Spis treści

1		oksymacja
	1.1	Aproksymacja średniokwadratowa dla funkcji zadanej dyskretnie
		1.1.1 $f(x) = ax + bx$ 1.1.2 $f(x) = a + bx^3$
		1.1.3 $f(x) = ax + b$
	1.2	Aproksymacja średniokwadratowa dla funkcji w przedziale
	1.3	Jednostajna (Taylora)
		1.3.1 $y = \sqrt{x}, a \in \{0; 2 > \dots \}$
2	Lag	range
	2.1	Wyznacz współczynniki wielomianu
	2.2	Wyznacz pochodną w punkcie
		2.2.1 Używając wielomianu
		2.2.2 Używając ilorazu różnicowego centralnego
3	Nev	vton
4		rmy macierzy
	4.1 4.2	$ A _1$
	4.3	$ A _{\infty}$
	4.4	$ A _F$
_	7. AT .	
5		t ody rozwiązywania układów Prosta (Nieliniowe)
	0.1	5.1.1 $f(x) = ln(x) - \frac{1}{x}$
		5.1.1 $f(x) = \ln(x) - \frac{1}{x}$
	5.2	Metoda Newtona (Nieliniowe)
		5.2.1 $f(x) = \ln(x) - \frac{1}{x}$
		5.2.2 $f(x) = e^x + \frac{1}{x}$
	5.3	5.2.3 $f(x) = e^x - \frac{1}{x}$
	0.0	5.3.1
		$\begin{cases} 4x_1 - 2x_2 = 1\\ -8x_1 + x_2 = 3 \end{cases}$
		$-8x_1 + x_2 = 3$
	5.4	Dekompozycja LU (liniowe)
		5.4.1 Metoda Crouta-Doolittle'a
		5.4.2 Metoda Doolittle'a
	5.5	Gaussa-Seidla (Liniowe), chyba dotąd nie było tego na żadnym egzaminie
		,
		$\begin{cases} x_1 + 2x_2 + x_3 = 0 \end{cases}$
		$\begin{cases} 3x_1 + 4x_2 = 1\\ x_1 + 2x_2 + x_3 = 0\\ 2x_2 + 6x_3 = 1 \end{cases}$
6	SOI	R (Metoda Sukcesywnej Relaksacji)(Liniowe)
	6.1	(
		$\int x_1 + x_2 + x_3 = 0$
		$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 - x_2 + x_3 = 2 \\ -x_1 + x_2 + x_2 = 4 \end{cases}$
		0.1.1
		6.1.1 $\omega = 1.5$
		w = 1.2
7	Cał	
	7.1	Gauss/Gauss-Legendre
		7.1.1 Tabelka z wartościami
		$7.1.2 \int_0^{\pi} \sin(x) dx \dots $
	7.2	7.1.3 $\int_0^3 x^2 dx$
	1.2	7.2.1 Dla parzystej liczby przedziałów
		7.2.2 Dla nieparzystej liczby przedziałów
_		
8		vnania różniczkowe 1
	8.1	Metoda ekstrapolacyjna Eulera
		5.1.1 2.1.1 $J(w,y) = wy, w_0 = 0, y_0 = 1, w = 0.0$ wyznacz o pierwsze neracje obydwonia nietodalni
9		na zbierzności algortmu iteracyjnego
	9.1	$x_{i+1} = \frac{1}{7}(6x_i + \frac{a}{x_i^6}), x = \sqrt[7]{a} \dots 1$

- 10 Poprawny numerycznie algorytm obliczania wartości wyrażenia $y = \frac{1}{x}(1 \frac{\sqrt{2}}{\sqrt{2+x}}); ||x|| << 1$ 11
- 12 Uwarunkowanie zadania 12

1 Aproksymacja

1.1 Aproksymacja średniokwadratowa dla funkcji zadanej dyskretnie.

Dla danej funkcji:

X	f(x)
-1	0
0	-1
1	0
2	1

Znajdź jej aproksymacje metodą średniokwadratową dla postaci:

1.1.1
$$f(x) = ax + bx^2$$

$$\begin{split} f(a,b) &= ((y(-1)-0)^2 + (y(0)--1)^2 + (y(1)-0)^2 + (y(2)-1)^2) * \frac{1}{4} \\ f(a,b) &= ((-a+b)^2 + (1)^2 + (a+b)^2 + (2a+4b-1)^2) * \frac{1}{4} \\ f(a,b) &= (a^2+b^2 - 2ab + 1 + a^2 + b^2 + 2ab + 4a^2 + 16ab - 4a + 16b^2 - 8b + 1) * \frac{1}{4} \\ f(a,b) &= (\frac{3}{2}a^2 + 4ab - a + \frac{9}{2}b^2 - 2b + \frac{1}{2}) \\ \frac{d}{da}f(a,b) &= 3a + 4b - 1 \\ \frac{d}{db}f(a,b) &= 4a + 9b - 2 \end{split}$$

$$\begin{cases} 12a + 16b - 4 = 0 \\ 16a + 36b - 8 = 0 \end{cases}$$
$$\begin{cases} a = \frac{1}{11} \\ b = \frac{2}{11} \end{cases}$$

Uwaga: Teoretycznie trzeba robić kolejne kroki, ale łatwo pokazać, że większe b stworzy dużo mniej dokładne wyniki, a te wartości to jedyne rozwiązania. Dodatkowo nie trzeba dzielić całości przez 4, bo i tak w pochodnych to nie ma znaczenia, bo po 2giej stronie jest 0 i można sobie pomnożyć.

1.1.2
$$f(x) = a + bx^3$$

$$f(a,b) = (y(-1) - 0)^2 + (y(0) - -1)^2 + (y(1) - 0)^2 + (y(2) - 1)^2$$

$$f(a,b) = (a-b)^2 + (a--1)^2 + (a+b)^2 + (a+8b-1)^2$$

$$f(a,b) = 4a^2 + 16ab + 66b^2 - 16b + 2\frac{d}{da}f(a,b) = 8a + 16b$$

$$\frac{d}{db}f(a,b) = 16a + 132b - 16$$

$$\begin{cases} 8a + 16b = 0 | * \frac{1}{2} \\ 16a + 132b - 16 = 0 | * \frac{1}{4} \end{cases}$$
$$\begin{cases} 4a + 8b = 0 \\ 4a + 33b - 4 = 0 \end{cases}$$
$$\begin{cases} a = -\frac{8}{25} \\ b = \frac{4}{25} \end{cases}$$

1.1.3
$$f(x) = ax + b$$

$$f(a,b) = (-a+b-0)^2 + (b-(-1))^2 + (a+b-0)^2 + (2a+b-1)^2$$

$$f(a,b) = 6a^2 + 4ab - 4a + 4b^2 + 2$$

$$\frac{d}{da}f(a,b) = 12a + 4b - 4$$

$$\frac{d}{db}f(a,b) = 4a + 8b$$

$$\begin{cases} 12a + 4b - 4 = 0 \\ 4a + 8b = 0 \end{cases}$$
$$\begin{cases} a = \frac{2}{5} \\ b = -\frac{1}{5} \end{cases}$$

