Name:	

This is a practice test for CH 233 midterm I. There are 13 multiple choice/short answer and 7 free response questions and is representative of what could be expected on the actual midterm. Please treat it as a real examination, with no outside help from notes, internet, or peers. A lot of these questions will require you to reference the cover sheet for tabulated data. Take 80 + 20 minutes to complete this practice test and remember to keep in mind significant figures. Once done, let James know for the answer key. Good luck!

18 8A 2 He Helium 4.003	10 Ne Neen Neen 120.18 18 Ar Ar Ar Negan	36 Krypton 83.80	Xe xenon xenon 131.29	86 Radon 222.02) 118	71 Lu Lutetium 174.97 103 Lr
71 A K	19.00 T7 CIdorine Chlorine 25.45	35 Bromine 79.90	53 - lodine 126.90	85 At Astatine 209.99)(70 71 Yb Lu Yta-bian Lutetiun 173.05 174.97 102 103 No Lr Robelium Lawencium (259.10) (262.11)
16 6A	00009888888888888888888888888888888888	91.1.	52 Te Tellurium 127.60	84 Po Polonium (208.98) 116 LV	
15 5A	Nitrogen 14.01 15 Phosphorus	33 Arsenic 74.92	51 Sb Antimony 121.76	83 Bi Bismuth 208.98 115	68 Erbium 167.26 100 Fm Fermium (257.10)
44 4	Carbon 12.01	Ge Germanium 72.64	50 ⊪ 118.7	82 P b tead 207.2 114 FI	
13 3A	80000 10.81 13 All	31 Ga Galfium 69.72	49 Indium 114.82	81 Thallium 204.38 113	66 DV 162.50 162.50 98 Cf Californium
	12 28	30 Zn Zmc 2mc 65.38	Cadmium 112.41	Hg Merciffy 200.59	65 Tb Teb Tetrium 158.93 97 Bk Berkelium 247.07)
	= 8	29 Cu Copper 63.55	47 Salve 107.87	Au Sold 196.97	
	ا ع	28 Nickel 58.69	Pd Palladium 106.42	78 Pt Platinum 195.08 Ds Ds Ds Dsmetadfum	
	6 A	27 Cobalt 58.93	45 Rh Rhodium 102.91	77 	62 Sm Samarium 150.36 94 Pu Plutonium (244.06)
	_∞ [26 Fe Iron 55.85	Ru Ruthenium 101.07	OS Osmium 190.23 108 Hs	61 Pm Promethium (145) 93 Np Nepturmun Nepturmun
	7 78		-	75 Reanium 186.21 107 Bh Bohrium	60 Neodymium 144.24 92 Uranium 238.03
	6 68		Mo Molybdenum 95.96	74 W Tungsten 183.84 106 Sg	
	5 58	23 Vanadium 50.94	41 Niobium 92.91	73 Ta Tantalum 180.95 105 Db Dubrium	
	4 4 8	22 Titanium 47.87	2r Zirconium 91.22	72 Hafinium 178.49 104 Rf Rdreftodum	
	3 3	Scandium 54.96	39 Yrtrium 88.91	La Lanthanum 138.91 89 AC Actinium	State sity
2 2A		Ca	38 Strontium 87.62	56 Barium 137.33 Ra Radium	Oregon State University
14 L Hydrogen 1.008	6.941	19 Recassium 39.10	Rubidium 85.47		Ora

