

Computer Arithmetic

- **Number systems**
- **Integers**
- **Floats**

Number Systems

- There are 10 types of people: those who understand binary and those who don't.
- Normally, we are using a positional number system with the base 10, but the base can be changed. (Most common are 2,8,16)
- A number ... $a_3a_2a_1a_0$. $a_{-1}a_{-2}$... with base b equals

$$\sum_{i} (a_i \cdot b^i)$$

Example:

$$1001.101_2 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625_{10}$$

Converting from any number system to the base 10 is simple

- Converting from any number system to the base 10 is simple
- The other way around: converting N from base 10 to base b:
 - Every number N can be expressed as

$$N = b \cdot N_1 + R_0$$
 with $R_0 < b$

- Converting from any number system to the base 10 is simple
- The other way around: converting N from base 10 to base b:
 - Every number N can be expressed as

$$N = b \cdot N_1 + R_0$$
 with $R_0 < b$

Same is true for N_1 :

$$N_1 = b \cdot N_2 + R_1 \quad \text{with } R_1 < b$$

- Converting from any number system to the base 10 is simple
- The other way around: converting N from base 10 to base b:
 - Every number N can be expressed as

$$N = b \cdot N_1 + R_0$$
 with $R_0 < b$

Same is true for N_1 :

$$N_1 = b \cdot N_2 + R_1 \quad \text{with } R_1 < b$$

We can write N as:

$$N = b \cdot (b \cdot N_2 + R_1) + R_0 = N_2 \cdot b^2 + R_1 \cdot b^1 + R_0 \cdot b^0$$

• We proceed until $N_{m-1} = b \cdot N_m + R_{m-1}$ with $N_m < b$

- Converting from any number system to the base 10 is simple
- The other way around: converting N from base 10 to base b:
 - Every number N can be expressed as

$$N = b \cdot N_1 + R_0$$
 with $R_0 < b$

Same is true for N_1 :

$$N_1 = b \cdot N_2 + R_1 \quad \text{with } R_1 < b$$

We can write N as:

$$N = b \cdot (b \cdot N_2 + R_1) + R_0 = N_2 \cdot b^2 + R_1 \cdot b^1 + R_0 \cdot b^0$$

- We proceed until $N_{m-1} = b \cdot N_m + R_{m-1}$ with $N_m < b$
- Now, N can be expressed as

$$N_m \cdot b^m + R_{m-1} \cdot b^{m-1} + \dots + R_2 \cdot b^2 + R_1 \cdot b^1 + R_0 \cdot b^0$$

This corresponds to the number

$$(N_m R_{m-1} \dots R_2 R_1 R_0)_b$$

Each number F with 0 < F < 1 can be expressed in basis b as $0.b_{-1}b_{-2}...$

- Each number F with 0 < F < 1 can be expressed in basis b as $0.b_{-1}b_{-2}...$
- F has the decimal value of

$$(b_{-1} \cdot b^{-1}) + (b_{-1} \cdot b^{-2}) \dots = b^{-1} (b_{-1} + b^{-1} (b_{-2} + \dots))$$

- Each number F with 0 < F < 1 can be expressed in basis b as $0.b_{-1}b_{-2}...$
- F has the decimal value of

$$(b_{-1} \cdot b^{-1}) + (b_{-1} \cdot b^{-2}) \dots = b^{-1} (b_{-1} + b^{-1} (b_{-2} + \dots))$$

Multiplying by b gives

$$b \cdot F = b_{-1} + b^{-1} (b_{-2} + b^{-1} (\dots))$$

 b_{-1} is exactly the integer part of $b \cdot F$

- Each number F with 0 < F < 1 can be expressed in basis b as $0.b_{-1}b_{-2}...$
- F has the decimal value of

$$(b_{-1} \cdot b^{-1}) + (b_{-1} \cdot b^{-2}) \dots = b^{-1} (b_{-1} + b^{-1} (b_{-2} + \dots))$$

Multiplying by b gives

$$b \cdot F = b_{-1} + b^{-1} (b_{-2} + b^{-1} (\dots))$$

- b_{-1} is exactly the integer part of $b \cdot F$
- Analogous to before, we can say that

$$b \cdot F = b_{-1} + F_1$$

Calculating $b \cdot F_1$ gives us b_{-2} and F_2 and so on ...

