Изучение влияния структуры ГФК на его оптические характеристики

Научный руководитель: Юрасов Николай Ильич доцент кафедры ФН-4, к. ф.-м. н. МГТУ им. Н.Э. Баумана

Автор: Радько Петр Игоревич СОШ №446

Постановка проблемы

- Сегодня разрабатываются новые оптические устройства
- Перспективны глобулярные фотонные кристаллы (ГФК)
- Избирательное управление свойствами ГФК
- Будущее современной электроники и оптических устройств
- Интенсивная разработка теории и ее реализация в устройствах

Цель работы

Этапы работы

1.1 Трехмерное моделирование

1.2 Трехмерное моделирование

Инструмент

Система трехмерной графики Autodesk 3ds Max 2015

Объект

Инвертированная ячейка глобулярного фотонного кристалла

Пора на месте глобулы

Заполненная материалом пора

1.3 Трехмерное моделирование

Сечения элементарной ячейки глобулярного фотонного кристалла

1.4

Математическое моделирование

1.5 Математическое моделирование

```
> with(plottools):
     > sector_001_2 := plottools[] > sector_011_1 := plottools[sector][[0,0], r_0, 0... \frac{\pi}{2}, color = black]:
   > sector_001_3 := plottools[ > sector_001_2 := plottools[sect] > sector_001_3 := plottools[sect] > sector_001_3 := plottools[sect] > sector_001_3 := plottools[sect] > sector_001_3 := plottools[sector] > sector_001_3 := plottools[sector]
                                                                                                                                                                                                                                                                                                                                                                                        > sector_111_2 := plottools[sector]([2 \cdot r_g, 0], r_g, 0 ...\pi, color = black):
      > sector\_001\_4 := plottools[
 \left| \begin{array}{c} \\ \\ \\ \end{array} \right| > sector\_011\_4 := plottools[sect] \\ \\ > sector\_111\_3 := plottools[sector] \left( \begin{bmatrix} 4 \cdot r_g, 0 \end{bmatrix}, r_g, \pi \dots \frac{2\pi}{3}, color = black \right) \\ \\ > sector\_011\_5 := plottools[sect] \\ > sector\_011\_5 :=
                                                                                                                                                                                                                                                                                                                                                                                      > sector_111_4 := plottools[sector] \left( \left[ 2 \cdot r_g, 2 \cdot r_g \cdot \sqrt{3} \right], r_g, -\frac{\pi}{3} \dots -\frac{2\pi}{3}, color = black \right):
                                                                                                                                                                                 > sector_011_6 := plottools[sect
                                                 <001>
                                                                                                                                                                                                                                                                                                                                                                                         > sector_111_5 := plottools[sector] \left[ \left[ r_g, r_g, \sqrt{3} \right], r_g, \frac{\pi}{3} ... - \frac{2\pi}{3}, color = black \right]:
                                                                                                                                                                                                                                                                                                                                                                                      > sector_{111_6} := plottools[sector] \left( \left[ 3 \cdot r_g, r_g \cdot \sqrt{3} \right], r_g, -\frac{\pi}{3} ... -\frac{4 \cdot \pi}{3}, color = black \right):
                                                                                                                                                                                                                                                          <110>
```

Расчетные модули сечений элементарной ячейки глобулярного фотонного кристалла

1.6 Математическое моделирование

Сечения элементарной ячейки глобулярного фотонного кристалла (нм)

2.1

Теория: диапазон пористости

Пористость ГФК (сплошные глобулы)

$$\eta_0 \approx 0.26$$

Пористость ГФК (пористые глобулы)

$$\eta_{\text{max}} = \eta_0 + \eta_0 \left(1 - \eta_0 \right) \approx 0.45$$

Диапазон пористости ГФК

$$\Delta \eta \in \left[\eta_0; \eta_{\max} \right]$$

Теория: коэффициенты от пористости

Коэффициент преломления

$$n_{eff} = \sqrt{n_{SiO2}^2 (1 - \eta_0 - \Delta \eta) + (\eta_0 + \Delta \eta)}$$

Коэффициент отражения

$$R = \left| \frac{n_{eff} - 1}{n_{eff} + 1} \right|^{2}$$

$$0.012$$

$$0.011$$

$$0.009$$

$$0.008$$

$$0.007$$

$$0.006$$

$$0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 \Delta n$$

2.3 Теория: учет доп. факторов

Коэффициент отражения:
$$R = \begin{bmatrix} r_1 - \frac{2 \text{ i}\alpha}{1-r_1} e^{\frac{2 \text{ i}\alpha}{1}} \\ 2 + r_1 e \end{bmatrix}^2$$
 Диаметр глобулы (от 200 до 300 нм)
$$\alpha = 4 \pi \left(\frac{2}{3}\right)^{\frac{1}{2}} \frac{n_{\text{eff}}D}{\lambda}$$
 Длина волны (от 200 до 800 нм)

2.4 Теория: расчет коэф. отражения

```
> \eta_0 := 0.2595195098:
> n_{SiO2} := 1.47:
                                                                              > \alpha := \frac{4 \cdot \pi \cdot n_{eff} \cdot d}{\lambda}:
 > r_1 := \frac{1 - n_{eff}}{1 + n_{eff}}:
> r_2 := -0.5:
                                                                              > v := \frac{\sin(\alpha)}{1 - 2 \cdot q \cdot \cos(\alpha) + q^2}:
 \Rightarrow q := r_1 \cdot r_2:
                                                                              b \coloneqq r_2 \cdot (1 - r_1)^2:
                                                                              R := (r_1 + b \cdot u)^2 + (b \cdot v)^2
> d := \left(\frac{2}{3}\right)^{\frac{1}{2}} \cdot T =
```

