项目: 分析鸢尾花种类数据

# 分析目标

此数据分析报告的目的是基于鸢尾花的属性数据,分析两种鸢尾花萼片、花瓣的长度和宽度平均值,是否存在显著性差异,让我们可以对不同种类鸢尾花的属性特征进行推断。

# 简介

原始数据 Iris.csv 包括两种鸢尾花,每种有 50 个样本,以及每个样本的一些属性,包括萼片的长度和宽度、花瓣的长度和宽度。

Iris.csv 每列的含义如下:

• Id: 样本的ID。

• SepalLengthCm: 萼片的长度 (单位为厘米)。

• SepalWidthCm: 萼片的宽度(单位为厘米)。

• PetalLengthCm: 花瓣的长度(单位为厘米)。

• PetalWidthCm: 花瓣的宽度 (单位为厘米)。

• Species: 鸢尾花种类。

# 读取数据

导入数据分析所需要的库,用Pandas的 read\_csv 函数,将'Iris.csv'原始数据集,解析为 DataFrame格式,并赋值给变量 df

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
In [2]: df = nd pead csy('Injs csy')
```

```
In [2]: df = pd.read_csv('Iris.csv')
    df
```

| Out[2]: |    | Id  | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species             |
|---------|----|-----|---------------|--------------|---------------|--------------|---------------------|
|         | 0  | 1   | 5.1           | 3.5          | 1.4           | 0.2          | Iris-<br>setosa     |
|         | 1  | 2   | 4.9           | 3.0          | 1.4           | 0.2          | Iris-<br>setosa     |
|         | 2  | 3   | 4.7           | 3.2          | 1.3           | 0.2          | Iris-<br>setosa     |
|         | 3  | 4   | 4.6           | 3.1          | 1.5           | 0.2          | Iris-<br>setosa     |
|         | 4  | 5   | 5.0           | 3.6          | 1.4           | 0.2          | Iris-<br>setosa     |
|         |    |     |               | •••          | •••           |              |                     |
|         | 95 | 96  | 5.7           | 3.0          | 4.2           | 1.2          | lris-<br>versicolor |
|         | 96 | 97  | 5.7           | 2.9          | 4.2           | 1.3          | Iris-<br>versicolor |
|         | 97 | 98  | 6.2           | 2.9          | 4.3           | 1.3          | lris-<br>versicolor |
|         | 98 | 99  | 5.1           | 2.5          | 3.0           | 1.1          | lris-<br>versicolor |
|         | 99 | 100 | 5.7           | 2.8          | 4.1           | 1.3          | lris-<br>versicolor |

100 rows × 6 columns

# 评估和清理数据

在这一部分,我将对上一部分所建立的 df 数据集所包含的数据进行评估和清理。

评估主要从两个方面进行:结构和内容,即整齐度和干净度。数据的结构性问题指不符合"每列是一个变量,每行是一个观察值,每个单元格是一个值"这三个标准,数据的内容性问题包括存在丢失数据、重复数据、无效数据等。

为了区分经过清理的数据和原始的数据,我们创建新的变量 cleaned\_df ,让它成为 df 复制出的副本。之后的清理步骤都将被运用在 cleaned\_df 上。

In [3]: cleaned\_df = df.copy()

# 数据整齐度

利用DataFrame的 sample 方法,提供 df 的实际数据,来评估数据的整齐度

In [4]: df.sample(10)

| Out[4]: |    | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species             |
|---------|----|----|---------------|--------------|---------------|--------------|---------------------|
|         | 81 | 82 | 5.5           | 2.4          | 3.7           | 1.0          | Iris-<br>versicolor |
|         | 1  | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-<br>setosa     |
|         | 85 | 86 | 6.0           | 3.4          | 4.5           | 1.6          | lris-<br>versicolor |
|         | 46 | 47 | 5.1           | 3.8          | 1.6           | 0.2          | Iris-<br>setosa     |
|         | 91 | 92 | 6.1           | 3.0          | 4.6           | 1.4          | lris-<br>versicolor |
|         | 56 | 57 | 6.3           | 3.3          | 4.7           | 1.6          | lris-<br>versicolor |
|         | 28 | 29 | 5.2           | 3.4          | 1.4           | 0.2          | Iris-<br>setosa     |
|         | 89 | 90 | 5.5           | 2.5          | 4.0           | 1.3          | Iris-<br>versicolor |
|         | 98 | 99 | 5.1           | 2.5          | 3.0           | 1.1          | Iris-<br>versicolor |
|         | 59 | 60 | 5.2           | 2.7          | 3.9           | 1.4          | Iris-<br>versicolor |

从抽样的10行数据来看,符合'每列是一个变量,每行是一个观察值,每个单元格是一个值'这三个标准,具体来看每行是一株鸢尾花的样本信息,每列是关于鸢尾花的各个变量,因此不存在结构性问题。

# 数据干净度

利用DataFrame的 info 方法,对 df 数据集的内容进行大致了解。

# In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):

| #    | Column         | Non-Null Count  | Dtype   |
|------|----------------|-----------------|---------|
|      |                |                 |         |
| 0    | Id             | 100 non-null    | int64   |
| 1    | SepalLengthCm  | 100 non-null    | float64 |
| 2    | SepalWidthCm   | 100 non-null    | float64 |
| 3    | PetalLengthCm  | 100 non-null    | float64 |
| 4    | PetalWidthCm   | 100 non-null    | float64 |
| 5    | Species        | 100 non-null    | object  |
| d+vn | os: float64(4) | in+64(1) object | +(1)    |

dtypes: float64(4), int64(1), object(1)

memory usage: 4.8+ KB

从输出结果来看, df 数据集共有100条观察值

所有列均不存在缺失值。

数据类型方面, Id 列数据类型应为str; 此外我们已知 Species 是分类数据, 因此可以转换为Category数据类型

将 Id 列数据类型转换为str,将 Species 列数据类型转换为Category:

```
In [7]: cleaned_df.Id = cleaned_df.Id.astype(str)
       cleaned df.Species = cleaned df.Species.astype('category')
       cleaned_df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 100 entries, 0 to 99
      Data columns (total 6 columns):
                 Non-Null Count Dtype
       # Column
      --- -----
                       -----
                       100 non-null object
       0 Id
       1 SepalLengthCm 100 non-null float64
       2 SepalWidthCm 100 non-null float64
       3 PetalLengthCm 100 non-null float64
       4 PetalWidthCm 100 non-null float64
                  100 non-null category
          Species
      dtypes: category(1), float64(4), object(1)
      memory usage: 4.2+ KB
```

### 处理缺失数据

从 info 方法输出的结果来看, cleaned\_df 不存在缺失值,因此不需要对缺失数据进行处理

#### **处理重复数据**

根据数据变量的含义和内容来看, cleaned\_df 中的 Id 列不应该出现重复观察值,查看是否存在重复值:

```
In [8]: cleaned_df[cleaned_df.Id.duplicated()]
```

Out[8]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species

从结果来看,不存在重复数据

## 处理不一致数据

针对 cleaned\_df ,不一致数据可能存在于 Species 变量中,我将查看是否存在不同值指代统一鸢尾花种类的情况

```
In [10]: cleaned_df.Species.value_counts()
```

Out[10]: Iris-setosa 50 Iris-versicolor

Name: Species, dtype: int64

从结果来看,Species 变量总不存在不一致数据。

50

# 处理无效/错误数据

通过DataFrame的 describe 方法,对数值统计信息进行快速了解:

In [11]: cleaned\_df.describe()

Out[11]: SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

| count         100.000000         100.000000         100.000000         100.000000           mean         5.471000         3.094000         2.862000         0.785000           std         0.641698         0.476057         1.448565         0.566288           min         4.300000         2.000000         1.000000         0.100000           25%         5.000000         2.800000         1.500000         0.200000           50%         5.400000         3.050000         2.450000         0.800000           75%         5.900000         3.400000         4.325000         1.300000           max         7.000000         4.400000         5.100000         1.800000 |       | Separtenguicin | Separwidiliciii | retailengthem | i etaivviatiiciii |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-----------------|---------------|-------------------|
| std         0.641698         0.476057         1.448565         0.566288           min         4.300000         2.000000         1.000000         0.100000           25%         5.000000         2.800000         1.500000         0.200000           50%         5.400000         3.050000         2.450000         0.800000           75%         5.900000         3.400000         4.325000         1.300000                                                                                                                                                                                                                                                                  | count | 100.000000     | 100.000000      | 100.000000    | 100.000000        |
