

AD-A116 465

COMPUTER SCIENCES CORP. FALLS CHURCH VA
PERFORMANCE ANALYSIS AND TEST CRITERIA FOR TASK 81-3. AIR FORCE--ETC(U)

FEB 82 F/6 17/2
F23613-77-0-0011

NL

UNCLASSIFIED

| OF |
ADA
16465

END
DATE FILMED
07-82
DTIC

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

(20 cont'd)

methodology.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

**PERFORMANCE ANALYSIS AND TEST CRITERIA
FOR
TASK 81-3
AIR FORCE AUTOMATED MESSAGE
PROCESSING EXCHANGE (AFAMPE)
REQUIREMENTS AND SYSTEM ANALYSIS**

FINAL REPORT

**Prepared for
U.S. AIR FORCE COMMUNICATIONS COMMAND
SCOTT AIR FORCE BASE, ILLINOIS**

**Under
CONTRACT F23613-77-D-0011**

26 FEBRUARY 1982

COMPUTER SCIENCES CORPORATION

6565 Arlington Boulevard

Falls Church, Virginia 22046

Major Offices and Facilities Throughout the World

82 07 06 058

TABLE OF CONTENTS

<u>Section 1 - Introduction.....</u>	1-1
<u>Section 2 - Performance Analysis.....</u>	2-1
2.1 General.....	2-1
2.2 Derivation of Performance Characteristics.....	2-1
2.2.1 Raw Data.....	2-1
2.2.2 Raw Data Plus 'J' Factor.....	2-16
2.2.3 Raw Data Plus 'J' Factor Plus Growth.....	2-16
2.2.4 Line Capacity.....	2-17
2.3 Site Performance Analysis.....	2-18
<u>Section 3 - Test Methodology.....</u>	3-1
3.1 General.....	3-1
3.2 Performance Test Plan ("PTP").....	3-1
3.3 Throughput Analysis.....	3-1
3.4 Performance Testing.....	3-2
3.5 Management Plan.....	3-3

LIST OF TABLES

Table

2-1	Scott AFAMPE.....	2-2
2-2	Sembach AFAMPE.....	2-5
2-3	Ramstein AFAMPE.....	2-8
2-4	Most Severe.....	2-12

SECTION 1 - INTRODUCTION

Under Contract F23613-77-D-0011, AFCC SETA Task 81-3, Computer Sciences Corporation (CSC) has performed an analysis of all available Air Force Automated Message Processing Exchange (AFAMPE) performance characteristics documentation of the Scott, Sembach, and Ramstein Air Force Bases. The results of this analysis identify performance and throughput criteria for the AFAMPE. These criteria will be used to establish the tests that are applied to AFAMPE configurations as the "most severe load" conditions. Section 2 of this document addresses the performance analysis, and Section 3 addresses the applied testing methodology.

SECTION 2 - PERFORMANCE ANALYSIS

2.1 GENERAL

To assure the total success of near-term AFAMPE installations in extraordinarily diverse and dynamic user environments, the Phase IV Project Management Office (PMO) tasked CSC to analyze documents and determine performance criteria for the most severe load conditions. In contrast to functional criteria that identify the standard for what the AFAMPE must do, the performance criteria identifies the standard of AFAMPE execution.

Various documents (referenced in Paragraph 2.1 of the Task Statement of Work) relating to system, message, and line block loading were provided to CSC as inputs to the task. From this information, initial criteria have now been established against which to measure the AFAMPE performance. The remainder of this section describes how these criteria were developed.

2.2 DERIVATION OF PERFORMANCE CHARACTERISTICS

To support the analysis and determination of performance criteria, the data supplied by the Phase IV PMO was ordered in a matrix of columns and rows. The rows represent the local topology or connectivity of the AFAMPE. The columns contain progressive extrapolations of the topology workload from Raw Data through Raw Data Plus 'J' Factor, Raw Data Plus 'J' Factor Plus Growth, and Line Capacity. In some cases, the original data was adjusted to reflect accurately the line throughput capabilities of a real-time communications system. These adjustments are identified as notes to Tables 2-1 through 2-4 where required. In all cases, a 30-day month was used as the baseline to derive average hourly line block load.

2.2.1 Raw Data

The Raw Data column reflects present or projected line blocks per hour traffic loads. The Average Hour subcolumn for Raw Data was computed by dividing the average monthly line blocks for a given circuit by 720 (monthly hours available). If the monthly load was not provided, figures from similar circuits were substituted. In the case of some Sembach circuits, hourly averages were computed by assuming (after analyzing other AFAMPE circuits) a circuit rate use of 25 percent of effective line capacity.

Table 2-1. Scott AFAMPE (1 of 3)

