Petersson Inner Product of Theta Series An experimental approach

Nicolas SIMARD

McGill University

December 1st, 2017

Stark's observation

Let $K = \mathbb{Q}(\sqrt{-23})$ and let H be the HCF of K. Let

$$\psi: \mathsf{Gal}(H/K) \to \mathsf{GL}_1(\mathbb{C})$$

be a non-trivial one-dimensional Artin representation and let

$$ho = \operatorname{Ind}_{\mathsf{K}}^{\mathbb{Q}} \psi : \operatorname{\mathsf{Gal}}(\mathsf{H}/\mathbb{Q}) o \operatorname{\mathsf{GL}}_2(\mathbb{C})$$

be the induced representation.

Stark's observation (cont.)

By Deligne-Serre, one has

$$L(\rho, s) = L(\theta_{\psi}, s),$$

where

$$\theta_{\psi}(q) = \eta(q)\eta(23q) = q \prod_{n\geq 1} (1-q^n)(1-q^{23n}) \in M_1(\Gamma_0(23),\chi_{-23}).$$

Then Stark proves that

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = 3 \log \varepsilon,$$

where ε is the real root of

$$x^3 - x - 1$$
.

Structure of the talk

Introduction

Motivation Structure of the Talk

Petersson Inner Product of Weight One Theta Series **Explicit Formulas** Generalizing Stark's Observation

Petersson Inner Product of Higher Weight Theta Series

Spaces of Theta Series

Notation

Throughout this talks, let

- K be an imaginary quadratic field of discriminant D,
- H be the Hilbert class field of K,
- h_K be the class number of K,
- w_K be the number of roots of unity in K and
- CIK be the class group of K.

Weight one theta series

Let ψ be a class character of K, i.e. a homomorphism

$$\psi: \mathsf{Cl}_{\mathsf{K}} \to \mathbb{C}^{\times}.$$

Then

$$\theta_{\psi}(q) = \sum_{\mathfrak{a}} \psi(\mathfrak{a}) q^{N(\mathfrak{a})} \in M_1(\Gamma_0(|D|), \chi_D).$$

Moreover, θ_{ψ} is an eigenform for all Hecke operators. If $\psi^2=1$, θ_{ψ} is an Eisenstein series. If $\psi^2\neq 1$, θ_{ψ} is a cusp form (in fact, a newform).

Stark's example

Let

$$K = \mathbb{Q}(\sqrt{-23})$$

and let ψ be a non-trivial class character as above. Then

Stark's
$$\theta_{\psi} = \text{our } \theta_{\psi} \in M_1(\Gamma_0(23), \chi_{-23}).$$

Note that if ψ' is the other non-trivial class character, then

$$\theta_{\psi} = \theta_{\psi'}$$
.

Petersson inner product of weight one theta series

The Petersson inner product of any two $f, g \in S_k(\Gamma_0(N), \chi)$ is defined as

$$\langle f, g \rangle = \iint_{\Gamma_0(N) \setminus \mathcal{H}} f(x + iy) \overline{g(x + iy)} y^k d\mu.$$

Then

Proposition (S.)

Let ψ be a class character which is not a genus character. Then

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = \frac{-h_{\mathcal{K}}}{3w_{\mathcal{K}}^2} \sum_{\mathcal{A} \in \mathcal{C}I_{\mathcal{K}}} \psi^2(\mathcal{A}) \log \mathcal{N}(\mathcal{A})^6 |\Delta(\mathcal{A})|.$$

Siegel units

Let α be a fractional ideal of K and define

$$|\delta_{\mathcal{A}}| = (N(\mathfrak{a})^6 |\Delta(\mathcal{O}_K)/\Delta(\mathfrak{a}^{-1})|)^{h_K},$$

where \mathfrak{a} is any ideal in the class \mathcal{A} . Then $|\delta_{\mathcal{A}}|$ is a unit in H. Since ψ^2 is not trivial, one sees that

$$\langle heta_{\psi}, heta_{\psi}
angle = rac{1}{3w_{K}^{2}} \sum_{A \in \mathrm{Cl}_{K}} \psi^{2}(A) \log |\delta_{A}|,$$

where $\{\mathfrak{a}_1,\ldots,\mathfrak{a}_{h_K}\}$ is a set of class representatives for Cl_K .

What about Stark's observation?

One can write

$$\langle \theta_{\psi}, \theta_{\psi} \rangle = h_{K} \log \kappa_{\psi},$$

where

$$\kappa_{\psi} = \prod_{j=1}^{h_K} \Phi(\mathfrak{a}_j)^{-\psi^2(\mathfrak{a}_j)}$$

with

$$\Phi(\mathfrak{a}) = \sqrt{N(\mathfrak{a})} |\Delta(\mathfrak{a})|^{1/12}.$$

Question

Is κ_{ψ} a unit in H?

Calcs in class nbr 3, 4, 5, 6.

Generalizing Stark's Observation

Proposition (S.)

Let ψ be a class character such that ψ^2 is a non-trivial character with rational real part. Then κ_{ψ} is an algebraic integer which is a unit. Moreover, if ψ^2 is a non-trivial genus character corresponding to the factorisation $D=D_1D_2$, with $D_1>0$ say, then

$$\kappa_{\psi} = \epsilon_{D_1}^{\frac{4h_{D_1}h_{D_2}}{w_Kw_{D_2}}},$$

where ϵ_{D_1} is the fundamental unit of $\mathbb{Q}(\sqrt{D_1})$, h_{D_j} is the class number of $\mathbb{Q}(\sqrt{D_j})$ and w_{D_2} is the number of roots of unity in $\mathbb{Q}(\sqrt{D_2})$.

Examples

If $K = \mathbb{Q}(\sqrt{-23})$, the Proposition implies that κ_{ψ} is a unit. But is it in the Hilbert class field?

Examples

If $K = \mathbb{Q}(\sqrt{-23})$, the Proposition implies that κ_{ψ} is a unit. But is it in the Hilbert class field? If $K = \mathbb{Q}(\sqrt{-39})$, the Proposition implies

$$\kappa_{\psi} = \epsilon_{13}^{\frac{1}{3}},$$

which is not in the Hilbert class field.

Stark's observation: the final word?

Note that ψ^2 has rational real part if and only if its order divides 4 or 3.

Corollary

Suppose that K has class number divisible by 2 or 3. Then there exists a class character ψ such that

 κ_{ψ}

is a unit.

Question

Is the converse true?

Thank you!

Presentation and notes available at:

https://github.com/NicolasSimard/Notes

Code available at: https://github.com/NicolasSimard/ENT

Or from my webpage: http://www.math.mcgill.ca/nsimard/