1 Group

1.1 Law of Composition

Definition 1.1 (Composition). Composition (or Law of composition) on a set S is to combine two element $a, b \in S$, to get another element p in S:

$$S \times S \to S$$
.

Here, \times means Cartesian product of two sets. We can denote the composition in several ways:

$$p = ab$$
 $p = a \cdot b$ $p = a \circ b$ $p = a + b$.

We will often use ab (or $a \cdot b$ when neccessary) to denote the composition of a and b in this document.

Example

- In the set \mathbb{N} , operation "add" + is a law of composition. It takes two elements of $a, b \in \mathbb{N}$ and gives an element $a + b \in \mathbb{N}$. e.g. $(2,3) \mapsto 5$, $(5,1) \mapsto 6$
- In the set \mathbb{R} , operation "multiply" \cdot is a law of composition. It takes two elements of $a, b \in \mathbb{R}$ and gives an element $a \cdot b \in \mathbb{R}$. e.g. $(-1, 4) \mapsto -4$, $(2, 3.5) \mapsto 7$

Note that the definition of composition naturally brings out the property of closure — the composition of two element of S is still in the same set.

A way of defining composition is using functions. $f: S \times S \to S$, so for $a, b \in S$, f(a, b) is the composition of a and b.

Definition 1.2 (Associativity). For element a, b and c, if the composition satisfies (ab)c = a(bc), then the composition is **associative**.

For multiple element a_1, a_2, \ldots, a_n , there's only one distinct way to define the composition of them:

$$a_1a_2\cdots a_n=(a_1\cdots a_i)(a_i\cdots a_n),$$

where $1 \leq i < n$. For instance,

$$a_1a_2a_3a_4 = a_1(a_2a_3a_4) = (a_1a_2)(a_3a_4) = (a_1a_2a_3)a_4 = a_1(a_2a_3)a_4$$
.

Definition 1.3 (Commutativity). The composition of two element a and b is called commutative if ab = ba.

1.2 Special elements

Definition 1.4 (Identity element). If $\forall s \in S$, $\exists e \in S$ such that es = s, then e is the **left identity** of S. Likewise, e is the **right identity** if se = s. If e is both left identity and right identity, then it's called a **two-sided identity** or simply **identity**.

If we use multiplication to represent composition, then 1 is commonly used as the symbol of identity. And 0 is often identity for addition representation.

Example

- Concider zero in \mathbb{Z} . For all $a \in \mathbb{Z}$, 0 + a = a, so 0 is the left identity. And by commutativity we also have a + 0 = a, so 0 is also the right identity. Therefore, 0 is the identity of addition on \mathbb{Z}
- 1 is the identity of multiplication on \mathbb{R} , because $\forall a \in \mathbb{Z}, 1 \cdot a = a \cdot 1 = a$

Definition 1.5 (Inverse). Let 1 be the identity. If $\forall a \in S$, $\exists l \in S$ such that la = 1, then l is called the **left inverse** of a. Likewise, ar = 1 then r is called the **right inverse** of a. If b is both left and right inverse of a, then it's called the **two-sided inverse** or simply **inverse** of a, denoted by a^{-1} .

Example

- -3 is the additive inverse of 3 in \mathbb{R} , because (-3) + 3 = 3 + (-3) = 0 and 0 is the identity of addition.
- 1/2 is the multiplicative inverse of 2 in \mathbb{R} , because $(1/2) \times 2 = 2 \times (1/2) = 1$ and 1 is the identity of multiplication.

A fraction $\frac{a}{b}$ is exactly the composition of a and b^{-1} . And the notation $\frac{a}{b}$ is not recommended, because sometimes the composition is not commutative, therefore ab^{-1} and $b^{-1}a$ are different.

The notations like a^n or a^{-n} , $n \in \mathbb{N}$ can be recursively defined as below:

$$a^{n+1} := a^n a$$
,
 $a^{-n-1} = a^{-n} a^{-1}$,
 $a^0 = 1$.

Proposition 1.1. If inverse of a exists, which means a has left inverse and right inverse, then the left and right inverse are equal, therefore the inverse is unique.

proof. If $a \in G$ has left inverse b and right inverse c. Concider element $bac \in G$, (ba)c = 1c = c, and b(ac) = b1 = b. By associativity, (ba)c = b(ac), so c = b. The inverse is unique.