2.5 Теория: зависимость коэф. отражения

3.1 Подготовка эксперимента

Принципиальная схема

Лазерные указки Dragon (532 нм, 650 нм) ГФК на опаловой основе с D=290 нм и η=0.26

Экспериментальная установка

3.2

Проведение эксперимента

А. Характеристики стеклянной пластины

Расчет коэффициента преломления

$$n_{\rm c} = \sqrt{1 + \left(\frac{b}{d}\right)^2} \sin(\alpha)$$

d — толщина стеклянной пластины (1.2 мм \pm 0.5 мм);

b — расстояние между нормалями в точке входа и выхода луча (1.5 мм ± 0.5 мм);

 α — угол падения луча лазера на стеклянную пластинку (80° ± 1°).

$$n_{\rm c} \approx 1.57$$

Расчет коэффициента отражения

$$R_{c} = \sqrt{|r_{s}|^{4} + |r_{p}|^{4}}$$

$$r_{s} = \frac{\sqrt{n_{c}^{2} - \sin^{2}(\frac{\pi}{4})} - \cos^{2}(\frac{\pi}{4})}{\sqrt{n_{c}^{2} - \sin^{2}(\frac{\pi}{4})} + \cos^{2}(\frac{\pi}{4})}$$

$$r_{p} = r_{s} \frac{\cos(\frac{\pi}{4})\sqrt{n_{c}^{2} - \sin^{2}(\frac{\pi}{4})} - \sin^{2}(\frac{\pi}{4})}{\cos(\frac{\pi}{4})\sqrt{n_{c}^{2} - \sin^{2}(\frac{\pi}{4})} + \sin^{2}(\frac{\pi}{4})}$$

$$R_{c} \approx 0.20$$

3.3 Проведение эксперимента

Б. Коэффициент отражения образца ГФК

Замер освещенности (мВ)

 E_{v1} — уровень освещенности на месте нахождения образца ГФК

 $\mathsf{E}_{\mathsf{v}2}$ — уровень освещенности отраженного от образца ГФК света

	λ = 532 нм		λ = 650 нм	
Nº	Ev1	Ev2	Ev1	Ev2
1	457	0,4	434	5,80
2	461	0,3	431	7,2
3	467	0,4	411	6,1
4	473	0,3	406	6
5	485	0,4	401	6
Среднее	468,6	0,36	416,6	6,22

Расчет коэффициентов отражения ГФК

$$R_{9} = \frac{E_{v2}}{E_{v1}R_{c}}$$

При
$$\lambda = 532$$
 нм $R_{3} \approx 0.004$

При
$$\lambda = 650$$
 нм $R_{_{\mathfrak{S}}} \approx 0.075$

Погрешность расчета R_3 составляет ±25%.

3.4 Итоги эксперимента

1. Максимум коэффициента отражения в теории и эксперименте наилучшим образом соответствует пористости, равной 0.26.

Внутренние поры глобул, по-видимому, не оказывают влияния на коэффициент отражения.

2. Экспериментально полученный коэффициент отражения сильно ниже предсказанного.

Это можно объяснить дефектами поверхности образца.

Выводы

- Проведена трехмерная визуализация ячейки ГФК и сечений в Autodesk 3Ds Max 2015.
- Построены математические модели сечений в Maple 18.
- Проведен расчет зависимости коэффициента отражения ГФК от пористости, диаметра глобул и длины волны.
- Разработана экспериментальная установка для измерения коэффициента отражения ГФК.
- Получены данные, подтверждающие выведенную теоретическую зависимость.
- Путем сравнения расчета и эксперимента возможно оценить качество поверхности реального ГФК.

Перспективы

- Создание методики тестирования образцов ГФК для оценки качества их поверхности.
- Получение ГФК с оптическими параметрами, обеспечивающими максимальные коэффициенты отражения.
- Использование ГФК для получения монохроматического излучения с меньшей шириной спектра излучения.
- Создание зеркал с избирательным отражения света с более высокими характеристиками.

Список литературы

- [1] E. Yablonovitch, «Inhibited Spontaneous Emission in Solid-State Physics and Electronics,» Phys. Rev. Lett., т. 58, № 20, pp. 2059-2062, 18 Май 1987.
- [2] E. Yalonovitch и T. J. Gmitter, «Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,» Phys. Rev. Lett., т. 67, № 17, pp. 2295-2298, 21 Октябрь 1991.
- [3] В. С. Горелик, «Оптика глобулярных фотонных кристаллов,» Квантовая Электроника, т. 37, № 5, р. 410, Май 2007.
- [4] Ю. Я. Голубь, В. С. Горелик, Л. Злобина, В. Моисеенко и П. Свербиль, Необратимые процессы в природе и технике, А. Морозов и В. Горелик, Ред., Москва: ФИАН, 2005.
- [5] Г. Мякишев и А. Синяков, Физика. Оптика. Квантовая физика. 11класс., 2 ред., Дрофа, 2002, р. 56.
- [6] Л. Д. Ландау, А. И. Ахиезер и Е. М. Лившиц, Курс общей физики. Механика и молекулярная физика, КДУ, 2009, р. 126.
- [7] Н. И. Юрасов и И. И. Юрасова, «Влияние углеродной пленочной наноструктуры на коэффициент отражения от фотонного кристалла из искусственного опала» Вестник МГТУ им. Н. Э. Баумана, № 44, pp. 30-35, 2012.