K_M AS AN APPROXIMATION FOR ENZYME AFFINITY

$$K_M = \frac{k_{-1} + k_2}{k_1}$$

- IF $(k_2 > k_1)$ { $K_M == Large ; Affinity == Low }$
- ▶ IF $(k_2 < k_1)$ { $K_M == Small ; Affinity == High }$

MICHAELIS CONSTANT: KM

$$E+S \stackrel{\mathrm{k_1}}{ \underset{\mathrm{k_{-1}}}{ \longrightarrow}} ES \stackrel{\mathrm{k_{\mathrm{cat}}}}{ \longrightarrow} E+P$$

$$k_1 * [E] * [S] = (k_{-1} * [ES]) + (k_{cat} * [ES])$$

Formation of Dissociation of Breakdown to

Formation of ES Complex = Dissociation of ES Complex = ES Complex E+P

▶ This ratio of rate constants is known as the Michaelis Constant (K_M);

$$K_M = \frac{k_{-1} + k_{cat}}{k_1}$$

- ▶ k_{cat} is another name for k₂
- ▶ When k_{cat} is small:
 - We essentially remove it from the equation. $K_M = \frac{k_{-1}}{k_1}$
 - @ maximum turnover
 - ▶ [ES] is high as it as it "builds up"
- Comparing k_1 and k_{-1} = likelihood substrate is bound to the enzyme , aka affinity
 - ▶ IF ($k_1 > k_{-1}$) { K_M == Small; Reaction Prefers to be in Eyzme-Substrate Complex -> Then Eventual Formation of Product }
 - IF ($k_1 < k_{-1}$) { K_M == Large; Reaction Prefers to be Separated into Enzyme + Substrate }