Белорусский государственный университет Факультет прикладной математики и информатики

ИЗБРАННЫЕ РАЗДЕЛЫ МЕТОДОВ ОПТИМИЗАЦИИ

канд. физ.-мат. наук Войделевич А.С.

КОНСПЕКТ ЛЕКЦИЙ

СОДЕРЖАНИЕ

ğΙ	Выпуклые множества	3
$\S 2$	Выпуклые функции	7
$\S 3$	Задача выпуклой оптимизации	10
Ли	тература	17

§1 ВЫПУКЛЫЕ МНОЖЕСТВА

Пусть \mathbb{A}^n-n -мерное аффинное пространство над полем \mathbb{R} , $n\in\mathbb{N}$. Зафиксируем некоторую точку $O\in\mathbb{A}^n$ в качестве начала координат. Далее будет отождествлять произвольную точку $P\in\mathbb{A}^n$ с её радиусом вектором \overrightarrow{OP} , а само пространство \mathbb{A}^n- с вещественным n-мерным векторным пространством \mathbb{R}^n . Для обозначения векторов и точек будем использовать строчные буквы, а для обозначения множеств — заглавные.

Опр. 1.1. Точка $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m \in \mathbb{R}^n$, где $p_i \in \mathbb{R}^n$, $\alpha_i \geqslant 0$ и $\sum_{i=1}^m \alpha_i = 1$, называется выпуклой комбинацией точек p_1, p_2, \ldots, p_m .

Опр. 1.2. Для произвольных точек $x, y \in \mathbb{R}^n$ множество

$$[x,y] \stackrel{\text{def}}{=} \{\alpha x + (1-\alpha)y \colon \alpha \in [0,1]\},\$$

состоящее из всех возможных выпуклых комбинаций точек x и y, называется отрезком (c концами x, y).

Опр. 1.3. Множество $X \subset \mathbb{R}^n$ называется выпуклым, если для произвольных двух точек $x, y \in X$ оно содержит весь отрезок [x, y].

Отметим, что согласно определению 1.3 пустое множество \varnothing и произвольное одноточечное множество $\{p\}, p \in \mathbb{R}^n$, являются выпуклыми.

Лемма 1.1. Множество X является выпуклым, если и только если X со-держит любую выпуклую комбинацию своих точек.

ightharpoonup Если множество X содержит любую выпуклую комбинацию своих точек, то, в частности, для любых двух точек $x,\,y\in X$ имеем $[x,y]\subset X$, а значит, X — выпуклое множество.

Обратное утверждение доказывается индукцией по количеству m точек $p_1, p_2, \ldots, p_m \in X$, входящих в выпуклую комбинацию $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m$. База индукции m=2 следует из определения 1.3. Предположим теперь, что множество X содержит всевозможные выпуклые комбинации своих точек размера $m\geq 2$. Докажем, что X также содержит любую выпуклую комбинацию размера m+1. Действительно, пусть $p_1, p_2, \ldots, p_{m+1} \in X$ и числа $\alpha_1, \alpha_2, \ldots, \alpha_{m+1} \geq 0$, такие что $\sum_{i=1}^{m+1} \alpha_i = 1$. Без нарушения общности будем считать, что $\alpha_1 < 1$ (иначе это выпуклая комбинация, состоящая из одной точки). Тогда

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_{m+1} p_{m+1} = \alpha_1 p_1 + (1 - \alpha_1) q$$

где $q=\frac{\alpha_2}{1-\alpha_1}p_2+\frac{\alpha_3}{1-\alpha_1}p_3+\ldots+\frac{\alpha_{m+1}}{1-\alpha_1}p_{m+1}$. Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1$, то согласно предположению индукции $q\in X$, а значит, $p\in X$. \lhd

Рассмотрим операции над выпуклыми множествами, которые сохраняют выпуклость.

Лемма 1.2. Пусть I — некоторое множество индексов произвольной мощности, а $\{X_i \subset \mathbb{R}^n : i \in I\}$ — семейство выпуклых множеств. Тогда множество $X = \bigcap X_i$ является выпуклым.

ightharpoonup Действительно, пусть $x, y \in X$. Тогда $x, y \in X_i$ для всех $i \in I$, а значит, $[x,y] \subset X_i$. Таким образом, $[x,y] \subset X$, т.е. множество X является выпуклым. \lhd

Выпуклой оболочкой $\operatorname{Conv} X$ произвольного множества $X\subset \mathbb{R}^n$ называется наименьшее (по вложению) выпуклое множество, содержащее X. Из леммы 1.2 следует, в частности, что $\operatorname{Conv} X$ — это пересечение всех выпуклых множеств, содержащих X.

Лемма 1.3. Пусть $F \colon \mathbb{R}^n \to \mathbb{R}^m$ — аффинное преобразование, т.е. преобразование, действующее по правилу $F \colon x \mapsto Ax + b$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Тогда для произвольных выпуклых множеств $X \subset \mathbb{R}^n$ и $Y \subset \mathbb{R}^m$ множества $F(X) \stackrel{\mathrm{def}}{=} \{Fx \colon x \in X\} \subset \mathbb{R}^m$ и $F^{-1}(Y) \stackrel{\mathrm{def}}{=} \{x \colon Fx \in Y\} \subset \mathbb{R}^n$ также являются выпуклыми.

ightharpoonup Пусть $y_1 = Fx_1$, $y_2 = Fx_2$ и $\alpha \in [0,1]$. Тогда утверждение леммы следует из равенства $\alpha y_1 + (1-\alpha)y_2 = \alpha Fx_1 + (1-\alpha)Fx_2 = F(\alpha x_1 + (1-\alpha)x_2)$, которое выполнено для любого аффинного преобразования F. \lhd

Лемма 1.4. Пусть $\{X_i \subset \mathbb{R}^{n_i} \colon 1 \leq i \leq m\}$ — семейство выпуклых множеств. Тогда прямое произведение

$$X_1 \times X_2 \times \ldots \times X_m \stackrel{\text{def}}{=} \{(x_1, x_2, \ldots, x_m) : x_i \in X_i, 1 \le i \le m\}$$

является выпуклым множеством в пространстве $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \ldots \times \mathbb{R}^{n_m}$.

ightharpoonup Пусть $x_i, \ \widetilde{x}_i \in X_i, \ 1 \leq i \leq m, \ и \ \alpha \in [0,1].$ Тогда

$$\alpha(x_1, x_2, \dots, x_m) + (1 - \alpha)(\widetilde{x}_1, \widetilde{x}_2, \dots \widetilde{x}_m) =$$

$$= (\alpha x_1 + (1 - \alpha)\widetilde{x}_1, \dots, \alpha x_m + (1 - \alpha)\widetilde{x}_m) \in X_1 \times X_2 \times \dots X_m, \quad (1.1)$$

так как $\alpha x_i + (1 - \alpha)\tilde{x}_i \in X_i, 1 \leq i \leq m. \triangleleft$

Композиция операций, сохраняющих выпуклость, также, очевидно, сохраняет выпуклость. Следовательно, для произвольных выпуклых множеств $X_1, X_2, \ldots, X_m \in \mathbb{R}^n$ и вещественных чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ множество

