Faruk Temur¹

Hikmet Burak Özcan²

^{1,2}İzmir Institute of Technology, Turkey

Introduction

The Hardy-Littlewood maximal function, introduced in the 1930s, is a fundamental operator in harmonic analysis and PDEs. It provides a pointwise majorant of a function based on its local averages, making it essential for studying convergence and regularity.

Intuitively, $\mathcal{M}f(x)$ captures the *largest average value* of |f| around x, measuring how "locally concentrated" a function can be. It bridges local behavior and global estimates, playing a central role in differentiation theorems and regularity problems.

Continuous Setting (\mathbb{R}^d)

The **centered** maximal function \mathcal{M} is defined as the supremum of averages over balls B(x, r) centered at x:

$$\mathcal{M}f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| \, dy.$$

The **uncentered** maximal function $\widetilde{\mathcal{M}}$ takes the supremum over all balls containing x:

$$\widetilde{\mathcal{M}}f(x) = \sup_{B\ni x} \frac{1}{|B|} \int_{B} |f(y)| \, dy.$$

Key property: $\mathcal{M}f(x) \leq C_d \mathcal{M}f(x)$, so both operators are equivalent up to constants, though the uncentered version is sometimes easier to handle.

Discrete Setting (ℤ)

In the discrete setting, integrals are replaced by sums. The centered discrete maximal function M^d averages over symmetric intervals:

$$\mathbf{M}^d f(n) = \sup_{r \geq 0} \frac{1}{2r+1} \sum_{j=-r}^r |f(n+j)|.$$

The uncentered discrete maximal function $\widetilde{\mathbf{M}}^d$ averages over general intervals containing *n*:

$$\widetilde{\mathbf{M}}^d f(n) = \sup_{s,r \geq 0} \frac{1}{r+s+1} \sum_{j=-s}^r |f(n+j)|.$$

Applications and Intuition

Maximal functions are not only theoretical constructs: they appear naturally in

- studying pointwise convergence of Fourier series,
- differentiating integrals (Lebesgue differentiation) theorem),
- regularity questions for solutions to PDEs such as the heat or Laplace equation,
- discrete analogues in number theory and combinatorics.

This dual role — connecting local averages to global estimates — makes maximal functions a key tool in modern analysis.

Literature Review: Boundedness Results

Many quantities of interest are dominated by the maximal function $\mathcal{M}f$. This raises the natural question:

How large can the maximal function of a given function be?

While pointwise control is not always possible, L^p -norm bounds are available.

L^p-Boundedness

► G. H. Hardy and J. E. Littlewood (1930) established the foundational results in one dimension (\mathbb{R}). For 1 ,the maximal operator is bounded on $L^p(\mathbb{R})$, i.e., there exists $C_p > 0$ such that

$$\|\mathcal{M}f\|_{L^p(\mathbb{R})} \leq C_p \|f\|_{L^p(\mathbb{R})}.$$

For p = 1, \mathcal{M} is not bounded on $L^1(\mathbb{R})$, but satisfies the weak-type (1,1) inequality:

$$|\{x \in \mathbb{R} : \mathcal{M}f(x) > \lambda\}| \leq \frac{C}{\lambda} ||f||_{L^1(\mathbb{R})}.$$

Hence, \mathcal{M} maps $L^1(\mathbb{R})$ into the weak Lebesgue space $L^{1,\infty}(\mathbb{R}).$

ightharpoonup These results were generalized to higher dimensions (\mathbb{R}^n) by Norbert Wiener (1939) using a Vitali-type covering lemma.

ℓ^{*p*}-Boundedness

Analogous results hold in the discrete setting. The discrete maximal operator \mathbf{M}^d on \mathbb{Z}^n satisfies the **weak-type (1,1)** bound:

$$|\{k \in \mathbb{Z}^n : \mathbf{M}^d f(k) > \lambda\}| \leq \frac{C}{\lambda} ||f||_{\ell^1(\mathbb{Z}^n)},$$

and the **strong-type (p,p)** bound for 1 :

$$\|\mathbf{M}^{d}f\|_{\ell^{p}(\mathbb{Z}^{n})}\leq C_{p}\|f\|_{\ell^{p}(\mathbb{Z}^{n})}.$$

This theory was further developed by J. Bourgain (1980s-1990s), who obtained deep results for discrete averages over polynomial sequences and arithmetic progressions, especially in ergodic theory.

