Sieci komputerowe I – laboratorium

Wiktor Opieliński 157198 Stanowisko: K2

Informatyka Niestacjonarnie semestr 4 Grupa 1a

Adresacja IPv4

Zadanie 1

Dany jest adres 100.0.100.50/28.

1.Oblicz adres sieci dla powyższego adresu.

100 = 01100100

0 = 00000000

100 = 01100100

50 = 00110010

Pełny adres IP w binarnym zapisie:

01100100.00000000.01100100.00110010

Maska:

255.255.255.240

11111111.111111111.111111111.11110000

AND:

01100100.000000000.01100100.00110000

Zamiana wyniku na system dziesiętny:

01100100 = 100

000000000 = 0

01100100 = 100

00110000 = 48

Adres sieci:

100.0.100.48

2. Wskaż adres rozgłoszeniowy sieci.

4 bity dla hostów → wszystkie 1:

$$1111 = 15$$

Zakres hostów:

$$100.0.100.48 - 100.0.100.63 (+15)$$

Adres rozgłoszeniowy:

100.0.100.63

3. Ile komputerów można zaadresować w tej sieci?

2^h -2, gdzie h to liczba bitów hosta

$$2^4$$
-2 = 16 - 2 = 14

Zadanie 2

Dana jest sieć 158.75.136.0/22

1. Podziel sieć na 8 równych sieci.

Maska: 255.255.252.0

Liczba bitów hosta: 32 - 22 = 10

Liczba adresów sieci: $2^{10} = 1024$

Zakres adresów 158.75.136.0 do 158.75.139.255

Aby utworzyć 8 podsieci:

$$2^{n} = 8 \rightarrow n = 3$$

Wydlużamy maskę z /22 do /25

7 bitów hosta → każda podsieć ma 2⁷ = 128 adresów, z czego 126 dla hostów (2 odpadają: adres sieci i rozgłoszeniowy)

Wyznaczenie podsieci:

Nr	Adres sieci	Maska	Adres	Zakres adresów
			rozgłoszeniowy	hostów
1	158.75.136.0	/25	158.75.136.127	158.75.136.1-
				158.75.136.126
2	158.75.136.128	/25	158.75.136.255	158.75.136.129-
				158.75.136.254
3	158.75.137.0	/25	158.75.137.127	158.75.137.1-
				158.75.137.126
4	158.75.137.128	/25	158.75.137.255	158.75.137.129-
				158.75.137.254
5	158.75.138.0	/25	158.75.138.127	158.75.138.1 -
				158.75.138.126
6	158.75.138.128	/25	158.75.138.255	158.75.138.129 -
				158.75.138.254
7	158.75.139.0	/25	158.75.139.127	158.75.139.1 –
				158.75.139.126
8	158.75.139.128	/25	158.75.139.255	158.75.139.129 -
				158.75.139.254

Zadanie 3

Zaproponuj schemat adresacji dla sieci z rysunku (rozmiary sieci w chmurkach):

- dostawca usług R1 (jego nazwa bierze się od nazwy routera
 R1) dysponuje adresem CIDR 200.200.50.0/23,
- R1 część przestrzeni adresowej przeznacza dla własnych sieci
 IP, a resztę oddaje swoim poddostawcom R2 i R4,
- R2 postępuje analogicznie jak R1 względem swojego poddostawcy.

R1 (własne sieci):

100 hostów \rightarrow /25 (128 adresów)

120 hostów \rightarrow /25 (128 adresów)

Interfejsy router-router:

 $R1-R2 \rightarrow 2 \text{ hosty} \rightarrow /30 \text{ (4 adresy)}$

 $R1-R4 \rightarrow 2 \text{ hosty} \rightarrow /30 \text{ (4 adresy)}$

R2:

 $50 \text{ host\'ow} \rightarrow /26 \text{ (64 adresy)}$

Interfejs R2–R3 \rightarrow 2 hosty \rightarrow /30 (4 adresy)

R3:

2x 30 hostów → 2 podsieci /27 (32 adresy każda)

R4:

70 hostów \rightarrow /26 (64 adresy)

Cały zakres:

200.200.50.0 - 200.200.51.255 (512 adresów)

Tabela:

Lokalizacja	Podsieć	Maska	Zakres adresów
R1–R2 (link)	200.200.50.0/30	255.255.255.252	200.200.50.0 - 200.200.50.3
R1–R4 (link)	200.200.50.4/30	255.255.255.252	200.200.50.4 - 200.200.50.7
R1 – chmurka 120	200.200.50.8/25	255.255.255.128	200.200.50.8 - 200.200.50.135
R1 – chmurka 100	200.200.50.136/25	255.255.255.128	200.200.50.136 - 200.200.50.255
R2 – chmurka 50	200.200.51.0/26	255.255.255.192	200.200.51.0 - 200.200.51.63
R2–R3 (link)	200.200.51.64/30	255.255.255.252	200.200.51.64 – 200.200.51.67
R3 – chmurka 30 (1)	200.200.51.68/27	255.255.255.224	200.200.51.68 – 200.200.51.99
R3 – chmurka 30 (2)	200.200.51.100/27	255.255.255.224	200.200.51.100 - 200.200.51.131
R4 – chmurka 70	200.200.51.132/26	255.255.255.192	200.200.51.132 - 200.200.51.195

Zadanie 4

Dokonaj agregacji poniższych wpisów na routerze R1 tak bardzo

jak się da:

Sieć Maska Brama

150.254.80.0 /24 R2

150.254.81.0 /24 R2

150.254.82.0 /24 R2

•••

150.254.111.0 /24 R2

150.254.112.0 /24 R2

Dzięki zastosowaniu agregacji CIDR:

- -Liczba wpisów w tablicy routingu zmniejszyła się z 33 do 7,
- -Funkcjonalność routingu została zachowana w pełni,
- -Efekt: oszczędność pamięci i uproszczenie tablicy routingu

Sieć	Maska	Brama
150.254.80.0	/20	R2
150.254.96.0	/21	R2
150.254.104.0	/22	R2
150.254.108.0	/23	R2
150.254.110.0	/24	R2
150.254.111.0	/24	R2
150.254.112.0	/24	R2