Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN CAMPUS DE RIO DAS OSTRAS

Gabarito da 2ª Geometria Analítica e Cálculo Vetorial - 2/2014 22/11/2014

- 1. Considere as retas r: $\begin{cases} x=2+t\\ y=1-t\\ z=t,\ t\in\mathbb{R}, \end{cases}$ e s: $\begin{cases} x=1+2t\\ y=1-2t\\ z=1+2t,\ t\in\mathbb{R}. \end{cases}$
 - (a) [1 pt] Encontre a equação geral do plano π que contém r e s.
 - (b) [1 pt] Encontre a equação da esfera de centro C = (1, 0, -1) que é tangente ao plano π .

Solução:

(a)

Sabemos que $\vec{v}=(1,-1,1)$ é um vetor diretor para r e s. Além disso, $P_r=(2,1,0)\in r$ e $P_s=(1,1,1)\in$

Neste caso, um vetor normal ao plano π é

$$\vec{n} = \vec{v} \times \overrightarrow{P_r P_s} = (-1, -2, -1).$$

Neste caso a equação é da forma -x-2y-z+d=0.

Substituindo as coordenadas de P_r na equação do plano encontramos d=4. Logo a equação do plano é:

$$-x - 2y - z + 4 = 0$$

(b)

O raio desta esfera é dado pela distância entre C e o plano π . Com isso,

$$d(C,\pi) = \frac{|-1+1+4|}{\sqrt{1+4+1}} = \frac{4}{\sqrt{6}} = \frac{2\sqrt{6}}{3}.$$

Neste caso, a equação da esfera é:

$$(x-1)^2 + y^2 + (z+1)^2 = \frac{8}{3}$$

- 2. Considere os planos $\pi_1 : x + y + z = 0$ e $\pi_2 : 2x y 1 = 0$.
 - (a) [1 pt] Obtenha as equações paramétricas da reta $r = \pi_1 \cap \pi_2$.

(b) [2 pts] Encontre os pontos da reta r que estão a uma distância de $\sqrt{6}/6$ do plano $\pi_3: x+2y+z-1=0.$

Solução:

(a)

0.2

Sabemos que $\vec{n}_1=(1,1,1)$ e $\vec{n}_2=(2,-1,0)$ são vetores normais de π_1 e π_2 respectivamente.

- 0,3 -

Neste caso um vetor diretor para r é:

$$\vec{v} = \vec{n}_1 \times \vec{n}_2 = (1, 2, -3)$$

0.3

Resta encontrar um ponto que pertence a r. Fazemos z=0 nas equaçãoes de π_1 e π_2 e obtemos o seguinte sistema:

$$\begin{cases} x + y = 0 \\ 2x - y = 1, \end{cases}$$

cuja solução é x=1/3 e y=-1/3. Logo um ponto de r é $P=\left(\frac{1}{3},-\frac{1}{3},0\right)$.

0.2

Logo, as equações paramétricas de r são:

$$r: \begin{cases} x = \frac{1}{3} + t \\ y = -\frac{1}{3} + 2t \\ z = -3t, \ t \in \mathbb{R}. \end{cases}$$

(b)

0.5

Do item anterior temos que um ponto da reta é da forma $P_t = (\frac{1}{3} + t, -\frac{1}{3} + 2t, -3t)$. Neste caso, devemos determinar os valores de t tais que

$$d(P_t, \pi_3) = \frac{\sqrt{6}}{6}.$$

1.0

Como o vetor normal a π_3 é $\vec{n} = (1, 2, 1)$ temos que

$$d(P_t, \pi_3) = \frac{\left| -\frac{2}{3} - 2t + 2\left(-\frac{1}{3} + 2t \right) \right|}{\sqrt{6}} = \frac{\sqrt{6}}{6} \Rightarrow \left| -\frac{4}{3} + 2t \right| = 1$$
$$\Rightarrow -\frac{4}{3} + 2t = 1 \text{ ou } -\frac{4}{3} + 2t = -1 \Rightarrow t = \frac{1}{6} \text{ ou } t = \frac{7}{6}.$$

- 0,5 -

Substituindo em P_t , temos que os pontos são: $P_{1/6} = (\frac{1}{2}, 0, -\frac{1}{2})$ e $P_{7/6} = (\frac{3}{2}, 2, -\frac{7}{2})$

3. [2 pts] Encontre o raio e o centro da circunferência que é a interseção do plano $\pi: 2x-2y-z+9=0$ com a esfera $(x-3)^2+(y+2)^2+(z-1)^2=100$.

