SMI Assignment 4

Andrew Martin

October 6, 2017

1. Writing design matrices
Given the multiple regression model

$$M: Y = X\beta + \epsilon$$

Where $Y_i \sim N(\eta_i, \sigma^2)$ indep for i = 1, 2, ..., n and $\eta = X\beta$.

(a) Write dimensions of Y, X, β and ϵ

Solution

Y will have dimension 35x1, X will have dimension 35x4, β will have dimension 4x1, and, ϵ will have dimension 35x1.

...

(b) Write down β in full, and the first four rows of X and y Solution

$$\beta \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

$$y = \begin{bmatrix} 12.8 \\ 9.4 \\ 14 \\ 15.6 \\ \vdots \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 1 & 1590 & 15 \\ 1 & 0 & 968 & 11 \\ 1 & 2 & 732 & 12 \\ 1 & 3 & 780 & 13 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

•••

- 2. Linear Transformations of the design matrix
 - (a) Show that the columns of X^* are also linearly independent. (prove by contradiction)

Solution

Assume columns of X^* are not linearly independent, i.e. $BX^* = 0$ has non-trivial solutions.

 $BX^* = 0$ for non-zero some matrix of combinations B

$$X^* = B^{-1}0$$

$$X^* = 0$$

$$AX = 0$$

$$X = A^{-1}0$$

$$X = 0$$

 \Longrightarrow X is zero - contradiction as X is non-zero.

• • •

(b) Show that $X^*((X^*)^TX^*)^{-1}(X^*)^T = X(X^TX)^{-1}X^T$

Solution

$$\begin{split} X^*((X^*)^T X^*)^{-1}(X^*)^T &= XA((XA)^T XA)^{-1}(XA)^T \\ &= XA(A^T X^T XA)^{-1}A^T X^T \\ &= XAA^{-1}X^{-1}X^{T^{-1}}A^{T^{-1}}A^T X^T \\ &= XIX^{-1}X^{T^{-1}}IX^T \\ &= XX^{-1}X^{T^{-1}}X^T \\ &= X(X^{-1}X^{T^{-1}})X^T \\ &= X(X^T X)^{-1}X^T \end{split}$$

...

(c) Consider two alternative models

$$M: Y = X\beta + \epsilon$$
 and $M^*: Y = X^*\beta^* + \epsilon$

Show that $\hat{\eta}^* = \hat{\eta}$ i.e. the vector of fitted values is the same.

Solution

$$\hat{\eta}^* = X^* \hat{\beta}^*$$

$$= X^* \left((X^{*^T} X^*)^{-1} (X^*)^T y \right)$$

$$= X (X^T X)^{-1} X^T y \text{ using part b.}$$

$$= X \hat{\beta}$$

$$= \hat{\eta}$$

•••

- 3. Matrix calculations in R
 - (a) Write down the design matrix, X, and the vector of observed values y, and enter them into R.

Solution

The R code outputted:

$$> X$$

$$X0 X1 X2 X3$$

$$[1,] 1 -3 5 -1$$

$$[2,] 1 -2 0 1$$

$$[3,] 1 -1 -3 1$$

$$[4,] 1 0 -4 0$$

$$[5,] 1 1 -3 -1$$

$$[6,] 1 2 0 -1$$

$$[7,] 1 3 5 1$$

$$> Y$$

$$[1] 1 0 0 1 2 3 3$$

• • • •

(b) Use direct matrix calculations in R to find the LSE given by

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Solution

> betahat [,1] X0 1.4285714 X1 0.5000000 X2 0.1190476 X3 -0.5000000

• • •

(c) Continuing to use R for your calculations, find the predicted value of Y when $x_1=1, \quad x_2=-3, \quad x_3=-1$

Solution

> Ypredict [,1] [1,] 2.071429

•••

- (d) Test the null hypothesis that X_3 has no effect on Y, i.e. test $H_0:\beta_3=0$ as follows:
 - i. The test statistic takes the form:

$$T = \frac{\lambda^T \hat{\beta} - 0}{s_e \sqrt{\lambda^T (X^T X)^{-1} \lambda}}$$
 where $T \sim t_{n-p}$ if H_0 is true.

In this case, write down λ , n, and p

Solution

$$\lambda = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$n = 7$$

p = 4

•••

ii. Calculate the observed value of the test statistic for this sample.

