О сложности проверки свойства правильности для семейств функций

K. Царегородцев^{1, 2}

¹AO «НПК «Криптонит»

²МГУ им. М.В.Ломоносова г. Москва, Россия

Алгебра и математическая логика: теория и приложения, 2024

Содержание доклада

Мотивация и основные определения

Правильные семейства функций

③ Характеризация в терминах несамодвойственности

Алгебраические структуры в криптографии

«Базовые»	«Нестандартные»
коммутативные группы: \mathbb{F}_q^* , $E(\mathbb{F}_q)$	He коммутативные группы 1 (пример:
·	группы кос, матрицы над кольцами,)
векторные пространства, коды, решётки ²	модули более общего вида ³
ассоциативные структуры (группы,	неассоциативные структуры:
кольца и т.д.)	квазигруппы, квазигрупповые кольца ⁴

¹Романьков, Алгебраическая криптология: монография; Молдовян, Молдовян и Молдовян, «Новая концепция разработки постквантовых алгоритмов цифровой подписи на некоммутативных алгебрах»; Myasnikov, Shpilrain и Ushakov, Non-commutative cryptography and complexity of group-theoretic problems.

²Bernstein, Buchmann и Dahmen, *Post-quantum cryptography*.

 $^{^3}$ Нечаев, «Конечные квазифробениусовы модули, приложения к кодам и линейным рекуррентам».

⁴Глухов, «О применениях квазигрупп в криптографии»; Артамонов, «Квазигруппы и их приложения»; Markov, Mikhalev и Nechaev, «Nonassociative Algebraic Structures in Cryptography and Coding».

Квазигруппа

Квазигруппа

Множество Q с заданной на нем бинарной операцией $\circ\colon Q\times Q\to Q$ со следующим свойством: для любых $a,b\in Q$ существуют единственные $x,y\in Q$, такие что:

$$a \circ x = b$$
, $y \circ a = b$.

По сути = группа без ассоциативности и единицы, но **с сокращением** слева/справа. Примеры квазигрупп:

- ullet Q любая группа, например $Q=\mathbb{Z}_k$, $\circ=+$;
- ullet $Q=\mathbb{Z}_k$, $\circ=-$ (не группа, т.к. a-(b-c)
 eq (a-b)-c);
- ullet (G,\cdot) группа, π , σ , au подстановки на $G,\ x\circ y:= au(\pi(x)\cdot\sigma(y)).$

Квазигруппы в криптографии: примеры симметричных схем

Основная идея: использовать в качестве нелинейного компонента примитива некоторое квазигрупповое преобразование $f: Q^n \to Q^n$.

- Строительные блоки: E- и D-преобразования, их свойства⁵;
- «Односторонняя функция», основанная на квазигрупповых преобразованиях; на её основе хэш-функция Edon- \mathbb{R}^6 .

⁵Bakeva и Dimitrova, «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis»; Markovski, Gligoroski и Bakeva, «Quasigroup String Processing: Part 1»; Markovski и Bakeva, «Quasigroup string processing: Part 4».

⁶Gligoroski, Markovski и Kocarev, «Edon-R, An Infinite Family of Cryptographic Hash Functions.»; Gligoroski и др., «Cryptographic hash function Edon-R'»; Gligoroski, «On a family of minimal candidate one-way functions and one-way permutations.»; Gligoroski и Knapskog, «Edon-R (256,384,512)—an efficient implementation of Edon-R family of cryptographic hash functions».

Квазигруппы в криптографии: примеры симметричных схем-2

Основная идея: использовать в качестве нелинейного компонента примитива некоторое квазигрупповое преобразование $f\colon Q^n \to Q^n$.

- Генераторы псевдослучайных чисел⁷.
- Блочный шифр INRU⁸ (нелинейное преобразование умножение в специально подобранной квазигруппе).
- Низкоресурсная (lightweight) хэш-функция GAGE и AEAD-алгоритм InGAGE (см. http://gageingage.org/, также⁹).
- Поточный шифр Edon80¹⁰.

