Tema 1:

Resolució de sistemes d'equacions lineals mitjançant operacions elementals. Matrius escalonades.

Bloc 1: Operacions amb vectors i matrius

Càlcul vectorial

Càlcul matricial

Definicions

Un vector n-dimensional \vec{u} és una expressió del tipus

on u_1, u_2, \ldots, u_n són nombres reals (o complexos), anomenats components del vector.

Per comoditat, aquest vector es pot representar com

$$(u_1,u_2,\ldots,u_n).$$

El conjunt de tots els vectors n-dimensionals reals (respectivament, complexos) es representa com \mathbb{R}^n (respectivament, \mathbb{C}^n).

El vector zero, $\vec{0}$, és el que té tots els components nuls:

$$\vec{0} = (0, 0, \dots, 0).$$

Operacions amb vectors

Si $\vec{u}=(u_1,u_2,\ldots,u_n)$ i $\vec{v}=(v_1,v_2,\ldots,v_n)$ són dos vectors en \mathbb{R}^n o en \mathbb{C}^n , la suma de \vec{u} i \vec{v} és el vector

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

La diferència entre $\vec{u}=(u_1,u_2,\ldots,u_n)$ i $\vec{v}=(v_1,v_2,\ldots,v_n)$ és

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, \dots, u_n - v_n)$$

Si λ és un escalar i $\vec{u} = (u_1, u_2, \dots, u_n)$ un vector, llavors, el producte del escalar λ pel vector \vec{u} és el vector

$$\lambda \vec{u} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$$

Exemples

 Per a sumar dos vectors el que farem serà sumar-los component a component:

$$(2,-1,3,0)+(-1,1,4,1)=(2-1,-1+1,3+4,0+1)$$

= $(1,0,7,1)$

 Per a restar dos vectors el que farem serà restar-los component a component:

$$(2,-1,3,0) - (-1,1,4,1) = (2-(-1),-1-1,3-4,0-1)$$

= $(3,-2,-1,-1)$

 Per a multiplicar un vector per un escalar, multiplicarem cada component per eixe escalar:

$$-3(2,-1,3,0) = ((-3)2,(-3)(-1),(-3)3,(-3)0)$$
$$= (-6,3,-9,0)$$

Suma i diferència de dos vectors

Producte d'un escalar per un vector

Combinacions lineals

Definició

Donats diversos vectors (fila o columna) v_1, v_2, \ldots, v_m en \mathbb{R}^n (o en \mathbb{C}^n), s'anomena combinació lineal d'ells a qualsevol vector de la forma

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_m \mathbf{v}_m,$$

amb $\alpha_1 \cdots \alpha_m$ són escalars (reals o complexos).

Exemple:

$$(0,7,10) = 2(3,2,-1) + 3(-2,1,4)$$

Per tant (0,7,10) és combinació lineal de (3,2,-1) i de (-2,1,4).

Combinacions lineals

Diverses combinacions lineals dels dos vectors \vec{u} i \vec{v}

 $2\vec{u} - \frac{1}{2}\vec{v}$

Producte escalar

Definició

Si $\vec{u}=(u_1,u_2,\ldots,u_n)$ i $\vec{v}=(v_1,v_2,\ldots,v_n)$ són dos vectors en \mathbb{R}^n , el producte escalar de \vec{u} per \vec{v} és el nombre real

$$\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

El producte escalar de \vec{u} i \vec{v} es calcula multiplicant-los component a component i sumant tots aquests productes. Per exemple,

$$(2,-1,3,0)\cdot (-1,1,4,1)=$$
 $2\cdot (-1)+(-1)\cdot 1+3\cdot 4+0\cdot 1=$ $-2-1+12+0=9$

Fixeu-vos bé que el producte *escalar* de dos vectors és un escalar (no un vector)

Aplicacions geomètriques del producte escalar

Norma d'un vector

La *norma* (o *longitud*) del vector $\vec{u} \in \mathbb{R}^n$ és el nombre

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$
 (1)

Per exemple:

$$||(2,3)|| = \sqrt{2^2 + 3^2}$$

$$\|(1,3,2)\| = \sqrt{1^2 + 3^2 + 2^2}$$

Representació gràfica

Aplicacions geomètriques del producte escalar

Angle entre dos vectors

Si $\vec{u} \neq 0$ i $\vec{v} \neq 0$ són vectors de \mathbb{R}^n :

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Dos vectors \vec{u} i \vec{v} de \mathbb{R}^n són ortogonals si el producte escalar $\vec{u} \cdot \vec{v}$ és igual a zero (i, per tant són *perpendiculars*).

