🔼 Exercice 1 :

① - Simplifier les nombres suivants :

$$A = \frac{\sqrt[3]{7^2} \times \sqrt[4]{7} \times \sqrt[5]{7^4}}{\left(\sqrt[6]{7^5}\right)^2} \hspace{2mm} ; \hspace{2mm} B = \frac{\sqrt[3]{4} \times \sqrt{8} \times \sqrt[5]{2}}{\sqrt[4]{2^3} \times \sqrt[12]{2}} \hspace{2mm} ; \hspace{2mm} C = \frac{\sqrt[4]{2048} \times \sqrt[4]{160000}}{\sqrt[8]{4096} \times \sqrt[3]{\sqrt{256}} \times \sqrt{512}} \, .$$

- ② Ordonner dans l'ordre croissant les nombres : $A = \sqrt{2}$; $B = \sqrt[3]{3}$; $C = \sqrt[4]{5}$; $D = 7^{\frac{1}{6}}$ et $E = 14^{\frac{1}{12}}$
- 3 Calculer les limites suivantes :

$$a - \lim_{x \to 1} \frac{\sqrt{x^2 + x + 2} + 3x - 5}{2x^2 - 5x + 3} \quad ;; \quad b - \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1} \quad ;; \quad c - \lim_{x \to 0} \frac{\sqrt[3]{x^2 + 1} - 1}{x^2} \quad ;; \quad d - \lim_{x \to 5} \frac{\sqrt[3]{x} + 22 - 3}{x^2 - 6x + 5}.$$

$$e - \lim_{x \to 2} \frac{\sqrt[3]{2x+4} - \sqrt[3]{5x-2}}{x-2} \text{ ;; } f - \lim_{x \to 8} \frac{\sqrt[3]{x} - 2}{\sqrt[3]{x+56} - 4} \text{ ;; } g - \lim_{x \to 1^+} \frac{\sqrt{x^2-1}}{\sqrt[3]{x-1}} \text{ ;; } h - \lim_{x \to 3^+} \frac{1}{\sqrt{x-3}} - \frac{1}{\sqrt[3]{x-3}} \text{ .}$$

$$i - \lim_{x \to +\infty} \sqrt{2x^2 - 4x + 1} - x + 3$$
 ;; $j - \lim_{x \to -\infty} \sqrt[3]{x^2 - 2x - 3} - \sqrt[3]{x^2 + 1}$;; $k - \lim_{x \to +\infty} \frac{\sqrt[3]{x^3 + x + 1}}{x}$.

$$I - \lim_{x \mapsto +\infty} \frac{\sqrt[3]{x+1} - \sqrt{x+1}}{\sqrt[4]{x+1} - \sqrt{x+1}} \qquad ;; \qquad m - \lim_{x \mapsto +\infty} \sqrt[3]{x^3 + 4x + 2} + \sqrt{x^3 - 5x^2 + 1} - 2x .$$

🖎 Exercice 2 :

Soit
$$f$$
 la fonction définie sur \mathbb{R} par :
$$\begin{cases} f(x) = \sqrt{x-1} + 3 & ; x \ge 1 \\ f(x) = \frac{x^2 + x - 2}{x - 1} & ; x < 1 \end{cases}$$

- \bigcirc a Déterminer D_f l'ensemble de définition de la fonction f .
 - b Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- ②-Etudier la continuité de la fonction f aux points $x_0 = 1$.
- \mathfrak{J} Etudier la continuité de la fonction f sur \mathbb{R} .
- 4 Soit g la restriction de f à l'intervalle]1;+ ∞ [.
 - a Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer .
 - b Calculer $(\forall x \in J)$: $g^{-1}(x)$.
 - c Résoudre dans J l'équation : $g^{-1}(x) = 2$.

🖎 Exercice 3 :

On considère la fonction f définie par : $f(x) = 2 - \sqrt[3]{x^2 - 1}$

- \bigcirc a Déterminer D_f l'ensemble de définition de la fonction f .
 - b Calculer: $\lim_{x\mapsto +\infty} f(x)$ et $\lim_{x\mapsto -\infty} f(x)$.

- 2- Etudier la continuité de la fonction f sur D_f .
- 4- On considère l'équation : (E): f(x) = x.
 - a Montrer que l'équation (E) admet une unique solution lpha dans l'intervalle]1;2[.
 - b Montrer que : $2-\alpha = \sqrt[3]{\alpha^2-1}$
 - c Donner un encadrement de α d'amplitude 5×10^{-1} .
- ⑤-Soit g la restriction de f à l'intervalle $[1;+\infty[$.
 - a Montrer que la fonction g admet une fonction réciproque $g^{\text{--}1}$ définie sur un intervalle J à déterminer
 - b Déterminer $g^{-1}([0;1])$.
 - c Calculer $(\forall x \in J)$: $g^{-1}(x)$.

Exercice 4:

On considère la fonction g définie par : $g(x)=(x-1)^3+2$.

- ①-Etudier la continuité de la fonction g sur $\mathbb R$.
- 2- Etudier les variations de la fonction g sur $\mathbb R$.
- ${rac{3}{3}}$ Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer .
- 4 Déterminer $g^{-1}([-6;2])$.
- 5- Calculer $(\forall x \in J)$: $g^{-1}(x)$.

🖎 Exercice 5 :

Soit f la fonction définie sur $]-\infty;0]$ par : $f(x) = \frac{x^2+2}{2x^2+1}$.

- ①-Etudier la continuité de la fonction f sur $]-\infty;0]$.
- ②-Etudier les variations de la fonction f sur $]-\infty;0]$.
- ${rac{3}{}}$ Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer .
- 4 Calculer $(\forall x \in J)$: $f^{-1}(x)$.
- ⑤- Montrer que l'équation $f(x) = \sqrt{2}$ admet une unique solution α dans l'intervalle $\left[\frac{-2}{3}; \frac{-1}{2}\right]$