Stepwise Regression for Cement Data

About the Data

Data set that concerns the hardening of cement. In particular, the researchers were interested in learning how the composition of the cement affected the heat evolved during the hardening of the cement. Therefore, they measured and recorded the following data on 13 batches of cement. Variables of this model were,

- 1. Response y: Heat evolved in calories during hardening of cement on a per gram basis
- 2. Predictor x1: % of tricalcium aluminate
- 3. Predictor x2: % of tricalcium silicate
- 4. Predictor x3: % of tetracalcium alumino ferrite
- 5. Predictor x4: % of dicalcium silicate

Descriptive Statistics

	Y	X1	X2	Х3	X4
count	13.000000	13.000000	13.000000	13.000000	13.00000
mean	95.423077	7.461538	48.153846	11.769231	30.00000
count	13	13	13	13	13
min	72.5	1	26	4	6
25%	83.8	2	31	8	
					20
50%	95.9	7	52	9	26
75%	109.2	11	56	17	44
max	115.9	21	71	23	60

Correlation Analysis

1. Pairs Plot

Runa Veigas 202410006 MDS 504 Linear Regression Models

2. Correlation Plot

Interpretation: There is a strong positive correlation between y and x_2 and strong negative correlation between y and x_4 and therefore x_2 or x_4 is entered in the model first and considering $\alpha_E = 0.15$ and $\alpha_R = 0.15$.

Stepwise Linear Regression

Regressing y on x_1 , regressing y on x_2 , regressing y on x_3 , and regressing y on x_4 , we obtain:

========				========	========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept x1	81.4793 1.8687	4.927 0.526	16.536 3.550	0.000 0.005	70.634 0.710	92.324 3.027
	coef	std err	t	P> t	[0.025	0.975]
Intercept x2	57.4237 0.7891	8.491 0.168	6.763 4.686	0.000 0.001	38.736 0.418	76.111 1.160
	coef	std err	t	P> t	[0.025	0.975]
Intercept x3	110.2027 -1.2558	7.948 0.598	13.866 -2.098	0.000 0.060	92.710 -2.573	127.696 0.061
========	coef	std err	t	P> t	[0.025	0.975]
Intercept x4	117.5679 -0.7382	5.262 0.155	22.342 -4.775	0.000 0.001	105.986 -1.078	129.150 -0.398

Each of the predictors is a candidate to be entered into the stepwise model because each t-test P-value is less than $\alpha_E = 0.15$. The predictors' x_2 and x_4 tie for having the smallest t-test P-value it is 0.001 in each case. The tie is an artifact of rounding to three decimal places. The t-statistic for x_4 is larger in absolute value than the t-statistic for x_2 is 4.77 versus 4.69 and therefore the P-value for x_4 must be smaller.

As a result of the first step, we enter x_4 into our stepwise model. Now we fit each of the two-predictor models that include x_4 as a predictor that is, we regress y on x_4 and x_1 , regress y on x_4 and x_2 , and regress y on x_4 and x_3 , obtaining:

=======	coef	std err	 t	P> t	[0.025	0.975]
Intercept	103.0974	2.124	48.540	0.000	98.365	107.830
x4	-0.6140	0.049	-12.621	0.000	-0.722	-0.506
x1	1.4400	0.138	10.403	0.000	1.132	1.748

	coef	std err	t	P> t	[0.025	0.975]
Intercept x4 x2	94.1601 -0.4569 0.3109	56.627 0.696 0.749	1.663 -0.657 0.415	0.127 0.526 0.687	-32.013 -2.008 -1.357	220.333 1.094 1.979
========	coef	std err	t	P> t	[0.025	0.975]
Intercept x4 x3	131.2824 -0.7246 -1.1999	3.275 0.072 0.189	40.089 -10.018 -6.348	0.000 0.000 0.000	123.986 -0.886 -1.621	138.579 -0.563 -0.779

The predictor x_2 is not eligible for entry into the stepwise model because its t-test P-value (0.687) is greater than $\alpha_E = 0.15$. The predictors x_1 and x_3 are candidates because each t-test P-value is less than $\alpha_E = 0.15$. The predictors x_1 and x_3 tie for having the smallest t-test P-value < 0.001 in each case. But, again the tie is an artifact of rounding to three decimal places. The t-statistic for x_1 is larger in absolute value than the t-statistic for x_3 10.40 versus 6.35 and therefore the P-value for x_1 must be smaller. **As a result of the second step, we enter x_1 into our stepwise model**.

Now, since x_4 was the first predictor in the model, we must step back and see if entering x_1 into the stepwise model affected the significance of the x_4 predictor. It did not the t-test P-value for testing β_1 = 0 is less than 0.001, and thus smaller than α_R = 0.15. Therefore, we proceed to the third step with both x_1 and x_4 as predictors in our stepwise model.