| min       4.300000       2.000000       1.000000       0.100000         25%       5.000000       2.800000       1.500000       0.200000         50%       5.400000       3.050000       2.450000       0.800000         75%       5.900000       3.400000       4.325000       1.300000                                                                                                                                                                                                                                                                                                                                                                                          | mean  | 5.471000       | 3.094000        | 2.862000      | 0.785000          |
| 25%       5.000000       2.800000       1.500000       0.200000         50%       5.400000       3.050000       2.450000       0.800000         75%       5.900000       3.400000       4.325000       1.300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | std   | 0.641698       | 0.476057        | 1.448565      | 0.566288          |
| 50%       5.400000       3.050000       2.450000       0.800000         75%       5.900000       3.400000       4.325000       1.300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | min   | 4.300000       | 2.000000        | 1.000000      | 0.100000          |
| <b>75</b> % 5.900000 3.400000 4.325000 1.300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25%   | 5.000000       | 2.800000        | 1.500000      | 0.200000          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50%   | 5.400000       | 3.050000        | 2.450000      | 0.800000          |
| <b>max</b> 7.000000 4.400000 5.100000 1.800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75%   | 5.900000       | 3.400000        | 4.325000      | 1.300000          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | max   | 7.000000       | 4.400000        | 5.100000      | 1.800000          |

从以上统计信息来看, cleaned\_df 中不存在脱离现实意义的数值

# 保存清理后的数据

cleaned\_df 数据集保存为 Iris\_cleaned.csv

In [12]: cleaned\_df.to\_csv('Iris\_cleaned.csv', index=False) pd.read\_csv('Iris\_cleaned.csv')

| Out[12]: |     | Id  | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species             |
|----------|-----|-----|---------------|--------------|---------------|--------------|---------------------|
|          | 0   | 1   | 5.1           | 3.5          | 1.4           | 0.2          | Iris-<br>setosa     |
|          | 1   | 2   | 4.9           | 3.0          | 1.4           | 0.2          | Iris-<br>setosa     |
|          | 2   | 3   | 4.7           | 3.2          | 1.3           | 0.2          | Iris-<br>setosa     |
|          | 3   | 4   | 4.6           | 3.1          | 1.5           | 0.2          | Iris-<br>setosa     |
|          | 4   | 5   | 5.0           | 3.6          | 1.4           | 0.2          | Iris-<br>setosa     |
|          | ••• |     |               |              |               |              |                     |
|          | 95  | 96  | 5.7           | 3.0          | 4.2           | 1.2          | lris-<br>versicolor |
|          | 96  | 97  | 5.7           | 2.9          | 4.2           | 1.3          | Iris-<br>versicolor |
|          | 97  | 98  | 6.2           | 2.9          | 4.3           | 1.3          | Iris-<br>versicolor |
|          | 98  | 99  | 5.1           | 2.5          | 3.0           | 1.1          | Iris-<br>versicolor |
|          | 99  | 100 | 5.7           | 2.8          | 4.1           | 1.3          | lris-<br>versicolor |

100 rows × 6 columns

# 整理数据

整理数据,与数据分析目的密切相关。此次数据分析的目的是:基于鸢尾花的属性数据,分析两种鸢尾花萼片、花瓣的长度和宽度平均值,是否存在显著性差异。

那么我们可以根据 Species 列,筛选不同鸢尾花种类的样本数据:

