# Discussion of "Corporate Taxation and Firm Productivity" by Holtmann et al.

Ahmed Tohamy

Department of Economics, University of Oxford

August 21, 2024

#### Overview

#### Question

Do corporate tax incentives affect (residual) firm TF productivity?

#### Contribution

Despite plethora of theoretical mechanisms.

Empirical work is scant.

#### Data

Orbis sample with 4M firms in 200 countries between 2010-18.

#### Research Design

Estimate TFP using Ackerberg et al. (2015)

Unconditional quantile regression - Effect along TFP distribution

#### Main Results

- (1)  $\uparrow$  C-tax  $\implies \uparrow$  3.61pts. of TFP at 5th-pctile of TFP dist. related to firm exit.
- (2)  $\uparrow$  C-tax  $\implies \downarrow$  0.48pts. of TFP at 90th-pctile of TFP dist. related to reduction in productivity-enhancing investment.
- (3) C-tax reduces firm mobility over distribution of TFP.

## Impact of C-tax

Figure 5: Unconditional Quantile Regression Coefficients



$$y_{it} = f(k_{it}, l_{it}; m_{it}) + \omega_{it} + \epsilon_{it}$$
 (1)

$$y_{it} = f(k_{it}, l_{it}; m_{it}) + \omega_{it} + \epsilon_{it}$$
 (1)

(1)  $y_{it}$  is normally logged revenue or logged VA in the literature. (Levinsohn-Petrin'03; Deval '23; Olley-Pakes'96, ACF'15)

P: uses Orbis' value added following Gal (2013)

 $\implies$  might introduce input pricing estimation concerns unless we believe  $m_{it}$  is separable + deflate series separately using output & input indices.

$$y_{it} = f(k_{it}, l_{it}; m_{it}) + \omega_{it} + \epsilon_{it}$$
 (1)

(1)  $y_{it}$  is normally logged revenue or logged VA in the literature. (Levinsohn-Petrin'03; Deval '23; Olley-Pakes'96, ACF'15)

P: uses Orbis' value added following Gal (2013)

 $\implies$  might introduce input pricing estimation concerns unless we believe  $m_{it}$  is separable + deflate series separately using output & input indices.

(2) Ackerberg et al: productivity  $\omega_{it}$  assumed to follow AR(1).\*

P: residual temporal dependence doesn't seem to be accounted for in exercise.  $\epsilon_{it}$  in this framework is meas. error. Is it included in TFP?

$$y_{it} = f(k_{it}, l_{it}; m_{it}) + \omega_{it} + \epsilon_{it}$$
 (1)

- (1)  $y_{it}$  is normally logged revenue or logged VA in the literature. (Levinsohn-Petrin'03; Deval '23; Olley-Pakes'96, ACF'15)
  - P: uses Orbis' value added following Gal (2013)

 $\implies$  might introduce input pricing estimation concerns unless we believe  $m_{it}$  is separable + deflate series separately using output & input indices.

- (2) Ackerberg et al: productivity  $\omega_{it}$  assumed to follow AR(1).\*
  - P: residual temporal dependence doesn't seem to be accounted for in exercise.  $\epsilon_{it}$  in this framework is meas. error. Is it included in TFP?
- (3) Estimation of coefficients on industry-level with rolling or separate time periods: the finer, the better.
  - P: More detail needed (Gal 2013 uses: 2-digit); I think in this paper you could go up to 4-digits given sample-size.

$$y_{it} = f(k_{it}, l_{it}; m_{it}) + \omega_{it} + \epsilon_{it}$$
 (1)

- (1)  $y_{it}$  is normally logged revenue or logged VA in the literature. (Levinsohn-Petrin'03; Deval '23; Olley-Pakes'96, ACF'15)
  - P: uses Orbis' value added following Gal (2013)  $\implies$  might introduce input pricing estimation concerns unless we believe  $m_{it}$  is separable + deflate series separately using output &
- input indices. (2) Ackerberg et al: productivity  $\omega_{it}$  assumed to follow AR(1).\*
  - P: residual temporal dependence doesn't seem to be accounted for in exercise.  $\epsilon_{it}$  in this framework is meas. error. Is it included in TFP?
- (3) Estimation of coefficients on industry-level with rolling or separate time periods: the finer, the better.
  - P: More detail needed (Gal 2013 uses: 2-digit); I think in this paper you could go up to 4-digits given sample-size.
- \* Actual assumption is first-order Markov process

### Market Power & Misallocation





This paper: Falling C-tax

Diez et al. '23: Rising markups

C-tax affects TFP through exit & productivity-enhancing investment OR through market competition?

C-tax may also affect misallocation a la Hsieh & Klenow (2009) for example through loss provisions.

Both implying less TFP.

## Other Thoughts

- Theoretical exercise perhaps too restrictive given empirical nature
  - S: Either remove it or allow a more complex environment.
- Serial correlation in residual productivity?
  - S: Model as an AR(1)?
- Reverse causality? statutory corporate tax reacts to low productivity shocks.
  - S: unlikely in developed economies where tax policy is acyclical (Vegh & Vuletin 2015); focus on a sample of developed economies
  - S: look at dynamics in a staggered DiD model.
- Account for multiple simultaneous changes in tax code
- More details on estimation method for TFP.

#### Direction of travel

- Explore robustness w.r.t. the estimation of TFP.
  - 1. estimate TFP using Bond-Blundell GMM methods.
  - 2. calculate using parametric methods assuming industry-level input shares.
  - 3. if using VA as dep. var., deflate output using output price index & flex. inputs using inputs price indices
  - 4. Regardless, estimate using sales data too.
- Study more directly market power/misallocation mechanism within this framework. Do higher taxes imply less investment or more misallocation/market power?
- Account for other changes in the tax system: dividends, capital gains.
- I would want more evidence on why multinationals are less affected. Can we study the avoidance mechanism directly using anti-avoidance recent reforms?