Advanced Machine Learning

Loss Functions for Multi-Target Prediction

Learning goals

- Get to know loss functions for multi-target prediction problems
- Know the Bayes predictor for Hamming loss and subset 0/1 loss
- Understand the difference between macro-, micro-, and instance-wise-losses

MULTIVARIATE LOSS FUNCTIONS

• In multi-target prediction we want to the following: For a feature vector \mathbf{x} , predict a vector of scores $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\top}$ by means of a function (hypothesis) f:

$$\mathbf{x} = (x_1, x_2, \dots, x_p)^{\top} \quad \xrightarrow{f(\mathbf{x})} \quad \hat{y} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_m)^{\top}$$

 If we want to follow the machine learning paradigm based on loss minimization, we need a multivariate loss functions

$$\ell: \mathcal{Y}^m \times \mathcal{Y}^m \to \mathbb{R}.$$

Compared to single-target prediction, a broad spectrum of such multivariate loss functions is conceivable.

• In case we have an appropriate multivariate loss function ℓ , we want to find a (Bayes) predictor f^* that minimizes expected loss with regard to ℓ :

$$\begin{split} f^* &= & \arg \min_{f:\mathcal{X} \to \mathcal{Y}^m} \mathcal{R}_{\ell} \left(f \right) = \arg \min_{f:\mathcal{X} \to \mathcal{Y}^m} \mathbb{E}_{xy} \left[\ell(y, f(\mathbf{x})) \right] \\ &= & \arg \min_{f:\mathcal{X} \to \mathcal{Y}^m} \int \ell(y, f(\mathbf{x})) \mathrm{d} \mathbb{P}_{xy}. \end{split}$$

EXAMPLES OF MTP LOSS FUNCTIONS

• Squared error loss (typically used in multivariate regression):

$$\ell(\mathbf{y}, \hat{y}) = \sum_{j=1}^{m} (y_j - \hat{y}_j)^2,$$

where $\mathbf{v}, \hat{\mathbf{v}} \in \mathbb{R}^m$.

• The Hamming loss averages over mistakes on individual scores:

$$\ell_H(\mathbf{y},\hat{\mathbf{y}}) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{[y_i \neq \hat{y}_i]}$$

• The subset 0/1 loss simply checks for entire correctness:

$$\ell_{0/1}(\boldsymbol{y},\hat{\boldsymbol{y}}) = \mathbb{1}_{[\boldsymbol{y} \neq \hat{\boldsymbol{y}}]} = \max_{\boldsymbol{j}} \, \mathbb{1}_{[\boldsymbol{y}_{\boldsymbol{j}} \neq \hat{\boldsymbol{y}}_{\boldsymbol{j}}]}$$

HAMMING VS. SUBSET 0/1 LOSS

• The risk minimizer for the Hamming loss is the *marginal mode*:

$$f_j^*(\mathbf{x}) = \arg\max_{y_j \in \{0,1\}} \Pr(y_j \mid \mathbf{x}), \quad j = 1, \dots, m,$$

while for the subset 0/1 loss it is the *joint mode*:

$$\mathbf{f}^*(\mathbf{x}) = \arg\max_{\mathbf{y} \in \mathcal{Y}^m} \Pr(\mathbf{y} \mid \mathbf{x}).$$

Marginal mode vs. joint mode:

у	$Pr(\mathbf{y})$
0000	0.30
0111	0.17
1011	0.18
1101	0.17
1110	0.18

Marginal mode: 1 1 1 1 1 Joint mode: 0 0 0 0

MULTIVARIATE LOSS FUNCTIONS

 A loss L (on test data) is decomposable over examples if it can be written in the form

$$L = \sum_{i=1}^{n} \ell(\mathbf{y}^{(i)}, f(\mathbf{x}^{(i)})),$$

i.e., as a sum of losses over all (test) examples.

ullet A multivariate loss ℓ is decomposable over targets if it can be written as

$$\ell(\mathbf{y}, f(\mathbf{x})) = \sum_{j=1}^{m} \ell_j(y_j, f_j(\mathbf{x}))$$

with suitable single-target losses ℓ_j .

 In general, we distinguish between three categories of losses: macro-, micro-, and instance-wise-losses.

