МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 8304	Щука А. А.
Преподаватель	Кирьянчиков В. А.

Санкт-Петербург

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm paвh}=10$, СКО $s_{\rm paвh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\rm эксп} = s_{\rm эксп} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(\pi/2),$ $s_{\rm pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0,195	0,6	0,82	1,164	1,758	1,872	2,982	3,604	3,761	4,949
i	11	12	13	14	15	16	17	18	19	20
X_i	5,662	6,06	6,96	7,251	7,551	9,154	9,729	10,96	11,08	11,279
i	21	22	23	24	25	26	27	28	29	30
X_i	11,453	14,7	16,502	17,055	17,787	18,029	18,385	18,925	19,165	19,747

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 21,45.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 21,45 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

m	31	32	33	34
$f_n(m)$	3,9949	3,0273	2,5585	2,2555
g(m,A)	3,1416	2,8438	2,5976	2,3905
$ f_n(m)-g(m,A) $	0,8533	0,1835	0,0391	0,135

Минимум разности достигается при m = 33.

Первоначальное количество ошибок B = m - 1 = 32.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,009306.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 3.

Таблица 3 — Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

j	31	32
X_j (дней)	53,73	107,46

Было рассчитано время до завершения тестирования $t_k=161,\!2$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 440$,3 дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

Таблица 4 — Равномерное распределение, n = 24 (80%).

i	1	2	3	4	5	6	7	8
X_i	0,037	0,539	0,58	2,445	3,484	4,136	4,811	5,317
i	9	10	11	12	13	14	15	16
X_i	5,8	5,888	7,963	9,969	11,527	11,679	12,749	13,66
i	17	18	19	20	21	22	23	24
X_i	13,866	14,221	14,28	16,169	16,947	17,449	17,812	18,477

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 16,76$.

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16,76 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 – Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28
$f_n(m)$	3,7759	2,8159	2,3544	2,0581
g(m,A)	2,913	2,5977	2,344	2,1354
$ f_n(m)-g(m,A) $	0,8629	0,2182	0,0104	0,0773

Минимум разности достигается при m = 27.

Первоначальное количество ошибок B = m - 1 = 26.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,0102.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

j	25	26
X_j (дней)	49,02	98,04

Было рассчитано время до завершения тестирования $t_k=147,\!1$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 376,9$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 7.

Таблица 7 — Равномерное распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	1,043	1,247	1,944	1,955	3,126	3,907	5,332	5,345	5,523
i	10	11	12	13	14	15	16	17	18
X_i	8,815	9,439	11,126	12,707	17,129	17,249	17,524	18,252	18,347

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13,1.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13,1 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21
$f_n(m)$	3,4951	2,5477	2,0977
g(m,A)	3,051	2,6088	2,2785
$ f_n(m)-g(m,A) $	0,4441	0,0611	0,1808

Минимум разности достигается при m = 20.

Первоначальное количество ошибок B = m - 1 = 19.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,0163$$
.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 9}.$

Таблица 9 — Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

j	19
X_j (дней)	61,33

Было рассчитано время до завершения тестирования $t_k = 61,3$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 221,3$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0,1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=-ln(t)/b. Массив был упорядочен по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0,151	0,419	0,629	0,812	0,921	0,965	1,567	1,779	2,485	2,614
i	11	12	13	14	15	16	17	18	19	20
X_i	3,595	4,095	4,894	5,175	5,656	6,714	6,792	7,257	7,423	9,289
i	21	22	23	24	25	26	27	28	29	30
X_i	9,862	9,943	12,006	12,242	16,451	16,503	18,202	22,926	23,969	45,099

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23,41.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 23,41 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11 – Расчёт значений функций для экспоненциального распределения (100%).

m	31	32
$f_n(m)$	3,995	3,027
g(m,A)	3,9545	3,494
$ f_n(m) - g(m, A) $	0,0405	0,467

Минимум разности достигается при m = 31.

Первоначальное количество ошибок B = m - 1 = 30.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,01518.$$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 260,4$ дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0,1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 12.

Таблица 12 – Экспоненциальное распределение, n=24 (80%).

i	1	2	3	4	5	6	7	8
X_i	0,131	0,131	0,769	1,755	2,984	3,285	3,397	3,754
i	9	10	11	12	13	14	15	16
X_i	5,293	5,361	5,78	7,072	8,052	8,675	9,039	9,416
i	17	18	19	20	21	22	23	24
X_i	9,545	10,051	10,671	10,788	11,809	15,799	19,951	20,956

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17,24.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 17,24 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 13.

Таблица 13 – Расчёт значений функций для экспоненциального распределения (80%).

m	25	26	27
$f_n(m)$	3,776	2,816	2,354
g(m,A)	3,09	2,738	2,457
$ f_n(m) - g(m, A) $	0,686	0,078	0,103

Минимум разности достигается при m = 26.

