Projekt_peptydy

Wygenerowano przez Doxygen 1.8.13

Spis treści

1	Inde	ks prze	estrzeni nazw	2		
	1.1	Pakiety	y	2		
2	Inde	leks klas				
	2.1	Lista k	las	2		
3	Inde	deks plików				
	3.1	Lista p	lików	2		
4	Dok	umenta	cja przestrzeni nazw	2		
	4.1	Dokum	nentacja przestrzeni nazw program	2		
		4.1.1	Dokumentacja funkcji	3		
		4.1.2	Dokumentacja zmiennych	5		
5	Dok	Dokumentacja klas				
	5.1	Dokum	nentacja klasy program.monomer	7		
		5.1.1	Opis szczegółowy	8		
		5.1.2	Dokumentacja konstruktora i destruktora	8		
		5.1.3	Dokumentacja funkcji składowych	9		
		5.1.4	Dokumentacja atrybutów składowych	10		
	5.2	Dokum	nentacja klasy program.peptide	11		
		5.2.1	Opis szczegółowy	11		
		5.2.2	Dokumentacja funkcji składowych	12		
		5.2.3	Dokumentacja atrybutów składowych	13		
	5.3	5.3 Dokumentacja klasy program.vector		13		
		5.3.1	Opis szczegółowy	14		
		5.3.2	Dokumentacja konstruktora i destruktora	14		
		5.3.3	Dokumentacja funkcji składowych	14		
		5.3.4	Dokumentacja atrybutów składowych	15		

6	Dokumentacja plików	16
	6.1 Dokumentacja pliku program.py	16
1	Indeks przestrzeni nazw	
	Policies.	
1.1	Pakiety	
Ote	o lista pakietów wraz z krótkim opisem (o ile jest dostępny):	
	program	2
2	Indeks klas	
2.1	Lista klas	
Tut	aj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:	
	program.atom Atomy	??
	program.monomer	
	Monomery	7
	program.peptide Peptydy	11
	program.vector Wektory w układzie kartezjańskim	13
3	Indeks plików	
•	macks pinkew	
3.1	Lista plików	
Tut	aj znajduje się lista wszystkich plików z ich krótkimi opisami:	
	program.py	16
4	Dokumentacja przestrzeni nazw	
4.1	Dokumentacja przestrzeni nazw program	
Ko	nponenty	
	• class atom	
	Atomy. • class monomer	
	Monomery.	
	• class peptide	
	Peptydy. • class vector	
	Wektory w układzie kartezjańskim.	

Funkcje

```
def transpose (m)

Transpozyjcja macierzy.
def dihedral_angle (b1, b2, b3)

Wyznaczanie kąta torsyjnego.
def upload_data ( table, I1, I2, I3, I4, I5, I7, I8)
def make_output (peptyd, i, j, n)
```

Zmienne

```
• list table = []
• int number_of_lines = 0
• dictionary monomers_list = {}
• list I1 = []
• list I2 = []
• list I3 = []
• list I4 = []
• list I5 = []
• int 16 = 0
• list I7 = []
• list I8 = []
• words = re.split("\s+",line.strip())
• def monomer_i = upload_data( table, I1, I2, I3, I4, I5, I7, I8)
• data = open(sys.argv[1])
• string words2 = ""
• list table2 = []
aa = peptide()
• f = open('output.pdb', 'w')
• int i = 0
• int j = 0
```

4.1.1 Dokumentacja funkcji

• int n = 0

4.1.1.1 dihedral_angle()

```
def program.dihedral_angle ( b1, b2, b3 )
```

Wyznaczanie kąta torsyjnego.

Parametry

```
b1,b2,b3 trzy wektory pomiędzy, którymi liczony jest kąt torsyjny
```

```
Zwraca
```

wartość kąta torsyjnego

Autor

Bernadeta Nowosielska

4.1.1.2 make_output()

4.1.1.3 transpose()

```
def program.transpose ( m )
```

Transpozyjcja macierzy.