 Macro-losses: The overall loss corresponds to aggregating the losses over the targets.

	irue scores				
	<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 13	<i>y</i> 14	
	<i>y</i> ₂₁	<i>y</i> ₂₂	<i>y</i> ₂₃	<i>y</i> 24	
ı	<i>y</i> 31	<i>y</i> 32	<i>y</i> 33	<i>y</i> 34	
ı	<i>y</i> ₄₁	<i>y</i> ₄₂	<i>y</i> ₄₃	<i>y</i> ₄₄	
ı	<i>y</i> 51	<i>y</i> ₅₂	<i>y</i> ₅₃	<i>y</i> ₅₄	
l	<i>y</i> 61	y 62	У 63	y 64	

Predicted scores					
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄		
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄		
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34		
ŷ ₄₁	ŷ ₄₂	ŷ ₄₃	ŷ ₄₄		
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄		
<i>ŷ</i> ₆₁	ŷ ₆₂	<i>ŷ</i> 63	ŷ ₆₄		

$$L = \frac{1}{4} \left(L_1 + L_2 + L_3 + L_4 \right)$$

 Macro-losses: The overall loss corresponds to aggregating the losses over the targets.

True scores					
<i>y</i> ₁₁	<i>y</i> 12	<i>y</i> 13	<i>y</i> ₁₄		
<i>y</i> 21	y 22	<i>y</i> 23	<i>y</i> ₂₄		
<i>y</i> 31	y 32	<i>У</i> 33	y 34		
<i>y</i> ₄₁	y ₄₂	<i>y</i> ₄₃	<i>y</i> ₄₄		
<i>y</i> ₅₁	<i>y</i> 52	<i>У</i> 53	<i>y</i> ₅₄		
<i>y</i> ₆₁	<i>y</i> 62	<i>y</i> 63	<i>y</i> 64		

Predicted scores					
<i>ŷ</i> 11	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄		
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄		
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34		
ŷ ₄₁	ŷ ₄₂	ŷ ₄₃	ŷ ₄₄		
<i>ŷ</i> 51	ŷ ₅₂	ŷ ₅₃	ŷ ₅₄		
ŷ ₆₁	ŷ ₆₂	<i>ŷ</i> 63	ŷ ₆₄		

$$L = \frac{1}{4} \left(L_1 + L_2 + L_3 + L_4 \right)$$

 Macro-losses: The overall loss corresponds to aggregating the losses over the targets.

Irue scores				
<i>y</i> ₁₁	<i>y</i> 12	<i>y</i> 13	<i>y</i> ₁₄	
<i>y</i> ₂₁	<i>y</i> 22	<i>y</i> 23	<i>y</i> ₂₄	
<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	<i>y</i> 34	
<i>y</i> ₄₁	<i>y</i> ₄₂	<i>y</i> ₄₃	<i>y</i> ₄₄	
<i>y</i> ₅₁	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄	
<i>y</i> ₆₁	<i>y</i> ₆₂	<i>y</i> 63	<i>y</i> ₆₄	

Predicted scores					
ŷ ₁₁	<i>ŷ</i> 12	<i>ŷ</i> 13	ŷ ₁₄		
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄		
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34		
ŷ ₄₁	ŷ ₄₂	ŷ ₄₃	ŷ ₄₄		
<i>ŷ</i> 51	<i>ŷ</i> ₅₂	ŷ ₅₃	ŷ ₅₄		
<i>ŷ</i> ₆₁	ŷ ₆₂	<i>ŷ</i> 63	ŷ ₆₄		

$$L = \frac{1}{4} \left(L_1 + \frac{L_2}{2} + L_3 + L_4 \right)$$

 Macro-losses: The overall loss corresponds to aggregating the losses over the targets.

True scores				
<i>y</i> ₁₁	<i>y</i> 12	<i>y</i> 13	<i>y</i> 14	
<i>y</i> ₂₁	<i>y</i> ₂₂	<i>y</i> 23	<i>y</i> ₂₄	
<i>y</i> 31	y 32	<i>y</i> 33	<i>y</i> 34	
<i>y</i> ₄₁	<i>y</i> ₄₂	<i>y</i> 43	<i>y</i> ₄₄	
<i>y</i> ₅₁	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄	
<i>y</i> ₆₁	y 62	<i>y</i> 63	y 64	

Predicted scores					
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄		
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄		
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34		
ŷ ₄₁	ŷ ₄₂	<i>ŷ</i> ₄₃	ŷ ₄₄		
<i>ŷ</i> ₅₁	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄		
ŷ ₆₁	ŷ ₆₂	<i>ŷ</i> 63	ŷ ₆₄		

$$L = \frac{1}{4} \left(L_1 + L_2 + L_3 + L_4 \right)$$

 Macro-losses: The overall loss corresponds to aggregating the losses over the targets.

