MiniProject-2

Machine Learning-Supervised Regression

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Program Offered	M. Tech /AI						
Course Title	Machine Learning-Supervised Regression.						
Name of the Project	Mini Project-2						
Members	GROUP-5						
	BHARATH K M (PA2212049010019)						
	DIWAHAR A K (PA2212049010012)						
	RAGHUNATH M (PA2212049010050)						

Assignment Question	CRISP DM	Refer Section.
1. Read the data coefficients. Load the csy file and set the	Business Understanding Data Understanding	<u>Business Understanding</u> - Section 4
first column as index	Data Preparation	Reading the data with first column as index – Section 5.1
		<u>Data Understanding-</u> Section 5.2
		Data Preparation
		Numerical Variable- Section 5.3
		Categorical Variables- Section 5.4 Null Value Treatment- Section 5.5.1
		Date Conversion- Section 5.5.2
		Duplicate Removal- Section 5.5.3
		Outlier Analysis- Section 5.5.4
		Insignificant Feature Analysis- Section 6.1
		Numerical Analysis- Section 6.3.1
		Categorical Analysis- Section 6.3.2
		Encoding- Section 6.4
		Feature Transformation- Section 6.6
		Feature Scaling- Section 6.7
2. Build a full model and	Modelling	Test- Train Split- Section 6.11
interpret the beta coefficients		Linear Regression (all features)- Section 7.1
		Model Summary- Section 7.2
		Linear Equation- Section 7.3
2 What is the impact of C 1	M. J.I.F. J. C.	Model Prediction- Section 7.4
3. What is the impact of fuel type of cars on the selling price?	Model Evaluation	Impact of Fuel Type with selling price- Section 7.5
4. Does the model	Model Evaluation	Model Evaluation- Section 7.6
significantly explain		Impact Analysis of each Feature- Section 7.7
variation in the target variable? Justify your answer		

RAGHUNATH M (PA2212049010050)

Machine Learning-Supervised Regression

Table of Contents

18	ible of	Cont	ents	2
1	Purp	ose.		4
2	Sco	ре		4
3	Env	ironr	nent Preparation for Data Analysis	4
	3.1	Too	ls Selection	4
	3.2	Dat	aset and accessing of dataset.	4
	3.3	Imp	orting the python libraries	4
4	Busi	ness	Understanding	5
5	Data	u Un	derstanding	6
	5.1	Col	lect initial data	6
	5.2	Des	cribe the data	6
	5.2.	1	Dataset	7
	5.2.2	2	Initial data Analysis	7
	5.3	Five	e Point Summary of Numerical Data	7
	5.4	Sun	nmarize observations for categorical variables	8
	5.5	Che	eck for defect in dataset	9
	5.5.	1	Missing Values and null value check	9
	5.5.	2	Date to Age Conversion	10
	5.5.	3	Duplicate removal Treatment	11
	5.5.	1	Outliers	11
6	Data	Pre	paration (Exploratory Data Analysis)	13
	6.1	Igno	ore insignificant feature.	13
	6.2	Spli	t Numerical and Categorical Dataset	13
	6.3	Dis	tribution of Variables	13
	6.3.	1	Numerical Parameters	14
	6.3.	2	Categorical Parameters	14
	6.4	Dat	a Encoding for Categorical Dataset	15
	6.5	Mei	rge Numerical and Categorial Data	16
	6.6	Fea	ture Transformation	17
	6.7	Fea	ture Scaling	17

MiniProject-2 GROUP-5

BHARATH K M (PA2212049010019)
DIWAHAR A K (PA2212049010012)
RAGHUNATH M (PA2212049010050)

Machine Learning-Supervised Regression

	6.8	Correlation between parameters	18
	6.9	Split the data frame to Dependent and Independent Feature.	19
	6.10	Adding Constant	19
	6.11	Train Test Split	19
7	Mod	lel Building	20
	7.1	Model Building – Full Model with all Features	20
	7.2	Model Summary	21
	7.3	Linear Equation	21
	7.4	Model Prediction	22
	7.5	Impact of Fuel Type with selling price.	22
	7.6	Model Evaluation	24
	7.7	Regress with each Feature with Selling Price – Impact of each feature with Selling Price in del	

1 Purpose

The purpose of this document to report on the analysis performed to predict the selling price of the used vehicle.

2 Scope

The scope of this document to build the model based on Linear Regression Model. The scope covers the following area to predict the selling price of the used vehicle.

