1 Topologia della retta euclidea

1.1 Intervalli

Siano $a, b \in \mathbb{R}$, si pone per definizione

aperto
$$]a, b[= \{x \in \mathbb{R} : a < x < b\}$$

semiaperto $[a, b[= \{x \in \mathbb{R} : a \le x < b\}$
semiaperto $]a, b] = \{x \in \mathbb{R} : a < x \le b\}$
chiuso $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (1)

Se uno degli estremi è $\pm \infty$, $(a = -\infty, b = +\infty)$

$$]a, +\infty[= \{x \in \mathbb{R} : x > a\}$$

$$] -\infty, a[= \{x \in \mathbb{R} : x < a\}$$

$$[a, +\infty[= \{x \in \mathbb{R} : x \ge a\}$$

$$] -\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

$$(2)$$

Definizione 1:

Se $x_0 \in \mathbb{R}, \rho > 0$, si pone

$$B(x_0, \rho) = |x_0 - \rho, x_0 + \rho| \tag{3}$$

si chiama intorno aperto di x_0 di raggio $\rho \in \mathbb{R}_+$. La famiglia degli intorni aperti di x_0 si denota come

$$\mathcal{U}_{x_0} = \{]x_0 - \rho, x_0 + \rho [: \rho > 0 \}$$
 (4)

1.2 Punti di accumulazione, isolati e aderenti

Definizione 2 (Punti di accumulazione):

Siano $A \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, si dice che x_0 è un **punto** di accumulazione di A se per ogni W (intorno) $\in \mathcal{U}_{x_0}$ (famiglia degli intorni):

$$A \setminus \{x_0\} \cap W = \emptyset \tag{5}$$

$$(A \setminus \{x_0\}) \cap]x_0 - \rho, x_0 + \rho [\neq \varnothing \ \forall \rho > 0$$
 (6)

In parole, se prendiamo l'insieme A e ad esso sottriamo un qualsiasi punto x_0 e ad esso intersechiamo l'intervallo formato di raggio rho " ρ " e con centro

 x_0 . Questo insieme è un punto di accumulazione se quanto citato prima **non** è un insieme vuoto, ovvero in esso troviamo almeno **un elemento**.

L'insieme dei punti di accumulazione si chiama derivato di A = D(A). Per definizione poniamo $D(\emptyset) = \emptyset$

Definizione 3 (Punto isolato):

Se $x \in A$ e $x \notin D(A)$ si dice che x è un **punto isolato**

DIMOSTRAZIONE 1.

Se $A \subset R$ è un insieme finito, questo implica che $D(A) = \emptyset$.

- 1. Se $A = \emptyset \implies D(\emptyset) = \emptyset$
- 2. Se $A = \{x_1, x_2, \dots, x_p\}$ Nessuno $z \in \mathbb{R}$ è punto di accumulazione per A:

$$z \notin D(A), \ \forall z \in \mathbb{R}$$
 (7)

• Supponiamo che z non sia in \mathbb{R} :

$$z \in \mathbb{R} \setminus A \rightarrow z \neq x_j, \ \forall j = 1, \dots, p$$

$$\rho = \{|z - x_j| : j = 1, \dots, p\}$$
 (8)

 $|z-x_j|=0 \iff z=x_j$ ma z è escluso dall'insieme A

$$(A \setminus \{z\} \cap]z - \rho, z + \rho[= \varnothing$$
 (9)

• Supponiamo invece che z sia in A:

$$z \in A \rightarrow z = x_1$$

$$\rho = \{ |x_1 - x_j| : j = 2, \dots, p \}$$
 (10)

 $\rho > 0$ dato che i punti di $x_j \in A$ sono diversi tra loro.

Se ne deduce quindi che l'intorno aperto $B(x_1, \rho)$ di centro x_1 di raggio ρ esclude qualsiasi altro punto di A

$$(A \setminus \{x_1\}) \cap]x_1 - \rho, x_1 + \rho [= \varnothing$$
 (11)

Esempio 1 $(A \subseteq \mathbb{R} \ e \ D(A) \neq \emptyset \implies A \ e \ infinito)$.

Ovvero, se A è un insieme contenuto nell'insieme dei numeri reali e l'insieme dei suoi punti di accumulazione **non** è vuoto allora A è infinito.

Ciò non è vero in quanto questa proposizione è solamente una **condizione** necessaria ma non sufficiente.

 \mathbb{N} è infinito ma $D(\mathbb{N}) = \emptyset$

Definizione 4:

Siano $A \subseteq \mathbb{R}, x_0 \in \mathbb{R}, allora:$

$$x_0 \in D(A) \iff \exists \{x_n\}_{n \in \mathbb{N}} \subseteq A \setminus \{x_0\} : x_n \underset{n \to +\infty}{\to} x_0$$
 (12)

Definizione 5:

Sia $A \subseteq \mathbb{R}$, A infinito e limitato, allora $D(A) \neq \emptyset$

DIMOSTRAZIONE 2.

A è infinito quindi esiste $\{x_n\}_{n\in\mathbb{N}}\subseteq A$ t.c. $x_n\neq x_m, \ \forall n,m\in\mathbb{N}, n\neq m$.

