Inferência Bayesiana

Aula 1

Programa

- Introdução
- Revisão Probabilidade e Estatística Matemática
 - Distribuições mais importantes
 - Métodos de Estimação
 - Função de Verossimilhança
- Modelos de um parâmetro
- Modelos de mais de um parâmetro
- Revisão de Cálculo
 - Integração Numérica

Programa

- Métodos de Monte Carlo
- Cadeias de Markov
- MCMC
 - Metropolis Hasting
 - Amostrador de Gibbs
- Análise de Convergência
- Modelos Lineares
- Modelos Lineares Mistos
- Aumento de Dados
- Modelos de Limiar

 Estatística: Ciência cujo objetivo fundamental é a coleta, compilação, análise e interpretação de dados, para auxiliar a tomada de decisões.

 A estatística descritiva usa estatísticas para descrever a amostra.

 A Inferência estatística usa parâmetros e distribuições para descrever a população

 A Estatística Descritiva aliada à teoria das probabilidades é uma ferramenta para a Inferência Estatística.

 Inferir significa extrair conclusões a partir de valores ou evidências

 Pode também referir ao processo utilizado para se chegar a estas conclusões.

 Em Lógica, Inferência é o ato ou processo de derivar conclusões lógicas de premissas conhecidas ou decididamente verdadeiras

• A Inferência Estatística consiste em *generalizar* para a população aquilo que se observou na amostra com o objetivo de tirar conclusões.

Inferência Lógica - Indução e Dedução

- Duas formas básicas de raciocínio
- Raciocínio indutivo
 - Antecedente: particular=> Conseqüente: geral

- Raciocínio dedutivo
 - Antecedente: lei geral=> Conseqüente: menos geral

Inferência Lógica - Indução e Dedução

Indução

- Antecedentes:
 - João é mortal
 - Pedro é mortal

- Consequente:
 - Todo homem é mortal

Dedução

- Antecedente
 - Todos os homens são mortais

- Consequente
 - Os homens desta cidade são mortais

Raciocínio Indutivo

- Indução implica em generalização.
 - de fatos particulares conhecidos chega-se a conclusões gerais, até então, desconhecidas.

 O objetivo da inferência indutiva é levar a conclusões cujo conteúdo é muito mais amplo do que as premissas nas quais foram baseadas.

Inferência Estatística

 A Inferência Estatística consiste em generalizar para a população aquilo que se observou em uma amostra com o objetivo de tirar conclusões.

• É portanto um processo indutivo.

Inferência Estatística

- Procedimentos
 - Estimação por Pontos
 - Estimação por Intervalos
 - Usam as medidas da amostra para obter informações sobre a população
 - Teste de Hipóteses
 - Avalia hipóteses sobre a população a partir das informações da amostra

Objetivos da pesquisa

Comparações de diferentes grupos

Comparação de aditivos para ração

Comparações de Cruzamentos

Estudo de substituição de alimentos

Caracterização de populações segundo fatores de interesse

- Produção de Leite de uma raça
 - Conversão Alimentar de bovinos criados a pasto
- Herdabilidade de características de importância econômica

 A estatística descritiva usa estatísticas para descrever a amostra.

 Uma estatística é qualquer função de uma amostra aleatória.

 Uma amostra aleatória é um conjunto de variáveis aleatórias obtidas de indivíduos tomados ao acaso de uma população.

 Uma variável aleatória é uma variável com valor real definido pelo resultado de um experimento aleatório.

• Experimento aleatório é um fenômenos que, quando repetidos inúmeras vezes em processos semelhantes, apresentam resultados variáveis, incertos, mas que, entretanto, satisfazem condições básicas que permitem previsão.

- Uma população é uma coleção de indivíduos ou objetos com alguma característica em comum.
- Um exemplo pode ser o conjunto de cadeiras escolares da FCAV.
- Isto é uma população finita num dado momento.

- Definições
 - Variável Aleatória
 - Amostra Aleatória
 - Estatística
 - População

Variável Aleatória

Definição

- Uma variável com valor real definido pelo resultado de um experimento aleatório.
- Valor real que dependente de fatores aleatórios.
- Função que associa um número real a cada elemento de um espaço amostral S.

- Definições
 - Variável Aleatória
 - Amostra Aleatória
 - Estatística
 - População

Amostra Aleatória

- Conjunto de Variáveis Aleatórias tomadas ao acaso de indivíduos uma mesma população.
- *X*₁, *X*₂, *X*₃, ..., *X*_n
- Por serem obtidos ao acaso desta população estas amostras são independentes.
 - Saber os valor de x_1 , não informa nada sobre x_2
- Como vêm da mesma população todos tem a mesma distribuição de probabilidade (ou densidade).