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_m X_m \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^m \alpha_i x_i \colon x_i \in X_i, 1 \le i \le m \right\}$$

является выпуклым. Действительно, эту линейную комбинацию множеств можно представить как композицию прямого произведения и аффинного преобразования. Отметим, что линейную композицию вида A+B называют суммой Минковского множеств $A,\,B\subset\mathbb{R}^n.$

Лемма 1.5. Замыкание \overline{X} выпуклого множества $X \subset \mathbb{R}^n$ выпукло.

ightharpoonup Выберем произвольные точки $a, b \in \overline{X}$ и число $\alpha \in [0,1]$. Необходимо доказать, что $c \stackrel{\mathrm{def}}{=} \alpha a + (1-\alpha)b \in \overline{X}$. Существуют такие две последовательности точек $(a_k)_{k \in \mathbb{N}}$ и $(b_k)_{k \in \mathbb{N}} \subset X$, что $a_k \to a$ и $b_k \to b$. Тогда последовательность точек $(c_k)_{k \in \mathbb{N}} \subset X$, где $c_k = \alpha a_k + (1-\alpha)b_k$, сходится к c, а значит, $c \in \overline{X}$. \lhd

Опр. 1.4. Множества $X, Y \subset \mathbb{R}^n$ называются отделимыми, если существуют ненулевой вектор c и число d, такие что $c^\mathsf{T} x \geq d \geq c^\mathsf{T} y$ для любых $x \in X$ и $y \in Y$. Если известно, что неравенства строгие $c^\mathsf{T} x > d > c^\mathsf{T} y$, то говорят, что множества X и Y строго отделимы. Гиперплоскость, заданная уравнением $c^\mathsf{T} x = d$, называется разделяющей гиперплоскостью.

Отметим, что согласно определению, вектор c из уравнения гиперплоскости $c^{\mathsf{T}}x=d$ ненулевой.

Теорема 1.1. Если непересекающиеся множества X и $Y \subset \mathbb{R}^n$ выпуклы, замкнуты и одно из них ограничено, то они строго отделимы.

 \triangleright Пусть X — ограниченное множество и $d_X \stackrel{\text{def}}{=} \sup_{x_1,x_2 \in X} \|x_1 - x_2\|$ — его диаметр. Докажем, что найдутся точки $x_0 \in X$ и $y_0 \in Y$, для которых $\|x_0 - y_0\| = \inf_{x \in X, y \in Y} \|x - y\|$. Действительно, выберем произвольные две точки $x_1 \in X$ и $y_1 \in Y$. Пусть $\widetilde{Y} = Y \cap B_r(x_1)$, где $B_r(x_1)$ — шар радиуса $r = d_X + \|x_1 - y_1\|$ с центром в x_1 . Множества X и \widetilde{Y} являются компактными, а функция f, действующая по правилу $f \colon (x,y) \in X \times \widetilde{Y} \mapsto \|x-y\|$, — непрерывной. Так как декартово произведение компактных множеств компактно, то функция f достигает свое минимальное значение в некоторых точках $x_0 \in X$ и $y_0 \in \widetilde{Y}$. Если $y \in Y \setminus \widetilde{Y}$ и $x \in X$, то $\|x-y\| \geq \|x_1-y\| - \|x_1-x\| \geq d_X + \|x_1-y_1\| - d_X = \|x_1-y_1\|$, а значит, точки x_0, y_0 искомые.

Пусть $\Pi \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \colon c^\mathsf{T} x = d\}$ — гиперплоскость, проходящая через середину отрезка $[x_0, y_0]$, перпендикулярно ему. Выберем $c = x_0 - y_0$ и $d = (\|x_0\|^2 - \|y_0\|^2)/2$. Докажем, что множества X и Y не пересекаются c указанной гиперплоскостью, а значит, лежат в разных открытых полупространствах относительно её. Предположим противное, а именно, что некоторая точка $y \in Y$ принадлежит плоскости Π . Треугольник c вершинами c0, c0, c0 является равнобедренным c0 основанием c0, c0, c0 и острым углом при вершине c0, так как c0, c0, c0 условию c0 — выпуклое множество, а значит, c0, c0, c0, c0. Пусть c0 — основание перпендикуляра, опущенного из вершины c0 на сторону c0, c0, c0. Тогда c0, c

Опр. 1.5. Гиперплоскость $\Pi \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : c^{\mathsf{T}}x = d\}$ называется опорной к множеству X в точке x_0 , если $x_0 \in \Pi \cap \overline{X}$ и для всех $x \in X$ одновременно выполняется одно из неравенств: $c^{\mathsf{T}}x > d$ или $c^{\mathsf{T}}x < d$.

Напомним, что точка x называется граничной для множества X, если любая

её окрестность содержит как точки, принадлежащие данному множеству, так и не принадлежащие ему.

Лемма 1.6. Выпуклое множество $X \subset \mathbb{R}^n$ в каждой граничной точке имеет опорную гиперплоскость.

ightharpoonup Пусть x_0 — граничная точка множества X. Так как X — выпуклое множество, то x_0 — граничная точка замыкания \overline{X} . Следовательно, найдётся такая последовательность точек $(y_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n\setminus\overline{X}$, что $y_k\to x_0$. Согласно, теореме 1.1 для множеств $\{y_k\}$ и \overline{X} (выпуклость \overline{X} следует из леммы 1.5) найдётся такая гиперплоскость, заданная уравнением $c_k^\mathsf{T} x = d_k$, что $c_k^\mathsf{T} x > d_k > c_k^\mathsf{T} y_k$, $x\in\overline{X}$. Без нарушения общности будем считать, что $\|c_k\|=1$. Тогда, в силу построения, последовательность $(d_k)_{k\in\mathbb{N}}$ является ограниченной. Наконец, без нарушения общности будем считать, что $c_k\to c$ и $d_k\to d$. Тогда $c^\mathsf{T} x\geq d$, $x\in X$, и $c^\mathsf{T} x_0=d$. \lhd

Теорема 1.2. Произвольное выпуклое множество $X \subset \mathbb{R}^n$ можно отделить от точки y, ему не принадлежащей.

ightharpoonup Действительно, если $y \notin \overline{X}$, то доказательство следует из теоремы 1.1, иначе — из леммы 1.6. \lhd

Теорема 1.3. Множесства X и $Y \subset \mathbb{R}^n$ отделимы тогда и только тогда, когда множество X-Y и точка $\{\mathbf{0}\}$ отделимы.

 $ightharpoonup \Pi$ усть множества X и Y отделимы. Тогда существуют такие $c \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ и $d \in \mathbb{R}$, что $c^\mathsf{T} y \le d \le c^\mathsf{T} x$ для всех $x \in X, y \in Y$. Следовательно, $c^\mathsf{T} (x - y) \ge 0$, а значит, гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = 0\}$ отделяет множество X - Y от нуля.

Предположим теперь, что множества X-Y и $\{{\bf 0}\}$ отделимы. Тогда существуют такие $c\in\mathbb{R}^n\setminus\{{\bf 0}\}$ и $d\in\mathbb{R}$, что $0\leq d\leq c^{\sf T}z$ для всех $z\in X-Y$. Следовательно, $c^{\sf T}y\leq c^{\sf T}x$ для всех $x\in X,\ y\in Y,$ а значит, $\sup_{y\in Y}c^{\sf T}y\leq \inf_{x\in X}c^{\sf T}x$. Выберем такое

число $\widetilde{d} \in \mathbb{R}$, что $\sup_{y \in Y} c^\mathsf{T} y \leq \widetilde{d} \leq \inf_{x \in X} c^\mathsf{T} x$. Тогда гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = \widetilde{d}\}$ отделяет множества X и Y. \lhd

Следствие 1.1. Пусть X, Y — непустые выпуклые непересекающиеся множества. Тогда X и Y отделимы.

Через $\operatorname{Int} X$ обозначим внутренность множества $X\subset \mathbb{R}^n$, т.е. множество всех внутренних точек X. Не сложно видеть, что, если X — выпуклое множество, то $\operatorname{Int} X$ также выпукло.

Следствие 1.2. Пусть $X, Y - выпуклые множества с непустой внутренностью, при этом <math>\operatorname{Int} X \cap \operatorname{Int} Y = \emptyset$. Тогда X и Y отделимы.

Упражнения

- 1. Пусть $X \subset \mathbb{R}^n$ непустое множество. Докажите, что любую точку p, принадлежащую выпуклой оболочке множества X, можно представить в виде выпуклой линейной комбинации не более чем n+1 точек множества X.
- 2. Пусть в \mathbb{R}^n заданы точки p_1, p_2, \ldots, p_s , где $s \geq n+2$. Докажите, что точки можно разбить на два непересекающихся множества так, что выпуклые оболочки этих двух множеств будут иметь непустое пересечение.

3. (Теорема Хелли) Пусть I — произвольное семейство индексов и $\{X_i\}_{i\in I}$ — семейство замкнутых выпуклых множеств в \mathbb{R}^n , из которых хотя бы одно компактно. Докажите, что если любое подсемейство из n+1 множеств имеет непустое пересечение, то и всё семейство имеет непустое пересечение.

§2 ВЫПУКЛЫЕ ФУНКЦИИ

Опр. 2.1. Функция $f: X \to \mathbb{R}$, заданная на выпуклом множестве $X \subset \mathbb{R}^n$, называется выпуклой, если для любых $x, y \in X$ и любого $\alpha \in [0,1]$ выполнено неравенство $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$. Если последнее неравенство строгое при $\alpha \in (0,1)$, то функция f называется строго выпуклой.

Лемма 2.1. Для того, чтобы функция $f: X \to \mathbb{R}$, определённая на выпуклом множестве X, была выпуклой, необходимо и достаточно, чтобы было выпуклым множество ері $f \stackrel{\mathrm{def}}{=} \{(x,y): x \in X, y \geq f(x)\} \subset X \times \mathbb{R}$. (Множество ері f называется надграфиком функции f.)

ightarrow Пусть $f\colon X \to \mathbb{R}$ — выпуклая функция. Выбрав произвольные две точки $z_1=(x_1,y_1),\, z_2=(x_2,y_2)\in \mathrm{epi}\, f$ и число $\alpha\in[0,1]$, докажем, что $\alpha z_1+(1-\alpha)z_2\in \mathrm{epi}\, f$, т.е. что $f\left(\alpha x_1+(1-\alpha)x_2\right)\leq \alpha y_1+(1-\alpha)y_2$. Так как $f(x_1)\leq y_1$ и $f(x_2)\leq y_2$, то необходимое неравенство следует из выпуклости функции f.

Предположим теперь, что ері f — выпуклое множество. Очевидно, что для произвольных двух точек $x_1, x_2 \in X$ пары $z_1 = (x_1, f(x_1)), z_2 = (x_2, f(x_2))$ принадлежат надграфику функции f. Следовательно, для произвольного числа $\alpha \in [0,1]$ имеем $\alpha z_1 + (1-\alpha)z_2 \in \operatorname{epi} f$, а значит, $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$. Другими словами, функция f выпукла. \triangleleft

Лемма 2.2 (Неравенство Йенсена). Пусть $f: X \to \mathbb{R}$ — выпуклая функция. Тогда для произвольных точек $x_1, x_2, \ldots, x_m \in X$ и чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \geq 0$, таких что $\sum\limits_{i=1}^m \alpha_i = 1$, справедливо неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_m x_m) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_m f(x_m). \tag{2.1}$$

ightarrow Докажем неравенство (2.1) индукцией по количеству точек m. База индукции m=2 следует из определения выпуклой функции. Предположим, что неравенство (2.1) верно при $m\geq 2$. Пусть $x_1,\,x_2,\,\ldots,\,x_{m+1}\in X$ и числа $\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_{m+1}\geq 0$, такие что $\sum_{i=1}^{m+1}\alpha_i=1$. Без нарушения общности будем считать, что

 $\alpha_1<1.$ Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1,$ то верна цепочка неравенств

$$f\left(\sum_{i=1}^{m+1} \alpha_i x_i\right) \le \alpha_1 f(x_1) + (1 - \alpha_1) f\left(\sum_{i=2}^{m+1} \frac{\alpha_i}{1 - \alpha_1} x_i\right) \le \sum_{i=1}^{m+1} \alpha_i f(x_i). \quad \triangleleft$$

Напомним, что точка x называется внутренней для множества X, если найдётся такое r>0, что $B_r(x)\subset X$.

Лемма 2.3. Выпуклая функция $f: X \to \mathbb{R}$ непрерывна во всех внутренних точках множества $X \subset \mathbb{R}^n$.

ightharpoonup Пусть x_0 — внутренняя точка множества X, а значит, $B_r(x_0) \subset X$ для некоторого r > 0. Пусть $\{e_1, e_2, \ldots, e_n\}$ — стандартный базис пространства \mathbb{R}^n . Тогда для любого $\alpha \in [0,1)$ справедливо неравенство

$$f(x_0 \pm \alpha r e_i) \le (1 - \alpha)f(x_0) + \alpha f(x_0 \pm r e_i).$$

Следовательно, $\varlimsup_{t\to +0} f(x_0\pm te_i) \le f(x_0)$, поэтому, $\varlimsup_{x\to x_0} f(x) \le f(x_0)$. Так как $f(x_0) \le \frac12 f(x_0+h) + \frac12 f(x_0-h)$ для любого $h\in B_r(\mathbf{0})$, то

$$f(x_0) \le \frac{1}{2} \lim_{x \to x_0} f(x) + \frac{1}{2} \lim_{x \to x_0} f(x).$$

Следовательно, $f(x_0)=\varliminf_{x\to x_0}f(x)=\varlimsup_{x\to x_0}f(x)$, т.е. функция f непрерывна в x_0 . \lhd

Опр. 2.2. Вектор $c \in \mathbb{R}^n$ называется субградиентом функции $f: X \to \mathbb{R}$ в точке $x_0 \in X \subset \mathbb{R}^n$, если $f(x) \geq f(x_0) + c^{\mathsf{T}}(x - x_0)$ для всех $x \in X$. Множество всевозможных субградиентов функции f в точке x_0 называется субдифференциалом функции f в точке x_0 и обозначается $\partial f(x_0)$.

Лемма 2.4. Пусть $f: X \to \mathbb{R}$ — выпуклая функция, а x_0 — внутренняя точка множества X. Тогда множество $\partial f(x_0)$ непусто.

ightharpoonup Пусть $c^{\mathsf{T}}x+by=d$ — уравнение опорной гиперплоскости к множеству ері f в точке $(x_0,f(x_0))$. Тогда $c^{\mathsf{T}}x+by\geq d$ при $(x,y)\in$ ері f и $c^{\mathsf{T}}x_0+bf(x_0)=d$. Докажем, что b>0. Так как $(x_0,f(x_0)+1)\in$ ері f, то $c^{\mathsf{T}}x_0+bf(x_0)+b\geq d$, т.е. $b\geq 0$. Если b=0, то $c^{\mathsf{T}}x\geq d$, $x\in X$, а значит, $c^{\mathsf{T}}(x-x_0)\geq 0$. Так как x_0 — внутренняя точка, то $x_0-tc\in X$ для некоторого положительного числа t>0. Следовательно, $-t\|c\|^2\geq 0$, т.е. c=0. Получено противоречие. Таким образом, b>0, а значит,

$$f(x) \ge -\frac{c^\mathsf{T} x}{b} + \frac{d}{b} \quad \text{if} \quad f(x_0) = -\frac{c^\mathsf{T} x_0}{b} + \frac{d}{b}.$$

Наконец, отнимая последнее равенство от неравенства, получаем, что

$$f(x)-f(x_0)\geq (\widetilde{c},x-x_0),$$
 где $\widetilde{c}=-rac{c}{b}.$ <

Имеет место следующее обобщение неравенства Йенсена.

Лемма 2.5. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — выпуклая функция, а $\xi: \Omega \to \mathbb{R}^n$ — случайный вектор. Тогда справедливо неравенство $f(E\xi) \leq Ef(\xi)$, при условии, что соответствующие математические ожидания существуют.

ightharpoonup Так как $f(x)-f(y)\geq c_y^\mathsf{T}(x-y)$, где $c_y\in\partial f(y)$, то $f(x)=\max_{y\in\mathbb{R}^n}(c_y^\mathsf{T}x+d_y)$. Следовательно,

$$f(E\xi) = \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} E \xi + d_y) = \max_{y \in \mathbb{R}^n} E(c_y^\mathsf{T} \xi + d_y) \le E \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} \xi + d_y) = Ef(\xi). \quad \lhd$$

Лемма 2.6. Если в точке $x_0 \in X$ выпуклая функция $f: X \to \mathbb{R} - \partial u \phi \phi$ еренцируема, то $\nabla f(x_0) \in \partial f(x_0)$.

$$ightarrow$$
 Пусть $x \in X$ и $t \in (0,1]$. Тогда $f\big(x_0 + t(x-x_0)\big) \leq (1-t)f(x_0) + tf(x)$, а значит, $\frac{f\big(x_0 + t(x-x_0)\big) - f(x_0)}{t} \leq f(x) - f(x_0)$. Устремляя t к 0 , получаем, что

$$f(x) \ge f(x_0) + \nabla f(x_0)^\mathsf{T} (x - x_0). \quad \triangleleft$$

Лемма 2.7. Если $f \in C^2(X)$, где X — открытое выпуклое множество, то для выпуклости функции f необходимо и достаточно, чтобы матрица $\nabla^2 f(x)$ была неотрицательно определённой ($\nabla^2 f(x) \succeq 0$). Если матрица $\nabla^2 f(x)$ положительно определена ($\nabla^2 f(x) \succ 0$), то f — строго выпуклая функция.

ightharpoonup Выберем произвольные точку $x_0 \in X$ и направление $\ell \neq \mathbf{0}$. Рассмотрим функцию $g(t) = f(x_0 + t\ell)$, заданную на интервале $T \stackrel{\mathrm{def}}{=} \{t \colon x_0 + t\ell \in X\}$. Очевидно, что функция f (строго) выпукла тогда и только тогда, когда (строго) выпуклы скалярные функции g при всевозможных $x_0 \in X$ и $\ell \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Имеем $g'(t) = \ell^\mathsf{T} \nabla f(x_0 + t\ell)$ и $g''(t) = \ell^\mathsf{T} \nabla^2 f(x_0 + t\ell)\ell$. Функция g выпукла тогда и только тогда, когда $g''(t) \geq 0$, что равносильно неотрицательной определённости матрицы $\nabla^2 f(x)$. Если $\nabla^2 f(x) \succ 0$, то g''(t) > 0, а значит, g — строго выпуклая функция. \lhd

В заключении рассмотрим операции над функциями, сохраняющие выпуклость. Будем писать, что $x \leq y$ для векторов $x, y \in \mathbb{R}^n$, если выполнены неравенства $x_i \leq y_i, 1 \leq i \leq n$.

Лемма 2.8. Пусть f, f_1, f_2, \ldots, f_m — выпуклые функции. Тогда следующие функции также являются выпуклыми:

- a) $g(x) = \sum_{i=1}^{m} c_i f_i(x)$, $\partial e c_i \ge 0$, $1 \le i \le m$;
- b) g(x) = f(Fx), где $Fx = Ax + b a\phi\phi$ инное преобразование;
- c) $g(x) = \max_{1 \le i \le m} f_i(x);$
- d) $g(x) = h(f_1(x), f_2(x), \dots, f_m(x)),$ где h выпуклая монотонно неубывающая функция, m.e. $h(y) \le h(\widetilde{y})$ для всех y и \widetilde{y} , таких что $y \le \widetilde{y}$.

ightharpoonup Доказательства утверждений тривиальным образом следуют из определения выпуклости. Для примера докажем выпуклость функции g из пункта d). Пусть $x, y \in X$ и $\alpha \in [0,1]$. Так как функции $f_i, 1 \leq i \leq m$, выпуклы по условию, то $f_i(\alpha x + (1-\alpha)y) \leq \alpha f_i(x) + (1-\alpha)f_i(y)$. Положим $u = (f_1(x), \dots, f_m(x))$ и $v = (f_1(y), \dots, f_m(y))$, тогда в силу монотонности функции h верно неравенство

$$h(f_1(\alpha x + (1-\alpha)y), \dots, f_m(\alpha x + (1-\alpha)y)) \le h(\alpha u + (1-\alpha)v).$$

Так как функция h выпукла, то $h(\alpha u + (1-\alpha)v) \le \alpha h(u) + (1-\alpha)h(v)$. Наконец, в силу определения функции q имеем

$$g(\alpha x + (1 - \alpha)y) = h(f_1(\alpha x + (1 - \alpha)y), \dots, f_m(\alpha x + (1 - \alpha)y)),$$

g(x) = h(u) и g(y) = h(v), а значит, $g\bigl(\alpha x + (1-\alpha)y\bigr) \le \alpha g(x) + (1-\alpha)g(y)$. Следовательно, g — выпуклая функция. \lhd

