Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 1 104 091 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 30.05.2001 Bulletin 2001/22

(51) Int Cl.7: H02P 9/42

(21) Numéro de dépôt: 00403252.0

(22) Date de dépôt: 22.11.2000

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR

Etats d'extension désignés:

Etats d'extension désignés: AL LT LV MK RO SI

(30) Priorité: 24.11.1999 FR 9914780

(71) Demandeur: DASSAULT AVIATION F-75008 Paris (FR)

(72) Inventeurs:

- Montret, Christophe
 92800 Puteaux (FR)
- Jacquet-Francillon, Christian Marie Pierre 78690 Les Essarts le Roi (FR)
- (74) Mandataire: Caron, Gérard et al CABINET DE BOISSE, L.A. DE BOISSE - J.P. COLAS, 37 avenue Franklin D. Roosevelt 75008 Paris (FR)

(54) Générateur électrique autonome, notamment pour aéronef

(57) Ce générateur (1) comporte une machine asynchrone (2) avec un rotor bobiné entraîné mécaniquement (4), et un stator (3) connecté au réseau (6). Le rotor (4) est alimenté par une source de tension continue constante (8 à 14) par l'intermédiaire d'un onduleur (15) piloté par un circuit (16) de commande par variation de largeur d'impulsions.

Selon l'invention, on engendre une consigne de fréquence statorique (ωsref), une consigne de fréquence rotorique (ωrref), fonction de la consigne de fréquence

statorique et de la vitesse de rotation (Ω) de la machine (2), une valeur efficace de consigne (Vsrefeff) de la tension statorique, un signal d'erreur $(\epsilon 1)$, fonction de l'écart entre la valeur efficace de consigne (Vsref(eff)) de la tension statorique et la valeur efficace (Vseff) de la tension réelle statorique.

On impose au circuit de commande (16) une consigne de tension rotorique (\overline{V} rref) qui est une fonction du signal d'erreur (ϵ 1) et de la consigne de fréquence rotorique (ω rref).

FP 1 104 091 A

Description

[0001] La présente invention est relative à la production d'énergie électrique par un générateur électrique autonome, du type utilisé en particulier dans les aéronefs.

[0002] Plus particulièrement, l'invention concerne un procédé de commande d'un tel générateur électrique.

[0003] Un tel procédé de commande pour générateur électrique est décrit dans un article de Yifan Tang et al. dans IEEE Transactions On Power Electronics, Vol. 10, No. 4, Juillet 1995.

[0004] Ce procédé de commande connu est appliqué à une machine asynchrone dont le stator est connecté au réseau et dont le rotor bobiné est entraîné mécaniquement, le procédé utilisant, pour assurer l'alimentation électrique du bobinage rotorique, une source de tension continue constante qui, par l'intermédiaire d'un onduleur piloté par un circuit de commande par variation de largeur d'impulsions, envoie l'énergie électrique dans le rotor.

[0005] La source de courant continu de ce dispositif de commande connu comprend également un convertisseur alternatif/continu ou redresseur qui est piloté par un circuit de commande par variation de largeur d'impulsions et qui alimente un condensateur connecté à l'entrée de l'onduleur.

[0006] Les circuits de commande de l'onduleur et du redresseur sont pilotés par des boucles de réglage destinées à réguler le fonctionnement du générateur de telle façon que certains critères de fonctionnement soient respectés. Plus précisément, le système de régulation vise à obtenir une commande stable en réglant les puissances active et réactive du générateur. Ainsi, les boucles de réglage reçoivent, en tant que grandeurs de consigne, une valeur de référence de puissance active et une valeur de référence de puissance réactive.

[0007] Cependant, ce procédé de commande est conçu pour être appliqué à des générateurs branchés sur des réseaux d'électricité de très grande puissance dont la fréquence et la tension sont imposées par le réseau lui-même, comme par exemple un réseau public de fourniture d'énergie électrique.

[0008] Or. dans certaines applications de ces générateurs électriques, le réseau qu'ils alimentent est de taille relativement petite, comme c'est le cas dans les aéronels par exemple, réseaux dont la tension et la fréquence ne sont pas imposées de l'extérieur, mais dépendent de conditions de fonctionnement particulières du générateur, comme par exemple la charge qui lui est appliquée ou la vitesse de rotation à laquelle il est entraîné. Dans de telles applications, la vitesse de rotation du dispositif d'entraînement du générateur peut varier considérablement. Ainsi, par exemple, dans un aéronel, cette vitesse dépend de la vitesse de rotation des moteurs de propulsion, de sorte qu'elle peut varier facilement du simple à plus que le double (de 500 à 1200 rad/ sec par exemple).

