1 Static Semantics

$$\Theta; \Delta; \Gamma \vdash e : t$$
 Typing rules for expressions

$$\overline{\Theta;\Delta;\cdot,x:t\vdash x:t}\quad \text{TY_VAR_LIN}$$

$$\frac{x:t\in\Delta}{\Theta;\Delta;\cdot\vdash x:t}\quad \text{TY_VAR}$$

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma', x : t \vdash e' : t'$$

$$\frac{\Theta; \Delta; \Gamma', x : t \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \ x = e \ \mathbf{in} \ e' : t'} \quad \mathrm{TY_LET}$$

$$\overline{\Theta;\Delta;\cdot\vdash():\mathbf{unit}}\quad \mathrm{Ty_Unit_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e : \mathbf{unit}$$

$$\Theta; \Delta; \Gamma' \vdash e' : t$$

$$\overline{\Theta;\Delta;\Gamma,\Gamma'} \vdash \mathbf{let}\,() = e\,\mathbf{in}\,e':t$$

 Ty_Unit_Elim

$$\Theta$$
; Δ ; · \vdash **true** : **bool** TY_BOOL_TRUE

$$\overline{\Theta;\Delta;\cdot\vdash\mathbf{false}:\mathbf{bool}}\quad \mathrm{TY_BOOL_FALSE}$$

$$\Theta; \Delta; \Gamma \vdash e : !bool$$

$$\Theta; \Delta; \Gamma' \vdash e_1 : t'$$

$$\Theta; \Delta; \Gamma' \vdash e_2 : t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash e_2 : t$$
 TY_BOOL_ELIM

$$\overline{\Theta; \Delta; \cdot \vdash k : \mathbf{int}}$$
 TY_INT_INTRO

$$\overline{\Theta;\Delta;\cdot \vdash el: \mathbf{elt}}$$
 TY_ELT_INTRO

$$\Theta; \Delta; \cdot \vdash v : t$$

$$v \neq l$$

$$\Theta; \Delta; \cdot \vdash \mathbf{Many} \ v : !t$$
 TY_BANG_INTRO

$$\Theta$$
; Δ ; $\Gamma \vdash e : !t$

$$\Theta; \Delta, x: t; \Gamma' \vdash e': t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash \text{let Many } x = e \text{ in } e' : t'$$
 TY_BANG_ELIM

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma' \vdash e' : t'$$

$$\frac{\Theta; \Delta; \Gamma' \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash (e, e') : t \otimes t'} \quad \text{Ty_Pair_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e_{12} : t_1 \otimes t_2$$

$$\frac{\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e: t}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \, (a,b) = e_{12} \, \mathbf{in} \, e: t} \quad \text{TY_PAIR_ELIM}$$

$$\Theta; \Delta; \Gamma, \Gamma \vdash \mathbf{let}(a, b) = e_{12} \mathbf{ln} \ e :$$

$$\begin{array}{l} \Theta \vdash t' \operatorname{Type} \\ \Theta ; \Delta ; \Gamma , x : t' \vdash e : t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash e' : t' \\ \hline \Theta ; \Delta ; \Gamma ; \vdash e' : t \\ \hline \Theta ; \Delta ; \Gamma ; \vdash e : t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} fc \to e : \forall fc.t \\ \hline \Theta ; \Delta ; \Gamma \vdash$$

2 Dynamic Semantics

$$\frac{\langle \sigma, e \rangle \rightarrow \mathbf{err}}{\langle \sigma, C[e] \rangle \rightarrow \mathbf{err}} \quad \text{OP_CONTEXT_ERR}$$

$$\frac{0 \leq k_1, k_2 \quad l \text{ fresh}}{\langle \sigma, \mathbf{matrix} \ k_1 \ k_2 \rangle \rightarrow \langle \sigma + \{l \mapsto_1 M_{k_1, k_2} \}, l \rangle} \quad \text{OP_MATRIX}$$

$$\overline{\langle \sigma + \{l \mapsto_1 m_{k_1, k_2} \}, \mathbf{free} \ l \rangle \rightarrow \langle \sigma, () \rangle} \quad \text{OP_FREE}$$

$$\overline{\langle \sigma + \{l \mapsto_1 m_{k_1, k_2} \}, \mathbf{share}[f] \ l \rangle \rightarrow \langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2} \} + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2} \}, (l, l) \rangle} \quad \text{OP_SHARE}}$$

$$\frac{f \leq 1}{\langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2} \} + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2} \}, \mathbf{unshare}[f] \ l \ l \rangle \rightarrow \langle \sigma + \{l \mapsto_f m_{k_1, k_2} \}, l \rangle} \quad \text{OP_UNSHARE_EQ}}$$

$$\frac{l \neq l'}{\langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2} \} + \{l' \mapsto_{\frac{1}{2}f} m'_{k_1, k_2} \}, \mathbf{unshare}[f] \ l \ l' \rangle \rightarrow \mathbf{err}} \quad \text{OP_UNSHARE_NEQ}}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{fc_2} m_{2k_2, k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_1 (m_1 m_2 + m_3)_{k_1, k_3} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_1 (m_1 m_2 + m_3)_{k_1, k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{fc_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{fc_2} m_{2k_2', k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{fc_2} m_{2k_2', k_3} \}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{fc_2} m_{2k_2', k_3} \}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{fc_2} m_{2k_2', k_3} \}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2} \}, \mathbf{gemm}[fc_1] \ l_1[fc_2] \ l_2 \ l_3 \rangle \rightarrow \mathbf{err}} \quad \text{OP_GEMM_MATCH}$$

3 Interpretation

3.1 Definitions

Operationally, $Heap \sqsubseteq Loc \times Permission \times Matrix$ (a multiset), denoted with a σ . Define its interpretation to be $Loc \rightharpoonup Permission \times Matrix$ with $\star : Heap \times Heap \rightharpoonup Heap$ as follows:

$$(\varsigma_1 \star \varsigma_2)(l) \equiv \begin{cases} \varsigma_1(l) & \text{if } l \in \text{dom}(\varsigma_1) \land l \notin \text{dom}(\varsigma_2) \\ \varsigma_2(l) & \text{if } l \in \text{dom}(\varsigma_2) \land l \notin \text{dom}(\varsigma_1) \\ (f_1 + f_2, m) & \text{if } (f_1, m) = \varsigma_1(l) \land (f_2, m) = \varsigma_2(l) \land f_1 + f_2 \le 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Commutativity and associativity of \star follows from that of +.

