Objective Functions and Regularization

AIML 2021

Victoria University of Wellington

July 31, 2021

Overview

- ► Goal: to be able to select and use objective (cost) functions.
 - ▶ Material not all in the book (is too old).
- ▶ Objective functions for classification.
- ▶ Objective functions for regression and some generation methods.
- Regularization.
- Enforcing a density function.

Perspective

- Optimization of arbitrary objective functions was difficult before the advent of computers.
- Problems quadratic in the variables facilitate analytic solutions (setting the gradient to zero leads to a set of linear equations, which are easily solved). Hence, such problems have dominated history.
- Now we can use any reasonably behaved objective function:
 - If the objective function is convex it is nicer as then there is only one minimum.

Classification and objective functions 1

- Let us say we have a set classes and index them with v.
- ▶ You write a program and your prediction is \hat{v} .
- ▶ A *naive* objective function tells us if $\hat{v} = v$ (right) or $\hat{v} \neq v$ (wrong):
 - But a two-valued objective function is not differentiable.
 - A small change in the parameters θ does not lead to a small change in such a naive objective function. It either does nothing or it changes from 0 to 1 or from 1 to 0.
 - We need something less naive, something that provides us with a continuous representation of how close we are to getting it right.

Classification and objective functions 2

- Instead of a yes/no output and a hard yes/no decision on whether that is right, we can output a *class-is-observed probability* given the input, leading to a soft, differentiable objective function:
 - ▶ For a single class, our model then provides the probability of the class being observed in the input x: $q_{\theta}(v|x)$ with $v \in \{0,1\}$ (class not present, class present), with parameters θ (we may omit the subscript).
 - For a set of classes we can write v as a vector: $y = [y_1, y_2, \cdots, y_d]$.
 - ▶ The network outputs *d* numbers that are class observation probabilities.
 - For a five-class (classes a,b,c,d,e) problem the desired output when groundtruth is item c is $[p(y_a|x),p(y_b|x),\cdots]=[0,0,1,0,0]$. The network output is $[q(y_a|x),q(y_b|x),q(y_c|x),q(y_d|x),q(y_e|x)]$. We then want the θ that gets q to match the groundtruth p over all data.
 - **Easy** to define a differentiable (to θ) objective function for training.
- ► In contras, in a regression problem the network has as output a variable (scalar, vector); an image, or a speech signal segment.

Two types of classification

- ► Each class gets an output unit (neuron).
- Network output: probabilities that each class has occurred in input x.
- ▶ We can distinguish two cases based on prior information provided.
- ► Type 1: here is one item and it is of one particular class:
 - ► Training data labels are one-hot vectors, e.g., $[p(y_1 = 1|x), p(y_2 = 1|x), p(y_3 = 1|x)] = [0, 1, 0].$
 - It can be only one of the possible classes: a car or a bicycle, or a person.
- ► Type 2: multiple items possible; sigmoidal output:
 - ▶ Training data labels are of the form $[p(y_1 = 1|x), \cdots] = [0, 1, 1]$.
 - ► There may be a car and/or a bicycle and/or person in the image.
- ▶ Often convenient: for training data $p(y_i = 1|x) = y_i$ with $y_i \in \{0, 1\}$.
- A natural objective function for both cases is cross entropy.
- This web page provides another view on the two cases.
- ► This web page discusses the entire classification setup.

Type 1: review of common notation

- ► We use V for standard notation of class:
 - For set of classes $C = \{1, 2, 3\}$ we have v = 1 or v = 2, or v = 3.
- ▶ We use *Y* for one-hot notation for the class:
 - For set of classes $C = \{1, 2, 3\}$ we have y = [1, 0, 0] or y = [0, 1, 0] or y = [0, 0, 1]. This notation may seem inefficient/redundant but is nice as each y_i can be a network output neuron.
 - $y_2 = 1$ then indicates "class 2 is observed" and is the same as $y = [0, 1, 0, \cdots]$.
- ► Scalar v and vector y different ways to represent the same class label.
- Each desired output training data point is a probability distribution p that is one-hot (of the form [0,1,0]). Note the following equivalencies:

$$p(v = 2|x) = p(y_2|x) = y_2.$$
 (1)

▶ In the real world out there papers do not use V but use Y for both notation methods.

