Mora Exams 2025 | Temil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering Conversity of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering Conversity of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineerin

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2025 General Certificate of Education (Adv.Level) Pilot Examination - 2025

இணைந்த கணிதம் I Combined Mathematics I 10 T I

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண்:-

அறிவுறுத்தல்கள்:

- lacktriangle இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- பகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B:
 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- lacktriangle ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது பகுதி B யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- ❖ வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10	(10) இணைந்த கணிதம் I						
பகுதி	ഖിത്നെ எண்	புள்ளிகள்					
	1						
	2						
	3						
	4						
	5						
A	6						
	7						
	8						
	9						
	10						
	11						
	12						
	13						
В	14						
	15						
	16						
	17						
	மொத்தம்						

வமாததம

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

O.

விடைத்தாள் பரீ	ட்சகர்:	
பரிசீலித்தவர்:	1.	
	2.	
மேற்பார்வை செய்	தவர்:	,

பகுதி А

	தொகுத்தறிவு						இற்கு	r=1	$2\sqrt{3}$	(-	,
நிறுவுக.											
•••••		•••••				• • • • • • • • • • • • • • • • • • • •					• • • • •
		•••••	•••••				•••••				••••
• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••				••••
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • •
• • • • • • • • • • • • • • • • • • • •									• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • •
	-2x , y= x-	•		வரைபுக			வரிப்படத்		நம்படியா		
		-2ig -1 ஆகிவேறுவிதமாக,									
இதிலிரு <u>ந</u> ்		வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிரு ந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிரு ந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									
இதிலிருந்	ந்து அல்லது (வேறுவிதமாக,									

3.	$\left zi + \sqrt{3}\right \le \sqrt{3}$	$\sqrt{3}$, Ar_3	$g(z+1) \leq$	$\frac{\pi}{3}$	என்னும்	ச	மனிலி	களைத்	திருப்தி	ியாக்குட	ம் சிக்	கைலெண்கள்	z ஐ	ഖകെ
	குறிக்கும் புஎ	ர்ளிகை	ளக் கொ	ண்ட பி	ரதேசம்	S	æ 9	ர் ஆகண்	வரிப்பட	_த்தில்	நிழந்ந	J&.		
	மேலும் S இ	இன் பர	เப่บளவைน	பும் கா	ண்க.									
														••••
			• • • • • • • • • • • • • • • • • • • •			••••								
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••								
						••••	• • • • • •							
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • • • • • • •	••••
				• • • • • • • • • • • • • • • • • • • •		••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • • • • • • •	••••
	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		••••	• • • • • •					••••••		
	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••	• • • • • •					••••••		
	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••	• • • • • •					••••••		
	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			•••••	••••
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • •			•••••	••••
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	• • • • • •			• • • • • • • • •			•••••	••••
	•••••		• • • • • • • • • • • • • • • • • • • •			••••	• • • • • • • • • • • • • • • • • • • •							
	$(k)^7$		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •		••••••	•••••	••••
4.	$\left(x^2 + \frac{k}{x}\right)^7$	இன்	ஈருறுப்பு	ഖിரിധി	ിல் x^-	$^{4}, x$	x^{2}, x^{5}	ஆகியவ	<u>ம்</u> ற்வின்	குணக	ங்கள்	பெருக்கல்	விருத்தி	யின்
	அடுத்துள்ள	உறுப்ப		ரின் $\it k$	= 5 สส									
	அடுத்துள்ள	உறுப்ப		றின் k \cdots	= 5 สส					•••••				
	அடுத்துள்ள	உறுப்ப		ரின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	உழுப்ப 		ளின் <i>k</i>	= 5 என 									
	அடுத்துள்ள	உழுப்ப 		ளின் <i>k</i>	= 5 ass									
	அடுத்துள்ள	<u>9 m</u> il		ளின் <i>k</i>	= 5 ass									
	அடுத்துள்ள	<u>உ</u> ழுப்ப		ளின் <i>k</i>	= 5 aaa									
	அடுத்துள்ள	<u>9</u> <u>B</u> JÚL		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	உழுப்ப		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9</u> <u>B</u> LİL		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9</u> <u>B</u> LİL		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9</u> <u>B</u> ILIL		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9_</u> <u>B</u> <u>I</u> Lil		ளின் <i>k</i>	= 5 aaa									
	அடுத்துள்ள	<u>9_g</u> iil		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9 gi</u> il		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	<u>9 Biji</u>		ளின் <i>k</i>	= 5 สส									
	அடுத்துள்ள	உழுப்ப		ளின் <i>k</i>	= 5 สส									

5.											வேறுவிதம	пв $k \in \mathbb{Z}$	⁺ ஆயிருக்க
	$\lim_{x\to 0}\frac{x(x)}{x}$	$\frac{(1-1)^k}{(1-1)^k}$	$\frac{-x-x}{\cos 2x}$	$\frac{x^3 \cot x}{x^3}$	-=1012	எனத்	தரப்படி	ன் <i>k</i> இ	ன் பெறுப	மானத்தைக்	காண்க.		
				•••••		••••••						• • • • • • • • • • • • • • • • • • • •	
6.											ளடைக்கப்படு		
	அச்சைப் கனவளவு					ளினூடா	கச் சூ	ழந்நப்படு	கின்றது.	இவ்வாறு	பிறப்பிக்க	ப்படும் தி	ண்மத்தின்
					•••••					•••••			•••••
					•••••	• • • • • • • • • • • • • • • • • • • •				•••••	•••••		•••••
		• • • • • •		•••••	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
	•••••			•••••	•••••	• • • • • • • • •	• • • • • • • • • •	••••••	•••••			• • • • • • • • • • • • • • • • • • • •	
		• • • • • • •				• • • • • • • • •							
		• • • • • • • • • • • • • • • • • • • •											

$\frac{dy}{dy} = 0$. எனர்	காம் ∩ா	ഖകവാ	<i>ட</i> பிக்க	$t-\frac{1}{}$. ຄາ	நேடார ் ச	പ ക്കിപ9
$\frac{dy}{dx} = \frac{1}{t e^{\sin^{-1}}}$	$\frac{1}{t}(t) + \sqrt{1 - t^2}$	$e^{\sin^{-1}(t)}$	- 61601GD	காட்டுக்.	61160)611ULI	ட யந்கு	$t = \frac{1}{\sqrt{2}}$. E	மெளிரத்த	цынш
ഖரையப்பட்ட	_ செவ்வன்,	புள்ளி	(a,b) §	இனுடாகச்	செல்லுமெ	னின் $b=\sqrt{2}$	√2 <i>a</i> என	க் கோட்	டுக.	
					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •				
						• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
 அருகிலுள்ள		ல் கா	 r.ட்டப்பட்டு	 ள்ள மு	்	ABC	யில்		B(3,5)	
அருகிலுள்ள $A \equiv (-2, 0)$									B(3,5)	
$A \equiv (-2, 0)$	$), B \equiv (3, 5)$), $C \equiv 0$	(x_o, y_o)	ஆகும். உ	டித்துடன் $\it A$	${\it l} C$ யின் சப	றன்பாடு		B(3,5)	
	$), B \equiv (3, 5)$), $C \equiv 0$	(x_o, y_o)	ஆகும். உ	டித்துடன் $\it A$	${\it l} C$ யின் சப	றன்பாடு		B(3,5)	
$A \equiv (-2, 0)$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு		B(3,5)	
$A \equiv (-2, 0)$ $2x - y + 4 = -2$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2	B(3,5) $x-y+4=$	0
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2		0 $C(x_o,$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2		0 $C(x_o,$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		$O(x_o)$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2		$0 C(x_o,$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		$\underbrace{0}_{C}(x_{o},$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		O $C(x_o,$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	0)		O $C(x_o,$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	0)		$O(x_o, C(x_o))$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		$\underbrace{0}_{C}(x_{o},$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		$\underbrace{0}_{C}(x_{o},$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	9 2 0)		$\underbrace{0}_{C}(x_{o},$
$A \equiv (-2, 0)$ $2x - y + 4 =$), $B \equiv (3, 5)$ = 0 ஆகம்	(), <i>C</i> ≡ (வும்	(x_o, y_o) $B\hat{A}C = \theta$	ஆகும். உ ஆகவ	அத்துடன் <i>A</i> ம் இருப்ட	1 <i>C</i> யின் சப பின் tan	றன்பாடு	0)		$O(x_o, C)$

