Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Збірник задач з курсу "Управління динамічними системами"

для студентів факультету комп'ютерних наук та кібернетики спеціальність – Програмна інженерія

Зміст

Ι	Диференціальні рівняння	3
1	Диференціальні рівняння 1-го порядку, розв'язані відно- сно похідної. Рівняння з відокремлюваними змінними	4
2	Однорідні рівняння та зведені до них. Лінійні однорідні рівняння	6
3	Лінійні неоднорідні диференціальні рівняння першого порядку. Метод варіації довільної сталої Лагранжа	8
4	Рівняння типу Бернуллі. Рівняння Рікатті	10
5	Диференціальні рівняння 1-го порядку, не розв'язані відносно похідної. Метод параметризації	12
6	Інтегрування і пониження порядку диференціальних рівнянь з вищими похідними	14
7	Лінійні диференціальні рівняння вищих порядків зі сталими коефіцієнтами	16
8	Методи Лагранжа, Коші і невизначених коефіцієнтів для розв'язування неоднорідних рівнянь вищих порядків	18
9	Розв'язування лінійних однорідних систем з постійними коефіцієнтами	20
10	Методи розв'язування неоднорідних систем з постійним коефіцієнтами	23

II Теорія керування	25
11 Критерії керованості і спостережуваності	26
12 Стійкість. Задача стабілізації. Модальне керування	29
13 Варіаційне числення	33
14 Принцип максимуму Понтрягіна	35
15 Оптимальне керування дискретними системами. Метод динамічного програмування	40
16 Метод динамічного програмування. Рівняння Гамільтона- Якобі-Белмана для задачі оптимального керування з віль-	
ним правим кінцем	44
Література	47

Частина I Диференціальні рівняння

Диференціальні рівняння 1-го порядку, розв'язані відносно похідної. Рівняння з відокремлюваними змінними

Приклади рекомендовані для аудиторної роботи

Знайти загальні розв'язки і загальні інтеграли рівнянь:

1.
$$(y^2 - 1)(x + 2)dx - x^2ydy = 0$$

$$2. \sec^2 x \operatorname{tg} y dx + \sec^2 y \operatorname{tg} x dy = 0$$

3.
$$xy - (x^2 + 1)y' = 0 M(0; 1)$$

$$4. \ \frac{dy}{dx} + \frac{x^3(y-1)^3}{(x+1)y} = 0$$

$$5. \ x^2 dx + y^3 e^{x+y} dy = 0$$

6.
$$y^{-3} \ln \ln x dx + x e^{y^2} dy = 0$$

7.
$$\frac{e^x - 1}{e^y} = e^{e^y} (1 + e^x) y'$$

Приклади рекомендовані для домашнього завдання

Знайти загальні розв'язки і загальні інтеграли рівнянь:

1.
$$2x(1+y^2)dx + y(1+x^2)dy = 0$$
, $M(1;0)$

2.
$$\frac{dy}{dx} = e^{x+y}, M(0;0)$$

3.
$$ydx + (\sqrt{xy} - \sqrt{x})dy = 0$$
, $M(1; 1)$

$$4. \ y' = \frac{\sin(\ln x)}{\cos(\ln y)}$$

$$5. \left(\frac{\cos x}{\ln y}\right)^2 dx + \frac{y}{x^2} dy = 0$$

6.
$$\frac{1-\ln^2 y}{x \ln y} dx + \frac{\sqrt{3-\ln^2 x}}{y} dy = 0$$

Tema 2

Однорідні рівняння та зведені до них. Лінійні однорідні рівняння

Приклади рекомендовані для аудиторної роботи

1.
$$(y + \sqrt{x^2 - y^2})dx - xdy = 0$$

2.
$$2xydx + (y^2 - x^2)dy = 0$$
, $M(1;1)$

3.
$$(2x+3y)dx + (x+2y)dy = 0$$

4.
$$xy' - x \cos \frac{y}{x} - y = 0$$
.

5.
$$(y^3 + 2x^2y)dx - (2x^3 + 2xy^2)dy = 0$$

6.
$$(6x + y - 1)dx + (4x + y - 2)dy = 0$$

7.
$$(x+y+1)dx + (2x+2y-1)dy = 0$$

8.
$$y(x^2y^2+1)dx + (x^2y^2-1)xdy = 0$$

9.
$$xydx + (y^4 - x^2)dy = 0$$

$$10. \ \frac{dy}{dx} - y = 0$$

$$11. \ \frac{dy}{dx} + y\cos x = 0$$

1.
$$xy' = y(1 + \ln y - \ln x)$$

2.
$$xdy - (\sqrt{x^2 + y^2} + y)dx = 0$$

3.
$$(xye^{\frac{x}{y}} + y^2)dx - x^2e^{\frac{x}{y}}dy = 0$$

4.
$$(6xy + 5y^2)dx + (3x^2 + 10xy - y^2)dy = 0$$

5.
$$(x^3 + 3xy^2)dx + (2y^3 + 3x^2y)dy = 0$$

6.
$$(x-2)dx + (y-2x+1)dy = 0$$

7.
$$(x+2y+1)dx + (2x+4y+3)dy = 0$$

8.
$$y^3 dx + 2(x^2 - xy^2)dy = 0$$

9.
$$(xy^2 - y)dx - (x^3y^2 - 3x^2y + 3x)dy = 0$$

10.
$$y' + y \lg x = 0$$

11.
$$y' + xy = 0$$

Лінійні неоднорідні диференціальні рівняння першого порядку. Метод варіації довільної сталої Лагранжа

Приклади рекомендовані для аудиторної роботи

Знайти загальні розв'язки рівнянь:

$$1. \ \frac{dy}{dx} - y = 2x - x^2$$

$$2. \ \frac{dy}{dx} + y\cos x = \sin x \cos x$$

$$3. \ y'(x + \operatorname{ctg} y) = 1$$

$$4. \ \frac{dy}{dx} - 2xy = 1$$

$$5. \ \frac{dy}{dx} + \frac{y}{x} = \frac{\sin x}{x^2}$$

6.
$$xy' + y = x \cos x$$
, $M(\pi/2; 1)$

7.
$$y' \sin x - y = 2\sin^2 \frac{x}{2}$$

8.
$$x\cos x \frac{dy}{dx} + y(x\sin x + \cos x) = 1$$

9.
$$\frac{1}{y}\frac{dy}{dx} + (2-x)\ln y = x(e^{2x} - e^{-\frac{x^2}{2}})$$

Знайти загальні розв'язки рівнянь:

1.
$$\frac{dy}{dx} - y = x - 1$$
, $M(0; 1)$

$$2. \ y' + y = \sin x + \cos x$$

$$3. \ y'(x + \ln y) = 1$$

$$4. \ x \ln x \frac{dy}{dx} - y = x(\ln x - 1)$$

5.
$$y' + ytgx = x\cos^2 x$$
, $M(0;1)$

6.
$$(y^2 - 6x)y' + 2y = 0$$
, $M(0; -1)$

7.
$$(y-y^2)dx + (2xy^2 - x - y^2)dy = 0$$

8.
$$dx + (x - e^{-y} \sec^2 y) dy = 0$$
, $M(2; 0)$

$$9. \sec^2 y \frac{dy}{dx} + x \operatorname{tg} y = x$$

Рівняння типу Бернуллі. Рівняння Рікатті

Приклади рекомендовані для аудиторної роботи

Знайти загальні розв'язки таких рівнянь:

1.
$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$$

$$2. \cos x \frac{dy}{dx} - y \sin x = y^4$$

3. Знайти розв'язок рівняння, підібравши спочатку частинний розв'язок

$$x^2 \frac{dy}{dx} - x^2 y^2 + 5xy - 3 = 0$$

4. Знайти розв'язок рівняння, підібравши спочатку частинний розв'язок

$$\frac{dy}{dx} + xy^2 + \frac{y}{x} - x^3 - 2 = 0$$

5.
$$(x - x^4)y' - x^2 - y + 2xy^2 = 0$$
, $y_1(x) = x^2$

6.
$$\frac{dy}{dx} = \frac{2y^2}{x^2} + \frac{y}{x} + x\cos x - 1 + \cos 2x, \ y_1 = x\sin x$$

7.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \left(2 + \frac{1}{x}\right)y - e^{4x}, \ y_1 = xe^{2x}$$

Знайти загальні розв'язки рівнянь:

1.
$$y' + \frac{xy}{1-x^2} = x\sqrt{y}$$

2.
$$3\frac{dy}{dx} - y\sin x + 3y^4\sin x = 0$$

$$3. xy' + y = xy^2 \ln x$$

$$4. \ x^3 \frac{dy}{dx} - y^2 - x^2 y + x^2 = 0$$

5.
$$\frac{dy}{dx} = y^2 - x^2 + 1$$

6.
$$y' = y^2 + \frac{y}{x} + \frac{1}{x^2}$$
, $y_1(x) = -\frac{1}{x}$

7.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \frac{y}{x} - x\sin x - \cos^2 x$$
, $y_1 = x\cos x$

8.
$$\frac{dy}{dx} = \frac{e^{-x}}{\sin x}y^2 + y + e^x(\cos x - \sin x), \ y_1 = e^x \sin x$$

Диференціальні рівняння 1-го порядку, не розв'язані відносно похідної. Метод параметризації

Приклади рекомендовані для аудиторної роботи

Знайти загальні розв'язки і загальні інтеграли рівнянь:

$$1. \ y = y' \ln y'$$

$$2. \ x = y' \sin y'$$

3.
$$y = 2xy' + \sqrt{1 + y'^2}$$

4.
$$y = xy' - y'^2$$

$$5. \ x\sqrt{1+y'^2} - y' = 0$$

$$6. \ x^3y'^2 + x^2yy' + a = 0$$

7.
$$xy'^2 - 2y' - y = 0$$

8.
$$x(2+y'^2)=1$$

9.
$$3y'^5 - yy' + 1 = 0$$

10.
$$x^3 + y'^3 - 3xy' = 0$$

11.
$$y'^3 - 1 = 0$$

Знайти загальні розв'язки і загальні інтеграли рівнянь:

1.
$$9yy'^2 + 4x^3y' - 4x^2y = 0$$

2.
$$xy'^2 + yy' + a = 0$$

3.
$$y = xy' + \sin y'$$

4.
$$x(1+y'^2)=1$$

$$5. \ y = y'\sin y' + \cos y'$$

6.
$$y - y' = \sqrt{1 + y'^2}$$

7.
$$y'^2 + xy' - x^2 = 0$$

8.
$$y'^2 + 2y' + 1 = 0$$

9.
$$x = ay' + b\sqrt{1 + y'^2}$$

$$10. \ x = y \left(\frac{1}{\sqrt{y'}} - \frac{1}{y'} \right)$$

Інтегрування і пониження порядку диференціальних рівнянь з вищими похідними

Знайти загальний розв'язок диференціального рівняння та відшукати частинний розв'язок там, де задані початкові умови:

Приклади рекомендовані для аудиторної роботи

1.
$$y''' = 0$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$, $y''_0 = 2$

$$2. \ y''' = x + \cos x$$

3.
$$xy^{IV} + y''' = e^{2x}$$

4.
$$y''' - y''^2 = 0$$

$$5. xy'' = y' \ln \frac{y'}{x}$$

6.
$$2yy'' - y'^2 = 1$$

7.
$$x^2y''' - y''^2 = 0$$

8.
$$y'' = xe^x$$
 при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$

9.
$$y'' + y'^2 = 2e^{-y}$$

10.
$$x^2yy'' = (y - xy')^2$$

Знайти загальний розв'язок диференціального рівняння:

1.
$$y^V = x - 1$$

2.
$$y''' = \frac{\ln x}{x^2}$$

3.
$$y'' + \ln y'' - x = 0$$

$$4. \ 2yy'' - 3y'^2 = 4y^2$$

$$5. \ xy'' + y' - x^2 - 1 = 0$$

6.
$$y'''y - 3y''^2 = 0$$

7.
$$y(xy'' + y') = xy'^2(1-x)$$

8.
$$yy'' - y'^2 = y'$$

$$9. xyy'' + xy'^2 = 2yy'$$

10.
$$y'' - 3yy' = 0$$

Tema 7

Лінійні диференціальні рівняння вищих порядків зі сталими коефіцієнтами

Знайти загальний розв'язок диференціального рівняння та відшукати частинний розв'язок там, де задані початкові умови:

Приклади рекомендовані для аудиторної роботи

1.
$$y'' + 5y' + 4y = 0$$

2.
$$y'' - a^2y = 0$$

3.
$$y''' + 8y = 0$$

4.
$$y^{(IV)} + 2y'' + y = 0$$

$$5. \ y^V - 10y''' + 9y' = 0$$

6.
$$y^{(6)} + 64y = 0$$

7.
$$y'' - 5y' + 4y = 0$$
 при $x_0 = 0, y_0 = 1, y'_0 = 0$

8.
$$y'' + y = 0$$
 при $y\left(-\frac{\pi}{2}\right) = 1$, $y'\left(-\frac{\pi}{2}\right) = 0$

9.
$$y^{(IV)} + a^4 y = 0, a > 0.$$

Знайти розв'язок диференціального рівняння:

1.
$$y'' - 7y' + 10y = 0$$

2.
$$y'' + 9y = 0$$

3.
$$y'' + 3y' = 0$$

4.
$$y'' + 4y' + 13y = 0$$

5.
$$2y'' + y' - y = 0$$
, $y(0) = 3$, $y'(0) = 0$

6.
$$y^{IV} - a^4 y = 0$$

7.
$$y^V - 4y^{IV} = 0$$

8.
$$y^{VI} + 2y^V = 0$$

9.
$$y'' - 4y' + 29y = 0$$
, $y(0) = 1$, $y'(0) = 7$

Методи Лагранжа, Коші і невизначених коефіцієнтів для розв'язування неоднорідних рівнянь вищих порядків

Приклади рекомендовані для аудиторної роботи

Знайти загальний розв'язок диференціального рівняння:

1.
$$y'' - y = x^2 + 1$$
 (HK)

2.
$$y''' - 4y' = x^2$$
 (Л)

3.
$$y'' + 4y' + 3y = x + e^{2x}$$
 (HK)

4.
$$y'' + 2y' + y = e^{-x}\cos x + xe^{-x}$$
 (HK)

5.
$$y'' + y = ctgx$$
 (K)

6.
$$y'' - 6y' + 9y = \frac{9x^2 + 6x + 2}{x^2} (\Pi)$$

7.
$$y'' - y = x^2 - x + 1$$
 (HK)

8.
$$y'' + 4y = 4x \cos 2x$$
 (Π)

9.
$$y'' + 2y' - 3y = 2x - e^{3x}$$
 (HK)

10.
$$y'' - 2y' + y = \frac{e^x}{x}$$
 (K)

Знайти загальний розв'язок диференціального рівняння:

$$1. y'' + y = tgx \text{ (K)}$$

2.
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
 (Π)

3.
$$y'' - y = \frac{1}{x}$$
 (K)

4.
$$y'' + 4y = \frac{1}{\cos 2x} \ (\Pi)$$

5.
$$y''' - 4y'' + 5y' - 2y = 2x + 3$$
 (HK)

6.
$$y''' - 3y' + 2y = e^{-x}(4x^2 + 4x - 10)$$
 (HK)

7.
$$y^{IV} + 8y'' + 16y = \cos x$$
 (HK)

8.
$$y^V + y''' = x^2 - 1$$
 (HK)

9.
$$y^{IV} - y = xe^x + \cos x$$
 (HK)

10.
$$y'' + \omega^2 y = \frac{1}{x+1}, y(1) = 2, y'(1) = -3 (\Pi)$$

Розв'язування лінійних однорідних систем з постійними коефіцієнтами

Приклади рекомендовані для аудиторної роботи

Знайти загальні розв'язки лінійних однорідних систем диференціальних рівнянь:

1.
$$\begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 3x + 4y. \end{cases}$$

2.
$$\begin{cases} \dot{x} + x - 8y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

3.
$$\begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$

4.
$$\begin{cases} \dot{x} = x + z - y, \\ \dot{y} = x + y - z, \\ \dot{z} = 2x - y, \end{cases}$$

$$\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = -1.$$

5.
$$\begin{cases} \dot{x} = x - y - z, \\ \dot{y} = x + y, \\ \dot{z} = 3x + z, \end{cases}$$
$$\lambda_1 = 1, \ \lambda_2 = 1 + 2i, \ \lambda_3 = 1 - 2i.$$

6.
$$\begin{cases} \dot{x} = 4x - y - z, \\ \dot{y} = x + 2y - z, \\ \dot{z} = x - y + 2z, \end{cases}$$
$$\lambda_1 = 2, \ \lambda_2 = 3, \ \lambda_3 = 3.$$

7.
$$\begin{cases} \dot{x} = x - y + z, \\ \dot{y} = x + y - z, \\ \dot{z} = 2z - y, \end{cases}$$
$$\lambda_{1} = 1, \ \lambda_{2} = 1, \ \lambda_{3} = 2.$$

Знайти загальні розв'язки лінійних однорідних систем диференціальних рівнянь:

1.
$$\begin{cases} \dot{x} = x - y, \\ \dot{y} = y - 4x. \end{cases}$$

2.
$$\begin{cases} \dot{x} = x + y, \\ \dot{y} = 3y - 2x. \end{cases}$$

3.
$$\begin{cases} \dot{x} + x + 5y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

4.
$$\begin{cases} \dot{x} = x - 2y - z, \\ \dot{y} = y - x + z, \\ \dot{z} = x - z, \end{cases}$$

$$\lambda_1 = 0, \ \lambda_2 = 2, \ \lambda_3 = -1.$$

5.
$$\begin{cases} \dot{x} = 2x + y, \\ \dot{y} = x + 3y - z, \\ \dot{z} = 2y + 3z - x, \end{cases}$$
$$\lambda_1 = 2, \ \lambda_2 = 3 + i, \ \lambda_3 = 3 - i.$$

6.
$$\begin{cases} \dot{x} = 2x - y - z, \\ \dot{y} = 3x - 2y - 3z, \\ \dot{z} = y + 2z - x, \end{cases}$$

7.
$$\begin{cases} \dot{x} = y - 2z - x, \\ \dot{y} = 4x + y, \\ \dot{z} = 2x + y - z, \end{cases}$$
$$\lambda_1 = 1, \ \lambda_2 = -1, \ \lambda_3 = -1.$$

Методи розв'язування неоднорідних систем з постійним коефіцієнтами

Приклади рекомендовані для аудиторної роботи

1.
$$\begin{cases} \dot{x} = y + 2e^t, \\ \dot{y} = x + t^2. \end{cases}$$

2.
$$\begin{cases} \dot{x} = y - 5\cos t, \\ \dot{y} = 2x + y. \end{cases}$$

3.
$$\begin{cases} \dot{x} = 4x + y - e^{2t}, \\ \dot{y} = y - 2x. \end{cases}$$

4.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = y - 2x + 18. \end{cases}$$

5.
$$\begin{cases} \dot{x} = x - y + 8t, \\ \dot{y} = 5x - y. \end{cases}$$

6.
$$\begin{cases} \dot{x} = y + \operatorname{tg}^2 t - 1, \\ \dot{y} = -x + \operatorname{tg} t. \end{cases}$$

7.
$$\begin{cases} \dot{x} = -4x - 2y + \frac{2}{e^t - 1}, \\ \dot{y} = 6x + 3y - \frac{3}{e^t - 1}. \end{cases}$$

1.
$$\begin{cases} \dot{x} = 2x - 4y + 4e^{-2t}, \\ \dot{y} = 2x - 2y. \end{cases}$$

2.
$$\begin{cases} \dot{x} = 2y - x + 1, \\ \dot{y} = 3y - 2x. \end{cases}$$

3.
$$\begin{cases} \dot{x} = 3x + 2y + 4e^{5t}, \\ \dot{y} = x + 2y. \end{cases}$$

4.
$$\begin{cases} \dot{x} = x + 2y + 16te^t, \\ \dot{y} = 2x - 2y. \end{cases}$$

5.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = 2y - x - 5e^t \sin t. \end{cases}$$

6.
$$\begin{cases} \dot{x} = 2y - x, \\ \dot{y} = 4y - 3x + \frac{e^{3t}}{e^{2t} + 1}. \end{cases}$$

7.
$$\begin{cases} \dot{x} = x - y + \frac{1}{\cos t}, \\ \dot{y} = 2x - y. \end{cases}$$

Частина II Теорія керування

Критерії керованості і спостережуваності

Приклади рекомендовані для аудиторної роботи

1. Перевести систему

$$\frac{dx}{dt} = u$$

з точки x_0 в точку x_1 за допомогою керування з класу постійних, кусково постійних, неперервних функцій.

- 2. Дослідити систему $\ddot{x} + a\dot{x} + bx = u$ на керованість.
- 3. Дослідити систему

$$\begin{cases} \frac{dx_1}{dt} = 2x_1 + x_2 + au, \\ \frac{dx_2}{dt} = x_1 + 4x_2 + u. \end{cases}$$

на керованість.

4. Чи буде система цілком спостережуваною :

$$\begin{cases} \ddot{x} = a^2 x, \\ y(t) = x(t). \end{cases}$$

5. Чи буде система цілком спостережуваною :

$$\begin{cases} \dot{x}_1 = x_1 + \alpha x_2, \\ \dot{x}_2 = \alpha x_1 + x_2, \\ y(t) = \beta x_1 + x_2. \end{cases}$$

6. Чи буде система цілком спостережуваною :

$$\begin{cases} \dot{x}_1 = ax_1, \\ \dot{x}_2 = bx_2, \\ y(t) = x_1(t) + x_2(t). \end{cases}$$

7. Дослідити на спостережуваність, використовуючи критерій двоістості і відповідний критерій керованості:

$$\begin{cases} \dot{x}_1 = x_2 - 2x_3, \\ \dot{x}_2 = x_1 - x_3, \\ \dot{x}_3 = -2x_3, \\ y(t) = -x_1 + x_2 - x_3. \end{cases}$$

Приклади рекомендовані для домашнього завдання

1. Перевести систему

$$\frac{dx}{dt} = 2x + u$$

з точки x_0 в точку x_1 за допомогою керування з класу постійних, кусково постійних, неперервних функцій.

2. Дослідити систему

$$\begin{cases} \frac{dx_1}{dt} = -x_1 + x_2 + au, \\ \frac{dx_2}{dt} = x_1 + \frac{u}{a}. \end{cases}$$

на керованість.

3. Дослідити систему

$$\begin{cases} \frac{dx_1}{dt} = 2x_1 + x_2 - au, \\ \frac{dx_2}{dt} = -x_1 + au. \end{cases}$$

на керованість.

4. Чи буде система цілком спостережуваною :

$$\begin{cases} \ddot{x} = a^2 x, \\ y(t) = p\dot{x}(t). \end{cases}$$

Тут a, p – параметри.

5. Чи буде система цілком спостережуваною :

$$\begin{cases} \ddot{x} = a^2 x, \\ y_1(t) = px(t) + \dot{x}(t), \\ y_2(t) = -x(t) + \dot{x}(t). \end{cases}$$

Тут a, p – параметри.

6. Чи буде система цілком спостережуваною :

$$\begin{cases} \dot{x}_1 = 2x_1 + \alpha x_2, \\ \dot{x}_2 = -\alpha x_1 - \alpha x_2, \\ y(t) = x_1 + \beta x_2. \end{cases}$$

7. Чи буде система цілком спостережуваною:

$$\begin{cases} \dot{x}_1 = x_2 - 2x_3, \\ \dot{x}_2 = x_1 - x_3, \\ \dot{x}_3 = -2x_3, \\ y(t) = -x_1 + x_2 - x_3. \end{cases}$$

8. Для яких параметрів a, b система

$$\begin{cases} \frac{dx_1(t)}{dt} = ax_1(t), \\ \frac{dx_2(t)}{dt} = bx_2(t), \\ y(t) = x_1(t) + x_2(t) \end{cases}$$

 ϵ цілком спостережуваною? Тут $x=(x_1,x_2)^*$ – вектор фазових координат, y – скалярне спостереження.

Стійкість. Задача стабілізації. Модальне керування

Приклади рекомендовані для аудиторної роботи

- 1. Дослідити стійкість розв'язків з вказаними початковими умовами $3(t-1)\dot{x}=x,\,x(2)=0.$
- 2. Дослідити стійкість, користуючись критерієм Гурвіца

$$y''' + y'' + y' + 2y = 0.$$

3. Дослідити стійкість, користуючись критерієм Гурвіца

$$y^{IV} + 3, 1y''' + 5, 2y'' + 9, 8y' + 5, 8y = 0.$$

4. Дослідити, при яких значеннях параметрів a і b нульовий розв'язок системи

$$y''' + ay'' + by' + 2y = 0$$

є асимптотично стійким.

5. За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити , при яких значеннях параметра a є асимптотично стійким нульовий розв'язок системи

$$\begin{cases} \dot{x} = ax - 2y + x^2, \\ \dot{y} = x + y + xy. \end{cases}$$

6. За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок системи

$$\begin{cases} \dot{x} = e^{x+2y} - \cos 3x, \\ \dot{y} = \sqrt{4+8x} - 2e^y. \end{cases}$$

7. Розв'язати задачу стабілізації системи

$$x'''(t) + 6x''(t) - 2x'(t) - 5x(t) = u.$$

8. Розв'язати задачу стабілізації системи

$$x^{(IV)}(t) + 2x''(t) + x(t) = u.$$

9. Розв'язати задачу стабілізації системи

$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + x_2(t) + u, \\ \frac{dx_2(t)}{dt} = 3x_1(t) + 4x_2(t) - 2u. \end{cases}$$

10. Розв'язати задачу стабілізації системи

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + x_2(t) + 2u_1, \\ \frac{dx_2(t)}{dt} = -2x_1(t) + 3x_2(t) - u_1 + u_2. \end{cases}$$

11. Розв'язати задачу модального керування, тобто знайти керування вигляду

$$u = c_1 x_1 + c_2 x_2$$

так, щоб характеристичне рівняння системи

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + 2u(t), \\ \frac{dx_2(t)}{dt} = x_1(t) + x_2(t) + u. \end{cases}$$

мало наперед задані корені $\lambda_1 = -1, \ \lambda_2 = -2.$

Приклади рекомендовані для домашнього завдання

1. Дослідити стійкість розв'язків з вказаними початковими умовами $\dot{x} = 4x - t^2x, \ x(0) = 0.$

2. Дослідити стійкість, користуючись критерієм Гурвіца

$$y''' + 2y'' + 2y' + 3y = 0.$$

3. Дослідити стійкість, користуючись критерієм Гурвіца

$$y^V + 2y^{IV} + 4y''' + 6y'' + 5y' + 4y = 0.$$

4. Дослідити, при яких значеннях параметрів a і b нульовий розв'язок системи

$$y^{IV} + y''' + ay'' + y' + by = 0$$

є асимптотично стійким

$$\begin{cases} \dot{x} = ax + y, \\ \dot{y} = x + ay. \end{cases}$$

5. За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок системи

$$\begin{cases} \dot{x} = x^2 + y^2 - 2x, \\ \dot{y} = 3x^2 - x + 3y. \end{cases}$$

6. За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок системи

$$\begin{cases} \dot{x} = \ln(4y + e^{-3x}), \\ \dot{y} = 2y - 1 + \sqrt[3]{1 - 6x}. \end{cases}$$

7. Розв'язати задачу стабілізації системи

$$x''(t) - 5x'(t) + 4x(t) = u.$$

8. Розв'язати задачу стабілізації системи

$$x'''(t) - 2x''(t) + 3x'(t) - 2x(t) = u.$$

9. Розв'язати задачу стабілізації системи

$$\begin{cases} \frac{dx_1(t)}{dt} = -x_1(t) + 5x_2(t) + u, \\ \frac{dx_2(t)}{dt} = x_1(t) + x_2(t) + 3u. \end{cases}$$

10. Розв'язати задачу стабілізації системи

$$\begin{cases} \frac{dx_1(t)}{dt} = 3x_1(t) + 2x_2(t) + u_1 - u_2, \\ \frac{dx_2(t)}{dt} = x_1(t) + 2x_2(t) + u_1 + 2u_2. \end{cases}$$

Тут $u = (u_1, u_2)^*$ – керування.

11. Розв'язати задачу модального керування, тобто знайти керування вигляду

$$u = c_1 x_1 + c_2 x_2$$

так, щоб характеристичне рівняння системи

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + x_2(t) + u, \\ \frac{dx_2(t)}{dt} = -x_1(t) + 2x_2(t) + 2u. \end{cases}$$

мало наперед задані корені $\lambda_1 = -1, \ \lambda_2 = -2.$

12. Розв'язати задачу модального керування, тобто знайти керування вигляду

$$u = c_1 x_1 + c_2 x_2 + c_3 x_3$$

так, щоб характеристичне рівняння системи

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + x_2(t) + u, \\ \frac{dx_2(t)}{dt} = x_2(t) + x_3(t), \\ \frac{dx_3(t)}{dt} = x_3(t) + u. \end{cases}$$

мало наперед задані корені $\lambda_1 = -2, \, \lambda_2 = -2, \, \lambda_3 = -1.$

Варіаційне числення

Приклади рекомендовані для аудиторної роботи

Знайти екстремалі таких функціоналів

1.
$$\Im[x] = \int_0^3 (3t - x)x dt$$
, $x(0) = 1$, $x(3) = \frac{9}{2}$.

2.
$$\mathfrak{I}[x] = \int_0^1 xx'^2 dt$$
, $x(0) = 1$, $x(1) = 4^{\frac{1}{3}}$.

3.
$$\Im[x] = \int_0^1 (x'^2 + x''^2) dt$$
, $x(0) = 0$, $x(1) = \sinh 1$, $x'(0) = 1$, $x'(1) = \cosh 1$.

4.
$$\Im[x] = \int_{-1}^{0} (240x - x'''^2) dt$$
, $x(-1) = 1$, $x(0) = 0$, $x'(-1) = -4.5$, $x'(0) = 0$, $x''(-1) = 16$, $x''(0) = 0$.

5.
$$\Im[x,y] = \int_0^{\pi/4} (2y - 4x^2 + x'^2 - y'^2) dt$$
, $x(0) = 0$, $x(\frac{\pi}{4}) = 1$, $y(0) = 0$, $y(\frac{\pi}{4}) = 1$.

