Étude d'un modèle de mouvement collectif Extension du modèle tri-zonal avec la dynamique des prédateurs

Yuguang XIAO

Sorbonne Univeristé

28/04/2024

Plan de l'exposé

- 1 Introduction du Projet
- 2 Rappel du modèle tri-zonal (noté 3-Z)
- 3 3-Z ajout de M prédateurs (noté 3-Z-P)
- Paramètres de la simulation
- 6 Résultats et Discussion
- 6 Conclusion et Amélioration
- Questions

Introduction du projet

- Modèle tri-zonal (noté 3-Z)
- Ajout de M prédateurs
- Ajout des conditions de bords

Introduction du projet

Partie I : Modèle tri-zonal (noté 3-Z)

- Reproduction de l'article de Cao Fei ¹ avec une petite avance * :
 - Construction du modèle tri-zonal (noté 3-Z)
 - Choix de la méthode d'analyse numérique (RK4+Euler explicite)
 - Démonstration du théorème
 - Conditions initiales
 - Présentation des résultats en 2D et 3D
 - Collaboration par nous trois (Yuguang, Jean et Albert)
- 1. cao_asymptotic_2020.
- 1. * Des méthodes d'analyse numérique différentes et exploration des résultats en 3D.

Introduction du projet

Partie II : Modèle tri-zonal ajout de M prédateurs (noté 3-Z-P)

- Modèle tri-zonal avec ajout de M prédateurs (noté 3-Z-P) :
 - Construction du 3-Z-P
 - Conditions initiales
 - Étude de deux scénarios : un prédateur et trois prédateurs (nombre des proies fixé)
 - Présentation des résultats sous forme de GIF
 - Réalisé principalement par moi.

Introduction du projet

Partie III : Modèle tri-zonal ajout des conditions de bords

• 3-Z ajout des conditions de bords :

- Construction du mur carré et circulaire
- Configuration du rebondissement au contact des bords
- Conditions initiales
- Présentation des résultats en 2D
- Collaboration par Jean et Albert

Rappel du 3-Z Modèle de Base

- N individus (e.g., poissons) en interaction dans un espace
- Chaque individu est caractérisé par un vecteur de position \mathbf{x}_i et un vecteur de vitesse \mathbf{v}_i .

Dynamique des Interactions

- Distance $r_{ij} = ||\mathbf{x}_j \mathbf{x}_i||$: mesure la séparation entre deux individus.
- Force d'alignement $\phi_{ij} = \phi(r_{ij})$: indique l'influence mutuelle pour s'aligner.
- Force d'attraction et de répulsion exprimées par $\nabla_{\mathbf{x}_{ij}} V(r_{ij})$: gèrent la proximité entre les individus.

Dynamique des Interactions

- Distance $r_{ij} = ||\mathbf{x}_j \mathbf{x}_i||$: mesure la séparation entre deux individus.
- Force d'alignement $\phi_{ij} = \phi(r_{ij})$: indique l'influence mutuelle pour s'aligner.
- Force d'attraction et de répulsion exprimées par $\nabla_{\mathbf{x}_{ij}} V(r_{ij})$: gèrent la proximité entre les individus.

Formule mathématique

• Notation ponctuelle : $\Box = \frac{d\Box}{dt}$ indique son taux de changement dans le temps.

$$\begin{cases}
\dot{\mathbf{x}}_{i} = \mathbf{v}_{i}, \\
\dot{\mathbf{x}}_{i} = \dot{\mathbf{v}}_{i} = \frac{1}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_{j} - \mathbf{v}_{i}) + \underbrace{\frac{1}{N} \sum_{j \neq i}^{N} -\nabla_{\mathbf{x}_{ij}} V(r_{ij})}_{(1)}
\end{cases}$$

Formule mathématique

• Notation ponctuelle : $\Box = \frac{d\Box}{dt}$ indique son taux de changement dans le temps.

$$\begin{cases}
\dot{\mathbf{x}}_{i} = \mathbf{v_{i}}, \\
\ddot{\mathbf{x}}_{i} = \dot{\mathbf{v}}_{i} = \underbrace{\frac{1}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_{j} - \mathbf{v}_{i})}_{force\ d'attraction\ et\ de\ répulsion} + \underbrace{\frac{1}{N} \sum_{j\neq i}^{N} -\nabla_{\mathbf{x}_{ij}} V(r_{ij})}_{(1)}
\end{cases}$$

3-Z ajout de M prédateurs (noté 3-Z-P)

Ajout de M prédateurs

- N proies (preys en anglais) et M prédateurs en interaction dans un espace
- Pour N proies :
 - Dynamique interne
 - Impact externe
- Pour M prédateurs :
 - Dynamique interne
 - Influence externe

