

Feature-based Time Series Forecasting

Thiyanga Talagala, Rob J Hyndman, George Athanasopoulos, Feng Li, Yanfei Kang

11 July 2019

Big picture

■ What algorithm is likely to perform best?

Big picture

- What algorithm is likely to perform best?
- Algorithm selection problem, John Rice (1976)

Time series features

■ Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.

Time series features

■ Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.

Time series features

■ Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.

More features

- length
- strength of seasonality
- strength of trend
- linearity
- curvature
- spikiness
- stability
- lumpiness
- spectral entropy
- Hurst exponent
- nonlinearity

- unit root test statistics
- parameter estimates of Holt's linear trend method
- parameter estimates of Holt-Winters' additive method
- ACF and PACF based features calculated on raw, differenced, seasonally-differenced series and remainder series.

FFORMS: Feature-based FORecast Model Selection

two algorithms: FFORMS, FFORMPP

FFORMPP: Feature-based FORecast Model Performance Prediction

■ two algorithms: FFORMS, FFORMPP

seer R package

Installation

```
devtools::install_github("thiyangt/seer")
library(seer)
```


seer R package

Installation

```
devtools::install_github("thiyangt/seer")
library(seer)
```


Example dataset

observed time series - M1 yearly series (181)

```
library(Mcomp)
yearlym1 <- subset(M1, "yearly")</pre>
```

seer R package

Installation

```
devtools::install_github("thiyangt/seer")
library(seer)
```


Example dataset

observed time series - M1 yearly series (181)

```
library(Mcomp)
yearlym1 <- subset(M1, "yearly")</pre>
```

Input: features

```
cal_features(yearlym1[1:2], database="M1",
h=6, highfreq=FALSE)
```

```
# A tibble: 2 x 25
 entropy lumpiness stability hurst trend spikiness linearity curvature
             <dbl>
                      <dbl> <dbl> <dbl>
   <dbl>
                                          <dbl>
                                                    <dbl>
                                                             <dbl>
   0.683 0.0400 0.977 0.985 0.985 1.32e-6 4.46
                                                             0.705
   0.711 0.0790 0.894 0.988 0.989 1.54e-6 4.47
                                                             0.613
# ... with 17 more variables: e acf1 <dbl>, y acf1 <dbl>,
#
   diff1y_acf1 <dbl>, diff2y_acf1 <dbl>, y_pacf5 <dbl>,
#
   diff1y pacf5 <dbl>, diff2y pacf5 <dbl>, nonlinearity <dbl>,
#
   lmres acf1 <dbl>, ur pp <dbl>, ur kpss <dbl>, N <int>, y acf5 <dbl>,
#
   diff1v acf5 <dbl>, diff2v acf5 <dbl>, alpha <dbl>, beta <dbl>
```

Output: class labels

[6,] 710485.7 472802.0

```
seer::fcast_accuracy(tslist=yearlym1[1:2],
                    models= c("arima"."ets"."rw". "theta". "nn").
                    database ="M1", cal MASE, h=6,
                    length_out = 1,
                    fcast save = TRUE)
$accuracy
       arima ets rw theta
YAF2 10.527612 10.319029 13.52428 12.088375 11.78891
YAF3 5.713867 7.704409 7.78949 6.225463 6.70074
$ARIMA
                 YAF2
                                       YAF3
"ARIMA(0,1,0) with drift" "ARIMA(0,1,1) with drift"
$ETS
      YAF2
                YAF3
"ETS(A.A.N)" "ETS(M.A.N)"
$forecasts
$forecasts$arima
       YAF2
           YAF3
[1.] 579581.0 390955.9
[2,] 605761.9 407325.1
[3,] 631942.9 423694.4
[4,] 658123.8 440063.6
[5,] 684304.8 456432.8
```

Output: class labels

[2,] 605761.9 407325.1 [3,] 631942.9 423694.4 [4,] 658123.8 440063.6 [5,] 684304.8 456432.8

[6,] 710485.7 472802.0

```
$accuracy
        arima ets rw theta
YAF2 10.527612 10.319029 13.52428 12.088375 11.78891
YAF3 5.713867 7.704409 7.78949 6.225463 6.70074
$ARIMA
                   YAF2
                                            YAF3
"ARIMA(0,1,0) with drift" "ARIMA(0,1,1) with drift"
$ETS
       YAF2
                  YAF3
"ETS(A.A.N)" "ETS(M.A.N)"
$forecasts
$forecasts$arima
        YAF2
             YAF3
[1.] 579581.0 390955.9
```

