

Teoría de Grafos Nociones Básicas

Juan David Rojas Gacha

2020 - II

Problema de los puentes de Königsberg

Figura: Puentes de Königsberg

Leonard Euler (1736)

Conceptos fundamentales

Grafo

Un **grafo** G es una terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una relación que asocia a cada arista un par de vértices (extremos) no necesariamente distintos.

Conceptos fundamentales

Grafo

Un **grafo** G es una terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una relación que asocia a cada arista un par de vértices (extremos) no necesariamente distintos.

Relación de adyacencia

- Dos vértices u y v son adyacentes (vecinos) si u y v son los extremos de una arista e.
- u es adyacente a v se nota: $u \leftrightarrow v$

- Un bucle o lazo es una arista cuyos extremos son iguales.
- Dos o más aristas son múltiples o paralelas si tienen el mismo par de extremos

- Un bucle o lazo es una arista cuyos extremos son iguales.
- Dos o más aristas son múltiples o paralelas si tienen el mismo par de extremos

Grafo simple

Un grafo simple G = (V, E) es un grafo sin bucles ni aristas múltiples, donde E es un conjunto de pares no ordenados de vértices.

Grafo finito

Un grafo es **finito** si V(G) y E(G) son conjuntos finitos.

Grafo finito

Un grafo es **finito** si V(G) y E(G) son conjuntos finitos.

Grafo nulo

El **grafo nulo** es el grafo G, tal que $V(G) = \emptyset$ y $E(G) = \emptyset$

Grafo complementario

El complemento \overline{G} de un grafo simple G, es el grafo simple con conjunto de vértices V(G) definido por: $uv \in E(\overline{G})$ sii $uv \notin E(G)$.

Grafo complementario

El complemento \overline{G} de un grafo simple G, es el grafo simple con conjunto de vértices V(G) definido por: $uv \in E(\overline{G})$ sii $uv \notin E(G)$.

Clique

Un clique es un conjunto de vértices adyacentes 2 a 2.

Grafo complementario

El complemento \overline{G} de un grafo simple G, es el grafo simple con conjunto de vértices V(G) definido por: $uv \in E(\overline{G})$ sii $uv \notin E(G)$.

Clique

Un clique es un conjunto de vértices adyacentes 2 a 2.

Conjunto independiente

Un conjunto independiente es un conjunto de vértices no adyacentes 2 a 2.

W es un clique en G sii W es un conjunto independiente en \overline{G} .

W es un clique en G sii W es un conjunto independiente en \overline{G} .

Ejercicio

En todo grupo de 6 personas existen 3 conocidos mutuos o 3 extraños mutuos.

W es un clique en G sii W es un conjunto independiente en \overline{G} .

Ejercicio

En todo grupo de 6 personas existen 3 conocidos mutuos o 3 extraños mutuos.

Ejercicio

Todo grafo de 6 vértices tiene un clique o un conjunto independiente de tamaño 3.

Grafo bipartito

Un grafo G es **bipartito** si V(G) es la unión de dos conjuntos disyuntos independientes denominados conjuntos partitos de G.

Grafo bipartito

Un grafo G es **bipartito** si V(G) es la unión de dos conjuntos disyuntos independientes denominados conjuntos partitos de G.

Grafo k-partito

Un grafo G es k-partito si V(G) es la unión de k conjuntos disyuntos independientes.

Grafo k-partito

Un grafo G es k-partito si V(G) es la unión de k conjuntos disyuntos independientes.

Número cromático

El **número cromático** de un grafo G, $\chi(G)$, es el mínimo número de colores necesarios para etiquetar los vértices de G de tal manera que vértices adyacentes reciban colores distintos.

Número cromático

El **número cromático** de un grafo G, $\chi(G)$, es el mínimo número de colores necesarios para etiquetar los vértices de G de tal manera que vértices adyacentes reciban colores distintos.

Teorema

Un grafo G es k-partito sii $\chi(G) \leq k$.

