## (NP-kovaa) Optimointia Deklaratiivisesti

## Nuorten Tiedeakatemian Akatemiaklubi Jeremias Berg

26.1.2020





## Kuka minä olen?

- Tietojenkäsittelytieteen tutkijatohtori.
  - Väittely, alkukesä 2018.
    - Helsingin Yliopisto.
  - Ulkomailla 2019.
  - Takaisin HY:lle 2020.
- Harrastan kiipeilyä ja frisbegolffia (lämpimällä säällä).



- Mitä on optimointi?
  - Miksi optimointi on tärkeää?
- Mitä tarkoittaa NP-kova?
  - Mitä haasteita NP-kovien optimointiongelmien ratkaisussa on?
- Miten ja miksi NP-kovia ongelmia ratkotaan deklaratiivisesti?
- Minkälaiset tutkimuskysymykset ovat keskeisiä?

- Mitä on optimointi?
  - Miksi optimointi on tärkeää?
- Mitä tarkoittaa NP-kova?
  - Mitä haasteita NP-kovien optimointiongelmien ratkaisussa on?
- Miten ja miksi NP-kovia ongelmia ratkotaan deklaratiivisesti?
- Minkälaiset tutkimuskysymykset ovat keskeisiä?

- Mitä on optimointi?
  - Miksi optimointi on tärkeää?
- Mitä tarkoittaa NP-kova?
  - Mitä haasteita NP-kovien optimointiongelmien ratkaisussa on?
- Miten ja miksi NP-kovia ongelmia ratkotaan deklaratiivisesti?
- Minkälaiset tutkimuskysymykset ovat keskeisiä?

- Mitä on optimointi?
  - Miksi optimointi on tärkeää?
- Mitä tarkoittaa NP-kova?
  - Mitä haasteita NP-kovien optimointiongelmien ratkaisussa on?
- Miten ja miksi NP-kovia ongelmia ratkotaan deklaratiivisesti?
- Minkälaiset tutkimuskysymykset ovat keskeisiä?

- Mitä on optimointi?
  - Miksi optimointi on tärkeää?
- Mitä tarkoittaa NP-kova?
  - Mitä haasteita NP-kovien optimointiongelmien ratkaisussa on?
- Miten ja miksi NP-kovia ongelmia ratkotaan deklaratiivisesti?
- Minkälaiset tutkimuskysymykset ovat keskeisiä?

## Optimointiongelma

Löydä paras ratkaisu.

## Optimointiongelma

Löydä lyhyin ratkaisu.

## Optimointiongelma

Löydä halvin ratkaisu.

## Optimointiongelma

Löydä nopein ratkaisu.

## Optimointiongelma

Löydä paras ratkaisu.



## Kauppamatkustajan ongelma:

Löydä *lyhyin* reitti joka kiertää kaikki kaupungit.

## Optimointiongelma

Löydä paras ratkaisu.



## Kauppamatkustajan ongelma:

Löydä *lyhyin* reitti joka kiertää kaikki kaupungit.

Pituus: 26

## Optimointiongelma

Löydä paras ratkaisu.



## Kauppamatkustajan ongelma:

Löydä *lyhyin* reitti joka kiertää kaikki kaupungit.

Pituus: 23

## Miksi tämä on vaikeaa?

 Mahdollisten reittien määrä kasvaa nopeasti.



Paikkojen määrä: 6 Reittien määrä: 720

Kaikkien kokeileminen: 0.72s

## Miksi tämä on vaikeaa?

 Mahdollisten reittien määrä kasvaa nopeasti.



Paikkojen määrä: 10

Reittien määrä: ~ 3.6 miljoonaa Kaikkien kokeileminen: ~ 1h

## Miksi tämä on vaikeaa?

 Mahdollisten reittien määrä kasvaa nopeasti.