 $\varsigma_1 \star \varsigma_2$ is defined if it is for all $l \in \text{dom}(\varsigma_1) \cup \text{dom}(\varsigma_2)$.

Implicitly denote
$$\varsigma \equiv \mathcal{H}\llbracket \sigma \rrbracket \equiv \bigstar_{(l,f,m) \in \sigma}[l \mapsto_f m].$$

The n-fold iteration for the StepsTo (functional) relation, is also a (functional) relation:

$$\forall n. \ \mathbf{err} \to^n \mathbf{err} \qquad \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle \qquad \langle \sigma, e \rangle \to^0 \langle \sigma, e \rangle \qquad \langle \sigma, e \rangle \to^{n+1} ((\langle \sigma, e \rangle \to) \to^n)$$

Hence, all bounded iterations end in either an err, a heap-and-expression or a heap-and-value.

3.2 Interpretation

$$\begin{split} \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, *)\} \\ \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, n) \mid 2^{-63} \leq n \leq 2^{63} - 1\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, f) \mid f \text{ a IEEE Float64} \} \\ \mathcal{V}_{k}[[t]] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[t]\} \\ \mathcal{V}_{k}[[t]] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[t]\} \\ \mathcal{V}_{k}[[t] &= \{(\varsigma, \mathbf{fun} fc \rightarrow e) \mid \forall f. \ (\varsigma, e[fc/f]) \in \mathcal{C}_{k}[[t]fc/f]]\} \\ \mathcal{V}_{k}[[t] \otimes t_{2}] &= \{(\varsigma_{1} \star \varsigma_{2}, (v_{1}, v_{2})) \mid (\varsigma_{1}, v_{1}) \in \mathcal{V}_{k}[t_{1}] \land (\varsigma_{2}, v_{2}) \in \mathcal{V}_{k}[t_{2}]\} \\ \mathcal{V}_{k}[[t] &= \{(\varsigma_{v}, v) \mid (v = \mathbf{fun} x : t \rightarrow e \lor v = \mathbf{fix}(g, x : t', e : t)) \land \\ \forall j \leq k, (\varsigma_{v'}, v') \in \mathcal{V}_{j}[[t']], \ \varsigma_{v} \star \varsigma_{v}' \text{ defined} \ \Rightarrow (\varsigma_{v} \star \varsigma_{v}', vv') \in \mathcal{C}_{j}[[t]]\} \\ \mathcal{C}_{k}[[t]] &= \{(\varsigma_{s}, e_{s}) \mid \forall j < k, \sigma_{r}, \varsigma_{s} \star \varsigma_{r} \text{ defined} \ \Rightarrow (\sigma_{s} + \sigma_{r}, e_{s}) \rightarrow^{j} \text{ err } \lor \exists \sigma_{f}, e_{f}, \\ \langle \sigma_{s} + \sigma_{r}, e_{s} \rangle \rightarrow^{j} \langle \sigma_{f} + \sigma_{r}, e_{f} \rangle \land (e_{f} \text{ is a value} \ \Rightarrow (\varsigma_{f} \star \varsigma_{r}, e_{f}) \in \mathcal{V}_{k-j}[[t]])\} \\ \mathcal{I}_{k}[[\cdot]]\theta &= \{[\cdot]\} \\ \mathcal{I}_{k}[\cdot], x : t]\theta &= \{\delta[x \mapsto v_{x}] \mid \delta \in \mathcal{I}_{k}[\cdot]\theta \land (\emptyset, v_{x}) \in \mathcal{V}_{k}[\theta(t)]]\} \\ \mathcal{L}_{k}[\cdot], x : t]\theta &= \{(\varsigma \star \varsigma_{s}, \gamma[x \mapsto v_{x}]) \mid (\varsigma, \gamma) \in \mathcal{L}_{k}[\cdot]\theta \land (\varsigma_{x}, v_{x}) \in \mathcal{V}_{k}[\theta(t)]]\} \\ \varsigma &= \mathcal{H}[\sigma] \equiv \bigstar_{(t,f,m) \in \sigma}[t \mapsto_{f} m] \\ k[\Theta; \Delta; \Gamma \vdash e : t] &= \forall \theta, \delta, \gamma, \sigma, \Theta = \text{dom}(\theta) \land (\varsigma, \gamma) \in \mathcal{L}_{k}[\cdot]\theta \land \delta \in \mathcal{I}_{k}[\cdot]\theta \Rightarrow \\ (\varsigma, \theta(\gamma(\delta(e)))) \in \mathcal{C}_{k}[\theta(t)]] \end{cases}$$

4 Lemmas

4.1
$$\forall \sigma_s, \sigma_r, e. \ \varsigma_s \star \varsigma_r \ \mathbf{defined} \ \Rightarrow \forall n. \ \langle \sigma_s, e \rangle \to^n = \langle \sigma_s + \sigma_r, e \rangle \to^n$$

SUFFICES: By induction on n, consider only the cases $\langle \sigma_s, e \rangle \to \langle \sigma_f, e_f \rangle$ where $\sigma_s \neq \sigma_f$.

PROOF SKETCH: Only OP-{FREE, MATRIX, SHARE, UNSHARE_EQ, GEMM_MATCH} change the heap: the rest are either parametric in the heap or step to an **err**.

PROVE: $\langle \sigma_s + \sigma_r, e \rangle \rightarrow \langle \sigma_f + \sigma_r, e_f \rangle$.

- $\langle 1 \rangle 1$. Case: Op_Free, $\sigma_s \equiv \sigma' + \{l \mapsto_1 m\}$, $\sigma_f = \sigma'$. Proof: Instantiate Op_Free with $(\sigma' + \sigma_r) + \{l \mapsto_1 m\}$, valid because $l \notin \text{dom}(\varsigma_r)$ by $\varsigma' \star [l \mapsto_1 m] \star \varsigma_r$ defined (assumption).
- $\langle 1 \rangle 2$. Case: Op_Matrix Proof: Rule has no requirements on σ_s so will also work with $\sigma_s + \sigma_r$.
- $\langle 1 \rangle 3$. Case: Op_Share, $\sigma_s \equiv \sigma' + \{l \mapsto_f m\}$, $\sigma_f = \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}$. Proof: Union-ing σ_r does not remove $l \mapsto_f m$, so that can be split out of $\sigma_s + \sigma_r$ as before.
- $\langle 1 \rangle 4$. Case: Op_Unshare_Eq, $\sigma_s \equiv \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}, \ \sigma_f = \sigma' + \{l \mapsto_f m\}.$
 - $\langle 2 \rangle 1$. Union-ing σ_r does not remove $l \mapsto_{\frac{1}{2} \cdot f} m$, so that can still be split out of $\sigma_s + \sigma_r$.
 - $\langle 2 \rangle 2$. There may also be other valid splits introduced by σ_r .
 - $\langle 2 \rangle 3$. However, by assumption of $\varsigma_s \star \varsigma_r$ defined, any splitting of $\sigma_s + \sigma_r$ will satisfy $f \leq 1$.
- $\langle 1 \rangle$ 5. Case: Op_Gemm_Match
 - $\langle 2 \rangle 1$. By assumption of $\varsigma_s \star \varsigma_r$ defined, either l_1 (or l_2 , or both) are not in σ_r , or they are and the matrix values they point to are the same.
 - $\langle 2 \rangle 2$. The permissions (of l_1 and/or l_2) may differ, but OP_GEMM_MATCH universally quantifies over them and leaves them unchanged, so they are irrelevant.
 - $\langle 2 \rangle 3$. Only the pointed to matrix value at l_3 changes.
 - $\langle 2 \rangle 4$. Suffices: $l_3 \notin \pi_1[\sigma_r]$.
 - $\langle 2 \rangle 5$. By assumption of $\varsigma_s \star \varsigma_r$ defined, $l_3 \notin \text{dom}(\varsigma_r)$.
 - $\langle 2 \rangle 6$. Hence $l_3 \notin \pi_1[\sigma_r]$.

4.2 $\forall k, t. \ \mathcal{V}_k[\![t]\!] \subset \mathcal{C}_k[\![t]\!]$

Follows from definition of $C_k[t]$, $\to^j (\forall n. \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle)$ for arbitrary $j \leq k$ and 4.1.

4.3 $\forall \theta, \delta, \gamma, v. \ \theta(\delta(\gamma(v)))$ is a value.

 θ is irrelevant because it only maps fractional capability variables to fractional capabilities. By construction, δ and γ only map variables to values, and values are closed under substitution.

5

4.4 $\forall k, \sigma, \sigma', e, e', t. \ (\varsigma', e') \in \mathcal{C}_k[\![t]\!] \land \langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \Rightarrow (\varsigma, e) \in \mathcal{C}_{k+1}[\![t]\!]$

Assume: arbitrary j < k + 1, and σ_r such that $\varsigma \star \varsigma_r$ defined.

- $\langle 1 \rangle 1$. CASE: j = 0. Clearly $\sigma_f = \sigma_s + \sigma_r$ and e' = e. Remains to show that if e is a value then $(\varsigma_s \star \varsigma_r, e) \in \mathcal{V}_k[\![t]\!]$. This is true vacuously, because by assumption, e is not a value.
- $\langle 1 \rangle 2$. CASE: $j \geq 1$. We have $\langle \sigma, e \rangle \to^j = \langle \sigma', e' \rangle \to^{j-1}$. Instantiate $(\varsigma', e') \in \mathcal{C}_k[\![t]\!]$, with j-1 < k and σ_r to conclude the required conditions.

4.5
$$j \leq k \Rightarrow k \cdot \|\cdot\| \subseteq k \cdot \|\cdot\|$$

Lemma 4.4 is the inductive step for this lemma for the $\mathcal{C}[]$ case. Need to prove for $\mathcal{V}[]$, by induction on t and then index.

Suffices: Consider only $t \multimap t'$ case, rest use k directly on structure of type.

Assume: Arbitrary $j \leq k$ and $(\varsigma_{v'}, v') \in \mathcal{V}_k[[t \multimap t']]$.

PROVE: $(\varsigma_{v'}, v') \in \mathcal{V}_i[\![t \multimap t']\!].$

- $\langle 1 \rangle 1$. v' is of the correct syntactic form (lambda or fixpoint) by assumption.
- $\langle 1 \rangle 2$. Assume: arbitrary $j' \leq j$ and $(\varsigma_v, v) \in \mathcal{V}_{j'}[t]$ such that $\varsigma_{v'} \star \varsigma_v$ is defined.
- $\langle 1 \rangle 3$. SUFFICES: to show $(\varsigma_{v'} \star \varsigma_v, v'v) \in \mathcal{C}_{i'} \llbracket t' \rrbracket$.
- $\langle 1 \rangle 4$. This is true by instantiating $(\varsigma_{v'}, v') \in \mathcal{V}_k[\![t \multimap t']\!]$ with $j' \leq k$ and $(\varsigma_v, v) \in \mathcal{V}_{j'}[\![t]\!]$.
- **4.6** $\forall \Delta, \Gamma, t, k, \theta, \delta, \gamma. \ \delta \in \mathcal{I}_k[\![\Delta]\!] \theta \wedge \gamma \in \pi_2[\mathcal{L}_k[\![\Gamma]\!] \theta] \Rightarrow \operatorname{dom}(\Delta) = \operatorname{dom}(\delta) \text{ and } \operatorname{dom}(\Gamma) = \operatorname{dom}(\gamma)$

PROOF: By induction on Δ and Γ .

4.7 $\forall k, \Gamma, \Gamma', \theta, \sigma_{+}, \gamma_{+}. \ (\varsigma_{+}, \gamma) \in \mathcal{L}_{k} \llbracket \Gamma, \Gamma' \rrbracket \theta \wedge \Gamma, \Gamma' \ \mathbf{disjoint} \Rightarrow \exists \sigma, \gamma, \sigma', \gamma'. \ \sigma_{+} = \sigma + \sigma' \wedge \gamma, \gamma' \ \mathbf{disjoint} \ \wedge \gamma_{+} = \gamma \cup \gamma' \wedge (\varsigma, \gamma) \in \mathcal{L}_{k} \llbracket \Gamma \rrbracket \wedge (\varsigma', \gamma') \in \mathcal{L}_{k} \llbracket \Gamma' \rrbracket$

PROOF: By induction on Γ' .

5 Soundness

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \forall k. \ _k \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

ASSUME: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $k, \theta, \delta, \gamma, \sigma$ such that:
 - a. $\Theta = dom(\theta)$
 - b. $(\varsigma, \gamma) \in \mathcal{L}_k \llbracket \Gamma \rrbracket \theta$
 - c. $\delta \in \mathcal{I}_k[\![\Delta]\!]\theta$.
- 3. W.l.o.g., all variables are distinct, hence Θ , dom(Δ) and dom(Γ) are disjoint so order of θ , δ and γ (as substitutions defined recursively over expressions) is irrelevant.

PROVE: $(\varsigma, \theta(\gamma(\delta(e)))) \in \mathcal{C}_k[\![\theta(t)]\!].$

Assume: Arbitrary j < k and σ_r , such that $\varsigma \star \varsigma_r$ defined.

SUFFICES:
$$\langle \sigma + \sigma_r, e \rangle \to^j \mathbf{err} \ \lor \exists \sigma_f, e_f. \ \langle \sigma + \sigma_r, e \rangle \to^j \langle \sigma_f + \sigma_r, e_f \rangle$$

 $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f \star \varsigma_r, e_f) \in \mathcal{V}_{k-j}[\![t]\!]).$

SUFFICES: By 4.1, to show $\langle \sigma, e \rangle \to^j \mathbf{err} \ \lor \exists \sigma_f, e_f. \ \langle \sigma, e \rangle \to^j \langle \sigma_f, e_f \rangle$ $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f, e_f) \in \mathcal{V}_{k-j}[\![t]\!])$

- $\langle 1 \rangle 1$. Case: Ty_Let.
 - $\langle 2 \rangle 1$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$
 - 2. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma', x : t \vdash e' : t' \rrbracket$.
 - $\langle 2 \rangle 2$. By 2b, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_e, \gamma_e) \in \mathcal{L}_k \llbracket \Gamma \rrbracket$
 - 2. $\gamma = \gamma_e \cup \gamma_{e'}$
 - 3. $\sigma = \sigma_e + \sigma_{e'}$.
 - $\langle 2 \rangle 3$. So, using $k, \theta, \delta, \gamma_e, \sigma_e$, we have $(\varsigma_e, \theta(\gamma_e(\delta(e)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 4$. By $\langle 2 \rangle 2$ ($\gamma = \gamma_e \cup \gamma_{e'}$), have $(\varsigma_e, \theta(\gamma(\delta(e)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle$ 5. By definition of $C_k[\cdot]$ and $\langle 2 \rangle$ 2, we instantiate with j and $\sigma_r = \sigma_{e'}$ to conclude that $\langle \varsigma, \theta(\gamma(\delta(e))) \rangle$ either takes j steps to **err** or another heap-and-expression $\langle \sigma_f, \theta(\gamma(\delta(e_f))) \rangle$.
 - $\langle 2 \rangle$ 6. Case: j steps to **err**By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 7. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 8$. If it is, then $\exists i \leq j$. $(\varsigma_f, v_1) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \theta(t_1) \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i times, and then we have the following. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \mathbf{let} \ x = v \ \mathbf{in} \ \theta(\gamma(\delta(e')))) \in \mathcal{C}_{k-i} \llbracket \theta(t') \rrbracket$ by 4.4 i times. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \theta(\gamma(\delta(e')))[x/v]) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4.
 - $\langle 2 \rangle 9$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}[x \mapsto v]) \in \mathcal{L}_k[\Gamma', x : t]\theta \subseteq \mathcal{L}_{k-i-1}[\Gamma', x : t]\theta$.
 - $\langle 2 \rangle 10$. Instantiate 2 of step $\langle 2 \rangle 1$ with $k-i-1, \theta, \delta, \gamma_{e'}[x \mapsto v], \sigma_{e'}$ to conclude $(\varsigma_{e'}, \theta(\gamma_{e'}[x \mapsto v](\delta(e')))) \in \mathcal{C}_{k-i-1}\llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle 11$. By 3, we have $\theta(\gamma(\delta(e')))[x/v] = \theta(\gamma_{e'}[x \mapsto v](\delta(e')))$ and by 4.1 we conclude $(\varsigma_f \star \varsigma_{e'}, \theta(\gamma(\delta(e')))[x/v]) \in \mathcal{C}_{k-i-1}[\theta(t')]$
- $\langle 1 \rangle 2$. Case: Ty_Pair_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \otimes \theta(t_2) \rrbracket$, we have $v = (v_1, v_2)$.
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \theta(\gamma(\delta(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4 i+1 times.
- $\langle 2 \rangle 3$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2]) \in \mathcal{L}_k[\Gamma', a: t_1, b: t_2]\theta \subseteq \mathcal{L}_{k-i-1}[\Gamma', a: t_1, b: t_2]\theta$.
- $\langle 2 \rangle 4$. Instantiate k=i-1 $[\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e': t']$ with $\theta, \delta, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2], \sigma_{e'}$.
- $\langle 2 \rangle 5$. By 3 (for $\gamma = \gamma_e \cup \gamma_{e'}$ and a, b), conclude $(\varsigma_{e'}, \theta(\gamma(\delta(e'[a/v_1][b/v_2])))) \in \mathcal{C}_{k-i-1}[\theta(t')]$.
- $\langle 1 \rangle 3$. Case: Ty_Bang_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i}[\![\theta(!t)]\!]$, since $\mathcal{V}_{k-i}[\![\theta(!t)]\!] = \mathcal{V}_{k-i}[\![!\theta(t)]\!]$, we have $\varsigma_f = \emptyset$ and $v = \mathbf{Many} v'$ for some $(\emptyset, v') \in \mathcal{V}_{k-i}[\![\theta(t)]\!]$.
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \mathbf{let} \, \mathbf{Many} \, x = \mathbf{Many} \, v' \, \mathbf{in} \, \theta(\gamma(\delta(e')))) \in \mathcal{C}_{k-i} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 3$. SUFFICES: $(\varsigma_{e'}, \theta(\gamma(\delta(e')))[x/v]) \in \mathcal{C}_{k-i-1}[\theta(t)]$ by 4.4 i+1 times.
- $\langle 2 \rangle 4$. Instantiate k=i-1 $[\Theta; \Delta, x: t, \Gamma' \vdash e': t']$ with $\theta, \delta_{e'} = \delta[x \mapsto v'], \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By 3, $(\varsigma_{e'}, \theta(\gamma(\delta(e')))[x/v]) \in \mathcal{C}_{k-i-1}[\theta(t)]$.
- $\langle 1 \rangle 4$. Case: Ty_Unit_Elim.

PROOF SKETCH: Similar to Ty_Let, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i}[\mathbf{unit}]$, we have $\varsigma_f = \emptyset$ and v = ().
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \theta(\gamma(\delta(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4 i+1 times.
- $\langle 2 \rangle 3$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-i-1} \llbracket \Gamma' \rrbracket \theta$.
- $\langle 2 \rangle 4$. Instantiate $_{k-i-1} \llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$ with $\theta, \delta, \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By $3 (\varsigma_{e'}, \theta(\gamma(\delta(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle$ 5. Case: Ty_Bool_Elim.

PROOF SKETCH: Similar to TY_UNIT_ELIM but with OP_IF_{TRUE,FALSE}, $\varsigma_f = \emptyset$ and $v = \mathbf{Many true}$ or $v = \mathbf{Many false}$.

- $\langle 1 \rangle 6$. Case: Ty_Bang_Intro.
 - $\langle 2 \rangle$ 1. We have, e = v for some value $v \neq l \cdot f$, $\Gamma = \emptyset$ and so $\forall k. \ _{k} \llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ by induction.
 - $\langle 2 \rangle 2$. SUFFICES: $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$ by 2b $(\varsigma = \emptyset, \gamma = \llbracket])$.
 - $\langle 2 \rangle 3$. Instantiate $_k \llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ with $\theta, \delta, \gamma = \llbracket \rbrack, \sigma = \emptyset$ to obtain $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 4$. Instantiate $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ with j = 0, $\sigma_r = \emptyset$ and 4.3 $(\delta(v))$ is a value,

to conclude $(\emptyset, \delta(v)) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 5$. By definition of $\mathcal{V}_k \llbracket !\theta(t) \rrbracket$, 4.3 and 4.2 we have $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket !\theta(t) \rrbracket$.
- $\langle 1 \rangle 7$. Case: Ty_Pair_Intro.
 - $\langle 2 \rangle 1$. By 2b, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_1, \gamma_1) \in \mathcal{L}_k[\![\Gamma_1]\!]$
 - 2. $(\varsigma_2, \gamma_2) \in \mathcal{L}_k[\![\Gamma_2]\!]$
 - 3. $\gamma = \gamma_1 \cup \gamma_2$
 - 4. $\sigma = \sigma_1 + \sigma_2$.
 - $\langle 2 \rangle 2$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma_{1} \vdash e_{1} : t_{1} \rrbracket$
 - 2. $\forall k. \ _k \llbracket \Theta; \Delta; \Gamma_2 \vdash e_2 : t_2 \rrbracket$.
 - $\langle 2 \rangle 3$. Instantiate the first with $k, \theta, \delta, \gamma_1, \sigma_1$.
 - $\langle 2 \rangle 4$. By that and $\langle 2 \rangle 1$, $(\varsigma_1, \theta(\gamma_1(\delta(e_1)))) = (\varsigma_1, \theta(\gamma(\delta(e_1)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 5$. So, $\langle \sigma_1 + \sigma_2, \theta(\gamma_1(\delta(e_1))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_{1f}, e_{1f} \rangle$.
 - $\langle 2 \rangle$ 6. Case: j steps to **err** By OP_CONTEXT_ERR, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 7. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle$ 8. If it is, then $\exists i_1 \leq j$. $(\varsigma_{1f}, v_1) \in \mathcal{V}_{k-i_1}\llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-j}\llbracket \theta(t_1) \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i_1 times, and then we have the following. SUFFICES: By 4.4, $(\varsigma_{1f} \star \varsigma_2, (v_1, e_2)) \in \mathcal{C}_{k-i_1}\llbracket \theta(t_1 \otimes t_2) \rrbracket$.
 - $\langle 2 \rangle 9$. Instantiate the second IH with $k, \theta, \delta, \gamma_2, \sigma_2$.
 - $\langle 2 \rangle 10$. So, $\langle \sigma_{1f} \star \sigma_2, \theta(\gamma_2(\delta(e_2))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_{2f}, e_{2f} \rangle$.
 - $\langle 2 \rangle$ 11. Case: j steps to **err** By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 12. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle$ 13. If it is, then $\exists i_2 \leq j$. $(\varsigma_{2f}, v_2) \in \mathcal{V}_{k-i_2}[\![\theta(t_2)]\!] \subseteq \mathcal{V}_{k-j}[\![\theta(t_2)]\!]$ by 4.3 and 4.5. So, OP_CONTEXT runs i_2 times, and then we have the following. SUFFICES: By 4.4, $(\varsigma_{1f} \star \varsigma_{2f}, (v_1, v_2)) \in \mathcal{V}_{k-i_1-i_2}[\![\theta(t_1) \otimes \theta(t_2)]\!]$.
 - $\langle 2 \rangle$ 14. By 4.5 and $k i_1 i_2 \leq k i_1, k i_2$, have $(\varsigma_{1f}, v_1) \in \mathcal{V}_{k-i_1} \llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-i_1-i_2} \llbracket \theta(t_1) \rrbracket$ and $(\varsigma_{2f}, v_2) \in \mathcal{V}_{k-i_2} \llbracket \theta(t_2) \rrbracket \subseteq \mathcal{V}_{k-i_1-i_2} \llbracket \theta(t_2) \rrbracket$ as needed.
- $\langle 1 \rangle 8$. Case: Ty_Lambda.

SUFFICES: By 4.2, to show $(\varsigma, \gamma(\delta(\mathbf{fun}\,x:t\to e))) \in \mathcal{V}_k[\![\theta(t\multimap t')]\!]$.

Assume: Arbitrary $j \leq k$, $(\varsigma_v, v) \in \mathcal{V}_j[\![\theta(t)]\!]$ such that $\varsigma \star \varsigma_v$ is defined.

SUFFICES: $(\varsigma \star \varsigma_v, \gamma(\delta(\mathbf{fun}\,x:t\to e))\,v) \in \mathcal{C}_j[\![\theta(t')]\!].$

SUFFICES: $(\varsigma \star \varsigma_v, \theta(\gamma(\delta(e)))[x/v]) \in \mathcal{C}_{j-1}[\![\theta(t')]\!]$ by 4.4.