Motivation: A Competition of Effects

The regularity theory for \mathcal{M} addresses a fundamental question: If f is smooth (e.g., $f \in W^{1,p}$ or BV), is $\mathcal{M}f$ also smooth? Two opposing mechanisms compete:

- **Averaging smooths:** $A_r f(x) = \frac{1}{|B_r|} \int_{B_r} f$ typically regularizes
- **Supremum roughens:** $\mathcal{M}f(x) = \sup_{r} A_r f(x)$ can introduce discontinuities and destroy smoothness.

Does the smoothing effect of averaging survive the roughening from the supremum?

Literature Review: Regularity Results

1. Continuous Setting

▶ Kinnunen (1997): The centered maximal operator is bounded on Sobolev spaces,

$$\mathcal{M}: W^{1,p}(\mathbb{R}^n) \longrightarrow W^{1,p}(\mathbb{R}^n)$$

by the key pointwise inequality (a.e.)

$$|\partial_i \mathcal{M} f(x)| \leq \mathcal{M}(|\partial_i f|)(x).$$

Keywords: n-D, Centered, W^{1,p}

The endpoint case p = 1 shows finer distinctions between centered and uncentered operators:

▶ Tanaka (2002): For $f \in W^{1,1}(\mathbb{R})$, the function $\widetilde{\mathcal{M}}f$ is weakly differentiable and satisfies

$$\|(\widetilde{\mathcal{M}}f)'\|_{L^1(\mathbb{R})} \leq 2 \|f'\|_{L^1(\mathbb{R})}.$$

Keywords: 1-D, Uncentered, W^{1,1}

▶ Aldaz & Pérez Lázaro (2007): For $f \in BV(\mathbb{R})$, the uncentered maximal operator is absolutely continuous and satisfies

$$Var(\widetilde{\mathcal{M}}f) \leq Var(f)$$
.

Keywords: 1-D, Uncentered, BV

► Kurka (2015): The centered operator preserves bounded variation up to a universal constant,

$$Var(\mathcal{M}f) \leq 240000 \ Var(f).$$

Keywords: 1-D, Centered, BV

2. Discrete Setting

The discrete analogues parallel the continuous results:

▶ Bober, Carneiro, Hughes & Pierce (2012): The discrete uncentered operator satisfies the contraction property

$$Var(\widetilde{\mathbf{M}}^d f) \leq Var(f).$$

Keywords: 1-D, Uncentered, Discrete, BV

▶ **Temur (2013)**: The discrete centered operator is bounded in variation,

$$Var(\mathbf{M}^d f) \le 294912004 \ Var(f).$$

Keywords: 1-D, Centered, Discrete, BV

Higher Order Regularity

Research on the maximal operator has mainly focused on firstorder regularity until Temur (2022):

▶ **Temur (2022):** For any finite $A \subset \mathbb{Z}$ and $1 \leq p \leq \infty$,

$$\|(\widetilde{\mathcal{M}^d}\chi_A)''\|_{\ell^p} \leq 2^{1-1/p}3^{1/p}\|\chi_A''\|_{\ell^p}.$$

This result naturally raises new questions: **Q1:** Extendable to broader functions?

▶ Weigt (2024) gave a counterexample.

Q2: Extendable to k-th order ($k \ge 2$)?

Temur, Ö. (2025) generalized for any $k \geq 2$.

Reduction to Growth of $\|\chi_A^{(k)}\|_{\ell^1(\mathbb{Z})}$

Using the recurrence relation in discrete differenatiation

$$f^{(k)}(n) = f^{(k-1)}(n+1) - f^{(k-1)}(n).$$

we obtain

$$\|f^{(k)}\|_{\ell^p(\mathbb{Z})} \leq 2 \|f^{(k-1)}\|_{\ell^p(\mathbb{Z})}$$

Applying recursively for discrete matimal operators and then using the first order regularity we obtain

$$\|\left(\widetilde{\mathbf{M}}^{d}\chi_{A}\right)^{(k)}\|_{\ell^{p}(\mathbb{Z})} \leq 2^{k-1}\|\left(\widetilde{\mathbf{M}}^{d}\chi_{A}\right)'\|_{\ell^{p}(\mathbb{Z})} \lesssim_{p} \|\chi_{A}'\|_{\ell^{p}(\mathbb{Z})}.$$

