Grenzwerte von Funktionen

Jendrik Stelzner

22. Dezember 2014

Inhaltsverzeichnis

1	Häufungspunkte	1
2	Grenzwerte von Funktionen	2
3	Links- rechts- und beidseitige Grenzwerte	4
4	Uneigentliche Grenzwerte	5
5	Lösungen der Übungen	6

1 Häufungspunkte

Es sei $A\subseteq\mathbb{R}^n$ und $f\colon A\to\mathbb{R}$. Wir wollen untersuchen, wie sich f an einer Stelle $x\in\mathbb{R}^n$ verhält, bzw. verhalten sollte. Damit es Sinn ergibt, dass Verhalten von f an x zu untersuchen, brauchen wir, dass f "in der Nähe" von x definiert ist. Dies motiviert die folgende Definition:

Definition 1. Es sei $A \subseteq \mathbb{R}^n$. Ein Punkt $x \in \mathbb{R}^n$ heißt *Häufungspunkt von A*, falls es für alle $\varepsilon > 0$ ein $a \in A$ mit $||x - a|| < \varepsilon$ und $x \neq a$ gibt.

Wir bezeichnen die Menge aller Häufungspunkte von A mit A'.

Vorstellungsmäßig ist $x \in \mathbb{R}^n$ ein Häufungspunkt von $A \subseteq \mathbb{R}^n$, falls sich x von außen durch Punkte aus A annähern lässt.

- Beispiel(e). x=0 ist ein Häufungspunkt von $A\coloneqq\{1/n\mid n\geq 1\}\subseteq\mathbb{R}$: Da $\lim_{n\to\infty}1/n=0$ gibt es für jedes $\varepsilon>0$ ein $n\geq 1$ mit $|x-1/n|<\varepsilon$, wobei klar ist, dass $1/n\neq 0$.
 - Der Punkt x=2 ist kein Häufungspunkt der Menge $A\coloneqq [0,1]\cup\{2\}\subseteq\mathbb{R}$, denn das einzige $a\in A$ mit |x-a|<1/2 ist a=2.
 - Ist $U\subseteq\mathbb{R}^n$ offen, so ist jeder Punkt $x\in U$ ein Häufungspunkt von U: Da U offen ist, gibt es ein $\delta>0$ mit $B_\delta(x)\subseteq U$. Für jedes $\varepsilon>0$ gibt es für $\omega:=\min\{\varepsilon,\delta\}$ daher ein

$$y \in B_{\omega}(x) \subseteq B_{\delta}(x) \subseteq U \quad \text{mit } y \neq x,$$

und es gilt $||x - y|| < \omega \le \varepsilon$.

• Allgemeiner ergibt sich mit dieser Argumentation, dass $x\in\mathbb{R}^n$ ein Häufungspunkt von $V\subseteq\mathbb{R}^n$ ist, falls V eine Umgebung von x ist.

Übung 1.

Es sei $A \subseteq \mathbb{R}^m$ und $x \in \mathbb{R}^m$. Zeigen Sie, dass x genau dann ein Häufungspunkt von A ist, falls es eine Folge $(a_n)_{n \in \mathbb{N}}$ auf $A \setminus \{x\}$ gibt, so dass $a_n \to x$.

Übung 2.

Es sei $M \subseteq \mathbb{R}^n$ endlich. Zeigen Sie, dass $M' = \emptyset$.

Übung 3.

Bestimmen Sie \mathbb{Z}' .

Übung 4.

Es seien $A, B \subseteq \mathbb{R}$. Zeigen Sie:

- 1. Ist $A \subseteq B$, so ist $A' \subseteq B'$.
- 2. Es ist $(A \cup B)' = A' \cup B'$.

Übung 5.

Bestimmen Sie A' für $A := [0, 1] \cup [2, 3]$.

Beweis. Wir zeigen zunächst, dass für alle $a, b \in \mathbb{R}$ mit a < b

$$[a,b]' = [a,b].$$

2 Grenzwerte von Funktionen

Definition 2. Es sei $A\subseteq\mathbb{R}$ und $x\in\mathbb{R}$ ein Häufungspunkt von A. Für $y\in\mathbb{R}$ schreiben wir

$$\lim_{\substack{a \to x \\ a \in A}} f(a) = y,$$

falls es für jedes $\varepsilon>0$ ein $\delta>0$ gibt, so dass

$$|x-a|<\delta \Rightarrow |f(x)-f(a)|<\varepsilon \quad \text{für alle } a\in A \text{ mit } a\neq x.$$

Wir nennen y dann den Grenzwert von f an x über A.

