Serie di Faurier in
$$L^2(I)$$
 $I=(-\frac{1}{2},\frac{1}{2})$ prodotto sealar $(f,g)=\int_I f(i)g(a)da$

Sistema outonormale de polinomi trigonometrici

 $p_0=\frac{1}{1}$, $p_k=\frac{e_0}{1}(\frac{e_k}{1})$, $q_k=\frac{1}{1}(\frac{e_k}{1})$ $\frac{1}{1}(\frac{e_k}{1})$

Olave $f_k=\frac{1}{1}(\frac{e_k}{1})$ $f_k=\frac{e_k}{1}(\frac{e_k}{1})$ f

Modi equivalenti di servere (*):

$$\begin{array}{lll}
\underline{ao} + \overline{L}_{\Gamma} & \underline{a\kappa} & \underline{eos} & (\xi_{\kappa} \kappa) + \underline{b\kappa} & \underline{oin} & (\xi_{\kappa} \kappa) & (\star \star \star) \\
\underline{ao} + \overline{L}_{\Gamma} & \underline{a\kappa} & \underline{eos} & (\xi_{\kappa} \kappa) + \underline{b\kappa} & \underline{oin} & (\xi_{\kappa} \kappa) \\
\underline{ak} = \underline{2} \int_{\Gamma} f(\kappa) \underline{eos} & (\xi_{\kappa} \kappa) d\kappa & \kappa \geq d \\
\underline{bk} = \underline{2} \int_{\Gamma} f(\kappa) \underline{eos} & (\xi_{\kappa} \kappa) d\kappa & \kappa \geq d \\
\underline{T} \int_{\Gamma} f(\kappa) \underline{eos} & (\xi_{\kappa} \kappa) + \underline{ain} & (\xi_{\kappa} \kappa) \\
\underline{k} = -\underline{eos} & (\xi_{\kappa} \kappa) + \underline{ain} & (\xi_{\kappa} \kappa) \\
\underline{bk} = \underline{1} \int_{-\frac{T}{2}} f(\kappa) \underline{eos} & (\kappa \in \Gamma) \\
\underline{f}_{\kappa} = \underline{ak} + \underline{i} \underline{bk} \\
\underline{f}_{-\kappa} = \underline{ak} + \underline{i} \underline{bk} \\
\underline{f}_{-\kappa} = \underline{ak} + \underline{i} \underline{bk}
\end{array}$$

Deoraua: Il nistema (po, pr, qx) x>1 e ortouromere competo in L2(I). Sim Usialus la 3) e mostriame che $\langle p_0, p_K, q_K \rangle = L^2(I)$ ⊆ sempre vero. (M ⊆H) 2 Y LE Le(I), & puo' esser approximate con elementi di <po,px,qx>. Pasos Mostriaus che quanto sopra è vero se f = JE Co (I). Sufatti-, posso estendere la $\tilde{\gamma} \in C_{per}^{\infty}(R)$.

Opervarioui / commenti Data JE L2(I), for il teorine opra: f = (f,po)po + Z, (f,pr)pr+ (f,qr)qr. · Pata fe L2(I), vole l'il. di Berel: $\| f \|_{2(I)} = (f, p_0) + \sum_{k \ge 1} (f, p_k)^2 + (f, q_k)^2$ (id Beosel: fe L2(I) April moi Roeff di Javier) · Possiauro "sostituire" L2(-I, I) eon $L_{+}^{2}(\mathbb{R}) = \{ f \in L_{loc}^{2}(\mathbb{R}) : T-period che \}.$ è uno opagio d'Hilbert, con $(f,g) = \int_{-T}^{\frac{1}{2}} fg$ o I coeff di J. Manno seuso auche per $f \in L^{1}(-\frac{1}{2}, \frac{1}{2})$: $|a_{1}| = \frac{2}{T} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) e_{3}(\xi_{x} \times) dx| \leq \frac{2}{T} \int_{-\frac{1}{2}}^{\frac{1}{2}} |f(x)| (+\infty)$ lo stesso per i br.

• Se $f \in A.C.\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) = f\left(-\frac{1}{2}\right) = f\left(\frac{1}{2}\right)$ poso estenderla a una femnaire continua perdice 12 (R). (l'estensique pappartieue a L7 (R)). Ha seuso edeclare i coeff di Jamier nie d'f chedif Sar, br siamo i soeff di Janier di f ak, bk " " f! $a'_{K} = \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) e_{\sigma}(\xi_{E}x) dx$ $= \frac{2}{T} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) e_{\sigma}(\xi_{E}x) dx$ (ak= Exbx ulationi tra i coeff di Foniser di f e di f 16k=-Skar fr= isk fk YKEZL.

Applicationi delle sire di fourier e eq. différentiali D PDE posposto. Ricerco di solutioni periodiche di ODE lineari tramite anie difonier Considerians un ODE on Robble forma $\frac{1}{J} = \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ $\int_{J} = 0 \quad \int_{J} x \in \mathbb{R} \quad \text{ODE in } u$ La ms eq differentièle equivale a chiedere: $\int_{j=0}^{\infty} a_j u^{(j)} k = b^{(j)} k$ YK∈ ZL. $\begin{bmatrix}
\hat{j} & \hat{j} & \hat{k} \\
\hat{j} & \hat{k}
\end{bmatrix} \hat{k}_{k} = \hat{k}_{k}$ $P(i \leq k)$ $\forall k \in \mathbb{Z}$. sistema di Cinfinite eg, algebriche in ûk

Indicando en Pil polinomio eauthenistico dell'opt di pooteura (P(1) = [1 q 1)) l'or isulte equivolente al sistema: P(igk) MK = BK YKE ZL Ciaroune eq. è em'eq. linear di l'apadoin \widehat{u}_{k} !

(ax = b) $a \neq 0$) uniear selva. $x = \frac{b}{9}$ (ax = b) a = 0 ; b = 0 infinite selva. · 2000 1 P(i&x) 70 $\forall k \in \mathbb{Z}$. (in LT). $\frac{1}{2} \quad \text{fix} = \frac{1}{2} \text{fix} \quad \text{unical sol.}$ $\frac{1}{2} \quad \text{P(ix)}$. <u>Caso</u> 2 P(i&x)=0 per K= K1,..., Kp $f_{k}=0$ per $K=K_{1},...,K_{p}^{*}$ infinite solut.

Ouvero $\widehat{u}_{k}=$ \widehat{f}_{k} $K\neq K_{1}^{*},...,K_{p}^{*}$ Ouvero $\widehat{u}_{k}=$ \widehat{f}_{k} \widehat{f}_{k but o per qualche Ke \Ki,.., Kp y => mo salus.

Op/commento: Q sous altre sistem ortonormali Competi in L2 (I), 1, x, x^2 , x^3 nomi di Repudre. Es. in $2^{2}(-1,1)$ $\frac{1}{\sqrt{2}} \qquad \sqrt{\frac{5}{2}} \left(-\frac{1}{3} + n^2 \right) \qquad \sqrt{\frac{5}{2}} \left(-\frac{1}{3} +$ Data JE (2(I), perminimitax la distanza in (2(I) de un polinomio 1.9 rado <3, olovro considerare le source delle suie d.f. di f. fatta respetto ai polinoui 1' Legendre.