Paikkojen määrä: 15

Reittien määrä: > 1.3 biljoonaa

Kaikkien kokeileminen:  $\sim$  10 vuotta



Ongelma



Ongelma



Ongelma

Ratkaisu



## Optimointiongelmat ovat yleisiä

- Suunnitteluongelmat
  - Itseohjaavat autot
- Aikataulutus
  - Minimoi hyppytunnit lukujärjestyksessä
- Ohjelmistonkehitys
  - Löydä pienin mahdollinen selitys bugille
- Data Analyysi
  - Klusterointi
  - Visualisointi
- Koneoppiminen
  - Todennäköisin paikka kasvoille kuvassa
  - Paras suositus katsottavaksi elokuvaksi

## Optimointiongelmat ovat yleisiä

Kuva: Ruben Martins



## Optimointiongelmat ovat yleisiä



## Mitä tarkoittaa NP-kovuus?

Ongelma on **NP**:ssä jos on olemassa epädeterministinen Turingin kone joka ratkaisee sen polynomisessa ajassa

Ongelma on **NP-kova** jos jokainen **NP**:ssä oleva ongelma redusoituu siihen polynomisessa ajassa.

## Mitä tarkoittaa NP-kovuus?

NP-kovien optimointi ongelmien ratkaisussa valitaan **laadun** ja **nopeuden** välillä

## Mitä tarkoittaa NP-kovuus?

NP-kovien optimointi ongelmien ratkaisussa valitaan **laadun** ja **nopeuden** välillä

#### Nopeus:

• Niin hyvä ratkaisu kun mahdollista rajatussa ajassa.

#### Laatu

• Paras mahdollinen ratkaisu kunhan käytössä on tarpeeksi aikaa.

Nopeus

Laatu

Nopeus

Laatu

#### Approximaatio

- Nopeita
- Matemaattinen laatutakuu saaduille ratkaisulle.

#### Nopeus

#### Laatu

#### **Approximaatio**

- Nopeita
- Matemaattinen laatutakuu saaduille ratkaisulle.

#### Paikallishaku

- Vieläkin nopeampia
- Ei laatutakuita ratkaisuille.

#### Nopeus

#### **Approximaatio**

- Nopeita
- Matemaattinen laatutakuu saaduille ratkaisulle.

#### Paikallishaku

- Vieläkin nopeampia
- Ei laatutakuita ratkaisuille.

#### Laatu

#### Ongelmaspecifinen ratkaisualgoritmi

- Paras mahdollinen ratkaisu (hitaammin)
- Eri algoritmi jokaiselle ongelmalle

#### Nopeus

#### **Approximaatio**

- Nopeita
- Matemaattinen laatutakuu saaduille ratkaisulle

#### Paikallishaku

- Vieläkin nopeampia
- Fi laatutakuita ratkaisuille.

#### Laatu

#### Ongelmaspecifinen ratkaisualgoritmi

- Paras mahdollinen ratkaisu (hitaammin)
- Eri algoritmi jokaiselle ongelmalle

#### Deklaratiivinen ratkaisutapa

- Mallinnetaan ongelma matemaattisina rajoitteina.
- Ratkaistaan rajoitejoukko.

# Deklaratiivinen tapa ratkoa optimointiongelmia

## Mitä on rajoite?

$$x \lor y \lor z$$

$$(x \vee \neg y) \wedge z$$

$$(x \wedge y) \rightarrow z$$

# Mitä on rajoite?

$$x \lor y \lor z$$

$$(x \vee \neg y) \wedge z$$

$$(x \wedge y) \rightarrow z$$

# Mitä on rajoite?

$$x \vee y \vee z$$

$$(x \vee \neg y) \wedge z$$

$$(x \wedge y) \rightarrow z$$

x tai y tai z on tosi

joko x on tosi tai y on epätosi ja z on tosi

# Mitä on rajoite?

$$x \lor y \lor z$$

$$(x \vee \neg y) \wedge z$$

$$(x \wedge y) \rightarrow z$$

x tai y tai z on tosi

joko x on tosi tai y on epätosi ja z on tosi

jos x ja y ovat tosia niin z on tosi

Optimointiongelma p

- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin

- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin.
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaitaa
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin



- Yleistä, samat rajoitealgoritmit moniin eri ongelmiin
- Joustavaa, rajoitemallit ovat helposti muokattavissa
- Tehokasta, rajoitealgritmit ovat tehokkaita
- Helppoa (ainakin helpompaa), mallin kehittäminen helpompaa kuin algoritmin

#### Esimerkkiongelma



- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .

#### Esimerkkiongelma



Klusteri 1 Klusteri 2 Klusteri 3 Klusteri 4

- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .

#### Esimerkkiongelma



Klusteri 1 Klusteri 2 Klusteri 3 Klusteri 4

- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .

#### Esimerkkiongelma



Klusteri 1 Klusteri 2 Klusteri 3 Klusteri 4

- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .

#### Esimerkkiongelma



Klusteri 1 Klusteri 2 Klusteri 3 Klusteri 4

- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .

#### Esimerkkiongelma



Klusteri 1 Klusteri 2 Klusteri 3 Klusteri 4

- Klusteroi (ryvästä) joukko dataa:
  - Samanlaiset pisteet → samaan klusteriin
  - Erilaiset pisteet → eri klusteriin
- bioinformatiikka, informaatiotiede, data analyysi . . .



## Rajoitepohjainen ratkaisu:



## Rajoitepohjainen ratkaisu:

1) Mallinna



## Rajoitepohjainen ratkaisu:

1) Mallinna

## Muuttujat:

$$s_1^1, \dots, s_1^4$$
  
 $s_1^1$  =tosi  
jos  $d_1$  laitetaan  
klusteriin 1



## Rajoitepohjainen ratkaisu:

1) Mallinna

## Muuttujat:

$$s_1^1, \dots, s_1^4$$
  
 $s_1^1 = \text{tosi}$   
jos  $d_1$  laitetaan  
klusteriin 1

## Rajoitteet:

Kovat: d<sub>1</sub> täsmälleen yhteen klusteriin.

$$(s_1^1 \lor s_1^2 \lor s_1^3 \lor s_1^4) \land \bigwedge_{i \neq j} \lnot (s_1^i \land s_1^j)$$



## Muuttujat:

$$s_1^1, \dots, s_1^4$$
  
 $s_1^1 = \text{tosi}$   
jos  $d_1$  laitetaan  
klusteriin 1

## Rajoitteet:

**Pehmeät:** suosi  $d_1$  ja  $d_3$  samaan klusteriin.

$$\bigvee_{k=1}^4 (s_1^k \wedge s_3^k)$$



#### Rajoitepohjainen ratkaisu:

1) Mallinna

## Rajoitejoukko:

$$(s_{1}^{1} \vee s_{1}^{2} \vee s_{1}^{3} \vee s_{1}^{4}) \wedge \bigwedge_{i \neq j} \neg (s_{1}^{i} \wedge s_{1}^{i}) \wedge (s_{2}^{1} \vee s_{2}^{2} \vee s_{2}^{3} \vee s_{2}^{4}) \wedge \bigwedge_{i \neq j} \neg (s_{2}^{i} \wedge s_{2}^{i}) \wedge \dots$$

$$\bigvee_{k=1}^{4} (s_{1}^{k} \wedge s_{3}^{k}) \wedge \bigvee_{k=1}^{4} (s_{1}^{k} \wedge s_{4}^{k}) \wedge \bigvee_{k=1}^{4} (s_{1}^{k} \wedge s_{2}^{k}) \wedge \bigwedge_{k=1}^{4} \neg (s_{3}^{k} \wedge s_{4}^{k}) \wedge \dots$$

:



## Rajoitepohjainen ratkaisu:

- 1) Mallinna
- 2) Ratkaise

## Rajoitejoukko:

$$(s_1^1 \lor s_1^2 \lor s_1^3 \lor s_1^4 \lor s_1^4) \land \bigwedge_{i \neq j} \neg (s_1^i \land s_1^j) \land (s_2^1 \lor s_2^2 \lor s_2^3 \lor s_2^4 \lor s_2^4) \land \bigwedge_{i \neq j} \neg (s_2^i \land s_2^j) \land \dots$$

$$\bigvee_{k=1}^{4} (s_1^k \wedge s_3^k) \wedge \bigvee_{k=1}^{4} (s_1^k \wedge s_4^k) \wedge \bigvee_{k=1}^{4} (s_1^k \wedge s_2^k) \wedge \bigwedge_{k=1}^{4} \neg (s_3^k \wedge s_4^k) \wedge \dots$$

:



