

(11) Publication number:

09082495 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number:

07238843

(51) Intl.

H05H 1/46 C23F 4/00 H01L 21/205 H01L

CI.:

21/3065

(22) Application date: 18.09.95

(30) Priority:

(43) Date of application

28.03.97

publication:

(84) Designated contracting states: (71)Applicant:

TOSHIBA CORP

(72) Inventor: TOMIOKA KAZUHIRO

SEKINE MAKOTO

(74)

Representative:

(54) PLASMA PRODUCING **DEVICE AND METHOD**

(57) Abstract:

PROBLEM TO BE SOLVED: To establish plasma processing,in good performance by giving two sorts of high frequency waves having different frequencies to a plasma source gas using the first high frequency wave supplying means and the second high frequency wave supplying means.

SOLUTION: The first coil 3 is connected with the first variable capacitor 5 and the second variable capacitor 6 and constitutes the first parallel resonance circuit. In the same fashion, the second coil 4 is connected with a third variable capacitor 8 and fourth variable capacitor 9 to constitute the second parallel resonance circuit. The first and the second high frequency power supply 7 and 10 are connected with the first and the second parallel resonance circuit through the respective variable capacitors. The frequency of the first high frequency power supply 7 is slightly dislocated from that of the second high frequency power supply 10, and thereby a new. electric field is generated in the plasma source gas so that the optimum plasma processing for etching is established.

COPYRIGHT: (C)1997.JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-82495

(43)公開日 平成9年(1997)3月28日

(51) Int.Cl.*		識別記号	庁内整理番号	FΙ		技術表示箇所		
H05H 1	/46			H05H	1/46	1	L	
C23F 4	/00			C 2 3 F	4/00	1	A	
HO1L 21	/205			H01L 2	1/205			
21,	/3065			C 2 3 C 10	6/50			
# C 2 3 C 16	/50			H01L 2	1/302	I	В	
				審査請求	未請求	請求項の数 6	OL (全 16	頁)
(21)出顧番号		特顧平7-238843		(71)出職人	0000030			
(00) (UMET)		平成7年(1995) 9 月			リスス リル・ボック リング リング リング リング マイ・ファイン マイ・ファイン マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マ	に 配で 7.9 ボール		
(22) 出順日		一种(1550)5)	(72)発明者			INTERNET		
				(14)元列爾		7.65 【川崎市幸区小向	前妻学町 1 番嬢	姝
						変数の変異なる		,,,
				(72)発明者				
							東芝町 1 番地	株
					式会社》	(芝研究開発セン	/ター内	
				(74)代理人		鈴江 武彦		

(54) 【発明の名称】 プラズマ生成装置およびプラズマ生成方法

(57)【要約】

【課題】サブハーフミクロンオーダに微細化が進んでも 有効なプラズマ処理装置を提供すること。

【解決手段】被処理基体11をプラズマ処理するところ の処理チャンバ1および石英製円筒2からなる処理容器 と、この処理容器内に導入されたプラズマ源ガス第1の 髙周波を供給する第1のコイル3などからなる第1の高 周波供給手段と、第1の高周波と異なる第2の高周波を プラズマ源ガスに供給する第2のコイル4などからなる 第2の高周波供給手段とを備えている。

【特許請求の範囲】

【請求項1】プラズマが生成される生成容器と、 この生成容器の周囲または内部に設けられた2HMHz 以上の高周波が供給される複数のコイルと、

Ī

これら複数コイルの少なくとも一のコイルに他のコイル に供給する高周波とは異なる高周波を供給する高周波供 給手段とを具備してなることを特徴とするプラズマ生成 装置。

【請求項2】前記高周波供給手段は、インダクタンス体とリアクタンス体とからなる並列共振器と、この並列共振器に接続された高周波電源とからなることを特徴とする請求項1に記載のプラズマ生成装置。

【請求項3】前記複数のコイルの少なくとも2以上のコイルが同軸状に配置されていることを特徴とする請求項1に記載のプラズマ生成装置。

【請求項4】前記各コイルと前記被処理基体との間の距離はそれぞれ異なっていることを特徴とする請求項1に記載のプラズマ処理装置。

【請求項5】前記生成容器内に磁場を形成する手段を有することを特徴する請求項1に記載のプラズマ生成装 置。

【請求項 6】 プラズマ生成容器にガスを導入する工程 と、

前記プラズマ生成容器の周囲に設けられた複数のコイルに2MHz以上の高周波を供給し、前記複数のコイルの少なくとも一のコイルに他のコイルとは独立に制御した高周波を供給してプラズマを生成する工程とを有することを特徴とするプラズマ生成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、プラズマを生成するプラズマ生成装置およびプラズマ生成方法に関する。 【0002】

【従来の技術】近年、コンピューターや通信機器の重要部分には、多数のトランジスタや抵抗等を電気回路を達成するようにむすびつけ、1チップ上に集積化して形成した大規模集積回路(LSI)が多用されている。このため、機器全体の性能は、LSIの性能と大きく結び付いている。そして、LSI単体の性能向上は、集積度を高めること、つまり、素子の微細化により実現できる。

【0003】素子の微細化に有効な技術の一つとして、 反応性イオンエッチングやプラズマCVD(Chemical V apor Deposition)法等のプラズマを用いた技術があげられる。例えば、反応性イオンエッチングを用いれば、 プラズマ中のイオンを被エッチング基体に垂直に照射できるので、エッチングに異方性を持たせることができ、 これにより、微細パターンの形成が可能となる。

【0004】しかし、LSIの中でも今後さらに集積化が進むと予想される装置、例えば、次世代256Mbi tないしは次世代1GbitDRAM等の半導体装置に 50

おいては、デザインルールはクオーターミクロン (0.25μm) 以下にもなろうとしている。このため、トランジスタを構成するゲート電極の加工、素子分離領域、記憶容量を形成するための溝(トレンチ)溝掘り等においては、微細な形状に加工したり、高いアスペクト比を実現可能なエッチングが要求される。これまでの反応性イオンエッチングでは、これらの要求を達成することは困難であると考えられる。

【0005】図15は、従来の誘導結合型プラズマエッチング装置の概略構成を示す模式図である(特開平5-206072)。図中、201は処理チャンバを示しており、この処理チャンバ201内には被処理基体206を載置するサセプタ207が設けられている。このサセプタ207は高周波バイアス電源208により高周波バイアスが印加されるようになっている。

【0006】処理チャンバ201の上方にはプラズマを 生成するところである石英製円筒202が設けられてい る。この石英製円筒202の外周にはコイル203が巻 かれている。これら処理チャンバ201、石英製円筒2 02は一体化されており、エッチング室を構成してい る

