. 西南交通大学 2006-2007 学年第(一)学期考试试卷

课程代码 3046104 课程名称 电工技术 A 考试时间 **120 分钟**

题号		 	四	五	六	七	八	总成绩
得分								

阅卷教师答字:

选择填空题(本大题共10个小题,每小题2分,共20分)

- 1、已知下图电路中的 $U_S=2V$, $I_S=2A$ 。电阻 R_1 和 R_2 消耗的功率由)供给。
 - A, 电压源
- B、电流源
- C、电压源和电流源

2、图示电路中,用一个等效电源代替,应该是一个()。 2A的理想电流源 B、 2 V 的 理 想 电 压 源 不能代替,仍为原电路

3、图 示 直 流 电 路 中,由 叠 加 定 理 可 得 电 压 U为 ()。

$$U = \frac{U_{\rm S} - I_{\rm S} R_1}{R_1 + R_2} \cdot R_1$$

$$U = \frac{U_{\rm S}}{R_1 + R_2} \cdot R_1$$

- 4、已知某正弦交流电压的周期为10 ms,有效值为220 V,在t=0时正 处于由正值过渡为负值的零值,则其表达式可写作(
 - A, $u = 380\sin(100 \text{ t} + 180^\circ) \text{ V}$ B, $u = -311\sin 200\pi t \text{ V}$ C, $u = 220\sin(628 \text{ t} + 180^\circ) \text{ V}$
- 5、下图所示正弦交流电路中, $U = 100V, X_{C1} = 10\Omega, X_{L1} = 10\Omega, X_{C2} = 20\Omega, X_{L2} = 5\Omega$ 则总电流 I 应等于()。

紪

 $A \cdot 0A$ B、15A

6、某三相对称电路的线电压 $u_{AB} = U_I \sqrt{2} \sin(\omega t + 30^\circ)$ V,线电流

 $i_A = I_1 \sqrt{2} \sin(\omega t + \phi)$ A, 正相序。负载连接成星形,每相复阻抗 $Z=|Z|\angle\varphi$ 。 该 三 相 电 路 的 有 功 功 率 表 达 式 为 (

A, $\sqrt{3}U_{1}I_{1}\cos\varphi$

By $\sqrt{3}U_1I_1\cos(30^\circ + \varphi)$ Cy $\sqrt{3}U_1I_1\cos 30^\circ$

7、有一台星形连接的三相交流发电机,额定相电压为660V,若测得 其 线 电 压 $U_{AB} = 660 \text{ V}$, $U_{BC} = 660 \text{ V}$, $U_{CA} = 1143 \text{ V}$,则 说 明 (

A、A相绕组接反

B、B 相 绕 组 接 反 C、C 相 绕 组 接 反

8、两个完全相同的交流铁心线圈,分别工作在电压相同而频率不 同 $(f_1 > f_2)$ 的 两 电 源 下,此 时 线 圈 的 磁 通 Φ_1 和 Φ_2 关 系 是()。

A, $\Phi_1 > \Phi_2$

B, $\Phi_1 < \Phi_2$ C, $\Phi_1 = \Phi_2$

9、某单相变压器如图所示,两个原绕组的额定电压均为110V,副绕 组额定电压为6.3 V, 若电源电压为220 V,则应将原绕组的(端相连接,其余两端接电源。

A、2和3

B、1和3

C、2 和 4

- 10、变压器的铁损耗包含(),它们与电源的电压和频率有关。 A、磁滞损耗和磁阻损耗 B、磁滞损耗和涡流损耗
- C、涡流损耗和磁化饱和损耗

二、在下图所示的电路中,已知E=16V, $I_S=1A$, $R_1=8\Omega$, $R_2=3\Omega$, $R_3=4\Omega$, $R_4=20\Omega$, $R_L=3\Omega$,试用戴维南定理计算电阻 R_L 上的电流 I_L 。(12分)

三、电路如下图所示,试用节点电位法求电流 I。(10分)

四、电路如下图,已知电感性负载的功率因数为 $\cos \varphi_1 = 0.5$,功率为5kW,电源电压为380V,频率50Hz。若将功率因数提高到 $\cos \varphi = 0.95$,计算所需并联的电容值,并计算并联电容器前后的电源电流。(12分)

五、图 中,已 知 电 源 电 压 \dot{U} = $100 \angle 0^{\circ}$, $R_1 = R_2 = X_L = X_C = 50\Omega$, 试 求 \dot{U}_{ab} 。(10分)

六、图 示 电 路 原 已 稳 定, t=0 时 将 开 关 S 闭合。已 知: R=1 Ω, $R_1=2$ Ω, $R_2=3$ Ω, C=5 μ F, $U_S=6$ V。 求 S 闭 合 后 的 $u_C(t)$ 和 $i_C(t)$ 。(12 分)

- 七、一台异步电动机的额定电压为380V,三角形接法,额定功率为40KW 额定转速为1470 r/min,起动转矩与额定转矩之比为1.2。求:(1)起动转矩;(2)如果负载转矩为额定转矩的20%或70%,能否可采取Y—△起动,为什么?(12分)
- 八、电路如下图,(1)说明各文字符号所表示的元器件名称,描述其功能;(2)请分析图示电路的控制功能,并详细说明电路的工作过程。(12分)