	RAW DATA				'J' FACTOR				RAW DATA + 'J' FACTOR				LINE CAPACITY			
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		10 MIN PEAK		LINE	
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
4800 Baud																
ASC Circuite	4195	4738	7551	8528	5263	5922	9417	10659	6971	7876	12551	14176	20520	20520		
AUTODIN #1	4195	4738	7551	8528	5263	5922	9437	10659	6973	7876	12551	14176	20520	20520		
AUTODIN #2	4195	4738	7551	8528	5262	5922	9437	10659	6971	7876	12551	14176	20520	20520		
AUTODIN #3	4195	4738	7551	8528	5262	5922	9437	10659	6971	7876	12551	14176	20520	20520		
ASC TOTAL	12585	16216	22653	25584	15729	17766	28311	31977	20919	23628	37653	42528	61560	61560		
AFAMPE Trubuterries																
4800 Baud																
DECCO	598	722	1076	1299	747	902	1344	1623	993	1199	1787	2158	20520	20520		
MACC/CS	5543	5149	9977	9268	6926	6436	12470	11586	9114	8559	16585	15406	20520	20520		
MACHINS PAX RESV	2771	2574	4987	4633	3463	3217	5233	5150	4605	4278	8289	7700	20520	20520		
MACHINS CARGO	2771	2574	4987	4633	3463	3217	6233	5790	4605	4278	8289	7700	20520	20520		
2190CS	598	722	1076	1299	747	902	1344	1623	993	1199	1787	2158	20520	20520		
AFCC/MP 300 LPM Ptr	25	--	45	--	--	31	--	55	--	41	--	73	--	17100	--	
AFCC/CP 300 LPM Ptr	736	--	1324	--	--	920	--	1656	--	1223	--	2401	--	17100	--	
Subtotal	12281	12502	22103	22501	15348	15625	27624	28171	20410	20777	36737	37396	102600	136800		
2400 Baud																
MAC/CP KVDT #1	2	3	2	3	2	3	2	3	2	3	2	3	225	225		
MAC/CP KVDT #2	2	3	2	3	2	3	2	3	2	3	2	3	225	225		
AFCC/MP KVDT #1	15	27	18	32	18	32	23	23	23	23	41	41	225	225		
AFCC/MP KVDT #2	15	27	18	32	18	32	23	23	23	23	41	41	225	225		
AFCC/CP 150 LPM Ptr	159	286	198	356	3	3	3	3	3	3	263	5	473	473	8550	
AFCC/CP KVDT	3	5	113	78	113	78	140	140	103	103	5	5	185	185	8550	
ARS/CP 150 LPM Ptr	63	5	3	5	3	5	3	5	3	5	5	5	225	225		
ARS/CP KVDT #1	3	5	3	5	3	5	3	5	3	5	5	5	225	225		
ARS/CP KVDT #2	3	5	3	5	3	5	3	5	3	5	5	5	225	225		
315/CP 150 LPM Ptr	10	18	12	21	18	12	21	21	15	15	27	27	8550	8550		
315/CP KVDT	3	5	3	5	3	5	3	5	3	5	5	5	255	255		
Subtotal	46	234	80	417	57	288	90	517	62	181	108	685	1800	25650		
1200 Baud																
US Coast Guard	2	159	5	286	2	198	5	356	2	263	5	471	5130	5130		
Subtotal	3	159	5	286	3	198	5	356	3	263	5	473	5130	5130		
75 Baud																
Granite City	11	19	11	22	11	22	22	22	11	22	11	11	10	320	320	
US Coast Guard	63	102	113	140	113	140	140	140	103	140	140	140	120	120	120	
Subtotal	74	102	117	147	117	147	147	147	103	147	147	147	140	140	140	

Table 2-1. Scott AFAMPE (2 of 3)

Future Requirements	RAW DATA				RAW DATA + 'J' FACTOR				RAW DATA + 'J' FACTOR + GROWTH				LINE CAPACITY	
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		SEND	REC
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
4800 Baud	2456	1786	4420	3214	3070	2232	5526	4017	4083	2968	7349	5142	20520	20520
2400 Baud KVDI #1	5	5	9	6	10	7	12	225	7	7	12	225	225	225
KVDI #2	5	5	9	6	10	7	12	225	7	7	12	225	225	225
KVDI #3	5	5	9	6	10	7	12	225	7	7	12	225	225	225
Printer #1	7	7	138	96	172	127	228	8550	77	77	127	228	8550	8550
Printer #2	7	7	138	96	172	127	228	8550	77	77	127	228	8550	8550
Printer #3	7	7	138	96	172	127	228	8550	77	77	127	228	8550	8550
75-1200 Baud #1	30	77	56	37	96	66	172	49	127	88	228	5130	5130	5130
#2	30	77	56	37	96	66	172	49	127	88	228	5130	5130	5130
#3	30	77	56	37	96	66	172	49	127	88	228	5130	5130	5130
TOTAL Future Requests	2561	2248	4609	4612	3199	2898	5756	5049	4251	3710	7649	6710	36585	61560
Tributary TOTALS	12387	12121	22290	23336	15479	16202	27846	29157	20569	21541	37019	38169	110170	168220
Tributary + Future Requirements TOTAL	14948	15215	26639	27378	18678	19010	33600	34206	24820	25271	44668	45479	146155	229780
ASC + Tributary TOTAL	24972	27181	44943	48920	31208	33968	56157	61134	41488	45169	74672	81297	171730	229780
Tributary + Future Requirements + ASC	27333	29429	49557	57962	34407	36716	61911	66181	45739	48899	82321	88007	208315	274240

Table 2-1. Scott AFAMPE (3 of 3)

1. The "RAW AVERAGE HOUR" was derived by dividing the provided monthly statistics by 720 (monthly hours). This quotient was then derived by 3 (AUTODIN circuits).
2. Where tributary data was provided we divided the monthly figures by 720 (monthly hours). Where data was not provided, we substituted figures from like circuits.
3. The "AVERAGE HOUR" for Future Requirement Circuits were derived by computing an average for like circuits.
4. The KVDT statistics for "LINE CAPACITY" (SEND) have been fixed at 225 line blocks per hour. Rationale:
 $60 \text{ WPM} \times 5 \text{ (characters per word)} = 300 \text{ CPM}$
 $300 \text{ CPM} \times 60 \text{ (minutes per hour)} = 18,000 \text{ character per hour}$
18000 divided by 80 (characters per line block) = 225 line blocks per hour
The statistics for "LINE CAPACITY" (REC) (150 LPM printers) is fixed at 8550 or line capacity whichever is smaller.
 $150 \text{ LPM} \times 60 \text{ (minutes per hour)} = 9,000$
95% (effective line capability) $\times 9000 = 8,550$ Line Blocks per Hour
300 LPM Printer = 17,100 or line capacity whichever is smaller
(8550 $\times 2 = 17,100$)
5. All statistics are listed in line blocks per hour as truncated integers.

