Example 2: Use Euler's method to find approximation to the solution of the initial value problem

$$y' = y, \quad y(0) = 1$$

at x = 1, taking 1, 2, 4, 8, and 16 steps.

Remark. Observe that the solution to y' = y, y(0) = 1 is just $\phi(x) = e^x$, so Euler's method will generate algebraic approximations to the transcendental number e.

Solution

Here $f(x,y) = y, x_0$, and $y_0 = 1$. The recursive formula for Euler's method is

$$y_{n+1} = y_n + hy_n = (1+h)y_n$$

To obtain approximations at x=1 with N steps, we take the step size $h=\frac{1}{N}$. For N=1, we have

$$\phi(1) \approx y_1 = (1+1)(1) = 2$$

For $N=2, \phi(x_2)=\phi(1)\approx y_2$. In this case we get

$$y_1 = (1+0.5)(1) = 1.5$$

 $\phi(1) \approx y_2 = (1+0.5)(1.5) = 2.25$

For $N=4, \phi(x_4)=\phi(1)\approx y_4$. In this case we get

$$y_1 = (1 + 0.25)(1) = 1.25$$

 $y_2 = (1 + 0.25)(1.25) = 1.5625$
 $y_3 = (1 + 0.25)(1.5625) = 1.95313$
 $y_4 = (1 + 0.25)(1.95313) = 2.44141$

Notice smaller steps sizes give better approximations. (But suffer the drawback of more computations and round-off error)