Classification des consommateurs d'électricité dans le système Smart Grid

PRÉSENTÉ PAR:
YOSR TAKOUTI
MOHAMED ALI GUIRAT
INDP3_SYSTIC

ENCADRÉ PAR:

MME ONS BEN RHOUMA

MME MANEL BEN ROMDHANE

Plan

- 1- Cadre du projet
- 2- Base de données
- 3-Préparation et visualisation des données
- 4-Classification des données
- 5-Visualisation des résultats
- 6-Conclusion

1-Cadre du projet:

4

Réseau intelligent

OBJECTIF ©

L'objectif principal consiste donc à regrouper des observations similaires afin de faciliter l'examen de l'ensemble de données. Par conséquent, on procédera à l'identification des modèles de consommation de l'énergie avec l'algorithme de « clustering » K-means

2-Base de données:

La base de données

15 Fichiers CSV

• un million de mesures

4 Attributs

```
Edit
File
                     Language
              View
       LCLid, stdorToU, DateTime, KWH/hh (per half hour)
       MAC005007, Std, 2012-07-09 02:30:00.0000000, 0.04
       MAC005007, Std, 2012-07-09 03:00:00.0000000, 0.042
       MAC005007, Std, 2012-07-09 03:30:00.00000000, 0.039
       MAC005007, Std, 2012-07-09 04:00:00.0000000, 0.028
       MAC005007, Std, 2012-07-09 04:30:00.0000000, 0.032
       MAC005007, Std, 2012-07-09 05:00:00.0000000, 0.043
       MAC005007,Std,2012-07-09 05:30:00.0000000, 0.04
       MAC005007, Std, 2012-07-09 06:00:00.0000000, 0.029
       MAC005007, Std, 2012-07-09 06:30:00.0000000, 0.03
       MAC005007, Std, 2012-07-09 07:00:00.0000000, 0.175
       MAC005007,Std,2012-07-09 07:30:00.0000000, 0.157
       MAC005007, Std, 2012-07-09 08:00:00.00000000, 0.064
       MAC005007, Std, 2012-07-09 08:30:00.0000000, 0.07
       MAC005007, Std, 2012-07-09 09:00:00.0000000, 0.294
       MAC005007, Std, 2012-07-09 09:30:00.0000000, 0.04
       MAC005007, Std, 2012-07-09 10:00:00.0000000, 0.033
       MAC005007, Std, 2012-07-09 10:30:00.0000000, 0.028
       MAC005007, Std, 2012-07-09 11:00:00.0000000, 0.04
       MAC005007, Std, 2012-07-09 11:30:00.0000000, 0.042
       MAC005007, Std, 2012-07-09 12:00:00.0000000, 0.037
       MAC005007, Std, 2012-07-09 12:30:00.0000000, 0.025
       MAC005007, Std, 2012-07-09 13:00:00.0000000, 0.041
       MAC005007, Std, 2012-07-09 13:30:00.0000000, 0.041
       MAC005007, Std, 2012-07-09 14:00:00.0000000, 0.038
       MAC005007,Std,2012-07-09 14:30:00.0000000, 0.024
       MAC005007, Std, 2012-07-09 15:00:00.00000000, 0.04
       MAC005007, Std, 2012-07-09 15:30:00.0000000, 0.041
       MAC005007, Std, 2012-07-09 16:00:00.0000000, 0.038
```

jupyter LCL-June2015v2_120.csv ✓ 25/08/2021

3-réparation et visualisation des données:

Concaténation

file.head(10)

	LCLid	stdorToU	DateTime	KWH/hh (per half hour)
0	MAC005007	Std	2012-07-09 02:30:00.0000000	0.04
1	MAC005007	Std	2012-07-09 03:00:00.0000000	0.042
2	MAC005007	Std	2012-07-09 03:30:00.0000000	0.039
3	MAC005007	Std	2012-07-09 04:00:00.0000000	0.028
4	MAC005007	Std	2012-07-09 04:30:00.0000000	0.032
5	MAC005007	Std	2012-07-09 05:00:00.0000000	0.043
6	MAC005007	Std	2012-07-09 05:30:00.0000000	0.04
7	MAC005007	Std	2012-07-09 06:00:00.0000000	0.029
8	MAC005007	Std	2012-07-09 06:30:00.0000000	0.03
9	MAC005007	Std	2012-07-09 07:00:00.0000000	0.175

file.tail(10)

