Real Analysis

Yunwei Ren

Contents

3	Leb	esgue Measure
	3.1	Introduction
	3.2	Outer Measure
	3.3	Measurable Sets and Lebesgue Measure
	3.5	Measurable Functions
	3.6	Littlewood's Three Principles

3 Lebesgue Measure

3.1 Introduction

1.

Proof. Since \mathfrak{M} is an σ -algebra, $B \setminus A \in \mathfrak{M}$ as long as $A, B \in \mathfrak{M}$. Since $B \setminus A$ and A are disjoint, $mB = mA + m(B \setminus A) \ge mA$ since m is nonnegative. \square

2.

Proof. Let $A_0 = E_0$ and $E_k = A_k \setminus A_{k-1}$ for $k \ge 1$. Clear that E_i and E_j are disjoint for distinct i and j, $\bigcup A_n = \bigcup E_n$ and $A_i \subset E_i$ for every i. Hence,

$$m\left(\bigcup E_n\right) = m\left(\bigcup A_n\right) = \sum mA_n \le \sum mE_n,$$

where the last inequality comes from Exercise 1.

3.

Proof. Suppose that $mA < \infty$. Then $mA = m(A \cup \varnothing) = mA + m\varnothing$, implying that $m\varnothing = 0$.

3.2 Outer Measure

5.

Proof. We show that $\{I_n\}$ must cover the entire [0,1] by contradiction. Assume that $x \notin I_k$ for k = 1, 2, ..., n. Then, as I_k are open and n is finite, there exists some $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon)$ and I_k are disjoint for every k. Since \mathbb{Q} is dense in \mathbb{R} , there exists some rational number in $(x - \varepsilon, x + \varepsilon)$, contradicting with the hypothesis that $\{I_k\}$ covers all rational numbers between 0 and 1.

6.

Proof. By the definition of the outer measure, for every $\varepsilon > 0$, there exists some collection $\{I_n\}$ of open intervals that covers A and $\sum l(I_n) \leq m^*A + \varepsilon$. Let $O = \bigcup I_n$. O is a countable union of open sets and therefore is also open. And by Proposition 2, $m^*O \leq \sum l(I_n)$. Thus, $m^*O \leq m^*A + \varepsilon$.

Let $\varepsilon_n = 1/n$ and for each n, by the previous discussion, we can always get an open set O_k such that $A \subset O_k$ and $m^*O \leq m^*A + \varepsilon_m$. Let G be the countable intersection of these open sets. Clear that G is a G_δ set covering A and $m^*A = m^*G$.

7.

Proof. If $m^*E = \infty$, it is trivial. Suppose that $m^*E \leq \infty$. For any $x \in \mathbb{R}$, collection $\{I_n\}$ of open intervals covers E + x iff $\{I_n - x\}$ covers E. Since the length of intervals is translation invariant, this implies $m^*(E + x) = m^*E$.

8.

Proof. Clear that $m^*A \leq m^*(A \cup B)$. Meanwhile, $m^*(A \cup B) = m^*A + m^*B = m^*B$. Hence, $m^*(A \cup B) = m^*B$.

3.3 Measurable Sets and Lebesgue Measure

10.

Proof.

$$mE_1 + mE_2 = mE_1 + m(E_2 \setminus E_1) + m(E_1 \cap E_2)$$

= $m(E_1 \cup (E_2 \setminus E_1)) + m(E_1 \cap E_2)$
= $m(E_1 \cup E_2) + m(E_1 \cap E_2)$.

11.

Proof.
$$E_n = (n, \infty)$$
.

12. This is the countable version of Lemma 9.

Proof. It suffices to prove $m^*(A \cap \bigcup E_i) \ge \sum m^*(A \cap E_i)$. Since $\bigcup_{i=1}^{\infty} E_i \supset \bigcup_{i=1}^n E_i$ for every n,

$$m^*\left(A\cap\bigcup_{i=1}^{\infty}E_i\right)\geq m^*\left(A\cap\bigcup_{i=1}^nE_i\right)=\sum_{i=1}^nm^*(A\cap E_i),$$

where the equality comes from Lemma 9. Since the left hand side is independent of n, we have

$$m^*\left(A\cap\bigcup_{i=1}^{\infty}E_i\right)\geq\sum_{i=1}^{\infty}m^*(A\cap E_i),$$

completing the proof.

13.

