Discussion of

"Precautionary Demand for Money in a Monetary Business Cycle Model"

by I. Telyukova and L. Visschers

Makoto Nakajima

FRB Philadelphia

March 27, 2009

Motivation

- Velocity is more volatile than output and procyclical in data.
- However, standard CIA model implies constant (consumption) velocity (always binding CIA constraint).
- Agents hold exactly the amount of money necessary for desired cash-good purchase, when there is a positive cost of holding money.
- How can we break the (too tight) link between nominal output/consumption and money balance?

Intuition: CIA and Preference Shock

- CIA + aggregate preference shock after money balance is chosen.
- Variable velocity with precautionary money demand.
- But the velocity fluctuates too little compared with data because aggregate consumption fluctuates too little. (quantitative puzzle, Hodrick et al. (1991))
- Why idiosyncratic shock helps?
- Idiosyncratic preference shock might help because size of the shock is substantially larger: SD=18% (compare with SD=0.5% for aggregate consumption).
- Volatility of idiosyncratic preference shocks is the key in calibration.

What They Did

- Standard RBC model plus:
 - CIA constraint.
 - Cash goods and credit goods.
 - Idiosyncratic preference shock.
 - TFP and monetary policy shocks.
- Investigate, theoretically and quantitatively, cyclical properties of the model, with a focus on velocity.
- A version of their paper has search friction.

Main Findings

	Data	Benchmark	No Shock
$SD\%(V_y)$	1.7	1.4	0.7
$SD\%(V_c)$	1.4	1.1	0.02
$corr(V_y, y)$	0.64	0.50	0.99
$corr(V_c, y)$	0.45	0.005	-0.82

- The model replicates cyclical properties of V_y and V_c substantially better than the no-shock model. In particular, volatility of V_y and V_c .
- Very good performance for other real and nominal variables, too.
- Adding search friction does not change the properties of the model in quantitatively significant way.

Key Mechanism: Precautionary Demand for Money

- Cash-good consumption requires money (CIA).
- Agents decide money holding before preference shock $\theta \in \{\theta_h, \theta_\ell\}$ (shock to MU) is drawn.
- Agents choose the amount of money which exactly covers expenditure associated with θ_h .
- Agents with θ_h (constrained) spend all and consume q_h .
- ullet Agents with $heta_\ell$ (unconstrained) consume $q_\ell < q_h$, leave some money.
- Total cash-good consumption is less than the total money holding (precautionary demand for money).

Key Mechanism: Shock to TFP

In response to a positive TFP shock $(z \uparrow)$

- $h \uparrow$, $k' \uparrow$, $c \uparrow$, $y \uparrow$ (standard RBC).
- $q_{\ell} \uparrow$ (standard RBC, notice they are unconstrained).
- $P \downarrow$ as money demand \uparrow .
- q_h ↑.

How about velocity?

- $V_y \uparrow$ because $y \uparrow$, $P \downarrow$, but drop in P (associated with consumption \uparrow) is less than increase in y (consumption smoothing).
- \circ $V_c \downarrow$.

Key Mechanism: Shock to *i*

In response to a positive shock to nominal interest rate $(i \uparrow)$

- Cost of holding money ↑
- P ↑
- $q_h \downarrow$ as CIA constraint gets tighter.
- q_ℓ does not change as CIA constraint is not binding.

How about velocity?

- $V_y \uparrow$ as $P \uparrow$.
- $V_c \uparrow$ as $P \uparrow$.

Key Mechanism: Comments

- Need a right combination of z-shock and i-shock to get the cyclical properties of V_y and V_c right.
- z—shock and i—shock are jointly estimated, independently of the model. Implicit assumption is that the model replicates the dynamics of the endogenous variables in the regression. However... e.g., corr(y,i) = -0.03 in the model and 0.54 in the data.
- Comparing impulse responses of the model and the data helps evaluating the fit (shut down interaction of the shocks?).
- Since monetary policy significantly affects the cyclical properties of velocity, compare (i) U.S. in different periods or (ii) across countries.
- Cyclical properties of cash-goods and credit-goods.

Comments: Calibration, Computation, and Model

- σ_{θ} is carefully calibrated to match the SD(q) (computed using CEX). But could be the upperbound if SD(q) contains *predicted* and *unpredicted* variations.
- Preference shock θ is discretized with 5 points. The properties of the model might be sensitive to this number (in particular, $\overline{\theta}$).
- Full-fledged incomplete market model!

References

Hodrick, Robert J., Narayana Kocherlakota, and Deborah Lucas, "The Variability of Velocity in Cash-In-Advance Models," Journal of Political Economy, 1991, 99 (2), 358–384.