3-Z ajout de M prédateurs (noté 3-Z-P) Ajout de M prédateurs

- N proies (preys en anglais) et M prédateurs en interaction dans un espace
- Pour N proies :
 - Dynamique interne
 - Impact externe
- Pour M prédateurs :
 - Dynamique interne
 - Influence externe

3-Z ajout de M prédateurs (noté 3-Z-P) Ajout de M prédateurs

- N proies (preys en anglais) et M prédateurs en interaction dans un espace
- Pour N proies :
 - Dynamique interne
 - Impact externe
- Pour M prédateurs :
 - Dynamique interne
 - Influence externe

Dynamique interne pour N proies

- Position et Vitesse chaque proie i est caractérisée par des vecteurs de position \mathbf{x}_i et de vitesse \mathbf{v}_i .
- Force d'alignement ϕ_{ij} : ajuste l'alignement mutuel.
- Force d'attraction et de répulsion : représentées par $\nabla_{\mathbf{x}_{ij}}V(r_{ij})$.

$$\begin{cases} \dot{\mathbf{x}}_i = \mathbf{v}_i, \\ =I_1 \quad \text{(dynamique interne)} \\ \dot{\mathbf{v}}_i = \overbrace{\frac{1}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_j - \mathbf{v}_i) + \frac{1}{N} \sum_{j \neq i}^{N} -\nabla_{\mathbf{x}_{ji}} V(r_{ji}) + \dots} \end{cases}$$

3-Z ajout de M prédateurs (noté 3-Z-P)

- Phénomène biologique de prédation cité dans l'article de Tamás Vicsek ² :
 - À une certain distance, la tactique des proie pour échapper à un prédateur consiste à fuir perpendiculairement à la direction dans laquelle se déplace le prédateur.
 - L'éloignement du prédateur pour accélérer l'évasion.

- Position et Vitesse chaque prédateur p est caractérisée par des vecteurs de position \mathbf{w}_p et de vitesse \mathbf{s}_p avec vitesse perpendiculaire \mathbf{s}_p^{\perp}
- Distance $r_{pi} = \|\mathbf{w}_p \mathbf{x}_i\|$: mesure la séparation entre le prédateur p et la proie i.
- Force d'alignement : $\psi_{pi} = \psi(r_{pi})$ qui incite la proie i à s'aligner parallèlement à \mathbf{s}_p^{\perp} .
- Force de répulsion par $\nabla_{\mathbf{x}_{pi}} \overline{V}(r_{pi})$: gèrent la proximité par le prédateur p sur la proie i.

- Dans l'espace \mathbb{R}^2 , deux directions du \mathbf{s}_p^{\perp}
- \mathbf{s}_{p1}^{\perp} en rouge, \mathbf{s}_{p2}^{\perp} en vert, mêmes normes que \mathbf{s}_{p}

•
$$\tilde{\mathbf{s}_p^{\perp}} = \sum_{i=1}^{i=2} \mathbf{s}_{pi}^{\perp} \mathbb{1}(\mathbf{v}_i \cdot \mathbf{s}_{pi}^{\perp} > 0)$$

$$\begin{cases} \dot{\mathbf{x}}_{i} = \mathbf{v}_{i}, \\ =I_{2} \quad \text{(impact externe)} \end{cases}$$

$$\dot{\mathbf{v}}_{i} = I_{1} + \underbrace{\frac{1}{M} \sum_{p=1}^{M} \psi_{pi} (\tilde{\mathbf{s}}_{p}^{\perp} - \mathbf{v}_{i}) + \frac{1}{M} \sum_{p=1}^{M} -\nabla_{\mathbf{x}_{pi}} \overline{V}(r_{pi})}_{}$$

3-Z ajout de M prédateurs (noté 3-Z-P)

Dynamique interne pour M prédateurs

- Les réactions sont négligées au sein de la population de prédateurs
 - La faible quantité de prédateurs.
 - La prédominance de l'influence externe sur la réaction interne.
 - La simplicité du modèle souhaitée.

3-Z ajout de M prédateurs (noté 3-Z-P) Dynamique interne pour M prédateurs

- Les réactions sont négligées au sein de la population de prédateurs
 - La faible quantité de prédateurs.
 - La prédominance de l'influence externe sur la réaction interne.
 - La simplicité du modèle souhaitée.