- a. Data understanding
- b. Data Preparation
- c. Model Building
- d. Model Evaluation

3 Environment Preparation for Data Analysis

3.1 Tools Selection

As we are 3 members in Group 5 and all we work remotely, we were using the google Collaboratory to have better interactions between us. The below is the Google Collab link we were using for this assignment.

https://colab.research.google.com/drive/16Pr0hfBCN-5qYzcJfqc3eX3a2RxX DMF?usp=sharing

3.2 Dataset and accessing of dataset.

To have the common working among us, we have placed our data set in the github in the following path so that anyone of us can access the dataset directly through colab.

https://github.com/akdiwahar/dataset/raw/main/SRM/MLSR/CT2/download.
csv

3.3 Importing the python libraries.

```
import pandas as pd
# 'Numpy'
import numpy as np
 from scipy.stats import norm
# Visualization
{\tt import\ matplotlib.pyplot\ as\ plt}
# 'Statsmodels' is used to build and analyze various statistical models
import statsmodels
import statsmodels.api as sm
 from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
from statsmodels.formula.api import ols from statsmodels.tools.eval_measures import rmse
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import SequentialFeatureSelector as SFS
from sklearn.preprocessing import RobustScaler
 # to set the digits after decimal place
pd.options.display.float_format = '{:.5f}'.format
# suppress warnings
from warnings import filterwarnings
filterwarnings('ignore')
```

We have used the libraries as in the snapshot above for the purpose of

- a. Handling of dataset.
- b. Virtualization of variables
- c. Model building
- d. Model evaluation

We have also defined the global variable whether to perform the following by setting the global variable to True/False.

- 1. Outlier Treatment
- 2. Feature Scaling
- 3. Feature Transformation
- 4. Elimination of Feature having Multicollinearity (Based on VIF).

```
[2] #Global Variables
    executeOutliers=False
    doScaling=True
    doTransformation=True
    multicollenarityFeatureElimination=False # Based on VIF.
```

In this assessment, we are not going to remove outliers as it removes more observation. Refer section 5.5.4 for more details

Since the expectation of this assessment to have full model with all features, we are not going to eliminate any feature.

4 Business Understanding

India's used-vehicle industry is currently transitioning from an unorganized setup - where transactions happen via roadside garage mechanics, small brokers and between car owners - to an organized system with more players entering the market.

CarDekho.com is India's leading car search venture that helps users buy cars that are right for them. Its website and app carry rich automotive content such as expert reviews, detailed specs and prices, comparisons as well as videos and pictures of all car brands and models available in India. The company has tie-ups with many auto manufacturers, more than 4000 car dealers and numerous financial institutions to facilitate the purchase of vehicles.

The expectation of CarDekho.com to quote the selling price for the used vehicle request received to them based on the Machine Learning technique. The company has the details of their past resale details of the used vehicle. The dataset used here is the dataset of CarDekho.

5 Data Understanding

5.1 Collect initial data

We have collected the "download.csv" contains information about sold used vehicle details. The dataset is loaded into tool using the pandas method read_csv().

The data is loaded to dataframe variable "resale_vehicle_df"

5.2 Describe the data

Data in the dataset has the below information.

1. Car_Name: Name of the Vehicle. <Descriptive Data>

Independent Variable/Features

- 2. YearThis: year in which the car was bought. < Numerical Data>
- 3. Present_Price: current ex-showroom price of the car (in lakhs). <Numerical Data>
- 4. Kms_Driven: distance completed by the car in km. <Numerical Data>
- 5. Fuel_Type: fuel type of the car. <Categorical Data>
- 6. Seller_Type: defines whether the seller is a dealer or an individual. <Categorical Data>
- 7. Transmission: defines whether the car is manual or automatic. <Categorical Data>
- 8. Owner: defines the number of owners the car has previously had. <Categorical Data>

Response Variable/Target Variable/Dependent Variable.

9. Selling Price: price the owner wants to sell the car at (in lakhs) (response variable)

5.2.1 Dataset

As per the provided dataset,

- We have received 301 records.
- We have received the parameters as stated

5.2.2 Initial data Analysis

```
[6] resale_vehicle_df.info()
     <class 'pandas.core.frame.DataFrame'>
     Index: 301 entries, ritz to brio
     Data columns (total 8 columns):
                            Non-Null Count Dtype
      # Column
             301 non-null
      0 Year
                                                     int64
           Selling_Price 301 non-null float64
           Present_Price 301 non-null
     3 Kms_Driven 301 non-null inte

4 Fuel_Type 301 non-null obje

5 Seller_Type 301 non-null obje

6 Transmission 301 non-null obje

7 Owner 301 non-null inte

dtypes: float64(2), int64(3), object(3)
                                                     int64
                                                     object
                                                     object
                                                     int64
     memory usage: 21.2+ KB
```

The info() method on dataframe gives the details of

- a. Number of variables.
- b. Datatype of each variable
- c. Number of Non-Null record for each variable.
- d. Number of records in the dataset.

