Optimally Secure Tweakable Blockciphers

Bart Mennink KU Leuven (Belgium)

Fast Software Encryption March 10, 2015

Introduction

Introduction

- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Introduction

- Tweak: flexibility to the cipher
- Each tweak gives different permutation
- Dedicated constructions:
 - Hasty Pudding Cipher [Sch98]
 - Mercy [Cro01]
 - Threefish [FLS+07]

Introduction: Modular Designs

• LRW1 and LRW2 by Liskov et al. [LRW02]:

- h is XOR-universal hash
- Related: XEX
- Secure up to $2^{n/2}$ queries

Introduction: Modular Designs

- LRW2[ho]: concatenation of ho LRW2's
- $k_1,\ldots,k_{
 ho}$ and $h_1,\ldots,h_{
 ho}$ independent

Introduction: Modular Designs

- LRW2[ho]: concatenation of ho LRW2's
- $k_1,\ldots,k_
 ho$ and $h_1,\ldots,h_
 ho$ independent
- ho=2: secure up to $2^{2n/3}$ queries [LST12,Pro14]
- $\rho \geq 2$ even: secure up to $2^{\rho n/(\rho+2)}$ queries [LS13]
- Conjecture: optimal $2^{\rho n/(\rho+1)}$ security

Introduction: State of the Art

1	security	key	cost	
scheme	(\log_2)	length	\overline{E}	\otimes/h
LRW1	n/2	n	2	0
LRW2	n/2	2n	1	1
XEX	n/2	n	2	0
LRW2[2]	2n/3	4n	2	2
$LRW2[\rho]$	$\rho n/(\rho\!+\!2)$	$2\rho n$	ρ	ρ

Optimal 2^n security only if key length and cost $\to \infty$?

Efficiency

tweak schedule lighter than key schedule

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak and key change approximately equally expensive

Efficiency

tweak schedule lighter than key schedule

Security

tweak schedule stronger than key schedule

Tweak and key change approximately equally expensive

TWEAKEY [JNP14] key scheduling blends key and tweak

Minematsu [Min09]:

- Secure up to $\max\{2^{n/2},2^{n-|t|}\}$ queries
- \bullet Beyond birthday bound for |t| < n/2

Introduction: State of the Art

scheme	security (\log_2)	key length	cost		
			\overline{E}	\otimes/h	tdk
LRW1	n/2	n	2	0	0
LRW2	n/2	2n	1	1	0
XEX	n/2	n	2	0	0
LRW2[2]	2n/3	4n	2	2	0
LRW2[ho]	$\rho n/(\rho\!+\!2)$	$2\rho n$	ho	ho	0
Min	$\max\{n/2,n{-} t \}$	n	2	0	1

Our Goal

Given a blockcipher E, construct optimally secure tweakable blockcipher \widetilde{E}

Generic Design

Generic Design

- Mixing functions A_i, B_i
 - ullet should be such that $\widetilde{E}[
 ho]$ is invertible
 - but can be anything otherwise

Security Model

- Information-theoretic indistinguishability
 - ullet $\widetilde{\pi}$ ideal tweakable cipher
 - ullet E ideal cipher

Security Model

- Information-theoretic indistinguishability
 - ullet $\widetilde{\pi}$ ideal tweakable cipher
 - ullet E ideal cipher
- Complexity-theoretic indistinguishability?

One E-Call with Linear Mixing

One E-Call with Linear Mixing

Theorem

• If A_1,B_1,A_2 are linear, $\widetilde{E}[1]$ can be distinguished from $\widetilde{\pi}$ in at most about $2^{n/2}$ queries

One E-Call with Linear Mixing

Theorem

• If A_1,B_1,A_2 are linear, $\widetilde{E}[1]$ can be distinguished from $\widetilde{\pi}$ in at most about $2^{n/2}$ queries

Proof idea

- ullet Relation among queries to $\widetilde{E}[1]$?
- ullet Case distinction based on how k,t,m are processed

One E-Call with Polynomial Mixing

$$\widetilde{F}[1](k,t,m) = c$$

Idea

- Subkey $k \oplus t$
- ullet Masking $k\otimes t$

One E-Call with Polynomial Mixing

 $\widetilde{F}[1](k,t,m) = c$

Idea

- Subkey $k \oplus t$
- $\bullet \ \ \mathsf{Masking} \ k \otimes t$

Security

ullet Up to $2^{2n/3}$ queries

One E-Call with Polynomial Mixing

 $\widetilde{F}[1](k,t,m)=c$

Idea

- Subkey $k \oplus t$
- ullet Masking $k\otimes t$

Security

• Up to $2^{2n/3}$ queries

Cost

- ullet One E-call
- One ⊗-evaluation
- One re-key

 $\bullet \ \, \mathsf{Key} \,\, k \,\, \mathsf{is} \,\, \mathsf{secret}$

- Key k is secret
- ullet Consider any construction query (t,m,c)

- Key k is secret
- Consider any construction query (t, m, c)

- Key k is secret
- Consider any construction query (t, m, c)
- \bullet May "hit" any primitive query (l,x,y)

- Key k is secret
- Consider any construction query (t, m, c)
- $\bullet \ \ {\rm May \ "hit" \ any \ primitive \ query \ } (l,x,y) \\$

 $k \oplus t = l$ and $m \oplus k \otimes t = x$

- Key k is secret
- Consider any construction query (t, m, c)
- ullet May "hit" any primitive query (l,x,y)

$$k \oplus t = l$$
 and $m \oplus k \otimes t = x$ or $k \oplus t = l$ and $c \oplus k \otimes t = y$

