

TITLE1

Marvin Schiller[†] and Christoph Benzmüller*

[†]Saarland University, Germany DFKI GmbH, Bremen, Germany

CIAO Workshop, Bremen, March 31st- April 3rd, 2009

¹This work has been funded by Studienstiftung des deutschen Volkes

Overview

- 1 Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Granularity-Adaptive Proof Presentation
- **5** Outlook & Discussion

Background: The DIALOG Project

Tutorial Dialog for Mathematics.

Employed Techniques

- Dyn. Domain Reasoning for math proofs: math assistant ΩMEGA
- ► NL processing, dialogue management, teaching model

Research Processes (in spiral model)

- ► DIALOG system design
- ► Prototype development
- ► Empirical studies

Assume that $a \in X$. If $X \cap Y = \emptyset$, then $a \notin Y$.

Simulation (Wizard-of-Oz)

Let R and S be relations in a set M. It holds that: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$. Do the proof interactively with the system!

A pair (x,y) is element of $R\circ S$ iff there is a z in M such that $(x,z)\in R$ and $(z,y)\in S$

Correct

Therefore a pair (x,y) is element of $(R \circ S)^{-1}$ if there is a z in M, such that $(x,z) \in S$ and $(z,y) \in R$

That's not correct!

Simulation (Wizard-of-Oz) [Ctd.]

Tutor: Let R and S be relations in a set M. It holds that: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$. Do the proof interactively with the system!

Student: Execute $(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$

Tutor: That's what you have to prove. Would you like a hint?

Student: yes

Tutor: At first, try to show $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

Student: How do I do that?

Tutor: You have to show that any element in $(R \circ S)^{-1}$ is also in $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$. You could start with: Let $(a, b) \in (R \circ S)^{-1}$.

...Then it holds ...?

- ① Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Granularity-Adaptive Proof Presentation
- Outlook & Discussion

Step Size in Mathematics (Granularity)

Mathematical practice: skip intermediate steps when appropriate:

Proof Exercise: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

- ▶ We show $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$ and $S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$
- ▶ We assume $(y,x) \in (R \circ S)^{-1}$ and show $(y,x) \in S^{-1} \circ R^{-1}$
- ▶ Hence, $(x, y) \in R \circ S$
- ▶ Hence, $\exists z$ s.t. $(x,z) \in R \land (z,y) \in S$
- ▶ Hence, $\exists z \text{ s.t. } (z,x) \in R^{-1} \land (z,y) \in S$
- ▶ Hence, $\exists z \text{ s.t. } (z, x) \in R^{-1} \land (y, z) \in S^{-1}$
- ▶ Hence, $\exists z$ s.t. $(y,z) \in S^{-1} \land (z,x) \in R^{-1}$
- ▶ Hence, $(y, x) \in S^{-1} \circ R^{-1}$

Step Size in Mathematics (Granularity)

Mathematical practice: skip intermediate steps when appropriate:

Proof Exercise:
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

We show
$$(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$$
 and $S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$

- ▶ We assume $(y,x) \in (R \circ S)^{-1}$ and show $(y,x) \in S^{-1} \circ R^{-1}$
- ▶ Hence, $(x, y) \in R \circ S$
- ► Hence, $\exists z \text{ s.t. } (x, z) \in R \land (z, y) \in S$ Hence, $\exists z \text{ s.t. } (z, x) \in R^{-1} \land (z, y) \in S$
- ► Hence, $\exists z \text{ s.t. } (z, x) \in R^{-1} \land (y, z) \in S^{-1}$ Hence, $\exists z \text{ s.t. } (y, z) \in S^{-1} \land (z, x) \in R^{-1}$
- ▶ Hence, $(y, x) \in S^{-1} \circ R^{-1}$

Step Size in the Experiments

Granularity: The question of the appropriate step size/complexity.

```
Exercise: z.Z. (R \circ S)^{-1} = (x,y) \in S^{-1} \circ R^{-1}

: student] (x,y) \in (R \circ S)^{-1}

tutor] Now try to draw conclusions from this! (x,y) \in S^{-1} \circ R^{-1}

student] (x,y) \in S^{-1} \circ R^{-1}

tutor] This cannot be concluded directly. You need some intermediate steps! (x,y) \in S^{-1} \circ R^{-1}
```

Step size annotated by tutors as appropriate, too coarse-grained (too big a step) or too detailed (too small a step)

Modeling (Suitable) Granularity

Goal: diagnose student's step size, granularity-adapted proof presentation.

Previous Approach

Reconstruct proofs in ND, relate student step size to ND step size.

Modeling (Suitable) Granularity

Goal: diagnose student's step size, granularity-adapted proof presentation.

