Instrument Activation Detection with CRNN

Ioannis Koutsoukis MSc in Artificial Intelligence

Contents

- Problem & Motivation
- Dataset Overview
- Preprocessing & Feature Extraction
- Baseline Model MLP
- Proposed Model CRNN
- Training Strategy
- Evaluation Metrics
- Visualizations & Confusion Analysis
- Conclusions
- Future Work

Problem & Motivation

- The Objective: Frame-level multi-label instrument activation detection
- The Challenge: Overlapping timbres, limited data, and class imbalance
- The Value: Enabling Music Information Retrieval (MIR), source separation, and deep musical content understanding

Dataset Overview

- AAM: Artificial Audio Multitracks dataset
 - 3,000 synthesized tracks with isolated stems
 - Each track is accompanied by

Feature Extraction – Mel Spectrogram (Librosa)

- FFT Window Size (n_fft) = 2048
- Hop Length = 512
- Mel Filters = 128
- Converted to log-scale (dB)

Baseline Model – MLP (Multi-Layer Perceptron)

Proposed Model – CRNN

Training Strategy & Class Imbalance Handling

- Batch Size: 2
- Epochs: 50
- Loss Function: BCEWithLogitsLoss
- Optimizer: Adam
- Frame-level Masking & Padding

- Computed class frequency over training set
 - Rare classes (<5 tracks) were oversampled ×4
 - experimented with class weighting in loss

Evaluation Metrics

- F1 Score (macro / micro / weighted)
 - Macro: treats all classes equally
 - Micro: focuses on global accuracy
 - Weighted: adjusts for class imbalance
- Hamming Loss: average number of wrong labels per sample
- Jaccard Score (sample-based): measures label overlap
- Classification Report per Instrument: per-instrument precision, recall, F1

Evaluation Metrics (Aggr)

MLP

CRNN

Visualizations & Confusion Analysis

Time to look under the hood...

MLP vs CRNN - 150 / 50

MLP vs CRNN - 300 / 50

More Data → Less Confusion

_			
ı	True	Predicted	Count
ı	ElectricGuitarClean	ElectricPiano	11791
ı	Shakuhachi	ElectricPiano	10314
ı	Piano	ElectricPiano	9348
ı	ElectricGuitarClean	Ukulele	7641
ı	Erhu	Fujara	7050
ı	Erhu	Sitar	6974
ı	TenorSax	ElectricPiano	6645
ı	Shakuhachi	Ukulele	6614
ı	TenorSax	Piano	6289
ı	Piano	Ukulele	5899
ı	Flugelhorn	ElectricBass	5445
ı	Jinghu	Sitar	5115
ı	AcousticGuitar	ElectricPiano	4975
	BrightPiano	ElectricPiano	4930
	ElectricGuitarClean	Piano	4896

	True	Predicted	Count
3	Erhu	Cello	1650
10	Erhu	Flute	1133
8	Erhu	Jinghu	546
15	Erhu	Drums	323
2	DoubleBassPizz	Cello	218
22	Sitar	Cello	136
16	Erhu	Trumpet	127
19	Erhu	Balalaika	86
7	Drums	Jinghu	82
6	DoubleBassPizz	Jinghu	68
20	Sitar	Balalaika	59
11	Drums	Flute	57
1	Erhu	Clarinet	45
9	Drums	Cello	41
12	Erhu	BrightPiano	37

CRNN - 150 Songs

CRNN - 300 Songs

Conclusions

- MLP performs reasonably well in low-data scenarios (based on metrics) or when frame-level is not required
- CRNN performs worse at low data but scales better with more data (based on metrics)
- Frequent confusions are observed in overlapping spectral instruments (e.g., flute vs clarinet)
- Weighted losses + oversampling help address class imbalance

Future Work

- Add more training data from the full AAM set
- Experiment with pre-trained CNNs for better audio embeddings (i.e. PANNs, VGGish)
- Evaluate attention-based and Transformer-based models (i.e. AST Huang et al., 2022)
- Study temporal consistency with post-processing smoothing (i.e. Media filtering)

Citations

- Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural networks for music classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/ICASSP.2017.7952585
- Huang, Y., Wang, J., & Liu, Y. (2022). Audio Spectrogram Transformer: Learning on the Time-Frequency Representation of Audio. arXiv preprint arXiv:2104.01778.
- Won, M., Ferraro, D., Han, Y., & Nam, J. (2020). Evaluation of CNN-based automatic music tagging models. arXiv preprint arXiv:2006.00751.

Any Questions?

Thank you for your Time

