Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas Primer semestre de 2017

COLOGAR NOTAS

MAT1203 * Algebra Lineal

Solución a la Interrogación N° 3

1. Sean $\mathbf{u} \mathbf{y} \mathbf{v}$ dos vectores de \mathbb{R}^3 .

Demuestre que Gen $\{u, v\}$ es un subespacio de \mathbb{R}^3 .

Solución:

Denotaremos $W = Gen\{u,v\}$. Para probar que W es un subespacio probaremos:

- **O** ∈ W.
- Si $w_1, w_2 \in W$ entonces $w_1 + w_2 \in W$.
- Si $\lambda \in \mathbb{R}$ y $w \in W$ entonces $\lambda w \in W$.

Para la primera parte basta considerar la combinación lineal,

$$\mathbf{0} = 0 \cdot u + 0 \cdot v \in W.$$

Bot por proba

Para la segunda parte, recordamos que W es por definición el conjunto de todas las combinaciones lineales de u, v, luego si $w_1, w_2 \in W$ se tiene que, para algún $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \mathbb{R}$

$$w_1 = \alpha_1 u + \beta_1 v, \qquad w_2 = \alpha_2 u + \beta_2 v,$$

de donde

$$w_1 + w_2 = \alpha_1 u + \beta_1 v + \alpha_2 u + \beta_2 v = (\alpha_1 + \alpha_2) \cdot u + (\beta_1 + \beta_2) \cdot v \in W.$$

Finalmente si $w = \alpha u + \beta v \in W$ entonces

$$\lambda \cdot w = \lambda(\alpha u + \beta v) = (\lambda \alpha) \cdot u + (\lambda \beta) \cdot \in W$$

Puntaje:

- 2. Denotamos por $\mathcal{M}_{2\times 2}$ al espacio vectorial de todas las matrices de 2×2 . Sea $T:\mathcal{M}_{2\times 2}\to\mathcal{M}_{2\times 2}$ definida por $T(A)=A-A^T$, donde A es una matriz de 2×2 .
 - a) [1 pto.] Demuestre que T es una transformación lineal.
 - b) [2 pts.] Encuentre una base para el núcleo 1 de T.
 - c) [1.5 pts.] Demuestre que, si $A \in \mathcal{M}_{2\times 2}$ y B = T(A) entonces $B^T = -B$.
 - d) [1.5 pts.] Sea B cualquier elemento de $\mathcal{M}_{2\times 2}$ tal que $B^T=-B$. Encuentre una matriz A tal que T(A)=B.

Solución:

a) Para probar que la transformación es lineal, consideremos $\lambda \in \mathbb{R}$ y B, C matrices de 2×2 .

$$T(\lambda B + C) = (\lambda B + C) - (\lambda B + C)^{t}$$

$$= \lambda B + C - \lambda B^{t} - C^{t}$$

$$= \lambda (B - B^{t}) + (C - C^{t})$$

$$= \lambda T(B) + T(C).$$

b) Dada una matriz $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ buscamos determinar el conjunto de las matrices tales que $T(A)=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$

$$T(A) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) - \left(\begin{array}{cc} a & c \\ b & d \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

O equivalentemente,

$$\left(\begin{array}{cc} 0 & b-c \\ c-b & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right),$$

de donde

$$b-c=0, \qquad b=c.$$

Es decir, el núcleo de T está formado por los elementos de la forma:

$$\left(\begin{array}{cc} a & b \\ b & d \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) + d \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

Se concluye que una base del núcleo es:

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}.$$

c) Si B = T(A) entonces

$$B = A - A^{t}$$
, de donde
 $B^{t} = (A - A^{t})^{t}$
 $B^{t} = A^{t} - A$
 $B^{t} = -(A - A^{t})$
 $B^{t} = -B$.

¹También llamado "espacio nulo".

d) Para una matriz B dada, consideremos $A = \frac{B - B^t}{4}$ la cual satisface:

$$T(A) = T\left(\frac{B - B^t}{4}\right)$$

$$= \frac{1}{4}\left(B - B^t - (B^t - B)\right)$$

$$= \frac{1}{4}(2B - 2B^t), \quad \text{usando} \quad -B = B^t$$

$$= \frac{1}{4} \cdot 4B$$

$$= B$$

Puntaje:

En lo que sigue, \mathbb{P}_n es el conjunto de polinomios de grado $\leq n$.

- 3. a) En \mathbb{P}_2 , encuentre la matriz de cambio de coordenadas de la base $\mathcal{B} = \{1 + t^2, t 3t^2, 1 + t 3t^2\}$ a la base estándar de \mathbb{P}_2 , $\{1, t, t^2\}$.
 - b) Encuentre q en \mathbb{P}_2 , sabiendo que $[\mathbf{q}]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$.

