Resolución de problemas usando lógica proposicional

Sesión 7

Edgar Andrade, PhD

Marzo de 2019

Departmento de Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

- 1. Representación de situaciones sin condiciones iniciales
- 2. Representación de situaciones con condiciones iniciales
- 3. Búsqueda de soluciones
- 4. Interpretación de soluciones

Contenido

- 1 Representación de situaciones sin condiciones iniciales
 - 2 Representación de situaciones con condiciones iniciales
- 3 Búsqueda de soluciones

4 Interpretación de soluciones

Problema —sin condiciones iniciales—

Considere un tablero de ajedrez de 3×3 . El problema consiste en ubicar tres caballos en el tablero de tal manera que ningún caballo ataque a otro.

Ejemplo

Por ejemplo, si ubicamos los caballos como en la figura, ninguno ataca a otro.

Claves de representación (1/2)

Primero enumeramos las casillas del tablero de la siguiente manera:

1	2	3
4	5	6
7	8	9

Claves de representación (2/2)

Una letra proposicional c_i para cada casilla i.

c_i es verdadera sii hay un caballo ocupando la casillai.

c_1	<i>c</i> ₂	<i>c</i> ₃
C4	<i>C</i> 5	<i>C</i> ₆
C7	C8	C 9

Ejemplo

 c_1 : hay un caballo en 1 $\neg c_2$: no hay un caballo en 2 $\neg c_3$: no hay un caballo en 3 $\neg c_4$: no hay un caballo en 4 $\neg c_5$: no hay un caballo en 5 $\neg c_6$: no hay un caballo en 6 $\neg c_7$: no hay un caballo en 7 $\neg c_8$: no hay un caballo en 8 $\neg c_9$: no hay un caballo en 9

Tipos de reglas

Regla 1: Debe haber exactamente tres caballos en el tablero.

Regla 2: Ningún caballo debe poder atacar a otro.

Regla 1 (incompleta...) (1/2)

 $(c_1 \wedge c_2 \wedge c_3 \\ \wedge \neg c_4 \wedge \neg c_5 \wedge \neg c_6 \\ \wedge \neg c_7 \wedge \neg c_8 \wedge \neg c_9$) $\vee \dots$

2	2	2

Regla 1 (incompleta...) (2/2)

Son exactamente $9\times 8\times 7$ cláusulas, una por cada configuración posible de exactamente tres caballos en el tablero 3×3 .

Ejemplo de reglas tipo 2 —informal— (1/4)

Si hay un caballo en 1, no debe haber un caballo ni en 6 ni en 8, puesto que se estarían atacando mútuamente.

Ejemplo de reglas tipo 2 —formal— (2/4)

 $c_1 \rightarrow (\neg c_6 \wedge \neg c_8)$

Ejemplos de reglas tipo 2 (3/4)

$$c_2 \rightarrow (\neg c_7 \wedge \neg c_9)$$

Reglas tipo 2 (4/4)

$$c_{1} \rightarrow (\neg c_{6} \land \neg c_{8})$$

$$c_{2} \rightarrow (\neg c_{7} \land \neg c_{9})$$

$$c_{3} \rightarrow (\neg c_{4} \land \neg c_{8})$$

$$c_{4} \rightarrow (\neg c_{3} \land \neg c_{9})$$

$$c_{6} \rightarrow (\neg c_{1} \land \neg c_{7})$$

$$c_{7} \rightarrow (\neg c_{2} \land \neg c_{6})$$

$$c_{8} \rightarrow (\neg c_{1} \land \neg c_{3})$$

$$c_{9} \rightarrow (\neg c_{2} \land \neg c_{4})$$

Contenido

- 1 Representación de situaciones sin condiciones iniciales
- 2 Representación de situaciones con condiciones iniciales
- 3 Búsqueda de soluciones

4 Interpretación de soluciones

Problema —con condiciones iniciales—

Dado un caballo en un tablero de ajedrez de 3×3 , el problema consiste en ubicar otros dos caballos de tal manera que ningún caballo ataque a otro.

Tipos de reglas

Regla 1: Debe haber exactamente tres caballos en el tablero.

Regla 2: Ningún caballo debe poder atacar a otro.

Regla 3: Debe haber un caballo en la casilla c_i .