- Key k is secret
- Consider any construction query (t, m, c)
- May "hit" any primitive query (l,x,y)

$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{m}} \oplus k \otimes \textbf{\textit{t}} = x \quad \Longleftrightarrow \quad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{m}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = x$$
 or or
$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{c}} \oplus k \otimes \textbf{\textit{t}} = y \quad \Longleftrightarrow \quad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{c}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = y$$

- Key k is secret
- Consider any construction query (t, m, c)
- $\bullet \ \ {\rm May \ "hit" \ any \ primitive \ query \ } (l,x,y)$

$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{m}} \oplus k \otimes \textbf{\textit{t}} = x \qquad \Longleftrightarrow \qquad \boxed{k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{m}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = x}$$
 or or
$$k \oplus \textbf{\textit{t}} = l \text{ and } \textbf{\textit{c}} \oplus k \otimes \textbf{\textit{t}} = y \qquad \Longleftrightarrow \qquad k = l \oplus \textbf{\textit{t}} \text{ and } \textbf{\textit{c}} \oplus (l \oplus \textbf{\textit{t}}) \otimes \textbf{\textit{t}} = y$$

$$k=l\oplus t$$
 and ${\color{red}m}\oplus (l\oplus t)\otimes t=x$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

 $\# \ \text{point-line incidences} \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}$

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- $P \subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points

One E-Call with Polynomial Mixing: Proof Idea

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$

One E-Call with Polynomial Mixing: Proof Idea

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$
- ullet Every solution fixes one $l\oplus t$

One E-Call with Polynomial Mixing: Proof Idea

$$k = l \oplus t$$
 and $m \oplus (l \oplus t) \otimes t = x$

Szemerédi-Trotter theorem [ST83]

Consider a finite field \mathbb{F} . Let

- $L \subseteq \mathbb{F}^2$ be a set of lines
- ullet $P\subseteq \mathbb{F}^2$ be a set of points

```
# point-line incidences \leq \min\{|L|^{1/2}|P| + |L|, |L||P|^{1/2} + |P|\}
```

- Construction queries = lines
- Primitive queries = points
- About $q^{3/2}$ solutions to $m \oplus (l \oplus t) \otimes t = x$
- ullet Every solution fixes one $l\oplus t$
- k is random n-bit key

Two E-Calls with Linear Mixing

$\widetilde{F}[2](k,t,m) = c$

Idea

- Subkey $k \oplus t$
- ullet Masking E(k,t)

Two E-Calls with Linear Mixing

 $\widetilde{F}[2](k,t,m)=c$

Idea

- Subkey $k \oplus t$
- ullet Masking E(k,t)

Security

ullet Up to 2^n queries

Two $E ext{-Calls}$ with Linear Mixing

 $\widetilde{F}[2](k,t,m)=c$

Idea

- Subkey $k \oplus t$
- Masking E(k,t)

Security

• Up to 2^n queries

Cost

- Two E-calls
- Zero ⊗-evaluations
- One re-key

Two E-Calls with Linear Mixing: Proof Idea

Two E-Calls with Linear Mixing: Proof Idea

• Construction query (t, m, c) "hits" primitive query (l, x, y) if

$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{m}} = x$$
 or
$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{c}} = y$$

Two E-Calls with Linear Mixing: Proof Idea

• Construction query (t, m, c) "hits" primitive query (l, x, y) if

$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{m}} = x$$
 or
$$k \oplus \textbf{\textit{t}} = l \text{ and } z \oplus \textbf{\textit{c}} = y$$

ullet is random key, z is almost-random subkey

Comparison

scheme	security (\log_2)	key length	cost		
			\overline{E}	\otimes/h	tdk
LRW1	n/2	n	2	0	0
LRW2	n/2	2n	1	1	0
XEX	n/2	n	2	0	0
LRW2[2]	2n/3	4n	2	2	0
$LRW2[\rho]$	$\rho n/(\rho\!+\!2)$	$2\rho n$	ho	ho	0
Min	$\max\{n/2, n{-} t \}$	n	2	0	1
$\widetilde{F}[1]$	2n/3 *	n	1	1	1
$\widetilde{F}[2]$	n *	n	2	0	1

^{*} Information-theoretic model

- First step unnecessarily loose
- Tweak change influences key and message input
- Details in paper

Conclusions

$\widetilde{F}[1]$ and $\widetilde{F}[2]$

- Simple and few primitive calls
- High security level
- Efficient if key renewal is relatively cheap

Conclusions

$\widetilde{F}[1]$ and $\widetilde{F}[2]$

- Simple and few primitive calls
- High security level
- Efficient if key renewal is relatively cheap

Future Research

- One-call tweakable cipher with improved security?
- Avoiding related-key security condition?
- Implementations?

Conclusions

$\widetilde{F}[1]$ and $\widetilde{F}[2]$

- Simple and few primitive calls
- High security level
- Efficient if key renewal is relatively cheap

Future Research

- One-call tweakable cipher with improved security?
- Avoiding related-key security condition?
- Implementations?

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Generic Design: Inverse

Valid Mixing Functions (informal)

 A_i, B_i are valid if there is one A_{i*} that processes m, s.t.

- first i^*-1 rounds computable in forward direction
- last $\rho (i^* 1)$ rounds computable in inverse direction both without usage of m

Example for $i^* = 2$

Both Designs on One Slide

$$\widetilde{F}[1](k,t,m) = c$$

$$\widetilde{F}[2](k,t,m) = c$$