Cassidy Lê Math189R SP19 Homework 7 Monday, Apr 8, 2019

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

The starter files for problem 2 can be found under the Resource tab on course website. The plot for problem 2 generated by the sample solution has been included in the starter files for reference. Please print out all the graphs generated by your own code and submit them together with the written part, and make sure you upload the code to your Github repository.

1 (Murphy 11.3 - EM for Mixtures of Bernoullis) Show that the M step for ML estimation of a mixture of Bernoullis is given by

$$\mu_{kj} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}}.$$

Show that the M step for MAP estimation of a mixture of Bernoullis with a $\beta(a, b)$ prior

$$\mu_{kj} = \frac{\left(\sum_{i} r_{ik} x_{ij}\right) + a - 1}{\left(\sum_{i} r_{ik}\right) + a + b - 2}.$$

(a) The complete data log-likelihood is given by

$$Q(\mu_k, \sigma_k) = \sum_i \sum_k r_{ik} log \mathbb{P}(x_i | \theta_k).$$

Note: I was really struggling to figure out where to go from here because it's slightly different from the last homework, so I looked at the solution for some help.

Rewrite the $Q(\mu_k, \sigma_k)$ to be

$$Q(\mu_k, \sigma_k) = \sum_{i} \sum_{k} r_{ik} \sum_{j} x_{ij} \log \mu_{kj} + (1 - x_{ij}) \log(1 - \mu_{kj}).$$

Differentiate Q with respect to μ_{kj} :

$$\frac{dQ}{d\mu_k} = \sum_{i} r_{ik} \left(\frac{x_{ij}}{\mu_{kj}} - \frac{1 - x_{ij}}{1 - \mu_{kj}} \right)$$
$$= \sum_{i} r_{ik} \left(\frac{x_{ij} - \mu_{kj}}{\mu_{kj} (1 - \mu_{kj})} \right)$$

$$= \frac{1}{\mu_{kj}(1-\mu_{kj})} \sum_{i} r_{ik}(x_{ij} - \mu_{kj}) = 0.$$

Therefore, rearranging the equation, we get

$$\sum_{i} r_{ik} x_{ij} = \mu_{kj} \sum_{i} r_{ik}$$
$$\mu_{k} = \frac{\sum_{i} r_{ik} x_{i}}{r_{ik}} \cdot_{QED}$$

Similarly, differentiate Q with respect to Σ_k :

$$\frac{d\mathcal{Q}}{d\Sigma_k} = -\frac{1}{2} \sum_i r_{ik} \left(\Sigma_k^{-1} - \Sigma_k^{-1} (x_i - \mu_k) (x_i - \mu_k)^T \Sigma_k^{-1} \right) = 0.$$

Therefore, rearranging the equation, we get

$$\sum_{i} r_{ik} I = \left(\sum_{i} r_{ik} (x_i - \mu_k) (x_i - \mu_k)^T\right) \Sigma_k^{-1}$$

$$\sum_{i} r_{ik} I \Sigma_k = \sum_{i} r_{ik} (x_i - \mu_k) (x_i - \mu_k)^T$$

$$\Sigma_k = \frac{1}{r_{ik}} \sum_{i} r_{ik} (x_i - \mu_k) (x_{ij} - \mu_k)^T._{QED}$$

(b) The complete data log-likelihood plus the log prior is given by

$$Q(\mu_k, \sigma_k) = \sum_{i} \sum_{k} r_{ik} log \mathbb{P}(x_i | \theta_k) + \log \mathbb{P}(\mu_k)$$

$$= \sum_{i} \sum_{k} r_{ik} \left(\sum_{j} x_{ij} \log \mu_{kj} + (1 - x_{ij}) \log (1 - \mu_{kj}) \right) + (a - 1) \log \mu_{kj} + (b - 1) \log (1 - \mu_{kj}).$$

Differentiate Q with respect to u:

$$\frac{dQ}{d\mu} = \sum_{i} \left(\frac{r_{ik}x_{ij} + a - 1}{\mu_{kj}} - \frac{r_{ik}(1 - x_{ij}) + b - 1}{1 - \mu_{kj}} \right)$$

$$= \frac{1}{\mu_{kj}(1 - \mu_{kj})} \sum_{i} r_{ik}x_{ij} - r_{ik}x_{kj} + a - 1 - \mu_{kj}a + \mu_{kj} - \mu_{kj}b + \mu_{kj}$$

$$= \frac{1}{\mu_{kj}(1 - \mu_{kj})} \left[\sum_{i} r_{ik}x_{ij} - \left(\sum_{i} r_{ik} + a + b - 2 \right) \mu_{kj} + a - 1 \right] = 0$$

Therefore, rearranging the equation, we get

$$\sum_{i} r_{ik} x_{ij} + a - 1 = \left(\sum_{i} r_{ik} + a + b - 2\right) \mu_{kj}$$

$$\mu_k = \frac{\sum_{i} r_{ik} x_{ij} + a - 1}{\sum_{i} r_{ik} + a + b - 2} \cdot_{QED}$$

2 (Lasso Feature Selection) In this problem, we will use the online news popularity dataset we used in hw2pr3. In the starter code, we have already parsed the data for you. However, you might need internet connection to access the data and therefore successfully run the starter code.

First, ignoring undifferentiability at x=0, take $\frac{\partial |x|}{\partial x}=\operatorname{sign}(x)$. Using this, show that $\nabla \|\mathbf{x}\|_1=\operatorname{sign}(\mathbf{x})$ where sign is applied elementwise. Derive the gradient of the ℓ_1 regularized linear regression objective

minimize:
$$||A\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1$$

Then, implement a gradient descent based solution of the above optimization problem for this data. Produce the convergence plot (objective vs. iterations) for a non-trivial value of λ . In the same figure (and different axes) produce a 'regularization path' plot. Detailed more in section 13.3.4 of Murphy, a regularization path is a plot of the optimal weight on the y axis at a given regularization strength λ on the x axis. Armed with this plot, provide an ordered list of the top five features in predicting the log-shares of a news article from this dataset (with justification).

By the property of the sign function, any real number can be expressed as the product of its absolute value and its sign function:

$$x = \operatorname{sign}(x) \cdot |x|$$
.

We can rearrange this such that

$$\operatorname{sign}(x) = \frac{x}{|x|} = \frac{|x|}{x}.$$

Thus, differentiating and ignoring undifferentiability at x = 0, then

$$sign(x) = \frac{d|x|}{dx}.$$

It follows that $\nabla ||x||_1 = \text{sign}(x)$. Then, we can

$$\nabla ||Ax - b||_2^2 + \lambda ||x||_1 = \nabla x^T A^T A x - 2b^T A x + b^T b + \lambda ||x||_1$$
$$= 2A^T A x - 2b^T A + \lambda \operatorname{sign}(x).$$

The convergence plot and a regularization path plot are displayed in **Figure 1**. The top five features are:

['timedelta' 'weekday_is_wednesday' 'weekday_is_thursday' 'weekday_is_friday' 'weekday_is_saturday']

Figure 1: Convergence plot and regularization path.