⁷Dimitrova и Markovski, «On quasigroup pseudo random sequence generator»; Markovski, «Quasigroup string processing and applications in cryptography»; Markovski, Gligoroski и Kocarev, «Unbiased random sequences from quasigroup string transformations»; Markovski, Gligoroski и Markovski, «Classification of quasigroups by random walk on torus».

⁸Tiwari и др., «INRU: A Quasigroup Based Lightweight Block Cipher».

⁹Gligoroski, On the S-box in GAGE and InGAGE; Gligoroski и др., «GAGE and InGAGE».

¹⁰Gligoroski, Markovski и Knapskog, «The stream cipher Edon80».

Квазигруппы в криптографии: примеры асимметричных схем

• Основная идея: подобрать такое нелинейное (обычно квадратичное) преобразование \mathcal{P} , что вычисление \mathcal{P} и \mathcal{P}^{-1} сделать «легко», а затем «скрыть»структуру \mathcal{P} , взяв обратимые линейные преобразования \mathcal{S} и \mathcal{T} и рассмотрев композицию

$$\mathcal{F}(x) = \mathcal{S}(\mathcal{P}(\mathcal{T}(x))).$$

ullet Асимметричные криптопримитивы — аналоги пост-квантовых схем multivariate cryptography 11 .

¹¹Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Faugère и др., «A polynomial-time key-recovery attack on MQQ cryptosystems»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups», «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups»; Gligoroski и др., «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme»; Mohamed и др., «Algebraic attack on the MQQ public key cryptosystem».

Квазигруппы в криптографии: примеры асимметричных схем-2

- Основная идея: построить квазигруппу таким образом, чтобы в ней выполнялось свойство перестановочности (левых/правых/смешанных) степеней.
- Схемы аналоги протокола Диффи-Хеллмана выработки общего ключа 12 , гомоморфное шифрование 13 .
- Также приложения в теории кодирования 14 ; более подробно вопрос освещен в 15 .

¹³Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии»; Gribov, Zolotykh и Mikhalev, «A construction of algebraic cryptosystem over the quasigroup ring».

¹⁴Гонсалес и др., «Рекурсивные МДР-коды и рекурсивно дифференцируемые квазигруппы», «Групповые коды и их неассоциативные обобщения»; Markov, Mikhalev и Nechaev, «Nonassociative Algebraic Structures in Cryptography and Coding».

¹⁵Глухов, «О применениях квазигрупп в криптографии»; Артамонов, «Квазигруппы и их приложения»; Shcherbacov, *Elements of Quasigroup Theory and Applications*.

¹² Катышев, Марков и Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей»; Барышников и Катышев, «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей».

Как задать квазигруппу?

- ullet В общем случае квазигруппа над множеством Q задается таблицей умножения размера |Q| imes |Q|; это много.
- \bullet Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 16 .
- Итеративное построение из более «маленьких» (а-la прямые произведения) 17.
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 18 , модульное вычитание 19).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

¹⁶Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

¹⁷Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии»; Gligoroski и др., «Cryptographic hash function Edon-R'».

 $^{^{18}}$ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

¹⁹Snášel и др., «Hash functions based on large quasigroups».

Функциональное задание квазигруппы

• Можно перейти от табличного задания операции к функциональному²⁰:

$$x \circ y = z \leftrightarrow z_i = f_i(x_1, \ldots, x_n, y_1, \ldots, y_n).$$

- Рассмотрим для простоты случай $Q = \{0,1\}^n$: хотим задать структуру квазигруппы на Q с помощью семейства булевых функций.
- Какие условия надо наложить на функции f_i , чтобы операция $x \circ y$ задавала структуру квазигруппы на Q?

²⁰ Носов и Панкратьев, «О функциональном задании латинских квадратов».

Содержание доклада

Мотивация и основные определения

Правильные семейства функций

③ Характеризация в терминах несамодвойственности

Правильные семейства булевых функций

Правильное семейство

Семейство булевых функций $\mathcal{F}: \{0,1\}^n \to \{0,1\}^n$ называется правильным^а, если для любых двух наборов $x \neq y$ найдется такая координата i, что $x_i \neq y_i$, но $f_i(x) = f_i(y)$.

 a Носов, «Построение классов латинских квадратов в булевой базе данных».

