

Statistical Sciences

Tutorial - Week 2

Ruyi Pan

July 13, 2023

Outline

- Limit Theorems
- Modelling
- Estimators

Limit Theorems - LLN

- Chebyshev's Inequality
- Weak Law of Large Numbers
- Strong Law of Large Numbers

Limit Theorems - CLT

Central Limit Theorem

Exercise - MIPS 13.9

Let X_1, X_2, \ldots be an independent sequence of U(-1,1) random variables and let $T_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. It is claimed that for some a and any $\epsilon > 0$ $\lim_{n \to \infty} P(|T_n - a| > \epsilon) = 0$.

- a. Explain how this could be true.
- b. Determine a.

Exercise - MIPS 14.5

Let X be a Bin(n,p) distributed random variable. Show that the random variable $\frac{X-np}{\sqrt{np(1-p)}}$ has a distribution that is approximately standard normal.

Exercise - MIPS 14.8

Let $X_1, X_2, ...$ be a sequence of independent N(0,1) distributed random variables. For n = 1, 2, ..., let Y_n be the random variable, defined by $Y_n = X_1^2 + ... + X_n^2$

- a. Show that $E(X_i^2) = 1$
- b. One can show—using integration by parts—that $E(X_i^4)=3$. Deduce from this that $Var(X_i^2)=2$.
- c. Use the central limit theorem to approximate $P(Y_{100} > 110)$.

Modelling

- Parametric model: model distribution, model parameters
- Sample statistics and realizations
- Linear Regression $Y_i = \alpha + \beta x_i + U_i$ where U_1, \dots, U_n are independent random variables with mean zero and same variance :
 - ▶ Regression line, intercept & slope, response variables (dependent variables), explanatory variables (independent variables).

Estimators

- Estimate: function of dataset
- Estimator: function of random sample
- Bias, Unbias
- Consistency (Converge in probability)

Exercise - MIPS 19.1

Suppose our dataset is a realization of a random sample X_1, X_2, \ldots, X_n from a uniform distribution on the interval $[-\theta, \theta]$, where θ is unknown.

- a. Show that $T = \frac{3}{n}(X_1^2 + \ldots + X_n^2)$ is an unbiased estimator for θ^2
- b. Is \sqrt{T} also unbiased estimator for θ ? If not, large whether is has positive or negative bias.

10 / 11

Exercise - MIPS 19.8

Recall a linear regression model without intercept $Y_i = \beta x_i + U_i$ for i = 1, 2, ..., n, where $U_1, U_2, ..., U_n$ are independent random variables with $E[U_i] = 0$ and $Var(U_i) = \sigma^2$. We discussed three estimators for the parameter β :

$$\bullet B_1 = \frac{1}{n} \left(\frac{Y_1}{x_1} + \ldots + \frac{Y_n}{x_n} \right)$$

•
$$B_2 = \frac{Y_1 + ... + Y_n}{x_1 + ... + x_n}$$

•
$$B_3 = \frac{x_1 Y_1 + ... + x_n Y_n}{x_1^2 + ... + x_n^2}$$

Show that all three estimators are unbiased for β .