Теорема 7. (Първа теорема на Вайерщрас). Всяка непрекъсната числова функция, дефинирана върху компактно множество, е ограничена.

Доказателство. Нека числовата функция f(P) е дефинирана и непрекъсната за $P \in \mathbf{D}$, където \mathbf{D} е компактно подмножество на \mathbb{R}^n . Да допуснем, че f не е ограничена, например, отгоре. Тогава съществува редица от точки $P_k \in \mathbf{D}$ такива. че $f(P_k) \geq \mathbb{T}$ Според §2.10 ние можем да изберем нейна сходяща подредица $P_{k_l} \to P_0 \in D$. Тогава от една страна $f(P_{k_l}) > k_l$ и следователно $f(P_{k_l}) \to +\infty$. От друга страна, от непрекъснатостта на f в точката P_0 следва, че $f(P_{k_l}) \to f(P_0)$, и полученото противоречие доказва теоремата.

Теорема 8. (Втора теорема на Вайерщрас). Всяка непрекъсната числова функция, дефинирана върху компактно множество, достига най-голямата и най-малката си стойност.

Доказателство. Нека $M=\sup_{P\in \mathbf{D}} f(P)$. Тогава за всяко естествено k числото M-1/k вече не е горна граница за стойностите на функцията, и ние може да намерим точка $P_k\in \mathbf{D}$ такава. че $M-1/k < f\left(P_k\right) \leq M$. Отново ще изберем сходяща подредица $P_{k_l} \to P_0$. Като извършим граничен преход в неравенствата

$$M - \frac{1}{k_l} < f(P_{k_l}) \le M,$$

получаваме $M \leq f(P_0) \leq M$, т.е. $f(P_0) = M$.

Твърденията за ограниченост отдолу и за достигане на точната долна граница се получават аналогично.

За изображения горните твърдения не се пренасят дословно, но се заместват от следващата теорема. За случая на числови функции тя е еквивалентна с теореми 6 и 7 (покажете!).

Теорема 9. Образът на компактно множество при непрекъснато изображение е компактен.

Доказателство. Нека f(P) е непрекъсната функция, дефинирана върху компактното множество $\mathbf{D} \subset \mathbb{R}^n$ и вземаща стойности в \mathbb{R}^m . Ще покажем, че нейният образ $f(\mathbf{D}) \subset \mathbb{R}^m$, състоящ се от всички точки $f(P), P \in \mathbf{D}$, е компактно подмножество на \mathbb{R}^m . По теорема §2.10 е

достатъчно да покажем, че от всяка редица от точки $Q_k \in f(\mathbf{D})$ можем да изберем подредица, сходяща към точка от $f(\mathbf{D})$. Нека $Q_k = f(P_k)$. Избираме подредица P_{k_l} от точки на \mathbf{D} , клоняща към $P_0 \in \mathbf{D}$. Тогава от непрекъснатостта в точката P_0 получаваме, че $Q_{k_l} \to Q_0 = f(P_0)$.

Равномерна непрекъснатост. И това понятие се пренася от едномерния случай почти без изменения:

Определение. Изображението f с дефиниционна област $\mathbf{D} \subset \mathbb{R}^n$ се нарича равномерно непрекъснато в \mathbf{D} , ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, така че за всеки две точки P и Q от \mathbf{D} , за които $\rho(P,Q) < \delta$, имаме $\rho(f(P),f(Q)) < \varepsilon$.

Теорема 10. (Теорема на Кантор). Всяко изображение, дефинирано върху компактно множество и непрекъснато в него, е и равномерно непрекъснато.

Доказателство. Да допуснем, че избражението f, дефинирано и непрекъснато върху компактното множество \mathbf{D} , не е равномерно непрекъснато. Тогава съществува число $\varepsilon_0 > 0$ такова, че по-нататъшната част от определението не е изпълнена, т.е. за всяко $\delta > 0$ съществуват точки $P_{\delta}, Q_{\delta} \in \mathbf{D}$ такива, че $\rho(P_{\delta}, Q_{\delta}) < \delta$, но $\rho(f(P_{\delta}), f(Q_{\delta})) \geq \varepsilon_0$. Да дадем на δ стойности $\delta_k = 1/k, \ldots$ и да означим $P_k = P_{\delta_k}, Q_k = Q_{\delta_k}$. Тогава тези точки удовлетворяват условията $\rho(P_k, Q_k) < 1/k$ и $\rho(f(P_k), f(Q_k)) \geq \varepsilon_0$. Нека $\{P_{k_l}\}, l = 1, 2, \ldots$, е сходяща подредица на редицата $\{P_k\}$. Да означим границата и с P_0 . Очевидно редицата $\{Q_{k_l}\}, l = 1, 2, \ldots$, клони към същата граница. Тогава $f(P_{k_l}) \to f(P_0), f(Q_{k_l}) \to f(P_0), g(P_{k_l}) \to f(P_0), g(P_{k_l}) \to f(P_0)$, и $f(P_{k_l}) - f(Q_{k_l}) \to 0$, което противоречи на допускането, че $\rho(f(P_{k_l}), f(Q_{k_l})) \geq \varepsilon_0$.