9.	$S \equiv x^2 + y^2 - 6$	6x - 2y + 9 =	= 0 ഒള	றும் வட்ட	_மானது	х – அ	ச்சைத்	தொடும்	எனக்காட்டி,	தொடும்	് புள்ளி
	Aயின் ஆள்கூ	ந்றைக் காண <u>்</u>	ர்க. <i>A</i>	எனும் பு	ள்ளியில்	S = 0	எனும்	வட்டத்தை	வெளிப்புறமா	ாகத் தெ	நாடுவதும்
	$\left(-1,-2\right)$ எതു										
							• • • • • • • • •				
							• • • • • • • • •				
							• • • • • • • • • • • • • • • • • • • •				
			• • • • • • • • • • • • • • • • • • • •				• • • • • • • • •				
		• • • • • • • • • • • • • • • • • • • •					• • • • • • • •				
							• • • • • • • • •				
			• • • • • • • • • • • • • • • • • • • •				• • • • • • • •				
							• • • • • • • • •				
	•••••										
10.	$\frac{\pi}{2} < \theta < \pi$ @i	$\frac{\sin\theta}{2}$ +	$-\frac{\cos\theta}{2}$	$=\frac{2(\sin\theta)}{2}$	$\theta + \cos \theta$) - இனைக	ந் தீர்க் ச	க.			
	2	$\cos^2 \theta$	$\sin^2 \theta$	cos² 6	$\theta \sin^2 \theta$	- ·					
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •				• • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • •				•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				• • • • • • • •				
			• • • • • • • • • • • • • • • • • • • •								•••••
			• • • • • • • • • •				• • • • • • • •				•••••
			• • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •			•••••	
	•••••		• • • • • • • • • •				• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •							•••••		•••••
	•••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • •		•••••		•••••
		••••••						•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •		•••••
			• • • • • • • • • •						•••••	•••••	•••••
	•••••						• • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •										
			• • • • • • • • • •		•••••		• • • • • • • •		•••••		•••••

Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students | மாணவர்கள் பிட தமிழ் மானவர்கள் மிட தமிழ் மானவர்கள் பிட ய பிட தமிழ் மானவர்கள் பிட தமிழ் மானவர்கள் பிடிய பிடக்கள் பிடிய பிட தமிழ் மானவர்கள் பிடிய பிடக்கள் பிடிய பிடக்கள் பிடிய பிடக்கள் பிடிய

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2025 General Certificate of Education (Adv.Level) Pilot Examination - 2025

இணைந்த கணிதம் I Combined Mathematics I 10 T I

பகுதி B

- ☀ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11. (a) $a \neq 0$ இந்கு, $f(x) = ax^2 + 4x + 2\lambda$, $g(x) = x^2 + ax + \lambda$ எனக் கொள்வோம். இங்கு a, $\lambda \in \mathbb{R}$. அத்துடன் $\lambda \neq 0$. f(x) = 0, g(x) = 0 ஆகியன ஒரு பொதுமூலம் α ஐக் கொண்டுள்ளன எனத் தரப்பட்டுள்ளது. λ இனை a யின் சார்பில் கண்டு $\alpha = 2$ எனக் காட்டுக. இங்கு $a \neq \pm 2$. மேலும் f(x) = 0, g(x) = 0 ஆகிய இருபடிச்சமன்பாடுகள் மெய்மூலங்களைக் கொண்டிருக்கும் எனக் காட்டுக. -1 < a < 0 எனக் கொள்வோம். f(x) = 0, g(x) = 0 இன் மற்றைய மூலங்கள் முறையே β , γ எனத்தரப்படின் β , γ இனை a யின் சார்பில் காண்க.

$$\left| \frac{\beta}{|\alpha - \beta|}, \frac{\gamma}{|\alpha - \gamma|} \right|$$
 ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $2(a+1)(a+4)x^2 + (a^2-4)x - (a+2)^2 = 0$ எனக் காட்டுக.

(b) $p(x)=x^4+ax^2+bx-9$ எனக் கொள்வோம். இங்கு $a,b\in\mathbb{R}$. p(x) இனை (x-2) இனால் வகுக்கும் போது பெறப்படும் மீதி 3 எனவும் p'(x) இனை (2x-1) இனால் வகுக்கும் போது பெறப்படும் மீதி, p'(x) இனை (2x+1) இனால் வகுக்கப் பெறப்படும் மீதியை விட 5 இனால் கூடியது எனவும் தரப்படின் a,b இன் பெறுமானங்களைக் காண்க. a,b இன் இப்பெறுமானங்களிற்கு Q(x)=4p(x)-xp'(x)+34 எனக் கொள்வோம். p'(x) இனை Q(x) இனால் வகுக்கும் போது பெறப்படும் மீதி 3(29x+1) எனக் காட்டுக.

p'(x) இனை Q(x) இனால் வகுக்கும் போது பெறப்படும் மீதி 3(29x+1) எனக் காட்டுக இங்கு p'(x) என்பது p(x) இன் x குறித்த பெறுதியாகும்.

- 12. (a) க.பொ.த. உயர்தர மாணவர்களுக்கான முன்னோடிப் பரீட்சையை நடாத்தும் பொறியியற்பீட தமிழ் மாணவர்கள் 14 பேரில் மின்பொறியியல் பிரிவைச் சேர்ந்த 6 மாணவர்களும் கணினி பொறியியல் பிரிவைச் சேர்ந்த 5 மாணவர்களும் கட்டிடப் பொறியியல் பிரிவைச் சேர்ந்த 3 மாணவர்களும் உள்ளனர். இவர்களிலிருந்து 10 பேர் கொண்ட குழு தெரிவுசெய்யப்பட வேண்டியுள்ளது. ஒவ்வொரு குழுவிலும் குறைந்தது 4 கணினிப் பொறியியல் பிரிவைச் சேர்ந்தவர்களும், 3 மின்பொறியியல் பிரிவைச் சேர்ந்தவர்களும், 1 கட்டிடப் பொறியியல் பிரிவைச் சேர்ந்தவரும் இருத்தல் வேண்டும்.
 - (i) மின்பொறியியல் பிரிவைச் சேர்ந்த ஒரு மாணவனும் கட்டிடப் பொறியியல் பிரிவைச் சேர்ந்த ஒரு மாணவனும் முன்னோடிப் பரீட்சைச் செயற்பாடுகளிலிருந்து விலகியிருந்தனர் எனின் தெரியப்படக்கூடிய வேறுபட்ட குழுக்களின் எண்ணிக்கையைக் காண்க.
 - (ii) எல்லா மாணவர்களும் முன்னோடிப் பரீட்சைச் செயற்பாடுகளில் பங்குபற்றியிருக்கின்றனர் எனின் எத்தனை வேறுபட்ட குழுக்கள் தெரியப்படலாம்.

$$(b)$$
 $r \in \mathbb{Z}^+$ இந்கு $U_r = \frac{6r^2 + 37r + 15}{(r+1)(r+3)(r+5)}$ எனவும் $f(r) = \frac{Ar + B}{(r+1)(r+3)}$ எனவும் கொள்வோம்.

 $r\in\mathbb{Z}^+$ இற்கு $U_r=4f(r)-f(r+2)$ ஆக இருக்குமாறு மெய்ம்மாறிலிகள் A,B இன் பெறுமானங்களைத் துணிக.

இதிலிருந்து,
$$n \in \mathbb{Z}^+$$
 இற்கு $\sum_{r=1}^n V_r = \frac{13}{48} - \frac{2n+3}{2^{n+1}(n+2)(n+4)} - \frac{2n+5}{2^{n+2}(n+3)(n+5)}$ எனக் காட்டுக.

