Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

12. december 2016

- Formalia
- Opsamling fra sidst
- Intro til text as data
- Klassifikation
 - tf-idf
- Skalering
 - Wordscores
- Kig fremad

Uge	Dato	Tema	Litteratur	Case
1	5/9	Introduktion til R	lmai kap 1	
2	12/9	Regression I: OLS	GH kap 3, MM kap 2	Gilens & Page (2014
3	26/9	Regression II: Paneldata	GH kap 11	Larsen et al. (2016)
4	29/9	Regression III: Multileveldata, interaktioner	GH kap 12	Berkman & Plutzer
5	3/10	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	
6	10/10	Matching	Justesen & Klemmensen (2014)	Ladd & Lenz (2009)
	17/10	*Efterårsferie*	, ,	, ,

Formalia •O

Uge	Dato	Tema	Litteratur	Case
	17/10	*Efterårsferie*		
7	24/10	Eksperimenter I	MM kap 1, GG kap $1+2$	Gerber et al. (2008)
8	31/10	Eksperimenter II	GG kap 3+4+5	Gerber & Green (200
9	14/11	Instrumentvariable	MM kap 3	Arunachalam & Wats
10	14/11	Regressionsdiskontinuitetsdesigns	MM kap 4	Eggers & Hainmuelle
11	21/11	Difference-in-difference designs	MM kap 5	Enos (2016)
12	28/11	'Big data' og maskinlæring	Harford, Grimmer, Varian, Athey/Imbens	, ,
13	5/12	Webscraping	MRMN kap 9+14	
14	12/12	Tekst som data	Grimmer & Stewart (2013), Imai kap 5	

Formalia O•

- screen scraping ctr. API'er
- screen scraping m. rvest
- etik i scraping
- generelt om API'er
- brug af Twitters REST API m. twitteR
- case: skalering af danske Twitter-brugere

Spørgsmål?

Udgangspunkt: mange politisk relevante fænomener er tekstlige + stor del af 'data-revolutionen' udgøres af tekstdata → behov for metoder til at overskue/analysere data

Fx ·

The accumulation of all powers, legislative, executive, and judiciary, in the same hands, whether of one, a few, or many, and whether hereditary, selfappointed, or elective, may justly be pronounced the very definition of tvrannv.

Udgangspunktet for regeringen er VK-regeringens økonomiske politik i bredeste forstand, herunder genopretningsaftalen og forårets aftaler herunder tilbagetrækningsreformen. Regeringen vil gennemføre reformer, der øger arbejdsudbuddet, så vi kan øge væksten i dansk økonomi, sikre holdbare offentlige finanser, og en beskeden og målrettet udbygning af den offentlige service.

Pioner-studie: Mosteller & Wallace om Federalist Papers

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

Number 302

JUNE, 1963

Volume 58

INFERENCE IN AN AUTHORSHIP PROBLEM^{1,2}

A comparative study of discrimination methods applied to the authorship of the disputed Federalist papers

> FREDERICK MOSTELLER Harvard University and

Center for Advanced Study in the Behavioral Sciences

AND DAVID L. WALLACE

University of Chicago

Formalia

Overordnet sondring:

- klassifikation → hvad handler teksterne om
- skalering → hvordan er teksterne fordelt på en skala

+ i begge tilgange en velkendt sondring: supervised ctr. unsupervised

- udgangspunkt for næsten al text as data: bag-of-words assumption
- m.a.o.: teksters betydning afspejles i ordfrekvenser
- men antager også at ordrækkefølge er irrelevant
- oplagte modeks., fx. mindre stat, mere privat ctr. mere stat, mindre privat
- rækkefølge kan principielt håndteres m. bigrams, trigrams, ... n-grams
- men: n-grams computationelt bekosteligt, lille analytisk gevinst

Grimmer & Stewart: fire principper for tekstanalyse

- 1 alle modeller er forkerte, men nogle er brugbare
- 2 kvantitative tekstanalysemetoder understøtter menneskelig læsning
- 3 der findes ikke én globalt optimal metode
- 4 validér, validér, validér

Typisk proces for tekstanalyse i dag:

- 1 import af tekster som et korpus
- pre-processering:
 - fjern tal, specialtegn
 - fiern 'stopwords'
 - stemming
 - fjern meget sjældne el. hyppige ord
- 3 konvertering til document-term/document-feature matrice
- analyse

```
## inspect first 5 rows and first 8 columns
inspect(dtm[1:5, 1:8])
## <<DocumentTermMatrix (documents: 5, terms: 8)>>
## Non-/sparse entries: 4/36
## Sparsity
                   : 90%
## Maximal term length: 7
## Weighting : term frequency (tf)
##
           Terms
## Docs
            abandon abat abb abet abhorr abil abject abl
    fp01.txt
    fp02.txt
##
    fp03.txt
    fp04.txt
##
##
    fp05.txt
```

- typisk pakke til text as data: tm
- nyere, enklere alternativ: quanteda af Ken Benoit et al.
- fremgangsmåde m. quanteda:
 - import m. corpus(), evt. mappehenvisning m. textfile()
 - preprocessering+konvertering m. dfm()
 - analyse, fx. m. textmodel()

tf-idf

term frequency for term *t* i dokument *d*:

$$tf = f_{td}$$

inverse document frequency:

$$idf = log\left(\frac{N}{n_t}\right)$$

term frequency-inverse document frequency (tf-idf):

$$tf \times idf = f_{td} \times log\left(\frac{N}{n_t}\right)$$

parti	partiprogram
Enh.	velfærd velfærd
S	velfærd velfærd vækst
V	velfærd vækst vækst
LA	vækst vækst

→ hvad er tf-idf for 'velfærd' hos Enhedslisten?

$$tf \times idf = f_{td} \times log\left(\frac{N}{n_t}\right)$$

tf-idf

For dokumentet $d \mod W$ ordtyper ('tokens') estimerer vi positionen θ_d :

$$\hat{\theta}_d = \frac{1}{W} \sum_{w=1}^{W} \hat{\pi}_w \tag{1}$$

for R referencetekster estimeres $\hat{\pi}_w$:

$$\hat{\pi}_w = \sum_{r=1}^R \theta_r \hat{P}(d_r | w) \tag{2}$$

hvor pr. Bayes' teorem:

$$\hat{P}(d_r|w) = \frac{\hat{P}(w|d_i)}{\sum_{r=1}^{R} \hat{P}(w|d_r)}$$
(3)

ightarrow wordscoren $\hat{\pi}_w$ sammenvejer hvert ref-tekst r's position med hvor stærkt d prædikerer r

Wordscores

Wordscores

For partiprogrammer reproducerer Wordscores positioner, cf. Hjorth et al. (2015):

Tak for denne gang!