[0007]上記コイル203は、第1の可変コンデンサー 205_1 および第2の可変コンデンサー 205_2 に接続され、並列共振回路を構成している。第1の可変コンデンサー 205_1 および第2の可変コンデンサー 205_2 のそれぞれの片端は高周波電源204に接続されている。この高周波電源204により高周波電力を上記並列共振回路に供給している。

【0008】処理チャンバ201は可変コンダクタンス がルブ211を介してターボ分子ポンプ212に接続されている。また、処理チャンバ201には圧力計209が設けられている。この圧力計209を用いて可変コンダクタンスバルブ211の開口度を調整することにより、エッチング室内の圧力を所望のレベルに設定することができる。

【0009】また、石英製円筒202の上壁にはガス導入管が設けられており、このガス導入管にはマスフローメーター210が挿設されている。このマスフローメーター210を用いることにより、エッチング室内に反応40 性ガスを所望の流量でもって導入することができる。

【0010】次に上記の如く構成されたプラズマエッチング装置を用いたエッチング方法について説明する。まず、マスフローメーター210を用いて、エッチング室内にフロロカーボン系のガス(例えば、 CF_4 , C_2 F6, C_3 F8, C_4 F8)を一定の流量でもって導入する。

【0011】次に圧力計209を用いて、エッチング室内を数Pa程度の一定の圧力に保持した後、髙周波電源204で高周波電力をコイル203に供給することによってエッチング室内にプラズマを発生させる。

【0012】次に高周波バイアス電源209を用いて、サセプタ207に高周波電圧を印加することにより、プラズマ中のイオンを被エッチング基体206(シリコン酸化膜)の表面に垂直に入射して、被エッチング基体206を異方的にエッチングする。

【0013】しかしながら、この種の従来のプラズマエッチング装置には以下のような問題があった。例えば、シリコン酸化膜に微細なコンタクトホール(シリコン酸化膜上の配線とシリコン酸化膜下のシリコン基板とを接続する孔)を開孔する場合において、エッチング速度を速めるために、より大きい高周波電力を印加してイオン照射密度を高くしようとすると、逆にエッチング速度が低下したり、シリコン酸化膜とシリコン基板とのエッチング選択比が低下する現象が発生することがある。

【0014】さらに、コンタクトホールの穴径によって エッチング速度が変化したり、サブハーフミクロンオー ダの穴径の場合にはエッチングが停止する現象が発生す ることがある。

【0015】これは、以下の様な機構から起こると思われる。すなわち、高周波電力の増加によって電子密度は上昇するが、電子密度の上昇によって気相中のフロロカーボンの解離が進み、低弗素価数のフロロカーボンのイオンが被処理基体206に入射し表面に付着するようになる。これにより、シリコン酸化膜のエッチング速度が低下し、一方では反対にシリコンのエッチング速度が上昇するからである。

【0016】さらにまた、長期に渡り使用し、例えば、 CF_4 を用いて100時間以上のプラズマ放電を行なうと、石英製円筒202のうちコイル203の位置にある部分の石英が削られるという(SiO_2 のエロージョン)問題が生じる。削られた石英はSi, SiOx, O等のかたちでプラズマ中に放出される。さらに、長時間プラズマ放電を続けると、石英製円筒202が破断するという問題が生じる。

【0017】この原因は、コイル203端に印加される高周波電力の電圧ピーク値が他の部分に比べて高く、その部分に高周波電界が形成されることにある。そして、この高周波電界により、プラズマと石英製円筒202との間のシース付近の電界(シース電界)が高くなる結果、プラズマ中の高エネルギーのイオンが石英製円筒202の内壁表面に引き込まれ、エロージョンが発生する

【0018】この現象は、石英製円筒202の壁厚が薄くなると、シース部分がさらに高電界領域に入り込むために、エロージョンの進み方が速くなり、石英製円筒202の破断は加速度に進行することとなる。

[0019]

【発明が解決しようとする課題】上述の如く、従来のプラズマエッチング装置を用いて、シリコン酸化膜にサブハーフミクロンオーダのコンタクトホールを形成する場 50

合には、シリコン酸化膜の途中でエッチングが停止し、 コンタクトホールを形成できないという問題があった。 また、長期に渡り使用すると、石英製円筒がプラズマに よりエッチングされ、エロージョンが発生するという問 題があった。

【0020】本発明は、上記事情を考慮してなされたもので、その目的とするところは、生成する化学種やイオンを所望の種類および量に制御し、また、処理容器のエロージョン等を防ぐことで所望のプラズマを生成が可能なプラズマ生成装置およびプラズマ生成方法を提供することにある。

[0021]

【課題を解決するための手段】

[概要] 上記目的を達成するために、本発明に係るプラズマ生成装置(請求項1)は、プラズマが生成される生成容器と、この生成容器の周囲または内部に設けられた2 HMH z 以上の高周波が供給される複数のコイルと、これら複数コイルの少なくとも一のコイルに他のコイルに供給する高周波とは異なる高周波を供給する高周波供給手段とを備えたことを特徴とする。

【0022】また、本発明に係る他のプラズマ生成装置 (請求項2)は、上記プラズマ生成装置(請求項1)に おいて、前記高周波供給手段が、インダクタンス体とリ アクタンス体とからなる並列共振器と、この並列共振器 に接続された高周波電源とからなることを特徴とする。

【0023】また、本発明に係る他のプラズマ生成装置 (請求項3)は、上記プラズマ生成装置(請求項1)に おいて、前記複数のコイルの少なくとも2以上のコイル が同軸状に配置されていることを特徴とする。

30 【0024】また、本発明に係る他のプラズマ生成装置 (請求項4)は、上記プラズマ生成装置(請求項1)に おいて、前記各コイルと前記被処理基体との間の距離が それぞれ異なっていることを特徴とする。

【0025】また、本発明に係る他のプラズマ生成装置 (請求項5)は、上記プラズマ処理装置(請求項1) に、前記生成容器内に磁場を形成する手段を設けたこと を特徴する。

【0026】また、本発明に係る他のプラズマ生成方法 (請求項6)は、プラズマ生成容器にガスを導入する工程と、前記プラズマ生成容器の周囲に設けられた複数のコイルに2MHz以上の高周波を供給し、前記複数のコイルの少なくとも一のコイルに他のコイルとは独立に制御した高周波を供給してプラズマを生成する工程とを有することを特徴とする。

【0027】本発明において、少なくとも一のコイルに 供給される高周波は、その周波数、位相または電力が他 のコイルに供給される高周波の周波数、位相または電力 とは異なることが好ましい。

【0028】また、本発明において、各コイルに異なる 高周波を供給し、プラズマにビートを発生させることが 特に好ましい。また、本発明において、複数の並列共振 回路を設け、かつ少なくとも2個の並列共振回路の結合 度を変化させる手段を設けることが好ましい。