Examples

Quotient Remainder

Prod. Int. $0.110011_2 \approx 0.81$ $0.81 \cdot 2 = 1.62$ $0.62 \cdot 2 = 1.24$ $0.24 \cdot 2 = 0.48$ $0.48 \cdot 2 = 0.96$ $0.96 \cdot 2 = 1.92$ $0.92 \cdot 2 = 1.84$

Hexadecimal

- Base 16
- Often used to look at binary code as a byte can be displayed as a two digit hexadecimal number
- Extremely easy to convert between binary and hex

```
1100 = C
0000 = 0
          0100 = 4
                     1000 = 8
0001 = 1
        0101 = 5
                     1001 = 9
                               1101 = D
0010 = 2 0110 = 6
                     1010 = A
                               1110 = E
0011 = 3
          0111 = 7
                     1011 = B
                                1111 = F
```


Computer Arithmetic

- **Number systems**
- **Integers**
- **Floats**

Representing Numbers

With binary numbers, we can represent arbitrary numbers:

$$-1101.0101_2 = -13.3125_{10}$$

- But: On a computer, we are limited to only 0 and 1:
 - No sign-symbol
 - No radix point
- Limited space
- In the remainder:
 - LSB = Least Significant Bit
 - MSB = Most Significant Bit

Representing Negative Numbers Sign-Magnitude Method

- Sign-Magnitude Method
 - Use MSB as sign

Drawback: Two representations of zero

Thus, it is more complicated to check for zero (very often used)

Representing Negative Numbers Twos Complement

- Only one zero
- Arithmetic works pretty easy (We see that later)
- Negating is fairly simple
 - Compliment number
 - Add 1

• Range $2^{n-1} - 1$ through -2^{n-1}

Geometric Depiction of Twos Complement Numbers

Why Does It Work Now?

- We have two operations to built a negative number:
- y = 0 x
- Or: Select y in such a way, that x + y = 0

Why Does It Work Now?

- We have two operations to built a negative number:
- y = 0 x
- Or: Select y in such a way, that x + y = 0
- Now, the twos compliment works, as we have a limited number of bits to represent an integer

More formally: The twos representation of a number equals

$$A = -2^{n-1}a_{n-1} + \sum_{i=0}^{n-2} 2^i a_i$$

Addition and Subtraction

Subtraction is done by adding the twos complement of the subtrahend to the minuend

Overflow Rule

An overflow only occurs iff both numbers have the same sign AND the sign changes!

Addition and Subtraction

An overflow only occurs iff both number have the same sign AND the sign changes!

Addition and Subtraction

An overflow only occurs iff both number have the same sign AND the sign changes!

Block Diagram for a Hardware Adder

OF = overflow bit

SW = Switch (select addition or subtraction)

- More complicated than adding
- Several methods exist. We first concentrate on uints

We look at a small example

1011 x 1101

1011 x 1101

1011 x 1101 1011

1011 x 1101 1011

1011 x 1101 1011 0000

1011 x <u>1</u>101 1011 0000

1011 x <u>1</u>101 1011 0000 1011

1011 x 1101 1011 0000 1011

1011 x 1101 1011 0000 1011 1011

1011 x 1101 1011 0000 1011 1011

Multiplicand (11) x Multiplier (13)

Partial Products

1011 x 1101 1011 0000 1011 1011 10001111

Multiplicand (11) x Multiplier (13)

Partial Products

Final Result (143)

Observations

- The partial products are either 0 or the multiplicand
- Basically only two operations needed: Add and Shift
- The multiplication of two n-bit binary integers results in a product of up to 2n bits in length
- We don't need to store the each partial sum
- Possible Implementation:
 - Multiplier and multiplicand are loaded into two registers (Q and M)
 - A, a third register, is initially set to 0.
 - The 1-bit C register, stores a carry bit of the multiplication
 - In order to save registers, Q will hold the results in the end, thus the multiplier gets destroyed

Hardware Implementation

C	Α	Q	M	
0	0000	1101	1011	Initial Values

M **Initial Values** 0000 1101 1011 0

<u>C</u>	Α	Q	M	
0	0000	110 1	1011	Initial Values
+	1011			Add

<u>C</u>	Α	Q	М	
0	0000	110 <mark>1</mark>	1011	Initial Values_
<u>+</u>	1011			Add
0	1011			

