ЛАБОРАТОРНАЯ РАБОТА №3 «СЕМИСЕГМЕНТНЫЕ ИНДИКАТОРЫ»

Цель работы: освоить принцип работы вывода информации на семисегментные индикаторы на плате BASYS 3.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Таблица 1.

Соответствие сигналов и ножек ПЛИС						
Имя сигнала	Номер	Описание Стандарт				
согласно схеме	ножки		питания с			
платы	(Location)	настройками (І/				
			Standard)			
CLK100MHZ	W5	Тактирующий сигнал LVCMOS33				
		с частотой 100 МГц				
BTNU	T18	Кнопка BTNU –	LVCMOS33			
		верхняя				
BTNR	T17	Кнопка BTNR –	LVCMOS33			
		правая				
BTND	U17	Кнопка BTND –	LVCMOS33			
		РИЖНЯЯ				
BTNL	W19	Кнопка BTNL – левая	LVCMOS33			
BTNC	U18	Кнопка BTNC – LVCMOS33				
		центральная				
LD0	U16	Светодиод LD0	LVCMOS33			
LD1	E19	Светодиод LD1	LVCMOS33			
LD2	U19	Светодиод LD2	LVCMOS33			
LD3	V19	Светодиод LD3	LVCMOS33			
LD4	W18	Светодиод LD4	LVCMOS33			
LD5	U15	Светодиод LD5 LVCMOS				
LD6	U14	Светодиод LD6	LVCMOS33			
LD7	V14	Светодиод LD7	LVCMOS33			
LD8	V13	Светодиод LD8 LVCMOS33				
LD9	V3	Светодиод LD9 LVCMOS				
LD10	W3	Светодиод LD10 LVCMOS33				
LD11	U3	Светодиод LD11 LVCMOS33				
LD12	P3	Светодиод LD12 LVCMOS33				
LD13	N3	Светодиод LD13 LVCMOS33				
LD14	P1	Светодиод LD14 LVCMOS33				
LD15	L1	Светодиод LD15 LVCMOS33				
SW0	V17	Движковый LVCMOS33				
		переключатель SW0				

Имя сигнала	Номер	Описание	Стандарт
согласно схеме	ножки		питания с
платы	(Location)		настройками (I/O
			Standard)
SW1	V16	Движковый	LVCMOS33
		переключатель SW1	
SW2	W16	Движковый	LVCMOS33
		переключатель SW2	
SW3	W17	Движковый	LVCMOS33
		переключатель SW3	
SW4	W15	Движковый	LVCMOS33
		переключатель SW4	
SW5	V15	Движковый	LVCMOS33
		переключатель SW5	
SW6	W14	Движковый	LVCMOS33
		переключатель SW6	
SW7	W13	Движковый	LVCMOS33
		переключатель SW7	
SW8	V2	Движковый	LVCMOS33
		переключатель SW8	
SW9	T3	Движковый	LVCMOS33
		переключатель SW9	
SW10	T2	Движковый	LVCMOS33
		переключатель SW10	
SW11	R3	Движковый LVCMOS33	
		переключатель SW11	
SW12	W2	Движковый	LVCMOS33
		переключатель SW12	
SW13	U1	Движковый	LVCMOS33
		переключатель SW13	
SW14	T1	Движковый LVCMOS33	
		переключатель SW14	
SW15	R2	Движковый	LVCMOS33
		переключатель SW15	
AN0	U2	Анод первого	LVCMOS33
		индикатора (крайнего	
		справа), управляется	
		нулём, в примере	
1374	***	AN[0]	1110110000
AN1	U4	Анод второго	LVCMOS33
		индикатора,	
		управляется нулём, в	
		примере AN[1]	

Имя сигнала	Номер	Описание	Стандарт
согласно схеме	ножки		питания с
платы	(Location)		настройками (I/O
			Standard)
AN2	V4	Анод третьего	LVCMOS33
		индикатора,	
		управляется нулём, в	
		примере AN[2]	
AN3	W4	Анод четвёртого	LVCMOS33
		индикатора (крайнего	
		слева), управляется	
		нулём, в примере	
		AN[3]	
CA	W7	Катод секции А,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[0]	
CB	W6	Катод секции В,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[1]	
CC	U8	Катод секции С,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[2]	
CD	V8	Катод секции D,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[3]	
CE	U5	Катод секции Е,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[4]	
CF	V5	Катод секции F,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[5]	
CG	U7	Катод секции G, LVCMOS33	
		управляется нулём, в	
		примере НЕХ[6]	
DP	V7	Катод точки,	LVCMOS33
		управляется нулём, в	
		примере НЕХ[7]	

