# Improving Hypoxia Forecast within the Chesapeake Bay by refining a Primary Production Model

Sergey Dutt
Luther College
Dante M.L. Horemans, Pierre St-Laurent, & Marjorie A.M.
Friedrichs



#### Hypoxia is an issue in the Chesapeake Bay

Hypoxia: when the concentration of dissolved oxygen ( < 2 or  $3 \text{ mg O}_2 \text{ L}^{-1}$ ) is low enough to harm aquatic life

https://www.vims.edu/cbefs



# Hypoxia model skill varies in time and space





# Complex mechanisms affecting hypoxia



# Primary production

• Primary production: the rate that inorganic carbon is converted into organic biomass (photosynthesis)



Phytoplankton Growth Rate







Respiration

# Objective

Understand seasonal and spatial variability in the model skill, focusing on primary production

# Hypothesis:

- Various seasons and regions in the Chesapeake Bay come with unique phytoplankton characteristics that require their own set of model assumptions

# Methods: seasons and regions



#### Methods: observations

- We used a primary production dataset that covers the Chesapeake Bay between 1984-2009 (>13,000 data points)
- <sup>14</sup>C incubation (primary production) under saturated light conditions and observations of the environmental conditions (salinity, nutrients, temp. Chl-a)



# Methods: primary production model

Primary production

O<sub>2</sub>

Constant
respiration



Linearity in phytoplankton abundance (Chl-a \* C:Chl-a)

$$\partial_t P = \mu_{\text{max}} (1 - \gamma_P) (L_{\text{NO}_3} + L_{\text{NH}_4}) P$$

Max. algal growth rate (temperature dependent)



Nitrogen limitation



#### Methods: model experiments

Primary production

O<sub>2</sub> Constant respiration



Linearity in phytoplankton abundance (Chl-a \* C:Chl-a)

$$\partial_t P = \mu_{\text{max}} (1 - \gamma_P) (L_{\text{NO}_3} + L_{\text{NH}_4}) P$$

Max. algal growth rate (temperature dependent)



Nitrogen limitation



# Methods: tuning C:Chl-a ratio

C:Chl-a is tuned in all model experiments

Phytoplankton Abundance

$$\partial_t P = \mu_{\text{max}} (1 - \gamma_P) (L_{\text{NO}_3} + L_{\text{NH}_4}) P$$



## Methods: adjusting max. algal growth rate

$$\partial_t P = \mu_{\text{max}} (1 - \gamma_P) \left( L_{\text{NO}_3} + L_{\text{NH}_4} \right) P$$

Max. algal growth rate

- Model 1  $\mu_{ ext{max}}(T) = ext{max} \left[ 4 ext{ day}^{-1}, 0.55 e^{\psi_{ ext{pmax}} \cdot T} ext{ day}^{-1} 
ight]$ 

- Model 2 
$$\mu_{ ext{max}}(T) = \mu_{00} \mu_{01}^T$$

#### Methods: calibrating nutrient limitation

$$\partial_t P = \mu_{\text{max}} (1 - \gamma_P) \left( L_{\text{NO}_3} + L_{\text{NH}_4} \right) P$$

#### **Nutrient limitation**

$$L_{\mathrm{NO_3}} = rac{NO_3}{NO_3 + K_{\mathrm{NO_3}}} rac{1}{1 + NH_4/K_{\mathrm{NH_4}}}$$
 - Model 1: reference values

$$L_{\mathrm{NH_4}} = \frac{NH_4}{NH_4 + K_{\mathrm{NH_4}}}$$

- Model 3: tuned values

## Methods: summary of model experiments

Phytoplankton Abundance

 Calibrated during all experiments Max. Algal Growth Rates

- Model 1: reference growth rate model
- Model 2: Eppley based growth rate model

**Nutrient Limitations** 

- Model 1: reference values
- Model 3: calibrated values

#### Methods: model skill metrics

 We calculated model skill for each experiment to evaluate if different parameter values improve the model

#### Model Skill

- Correlation
- Bias (average error)
- Root Relative Squared Difference (RRSD)

#### Results: environmental observations



- Observations exhibit a seasonal pattern
- Primary production and Chl-a follow similar patterns

#### Results: environmental observations





- Observations exhibit a regional pattern
- We expect  $NO_3$  limitation only in the polyhaline (< 0.5 mmol-N m<sup>-3</sup>)

#### Results: calibrated C:Chla ratios



Polyhaline region has a seasonal pattern

#### Results: calibrated C:Chla ratios model skill



Other tests showed little to no difference between the growth rates

#### Results: nutrient limitations



Current model underestimates PP in the polyhaline region

# Results: calibrated K<sub>NO3</sub> & K<sub>NH4</sub> model skill



Model 1 and 2 show different bias in summer and fall

# Results: calibrated K<sub>NO3</sub> & K<sub>NH4</sub> model skill



Model 1 and 2 show similar Root Relative Squared Difference

#### Conclusion

Calibrated Values did vary from across seasons and regions

- The current primary production model has low sensitivity to changes in model parameters
- We did not find strong indicators that we have to change the max. algal growth rate and nitrogen dependence in our current primary production model

#### Acknowledgments

- VIMS REU Summer Program 2024
- National Science Foundation
- The Chesapeake Bay Program
- Dr. Dante M.L. Horemans
- Dr. Marjorie A.M. Friedrichs
- Dr. Pierre St-Laurent





#### Further Research

Add a phosphorous limitation

 Calibrate the model focusing on regions with different Total Suspended Solids (TSS)

