SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA DEPARTAMENTO DE INFORMÁTICA APLICADA

DISCIPLINA: Computational Photography

CÓDIGO: INF01050 (Grad.) / CMP570 (PPGC)

CARGA HORÁRIA: 04 h/sem.

CRÉDITOS: 04

PRÉ-REQUISITOS: INF01046

NATUREZA DAS AULAS: TEÓRICAS e PRÁTICAS (4 h/sem.)

PROFESSOR: MANUEL MENEZES DE OLIVEIRA NETO

SÚMULA

Fotografia convencional versus fotografia computacional. Espaços de cores. Ferramentas matemáticas. Transformada de Fourier, convolução e deconvolução. Fotografia épsilon (incremental) e fotografia codificada. Composição de imagens. Filtragem com preservação de arestas. Campos de luz (*light fields*) e câmeras plenópticas. Cameras programáveis.

OBJETIVOS

Familiarizar os estudantes com conceitos e técnicas avançadas de fotografia computacional, provendo uma sólida fundamentação teórica, além de experiência prática com os principais algoritmos da área.

CONTEÚDO PROGRAMÁTICO

- 1. FUNDAMENTOS
 - 1.1 Introdução à Fotografia Computacional
 - 1.2 Fotografia Digital e Câmeras Digitais SLR
 - 1.3 Anatomia de Câmeras Digitais
- 2. FUNDAMENTOS DE CORES E ESPAÇOS DE CORES
 - 2.1 Visão Tricromática
 - 2.2 Espaços de Cores: LMS, RGB, XYZ, Lab
 - 2.3 Color Matching Functions
 - 2.4 Transformações entre Espaços de Cores
- 3. IMAGENS COM ALTA FAIXA DINÂMICA
 - 3.1 Fundamentos de Radiometria
 - 3.2 Faixa Dinâmica
 - 3.3 Conversão de Radiância para Valores de Pixels e vice-versa
 - 3.4 Captura de Images com Alta Faixa Dinâmica
 - 3.5 Algoritmos de Tone Mapping

- 4. TÉCNICAS DE SEGMENTAÇÃO DE IMAGENS
 - 4.1 Intelligent Scissors
 - 4.2 K-Means
 - 4.3 Métodos baseados em Minimização de Energia
- 5. TÉCNICAS DE COMPOSIÇÃO DE IMAGENS
 - 5.1 Alpha Blending
 - 5.2 Composição utilizando Pirâmides Laplacianas
 - 5.3 Operadores Diferenciais sobre Vetores
 - 5.4 Poisson Image Editing
 - 5.5 Alpha Matting e Composição
- 6. TRANSFORMADA DE FOURIER
 - 6.1 Derivação Intuitiva da Transformada de Fourier
 - 6.2 Fórmula de Euler e a Transformada de Fourier
 - 6.3 Transformada de Fourier e os Teoremas da Amostragem e da Convolução
 - 6.4 A Transformada Discreta de Fourier e suas Propriedades
- 7. DECONVOLUÇÃO
 - 7.1 Degradação de Imagens Digitais
 - 7.2 Filtragem Inversa e o Filtro de Wiener
 - 7.3 Técnicas Modernas de Deconvolução
- 8. FOTOGRAFIA CODIFICADA
 - 8.1 Codificação de Abertura
 - 8.2 Extração de Mapa de Profundidade de uma Única Foto
 - 8.3 Máscaras Fatoráveis
- 9. FILTRAGEM COM PRESERVAÇÃO DE ARESTAS
 - 9.1 Filtragem Geodésica versus Gaussiana
 - 9.2 Filtragem utilizando Transformada de Domínio
 - 9.3 Filtragem utilizando Variedades Adaptativas (*Adaptive Manifolds*)
- 10. LIGHT FIELDS E CAMERAS PLENÓPTICAS
 - 10.1 Light Fields
 - 10.2 Câmeras plenópticas
 - 10.3 Abertura Sintética e Refoco
- 11. CÂMERAS PROGRAMÁVEIS
 - 11.1 A Frankencamera
 - 11.2 Câmera programável em Dispositivos Móveis

12 TÓPICOS ESPECIAIS

12.1 Reiluminação de Imagens (fotos, pinturas, etc.)

12.2 Outros tópicos definidos pelo professor com base em temas de pesquisa na área

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas acompanhadas de trabalhos práticos relacionados aos conteúdos apresentados em sala e de um projeto final.

