Table 1. Hypotheses for covariates affecting landings. See text for details.

Stage	Time	Hypothesis	Responses	Covariates
Age	Jun-	HDD1. Q3 catch is dominated by mature age 2+ fish,	Catch Q3	Catch Q4 year t-1
2+	Sep	thus abundance of the 1-yr and 2-yr ages in the prior season should be correlated with the abundance of spawners this year.	year t	and Q1-2 year t
Age 1-2	Oct- May	correlated with strength of the cohorts from the previous two seasons. The catch in Q3 is dominated by mature fish, thus catch in Q3 in the prior two years is expected to be correlated with post-monsoon catch.	Catch Q4 year t and Q1-2 year t+1	Catch Q3 year t-1 and year t-2
Age 2+	Oct- May	HDD3. Because age 2 fish also appear in the post-monsoon catch, we also expect the post-monsoon catch in the previous season to be correlated with the post-monsoon catch in the current season.	Catch Q4 year t and Q1-2 year t+1	Catch Q4 year t-1 and Q1-2 year t
Spawn	Jun- Sep	HS1. The onset of monsoon precipitation triggers movement of adults from offshore to spawning areas due to changes in salinity, turbulence or noise. Spent adults migrate inshore and are exposed to the fishery. HS2. The level of precipitation in pre-monsoon predicts spawning strength.	Catch Q3 year t Catch Q3 year t	Seasonal precipitation anomaly during Jun-Jul in year t Seasonal precipitation anomaly during Apr-May in year t
		HS3. Low SST is associated with delayed and limited spawning [@JacobsonMacCall1995] as a behavioral response by adults to avoid exposing larvae to low temperatures associated with poor survival.	Catch Q3 year t	Average SST during Jun-Sep in year t
		HS4. Extremely high upwelling brings poorly oxygenated water to the surface causing sardines to move offshore [@Pillai1991].	Catch Q3 year t	Average upwelling index Jun-Sep, Max upwelling index Jun-Sep in year t
		HS5. Salinity changes due to precipitation or river run-off trigger spawning. After spawning, spent adult move to inshore waters and are exposed to fishery.	Catch Q3 year t	Average Salinity during Jun-Sep in year t

Table 1. Continued.

- C -	m.	TT (1)	Ъ	
Stage	Time	Hypothesis	Responses	Covariates
Larvae	Jul-	HL1. Larval mortality is higher in colder water due to	Catch Q4	Average SST during
	Oct	low motility causing increased predation and slower	year t and	Jun-Sep, Cum DD
		somatic growth. Low SST is also associated with strong	Q1-2 year	Jun-Sep in year t-1
		upwelling which advects larvae into offshore waters.	t+1	
Larvae		HL2. Extremely strong upwelling brings poorly	Catch Q4	Ave. upwelling
		oxygenated water to the surface causing larval mortality	year t and	index Jun-Sep, max
		and advects larvae offshore.	Q1-2 year	upwelling index
			t+1	Jun-Sep in year t-1
Juv.		HJ1. Upwelling is associated with higher productivity	Catch Q4	Ave. upwelling
		and higher density of zooplankton, which leads to better	year t and	index Jun-Sep, max
		larval and juvenile growth and survival. Thus the	Q1-2 year	upwelling index
		strength of upwelling during the monsoon should be	t+1	Jun-Sep in year t-1
		associated with higher biomass in subsequent years.		and t-2
Juv.		HJ2. Chlorophyll blooms are signatures of high	Catch Q4	Ave. Chl-a density
		productivity from nutrient influx either due to	year t and	Jun-Dec, Chl-a
		upwelling or coastal inputs. Bloom intensity in prior	Q1-2 year	density Jun-Dec in
		years should be associated with future sardine biomass.	t+1	year t-1 and t-2
All	Mar-	HA1. During the Mar-Apr, the sea temperatures are	Catch Q2	Ave. SST Q2 year t,
ages	Apr	high and sardines migrate offshore to avoid high temp.	year t	max SST Q2 year t