

FACULTY OF ELECTRICAL ENGINEERING **DEPARTMENT OF TELECOMMUNICATION ENGINEERING**

B2M32BTSA - Bezdrátové technologie BE2M32BTSA - Wireless Technologies and Sensor Networks

Communications of autonomous systems

Pavel Mach

Czech Technical University in Prague Faculty of Electrical Engineering Department of Telecommunication Engineering

Overview

Autonomous systems

Overview of use-cases

Requirements on communication protocols

- ► Key performance indicators (latency, reliability, etc.)
- ▶ Tradeoffs in wireless communications
- ► Service requirements
- Ultra-reliable low latency commutations

Communication protocols for V2X

- ► IEEE 802.11p & IEEE 802.11bd
- ► ITF V2X & NR V2X
- ▶ Comparison

Autonomous systems

Autonomous communication systems

What kind of systems?

- Systems operating with a high or complete autonomy
- Minimal or no intervention from user required

Use-cases

- ► Automated factory (autonomous mobile robots, swarm production)
- ► Autonomous train control systems
- Autonomous aerial systems
- ► Autonomous marine systems
- ► Vehicular communication (autonomous driving)

Automated factory

Roadmap to swarm production:

Step	Focus area	Actions
(1)	Wireless production	 Remove cables between manufacturing line modules. Cloud-based production control. Manufacturing target: Flexibility, reconfiguration. Communication needs: robust low-throughput delay-tolerant wireless communication links to static units.
(2)	PLC	 Remove hardware, use cloud-based soft PLCs instead. Manufacturing target: Faster and cheaper adaptation of new functionalities. Communication needs: reliable high-throughput low-latency wireless communication links to static units.
(3)	AMR	 Move functionality (localization and navigation) to the cloud. Investigate new localization techniques. Manufacturing target: more efficient fleet management/cheaper robots and shared world model (cloud robotics). Communication needs: ultra-reliable high-throughput low-latency wireless communication links to mobile units.
(4)	Swarm production	 Remove conveyor belts, make product carriers into small mobile robots. Manufacturing target: More flexible and robust automation. Communication needs: ultra-reliable high-throughput low-latency wireless communication links to both static and mobile units.

PLC: Programmable logic controllers AMR: Autonomous mobile robots

Autonomous train control system

Types of communications

- ► Train-to-Ground (T2G)
- ► Train-to-Train (T2T)

Main concepts in autonomous train control

- Automatic Train Protection (ATP)
 - Controls velocity of train => automatically decelerates if current velocity is above limit
- ► Automatic Train Operation (ATO)
 - Onboard subsystem managing train operation

Autonomous Aerial Systems

Types of communications

- ▶ Direct Air-to-Ground communication (DA2GC)
- ► High Altitude Platform Communications (HAPCom)
- ► Satellite Communication (SatCom)
- ► Air-to-Air communication (A2A Com.)

Fully autonomous operation (FAO)

- ► Operation w/o (remote) pilot
- Ground supervisor can still be present to monitor the flight

Autonomous marine systems

Types of communications

- Over Air
 - > 5G NR
- ▶ Satellite
 - LEO/GEO satellites
 - Inmarsat, Iridium, Globalstar, ...
- ▶ Underwater
 - > Optical and acoustic signals

Vehicular communication

Types of communications

- ► Vehicle-to-Vehicle (V2V)
 - Collision avoidance, braking information, blind spot warning
- ► Vehicle-to-Infrastructure (V2I)
 - Providing traffic signal/light priority, emergency vehicle warning
- ► Vehicle-to-Network (V2N)
 - Real-time traffic/routing, cloud services
- ► Vehicle-to-Pedestrian (V2P)
 - Safety alerts to pedestrians, cyclists
- Vehicular-to-everything (V2X)

Autonomous driving: automation levels

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

O

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Requirements on communication protocols

Key performance indicators

Latency

- ► End-to-end (E2E) latency to deliver data
 - millisecond or lower

Reliability

- Probability that a data of size D is successfully transferred within a time period T
 - Reliability of 99.99% or higher