As 60 horas previstas para atividades teóricas e práticas indicadas neste Plano de Ensino incluem 30 encontros de 100 minutos de duração (2 períodos de 50 minutos por encontro, 2 encontros por semana, durante 15 semanas), num total de 3.000 minutos, e mais 10 horas (600 minutos) de atividades autônomas, realizadas sem contato direto com o professor, correspondentes a exercícios e trabalhos extraclasse, conforme Resolução 11/2013 do CEPE/UFRGS, Artigos 36 a 38. O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD), assim como do apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.

SISTEMA DE AVALIAÇÃO

Os alunos serão avaliados com base no desempenho nas provas, trabalhos de implementação e no projeto final, bem como por sua participação em aula. As provas, trabalhos e projeto final serão avaliados com nota entre 0.0 e 10.0. Conforme regulamento da Universidade, a frequência às aulas é obrigatória.

Ao longo do semestre, serão realizados:

- i. Duas provas, P1, na metade do semestre, e P2, ao final do semestre. P1 corresponderá a 15% da nota final; P2, a 20% da nota final;
- ii. Pelo menos três trabalhos práticos (TP) ao longo do semestre. As notas de todos os trabalhos práticos corresponderão à 40% da nota final;
- iii. Um projeto final (PF) da disciplina, a ser realizado em grupos de até dois estudantes, representando 20% da nota final. O tema do projeto final será acertado entre o professor e cada grupo individualmente;
- iv. Será atribuída nota pela participação nas aulas teóricas (PA), o que também representerá 5% da nota final.

A média geral (MG) será obtida por meio da seguinte fórmula:

$$MG = 0.15 * P1 + 0.2 * P2 + 0.4 * TP + 0.2 * PF + 0.05 * PA$$

Assim, a soma das notas das provas e trabalhos práticos correspondem a 90% da nota final da disciplina. A conversão da MG para conceitos é feita por meio da seguinte tabela:

```
9.0 \le MG = 10.0: conceito A (aprovado). 7.5 \le MG < 9.0: conceito B (aprovado).
```

 $6.0 \le MG < 7.5$: conceito C (aprovado).

4,0 ≤ MG < 6,0 : sem conceito (candidato à recuperação).

 $0.0 \le MG < 4.0$: conceito D (reprovado).

Observações

- 1 Somente serão calculadas as médias gerais dos(as) estudantes que tiverem, ao longo do semestre, obtido um índice de freqüência às aulas igual ou superior a 75% das aulas previstas. Aos que não satisfizerem este requisito, será atribuido o conceito FF;
- 2 Para poder realizar a prova de recuperação, o aluno deve ter realizado as duas provas (P1 e P2), ter entregue pelo menos duas das três etapas do trabalho prático T1 e o projeto final (T2). Além disso, o aluno deverá ter nota igual ou superior a 6.0 em pelo menos uma das duas provas. Aqueles que não se enquadrarem nesta situação receberão conceito D;
- 3 Condutas Inaceitáveis: dormir em sala de aula, fazer uso de telefone celular ou outros dispositivos portáteis, incluindo computadores, para uso que não seja estritamente associados às atividades da aula e autorizados pelo professor. Os estudantes que desrespeitem as regras acima serão convidados a se retirar da sala de aula. Além disso, espera-se que os alunos mantenham a postura durante as aulas, sentando-se apropriadamente;
- 4 Aos estudantes que infringirem o ítem 3 acima (Condutas Inaceitáveis) será atribuído 0 (zero) como nota de participação.

RECUPERAÇÃO

Os alunos cujas médias gerais forem inferiores a 6,0 (seis) e maiores ou iguais a 4,0 (quatro) e que satisfizerem as condições (observações) 1 e 2 acima, poderão prestar prova de recuperação, a qual versará sobre toda a matéria da disciplina.

Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de no mínimo 60% da prova. A estes será atribuido o conceito C. Aos demais, o conceito D.

Não há recuperação das provas P1 e P2 por não comparecimento, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto etc, devidamente comprovados).

BIBLIOGRAFIA

A bibliografia da disciplina consiste principalmente de artigos científicos recentes e material disponibilizado pelo professor. Referências adicionais incluem os seguintes livros:

- Digital Image Processing, 2nd edition, Gonzalez and Woods, Prentice Hall
- Computer Vision: Algorithms and Applications, Richard Szeliski (disponível no endereço http://szeliski.org/Book)

•	High Dynamic Range Imagine et al., Morgan Kaufmann	g: Acquisition,	Display	and Image-Based	Lighting,	Reinhard