FIG. 1A

ELECTRON ACCELERATING VOLTAGE: 10kV

FIG. 1B

ELECTRON ACCELERATING VOLTAGE: 3kV

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4

FIG. 5

FIG. 6 (TABLE 1)

FIG. 7 (TABLE 2)

SPECIMEN	CRITICAL ELECTRON ACCELERATING VOLTAGE POSSIBLE TO TRANSMIT A SPECIMEN (a)	OPTIMUM ACCELERATING VOLTAGE (b)	FACTOR m (b∕a)
ARABIDOPSIS (100nm THICK)	3.0kV	7.5kV	2.5
MOUSE (100nm THICK)	3.5kV	9.0kV	2.6
MOUSE (300nm THICK)	5.5kV	14.0kV	2.5

FIG. 8 (TABLE 3)

SPECIMEN	STAINED SECTION	NEGATIVE STAINED SECTION	FROZEN SECTION	
ELEMENTS	C(53%), O(23%), N(16%), H(7%), S(2%)	SAME AS IN THE LEFT OK	H(49.7%), O(24.9%), C(24.9%), N	
STAINING ATOMS	Pb, U	W	NON (UNSTAINED)	
AVERAGE ATOMIC NUMBER OF STAINING ATOMS	87	74	-	
AVERAGE ATOMIC MASS OF STAINING ATOMS	222.5	184	-	
DENSITY FLUCTUATION DEPENDING ON THE AREA	±60%	±30%	NON	
RANGE OF FACTOR	1.2 ~ 4.2	1.6 ~ 3.5	2.0 ~ 3.0	

FIG. 9 (TABLE 4)

ACCELERATING VOLTAGE	3kV	5kV	10kV	30kV
IMAGES				
CONTRAST	1 / 20	13 / 20	20 / 20	20 / 20
RESOLUTION	3 / 10	8 / 10	10 / 10	10 / 10