Type 1: softmax

- ▶ Class probabilities $q(y_j)$ must sum to one:
 - ► Each input vector *x* of one class.
 - Example: either a car or a bicycle or a person.
- Output units always provide a proper probability mass function by means of softmax mapping:

$$q(y_i|x) = \frac{\exp(f_i(x))}{\sum_{j \in \mathbf{C}} \exp(f_j(x))}$$
 (2)

where f(x) is the vector of $\left|C\right|$ activations in layer before output layer.

- ▶ Need $f_j(x)$ for all j to compute each $q(y_i|x)$: special computation.
- Recognize that exp is a trick to keep the probabilities positive.
- Natural objective functions: Kullback-Leibler divergence, max likelihood, cross entropy. We will shown again that they are equivalent.

Type 1: softmax

- ► Training: compare softmax output probabilities with one-hot vectors:
 - ▶ Proper measure described in next slides.
- ▶ Inference: select the highest probability class as output.

Type 1: Kullback-Leibler divergence and cross entropy

- ▶ This web page gives another view of this (note different notation).
- ightharpoonup p short for ground-truth joint distribution, p_{XY} (X input, Y output).
- ightharpoonup q is short for our model for the joint distribution, $q_{XY:\theta}$:

$$q_{XY;\theta}(x,y) = q_{Y|X;\theta}(y|x) p_X(x)$$
(3)

- $ightharpoonup q_{Y|X:\theta}(y|x)$ is the deep network (our model).
- $ightharpoonup p_X(x)$ distribution of input data (not modelled; is what it is).
- ▶ Objective: find θ that minimizes KL divergence p with model distribution q_{θ} .
- ► KL objective is same as minimizing cross entropy:

$$\inf_{\theta} D(p||q) = \inf_{\theta} \operatorname{E}_{p}[\log \frac{p}{q}] = \operatorname{E}_{p}[\log p] - \inf_{\theta} \operatorname{E}_{p}[\log q] \tag{4}$$

$$=\inf_{\rho}-\mathrm{E}_{p}[\log q]\tag{5}$$

▶ (inf is almost the same thing as "minimum of").

Type 1: cross entropy formulation

▶ Replace E_p by averaging over input data $x \in A$:

$$\theta_{\text{opt}} = \arg\min_{\theta} -\mathbf{E}_p \log q \tag{6}$$

$$= \arg\min_{a} - \mathcal{E}_{p_X} \mathcal{E}_{p_{Y|X}} \log q(X, Y) \tag{7}$$

$$= \arg\min_{\theta} -\mathbf{E}_{p_X} \mathbf{E}_{p_{Y|X}} \log(q(Y|X)p(X)) \tag{8}$$

$$= \arg\min_{\mathbf{A}} -\mathbf{E}_{p_X} \mathbf{E}_{p_{Y|X}} \log q(Y|X) \tag{9}$$

$$pprox \arg\min_{\theta} -\frac{1}{|\mathcal{A}|} \sum_{x \in A} \mathcal{E}_{p_{Y|X}} \log q(Y|x)$$
 (10)

$$= \arg\min_{\theta} - \sum_{x \in A} \sum_{y} p(y|x) \log q(y|x)$$
 (11)

- Set p(y|x) = 1 for correct class y for x and p(y|x) = 0 for other labels.
- ▶ $-\log q(y|x)$ is minus log likelihood loss. (11) maximizes a weighted average of class log likelihoods. Weighting depends on number of data available for each class (is p(x)).
- ► This derivation does not depend on y being one-hot, it could be our v; one-hot makes it work with softmax setup.