Aproksymacja średniokwadratowa dla funkcji w przedziale 1.2

Dla funkcji $f(x) = x^4, x \in \{0; 1 > \text{Znajd\'z aproksymacją średniokwadratowa funkcji } f(x) = ax^2$. Znajdź, dla jakiej wartości x błąd aproksymacji będzie największy.

$$f(a) = \int_0^1 (ax^2 - x^4)^2 dx$$

$$f(a) = \frac{a^2}{5} - \frac{2a}{7} + \frac{1}{9}$$

$$\frac{d}{da}f(a) = \frac{2a}{5} - \frac{2}{7}$$

$$\left\{\frac{2a}{5} - \frac{2}{7} = 0\right\}$$

$$\left\{a = \frac{5}{7}\right\}$$

Musimy znaleźć $max|(\frac{5}{7}x^2-x^4)|\in\{0;1\}$, ale że nie chce mi się bawić w pochodną dla wartości bezwzględnej, znajdę minima i maksima funkcji i wezmę wartość bezwzględną z nich.

$$f(x) = \frac{5}{7}x^{2}$$

$$g(x) = \frac{5}{7}x^{2} - x^{4}$$

$$\frac{d}{dx}g(x) = \frac{10}{7}x - 4x^{3}$$

$$\begin{cases} \frac{20}{7}x - 4x^3 = 0 \end{cases}$$

$$\left\{ x \in \{ -\sqrt{\frac{5}{7}}, 0, \sqrt{\frac{5}{7}} \} \right.$$

 $-\sqrt{\frac{5}{7}}$ < 0, więc jest poza przedziałem. Należy równierz dodać 0 i 1, jako początek i koniec przedziału.

$$\begin{cases} |f(0)| = 0\\ |f(\sqrt{\frac{5}{7}})| \approx 0.51\\ |f(1)| \approx 0.43 \end{cases}$$

Dla $x = \sqrt{\frac{5}{7}}$ aproksymacja jest obarczona największym błędem.

1.3 Jednostajna (Taylora)

UWAGA: Wynik teoretyczny inny niż praktyczne (gorszy), nie przepisywać bezmyślnie W aproksy-

macji jednostajnej należy stworzyć jak najmniejszy maksymalny błąd. Szereg Taylora n-tego stopnia = $\sum_{i=0}^{n} (\frac{\frac{d^{i}}{dx^{i}}f(x_{0})}{i!}(x-\delta)^{i})$, gdzie x_{0} to środek przedziału, δ to promień przedziału, czyli długość/2.

1.3.1
$$y = \sqrt{x}, a \in <0; 2 >$$

$$x_0 = 1, \ \delta = 1$$

Dla 2giego stopnia szereg Taylora wygląda $f(x) = \sqrt{1} + \frac{1}{2\sqrt{1}}(x-1) + \frac{-\frac{1}{4x^{\frac{3}{2}}}}{2!}(x-1)^2 = -\frac{x^2}{8} + \frac{3x}{4} + \frac{3}{8}$. Rozwiązanie teoretycznie poprawne, ale jak na desmosie patrzę na błąd funkcji, to dla mniejszego c błąd maksymalny jest mniejszy. Ekstrema lokalne są w 0 i 2. Najlepsza praktyczna wartość, jaką znalazłem była dla $c=\frac{\sqrt{2}-1}{2}$

$$\left\{ \frac{1}{2\sqrt{x}} - 2ax - b = 0 \right\}$$

$\mathbf{2}$ Lagrange

Wyznacz współczynniki wielomianu

Dla następujących danych:

x	f(x)
-4	2
-2	-3
3	2
6	-3

Wyznacz współczynniki wielomianu Langrange'a

Wyznacz współczynniki wielomianu Langrange'a
$$l0(x) = \frac{x-(-2)}{-4-(-2)} * \frac{x-3}{-4-3} * \frac{x-6}{-4-6} = -\frac{1}{140}x^3 + \frac{1}{20}x^2 - \frac{9}{35}$$

$$l1(x) = \frac{x-(-4)}{-2-(-4)} * \frac{x-3}{-2-3} * \frac{x-6}{-2-6} = \frac{1}{80}x^3 - \frac{1}{16}x^2 - \frac{9}{40}x + \frac{9}{10}$$

$$l2(x) = \frac{x-(-4)}{3-(-4)} * \frac{x-(-2)}{3-(-2)} * \frac{x-6}{3-6} = -\frac{1}{105}x^3 + \frac{4}{15}x + \frac{16}{35}$$

$$l3(x) = \frac{x-(-4)}{6-(-4)} * \frac{x-(-2)}{6-(-2)} * \frac{x-3}{6-3} = \frac{1}{240}x^3 + \frac{1}{80}x^2 - \frac{1}{24}x - \frac{1}{10}$$

$$L(x) = 2 * l0(x) + -3 * l1(x) + 2 * l2(x) + -3 * l3(x)$$

$$L(x) = -\frac{1}{12}x^3 + \frac{1}{4}x^2 + \frac{4}{3}x - 2$$
 Uwaca: Można sprawdzić, czy wielomian jest poprawnie ol

$$l1(x) = \frac{x - (-4)}{-2 - (-4)} * \frac{x - 3}{-2 - 3} * \frac{x - 6}{-2 - 6} = \frac{1}{80}x^3 - \frac{1}{16}x^2 - \frac{9}{40}x + \frac{9}{10}x^3$$

$$l2(x) = \frac{x - (-4)}{2} * \frac{x - (-2)}{2} * \frac{x - 6}{2} = -\frac{1}{105}x^3 + \frac{4}{15}x + \frac{16}{25}$$

$$13(x) = \frac{x - (-4)}{3(x)} * \frac{x - (-2)}{3(x)} * \frac{x - 3}{3(x)} = \frac{1}{313}x^3 + \frac{1}{32}x^2 - \frac{1}{31}x - \frac{1}{13}$$

$$L(r) = 2 * 10(r) + -3 * 11(r) + 2 * 12(r) + -3 * 13(r)$$

$$L(x) = -\frac{1}{12}x^3 + \frac{1}{4}x^2 + \frac{4}{3}x - 2$$

Uwaga: Można sprawdzić, czy wielomian jest poprawnie obliczony wstawiając do niego wartości z tabelki. Powinny wychodzić identyczne wartości f(x).

3

2.2 Wyznacz pochodną w punkcie

Dla danych:

X	f(x)
-1	-1
1	0
3	-1
4	1

Wyznacz pochodną dla x=1 i porównaj wynik w tym punkcie na podstawie ilorazu różnicowego centralnego.

