In the Claims:

	Please cancel claims 1-23 and 27-35
	Please add the following new claims:
1.	(Cancelled)
2.	(Cancelled)
3.	(Cancelled)
4.	(Cancelled)
5.	(Cancelled)
6.	(Cancelled)
7.	(Cancelled)
8.	(Cancelled)
9.	(Cancelled)
10.	(Cancelled)

11.	(Cancelled)		
12.	(Cancelled)		
13.	(Cancelled)		
14.	(Cancelled)		
15.	(Cancelled)		
16.	(Cancelled)		
17.	(Cancelled)		
18.	(Cancelled)		
19.	(Cancelled)		
20.	(Cancelled)		
21.	(Cancelled)		
22.	(Cancelled)		

23. (Cancelled)

- 24. (Original) A method of fabricating a dual spin valve (SV) sensor which comprises the steps of:
- a) sputter depositing the multilayer dual SV sensor including a first spin valve (SV) stack, a second spin valve (V) stack and a longitudinal bias stack disposed between the first and second SV stacks;
- b) annealing the dual SV sensor at a first temperature in a first magnetic field oriented in a transverse direction perpendicular to an air bearing surface; and
- c) annealing the dual SV sensor at a second temperature in a second magnetic field oriented in a longitudinal direction parallel to said air bearing surface, wherein said second temperature is less than said first temperature and said second magnetic field has a magnitude smaller than said first magnetic field.
- 25. (Original) The method of fabricating a dual SV sensor as recited in claim 24, wherein said first temperature is about 280 C and said second temperature is about 240 C.
- 26. (Original) The method of fabricating a dual SV sensor as recited in claim 24, wherein said first first magnetic field has a magnitude of about 10,000 Oe and said second magnetic field has a magnitude of about 200 Oe.

27.	(Cancelled)		
28.	(Cancelled)		
29.	(Cancelled)		
30.	(Cancelled)		
31.	(Cancelled)		
32.	(Cancelled)		
33.	(Cancelled)		
34.	(Cancelled)		
35.	(Cancelled)		
36.	(New) A method as recited in claim 24 wherein said depositing a		
longitudinal bias stack further comprises:			
	depositing a first decoupling layer;		
	depositing a first ferromagnetic layer;		

depositing a layer of antiferromagnetic material; depositing a second ferromagnetic layer; and depositing a second decoupling layer;

- 37. (New) A method as recited in claim 36, wherein: said decoupling layer comprises, Cu-O and Ru.
- 38. (New) A method as recited in claim 36 wherein said first and second ferromagnetic layers comprise Co-Fe.
- 39. (New) A method as recited in claim 36 wherein said layer of anitferromagnetic material comprises Ir-Mn.
- 40. (New) A method as recited in claim 24 wherein said step of depositing a dual spin valve sensor by DC-magnetron sputtering.
- 41. (New) A method as recited in claim 38 wherein said Cu-O layers are deposited by DC-magnetron sputtering using a Cu target in a mixture of argon and oxygen gases.