Availability

- Defined as the probability that a given service is available (coverage)
 - For instance, 99.99% availability means that one user among 10000 does not receive proper coverage

Mobility

- ► Ensure latency, reliability, and availability for high mobility scenarios
 - > Speeds up to 500 km/h

Latency and reliability of wireless communication

Latency

- - $\succ t_{que}$ = Queuing
 - $\succ t_{reg}$ = Transmission of request to send data (usually in uplink)
 - $\succ t_{grant}$ = Transmission of grant to send data (usually in uplink)
 - $\succ t_{data}$ = Transmission of data
 - $\succ t_{ack}$ = Transmission of acknowledgement
 - $\succ t_{retransmission}$ = Retransmission incorporating t_{data} + t_{ack}
 - > N = Number of retransmissions
 - $\succ t_{comp}$ = Computing/processing of data (e.g., computing in cloud)

Reliability

- $R = (1 \epsilon_{sync})(1 \epsilon_{req})(1 \epsilon_{grant})(1 \epsilon_{data})(1 \epsilon_{ack})$
 - $\succ \epsilon_{sync}$ = Probability of error in synchronization
 - $\succ \epsilon_{req}$ = Probability of transmission request error (usually only uplink)
 - \triangleright ϵ_{grant} = Probability of access grant reception error (usually only uplink)
 - \triangleright ϵ_{data} = Probability of data transmission error
 - \triangleright ϵ_{ack} = Probability of acknowledgement error

Tradeoffs in wireless communications (1/2)

Access and data transmissions

- ► Four-step access
 - ➤ 1. step: Request -> 2. step: Grant -> 3. step: Data transmission -> 4. step: Data ACK
 - High latency and high reliability

► Three-step access

- \triangleright 1. step omitted (no t_{req} and ϵ_{req})
- Device requirements have to be predicted -> incorrect prediction wasted transmission time
- Lower latency than four-step access

▶ Grant-free access

- \succ 1. and 2. steps omitted (no t_{req} , t_{grant} , ϵ_{req} , ϵ_{grant})
- Low latency but low reliability in highly loaded scenarios

Tradeoffs in wireless communications (2/2)

Code rate R = k/n

- ▶ Useful k (bits) vs redundant data in packet of size n
 - \rightarrow high R (e.g., 5/6, 3/4) => low latency, low reliability
 - ➤ low R (e.g., 1/2) => high reliability, high latency

Modulation

- Selection depending on channel quality and service requirements
 - Robust modulation (BPSK, QPSK) => High reliability but high latency due to low spectral efficiency => low data rates
 - Fifticient modulation (64QAM or higher) => low reliability but low latency due to high spectral efficiency => high data rates

Energy consumption aspect

- ► High transmission power
 - Reliable communication at high energy consumption
- Frequency of transmissions
 - > Frequent short transmissions => low latency & high energy consumption

Transmission Time Interval (TTI)

- ► Short TTI (less than 1 ms) => low latency and high reliability but high overhead
- ▶ long TTI (1 ms) => high latency (especially in case of retransmissions due to longer HARQ) but low overhead

Service requirements

	Service	E2E latency [ms]	Reliability 1-10-x [-]
	Assisted	5	5
Driving ¹	Co-operative	10	5
	Tele-operated	20	5
	Machine control	1	5
	Factory automation	10	4
Industry 4.0	Extremely reliable factory automation	1	9
	Process automation	50	6
Tactile Internet		1	9

Х	Reliability 1-10 ^{-x} [-]	Reliability [%]					
4	0,9999	99,99					
5	0,99999	99,999					
6	0,999999	99,9999					
9	0,99999999	99,9999999					

Industry 4.0 => 4th industrial revolution => increasing automation and the employment of smart machines and smart factories

Tactile internet => very low latency communication systems while ensuring high reliability and availability

