

105torus

B-MAT-500

Torus

Torus

• The torus equation is:

$$(x^2 + y^2 + z^2 + R^2 - r^2)^2 = 4R^2(x^2 + y^2)$$

R = Distance between the center of the torus and the center of the tube r = Radius of the tore's cercle

• To find the intersection between a line and a torus (cf. 104):

$$f(t) = a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0 = 0$$

Solving a 4th degree equation

$$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = 0$$

- Direct method for 4th degree: Ferrari's method
 - Does not generalize to higher degrees...
- Iterative methods
 - Start with initial value(s): $x_0, x_1, ...$
 - Compute x_{n+1} from x_n , x_{n-1} , ...
 - Stop when x_n is "close enough" (or after too many iterations)

Hypothesis

- Goal: implement three iterative methods (Bisection, Newton, Secant)
- For this project, we will solve equations where:
 - There is always one and only one x in [0,1] where f(x)=0
 - The sign of *f* changes around its zero
- We stop searching when $f(x) \le 10^{-n}$

- Start with an interval [a, b] that contains the solution
- Compute the midpoint $c = \frac{a+b}{2}$ of the interval
- If $f(c) \le 10^{-n}$, stop
- If f(a)f(c) < 0, then the solution is in [a, c]
- If not, the solution is in [c, b]
- Start again with the new interval

Newton method

- Uses the tangent to the graph of the function to find a better approximation
- Start with the initial value x_0
- Consider the tangent to the graph at the point $(x_n, f(x_n))$
- This tangent intercept the x-axis in $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- If $f(x_{n+1}) \le 10^{-n}$, stop

Secant method

- Approximation of Newton's method when f is not derivable
 - Replaces the tangent with a line between two point on the graph
- Start with the initial values x_0 and x_1
- Consider the line passing through $(x_{n-1}, f(x_{n-1}))$ and $(x_n, f(x_n))$
- This line intercept the x-axis in $x_{n+1} = x_n \frac{f(x_n)(x_n x_{n-1})}{f(x_n) f(x_{n-1})}$
- If $f(x_{n+1}) \le 10^{-n}$, stop

105torus

- Solving 4th degree equations
- Inputs
 - Method (bisection, Newton or secant)
 - Coefficients of the equation: a_0 , a_1 , a_2 , a_3 , a_4
 - Precision (stops when $f(x) \le 10^{-n}$)
- Outputs
 - Iterations

Points of attention

- Initial values:
 - 0 and 1 for bisection and secant methods
 - 0.5 for Newton
- Don't forget to handle cases where there are no solutions
- Beware of dividing by 0
- Some methods may not always converge...

307multigrains - Boni

- Graphical interface to compare the rates of convergence
- Solving higher degree equations
- Ferrari's method