【0029】[作用]本発明(請求項1~請求項5)に よれば、他のコイルとは独立に制御された高周波を少な くとも一のコイルに供給する高周波供給手段により、周 波数や電力等のパラメータが異なる2種類の高周波をプ ラズマ源ガスに与えることにより、被処理基体に入射す るイオン種、イオン密度、イオンエネルギー、イオンエ ネルギーの分散、化学種、化学種の量等を従来よりも容 10 易に再現性良く最適化できるようになる。

【0030】また、従来では一つのコイルに発生する電 位差を複数のコイルに分散して発生させることにより、 個々のコイルに発生する電位差を小さくできるので、エ ロージョンの発生を防止できるようになる。

[0031]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施の形態(実施形態)を説明する。

(第1の実施形態) 図1は、本発明の第1の実施形態に 係るプラズマ処置装置の概略構成を示す模式図である。 【0032】図中、1は処理チャンバを示しており、こ の処理チャンバ1内には被処理基体11を載置するサセ プタ12が設けられている。サセプタ12は高周波バイ アス電源13により高周波バイアスが印加されるように なっている。

【0033】処理チャンバ1の上部には外径80mmの 石英製円筒2が設けられ、この石英製円筒2の外周には 第1のコイル3および第2のコイル4が巻かれている。 これら処理チャンバ1、石英製円筒2は一体化されてお り、プラズマ処理室を構成している。第1のコイル3お よび第2のコイル4はほぼ同じインダクタンスを有して

【0034】第1のコイル3は、第1の可変コンデンサ -5および第2の可変コンデンサー6に接続され、第1 の並列共振回路を構成している。第1の可変コンデンサ -5および第2の可変コンデンサー6のそれぞれの片端 は第1の髙周波電源7に接続されている。この第1の髙 周波電源7により髙周波電力を上記第1の並列共振回路 に供給している。これらによって第1の高周波供給手段 が構成されている。

【0035】同様に、第2のコイル4は、第3の可変コ ンデンサー8および第4の可変コンデンサー9に接続さ れ、第2の並列共振回路を構成している。第3の可変コ ンデンサー8および第4の可変コンデンサー9のそれぞ れの片端は第2の高周波電源10に接続されている。こ の第2の高周波電源10により高周波電力を第2の並列 共振回路に供給している。これらによって第2の高周波 供給手段が構成されている。

【0036】また、第1の高周波電源7の出力インピー ダンスは50Ωであって、第1の髙周波電源7と第1の 50

並列共振回路とのインピーダンス整合は、可変コンデン サー5と第2のコンデンサー6の容量を変化させること により行なわれる。

【0037】同様に、第2の高周波電源10の出力イン ピーダンスは50Ωであって、第2の髙周波電源10と 第2の並列共振回路とのインピーダンス整合は、第3の 可変コンデンサー8および第4のコンデンサー9の容量 を変化させることにより行なわれる。

【0038】処理チャンバ1は可変コンダクタンスバル ブ15を介してターボ分子ポンプ16に接続されてい る。また、処理チャンバ1には圧力計17が設けられて おり、この圧力計17を用いて可変コンダクタンスバル ブ15の開口度を調整することにより、プラズマ処理室 内の圧力を所望のレベルに設定することができる。

【0039】また、石英製円筒2の上壁にはガス導入管 が設けられており、このガス導入管には第1のマスフロ -メーター18および第2のマスフローメーター19が 挿設されている。これらマスフローメーター18,19 を用いることにより、それぞれ、C4 F8 ガス、CO2 20 ガスをプラズマ処理室内に所望の流量でもって導入する ことができる。

【0040】第1の高周波電源7、第2の高周波電源1 0 および高周波バイアス電源13の周波数、位相、電力 は、高周波電源コントローラー14によって制御できる ようになっている。

【0041】次に上記の如きに構成されたプラズマ処理 装置を用いたエッチング方法について説明する。このエ ッチング方法の特徴は、第1、第2のコイル3, 4等に よりプラズマ中のイオンの種類、分布等を制御してエッ チング特性を改善することにある。

【0042】まず、C₄ F₈ ガスおよびCO₂ ガスを第 1のマスフローメーター18および第2のマスフローメ ーター19を用いてそれぞれ10sccmおよび300 s c c mの流量でプラズマ処理室内に導入する。このと き、圧力計17を用いて、可変コンダクタンスバルブ1 5の開口度を調整して、プラズマ処理室内の圧力を0. 5Paに保持する。

【0043】次に第1の髙周波電源7で周波数13.5 6MHz、電力1.4KWの第1の高周波電力を第1の コイル3に印加し、続いて、第2の高周波電源10で周 波数13.56MHzでかつ第1の高周波電力と同位相 で電力1.4KWの第2の高周波電力を第2のコイル4 に印加することにより、プラズマ処理室内にプラズマを 発生させる。そして、このプラズマ発生時に、バイアス 電源13を用いてサセプター12に周波数400KH z、電力800Wの高周波バイアスを印加して、異方性 エッチングを行なう。

【0044】以上の第1の髙周波電源7、第2の髙周波 電源10およびバイアス電源13の周波数、位相、電力 は髙周波電源コントローラー14によって制御するる。

図2に、上記条件(第1、第2の高周波電源7の周波数 が伴に13.56MHz)で、全面がシリコン酸化膜で 被われた円形の被処理基体11をエッチングした場合の エッチング速度の分布を白丸印で示す。

【OO45】具体的には、図3(a)に示すように、シ リコン基板20上のシリコン酸化膜21をレジスト22 に沿ってエッチングし、小孔径のコンタクトホールを形 成することを試みた。

【0046】しかし、実際には、図3(b)に示すよう に、コンタクトホールの底部および側壁にエッチング堆 積物23が厚く堆積し、シリコン酸化膜21の途中でエ ッチングは停止し、シリコン基板20に達するコンタク トホールを形成することができなかった。

【0047】そこで、第2の高周波電源10の周波数を 13.56MHzから減少する方向にわずかにずらし、 具体的には13.21MHzに設定しなおして、小孔径 のコンタクトホールを形成することを試みた。なお、他 の条件は同じである。

【0048】図2に、この条件(第1の高周波電源7の 周波数が13.56MHz、第2の高周波電源7の周波 数が13.21MHz)で、全面がシリコン酸化膜で被 われた円形の被処理基体11をエッチングした場合のエ ッチング速度の分布を黒丸印で示す。図2から、特に基 板中央部のエッチング速度が速くなることにより、エッ チング速度の分布が改善されることが分かる。

【0049】この場合、図3(c)に示すように、コン タクトホールの底部および**側壁**にエッチング堆積物23 が薄く堆積し、シリコン酸化膜21の途中でエッチング は停止することはなく、シリコン基板20に達する小孔 径のコンタクトホールを形成することができた。具体的 30 には、基板全面にわたって穴径0.25μm、アスペク ト8のコンタクトホールを形成できた。

