

Mixed-initiative mission planning considering human operator state estimation based on physiological sensors

Nicolas Drougard

Increasing use of automated systems

aircrafts, cars, unmanned vehicles (military operation, contaminated area), ...

Increasing use of automated systems

aircrafts, cars, unmanned vehicles (military operation, contaminated area), ...

Increasingly autonomous robots: technical advances in AI, machine learning, vision, decision ...

Increasing use of automated systems

aircrafts, cars, unmanned vehicles (military operation, contaminated area), ...

- Increasingly autonomous robots: technical advances in AI, machine learning, vision, decision ...
- Human operator still vital:
 - produces tactical and ethical decisions
 - handles complex/unknown situations/systems

Increasing use of automated systems

aircrafts, cars, unmanned vehicles (military operation, contaminated area), ...

- Increasingly autonomous robots: technical advances in AI, machine learning, vision, decision ...
- Human operator still vital:
 - produces tactical and ethical decisions
 - handles complex/unknown situations/systems

Human factors involved in 80% of AAVs accidents! [Wil]

Potential effects of a mission on human operators:

- stress (danger, pressure)
- workload (multi-task, hard tasks)
- fatigue, boredom (long mission)

Potential effects of a mission on human operators:

- stress (danger, pressure)
- workload (multi-task, hard tasks)
- fatigue, boredom (long mission)

Consequences:

- mental confusion
- attentional tunneling
- mind wandering
- lower vigilance
- ...

increase in accident risk resulting in mission fails

use of human state feedbacks! beamer-onera-he

Human operators equipped with sensors

data from the human operator state can refine supervision of human-robot team

use of human state feedbacks! beams

Human operators equipped with sensors

data from the human operator state can refine supervision of human-robot team

- [SCD15] target identification task (ground robot)
 - **devices:** eye tracking + electrocardiography
 - human state: cognitive availability estimation
 - **superv. validation:** simulations of the system (including human behavior)

use of human state feedbacks!

neamer-onera-head

Human operators equipped with sensors

data from the human operator state can refine supervision of human-robot team

- [SCD15] target identification task (ground robot)
 - **devices:** eye tracking + electrocardiography
 - human state: cognitive availability estimation
 - **superv. validation:** simulations of the system (including human behavior)
- [GCLD16] search and rescue task (AAVs)
 - device: eye tracking
 - **human state:** *current human task* = human gaze
 - **superv.** validation: tested on 10 volunteers

work on progress

beamer-onera-head

Next stage

- devices: eye tracking + electrocardiography (+ EEG, NIRS, ...)
- human state: estimation of cognitive availability
 - current human task
 - type of human behavior

[NRGS15]

work on progress

Next stage

- devices: eye tracking + electrocardiography (+ EEG, NIRS, ...)
- human state: estimation of cognitive availability
 - current human task
 - type of human behavior [NRGS15]

or any human relevant feature (situation awareness, involvement in the mission, ...)

work on progress

Next stage

- devices: eye tracking + electrocardiography (+ EEG, NIRS, ...)
- human state: estimation of cognitive availability
 - current human task
 - type of human behavior [NRGS15]
 - or any human relevant feature (situation awareness, involvement in the mission, ...)
- superv. validation: test on volunteers at ISAE on a mission rated with a simple score

Next stage

work on progress

- devices: eye tracking + electrocardiography (+ EEG, NIRS, ...)
- human state: estimation of cognitive availability
 - current human task
 - type of human behavior [NRGS15]
 - or any human relevant feature (situation awareness, involvement in the mission, ...)
- superv. validation: test on volunteers at ISAE on a mission rated with a simple score

robot/supervision sequential decisions computation: POMDP

Imprecision modeling

beamer-onera-head

imprecise expert information on unavailable **p**? small number of volunteers?

- poor statistical analysis
- low level confidence on computed **p**

Imprecision modeling

oeamer-onera-head

imprecise expert information on unavailable **p**? small number of volunteers?

