Lecture 1:

Basic switching concepts

circuit switching message switching packet switching

— G. Bianchi, G. Neglia —

Switching

→ Circuit Switching

- ⇒Fixed and mobile telephone network
 - → Frequency Division Multiplexing (FDM)
 - →Time Division Multiplexing (TDM)
- ⇒Optical rings (SDH)

→ Message Switching

- ⇒Not in core technology
- ⇒Some application (e.g. SMTP)

→ Packet Switching

- ⇒Internet
- ⇒Some core networking technologies (e.g. ATM)

==== G. Bianchi, G. Neglia ==

Circuit Switching Phone Call routing G. Bianchi, G. Neglia

-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		

Circuit Switching Pros & Cons → Advantages ⇒ Limited overhead ⇒ Very efficient switching fabrics → Highly parallelized → Disadvantages ⇒ Requires signalling for switching tables set-up ⇒ Underutilization of resources in the presence of bursty traffic and variable rate traffic

	
Ban	dwidth waste

==== G. Bianchi, G. Neglia ==

Example of bursty traffic (ON/OFF voice flows)

On (activity) period

OFF period

VOICE SOURCE MODEL for conversation (Brady): average ON duration (talkspurt): 1 second average OFF duration (silence): 1.35 seconds

activity =
$$\frac{T_{oN}}{T_{oN} + T_{orr}} = \frac{1}{1 + 1.35} = 42.55\%$$
 (before packetization)

Efficiency = utilization % = source activity

==== G. Bianchi, G. Neglia ==

Message vs Packet Switching

→ Message Switching	→ Packet Switching			
	⇒ Message chopped in small packets			
	⇒ Each packet includes header			
	→like postal letters! Each must have a specified destination data			
header message	header packet			
	header packet			
	header packet			
	$n = \begin{bmatrix} \frac{message}{packet_size} \end{bmatrix}$ header p			
overhead =header	$overhead = \frac{n \cdot header}{n \cdot header + message}$			
header + message	$n \cdot header + message$			

Message switching overhead lower than packet switching

— G. Bianchi, G. Neglia —

Other example (different link speed)				
Router 1 Router 3 256 Kbps 1024 Kbps 2048 Kbps 256 Kbps				
→ Time to transmit 1 MB file → Message switching (assume 40 bytes header) ⇒ 1MB = 1024*1024 bytes = 1,048,576 bytes = 8,388,608 bits ⇒ Including 40 bytes (320 bits) header: 8,388,928 ⇒ Neglecting processing, propagation & queueing delays: → D = 32.76 + 8.19 + 4.10 + 32.77 = 77.83s → Packet switching (40 bytes header, 1460 bytes packet) ⇒ 718.2 → 719 packets ⇒ total message size including overhead = 8,618,688 bits ⇒ Just considering transmission delays (slowest link = last – try with intermediate, too) → D = 0.06 + 33.67 = 33.73s				
→ Key advantage: pipelining reduces end to end delay versus message switching!				
G. Bianchi, G. Neglia				

Packet Switching overhead vs burstiness Overhead for voice sources at 64 kbps Source rate: 64 kbps in 16 ms 128 voice samples = 1024 bit every 16 ms ← 62.5 packets/s Assumption: 40 bytes header emission rate = 62.5 · (1024+40·8) = 84000 (versus 64000 nominal rate = 31.25% overhead) On (activity) period PACKETIZATION for voice sources (Brady model, activity=42.55%): Assumptions: neglect last packet effect average emission rate = 62.5 · (1024+40·8) · 0.4255 = 35745 (versus 64000 nominal rate = 55.85%) G. Bianchi, G. Neglia

Statistical mux analysis

→ Very complex, when queueing considered

- ⇒Involves queueing theory
- ⇒Involves traffic time correlation statistics

→Very easy, in the (worst case = conservative) assumption of unbuffered system

- ⇒In practice, burst size long with respect to buffer size
- \rightarrow Depends only on activity factor ρ

G. Bianchi, G. Neglia

Statistical mux analysis (i) unbuffered model

N traffic sources; Homogeneous, same activity factor ρ

Source rate = 1; Link capacity = C TDM: N <u>must</u> be <= C Packet: N may be > C

Prob(k sources simultaneously active) =
$$\binom{N}{k} \rho^k (1-\rho)^{N-k}$$

Example: N=5; each having 20% activity

number of active sources	probability
0	32,77%
1	40,96%
2	20,48%
3	5,12%
4	0,64%
5	0.039/.

Average load = 5*0.2 = 1 But C=1 appears insufficient...

