МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 1.2.1

Определение скорости полета пули при помощи баллистического маятника

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы: определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

В работе используются:

- духовое ружье на штативе
- осветитель
- оптическая система для измерения отклонений маятника
- измерительная линейка
- пули
- электронные весы В1203 (для измерения пулек)
- электронные весы ЕК-6100і (для измерения массы грузов)
- два баллистических маятника с разными конструкциями

В работе используются следующие методы измерения скорости:

- 1. Метод баллистического маятника, совершающего поступательное движение;
- 2. Метод крутильного баллистического маятника

2 Теоретические сведения

2.1 Метод баллистического маятника, совершающего поступательное движение

Рис. 1: Схема установки и её поведения при попадании в неё пули

В этой части используется установка, изображенная на *puc.* 1. Закон сохранения импульса при соударении пули с цилиндром имеет вид:

$$mu = (M+m)V (1)$$

Здесь m — масса пули, M — масса цилиндра, u — скорость пули перед ударом, V — скорость цилиндра и пули после неупругого соударения. Так как масса маятника сильно больше массы пули, то из (1) получаем:

$$u = \frac{M}{m}V\tag{2}$$

По закону сохранения энергии высота h подъёма маятника над его начальным положением связана с V следующим образом:

$$V^2 = 2gh (3)$$

Высота подъёма маятника выражается через угол ϕ отклонения маятника от вертикали:

$$h = L(1 - \cos \varphi) = 2L \sin^2 \frac{\varphi}{2}$$
, где $\varphi \approx \frac{\Delta x}{L}$ (4)

Из (2), (3), (4) получаем следует окончательная формула (5) для определения скорости пули:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x \tag{5}$$

Измерение отклонения маятника Δx производится с помощью оптической системы, изображённой на puc. 1.

2.2 Метод крутильного баллистического маятника

В этом методе используется установка, изображенная на рис. 2.

Рис. 2: Крутильный баллистический маятник.

Пуля массой m попадает в мишень, укреплённую на стержне aa который вместе с грузами M и проволокой образуют крутильный маятник. Для определения скорости u полёта пули прямо перед ударом воспользуемся законом сохранения момента импульса:

$$mur = I\Omega \tag{6}$$

Здесь r — расстояние от линии полёта пули до оси вращения маятника, I — момент инерции маятника, Ω — его угловая скорость непосредственно после удара. Закон сохранения энергии при колебаниях маятника записываем следующим образом:

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2} \tag{7}$$

Здесь k — модуль кручения проволоки , φ — максимальный уголповорота маятника. Из (6) и (7) получаем:

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{8}$$

 φ в данных опытах всегда мал и находится по смещению xточки лазера на измерительной шкале:

$$\varphi \approx \frac{x}{d} \tag{9}$$

3десь d – расстояние от шкалы до оси вращения маятника.

Произведение kI, входящее в формулу (8), можно найти по измерениям периодов колебаний маятника с грузами M и без них. В первом случае:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \tag{10}$$

Во втором случае:

$$T_2 = 2\pi \sqrt{\frac{I - 2MR^2}{k}} \tag{11}$$

Из формул (10) и (11) следует:

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \tag{12}$$

Здесь R – расстояние от центров масс грузов M до проволоки.

3 Оборудование и экспериментальные погрешности

электронные весы B1203: $\Delta_m=\pm 0{,}0001$ г электронные весы EK-6100i: $\Delta_M=\pm 5$ г Изсерительная линейка: $\Delta=\pm 0{,}1$ см

Измеренные параметры баллистических маятников:

Характеристика	Значение
М, г	$2925,0 \pm 5,0$
L, mm	$2217,5 \pm 10,0$

Таблица 1: Параметры маятника на рис. 1

Характеристика	Значение
М, г	$732,3 \pm 5,0$
d, cm	$130,0 \pm 0,1$
r, cm	$21,4 \pm 0,1$
R, см	$33,6 \pm 0,1$

Таблица 2: Параметры маятника на рис. 2

4 Результаты измерений и обработка данных

Измерения масс десяти пулек, используемых для выстрелов, электронными весами B1203 представлены в *Таблице 3* (номера пулек соответствуют номерам последующих выстрелов).