Now, we fit each of the three-predictor models that include x_1 and x_4 as predictors — that is, we regress y on x_4 , x_1 , and x_2 , and we regress y on x_4 , x_1 , and x_3 , obtaining:

========	========			========		
	coef	std err	t	P> t	[0.025	0.975]
Intercept x4 x1 x2	71.6483 -0.2365 1.4519 0.4161	14.142 0.173 0.117 0.186	5.066 -1.365 12.410 2.242	0.001 0.205 0.000 0.052	39.656 -0.629 1.187 -0.004	103.641 0.155 1.717 0.836
=======	=========	=========				========
=======	coef	std err	t	P> t	[0.025	0.975]
	coef	std err	t	P> t	[0.025	0.975]
Intercept	coef 111.6844	std err 4.562	t 24.479	P> t 0.000	[0.025 101.363	0.975] 122.005
Intercept						
	111.6844	4.562	24.479	0.000	101.363	122.005
x4	111.6844 -0.6428	4.562 0.045	24.479 -14.431	0.000 0.000	101.363 -0.744	122.005 -0.542

Both of the remaining predictors x_2 and x_3 are candidates to be entered into the stepwise model because each t-test P-value is less than $\alpha_E = 0.15$. The predictor x_2 has the smallest t-test P-value (0.052). Therefore, as a result of the third step, we enter x_2 into our stepwise model.

Now, since x1 and x4 were the first predictors in the model, we must step back and see if entering x2 into the stepwise model affected the significance of the x1 and x4 predictors. Indeed, it did the t-test P-value for testing $\beta_4 = 0$ is 0.205, which is greater than $\alpha_R = 0.15$. Therefore, we remove the predictor x4 from the stepwise model, leaving us with the predictors x1 and x2 in our stepwise model:

	coef	std err	t	P> t	[0.025	0.975]		
Intercept	52.5773	2.286	22.998	0.000	47.483	57.671		
x1	1.4683	0.121	12.105	0.000	1.198	1.739		
x2	0.6623	0.046	14.442	0.000	0.560	0.764		
=========		========		=======	========	=======		

Now, we proceed fitting each of the three-predictor models that include x_1 and x_2 as predictors that is, we regress y on x_1 , x_2 , and x_3 and we regress y on x_1 , x_2 , and x_4 , obtaining:

=========					.========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept x1 x2 x3	48.1936 1.6959 0.6569 0.2500	3.913 0.205 0.044 0.185	12.315 8.290 14.851 1.354	0.000 0.000 0.000 0.209	39.341 1.233 0.557 -0.168	57.046 2.159 0.757 0.668
========	coef	std err	t	P> t	[0.025	0.975]
Intercept x1 x2 x4	71.6483 1.4519 0.4161 -0.2365	14.142 0.117 0.186 0.173	5.066 12.410 2.242 -1.365	0.001 0.000 0.052 0.205	39.656 1.187 -0.004 -0.629	103.641 1.717 0.836 0.155

Neither of the remaining predictors x_3 and x_4 are eligible for entry into our stepwise model, because each t-test P-value—0.209 and 0.205, respectively is greater than $\alpha E = 0.15$. That is, we stop our stepwise regression procedure. Our final regression model, based on the stepwise procedure contains only the predictors x_1 and x_2 :

OLS Regression Results

OLS Regression Results								
Dep. Variabl	۵'		===== У	P_6/1	 uared:		0.979	
Model:			OLS		R-squared:		0.974	
Method:		Least Squ		_	atistic:		229.5	
Date:		Tue, 15 Jun			(F-statistic):		4.41e-09	
Time:		15:4			Likelihood:		-28.156	
No. Observat	ions:	13.4	13	AIC:	LIKCIIIIOOG.		62.31	
Df Residuals			10	BIC:			64.01	
Df Model:	•		2	DIC.			04.01	
Covariance T	vne•	nonro	_					
=========	ypc•		=====					
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	52.577	2.286	22	2.998	0.000	47.483	57.671	
x1	1.4683	0.121	12	2.105	0.000	1.198	1.739	
x2	0.6623	0.046	14	4.442	0.000	0.560	0.764	
========						=======		
Omnibus:		1	.509	Durb:	in-Watson:		1.922	
Prob(Omnibus	s):	0	.470	Jarq	ue-Bera (JB):		1.104	
Skew:		0	.503	Prob	(JB):		0.576	
Kurtosis:		1	.987	Cond	. No.		175.	
========			=====		=========	=======	========	

Conclusion

In order to investigate how the composition of the cement affected the heat evolved during the hardening of the cement a Stepwise Regression was carried. The scatter plot showed that there was a strong positive linear relationship between the heat evolved and tri-calcium silicate and heat evolved and di-calcium silicate. Further stepwise regression was conducted to investigate what variables could better predict the heat evolved during harding of the cement. Finally the model obtained was $\hat{y_i} = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2$ where i = 1,2,3,4. β_0 is 52.58, coefficient of x1 is 1.47 and coefficient of x2 is 0.6623. This means that all other variables held constant, for each 1.47% increase in the tri-calcium aluminate, the model predicts that the heat evolved by the cement increases by 52.58 calories on average and all the variables held constant 0.66% od increase in tri-calcium silicate, the model predicts that the heat evolved by the cement increases by 52.58 calories on average. The adjusted R2 value obtained was 0.974 which means that 97.4% of the variability in the heat produced can be explained by the model including variables tri-calcium silicate and di-calcium silicate.

**********Thank You*******