<u>C</u>	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
	No Ad	d, shift	t only	
	No Ad	d, shift	t only	
	No Ad	d, shift	tonly	
	No Ad	d, shift	tonly	

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	111 <mark>1</mark>	1011	Shift

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
<u> </u>	1011			Add

C	А	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
+	1011	-		Add
0	1101			

C	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add

<u>C</u>	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	1111	1011	Shift

<u>C</u>	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
<u>0</u>	0110	1111	1011	Shift

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	111 <mark>1</mark>	1011	Shift
+	1011			Add

<u>C</u>	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
<u> </u>	0110	1111	1011	Shift
<u>+</u>	1011			Add
1	0001			

<u>C</u>	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	1111	1011	Shift
1	0001	1111	1011	Add

<u>C</u>	Α	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	1111	1011	Shift
1	0001	1111	1011	Add
0	1000	1111	1011	Shift

<u>C</u>	Α	Q	М	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add
0	0101	1110	1011	Shift
0	0010	1111	1011	Shift
0	1101	1111	1011	Add
0	0110	1111	1011	Shift
1	0001	1111	1011	Add
0	1000	1111	1011	Final Result

Flow Chart of the Implementation

Twos Complement Multiplication

- With Addition and Subtraction we treated twos complements as unsigned integers, which doesn't work anymore
- The multiplication of $-7 \cdot 3$, when interpreted as unsigned int corresponds to the multiplication of $9 \cdot 3$

The result is 27 and not -21

Twos Complement Multiplication

- What if we extend the negative number to a 2n bit negative number?
- Extending a signed int is done by filling the new bits with the sign

Our Example from before:

$$\begin{array}{r}
 1001 & (-7) \\
 \times 0011 & (3) \\
 11111001 & (-7) \times 2^{0} = (-7) \\
 11110010 & (-7) \times 2^{1} = (-14) \\
 11101011 & (-21)
 \end{array}$$

Now it seems to work

Twos Complement Multiplication

- Unfortunately, it doesn't!
- Calculating $3 \cdot (-7)$:

Our Example from before:

```
0011 (3)
00000011 (3) \times 2^{0} = (3)
0000000
0000000
00\underline{011000} (3) x 2^3 = (24)
00011011 (27)
```

Damn, still not working!

The Solution: Booth's Algorithm

- As before, Multiplicand is in M, Multiplier in Q
- We have an additional 1-Bit register Q₁
- The Algorithm now decides to add or subtract M from A
 - Adding: $Q_0, Q_1 = 0,1$
 - Subtracting: $Q_0, Q_1 = 1,0$
 - Only Shifting: $Q_0, Q_1 = 1,1$ or 0,0
- The shift is an arithmetic shift, i.e., it preserves the sign

A	Q	Q-1	М			
0000	1101	0	0111	Initial	Values	

A	Q	Q-1	М			
0000	110 <mark>1</mark>	0	0111	Initial	Values	

A	Q	Q-1	M	
0000	110 <mark>1</mark>	0	0111	Initial Values
+1001	1101	0	0111	1,0 -> Subtract
1001				

Α	Q	Q-1	М	
0000	1101	0	0111	Initial Values_
1001	1101	0	0111	1,0 -> Subtract

Α	Q	Q-1	М	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1 110	1	0111	Shift

0000 1101 0 0111 Initial Values 1001 1101 0 0111 1,0 -> Subtract	A	Q	Q-1	M	
	0000	1101	0	0111	Initial Values
	1001	1101	0	0111	1,0 -> Subtract
<u>1100 111<mark>0 1</mark> 0111 Shift</u>	1100	1110	1	0111	Shift

A	Q	Q-1	М	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
+0111	1110	1	0111	0,1 -> Add
0011				

A	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add

A	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	1111	0	0111	Shift

Α	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	111 <mark>1</mark>	0	0111	Shift

A	Q	Q-1	M	
_0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	111 <mark>1</mark>	0	0111	Shift
+1001	1111	0	0111	1,0 -> Subtract
1010				

A	Q	Q-1	М	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	1111	0	0111	Shift
1010	1111	0	0111	1,0 -> Subtract

Α	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	1111	0	0111	Shift
1010	1111	0	0111	1,0 -> Subtract
1101	0111	1	0111	Shift