2.2.1 Używając wielomianu

$$\begin{split} l0(X) &= \frac{x-1}{-1-1} * \frac{x-3}{-1-3} * \frac{x-4}{-1-4} = \frac{1}{40}(-x^3 + 8x^2 - 19x + 12) \\ l1(X) &= \frac{x-(-1)}{1-(-1)} * \frac{x-3}{1-3} * \frac{x-4}{1-4} = \frac{1}{12}(x^3 - 6x^2 + 5x + 12) \\ l2(X) &= \frac{x-(-1)}{3-(-1)} * \frac{x-1}{3-1} * \frac{x-4}{3-4} = \frac{1}{8}(-x^3 + 4x^2 + x - 4) \\ l3(X) &= \frac{x-(-1)}{4-(-1)} * \frac{x-1}{4-1} * \frac{x-3}{4-3} = \frac{1}{15}(x^3 - 3x^2 - x + 3) \\ L(x) &= -1 * l0(x) + 0 * l1(x) + 1 * l2(x) + 1 * l3(x) \\ L(x) &= \frac{13x^3}{60} - \frac{9x}{10} + \frac{17x}{60} + \frac{2}{5} \\ L'(x) &= \frac{13x^2}{20} - \frac{9x}{5} + \frac{17}{60} \\ L'(1) &= \frac{13}{20} - \frac{9}{5} + \frac{17}{60} = -\frac{13}{15} \end{split}$$

2.2.2 Używając ilorazu różnicowego centralnego

Uwaga: Sekcja zrobiona przy pomocy AI, ale pokrywa się mniej-więcej z książką

Znajdujemy takie punkty, žeby $|x-x_1|=|x-x_2|$, dla tego przypadku $x_1=-1$ i $x_2=3$. Odległość od x h=2 $f'(1)=\frac{f(x+h)-f(x-h)}{2h}=\frac{f(3)-f(-1)}{2*2}=\frac{-1-(-1)}{4}=0$

Co jest różne w porównaniu do wartości wyliczonej z wielomianu. Jest to jednak do przewidzenia, ponieważ jeżeli wyświetlimy wykres wielomianu, to nie jest to maksimum lokalne, ale wg funkcji dyskretnej jest.

3 Newton

Dla danej funkcji:

X	f(x)
-1	0
0	-1
1	0
2	1

$$\begin{array}{l} n0=0\\ n1=(\underbrace{0}_{1-0}+\underbrace{-1}_{0-(-1)})(x-(-1))\\ n2=(\underbrace{0}_{(1-0)(-1-1)}+\underbrace{-1}_{(0-(-1))(0-1)}+\underbrace{0}_{(1-(-1))(1-0)})(x-(-1))(x-0)\\ n3=(\underbrace{0}_{(-1-0)(-1-1)(-1-2)}+\underbrace{-1}_{(0-(-1))(0-1)(0-2)}+\underbrace{0}_{(1-(-1))(1-0)(1-2)}+\underbrace{1}_{(2-(-1))(2-0)(2-1)})(x-(-1))(x-0)(x-1)\\ P(x)=n0+n1+n2+n3\\ P(x)=\frac{1}{3}(-x^3+3x^2+x-3) \end{array}$$

Ogólnie Newton to suma wielomianów k-tego stopnia, gdzie nk to suma $\frac{f(x_k)}{x_k-x_n}$ pomnożona przez $(x-x_n)$, gdzie $n \in \{1, 2..., k\}$ (zerowy wielomian to $f(x_0)$).

4

4 Normy macierzy

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

4.1
$$||A||_1$$

Maksymalna suma wartości bezwzględnych w każdej z kolumn. $||A||_1=max\{|1|+|4|+|7|=12,|2|+|5|+|8|=15,|3|+|6|+|9|=18\}$ $||A||_1=18$

4.2
$$||A||_2$$

$$\sqrt{\max\{\lambda\}}, \text{ gdzie } \lambda \text{ to wartości dla których } \det(\lambda I - A^T A) = 0$$

$$A^T A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 66 & 78 & 90 \\ 78 & 93 & 108 \\ 90 & 108 & 126 \end{bmatrix}$$

$$det\begin{pmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 66 & 78 & 90 \\ 78 & 93 & 108 \\ 90 & 108 & 126 \end{bmatrix}) = 0$$

$$\lambda^3 - 285\lambda^2 + 324\lambda = 0$$

$$\lambda \in \{0, \frac{285 - 3\sqrt{8881}}{2}, \frac{285 + 3\sqrt{8881}}{2} \}$$

$$max\{\lambda\} = \frac{285 + 3\sqrt{8881}}{2}$$

$$||A||_2 = \sqrt{\frac{285 + 3\sqrt{8881}}{2}} \approx 16.85$$

4.3 $||A||_{\infty}$

Maksymalna suma wartości bezwzględnych w każdym z wierszy. $||A||_{\infty} = max\{|1| + |2| + |3| = 6, |4| + |5| + |6| = 15, |7| + |8| + |9| = 24\}$ $||A||_{\infty} = 24$

4.4 $||A||_F$

Pierwiastek sumy kwadratów wszystkich elementów w macierzy. $||A||_F = \sqrt{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2}$ $||A||_F = 16.88$ $\sqrt[7]{a}$ $x_{i+1} = \frac{6x_i + \frac{a}{x_i^6}}{7}$

Metody rozwiązywania układów

Prosta (Nieliniowe) 5.1

Wzór: $0 = f(x) = x_{n+1} = \phi(x_n), 0 < |\phi'(x_n)| < 1.$

5.1.1
$$f(x) = \ln(x) - \frac{1}{x}$$
 $\ln(x) = \frac{1}{x}$ $e^{\ln(x)} = e^{\frac{1}{x}}$