MASE $q_t = \frac{e_t}{\frac{1}{n-1}\sum_{i=2}^{n}|Y_i - Y_{i-1}|}$ $MASE = mean(|q_t|)$

Training set

```
prepare_trainingset(accuracy_set = accuracy_m1,
feature_set = features_m1)$trainingset
```

```
# A tibble: 2 x 26
 entropy lumpiness stability hurst trend spikiness linearity curvature
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                   <dbl>
                                                             dbl>
   0.683 0.0400 0.977 0.985 0.985 1.32e-6 4.46
                                                            0.705
1
   0.711 0.0790 0.894 0.988 0.989 1.54e-6 4.47
                                                            0.613
# ... with 18 more variables: e_acf1 <dbl>, y_acf1 <dbl>,
#
   diff1y acf1 <dbl>, diff2y acf1 <dbl>, y pacf5 <dbl>,
   diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#
#
   lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#
   diff1y acf5 <dbl>, diff2y acf5 <dbl>, alpha <dbl>, beta <dbl>,
#
   classlabels <chr>
```

FFORMS classifier

Predictions

```
head(rf$predictions)
```

```
## 1 2 3 4 5 6
## ETS-trend rwd rwd rwd rwd
## 10 Levels: ARIMA ARMA/AR/MA ETS-dampedtrend ... wn
```

FFORMS classifier

rf\$randomforest

```
## randomForest(formula = classlabels ~ ., data = training_set,
## importance = import, ntree = ntree, mtry = mtry)
```

Pre-trained classifiers

Load FFORMS classifier for hourly series

```
data("hourly_fforms")
```

Pre-trained classifiers

1

Load FFORMS classifier for hourly series

```
data("hourly_fforms")
```

Forecast hourly time series in the M4-competition

```
fcast.models <- predict(hourly_fforms, features_M4H)
head(fcast.models)</pre>
```

3 4

5

6

Yearly: Correlation between MASE values across different forecast-models

FFORMPP: Feature-based FORecast Model Performance Prediction

- Efficient Bayesian Multivariate Surface Regression (Feng Li & Mattias Villani, 2013)
 - handles interactions and nonlinear relationships
 - allows the knot locations to move freely in the feature space

fformpp R package

Installation

```
devtools::install_github("thiyangt/fformpp")
library(fformpp)
```

Train a model

FFORMPP: online phase

```
## ets arima rw rwd wn theta nn ## [1,] 5.015336 5.065616 5.149868 4.293450 16.681046 4.316341 4.554838 ## [2,] 1.990880 1.831033 1.830689 2.010443 7.845106 1.434183 2.864783 ## [3,] 3.825084 3.284397 3.893553 3.876207 12.867128 3.279123 2.885896 ## [4,] 2.169089 3.162256 2.178721 2.481028 3.126736 2.216428 1.832553 ## [5,] 5.199962 3.970234 4.630903 4.174412 15.631346 4.101041 5.765485 ## [6,] 4.295996 4.494820 5.135292 3.523215 16.085372 4.021210 3.916389
```

Results: M4 Competition data

	Yearly	Quarterly	Monthly	Weekly	Daily	Hourly
FFORMS_individual	3.17	1.20	0.98	2.31	3.57	0.84
FFORMPP_combination	3.07	1.13	0.89	2.46	3.62	0.96
auto.arima	3.40	1.17	0.93	2.55	-	-
ets	3.44	1.16	0.95	-	-	-
theta	3.37	1.24	0.97	2.64	3.33	1.59
rwd	3.07	1.33	1.18	2.68	3.25	11.45
rw	3.97	1.48	1.21	2.78	3.27	11.60
nn	4.06	1.55	1.14	4.04	3.90	1.09
stlar	-	2.02	1.33	3.15	4.49	1.49
snaive	-	1.66	1.26	2.78	24.46	2.86
tbats	-	1.19	1.05	2.49	3.27	1.30
wn	13.42	6.50	4.11	49.91	38.07	11.68
mstlarima	-	-	-	-	3.84	1.12
mstlets	-	-	-	-	3.73	1.23
combination (mean)	4.09	1.58	1.16	6.96	7.94	3.93
M4-1st	2.98	1.12	0.88	2.36	3.45	0.89
M4-2nd	3.06	1.11	0.89	2.11	3.34	0.81
M4-3rd	3.13	1.23	0.95	2.16	2.64	0.87

Thank you

R packages and papers

R packages

seer: FFORMS

github.com/thiyangt/seer

■ fformpp: FFORMPP

github.com/thiyangt/fformpp

Papers and Slides

thiyanga.netlify.com/talk/user19-talk/

email: thiyanga.talagala@monash.edu