As per the data loaded, we have the following observation or inferences

- a. We have received 301 Observations.
- b. We have received 8 parameter/variable.
- c. We have used index as Car Name.
- d. We have Selling Price which is the predicting variable (target variable).
- e. We have no null entries

5.3 Five Point Summary of Numerical Data.

The describe method() on dataframe gives the five point summary(min, max, mean, median(50%) and standard deviation).

resale	_vehicle_df.	describe()			
	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.00000	301.00000	301.00000	301.00000	301.00000
mean	2013.62791	4.66130	7.62847	36947.20598	0.04319
std	2.89155	5.08281	8.64412	38886.88388	0.24791
min	2003.00000	0.10000	0.32000	500.00000	0.00000
25%	2012.00000	0.90000	1.20000	15000.00000	0.00000
50%	2014.00000	3.60000	6.40000	32000.00000	0.00000
75%	2016.00000	6.00000	9.90000	48767.00000	0.00000
max	2018.00000	35.00000	92.60000	500000.00000	3.00000

5.4 Summarize observations for categorical variables

The describe method() with exclude=np.number options provides the details of categorial parameters.

Inference:

- 1. There are 4 categorical variables in the dataset as below and the possible values on each variable.
 - a. Fuel_Type: ['Petrol', 'Diesel', 'CNG']
 - b. Seller_Type : ['Dealer', 'Individual']
 - c. Transmission: ['Manual', 'Automatic']
 - d. Owner: [0, 1, 3]
- 2. As seen from the visualization, there values in each variable is not equally distributed.

5.5 Check for defect in dataset

5.5.1 Missing Values and null value check.

The null values or missing value is identified with the method is null() when applied on the dataframe. sum() method on top of null() gives the summation of null values.

```
Null Check
[14] resale_vehicle_df.isnull().sum()
                       0
     Year
      Selling_Price
                       0
      Present_Price
                       0
      Kms Driven
                       0
      Fuel_Type
                       0
      Seller Type
                       0
      Transmission
                       0
      Owner
                       0
      dtype: int64
```

Inference:

1. There is no null values in the dataset.

5.5.2 Date to Age Conversion

Year column has the year on which the used vehicle was sold. Normally, it is the better approach, we always convert the date format to age.

Feature - Year Treatment

DIWAHAR A K (PA2212049010019) RAGHUNATH M (PA2212049010050)

5.5.3 Duplicate removal Treatment

We see two observations are duplicate. We have removed the duplicates.

5.5.4 Outliers

The below code visualizes the outlier of each parameter in the given dataset using box plot.

```
[19] columns=resale_vehicle_df.select_dtypes(include=np.number).columns

pltcount=len(columns)
plt.figure(figsize=(10,10))
for eachFeature in columns:

plt.subplot(2,2,pltcount)
pltcount=1
plt.ylabel(eachFeature)
sns.boxplot( data=resale_vehicle_df[eachFeature] ,orient="h")

plt.show()
```

The output of the above code snippet is as below

Inference:

1. The parameter Kms_Driven, Present_Price, Selling_Price and Age has Outliers.

Outlier Treatment

The below function helps to remove the outlier data based on IQR.

```
[97] def outliers(df):
       indexesToRevome=[]
       index_name=df.index.name
       df=df.reset_index()
       columns=df.select_dtypes(include=np.number).columns
       for eachCol in columns:
         print("Processing ",eachCol)
         q1=df[eachCol].quantile(0.25)
         q3=df[eachCol].quantile(0.75)
         IQR=q3-q1
         whisherLeft=q1-IQR*1.5
         whisherRight=q3+IQR*1.5
         indexes=df.index[(whisherLeft>df[eachCol]) | (whisherRight<df[eachCol] )].tolist()</pre>
         if (len(indexes)>0):
           print("Index in outlier for ",eachCol," is ", indexes, "\n")
           indexesToRevome=indexesToRevome + indexes
       #noOfRecords=dfturnout[dfturnout[eachCol]>whisherRight and dfturnout[eachCol]
whisherLeft].size()
       #print(eachCol,q1,q3,whisherLeft,whisherRight, noOfRecords)
       #Unique entries
       indexesToRevome= list(set(indexesToRevome))
       print("Finalized index to remove from source :", indexesToRevome)
       df=df.drop(index=indexesToRevome)
       df=df.set_index(index_name)
       return df,indexesToRevome
```

Inference: When we treat the outliers, we see below 38 observations are identified as outliers(iloc rows).

```
{157, 158, 162, 164, 37, 166, 39, 40, 170, 173, 45, 50, 51, 52, 53, 179, 54, 59, 189, 62, 63, 64, 66, 196, 69, 72, 77, 79, 80, 82, 84, 85, 86, 92, 93, 96, 97, 251}
```

Note: We have included the outliers in this assessment. Also, we see a better model compared with outlier than without outliers. Also, we see very uneven distribution of features Age, Present_Price, Selling_Price and Kms_Driven when we remove outlier. i.e multiple peak when plotting the density plot.