Α	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	1111	0	0111	Shift
1010	1111	0	0111	1,0 -> Subtract
1101	011 <mark>1</mark>	1	0111	Shift

A	Q	Q-1	M	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
_0001	1111	0	0111	Shift
1010	1111	0	0111	1,0 -> Subtract
1101	0111	_1	0111	Shift
1110	1011	1	0111	1,1 -> Shift only

A	Q	Q-1	М	
0000	1101	0	0111	Initial Values
1001	1101	0	0111	1,0 -> Subtract
1100	1110	1	0111	Shift
0011	1110	1	0111	0,1 -> Add
0001	1111	0	0111	Shift
1010	1111	0	0111	1,0 -> Subtract
1101	0111	1	0111	Shift
1110	1011	1	0111	Final Result

Lets see what happens when we multiply M with a number having a block of 1's, e.g.: 00011110:

$$M \cdot 00011110 = M \cdot (2^4 + 2^3 + 2^2 + 2^1) = M \cdot 30$$

Lets see what happens when we multiply M with a number having a block of 1's, e.g.: 00011110:

$$M \cdot 00011110 = M \cdot (2^4 + 2^3 + 2^2 + 2^1) = M \cdot 30$$

Such a block can be reduced to:

$$2^{n} + 2^{n-1} + \dots + 2^{n-K} = 2^{n+1} - 2^{n-K}$$

Lets see what happens when we multiply M with a number having a block of 1's, e.g.: 00011110:

$$M \cdot 00011110 = M \cdot (2^4 + 2^3 + 2^2 + 2^1) = M \cdot 30$$

Such a block can be reduced to:

$$2^{n} + 2^{n-1} + \dots + 2^{n-K} = 2^{n+1} - 2^{n-K}$$

That means for our example:

$$M \cdot 00011110 = M \cdot (2^5 - 2^1) = M \cdot 30$$

Lets see what happens when we multiply M with a number having a block of 1's, e.g.: 00011110:

$$M \cdot 00011110 = M \cdot (2^4 + 2^3 + 2^2 + 2^1) = M \cdot 30$$

Such a block can be reduced to:

$$2^{n} + 2^{n-1} + \dots + 2^{n-K} = 2^{n+1} - 2^{n-K}$$

That means for our example:

$$M \cdot 00011110 = M \cdot (2^5 - 2^1) = M \cdot 30$$

This works also for blocks of size 1:

$$M \cdot 2^k = M \cdot \left(2^{k+1} - 2^k\right)$$

- Booth's Algorithm uses exactly this trick
- Whenever such a block is "opened" $(Q_0, Q_1 = 1, 0)$ we subtract
- Whenever a such a block is "closed" $(Q_0, Q_1 = 0, 1)$ we add
- Within a block or outside, we only shift
- Does this work with negative multipliers?
 - Yes, there is a proof in the book
 - We just look at an example
- Normally, it is even more efficient than the unsinged method (worst case are the same number of additions/subtractions)

Negative Multipliers

Let's Multiply M with -6 (11111010):

$$-6 = -2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^1$$

Now, using the openings and closing of Booth's algorithm:

- Openings: 2^3 and 2^1
- Closings: 2²

Together (openings are subtracted, closings added):

$$M \cdot (-2^3 + 2^2 - 2^1) = M \cdot (-2^3 + 2^1) = M \cdot (-6)$$

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 Quotient (Result)

```
10010011
             / 1011
-1011
                        1011 > 1
                        Quotient (Result)
```

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 Quotient (Result)

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 / 1011 -1011 1011 > 10 Quotient (Result)

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 Quotient (Result) 00

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 1011 > 100 Quotient (Result) 00

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011

000

Quotient (Result)

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 1011 > 1001 Quotient (Result) 000

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011

0000

Quotient (Result)

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 1011 < 10010 Quotient (Result) 0000

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 -1011 1011 < 10010 Quotient (Result) 00001

• $\frac{147}{11}$ = 13 with a remainder of 4:

10010011 1011 <u>-1011</u> Partial Remainder 111 Quotient (Result) 00001

```
1011
10010011
<u>-1011</u>
                      Partial Remainder
  1110
                      1011 < 1110
 -1011
                     Quotient (Result)
00001
```

```
1011
10010011
<u>-1011</u>
                      Partial Remainder
  1110
                      1011 < 1110
 -1011
                      Quotient (Result)
000011
```