Proof. First we suppose that $m^*E < \infty$. By Proposition 5, there exists some open set $O \supset E$ such that $m^*O \le m^*E + \varepsilon$. If E is measurable, then by the definition,

$$m^*(O \setminus E) = m^*O - m^*E \le \varepsilon.$$

Namely, (ii) holds. Meanwhile, $O \subset \mathbb{R}$ is a countable union of disjoint open intervals $\{I_n\}$. Since $mO = m^*O$ is bounded and $mO = \sum l(I_n)$, there exists some integer N > 0 such that $mO - \sum_{n=1}^{N} l(I_n) < \varepsilon$. Let $U = \bigcup_{n=1}^{N} I_n$.

$$m^*(U \triangle E) = m^*((U \cup E) \setminus (U \cap E))$$

$$\leq m^*(O \setminus (U \cap E))$$

$$= m^*((O \setminus U) \cup (O \setminus E))$$

$$\leq m^*(O \setminus U) + m^*(O \setminus E)$$

$$< 2\varepsilon.$$

Hence, (ii) implies (vi). Now we show that (vi) implies (ii). If $m^*(U \triangle E) < \varepsilon$, then there exists some countable collection $\{J_n\}$ of open interval such that

$$\sum l(J_n) \le m^*(U \triangle E) + \varepsilon < 2\varepsilon.$$

Let $J = \bigcup J_n$ and $O = U \cup J$. $m^*J < 2\varepsilon$. And O is open and covers E. Meanwhile,

$$m^*(O \setminus E) \le m^*(U \setminus E) + m^*(J \setminus E) < 3\varepsilon.$$

Hence, (ii) holds.

Now, let E be an arbitrary set and $E_n = E \cap (-n, n)$, which is a set with finite measure. Then by the previous discussion, there exists some open set $O_n \supset E_n$ with $m^*(O_n \setminus E_n) < \varepsilon/2^n$. Let $O = \bigcup O_n$, an open set covering E and

$$m^*(O \setminus E) \le \sum m^*(O_n \setminus E_n) < 2\varepsilon.$$

Hence, (i) implies (ii). Now we suppose (ii) holds and let $\varepsilon_n = 1/n$, then there exists a sequence of open sets $\langle O_n \rangle$ such that $m^*(O_n \setminus E) \langle 1/n$. Let $G = \bigcap O_n \in G_\delta$. $m^*(G \setminus E) \leq m^*(O_n \setminus E) \leq 1/n$. Since the left hand side is independent of n, $m^*(G \setminus E) = 0$. If (iv) holds, then by Lemma 6, $G \setminus E$ is measurable. Since $G \in G_\delta$ is also measurable, E is measurable. Hence, (iv) implies (i).

By the previous result, for any measurable E, there exists some closed set $F \subset E$ such that \bar{F} , which is open, contains barE and $m^*(\bar{F} \setminus \bar{E}) < \varepsilon$. Hence, $m^*(E \setminus F) < \varepsilon$. We can proceed in a similar manner as we did in the last paragraph to prove that (iii) \Rightarrow (v) \Rightarrow (i), leading to the final conclusion.

3.5 Measurable Functions

19.

Proof. For every $\beta \in \mathbb{R}$, since D is measurable, there exists a sequence of $\alpha_n \in D \cap (\beta - 1/n, \beta)$. As

$$\{x: f(x) > r\}$$
 \Leftrightarrow $\bigcup_{n=1}^{\infty} \{x: f(x) > r - 1/n\}$ \Leftrightarrow $\bigcup_{n=1}^{\infty} \{x: f(x) > \alpha_n\}$

and $\{x: f(x) > \alpha_n\}$ are measurable, so is $\{x: f(x) > r\}$. Hence, f is measurable. \square

21.

Proof.

- (a) It follows immediately from $\{x: f(x) > \alpha\} = \{x \in D: f(x) > \alpha\} \cup \{x \in E: f(x) > \alpha\}.$
- (b) For $\alpha \geq 0$, the sets $\{x: f(x) > \alpha\}$ and $\{x: g(x) > \alpha\}$ are the same. And for $\alpha < 0$,

$$\{x:\, f(x)>\alpha\}=\{x:\, g(x)>\alpha\}\setminus \bar{D}\quad \text{and}\quad \{x:\, g(x)>\alpha\}=\{x:\, f(x)>\alpha\}\cup \bar{D}.$$

Hence, f is measurable iff g is measurable.

22.(d)

Proof. Since f and g are finite almost everywhere, the set A consisting of points where f+g is of the form $\infty-\infty$ or $-\infty+\infty$ is of measure zero (and hence measurable). Therefore no matter how it is defined, $\{x\in A: f+g>\alpha\}$ is measurable for every α . Namely, the restriction of f+g to A is measurable. Meanwhile, clear that the restriction to $D\setminus A$ is measurable where D is the domain of f. Hence, by Exercise 21, f is measurable.

Proof.

- (a) Let $A_n = \{x : |f(x)| > n\}$, a sequence of measurable sets. As $A_{n+1} \subset A_n$, $mA_{n+1} \leq mA_n$. Since $A = \bigcap A_n = \{x : |f(x)| = \infty\}$, $mA_1 \leq m[a,b]$ is finite and mA = 0, by Proposition 14, there exists some N such that for all $n \geq N$, $mA_n < \varepsilon/3$. Set M = N to complete the proof.
- (b) We consider the restriction of f on to the set $E = [a, b] \setminus \{x : |f(x)| \ge M\}$, which is also a measurable real-valued function. To keep our notation simple, we denote the restriction by f still. For every $\varepsilon > 0$, there exists some integer N with $0 < 2M/N < \varepsilon$. Let $E_n = \{x : x \in [-M + (n-1)\varepsilon, -M + n\varepsilon]\}$ (n = 1, 2, ..., N) and define

$$\varphi(x) = \sum_{i=1}^{N} f(x_i) \chi_{E_i},$$

where $x_n \in E_n$ is arbitrary. Clear that φ is a simple function and satisfy all the requirements.