Solución:

a) Denotemos por $C = \{1, t, t^2\}$ a la base estándar. Para determinar la matriz de cambio base pedida, P, esta se determina por:

$$P = \left(\begin{array}{ccc} [p_1]_C & \vdots & [p_2]_C & \vdots & [p_3]_C \end{array} \right)$$

donde

$$p_1(t) = 1 + t^2$$
, $p_2(t) = t - 3t^2$, $p_3(t) = 1 + t - 3t^2$.

En nuestro caso,

$$p_1 = 1 \cdot 1 + 0 \cdot t + 1 \cdot t^2$$

 $p_2 = 0 \cdot 1 + 1 \cdot t - 3 \cdot t^2$
 $p_3 = 1 \cdot 1 + 1 \cdot t - 3 \cdot t^2$.

Con lo cual

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -3 & -3 \end{pmatrix}$$

b) Para encontrar el polinomio pedido, sabemos que si $[q]_{\mathcal{B}} = (-1, 1, 2)^t$ entonces

$$q(t) = -1 \cdot (1 + t^2) + 1 \cdot (t - 3t^2) + 2 \cdot (1 + t - 3t^2) = 1 + 3t - 10t^2$$

Puntaje:

4. Sea
$$A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$
.

a) Calcule el polinomio característico de A, y encuentre sus raíces.

Ayuda: Una de sus raíces es un número natural menor que 5.

- b) Determine si A es diagonalizable. Si lo es, encuentre dos matrices P y D tales que D es diagonal y $A = PDP^{-1}$; en caso contrario explique por qué no lo es.
- c) Utilizando lo anterior, exprese A^{2017} en términos de P y D.

Solución:

a) El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 & -1 \\ 1 & 4 - \lambda & 1 \\ -1 & = 1 & 2 - \lambda \end{vmatrix} = 18 - 21\lambda + 8\lambda^2 - \lambda^3.$$

Usando la ayuda dada, descubrimos que 2 es una raíz de este polinomio (o que 3 es una raíz). En cualquier caso, tras dividir por $2-\lambda$ (o por $3-\lambda$) y factorizar, llegamos a que el polinomio característico es

$$18 - 21\lambda + 8\lambda^{2} - \lambda^{3} = (2 - \lambda)(3 - \lambda)^{2},$$

por lo que sus raíces son 2 y 3.

b) Los valores propios de A son $\lambda = 2$ (con multiplicidad 1) y $\lambda = 3$ (con multiplicidad 2).

Para saber si A es o no diagonalizable, debemos verificar si la dimensión de cada espacio propio es igual a la multiplicidad algebraica del valor propio correspondiente.

Como la multiplicidad del valor propio $\lambda=2$ es 1, la única posibilidad de que A no sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda=3$ sea 1.

Así, buscamos los vectores propios correspondientes a $\lambda = 3$. Para ello, resolvemos la ecuación $A\mathbf{x} = 3\mathbf{x}$ o —equivalentemente— $(A - 3I)\mathbf{x} = \mathbf{0}$, lo que es lo mismo que

La matriz ampliada escalonada reducida por filas es $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema

queda equivalente a $x_1 = -x_2 - x_3$.

Así, una base para este espacio propio está dado por las elecciones $(x_2, x_3) = (1, 0)$ y $(x_2, x_3) = (0, 1)$, que corresponde a los vectores propios (-1, 1, 0) y (-1, 0, 1). Así, la dimensión de este espacio propio es 2, por lo que la matriz A es diagonalizable.

Para el valor propio $\lambda=2$, debemos resolver el sistema

$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

La matriz ampliada escalonada reducida por filas es $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema

queda equivalente a $x_1 = -x_2 = x_3$.

Así, un vector propio correspondiente a $\lambda = 2$ es (1, -1, 1).

De todo lo anterior llegamos a que la matriz A puede ser diagonalizada como sigue:

$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1},$$

o sea,

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \text{y} \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 3 \end{bmatrix}.$$

c) Claramente,

$$A^{2017} = \underbrace{\frac{A \cdot A \cdot A \cdot A}{2017 \text{ veces}}}_{2017 \text{ veces}} = \underbrace{\frac{(PDP^{-1}) \cdot (PDP^{-1}) \cdot (PDP^{-1}) \cdot \dots (PDP^{-1})}{2017 \text{ veces}}}_{2017 \text{ veces}}$$

$$= \underbrace{\frac{PD(P^{-1}P)D(P^{-1}P)D(P^{-1}P) \cdot \dots (P^{-1}P)DP^{-1}}{D \text{ aparece } 2017 \text{ veces}}}_{D \text{ aparece } 2017 \text{ veces}} = \underbrace{\frac{PDDD \cdot \dots DP^{-1}}{D \text{ aparece } 2017 \text{ veces}}}_{D \text{ aparece } 2017 \text{ veces}} = PD^{2017}P^{-1}.$$