Type 1: binary logistic regression formulation

- ► Two-class classification commonly based on *logistic regression*:
 - Note we can get by with only a single output neuron.
 - ► Really nice description.
- ▶ Standard notation: $h(x) = q_{V|X:\theta}(1|x)$, where $v \in \{0,1\}$ is the class.
- ightharpoonup The likelihood of θ for the database A can be written as:

$$L = \prod_{i \in A} (h(x^{(i)}))^{v^{(i)}} (1 - h(x^{(i)}))^{1 - v^{(i)}}$$
(12)

$$LL = \sum_{i \in A} v^{(i)} \log h(x^{(i)}) + (1 - v^{(i)}) \log(1 - h(x^{(i)}))$$
 (13)

$$= \sum_{i \in \mathcal{A}|v=1} \log h(x^{(i)}) + \sum_{i \in \mathcal{A}|v=0} \log(1 - h(x^{(i)}))$$
 (14)

Note that classes can be rewritten as $p(v^{(i)}=1|x)=v^{(i)}$ and $p(v=0|x)=1-v^{(i)}$, where p is ground truth. Then (14) is:

$$LL = \sum p(v^{(i)} = 1|x)\log(h(x^{(i)})) + p(v^{(i)} = 0|x)\log(1 - h(x^{(i)}))$$
 (15)

▶ Binary logistic regression also equivalent to cross-entropy and KL div.

Type 1: binary logistic regression formulation

▶ We can get by with only a single output neuron:

$$h(x) = q(v = 1|x) = \frac{\exp(f_1(x))}{\exp(f_0(x) + \exp(f_1(x)))}$$
(16)

$$= \frac{1}{1 + \exp(f_0(x) - f_1(x))} \tag{17}$$

$$=\frac{1}{1+\exp(f(x))}\tag{18}$$

ightharpoonup Tells us if v=1, or not.

Type 2: sigmoid for binary classification

- ► Multiple classes can occur simultaneously:
 - Example: a car and/or a bicycle.
- ► For each class a separate binary classification problem: present/not+present.
- ▶ Training: compare output probabilities with binary vectors.
- ► Inference: compare value with threshold.

Type 2: sigmoid for binary classification

- $\triangleright y_i \in \{0,1\}$: class j happening yes/no.
- Output unit j provides the probability that class j happened.
- For each class a binary classification; (14) holds for each class = unit j:

$$LL_j = \sum_{i \in A} y_j^{(i)} \log(h_j(x^{(i)})) + (1 - y_j^{(i)}) \log(1 - h_j(x^{(i)}))$$
 (19)

- Note y_i (yes/no for j) is appropriate here, and not for (14).
- ► Can use form (18) for each class.
- Optimizing it all:

$$LL = \sum_{i \in \mathbf{C}} LL_j = \sum_{i \in A} \sum_{j \in \mathbf{C}} y_j^{(i)} \log(h_j(x^{(i)})) + (1 - y_j^{(i)}) \log(1 - h_j(x^{(i)}))$$

(20)

Prediction/regression

- ▶ Learning to predict a $y \in \mathbb{R}^{d_1}$ given an $x \in \mathbb{R}^{d_2}$.
- ▶ Model: *y* is something you can predict from *x*, plus noise from a known distribution family:

$$y = \mu(x) + \eta \tag{21}$$

- Assuming distribution is symmetric, then $\mu(x)$ is the mean for input x.
- For prediction/regression we usually are interested only in the mean: for inference we want the network to provide $\mu(x)$.
- We will consider two cases:
 - Multi-variate Gaussian distribution.
 - Laplacian distribution.
 - Easily generalized to independent.
 - General multi-variate case is too complicated and not used.

Multi-variate Gaussian noise

- Predict multiple related variables y from a vector x.
- Examples:
 - Predicting the weather.
 - ► Tracking the coordinates of a missile trajectory from its past.
- ► Model: $p(y|x;\theta) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(y-\mu(x;\theta))^T \Sigma^{-1}(y-\mu(x;\theta))\right)$:
 - \blacktriangleright $\mu(x;\theta)$ is the network map with network parameters θ .
- Log likelihood

$$LL = -\frac{|\mathcal{A}|k}{2}\log(2\pi) - \frac{|\mathcal{A}|}{2}\log|\Sigma| - \frac{1}{2}\sum_{i \in \mathcal{A}}(y^{(i)} - \mu(x^{(i)};\theta))^T \Sigma^{-1}(y^{(i)} - \mu(x^{(i)};\theta))$$

Attributes of method:

(22)

- ▶ Emphasizes contributions of outliers, fewer large prediction errors.
- Assumes short-tailed noise distribution.