```
In [15]: setosa = cleaned_df.query('Species == "Iris-setosa"')
    setosa.head()
```

| Out[15]: |   | ld | SepalLengthCm | SepalWidthCm | <b>PetalLengthCm</b> | PetalWidthCm | Species     |
|----------|---|----|---------------|--------------|----------------------|--------------|-------------|
|          | 0 | 1  | 5.1           | 3.5          | 1.4                  | 0.2          | Iris-setosa |
|          | 1 | 2  | 4.9           | 3.0          | 1.4                  | 0.2          | Iris-setosa |
|          | 2 | 3  | 4.7           | 3.2          | 1.3                  | 0.2          | Iris-setosa |
|          | 3 | 4  | 4.6           | 3.1          | 1.5                  | 0.2          | Iris-setosa |
|          | 4 | 5  | 5.0           | 3.6          | 1.4                  | 0.2          | Iris-setosa |

In [16]: len(setosa)

Out[16]: 50

In [17]: versicolor = cleaned\_df.query('Species == "Iris-versicolor"')
 versicolor.head()

| Out[17]: |    | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species             |
|----------|----|----|---------------|--------------|---------------|--------------|---------------------|
|          | 50 | 51 | 7.0           | 3.2          | 4.7           | 1.4          | Iris-<br>versicolor |
|          | 51 | 52 | 6.4           | 3.2          | 4.5           | 1.5          | Iris-<br>versicolor |
|          | 52 | 53 | 6.9           | 3.1          | 4.9           | 1.5          | Iris-<br>versicolor |
|          | 53 | 54 | 5.5           | 2.3          | 4.0           | 1.3          | Iris-<br>versicolor |
|          | 54 | 55 | 6.5           | 2.8          | 4.6           | 1.5          | Iris-<br>versicolor |

In [19]: len(versicolor)

Out[19]: 50

# 探索数据

在着手推断统计学分析之前,我们可以先借助数据可视化,探索 setosa 和 versicolor 这两种鸢尾花的变量特点。

可视化探索可以帮我们对数据有一个更直观的理解,比如了解数据的分布、发现变量之间的 关系等等,从而为后续的进一步分析提供方向。

针对数值数据,我们可以直接绘制承兑图,利用其中的密度图查看不同变量的分布,以及利用散点图了解变量之间的关系。

由于此次分析目的是了解不同种类鸢尾花的属性特征是否存在差异,我们可以利用颜色对图表上不同种类的样本进行分类。

In [20]: sns.pairplot(cleaned\_df, hue='Species')
 plt.show()



从图中可以看出, setosa 和 versicolor 样本的画板长度以及花瓣宽度的分布存在明显数值上的不同,已经可以预测假设检验的结果是,两种鸢尾花的画板长度和宽度有显著性差异。

萼片的长度和宽度在分布上存在重叠,暂时无法仅通过图表下结论,需要进行假设检验,来 推断总体萼片长度和宽度之间是否有差异。

# 分析数据

我们将利用假设检验,一次检验 Setosa 和 Versicolor 这两种鸢尾花在萼片、花瓣长度和宽度平均值方面,是否存在统计显著性差异

由于我们只有样本数据,不知道总体的标准差,加上两组样本各为50,样本数量不大,因此进行t检验,而不是z检验。假设次数据集样本符合t检验的两个前提:样本为随机抽样,总体呈正态分布。

## 先引入t检验所需要的模块:

In [21]: from scipy.stats import ttest\_ind

# 分析萼片长度

Setosa和Versicolor萼片长度的分布如下:

In [23]: sns.histplot(setosa.SepalLengthCm, binwidth=0.1)
 sns.histplot(versicolor.SepalLengthCm, binwidth=0.1)
 plt.show()



### 建立假设

 $H_0$ : Setosa鸢尾花和Versicolor鸢尾花萼片长度的平均值不存在显著差异。

 $H_1$ : Setosa鸢尾花和Versicolor鸢尾花萼片长度的平均值存在显著差异。

# 确认检验是单尾还是双尾

由于我们只检验平均值是否存在差异,不在乎哪个品种的萼片更长,所以是双尾检验。

### 确定显著水平

In [25]: alpha = 0.05

# 计算t值和p值

