

NIfTI

- NIfTI (Neuroimaging Informatics Technology Initiative) format
 - Standardized representation of images
 - Most commonly used type of analytic file
 - Developed to facilitate cross-platform, crosssoftware interpretability
 - 3-dimensional (3D) array: stacking individual slices on top of each other
 - DICOM: one sheet of paper, NIfTI: stack of papers

DICOM versus NIfTI

	DICOM	NIfTI
File extension	.dcm	.nii .nii.gz
File represents	One slice of the brain	3D image of the brain
Header contains	Many fields, protected health information, hospital-related meta-data	Image meta-data, no patient information
Storage	Different folders per subject, more complex data structures	Different files (can be in the same directory)

From DICOM to NifTI

- DICOM to NIfTI using the dicom2nifti
 function in the oro.dicom package
- □ The nifti object becomes an R object
- \square After saving a file to a <code>nifti</code> file it can be used without R

Recall: Loading Multiple DICOM Files

```
Neurohacking data
   BRAINIX
       DICOM
          т1
              IM-0001-0001.dcm
              IM-0001-0022.dcm
          ROI
          FLAIR
          T2
setwd ("~/Neurohacking data/BRAINIX/DICOM")
all slices T1 = readDICOM("T1/")
dim(all slices T1$img[[11]])
[1] 512 512
hdr=all slices T1$hdr[[11]]
hdr[hdr$name == "PixelSpacing", "value"]
[1] "0.46875 0.46875"
```


From DICOM to NIfTI

```
nii_T1=dicom2nifti(all_slices_T1)
d=dim(nii_T1); d; class(nii_T1)
[1] 512 512 22
[1] "nifti"
image(1:d[1],1:d[2],nii_T1[,,
11],col=gray(0:64/64),xlab="",ylab="")
```


Write and Read NIfTI Files

- Use the writeNIfTI, readNIfTI
 functions in the oro.nifti package
- Writes, reads the nifti R object to a NIfTI file
- Default for writeNIfTI is to save compressed NIfTI files

Write and Read NIfTI Files

```
library(oro.nifti)
setwd("~/Neurohacking data/BRAINIX/NIfTI")
fname="Output 3D File"
writeNIfTI(nim=nii T1, filename=fname)
list.files(getwd(), pattern = "Output 3D File")
[1] "Output 3D File.nii.gz"
list.files(getwd(), pattern = "T")
[1] "T1.nii.gz" "T2.nii.gz"
nii T2=readNIfTI("T2.nii.gz", reorient=FALSE)
dim(nii T2)
[1] 512 512 22
```


Compressed Image Files

- Files are in compressed format with the extension .nii.gz
- Saves disk space, makes read/write data very fast
- □ Excellent for scripting, analysis of image population
- A non-compressed file can be obtained using the argument gzipped=FALSE in the function writeNifTI
- No extension for file name in writeNifTI

dcm2nii

- If you do not like R you can use the dcm2nii software as part of the MRIcron platform
- □ Converts DICOM to NIfTI files
- Can handle multiple formats and file types
- But, if you do not R like then you should probably not take this course

Other Formats

- Files from Philips scanners are PAR/REC files (not DICOM)
- \square r2a can be used to convert PAR/REC files to NIfTI files
- NIfTI was based on the ANALYZE format: older, format header and image were in separate files
- □ We prefer NIfTI: one file, can be compressed
- NRRD (Nearly Raw Raster Data) is another, less common format: most neuroimaging software can read NRRD