Упражнения

4. Докажите, что непрерывная выпуклая функция $f\colon [a,b] \to \mathbb{R}$ удовлетворяет неравенству

$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_a^b f(x) \, \mathrm{d}x \le \frac{f(a)+f(b)}{2}(b-a).$$

- 5. Докажите, что субдифференциал $\partial f(x_0)$ произвольной выпуклой функции f в точке x_0 является замкнутым выпуклым множеством.
- 6. Пусть $f(x) \stackrel{\text{def}}{=} \max_{1 \le i \le m} f_i(x)$, где $f_i(x)$ выпуклые функции, и пусть c_i субградиент функции f_i в точке x_0 . Докажите, что вектор $c \stackrel{\text{def}}{=} \sum_{i=1}^m \alpha_i c_i, \sum_{i=1}^m \alpha_i = 1$, где $\alpha_i \ge 0$ и $\alpha_i = 0$, если $f_i(x_0) < f(x_0)$, является субградиентом функции f(x).
- 7. (Неравенство Караматы) Пусть даны два упорядоченных по невозрастанию набора из n действительных чисел $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ и $\mathbf{b}=(b_1,b_2,\ldots,b_n)$. Говорят, что набор \mathbf{a} мажсорирует набор \mathbf{b} , и пишут $\mathbf{a}\succ\mathbf{b}$, если $a_1\geqslant b_1,\,a_1+a_2\geqslant b_1+b_2,\,\ldots,\,a_1+a_2+\ldots+a_{n-1}\geqslant b_1+b_2+\ldots+b_{n-1},\,a_1+a_2+\ldots+a_n=b_1+b_2+\ldots+b_n.$ Докажите, что для любой выпуклой функции y=f(x), определённой на некотором промежутке I, и любых двух наборов $\mathbf{a}=(a_1,a_2,\ldots,a_n),\,\mathbf{b}=(b_1,b_2,\ldots,b_n)$ из этого промежутка, удовлетворяющих условию $\mathbf{a}\succ\mathbf{b}$, справедливо неравенство

$$f(a_1) + f(a_2) + \ldots + f(a_n) \ge f(b_1) + f(b_2) + \ldots + f(b_n).$$

8. Пусть f(x) и g(x) — выпуклая и вогнутая функции соответственно, определённые на выпуклом множестве X, причём для любого $x \in X$ выполняется неравенство $f(x) \geq g(x)$. Докажите, что существует линейная функция h(x), такая что

$$f(x) \ge h(x) \ge g(x)$$
 для каждого $x \in X$.

§3 ЗАДАЧА ВЫПУКЛОЙ ОПТИМИЗАЦИИ

Рассмотрим следующую задачу условной оптимизации

$$\begin{cases}
f_0(x) \to \min; \\
f_i(x) \le 0, \quad 1 \le i \le m; \\
x \in X;
\end{cases}$$
(3.1)

где $f_j: \mathbb{R}^n \to \mathbb{R}$ — выпуклые функции, $0 \le j \le m$, а $X \subset \mathbb{R}^n$ — произвольное выпуклое множество. Задача (3.1) называется задачей выпуклой оптимизации (выпуклого программирования), а функция $f_0(x)$ — целевой функцией задачи (3.1).

Множество $Y \stackrel{\mathrm{def}}{=} X \cap \{x \colon f_i(x) \le 0, 1 \le i \le m\} \subset \mathbb{R}^n$ будем называть множеством допустимых векторов (точек). Очевидно, что Y — выпуклое множество. Допустимую точку $x \in Y$, для которой выполнены неравенства $f_i(x) < 0, 1 \le i \le m$, будем называться строго допустимой. Ограничение $f_j(x) \le 0$ называется активным в допустимой точке $x \in Y$, если $f_j(x) = 0$. Множество индексов активных ограничений обозначим через $I(x) \stackrel{\mathrm{def}}{=} \{j \colon f_i(x) = 0, 1 \le j \le m\}$.

Опр. 3.1. Допустимый вектор $x^* \in Y$ называется решением задачи (3.1), если $f_0(x^*) \leq f_0(x)$ при $x \in Y$.

В общем случае, когда функции f_j не обязательно выпуклы, приводят определения локального и глобального экстремумов. Однако, очевидно, что для выпуклых задач эти понятия совпадают. Более того, если дополнительно известно, что f_0 — строго выпуклая функция, то задача (3.1) имеет не более одного решения.

Иногда к ограничением задачи (3.1) добавляют следующее Ax=b, где $A\in \mathbb{R}^{k\times n},\ b\in \mathbb{R}^k$ (отметим, что поверхность уровня $\{x\colon f(x)=c\}$ произвольной выпуклой функции f(x), вообще говоря, не является выпуклым множеством). Пусть \widetilde{x} — какое-либо решение линейного уравнения Ax=b и $K\in \mathbb{R}^{n\times d}$ — матрица, столбцы которой образуют базис ker A, dim ker A=d. Тогда, $\{\widetilde{x}+Ky\colon y\in \mathbb{R}^d\}$ — множество всех решений системы Ax=b. Таким образом, исходная задача равносильна задаче (3.1) для функций $\widetilde{f}_i(y)\stackrel{\mathrm{def}}{=} f_i(\widetilde{x}+Ky),\ 0\leq i\leq m$, и множества $\widetilde{X}=K^{-1}(X-\widetilde{x})$.

Пемма 3.1. Пусть функция f_0 из задачи (3.1) является дифференцируемой, тогда точка $x^* \in Y$ — решение задачи (3.1), если и только если для любой точки $x \in Y$ справедливо неравенство

$$\nabla f_0(x^*)^{\mathsf{T}}(x - x^*) \ge 0. \tag{3.2}$$

ightharpoonup Пусть x^* — решение задачи (3.1), докажем, что верно неравенство (3.2). Предположим противное, т.е., что нашлась такая допустимая точка $\widetilde{x} \in Y$, что $\nabla f(x^*)^\mathsf{T}(\widetilde{x}-x^*) < 0$. Так как f_0 — дифференцируемая функция, то имеет место равенство $f_0\big(x^*+t(\widetilde{x}-x^*)\big) = f_0(x^*)+t\nabla f_0(x^*)^\mathsf{T}(\widetilde{x}-x^*)+o(t),\ t\in[0,1]$. При достаточно малом t>0 слагаемое $t\big(\nabla f_0(x^*)^\mathsf{T}(\widetilde{x}-x^*)+o(t)/t\big)$ отрицательное, а значит, $f_0\big(x^*+t(\widetilde{x}-x^*)\big) < f_0(x^*)$, что противоречит выбору x^* .

