Paper Reading

Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders, ACL 2017

Dialog model?

Baseline

Problem

Seq2Seq:

The model tends to generate safe answers, like:

I don't know.[1]

Solution

CVAE for Dialog Generation: Training

$$\log P(x) - \mathcal{D}[Q(z|x)||P(z|x)] = E_{z \sim Q}[\log P(x|z)] - \mathcal{D}[Q(z|x)||P(z)]$$

 $\log P(x \mid c) - \mathcal{D}[Q(z \mid x, c) || P(z \mid x, c)] = E_{z \sim Q(x, c)}[\log P(x \mid z, c)] - \mathcal{D}[Q(z \mid x, c) || P(z \mid c)]$

CVAE for Dialog Generation: Inference

Knowledge-Guided CVAE (kgCVAE)

dialog act

- 1. (non-understand) pardon
- 2. (statement) oh you're not going to have a curbside pick up here
- 3. (statement) okay I am sure about a recycling center
- 4. (yes-answer) yeah so

Knowledge-Guided CVAE (kgCVAE): Training

$$\mathcal{L}_{CVAE} = E_{z \sim Q(x,c)}[\log P(x \mid z,c)] - \mathcal{D}[Q(z \mid x,c) || P(z \mid c)]$$

 $\mathcal{L}_{kgCVAE} = E_{z \sim Q(x,c,y)}[\log P(x | z, c, y)] - \mathcal{D}[Q(z | x, c, y) || P(z | c)] + \mathbf{E}_{z \sim Q(x,c,y)}[\log p(y | z, c)]$

Knowledge-Guided CVAE (kgCVAE): Inference

Optimization Challenges: vanishing latent variable problem

$$\mathcal{L} = E_{z \sim Q(x,c)}[\log P(x \mid z,c)] - \mathcal{D}[Q(z \mid x,c) || P(z \mid c)]$$

Optimization Challenges: solution 1

$$\mathcal{L} = E_{z \sim Q(x,c)}[\log P(x \mid z,c)] - \lambda \mathcal{D}[Q(z \mid x,c) || P(z \mid c)]$$

Optimization Challenges: solution 2

solution2:

$$\mathcal{L} = E_{z \sim Q(x,c)}[\log P(x \mid z,c)] - \lambda \mathcal{D}[Q(z \mid x,c) || P(z \mid c)] + \mathcal{L}_{bow}$$

Experiments: diversity

 $context \rightarrow golden: (r_1, \dots, r_{M_C})$

 $context \rightarrow predict: (h_1, \dots, h_N)$

	generated responses
reference resp	onses
precision(c) =	$\sum_{i=1}^{N} \max_{j \in [1, M_c]} d(r_j, h_i)$
recall(c) =	$\sum_{j=1}^{M_c} \max_{i \in [1,N]} d\left(r_j, h_i\right)$
	M_c

Baseline	CVAE	kgCVAE
35.4	20.2	16.02
(n/a)	(11.36)	(13.08)
0.405	0.372	0.412
0.336	0.381	0.411
0.300	0.295	0.350
0.281	0.322	0.356
0.272	0.265	0.310
0.254	0.292	0.318
0.226	0.223	0.262
0.215	0.248	0.272
0.951	0.954	0.961
0.935	0.943	0.944
0.827	0.815	0.804
0.801	0.812	0.807
0.736	0.704	0.721
0.514	0.604	0.598
	35.4 (n/a) 0.405 0.336 0.300 0.281 0.272 0.254 0.226 0.215 0.951 0.935 0.827 0.801 0.736	(n/a)(11.36)0.4050.3720.3360.3810.3000.2950.2810.3220.2720.2650.2540.2920.2260.2230.2150.2480.9510.9540.9350.9430.8270.8150.8010.8120.7360.704

Experiments: z space

Experiments: bow loss

Model	Perplexity	KL cost
Standard	122.0	0.05
KLA	111.5	2.02
\mathbf{BOW}	97.72	7.41
BOW+KLA	73.04	15.94

QA