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Составьте алгоритм отображения информации на семисегментных индикаторах: номер группы, номер варианта, дата рождения с разделяющими точками в формате «ДД.ММ.ГГ» согласно табл. 2 для своего варианта. Номер варианта см. в гугл-таблице, ссылка на которую лежит в текстовом файле в папке «Гугл-таблицы». Предусмотреть кнопку «Сброс» BTNC возврат к самой первой комбинации.
- 2. Рассчитайте разрядность регистра и его значение для задержки согласно варианту и частоте входного сигнала 100 МГц.
- 3. Покажите преподавателю расчёт задержки и расскажите алгоритм отображения информации.
- 4. Напишите код на HDL согласно варианту. Смотрите пример отображения информации из папки «Примеры» «LR_3.srcs».
- 5. Промоделируйте работу написанного кода, тестовый файл должен быть написан на том же HDL. Для моделирования задержки уменьшайте, в том числе задержку в модуле обработки нажатия кнопки, если он имеется. Моделирование выполнять в режиме «Run Post-Implementation Timing Simulation».
- 6. Сравните результаты моделирования с составленными алгоритмами и реакцией на кнопки. Если всё корректно работает, приступайте к следующему пункту.
- 7. Согласно табл. 2 назначьте соответствующие ножки ПЛИС для входов и выходов.
- 8. Покажите преподавателю результаты моделирования и назначенные ножки ПЛИС, чтобы получить плату Basys 3.
- 9. Проверьте работу написанного кода на плате Basys 3 в соответствии с составленными алгоритмами и реакцией на нажатие кнопок.
 - 10. Покажите преподавателю работу платы Basys 3.
 - 11. Сделайте несколько фотографий работы кода на плате Basys 3.
- 12. Составьте отчёт согласно требованиям раздела «содержание отчёта».

Таблица 2

Варианты задания

№	Задержка, с	HDL	Действие	Переключатель	
1	0,3	SystemVerilog	A	Движковый	
,		Сдвиг влево	переключатель с		
2	2 0,32	VHDL	СДВИГ ВЛЕВО	приоритетом SW2-0	
3	0,34	SystemVerilog	C	Кнопки U и D	
4	0,36	VHDL	Сдвиг вправо		
5	0,38	SystemVerilog	Мигание с	Движковый	
			выравниванием	переключатель в	
6	6 0,4	VHDL	по правому	качестве адреса SW15-	
,		краю	14		
7	0,42	SystemVerilog	Мигание с		
			выравниванием	Кнопки R и L	
8	0,44	VHDL	по левому	KHOHKI K II L	
			краю		
9	0,46	SystemVerilog		Движковый	
1.0	0.40		Сдвиг влево	переключатель в	
10	0,48	VHDL	- 7	качестве адреса SW13-	
	0.7	~		12	
11	0,5	SystemVerilog	C	Движковый	
12 0,52	VHDL	Сдвиг вправо	переключатель с		
10		G . 37 '1	3.6	приоритетом SW5-3	
13	0,54	SystemVerilog	Мигание с	Движковый	
1.4	0.56	VHDL	выравниванием	переключатель в	
14	14 0,56		по правому	качестве адреса SW11-	
15	0.59	System Veriles	краю	10	
13	0,58	SystemVerilog	Мигание с	Движковый	
16	16 06	VHDI	выравниванием	переключатель с	
16 0,6	VHDL	по левому краю	приоритетом SW8-6		
17	0,62	SystemVerilog	краю		
18	0,64	VHDL	Сдвиг влево	Кнопки U и R	
19	0,66	SystemVerilog		Движковый	
			Сдвиг вправо	переключатель в	
20	20 0,68	VHDL	одын ынраво	качестве адреса SW9-8	
21	0,70	SystemVerilog	Мигание с	7.1	
	21 3,73		выравниванием	I/ I D	
22	0,72	VHDL	по правому	Кнопки L и D	
	· 		краю		
23	0,74	SystemVerilog	Мигание с	Применеорияй	
			выравниванием	Движковый	
24 0,76	0,76	0,76 VHDL	по левому	переключатель с приоритетом SW11-9	
			краю	Thurshiciom 2 M 11-3	

