EE 224 Course Project : CPU

Atharva Kulkarni(210070047) Harshit Raj(20d070033) Shreyas Grampurohit(21d070029) Varad Deshpande(21d070024)

9 Nov 2022

State Descriptions

S_0 (Fetching instruction from memory)

Data Transfer	Commands
$PC \rightarrow M_{-}add$	MDR
$M_{-}data \rightarrow T1$	$T1_E$

S_1 (Updating PC)

Data Transfer	Commands
$PC \rightarrow ALU_A$	PC_E
$+1 \rightarrow ALU_B$	ALU_J
$ALU_{CND} = 11$	
$ALU_S \rightarrow PC$	

S_2 (Reading operands)

Data Transfer	Commands
$T1_{11-9} \rightarrow RF_A1$	T2_E
$T1_{8-6} \rightarrow RF_A2$	T3_E
$RF_D1 \rightarrow T2$	
$RF_D2 \rightarrow T3$	

S_3 (Execution)

Data Transfer	Commands
$T2 \rightarrow ALU_A$	T2_E
$T3 \rightarrow ALU_B$	ALU_J
$T1_{1-0} \rightarrow \text{ALU_CND}$	
$ALU_S \rightarrow T2$	
$ALU_C \to FC$	
$\mathrm{ALU}_{-}\mathrm{Z} o \mathrm{FZ}$	

S_4 (Storing the output)

Data Transfer	Commands
$T2 \rightarrow RF_D3$	RF_WE
$T1_{5-3} \rightarrow \text{RF_A3}$	

S_5 (Reading operands (for ADI))

Data Transfer	Commands
$T1_{11-9} \rightarrow \text{RF-A1}$	$T2_{-}E$
$RF_D1 \rightarrow T2$	T3_E
$T1_{5-0} \rightarrow \text{SE_6} \rightarrow \text{T3}$	

S_6 (Checking whether the two operands are equal, and storing zero flag into T2 (without changing FZ))

Data Transfer	Commands
$T2 \rightarrow ALU_A$	ALU_J
$T3 \rightarrow ALU_B$	$T2_E$
$ALU_C \rightarrow SE_2 \rightarrow T2$	
ALU_CND ;=	

S₇ (Updating PC if BEQ)

Data Transfer	Commands
$PC \to ALU_A$	ALU_J
$T1 \rightarrow \text{SE_10} \rightarrow \text{ALU_B}$	PC_E
$ALU_{-}CND_{i} = 11$	
$if(T2_0 == 0) then ALU_C \rightarrow PC$	
else $PC \to PC$	

S₈ (Storing PC into REG_A)

Data Transfer	Commands
$T1_{11-9} \rightarrow RF_A3$	RF_WE
$PC \rightarrow RF_D3$	

S_9 (Branching PC to the address PC + immediate)

Data Transfer	Commands
$\mathrm{PC} o \mathrm{ALU}_{-}\mathrm{A}$	$\mathrm{ALU}_{ extsf{J}}$
$T1_{8-0} \rightarrow \text{SE_9} \rightarrow \text{ALU_B}$	
$ALU_{-}CND = 11$	
$ALU_S \rightarrow PC$	

S_{10} (Branching PC to the address in REG_B)

Data Transfer	Commands
$T1_{8-6} \rightarrow \text{RF-A1}$	PC_E
$RF_D1 \rightarrow PC$	

S_{11} (Executing Load Higher Immediate)

Data Transfer	Commands
$T1_{11-9} \rightarrow RF_A3$	RF_WE
$T1_{11-9} \rightarrow PZ_7 \rightarrow RF_D3$	

S_{12} (Executing Load Higher Immediate)

Data Transfer	Commands
$T1_{11-9} \rightarrow \text{RF_A3}$	RF_WE
$T1_{11-9} \rightarrow PZ_7 \rightarrow RF_D3$	

S_{14} (Computing address of the memory destination)

Data Transfer	Commands
$T3 \rightarrow ALU_A$	ALU_CND
$T1_{5-0} \rightarrow \text{SE}_{-16} \rightarrow \text{ALU}_{-B}$	T3_E
$ALU_C \rightarrow T3$	

S_{15} (Writing to the memory)

Data Transfer	Commands
$T3 \rightarrow M_add$	MWR
$T2 \rightarrow M_{-}data$	

S_{16} (Computing address of the memory destination)

Data Transfer	Commands
$T3 \rightarrow ALU_A$	ALU_CND
$T1_{5-0} \rightarrow \text{SE_16} \rightarrow \text{ALU_B}$	T3_E
$ALU_C \rightarrow T3$	ALU_CND

S_{17} (Reading from memory)

Data Transfer	Commands
$T3 \rightarrow M_add$	MDR
$T2 \rightarrow M_{-}data$	$T2_{-}E$

S_{18} (Writing to the register)

Data Transfer	Commands
$T1_{11-9} \rightarrow RF_A3$	RF_WE
$T2 \rightarrow RF_D3$	

S_{19} (Initial step of SM)

Data Transfer	Commands
$(00000000000000000) \rightarrow T2$	T2_WE
$T1_{11-9} \rightarrow \text{RF_A2}$	T3_E
$RF_D2 \rightarrow T3$	

S_{20} (Looping step 1 of SM)

Data Transfer	Commands
$counter := int(T2_{2-0})$	MWR
$if(T1_{counter}==1) \text{ then } T3 \rightarrow$	
$RF_D1 \rightarrow M_data$	
$T2_{2-0} \rightarrow RF_A1$	

S_{21} (Looping step 2 of SM)

Data Transfer	Commands
$T3 \rightarrow ALU_A$	T3_E
$1 \to \mathrm{ALU}_{-\mathrm{B}}$	ADD
if $(T1_{counter} = = 1)$ then ALU_C \rightarrow T3	

S_{22} (Looping step 3 of SM)

Data Transfer	Commands
$T2 \rightarrow ALU_A$	ADD
$1 \to ALU_B$	$T2_{-}E$
$ALUC \rightarrow T2$	

S_{23} (Initial step of LM)

Data Transfer	Commands
$(0000000000000000) \rightarrow T2$	T2_WE
$T1_{11-9} \rightarrow \text{RF-A2}$	T3_E
$RF_D3 \rightarrow T3$	

S_{24} (Looping step 1 of LM)

Data Transfer	Commands
counter := $int(T2_{2-0})$	MDR
$T1_{counter} \rightarrow RF_WR$	MDR
$T3 \rightarrow M_add$	
$M_data \rightarrow RF_D3$	
$T2_{2-0} \rightarrow RF_A3$	

S_{25} (Looping step 2 of LM)

Data Transfer	Commands
$T3 \rightarrow ALU_A$	T3_E
$1 \to ALU_B$	ADD
if $(T1_{counter} = = 1)$ then ALU_C \rightarrow T3	

S_{26} (Looping step 3 of LM)

Data Transfer	Commands
$T2 \rightarrow ALU_A$	ADD
$1 \to ALU_B$	$T2_E$
$\mathrm{ALU}_{\text{-}}\mathrm{C} \to \mathrm{T2}$	

Instructions with their State Diagrams and Control Signals

Instr	ruction	State flow	Control Signals
A	DD		