Quiz #3 December 2014

Please write your name below. Then complete the exam in the space provided. There are THREE questions. You may refer to one page of notes: standard paper, both sides, any content you wish.

(Name and signature)

- 1. Short answers. Provide short answers to the following:
 - (a) Explain how to compute the continuously-compounded yield y_t^n from bond price(s). (10 points)
 - (b) Explain how to compute the continuously-compounded forward rate f_t^n from bond price(s). (10 points)
 - (c) If $\{x_t\}$ is a stochastic process, what property would make it a martingale? (10 points)

Solution:

- (a) Use $y_t^n = -n^{-1} \log q_t^n$.
- (b) Use $f_t^n = \log(q_t^n/q_t^{n+1})$.
- (c) We would say x is a martingale if $E_t(x_{t+1}) = x_t$.
- 2. Nonlinear dynamics. Consider the stochastic process

$$x_{t+1} = x_t w_{t+1} + \theta w_t,$$

where $\{w_t\}$ is a sequence of independent normal random variables with means equal to zero and variances equal to one. Assume, as usual, that at date t we know the current and past values of x and w, but not the future values.

- (a) What is the distribution of x_{t+1} at date t the one-period conditional distribution, in other words? (10 points)
- (b) Show that x is Markov for some definition z of the state. (10 points)
- (c) What is $E_t(x_{t+2})$? [Hint: Use the law of iterated expectations.] (10 points)
- (d) What is $Var_t(x_{t+2})$? [Comment: This is difficult, skip if you're short of time.] (10 points)

Solution:

- (a) Conditional on information available at date t, x_{t+1} is normal with mean θw_t and variance x_t^2 .
- (b) The state is whatever we need to describe the conditional distribution of x_{t+1} . Here that's $z_t = (x_t, w_t)$.
- (c) Using the law of iterated expectations, we find that the mean is $E_t[E_{t+1}(x_{t+2})] = E_t(\theta w_{t+1}) = 0$.
- (d) The variance is moderately complicated:

$$Var_{t}(x_{t+2}) = E_{t}[(x_{t+1}w_{t+2} + \theta w_{t+1})^{2}]$$

$$= E_{t}[x_{t+1}^{2}w_{t+2}^{2} + 2\theta w_{t+1}x_{t+1}w_{t+2} + \theta^{2}w_{t+1}^{2}]$$

$$= E_{t}\{E_{t+1}[x_{t+1}^{2}w_{t+2}^{2} + 2\theta w_{t+1}x_{t+1}w_{t+2} + \theta^{2}w_{t+1}^{2}]\}$$

$$= E_{t}[x_{t+1}^{2} + \theta^{2}w_{t+1}^{2}]$$

$$= x_{t}^{2} + \theta^{2}w_{t}^{2} + \theta^{2}.$$

3. Valuing dividend strips. A dividend strip is a claim to a single dividend n periods in the future. We denote the price at date t of the dividend paid at t+n by s_t^n . The term structure of strip prices — the sequence s_t^1, s_t^2, \ldots — can be approached with methods similar to those we used with bonds.

We'll use the model

$$\log m_{t+1} = -\lambda^2/2 - z_t + \lambda w_{t+1}$$

$$z_t = (1 - \varphi)\delta + \varphi z_{t-1} + \sigma w_t$$

$$\log d_t = \eta z_t.$$

Here $\log m_{t+1}$ is the pricing kernel, z_t is a state variable, w_t is one of a sequence of independent standard normal random variables, and d_t is the dividend. The parameter η controls the sensitivity of the dividend d_t to the state z_t .

- (a) What is the short rate $f_t^0 = y_t^1$ in this model? (10 points)
- (b) What is the price s_t^1 of next period's dividend d_{t+1} ? (10 points)
- (c) Value prices of future dividends recursively. If prices are loglinear functions of the state,

$$\log s_t^n = C_n + D_n z_t,$$

how would you compute the coefficients (C_n, D_n) ? (20 points)

(d) Derive the excess log return on the strip of maturity one,

$$\log d_{t+1} - \log s_t^1 - f_t^0.$$

How does it vary with η ? (10 points)

Solution:

(a) The short rate is

$$f_t^0 = -\log q_t^1 = -\log E_t(m_{t+1}) = z_t.$$

(b) The price the one-period strip is

$$\log s_t^1 = \log E_t(m_{t+1}d_{t+1}) = \log E_t \left[\exp(\log m_{t+1} + \log d_{t+1}) \right].$$

Thus we need

$$\log m_{t+1} + \log d_{t+1} = -\lambda^2/2 + \eta(1-\varphi)\delta + (\eta\varphi - 1)z_t + (\eta\sigma + \lambda)w_{t+1}.$$

The usual "mean plus variance over two" gives us

$$\log s_t^1 = (\eta \sigma + \lambda)^2 / 2 - \lambda^2 / 2 + \eta (1 - \varphi) \delta + (\eta \varphi - 1) z_t.$$

Thus we have $C_1 = (\eta \sigma + \lambda)^2/2 - \lambda^2/2 + \eta(1 - \varphi)\delta$ and $D_1 = (\eta \varphi - 1)$.

(c) Strip prices of higher maturity follow from $s_t^{n+1} = E_t(m_{t+1}s_{t+1}^n)$. Given their loglinear form, we solve

$$\log m_{t+1} + \log s_{t+1}^n = -\lambda^2/2 + C_n + D_n(1-\varphi)\delta + (D_n\varphi - 1)z_t + (D_n\sigma + \lambda)\psi_{t+1}$$

Then we have

$$\log s_t^{n+1} = \log E_t(m_{t+1}s_{t+1}^n)$$

$$= (D_n\sigma + \lambda)^2/2 - \lambda^2/2 + C_n + D_n(1-\varphi)\delta + (D_n\varphi - 1)z_t$$

$$= C_{n+1} + D_{n+1}z_t.$$

Lining up similar terms gives us recursions in the coefficients:

$$C_{n+1} = (D_n \sigma + \lambda)^2 / 2 - \lambda^2 / 2 + C_n + D_n (1 - \varphi) \delta$$

 $D_{n+1} = (D_n \varphi - 1).$

We can start with (C_1, D_1) above, or note that a zero maturity strip gives us $\log s_t^0 = \log d_t = \eta z_t$, which gives us $C_0 = 0$ and $D_0 = \eta$.

(d) The log excess return is

$$\log d_{t+1} - \log s_t^1 - f_t^0 = \eta[(1 - \varphi)\delta + \varphi z_t + \sigma w_{t+1} - (C_1 + D_1 z_t) - z_t = \lambda^2/2 - (\eta \sigma + \lambda)^2/2 + \eta \sigma w_{t+1}.$$

The (log) risk premium is the (conditional) mean, which we can simplify:

$$E_t(\log d_{t+1} - \log s_t^1 - f_t^0) = \lambda^2/2 - (\eta \sigma + \lambda)^2/2 = -(\eta \sigma)^2/2 - \lambda \eta \sigma.$$

Thus the risk premium depends on three parameters: λ , the sensitivity of the pricing kernel to risk in z; σ , the magnitude of this risk; and η , the sensitivity of the dividend to the same risk.

 $@ 2015 \ David \ Backus \mid NYU \ Stern \ School \ of \ Business \\$