Derivadas

Notação: $f'(x) = \frac{d}{dx}f(x)$

Regras de Derivação

•
$$(cf(x))' = cf'(x)$$

• Derivada da Soma

$$(f(x) + g(x))' = f'(x) + g'(x)$$

• Derivada do Produto

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

• Derivada do Quociente

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

• Regra da Cadeia

$$(f(g(x))' = (f'(g(x))g'(x)$$

Funções Simples

•
$$\frac{d}{dx}c = 0$$

•
$$\frac{d}{dx}x = 1$$

•
$$\frac{d}{dx}cx = c$$

•
$$\frac{d}{dx}x^c = cx^{c-1}$$

•
$$\frac{d}{dx}(\frac{1}{x}) = \frac{d}{dx}(x^{-1}) = -x^{-2} = -\frac{1}{x^2}$$

$$\bullet \ \ \tfrac{d}{dx}\left(\tfrac{1}{x^c}\right) = \tfrac{d}{dx}\left(x^{-c}\right) = -\tfrac{c}{x^{c+1}}$$

•
$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{\frac{1}{2}} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

Funções Exponenciais e Logarítmicas

•
$$\frac{d}{dx}e^x = e^x$$

•
$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

•
$$\frac{d}{dx}\alpha^x = \alpha^x \ln(\alpha)$$

Funções Trigonométricas

•
$$\frac{d}{dx} \sin x = \cos x$$

•
$$\frac{d}{dx}\cos x = -\sin x$$
,

•
$$\frac{d}{dx} \operatorname{tg} x = \sec^2 x$$

•
$$\frac{d}{dx} \sec x = tg x \sec x$$

•
$$\frac{d}{dx} \cot x = -\csc^2 x$$

•
$$\frac{d}{dx}$$
 cossec $x = -$ cossec x cotg x

Funções Trigonométricas Inversas

•
$$\frac{d}{dx}$$
 arcsen $x = \frac{1}{\sqrt{1-x^2}}$

•
$$\frac{d}{dx} \arccos x = \frac{-1}{\sqrt{1-x^2}}$$

•
$$\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$$

Funções Hiperbólicas

•
$$\frac{d}{dx} \operatorname{senh} x = \cosh x = \frac{e^x + e^{-x}}{2}$$

•
$$\frac{d}{dx} \cosh x = \operatorname{senh} x = \frac{e^x - e^{-x}}{2}$$

•
$$\frac{d}{dx} \operatorname{tgh} x = \operatorname{sech}^2 x$$

•
$$\frac{d}{dx}$$
 sech $x = - \operatorname{tgh} x$ sech x

•
$$\frac{d}{dx}$$
 cotgh $x = -\operatorname{cossech}^2 x$

•
$$\frac{d}{dx}$$
 csch $x = -$ coth x cossech x