6.808: Mobile and Sensor Computing aka IoT Systems

http://6808.github.io

Lecture 4: Device-Free Localization and Seeing Through Walls

Course Staff	Logistics & Norms	Announcements
<u>Lecturer</u> Fadel Adib (<u>fadel@mit.edu</u>) <u>TAs</u> Mihir Trivedi (<u>mihirt@mit.edu</u>)	1- Make sure your name displays 2- Turn on your video On Mute 3- Mute yourself	1- Lab 0 checkoff by Wed2- Lab 1 due March 43- PSet 1 Due March 17
Bhavik Nagda (<u>bnagda@mit.edu</u>)	To ask questions:	
	Raise hand feature or write in chat	

Objectives of the Three Lectures Series

Learn the fundamentals, applications, and implications of wireless localization and sensing

- 1. What are the unifying principles of wireless positioning?
- 2. How do practical systems like GPS WiFi positioning, Bluetooth contact tracing work? **this lecture**
- What is wireless (aka WiFi) sensing?
- 4. What are the industry opportunities and societal implications of wireless sensing (today and in the near+far future)?

GPS

distance = propagation delay x speed of light

How to Compute the Propagation Delay?

Each satellite has its own code

How to Compute the Propagation Delay?

Code arrives shifted by propagation delay

How to Compute the Propagation Delay?

Spike determines the delay use it to compute distance and localize

GPS Data Packet

- Almanac & ephemeris data
 - Satellite location, clock, orbital parameters, etc.
 - Bitrate?
 - 50 bits/second
 - Takes about 12.5 minutes to download

- How do today's systems use it?
 - A-GPS (Assisted GPS)
 - WiFi APs are mapped war-driving

So Far Device-based Localization

Next: Device-Free Localization (aka Wireless Sensing)

Example: WiTrack

Device in another room

Applications

Measuring Distances

Distance = Reflection time x speed of light

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Why?

and why was this not a problem for Cricket?

Why was this not a problem for Cricket?

Capturing the pulse needs sub-nanosecond sampling Why?

Multi-GHz samplers are expensive, have high noise, and create large I/O problem

Distance = time x speed

$$10cm = \Delta t \times (3 \times 10^8)$$
$$\Delta t = 0.3ns$$

0.3ns period => how many samples per second?

$$SamplingRate = \frac{1}{\Delta t}$$

3GSps! >> MSps for WiFi, LTE...

Why was this not a problem for Cricket?

because speed of ultrasound

$$10cm = \Delta t \times 345$$

$$SamplingRate = \frac{1}{\Delta t} \approx 3kbps$$

FMCW: Measure time by measuring frequency

How does it look in time domain?

More intuitive understanding of FMCW

FMCW: Measure time by measuring frequency

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

let's talk about FFTs a bit — freq

Basics of Fourier Transform

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

 $\Delta F \rightarrow Reflection Time \rightarrow Distance$

<u>Challenge:</u> Multipath→ Many Reflections

Static objects don't move

→ Eliminate by subtracting consecutive measurements

The direct reflection arrives before dynamic multipath!

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

From Location to tracking (over time)

Fails for multiple people in the environment, and we need a more comprehensive solution

How can we deal with multi-path reflections when there are multiple persons in the environment?

Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points

Experiment: Two users walking

Mathematically: each round-trip distance can be mapped to an ellipse whose foci are the transmitter and the receiver

Mapping 1D to 2D heatmap

Combining across Multiple Vantage Points

Experiment: Two users walking

Combining across Multiple Vantage Points

Experiment: Two users walking

How can we localize static users?

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize static users

- Breathing and walking happen at different time scales
 - -A user that is pacing moves at 1m/s
 - -When you breathe, chest moves by few mm/s

 Cannot use the same subtraction window to eliminate multi-path

30ms subtraction window

3s subtraction window

Objectives of the Three Lectures Series

Learn the fundamentals, applications, and implications of wireless localization and sensing

- 1. What are the unifying principles of wireless positioning?
- 2. How do practical systems like GPS, WiFi poning, Bluetooth contact tracing work? later lecture
- 3. What is wireless (aka WiFi) sensing?
- 4. What are the industry opportunities and societal implications of wireless sensing (today and in the near+far future)?

1- Lab 0 checkoff by Wed

TODO: 2- Lab 1 due March 4

3- PSet 1 Due March 17

Packages shipping - Feel free to take a photo/short clip of you receiving/opening the package