DL 2 : Étude de la série exponentielle

(pour le mercredi 27/09)

Cet exercice est consacré à l'étude de la suite de sommes définie pour $n \in \mathbb{N}$, par : $S_n = \sum_{k=0}^n \frac{1}{k!}$.

1. Étude de la suite (S_n) .

- a) Rappeler: la valeur de 0!
 - ▶ l'expression, pour $n \in \mathbb{N}$, de (n+1)! en fonction de n! et de n,
 - ▶ la limite de la suite (*n*!)
- **b)** Calculer S_0 , S_1 , S_2 et S_3 . (On présentera les résultats comme un tableau de fractions irréductibles.)
- c) Pour $n \ge 0$, calculer $S_{n+1} S_n$. Montrer que la suite (S_n) est croissante.
- **2. Étude d'une suite intermédiaire** On définit la suite (S'_n) par $\forall n \ge 1$: $S'_n = S_n + \frac{1}{n \cdot n!}$.
 - a) Déterminer le sens de variation de la suite (S'_n) .
 - **b)** Montrer que les suites (S_n) et (S'_n) sont adjacentes.
 - c) En déduire que les suites (S_n) et (S'_n) convergent vers la même limite $\ell \in \mathbb{R}$. Montrer que pour $n \in \mathbb{N}$, on a : $S_n \leq \ell \leq S'_n$.

On se propose de montrer que cette limite commune est $e = \exp(1)$.

- **3.** Pour $n \in \mathbb{N}$, on définit : $I_n = \int_0^1 \frac{(1-t)^n}{n!} \cdot e^t dt$.
 - a) Calculer I_0 .
 - **b)** Par une intégration par parties, calculer, pour $n \in \mathbb{N}$, la valeur de : $I_{n+1} I_n$.
 - c) En déduire que la suite $(S_n + I_n)$ est constante. Quelle est sa valeur?
- 4. Pour $n \in \mathbb{N}$, on pose : $J_n = \int_0^1 (1-t)^n dt$.
 - a) Pour $n \in \mathbb{N}$, calculer l'intégrale J_n .
 - **b)** Montrer, pour $n \in \mathbb{N}$ l'encadrement : $J_n \leq n! \cdot I_n \leq e \cdot J_n$.
 - **c)** En déduire que $\lim_{n\to\infty}I_n=0$, puis que $\ell=e$. (c'est-à-dire que : $\sum_{k=0}^{+\infty}\frac{1}{k!}=\lim_{n\to\infty}S_n=e$.)

5. Un encadrement plus fin, et un équivalent

- a) Montrer que pour $t \in \mathbb{R}$, on a : $(1-t) \cdot e^t 1 \le 0$. En déduire le signe, pour $n \ge 1$, de $n! \cdot I_n - J_{n-1}$.
- **b)** En déduire l'inégalité : $I_n \le \frac{1}{n \cdot n!}$
- c) Grâce à 4.b), déduire pour $n \ge 1$, l'encadrement : $\frac{1}{(n+1)!} \le I_n \le \frac{1}{n \cdot n!}$.
- **d)** Déduire enfin l'équivalent : $I_n \sim \frac{1}{(n+1)!}$
- **6.** Retrouver l'encadrement : $\frac{1}{(n+1)!} \le I_n \le \frac{1}{n \cdot n!}$ grâce à celui de la question **2.c**), et **4.b**).