Правильные семейства можно задавать не только над $\{0,1\}^n$, но над логикой любой значности k^{21} , над произвольными группами 22 ; над прямыми произведениями квазигрупп 23 , d-квазигрупп 24 .

 $^{^{21}}$ Носов, «Построение параметрического семейства латинских квадратов в векторной базе данных».

²²Носов и Панкратьев, «Латинские квадраты над абелевыми группами».

²³Galatenko, Nosov и Pankratiev, «Latin squares over quasigroups».

 $^{^{24}}$ Плаксина, «Построение параметрического семейства многомерных латинских квадратов».

Правильные семейства задают классы квазигрупп

Если семейство $\mathcal{F}=(f_1,\ldots,f_n)$ — правильное, то отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus \mathcal{F}(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию при любом выборе внутренних функций π_1, \dots, π_n .

Примеры правильных семейств

- Константы $f_i \equiv const_i$.
- Треугольные семейства²⁵ (const, $f_2(x_1)$, $f_3(x_1, x_2)$, ..., $f_n(x_1, ..., x_{n-1})$.)
- Семейства вида²⁶

$$\begin{bmatrix} 0 \\ x_1 \\ x_1 \oplus x_2 \\ \vdots \\ x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1} \end{bmatrix} \bigoplus \begin{bmatrix} \bigoplus_{i < j, i, j \neq 1}^{n} x_i x_j \\ \bigoplus_{i < j, i, j \neq 2}^{n} x_i x_j \\ \bigoplus_{i < j, i, j \neq 3}^{n} x_i x_j \\ \vdots \\ \bigoplus_{i < j, i, j \neq n}^{n} x_i x_j \end{bmatrix}.$$

²⁵ Носов и Панкратьев, «Латинские квадраты над абелевыми группами».

 $^{^{26}}$ Царегородцев, «О свойствах правильных семейств булевых функций».

О сложности распознавания свойства правильности

- Пусть семейство задано набором КНФ.
- Задача распознавания правильности: на вход подается семейство \mathcal{F} , выдать 1, если \mathcal{F} правильное, и 0 иначе.
- В таком случае задача распознавания правильности лежит в классе coNP: сертификатом является пара значений $x,\ y,\ для$ которых нарушено условие правильности.
- ullet Более того, известно 27 , что эта задача является соNP-полной.
- Следовательно, надеяться на полиномиальный алгоритм (по числу переменных в семействе) не приходится.

 $^{^{27}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом»; Gartner и Antonis, «The Complexity of Recognizing Unique Sink Orientations».

Содержание доклада

Мотивация и основные определения

Правильные семейства функций

3 Характеризация в терминах несамодвойственности

Проекция семейства

- ullet Пусть задано \mathcal{F}_n семейство размера n на E_k^n .
- Проекция семейства $\Pi_i^a(\mathcal{F}_n)$ семейство \mathcal{G}_{n-1} , полученное из \mathcal{F}_n подстановкой вместо x_i константы a и вычеркиванием функции f_i :

$$\mathcal{G}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) = \Pi_i^a(\mathcal{F}_n) = \begin{bmatrix} f_1(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n) \\ \vdots \\ f_{i-1}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n) \\ f_{i+1}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n) \\ \vdots \\ f_n(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n) \end{bmatrix}.$$

• Кратная проекция семейства:

$$\Pi_{i_1,\ldots,i_k}^{a_1,\ldots,a_k}\left(F_n\right)=\Pi_{i_1}^{a_1}\left(\ldots\Pi_{i_k}^{a_k}\left(F_n\right)\ldots\right).$$

Самодвойственные семейства

Самодвойственное семейство

Отображение $F: \mathbb{E}_2^n \to \mathbb{E}_2^k$ самодвойственно, если для любого набора $x \in \mathbb{E}_2^n$ выполняется свойство $F(\overline{x}) = \overline{F(x)}$.

Лемма

Пусть семейство булевых функций $\mathcal{F}\colon E_2^n \to E_2^n$ таково, что найдется набор $\gamma \in E_2^n$, для которого выполнено свойство $\overline{\mathcal{F}(\gamma)} = \mathcal{F}(\bar{\gamma})$. Тогда существует самодвойственная проекция \mathcal{F} .

