

UNIT 4

Applications of Boolean Algebra Minterm and Maxterm Expansions

This chapter includes:

- 4.1 Conversion of English Sentences to Boolean Equations
- 4.2 Combinational Logic Design Using a Truth Table
- 4.3 Minterm and Maxterm Expansions
- 4.4 General Minterm and Maxterm Expansions
- 4.5 Incompletely Specified Functions
- 4.6 Examples of Truth Table Construction
- 4.7 Design of Binary Adders and Subtracters

Learning Objectives

- 1. Given a word description of the desired behavior of a logic circuit, write the output of the circuit as a function of the input variables. Specify this function as an algebraic expression or by means of a truth table, as is appropriate.
- 2. Given a truth table, write the function (or its complement) as both a minterm expansion (standard sum of products) and a maxterm expansion (standard product of sums). Be able to use both alphabetic and decimal notation.
- 3. Given an algebraic expression for a function, expand it algebraically to obtain the minterm or maxterm form.

Learning Objectives

- 4. Given one of the following: minterm expansion for F, minterm expansion for F, maxterm expansion for F, or maxterm expansion for F, find any of the other three forms.
- 5. Write the general form of the minterm and maxterm expansion of a function of *n* variables.
- 6. Explain why some functions contain don't-care terms.
- 7. Explain the operation of a full adder and a full subtracter and derive logic equations for these modules. Draw a block diagram for a parallel adder or subtracter and trace signals on the block diagram.

Conversion of English Sentences to Boolean Equations

Introduction:

- Logic design problems are often stated in terms of one or more English sentences.
- ❖The first step in designing a logic circuit is to translate these sentences into Boolean equations. Must break down each sentence into phrases and associate a Boolean variable with each phrase.
- If a phrase can have a value of true or false, then we can represent that phrase by a Boolean variable.
- Phrases can be either true or false, or have no truth value.

Conversion of English Sentences to Boolean Equations

Example 1:

Statement: The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 p.m. and the window is not closed.

This statement can be broken up into the following phrases with Boolean variables A,B,C,D and Z:

The alarm will ring
$$Z$$
 the alarm switch is on A and the door is not closed A it is after 6 P.M. and B' the window is not closed.

Conversion of English Sentences to Boolean Equations

Example 1 (continued):

Using this assignment of variables, the sentence can be translated into the following Boolean equation:

$$Z = AB + CD$$

This equation corresponds to the following circuit:

Combinational Logic Design Using a Truth Table

Logic Design with Truth Tables:

❖Take a three-input, one output system where A,B,C are inputs that represent the digits of binary number N and f is the output such that f=1 if $N>=011_2$ and f=0 if $N<011_2$.

Α	В	C	f	f'	
0	0	0	0	1	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	
(b)					

Combinational Logic Design Using a Truth Table

Logic Design with Truth Tables:

- ❖ OR-ing the terms that yield value 1 will result in f=A'BC+AB'C'+AB'C+ABC'+ABC
- ❖ Where the expression equals 1 if A,B, and C take on any of the five combinations of values 011, 100, 101, 110 or 111.
- This can be simplified to

$$f=A'BC+AB'+AB=A'BC+A=A+BC$$

The expression can also be written in terms of 0's:

$$f = (A + B + C)(A + B + C')(A + B' + C)$$

Minterms:

- A minterm of n variables is a product of n literals in which each variable appears exactly once in either true or complemented form, but not both.
- ❖Minterms are often written in abbreviated form—A'B'C' is designated m0, A'B'C is designated m1, etc.
- ❖In general, the minterm which corresponds to row i of the truth table is designated mi (i is usually written in decimal).
- When a function f is written as a sum of minterms as in Equation (4-1), this is referred to as a minterm expansion or a standard sum of products.

