Day 5: Intro to Population Genomics

Monday, September 8, 2025 9:37 PM

Population Genomics -- the study of genomic diversity within species and the processes that shape it

- Some big picture questions population genomicists ask:
 - How much diversity is present within a species?
 - How have historical events like bottlenecks, range expansions, or fragmentation shaped that diversity?
 - Do populations from different environments experience different selection pressures, and has this led to different patterns of adaptation?
 - What is the genomic basis of adaptive differentiation between populations (i.e., genetic architecture)?
- o Generally distinguish between neutral processes and non-neutral (selective) ones
 - Neutral:
 - □ Population structure (spatially distinct pops)
 - □ Gene flow
 - □ Demographic history (bottlenecks; range expansion)
 - □ Admixture/hybridization
 - Selective:
 - Directional selection (selection on new mutations in large and well mixed pops --> leads to rapid fixation of adaptive alleles)
 - Local adaptation (spatially varying selection that leads to pop-divergence in adaptive alleles/traits)
 - □ Other types of selection
 - ◆ Balancing selection, Purifying or negative selection
- o Pop size controls the amount of diversity and the rate at which it is either lost or becomes fixed
 - Small populations are slower to introduce new mutations and are more subject to genetic drift (allele loss or fixation) and less responsive to natural selection.
 - But what is a "population"? This means different things to an ecologist or demographer vs. a geneticist
 - □ In ecology, a population is a group of individuals of the same species living in the same place (N)
 - □ In genetics, a population is a group of individuals with a shared history of past and ongoing genetic exchange and experiencing similar processes of drift and selection
 - "effective population size" or "Ne" -- this is the size the population behaves in terms of evolutionary processes of drift and selection, and is almost always smaller than the census size (N)
- o How has genomics transformed the study of these processes?
 - Greater precision for detecting drift/demographic events
 - Evolutionary processes are noisy, and loci provide the statistical power in studies of demographic history (many samples of the evolutionary process); under NGS, the number of loci has increased by orders of magnitude
 - □ Linkage and linkage disequilibrium (LD) now becomes something to contend with...how independent are loci in providing samples of the genome? It depends on how much LD exists...
 - Detecting the genetic basis of adaptive traits!
 - □ Before NGS, only studies of model organisms could glimpse what genes or genomic regions were involved in adaptation or ecologically relevant traits
 - Now, we can use association studies to predict adaptation variation using thousands or millions of genome-wide loci
 - Richer understanding of the types of genes and variants involved (it's not just protein about coding sequence!)

Population genomics in practice: SNP and genotype calling from NGS data

- Population genomics requires findings SNPs (Single Nucleotide Polymorphisms) across the genome -- generally aim for thousands to millions of SNPs, depending on study's goals
- · SNP calling vs. Genotype calling
 - SNPs are sites that are polymorphic (variable) within the sample -- use NGS and bioinformatics to try and detect which sites are polymorphic
 - Genotypes are what alleles an individual carries.

 For diploids, there are 3 genotype classes 	
□ Hom1, Het, Hom2; AA, Aa, aa	
 Generally when aligning reads to a reference genome, we call genotypes as Ref (reference allele) and A 	llt
(alternate allele):	
□ Ref/Ref, Ref/Alt, Alt/Alt; 0, 1, 2 coded as numbers of copies of the alternate allele	
Pipeline steps:	
o (1) Clean reads (fastq files) to get rid of sequence adapters and low quality bases	
Base calling errors during sequencing	
Base Q-score (-10log(10)Probability of erroneous base call	
□ Q10 = 10% error; Q20 = 1% error; Q30 = 0.1% error	
(2) Map reads (sequence alignment files: sam and their binary version: bam) - man to reference if excitable (also called alignment)	
map to reference if available (also called alignment)	
map to de-novo assembly (need to make if reference unavailable)	
(3) Sort and index mapped reads (sorted.bam, sorted.bam.fai) (4) Coll construct (varient cell format files: VCF) or use Classical College (sorted.bam.fai)	
(4) Call genotypes (variant call format files: VCF) or use GLs	
 Incorporates quality measures from mapped reads 	
 Mapping quality (mapQ) calculated same as base Q-score (see above) 	
 Sequencing depth (aka, coverage) is important! DP is how many sequence reads mapped to a given site in the genome 	
10.00	
 Medium coverage (DP 5-10) is often acceptable, but may contain some errors Low coverage (DP 0.5-5) can be analyzed if using appropriate methods that don't try and determ 	ina
genotype precisely but rather give a probability of each genotype occurring.	IIIE
☐ Genotypes called based on multinomial probability distribution	
For diploids, expect roughly 1:1 ratio of counts for each allele	
◆ But for typical DP values (~10), it's easy to have 4:6 or 3:7 or 2:8 (or even 1:9) with some	
probability.	
o (5) Filtering	
 Goal is to quality-control the SNP data to filter out false SNPs or mis-called genotypes 	
 Nuanced process trying to strike balance between getting lots of SNPs genotyped across most of the 	
samples (issue of missing data)	
☐ Good metrics to filter on:	
◆ DP (depth),	
 Site (SNP) missingness (at a given SNP locus, what % of samples have data?) 	
 Sample (Ind) missingness (for a given individual, what % of its SNPs have data?) 	
o (6) Downstream Analyses	
 Diversity and divergence 	
□ Nucleotide diversity, heterozygosity	
□ Site Frequency Spectrum (SFS) and Tajima's D	
□ Fst, Dxy	
□ LD (r2)	
 Genetic structure / population differentiation 	
□ Genetic PCA	
□ Admixture	
Selection	
□ Fst outliers	
□ Genotype-environment association (GEA)	
□ Selective sweeps	

•