10010011 / 1011	
<u>-1011</u> ↓	
1110	Partial Remainder
<u>-1011</u>	
0011	Partial Remainder
000011	Quotient (Result)

100100 <mark>1</mark> 1 / 1011	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
00111	Partial Remainder
-1011	1011 > 111
000011	Quotient (Result)

10010011 / 1011	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
00111	Partial Remainder
-1011	1011 > 111
0000110	Quotient (Result)

1001001 <mark>1 / 1011</mark>	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
001111	Partial Remainder
-1011	1011 < 1111
0000110	Quotient (Result)

1001001 <mark>1 / 1011</mark>	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
001111	Partial Remainder
-1011	1011 < 1111
0000110 <mark>1</mark>	Quotient (Result)

1001001 <mark>1 / 1011</mark>	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
001111	Partial Remainder
<u>-1011</u>	
100	Partial Remainder
00001101	Quotient (Result)

10010011 / 1011	
<u>-1011</u>	
1110	Partial Remainder
<u>-1011</u>	
001111	Partial Remainder
<u>-1011</u>	
100	Remainder
00001101	Final Result

Flow Chart of the Division

- The Divisor is placed in M, the Dividend in Q.
- A stores the partial Remainders
- At the end, Q holds the Quotient, A the remainder.

Step for Step: 7/3

0000	0111 1110	0011 0011	Initial Values
0000	1110	9911	
		OOTI	Shift

Q	M	
0111	0011	Initial Values
1110	0011	Shift
		Substract, result negative
		0111 0011

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000			

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
_0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1
000 1	0010	0011	Shift

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1
0001	0010	0011	Shift
+1101			Substract, result negative
1110			

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1
0001	0010	0011	Shift
+1101			Substract, result negative
1110			
0001	001 <mark>0</mark>	0011	Restore, set Q0 = 0

A	Q	М	
0000	0111	0011	Initial Values
0000	1110	0011	Shift
+1101			Substract, result negative
1101			
0000	1110	0011	Restore, set Q0 = 0
0001	1100	0011	Shift
+1101			Substract, result negative
1110			
0001	1100	0011	Restore, set Q0 = 0
0011	1000	0011	Shift
+1101			Substract, result positive
0000	1001	0011	Keep, set Q0 = 1
0001	0010	0011	Shift
+1101			Substract, result negative
1110			
0001	0010	0011	Remainder, Result

Negative Numbers

- This approach could be extended to work with negative numbers
- In practice, it is calculated only with positive numbers
- At the end, the signs of the result and the remainder are assigned

Computer Arithmetic

- **Number systems**
- **Integers**
- **Floats**

Fixed Point Representation

- With a fixed-point notation it is possible to represent a range of positive and negative integers centered on or near 0
- By assuming a fixed binary or radix point, this format allows the representation of numbers with a fractional component as well
- Limitations:
 - Very large numbers cannot be represented nor can very small fractions
 - The fractional part of the quotient in a division of two large numbers could be lost

Floating Point Numbers

Aim: We want to store extremely large and small numbers with as little overhead as possible

- Questions:
 - Do we really care about all digits in a number?
- **Answer:**
 - Most of the time, we don't.
- Idea:
 - Store as number of fixed length (Significand S) with an exponent E:

$$\pm S \cdot B^{\pm E}$$

Typical 32-Bit Representation


```
1.1010001 X 2<sup>10100</sup>
       -1.1010001 X 2<sup>10100</sup>
       1.1010001 X 2<sup>-10100</sup>
       -1.1010001 \times 2^{-10100}
```

(b) Examples

Biased Exponent

- The exponent value is stored in k bits.
- The representation used is known as a biased representation:
 - A fixed value, called the bias, is subtracted from the field to get the true exponent value.
 - Typically, the bias equals $2^{k-1}-1$
- Example for 8 Bit Exponent:
 - A bit can represent numbers from 0 through 255.
 - The Bias is $2^7 1 = 127$
 - The true exponent values are in the range -127 to +128
- Why aren't we using the twos complement for E?

