

Circuito digital para controle do fator de qualidade de um filtro passa-banda ativo sintonizável

Trabalho de conclusão de curso - TCC1

Discente: Alef de Oliveira Santos **Orientador:** Dr. Dean Bicudo Karolak

Co-orientador: Dr. Paulo Márcio Moreira e Silva

01 de dezembro de 2023

Universidade federal de Itajubá - *Campus* Theodomiro Carneiro Santiago Instituto de Ciências Tecnológicas Engenharia da Computação

SUMÁRIO

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 1 / 47

2/47

Introdução ○●○○○○○○

Sobre o controle do fator de qualidade neste trabalho

- O fator de qualidade (Q) está relacionado com a largura de banda de um filtro passa-banda;
- Uma vez fabricado o filtro, alterar sua banda através da modificação de parâmetros físicos é inviável;
- Modificar a seletividade do filtro por meio de seu fator de qualidade, que é controlado por uma corrente DC de referência, torna-se uma opção viável;
- Propõe-se desenvolver um circuito digital capaz de ajustar o fator de qualidade de um filtro passa-banda ativo;

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 3 / 47

Figura 1: Q× largura de banda e sua relação com polos

 $Q \to \infty$

(a) O× Largura de banda

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 4 / 47 Introdução ○○○●○○○○

5 / 47

REQUISITOS DO PROJETO

- O circuito deve fazer interface adequada com o sistema pré-existente (O filtro + outras estruturas);
- O circuito deve controlar o Q por meio de uma corrente de referência I_{REF};
- O usuário insere um valor de Q desejado (Q_d) e o circuito fornece um Q o mais próximo possível dentro de determinada tolerância (Q_m) , de maneira mais otimizada possível;
- Para controlar que o valor de Q_m convirja para o valor de Q_d são estudados e implementados métodos numéricos de aproximação de funções não-lineares.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 6 / 47

Figura 2: Arquitetura simplificada do sistema completo com destaque para o filtro

Figura 3: O e ζ no tempo

(a) Resposta ao degrau para diferentes valores de ζ

(b) Resposta similar à do filtro, com $\zeta = 0.01$

$$\zeta = \frac{1}{2Q} \longleftrightarrow Q = \frac{1}{2\zeta}$$
 (1)

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 8 / 47 00000000

Introdução

Curva de $Q imes I_{REF}$

Figura 4: Dados teóricos esperados e sintéticos da curva de $Q \times I_{REF}$ com a condição instabilidade

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 9 / 47

Objetivos

OBJETIVOS PARA O TCC1

Os objetivos principais deste trabalho para o TCC1 são, principalmente o fluxo de front-end, compreendido por:

- 1 Projetar a arquitetura capaz de controlar o fator de qualidade do circuito;
- 2 Codificar os blocos do sistema projetado em Verilog:
- 3 Comparar o desempenho dos métodos de controle prototipados standalone;
- 4 Validar a funcionalidade blocos projetados através de testbenches em Verilog/SystemVerilog.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 10 / 47

Desenvolvimento

Desenvolvimento

•••••••••••••••

Figura 5: Arquitetura simplificada do sistema completo

Tabela 1: Sinais, respectivos tipos e funcionalidades por bloco

Bloco	Sinal	Tipo	Função referente ao bloco
Proposed system	Start	Digital [1 bit]	Sinalizar que o oscilador enviará pulsos correspondentes ao valor de Q
Proposed system	I_{REF}	Digital [10 bits]	Enviar valor digital de corrente de referência para controlar o Q
N-bit DAC	I_{REF}	Digital [10 bits]	Receber valor digital de corrente de referência para conversão D/A
N-bit DAC	i_{ref}	Analógico	Equivalente analógico convertido de I_{REF}
Resonant system	Start	Digital [1 bit]	Indicar que o sistema pode injetar a corrente no oscilador LC interno
Resonant system	Q digital pulses	Digital Serial [1 bit]	Valor de Q medido e convertido em um trem de pulsos

Desenvolvimento

Figura 6: Arquitetura desenvolvida para o sistema

RESUMO DA OPERAÇÃO

- O sistema inicializa variáveis internamente:
- O bloco de determinação de instabilidade retorna o maior valor admissível de corrente antes da instabilidade;
- O bloco de controle do Q ajusta a corrente até atingir $Q_d \approx Q_m$;
- 4 O sistema retém o ultimo estado para a operação normal do filtro.

