STOR 767 Spring 2019 Hw1: Theoretical Part

Due on 01/23/2019 in Class

Remark. This homework aims to help you review the necessary preliminary material from linear regression.

Instruction.

- Homework 1 includes **Theoretical Part** (50%) and **Computational Part** (50%).
- Submission of handwritten homework for **Theoretical Part** is allowed.
- 1. (20 pt) Suppose you are given data $\{(X_i, Y_i)\}_{i=1}^n$, where $X_i \in \mathbb{R}^p$ is a p-dimensional covariate vector and $Y_i \in \mathbb{R}$ is the associated response. The linear regression model is as follows

$$Y_i = \boldsymbol{X}_i^T \boldsymbol{\beta} + \epsilon_i \quad (1 \leqslant i \leqslant n),$$

where $\boldsymbol{\beta} \in \mathbb{R}^p$ is an unknown regression coefficient vector and $\{\epsilon_i\}_{i=1}^n$ are (unobservable) uncorrelated random errors with mean 0 and unknown variance parameter $\sigma^2 > 0$.

- (i) Write down the matrix form of the regression model.
- (ii) What's the least square estimate (LSE) of $\boldsymbol{\beta}$ and σ^2 ? Solve the optimization problem, and derive the closed-form solution $(\hat{\boldsymbol{\beta}}_{LS}, \hat{\sigma}_{LS}^2)$.
- (iii) Write down the "hat matrix" **H** and provide its interpretations in terms of covariates $\{X_i\}_{i=1}^n$ and in terms of responses $\{Y_i\}_{i=1}^n$ respectively.
- (iv) Compute $\mathbb{E}\left(\hat{\beta}_{LS}\right)$, $\mathbb{E}\left(\hat{\sigma}_{LS}^{2}\right)$ and $\mathbf{Cov}\left(\hat{\beta}_{LS}\right)$.
- (v) Now assume that $\{\epsilon_i\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$. Derive the maximum likelihood estimate (MLE) $(\hat{\beta}_{ML}, \hat{\sigma}_{ML}^2)$, and prove that $\hat{\beta}_{ML} \perp \hat{\sigma}_{ML}^2$.
- (vi) What's the difference and connection between $(\hat{\beta}_{LS}, \hat{\sigma}_{LS}^2)$ and $(\hat{\beta}_{ML}, \hat{\sigma}_{ML}^2)$?
- (vii) Let (X, Y) be another independent sample to be predicted, that is,

$$(\boldsymbol{X},Y) \perp \{(\boldsymbol{X}_i,Y_i)\}_{i=1}^n.$$

Compute the prediction mean square error (MSE) of $\hat{\boldsymbol{\beta}}_{\mathrm{LS}}$

$$\mathbf{MSE}(\hat{Y}_{\mathrm{LS}}) = \mathbb{E}\left(Y - \hat{Y}_{\mathrm{LS}}\right)^2$$

where

$$\hat{Y}_{LS} = \boldsymbol{X}^T \hat{\boldsymbol{\beta}}_{LS}.$$

Hint. Decompose $\mathbf{MSE}(\hat{Y}_{LS})$ into bias of \hat{Y}_{LS} , variance of \hat{Y}_{LS} , and variance of exogenous noise from Y. Hat matrix will be useful in simplifying algebras.

2. (15 pt) Suppose in the same setup as in Problem 1,

$$m{X}_i = egin{pmatrix} m{X}_{i1} \ m{X}_{i2} \end{pmatrix}, \quad m{eta} = egin{pmatrix} m{eta}_1 \ m{eta}_2 \end{pmatrix}, \quad Y_i = m{X}_{i1}^T m{eta}_1 + m{X}_{i2}^T m{eta}_2 + \epsilon_i,$$

where $X_{i1}, \beta_1 \in \mathbb{R}^{p_1}$, $X_{i2}, \beta_2 \in \mathbb{R}^{p_2}$ with $p_1 + p_2 = p$. Let $\hat{Y}_{LS}^{(1)}$ be predicted outcome of Y when performing regression of $\{Y_i\}_{i=1}^n$ on $\{X_{i1}\}_{i=1}^n$ only, and $\hat{Y}_{LS}^{(1,2)}$ be the prediction when performing regression on the full/saturated covariate vectors $\{X_i\}_{i=1}^n$.

- (i) If data are generated from a linear model only involving X_{i1} , that is, $\beta_2 = \mathbf{0}$, compare $\mathbf{MSE}\left(\hat{Y}_{LS}^{(1)}\right)$ and $\mathbf{MSE}\left(\hat{Y}_{LS}^{(1,2)}\right)$.
- (ii) If data are generated from a full/saturated linear model, that is, $\beta_2 \neq 0$, compare $\mathbf{MSE}\left(\hat{Y}_{LS}^{(1)}\right)$ and $\mathbf{MSE}\left(\hat{Y}_{LS}^{(1,2)}\right)$. In particular, provide the condition under which

$$\mathbf{MSE}\left(\hat{Y}_{\mathrm{LS}}^{(1,2)}\right) \leqslant \mathbf{MSE}\left(\hat{Y}_{\mathrm{LS}}^{(1)}\right).$$

- 3. (15 pt) Matrix Analysis Exercises
 - (i) Let $\boldsymbol{x} \in R^p$ be a random vector with known mean $E(\boldsymbol{x}) = \boldsymbol{\mu}$ and known covariance $cov(\boldsymbol{x}) = \boldsymbol{\Sigma}$, where $\boldsymbol{\Sigma}$ is positive definite. Find an affine transformation of \boldsymbol{x} such that the transformed variable, $\tilde{\boldsymbol{x}}$, satisfies that $E(\tilde{\boldsymbol{x}}) = \boldsymbol{0}$ and $cov(\tilde{\boldsymbol{x}}) = \boldsymbol{I}$.
 - (ii) Let $x, y \in \mathbb{R}^n$. Find the eigenvalues and eigenvectors of xy^T .
 - (iii) Let $\mathbf{A} = \{a_{ij}\}$ be a real symmetric $p \times p$ matrix with eigenvalues $\lambda_1, \dots, \lambda_p$. Show that $\sum_{i=1}^p \sum_{j=1}^p a_{ij}^2 = \sum_{i=1}^p \lambda_i^2$.