$12n_{0330} (K12n_{0330})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 7.74526 \times 10^{16} u^{25} - 1.33763 \times 10^{17} u^{24} + \dots + 7.07898 \times 10^{18} b + 5.73871 \times 10^{18}, \\ &- 6.55698 \times 10^{18} u^{25} + 2.22473 \times 10^{19} u^{24} + \dots + 1.41580 \times 10^{19} a - 1.02368 \times 10^{20}, \ u^{26} - 3u^{25} + \dots + 6u - 10^{20} \\ I_2^u &= \langle u^{13} + u^{12} - u^{11} - 2u^{10} + 4u^9 + 5u^8 - 3u^7 - 6u^6 + 4u^5 + 6u^4 - u^2 a - 2u^3 - 2u^2 + b + a + 2u + 1, \\ u^{13} + 2u^{12} - 3u^{10} + 2u^9 + 9u^8 + 2u^7 - 9u^6 - 2u^5 + 10u^4 + 4u^3 + a^2 + au - 3u^2 + 3, \\ u^{14} + u^{13} - u^{12} - 2u^{11} + 4u^{10} + 5u^9 - 3u^8 - 6u^7 + 4u^6 + 6u^5 - 2u^4 - 2u^3 + 2u^2 + u - 1 \rangle \\ I_3^u &= \langle -u^9 + u^8 + 3u^7 - 2u^6 - 4u^5 + u^4 + u^3 + 2u^2 + b + u - 1, \ -u^8 + 2u^6 - u^4 - 2u^2 + a + 1, \\ u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1 \rangle \end{split}$$

$$I_1^v = \langle a, 2b+1, v-2 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 65 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

Τ.

$$I_1^u = \langle 7.75 \times 10^{16} u^{25} - 1.34 \times 10^{17} u^{24} + \dots + 7.08 \times 10^{18} b + 5.74 \times 10^{18}, -6.56 \times 10^{18} u^{25} + 2.22 \times 10^{19} u^{24} + \dots + 1.42 \times 10^{19} a - 1.02 \times 10^{20}, \ u^{26} - 3u^{25} + \dots + 6u + 8 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.463130u^{25} - 1.57137u^{24} + \dots - 7.38977u + 7.23041 \\ -0.0109412u^{25} + 0.0188959u^{24} + \dots + 0.948527u - 0.810670 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.452189u^{25} + 1.55247u^{24} + \dots + 6.44124u - 6.41974 \\ -0.139816u^{25} + 0.520475u^{24} + \dots + 3.39062u - 2.37790 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.05514u^{25} - 3.64431u^{24} + \dots + 16.2216u + 16.0280 \\ 0.00913190u^{25} - 0.0544808u^{24} + \dots + 0.384691u - 0.813121 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.257452u^{25} + 0.942913u^{24} + \dots + 3.82805u - 4.96393 \\ -0.288157u^{25} + 0.949849u^{24} + \dots + 4.59799u - 3.63094 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.06427u^{25} + 3.69879u^{24} + \dots + 15.8369u - 15.2149 \\ -0.283474u^{25} + 1.06311u^{24} + \dots + 5.86288u - 4.86106 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.463130u^{25} - 1.57137u^{24} + \dots - 7.38977u + 7.23041 \\ 0.183796u^{25} - 0.590662u^{24} + \dots - 1.66466u + 0.645138 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.28428u^{25} - 4.51273u^{24} + \dots - 21.0928u + 19.1876 \\ 0.0634646u^{25} - 0.249171u^{24} + \dots - 0.606969u + 0.888390 \end{pmatrix}$$