(c) Suppose that $\varphi(x) = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$. For each i = 1, ..., N, E_i is measurable and therefore by Proposition 15, there exists a finite union U_i of open intervals such that $m(U_i \triangle E_i) < \varepsilon$. Let

$$g(x) = \sum_{i=1}^{N} \alpha_i \chi_{U_i}.$$

Clear that g and φ only may differ on a set with measure $N\varepsilon$. (d) Suppose that $g(x) = \sum_{i=1}^{N} \alpha_i \chi_{U_i}$ is a step function. We may assume without loss of generality that U_i are disjoint and $\bigcup U_i = [a, b]$. And suppose that $\{x_0 = a < x_1 < \dots < x_N = b\}$ are the endpoints of the intervals. For each $i = 1, \dots, N-1$, define

$$f(x) = (x - x_i + \varepsilon)g(x_i - \varepsilon) + (x_i + \varepsilon - x)g(x_i + \varepsilon), \quad x \in (x_i - \varepsilon, x_i + \varepsilon),$$

and f(x) = g(x) for the other points. (We assume that ε is small enough so that f is well-defined.) Clear that f is continuous and equals g except on a set of measure less then $2N\varepsilon$.

24.

Proof. For measurable f, we show that $\mathcal{A} = \{E : f^{-1}[E] \text{ is measurable}\}\$ is a σ -algebra first. As the domain, denoted by D, of a measurable function is measurable, $\mathbb{R} \in \mathcal{A}$. If $E \in \mathcal{A}$, then since $f^{-1}[\bar{E}] = D \cap \overline{f^{-1}[E]}$, $f^{-1}[\bar{E}]$ is also measurable and therefore $\bar{E} \in \mathcal{A}$. Suppose that $\langle E_n \rangle$ is a sequence of sets of \mathcal{A} . Then, as

$$f^{-1}\left[\bigcup_{n=1}^{\infty} E_n\right] = \bigcup_{n=1}^{\infty} f^{-1}[E_n],$$

 $\bigcup E_n \in \mathcal{A}$. Hence, \mathcal{A} is a σ -algebra.

By the definition of a measurable function, every open interval belongs to \mathcal{A} . Since the collection of all Borel sets \mathcal{B} is the σ -algebra generated by all open intervals, $\mathcal{B} \subset \mathcal{A}$. Namely, $f^{-1}[B]$ is measurable as long as $B \in \mathcal{B}$.

3.6 Littlewood's Three Principles

30.

Proof. Let $\varepsilon_n = 1/n$ and $\delta_n = \eta/2^n$ (n = 0, 1, ...). By Proposition 24, for each n, there exists some A_n with measure less than δ_n such that for all $x \in E_n \setminus A_n$, $|f_m(x) - f(x)| < \varepsilon_n$ for m large enough. Let $A = \bigcup_{n=1}^{\infty} A_n$, the measure of which is less than $\sum \eta/2^n = \delta$. Meanwhile, for any $\varepsilon > 0$, by construction, for all $x \in E \setminus A$, $|f_m(x) - f(x)| < \varepsilon$ for m large enough. Namely, f_n converges to f uniformly on $E \setminus A$.

31.

Proof. Let $\varepsilon_n = \delta/2^n$ $(n \ge 0)$, then by Proposition 22, there exists continuous g_n such that $E_n = \{x : |f(x) - g_n(x)| \ge \varepsilon_n\}$ is of measure less than ε_n . Let $E = \bigcup E_n$, the measure of which is less than δ and g_n converges to f on $[a, b] \setminus E$.

By Egoroff's Theorem, there exists some $A \subset [a,b] \setminus E$ with $mA < \delta$ such that g_n converges to f uniformly on $[a,b] \setminus (E \cup A)$. Since $E \cup A$ is measurable, by Proposition 15, there exists some open set $O \supset E \cup A$ such that $m(O \setminus (E \cup A)) < \delta$. Let $F = [a,b] \setminus O$. We know that

- 1. F is a closed set.
- 2. $mF < 3\delta$.
- 3. g_n converges to f uniformly on F.

Hence, f is continuous on F And by Problem 2.40, there exists some continuous function on \mathbb{R} such that $\varphi(x) = f(x)$ for $x \in F$.

If f is defined on $(-\infty, \infty)$, we can apply the previous result on each [n, n+1] and "stick" the functions together as we did in Problem 23(c) to get the function required.