En otras palabras,

$$A^{2017} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 3 & 3 \end{bmatrix}^{2017} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1}.$$

Puntaje:

- a) Por calcular correctamente el polinomio característico: 1 punto.
 - Por factorizar correctamente el polinomio característico: 0,5 puntos.
- b) Por indicar que la condición para que A sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda = 3$ sea 2 (o, equivalentemente, que haya dos vectores propios l.i. correspondientes a $\lambda = 3$): 0,5 puntos.
 - Por encontrar dos vectores propios l.i. correspondientes a $\lambda = 3$ (que no necesariamente deben ser los aquí mostrados): 1 punto (0,5 por cada vector).
 - \blacksquare Por encontrar un vector propio correspondiente a $\lambda=2$: 0,5 puntos.
 - Por escribir P correctamente: 0,5 puntos.
 - Por escribir *D* correctamente: 0,5 puntos.
- c) Por desarrollar A^{2017} reemplazando A por PDP^{-1} , 1 punto.
 - Por llegar a $A^{2017} = PD^{2017}P^{-1}$, 0,5 puntos. No es necesario que escriban P y D explícitamente.

5. Sea $A_{n\times n}$ una matriz que satisface $A^4 = 9A^3 - 20A^2$. Pruebe que si 4 ó 5 no son valores propios de A entonces A es no invertible.

Solución:

De la condición $A^4 = 9A^3 - 20A^2$ se deduce que $A^4 - 9A^3 + 20A^2 = 0$, o sea $A^2(A - 4I_n)(A - 5I_n) = 0$, o sea, dado cualquier vector $\mathbf{v} \in \mathbb{R}^n$, $A^2(A - 4I_n)(A - 5I_n)\mathbf{v} = \mathbf{0}$.

Si 4 o 5 no son valores propios de A, entonces dado cualquier $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} \neq \mathbf{0}$, se tiene $\mathbf{v} = (A - 4I_n)\mathbf{u} \neq \mathbf{0}$ y $\mathbf{w} = (A - 5I_n)\mathbf{v} = (A - 5I_n)(A - 4I_n)\mathbf{u} \neq \mathbf{0}$. Pero entonces $A^2(A - 4I_n)(A - 5I_n)\mathbf{u} = A^2\mathbf{w} = \mathbf{0}$, por lo que A no es invertible (si lo fuera, como $\mathbf{w} \neq \mathbf{0}$, se tendría $A\mathbf{w} \neq \mathbf{0}$ y por lo tanto $A^2\mathbf{w} = A(A\mathbf{w}) \neq \mathbf{0}$).

Puntaje:

- Por plantear una demostración correctamente estructurada, 2 puntos.
- Por llegar a la conclusión deseada, usando argumentos correctos, 2 puntos.
- Por justificar adecuadamente los argumentos, 2 puntos.

6. Sea A una matriz tal que $\dim(\text{Nul}(A)) = 3$ y

$$A^{t} \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad A^{t} \begin{pmatrix} 2 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

- a) Determine las dimensiones de Col(A), de Fila(A) y de $Nul(A^T)$. Justifique.
- b) Determine, en los casos en que sea posible, bases para los espacios $Nul(A^T)$ y Fila(A).

Solución:

a) Antes de resolver el problema comencemos recordando algunos resultados. Para un matriz $A_{n\times m}$ dada, se tiene que:

$$\begin{split} \dim(Nul(A)) + \dim(Col(A)) &= m. \\ \dim(Nul(A^t)) + \dim(Col(A^t)) &= n. \\ \dim(Col(A)) &= \dim(Col(A^t)). \end{split}$$

Ahora en particular con los datos del problema, tenemos que dim(Nul(A)) = 3 y que la matriz A posee 4 filas y 5 columnas. Con lo cual, los resultados se puede resumir como sigue:

$$3 + dim(Col(A)) = 5$$
, de donde, $dim(Col(A)) = 2$, $dim(Col(A)) = dim(Col(A^t))$, de donde, $dim(Col(A^t)) = 2$. $dim(Nul(A^t)) + 2 = 4$, de donde, $dim(Nul(A^t)) = 2$

En resumen,

$$dim(Col(A)) = 2$$
, $dim(Fila(A)) = dim(Col(A^t)) = 2$, $dim(Nul(A^t)) = 2$.

b) Sabemos que $Nul(A^t)$ tiene dimensión dos y de los datos del problema, los vectores $(1,-1,1,1)^t$; $(2,-1,-1,1)^t$ son elementos linealmente independientes que pertenecen al $Nul(A^t)$. Se concluye que el conjunto

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -1 \\ 1 \end{pmatrix} \right\}$$

es una base de $Nul(A^t)$. Por otro lado no es posible encontrar, con los datos del problema, una base para Fila(A), del cual sólo sabemos su dimensión pero no conocemos vectores que puedan generarlo.

