ASSIGNMENT – IV

TEAM ID: PNT2022TMID23457

Write code and connections in wokwi for ultrasonic sensors.

Whenever distance is less than 100cms send "alert" to ibm cloud and display d evice recent events.

Code:

```
#include <WiFi.h>
#include < PubSubClient.h >
WiFiClient wifiClient;
String data3;
#define ORG "4yi0vc"
#define DEVICE_TYPE "nodeMcu"
#define DEVICE_ID "Assignment4"
#define TOKEN "123456789"
#define speed 0.034
#define led 14
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char topic[] = "iot-2/cmd/home/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":"
DEVICE_ID; PubSubClient client(server, 1883, wifiClient);
void publishData();
const int trigpin=5;
const int echopin=18;
String command;
String data="";
long duration;
float dist;
```

```
void setup()
{
 Serial.begin(115200);
 pinMode(led, OUTPUT);
 pinMode(trigpin, OUTPUT);
 pinMode(echopin, INPUT);
 wifiConnect();
 mqttConnect();
void loop() {
 bool is Nearby = dist < 100;
 digitalWrite(led, isNearby);
 publishData();
 delay(500);
if (!client.loop()) {
  mqttConnect();
void wifiConnect() {
 Serial.print("Connecting to "); Serial.print("Wifi");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED) {
  delay(500);
  Serial.print(".");
 Serial.print("WiFi connected, IP address: "); Serial.println(WiFi.localIP());
}
void mqttConnect() {
 if (!client.connected()) {
```

```
Serial.print("Reconnecting MQTT client to "); Serial.println(server);
  while (!client.connect(clientId, authMethod, token)) {
  Serial.print(".");
   delay(500);
  }
  initManagedDevice();
  Serial.println();
void initManagedDevice() {
 if (client.subscribe(topic)) {
  / Serial.println(client.subscribe(topic));
  Serial.println("IBM subscribe to cmd OK");
 } else {
  Serial.println("subscribe to cmd FAILED");
 }
void publishData()
 digitalWrite(trigpin,LOW);
 digitalWrite(trigpin,HIGH);
 delayMicroseconds(10);
 digitalWrite(trigpin,LOW);
 duration=pulseIn(echopin,HIGH);
 dist=duration*speed/2;
 if(dist<100){
  String payload = "{\"Normal Distance\":";
  payload += dist;
  payload += "}";
  Serial.print("\n");
```

```
Serial.print("Sending payload: ");
 Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
  Serial.println("Publish OK");
 }
 }
 if(dist>101 && dist<111){
 String payload = "{\"Alert distance\":";
 payload += dist;
 payload += "}";
 Serial.print("\n");
 Serial.print("Sending payload: ");
 Serial.println(payload);
 if(client.publish(publishTopic, (char*) payload.c_str())) {
  Serial.println("Warning crosses 110cm -- it automaticaly of the
  loop"); digitalWrite(led,HIGH);
 }else {
  Serial.println("Publish FAILED");
void callback(char* subscribeTopic, byte* payload, unsigned int
payloadLength){ Serial.print("callback invoked for topic:");
Serial.println(subscribeTopic);
for(int i=0; i<payloadLength; i++){
 dist += (char)payload[i];
Serial.println("data:"+ data3);
if(data3=="lighton"){
Serial.println(data3);
digitalWrite(led,HIGH);
```

```
}
data3="";
}
```

Output:

1) When Distance < 100 cm, it will show normal distance.

2) When distance > 100cm <110cm, alert with warning message occurs.


```
Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop

Sending payload: {"Alert distance":106.98}
Narning crosses 110cm -- it automaticaly of the loop
```

3) When distance>110cm, totally moves to iff state.

IBM Cloud Output:

Recent Events The recent events listed above the live stream of data that is coming and going from this device. Event Value Format Last Received Data ("Normat Distance":89.95) jeon a few seconds ago Data ("Normat Distance":89.95) jeon a few seconds ago

vent	Value	Format	Last Received
ata	("Alert distance":106.98)	json	a few seconds ago
ata	("Alert distance":107.03)	json	a few seconds ago
ata	("Alert distance":106.98)	json	a few seconds ago
ita	["Alert distance":106.98]	json	a few seconds ago
ata	("Alert distance":106.98)	json	a few seconds ago

Recent Events

Recent Events

The recent events listed show the live stream of data that is coming and going from this device.

Event	Value	Format	Last Received
Data	{"Normal Distance":92.99}	json	a few seconds ago
Data	{"Normal Distance":92.99}	json	a few seconds ago
Data	{"Normal Distance":92.99}	json	a few seconds ago
Data	{"Normal Distance":92.99}	json	a few seconds ago
Data	{"Normal Distance":92.99}	json	a few seconds ago