Parametry

```
m maciwerz, która ma zostać zmieniona
```

Zwraca

macierz transponowana

Autor

Bernadeta Nowosielska

4.1.1.4 upload_data()

4.1.2 Dokumentacja zmiennych

```
4.1.2.1 aa
program.aa = peptide()
4.1.2.2 data
program.data = open(sys.argv[1])
4.1.2.3 f
program.f = open('output.pdb', 'w')
4.1.2.4 i
int program.i = 0
4.1.2.5 j
int program.j = 0
4.1.2.6 I1
list program.11 = []
4.1.2.7 I2
list program.12 = []
4.1.2.8 I3
list program.13 = []
```

```
4.1.2.9 14
list program.14 = []
4.1.2.10 I5
list program.15 = []
4.1.2.11 | 16
int program.16 = 0
4.1.2.12 17
list program.17 = []
4.1.2.13 I8
list program.18 = []
4.1.2.14 monomer_i
\texttt{def program.monomer\_i = upload\_data(table, 11, 12, 13, 14, 15, 17, 18)}
4.1.2.15 monomers_list
dictionary program.monomers_list = {}
4.1.2.16 n
int program.n = 0
4.1.2.17 number_of_lines
int program.number_of_lines = 0
```

5 Dokumentacja klas 7

```
4.1.2.18 table
list program.table = []
4.1.2.19 table2
list program.table2 = []
4.1.2.20 words
program.words = re.split("\s+",line.strip())
4.1.2.21 words2
program.words2 = ""
    Dokumentacja klas
5.1 Dokumentacja klasy program.atom
Atomy.
Metody publiczne
    • def __init__ (__self__, a, b, c, ID, element, znacznik)
   • def scalar_prod (__self__, p)
   • def rotate (__self__, m)
   def translation (__self__, v)
   def vector_prod (__self__, p)
    • def __str__ (__self__)
Statyczne atrybuty publiczne
   • int \mathbf{x} = 0
   • int y = 0
   • int z = 0
   • string ID = ""
   • string element = ""
   • string znacznik = ""
5.1.1 Opis szczegółowy
Atomy.
```

Autor

Bernadeta Nowosielska

Parametry

X,Y,Z	współrzędne w układzie kartezjanskim
ID	unikalny identyfikator
element	pierwiastek chemiczny
znacznik	atomy "funkcyjne"

5.1.2 Dokumentacja konstruktora i destruktora

```
5.1.2.1 __init__()
```

```
def program.atom.__init__ (
    __self__,
    a,
    b,
    c,
    ID,
    element,
    znacznik )
```

5.1.3 Dokumentacja funkcji składowych

```
5.1.3.1 __str__()
```

5.1.3.2 rotate()

```
def program.atom.rotate (  \underline{ \quad \quad } self\underline{ \quad } ,  m \ )
```

5.1.3.3 scalar_prod()

```
def program.atom.scalar_prod (  \underline{ \quad \quad } self\underline{ \quad } , p )
```

5.1.3.4 translation()

```
def program.atom.translation (  \underline{ \quad \quad self \_ \ }, \\ v \ )
```

5.1.3.5 vector_prod()

```
def program.atom.vector_prod (  \underline{ \quad \quad } self\underline{ \quad } , p )
```

5.1.4 Dokumentacja atrybutów składowych

5.1.4.1 element

```
string program.atom.element = "" [static]
```

5.1.4.2 ID

```
string program.atom.ID = "" [static]
```

5.1.4.3 x

```
int program.atom.x = 0 [static]
```

5.1.4.4 y

```
int program.atom.y = 0 [static]
```

5.1.4.5 z

```
int program.atom.z = 0 [static]
```

```
5.1.4.6 znacznik
string program.atom.znacznik = "" [static]
Dokumentacja dla tej klasy została wygenerowana z pliku:
    · program.py
5.2 Dokumentacja klasy program.monomer
Monomery.
Metody publiczne
    • def __init__ (__self___, ID, noa, atoms, nob, bonds, wazne_atomy)
         Konstuktor.
    • def replicate (__self__)
         Tworzy wierną kopję monomeru.
    • def rotate_all (__self__, m)
         Obrót wszystkich atomu monomeru.
    • def translation_all (__self__, v)
         Przesunięcie wszystkich atomów monomeru.
    def system_C (__self__)
         Tworzy macierz układu współrzędnyc na C.
    def system_N (__self__)
         Tworzy macierz układu współrzędnyc na C.
    • def remove ( self , ID)
         Usuwa atom.

    def __str__ (__self__)

         Pozwala na wydrukowanie monomru.
Statyczne atrybuty publiczne
    • string ID = ""
    • int number of atoms = 0
    • int number_of_bonds = 0
5.2.1 Opis szczegółowy
Monomery.
Autor
```