[0009] L'invention vise à fournir un procédé de commande d'un générateur électrique autonome permettant de produire de l'énergie électrique à un réseau d'électricité de taille relativement faible à une tension nominale déterminée d'une fréquence constante ou variable selon l'application. Quoi qu'il en soit, l'intérêt de l'invention est de pouvoir réduire la plage de variation de la fréquence par rapport à la plage de variation de la vitesse de rotation.

[0010] L'invention a donc pour objet un procédé de commande d'un générateur électrique autonome tel que défini dans les revendications 1 et 19.

[0011] D'autres particularités avantageuses de l'invention sont définies dans les sous-revendications 2 à

[0012] L'invention a également pour objet un générateur électrique autonome, notamment pour aéronef, tel que défini dans la revendication 20.

[0013] D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels:

la figure 1 est un schéma simplifié général d'un générateur électrique autonome comprenant un exemple de dispositif de commande permettant de mettre en oeuvre le procédé de l'invention;

la figure 2 est un schéma fonctionnel d'une boucle de réglage utilisée dans le dispositif de commande représenté sur la figure 1;

la figure 3 est un schéma d'un bloc de démarrage du générateur électrique représenté sur la figure 1 : et

les figures 4 et 5 sont des graphiques illustrant le procédé selon l'invention.

[0014] On a représenté sur la figure 1 un générateur électrique autonome désigné par la référence générale 1. Ce générateur 1 comprend une machine tournante asynchrone 2 avec un stator 3 et un rotor bobiné 4. Ce dernier est entraîné par une source d'énergie mécanique (non représentée) par l'intermédiaire d'une liaison mécanique tournante symbolisée par le double trait 5 sur la figure 1. Le générateur 1 fournit de l'énergie à un réseau 6 à une tension \overline{V} s ayant une pulsation ωs , constante dans l'exemple décrit.

[0015] Bien qu'elle n'y soit pas limitée, l'invention s'applique avec une efficacité particulière aux générateurs électriques de puissance relativement faible, utilisés par exemple dans les aéronefs pour alimenter le réseau de bord. Dans un tel cas, la source d'énergie mécanique utilisée pour entraîner la machine asynchrone 2 est un moteur de propulsion de l'aéronef dont on sait que la vitesse de rotation est variable dans une large plage.

[0016] Dans le mode de réalisation représenté, on a supposé que la machine asynchrone 2 est de type triphasé, comme l'est également le réseau 6. Toutefois. l'invention n'est pas limitée à une telle machine asynchrone triphasée. le procédé de commande selon l'invention pouvant également être utilisé pour le cas où une tension électrique ayant un nombre de phases différent doit être engendrée.

[0017] Le stator 3 est connecté directement au réseau 6 par des conducteurs 7. Il est également connecté par des conducteurs 8 à un filtre à haute fréquence 9. La sortie sur trois phases 10 de ce filtre 9 est reliée à un jeu de trois selfs 11a ,11b, 11c à raison d'une pour chaque phase, elles-mêmes branchées à l'entrée d'un redresseur commandé 12 dont la tension de sortie peut être pilotée par l'intermédiaire d'un circuit de commande par variation de largeur d'impulsions 13. De tels redresseurs commandés et leur circuit de commande sont connus des spécialistes et on ne les décrit donc pas en détail dans la présente description.

[0018] La sortie de tension continue du redresseur 12 est reliée à un condensateur tampon 14 qui, en aval. fait office de source de tension continue constante. Ce condensateur 14 est connecté à l'entrée d'un onduleur commandé 15 dont la tension de sortie peut être pilotée par l'intermédiaire d'un circuit de commande 16 de modulation par largeur d'impulsions, composants qui sont également bien connus des spécialistes.

[0019] La sortie alternative triphasée de l'onduleur commandé 15 est appliquée à un filtre à haute fréquence 17 auquel est raccordé le rotor bobiné 4 de la machine asynchrone 2. On voit donc que le rotor 4 est alimenté par cette machine 2 elle-même, à laquelle il prélève une partie de l'énergie électrique produite. Comme cette énergie n'est délivrée que si le générateur fonctionne. le procédé de commande selon l'invention met également en oeuvre un dispositif de démarrage 18 qui, sur la figure 1, apparaît sous la forme d'un bloc fonctionnel. ses détails étant représentés sur la figure 3 décrite plus loin.

[0020] Selon une variante de l'invention. il serait possible d'utiliser à la place des éléments 8 à 14, tout autre source de tension continue constante alimentant l'onduleur 15.

[0021] On donnera ci-dessous la liste des symboles désignant les paramètres et grandeurs utilisés dans la suite de la description et dans les figures annexées.