Характеризация в терминах несамодвойственности

Основная теорема

Семейство $\mathcal{F}_n\colon \mathbb{E}^n_2 \to \mathbb{E}^n_2$ правильно тогда и только тогда, когда каждая из его проекций $\Pi^{a_1,\ldots,a_k}_{i_1,\ldots,i_k}(\mathcal{F})$ не является самодвойственным булевым отображением.

- Перебираем все проекции исходного семейства \mathcal{F} , проверяя выполнение свойства самодвойственности на **единственной** паре наборов из проекции.
- Если нашлась проекция, для которой свойство самодвойственности выполнено, то алгоритм останавливает работу и выдаёт результат «семейство $\mathcal F$ не является правильным»: по лемме найдётся $\mathcal G$ самодвойственная проекция $\mathcal F\Rightarrow \mathcal F$ не является правильным.
- Если семейство \mathcal{F} проходит все проверки, то для \mathcal{F} и всех его проекций не выполнено свойство самодвойственности: если бы существовал хотя бы один набор α , для которого $\overline{\mathcal{F}(\alpha)} = \mathcal{F}(\bar{\alpha})$, то по лемме нашлась бы полностью самодвойственная проекция, что было исключено в ходе проверок.

Алгоритм проверки правильности

Цикл по всем возможным наборам $x \in \{0,1,2\}^n$:

- lacktriangle построить два набора $y,z\in E_2^n$ по правилу:
 - lacktriangle если $x_i \in \{0,1\}$, то положить $y_i \leftarrow x_i, z_i \leftarrow x_i$,
 - **»** в противном случае положить $y_i \leftarrow 0$, $z_i \leftarrow 1$,
- $oldsymbol{@}$ если существует номер j, что $y_j
 eq z_j$, и $f_j(y)
 eq f_j(z)$, вернуть ответ: « \mathcal{F} не является правильным».

Если все проверки пройдены успешно, то вернуть « ${\mathcal F}$ является правильным».

Об алгоритме

- Сложность предложенного алгоритма: 2×3^n операций вычисления значения семейства в точке.
- «Наивный» алгоритм (проверка определения): 4^n операций вычисления значения семейства в точке.
- ullet К сожалению, по видимому результат не верен для логик значности k>2.

Заключение

- Правильные семейства могут быть использованы для задания параметрического класса квазигрупп; квазигруппы, в свою очередь, могут использоваться при построении различных криптографических примитивов.
- Задача распознавания правильности является сложной; в работе удалось немного понизить её сложность для булева случая (но она всё ещё остается экспоненциальной по числу переменных в семействе).
- ullet Пока что не удалось перенести результат на случай k-значной логики при k>2.

Спасибо за внимание!

github.com/kirtsar/proper_recognition

Библиография I

- Нечаев, Александр Александрович. «Конечные квазифробениусовы модули, приложения к кодам и линейным рекуррентам». В: Фундаментальная и прикладная математика 1.1 (1995), с. 229—254.
- Носов, В. А. «Критерий регулярности булевского неавтономного автомата с разделенным входом». В: Интеллектуальные системы. Теория и приложения 3.3-4 (1998), с. 269—280.
- Носов, В. А. «Построение классов латинских квадратов в булевой базе данных». В: Интеллектуальные системы. Теория и приложения 4.3-4 (1999), с. 307—320. ISSN: 2075-9460; 2411-4448.
- Носов, В. А. «Построение параметрического семейства латинских квадратов в векторной базе данных». В: Интеллектуальные системы. Теория и приложения 8.1-4 (2006), с. 517—529. ISSN: 2075-9460; 2411-4448.
- Носов, В. А. и А. Е. Панкратьев. «Латинские квадраты над абелевыми группами». В: Фундаментальная и прикладная математика 12.3 (2006), с. 65—71.