Первоначальное количество ошибок B = m - 1 = 25.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,01484.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 14}.$

Таблица 14 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (80%).

j	25
X_j (дней)	67,365

Было рассчитано время до завершения тестирования $t_k = 67,4$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 251,8$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0,1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 15.

Таблица 15 - Экспоненциальное распределение, <math>n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0,09	0,294	0,987	2,033	2,627	2,89	3,011	3,23	6,18
i	10	11	12	13	14	15	16	17	18
X_i	6,951	8,675	9,138	9,238	12,31	15,847	15,995	16,094	29,565

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13,86.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13,86 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 16.

Таблица 16 – Расчёт значений функций для экспоненциального распределения (60%).

m	19	20
$f_n(m)$	3,495	2,547
g(m,A)	3,498	2,929
$ f_n(m) - g(m,A) $	0,003	0,382

Минимум разности достигается при m = 19.

Первоначальное количество ошибок B = m - 1 = 18.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,0241.$$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 145,2$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8,0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)). Массив был упорядочен по возрастанию. Результаты представлены в таблице 17.

Таблица 17 — Релеевское распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0,506	1,19	2,286	3,115	3,246	3,768	3,899	4,17	5,209	6,208
i	11	12	13	14	15	16	17	18	19	20
X_i	6,361	6,716	7,505	7,862	8,086	8.788	9,135	11,084	11,205	11,864
i	21	22	23	24	25	26	27	28	29	30
X_i	11,962	11,98	12,127	12,346	14,697	15,98	17,397	18,025	18,303	22,677

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 20,58.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 20,58 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 18.

Таблица 18 – Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35
$f_n(m)$	3,995	3,027	2,558	2,255	2,035
g(m,A)	2,878	2,626	2,414	2,235	2,08
$ f_n(m)-g(m,A) $	1,117	0,401	0,144	0,02	0,045

Минимум разности достигается при m = 34.

Первоначальное количество ошибок B = m - 1 = 33.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,00805.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 19}.$

Таблица 19 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

j	31	32	33
X_j (дней)	41,417	62,126	124,251

Было рассчитано время до завершения тестирования $t_k = 227.8$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 505,5$ дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8,0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 20.

i	1	2	3	4	5	6	7	8
X_i	2,91	3,115	4,772	5,522	5,798	5,984	6,77	7,346
i	9	10	11	12	13	14	15	16
X_i	7,756	8,948	9,406	9,501	9,775	9,831	9,845	10,265
i	17	18	19	20	21	22	23	24
X_i	10,654	11,312	11,929	11,945	12,346	12,518	12,783	28,204

Таблица 20 – Релеевское распределение, n = 24 (80%).

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 15,38.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15,38 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 21.

Таблица 21 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30	31	32
$f_n(m)$	3,776	2,816	2,354	2,058	1,846	1,68	1,545	1,434
g(m,A)	2,495	2,26	2,066	1,902	1,762	1,64	1,537	1,444
$ f_n(m) - g(m, A) $	1,28	0,556	2,888	0,156	0,084	0,04	0,008	0,01

Минимум разности достигается при m = 31.

Первоначальное количество ошибок B = m - 1 = 30.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,0067.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице } 22.$

Таблица 22 — Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

j	25	26	27	28	29	30
X_j (дней)	24,864	29,837	37,296	49,728	74,593	149,185

Было рассчитано время до завершения тестирования $t_k = 365,5$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 594,7$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8,0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 23.

Таблица 23 – Релеевское распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	2,666	2,691	3,267	4,187	4,659	5,025	7,836	7,941	10,365
i	10	11	12	13	14	15	16	17	18
X_i	10,567	11,848	12,244	12,553	13,797	15,136	16,01	20,22	21,502

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 12,34.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12,34 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 24.

Таблица 24 — Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22
$f_n(m)$	3,495	2,548	2,098	1,812
g(m,A)	2,704	2,351	2,079	1,864
$ f_n(m) - g(m, A) $	0,791	0,197	0,019	0,052

Минимум разности достигается при m = 21.

Первоначальное количество ошибок B = m - 1 = 20.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0,01139.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 25.

Таблица 25 — Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

m	19	20
X_j (дней)	43,88	87,77

Было рассчитано время до завершения тестирования $t_k=131,7$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 314,2$ дней.

4. Результаты расчетов.

В таблицах 26 и 27 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 26 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	32	30	33
24	80	26	25	30
18	60	19	18	20

Таблица 27 – Оценка полного времени проведения тестирования.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	440,3	260,4	505,5
24	80	376,9	251,8	594,7
18	60	221,3	145,1	314,2

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Это связано с тем, что модель Джелинского-Моранды основана на предположении о том, что время до следующего отказа программы распределено

экспоненциально. Относительно релеевского распределения, равномерное показывает лучшие результаты.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.