Ingeniería inversa a pantallas LCD

Alejandro Oquendo

April 21, 2023

Introducción

- "La ingeniería inversa es el proceso llevado a cabo con el objetivo de obtener información o un diseño a partir de un producto, con el fin de determinar cuáles son sus componentes y de qué manera interactúan entre sí y cuál fue el proceso de fabricación."
- "Una pantalla de cristal líquido o LCD (sigla del inglés liquid-crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora."
- Esta charla habla acerca del proceso que se hizo para poder controlar un LCD desde una placa compatible con Arduino
- No se tienen ningún dato acerca de como funciona el LCD, esto es tomado como un reto
- Esta presentación estuvo a punto de no ser realizada

Propósito

- Aprender nuevas maneras de ver las cosas
- Reutilizar componentes electrónicos de alguna manera iban a ser desechados
- Desarrollar nuevas habilidades
- Un LCD es un solo un tipo de componente de la infinidad de componentes que se pueden aprovechar

Fuente de componentes

Fuente de componentes

- ► Teléfono que no le funcionaba el teclado
- ▶ Pantalla LCD de matriz de puntos

Análisis de placa

- ► PCB de teclado roto, se podía reparar pero utilizar la pantalla tiene mas valor en mi caso
- ▶ Pantalla LCD con un conector de 8 pines
- Algo parecido a un SoC para controlar el funcionamiento del teléfono

Análisis de LCD

- La pantalla mostraba un modelo, pero despues de buscar no se encontraron ninguna especificación
- ► Tiene luz de fondo, pixels oscuros, monocromático
- ► Cable flex con 9 pines conectado a la placa principal

Averiguar el pinout

- Normalmente se tienen 2 pines de alimentación: VCC y GND
- En este caso se tiene un pin extra para alimentación de backlight
- El resto de pines eran 5, que debían ser de datos

Averiguar el tipo de bus de datos

- Las pantallas LCD tienen distintos tipos de buses de datos
- Estos pueden ser paralelos o seriales
- ► En este caso podría ser uno de tipo serial por la cantidad reducida de pines (5)

Averiguar el tipo de bus de datos

- Para confirmar se podría hacer un análisis de como está conectado este bus con los demás componentes
- Utilizando un multímetro se evidencia que solo existe una conexión directa entre el LCD y el SoC
- ► Entonces se podría descartar que use l²C o SPI

Averiguar el tipo de bus de datos

- ► Para averiguar mas detalles se necesita analizar los datos que circulan por esos 5 pines
- ► Se decidió conectar un analizador lógico al bus (Saleae)
- Los pines son muy delgados, entonces se suelda en los terminales de unas resistencias SMD

Conexión a bus de datos

Captura de datos

- Una vez teniendo conectado el bus al analizador lógico, este se conecta al puerto USB
- Se inicia el software Logic de Saleae con un trigger en uno de los pines para que inicie la captura
- ► Se enciende el teléfono para que empiece el proceso

Primera captura en Logic

Análisis de primera captura

- ► Se observa un ancho de pulso minimo de 250 nanosegundos
- ▶ De la captura, de aproximandamente 5 segundos, se observa que al final existe un grupo de datos cada 1 segundo
- Esto corresponde a un timer que muestra el teléfono cuando esta descolgado

Timer

Análisis de primera captura

- ► El canal 3 parece ser de datos
- Normalmente los primeros datos en ser enviados son los de configuración del LCD
- Los datos mandados cada segundo son directamente datos de los pixeles, entonces convendría concentrarse en estos
- El problema con esta captura es que no se tiene un clock, entonces tal vez podría ser el bus no cumple con un estandar conocido
- Se intentó usar una codificación conocida, la que mas coincidia era la Manchester

Line codes

Análisis de primera captura

- Se exportó los datos a un .csv para comparar los datos de pixeles
- Se encontraron muchas diferencias, en teoría solo deberían haber diferencias de unos pixeles
- No había orden establecido, algo estaba fallando en la captura
- Despues de varios días de revisar la captura, se descubrió que la velocidad de captura no era sufiente

Segunda captura de datos

- ► El analizador lógico permite capturar datos a más velocidad, pero menos cantidad de tiempo
- Lo primero que se nota es que el canal 3 en realidad es el clock
- ► El canal 4 posiblemente es de datos
- Los otros canales son posiblemente de control