【0050】このような結果となった理由は以下のよう に考えられる。第1の高周波電源7の周波数と第2の高 周波電源10の周波数とを僅かにずらすことにより、プ ラズマに印加される2つの高周波電力の周波数差Δf (350kHz)のビート(唸り)により新たな電界が 発生する。

【0051】この結果、この電界にイオンが追従して運 動することにより、生成されるイオンの種類、エネルギ -が変化し、エッチングに**最適なプラズマが発生**したか らだと考えられる。すなわち、周波数差Δf を変化させ ることにより、エッチングに最適なプラズマを発生する ことが可能となった。

【0052】なお、本実施形態では、第1の髙周波電源 7で発生する髙周波の周波数は13.56MHz、第2 の高周波電源10で発生する高周波の周波数は13. 2 1MHzで、周波数差Δfは350kHzであるが、処 理チャンバ1および石英製円筒2の大きさ、第1のコイ ル3および第2のコイル4のそれぞれの直径、ピッチお 50 よび巻き数に応じて、第1の高周波電源7および第2の 高周波電源10の周波数差 Afを変化させて良い。たた し、上記二つの周波数はともに約2MHz以上であるこ とが好ましい。

8

(第2の実施形態) 図4は、本発明の第2の実施形態に 係るプラズマ処置装置の概略構成を示す模式図である。 また、図5は、図4のプラズマ処置装置を上から見た場 合の模式図である。なお、図1のプラズマ処置装置と対 応する部分には図1と同一符号を付してあり、詳細な説 明は省略する。

【0053】本実施形態では、石英製円筒2の代わりに 石英板31を用いて偏平なプラズマ処理室を構成し、第 1のコイル3および第2のコイル4に対応する第1の蝶 旋状コイル32および第2の螺旋状コイル33をプラズ マ処理室の上方に設置してある。

【0054】また、第1の螺旋状コイル32と第2の螺 旋状コイル33の途中に設けられたタップに第5の可変 コンデンサー34が設置されており、この第5の可変コ ンデンサー34により、第1の並列共振回路と第2の並 列共振回路との結合度を変化させることが可能となって

【0055】次に上記の如きに構成されたプラズマ処理 装置を用いたエッチング方法について説明する。具体的 には、図6に示すように、0.25μmのデザインルー ルで、フォトレジストパターン35をマスクにして、A 1-Si (1%) -Cu (0.5%) 合金膜36をエッ チングして、微細パターンの配線を形成する場合につい て説明する。なお、図6において、38はシリコン基 板、37はシリコン酸化膜を示している。

【0056】まず、C12 ガスおよびBC13 ガスを第 1のマスフローメーター18および第2のマスフローメ ーター19を用いてそれぞれ50sccmおよび25s c c mの流量でプラズマ処理室内に導入する。このと き、圧力計17を用いて、可変コンダクタンスバルブ1 5の開口度を調整して、プラズマ処理室内の圧力を0. 3 Paに保持する。

【0057】次に第1の高周波電源7で周波数13.5 6MHz、電力300Wの第1の高周波電力を第1のコ イル3に印加し、続いて、第2の高周波電源10で周波 数13.56MHzでかつ第1の高周波電力と同位相で 電力300KWの第2の高周波電力を第2のコイルに印 加することにより、プラズマ処理室内にプラズマを発生 させる。そして、このプラズマ発生時に、バイアス電源 13を用いてサセプター12に周波数2MHz、電力3 00Wの高周波バイアスを印加して、異方性エッチング を行なう。

【0058】以上の第1の高周波電源7、第2の高周波 電源10およびバイアス電源13の周波数、位相、電力 は髙周波電源コントローラー14によって制御する。図 7に、上記条件(第1、第2の高周波電源7の周波数が

伴に13.56MHz)で、エッチングを行なった場合の合金膜36のエッチング速度の分布を白丸印で、フォトレジストパターン35のエッチング速度の分布を白三角印で示す。

【0059】図7から、合金膜36のエッチング速度分布はばらつきが大きく、基板中央部で対レジスト選択比(合金膜36のエッチング速度/フォトレジストパターン35のエッチング速度)が2以下になり、合金膜36が厚い場合には、微細パターンの配線を形成することは困難であることが分かる。

【0060】そこで、第2の高周波電源10の周波数を13.56MHzから減少する方向にわずかにずらし、具体的には13.21MHzに設定しなおし、300Wの電力を発生させ第2のコイル4に印加して、微細パターンの配線を形成することを試みた。なお、第5の可変コンデンサー34の容量は約4PFに設定した。

【0061】図7に、この条件(第1の高周波電源7の周波数が13.56MHz、第2の高周波電源7の周波数が13.21MHz)で、エッチングを行なった場合の合金膜36のエッチング速度の分布を黒丸印で、フォトレジストパターン35のエッチング速度の分布を黒三角印で示す。

【0062】図7から、合金膜36のエッチング速度分布の均一性が改善されていることが分かる。また、対レジスト選択比も基板全面に渡って3以上を確保できることが分かる。

【0063】なお、本実施形態では、第1の高周波電源7で発生する高周波の周波数は13.56MHz、第2の高周波電源10で発生する高周波の周波数は13.2 1MHzとしたが、上記二つの周波数は約2MHz以上であれば良く、また、周波数差 Δ fも適宜変化させて良い。

【0064】なお、上記第1、第2の実施形態では、サセプター12に印加するバイアスの周波数はそれぞれ400KHz、2MHzとしたが、イオンが追従できるか、負の自己バイアスが発生する周波数範囲である約100KHzから150MHzの範囲の周波数であれば良い。

【0065】また、上記第1、第2の実施形態では、プラズマ処理としてエッチングを例にあげて説明したが、本発明は、プラズマCVD法や、プラズマによる表面改質、表面洗浄など他のプラズマ処理にも適用できる。

(第3の実施形態)図8は、本発明の第3の実施形態に 係るプラズマ処置装置の概略構成を示す模式図である。

【0066】図中、51はプラズマ処理室を示しており、このプラズマ処理室51は石英製円筒52と処理チャンバ62とから構成されている。処理チャンバ62内には被処理基体59を載置するサセプタ58が設けられている。プラズマ処理室51はゲートバルブ53を介してターボ分子ポンプ54で真空排気されるようになって

いる。

【0067】プラズマ処理室51の外周には第1のコイル 55_1 と第2のコイル 55_2 が巻かれている。これら二つのコイル 55_1 , 55_2 は同軸状に上下に配置されている。

