7. Mechanism Design III

ECON 7219 – Games With Incomplete Information Benjamin Bernard

lget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Prio

Vickrey-Clarke-Groves Mechanism

Definition 6.16

A Vickrey-Clarke-Groves mechanism (or VCG mechanism) is a direct mechanism $\Gamma = (\mathcal{T}_1, \dots, \mathcal{T}_n, (q, p))$ such that $q(\vartheta)$ is ex-post efficient and

$$p_i(\vartheta) = h_i(\vartheta_{-i}) - \sum_{j \neq i} v_j(q(\vartheta), \vartheta_j). \tag{1}$$

for every player i, where $h_i:\Theta_{-i}\to\mathbb{R}$ does not depend on i's valuation.

Remark:

- Second term in (1) aligns social preferences with individual preferences.
- First term in (1) allows us to adjust payments and, hence, the surplus, without affecting incentives for truthful reporting.
- IR-VCG mechanism maximizes $h_i(\vartheta_{-i})$ subject to individual rationality.

lget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Prio

IR-VCG Mechanism

Optimality of IR-VCG Mechanism:

- In many settings, the IR-VCG mechanism is the optimal mechanism that implements an ex-post efficient social state in the sense that:
 - It is dominant-strategy implementable.
 - It maximizes the ex-ante expected revenue among all such mechanisms.
- We have shown this for one-dimensional types.

Attaining a balance budget:

- If the IR-VCG mechanism runs a deficit, we have to allow either that:
 - Payments are burned for some ϑ .
 - Sometimes the implemented social state *q* is inefficient.
- If the IR-VCG mechanism runs an expected surplus, we can balance the budget, but we have to give up dominant-strategy implementability.

Budget Balance

Achieving a Balanced Budget

Proposition 7.1

Suppose types are independent and admit a common prior. If a direct incentive-compatible mechanism $\Gamma: (\mathcal{T}_1, \ldots, \mathcal{T}_n, h)$ with h = (q, p) runs an ex-ante expected surplus, then $\Gamma' = (\mathcal{T}_1, \dots, \mathcal{T}_n, (q, p^B))$ with

$$\begin{aligned} p_i^B(\tau) &= \mathbb{E}_{\tau_i}[p_i(T)] - \mathbb{E}_{\tau_{mod(i,n)+1}}[p_{mod(i,n)+1}(T)] \\ &+ \mathbb{E}[p_{mod(i,n)+1}(T)] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[p_i(T)]. \end{aligned}$$

is an ex-post budget balanced direct mechanism. Moreover:

- 1. Γ' is Bayesian incentive-compatible,
- 2. Γ' is weakly preferred to Γ by every individual.

Interpretation of Payments

Redistributing surplus:

• The expected surplus is distributed to the *n* individuals via the term

$$-\frac{1}{n}\sum_{j=1}^n \mathbb{E}[p_j(T)].$$

However, doing so only balances the budget ex ante.

Ex-post budget balance:

• Together with $\mathbb{E}_{\tau_i}[p_i(T)]$, the second term in

$$\mathbb{E}\big[p_{\mathsf{mod}(i,n)+1}(T)\big] - \mathbb{E}_{\tau_{\mathsf{mod}(i,n)+1}}\big[p_{\mathsf{mod}(i,n)+1}(T)\big] \tag{2}$$

guarantees that the budget is balanced for any report au.

• Because types are independent with common prior, the terms in (2) have the same expected value under player i's posterior beliefs P_{τ_i} .

Budget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pric

Ex-Ante Budget Balance vs. Ex-Post Budget Balance

Definition 7.2

Two mechanisms (q, p) and (q', p') are equivalent if if q = q' and every type τ_i 's interim expected payments are identical for every reported type r_i :

$$\mathbb{E}_{\tau_i}[p_i(r_i, T_{-i})] = \mathbb{E}_{\tau_i}[p'_i(r_i, T_{-i})].$$

Corollary 7.3

Suppose types are independent and admit a common prior. For every ex-ante budget-balanced mechanism, there exists an equivalent ex-post budget-balanced mechanism.

Proof: Apply Proposition 7.1 to an ex-ante budget-balanced mechanism.

Budget Balance

Incentive-compatibility:

- Suppose i reports type r_i and everybody else reports truthfully.
- Player i's interim expected utility is

$$\begin{split} U_{i}^{B}(r_{i},\tau_{i}) &= \mathbb{E}_{\tau_{i}}[v_{i}(q(r_{i},T_{-i}),\vartheta_{i}(\tau_{i}))] - \mathbb{E}_{\tau_{i}}\Big[p_{i}^{B}(r_{i},T_{-i})\Big] \\ &= \mathbb{E}_{\tau_{i}}[v_{i}(q(r_{i},T_{-i}),\vartheta_{i}(\tau_{i}))] - \mathbb{E}_{\tau_{i}}[p_{i}(r_{i},T_{-i})] + \sum_{j=1}^{n} \frac{\mathbb{E}[p_{j}(T)]}{n} \\ &\leq \mathbb{E}_{\tau_{i}}[u_{i}(q(\tau_{i},T_{-i}),\vartheta_{i}(\tau_{i}))] + \sum_{j=1}^{n} \frac{\mathbb{E}[p_{j}(T)]}{n} = U_{i}^{B}(\tau_{i},\tau_{i}). \end{split}$$

- Therefore, truthful reporting is a Bayesian Nash equilibrium.
- Finally, $U_i^B(\tau_i, \tau_i) \geq \mathbb{E}_{\tau_i}[u_i(g(\tau_i, T_{-i}), \tau_i)]$ shows that i prefers Γ' .

Budget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pri

Home Improvement

Home improvement:

- Alexa and Siri have enough savings to either build a (D)ance studio or a (S)wimming pool. The set of social states is $Q = \{D, S\}$.
- Suppose payoff types θ_i are independent and uniformly distributed on $\Theta_i = \{1, \dots, 9\}$ with utilities $v_i(S, \vartheta_i) = \vartheta_i + 5$ and $v_i(D, \vartheta_i) = 2\vartheta_i$.
- Let us find an IC, IR, ex-post efficient budget balanced mechanism.