(ii) Obstruction class = -1

$$\frac{\text{(iii) Cusp Shapes}}{\frac{96855145260069592069}{14157950877589446536}u + \frac{2235431246280387471}{72072954333640892293}u^{25} - \frac{50383957546292106623}{14157950877589446536}u^{24} + \cdots - \frac{732720413333640892293}{7078975438794723268}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{26} + 5u^{25} + \dots - 5u + 1$
c_2, c_3, c_5 c_6, c_7	$u^{26} - u^{25} + \dots - 3u - 1$
c_4, c_{10}	$u^{26} - 3u^{25} + \dots + 6u + 8$
c_8, c_9, c_{12}	$u^{26} - 2u^{25} + \dots + 7u - 4$
c_{11}	$u^{26} + 9u^{25} + \dots + 436u + 64$

Crossings	Riley Polynomials at each crossing
c_1	$y^{26} + 37y^{25} + \dots - 157y + 1$
$c_2, c_3, c_5 \ c_6, c_7$	$y^{26} + 5y^{25} + \dots - 5y + 1$
c_4, c_{10}	$y^{26} - 9y^{25} + \dots - 436y + 64$
c_8, c_9, c_{12}	$y^{26} - 22y^{25} + \dots - 65y + 16$
c_{11}	$y^{26} + 15y^{25} + \dots - 142352y + 4096$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.982745 + 0.211485I		
a = 0.402843 - 0.499085I	-1.77257 + 0.70535I	-4.40558 + 0.51415I
b = -0.232498 + 0.875894I		
u = -0.982745 - 0.211485I		
a = 0.402843 + 0.499085I	-1.77257 - 0.70535I	-4.40558 - 0.51415I
b = -0.232498 - 0.875894I		
u = 0.010508 + 1.069030I		
a = -0.600779 - 0.379610I	-3.79097 - 1.46714I	-5.06055 + 4.75413I
b = 0.115449 + 0.616202I		
u = 0.010508 - 1.069030I		
a = -0.600779 + 0.379610I	-3.79097 + 1.46714I	-5.06055 - 4.75413I
b = 0.115449 - 0.616202I		
u = 0.734341 + 0.797765I		
a = 1.257320 - 0.172643I	2.81865 - 0.76966I	-3.02229 + 2.23661I
b = 0.228017 + 1.091210I		
u = 0.734341 - 0.797765I		
a = 1.257320 + 0.172643I	2.81865 + 0.76966I	-3.02229 - 2.23661I
b = 0.228017 - 1.091210I		
u = 1.074650 + 0.168126I		
a = -0.355808 + 0.706778I	-1.79599 - 3.76105I	-4.80263 + 8.00937I
b = 0.039591 - 1.309980I		
u = 1.074650 - 0.168126I		
a = -0.355808 - 0.706778I	-1.79599 + 3.76105I	-4.80263 - 8.00937I
b = 0.039591 + 1.309980I		
u = -0.745967 + 0.945276I		
a = -1.129930 - 0.091852I	6.07946 - 3.67877I	-0.12041 + 2.47120I
b = -0.012396 + 1.135900I		
u = -0.745967 - 0.945276I		
a = -1.129930 + 0.091852I	6.07946 + 3.67877I	-0.12041 - 2.47120I
b = -0.012396 - 1.135900I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.021750 + 0.716695I		
a = -0.081674 + 1.052890I	1.91220 - 4.97774I	-4.59322 + 4.08967I
b = -0.92093 - 2.01835I		
u = 1.021750 - 0.716695I		
a = -0.081674 - 1.052890I	1.91220 + 4.97774I	-4.59322 - 4.08967I
b = -0.92093 + 2.01835I		
u = 0.755105 + 1.061790I		
a = 1.036650 - 0.033748I	1.48699 + 8.04356I	-4.72322 - 5.24092I
b = -0.151747 + 1.120760I		
u = 0.755105 - 1.061790I		
a = 1.036650 + 0.033748I	1.48699 - 8.04356I	-4.72322 + 5.24092I
b = -0.151747 - 1.120760I		
u = -1.062230 + 0.805325I		
a = -0.007950 + 1.055910I	5.07466 + 10.13450I	-2.10298 - 6.96057I
b = 1.20574 - 1.93593I		
u = -1.062230 - 0.805325I		
a = -0.007950 - 1.055910I	5.07466 - 10.13450I	-2.10298 + 6.96057I
b = 1.20574 + 1.93593I		
u = 1.279790 + 0.462764I		
a = -0.302749 - 0.444518I	-7.94739 - 3.73170I	-5.56768 - 0.86519I
b = 0.042614 + 0.739956I		
u = 1.279790 - 0.462764I		
a = -0.302749 + 0.444518I	-7.94739 + 3.73170I	-5.56768 + 0.86519I
b = 0.042614 - 0.739956I		
u = 0.175064 + 0.597925I		
a = 0.812678 - 0.972268I	1.28130 + 0.88301I	4.68220 - 2.63665I
b = 0.082343 + 0.525293I		
u = 0.175064 - 0.597925I		
a = 0.812678 + 0.972268I	1.28130 - 0.88301I	4.68220 + 2.63665I
b = 0.082343 - 0.525293I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.355470 + 0.349551I		
a = 0.160592 + 0.704597I	-8.58893 + 6.63218I	-8.67236 - 8.09999I
b = 0.398277 - 1.175870I		
u = -1.355470 - 0.349551I		
a = 0.160592 - 0.704597I	-8.58893 - 6.63218I	-8.67236 + 8.09999I
b = 0.398277 + 1.175870I		
u = 1.109820 + 0.856025I		
a = 0.068276 + 1.033520I	0.3265 - 14.9979I	-5.89395 + 8.70861I
b = -1.36937 - 1.78727I		
u = 1.109820 - 0.856025I		
a = 0.068276 - 1.033520I	0.3265 + 14.9979I	-5.89395 - 8.70861I
b = -1.36937 + 1.78727I		
u = -0.541106		
a = -2.33904	-0.468550	-16.1730
b = -0.621412		
u = -0.488142		
a = 0.570097	-1.21370	-9.51190
b = -0.728748		

