Modelos Matemáticos: Sistemas Dinámicos Discretos

Daniel Alconchel Vázquez

22 de marzo de 2021

Índice

	Sistemas Dinámicos Discretos 1.1. Representación Gráfica	3
2 .	Estabilidad	4
3.	Ciclos 3.1. Estabilidad de los ciclos	5
4.	Eiemplo: Ecuación Logística	6

1. Sistemas Dinámicos Discretos

Definición 1.1. Supongamos que $I \subset \Re$ es un intervalo y $f: I \to I$ es una función continua. Entonces el par $\{I, f\}$ es un **sistema dinámico discreto** de primer orden.

Observemos que dado $x_o \in I$, podemos generar una única sucesión $\{x_k\}$ definida por evoluciones sucesivas de f:

$$x_1 = f(x_0), x_2 = f(x_1) = f(f(x_0))...$$

Podemos generalizar la definición 1.1 usando espacios métricos:

Definición 1.2. Supongamos que $E \subset \mathfrak{R}$ es un intervalo y $f: E \to I$ es una función continua. Entonces el par $\{E, f\}$ es un **sistema dinámico discreto de primer orden**.

Para notar las sucesivas iteradas de f usaremos la notación:

$$f^0 = identidad, f^1 = f, f^2 = f \circ f...$$

Definición 1.3. Dado un SSD $\{E, f\}$ y un $x_0 \in E$, la sucesión definida por

$$\{x_0, x_1, x_2, ...\} = \{f^0 = identidad, f^1 = f, f^2 = f \circ f...\}$$

se denomina **órbita o trayectoria** del SSD y se denota $\gamma(E, f, x_0)$. El conjunto de todas las órbitas asociadas al SSD y a todos los puntos $x_0 \in E$ se denomina **retrato de fase**

Observación. Si tomamos como $x_0 = \alpha$, donde α es un punto fijo, entonces la órbita resultante es constante y se denomina **órbita estacionaria**:

$$\gamma(E, f, \alpha) = {\alpha, \alpha...}$$

1.1. Representación Gráfica

Para representar gráficamente un SSD mediante un gráfico **Cobweb** se siguen los siguientes pasos: En el cuadrado IxI se representa la función f(x) y la bisectriz del primer cuadrante x. Una vez fijado x_0 se representa x_1 de la siguiente manera:

1. Desde la abcisa x_0 trazamos una vertical hasta la curva y=f(x)

- 2. Desde la curva trazamos la horizontal hasta la recta y=x
- 3. Finalmente, trazamos la vertical hasta el eje de abscisas obteniendo x_1

Repetimos el proceso tantas veces como sea necesario para calcular el nésimo termino.

Observación. Como hemos dicho en la observación 1, los puntos fijos dan lugar a soluciones constantes. Puede ocurrir que, dado $x_0 \in E, \exists k : f^k(x_0) = \alpha = f(\alpha)$, es decir, la órbita se hace eventualmente estacionaria.

Buscar puntos de equilibrio de un SSD (I, f) es equivalente a buscar las intersecciones de la recta y = x y la gráfica de f que están contenidas en IxI

2. Estabilidad

Definición 2.1. Un punto de estabilidad α del SSD $\{E, f\}$ se dice que es **estable** si

$$\forall \epsilon > 0, \exists \delta > 0 : si \ d(x_0, \alpha) < \delta \ y \ x_k = f^k(x_0), k \in \mathbb{N} \implies d(x_k, \alpha) < \epsilon, \forall k \in \mathbb{N}$$

En caso contrario, se dice que es inestable

Observación. Recordemos que si estamos en un intervalo real, la distancia usual viene definida por el valor absoluto, luego, podemos recurrir a la misma.

Veamos ahora un pequeño ejemplo. Sea el SSD lineal $\left\{\Re, \frac{1}{2} \cdot x + 1\right\}$ y tiene un solo punto de equilibrio en $\alpha = 2$, estable.