Budget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pric

Home Improvement

Home improvement:

- Suppose now that only Alexa is able to build either the swimming pool or the dance studio, that is, she has property rights over *D* and *S*.
- Suppose that $IR_A(\vartheta) = 10$ if $q(\vartheta) \in \{D, S\}$.
- We need to add a third state N, in which nothing is built.
- Does an IC, IR, ex-post efficient budget balanced mechanism exist?

Shortcuts

lget Balance **Shortcuts** Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Prio

Finding Ex-Post Efficient Budget-Balanced Mechanisms

Current approach:

- 1. Find the IR-VCG mechanism.
- 2. Verify whether it runs an expected surplus.
- 3. Balance the budget via Proposition 7.1.

Expected externality mechanism:

- If nobody has property rights and no social state incurs a social cost, then the pivot payments can be redistributed in a simpler way.
- Expected externality mechanism is a shortcut to 3.

Lemma 7.5:

- Provides a shortcut to 2. if the answer is negative.
- This is particularly useful if we anticipate the answer to be negative.

get Balance **Shortcuts** Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pri

Expected-Externality Mechanism

Definition 7.4

For an ex-post efficient choice of social state $q:\Theta\to\mathcal{Q}$, the payments in the expected-externality mechanism implementing (q,p^{EE}) are

$$p_i^{\mathsf{EE}}(\tau) = \mathbb{E}_{\tau_i} \Big[p_i^{\mathsf{piv}}(\theta) \Big] - \mathbb{E}_{\tau_{\mathsf{mod}(i,n)+1}} \Big[p_{\mathsf{mod}(i,n)+1}^{\mathsf{piv}}(\theta) \Big]. \tag{3}$$

Interpretation:

- If nobody has property rights and no social state incurs a social cost, then $p_i^{\text{piv}}(\vartheta) \geq 0$, hence redistribution in (3) preserves IC and IR.
- In the expected externality mechanism, player i pays the interim expected externality that he/she imposes to player i-1 (modulo n).
- Since i receives the expected externality imposed by i + 1, the net payments are given by (3).

Home Improvement

Home improvement:

- Recall that θ_i for i=A,S is uniformly distributed on $\Theta_i=\{1,\ldots,9\}$ with utilities $v_i(S,\vartheta_i)=\vartheta_i+5$ and $v_i(D,\vartheta_i)=2\vartheta_i$.
- Recall that the pivot payments are

$$p_i(\vartheta) = (5 - \vartheta_{-i}) \mathbb{1}_{\{10 - \vartheta_i < \vartheta_{-i} \le 5\}} + (\vartheta_{-i} - 5) \mathbb{1}_{\{5 < \vartheta_{-i} \le 10 - \vartheta_1\}}.$$

• Let us find the expected-externality mechanism.

Cheat Code for Dominant-Strategy Implementability

Lemma 7.5

An incentive-compatible, ex-post budget-balanced VCG mechanism implementing ex-post efficient social state $q:\Theta\to Q$ exists if and only if there exist functions $H_i:\Theta_{-i}\to\mathbb{R}$ for $i=1,\ldots,n$ such that for every $\vartheta\in\Theta$,

$$\sum_{i=1}^n v_i(q(\vartheta),\vartheta_i) = \sum_{i=1}^n H_i(\vartheta_{-i}).$$

Remark:

- Does not make a statement about individual rationality.
- Nevertheless, if the condition is violated, then no incentive-compatible, individually rational, ex-post budget-balanced VCG mechanism exists.

Proof of Lemma 7.5

Proof of necessity:

- Let $(q(\vartheta), p(\vartheta))$ be an ex-post budget balanced VCG mechanism.
- Recall that payments in a VCG mechanism are of the form

$$p_i(\vartheta) = h_i(\vartheta_{-i}) - \sum_{j \neq i} v_j(q(\vartheta), \vartheta_j).$$

Ex-post budget balance implies that

$$0=\sum_{i=1}^n p_i(\vartheta)=\sum_{i=1}^n h_i(\vartheta_{-i})-(n-1)\sum_{i=1}^n v_i(q(\vartheta),\vartheta_i).$$

Therefore,

$$\sum_{i=1}^{n} v_i(q(\vartheta), \vartheta_i) = \frac{1}{n-1} \sum_{i=1}^{n} h_i(\vartheta_{-i})$$

is of the desired form.

Proof of Lemma 7.5

Proof of sufficiency:

• Suppose $q:\Theta\to\mathcal{Q}$ is ex-post efficient and there exist $H_i:\Theta_{-i}\to\mathbb{R}$ such that for every $\vartheta\in\Theta$,

$$\sum_{i\in\mathcal{I}}v_i(q(\vartheta),\vartheta_i)=\sum_{i\in\mathcal{I}}H_i(\vartheta_{-i}).$$

• Set $h_i(\vartheta_{-i}) = (n-1)H_i(\vartheta_{-i})$ and define payments

$$p_i(\vartheta) = h_i(\vartheta_{-i}) - \sum_{j \neq i} v_j(q(\vartheta), \vartheta_j).$$

- By definition, $(q(\vartheta), p(\vartheta))$ is a VCG mechanism.
- We verify that it is ex-post budget-balanced:

$$\sum_{i=1}^n p_i(\vartheta) = (n-1)\sum_{i=1}^n v_i(q(\vartheta),\vartheta_i) - \sum_{i=1}^n \sum_{i\neq i} v_i(q(\vartheta),\vartheta_i) = 0.$$

Bilateral Trade

Bilateral Trade:

- Seller S values the good at θ_S with density $f_S(\vartheta_S) > 0$ on $[\underline{\vartheta}_S, \overline{\vartheta}_S]$.
- Buyer B values the good at θ_B with density $f_B(\vartheta_B) > 0$ on $[\underline{\vartheta}_B, \overline{\vartheta}_B]$.
- ullet Social state $q\in\{0,1\}$ indicates whether trade occurs and utilities are

$$u_S(q, p, \vartheta_S) = (1 - q)\vartheta_S - p_S, \qquad u_B(q, p, \vartheta_B) = q\vartheta_B - p_B.$$

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pric

Myerson-Sattertwaithe Theorem

Theorem 7.6 (Myerson-Sattertwaithe Theorem)

An incentive-compatible, individually rational, ex-post efficient mechanism exists if and only if $\underline{\vartheta}_B \geq \bar{\vartheta}_S$ or $\underline{\vartheta}_S \geq \bar{\vartheta}_B$.

