

PROGETTO SUNDAY

Progetto per il corso di Identificazione dei Modelli e Analisi dei Dati

UNIPV

A.A.: 2019/20

Docente: Giuseppe De Nicolao **Tutor**: Alessandro Incremona

Responsabile: Andrea Vergine

Membri del team:

Domenico Ragusa

Andrea Giuliani

Deborah Tandurella

Identificare modello per il valore della serie temporale della domenica, in funzione del giorno dell'anno e dell'ora.

I DATI

Due anni di dati orari di carico elettrico italiano:

- 1° colonna: giorno dell'anno [1, ..., 365];
- 2° colonna: ora del giorno [1, ..., 24];
- 3° colonna: giorno della settimana [1, ..., 7];
- 4° colonna: serie temporale.

CONSUMI ELETTRICI MEDI

SERIE TEMPORALE

CARICO ELETTRICO ITALIANO DI DOMENICA – SENZA TREND

Usando la funzione detrend allineiamo i dati e stimiamo una componente costante di trend, p=25.2578, che andrà poi aggiunta al predittore finale.

MODELLO POLINOMIALE

Identificazione a scatola nera.

Modelli polinomiali usati:

$$y = g(x_1, x_2) = \sum_{i=0}^{k} \vartheta_i h_i(x_1, x_2)$$

Con le funzioni h() che corrispondono a dei monomi.

$$Y = \Phi \vartheta$$

$$x(i) = \begin{bmatrix} x_1(i) \\ x_2(i) \end{bmatrix}$$

$$\Phi = \begin{bmatrix} h_1(x(1)) & \dots & h_k(x(1)) \\ \dots & \dots & \dots \\ h_1(x(n)) & \dots & h_k(x(n)) \end{bmatrix}$$

MODELLO POLINOMIALE

Problema

Nonostante i dati fossero normalizzati, modelli di grado elevato hanno portato a problemi con l'invertibilità delle matrici (rank deficient).

Dato il problema e avendo notato un andamento periodico giornaliero e orario, abbiamo deciso di ricorrere ai MODELLI BASATI SULLE SERIE DI FOURIER

SERIE DI FOURIER

Sempre identificazione a scatola nera. Modello usato del tipo: $\,Y=\Phi artheta$

$$y = g(x_1, x_2) = g_1(x_1) + g_2(x_2) + \vartheta_0$$

Le funzioni h() in questo caso corrispondono a funzioni seno e coseno.

$$g_1(x_1) = \vartheta_1 \sin \frac{2\pi x_1}{365} + \vartheta_2 \cos \frac{2\pi x_1}{365} + \vartheta_3 \sin \frac{2\pi 2x_1}{365} + \vartheta_4 \cos \frac{2\pi 2x_1}{365} + \dots$$

$$g_2(x_2) = \eta_1 \sin \frac{2\pi x_2}{24} + \eta_2 \cos \frac{2\pi x_2}{24} + \eta_3 \sin \frac{2\pi 2x_2}{24} + \eta_4 \cos \frac{2\pi 2x_2}{24} + \dots$$

$$\Phi = \begin{bmatrix} 1 & \sin(2\pi x 1_1/365) & \dots & \sin(2\pi x 2_2/24) & \dots \\ \dots & \dots & \dots & \dots \\ 1 & \sin(2\pi x 1_n/365) & \dots & \sin(2\pi x 2_n/24) & \dots \end{bmatrix}$$

SERIE DI FOURIER

Criteri di valutazione

Mod.	SSR (e+03)	AIC	FPE (e+03)	MDL	f	F.95(1,N-q)
1	8.6750	9.0762	8.7448	9.0968	3.8490	1.4055e+03
2	4.0645	8.3245	4.1235	8.3614	3.8490	333.2911
3	3.2007	8.0920	3.2681	8.1454	3.8490	5.5275
4	3.1864	8.0939	3.2744	8.1638	-	-

Crossvalidazione

Modello migliore:

3 armoniche

Mod.	SSRv
1	8.4477e+03
2	4.1145e+03
3	3.6080e+03
4	3.6155e+03

NN Multi Layer Perceptrons

Numero di neuroni	SSRv
21	3.2294e+03
23	2.4773e+03
25	2.3226e+03
27	2.3242e+03

Parametri di configurazione:

- Numero di input = 2
- Numero di strati = 2
- divideParam.trainRation = 1.0
- InputConnect = [1 1; 0 0]

NN Radial Basis Function

Numero di neuroni	SSR _v
25	1.1790e+04
75	6.5880e+03
200	3.4568e+03
300	3.0074e+03

Parametri di configurazione:

varianza: 2

MSE Goal: 0.0

Confronto reti in validazione

Confronto tra modelli migliori

Mod.	SSR _v (e+03)
S. Fourier (3 armoniche)	3.6080
NN MLP (25 neuroni)	2.3226
NN RB (300 neuroni)	3.0074

Grazie per l'attenzione

Repository: https://github.com/domenico-rgs/ProgettoSunday