6 Data Preparation (Exploratory Data Analysis)

6.1 Ignore insignificant feature.

Car Name is the insignificant parameter for model building. As this parameter is used as an row index, no special treatment is needed.

6.2 Split Numerical and Categorical Dataset

We are splitting the data into numerical and categorical dataset. The data is stored in vehicle_num and vehicle cat.

6.3 Distribution of Variables

RAGHUNATH M (PA2212049010050)

MiniProject-2

Machine Learning-Supervised Regression

6.3.1 Numerical Parameters

Inference:

- 1. We could see the pattern between Present_Price and selling_price
- 2. We could see the distribution for the parameter Selling_price, Present_Price and Kms_Driven are right skewed

6.3.2 Categorical Parameters

```
[223] pltcount=1
    plt.figure(figsize=(10,10))
    for eachFeature in vehicle_cat.columns:
        data=vehicle_cat[eachFeature].value_counts().to_frame().reset_index()
        data.columns=[eachFeature,"count"]
        plt.subplot(2,2,pltcount)
        pltcount+=1
        sns.barplot(x=data[eachFeature],y=data["count"])
```


Inference:

1. We could see the uneven distribution for the categorical parameter Fuel_Type, Seller_Type, Transmission and Owner.

6.4 Data Encoding for Categorical Dataset

From the dataset, it is observed that we have four categorical variable

- a. Fuel_Type
- b. Seller_Type
- c. Transmission
- d. Owner.

MiniProject-2

Machine Learning-Supervised Regression

```
[30] vehicle_cat=pd.get_dummies(vehicle_cat, drop_first=True, columns=["Transmission","Seller_Type"])

[31] vehicle_cat["Owner"]=vehicle_cat["Owner"].astype("uint8")

[32] vehicle_cat=pd.get_dummies(vehicle_cat, columns=["Fuel_Type"])

[33] #Fuel-Type Gas has only 2 observation, hence do not want to remove vehicle_cat.drop("Fuel_Type_Petrol",axis=1,inplace=True)
```

We have done the encoding as below by executing the above code.

Categorical Variable	Encoding done.					
Owner	Already data has 0,1,2,3 As it is ordinal data, we keep the entry as it is					
	and converted to integer					
Transmission		r encoding we have the p				
	Transmission_Manu	ual. 1-> Manual ,	0 -> Automatic			
Seller_Type		r encoding we have the p				
	Seller_Type_Indiv	vidual. 0-> Dealer	, 1->Individual			
Fuel_Type	Dummy Encoding. But	we removed Petrol instea	ad of Gas Fuel Type.			
	Fuel_Type_CNG	Fuel_Type_Diesel	Fuel_Type			
	0	0	Petrol			
	0	1	Diesel			
	1 0 CNG					

6.5 Merge Numerical and Categorial Data

We finalize the numerical and categorical data into the one dataset vehicle.

```
✓ Merge Numerical and Categorical

✓ [35] vehicle=pd.concat([vehicle_num,vehicle_cat],axis=1)
```

6.6 Feature Transformation.

Inference:

- 1. We have done cubic root for the features.
- 2. After the transformation, we skew and kurt reduced on numerical variable.
- 3. Effect of Transformation to Categorical variable is not seen. Since $1^3 = 1^{1/3} = 1$ and $0^3 = 0^{1/3} = 0$ This is due to imbalanced data on the categorical variable

6.7 Feature Scaling.

Since the numerical data are in different scale, we are doing here with Robust scaling. The robust scaler subtracts feature values by their median and then divides by its IQR. It is best scaling when we have outliers.

eatui	re Sca	aling								
veh if v v els	nicle_ben (doScal: vehicle_: vehicle_s vehicle=n	scaled=scaler.t scaled = pd.Dat vehicle_scaled caling Not Enab	fit_transform(vetaframe(vehicle		ex=vehicl	e.index,	columns=vehicle.colu	mns)		
		Selling_Price	Present_Price	Kms_Driven	Age	Owner	Transmission_Manual	Seller_Type_Individual	Fuel_Type_CNG	Fuel_Type_Diesel
Car	r Name									
	ritz	-0.02695	-0.04852	-0.14687	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
		-0.02695 0.18530	-0.04852 0.27191	-0.14687 0.27609	0.00000 0.23742		0.00000	0.00000	0.00000	0.00000
	ritz				0.23742	0.00000				
	ritz sx4	0.18530	0.27191	0.27609	0.23742	0.00000	0.00000	0.00000	0.00000	1.00000

6.8 Correlation between parameters

We used the below code for generating the cross correlation across the feature including the target feature(selling price).

