Kierunek:	Nazwa	a zajęć:	Ocena:		
TIN		LABORATORIUM SIECI BEZPRZEWODOWYCH			
Nr. ćwiczenia:	Tytuł	Tytuł ćwiczenia:			
2		Wyznaczanie zasięgu użytkowego (zakłóceniowego) nadajnika oraz profilu trasy radiowej			
Termin: Czwartek TN 13:15		Data wykonania ćwiczenia: 26.10.2017		Nr. grupy:	
				1	
Osoby wykonujące ćwiczenie:				Podpisy:	
Marcin Kołodziej				Marcin Kolodriei	
Igor Michalski				Marcin Kolodniej Igor Michalshi Those Ghelec	
Łukasz Gielec				Those Gelec	
Sprawozdanie wykonał:			Marcin Kołodziej		
Data wykonania sprawozdania:			07.11.2017		
Sprawozdanie spra	wdził:				

Oświadczam, że zapoznałem/łam się ze niniejszym sprawozdaniem i uważam je za poprawnie wykonane:

Lukase Salelle Gor Michalali

Oświadczam/y iż poniższe sprawozdanie zostało wykonane przeze mnie/nas samodzielnie:

Maran Kolodziej

1 Wstęp teoretyczny

Metody ITU-R P.370 $+\Delta h$ oraz ITU-R P.1546 są powszechnie wykorzystywane w procesie prowadzenia analiz propagacyjnych w systemach radiokomunikacji ruchomej lądowej, radiokomunikacji morskiej, radiofonii UKF i telewizji.

Zalecenia modelu ITU-R P.1546:

- częstotliwość: od 30 do 3000 [MHz],
- wysokość zawieszenia anteny nadawczej: od 1 do 3000 [m],
- wysokość zawieszenia anteny odbiorczej: większa od 1m (na lądzie), większa od 3m (na wodzie),
- długość ścieżki propagacji: od 1 do 1000 [km].

Zalecenia modelu ITU-R P.370 $+\Delta h$:

- częstotliwość: od 30 do 1000 [MHz],
- parametr Δh służy do określania stopnia nieregularności terenu,
- efektywna wysokość anteny nadawczej jest zdefiniowana jako jej wysokość względem średniego poziomu terenu między odległością 3 a 15 km od nadajnika w kierunku odbiornika,
- wysokość anteny odbiorczej jest definiowana jako średnia wysokość lokalnego terenu,
- długość ścieżki propagacji: od 1 do 1000 [km].

Zasięg zakłóceniowy jest to granica obszaru, poza którym nie występują szkodliwe zakłócenia.

Zasięg użytkowy jest to odległość od stacji nadawczej do punktu, w którym natężenie sygnału zaczyna opadać poniżej poziomu minimalnej wartości użytecznej, przy określonej kombinacji anteny (odbiorczej) oraz odbiornika lub do punktu, w którym odbiór nie jest możliwy w związku z występowaniem zakłóceń interferencyjnych.

2 Cele ćwiczenia:

- zapoznanie się z metodami obliczeń propagacyjnych ITU-R P.370 $+\Delta h$ oraz ITU-R P.1546,
- zapoznanie się ze sposobami wyznaczania rozkładu natężenia pola sygnałów: zakłócającego i użytecznego stacji bazowej systemu ruchowego,
- zapoznanie się ze sposobami wyznaczania zasięgów: zakłócającego oraz użytkowego.

3 Wykaz urządzeń oraz użyte programy:

- laptop Lenovo,
- program komputerowy MAPKI_TV służący do wyznaczania rozkładu natężenia pola elektromagnetycznego oraz zasięgów wokół stacji nadawczych,
- aplikacja www.piast.edu.pl

4 Przebieg ćwiczenia

Pierwszym krokiem było zapoznanie się z programem MAPKI_TV. Następnie dodano lokalizację nadajnika (Rys.1) w miejscowości Kłodzko o współrzędnych geograficznych:

- szerokość 50°26′56",
- długość 16°38′26"

Określono obszar geograficzny 250km x 250km, na którym przeprowadzono obliczenia. Dla uzyskania lepszej jakości dwukrotnie wczytano cyfrową mapę wysokości. Metoda obliczeń propagacyjnych to ITU-R P.370 $+\Delta h$.

Rys.1 Ustawienie położenia nadajnika

Następnie uzupełniono parametry nadajnika:

- częstotliwość pracy 562 MHz,
- wysokość zawieszenia anteny 50m,
- moc nadajnika 40 dBW,
- antena o charakterystyce dookólnej,
- straty linii dosyłowej 3dB,
- zysk anteny 6dBd.

