- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}.$
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - ► Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - ► Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - ► Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ➤ This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - Choquet integral can address such problems.

Continued...

► Choquet Integral

$$C_{\mu}(x) = \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \mu(\{\tau(i), \dots, \tau(n)\})$$
$$x_{\tau(1)} \le x_{\tau(2)} \le \dots \le x_{\tau(n)}, \ x_{\tau(0)} = 0$$

Continued...

Student	Math(1)	Physics(2)	Literature(3)	$\{ au\}$	
a	18	16	10	$\{0, 3, 2, 1\}$	{0, 10, 16, 18}
b c	10 14	12	18	$\{0, 1, 2, 3\}$	{0, 10, 12, 18}
С	14	15	15	$\{0, 1, 2, 3\}$	$\{0, 14, 15, 15\}$
		$x(x) = \sum_{i=1}^{\infty} (x_{\tau(i)})^i$ $x(x) = \sum_{i=1}^{\infty} (x_{\tau(i)})^i$ $x(x) = \sum_{i=1}^{\infty} (x_{\tau(i)})^i$	$(i) - x_{\tau(i-1)})\mu(i)$	$\{ au(i),\ldots, au(n)\}$ $\mu(\{\emptyset\})=$	
	$\mu(\{$	$1\}) = \mu(\{2\})$) = 0.45,	$\mu(\{3\}) =$	0.3
	$\mu(\{$	$1, 3\}) = \mu(\{$	(2, 3) = 0.9,	$\mu(\{1,\ 2\}) =$	0.5

Continued...

Student	Math(1)		Literature(3)		$\{x_{\tau}\}$
a	18	16	10	$\{0, 3, 2, 1\}$	{0, 10, 16, 18}
b	10	12	18	$\{0, 1, 2, 3\}$	{0, 10, 12, 18}
С	14	15	15	$\{0, 1, 2, 3\}$	$\{0, 14, 15, 15\}$
a 18 16 10 $\{0, 3, 2, 1\}$ $\{0, 10, 16, 18\}$ b 10 12 18 $\{0, 1, 2, 3\}$ $\{0, 10, 12, 18\}$ c 14 15 15 $\{0, 1, 2, 3\}$ $\{0, 14, 15, 15\}$ $\mathcal{C}_{\mu}(x) = \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \mu(\{\tau(i), \dots, \tau(n)\})$					

$$\mu(\{1,\ 2,\ 3\})=1, \qquad \qquad \mu(\{\emptyset\})=0$$

$$\mu(\{1\}) = \mu(\{2\}) = 0.45,$$
 $\mu(\{3\}) = 0.3$

$$\mu(\{1,\ 3\}) = \mu(\{2,\ 3\}) = 0.9, \quad \, \mu(\{1,\ 2\}) = 0.5$$

$$\begin{split} \mathcal{C}_{\mu}(a) &= (10-0) \times \mu(\{3,2,1\}) + (16-10) \times \mu(\{2,1\}) + (18-16) \times \mu(\{1\}) = 13.9 \\ \mathcal{C}_{\mu}(b) &= (10-0) \times \mu(\{1,2,3\}) + (12-10) \times \mu(\{2,3\}) + (18-12) \times \mu(\{3\}) = 13.6 \\ \mathcal{C}_{\mu}(c) &= (14-0) \times \mu(\{3,2,1\}) + (15-14) \times \mu(\{2,3\}) + (15-15) \times \mu(\{3\}) = 14.9 \end{split}$$

Continued...

Student	Math	Physics	Literature	Weighted sum	Choquet integral
a	18	16	10	15.25	13.9
b	10	12	18	12.75	13.6
С	14	15	15	14.62	14.9