

Experiment: something where the outcome is uncertain.

e.g. tossing a coin, rolling one die, predicting the weather tomorrow.

Sample space Ω : set of possible Assignment Peroject Exam Help

- For a coin-tossing experiment, $\Omega = \{H, T\}$ For a normal die-rolling experiment, $\Omega = \{H, T\}$ For a normal die-rolling experiment, $\Omega = \{1, 2, 3, 4, 5, 6\}$
- For weather prediction, $\Omega = \{$ **supply aloudy trainy,** $snowy\}$

Event: a set of outcomes.

 For a die-rolling experiment, an event could be "an odd roll". This would correspond to the set $E = \{1, 3, 5\}$

Probability space: sample space with probability for each outcome.

- For a fair coin-tossing experiment, the probability space would be $(\{H,T\},P)$ where P maps each outcome to the number $\frac{1}{2}$ ignment $\frac{1}{2}$ ignm
- In general, the probability for any outcome is between 0 and 1.
 https://tutorcs.com
- The sum of all outcome probabilities is 1.
- We will stick to finite sample space and avoid subtle mathsconcerns).

Random Variable: A function X from the outcomes of an experiment to numbers, i.e. a function $X:\Omega
ightarrow \mathbb{R}$

Example: Toss a coin 10 times. Sample space has 2^{10} elements, one for each sequence of Hs and Ts, and each with probability $\frac{1}{2^{10}} = 2$ Assignment Project Exam Help

Suppose we want to count the number of the s://tutorcs.com

Define a random variable X that maps each point to its number of Hs.

• e.g. X(HHTTTHTHTT) **YeChat:** cstutorcs

What is the probability of observing 4 $H\mathrm{s}$?

It is the probability that X = 4, written as Pr[X = 4].

 $\Pr[X=4]$: How many sequences in the sample space have 4 Hs?

Assignment
$$19$$
 roject Exam Help $= 210$ https://tutorcs.com

What is the probability of each sequence?

WeChat: 2⁻¹⁰ stutores

So...

$$\Pr[X=4] = \frac{210}{2^{10}} \approx \frac{1}{5}$$

 $oldsymbol{X}$ can take values from 0 to 10 with differing probabilities:

Heads	0	1	2	3	4	5	6	7	8	9	10
Probability $(\times 2^{10})$	1	10	45	120	210	252	210	120	45	10	1

Another example: X = "the sum of two die rolls"

X can take on values in [2..12]
Assignment Project Exam Help
• e.g. X = 5 can result from one of $\{(1,4),(2,3),(3,2),(4,1)\}$

Probability of each outcome is 1/36 so Pr[X] tutores. $4 \cdot \frac{1}{36} = \frac{1}{36}$

Sum	eC	nat:	CS 4	utc 5	CS 6	7	8	9	10	11	12
Probability (× 36)	1	2	3	4	5	6	5	4	3	2	1

Expectation of a random variable: weighted average of the values it can take

$$\mathbf{E}[X] = \sum_{x=2}^{12} (x \cdot \Pr[X = x]) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$