Capstone Project Proposal Presentation

Department of Computer Science and Engineering
Thapar Institute of Engineering and Technology

HAVDEF

Hindi Audio Visual Deepfake Defense CPG NO:207

Team Members:

Shivane Kapoor	102203191
Kaustubh Singh	102203194
Japneet Singh	102203205
Arpit Jain	102203499
Diwakar Sood	102253002

Our Mentors:

Dr Seema Bawa (Professor)
Dr Sachin Kansal (Assistant Professor)

Al defense system

HAVDEF is a real-time deepfake detection system protecting against Al voice scams. It analyzes audio, identifying deepfake inconsistencies for immediate alerts

Targeted Hinglish Detection

HAVDEF includes a specialized module for Hinglish (Hindi-English) scams, identifying unique linguistic patterns for enhanced accuracy.

Real Time Alerts

HAVDEF is a real-time deepfake detection system protecting against Al voice scams. It analyzes audio, identifying deepfake

Need Analysis

Rise in Al Fraud Calls

Increasing cases of scammers using deepfake voice technology to impersonate trusted individuals.

Real-Time Gap

Existing deepfake detection tools focus on videos, not live phone conversations

Hinglish Challenges

Most fraud detection systems struggle with mixed Hindi-English speech patterns.

Literature Survey

1. Key Technologies in Deepfake Detection:-

- **Speech Pattern Analysis:** Detects unnatural rhythm, pitch, and pause timing in Al-generated voices.
- Feature Extraction & Spectrogram Analysis: Uses spectrograms to analyze frequency, amplitude, and phase variations.
- Machine Learning Models: CNNs, Transformers, and Wav2Vec2 improve deepfake detection accuracy.
- Language-Specific Detection: Adapts models for Hinglish phonetics, intonation, and grammar patterns.
- Real-Time Processing & Noise Reduction: Enhances detection clarity in noisy phone call environments.

2. Existing Deepfake Audio Detection Systems:-

- WavLM Model Ensemble: Uses deep learning for voice pitch and tone analysis.
- **BTS-E Model:** Focuses on breathing, talking rhythms, and silence inconsistencies.
- Speech Pause Pattern Analysis: Identifies deepfake voices based on unnatural pauses.
- **Spectrogram-Based Detection:** Uses visual frequency patterns to differentiate AI and real voices.

Feature	Existing Technology	HAVDEF
Detection Approach	✓ML/DL models (CNNs, RNNs, spectrogram analysis)	Real-time Al-based fraud detection
Language Support	X English/Hindi only	☑Hinglish (Hindi-English mix)
Dataset	✓ Pre-recorded speech datasets	Custom-built Hinglish fraud call dataset
Real-Time Detection	XOffline analysis, no real-time support	☑Real-time fraud detection & alerts
Deployment Feasibility	XResearch-based, no real-world applications	☑Practical mobile app for real use
Fraud Call Focus	X Generic deepfake detection	Explicitly targets Al- based fraud calls

Problem Statement:

- Al-generated deepfake voices are increasingly used for **fraudulent phone calls.**
- Existing solutions fail to detect deepfake voices in real time.
- Hinglish conversations pose additional challenges for speech analysis.
- The goal is to develop an Al model that instantly identifies deepfake calls and alerts users.

Objective:

- 1. Develop an Al-powered deepfake detection model for **real-time fraud detection**.
- 2. Ensure **Hinglish language support** by training models on Hinglish speech datasets.
- 3.Implement a real-time fraud alert system that warns users about Algenerated calls.
- 4. Optimize the system for **mobile devices** to enable seamless integration.

Assumptions & Constraints

Assumptions:-

- Al fraud calls use cloned voices to impersonate real people.
- Hinglish is the dominant language in Indian phone scams.
- Users need real-time alerts to prevent fraud.
- Deepfake detection requires advanced Al models trained on diverse datasets.

Constraints:-

- Real-time processing is crucial Detection must happen instantly.
- Limited Hinglish deepfake datasets Hinglish-specific training data is scarce.
- Integration challenges The system must work with existing mobile apps.
- Trade-off between accuracy and speed Al models must balance detection speed and reliability.

