CERTAMEN PRÁCTICO ONLINE ILI-286 SCT - Lu.23.03.20

Instrucciones: Usted tiene que mostrar todo su trabajo de forma clara y ordenada para obtener todos los puntos. Este certamen consta de 3 preguntas, las cuales serán entregadas de una en una. Sus desarrollos y código sebe ser subido a la plataforma moodle cada vez que se acabe el tiempo de cada pregunta. Puntos parciales serán entregados a preguntas incompletas. Respuestas finales sin desarrollo o sin nombre reciben 0 puntos. Copy-and-Paste de algoritmos reciben 0 puntos. ¡Éxito!

Pregunta	Puntos
1	
2	
3	
Total	

Por	favor	copiar	este	texto	en	cada	respuesta:
1 01	Ia v OI	COPIAI	CDUC	UCAUO	CII	Caua	respuesta.

Declaración de Trabajo Individual: Juro o Prometo que la totalidad del trabajo que entregue en esta evaluación corresponde a mi trabajo individual, y es el fruto de mi estudio y esfuerzo.

Nombre, Rol, Firma y Fecha:

1. Usted dispone de 45 min para el desarrollo teórico (y práctico (). Considere la siguiente ecuación diferencial ordinaria no-lineal:

$$u''(x) + 20 \cos(20 u(x)) = 0,$$

$$u(0) = -1,$$

$$u(\pi/2) = 2/3.$$

(a) (i), [10 puntos] Proponga un algoritmo basado en diferencias finitas o el método del disparo que entregue una aproximación de $u(x_i) \approx U_i$ para $x_i = i \frac{\pi}{2N}$, donde $i \in \{0, 1, 2, \dots, N\}$. Considere N como input en su algoritmo y el output son los vectores $\langle x_0, x_1, \dots, x_N \rangle$ y $\langle U_0, U_1, \dots, U_N \rangle$.

Hint: Notice you need to solve a non-linear system of equations in case you use FD!

- (b) 🍂, [5 puntos] Explique claramente como incluirá las condiciones de borde en su algoritmo.
- (c) \equiv , [10 puntos] Implemente su algoritmo en un Jupyter Notebook y grafique la aproximación numérica de u(x) en el dominio $[0, \pi/2]$ para $\varepsilon = 0.1$, $\beta = 0.309$ y N = 1000.
- (d) \blacksquare , [5 puntos] Estime numéricamente $\int_0^{\pi/2} u(x) dx$ con el Jupyter Notebook anteriormente construido.

Escriba en este recuadro los puntos que usted considera que obtendra en esta pregunta:	uadro los puntos que usted considera que obtendrá en esta pregunta:
--	---