$$I_2^u = \langle u^{13} + u^{12} + \dots + a + 1, \ u^{13} + 2u^{12} + \dots + a^2 + 3, \ u^{14} + u^{13} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{13} - u^{12} + \dots - a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ -u^{13} - u^{12} + \dots + a - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ -u^{13} - u^{12} + \dots + a - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ -u^{13} - u^{12} + \dots + a - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ -u^{13} - u^{12} + \dots + a - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} - 2u^{3} \\ -u^{9} + u^{7} - 3u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{13} - u^{12} + \dots - a - 1 \\ u^{11} - u^{9} + 4u^{7} + 6u^{5} - 3u^{3} + 2u \\ u^{11} - u^{9} + 4u^{7} - 3u^{5} + 3u^{3} - u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
=
$$-4u^{12} - 4u^{11} + 4u^{10} + 8u^9 - 16u^8 - 16u^7 + 12u^6 + 20u^5 - 16u^4 - 12u^3 + 8u^2 - 10$$

Crossings	u-Polynomials at each crossing
c_1	$u^{28} + 11u^{27} + \dots + 2888u + 289$
$c_2, c_3, c_5 \ c_6, c_7$	$u^{28} + 3u^{27} + \dots + 74u + 17$
c_4, c_{10}	$(u^{14} + u^{13} + \dots + u - 1)^2$
c_8, c_9, c_{12}	$(u^{14} - u^{13} + \dots - 3u - 1)^2$
c_{11}	$(u^{14} + 3u^{13} + \dots + 5u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{28} + 11y^{27} + \dots + 1428812y + 83521$
c_2, c_3, c_5 c_6, c_7	$y^{28} + 11y^{27} + \dots + 2888y + 289$
c_4, c_{10}	$(y^{14} - 3y^{13} + \dots - 5y + 1)^2$
c_8, c_9, c_{12}	$(y^{14} - 11y^{13} + \dots - 5y + 1)^2$
c_{11}	$(y^{14} + 17y^{13} + \dots - y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.919323 + 0.470231I		
a = -0.404207 + 0.774825I	-6.26948 - 4.88256I	-7.68599 + 6.44337I
b = -1.380120 - 0.199773I		
u = 0.919323 + 0.470231I		
a = -0.515117 - 1.245060I	-6.26948 - 4.88256I	-7.68599 + 6.44337I
b = 0.407942 + 0.463734I		
u = 0.919323 - 0.470231I		
a = -0.404207 - 0.774825I	-6.26948 + 4.88256I	-7.68599 - 6.44337I
b = -1.380120 + 0.199773I		
u = 0.919323 - 0.470231I		
a = -0.515117 + 1.245060I	-6.26948 + 4.88256I	-7.68599 - 6.44337I
b = 0.407942 - 0.463734I		
u = -0.924961		
a = 0.46248 + 1.34555I	-8.84982	-12.7050
b = 1.014320 - 0.194361I		
u = -0.924961		
a = 0.46248 - 1.34555I	-8.84982	-12.7050
b = 1.014320 + 0.194361I		
u = -0.726911 + 0.518054I		
a = 0.725706 - 1.116820I	-1.93761 + 1.98638I	-0.65592 - 5.08636I
b = -0.465841 + 0.930039I		
u = -0.726911 + 0.518054I		
a = 0.001206 + 0.598768I	-1.93761 + 1.98638I	-0.65592 - 5.08636I