Table 2-2. Sembach AFAMPE (1 of 3)

	RAW DATA				'J' FACTOR				RAW DATA + 'J' FACTOR + GROWTH				LINE CAPACITY	
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		SEND	PEAK REC
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
1200 Baud ASC Circuit #1	1806	3300	5254	5940	2260	4125	4068	7425	3005	5486	5409	9874	5130	5130
ASC Circuit #2		<u>1608</u>	<u>3200</u>	<u>5940</u>	<u>2260</u>	<u>4125</u>	<u>4068</u>	<u>7425</u>	<u>3005</u>	<u>5486</u>	<u>5409</u>	<u>9874</u>	<u>5130</u>	<u>5130</u>
ASC TOTALS	3616	6600	6508	11880	4520	8250	8136	14850	6910	10972	10818	19748	10260	10260
AFAMPE Tributaries														
2400 Baud Sembach C2 300 LPH Patr	455	—	88	819	—	61	—	109	—	81	—	145	1359	225
Sembach C2 KWDT	<u>49</u>	<u>—</u>	<u>88</u>	<u>819</u>	<u>—</u>	<u>61</u>	<u>—</u>	<u>109</u>	<u>—</u>	<u>81</u>	<u>—</u>	<u>145</u>	<u>1359</u>	<u>225</u>
Subtotal	49	455	88	819	—	61	—	109	—	81	—	145	1359	225
1200 Baud RAF Fairford	1262	1282	2307	2307	1602	1602	2883	2883	2130	2130	3834	3834	2130	5130
Subtotal	1262	1282	2307	2307	1602	1602	2883	2883	2130	2130	3834	3834	5130	5130
100 Band-Mode 1														
Bisturi, GE	91	168	153	302	113	210	203	378	150	279	270	502	1282	1282
Hahn, GE	82	197	147	354	102	246	183	442	135	327	243	588	1282	1282
Lakeheath, UK	60	168	118	302	75	210	135	378	99	279	128	502	1282	1282
Middenhall, UK	113	387	203	696	141	483	253	869	187	642	326	1155	1282	1282
Ramstein, GE	90	221	162	337	112	276	201	456	148	367	266	660	1282	1282
Spangahlem, GE	77	180	138	324	96	225	172	405	127	299	228	338	1282	1282
Zweibrucken, GE	43	36	77	64	53	45	95	81	70	95	126	106	1282	1282
Lat., AB	24	58	43	104	30	72	54	129	39	70	71	1282	1282	1282
Sellingen, GE	150	849	342	1520	232	1061	426	1969	315	1411	567	2539	1282	1282
Subtotal	770	2264	1352	4071	959	2828	1722	5087	1270	3758	2284	6761	11538	11538
75 Band-Mode 11														
Prosen CRP	80	80	144	144	100	100	100	180	180	133	133	239	320	320
601 ASOC	80	80	144	144	100	100	100	180	180	133	133	239	320	320
ABCC	80	80	144	144	100	100	100	180	180	133	133	239	320	320
602 ASOC	80	80	144	144	100	100	100	180	180	133	133	239	320	320
Mehlingen Crp	80	80	144	144	100	100	100	180	180	133	133	239	320	320
Turkheim Crp	<u>80</u>	<u>80</u>	<u>144</u>	<u>144</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>180</u>	<u>180</u>	<u>133</u>	<u>133</u>	<u>239</u>	<u>320</u>	<u>320</u>
Subtotal	480	480	864	864	600	600	600	1080	1080	798	798	1434	1920	1920

Table 2-2. Sembach AFAMPE (2 of 3)