Previous Approach

Reconstruct proofs in ND, relate student step size to ND step size.

⇒ not promising (cf. [Schiller et al. 2006]).

Modeling (Suitable) Granularity

Goal: diagnose student's step size, granularity-adapted proof presentation.

Recent Approach

Modeling/representation of proofs: choice of suitable proof calculus/mechanism (assertion level vs. ND or resolution) Analysis: granularity-relevant criteria

Classification: classify (multi-inference) proof steps (as appropriate, too big or too small)

Learn classifier from empirical samples.

Approach: Model Student Proofs as Assertion Level Proofs

Student's Proof

Assertion Level Proof

Ex: Show
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

Exercise:
$$\vdash \underbrace{(R \circ S)^{-1}}_{\Gamma} = \underbrace{S^{-1} \circ R^{-1}}_{\Theta}$$

Approach: Model Student Proofs as Assertion Level Proofs

Student's Proof

Assertion Level Proof

Ex: Show

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

s1: Let
$$(x, y) \in (R \circ S)^{-1}$$

$$\frac{\text{s1:} (x,y) \in (R \circ S)^{-1} \vdash (x,y) \in \Theta}{\text{Def.}} = \frac{P \cap (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}}{\text{Exercise:}} = \underbrace{P \cap (R \circ S)^{-1} = S^{-1} \circ R^{-1}}_{\text{Exercise:}}$$

Approach: Model Student Proofs as Assertion Level Proofs

Student's Proof

Assertion Level Proof

Ex: Show $(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$ s1: Let $(x, y) \in (R \circ S)^{-1}$

s2: Hence
$$(y,x) \in (R \circ S)$$
.

$$\mathbf{s2:} (y, x) \in (R \circ S) \vdash (x, y) \in \Theta$$

$$\mathbf{s1:} (x, y) \in (R \circ S)^{-1} \vdash (x, y) \in \Theta$$

$$\mathbf{Def.} = \frac{\vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}}{\exists \text{Exercise:}} \vdash \underbrace{(R \circ S)^{-1}} = \underbrace{S^{-1} \circ R^{-1}}$$

Approach: Model Student Proofs as Assertion Level Proofs

Student's Proof

Assertion Level Proof

Ex: Show
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

s1: Let
$$(x, y) \in (R \circ S)^{-1}$$

s2: Hence
$$(y,x) \in (R \circ S)$$
.

s3: Hence
$$(y,z) \in R \land (z,x) \in S$$
.

s3:
$$(y, z) \in R \land (z, x) \in S \vdash (x, y) \in \Theta$$

s2: $(y, x) \in (R \circ S) \vdash (x, y) \in \Theta$

s1: $(x, y) \in (R \circ S)^{-1} \vdash (x, y) \in \Theta$

Def. $= \frac{\vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}}{\vdash \Theta \subseteq \Gamma}$

Exercise: $\vdash (R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Approach: Model Student Proofs as Assertion Level Proofs

Student's Proof

Assertion Level Proof

Ex: Show
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}!$$

s1: Let
$$(x, y) \in (R \circ S)^{-1}$$

s2: Hence
$$(y,x) \in (R \circ S)$$
.

$$(y,z)\in R\wedge (z,x)\in S.$$

Hence
$$(z, y) \in R^{-1} \land (x, z) \in S^{-1}$$
.

$$\begin{array}{c} \mathbf{s4:} (z,y) \in R^{-1} \land (x,z) \in S^{-1} \vdash (x,y) \in \Theta \\ \hline (y,z) \in R \land (x,z) \in S^{-1} \vdash (x,y) \in \Theta \\ \hline \mathbf{s3:} (y,z) \in R \land (z,x) \in S \vdash (x,y) \in \Theta \\ \hline \mathbf{s2:} (y,x) \in (R \circ S) \vdash (x,y) \in \Theta \\ \hline \mathbf{s1:} (x,y) \in (R \circ S)^{-1} \vdash (x,y) \in \Theta \\ \hline \mathbf{Def.} = \begin{matrix} \vdash (R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1} \\ \vdash \Theta \subseteq \Gamma \end{matrix} \\ \hline \mathbf{Exercise:} \qquad \vdash \underbrace{(R \circ S)^{-1} = S^{-1} \circ R^{-1}}_{\Gamma} \\ \end{array}$$

Typically: 1 student step \cong 1 or several assertion level steps (experiment: usually 1-3, seldomly more), cf. [Buckley & Dietrich 2007], [Benzmüller et al. 2007]

Granularity Criteria

Possible criteria for size of a (multi-)inference step ("features")

- ► How many assertion level inference applications? (total)
- ► What concepts are used? (concepts)
- ► How many concepts are not yet known to the student? (unmastered)
- ► Are the concepts named? (verb)
- ► etc.