b = 1.362390 + 0.206201I		
u = -0.726911 - 0.518054I		
a = 0.725706 + 1.116820I	-1.93761 - 1.98638I	-0.65592 + 5.08636I
b = -0.465841 - 0.930039I		
u = -0.726911 - 0.518054I		
a = 0.001206 - 0.598768I	-1.93761 - 1.98638I	-0.65592 + 5.08636I
b = 1.362390 - 0.206201I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.879333 + 0.897049I		
a = 0.981434 + 0.058694I	2.51115 - 1.51934I	-3.12222 + 0.64840I
b = -0.362451 - 1.040360I		
u = -0.879333 + 0.897049I		
a = -0.102101 - 0.955743I	2.51115 - 1.51934I	-3.12222 + 0.64840I
b = -0.84520 + 1.71540I		
u = -0.879333 - 0.897049I		
a = 0.981434 - 0.058694I	2.51115 + 1.51934I	-3.12222 - 0.64840I
b = -0.362451 + 1.040360I		
u = -0.879333 - 0.897049I		
a = -0.102101 + 0.955743I	2.51115 + 1.51934I	-3.12222 - 0.64840I
b = -0.84520 - 1.71540I		
u = 0.405736 + 0.602281I		
a = 0.914419 + 0.321246I	-4.70274 + 0.85224I	-3.59802 - 0.38712I
b = -2.02195 + 1.20408I		
u = 0.405736 + 0.602281I		
a = -1.32016 - 0.92353I	-4.70274 + 0.85224I	-3.59802 - 0.38712I
b = 1.26370 + 1.60335I		
u = 0.405736 - 0.602281I		
a = 0.914419 - 0.321246I	-4.70274 - 0.85224I	-3.59802 + 0.38712I
b = -2.02195 - 1.20408I		
u = 0.405736 - 0.602281I		
a = -1.32016 + 0.92353I	-4.70274 - 0.85224I	-3.59802 + 0.38712I
b = 1.26370 - 1.60335I		
u = 0.924969 + 0.883501I		
a = -0.980532 + 0.152079I	6.36134 - 3.26499I	0.09314 + 2.49004I
b = 0.093102 - 1.203290I		
u = 0.924969 + 0.883501I		
a = 0.055563 - 1.035580I	6.36134 - 3.26499I	0.09314 + 2.49004I
b = 1.07584 + 1.58872I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.924969 - 0.883501I		
a = -0.980532 - 0.152079I	6.36134 + 3.26499I	0.09314 - 2.49004I
b = 0.093102 + 1.203290I		
u = 0.924969 - 0.883501I		
a = 0.055563 + 1.035580I	6.36134 + 3.26499I	0.09314 - 2.49004I
b = 1.07584 - 1.58872I		
u = -0.961925 + 0.860252I		
a = 0.966136 + 0.234062I	2.24783 + 8.01486I	-3.63204 - 5.37427I
b = 0.177845 - 1.273080I		
u = -0.961925 + 0.860252I		
a = -0.004211 - 1.094310I	2.24783 + 8.01486I	-3.63204 - 5.37427I
b = -1.23004 + 1.41511I		
u = -0.961925 - 0.860252I		
a = 0.966136 - 0.234062I	2.24783 - 8.01486I	-3.63204 + 5.37427I
b = 0.177845 + 1.273080I		
u = -0.961925 - 0.860252I		
a = -0.004211 + 1.094310I	2.24783 - 8.01486I	-3.63204 + 5.37427I
b = -1.23004 - 1.41511I		
u = 0.561243		
a = -0.28062 + 1.84686I	-4.02051	-10.0930
b = -1.58953 - 1.26511I		
u = 0.561243		
a = -0.28062 - 1.84686I	-4.02051	-10.0930
b = -1.58953 + 1.26511I		