Puntaje:

7. Sean $\mathbf{v}_1, \mathbf{v}_2$ y \mathbf{v}_3 vectores de \mathbb{R}^4 , y sea V un subespacio de \mathbb{R}^4 tal que $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es base de V. Sea $T: V \longrightarrow V$ una transformación lineal tal que su rango² es generado por \mathbf{v}_1 y

$$\operatorname{Nul}(T) = \operatorname{Gen} \left\{ \mathbf{v}_2, \ \mathbf{v}_3 \right\}.$$

Demuestre que T (o, equivalentemente, su matriz estándar) es diagonalizable.

Solución:

Como $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ es base de \mathbb{R}^3 , estos tres vectores son l.i.

Si $T(\mathbf{v}_1) = \mathbf{0}$, $\mathbf{v}_1 \in \text{Nul}(T) = \text{Gen}\{\mathbf{v}_2, \mathbf{v}_3\}$ por lo que $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es un conjunto l.d. de vectores, lo que contradice lo anterior. De esta contradicción deducimos que $T(\mathbf{v}_1) \neq \mathbf{0}$, o sea, $T(\mathbf{v}_1) = k\mathbf{v}_1$ con $k \neq 0$.

Así, $T(\mathbf{v}_1)=k\mathbf{v}_1$, $T(\mathbf{v}_2)=\mathbf{0}=\mathbf{0}\cdot\mathbf{v}_2$ y $T(\mathbf{v}_3)=\mathbf{0}=\mathbf{0}\cdot\mathbf{v}_3$, por lo que la matriz de la transformación T en la base $\{\mathbf{v}_2,\,\mathbf{v}_3\}$ es

$$D = \left[\begin{array}{ccc} k & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right],$$

por lo que T es diagonalizable.

Puntaje:

- lacktriangle Por determinar que \mathbf{v}_1 es vector propio de T (aunque no se diga explícitamente), 2 ptos.
- Por expresar T respecto a la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, 2 ptos.
- ullet Por llegar a la matriz diagonal que representa a $T,\,2$ ptos.

²También llamado "recorrido" o "imagen".

- 8. En cada caso, determine si la afirmación es VERDADERA o FALSA, y justifique su respuesta (el indicar correctamente si es V o F sin una justificación adecuada no tiene puntos):
 - a) El conjunto de polinomios $\mathbf{p}(t) \in \mathbb{P}_4$ que satisfacen $\mathbf{p}(3) \cdot \mathbf{p}(1) = 0$ es un subespacio vectorial de \mathbb{P}_4 .
 - b) Si una matriz A con entradas reales tiene un valor propio complejo (con parte imaginaria $\neq 0$), entonces todo vector propio de A correspondiente a ese valor propio debe tener al menos una coordenada compleja (con parte imaginaria $\neq 0$).
 - c) Toda matriz invertible es diagonalizable.

Solución:

a) FALSO.

Dos polinomios que satisfacen la condición dada son $\mathbf{p}_1(t) = t - 3$ y $\mathbf{p}_2(t) = t - 1$. Sin embargo, su suma $\mathbf{p}_3 = (t - 3) + (t - 1) = 2t - 4$ no la cumple: $\mathbf{p}_3(1) = 2 - 4 = -2$ y $\mathbf{p}_3(3) = 6 - 4 = 2$, por lo que $\mathbf{p}_3(1) \cdot \mathbf{p}_3(3) = -2 \cdot 2 = -4 \neq 0$.

Así, el conjunto dado no es cerrado bajo suma, por lo que no es un subespacio vectorial de \mathbb{P}_4 .

- b) VERDADERO. La idea general es la siguiente:
 - Si la afirmación no fuera verdadera, existirían un vector \mathbf{v} con coordenadas reales y un valor propio complejo de A, digamos z (con parte imaginaria $\neq 0$) tales que $A\mathbf{v} = z\mathbf{v}$. Pero todas las coordenadas del vector $A\mathbf{v}$ son reales (ya que todas las entradas de A y todas las coordenadas de \mathbf{v} son reales), mientras que $z\mathbf{v}$ debe tener al menos una coordenada con parte imaginaria $\neq 0$ (de hecho, cualquier coordenada $\neq 0$ de \mathbf{v} , multiplicada por z tiene parte imaginaria $\neq 0$).
- c) FALSO. Considérese la matriz $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Esta matriz es claramente invertible (det A = 1). Sin embargo, no es diagonalizable (¡compruébelo!).

Puntaje:

En cada parte, por dar un buen contraejemplo (específico o genérico, como los mostrados más arriba), 2 puntos.