北京大学数学科学学院期末试题

2009 - 2010 学年第一学期

考试科目	数学分析(III)	考试时间. 2010 年 1 月 8 日
维 名 _		# 9.
本试器共	6 道大騎	

- 一 (每小题 10 分,共 60 分) 用 I 表示数轴上的 [0,1] 区间, II 表示 R^2 中的 $I \times I$ 区域, III 表示 R^3 中的 $I \times I \times I$ 区域。 试计算以下各题的联分值:
 - (1) $\iiint_{H}(x+y)dxdy.$
 - (2) $\iiint_{III}(x+y+z)dxdydz.$
 - (3) $\oint_{\partial II}(x+y)ds$, 其中 ∂II 是区域 II 的边界.
 - (4) $f_{\partial H^+} x dx + y dy$, 其中 ∂H^+ 是区域 H 的正向边界 (即逆时针方向).
 - (5) $\iint_{\partial H} (x+y+z)dS$, 其中 ∂H 是区域 H 的边界。
 - (6) $\iint_{\partial III} + x dy dz + y dz dx + z dx dy$, 其中 ∂III^+ 是 III 的边界, 外侧.
- 二 (15 分) 计算曲面积分: $I = \iint_S x^2 dy dz + y^2 dz dx + \mathbf{Z}^2 dx dy$, 其中 S 是誰面 $x^2 + y^2 = z^2$ ($0 \le z \le 1$) 所表示的那部分的外侧.
- 三 (10 分) 设 P(x,y,z), Q(x,y,z) 和 R(x,y,z) 都是线性函数 (即具有形式 ax+by+cz+d), 而且在包含原点在内的某单连通区域 Ω 内 $\int_{\overline{AB}} Pdx+Qdy+Rdz$ 积分与路径无关. 证明在 Ω 内 $\int_{\overline{AB}} zdP+ydQ+zdR$ 积分也与路径无关.
- 四 (10 分) 假设 $f \in C^1(\mathbb{R}^2)$, $F(x) = \int_{x^2}^{2x^2} ds \int_s^{x^2} f(s,t) dt$. 试求 F'(x).
- 五 (5 分) 假设 f(x) 是 R 上的非负连续函数, $\int_{-\infty}^{+\infty} f(x)dx = 1$,

$$I_n = \int \cdots \int_{x_1^2 + \cdots + x_n^2 \le 2010^2} f(x_1) \cdots f(x_n) dx_1 \cdots dx_n.$$

证明: $\lim_{n\to+\infty} I_n = 0$.

北京大学数学科学字院期末试题	
2008 - 2009 学年 第一学期	
考试科目 数学分析 考试时间 09年 1月 16日	
姓 名	
本试题共 北 道大题。满分 100 分	
1 (40分) 简答题 (给出答案即可, 每小题 5分),	
(1) 假设 D 是 R^2 中由圏 $x^2+y^2=5$ 和双曲线 $xy=2$ 在第一象限 $(x,y\geq 0)$ 中所團闭集。 f 是 D 上连续函数,把二重积分 $\iint_D f(x,y) dxdy$ 化成不同	
次序的二次积分.	
(2) 设 D 是 R^2 中两直线 $y=x,\ y=2x$ 与两双曲线 $xy=1,\ xy=2$ 在第一和第三象限中所围点集。利用变换 $\Phi:D\ni(x,y)^T\longrightarrow(\xi,\eta)^T=(\frac{y}{x},xy)^T$	
将二重积分 $\iint_{\mathcal{O}} f(xy) dxdy$ 写成定积分,这里 f 是 $[1,2]$ 上连续函数.	i
(3) 根据关于 n 维矩形上 Riemann 积分可积性的 Lebesgue 定理回答这样的问题: 在考虑有界集上 n 重积分时为什么要求积分区域是 Jordan 集?	2
(4) 根据 $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$ 给出积分 $\int_0^{+\infty} \left(\frac{\sin \alpha x}{x}\right)^2 dx$ 值 $(\alpha \ge 0)$.	STATE OF THE PARTY
(5) 假设 Σ 是下半球面: $x^2+y^2+z^2=1$ ($z\leq 0$)、请答出第一类曲面积分 . $\iint_{\Sigma} ds$ 和第二类曲面积分 $\iint_{\Sigma} dx dy$ (这里 Σ 取下侧) 的值分别是多少?	
(6) 用微分形式语言统一写出关于曲线和曲面积分的 Green 公式、 Gauss 公式及 Stokes 公式。	
(7) 设 $\alpha = \sin(x^2yz) dx + e^{xz^3} dz$ 是 R^5 上微分 1- 形式、请写出 $d\alpha$.	
(8) 假设 $\alpha = Pdx + Qdy$, 这里 P, Q 分别是 R^2 上连续可微函数、如果任何分段可微闭路 / 上积分 $\oint_{I} \alpha = 0$, 请问 α 是否闭? 是否全微分(恰当)?	
1	

2. (20 分) 记 2. 为在第一封模 (x, x, z ≥ 0) 中的平衡 x + y + 2z = 2 (取下, 例) - 1 为 2. 的边界并由上往下 (这里下指 x 坐标为小者) 看为进时斩方向。 计算如下积分。

$$\oint_{\Gamma} xy \ dx + yz \ dy + xyz dz, \qquad \iint_{\Sigma} x \ dy dz.$$

3. (10 分) 假设 f 是 R^1 上连续函数。 D. 是 R^1 中球面 Σ_1 : $x^2+y^2+z^2=1$ 写球面 Σ_{1+c} : $x^2+y^2+z^2=(1+c)^2$ 所来的点集 (c>0). 证明。

$$\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \iiint_{D_\epsilon} f(x,y,z) \ dxdydz = \iint_{\Sigma_1} f \ dS.$$

4 (10分) 今 $D = \{(x,y) \in R^2 \mid 1 \le x, \ 0 \le y \le \frac{1}{x}\}$. $f \to D$ 上非负连辖函数,偏导数 $\partial_y f(x,y)$ 在 D 上在在县有弊、请证明。

$$\iint_D f(x,y) \, dxdy 收敛 \Longleftrightarrow \int_1^{+\infty} \frac{f(x,0)}{x} \, dx 收敛.$$

- 5. (10分) 讨论 $F(t) = \int_0^{+\infty} \frac{\sin tx}{1+x^2} dx$ 在 $[0, +\infty)$ 上连续性和可微性.
- 6. (5分)设 Γ 是 R^2 中 C^1 无自交封闭正向曲线。 $\overline{v}=(M,N)$ 是不可压缩液体通过 Γ 的流速(R^2 上 C^1 向量值函数),请用曲线积分表示液体通过 Γ 的流量并由此证明如下 Bendixson 判别法。如果 $\partial_x M + \partial_y N$ 处处非 0,则 R^2 中不可能存在封闭曲线以 (M,N) 作为其切线方向。
- 7. (5分) 假设 A 是 n 阶严格正定的对称矩阵。 ϕ 是 R^n 上连续函数并且在原点 O 附近满足 $\phi(x)=x^TAx+o(||x||^2)$. 请证明当 $\delta>0$ 充分小时。

$$\lim_{t \to +\infty} \frac{1}{(\sqrt{\pi t})^n} \int_{B_b(O)} e^{-t\phi(x)} dx = \frac{1}{\sqrt{\det A}}$$