

DS501 STATISTICAL AND MATHEMATICAL METHODS FOR DATA SCIENCE

PhD, MS, M.Phil, M.Sc, MCS

Lecture Week 05

Statistics for Data Science

Types of Statistics

Statistics

 The branch of mathematics that transforms data into useful information for decision makers.

Descriptive Statistics

Collecting, summarizing, and describing data

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based only on sample data

Measures Of The Spread:

Just like the measure of center, we also have measures of the spread, which comprises of the following measures:

Range: It is the given measure of how spread apart the values in a data set are.

Inter Quartile Range (IQR): It is the measure of variability, based on dividing a data set into quartiles.

Variance: It describes how much a random variable differs from its expected value. It entails computing squares of deviations.

- **Deviation** is the difference between each element from the mean.
- **Population Variance** is the average of squared deviations
- Sample Variance is the average of squared differences from the mean Standard Deviation: It is the measure of the dispersion of a set of data from its mean.

- 1. Which class (A or B) is more consistent. How to study the variables by plotting a histogram
- 2. Write a python code for the solution with data visualizations.

Resource Link:

https://www.datacamp.com/tracks/statistics-fundamentals-with-python

Α	В
56	63
82	89
68	65
67	75
59	21
95	80
2	82
64	71
42	14
93	73
56	15
79	21
48	10
98	59
48	24
33	39
53	93
44	11
60	96
77	35

Step 1: Import data for computation

```
>>set.seed(1)
#Generate random numbers and store it in a variable called data
>data = runif(20,1,10)
```

Step 2: Calculate Mean for the data

```
#Calculate Mean
mean(data)
mean = mean(data)
print(mean)

[1] 5.996504
```

Step 3: Calculate the Median for the data

```
#Calculate Median
median = median(data)
print(median)

[1] 6.408853
```

Step 4: Calculate Mode for the data

```
#Create a function for calculating Mode
>mode <- function(x) { >ux <- unique(x) >ux[which.max(tabulate(match(x, ux)))]
}
>result <- mode(data) >print(data)

[1] 3.389578 4.349115 6.155680 9.173870 2.815137 9.085507 9.502077 6.947180 6.66
[10] 1.556076 2.853771 2.589011 7.183206 4.456933 7.928573 5.479293 7.458567 9.9
[19] 4.420317 7.997007

>cat("mode= {}", result)

mode= {} 3.389578
```

Step 5: Calculate Variance & Std Deviation for the data

```
#Calculate Variance and std Deviation
>variance = var(data)
>standardDeviation = sqrt(var(data))
>print(standardDeviation)

[1] 2.575061
```

Step 6: Plot a Histogram

The Histogram is used to display the frequency of data points:

Histogram of data

