Inferencia, Causalidad y Políticas Públicas ECO-60116

Week 05: Regresión discontinua II

Eduard F. Martinez Gonzalez, Ph.D.

Departamento de Economía, Universidad Icesi

September 26, 2025

RECAP: Regresión Discontinua (Intuición)

- En RD, usamos la "arbitrariedad" de ciertas reglas de asignación para estimar efectos causales.
- La asignación a tratamiento depende únicamente de una variable continua z_i observada que determina la elegibilidad a un tratamiento en función de un umbral de elegibilidad (conocido) z₀.

RECAP: Regresión Discontinua (Intuición)

- En RD, usamos la "arbitrariedad" de ciertas reglas de asignación para estimar efectos causales.
- La asignación a tratamiento depende únicamente de una variable continua z_i observada que determina la elegibilidad a un tratamiento en función de un umbral de elegibilidad (conocido) z₀.
- Supuestos básicos:
 - 1 No es posible manipular (perfectamente) la regla de asignación.
 - Los resultados potenciales son continuos en la vecindad del umbral de elegibilidad:

$$\lim_{h \to 0} \mathbb{E}[Y_i^j | z_i = z_0 + \eta] = \lim_{\eta \to 0} \mathbb{E}[Y_i^j | z_i = z_0 - \eta] \quad \text{para } j \in \{1, 0\} \quad (1)$$

RECAP: Regresión Discontinua (Intuición)

- En RD, usamos la "arbitrariedad" de ciertas reglas de asignación para estimar efectos causales.
- La asignación a tratamiento depende únicamente de una variable continua z_i observada que determina la elegibilidad a un tratamiento en función de un umbral de elegibilidad (conocido) z₀.
- Supuestos básicos:
 - 1 No es posible manipular (perfectamente) la regla de asignación.
 - Los resultados potenciales son continuos en la vecindad del umbral de elegibilidad:

$$\lim_{h \to 0} \mathbb{E}[Y_i^j | z_i = z_0 + \eta] = \lim_{\eta \to 0} \mathbb{E}[Y_i^j | z_i = z_0 - \eta] \quad \text{para } j \in \{1, 0\} \quad (1)$$

- En regresión discontinua nítida, hacemos un supuesto adicional:
 - ► Todos los elegibles reciben el tratamiento, y los no elegibles no reciben el tratamiento ("perfect compliance").

Roadmap

- RECAP: Regresión Discontinua Nitida (RDN)
 - Especificación de f()
 - Elegir la vecindad de Z_0
- 2 Regresión Discontinua Borrosa (RDB)
- Aplicación en R
 - Building Rural Entrepreneurial Capacities Programme: Trust and Opportunity

Modelo de partida: $y_i = \beta_0 + f(z_i) + \tau D_i + \epsilon_i$, $D_i = \mathbf{1}\{z_i \geq z_0\}$

Contraste ingenuo cerca del umbral (con $\eta > 0$ pequeño):

$$\Delta Y(\eta) \equiv E[y_i \mid z_0 + \eta] - E[y_i \mid z_0 - \eta] = \tau + \underbrace{f(z_0 + \eta) - f(z_0 - \eta)}_{\text{sesgo por tendencia en } z}$$

Modelo de partida: $y_i = \beta_0 + f(z_i) + \tau D_i + \epsilon_i$, $D_i = \mathbf{1}\{z_i \geq z_0\}$

Contraste ingenuo cerca del umbral (con $\eta > 0$ pequeño):

$$\Delta Y(\eta) \equiv E[y_i \mid z_0 + \eta] - E[y_i \mid z_0 - \eta] = \tau + \underbrace{f(z_0 + \eta) - f(z_0 - \eta)}_{\text{sesgo por tendencia en } z}$$

Supuesto clave de identificación: Si $E[y_i^0 \mid z]$ y $E[y_i^1 \mid z]$ son *continuas* en z_0 , entonces f(z) es continua en z_0 y

$$\lim_{\eta\downarrow 0} \{f(z_0+\eta) - f(z_0-\eta)\} = 0 \quad \Rightarrow \quad \tau \ = \ \lim_{z\downarrow z_0} E[Y\,|\,z] - \lim_{z\uparrow z_0} E[Y\,|\,z].$$

Modelo de partida: $y_i = \beta_0 + f(z_i) + \tau D_i + \epsilon_i$, $D_i = \mathbf{1}\{z_i \geq z_0\}$