$$e^{ln(x)} = e^{\frac{1}{x}}$$
$$x = e^{\frac{1}{x}}$$
$$x_0 = 2$$

$$x_1 = e^{\frac{1}{x_0}} = 1.6487212707$$

$$x_2 = e^{\frac{1}{x_1}} = 1.8340573792$$

$$x_2 = e^{\frac{1}{x_2}} = 1.3540373792$$

 $x_3 = e^{\frac{1}{x_2}} = 1.72502097856$

$$x_4 = e^{\frac{1}{x_3}} = 1.78550822551$$

 $x_5 = e^{\frac{1}{x_4}} = 1.75078564631$

$$x_5 = e^{\frac{1}{x_4}} = 1.75078564631$$

 $x_6 = e^{\frac{1}{x_5}} = 1.77034093906$

$$x_6 = e^{x_5} = 1.77034093906$$

 $x_7 = e^{\frac{1}{x_6}} = 1.75920666162$

$$x_7 = e^{\frac{1}{6}} = 1.75920000102$$

 $x_8 = e^{\frac{1}{x_7}} = 1.76550725831$

$$x_8 = e^{\frac{1}{x_7}} = 1.76550725831$$

 $x_9 = e^{\frac{1}{x_8}} = 1.76192938968$

$$x_9 = e^{x_8} = 1.76192938968$$

 $x_{10} = e^{\frac{1}{x_9}} = 1.76395709418$

5.1.2
$$f(x) = e^x - \frac{1}{x}$$

$$\frac{1}{x} = e^x$$
$$x = \frac{1}{e^x}$$

$$x_0 = 0$$

$$x_1 = \frac{1}{e_1^{x_0}} = 1$$

$$x_2 = \frac{1}{e^{x_1}} = 0.367879441171$$

 $x_2 = \frac{1}{1} = 0.692200627556$

$$x_4 = \frac{e^{x_2}}{e^{x_3}} = 0.500473500563$$

$$x_5 = \frac{1}{e^{x_4}} = 0.606243535086$$

 $x_6 = \frac{1}{e^{x_5}} = 0.545395785975$

$$x_6 = \frac{1}{e^{x_5}} = 0.545395785975$$

 $x_7 = \frac{1}{e^{x_6}} = 0.579612335503$

$$x_8 = \frac{e^{x_6}}{e^{x_7}} = 0.560115461361$$

$$x_0 = 0$$

$$x_1 = \frac{1}{e^{x_0}} = 1$$

$$x_2 = \frac{1}{e^{x_1}} = 0.367879441171$$

$$x_3 = \frac{1}{e^{x_2}} = 0.692200627556$$

$$x_4 = \frac{1}{e^{x_3}} = 0.500473500563$$

$$x_5 = \frac{1}{e^{x_4}} = 0.606243535086$$

$$x_6 = \frac{1}{e^{x_5}} = 0.545395785975$$

$$x_7 = \frac{1}{e^{x_6}} = 0.579612335503$$

$$x_8 = \frac{1}{e^{x_7}} = 0.560115461361$$

$$x_9 = \frac{1}{e^{x_8}} = 0.57114311508$$

$$x_{10} = \frac{1}{e^{x_1}} = 0.564879347391$$

$$x_{11} = \frac{1}{e^{x_{11}}} = 0.566414733147$$

$$x_{13} = \frac{1}{e^{x_{11}}} = 0.567556637328$$

$$x_{10} = \frac{1}{e^{x_9}} = 0.568428725029$$

 $x_{11} = \frac{1}{e^{x_9}} = 0.568428725029$

$$x_{12} = \frac{e^{x_{10}}}{e^{x_{11}}} = 0.566414733147$$

$$x_{13} = \frac{e^{x_{11}}}{e^{x_{12}}} = 0.567556637328$$

Metoda Newtona (Nieliniowe)

Wzór:
$$N(x) = x - \frac{f(x)}{f'(x)}$$

Uwaga: chyba można znaleźć punkt g(x)=0 z $g(x)=\frac{f(x)}{f'(x)}$, wtedy tam jest albo f(x)=0 albo $f(x)=\pm\infty$, przynajmniej tak działa dla poniższych przykładów, ale wtedy to nie jest metoda Newtona chyba.

5.2.1
$$f(x) = ln(x) - \frac{1}{x}$$

$$\begin{array}{l} \frac{d}{dx}f(x)=f'(x)=\frac{x-1}{x^2}\\ x_0=2 \end{array}$$

 $x_1 = N(x_0) = 1.74247042592$

 $x_2 = N(x_1) = 1.76305587394$

 $x_3 = N(x_2) = 1.76322282359$

 $x_4 = N(x_3) = 1.76322283435$

Nie chce mi się dalej robić, ale punkt zerowy jest w około x = 1.7632228, co daje $f(1.7632228) = -3*10^{-8}$

5.2.2
$$f(x) = e^x + \frac{1}{x}$$

$$\frac{d}{dx}f(x) = f'(x) = e^x - \frac{1}{x^2}$$

 $x_1 = N(x_0) = -1.16395341374$ $x_2 = N(x_1) = -2.44811693124$ $x_3 = N(x_2) = -6.45348240853$

 $x_4 = N(x_3) = -13.2898033355$

Dalej nie robię, bo x_n-x_{n-1} się zwiększa a nie zmniejsza, czyli funkcja nie przecina punktu 0.

5.2.3
$$f(x) = e^x - \frac{1}{x}$$

$$\frac{d}{dx}f(x) = f'(x) = e^x + \frac{1}{x^2}$$

 $x_1 = N(x_0) = 0.53788284274$

 $x_2 = N(x_1) = 0.566277007666$

 $x_3 = N(x_2) = 0.567142580362$

 $x_4 = N(x_3) = 0.567143290409$

Punkt zerowy znajduje się mniej więcej w x=0.56714

Jacobiego (liniowe) 5.3

Wzór: $x_{i+1} = (1 - D^{-1}A)x_i + D^{-1}b$

Uwaga: Ta metoda działa tylko jeśli w każdym wierszu i kolumnie suma modułów elementów niediagonalnych jest mniejsza niż moduł elementu diagonalnego.

5.3.1

$$\begin{cases} 4x_1 - 2x_2 = 1\\ -8x_1 + x_2 = 3 \end{cases}$$

Dla tych danych nie możemy zastosować metody Jacobiego, ponieważ |4| > |-2|, ale $|1| \ge |-8|$. Teoretycznie możemy dodać do 2giego równania 2*pierwsze, wtedy warunek będzie spełniony:

$$\begin{cases} 4x_1 - 2x_2 = 1\\ 0x_1 - 3x_2 = 5 \end{cases}$$

Z czego wynika że:

$$\begin{cases} x_1 = -\frac{7}{12} \\ x_2 = -\frac{5}{3} \end{cases}$$

Ale udajemy że jesteśmy komputerami i tego nie wiemy.

Zapisujemy równanie do równania z macierzami:

Explanging Townsian do Formania
$$Ax = b \Rightarrow \begin{bmatrix} 4 & -2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Jako wektor startowy przyjmiemy:

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & -3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & -\frac{1}{3} \end{bmatrix}$$

Tworzymy macierz
$$D^{-1}$$
 (Odwrotności diagonalnych macierzy powyżej):
$$D^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & -3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & -\frac{1}{3} \end{bmatrix}$$
 Wyliczymy od razu $D^{-1}b$ oraz $1 - D^{-1}A$, ponieważ pozostają niezmienne pomiędzy iteracjami.
$$D^{-1}b = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & -\frac{1}{3} \end{bmatrix} * \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix}$$

$$1 - D^{-1}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & -\frac{1}{3} \end{bmatrix} * \begin{bmatrix} 4 & -2 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}$$

Kuaaro fact: Pamiętajcie kochani, że jak w Wolframie zrobicie 1-A, to to nie jest $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - A$ tylko $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - A$ (Cries in a lost hour).