	RAW DATA				RAW DATA + 'J' FACTOR				RAW DATA + 'J' FACTOR				LINE CAPACITY					
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		10 MIN PEAK		SEND REC			
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC		
50 Baud-Mode II																		
KALMAR ATOC	53	53	55	95	66	66	118	118	87	87	156	156	213	213	213	213		
TARE #1	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
TARE #2	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
HQ CENTAG	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
I (FW) ASOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
II (FW) ASOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
III (FR) ASOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
HQ 4 ATAP	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
SOC III	53	53	95	95	66	66	118	118	97	97	156	156	213	213	213	213		
50 Baud-Mode IV	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
MESSTETTEN ATOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
MAASTRICHT ATOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
HQ FATAL	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
II (GE) ASOC	53	53	95	95	66	66	118	118	87	87	156	156	213	213	213	213		
Subtotal	689	689	1235	1235	858	858	1534	1534	1131	1131	2394	2394	2769	2769	2769	2769		
Future Requirements																		
2400 Baud KVDT #1	49	49	88	88	61	61	109	109	81	81	155	155	255	255	255	255		
Printer #1	#2	455	455	819	819	563	563	1022	1022	755	755	1555	1555	10260	10260	10260	10260	
	#2	455	455	819	819	568	568	—	—	755	755	1559	1559	—	—	—	—	
Subtotal	98	910	176	1638	122	1136	218	2044	167	1510	250	250	510	510	20570	20570	20570	20570
50-1200 Baud																		
#1	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#2	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#3	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#4	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#5	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#6	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#7	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#8	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
#9	110	159	198	286	137	198	246	356	182	182	327	473	736	736	736	736		
Subtotal	990	1431	1722	2574	1233	1782	2214	3214	1704	1704	2367	2943	4247	4247	6628	6628	6628	6628
Future Requirements TOTAL	1088	7341	1912	4212	1355	2918	2412	5218	1800	1800	3211	4211	6415	6415	7138	7138	7138	7138
Tributary TOTALS	3270	5170	5877	9296	4080	6556	7325	11606	5410	5410	8722	9725	15416	15416	21582	21582	21582	21582
Tributary & Future TOTAL	4758	7511	7814	13558	5635	9714	9760	16854	7210	7210	12449	12449	22391	22391	28720	28720	28720	28720
ASC Plus Tributary TOTAL	6886	11770	12285	21176	8600	14706	15464	26456	11420	11420	19544	20544	35174	35174	41877	41877	41877	41877
ASC + Tributary + Future Requirements TOTAL	7914	14111	16143	27725	6555	12725	17890	31704	13220	13220	23621	23621	42169	42169	58980	58980	69025	69025

Table 2-2. Sembach AFAMPE (3 of 3)

1. The ASC "RAW AVERAGE HOUR" was derived by adding the "RAW AVERAGE HOUR" of the SEMBACH Tributaries to the "RAW AVERAGE HOUR" of SEMBACH TCC (listed on Ramstein statistics). This total was divided by 2 (2 AUTODIN circuits).
2. Where tributary data was not provided, we substituted figures which are equal to 25 percent of the effective line capacity (95% line speed). i.e., for a 1200 baud circuit, we multiplied maximum line capacity (5400 LBKS/Hour) times 95% times 25%.
3. Tributary data that was given in messages per month were changed to line blocks per month by using the formula "ONE MESSAGE EQUALS 33 LINE BLOCKS." This formula was recommended by phase IV PMO.
4. "FUTURE REQUIREMENT" circuits were derived by applying the given growth formula and the "RAW AVERAGE HOUR" was derived by finding an average of all 50 through 1200 baud circuits.
5. All statistics are listed in line blocks per hour as truncated integers.

Table 2-3. Ramstein AFAMPE (1 of 4)

	RAW DATA				'J' FACTOR				RAW DATA				LINE CAPACITY			
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		10 MIN PEAK		SEND REC	
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
100 Baud																
ASC Circuits																
AUTODIN #1	1400	4736	2520	8524	1150	5920	3114	10656	2327	7873	4182	14171	10260	10260		
AUTODIN #2	1400	4736	2520	8524	1720	3150	10656	2327	7873	4182	14171	10260	10260			
AUTODIN #3	1400	4736	2220	8524	1750	5920	3150	10656	2327	7873	4183	14171	10260	10260		
ASC TOTALS	4200	14208	7560	25572	5250	17660	9450	31968	6981	23619	12564	42113	30780	30780		
AFAMPE Tributaries																
4800 Baud																
Zwiebrucken TCC	833	3472	1499	6249	1041	4340	1873	7812	1384	5772	2441	10389	20520	20520		
Subtotal	833	3472	1499	6249	1041	4340	1873	7812	1384	5772	2491	10189	20520	20520		
1200 Baud-SRT Remotes																
Kaiserslautern TCC	1153	1212	2075	2181	1441	1515	2593	2727	1916	2014	3454	3625	5136	5136		
Pirassens	312	928	561	1670	390	1160	702	2088	518	1542	932	2175	5130	5130		
Maasenriler	158	99	282	68	197	122	354	91	262	67	162	67	5130	5130		
Hiesau	29	227	52	468	36	283	64	509	47	376	82	676	5130	5130		
Baumholder	60	324	164	576	100	400	180	720	133	537	239	937	5130	5130		
Zwiebrucken TCC	134	587	241	1026	167	733	300	1319	222	974	399	1753	5130	5130		
Sembach TCC	347	627	2524	433	1887	779	3216	575	2376	1015	4276	5130	5130	5130		
Subtotal	2110	4862	3796	6749	2635	6075	4740	10933	3501	8076	6299	14531	35910	35910		
600 Baud																
Sembach BAS/SUP	1	10	5	11	3	11	5	21	3	15	5	27	2565	2565		
Zwiebrucken BAS/SUP	2	9	3	16	2	11	3	19	2	14	3	25	2565	2565		
Subtotal	5	19	8	36	5	23	8	40	5	29	8	52	5130	5130		
15 Baud																
Friesefeld	2	72	3	129	2	90	3	162	2	119	3	214	170	170		
Fischbach	3	20	5	36	3	25	5	45	3	33	5	59	320	320		
Subtotal	5	92	8	165	5	115	8	207	5	152	8	273	660	660		

Table 2-3. Ramstein AFAMPE (2 of 4)