TCC1 - Alef de Oliveira Santos UNIFEL-ICT-ECO 15 / 47

Figura 7: Fluxograma de execução

Figura 8: Diagrama de tempo da operação do bloco de medição.

Fonte: o autor

DETERMINAÇÃO DO LIMITE DE INSTABILIDADE

Figura 9: Diagrama de tempo da operação do bloco de determinação de instabilidade

Fonte: o autor

TCC1 - Alef de Oliveira Santos 18 / 47 UNIFEL-ICT-ECO

ALGORITMO DE DETECÇÃO DE INSTABILIDADE

Algorithm 1 Algoritmo de determinação do ponto de instabilidade

Input: ΔQ , ΔI_{REF} , Q_m

Output: I_{Stable}

1: $I_{Stable} \leftarrow I_{MAX}$

 $\triangleright I_{MAX} = 1mA$

2: Found ← False

3: while not Found do

4: $Q_i \leftarrow Q_m(I_{Stable})$

⊳ Medição

5: $I_{Stable} \leftarrow I_{Stable} - \Delta I_{REF}$

6: $Q_{i+1} \leftarrow Q_m(I_{Stable})$

⊳ Nova medição

7: **if** $(Q_{i+1} - Q_i \ge \Delta Q)$ then

8: Found \leftarrow **True**

9: end if

10: end while

11: return I_{Stable}

Figura 10: Diagrama de tempo da operação do bloco de seleção de corrente

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 20 / 47

REPRESENTAÇÃO DO BLOCO DE SELEÇÃO DE CORRENTES

Figura 11: Representação do bloco intertravamento ou seleção de correntes

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 21/47

Figura 12: Diagrama de tempo da operação do bloco de controle do *Q*.

Fonte: o autor

18: end while

??

Algorithm 2 Método adaptado da bisseção

```
Input: TOL, Q_d, Q_m, I_{Stable}
Output: I_{REF} \mid \varepsilon \leq \mathsf{TOL}
1: a \leftarrow 0
2: b ← I<sub>Stable</sub>
3: Converged ← False
4: while not Converged do
         c \leftarrow \frac{a+b}{2}
        I_{RFF} \leftarrow c
        O_m \leftarrow Q_m (I_{REF})
                                                                                                                            ⊳ Realiza-se uma medição do O com o novo valor de IPEE
      \varepsilon \leftarrow O_m - O_d
         if \varepsilon < \text{TOL then Converged} \leftarrow \text{True}
10:
          else
11:
               if \varepsilon > 0 then
12:
                   a \leftarrow c
13.
               end if
14:
               if \varepsilon < 0 then
15:
                    b \leftarrow c
16:
               end if
17:
          end if
```

Algorithm 3 Método adaptado das secantes

```
Input: TOL, Od, Om, Istable
Output: I_{RFF} \mid \varepsilon < TOL
1: a \leftarrow 0
2: b \leftarrow I_{Stable}
3: Converged ← False
4: while not Converged do
5:
        slope \leftarrow \frac{Q_m(b) - Q_m(a)}{b - a}
        c \leftarrow b - \frac{Q_m(b) - Q_d}{}
9:
         I_{RFE} \leftarrow c
10:
          Q_m \leftarrow Q_m (I_{REF})
11:
          \varepsilon \leftarrow |O_m - O_d|
12:
          if \varepsilon < TOL then Converged \leftarrow True
13:
          else
14:
           a \leftarrow b
15:
              b \leftarrow c
16.
          end if
```

17: end while

 $\triangleright Q_m(a), Q_m(b)$ são novas medições

ightharpoonup Medição do O com o novo valor de I_{PEE}

MÉTODO DAS SECANTES COM SELEÇÃO DE INTERVALO

- O desempenho do método das secantes varia drasticamente com a seleção do intervalo inicial de busca.
- Há duas regiões com comportamentos distintos que aceleram a convergência se detectados previamente.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 25 / 47

REPRESENTAÇÃO GRÁFICA DA SELEÇÃO DE INTERVALO

Figura 13: $Q \times I_{REF}$ com destaque para as regiões linear e não linear

26 / 47 TCC1 - Alef de Oliveira Santos UNIFEL-ICT-ECO

??

