Yanshu Wang

Citizenship: Chinese wangyenshu@outlook.com Cell Phone Number: +8613408673568 https://wangyenshu.github.io/wangyanshu/

OBJECTIVE

I am interested in number theory. I have done the Polymath Jr. REU with the topic of Dessin d'enfant (arithmetic approach). I have finished relevant courses including Abstract Algebra, Galois Theory, Number Theory, and Commutative Algebra. Currently, I am self-learning scheme theory to prepare to learn arithmetic geometry and at the same time, taking the Analytic Number Theory course and self-learn Fourier decoupling theory. I have experience of writing papers and am fluent with latex. My programming skills also includes C++, python, lean4, html & css & javascript.

EDUCATION

Bachelor - Math and Applied Math

Nankai University Sep 2022 — Jun 2026(expected) Grade Point Average: 3.81/4 or 91.42/100

RELEVANT COURSEWORK:

MATH0130 Mathematical Analysis I 100

MATH0083 Advanced Algebra and Analytic Geometry 2-1 100

MATH0068 Computer Set Theory and Logic 91

MATH0133 Mathematical Analysis II 97

MATH0078 Advanced Algebra and Analytic Geometry 2-2 92

MATH0097 Ordinary Differential Equations 96

MATH0147 Complex Variable Function II passed

MATH0132 Abstract Algebra I 88

MATH0145 Complex Variable Functions 97

MATH0146 Mathematical Analysis III 98

MATH0134 Abstract Algebra II 95

MATH0055 Number Theory 92

MATH0065 Probability Theory 85

MATH0079 Pointwise Topology 84

MATH0102 Commutative Algebra 97

MATH0136 Galois Theory 96

MATH0151 Real Analysis 81

MATH0162 Lie Groups and Algebraic Groups 90

MATH0170 Elementary Algebraic Topology

MATH0021 Stochastic Process

MATH0108 Mathematical Equations MATH0051 Functional Analysis MATH0156 Numerical Analysis

AUDITING: Elementary Algebraic Topology

Analytic Number Theory

UNDERGRADUATE SEMINAR:

Geometric Group Theroy Seminar: This seminar uses UTX book Geometric Group Theory An Introduction. I participate in it in the first semester of the sophomore year.

Algebraic Number Theory Seminar: This seminar mainly uses lecture notes by Hu Yong. I learned many algebraic number theory from the video https://www.bilibili.com/video/BV1Fu41127KW/.

Quasi-Conformal Mapping and Potential Theory: I use the notes from https://webspace.maths.qmul.ac.uk/b.khoruzhenko/potential_th_notes.pdf.

Analytic Number Theory Online Seminar: This seminar is conducted by a senior alumna (pursuing master degree at University of Bonn). The main topic is o-minimality and some Tame Geometry.

::: no-print ONLINE COURSE I WATCHED

Prof.Richard Borcherds's youtube channel, including Commutative Algebra, Algebraic Geometry, Introduction to homological algebra, Representation Theroy, Modular Forms, Categories for the idle mathematician ::: REMARK:

Nankai University's undergraduate degree requires me to take approximately 6 courses in applied mathematics or 6 courses in computational mathematics. That is why there are many applied mathematics courses in my transcript. Another effect is that I have to audit some courses due to conflict time schedules and excessive workloads.

Explanation for low grades in Probability Theory, Pointwise Topology, Real Analysis:I take too much courses in the second semester of the sophomore year, including Real Analysis, Probability Theory, Pointwise Topology, Commutative Algebra, Lie Groups and Algebraic Groups.

RESEARCH EXPERIENCE

Polymath Jr.

This is a group project. Our group gives algebraic and complex analytic approaches to computing an affine model for K_9 dessin, and I draw a visualization of K_9 dessin through the morphism $\pi_9 = 1(P_8/\sin) \pmod T$. For my contribution, I work out the algebraic approaches and draw the visualization. I also gave the final presentation of the group work, wrote the algebraic approaches part of the paper (the paper is still in progress), and made the poster that was submitted to JMM 2025. If there is no visa issue, I will go to JMM 2025 and give a talk about that.

OTHER EXPERIENCE

BICMR AI4MATH

I collaborate with four students to formalize in lean4 that Algebraic integer of \$\mathbb{Q} [\sqrt{-3}]\$ is PID. I learn a a lot of knowledge about functional programming and constructing a proof assistant. I lean some basic dependent type theory. Above all, I gain more ability of collaboration and of learning new things quickly.

SPECIAL SKILLS

Programming Language

C++; python; sage; Wolfram Language; latex(fluent, knows basic programming in tex); postscript(ghostscript); lean4; html & css & javascript; bash

AREAS OF EXPERTISE

Weierstrass elliptic function, elliptic curve, analytic number theory