Interpretation:

- An ex-post efficient mechanism exists only in trivial cases.
- Incomplete information imposes some inefficiency on trade, i.e., there are always some states, in which trade does not occur despite $\vartheta_B > \vartheta_S$.
- Regardless of extensive-form game, some types of buyers are unwilling to trade because they are adversely selected against.

Step 1: Find the ex-post efficient social state

Social welfare

$$v_S(q, \vartheta_S) + v_B(q, \vartheta_B) = (1 - q)\vartheta_S + q\vartheta_B = \vartheta_S + q(\vartheta_B - \vartheta_S)$$

is maximized in $q(\vartheta) = 1_{\{\vartheta_B \ge \vartheta_S\}}$.

Step 2: Trivial cases

- If $\underline{\vartheta}_S \geq \bar{\vartheta}_B$, no trade is ex-post efficient, hence we need no mechanism.
- If $\underline{\vartheta}_B \geq \bar{\vartheta}_S$, then (q,p) for any $p_B = -p_S \in [\bar{\vartheta}_S, \underline{\vartheta}_B]$ is incentive-compatible, ex-post individually rational, and ex-post budget balanced.

Step 3: Non-trivial case

- Suppose $[\underline{\vartheta}_B, \bar{\vartheta}_B] \cap [\underline{\vartheta}_S, \bar{\vartheta}_S]$ has non-empty interior and that there exists an ex-post budget balanced VCG mechanism that implements q.
- By Lemma 7.5, there exist $H_B(\vartheta_S)$ and $H_S(\vartheta_B)$ such that:

$$H_B(\vartheta_S) + H_S(\vartheta_B) = v_S(q(\vartheta), \vartheta_S) + v_B(q(\vartheta), \vartheta_B) = \max\{\vartheta_B, \vartheta_S\}.$$

• For any $\vartheta, \vartheta' \in [\underline{\vartheta}_B, \bar{\vartheta}_B] \cap [\underline{\vartheta}_S, \bar{\vartheta}_S]$ with $\vartheta < \vartheta'$, this imposes

$$\vartheta = \max\{\vartheta, \vartheta\} = H_B(\vartheta) + H_S(\vartheta), \qquad \vartheta' = \max\{\vartheta, \vartheta'\} = H_B(\vartheta) + H_S(\vartheta'),$$

$$\vartheta' = \max\{\vartheta',\vartheta\} = H_B(\vartheta') + H_S(\vartheta), \quad \vartheta' = \max\{\vartheta',\vartheta'\} = H_B(\vartheta') + H_S(\vartheta').$$

• Adding equations (1) + (4) and (2) + (3) shows a contradiction.

Proof of Theorem 7.6

Conclusion of proof:

- Lemma 7.5 implies that no incentive-compatible, ex-post budgetbalanced VCG mechanism exists.
- In particular, no IR-VCG mechanism runs an expected surplus.
- By statement 2. of Theorem 6.24, there exists no Bayesian incentivecompatible, individually rational, and ex-post efficient mechanism.

get Balance **Shortcuts** Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Pric

Literature

Bayesian-Optimal Mechanism

lget Balance Shortcuts **Bayesian-Optimal Mechanism** Selection of Mechanisms Interdependent Types No Common Prio

Bayesian-Optimal Mechanism

Definition 7.7

The Bayesian-optimal mechanism is the mechanism that maximizes the designer's objective function (welfare or revenue) among all incentive-compatible, individually rational, and ex-post budget-balanced mechanisms.

Remark:

- Note that we do not require dominant-strategy incentive compatibility.
- As a consequence, we can impose ex-ante budget balance instead and then achieve ex-post budget balance by Corollary 7.3.
- For one-dimensional independent types, incentive compatibility and individual rationality are characterized similarly to Lemmas 6.22 and 6.23:
 - Incentive-compatibility conditions give rise to revenue equivalence.
 - Individual rationality determine expected payments of lowest types.

get Balance Shortcuts **Bayesian-Optimal Mechanism** Selection of Mechanisms Interdependent Types No Common Pric

Provision of a Public Good

Public goods mechanism:

- Social state $q \in \{0,1\}$ indicates whether the agreement is signed.
- Enforcing the agreement comes at a social cost c, which signatories contribute through reduced GHG emissions.
- Suppose countries' valuations θ_i of the climate agreement are independent and distributed on $[\underline{\vartheta}, \overline{\vartheta}]$ with density $f_i(\vartheta_i) > 0$.
- Country i's utility is $u_i(q, p, \vartheta_i) = v_i(q, \vartheta_i) p_i = q\vartheta_i p_i$.

dget Balance Shortcuts **Bayesian-Optimal Mechanism** Selection of Mechanisms Interdependent Types No Common Pri

Impossibility Result

Proposition 6.26

An incentive-compatible individually rational ex-post efficient mechanism exists if and only if either $n\underline{\vartheta} \geq c$ or $n\bar{\vartheta} \leq c$.

What do we do next?

- We have to accept that either some payments are wasted for some ϑ or that the social state is sometimes inefficient.
- Let us find the Bayesian-optimal mechanism:
 - Simply by treating as a constrained maximization problem.
 - The characterization works similarly to the selling mechanism.

get Balance Shortcuts **Bayesian-Optimal Mechanism** Selection of Mechanisms Interdependent Types No Common Pric

Objective Function

Constrained maximization problem:

• The objective function is the joint utility of the social state

$$V(q,p) = \int_{\Theta} \left(q(\vartheta) \sum_{i=1}^{n} \vartheta_{i} - c \right) f(\vartheta) d\vartheta.$$

• Maximize V(p,q) subject to the incentive compatibility, individual rationality, and ex-post budget balance constraints.

Simplifying the problem:

- Characterize incentive constraints first through a monotonicity and a "revenue equivalence" constraint.
- It is sufficient to impose ex-ante budget balance by Corollary 7.3.