Student step	Infs	Features	Verdict
1. We assume $(y,x) \in (R \circ S)^{-1}$	Def.=,	total:2,	?
and show $(y,x) \in S^{-1} \circ R^{-1}$	_	concepts:2, relations:0, verb:0,	
2. Hence, $(x, y) \in R \circ S$	Def ⁻¹	total:1, concepts:1, relations:1, verb:0,	?

ロ ト 4 回 ト 4 差 ト 4 差 ト 2 9 9 9 9 9

Example Classifier

Sample ruleset classifier

- * total $\in \{0,1,2\} \Rightarrow$ "appropriate"
- * unmastered $\in \{2,3,4\} \land \text{relations} \in \{2,3,4\} \Rightarrow \text{"step-too-big"}$
- * total $\in \{3,4\} \land \text{relations} \in \{0,1\} \Rightarrow \text{"step-too-big"}$
- * unmastered $\in \{0,1\} \Rightarrow$ "appropriate"
- * _ ⇒ "appropriate"

Student step	Infs	Features	Verdict
1. We assume $(y,x) \in (R \circ S)^{-1}$	Def.=,	total:2,	appropriate
and show $(y,x) \in S^{-1} \circ R^{-1}$	Def.⊆	concepts:2, relations:0, verb:0,	
2. Hence, $(x, y) \in R \circ S$	Def ⁻¹	total:1, concepts:1, relations:1, verb:0,	appropriate

- ① Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Granularity-Adaptive Proof Presentation
- 5 Outlook & Discussion

Study Environment - Motivation

- ► Learn classifiers via annotations from expert tutors using standard machine learning
- ► WoZ experiments not ideal for focused study on granularity

Idea

- ▶ Automate student's role using Ω MEGA
- ► More control over "student"
- ► More granularity annotations in less time (compared to WoZ)

Study Environment

Study Environment

Study Environment

Evaluation

Evaluation

▶ 2 experiments with 2 expert tutors (using different exercises in naive set theory, relations, topology)

	Tutor 1	Tutor 2
Steps annotated:	135	207
Perf. learnt classifier ¹ -mean correct - K	86.7% κ=0.68	68.9% κ=0.47
Interrater reliability ²	κ =0.37	

 $^{^{1}\}mathrm{best}$ rule-based classifier, evaluated on full dataset using 10-fold cross validation

²on common subset of 108 steps

- 1 Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Granularity-Adaptive Proof Presentation
- 5 Outlook & Discussion

Granularity-Adaptive Proof Presentation

Reproduce the granularity of textbook proofs, e.g. the proof for $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$:

"Let x be an element of $A \cap (B \cup C)$, 2 then $x \in A$ and $x \in B \cup C$.

3 This means that $x \in A$, and either $x \in B$ or $x \in C$. 4 Hence we either have (i) $x \in A$ and $x \in B$, or we have (ii) $x \in A$ and $x \in C$. 5 Therefore, either $x \in A \cap B$ or $x \in A \cap C$, so 6 $x \in (A \cap B) \cup (A \cap C)$.

This shows that $A \cap (B \cup C)$ is a subset of $(A \cap B) \cup (A \cap C)$.

8 Conversely, let y be an element of $(A \cap B) \cup (A \cap C)$. **9** Then, either (iii) $y \in A \cap B$, or (iv) $y \in A \cap C$. **10** It follows that $y \in A$, and either $y \in B$ or $y \in C$. **11** Therefore, $y \in A$ and $y \in B \cup C$ so that $y \in A \cap (B \cup C)$. **12** Hence $(A \cap B) \cup (A \cap C)$ is a subset of $A \cap (B \cup C)$. **13** In view of Definition 1.1.1, we conclude that the sets $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ are equal." [from Bartle/Sherbert 1982]