I. Ionization Constants for Acids at 25°C

Name	Formula	K_{a_1}	K_{a_2}	K_{a_3}
Acetic	HC ₂ H ₃ O ₂	1.8 × 10 ^{−5}		
Acetylsalicylic	HC ₉ H ₇ O ₄	3.3·× 10⁻⁴		
Adipic	H ₂ C ₆ H ₈ O ₄	3.9 × 10 ⁻⁵	3.9 × 10 ^{−6}	
Arsenic	H ₃ AsO ₄	5.5 × 10 ⁻³	1.7 × 10⁻⁻	5.1 × 10 ⁻¹²
Arsenous	H ₃ AsO ₃	5.1 × 10 ⁻¹⁰		
Ascorbic	H ₂ C ₆ H ₆ O ₆	8.0 × 10 ⁻⁵	1.6 × 10 ⁻¹²	
Benzoic	HC ₇ H ₅ O ₂	6.5 × 10⁻⁵		
Boric	H ₃ BO ₃	5.4 × 10 ⁻¹⁰		
Butanoic	HC ₄ H ₇ O ₂	1.5 × 10 ⁻⁵		
Carbonic	H ₂ CO ₃	4.3 × 10 ⁻⁷	5.6 × 10 ⁻¹¹	
Chloroacetic	HC ₂ H ₂ O ₂ Cl	1.4 × 10 ⁻³		
Chlorous	HCIO ₂	1.1 × 10 ⁻²		
Citric	H ₃ C ₆ H ₅ O ₇	7.4 × 10 ⁻⁴	1.7 × 10⁻⁵	4.0 × 10 ⁻⁷
Cyanic	HCNO	2 × 10 ⁻⁴		
Formic	HCHO₂	1.8 × 10 ⁻⁴		
Hydrazoic	HN ₃	2.5 × 10 ⁻⁵		
Hydrocyanic	HCN	4.9 × 10 ⁻¹⁰		
Hydrofluoric	HF	3.5 × 10 ⁻⁴		
Hydrogen chromate ion	HCrO ₄ -	3.0 × 10 ⁻⁷		
Hydrogen peroxide	H ₂ O ₂	2.4 × 10 ⁻¹²		
Hydrogen selenate ion	HSeO ₄ -	2.2 × 10 ⁻²		
Hydrosulfuric	H ₂ S	8.9 × 10 ⁻⁸	1 × 10 ⁻¹⁹	

Name	Formula	K_{a_1}	K _{a2}	K_{a_3}
Hydrotelluric	H₂Te	2.3×10 ²³	1.6 × 10 ⁻¹¹	
Hypobromous	HBrO	2.8 × 10 ⁻⁹		
Hypochlorous	HCIO	2.9 × 10 ⁻⁸		
Hypoiodous	HIO	2.3 × 10 ⁻¹¹		
lodic	HIO ₃	1.7 × 10 ⁻¹		
Lactic	HC ₃ H ₅ O ₃	1.4 × 10⁻⁴		
Maleic	H ₂ C ₄ H ₂ O ₄	1.2 × 10 ⁻²	5.9 × 10 ⁻⁷	
Malonic	H ₂ C ₃ H ₂ O ₄	1.5 × 10⁻³	2.0 × 10 ⁻⁶	
Nitrous	HNO ₂	4.6 × 10 ⁻⁴		
Oxalic	H ₂ C ₂ O ₄	6.0 × 10 ⁻²	6.1 × 10 ⁻⁵	
Paraperiodic	H₅IO ₆	2.8 × 10 ⁻²	5.3 × 10 ⁻⁹	
Phenol	HC ₈ H ₅ O	1.3 × 10 ⁻¹⁰		
Phosphoric	H₃PO₄	7.5 × 10 ⁻³	6.2 × 10 ⁻⁸	4.2 × 10 ⁻¹³
Phosphorous	H ₃ PO ₃	5 × 10 ⁻²	2.0 × 10 ⁻⁷	
Propanoic	HC ₃ H ₅ O ₂	1.3 × 10 ⁻⁵		
Pyruvic	HC ₃ H ₃ O ₃	4.1 × 10 ⁻³		
Pyrophosphoric	H ₄ P ₂ O ₇	1.2 × 10 ⁻¹	7.9 × 10 ⁻³	2.0 × 10 ⁻⁷
Selenous	H ₂ SeO ₃	2.4×10 ⁻³	4.8 × 10 ⁻⁹	
Succinic	H ₂ C ₄ H ₄ O ₄	6.2 × 10 ⁻⁵	2.3 × 10⁻-6	
Sulfuric	H ₂ SO ₄	Strong acid	1.2 × 10 ⁻²	
Sulfurous	H ₂ SO ₃	1.6 × 10 ⁻²	6.4×10 ⁻⁸	
Tartaric	H ₂ C ₄ H ₄ O ₆	1.0 × 10 ⁻³	4.6 × 10 ⁻⁵	
Trichloroacetic	HC ₂ CI ₃ O ₂	2.2 × 10 ⁻¹		
Trifluoroacetic acid	HC ₂ F ₃ O ₂	3.0 × 10 ⁻¹	-	