Puissance active stator		
Puissance réactive stator		
Puissance active rotor		
Puissance réactive rotor		
Puissance active réseau		
Puissance réactive réseau		
Puissance active injectée dans le circuit		
du rotor par le stator		
Puissance réactive injectée dans le cir-		
cuit du rotor par le stator		
Courant statorique		
Courant rotorique		
Courant prélevé du courant statorique		

		pour le rotor
	Īch	Courant réseau
	ν̄s	Tension statorique
	٧r	Tension rotorique
5	Vc	Tension continue constante à l'entrée de l'onduleur
	Pm	Puissance mécanique appliquée au rotor
	wsref	Consigne de pulsation statorique
10	ωrref	Consigne de pulsation rotorique
	Vrref	amplitude de consigne de la tension rotorique
	Ω	Vitesse de rotation de l'arbre d'entraînement du rotor
15	Р	Nombre de paires de pôles de la machine asynchrone
	Vsref(eff)	Consigne de tension efficace statorique
	Vseff	Tension efficace statorique
	V rref	Consigne de tension rotorique
20	Š r	Tension rotorique sinusoïdale d'amplitu- de nomée
	Ss	Tension statorique sinusoïdale d'amplitude normée
25	Vcref	Consigne de tension continue de la source de tension constante
	7 2ref	Consigne du courant prélevé pour le ro- tor
	l2ref	Amplitude de consigne du courant pré- levé pour le rotor
30	Vau	Tension du générateur auxiliaire de démarrage
	Īau	Courant du générateur auxiliaire de démarrage
35	lauref	Consigne de courant du générateur auxiliaire de démarrage
	Sau	Tension sinusoïdale d'amplitude normée pour le générateur auxiliaire de démarrage

N.B. Les grandeurs pourvues du signe - sont triphasées [0022] On va maintenant décrire une première boucle de réglage B1 destinée à engendrer la consigne de tension V πef utilisée pour commander le rapport cyclique des impulsions régissant le fonctionnement de l'onduleur 15.

[0023] La tension \overline{V} s est appliquée à un bloc de conversion 19 destiné à engendrer un signal continûment variable représentant la valeur efficace Vseff de cette tension. La sortie de ce bloc de conversion 19 est connectée à l'une des entrées d'un sommateur 20 sur l'autre entrée duquel est branchée la sortie d'un autre sommateur 21. Ce dernier reçoit sur une première entrée une consigne de tension statorique Vsref(eff) et sur une autre entrée une valeur de correction établie, lors de la variation de vitesse, en fonction de la vitesse de rotation Ω et de la dérivée par rapport au temps de cette vitesse, c.à.d. $d\Omega/dt$. La valeur de correction est choisie dans une table 22 dans laquelle est mémorisé un jeu de va-

leurs de correction dressé empiriquement ou par le calcul. A cet effet, la table 22 est connectée à un capteur 23 couplé à l'arbre d'entraînement 5 pour en mesurer la vitesse de rotation. Le capteur 23 est connecté également à un dérivateur 24 calculant la dérivée d\(\Omega\text{L}\)/dt; valeur qui est appliquée à la table 22.

[0024] Sur la sortie du sommateur 20 apparaît un signal d'erreur $\epsilon 1$ qui est la différence entre la valeur instantanée de la tension Vseff et la consigne Vsref(eff) affectée. le cas échéant, de la valeur de correction sortant de la table 22. Le signal d'erreur si sur la sortie du sommateur 20 est appliqué à un régulateur proportionnel-intégral 25 dont les coefficients proportionnel et intégral sont ajustés en fonction de la valeur de la vitesse Ω que le régulateur reçoit du capteur 23.

[0025] La sonie du régulateur 25 sur laquelle apparaît la consigne Vrref (qui est un signal continûment variable représentant l'amplitude de consigne de la tension rotorique) est connectée à une première entrée d'un multiplicateur 26 dont l'autre entrée est reliée à un générateur 27 d'une tension sinusoïale triphasée d'amplitude normée Sr. La fréquence de cette tension Sr engendrée par le générateur 27 est déterminée par la sortie d'un sommateur 28 dont les signaux d'entrée sont respectivement une consigne de pulsation statorique ωsref et une valeur p.Ω élaborée par un multiplicateur 29 auquel sont appliquées la sortie du capteur 23 et une valeur p représentative du nombre de paires de pôles de la machine 2. Le multiplicateur 26 multiplie ainsi la consigne de tension Vrref avec la tension sinusoïdale triphasée ŌΓ.

[0026] La consigne de pulsation statorique ωsref peut être constante comme c'est le cas dans l'exemple décrit ici.

[0027] Cependant, selon une variante de l'invention, il est possible de faire varier cette consigne de pulsation statorique ω sref en fonction de la vitesse de rotation Ω de la machine asynchrone 2.

[0028] En effet, si les charges du réseau 6 peuvent accepter une certaine variation de la fréquence, une consigne de pulsation statorique variable permet de réduire la plage de variation de glissement de la machine 2 (voir figure 4 qui sera commentée plus en détail par la suite) et ainsi de diminuer la puissance maximale prélevée sur la machine 2 pour alimenter le rotor et donc de réduire les pertes dans les composants du redresseur 12 et de l'onduleur 15.