Hence, to complete the k-th order regularity, we aim to prove:

$$\|\chi_{\mathcal{A}}'\|_{\ell^{p}(\mathbb{Z})} \lesssim_{k,p} \|\chi_{\mathcal{A}}^{(k)}\|_{\ell^{p}(\mathbb{Z})}, \ k \geq 2.$$

Main Results on ℓ^p Growth of $\chi_A^{(k)}$

Theorem 1 (Temur, Ö. 2025): For any finite $A \subset \mathbb{Z}$ and $1 \leq p \leq \infty$,

$$\|\chi_A^{(k)}\|_{\ell^p(\mathbb{Z})} \geq (2k+1)^{-1/p} \|\chi_A'\|_{\ell^p(\mathbb{Z})}.$$

Keywords: Exponential, Uniform Bound

Theorem 2 (Temur, Ö. 2025): For any finite $A \subset \mathbb{Z}$, $n = \lfloor k/3 \rfloor$, and $1 \leq p \leq \infty$,

$$\|\chi_{\mathcal{A}}^{(k)}\|_{\ell^p(\mathbb{Z})} \geq \frac{1}{3} \binom{k}{n}.$$

Keywords: Exponential, Nonuniform Bound

Theorem 3 (Temur, Ö. 2025): For any finite $A \subset \mathbb{Z}$, $1 \leq p \leq \infty$, and k sufficiently large depending on |A|,

$$\|\chi_{\mathcal{A}}^{(k)}\|_{\ell^p(\mathbb{Z})} \geq 2^{k-1-\frac{|\mathcal{A}|-1}{2}\log_2 2k} \Big(\frac{\sqrt{|\mathcal{A}|-1}}{7\pi e^{3/2}}\Big)^{|\mathcal{A}|-1} (k+1)^{-1/p'} |\mathcal{A}|^{1/p}.$$

Keywords: Asymptotic Bound via Nazarov-Turán

Theorem 4 (Temur, Ö. 2025): For any finite $A \subset \mathbb{Z}$, $1 \leq p \leq \infty$, and k sufficiently large depending on |A|,

$$\|\chi_{\mathcal{A}}^{(k)}\|_{\ell^p(\mathbb{Z})} \geq 2^{k-1-3(\log_2 e)(\frac{c\pi}{4})^{2/3}k^{1/3}} \big[(k+1)|\mathcal{A}|\big]^{-1/p'}.$$

Keywords: Asymptotic Bound via Borwein-Erdélyi

Theorem 5 (Temur, Ö. 2025): For any finite $A \subset \mathbb{Z}$, $1 \le p \le \infty$, ksufficiently large depending on |A|, and any integer $0 \le a \le \log |A|$ with $\widehat{\chi_A}^{(a)}(1/2) \neq 0$,

$$\|\chi_A^{(k)}\|_{\ell^p(\mathbb{Z})} \geq 2^{k-\frac{a}{2}\log_2 2k+a-2} \Big(\frac{a}{e}\Big)^{a/2} \frac{1}{a!} \big[(k+1)|A|\big]^{-1/p'}.$$

Keywords: Asymptotic Bound via Borwein, Erdélyi, Kós

Theorem 6 (Temur, Ö. 2025): If
$$A\subset \mathbb{Z}$$
 satisfies

$$\sum_{m < n \in A} \frac{1}{n - m} \le \frac{\pi}{8} |A|,$$

then for any $k \in \mathbb{N}$ and $1 \le p \le \infty$,

$$\|\chi_A^{(k)}\|_{\ell^p(\mathbb{Z})} \geq egin{cases} (k+1)^{1/p-1/2} 2^{k/2-1} \|\chi_A\|_{\ell^p(\mathbb{Z})}, & p \geq 2, \ 2^{k-(k+2)/p} \|\chi_A\|_{\ell^p(\mathbb{Z})}, & 1 \leq p < 2. \end{cases}$$