## Rajoitepohjainen ratkaisu:

- 1) Mallinna
- 2) Ratkaise
- 3) Rekonstruktio

## Rajoitejoukko:

$$(s_1^1 \lor s_1^2 \lor s_1^3 \lor s_1^4 \lor s_1^4) \land \bigwedge_{i \neq j} \neg (s_1^i \land s_1^j) \land (s_2^1 \lor s_2^2 \lor s_2^3 \lor s_2^4 \lor s_2^4) \land \bigwedge_{i \neq j} \neg (s_2^i \land s_2^j) \land \dots$$

$$\bigvee_{k=1}^{4} (s_1^k \wedge s_3^k) \wedge \bigvee_{k=1}^{4} (s_1^k \wedge s_4^k) \wedge \bigvee_{k=1}^{4} (s_1^k \wedge s_2^k) \wedge \bigwedge_{k=1}^{4} \neg (s_3^k \wedge s_4^k) \wedge \dots$$

:

# Keskeiset Kysymykset

## Rajoitealgoritmien Kehitys

- Mikä rajoitekieli kannattaa valita?
- Miten saadaan rajoitealgoritmit tarpeeksi nopeiksi?
- Miten tehdään työkaluista helppokäyttöisiä?

## Rajoitealgoritmien Sovellus

- Minkälaisiin ongelmiin deklaratiivista lähestymistapaa kannattaa soveltaa?
- Miten eri ongelmia kannattaa mallintaa rajoitteiksi?

# Keskeiset Kysymykset

## Rajoitealgoritmien Kehitys

- Mikä rajoitekieli kannattaa valita?
- Miten saadaan rajoitealgoritmit tarpeeksi nopeiksi?
- Miten tehdään työkaluista helppokäyttöisiä?

#### Rajoitealgoritmien Sovellus

- Minkälaisiin ongelmiin deklaratiivista lähestymistapaa kannattaa soveltaa?
- Miten eri ongelmia kannattaa mallintaa rajoitteiksi?

# Keskeiset Kysymykset

## Rajoitealgoritmien Kehitys

- Mikä rajoitekieli kannattaa valita?
- Miten saadaan rajoitealgoritmit tarpeeksi nopeiksi?
- Miten tehdään työkaluista helppokäyttöisiä?

## Rajoitealgoritmien Sovellus

- Minkälaisiin ongelmiin deklaratiivista lähestymistapaa kannattaa soveltaa?
- Miten eri ongelmia kannattaa mallintaa rajoitteiksi?

#### Yhteenveto

#### Deklaratiivinen Optimointi

- Mallinna ratkaistava ongelma rajoitteina.
- Ratkaise rajoitemalli.

- Rajoitemallin kehittäminen helpompaa kuin ratkaisualgoritmin.
- Tehokasta.
- Helposti muokattavissa eri ongelmille.

# Kiitos!

#### Kun data on harvaa



Pidä p \* 100% kaarista

$$p = 1.0$$

#### Kun data on harvaa



Pidä p \* 100% kaarista

$$p = 0.7$$

#### Kun data on harvaa



Pidä p \* 100% kaarista

$$\mathbf{p} = 0.4$$

#### Kun data on harvaa





Pidä p \* 100% kaarista

$$p = 0.1$$



## Kokeet harvalla datalla

#### Tulokset



# Esimerkkiongelma 2: Bayesverkko



# Rajoitetun puuleveyden Bayesverkkojen rakenteen oppiminen

Bounded Treewidth Bayesian Network Structure Learning (BTBNSL)

- Struktuurioppiminen: selitä dataa verkolla.
- Käytä sitä uusien todennäköisyyksien päättelemiseen.
  - Molemmat ongelmat ovat NP-kovia.
- BTBNSL: Opi verkko jonka yli on tehokasta päätellä:



# Rajoitetun puuleveyden Bayesverkkojen rakenteen oppiminen

Bounded Treewidth Bayesian Network Structure Learning (BTBNSL)

- Struktuurioppiminen: selitä dataa verkolla.
- Käytä sitä uusien todennäköisyyksien päättelemiseen.
  - Molemmat ongelmat ovat NP-kovia.
- BTBNSL: Opi verkko jonka yli on tehokasta päätellä.



# **Puuleveys**



- Puuleveys mittaa, kuinka lähellä verkko on puuta.
- Bayesilainen päättely on tehokasta, jos verkolla on rajoitettu puuleveys.

## **BTBNSL**

#### Tuloksia

