## Discrete Geometry for Risk and Al

Dr. Paul Larsen

March 15, 2022

# Why discrete geometry?

- Recent history: Dissatisfaction with deep learning, only "curve fitting", alternatives via causal graphical models [?]
- Less recent history: graphical models among first non-rules based AI approaches
   [?]
- Geometrical formulations of statistical objects, e.g. graphical models and probability polytopes

# Directed graphical model: university admission gender bias

Simpson paradox preview

|       | Men        |          | Women      |          |
|-------|------------|----------|------------|----------|
|       | Applicants | Admitted | Applicants | Admitted |
| Total | 8442       | 44%      | 4321       | 35%      |



# Directed graphical model: university admission gender bias

Simpson paradox preview

| Donartment | Me         | n        | Women      |          |
|------------|------------|----------|------------|----------|
| Department | Applicants | Admitted | Applicants | Admitted |
| Α          | 825        | 62%      | 108        | 82%      |
| В          | 560        | 63%      | 25         | 68%      |
| С          | 325        | 37%      | 593        | 34%      |
| D          | 417        | 33%      | 375        | 35%      |
| E          | 191        | 28%      | 393        | 24%      |
| F          | 373        | 6%       | 341        | 7%       |



Sources: [?] [?]

## Directed graphical model: hit rate for insurance quotes

- product type: financial, liability, property
- days: number of days to generate quote
- rating: measure of premium paid expected claims
- hit: 0 if quote refused, 1 if accepted

# Undirected graphical model: credit default risk [?]

- Nodes take values 0 (healthy) or 1 (default)
- Industry nodes connect to other industry nodes
- Individual firm nodes connect only to corresponding industry node



## Graph definitions

#### Definition

A graph is a pair of sets (V, E), where V is called the set of vertices (or nodes) and E is called the set of edges, such that the set of edges corresponds injectively to pairs of vertices.

#### Notes

- Typically 'pairs of vertices' does not include self-pairs, but this can be relaxed, leading to graphics with with loops.
- The injectivity requirement can also be relaxed, leading to multigraphs.

## Graphical models

#### Definition

(Informal) A graphical model is a graph whose nodes represent variables and whose edges represent direct statistical dependencies between the variables.

### Why graphical models?

- For probability distributions admitting a graphical model representation, then graph properties (*d-separation*) imply conditional independence relations.
- Conditional independence relations reduce the number of parameters required to specify a probability distribution.
- Graphical models come in two flavors depending on their edges: directed (aka *Bayesian Networks*) and undirected (aka *random Markov fields*.

## Directed acyclic graphs

### Definition

A graph G = (V, E) is a *directed acyclic graph* (denoted also DAG) if all edges have an associated direction, and no edge path consistent with the directions forms a cycle.

If there is a directed path from  $X_i$  to  $X_j$ , then  $X_i$  is called a *parent* of  $X_j$ , and  $Pa(X_j) \subseteq V$  is the set of all parents of  $X_j$ .

### Definition

If  $X = (X_1, ..., X_m)$  admits a DAG G, then  $X_G$  is a DAG model if the distribution of X decomposes according to G, i.e.

$$P(X) = \prod_{i \in \{1,\dots,m\}} P(X_i | Pa(X_i))$$

## Example: Karma and weight-lifting

Take K to be your Karma, H to be the hours you spend in the gym lifting weight each day, and then W be the weight you can bench press on a given day. For simplicity, all random variables are binary.

| karma | hours | weight |
|-------|-------|--------|
| 1     | 0     | 1      |
| 1     | 1     | 1      |
| 0     | 1     | 0      |
| 1     | 0     | 1      |
| 1     | 0     | 1      |

# Decomposition example: Karma and weight-lifting

Suppose X = (K, H, W) admits the graph



Then P(K, H, W) = P(K) P(H|K)P(W|H).

### Definition

A DAG of the form above is called a chain.

# Decomposition example: Karma and weight-lifting

Suppose X = (K, H, W) admits the graph



Then 
$$P(K, H, W) = P(K) P(H) P(W|K, H)$$
.

### Definition

A DAG of the form above is called a *collider* at W.



## Conditional independence

Recall that two random variables X, Y are independent if P(X = x, Y = y) = P(X = x)P(Y = y).