Beispiel(e). • Wir betrachten die Signumabbildung

$$\mathrm{sgn} \colon \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} -1 & \text{falls } x < 0, \\ 0 & \text{falls } x = 0, \\ 1 & \text{falls } x > 0. \end{cases}$$

Der Punkt 0 ist ein Häufungspunkt von $(-\infty,0)$ und $(0,\infty)$, und es ist

$$\lim_{\begin{subarray}{c} x\to 0\\ x\in (-\infty,0)\end{subarray}} f(x)=-1,\quad \text{und}\quad \lim_{\begin{subarray}{c} x\to 0\\ x\in (0,\infty)\end{subarray}} f(x)=1.$$

· Wir betrachten die Abbildung

$$f \colon (0, \infty) \to \mathbb{R}, x \mapsto \sin \frac{1}{x}.$$

0 ist ein Häufungspunkt der beiden Mengen

$$A \coloneqq \left\{ \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \mid n \in \mathbb{N} \right\} \quad \text{und} \quad B \coloneqq \left\{ \frac{1}{\frac{3\pi}{2} + n \cdot 2\pi} \mid n \in \mathbb{N} \right\},$$

und es ist

$$\lim_{\substack{x \to 0 \\ x \in A}} f(x) = 1 \quad \text{und} \quad \lim_{\substack{x \to 0 \\ x \in B}} f(x) = -1.$$

0 ist auch ein Häufungspunkt der Menge $(0, \infty)$, der Grenzwert

$$\lim_{\substack{x \to 0 \\ x \in (0,\infty)}} f(x)$$

existiert jedoch nicht.

Lemma 3. Es sei $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$ und $x \in \mathbb{R}$ ein Häufungspunkt von A. Für $y \in \mathbb{R}$ sind äquivalent:

- 1. $\lim_{a \to x, a \in A} f(a) = x$.
- 2. Für jede Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n\in A\setminus\{x\}$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}a_n=x$ gilt, dass $\lim_{n\to\infty}f(a_n)=f(x)$.

Mithilfe dieses Lemmas können wir viele Aussagen für die Grenzwerte von Folgen auf Grenzwerte von Funktionen übertragen.

Proposition 4. Es seien $A \subseteq \mathbb{R}$, x ein Häufungspunkt von A, f, f_1 , f_2 : $A \to \mathbb{R}$ und $\lambda \in \mathbb{R}$.

- 1. Der Grenzwert $\lim_{a\to x, a\in A} f(a)$ ist eindeutig (wenn er existiert).
- 2. Existieren die Grenzwerte $\lim_{a\to x, a\in A} f_1(a)$ und $\lim_{a\to x, a\in B} f_2(a)$, so existiert auch der Grenzwert $\lim_{x\to a, a\in A} (f_1+f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 + f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) + \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

3. Existiert der Grenzwert $\lim_{a\to x, a\in A} f(a)$, so existiert auch $\lim_{a\to x, a\in A} (\lambda f)(a)$, und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (\lambda f)(a) = \lambda \lim_{\substack{a \to x \\ a \in A}} f(a).$$

4. Existieren die Grenzwerte $\lim_{a\to x, a\in A} f_1(a)$ und $\lim_{a\to x, a\in B} f_2(a)$, so existiert auch der Grenzwert $\lim_{x\to a, a\in A} (f_1\cdot f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 \cdot f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) \cdot \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

5. Existieren die beiden Grenzwerte $\lim_{a \to x, a \in A} f_1(a)$ und $\lim_{a \to x, a \in A} f_2(a)$, und ist $f_2(a) \neq 0$ für alle $a \in A \setminus \{x\}$ sowie $\lim_{a \to x, a \in A} f_2(a) \neq 0$, so existiert auch der Grenzwert $\lim_{a \to x, a \in A} f_1(a)/f_2(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} \frac{f_1(a)}{f_2(a)} = \frac{\lim_{a \to x, a \in A} f_1(a)}{\lim_{a \to x, a \in A} f_2(a)}$$

Wie wir bereits gesehen haben, können für eine Funktion $f\colon X\to \mathbb{R}$ mit Definitionsbereich $X\subseteq \mathbb{R}$ und Teilmengen $A,B\subseteq X$ mit gemeinsamen Häufungspunkt $x\in \mathbb{R}$ die beiden Grenzwerte $\lim_{a\to x,a\in A}f(a)$ und $\lim_{b\to x,b\in B}f(b)$ existieren, aber dennoch

$$\lim_{\substack{a\to x\\a\in A}}f(a)\neq \lim_{\substack{b\to x\\b\in B}}f(b).$$

Es kann auch passieren, dass einer der beiden Grenzwerte existiert, der andere jedoch nicht. Es gibt also im Allgemeinen keinen Zusammehang zwischen dem Grenzwert von f über A und dem Grenzwert über B.

