ASSIGNMENT 2

1. Do Homework problems 5, 6 and 9 from Chapter 6 in book.

5: The route tables for all the devices are as follows

H1

DESTINATION	NEXT HOP	INTERFACE
129.186.5.0/24	129.186.5.30	Eth0
127.0.0.1	127.0.0.1	Loopback
Default	129.186.5.254	En0

H2

DESTINATION	NEXT HOP	INTERFACE
129.186.100.0/24	129.186.100.40	Eth0
127.0.0.1	127.0.0.1	Loopback
Default	129.186.100.252	En0
129.186.5.0/24	129.186.100.254	En1

H3

DESTINATION	NEXT HOP	INTERFACE
129.186.4.0/24	129.186.4.133	Eth0
127.0.0.1	127.0.0.1	Loopback
Default	129.186.4.254	En1

R1

DESTINATION	NEXT HOP	INTERFACE
129.186.5.0/24	129.186.5.254	En0
129.186.100.0/24	129.186.100.254	En1
127.0.0.1	127.0.0.1	Loopback
Default	129.186.100.252	En0

R2

DESTINATION	NEXT HOP	INTERFACE
129.186.100.0/24	129.186.100.252	En0
Default	10.0.0.5	En1
127.0.0.1	127.0.0.1	Loopback

R3

DESTINATION	NEXT HOP	INTERFACE
129.186.5.0/24	129.186.100.254	En1
129.186.100.0	129.186.100.253	En0
Default	129.186.100.252	En0
127.0.0.1	127.0.0.1	Loopback
129.186.4.0	129.186.4.254	En1

6: The fragment for the network segment between the two routers is as follows:

LAYER	FILED	ORIGINAL	FRAGMENT 1	FRAGMENT 2
	NAME			
	Destination	N/A	00:88:88:38:12:EC	00:88:88:38:12:EC
Ethernet	Source	N/A	00:86:40:34:45:00	00:86:40:34:45:00
	Type/field	N/A	N/A	N/A
	Ver/HL	4/5	4/5	4/5
	Type	0	0	0
	Len	2740	1536	1244
	Id	3486	3486	3486
	Flags	000	001	000
IP	Offset	0	0	187
	Protocol	17	17	17
	TTL	Computed	Computed	Computed
	Checksum	Computed	Computed	Computed
	Source Ip	129.186.5.4	129.186.5.4	129.186.5.4
	Destination	68.10.7.4	68.10.7.4	68.10.7.4
	Ip			
Data		2700	1496	1204

9a. Assume H1 sent a message to H2, H3, H4, H5and a machine on the internet (ibm.com). How many entries would be there in H1's ARP table due to the messages?

Solution:

2

There are two ARP entries one for H5 and other for R2.

9b. For the nest three parts assume all caches are cleared before H3 sends a single ping request to H1 (the command = ping H1).
9c. How many packets are transmitted on the network segment NET 1 (including the ping request and reply)?
Solution: 6
9d. How many packets are transmitted on the network segment NET 3 (including the ping request and reply)?
Solution: 6
9e. How many packets are transmitted on the network segment NET 2 (including the ping request and reply)?
Solution: 6
9.f Answer the same questions for hosts H6 and H7, again assuming caches are all clear before starting.
Solution:
H6:
a) 4
b) 0
c) 6
d) 4
H7:
a) 2b) 0
c) 0
d) 6
~ / ∼

2. Do lab experiments 1-8 from chapter 6 in the book.

1. Determine the network address for the test laboratory and the netmask value.

Solution:

Network address: 129.186.251.0

Netmask: 255.255.255.0

2. Use the test lab and nslookup to find the ip address of each of the following machines.

a. www.nasa.gov: 63.151.118.105,

b. www.iac.iastate.edu: 129.186.105.22

c. www.cnn.com: 157.166.226.25

d. www.iseage.org: 129.186.105.37

e. www.iastate.edu: 129.186.140.50

f. Spock.ee.iastate.edu: 129.186.215.40

3. Use command ping to find the average time delay.

C:\Users\harish>ping www.nasa.gov

Pinging a1718.dscg.akamai.net [63.151.118.105] with 32 bytes of data:

