

Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications

Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis, Jason Polakis

ksolom6@uic.edu

Browser Extensions

1 Million users

10 Million users

Fingerprinting Browser Extensions

- Privacy invasive websites detect extensions
 - Track and target the device and the user
 - No permissions
 - Reveal personal-sensitive information
- Extension-fingerprinting is becoming mainstream
 - FingerprintJS framework
 - Device authentication & identification
 - Bot prevention

Fingerprinting Browser Extensions

- Side channel inference techniques
 - Web Accessible Resources (Sjosten et al. CODASPY '17)
 - Style Modifications (Laperdrix et al. USENIX Security '21)
 - Behavioral fingerprints (Starov & Nikiforakis IEEE S&P '17, Karami et al. NDSS '20)
 - User Interactions (Solomos et al. USENIX Security '22)
- Limitations
 - Analyze only a single snapshot
 - Ignore the extension's execution life cycle

Snapshot vs Continuous Recording

Snapshot vs Continuous Recording

Our Work

 Propose continuous extension fingerprinting to overcome the timebased limitations of prior works

 Develop a system (Chronos) to collect all the changes that the extensions introduce

 Explore multiple aspects of continuous fingerprinting and compare with the state-of-the-art techniques

Chronos: Continuous Fingerprinting

Detecting DOM-Based Modifications

- Mutation Observer Interface
 - Monitors DOM continuously for alterations
 - Asynchronous trigger when modification is detected
 - Mutation record types
 - ChildList: added & removed elements
 - Attributes: alteration of existing element's attributes
- Honey Page for extension exercising
 - Adopted by Carnus [Karami et al. NDSS '20]
 - Record modification information through Mutation Observer

Fingerprint Generation & Collection

- Extract information from Mutation Records
 - Mutation target
 - head, body, element
 - OuterHTML
 - <h1 id="foo">bar</h1>

- Replace the dynamic and unstable parts of the record
 - {cdn.com/content.js?rand=1234} → {cdn.com/content.js?rand=ID}

Each fingerprint contains a set of unique and shared mutation records

Experimental Evaluation

- 2 Datasets [2018-2021]
 - 35K extensions
 - Fingerprinted : **11,219** (31%)

- Overview
 - Increased coverage by 67% over the state of the art (Carnus)
 - 40% of extensions perform **ephemeral modifications** only visible to our system

Signature Characteristics

- Signature stability
 - 99.5% same number of mutation records across runs
 - 94% with at least one unique mutation record
- 80% signatures < 20 records
 - Deterministic modifications
 - Size < 1.5 KB

> Efficient fingerprint generation with low network and storage demands

Multi-Extension Fingerprinting

- Distinguish between multiple installed extensions of the same browser
 - Evaluate the fingerprint matching algorithm
 - Randomly install a set of extensions (N=2..10)
 - Repeat 100 times
- Accuracy & Performance
 - Detected 98% of installed extensions
 - No misclassifications (False Positives)
 - Execution time 1.5 second

Countermeasure Effects

- CloakX [Trickel et al. USENIX Security '19]
 - Randomizes the values of ID, class and WAR paths
 - Injects random tags and attributes into the page
 - No major effect on our signatures
 - 92% signatures with unique mutation records

- Simulacrum [Karami et al. USENIX Security '22]
 - Intercept JS APIs and separates DOM
 - Impacts our system's efficiency and efficacy

Countermeasure Effects

CloakX [Trickel et al. USENIX Security '19]

Our work highlights the importance of browsers adopting extension-fingerprinting defenses

- Simulacrum [Karami et al. USENIX Security '22]
 - Intercept JS APIs and separates DOM
 - Impacts our system's efficiency and efficacy

Conclusion

- Novel continuous fingerprinting strategy that significantly augmented extension fingerprinting frameworks
- Experimental evaluation revealed thousands of non detectable extensions
- Demonstrated that our fine-grained approach is highly accurate in realistic deployments
- Evaluated state-of-the-art countermeasures and highlighted the need for additional privacy protections

Thank you! Feel free to reach out with any questions:

Extension Categorization