Multi-variate Gaussian noise: why it works

- ▶ Only for insight, let us look at optimal solutions for θ and Σ :
 - ▶ Differentiate to θ , set to zero: optimal θ^* does not depend on Σ .
 - ▶ Differentiate to Σ , set to zero:

$$\hat{\Sigma} = \frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} (y^{(i)} - \mu(x^{(i)}))^T (y^{(i)} - \mu(x^{(i)})).$$

- ▶ Is maximizing likelihood same as minimizing the noise in the model?
 - Yes, a tighter distribution increases the likelihood of the observations.
- ▶ Is the covariance matrix Σ relevant for optimizing network?
 - ▶ No, because our "insight only" shows they all lead to the same θ .
 - Yes, because it weights the importance of the errors during optimization, see (22).
 - ▶ But we see in practice setting $\Sigma = I$ is easy and not so bad.

Laplacian noise

- Predict variable y from a vector x.
- ► Scalar model: $p(y|x;\theta) = \frac{1}{2b} \exp\left(-\frac{|y-\mu(x;\theta)|}{b}\right)$.
- ▶ Log likelihood: $LL = -\log(2b) \frac{1}{b} \sum_{i \in \mathcal{A}} |y^{(i)} \mu(x^{(i)}; \theta)|$.
 - ▶ To make it (independent) multi-variate, sum over output units j.
- For insight only:
 - ▶ Differentiating to μ , setting to zero not dependent on b.
 - ▶ Differentiating to b, set to zero: $\hat{b} = \frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} |y^{(i)} \mu(x^{(i)})|$.
- Attributes of method:
 - ▶ Equal footing to MSE for neural nets: analytic tractability not an issue.
 - Finding θ has only weak dependency on b.
 - ▶ De-emphasizes the effect of outliers: allows a few large errors.
 - Assumes long-tailed noise distribution.
 - ▶ Often very different results from Gaussian noise assumption.

Regularization

- **Exploit** *prior* knowledge about θ ?
- ▶ Reduce the freedom of the network to get better generalization.
- ▶ Regularization by penalty term in the objective function:
 - ► (Yes, a bit "primitive" compared to Lagrange multiplier method.)
 - ► The weights are sparse (many are zero).
 - Spectral norm regularization.
 - Gradient penalty.
- Approaches that modify network operation:
 - Batch normalization.
 - Spectral normalization.
 - Weight clipping.
 - Orthonormal regularization.
 - Drop out.

L2 weight regularization

- ▶ The more specialized the weights, the more overfitting.
- ightharpoonup Let W be the network weights
- \blacktriangleright We write baseline objective function as J(W; x, y).
- ▶ L2 regularized objective function $J(W; x, y) + \lambda ||W||_2^2$.
 - ightharpoonup We wrote all weights together as a vector W.
 - Figure out a good λ by trial and error.
- ▶ Penalizes outliers in the weights since everything is squared.
- ► The weight decay perspective:
 - ▶ Updating with the baseline objective f: $W_{t+1} = W_t \alpha \nabla_W J$.
 - ► L2 regularized objective f: $W_{t+1} = W_t \alpha \nabla_W J 2\alpha \lambda W$.
 - ▶ The additional term pushes the weights down to zero (weight decay).

L1 weight regularization

- \blacktriangleright We write baseline objective function as J(W; x, y).
- ▶ L1 regularized objective function $J(W; x, y) + \lambda ||W||_1$.
 - ightharpoonup We wrote all weights together as a vector W.
 - $\|W\|_1$ is the sum of the absolute values of the weights.
 - Figure out a good λ by trial and error.
- ▶ Does not penalize outliers.
- ▶ Tends to give sparse weights: handwaving argument: let \mathcal{H}_0 be weights for which J(W;x,y) is constant. Then the point on \mathcal{H}_0 with the smallest L1 norm tends to have many zeros and the point with the smallest L2 norm does not.