Wzór iteracyjny dla tych równań: $x_{i+1} = \begin{bmatrix} 0 & \frac{3}{2} \\ 1 & 0 \end{bmatrix} * x_i + \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix}$

$$x_1 = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix}$$

$$x_2 = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix} * \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix} = \begin{bmatrix} -\frac{7}{12} \\ -\frac{5}{3} \end{bmatrix}$$
$$x_3 = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix} * \begin{bmatrix} -\frac{7}{12} \\ -\frac{5}{3} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} \\ -\frac{5}{3} \end{bmatrix} = \begin{bmatrix} -\frac{7}{12} \\ -\frac{5}{3} \end{bmatrix}$$

Skoro iteracje się nie zmieniają, mamy rozwiązanie:

$$\begin{cases} x_1 = -\frac{7}{12} \\ x_2 = -\frac{5}{3} \end{cases}$$

5.4 Dekompozycja LU (liniowe)

Ogólny wzór: Ax=b=>LRx=b, gdzie LR=A, L i R to macierze odpowiednio dolno i górno trujkątne. Następnie rozwiązujemy 2 ukłądy równań: Ly=b oraz Rx=y. Rozwiązać:

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 - x_2 + x_3 = 2 \\ -x_1 + x_2 + x_3 = 4 \end{cases}$$

5.4.1 Metoda Crouta-Doolittle'a

Rozpisana metoda Doolittle'a, użyć tamtego, bazgroły zakomentowane w Latexie.

5.4.2 Metoda Doolittle'a

Stworzenie macierzy

Uwaga: Jak podczas tworzenia macierzy pojawi się 0 na diagonalnej, to trzeba zmieniać rzędy i kolumny, żeby usunąć 0 z diagonalnej.

$$A = LR = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & r_{12} & r_{13} \\ 0 & 1 & r_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

W tym algorytmie modyfikujemy macierz A, w taki sposób że wartości L są na i pod diagonalną, a wartości R są nad diagonalną.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Dzielimy wszystkie elementy w pierwszym rzędzie na prawo od diagonalnej przez diagonalną.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Iterujemy po wszystkich wartościach, które są pod pierwszym rzędem i na prawo od pierwszej kolumny zgodnie ze wzorem $a_{ij} = a_{ij} - a_{i1}a_{1j}$.

$$a_{22} = a_{22} - a_{21}a_{12} = -1 - (1)(1) = -2$$

$$a_{23} = a_{23} - a_{21}a_{13} = 1 - (1)(1) = 0$$

$$a_{32} = a_{32} - a_{31}a_{12} = 1 - (1)(-1) = 2$$

$$a_{33} = a_{33} - a_{31}a_{13} = -1 - (1)(-1) = 2$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 0 \\ -1 & 2 & 2 \end{bmatrix}$$

Znowu dzielimy elementy na prawo przez diagonalną, a że $a_{32} = 0$, to nic nie robimy.

Znowu dla elementów poniżej 2giego rzędu i na prawo od 2giej kolumny wykonujemy działanie $a_{ij} = a_{ij} - a_{i2}a_{2j}$, $a_{32} = 0$, więc znów nic się nie zmienia.

Rozbijamy macierz na L i R:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rozwiązanie równań

$$\begin{bmatrix} Ly = b \\ -1 & 0 & 0 \\ -1 & -2 & 0 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 4 \end{bmatrix}$$

$$\begin{cases} y_1 = 6 \\ y_2 = 2 \\ y_3 = 3 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 3 \end{cases}$$

Gaussa-Seidla (Liniowe), chyba dotąd nie było tego na żadnym egzaminie

Wzór:

$$xi + 1 = -(L+D)^{-1}Uxk + (L+D)^{-1}b$$

Pomocne są macierze pomocnicze: $B = -(L+D)^{-1}U$, $C = (L+D)^{-1}b$

Uwaga 1: Macierz musi być dodatnio określona.

Uwaga 2: ta metoda działa wtedy, kiedy wyznacznik macierzy $B=(L+D)^{-1}U$ ma jedno rozwiązanie (metoda jest zbierzna).

ACC fact: jeżeli macierz jest dominująca diagonalnie, dowolny punkt startowy da nam odpowiedź. Jeżeli nie, czasami punkt startowy może dać wynik, czasami nie.

O wiele łatwiej jest wykorzystywać wzór na poszczególne elementy: $x^{k+1}i = \frac{b_k \sum j=1^{i-1}aijx_j^k k+1) - \sum j=i+1^naijx_j^k}{aii}$ ale ja nie lubię chodzić na łatwiznę

Uwaga - z uwagi na dzielenie, wartość diagonalna nie może być zerowa.

5.5.1

$$\begin{cases} 3x_1 + 4x_2 = 1\\ x_1 + 2x_2 + x_3 = 0\\ 2x_2 + 6x_3 = 1 \end{cases}$$

Wektor startowy standardowo damy $x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Podzielmy macierze na części (L+D) i U:

ACC fact: to nie jest ten sam podział, co dekompozycja LU. Tutaj L to macierz dolnotrójkątna, D to macierz diagonalna, U to macierz górnotrójkatna.

$$(L+D) = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 2 & 6 \end{bmatrix}, U = \begin{bmatrix} 0 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Wyznaczamy odwrotność macierzy (L+D), krokami:

- 1. wyznacznik: det(L+D) = 326 + 120 + 000 020 023 016 = 36
- 2. macierz dopełnień algebraicznych (wyszukajcie sposób): $(L+D)^D = \begin{bmatrix} 12 & -6 & 2 \\ 0 & 18 & -6 \\ 0 & 0 & 6 \end{bmatrix}$
- 3. transponujemy i dzielimy przez det(L+D) (czyt. podziel każdy element przez det(L+D)) macierz dopełnień, aby otrzymać odwrotność: $(L+D)^{-1} = \frac{1}{\det(L+D)} \begin{bmatrix} 12 & 0 & 0 \\ -6 & 18 & 0 \\ 2 & -6 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ -\frac{1}{6} & \frac{1}{2} & 0 \\ \frac{1}{12} & -\frac{1}{6} & \frac{1}{2} \end{bmatrix}$

$$B = \begin{bmatrix} -\frac{1}{3} & 0 & 0 \\ \frac{1}{6} & -\frac{1}{2} & 0 \\ -\frac{1}{18} & \frac{1}{6} & -\frac{1}{6} \end{bmatrix} \begin{bmatrix} 0 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{4}{3} & 0 \\ 0 & \frac{2}{3} & -\frac{1}{2} \\ 0 & -\frac{2}{9} & \frac{1}{6} \end{bmatrix} C = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ -\frac{1}{6} & \frac{1}{2} & 0 \\ \frac{1}{18} & -\frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{6} \\ \frac{2}{9} \end{bmatrix}$$
Uwaga - we wzorze na B jest MINUS $(L+D)^{-1}$.

Powyższe macierze podstawiamy z każdą iteracją do wzoru $x^{k+1} = Bx^k + C$:

Fowyzsze macierze podstawiamy z każdą iteracją do wzor
$$x^1 = Bx^0 + C = C = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{6} \\ \frac{2}{9} \end{bmatrix}$$

$$x^2 = Bx^1 + C = \begin{bmatrix} 0 & -\frac{4}{3} & 0 \\ 0 & \frac{2}{3} & -\frac{1}{2} \\ 0 & -\frac{2}{9} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{6} \\ \frac{2}{9} \end{bmatrix} + \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{6} \\ \frac{2}{9} \end{bmatrix} = \begin{bmatrix} \frac{4}{9} \\ -\frac{21}{54} \\ \frac{8}{27} \end{bmatrix}$$

SOR (Metoda Sukcesywnej Relaksacji) (Liniowe)

WORK IN PROGRESS

DLC dla metody Gaussa-Seidla, gdzie
$$B(\omega) = \frac{1}{\omega} D(I - \omega D^{-1}E)$$
, ω powinno być $0 < \omega < 2$.