Solução:

-0.5 -

Sabemos que $\vec{n} = (2, -2, -1)$ é um vetor normal de π , C = (3, -2, 1) é o centro e R = 10 é o raio da esfera.

-0,5

Por um lado, sabemos que o centro da circunferência pertence à reta r que passa por C na direção do vetor \vec{n} . Uma parametrizada para r é dada por

$$r:(x,y,z)=(3,-2,1)+t(2,-2,1)=(3-2t,-2-2t,1+t),\ t\in\mathbb{R}.$$

Isso significa que o centro da circunferência é da forma $C_0 = (3 - 2t, -2 - 2t, 1 + t)$.

0,5

Por outro lado, como C_0 pertence a π , substituindo as coordenadas de C_t na equação de π obtemos t=-2. Logo, $C_0=(-1,2,3)$.

- 0,5 -

Dado um ponto P qualquer da circunferência sabemos que seu raio é dado por $d(P, C_0)$. Observe que neste caso, o triângulo ΔPC_0C é retângulo, onde CP é a hipotenusa.

Como d(C, P) = 10 é o raio da esfera, e $d(C, C_0) = 6$, usando a fórmula de Pitágora, temos que o raio da circunferência é $d(P, C_0) = 8$.

4. Considere as restas r_1 e r_2 dadas por:

$$r_1: \begin{cases} x=1 \\ y=2+t \\ z=3+3t, \ t \in \mathbb{R}, \end{cases}$$
 e $r_2: \begin{cases} x=t \\ y=1+t \\ z=t, \ t \in \mathbb{R}, \end{cases}$

- (a) [1 pt] Mostre que r_1 e r_2 são reversas.
- (b) [1 pt] Calcule a distância entre elas.
- (c) [1 pt] Determine a reta que intercepta r_1 e r_2 perpendicularmente.

Solução:

(a)

0.5

Note que $\vec{v}_1=(0,1,3)$ e $\vec{v}_2=(1,1,1)$ são vetores diretores de r_1 e r_2 respectivamente. Além disso, $P_1=(1,2,3)\in r_1$ e $P_2=(0,1,0)\in r_2$.

0.5

Como

$$[\overrightarrow{P_1P_2}, \overrightarrow{v_1}, \overrightarrow{v_2}] = 2,$$

temos que as retas são reversas.

(b)

0.4

Sabemos que o volume do paralelepidedo cujas arestas são os vetores \vec{v}_1, \vec{v}_2 e $\overrightarrow{P_1P_2}$, é dado por

$$|[\overrightarrow{P_1P_2}, \overrightarrow{v}_1, \overrightarrow{v}_2]| = 2$$

-0,3

Além disso, a área da base do mesmo paralelepípedo é dada por

$$\|\vec{v}_1 \times \vec{v}_2\| = \sqrt{14}.$$

0,3

Logo, a distância entre as retas é a altura deste paralelepípedo que é dada por

$$d(r_1, r_2) = h = \frac{|[\overrightarrow{P_1P_2}, \overrightarrow{v_1}, \overrightarrow{v_2}]|}{\|\overrightarrow{v_1} \times \overrightarrow{v_2}\|} = \frac{\sqrt{14}}{7}.$$

(c)

0.3

Seja r a reta perpendicular a r_1 e r_2 . Um vetor diretor para essa reta é o vetor

$$\vec{v} = \vec{v}_1 \times \vec{v}_2 = (-2, 3 - 1).$$

0.5

Resta encontrarmos um ponto que pertence a r. Para isso, sejam Q_1 e Q_2 os pontos de r que interceptam as retas r_1 e r_2 respectivamente. Neste caso, temos que Q_1 e Q_2 são da forma:

$$Q_1 = (1, 2+t, 3+3t) \in Q_2 = (s, 1+s, s).$$

Como $\overrightarrow{Q_1Q_2}$ e \overrightarrow{v} são paralelos temos que

$$\overrightarrow{Q_1Q_2} \times \vec{v} = \vec{0}.$$

Com isso, temos o sistema

$$\begin{cases} 10 + 10s - 4t = 0 \\ 5 + 6s - t = 0 \\ -5 - 2s + 5t = 0. \end{cases}$$

Resolvendo o sistema obtemos que s = -5/7 e t = 5/7. Com isso, temos que $Q_1 = \left(1, \frac{9}{7}, \frac{6}{7}\right)$.

0.2

Logo, temos que a reta r é dada por

$$r: \begin{cases} x = 1 - 2t \\ y = \frac{9}{7} + 3t \\ z = \frac{6}{7} - t, \ t \in \mathbb{R}. \end{cases}$$