Bernadeta Nowosielska

Parametry

ID	nazwa monomeru	
number_of_atoms	liczba atomów w monomerze	
number_of_bonds	liczba wiązań w monomerze	

5.2.2 Dokumentacja konstruktora i destruktora

wazne_atomy)

Konstuktor.

Parametry

ID	nazwa	
noa	liczba atomów w monomerze	
atoms	tablica zawierająca obiekty klasy atom	
nob	liczba wiązań w monomerze	
bonds	tablica wiązań	
wazne_atomy	tablica atomów funkcyjnych	

5.2.3 Dokumentacja funkcji składowych

Pozwala na wydrukowanie monomru.

5.2.3.2 remove()

```
def program.monomer.remove (
    __self__,
    ID )
```

Usuwa atom.

Parametry

ID ID atomu który będzie usunięty

5.2.3.3 replicate()

```
def program.monomer.replicate (
    __self__ )
```

Tworzy wierną kopję monomeru.

5.2.3.4 rotate_all()

```
def program.monomer.rotate_all (
    __self__,
    m )
```

Obrót wszystkich atomu monomeru.

Parametry

```
m macierz obrotu
```

5.2.3.5 system_C()

```
def program.monomer.system_C (
    __self__ )
```

Tworzy macierz układu współrzędnyc na C.

Zwraca

Macierz układu

Tworzy macierz układu współrzędnych na karbonylowym atomie węgla. Tak aby oś x znajdowała się na wiązaniu

5.2.3.6 system_N()

```
def program.monomer.system_N (
    __self__ )
```

Tworzy macierz układu współrzędnyc na C.

Zwraca

Macierz układu

Tworzy macierz układu współrzędnych na karbonylowym atomie węgla. Tak aby oś x znajdowała się na wiązaniu

5.2.3.7 translation_all()

```
def program.monomer.translation_all ( \_self\_, _v )
```

Przesunięcie wszystkich atomów monomeru.

Parametry

```
v wektor, o który następuje przesunięcie
```

5.2.4 Dokumentacja atrybutów składowych

```
5.2.4.1 ID
```

```
string program.monomer.ID = "" [static]
```

5.2.4.2 number_of_atoms

```
int program.monomer.number_of_atoms = 0 [static]
```

5.2.4.3 number_of_bonds

```
int program.monomer.number_of_bonds = 0 [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

· program.py

5.3 Dokumentacja klasy program.peptide

Peptydy.

Metody publiczne

```
    def start (__self__, monomer1)
        Dodaje pierwszy monomer do peptydu.

    def add (__self__, monomer3, omega_i, fi_i, psi_i)
        Dodaje kolejne monomery.

    def __str__ (__self__)
        Pozwala na wydrukowanie peptydu.
```

• def rotate_da (__self__, type_, angle, N, C, m3)

Statyczne atrybuty publiczne

```
• list coord = []
```

• list **A** = []

5.3.1 Opis szczegółowy

Peptydy.

Autor

Bernadeta Nowosielska

Parametry

coord tablica zawierajaca tablicę, która zawiera ID monomeru, jego licznik oraz tablię obiektów klasy atom.

5.3.2 Dokumentacja funkcji składowych

Pozwala na wydrukowanie peptydu.

5.3.2.2 add()

```
def program.peptide.add (
    __self__,
    monomer3,
    omega_i,
    fi_i,
    psi_i )
```

Dodaje kolejne monomery.

Parametry

monomer3	dodawany monomer		
omega_i,fi_←	kąty torsyjne, które zostaną ustawione		
i,psi_i			

5.3.2.3 rotate_da()

