

# Image Captioning, Multi Modal

# Image Quality Assessment & Captioning Model

#### InHun's Multi Modal

Jung Gayeon, Park Sangjun, Park Jayoung, Lee Inhun

The 10<sup>th</sup> TAVE Conference

DACON, 2023 Samsung AI Challenge: Image Quality Assessment

# **Contents**



Introduction

Methodology

**Data Preprocessing** 

**Model Train** 

**Results & Discussion** 

References

주제 선정 배경





# 3회차 스터디 서기

[시작]

[종료]

스터디 목차

Chapter6 게이트가 추가된 RNN

Ch 6.1 RNN의 문제점 - 이유진

Ch6.2 기울기 소실과 LSTM - 전준석

Ch6.3 LSTM구현, Ch6.4 LSTM을 사용한 언어 모델 - 정가연

과제 한단

# " Multi Modal "



대회 설명



# [ 주제 ]

화질 평가 및 Image Captioning

### [설명]

카메라 영상 화질 정량 평가 및 자연어 정성 평가를 동시 생성하는 알고리즘 개발 대회

# TAVE Technology Wave

### Data 소개

|    | img_name   | img_path ~             | mos ~      | comments                                                                                                          |
|----|------------|------------------------|------------|-------------------------------------------------------------------------------------------------------------------|
| 1  | 41wy7upxzl | ./train/41wy7upxzl.jpg | 5.56923077 | the pink and blue really compliment each other. like the dense color, blur.                                       |
| 2  | ygujjq6xxt | ./train/ygujjq6xxt.jpg | 6.10317460 | love rhubarb! great colors!                                                                                       |
| 3  | wk321130q0 | ./train/wk321130q0.jpg | 5.54198473 | i enjoy the textures and grungy feel to this. i also really like the deep rich red color.                         |
| 4  | w50dp2zjpg | ./train/w50dp2zjpg.jpg | 6.23484848 | i like all the different colours in this pic, the brown, green, dark grey, light grey, cool image.                |
| 5  | 17rqfxeuh0 | ./train/l7rqfxeuh0.jpg | 5.19047619 | i love these critters, just wish he was a little sharper, nice comp though.                                       |
| 6  | iapcid06sr | ./train/iapcid06sr.jpg | 5.93846154 | excellent use of light. great stuff.                                                                              |
| 7  | twvec6pi41 | ./train/twvec6pi41.jpg | 7.38931298 | double trouble! what great detail and curious if you used flash on this.                                          |
| 8  | h0wh5in2rd | ./train/h0wh5in2rd.jpg | 6.12307692 | is this really meters from you? how lucky can you get. theyre so fuzzy!                                           |
| 9  | j70kuiwf5y | ./train/j70kuiwf5y.jpg | 6.86614173 | i generally dont like overprocessed images, but somehow it works here. very painterly, david hockneylike quality. |
| 10 | 9qls7ros2m | ./train/9qls7ros2m.jpg | 5.75396825 | awesome tones. great mood. beautiful stuff.                                                                       |

• img\_name: 이미지 파일명

• img\_path:이미지 경로

mos : 화질 평가 점수 (0~10, float)

• comments : 인지 화질 평가 내용을 캡셔닝한 정보

[train Data]

74,568 개

[Test Data]

13,012 개



Multi Modal



" 서로 다른 특성을 갖는 Data Type 들을 함께 사용하는 학습법 "

# TAVE Technology Wave

**Image Captioning** 



" 주어진 Image에 대한 Caption을 예측하는 작업 "

ResNet + LSTM





Figure 2. Residual learning: a building block.

### [ResNet]

Residual Block 구조가 쌓여 만들어진 모델.
overfitting, gradient vanishing 문제를 해결하여
성능을 향상시킨 모델



[LSTM]

기존 RNN 모델에 cell-state가 추가된 구조

3개의 Gate를 통해 메모리 값을 균일하게 유지하면서
꼭 필요한 만큼의 정보를 기억하는 모델

MobileNet, GoogLeNet





Figure 4. MobileNetV2 + Squeeze-and-Excite [20]. In contrast with [20] we apply the squeeze and excite in the residual layer. We use different nonlinearity depending on the layer, see section 5.2 for details.

