Dense and randomized storage and coding of information

Abstract

We describe a method for dense encoding of information. Bennet and Wiesner (Phys. Rev. Lett. 69:2881-2884, 1992), using EPRpairs, showed that n bits can be encoded by n/2 quantum-bits, from which the original bits can be retrieved. Here, in a completely different (non-quantum) setting, we give a method for more dense encoding: In our method n bits $x_1, x_2,, x_n$ are mapped by a linear transform B over the 6-element ring Z_{6} to numbers z_1, z_2, \dots, z_t from ring Z_6 with $t=n^{o(1)}$ (i.e., much fewer numbers) (Quantity o(1) here denotes a positive number which goes to 0 as n goes to infinity), then, by applying another linear transform C to these zi's, we will get back n elements of ring Z_{6} , x' $_{1},x'_{2},...,x'_{n}$, where, e.g., x'_{1} may have the form $x'_{1}=x_{1}+3x_{2}+4x_{3}$. One can get back x_1 simply by running through the values of x_1 on the set 0,1,2,3,4,5, and noticing that only x_1 has period 6, $(3x_2)$ has period 2, $4x_3$ has period 3). Our results generalize for any non-prime-power composite number m instead of 6. We also apply this method for fast computation of matrix multiplication and

for compacting and extending matrices with linear transforms.