Предположим, что для некоторой точки $x^* \in Y$ выполнено неравенство (3.2). Так как $f_0(x) \geq f_0(x^*) + \nabla f_0(x^*)^\mathsf{T}(x-x^*), \ x \in Y$, то $f_0(x) \geq f_0(x^*)$, а значит, x^* — решение задачи (3.1). \lhd

Опр. 3.2. Говорят, что для задачи (3.1) выполнено условие Слейтера, если множество строго допустимых точек задачи (3.1) не пусто.

Следуя [1, с. 52–58], перейдём к доказательству фундаментального результата, который является прямым аналогом метода множителей Лагранжа. Напомним, что функция $\mathcal{L}(x;\lambda_0,\lambda)\stackrel{\mathrm{def}}{=} \sum_{j=0}^m \lambda_j f_j(x)$, где $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_m)$, называется функ-

цией Лагранжа задачи (3.1), а числа $\lambda_0, \lambda_1, \ldots, \lambda_m$ — множителями Лагранжа.

Теорема 3.1 (Кун, Таккер). Пусть $f_j \colon \mathbb{R}^n \to \mathbb{R}$, $0 \le j \le m$, — выпуклые функции, а X — выпуклое множество. Если x^* является решением задачи (3.1), то найдутся такие множители Лагранжа λ_0^* и $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)$, что

- а) (условие невырожденности) числа $\lambda_0^*, \, \lambda_1^*, \, \dots, \, \lambda_m^*$ не равны θ одновременно;
- b) (условие неотрицательности) $\lambda_i^* \geq 0, 0 \leq j \leq m$;
- c) (условия дополняющей нежёсткости) $\lambda_i^* f_i(x^*) = 0, 1 \le i \le m.$
- $d) \ (npuнцun \ минимума) \ \min_{x \in X} \mathcal{L}(x; \lambda_0^*, \lambda^*) = \mathcal{L}(x^*; \lambda_0^*, \lambda^*);$

Пусть для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия a)-d), тогда

- A) x^* решение задачи (3.1), если $\lambda_0^* \neq 0$;
- В) $\lambda_0^* \neq 0$, если для задачи (3.1) справедливо условие Слейтера.

ightharpoonup Пусть x^* — решение задачи (3.1). Без нарушения общности будем считать, что $f_0(x^*)=0$. Действительно, если это не так, то определим новую функцию $\widetilde{f}_0(x)=f_0(x)-f_0(x^*)$. Рассмотрим множество $C\subset \mathbb{R}^{m+1}$, состоящее из таких векторов $\mu=(\mu_0,\mu_1,\ldots,\mu_m)^\mathsf{T}$, для которых найдётся точка $x_\mu\in X$, такая что выполнены неравенства

$$f_0(x_\mu) < \mu_0, \quad f_1(x_\mu) \le \mu_1, \quad \dots, \quad f_m(x_\mu) \le \mu_m.$$
 (3.3)

Установим ряд свойств множества C. Сперва докажем, что множество C непусто и выпукло. Действительно, любой вектор $\mu \in \mathbb{R}^{m+1}$ с положительными компонентами принадлежит C, так как в (3.3) для такого вектора достаточно положить $x=x^*$. Выпуклость множества C устанавливается аналогично доказательству выпуклости надграфика ері f произвольной выпуклой функции f.

Докажем, что нулевой вектор $\mathbf{0} \in \mathbb{R}^{m+1}$ не принадлежит C. Предположим противное. Тогда существует такая точка $\widetilde{x} \in X$, что $f_0(\widetilde{x}) < 0$ и $f_i(\widetilde{x}) \leq 0$, $1 \leq i \leq m$, а значит, x^* не является решением задачи (3.1).

Поскольку C — выпуклое множество и $\mathbf{0} \notin C$, то из теоремы 1.2 отделимости следует, что найдутся такие числа $\lambda_0^*, \, \lambda_1^*, \, \dots, \, \lambda_m^*$, неравные одновременно нулю, что $\sum_{j=0}^m \lambda_j^* \mu_j \geq 0, \, \mu \in C$. Докажем, что $\lambda_0^*, \, \lambda^*$ — искомые множители Лагранжа.

Множители $\lambda_j^*,\ 0\leq j\leq m$, неотрицательны. Действительно, очевидно, что вектор $(\delta,\ldots,\delta,1,\delta,\ldots\delta)^\mathsf{T}$, где $\delta>0$ и 1 стоит на j_0 -м месте, принадлежит C, а значит, $\lambda_{j_0}^*\geq -\delta\sum\limits_{j\neq j_0}\lambda_j^*$. Так как $\delta>0$ выбрано произвольно, то $\lambda_{j_0}^*\geq 0$.

Множители λ_i^* , $1 \leq i \leq m$, удовлетворяют условиям дополняющей нежёсткости. Выберем индекс i_0 . Если $f_{i_0}(x^*) = 0$, то $\lambda_{i_0}^* f_{i_0}(x^*) = 0$. Предположим, что $f_{i_0}(x^*) < 0$. Очевидно, что вектор $(\delta, 0, \dots, 0, f_{i_0}(x^*), 0, \dots, 0)^\mathsf{T}$, где $\delta > 0$ и число $f_{i_0}(x^*)$ стоит на i_0 -м месте, принадлежит C. Следовательно, $\lambda_{i_0}^* f_{i_0}(x^*) \geq -\lambda_{i_0}^* \delta$. Таким образом, $\lambda_{i_0}^* f_{i_0}(x^*) \geq 0$, а значит, $\lambda_{i_0}^* = 0$, т.е. $\lambda_{i_0}^* f_{i_0}(x^*) = 0$.

В точке x^* выполнен принцип минимума. Действительно, пусть $x \in X$. Тогда вектор $(f_0(x) + \delta, f_1(x), \dots, f_m(x))^\mathsf{T}$, где $\delta > 0$, принадлежит множеству C.

Следовательно, $\lambda_0^* f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) \ge -\lambda_0^* \delta$, а значит, $\mathcal{L}(x, \lambda_0^*, \lambda^*) \ge 0$. С другой стороны, $f_0(x^*) = 0$ и выполнены условия дополняющей нежёсткости, поэтому $\mathcal{L}(x^*, \lambda_0^*, \lambda^*) = 0$. Таким образом, $\mathcal{L}(x, \lambda_0^*, \lambda^*) \ge \mathcal{L}(x^*, \lambda_0^*, \lambda^*)$ для любого $x \in X$.

Пусть теперь для некоторых множителей λ_0^* , λ^* и допустимой точки $x^* \in Y$ выполнены условия а) – d). Предположим, что $\lambda_0^* \neq 0$. Без нарушения общности будем считать, что $\lambda_0^* = 1$. Тогда для любой допустимой точки $x \in Y$ получаем

$$f_0(x) \ge f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) = \mathcal{L}(x; 1, \lambda^*) \ge \mathcal{L}(x^*; 1, \lambda^*).$$

Так как $\mathcal{L}(x^*; 1, \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*)$, то x^* — решение задачи (3.1).

