Chapter 5

Exponentials and Logarithms

5.1 Exponential Laws and Definitions

If a, b > 0 and if $r, s \in \mathbf{R}$ then

$$\bullet \quad a^r a^s = a^{r+s}$$

$$\bullet \quad (a^r)^s = a^{rs}$$

•
$$a^0 = 1$$

$$\bullet \quad \frac{a^r}{a^s} = a^{r-s}$$

$$\bullet \quad \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\bullet \quad a^{-r} = \frac{1}{a^r}$$

$$\bullet \quad a^{\frac{1}{2}} = \sqrt{a}$$

5.2 Logarithm Laws

If x, y > 0 and a > 1 and $r \in \mathbf{R}$ then

- Log Law 1: $\log_a(xy) = \log_a x + \log_a y$,
- Log Law 2: $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$,
- Log Law 3: $\log_a(x^r) = r \log_a x$, and
- Log Law 4: $\log_a x = \frac{\log_{10} x}{\log_{10} a}$

Example 1. Use your calculator to evaluate $\,\log_2 7\,.$

Write your answer to 3 decimal places.

Solution: By using Log Law 4, and the $\log = \log_{10}$ button on our calculator, we have

$$\log_2 7 = \frac{\log_{10} 7}{\log_{10} 2}$$

$$= (\log 7) \div (\log 2)$$

$$= 2.807 \quad (3 \text{ d.p.})$$

Example 2. Using Log Laws 1–3, simplify the following expressions:

(a)
$$\frac{\log_5 8}{\log_5 4}$$
 (b) $\log_{10} 3 + 2\log_{10} \left(\frac{5}{4}\right) - \log_{10} \left(\frac{25}{32}\right)$.

Solution: (a)

$$\frac{\log_5 8}{\log_5 4} = \frac{\log_5(2^3)}{\log_5(2^2)}$$

$$= \frac{3\log_5 2}{2\log_5 2} \text{ (by Log Law 3)}$$

$$= \frac{3}{2}.$$

Note:
$$\frac{\log_5 8}{\log_5 4} \neq \frac{8}{4} \quad \text{and} \quad \frac{\log_5 8}{\log_5 4} \neq \log_5 \left(\frac{8}{4}\right)$$

$$\log_{10} 3 + 2\log_{10} \left(\frac{5}{4}\right) - \log_{10} \left(\frac{25}{32}\right)$$

$$= \log_{10} 3 + \log_{10} \left(\left(\frac{5}{4} \right)^2 \right) - \log_{10} \left(\frac{25}{32} \right) \quad \text{(by Log Law 3)}$$

$$= \log_{10} \left(3 \times \left(\frac{5}{4} \right)^2 \right) - \log_{10} \left(\frac{25}{32} \right) \quad \text{(by Log Law 1)}$$

$$= \log_{10} \left(\frac{75}{16} \right) - \log_{10} \left(\frac{25}{32} \right)$$

$$= \log_{10} \left(\frac{75}{16} \div \frac{25}{32} \right) \quad \text{(by Log Law 2)}$$

$$= \log_{10} \left(\frac{75}{16} \times \frac{32}{25} \right)$$

$$= \log_{10} (3 \times 2)$$

$$= \log_{10} 6$$
.

Exercises

1. Without using your calculator, simplify

$$\log_{10}\left(\frac{5}{32}\right) - 4\log_{10}\left(\frac{5}{4}\right) + 3\log_{10}\left(\frac{9}{2}\right) - 4\log_{10}\left(\frac{3}{5}\right)$$

2. Maths 1 Extension (Not Examinable):

Consider the functions defined by

$$f(x) = 2\log_5 x$$
 and $g(x) = \log_5(x^2)$.

These functions are **not** identical to each other. Why?

Hint: Consider the domains of f and g.

5.3 Solving Exponential Equations

Example 3. Solve $3^x = 5$. Write your answer to 3 decimal places.

