chip-seq信息分析

chip-seq

染色质免疫共沉淀技术

(Chromatin Immunoprecipitation, ChIP) 也称结合位点分析法,是研究体内蛋白质与DNA相互作用的有力工具,通常用于转录因子结合位点或组蛋白特异性修饰位点的研究。

Chip-seq将ChIP与第二代测序技术相结合的ChIP-Seq技术,能够高效地在全基因组范围内检测与组蛋白、转录因子等互作的DNA区段。

主要内容

- 少数据库准备和下载原始数据
- ₾质控
- ⊕ 比对
- heak finding
- ₾ peak可视化
- ↑ peak注释
- notif discovery

数据库准备(hg19)

UCSC(fasta, bed)

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz

\$ bowtie2-build hg19.fa hg19

下载fastq数据

http://www.ebi.ac.uk/

"chip-seq FoxA1" --> Nucleotide sequences (74)

http://www.ncbi.nlm.nih.gov/

SRA --> "chip-seq FoxA1"

质控

\$ fastqc ERR499.read1.fq -t 2 -o qcOutdir

•质量值

过滤

- 1. 过滤接头。对含接头的reads去除接头序列。
- 2. 一条reads上N(未能确定出具体的碱基类型)的比例大于5%,则过滤掉该reads。
- 3. 过滤低质量reads,过滤掉Q20<70% reads。

过滤统计

read	raw	adapter	N	Low qual	clean
read1	28701483 (100%)	53761(0.1 9%)	29(0.00%)	1849520 (6.44%)	25779623 (89.82%)

过滤前后质量值

过滤前:

过滤后:

6 4 2

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Position in read (bp)

1. 比对

\$ bowtie2 -p 15 -x /home/zhiming/software/rna/rnaSeqSoftware/hg19/hg19 ERR990.clean1.fq -S ERR990.sam

statistics	Input Reads	mapped	Multiple	Unique
Percentage	48948102(100%)	48212358(98.50%)	561991(1.15%)	47650367(97.35%)

Peak finding

chr	start	end	length	summi t	tags	- 10*log10(pv alue)	fold_e nrichm ent
chr1	56523 0	56541 8	189	94	21	96.33	9.78
chr1	56931 1	56950 8	198	99	51	304.78	17.41
chr1	66253 2	66276 3	232	96	25	210.79	29.34
chr1	71502 8	71537 1	344	153	13	91.66	23.29
chr1	81185 0	81222 1	372	273	12	77.92	23.29

Peak finding

Peak view

Peak注释

PeakID	Chr	Start	End	Annotation	Distance to TSS	Nearest PromoterID	Entrez ID	Gene Name
MACS_pea k_5762	chr1	210893 963	210894 257	intron (NM_172362, intron 10 of 10)	391470	NM_001170 580	55733	HHAT
MACS_pea k_48704	chr20	129980 02	129983 54	intron (NM_018327, intron 1 of 11)	8551	NM_01832 7	55304	SPTLC3
MACS_pea k_18650	CHITS	919259 44	919263 43	Intergenic	-62191	NR_047004	100874 150	LINC00 379
MACS_pea k_38942	chr2	241605 50	241608 21	Intergenic	-2691	NM_18171 3	165324	UBXN2 A

Peak注释

Motif

Rank Motif		P-value	log P-pvalue	% of Targets	% of Background:
1	STIGESCAA	1e-42572	-9.803e+04	65.00%	6. 20%
2	TG&ACTTTG&&C	1e-705	-1.625e+03	8.62%	4.14%
3	CACTECACCCTE	1e-537	-1.238e+03	23. 21%	16.50%
4	GEFACAGAGI	1e-453	-1.044e+03	21.38%	15. 40% !
5	GCTCACIGCA	1e-444	-1.024e+03	19.78%	14.05%
6	TTAAGTAÇATTÇ	1e-389	-8.977e+02	1.14%	0.19%
7	GACÇTTGŞ	1e-349	-8.044e+02	28.51%	22.54% !

GO分析

该有向无环图为差 异基因GO富集分 析的结果图形化展 示方式, 分支代表 包含关系,箭头方 向从上之下所定义 的功能范围越来越 小,并通过包含关 系,将相关的GO Term一起展示, 颜色深浅代表富集 程度,越深富集水 平越高, 反之,则 越低。

KEGG分析