இங்கு
$$V_r = \frac{6r^2 + 37r + 15}{2^{r+2}(r+1)(r+3)(r+5)}$$
 ஆகும்.

மேலும், முடிவில் தொடர் $\sum_{r=1}^{\infty} V_r$ ஒருங்குகின்றதெனக்காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.

 $\lim_{n o \infty} \left(\sum_{r=1}^n V_r + k \sum_{r=2}^n V_r \right) = 1$ ஆக இருக்குமாறு மெய்ம்மாறிலி k இன் பெறுமானத்தைக் காண்க.

13.
$$(a)$$
 $A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & a & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 0 \\ 5 & -2 \\ 2 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & -a \\ 4 & b \end{pmatrix}$ ஆகியன $P = AB$ ஆக இருக்கத்தக்கதாகத்

தாயங்களெனக் கொள்வோம். இங்கு $a,b\in\mathbb{R}$. a=-2,b=5 எனக் காட்டுக. a,b இன் இப்பெறுமானத்திற்கு P^{-1} இருக்கின்றதெனக் காட்டி P^{-1} ஐ எழுதுக.

 $P^3 = 33P + 40I$ எனத் தரப்படின், P^2 இனைக் காண்க, P^2 இனை P,I ஆகியவற்றின் சார்பில் எடுத்துரைக்க. இங்கு I ஆனது வரிசை 2 ஆகவுள்ள சர்வசமன்பாட்டுத் தாயமாகும்.

மேலுள்ள முடிபுகளை உபயோகித்து $P^4-P^3-P^2-P=2inom{108\ 166}{332\ 523}$ எனக் காட்டுக.

- (b) $x,\ y\in\mathbb{R}$ ஆயிருக்க z=x+iy என்பது ஓர் சிக்கலெண்ணை வகை குறிப்பின் z இன் மட்டு $\left|z\right|$ ஐயும் z இன் உடன்புணரிச்சிக்கலெண் \overline{z} ஐயும் எழுதுக.
 - (i) $z \overline{z} = |z|^2$
 - (ii) $z \overline{z} = 2i \operatorname{Im}(z)$
 - (iii) $z + \overline{z} = 2 \operatorname{Re}(z)$

எனக் காட்டுக.

 $\left|2z-i\right|^{2}=4\left|z\right|^{2}-4\operatorname{Im}(z)+1$ எனவும் $\left|\overline{z}+4\right|^{2}=\left|z\right|^{2}+8\operatorname{Re}(z)+16$ எனவும் காட்டுக.

 $\left|2z-i\right|=\left|\overline{z}+4\right|$ ஆகுமாறு z இன் ஒழுக்கு ஓர் வட்டமெனக் காட்டி, அதன் மையத்தைக் காண்க.

- (c) $-\frac{\pi}{2} < \theta < 0, r > 0$ ஆக $\sqrt{2} \left[r(\cos \theta + i \sin \theta) \right]^4 = \frac{\left(\sqrt{3} i\right)^5}{1 + i}$ எனக் கொள்வோம். த மோய்வரின் தேற்றத்தைப் பயன்படுத்தி, θ , r இனைக் காண்க.
- 14. (a) $x \neq -3$ இந்கு $f(x) = \frac{x^2 1}{(x+3)^2}$ எனக் கொள்வோம். f(x) இன் பெறுதி f'(x) ஆனது $x \neq -3$ இந்கு $f'(x) = \frac{2(3x+1)}{(x+3)^3}$ இனால் தரப்படுகின்றதெனக் காட்டுக.

இதிலிருந்து, f(x) அதிகரிக்கும் ஆயிடைகளையும் f(x) குறையும் ஆயிடையையும் காண்க. அத்துடன், f(x) இன் திரும்பந் புள்ளியின் ஆள்கூறுகளையும் காண்க.

 $x \neq -3$ இற்கு $f''(x) = \frac{12(1-x)}{(x+3)^4}$ எனத் தரப்பட்டுள்ளது.

y = f(x) இன் வரைபின் விபத்திப்புள்ளியின் ஆள்கூறுகளைக் காண்க.

அணுகுகோடுகள், திரும்பற்புள்ளி, விபத்திப்புள்ளி ஆகிய வற்றைக் காட்டி, y=f(x) இன் வரைபைப் பரும்படியாக வரைக. **இதிலிருந்து** $y=\left|f(x)\right|$ இன் வரைபைப் பரும்படியாக வரைக.

 $(b\)$ அருகிலுள்ள உருவில் காட்டப்பட்டுள்ள அளவீடுகளின்படி நிழந்நிய பிரதேசம் S இன் பரப்பளவு $30m^2$ எனத் தரப்படின் நிழந்நிய பிரதேசம் S இன் சுந்நளவு Lm ஆனது $L=rac{10}{3}igg(x+rac{18}{x}igg)$ இனால் தரப்படும் எனக் காட்டுக. நிழந்நிய

பிரதேசம் S இன் சுற்றளவு இழிவாகுமாறு x இனைக் காண்க. படத்தில் காட்டப்பட்டுள்ள அளவீடுகள் யாவும் மீற்றரில் உள்ளன.

15. (a) எல்லா $t \in \mathbb{R}$ இந்கும் $2t = A(1-t)^2 + B(1+t)(1-t) + C(1+t)$ ஆகுமாறு A,B,C ஆகிய மெய்ம் மாநிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து அல்லது வேறுவிதமாக

$$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{2t}{(1-t)^{2}(1+t)} dt = \ln\left(\sqrt{2}-1\right) + \sqrt{2} + 1$$
 எனக் காட்டுக.

$$I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cot\left(\frac{x}{2}\right)}{1 - \sqrt{\cos x}} dx$$
 எனக் கொள்வோம்.

$$I = \int\limits_{rac{\pi}{3}}^{rac{\pi}{2}} rac{\sin x}{(1-\cos x)\Big(1-\sqrt{\cos x}\Big)} dx$$
 எனக் காட்டி, $\sqrt{\cos x} = t$ எனும் பிரதியீட்டையும் மேலுள்ள

முடிபினையும் பயன்படுத்தி $I=\ln\left(\sqrt{2}-1\right)+\sqrt{2}+1$ எனக் காட்டுக.

(b) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int \frac{\ln(x+2)}{(x+4)^2} \ dx$ இனைக் காண்க.

$$(c)$$
 (i) $\int_{0}^{\pi} \frac{1}{1+\sin x} dx = 2$ எனக் காட்டுக.

(ii)
$$J = \int_{0}^{\pi} \frac{x \sin^3 x}{1 + \sin x} dx$$
 எனக் கொள்வோம்.

$$a$$
 ஒரு மாறிலியாக இருக்கும் சூத்திரம் $\int\limits_0^a f(x)dx=\int\limits_0^a f(a-x)dx$ ஐப் பயன்படுத்தி.

$$J=rac{\pi}{2}\int\limits_0^\pirac{\sin^3x}{1+\sin x}\,dx$$
 எனக்காட்டி பகுதி (c) இல் (i) இல் பெற்ற முடிபினையும் பயன்படுத்தி

$$J=rac{\pi}{4}ig(3\pi-8ig)$$
 எனக் காட்டுக.

16. $S \equiv 2x^2 + 2y^2 + 4x - 8y + 1 = 0$ எனும் வட்டத்திற்கு $A \equiv (3,1)$ எனும் வெளிப்புள்ளியிலிருந்து வரையப்படும் தொடலிகள் l_1, l_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க. மேலும் அவற்றிற்கிடைப்பட்ட கூர்ங்கோணத்தைக் காண்க.

வட்டம் S=0 இன் மையம் O எனவும் $l_1=0,\ l_2=0$ ஆகிய நேர்கோடுகள் வட்டம் S=0 இனைத் தொடும்புள்ளிகள் $B,\ C$ எனவும் தரப்படின் ABOC ஓர் வட்ட நாற்பக்கல் எனக்காட்டி $A,\ B,\ O,\ C$ ஆகிய புள்ளிகளினூடு செல்லும் வட்டம் S_1 இன் சமன்பாட்டினைக் காண்க.