Monotonicity:

- As usual, let us abbreviate $\bar{q}_i(\vartheta_i) = \mathbb{E}_{\vartheta_i}[q(\theta)]$.
- Individual i has no incentive to misrepresent his type as r_i:

$$u_{i}(r_{i},\vartheta_{i}) \leq u_{i}(\vartheta_{i},\vartheta_{i}) = u_{i}(\vartheta_{i},r_{i}) + \bar{q}_{i}(\vartheta_{i})(\vartheta_{i} - r_{i})$$

$$\leq u_{i}(r_{i},r_{i}) + \bar{q}_{i}(\vartheta_{i})(\vartheta_{i} - r_{i}). \tag{4}$$

• Subtracting $u_i(r_i, \vartheta_i)$ shows that (4) is equivalent to

$$(\bar{q}_i(\vartheta_i) - \bar{q}_i(r_i))(\vartheta_i - r_i) \geq 0.$$

• Therefore, \bar{q}_i is non-decreasing.

Incentive Compatibility Constraints

Revenue-equivalence condition:

• Let us abbreviate $\bar{p}_i(\vartheta_i) := \mathbb{E}_{\vartheta_i}[p_i(\theta)]$. As in the selling mechanism,

$$U_i(\vartheta_i) := \mathbb{E}_{\vartheta_i}[u_i(q(\theta), p(\theta), \vartheta_i)] = \bar{q}_i(\vartheta_i)\vartheta_i - \bar{p}_i(\vartheta_i).$$

is differentiable almost everywhere with derivative $\bar{q}_i(\vartheta_i)$.

• Integrating U_i from $\underline{\vartheta}$ to ϑ_i yields

$$\bar{p}_i(\vartheta_i) = -U_i(\underline{\vartheta}) + \bar{q}_i(\vartheta_i)\vartheta_i - \int_{\underline{\vartheta}}^{\vartheta_i} \bar{q}_i(x) dx.$$
 (5)

• Similarly to the selling mechanism, monotonicity of \bar{q}_i and (5) are also sufficient for incentive compatibility.

Individual rationality:

• IC mechanism is individually rational if and only if $U_i(\underline{\vartheta}) \geq 0$.

Budget Balance

Ex-ante budget balance:

• Using (5) and solving the double integral by Fubini's theorem yields

$$S = \sum_{i=1}^{n} \int_{\underline{\vartheta}}^{\underline{\vartheta}} (\bar{p}_{i}(\vartheta_{i}) - cq(\vartheta)) f_{i}(\vartheta_{i}) d\vartheta_{i}$$

$$= \int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \left(\vartheta_{i} - \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\vartheta_{i})} \right) - c \right] f(\vartheta) d\vartheta - \sum_{i=1}^{n} U_{i}(\underline{\vartheta}).$$

Ex-ante budget balance imposes S = 0.

Combined constraint:

Budget balance and individual rationality combined yield

$$\int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \left(\vartheta_{i} - \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\vartheta_{i})} \right) - c \right] f(\vartheta) d\vartheta \geq 0.$$

Objective Function with Constraints

Simplified maximization problem:

• Maximize the objective function

$$V(p,q) = \int_{\Theta} q(\vartheta) \left(\sum_{i=1}^{n} \vartheta_{i} - c \right) f(\vartheta) d\vartheta$$

subject to the constraints that \bar{q}_i is non-decreasing and

$$\int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \left(\vartheta_{i} - \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\vartheta_{i})} \right) - c \right] f(\vartheta) \ d\vartheta \geq 0.$$

Typical approach:

- 1. Forget about incentive-compatibility constraint.
- 2. Write the relaxed problem using Karush-Kuhn-Tucker conditions.
- 3. Impose conditions on distribution such that \bar{q} is increasing.

Karush-Kuhn-Tucker Conditions

KKT Conditions: Choice $q(\vartheta)$ solves the relaxed maximization problem if and only if there exists $\lambda > 0$ such that q maximizes

$$\int_{\Theta} q(\vartheta) \left(\sum_{i=1}^{n} \vartheta_{i} - c \right) f(\vartheta) d\vartheta + \lambda \int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \left(\vartheta_{i} - \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\vartheta_{i})} \right) - c \right] f(\vartheta) d\vartheta$$

$$d_{ij} = \int_{\Theta} q(\vartheta)(1+\lambda) \left[\sum_{i=1}^{n} \left(artheta_{i} - rac{\lambda}{1+\lambda} rac{1-F_{i}(artheta_{i})}{f_{i}(artheta_{i})}
ight) - c
ight] f(artheta) dartheta_{ij}$$

and, moreover, $\lambda = 0$ only if

$$\int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \left(\vartheta_{i} - \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\vartheta_{i})} \right) - c \right] f(\vartheta) \, d\vartheta > 0.$$

Optimal Provision of Public Good

Pointwise maximization:

• The integrand is maximized if $q(\vartheta) = 1$ if and only if

$$\sum_{i=1}^n \vartheta_i \ge c + \sum_{i=1}^n \frac{\lambda}{1+\lambda} \frac{1-F_i(\vartheta_i)}{f_i(\theta)}.$$

- If $\lambda = 0$, then $q(\vartheta)$ is ex-post efficient.
- We know from Proposition 6.26 that no IC, IR, ex-post efficient and budget balanced mechanism exists.
- We conclude that $\lambda > 0$ is necessary.

Incentive compatibility:

- If $\psi_i(\vartheta_i) = \vartheta_i \frac{1 F_i(\vartheta_i)}{f_i(\vartheta)}$ is increasing, then the problem is solved.
- If ψ_i is not increasing, use Myerson's ironing.