[0029] La variation de la consigne de pulsation statorique est effectuée dans le bloc 28a représenté en pointillés sur la figure 1, connecté au sommateur 28 et recevant le signal de vitesse Ω .

[0030] La sortic du multiplicateur 26 est connectée à un limiteur de courant 30 recevant une valeur ls représentant le courant statorique et foumissant la consigne de tension rotorique \overline{V} rref destinée à piloter le rapport cyclique de l'onduleur 15. Cette valeur \overline{V} rref est donc appliquée au circuit de commande 16. Le limiteur de courant 30 est prévu pour maintenir le courant rotorique

CICKID SED HARRIST .

Îr dans des limites acceptables au cas où le stator 3 serait mis en court-circuit par le réseau 6.

[0031] Comme il a déjà été spécifié ci-dessus, la régulation de la machine 2 peut être réalisée avec cette seule première boucle de réglage Bl à condition que l'on dispose d'une source de tension constante autonome capable d'appliquer à l'onduleur 15 une tension continue constante Vc.

[0032] Cependant, selon un mode de mise en oeuvre préféré de l'invention, la source de tension continue constante est formée par le redresseur commandé 12 qui est alimenté à partir de la machine 2 elle-même. Dans ce cas, il est avantageux de prévoir une deuxième boucle de réglage B2 chargée d'appliquer au redresseur 12 une consigne de courant 12 ref.

[0033] La consigne de tension continue constante Vcref est appliquée à un élévateur au carré 31 qui élabore la valeur (Vcref)². La valeur instantanée de la tension continue Vc est appliquée à un autre élévateur au carré 32 qui élabore une valeur Vc². Ces deux valeurs sont appliquées à un sommateur 33 qui engendre une valeur d'erreur £2. Celle-ci est appliquée à un régulateur proportionnel-intégral 34 à coefficients fixes connecté par sa sortie à un multiplicateur 35 auquel il applique une consigne d'amplitude de courant prélevé l2ref.

[0034] Un générateur 36 engendre une tension sinusoïdale triphasée \$\tilde{S}\$ s'amplitude normée et ayant la fréquence de la tension statorique triphasée \$\tilde{V}\$ s appliquée à ce générateur 36. La tension sinusoïdale \$\tilde{S}\$ s est multipliée par la consigne l2ref qui est un signal continument variable et qui représente l'amplitude du courant \$\tilde{1}\$2 prélevé au stator 3. Cette consigne est issue du régulateur proportionnel-intégral 34 pour donner comme signal de sortie la consigne de courant triphasée \$\tilde{I}\$2ref destiné à piloter le circuit de commande 13 ajustant le rapport cyclique appliqué au redresseur 12.

[0035] La figure 2 symbolise globalement la régulation de la tension Vc. Selon cette figure, on suppose que le redresseur 12 permet d'absorber un courant de prélèvement statorique $\overline{l}2$ parfaitement sinusoïdal, en phase avec la tension $\overline{V}s$. On suppose également que les pertes dans le redresseur 12 et dans l'onduleur 15 sont négligeables. Si Pc est la puissance active instantanée absorbée par le condensateur 14, on a:

$$Pc = \frac{1}{2}C\frac{dVc^2}{dt}$$

dans laquelle C est la capacité du condensateur 14. De plus, on a Pc=P2-Pr. On notera en outre que, dans le schéma de la figure 2, s désigne la variable de Laplaco. [0036] On va maintenant examiner le déroulement du procédé de commande selon l'invention en étudiant un phénomène de charge transitoire appliqué par le réseau 6 à la machine 2. On se bornera à un seul exemple à cet égard, savoir celui dans lequel la vitesse de rotation Ω de l'arbre 5 est inférieure à ωs/p (le glissement est

alors supérieur à zéro). Les spécialistes comprendront les autres cas de fonctionnement du dispositif de commande en les déduisant de l'exemple ci-dessus et en s'aidant de la description détaillée qui vient d'être faite de la structure du dispositif de commande.

[0037] Lorsque la puissance Pch absorbée par le réseau 6 augmente brusquement, la tension Vs chutera instantanément. L'augmentation du courant Ich qui résulte de l'appel de puissance du réseau 6, provoque une augmentation du courant statorique Is. Ceci a pour conséquence un appel de courant rotorique Ir et donc une augmentation de la puissance rotorique Pr. Cette augmentation de puissance est prélevée sur le condensateur 14, ce dont il résulte une chute de la tension Vc.