Irue scores				
<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 13	<i>y</i> 14	
<i>y</i> 21	y 22	<i>y</i> 23	<i>y</i> ₂₄	
<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	<i>y</i> 34	
<i>y</i> ₄₁	<i>y</i> ₄₂	<i>y</i> ₄₃	<i>y</i> ₄₄	
<i>y</i> 51	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄	
<i>y</i> 61	<i>y</i> ₆₂	<i>y</i> 63	<i>y</i> ₆₄	

Predicted scores					
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	<i>ŷ</i> 14		
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24		
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34		
ŷ ₄₁	ŷ ₄₂	ŷ ₄₃	ŷ ₄₄		
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	<i>ŷ</i> ₅₄		
<i>ŷ</i> ₆₁	ŷ ₆₂	ŷ ₆₃	<i>ŷ</i> ₆₄		

$$L = \frac{1}{4} \left(L_1 + L_2 + L_3 + \frac{L_4}{4} \right)$$

 Micro-losses: The overall loss corresponds to aggregating the pointwise losses over the targets and the instances.

True scores					
<i>y</i> 11	<i>y</i> 12	<i>y</i> 13	<i>y</i> 14		
<i>y</i> 21	<i>y</i> 22	<i>y</i> 23	<i>y</i> 24		
<i>y</i> 31	<i>y</i> 32	<i>y</i> 33	<i>y</i> 34		
<i>y</i> ₄₁	<i>y</i> ₄₂	<i>y</i> ₄₃	<i>y</i> ₄₄		
<i>y</i> 51	<i>y</i> 52	<i>y</i> 53	<i>y</i> ₅₄		
<i>y</i> 61	<i>y</i> 62	<i>y</i> 63	<i>y</i> 64		

Predicted scores				
ŷ ₁₁	<i>ŷ</i> 12	<i>ŷ</i> 13	ŷ ₁₄	
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24	
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34	
ŷ ₄₁	ŷ ₄₂	ŷ ₄₃	ŷ ₄₄	
<i>ŷ</i> ₅₁	ŷ ₅₂	<i>ŷ</i> 53	<i>ŷ</i> 54	
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄	

• Thus, we have

$$L = \sum_{i,j} \ell(y_{ij}, \hat{y}_{ij}),$$

where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ in this case.

 Micro-losses: The overall loss corresponds to averaging the pointwise losses over the targets and the instances.

True scores				
<i>y</i> ₁₁	<i>y</i> 12		<i>y</i> 14	
<i>y</i> ₂₁		<i>y</i> 23	<i>y</i> 24	
<i>y</i> 31	<i>y</i> 32	<i>y</i> 33	<i>y</i> 34	
<i>y</i> ₄₁		<i>y</i> ₄₃	<i>y</i> ₄₄	
<i>y</i> ₅₁	<i>y</i> ₅₂	<i>y</i> 53	<i>y</i> ₅₄	
	<i>y</i> ₆₂	<i>y</i> 63		

Predicted scores				
<i>ŷ</i> 11	<i>ŷ</i> 12		ŷ ₁₄	
<i>ŷ</i> ₂₁		<i>ŷ</i> 23	<i>ŷ</i> 24	
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34	
ŷ ₄₁		ŷ ₄₃	ŷ ₄₄	
<i>ŷ</i> ₅₁	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄	
	ŷ ₆₂	ŷ ₆₃		

• Thus, we have

$$L = \sum_{i,j} \ell(y_{ij}, \hat{y}_{ij}),$$

where $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ in this case.

• Can be used also for cases with missing entries.

*y*₆₁

Instance-wise losses: Aggregating the losses over the instances.

*y*₆₂

Predicted scores

i redicted scores				
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄	
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24	
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34	
<i>ŷ</i> 41	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄	
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄	
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄	

Example: Averaging over the instance-losses.