Lipschitz continuity and gradient penalty

- ► Good if the network is a continuous, nicely behaved mapping.
- ▶ A function f is k-Lipschitz continuous with metric $\|\cdot\|$ if

$$||f(z_1) - f(z_0)|| \le k||z_1 - z_0||$$

- ightharpoonup A nice animation of k-Lipschitz is on the wikipedia page.
- ▶ Simple approximation: bound the gradient. (Exact if differentiable.)
- Practical implementations:
 - ► Crude methods: clip the weights (obsolete); restrict L2 of weights.
 - ► Two different gradient penalty terms; let *f* be the network:

$$G1 = E_X(\|\nabla_x f(X)\| - 1)^2$$
(24)

$$G2 = E_X \max(0, \|\nabla_x f(X)\| - 1)^2$$
(25)

Lipschitz continuity and spectral normalization

- Directly control the Lipschitz constant in each layer.
- ▶ The Lipschitz norm of a matrix A is defined as $\sigma(A) = \sup_{z} \frac{\|Az\|}{\|z\|}$
 - ▶ The direction of the largest gain (largest singular value).
 - ► All gains together form a "spectrum".
- As the maximum of the product of the gains of all network layers is the product of the max gains, we can look at layers individually.
- ► Control of the spectrum also means you control the gradient:
 - ▶ Single network layer maps $f^{(i)}: z_{i-1} \mapsto z_i$ with $f^{(i)}: \mathbb{R}^{d_{i-1}} \to \mathbb{R}^{d_i}$:
 - ▶ The gradient $\nabla f^{(i)}(z)$ is a Jacobian matrix that depends on z.
 - Spectral normalization constrains $\sup_z \sigma(\nabla f^{(i)}(z))$ for each layer.
 - Now ignore the gain of the nonlinearity (ok for ReLU). Then $\sup_z \sigma(\nabla f^{(i)}(z)) = \sigma(W)$, where W are the weights of the layer.
 - $ightharpoonup \sigma(W)$ is just largest singular value of W.
- ▶ Definition spectral normalization is: $W := W/\sigma(W)$ for each layer.
- ▶ Naturally must use a fast method to implement $\sigma(W)$.

Drop out

- Simply set the output of a percentage of the units (e.g., 50%) of a layer to zero during training.
- ► Makes the network more robust: reduces overfitting.
- ► Figure 1 in the the original paper illustrates the method. You can also find illustrations of the performance improvement in that paper.

Encouraging densities of a particular form

- Example applications:
 - Output distribution that corresponds to faces or bedrooms.
 - ▶ Bottleneck latent variable that facilitates coding or classification.
- Compare two densities I:
 - Kullback-Leibler (not a metric / distance):
 - Jensen-Shannon (square-root is a metric).
- Compare two densities II (good for empirical distributions):
 - Integral probability metrics:
 - Maximum mean discrepancy (MMD).
 - Earth-mover's (Wasserstein) distance.
- ► Metric=distance: zero if identical, symmetric, triangle inequality holds.

Kullback-Leibler and Jensen-Shannon divergences

- ightharpoonup Kullback-Leibler: $E_p \log \frac{p}{q}$,
 - Natural when distributions are parametric.
 - ► Nice:
 - Valued in bits.
 - Minimizing it = minimizing cross-entropy, works even when p is empirical, then $H(p,q) = -\sum_{i \in \mathcal{A}} \log q(x_i)$; good for classification.
 - Not nice:
 - Not a metric
 - Cumbersome if both distributions are empirical.
 - Problematic when support q does not overlap with that of p (e.g., at initialization) as $\log 0 = -\infty$.
- ▶ Jensen-Shannon: $\frac{1}{2}E_p[\log \frac{2p}{p+q}] + \frac{1}{2}E_q[\log \frac{2q}{p+q}]$,
 - Corrects some of the problems of Kullback-Leibler.
 - Its square-root is a metric (distance).
 - Not convenient for empirical distributions.
 - Support problem no longer exists.

Maximum Mean Discrepancy (MMD)

- Distance between distributions, p_X and p_Y:
 - Nice approximation if only known through sets of observations (so for empirical distributions).
 - We can always sample a distribution if it is explicitly known.
- ▶ Application: you want distribution p_Y of Y to equal p_X of X:
 - Use MMD as penalty.
- ightharpoonup Requires kernel k(x,y):
 - ▶ Gaussian kernel: $k(x,y) = \exp(-\frac{\|x-y\|^2}{r})$, where r is chosen by designer.
 - ► Many others possible: a list of kernels.
- ightharpoonup Empirical MMD for a set of samples of X and of Y:

$$\begin{aligned} & \text{MMD}(\{x^{(i)}\}_{i=1,\dots,m}, \{y^{(j)}\}_{j=1,\dots,n}) = \\ & \frac{1}{m(m-1)} \sum_{i \neq j} k(x^{(i)}, x^{(j)}) + \frac{1}{n(n-1)} \sum_{i \neq j} k(y^{(i)}, y^{(j)}) - 2 \frac{1}{mn} \sum_{i,j} k(x^{(i)}, y^{(j)}) \end{aligned}$$

Intuition: first two terms larger than last one when p_X and p_Y differ.

