Supervised Bipartite Graph Method

May 11, 2018

Work flow

- We want to construct a bipartite graph with Drug entities and Protein entities
- We can add a new drug entity and search those protein entities in the graph within Euclidean distance radius. And predict them as interactive to this new drug.

Heterogeneity problem

- Drugs are expressed with chemical graph structure and Proteins are expressed with sequence structures
- They are fundamentally different, especially in dimension.
- Euclidean distance does not apply to search neighbor points within a specific radius.

Solution

 Using two mapping systems to embed heterogeneous points into a unified Euclidean space presenting the bipartite graph. The function below will map drugs to a one-dimension Euclidean space.

$$f(x_{new}) = \sum_{j=1}^{n1} \alpha_j k_u(x_{new}, x_j)$$

where n1 is the sample size of training points, α 's are weights, and k_u is a similarity function.

• Of course, we need another one in similar form to deal with proteins.

$$g(y_{new}) = \sum_{j=1}^{n2} \beta_j k_v(y_{new}, y_j)$$

Solution

- We want to map drugs and proteins into d-dimension space, so we need d f's and g's.
- A new drug sequence X_{new} can be translated as

$$(f_1(X_{new}), \ldots, f_d(X_{new}))$$

• A new protein sequence Y_{new} can be translated as

$$(g_1(Y_{new}), \ldots, g_d(Y_{new}))$$

 Now all of them are in the same dimension, and can be used to compute Euclidean distance between.

Criterion

The training criterion is to minimize

$$\frac{\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} K_{u} D_{u} K_{u} & -K_{U} A_{uv} K_{v} \\ -K_{v} A_{uv}^{\mathsf{T}} K_{u} & K_{v} D_{v} K_{v} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix} + \lambda_{1} \boldsymbol{\alpha}^{\mathsf{T}} K_{u} \boldsymbol{\alpha} + \lambda_{2} \boldsymbol{\beta}^{\mathsf{T}} K_{v} \boldsymbol{\beta}}{\begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} K_{u} K_{u} & 0 \\ 0 & K_{v} K_{v} \boldsymbol{\beta} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}}$$

where

- $(K_u)_{ij} = k_u(x_i, x_j), i, j = 1, ..., n_1$
- $(K_v)_{ij} = k_v(y_i, y_j), i, j = 1, \ldots, n_2$
- A_{uv} is interaction matrix, $(A_{uv})_{ij} = 1$ if x_i and y_j has interaction
- D_u and D_v are diagonal matrices, D_{ii} is the number of interactions with drug or protein i involved

Goal

- After being well trained, the mapping system can make sure a drug entity and a protein entity with interaction will be close in the destination space and those without interaction will be distant from each other.
- \bullet Then we can map a new drug to the space and look for its neighbor points with δ radius as its potential interactive protein.

Experiment

- We used 200 drugs and 44 proteins in our experiment.
- 100×44 data were used as training set and another 100×44 were used as test set.
- Three matrices were used as input: cosine similarity matrix of drugs, cosine similarity of proteins and interaction matrix.

Data

Figure: Interaction matrix

Data

Figure: Similarity matrix

10 / 13

Prediction

	ata framo(rocu)	tens idy boschmack	
> U		ltşnn.ıdx,benchmark	
	result.nn.idx	benchmark	
1	19	15	
2 3	19	19	
3	19	19	
4	9	43	
4 5 6	19	41	
6	19	42	
7	19	19	
8	19	19	
9	19	19	
10	19	9	
11	19	19	
12	19	19	
13	19	19	
14	42	19	
15	19	19	
16	10	10	

Rate of Correct predictions

$$R = 0.64$$

Questions?

Thanks!