*y*₆₃

*y*₆₄

$$\begin{split} L &= \frac{1}{6} \Big(\ell(\boldsymbol{y^{(1)}}, \hat{y}^{(1)}) + \ell(\boldsymbol{y^{(2)}}, \hat{y}^{(2)}) + \ell(\boldsymbol{y^{(3)}}, \hat{y}^{(3)}) + \\ & \ell(\boldsymbol{y^{(4)}}, \hat{y}^{(4)}) + \ell(\boldsymbol{y^{(5)}}, \hat{y}^{(5)}) + \ell(\boldsymbol{y^{(6)}}, \hat{y}^{(6)}) \Big) \end{split}$$

Instance-wise losses: Aggregating the losses over the instances.

True scores

<i>y</i> 11	<i>y</i> 12	<i>y</i> 13	<i>y</i> 14	
<i>y</i> 21	<i>y</i> 22	<i>y</i> 23	<i>y</i> ₂₄	
<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	y 34	
<i>y</i> 41	y 42	<i>y</i> 43	y 44	
<i>y</i> 51	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄	
<i>y</i> ₆₁	<i>y</i> ₆₂	<i>У</i> 63	<i>y</i> ₆₄	

Predicted scores

Predicted scores			
ŷ ₁₁	<i>ŷ</i> ₁₂	<i>ŷ</i> 13	ŷ ₁₄
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34
<i>ŷ</i> 41	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄

$$L = \frac{1}{6} \left(\ell(\mathbf{y}^{(1)}, \hat{\mathbf{y}}^{(1)}) + \ell(\mathbf{y}^{(2)}, \hat{\mathbf{y}}^{(2)}) + \ell(\mathbf{y}^{(3)}, \hat{\mathbf{y}}^{(3)}) + \ell(\mathbf{y}^{(4)}, \hat{\mathbf{y}}^{(4)}) + \ell(\mathbf{y}^{(5)}, \hat{\mathbf{y}}^{(5)}) + \ell(\mathbf{y}^{(6)}, \hat{\mathbf{y}}^{(6)}) \right)$$

Instance-wise losses: Aggregating the losses over the instances.

True scores

11 40 000100			
<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 13	<i>y</i> 14
<i>y</i> 21	<i>y</i> 22	<i>y</i> 23	<i>y</i> ₂₄
<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	y 34
<i>y</i> 41	<i>y</i> ₄₂	<i>y</i> 43	Y 44
<i>y</i> 51	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄
<i>y</i> ₆₁	<i>y</i> ₆₂	<i>y</i> ₆₃	<i>y</i> ₆₄

Predicted scores

Fredicted Scores				
ŷ ₁₁	ŷ ₁₂	ŷ ₁₃	ŷ ₁₄	
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24	
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34	
ŷ ₄₁	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄	
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄	
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄	

$$L = \frac{1}{6} \Big(\ell(\mathbf{y}^{(1)}, \hat{y}^{(1)}) + \ell(\mathbf{y}^{(2)}, \hat{y}^{(2)}) + \ell(\mathbf{y}^{(3)}, \hat{y}^{(3)}) + \\ \ell(\mathbf{y}^{(4)}, \hat{y}^{(4)}) + \ell(\mathbf{y}^{(5)}, \hat{y}^{(5)}) + \ell(\mathbf{y}^{(6)}, \hat{y}^{(6)}) \Big)$$

Instance-wise losses: Aggregating the losses over the instances.

Predicted scores

Fredicted Scores			
ŷ ₁₁	ŷ ₁₂	ŷ ₁₃	ŷ ₁₄
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34
<i>ŷ</i> 41	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄

$$\begin{split} L &= \frac{1}{6} \Big(\ell(\boldsymbol{y^{(1)}}, \hat{y}^{(1)}) + \ell(\boldsymbol{y^{(2)}}, \hat{y}^{(2)}) + \ell(\boldsymbol{y^{(3)}}, \hat{y}^{(3)}) + \\ & \ell(\boldsymbol{y^{(4)}}, \hat{y}^{(4)}) + \ell(\boldsymbol{y^{(5)}}, \hat{y}^{(5)}) + \ell(\boldsymbol{y^{(6)}}, \hat{y}^{(6)}) \Big) \end{split}$$

Instance-wise losses: Aggregating the losses over the instances.

