Lecture # 12 CHE331A

- Introduction and design equation for ideal reactors
- Basics of reaction kinetics and Isothermal reactor design - conversions, molar flow rates or concentrations
- Differential, Integral, Initial Rates, Half Life, Non-linear regression method of Analysis
- Differential PBR method of Collection/Analysis

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Differential reactor is used to determine rate as a function of concentration or partial pressure

Consist of a tube containing a small amount of catalyst

- In terms of concentration: $-r'_A = \frac{\dot{v}_0 c_{A0} \dot{v}.c_{Ae}}{\Delta W} = \frac{\dot{v}_0 (c_{A0} c_{Ae})}{\Delta W}$
- ▶ In terms of conversion or product molar flow rate: $-r_A' = \frac{XF_{A0}}{\Delta W} = \frac{\mu_P F_P}{\Delta W}$
 - Thus, rate can be determined as a function of C_{A0}

Differential reactor is used to develop rate laws and determine parameter values – Example 5-5

▶ $3H_2 + CO \rightarrow CH_4 + 2H_2O$ methanation reaction; Convert CO

$$\begin{array}{c|c}
\hline
P_{CO,0} \\
\hline
P_{H2,0}
\end{array}$$

$$\begin{array}{c}
\hline
v_e = 100 \ dm^3/min
\end{array}$$

 Δ W=10 g T = 500°F

(a)	relate	the	rate	to	$C_{CH4,e}$
-----	--------	-----	------	----	-------------

(b) assumed:
$$r'_{CH4} = f(CO).g(H_2)$$

(c) determine rate law dependency and rate law parameters

Run	P _{CO} (atm)	P _{H2} (atm)	C _{CH4} (mol/dm³)
1	1.00	1.0	1.73*10-4
2	1.80	1.0	4.40*10 ⁻⁴
3	4.08	1.0	10.0*10-4
4	1.00	0.1	1.65*10-4
5	1.00	0.5	2.47*10-4
6	1.00	4.0	1.75*10-4

Outlet concentration given not Cc

Rate of methane formation can be determined and related to rate of CO disappearance

- ▶ In terms of conversion or product molar flow rate: $-r_A' = \frac{XF_{A0}}{\Delta W} = \frac{\mu_P F_P}{\Delta W}$
- $3H_2 + CO \to CH_4 + 2H_2O -r'_{CO} = r'_{CH4} = \frac{F_{CH4}}{\Delta W} = \frac{\dot{v}_e C_{CH4}}{\Delta W}$
- ▶ Thus, $-r'_{CO}$ can be determined
- For example, for run 1

$$r'_{CH4} = \left(\frac{300 \ dm^3}{min}\right) \frac{1.73 * 10^{-4} mol/dm^3}{10 \ g \ cat}$$

$$r'_{CH4} = 5.2 * 10^{-3} \left(\frac{mol\ CH_4}{g.cat*min} \right) = -r'_{CO}$$

Run	P _{CO} (atm)	P _{H2} (atm)	C _{CH4} (mol/dm³)	$egin{pmatrix} r'_{CH4} \ igg(rac{mol\ CH_4}{g.\ cat*min} \end{pmatrix}$
1	1.00	1.0	1.73*10-4	5.2*10 ⁻³
2	1.80	1.0	4.40*10-4	13.2*10 ⁻³
3	4.08	1.0	10.0*10-4	30.0*10-3
4	1.00	0.1	1.65*10-4	4.95*10-3
5	1.00	0.5	2.47*10-4	7.42*10
6	1.00	4.0	1.75*10-4	5.25*10-3

Proper planning of the experiments assist in determining the form of the rate law

- ► $r'_{CH4} = f(CO)$. $g(H_2)$ for runs 1,2 and 3 P_{H2} is constant and P_{CO} increases \rightarrow $r'_{CH4} = kP^{\alpha}_{CO}$. $g(H_2) = k'P^{\alpha}_{CO}$
- ► Taking natural log we have $ln(r'_{CH4}) = lnk' + \alpha. ln(P_{CO})$
- ▶ By plotting for the first three runs
- $\alpha = 1.22 \approx 1.00$ (more runs would help)
- ▶ Thus, $r'_{CH4} = k.P_{CO}.g(H_2)$
- We need to find the dependency of rate with hydrogen

