Modelos lineales y aditivos en ecología

Facundo X. Palacio facundo_palacio@fcnym.unlp.edu.ar

Temas del curso

- Modelos lineales: regresión, GLMs, GLMMs
- Modelos aditivos: GAMs, GAMMs
- Otras yerbas: selección de modelos, modelos no lineales

Dinámica

- Mañana (9-12): teórico-práctico
- Tarde (13-17): práctico

- 1. Lenguaje de programación.
- 2. Software más comprensivo (01/22 18728 paquetes).
- 3. Amplias posibilidades gráficas.
- 4. Amplia comunidad de usuarios.
- 5. Funciona bajo Linux, Windows y MacOS
- 6. Es libre, puede ser copiado, distribuido y modificado a voluntad.
- 7. Es gratis.

¿Qué es un modelo lineal?

- Depende de qué estemos hablando...
- Matemático: ecuación que describe la relación entre cantidades que cambian de forma proporcional = regresión lineal

Modelos lineales

Objetivos:

- -Describir una relación lineal
- -Determinar qué variables son importantes en una relación lineal
- -Predecir nuevos valores de y

Un paréntesis... asociación entre variables

Covarianza: medida de asociación

lineal entre 2 variables

$$S_{xy} = \text{cov}(x, y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{\sum x' y'}{\sum (x')^2}$$

Coeficiente de correlación momento-producto de Pearson

Medida de asociación lineal entre 2 variables

$$r = \frac{\text{cov}(x, y)}{S_x S_y}$$
$$-1 < r < +1$$

Coeficiente de correlación de Spearman

• Se transforman las variables a rangos y se calcula el coeficiente de correlación de Pearson.

 H_0 = no existe una relación *monotónica* entre X e Y en la población.

Matriz de correlación

	Altura	DAP	Densidad	Cobertura
Altura	1	0.6	-0.3	0.7
DAP	0.6	1	0.1	0.4
Densidad	-0.3	0.1	1	-0.3
Cobertura	0.7	0.4	-0.3	1

Regresión lineal simple

Objetivos:

- Describir la relación lineal entre x e y.
- Determinar cuánto de la variación total en y puede ser explicada por la relación lineal con x, y cuánto de esta variación permanece sin explicar.
- Predecir nuevos valores de *y* a partir de nuevos valores de *x*.

Regresión lineal simple

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Modelo Error

$$\hat{y} \neq b_0 + b_1 x$$

Ordenada Pendiente al origen

Mínimos cuadrados

$$\hat{y} = b_0 + b_1 x \qquad \Longrightarrow \min = \sum (y_i - \hat{y}_i)^2$$

Cálculo de la pendiente

$$b_1 = \frac{\text{cov}(x, y)}{S_x^2}$$

Regresión lineal simple

• Forma 1

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$t = \frac{b_1 - \beta_1}{S_b}$$

• Forma 2

$$H_0: \sigma_E^2 \le \sigma_{NE}^2$$

$$H_1: \sigma_E^2 > \sigma_{NE}^2$$

$$F = \frac{S_E^2}{S_{NE}^2}$$

Medidas de bondad de ajuste

• Error estándar de la estimación

$$LC = \hat{y}_i \pm 1.96S_e$$

Regiones de confianza determinadas por rectas

No confundir. Error estándar de la predicción

Bondad de ajuste

• Coeficiente de determinación

$$r^{2} = \frac{SC_{E}}{SC_{T}} = \frac{\sum (\hat{y}_{i} - \overline{y}_{i})^{2}}{\sum (y_{i} - \overline{y}_{i})^{2}}$$

Relación entre regresión y correlación

$$r = \frac{\text{cov}(x, y)}{S_x S_y} = b \frac{S_x}{S_y}$$
$$|r| = \sqrt{r^2}$$

Para variables estandarizadas, r = b

Regresión lineal múltiple

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$
Modelo
Error

 $\beta_0 \rightarrow$ ordenada al origen.

 $\beta_i \rightarrow$ coeficientes de regresión parcial.