Линейно свързани множества. Теорема за междинните стойности. В първата част на анализа се доказва следното свойство на непрекъснатите функции: нека f(x) е непрекъсната функция, дефинирана върху интервал (вида на интервала не е от значение). Ако A и B са стойностите на функцията в две точки от дефиниционния интервал, и C е число между A и B, то съществува точка, в която f(x) взема стойност C. Теоремата не е вярна, ако пропуснем условието, че дефиниционата област е интервал: например, нека дефиниционното множество е обединение на два непресичащи се интервала, и f(x) е равна на константата

0 върху първия, и на 1 - върху втория. Така определената функция е непрекъсната, но междинната стойност 1/2 не се достига в никоя точка.

За да успеем да пренесем тази теорема в многомерния случай, трябва да можем да правим разграничение между двата случая за подмножества на \mathbb{R}^n . Общо казано, трябва да разделим множествата, които "се състоят от едно парче", от тези, които са "от няколко парчета". Това води до понятието линейна свързаност на множество. Това е множество, всеки две точки на което може да бъдат съединени с непрекъсната линия. Ще напомним понятието непрекъсната крива линия в \mathbb{R}^n (виж част \mathbf{I} , §2.12, където това понятие е дефинирано за криви в \mathbb{R}^n):

Определение. Под непрекъсната крива линия в \mathbb{R}^n разбираме непрекъснато изображение на крайния и затворен интервал [a,b] в пространството \mathbb{R}^n .

Така, всяка непрекъсната крива в \mathbb{R}^n се задава с векторна функция $\varphi(t)=(\varphi_1(t),\ldots,\varphi_n(t)),\ t\in[a,b].$ Със същия термин ще означаваме и множеството от стойностите на $\varphi(t)$: $\Gamma_{\varphi}=\{\varphi(t)\}_{t\in[a,b]}.$ Точките $\varphi(a)$ и $\varphi(b)$ се наричат съответно начална и крайна точка на кривата $\Gamma_{\varphi}.$

Определение. Едно множество $\mathbf{D} \subset \mathbb{R}^n$ се нарича линейно свързано, ако за всеки две точки $P,\ Q$ от \mathbf{D} съществува непрекъсната крива Γ_{\wp} , съдържаща се в \mathbf{D} , с начална точка P и крайна точка Q.

Например, всяко изпъкнало множество е линейно свързано. Ще напомним, че едно множество се нарича изпъкнало, ако то съдържа заедно с всеки две свои точки и отсечката, която ги свързва. Такива множества са кръга, правоъгълника, триъгълника и др. Отсечката, която свързва точките P и Q, може да се параметризира по формулата $\varphi(t)=(1-t)\ P+t\ Q$, и следователно представлява непрекъсната крива, съединяваща тези точки.

Обратно, обединението на два непресичащи се кръга не е линейно свързано (докажете!).

Забележка. Друго, близко по характер свойство на множествата в \mathbb{R}^n се дава в определението на свързано множество - виж задачи 13-17.

Теорема 11. (Теорема за междинните стойности.) Нека f е непрекъсната функция върху линейно свързаното множество $\mathbf{D} \subset \mathbb{R}^n$, P и Q са две точки от \mathbf{D} , и A = f(P), B = f(Q). Нека C е число между A и B. Тогава съществува точка $L \in \mathbf{D}$ такава, че f(L) = C.

Доказателство. Ще сведем задачата към едномерния случай, доказан в І §1.11, следствие 2. Нека изображението $\varphi(t): [a,b] \to \mathbb{R}^n$ да определя непрекъсната крива, лежаща в \mathbf{D} и съединяваща точките P и Q. Да определим функцията на една променлива F(t) по формулата $F(t) = f(\varphi(t)), \ t \in [a,b].$ Тогава имаме $F(a) = A, \ F(b) = B, \$ и следователно съществува точка $\xi \in (a,b)$ такава, че $F(\xi) = C$. Нека $L = \varphi(\xi)$; тогава $f(L) = F(\xi) = C$.

Упражнения.

1. Докажете, че евклидовото разстояние $\rho(P,Q)$ в \mathbb{R}^n е равномерно непрекъснато по двете променливи едновременно, т.е. се явява непрекъсната функция на точката $(P,Q) \in \mathbb{R}^{2n}$.

Упътване. Докажете неравенството

$$|\rho(P_1, Q_1) - \rho(P_2, Q_2)| \le \rho(P_1, P_2) + \rho(Q_1, Q_2).$$

- **2.** Като следствие покажете, че ако f(P) е непрекъсната векторнозначна функция, то $||f(P)|| = \rho(P,\vec{0})$ е непрекъсната числова функция. В частност, ако числовата функция $\varphi(P)$ е непрекъсната, то и $|\varphi(P)|$ е също такава.
- **3.** Докажете, че минимумът и максимумът на краен брой числови функции е също непрекъсната.

Упътване. В случая на две функции използвайте равенствата

$$\max(f(P), g(P)) = \frac{f(P) + g(P) + |f(P) - g(P)|}{2},$$

$$\min(f(P), g(P)) = \frac{f(P) + g(P) - |f(P) - g(P)|}{2}.$$

В общия случай твърдението се доказва чрез индукция по броя на функциите.

4. (Разстояние между точка и множество.) Нека P е точка и \mathbf{A} е подмножество на \mathbb{R}^n . Разстоянието между P и \mathbf{A} се определя по формулата

$$\rho(P, \mathbf{A}) = \inf \{ \rho(P, Q) : Q \in \mathbf{A} \}.$$