

景

- 第一章 预备知识
- 第二章 随机过程基本概念
- 第三章 马尔可夫链
- 第四章 泊松过程与布朗运动
- 第五章 平稳过程

第一章 预备知识

- §1.1 概率
- §1.2 一元随机变量及其分布
- §1.3 多元随机变量及其分布
- §1.4 数字特征
- §1.5 极限定理

5

§1.1 概率

- ☞一、定义:将概率视为测度,且满足:
 - 1° $P(A) \ge 0$
 - $2^{\circ} P(S) = 1$
 - 3° $A_1, A_2, \ldots, A_k, \ldots, A_i A_j = \emptyset \quad (i \neq j),$

$$\Rightarrow P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

称 P(A) 为事件 A 的概率。

二、概率的性质

$$1^{\circ} P(\emptyset) = 0$$

$$2^{\circ} \quad A_{1}, A_{2}, \dots, A_{n}, A_{i}A_{j} = \emptyset, i \neq j,$$

$$\Rightarrow P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i})$$

$$3^{\circ} P(A) = 1 - P(\overline{A})$$

 4° 若 $A \subset B$,则有 P(B-A) = P(B) - P(A)

 $\Rightarrow P(B) \ge P(A)$, 于是有 $P(A) \le P(S) = 1$

5° 概率的加法公式: $P(A \cup B) = P(A) + P(B) - P(AB)$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC) + P(ABC)$$

$$P(B \mid A) = \frac{P(AB)}{P(A)} \qquad P(A) \neq 0$$

注: P(B A) 应具有概率的所有性质,如

$$P(B \cup C \mid A) = P(B \mid A) + P(C \mid A) - P(BC \mid A)$$

2. 乘法公式

$$P(AB) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$$

$$P(ABC) = P(A)P(B \mid A)P(C \mid AB)$$

$$P(A_{1}A_{2}\cdots A_{n})$$

$$= P(A_{1})P(A_{2} | A_{1})P(A_{3} | A_{1}A_{2})$$

$$P(A_{1}A_{2}\cdots A_{n}) = P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}A_{2})\cdots P(A_{n}|A_{1}\cdots A_{n-1})$$

? $P(A_1A_2 \cdots A_n|B)$

=
$$P(A_1|B)P(A_2|BA_1)P(A_3|BA_1A_2)$$
.
... $P(A_n|BA_1A_2 \cdots A_{n-1})$.

3. 全概率公式、贝叶斯公式

定理: 设试验 E 的样本空间为 S , A 为 E 的 事

件。B₁,B₂,...,B_n为S的一个划

 $D(R) \setminus 0$ i-1 ?

$$P(A) = \sum_{j=1}^{n} P(B_j) \cdot P(A \mid B_j)$$

为全概率公式

更进一步,设试验 E 的样本空间为 S , A 和 C 为 E 的 事件。 B₁, B₂, ..., B_n为 S 的一个划分, P(B_iC)>0i=1, 2, ..., n; P(C)>0,则称:

$$P(A|C) = \sum_{j=1}^{n} P(AB_{j}|C) = \sum_{j=1}^{n} P(B_{j}|C) \cdot P(A|B_{j}C)$$

为条件概率的全概率公式。

定理:接上面全概率公式的条件, P(A)>0, 则

$$P(B_i \mid A) = \frac{P(B_i)P(A \mid B_i)}{\sum_{j=1}^{n} P(B_j)P(A \mid B_j)}$$

称此式为 Bayes 公式

0

4. 事件的独立性

定义:设A, B为两随机事件,如果 P(AB)=P(A)*P(B),则称A, B相互独立.

定义:设A,B,C为三个随机事件,如果
 P(AB | C)=P(A | C)*P(B | C)
 则称在事件C发生的条件下A,B 相互独立.