Maximum Mean Discrepancy (MMD): the theory

- Uses reproducing kernel Hilbert space (RKHS).
- ▶ Let $h(\cdot)$ live in an RKHS, with kernel k: then $h(x) = \langle k(x, \cdot), h(\cdot) \rangle$.
- ▶ Define mean in RKHS $\mu_q(x) = E_q[k(x,\cdot)]$, a function. Then:

$$\mathbf{E}_{q}[h(x)] = \mathbf{E}[\langle k(x,\cdot), h(\cdot) \rangle] = \langle \mathbf{E}[k(x,\cdot)], h(\cdot) \rangle = \langle \mu_{q}(x), h \rangle \tag{26}$$

Hence this mean fully characterizes the distribution q.

► Take function to be the most telling one (witness function):

$$\sup_{\|h\| \le 1} \operatorname{E}_p[h(x)] - \operatorname{E}_q[h(y)] = \sup_{\|h\| \le 1} \operatorname{E}_p\langle k(x,\cdot), h \rangle - \operatorname{E}_q\langle k(x,\cdot), h \rangle$$
 (27)

$$= \sup_{\|h\| \le 1} \langle \mu_p - \mu_q, h \rangle = \langle \mu_p - \mu_q, \mu_p - \mu_q \rangle \tag{28}$$

$$= \mathrm{E}_{p,p}\langle k(x,\cdot), k(x',\cdot)\rangle - 2\mathrm{E}_{p,q}\langle k(x,\cdot), k(x',\cdot)\rangle + \mathrm{E}_{q,q}\langle k(x,\cdot), k(x',\cdot)\rangle$$

- ▶ Replace expectations with empirical averages: the empirical MMD.
- ► Witness function = critic.

Earth mover's / 1-Wasserstein distance

- ▶ A distance between distributions, p_X and p_Y .
- Let π be the set of joint distributions with marginals p_X and p_Y , then:

$$W_1(p_X, p_Y) = \inf_{p_{XY} \in \pi} \int \|x - y\| \, p_{XY}(x, y) dx dy \tag{29}$$

$$= \inf_{p_{XY} \in \pi} \mathcal{E}_{p_{XY}} \| X - Y \| \tag{30}$$

- (Subscript points to particular case of moment 1; we usually omit it.)
- $\|x-y\|$ is "travel" distance.
- ▶ The Kantorovich-Rubinstein duality shows that ($\|\cdot\|_{L\leq k}$ is k-Lipschitz):

$$W_1(p_X, p_Y) = \sup_{\|f\|_{L \le 1}} \mathcal{E}_{p_X}[f(X)] - \mathcal{E}_{p_Y}[f(Y)]$$
 (31)

- ► As with MMD, the expectations facilitate empirical distributions.
- \blacktriangleright A near-optimal f (the critic) can be found with a neural network!
- Compare two empirical distributions (groundtruth vs artificial faces):
 - ▶ Interlaced optimization f and generation of faces \rightarrow GAN.
- ► A nice, more complete, description is on this page.

Illustration earthmoving / Wasserstein distance

Variance constraint

- ► Typical application: prevent latent variable from diverging.
- Example: constrain information passing through a layer:
 - ▶ Use results from information theory / communication theory.
 - Add gaussian noise N with known variance σ²_N, constrain variance of input.
 - ► Can show information traveling through is bound by $I = \log_2(1 + \frac{\sigma_Z^2}{\sigma_N^2})$.
- Variance constraints are easy.
- ▶ Penalty function can be $E_Z|||Z||^2 1$ |, for example.