Proposition 7.8

Suppose that $n\underline{\vartheta} < c < n\overline{\vartheta}$ and that each ψ_i is increasing. A mechanism is incentive compatible, individually rational, ex-ante budget balanced, and it maximizes expected welfare among all such mechanisms if and only if:

1. There is $\lambda > 0$, such that for all $\vartheta \in \Theta$:

$$q(\theta) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} \vartheta_{i} \geq c + \sum_{i=1}^{n} \frac{\lambda}{1+\lambda} \frac{1 - F_{i}(\vartheta_{i})}{f_{i}(\theta)}, \\ 0 & \text{otherwise.} \end{cases}$$

- 2. $\bar{p}_i(\vartheta_i) = \bar{q}_i(\vartheta_i)\vartheta_i \int_{\vartheta}^{\vartheta_i} \bar{q}_i(x) dx$.
- 3. $\int_{\Theta} q(\vartheta) \left[\sum_{i=1}^{n} \psi_i(\vartheta_i) c \right] f(\vartheta) d\vartheta = 0.$

Determine Optimal λ

Approach:

- Since $\lambda > 0$, it means that the budget constraint binds.
- For specific choice of F, equate the expected revenue with the expected cost and solve the resulting equation for λ .

Numerical example:

- Suppose that there are two countries, whose valuation of the climate agreement is standard-uniformly distributed.
- If $c \in (0,2)$, the climate agreement is signed if and only if $\vartheta_1 + \vartheta_2 \geq s$, where $s = \frac{1}{2} + \frac{3}{4}c$ if $c \ge \frac{2}{3}$ and s is the solution to

$$-\frac{2}{3}s^3 + s^2 - \left(1 - \frac{1}{2}s^2\right)c = 0$$

otherwise. See Chapter 3.3.6 in Börgers (2015) for the derivation.

Revenue-Maximizing Mechanism

Proposition 7.9

Suppose that ψ_i is increasing for every player $i=1,\ldots,n$. A mechanism is incentive compatible, individually rational, and maximizes expected revenue among all such mechanisms if and only if:

1. For all $\vartheta \in \Theta$:

$$q(\theta) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} \psi_i(\vartheta_i) \ge c, \\ 0 & \text{otherwise.} \end{cases}$$

2.
$$\bar{p}_i(\vartheta_i) = \bar{q}_i(\vartheta_i)\vartheta_i - \int_{\underline{\vartheta}}^{\vartheta_i} \bar{q}_i(x) dx$$
.

Proof: analogous to optimal selling mechanism.

Revenue-Maximizing vs. Welfare-Maximizing Mechanisms

Revenue-maximizing:

$$q(\theta) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} \vartheta_i \geq c + \sum_{i=1}^{n} \frac{1 - F_i(\vartheta_i)}{f_i(\theta)}, \\ 0 & \text{otherwise.} \end{cases}$$

Welfare-maximizing: there exists $\lambda > 0$,

$$q(\theta) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} \vartheta_i \ge c + \sum_{i=1}^{n} \frac{\lambda}{1+\lambda} \frac{1-F_i(\vartheta_i)}{f_i(\theta)}, \\ 0 & \text{otherwise.} \end{cases}$$

- There are inefficiencies in both due to information rent.
- $\frac{\lambda}{1+\lambda} < 1$: lower quantity is supplied by a revenue-maximizing designer.

Selection of Mechanisms

Allocation of Goods

Social planner allocates m < n goods:

- Each individual has a unit demand for the good,
- Individuals' valuation is distributed on $[\underline{\vartheta}, \bar{\vartheta}]$,
- Social planner places value 0 on the good.
- Mechanism specifies allocation of goods and payments.

Economy of a continuum of consumers/producers:

- Type is the individuals' skill level, distributed according to density f.
- Mechanism $g(\vartheta) = (g(\vartheta), p(\vartheta))$ assigns
 - Production level $q(\vartheta)$ (labor),
 - Consumption $p(\vartheta) = q(\vartheta) z(q(\vartheta))$ for tax rate z.
- Suppose everyone has the same quasi-linear utility

$$u(g(\vartheta)) = p(\vartheta) - v(q(\vartheta)),$$

i.e., people like consuming, but dislike effort.

A firm is owned by *n* partners:

- Each partner *i* owns share $\alpha_i \in [0,1]$ with $\sum_{i=1}^n \alpha_i$.
- Each partner *i* places a value of $\theta_i \in [0, \bar{\vartheta}]$ on the entire business.
- Mechanism redistributes ownership shares in exchange for payments.

There are n sellers and n buyers:

- Sellers have types distributed on $[\underline{\vartheta}_S, \overline{\vartheta}_S]$.
- Buyers have types distributed on $[\underline{\vartheta}_B, \bar{\vartheta}_B]$.
- Mechanism specifies allocation of goods and payments.

dget Balance Shortcuts Bayesian-Optimal Mechanism **Selection of Mechanisms** Interdependent Types No Common Pric

Crowdfunding

Crowdfunding platforms facilitate a kind of trade:

- An entrepreneur intends to develop a product at unknown cost C.
- N potential customers i value the product at $\theta_i \in [0, \bar{\vartheta}]$.
- The entrepreneur does not know θ_i or N.
- ullet The entrepreneur has more information about ${\mathcal C}$ than the customers.

Literature

Interdependent Types

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pri

Decomposition of Types

Decomposition of types:

• Each type τ_i assigns positive probability only to one $\vartheta_i(\tau_i) \in \Theta_i$:

$$\tau_i \simeq \delta_{\vartheta_i(t_i)} \otimes \tau_i|_{\Theta_{-i} \times \mathcal{T}^{n-1}},$$

where $\delta_{\vartheta_i(\tau_i)}$ is the Dirac measure at $\vartheta_i(\tau_i)$.

• We can decompose a player's type $\tau_i \simeq (\vartheta_i(\tau_i), \beta_i(\tau_i))$ into his/her payoff type $\vartheta_i(\tau_i)$ and his/her belief type $\beta_i(\tau_i) := \tau_i|_{\Theta_{-i} \times \mathcal{T}^{n-1}}$.

Interdependence types:

- If players' preferences are independent, then $\beta_i(\tau_i) = P_i$ for any type τ_i , hence types are uniquely determined by ϑ_i and P_i .
- What changes if types are no longer independent?