Reply from 63.151.118.105: bytes=32 time=76ms TTL=52

Reply from 63.151.118.105: bytes=32 time=77ms TTL=52

Reply from 63.151.118.105: bytes=32 time=75ms TTL=52

Reply from 63.151.118.105: bytes=32 time=70ms TTL=52

Ping statistics for 63.151.118.105:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 70ms, Maximum = 77ms, Average = 74ms

C:\Users\harish>ping www.iac.iastate.edu

Pinging iac.ece.iastate.edu [129.186.105.22] with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 129.186.105.22:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\Users\harish>ping www.cnn.com

```
Pinging ouzo-cnn-671716670.us-west-2.elb.amazonaws.com [50.112.248.126] with 32
```

bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 50.112.248.126:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\Users\harish>ping www.iseage.org

Pinging www.iseage.org [129.186.105.37] with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 129.186.105.37:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\Users\harish>ping www.iastate.edu

Pinging www.iastate.edu [129.186.23.166] with 32 bytes of data:

Reply from 129.186.23.166: bytes=32 time=14ms TTL=248

Reply from 129.186.23.166: bytes=32 time=16ms TTL=248

Reply from 129.186.23.166: bytes=32 time=28ms TTL=248

Reply from 129.186.23.166: bytes=32 time=17ms TTL=248

Ping statistics for 129.186.23.166:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 14ms, Maximum = 28ms, Average = 18ms

C:\Users\harish>ping spock.ee.iastate.edu

Pinging spock.ee.iastate.edu [129.186.215.40] with 32 bytes of data:

Reply from 129.186.215.40: bytes=32 time=15ms TTL=56

Reply from 129.186.215.40: bytes=32 time=15ms TTL=56

Reply from 129.186.215.40: bytes=32 time=15ms TTL=56

Reply from 129.186.215.40: bytes=32 time=17ms TTL=56

Ping statistics for 129.186.215.40:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 15ms, Maximum = 17ms, Average = 15ms

4. Dump the route table for machine used in step 3.

5. Use the command arp -a to determine Ethernet address of the host.

C:\Users\harish>arp -a

Interface: 10.1.4.156 --- 0xc

Internet Address	Physical Address	Type
10.1.4.1	00-50-da-08-6f-fd	dynamic
10.1.4.33	00-26-5e-55-4b-1f	dynamic
10.1.4.78	28-cf-da-e0-5d-8c	dynamic
10.1.4.95	74-e5-43-39-5f-15	dynamic
10.1.4.98	e0-06-e6-5e-5a-95	dynamic
10.1.4.120	70-f1-a1-fc-27-42	dynamic
10.1.4.140	30-46-9a-1f-a7-36	dynamic
10.1.4.142	68-a3-c4-11-0f-27	dynamic
10.1.4.162	88-9f-fa-80-3c-65	dynamic
10.1.4.177	1c-65-9d-8e-a6-69	dynamic
10.1.4.207	24-be-05-3e-64-f2	dynamic
10.1.4.210	00-16-ea-55-79-6c	dynamic

```
    10.1.4.255
    ff-ff-ff-ff-ff
    static

    224.0.0.22
    01-00-5e-00-00-16
    static

    224.0.0.251
    01-00-5e-00-00-fb
    static

    224.0.0.252
    01-00-5e-00-00-fc
    static

    224.0.0.253
    01-00-5e-00-00-fd
    static

    239.255.255.255
    01-00-5e-7f-ff-fa
    static

    255.255.255.255
    ff-ff-ff-ff-ff-ff-ff
    static
```