Recall
$$s_e^2 = \frac{1}{n-p}||y - X\hat{\beta}||^2 = \frac{1}{n-p}(y - X\hat{\beta})^T(y - X\hat{\beta}).$$
Solution

> teststat

$$[,1]$$
 $[1,]$ -13.74773

•••

iii. Calculate the P-value, and hence state whether you reject or retain H_0 at significance level $\alpha=0.05$

Solution

> pval

Since the p-value is significantly lower than α ...

iv. Find a 95% confidence interval for the expected value of Y given $x_1=1,\quad x_2=-3,\quad x_3=-1$ i.e. a 95% confidence interval for

$$\lambda^T \beta = \beta_0 + \beta_1 - 3\beta_2 - \beta_3$$

Where $\lambda^T = (1, 1, -3, -1)$.

Solution

> CI [1] 1.880739 2.262119

•••

- 4. Rats versus cats question
 - (a) Read in the data
 - (b) Produce and include side-by-side boxplots of the sleep total for Carnivora and Rodentia. Describe the distributions

Solution

Side-by-side boxplot of the sleep totals for Carnivora and Rodentia

• • •

(c) Decide if a pooled two-sample t-test can be used. Give reasons **Solution**

A pooled two-sample t-test could be used as the data appears to have similar, or the same variance. ...

- (d) Perform a two-sample t-test. For full marks include:
 - i. null and alternative hypotheses
 - ii. value of test statistic
 - iii. the distribution of the test statistic if the null hypothesis is true
 - iv. P-value
 - v. and conclusion

Solution

$$\begin{bmatrix} H_0 : Carnivora_{\mu} = Rodentia_{\mu} \\ H_a : Carnivora_{\mu} \neq Rodentia_{\mu} \end{bmatrix}$$

Where μ represents the population mean sleep total of that group.

If the null is true, the test-statistic will be t-distributed.

From the R code, t = -2.0004

The test statistic is t-distributed if the null hypothesis is true.

The P-value is Pvalue = 0.06005 > 0.05

As the P-value was above the significance used $\alpha=0.05$ the null-hypothesis is accepted, i.e. there is evidence to suggest the means of the two groups are the same. ...

(e) Check the assumptions including appropriate plots if necessary.

Solution

Using plot() in R the following plots are generated:

The assumptions made are: homoscedasticity, normality, linearity and independence.

- i. homoscedasticity the variance appears to be equal
- ii. normality the residuals vs fitted shows the data is reasonably normal.
- iii. linearity the normal q-q plot shows a linear trend in the
- iv. independence design assumption assume to be true

•••

The code used in this assignment task is below:

```
library(tidyverse)
setwd("D:/Documents/Uni/Smi")
\#\#Q3
X0 = \mathbf{c}(1,1,1,1,1,1,1)
X1=c(-3,-2,-1,0,1,2,3)
X2 = \mathbf{c}(5,0,-3,-4,-3,0,5)
X3 = \mathbf{c}(-1,1,1,0,-1,-1,1)
X = cbind(X0,X1,X2,X3)
Y = c(1,0,0,1,2,3,3)
XTXinv = \mathbf{solve}(\mathbf{t}(X)\% * \%X)
betahat = XTXinv\%*\%t(X)\%*\%Y
Ypredict = c(1,1,-3,-1) %*% betahat
##Hypothesis testing
lambda = c(0,0,0,1)
n=7
p=4
stderror = (1/(n-p)) * t(Y-X\%*\%betahat)\%*\%(Y-X\%*\%betahat)
teststat =t(lambda)%*%betahat/(sqrt(stderror*t(lambda)%*%XTXinv%*%lambda))
pval = dt(teststat, n-p)
\#reject \ Ho \ as \ p-val < 0.05
lambda2 = c(1,1,-3,-1)
teststat2 = t(lambda2)\%*\%betahat/(sqrt(stderror*t(lambda2))\%*\%XTXinv\%*\%lambda2))
tval = qt(0.975,n-p)
## Q4 ----
##read in msleep
data(msleep)
```

summary(msleep)

```
\#\#generate\ boxplots
#this will speed things up
temp = msleep\% > \%
   filter (order %in% c("Carnivora","Rodentia"))
pdf(file="BoxplotSleepTotal.pdf")
ggplot(\mathbf{data} = temp, aes(\mathbf{x} = \mathbf{order}, \mathbf{y} = sleep\_total)) + geom\_\mathbf{boxplot}() + labs(\mathbf{title} = "Side-by-side\_total))
dev.off()
#pooled could be used as the bulk of the data seems to have similar spread, however there is a sl
t.test(sleep_total~order,data=temp)
#Assumption Checking
msleeplin = lm(sleep\_total \ order, data = temp)
summary(msleeplin)
library(broom)
tidy(msleeplin)
#PDF stuff to make graphs into a pdf
pdf(file="Graphs.pdf")
tmp = \mathbf{par}(mfrow = \mathbf{c}(2,2))
plot(msleeplin)
dev.off()
\mathbf{par}(tmp)
```