Failure of Revenue Equivalence

Failure of revenue equivalence:

- Let $U_i(r_i, \tau_i)$ be τ_i 's interim expected utility of reporting type r_i .
- If types are independent, then

$$U_i(r_i, \tau_i) = \mathbb{E}_{\tau_i} \big[v_i \big(q(r_i, T_{-i}), \vartheta_i(\tau_i) \big) \big] - \mathbb{E}_{\tau_i} [p_i(r_i, T_{-i})]$$
$$= \mathbb{E} \big[v_i \big(q(r_i, T_{-i}), \vartheta_i(\tau_i) \big) \big] - \bar{p}_i(r_i).$$

Expected payments depend only on report, but not on type. Thus

$$0 = \frac{\partial U_i(r_i, \tau_i)}{\partial r_i} \Big|_{r_i = \tau_i} = \frac{\partial \mathbb{E} \left[v_i \left(q(r_i, T_{-i}), \vartheta_i(\tau_i) \right) \right]}{\partial r_i} \Big|_{r_i = \tau_i} - \bar{p}_i'(\tau_i)$$

implies that q determines expected payments up to a constant.

• This is no longer possible when types are interdependent.

If the type space is finite:

- Let π denote the joint probability mass function of T.
- Suppose for simplicity that $\pi(\tau) > 0$ for every $\tau \in \mathcal{T}$.
- Player i of type τ_i has beliefs on T_{-i} with probability mass function

$$\pi_{\mathcal{T}_{-i}|\tau_i}(\tau_{-i} \mid \tau_i) = \frac{\pi(\tau_i, \tau_{-i})}{\sum_{\tau'_{-i} \in \mathcal{T}_{-i}} \pi(\tau_i, \tau'_{-i})}.$$

If the type vector T admits a density:

- Let $f_i(\tau_i) = \int_{\mathcal{T}_i} f(\tau_i, \tau_{-i}) d\tau_{-i}$ denote type T_i 's marginal density.
- Player i of type τ_i has beliefs on T_{-i} with density

$$f_{T_{-i}\mid\tau_i}(\tau_{-i}\mid\tau_i)=\frac{f(\tau_i,\tau_{-i})}{f_i(\tau_i)}.$$

get Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pri

Crémer-McLean Condition

Definition 7.10

The distribution π satisfies the Crémer-McLean condition if for no player i of type $\tau_i \in \mathcal{T}_i$, there are weights $\lambda_{\tau_i'}$ that satisfy

$$\pi(\cdot | \tau_i) = \sum_{\tau_i' \in \mathcal{T}_i \setminus \{\tau_i\}} \lambda_{\tau_i'} \, \pi(\cdot | \tau_i'),$$

i.e., posterior beliefs of individual i's types are linearly dependent.

Crémer-McLean condition is violated if:

- Two types of player i have the same posterior beliefs,
- Player i has redundant types,
- Players' types are independent.

Proposition 7.11

Suppose that the distribution π satisfies the Crémer-McLean condition. Consider any direct mechanism $(q(\tau), p(\tau))$. Then there is an equivalent direct mechanism $(q(\tau), p'(\tau))$ that is Bayesian incentive-compatible.

Recall: two mechanisms are equivalent if

- They have the same decision rule q,
- They lead to the same interim expected payments:

$$\mathbb{E}_{\tau_i}[p_i(\tau_i, T_{-i})] = \mathbb{E}_{\tau_i}[p_i'(\tau_i, T_{-i})].$$

Consequence:

• If $(q(\tau), p(\tau))$ is interim individually rational, so is $(q(\tau), p'(\tau))$.

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pri

Auction with Interdependent Types

Consider the mechanism:

- Let q allocate the good to i if $\vartheta_i(\tau_i) = \max_j \vartheta_j(\tau_j)$.
- Demand payment $p(\tau) = \vartheta_i(\tau_i) 1_{\{q(\tau)=i\}}$.
- This mechanism is individually rational.

If Crémer-McLean condition is satisfied:

- Adjust payments to $p'(\tau)$ to make truthful reporting incentive-compatible so that interim expected payments remain unchanged.
- Therefore, ex-ante revenue is unaffected by this change.
- Auctioneer gains the same expected revenue as if he knew the types.
- Buyers earn no information rent.

What is going on?

What Is Going On?

Idea of proof:

- Make payments dependent on reported belief type $\beta_i(\tau_i)$.
- Add incentives to report belief type truthfully.
- Due to Crémer-McLean condition, no two types have the same beliefs.
 Truthfully reporting belief types reports payoff types truthfully as well.
- Make punishments for untruthful reporting of beliefs arbitrarily high.
- Reporting of belief types outweighs reporting of payoff types.

lget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pri

Farkas' Lemma

Lemma 7.12

Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$. Exactly one of the following two statements holds true:

- (i) There exists $x \in \mathbb{R}^n$ with Ax = b and $x \ge 0$.
- (ii) There exists $y \in \mathbb{R}^m$ with $A^\top y \ge 0$ and $b^\top y < 0$, where the vector inequalities hold element-wise.

Apply the lemma:

- Fix individual *i* of type $\tau_i \in \mathcal{T}_i$.
- Let $b = \pi(\cdot | \tau_i)$, hence $m = |\mathcal{T}_{-i}|$.
- Let A be the matrix of column vectors $\pi(\cdot | \tau_i')$ for $\tau_i' \in \mathcal{T}_i \setminus \{\tau_i\}$.
- By Crémer-McLean condition, (i) does not hold, hence (ii) holds.