- Definições
 - Variável Aleatória
 - Amostra Aleatória
 - Estatística
 - População

Estatística

- Uma estatística é qualquer função de uma amostra aleatória.
- $f(x_1, x_2, x_3, ..., x_n)$

• Ex:
$$x_1$$
;
 $-x_1+x_2+x_3+...+x_n$;
 $-\sum_{n} x$

- Definições
 - Variável Aleatória
 - Amostra Aleatória
 - Estatística
 - População

População

 Uma população é uma coleção de entidades indivíduos ou objetos com algumas características em comum.

 Algumas destas características precisam ser expressas por meio de variáveis aleatórias.

- Para que possamos considerá-las como uma população estatística é preciso que sejam variáveis aleatórias.
- Duas condições
- 1) Cada elemento desta população deve poder ser expresso por pelo menos um valor real.
- 2) Devemos considerar que podemos realizar experimentos para tomar amostras dela.

Exemplo

- Peso aos 120 dias de animais da raça Nelore
- Interesse:
- Qual o peso médio dos animais?
- O P120 varia? Muito?
- Qual o peso médio dos 10% mais pesados?
- Qual a percentagem dos animais que está acima de 150 kg?
- Será possível fazer seleção para melhorar esta característica no Nelore?
- Qual a relação do P120 com pesos em outras idades?

Suposição:

Distribuição Normal

$$f(x | u, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-u)^2}{\sigma^2}} = \varphi$$

Inferência Estatística

$$X_p X_2, X_3, ... X_n \sim N(u, \sigma^2)$$

Amostra (307 animais)

animal	p120	
774518		165
906013		174
513360		122
622558		157
630663		87
822049		123
838618		100
541332		62
539374		94
501661		113
692370		120
509964		118
444743		113
329375		93
654495		152
399384		128
481473		145
539933		126
591300		146
836936		89
777254		131
682792		144

Amostra (307 animais)

Amostra (307 animais)

Incerteza

Erro padrão da média

$$EP = \frac{S}{\sqrt{n}}$$

Intervalo de confiança da média

$$IC = \overline{X} \pm t \left(\frac{S}{\sqrt{n}} \right)$$

População

Em 95% das amostras de mesmo tamanho, tomadas nas mesmas condições, a média amostral estará no intervalo.

Teste de Hipóteses

- Procedimento padrão para determinar valor empírico de teorias científicas.
- Evidências são usadas para apoiar a teoria demonstrando que:
 - existe pouca probabilidade de se observarem os dados se o modelo teórico postulado for falso.
- Contradição Estatística

- H_o Hipótese Nula
- H₁ Hipótese Alternativa

- H_o Hipótese Nula hipótese que será suposta inicialmente como verdadeira.
- É, basicamente, a negação do que o pesquisador deseja provar.

- H₁ Hipótese Alternativa hipótese que será aceita, se os dados mostrarem evidências suficientes para a rejeição da hipótese nula.
- Geralmente, é a própria hipótese da pesquisa.

Exemplo

H_o: Em média, os pesos dos animais **não** aumentam com a administração do aditivivo A na ração.

H₁: Em média, os pesos dos animais aumentam com a administração do aditivivo A na ração.

H_o: Em média, a produtividade **não** cresce com o treinamento.

H₁: Em média, a produtividade cresce com o treinamento.

Exemplo

 Suspeita-se que uma moeda, utilizada em jogo de azar, seja viciada, isto é, que a probabilidade de sair "cara" seja diferente de 50%.

 H_o : p = 0.5 (a probabilidade é 50%)

 H_1 : $p \neq 0,5$ (a probabilidade não é 50%)

p - probabilidade de cara.

Amostra

 Para se tomar a decisão de se aceitar, ou não, que a moeda seja honesta, tomou-se uma amostra com 10 lançamentos e observou-se o número de caras.

(variável X - estatística do teste).

Valor Esperado

 Qual é o valor esperado para o número de caras (variável X - estatística do teste) se a probabilidade for realmente 50%?

5 caras

Resultado da amostra

- Valor esperado se a probabilidade for realmente 50%: 5 caras.
- Situação 1: Valor obtido: X = 10 caras.
 Qual seria a conclusão?
- **Situação 2**: Valor obtido: **X = 7** caras. Qual seria a conclusão?

