ECE 463 Introduction to Computer Networks

Lecture: Fragmentation Sanjay Rao

ARP Demo

- /sbin/arp -n (shows arp table)
- netstat -rn (shows IP routing table)
- /usr/sbin/tcpdump -n arp host [hostip] (tcpdump of ARP traffic)

What is a Switch?

- Switch: Networking device that operate on Ethernet frames Layer 2 devices
- Forward pkts to the destination's MAC address.
- Plug-and-Play devices Self-configuring without hardware or software changes.
- Will propagate broadcast packets (ARP)
- Will not show up in output of "traceroute"

Example:

- Host A can have arbitrary MAC address. No "rule" dictating what it should be.
- Switch will learn address of A over time.
- A need not be configured with information about the switch.

What is a Router?

- Router: networking device forwards data packets across an internetwork.
- Routers operate on Layer 3 of OSI model and use IP address information of the destination to forward the packet.
- Will not propagate broadcast packets (ARP)
- Are not Plug-and-play devices, hosts connected to the routers need their IP addresses to be configured.
 - Router must be configured to indicate packets of certain subnet must be directed on particular interface.
 - IP address of host must be carefully configured to match subnet it is on.
 - Host also configured with router information (typically)

Broadcast Domain

- Broadcast Domain: 2 hosts in same broadcast domain if a broadcast packet (e.g. ARP packet) sent by one of the hosts will also reach the other host.
- Different than "Collision Domain".
- Collision Domain: logical network segment where data packets can "collide" with one another for being sent on a shared medium at the same time.

Physical View of a LAN

IP Service Model

Low-level communication model provided by Internet

Datagram

- Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
- Analogous to letter or telegram

IPv4 Packet Format

IPv4 Header Fields: Word1

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)

- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65535 bytes
 - In practice, break into much smaller packets for network performance considerations

Other Fields

0	4	8 12	16	19	24	28	31	
ver- sion	HLen	TOS		Length				
ldent				Flag s Offset				
TTL		Protocol		Checksum				
Source Address								
Destination Address								
Options (if any)								
Data								

TTL: "Time to Live": decremented by 1 hop at each router

Protocol: For Demultiplexing. E.g. UDP/TCP

Checksum: On header

IP Fragmentation

- Every Network has Own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don't know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, fragment packets
 - Might get further fragmentation as proceed farther
 - Reassemble at the destination
 - If any fragment disappears, delete entire packet

IP Fragmentation Example #1

IP Fragmentation Example #2

IP Fragmentation Example #3 Length = 1500, M=1, Offset = 0 IP host Header Data router MTU = 1500**1480 bytes** Length = 2000, M=1, Offset = 0Length = 520, M=1, Offset = 1480 IP IP Header Data Header Data **1980 bytes** Length = 1500, M=1, Offset = 1980 500 bytes IΡ Length = 1840, M=0, Offset = 1980 Header Data Length = 360, M=0, Offset = 3460IΡ Header Data IΡ **1480 bytes** Header Data **1820 bytes** 340 bytes

IP Reassembly

Length = 1500, M=1, Offset = 0

Length = 520, M=1, Offset = 1480

Length = 1500, M=1, Offset = 1980

Length = 360, M=0, Offset = 3460

- Performed at final destination
- Challenges
 - Fragments might arrive out-of-order
 - Don't know how much memory required until receive final fragment
 - Some fragments may be duplicated
 - Keep only one copy
 - Some fragments may never arrive
 - After a while, give up entire process
 - Significant memory management issues
 - See code in book

Frag. & Reassembly Concepts

- Demonstrates Many Internet Concepts
- Decentralized
 - Every network can choose MTU
- Connectionless Datagram Protocol
 - Each (fragment of) packet contains full routing information
 - Fragments can proceed independently and along different routes
- Fail by Dropping Packet
 - Destination can give up on reassembly
 - No need to signal sender that failure occurred
- Keep Most Work at Endpoints
 - Reassembly

Frag. & Reassembly Reality

- Reassembly Fairly Expensive
 - Copying, memory allocation
 - Want to avoid
- MTU Discovery Protocol
 - Protocol to determine MTU along route
 - Send packets with "don't fragment" flag set
 - Keep decreasing message lengths until packets get through
 - Assumes every packet will follow same route
 - Routes tend to change slowly over time
- Common Theme in System Design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

Internet Control Message Protocol (ICMP)

Short messages used to send error & other control information

Examples

- Ping request / response
 - Can use to check whether remote host reachable
- Destination unreachable
 - Indicates how packet got & why couldn't go further
- Flow control
 - Slow down packet delivery rate
- Redirect
 - Suggest alternate routing path for future messages
- Router solicitation / advertisement
 - Helps newly connected host discover local router
- Timeout
 - Packet exceeded maximum hop limit

Exploit Properties

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets

Operation

- Send max.-sized packet with "do not fragment" flag set
- If encounters problem, ICMP message will be returned
 - "Destination unreachable: Fragmentation needed"
 - Indicates MTU encountered

Length = 4000, Don't Fragment

IP Packet

- When successful, no reply at IP level
 - "No news is good news"
- Higher level protocol might have some form of acknowledgement

Summary: Important Concepts

- Ideas in the Internet
 - Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
 - Use ICMP for low-level control functions
 - Fragmentation/Reassembly

Longest Prefix Matching Example

Routing Table

Network	Next Hop	3 rd Octet
128.96.170.0/23	Interface 0	1010 1010
128.96.168.0/23	Interface 1	1010 1000
128.96.166.0/23	R2	1010 0110
128.96.164.0/22	R3	1010 0100
(default)	R4	

Packet to destination 128.96.167.151: 1010 0111

- Matches two entries.
- Forwarded to R2 (Longer Prefix Match)