Ogólny wzór dla $B(\omega)$, gdzie $E = \begin{bmatrix} 0 & 0 & 0 \\ e_1 & 0 & 0 \\ e_2 & e_3 & 0 \end{bmatrix}$, $D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$, $B(\omega) = \begin{bmatrix} \frac{d_1}{\omega} & 0 & 0 \\ -e_1 & \frac{d_2}{\omega} & 0 \\ -e_2 & -e_3 & \frac{d_3}{\omega} \end{bmatrix}$

6.1

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 - x_2 + x_3 = 2 \\ -x_1 + x_2 + x_3 = 4 \end{cases}$$

8

Dla tego przykładu nie widać dużej różnicy od zwykłego Gaussa-Seidla, bo są same 1.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $D^{-1} = D$, jakby D miało wartości inne niż 1 lub -1, to dla D wystarczy wziąć odwrotność każdego z elementów. $E = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}$

$$E = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

6.1.1
$$\omega = 1.5$$

$$B(1.5) = \frac{1}{1.5}D(I - 1.5D^{-1}E)$$

$$B(1.5) = \frac{1}{1.5}\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 1.5\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}) = \begin{bmatrix} \frac{2}{3} & 0 & 0 \\ 1 & -\frac{2}{3} & 0 \\ -1 & 1 & \frac{2}{3} \end{bmatrix}$$

6.1.2
$$\omega = 1.2$$

$$B(1.2) = \frac{1}{1.2}D(I - 1.2D^{-1}E)$$

$$B(1.2) = \frac{1}{1.2}\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 1.2\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}) = \begin{bmatrix} \frac{5}{6} & 0 & 0 \\ 1 & -\frac{5}{6} & 0 \\ -1 & 1 & \frac{5}{6} \end{bmatrix}$$

7 Całki

Gauss/Gauss-Legendre

7.1.1 Tabelka z wartościami

n	w_i	x_i
1	$w_1 = 2$	$x_1 = 0$
2	$w_1 = w_2 = 1$	$x_2 = -x_1 = \sqrt{\frac{1}{3}}$
3	$w_1 = w_3 = \frac{5}{9}$	$x_3 = -x_1 = \sqrt{\frac{3}{5}}$
	$w_2 = \frac{8}{9}$	$x_2 = 0$
$\begin{vmatrix} 4 \end{vmatrix}$	$w_1 = w_4 \approx 0.3479$	$x_4 = -x_1 \approx 0.8611$
4	$w_2 = w_3 \approx 0.6521$	$x_3 = -x_2 \approx 0.3400$
	$w_1 = w_5 \approx 0.2369$	$x_5 = -x_1 \approx 0.9062$
5	$w_2 = w_4 \approx 0.4786$	$x_4 = -x_2 \approx 0.5385$
	$w_3 = \frac{128}{225}$	$x_3 = 0$

7.1.2 $\int_0^{\pi} \sin(x) dx$

$$s = \sum_{i=1}^{2} w_i f(x_i) = \frac{\pi}{2} (1 * \sin[\frac{\pi}{2}(-\sqrt{\frac{1}{3}}) + \frac{\pi}{2}] + 1 * \sin[\frac{\pi}{2}\sqrt{\frac{1}{3}} + \frac{\pi}{2}]) \approx \frac{\pi}{2} (0.6162 + 0.6162) \approx 1.9358$$

1. Zmiana przedziału na [-1, 1]
$$s = \int_0^\pi sin(x)dx = \frac{\pi - 0}{2} \int_{-1}^1 f(\frac{\pi - 0}{2}u + \frac{\pi + 0}{2})du$$
2. Użycie dwu-punktowego całkowania
$$s = \sum_{i=1}^2 w_i f(x_i) = \frac{\pi}{2} (1 * sin[\frac{\pi}{2}(-\sqrt{\frac{1}{3}}) + \frac{\pi}{2}] + 1 * sin[\frac{\pi}{2}\sqrt{\frac{1}{3}} + \frac{\pi}{2}]) \approx \frac{\pi}{2} (0.6162 + 0.6162) \approx 1.9358$$
3. Użycie trzy-punktowego całkowania
$$s = \sum_{i=1}^3 w_i f(x_i) = \frac{\pi}{2} (\frac{5}{9} sin[\frac{\pi}{2}(-\sqrt{\frac{3}{5}}) + \frac{\pi}{2}] + \frac{8}{9} sin[\frac{\pi}{2} * 0 + \frac{\pi}{2}] + \frac{5}{9} sin[\frac{\pi}{2}\sqrt{\frac{3}{5}} + \frac{\pi}{2}]) \approx \frac{\pi}{2} (\frac{5}{9} * 0.3467 + \frac{8}{9} * 1 + \frac{5}{9} * 0.3467) \approx 2.0014$$

4. Błędy

Wartość dokładna:
$$\int_0^{\pi} sin(x) dx = -cos(x)|_0^{\pi} = -cos(\pi) + cos(0) = -(-1) + 1 = 2$$
Błąd dla dwu-punktowego całkowania - $|\epsilon_t| = |\frac{2-1.9358}{2}| * 100\% = 3.21\%$ Błąd dla trzy-punktowego całkowania - $|\epsilon_t| = |\frac{2-2.0014}{2}| * 100\% = 0.07\%$

7.1.3
$$\int_0^3 x^2 dx$$

$$s = \int_{0}^{3} x^{2} dx = \frac{3-0}{3} \int_{0}^{1} f(\frac{3-0}{3}u + \frac{3+0}{3}) du$$

1. Zmiana przedziału na [-1, 1] $s=\int_0^3 x^2 dx=\tfrac{3-0}{2}\int_{-1}^1 f(\tfrac{3-0}{2}u+\tfrac{3+0}{2})du$ 2. Użycie dwu-punktowego całkowania –

$$s = \sum_{i=1}^{2} w_i f(x_i) = \frac{3-0}{2} \left(1 * \left[\frac{3-0}{2} \left(-\sqrt{\frac{1}{3}} \right) + \frac{3+0}{2} \right]^2 + 1 * \left[\frac{3-0}{2} \left(\sqrt{\frac{1}{3}} \right) + \frac{3+0}{2} \right]^2 \right) = \frac{3}{2} \left(3 + \frac{9}{2} \sqrt{\frac{1}{3}} + 3 - \frac{9}{2} \sqrt{\frac{1}{3}} \right) = 9$$

Wartość dokładna:
$$\int_0^3 x^2 dx = \frac{x^3}{3} \Big|_0^3 = \frac{27}{3} - \frac{0}{3} = 9$$

Wartose dokiadna.
$$J_0 = u = \frac{1}{3}$$

Błąd - $|\epsilon_t| = |\frac{9-9}{9}| * 100\% = 0\%$

Jako że aproksymujemy wielomian drugiego stopnia (x^2) za pomocą wielomianu drugiego stopnia (Legendre'a), to błąd jest równy 0%, ponieważ za pomocą wielomianu Legendre'a można idealnie pokryć x^2 .