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} - u^{8} - 3u^{7} + 2u^{6} + 4u^{5} - u^{4} - u^{3} - 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{9} + 3u^{7} - 4u^{5} + u^{3} + u \\ u^{9} + u^{8} - 3u^{7} - 2u^{6} + 4u^{5} + u^{4} - u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u^{8} + 3u^{6} - 3u^{4} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u^{8} + 3u^{6} - 3u^{4} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{9} - u^{8} + 3u^{7} + 3u^{6} - 4u^{5} - 3u^{4} + u^{3} + u + 1 \\ u^{9} + 2u^{8} - 3u^{7} - 4u^{6} + 4u^{5} + 3u^{4} - u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ u^{8} - 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} - 2u^{6} + u^{4} + 2u^{2} - 1 \\ u^{9} - 3u^{7} - u^{6} + 4u^{5} + 2u^{4} - u^{3} - 2u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^8 8u^6 + 8u^4 + 4u^2 12$

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{10}$
$c_2, c_3, c_5 \ c_6, c_7$	$(u^2+1)^5$
c_4, c_{10}	$u^{10} - 3u^8 + 4u^6 - u^4 - u^2 + 1$
c_8, c_9	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$
c_{11}	$(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^2$
c_{12}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{10}$
$c_2, c_3, c_5 \ c_6, c_7$	$(y+1)^{10}$
c_4, c_{10}	$(y^5 - 3y^4 + 4y^3 - y^2 - y + 1)^2$
c_8, c_9, c_{12}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$
c_{11}	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.822375 + 0.339110I		
a = 0.428550 - 1.039280I	-3.61897 + 1.53058I	-8.51511 - 4.43065I
b = 0.61073 + 1.46782I		
u = -0.822375 - 0.339110I		
a = 0.428550 + 1.039280I	-3.61897 - 1.53058I	-8.51511 + 4.43065I
b = 0.61073 - 1.46782I		
u = 0.822375 + 0.339110I		
a = 0.428550 + 1.039280I	-3.61897 - 1.53058I	-8.51511 + 4.43065I
b = -1.46782 - 0.61073I		
u = 0.822375 - 0.339110I		
a = 0.428550 - 1.039280I	-3.61897 + 1.53058I	-8.51511 - 4.43065I
b = -1.46782 + 0.61073I		
u = 0.766826I		
a = -1.30408	-5.69095	-9.48110
b = 1.30408 + 1.30408I		
u = -0.766826I		
a = -1.30408	-5.69095	-9.48110
b = 1.30408 - 1.30408I		
u = -1.200150 + 0.455697I		
a = -0.276511 + 0.728237I	-9.16243 + 4.40083I	-12.74431 - 3.49859I
b = 1.004750 - 0.451726I		
u = -1.200150 - 0.455697I		
a = -0.276511 - 0.728237I	-9.16243 - 4.40083I	-12.74431 + 3.49859I
b = 1.004750 + 0.451726I		
u = 1.200150 + 0.455697I		
a = -0.276511 - 0.728237I	-9.16243 - 4.40083I	-12.74431 + 3.49859I
b = -0.451726 + 1.004750I		
u = 1.200150 - 0.455697I		
a = -0.276511 + 0.728237I	-9.16243 + 4.40083I	-12.74431 - 3.49859I
b = -0.451726 - 1.004750I		

