

Ch. 8 - VLAN (Virtual LAN)

CCNA 3 version 3.0
Wolfgang Riggert, FH Flensburg, auf der Grundlage von Rick Graziani, Cabrillo College

Vorbemerkung

Die englische Originalversion finden Sie unter: http://www.cabrillo.cc.ca.us/~rgraziani/

Der username ist cisco und das Password perlman

- Viele der Informationen ergänzen das Online-Curriculum
- Die Zusatzinformation ist zur Verdeutlichung und weiteren Erklärung der Themen eingefügt.
- Die Originalversion ist um eigene Folien erweitert, um das Verständnis zu fördern

Überblick

Die Folien sollen folgende Lernziele unterstützen:

- Definition von VLANs
- Nutzen von VLANs
- VLANs und ihr Verhältnis zu Broadcastdomänen
- Einsatz von Routern in VLAN-Umgebungen
- VLAN Typen
- Definition von ISL und 802.1Q
- Konfiguration und Verifikation von VLANs

 VLANs segmentieren ein Netz durch die Bildung von Broadcastdomänen. Ein VLAN ist eine Gruppe von Endstationen, die sich auf unterschiedlichen LAN-Segmenten befinden können, aber logisch zusammengehören. Damit wird das VLAN zu einer auf Layer-2 definierten Broadcastdomäne

- VLANs richten sich an die Skalierbarkeit, die Sicherheit und das Netzwerkmanagement.
- Switches können keinen Datenverkehr zwischen unterschiedlichen VLANs vermitteln
- Zur Kommunikation zwischen unterschiedlichen VLANs ist ein Router erforderlich

VLAN-Aufbau

Ausgangssituation

jeder kommunizieren

VLAN-Lösung

Nur Stationen gleicher Schattierung können miteinander kommunizieren

Broadcastdomänen mit VLANs und Routern

drei Vlans =
drei Broadcastdomänen
mit je einem Switch
und einem Router zur
Vermittlung

Ein VLAN ist eine Broadcastdomäne, die einen oder mehrere Switches umfassen kann

VLAN – statische Zuordnung: portbasiert

- Jeder Port eines Switches wird einem VLAN zugeordnet. Eine Endstation, die an diesem Port angeschlossen wird, ist automatisch Teil dieses VLANs. Eine explizite Zuweisung eines Hosts zu einem VLAN ist damit überflüssig.
- Ports, die dem gleichen VLAN zugewiesen sind, gehören der gleichen Broadcastdomäne an
- Ports können nur Mitglied eines VLANs sein
- Das Default-VLAN (VID 1) ist in jeder Standardkonfiguration portbasiert definiert und kann nicht gelöscht werden

VLANs - portbasiert : Beispie

VLAN - dynamische Zuordnung

- Die dynamische Mitgliedschaft zu einem VLAN wird durch Management Software hergestellt.
- Dynamische VLANs ordnen die Hosts z.B. auf Basis der MAC-Adresse einem VLAN zu.
- Dieses Konzept verlangt die Existenz einer Datenbank für jeden Switch, die Auskunft über die VLAN-Mitgliedschaft gibt.

Nutzen von VLANs

- Der Kernnutzen entsteht durch die Möglichkeit, das LAN nach organisatorischen Gesichtspunkten und nicht nach physikalischen zu strukturieren.
- Dies erlaubt dem Administrator:
 - einen problemlosen Umzug von Hosts
 - ein leichtes hinzufügen neuer Stationen
 - einen einfacheren Wechsel der LAN-Konfiguration
 - gesteigerte Kontrolle des Netzverkehrs
 - verbesserte Sicherheit

VLAN Types

MAC Adressenbasierte VLANs

MAC Address Tables

VLAN 1 020701AEF1A OA032192FA2A 026765175GA3A

VLAN 2 050503G4GF2A 040404THTB3A 070706GGGF3A

Table Adds Administrative Overhead MAC Address Tables

VLAN 1 020701AEF1A 0A032192FA2A 026765175GA3A

VLAN 2 050503G4GF2A 040404THTB3A 070706GGGF3A

- · User assigned based on MAC addresses
- · Offers flexibility, yet adds overhead
- · Impacts performance, scalability, and administration
- · Offers similar process for higher layers

VLAN - protokollbasiert

- Ein protokollbasiertes VLAN besteht aus einer Gruppe von Switchports, für die jeweils ein oder mehrere Protokolltypen definiert werden.
- Folgende Protokolle sind möglich:
 - · IP
 - · IPX
 - · DECnet
 - AppleTalk
 - · SNA VINES X.25 NetBIOS
- Ein protokollbasiertes VLAN schließt jeden Frame aus, der nicht der Protokolltypdefinition entspricht.
- Protokollbasierte VLANs des gleichen Typs können sich nicht überschneiden.

VLAN - protokollbasiert : Beispiel

VLAN Switch

VLAN Tagging

- VLAN Tagging wird notwendig, wenn eine Verbindung mehr als den Verkehr eines VLANs transportieren muss. Ein Beispiel hierfür sind Trunks.
- Eine Marke = Tag wird dem Header hinzugefügt, um die VLAN-Zugehörigkeit zu erkennen
- Das Paket wird dann dem entsprechenden Switch oder Router auf der Basis des VLAN-Identifiers und der MAC-Adresse zugestellt.
- Der zum Empfänger nächstgelegenen Switch entfernt die VLAN-ID und stellt das Originalpaket zu

VLAN-Komponenten Frameidentifikation

MAC Header

IP Header

Data...