[0038] Dans ces conditions, le sommateur 33 produit un signal d'erreur £2 qui va provoquer, par l'intermédiaire du régulateur 34, une modification de la consigne d'amplitude de courant l2ref et donc de la consigne triphasée Î2ref. De ce fait, le courant Î2 augmente de façon à réduire la chute de la tension Vc, si bien que Vc devient rapidement de nouveau égale à la consigne Vcref.

[0039] Pendant ce temps, comme la tension Vseff a diminuée. un signal d'erreur El est produit par le sommateur 20 qui par l'intermédiaire du régulateur 25 provoque une augmentation de la consigne de tension Vrref et. partant, de la consigne triphasée V rref commandant l'onduleur 15. L'augmentation de la consigne V rref établira une nouvelle puissance rotorique Pr qui ramène la tension statorique à la valeur correspondant à la consigne Vsref(eff).

[0040] On notera que la dynamique de la boucle B2 doit être supérieure à celle de la boucle B1 et en tout cas suffisante pour contrebalancer le prélèvement supplémentaire d'énergie sur le condensateur 14. Lorsque la condition Vc=Vcref est de nouveau réalisée, l'énergie stockée dans le condensateur 14 n'évoluera plus et toute la puissance P2 prélevée par le redresseur 12 sera transmise par l'intermédiaire de l'onduleur 15 au rotor 4. [0041] Lors d'une charge trop élevée de la machine 2, voire d'un court-circuit dans le réseau 6, le courant Îs débité par la machine peut instantanément atteindre une valeur très élevée (en cas de court-circuit plusieurs milliers d'ampères). Ceci risque d'être dommageable pour l'enserable du générateur électrique et peut également conduire quasi-instantanément à ce qu'on peut appeter une "extinction" du générateur, car la tension Vc chutant rapidement à zéro, les boucles de régulation B1 et B2 ne pourront plus agir. Pour empêcher un tel "effondrement" du générateur 1, il est préféré d'imposer une limitation du courant statorique Is, ce qui peut être réalisé par l'intermédiaire du bloc 30. Ce dernier est agencé pour imposer un maximum à ne pas dépasser à la consigne V rref de manière à limiter le niveau d'excitation de la machine 2. Une action semblable pourrait être effectuée en abaissant la consigne Vsrefeff. Suivant l'importance et la nature de la surcharge, on peut également, pour contrer plus facilement la chute de tension Vc, basculer l'alimentation de l'onduleur 15 sur le dispositif de démarrage 18.

[0042] La figure 3 représente un schéma possible d'un dispositif de démarrage utilisable pour assurer la phase de démarrage de l'alternateur 2.

[0043] Ce dispositif de démarrage 18 comprend un alternateur auxiliaire triphasé 37 entraîné mécaniquement par un dispositif d'entraînement mécanique (non représenté) par l'intermédiaire d'un arbre 38 dont la vitesse de rotation est désignée par Ω au. Il est à noter que sur un aéronef, l'arbre 38 et l'arbre 5 sont confondus, donc Ω au = Ω .

[0044] L'atternateur 37 fournit de l'énergie à un redresseur commandé 39 par l'intermédiaire de selfs 40a, 40b et 40c. La sortie du redresseur 39 est connectée au condensateur 14. Elle est commandée par un circuit 41 de commande par variation de largeur d'impulsions.

[0045] Le dispositif de démarrage 18 comprend également un générateur 42 de tension sinusoïdale triphasée \$\overline{S}\) au auquel est appliquée une tension \$\overline{V}\) au fournie par le stator de l'alternateur auxiliaire 37. Cette tension triphasée \$\overline{S}\) au présente une amplitude normée et elle est appliquée à un multiplicateur 43 dans lequel elle est multiplicée par la valeur l2ref provenant du régulateur proportionnel-intégral 34 (figure 1). La sortie du multiplicateur 43 fournit ainsi une consigne de courant \$\overline{I}\) auref qui est appliquée au circuit de commande 41 pour le pilotage du rapport cyclique du redresseur 39.

[0046] Lors du démarrage, la machine 2 et l'alternateur 37 sont entraînés en même temps. Par exemple, si le générateur 1 est monté sur un aéronef, ils sont entraînés par le ou les moteurs de propulsion de celui-ci. [0047] L'alternateur 37 commence à délivrer la tension Vau de pulsation ωau proportionnel à Ωau. L'activation du circuit de commande 41 provoque alors la charge du condensateur 14 dont la tension Vc passe de 0 à la valeur de la consigne Vcref. Ensuite, le circuit de commande 16 est activé pour qu'il commence à produire la tension Vr. la machine 2 engendrant alors la tension Vs. Dès que cette dernière a atteint sa consigne Vsref(eff), le redresseur commandé 12 prend le relais du redresseur commandé 39. En d'autres termes, le circuit de commande 41 est inhibé et le circuit de commande 13 est activé. La machine 2 est alors opérationnelle. [0048] Dans le cas de l'application à un aéronef, la séquence de démarrage qui vient d'être décrite peut être utilisée pour le redémarrage en vol de la machine

propulsion de l'aéronef.