Influence externe pour M prédateurs

- Centre de masse des proies : $\mathbf{x}_c = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$
- Distance $r_{cp} = \|\mathbf{x}_c \mathbf{w}_p\|$: la distance entre le prédateur p et le centre de masse des proies
- Force d'attraction par $\nabla_{\mathbf{x}_{cp}} A(r_{cp})$ gèrent l'attraction par les proies sur le prédateur p.

$$\begin{cases} \dot{\mathbf{w}}_p = \mathbf{s}_p, \\ \dot{\mathbf{s}}_p = -\nabla_{\mathbf{x}_{cp}} A(r_{cp}) \end{cases}$$

3-Z ajout de M prédateurs (noté 3-Z-P)

Formulation mathématique finale

$$\dot{\mathbf{x}}_{i} = \mathbf{v}_{i}$$

$$\dot{\mathbf{v}}_{i} = \frac{1}{N} \sum_{j=1}^{N} \phi_{ij}(\mathbf{v}_{j} - \mathbf{v}_{i}) + \frac{1}{N} \sum_{j\neq i}^{N} -\nabla_{\mathbf{x}_{ji}} V(r_{ji})$$

$$\downarrow impact externe$$

$$+ \frac{1}{M} \sum_{p=1}^{M} \psi_{pi}(\tilde{\mathbf{s}}_{p}^{\perp} - \mathbf{v}_{i}) + \frac{1}{M} \sum_{p=1}^{M} -\nabla_{\mathbf{x}_{pi}} \overline{V}(r_{pi})$$

$$\dot{\mathbf{w}}_{p} = \mathbf{s}_{p}$$

$$\dot{\mathbf{s}}_{p} = -\nabla_{\mathbf{x}_{cp}} A(r_{cp})$$

$$\downarrow \mathbf{v}_{p} = \mathbf{v}$$

Paramètres de la simulation

Configuration des fonctions

•
$$V(r) = r(ln(r) - 1)^*$$

•
$$\psi(r) = \frac{2r}{2+r^{10}}$$

•
$$\overline{V}(r) = -\frac{1}{5}ln(r)$$

•
$$A(r) = \sqrt{r}$$
, si $r \le 2$; $r^2 + (\frac{1}{2\sqrt{2}} - 4)r + \frac{\sqrt{2}}{2} + 4$, sinon. De plus, A est de classe C^1

^{2. *}Fonctions du Cas 1, présenté par Albert avant [] * (] * (] * (] * ()

Paramètres de la simulation

Fonctions ϕ et ψ

Figure – Fonctions ϕ et ψ

- $\phi = \frac{r}{2+r^3}$: force d'alignement entre les proies
- $\psi = \frac{2r}{2+r^{10}}$: force d'alignement qui incite les proies à s'aligner perpendiculairement à la vitesse du prédateur

Paramètres de la simulation Fonctions V, \overline{V} et A

Figure – Fonctions V, \overline{V} et A

- ∇V : force combinée d'attraction et de répulsion entre les proies
- $\nabla \overline{V}$: force de répulsion exercée sur la proie par le prédateur
- \(\nabla A\): force d'attraction exercée sur le prédateur par les proies totales

Paramètres de la simulation

Conditions initiales

- N = 50 fixé et M = 1 ou M = 3
- Conditions initiales des proies : Proies en flocking, rayon de flocking $R \approx 0.9^*$, vitesse de flocking $\mathbf{v}_f \approx 0.24^*$. Centre de masse du flocking situé en (0,0).
- Conditions initiales des prédateurs : Prédateurs hors du flocking $(r_{cp} = 1)$, la vitesse des prédateurs $(\mathbf{s}_p = 0.5)$ plus rapides que \mathbf{v}_f et ciblant (0,0)

Yuguang XIAO Ajout de M Prédateurs

22 / 33

^{2. *} Resultats du Cas 1 en N = 50, présenté par Albert avant av

Paramètres de la simulation

Illustration des conditions initiales

Paramètres de la simulation Conditions technique

- Méthode analyse numérique : Méthode d'Euler explicite
- **Temps**: Pas de temps de 0,05, durée totale de la simulation: 200 unités de temps.

^{2. *} Resultats des Cas 1 en N = 50, présenté par Albert-avant \sim 3 \sim

Résultats et Discussion

- Cas : N = 50, M = 1
- Cas : N = 50, M = 3

Résultats et Discussion

Résultats et Discussion

Résultats et Discussion

Résultats et Discussion

Résultats et Discussion

- 3-Z-P très simpliste
 - Pas de proies consommées par les prédateurs
 - La simplicité de la stratégie de prédation et de fuite
- L'incertitude des configurations des fonctions pour ϕ , ψ , V, \overline{V} et A.

Conclusion et Pistes d'amélioration

- Une stratégie de division des groupes de proies pour mieux chasser.
- Plus de prédateurs, plus de l'efficacité de la prédation
- 3-Z-P peut expliquer certains phénomènes simples de prédation

Conclusion et Pistes d'amélioration

Pistes d'amélioration

- Sur le plan technique :
 - Pas de temps adaptatif
 - Méthodes d'analyse numérique d'ordre supérieur
- Sur le plan de la modélisation :
 - Introduction d'un mécanisme où les prédateurs peuvent capturer les proies
 - Développement de stratégies de prédation et de fuite
 - Prise en compte des différences individuelles, telles que la vitesse et la masse

Questions

• Des Questions?