Sign Language Translator

CS 4391.001 - Group 3

Danny Amezquita

Pranav Balu

Farman Ali

Wei Yuan Liew

Outline

The Problem

Our Method

Our Results

Limits & Future Work

Q&A

References

The Problem

Millions of people worldwide use Sign Language as their primary means of communication.

However, communication barriers persist between sign language users and non-signers, limiting accessibility in everyday interactions. A real-time, accurate translation system is needed to bridge this gap and promote inclusive communication.

Our Method

Technical Stack & Architecture

- → PyTorch Deep Learning Framework
 - CNN Neural Network Implementation
 - Model Training & Inference
 - CUDA GPU Acceleration
- → OpenCV (cv2)
 - ◆ Real-time Video Capture
 - ♦ Image Preprocessing
 - ♦ Frame Analysis
- → Pillow (PIL)
 - ◆ Image Processing
 - Data Augmentation
 - Format Conversion

Implementation Details

- → Data Pipeline:
 - ♦ Kaggle ASL Dataset 87,000 images for training
 - ◆ 26 classes (A-Z)
 - Real-time webcam input processing
- → Processing Steps
 - OpenCV: Capture & frame extraction
 - ♦ PIL: Image resizing & normalization
 - ◆ PyTorch: Model inference
- → Model Architecture:
 - CNN-based classification
 - Cross-entropy loss function
 - ◆ Adam optimizer
 - ♦ Batch normalization

Our Results

Α	В	С	D	Е	F	G	Н	1	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12

Experimental Results

N	0	Р	Q	R	s	Т	U	٧	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- → Model Performance:
 - ♦ Training Accuracy: 97% on Kaggle ASL dataset
 - ♦ Validation Accuracy: 98% on test set
- → Key Metrics:
 - ♦ Letter Recognition Accuracy:
 - A-Z Individual Letters: 83% Overall
 - Most Accurate: Letters: A, L, Y (96%)
 - Most Challenging: Letters E, M, N (65%) and Z (No Gestures)
 - System Performance:
 - Average Latency: 40 ms
 - Memory Usage: 1.5 GB
 - GPU Utilization: 60%

Current Limitations & Future Work

- → Technical Constraints:
 - Single-hand signing only
 - Limited to ASL alphabet (A-Z)
 - However, Z does not work because it needs a gesture
 - Lighting sensitivity
 - Fixed camera angle requirements
- → Next Development Steps:
 - Expand to multi-hand tracking
 - ◆ Add support for common ASL phrases
 - ♦ Improve low-light performance
 - Expand vocabulary beyond alphabet

Questions?

References

https://dl.acm.org/doi/10.1145/3131672.3131693

https://ieomsociety.org/proceedings/2022istanbul/758.pdf

https://dl.acm.org/doi/10.1145/3477498

https://dl.acm.org/doi/10.1145/3301275.3302296

https://how2sign.github.io/index.html

https://www.kaggle.com/datasets/grassknoted/asl-alphabet