```
def program.peptide.rotate_da (
    __self__,
    type_,
    angle,
    N,
    C,
    m3 )
```

Obraca o kąt torsyjny.

Parametry

type⊷	wybrany kąt torsyjn "omega", "fi" lub "psi"
_	
angle	wartość o którą nastąpi obrót
N,C	końcowy i początkowy atom wiązania, na którym będzie następować obrót (obiekt klasy atom)
m3	monomer, który będzie obracany

5.3.2.4 start()

```
def program.peptide.start (
    __self__,
    monomer1 )
```

Dodaje pierwszy monomer do peptydu.

Parametry

monomer1	obiekt klasy monomer	
----------	----------------------	--

5.3.3 Dokumentacja atrybutów składowych

5.3.3.1 A

```
list program.peptide.A = [] [static]
```

5.3.3.2 coord

```
list program.peptide.coord = [] [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

program.py

5.4 Dokumentacja klasy program.vector

Wektory w układzie kartezjańskim.

Metody publiczne

```
• def __init__ (__self__, a, b, c)

Konstuktor.
```

• def leng (__self__)

Długość wektora.

def vector_prod (__self__, p)

Iloczyn wektorowy.

• def scalar_prod (__self__, p)

Iloczyn skalarny.

• def __str__ (__self__)

Pozwala na wydrukowanie wektora.

Statyczne atrybuty publiczne

- int $\mathbf{x} = 0$
- int y = 0
- int z = 0

5.4.1 Opis szczegółowy

Wektory w układzie kartezjańskim.

Autor

Bernadeta Nowosielska

Parametry

```
x,y,z wspołrzędne w układzie karteziańskim
```

5.4.2 Dokumentacja konstruktora i destruktora

```
5.4.2.1 __init__()
```

Konstuktor.

Parametry

a,b,c pobierane współrzędne

5.4.3 Dokumentacja funkcji składowych

```
5.4.3.1 __str__()
```

Pozwala na wydrukowanie wektora.

```
5.4.3.2 leng()
```

```
def program.vector.leng (
    __self__ )
```

Długość wektora.

Zwraca

długość wekotora

5.4.3.3 scalar_prod()

Iloczyn skalarny.

Parametry

p atom lub wektor

Zwraca

wynik iloczynu skalarnego

5.4.3.4 vector_prod()

```
def program.vector.vector_prod ( \_\_self\_\_, p\ )
```

Iloczyn wektorowy.

Parametry

```
p atom lub wektor
```

Zwraca

obiekt klasy wektor

5.4.4 Dokumentacja atrybutów składowych

```
5.4.4.1 x
```

```
int program.vector.x = 0 [static]
```

5.4.4.2 y

```
int program.vector.y = 0 [static]
```

5.4.4.3 z

```
int program.vector.z = 0 [static]
```

Dokumentacja dla tej klasy została wygenerowana z pliku:

· program.py

6 Dokumentacja plików

6.1 Dokumentacja pliku program.py

Komponenty

• class program.vector

Wektory w układzie kartezjańskim.

class program.atom

Atomy.

• class program.monomer

Monomery.

· class program.peptide

Peptydy.

Przestrzenie nazw

program

Funkcje

• def program.transpose (m)

Transpozyjcja macierzy.

• def program.dihedral_angle (b1, b2, b3)

Wyznaczanie kąta torsyjnego.

- def program.upload_data (table, I1, I2, I3, I4, I5, I7, I8)
- def program.make_output (peptyd, i, j, n)

Zmienne

- list program.table = []
- int program.number_of_lines = 0
- dictionary program.monomers_list = {}
- list program.l1 = []
- list program.l2 = []
- list program.l3 = []
- list program.l4 = []
- list program.l5 = []
- int program.16 = 0
- list program.17 = []
- list program.18 = []
- program.words = re.split("\s+",line.strip())
- def program.monomer_i = upload_data(table, I1, I2, I3, I4, I5, I7, I8)
- program.data = open(sys.argv[1])
- string program.words2 = ""
- list program.table2 = []
- program.aa = peptide()
- program.f = open('output.pdb', 'w')
- int program.i = 0
- int program.j = 0
- int program.n = 0