Предположим, что для задачи (3.1) выполнено условие Слейтера. Следовательно, существует точка $\widetilde{x} \in Y$, такая что $f_i(\widetilde{x}) < 0, \ 1 \le i \le m$. Докажем, что $\lambda_0^* \ne 0$. Предположим противное. Тогда $\mathcal{L}(\widetilde{x};0,\lambda^*) = \sum\limits_{i=1}^m \lambda_i^* f_i(\widetilde{x}) < 0$, так как не все множители $\lambda_i^*, \ 1 \le i \le m$, равны нулю. С другой стороны, $\mathcal{L}(x^*;0,\lambda^*) = 0$, а значит, $\mathcal{L}(\widetilde{x};0,\lambda^*) < \mathcal{L}(x^*;0,\lambda^*)$. Получено противоречие. \lhd

Функция $\mathcal{L}(x;\lambda) \stackrel{\text{def}}{=} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$, заданная на множестве $X \times \mathbb{R}^m_+$, где $\mathbb{R}^m_+ \stackrel{\text{def}}{=} \{\lambda \in \mathbb{R}^m \colon \lambda_i \geq 0\}$, называется нормальной функцией Лагранжа.

Лемма 3.2. Пусть $(x^*, \lambda^*) \in X \times \mathbb{R}^m_+$. Тогда точка x^* допустимая, т.е. $x^* \in Y$, и для пары (x^*, λ^*) выполнены условия a) - d) теоремы Куна – Таккера, если и только если (x^*, λ^*) — седловая точка нормальной функции Лагранжа, т.е.

$$\min_{x \in X} \mathcal{L}(x, \lambda^*) = \mathcal{L}(x^*, \lambda^*) = \max_{\lambda \in \mathbb{R}^m_+} \mathcal{L}(x^*, \lambda).$$
 (3.4)

ightharpoonup Действительно, пусть для пары $(x^*,\lambda^*)\in Y\times\mathbb{R}^m_+$ выполнены условия а) — d). Необходимо доказать только правое неравенство в (3.4). Для произвольных множителей $\lambda\in\mathbb{R}^m_+$ в силу условий b) и c) имеем

$$\mathcal{L}(x^*; \lambda^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) = f_0(x^*) \ge f_0(x^*) + \sum_{i=1}^m \lambda_i f_i(x^*) = \mathcal{L}(x^*; \lambda).$$

Пусть теперь пара $(x^*,\lambda^*)\in X\times\mathbb{R}^m_+$ — седловая точка функции $\mathcal{L}(x;\lambda)$. Докажем, только что $x^*\in Y$ и справедливо условие c), так как остальные условия, очевидно, выполнены. Если $f_{i_0}(x^*)>0$ для некоторого $i_0\geq 1$, то имеет место неравенство $\mathcal{L}(x^*;\lambda^*)<\mathcal{L}(x^*;\widetilde{\lambda})$, где $\widetilde{\lambda}\stackrel{\mathrm{def}}{=}(\lambda_1^*,\dots,\lambda_{i_0}^*+\delta,\dots,\lambda_m^*)^\mathsf{T}$ и $\delta>0$, которое противоречит (3.4). Следовательно, x^* — допустимая точка задачи (3.1). Так как $\mathcal{L}(x^*;\lambda^*)\geq \mathcal{L}(x^*;0)$, то $\sum_{i=1}^m\lambda_i^*f_i(x^*)\geq 0$, а значит, $\lambda_i^*f_i(x^*)=0$, $1\leq i\leq m$. \lhd

Пример 3.1 (Метод опорных векторов, SVM). Сформулируем задачу обучения с учителем. Пусть $f: X \to Y$ — отображение из пространства объектов X в множество ответов Y. Отображение f, вообще говоря, не известно, однако, дана обучающая выборка $S = \{(x_i, y_i)\}_{i=1}^N$ размера N, где $x_i \in X$ и $y_i = f(x_i) \in Y$, $1 \le i \le N$. Требуется построить отображение $\widehat{f}: X \to Y$, аппроксимирующее f на всём пространстве X.

Рассмотрим частный случай задачи обучения с учителем — задачу бинарной классификации, в которой $Y=\{-1,1\}$ и объекты описываются n-мерным вещественным вектором, т.е. $X=\mathbb{R}^n$. Далее будем считать, что в обучающей выборе содержатся объекты двух классов, а искомое отображение \widetilde{f} будем строить в форме линейного порогового классификатора $\widetilde{f}(x)=\mathrm{sign}(\omega^\mathsf{T} x-\omega_0)$, где $\omega\in\mathbb{R}^n\setminus\{\mathbf{0}\}$ и $\omega_0\in\mathbb{R}$ — параметры, которые необходимо определить.

Предположим, что выборка S строго линейно разделима, т.е. существуют такие значения параметров ω и ω_0 , при которых справедливы неравенства $y_i(\omega^{\mathsf{T}}x_i-\omega_0)>0$, $1\leq i\leq N$. В этом случае разделяющая гиперплоскость, вообще говоря, не единственна. Идея метода опорных векторов (support vector machine) состоит в выборе такой разделяющей гиперплоскости, которая максимально далеко отстоит от ближайших к ней точек обоих классов.

Заметим, что параметры ω и ω_0 линейного порогового классификатора \tilde{f} определяются с точностью до умножения на одну и ту же ненулевую константу. Поэтому, без ограничения общности будем считать, что $\min_{1\leq i\leq N}y_i(\omega^\mathsf{T}x_i-\omega_0)=1$. Ориентированное расстояние от точки x_i до гиперплоскости, заданной уравнением $\omega^\mathsf{T}x=\omega_0$, равно $(\omega^\mathsf{T}x_i-\omega_0)/\|\omega\|$. Поэтому для определения параметров ω и ω_0 необходимо решить задачу

$$\begin{cases} \|\omega\| \to \min; \\ \min_{1 \le i \le N} y_i(\omega^\mathsf{T} x_i - \omega_0) = 1; \end{cases}$$

которая эквивалентна следующей

$$\begin{cases} \frac{1}{2} \|\omega\|^2 \to \min; \\ y_i(\omega^\mathsf{T} x_i - \omega_0) \ge 1, \quad 1 \le i \le N. \end{cases}$$
 (3.5)

Руководствуясь леммой 3.2, найдём седловую точку функции Лагранжа задачи (3.5):

$$\mathcal{L}(\omega, \omega_0; \lambda) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^N \lambda_i (y_i(\omega^\mathsf{T} x_i - \omega_0) - 1) \to \min_{\omega, \omega_0} \max_{\lambda}.$$
 (3.6)

Так как седловая точка функции \mathcal{L} является стационарной по аргументам ω и ω_0 , то

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \text{ r.e. } \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0.$$
 (3.7)

Из (3.7), в частности, следует, что вектор ω является линейной комбинацией тех векторов обучающей выборки, для которых $\lambda_i \neq 0$. Согласно условиям дополняющей нежёсткости для этих векторов справедливы равенства $\omega^{\mathsf{T}} x_i - \omega_0 = y_i$. Такие векторы назовём опорными. Используя равенства (3.7), преобразуем задачу (3.6) к задаче

квадратичного программирования, содержащую только двойственные переменные:

$$\begin{cases}
-\mathcal{L}(\lambda) = -\sum_{i=1}^{N} \lambda_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j \to \min_{\lambda}; \\
\sum_{i=1}^{N} \lambda_i y_i = 0; \\
\lambda \ge 0.
\end{cases}$$
(3.8)

Предположим, что λ — решение задачи (3.8). Тогда вектор ω вычисляется согласно (3.7). Для определения порога ω_0 достаточно взять произвольный опорный вектор x_i и положить $\omega_0 = \omega^\mathsf{T} x_i - y_i$. Однако, из-за возможных погрешностей вычислений рекомендуется брать такой опорный вектор x_i при определении ω_0 , для которого двойственная переменная λ_i максимальна.