6. Use nslookup to find ip address of mail servers stated above in experiment 2.

C:\Users\harish>nslookup

Default Server: 420-428swalnut.rentiowatech.com

Address: 10.1.4.1

> set type=MX

> www.nasa.gov

Server: 420-428swalnut.rentiowatech.com

Address: 10.1.4.1

Non-authoritative answer:

```
www.nasa.gov canonical name = www.nasa.gov.speedera.net
www.nasa.gov.speedera.net canonical name = www.nasa.gov.edgesuite.net
www.nasa.gov.edgesuite.net canonical name = a1718.dscg.akamai.net
```

dscg.akamai.net

```
primary name server = n0dscg.akamai.net
responsible mail addr = hostmaster.akamai.com
serial = 1349332906
refresh = 1000 (16 mins 40 secs)
retry = 1000 (16 mins 40 secs)
expire = 1000 (16 mins 40 secs)
default TTL = 1800 (30 mins)
```

> www.iac.iastate.edu

Server: 420-428swalnut.rentiowatech.com

Address: 10.1.4.1

Non-authoritative answer:

```
www.iac.iastate.edu canonical name = iac.ece.iastate.edu
```

ece.iastate.edu

```
primary name server = dns-1.iastate.edu
```

```
responsible mail addr = hostmaster.iastate.edu
     serial = 476340848
     refresh = 36000 (10 hours)
     retry = 3600 (1 \text{ hour})
     expire = 604800 (7 \text{ days})
     default TTL = 360000 (4 \text{ days 4 hours})
> www.cnn.com
Server: 420-428swalnut.rentiowatech.com
Address: 10.1.4.1
Non-authoritative answer:
www.cnn.com canonical name = www.cnn.com.vgtf.net
www.cnn.com.vgtf.net canonical name = cnn-atl.gslb.vgtf.net
gslb.vgtf.net
     primary name server = pdns1.ultradns.net
     responsible mail addr = Mark\.Reed.turner.com
     serial = 2012100322
     refresh = 10800 (3 hours)
     retry = 3600 (1 \text{ hour})
     expire = 2592000 (30 \text{ days})
     default TTL = 86400 (1 day)
> www.iseage.org
Server: 420-428swalnut.rentiowatech.com
Address: 10.1.4.1
iseage.org
     primary name server = romulan.ee.iastate.edu
     responsible mail addr = dougj.romulan.ee.iastate.edu
     serial = 10903093
     refresh = 43200 (12 hours)
     retry = 14400 (4 hours)
     expire = 720000 (8 \text{ days } 8 \text{ hours})
     default TTL = 36000 (10 \text{ hours})
> www.iastate.edu
Server: 420-428swalnut.rentiowatech.com
Address: 10.1.4.1
iastate.edu
     primary name server = dns-1.iastate.edu
```

```
responsible mail addr = hostmaster.iastate.edu
     serial = 476130574
     refresh = 3600 (1 hour)
     retry = 900 (15 \text{ mins})
     expire = 604800 (7 \text{ days})
     default TTL = 360000 (4 \text{ days 4 hours})
> spock.ee.iastate.edu
Server: 420-428swalnut.rentiowatech.com
Address: 10.1.4.1
ee.iastate.edu
     primary name server = romulan.ee.iastate.edu
     responsible mail addr = dougi.romulan.ee.iastate.edu
     serial = 11006140
     refresh = 43200 (12 hours)
     retry = 14400 (4 hours)
     expire = 720000 (8 \text{ days } 8 \text{ hours})
     default TTL = 36000 (10 \text{ hours})
```

8. Use traceroute to www.cnn.com

C:\Users\harish>tracert www.cnn.com

Tracing route to cnn-atl.gslb.vgtf.net [157.166.226.25] over a maximum of 30 hops:

```
1 4 ms 5 ms 4 ms 420-428swalnut.rentiowatech.com [10.1.4.1]
2 * * * Request timed out.
3 20 ms 21 ms 16 ms 172.30.6.21
4 21 ms 14 ms 172.30.1.149
5 12 ms 17 ms 21 ms 12.249.52.13
6 22 ms 22 ms 23 ms cr81.desia.ip.att.net [12.122.153.50]
7 31 ms 34 ms 31 ms cr2.cgcil.ip.att.net [12.122.153.41]
```