Inference:

- 1. We could see a good correlation of selling price with current price(0.93) and seller_type_individual(-0.8)
- 2. We could see the correlation with Fuel_Type_Diesel(>0.5), Kms_Driven(0.14), Transmission_Manual(-0.24), Owner(-0.13) and age(0.26) against selling price.
- 6.9 Split the data frame to Dependent and Independent Feature.

```
▼ Dependent and Independent Features

✓ [43] X=vehicle.drop("Selling_Price",axis=1)
y=vehicle["Selling_Price"]
```

We store them the independent feature in X and dependent feature in y.

6.10 Adding Constant

Since we are using the stats model, the const co-efficient(y-intercept) to be added in the dataset.

```
[48] if (multicollenarityFeatureElimination):
      X1=X[features]
    X1 = sm.add_constant(X1)
[49] X1.head()
                                                Age Owner Transmission_Manual Seller_Type_Individual Fuel_Type_CNG Fuel_Type_Diesel
              const Present_Price Kms_Driven
     Car Name
     ritz 1.00000
                      -0.04852 -0.14687 0.00000 0.00000
                                                                      0.00000
                                                                                           0.00000
                                                                                                       0.00000
                                                                                                                        0.00000
       sx4 1.00000 0.27191 0.27609 0.23742 0.00000
                                                                      0.00000
                                                                                           0.00000
                                                                                                        0.00000
                                                                                                                        1.00000
                      0.29295 -1.06792 -0.85980 0.00000
      ciaz 1.00000
                                                                      0.00000
                                                                                           0.00000
                                                                                                       0.00000
                                                                                                                        0.00000
     wagon r 1.00000 -0.20381 -1.21184 0.66401 0.00000
                                                                      0.00000
                                                                                           0.00000
                                                                                                        0.00000
                                                                                                                        0.00000
     swift 1.00000 0.06837 0.26348 0.00000 0.00000
                                                                                           0.00000
                                                                      0.00000
                                                                                                        0.00000
                                                                                                                        1.00000
```

6.11 Train Test Split

The package sklearn.model_selection provides the function train_test_split() to split the data into train set and test set. The trainset is used to train the model and testset is used to evaluate the model.

The below code converts the dependent feature(X) and independent variable(y) into training set (80%) and test set (20%).

BHARATH K M (PA2212049010019) DIWAHAR A K (PA2212049010012) RAGHUNATH M (PA2212049010050)

Machine Learning-Supervised Regression

Since the random_state is marked with the static value of 6, we get the same split of train and test data for any time execution of train_test_split() method.

7 Model Building

7.1 Model Building – Full Model with all Features

```
Model Building with Complete Features

[50] lin_reg_model=sm.OLS(Y_train,X_train)
    model = lin_reg_model.fit()
```

7.2 Model Summary

```
[52] model.summary()
                       OLS Regression Results
       Dep. Variable: Selling_Price R-squared:
                                                    0.963
          Model:
                     OLS
                                     Adj. R-squared: 0.962
          Method: Least Squares
                                       F-statistic:
                                                    746.6
           Date:
                     Sun, 11 Dec 2022 Prob (F-statistic): 6.75e-160
           Time:
                     05:36:00 Log-Likelihood: 157.17
     No. Observations: 239
                                          AIC:
                                                    -296.3
       Df Residuals: 230
                                          BIC:
                                                    -265.1
         Df Model:
                     8
     Covariance Type: nonrobust
                          coef std err t
                                              P>|t| [0.025 0.975]
                         0.0496 0.013 3.769 0.000 0.024 0.076
             const
         Present_Price 0.8696 0.026 33.408 0.000 0.818 0.921
          Kms_Driven -0.0430 0.015 -2.923 0.004 -0.072 -0.014
                         -0.2366 0.017 -13.799 0.000 -0.270 -0.203
             Age
            Owner
                         -0.0991 0.044 -2.245 0.026 -0.186 -0.012
     Transmission Manual -0.0035 0.025 -0.140 0.889 -0.053 0.046
     Seller_Type_Individual -0.1666 0.030 -5.486 0.000 -0.226 -0.107
        Fuel Type CNG
                         -0.0939 0.129 -0.730 0.466 -0.348 0.160
       Fuel Type Diesel 0.1421 0.024 5.859 0.000 0.094 0.190
        Omnibus: 9.141 Durbin-Watson: 2.061
     Prob(Omnibus): 0.010 Jarque-Bera (JB): 9.875
                  -0.373
                            Prob(JB): 0.00717
        Kurtosis: 3.660
                             Cond. No.
                                         17.6
```

Inference:

- 1. Prob(F-stat) < 0.05 indicates the model is significant.
- 2. R-squared is 0.963 is close to 1. The model can predict more accurate.
- 3. R-squared-adj is 0.962 is close to 1. The model can predict more accurate.
- 4. Degree of Freedom of the model is 8.
- 5. No of Residuals is 239.
- 6. Durbin-Watson is near to 2 indicates no auto-correlation
- 7. Condition No <100 indicates no multi-collinearity between the dependent variables.
- 8. Skew is -0.3 indicates not much skewness in the dataset.
- 9. Kurt is 3.6 indicate lyptokurtic. It is preferred to be <3.
- 10. P(JB)<0.05 indicates the data is not normally distributed.
- 11. Parameter Fuel_Type_CNG, Transmission_Manual are not significant which has p-value> 0.05.