Contenido

1 Representación de situaciones sin condiciones iniciales

- 2 Representación de situaciones con condiciones iniciales
- 3 Búsqueda de soluciones
- 4 Interpretación de soluciones

1. Representar las reglas mediante fórmulas de la lógica proposicional, $\varphi_1, \ldots, \varphi_n$.

- 1. Representar las reglas mediante fórmulas de la lógica proposicional, $\varphi_1, \ldots, \varphi_n$.
- 2. Encontrar las interpretaciones I que hacen verdadera a la fórmula $\varphi_1 \wedge \ldots \wedge \varphi_n$.

- 1. Representar las reglas mediante fórmulas de la lógica proposicional, $\varphi_1, \ldots, \varphi_n$.
- 2. Encontrar las interpretaciones I que hacen verdadera a la fórmula $\varphi_1 \wedge \ldots \wedge \varphi_n$.
- Este procedimiento se puede realizar, aunque de manera muy ineficiente, mediante tablas de verdad.

- 1. Representar las reglas mediante fórmulas de la lógica proposicional, $\varphi_1, \ldots, \varphi_n$.
- 2. Encontrar las interpretaciones I que hacen verdadera a la fórmula $\varphi_1 \wedge \ldots \wedge \varphi_n$.
- Este procedimiento se puede realizar, aunque de manera muy ineficiente, mediante tablas de verdad.
 - 3. Finalmente, las interpretaciones *I* encontradas se interpretan como soluciones del problema.

- 1. Representar las reglas mediante fórmulas de la lógica proposicional
- 1a. Representar las reglas como cadenas en notación polaca inversa.

- 1. Representar las reglas mediante fórmulas de la lógica proposicional
- 1a. Representar las reglas como cadenas en notación polaca inversa.
- 1b. Transformar las cadenas en árboles.

$$p \rightarrow q$$
 se denota como $\rightarrow pq$

$$p o q$$
 se denota como $o pq$
$$p \wedge \neg (q \vee r) \text{ se denota como } \wedge p \neg \vee qr$$

$$p o q$$
 se denota como $o pq$ Inversa: $qp o p \wedge \neg (q \lor r)$ se denota como $\wedge p \neg \lor qr$

```
p 	o q se denota como 	o pq Inversa: qp 	o p \wedge \neg (q \vee r) se denota como \wedge p \neg \vee qr Inversa: rq \vee \neg p \wedge
```

1a

1a. Representar las reglas en notación polaca inversa:

Hay exactamente tres caballos en la primera fila.

Hay exactamente tres caballos en la primera fila.

$$((((((((c_1 \land c_2) \land c_3) \land \neg c_4) \land \neg c_5) \land \neg c_6) \land \neg c_7) \land \neg c_8) \land \neg c_9)$$

Hay exactamente tres caballos en la primera fila.

$$((((((((c_1 \land c_2) \land c_3) \land \neg c_4) \land \neg c_5) \land \neg c_6) \land \neg c_7) \land \neg c_8) \land \neg c_9)$$

Notación Polaca: $\land \land \land \land \land \land \land \land \land c_1c_2c_3 \neg c_4 \neg c_5 \neg c_6 \neg c_7 \neg c_8 \neg c_9$

Hay exactamente tres caballos en la primera fila.

$$((((((((c_1 \land c_2) \land c_3) \land \neg c_4) \land \neg c_5) \land \neg c_6) \land \neg c_7) \land \neg c_8) \land \neg c_9)$$

Notación Polaca: $\land \land \land \land \land \land \land \land \land c_1c_2c_3 \neg c_4 \neg c_5 \neg c_6 \neg c_7 \neg c_8 \neg c_9$

Hay exactamente tres caballos en la primera fila.

$$((((((((c_1 \land c_2) \land c_3) \land \neg c_4) \land \neg c_5) \land \neg c_6) \land \neg c_7) \land \neg c_8) \land \neg c_9)$$

Notación Polaca: $\land \land \land \land \land \land \land \land \land c_1c_2c_3 \neg c_4 \neg c_5 \neg c_6 \neg c_7 \neg c_8 \neg c_9$

Faltan las otras $9 \times 8 \times 7 - 1$ reglas.