The Significand

- The final portion of the word
- Any floating-point number can be expressed in many ways:
 - All these numbers are equivalent:

$$0.110 \cdot 2^{5}$$
 $110 \cdot 2^{2}$
 $0.0110 \cdot 2^{6}$

- Normal number
 - The most significant digit of the significand is nonzero

$$\pm 1.bbb \dots b \cdot 2^{\pm E}$$

Expressible Numbers

(a) Twos Complement Integers

- Floats cover an enormous range of numbers
- But not with the same density

Density of Floating-Point Numbers

- The closer to zero, the finer the coverage, the further away, the sparser
- Float often don't produce exact numbers
- But this is okay:
 - If you look at your bank account, you are interested in all numbers
 - If you look at the US national debt, you don't care about the single dollar anymore

IEEE Standard 754

- Adopted in 1985 and revised in 2008
- Most important floating-point representation is defined
- Ensures the portability of programs from one processor to another
- Standard has been widely adopted and is used on virtually all contemporary processors and arithmetic coprocessors
- IEEE 754-2008 covers both **binary** and decimal floating-point representations

The Binary Basic Formats

Binary Format Parameters

		Format	
Parameter	binary32	binary64	binary128
Storage width (bits)	32	64	128
Exponent width (bits)	8	11	15
Exponent bias	127	1023	16383
Maximum exponent	127	1023	16383
Minimum exponent	-126	- 1022	- 16382
~ normal number range (base 10)	10^{-38} , 10^{+38}	10^{-308} , 10^{+308}	10^{-4932} , 10^{+4932}
Trailing significand width (bits)*	23	52	112
Number of exponents	254	2046	32766
Number of fractions	223	2^{52}	2112
Number of values	$1.98\cdot 2^{\scriptscriptstyle 31}$	$1.99 \cdot 2^{63}$	$1.99 \cdot 2^{128}$
Smallest positive normal number	2-126	2-1022	2^{-16362}
Largest positive normal number	$2^{128} - 2^{104}$	2^{1024} – 2^{971}	$2^{_{16384}}$ – $2^{_{16271}}$
Smallest subnormal magnitude	2^{-149}	2^{-1074}	2^{-16494}

Special Values for 32Bit float

	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	- 0
plus infinity	0	all 1s	0	∞
minus infinity	1	all 1s	0	- ∞
quiet NaN	0 or 1	all 1s	\neq 0; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	\neq 0; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 255	f	$2^{e-127}(1.f)$
negative normal nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2^{e-126}(0.f)$
negative subnormal	1	0	$f \neq 0$	$-2^{e-126}(0.f)$

- For other binary floats, only the numbers for the exponent changes accordingly
- The different exceptions are explained later

Additional Formats of IEEE 754

Extended precision formats

- Provide additional bits in the exponent (extended range) and in the significand (extended precision)
- Lessens the chance of a final result that has been contaminated by excessive roundoff error
- Lessens the chance of an intermediate overflow aborting a computation whose final result would have been representable in a basic format
- Intel FPUs use internally 80-Bit representations

Extendable Precision Format

- Precision and range are defined under user control
- May be used for intermediate calculations but the standard places no constraint or format or length

Floating Point Arithmetic

Floating Point Numbers	Arithmetic Operations
$X = X_S \cdot B^{X_E}$ $Y = Y_S \cdot B^{Y_E}$	$X + Y = (X_S \cdot B^{X_E - Y_E} + Y_S) \cdot B^{Y_E} X - Y = (X_S \cdot B^{X_E - Y_E} - Y_S) \cdot B^{Y_E} $ $X_E \le Y_E$
	$X \cdot Y = (X_S \cdot Y_S) \cdot B^{X_E + Y_E}$ $\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \cdot B^{X_E - Y_E}$

- **Exponent overflow:** A positive exponent exceeds the maximum possible exponent value.
- **Exponent underflow:** A negative exponent is less than the minimum possible exponent value.
- **Significand underflow:** In the process of aligning significands, digits may flow off the right end of the significand.
- **Significand overflow**: The addition of two significands of the same sign may result in a carry out of the most significant bit.