Simpson/Parabol 7.2

7.2.1Dla parzystej liczby przedziałów

Dla 2n przedziałów bierzemy 2n+1 punktów tak, żeby pierwszy i ostatni były na początku i końcu przedziału, a pozostałe były równo od siebie oddalone. Następnie, wyliczamy wartości funkcji w punktach. Wartości funkcji mnożymy przez 2 jeżeli są nieparzyste, z wyjątkiem początku i końca przedziału, które mnożymy przez 1, oraz przez 4 jeżeli są nieparzyste. Na koniec mnożymy sumę wyników funkcji przez przedział oraz dzielimy przez sumę "mnożników", przez które pomnożyliśmy wyniki funkcji.

```
Błąd: E \approx -\frac{N}{180}(\frac{b-a}{N})^5 * avg\{\frac{d^4}{dx^4}f(x)\}, gdzie N to liczba przedziałów. Dla funkcji \int_0^\pi sin(x)dx Wartość idealna: -cos(x)|_0^\pi = -cos(\pi) - (-cos(0)) = 2
```

Dla 2 przedziałów

Punkty: $p \in \{0, \frac{\pi}{2}, \pi\}$

Wartości funkcji: $f(p) \in \{sin(0) = 0, sin(\frac{\pi}{2}) = 1, sin(\pi) = 0\}$

Mnożenie wartości funkcji: $m * f(p) \in \{1 * 0, 4 * 1, 1 * 0\}$

Wartość do pomnożenia sumy funkcji: $\frac{\pi-0}{1+4+1} = \frac{\pi}{6}$

Wartość całki: $\frac{\pi}{6}4 = \frac{2\pi}{3} = 2.0944$

Dla 4 przedziałów

Punkty: $p \in \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi\}$

Wartości funkcji: $f(p) \in \{sin(0) = 0, sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, sin(\frac{\pi}{2}) = 1, sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}, sin(\pi) = 0\}$ Mnożenie wartości funkcji: $m * f(p) \in \{1 * 0, 4 * \frac{\sqrt{2}}{2}, 2 * 1, 4 * \frac{\sqrt{2}}{2}, 1 * 0\}$ Wartość do pomnożenia sumy funkcji: $\frac{\pi - 0}{1 + 4 + 2 + 4 + 1} = \frac{\pi}{12}$

Wartość całki: $\frac{\pi}{12}(2*\sqrt{2}+2+2*\sqrt{2}) = \frac{\pi}{6}(2\sqrt{2}+1) = 2.0046$ Błąd względny: $E \approx -\frac{4}{180}(\frac{\pi-0}{4})^5*\frac{\int_0^\pi (\sin(x))dx}{\pi-0} = -\frac{\pi^4}{23040} \approx -0.0042$ Błąd bezwzględny: $\frac{E}{\int_0^\pi \sin(x)dx} * 100\% = \frac{E}{2} * 100\% \approx 0.2114\%$

Dla 6 przedziałów

Punkty: $p \in \{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{5\pi}{6}, \pi\}$

Wartości funkcji: $f(p) \in \{sin(0) = 0, sin(\frac{\pi}{6}) = \frac{1}{2}, sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, sin(\frac{\pi}{2}) = 1, sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}, sin(\frac{\pi}{3}) = \frac{\sqrt{$ $sin(\frac{5\pi}{6}) = \frac{1}{2}, sin(\pi) = 0$

Mnożenie wartości funkcji: $m*f(p) \in \{1*0, 4*\frac{1}{2}, 2*\frac{\sqrt{3}}{2}, 4*1, 2*\frac{\sqrt{3}}{2}, 4*\frac{1}{2}, 1*0\}$ Wartość do pomnożenia sumy funkcji: $\frac{\pi-0}{1+4+2+4+1} = \frac{\pi}{18}$

Wartość całki: $\frac{\pi}{18}(2+\sqrt{3}+4+\sqrt{3}+2)=\frac{\pi}{9}(4+\sqrt{3})=2.0009$

7.2.2 Dla nieparzystej liczby przedziałów

Dla funkcji $\int_0^{\pi} sin(x)dx$

Wartość idealna: $-cos(x)|_0^{\pi} = -cos(\pi) - (-cos(0)) = 2$

Dla 3 przedziałów

Postępujemy tak samo, jak dla powyższych przykładów, ale używamy wag 1, 3, 3 i 1.

Punkty: $p \in \{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi\}$

Wartości funkcji: $f(p) \in \{ sin(0) = 0, sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, sin(\pi) = 0 \}$

Mnożenie wartości funkcji: $m * f(p) \in \{1 * 0, 3 * \frac{\sqrt{3}}{2}, 3 * \frac{\sqrt{3}}{2}, 1 * 0\}$

Wartość do pomnożenia sumy funkcji: $\frac{\pi}{1+3+3+1} = \frac{\pi}{8}$

Wartość całki: $\frac{\pi}{8}(3\sqrt{3}) = \frac{3\pi\sqrt{3}}{8} = 2.0405$

Dla 5 i więcej przedziałów

Dzielimy przedziały na 3 i 2/resztę. Używamy algorytmu dla 3 przedziałów dla początku i 2/reszty dla końca.

Punkty: $p \in \{0, \frac{\pi}{5}, \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{4\pi}{5}, \pi\}$ Wartości funkcji: $f(p) \in \{sin(0) = 0, sin(\frac{\pi}{5}) \approx 0.5878, sin(\frac{2\pi}{5}) \approx 0.9511, sin(\frac{3\pi}{5}) \approx 0.9511, sin$

 $sin(\frac{4\pi}{5}) \approx 0.5878, sin(\pi) = 0\}$

Wartości do pomnożenia sumy funkcji: Dla 3: $\frac{\frac{3\pi}{5}-0}{1+3+3+1} = \frac{3\pi}{40}$ Dla 2: $\frac{\pi-\frac{3\pi}{5}}{1+4+1} = \frac{\pi}{15}$

Rozbicie na 3 i 2 przedziały: $\frac{3\pi}{40}(1*0+3*0.5878+3*0.9511+1*0.9511)+\frac{\pi}{15}(1*0.9511+4*0.5878+1*0)=2.0034$

Równania różniczkowe

Metoda ekstrapolacyjna Eulera 8.1

Dane w zadaniach są zadawane w formie: $y' = f(x, y), y(x_0) = y_0, h = h.$

Otwarta

Dla funkcji f(x, y) i skoku h wartość $y_{i+1} = y_i + h \ast f(x_0 + i \ast h, y_i)$

Wzory do wykorzystania w Desmosie:

$$g(i) = \{i = 0 : y_0, g(i-1) + h * f(x_0 + (i-1)h, g(i-1))\}\$$

f(x,y) = xy

 $y_0 = 1$

h = 0.5

 $x_0 = 0$

g(3)

Wszystko poza pierwszą linijką można modyfikować.

