Face detection

Behold a state-of-the-art face detector! (Courtesy <u>Boris Babenko</u>)

Face detection and recognition

Consumer application: Apple iPhoto

http://www.apple.com/ilife/iphoto/

Consumer application: Apple iPhoto

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Consumer application: Apple iPhoto

Things iPhoto thinks are faces

Funny Nikon ads

"The Nikon S60 detects up to 12 faces."

Funny Nikon ads

"The Nikon S60 detects up to 12 faces."

Challenges of face detection

- Sliding window detector must evaluate tens of thousands of location/scale combinations
- Faces are rare: 0–10 per image
 - For computational efficiency, we should try to spend as little time as possible on the non-face windows
 - A megapixel image has ~10⁶ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image image, our false positive rate has to be less than 10⁻⁶

The Viola/Jones Face Detector

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Image Features

"Rectangle filters"

Value =

 \sum (pixels in white area) – \sum (pixels in black area)

Example

Source

Result

Fast computation with integral images

- The integral image
 computes a value at each
 pixel (x,y) that is the sum
 of the pixel values above
 and to the left of (x,y),
 inclusive
- This can quickly be computed in one pass through the image

Computing the integral image

Computing the integral image

Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$

 Only 3 additions are required for any size of rectangle!

Example

Feature selection

• For a 24x24 detection region, the number of possible rectangle features is ~160,000!

Feature selection

- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

Boosting

- Boosting is a classification scheme that combines weak learners into a more accurate ensemble classifier
- Training procedure
 - Initially, weight each training example equally
 - In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise the weights of training examples misclassified by current weak learner
 - Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 - Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999.

Boosting for face detection

Define weak learners based on rectangle features

$$h_{t}(x) = \begin{cases} 1 & \text{if } p_{t}f_{t}(x) > p_{t}\theta_{t} \\ 0 & \text{otherwise} \end{cases}$$
 threshold window

- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Select best filter/threshold combination based on weighted training error
 - Reweight examples

Boosting for face detection

First two features selected by boosting:

This feature combination can yield 100% detection rate and 50% false positive rate

Boosting vs. SVM

Advantages of boosting

- Integrates classifier training with feature selection
- Complexity of training is linear instead of quadratic in the number of training examples
- Flexibility in the choice of weak learners, boosting scheme
- Testing is fast
- Easy to implement

Disadvantages

- Needs many training examples
- Training is slow
- Often doesn't work as well as SVM (especially for manyclass problems)

Boosting for face detection

 A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084

Receiver operating characteristic (ROC) curve

Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

Attentional cascade

 Chain classifiers that are progressively more complex and have lower false positive rates:

Receiver operating characteristic

Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10⁻⁶ can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99¹⁰ ≈ 0.9) and a false positive rate of about 0.30 (0.3¹⁰ ≈ 6×10⁻⁶)

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

The implemented system

Training Data

- 5000 faces
 - All frontal, rescaled to 24x24 pixels
- 300 million non-faces
 - 9500 non-face images
- Faces are normalized
 - Scale, translation

Many variations

- Across individuals
- Illumination
- Pose

System performance

- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

Output of Face Detector on Test Images

Other detection tasks

Facial Feature Localization

Profile Detection

Profile Detection

Profile Features

Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

Face Recognition

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.

Face Recognition

Attributes for training

Similes for training

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.

Face Recognition

Results on <u>Labeled Faces in the Wild</u> Dataset

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, "Attribute and Simile Classifiers for Face Verification," ICCV 2009.