Université PIERRE ET MARIE CURIE L2 Mathématiques

2006-2007 Module LM220

Correction de l'examen du 5 février 2007

Exercice 1

- 1) On a $19 \equiv -2 \mod 7$ et $23 \equiv 2 \mod 7$, d'où $19^{12} \times 23^{43} \equiv 2^{55} \mod 7$. Par ailleurs, on a $2^3 \equiv 1 \mod 7$, d'où $2^{55} \equiv 2 \mod 7$. Le reste cherché est donc 2.
- 2) Les entiers naturels divisibles par 175 et 245 sont ceux divisibles par leur plus petit commun multiple m. On a 175 = $5^2 \times 7$ et 245 = 5×7^2 , d'où $m = 5^2 \times 7^2 = 1225$. Par suite, les entiers cherchés sont

1225, 2450, 3675, 4900, 6125, 7350, 8575 et 9800.

3) Soit a un entier naturel possédant la propriété de l'énoncé. Il existe $q \in \mathbb{N}$ tel que l'on ait $a = 64q + q^3$ avec $0 \le q^3 < 64$. Vu que $64 = 4^3$, on a $0 \le q < 4$. On en déduit que les entiers cherchés sont

4) On a les égalités $5757 = 5700 + 57 = 57 \times 100 + 57 = 57 \times 101$. La décomposition en facteurs premiers de 5757 est donc $3 \times 19 \times 101$. L'ordre du groupe est ainsi (φ étant la fonction indicatrice d'Euler),

$$\varphi(5757) = 2 \times 18 \times 100 = 3600.$$

5) On utilise l'algorithme d'Euclide. Conformément à cet algorithme, on obtient le tableau suivant :

		·								
	1	1	1	1	3	1	1	1	8	
553	337	216	121	95	26	17	9	8	1	0
1	0	1	-1	2	-3	11	-14	25	-39	
0	1	-1	2	-3	5	-18	23	-41	64	

On en déduit l'égalité $64 \times 337 - 39 \times 553 = 1$, d'où $\overline{337}^{-1} = \overline{64}$.

Exercice 2

1) Le polynôme P est irréductible sur \mathbb{F}_5 , car il est de degré 3 et n'a pas de racines dans \mathbb{F}_5 . Par suite, K est un corps.

- 2) La caractéristique de K est 5 et son cardinal est $5^3 = 125$.
- 3) Le groupe K^* est d'ordre 124. On a 124 = 4 × 31. Les ordres possibles des éléments de K^* sont donc 1, 2, 4, 31, 62 et 124.
- 4) On a $\alpha^3 = -1 \alpha$. Par ailleurs, on a $\alpha^5 = 1 + \alpha \alpha^2$. Puisque K est de caractéristique 5, il en résulte que l'on a

$$\alpha^{15} = -(1+\alpha)^5 = -1 - \alpha^5 = \alpha^2 - \alpha - 2.$$

On en déduit que

$$\alpha^{30} = (\alpha^2 - \alpha - 2)^2 = \alpha^2 + 1.$$

- 5) L'élément α n'est pas d'ordre 1, 2 ni 4. D'après la question précédente, on a α³¹ = -1. Ainsi, α est d'ordre 62. Par ailleurs, on constate directement que 2α n'est pas d'ordre 1,2 ni 4. On a 2⁴ ≡ 1 mod. 5 et 2³¹ ≡ 3 mod. 5, d'où (2α)³¹ = 2 et (2α)⁶² = -1. Ainsi, 2α est d'ordre 124, autrement dit, 2α est un générateur de K*.
- 6) Dans $\mathbb{F}_5[X]$, on obtient par division euclidienne l'égalité

$$P = (X+1)(X^2 - X + 2) - 1.$$

Vu que l'on a $P(\alpha) = 0$, on en déduit que $(\alpha + 1)(\alpha^2 - \alpha + 2) = 1$ i.e. que l'inverse de $\alpha + 1$ est $\alpha^2 - \alpha + 2$, dont les coordonnées dans \mathcal{B} sont (2, -1, 1).

7) On a $P(\alpha)=0$. Le corps K étant de caractéristique 5, cela entraı̂ne $P(\alpha^5)=0$. On peut aussi vérifier cette égalité directement. Par ailleurs, on a $\alpha^5\neq\alpha$. Il en résulte que P a toutes ses racines dans K. Leur produit étant -1, la troisième racine de P est donc $-\alpha^{-6}$. On a $\alpha^6=(\alpha+1)^2$. Compte tenu de la question précédente, on a ainsi $\alpha^{-6}=-\alpha^2+2\alpha+1$, et les racines de P sont

$$\alpha$$
, $-\alpha^2 + \alpha + 1$ et $\alpha^2 - 2\alpha - 1$.

Exercice 3

- 1) Le déterminant de la matrice extraite de G au moyen de ses lignes et de ses deux premières colonnes vaut 1. Il en résulte que le rang de G est 2.
- 2) La longueur de C est 4, sa dimension est 2 et son cardinal est $3^2 = 9$.
- 3) La matrice $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ étant inversible, C est systématique.
- 4) Notons ℓ_i la *i*-ème ligne de G ainsi que celle de toute autre matrice déduite de G par des opérations élémentaires sur ses lignes. En remplaçant ℓ_2 par $\ell_2 \ell_1$, on obtient la matrice

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

En remplaçant ℓ_1 par $\ell_1 + \ell_2$, on obtient

$$\begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

Par suite, on a

$$B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

5) Une matrice de contrôle de C est donc

$$H = \begin{pmatrix} -^t B \mid I_2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}.$$

- 6) La distance minimum d de C est le nombre minimum de colonnes de H qui, en tant que vecteurs de F₃, sont linéairement dépendantes. Puisque les colonnes de H sont non nulles, on a d≥ 1, et l'on vérifie directement que deux colonnes quelconques de H sont indépendantes. On a donc d = 3. La capacité de correction de C, qui est la partie entière de (d-1)/2, vaut 1.
- 7) Conformément à l'algorithme de décodage des codes linéaires (p. 144 du polycopié), on détermine les syndromes $H(e) \in \mathbb{F}_3^2$ des éléments $e \in \mathbb{F}_3^4$ de poids au plus 1. Il y a neuf éléments de \mathbb{F}_3^4 de poids ≤ 1 , qui sont

$$e_1 = (0,0,0,0), e_2 = (1,0,0,0), e_3 = (2,0,0,0), e_4 = (0,1,0,0), e_5 = (0,2,0,0),$$

$$e_6 = (0,0,1,0), e_7 = (0,0,2,0), e_8 = (0,0,0,1), e_9 = (0,0,0,2).$$

On vérifie que l'on a

$$H(e_1) = 0$$
, $H(e_2) = (2,1)$, $H(e_3) = (1,2)$, $H(e_4) = (2,2)$, $H(e_5) = (1,1)$,

$$H(e_6) = (1,0), \ H(e_7) = (2,0), \ H(e_8) = (0,1), \ H(e_9) = (0,2).$$

Par ailleurs, on a H(x)=(1,1), d'où $H(x)=H(e_5)$. Ainsi $x-e_5=(1,1,2,0)$, qui est l'unique mot de C dans la boule de Hamming de centre x et de rayon 1, est le mot de C le plus proche de x.