Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_MCQ

Attempt : 1 Total Mark : 15

Marks Obtained: 14

Section 1: MCQ

1. Which of the following is a valid preorder traversal of the binary search tree with nodes: 18, 28, 12, 11, 16, 14, 17?

Answer

18, 12, 11, 16, 14, 17, 28

Status: Correct Marks: 1/1

2. Find the in-order traversal of the given binary search tree.

Answer

1, 2, 4, 13, 14, 18

Status: Correct Marks: 1/1

3. Find the post-order traversal of the given binary search tree.

Answer

10, 17, 20, 18, 15, 32, 21

Status: Correct Marks: 1/1

4. Which of the following is the correct pre-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

50, 30, 20, 32, 55, 52, 57

Status: Correct Marks: 1/1

5. How many distinct binary search trees can be created out of 4 distinct keys?

Answer

14

Status: Correct Marks: 1/1

6. Which of the following operations can be used to traverse a Binary Search Tree (BST) in ascending order?

Answer

Inorder traversal

Status: Correct Marks: 1/1

7. The preorder traversal of a binary search tree is 15, 10, 12, 11, 20, 18, 16, 19. Which one of the following is the postorder traversal of the tree?

Answer

Marks : 1/1 Status: Correct

8. Find the preorder traversal of the given binary search tree.

Answer

9, 2, 1, 6, 4, 7, 10, 14

Status: Correct Marks: 1/1

9. Which of the following is the correct in-order traversal of a binary search tree with nodes: 9, 3, 5, 11, 8, 4, 2?

Answer

2, 3, 4, 5, 8, 9, 11

Status: Correct Marks: 1/1

10. While inserting the elements 5, 4, 2, 8, 7, 10, 12 in a binary search tree, the element at the lowest level is _

Answer

Status: Correct Marks: 1/1

11. While inserting the elements 71, 65, 84, 69, 67, 83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is

Answer

Status: Correct

12. Find the pre-order traversal of the given binary search tree.

Answer

13, 2, 1, 4, 14, 18

Status: Correct Marks: 1/1

13. Find the postorder traversal of the given binary search tree.

Answer

1, 2, 4, 13, 14, 18

Status: Wrong Marks: 0/1

14. In a binary search tree with nodes 18, 28, 12, 11, 16, 14, 17, what is the value of the left child of the node 16?

Answer

14

Status: Correct Marks: 1/1

15. Which of the following is the correct post-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

20, 32, 30, 52, 57, 55, 50

Status: Correct Marks: 1/1

Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 0

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5 1051527

15

Output: 2 5 7 10

Answer

Status: Skipped Marks: 0/10 2716240807158 2176240801758

Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Mike is learning about Binary Search Trees (BSTs) and wants to implement various operations on them. He wants to write a basic program for creating a BST, inserting nodes, and printing the tree in the pre-order traversal.

Write a program to help him solve this program.

Input Format

The first line of input consists of an integer N, representing the number of values to insert into the BST.

The second line consists of N space-separated integers, representing the values to insert into the BST.

Output Format

The output prints the space-separated values of the BST in the pre-order traversal.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
       31524
       Output: 3 1 2 5 4
       Answer
       #include <stdio.h>
       #include <stdlib.h>
       struct Node {
         int data:
         struct Node* left;
         struct Node* right;
       };
       struct Node* createNode(int value) {
         struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
         newNode->data = value;
         newNode->left = newNode->right = NULL;
         return newNode;
       // You are using GCC
       struct Node* insert(struct Node* root, int value) {
         if(root == NULL){
           return createNode(value);
         }
         if(value < root->data){
           root->left = insert(root->left, value);
         } else{
           root->right = insert(root->right,value);
return root;
```