Proposition 1.2. $(ab)^{-1} = b^{-1}a^{-1}$.

proof. $(ab)^{-1}(ab) = 1$ is true, multiply b^{-1} on the right for both sides. $(ab)^{-1}(ab)b^{-1} = 1 \cdot b^{-1}$, which is $(ab)^{-1}a(bb^{-1}) = (ab)^{-1}a \cdot 1 = b^{-1}$. This time multiply a^{-1} on the right for both sides: $(ab)^{-1}aa^{-1} = b^{-1}a^{-1}$, the left-hand side is exactly $(ab)^{-1}$.

And this can be easily generalized to n elements (using associativity and induction):

$$(a_1a_2...a_n)^{-1} = a_n^{-1}...a_2^{-1}a_1^{-1}.$$

1.3 Group

Definition 1.6. A group (G, \cdot) is a set G equipped with a binary operation \cdot which follows four axioms, namely closure, associativity, identity and invertibility.

Remark. If a group is commutative, then it's called **abelian group**.

The four axioms are explained below:

closure For all a, b in G, the result of operation \cdot is still in G. This can be written in the form: $\forall a, b \in G, a \cdot b \in G$.

associativity $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c).$

identity $\exists e \in G$ such that, $\forall a \in G$, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique and is called the **identity element**.

invertibility For each $a \in G$, $\exists b$ in G, commonly denoted a^{-1} , such that $a \cdot b = b \cdot a = e$, where e is the identity element.

We use ordered pair to denote (G,\cdot) a set G equipped with operation \cdot . So the two parts — set and its operation — together forms the algebraic structure. This is critical, because strictly speaking, a set on its own can not be a group. But informally, it's common to say that a set G is a group, if no ambiguity is caused.

Example These are some familiar abelian groups: $(\mathbb{Z}, +)$, $(\mathbb{R}, +)$, (\mathbb{R}^+, \times) , $(\mathbb{C}, +)$, (\mathbb{C}, \times) . Take $(\mathbb{R}^+, +)$ for example.

- 1. Two the addition of positive real numbers a, b is still a real number (closure)
- 2. (a+b)+c=a+(b+c), which is associativity
- 3. For any given $a \in \mathbb{R}^+$, $1 \times a = a \times 1 = a$ holds, which indicates that 1 is the multiplicative identity of \mathbb{R}^+
- 4. For any given $a \in \mathbb{R}^+$, $\exists a^{-1}$ such that $a^{-1} \times a = a \times a^{-1} = 1$ holds, which indicates all $a \in \mathbb{R}^+$ is invertable

Therefore, (\mathbb{R}^+, \times) is a group. Also, for any positive real number a and b, $a \times b = b \times a$. So (\mathbb{R}^+, \times) is also an abelian group.

Remark. Note that (\mathbb{R}, \times) is not a group, because 0 is not invertable: $\not\exists r \in \mathbb{R}$ such that $r \times 0 = 0 \times r = 1$.

Proposition 1.3. Left identity e_L and right identity e_R of a group are the same.

proof.
$$e_L = e_L e_R = e_R$$
.

Proposition 1.4. The (two-sided) identity of G, if exists, must be unique.

proof. Let
$$e, e' \in G$$
 identities and $e \neq e'$, i.e. $\forall a \in G, e = ei$ as well as $e'a = a$.
Hence $e' = e'e = e$.

The two propositions above can be concluded with quote below (from Wikipedia):

... it is possible for (S,*) to have several left identities. In fact, every element can be a left identity. In a similar manner, there can be several right identities. But if there is both a right identity and a left identity, then they must be equal, resulting in a single two-sided identity.

Since groups are sets equipped with operations, and we have cardinality to describe how many elements we have in a set, it's natural to have a similar concept to describe the number of elements contained in a group.

Definition 1.7 (Order of a group). The order of a group describe the number of elements contained in this group. Suppose we have group (G, \cdot) , the order of this group equals the cardinality of G, denoted by |G|.

Example The previous example, abelian group $(\mathbb{Z}, +)$ is an infinite group, because \mathbb{Z} is an infinite set.

Because of invertibility property, a group follows cancellation law.

Proposition 1.5. Cancellation law Let a, b, c be elements of a group G:

- if ac = bc or ca = cb then a = b
- if ac = c or ca = c then a = 1

proof. Proofs of all cases are analogous — by multiplying c^{-1} to both sides.

