50.007 Machine Learning

Lu, Wei

Reinforcement Learning (I)

Bayes' Ball Algorithm

Are X and Y independent?

Bayes' Ball Algorithm

Are X and Y independent?

Bayes' Ball Algorithm

Are X and Y independent?

Markov Blanket

Bayesian Networks

How do we learn such probability values?

$$egin{aligned} p(x_1=1,x_2=2,x_3=1,x_4=3,x_5=5,x_6=2) \ &=p(x_1=1) imes p(x_2=2|x_1=1) imes p(x_4=3|x_1=1) \ & imes p(x_3=1|x_2=2,x_4=3) imes p(x_6=2|x_2=2,x_3=1) imes p(x_5=5|x_4=3) \end{aligned}$$

Bayesian Networks

Overview of ML

Supervised Learning Unsupervised Learning

Overview of ML

Reinforcement Learning

Learn How to Act

How do we teach a robot how to act optimally in a complex environment?

1.1

Block World Environment

The robot can be at one block at any given time.

There is a set of states S

Block World Environment

The robot can take an action from a set of predefined possible actions at each state.

There is a set of actions A

Block World Transition Probabilities

If the robot moves towards a particular direction, there is a 0.8 chance that it would reach the block in front, and there is a 0.1 chance to reach a state to its left (right).

A transition probability function

$$T(s, a, s') = p(s'|s, a)$$

Block World Rewards

Each block is associated with a reward. The two blocks at the upper-right corner are assigned rewards +1 and -1.

Block World Rewards

-0.6	+1.2	+0.1	+1.0
-0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

Each block is associated with a reward. The two blocks at the upper-right corner are assigned rewards +1 and -1.

The reward is R(s) for each state.

In general it can be defined as R(s, a, s')

old state

action

new state

Markov Decision Process

-0.6	+1.2	+0.1	+1.0
-0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

- a set of states S
- a set of actions A
- a transition probability function $T(s,a,s^\prime)=p(s^\prime|s,a)$
- a reward function R(s, a, s') (or just R(s'))

Markov Decision Process

-0.6	+1.2	+0.1	+1.0
-0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

- a set of states S
- a set of actions A

How do we learn the policy?

- a transition probability function $T(s,a,s^\prime)=p(s^\prime|s,a)$
- a reward function R(s, a, s') (or just R(s'))

-0.6	+1.2	+0.1	+1.0
0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

$$U([s_0,s_1,s_2,\dots]) = R(s_0) + R(s_1) + R(s_2) + \dots = \sum_{t=0}^{\infty} R(s_t)$$

Will this be a good way of defining long term reward?

-0.6	→	4.1	+1.0
0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

$$U([s_0,s_1,s_2,\dots]) = R(s_0) + R(s_1) + R(s_2) + \dots = \sum_{t=0}^{\infty} R(s_t)$$

Will this be a good way of defining long term reward?

-0.6	+1.2	+0.1	+1.0
0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

$$U([s_0,s_1,s_2,\dots])=R(s_0)+\gamma R(s_1)+\gamma^2 R(s_2)+\dots=\sum_{t=0}^{\infty}\gamma^t R(s_t)$$
 discount

-0.6	+1.2	+0.1	+1.0
0.1		-0.1	-1.0
+0.9	-0.7	-2.0	+1.3

$$U([s_0,s_1,s_2,\dots])=R(s_0)+\gamma R(s_1)+\gamma^2 R(s_2)+\dots=\sum_{t=0}^\infty \gamma^t R(s_t)$$

$$rac{R_{min}}{1-\gamma} = \sum_{t=0}^{\infty} \gamma^t R_{min} \leq U([s_0,s_1,s_2,\dots]) \leq \sum_{t=0}^{\infty} \gamma^t R_{max} = rac{R_{max}}{1-\gamma}$$

Lower Bound

Smallest Reward

ی Largest Reward

Block World Learning the Policy

-0.01	-0.01	-0.01	+1.0
-0.01		-0.01	-1.0
-0.01	-0.01	-0.01	-0.01

How to learn the policy?

→	→	→	+1.0
4		+	-1.0
^	→	^	←

An example policy

 $\pi(s)$

a particular policy that specifies the action we should take in state s.

 $\pi(s)$

a particular policy that specifies the action we should take in state s.

