Ecuaciones diferenciales

Lista 5

 $2^{\circ}M/3^{\circ}DG$, Curso 2018-19

- 1. Para cada una de las sucesiones $\{f_n\}_{n=1}^{\infty}$ siguientes, determínar (si existe) el límite puntual de la sucesión en el conjunto o conjuntos indicados, y comprobar si la convergencia es uniforme.
 - a) $f_n(x) = \exp(-n x^2)$, sobre [-1, 1].
 - b) $f_n(x) = x^{1/n}$, sobre [0, 1].

c)
$$f_n(x) = \frac{x^n}{1+x^n}$$
 en $[0, 1-\varepsilon]$, en $[1-\varepsilon, 1+\varepsilon]$, y en $[1+\varepsilon, \infty)$.

d)
$$f_n(x) = \begin{cases} 0 & \text{si } x \leq n \\ x - n & \text{si } x \geq n \end{cases}$$
 en cada $[a, b]$ y en \mathbb{R} .

e)
$$f_n(x) = \frac{n x}{1 + n^2 x^2}$$
 en $[-1, 1]$ y en $[1, \infty)$.

- f) $f_n(x) = x^{-n}e^x$ en $(1, \infty)$.
- **2.** Sea la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ en [0,1], dada por $f_n(x)=n^2\,x\,e^{-nx^2}$
- a) Estudiar la convergencia puntual y uniforme de $\{f_n\}_{n=1}^{\infty}$.
- b) Comprobar que a pesar de que converge puntualmente a una función integrable, y que cada f_n es integrable, se tiene lím $\int_0^1 f_n = \infty$.
- **3.** Probar que la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ en \mathbb{R} , dada por $f_n(x) = x e^{-nx^2}$ converge uniformemente a 0 en \mathbb{R} y que $f'_n(x)$ converge puntualmente en \mathbb{R} , pero que $\{f'_n\}$ no converge uniformemente en ningún intervalo que contenga a 0.
- **4.** Encontrar una sucesión de funciones continuas $\{f_n\}_{n=1}^{\infty}$ que converja uniformemente a f en $[0,\infty)$ para las que existan los límites lím $\int_0^\infty f_n$ y $\int_0^\infty f$ pero no coincidan.
- **5.** Sea $f_n(x) = \cos^{2n}(\pi x)$ en \mathbb{R} .
- a) Estudiar a qué función converge puntualmente la sucesión $\{f_n\}_{n=1}^{\infty}$ y si la convergencia es uniforme.
- b) Describir la función $\lim_{k\to\infty} \lim_{n\to\infty} f_n(k!x)$.
- **6.** Sean $\{f_n\}_{n=1}^{\infty}$ y $\{g_n\}_{n=1}^{\infty}$ dos sucesiones de funciones dadas por $f_n(x) = x^2 + 1/n$ y $g_n(x) = (nx)^{-1}$.
- a) Demostrar que ambas convergen uniformemente en $[1, \infty)$ y sin embargo la sucesión de término general $f_n g_n$ no lo hace.
- b) Demostrar que a pesar de que $\{f_n\}_{n=1}^{\infty}$ converge uniformemente en \mathbb{R} a una función f, $\{f_n^2\}_{n=1}^{\infty}$ no converge uniformemente en \mathbb{R} a f^2 .
- 7. Sea la sucesión de término general $f_n(x) = x/(1+n\,x^2)$. Comprobar que converge uniformemente a cierta f en \mathbb{R} y que se se verifica $\lim_{n\to\infty} f'_n(x) = f'(x)$ para cualquier $x\neq 0$ pero no para x=0.
- 8. Encontrar una sucesión de funciones derivables en (-1,1) que converja uniformemente a f(x) = |x|.
- 9. Considerar la ecuación lineal

$$x' + a(t)x = 0,$$

donde a(t) es una función continua y periódica de periodo T.

- a) Demostrar que si x(t) es solución, entonces y(t) = x(t+T) también lo es.
- b) Demostrar que existe una constante C tal que x(t+T) = Cx(t) para todo t.
- c) Encontrar la condición que debe satisfacer a(t) para que existan soluciones de periodo T, o de periodo 2T.
- d) Si a(t) es constante, calcular su valor para que existan soluciones periódicas de periodo 2T.
- 10. Considerar la ecuación lineal con $r \in \mathbb{R}, r \neq 0$

$$x' = rx + b(t),$$

Donde b es una función periódica continua de período T > 0. a)Sea r < 0, demostrar que la aplicación $F : \mathbb{R} \to \mathbb{R}$,

$$F(\xi) = x(T, \xi),$$

donde $x(t,\xi)$ es la solución de la ecuación con dato inicial $x(0) = \xi$, tiene un único punto fijo ξ_0 . Sea r > 0, demostrar lo mismo considerando la aplicación $F : \mathbb{R} \to \mathbb{R}$ $F(\xi) = x(-T,\xi)$. Demostrar en ambos casos que la solución $x(t,\xi_0)$ es una función periódica de período T. b) Demuéstrese que si r < 0 la solución periódica obtenida es asintóticamente estable (cualquier solución de la ecuación converge a ella si $t \to +\infty$).

11. Considerar la ecuación lineal con

$$x' = a(t)x + b(t),$$

Donde a y b son función periódicas continuas de período T>0.

- a) Demostrar que que si una solución x(t) cumple que x(0) = x(T), estonces es periódica.
- b) Demostrar que si $\alpha = \int_0^T a(s)ds \neq 0$ entonces existe una única solución periódica
- b) Demuéstrese que si $\alpha < 0$ la solución periódica obtenida es asintóticamente estable (cualquier solución de la ecuación converge a ella si $t \to +\infty$).