Canales identificados

Análisis de la segunda captura

- ➤ Se nota que el canal 3 y 4 posiblemente cumplen con el protocolo SPI
- Se hace una revisión de SPI, si corresponden los otros canales
- Se configura Logic para que decodifique los datos
- Luego de varios intentos se logra hacer la decodificación y es posible exportar los datos decodificados
- ➤ Se hace una comparación entre los datos de pixeles, se nota que existe cierto orden y algunos datos coinciden

Protocolo SPI

Análisis de los datos

- ► Se nota un patrón en los datos, existen 3 bytes que se repiten
- Estos se repiten cada vez que se envia un lote largo, posiblemente sean de configuración
- ➤ Se realiza una busqueda de estos 3 bytes y sorprendentemente se encuentra un foro
- En el post se encuentra un modelo de un LCD
- Se encuentra el datasheet del LCD

Busqueda de bytes

Foro con datos de LCD

Análisis de datasheet

- ► El LCD esta dividido en paginas, al parecer 8 y según los datos capturados hay 9
- ➤ Se confirma que hay un pin que sirve para diferenciar los datos entre comandos y datos de pixels
- Existen comandos para configurar el LCD, como ser el constraste
- Se puede concluir que el datasheet no coincide a la totalidad con el LCD

Datasheet de LCD

EA DOGM128-6 GRAPHIC

TABLE OF PROGRAMMING COMMANDS

Command				Cor	nma	Function						
ou/lianu	A0	/RD	/WR								D0	
1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display ON/OFF 0: OFF, 1: ON
2) Display start line set	0	1	0	0 1 Display start address						ddr	Sets the display RAM display start line address	
3) Page address set	0	- 1	0	- 1	0	- 1	-1		ge a			Sets the display RAM page address
Column address set upper bit Column address set lower bit	0	1	0	0	0	0	0	colu	ımn ıst si	ade	icant fress ficant fress	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of the display RAM column address.
5) Status read	0	0	-1		St	atus		0	0	0	0	Reads the status data
6) Display data write	1	1	0	Write data					ta		Writes to the display RAM	
7) Display data read	1	0	- 1	Read data					ta		Reads from the display RAM	
(8) ADC select	0	1	0	-1	0	1	0	0	0	0	0	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	-1	0	1	0	0	1	0	0	Display all points 0: normal display 1: all points ON
11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	- 1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	- 1	0	- 1	-1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	- 1	1	0	0	0				Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1	Operating mode		iting	Select internal power supply operating mode
17) Vo voltage regulator internal resistor ratio	0	1	0	0	0	1	0	0		sis	tor	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1 0	0	0 Ele	o ctro	0 nic v	olun	o ne r	1 value	Set the Vo output voltage electronic volume register
19) Static indicator ON/OFF		-1	0	1	0	1	0	1	1	0	0	0: OFF, 1: ON
Static indicator register set				0	0	0	0	0	0	0	Mode	Set the flashing mode
(20) Booster ratio set	0	1	0	1 0	0	0	1	0	0	ste	0 ip-up alue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	- 1	0	- 1	-1	- 1	0	0	0	1	-1	Command for non-operation
(23) Test	0	- 1	0	- 1	1	1	1		*			Command for IC test. Do not use this command

00	Column address 127
D0 D7	Page 0
D0 D7	Page 1
D0 D7	Page 2
D0 D7	Page 3
D0 D7	Page 4
D0 D7	Page 5
D0 D7	Page 6
D0 D7	Page 7

Implementación de una biblioteca para Arduino

- ➤ Ya sabiendo el modelo del LCD, se nota que existe una biblioteca (library) para Arduino
- Se decide implementar una biblioteca para entender a profundidad el funcionamiento
- Se implementa un constructor que inicializa el LCD, se utiliza los datos exportados de la captura
- ► La placa de prueba tiene soporte de hardware para SPI, se utiliza ese mismo mas los pines extra

Implementación de una biblioteca para Arduino

- Se implementan init_lcd(), clean_screen(), set_pixel() y refresh_screen()
- Se añade una matriz que representa la pantalla
- Esta matriz puede ser manipulada indirectamente con set_pixel(x,y,value)
- Con refresh_screen() se vuelca la información de la matriz directamente al LCD
- Dentro de refresh_screen() hay una llamada a SPI.transfer(display[i][j])

Ya se puede controlar el LCD

Mostrando pixels aleatorios

Destino del LCD

➤ Ya sabiendo como funciona y teniendo implementada una biblioteca, posiblemente será destinado a un proyecto que implemente el juego de la vida de Conway Gracias!