Project Execution Plan

Data Collection & Preprocessing

- Collect real & Al-generated Hinglish voice samples from datasets like ASVspoof.
- Preprocess data to remove noise and enhance clarity.

Model Development

- Train deepfake detection models using Wav2Vec2, Whisper, and CNNs.
- Fine-tune models for Hinglish accents and speech patterns.

Real-Time Call Security

- Monitor phone calls and analyze speech features in real time.
- Compare voice signals to Al detection models

Fraud Alert System

- Notify users immediately if an Al-generated call is detected.
- Provide recommendations (e.g., hang up, verify identity).

Programming
Language:
Python

Machine Learning Frameworks:

TensorFlow

Software & Software &

App Development:

Flutter, MongoDB

Datasets

FakeCatcher, Custom Hinglish dataset

Expected Project Outcomes

Product:

A mobile app that detects and alerts users about deepfake fraud calls..

Service:

API integration for businesses Enables telecoms and banks to integrate fraud detection.

Impact:

Enhanced security – Prevents
Al-based phone scams.
Increased awareness – Educates
users about Al-driven fraud.

Work Plan & Timeline

Phase 1

(Jan 2025 – Feb 2025)

Requirement Analysis & System Design

- Identify fraud patterns in Al-generated voice scams.
- Define system
 architecture and
 Hinglish-specific
 detection techniques.

Phase 2

(Mar 2025 – Jun 2025)

Al Model Development & Data Collection

- Collect real & AIgenerated Hinglish voice samples.
- Train deepfake detection models (Wav2Vec2, Whisper).

Phase 3

(Jul 2025 – Oct 2025)

Application Development & Integration

- Develop Android app for real-time fraud detection.
- Integrate AI
 models for live
 call analysis &
 fraud alerts.

Phase 4

(Oct 2025 - Dec 2025)

Testing, Optimization & Deployment

- Optimize Al models for realtime efficiency.
- Conduct user trials & deploy final version.

Team Responsibilities

Name	Roles	
Shivane Kapoor	Data Preparation & Preprocessing	Model Development
Kaustubh Singh	Speech Processing	Documentation
Japneet Singh	Data Collection	Frontend & Backend
Arpit Jain	Model Development	Testing & Optimization
Diwakar Narayan Sood	Frontend & Backend	Documentation

References

- J. Yi, C. Wang, J. Tao, X. Zhang, C. Y. Zhang, and Y. Zhao, "Audio deepfake detection: A survey," arXiv preprint arXiv:2304.08531, 2023. Available: https://arxiv.org/abs/2308.14970
- N. V. Kulangareth, J. Kaufman, J. Oreskovic, and Y. Fossat, "Investigation of deepfake voice detection using speech pause patterns: Algorithm development and validation," *PubMed*, 2023. [Online]. Available: https://biomedeng.jmir.org/2024/1/e56245/
- S. Kaura, M. Buhari, N. Khandelwal, P. Tyagi, and K. Sharma, "Hindi audio-video-deepfake (HAV-DF): A Hindi language-based audio-video deepfake dataset," arXiv preprint, 2023. [Online]. Available: https://arxiv.org/abs/2411.15457
- K. Bhatia, A. Agrawal, P. Singh, and A. K. Singh, "**Detection of AI synthesized Hindi speech**," *arXiv preprint*, 2023. [Online]. Available: https://arxiv.org/abs/2203.03706
- A. Shetty, H. Karani, S. K. H., R. Khan, and A. G. Amruth, "Deepfake audio detection using deep learning," *IEEE Xplore*, 2023. [Online]. Available: https://ijarcce.com/papers/deepfake-audio-detection-using-deep-learning/
- H. H. Kilinc and F. Kaledibi, "Audio deepfake detection by using machine and deep learning," *IEEE Xplore*, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10323004
- T.-P. Doan, L. Nguyen-Vu, S. Jung, and K. Hong, "BTS-E: Audio Deepfake Detection Using Breathing-Talking-Silence Encoder," School of Computer Science, 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10095927

Thank you very much!