【0.068】高周波発振器5.6で得られた高周波電力 (周波数は例えば2MHz)は、第1の高周波電力増幅 器5.71 によって1...5KWまで増幅され、インピーダ ンス整合器6.41 を介して第1のコイル5.51 に印加さ れる。

【0069】また、高周波発振器56で得られた高周波電力は、第2の高周波電力増幅器 57_2 によって高周波電力1.5KWまで増幅され、インピーダンス整合器 64_2 を介して第2のコイル 55_2 にも印加される。

【0070】サセプター58はインピーダンス整合器 63を介してバイアス発生器 60に接続しており、これにより、サセプター58に13.56MHzの高周波バイアスを印加できるようになっている。

【0071】被処理基体59は温度制御されたサセプタ 20 -58上に図示していない静電チャック機構によりに固 定される。上記温度制御は、例えば、被処理基体59

(最表面は静電チャック電極)とサセプタとの間に熱伝 導率を高めるためのヘリウムガス等のガスを圧力10T orr程度まで導入することにより行なわれる。

【0072】石英製円筒52の上壁には反応性ガスを導入するためのガス導入管61が設けられている。上記反応性ガスは、図示しないマスフローコントローラおよび圧力測定ゲージにより、一定流量、一定圧力でもってプラズマ処理室内に導入されるようになっている。

30 【0073】なお、図中、65は周辺リング、66は絶縁部材、68はロードロック室、69はゲートバルブ、89はシャワーヘッドを示している。次に上記の如きに構成されたプラズマ処理装置を用いたエッチング方法について説明する。

【0074】まず、被処理基板59として、図9(a)に示すように、8インチ径のシリコン基板71上に、厚さ8nmの薄いゲート酸化膜73、薄いn⁺型多結晶シリコン膜74、薄いWSi膜75が順次形成されたものを用いる。

40 【0075】そして、WSi膜75、n⁺ 型多結晶シリコン膜74からなる薄い積層膜をレジストパターン76をマスクにエッチングする。なお、図中、71は素子分離絶縁膜を示している。

【0076】被エッチング薄膜は2層構造の積層膜であるため、場合によっては、それぞの膜の性質によりエッチング条件をそれぞれの膜に合わせて途中で変更する必要がある。また、下地のゲート酸化膜73が薄いために、 n^+ 型多結晶シリコン膜74とゲート酸化膜73との間のエッチング選択比は高い値が要求される。

【0077】そこで、本実施形態では、上層のWSi膜

【0078】この条件でのWSi膜75のエッチング速度は約 0.45μ m/分であり、側面の垂直なエッチング形状を達成できた(図9(b))。同一の条件での下層の n^{+} 型多結晶シリコン膜74のエッチング速度は約 0.3μ m/分であった。すなわち、 n^{+} 型多結晶シリコン膜74に対するWSi膜75のエッチング選択比は約1.5であった。

【0079】次に下層の n^+ 型多結晶シリコン膜74をエッチング加工する条件を、HBr=50sccm、ガス圧力1Pa、第1のコイル 55_1 に印加する高周波の電力1kW、第2のコイル 55_2 に印加する高周波の電力0.4kWとした。

【0080】ここで、第2のコイル 55_2 への高周波電力を下げたのは、ゲート酸化膜73のエッチング速度を遅くするためである。すなわち、 n^+ 型多結晶シリコン膜74をオーバエッチングした際に、露出したゲート酸化膜73がエッチングされるのを極力抑えるためである。

【0081】 n^+ 型多結晶シリコン膜74のエッチングでは多くのラジカル種(ここではBr原子)が必要であり、その主な生成を第1のコイル 55_1 により行なう。比較的寿命の長いラジカルはシリコン基板71から離れたところで生成しても充分な量が拡散、あるいはガスの流れによってシリコン基板71に供給される。

【0082】一方、イオン電流量が増加するとゲート酸化膜73のエッチング速度が上昇するため、シリコン基板71にはn⁺型多結晶シリコン膜74のエッチングに必要以上にはイオンを供給する必要はない。

【0083】イオンの寿命は短く、シリコン基板71に 到達するイオンは基板付近で生成されたものが主になる ため、その量はシリコン基板71に近いコイル、つまり、第2のコイル 55_2 により制御することができる。 【0084】本実施形態によれば、第2のコイル 55_2

【0084】本実施形態によれば、第2のコイル55₂ の高周波電力を下げることにより、n⁺型多結晶シリコン膜74のエッチング速度を下げずに、ゲート酸化膜7 3に対するエッチング選択比を上げることができる。

【0085】また、高周波バイアス電力は100W、サセプタ温度40℃である。この条件で n^+ 型多結晶シリコン膜 74のエッチング速度は約0.35 μ m/分、ゲート酸化膜 73 に対するエッチング選択比は約95 であった。

【0086】エッチング形状は図9(c)に示すように、垂直な側面を持った良好なものであり、いわゆる、 寸法変換差(Critical Dimension Loss)が極めて少ないことが分かる。 【0087】また、本実施形態によれば、石英製円筒52の内面に発生する電界を従来に比べ低減できる。これは、従来は一つのコイルに2kW印加して行なっていたプロセスを第1、第2のコイル551,552にそれぞれに1kWづつ印加して行なうことにより、第1、第2のコイル551,552にかかる高周波電力の電圧振幅のピーク値を、本実施形態と同様の構成の単一コイル型に比べて十分に低くできるからである。具体的には、従来では1.4kWであったものが、本実施形態では0.67kVまで下げられることが分かった。

【0088】実際に、プラズマ放電を繰り返し行ない、 石英製円筒52の内側のエロージョンの様子を調べたと ころ、累計放電時間100時間を経過した後でも従来見 られたようなコイルに沿ったエロージョンの痕跡は発見 できなかった。

【0089】また、石英製円筒52の内面が削れて、そのエッチング生成物の一部がプラズマ処理室51の金属部分内面に付着して堆積膜となるような現象も認められなかった。

0 【0090】さらに、長時間のプラズマ放電後も上記エッチング特性は殆ど変化せず、安定なエッチングが可能であることが分かった。このような効果は先に述べた機構と同一の機構により第1および第2の実施形態においても得られる。

(第4の実施形態)図10は、本発明の第4の実施形態に係るプラズマ処置装置の概略構成を示す模式図である。なお、図8のプラズマ処置装置と対応する部分には図8と同一符号を付してあり、詳細な説明は省略する。

【0091】本実施形態では、三つのコイル5 5_1 ~5 5_3 を用いている。第1のコイル5 5_1 は第3の実施形態のそれと同じである。第2のコイル5 5_2 と第3のコイル5 5_3 とは重ねて巻かれている。この点が第3の実施形態と異なっている。この第3のコイル5 5_3 はインピーダンス整合器 64_3 を介して高周波電力増幅器 57_3 に接続されている。