Contraste ingenuo cerca del umbral (con $\eta > 0$ pequeño):

$$\Delta Y(\eta) \equiv E[y_i \mid z_0 + \eta] - E[y_i \mid z_0 - \eta] = \tau + \underbrace{f(z_0 + \eta) - f(z_0 - \eta)}_{\text{sesgo por tendencia en } z}$$

Supuesto clave de identificación: Si $E[y_i^0 \mid z]$ y $E[y_i^1 \mid z]$ son *continuas* en z_0 , entonces f(z) es continua en z_0 y

$$\lim_{\eta\downarrow 0} \{f(z_0+\eta) - f(z_0-\eta)\} = 0 \quad \Rightarrow \quad \tau = \lim_{z\downarrow z_0} E[Y\,|\,z] - \lim_{z\uparrow z_0} E[Y\,|\,z].$$

Implicación empírica: Para "quitarse el sesgo de encima" hay que *capturar bien la tendencia suave* f(z) *en la vecindad del corte*:

- Ajustes locales a ambos lados (p. ej., lineal local) en lugar de polinomios globales rígidos.
- Elección de vecindad (h) y forma funcional que hagan f(z) "bien aproximada" justo alrededor de z_0 .

Modelo de partida: $y_i = \beta_0 + f(z_i) + \tau D_i + \epsilon_i$, $D_i = \mathbf{1}\{z_i \ge z_0\}$

Contraste ingenuo cerca del umbral (con $\eta > 0$ pequeño):

$$\Delta Y(\eta) \equiv E[y_i \mid z_0 + \eta] - E[y_i \mid z_0 - \eta] = \tau + \underbrace{f(z_0 + \eta) - f(z_0 - \eta)}_{\text{sesgo por tendencia en } z}$$

Supuesto clave de identificación: Si $E[y_i^0 \mid z]$ y $E[y_i^1 \mid z]$ son *continuas* en z_0 , entonces f(z) es continua en z_0 y

$$\lim_{\eta\downarrow 0} \{f(z_0+\eta) - f(z_0-\eta)\} = 0 \quad \Rightarrow \quad \tau = \lim_{z\downarrow z_0} E[Y\,|\,z] - \lim_{z\uparrow z_0} E[Y\,|\,z].$$

Implicación empírica: Para "quitarse el sesgo de encima" hay que *capturar bien la tendencia suave* f(z) *en la vecindad del corte*:

- Ajustes locales a ambos lados (p. ej., lineal local) en lugar de polinomios globales rígidos.
- Elección de vecindad (h) y forma funcional que hagan f(z) "bien aproximada" justo alrededor de z_0 .

Takeaway: La RD identifica el salto causal sólo si el componente suave f(z) está bien especificado cerca de z_0 ; si no, la diferencia absorbe tendencia y queda sesgada.

Cuando f(z) está bien especificada (polinomio por lado)

Ecuación: $log(Ingresos) = \beta_0 + f(z_i) + \tau D_i + \epsilon_i$

El estimador MCO de τ es un estimador del salto en la variable de resultado que se genera en z_0 .

Cuando f(z) está mal especificada

Ecuación: $log(Ingresos) = \beta_0 + \beta_1 z_i + \tau D_i + \epsilon_i$

- Si f(z) se modela mal, el MCO atribuye a τ parte de la curvatura de $E[Y \mid z]$ (sesgo de forma funcional).
- La "discontinuidad" estimada no es el salto causal en z₀, sino un artefacto del ajuste global.

Polinomios globales

Idea: aproximar la tendencia f(z) en todo el soporte con un polinomio de grado P.

$$\underbrace{f(z_i)}_{\text{tendencia}} = \sum_{p=1}^{P} \beta_p \, z_i^{\ p}$$

Entonces,

$$y_i = \beta_0 + \sum_{p=1}^{P} \beta_p z_i^p + \tau D_i + \varepsilon_i$$

- Pros: fácil de estimar (MCO), más flexibilidad al subir P.
- Contras: sensibilidad a P, oscilaciones y peso excesivo de datos lejanos al umbral ⇒ sesgo.
- Recomendación: como máximo grados 2-3 y, mejor aún, polinomios locales por lado con ventana (h) adecuada.

Referencia: Gelman & Imbens (2019), "Why High-Order Polynomials Should Not Be Used in RD".

