unite
Pu1_	6000.00	W
Pu2_	2000.00	W
Ir1_	1.94	Α
Ir2_	1.14	Α
P1_	6000.00	W
P2_	2000.00	W
Ptot_	8000.00	W
E1_	233	V
sinteta1_	0.86	
costeta1_	0.52	
ls1_	16.65	Α
E2_	137	V
cosphi1_	1.00	
sinphi1_	0.00	

sinteta2_	0.49	
costeta2_	0.87	
ls2_	5.55	Α
cosphi2_	1.00	
sinphi2_	0.00	
ls_	22.21	Α
cosphi_	1.00	
Q1_	0.00	VAR
Q2_	0.00	VAR
Qtot_	0.00	VAR

Exercice 5:

- 1- Non. Il faut inverser le sens de rotation de F_s en permutant 2 phases de l'induit.
- 2- Convention générateur:

$$\overline{E} = \overline{V}_S + jX_S\overline{I}_S + R_S\overline{I}_S \\
\overline{E'} = \overline{V}_S + R_S\overline{I}_S \\
\overline{E'} = \overline{E} - jX_S\overline{I}_S$$

$$e' = -\frac{d\varphi}{dt} \quad e = -\frac{d}{dt}\varphi r$$

$$\Rightarrow P>0 \\
Q>0$$

Fonctionnement en moteur: E' en avance sur E

Fonctionnement en moteur: cosφ <0 en convention générateur

Moteur consomme puissance réactive sinφ <0 en convention générateur

F en avance de $+\pi/2$ sur E' F_r en avance de $+\pi/2$ sur E

Vérification:

F en avance sur F_r : c'est bien un fonctionnement en moteur $\cos \phi < 0$ P<0 c'est bien un fonctionnement en moteur $\sin \phi < 0$ Q<0 la MS absorbe bien de la puissance réactive. Exercice 6:

1-

$$\begin{split} N_S &= \frac{60 \cdot f_S}{p} = \frac{3600}{3} = 1200 rpm \\ R_S &= 0 \rightarrow X_S = \frac{E}{I_{scc}} = \frac{60 \cdot I_r}{10 \cdot I_r} = 6\Omega \end{split}$$

2-

$$P_u = T_{ru} \cdot \Omega_s \qquad \qquad T_{ru} = \frac{4 \cdot 10^3}{\underline{1200 \cdot 2\pi}}$$

$$P_{em} = P_u + P_{mec} + P_{mag}$$

$$\eta = \frac{P_u}{P_u + P_{mec} + P_{mag} + 3 \cdot R_s \cdot I_s^2}$$

$$R_s = 0 \qquad \eta = \frac{P_u}{P_{em}} \qquad P_{em} = 5kW$$

3-

$$\begin{aligned} P_{in} &= 3 \cdot V_s \cdot I_{s_1} \cdot \cos \varphi = P_{em} + 3 \cdot R_s \cdot I_s^2 \\ R_s &= 0 & \cos \varphi = 1 & 3 \cdot V_s \cdot I_{s_1} = P_{em} \\ I_{s_1} &= \frac{P_{em}}{3 \cdot V_s} = 13,88A \end{aligned}$$

Diagramme en convention récepteur moteur avec facteur de puissance unitaire

$$I_{s} = V_{s}$$

$$I_{s} = E + j \cdot X_{s} \cdot I_{s}$$

$$E_{1} = 60 \cdot I_{r_{1}} = \sqrt{V_{s}^{2} + \langle X_{s} \cdot I_{s_{1}} \rangle^{2}} = 146,13 V$$

$$I_{r_{1}} = \frac{\sqrt{V_{s}^{2} + \langle X_{s} \cdot I_{s_{1}} \rangle^{2}}}{60} = 2,44 A$$

4-

Limite du décrochage P_{em} a la même valeur.

Diagramme du moteur à la limite du décrochage en convention récepteur

$$V_{s} \perp E_{2} \qquad V_{s} \qquad P_{em} = \frac{3 \cdot V_{s} \cdot E_{2}}{X_{s}} \cdot \sin \theta \qquad \theta = \frac{\pi}{2}$$

$$E_{2} = \frac{X_{s} \cdot P_{em}}{3 \cdot V_{s}} = 60 \cdot I_{r_{2}} = 83,27V$$

$$I_{r_{2}} = 1,39A$$

$$\langle X_{s} \cdot I_{s_{2}} \rangle^{2} = E_{2}^{2} + V_{s}^{2} \qquad I_{s_{2}} = \frac{\sqrt{E_{2}^{2} + V_{s}^{2}}}{X_{s}} = 24,36A$$

Le moteur synchrone absorbe de la puissance réactive (sinφ>0 en convention récepteur).

$$I_{r_3} = 3.2A$$
 $E_3 = 60 \cdot I_{r_3} = 192 V > \frac{U_s}{\sqrt{3}} = 120 V$

 I_{s3} $V_s \qquad jX_sI_{s3}$

Diagramme vectoriel moteur fonctionne avec $E_3 > E_1$ de la question 3 (facteur de puissance unitaire). La puissance active n'a pas changé.

 E_3

Le moteur synchrone produit de la puissance réactive (on vérifie aussi $\sin \phi_3 < 0$ en convention récepteur).

