2023-2024第二学期伯苓班实变函数期末考试试卷

July 6, 2024

1. f(x) 在 [0,1] 上绝对连续,证明: sin(f(x)) 也绝对连续.

$$2.$$
求 $\lim_{n\to\infty} \int_1^\infty \frac{\sqrt{x}}{1+nx^3} dx$

 $3. |f'(x)| \le M$ 且 f(x)绝对连续,证明: $|f(x) - f(y)| \le |x - y|$

4.
$$f_n \Longrightarrow f \perp f_n < f_{n+1}$$
, 证明: $\lim_{n \to \infty} \int_E f_n \, dx \le \int_E f \, dx$

5. a 是 Lebesgue 点,有一列可测集合 $\{E_n\}$ 和一列趋于 0 的数 $\{r_n\}$,存在 $\delta > 0$, $E_n \subseteq (a - r_n, a + r_n) \perp m(E_n) > \delta r_n$, $\Re \mathbb{H}$: $\lim_{n \to \infty} \frac{1}{m(E_n)} \int_{E_n} f(x) dx = f(a)$

6. g(x) 在 [0,1] 上单调递增,有 $(\int_a^b f(x)dx)^2 \le (g(b) - g(a))(b-a)$, 证明 $f^2 \in L([0,1])$

 $7. f(x) \in L([0,1])$,存在 $\delta > 0$, f在 $[0,\delta]$ 有界,证明

- (1) 对任意的 n 有 $f(x^n) \in L([0,1])$ (2) 若 f 单调,则 $\lim_{n\to\infty} \int_0^1 f(x^n) dx = f(0)$
 - 8. 对任意测度为 1 的的开集 G ,有 $\int_C f(x)dx = 0$,证明: f(x) = 0 a.e.

注:本文档距考试后12天后编写,回忆者可能疏漏,仅供参考。