中国科学技术大学 2015-2016学年第二学期考试试卷

课程名称:	课程代码:	
开课院系:	考试形式:	
姓名:参考答案 学号:	专业:	

一、选择题(每题3分,共30分,请将答案填入下表中)

1	2	3	4	5	6	7	8	9	10
С	В	A	С	В	В	В	A	С	В

- 1. 卢瑟福根据 α 粒子散射实验的结果提出了原子的核式结构模型,否定了"葡萄 干布丁模型",主要依据是
 - A. α 粒子很容易穿透金属箔
- B. 实验中应用了盖革计数器
- C. 只有集中在很小空间范围内的正电荷才能使 α 粒子产生大角散射
- D. 只有在金属箔中经过多次散射的 α 粒子才可能有大于90°的散射角
- 2. 根据玻尔模型,若记氦 (He) 的里德伯常数为 R_{A} ,则正一价氦离子 (He^{+}) 从 第一激发态向基态跃迁,发出的光谱线的波长为
- B. $\frac{1}{3R_4}$ C. $\frac{1}{2R_4}$ D. $\frac{1}{R_4}$
- 3. 根据玻尔模型,正二价锂离子的电子在n = 3的轨道,其角动量为
 - A. 3ħ
- В. ħ
- C. $\frac{\hbar}{2}$ D. $\frac{\hbar}{9}$
- 4. 弗兰克-赫兹实验中, 当加速电压为 4.9V 时, 回路中的电流强度显著下降, 这时若做光谱测量,能够测得光谱线的波长为

- A. 184.9nm B. 120.9nm C. 253.7nm D. 108.6nm
- 5. 在斯特恩-格拉赫实验中, 若使 1 束具有相同速度的基态的氦原子通过有梯度 的磁场 (原子速度方向与磁场梯度方向垂直), 会发现通过磁场的原子
 - A. 均匀散开 B. 仍为1束 C. 分为2束 D. 分为3束

- 6. Li(锂)原子能量最低的两个能级的原子态为
- A. ${}^{1}S_{0}$, ${}^{1}P_{1}$ B. ${}^{2}S_{1/2}$, ${}^{2}P_{1/2}$ C. ${}^{2}S_{1/2}$, ${}^{2}P_{3/2}$ D. ${}^{1}S_{0}$, ${}^{3}P_{2}$
- 7. Ba(钡)原子的 6s6p 电子组态按照 LS 耦合的方式形成原子态,其能量从低 到高的次序为

本张	考	卷	.得分	:	
----	---	---	-----	---	--

8.	氢原子电子的波图	函数为ψ(r,θ,φ)=	$=\frac{1}{54\sqrt{\pi}}(\frac{1}{a})^{\frac{3}{2}}(\frac{r}{a})^{\frac{3}{2}}$	$e^{-rac{r}{3a_{ m i}}}\sin^2 heta e^{i2arphi}$,式「	中 a ₁ 为第
	一玻尔半径.则记A. 2h	亥电子的轨道角率	为量在 z 方向的分	分量为	
9.	3d、5s 等轨道,	从而形成单重态	和三重态。若 C	的 1 个 4s 可被激发 a 的某一个三重态f cm ⁻¹ ,则形成该三 <u>5</u>	能级比基
	A. $4s^2$	B. 4s4p	C. 4s3d	D. 4s5s	
10.	Zn(锌)原子的 的数目为	电子组态从 4s4d	d 跃迁到 4s4p,为	发出的波长不同的发	光谱线
	A. 6	B. 7	C. 8	D. 9	
				直接填在本试卷	
形质	基态碳原子,核外 成的原子态用符号 3P ₀ 也可以。多写	表示为 <u>2¹S₀,2</u>	•	电子进行 LS 耦合, ·	所能够
3 ² S 原-	_{1/2} ,3 ² P _{1/2} ,3 ² P _{3/2} , 子态为 <u>2²S_{1/2},2²P</u>	$3^2D_{3/2}, \ 3^2D_{5/2},$ $2^2P_{3/2}$; _.若不考虑兰姆	的壳层,所形成的加 在 <i>n</i> = 2的壳层, 持移位,电子从 <i>n</i> = 1数目为5	所形成的 3的壳层
3.	电子自旋的朗德因		,轨道的朗	德因子 $g_l = 1$	·
为_ 射,	0.0123	nm; 若电子撞 波最短波长为	击阳极的瞬间, _0.124nm	oglie(德布罗意)沒 各其动能全部转化沒 (不考虑相对论效	为电磁辐
总轴	黑体在加热过程中 届射本领增加了 65/16. 未减1扣1	4.0625		.60μm变成了了0.4	0μm. 则
止	波长为 2000Å 的光 电压为 <u>2 V</u> . 扣 1 分; 2eV 扣 1		已知铝的脱出功]为 4.2eV,则光电差	效应的遏