Lemma 5. Es seien $A, B \subseteq \mathbb{R}$ und $f: B \to \mathbb{R}$. Ist x ein gemeinsamer Häufungspunkt von A und B, sodass $\lim_{b\to x,b\in B} f(b)$ existiert, so existiert auch der Grenzwert $\lim_{a\to x,a\in A} f(a)$, und es gilt

$$\lim_{\substack{a\to x\\a\in A}}f(a)=\lim_{\substack{b\to x\\b\in B}}f(b).$$

Korollar 6. Es sei $f: X \to \mathbb{R}$ mit Definitionsbereich $X \subseteq \mathbb{R}$. Es seien $A, B \subseteq X$ Teilmengen, so dass $x \in \mathbb{R}$ ein gemeinsamer Häufungspunkt von A, B ist, und die beiden Grenzwerte $\lim_{a \to x, a \in A} f(a)$ und $\lim_{b \to x, b \in B} f(b)$ existieren. Ist x auch ein Häufungspunkt von $A \cap B$, so ist

$$\lim_{\substack{a \to x \\ a \in A}} f(a) = \lim_{\substack{b \to x \\ b \in B}} f(b).$$

3 Links- rechts- und beidseitige Grenzwerte

Wir wollen uns nun einem Sonderfall von Funktionsgrenzwerten zuwenden.

Definition 7. Es sei $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$ und $x \in \mathbb{R}$.

Gibt es ein r > 0, so dass $(x - r, x) \subseteq A$, so schreiben wir

$$\lim_{a\uparrow x} f(a) \quad \text{für} \quad \lim_{\substack{a\to x\\ a\in (x-r,x)}} f(a),$$

und nennen dies den linksseitigen Grenzwert von f an x.

Gibt es ein r > 0, so dass $(x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a\downarrow x} f(a) \quad \text{für} \quad \lim_{\substack{a\to x\\ a\in (x,x+r)}} f(a),$$

und nennen dies den rechtsseitigen Grenzwert von f an x.

Existiert ein r > 0, so dass $(x - r, x) \cup (x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a\to x} f(a) \quad \text{für} \quad \lim_{\substack{a\to x\\ a\in (x-r,x)\cup (x,x+r)}} f(a),$$

und nennen dies den beidseitigen Grenzwert von f an x.

Die Wohldefiniertheit der jeweiligen Ausdrücke, also die Unabhängigkeit von r, ergibt sich aus Lemma 5.

Der beidseitige Grenzwert lässt sich auch als Kombination des links- und rechtsseitigen Grenzwertes definieren:

Lemma 8. Es sei $A \subseteq \mathbb{R}$ und $f \colon A \to \mathbb{R}$. Für $x \in \mathbb{R}$ und $y \in \mathbb{R}$ sind äquivalent:

- 1. Der beidseitige Grenzwert $\lim_{a\to x} f(a)$ existiert und $\lim_{a\to x} f(a) = y$.
- 2. Die Grenzwerte $\lim_{a \uparrow x} f(a)$ und $\lim_{a \downarrow x} f(a)$ existieren und es ist

$$\lim_{a \uparrow x} f(a) = y = \lim_{a \downarrow x} f(a).$$

4 Uneigentliche Grenzwerte

Definition 9. Es sei $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$ und $x \in \mathbb{R}$ ein Häufungspunkt von A. Wir schreiben dass $\lim_{a \to x, a \in A} f(x) = \infty$, falls es für alle R > 0 ein $\delta > 0$ gibt, so dass

$$|f(a)| \ge R$$
 für alle $a \in A$ mit $|x - a| < \delta$ und $a \ne x$.

Wir schreiben $\lim_{a\to x, a\in A} f(x)=-\infty$, falls es für alle R>0 eine $\delta>0$ gibt, so dass

$$|f(a)| \le -R$$
 für alle $a \in A$ mit $|x - a| < \delta$ und $a \ne x$.