AVERAGE HOUR RPC	RAW DATA		PAW DATA + 'J' FACTOR		'J' FACTOR + CRUITH		LINE CAPACITY	
	SEND	REC	AVERAGE HOUR		BUSY HOUR		10 MIN PEAK SEND REC	SEND REC
			SEND	REC	SEND	REC		
1200 Baud								
KVCT and Printers								
USAFE/DO 300 LPM Printer	177	---	318	---	221	---	293	---
USAFE/IGS 300 LPM Printer	177	---	318	---	221	---	293	---
USAFE/IN 300 LPM Printer	177	---	318	---	221	---	293	---
JSAF/DP 300 LPM Printer	177	---	318	---	221	---	293	---
USAFE/DE 150 LPM Printer	177	---	318	---	221	---	293	---
USAFE/CS 150 LPM Printer	177	---	318	---	221	---	293	---
USAFE/XP 150 LPM Printer	177	---	318	---	221	---	293	---
GSC-ALCC 300 LPM Printer	19	---	70	---	48	---	63	---
GSC-EAC 150 LPM Printer	177	---	318	---	221	---	293	---
GSC-EAC KVDT	19	---	70	---	48	---	86	---
GSC-Admin 150 LPM Printer	177	---	318	---	221	---	293	---
GSC-Admin VDU	19	---	70	---	48	---	86	---
GSC-E/S KVDT	19	---	70	---	48	---	86	---
GSC-LRC 150 LPM Printer	177	---	318	---	221	---	293	---
GSC-LRC KVDT	19	---	70	---	48	---	86	---
Kepauan 300 LPM Printer	177	---	318	---	221	---	293	---
Kepauan KVDT	5	---	9	---	6	---	10	---
Kepauan OCR	5	---	9	---	6	---	10	---
122 ALD 150 LPM Printer	177	---	318	---	221	---	293	---
122 ALD KVDT	19	---	70	---	48	---	86	---
86 CSG/DP 150 LPM Printer	177	---	318	---	221	---	293	---
7 AD 150 LPM Printer	177	---	318	---	221	---	293	---
86 TFW/DOA/IN 150 LPM Printer	177	---	318	---	221	---	293	---
608 Mass KVDT	39	---	70	---	48	---	86	---
86 TFW/COC 150 LPM Printer	4	---	7	---	5	---	9	---
86 TFW/COC 150 LPM Printer	4	---	7	---	5	---	9	---
86 TFW/COC KLOT	14	---	25	---	18	---	32	---
86 TFW/PTP/P	2	---	3	---	2	---	3	---
Subtotal:	299	2842	536	5105	368	3548	657	6373
Future Requirements								
4 x 3 Baud								
75-1200 Baud	1	301	694	541	1269	376	676	1560
SRT	2	301	694	541	1269	376	676	1560
600 Baud	3	2	9	3	16	2	11	19
75 Baud	4	2	46	3	82	2	57	3
KVDT	5	27	48	48	51	3	102	2
KWLT	6	27	48	33	59	3	43	77
KVDT	7	27	48	33	59	3	43	77

Table 2-3. Ramstein AFAMPE (3 of 4)

	RAW DATA				'J' FACTOR				RAW DATA + GROWTH				LINE CAPACITY	
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		10 MIN PEAK	SEND REC
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
KVDT #6	27	48	33	59	43	77	77	225						
KVDT #9	27	48	33	59	43	77	77	225						
KVDT #10	27	48	33	59	43	77	77	225						
KVDT #11	27	48	33	59	43	77	77	225						
KVDT #12	27	48	33	59	43	77	77	225						
KVDT #13	27	48	33	59	43	77	77	225						
KVDT #14	27	48	33	59	43	77	77	225						
KVDT #15	27	48	33	59	43	77	77	225						
KVDT #16	27	48	33	59	43	77	77	225						
KVDT #17	27	48	33	59	43	77	77	225						
Printer #1														
Printer #2	149	268	186	334	247	444	444	5130						
Printer #3	149	268	186	334	247	444	444	5130						
Printer #4	149	268	186	334	247	444	444	5130						
Printer #5	149	268	186	334	247	444	444	5130						
Printer #6	149	268	186	334	247	444	444	5130						
Printer #7	149	268	186	334	247	444	444	5130						
Printer #8	—	—	—	—	—	—	—	—	—	—	—	—	—	5130
Subtotal	957	2635	1712	4740	1185	3250	2125	5913	1563	4371	2807	1862	16391	44506
Future Requirements TOTAL	1790	61C7	3211	10987	2226	7630	3998	13725	2947	10143	5298	18257	36911	75026
Tributary TOTAL	3252	11287	5947	20302	4054	14101	7286	25365	5376	10733	9667	33708	69355	154540
Tributary + Future Requirements TOTAL	5042	17394	9053	31291	6280	21731	11284	29090	8322	26876	14965	51965	106266	229366
ASC + Tributary TOTAL	7452	25495	13407	45874	9304	31861	16196	57333	12357	42352	22211	76271	100135	185320
ASC + Tributary + Future Requirements TOTAL	9242	31602	16618	56863	11530	39491	20732	71058	15304	52495	27129	94478	137046	260146

Table 2-3. Ramstein AFAMPE (4 of 4)

1. The ASC "RAW AVERAGE HOUR" was derived by dividing the provided data by 720 (monthly hours). To this quotient we added the "RAW AVERAGE HOUR" for the 4800 baud, 1200 baud SRT, 600 baud, and 75 baud tributaries. We divided the aggregate by 3 (AUTODIN circuits).
2. AFAMPE tributary "AVERAGE HOUR" was derived by dividing the provided monthly statistics by 720 (monthly hours).
3. We multiplied the provided totals for the ASC times 40% to compute the AVERAGE HOUR for the KVDTs and printers. Next we divided the result by 13 (original 13 staff remotes as listed on draft report of A001).
4. The "AVERAGE HOUR" for Future Requirement Circuits was derived by computing the average for like circuits. In addition to the normal circuit growth we made allowance for future requirements as identified in PGA letter dated 3 February 1982.
5. All statistics are listed in line blocks per hour as truncated integers.