三、(10%)自旋轨道耦合能

$$\widehat{W} = -\widehat{\vec{\mu}}_S \cdot \widehat{\vec{B}} = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{2m_e^2 c^2 r^3} \hat{\vec{s}} \cdot \widehat{\vec{L}}$$

计算此力学量与总角动量算符 \hat{J}_k 以及轨道角动量算符 \hat{L}_k 的对易子,

$$[\hat{J}_k, \widehat{W}] = ? \quad [\hat{L}_k, \widehat{W}] = ?$$

解:

$$\begin{split} \left[\hat{J}_{k},f(r)\right] &= \left[\hat{L}_{k},f(r)\right] = \left[-i\hbar\varepsilon_{klm}r_{k}\frac{\partial}{\partial r_{m}},f(r)\right] = -i\hbar\varepsilon_{klm}r_{k}\left[\frac{\partial}{\partial r_{m}},r\right] \\ &= -i\hbar\varepsilon_{klm}r_{k}\frac{r_{m}}{r} = 0 \end{split}$$

$$\begin{split} \left[\hat{J}_{k}, \widehat{W}\right] &= \left[\hat{J}_{k}, \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \hat{\vec{s}} \cdot \hat{\vec{L}}\right] = \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \left[\hat{J}_{k}, \hat{\vec{s}} \cdot \hat{\vec{L}}\right] = \\ &= \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \left(\hat{s}_{l} \left[\hat{J}_{k}, \hat{L}_{l}\right] + \left[\hat{J}_{k}, \hat{s}_{l}\right]\hat{L}_{l}\right) \\ &= \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \left(\hat{s}_{l}i\varepsilon_{klm}\hat{L}_{m} + i\varepsilon_{klm}\hat{s}_{m}\hat{L}_{l}\right) \\ &= \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} i\left(\varepsilon_{klm}\hat{s}_{l}\hat{L}_{m} + \varepsilon_{klm}\hat{s}_{m}\hat{L}_{l}\right) = 0 \end{split}$$

$$\begin{split} & \left[\hat{L}_{k}, \hat{W} \right] = \left[\hat{L}_{k}, \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \hat{\vec{s}} \cdot \hat{\vec{L}} \right] = \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \left[\hat{L}_{k}, \hat{\vec{s}} \cdot \hat{\vec{L}} \right] \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \hat{s}_{l} \left[\hat{L}_{k}, \hat{L}_{l} \right] = \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} \hat{s}_{l} i\varepsilon_{klm} \hat{L}_{m} \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{Ze^{2}}{2m_{e}^{2}c^{2}r^{3}} i \left(\hat{\vec{s}} \times \hat{\vec{L}} \right)_{k} \end{split}$$

四、(10%)考虑宽度为a的一维无限深势阱

$$V(x) = \begin{cases} 0, & \text{if } |x| < \frac{a}{2}; \\ +\infty, & \text{if } |x| \ge \frac{a}{2}. \end{cases}$$

t = 0时在x = 0处释放一个点粒子.

- (1) 求粒子处于第二激发态和基态的几率之比.
- (2) 这个比值是否会随时间改变?

解:基态波函数

$$u_1(x) = \begin{cases} 0, & \text{if } |x| \ge \frac{a}{2}; \\ \sqrt{\frac{2}{a} \cos \frac{\pi}{a} x}, & \text{if } |x| < \frac{a}{2}. \end{cases}$$

第二激发态波函数

$$u_3(x) = \begin{cases} 0, & \text{if } |x| \ge \frac{a}{2}; \\ \sqrt{\frac{2}{a} \cos \frac{3\pi}{a}} x, & \text{if } |x| < \frac{a}{2}. \end{cases}$$

初态

$$\psi(x,t=0)=\delta(x)$$

处于基态的几率幅为

$$A_1 = (u_1, \psi) = \int_{-\infty}^{+\infty} u_1^*(x) \delta(x) dx = u_1^*(0) = \sqrt{\frac{2}{a}}$$

处于第二激发态的几率幅为

$$A_3 = (u_3, \psi) = u_3^*(0) = \sqrt{\frac{2}{a}}$$

几率之比为 $\left|\frac{A_1}{A_3}\right|^2=1$.