7.3 Linear Equation

The equation of the model is given by

```
Selling\ Price= (0.04959) * const + (0.8696) * Present\_Price + (-0.043) * Kms\_Driven + (-0.23655) * \\ Age + (-0.09915) * Owner + (-0.00353) * Transmission\_Manual + (-0.16664) * Seller\_Type\_Individual + (-0.09393) * Fuel\_Type\_CNG + (0.14212) * Fuel\_Type\_Diesel
```

Note: the parameter needs to be transformed and scaled before applying to the model.

Beta coefficient of the model is as below

```
[59] model.params
    const
                            0.04959
    Present_Price
                           0.86960
    Kms_Driven
                           -0.04300
    Age
                           -0.23655
    Owner
                           -0.09915
    Transmission_Manual -0.00353
    Seller_Type_Individual -0.16664
    Fuel_Type_CNG
                           -0.09393
    Fuel_Type_Diesel
                           0.14212
    dtype: float64
```

7.4 Model Prediction

```
[58] Y_predict=model.predict(X_test)
```

Model is predicted with Test data with the predict method on the model.

7.5 Impact of Fuel Type with selling price.

There are three fuel Type in the given data. They are

- 1. Petrol
- 2. Diesel
- 3. CNG

We have 2 records of CNG fuel Type and 58 records of Diesel fuel Type out of 299 observations.

The model is build considering the Petrol as base for the used vehicle and the selling price is impacted based on the Diesel or Gas fuel type.

As per the model, the impact of the Fuel Type is as below

```
(-0.09393) * Fuel Type CNG + (0.14212) * Fuel Type Diesel
```

MiniProject-2

BHARATH K M (PA2212049010019) DIWAHAR A K (PA2212049010012) RAGHUNATH M (PA2212049010050)

Machine Learning-Supervised Regression

[58]	model.pvalues	
₽	const Present_Price Kms_Driven Age Owner Transmission_Manual Seller_Type_Individual Fuel_Type_CNG Fuel_Type_Diesel dtype: float64	0.00021 0.00000 0.00381 0.00000 0.02572 0.88891 0.00000 0.46619 0.00000

[59]	model.params	
D	const Present_Price Kms_Driven Age Owner Transmission_Manual Seller_Type_Individual Fuel_Type_CNG Fuel_Type_Diesel dtype: float64	0.04959 0.86960 -0.04300 -0.23655 -0.09915 -0.00353 -0.16664 -0.09393 0.14212

When the vehicle is identified as CNG, then the selling price is reduced by 0.09393 per unit change in Fuel_Type_CNG. Since Fuel_Type_CNG is categorical, we always get either 0 or 1. On the other hand, the p-value of Fuel_Type_CNG> 0.05, indicated the parameter/feature(CNG) is not significant.

When the vehicle is identified as Diesel, then the selling price is increased by 0.14212 per unit change in Fuel_Type_Diesel. Since Fuel_Type_ Diesel is categorical, we always get either 0 or 1. On the other hand, the p-value of Fuel_Type_ Diesel < 0.05, indicated the parameter is significant.

As per the coefficient received from the OLS model,

- 1. when the fuel type is Diesel, selling price is increased by 0.14212 for each change in Fuel_Type_Diesel .
- 2. When the fuel type is CNG, the selling price is decreased by 0.09393 for each change in Fuel_Type_CNG
- 3. When the fuel type is Petrol, there is no impact on selling price as the model assumption is that Fuel Type Petrol is considered by default and selling prices varies based on other fuel Type.

BHARATH K M (PA2212049010019) DIWAHAR A K (PA2212049010012) RAGHUNATH M (PA2212049010050)

7.6 Model Evaluation

Impression: When we see the scatter plot which is plotted between the actual selling price and predicted selling price, we see the plot around 45 degree line(Green) indicates the predications are more accurate.

Impression: We could see the residuals are fit almost normally distributed. This indicates we extracted the most of the patterns from the dependent variable.

7.7 Regress with each Feature with Selling Price – Impact of each feature and its combination with Selling Price in the model.

RAGHUNATH M (PA2212049010050)

MiniProject-2

Machine Learning-Supervised Regression

As per the model, based on the pvalues, we could observe that

- 1. Transmission_Manual and Fuel_Type_CNG > 0.05 indicates the feature is not significant.
- 2. Present_Price, Age, Fuel_Type_Diesel, Seller_Type_Individual, Kms_Driven and owner are significant features.

