

Water table data visualisation graphs

Alizée Girard

01/20/2025

[1] 1

Histogram des données de sonde no 10279769

[1] 2

Histogram des données de sonde no 10279777

[1] 4
Histogram des données de sonde no 20853328

[1] 6 ## [1] 7

Histogram des données de sonde no 41362

Histogram des données de sonde no 41370

[1] 11 ## [1] 12

Histogram des données de sonde no 41379

[1] 14

Histogram des données de sonde no 42564

Histogram des données de sonde no 42566

Vérification de la calibration des sondes en fonction de la lecture au bulleur

QUESTION:

longueur du fil à bulleur, donc nappe en dessous, doit poser problème non ?

ODYSSEY calibration nous donne la profondeur ou la distance sol-np ?

Table 1: Vérification de la calibration de sonde en fonction de la mesure du bulleur			
Identifiant unique (UID) de sonde	Date d'extraction des données de la SNH	Mesure de la sonde (heure de lecture au bulleur; cm)	Bulleur (cm)
10279769	20250106	-72.54107	113.0
10279777	20250106	15.88700	180.5
20573974	20250106	-37.08662	103.5
20853328	20250106	-10.84694	133.4
20853328	20250106	-10.84694	127.0
41359	20241125	51.56550	25.5
41361	20241125	NA	NA
41362	20241125	20.00000	63.3
41366	20241125	42.56125	41.5
41370	20241125	38.77437	44.0
41372	20241125	31.03448	53.0
41376	20241125	NA	NA
41379	20241125	35.16667	47.5
41387	20241125	48.70651	29.0
42564	20241125	-53.00054	53.9
42565	20241125	97.24251	46.0
42566	20241125	73.98693	71.5

Aperçu du code de calibration - Sonde Odyssey

```
# Sondes ODYSSEY
### calcul des termes de la calibration ----
# FORMULES
# RES.NP.calibré = ((DATA.raw.value " - b.offset) / a.slope ) - longueur.fil
# si Y = (a * X) + b,
# X = (Y - b) / a, puis on enlève la longueur du fil à la mesure de NP
# où
# y = raw.value aux longueurs 1 et 2 du test de calibration (p. ex. 200 mm et 800 mm ou 1400 mm, pour S
# b.offset = y1 - a.slope * x1
# a.slope = (y2 - y1) / (x2 - x1), soit la proportion de changement de y pour chaque changement de :
# a.slope = longueur de fil (mm)
# x2 = longueur fil test #2 (V = "cal.order"), x1 = longueur fil test #1 (V = "cal.order")
# y2 = raw.value à du test #2 (V = "cal.value"), y1 = raw.value à du test #1 (V = "cal.value")
{
longueur.fil = cal.probe.i$cal.length.cm[cal.probe.i$cal.order==1]*10
x2 = cal.probe.i$cal.length.cm[cal.probe.i$cal.order==2]*10
```

```
x1 = cal.probe.i$cal.length.cm[cal.probe.i$cal.order==1]*10
y2 = cal.probe.i$cal.value[cal.probe.i$cal.order==2]
y1 = cal.probe.i$cal.value[cal.probe.i$cal.order==1]
a.slope = ( y2 - y1 ) / ( x2 - x1 )
b.offset = y1 - (a.slope * x1)
}

# changer la colonne calibrated pour les données corrigées
ll.cal.pre.i$calibrated.value.mm = ((ll.cal.pre.i$raw.value.mm - b.offset) / a.slope ) - longueur.fil
colnames(ll.cal.pre.i); head(ll.cal.pre.i)
```

Aperçu du code de calibration - Sonde HOBO

```
#### assembler données du HOBO et données de ECCC/CCCS selon la date et l'heure ----
    # Jutras&Bourgault V2.0, 2024; étape a) Associer par dates et par heures les données mesurées par l
    cal.eccc.data <- left_join(ll.cal.pre.i, eccc.data, by = join_by(date.time.UTC.0)) %>%
      select("scan.id", "date.time.UTC.0", "raw.value.kPa_pres.abs", "temperature_dC", "calibrated.value
             `date.AAAA-MM-JJ` = "date.AAAA-MM-JJ.x", "time.HH.MM.SS", `date.time.tz.orig`,
             "date.time.tz.orig.wc", "station_name.wc", pressure.kPa.wc = "pressure.wc", everything()) '
      select(!c(`date.AAAA-MM-JJ.y`, "time.wc")) # enlever les nombreuses colonnes qui n'ont pas rappor
    colnames(cal.eccc.data)
    # Jutras&Bourgault V2.0, 2024; étape b) Calculer la hauteur d'eau au-dessus de la sonde par la sous
    # Jutras&Bourgault V2.0, 2024; étape b.i) La conversion de kPa en cm d'eau est : 1 kPa = 10,1972
   cal.eccc.data$pression.eau.kPa = cal.eccc.data$raw.value.kPa_pres.abs - cal.eccc.data$pressure.kPa.
    cal.eccc.data$hauteur.eau.cm = cal.eccc.data$pression.eau.kPa * 10.1972 # règle de trois
    cal.eccc.data <- cal.eccc.data %>% select("scan.id", "date.time.UTC.0", "raw.value.kPa_pres.abs", pr
    # Jutras&Bourgault V2.0, 2024; étape c) Convertir la hauteur d'eau au-dessus de la sonde en profond
    # Jutras&Bourgault V2.0, 2024; étape c.i) La profondeur de la nappe phréatique par rapport à la s
    str(cal.eccc.data$long.fil.cm) # characters
    str(cal.eccc.data$out.long.tuyau.sol.cm) # characters
    cal.eccc.data$calibrated.value.mm <- (cal.eccc.data$long.fil.cm - cal.eccc.data$out.long.tuyau.sol.
```

Visualisation de la variation de la nappe phréatique et du positionnement du puits le long du transect

Titre De Tracé : Inkerman, sonde no 10279769 à l'emplacement nombre de ligne du fichier : 3264

nombre de ligne du fichier : 3216

Titre De Tracé : Inkerman, sonde no 20573974 à l'emplacement nombre de ligne du fichier : 2736

St-Henri, sonde no 41359 à l'emplacement nombre de ligne du fichier : 3716

St-Henri, sonde no 41362 à l'emplacement nombre de ligne du fichier : 3716

St-Henri, sonde no 41370 à l'emplacement nombre de ligne du fichier : 3716

St-Henri, sonde no 41376 à l'emplacement nombre de ligne du fichier : 0

Date St-Henri, sonde no 41379 à l'emplacement nombre de ligne du fichier : 3716

St-Henri, sonde no 41387 à l'emplacement nombre de ligne du fichier : 3716

St-Henri, sonde no 42565 à l'emplacement nombre de ligne du fichier : 3716