Do poprawnego ustawienia obliczono moc ERP według wzoru:

$$ERP = P[dBW] - T_k[\frac{dB}{m}] + G_d[dBd] \tag{1}$$

P - moc nadajnika

 T_k - straty linii dosyłowej

 G_d - zysk anteny

$$ERP = 43[dBW] = 10^{\frac{43}{10} - 3} \approx 20[kW]$$

Rys.2 Ustawione parametry

W kolejnym kroku obliczono rozkład mediany natężenia pola wokół nadajnika (ok. 4-5 iteracji) w zakresie zmian natężenia od $30*10^{-6} [\mathrm{dBV}]$ do $80*10^{-6} [\mathrm{dBV}]$.

Rys.3 Skala natężenia pola

Rys.4 Rozkład natężenia pola

Rys.5 Obszar widoczności radiowej

Następnym etapem było obliczenie maksymalnego i minimalnego zasięgu zakłóceniowego nadajnika dla granicznej wartości natężenia pola przyjętej na podstawie Tab.1 oraz ustalono wstępne nowe granice obszaru. Wysokość anteny odbiorczej ustawiono na 10m.

Poziom natężenia pola [dBμV/m]	Modulacja
40,2	QPSK - 3/4
46,9	16-QAM – 3/4
52,4	64-QAM – 3/4

Tab.1 Dopuszczalne natężenie pola zakłóceń

Rys.6 Linie zasięgów zakłóceniowych

QPSK - 3/4 -> linia czerwona

16-QAM - 3/4 -> linia biała

64-QAM - 3/4 -> linia czarna

Rys.7 Profil terenu dla maksymalnej wartości zasięgu zakłóceniowego

Rys.8 Profil terenu dla minimalnej wartości zasięgu zakłóceniowego

W dalszej części obliczono zasięg użytkowy nadajnika (wartość medianową) dla takich samych parametrów jak dla zasięgu zakłóceniowego. Stację odbiorczą ustawiono również na wysokości 10m. Skorzystano z poziomu natężenia pola z Tab.1.

Rys.9 Linie zasięgów użytkowych

QPSK - 3/4 -> linia czerwona 16-QAM - 3/4 -> linia biała 64-QAM - 3/4 -> linia czarna

Rys.10 Profil terenu dla maksymalnej wartości zasięgu użytkowego

Rys.11 Profil terenu dla minimalnej wartości zasięgu użytkowego

W kolejnym punkcie wyznaczono zasięgi użytkowe stacji nadawczej (Rys.12) dla innych parametrów:

- podniesienie zawieszenia anteny stacji nadawczej o 25m -> kolor biały,
- obniżenie zawieszenia anteny stacji nadawczej o 25m -> kolor różowy,
- dwukrotne zwiększenie mocy nadajnika stacji nadawczej -> kolor czarny,
- podniesienie o 2m wysokości zawieszenia stacji odbiorczej -> kolor czerwony.

Rys.12 Zasięgi użytkowe stacji nadawczej

W ostatnich etapach ćwiczenia wyznaczono natężenie pola elektromagnetycznego za pomocą aplikacji PIAST. Parametry nadajnika ustawiono tak jak zostało to podane na początku do programu MAPKI_TV. Zmieniono natomiast metodę obliczeń propagacyjnych z metody ITU-R P.370 $+\Delta h$ na metodę ITU-R P.1546.

Zasięg użytkowy (dla 50% czasu):

Rys.13 Natężenie pola elektromagnetycznego wokół nadajnika dla zasięgu użytkowego

Rys.14 Mapa zasięgu użytkowego

 $\begin{aligned} d_{max} &= 46,3km \\ d_{min} &= 32,3km \end{aligned}$

Zasięg zakłóceniowy (dla 10% czasu):

Rys.15 Natężenie pola elektromagnetycznego wokół nadajnika dla zasięgu zakłóceniowego

Rys.16 Mapa zasięgu zakłóceniowego

 $\begin{aligned} d_{max} &= 59,4km \\ d_{min} &= 29,8km \end{aligned}$

5 Wnioski:

- wraz ze wzrostem odległości maleje natężnie pola elektromagnetycznego,
- model propagacyjny zastosowany w programie MAPKI_TV (ITU-R P.370 $+\Delta h$) daje inne wyniki niż model propagacyjny zastosowany w aplikacji PIAST (ITU-R P.1546),
- model ITU-R P.1546 jest dokładniejszy i wykorzystywany aktualnie przy planowaniu sieci,
- zauważono, że w obydwu metodach zasięg zakłóceniowy jest większy niż zasięg użytkowy,
- ukształtowanie terenu ma duży wpływ na zasięgi, to znaczy: im wyżej znajduje się nadajnik tym większy jest zasięg, za wzniesieniami zasięg jest słabszy,
- zasięg wzrasta wraz ze wzrostem mocy nadajnika.