	LCLid	stdorToU	DateTime	KWH/hh (per half hour)
14999990	MAC000146	ToU	2012-08-16 21:00:00.0000000	0.188
14999991	MAC000146	ToU	2012-08-16 21:30:00.0000000	0.137
14999992	MAC000146	ToU	2012-08-16 22:00:00.0000000	0.116
14999993	MAC000146	ToU	2012-08-16 22:30:00.0000000	0.138
14999994	MAC000146	ToU	2012-08-16 23:00:00.0000000	0.197
14999995	MAC000146	ToU	2012-08-16 23:30:00.0000000	0.155
14999996	MAC000146	ToU	2012-08-17 00:00:00.0000000	0.125
14999997	MAC000146	ToU	2012-08-17 00:30:00.0000000	0.069
14999998	MAC000146	ToU	2012-08-17 01:00:00.0000000	0.101
14999999	MAC000146	ToU	2012-08-17 01:30:00.0000000	0.071

Nettoyage

	LCLid	DateTime	KWH/hh (per half hour)
0	MAC005007	2012-07-09 02:30:00.0000000	0.04
1	MAC005007	2012-07-09 03:00:00.0000000	0.042
2	MAC005007	2012-07-09 03:30:00.0000000	0.039
3	MAC005007	2012-07-09 04:00:00.0000000	0.028
4	MAC005007	2012-07-09 04:30:00.0000000	0.032
5	MAC005007	2012-07-09 05:00:00.0000000	0.043
6	MAC005007	2012-07-09 05:30:00.0000000	0.04
7	MAC005007	2012-07-09 06:00:00.0000000	0.029
8	MAC005007	2012-07-09 06:30:00.0000000	0.03
9	MAC005007	2012-07-09 07:00:00.0000000	0.175

Nombre des compteurs & Nombre des mesures Totales


```
print("Le nombre de compteurs:")
print(file["LCLid"].value counts())
Le nombre de compteurs:
MAC000017
          39114
MAC000015 39089
MAC000031 39059
MAC000048 39028
MAC000046 39025
         9726
MAC005062
MAC005559
MAC005556
MAC005560
MAC005563
Name: LCLid, Length: 461, dtype: int64
```

```
mesure = len(df)
print("nombre de mesure est ",mesure)
nombre de mesure est 14999541
```

461 Compteurs

Détermination des paramètres de consommation énergétique par compteur

	consommation				
	sum	min	max	mean	
LCLid					
MAC000005	2911.808000	0.0	1.979	0.095385	
MAC000014	3132.670999	0.0	2.132	0.130332	
MAC000015	8957.714000	0.0	2.613	0.229162	
MAC000017	5202.072001	0.0	2.331	0.132998	
MAC000031	16295.187997	0.0	4.247	0.417194	
MAC005561	4193.402000	0.0	1.886	0.151995	
MAC005562	6910.988999	0.0	1.879	0.218012	
MAC005563	0.000000	0.0	0.000	0.000000	
MAC005566	8946.788998	0.0	3.936	0.363085	
MAC005567	2268.484999	0.0	1.528	0.108556	

461 rows x 4 columns

Consommation moyenne par jour de semaine, moyenne par jour de week-end

	consommation								
	mean								
weekday	Friday	Monday	Thursday	Tuesday	Wednesday	Weekend			
LCLid									
MAC000005	0.096364	0.104157	0.089285	0.093749	0.093253	0.095452			
MAC000014	0.122962	0.127625	0.133138	0.138966	0.124083	0.132754			
MAC000015	0.279244	0.206488	0.224172	0.213075	0.245149	0.217960			
MAC000017	0.137118	0.129727	0.131517	0.118622	0.139714	0.137141			
MAC000031	0.353874	0.379685	0.363709	0.397497	0.452044	0.486887			
***		***				***			
MAC005561	0.143070	0.154062	0.155568	0.157067	0.153036	0.150564			
MAC005562	0.211326	0.216657	0.213150	0.223063	0.218843	0.221510			
MAC005563	NaN	NaN	NaN	NaN	0.000000	NaN			
MAC005566	0.370457	0.368846	0.357546	0.376491	0.356384	0.356017			
MAC005567	0.118291	0.111119	0.098492	0.106132	0.103454	0.111280			
461 rows × 6	columns								