В таблице задержка в секундах указана для действия при отображении даты рождения и номера группы, если он более 4-х символов. Сдвиг – посимвольное появление даты рождения и номера группы, если он более 4-х символов. Задержка между появлениями символов. Мигание – появление даты рождения и номера группы, если он более 4-х символов, двумя частями: первая часть, задержка, пусто, задержка, вторая часть, задержка. При отображении номера варианта – выравнивание задаётся столбцом «Действие»: сдвиг вправо - по левому краю, сдвиг влево - по правому краю. В случае с миганием выравнивание указано. Если в столбце переключатель указано «Движковый переключатель с приоритетом» — это значит, что если включен переключатель большим номером, то отображаться должна информация, привязанная к нему, игнорируя положения более младших переключателей; если все переключатели в положении 000, то ничего не должно отображаться на индикации. В случае «Движковый переключатель в качестве адреса»: в положении 00 – ничего не отображаться на семисегментных индикаторах, в положении 01 – номер группы, 10 – номер варианта, 11 – дата рождения. Когда выбор отображаемой информации должен задаваться кнопками, то первая кнопка должна перебирать список вверх, а вторая кнопка вниз; список должен состоять: пусто, номер группы, номер варианта, дата рождения; список должен быть зациклен, т.е. перебираться по кругу.

СОДЕРЖАНИЕ ОТЧЕТА

На титульный лист отчёта вставить свою подпись. Подпись преподавателя из шаблона не убирать. Под каждой подписью место под дату. Даты под каждой подписью проставить, они должны совпадать с датой отправки отчёта. Без подписи отчёты будут возвращаться на доработку. Предпочтительный формат отчёта pdf, в крайнем случае docx или doc. Другие форматы не принимаются. Отчет по лабораторной работе должен быть оформлен согласно шаблону (см. папку «шаблоны отчётов») и содержать следующие разделы.

- 1) цель работы и постановка задачи.
- В разделе описывается цель работы.
 - 2) постановка задачи.

В разделе описываются задачи на лабораторную работу (как общие для всех, так и задачи своего варианта), которые необходимо выполнить.

- 3) описание алгоритма.
- В разделе приводится описание алгоритма отображения информации на плате, в том числе описывается сама информация, её порядок и способ её выбора для отображения, а также работе кнопок и расчёт задержки.
 - 4) код на HDL.
- В разделе приводятся код на HDL, включая модули, и их описание.
 - 5) моделирование.

В разделе приводятся код файла тестирования и результат моделирования кода, его описание и сравнение с алгоритмом работы. На экранных снимках обязательно должны быть временные шкалы и названия входов и выходов.

6) назначение ножек ПЛИС.

В разделе приводятся содержание файла xdc и его описание.

7) фотографии макета.

В разделе приводятся фотографии с работающей прошивкой ПЛИС и их описания.

8) выводы.

Приводятся выводы о проделанной работе: в краткой форме описывается что было сделано и какие результаты были получены.

Заголовки первого уровня такие как «ЦЕЛЬ РАБОТЫ», «ПОСТАНОВКА ЗАДАЧИ» и «ВЫВОДЫ» — не нумеруются. Остальные разделы должны быть пронумерованы.

ПРИМЕРНЫЙ СПИСОК ВОПРОСОВ ПРИ ЗАЩИТЕ РАБОТЫ

- 1. Как работает счётчик (суммирующий, вычитающий, реверсивный)?
- 2. Привести УГО счётчика (суммирующий, вычитающий, реверсивный).
 - 3. С помощью каких конструкций описывается счётчик на HDL?
 - 4. Как работает регистр (PIPO, PISO, SIPO, SISO)?
 - 5. Привести УГО регистра (PIPO, PISO, SIPO, SISO).
- 6. С помощью каких конструкций описывается регистр на HDL (PIPO, PISO, SIPO, SISO)?
- 7. Что такое семисегментный индикатор и каков принцип его работы?
- 8. Каким образом семисегментный индикатор подключен к ПЛИС в макете? Каким другим способом можно его подключить к ПЛИС или МК?
- 9. Что из себя представляет модуль преобразования кода символа в код управления семисегментным индикатором?
 - 10. Что такое конечный автомат и из каких блоков он состоит?
- 11. Какие бывают конечные автоматы и чем отличаются друг от друга?
- 12. С помощью каких конструкций описывается конечный автомат на HDL?
- 13. Какие подходы применяются при описании конечного автомата на HDL?
 - 14. Что такое PLL?
- 15. Зачем нужна параметризация модулей и что можно параметризировать?

- 16. Каким образом правильно использовать BRAM?
- 17. Как рассчитать задержку под конкретную частоту входного сигнала (привести пример для конкретных значений задержки и частоты входного сигнала)?
- 18. Как правильно считывать сигнал с кнопки, избегая дребезга контакта?