Following corollary is the contrapositive of last proposition which is supported by invertability.

Corollary 1.1. Let a, b, c be elements of a group G:

- if $a \neq b$, then $ca \neq cb$ and $ac \neq bc$
- if $a \neq 1$, then $ca \neq c$ and $ac \neq c$

Concider matrices. Not all matrices are invertable, so we can't just say matrix with multiplication operation is or is not a group.

Definition 1.8 (General linear group). The general linear group of degree n is the set of $n \times n$ invertable matrices:

$$GL_n := \{n \times n \text{ invertable matrices}\}.$$

And enable to distinguish what kind of elements we are having in the matrices, notations like $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ are used.

1.4 半群

半群是弱于群的概念.

Definition 1.9 (半群). (G,\cdot) 被称为半群, 当且仅当 G 对·封闭且·满足结合律.

如果 (G, \cdot) 中存在 a, 满足 aa = a. 则称 a 为 · 运算的幂等元. 借助下面的引理可以证明, 有限的半群中必然存在幂等元.

Lemma 1.1. 如果对于有限半群 G 的元素 a, 存在正整数 $k \ge 2$, 满足 $a^k = a$, 则 G 中存在幂等元.

proof. 对于 $a^k = a$,若 k = 2,a 为幂等元,引理得证. 若 k > 2,则将等式两边同时乘以 a^{k-2} . 得到 $a^{2(k-1)} = a^{k-1}$. 即 $\left(a^{k-1}\right)^2 = a^{k-1}$,而 $a^{k-1} \in G$,所以 G 中存在幂等元 a^{k-1} .

Proposition 1.6. 有限的半群必然包含幂等元, 即若 G 为有限的半群, 则存在 $a \in G$, 使得 aa = a.

proof. 对于任意 $a \in G$, 考虑无限序列

$$(a^{2^p})_{p=0}^{\infty}: \quad a, a^2, a^4, a^8, a^{16}, \dots$$

由于封闭性,序列中每一项都在 G 中,于是必然存在不同的 s, t 满足 $a^{2^s}=a^{2^t}$. 因为如果不然,序列中的每一项互不相同,则 G 不可能有限. 不失一般性地假设 s>t,于是有:

$$a^{2^s} = a^{2^{t+(s-t)}} = a^{2^t 2^{s-t}} = a^{2^t},$$

于是得到 $\left(a^{2^t}\right)^{2^{s-t}}=a^{2^t}$. 于是我们找到了 $b=a^{2^t}\in G$, 使得存在 $k=2^{s-t}$, 满足 $b^k=b$, 根据上一个引理, G 中存在幂等元.

1.5 子群

Definition 1.10 (子群). (G,\cdot) 为一个群, $H\subseteq G$, 若 H:

- 满足封闭性
- 存在单位元
- 每个元素都可逆

则称 H 为 G 的子群, 记作 H < G.

每个群 G 都有两个明显的子群, 称为平凡子群, 即单位元构成的集合 $\{1\}$ 以及 G 本身. 若 $H \leq G$, 且 H 不是平凡子群, 则称 H 为 G 的真子群, 记作 H < G.

子群只需满足三个条件, 因为结合律自动转移到子集上: $\forall a,b,c \in H, a,b,c \in G, G$ 具有结合律, 所以 H 也满足结合律. 换句话说, 群 G 的子集 H 也是一个群, 则 H 为 G 的子群.

定义 $\mathbb{Z}a$ 为 a 的整倍数构成的集合:

$$\mathbb{Z}a := \{ka \mid k \in \mathbb{Z}\}.$$

等价的定义为:

$$\mathbb{Z}a := \{n \mid \exists k \in \mathbb{Z}, n = ka\}.$$

例

$$\mathbb{Z}0 = \{0\},$$

$$\mathbb{Z}1 = \{0, 1, -1, 2, -2, \ldots\} = \mathbb{Z},$$

$$\mathbb{Z}2 = \{0, 2, -2, 4, -4, \ldots\},$$

$$\mathbb{Z}5 = \{0, 5, -5, 10, -10, \ldots\}.$$

可以证明, $\mathbb{Z}a$ 为 (\mathbb{Z} , +) 的子群. $\mathbb{Z}a$ 满足封闭性: $\forall n_1, n_2 \in \mathbb{Z}a$, $\exists k_1, k_2 \in \mathbb{Z}$ 满足 $n_1 = k_1 a$, $n_2 = k_2 a$. 故 $n_1 + n_2 = (k_1 + k_2)a$, 而 $k_1 + k_2 \in \mathbb{Z}$, 所以 $n_1 + n_2 \in \mathbb{Z}a$.