Proof of Proposition 7.11

By Farkas' lemma:

• There exists $y \in \mathbb{R}^m$ for $m = |\mathcal{T}_{-i}|$, such that

$$\pi(\cdot | \tau_i)^{\top} y < 0, \qquad \pi(\cdot | \tau_i')^{\top} y \geq 0 \quad \forall \ \tau_i' \in \mathcal{T}_i \setminus \{\tau_i\}.$$

• Index elements of y by τ_{-i} such that for any $\tau'_i \in \mathcal{T}_i$,

$$\sum_{\tau_{-i}\in\mathcal{T}_{-i}}y(\tau_{-i})\pi(\tau_{-i}\,|\,\tau_i')=\mathbb{E}_{\tau_i'}[y(T_{-i})].$$

ullet Farkas' lemma guarantees existence of a function $y:\mathcal{T}_{-i} o\mathbb{R}$ with

$$\mathbb{E}_{\tau_i}[y(T_{-i})] < 0, \qquad \mathbb{E}_{\tau_i'}[y(T_{-i})] \geq 0 \quad \forall \ \tau_i' \in \mathcal{T}_i.$$

- Define payments $p_i'(\tau) = p_i(\tau) + c(y_{\tau_i}(\tau_{-i}) \mathbb{E}_{\tau_i}[y_{\tau_i}(T_{-i})])$.
- Incentives to reveal the truth are strict.
- Conditional on truthtelling, interim expected payments are the same.

lget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Prio

Auction of an Indivisible Good

	ϑ_1	ϑ_2	ϑ_3
ϑ_1	0.2	0.1	0.05
ϑ_2	0.1	0.1	0.1
ϑ_3	0.05	0.1	0.2

Auction with interdependent types:

- There are two buyers with three possible valuations $\Theta_i = \{\vartheta_1, \vartheta_2, \vartheta_3\}$ such that payoff type ϑ_k values the good at k.
- Valuations are not independent, but instead drawn from π .
- How does the revenue-maximizing auction look like?

Auction of an Indivisible Good

 $\begin{array}{c|ccccc}
\vartheta_1 & \vartheta_2 & \vartheta_3 \\
\vartheta_1 & \frac{1}{2}, \frac{1}{2} & 0, 2 & 0, 3 \\
\vartheta_2 & 2, 0 & 1, 1 & 0, 3 \\
\vartheta_3 & 3, 0 & 3, 0 & \frac{3}{2}, \frac{3}{2}
\end{array}$

Allocation

IR Payments

Applying Crémer-McLean construction:

- Start with full-information auction as indicated above.
- Find separating payments $y_i(\vartheta)$ for player i such that for $r_i \neq \vartheta_i$,

$$\mathbb{E}_{\vartheta_i}[y_i(\vartheta_i,\theta_{-i})] = 0, \qquad \mathbb{E}_{\vartheta_i}[y_i(r_i,\theta_{-i})] > 0.$$

• Add sufficiently large multiple to IR payments.

Auction of an Indivisible Good

$$\vartheta_1$$
 $-\frac{5}{2}, -\frac{5}{2}$
 3,5
 6,9

 ϑ_2
 5,3
 -5,-5
 3,6

 ϑ_3
 9,6
 6,3
 $-\frac{3}{2}, -\frac{3}{2}$

 ϑ_1

Belief Elicitation

Optimal Payments

V2

 ϑ_3

Problems for implementing in practice:

- Not dominant-strategy implementable.
- Mechanism designer has to be extremely certain of prior distribution.

Welfare-maximizing mechanism:

- Can we carry out a similar construction?
- How does the construction interfere with budget balance?

Identifiable Distributions

Definition 7.13

Distribution π satisfies the identifiability condition if, for any other distribution $\mu \neq \pi$ with $\mu(\tau) > 0$ for all $t \in \Theta$, there exists i and $\tau_i \in \Theta_i$, such that for any collection of non-negative weights $(\lambda_{\tau_i}(\tau_i'))_{\tau_i' \in \Theta_i}$, we have

$$\mu(\cdot \mid \tau_i) \neq \sum_{\tau_i' \in \Theta_i} \lambda_{\tau_i}(\tau_i') \, \pi(\cdot \mid \tau_i').$$

Remark:

- The Crémer-McLean condition says that the posterior of no type is a linear combination of the same individual's posteriors of other types.
- The identifiability condition says no other distribution is replicated for all agents of all types by randomizing over π .

get Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pric

Achieving Budget Balance

Proposition 7.14

Suppose that π satisfies the Crémer-McLean and the identifiability conditions. For any ex-ante budget balanced direct mechanism $(q(\tau), p(\tau))$, there exists an equivalent Bayesian incentive-compatible and ex-post budget balanced mechanism $(q(\tau), p'(\tau))$.

Idea of proof: (see Kosenok and Severinov (2008) for full proof)

- Using the Crémer-McLean condition, we can construct an equivalent Bayesian incentive-compatible mechanism.
- Interim expected payments are the same, but ex-post budget balance may be violated by belief elicitation scheme.
- Adjustment of payments that do not violate truthful revelation for any beliefs the opponent might hold requires identifiability.

get Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pric

Yet Another Auction

	ϑ_{1}	ϑ_{4}	ϑ_{5}
ϑ_0	$\frac{1}{11}$	<u>2</u> 11	<u>2</u> 11
ϑ_2	<u>2</u> 11	<u>2</u> 11	<u>2</u> 11

Does not fall into one of previously studied cases:

- Types are not independent, hence second-price auction is not optimal.
- Types do not satisfy the Crémer-McLean condition.
- The following lemma shows that types with the same belief types are conditionally independent, given the belief profile β .

Common Prior

Proposition 7.15

Suppose the type space $\mathcal T$ is finite with common prior π such that $\pi(\tau) > 0$ for all $\tau \in \mathcal T$. For any belief type profile β that can arise in $\mathcal T$, we have

$$\pi(\vartheta(\tau) | \beta) = \pi(\vartheta_1(\tau_1) | \beta) \dots \pi(\vartheta_n(\tau_n) | \beta),$$

that is, conditional on belief types, the payoff types are independent.

Proof:

- Recall that $\mathcal{T}_i \cong \Delta(\Theta \times \mathcal{T}_{-i})$ and $\tau_i \cong (\vartheta_i(\tau_i), \beta_i(\tau_i))$, where $\vartheta_i(\tau_i)$ is the marginal on Θ_i and $\beta_i(\tau_i)$ is the marginal on $\Theta_{-i} \times \mathcal{T}_{-i}$.
- For any $\tau_1, \tau_1' \in \mathcal{T}_1$ with $\beta_1(\tau_1) = \beta_1(\tau_1') = \beta_1$, we have $\pi(\vartheta_{-1}(\tau_{-1}) \mid \beta, \vartheta_1(\tau_1)) = \beta_1(\vartheta_{-1}(\tau_{-1})) = \pi(\vartheta_{-1}(\tau_{-1}) \mid \beta, \vartheta_1(\tau_1')).$
- This shows that $\pi(\vartheta(\tau) \mid \beta) = \pi(\vartheta_1(\tau_1) \mid \beta)\pi(\vartheta_{-1}(\tau_{-1}) \mid \beta)$.

lget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common Prio

Mechanisms in Common-Prior Setting

Proposition 7.16

Suppose the type space T is finite with common prior π such that

- 1. $\pi(\tau) > 0$ for all $\tau \in \mathcal{T}$,
- 2. Posteriors $\beta_i(\tau_i)$ for $\tau_i \in \mathcal{T}_i$ are linearly independent.