Roadmap

- RECAP: Regresión Discontinua Nitida (RDN)
 - Especificación de f()
 - Elegir la vecindad de Z_0
- 2 Regresión Discontinua Borrosa (RDB)
- Aplicación en R
 - Building Rural Entrepreneurial Capacities Programme: Trust and Opportunity

Estimación en la vecindad del umbral z₀

- Usamos sólo $|z_i z_0| \le h$: cerca del corte, f(z) es suave.
- La comparación izquierda-derecha en esa vecindad aproxima el salto causal.
- Justo bajo el umbral ⇒ buen contrafactual para justo sobre el umbral.

$$\widehat{\tau}(h) = \overline{Y}_R(h) - \overline{Y}_L(h), \quad z \in [z_0 - h, z_0 + h]$$

El problema es que a medida que h se acerca a cero, vamos perdiendo observaciones \rightarrow **menor precisión** del estimador.

Estimación para un ancho de banda h:

$$\widehat{\tau}(h) = \underbrace{\left(\frac{1}{n_R(h)} \sum_{i: 0 \le z_i - z_0 \le h} Y_i\right)}_{\check{Y}_R(h)} - \underbrace{\left(\frac{1}{n_L(h)} \sum_{i: -h \le z_i - z_0 < 0} Y_i\right)}_{\check{Y}_L(h)}$$

donde usamos sólo $z_i \in [z_0-h, z_0+h]$.

Sensibilidad del estimador a diferentes h

Nota: h controla el compromiso **sesgo-varianza**: h pequeño \rightarrow menos sesgo y más varianza; h grande \rightarrow más sesgo y menos varianza. (Puede ponderarse por distancia con kernels.)

Regresión local: combinar vecindad + forma funcional

En la práctica, usamos una combinación de los dos métodos: restringimos las observaciones a una vecindad de z_0 y usamos alguna aproximación de f().

Tres pasos para la implementación:

- Seleccionar el orden del polinomio (p) y una función de pesos o función de Kernel K(.)
- 2 Seleccionar un ancho de banda (h).
- § Estimar los parámetros minimizando el cuadrado de los errores ponderados y reportar $\hat{\tau}=\hat{\alpha}^+-\hat{\alpha}^-$

Para seleccionar el ancho de banda se pueden usar métodos alternativos para la inferencia estadística (Calonico et al., 2014).

Roadmap

- RECAP: Regresión Discontinua Nitida (RDN)
 - Especificación de f()
 - Elegir la vecindad de Z_0
- Regresión Discontinua Borrosa (RDB)
- Aplicación en R
 - Building Rural Entrepreneurial Capacities Programme: Trust and Opportunity

Regresión Discontinua Borrosa (RDB)

- En regresión discontinua borrosa relajamos el supuesto de "perfect compliance": hay una relación probabilística entre participación y z_i.
- La **probabilidad** de estar en el grupo de tratamiento o de control cambia de forma **discontinua** en el umbral. Para un $\eta > 0$,

$$\lim_{\eta \to 0} \Pr[D_i = 1 | z_i = \textcolor{red}{z_0} - \eta] \neq \lim_{\eta \to 0} \Pr[D_i = 1 | z_i = \textcolor{red}{z_0} + \eta]$$

• De forma general:

$$\Pr[D_i = 1 | z_i] = \begin{cases} g_1(z_i) & \text{si } z_i \ge z_0 \\ g_0(z_i) & \text{si } z_i < z_0 \end{cases}$$

donde $g_1(z_0) \neq g_0(z_0)$.

• Podemos ser agnósticos sobre las formas funcionales de g_0 y g_1 , pero la probabilidad debe "saltar" en el umbral z_0 .

Discontinuidad de la probabilidad de ser tratado

La **asignación al tratamiento** ya no es determinística: otros factores (observados y no observados) pueden afectar la probabilidad de estar en el grupo de tratamiento o de control.

Relajando los supuestos de RDN

La probabilidad de ser tratado "salta" exactamente en el punto en el que la variable dummy z_i^* pasa de cero a uno.

- z_i* está definida por un umbral arbitrario y puede ser usada como una variable instrumental, condicional en z_i: afecta la probabilidad de ser tratado, pero es independiente de los resultados potenciales.
- Hacemos un supuesto de monotonicidad local: el efecto del instrumento (estar a un lado u otro de umbral) sobre la probabilidad de ser tratado va en la misma dirección para todas las unidades.
- Es local en la medida que el instrumento sólo se "activa" en la vecindad de z₀.