Библиография II

- Глухов, М.М. «О применениях квазигрупп в криптографии». В: Прикладная дискретная математика 2 (2) (2008), с. 28—32.
- Носов, В. А. и А. Е. Панкратьев. «О функциональном задании латинских квадратов». В: Интеллектуальные системы. Теория и приложения 12.1-4 (2008), с. 317—332. ISSN: 2075-9460; 2411-4448.
- Плаксина, И. А. «Построение параметрического семейства многомерных латинских квадратов». В: Интеллектуальные системы. Теория и приложения 18.2 (2014), с. 323—330.
- Катышев, Сергей Юрьевич, Виктор Тимофеевич Марков и Александр Александрович Нечаев. «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей». В: Дискретная математика 26.3 (2014), с. 45—64.
- Грибов, А. В. «Алгебраические неассоциативные структуры и их приложения в криптографии». Дис. . . . док. Московский государственный университет им. М. В. Ломоносова, 2015.

Библиография III

- Марков, В. Т., А. В. Михалёв и А. А. Нечаев. «Неассоциативные алгебраические структуры в криптографии и кодировании». В: *Фундаментальная и прикладная математика* 21.4 (2016), с. 99—124.
- Барышников, Андрей Владимирович и Сергей Юрьевич Катышев. «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей». В: Математические вопросы криптографии 9.4 (2018), с. 5—30.
- **а** Артамонов, В. А. «Квазигруппы и их приложения». В: *Чебышевский сборник* 19.2 (66) (2018), с. 111—122.
- Романьков, Виталий Анатольевич. *Алгебраическая криптология: монография*. ОмГУ им. Ф. М. Достоевского, 2020.
- Марков, Виктор, Александр Васильевич Михалёв и Евгений Сергеевич Кислицын. «Неассоциативные структуры в гомоморфной криптографии». В: Фундаментальная и прикладная математика 23.2 (2020), с. 209—215.
- □ Царегородцев, К.Д. «О свойствах правильных семейств булевых функций». В: Дискретная математика 33.1 (2021), с. 91—102.

Библиография IV

- Молдовян, Дмитрий Николаевич, Александр Андреевич Молдовян и Николай Андреевич Молдовян. «Новая концепция разработки постквантовых алгоритмов цифровой подписи на некоммутативных алгебрах». В: Вопросы кибербезопасности 1 (47) (2022), с. 18—25.
- Гонсалес, С. и др. «Рекурсивные МДР-коды и рекурсивно дифференцируемые квазигруппы». В: Дискретная математика 10.2 (1998), с. 3—29.
- Гонсалес, С. и др. «Групповые коды и их неассоциативные обобщения». В: Дискретная математика 16.1 (2004), с. 146—156.
- Bakeva, Verica и Vesna Dimitrova. «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis». Англ. В: ICT Innovations 2010: Second International Conference, ICT Innovations 2010, Ohrid Macedonia, September 12-15, 2010. Revised Selected Papers 2. Springer. 2011, c. 61—70.
- Bernstein, Daniel J., Johannes Buchmann и Erik Dahmen. *Post-quantum cryptography*. Springer Berlin, Heidelberg, 2009. DOI: https://doi.org/10.1007/978-3-540-88702-7.

Библиография V

- Chen, Yanling, Svein Johan Knapskog и Danilo Gligoroski. «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity». В: Submitted to ISIT 2010 (2010), с. 14.
- Dimitrova, V. и J Markovski. «On quasigroup pseudo random sequence generator». Англ. В: Proceedings of the 1st Balkan Conference in Informatics, Thessaloniki. 2004.
- Faugère, Jean-Charles и др. «A polynomial-time key-recovery attack on MQQ cryptosystems». В: IACR International Workshop on Public Key Cryptography. Springer. 2015, с. 150—174.
- Galatenko, A. V., V. A. Nosov и A. E. Pankratiev. «Latin squares over quasigroups». Англ. В: Lobachevskii Journal of Mathematics 41.2 (2020), с. 194—203.
- Gartner, B. и T. Antonis. «The Complexity of Recognizing Unique Sink Orientations». Англ. В: Leibniz International Proceedings in Informatics, LIPIcs 30 (март 2015).
- Gligoroski, D., S. Markovski и S. J. Knapskog. «The stream cipher Edon80». Англ. В: New stream cipher designs. Springer, 2008, с. 152—169.

