Sciences
Industrielles de

l'Ingénieur

Application

Application

Savoirs et compétences :

On considère le schéma-blocs suivant.

On a $H_r(p) = K_r \frac{1+0,492p}{1+10,34p+5,1p^2}$ et $K_r = 0,37 \, \text{rad} \, \text{s}^{-1} \, \text{N}^{-1} \, \text{m}^{-1}$. $H_m(p) = \frac{0,5}{\left(1+10p\right)\left(1+0,5p\right)}$. Let gain du capteur est de $a=2 \, \text{V} \, \text{rad}^{-1} \, \text{s}$.

On considère que $C(p) = K_P$ et que $C_r(p) = 0$.

Question 1 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_P$ et que $C_r(p)$ est une perturbation de type échelon.

Question 2 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p) = 0$.

Question 3 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p)$ est une perturbation de type échelon.

Question 4 Déterminer l'écart statique et l'écart de traînage.

1

Chapitre 3 – Précision des systèmes

Application Corrigé

Application

On considère le schéma-blocs suivant.

On a
$$H_r(p) = K_r \frac{1+0,492p}{1+10,34p+5,1p^2}$$
 et $K_r = 0,37 \, \mathrm{rad} \, \mathrm{s}^{-1} \, \mathrm{N}^{-1} \, \mathrm{m}^{-1}$. $H_m(p) = \frac{0,5}{\left(1+10p\right)\left(1+0,5p\right)}$. Le gain du capteur est de $a = 2 \, \mathrm{V} \, \mathrm{rad}^{-1} \, \mathrm{s}$.

On considère que $C(p) = K_P$ et que $C_r(p) = 0$.

Question 1 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_P$ et que $C_r(p)$ est une perturbation de type échelon.

Question 2 Déterminer l'écart statique et l'écart de traînage. On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p) = 0$.

Question 3 Déterminer l'écart statique et l'écart de traînage. On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p)$ est une perturbation de type échelon.

Question 4 Déterminer l'écart statique et l'écart de traînage.