比值不随时间变化,原因是t时刻的波函数为

$$\psi(x,t) = \sum_{n=1}^{+\infty} A_n u_n(x) e^{-\frac{iE_n t}{\hbar}}$$

几率幅不变。

五、(10%) 钠原子从 $3^2P_{1/2} \rightarrow 3^2S_{1/2}$ 跃迁的光谱线波长为 589. 6nm, 在 B = 2.5T的磁场中发生塞曼分裂. 问从垂直于磁场的方向观察, 其分裂为多少条谱线. 并给出各谱线波长.

P168 4.14

$$g = 1 + (g_{s} - 1) \frac{J(J + 1) - L(L + 1) + S(S + 1)}{2J(J + 1)}$$

$$hv' = E'_{2} - E'_{1} = \left(E_{2} + g_{2}\mu_{B}B_{0}M_{J_{2}}\right) - \left(E_{1} + g_{1}\mu_{B}B_{0}M_{J_{1}}\right) = hv + \mu_{B}B_{0}\left(g_{2}M_{J_{2}} - g_{1}M_{J_{1}}\right)$$

$$g_{2}: L = 0, S = \frac{1}{2}, J = \frac{1}{2} \Rightarrow g_{2} = 2$$

$$g_{1}: L = 1, S = \frac{1}{2}, J = \frac{1}{2} \Rightarrow g_{1} = \frac{2}{3}$$

$$\Delta \frac{1}{\lambda} = \left(g_{2}M_{J_{2}} - g_{1}M_{J_{1}}\right) \frac{\mu_{B}B_{0}}{hc} = \left(\pm 1 \pm \frac{1}{3}\right) \frac{eB_{0}}{4\pi m_{e}c}$$

$$\Delta \lambda = \left(g_{2}M_{J_{2}} - g_{1}M_{J_{1}}\right) \frac{\mu_{B}B_{0}}{hc} \lambda^{2} = \left(\pm 1 \pm \frac{1}{3}\right) \times 0.0406 \text{nm}$$

$$= 589.546, 589.573, 589.627, 589.654 \text{nm}$$

4条, 589.546nm, 589.573nm, 589.627nm, 589.654nm

六、(10%)能量为 0.41MeV 的 X 射线光子,与静止的自由电子碰撞,反冲电子的速度为光速的 0.6 倍. 求散射光的波长以及散射角.解:由能量守恒

$$m = \frac{hv_0 + m_0c^2 = hv + mc^2}{\sqrt{1 - v^2/c^2}} = \frac{m_0}{\sqrt{1 - 0.6^2}} = 1.25m_0$$

得散射光子能量

 $hv = hv_0 + m_0c^2 - mc^2 = 0.41 \text{MeV} + 0.511 \text{MeV} \times (1-1.25) = 0.28 \text{MeV}$ 散射光波长为

$$\lambda = \frac{c}{v} = \frac{hc}{hv} = \frac{1.24 \times 10^{-6} \,\text{m} \cdot \text{eV}}{0.28 \text{MeV}} = 0.044 \text{Å}$$

动量守恒

$$\frac{h\nu_0}{c}\vec{k}_0 = \frac{h\nu}{c}\vec{k} + m\vec{v}$$

其中 \vec{k}_0 , \vec{k} 为单位矢量,是光的入射方向和出射方向。可得

$$\left(\frac{hv_0}{c}\vec{k}_0 - \frac{hv}{c}\vec{k}\right)^2 = m^2\vec{v}^2$$

$$(hv_0)^2 + (hv)^2 - 2hv_0hv\cos\theta = \frac{m_0^2c^2v^2}{1 - v^2/c^2} = m_0c^2mc^2\frac{v^2/c^2}{\sqrt{1 - v^2/c^2}}$$

$$0.41^2 + 0.28225^2 - 2 \times 0.41 \times 0.28225 \times \cos\theta = 0.511^2 \times 1.25 \times \frac{0.6^2}{0.8}$$

$$\cos\theta = 0.436, \qquad \theta = 1.12 = 64^\circ$$

可能会用到的公式及物理常数

光速 $c = 2.99792458 \times 10^8 \text{m/s}$ Planck 常数 $h = 6.626069 \times 10^{-34} \text{J} \cdot \text{s}$