设 A_1, A_2, \dots, A_n 为n个随机事件,若对 $2 \le k \le n$,

均有:
$$P\left(A_{i_1}A_{i_2}\cdots A_{i_k}\right) = \prod_{j=1}^k P\left(A_{i_j}\right)$$

则称 A_1, A_2, \cdots, A_n 相互独立

§1.2 一元随机变量及其分布

型一、定义:取值至多可数的随机变量为离散型的随机变量。概率分布(分布律)为

$$p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$$

二、分布函数

定义:随机变量X,对任意实数x,称函数

 $F(x) = P(X \le x)$ 为 X 的概率分布函数,简称分布函数。

F(x)的几何意义:

F(x)的性质:

1)
$$0 \le F(x) \le 1$$

2)
$$F(x)$$
单调不减,且 $F(-\infty) = 0$, $F(+\infty) = 1$

3)
$$F(x)$$
右连续,即 $F(x+0) = F(x)$.

三、连续型随机变量

② 定义:对于随机变量 X 的分布函数
的函数 使对无任意实数 有:

F(**法存**在非负 *x*,

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

则称 X 为连续型随机变量,

其中f(x)称为X的概率密度函数,简称概率密度。

f(x)的性质:

1) $f(x) \ge 0$

- $2) \int_{-\infty}^{+\infty} f(x) dx = 1$
- 3) 对于任意的实数 x_1 , $x_2(x_2 > x_1)$

$$P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f(t) dt \Rightarrow P(X = a) = 0 \quad P\{x_1 < X \le x_2\}$$

4) 在f(x)连续点x, F'(x) = f(x)

即在f(x)的连续点

$$f(x) = F'(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x < X \le x + \Delta x)}{\Delta x}$$

四、随机变量函数的分布

定理: 设
$$X \sim f_X(x), -\infty < x < +\infty, g'(x) > 0$$
 (或 $g'(x) < 0$)。

Y = g(X),则Y具有概率密度为:

$$f_{Y}(y) = \begin{cases} f_{X}(h(y)) \cdot |h'(y)|, & \alpha < y < \beta \\ 0, & \sharp \& \end{cases}$$

其中
$$\alpha = g(-\infty)$$
, $\beta = g(+\infty)$,

$$(+\infty), \{ \exists g'(x) < 0 \exists \alpha = g(+\infty), \beta = g(-\infty) \}$$

其中 $\alpha = \min(g(a), g(b)), \beta = \max(g(a), g(b)),$ $h(y) = x \Leftrightarrow y = g(x)$

§1.3 多元随机变量及其分布

○一、定义:假设 E 是一个随机试验,样本空间 S= {e}; 设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量

由它们构成的向量(X,Y) 叫做二元随机变量或二维随机变量。 \mathcal{Y}

□ 二、定义: 若二元随机变量(X,Y)全部可能取到的不同值是有限对或可列无限对,则称(X,Y)是离散型随机变量。

1、联合概率分布律

设(X,Y)所有可能取值为 (x_i, y_i) , $i, j = 1, 2, \cdots$

二元离散型随机变量(X,Y)的联合概率分布律可以用如右表格,或如下公式表示

$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

2. 分布律的性质

1°
$$p_{ij} \ge 0$$
, $i, j = 1, 2, \cdots$

$$2^{\circ} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P_{ij} = 1$$

3、边际(边缘)分布律

$$P(X = x_i) = P(X = x_i, Y \le +\infty) = \sum_{i=1}^{\infty} p_{ij} = p_{i\bullet} i = 1, 2, \cdots$$

$$P(Y = y_j) = P(X \le +\infty, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} \xrightarrow{\text{id} b} p_{\bullet j} j = 1, 2, \cdots$$

4、条件分布律

〒 定义:设(X,Y)是二维离散型随机变量,对于固定的

 y_j 若 $P(Y=y_i)>0$ 则称

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{P_{ij}}{P_{\bullet j}} \quad i = 1, 2 \cdots$$