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

 $f(A, B, C) = \sum m(3, 4, 5, 6, 7)$

Maxterms:

- A maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true or complemented form, but not both.
- A maxterm is the complement of the corresponding minterm.
- Maxterms are written in M-notation.
- When a function f is written as a product of maxterms, this is referred to as a maxterm expansion or a standard product of sums.

$$f(A, B, C) = M_0 M_1 M_2$$
 $f(A, B, C) = \prod M(0, 1, 2)$

Table of Minterms and Maxterms for Three Terms:

Row No.	ABC	Minterms	Maxterms
0	0 0 0	$A'B'C' = m_0$	$A + B + C = M_0$
1	0 0 1	$A'B'C = m_1$	$A + B + C' = M_1$
2	0 1 0	$A'BC' = m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	1 0 0	$AB'C' = m_4$	$A' + B + C = M_4$
5	1 0 1	$AB'C = m_5$	$A' + B + C' = M_5$
6	1 1 0	$ABC' = m_6$	$A' + B' + C = M_6$
7	1 1 1	$ABC = m_7$	$A' + B' + C' = M_7$

Example 2:

Find the minterm expansion of f(a, b, c, d) = a'(b' + d) + acd'.

$$f = a'b' + a'd + acd'$$

$$= a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b')$$

$$= a'b'c'd' + a'b'c'd + a'b'cd' + a'b'c'd + a'b'c'd + a'b'c'd$$

$$+ a'bc'd + a'bcd + abcd' + ab'cd'$$
(4-9)

Duplicate terms have been crossed out, because X + X = X. This expression can then be converted to decimal notation:

The maxterm expansion for f can then be obtained by listing the decimal integers (in the range 0 to 15) which do not correspond to minterms of f:

$$f = \Pi M(4, 6, 8, 9, 11, 12, 13, 15)$$

Example 3:

Show that a'c + b'c' + ab = a'b' + bc + ac'.

We will find the minterm expansion of each side by supplying the missing variables. For the left side,

$$a'c(b + b') + b'c'(a + a') + ab(c + c')$$

= $a'bc + a'b'c + ab'c' + a'b'c' + abc + abc'$
= $m_3 + m_1 + m_4 + m_0 + m_7 + m_6$

For the right side,

$$a'b'(c + c') + bc(a + a') + ac'(b + b')$$

= $a'b'c + a'b'c + abc + a'bc + abc' + ab'c'$
= $m_1 + m_0 + m_7 + m_3 + m_6 + m_4$

Because the two minterm expansions are the same, the equation is valid.

 $ABC \mid F$

General Minterm and Maxterm Expansions

General definition:

- A general truth table for three variables:
- To completely specify a function, all a_i's must be assigned values.
- ❖ 28 ways of filling the F column.
- Minterm expansion of a general function:

pletely specify a function, all
$$a_i$$
's 010 a_2 011 a_3 assigned values.

s of filling the F column.

n expansion of a general function:

$$F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \cdots + a_7 m_7 = \sum_{i=0}^7 a_i m_i$$

Maxterm expansion of a general function:

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2) \cdot \cdot \cdot (a_7 + M_7) = \prod_{i=0}^{7} (a_i + M_i)$$

General Minterm and Maxterm Expansions

Conversion of Forms (Table 4-3):

DESIRED FORM

		Minterm Expansion of <i>F</i>	Maxterm Expansion of <i>F</i>	Minterm Expansion of F'	Maxterm Expansion of <i>F'</i>
GIVEN FORM	Minterm Expansion of F		maxterm nos. are those nos. not on the minterm list for F	list minterms not present in F	maxterm nos. are the same as minterm nos. of F
	Maxterm Expansion of F	minterm nos. are those nos. not on the maxterm list for F		minterm nos. are the same as maxterm nos. of F	list maxterms not present in F

General Minterm and Maxterm Expansions

Application of Conversion of Forms (Table 4-4):

