MA 212: Algebra I

Naman Mishra

August 2024

Contents

1 Groups 3

The course

Grading

This is tentative.

• Quizzes: 30%

• Midterm: 30%

• Final: 40%

Lecture 1. Friday
August 02

Chapter 1

Groups

Definition 1.1 (Binary operation). A binary operation \cdot on a set A is any map from $A \times A \to A$, written $(a,b) \mapsto a \cdot b$.

We say that \cdot is associative if for all $a, b, c \in A$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

and *commutative* if for all $a, b \in A$,

$$a \cdot b = b \cdot a$$
.

Examples.

- Addition and multiplication are associative and commutative binary operations on \mathbb{R} .
- Subtraction, division and exponentiation are non-associative and non-commutative binary operations.
- Composition is an associative but non-commutative binary operation on X^X .

Definition 1.2 (Group). A *group* is a set G equipped with a binary operation \cdot satisfying the following properties:

- (G1) **associativity:** \cdot is associative;
- (G2) **identity:** there exists an element $1_G = e \in G$ such that $1_G \cdot x = x \cdot 1_G = x$ for all $x \in G$;
- (G3) **inverse:** for every $x \in G$, there exists an element $y \in G$ such that $x \cdot y = y \cdot x = 1_G$. We write y as x^{-1} .

If \cdot is also commutative, we say that G is an abelian group.

A subset $H \subseteq G$ is a *subgroup* of G if H is a group with respect to the same binary operation \cdot . We write $H \leq G$.

Examples.

- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are abelian groups.
- $(\mathbb{R}^{\times}, \cdot)$ is a group but (\mathbb{R}, \cdot) is not.
- $(GL_n(\mathbb{R}), \cdot)$ is a non-abelian group, where

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \}.$$

• For any $n \in \mathbb{N}^+$, (S_n, \circ) is a group, where

$$S_n = \{ \sigma \colon [n] \to [n] \mid \sigma \text{ is bijective} \}.$$

$$S_1 = \{1\},$$

 $S_2 = \{1, (12)\},$
 $S_3 = \{1, (12), (13), (23), (123), (132)\}.$

 S_1 and S_2 are abelian, but S_3 is not. Let x = (12) and y = (13), then $(x \circ y)(1) = x(3) = 3$, $(x \circ y)(2) = x(2) = 1$, $(x \circ y)(3) = x(1) = 2$,

but

$$(y \circ x)(1) = y(2) = 2$$
, $(y \circ x)(2) = y(1) = 3$, $(y \circ x)(3) = y(3) = 1$.

• Let $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}$. Then H is an abelian subgroup of the non-abelian $\mathrm{GL}_2(\mathbb{R})$.

Remarks (New groups from old).

• Let (A, \cdot) and (B, *) be groups. The cartesian product $A \times B$ is a group with respect to the operation

$$(a_1, b_1) \star (a_2, b_2) = (a_1 \cdot a_2, b_1 * b_2).$$

defined componentwise.

• Let X be a set and $S = \mathbb{R}^X$. Then S is an abelian group under addition (pointwise). In fact, if (G, \cdot) is a group, then G^X is a group under the operation

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

If G is abelian, then so is G^X .

• Given any set A, we can form the group S(A) of all bijections from A to itself, under composition.

Proposition 1.3. Let (G,\cdot) be a group. Then

- (i) the identity element 1_G is unique;
- (ii) the inverse of each element $x \in G$ is unique;
- (iii) $(x^{-1})^{-1} = x$ for all $x \in G$;
- (iv) $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ for all $x, y \in G$;
- (v) The product $a_1a_2...a_n$ does not depend on bracketing.

Proof.

(i) Suppose e and f are both identities of G. Then

$$e = e \cdot f = f$$
.

(ii) Suppose y and y' are both inverses of x. Then

$$xy = 1_G \implies y'xy = y' \implies y' = y.$$

(iii) We have

$$x \cdot x^{-1} = 1_G = x^{-1} \cdot x.$$

reinterpreted in the context of x^{-1} .

(iv) Checking

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = 1_G.$$

Alternatively, let $z = (xy)^{-1}$. Then

$$(xy)z = 1_G$$

$$(x^{-1}x)yz = x^{-1}$$

$$yz = x^{-1}$$

$$(y^{-1}y)z = y^{-1}x^{-1}$$

$$z = y^{-1}x^{-1}$$

(v) Induct on n. Look at the rightmost left bracket

$$a_1 \dots a_n = (a_1 \dots a_k) \cdot (a_{k+1} \dots a_n).$$

Corollary 1.4 (Cancellation law). Let (G, \cdot) be a group. If $x, y, z \in G$ and xy = xz, then y = z.

Proof. Multiply by x^{-1} on the left.