Zamknięta

Dla funkcji f(x, y) i skoku h wartość $y_{i+1} = y_0 + h * f(x_0 + (i+1) * h, y_{i+1})$

8.1.1 Dla f(x,y) = xy, $x_0 = 0$, $y_0 = 1$, h = 0.5 wyznacz 3 pierwsze iteracje obydwoma metodami.

Otwarta/Ekstrapolacyjna

 $y_1 = y_0 + h * f(x_0 + 0 * h, y_0) = 1 + 0.5 * 0 * 1 = 1$ $y_2 = y_1 + h * f(x_0 + 1 * h, y_1) = 1 + 0.5 * 0.5 * 1 = 1.25$ $y_3 = y_2 + h * f(x_0 + 2 * h, y_2) = 1.25 + 0.5 * 1 * 1.25 = 1.875$

 $y_1 = y_0 + h * f(x_0 + 1 * h, y_1) = 1 + 0.5 * 0.5 * y_1 => y_1 = \frac{4}{3}$ $y_2 = y_1 + h * f(x_0 + 2 * h, y_2) = \frac{4}{3} + 0.5 * 1 * y_2 => y_2 = \frac{8}{3}$ $y_3 = y_2 + h * f(x_0 + 3 * h, y_3) = \frac{8}{3} + 0.5 * 1.5 * y_3 => y_3 = \frac{32}{3}$

9 Ocena zbierzności algortmu iteracyjnego

9.1
$$x_{i+1} = \frac{1}{7}(6x_i + \frac{a}{x_i^6}), \ x = \sqrt[7]{a}$$

Zastępujemy x_i za pomocą x_∞ , czyli zakładamy że w nieskończonej iteracji otrzymamy poprawne wyniki. $\frac{1}{7}(6x_{\infty} + \frac{a}{x_{\infty}^{6}})$

Warunkiem zbieżności jest:

$$\begin{cases} p=1, |c|<1\\ p=2,3,..., |c|<\infty \end{cases}$$

gdzie: $c = \frac{1}{p!} f^{(p)}(x_{\infty})$

Bierzemy pochodną p=1 z funkcji: $f^{(1)} = \frac{6}{7}(1 - \frac{a}{x_{\infty}^{7}}) = \frac{6}{7}(1 - \frac{a}{a}) = 0$ Bierzemy pochodną p=2 z funkcji: $f^{(2)} = \frac{6}{7}(42\frac{a}{x_{\infty}^{8}}) = 6\frac{a}{a\sqrt[7]{a}} = \frac{6}{\sqrt[6]{a}} \neq 0$

Jako że p=2, to funkcja jest zbierzna kwadratowo.

Poprawny numerycznie algorytm obliczania wartości wyrażenia y= $\frac{1}{x}(1-\frac{\sqrt{2}}{\sqrt{2+x}}); ||x|| << 1$

$$\begin{array}{l} y = \frac{1}{x} \big(1 - \frac{\sqrt{2}}{\sqrt{2 + x}} \big) \\ y = \frac{1}{x} \big(\frac{\sqrt{2 + x}}{\sqrt{2 + x}} - \frac{\sqrt{2}}{\sqrt{2 + x}} \big) = \frac{1}{x} \frac{\sqrt{2 + x} - \sqrt{2}}{\sqrt{2 + x}} \\ y = \frac{1}{x} \frac{\sqrt{2 + x} - \sqrt{2}}{\sqrt{2 + x}} \frac{\sqrt{2 + x} + \sqrt{2}}{\sqrt{2 + x} + \sqrt{2}} = \frac{1}{x} \frac{2 + x - 2}{2 + x + \sqrt{2}\sqrt{2 + x}} = \frac{1}{x} \frac{x}{2 + x + \sqrt{2}\sqrt{2 + x}} = \frac{1}{2 + x + \sqrt{4 + 2x}} \\ \text{Bledy:} \end{array}$$

- 1. 2 + x
- 2. 2x
- 3. $\sqrt{4+2x}$
- 4. $2+x+\sqrt{4+2x}$
- 5. $\frac{1}{2+x+\sqrt{4+2x}}$

Błąd graniczny $\widetilde{y} = (2+x)(1+\eta_z)^{-1}$

Oszacuj błąd względny (błąd graniczny) wyznaczania wartości wy-11 rażenia

Błąd danych: $\delta(\tilde{y}) = \frac{x}{f(x)} * f'(x) * \epsilon_x$

Błąd zaokrągleń: $f(x) \prod_{i=0}^{n} (1-\eta_i)$, gdzie η_i to kolejne błędy przy każdym działaniu, które wymaga użycia x w f(x)

11.1
$$y = x^2 sin(x)$$

 $y' = 2x\sin(x) + x^2\cos(x)$

Błąd danych: $\delta(y) = \frac{x}{x^2 \sin(x)} * x(2\sin(x) + x\cos(x)) * \epsilon_x = (2 - x * \cot(x))\epsilon_x$

Błędy zaokrągleń:

- $x^2 => x^2(1-\eta_1)$
- $sin(x) => sin(x)(1-\eta_2)$
- $x^2 sin(x) => x^2 sin(x)(1 \eta_3)$

Błąd zaokrągleń: $\widetilde{y} = x^2 sin(x)(1 - \eta_1)(1 - \eta_2)(1 - \eta_3)$

11.2
$$y = x^3 sin(x)$$

$$y' = x^2(3sin(x) + x * cos(x))$$

Błąd danych: $\delta(\tilde{y}) = \frac{x}{x^3 \sin(x)} * x^2 (3\sin(x) + x * \cos(x)) * \epsilon_x = (3 + x * \cot(x)) \epsilon_x$ Błędy zaokrągleń:

- $x^3 => x^3(1-\eta_1)(1-\eta_2)$
- $sin(x) => sin(x)(1-\eta_3)$
- $x^3 sin(x) => x^2 sin(x)(1 \eta_4)$

Błąd zaokrągleń: $\tilde{y} = x^3 sin(x)(1 - \eta_1)(1 - \eta_2)(1 - \eta_3)(1 - \eta_4)$

Uwarunkowanie zadania **12**

$$ln(ax) = -b = e^{ln(ax)} = e^{-b} = ax = e^{-b} = \frac{e^{-b}}{a}$$

Przekształcamy równanie, żeby po jednej stronie był x: $ln(ax)=-b=>e^{ln(ax)}=e^{-b}=>ax=e^{-b}=>\frac{e^{-b}}{a}$ Wskaźnik uwarunkowania dla równań to stosunek błędu względnego danych do błędu względnego rozwiązania.