ELBO, evidence lower bound: preamble

- ▶ Scenario: observe X, have model p(x, z) with hidden Z:
 - ▶ Want posterior p(z|x).
 - **Example:** mixture distribution $p(x) = \sum_k p(z_k) p_k(x|z_k)$, $z \sim \text{Mult}(K)$.
 - $ightharpoonup p(z|x) = rac{p(x,z)}{\int p(x,z)dz}$ denominator problematic, as x are many data.
 - ▶ Solution: evidence lower bound (ELBO). More detail is here.
- ldea: find surrogate q(z|x) for p(z|x) maximizing lower bound on p(x) (evidence):

$$\log p(x) = E_{q_{Z|X}} \log p(x) = E_{q_{Z|X}} \log \frac{p(Z, x)}{p(Z|x)}$$
(32)

$$= E_{q_{Z|X}} [\log p(x, Z) + \log \frac{q(Z|x)}{q(Z|x)p(Z|x)}]$$
 (33)

$$= E_{q_{Z|X}} [\log p(x, Z) - \log q(Z|x) + \log \frac{q(Z|x)}{p(Z|x)}]$$
 (34)

$$\geq \mathrm{E}_{q_{Z|X}}[\log p(x,Z) - \log q(Z|x)] \tag{35}$$

$$= ELBO = E_{q_{Z|X}}[\log p(x|Z)] - D_{KL}(q(Z|x)||p(Z))$$
(36)

- ▶ With additional effort, (35) solves the original problem; we use (36).
- ightharpoonup q(z|x) is variational approximation of p(z|x).

ELBO, evidence lower bound: VAE

Maximize ELBO to get a generative model; write ELBO as:

ELBO =
$$E_{q_{Z|X}}[\log p(x|Z)] - D_{KL}(q(Z|x)||p(Z))$$
 (37)

- Note first term ELBO is reconstruction error, second measure of difference posterior and prior, this is the variational autoencoder (VAE):
 - ▶ Optimize both p(x|z) and q(z|x).
 - ightharpoonup p(x|z) typically a deterministic map and then we add Gaussian noise.
 - Gaussian noise is zero-mean and has fixed variance (not trained).
 - ightharpoonup p(z) is known from the start and chosen for ease to sample from.
 - ightharpoonup Sample from z, and given a z we can create x.
 - ightharpoonup z Gaussian noise, x a human face, for example.
- Comments on training:
 - $\blacktriangleright \ \mathbf{E}_{q_{Z\mid X}}$ can be replaced with summation over data at output of encoder.
 - $ightharpoonup \log p(x|z)$ is tractable if deterministic decoder with noise at output.
 - ightharpoonup p(z) usually a Gaussian distribution.
 - ▶ Algorithm: maximize ELBO (optimize parameters of p(x|z) and q(z|x)).

Problems I

- 1. Classification on MNIST (code needs to explictly compute gradients):
 - 1.1 Down-load, then preprocess the MNIST data base (both train and test) so that 1/3 of the images are rotated by 90 degrees left or and 1/3 are rotated by 90 degrees right. Separate training data into training and validation data.
 - 1.2 Train a network that has as objective to recognize if the images are rotated left, right, or not rotated.
 - 1.3 Provide a plot that shows training and validation accuracy as a function of epoch and report your final accuracy on the test data.

Problems II

- 2. The basic principle of generative models. Your code must explictly compute gradients and your training method should also apply when only empirical desired output distributions are available (e.g., faces).
 - 2.1 Train a simple fully connected neural network f_1 of your design that converts a two-dimensional (2D) $Z \sim \mathcal{N}(0,I)$ into a 2D uniform Y. That is, Y has uniform density in a 2D box (2-cube) with edges of length 1 and has zero probability outside the box.
 - 2.2 Train a second network f_{2a} that converts the 2D Y into a gaussian 2D Z.
 - 2.3 Next train f_1 and f_{2a} with different levels of L2 regularization on the weights. You may include one more sophisticated regularization method (gradient penalty or spectral normalization) for extra credit.
 - 2.4 Using 2D color plots, discuss qualitatively what happens to input data if we concatenate two networks $f_{2a} \circ f_1$, thus mapping Gaussian to Gaussian, for the different levels of regularization. For example, discuss how the movement of adjacent points is related.
 - 2.5 Train a third network f_{2b} that converts a 1D uniform Y into a gaussian 2D Z. Again use 2D color plots that show how points are mapped from the input Y to the output Z.

