ECE 3150: Microelectronics

Spring 2015

Homework 6

Due on March. 12, 2015 at 5:00 PM

Suggested Readings:

a) Lecture notes

Important Notes:

1) MAKE SURE THAT YOU INDICATE THE UNITS ASSOCIATED WITH YOUR NUMERICAL ANSWERS. OTHERWISE NO POINTS WILL BE AWARDED.

2) Unless noted otherwise, always assume room temperature.

Problem 6.1: (A Simple NFET Amplifier)

Consider the following NFET amplifier:

For the NFET assume:

$$W = 10 \mu \text{m}$$

 $L = 1 \mu \text{m}$
 $\mu_n C_{ox} = 200 \mu A/V^2$
 $\lambda_n = 0.11/V$
 $V_{DD} = 2.5 V$
 $R_L = 10 \text{ k}\Omega$
 $V_{TN} = 0.5 V$
 $N_a = 10^{17} \text{ cm}^{-3}$

In the following parts, assume that the load resistor R_L is NOT connected to the output.

- a) Generally one would like to keep the resistor R large. But if it is too large, the FET could go into the linear region for a given desired value of the DC drain current I_D . Suppose you are at liberty to choose any value of the DC input bias voltage V_{IN} . For every value of V_{IN} above V_{TN} the value of the resistor R has to be within a range in order to keep the FET in the saturation region of operation. For values of V_{IN} between 0.5 and 2.5 Volts, find the maximum (R_{max}) and the minimum (R_{min}) values of the resistance R needed to keep the FET working the saturation region. Plot R_{max} and R_{min} on the same plot as a function of V_{IN} .
- b) Suppose you need to the keep the DC voltage at the output V_{OUT} equal to 1.5 V. And you also need to keep the small signal gain, and therefore g_m , reasonably high, so you choose $I_D = 200 \,\mu\text{A}$. What should be the values of the resistor R and the input bias voltage V_{IN} needed to meet these objectives? Or can these objectives even be met while keeping the FET in the saturation region?
- c) With the numerical value of the resistor as in part (b), and a varying input voltage V_{IN} , what are the maximum and the minimum values of the outur voltage V_{OUT} such that the FET remains in the saturation region?
- d) With the value of the resistor as in part (b), what are the maximum and the minimum values of the input voltage V_{IN} such that the FET remains in the saturation region?
- e) With the value of the resistor as in part (b), compute and plot (sketches not acceptable) the transfer curve $V_{OUT} vs V_{IN}$ and indicate regions in which the FET is in the cut off, linear, and saturation regions.
- f) With the value of the resistor and the biasing scheme as in part (b), what is the open circuit small signal voltage gain $A_V = V_{out}/V_{in}$ (i.e. the voltage gain with the load resistor disconnected)? Need a numerical number as an answer and not just a formula.

Now suppose the load resistor R_L is connected to the output of the amplifier. Its presence will change things significantly.

g) Suppose your biasing scheme, including values of V_{IN} and R are as in part (b) above. With the load resistor now connected, what is the new output voltage V_{OUT} ? Hint: it is not going to be 1.5 Volts anymore. And what is I_{OUT} ?

Lesson: loading can affect the DC biasing of an amplifier!

h) Suppose your biasing scheme, including values of V_{IN} and R are as in part (b) above. With the load resistor now connected, what is the small signal voltage gain $A_V = V_{out}/V_{in}$? Need a numerical number as an answer and not just a formula. Has it decreased or increased compared to the case when the load resistor was not connected?

Lesson: loading can affect the small signal performance of an amplifier!