IV.
$$I_1^v = \langle a, \ 2b+1, \ v-2 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2 \\ -0.5 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2.25

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_{12}	u+1
c_4, c_{10}, c_{11}	u
c_5, c_6, c_7 c_8, c_9	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_9, c_{12}	y-1
c_4, c_{10}, c_{11}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 2.00000		
a = 0	0	2.25000
b = -0.500000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{10})(u+1)(u^{26} + 5u^{25} + \dots - 5u + 1)$ $\cdot (u^{28} + 11u^{27} + \dots + 2888u + 289)$
c_2, c_3	$(u+1)(u^2+1)^5(u^{26}-u^{25}+\cdots-3u-1)(u^{28}+3u^{27}+\cdots+74u+17)$
c_4, c_{10}	$u(u^{10} - 3u^8 + \dots - u^2 + 1)(u^{14} + u^{13} + \dots + u - 1)^2$ $\cdot (u^{26} - 3u^{25} + \dots + 6u + 8)$
c_5, c_6, c_7	$(u-1)(u^2+1)^5(u^{26}-u^{25}+\cdots-3u-1)(u^{28}+3u^{27}+\cdots+74u+17)$
c_8, c_9	$(u-1)(u^5 + u^4 + \dots + u - 1)^2(u^{14} - u^{13} + \dots - 3u - 1)^2$ $\cdot (u^{26} - 2u^{25} + \dots + 7u - 4)$
c_{11}	$u(u^{5} + 3u^{4} + \dots - u - 1)^{2}(u^{14} + 3u^{13} + \dots + 5u + 1)^{2}$ $\cdot (u^{26} + 9u^{25} + \dots + 436u + 64)$
c_{12}	$(u+1)(u^5 - u^4 + \dots + u+1)^2(u^{14} - u^{13} + \dots - 3u-1)^2$ $\cdot (u^{26} - 2u^{25} + \dots + 7u-4)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{11})(y^{26} + 37y^{25} + \dots - 157y + 1)$ $\cdot (y^{28} + 11y^{27} + \dots + 1428812y + 83521)$
c_2, c_3, c_5 c_6, c_7	$(y-1)(y+1)^{10}(y^{26} + 5y^{25} + \dots - 5y + 1)$ $\cdot (y^{28} + 11y^{27} + \dots + 2888y + 289)$
c_4, c_{10}	$y(y^5 - 3y^4 + \dots - y + 1)^2(y^{14} - 3y^{13} + \dots - 5y + 1)^2$ $\cdot (y^{26} - 9y^{25} + \dots - 436y + 64)$
c_8, c_9, c_{12}	$(y-1)(y^5 - 5y^4 + \dots - y - 1)^2(y^{14} - 11y^{13} + \dots - 5y + 1)^2$ $\cdot (y^{26} - 22y^{25} + \dots - 65y + 16)$
c_{11}	$y(y^5 - y^4 + \dots + 3y - 1)^2(y^{14} + 17y^{13} + \dots - y + 1)^2$ $\cdot (y^{26} + 15y^{25} + \dots - 142352y + 4096)$