Table 2-4. Most Severe (1 of 5)

	RAW DATA				RAW DATA + 'J' FACTOR				'J' FACTOR + GROWTH				LINE CAPACITY			
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR	
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
4800 Baud																
ASC Circuits																
AUTODIN #1	4195	4738	7551	8528	5243	5922	9437	10659	6973	7876	12551	14176	20320	20520		
AUTODIN #2	4195	4738	7551	8528	5243	5922	9437	10659	6973	7876	12551	14176	20320	20520		
AUTODIN #3	4195	4738	7551	8528	5243	5922	9437	10659	6973	7876	12551	14176	20320	20520		
ASC TOTAL	17585	14214	22653	25584	15129	17766	28311	31977	20919	23678	37653	42528	61560	61560		
4800 Baud Tribus																
KVDT #1	598	722	1076	1299	747	902	1364	1623	993	1149	1787	2158	20520	20520		
KVDT #2	5543	5149	5977	9268	6926	6436	1170	11584	9214	8559	15406	15406	20520	20520		
KVDT #3	2771	2514	4987	6533	3462	3213	5790	4605	4278	4278	8289	7706	20520	20520		
KVDT #4	2771	2514	4987	6533	3463	3217	6233	4665	4278	4278	8289	7706	20520	20520		
KVDT #5	598	722	1076	1299	747	902	1364	1623	993	1149	1787	2158	20520	20520		
Receive Only #6	25	—	45	—	51	—	55	—	41	—	73	—	201	201	201	201
Receive Only #7	—	—	1324	—	926	—	1656	—	1223	—	—	—	—	—	—	—
Subtotal	12281	12504	22103	27501	15348	15625	27524	28121	20410	20777	36137	37396	102600	143649		
2400 Baud																
KVDT #1	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #2	5	9	6	6	6	6	11	11	7	7	12	12	225	225		
KVDT #3	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #4	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #5	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #6	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #7	5	9	6	6	6	6	10	10	7	7	12	12	225	225		
KVDT #8	5	9	6	6	6	6	10	10	7	7	12	12	275	275		
Printer #1	77	138	138	96	96	96	172	172	127	127	226	226	8550	8550		
Printer #2	77	138	138	96	96	96	172	172	127	127	226	226	8550	8550		
Printer #3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	40	231	72	414	48	288	80	516	56	381	95	684	1809	25656		
1200 Baud Srtex																
Tributary #1	1153	1212	2075	2181	1641	1515	2747	2747	1916	2016	3448	3625	5130	5130		
#2	312	928	561	1670	1160	1160	702	702	518	518	932	2775	5130	5130		
#3	55	155	99	286	68	197	122	356	90	262	162	421	1130	1130		
#4	29	227	52	468	36	283	64	509	47	376	8	676	5130	5130		
#5	50	320	144	576	100	400	180	720	133	532	219	957	5130	5130		
#6	134	587	241	1056	167	733	300	1319	222	974	399	1753	5130	5130		
#7	36	1620	624	2514	423	1787	719	3216	525	2316	162	4226	5130	5130		
Subtotal	2110	4862	3794	6749	2635	6075	4746	10933	3501	8076	6799	14531	39910	39910		

Table 2-4. Most Severe (2 of 3)

	RAW DATA				RAW DATA + 'J' FACTOR				'J' FACTOR + GROWTH				LINE CAPACITY	
	AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		AVERAGE HOUR		BUSY HOUR		TO MIN PEAK	
	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC	SEND	REC
1200 Baud														
KVDT #1	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #2	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #3	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #4	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #5	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #6	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #7	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #8	29	52	36	64	47	64	47	64	47	64	47	64	47	225
KVDT #9	29	52	36	64	47	64	47	64	47	64	47	64	47	225
JCR	29	52	36	64	47	64	47	64	47	64	47	64	47	225
PIR/P	2	3	2	3	3	3	2	3	2	3	2	3	3	3
Printer #1	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #2	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #3	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #4	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #5	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #6	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #7	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #8	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #9	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #10	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #11	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #12	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #13	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #14	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #15	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #16	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #17	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Printer #18	157	282	196	352	260	468	260	468	260	468	260	468	260	5130
Subtotal	292	2828	573	5079	362	3530	643	6139	472	4682	843	8427	2250	92340
75 Baud Mode II														
Tributary #1	80	80	144	100	180	180	180	180	133	133	239	239	320	320
Tributary #2	80	80	144	100	100	180	180	180	133	133	239	239	320	320
Tributary #3	80	80	144	100	100	180	180	180	133	133	239	239	320	320
Tributary #4	80	80	144	100	100	180	180	180	133	133	239	239	320	320
Tributary #5	80	80	144	100	100	180	180	180	133	133	239	239	320	320
Tributary #6	80	80	144	100	100	180	180	180	133	133	239	239	320	320
Subtotal	480	480	864	864	600	1080	1080	1080	798	798	1434	1434	1920	1920
Tributary Total	15203	20903	27358	37607	18993	26116	34167	46989	25237	34714	45409	62474	144480	299460
Trib. + ASC Total	27788	35117	50011	63191	36722	43884	62478	78966	46156	58342	81062	105002	206040	361020

Table 2-4. Most Severe (3 of 3)

1. 4800 Baud ASC circuits are from Scott.
2. 4800 Baud Tributaries are from Scott.
3. 2400 Baud KVDTs and printers are from Scott. The statistics represent an average of those listed in Scott's listing.
4. 1200 Baud SRTs are from Ramstein.
5. 1200 Baud KVDTs and printers are from Ramstein. The statistics represent an average of those listed in Ramstein's listing.
6. 75 Baud Mode II Tributaries are from Sembach. The statistics represent 25 percent of effective line capacity.
7. All statistics are listed in line blocks per hour as truncated integers.