Key building blocks of 5G

eMBB

- Peak download speeds of over 10 Gbps
- Real-life (average) speeds higher than 4G LTE

mMTC

- 1 million devices per square kilometre
- Long battery life (up to ten years)
- Mass deployment of low-powered, low-cost, low complexity IoT devices

eMBB = enhanced Mobille BroadBand mMTC = massive Machine Type Communication

uRLLC

- 99.99% reliability
- Low latencies of below 1 millisecond
- Low data rates (in bits per second or kilo bits per second)

uRLLC = ultra-Reliable low latency communication

Enablers of services

Ultra-reliable low latency communication

Requirements and enablers

- ► End-to-end latency below 1ms
 - Short Transmission Time Interval (TTI)
 - Edge caching
 - Resources cached at the network edge
 - Multi-access edge computing (MEC)
 - Computational resources close to the device
 - Grant-free access
 - For uplink communication => saves times as there is no need to request/waits for grant allowing to transmit
 - Non-Orthogonal Multiple Access (NOMA)
 - Access the same resources by multiple users at the same time
 - > On-device (distributed) machine learning and artificial intelligence
- ► Reliability 1-10⁻⁵ (99.999 %)
 - Multi-connectivity
- Availability of service (coverage) 99.99 %
 - > Dense deployment of Access Points (APs)/Base Stations (BSs)

Reliability of multi-connectivity

Multi-connection approach

- A. Reliability of single protocol/link
 - $ightharpoonup R_{single} = r_l r_c r_f$
- B. Reliability of N-link connectivity

$$ightharpoonup R_{link} = (1 - \prod_{i=1}^{N} (1 - r_i^i)) r_c r_f$$

c. Reliability of **N-interfaces connectivity**

CORE

CORE

▶ DC always superior or equal to single

AP

AP

USER

C)

- ▶ IFD is always superior or equal to DC
- ► If cellular outage probability is high IFD combining LTE/5G and WiFi outperforms IFD with 2x LTE/5G interfaces

DC = Dual connectivity IFD = Interface diversity

END HOST

Communication protocols for V2X

IEEE 802.11p

Standard for vehicular communication

- ▶ Build on top of IEEE 802.11 series
 - Modified IEEE 802.11 towards low overhead and low latency
- ► Enabling safety vehicular communication

IEEE 802.11p PHY & MAC

Physical layer (PHY)

- ► Based on IEEE 802.11a OFDM
 - > Operates on licensed ITS band 5.9 GHz (5.85 5.925 GHz)
- ▶ Bandwidth 10 MHz but OFDM timings are doubled (e.g., symbol duration, CP)
 - Addressing increased root mean square (RMS) delay spread in vehicular communication inter-symbol interference
- ► Improved transmission mask to reduce cross-channel interference (i.e., interference between channels)
- ▶ 52 subcarriers modulated via BPSK, QPSK, 16QAM and 64QAM
 - ▶ Data rates between 3 Mbit/s (CR 1/2, BPSK) and 23 Mbit/s (CR ¾, 64 QAM)

CH 172	CH 174	CH 176	CH 178	CH 180	CH 182	CH 184
5 860 MHz	5 870 MHz	5 880 MHz	5 890 MHz	5 900 MHz	5 910 MHz	5 920 MHz
Accident avoidance safety of life	Service (channels	Control channel	Service o	channels	

Medium Access Control (MAC)

- ► Communication without need to establish Basic Service Set (BSS)
 - Disabling of managing procedures (channel sensing, association, etc.) => exchange data faster between vehicles
- ► Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- ► Enhanced Distributed Channel Access method (EDCF)

DSRC communication stack

Dedicated Short-Range Communications (DSRC)

- ► Standardized by Federal Communications Commission (FCC) in USA
- ► Based on 802.11p
- ► Often known as IEEE 802.11p WAVE (Wireless Access in Vehicular Environment)