Desvio Observado

Distribuição de Referência

- Todo teste está associado a uma distribuição de probabilidades, usada para se verificar a adequação de H_o com o resultado observado na amostra.
- No exemplo da moeda, a distribuição é binomial (n=10 e p=0,5).

Exemplo

Probabilidade de Significância (p_s)

- Probabilidade da estatística do teste acusar um resultado tão (ou mais) distante do esperado quanto o resultado ocorrido na amostra observada.
- Pode ser compreendida como a probabilidade do desvio observado ter ocorrido por acaso se a hipótese nula for verdadeira.

Desvio Observado

Situação 1

- A amostra apresentou 10 caras.
- Se p = 0,5, a probabilidade da amostra apresentar X = 10 (ou X=0) caras é:

Situação 1

Conclusão...

- ps = 0,2% (probabilidade do desvio ter ocorrido por acaso)
- Qual seria a conclusão?
- Rejeita-se H_o, ou seja, não se admite que o desvio tenha ocorrido por acaso.

Situação 2

- A amostra apresentou 7 caras.
- Se p = 0,5, a probabilidade da amostra apresentar X = 7 ou mais (ou X=3 ou menos) caras é:

Situação 2

Conclusão...

- ps = 34,4% (probabilidade do desvio ter ocorrido por acaso)
- Qual seria a conclusão?
- Aceita-se H_o, ou seja, não se pode afirmar que o desvio não tenha ocorrido por acaso.

Decisão

- Se a probabilidade do desvio ter ocorrido por acaso for considerável (p_s alta), não há evidências para se rejeitar H_o. Aceita-se H_o.
- Quando a probabilidade do desvio ter ocorrido por acaso for considerada pequena (p_s baixa), há evidências para a rejeição de H_o. Rejeita-se H_o.

Fundamentos do Teste de Hipóteses

- 1. Existe um e apenas um processo que governa as ações de uma população em respeito a alguma variável.
- 2. Existem muitos exemplos de teorias aceitas como verdadeiras por muito tempo e que depois deixam de ser aceitas. Portanto:

Verdades objetivas são rejeitadas.

3. Se não podemos ter certeza de que uma teoria é verdadeira, então o melhor a fazer é avaliar a probabilidade de que a teoria seja verdadeira.

Teste de Hipóteses

Fundamento epistemológico:

existe um verdadeiro processo gerando os dados e este processo vai ser revelado pelo processo de eliminação.

Teste de hipóteses

 Seria interessante expressar as incertezas sobre uma teoria como:

P (Modelo é Verdadeiro | Dados Observados)

- Entretanto, baseado nos fundamentos não podemos dizer que um modelo tem probabilidade X de estar correto. Ou o modelo é verdadeiro ou não é!
- Nosso conhecimento fica limitado a:

P (Dados Observados | Modelo é Verdadeiro)

Interpretação de P (Dados Observados | Modelo é Verdadeiro)

Se P(Dados | Modelo) é próximo a 1,0 então os dados são consistentes com o modelo e não será rejeitado como uma interpretação objetiva da realidade.

Hipótese: Machos são mais pesados que fêmeas

Dados: A média de peso dos touros é 750 Kg. A média de peso das vacas é 500 Kg.

Dizemos que os dados são consistentes com o modelo. Isto é, P(Dados | Modelo) é próximo de 1,0.

cont.....

Se P(Dados | Modelo) não for próximo de 1,0, então os dados não são consistentes com as previsões feitas pelo modelo e ele é rejeitado.

Hipótese: Vacas jovens desmamam bezerros mais pesados que vacas mais velhas.

Dados:

Média de peso de filhos de vacas de 3 anos é 130 Kg; Média de peso de filhos de vacas de 6 anos é 150 Kg.

Devemos dizer que os dados não são consistentes com o modelo. Isto é, P(Dados | Modelo) não é próximo de 1,0 e assim o modelo não é uma representação útil da realidade.

Estabelecendo um teste de hipóteses

1. Definir a hipótese de trabalho.

Uma hipótese de trabalho ou hipótese alternativa é uma afirmação baseada da teoria do que o pesquisador espera achar nos dados.

2. Definir a hipótese nula.

A hipótese nula é uma afirmação do que não se espera encontrar nos dados se a hipótese alternativa for consistente com a realidade.

3. Conduzir a análise dos dados para determinar se os devemos ou não rejeitar a hipótese nula baseado em alguma probabilidade préestabelecida.

Se for possível rejeitar a hipótese nula com alguma probabilidade, então os dados são consistentes com o modelo.

Se não for possível rejeitar a hipótese nula então os dados não são consistentes com o modelo.