DESIRED FORM

		Minterm	Maxterm	Minterm	Maxterm
FORM		Expansion	Expansion	Expansion	Expansion
요		of f	of f	of f'	of f'
VEN	f =				
3	Σ $m(3, 4, 5, 6, 7)$		$\Pi M(0, 1, 2)$	$\Sigma m(0, 1, 2)$	Π M(3, 4, 5, 6, 7)
0	$f = \Pi M(0, 1, 2)$	Σ m(3, 4, 5, 6, 7)		$\Sigma m(0, 1, 2)$	П M(3, 4, 5, 6, 7)
	11 111(0, 1, 2)	2(5, 1, 5, 0, 1)		2(0, 1, 2)	11 111(3, 1, 3, 0, 1)

Incompletely Specified Functions

Introduction:

- ❖ In some systems, certain combinations of inputs will never occur. For these combinations, we "don't care" what the value of F is. The function F is then considered incompletely specified.
- Truth table with don't-cares:

Α	В	C	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Х
1	1	1	1

d, and D specify "don't cares" in minterm and maxterm expansions respectively.

Example 4:

We will design a simple binary adder that adds two 1-bit binary numbers, u and b, to give a 2-bit sum. The numeric values for the adder inputs and output are as follows:

a	b	Sum		
0	0	00	(0+0=0)	
0	1	01	(0+1=1)	
1	0	01	(1+0=1)	
1	1	10	(1 + 1 = 2)	

Example 4 (continued):

We will represent inputs to the adder by the logic variables A and B and the 2-bit sum by the logic variables X and Y, and we construct a truth table:

Α	В	X	Y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Because a numeric value of 0 is represented by a logic 0 and a numeric value of 1 by a logic l, the 0's and 1's in the truth table are exactly the same as in the previous table. From the truth table,

$$X = AB$$
 and $Y = A'B + AB' = A \oplus B$

Example 5:

The four inputs to a circuit (A, B, C, D) represent an 8-4-2-1 binary-coded-decimal digit. Design the circuit so that the output (Z) is 1 iff the decimal number represented by the inputs is exactly divisible by 3. Assume that only valid BCD digits occur as inputs.

The digits 0, 3, 6, and 9 are exactly divisible by 3, so Z = 1 for the input combinations ABCD = 0000, 0011, 0110, and 1001. The input combinations 1010, 1011, 1100, 1101, 1110, and 1111 do not represent valid BCD digits and will never occur, so Z is a don't-care for these combinations. This leads to the following truth table:

A	В	C	D	Z
0	0	0	0	1
0 0 0 0 0 0	0	0		1 0 0 1 0 0 1 X X X X X X X
0	0	1	0	0
0	0	1	1 0 1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1 1 1	0	0	0	0
1	0	0	0 1 0	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

Example 5 (continued):

The corresponding output function is

$$Z = \sum m(0, 3, 6, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

In order to find the simplest circuit which will realize Z, we must choose some of the don't-cares (X's) to be 0 and some to be 1. The easiest way to do this is to use a Karnaugh map as described in Unit 5.

See pages 104-107 for more examples

Full Adder:

*Below, the carry output from the first full adder serves as the carry input to the second full adder, etc.

Full Adder Truth Table:

X	Y	C_{in}	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logic Equations for Full Adder:

$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

$$= X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$$

$$C_{out} = X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC'_{in}$$

$$= (X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in})$$

$$= YC_{in} + XC_{in} + XY$$
(4-21)

Design of Binary Adders and Subtracters Implementation of Full Adder:

Binary Subtracter:

A binary subtracter can be made using full adders as shown below:

Xį	Уi	b_i	$b_{i+1}d_i$
0	0	0	0 0
0	0	1	1 1
0	1	0	1 1
0	1	1	1 0
1	0	0	0 1
1	0	1	0 0
1	1	0	0 0
1	1	1	1 1

Parallel Subtracter:

A parallel subtracter can be made using full subtracters as shown below:

Carry Lookahead Adder:

In the parallel adder the carry out of the ith stage can be written as:

$$C_{i+1} = A_i B_i + C_i (A_i + B_i) = A_i B_i + C_i (A_i \oplus B_i) = G_i + P_i C_i$$

where $G_i = A_i B_i$ indicates the condition for the *i*th stage to *generate* a carry out and $P_i = A_i \oplus B_i$ (or $P_i = A_i + B_i$) indicates the condition for the *i*th stage to propagate a carry in to the carry out. Then C_{i+2} can be expressed in terms of C_i .