N (номер пульки)	1	2	3	4	5	6	7	8	9	10
т, г	0.508	0.510	0.511	0.497	0.491	0.507	0.502	0.504	0.502	0.504

Таблица 3: Измерение масс пулек электронными весами В1203

4.1 Метод баллистического маятника, совершающего поступательное движение

Измерения аксимальной амплитуды можно использовать только если после десяти колебаний баллистического маятника амплитуда уменьшилась не более чем вдвое. Результаты этих измерений представлены в Taблице 4:

N (номер выстрела)	1	2	3	4	5
Δx , mm	12,5	12,5	12,0	12,0	12,0

Таблица 4: Измерение скорости пули

Среднее значение амплитуды отклонения $\overline{\Delta x} = \frac{\Delta x_i}{N} = 12{,}20$ мм.

Случайная погрешность измерения $\sigma_{\overline{\Delta x}} = \sqrt{\frac{1}{N(N-1)}\sum (\Delta x_i - \overline{\Delta x})^2} \approx 0.12$ мм.

С учётом инструментальной погрешности $\Delta_{\text{шкалы}}=0,20$ мм погрешность амплитуды отклонения может быть вычислена как $\sigma_{\Delta x}=\sqrt{\sigma_{\overline{\Delta x}}^2+\Delta_{\text{шкалы}}^2}\approx 0,23$ мм.

Погрешность измерения скорости пули можно рассчитать по формуле:

$$\sigma_u = u\sqrt{\left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2}.$$

Вычисленные по формуле (5) значения скорости пулек представлены в Таблице 5

N (номер выстрела)	1	2	3	4	5
u, m/c	151,3	150,7	144,4	148,5	150,3
σ_u , M/C	2,5	2,5	2,5	2,6	2,6
ε_u , %	1,7	1,7	1,7	1,7	1,7

Таблица 5: Измерение скорости пули

Среднее значение скорости: $\overline{u} = (149.0 \pm 2.5)\,$ м/с $(\varepsilon_{\rho} = 1.7\%)\,$

4.2 Метод крутильного баллистического маятника

С помощью секундамера измерим периоды $T_1=(6.6\pm0.1)$ с и $T_2=(4.9\pm0.1)$ с как средние значения десяти измерений. По формуле (12) вычислим $\sqrt{kI}=0.350$ м² кг/с. Погрешность $\sigma_{\sqrt{kI}}$ вычисляется по формуле:

$$\sigma_{\sqrt{kI}} = \sqrt{kI} \sqrt{\left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_{T_1}}{T_1}\right)^2 + \left(\frac{\sigma_{T_2}}{T_2}\right)^2} = 0,009 \text{ M}^2 \text{ кг/с}$$

Измерим значения x (использовать полученные значения можно только если после десяти колебаний баллистического маятника значение амплитуды уменьшилось не более чем вдвое) с погрешностью $\sigma_x = 0.1$ см, по которым вычислим значения углов максимального поворота φ по формуле (9), а погрешность угла φ вычислим по формуле:

$$\sigma_{\varphi} = \varphi \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2}$$

Результаты измерений x, полученные значения φ и значения погрешностей σ_{φ} представлены в $\mathit{Taблице}\ \pmb{6}$

N (номер выстрела)	6	7	8	9	10
x, cm	4,0	4,0	4,1	3,5	3,8
φ , рад.	0,0308	0,0308	0,0315	0,0269	0,0292
σ_{φ} , рад.	0,0008	0,0008	0,0008	0,0008	0,0008

Таблица 6: Значения углов φ

Используя значение $\sigma_{\sqrt{kI}}$ вычислим значение скорости u для пулек с номерами N. А погрешность σ_u вычислим по формуле:

$$\sigma_u = u\sqrt{\left(\frac{\sigma_{\sqrt{kI}}}{\sqrt{kI}}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_\varphi}{\varphi}\right)^2}$$

Вычисленные по формуле (8) значения скорости пулек представлены в Таблице 7

N (номер выстрела)	6	7	8	9	10
u, M/c	99,6	100,5	102,6	88,0	95,1
σ_u , M/C	3,7	3,7	3,7	3,5	3,6
ε_u , %	1,7	1,7	1,7	1,7	1,7

Таблица 7: Измерение скорости пули

Среднее значение скорости: $\bar{u} = (97.2 \pm 3.6) \text{ м/с} (\varepsilon_u = 3.7\%)$

5 Обсуждение результатов и выводы

Были измерены значения скоростей пуль двумя методами, описанными в пункте 2, однако сравнить результаты в полной мере невозможно, так как были использованы разные духовые ружья. Относительная погрешность измерения методом из пункта $2.1\ \varepsilon_{u_1}=1,7\%$, а из пункта $2.2\ \varepsilon_{u_2}=3,7\%$. Измерение скорости пули вторым методом в два раза менее точное, чем измерение первым методом. Это связано с тем, что во втором методе большее количество величин вносят свой вклад в конечную погрешность измерения.