To derive the Busy Hour subcolumn figures, three computational approaches, described as follows were evaluated.

1. A constructed approach based on experience with current service AMPEs, Automatic Digital Network I (AUTODIN I), and familiarity with data provided by the PMO.

$$\frac{\text{AHLB} \times \text{HA} \times 75 \text{ PERCENT}}{\text{Weekly Busy Hours}} = \text{Busy Hour}$$

where AHLB = Average Hourly Line Blocks

HA = Hours Available in One Week (168)

75 Percent = 75 percent of the weekly message traffic is processed in five (Monday through Friday), 14 hour periods (usually 0900 to 2300 local hours).

Weekly Busy Hour = 70 (14 Daily Hours Times 5)

Example: AHLB = 29

HA = 168

Weekly Busy Hours = 70

Therefore:

$$\frac{29 \times 168 \times .75}{70} = 52.2$$

2. An approach based on an industrial telecommunications community practice for deriving Busy Hour where:

Busy Hour Line Block = $(\text{AHLB} \times 80\%) + \text{AHLB}$

Example: AHLB = 29

Therefore:

$$29 \times 1.8 = 52.2$$

3. An approach based on Defense Communication System, Traffic Engineering Practices (DCS - TEP) Volume XII, Sub Sec 502, Appendix H, November 1970, which defines Busy Period as follows:

Busy Period is equal to $\frac{2}{2}$ busy hours; therefore, to find a busy hour the following must be applied:

$$\frac{\text{AHLB} \times 24 \text{ hours} \times 14.29\%}{2} = \text{Busy Hour Line Blocks}$$

Example: $\frac{29 \times 24 \times 14.29\%}{2} = 49.7$ Busy Hour Line Blocks

As shown, all three approaches result in a relatively close range. In view of the number of computations that were necessary, the 1.8 factor was applied to AHLB as a convenience to derive Busy Hour figures. CSC feels that the use of the formula giving the higher busy hour projection is sound and realistic in relationship to the continued growth of relative telecommunications.

2.2.2 Raw Data Plus 'J' Factor

The next column is identified as Raw Data Plus 'J' Factor. The "J" factor incorporates a management reserve into the final criteria to ensure that adequate processor capacity will be provided. This was computed by multiplying the Average Hour of the Raw Data field times 1.25 to give the Average Hour for the Raw Data Plus 'J' Factor field.

Example:

Raw Data				Raw Data and J Factor			
Avg Hour		Busy Hour		Avg Hour		Busy Hour	
Send	Rec	Send	Rec	Send	Rec	Send	Rec
4195	4738	7551	8528	5233	5922	9437	10659
		times 1.25	times 1.25		times 1.25	1.8	times 1.8

Busy Hour was computed by multiplying the Average Hour by 1.8.

2.2.3 Raw Data Plus 'J' Factor Plus Growth

The third column is labeled Raw Data Plus 'J' Factor Plus Growth. The Growth factor allows for normal growth in traffic volume over the life span of the communications processor, usually considered to be 8 years, and was agreed upon during discussions with the PMO. The Average Hour of the Raw Data Plus

'J' Factor column was multiplied by 1.33 to arrive at the Average Hour for the Raw Data Plus 'J' Factor Plus Growth field.

Example:

Raw Data Plus J Factor				Raw Data Plus J Factor Plus Growth			
Avg Hour		Busy Hour		Avg Hour		Busy Hour	
Send	Rec	Send	Rec	Send	Rec	Send	Rec
5243	5922	9437	10659	6973	7876	12551	14176
		times 1.33				times 1.8	
		times 1.33				times 1.8	

Once again, Busy Hour was computed by multiplying Average Hour times 1.8.

2.2.4 Line Capacity

The fourth column is labeled Line Capacity. It represents the effective circuit throughput and is measured in line blocks per hour. It is computed by using the formula.

Circuit baud rate x hourly seconds x 95 percent = Effective Line Capacity
Line Blocks

Line Blocks Bits

where:

Circuit Baud Rate = self explanatory (i.e., 1200 baud)

Line Block Bits = 800 (80 characters per line block times 10 bits per character)

NOTE: Line blocks as received at the processor from the Terminal Line Controller (TLC) do not have framing characters but do have character start and stop bits. Hence, we use 10-bit characters and 80-character line blocks.

$$\text{Hourly Seconds} = 3600 \ (60 \times 60)$$

95% = Defense Communications Agency (DCA) Standard
for circuit efficiency

Example: Circuit Baud Rate = 1200

Line Block Bits = 800

$$\frac{1200 \times 3600 \times .95}{800} = 5130 \quad \text{Line Blocks Per Hour}$$

Finally, allowances were made for circuit expansion to support new communications requirements. Circuit growth was established by incrementing the number of circuits in the following manner:

1. For 4800 Baud - increase by 15 percent or 1 circuit, whichever is greater
2. For 2400 Baud - increase by 25 percent or 2 circuits, whichever is greater
3. All others - increase by 33 percent or 3 circuits, whichever is greater.

