Protokol 2: Monopólové antény a rádiový přenos Student 1: Šimon Roubal Datum: 24.3.2020 Body:

1. Impedanční vlastnosti

Výpočet rezonančního kmitočtu f_{vyp} a činitele zkrácení ξ (2.6; 2.8)

$$f = \frac{c}{4l} = \frac{3 * 10^8}{4 * 0.054} = 1388MHz$$

$$\xi_{1/4} = \frac{4 * f_1 * l}{c} = \frac{4 * 1170 * 10^6 * 0,054}{3 * 10^8} = 0,84$$

$$\xi_{1/2} = \frac{2 * f_2 * l}{c} = \frac{2 * 1440 * 10^6 * 0,054}{3 * 10^8} = 0,51$$

Monopól	<i>l</i> [m]	$f_{ m vyp} [{ m MHz}]$	f_1 [MHz]	ξ ₁ [-]	f_2 [MHz]	ξ ₂ [-]
Běžný	0,054	1388	1170	0,84	1440	0,51
Kapacitní	0,054	1388	668	0,48	964	0,34
Kónický	0,048	1562	738	0,47	1240	0,39

Ověření poloměrů monopólů:

D = 149 mm

 $D \approx \lambda \rightarrow 149mm \approx 216mm$

Výpočet činitele odrazu $ρ_{\text{vyp}}$ (2.9), kde $Z_0 = 50$ Ω:

$$\rho_{vyp} = \frac{R_k - Z_0}{R_k + Z_0} = \frac{15.8 - 50}{15.8 + 50} = -0.52$$

Monopól	$R_{k1}\left[\Omega\right]$	ρ _{vyp1} [-]	$ ho_{ ext{me} ext{\'e} ext{1}}$ [-]	$R_{k2}\left[\Omega\right]$	ρ _{vyp2} [-]	$ ho_{ ext{me} ilde{ ext{r}}2}$ [-]
Běžný	15,8	-0,52	-0,51	211	0,62	0,62
Kapacitní	9,8	-0,67	-0,67	677	0,86	0,86
Kónický	7,1	-0,75	-0,75	90,2	0,28	0,29

2. Změřte velikost činitele odrazu na vstupu všech monopólů na kmitočtech dvou minim ve volném prostoru a ve vodivém krytu. Vypočtěte vyzařovací účinnost.

$f_1 = 1710, 668, 738 \text{ MHz}$	Γ ^F [dB]	Γ ^S [dB]	η [%]
Běžný	-5,84	-1,3	65
Kapacitně prodloužený	-3,47	-0,58	77
Kónický	-2,49	-0,44	77

$f_2 = 1440, 964, 1240 \text{ MHz}$	$\Gamma^{\mathrm{F}}\left[\mathrm{dB}\right]$	$\Gamma^{\mathrm{S}}\left[dB\right]$	η [%]
Běžný	-4,15	-0,21	92
Kapacitně prodloužený	-1,31	-0,37	68
Kónický	-10,75	-0,52	87

Výpočet vyzařovací účinnosti η antén ve čtvrtvlnné f_1 a půlvlnné rezonanci f_2 : Pozn. činitele odrazu dosazujeme do rovnice (2.3) jako bezrozměrnou jednotku.

$$\eta = \frac{\left|\Gamma^{S}\right|^{2} - \left|\Gamma^{F}\right|^{2}}{1 - \left|\Gamma^{F}\right|^{2}} = \frac{\left|\left(10^{\frac{-1,3}{20}}\right)\right|^{2} - \left|\left(10^{\frac{-5,48}{20}}\right)\right|^{2}}{1 - \left|\left(10^{\frac{-5,48}{20}}\right)\right|^{2}} = 65\%$$

3. Stanovte první Fresnelovu zónu monopólu a kónického monopólu. Pro maximální vzdálenost mezi monopóly změřte a vypočtěte přenos ve volném prostoru a s elektricky vodivou plochou mezi anténami. Pro monopól a kónický monopól změřte činitel přenosu pro volný prostor mezi anténami a pro přerušení cesty pomocí vodivé plochy.

První Fresnelova zóna r_{01} (2.2): **pro f = 1250 MHz,** d_1 = 40 cm a d_2 = 40 cm

$$r_{01} = \sqrt{n} * \sqrt{\lambda * \frac{d_1 * d_2}{d_1 + d_2}} = \sqrt{1} * \sqrt{\frac{3 * 10^8}{1,338 * 10^9} * \frac{0,4 * 0,4}{0,4 + 0,4}} = 0,219$$

Blízká zóna R (2.5):

$$R = 10 * c = 10 * 0.24 = 2.4$$

Ztráty šířením $FSPL_{dB}$ (2.4): **pro f** = **1250 MHz**; $d = d_1 + d_2$

$$FSPL = \left(\frac{4 * \pi * d}{\lambda}\right)^2 = \left(\frac{4 * \pi * 0.8}{3 * 10^8}\right)^2 = 1754.6$$

$$FSPL_{dB} = 10 * \log(FSPL) = 10 * \log(1754,6) = 32,4dB$$

Měření útlumu volného prostoru <i>FSPL</i>		
FSPLvolný prostor [dB]	-31,6	
FSPLvodivá plocha [dB]	-37,8	

Závěr:

V prvním bodu měření jsme vypočetli rezonanční kmitočet pro dané antény a ze změřených údajů odečetli čtvrtvlnné a půlvlnné rezonance a z nich určili příslušné činitele krácení. Z údajů vyplývá že činitele krácení pro čtvrtvlnnou rezonanci jsou větší než pro půlvlnnou. Monopóly si částečně odchylují od délky vlny. Činitele odrazu naopak vycházejí větší při půlvlnné rezonanci.

V druhé části jsme za pomocí činitelů odrazu převedených na decibely vypočítali účinnost odrazu atnén. Nejvíce efektivní byl kónický tvar, dále běžný a na závěr kapacitně prodloužený.

Na závěr měření jsme určili první Fresnelova zónu jako 0,219, což se nejvíce blíží zóně 2,4. Ztrátu šíření jsme určili na 32,4 dB.