PFA

Partie 0 – Introduction	2
1 - Introduction	3
2 - Projet de fin de formation	5
3 - code source et démonstration	5
4 - outils	6
TD 1_outils : Installation de « pencil project »	8
Partie 1 - Processus de développement	9
TD 1 – Processus de développement	9
Partie 2 – Besoin et contexte	10
1 - Besoin	10
2 - Contexte	10
Partie 3 – Analyse technique	11
1 – Choix technique	12
2 – Prototype	13
Tâche 0_Analyse technique - Prérequis - Prototype	13
Tâche 1_Prototype : Archtecture 3-tiers	13
Tâche 2_Prototype : Test unitaire	13
Tâche 3_Prototype : Git et GitHube.com	13
Tâche 4_Prototype:.NET Core	13
Tâche 0_Analyse technique - Prérequis - Prototype	13
Tâche 1_Prototype: Archtecture 3-tiers	13
Tâche 2_Prototype : Test unitaire	14
Tâche 3_Prototype : Git et GitHube.com	14
Tâche 4_Prototype:.NET Core	14
Partie 4 - Conception	15
Partie 5 - réalisation	16
Partie 6 - Déploiement	17

Partie 0 – Introduction

1-Introduction	3
2-Projet de fin de formation	5
3 – code source et démonstration	5

1-Introduction

La réalisation de n'importe quel projet passe généralement par cinq étapes très reconnue à savoir :

- Capture des besoins
- Analyse
- Conception
- Réalisation
- Test et validation

Nous allons traiter ce sujet de côté informatique, plus précisément le développement informatique.

L'application informatique est utilisé par des personnes qu'on l'appelle utilisateurs finaux. Dans le jargon « Développement informatique » on appelle chaque utilisateur : un acteur.

Au départ, **La capture des besoins** consiste à saisir les besoins des utilisateurs finaux ou des acteurs. En d'autre façon, ce qu'ils veulent réaliser exactement et le problème qu'ils veulent résoudre par votre application.

L'analyse consiste à trouver les fonctionnalités à développer pour répondre aux besoins des utilisateurs. Il s'appelle aussi **l'analyse fonctionnelle**. D'une façon plus claire, cette étape cherche les besoins caché que les utilisateurs ne connaissent pas ou ils ne leur donnent pas d'importance.

La partie d'analyse est parfois est diviser en en deux étape :

- L'analyse fonctionnelle
- L'analyse technique.

L'analyse technique consiste à préciser tous les choix techniques comme

- La plate-forme de développement à utiliser (PHP, JEE (Java), .NET (C#), ..);
- L'architecture de l'application :
 - o Architecture Client-Serveur
 - Architecture Mono-Post
- Les différents techniques de développement que nous avons besoin dans notre application
 - Interface de mise à jour d'un objet
 - o Imprimer des états provenant de la base de données
 - Afficher des statistiques
 - Gérer la sécurité de l'application

- o Installation et déploiement de l'application
- o ...

La meilleur façon de clôturer cette étape est de réaliser un exemple complet et simple qui contient tous nos choix technique, cette exemple est appelle dans notre jargon un « **Prototype** ».

La conception consiste à proposer la solution technique à différentes fonctionnalités de l'application. On donne seulement la solution sur le papier dans entrer dans les détaille technique de la réalisation.

La réalisation consiste à appliquer notre prototype sur notre solution technique pour obtenir notre application.

La partie **test** consiste à vérifier l'existence et **valider** le bon fonctionnement de toutes les fonctionnalités que nous avons développé.

Dans ce guide pratique nous allons vous assister à réaliser votre projet en suivant ces 5 étapes de réalisation.

2 - Projet de fin de formation

1 – Réalisation d'une application **3-Tiers** avec **.NET Cor**

3 - code source et démonstration

Dossier de modélisation

Code source

Démonstrations

https://www.youtube.com/playlist?list=PLmi5sRiGSFfC0VXixP W-3X9qULCFmhqi

4 - outils

Pencil project

https://pencil.evolus.vn/

GitHub

https://github.com/

Desktop github

https://desktop.github.com/

TD 1_outils : Installation de « pencil project »

Partie 1 - Processus de développement

Introduction

TD 1 – Processus de développement

Classé les étapes suivant en ordre :

- Besoin
- Analyse
- Analyse technique
- Conception
- Codage
- Test
- Déploiement

Le processus UP

https://fr.wikipedia.org/wiki/Processus_unifi%C3%A9

Elle se caractérise par une démarche itérative et incrémentale, pilotée par les <u>cas d'utilisation</u>, et centrée sur <u>l'architecture</u> et les <u>modèles UML</u>.

Le processus 2TUP

Partie 2 – Besoin et contexte

1-Besoin

Projet de fin de formation : Réalisation d'une application 3-Tiers en .NET Core

2 - Contexte

Le contexte est proposé par les stagiaire et validé dans la séance 1 (S1)

Partie 3 – Analyse technique

Partie 3 – Analyse technique	. 16
1 – Choix technique	. 17
Activité 1_Choix_Technique	. 17
2 – Prototype	. 18
TP 1_Prototype : Archtecture 3-tiers	. 18
TP 2_Prototype : Interface de mise à jour	. 18
TP 3_Prototype : Application multilingue	. 18
TP 4_Prototype : Test unitaire	. 18
TP 5_Prototype: Git	. 18

1 – Choix technique

Plate-form: .NET ou .NET Core

Type d'application : Application Web, Application Windows ou Application Mobile

Architecture : Architecture 3-tiers **Test** : Utilisation des tests unitaire

Gestion de code source : Git et GitHube

2 – Prototype

Tâche O Analyse technique – Prérequis – Prototype

Tâche 1 Prototype: Archtecture 3-tiers

Tâche 2_Prototype: Test unitaire

Tâche 3 Prototype : Git et GitHube.com

Tâche 4 Prototype:.NET Core

Tâche O_Analyse technique - Prérequis - Prototype

Application de gestion (CRUD)

La réalisation d'une interface de gestion (CRUD) dans une classe choisie par le formateur référent.

Cette application est le point de départ de votre projet : on l'appeler prototype.

Tâche 1_Prototype : Archtecture 3-tiers

Question 1 : Création d'un projet sous Visual Studio 2017

Question 2: Projet « Entities »

Question 3: Projet « DAL »

Question 4: Projet « BAL »

Question 5: Projet « Presentation »

Tâche 2 Prototype : Test unitaire

Réalisation d'un projet de test unitaire

Tâche 3_Prototype : Git et GitHube.com

Travail avec gestion de version Git et GitHub.com

Niveau 1

Question 1 - Création d'un compte github

Question 2 – Création d'un « repository »

Question 3 - Installation de « Desktop github »

Question 4 – Clone de votre projet

Question 5 – Modification et push

Question 6 – « Fork » de projet d'un membre de votre group

Question 7 - Modification et « send » de « pulRequest »

Question 8 – acceptation de « pulRequest »

Niveau 2

Utilisation de git par ligne de commande

Tâche 4 Prototype:.NET Core

- 1. Application console (Calculatrice)
- 2. ASP.net mvc core (Gestion des stagiaires et groupes)

Partie 4 - Conception

Partie 5 - réalisation

Partie 6 - Déploiement