Estatística Inferencial

Professor Eduardo Monteiro de Castro Gomes

Distribuições de probabilidade

Considere que um levantamento de dados foi realizado e foram registradas as alturas em centímetros de um determinado grupo de pessoas.

Alturas	Frequências relativas
${(145,150]}$	0.02
(150,155	0.02
(155,160]	0.10
(160,165]	0.14
(165,170]	0.21
(170,175]	0.22
(175,180]	0.14
(180,185]	0.09
(185,190]	0.03
(190,195]	0.03

De que forma pode-se representar essas alturas em um gráfico?

Histogram of alturas

É possível determinar a proporção de pessoas com menos de 160 cm com base na área do gráfico?

Os modelos de probabilidade permitem aproximar ou representar a distribuição de uma determinada variável. O modelo mais conhecido e utilizado é a distribuição Normal de probabilidades. Perceba a aproximação das alturas por uma distribuição Normal

Histogram of alturas

Para o cálculo de probabilidades referentes a um modelo contínuo de probabilidade deve-se calcular a área sob a curva. A ferramenta matemática utilizada para calcular essas áreas é a integral. Dada a complexidade de muitos dos principais modelos de probabilidade a resolução analítica das integrais não é possível e portanto técnicas numéricas são utilizadas e tabelas são criadas para o cálculo de probabilidades envolvendo esses modelos.

A utilização das atuais ferramentas computacionais dispensa o uso de tabelas. Em linguagem R para se calcular probabilidades referentes a distribuição Normal utiliza-se a função *pnorm*.

Em nosso exemplo das alturas, suponha que uma pessoa será selecionada para realizar exames adicionais.

• Qual a probabilidade que a pessoa selecionada tenha menos de 160 cm? $P(X \le 160)$

```
pnorm(160, mean = media,sd = desviopad )
```

[1] 0.1159931

• Qual a probabilidade que a pessoa selecionada tenha mais de 180 cm? $P(X \ge 180)$

```
1 - pnorm(180, mean = media, sd = desviopad)
```

[1] 0.1606338

- Qual a probabilidade que a pessoa selecionada tenha entre 165 e 175 cm? $P(165 \le X \le 175)$

```
pnorm(175, mean = media, sd = desviopad) - pnorm(165, mean = media, sd = desviopad)
```

[1] 0.4135308

Distribuição T-student

Distribuição Qui-quadrado

Distribuição F

Distribuições amostrais

Histogram of pop1

Histogram of medpop1

Histogram of pop1

Histogram of medpop1