【0092】さらに、本実施形態では、高周波発振器56の出力信号を高周波位相制御器(フェイズシフター)85により位相制御して各高周波電力増幅器57₁~57₃に供給している。

40 【0093】また、第2のガス導入管86とシャワーへッド87を通して、第1のコイル551と第2のコイル552との間の位置から第2のガスを導入することができるようになっている。

【0094】シャワーヘッド87の各ガス吹き出し口はそれぞれ被処理基体59の方向を向くように形成されており、被処理基体59に向けて均一にガスを供給できるようになっている。

【0095】また、本実施形態では、第1のコイル55 1 が巻かれた石英製円筒52の内壁付近に抵抗率の高い (不純物の少ない)シリコン板80を配置してある。次

に上記の如きに構成されたプラズマ処理装置を用いた成膜方法について説明する。この成膜方法は、図11の断面図に示された構造のプロセスの一部に使用される。

【0096】図中、91はトランジスタ等の素子(不図示)が形成された8インチ径のシリコン基板を示している。シリコン基板91の表面には素子分離絶縁膜92が形成され、この素子分離絶縁膜92上には第1の金属配線93が形成されている。さらに、表面が露出したシリコン基板91、素子分離絶縁膜92および第1の金属配線上には第1の層間絶縁膜94が形成されている。そして、その上に第2の金属配線95が形成されている。これらの上には第2、第3の層間絶縁膜96,97に形成されたヴィアホールを介して第3の金属配線98が第2の金属配線95に接続している。

【0097】このように、金属(現在多くの場合はA1合金を使用している)配線を何層か積み上げることにより、素子の集積化を進めることが、最先端の半導体装置では行なわれている。

【0098】このような微細で同一層の金属配線間が狭 20 い構造の場合は、層間絶縁膜94,96,97の誘電率が金属配線の応答速度を決める重要な要素となり、誘電率が低いほどデバイスの動作速度は速くなる。

【0099】そのために、最近では通常の層間絶縁膜(酸化膜)にFを数%添加して低誘電率化を図る試みがなされている(例えば、宮島、他、第16回ドライプロセスシンポジウム予稿集、p. 133、1994年、電気学会)。

【0100】ここでは、このようなFが添加された低誘電率の層間絶縁膜の生成プロセスを例に上げ説明する。まず、第1のガス導入管88とシャワーへッド89を通して CF_4 (流量15sccm)と O_2 (流量20sccm)の混合ガスを、第2のガス導入管86とシャワーヘッド87を通してTEOS(テトラ・エトキシ・シラン、流量15sccm)と O_2 (流量30sccm)の混合ガスを導入し、ガス圧力を7.5mTorrとする。

[0101] 次に第 $1\sim$ 第3のコイル $55_1\sim55_3$ に それぞれ周波数13.56 MHz で髙周波電力1.5 k W, 0.7 k W, 1.5 k Wの髙周波を印加する。被処理基板59 はセラミクス製の静電チャックによりサセプタ58 に固定し、サセプタ温度を400 に維持する。サセプタ58 に印加した髙周波バイアスは周波数400 k Hz、電力100 Wである。

【0102】この条件で成膜した絶縁薄膜の誘電率は3.2であった。さらに、この絶縁薄膜の組成分析をFT-IR(フーリェ変換赤外分光)法で測定したところ、フッ素の含有率を表わすSi-F/Si-Oは約5%、不純物であるOH基に起因した赤外吸収ピークは検出限界以下という良好な結果を得た。OH基はデバイス 50

を長期に亘り動作させるときの信頼性の劣化原因となる。〇H基は成膜後、大気に晒されて大気中の水分が膜に吸収されても増加する。

【0103】本実施形態に従って成膜された絶縁薄膜を一周間クリーンルームの雰囲気に放置したがOH基に起因した吸収ピーク強度の増加は認められなかった。また、石英製円筒52の内面のエロージョンも全く認められず、石英壁からの放出物による成膜への影響は数十時間の放電では皆無であった。

【0104】このような優れた成膜が可能になった理由は以下のように考えられる。まず、ガス導入管88から導入された CF_4 EO_2 の混合ガスは、第1のコイル5 E_1 で生成されたプラズマにより分解され、これにより、 E_1 E_2 E_3 E_4 E_5 E_5 E_7 E_8 E_7 E_8 E_7 E_8 E_8 E_8 E_9 E_9

【0105】このとき、抵抗値の高いシリコン基板91 はある程度の高周波を吸収し、いわゆる高周波加熱で約250 \mathbb{C} 以上に加熱される。高温となったシリコン基板 91 は容易にFや \mathbb{C} \mathbb{F}_x 等のFの化合物と反応を起こす。

【0106】さらに、第1のコイル551 端には高電圧が発生するために、プラズマ処理室内の内面、つまり、シリコン基板91の表面付近でも高電界が発生し、イオン種がシリコン基板91に引き込まれシリコンのエッチングが起こる。

【0107】これらのエッチング反応により、Si F_x $(x=1\sim4)$ 、あるいはSi OF₁ or Si OF₂ が 生成する。次に第2のガス導入管86より導入されたTE OS と O_2 との混合ガスは、第1のコイル55₁ で生成されたプラズマにより分解生成された活性種と出会い、さらに、第2、第3のコイル55₂,55₃ により高密度のプラズマ中で分解が進む。

【0108】ここで、第2のコイル 55_2 は第3のコイル 55_3 より幅が大きく、第2のコイル 55_2 だけで囲まれている領域 81の内部では、その上方よりプラズマ密度が低下し、この領域 81を上記の活性種が輸送されるときに反応が進み、堆積膜の前駆体(プリカーサ)となる堆積種が生成されると考えられる。

【0109】さらに、上記領域81で生成されたイオンがシリコン基板91の表面まで到達し、表面に吸着した上記堆積種の反応を促進し、高品質膜の形成を助ける。ここでの反応とは、上記堆積種がさらに〇原子やF原子を取り込み、結合の弱いHを放出するとともに、膜としてのネットワーク形成を促進していく反応である。

【0110】このようにして、プラズマ放電の空間におけるプラズマ密度等のプラズマ特性を制御でき、F添加のシリコン酸化膜を形成するのに適したプラズマを形成できるようになる。

【0111】また、第2、第3のコイル 55_2 , 55_3 が重畳した極めて高密度のプラズマを形成する部分があ

っても、大電力を複数のコイルに分散させて供給することにより、石英製円筒52の内面のエロージョンを起こすことなく、長期に亘って安定したプラズマ表面処理 (ここでは成膜)が可能となる。

【0112】また、第1のコイル55₁の上部では逆に単体のコイルに高電力を供給し、意図的に内壁表面に高電界部分を形成し、壁材料(本実施形態ではシリコン)をエッチングすることにより、そのエッチング生成物を成膜材料として利用することも可能になる。