தொடுகை நாண் BC யின் சமன்பாட்டினைக் கண்டு, $S=0,\ S_1=0$ ஆகிய வட்டங்களை நிமிர்கோண முறையாக \mathbb{R}^2 இடைவெட்டும் வட்டம் S_2 இன் மையம் நேர்கோடு BC மீது இருக்கும் எனக் காட்டுக.

 $S_2=0$ ஆனது $\left(-1,rac{1}{2}
ight)$ எனும் புள்ளியினூடு செல்லும் எனின் S_2 இன் சமன்பாடு $8x^2+8y^2+7x+4y-5=0$ எனக் காட்டுக.

17. (a) $\sin(A+B)$ ஐ $\sin A$, $\cos A$, $\sin B$, $\cos B$ ஆகியவற்றில் எழுதி $\sin 2\theta$ ஐ $\sin \theta$, $\cos \theta$ ஆகியவற்றின் சார்பில் காண்க.

 $\sin 2\theta$ இல் θ க்கு உகந்த பிரதியீட்டை வழங்கி $\cos 2\theta$ ஐ $\cos \theta$, $\sin \theta$ ஆகியவந்நின் சார்பில் காண்க.

இதிலிருந்து, $\sin 2\theta$, $\cos 2\theta$ ஐ $\tan \theta$ சார்பில் காண்க.

$$\sqrt{3}\cos x + \sin x = 2$$
 எனும் சமன்பாட்டில் x இந்கான ஒரு தீர்வு $\frac{\pi}{6}$ எனக் காட்டுக.

மேலுள்ள முடிபுகளை உபயோகித்து $an rac{\pi}{12} = 2 - \sqrt{3}$ எனக் காட்டுக.

 $(b\)$ வழக்கமான குறியீடுகளுடன் ΔABC இந்கு சைன் விதியைக் கூறுக.

உருவில் காட்டப்பட்டுள்ள முக்கோணி ABC யில்

$$\hat{ABC} = \frac{\pi}{4}, \; \hat{ADB} = \theta, \; \hat{ACB} = \frac{\pi}{12}$$
 எனவும் BC மீது

புள்ளி D ஆனது BD:DC=2:1 ஆகவும் இருக்கத்தக்கதாக உள்ளது. பொருத்தமான முக்கோணிகளுக்குச் சைன் நெறியைப் பயன்படுத்தி

$$\sqrt{2}\sin\left(\theta - \frac{\pi}{12}\right) = \sin\frac{\pi}{12}\sin\left(\frac{\pi}{4} + \theta\right)$$
 எனக் காட்டுக.

இதிலிருந்து,
$$an heta = rac{3 anrac{\pi}{12}}{2- anrac{\pi}{12}}$$
 எனக் காட்டுக.

பகுதி (a) இல் உள்ள முடிபினைப் பயன்படுத்தி $an heta=\sqrt{3}\left(2-\sqrt{3}
ight)$ எனக் காட்டுக.

$$(c)$$
 $2\cot^{-1}(x-1) + \tan^{-1}\left(\frac{x}{x+1}\right) = \frac{\pi}{2}$ இனைத் தீர்க்க.

Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students | மாணவர்கள் மட்டத்தில் மாணவர்கள் மாற்ற முற்ற முற்ற முறியில் மாணவர்கள் மாற்ற முற்ற
கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2025 General Certificate of Education (Adv.Level) Pilot Examination - 2025

இணைந்த கணிதம் II Combined Mathematics II 10 T II

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண் :-

அறிவுறுத்தல்கள்

- * இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * **பகுதி A :** எல்லா வினாக்களுக்கும் விடை எழுதுக. ஓவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * **பகுதி B : ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A யின் விடைத்தாள் ஆனது பகுதி B யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.
- st இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

பகுதி		
ப	ഖിனா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
\mathbf{A}	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
B	14	
	15	
	16	
	17	
	மொத்தம்	

	• •
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

மொத்தம்

)

பகுதி A

1.	ஒப்பமான கிடை மேசை மீது u கதியுடன் இயங்கும் m திணிவுடைய துணிக்கை B ஐ அதே திசையில் மேசை மீது $2u$ கதியுடன் இயங்கும் m திணிவுடைய துணிக்கை A நேரடியாக
	மோதுகின்றது. மொத்தலின் பின் B ஆனது $rac{7u}{4}$ கதியுடன் இயங்குகிறது. துணிக்கை A ஆனது
	அதே திசையில் தொடர்ந்து இயங்குகின்றதெனின் அதன் கதியைக் காண்க. இப்போது A இற்கு
	அதன் இயக்கத்திசையில் I எனும் கணத்தாக்கு வழங்கப்படின் தொடரும் இயக்கத்தில் $I>\frac{mu}{2}$ எனில் B ஐ இரண்டாவது முறையாக A மோதும் எனக்காட்டுக.
2.	$AB = \sqrt{3}h$ ஆகுமாறு புள்ளி B இந்கு நிலைக்குத்தாக மேலே
2.	$AB=\sqrt{3}h$ ஆகுமாறு புள்ளி B இற்கு நிலைக்குத்தாக மேலே புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta=60^\circ$ எனக்காட்டி, மோதுவதற்கு எடுத்த நேரம் $\frac{2h}{u}$ எனக்காட்டுக.
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$
2.	புள்ளி A உள்ளது. இருதுணிக்கைகள் A,B இல் இருந்து ஒரே C நேரத்தில் முறையே கிடையாக $\frac{u}{2}$, கிடையுடன் θ கோணத்தில் u உடன் ஒரே நிலைக்குத்துத் தளத்தில் அவற்றின் பாதைகள் அமையுமாறு புவியீர்ப்பின் கீழ் வீசப்படுகின்றன. இரண்டு துணிக்கைகளும் புள்ளி C இல் மோதுகின்றன. $\theta = 60^\circ$

3.	இலேசான நீட்டமுடியாத இழையின் ஒரு முனையில் M $\underline{\hspace{0.5cm} $
	திணிவுடைய துணிக்கை P இணைக்கப்பட்டு, இழையானது கிடை
	சீலிங்கில் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பியின் மேலாகச்
	சென்று பின் $4M$ திணிவுடைய ஒப்பமான அசையும் கப்பி Q க்கு
	கீழாகச் சென்று மறுமுனை சீலிங்கில் நிலைப்படுத்தப்பட்டுள்ளது. கப்பிகளுடன் தொடுகையுறாத இழையின் பகுதிகள் $0.2\ m$
	நிலைக்குத்தாக இருக்கும் அதே வேளை, இழை இறுக்கமாக
	இருக்க ஆரம்பத்தில் துணிக்கை <i>P</i> ஆனது நிலையான கப்பியில்
	இருந்து $0.2m$ கீழே இருக்க பிடிக்கப்பட்டு ஓய்வில் இருந்து $P(M)$
	விடப்படுகிறது. $g=10\ ms^{-2}$ எனக்கொண்டு, P இன் ஆர்முடுகல்
	$5\ ms^{-2}$ ஆக மேல்நோக்கி இருக்கும் எனக்காட்டி, P ஆனது நிலைத்த கப்பியை அடைய
	எடுத்த நேரத்தைக் காண்க.
4.	$1000kg$ திணிவுள்ள காரானது கிடையுடன் $\sin^{-1}\left(rac{1}{20} ight)$ சாய்வுள்ள பாதையில் மேல்நோக்கி $16ms^{-1}$
	எனும் மாநாக்கதியுடன் இயங்குகிறது. காரின் இயக்கத்திற்கான தடை விசை $kv\ N$ ஆகும். இங்கு k
	மாறிலியும் v ஆனது ms^{-1} இல் கதியுமாகும். கார் $8.16kW$ வலுவுடன் இயங்குகிறது எனக் கொண்டு
	$k=rac{5}{8}$ எனக்காட்டுக. காரானது அதே தடை வடிவத்தை ஒத்த தடையுடன் கிடை பாதையில் அதே
	வலுவுடன் செல்லும் போது அதன் கதி $8ms^{-1}$ ஆக இருக்கையில் ஆர்முடுகல் $1.015ms^{-2}$
	எனக்காட்டுக. $(g = 10 \ ms^{-2})$