[0049] Il est également possible, comme déjà décrit, d'utiliser le dispositif de démarrage 18 en cas de court-circuit sur les bornes du stator de la machine 2. Dans ce cas, la séquence d'activation et de désactivation des circuits de commande 13, 16 et 41 devra se dérouler comme décrit ci-dessus à la suite de la détection du court-circuit (Îs dépassant une valeur prédéterminée).

[0050] En se référant maintenant aux figures 4 et 5, on illustrera graphiquement à titre d'exemple non limi-

2, par exemple à la suite de la coupure d'un moteur de

tatif, le procédé de commande selon l'invention à partir de deux exemples de configurations de fonctionnement d'un générateur equipé du dispositif de commande. Si un tel générateur et son dispositif de commande sont utilisés à bord d'un aéronef, la machine 2 est entraînée à vitesse variable dans une plage de vitesses pouvant aller de 500 à 1200 rad/sec, par exemple (plage de variation qui dépend du moteur de propulsion utilisé sur l'aéronef). La fréquence de fonctionnement choisie dans le présent exemple est constante et égale à 400 Hz et la tension Vsref(eff) est de 115V. On supposera que le nombre de paires de pôles p de la machine 2 est de trois de sorte que le glissement g peut évoluer entre -0.43 et 0.40.

[0051] Les tracés des figures 4 et 5 montrent l'évolution des puissances en kW en fonction du glissement grespectivement pour le cas où la charge appliquée à la machine 2 est de 40kVA avec cosφ=C,75 et le cas où la charge est de 10kVA avec un cosφ=1. On suppose dans ces graphiques que les pertes dans la machine 2 et celles entraînées au niveau du redresseur 12 et de l'onduleur 15 sont négligeables. Il est à noter que Pes et Per désignent respectivement la puissance active transmise par les enroulements du rotor 4 à l'entrefer et Pes la puissance active transmise par l'entrefer au stator 3.

[0052] Suivant une autre variante de mise en oeuvre du procédé de l'invention, le dispositif de démarrage 18 pourrait être rendu réversible et utilisé dans l'ensemble de la plage de glissement de la machine asynchrone 2, ceci en dehors des seules périodes de démarrage du générateur. Dans le cadre de cette même variante, le dispositif de démarrage 18 pourrait également servir de source de haute tension continue pour fournir la tension Vc.

[0053] Ce mode de mise en oeuvre du procédé de l'invention pourra être implémenté dans le cadre des schémas des figures 1 à 3, en bloquant, par exemple temporairement, le redresseur 12 par l'intermédiaire de son circuit de commande 13, tant que l'on souhaite faire fonctionner le générateur selon ce mode de mise en oeuvre.

[0054] Cependant, une autre possibilité déjà brièvement énoncée ci-dessus consisterait à ornettre les composants 8 à 13 de la figure 1 et à utiliser le dispositif de démarrage 18 en permanence pour la production de la tension Vc.

[0055] Dans les deux cas, le redresseur 39 de la figure 3 devra être réalisé réversible, et il doit alors être commandé de telle façon

- que l'alternateur 37 fonctionne en mode moteur électrique lorsque le glissement de la machine 2 est négatif moyennant quoi, de la puissance mécanique sera appliquée sur l'arbre 38 et extraite du rotor 4; et
- que l'alternateur 37 fonctionne en mode générateur électrique lorsque le glissement de la machine 2 est

positif. moyennant quoi de la puissance mécanique sera prélevée sur l'arbre 38 et apportée au rotor 4.

5 Revendications

1. Procédé de commande d'un générateur électrique autonome (1) comportant une machine tournante asynchrone (2) dont le rotor (4) est bobiné et entraîné mécaniquement, notamment pour l'alimentation de petits réseaux de fourniture d'électricité, à une tension (V̄s) et avec une fréquence (ωs) déterminées, tels que ceux des aéronefs, le stator (3) de ladite machine étant connecté au réseau (6) et dont le rotor (4) étant alimenté par l'intermédiaire d'un onduleur (15) piloté par un circuit (16) de commande par variation de largeur d'impulsions. l'onduleur (15) étant lui-même alimenté par une source de tension continue constante (8 à 14), ce procédé étant caractérisé en ce qu'il consiste:

à engendrer un signal représentant la consigne de fréquence (ou de pulsation) statorique (wsrcf),

à engendrer un signal représentant la consigne de fréquence (ou de pulsation) rotorique (ω rref), fonction de la consigne de fréquence statorique et de la vitesse de rotation (Ω) de ladite machine (2)

à engendrer un signal représentant la valeur efficace de consigne (Vsref(eff)) de la tension statorique,

à engendrer un signal d'erreur (£1), fonction de l'écart entre ladite valeur efficace de consigne (Vsref(eff)) de la tension statorique et la valeur efficace (Vseff) de la tension réelle statorique, et à imposer audit circuit de commande (16) une consigne de tension rotorique (Vrref) qui est une fonction dudit signal d'erreur (£1) et de ladite consigne de fréquence rotorique (wrref).