$$C_{i+1} = G_i + P_i C_i$$

$$C_{i+2} = G_{i+1} + P_{i+1} G_i + P_{i+1} P_i C_i$$

$$C_{i+3} = G_{i+2} + P_{i+2} G_{i+1} + P_{i+2} P_{i+1} G_i + P_{i+2} P_{i+1} P_i C_i$$

$$C_{i+4} = G_{i+3} + P_{i+3} G_{i+2} + P_{i+3} P_{i+2} G_{i+1} + P_{i+3} P_{i+2} P_{i+1} G_i + P_{i+3} P_{i+2} P_{i+1} P_i C_i$$

$$(4-23)$$

4 Bit Adder with Carry-Lookahead:

16-bit adder with Carry-Lookahead:

To reduce the delay of the adder without increasing the size of the carry-lookahead circuit, a second level of carry-lookahead circuits can be connected to the first level carry-lookahead circuits.

16-bit adder with Carry-Lookahead:

$$C_4 = \textbf{\textit{G}}_0 + \textbf{\textit{P}}_0 C_0$$
 where $\textbf{\textit{G}}_0 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0$ and $\textbf{\textit{P}}_0 = P_3 P_2 P_1 P_0$
$$C_8 = \textbf{\textit{G}}_4 + \textbf{\textit{P}}_4 C_4$$
 where $\textbf{\textit{G}}_4 = G_7 + P_7 G_6 + P_7 P_6 G_5 + P_7 P_6 P_5 G_4$ and $\textbf{\textit{P}}_4 = P_7 P_6 P_5 P_4$
$$C_{12} = \textbf{\textit{G}}_8 + \textbf{\textit{P}}_8 C_8$$
 where $\textbf{\textit{G}}_8 = G_{11} + P_{11} G_{10} + P_{11} P_{10} G_9 + P_{11} P_{10} P_9 G_8$ and $\textbf{\textit{P}}_8 = P_{11} P_{10} P_9 P_8$
$$C_{16} = \textbf{\textit{G}}_{12} + \textbf{\textit{P}}_{12} C_{12}$$
 where $\textbf{\textit{G}}_{12} = G_{15} + P_{15} G_{14} + P_{15} P_{14} G_{13} + P_{15} P_{14} P_{13} G_{12}$ and $\textbf{\textit{P}}_{12} = P_{15} P_{14} P_{13} P_{12}$

Now these equations for C_4 , C_8 , C_{12} , and C_{16} can be written in terms of C_0 .

$$C_4 = G_0 + P_0C_0$$

 $C_8 = G_4 + P_4G_0 + P_4P_0C_0$
 $C_{12} = G_8 + P_8G_4 + P_8P_4G_0 + P_8P_4P_0C_0$
 $C_{16} = G_{12} + P_{12}G_8 + P_{12}P_8G_4 + P_{12}P_8P_4G_0 + P_{12}P_8P_4P_0C_0$

16-bit adder with Second Level Carry-Lookahead:

16-bit adder with Second Level Carry-Lookahead:

$$C_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} G_{i-3} + P_i P_{i-1} P_{i-2} P_{i-3} C_{i-3}$$

$$C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 = \mathbf{G}_0 + \mathbf{P}_0 C_0$$

This expression can be expanded to express C_{i+1} in terms of C_{i-1} .

$$C_{i+1} = G_i + C_i P_i + G_i = (G_{i-1} + C_{i-1} P_{i-1}) P_i = G_i + P_i G_{i-1} + P_i P_{i-1} C_{i-1}$$

This procedure can be continued to obtain

$$\begin{split} C_{i+1} &= G_i + C_i P_i \\ C_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} C_{i-1} \\ C_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} C_{i-2} \\ C_{i+1} &= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} G_{i-3} + P_i P_{i-1} P_{i-2} P_{i-3} C_{i-3} \end{split}$$

and so on.