Let $\varepsilon>0$ and $f\in\mathcal{C}(|a,b|)$ with $a,b\in\mathbb{R}$, we want $N\in\mathbb{N}$ and $p\in\mathcal{P}(N,1)$ such that $||p - f||_{\infty} < \varepsilon$

If $p \in \mathcal{P}(N,1)$, then

$$p(x) = \xi + \sum_{k=0}^{N-1} \gamma_k (lpha_k x + eta_k)_+$$

where $(x)_+$ is ReLU(x).

All we need to do is to find the right coefficients $\xi, \alpha_k, \beta_k, \gamma_k (0 \leq k < N)$ such that $|f(x)-p(x)|<arepsilon\quad (\forall x\in [a,b]).$

Since f is continuous on a compact set, so f is uniformly continuous. Thus, $\forall x_1, x_2 \in [a, b]$, $\exists \delta > 0$ such that

$$|x_1-x_2|<\delta \implies |f(x_1)-f(x_2)|<\varepsilon$$

Let $c_0=a$ and $c_{i+1}=c_i+\delta$. Let $N\in\mathbb{N}$ be such that $c_N\geq b$ and redefine $c_N=b$.

Take:

- $\alpha_k = 1 \quad (0 \le k < N)$
- $egin{aligned} ullet eta_k &= -c_k \quad (0 \leq k < N) \ ullet ilde{\gamma_k} &= rac{f(c_{k+1}) f(c_k)}{c_{k+1} c_k} \quad (0 \leq k < N) \end{aligned}$
- $\gamma_k = \tilde{\gamma_{k+1}} \tilde{\gamma_k}$ (0 < k < N)
- $\xi = f(a)$

Thus,

$$p(x)=\xi+\sum_{k=0}^{N-1}\gamma_k(lpha_kx+eta_k)_+$$

becomes

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (x - c_k)_+$$

Claim: If $x \in [c_n, c_{n+1}]$, then $p(x) = f(c_n) + \tilde{\gamma_n}(x - c_n)$.

1 of 4

Proof:

Case k=0:

Let $x \in [c_0, c_1]$, then:

$$p(x)=f(a)+\sum_{k=0}^{N-1}\gamma_k(x-c_k)_+$$

since
$$x \leq c_1$$
, $(x-c_k)_+ = 0 \quad \forall k > 0$, and $(x-c_k)_+ = x-c_k$:

$$p(x) = f(a) + \gamma_0(x - c_0)$$

as $ilde{\gamma_0}=\gamma_0$ and $a=c_0$, we finally have $p(x)=f(a)+ ilde{\gamma_0}(x-c_0)$, as expected.

2 of 4 1/26/2023, 4:17 PM

Recursion:

ullet Suppose that if $x\in [c_n,c_{n+1}]$, then $p(x)=f(c_n)+ ilde{\gamma_n}(x-c_n)$.

• We want to show that if $x \in [c_{n+1}, c_{n+2}]$, then $p(x) = f(c_{n+1}) + \tilde{\gamma_{n+1}}(x - c_{n+1})$.

Let $x \in [c_{n+1}, c_{n+2}]$, let's calculate p(x):

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (x - c_k)_+$$

if k>n+1, then $c_k\geq x$, so $(x-c_k)_+=0$; similarly, if $k\leq n+1$, then $c_k< x$, so $(x-c_k)_+=x-c_k$ thus:

$$p(x) = f(a) + \sum_{k=0}^{n+1} \gamma_k (x - c_k)$$

Now, let's split $(x - c_k)$ to $(x - c_{n+1}) + (c_{n+1} - c_k)$:

$$p(x) = f(a) + \sum_{k=0}^{n+1} \gamma_k (x - c_{n+1}) + \sum_{k=0}^{n+1} \gamma_k (c_{n+1} - c_k)$$

We can add again $(c_{n+1} - c_k)_+$ for n+1 < k < N (this is just adding zeros) to the second sum to make $p(c_{n+1})$ appear:

$$p(x) = f(a) + \sum_{k=0}^{N-1} \gamma_k (c_{n+1} - c_k) + \sum_{k=0}^{n+1} \gamma_k (x - c_{n+1})$$
$$= f(c_{n+1}) + \sum_{k=0}^{n+1} \gamma_k (x - c_{n+1})$$

Now, $\gamma_k = ilde{\gamma_k} - \gamma_{k-1} \quad 0 < k < N$ and $ilde{\gamma_0} = \gamma_0$, so:

$$p(x) = f(c_{n+1}) + \gamma_0(x - c_{n+1}) + \sum_{k=1}^{n+1} (\tilde{\gamma_k} - \tilde{\gamma_{k-1}})(x - c_{n+1})$$

This is a telescoping series, after simplification, we have:

$$p(x) = f(c_{n+1}) + \tilde{\gamma_{n+1}}(x - c_{n+1})$$

Which is what we expected.

Conclusion:

$$\forall 0 \leq n < N$$
, if $x \in [c_n, c_{n+1}]$, then $p(x) = f(c_n) + \tilde{\gamma_n}(x - c_n)$

3 of 4 1/26/2023, 4:17 PM

Take $x \in [c_n, c_{n+1})$, then we have:

•
$$|c_n - x| < \delta$$
, so $|f(x) - f(c_n)| < \varepsilon$

WLOG, take $f(c_n) \leq f(c_{n+1})$:

•
$$f(c_n) \leq p(x) \leq f(c_{n+1})$$
 and $|f(c_{n+1}) - f(c_n)| \leq arepsilon$ so $|p(x) - f(c_n)| \leq arepsilon$

This means that:

$$|f(x) - p(x)| = |f(x) - f(c_n) + f(c_n) - p(x)|$$

 $\leq |f(x) - f(c_n)| + |p(x) - f(c_n)|$
 $< \varepsilon + \varepsilon = 2\varepsilon$

This is true $\forall \, 0 \leq n < N, \, \forall \, x \in [c_n, c_{n+1})$, it is true $\forall \, x \in [a,b)$. Moreover, p(b) = f(b) (from the property above), so $|f(x) - p(x)| < 2\varepsilon$ on all of [a,b], that is:

$$||f-p||_{\infty} < 2\varepsilon$$

Now, taking $\epsilon=\frac{1}{2}arepsilon$, we get $||f-p||_{\infty}<\epsilon$ with the same reasoning.

Hence, f can be ϵ approximated by a single hidden layer preceptron.

4 of 4