DSRC Communication stack

- ► IEEE 802.11p
 - Physical layer management entity (PLME)
- ▶ IEEE 1609
 - > 1609.2 security
 - > 1609.3 connection setup and management
 - Wave Short Message Protocol (WSMP)
 - WAVE Management Entity (WME)
 - Frame queueing, priority channels, ...
 - > 1609.4 multi channel support
 - switching among channels
- ► Vehicular to everything (V2X) messages
 - Basic Safety Messages (BSM) format

C-ITS communication stack

Cooperative - Intelligent Transportation System (C-ITS)

- Developed by European Telecommunications Standards Institute (ETSI)
- ► Based on 802.11p
- ▶ Often labeled as Intelligent Transportation System G5 (ITS-G5)

C-ITS communication stack

- ► IEEE 802.11p
- ► ETSI EN 302 636
 - Basic Transport Protocol (BTP)
 - GeoNetworking
 - Ad-hoc routing protocol for multi-hop communication
 - Use of geographical coordinates for packets forwarding
 - ➤ IPv6 over GeoNetworking (GN6)
- ► ETSI EN 302 637
 - Cooperative Awareness Message (CAM)

IEEE 802.11bd

Evolution of IEEE 802.11p

- ► First approval in 2018
- ► Higher spectral efficiency, enhanced reliability
- ▶ Doubles the range of IEEE 802.11p
- ▶ **Up to 500 km/h** compared to 200 km/h (IEEE 802.11p)
- ► Full backward compatibility with IEEE 802.11p
- Dual carrier modulation
 - > Range extension

PHY & MAC

- ▶ Based on IEEE 802.11ac with half subcarrier spacing
- ▶ Up to 256 QAM
- ▶ Low Density Parity Check (LDPC) coding
- mmWaves based on IEEE 802.11ad(ay)
- Adaptive re-transmissions
- ► Two 10 MHz channels (Primary and secondary)

IEEE 802.11p vs IEEE 802.11bd

	IEEE 802.11p						IEEE 802.11bd					
		100 bytes		1500 bytes				100	bytes	1500 bytes		
				Transmission		Transmission						
MCS		Code	Data rate	latency	Data rate	latency		Code	Data rate	Transmission	Data rate	Transmission
index	Modulation	Rate	[Mbit/s]	[ms]	[Mbit/s]	[ms]	Modulation	Rate	[Mbit/s]	latency [ms]	[Mbit/s]	latency [ms]
0	BPSK	1/2	2,32	0,34	2,94	4,08	BPSK	1/2	2,38/1,33*	0,34/0,60*	3,02/1,52*	3,98/7,88*
1	BPSK	3/4	3,12	0,26	4,37	2,74	QPSK	1/2	3,85/2,35*	0,21/0,34*	5,93/3,02*	2,02/3,98*
2	QPSK	1/2	3,50	0,21	5,77	2,08	QPSK	3/4	4,76	0,17	8,72	1,38
											11,41/5,92	
3	QPSK	3/4	4,76	0,17	8,52	1,41	16-QAM	1/2	5,71/3,77*	0,14/0,21*	*	1,05/2,03*
4	16-QAM	1/2	5,55	0,14	11,19	1,07	16-QAM	3/4	6,45	0,12	16,57	0,73
5	16-QAM	3/4	6,67	0,12	16,13	0,744	64-QAM	2/3	7,41	0,11	20,13	0,60
6	64-QAM	2/3	7,14	0,11	20,83	0,576	64-QAM	3/4	7,41	0,11	22,22	0,54
7	64-QAM	3/4	7,69	0,10	23,08	0,52	64-QAM	5/6	7,41	0,11	24,19	0,50
8	-	-	-	-	-	-	256-QAM	3/4	8,00	0,10	28,30	0,42
9	_	_	_	_	_	_	256-QAM	5/6	8.00	0.10	30.92	0.39

^{*}dual carrier (DC) modulation

LTE (Cellular) V2X

Cellular based communication (Details in MKSA course)