Библиография VI

- Gligoroski, D., S. Markovski и L. Kocarev. «Edon-R, An Infinite Family of Cryptographic Hash Functions.». Англ. В: International Journal of Security and Networks 8.3 (2009), с. 293—300.
- Gligoroski, D. и др. «Cryptographic hash function Edon-R'». Англ. В: 2009 Proceedings of the 1st International Workshop on Security and Communication Networks. IEEE. 2009, c. 1—9.
- Gligoroski, Danilo. «On a family of minimal candidate one-way functions and one-way permutations.». Англ. В: Int. J. Netw. Secur. 8.3 (2009), с. 211—220.
- .On the S-box in GAGE and InGAGE. Англ. http://gageingage.org/upload/LWC2019NISTWorkshop.pdf. 2019.
 - Gligoroski, Danilo и Svein Johan Knapskog. «Edon-R (256,384,512)—an efficient implementation of Edon-R family of cryptographic hash functions». Англ. В: Commentationes Mathematicae Universitatis Carolinae 49.2 (2008), с. 219—239.
- Gligoroski, Danilo, Smile Markovski и Svein Johan Knapskog. «A public key block cipher based on multivariate quadratic quasigroups». В: arXiv preprint arXiv:0808.0247 (2008).

Библиография VII

- Gligoroski, Danilo, Smile Markovski μ Svein Johan Knapskog. «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups». B: Proceedings of the American Conference on Applied Mathematics. 2008, c. 44—49.
- Gligoroski, Danilo и др. «GAGE and InGAGE». Англ. В: A Submission to the NIST Lightweight Cryptography Standardization Process (2019).
- Gligoroski, Danilo и др. «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme». B: International Conference on Trusted Systems. Springer. 2011, c. 184—203.
- Gribov, Aleksei Viktorovich, Pavel Andreevich Zolotykh и Aleksandr Vasil'evich Mikhalev. «A construction of algebraic cryptosystem over the quasigroup ring». В: Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] 1.4 (2010), с. 23—32.
- Markov, V. T., A. V. Mikhalev и A. A. Nechaev. «Nonassociative Algebraic Structures in Cryptography and Coding». Англ. В: Journal of Mathematical Sciences 245.2 (2020).
- Markovski, S, D. Gligoroski и V. Bakeva. «Quasigroup String Processing: Part 1». Англ. В: Proc. of Maked. Academ. of Sci. and Arts for Math. And Tect. Sci. XX (1999), с. 157—162.

Библиография VIII

- Markovski, Smile. «Quasigroup string processing and applications in cryptography». Англ. В: Proc. 1-st Inter. Conf. Mathematics and Informatics for industry. Т. 1002. 2003, с. 14—16.
- Markovski, Smile и Verica Bakeva. «Quasigroup string processing: Part 4». Англ. В: Contributions, Section of Natural, Mathematical and Biotechnical Sciences 27.1-2 (2017).
- Markovski, Smile, Danilo Gligoroski и Ljupco Kocarev. «Unbiased random sequences from quasigroup string transformations». Англ. В: International workshop on fast software encryption. Springer. 2005, с. 163—180.
- Markovski, Smile, Danilo Gligoroski и Jasen Markovski. «Classification of quasigroups by random walk on torus». Англ. В: *Journal of applied mathematics and computing* 19.1-2 (2005), c. 57—75.
- Mohamed, Mohamed Saied Emam и др. «Algebraic attack on the MQQ public key cryptosystem». В: Cryptology and Network Security: 8th International Conference, CANS 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings 8. Springer. 2009, c. 392—401.

Библиография IX

- Myasnikov, Alexei, Vladimir Shpilrain и Alexander Ushakov. Non-commutative cryptography and complexity of group-theoretic problems. American Mathematical Soc., 2011.
- Shcherbacov, V. Elements of Quasigroup Theory and Applications. Англ. Chapman и Hall/CRC, 2017.
- Snášel, Václav и др. «Hash functions based on large quasigroups». Англ. В: Computational Science—ICCS 2009: 9th International Conference Baton Rouge, LA, USA, May 25-27, 2009 Proceedings, Part I 9. Springer. 2009, c. 521—529.
- Tiwari, Sharwan K и др. «INRU: A Quasigroup Based Lightweight Block Cipher». Англ. В: arXiv preprint arXiv:2112.07411 (2021).