基礎OS(9) プロセス管理(3)

2012年度(3時限目) 問1~6は一連の問題である。

表1 発生事象とその時刻

(問1~6は一連の問題である)

時刻	発生事象	P1	P2
_	(P1, P2生成)	レディ	レディ
0	(1)CPU割当て(P1)		
20	(2)I/O要求		
	(3)CPU割当て		
30	(4)I/O完了		
50	(5)I/O要求		
	(6)CPU割当て		
60	(7)終了		
70	(8)I/O完了		
	(9)CPU割当て		
100	(10)終了		

表2(問8~10) CPUバースト時間と到着順

プロセス	CPUパースト時間	到着順
P1	13	1
P2	4	2
P3	8	3
P4	5	4

プロセスの状態遷移(1)

時刻0以前に生成が完了している2つのプロセスP1及びP2を並行して実行させるとスライド(setror/se)表1のような事象が発生した。(1)の事象が発生した後のP1, P2の状態 は何になるか、[P1, P2の順に状態名のみを全角の「, Jで区切り、全角文字で記入(「Jは記入して)

状態と発生する事象の関連 レディ→CPU割当て 実行中→I/O要求 待機→I/O完了 実行中→終了

時刻0以前は、P1、P2ともにレディ状態。 P1はCPU割当てにより実行中となる. P2の状態は変わらずにレディ

問2 プロセスの状態遷移(2)

問1に続いて、(4)の事象が発生した後のP1、P2の状態は何になるか. [P1. P2の順に状態をのみを

時刻	発生事象	P1	P2
_	(P1, P2生成)	レディ	レディ
0	(1)CPU割当て(P1)	実行中	レディ
20	(2)I/O要求	待機	レディ
	(3)CPU割当て	待機	実行中
30	(4)I/O完了	レディ	実行中
50	(5)I/O要求		
	(6)CPU割当て		
60	(7)終了		
70	(8)I/O完了		
	(9)CPU割当て		
100	(10)終了		

P1は、(2)I/O要求により待機中に、 (実行中のプロセスが無くなった) P2は(3)CPU割当てで実行中、 (4)のI/O完了は(2)によるI/O処理の 終了、P1がレディ状態になる (P2は実行中のまま)

問3 プロセスの状態遷移(3)

問2に続いて(8), (9)の事象が発生した後のP2の状態は何になるか、(は884のみを金角スキで収入.)

時刻	発生事象	P1	P2
_	(P1, P2生成)	レディ	レディ
0	(1)CPU割当て(P1)	実行中	レディ
20	(2)I/O要求	待機	レディ
	(3)CPU割当て	待機	実行中
30	(4)I/O完了	レディ	実行中
50	(5)I/O要求	レディ	待機
	(6)CPU割当て	実行中	待機
60	(7)終了	停止	待機
70	(8)I/O完了		レディ
	(9)CPU割当て		実行中
100	(10)終了		

P2は、I/O完了により一旦レ ディになる.P1は終了してお り、実行中のプロセスが無い ので、CPU割当てが行われ、 P2は実行中になる.

問4 プロセスの実行時間

問1に示したP1, P2をそれぞれ単独で実行させる場合の実行時間はいくつか. [P1, P20M]

				_			答	40,80
時刻	発生事象	P1	P2					
_	(P1, P2生成)	レディ	レディ	1	パースト	P1(開	始~終了)	P2 (開始~終了)
0	(1)CPU割当て(P1)	実行中	レディ	\vdash	CPU	20(0	~20)	30(20~50)
20	(2)I/O要求	待機	レディ	L	I/O	10(2	0~30)	20(50~70)
	(3)CPU割当て	待機	実行中	L	CPU	10(5	0~6 0)	30(70~100)
30	(4)I/O完了	レディ	実行中		計	40		80
50	(5)I/O要求	レディ	待機	r				
	(6)CPU割当て	実行中	待機	r				
60	(7)終了	停止	待機					
70	(8)I/O完了		レディ] /				
	(9)CPU割当て		実行中	ľ				
100	(10)終了		停止					
		· ·						

問7 コンテクスト切換え

コンテクスト切り替えを行うプログラムは何か?

- A. CPUスケジューラ
- B. ジョブスケジューラ
- C. ジョブミックス
- ① ディスパッチャ
- E. 割込み処理ルーチン

先ず、CPUスケジューラが次に実行するプロセスを決定する。 次に、ディスパッチャが、そのプロセスがCPUを使用できるようにするために、 実行の切り替えを行う、この切り替えをコンテクスト切り替えと言う。

事象の発生と状態遷移(例)

時刻		P1	P2	P3	P4
_	(P1~P4生成)	レディ	レディ	レディ	レディ
0	CPU割り当て(P1)	実行中	レディ	レディ	レディ
13	I/O要求	待機	レディ	レディ	レディ
	CPU割り当て(P2)		実行中	レディ	レディ
17	終了	待機	停止	レディ	レディ
	CPU割り当て(P3)			実行中	レディ
25	終了	待機		停止	レディ
	CPU割り当て				実行中
30	I/O要求	待機			待機

時刻0以前に、P1、P2、P3、P4の順にプロセスが到着した例. (プロセスは生成や、I/O完了によりレディ状態となって、実行待ち列に到着する。CPU スケジューリングでは、これらの実行待ち列に並ぶプロセスをどのような順序で実行中 にするかを決定する。)

事象の発生と状態遷移(例)

時刻		P1	P2	P3	P4
_	(P1~P4生成)	レディ	レディ	レディ	レディ
0	CPU割り当て(P2)	レディ	実行中	レディ	レディ
4	終了	レディ	停止	レディ	レディ
	CPU割り当て(P4)	レディ		レディ	実行中
7	終了	レディ		レディ	停止
	CPU割り当て	レディ		実行中	
17	I/O要求	レディ		待機	
	CPU割り当て	実行中		待機	
30	I/O要求	待機			

SJFでは、CPUバースト時間が短い順にCPUを割り当てる. 但し、実行する前にCPUバースト時間予測することは不可能である. 即ち、SJFは実 現不可能な方法である. 待ち時間が最も短いので、スケジューリング方式の評価に用 いられる.

	事象の発	±٤	状態	遷	移(1	列)
時刻		P1	P2	P3	P4	
_	(P1~P4生成)	レディ	レディ	レディ	レディ	
0	CPU割り当て	実行中	レディ	レディ	レディ	_ 実行待ち列の
5	プリエンプション(量子時間経過)	レディ	レディ	レディ	レディ	/ 最後に並ぶ
	CPU割り当て(P2)	レディ	実行中			
9	終了	レディ	停止	レディ	V₹1	
	CPU割り当て(P3)	レディ		実行中	レディ	
14	プリエンプション(量子時間経過)	レディ		レディ	レディ	
	CPU割り当て(P4)	レディ		レディ	実行中	
19	終了	レディ	/	レディ	停止	
	CPU割り当て(P1)	実行中		レディ		
24	プリエンプション(量子時間経過)	レディ		レディ		
	CPU割り当て(P3)	レディ		実行中		
27	I/O要求	レディ		停止		
	CPU割り当て(P1)	実行中				
30	I/O要求	待機				