Рассмотрим общий случай, не делая предположений о линейной разделимости выборки. При любом выборе параметров ω и ω_0 линейный классификатор \widetilde{f} может ошибаться на объектах выборки. Введём набор дополнительных переменных $\xi_i \geq 0$, характеризующих величину ошибки на объектах x_i , $1 \leq i \leq N$. На основе задачи (3.5) составим новую задачу:

$$\begin{cases} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{N} \xi_i \to \min_{\omega, \omega_0, \xi}; \\ y_i(\omega^{\mathsf{T}} x_i - \omega_0) \ge 1 - \xi_i, \quad 1 \le i \le N; \\ \xi \ge 0; \end{cases}$$
(3.9)

где C — некоторый заданный гиперпараметр, определяющий компромисс между максимизацией ширины разделяющей полосы и минимизацией суммарной ошибки. Рассмотрим функцию Лагранжа для задачи (3.9):

$$\mathcal{L}(\omega, \omega_0, \xi; \lambda, \eta) = \frac{1}{2} \|\omega\|^2 - \sum_{i=1}^{N} \lambda_i (y_i (\omega^\mathsf{T} x_i - \omega_0) - 1) - \sum_{i=1}^{N} \xi_i (\lambda_i + \eta_i - C),$$

где $\eta=(\eta_1,\eta_2,\ldots,\eta_N)^\mathsf{T}$ — вектор переменных, двойственных к вектору переменных $\xi=(\xi_1,\xi_2,\ldots,\xi_N)^\mathsf{T}$. Согласно теореме Куна – Таккера и лемме 3.2 задача (3.8) сводится к поиску седловой точки функции Лагрнажа: $\mathcal{L}(\omega,\omega_0,\xi;\lambda,\eta) \to \min_{\omega,\omega_0,\xi}\max_{\lambda,\eta}$. Из условия стационарности седловой точки по аргументам ω и ω_0 получаем

$$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{N} \lambda_i y_i x_i = 0, \quad \text{r.e.} \quad \omega = \sum_{i=1}^{N} \lambda_i y_i x_i; \quad \frac{\partial \mathcal{L}}{\partial \omega_0} = \sum_{i=1}^{N} \lambda_i y_i = 0; \quad (3.10)$$

Пусть $(\omega, \omega_0, \xi; \lambda, \eta)$ — седловая точка функции Лагранжа \mathcal{L} . Покажем, что для всех $1 \leq i \leq N$ верно равенство $\xi_i(\lambda_i + \eta_i - C) = 0$. Последнее очевидно, если $\xi_i = 0$. Более того, $\lambda_i + \eta_i \leq C$, действительно, иначе функция \mathcal{L} была бы неограничена снизу. Если же $\xi_i > 0$, то из условия стационарности следует, что $\lambda_i + \eta_i = C$. Согласно теореме Куна — Таккера верно равенство $\eta_i = 0$, а значит, $\lambda_i = C$. Используя (3.10) сведём задачу поиска

седловой точки к задаче квадратичного программирования:

$$\begin{cases}
-\mathcal{L}(\lambda) = -\sum_{i=1}^{N} \lambda_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j \to \min_{\lambda}; \\
\sum_{i=1}^{N} \lambda_i y_i = 0; \\
0 \le \lambda_i \le C, \quad 1 \le i \le N.
\end{cases}$$
(3.11)

В заключении приведём критерий существования седловой точки.

Теорема 3.2. Пусть $f(x,y) \colon X \times Y \to \mathbb{R}$ — непрерывная функция, заданная на произведении компактных множеств X и Y. Тогда

$$\min_{x} \max_{y} f(x, y) \ge \max_{y} \min_{x} f(x, y). \tag{3.12}$$

При этом равенство в (3.12) достигается тогда и только тогда, когда существует седловая точка (x_0, y_0) функции f:

$$f(x_0, y) \le f(x_0, y_0) \le f(x, y_0), \quad x \in X, y \in Y.$$

ightharpoonup Выберем произвольную точку $\widetilde{y} \in Y$. Так как $\max_{y} f(x,y) \geq f(x,\widetilde{y}), \, x \in X$, то $\min_{x} \max_{y} f(x,y) \geq \min_{x} f(x,\widetilde{y})$, а значит, в силу произвольного выбора \widetilde{y} выполнено неравенство (3.12).

Предположим, что $\min_x \max_y f(x,y) = \max_y \min_x f(x,y)$. Выберем точки $x_0 \in X$ и $y_0 \in Y$ из условий $\max_y f(x_0,y) = \min_x \max_y f(x,y)$ и $\min_x f(x,y_0) = \max_y \min_x f(x,y)$. Тогда $f(x_0,y_0) \geq \min_x f(x,y_0) = \max_y \min_x f(x,y) = \min_x \max_y f(x,y)$. Поэтому, справедливо неравенство $f(x_0,y_0) \geq \max_y f(x_0,y)$. Аналогично, получаем

$$f(x_0, y_0) \le \max_y f(x_0, y) = \min_x \max_y f(x, y) = \max_y \min_x f(x, y) = \min_x f(x, y_0).$$

Таким образом, (x_0, y_0) — седловая точка.

Пусть теперь известно, что (x_0, y_0) — седловая точка. Тогда

$$\max_{y} \min_{x} f(x, y) \ge \min_{x} f(x, y_{0}) \ge f(x_{0}, y_{0}),$$

$$\min_{x} \max_{y} f(x, y) \le \max_{y} f(x_{0}, y) \le f(x_{0}, y_{0}).$$

Следовательно, $\max_{y} \min_{x} f(x,y) \geq \min_{x} \max_{y} f(x,y)$ и неравенство (3.12) обращается в равенство. \lhd

Упражнения

- 9. Докажите, что квадратичная функция $f(x) = x^{\mathsf{T}} A x + b^{\mathsf{T}} x$ либо достигает своей нижней грани на \mathbb{R}^n , либо не ограничена снизу.
- 10. Докажите, что для того, чтобы точка $x^* \in X$ была решением задачи выпуклого программирования (3.1), достаточно, чтобы для любого вектора v, удовлетворяющего системе неравенств $v^T \nabla f_j(x^*) \leq 0$, $j \in I(x^*)$, было верно $v^T \nabla f_0(x^*) \geq 0$.

Литература

[1] Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление – М.: Наука, 1979. – 432 с.