A è limitato quindi $\{x_n\}_{n\in\mathbb{N}}$

TEOREMA BOLZANO-WEIERSTRASS:

$$\exists \{x_n\}_{n \in \mathbb{N}} : x_{k_n} \underset{n \to +\infty}{\to} x_0 \in \mathbb{R}$$
 (13)

Se $x_{k_n} \neq x_0$ per ogni $n \in \mathbb{N}$, allora $\{x_{k_n}\}_{n \in \mathbb{N}} \subseteq A \setminus \{x_0\}$ e converge a x_0 Quindi $x_0 \in D(A)$

Se $x_{k_p} = x_0$, $p \in \mathbb{N}$, avremo che $\{x_{k_{n+p}}\}_{n \in \mathbb{N}} \subseteq A \setminus \{x_0\}$ e questa successione converge ad x_0 . $x_{k_n} \neq x_{k_p}$, $\forall n \neq p$.

In entrambi i casi: $\exists x_0 \in D(A)$

Definizione 6 (Punti aderenti):

Sia $A \subseteq \mathbb{R}$, sia $x_0 \in \mathbb{R}$, x_0 è aderente in A se

$$A \cap W \neq \varnothing \ \forall W \in \mathcal{U}_{x_0}$$

$$\downarrow \downarrow$$

$$(14)$$

$$A \cap]x_0 - \rho, x_0 + \rho[\neq \varnothing \ \forall \rho > 0 \tag{15}$$

Definizione 7 (Chiusura):

Si dice **chiusura** di A, A, l'insieme dei punti aderenti ad A:

$$\overline{A} = \{ x \in \mathbb{R} : x \in aderente \ adA \}$$
 (16)

La chisura dell'insieme vuoto corrsiponde per convenzione all'insieme vuoto.

$$\overline{\varnothing} = \varnothing$$
 (17)

Dalle definizioni precedenti ricaviamo:

$$D(A) \subseteq \overline{A} \& A \subseteq \overline{A} \tag{18}$$

Il fatto per cui, l'insieme dei punti di accumulazione di A è contenuto nell'insieme dei punti di aderenza di A è dovuto dal fatto che al primo insieme "togliamo" x_0 , ovvero il centro dell'intervallo di riferimento, mentre fa parte del secondo.

Definizione 8 ($\overline{A} = A \cup D(A)$): Sia $A \subseteq \mathbb{R}$, si ha $\overline{A} \supseteq A$, & $\overline{A} \supseteq D(A) \implies \overline{(A)} \supseteq A \cup D(A)$ Proviamo che:

$$x_0 \in A \cup D(A) \ \forall x_0 \in \overline{A} \tag{19}$$

Se x_0 è in A, è ovvio. Proviamolo nel caso in cui $x_0 \in \overline{A} \setminus A$.

$$A \cap W \neq \emptyset \ \forall W \in \mathcal{U}_{x_0} \tag{20}$$

$$A \setminus \{x_0\} = A \implies A \setminus \{x_0\} \cap W \neq \emptyset \quad \forall W \in \mathcal{U}_{x_0}$$
 (21)

Quindi $x_0 \in D(A)$.

Definizione 9:

Siano $A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$:

$$x_0 \in \overline{A} \iff \exists \{x_n\}_{n \in \mathbb{N}} \subseteq A : x_n \text{ to } x_0$$
 (22)

1.3 Insiemi aperti e chiusi. Insiemi compatti

Definizione 10 (Insieme chiuso):

 $A \subseteq \mathbb{R}$ è **chiuso** se $A = \overline{A}$, ma questo è possibile se:

$$A = \overline{A} \iff D(A) \subseteq A \tag{23}$$

Se $A \subseteq \mathbb{R}$ sono valide le seguenti affermazioni:

- A è chiuso
- Se $\{x_n\}_{n\in\mathbb{N}}$ $x_n \to x_0 \implies x_0 \in A$

Definizione 11 (Insieme compatto):

Sia $A \subseteq \mathbb{R}$, A è detto **compatto** se ad ogni successione di punti di A si può estrarre una sotto-successione convergente ad un punto di A:

$$Acompatto \iff \begin{cases} \forall \{x_n\}_{n\in\mathbb{N}} \subseteq A & \exists \{x_{k_n}\} \\ \exists x_0 \in A & \lim_{n \to +\infty} x_{k_n} = x_0 \end{cases}$$
 (24)

Possiamo dimostrare che sia $A \subseteq \mathbb{R}$:

$$A$$
compatto \iff A chiuso e limitato (25)

DIMOSTRAZIONE 3.

Se A è chiuso e limitato dimostriamo che A è compatto.

Data una successione $\{x_n\}$ estraiamo una sotto-successione convergente ad un $x_0 \in A$.

Ma se l'insieme che contiene la successione è **limitato** lo è pure la successione Applichiamo il T. BOLZANO-WEIERSTRASS:

$$\{x_{k_n}\}\in\mathbb{R}, x_0\in\mathbb{R}, \quad \lim_{n\to+\infty}x_{k_n}=x_0$$
 (26)

Se $x_0 \in \overline{A}$ e $\overline{A} = A$ (essendo chiuso), quindi $x_0 \in A$

Definizione 12 (Punto interno e Insieme Aperto): Sia $A \subseteq \mathbb{R}$. x_0 si dice interno ad A se esiste $\rho > 0$ t.c.

$$]x_0 - \rho, x_0 + \rho[\subseteq A \tag{27}$$

Un insieme $A \subseteq \mathbb{R}$ è detto aperto se ogni suo punto è interno ad A

$$A \stackrel{.}{e} aperto \iff A = \stackrel{.}{A}$$
 (28)