ஒரு புறியில் m தினிவுடைய துணிக்கை P உம் முற்றைய பூடியில் M தினிவுடைய துணிக்கை Q உம் இணைக்கப்பட்டு படத்தில் காட்டிப்பாறு இழை இறுக்கமாக இருக்க P ஆனது தூரை கேண் கோட்கும் உடன் கிடை வட்டத்தில் இபக்கப்படும் அதேவேளை, Q ஆனது O இந்கு நிலைக்குத்தாக கீழே அபாதீனமாக தொங்கியவண்ணம் சாழிலையில் உள்ளது. $OP = l$ ஆகவும் $P^DQ = \alpha$ ஆகவும் இருப்பின் $\cos \alpha$ ஐ கண்டு $m < M$ என உய்த்துரிக. மேலும் $\omega = \sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda, \mu \in \mathbb{R}$ ஆயிருக்க $u = \lambda l + j, v = l + \mu j$ எனக் கொள்வோம். இங்கு l, j என்பன வழக்கமான குறிப்பிட்டை உடைபடை $u + v, u - v$ என்பன செல்தத்தான காவிகளாகவும் $ u + v = 2 v $ ஆகவும் இருப்பின் λ, μ இன் பெறுமானங்களைக் காண்க.	N	0										
காட்டியவாறு இழை இறுக்கமாக இருக்க P ஆனது சீரான கோண வேகம் ω உடன் கிடை வட்டத்தில் இயக்கப்படும் அதேவேளை, Q ஆனது O இற்கு நிலைக்குத்தாக கீழே சுயாதீனமாக தொங்கியவண்ணம் சமநிலையில் உள்ளது. $OP=l$ ஆகவும் $P\hat{O}Q=\alpha$ ஆகவும் இருப்பின் $\cos\alpha$ ஐ கண்டு $m< M$ என உய்த்தறிக. மேலும் $\omega=\sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda,\mu\in\mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $		கிணிவடைய குணிக்கை O உம் இணைக்கப்பட்டு படக்கில் $oldsymbol{\Omega}$										
வேகம் ω உடன் கிடை வட்டத்தில் இயக்கப்படும் அதேவேளை, Q ஆனது O இந்கு நிலைக்குத்தாக கீழே சுயாதீனமாக தொங்கியவண்ணம் சமநிலையில் உள்ளது. $OP=l$ ஆகவும் $P\hat{O}Q=\alpha$ ஆகவும் இருப்பின் $\cos\alpha$ ஐ கண்டு $m< M$ என உய்த்தநிக. மேலும் $\omega=\sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda,\mu\in\mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $	- de	$\alpha \wedge \alpha$										
ஆனது O இந்கு நிலைக்குத்தாக கீழே சுயாதீனமாக தொங்கியவண்ணம் சமநிலையில் உள்ளது. $OP=l$ ஆகவும் $P\hat{O}Q=\alpha$ ஆகவும் இருப்பின் $\cos\alpha$ ஐ கண்டு $m < M$ என உய்த்தறிக. மேலும் $\omega = \sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda, \mu \in \mathbb{R}$ ஆயிருக்க $u=\lambda i+j, v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v, u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $												
தொங்கியவண்ணம் சமநிலையில் உள்ளது. $OP=l$ ஆகவும் $P\widehat{O}Q=\alpha$ ஆகவும் இருப்பின் $\cos\alpha$ ஐ கண்டு $m < M$ என உய்த்தறிக. மேலும் $\omega=\sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda,\mu \in \mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $		() •										
$P\hat{O}Q=lpha$ ஆகவும் இருப்பின் \coslpha ஐ கண்டு $m < M$ என $u = \sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $u = \lambda i + j$, $v = i + \mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u + v$, $u - v$ என்பன செங்குத்தான காவிகளாகவும் $ u + v = 2 v $												
உய்த்தறிக. மேலும் $\omega=\sqrt{\frac{Mg}{ml}}$ எனவும் காட்டுக. $\lambda,\mu\in\mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $, I										
$\lambda,\mu\in\mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $												
$\lambda,\mu\in\mathbb{R}$ ஆயிருக்க $u=\lambda i+j$, $v=i+\mu j$ எனக் கொள்வோம். இங்கு i,j என்பன வழக்கமான குறிப்பீட்டை உடையன. $u+v$, $u-v$ என்பன செங்குத்தான காவிகளாகவும் $ u+v =2 v $	ഉ	.ய்த்தறிக . மேலும் $\omega = \sqrt{\frac{ml}{ml}}$ எனவும் காட்டுக.										
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $												
குறிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $	•											
		u S D auda in u - li l i u - i l ui gari OrnaiCamb Siva i i gainar ansimora										
дужиш у под под под под под под под под под под												
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	O	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	O	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	G	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	G	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	Ø	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										
	J	றிப்பீட்டை உடையன. $oldsymbol{u}+oldsymbol{v}$, $oldsymbol{u}-oldsymbol{v}$ என்பன செங்குத்தான காவிகளாகவும் $ oldsymbol{u}+oldsymbol{v} =2 oldsymbol{v} $										

7.	$3a$ நீளமான சீரற்ற W நிறையுடைய கோல் AB ஆனது ஒவ்வொன்றும் கிடையுடன் 30° சாய்வுள்ள ஒப்பமான சாய்தளங்களில் கிடையாக வைக்கப்பட்டு, படத்தில் காட்டிவாறு	В
	$\frac{a}{2}W$ திருப்பமுள்ள இணை கொடுக்கப்பட, அது அவ்வமைவில் சமநிலையில் உள்ளது. A, B 30° 30°	
	இல் உள்ள மறுதாக்கங்கள் பருமனில் சமன் எனக்காட்டி, கோலின் புவியீர்ப்புமையம் எங்குள்ளது எனக்காண்க.	
		•••••
8.	நிலைப்படுத்தப்பட்டு, அதன் மீது செல்லும் இலேசான நீட்ட முடியாத இழையின் முனைகளில் $A(W), B(W)$ நிறைகளுடைய துணிக்கைகள் இணைக்கப்பட்டு உள்ளது. இழை இறுக்கமாக இருக்க துணிக்கை A ஆனது கப்பியினூடாகச் செல்லும் ஒப்பமான கிடை மேசை மீதும், துணிக்கை B ஆனது கரடான $B(W)$ சாய்தளத்திலும் இருக்குமாறு அமைய துணிக்கை A இற்கு படத்தில் காட்டியவாறு கிடை விசை A	கப்பி <u>P</u>
	பிரயோகிக்கப்பட தொகுதி சமநிலையில் உள்ளது. துணிக்கைகள், கப்பி என்பன நிலைக்குத்து தளத்தில் இருக்கின்றன. துணிக்கை B , சாய்தளம் இடையில உராய்வுக்குணகம் $\frac{1}{2}$ எனின், $W \leq 2\sqrt{2}P \leq 3W$ எனக்காட்டுக.	•
		•••••
		•••••

6P(2		ு (∠ காட்டு								18		,-		ர பாராஜு	ள அல்ல
010010	чш с	காடரு	ж.												
	•••••	•••••		•••••	•••••			•••••					•••••		
	•••••												•••••		
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		•••••	•••••					•••••		
	•••••														
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••	•••••	•••••		
•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		••••••		••••••		
	•••••														
	ங் குப	டுத்து	نابانا		р Съ		களா(தம்.	இவந் <u>ந</u>	நின் இ	இடை 7	ஆகவ		ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7	ஆகவ மானங்	பும், இவ		ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ரிசையில் ஆகவும் . இங்கு
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்
ஒரு ஒழு	ங்குப ஆக	டுத்து எரத்ன	ப்பட்ப த ப	் ஏழு - ஏழு	ழ நே கெ	ரக்கல் ரண்ட	ക്കണ വൈധ	தம். ாகும்.	இவற் <u>ந</u> . <i>x</i> , <i>y</i> ,	றின் இ <i>z</i> இ6	இடை 7 ர் பெறு	ஆகவ மானங்	பும், இவ	ையம் 6	ஆகவும்

Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineering, University of Moratuwa | Mora Exams 2025 | Tamil Students, Faculty of Engineer

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2025 General Certificate of Education (Adv.Level) Pilot Examination - 2025

இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

- * ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11.(a) ஒப்பமான கிடைத்தளத்தில் உள்ள நேர்கோடு ஒன்றில் A,B,C எனும் புள்ளிகள் படத்தில் காட்டியவாறு உள்ளன. இங்கு $AB = 280 \ m$

ஆகும். புள்ளி A இல் P,Q எனும் இரு துணிக்கைகள் வைக்கப்பட்டு, துணிக்கை P ஆனது t=0 இல் $50\ ms^{-1}$ எனும் வேகத்துடன் AB வழியே எறியப்பட அது $f\ ms^{-2}$ எனும் சீரான ஆர்முடுகலுடன் இயங்கி $t=4\ s$ இல் B இல் உள்ள நிலைக்குத்தான ஒப்பமான சுவரை $v\ ms^{-1}$ வேகத்துடன் செங்குத்தாக மோதி பின்னதைக்கிறது. துணிக்கை P, சுவர் இடையிலான மீள்தன்மைக் குணகம் $\frac{8}{9}$ ஆகும். துணிக்கை P இன் திரும்பிய இயக்கத்தில், அது $4\ ms^{-2}$ எனும் சீரான அமர்முடுகலுடன் இயங்குகின்றது. $t=4\ s$ இல் துணிக்கை Q ஆனது A இல் இருந்து AC வழியே $u\ ms^{-1}$ வேகத்துடன் இயக்கத்தை ஆரம்பித்து $4\ ms^{-2}$ எனும் சீரான அமர்முடுகலுடன் இயங்குகிறது. $t=T\ s$ இல் துணிக்கை P ஆனது துணிக்கை Q ஐ புள்ளி C இல் பிடிக்கிறது. அப்போது C இல் Q இன் கதி $12\ ms^{-1}$ ஆகும். இவ்விரு துணிக்கைகளின் இயக்கத்திற்கான வேக-நேர வரைபுகளை ஒரே வரைபடத்தில் பரும்படியாக வரைக. **இதிலிருந்து,**

i.
$$v=90$$
, $f=10$ எனவும்

ii.
$$u = 40, T = 11 \text{ or } u = 52, T = 14$$
 எனவும் காட்டுக.

b) சீரான வேகம் w உடன் பாயும் a அகலம் கொண்ட ஆற்றின் ஒரு கரையில் உள்ள புள்ளி A ஆகும். B என்பது A இருக்கும் கரையில் ஆற்றோட்ட திசையில் உள்ள புள்ளியாகும். C ஆனது A இற்கு நேர் எதிராக ஆற்றின் மறுகரையில் உள்ள புள்ளியாகும். இங்கு AC = AB ஆகும். ஆறு தொடர்பாக u,v கதிகளையுடைய முறையே X,Y என்ற படகுகள் ஒரே நேரத்தில் முறையே A,B எனும் புள்ளிகளில் இருந்து புறப்பட்டு புள்ளி C ஐ அடைகின்றன.

இங்கு u>w,v>w ஆகும். இரு படகுகளின் இயக்கங்களிற்கான வேக முக்கோணிகளை வேறு வேறாக வரைந்து, படகு Y இன் கதி $\frac{1}{\sqrt{2}}\big(\sqrt{2v^2-w^2}-w\big)$ எனக்காட்டி, படகு X இன் கதியைக் காண்க. இரு படகுகளும் புள்ளி C ஐ அடைய எடுத்த நேரங்களைக் காண்க.

 $u=\sqrt{2}w,v=\sqrt{5}w$ எனின் இவ்விரு படகுகளும் $\frac{a}{w}$ எனும் ஒரே நேரத்தில் C ஐ அடைகின்றன என **உய்த்தறிக**.

12.(a)

X,Y எனும் இரு ஒப்பமான சீரான ஆப்புகளினதும் துணிக்கை Pஇனதும் திணிவு மையங்களினூடாக உள்ள நிலைக்குத்துக் குறுக்குவெட்டு உருவிற் காட்டப்பட்டுள்ளது. AC,DE,GE என்பன அவை இருக்கும் முகங்களின் அதியுயர் சரிவுக்கோடுகளாக இருக்கும் அதேவேளை $B\hat{A}C=D\hat{E}G=lpha$ ஆகும். துணிக்கை P, ஆப்புகள் ஒவ்வொன்றினதும் திணிவுகள் m ஆகும். ஆப்பு X இன் AB ஐக் கொண்ட முகம் ஓர் ஒப்பமான கிடை மேசை மீது வைக்கப்பட்டுள்ளது. ஆப்பு Y இன் ED ஐக் கொண்டுள்ள முகம் X இன் AC ஐ கொண்ட முகத்தின் மீது வைக்கப்பட்டுள்ளது. C இல் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான இலேசான கப்பிக்கு மேலாகச் செல்லும் ஓர் இலேசான நீட்ட முடியாத இழையின் ஒரு நுனி, ஆப்பு Y இல் புள்ளி E இற்கும் மறுமுனை நிலையான சுவரில் உள்ள புள்ளி H இற்கு இணைக்கப்பட்டுள்ள அதே வேளை இழையின் பகுதி $\mathcal{C}H$ கிடையாகவும் ஆப்புகளின் நிலைக்குத்து குறுக்குவெட்டு தளத்திலும் உள்ளது. துணிக்கை P ஆனது GEவைக்கப்பட்டுள்ளது. இழை இறுக்கமாக இருக்க தொகுதி ஓய்வில் விடுவிக்கப்படுகிறது. ஆப்புகளின் ஆர்முடுகல்களைத் துணிவதற்கு போதிய சமன்பாடுகளை எழுதுக.

(b) a நீளமுள்ள இலேசான நீட்ட முடியாத இழையின் ஒரு முனை புள்ளி 0 இல் நிலைப்படுத்தப்பட்டு, மறுமுனையில் m திணிவுடைய துணிக்கை P இணைக்கப்பட்டுள்ளது.

தொடக்கத்தில் 0 இன் மட்டத்தில் இழை இறுக்கமாக இருக்க துணிக்கை P பிடிக்கப்பட்டு ஓய்வில் இருந்து விடப்படுகிறது. தொடரும் இயக்கத்தில் துணிக்கை Pஆனது 0 இந்கு நிலைக்குத்தாக கீழே நிலைப்படுத்தப்பட்ட கம்பம் AB இன் உச்சி A இல் வைக்கப்பட்டுள்ள mதிணிவுடைய துணிக்கை Q உடன் கிடையாக மோதுகிறது. இங்கு OA = a, AB = H ஆகும். மொத்தலின் பின்னரான P,Q இன் இயக்கங்களில் P ஆனது தொடர்ந்து வட்ட இயக்கத்தை ஆற்றி புள்ளி $\mathcal C$ இல் கணநிலை ஓய்விற்கு வருகிறது.

துணிக்கை Q ஆனது புவியீர்ப்பின் கீழ் இயங்கி புள்ளி C இந்கு நிலைக்குத்தாக கீழே B இன் மட்டத்தில் உள்ள புள்ளி D இல் தரையை அடிக்கிறது.

துணிக்கைகள் P, Q இந்கிடையில் உள்ள மீள்தன்மைக்குணகம் $\frac{1}{2}$ ஆகும்.