6.
$$\Im[x,y] = \int_0^{\pi/2} (x'^2 + y'^2 - 2xy) dt$$
, $x(0) = 0$, $x\left(\frac{\pi}{2}\right) = 1$, $y(0) = 0$, $y\left(\frac{\pi}{2}\right) = 1$

Дослідити на екстремум функціонали

7.
$$\Im[x] = \int_{-1}^{0} (12tx - x'^2) dt$$
, $x(-1) = 1$, $x(0) = 0$.

8.
$$\Im[x] = \int_0^{\frac{\pi}{2}} (x'^2 - x^2) dt$$
, $x(0) = 0$, $x(\frac{\pi}{2}) = 1$.

9.
$$\Im[x] = \int_0^1 x'^3 dt$$
, $x(0) = 0$, $x(a) = b$, $a > 0$, $b > 0$.

10.
$$\mathfrak{I}[x,y] = \int_0^1 (x'^2 + y'^2) dt$$
, $x(0) = 0$, $x(1) = 1$, $y(0) = 0$, $y(1) = 2$.

Знайти екстремалі таких функціоналів

1.
$$\Im[x] = \int_0^1 \sqrt{x(1+x'^2)} dt$$
, $x(0) = x(1) = \frac{1}{\sqrt{2}}$.

2.
$$\Im[x] = \int_{-1}^{1} (x'^2 - 2tx) dt$$
, $x(-1) = -1$, $x(1) = 1$.

3.
$$\Im[x] = \int_0^1 (x^2 + 2x'^2 + x''^2) dt$$
, $x(0) = 0$, $x'(0) = 1$, $x(1) = 0$, $x'(1) = -\sinh 1$.

4.
$$\Im[x] = \frac{1}{2} \int_0^1 (x'')^2 dt$$
, $x(0) = 0$, $x(1) = 1$, $x'(0) = 0$, $x'(1) = 1$.

5.
$$\Im[x,y] = \int_{-1}^{1} \left(2tx - x'^2 + \frac{y'^3}{3}\right) dt$$
, $x(1) = 0$, $x(-1) = 2$, $y(1) = 1$, $y(-1) = -1$.

6.
$$\Im[x,y] = \int_0^1 (x'^2 + y'^2 + 2x) dt$$
, $x(0) = 1$, $x(1) = \frac{3}{2}$, $y(0) = 0$, $y(1) = 1$.

7.
$$\mathfrak{I}[x] = \int_0^1 (x + x'') dt$$
, $x(0) = x_0$, $x(1) = x_1$, $x'(0) = x'_0$, $x'(1) = x'_1$.

8.
$$\mathfrak{I}[x] = \int_a^b (x'^2 + xx'') dt$$
, $x(a) = A_1$, $x(b) = B_1$, $x'(a) = A_2$, $x'(b) = B_2$.

Дослідити на екстремум функціонали

9.
$$\mathfrak{I}[x] = \int_0^1 x'^2 dt$$
, $x(0) = 1$, $x(1) = 0$.

10.
$$\mathfrak{I}[x] = \int_0^1 (t + 2x + \frac{1}{2}x'^2)dt, \ x(0) = 0, \ x'(0) = 0.$$

11.
$$\Im[x,y] = \int_0^1 (x'^2 + y'^2 + 4y) dt$$
, $x(0) = 0$, $x(1) = 1$, $y(0) = 0$, $y(1) = 0$.

Принцип максимуму Понтрягіна

Приклади рекомендовані для аудиторної роботи

1. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\Im(u) = \int_0^T (u^2(s) + x_1^4(s))ds + x_2^4(T) \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = \sin(x_1(t) - x_2(t)) + u(t), \\ \frac{dx_2(t)}{dt} = \cos(-4x_1(t) + x_2(t)), \\ x_1(0) = 1, \ x_2(0) = 2. \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , u(t) – функція керування, $t\in[0,T]$, момент часу T є заданим.

2. Записати крайову задачу принципу максимуму Понтрягіна для задачі оптимального керування

$$\Im(u) = \gamma^2 \int_0^T x^2(s) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \le \rho$$
,

 $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

3. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

4. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^T \left(u_1^2(s) + u_2^2(s) \right) ds + \frac{1}{2} x_1^2(T) \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = x_2(t) + u_1(t), \\ \frac{dx_2(t)}{dt} = x_1(t) + u_2(t), \\ x_1(0) = 1, \ x_2(0) = 1. \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u = (u_1, u_2)^* \in \mathbb{R}^1$ – вектор керування, $t \in [0, T]$, момент часу T ϵ заданим.

5. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\ddot{x} = u, x(0) = x_0, \dot{x}(0) = y_0.$$

Тут $x(t)\in\mathbb{R}^1,\,u(t)\in\mathbb{R}^1,\,t\in[0,T].$ Точки $x_0\in\mathbb{R}^1,\,y_0\in\mathbb{R}^1$ і момент часу T є заданими.

6. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \sin(x(1)) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 1,$$
$$|u(t)| \le 1, t \in [0, 1].$$

Typ $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$.

7. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \int_0^1 (u^2(s) + x^2(s)) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 0, \ x(1) = \frac{1}{2}.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

8. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^1 (u^2(s) - 12sx(s)) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 0, \ x(1) = 0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Приклади рекомендовані для домашнього завдання

1. Записати крайову задачу принципу максимуму для задачі оптимального керування:

$$\Im(u) = \int_0^T (\cos^2(x_1(s)) + u_1^4(s)) ds + \sin^2(x_2(T)) \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) + x_2(t) + 3x_1(t)x_2(t) + 2u_1(t), \\ \frac{dx_2(t)}{dt} = -x_1(t) + 6x_2(t) - 3x_1(t)x_2(t) + u_2(t), \end{cases}$$

$$x_1(0) = 4, \ x_2(0) = -2.$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u_1(t)$, $u_2(t)$ – функції керування, $t \in [0, T]$, момент часу T є заданим.

2. Записати крайову задачу принципу максимуму Понтрягіна для задачі оптимального керування

$$\Im(u) = \gamma^2 \int_0^T (x(s) - z(s))^2 ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), x(0) = x_0,$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$,

$$|u(t)| \le \rho$$
,

 $t\in[0,T]$. Точка $x_0\in\mathbb{R}^1$, неперервна функція $z(t)\in\mathbb{R}^1$ і момент часу T є заданими.

3. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} (x(T) - x_1)^2 \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = ax(t) + u(t), \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, T]$. Точки $x_0 \in \mathbb{R}^1$, $x_1 \in \mathbb{R}^1$ і момент часу T є заданими.

4. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^T \left(u^2(s) + x^2(s) \right) ds + \frac{1}{2} \left(\dot{x}(T) - x_1 \right)^2 \to \inf$$

за умови, що

$$\ddot{x} = u$$
, $x(0) = x_0$, $\dot{x}(0) = y_0$.

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, T]$. Точки $x_0 \in \mathbb{R}^1$, $y_0 \in \mathbb{R}^1$ і момент часу T є заданими.

5. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \int_0^T u^2(s)ds + x_2^2(T) \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = x_1(t) - x_2(t) + u(t), \\ \frac{dx_2(t)}{dt} = -4x_1(t) + x_2(t), \\ x_1(0) = 2, \ x_2(0) = 4. \end{cases}$$

Тут $x = (x_1, x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , u(t) – функція керування, $t \in [0, T]$, момент часу T є заданим.

6. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \cos(x(1)) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 0,$$

$$0 \le u(t) \le \pi, \ t \in [0, 1].$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$.

7. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_{-1}^{1} (u^2(s) + x^2(s)) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(-1) = x(1) = 1.$$

Tyt $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

8. Розв'язати задачу оптимального керування за допомогою принципу максимуму Понтрягіна:

$$\Im(u) = \frac{1}{2} \int_0^2 (x(s) + u^2(s)) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = x(t) + u(t), \ x(1) = 0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Тема 15

Оптимальне керування дискретними системами. Метод динамічного програмування

Приклади рекомендовані для аудиторної роботи

1. Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерія якості задачі оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{2} u^{2}(k) + x^{2}(3) \to \inf$$

за умов

$$x(k+1) = 2x(k) + u(k), x(0) = 1, k = 0, 1, 2.$$

Typ $x, u \in \mathbb{R}^1$.

2. Розв'язати задачу оптимального керування:

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{2} (u(k) + x_1(k)) + x_2(3) \to \inf$$

за умови, що

$$\begin{cases} x_1(k+1) = x_1(k) + x_2(k) + 2u(k), \\ x_2(k+1) = x_1(k) + u(k), \end{cases}$$

$$x_1(0) = 1, \ x_2(0) = 0.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u(k)\in\mathbb{R}^1$, $k=0,1,2,\,|u(0)|\leq 2,\,|u(1)|\leq 3,\,|u(2)|\leq 5.$

3. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), \ x(0) = x_0, \ k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точка $x_0 \in \mathbb{R}^1$ – відома.

4. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} (u(k) - v(k))^2 + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), \ x(0) = x_0, \ k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точка $x_0 \in \mathbb{R}^1$ – відома, v(k) – відомі, $k=0,1,\ldots,N-1$.

 Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + x_1^2(N) + 2x_2^2(N) \to \inf$$

за умови, що

$$\begin{cases} x_1(k+1) = 2x_1(k) + x_2(k) + u(k), \\ x_2(k+1) = -x_1(k) + x_2(k) + 2u(k), \end{cases}$$

$$x_1(0) = 1, \ x_2(0) = 1.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з $\mathbb{R}^2,\ u(k)\in\mathbb{R}^1,$ $k=0,1,\ldots,N-1.$

Приклади рекомендовані для домашнього завдання

1. Знайти оптимальне керування, оптимальну траєкторію, функцію Белмана і оптимальне значення критерія якості задачі оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{3} u^2(k) + x^2(4) \to \inf$$

за умов

$$x(k+1) = -x(k) + u(k), \ x(0) = 2, \ k = 0, 1, 2, 3.$$

Typ $x, u \in \mathbb{R}^1$.

2. Розв'язати задачу оптимального керування:

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{2} (u(k) + x_1(k) + x_2(k)) + x_1(3) + x_2(3) \to \inf$$

за умови, що

$$\begin{cases} x_1(k+1) = 2x_1(k) - x_2(k) + u(k), \\ x_2(k+1) = x_1(k) - u(k), \end{cases}$$
$$x_1(0) = 2, \ x_2(0) = 0. \tag{15.1}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u(k)\in\mathbb{R}^1$, k=0,1,2, $|u(0)|\leq 1,$ $|u(1)|\leq 2,$ $|u(2)|\leq 3.$ Як зміниться хід розв'язування задачі, якщо умову (15.1) замінити на таку

$$|x_1(0)| < 2, |x_2(0)| < 1$$
?

Як зміниться при цьому оптимальне значення критерія якості?

3. Знайти оптимальне керування і функцію Белмана задачі оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + x^2(N) \to \inf$$

за умов

$$x(k+1) = x(k) + b(k)u(k), x(0) = x_0, k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точка $x_0 \in \mathbb{R}^1$ – відома, $b(k) \in \mathbb{R}^1$ – відомі, $k=0,1,\ldots,N-1$.

4. Розв'язати задачу оптимального керування

$$\Im(\{u(k)\}, \{x(k)\}) = \sum_{k=0}^{N-1} u^2(k) + (x(N) - x_1)^2 \to \inf$$

за умов

$$x(k+1) = x(k) + u(k), \ x(0) = x_0, \ k = 0, 1, \dots, N-1.$$

Тут $x, u \in \mathbb{R}^1$. Точки $x_0, x_1 \in \mathbb{R}^1$ – відомі, $b(k) \in \mathbb{R}^1$ – відомі, $k=0,1,\ldots,N-1$.

 Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(\left\{u(k)\right\}, \left\{x(k)\right\}) = \sum_{k=0}^{N-1} \left(u_1^2(k) + 4u_2(k)\right) + x_1^2(N) + 2x_2^2(N) \to \inf$$

за умови, що

$$\begin{cases} x_1(k+1) = x_1(k) + 4x_2(k) + u_1(k), \\ x_2(k+1) = 2x_1(k) - x_2(k) + u_2(k), \end{cases}$$

$$x_1(0) = 4, \ x_2(0) = -1.$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u_1(k)$, $u_2(k)$, $k=0,1,\ldots,N-1$.

Тема 16

Метод динамічного програмування. Рівняння Гамільтона-Якобі-Белмана для задачі оптимального керування з вільним правим кінцем

Приклади рекомендовані для аудиторної роботи

1. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

2. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\ddot{x} = u, \ x(0) = x_0, \ \dot{x}(0) = y_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$, $y_0 \in \mathbb{R}^1$ і момент часу T є заданими.

3. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T (u(s) - s)^2 ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t) + t^2, \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1, \ u(t) \in \mathbb{R}^1, \ t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

4. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \int_0^T u^2(s)ds + x_2^2(T) \to \inf$$

за умови, що

$$\begin{cases} \frac{dx_1(t)}{dt} = 2x_1(t) + x_2(t) + u(t), \\ \frac{dx_2(t)}{dt} = -x_1(t) + x_2(t) + 2u(t), \\ x_1(0) = 1, \ x_2(0) = 1. \end{cases}$$

Тут $x=(x_1,x_2)^*$ – вектор фазових координат з \mathbb{R}^2 , $u(t)\in\mathbb{R}^1$, $t\in[0,T]$, момент часу T є заданим.

5. Знайти функцію Белмана такої задачі оптимального керування:

$$\Im(u) = \frac{1}{2} \int_0^1 u^2(s) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 0, \ x(1) = 1.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Приклади рекомендовані для домашнього завдання

1. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} (x(T) - x_1)^2 \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

2. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T u^2(s) ds + \frac{1}{2} \dot{x}^2(T) \to \inf$$

за умови, що

$$\ddot{x} = u, \ x(0) = x_0, \ \dot{x}(0) = y_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Точки $x_0 \in \mathbb{R}^1$, $y_0 \in \mathbb{R}^1$ і момент часу T є заданими.

3. Розв'язати задачу оптимального керування і знайти функцію Белмана:

$$\Im(u) = \frac{1}{2} \int_0^T \left(u^2(s) + x^2(s) \right) ds + \frac{1}{2} x^2(T) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = x(t) + u(t), \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, T]$. Точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими.

4. Знайти функцію Белмана такої задачі оптимального керування:

$$\Im(u) = a^2 \int_0^T (u(s) - u_0(s))^2 ds + x^2(T) \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = x_0.$$

Тут $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0,T]$. Неперервна функція $u_0(t) \in \mathbb{R}^1$, точка $x_0 \in \mathbb{R}^1$ і момент часу T є заданими, a>0.

5. Знайти функцію Белмана такої задачі оптимального керування:

$$\Im(u) = \frac{1}{2} \int_0^1 (u^2(s) - 2tx(s)) ds \to \inf$$

за умови, що

$$\frac{dx(t)}{dt} = u(t), \ x(0) = 0, \ x(1) = 1.$$

Tyt $x(t) \in \mathbb{R}^1$, $u(t) \in \mathbb{R}^1$, $t \in [0, 1]$.

Література

- [1] Бибиков Ю. Н. Курс обыкновенных дифференциальных уравнений / Ю. Н. Бибиков. М.: Высш. школа, 1991.
- [2] Гаращенко Ф. Г. Диференціальні рівняння для інформатиків / Ф. Г. Гаращенко, В. Т. Матвієнко, І. І. Харченко. К.: ВПЦ "Київ. ун-т", 2008.
- [3] Гаращенко Ф.Г., Матвієнко В.Т., Пічкур В.В., Харченко І.І. Диференціальні рівняння, варіаційне числення та їх застосування. К., ВПЦ "Київський університет", 2015. 271 с.
- [4] Диференціальні рівняння / І. І. Ляшко, О. К. Боярчук, Я. Г. Гай, О. Ф. Калайда. К.: Вища школа, 1981.
- [5] Егоров А. И. Обыкновенные дифференциальные уравнения с приложениями / А. И. Егоров. М.: ФИЗМАТЛИТ, 2005.
- [6] Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений / Н. М. Матвеев. Минск: Вышейшая школа, 1974.
- [7] Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений / И. Г. Петровский. М.: Наука, 1970.
- [8] Понтрягин Л. С. Обыкновенные дифференциальные уравнения / Л. С. Понтрягин. М.: Наука, 1974.
- [9] Филиппов А.Ф. Введение в теорию дифференциальных уравнений. –М.: УРСС, 2004. –240 с.
- [10] Демидович Б. П. Лекции по математической теории устойчивости / Б. П. Демидович. — М.: Наука, 1967.
- [11] Гаращенко Ф.Г., Пічкур В.В. Прикладні задачі теорії стійкості. -К.: Київський університет, 2014. 142 с.

- [12] Кириченко Н. Ф. Введение в теорию стабилизации движения / Н. Ф. Кириченко. К.: Вища школа, 1978.
- [13] Александров В.В., Болтянский В.Г., Лемак С.С., Парусников Н.А., Тихомиров В.М. Оптимальное управление движением. М.: Физматлит, 2005. 276 с.
- [14] Башняков О.М., Пічкур В.В. Задача синтезу в теорії керування: Навчальний посібник. - К.: Вид-во "Сталь", 2012. – 116 с.
- [15] Бублик Б.Н., Кириченко Н.Ф. Основы теории управления. К.: Вища школа, 1975. 328 с.
- [16] Васильев Ф.П. Численные методы решения экстремальных задач. –М.: Наука, 1980. 520 с.
- [17] Моклячук М. П. Варіаційне числення. Екстремальні задачі / М. П. Моклячук. К.: Либідь, 1994.
- [18] Гаращенко Ф.Г., Харченко І.І. Збірник задач і вправ з диференціальних рівнянь. –К.: ВПЦ "Київський університет", 2004. 162 с.
- [19] Гудименко Ф.С., Павлюк І.А., Волкова В.О. Збірник задач з диференціальних рівнянь. К.: Вища школа, 1972. –156 с.
- [20] Краснов М.П., Макаренко Г.И., Киселёв А.И. Вариационное исчисление. Задачи и упражнения. М.: Наука, 1973. 191 с.
- [21] Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. –М.: Высшая школа, 1979. –128 с.
- [22] Головач Г. П. Збірник задач з диференціальних та інтегральних рівнянь / Г. П. Головач, О. Ф. Калайда. К.: Техніка, 1997.
- [23] Перестюк М. О. Збірник задач з диференціальних рівнянь : навч. посіб. / М. О. Перестюк, М. Я. Свіщук. К.: Либідь, 1997.
- [24] Галеев Э.М., Тихомиров В.М. Оптимизация: теория, примеры, задачи. М.: Эдиториал УРСС, 2000. 320 с.