```
In [27]: t_stat, p_value = ttest_ind(setosa.SepalLengthCm, versicolor.SepalLengthCm)
print(f"t值: {t_stat}\np值: {p_value}")
```

t值: -10.52098626754911 p值: 8.985235037487079e-18

#### 结论

由于p值小于显著水平0.05,因此我们拒绝原假设,说明Setosa鸢尾花和Versicolor鸢尾花萼片长度的平均值存在显著差异

# 分析萼片宽度

Setosa和Versicolor的萼片宽度的分布如下:

```
In [31]: sns.histplot(setosa.SepalWidthCm, binwidth=0.1)
    sns.histplot(versicolor.SepalWidthCm, binwidth=0.1)
    plt.show()
```



## 建立假设

 $H_0$ : Setosa鸢尾花和Versicolor鸢尾花萼片宽度的平均值不存在显著差异。

 $H_1$ : Setosa鸢尾花和Versicolor鸢尾花萼片宽度的平均值存在显著差异。

### 确认检验是单尾还是双尾

由于我们只检验平均值是否存在差异,不在乎哪个品种的萼片更宽,所以是双尾检验。

### 确定显著水平

```
In [30]: alpha = 0.05
```

# 计算t值和p值

```
In [32]: t_stat, p_value = ttest_ind(setosa.SepalWidthCm, versicolor.SepalWidthCm)
    print(f"t值: {t_stat}")
    print(f"p值: {p_value}")
```

t值: 9.282772555558111 p值: 4.362239016010214e-15

#### 结论

由于p值小于显著水平0.05,因此我们拒绝原假设,说明Setosa和Versicolor萼片宽度的平均值存在显著差异

# 分析花瓣长度

Setosa和Versicolor的花瓣长度的分布如下:

```
In [33]: sns.histplot(setosa.PetalLengthCm, binwidth=0.1)
    sns.histplot(versicolor.PetalLengthCm, binwidth=0.1)
    plt.show()
```



# 建立假设

 $H_0$ : Setosa鸢尾花和Versicolor鸢尾花花瓣长度的平均值不存在显著差异。

 $H_1$ : Setosa鸢尾花和Versicolor鸢尾花花瓣长度的平均值存在显著差异。

### 确认检验是单尾还是双尾

由于我们只检验平均值是否存在差异,不在乎哪个品种的花瓣更长,所以是双尾检验。

## 确认显著水平

In [34]: alpha = 0.05

# 计算t值和p值

In [35]: t\_stat, p\_value = ttest\_ind(setosa.PetalLengthCm, versicolor.PetalLengthCm)
 print(f"t值: {t\_stat}")
 print(f"p值: {p\_value}")

t值: -39.46866259397272 p值: 5.717463758170621e-62

### 结论

由于p值小于显著水平0.05,因此我们拒绝原假设,说明Setosa和Versicolor花瓣长度的平均值存在显著差异

# 分析花瓣宽度

Setosa和Versicolor的花瓣宽度的分布如下:

In [36]: sns.histplot(setosa.PetalWidthCm, binwidth=0.1)
 sns.histplot(versicolor.PetalWidthCm, binwidth=0.1)
 plt.show()



### 建立假设

 $H_0$ : Setosa鸢尾花和Versicolor鸢尾花花瓣宽度的平均值不存在显著差异。

 $H_1$ : Setosa鸢尾花和Versicolor鸢尾花花瓣宽度的平均值存在显著差异。

### 确认检验是单尾还是双尾

由于我们只检验平均值是否存在差异,不在乎哪个品种的花瓣更长,所以是双尾检验。

### 确认显著水平

In [37]: alpha = 0.05

## 计算t值和p值

In [38]: t\_stat, p\_value = ttest\_ind(setosa.PetalWidthCm, versicolor.PetalWidthCm)
 print(f"t值: {t\_stat}")

print(f"p值: {p\_value}")

t值: -34.01237858829048 p值: 4.589080615710866e-56

结论

由于p值小于显著水平0.05,因此我们拒绝原假设,说明Setosa和Versicolor花瓣宽度的平均值存在显著差异

# 结论

通过推断统计学的计算,我们发现,Setosa鸢尾花和Versicolor鸢尾花在萼片、花瓣的长度和宽度平均值,均存在具有统计显著性的差异。

In [ ]: