LECTURE 6: THE EXPONENTIAL MAP

1. One-parameter Subgroups

Let G be a Lie group, $X_e \in T_eG$ be a tangent vector at the identity element and $X \in \mathfrak{g}$ the left invariant vector field generated by X_e . One can show that (exercise) any left invariant vector field on G is complete. So for any $g \in G$ there is a unique integral curve of X defined on the whole real line \mathbb{R} ,

$$\gamma_q: \mathbb{R} \to G$$
,

so that $\gamma_g(0) = g$. We are interested in the special map $\phi := \gamma_e$, i.e. the integral curve of X that starts at e.

Lemma 1.1. The map $\phi = \gamma_e$ is a Lie group homomorphism from \mathbb{R} to G, i.e.

$$\phi(s+t) = \phi(s)\phi(t)$$

holds for all $s, t \in \mathbb{R}$.

Proof. For any $s \in \mathbb{R}$ fixed, consider the curves

$$\gamma_1: \mathbb{R} \to G, \quad t \mapsto \gamma_e(s)\gamma_e(t)$$

and

$$\gamma_2: \mathbb{R} \to G, \quad t \mapsto \gamma_e(t+s).$$

We claim that both γ_1 and γ_2 are integral curves of the vector field X with identical initial condition $\gamma_1(0) = \gamma_e(s) = \gamma_2(0)$. In fact, γ_2 is an integral curve of X since it is the translation-reparametrization of the integral curve γ_e . For γ_1 , use the left-invariance of X we have

$$\dot{\gamma}_1(t) = (dL_{\gamma_e(s)})_{\gamma_e(t)} \dot{\gamma}_e(t) = (dL_{\gamma_e(s)})_{\gamma_e(t)} X_{\gamma_e(t)} = X_{\gamma_e(s)\gamma_e(t)} = X_{\gamma_1(t)}.$$

It follows that $\gamma_1 \equiv \gamma_2$.

Definition 1.2. A one-parameter subgroup of a Lie group G is a Lie group homomorphism $\phi : \mathbb{R} \to G$, i.e. ϕ is smooth such that $\phi(s+t) = \phi(s)\phi(t)$ for all $s, t \in \mathbb{R}$.

So the arguments above shows that for any $X \in \mathfrak{g}$ (or any for any $X_e \in T_eG$), one can construct a one-parameter subgroup ϕ of G. Conversely, for any one-parameter subgroup $\phi : \mathbb{R} \to G$, we must have $\phi(0) = e$, and thus construct a left-invariant vector field X on G via the vector

$$X_e = \dot{\phi}(0) = (d\phi)_0(\frac{d}{dt}) \in T_eG.$$

It is not hard to see that different vectors in T_eG give rise to different one-parameter subgroups, and different one-parameter subgroups give rise to different vectors in T_eG .

As a consequence, we get one-to-one correspondences between

- One-parameter subgroups of G.
- Left invariant vector fields on G.
- Tangent vectors at $e \in G$.

So we have three different descriptions of the Lie algebra \mathfrak{g} .

2. The Exponential Map

For any $X \in \mathfrak{g}$, let ϕ_X be the one-parameter subgroup of G corresponding to X.

Definition 2.1. The exponential map of G is the map

$$\exp: \mathfrak{g} \to G, \quad X \mapsto \phi_X(1).$$

Since $\widetilde{\phi}(s) = \phi_X(ts)$ is the one parameter subgroup corresponding to tX, we have $\exp(tX) = \phi_X(t)$.

Example. (1) For $G = \mathbb{R}^*$, we can identify $T_1G = \mathbb{R}$. For any $x \in T_1G = \mathbb{R}$, the map $\phi : \mathbb{R} \to G$. $t \mapsto e^{tx}$

is the one-parameter subgroup of G with $\dot{\phi}(0) = x$. It follows $\exp(x) = e^x$.

(2) For $G=S^1$, we can identify $T_1S^1=i\mathbb{R}$. The one-parameter subgroup corresponding to $ix\in T_1S^1=i\mathbb{R}$ is

$$\phi: \mathbb{R} \to S^1, \quad t \mapsto e^{itx}$$

So the exponential map is given by $\exp(ix) = e^{ix}$.

(3) For $G = \mathbb{R}$, we identify $T_0G = \mathbb{R}$. The one-parameter subgroup for $x \in \mathbb{R}$ is

$$\phi: \mathbb{R} \to \mathbb{R}, \quad t \mapsto tx.$$

So the exponential map is $\exp(x) = x$.

Note that the zero vector $0 \in T_eG$ generates the zero vector field on G, whose integral curve through e is the constant curve. So $\exp(0) = e$.

Lemma 2.2. The exponential map $\exp : \mathfrak{g} \to G$ is smooth, and if we identify both $T_0\mathfrak{g}$ and T_eG with \mathfrak{g} ,

$$(d\exp)_0 = \mathrm{Id}.$$

Proof. Consider the map

$$\Phi: \mathbb{R} \times G \times \mathfrak{g} \to G \times \mathfrak{g}, \quad (t, g, X) \mapsto (g \cdot \exp(tX), X).$$

One can check that this is the flow on $G \times \mathfrak{g}$ corresponding to the (left invariant) vector field $(g, X) \mapsto (X_g, 0)$ on $G \times \mathfrak{g}$, thus it is smooth. It follows that $\exp = \pi_1 \circ \Phi|_{\{1\} \times \{e\} \times \mathfrak{g}}$ is smooth.

Since $\exp(tX) = \phi_X(t)$, $\frac{d}{dt}|_{t=0} \exp(tX) = X$. On the other hand,

$$\left. \frac{d}{dt} \right|_{t=0} \exp \circ tX = (d \exp)_0 \frac{d(Xt)}{dt} = (d \exp)_0 X.$$

We conclude that $(d \exp)_0$ equals to the identity map.

Since $(d \exp)_0$ is bijective, we have

Corollary 2.3. exp is a local diffeomorphism near 0, i.e. it is a diffeomorphism from a neighborhood of $0 \in T_eG$ to a neighborhood of $e \in G$.

Recall that for any Lie group homomorphism $\varphi: G \to H$, its differential at e,

$$d\varphi:\mathfrak{g}\to\mathfrak{h},$$

is a Lie algebra homomorphism.

Proposition 2.4 (exp is Natural). Given any Lie group homomorphism $\varphi: G \to H$, the diagram

$$\mathfrak{g} \xrightarrow{d\varphi} \mathfrak{h}$$

$$\downarrow \exp_{\mathfrak{g}} \qquad \downarrow \exp_{\mathfrak{h}}$$

$$G \xrightarrow{\varphi} H$$

is commutative, i.e. $\varphi \circ \exp_{\mathfrak{g}} = \exp_{\mathfrak{h}} \circ d\varphi$.

Proof. Let $X \in \mathfrak{g}$, then

$$\varphi \circ \exp_{\mathfrak{g}} : \mathbb{R} \to H, \quad t \mapsto \varphi \circ \exp_{\mathfrak{g}}(tX)$$

is the one-parameter subgroup of H associated to the vector

$$\frac{d}{dt}\Big|_{t=0} \varphi \circ \exp_{\mathfrak{g}}(tX) = d\varphi(X).$$

So $\varphi \circ \exp_{\mathfrak{g}}(tX) = \exp_{\mathfrak{h}} \circ td\varphi(X)$.

As an application, one can show that if G is connected, any Lie group homomorphism $\varphi: G \to H$ is determined by the induced Lie algebra homomorphism $d\varphi: \mathfrak{g} \to \mathfrak{h}$.

3. Different Descriptions of Lie Bracket

Now we have three different descriptions of the Lie algebra \mathfrak{g} of G. Consequently we should also have three different descriptions of the Lie bracket operation $[\cdot, \cdot]$:

(a) \mathfrak{g} = the set of left invariant vector fields on G: For left invariant vector fields X and Y on G,

$$[X,Y] := XY - YX.$$

(b) $\mathfrak{g} = T_e G$: For $X, Y \in T_e G$,

$$[X,Y] := \operatorname{ad}(X)Y,$$

where ad : $T_eG \to \operatorname{End}(T_eG)$ is defined as follows. Each element $g \in G$ gives rise to an automorphism

$$c(g): G \to G, \quad x \mapsto gxg^{-1}.$$

Notice that c(g) maps e to e, its differential at e gives us a linear map

$$Ad_q = (dc(g))_e : T_eG \to T_eG.$$

In other words, we get a map (the adjoint representation of the Lie group G)

$$Ad: G \to End(T_eG), g \mapsto Ad_q.$$

Note that Ad(e) is the identity map in $End(T_eG)$. Moreover, since $End(T_eG)$ is a linear space, its tangent space at Id can be identified with $End(T_eG)$ itself in a natural way. Taking derivative again at e, we get (the *adjoint representation* of the Lie algebra \mathfrak{g})

$$ad: T_eG \to End(T_eG).$$

Applying the naturality of exp to the Lie group homomorphism Ad : $G \to \text{End}(\mathfrak{g})$ and to the conjugation map $c(g): G \to G$, we have

Proposition 3.1. (1)
$$Ad(\exp(tX)) = \exp(tad(X))$$
. (2) $g(\exp tX)g^{-1} = \exp(tAd_gX)$.

(c) \mathfrak{g} = the set of one-parameter subgroups: The one-parameter subgroups generated by $X, Y \in T_eG$ are ϕ_X and ϕ_Y . Define

$$a(t,s) = \phi_X(t)\phi_Y(s)\phi_X(-t).$$

Then

$$[\phi_X, \phi_Y] := \text{the one-parameter subgroup generated by } \left. \frac{\partial}{\partial t} \right|_{t=0} \left. \frac{\partial}{\partial s} \right|_{s=0} a(t, s),$$

Now we show that the three different Lie bracket described above are equivalent:

Theorem 3.2. The three different Lie brackets defined in (a), (b), (c) are equivalent.

Proof. First let's compute (adX)Y. According to proposition 3.1,

$$(\operatorname{ad}X)Y = \frac{d}{dt}\Big|_{t=0} (\operatorname{Ad}(\exp tX)Y).$$

On the other hand, since Ad_g is the differential of c(g), we have

$$\operatorname{Ad}(\exp tX)Y = \left. \frac{d}{ds} \right|_{s=0} c(\exp tX) \exp sY = \left. \frac{d}{ds} \right|_{s=0} \exp(tX) \exp(sY) \exp(-tX).$$

This shows that (b) is equivalent to (c). To show that they are also equivalent to (a), we compute for any $f \in C^{\infty}(G)$,

$$(\operatorname{ad}(X)Y)f = \left(\frac{d}{dt}\Big|_{t=0} (\operatorname{Ad}(\exp tX)Y)\right)f$$

$$= \frac{\partial^2}{\partial s \partial t}\Big|_{s=t=0} f(\exp(tX)\exp(sY)\exp(-tX))$$

$$= \frac{\partial^2}{\partial s \partial t}\Big|_{s=t=0} f(\exp(tX)\exp(sY)) + \frac{\partial^2}{\partial s \partial t}\Big|_{s=t=0} f(\exp(sY)\exp(-tX))$$

$$= XYf(e) - YXf(e).$$