Business Problem:

a mobile's factory owner needs to estimate the price ranges of mobile based on deferent mobile Specification

data dictionary:

- id:ID
- battery_power:Total energy a battery can store in one time measured in mAh
- · blue:Has bluetooth or not
- clock_speed:speed at which microprocessor executes instructions
- · dual_sim:Has dual sim support or not
- fc:Front Camera mega pixels
- four_g:Has 4G or not
- · int memory:Internal Memory in Gigabytes
- m dep:Mobile Depth in cm
- mobile_wt:Weight of mobile phone
- n cores:Number of cores of processor
- · pc:Primary Camera mega pixels
- px_height:Pixel Resolution Height
- · px width:Pixel Resolution Width
- · ram:Random Access Memory in Megabytes
- · sc h:Screen Height of mobile in cm
- · sc w:Screen Width of mobile in cm
- talk_time:longest time that a single battery charge will last when you are
- three g:Has 3G or not
- · touch screen: Has touch screen or not
- · wifi:Has wifi or not

```
In [1]:
   #pip install cufflinks
In [2]:
 1 #pip install chart_studio
In [3]:
 1 #pip install plotly
In [4]:
 1 #pip install lightgbm
In [5]:
 1 #pip install pandas profiling
```

In [6]:

```
1 | import numpy as np
2 | import pandas as pd
3 from pandas_profiling import ProfileReport
4 import seaborn as sns
5 import matplotlib.pyplot as plt
6 sns.set style("darkgrid")
```

In [7]:

```
1 from collections import Counter
  from sklearn.preprocessing import StandardScaler
 2
   from sklearn.preprocessing import RobustScaler
   from sklearn.preprocessing import label_binarize
   from sklearn.ensemble import RandomForestClassifier
  from sklearn.ensemble import VotingClassifier
 7
   from sklearn.ensemble import GradientBoostingClassifier
   from sklearn.svm import SVC
   from sklearn.svm import LinearSVC
9
10 from sklearn.neighbors import KNeighborsClassifier
11 from sklearn.tree import DecisionTreeClassifier
   from sklearn.linear model import LogisticRegression
12
   from sklearn.linear_model import SGDClassifier
13
   from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
   from sklearn.model_selection import train_test_split
15
   from sklearn.model_selection import StratifiedKFold
16
   from sklearn.model selection import GridSearchCV
17
18 from sklearn.metrics import confusion matrix
   from sklearn.metrics import confusion matrix
19
20 from sklearn.metrics import classification_report
   from sklearn.metrics import roc auc score
   from sklearn.metrics import auc
22
23
   from sklearn.metrics import precision score
24 from sklearn.metrics import recall score
  from sklearn.metrics import accuracy score
26 | from sklearn.metrics import mean_squared_error
27
   from sklearn.metrics import f1_score
  from sklearn.metrics import roc_curve
28
  from sklearn.multiclass import OneVsRestClassifier
29
30
   from lightgbm import LGBMClassifier
```

In [8]:

```
1 import warnings
 2 warnings.filterwarnings("ignore")
 3 import chart_studio.plotly as py
 4 import cufflinks as cf
 5 import plotly.express as px
 6 %matplotlib inline
 7 | from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
8 init_notebook_mode(connected = True)
9 cf.go_offline();
10 import plotly.graph_objs as go
11 import os
for dirname, _, filenames in os.walk('/kaggle/input'):
       for filename in filenames:
13
14
           print(os.path.join(dirname, filename))
```

Load and Check Data

```
In [9]:
```

```
1 df = pd.read csv('train.csv')
2 df.head(10)
```

Out[9]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_
0	842	0	2.2	0	1	0	7	0.6	188	
1	1021	1	0.5	1	0	1	53	0.7	136	
2	563	1	0.5	1	2	1	41	0.9	145	
3	615	1	2.5	0	0	0	10	0.8	131	
4	1821	1	1.2	0	13	1	44	0.6	141	
5	1859	0	0.5	1	3	0	22	0.7	164	
6	1821	0	1.7	0	4	1	10	0.8	139	
7	1954	0	0.5	1	0	0	24	0.8	187	
8	1445	1	0.5	0	0	0	53	0.7	174	
9	509	1	0.6	1	2	1	9	0.1	93	

10 rows × 21 columns

In [10]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four <u>g</u>	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	<pre>mobile_wt</pre>	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three <u>g</u>	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
1.4	67 (0)		

dtypes: float64(2), int64(19)

memory usage: 328.2 KB

In [11]:

df.profile_report()

34/34 [00:45<00:00, 1.33s/it, Summarize dataset:

100% Completed]

Generate report structure: 1/1 [00:27<00:00,

100% 27.49s/it]

1/1 [00:17<00:00, 17.97s/it] Render HTML: 100%

Overview

Dataset statistics

14
168.1 B
328.2 KiB
0.0%
0
0.0%
0
2000
21

Warnings

fc is highly correlated with pc	High correlation
four_g is highly correlated with three_g	High correlation
pc is highly correlated with fc	High correlation
px_height is highly correlated with px_width	High correlation

Out[11]:

In []: 1 In []: 1

```
In [ ]:
 1
```

Descriptive Statistics

In [12]:

```
1
   desc = df.describe().T
 2
 3
   df1 = pd.DataFrame(index=['battery_power','blue','clock_speed','dual_sim','fc','four_g
    'px_width','ram','sc_h','sc_w','talk_time','three_g','touch_screen','wifi','price_range
 5
                       columns= ["count", "mean", "std", "min",
                                 "25%","50%","75%","max"], data= desc )
 6
 7
 8
   f,ax = plt.subplots(figsize=(10,8))
9
10
   sns.heatmap(df1, annot=True,cmap = "Blues", fmt= '.0f',
                ax=ax,linewidths = 5, cbar = False,
11
                annot_kws={"size": 16})
12
13
14
   plt.xticks(size = 18)
15
   plt.yticks(size = 12, rotation = 0)
16 plt.ylabel("Variables")
   plt.title("Descriptive Statistics", size = 16)
18 plt.show()
   €
```

Descriptive Statistics

battery_power	2000	1239	439	501	852	1226	1615	1998
blue	2000	0	1	0	0	0	1	1
dock_speed	2000	2	1	0	1	2	2	3
dual_sim	2000	1	1	0	0	1	1	1
fc	2000	4	4	0	1	3	7	19
four_g	2000	1	0	0	0	1	1	1
int_memory	2000	32	18	2	16	32	48	64
m_dep	2000	1	0	0	0	0	1	1
mobile_wt	2000	140	35	80	109	141	170	200
_ω n_cores	2000	5	2	1	3	4	7	8
selight pc	2000	10	6	0	5	10	15	20
px_height	2000	645	444	0	283	564	947	1960
px_width	2000	1252	432	500	875	1247	1633	1998
ram	2000	2124	1085	256	1208	2146	3064	3998
sc_h	2000	12	4	5	9	12	16	19
sc_w	2000	6	4	0	2	5	9	18
talk_time	2000	11	5	2	6	11	16	20
three_g	2000	1	0	0	1	1	1	1
touch_screen	2000	1	1	0	0	1	1	1
wifi	2000	1	1	0	0	1	1	1
price_range	2000	2	1	0	1	2	2	3
	count	mean	std	min	25%	50%	75%	max

```
In [ ]:
```

1