Zadanie 4

Patryk Lisik

30 Styczeń 2023

Streszczenie

Każdą dodatnią liczbę całkowitą n można jednoznacznie wyrazić w postaci dwójkowej: $n=b_k2_k+b_{k-1}^{k-1}\cdots_12^1+b_02^0$, gdzie $b_i\in 0,1$ i $b_k=1$ dla n>0. Wskaźnik najbardziej znaczącego bitu b_k jest równy $k=\lfloor\log_2 n\rfloor$ więc całkowita liczba bitów w rozwinięciu dwójkowym liczby n>0 wynosi $\ell_n=\lfloor\log_2 n\rfloor+1$. Niech s_n będzie liczbą '1' w w zapisie dwójkowym liczby n (tj. $s_n=\sum_{i=0}^k b_k$). Łatwo sprawdzić, że $s_0=0, s_1=0, s_2=1, s_3=2, s_4=1, s_5=2, s_6=2, s_7=3, s_8=1$ itd. Ponieważ

$$\left| \frac{n}{2} \right| = b_k 2^{k-1} + b_{k-1} 2^{k-2} + \dots + b_1 2^0$$

to wynika stąd, że liczba "1" w zapisie dwójkowym $\lfloor \frac{n}{2} \rfloor$ jest taka sama, jak w zapisie dwójkowym n (gdy $b_0=0$ lub jest o jeden mniejsza(gdy $b_0=0$). Zauważ, ze $\forall_{n\geqslant 0}b_0=n-2\lfloor \frac{n}{2} \rfloor$. Ostatecznie otrzymujemy związek rekurencyjny.

$$s_0 = 0,$$

$$s_n = s_{\lfloor \frac{n}{2} \rfloor} + n - 2 \lfloor \frac{n}{2} \rfloor$$

Znajdź wyrażenie dla s_n zawierające co najwyżej jedną sumę częściową pewnego ciągu oraz górne i dolne ograniczenie na tempo wzrostu s_n .

Lemat 1

Rekurencja dla $n \geqslant 2$: $a_n = ba_{\lfloor \frac{n}{2} \rfloor} + n$

Rozwiązanie ogólne części jednorodnej: $a_n^o = \alpha b^{\lfloor \log n \rfloor} = \Theta(n^{\log b})$

Rozwiązanie szczególne części niejednorodnej: $a_n^s = \sum_{k=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor b^k$

Lemat 2

Rekurencja dla $n \geqslant 2$: $a_n = ba_{\lfloor \frac{n}{2} \rfloor} + \lfloor \frac{n}{2} \rfloor$

Rozwiązanie ogólne części jednorodnej: $a_n^o = \alpha b^{\lfloor \log n \rfloor} = \Theta(n^{\log b})$

Rozwiązanie szczególne części niejednorodnej: $a_n^s = \sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor b^{k-1}$

Lemat 3 (Twierdzenie o superpozycji) Jeżeli $a_n = f_n$ i $a_n = g_n$ są odpowiednio rozwiązaniami rekurencji liniowych niejednorodnych:

$$a_n = c_1(n)a_{n-1} + c_2(n)a_{n-2} + \dots + c_n(n)a_0 + \phi(n)$$

$$a_n = c_1(n)a_{n-1} + c_2(n)a_{n-2} + \dots + c_n(n)a_0 + \psi(n)$$

to $a_n = \alpha f_n + \beta g_n$ jest rozwiązaniem rekurencji liniowej niejednorodnej postaci:

$$a_n = c_1(n)a_{n-1} + c_2(n)a_{n-2} + \dots + c_n(n)a_0 + \alpha\phi(n) + \beta\psi(n)$$

Lemat 4 $n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil$

Lemat 5 (Z tabeli III) Rekurencja: $a_n = b_{\lfloor n/2 \rfloor} + \Theta(1)$ ma tempo wzrostu

$$\begin{cases} a_n = \Theta(1) & 0 < b < 1 \\ a_n = \Theta(\log n) & b = 1 \\ a_n = \Theta(n^{\log b}) & b > 1 \land a_1 > \frac{1}{1-b} \end{cases}$$

Rozwiązanie rekurencji s_n

Rozważmy ciągi

$$c_n = c_{\lfloor \frac{n}{2} \rfloor} + \lfloor \frac{n}{2} \rfloor$$
$$d_n = d_{\lfloor \frac{n}{2} \rfloor} + n$$

o rozwiązaniach:

$$c_n = \alpha 1^{\lfloor \log n \rfloor} + \sum_{k=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor 1^k = \alpha + \sum_{k=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor$$
$$d_n = \alpha 1^{\lfloor \log n \rfloor} + \sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor 1^{k-1} = \alpha + \sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor$$

z twierdzenia o superpozycji:

$$s_n = \alpha + \sum_{k=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor - 2 \left(\sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor \right) = \alpha + n - \sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor$$

Lematy 1 i 2 są aplikowalne tylko dla $n \ge 2$ dlatego α musimy obliczyć dla współczynnika przynajmniej 2. Manualnie obliczamy że $S_2 = 1$ i następnie obliczamy α .

$$1 = \alpha + 2 - \sum_{k=1}^{\lfloor \log 2 \rfloor} \left\lfloor \frac{2}{2^k} \right\rfloor \implies \alpha = 0$$

Finalnie

$$s_n = n - \sum_{k=1}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor$$

Zadanie 4 3

Górne i dolne ograniczenie s_n

Ilość cyfr przedstawienia liczby n w postaci dwójkowej jest równa $\lfloor \log n \rfloor + 1$. Zatem górne ograniczenie wzrostu s_n to $O(\log n)$ – gdy wszystkie cyfry są '1'. Dla $n \geq 2$ minimalna ilość jedynek to 1 dlatego tempo wztrstu s_n to $\Omega(1)$.