Solution.

$$3^{x} = 5$$

$$\iff \log_{10}(3^{x}) = \log_{10} 5$$

$$\iff x \log_{10} 3 = \log_{10} 5 \qquad \text{(by Log Law 3)}$$

$$\iff x = \frac{\log_{10} 5}{\log_{10} 3}$$

$$\iff x = 1.465 \quad \text{(3 d.p.)}$$

Example 4. Solve $2^x + 2^{-x} = 5$. Write your answer to 3 decimal places. *Solution:*

Note: It is **not** useful to take the logarithm of both sides since

$$\log_{10} \left(2^x + 2^{-x} \right) = \log_{10} 5$$

cannot be simplified:

$$\log_{10} (2^x + 2^{-x}) \neq \log_{10} (2^x) + \log_{10} (2^{-x})$$
.

We need to rewrite the equation in a different form, so that it is easier to solve.

First of all, note that $2^{-x} = \frac{1}{2^x}$ and so we need to solve

$$2^x + \frac{1}{2^x} = 5.$$

Now, instead of solving for x, let us solve for 2^x . Let $y = 2^x$. Then we need to solve

$$y + \frac{1}{y} = 5.$$

Multiplying both sides by y gives $y^2 + 1 = 5y$.

We can use the quadratic formula to solve this equation for y:

$$y^2 - 5y + 1 = 0$$
 \iff $y = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(1)}}{2(1)} = \frac{5 \pm \sqrt{21}}{2}$.

Thus

$$y = \frac{5 + \sqrt{21}}{2}$$
 or $y = \frac{5 - \sqrt{21}}{2}$.

Since $y = 2^x$, we must have

$$2^x = \frac{5 + \sqrt{21}}{2}$$
 or $2^x = \frac{5 - \sqrt{21}}{2}$.

Now, to solve for x, we take the logarithm of both sides:

$$\log_{10}(2^x) = \log_{10}\left(\frac{5+\sqrt{21}}{2}\right)$$
 or $\log_{10}(2^x) = \log_{10}\left(\frac{5-\sqrt{21}}{2}\right)$

$$x \log_{10} 2 = \log_{10} \left(\frac{5 + \sqrt{21}}{2} \right)$$
 or $x \log_{10} 2 = \log_{10} \left(\frac{5 - \sqrt{21}}{2} \right)$

$$x = \frac{\log_{10}\left(\frac{5+\sqrt{21}}{2}\right)}{\log_{10} 2}$$
 or $x = \frac{\log_{10}\left(\frac{5-\sqrt{21}}{2}\right)}{\log_{10} 2}$.

So, to 3 decimal places, either

$$x = 2.260$$
 or $x = -2.260$.

Exercises

- 1. Use your calculator to evaluate the following (write your answer to 4 decimal places):
 - (a) $\log_2 10$
- (b) $\log_7 3$ (c) $\log_8 8192$
- 2. Find x to 3 decimal places:

- (a) $3^x = 0.2$ (b) $2^x = 5$ (c) $3^{x-1} = 7$ (d) $10^x + 10^{-x} = 5$

- 3. Solve

 - (a) $2^{-x} = 32$ (b) $2^{2x} 6 \times 2^x + 8 = 0$
- 4. Show that $\log_{10}\left(\frac{5-\sqrt{21}}{2}\right) = -\log_{10}\left(\frac{5+\sqrt{21}}{2}\right)$.

Hint: Use the fact that $\frac{5-\sqrt{21}}{2} = \frac{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}{2\left(5+\sqrt{21}\right)}$ and expand the brackets, simplify, and then use Log Law

5.4 Answers to Chapter 5 Exercises

- **5.2:** 1. $\log_{10} 45$
 - 2. f and g are not identical because they have different domains. In particular, $\mathrm{dom}(f)=(0,\infty)$ whereas $\mathrm{dom}(g)=\mathbf{R}\setminus\{0\}$. Thus, for example, $g(-5)=\log_5(25)=2$ whereas f(-5) is not defined.
- **5.3:** 1. (a) 3.3219 (b) 0.5646 (c) 4.3333
 - 2. (a) -1.465 (b) 2.322 (c) 2.771 (d) ± 0.680
 - 3. (a) -5 (b) 1, 2
 - 4. Omitted.