EECS 20
Lecture 4 (January 24, 2001)
Tom Henzinger

- 1 Systems are functions
- 2 Signals are functions

Systems as Functions

Domain: set of possible inputs

Range: set of possible outputs

Graph: set of pairs (input, output)

Domain: Nats

Range: Nats

Graph: {(1,1),(2,2),(3,6),(4,24),...}

Domain: Bools

Range: Bools

Graph: { (true, false), (false, true)}

Composition of Systems

Composition of Systems

This is again a system!

The Identity System

Domain: Bools

Range: Bools

Graph: $\{(x,y) \in Bools^2 \mid x=y\}$

System Composition is Function Composition

$$\neg 2 \neg = id$$

because domain
$$(\neg \ \Box \ \neg) = domain (id)$$

range $(\neg \ \Box \ \neg) = range (id)$
 $\forall x \in Bools, (\neg \neg x) = id (x)$

Exponentiation System

graph (exp) =
$$\{((x,y), z) \in \text{Nats}^2 \times \text{Nats} \mid z = x^y\}$$

Exponentiation System

graph (exp) =
$$\{((x,y), z) \in \text{Nats}^2 \times \text{Nats} \mid z = x^y\}$$

Exponentiation System

graph (exp) =
$$\{((x,y), z) \in \text{Nats}^2 \times \text{Nats} \mid z = x^y\}$$

This cannot be written easily using 2 .

Or System


```
domain (\vee) = Bools<sup>2</sup>
range (\vee) = Bools
graph (\vee) = { ((x,y), z) \in Bools<sup>2</sup> \times Bools | z = x \vee y }
```

Or System


```
domain (\vee) = Bools<sup>2</sup>
range (\vee) = Bools
graph (\vee) = { ((x,y), z) \in Bools<sup>2</sup> \times Bools | z = x \vee y }
```


Joins are illegal

Joins are illegal

Joins are illegal

Multiple Outputs

f: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, $f(x,y) = \{ (q,r) \in \text{Nats}$ ₀² $\mid x = q \cdot y + r \wedge r \cdot y \}$

divide: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, divide $(x,y) = \{ (q,r) \in \text{Nats}$ ₀² $\mid x = q \cdot y + r \wedge r \cdot y \}$

divide: Nats² \rightarrow Nats₀² such that

 $\forall x,y \in Nats$, divide $(x,y) = \{ (q,r) \in Nats_0^2 \mid x = q \cdot y + r \wedge r \cdot y \}$

divide: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, divide $(x,y) = \{ (q,r) \in \text{Nats}$ ₀² $\mid x = q \cdot y + r \wedge r \cdot y \}$

divide: Nats² \rightarrow Nats₀² such that

 $\forall x,y \in Nats$, divide $(x,y) = \{ (q,r) \in Nats_0^2 \mid x = q \cdot y + r \wedge r \cdot y \}$

divide: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, divide $(x,y) = \{ (q,r) \in \text{Nats}$ ₀² $\mid x = q \cdot y + r \wedge r \cdot y \}$

 $\forall x,y \in Nats$, divide $(x,y) = \{ (q,r) \in Nats_0^2 \mid x = q \cdot y + r \wedge r \cdot y \}$

Many possible implementations

divide: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, divide $(x,y) = \{ (q,r) \in \text{Nats}_0^2 \mid x = q \cdot y + r \wedge r \cdot y \}$

Many possible implementations

divide: Nats² \rightarrow Nats₀² such that $\forall x,y \in \text{Nats}$, divide $(x,y) = \{ (q,r) \in \text{Nats}$ ₀² $\mid x = q \cdot y + r \wedge r \cdot y \}$

Block diagrams can hide outputs

zerocheck: Nats₀ \rightarrow Bools such that $\forall x \in \text{Nats}$, zerocheck (x) $\Leftrightarrow x = 0$.

Block Diagrams can hide outputs

zerocheck: Nats₀ \rightarrow Bools such that $\forall x \in \text{Nats}$, zerocheck (x) $\Leftrightarrow x = 0$.

Block Diagrams can hide outputs

divisible: Nats² \rightarrow Bools such that $\forall x,y \in N$ ats, divisible $(x,y) \Leftrightarrow (\exists q \in N$ ats, $x = q \cdot y)$.

Hidden inputs are illegal, for now

Hidden inputs are illegal, for now

Constant functions have no inputs

Constant function

Cycles are illegal, for now

Block Diagrams

- -are nested, directed, acyclic graphs
- -allow compositional, hierarchical system description

Quiz

- 1. \forall set x, $x \subseteq P(x)$
- 2. \exists function f, $\{x \in \text{domain}(f) \mid x = f(x)\}$
- 3. $\forall n \in \text{Nats}, n = 2 \implies (n, n+1) \in \{1, 2, 3\}^2$
- 4. $\exists f \in [Nats \rightarrow Nats], f(x) = x^2$