Consider a direct mechanism $(q(\tau), p(\tau))$ such that for any player i and any $\tau_i, \tau_i' \in \mathcal{T}_i$ with $\beta_i(\tau_i) = \beta_i(\tau_i')$, type τ_i has no incentive to report τ_i' . Then there exists an equivalent Bayesian incentive-compatible direct mechanism.

Proof:

- Use Crémer-McLean construction to elicit beliefs truthfully.
- Conditional on reported beliefs, truth-telling is incentive compatible.

et Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types No Common

Significance of the Result

If types admit a common prior:

- Use Crémer-McLean construction to elicit beliefs truthfully.
- For each reported belief type β , payoff types are independent.

Given report β :

- Player *i* can report only types τ_i with $\beta_i(\tau_i) = \beta_i$.
- Reporting type r_i when the true type is τ_i yields interim utility

$$U_i(r_i, \tau_i, \beta) = \mathbb{E}_{\beta}[v_i(q(r_i, T_{-i}), \vartheta_i(\tau_i))] - \mathbb{E}_{\beta}[p(r_i, T_{-i})].$$

- All techniques developed earlier apply.
- See Farinha Luz (2013) for a general auction setting.

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms **Interdependent Types** No Common Pri

Yet Another Auction, Continued

Allocation

	$artheta_1$	$artheta_{ extsf{4}}$	ϑ_{5}
ϑ_0	0, 1	0, 4	0, 4
ϑ_2	2,0	0, 4	0, 4

IR and IC(ϑ_4, ϑ_5) Payments

Construction of optimal auction:

- Crémer-McLean: only need to analyze incentives for $\vartheta \in \{\vartheta_4, \vartheta_5\}$.
- Optimal allocation and optimal IR and IC(ϑ_4, ϑ_5) is indicated above.
- Note that ϑ_4 and ϑ_5 have an incentive to pretend being of type ϑ_1 . However, those incentives can be thwarted with belief elicitation.

Yet Another Auction, Continued

	$artheta_1$	ϑ_{4}	ϑ_{5}
ϑ_{0}	0, 2	0, -1	0, -1
ϑ_2	0, -1	0, 1	0,1

Belief Elicitation

	ϑ_1	ϑ_{4}	ϑ_5
ϑ_0	0, 9	0,0	0,0
ϑ_2	2, -4	0,8	0,8

Optimal Payments

No Common Prior

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types **No Common Prior**

No Common Prior

In a setting with a common prior:

- Mechanism designer shares the prior of the participants.
- Crémer-McLean construction leaves expected revenue unaffected.
- Revenue maximizer can extract the full surplus.

Without common prior:

- We typically do not assume a prior for the mechanism designer.
- Mechanism designer's uncertainty is simply given by the type space \mathcal{T} .
- We instead search for undominated mechanisms.

t Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types **No Common Prior**

Undominated Mechanisms

Definition 7.17

- 1. A performance measure $w(\mathcal{T}, g, t) \in \mathbb{R}^m$ evaluates mechanism g when players truthfully report type t from type space \mathcal{T} .
- 2. A mechanism g is undominated for performance measure $w(\mathcal{T},g,t)$ if there exists no other mechanism g' such that for every $t \in \mathcal{T}$ and every $k = 1, \ldots, m$, we have $w^k(\mathcal{T}, g', t) \geq w^k(\mathcal{T}, g, t)$ and there exist t_0, k_0 with $w^{k_0}(\mathcal{T}, g', t) > w^{k_0}(\mathcal{T}, g, t)$.

Performance measures:

- Ex-post Pareto welfare $(u_i(g(\tau), \tau_i))_{i \in \mathcal{I}}$.
- Interim Pareto welfare $(\mathbb{E}_{\beta_i(\tau_i)}[u_i(g(\tau_i, T_i), \tau_i)])_{i \in \mathcal{I}}$.
- Revenue $\sum_{i \in \mathcal{I}} p_i(\tau)$ for mechanism $g(\tau) = (q(\tau), p(\tau))$.

dget Balance Shortcuts Bayesian-Optimal Mechanism Selection of Mechanisms Interdependent Types **No Common Prior**

No Undominated Mechanisms

Proposition 7.18

Suppose utilities are quasi-linear. For generic type spaces without common prior, there is no undominated mechanism with respect to the interim Pareto welfare criterion or the revenue criterion.

Idea of Proof:

- Recall from the no-trade theorem (Theorem 2.7), that rational players are not willing to bet if they share a common prior.
- Players with differing priors are willing to enter bets because at the interim stage, they may both believe they are better off in expectation.
- Quasi-linear utilities allow us to price in bets of arbitrarily large size into any mechanism → interim Pareto welfare is unbounded.
- Charge players to enter bets → revenue is unbounded.

No Common Prior

Literature

T. Börgers: An Introduction to the Theory of Mechanism Design, Chapters 6.2 and 10, Oxford University Press, 1991

P. Milgrom and J. Stokey: Information, Trade and Common Knowledge, Journal of Economic Theory, 26 (1982), 17–27

J. Crémer and R.P. McLean: Full Extraction of the Surplus in Bayesian and Dominant Strategy Auctions, Econometrica, 56 (1988), 1247–1257

G. Kosenok and S. Severinov: Individually Rational, Budget-Balanced Mechanisms and Allocation of Surplus, Journal of Economic Theory, 140 (2008), 126–161

V. Farinha Luz: Surplus Extraction with Rich Type Spaces, Journal of Economic Theory, 148 (2013), 2649– 2762