- Procédé suivant la revendication 1, caractérisé en ce qu'il consiste à corriger ladite consigne de la tension de référence statorique (Vsref(eff)), lors des variations de vitesse du rotor (4), en fonction de la valeur instantanée de cette vitesse (Ω).
- 3. Procédé suivant la revendication 2, caractérisé en ce qu'il consiste également à corriger ladite consigne de la tension de référence statorique (Vsref (eff)), lors des variations de vitesse dudit rotor (4), en fonction de la dérivéc (dΩ/dt) de cette vitesse.
- 4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste à régler la consigne de fréquence statorique (ωsref) en fonction de la vitesse de rotation (Ω) de ladite machine (2).

50

35

10

30

- Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste à soumettre ledit signal d'erreur (£1) à une régulation du type proportionnel-intégral (25).
- Procédé suivant la revendication 5, caractérisé en ce que les coefficients de ladite régulation de type proportionnel-intégral (25) sont établis en fonction de la vitesse de rotation (Ω) dudit rotor (4).
- 7. Procédé suivant la revendication 6, caractérisé en ce qu'il consiste à engendrer une tension sinusoïcale d'amplitude normée (Sr) ayant une fréquence rotorique prédéterminée (wrref) et à multiplier le résultat ce ladite régulation de type proportionnel-intégral (25) avec ladite tension sinusoïdale d'amplitude normée (Sr).
- Procédé suivant la revendication 7, caractérisé en ce qu'il consiste à ajuster la fréquence (ωrref) de ladite tension sinusoïdale d'amplitude normée (Ŝr) en fonction d'une valeur de référence de pulsation statorique (ωsref) et du glissement (p.Ω) du générateur (2).
- Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il consiste à limiter ladite consigne de tension rotorique (V rref) à une valeur maximale prédéterminée, fonction du courant statorique (Is).
- 10. Procédé suivant la revendication 1. caractérisé en ce que, dans le cas où ladite tension continue constante (Vc) est obtenue par l'intermédiaire d'un redresseur commandé (12) alimenté par un courant (Ī2) prélevé sur le courant (Īs) produit par le stator (3) de ladite machine (2), et où ce redresseur (12) est piloté par un second circuit (13) de commande par variation de largeur d'impulsions, le procédé consiste également à engendrer une consigne de tension continue (Vcref), à engendrer un second signal d'erreur (¿2) qui est une fonction de l'écart entre ladite consigne de tension continue (Vcref) et la tension continue réelle (Vc) produite par ledit redresseur (12), et à imposer audit second circuit de commande (13) une consigne de courant de prélèvement statorique ([2ref) qui est une fonction dudit second signal d'erreur (¿2) et de la pulsation statorique réelle.
- 11. Procédé suivant la revendication 10, caractérisé en co que ledit second signal d'erreur (¿2) est établi en fonction de la différence entre le carré de ladite consigne de tension continue (Vcref) et le carré de ladite tension continue réelle (Vc).
- Procédé suivant la revendication 11, caractérisé en ce qu'il consiste à soumettre ledit second signal

- d'erreur (£2) à une seconde régulation du type proportionnel-intégral (34).
- 13. Procédé suivant la revendication 12, caractérisé en ce qu'il consiste à engendrer une seconde tension sinusoïdale d'amplitude normée (Ss) ayant une fréquence (ωs) égale à la fréquence statorique réelle et à multiplier le résultat de ladite seconde régulation de type proportionnel-intégral (34) avec ladite seconde tension sinusoïdale d'amplitude normée (Ss).
- 14. Procédé suivant l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il consiste, au démarrage dudit générateur (1), à engendrer la tension (Vc) de ladite source de tension continue constante par l'intermédiaire d'un alternateur auxiliaire (37) et à couper cet alternateur auxiliaire, lorsque ledit onduleur (15) ayant commencé à fonctionner, la valeur efficace de la tension statorique (Vseff) a atteint sa valeur de consigne (Vseff(ref)).
- 15. Procédé suivant la revendication 14, caractérisé en ce qu'il consiste à redresser le courant (lau) fourni par ledit alternateur auxiliaire (37) par l'intermédiaire d'un second redresseur (39) piloté par un troisième circuit (41) de commande par variation de largeur d'impulsions et à imposer audit troisième circuit de commande (41) une consigne de courant (lauref) pour ledit alternateur auxiliaire (37).
- 16. Procédé suivant les revendications 13 et 15. caractérisé en ce qu'il consiste à engendrer ladite consigne de courant (l'auref) pour l'alternateur auxiliaire (37) en fonction du résultat (l'2ref) de ladite seconde régulation proportionnel-intégral (34).
- 17. Procédé suivant la revendication 16, caractérisé en ce qu'il consiste également à engendrer une troisième tension sinusoïdale d'amplitude normée (Sau) de fréquence égale à celle de la tension (Vau) dudit alternateur auxiliaire (37) et à multiplier le résultat de ladité seconde régulation proportionnel-intégral (I2ref) avec ladite troisième tension sinusoïdale (Sau) pour engendrer ladite consigne de courant (Tauref) pour l'alternateur auxiliaire (37).
- 18. Procédé suivant les revendications 5 et 12 prises ensemble, caractérisé en ce que ladite seconde régulation (34) présente une dynamique supérieure à celle de ladite première régulation (25).
- 19. Procédé de commande d'un générateur électrique autonome (1) comportant une machine tournante asynchrone (2) dont le rotor (4) est bobiné et entraîné mécaniquement, notamment pour l'alimentation de petits réseaux de fourniture d'électricité, aune tension (V̄s) et avec une fréquence (ωs) détermi-

