

A*

•••

Jean Contreras Sistemas Inteligentes

Algoritmo de búsqueda, utilizado para encontrar la distancia más corta entre dos puntos.

El algoritmo utiliza la siguiente función de evaluación:

$$f(n) = g(n) + h(n) \tag{1}$$

g(n) es el coste actual desde el nodo inicial al nodo n.

h(n) es el coste estimado (heurística) desde el nodo actual al nodo final.

Utilizando la distancia Manhattan como g(n), la distancia Euclidiana como h(n).

Y si solo se puede mover en cuatro direcciones: N, S, O, E (cuatro conectados):

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-1)^2 + (4-1)^2} = 7.61$$

$$f(n) = 0+7.61 = 7.61$$

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-1)^2 + (4-2)^2} = 7.3$$

$$f(n) = 1+7.3 = 8.3$$

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-1)^2 + (4-3)^2} = 7.1$$

$$f(n) = 2+7.1 = 9.1$$

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-1)^2 + (4-4)^2} = 7$$

$$f(n) = 3+7 = 10$$

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-2)^2 + (4-4)^2} = 6$$

$$f(n) = 4+6 = 10$$

$$f(n) = g(n) + h(n)$$

h'(n) =
$$\sqrt{(8-7)^2 + (4-4)^2} = 1$$

$$f(n) = 9+1 = 10$$

$$f(n) = g(n) + h(n)$$

$$h'(n) = \sqrt{(8-8)^2 + (4-4)^2} = 0$$

$$f(n) = 10+0 = 10$$

$$f(i) = 0+7.61 = 7.61$$

$$f(i-n) = 1+7.3 = 8.3$$

$$f(i-s) = 1+8.1 = 9.1$$

$$f(i-e) = 1+6.7 = 7.7$$

$$f(i-o) = 1+8.5 = 9.5$$

$$f(i-e-n) = 2+6.3 = 8.3$$

 $f(i-e-s) = 2+7.2 = 9.2$
 $f(i-e-e) = 2+5.8 = 7.8$

f(i-e-o) = 2+7.61 = 9.61

$$f(i-e-e-n) = 3+5.4 = 8.4$$

 $f(i-e-e-s) = 3+6.4 = 9.4$
 $f(i-e-e-e) = 3+5 = 8$
 $f(i-e-e-e) = 3+6.7 = 9.7$

$$f(i\text{-}e\text{-}e\text{-}e\text{-}n) = 4+4.5 = 8.5$$

 $f(i\text{-}e\text{-}e\text{-}e\text{-}s) = 4+5.7 = 9.7$
 $f(i\text{-}e\text{-}e\text{-}e\text{-}e) = 4+4.2 = 8.2$
 $f(i\text{-}e\text{-}e\text{-}e\text{-}e) = 4+5.8 = 9.8$

$$f(i\text{-}e\text{-}e\text{-}e\text{-}e\text{-}n) = 5+3.6 = 8.6$$

 $f(i\text{-}e\text{-}e\text{-}e\text{-}e\text{-}s) = 5+5 = 10$
 $f(i\text{-}e\text{-}e\text{-}e\text{-}e\text{-}e) = 5+3.6 = 8.6$
 $f(i\text{-}e\text{-}e\text{-}e\text{-}e\text{-}e) = 5+5 = 10$

Ejemplos

https://qiao.github.io/PathFinding.js/visual/

A* En Árbol

Estado	h(n)
S	7
Α	6
В	2
С	1
G	0