Algorithm 4 Método adaptado das secantes com seleção de intervalo desenvolvido

```
Input: TOL, Od, Om, Istable
Output: I_{RFF} \mid \varepsilon < TOL
1: Converged ← False
2: Omay ← Om (Istable)
3: if Q_d > \gamma \cdot Q_{max} then
                                                                                                                                                              ⊳ Seleção na região linear
    a \leftarrow \alpha \cdot I_{Stable}
        b \leftarrow I_{Stable}
6: else
                                                                                                                                                        ⊳ Seleção na região não-linear
        a \leftarrow 0
        b \leftarrow \beta \cdot I_{Stable}
9: end if
10: while not Converged do
11:
                       Q_m(b) - Q_m(a)
                                                                                                                                               ▷ O<sub>w</sub> (a), O<sub>w</sub> (b) são novas medições
13:
         c \leftarrow b - \frac{Q_m(b) - Q_d}{Q_m(b)}
14:
15:
          I_{PPP} \leftarrow c
         Q_m \leftarrow Q_m (I_{RFF})
                                                                                                                                          ⊳ Medição do O com o novo valor de Incr
17:
         \varepsilon \leftarrow |O_m - O_d|
         if \varepsilon \leq \text{TOL then Converged} \leftarrow \text{True}
19:
         else
20:
              a \leftarrow b
21:
              b \leftarrow c
         end if
23: end while
```

Resultados e análise

Resultados e análise

28 / 47

Trabalho futuro

Figura 14: Destague do DUT: Instability determination

Fonte: o autor

DADOS USADOS

Figura 15: Dados teóricos e sintéticos utilizados para o teste de determinação de instabilidade

ESPECIFICAÇÕES E PARÂMETROS

Tabela 2: Parâmetros passados ao algoritmo de determinação de instabilidade

Parâmetro	Valor	Descrição
ΔQ	50 []	Variação de Q considerada suficiente para sair da região instável
ΔI_{REF}	10 [bits]	Valor de decremento da corrente de configuração
$p = (I_{Stable}, Q_{max})$	(850 [bits], 113 [])	Ponto (definido) de estabilidade
MAX_ITER	50	Numero máximo de iterações. (neste caso são ciclos de clock)

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 31 / 47

RESULTADOS DA BUSCA

Tabela 3: Resultados da busca por ponto máximo de estabilidade.

Time	I_{REF} [bits]	Q_m	I_{REF} [mA]
2	1013	23	0.989258
7	993	23	0.969727
12	963	23	0.940430
17	943	23	0.920898
22	913	23	0.891602
27	893	23	0.872070
32	863	23	0.842773
36	843	113	0.823242

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 32 / 47

Introdução

COMENTÁRIOS SOBRE A BUSCA DO PONTO DE INSTABILIDADE

- Da Tabela ?? verifica-se que o ponto de estabilidade é determinado como 843 enquanto o esperado é 850 após 36 ciclos de clock.
- Os parâmetros de ΔI_{REF} , ΔQ foram ajustados priorizando a proximidade com o ponto definido (850).
- Pode-se priorizar a rapidez da busca em troca de obter um Q_{max} menor ajustando os parâmetros.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 33 / 47

Resultados e análise

34 / 47

Figura 16: Destaque do DUT: *Q Control*

Tabela 4: Especificações do teste de busca por valor único

Parâmetro	Valor	Descrição
а	0.0	Limite inferior inicial de I_{REF}
b	1.0	Limite superior inicial de $I_{\it REF}$
TOL	± 30	Tolerância ou erro máximo admissível
Q_d	110	Valor de Q desejado
MAX_ITER	32	Numero máximo de iterações.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 36 / 47

Trabalho futuro

Figura 17: Pontos obtidos por iteração e curva $Q \times I_{RFF}$ dos métodos de busca em alto nível

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 37 / 47

Bloco de controle do O

Busca em sweep no cenário realista

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 37 / 47

Tabela 5: Especificações do teste de busca em sweep

Parâmetro	Valor	Descrição
a	0.0 [mA]	Limite inferior inicial de I_{REF}
b	1.0 [mA]	Limite superior inicial de I_{REF}
TOL	± 30	Tolerância ou erro máximo admissível
Q_d	30 até 300 com passo de 20	Valor de Q desejado
MAX_ITER	32	Numero máximo de iterações.