为在 $Y = y_i$ 条件下,随机变量X的条件分布律;

XY	У1	y ₂	Уj		$P\left(X=x_{i}\right)$
$\overline{x_1}$	P_{11}	p_{12}	p_{1j}		p_1 .
\boldsymbol{x}_2	p_{21}	$p_{\rm 22}$	p_{2j}		p_2 .
:	•••		_		:
\boldsymbol{x}_{i}	$p_{i 1}$	$p_{\rm i2}$	p_{ij}		p_i .
:					i i
$P\left(Y=\overline{y_j}\right)$	p_{\cdot_1}	p_{\cdot_2}	$p_{.j}$)	1

同样,对于固定的 x_i 若 $P(X=x_i) > 0$,则称:

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}} \quad j = 1, 2 \cdots$$

为在 $X = x_i$ 条件下,随机变量Y的条件分布律。

三、联合分布函数

定义:设(X,Y)是二元随机变量,对于任意实数

$$F(x,y) = P\{(X \le x) \cap (Y \le y)\}$$

== $P(X \le x, Y \le y)$

称为二元随机变量(X,Y)的联合分布函数。

1. 分布函数的性质

 $1^{\circ}F(x,y)$ 关于x,y单调不减,即:

$$x_1 < x_2 \Longrightarrow F(x_1, y) \le F(x_2, y)$$

$$y_1 < y_2 \Longrightarrow F(x, y_1) \le F(x, y_2)$$

$$2^{\circ}$$
 $0 \le F(x, y) \le 1$, $F(+\infty, +\infty) = 1$ 对任意 x, y

$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$$

$$3^{\circ}F(x,y)$$
关于 x,y 右连续,即:

$$\lim_{\varepsilon \to 0^+} F(x + \varepsilon, y) = F(x, y)$$

$$\lim_{\varepsilon \to 0^+} F(x, y + \varepsilon) = F(x, y)$$

$$4^{\circ}$$
 若 $x_1 < x_2, y_1 < y_2$

$$\Rightarrow F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0$$

▶边际分布函数

$$F_X(x) = F(x, +\infty)$$

$$F_{Y}(y) = F(+\infty, y)$$

四、二元连续型随机变量

定义:对于二元随机变量(X,Y)的分布函数F(x,y),如果存在非负函数f(x,y),使对于任意x,y,

有
$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$

称(X,Y)为连续型的二维随机变量

称f(x,y)为二元随机变量(X,Y)的

(联合)概率密度

> 联合概率密度的性质

1.
$$f(x,y) \ge 0$$

$$2. \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

3. 设G是xoy平面上的区域,点(X,Y)落在G内的概率为: $P((X,Y) \in G) = \iint_G f(x,y) dx dy$

4. 在
$$f(x,y)$$
的连续点(x,y),有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$

>边际(边缘)概率密度

X,Y 的边际概率密度为:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

> 条件概率密度

若对于固定的 $y, f_v(y) > 0$,

则称
$$\frac{f(x,y)}{f_Y(y)}$$
为在 $Y = y$ 的条件下, X 的条件概率密度,

记为:
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

若对于固定的 $x, f_X(x) > 0$,且 $f_X(x)$ 连续,

在X = x条件下,Y的条件概率密度为:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

五、随机变量的独立性

设F(x,y)及 $F_X(x)$, $F_Y(y)$ 分别是二元随机变量(X,Y)的分布函数及边际分布函数,若对所有x,y有:

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

即
$$F(x, y) = F_X(x)F_Y(y)$$

称随机变量X,Y相互独立。

> 离散型、连续型

若(X,Y)是<mark>离散型</mark>随机变量,则X,Y相互独立的条件等价于: $P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j)$ 即 $p_{ij}=p_{i\bullet}p_{\bullet j}$ 对一切i,j都成立。