2.3 SITE PERFORMANCE ANALYSIS

The site performance analyses are shown for Scott, Sembach, and Ramstein Air Force bases as Tables 2-1 through 2-3, respectively. The most severe requirements have been abstracted from each site analysis and consolidated into one report. These consolidated requirements are contained in Table 2-4. They will be used as the baseline criteria when formulating the test to determine performance capabilities of the AFAMPE. The use of this information is further discussed in Section 3, Test Methodology.

SECTION 3 - TEST METHODOLOGY

3.1 GENERAL

CSC recognizes the importance of establishing a sound methodology to ensure that the AFAMPE can meet current and future performance requirements. The approach to this critical process is discussed under the following headings:

1. Development of a Performance Test Plan (PTP)
2. Throughput Analysis
3. Performance Testing
4. Development of a Management Plan.

3.2 PERFORMANCE TEST PLAN (PTP)

CSC will produce a PTP that measures the AFAMPE system's capability to satisfy the performance requirements identified in Tables 2-1 through 2-4 and as further discussed in Paragraphs 3.3 (Throughput Analysis) and 3.4 (Performance Testing). Test scenarios will be designed to ensure that the same test, when applied multiple times, produces the same basic results. The PTP will:

1. Provide guidance for management and describe the technical effort necessary throughout the test period
2. Provide an orderly schedule of events, the methodology of testing, and a list of material to be delivered
3. Provide written requirements for the actual test inputs that exercise the system's capability at the different levels of throughput for the average hour, busy hour, and peak 10-minute intervals
4. CSC will develop recommended pass/fail criteria for each testing phase.

3.3 THROUGHPUT ANALYSIS

Throughput analysis deals with individual circuit types and measures the capacity of a particular circuit type without regard to other activity in the system. The results provide for absolute comparisons with, and measurements

of, degradation during later performance testing. For example, it is necessary to know how much traffic can be passed across the multiple AUTODIN circuits by the AFAMPE without competing activity. Throughput analysis will measure this activity. However, these same circuits will be sampled in the performance testing phase to ascertain throughput degradation. The unit of measure will be line blocks per hour (LBH). During individual circuit testing, acceptance is defined as the ability to pass traffic at 98 percent of the line capacity; e.g., 98 percent capacity for a 4800-baud circuit is 20744 LBH.

3.4 PERFORMANCE TESTING

The AFAMPE must be exercised under various loads to measure its capacity to handle average hour, busy hour, and peak 10-minute traffic loads. CSC will quantify the evaluation in addition to merely stating whether the system can or cannot meet the most severe criteria. To ensure this evaluation is realistic, the following items must be considered:

According to the documentation provided, the present AFAMPE testbed has access (for testing purposes) to the following:

1. Two - 4800-baud Mode I circuits into Tinker AUTODIN Switching Center (ASC)
2. One - World Wide Military Command and Control System (WWMCCS) terminal at Scott AFB (1 - 4800-baud REC and 1 - 4800 SEND circuits)
3. One - 2400-baud Mode I terminal (either a Standard Remote Terminal (SRT), Data Communication Terminal (DCT9000) or ~~UNIVAC-8418-3~~)
4. Two - Mode II 50-baud terminals
5. Two - Mode II 75-baud terminals.

NOTE: If both ASC circuits are active, the 2400-baud circuit cannot be active. Only two Mode I circuits can be active during a given period.

Patently, the present AFAMPE testbed cannot be exactly configured to duplicate any of the sites being modeled. The PMO has informed us that the following devices are or may be available during the test phase:

1. Two - Dynatest machines which can simulate Mode 11 interfaces
2. Possible use of a Perkin Elmer 7/32 as a software driver into the 3242.

Because additional simulation devices are unlikely, the performance tests will be structured carefully to utilize available devices to satisfy the test requirements.

It is highly unlikely 10 consecutive days of test time will be available at the Air Force Communications Computer Programming Center (AFCCPC) testbed due to scheduling conflicts. Accordingly, the test scenarios will be developed to allow a multiphased testing process that will be accomplished concurrently with the 3242 system development. The scheduling of these phases will be by mutual agreement of the PMO, CSC, and AFCCPC test facility. They are as follows:

1. PHASE I: AFCCPC personnel will exercise selected scenarios during different stages of system development. The results will be maintained for later analysis and verification.
2. PHASE II: Selected scenarios from previous tests will be exercised and matched against previous results to ensure test integrity. Once accomplished, additional scenarios will be applied to ensure individual site performance requirements as shown in Tables 2-1 through 2-3 are met. This testing will be performed by the test team in the presence of the Test Director and with CSC personnel assistance.
3. PHASE III: Once acceptable results have been obtained from the Phase II process, the AFAMPE will be tested to meet the performance requirements as shown in Table 2-4. This final set of scenarios, if successful, will provide a level of assurance for future growth of the AFAMPE not presently envisioned.

3.5 MANAGEMENT PLAN

CSC will develop a test management plan which will become part of the PTP. The management plan will include the following:

1. Test Schedule - A schedule of events associated with the PTP
2. Definition of Responsibility - The responsibilities of each organization participating in the test will be clearly defined
3. Controls - Procedures will be established which will allow the test team to exercise precise control over the test procedures and the authority to correct any identified discrepancies
4. Reporting Requirements - Required reports will be identified with responsible organization. Additionally, the required forms to support the entire test plan will be identified.

**EN
DATE
ILME**