50

55

nées, tels que ceux des aéronefs, le stator (3) de ladite machine étant connecté au réseau (6) et dont le rotor (4) étant alimenté par l'intermédiaire d'un onduleur (15) piloté par un premier circuit (16) de commande par variation de largeur d'impulsions, l'onduleur (15) étant lui-même alimenté par une source de tension continue constante (8 à 14), ce procédé étant caractérisé en ce qu'il consiste:

à engendrer un signal représentant la consigne de fréquence (ou de pulsation) statorique (wsref),

à engendrer un signal représentant la consigne de fréquence (ou de pulsation) rotorique (orref), fonction de la consigne de fréquence statorique et de la vitesse de rotation (52) de ladite machine (2)

à engendrer un signal représentant la valeur efficace de consigne (Vsref(eff)) de la tension statorique,

à engendrer un signal d'erreur (£1), fonction de l'écart entre ladite valeur efficace de consigne (Vsref(eff)) de la tension statorique et la valeur efficace (Vseff) de la tension réelle statorique, à imposer audit premier circuit de commande 25 (16) une consigne de tension rotorique (Vrref) qui est une fonction dudit signal d'erreur (£1) et de ladite consigne de fréquence rotorique (or-

à engendrer ladite tension continue constante 30 (Vc) par : intermédiaire d'un alternateur auxiliaire (37) et d'un redresseur réversible (39) commandé par un second circuit de commande (41),

à faire fonctionner ledit alternateur auxiliaire 35 (37) en mode moteur électrique, lorsque le glissement de ladite machine tournante asynchrone (2) est négatif, et

à faire fonctionner ledit alternateur auxiliaire (37) en mode générateur électrique, lorsque le 40 glissement de ladite machine tournant asynchrone (2) est positif.

20. Générateur électrique autonome, notamment pour aéront, caractérisé en ce qu'il comprend un dispositif de commande mettant en oeuvre le procédé tel que défini dans l'une quelconque des revendications 1 à 19.

20

50

55

Within the sections

RAPPORT DE RECHERCHE EUROPEENNE

EP 00 40 3252

atégorie	Citation du document avec des parties pertie	Indication, en cas de besoin, nentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CI.7)
A	OF A STAND-ALONE WO GENERATOR EXCITED B CONFERENCE RECORD I SOCIETY ANNUAL MEET	NDUSTRY APPLICATIONS	1,19	H02P9/42
D,A	Reactive Power Cont Variable Speed Cons Generating System* IEEE TRANSACTIONS O	tant Frequency N POWER ELECTRONICS, juillet 1995 (1995-07) 0924888	1,19	
A	CONSTANT FREQUENCY VOLTAGE REGULATION"	GENERATION SYSTEM WITH ON POWER ELECTRONICS BRUSSELS, EPE pages 2465-2471,	1,19	DOMAINES TECHNIQUES RECHERCHES (Int.CI.7) HO2P FO2N
Le pr	ésent rapport a été établi pour tou	ites les revendications		
-	Leu de la recherche	Date d'achèvement de la recherche		Examenen
	LA HAYE	19 janvier 2001	Bey	er, F
X : part Y : part autro A : artic O : divu	ATEGORIE DES DOCUMENTS OFFE iculerement pertinent à luf seul iculerement pertinent en combinalson de coment de la même categorie de plan technologique (pation mon-éonte umen; mateualaire	E : cocument de bre date de dépôt du D : c'té dans la dem L : dié pour d'autres	vet antérieur, ma après cette date ande raisons	us publié a la

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.