

Digital System Design

Homework 3 Hardware Implementation of Single Cycle MIPS

Instructor: 吳安宇教授

Date: 2018/04/19

Introduction to Single-cycle MIPS Processor

MIPS processor

- Any instruction set can be implemented in many different ways.
 - In a basic single-cycle implementation all operations take the same amount of time—a single cycle.
 - A multicycle implementation allows faster operations to take less time than slower ones, so overall performance can be increased.
 - Finally, pipelining lets a processor overlap the execution of several instructions, potentially leading to big performance gains.

Datapath

Instruction fetching

- The CPU is always in an infinite loop, fetching instructions from memory and executing them.
- The program counter or PC register holds the address of the current instruction.
- MIPS instructions are each four bytes long, so the PC should be incremented by four to read the next instruction in sequence.

Instruction Decode

The Instruction Decode (ID) step reads the source register from the register file.

Execute

The third step, Execute (EX), computes the effective memory address from the source register and the instruction's constant field.

Memory

The Memory (MEM) step involves reading the data memory, from the address computed by the ALU.

Write Back

Finally, in the Writeback (WB) step, the memory value is stored into the destination register

Control Unit

- The control unit needs 13 bits of inputs.
 - Six bits make up the instruction's opcode.
 - ❖ Six bits come from the instruction's func field.
 - It also needs the Zero output of the ALU.
- The control unit generates 10 bits of output, corresponding to the signals mentioned on the previous page.

Homework 3 Single-cycle MIPS Processor

Problem Statement

- Using Verilog, implement the single-cycle MIPS processor:
 - Supported instructions:
 - ➤add, sub, and, or, slt
 - > lw, sw
 - >> beq
 - ≻j, jal, jr
- Testbench/Memory model provided

Block Diagram(1/2)

- Instruction ROM contains the testing instructions
- RF_writedata: the data to be written into the register file
 - Used for testing your circuit
- IR_addr: instruction address
- IR: instruction

Block Diagram(2/2)

Testbench

- The testbench will
 - Initialize the instruction memory and the data memory
 - Reset your circuit
 - Execute the instructions, and read the values of RF_writedata and IR_addr to see if your circuit is correct
 - If your function is correct,

Congratulat	tions!! Your	design has	passed all	the test!!

Clock/Reset/Register File

- Clock: positive edge triggered
- Reset: active low asynchronous reset
- Register file
 - All registers are reset to 0 when reset occurs.
 - Register \$0 must be always 0

Memory

- Instruction memory and data memory are included in the testbench
- For the data memory, a memory module is provided in HSs18n_128x32.v
 - 128 words x 32 bits
 - Create an instance of HSs18n_128x32 as your data memory
 - The spec of the memory is described in HSs18n_128x32.pdf

HSs18n_128x32

- CLK: clock input
- D: data inputs
- A: address
- CEN: chip_enable,0 when you read/write data
- WEN: write_enable,
 0 when you write data into SRAM
 1 when you read data from SRAM
- OEN: output_enable, Always 0 in this case
- Q: data outputs

Memory Addressing

- In MIPS, the memory address is byte address.
- In HSs18n_128x32, the memory address is word address.
 - We can just discard the least significant two bits of the address input
- The address input of HSs18n_128x32 is 7-bit wide.
 - More significant bits of address inputs are also discarded

Memory Clock

To accomplish a load in a cycle, you need to connect the clock of the memory to the inverse of the main clock

Simulation & Synthesis

- Check "how_to_invoke_tools.txt"
- 3 Major Things
 - RTL coding & simulation
 - Logic Synthesis
 - Gate-level simulation & debugging/refinement
- Files needed for simulation
 - RTL code: DSDHW3.v
 - Gate-level code: DSDHW3.vg
 - Timing information (SDF file): DSDHW3.sdf
 - Design library (DDS file): DSDHW3.ddc

Grading Policy

- RTL (40%): function correctness
- Synthesis (30%): correctness
- ❖ Report (10%)
- Area*timing (20%)

- ❖ TA: 鄧傑方 電二 232實驗室
- jeff@access.ee.ntu.edu.tw

Report

- Simulated timing (ns)
 - Gate-level simulation clock cycle
 - Not specified synthesis clock cycle
- Area(um^2)
 - report_area
- Cost(A*T)


```
Number of ports:
                                            172
Number of nets:
                                            367
Number of cells:
                                            130
Number of combinational cells:
                                            125
Number of sequential cells:
Number of macros:
                                              0
Number of buf/inv:
                                             39
                                             22
Number of references:
Combinational area:
                           43665.613947
Noncombinational area:
                           32960.112083
Net Interconnect area:
                             undefined
                                         (No wire load specified)
                           76625.726031
Total cell area:
Total area:
                             undefined
```


Submission

- Please submit 5 files (follow the name)
 - RTL code: DSDHW3.v
 - Synthesis: DSDHW3.vg, DSDHW3.sdf, DSDHW3.ddc
 - Report: DSDHW3.pdf
- Compress all the files into one ZIP or RAR file
 - ❖ File name: DSD_HW3_學號_姓名.zip
 - ❖ EX: DSD_HW3_B03901001_王小明.zip
- Upload the file to Ceiba
- Deadline: 2018/05/10 24:00
 - Late submission not allowed