 $\hbar = h/2\pi = 1.0545716 \times 10^{-34} \text{J} \cdot \text{s} = 6.58212 \times 10^{-22} \text{MeV} \cdot \text{s}$

 $\hbar c = 197.3 \text{MeV} \cdot \text{fm}$ $hc = 1.24 \times 10^{-6} \text{m} \cdot \text{eV}$

真空磁导率 $\mu_0=4\pi\times10^{-7} \text{N·A}^{-2}$ 真空介电常数 $\varepsilon_0=8.85\times10^{-12} \text{C}^2 \cdot \text{J}^{-1} \cdot \text{m}^{-1}$

阿伏伽德罗常数 $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ 玻尔兹曼常数 $k = 8.62 \times 10^{-5} \text{eV} \cdot \text{K}^{-1}$

电荷单位 $e = 1.602 \times 10^{-19}$ C 原子单位 $1u = 1.66 \times 10^{27}$ kg = 931.5MeV/ c^2

电子质量 $m_e = 0.511 \text{MeV}/c^2 = 9.11 \times 10^{-31} \text{kg}$

电子的经典半径 $r_e = e^2/(4\pi\epsilon_0 m_e c^2) = 2.818 \times 10^{-15} m_e c^2$

精细结构常数α = $e^2/(4\pi\epsilon_0\hbar c) \approx 1/137.036$

Stefan-Boltzmann 常数 $\sigma = 5.67 \times 10^{-8} \text{W}/(\text{m}^2 \cdot \text{K}^4)$

Wien 位移定律常数 $b = 2.898 \times 10^{-3} \text{m} \cdot \text{K}$

类氢原子能级的精细结构修正 $\Delta E_{nj} = E_n \frac{\alpha^2 Z^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right)$

物质波 de Broglie 关系E=hv, $\vec{p}=\hbar\vec{k}$, $p=h/\lambda$

Einstein 质能关系E = mc^2 , $E^2 = p^2c^2 + m_0^2c^4$

轨道角动量算符

$$\hat{\vec{L}} = -i\hbar\vec{r} \times \nabla, \qquad \hat{\vec{L}}^2 = -\hbar^2 \left\{ \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2} \right\}$$

薛定谔方程 $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$

单粒子定态薛定谔方程
$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)u(\vec{r}) = Eu(\vec{r})$$

力学量随时间的演化 $\frac{d\hat{A}(t)}{dt} = \frac{\partial \hat{A}(t)}{\partial t} + \frac{1}{i\hbar} [\hat{A}(t), \hat{H}]$

测不准关系 $\Delta x \Delta p_x \geq \hbar/2$

Bohr 半径
$$a_{\infty} = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = r_e \alpha^{-2} = 0.529 \times 10^{-10} m$$

Bohr 磁子
$$\mu_B = \frac{e\hbar}{2m_e} = 0.927 \times 10^{-23} \text{J} \cdot \text{T}^{-1} = 5.788 \times 10^{-5} \text{eV} \cdot \text{T}^{-1}$$

Rydberg & & hcR $_{\infty} = m_e c^2 \alpha^2 / 2 = 13.6 eV$

Rydberg 常数 $R_{\infty} = 1.0973731534(13) \times 10^7 \text{m}^{-1}$

单光子跃迁选择定则 $\Delta l_i=\pm 1$, $\Delta m_i=0,\pm 1$, $\Delta l_{j\neq i}=0$

多电子原子 LS 耦合跃迁选择定则

$$\Delta S = 0; \ \Delta L = 0, \pm 1; \ \Delta J = 0, \pm 1 \Big(J = 0 \to J = 0 \ \text{Res} \Big); \Delta M_J = 0, \pm 1$$

期德间隔定则 $E_{J+1}-E_J=\hbar^2\zeta(L,S)(J+1)$

塞曼效应能级修正
$$E_{mag}^{(1)}=g_J\mu_BB_0M_J,\ g=1+(g_s-1)\frac{J(J+1)-L(L+1)+S(S+1)}{2J(J+1)}$$