Exercice 7:

$$N_1 = \frac{60f_{s1}}{p}$$
 $f_{s1} = \frac{pN_1}{60} = \frac{\omega_{s1}}{2\pi}$ $\omega_{s1} = \frac{2\pi pN_1}{60} = 377 \text{ rad/s}$

$$E_1 = \phi_r \omega_{s1}$$
 $I_{s1} = \frac{E_1}{\sqrt{R^2 + X_{s1}^2}} = 10,44 \text{ A}$ $X_{s1} = L_s \omega_{s1}$

$$V_{R1} = RI_{s1} = 104,45V$$

$$P_{R1} = 3RI_{s1}^2 = 3273 \text{ W}$$

$$\begin{split} \omega_{s2} &= \frac{2\pi p N_2}{60} & E_2 = \phi_r \omega_{s2} = 60 \, V \qquad I_{s2} = \frac{E_2}{\sqrt{R^2 + \chi_{s2}^2}} = 5,77 \, \text{A} \qquad X_{s2} = L_s \omega_{s2} \\ V_{R2} &= RI_{s2} = 57,73 \, \text{V} \qquad P_{R2} = 3RI_{s2}^2 = 1000 \, W \end{split}$$

$$E_{1} = \left(R + j\left(X_{s1} - \frac{1}{c\omega_{s1}}\right)\right)I_{s3}$$

$$V_{R3} = E_{1} \frac{R}{R + j\left(X_{s1} - \frac{1}{c\omega_{s1}}\right)} = E_{1} \quad \text{si} \quad X_{s1} = \frac{1}{c\omega_{s1}}$$

$$C = \frac{1}{L\omega_{s1}^{2}} = 469 \ \mu F \qquad P_{R3} = 3\frac{E_{1}^{2}}{R} = 4320W$$

à
$$N_2$$
 $V_{R4} = E_2 \frac{R}{R + j \left(X_{s2} - \frac{1}{c \omega_{s2}} \right)} = 45,75 V$ $P_{R4} = \frac{3 V_{R4}^2}{R} = 628 W$

Exercice 8:

1-

Moteur synchrone qui produit de la puissance réactive en convention <u>récepteur</u>. La résistance R_S des enroulements de l'induit est négligée.

Vérification:

$$\label{eq:final_problem} \begin{split} F &\text{ en avance sur } F_r : c\text{'est bien un fonctionnement en moteur} \\ &\cos\phi > 0 \ \ P \!\!> 0 \ c\text{'est bien un fonctionnement en moteur} \\ &\sin\phi < 0 \ \ \ Q < 0 \ \text{le moteur produit bien de la puissance réactive.} \\ 2\text{-} \end{split}$$

Moteur synchrone qui produit de la puissance réactive en convention générateur. La résistance R_S des enroulements de l'induit est négligée.

Vérification:

F en avance sur F_r : c'est bien un fonctionnement en moteur $cos\phi < 0$ P < 0 c'est bien un fonctionnement en moteur

 $\sin \varphi > 0$ Q > 0 le moteur produit bien de la puissance réactive

Exercice 9:

1-

$$N_s = \frac{60f_s}{p}$$
 $X_s = L_s \omega_s = \frac{E}{I_{scc}} = \frac{120I_r}{15I_r} = 8\Omega$

2-

 Q_{1max} absorbée

$$E_1 < V_s \qquad \text{pour} \qquad E_1 = 0 \text{ et } I_{r1} = 0$$

$$I_{s1} = \frac{V_s}{X} = 15A$$

I $\frac{V_s}{2}$ jX_sI_{s1}

 Q_{max} produite

$$I_{s2} = \frac{E_2 - V_s}{X_s} = 15A$$
 avec $E_2 = 120I_{rmax} = 240V$

Exercice 10:

1_

$$P_u = P_{em} - P_{mag} - P_{mec} \approx P_{mec} = T_{em} \Omega_s$$

$$T_{em} = \frac{P_u}{\Omega_s} = \frac{P_u 60}{2\pi N_s}$$

$$P_{em} = 3 \frac{V_s E_1}{X_s} \sin \theta_1$$
 avec $E_1 = 120 I_r = 120 V$

$$\sin \theta_1 = \frac{X_s P_{em}}{3 V_s E_1} = 0,833$$

$$I_{r2} \downarrow \theta \uparrow \text{ valeur limite} -----> \text{décrochage } \theta_2 = \frac{\pi}{2}$$

$$P_{em} = cte = 3 \frac{V_s E_2}{X_s} \qquad \left(\theta_2 = \frac{\pi}{2}\right) \quad E_2 = \frac{X_s P_{em}}{3 \, V_s} = 120 I_{r2}$$

d'où
$$E_2 = 100V$$
 $I_{r2} = \frac{E_2}{120} = 0.833A$

$$(X_s I_{s2})^2 = E_2^2 + V_s^2$$
 $I_{r2} = \frac{1}{X_s} \sqrt{(E_2^2 + V_s^2)} = 13A$

$$P_{em} = 3V_s I_{s2} \cos \varphi_2 - 3R_s I_{s2}^2$$

$$R_s = 0$$
 donc $\cos \varphi_2 = \frac{P_{em}}{3V_s I_{s2}} = 0.64$

Exercice 11:

$$p{=}2$$
 Ns=1800 rpm
 $E{=}60$ Ir=KIr (Ns=1800 rpm)
 $Ls{=}0.04$ H Rs=0.5 Ω
 $Pmec{=}Pmag{=}0$

$$P_{em} = 3R_s I_s^2$$

$$V_s = 0 \quad P_{em} = 3R_s \frac{E^2}{X_s^2 + R_s^2} = T_{em} \Omega_s = T_u \Omega_s$$

$$\Omega_s = \frac{\omega_s}{p}$$

$$\begin{split} T_u &= \frac{3p}{\omega_s} \frac{K^2 I_r^2 R_s}{(L_s \omega_s)^2 + R_s^2} = 0,5Nm \\ \omega_s &= 2\pi f_s \qquad \qquad f_s = \frac{N_s p}{60} = 60Hz \\ I_s &= \frac{E}{\sqrt{R_s^2 + X_s^2}} = \frac{KI_r}{\sqrt{R_s^2 + X_s^2}} = 7,95A \end{split}$$