Càlcul vectorial

2 Càlcul matricial

Definició

Una matriu d'ordre $m \times n$ és un conjunt de $m \cdot n$ nombres (reals o complexos) distribuïts en m files i n columnes:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & & \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Els nombres a_{ij} són les entrades o elements de la matriu. El conjunt de totes les matrius $m \times n$ amb entrades reals (respectivament, complexes) es representa per $M_{m \times n}(\mathbb{R})$. (respectivament $M_{m \times n}(\mathbb{C})$).

Les matrius solen representar-se de forma abreujada per (a_{ij}) o amb lletres majúscules A, B, etc.

Tipus de matrius

Matriu quadrada d'ordre n: si m = n.
Exemple:

$$\begin{bmatrix} 3 & 0 & 1 \\ 2 & 6 & 7 \\ 0 & 3 & -2 \end{bmatrix}$$

Matriu fila (o vector fila): si m = 1.
Exemple:

Matriu columna (o vector columna): si n = 1.
Exemple:

Tipus de matrius

- Matriu nul·la: és aquella que té tots els seus elements iguals a zero. Es representa usualment per 0.
- Matriu identitat: si és quadrada, tots els elements de la seua diagonal principal (és a dir, els elements a_{ii}) són iguals a 1 i la resta són nuls. La matriu identitat d'ordre n es denota per I_n (o també per I, si no hi ha confusió respecte al seu ordre). Exemple:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Suma de matrius

Definició

Donades dos matrius $A = (a_{ij})$ i $B = (b_{ij})$ del mateix ordre $m \times n$ es defineix la matriu suma d'ambdues de la següent manera:

$$A+B:=\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n}\\ \cdots & \cdots & \cdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \end{bmatrix}.$$

La suma de matrius és una llei de composició interna en el conjunt $M_{m \times n}(\mathbb{R})$, és a dir, una aplicació

$$M_{m\times n}(\mathbb{R})\times M_{m\times n}(\mathbb{R})\to M_{m\times n}(\mathbb{R}).$$

Exemple:

$$\begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

Propietats de la suma de matrius

- Associativa: $(A + B) + C = A + (B + C) \quad \forall A, B, C \in M_{m \times n}(\mathbb{R}).$
- **2** Commutativa: $A + B = B + A \quad \forall A, B \in M_{m \times n}(\mathbb{R}).$
- **Solution Existència de element neutre** (la matriu nul·la): $A + 0 = A \quad \forall A \in M_{m \times n}(\mathbb{R}).$
- **1** Existència de element simètric: $A + (-A) = 0 \quad \forall A \in M_{m \times n}(\mathbb{R})$, on $-A := (-a_{ij})$ (la matriu oposada de A).

Producte d'una matriu per un escalar

Definició

Si $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ i α és un escalar (és a dir $\alpha \in \mathbb{R}$) definim la matriu αA de la següent manera:

$$\alpha \mathbf{A} := \begin{bmatrix} \alpha \mathbf{a}_{11} & \alpha \mathbf{a}_{11} & \cdots & \alpha \mathbf{a}_{11} \\ \alpha \mathbf{a}_{21} & \alpha \mathbf{a}_{22} & \cdots & \alpha \mathbf{a}_{2n} \\ \cdots & & & & \\ \alpha \mathbf{a}_{m1} & \alpha \mathbf{a}_{m2} & \cdots & \alpha \mathbf{a}_{mn} \end{bmatrix}.$$

