01:640:311H - Homework 1

Pranav Tikkawar

February 4, 2025

1. If $x \ge 0$ and $y \ge 0$, prove that $\sqrt{xy} \le \frac{x+y}{2}$. (Hint: Use the fact that $(\sqrt{x} - \sqrt{y})^2 \ge 0$)

Solution: Suppose $x \ge 0$ and $y \ge 0$.

Then, we have

$$(\sqrt{x} - \sqrt{y})^2 \ge 0$$

$$\sqrt{x^2} - 2\sqrt{xy} + \sqrt{y^2} \ge 0$$

$$x - 2\sqrt{xy} + y \ge 0$$

$$x + y \ge 2\sqrt{xy}$$

$$\sqrt{xy} \le \frac{x + y}{2}$$

2. Bernoulli's inequality states that for every integer $n \ge 0$ and real numbers $x \ge -1$, $(1+x)^n \ge 1 + nx$. Use induction to prove this inequality.

Solution: We will prove this by induction on n.

Suppose $x \ge -1$. Base Case: n = 0Then, we have

 $(1+x)^0 \ge 1+0$

$$(1+x)^6 \ge 1+0$$
$$1 \ge 1$$

inductive hypothesis: Suppose that for some $k \ge 0$, $(1+x)^k \ge 1 + kx$.

Inductive Step: We want to show that $(1+x)^{k+1} \ge 1 + (k+1)x$.

Then, we have

$$(1+x)^{k+1} \ge 1 + (k+1)x$$
$$(1+x)(1+x)^k \ge 1 + (k+1)x$$
$$(1+x)(1+kx) \ge 1 + (k+1)x$$
$$1+kx+x+kx^2 \ge 1 + (k+1)x$$
$$kx^2 > 0$$

Since $x \ge -1$, we have $kx^2 \ge 0$.

Thus, by induction, we have $(1+x)^n \ge 1 + nx$ for all $n \ge 0$.

3. Let $S = \mathbb{Q} \cap [a, b]$. Prove that $\sup S = b$. (Note that b could be rational or irrational).

Solution: Suppose $S = \mathbb{Q} \cap [a, b]$.

Clearry b is an upper bound of S.

Suppose b' is another upper bound of S such that b' < b.

By the density of the rationals in the reals, we can find a c such that b' < c < b.

Clealry this c is in S. and hence b' is not an upper bound of S which leads to a contradiction.

Thus, b is the least upper bound of S.

- 4. Recall that in class, we defined the set $-A = \{-a : a \in A\}$
 - (a) Prove that if x is a lower bound of -A, then -x is an upper bound of A. (Note: We proved the opposite implication in class.)

Solution: Let x be a lower bound of -A.

Then for all $a \in -A$, $x \leq a$.

Thus $-x \ge -a$.

Thus, -x is an upper bound of A.

(b) Prove that if A is a set of real numbers that is bounded above, then $\inf(-A) = -\sup A$.

Solution: Suppose A is a set of real numbers that is bounded above.

Then $-A = \{-a : a \in A\}.$

Suppose $M = \inf(-A)$.

Then M is a lower bound of -A.

Thus, -M is an upper bound of A.

Also M is greater than any lower bound of -A.

We need that -M is less than any upper bound of A.

We can see that for all lower bounds of -A (call it L), we have M > L.

Thus, $-M \le -L$

We can see that -L is an upper bound of A.

and hence -M is less than any upper bound of A.

Thus, -M is the least upper bound of A.

Thus, we have $M = -\sup A$.

(c) Prove that if A is a nonempty set of real numbers that is bounded below, then A has a greatest lower bound. (In other words, the completeness axiom also holds for inf's.)

Solution: We can see that it holds by considering the set -A.

We can see that -A is bounded above.

Thus, by the completeness axiom, -A has a least upper bound.

Now considering --A we can see that it has a greatest lower bound by the earlier part.

Clearly -A = A and thus A has a greatest lower bound.

- 5. The Cut Property of the real numbers states that if A and B are disjoint sets with $A \cup B = \mathbb{R}$ such that for all $a \in A$ and $b \in B$, a < b, then there exists a $c \in \mathbb{R}$ such that $a \le c$ for all $a \in A$ and $c \le b$ for all $b \in B$.
 - (a) Use the Axiom of Completeness to prove the Cut Property.

Solution: Suppose A and B are disjoint sets with $A \cup B = \mathbb{R}$ such that for all $a \in A$ and $b \in B$, a < b.

Clealry A is bounded above and B is bounded below.

Thus, by the completeness axiom, A has a least upper bound supA and B has a greatest lower bound infB.

We need to show that $sup A \leq inf B$.

Suppose not.

Then, we have sup A > inf B.

Then we have that the infimum of B is less than the supremum of A and thus is in A which leads to a contradiction or infB < a for all $a \in A$ which is also a contradiction.

Thus, we have $sup A \leq inf B$.

Since $A \cup B = \mathbb{R}$ we must have that sup A = inf B.

We can then take that to be our c.

(b) Show that the implication goes the other way: that is, assume that \mathbb{R} has the Cut Property and $E \subset \mathbb{R}$ is bounded above, and prove that $\sup E$ exists.

Solution: Suppose E is nonempty and bounded above.

Let B be the set of all upper bounds of E.

Let $A = \mathbb{R} \setminus B$.

Thus they are disjoint sets with $A \cup B = \mathbb{R}$ and for all $a \in A$ and $b \in B$, a < b. Thus, by the cut property, there exists a $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in A$ and $c \leq b$ for all $b \in B$.

Clealry c is an upper bound of A and since $E \subset A$ then c is an upper bound of E.

We need to show that c is the least upper bound of E.

Consider another upper bound c' of E.

Then, we have $c' \in B$ by definition of B.

Thus, we have $c \leq c'$ and hence c is the least upper bound of E. Thus, we have that $\sup E$ exists.

6. Remember that in class we said that a set S was dense in \mathbb{R} if for every $a, b \in \mathbb{R}$ with

a < b, there existed an element $s \in S \cap (a, b)$. Prove that a set S is dense iff for every $a, b \in \mathbb{R}$ with a < b, the set $S \cap (a, b)$ is infinite. (You may freely use the fact that a finite set has a minimum element and a maximum element).

Solution: \implies Suppose S is dense.

Prove for every $a, b \in \mathbb{R}$ with a < b, there exists an element $s \in S \cap (a, b)$.

Assume for contradiction that $S \cap (a, b)$ is finite.

Then, we can see that $S \cap (a, b)$ has a minimum element and a maximum element. Let M be the maximum element of $S \cap (a, b)$.

Then we have $M \in \mathbb{R}$ and by density of S, we can find an s such that M < s < b.

But then M is not the maximum element of $S \cap (a, b)$ which leads to a contradiction.

Thus, we have that $S \cap (a, b)$ is infinite.

 \iff Suppose for every $a, b \in \mathbb{R}$ with a < b, the set $S \cap (a, b)$ is infinite.

Prove that S is dense.

Assume for contradiction that S is not dense.

Then, there exists an $a, b \in \mathbb{R}$ with a < b such that there does not exist an element $s \in S \cap (a, b)$.

But then $S \cap (a, b)$ is finite which leads to a contradiction.