【0113】なお、上記プロセスで各コイル $55_1 \sim 5_3$ に供給する高周波電力の位相については、まず、第1のコイル 55_1 と第2のコイル 55_2 を同位相に設定し、第3のコイル 55_3 の高周波位相を徐々に変化させ、プラズマ密度が最大になるように設定する。

【0114】プラズマ処理室内にプローブ等を入れて、プラズマ密度を直接測定することは、石英製円筒52の外周にコイルが巻かれているので困難である。しかし、コイルの隙間から漏れるプラズマの発光を測定することができる。このよらな発光に基づいたプラズマ密度の測定を利用してプラズマ密度が最大になるようにする。なお、第2、第3のコイル 55_2 , 55_3 の位相のずれは、それぞれのコイルの長さやピッチ等に依存するため、実際のコイルに応じて調整する必要がある。

【0115】次に第2、第3のコイル 55_2 , 55_3 の高周波電力の位相関係を変えずに、第1のコイル 55_1 の高周波電力の位相をずらしていく。このときもやはりプラズマ密度は変化していくが、ここではプラズマ密度を高くすることが目的ではなく、適宜、成膜を行ないながら、所望の膜特性(フッ素や水素、炭素等の含有量、誘電率、吸湿性など)を満たす条件に設定する。

【0116】本実施形態では、第1のコイル 55_1 の位相が0の時、第2のコイル 55_2 の位相を0°、第3のコイル 55_3 の位相を120°とした。ここで、第1、第2のコイル 55_2 , 55_3 の位相を等しくしたのは、本実施形態では、ガス導入管86側のコイル端を接地電位としたため、ここでの位相のずれはプロセスに影響を与えないからである。(第5の実施形態)図12は、本発明の第5の実施形態に係るプラズマ処置装置の概略構成を示す模式図である。なお、図8、図10のプラズマ処置装置と対応する部分には図8、図10と同一符号を付してあり、詳細な説明は省略する。

【0117】本実施形態では、四つのコイル $55_1 \sim 55_4$ を使用している。第1、第2のコイル 55_1 , 55_2 は第3の実施形態のそれと同じである。第3のコイル 55_3 はスパイラル状に誘電体板122上に配置され、第4のコイル 55_4 は誘電体円筒123の側面に巻かれている。

[0118]各コイル $55_1 \sim 55_4$ はそれぞれインピーダンス整合器 $64_1 \sim 64_4$ を介して高周波電源57

 $_1\sim$ 57 $_4$ に接続され、高周波電力が供給されるようになっている。

【0119】また、本実施形態では、サセプタ58を高パルス電圧を発生する高電圧電源130に接続している。この高電圧電源130により、サセプタ58に不知物のイオン注入に必要な数kVの高電圧を瞬間的に印加できる。

【0120】次に上記の如く構成されたプラズマ処理装置を用いたイオン注入について説明する。プラズマ処理室51内に BF_3 ガスを導入するとともに、第1、第2のコイル 55_1 , 55_2 に高周波電力0. 8kWを印加してプラズマを生成し、 BF_3 ガスを分解し、 B^+ イオンを生成する。この B^+ イオンをサセプタ58に高パルス電圧を印加して、被処理基体59に不純物としてのBを注入する。

【0121】注入深さはサセプタ58の印加電圧(被処理基体59の電位)で決まり、注入量はプラズマから引き出せるイオン電流量で決まる。このイオン電流量はブラズマ密度と印加電圧の関数となる。

【0122】そこで、被処理基体59近くのプラズマ密度を制御するために、第3、第4のコイル 55_3 , 55_4 を利用する。すなわち、第3のコイル 55_3 には $0.5\sim1.2$ kWまでの電力を供給し、第4のコイル 55_4 には第3のコイル 55_3 と連動して $0.2\sim1$ kWの範囲の電力を印加して、被処理基体59の外周部分でプラズマ密度が低下するのを防止する。

【0123】かくして本実施形態によれば、被処理基体 590プラズマ密度を主に第20のコイル 55_2 に印加する高周波電力で制御し、所望の濃度に不純物をイオン注入することが可能になる。また、複数のコイル $55_1 \sim 55_4$ を使用しているため、石英製円筒 52、誘電体板 122、誘電体円筒 123等の誘電体部材の表面で発生する電界強度を従来装置よりも低くでき、エロージョンの発生を防止できる。

(第6の実施形態)図13は、本発明の第6の実施形態に係るプラズマ処置装置の概略構成を示す模式図である。なお、図8のプラズマ処置装置と対応する部分には図8と同一符号を付してあり、詳細な説明は省略する。【0124】本実施形態の特徴は、磁界を利用してプラズマ密度の均一性を改善することにより、さらに石英製円筒52の内壁のエロージョンを低減することにある。図中、150,151はソレノイドコイルで構成された第1、第2の電磁石を示しており、これら第1、第2の電磁石150,151はそれぞれ第れる。第1、第2の電磁石150,151はそれぞれ第

【0125】次に上記の如く構成されたプラズマ処理装置を用いたエッチング方法について説明する。具体的には、シリコン基板の表面にトレンチ溝を形成する場合の

1、第2のコイル5 5_1 ,5 5_2 の外側に配置されてい

17

エッチング方法である。

【0126】 エッチングガスとして、HBr(150secm) と $NF_3(12sccm)$ と $O_2(7sccm)$ との混合ガスを使用する。ガス圧力は5mTorrに設定する。

【0127】次に高周波電源571により周波数13.56MHz、電力2KWの高周波を第1のコイル551に印加し、高周波電源572により周波数40.68MHz、電力2.5KWの高周波を第2のコイル552に印加する。また、バイアス発生器60によりサセプタ58には周波数500KHz、電力800Wの高周波バイアスを印加する。なお、被処理基体59(ここではシリコン基板)は図示していない冷却機構により約30℃に制御されている。

【0128】本実施形態の目的のためには石英製円筒52の内壁付近に強い磁界を形成することが望ましい。したがって、本実施形態では、第1の電磁石150の中央付近の石英製円筒52の内壁で約200G、第2の電磁石151の中央付近の石英製円筒52の内壁で約250Gとなるように磁界強度を設定した。

【0129】この場合、石英製円筒52の中心軸付近での磁界強度はそれぞれ約115G,150Gであった。また、被処理基体59の表面では中央付近で90G、周辺部で約120Gであった。なお、プラズマ密度の均一性をさらに高くするには、望ましくは被処理基体59の表面付近の磁界を(磁気ベクトルの方向を含めて)均一にする必要がある。