Problem 6.2: (NFET Loaded NFET Amplifier)

Consider the following circuit:

Assume that for both NFETs:

$$W = 10 \mu \text{m}$$

 $L = 1 \mu \text{m}$
 $\mu_n C_{ox} = 200 \mu \text{A}/\text{V}^2$
 $\lambda_n = 0.11/\text{V}$
 $V_{DD} = 2.5 \text{ V}$
 $V_{TN} = 0.5 \text{ V}$
 $N_a = 10^{17} \text{ cm}^{-3}$

- a) If $V_{IN} = 1.25 \,\text{V}$, find V_{OUT} ? Is the bottom NFET in linear or saturation region?
- b) If $V_{IN} = 2.0 \text{ V}$, find V_{OUT} ? Is the bottom NFET in linear or saturation region?
- c) What is the highest voltage V_{OUT} can take if both the FETs are to remain in saturation? What is the corresponding input voltage V_{IN} ?
- d) What is the lowest voltage V_{OUT} can take if both the FETs are to remain in saturation? What is the corresponding input voltage V_{IN} ?
- e) Draw a small signal circuit for the amplifier and find an expression for the open circuit voltage gain $A_V = V_{out}/V_{in}$.
- f) Suppose $V_{IN}=1.25\,\mathrm{V}$. Find the values of g_{m1} , g_{m2} , r_{o1} , r_{o2} for the two NFETs and then find the value of the voltage gain $A_{v}=v_{out}/v_{in}$ at this bias point.

Problem 6.3: (PFET Loaded NFET Amplifier)

Consider the following circuit:

Assume that for the NFET:

$$W = 10 \mu \text{m}$$

$$L = 1 \mu \text{m}$$

$$\mu_n C_{ox} = 200 \mu \text{A}/\text{V}^2$$

$$\lambda_n = 0.11/\text{V}$$

$$V_{TN} = 0.5 \text{ V}$$

$$N_a = 10^{17} \, \text{cm}^{-3}$$

And assume that for the PFET:

$$W = 20 \mu \text{m}$$

 $L = 1 \mu \text{m}$
 $\mu_p C_{ox} = 100 \mu \text{A}/\text{V}^2$
 $\lambda_p = 0.1 \text{ I/V}$
 $V_{TP} = -0.5 \text{ V}$
 $N_d = 10^{17} \text{ cm}^{-3}$

And:

$$V_{DD} = 2.5 V$$

a) If
$$V_B = 1.25$$
 V, and $V_{IN} = 1.25$ V, what is V_{OUT} ?

- b) If $V_B = 1.25$ V, what is the highest voltage V_{OUT} can take if both the FETs are to remain in saturation? What is the corresponding input voltage V_{IN} ?
- c) If $V_B = 1.25$ V, what is the lowest voltage V_{OUT} can take if both the FETs are to remain in saturation? What is the corresponding input voltage V_{IN} ?

- d) Draw a small signal circuit for the amplifier and find an expression for the open circuit voltage gain $A_V = V_{out}/V_{in}$.
- e) If $V_B = 1.25$ V, and $V_{IN} = 1.25$ V, find the values of g_{m1} , g_{m2} , r_{o1} , r_{o2} for the two FETs and then find the value of the voltage gain $A_V = V_{out}/V_{in}$ at this bias point.
- f) Based on what you have found, would you use the amplifier of problem 6.1(f), problem 6.2(f) or the amplifier of this problem 6.3(e) for high gain applications?

Problem 6.4: (BJTs)

Consider a NPN BJT with $N_{dE} = 2N_{aB} = 4N_{dC}$. The minority carrier recombination length is assumed to be infinite in every region of the device.

Consider the following four NPN BJT circuits:

a) For each of the above circuits, sketch the minority carrier density in the entire device (emitter, base, and collector regions), indicate the sign of the potential drops V_{BE} and V_{CB} , and also indicate whether the BJT is operating in the forward active, reverse active, saturation, or cut-off regions. As an example, the complete answer for the second circuit (from the left above) is given below.

b) Using standard notations and quantities defined in the Ebers-Moll model for BJTs:

$$I_{ES}$$
, I_{CS} , β_F , α_F , β_R , α_R , etc

Find the current vs voltage relation (i.e. I vs V) for each of the four BJT circuits shown above.