Regresión lineal múltiple

Medidas de bondad de ajuste

Coeficiente de determinación múltiple

$$R^2 = \frac{SC_E}{SC_T}$$

Problemas:

- Permanece igual o aumenta con la inclusión de una nueva variable.
- No apropiado para comparar modelos con distinto nº de variables
- Coeficiente de determinación múltiple ajustado

$$R_a^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)$$

Regresión lineal múltiple

Test sobre el modelo global

$$H_0: \rho^2 = 0$$
 $H_1: \rho^2 \neq 0$
 δ
 $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$
 $H_1:$ al menos un par de β_i difiere

Test sobre los coeficientes

$$t_i = \frac{b_i - \beta_i}{S_{b_i}}$$

Variables categóricas

• Variables indicadoras o "dummies": variables categóricas dicotómicas.

$$Longitud = b_0 + b_1 Ancho + b_2 Especie$$

$$Longitud = 0.63 + 1.39 Ancho + 3.81 Especie$$

$$Longitud_{SpA} = 0.63 + 1.39 Ancho$$

 $Longitud_{SpB} = 0.63 + 1.39 Ancho + 3.81$
 $= 4.44 + 1.39 Ancho$

Variables categóricas

Longitud =
$$b_0 + b_1 Ancho + b_2 Especie + b_3 Ancho \times Especie$$

Longitud = $1.96 + 0.91 Ancho + 1.23 Especie +$
 $0.89 Ancho \times Especie$

$$Longitud_{SpA} = 1.96 + 0.91 Ancho$$

 $Longitud_{SpB} = 1.96 + 0.91 Ancho + 1.23 + 0.89 Ancho$
 $= 3.19 + (0.91 + 0.89) Ancho$
 $= 3.19 + 1.8 Ancho$

Variables indicadoras

 $Longitud = b_0 + b_1 Ancho + b_2 EspecieA + b_3 EspecieB$

Individuo	Especie	EspecieA	EspecieB	Especie C
1	A	1 DSPCC1C11	Dispected	Dispectie C
2	В	1	U	Ü
2	C	0	1	0
3	C	0	0	1

EspecieA	EspecieB	Modelo	
1	0	$Longitud = b_0 + b_1 Ancho + b_2 EspecieA$	
0	1	$Longitud = b_0 + b_1 Ancho + b_3 EspecieB$	
0	0		EspecieC

Test de t

$$H_0: \mu_A = \mu_B$$

$$H_1: \mu_A \neq \mu_B$$

$$t = \frac{\left(\bar{X}_A - \bar{X}_B\right) - \left(\mu_A - \mu_B\right)}{S_{\bar{X}_A - \bar{X}_B}}$$

$$t = \frac{8.75 - 9.74}{0.40}$$

$$t = -2.48$$

Droga A	Droga B
8.8	9.9
8.4	9.0
7.9	11.1
8.7	9.6
9.1	8.7
9.6	10.4
Media = 8.75	Media = 9.74
S = 0.58	S = 0.82

Test de t pareado

$$H_0: \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

$$t = \frac{\overline{d} - \mu_d}{S_{\overline{d}}}$$

$$t = \frac{0.033}{0.007}$$

$$t = 3.41$$

Nutriente 1	Nutriente 2	Diferencia
1.42	1.38	+0.04
1.40	1.36	+0.04
1.44	1.47	-0.03
1.44	1.39	0.05
1.42	1.43	-0.01
1.46	1.41	0.05
1.49	1.43	0.06
1.50	1.45	0.05
1.42	1.36	0.06
1.48	1.46	0.02
Media = 1.45	Media = 1.47	Media = 0.03
S = 0.3	S = 0.4	S = 0.03

ANOVA de 1 factor

- 3 drogas + 1 control → efecto sobre el crecimiento
- Factor → droga
- Niveles del factor (= tratamientos)

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu$$

 H_1 : al menos un par de μ 's difiere.