Consommation par mois

	mean											
month	April	August	December	February	January	July	June	March	May	November	October	September
LCLid												
MAC000005	0.091192	0.081748	0.120143	0.111776	0.115403	0.078975	0.072775	0.112075	0.076702	0.110640	0.093258	0.077257
MAC000014	0.121143	0.109840	0.148667	0.142179	0.149668	0.084555	0.110174	0.111492	0.113759	0.136778	0.138323	0.139617
MAC000015	0.172663	0.187595	0.261687	0.284527	0.278502	0.183657	0.189356	0.281328	0.181244	0.252982	0.214964	0.200658
MAC000017	0.126987	0.123031	0.138492	0.149389	0.166431	0.130255	0.109097	0.126562	0.106177	0.140711	0.134822	0.118020
MAC000031	0.350321	0.178974	0.454380	0.494584	0.550488	0.340201	0.364273	0.476084	0.411682	0.454637	0.425191	0.392951
•••			***							•••		
MAC005561	0.143615	0.091422	0.199011	0.210832	0.192797	0.114964	0.137646	0.176398	0.107396	0.176110	0.120618	0.117057
MAC005562	0.260709	0.142179	0.262332	0.273900	0.262678	0.168384	0.169062	0.282420	0.178002	0.239065	0.224016	0.207226
MAC005563	NaN	NaN	0.000000	NaN								
MAC005566	0.356997	0.607306	0.126849	0.185331	0.110057	0.854140	0.502741	0.087798	0.437714	0.433770	0.541430	0.516285
MAC005567	0.085281	0.118277	0.117174	0.109162	0.115221	0.111548	0.095264	0.111419	0.090206	0.120120	0.106475	0.111298

461 rows x 12 columns

Consommation par période de jour

periode	periode 1	periode 2	periode 3
LCLid			
MAC000005	0.044894	0.091721	0.149583
MAC000014	0.080308	0.187521	0.123193
MAC000015	0.127207	0.268949	0.291527
MAC000017	0.070333	0.138637	0.190092
MAC000031	0.205624	0.489440	0.556824
•••			
MAC005561	0.075379	0.185921	0.194765
MAC005562	0.112731	0.252142	0.289393
MAC005563	NaN	0.000000	NaN
MAC005566	0.250454	0.429897	0.409116
MAC005567	0.065945	0.106982	0.152811

461 rows x 3 columns

Consommation par saison

season	season 1	season 2	season 3	season 4
LCLid				16
MAC000005	0.115930	0.093347	0.077928	0.093711
MAC000014	0.147020	0.115403	0.101427	0.137932
MAC000015	0.274848	0.212183	0.186842	0.222772
MAC000017	0.151782	0.119833	0.120920	0.131224
MAC000031	0.501116	0.413466	0.293717	0.424273
•••				
MAC005561	0.200493	0.142463	0.108924	0.137740
MAC005562	0.266006	0.226883	0.159673	0.223442
MAC005563	0.000000	NaN	NaN	NaN
MAC005566	0.139007	0.293534	0.656380	0.493330
MAC005567	0.113664	0.095749	0.108505	0.112563

461 rows × 4 columns

17

Regrouper les dataframes

df_finale Wednesday ... Monday Thursday Tuesday November October September 0.089285 0.093749 0.093253 0.124083 0.138323 0.127625 0.133138 0.206488 0.224172 0.213075 0.245149 0.252982 0.214964 0.186842 0.222772 0.139714 0.134822 0.131517 0.153036 0.176110 0.120618 0.155568 0.157067 0.218843 NaN 0.000000 0.000000 NaN 0.000000 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.433770 0.368846 0.357546 0.376491 0.356384 0.541430 0.656380 0.4933330 0.103454

4-Classification des données:

Elbow Method:

Il excelle à identifier des

00

- groupes de formes non sphériques.
- Il résiste aux valeurs abérrants

5-Visualisation des résultats:

6-Conclusion:

- K-means est le plus adéquat pour notre application car il a pour objectif de regrouper des éléments similaires dans des clusters.
- Pour les perceptives et après l'exploration de données et décilage des individus similaires, on peut passer à la prédiction ou application des algorithmes d'optimisation de la consommation énergétique.

Merci pour votre attention