MATH 230B

Name: Quin Darcy Due Date: 02/02/2022 Instructor: Dr. Ricciotti Assignment: PRACTICE

1. Let a < b be real numbers and $f:(a,b) \to \mathbb{R}$ be differentiable with $|f'(x)| \le M$ for all $x \in (a,b)$ where M > 0. Prove that $\lim_{x \to b^-} f(x)$.

Proof. We need to show that for $f(t_n) \to L$ as $n \to \infty$ for all sequences $\{t_n\}$ in (a, b) such that $t_n \to b$. To start we will show that f is uniformly continuous on (a, b). Let $x, y \in (a, b)$. Then f is continuous on [x, y] and differentiable on (x, y). With these two premises in hand, we can apply the MVT to obtain some $z \in (x, y)$ such that

$$f(y) - f(x) = f'(z)(y - x).$$
 (1)

Since f' is bounded my M, then from (1) it follows that

$$f(y) - f(x) \le M(y - x). \tag{2}$$

Furthermore, since this is true for all $x, y \in (a, b)$, then we get that

$$|f(y) - f(x)| \le M|y - x|. \tag{3}$$

Hence, f is Lipschitz continuous on (a, b). Thus, in letting $\varepsilon > 0$ and choosing $\delta = \varepsilon/M$, then for any $x, y \in (a, b)$ such that $|y - x| < \delta$, then

$$|f(y) - f(x)| \le M|y - x| < M\delta = M\frac{\varepsilon}{M} = \varepsilon.$$
 (4)

Therefore f is uniformly continuous over (a, b). Now that uniform continuity has been established, we move on to showing the initial statement of this proof.

Let c_{nn} be any sequence of (a,b) such that $c_n \to b$ as $n \to \infty$. Recall that every convergent sequence in Cauchy (since for any $\varepsilon > 0$, there exists N such that for all n > N, $|x_n - a| < \varepsilon/2$ and so for m, n > N, the triangle inequality gives us $|x_n - x_m| \le |x_n - a| + |a - x_m| < \varepsilon$). With this we have that $\{c_n\}$ is Cauchy. Letting $\varepsilon > 0$, then since f is uniformly continuous, there exists $\delta > 0$ such that for all $x, y \in (a, b)$ with $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. Moreover, since $\{c_n\}$ is Cauchy, then there exists some N such that for all $m, n \ge N$ we get $|c_n - c_m| < \delta$ and hence $|f(c_n) - f(c_m)| < \varepsilon$. Therefore, $\{f(c_n)\}$ is Cauchy and therefore convergent. Hence, $\lim_{n\to\infty} f(c_n) \in \mathbb{R}$ for all sequences in (a,b) that converge to b. Therefore $\lim_{x\to b^-} f(x)$ exists.

2. Let $f:(0,\infty)\to\mathbb{R}$ be differentiable. Prove that if $\lim_{x\to\infty} f(x)=M\in\mathbb{R}$, then there exists a sequence $\{x_n\}_n$ in $(0,\infty)$ such that $f'(x_n)$ converges to 0.

MATH 230B Darcy

Proof. Let $\varepsilon > 0$ then there exists $\delta > 0$ such that for all $x \in (0, \infty)$ with $x > \delta$, $|f(x) - M| < \varepsilon$. By the Archimedean principle, there exists $N(\varepsilon) > \delta$ with $N \in \mathbb{Z}$ such that for any $n > N(\varepsilon)$ we have $|f(n) - M| < \varepsilon$. Hence $\{f(n)\}_n$ is convergent and therefor Cauchy. Thus, letting $m = N(\varepsilon) + 1$ and n = m + 1, then

$$|f(n) - f(m)| < \varepsilon. \tag{5}$$

From (5) it follows that

$$\frac{f(n) - f(m)}{n - m} \le \frac{|f(n) - f(m)|}{|n - m|} < \varepsilon. \tag{6}$$