As per the model, based of the coefficient we could observe that

- 1. The present price and Fuel_Type_Diesel increases the selling price.
 - a. For each unit change in Present_Price the selling price is increased by the factor of 0.8696042811265295
 - b. For each unit change in Fuel_Type_Diesel the selling price is increased by the factor of 0.142123190517839
- 2. The other Feature reduces the selling prices when it varies.
 - a. For each unit change in Transmission_Manual the selling price is decreased by factor of 0.00352844765943396
 - b. For each unit change in Kms_Driven the selling price is decreased by factor of 0.04300254119495564
 - For each unit change in Fuel_Type_CNG the selling price is decreased by factor of 0.09393401257871288

- d. For each unit change in Owner the selling price is decreased by factor of 0.09914884369041846
- e. For each unit change in Seller_Type_Individual the selling price is decreased by factor of 0.16663861101564342
- f. For each unit change in Age the selling price is decreased by -0.23655334537187575

To confirm the impact, Let us regress the each features or combination against selling price. In order to build the regression of dependent and independent feature, we use the below code and we executed them with iteration.

```
#Iteration 1
feature_regress=list(X.columns)
regress=pd.DataFrame()
selected_Feature=[]
for eachFeature in feature_regress:
    final_selected_feature-selected_Feature.copy()
    final_selected_feature.append(eachFeature)
    lin_reg_model=sm.OLS(Y_train,X_train[final_selected_feature])
    model2 = lin_reg_model.fit()
    y_predict=model2.predict(X_test[final_selected_feature])
    rmseval=rmse(Y_test,y_predict)
    regress["selling price ~ "+str(final_selected_feature)]=pd.DataFrame([model2.rsquared_adj,model2.f_pvalue,rmseval])

regress=regress.I
regress.columns=["rsquared","rsquared_adj","model p","rmse"]
regress.sort_values(by=["rmse","rsquared_adj")]
```

The above code snippet regress each feature with the selling price. i.e (Selling Price $^{\sim}$ each feature). In case we need to regress selling price with more than 1 feature, the same code is used with feature added in the selected_Features.

Iteration	Outcome/Result							Inference
1	D·	rsquared r	squared_adj	model p	rmse			Present_Price gives the
	selling price ~ ['Present_Price']	0.87006	0.86952	0.00000	0.21964			higher R ² adj values
	selling price ~ ['Seller_Type_Individual']	0.46395	0.46170	0.00000	0.42423			compared with the other
	selling price ~ ['Fuel_Type_Diesel']	0.19194	0.18854	0.00000	0.58680			feature. Also the RMSE is
	selling price ~ ['Transmission_Manual']	0.01923	0.01511	0.03176	0.60705			around 0.2.
	selling price ~ ['Age']	0.07148	0.06758	0.00003				around 0.2.
	selling price ~ ['Owner']	0.01506	0.01093	0.05761				
	selling price ~ ['Kms_Driven']	0.01677	0.01264	0.04506				Present_Price shows the
	selling price ~ ['Fuel_Type_CNG']	0.00009	-0.00411	0.88062	0.63494			higher impact on the
								selling price.
								We select the
								Present_Price
2			rsquared	rsquared	l_adj mo	del p(f-stat)	rmse	Age along with
	selling price ~ ['Present_Price', 'A	ge']	0.94923	0.9	4880	0.00000	0.12633	Present_Price improves
	selling price ~ ['Present_Price', 'Kms_	Driven']	0.90950	0.9	0873	0.00000	0.17404	the R ² _{adj} values compared
	selling price ~ ['Present_Price', 'Fuel_Ty	pe_Diesel']	0.87837	0.8	37734	0.00000	0.21482	with the other feature in
	selling price ~ ['Present_Price', 'Seller_Typ	e_Individual']	0.87107	8.0	6999	0.00000	0.21806	
	selling price ~ ['Present_Price', 'Transmiss	ion_Manual']	0.87017	0.8	86907	0.00000	0.22134	combination with
	selling price ~ ['Present_Price', 'Ov	vner']	0.87565	0.8	37460	0.00000	0.22217	Present_Price.
	selling price ~ ['Present_Price', 'Fuel_Ty	/pe_CNG']	0.87061	0.8	86952	0.00000	0.22271	Improvement in R ² _{adj} from

MiniProject-2 GROUP-5 BHARATH K M (PA2212049010019)

DIWAHAR A K (PA2212049010012) RAGHUNATH M (PA2212049010050)