若(X,Y)是连续型随机变量,f(x,y), $f_X(x)$, $f_Y(y)$ 分别是(X,Y)的概率密度和边际概率密度,则X,Y相互独立的条件等价于: $f(x,y) = f_X(x) f_Y(y)$ 几乎处处成立; 即在平面上除去"面积"为零的集合以外,处处成立。

多元随机变量之间的独立性

设
$$(X_1, X_2, \dots, X_m)$$
的分布函数为 $F_1(x_1, x_2, \dots x_m)$,
 (Y_1, Y_2, \dots, Y_n) 的分布函数为 $F_2(y_1, y_2, \dots y_n)$,
 $(X_1, X_2, \dots, X_m, Y_1, Y_2, \dots, Y_n)$ 的分布函数为
 $F(x_1, x_2, \dots x_m, y_1, y_2, \dots y_n)$
若 $F(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = F_1(x_1, x_2, \dots x_m)F_2(y_1, y_2, \dots y_n)$
称 (X_1, X_2, \dots, X_m) 与 (Y_1, Y_2, \dots, Y_n) 相互独立。

> 定理

§1.4 数字特征

> 一元情形

定理:设Y是随机变量X的函数:

$$Y = g(X)(g$$
是连续函数),

X是离散型随机变量,它的分布律为:

$$P(X = x_k) = p_k, k = 1, 2, \cdots$$

若 $\sum_{k=1}^{\infty} g(x_k) p_k$ 绝对收敛,则有

$$E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k) p_k$$

X是连续型随机变量,它的概率密度为f(x)

则有
$$E(Y) = E(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

> 二元情形

定理:设Z是随机变量X,Y的函数:Z = h(X,Y)(h是连续函数),

若二维离散型随机变量(X,Y)的分布律为:

$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

则有
$$E(Z) = E[h(X,Y)] = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} h(x_i, y_j) p_{ij}$$
这里设上式右边的级数绝对收敛,

若二维连续型随机变量(X,Y)的概率密度为f(x,y),

则有 $E(Z) = E(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f(x,y) dx dy$ 这里设上式右边的积分绝对收敛

一、数学期望

♥定义:设离散型随机变量X的分布律为:

$$P(X = x_k) = p_k \ k = 1, 2, \cdots$$

若级数 $\sum_{k=1}^{\infty} x_k p_k$ 绝对收敛,则称

级数 $\sum_{k=1}^{+\infty} x_k p_k$ 的值为随机变量X

的数学期望,记为E(X),即

$$E(X) = \sum_{k=1}^{+\infty} x_k p_k$$

设连续型随机变量X的概率概率为f(x),

若积分
$$\int_{-\infty}^{+\infty} xf(x)dx$$
 绝对收敛

则称积分 $\int_{-\infty}^{+\infty} xf(x)dx$ 的值为随机变量X的数学期望,记为E(X)

$$\mathbb{P} E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

>数学期望的性质:

- 1. 设C是常数,则有E(C) = C
- 2. 设X是一个随机变量,C是常数,则有E(CX) = CE(X)
- 3. 设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y)

将上面三项合起来就是: E(aX+bY+c)=aE(X)+bE(Y)+c

这一性质可以推广到任意有限个随机变量线性组合的情况

$$E(c_0 + \sum_{i=1}^{n} c_i X_i) = c_0 + \sum_{i=1}^{n} c_i E(X_i)$$

4. 设X,Y是相互独立的随机变量,则有E(XY) = E(X)E(Y)

这一性质可以推广到任意有限个相互独立的随机变量之积的情况

$$E(\prod_{i=1}^{n} X_i) = \prod_{i=1}^{n} E(X_i)$$
,其中 X_i 相互独立.