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 38 / 47

Figura 18: Número de iterações para convergência e valor desejado de Q com alta tolerância

Fonte: o autor TCC1 - Alef de Oliveira Santos UNIFEL - ICT - ECO 39 / 47

Tabela 6: Tabela com mínimo, máximo, média, desvio e variância de ITC por método

	Min ITC	Max ITC	Mean ITC	STD ITC	VAR ITC
Basic secant	1	13	6.142857	3.591810	12.901099
Bisection	1	6	3.285714	1.772811	3.142857
Modified secant	1	2	1.571429	0.513553	0.263736

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 40 / 47

Busca em sweep no cenário sintético (baixa tolerância), TOL $=\pm 1$

RESULTADOS DOS MÉTODOS NO CENÁRIO SINTÉTICO

Figura 19: Número de iterações para convergência e valor desejado de Q com baixa tolerância

 Fonte: o autor

 TCC1 - Alef de Oliveira Santos
 UNIFEI - ICT - ECO
 41 / 47

ESTATÍSTICAS DA BUSCA EM *sweep*

Tabela 7: Tabela com mínimo, máximo, média, desvio e variância de ITC por método

	Min ITC	Max ITC	Mean ITC	std ITC	var ITC
Basic secant	4	15	8.785714	3.142233	9.873626
Bisection	3	10	7.000000	2.320477	5.384615
Modified secant	2	5	3.785714	0.892582	0.796703

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 42 / 47

Resultados do método da bisseção em HDL, TOL ± 1

Tabela 8: Pontos obtidos por iteração no método da bisseção

I_{REF} [bits]	I_{REF} $[mA]$	Q_m
511	0.499511	56
767	0.749756	97
895	0.874878	151
831	0.812317	121
799	0.781036	108
815	0.796676	114
807	0.788856	111
803	0.784946	110

Fonte: o autor

Figura 20: Gráfico dos pontos obtidos por iteração no método da bisseção

Fonte: o autor

COMPARATIVO ENTRE IMPLEMENTAÇÕES DE BAIXO E ALTO NÍVEL

Figura 21: Número de iterações para convergência $versus Q_d$ do método da bisseção em de HDL versus PL

 Fonte: o autor

 TCC1 - Alef de Oliveira Santos
 UNIFEI - ICT - ECO
 44 / 47

ESTATÍSTICAS DAS IMPLEMENTAÇÕES

Tabela 9: Tabela com mínimo, máximo, média, desvio e variância de ITC por implementação

	Min ITC	Max ITC	Mean ITC	STD ITC	VAR ITC
Implementation					
HDL	2	10	6.571429	2.376626	5.648352
PL	3	10	7.000000	2.320477	5.384615

Fonte: o autor

TCC1 - Alef de Oliveira Santos UNIFEI - ICT - ECO 45 / 47

Figura 22: Busca em sweep dos valores de Q_d no método da bisseção

Trabalho futuro

Introdução

- Codificar módulos restantes em Verilog;
- 2 Desenvolver nova codificação para o método das secantes;
- **3** Implementar bypass do bloco de controle quando $Q_d \approx Q_{max}$;
- Integrar e coordenar a operação dos blocos como um sistema completo;
- 5 Selecionar método com melhor desempenho com relação à todo sistema;
- 6 Realizar a síntese lógica em RTL;
- Simular o circuito sintetizado em RTL e checar a equivalência lógica;
- 8 Realizar etapas de posicionamento e roteamento;
- Analisar o consumo;
- Analisar desempenho do sistema por temporização estática (STA);
- Analisar área;
- Construir layout.