G. Bianchi, G. Neglia

Statistical mux analysis (ii) unbuffered model

\rightarrow Overflow probability

- ⇒ Probability that, at a given instant of time (random), the link load is greater than the link capacity
- ⇒ Implies packet loss if buffer=0

$$overflow_prob = \sum\nolimits_{k = C + 1}^N {\binom{N}{k}} {\rho ^k} \left({1 - \rho } \right)^{N - k} =$$

$$=1-\sum_{k=0}^{C} {N \choose k} \rho^k (1-\rho)^{N-k}$$

Example: N=5; each having 20% activity;

link capacity	overflow prob
0	67,23%
1	26,27%
2	5,79%
3	0,67%
4	0,03%
5	0,00%

G. Bianchi, G. Neglia

Statistical mux analysis (iii) unbuffered model

\rightarrow Packet loss probability

⇒ Number of lost packets over number of offered packets

→ Offered packets

 \Rightarrow N * average number of offered packets per source = N * ρ

→ Lost packets:

⇒ If k <= C active sources, no packet loss

⇒ If k > C, k-C lost packets

→ hence

Example: N=5; each having 20% activity; N ρ = 1					
	k (or C)	p(k)	k*p(k)	overflow	loss
	0	32,77%	0	67,23%	100,00%

K (OI C)	P(K)	r p(r)	OVEITION	1033
0	32,77%	0	67,23%	100,00%
1	40,96%	0,4096	26,27%	32,77%
2	20,48%	0,4096	5,79%	6,50%
3	5,12%	0,1536	0,67%	0,70%
4	0,64%	0,0256	0,03%	0,03%
5	0,03%	0,0016	0,00%	0,00%

$$SSS = \frac{\sum_{k=C+1}^{N} (k-C) \binom{N}{k} \rho^{k} (1-\rho)^{N-k}}{N\rho} = \frac{1}{N\rho} \sum_{k=C+1}^{N} \binom{N}{k} \binom{N}{k} \sum_{k=C+1}^{N} \binom{N}{k} \binom{N}{k} \sum_{k=C+1}^{N} \binom{N}{k} \binom{N}{k} \sum_{k=C+1}^{N} \binom{N}{k} \binom{N}{k$$

G. Bianchi, G. Neglia

binom p(k) k * p(k) overflow loss	
1 1.2E-03 0.0E+00 9.99E-01 1.00E+00	
30 9.3E-03 9.3E-03 9.89E-01 8.34E-01	
435 3,4E-02 6,7E-02 9,56E-01 6,69E-01	
4060 7,9E-02 2,4E-01 8,77E-01 5,09E-01 Example: N=30;	
142506 1,7E-01 8,6E-01 5,72E-01 2,39E-01	
142506 1,7E-01 8,6E-01 5,72E-01 2,39E-01 each 20% activity;	
2035800 1,5E-01 1,1E+00 2,39E-01 7,81E-02 N - C	
2035800 1,5E-01 1,1E+00 2,39E-01 7,81E-02 N $\rho = 6$	
14307150 6,8E-02 6,1E-01 6,11E-02 1,68E-02	
30045015 3,5E-02 3,5E-01 2,56E-02 6,57E-03	
54627300 1.6E-02 1.8E-01 9.49E-03 2.30E-03 f O N	
86493225 6.4E-03 7.7E-02 3.11E-03 7.18E-04 for C>>Np:	
119759850 2,2E-03 2,9E-02 9,02E-04 2,00E-04	
145422675 6.7E-04 9.4E-03 2.31E-04 4.94E-05 Overflow=good approx	x tor loss
155117520 1,8E-04 2,7E-03 5,24E-05 1,08E-05	
145422675 4,2E-05 6,7E-04 1,05E-05 2,11E-06	
119759850 8.6E-06 1.5E-04 1.84E-06 3.62E-07	
86493225 1.6E-06 2.8E-05 2.84E-07 5.46E-08	
54627300 2,5E-07 4,7E-06 3,83E-08 7,21E-09	
30045015 3,4E-08 6,8E-07 4,48E-09 8,28E-10	
14307150 4,0E-09 8,5E-08 4,50E-10 8,20E-11	
5852925 4,1E-10 9,1E-09 3,86E-11 6,92E-12	
2035800 3,6E-11 8,2E-10 2,78E-12 4,91E-13	
593775 2,6E-12 6,3E-11 1,65E-13 2,88E-14	
142506 1,6E-13 3,9E-12 7,82E-15 1,35E-15	
27405 7,5E-15 2,0E-13 2,87E-16 4,91E-17	
4060 2,8E-16 7,5E-15 7,60E-18 1,29E-18	
435 7,5E-18 2,1E-16 1,30E-19 2,18E-20	
30 1,3E-19 3,7E-18 1,07E-21 1,79E-22	

•			
,			
•			
•			
•			
•			