```
void printPreorder(struct Node* root) {
    if (root != NULL) {
        printf("%d" root
             printPreorder(root->left);
            printPreorder(root->right);
          }
        int main() {
          struct Node* root = NULL;
                                                                                         2116240801158
          int n;
          scanf("%d", &n);
        for (int i = 0; i < n; i++) {
             int value;
             scanf("%d", &value);
            root = insert(root, value);
          printPreorder(root);
          return 0;
        }
                                                                                         2116240801158
.us
        Status: Correct
                                                                                   Marks: 10/10
```

2176240807758

2116240801158

Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are required to implement basic operations on a Binary Search Tree (BST), like insertion and searching.

Insertion: Given a list of integers, construct a Binary Search Tree by repeatedly inserting each integer into the tree according to the rules of a BST.

Searching: Given an integer, search for its presence in the constructed Binary Search Tree. Print whether the integer is found or not.

Write a program to calculate this efficiently.

Input Format

The first line of input consists of an integer n, representing the number of nodes

in the binary search tree.

The second line consists of the values of the nodes, separated by space as integers.

The third line consists of an integer representing, the value that is to be searched.

Output Format

The output prints, "Value <value> is found in the tree." if the given value is present, otherwise it prints: "Value <value> is not found in the tree."

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 7
8 3 10 1 6 14 23
Output: Value 6 is found in the tree.
Answer
// You are using GCC
#include <stdio.h>
#include <stdlib.h>
struct Node {
  int data:
  struct Node* left;
  struct Node* right;
};
struct Node* createNode(int value) {
  struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
  newNode->data = value:
  newNode->left = newNode->right = NULL;
  return newNode;
```

```
struct Node* insert(struct Node* root, int value) {
          if (root == NULL) {
            return createNode(value);
          if (value < root->data) {
            root->left = insert(root->left, value);
          } else {
            root->right = insert(root->right, value);
          return root;
       int search(struct Node* root, int key) {
          if (root == NULL) {
            return 0;
          if (root->data == key) {
            return 1;
          }
          if (key < root->data) {
            return search(root->left, key);
          } else {
            return search(root->right, key);
    int main() {
          int n, value, key;
          scanf("%d", &n);
          struct Node* root = NULL;
          for (int i = 0; i < n; i++) {
            scanf("%d", &value);
            root = insert(root, value);
          }
if (search(root, key)) {
    printf("Value %d :---
            printf("Value %d is found in the tree.\n", key);
```

```
} else {
    printf("Value %d is not found in the tree.\n", key);
}

return 0;
         return 0;
       Status: Correct
                                                                      Marks: 10/10
2116740801158
                                                                           2176240801758
                         2116240801158
                                                  2116240801158
                                                                           2116240801158
2116240801158
                        2116240801158
```

Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 0

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

The first line of output prints the space-separated elements of the BST in post-order traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 3 5 10 15

Output: 15 10 5

The minimum value in the BST is: 5

Answer

2176240801758

Status: Skipped Marks: 0/10

2176240801758

2716240801158

Name: Kavya P

Email: 240801158@rajalakshmi.edu.in

Roll no: 2116240801158 Phone: 8778605398

Branch: REC

Department: I ECE FB

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
       1051527
       Output: 15
       Answer
       #include <stdio.h>
       #include <stdlib.h>
       struct TreeNode {
         int data;
         struct TreeNode* left:
         struct TreeNode* right;
       };
       struct TreeNode* createNode(int key) {
         struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
       TreeNode));
         newNode->data = key;
         newNode->left = newNode->right = NULL;
         return newNode;
       // You are using GCC
       struct TreeNode* insert(struct TreeNode* root, int key) {
         if(root==NULL){
           return createNode(key);
         if(key<root->data){
           root->left=insert(root->left,key);
         else if(key>root->data){
           root->right=insert(root->right,key);
return root;
```

```
int findMax(struct TreeNode* root) {
         if(root!=NULL){
           while(root->right!=NULL)
            root=root->right;
           return root->data;
         }
       }
       int main() {
         int N, rootValue;
         scanf("%d", &N);
                                                                                2176240801758
         struct TreeNode* root = NULL;
        for (int i = 0; i < N; i++) {
            int kev:
            scanf("%d", &key);
           if (i == 0) rootValue = key;
           root = insert(root, key);
         }
         int maxVal = findMax(root);
         if (maxVal != -1) {
           printf("%d", maxVal);
                                                     2176240801758
return 0;
                                                                           Marks: 10/10
       Status: Correct
```

2116240801158