【0130】このような条件で、シリコン基板上に形成した酸化膜をマスクにしてシリコン基板をエッチングしてトレンチ溝を形成した結果、エッチング速度2.3 μ m/分、シリコン基板に対する上記酸化膜に対する選択比は35であり、穴径0.3 μ m、深さ9 μ mの深いトレンチ溝を形成することができた。

【0131】さらに、石英製円筒52の内壁のエロージョンは全く認められず、わずかな堆積膜が観察された。 これはエッチング反応による生成物が付着したものと考えられる。

【0132】本実施形態の場合、第2のコイル 55_2 に与える高周波の周波数を第1のコイル 55_1 のそれよりも高め、さらに電力も高めることにより、プラズマ密度を基板付近で高めることができる。

【0133】このような高電力を与えても、本実施形態のように、複数のコイル 55_1 , 55_2 を使用して、さらに誘電体管とほぼ平行な磁界を供給することにより、長期間に亘り安定なエッチングプロセスが可能となる。

(第7の実施形態)図14は、本発明の第7の実施形態に係るプラズマ処置装置(エッチング装置)の概略構成を示す模式図である。なお、図8のプラズマ処置装置と対応する部分には図8と同一符号を付してあり、詳細な説明は省略する。

【0134】図中、134,135,136,137は同軸状に配置された第1~第4のアンテナコイルを示しており、コイル134~137は金属製のコイル本体144を石英等のモールド材143で封止した構成になっている。これはコイル本体144が直接プラズマに晒されてエッチングされるのを防ぐためであり、本実施形態においてコイル本体144を封止しているモールド材144の外面が、石英製円筒52の内壁に相当する。したがって、本実施形態ではこのモールド材144のエロージョン防止が目的となる。

【0135】次にこのように構成されたプラズマ処理装置を用いた酸化膜のエッチング方法について説明する。まず、エッチングガスとしては C_4 F_8 (流量10sccm) とCO (流量200sccm) との混合ガスを使用し、ガス圧力は10mTorrに設定する。

【0136】第1~第4のアンテナコイル134~137にそれぞれ電力100W, 150W, 200Wの高周波を印加する。周波数は2MHzで共通である。第1から第4までのコイルはそれぞれ100W, 150W, 200Wとした。さらに、コイル138には800Wを印加する。なお、このコイル138とアンテナコイル134~137は同軸状に配置されている。

【0137】また、サセプタ58には380kHzの低周波電力を印加してプラズマで生成されたイオンを被処理基体59に引き込みエッチング反応を促進させる。この方法によれば、各コイル134~138の間の空間に高い密度のプラズマを容易に生成される。さらに、プラズマ処理室51の側面のコイル52により、プラズマ処理室51の側面付近においても比較的高いプラズマ密度のプラズマが生成されるために、被処理基体49の周辺部でのプラズマ密度の低下がなく、極めて均一性良くエッチング加工できる。

【0138】なお、上記第3~第7の実施形態では、複数のコイルを同軸状に配置したが、これは円形の均一なプラズマ密度を生成し、円形の被処理基体を均一にプラズマ処理することを想定したからであって、被処理基体の形状等の条件が変わればそれに合わせて適宜配置形態を変えると良い。また、複数のコイル間で周波数をずらしたり、高周波の位相を調整したりすることにより、種々プロセス的にも変形が可能となる。また、一部のコイルに印加する高周波を数kHzから数百kHzで変調することにより、活性種生成やプラズマの空間分布の均一性を高めることができる。

【0139】また、上記第3~第7の実施形態では、プラズマ処理としてエッチング等を例にあげて説明したが、本発明は、プラズマCVD法や、プラズマによる表面改質、表面洗浄など他のプラズマ処理にも適用できる。いずれの用途の場合においても、プロセス特性、装置の生産性、耐久性などを著しく改善できる。

50 [0140]

請求項3)によれば、第1の高周波供給手段および第2

の高周波供給手段により、周波数等が異なる2種類の高

周波をプラズマ源ガスに与えることにより、被処理基体

に入射するイオン種等を従来よりも容易に最適化でき、

微細化が進んでも、良好なプラズマ処理が可能となる。 【0141】また、本発明(請求項4~請求項7)によ

れば、従来一つのコイルに印加して電力を複数のコイル

に分散して印加することにより、個々のコイルに印加す

装置の概略構成を示す模式図

【図15】従来の誘導結合型プラズマエッチング装置の 概略構成を示す模式図

【符号の説明】

1…処理チャンバ

2…石英製円筒

3…第1のコイル

4…第2のコイル

5…第1の可変コンデンサ

る電力を小さくできるので、エロージョンの発生を防止 10 6…第2の可変コンデンサ

7…第1の高周波電源

8…第3の可変コンデンサ

9…第4の可変コンデンサ

10…第2の高周波電源

11…被処理基体

12…サセプタ

13…髙周波バイアス電源

14…高周波電源コントローラ

15…可変コンダクタンスバルブ

20 16…ターボ分子ポンプ

17…圧力計

18…第1のマスフローメーター

19…第2のマスフローメーター

51…プラズマ処理室

52…石英製円筒

53…ゲートバルブ

54…ターボ分子ポンプ

55, …第1のコイル

55。…第2のコイル

57, …第1の高周波電力増幅器

57。…第2の高周波電力増幅器

58…サセプタ

59…被処理基体

60…バイアス発生器

61…ガス導入管

62…処理チャンバ

できるようになる。 【図面の簡単な説明】

【図1】本発明の第1の実施形態に係るプラズマ処置装 置の概略構成を示す模式図

【図2】本発明の効果を示す被処理基体上におけるエッ チング速度の分布図

【図3】図1のプラズマ処理装置を用いたエッチング方 法を示す断面図

【図4】本発明の第2の実施形態に係るプラズマ処置装 置の概略構成を示す模式図

【図5】図4のプラズマ処置装置を上から見た模式図

【図6】図4のプラズマ処理装置を用いたエッチング方 法を示す断面図

【図7】本発明の効果を示す被処理基体上におけるエッ チング速度の分布図

【図8】本発明の第3の実施形態に係るプラズマ処置装 置の概略構成を示す模式図

【図9】図8のプラズマ処置装置を用いたエッチング方 法を示す断面図

【図10】本発明の第4の実施形態に係るプラズマ処置 30 56…高周波発振器 装置の概略構成を示す模式図

【図11】図10のプラズマ処置装置を用いて形成する デバイスの構造を示す断面図

【図12】本発明の第5の実施形態に係るプラズマ処置 装置の概略構成を示す模式図

【図13】本発明の第6の実施形態に係るプラズマ処置 装置の概略構成を示す模式図

【図14】本発明の第7の実施形態に係るプラズマ処置

【図4】

【図7】

57, 64, 61, 89, 55, 64, 57, 52, 53, 54, 54, 68, 69, 60, 60

【図11】

【図13】

【図15】