- i. துணிக்கை P ஆனது துணிக்கை Q உடன் மோதுவதற்கு சற்று முன் அதன் கதியைக் கண்டு, மோதி சற்று பின் P,Q இன் கதிகள் முறையே $\frac{\sqrt{2ag}}{4}$, $\frac{3\sqrt{2ag}}{4}$ எனக்காட்டுக.
- ii. A இன் மட்டத்திற்கு மேல் C இன் உயரம் $\frac{a}{16}$ எனக்காட்டி, $H=\frac{31}{576}a$ எனவும் காட்டுக.
- 13) இயற்கை நீளம் l ஐ உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி ஓர் ஒப்பமான கிடை நிலத்திற்கு மேலே $rac{7l}{4}$ இல் இருக்கும் நிலைத்த புள்ளி O உடனும் மற்றைய நுனி, ஒவ்வொன்றும் m திணிவுகளையுடைய இரு துணிக்கைகள் சேர்த்து ஓட்டப்பட்ட 2m திணிவுடைய சேர்த்தித் துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. ஆனது $\it 0$ இல் வைத்திருக்கப்பட்டு ஆரம்பத்தில் துணிக்கை Pவிடப்படுகிறது. புள்ளி O இற்கு நிலைக்குத்தாக கீழே $A, \mathcal{C}_0, \mathcal{C}, D$ ஆகிய புள்ளிகள் OA=l, $AC_0=C_0C=CD=rac{l}{4}$ ஆகுமாறுள்ளன. துணிக்கை P இன் இயக்கத்தில் புள்ளி ${\cal C}$ சமநிலைத்தானமாக அமையின் இழையின் மீள்தன்மை மட்டு 4mgஎனக்காட்டுக. மேலும் துணிக்கை P இன் இயக்கச்சமன்பாடு $\ddot{x}=-\omega^2 x$ எனக்காட்டுக. இங்கு $-\frac{l}{2} \le x \le \frac{l}{4}$ இற்கு CP = x ஆக இருக்கும் அதேவேளை, $\omega(>0)$

இங்கு $-\frac{l}{2} \le x \le \frac{l}{4}$ இற்கு CP = x ஆக இருக்கும் அதேவேளை, $\omega(>0)$ துணியப்பட வேண்டிய மாநிலியாகும். c வீச்சமாக இருக்க $\dot{x}^2 = \omega^2(c^2 - x^2)$ ஐப் பயன்படுத்தி வீச்சம் c ஐக் கண்டு, துணிக்கை P ஆனது நிலத்தில் புள்ளி D ஐ $\frac{\sqrt{38gl}}{4}$ எனும் கதியுடன் அடிக்கும் எனக்காட்டுக.

துணிக்கை P ஆனது நிலத்தை அடிக்கும் போது m திணிவுள்ள துணிக்கை இழையில் இருந்து தொடுகையற்று செல்கிறது. இழையுடன் தொடுகையில் உள்ள மற்றைய துணிக்கை Q ஆனது நிலைக்குத்தாக மேல்நோக்கி $\frac{\sqrt{5gl}}{2}$ எனும் வேகத்துடன் இயக்கத்தை தொடர்கிறது. $-\frac{l}{4} \leq y \leq \frac{l}{2}$ இற்கு $C_0Q = y$ என எடுத்து இப்புதிய எளிமை இசை இயக்கச் சமன்பாட்டைப் பெற்று, அதன் வீச்சம் $\frac{3l}{4}$ எனக்காட்டுக. அத்துடன் துணிக்கை Q ஆனது புள்ளி O ஐ மட்டுமட்டாக அடையும் எனக்காட்டுக. மேலும் துணிக்கை Q ஆனது D இலிருந்து O இனை அடைய எடுக்கும் நேரம்

$$rac{1}{2}\sqrt{rac{l}{g}}\Big[\pi-\cos^{-1}\left(rac{1}{3}
ight)-\cos^{-1}\left(rac{2}{3}
ight)+2\sqrt{2}\Big]$$
 எனக்காட்டுக.

 $\overrightarrow{AB}=m{a},\overrightarrow{AC}=m{b},B\hat{A}C=rac{\pi}{3}$ ஆகுமாறு ABC ஒரு முக்கோணியாகும். A யினூடாக BC இற்கு செங்குத்தாக வரையப்பட்ட கோடும் B இனூடு AC இற்கு சமாந்தரமாக வரையப்பட்ட கோடும், புள்ளி E இல் இடைவெட்டுகின்றன. கோடு AE ஆனது பக்கம் BC ஐ வெட்டும் புள்ளி D ஆகும். மேலும் $CD:CB=\lambda:1$ ஆகும். இங்கு $\lambda\in\mathbb{R}$. $\overrightarrow{AD}=\lambda a+(1-\lambda)b$ எனக்காட்டுக. |a|=2,|b|=3 எனின், $\lambda=rac{6}{7}$ எனக்காட்டுக. $AE:AD=\mu:1$; $\mu\in\mathbb{R}$ எனின், ΔABE இல் காவிக்கூட்டல் விதியைப் பயன்படுத்தி μ ஐக் காண்க. AE:DE=7:1 என உய்த்தறிக.

(b) O உந்பத்தியாக உள்ள போது $OA = 4 \, m, AB = 3 \, m$ ஆகுமாறு OABC ஒரு செவ்வகம் ஆகும். OA இன் நடுப்புள்ளி D ஆகும். OA, BA, CB, OC, AC, BO, DB வழியே எழுத்து ஒழுங்கு முறையினால் காட்டப்படும்

திசைகளில் முறையே $P, 7, 2, Q, 15, 10, \sqrt{13}\alpha N$ பருமனுள்ள விசைகள் தாக்குகின்றன. **இத்தொகுதி** புள்ளி $\it O$ இல் விசை ஒன்றுடன் 20 Nm சேர்ந்து இடஞ்சுழியாக பருமனுள்ள இணையிற்கு சமவலுவுள்ளதென தரப்பட்டுள்ளது. எனக்காட்டுக. மேலும் தொகுதியின் விளையுளானது OB இற்கு சமாந்தரமாக OA இல் புள்ளி இல் தாக்கின் P,Qஇன் பெறுமானங்களைக் கண்டு, ഖിബെധ്വണിത് பருமனைக் காண்க.

இங்கு $OE=\frac{10}{3}\,m$ ஆகும். அத்துடன் விளையுளின் தாக்கக்கோட்டின் சமன்பாடு 3x-4y-10=0 எனக்காட்டுக. இப்போது தொகுதியுடன் ஓர் இணையானது, புதிய தொகுதியின் விளையுளின் தாக்கக்கோடு புள்ளி A இனூடு செல்லுமாறு சேர்க்கப்படுகிறது. சேர்த்த இணையினைக் காண்க.

15.(a) சமநீளம் 4a ஐயும் சமநிறை W ஐயும் உடைய AB,BC,CD என்னும் மூன்று சீரான 3*W* EDகோல்களும் நிന്ദെயுடைய என்ற சீரான கோலும் B,C,Dஆகிய முனைப்புள்ளிகளில் ஒப்பமாக மூட்டப்பட்டுள்ளன. முனை A ஒரு நிலைத்த புள்ளியுடன் ஓப்பமாக பிணைக்கப்பட்டுள்ளது. உருவில் காட்டப்பட்டுள்ளவாறு $\mathcal{C}H = \mathcal{D}G = a$ ஆகவும் $A\widehat{B}C = B\widehat{C}D = 120^{\circ}$, $C\widehat{D}E = 90^{\circ}$ ஆகவும் கோல் BCகிடையாகவும்,

நடுப்புள்ளி I இந்கு நிலைக்குத்தாக கீழே கோல் DE இன் நடுப்புள்ளி J இருக்குமாறும் EF = FJ ஆகவும் இருக்க நான்கு கோல்களும் ஒரு நிலைக்குத்து தளத்தில் இருக்க F,G,H ஆகிய ஒப்பமான நிலைத்த முளைகளில் பொறுத்திருக்கவும் கோல் AB இன் நடுப்புள்ளியில் படத்தில் காட்டியவாறு பிரயோகிக்கப்படும் கிடை விசை P இனாலும் சமநிலையில் உள்ளது.