Beispiel: Protokolltyp

Implizite Identifikation: Information im Frame eingefügt

MAC Header "Tag" IP Header Data

Beispiel: Standard 802.1 Q tag

Explizite Identifikation: Information dem Frame hinzugefügt

Implizites Tagging

Explizites Tagging: Beispiel

Explizites Tagging: Ablauf

- 1. Ein Frame wird durch ein Device übertragen, das Mitglied von VLAN A ist.
- 2. Dieser Frame wird vom Switch identifiziert und um einen 802.1Q Tag ergänzt, der VLAN A kennzeichnet.
- 3. Der Frame wird auf einem Interswitch-Link übertragen (Downlink).
- 4. Der getagged Frame erreicht den entfernten Switch, der ihn als zu VLAN a zugehörig erkennt und ihn an den entsprechenden Port weiterleitet.
- 5. Da der Port untagged für VLAN A ist, entfernt der Switch den Tag.

Explizites Tagging: Merkmale

- Explicit Tagging ist die am häufigsten verwendete Methode zur Bestimmung der VLAN-Zugehörigkeit
 - Unter 802.1Q werden bestimmte Tagginginformationen, die die VLAN-Identifikation gewährleisten hinzugefügt.
 - Ein einfacher Downlink kann Verkehr für mehrere VLANs zwischen den Switches transportieren.
 - Wird Tagging über einen Downlink verwendet, müssen beide Endstationen VLAN-fähig sein.

Explizites Tagging: Information

Normaler Ethernet Frame

Präambel:	SFD: 1	DA: 6	SA: 6	Typ/ Länge: 2	Daten:	48 bis 1500	CRC: 4
-----------	--------	-------	-------	------------------	--------	-------------	--------

Eingefügte Felder

802.1Q Tagged Frame

räambol: 2 2 Tyn/ Daten:

Präambel: 7	SFD: 1	DA: 6	SA: 6			Typ/ Länge: 2	Daten: 48 bis 1500	CRC: 4
----------------	--------	-------	-------	--	--	------------------	-----------------------	--------

User CFI Bits der VLAN ID (VID) zur Identifikation 4,096 möglicher VLANs

1 bit

12 bits

802.1p/Q Struktur

VLAN Tagging

kein VLAN Tagging

VLAN Taggingmethoden

- Es gibt zwei Methoden des Taggings:
 - Ciscos herstellerspezifisches Inter-Switch Link (ISL)
 - IEEE 802.1Q.
- ISL wird durch 802.1Q ersetzt, da es einen Quasi-Standard darstellt.

Ende-zu-Ende oder Campus-VLANs

Campus-wide or End-to-End VLAN Model

- VLANs based on functionality
- "VLAN everywhere" model
- VLANs with the same VLAN ID, I.e. Accounting VLAN 10, can be anywhere in the network

Geographische oder Lokale VLANs

Local or Geographic VLAN Model

- VLANs based on physical location
- VLANs dedicated to each access layer switch cluster
- Accounting users connected to different layer 3 switches are on different VLANs, I.e. Accounting VLAN 10 and VLAN 30

Ende-zu-Ende oder Campus-VLANs

- einige VLAN/Subnetze unabhängig von der Positionierung im Netz
- Trunking und Routing zwischen den VLANs durch Kernrouter
- Von den Herstellern nicht empfohlen
- Fügt dem Netz Komplexität im Management hinzu
- Löst keine Spanning-Tree Probleme
- Richtet sich an alte 80/20-Regel daher obsolet

Geographische oder lokale VLANs

- Weit verbreitet
- Routing im Kern
- Unterschiedliche VLAN/Subnetze abhängig von der Lokation
- Nutzer benötigen Ressourcen außerhalb ihres VLANs
- Die Zentralisierung von Ressourcen erzeugt Schwierigkeiten im Ende-zu-Ende-Design
- Eine neue 80/20-Regel besagt, dass 80% des Datenverkehrs remote verläuft und nur 20% lokal, d.h. der Nutzer muss in 80% der Fälle ein Layer-3-Device überqueren

Konfigurieren statischer VLANs

- Die maximale Anzahl VLANs ist switchabhängig:
 - · 29xx Switches erlauben 4,095 VLANs
- VLAN 1 ist das Default-VLAN
- Cisco Discovery Protocol (CDP) und VLAN Trunking Protocol (VTP) Advertisements werden auf VLAN 1 gesendet
- Die Catalyst 29xx IP-Adresse gehört zur VLAN 1 Broadcastdomäne

Anlegen von VLANs

· Einrichten eines VLANs 10

Switch#vlan database
Switch(vlan)#vlan 10
Switch(vlan)#exit

Zuweisung eines Accessports zu VLAN 10 (kein Trunkport!!!)

Switch(config)#interface fastethernet 0/9
Switch(config-if)#switchport access vlan 10

VLAN portbasiert

Port 5-7 wird VLAN 2 zugewiesen:

SydneySwitch(config)#interface fastethernet 0/5
SydneySwitch(config-if)#switchport access vlan 2
SydneySwitch(config-if)#exit
SydneySwitch(config)#interface fastethernet 0/6
SydneySwitch(config-if)#switchport access vlan 2
SydneySwitch(config-if)#exit

SydneySwitch(config)#interface fastethernet 0/7

VLAN Trunkports

VLANs - show vlan

VLAN - show vlan brief

	Sydne	SydneySwitch#show vlan brief							
	VLAN	Name	Status	Ports					
	-	default VLAN2 VLAN3	active active active	Fa0/5,	Fa0/6,	Fa0/3, Fa0/7			
<u> </u>	1003 1004	fddi-default token-ring-default fddinet-default trnet-default	active active active active						

Löschen von VLANs

Switch(config-if) #no switchport access vlan 300

Switch (config) #interface fastethernet 0/9
Switch (config-if) #no switchport access vlan 300