3. Ionization Constants for Bases at 25°C

Name	Formula	K_{b}
Ammonia	NH ₃	1.76 × 10⁻⁵
Aniline	C ₆ H ₅ NH ₂	3.9 × 10 ⁻¹⁰
Bicarbonate ion	HCO ₃ -	2.3×10 ⁻⁸
Carbonate ion	CO ₃ ²⁻	1.8 × 10⁻⁴
Codeine	C ₁₈ H ₂₁ NO ₃	1.6 × 10 ⁻⁶
Diethylamine	(C ₂ H ₅) ₂ NH	6.9 × 10 ⁻⁴
Dimethylamine	(CH ₃) ₂ NH	5.4 × 10 ⁻⁴
Ethylamine	C ₂ H ₅ NH ₂	5.6 × 10 ⁻⁴
Ethylenediamine	C ₂ H ₈ N ₂	8.3×10 ⁻⁵
Hydrazine	H ₂ NNH ₂	1.3 × 10 ⁻⁶
Hydroxylamine	HONH ₂	1.1 × 10 ⁻⁸

Name	Formula	K_{b}
Ketamine	C ₁₃ H ₁₈ CINO	3×10 ⁻⁷
Methylamine	CH ₃ NH ₂	4.4 × 10 ⁻⁴
Morphine	C ₁₇ H ₁₉ NO ₃	1.6 × 10 ⁻⁶
Nicotine	C ₁₀ H ₁₄ N ₂	1.0 × 10 ⁻⁶
Piperidine	C₅H₁₀NH	1.33 × 10 ⁻³
Propylamine	C ₃ H ₇ NH ₂	3.5 × 10⁻⁴
Pyridine	C ₅ H ₅ N	1.7 × 10 ⁻⁹
Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	1.8 × 10 ⁻⁶
Triethylamine	(C ₂ H ₅) ₃ N	5.6 × 10⁻⁴
Trimethylamine	(CH₃)₃N	6.4 × 10⁻⁵

Multiple Choice Section (13 questions)

1) Which is not a Lewis base?

-	OH-
b)	$C_2O_4^{2-}$
	2204 Cu ²⁺
	NH ₃
• •	
2)What	s the pH of 0.750 acetic acid, CH ₃ COOH _(aq) ?
a)	0.750
b)	0.00367
c)	2.43
d)	1.75
e)	5.25
3)What	s the conjugate acid of HCO ₃ -?
a)	$\mathrm{H_{3}O^{+}}$
	H_2O
c)	CO_3^{2-}
d)	OH-
e)	H_2CO_3
	a, if any, of the following species is in the greatest concentration in a 0.100-molar solution of water?
a) l	SO_4
b)]	$^{+}\mathrm{O}^{+}$
c) l	SO_4^-
d) 3	O_4^{2-}
e) .	Il species are in equilibrium and therefore have the same concentration.
5)Arraı	e by increasing basicity:
	CH ₃ NH ₃ Br KOH KBr KCN C ₅ H ₅ NHO ₂

- 6) A general chemistry students creates a buffer by adding 0.5 mol of solid sodium hydroxide to 1.0 L of 1.0 M acetic acid. What can be said about the pH of the buffer?
- a) The pH will be equal to the pKa for acetic acid
- b) The pH will be greater than the pKa for acetic acid
- c) The pH will be less than the pKa for acetic acid
- d) The pH will be equal to the pKa of acetic acid minus 0.30
- e) The pH will be less than the value in answer d.
- f) Not enough info

7)A student titrates 2.884 g of an unknown monoprotic acid to the equivalence point with 62.55 mL of 0.2447 M NaOH. What is the molar mass of the acid?

- a) 0.005307 g/mol
- b) 53.07 g/mol
- c) 530.7 g/mol
- d) 73.72 g/mol
- e) 188.4 g/mol

8) What is the molar solubility of Al(OH)_{3(aq)}? $K_{sp} = 1.3*10^{-33}$

- a) $6.0 \times 10^{-9} \text{ M}$
- b) 2.6 x 10⁻⁹ M
- c) $4.6 \times 10^{-9} \text{ M}$
- d) $2.08 \times 10^{-17} \text{ M}$
- e) $6.9 \times 10^{-10} \text{ M}$

9) Which of the following pairs will create a buffer system? There may be more than one.