### **Definition**

Let  $X = (X_1, \ldots, X_m)$  be a probability distribution, and let A, B, C be pair-wise disjoint subsets of  $1, \ldots, m$ , and define  $X_A = (X_i)_{i \in A}$ . Then  $X_A, X_B$  are conditionally dependent given  $X_C$  if and only if

$$P(X_A = x_A, X_B = x_B | X_C = x_c)$$
  
=  $P(X_A = x_a | X_C = x_c) P(X_B = x_B | X_C = x_c)$ 

for all  $x_A, x_B, x_C$ .

For  $X_A, X_B$  conditionally independent given  $X_C$ , we write  $(X_A \perp \!\!\! \perp X_B | X_C)$ . See e.g. [?] for a precise formulation.



## Conditional independence and d-separation teaser

First example of discrete geometry helping statistics: conditional independence in a DAG model (X, G) can be detected in properties of  $G^1$ . More precisely,

#### **Theorem**

If (X, G) is a DAG model, then d-separation implies conditional independence.

See e.g. [?], chapter 2.

<sup>&</sup>lt;sup>1</sup>The required graph properties are combinatorial, but can also be understood geometrically, see e.g.

# More definitions before d-separation



Figure: Chain



## d-separation in DAGs

### **Definition**

An undirected path p in a DAG G is blocked by a set of nodes C if and only if

- 1. p contains a chain of nodes  $X \to Y \to Z$ , or a fork  $X \leftarrow Y \to Z$  such that  $Y \in C$ , or
- 2. p contains a collider  $X \to Y \leftarrow Z$  such that  $Y \notin C$  and descendant of Y is in C.

### **Definition**

If C blocks every path between two nodes X and Y, then X and Y are called d-separated conditional on C, and we write

$$(X \perp \!\!\!\perp Y|C)_G$$

.

By the d-separation teaser theorem,  $(X \perp\!\!\!\perp Y | C)_G$  implies conditional independence.

d-separation example: hit rate for insurance

All paths from product\_type to hit are blocked by  $\{days, rating\}$ , hence  $(product\_type \perp \perp hit|days, rating)_G$ .

## Probability polytopes

Goal: Use geometric interpretation of multivariate discrete random variables to generate intersting fake data with few(er) parameters.

Example: The family of all  $X \sim Bernoulli$  can be represented as

$$\Delta_1=\{(p_0,p_1):p_i\geq 0, \sum p_i=1\}\subseteq R^2$$

Example: Consider the collider graph for Karma-influenced weight-lifting (K, H, W). Then all possible conditional probability tables for (W|K, H) can be parametrized as

$$\{(p_{w|k,h}): p_{w|k,h} \geq 0, \sum_{w} p_{w|k,h} = 1 \text{ for } (k,h) \in \{0,1\}^2\} \subseteq R^8$$

In general, the space of multivariate discrete random variable distributions is a *polytope*, see e.g. [?], Ch. 1.



## H- and V-representations of polytopes

### Definition

An *H-polyhedron* is an intersection of closed halfspaces, i.e. a set  $P \subseteq R^d$  presented in the form

$$P = P(A, z) = \{x \in R^d : Ax \le z\}$$
 for some  $A \in R^{md}, z \in R^m$ .

If P is bounded (i.e. compact), then it is called a *polytope*.

### Definition

(Informal) A *V-polytope* is the convex hull of a finite set of vertices  $conv(V) \in R^d$ . See [?] for a precise definition.

(0,1)

Example: The V-representation for all Bernoulli distributions is

# The main theorem of polytopes

#### **Theorem**

A subset  $P \subset R^d$  is the convex hull of a finite point set (a V-polytope)

$$P = conv(V) \ for \ some \ V \in R^{dn}$$

if and only if it is a bounded intersection of halfspaces (an H-polytope)

$$P = P(A, z) \text{ for some } A \in R^{md}, z \in R^{m}$$

See [?] for a proof.

## Applying the main theorem to conditional probability tables

For the Karma weight-lifting example, all conditional probability tables for (W|K,H) that satisfy E(W|K=0)=0 (bad Karma, no weight) and E(W|H=0)=0.2 can be written as an H-polytope as above with additional constraints

$$\sum_{w,h} w p_{w|0,h} = 0$$

$$\sum_{w,k} w p_{w|k,0} = 0.2$$

By converting this H-representation to a V-representation, we can generate random conditional probability tables subject to expectation constrains.

For an example, see the implementation of ProbabilityPolytope of https://munichpavel.github.io/fake-data-for-learning/.



## References I