- Pushed by 3GPP
- ► From Release 14 (2017) and onward
- ► Based on **Device-to-Device communication** (Proximity Services) 3GPP Release 12
- ► Exploits dedicated interface PC5 addressing high speed (up to 250 km/h) and high vehicle density
- Operates in ITS 5.9 GHz band
 - Short range <1km</p>
- Communication with network in mobile broadband licensed spectrum
 - Long range >1 km

Physical layer

- ▶ OFDM
 - > 1 ms (14 OFDM symbols)
 - > 12 subcarriers (each 15 kHz)
- ► QPSK, 16 QAM

LTE FDD Frame 1.4 MHZ, Normal CP

J. Springer, "Connectivity Standards in the Automotive Industry", 5GAA, 2019.

3GPP TR 37.985. Overall Description of Radio Access Network (RAN) Aspects for Vehicle-to-Everything(V2X) Based on LTE and NR. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network.

New Radio (NR) V2X

Cellular based communication (Details in MKSA course)

- ➤ 3GPP Release 16 (2020)
- Complements and supports internetworking with LTE V2X
- Enhanced URLLC
- ► 256QAM, network slicing, **short TTI**
- Precise positioning

PHY layer

- ▶ Up to 400 MHz bandwidth
- ► Numerology 15/30/60/120/240 kHz spacing
- ► LDPC => high reliability
- Polar codes (ultra-low decoding latency)
- mmWaves

NR V2X sidelink

Sidelink channel

- Physical sidelink feedback channel (PSFCH)
 - New feedback channel for retransmissions and acquisition of channel state information
 - High reliability and low latency
- Aggregation of up to 16 carriers
- Unicast and multicast support
- Communication Modes
 - Mode 1 (vehicle under BS coverage) configured and dynamic scheduling
 - Base station is informed about vehicle channel quality
 - Mode 2 (vehicle without BS coverage) dynamic scheduling
 - Channel sensing by the vehicles

LTE V2X vs NR V2X

					100	la de a		4500	Name
					100	bytes		1500) bytes
				Number					
	1.466		6 1	of	5	-	Number of	5	-
	MCS	NA advilation	Code	Resource	Data rate	Transmission	Resource	Data rate	Transmission
	index	Modulation	Rate	Blocks	[Mbit/s]	latency [ms]	Blocks	[Mbit/s]	latency [ms]
, X	0	QPSK	0,13	30	1,09	1	434	1,13	11
LTE V2X	6	QPSK	0,47	8	4,08	1	116	4,22	3
5	7	QPSK	0,55	7	4,66	1	99	1,94	3
	10	QPSK	0,81	5	6,53	1	69	7,09	2
	13	16-QAM	0,52	4	8,16	1	53	9,24	2
	17	16-QAM	0,75	3	10,88	1	38	12,88	1
	21	64-QAM	0,65	2	16,32	1	28	17,49	1
	27	64-QAM	0,93	2	16,32	1	19	25,77	1
					100 bytes	@NR 15 kHz		1500 bytes	@NR 60 kHz
				Number					
				of			Number of		
	MCS		Code	Resource	Data rate	Transmission	Resource	Data rate	Transmission
	index	Modulation	Rate	Blocks	[Mbit/s]	latency [ms]	Blocks	[Mbit/s]	latency [ms]
5 X	0	QPSK	0,12	23	1,41	0,75	337	1,70	8
NR V2X	6	QPSK	0,44	7	4,63	0,25	91	6,31	2
Ž	7	QPSK	0,51	6	5,40	0,25	78	7,36	2
	10	16-QAM	0,33	4	8,10	0,25	60	9,57	2
	13	16-QAM	0,48	3	10,79	0,25	42	13,67	1
	17	64-QAM	0,45	2	16,19	0,25	29	19,80	1
	21	64-QAM	0,65	2	16,19	0,25	21	27,34	1
	27	64-QAM	0,92	1	32,38	0,25	15	38,27	1

Packet Reception Ratio (PRR)

Distance (m)

Packet of 100 bytes

Packet of 1500 bytes

PRR - Packet Reception Ratio

50

0

100

150

200

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

machp2@fel.cvut.cz