Exemple:

$$2\begin{bmatrix} 2 & 5 & 6 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 10 & 12 \\ -4 & 2 & 0 \end{bmatrix}.$$

Propietats del producte escalar-matriu

El producte d'un escalar per una matriu és una llei de composició externa

$$\mathbb{R} \times M_{m \times n}(\mathbb{R}) \to M_{m \times n}(\mathbb{R})$$

que satisfà les següents propietats:

$$(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A} \quad \forall \alpha, \beta \in \mathbb{R} \text{ i } \forall \mathbf{A} \in \mathbf{M}_{m \times n}(\mathbb{R}).$$

Producte de matrius

Definició

Siguen dos vectors fila i columna

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

d'ordres respectius $1 \times n$ i $n \times 1$. Es defineix el producte AB com el **nombre real** (matriu 1×1) donat pel producte escalar d'aquestos vectors:

$$a_1b_1 + a_2b_2 + \cdots + a_nb_n$$
.

NOTACIÓ: Donada una matriu $A \in M_{m \times n}(\mathbb{R})$, denotarem per A_{i*} a la i-èsima fila de A, i per A_{*i} a la seua j-èsima columna.

Producte de matrius

Definició

Siga A una matriu $m \times k$ i B una matriu $k \times n$. Es defineix la matriu producte $AB = (c_{ij})$ com aquella de dimensions $m \times n$ tal que $c_{ij} = A_{i*}B_{*j}$, és a dir , aquella que el seu element (i,j) és el resultat de multiplicar la i-èsima fila de A per la j-èsima columna de B. Per tant:

$$c_{ij} = \sum_{s=1}^k a_{is} b_{sj}$$

Exemple:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ -1 & 3 \end{bmatrix}$$

Propietats del producte de matrius

Sempre que els productes de matrius tinguen sentit:

- Associativa: (AB)C = A(BC).
- ② Distributiva per la esquerra: A(B+C) = AB + AC.
- 3 Distributiva per la dreta: (A + B)C = AC + BC.
- **1** AI = A, IA = A.
- 0 A0 = 0, 0A = 0.

Atenció!

• El producte de matrius NO és commutatiu:

$$\begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -1 & 0 \end{bmatrix}$$

 El producte de dos matrius no nul·les pot ser la matriu nul·la:

$$\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 5 \\ 1 & -5/2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Matriu × vector (columna)

Hi ha dos formes de «veure» el producte d'una matriu $A \in M_{m \times n}(\mathbb{R})$ per un vector $v \in M_{n \times 1}(\mathbb{R})$:

- Forma 1(ja mencionada): El resultat és un altre vector de m components tal que i-èsim component és el resultat de multiplicar la i-èsima fila de A pel vector v.
- Forma 2: El resultat és una combinació lineal dels vectors columna de A (amb coeficients els components de v).

$$\begin{bmatrix} 1 & 2 & 3 \\ 5 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 2 + 4 \cdot 3 \\ 1 \cdot 5 + 2 \cdot 0 + 4 \cdot 4 \\ 1 \cdot 3 + 2 \cdot 2 + 4 \cdot 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} + 4 \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

Vector fila × matriu

De manera anàloga, hi ha també 2 formes de «veure» el producte d'un vector fila v de m components per una matriu A d'ordre $m \times n$:

- Forma 1 (ja mencionada): El resultat és un vector fila de n components de manera que l'i-èsim component és el producte de v per la i-èsima columna de A.
- Forma 2: El resultat és una combinació lineal dels vectors fila de A (amb coeficients els components de v).

$$\begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 5 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 \cdot 1 + 2 \cdot 5 + 4 \cdot 3 & 1 \cdot 2 + 2 \cdot 0 + 4 \cdot 2 & 1 \cdot 3 + 2 \cdot 4 + 4 \cdot 1 \end{bmatrix} = \\ 1 \cdot \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + 2 \cdot \begin{bmatrix} 5 & 0 & 4 \end{bmatrix} + 4 \cdot \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$