

NLP LAB 2021 - VDA

Ananta Bhattarai, Sophie Schoen, Viviane Rehor

Technische Universität München

Department of Informatics

Research Group Social Computing

Munich, July 07 2021

Our Vision - Part 1

- Creating a Baseline: Fine-Tuning GPT-2 with Empathic Dialogues datasets
 - a. Data Preprocessing (Encoding, Decoding & Importing Data)
 - b. Fine-Tuning to get π
- 2. Producing turns y₀- y₁ to give human feedback on
 - a. With test/validation set of

Empathic Dialogs dataset

3. Train reward model **r** with those turns and human feedback **b**

Our Vision - Part 2: Policy 2

- Train the reward model with validation s gold responses as the best response.
- 5. Fine-tune the policy using above reward model.

Use gold response as the best response reward

Policy T turn y

producing

model **[**

5. Maybe add Knowledge base + Dialog History

Empathic Dialogs

predicted

reward

Results (Policy 1)

Results (Policy 2)

Human Evaluation (P75 vs Supervised Baseline)

Human Evaluation (P100 vs Supervised Baseline)

Perplexity Score

- **Perplexity =** normalised inverse probability of the test set
- high probability to the test set = model is not surprised to see it (it's not perplexed by it)
 - -->has a good understanding of how the language works
 - \rightarrow Probability P high \rightarrow Perplexity PP low \rightarrow good model
- Perplexity=weighted branching factor
 - -> PP=100 -> model has to pick between 100 words by guessing the new word → "perplex"

$$PP(W) = \sqrt[N]{rac{1}{P(w_1,w_2,\ldots,w_N)}}$$

his is probably the most frequently seen definition of perplexity. In this

How does the code works?

```
Code
import nltk
from nltk.lm.preprocessing import padded everygram pipeline
from nltk.lm import MLE
train_sentences = ['an apple', 'an orange']
tokenized_text = [list(map(str.lower, nltk.tokenize.word_tokenize(sent)))
                for sent in train sentences]
n = 1
train data, padded vocab = padded everygram pipeline(n, tokenized text)
model = MLE(n)
model.fit(train data, padded vocab)
test sentences = ['an apple', 'an ant']
tokenized_text = [list(map(str.lower, nltk.tokenize.word_tokenize(sent)))
                for sent in test_sentences]
test_data, _ = padded_everygram_pipeline(n, tokenized_text)
for test in test data:
    print ("MLE Estimates:", [((ngram[-1], ngram[:-1]), model.score(ngram[-1], ngr
test data, = padded everygram pipeline(n, tokenized text)
for i, test in enumerate(test data):
  print("PP({0}):{1}".format(test sentences[i], model.perplexity(test)))
```

Example: Bigram model

Train Data: "an apple", "an orange" Padded Train Data: "(s) an apple (/s)", "(s) an orange (/s)" Vocabulary: (s), (/s) an, apple, orange, UNK

MLE estimates

p(w)	MLE estimate
p(an s)	2/2 = 1
p(apple an)	1/2 = 0.5
p(\s apple)	1/1 = 1
p(ant an)	0/1 = 0
p(\s ant)	0

Perplexity Scores of our models

Gold model has the second best perplexity

Perplexity Scores of our models

Gold model has the second best perplexity

Perplexity vs. Training steps

- The more training steps the better the Perplexity score
 - → perplexity always better as in the original model except between 120-170 trainings

Perplexity vs. KL

• Perplexity score decreases for higher KL

Questions

What to do with "unknown" words → perplextiy= inf / 1 / kick out?

Here we calculate how perplex the generated responses from the model are in comparison to the Empathic Dialogue Testset

→ Better to calculate just the perplexity of the model performance?

Evaluation Metrics - Florian

- Utterance length
- Self repetition
- Utterance repetition
- Word repetition
- Conversation repetition
- Emotional reaction level
- Interpretation level
- Exploration level

- Question (1 else 0 -> avg)
- Question ration of all samples
- If gold is question ratio of sample questions
- If gold is no question ration of sample questions

Metrics for policy-2

... trained based on the reward function

Word count metrics P2

Word Count metrics vs number of training steps

Best number of training steps: 150

Question metrics P2

Word Count metrics vs number of training steps

Best number of training steps: 75

- ratio of sample is question of all samples

Empathy metrics P2

Word Count metrics vs KL calculated from 100 samples

All metrics over the generated response from policy-2's model show that after traing step **75/100** the model reached it's best values!

Metrics for policy-1

... the model gets worse concerning every metric with higher training steps

conversation_repetition self_repetition

utterance_repetition

Word count metrics P1

Word Count metrics vs number of training steps

rep response to whole context

rep response to prev own utterances

rep response to prev utterance

rep_within current utterance/ duplicates

Question metrics P1

Word Count metrics vs number of training steps

Empathy metrics P1

training steps

All metrics over the generated response from policy-1's model show that the model is getting worse on every way while training!