1a —Python—

```
# Regla 1: Debe haber exactamente tres caballos
LETRASPROPOSICIONALES = [STR(I) FOR I IN RANGE(1, 10)] # CREO LAS LETRAS PROPOSICIONALES
CONJUNCIONES = ',' # PARA IR GUARDANDO LAS CONJUNCIONES DE TRIOS DE DISYUNCIONES DE LITERALES
INICIAL = TRUE # PARA INICIALIZAR LA PRIMERA CONJUNCION
FOR P IN LETRASPROPOSICIONALES:
    AUX1 = [X FOR X IN LETRASPROPOSICIONALES IF X != P] # TODAS LAS LETRAS EXCEPTO P
    FOR Q IN AUX1:
        \text{Aux2} = [\text{x for x in aux1 if x != q}] \ \# \ \text{Todas las letras excepto p y q}
        FOR R IN AUX2:
            LITERAL = R + O + P + 'Y' + 'Y'
            AUX3 = [X + '-' FOR X IN AUX2 IF X != R]
            FOR K IN AUX3:
                 LITERAL = K + LITERAL + 'Y'
            IF INICIAL: # INICIALIZAR LA PRIMERA CONJUNCION
                 CONJUNCIONES = LITERAL
                INICIAL = FALSE
            ELSE:
                 CONJUNCIONES = LITERAL + CONJUNCIONES + 'O'
```

1b —Python—

Transformar las cadenas en árboles.

```
DEF STRING2TREE(A, LETRASPROPOSICIONALES):
    # Crea una formula como tree dada una formula como cadena escrita en notacion polaca inversa
    # Input: A, lista de caracteres con una formula escrita en notación polaca inversa
             LETRAS PROPOSICIONALES, LISTA DE LETRAS PROPOSICIONALES
    # Output: formula como tree
    CONECTIVOS = ['O', 'Y', '>']
    PILA =
    FOR C IN A:
             IF C IN LETRASPROPOSICIONALES:
                   PILA.APPEND(TREE(C, NONE, NONE))
             ELIE C == '-':
                   FORMULAAUX = TREE(C, NONE, PILA[-1])
                   DEL PILA[-1]
                   PILA, APPEND (FORMULA AUX)
             ELIF C IN CONECTIVOS:
                   FORMULAAUX = TREE(C, PILA[-1], PILA[-2])
                   DEL PILA[-1]
                   DEL PILA[-1]
                   PILA.APPEND(FORMULAAUX)
    RETURN PILA[-1]
```

Idea del procedimiento —2—

- 2. Encontrar las interpretaciones I que hacen verdadera a la fórmula $\varphi_1 \wedge \ldots \wedge \varphi_n$.
- 2a. Construir todas las interpretaciones.

Idea del procedimiento —2—

- 2. Encontrar las interpretaciones I que hacen verdadera a la fórmula $\varphi_1 \wedge \ldots \wedge \varphi_n$.
- 2a. Construir todas las interpretaciones.
- 2b. Para cada I, determinar si $V_I(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$.

Contenido

- 1 Representación de situaciones sin condiciones iniciales
- 2 Representación de situaciones con condiciones iniciales
- 3 Búsqueda de soluciones

4 Interpretación de soluciones

Esquema del procedimiento

Interpretación de soluciones

Las soluciones son asignaciones de valores 0s y 1s a letras proposicionales, es decir interpretaciones Is, tales que $V_I(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$.

Interpretación de soluciones

Las soluciones son asignaciones de valores 0s y 1s a letras proposicionales, es decir interpretaciones Is, tales que $V_I(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$.

Para resolver el problema, es indispensable interpretar esos valores de las letras proposicionales en la situación representada.

Interpretación de soluciones

Las soluciones son asignaciones de valores 0s y 1s a letras proposicionales, es decir interpretaciones Is, tales que $V_I(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$.

Para resolver el problema, es indispensable interpretar esos valores de las letras proposicionales en la situación representada.

Por ejemplo, en el problema de los caballos, las letras proposicionales con valor 1 son las casillas donde van los caballos.

{1:0, 2:1, 3:0, 4:0, 5:0, 6:1,	{1:0, 2:0, 3:0, 4:0, 5:1, 6:1,	{1:0, 2:0, 3:0 4:0, 5:1, 6:0,

Consultar archivo 'visualizacion_tablero.py'.

Ejercicio

Escribir un código python que dibuje todas las soluciones posibles al problema de poner tres caballos en un tablero de ajedrez de tamaño 3×3 , sin que se ataquen mutuamente, dados dos caballos iniciales: uno en la casilla 2 y otro en la casilla 6. [¡Son cuatro soluciones posibles!]

Fin de la sesión 7

En esta sesión usted ha aprendido a:

- 1. Representar situaciones mediante la lógica proposicional, con y sin condiciones iniciales.
- 2. Buscar soluciones mediante tablas de verdad.
- 3. Interpretar las soluciones.