 $V^{\pi}(s)$

The *value* of state s under policy π .

It is the expected long-term reward of starting in state s and act based on policy π thereafter.

 $\pi(s)$

a particular policy that specifies the action we should take in state s.

 $V^{\pi}(s)$

The *value* of state s under policy π .

It is the expected long-term reward of starting in state s and act based on policy π thereafter.

 $Q^{\pi}(s,\overline{a})$

The Q-value of state s and action a under policy π . It is the expected long-term reward of starting in state s, taking action a and acting based on policy π thereafter.

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$V^*(s) = ??$$

 $V^*(s)$

The value of state s under the optimal policy π^*

 $Q^*(s,a)$

$$V^*(s) = \max_a Q^*(s,a)$$

 $V^*(s)$

The value of state s under the optimal policy π^*

 $Q^*(s,a)$

The Q-value of state s

and action a under the optimal policy π^*

$$V^*(s) = \max_a Q^*(s, a) = Q^*(s, \pi^*(s))$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$Q^*(s,a) = ??$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

probability of next state

immediate reward

long-term reward

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$V^*(s) = \max_a Q^*(s,a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$V^*(s)$$

The value of state s under the optimal policy π^*

$$Q^*(s,a)$$

$$V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

Updating Value

$$V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$V^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- 1. Start with $V_0^*(s)=0$, for all $s\in S$
- 2. Given V_i^* , calculate the values for all states $s \in S$

$$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

3. Repeat the above until convergence

- 1. Start with $V_0^*(s) = 0$, for all $s \in S$
- 2. Given V_i^* , calculate the values for all states $s \in S$

$$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

3. Repeat the above until convergence

There is a guarantee that this process will converge

Question

How do we recover the optimal policy based on the values?

$$V^*(s) = \max_a Q^*(s,a) = Q^*(s,\pi^*(s))$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$V^*(s) = \max_a Q^*(s,a) = Q^*(s,\pi^*(s))$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$V^*(s) = \max_a Q^*(s,a) = Q^*(s,\pi^*(s))$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$\pi^*(s) = ??$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$Q^*(s,a)$$

The Q-value of state s and action a under the optimal policy π^*

$$\pi^*(s) = \operatorname{arg\,max}_a Q^*(s, a)$$

$$\pi^*(s)$$

The optimal policy $\pi^*(s)$ specifies the optimal action we should take in state s.

$$Q^*(s,a)$$

The $Q ext{-}value$ of state s and action a under the optimal policy π^*

Learning Optimal Policy

Step 1 Run Value Iteration Algorithm

Step 2
Calculate the Q values

$$Q^*(s,a) = \sum_{s'} T(s,a,\underline{s'}) [R(s,a,s') + \gamma V^*(s')]$$

Step 3
Find the optimal action for each state

$$\pi^*(s) = rg \max_a Q^*(s, a)$$

$$R(s) = -0.01$$

-0.01	-0.01	-0.01	+1.0
-0.01		-0.01	-1.0
-0.01	-0.01	-0.01	-0.01

	+1.0
	-1.0

Value Iteration Learned Policy

-0.01	-0.01	-0.01	+1.0
-0.01		-0.01	-1.0
-0.01	-0.01	-0.01	-0.01

→	→	→	+1.0
↑		+	-1.0
^	←	+	4

$$R(s) = -2.0$$

		+1.0
		-1.0

Value Iteration Learned Policy

-2.0	-2.0	-2.0	+1.0
-2.0		-2.0	-1.0
-2.0	-2.0	-2.0	-2.0

→	→	→	+1.0
↑		→	-1.0
→	→	→	↑

Value Iteration Learned Policy

-2.0	-2.0	-2.0	+1.0
-2.0		-2.0	-1.0
-2.0	-2.0	-2.0	-2.0

Why?

→	→	→	+1.0
1		→	-1.0
→	→	→	1

Step 1

Since the procedure relies on Q-values, is it possible to design an algorithm that directly computes these Q-values?

Step 2 Find the optimal action for each state

$$\pi^*(s) = \operatorname{arg\,max}_a Q^*(s, a)$$

Step 1

Since the procedure relies on Q-values, is it possible to design an algorithm We will discuss Q-value lues? that directly computes these

iteration next time!

$$\pi^*(s) = \operatorname{arg\,max}_a Q^*(s, a)$$