- $\langle 2 \rangle 1$. By induction, $\forall k. \ _k \llbracket \Theta; \Delta; \Gamma, x : t \vdash e \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate it $j-1, \theta, \gamma[x \mapsto v], \sigma + \sigma_v$.
- $\langle 2 \rangle 3$. Hence, $(\varsigma \star \varsigma_v, \theta(\gamma[x \mapsto v](\delta(e)))) \in \mathcal{C}_{i-1} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. By 3, $\theta(\gamma[x \mapsto v](\delta(e))) = \theta(\gamma(\delta(e)))[x/v]$, we are done.
- $\langle 1 \rangle 9$. Case: Ty_App.
 - $\langle 2 \rangle 1$. By 2b, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_e, \gamma_e) \in \mathcal{L}_k \llbracket \Gamma_e \rrbracket$
 - 2. $(\varsigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma_{e'} \rrbracket$
 - 3. $\gamma = \gamma_e \cup \gamma_{e'}$
 - 4. $\sigma = \sigma_e + \sigma_{e'}$.
 - $\langle 2 \rangle 2$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma \vdash e : t' \multimap t \rrbracket$
 - 2. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$.
 - $\langle 2 \rangle 3$. Instantiate the first with $\theta, k, \delta, \gamma_e, \sigma_e$ to conclude $(\varsigma_e, \theta(\gamma_e(\delta(e)))) \in \mathcal{C}_k[\![\theta(t') \multimap \theta(t)]\!]$.
 - $\langle 2 \rangle 4$. Instantiate this with j and $\sigma_{e'}$ and use $\langle 2 \rangle 1$ to conclude $\langle \sigma_e + \sigma_{e'}, \theta(\gamma(\delta(e))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_f + \sigma_{e'}, e_f \rangle$.
 - $\langle 2 \rangle$ 5. Case: j steps to **err**By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 6. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle$ 7. If it is, then $\exists i_e \leq j$. $(\varsigma_f, v_e) \in \mathcal{V}_{k-i_e} \llbracket \theta(t') \multimap \theta(t) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \dots \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i_e times, and then we have the following. SUFFICES: By 4.4 i_e times, $(\varsigma_f \star \varsigma_{e'}, v_e e') \in \mathcal{C}_{k-i_e} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 8$. By 4.5, $(\varsigma_{e'}, \gamma_{e'} \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-i_e} \llbracket \Gamma' \rrbracket \theta$.
 - $\langle 2 \rangle 9$. So, instantiate the second IH with $k i_e, \theta, \delta, \gamma_{e'}, \sigma_{e'}$ to conclude $(\varsigma_{e'}, \theta(\gamma_{e'}(\delta(e')))) \in \mathcal{C}_{k-i_e} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 10$. Instantiate this with $j i_e$ and σ_f to conclude $\langle \sigma_f + \sigma_{e'}, \theta(\gamma_{e'}(\delta(e'))) \rangle$ either takes $j i_e$ steps to **err** or $\langle \sigma_f + \sigma_{f'}, e_{f'} \rangle$.
 - $\langle 2 \rangle$ 11. Case: $j i_e$ steps to **err**By Op_Context_Err, the whole expression reduces to **err** in $j i_e < k i_e$ steps.
 - $\langle 2 \rangle$ 12. Case: $j i_e$ steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs $j - i_e$ times and we are done.
 - $\langle 2 \rangle$ 13. If it is, then $\exists i_{e'} \leq j i_e$. $(\varsigma_{f'}, v_{e'}) \in \mathcal{V}_{k-i_e-i'_e}[\![\theta(t')]\!]$ by 4.3. So, OP_CONTEXT runs $i_{e'}$ times, and then we have the following. SUFFICES: By 4.4 $i_{e'}$ times, $(\varsigma_f \star \varsigma_{f'}, v_e v'_e) \in \mathcal{C}_{k-i_e-i_{-l}}[\![\theta(t')]\!]$.
 - $\langle 2 \rangle$ 14. Instantiate $(\varsigma_f, v_e) \in \mathcal{V}_{k-i_e} \llbracket \theta(t') \multimap \theta(t) \rrbracket$ with $k-i_e-i_{e'} \leq k-i_e$ and $(\varsigma_{v'}, v_{e'}) \in \mathcal{V}_{k-i_e-i_{e'}} \llbracket \theta(t') \rrbracket$, to conclude $(\varsigma_f \star \varsigma_{f'}, v \, v') \in \mathcal{C}_{k-i_e-i_{e'}} \llbracket \theta(t) \rrbracket$ as needed.

 $\langle 1 \rangle 10$. Case: Ty_Gen.

SUFFICES: By 4.2 to show $(\sigma, \theta(\gamma(\delta(\mathbf{fun}\ fc \to e)))) \in \mathcal{V}_k[\![\theta(\forall fc.\ t)]\!]$.

Assume arbitrary fraction f.

SUFFICES: $(\varsigma, \theta(\gamma(\delta(e[fc/f])))) \in \mathcal{C}_k[\![\theta(t)[fc/f]\!]]$.

- $\langle 2 \rangle 1$. By induction, $\forall k. \ _k \llbracket \Theta, fc; \Delta; \Gamma \vdash e : t \rrbracket$.
- $\langle 2 \rangle 2$. So using $k, \theta[fc \mapsto f], \delta, \gamma, \sigma$ we conclude $(\varsigma, \theta[fc \mapsto f](\gamma(\delta(e)))) \in \mathcal{C}_k[\![\theta[fc \mapsto f](t)]\!]$.
- $\langle 2 \rangle 3$. By 3, we are done.
- $\langle 1 \rangle 11$. Case: Ty_Spc.

PROVE: $(\sigma, \theta(\gamma(\delta(e[f])))) \in \mathcal{C}_k[\![\theta(t[fc/f])]\!]$.

 $\langle 1 \rangle 12$. Case: Ty_Fix.

PROVE: $(\sigma, \theta(\gamma(\delta(\mathbf{fix}(g, x : t, e : t'))))) \in \mathcal{C}_k[\![\theta(!(t \multimap t'))]\!].$

SUFFICES: to show $\ldots \in \mathcal{V}_k[\![!(\theta(t) \multimap \theta(t'))]\!]$, by 4.2.