Subgrafo

Un **subgrafo** de un grafo G es un grafo H tal que:

- 1. $V(H) \subseteq V(G)$.
- 2. $E(H) \subseteq E(G)$.

Y la asignación de extremos a las aristas en H es la misma que en G. Se nota $H\subseteq G$.

Camino

Un **camino** es un grafo simple cuyos vértices pueden ordenarse en una lista de tal manera que dos vértices son adyacentes sii son consecutivos en la lista.

Camino

Un **camino** es un grafo simple cuyos vértices pueden ordenarse en una lista de tal manera que dos vértices son adyacentes sii son consecutivos en la lista.

Ciclo

Un **ciclo** es un grafo simple con el mismo número de vértices y aristas cuyos vértices pueden ubicarse alrededor de un circulo de tal manera que dos vértices son adyacentes sii aparecen de manera consecutiva sobre el circulo.

Ciclo

Un **ciclo** es un grafo simple con el mismo número de vértices y aristas cuyos vértices pueden ubicarse alrededor de un circulo de tal manera que dos vértices son adyacentes sii aparecen de manera consecutiva sobre el circulo.

Conexidad

Un grafo G es **conexo** si cada par de vértices en G pertenece a un camino, de lo contrario, G es disconexo.

Conexidad

Un grafo G es **conexo** si cada par de vértices en G pertenece a un camino, de lo contrario, G es disconexo.

Matriz de Adyacencia - Matriz de Incidencia

Sea G un grafo sin bucles con $V(G) = \{v_1, v_2, \dots, v_n\}$ y $E(G) = \{e_1, e_2, \dots, e_m\}$.

• La matriz de adyacencia de G es la matriz $n \times n$, A(G), definida por

$$a_{ij} := \text{número de aristas en G con extremos } \{v_i, v_j\}$$

• La matriz de incidencia de G es la matriz $n \times m$, M(G), definida por

$$m_{ij} := \begin{cases} 1 & \text{si } v_i \text{ es extremo de } e_j \\ 0 & \text{en otro caso} \end{cases}$$

1. A(G) depende del orden de los vértices.

1. A(G) depende del orden de los vértices. (n!).

- 1. A(G) depende del orden de los vértices. (n!).
- 2. Toda matriz de adyacencia es simétrica.

- 1. A(G) depende del orden de los vértices. (n!).
- 2. Toda matriz de adyacencia es simétrica.
- 3. Si G es simple, la matriz de adyacencia tiene entradas 1 o 0 con $0^\prime s$ en la diagonal.

- 1. A(G) depende del orden de los vértices. (n!).
- 2. Toda matriz de adyacencia es simétrica.
- 3. Si G es simple, la matriz de adyacencia tiene entradas 1 o 0 con $0^\prime s$ en la diagonal.

- 1. A(G) depende del orden de los vértices. (n!).
- 2. Toda matriz de adyacencia es simétrica.
- Si G es simple, la matriz de adyacencia tiene entradas 1 o 0 con 0's en la diagonal.

Grado de un vértice (1)

El **grado** de un vértice v es la suma de las entradas en la fila de v en A(G) o M(G). Se nota d(v).

1. La matriz de adyacencia también se usa para representar grafos con bucles. Un bucle en el vértice v_i es representado por un 1 en la posición (i, i) de la matriz de adyacencia.

- 1. La matriz de adyacencia también se usa para representar grafos con bucles. Un bucle en el vértice v_i es representado por un 1 en la posición (i, i) de la matriz de adyacencia.
- 2. En este caso no se cumple la propiedad del grado de un vértice.

- 1. La matriz de adyacencia también se usa para representar grafos con bucles. Un bucle en el vértice v_i es representado por un 1 en la posición (i, i) de la matriz de adyacencia.
- 2. En este caso no se cumple la propiedad del grado de un vértice.

Grado de un vértice (2)

El grado de un vértice v es el número de aristas incidentes en v. Un bucle en v aporta dos unidades al grado de v.

Bibliografía

Kenneth Rosen
Discrete Mathematic

Discrete Mathematics and its Applications *McGraw Hill.* (2012).

Bibliografía 40