- a) HClO and LiClO₂-
- b) HF and KF
- c) CH₃NH₂ and CH₃NH₃Cl
- d) NH₃ and NH₄Cl
- e) HNO₃ and NaNO₃
- f) HClO₄ and NaClO₄

10) Which many of the following compounds are acidic? There may be more than one.

FeBr₃ $NH_4C_2H_3O_2$ $Ca(NO_3)_2$ Na_2CO_3 KNO_2

RbI $(NH_4)_2SO_4$

- 11) With respect to acids and bases, (select all that are true)
- a) A CH₃NH₃Br solution is acidic
- b) NO₂⁻ is a stronger base than H₂AsO₃⁻
- c) Adding some solid sodium acetate, NaC₂H₃O₂, to aqueous HC₂H₃O₂ will decrease the pH
- d) Titration of a weak acid with a strong base will have a pH below 7 at the equivalence point
- e) CaCO₃ is more soluble in an acidic solution than in pure water
- 12) Consider the titrations of the pairs of aqueous acids and bases listed on the left. For which pair is the pH at the equivalence point stated incorrectly?

Acid-Base Pair pH at Equivalence Point

- (a) $HCl + NH_3$ less than 7
- (b) $HNO_3 + Ca(OH)_2$ equal to 7
- (c) $HClO_4 + NaOH$ equal to 7
- (d) HClO + NaOH less than 7
- (e) CH₃COOH + KOH greater than 7
- 13) Carbon dioxide dissolves in water according to the equation:

$$CO_{2(g)} + H_2O_{(l)} \rightleftharpoons H_2CO_{3(ag)}$$

$$H_2CO_{3(aq)} + H_2O_{(l)} \rightleftharpoons HCO_{3(aq)} + H_3O^{+}_{(aq)}$$

CO₂ levels in the atmosphere have increased about 20% over the last century. Given that Earth's oceans are exposed to atmospheric CO₂, which of the following best predicts the effects of increased CO₂ levels on the pH of the Earth's oceans now?

- a) The pH of Earth's oceans now is higher than the pH of Earth's oceans a century ago
- b) The pH of Earth's oceans now is the same than the pH of Earth's oceans a century ago
- c) The pH of Earth's oceans now is lower than the pH of Earth's oceans a century ago
- d) The increase in CO₂ levels in Earth's oceans has no effect on its pH

Free Response Questions (7 questions, multiple parts)

14) Find the Kb for some unknown weak base that is 0.150M and has a pH of 10.7.
15) A 52.60 mL aqueous Jamesonnium, HJ, acid solution has a pH of 6.6. How many hydronium ions are present in this solution?
16) Ammonium carbonate, $(NH_4)_2CO_3$, is a leavening agent sometimes used for cooking as a substitute for baking powder. What is the pH of 0.200 mol ammonium carbonate in a 0.800L solution?
17) A 100. mL sample of 0.35 M propanoic acid (C_2H_5COOH) is mixed with 0.50 M sodium propanoate. a. What is the pH of this solution?
b. To this solution, 0.0040 moles of solid NaOH are added. Calculate the pH of the resulting solution.
c. If the concentrations of both the acid and the conjugate base were doubled, how would pH be affected? Explain how the capacity of the buffer is affected by this change in concentrations of the acid and base.

18) A student adds 4.40 grams of sodium formate, NaCHO₂ to 500. mL 0.250M formic acid, HCHO₂. a) Will the pH increase, decrease or stay the same? b) What is the final pH? 19) Blood is buffered by 0.012M carbonic acid, H_2CO_3 , and 0.024M bicarbonate ion (HCO₃-, pKa = 6.1). Assuming that the volume of blood in an adult is 5 liters, what mass of HCl can be neutralized by the buffer before the system reaches a fatal pH of below 7? 20) Consider 25.00 mL sample of 0.320M propanoic acid, HC₃H₅O₂, analyte being titrated by 0.750M LiOH. a) Calculate the pH before any titrant is added b) What is the pH of the solution after 5.00mL of titrant is added? c) What is the pH at the equivalence point?