Hence.
$$\lim (a_n b_n) = ab = (\lim a_n) (\lim b_n).$$

(iii) Lemma. To show that if $\lim b_s = b \neq 0$, then \exists a positive number λ and a positive λ m3 such that $|b_n| > \lambda$, $\forall n \ge m_1$

$$|b_n| > \lambda$$
, $\forall n \ge m_3$

Let us take $\varepsilon = \frac{1}{2} |b|$, so that there exists a positive integer m_3 such that

$$|b_s - b| < \frac{1}{2}|b|, \ \forall \ n \ge m_3,$$

Thus,

$$\left|b\right|-\left|b_{n}\right|\geq\left|b_{n}-b\right|<\frac{1}{2}\left|b\right|.$$

$$|b_n| \ge \frac{1}{2} |b|$$
 (say), $\forall n \ge m_3$.

Let us apply the Lemma to prove the main theorem.

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| = \left| \frac{ba_n - ab_n}{bb_n} \right| = \left| \frac{b(a_n - a) - a(b_n - b)}{bb_n} \right|$$

$$\leq \frac{|b||a_n - a| + |a||b_n - b|}{|b||b_n|}$$

$$\leq \frac{2}{|b|}|a_n - a| + \frac{2|a|}{|b|^2}|b_n - b|, \forall n \geq m_3$$

Let $\varepsilon > 0$ be given.

Since $\lim a_n = a$, $\lim b_n = b$, therefore, \exists positive integers m_1, m_2 such that

$$|a_n - a| < \frac{1}{4} |b| \varepsilon, \ \forall \ n \ge m_1$$

and

$$|b_n - b| < \frac{1}{4} \frac{|b|^2 \varepsilon}{|a| + 1}, \quad \forall n \ge m_2.$$

Thus, for $m = \max(m_1, m_2, m_3)$, we have

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| < \frac{1}{2} \varepsilon + \frac{1}{2} \varepsilon = \varepsilon, \ \forall \ n \ge m$$

$$\lim \left(\frac{a_n}{b_n}\right) = \frac{a}{b} = \frac{\lim a_n}{\lim b_n}.$$

Hence,