Part 3

$$\frac{dg(t)}{dt} = -k_4 g(t) - k_6 i(t) + A(t) \qquad \qquad \boxed{D}$$

$$\frac{di(t)}{dt} = k_3 g(t) - k_1 i(t) + B(t) \qquad \qquad \boxed{2}$$

Differentiating ① wr.t. t;
$$\frac{d^2g(t)}{dt} = -\frac{k_4}{dt} \frac{d[g(t)] - k_6}{dt} \frac{d[i(t)] + d[A(t)]}{dt}$$

From Cilucose Tolerance Test it can be assumed that ACD = a uCt) of BCt) =0

$$\frac{d^2[g(t)] = -k_4d[g(t)] - k_6d[i(t)] + d[au(t)] - 3}{dt}$$

From
$$\emptyset$$
; $\frac{d[i(t)] = k_3g(t) - k_1i(t) + 0}{dt}$

Substituting 4 to 3; $\frac{d^{2}[g(t)] = -k_{4}d[g(t)] - k_{6}[k_{3}g(t) - k_{1}i(t)] + a_{6}[u(t)]}{dt}$ $\frac{d^{2}g}{dt} = -k_{4}dg - k_{3}k_{6}g(t) + k_{1}k_{6}i(t) + a_{6}du(t)$ $\frac{d^{2}g}{dt} = -k_{4}dg - k_{3}k_{6}g(t) + k_{1}k_{6}i(t) + a_{6}du(t)$

 $\frac{d^2g = -k_4dg - k_3k_6gGD + k_1\left[\frac{-dg}{dt} - k_4gGL\right) + auCB}{dt} + a\frac{du}{dt}$ d29 + (k1+k4)d9 + (k1k4 + k3k6)g = k1auct) + ad4 dt dt de dt dt (kik4 + k3k6) g = kia + ad[uets]

Typical values; $k_1 = 0.8 \text{ h}^{-1}$, $k_3 = 0.2 \text{ IU/hlg}$, $k_4 = 2 \text{ h}^{-1}$ $k_5 = 5 \text{ g/h/IU}$, $\alpha = 1 \text{ g/l/h}$

 $\frac{d^{2}g + 2.8 d9 + 2.6 g = 0.8 + 1.4[1]}{dt}$ $\frac{d^{2}g + 2.8 d9 + 2.6 g = 0.8}{dt}$ $\frac{d^{2}g + 2.8 d9 + 2.6 g = 0.8}{dt}$

Solution is in the form; gct) = gcct) + gpct)

Complementary Function

m2+2.8m+2-6=0

m = -7+4i

=-1,4+0,8%

9clt) = e-1.4+ [MGS(0.8t) + NSin(0.8t)] - (I)

Assume SpCt) = K

0+0+2+6k=000 => k= 4

from initial conditions;
$$g(0)=0$$

$$0 = M + 0 + \frac{4}{13} \implies M = -\frac{4}{13}$$

$$g'(t) = e^{-1/4t} \left[-0.8 \text{ m Sin (0.8t)} + 0.8 \text{ n Cos (0.8t)} \right]$$

$$= 1.4 e^{-1/4t} \left[\text{m Cos (0.8t)} + \text{N Sin (0.8t)} \right] + 0$$

$$g'(0) = 1 \quad ; \quad 1 = 0.8 \text{N (1)} - 1.4 \text{ m (1)}$$

$$N = \frac{37}{52}$$

$$g(t) = e^{-1.4t} \left[\frac{-4}{13} \left(\cos(0.8t) + \frac{37}{52} \sin(0.8t) \right) + \frac{4}{13} \right]$$

$$i(t) = \frac{1}{k_{b}} \left[-\frac{k_{q}}{dt} \frac{g - dg + auct}{dt} \right]$$

$$= e^{-1/4k} \left[-\frac{1}{13} \left(os(o_{1}8t) - \frac{7}{52} sin(o_{1}8t) \right) \right] + \frac{1}{13} uct$$

all =
$$k_5$$
 + A(t) - k_4 G - k_6 I + k_{10} Gn(t) — (alucose)

all = k_2 + k_3 G + B(t) - k_1 I — (2) (Insulin)

alt

$$\frac{dG}{dt} = k_5$$
 + C(t) + k_6 G - k_7 Gn — (3) (Gluogen)

alt

In equlibrium state;
$$d\Omega = 0$$
, $d\Omega = 0$, $d\Omega = 0$ dt dt

Initial conditions; g(0) = 0, i(0) = 0, $g_{n}(0) = 0$

dgnct) = kggat) - k7gnct) - @

dt

_				7				
dgct		-k4	-kb	k ₁₀	J 96	t)		auct)
dt								
<u>dict</u>)	=	k 3	-k1	6	i Ct		+	0
dt 10 m				,		0.2		
d gn(t)		kg	0	-kg	gn	(t)		0