- $\langle 2 \rangle 1$. Assume: Arbitrary j < k and $(\sigma, v) \in \mathcal{V}_{i} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 2$. SUFFICES: $(\sigma, letManyG \ g \ v) \in \mathcal{C}_i \llbracket \theta(t') \rrbracket$.
- $\langle 2 \rangle 3$. Let: $e_1 = e[g/\text{fun } x : t \to letManyG g x]$.
- $\langle 2 \rangle 4$. SUFFICES: by 4.4, $(\sigma, (\operatorname{\mathbf{fun}} x : t \to e_1) v) \in \mathcal{C}_{j-1}[\![\theta(t')]\!]$.
- $\langle 2 \rangle$ 5. SUFFICES: by 4.4, $(\sigma, e_1[x/v]) \in \mathcal{C}_{i-2}[\theta(t')]$.
- $\langle 2 \rangle 6$. By induction, we have $\llbracket \Theta; \Delta, g : t \multimap t'; x : t \vdash e : t' \rrbracket$.
- $\langle 2 \rangle$ 7. Instantiate this with $\theta, j-2, \delta[g \mapsto \mathbf{fun} \ x : t \to e_1], \gamma = [x \mapsto v], \sigma$ (???). Prove: $(\sigma, \mathbf{fun} \ x : t \to e_1) \in \mathcal{V}_{j-2} \llbracket \theta(t) \multimap \theta(t') \rrbracket$.
 - $\langle 3 \rangle 1$. SUFFICES: by 4.4, $(\sigma', e_1[x/v']) \in \mathcal{C}_{i-2}[\theta(t')]$ for arbitrary $(\sigma', v') \in \mathcal{V}_{i-2}[\theta(t)]$.
 - $\langle 3 \rangle 2$. We can again use the induction hypothesis $[\Theta; \Delta, g: t \multimap t'; x: t \vdash e: t']$.
 - $\langle 3 \rangle 3$. But since it's true for $\mathcal{C}_0 \llbracket \cdot \rrbracket$ (base case), it's true by induction ???
- $\langle 2 \rangle 8$. Lastly, we show $\delta(\theta(\gamma(e))) = e_1[x/v]$, which follows by their definitions, to conclude $(\sigma, e_1[x/v]) \in C_{j-2}[\theta(t')]$.
- $\langle 1 \rangle 13$. Case: Ty_Var_Lin.

PROVE: $(\sigma, \theta(\gamma(\delta(x)))) \in \mathcal{C}_k[\![\theta(t)]\!]$.

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. SUFFICES: $(\sigma, \gamma(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exist $(\sigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\sigma = \sigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. Hence, $(\sigma_x, v_x) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$, by 4.2.
- $\langle 1 \rangle 14$. Case: Ty_Var.

PROVE: $(\sigma, \theta(\gamma(\delta(x)))) \in \mathcal{C}_k[\![\theta(t)]\!]$.

- $\langle 2 \rangle 1. \ x:t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \delta(x)) \in \mathcal{C}_k[\![\theta(t)]\!]$ by 3 and 2b.
- $\langle 2 \rangle 3$. By 2c, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$.
- $\langle 2 \rangle 4$. Hence, $(\emptyset, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.2.
- $\langle 1 \rangle 15$. Case: Ty_Unit_Intro. Prove: $(\sigma, \theta(\gamma(\delta(())))) \in \mathcal{C}_k[\![\theta(\mathbf{unit})]\!]$.
- $\langle 1 \rangle 16.$ Case: Ty_Bool_True, Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro. Similar to Ty_Unit_Intro.

6 Additional Details

6.1 Well-formed types

 $\Theta \vdash f \mathsf{Cap}$ Well-formed fractional capabilities

$$\frac{\mathit{fc} \in \Theta}{\Theta \vdash \mathit{fc} \, \mathsf{Cap}} \quad \mathrm{WF_Cap_Var}$$

$$\overline{\Theta \vdash 1\,\mathsf{Cap}} \quad \mathrm{WF_CAP_ZERO}$$

$$\frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta \vdash \frac{1}{2} f \, \mathsf{Cap}} \quad \mathrm{WF_CAP_SUCC}$$

$$\Theta \vdash t \mathsf{Type}$$
 Well-formed types

$$\overline{\Theta \vdash \mathbf{unit}\,\mathsf{Type}} \quad \mathrm{WF_TYPE_UNIT}$$

$$\overline{\Theta \vdash \mathbf{bool}\,\mathsf{Type}} \quad \mathrm{WF_TYPE_BOOL}$$

$$\overline{\Theta \vdash \mathbf{int} \, \mathsf{Type}} \quad \mathrm{WF_TYPE_INT}$$

$$\frac{}{\Theta \vdash \mathbf{elt} \, \mathsf{Type}} \quad \mathrm{WF_TYPE_ELT}$$

$$\frac{\Theta \vdash f \operatorname{\mathsf{Cap}}}{\Theta \vdash f \operatorname{\mathsf{arr}} \mathsf{Type}} \quad \mathrm{WF_Type_Array}$$

$$\frac{\Theta \vdash t \, \mathsf{Type}}{\Theta \vdash ! t \, \mathsf{Type}} \quad \mathrm{WF_TYPE_BANG}$$

$$\frac{\Theta, \mathit{fc} \vdash \mathit{t} \, \mathsf{Type}}{\Theta \vdash \forall \mathit{fc}. \mathit{t} \, \mathsf{Type}} \quad \mathrm{WF_TYPE_GEN}$$

$$\frac{\Theta \vdash t \, \mathsf{Type}}{\Theta \vdash t' \, \mathsf{Type}} \\ \frac{\Theta \vdash t' \, \mathsf{Type}}{\Theta \vdash t \, \otimes \, t' \, \mathsf{Type}} \quad \mathsf{WF_TYPE_PAIR}$$

$$\begin{array}{l} \Theta \vdash t \, \mathsf{Type} \\ \underline{\Theta \vdash t' \, \mathsf{Type}} \\ \underline{\Theta \vdash t \multimap t' \, \mathsf{Type}} \end{array} \quad \mathrm{WF_TYPE_LOLLY} \end{array}$$