True scores				
<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 13	<i>y</i> 14	
<i>y</i> 21	y 22	<i>y</i> 23	<i>y</i> ₂₄	
<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	y 34	
<i>y</i> 41	<i>y</i> ₄₂	<i>y</i> 43	<i>y</i> 44	
<i>y</i> 51	<i>y</i> ₅₂	<i>У</i> 53	<i>y</i> ₅₄	
<i>y</i> ₆₁	<i>y</i> ₆₂	<i>У</i> 63	<i>y</i> ₆₄	

True coores

Predicted scores

Fredicted Scores				
ŷ ₁₁	ŷ ₁₂	ŷ ₁₃	ŷ ₁₄	
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> ₂₄	
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34	
<i>ŷ</i> 41	<i>ŷ</i> ₄₂	<i>ŷ</i> 43	ŷ ₄₄	
<i>ŷ</i> 51	ŷ ₅₂	<i>ŷ</i> 53	ŷ ₅₄	
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄	

$$\begin{split} L &= \frac{1}{6} \Big(\ell(\boldsymbol{y^{(1)}}, \hat{y}^{(1)}) + \ell(\boldsymbol{y^{(2)}}, \hat{y}^{(2)}) + \ell(\boldsymbol{y^{(3)}}, \hat{y}^{(3)}) + \\ &\qquad \qquad \qquad \ell(\boldsymbol{y^{(4)}}, \hat{y}^{(4)}) + \ell(\boldsymbol{y^{(5)}}, \hat{y}^{(5)}) + \ell(\boldsymbol{y^{(6)}}, \hat{y}^{(6)}) \Big) \end{split}$$

Instance-wise losses: Aggregating the losses over the instances.

Predicted scores

Fredicted Scores			
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	ŷ ₂₄
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34
<i>ŷ</i> 41	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄
<i>ŷ</i> 51	<i>ŷ</i> 52	<i>ŷ</i> 53	<i>ŷ</i> ₅₄
ŷ ₆₁	ŷ ₆₂	ŷ ₆₃	ŷ ₆₄

$$\begin{split} L &= \frac{1}{6} \Big(\ell(\mathbf{y}^{(1)}, \hat{y}^{(1)}) + \ell(\mathbf{y}^{(2)}, \hat{y}^{(2)}) + \ell(\mathbf{y}^{(3)}, \hat{y}^{(3)}) + \\ &\qquad \qquad \qquad \ell(\mathbf{y}^{(4)}, \hat{y}^{(4)}) + \ell(\mathbf{y}^{(5)}, \hat{y}^{(5)}) + \ell(\mathbf{y}^{(6)}, \hat{y}^{(6)}) \Big) \end{split}$$

Instance-wise losses: Aggregating the losses over the instances.

True scores						
	<i>y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> 13	<i>y</i> 14		
	<i>y</i> 21	<i>y</i> 22	<i>y</i> 23	<i>y</i> ₂₄		
	<i>y</i> 31	<i>y</i> 32	<i>У</i> 33	y 34		
	<i>y</i> 41	y 42	<i>y</i> 43	y 44		
	<i>y</i> 51	<i>y</i> 52	<i>У</i> 53	<i>y</i> ₅₄		
	V _G 1	Ven	Veo	Vea		

True scores

Predicted scores						
ŷ ₁₁	ŷ ₁₂	<i>ŷ</i> 13	ŷ ₁₄			
<i>ŷ</i> 21	ŷ ₂₂	<i>ŷ</i> 23	<i>ŷ</i> 24			
<i>ŷ</i> 31	<i>ŷ</i> 32	<i>ŷ</i> 33	<i>ŷ</i> 34			
ŷ ₄₁	ŷ ₄₂	<i>ŷ</i> 43	ŷ ₄₄			
∴	·	·	·			

$$\begin{split} L &= \frac{1}{6} \Big(\ell(\boldsymbol{y^{(1)}}, \hat{y}^{(1)}) + \ell(\boldsymbol{y^{(2)}}, \hat{y}^{(2)}) + \ell(\boldsymbol{y^{(3)}}, \hat{y}^{(3)}) + \\ &\qquad \qquad \ell(\boldsymbol{y^{(4)}}, \hat{y}^{(4)}) + \ell(\boldsymbol{y^{(5)}}, \hat{y}^{(5)}) + \ell(\boldsymbol{y^{(6)}}, \hat{y}^{(6)}) \Big) \end{split}$$