Machine Learning

11. Representation learning

Yannick Le Cacheux

CentraleSupélec - Université Paris Saclay

September 2024

How do we represent images?

Most obvious solution: as an array (or a tensor) of pixels


```
0., 0., 0., 0., 0., 0., 0., 0.,
  0., 3., 18., 18., 18., 126., 136., 175., 26., 166., 255.,
 247., 127., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 30., 36., 94.,
154., 170., 253., 253., 253., 253., 253., 225., 172., 253., 242.,
195., 64., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 49., 238., 253., 253.,
253., 253., 253., 253., 253., 253., 251., 93., 82., 82., 56.,
 39., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 18., 219., 253., 253.,
 253., 253., 253., 198., 182., 247., 241., 0., 0., 0., 0.,
  0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 80., 156., 107.,
253., 253., 205., 11., 0., 43., 154., 0., 0., 0., 0.,
  0., 0., 0.,
                0.,
          0.,
                0...
                    0...
                        0., 0., 0.,
                    0.,
  0., 0., 0.,
                0.,
                    0.,
                         0.,
                2..
  0., 0., 0.,
                0.,
               0., 0., 0.,
 11., 190., 253., 70., 0., 0.,
                              θ.,
  0., 0., 0.,
               0., 0.,
                         0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0.,
  0., 35., 241., 225., 160., 108., 1., 0., 0.,
  0., 0., 0., 0., 0., 0.],
```

How do we represent images?

 We need an additional condition to train most machine learning algorithms we have seen so far (e.g. logistic regression, SVM, PCA...)

How do we represent images?

- All images should have the same size if we want to be able to train a model with a fixed number of parameters
- ullet This is the same as representing images as a fixed-size vector $\mathbf{x} \in \mathbb{R}^D$

How do we represent words?

tiger crocodile supercalifragilisticexpialidocious

- In general, as a string, i.e. a list of characters
- But can we train machine learning algorithms from a list of characters with variable size?
 - ightarrow (Actually, yes, we can with architectures such as recurrent neural networks. But this is not always convenient or suitable)
- The problem is the same with sentences
- $oldsymbol{\bullet}$ Ideally, we would like to represent a word as a fixed-size vector $oldsymbol{\mathbf{x}} \in \mathbb{R}^D$

Transfer learning

Main idea

We first train a model on source task different from the target task. The idea is that the model may still acquire useful abilities on this task.

Transfer learning with CNN

These high-level representation may be useful for similar tasks

These kernels may be useful for many tasks

Word embedding

Main idea: learn to predict a word from its context, or the opposite

Long live the king!

Long live the queen!

- Synonyms or similar words should have very similar contexts
- We hope that representations of words learned for this specific task will be useful for other tasks
- One big advantage of this task: it doesn't require any human annotation, we can just use large text corpora

CBOW and skipgram

Continuous Bag of Words (CBOW) vs Skip-gram architectures

Skipgram objective

 Given a corpus of T words and a context window we want to maximize

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log p(w_{t+j}|w_t)$$

Skip-gram

Skipgram architecture

- ullet For each word w, we learn an "input" vector ${f v}_w$ and an "output" vector ${f v}_w'$
- The input vector will be the word embedding

$$p(w_i|w_t) = \frac{\exp(\mathbf{v}_{w_t}^{\top} \mathbf{v}_{w_i}')}{\sum_{w} \exp(\mathbf{v}_{w_t}^{\top} \mathbf{v}_{w}')}$$

• Question: does it remind you of something?

Skipgram architecture: an alternative view

• Answer: a one hidden layer neural net

Word representations

Resulting word embeddings have very interesting properties

t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region. From Turian *et al.* (2010)

t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region. From Turian *et al.* (2010)

Word representations

Resulting word embeddings have very interesting properties

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

 $W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$

Frequency analysis

 $From \ www.mwmresearchgroup.org/blog/key-concepts-fourier-transforms-and-signal-processing and a signal-processing and a sig$

• Fourier transforms can summarize periodic information in a signal

Autoencoder

• An auto-encoder aims to map and reconstruct the input to and from a "compressed" low-dim representation

From lilianweng.github.io/posts/2018-08-12-vae/

PCA is a form of auto-encoder.

Self- and semi-supervised learning

Self-supervised learning

A machine learning approach where the model learns useful representations from unlabeled data by solving pretext tasks that generate labels automatically from the data itself

Semi-supervised learning

A learning paradigm that uses a small amount of labeled data alongside a large amount of unlabeled data to improve the model's performance by leveraging the structure in the unlabeled data.