La solución general de la ecuación $x_{k+1} = \frac{1}{2}x_k + 1$ es $x_k = (x_0 - 2)(\frac{1}{2})^k + 2$. Entonces, $|x_k - 2| = |x_0 - 2|(\frac{1}{2})^n \le |x_0 - 2|$, $\forall k$. Luego, tenemos que

$$\forall \epsilon > 0, \exists \delta (= \epsilon) : si |x_0 - 2| < \delta \implies |x_k - 2| \le |x_0 - 2| < \epsilon$$

Definición 2.2. Un punto de equilibrio se dice que es un **atractor global** si para cualquier $x_o \in I$ y $x_k = f^k(x_0)$, se verifica

$$\lim_{k\to\infty} x_k = \alpha$$

Un punto de equilibrio se dice que es un **atractor (local)** si $\exists \eta > 0$ tal que para cualquier $x_0 \in E$ con $d(x_0, \alpha) < \eta$ y $x_k = f^k(x_0)$, se verifica que

$$\lim_{k\to\infty} x_k = \alpha$$

Definición 2.3. Un punto de equilibrio, α del SSD se dice que es (localmente) asintóticamente estable si es estable y atractor local.

Teorema 2.4. Dado el SSD $\{I, f\}$, donde $I \subset \Re$ es un intervalo y α es un punto de equilibrio, entonces se cumple:

$$\alpha$$
 es un atractor (local) $\implies \alpha$ es estable

Observación. El teorema 2.4 tiene como consecuencia que si $I \subset \Re$ y α es un atractor (local), entonces, α es (localmente) asintóticamente estable.

Teorema 2.5. Si α es un punto de equilibrio del SSD $\{I, f\}$ y $f \in C^1$, entonces:

- 1. $Si |f'(\alpha)| < 1$, entonces α es (localmente) asintóticamente estable.
- 2. $Si |f'(\alpha)| > 1$, entonces α es inestable.

Observación. Como podemos apreciar en 2.5, no tenemos definido el caso α =. En este caso se puede probar que:

- Si f es de clase 2 y $f''(\alpha) \neq 0$, entonces α es inestable.
- Si f es de clase 3 y $f''(\alpha) = 0$, entonces:
 - $f'''(\alpha) < 0 \implies \alpha$ es asintóticamente estable.
 - $f'''(\alpha) > 0 \implies \alpha$ es inestable.

Veamos ahora un ejemplo. Dado $x_{k+1} = 2x_k$, f(x) = 2x y un punto de equilibrio en $\alpha = 0$. Tenemos pues que $f'(0) = 2 > 1 \implies \alpha = 0$ es inestable

3. Ciclos

Definición 3.1. Un **ciclo de orden s** u órbita periódica de periodo s o sciclo es un conjunto de s puntos distintos de intervalo I, $\{\alpha_0.\alpha_1, ..., \alpha_{s-1}\}$, que verifican

$$\alpha_1 = f(\alpha_0), \alpha_2 = f(\alpha_1), ..., \alpha_{s-1} = f(\alpha_{s-2}), \alpha_0 = f(\alpha_{s-1})$$

En este caso a s se le llama orden del ciclo

Dada la ecuación en diferencias $x_{n+1} = -x_n + 4$, si partimos de $x_0 = 3$, observamos que la solución de dicha ecuación es $x_n = (-1)^n + 2$, es decir, se corresponderá con la órbita $\{3, 1, 3, 1, ...\}$. Estamos en caso de periodo 2.

3.1. Estabilidad de los ciclos

Puesto que los puntos de una órbita periódica se periodo s son los puntos de equilibrio de la función $f^s(x)$, para estudiar la estabilidad de una órbita periódica basta estudiar la estabilidad de los puntos de equilibrio de la función $f^s(x)$.

Proposición 3.2. Supongamos que $f: I \leftarrow I, f \in C^1(I)$ y que $\{\alpha_0, \alpha_1, ..., \alpha_{s-1}\}$ es un s-ciclo para el SSD $\{I, f\}$. Entonces:

- $Si |f'(\alpha_0)f'(\alpha_1)...f'(\alpha_{s-1})| < 1$ el ciclo es asintóticamente estable.
- $Si |f'(\alpha_0)f'(\alpha_1)...f'(\alpha_{s-1})| > 1$ el ciclo es inestable.

Veamos ahora un ejemplo. Dado el SSD $\left\{\mathfrak{R}, -\frac{x^2}{2}-x+\frac{1}{2}\right\}$ comprueba que tiene un 2-ciclo y estudia su estabilidad.

Como $s = 2 \implies F^2(x) = x$. Luego, tenemos:

$$F(-\frac{x^2}{2} - x + \frac{1}{2}) = \dots = \frac{-1}{8}(x^4 + 4x^3 + 2x^2 - 4x + 1) + \frac{x}{2} + x$$