二、方差

$$D(X) = E(X^2) - [E(X)]^2$$

> 方差的性质:

- 1. 设C是常数,则D(C) = 0
- 2. 设X是随机变量,C是常数,则有 $D(CX) = C^2D(X)$
- 3. 设X,Y是两个随机变量,则有 $D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\}$ 特别,若X,Y相互独立,则有D(X+Y)=D(X)+D(Y)

综合上述三项,设X,Y相互独立,a,b,c是常数,则 $D(aX+bY+c)=a^2D(X)+b^2D(Y)$

这一性质可以推广到任意有限个独立随机变量线性组合的情况

$$D(c_0 + \sum_{i=1}^{n} c_i X_i) = \sum_{i=1}^{n} c_i^2 D(X_i)$$

4.
$$D(X) = 0 \Leftrightarrow P(X = C) = 1$$
 $\exists C = E(X)$

一常用分布的均值与方差

分布	分布律	期望	方差
0-1分布	$P(X=1) = p, \ P(X=0) = q,$ 0	p	pq
二项分布	$P(X = k) = C_n^k p^k q^{n-k},0$	np	npq
泊松分布	$P(X = k) = \frac{\lambda^{k}}{k!}e^{-\lambda}, \lambda > 0, \ k = 0,1,\dots$	λ	λ
几何分布	$P(X = k) = pq^{k-1},$ 0	1/p	q/p^2
负二项分布	$P(X = j) = C_{j-1}^{k-1} p^{k} q^{n-k},$ 0	k/p	kq/p^2
离散均匀分布	$P\left(X=a+i\frac{b-a}{n}\right)=\frac{1}{n+1}, i=0,1,\dots,n$	(a+b)/2	$\frac{(n+2)(b-a)^2}{12n}$

分布	概率密度	期望	方差
均匀分布	$f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \sharp : \Xi \end{cases}$	(a+b)/2	$(b-a)^2/12$
正态分布	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-a)^2/2\sigma^2}$	а	σ^2
指数分布	$f(x) = \lambda e^{-\lambda x} , \lambda > 0$	1/λ	$1/\lambda^2$
瑞利分布	$f(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \sigma > 0$	$\sqrt{\pi/2}\sigma$	$(2-\pi/2)\sigma^2$
Γ 分布	$f(x) = \frac{x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)} \exp\left(-\frac{x}{\beta}\right), \alpha, \beta > 0$	βα	βα
χ² 分布	$f(x) = \frac{x^{(N/2)-1}}{2^{N/2}\Gamma(N/2)} \exp\left(-\frac{x}{2}\right), \ N > 0$	N	2N
β分布	$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 < x < 1 \\ 0, & \text{ if } E \end{cases}, \alpha, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

三、协方差和相关系数

量 $E\{[X-E(X)][Y-E(Y)]\}$ 称为随机变量X与Y的协方差,

记为: Cov(X,Y), 即

 $Cov(X,Y) = E\{[X-E(X)][Y-E(Y)]\}.$ 称

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}$$

为随机变量X与Y的相关系数. ρ_{XY} 是一个无量纲的量

相关公式

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

$$D(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} D(X_i) + 2\sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

> 协方差的性质:

- 1. Cov(X,Y) = Cov(Y,X);
- **2.** Cov(X,X) = D(X);
- 3. $Cov(aX,bY) = ab \cdot Cov(X,Y)$, 其中a,b为两个实数;
- 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y);$

> 相关系数的性质

1.
$$|\rho_{XY}| \leq 1$$

2.
$$|\rho_{xy}|=1$$
 ⇔ 存在常数 a,b ,使 $P(Y=a+bX)=1$ 特别的, $\rho_{xy}=1$ 时, $b>0$; $\rho_{xy}=-1$ 时, $b<0$

定义: $\rho_{xy} = 0$, 称X与Y不相关或零相关.