Machine Learning-Supervised Regression

		0.86852 to 0.94880 when
		Age is included.
		We select the
		Present_Price, Age
3	rsquared rsquared_adj f_pvalue rmse	Fuel_Type_Diesel along
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel'] 0.95546 0.95489 0.00000 0.11615	with Present_Price,Age
	selling price ~ ['Present_Price', 'Age', 'Kms_Driven'] 0.94981 0.94917 0.00000 0.12554	improves the R ² _{adj} values
	selling price ~ ['Present_Price', 'Age', 'Seller_Type_Individual'] 0.94940 0.94876 0.0000 0.12610	compared with the other
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_CNG'] 0.94926 0.94861 0.00000 0.12637 selling price ~ ['Present_Price', 'Age', 'Transmission_Manual'] 0.94923 0.94859 0.00000 0.12643	feature in combination
	selling price ~ ["Present_Price", 'Age", 'Transmission_Manual"] 0.94923 0.94859 0.00000 0.12643 selling price ~ ["Present_Price", 'Age", 'Owner"] 0.95013 0.94950 0.00000 0.13061	with Present_Price, Age.
		Improvement in R ² _{adj} from
		0.94880 to 0.95489 when
		Fuel_Type_Diesel is
		included.
		We select the
		Present_Price, Age,
		Fuel_Type_Diesel
4	rsquared rsquared_adj f_pvalue rmse	Improvement in R ² _{adj} from
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual'] 0.95825 0.95754 0.00000 0.11172	0.95489 to 0.95754 when
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Kms_Driven'] 0.95642 0.95568 0.00000 0.11385	Seller_Type_Individual is
	selling price ~ [Present_Price', 'Age', 'Fuel_Type_Diesel', 'Fuel_Type_CNG'] 0.95548 0.95472 0.00000 0.11617	included.
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Transmission_Manual'] 0.95569 0.95493 0.00000 0.11820	
	selling price ~ ['Present Price', 'Age', 'Fuel Type Diesel', 'Owner'] 0.95680 0.95606 0.00000 0.12136	We select the
		Present_Price, Age,
		Fuel_Type_Diesel,
		Seller_Type_Individual
5	rsquared rsquared adj f pva	Improvement in R ² from
		0.95754 to 0.95913 when
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven'] 0.95998 0.95913 0.000	Kms_Driven is included.
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Transmission_Manual'] 0.95832 0.95743 0.000	000 0.11014
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Fuel_Type_CNG'] 0.95827 0.95737 0.000	000 0.11169 We select the
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Owner'] 0.95893 0.95806 0.000	Present_Price, Age,
		Fuel_Type_Diesel,
		Seller_Type_Individual,
		Kms_Driven
6	rsquared_adj_f_pn	1
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven', 'Transmission_Manual'] 0.96006 0.95904 0.0	0.95913 to 0.95970 when
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven', 'Fuel_Type_CNG'] 0.96000 0.95897 0.0	Owner is included and
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven', 'Owner'] 0.96072 0.95970 0.0	adding value to the
		model
		The other feature
		(Transmission and
		Fuel_Type_CNG) reduces
		the R ² _{adj} which affects the
		model.

GROUP-5 BHARATH K M (PA2212049010019) DIWAHAR A K (PA2212049010012)

RAGHUNATH M (PA2212049010050)

MiniProject-2

Machine Learning-Supervised Regression

		We select the Present_Price, Age, Fuel_Type_Diesel, Seller_Type_Individual, Kms_Driven,Owner
7	rsquared_adj f_pvalue	Decline in R ² _{adj} when
	selling price ~ [Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven', 'Owner', 'Transmission_Manual'] 0.96079 0.95961 0.00000 0	Tartifer reatares is added
	selling price ~ ['Present_Price', 'Age', 'Fuel_Type_Diesel', 'Seller_Type_Individual', 'Kms_Driven', 'Owner', 'Fuel_Type_CNG'] 0.96074 0.95955 0.00000 (to model, though R ² is improved.
		This implies,
		Transmission_Manual
		and Fuel_Type_CNG is
		not significant to the
		model.

Impression:

- 1. Features Present_Price(Most Significant), Age, Fuel_Type_Diesel, Seller_Type_Individual, Kms_Driven,Owner(Least Significant) are significant in predicting the selling price.
- 2. Transmission_Manual and Fuel_Type_CNG is not significant to the model.
- 3. Impact(as stated in this section earlier):
 - For each unit change in Present_Price the selling price is increased by factor of 0.8696042811265295
 - b. For each unit change in Fuel_Type_Diesel the selling price is increased by factor of 0.142123190517839
 - c. For each unit change in Transmission_Manual the selling price is decreased by factor of 0.00352844765943396
 - d. For each unit change in Kms_Driven the selling price is decreased by factor of 0.04300254119495564
 - e. For each unit change in Fuel_Type_CNG the selling price is decreased by factor of 0.09393401257871288
 - f. For each unit change in Owner the selling price is decreased by factor of 0.09914884369041846
 - g. For each unit change in Seller_Type_Individual the selling price is decreased by factor of 0.16663861101564342
 - h. For each unit change in Age the selling price is decreased by factor of 0.23655334537187575