Exercises week 7

Complexity 2011-2012

A. Silva, H. Barendregt, B. Westerbaan & B. Westerbaan

1. We will show SAT $\leq_P 3$ SAT in steps.

Formulas in SAT might have \rightarrow s in them. Let SAT-ARROWLESS be the set of satisfiable boolean formulas that do not contain the implication connective \rightarrow .

(a) Show SAT \leq_P SAT-ARROWLESS. [Hint: $\neg a \lor b \Leftrightarrow a \to b$]

The \neg s may be anywhere in formulas of SAT-ARROWLESS. Let SAT-ARROWLESS-MOVED \neg be the satisfiable boolean formulas without \rightarrow s in which the \neg s are only found in front of a variable.

(b) Show SAT-ARROWLESS \leq_P SAT-ARROWLESS-MOVED¬. [Hint: $\neg(a \lor b) \Leftrightarrow \neg a \land \neg b$ and $\neg(a \land b) \Leftrightarrow \neg a \lor \neg b$]

SAT-CNF are the satisfiable formulas in conjunctive normal form¹. The distributive laws are:

$$(a \land b) \lor c \Leftrightarrow (a \lor c) \land (b \lor c)$$
$$(a \lor b) \land c \Leftrightarrow (a \land c) \lor (b \land c)$$

For any formula in SAT-ARROWLESS-MOVED¬ we can apply the distributive laws a few times such that it becomes an equivalent formula in conjunctive normal form.

However, the conjunctive normal forms grow too big for this to be a polynomial reduction.

(c) Show that in worst-case the length of a formula in conjunctive normal form is exponential in the original length.

For any formula φ with variables x_1, \ldots, x_n without \to s and all \neg s in front of variables, we can find a formula ψ with variables $x_1, \ldots, x_n, y_1, \ldots, y_k$ in conjunctive normal form that is equisatisfiable. That is: φ is satisfiable if and only if ψ is satisfiable. And furthermore the length of ψ is less than or equal $c \cdot n^2$ where c does not depend on ϕ .

$$\begin{aligned} \text{VARIABLE} &\Rightarrow x_1 | x_2 | \dots \\ &\text{LITERAL} &\Rightarrow \text{VARIABLE} | \neg \text{VARIABLE} \\ &\text{DISJUNCTION} &\Rightarrow \text{LITERAL} | \text{DISJUNCTION} \lor \text{LITERAL} \\ &\text{FORMULA-IN-CNF} &\Rightarrow \text{(DISJUNCTION)} | \text{FORMULA-IN-CNF} \land \text{(DISJUNCTION)} \end{aligned}$$

¹The formulas in conjuctive normal form are defined by the following grammar:

- (d) Show that we can do this for literals.
- (e) Show that if we can do this for φ_1 and φ_2 , that we can do this for $\varphi_1 \wedge \varphi_2$.
- (f) Show that if we can do this for φ_1 and φ_2 , that we can do this for $\varphi_1 \vee \varphi_2$. [Hint: introduce a new variable y_i to denote whether φ_1 or φ_2 is true and rewrite φ_1 and φ_2 .]
- (g) Conclude SAT-ARROWLESS-MOVED $\neg \leq_P \text{SAT-CNF}$.

3SAT are the satisfiable formulas in conjunctive normal form in which each disjunction contains exactly 3 'disjuncts'.

- (h) Show that SAT-CNF $\leq_P 3$ SAT.
- (i) Show that 3SAT is NP-complete.

2SAT are the satisfiable formulas in conjunctive normal form in which each disjunction contains exactly 2 'disjuncts'.

(j) Show that 2SAT is in P.