Then since f is differentiable over (m, n) and continuous over [m, n] then by the MVT, there exists $z = z(N(\varepsilon)) \in (m, n)$ such that

$$f'(z) = \frac{f(n) - f(m)}{n - m} < \varepsilon. \tag{7}$$

Now define the following sequence $\{z_k\}_k$ where for each $k \in \mathbb{N}$, we define $\varepsilon = 1/k$, and from which we obtain $N(\varepsilon)$, and from that we obtain $m = N(\varepsilon) + 1$ and n = m + 1, and finally $z_k \in (m, n)$ which satisfies (7). From this we see that $\{f'(z_k)\}$ is a sequence which converges to zero.

3. Let $f:[0,1]\to\mathbb{R}$ be defined as

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ where } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$
 (8)

Determine (with proof) whether $f \in \mathcal{R}[0,1]$ and if so, compute $\int_0^1 f$.

Proof. Let $\varepsilon > 0$, then let k be the smallest integer such that $\frac{1}{k} < \varepsilon/2$. Let $P = \{x_0, \ldots, x_{2k+1}\}$ be a partition where $x_0 = 0$, $x_{2k} = 1 - \delta/2$, $x_{2k+1} = 1$, and for each $i \in \{2, \ldots, k\}$, $x_{2(k-i)+1} = \frac{1}{i} - \frac{\delta}{2}$, and $x_{2(k-i)+2} = \frac{1}{i} + \frac{\delta}{2}$, where

$$\delta < \min\{\frac{k\varepsilon - 1}{k(k-2)}, \frac{1}{2}\left(\frac{1}{k} - \frac{1}{k+1}\right)\}.$$

The term in the left of the min comes from requiring that δ be such that

$$\frac{1}{k} - \frac{\delta}{2} + (k-2)\delta + \frac{\delta}{2} < \varepsilon.$$

Where the first two terms denote the distance between x_0 and x_1 , the term in the middle is the sum of the rectangle's widths around $1/2, 1/3, \ldots, 1/k$, and the last term is the length between x_{2k} and x_{2k+1} . The term in the right of the min assures that δ is smaller than the length between $\frac{1}{k}$ and $\frac{1}{k+1}$. With this we have that for any $s \in \{2, \ldots, 2k+1\}$, then

$$M_s = \sup_{[x_{s-1}, x_s]} f = \begin{cases} 1 & \text{if } s \text{ is even} \\ 0 & \text{if } s \text{ is odd.} \end{cases}$$

MATH 230B Darcy

This is because if s is even, then there is some $i \in \{2, ..., k\}$ such that s = 2(k-i)+2 and between x_s and x_{s-1} is $\frac{1}{i}$ and so f would take on a value of 1 over that interval. Whereas, if s is odd, then there is no $i \in \mathbb{N}$ such that $x_{s-1} \leq \frac{1}{i} \leq x_s$ and so f is 0 over the interval. With this in mind we compute the upper sum

$$S(f, P) = \sum_{s=1}^{2k+1} M_s \Delta x_s$$

$$= \frac{1}{k} - \frac{\delta}{2} + \sum_{s=2}^{2k} M_s \delta + \frac{\delta}{2}$$

$$= \frac{1}{k} + (k-2)\delta$$

$$< \frac{1}{k} + (k-2) \frac{k\varepsilon - 1}{(k-2)k}$$

$$= \frac{1}{k} + \frac{k\varepsilon - 1}{k}$$

$$= \frac{k\varepsilon}{k} = \varepsilon.$$

Seeing as L(f, P) = 0 since between any two x_{i-1} and x_i there is an irrational number, then it follows that

$$U(f, P) - L(f, P) = U(f, P) < \varepsilon.$$

Therefore $f \in \mathcal{R}[0,1]$. To compute the integral we only need to note that L(f,P) = 0 for all partitions (reason given above) and so the $\underline{S}(f) = 0$. Hence

$$\int_0^1 f = 0.$$