# **Probability Spaces**

 $\bullet \bullet \bullet$ 

PL SC 309 14 January 2019

### Review

#### Last week we learned:

- Types of data: continuous; discrete; categorical
- Data is composed of observations and variables
- Data can be represented in tabular or matrix form
- Data-generating process (DGP)

### Preview

#### Today we'll be talking about:

- Probability space
- Everything that could happen (potential outcomes)
- Different sets of outcomes (events)
- Formalize this with sigma-notation
  - $\circ$   $\Omega$ : sample space
  - $\circ$  *F*: set of events
  - P: probability measure

# Humans are bad at probabilistic thinking



# Before probability, there were heuristics

• *Heuristic* is a fancy way of saying, if this, then that



# Before probability, there were heuristics

• Heuristics can be more complex, if-then statements







### Before probability, there were heuristics

Heuristics evolved when we didn't have much time to think about the future



AND





### Problems with heuristics

- Availability heuristic whatever is on your mind is the answer
- Representativeness heuristic basing decisions on small, personal samples
- Affect heuristic what you're feeling affects your predictions

Common thread: based too much on narrow information (personal experience), instead of broad information (data!)

# What is probability?

- What's going to happen?
  - a. One or more things will happen
  - b. Given some information about the world...
  - c. ...what is the chance that each thing, or some combination of things, will happen?
  - d. Express that chance in a number between 0 and 1
    - 0 means no chance of it happening
    - 1 means it is guaranteed

### What is statistics?

Statistics is the application of probability to quantified information.

### What is statistics?

Statistics is the application of probability to quantified information.

What will happen in the future...
Hypothetically, if we did this a thousand times...

### What's a variable?





















- Statistics is about thinking probabilistically, which is about thinking *infinitely*
- In other words, each point (or observation) is an expression of a variable, which could possibly exist at any location, with differing degrees of probability



- We start out with the idea that there is some thing called voting, and some thing called human development
- And that these can take a certain range of values
- We then *observe*, for some units, a value for each of these *variables*

Observations are each point, variables are the value of that point

Observations are an observed outcome, variables are the value of that outcome

### Potential outcomes and observations

If observations are *observed outcomes*, they are part of a larger set of potential outcomes...



### Potential outcomes and observations

If observations are *observed outcomes*, they are part of a larger set of potential outcomes...



| Flip no. | Result |
|----------|--------|
| 1        | Н      |
| 2        | Н      |
| 3        | Т      |
| 4        | Н      |
| 5        | Т      |
| 6        | Т      |
| 7        | Т      |

#### Observations

# **Outcomes**

We can write outcomes as a tree diagram



### **Outcomes**

Or we can write outcomes as a set



 $\{1, 2, 3, 4, 5, 6\}$ 

# **Probability Spaces**

A defined space that encompasses all possibilities and their likelihood

 $\Omega$ : sample space

F: set of events

P: probability measure

# $\Omega$ : sample space

All possible outcomes, or *elementary events* 



| 1 | 2 |
|---|---|
| 3 | 4 |
| 5 | 6 |

### F: set of events

Any event or combination of events



| 1 | 2 |
|---|---|
| 3 | 4 |
| 5 | 6 |

Roll a 1

### F: set of events

Any event or combination of events



| 1 | 2 |
|---|---|
| 3 | 4 |
| 5 | 6 |

Roll less than 3

### F: set of events

Any event or combination of events



| 1 | 2 |
|---|---|
| 3 | 4 |
| 5 | 6 |

Roll an even number

# P: probability

A number between 0 and 1 for each F



| 1 (%) | 2 (%) |
|-------|-------|
| 3 (%) | 4 (%) |
| 5 (%) | 6 (%) |

# P: probability

A number between 0 and 1 for each F









 $\Omega$ : {rams win, saints win}

*F*: {rams win, saints win}

P: predictions for team's victory

 $\Omega$ : {chiefs win, patriots win}

*F*: {chiefs win, patriots win}

P: predictions for team's victory

#### Where is the risk of lethal violence highest?

These are the countries where your risk of death from terrorism, conflict and homicide was highest in 2014.



 $\Omega$ : each country's risk of violence

F: each different possible combination of countries with the highest risk

P: probability of each country's risk



 $\Omega$ : percentage of people voting leave, remain

*F*: all combinations of voting

P: probability of vote



 $\Omega$ : trump or clinton national vote percentage

*F*: all possible national votes

P: model predictions for country-wide victory



 $\Omega$ : trump or clinton victory in each state

*F*: all possible state level results

P: model predictions for state-wide victory



 $\Omega$ : trump or clinton victory in each state

*F*: combination of state victories to win electoral college

P: model predictions for winning electoral college

### Review

- Probability assigns a measure to how likely certain sets of outcomes are to happen
- Statistics is the application of probability to quantified information
- Probabilistic thinking is about thinking in terms of all possible outcomes, repeated infinitely
- Sigma-notation
  - $\circ$   $\Omega$ : sample space
  - $\circ$  F: set of events
  - P: probability measure