- poor statistical analysis
- low level confidence on computed p
- \rightarrow model imprecision using alternative uncertainty theories [DDFT15]

Qualitative Possibility Theory - (max,min) extropical" algebra

finite scale \mathcal{L}

usually $\{0,\frac{1}{k},\frac{2}{k},\dots,1\}$

events $E \subset \Omega$ (universe)

sorted using possibility **degrees** $\Pi(E) \in \mathcal{L}$

 \neq

quantified with **frequencies** $\mathbb{P}(E) \in [0,1]$ (probabilities)

Qualitative Possibility Theory - (max,min) attropical" algebra

finite scale $\mathcal L$

usually $\{0,\frac{1}{k},\frac{2}{k},\dots,1\}$

entirely possible
quite plausible
:
almost impossible
impossible

events
$$E \subset \Omega$$
 (universe)

sorted using possibility **degrees** $\Pi(E) \in \mathcal{L}$

quantified with frequencies $\mathbb{P}(E) \in [0,1]$ (probabilities)

$$\Pi(E) = \max_{e \in E} \Pi(\lbrace e \rbrace) = \max_{e \in E} \pi(e)$$

Alternative uncertainty theories joint work with Sergio Pizziol -b@ontext-head

Alternative uncertainty theories joint work with Sergio Pizziol - Context-head

Issue: incorrect human assessment of the machine state \rightarrow accident risk

Alternative uncertainty theories joint work with Sergio Pizziol - Context-head

Issue: incorrect human assessment of the machine state \rightarrow accident risk

Alternative uncertainty theories joint work with Sergio Pizziol — Context-head

Issue: incorrect human assessment of the machine state \rightarrow accident risk

π -POMDP without actions: π -Hidden Markov Process

- **system space** \mathcal{S} : set of human assessments \rightarrow **hidden**
- **observation space** \mathcal{O} : feedbacks/human manipulations

Human error model from expert knowledgead

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Human error model from expert knowledge ad

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks"
$$o \pi\left(s_B',o_f'\mid s_A\right)=1$$
 "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

Human error model from expert knowledgead

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

- observation: machine feedback $o'_f \in \mathcal{O}$:
- "human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$
 - observation: **human manipulation** $o'_m \in \mathcal{O}$:
- "manipulation o_m' is normal under s_A " $\to \pi \left(s_B', o_m' \mid s_A\right) = 1$ "is abnormal" $\to = \frac{1}{3}$

Human error model from expert knowledgead

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

- observation: machine feedback $o'_f \in \mathcal{O}$:
- "human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$
 - observation: **human manipulation** $o'_m \in \mathcal{O}$:
- "manipulation o'_m is normal under s_A " $\to \pi \left(s'_B, o'_m \mid s_A\right) = 1$ "is abnormal" $\to = \frac{1}{3}$
 - impossible cases: possibility degree 0

π-HMP, detection & diagnosis tool for HMM (with Sergio Pizziol)

 π -HMP, detection & diagnosis tool for HMP (with **Sergio Pizziol**)

- estimation of the human assessment ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on flight simulator missions

neamer_onera_head

Nicolas Drougard, Didier Dubois, Jean-Loup Farges, and Florent Teichteil-Königsbuch.

Planning in partially observable domains with fuzzy epistemic states and probabilistic dynamics. In Scalable Uncertainty Management - 9th International Conference, SUM 2015, 2015.

Thibault Gateau, Caroline Ponzoni Carvalho Chanel, Mai-Huy Le, and Frédéric Dehais.

Considering human's non-deterministic behavior and his availability state when designing a collaborative human-robots system.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS '16, 2016,

Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah.

Efficient model learning from joint-action demonstrations for human-robot collaborative tasks.

In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, HRI '15, 2015.

Paulo Eduardo Ubaldino de Souza, Caroline Ponzoni Carvalho Chanel, and Frederic Dehais,

Momdp-based target search mission taking into account the human operator's cognitive state.

In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, ICTAI '15, 2015.

Kevin W Williams

A summary of unmanned aircraft accident/incident data: Human factors implications.

U.S. Department of Transportation, Federal Aviation Administration, Civil Aerospace Medical Institute.

Thank you!