The circuit in Fig below can be can be consider to be an extension of the circuit in Fig. 2.8

(a) Find the resistance looking into node 1, 2, 3, 4. Ans:

$$\begin{split} R_1 &= R \\ R_2 &= (R||R) + R/2 = R \\ R_3 &= (R||R) + R/2 = R \\ R_4 &= (R||R) + R/2 = R \end{split}$$

(b) Find the currents I_1, I_2, I_3, I_4 , in terms of I Ans:

$$\begin{split} I_1 &= IR/R = I \\ I_2 &= ((I+I_1)(R/2) + IR)/R = 2I \\ I_3 &= (4IR/2 + 2IR)/R = 4I \\ I_4 &= (8IR/2 + 4IR)/R = 8I \end{split}$$

(c) Find the voltages at node 1, 2, 3, 4. Ans:

$$V_1 = IR$$

$$V_2 = V_1 + 2IR/2 = 2IR$$

$$V_3 = V_2 + 4IR/2 = 4IR$$

$$V_4 = V_3 + 8IR/2 = 8IR$$

The circuit below utilizes an ideal op amp.

(a) Find I_1, I_2, I_3, V_x Ans:

$$\begin{split} I_1 &= 1 \text{V}/10 \text{k}\Omega = 0.1 \text{mA} \\ I_2 &= I_1 = 0.1 \text{mA} \\ V_x &= 0 - (0.1 \text{mA})(10 \text{k}\Omega) = -1 \text{V} \\ I_3 &= 1/100\Omega = 10 \text{mA} \end{split}$$

(b) If V_O is not to be lower than $-13\mathrm{V},$ find the maximum allowed value of R_L Ans:

$$\begin{split} V_O &= V_x + R_L I_L = V_x + R_L (I_2 + I_3) \\ &= -1 \mathbf{V} - (10.1 \mathrm{mA}) R_L \end{split}$$

SO

$$R_L \le 12 \mathrm{V}/10.1 \mathrm{mA} \approx 1.19$$

(c) If R_L is varied in the range 100Ω to $1\text{k}\Omega$, what is the corresponding change in I_L and in V_O ? I_L would not change

$$V_O|_{R_L=100\Omega}=2.02{\rm V}, V_O|_{R_L=1{\rm k}\Omega}=11.2{\rm V}$$

3 2.37

Figure P2.37 shows a circuit for a digital-to-analog converter. Show that v_O is given by

$$v_O = -\frac{R_f}{16} \sum_{i=0}^3 2^i a_i$$

Figure shows a circuit that provides an output voltage v_o whose value can be varied by turning the wiper of the $100\mathrm{k}\Omega$ potentiometer. Find the range over which v_o can be varied. If the potentiometer is a "20-turn" device, find the change in v_o corresponding to each turn of the pot.

5 2.63

For an instrumentation amplifier of the type shown in Fig 2.20(b), a designer proposes to make $R_2 = R_3 = R_4 = 100 \mathrm{k}\Omega$ and $2R_1 = 10 \mathrm{k}\Omega$. For ideal components, what difference-mode gain, common-mode gain, and CMRR result? Reevaluate the worst-case values for these for the situation in which all resistors are specified as $\pm 1\%$ units. Repeat the latter analysis for the case in which $2R_1$ is reduced to $1\mathrm{k}\Omega$. What do you conclude about the importance of the relative difference gains of the first and second stages?

$6 \quad 2.65$

The circuit shown in Fig is intended to supply a voltage to floating loads (those for which both terminals are ungrounded) while making possible use of available power supply.

The two circuits in Fig are intended to function as voltage-to-current converters; that is, they supply the load impedance Z_L with a current proportional to v_I and independent of the value of Z_L . Show that this is indeed the case, and find for each circuit i_o as a function of v_I . Comment on the differences between the two circuits.

8 2.69

An op-amp-based inverting integrator is measured at 1kHz to have a voltage gain of -100V/V. At what frequency is its gain reduced to -1V/V? What is the integrator time constant?

Derive the transfer function of the circuit in Fig and show that it can be written in the form

$$\frac{V_o}{V_i} = \frac{-R_2/R_1}{\left(1 + (\omega_1/(\mathrm{i}\omega))\right)\left(1 + (\omega/(\mathrm{i}\omega_2))\right)}$$

$10 \quad 2.100$

A designer, wanting to achieve a stable gain of $100\mathrm{V/V}$ at 5MHz, considers her choice of amplifier topologies. What unity-gain frequency would a single operational amplifier require to satisfy her need? Unfortunately, the best available amplifier has an f_t of 40MHz. How many such stages would she need to achieve her goal? What is the 3dB frequency of each stage she can use? What is the overall 3dB frequency?

$11 \quad 2.102$

Consider an inverting summer with two inputs V_1 and V_2 and with $V_O = -(V_1 + V_2)$. Find the 3dB frequency of each of the gain functions V_o/V_1 and V_o/V_2 in terms of the opamp f_1 .

$12 \quad 2.104$

An op amp having a slew rate of $20V/\mu s$ is to be used in the unity-gain follower configuration, with input pulses that rise from 0 to 3V. What is the shortest pulse that can be used while ensuring full-amplitude output? For such a pulse, describe the outputing resulting.