

Nombre: Leonel Antonio González García _____ FISICA II 1S2022

Carné: <u>201709088</u> Sección: <u>P</u> **Entrega: Lunes 28/03**

Profesor: Ing. Bayron Cuyan _____ Auxiliar: José Balux ___

Problema No. 1: Para el circuito que se muestra en la figura R_1 =1.50Ω, R_2 =3.30Ω, R_3 =430Ω, R_4 =6.20Ω, R_5 =120Ω, R_6 =820Ω y V_1 =45.0 Volt. Determine:

- a) La resistencia equivalente que ve la fuente. R// $7.276~\Omega$
- b) La corriente que entrega la fuente. R// 6.18 A
- c) La corriente en cada resistencia.
- d) El voltaje en cada resistencia.
- e) La potencia total disipada por las resistencias. R// 278 Watts

Problema No. 2: Para el circuito que se muestra en la figura, si la corriente en la resistencia de $25.0~\Omega$ es de 1.25~A hacia la izquierda; determine:

- a) La resistencia equivalente entre los puntos "a" y"b". R//86.82Ω
- b) El valor de la fem "ε". R// 398 V

Problema No. 3: Para la siguiente configuración, utilizando las leyes de Kirchhoff, determine:

- a) la corriente en cada resistencia. $R/I(R_1)=0.385mA$, $I(R_2)=3.08mA$, $I(R_3)=2.69mA$
- b) La diferencia de potencial V_{fc}. R// -69.2 volt

Problema No. 4: En el siguiente circuito sí R_1 =11.0 Ω , R_2 =12.0 Ω , R_3 =13.0 Ω , R_4 =14.0 Ω , R_5 =15.0 Ω , R_6 =16.0 Ω , V_1 =20.0 Volt y V_2 =40.0 Volt. Utilizando las leyes de Kirchhoff, determine:

- a) La corriente que pasa por cada resistencia. $R//i(R_1)=0.339$ A, $i(R_2)=0.684$ A, $i(R_3)=0.345$ A, $i(R_4)=6.17$ mA, $i(R_5)=1.029$ A, $i(R_6)=1.023$ A.
- b) La diferencia de potencial Vcf. R// 36.3 Volt