ANOVA de 1 factor

• 3 drogas + 1 control → efecto sobre el crecimiento

ANOVA de 1 factor

ANOVA de 1 factor. Varianza entre grupos

ANOVA de 1 factor. Varianza dentro de grupos

Tabla resumen de ANOVA

Fuente de variación	Suma de cuadrados	Grados de libertad	Varianza	F	P
Entre grupos (factor)	SCE	gl _E = a - 1	$S_E^2 = SCE / gl_E$	S_E^2/S_D^2	
Dentro de grupos (error)	SCD	gl _D = a (n – 1)	$S_D^2 = SCD$ $/ gl_D$		
Total		N - 1			

 $H_0: \sigma_E^2 \leq \sigma_D^2$

 $H_1: \sigma_E^2 > \sigma_D^2$

SCT = SCE + SCD

ANOVA como modelo lineal

crecimiento = $b_0 + b_1 droga1 + b_2 droga2 + b_3 droga3$

<u>Supuestos</u>

ANOVA

- Distribución normal de los residuos dentro de cada tratamiento.
- Homogeneidad de varianzas dentro de cada tratamiento.
- Observaciones independientes.
- x se mide sin error.

<u>Supuestos</u> Colinealidad

 Ninguna de las variables independientes es combinación lineal de otras.

$$x_1 = \text{radio}$$
 $x_1 = \text{altura}$
 $x_2 = \text{diámetro} = 2\text{radio}$ $x_2 = \text{dap}$
 $x_3 = \text{altura} + \text{dap}$

$$r = +1 \text{ ó } -1$$

Colinealidad

"Problemas":

- Error estándar e intervalos de confianza inflados → se reduce la potencia estadística
- El test del modelo global puede ser significativo, sin que ninguno de los predictores sea significativo.

"La colinealidad no es una enfermedad que necesite cura"

Colinealidad

Criterios de identificación:

- Exploración de la matriz de correlación (r > |0.7|)
- Factores de inflación

de la varianza (VIF > 3)

$$T = 1 - R^2$$

$$VIF = \frac{1}{T} = \frac{1}{1 - R^2}$$

Supuestos

$$y-\hat{y}=\varepsilon \longrightarrow \begin{array}{l} \text{Equivalente a la} \\ \text{Variable dependiente} \\ \text{Normalidad} \\ \varepsilon - N(0,\sigma^2) \longrightarrow \begin{array}{l} \text{Homogeneidad} \\ \text{de varianzas} \\ \\ \rho_{\varepsilon_j\varepsilon_k}=0 \longrightarrow \begin{array}{l} \text{Independencia} \\ \text{de errores} \end{array}$$

Independencia de las observaciones

Diagnósticos

Test de t/ANOVA

Normalidad:

- Boxplots → simetría
- Gráfico de valores predichos (medias) vs residuos
- QQplot
- Tests de normalidad

Homoscedasticidad:

- Boxplots → dispersión.
- Tests de homogeneidad de varianzas

$$H_0: \sigma_1^2 = \sigma_2^2 = ... = \sigma_k^2$$

Regresión

- Normalidad:
 - Boxplot de residuos → simetría
- Homoscedasticidad:
 - Gráfico de esperados (y) vs residuos
- Independencia
 - Gráfico de observados (x) vs residuos
- Linealidad
 - Gráfico de dispersión
 - Gráfico de observados (x) vs residuos

QQplot

X → cuantil teórico según una distribución normal
 Y → cuantil observado

Supuestos

Regresión

Homogeneidad de varianzas. Gráfico de predichos vs residuos

Independencia y linealidad. Gráfico de observados vs residuos

Transformaciones

- Justificación: las escalas de medidas son arbitrarias.
- Injustificación: cambio de la variable de respuesta y de H_0
- Objetivos:
- 1) Normalidad.
- 2) Homoscedasticidad.
- 3) Linealidad.

Transformaciones

- Raíz cuadrada > densidades
- Transformación logit → proporciones
- Tranformación cuadrática variables continuas sesgadas hacia la izquierda
- Transformación a rangos