Examples

$$X = 0.3 \cdot 10^2 = 30$$
$$Y = 0.2 \cdot 10^3 = 200$$

$$X + Y = (0.3 \cdot 10^{2-3} + 0.2) \cdot 10^3 = 0.23 \cdot 10^3 = 230$$

$$X - Y = (0.3 \cdot 10^{2-3} - 0.2) \cdot 10^3 = (-0.17) \cdot 10^3 = -170$$

$$X \cdot Y = (0.3 \cdot 0.2) \cdot 10^{2+3} = 0.06 \cdot 10^5 = 6000$$

$$\frac{X}{Y} = \left(\frac{0.3}{0.2}\right) \cdot 10^{2-3} = 1.5 \cdot 10^{-1} = 0.15$$

Floating Point Arithmetic

- In floating-point arithmetic, addition and subtraction are more complex than multiplication and division. This is because of the need for alignment.
- The four basic steps are:
 - 1. Check for zeros.
 - 2. Align the significands.
 - 3. Add or subtract the significands.
 - 4. Normalize the result.

Flowchart Addition

Flowchart Multiplication

Flowchart Division

Precision: Guard Bits

Consider the subtraction of very close numbers:

```
x = 1.000...00 \times 2^{1}
-y = 1.111...11 \times 2^{0}
 x = 1.000...00 \times 2^{1}
-y = 0.111...11 \times 2^{1} Align Significand z = 0.000...01 \times 2^{1}
      = 1.000...00 \times 2^{-22} \text{ Normalize}
```

Precision: Guard Bits

Consider the subtraction of very close numbers:

```
x = 1.000...00 \times 2^{1}
-y = 1.111...11 \times 2^{0}
 x = 1.000...00 \times 2^{1}
-y = 0.111...11 \times 2^{1} Align Significand z = 0.000...01 \times 2^{1}
      = 1.000...00 \times 2^{-22} \text{ Normalize}
```

Guard Bits are used to pad out the right side of the Significand

```
x = 1.000...00 0000 \times 2^{1}
-y = 1.111...11 0000 \times 2^{0}
x = 1.000...00 0000 \times 2^{1}
z = 0.000...00 1000 \times 2^{1}
   = 1.000...00 0000 \times 2^{-23} \text{ Normalize}
```

The same calculation leads to different results by factor 2!

Round to Nearest

- The extra bits are used to decide (assume we have 5):
 - Extra bits > 10000: Round up (add one to the significand)
 - Extra bits < 10000: Round down (truncate the extra bits)
- What is with the special case 10000?
 - Always round up/down?
 - This introduces a small but cumulative bias over time
 - Randomly decide?
 - This would prevent the bias, but does not produce predictable, reproduceable results
 - Round to even numbers (IEEE):
 - Rounded up if LSB is 1
 - Rounded down (truncate) if LSB is 0

IEEE Standard for Binary Floating-Point Arithmetic Infinity

Is treated as the limiting case of real arithmetic, with the infinity values given the following interpretation:

$$-\infty < (every finite number) < +\infty$$

Any operation involving infinity yields the expected results

$$5 + (+\infty) = +\infty$$

$$5 - (+\infty) = -\infty$$

$$5 + (-\infty) = -\infty$$

$$5 - (-\infty) = +\infty$$

$$5 \cdot (+\infty) = +\infty$$

$$5 \div (+\infty) = +0$$
$$(+\infty) + (+\infty) = +\infty$$
$$(-\infty) + (-\infty) = -\infty$$
$$(-\infty) - (+\infty) = -\infty$$
$$(+\infty) - (-\infty) = +\infty$$

IEEE Standard for Binary Floating-Point Arithmetic Quiet and Signaling NaNs

- Signaling NaN signals an invalid operation exception whenever it appears as an operand
- Quiet NaN propagates through almost every arithmetic operation without signaling an exception
- Division by zero (± 0) produces infinity $(\pm \infty)$

Operation	Quiet NaN Produced by		
Any	Any operation on a signaling NaN		
	Magnitude subtraction of infinities:		
	$(+\infty) + (-\infty)$		
Add or subtract	$(-\infty) + (+\infty)$		
	$(+\infty)$ - $(+\infty)$		
	$(-\infty)$ - $(-\infty)$		
Multiply	$0\cdot\infty$		
Division	$^0/_0$ or $^\infty/_\infty$		
Remainder	$x \text{ REM } 0 \text{ or } \infty \text{ REM } y$		
Square root	\sqrt{x} with $x < 0$		

IEEE Standard for Binary Floating-Point Arithmetic Subnormal Numbers

(a) 32-bit format without subnormal numbers

(b) 32-bit format with subnormal numbers