

# MATH 165B - Introduction to Complex Variables

Final Exam

| Points     | Score                                                       |
|------------|-------------------------------------------------------------|
| 30 points  |                                                             |
| 40 points  |                                                             |
| 40 points  |                                                             |
| 200 points |                                                             |
|            | 30 points 30 points 30 points 30 points 40 points 40 points |

## Show your work!

The Exam will be centered around the following 3 functions (the domain considered is the largest set in the complex function where the function can be defined).

$$F_1(z)=z+rac{1}{z}$$
 (The Joukowsky transformation that some of you have studied in the project)  $F_2(z)=z+rac{1}{z}+rac{1}{z^2}$   $F_3(z)=z+z^2+rac{1}{z}$ 

### Problem 1:

- 1. Determine number and order of the zeros of  $F_1$ ,  $F_2$  and  $F_3$ .
- 2. Can you approximate the values of these zeros?(Mathematica or other software is allow)
- 3. Find the singular points of  $F_1$ ,  $F_2$  and  $F_3$  and classify them.

#### **Problem 2**

The following pictures correspond to the graph of the modulus of the functions  $F_i$ , i = 1, 2, 3 (i.e.  $t = |F_i(z)|$ ) and color according to the argument of the corresponding  $F_i$ .



Match the plot with the corresponding  $F_i$ , i = 1, 2, 3 and justify your reasoning.

Plot A:
Justification:

Plot B:
Justification:

Plot C:
Justification:

# Problem 3: Find

(a) The residue of  $F_k(z)$  at  $z=0,\,k=1,2,3$ 

(b) The residue of  $F_k(z)$  at  $z=i,\,k=1,2,3$ 

(c) The residue of  $\frac{1}{F_k(z)}$  at  $z=i,\,k=1,2,3$ 

Problem 4: Consider the integral

$$\int_C \left( F_1(z) + \frac{1}{F_1(z)} \right) dz$$

taken counterclockwise around the curve C.

(a) Find the value of the integral when the curve C is the circle  $|z|=\frac{1}{2}$ .

(b) Find the value of the integral when the curve  ${\cal C}$  is the circle |z|=4.

(c) Give a curve C such that the value of the integral is 0.

**Problem 5**: Find the image of the following curves under the Joukowsky transformation  $F_1(z) = z + \frac{1}{z}$ 

- (a) The unit circle |z| = 1
- (b) A circle with its center at a point  $x_0$  ( $0 < x_0 < 1$ ) on the x axis and passing through the point z = -1. This is a special case of the profile of a Joukowsky airfoil. Give a the profile by mapping some points that the image of the circle and that points exterior to the circle map onto points exterior to the profile.

# **Problem 6**: Conformal Mappings

I. The following pictures correspond to the graph of the level curves of the functions  $Re(F_i)$  (in red) and  $Im(F_i)$  (in blue), i = 1, 2, 3. The shading is done to emphasize where the mapping is conformal.



Match the plot with the corresponding  $F_i$ , i = 1, 2, 3 and justify your reasoning.

| • | lot D:        |  |
|---|---------------|--|
|   | ustification: |  |
|   |               |  |
|   |               |  |
|   |               |  |
|   |               |  |
| • | lot E:        |  |
|   | ustification: |  |
|   |               |  |
|   |               |  |
|   |               |  |
|   |               |  |
| • | lot F:        |  |
|   | ustification: |  |
|   |               |  |
|   |               |  |
|   |               |  |
|   |               |  |

II. Determine the points in the plane where  $F_1$  is conformal. What can you say about the functions  $F_2$  and  $F_3$ .