此外, 0 为 $\mathbb{Z}a$ 的单位元; 对于任意 $a \in \mathbb{Z}a$, 都能找到 $-a \in \mathbb{Z}a$, 使得 a + (-a) = 0, 即 $\mathbb{Z}a$ 中每个元素可逆.

由于 G 和其子群 H 共享唯一的单位元, 如果 G 的单位元 1 也在 H 中, 那么 1 也一定是 H 的单位元.

 $\mathbb{Z}a$ 的重要之处在于下面的命题:

Proposition 1.7. (\mathbb{Z} , +) 的子群一定有 $\mathbb{Z}a$ 的形式.

下一个重要的抽象子群例子为:

Definition 1.11 (循环群). 群 G 中的元素 x 生成的子群:

$$\langle x \rangle := \{1, x, x^{-1}, x^2, x^{-2}, \ldots \}$$

称为 G 循环子群. 如果一个群 H 中任意元素都能写成某一元素 x 的幂次 x^n , 即能由单个元素 x 生成, 则该群被称为循环群.

例 考虑 (\mathbb{R}, \times) 的元素 -1. -1 的不同幂次得到的元素可能是相同的:

$$(-1)^2 = 1$$

$$(-1)^3 = -1$$

$$(-1)^4 = 1$$

$$\vdots$$

所以实数乘群中, -1 的生成的循环子群为 $\langle -1 \rangle = \{1, -1\}$.

Proposition 1.8. $S = \{n \in \mathbb{Z} \mid x^n = 1\}$ 为 $(\mathbb{Z}, +)$ 的子群.

proof. 封闭性: $\forall n_1, n_2 \in S, x^{n_1} = 1, x^{n_2} = 1, x^{n_1}x^{n_2} = x^{n_1+n_2} = 1$, 所以 $n_1 + n_2 \in S$.

单位元: 只需考虑 $(\mathbb{Z},+)$ 的单位元 0 是否在 S 中即可. 显然, $x^0=1,\,0\in S$, 所以 S 存在单位元 0.

逆元: $\forall n \in S, x^n = 1$, 所以 $x^{-n} = x^{-n}x^n = x^0 = 1$. 所以 $-n \in S$.

1.6 同态

Definition 1.12 (同态 (Homomophism)). 同态 φ : $G \to G'$ 是群 G 到 G' 的映射, 该映射满足:

$$\forall a, b \in G, \qquad \varphi(ab) = \varphi(a)\varphi(b).$$

和映射一样, 同态也有像的概念:

$$\varphi(G) := \operatorname{im} \varphi := \{ \varphi(x) \mid x \in G \}.$$

Remark. 注意此处 G 和 G' 中的运算都是用乘法表示的, 不代表它们必须是同一种运算. 严格地定义同态应该是下面这样的, $\varphi: (G, \circ) \to (G', *)$, 其中:

$$\forall a, b \in G, \qquad \varphi(a \circ b) = \varphi(a) * \varphi(b).$$

换句话说, 先在 G 中对 a,b 做运算, 然后在映射到 G' 中; 和先映射 a,b 到 G' 中, 然后做 G' 中的运算; 两种路径得到的结果是一样的. 即: G 和 G' 中对应的两组元素, 分别在各自的群内合成, 得到的结果也是满足相同的对应关系. 如: $a' = \varphi(a), b' = \varphi(b)$. 则 $a \circ b = a' * b'$.

例 exp: $(\mathbb{R}, +) \to (\mathbb{R}, \times)$, $\exp(x) = e^x$, 为一个同态, 因为 $\exp(x+y) = \exp(x) \exp(y)$. 反过来, 指数函数不是 (\mathbb{R}, \times) 到 $(\mathbb{R}, +)$ 的同态. 对于 $x, y \in \mathbb{R}$, 先合成 xy, 再映射 $\exp(xy)$; 和先映射 $\exp(x)$, $\exp(y)$, 再合成 $\exp(x) + \exp(y)$ 是不同的.