Identificación (I)

• Ecuación estructural:

$$y_i = \beta_0 + f(z_i) + \tau D_i + \epsilon_i \tag{1}$$

Primera etapa:

$$D_i = \gamma_0 + g(z_i) + \pi z_i^* + \eta_i \tag{2}$$

donde

- D_i: tratamiento recibido (endógeno).
- $ightharpoonup z_i^*$: indicador de **elegibilidad** (instrumento exógeno).
- ▶ $f(\cdot)$ y $g(\cdot)$: funciones suaves de z_i (misma base por lado y misma vecindad).
- La magnitud del salto en la probabilidad en el umbral de elegibilidad, capturado por π , nos indica la "fuerza" de la primera etapa.
- Si la forma funcional de $g(z_i)$ y $f(z_i)$ coinciden, tenemos un estimador de MC2E.

Identificación (II)

Suponga que ambas siguen un polinomio del mismo grado

$$f(z_i) = \sum_{p=1}^{P} \beta_p z_i^p, \qquad g(z_i) = \sum_{p=1}^{P} \gamma_p z_i^p.$$
 (3)

• Podemos reemplazar D_i en la Ecuación (1) usando (2) y escribir la forma reducida:

$$y_i = \alpha_0 + h(z_i) + \rho z_i^* + \zeta_i, \tag{4}$$

donde

- $\begin{array}{l} \bullet \quad \alpha_0 \equiv \beta_0 + \gamma_0 \tau \\ \bullet \quad h(z_i) \equiv \sum_{p=1}^{P} (\beta_p + \gamma_p \tau) z_i^p \end{array}$
- $ightharpoonup \zeta_i \equiv \epsilon_i + \eta_i \tau$
- $\rho \equiv \tau \pi$.
- En ese caso, el efecto causal también se puede recuperar via:

$$\tau = \frac{\rho}{\pi} \tag{5}$$

Interpretación del Efecto

- El tratamiento no afecta a todos los individuos ("imperfect compliance"), así que tenemos que **ajustar** la magnitud del salto en y_i por el cambio en la probabilidad de ser tratado. Similar al estimador de Wald.
- Sin **ajustar**, el estimador tiene una interpretación *ITT*: efecto de ser *elegible* sobre y_i .
- El efecto estimado por RDB es un LATE: efecto sobre aquellos individuos cuya condición de tratamiento puede ser afectada por z_i*.

No obstante:

- La identificación sigue dependiendo de la capacidad de separar la discontinuidad que se genera en y_i cuando z_i^* pasa de cero a uno, de las funciones continuas $f(z_i)$ y $g(z_i) \Longrightarrow$ es importante especificar bien la forma funcional que usamos.
- Igual que RDN, a medida que η se acerca a cero, vamos perdiendo observaciones y el estimador se hace más impreciso.
- ▶ Dado el supuesto de continuidad en la vecindad de z₀, aplican los mismos métodos para verificar supuestos que en RDN.

Roadmap

- RECAP: Regresión Discontinua Nitida (RDN)
 - Especificación de f()
 - Elegir la vecindad de Z_0
- 2 Regresión Discontinua Borrosa (RDB)
- Aplicación en R
 - Building Rural Entrepreneurial Capacities Programme: Trust and Opportunity

Laajaj et al. (2023): RD difusa en un programa rural

- Contexto: programa de desarrollo rural con cofinanciación y asistencia técnica para planes de negocio de organizaciones, desplegado en 203 municipios. Mecanismo de selección por ranking y cupos municipales.
- Regla de clase (simplificación a individuos):
 - Cada municipio ordena a las personas por puntaje (idoneidad propuesta, vulnerabilidad, etc.).
 - Cupo fijo: subsidios de COP 50 millones a las propuestas con un puntaje superior a 75 puntos.
- **Diseño (FRD):** $Pr(D=1 \mid z)$ salta en c_m pero < 1 (take-up imperfecto).
- Variables clave: $Z_{im}^* = \mathbf{1}\{z_{im} \geq c_m\}$ (elegible, instrumento); D_{im} (recibe subsidio); Y_{im} (resultado).
- **Lectura de resultados:** *LATE* en el umbral para *compliers* municipales (quienes toman el subsidio cuando *Z** cambia de 0 a 1).

Replication

 Script R (descargable): pipeline paso a paso para clase (rd_fuzzy_class.R). Descargar script