- i. முளை F இனால் கோல் DE மீது உஞற்றப்படும் மறுதாக்கத்தின் பருமன் $\sqrt{3}W$ எனக்காட்டுக.
- ii. முளை G இனால் கோல் CD மீது உஞற்றப்படும் மறுதாக்கத்தின் பருமன் $\frac{7}{3}W$ எனக்காட்டுக.
- iii. கோல் BC மீது மூட்டு C இல் உள்ள மறுதாக்கத்தின் கிடை, நிலைக்குத்துக் கூறுகளைக் கண்டு, முளை H இனால் கோல் BC மீது உஞற்றப்படும் மறுதாக்கத்தின் பருமன் $\frac{22}{9}W$ எனக்காட்டுக.
- iv. P இன் பருமனைக் காண்க.

(b) உருவில் காட்டப்பட்டுள்ள சட்டப்படல் முனைகளில் ஒப்பமாக மூட்டப்பட்ட AB, BC, AC, CD எனும் நான்கு இலேசான கோல்களைக் கொண்டுள்ளது. AB = BC = CA, $A\hat{C}D = 90^{\circ}$ ஆகும். சட்டப்படல் நிலைக்குத்துச் சுவரில் A இலும் D இலும் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. இல் தொங்கவிடப்பட்டு AB கிடையாக இருக்க சட்டப்படல் ஒரு நிலைக்குத்து தளத்தில் சமநிலையில் உள்ளது. போவின் குறிப்பீட்டைப் பயன்படுத்தி B, \mathcal{C} மூட்டுகளிற்கு தகைப்பு வரிப்படத்தை வரைக. இதிலிருந்து,

- i. கோல்களில் உள்ள தகைப்புகளை இனங்கண்டு அவற்றின் பெறுமானங்களைக் காண்க.
- ii. மூட்டு *D* இல் உள்ள மறுதாக்கத்தைக் காண்க.
- 16. ஆரை 2a ஐ உடைய சீரான திண்ம அரைக்கோளம் ஒன்று அடியின் மையம் O விலிருந்து ஒரு தூரம் a இல் அதன் சமச்சீர் அச்சிற்கு செங்குத்தான தளம் ஒன்றினால் இரு பகுதிகளாக பிரிக்கப்படுகிறது. இரு வட்ட ஓரங்களைக் கொண்ட பகுதி R இன் திணிவு $\frac{11}{3}\pi a^3\sigma$ என தொகையிடல் மூலம் காட்டி, அதன் திணிவுமையம் சமச்சீர் அச்சின் மீது O விலிருந்து $\frac{21}{44}a$ எனக்காட்டுக. இங்கு σ என்பது அலகு கனவளவிற்கான திணிவாகும்.

சீரான திண்மக்கூம்பு ஒன்றின் திணிவுமையம் அடியில் இருந்து சமச்சீர் அச்சின் வழியே 1:3 எனும் விகிதத்தில் இருக்கும் எனக்காட்டுக.

ஆரை 2a, உயரம் ஆகியவந்ரை அடர்த்தி σ உடைய ஒரு சீரான திண்ம செவ்வட்ட உருளையில் மேலே கூறப்பட்ட இருந்து பகுதி R நீக்கப்பட்டு, படத்தில் காட்டியவாறு மறு பகுதியுடன் இணைக்கப்பட்டு, பகுதி *R* இன் சிறிய வட்ட ஓரத்துடன் ஆரை $\sqrt{3}a$, உயரம் 2h , அடர்த்தி σ

ஆகியவற்றை உடைய சீரான திண்மக் கூம்பும் இணைக்கப்பட்டு ஒரு திண்ம சேர்த்திப்பொருள் உருவாக்கப்படுகிறது. இங்கு உருளை, பகுதி R, கூம்பு ஆகியவற்றின் சமச்சீர் அச்சுக்கள் ஒரே நேர்கோடாகும். இச்சேர்த்திப் பொருளின் திணிவு மையம் O வில் இருந்து சமச்சீர் அச்சு வழியே $\frac{(15h+17a)}{18}$ தூரத்தில் உள்ளது எனக்காட்டுக.

h=2a எனின் சேர்த்திப் பொருளானது புள்ளி P இல் ஒரு இழையால் கட்டித் தொங்கவிடப்படும் போது சேர்த்திப் பொருளின் சமச்சீர் அச்சு கிடையாக இருக்க சமநிலையில் இருப்பதற்கு கூம்பின் உச்சியில் இணைக்கப்பட வேண்டிய நிறை $\frac{7}{72}W$ எனக்காட்டுக. இங்கு W ஆனது சேர்த்திப்பொருளின் நிறையாகும்.

- 17.(a) சர்வசமனான B_1, B_2, B_3 என பெயரிடப்பட்ட 3 பைகள் உள்ளன. பை B_1 இல் 2 சிவப்பு, 2 பச்சை நிறப் பந்துகளும், பை B_2 இல் 3 சிவப்பு, 1 பச்சை நிறப் பந்துகளும், பை B_3 இல் 4 சிவப்பு நிறப் பந்துகளும் உள்ளன. கோடாத நாணயம் ஒன்று இரு தடவைகள் மேலே எறியப்படுகிறது. இதன்போது இரு தடவைகளிலும் தலை பெறப்படின் பை B_1 உம், இரு தடவைகளிலும் பூ பெறப்படின் பை B_2 உம், ஒரு தடவை தலையும் ஒரு தடவை பூவும் பெறப்படின் பை B_3 உம் தெரிந்தெடுக்கப்படுகின்றன. தெரிந்தெடுக்கப்பட்ட பையில் இருந்து இரு பந்துகள் எழுமாறாக வெளியே எடுக்கப்படுகின்றன.
 - i. வெளியே எடுக்கப்பட்ட இரு பந்துகளும் சிவப்பாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - ii. வெளியே எடுக்கப்பட்ட இரு பந்துகளும் சிவப்பாக இருப்பின், இப் பந்துகள் பை B_2 இல் இருந்து எடுக்கப்பட்டமைக்கான நிகழ்தகவைக் காண்க.
 - (b) n நோக்கல்களைக் கொண்ட x இன் பெறுமானங்களின் தொடை $\{x_1, x_2, x_3, \dots, x_n\}$ ஆகும். இவந்நின் இடை \bar{x} உம், நியமவிலகல் S_x உம் எனக்கொள்க. a(>0), b என்பன மாநிலிகளாக இருக்க x இன் பெறுமானங்கள் y=ax+b எனும் ஏகபரிமாண உருமாந்நத்திற்கு உட்படுத்தப்பட்ட போது பெறப்பட்ட y இன் நோக்கல் தொடை $\{y_1, y_2, y_3, \dots, y_n\}$ ஆக பெறப்பட்டது. இதன் இடை \bar{y} உம், நியமவிலகல் S_y உம் எனக்கொள்க.
 - i. $\bar{y} = a\bar{x} + b$ எனவும்
 - ii. $S_{y}=aS_{x}$ எனவும் காட்டுக.

30 மாணவர்களால் கணிப்பீட்டுப் பரீட்சையொன்றில் பெறப்பட்ட புள்ளிகள் (x) ஆனது $y=rac{x+2}{2}$ ஆகுமாறு உருமாற்றப்பட்ட போது பெறப்பட்ட புள்ளிகள் y இன் மீடிறன் பரம்பல் கீழே தரப்பட்டுள்ளது.

<i>y</i> இன் வகுப்பாயிடை	மீடிறன்
1 – 3	02
3 – 5	06
5 – 7	16
7 – 9	02
9 – 11	04

y இன் இடை 6 எனக்காட்டி, அதன் இடையத்தைக் காண்க. மேலும் y இன் நியம விலகல் 2 (கிட்டிய முழு எண்ணில்) எனத்தரப்படுகிறது. மாணவர்களின் கணிப்பீட்டுப் புள்ளிகள் x இன் இடை, நியமவிலகல், இடையம் ஆகியவற்றை மதிப்பிடுக.

பரம்பல் x இன் ஓராயக்குணகத்தின் பெறுமானத்தை அண்ணளவாகக் கணித்து, பரம்பலின் வடிவம் யாதெனக் குறிப்பிடுக.