可知,当X与Y相互独立 $\Rightarrow X$ 与Y一定不相关 反之,若X与Y不相关,X与Y却不一定相互独立

四、多元正态变量的重要性质

1. n元正态变量 $(X_1, X_2, ... X_n)^T$ 中的任意子向量 $(X_{i_1}, X_{i_2}, ..., X_{i_k})^T (1 \le k \le n)$ 也服从k元正态分布. 特别地,每一个分量 $X_i, i = 1, 2, ... n$ 都是正态变量; 反之,若 $X_1, X_2, ... X_n$ 都是正态变量,且相互独立,则 $(X_1, X_2, ... X_n)$ 是n元正态变量;

2. n元随机变量($X_1, X_2, ... X_n$)服从n元正态分布 $\Leftrightarrow X_1, X_2, ... X_n$ 的任意线性组合 $l_1X_1 + l_2X_2 + ... + l_nX_n$ 服从一元正态分布 其中 $l_1, l_2, ... l_n$ 不全为零

- - 3. 若 $(X_1, X_2, ... X_n)$ 服从n元正态分布,设 $Y_1, Y_2, ... Y_k$ 是 X_j (j = 1, 2, ... n)的线性函数,则 $(Y_1, Y_2, ... Y_k)$ 也服从多元正态分布;这一性质称为正态变量的线性变换不变性
 - 4. 设 $(X_1, X_2, ... X_n)$ 服从n元正态分布,则 $X_1, X_2, ... X_n$ 相互独立 $\Leftrightarrow X_1, X_2, ... X_n$ 两两不相关 \Leftrightarrow 协方差矩阵为对角矩阵.

§1.5 极限定理

一、依概率收敛

随机变量序列 Y_1, Y_2, Y_3, \dots ,若存在某常数a,使得 $\forall \varepsilon > 0$,均有: $\lim_{n \to +\infty} P\{|Y_n - a| \ge \varepsilon\} = 0$,则称 $\{Y_n\}$ 依概率收敛于常数a,记为: $Y_n \stackrel{P}{\longrightarrow} a$,当 $n \to +\infty$ 时.

〉依概率收敛的性质

$$X_n \xrightarrow{P} a, Y_n \xrightarrow{P} b, g$$
在 (a,b) 连续,则
$$g(X_n, Y_n) \xrightarrow{P} g(a,b)$$

> 大数定律

定理(切比雪夫大数定律):

设 $X_1, X_2, \dots, X_n, \dots$ 相互独立,具有相同的数学期望 μ 和相同的方差 σ^2 ,则当 $n \to +\infty$ 时、

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}\overset{P}{\longrightarrow}\mu.$$

定理(辛钦大数定律):

设
$$X_1, X_2, \dots, X_n, \dots$$
独立同分布, $EX_i = \mu$,则当 $n \to +\infty$,
$$\frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{P} \mu.$$

二、中心极限定律

定理(独立同分布的中心极限定理)

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立同分布,

$$E(X_i) = \mu, D(X_i) = \sigma^2, i = 1, 2, \cdots$$

则前
$$n$$
个变量的和的标准化变量为: $Y_n = \frac{\sum\limits_{i=1}^n X_i - n\mu}{\sqrt{n\sigma}}$

$$\forall x \in R, \vec{\pi}: \quad \lim_{n \to +\infty} P\left(Y_n \le x\right) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

此定理表明,当n充分大时, Y_n 近似服从N(0,1), $\sum_{i=1}^{n} X_i$ (近似) $\sim N(n\mu, n\sigma^2)$,

从而,
$$P(a < \sum_{i=1}^{n} X_i \le b) \approx \Phi(\frac{b-n\mu}{\sqrt{n\sigma}}) - \Phi(\frac{a-n\mu}{\sqrt{n\sigma}}).$$

德莫佛--拉普拉斯定理

推论:设 n_A 为n重贝努里试验中A发生的次数,

$$P(A) = p(0 ,则对任何实数x,有:$$

$$\lim_{n \to +\infty} P\left(\frac{n_A - np}{\sqrt{np(1-p)}} \le x\right) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x).$$

即, $B(n,p) \sim N(np,np(1-p))$,当n充分大时.

 n_A (近似) ~ N(np, np(1-p)).