绝对值 $|\cdot|: (\mathbb{R}, \times) \to (\mathbb{R}, \times)$ 也是一个同态, |xy| = |x||y|.

几个明显的同态 平凡同态: $\varphi: G \to G'$, 将 G 中的每个元素映射到 G' 中的单位元. 于是 $\forall a, b \in G$, $\varphi(a) = \varphi(b) = \varphi(ab) = e$. $\varphi(ab) = e = ee = \varphi(a)\varphi(b)$.

对于 $H \le G$, 存在包含同态: $i: H \to G$, i(x) = x. H 和 G 的合成法则一致, $\forall x \in H$, $x \in G$, i(x) = x. 所以 i(xy) = xy = i(x)i(y).

Proposition 1.9. $\diamond \varphi : G \to G'$ 为同态.

- 1. $a_1, a_2, \ldots, a_k \in G$, $\varphi(a_1 a_2 \cdots a_k) = \varphi(a_1) \varphi(a_2) \cdots \varphi(a_k)$
- 2. 恒等元映射到恒等元: $\varphi(1_G) = 1_{G'}$
- 3. 逆元映射为逆元: $\varphi(a^{-1}) = \varphi^{-1}(a)$

proof. (1) 通过归纳法.

(2) $\varphi(a) = \varphi(1_G a) = \varphi(1_G)\varphi(a)$. 两边同时右乘 $\varphi(a)$ 在 G' 中的逆元: $\varphi(a)\varphi^{-1}(a) = \varphi(1_G)\varphi(a)\varphi^{-1}(a)$. 而 $\varphi(a)\varphi^{-1}(a)$ 为 G' 的单位元 $1_{G'}$. 所以 $1_{G'} = \varphi(1_G)1_{G'} = \varphi(1_G)$.

(3)
$$aa^{-1} = 1_G$$
, 同时应用 φ , $\varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) = \varphi(1_G) = 1_{G'}$. 两边同时乘以 $\varphi^{-1}(a)$, $\varphi^{-1}(a)\varphi(a)\varphi(a^{-1}) = \varphi(a^{-1}) = \varphi^{-1}(a)1_{G'} = \varphi^{-1}(a)$.

Proposition 1.10. 同态的像为陪域的子群. φ : $H \to G$, 则 $\varphi(H)$ 为 G 的子群.

proof. 封闭性: 对于任意 $x,y \in \varphi(H)$, $\exists a,b \in H$, $x = \varphi(a)$, $y = \varphi(b)$. $xy = \varphi(a)\varphi(b) = \varphi(ab)$, 由于 $ab \in H$, $\varphi(ab) \in \varphi(H)$. 所以 $xy \in \varphi(H)$.

单位元: $\forall x \in \varphi(H)$, $\exists a \in H$, $\varphi(a) = x$. $\varphi(a) = \varphi(ae_H) = \varphi(a)\varphi(e_H)$. 即 $x = x\varphi(e_H)$. 同样地, 从 $\varphi(a) = \varphi(e_Ha)$ 可以得到 $x = \varphi(e_H)x$. 所以 $\varphi(e_H)$ 为 $\varphi(H)$ 的单位元.

逆元:
$$\forall x \in \varphi(H), \exists a \in H, \varphi(a) = x. \varphi(aa^{-1}) = \varphi(a) = \varphi(a^{-1}) = x\varphi(a^{-1}) = \varphi(e_H) = e_G.$$
 同理可以得到, $\varphi(a^{-1})x = e_G$. 所以 $\varphi(a^{-1})$ 为 x 的逆元.

同态的核是定义域中所有映射到陪域单位元的元素集合.

Definition 1.13 (核(kernel)). 设 $\varphi: G \to G'$ 为同态. 定义同态 φ 的核为:

$$\ker \varphi := \{ x \in G \mid \varphi(x) = 1_{G'} \}.$$

容易验证下面的命题.

Proposition 1.11. 同态的核是定义域的子群. 设 $\varphi: G \to G'$, ker $\varphi \leq G$.

注意到, $\ker \varphi$ 为 G 的子集, G 的单位元 e_G 也在 $\ker \varphi$ 中, 故 e_G 是 $\ker \varphi$ 的单位元.