Proof Presentation from Assertion Level Proof

- 1) We show that $((A \cap B) \cup (A \cap C) \subseteq A \cap B \cup C)$ and $(A \cap B \cup C \subseteq (A \cap B) \cup (A \cap C))$...because of definition of equality
- 2) We assume $x \in A \cap B \cup C$ and show $x \in (A \cap B) \cup (A \cap C)$
- 3) Therefore, $x \in A \land x \in B \cup C$
- 4) Therefore, $x \in A \land (x \in B \lor x \in C)$
- 5) Therefore, $x \in A \land x \in B \lor x \in A \land x \in C$
- 6) Therefore, $x \in A \cap B \lor x \in A \land x \in C$
- 7) Therefore, $x \in A \cap B \lor x \in A \cap C$
- 8) We are done with the current part of the proof (i.e., to show that $x \in (A \cap B) \cup (A \cap C)$). [It remains to be shown that $(A \cap B) \cup (A \cap C) \subseteq A \cap B \cup C$]
- 9) We assume $y \in (A \cap B) \cup (A \cap C)$ and show $y \in A \cap B \cup C$
- 10) Therefore, $y \in A \cap B \lor y \in A \cap C$
- 11) Therefore, $(y \in A \land y \in B) \lor y \in A \cap C$
- 12) Therefore, $(y \in A \land y \in B) \lor (y \in A \land y \in C)$
- 13) Therefore, $y \in A \land (y \in B \lor y \in C)$
- 14) Therefore, $y \in A \land y \in B \cup C$
- 15) This finishes the proof. Q.E.D.

Ruleset:

 $_\Rightarrow$ "appropriate"

Proof Presentation from Assertion Level Proof

- 1) We show that $((A \cap B) \cup (A \cap C) \subseteq A \cap B \cup C)$ and $(A \cap B \cup C \subseteq (A \cap B) \cup (A \cap C))$...because of definition of equality
- 2) We assume $x \in A \cap B \cup C$ and show $x \in (A \cap B) \cup (A \cap C)$
- 3) Therefore, $x \in A \land x \in B \cup C$
- 4) Therefore, $x \in A \land (x \in B \lor x \in C)$
- 5) Therefore, $x \in A \land x \in B \lor x \in A \land x \in C$
- 6) Therefore, x < A \cap B \times < A \lambda x < E
- 7) Therefore, $x \in A \cap B \lor x \in A \cap C$
- 8) We are done with the current part of the proof $x \in (A \cap B) \cup (A \cap C)$. [It remains to be show $(A \cap B) \cup (A \cap C) \subseteq A \cap B \cup C$]
- 9) We assume $y \in (A \cap B) \cup (A \cap C)$ and show y
- 10) Therefore, $y \in A \cap B \lor y \in A \cap C$
- 11) Therefore, $(y \in A \land y \in B) \lor y \in A \cap C)$
- 12) Therefore, $(y \in A \land y \in B) \lor (y \in A \land y \in C)$
- 13) Therefore, $y \in A \land (y \in B \lor y \in C)$
- 14) Therefore, $y \in A \land y \in B \cup C$
- 15) This finishes the proof. Q.E.D.

Ruleset:

- * Hypintro=1 \land total> 1 \Rightarrow step-too-big
- * \cup -Defn $\in 1, 2 \land \cap$ -Defn $\in 1, 2 \Rightarrow$ step-too-big
- * \cap -Defn< 3 \wedge \cup -Defn=0 \wedge masteredconcept-sunique=1 \wedge unmasteredconceptsunique=0 \Rightarrow step-too-small
- * ⇒ step-appropriate
- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (*)

- 1 Background: Tutorial DIALOG on Mathematical Proof
- 2 Step Size Observations & Modeling
- 3 Study Environment & Experiments
- 4 Granularity-Adaptive Proof Presentation
- 5 Outlook & Discussion

Discussion & Outlook

Discussion

- ► Empirical modeling of granularity
- ...independent of introspection/justification of experts' judgments
- ► Thus, we imitate the behavior of expert tutors
- ► Is it desirable/possible to establish a best practice for judging proof step granularity?

Outlook

- ► Further experiment sessions planned with different experts
- Measure performance of learnt classifiers, agreement between tutors
- What are the most useful granularity criteria for the classification task?

Thank you!

Questions?

Diversity in Wizard-of-Oz Corpora

Proof exercise: $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Studer	nt X	Studen	t Y
st[0]: tu[0]:	$(R \circ S)^{-1} = \{(y,x) (x,y) \in (R \circ S)\}$ This statement is correct.	st[0]: tu[0]:	One needs to show equality between two sets. That's right! How do you proceed?
st[1]:	$(R \circ S)^{-1} = \{(y, x) \exists z (z \in M \land (x, z) \in R \land (z, y) \in S\}$	st[1]:	I use the extensionality principle.
tu[1]:	This formula is also correct.	tu[1]:	That's right.
st[2]:	$(R \circ S)^{-1} = \{(y, x) \exists z (z \in M \land (z, x) \in R^{-1} \land (y, z) \in S^{-1}\}$	st[2]:	Let $(s,r) \in (R \circ S)^{-1}$. According to the definition of
tu[2]:	This is correct. You are on a good way.	tu[2]:	the inverse relation it then holds that $(r,s) \in (R \circ S)$. That's right!