Keywords: Exponential Growth, Sparsity Condition

Sketch Proof of Theorem 3 via Nazarov–Turán

Fourier-analytic Framework

1. Discrete Fourier Transform: Let $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq [0,1)$ and $f: \mathbb{Z} \to \mathbb{C}$ finitely supported:

$$\widehat{f}(x) = \sum_{n \in \mathbb{Z}} f(n) e^{-2\pi i n x}, \quad x \in \mathbb{T}.$$

For $k \ge 1$:

$$\widehat{f^{(k)}}(x) = (e^{2\pi ix} - 1)^{k}\widehat{f}(x),$$

so the discrete derivative is diagonalized by the Fourier transform.

2. ℓ^p Estimates via Hausdorff–Young: For $1 \le p \le 2$ with conjugate p':

$$\|\widehat{g}\|_{L^{p'}(\mathbb{T})} \leq \|g\|_{\ell^p(\mathbb{Z})}.$$

Apply to $g = \chi_A^{(k)}$:

$$\|(e^{2\pi ix}-1)^k\widehat{\chi_A}(x)\|_{L^{p'}(\mathbb{T})}\leq \|\chi_A^{(k)}\|_{\ell^p(\mathbb{Z})}.$$

In particular, for p = 1:

measurable $E \subset \mathbb{T}$:

$$\|\chi_A^{(k)}\|_{\ell^1(\mathbb{Z})} \geq \sup_{\mathbf{x} \in \mathbb{T}} |(e^{2\pi i \mathbf{x}} - \mathbf{1})^k \widehat{\chi_A}(\mathbf{x})|.$$

3. Localization near x = 1/2: $m(x) = e^{2\pi ix} - 1 = 2i\sin(\pi x)e^{\pi ix}$, so $|m(x)| = 2|\sin(\pi x)|$. Maximum at x = 1/2, restrict to $E_r = (1/2 - r, 1/2 + r)$:

$$|m(x)| \ge 2 - \pi^2 r^2$$
, $\|\chi_A^{(k)}\|_{\ell^1(\mathbb{Z})} \ge (2 - \pi^2 r^2)^k \|\widehat{\chi_A}\|_{L^\infty(E_r)}$.

4. Nazarov–Turán Inequality: For $P(x) = \sum_{n \in A} a_n e^{2\pi i n x}$ and

$$\|P\|_{L^{\infty}(\mathbb{T})} \leq \left(rac{14e}{|E|}
ight)^{|A|-1} \|P\|_{L^{\infty}(E)}.$$

Apply to $P(x) = \widehat{\chi_A}(-x), |E_r| = 2r$:

$$\|\widehat{\chi_A}\|_{L^{\infty}(E_r)} \geq \left(\frac{r}{7e}\right)^{|A|-1} |A|,$$

hence

$$\|\chi_A^{(k)}\|_{\ell^1(\mathbb{Z})} \geq (2 - \pi^2 r^2)^k \left(\frac{r}{7e}\right)^{|A|-1} |A|.$$

5. Optimization and Extension to ℓ^p : Optimizing r and applying Hölder's inequality extends the bound to general ℓ^p :

$$\|\chi_A^{(k)}\|_{\ell^p(\mathbb{Z})} \geq 2^{k-1-\frac{|A|-1}{2}\log_2 2k} \Big(\frac{\sqrt{|A|-1}}{7\pi e^{3/2}}\Big)^{|A|-1} (k+1)^{-1/p'} |A|^{1/p}.$$

References

- 1. E. Carneiro, Regularity of maximal operators: recent progress and some open problems, arXiv:1912.04625, 2019.
- **2.** F. Temur, *The second derivative of the discrete* Hardy-Littlewood maximal function, arXiv:2205.03953, 2022.
- 3. F. Temur, H. B. Özcan, The higher regularity of the discrete Hardy-Littlewood maximal function, arXiv:2504.13019, 2025. 4. J. Weigt, Sobolev bounds and counterexamples for the second
- derivative of the maximal function in one dimension, arXiv:2409.12631, 2024.

https://hikburozc.github.io

2nd Atlantic Conference in Nonlinear PDEs: Harmonic Analysis, Dispersive and Elliptic Equations — November 3–7, 2025