Numerical Methods Notes

Adrien Tremblay

Why numerical methods?

- Give numerical solution to a mathematical problem
- When problem is too complex (no closed form solution)
 - Solution doesnt exist
 - Too dumb to figure out solution
- Numerical solutions only produce approximations of the actual solution
 - We should be able to determine how good such approximations are
 - With an upper boundary

What are numerical methods?

- 1. Algorithms
- Precise set of rules(instructions) to follow
- Generate approximation of mathematical problem
- 2. Method to estimate error
- Without this approximation is useless
- Will differ depending on type of mathematical model

Algorithms

- Most are iterative
 - An initial guess that is gruadually improved
 - It us up to you to find the initial guess
 - And up to you to decide when to stop the iteration
- Can have quality control step (Check how good a job you did)
 - This step is to decide when to stop the iteration
 - Used to identify the difference in precision between approximation and real answer.
 - We typically have a target tolerance or precision

How do we decide target precision?

- Will depend on specific problem and why you are solving it
- Usually given lmao

Error

• Difference between actual mathematical solution r and the numerical approximation

- Can be measured as an abosulute error or relative error
 - Usually we use relative error (%).

True Error vs Estimated Erro

- The True Error is the actual difference between solution and estimate. Which is never really known unless you know the real solution.
- The Estimated Error is a conservative estiamtion of the true error.

Estimated absolute error

$$E_a \ge |x_r - r|$$

Estimated relative error

$$e_a \ge \frac{|x_r - r|}{r}$$

Source of errors

- Error in modelling
 - Model is not 100% accurate
 - Bugs
 - Errors in inputs
 - Round off errors
 - Truncation errors