Run	P _{CO} (atm)	P _{H2} (atm)	C _{CH4} (mol/dm³)	$egin{pmatrix} r'_{CH4} \ igg(rac{mol\ CH_4}{g.\ cat*min} igg) \end{pmatrix}$
1	1.00	1.0	1.73*10-4	5.2*10 ⁻³
2	1.80	1.0	4.40*10-4	13.2*10 ⁻³
3	4.08	1.0	10.0*10-4	30.0*10 ⁻³
4	1.00	0.1	1.65*10-4	4.95*10 ⁻³
5	1.00	0.5	2.47*10-4	7.42*10
6	1.00	4.0	1.75*10-4	5.25*10 ⁻³

Rate dependency on P_{H2} non-monotonic

- ▶ Dependency of r'_{CH4} with P_{H2} cannot be represented by a power law
- With increasing P_{H2}
 - Rate increases (run 4 to run 5)
 - o Low P_{H2}

$$r'_{CH4} \sim P_{H2}^{\beta 1}$$

∘ High P_{H2}; decreases (run 5 to run 1)

201	1
$r'_{CH4} \sim$	$P_{H2}^{\beta 2}$
	$^{\Gamma}H2$

Run	P _{co} (atm)	P _{H2} (atm)	C _{CH4} (mol/dm³)	$egin{pmatrix} r'_{ extit{CH4}} \ igg(rac{mol \ extit{CH}_4}{g. \ cat * min} igg) \end{pmatrix}$
1	1.00	1.0	1.73*10-4	5.2*10 ⁻³
2	1.80	1.0	4.40*10-4	13.2*10 ⁻³
3	4.08	1.0	10.0*10-4	30.0*10 ⁻³
4	1.00	0.1	1.65*10-4	4.95*10 ⁻³
5	1.00	0.5	2.47*10-4	7.42*10 ⁻³
6	1.00	4.0	1.75*10-4	5.25*10 ⁻³

Even higher P_{H2}; rate is relatively constant (run 1 to run 6)

There should be one Rate law to be consistent with the experimental observations

- ▶ Rate variations depends on P_{H2} $r'_{CH4} \sim P_{H2}^{\beta 1}$ at low P_{H2} , and
 - $r'_{CH4} \sim \frac{1}{P_{H2}^{\beta 2}}$ at high P_{H2}
- ▶ One such rate law is: $r'_{CH4} \sim \frac{P_{H2}^{\beta 1}}{1+b.P_{H2}^{\beta 2}}$ (such forms are common)
- Does this rate law satisfies the observed trends?
- ightharpoonup At low P_{H2} the denominator $\rightarrow 1$
- At high P_{H2} the denominator $\rightarrow b.P_{H2}^{\beta 2}$ and $r'_{CH4} \sim \frac{P_{H2}^{\beta 1}}{P_{H2}^{\beta 2}} \sim \frac{1}{(P_{H2})^{\beta 2}-\beta 1}$

and
$$r'_{CH4} \sim P_{H2}^{\beta 1}$$
 $\beta 2 > \beta 1$

and
$$r'_{CH4} \sim \frac{P_{H2}^{\beta 1}}{P_{H2}^{\beta 2}} \sim \frac{1}{(P_{H2})^{\beta 2 - \beta 1}}$$

Non-linear regression is useful to determine the parameters

▶ Taking into account the variation of rate with P_{CO}, the "unified" rate law is

$$r'_{CH4} = \frac{aP_{CO}P_{H2}^{\beta 1}}{1 + b.P_{H2}^{\beta 2}}$$

- ▶ Need to find the rate law parameters $a, b, \beta 1$ and $\beta 2$, which is consistent with the experimental data
- ▶ Done by non-linear regression, e.g., initial guess for the parameters = 1
- Resulting rate law with only six runs (N=6 and K=4)

$$r'_{CH4} = \frac{0.025P_{CO}P_{H2}^{0.61}}{1 + 2.49 * P_{H2}}$$

Rate law for the methanation reaction – additional considerations

▶ The rate law for the methanation reaction: $3H_2 + CO \rightarrow CH_4 + 2H_2O$

$$r'_{CH4} = \frac{0.025P_{CO}P_{H2}^{0.61}}{1 + 2.49 * P_{H2}}$$

- ► Heterogeneous catalysis, power associated with H₂ is ½ (dissociation adsorption)
- ▶ Consider a factor of ½, instead of 0.61, and evaluate 2 parameters a and b
- Again by non-linear regression, with initial guess for a and b as those obtained previously, and with P_{CO} and P_{H2} in atm

$$r'_{CH4} = \frac{0.018P_{CO}P_{H2}^{0.5}}{1 + 1.49 * P_{H2}} \frac{mol}{g. cat * s}$$