Definition 10. Es sei $f \colon X \to \mathbb{R}$ eine Abbildung mit Definitionsbereits $X \subseteq \mathbb{R}$. Für $y \in \mathbb{R}$ sagen wir, dass $\lim_{x \to \infty} f(x) = y$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \geq r_0$ definiert ist, und
- 2. für alle $\varepsilon > 0$ gibt es $r \ge r_0$, so dass $|f(x) y| < \varepsilon$ für alle $x \ge r$.

Wir sagen, dass $\lim_{x\to-\infty} f(x) = y$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \leq r_0$ definiert ist, und
- 2. für alle $\varepsilon > 0$ gibt es $r \le r_0$, so dass $|f(x) y| < \varepsilon$ für alle $x \le r$.

5 Lösungen der Übungen

Lösung 1.

Angenommen, x ist ein Häufungspunkt von A. Dann gibt es für jedes $n \geq 1$ ein $a_n \in A \setminus \{x\}$ mit $|x - a_n| < 1/n$. Die Folge $(x_n)_{n \geq 1}$ konvergiert per Konstruktion gegen x.

Angenommen, eine solche Folge $(a_n)_{n\in\mathbb{N}}$ existiert. Dann gibt es für jedes $\varepsilon>0$ ein $N\in\mathbb{N}$, so dass $|x-a_n|<\varepsilon$ für alle $n\geq N$. Inbesondere ist $a_N\in A$ mit $|x-a_N|<\varepsilon$ und $a_N\neq x$.

Lösung 2.

Es sei $x \in \mathbb{R}^n$. Ist $x \notin M$, so ergibt sich für

$$\varepsilon \coloneqq \frac{1}{2} \min_{m \in M} \|x - m\| > 0,$$

dass es kein $m \in M$ mit $||x - m|| < \varepsilon$ gibt. Also ist x dann kein Häufungspunkt von M. Ist $x \in M$, so ergibt sich für

$$\varepsilon \coloneqq \begin{cases} \frac{1}{2} \min_{m \in M, m \neq x} \|x - m\| & \text{falls } |M| \geq 2 \\ 1 & \text{falls } M = \{x\}, \end{cases}$$

dass x das einzige $m \in M$ mit $\|x-m\| < \varepsilon$ ist. Also ist x auch dann kein Häufungspunkt von M.

Lösung 3.

Es sei $x \in \mathbb{R}$. Ist $x \notin \mathbb{Z}$, so gibt es für

$$\varepsilon \coloneq \frac{1}{2} \min \{ \lceil x \rceil - x, x - \lfloor x \rfloor \}$$

kein $n \in \mathbb{Z}$ mit $\|x-n\| < \varepsilon$. Also ist x dann kein Häufungspunkt von \mathbb{Z} . Ist andererseits $x \in \mathbb{Z}$, so gibt es außer x kein $n \in \mathbb{Z}$ mit $\|x-n\| < 1/2$, weshalb x auch dann kein Häufungspunkt von \mathbb{Z} ist.

Also ist kein $x \in \mathbb{R}$ ein Häufungspunkt von \mathbb{Z} , und somit $\mathbb{Z}' = \emptyset$.

Lösung 4.

- 1. Es sei $x \in A'$. Für jedes $\varepsilon > 0$ gibt es daher ein $a \in A$ mit $||x a|| < \varepsilon$ und $a \neq x$. Da $a \in A \subseteq B$ folgt, dass es für jedes $\varepsilon > 0$ ein $b \in B$ mit $||x b|| < \varepsilon$ und $b \neq x$ gibt. Also ist x ein Häufungspunkt von B, also $b \in B'$. Aus der Beliebigkeit von $a \in A'$ folgt, dass $A' \subseteq B'$.
- 2. Da $A\subseteq A\cup B$ ist $A'\subseteq (A\cup B)'$, und da $B\subseteq A\cup B$ ist $B'\subseteq (A\cup B)'$. Also ist auch $A'\cup B'\subseteq (A\cup B)'$.

Angenommen, es ist $x \notin A' \cup B'$. Dann gibt es $\varepsilon_A, \varepsilon_B > 0$, so dass es kein $a \in A$ mit $\|x - a\| < \varepsilon$ und $x \neq a$ gibt, und auch kein $b \in B$ mit $\|x - b\| < \varepsilon$ und $x \neq b$. Für $\varepsilon := \min\{\varepsilon_A, \varepsilon_B\}$ gibt es daher kein $y \in A \cup B$ mit $\|x - y\| < \varepsilon$ und $y \neq x$. Also ist dann $x \notin (A \cup B)'$. Das zeigt, dass auch $(A \cup B)' \subseteq A' \cup B'$.