6.2 Grammar Definition

$$m$$
 ::= matrix expressions M matrix variables $m+m'$ matrix addition $m m'$ matrix multiplication $m m'$ S

```
fractional capability
             fc
                                             variable
             1
                                             whole capability
             \frac{1}{2}f
t
                                          linear type
       ::=
             unit
                                             unit
             bool
                                            boolean (true/false)
             int
                                             63-bit integers
             elt
                                            array element
             f \operatorname{\mathbf{arr}}
                                             arrays
             f mat
                                            matrices
                                            multiple-use type
              !t
             \forall fc.t
                          bind fc in t
                                             frac. cap. generalisation
             t \otimes t'
                                            pair
             t \multimap t'
                                            linear function
                          S
                                            parentheses
             (t)
                                          primitive
p
             \mathbf{not}
                                            boolean negation
                                            integer addition
              (+)
              (-)
                                            integer subtraction
                                            integer multiplication
              (*)
                                            integer division
                                            integer equality
                                            integer less-than
              (<)
                                            element addition
              (+.)
              (-.)
                                            element subtraction
                                            element multiplication
              (*.)
                                            element division
              (/.)
                                            element equality
              (=.)
                                            element less-than
             (<.)
                                            array index assignment
             \mathbf{set}
                                            array indexing
             get
             share
                                            share array
             unshare
                                             unshare array
             free
                                             free arrary
                                             Owl: make array
             array
             copy
                                             Owl: copy array
                                             Owl: map sine over array
             \sin
                                            Owl: x_i := \sqrt{x_i^2 + y_i^2}
             hypot
                                            BLAS: \sum_{i} |x_{i}|
             asum
                                            BLAS: x := \alpha x + y
             axpy
             \mathbf{dot}
                                            BLAS: x \cdot y
                                            BLAS: see its docs
             rotmg
                                            BLAS: x := \alpha x
             scal
             amax
                                            BLAS: \operatorname{argmax} i : x_i
                                            matrix index assignment
             \mathbf{set}\mathbf{M}
```

```
\mathbf{get}\mathbf{M}
                                                               matrix indexing
             shareM
                                                               share matrix
             unshareM
                                                               unshare matrix
             freeM
                                                               free matrix
             matrix
                                                               Owl: make matrix
             copyM
                                                               Owl: copy matrix
             copy M\_to
                                                               Owl: copy matrix onto another
             sizeM
                                                               dimension of matrix
                                                               transpose matrix
             trnsp
                                                               BLAS: C := \alpha A^{T?} B^{T?} + \beta C
             gemm
                                                               BLAS: C := \alpha AB + \beta C
             symm
                                                               BLAS: Cholesky decomp. and solve
             posv
                                                               BLAS: solve with given Cholesky
             potrs
                                                               BLAS: C := \alpha A^{T?} A^{T?} + \beta C
             syrk
                                                            values
v
                                                               primitives
             p
                                                               variable
             \boldsymbol{x}
                                                               unit introduction
             ()
             true
                                                               true
             false
                                                               false
                                                               integer
             k
              l
                                                               heap location
                                                               array element
              el
                                                               !-introduction
             Many v
             \mathbf{fun}\,fc \to v
                                                               frac. cap. abstraction
                                                               frac. cap. specialisation
              v[f]
             (v, v')
                                                               pair introduction
             \mathbf{fun}\,x:t\to e
                                        bind x in e
                                                               abstraction
             \mathbf{fix}(g, x:t, e:t')
                                        bind g \cup x in e
                                                               fixpoint
             (v)
                                                               parentheses
                                                            expression
e
             p
                                                               primitives
                                                               variable
             \mathbf{let}\,x=e\,\mathbf{in}\,e'
                                        bind x in e'
                                                               let binding
                                                               unit introduction
             \mathbf{let}() = e \mathbf{in} e'
                                                               unit elimination
             true
                                                               true
                                                               false
             false
             if e then e_1 else e_2
                                                               if
                                                               integer
              k
              l
                                                               heap location
              el
                                                               array element
             Many e
                                                               !-introduction
             \mathbf{let}\,\mathbf{Many}\,x=e\,\mathbf{in}\,e'
                                                               !-elimination
             fun fc \rightarrow e
                                                               frac. cap. abstraction
              e[f]
                                                               frac. cap. specialisation
```

```
(e, e')
                                                                                    pair introduction
                        \mathbf{let}(a,b) = e \, \mathbf{in} \, e'
                                                         bind a \cup b in e'
                                                                                    pair elimination
                        \mathbf{fun}\,x:t\to e
                                                         bind x in e
                                                                                    abstraction
                        e e'
                                                                                    application
                        \mathbf{fix}(g, x:t, e:t')
                                                         bind g \cup x in e
                                                                                    fixpoint
                                                                                    parentheses
                        (e)
C
                                                                                evaluation contexts
                 ::=
                                                         \mathsf{bind}\ x\ \mathsf{in}\ e
                        \mathbf{let}\,x=[-]\,\mathbf{in}\;e
                                                                                    let binding
                        \mathbf{let}\,() = [-]\,\mathbf{in}\,e
                                                                                    unit elimination
                        if [-] then e_1 else e_2
                        \mathbf{Many}[-]
                                                                                    !-introduction
                        \mathbf{let}\,\mathbf{Many}\,x = [-]\,\mathbf{in}\,e
                                                                                    !-elimination
                        \mathbf{fun}\,fc \to [-]
                                                                                    frac. cap. abstraction
                         [-][f]
                                                                                    frac. cap. specialisation
                        ([-], e)
                                                                                    pair introduction
                        (v, [-])
                                                                                    pair introduction
                        \mathbf{let}(a,b) = [-] \mathbf{in} e
                                                         bind a \cup b in e
                                                                                    pair elimination
                                                                                    application
                         [-]e
                        v[-]
                                                                                    application
                                                                                fractional capability environment
Θ
                        \Theta, fc
Γ
                                                                                linear types environment
                        \Gamma, x:t
                        \Gamma, \Gamma'
\Delta
                                                                                intuitionistic types environment
                         \Delta, x:t
                                                                                heap (multiset of triples)
\sigma
                                                                                    empty heap
                                                                                    location l points to matrix m
                        \sigma + \{l \mapsto_f m_{k_1,k_2}\}
                                                                                result of small step
StepsTo
                        \langle \sigma, e \rangle
                                                                                    heap and expression
                                                                                    error
                        \mathbf{err}
```