Recall, the ownerse velocity of a particle over the time interve t, & t & t 2 18

$$\frac{\Delta \kappa}{\Delta t} = \frac{\kappa (t_2) - \kappa (t_1)}{t_2 - t_1}$$

in me for 8

 \mathcal{E}_{X} : $\pi(t) = t^{3} - 2t$. Thu the overage velocity from $t_{1} = 1$ to $t_{2} = 2$ seconds is

$$\frac{\Delta \tau}{\Delta t} = \frac{(8-4)-(1-2)}{2-1}$$

= 5 meters per second

M/s.

Gro-phically, average velocity on be understood as the slope of a line. This is the so-called "secont" line through the points

Slope is
$$\frac{rise}{run} = \frac{w(t_2) - w(t_1)}{t_2 - t_1}$$
 = velocity!

MLH example.

* Instantaneous velocity. So for there is no calculus. This comes up when we go from awage instantaneous

Idea: Instrutaneous relacity is overage velocity as
the time interval gets smaller out smaller....

 $2x: x(t) = t^3 - 2t$. Let's compute the overage velocity for the time interval [1, t]

as t gets down and down to 1.

	Interval	Δr
t-2	(1, ~7	5
z=1.5	(1,1.57	1.75
£ = 1.1	(1,1.17	1. 3 1
4=1.01	[1, 1.01]	1. 0301

Evidence: The instantaneous velocity at t=1
is 1 m/s.

MLH exercise

The general famula for the average velocity of
$$\kappa(t) = t^3 - 2t$$
 for the time interval [1, t]

is
$$\frac{\Delta x}{\Delta t} = \frac{x(t) - x(1)}{t - 1}$$

$$= \frac{t^3 - 2t + 1}{t - 1}$$

So the slope of the secont line is os a function of t.

Notice that if t # 1 the

$$\frac{t^3 - 2t + 1}{t - 1} = \frac{(t-1)(t^2 + t - 1)}{t - 1}$$

$$=$$
 t^2+t-l .

So if we puted that we can take to 1, the

The notion of a lamit justifies this procedure of making scure of expressions like
$$\frac{t^3-2t+1}{t-1} \quad \text{ at } t=1.$$

In general we will look at

= the limit of the function f(r)
as re approaches a.

$$ex$$
: $f(x) = \frac{\sin x}{x}$. Wont to make songe of

"Definition": 5ps f = f(n) 15 defind for all

+ except possibly x = a. If f(x) 3 arbitrorily close to L for all ne sufficiently close to a the

 $\lim_{x\to\infty} f(x) = L$

· One-sided limit: We song

lim
$$f(x) = L$$
 (resp. $\lim_{x \to \infty} f(x) = L$)

if flul is orbitrarily close to L for 2070 (resp. x20) sufficiently close to a.

 $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$

. Lim
$$f(x) = 1$$

Theorem: Suppose a function Hal :8 defined for all 2 except possibly re = a. Then

 $\lim_{\gamma \to \infty} f(x) = \lim_{\gamma \to \infty} f(x) = L = \int_{-\infty}^{\infty} \lim_{\gamma \to \infty} f(x) = L.$

$$e_{\times}: f(x) = \frac{x-1}{\sqrt{x-1}}$$

$$\frac{2}{2} \times \frac{1}{2} = \frac{2}{2}$$

Suppose
$$f,g,h$$
 one functions set.
 $g(x) \leq f(x) \leq h(x)$

for all or near a number a.

$$y = h(x)$$

$$y = f(x)$$

$$y = g(x)$$

If
$$\lim_{n\to\infty} h(n) = L = \lim_{n\to\infty} g(n)$$