### [ MobileNet ]

# **Depthwise Separable Convolution** 이용

연산량이 크게 늘지 않으면서 성능 개선

: 모바일과 같은 작은 규모에서도 사용 용이



(b) Inception module with dimension reductions

# [GoogLeNet]

Inception Module(1x1 Convolution 활용)을 통한 연산량 감소 및 성능 개선

**GRU** 







[GRU]

LSTM의 단점을 개선한 모델

두 개의 Gate로 효율적 계산

빠른 학습, 낮은 계산 복잡성 가짐

# TAVE Technology Wave

#### Drop-out, Data parallelism



[Drop-out]

Regularization의 일종 Layer에서 각각 독립적인 unit을 **일정 비율에 맞춰 삭제**하는 기법



# [ Data parallelism ]

# **다수의 GPU를 병렬적으로 활용**하는 기법 학습 속도 개선 효과

# **Data Preprocessing**

Color&Gray, Image Size



```
transform = transforms.Compose([
    transforms.Resize((CFG['IMG_SIZE'], CFG['IMG_SIZE'])),
    transforms.Grayscale(), # 흑백 변환 추가
    transforms.ToTensor()
])
```

# ! Fail!

#### comments

```
CFG = {
   'IMG_SIZE': 128, # 224
   'EPOCHS': 5,
   'LR': 0.01,
   'BATCH_SIZE' : 32, #64
   'SEED': 41
}
```

**224** → **128** 

Technology Wave 12<sup>th</sup> 12 The Control of the Contro

### **Model Train**





Learning rate: 0.01

Epochs: 10

Batch Size: 32

64 **→** 32



모델 점수 비교

|                                      | Public Score | Private Score |
|--------------------------------------|--------------|---------------|
| ResNet + LSTM (224)                  | 0.200708494  | 0.190623514   |
| MoblieNet + GRU + Dropout            | 0.200708494  | 0.190623514   |
| MoblieNet + GRU + Dropout + Parallel | 0.200708494  | 0.190623514   |
| GoogLeNet + GRU + Dropout + Parallel | 0.199509431  | 0.190258485   |

**Technology Wave 12th** 





|                                      | 1 epoch 당 평균 소요 시간 | 전체 학습 시간 |
|--------------------------------------|--------------------|----------|
| ResNet + LSTM (224)                  | 17분                | 3시간      |
| MoblieNet + GRU + Dropout            | 13분 50초            | 2시간 30분  |
| MoblieNet + GRU + Dropout + Parallel | 13분 40초            | 2시간 30분  |
| GoogLeNet + GRU + Dropout + Parallel | 14분 20초            | 2시간 35분  |

정확한 값이 아닌 대략적인 수치임을 알려드립니다.



한계 및 개선방향

# [ 한계점 ]

#### 1. GPU 자원의 한계

: 다른 SoTA 모델 다뤄보지 못함

: 추가 실험 진행 불가

### 2. 모델 성능 < 모델 경량화

: 성능보다 경량화에 비중을 맞춘 진행

(모델 선택, 이미지 크기 등)

# [개선방향]

#### 1. 파라미터 조정

: 각 모델에 따라 최적의 파라미터 값 서치

#### 2. 모델 이분화

: 화질 평가와 Captioning 모델 분리

**Technology Wave 12th** 



의의



**Technology Wave 12th** 

### References



- 1. Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3128-3137).
- 2. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., & Yuille, A. (2014). Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632.
- 3. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156-3164).
- 4. ResNet 구조 이해 및 구현, <a href="https://wjunsea.tistory.com/99">https://wjunsea.tistory.com/99</a>
- 5. RNN과 LSTM을 이해해보자!, <a href="https://ratsgo.github.io/natural language processing/2017/03/09/rnnlstm/">https://ratsgo.github.io/natural language processing/2017/03/09/rnnlstm/</a>
- 6. PyTorch Multi-GPU 제대로 학습하기, https://medium.com/daangn/pytorch-multi-gpu-학습-제대로-하기-27270617936b
- 7. Multi-modal Learning, <a href="https://velog.io/@ysw2946/9.-Multi-modal-Learning">https://velog.io/@ysw2946/9.-Multi-modal-Learning</a>
- 8. Image-Quality-assessment, <a href="https://github.com/kjae0/image-quality-assessment">https://github.com/kjae0/image-quality-assessment</a>
- 9. MobileNet V3 논문 리뷰, <a href="https://velog.io/@pre-f-86/MobileNet-V3-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0">https://velog.io/@pre-f-86/MobileNet-V3-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0</a>
- 10. Gated Recurrent Units (GRU), <a href="https://d2l.ai/chapter\_recurrent-modern/gru.html">https://d2l.ai/chapter\_recurrent-modern/gru.html</a>

Technology Wave 12<sup>th</sup> 12 The Control of the Contro