task2

data cleaning

```
df.raw = read.csv("covid19-1.csv")
df = df.raw %>%
  janitor::clean_names() %>%
  dplyr::select(country_region, province_state, date, confirmed_cases) %>%
  filter(confirmed_cases != 0)
# region with confirm case > 20
df country = df %>%
  group_by(country_region) %>%
  summarise(max=max(confirmed_cases)) %>%
  filter(max > 20)
region_index = as.character(unique(df_country$country_region))
df.region = function(df, region) {
  df.r = df \%
    filter(country_region == region) %>%
    group_by(country_region, date) %>%
    summarise(cases = sum(confirmed cases)) %>%
    mutate(formal_date = as.Date(date, '%m/%d/%Y')) %>%
    mutate(time = as.numeric(formal_date-min(formal_date)))%>%
    arrange(time) %>%
    dplyr::select(region = country_region, date, time, cases)
  df.r
}
df_list=vector("list", length = length(region_index))
while(i < length(region_index)+1){</pre>
  df_list[[i]] = df.region(df, region_index[i])
  i = i+1
}
for (i in 1:length(df_list)){
names(df_list)[i] <- region_index[i]</pre>
}
res = read_csv("./abc_values") %>%
  dplyr::select(-X1) %>%
  mutate(
    a_value = round(a_value,0),
    b_value = round(b_value,3),
    c_value = round(c_value,0)
```

```
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
    X1 = col_double(),
##
##
    country_region = col_character(),
##
   a value = col double(),
    b_value = col_double(),
##
     c_value = col_double()
## )
res[which(res$country_region == "China"), 2] = 7.873205*10^4
res[which(res$country_region == "China"), 3] = 0.22511
res[which(res$country_region == "China"), 4] = 17.91412
res[which(res$country_region == "Korea, South"), 2] = 8.801392e+03
res[which(res$country_region == "Korea, South"), 3] = 2.836325e-01
res[which(res$country_region == "Korea, South"), 4] = 4.038837e+01
all_t=NULL
for(c in 1:length(df_list))
all_t=rbind(all_t,df_list[[c]][nrow(df_list[[c]]),3])
sum((res[,4])<all_t[,1])# total country pass the mid point</pre>
## [1] 27
names=res[which((res[,4])<all_t[,1]),1] # names of those country
```

Task2

```
EM = function(data,ncluster){
 data = as.matrix(data) %>% scale()
 n = nrow(data)
  q = ncol(data)
  p_j = rep(1/ncluster,ncluster)
  mu = data[sample(n,ncluster),] %>% as.matrix()
  covmat = diag(ncol(data))
  covlist = list()
  for(i in 1:ncluster){
    covlist[[i]] = covmat
  }
count = 1
while(count <100){</pre>
  muO <- mu
  # E-step: Evaluate posterior probability, gamma
  gamma \leftarrow c()
  for(j in 1:ncluster){
    gamma2 <- apply(data,1, dmvnorm, mean = mu[j,], sigma = covlist[[j]])</pre>
    gamma <- cbind(gamma, gamma2)</pre>
  }
```

```
# M- step: Calculate mu
  tempmat <- matrix(rep(p_j,n),nrow=n,byrow = T)</pre>
  r <- (gamma * tempmat) / rowSums(gamma * tempmat)
  mu <- t(r) %*% data / colSums(r)</pre>
  \# M- step: Calculate Sigma and p
  for(j in 1:ncluster){
    sigma <- matrix(rep(0,q^2),ncol=q)</pre>
    for(i in 1:n){
      sigma = sigma + r[i,j] * (data[i,]-mu0[j,]) %*% t(data[i,]-mu0[j,])
    covlist[[j]] <- sigma/sum(r[,j])</pre>
  p_j <- colSums(r)/n</pre>
  count = count + 1 }
  cluster <- which(r == apply(r, 1, max), arr.ind = T)</pre>
  cluster <- cluster[order(cluster[,1]),]</pre>
  return(list(mu = mu,covlist = covlist, p_j = p_j,cluster = cluster)) }
em_dat = res %>% dplyr::select(-country_region)
em_dat_scaled <- scale(em_dat)</pre>
## use wss
fviz_nbclust(em_dat_scaled, kmeans, method = "wss",k.max = 15)
```

Optimal number of clusters


```
## use silhouette
fviz_nbclust(em_dat_scaled, kmeans, method = "silhouette",k.max=15)
```


Optimal number of clusters 1.7-1.6 1.5 Gap statistic (k) 1.4 1.3 1.2 ż ż 7 8 9 10 1 4 5 6 Number of clusters k set.seed(1) $res2 = EM(em_dat,3)$ res3=res2\$mu %>% as.data.frame() res3 ## a_value b_value c_value ## gamma2.1 1.8053018 -0.2416451 0.7382552 ## gamma2.2 -0.2476236 -0.1832539 0.2569219 set.seed(1) clusters = kmeans(em_dat,3) clusternumbers = as.factor(clusters\$cluster) ## res4 is the classification result of em and kmeans res4 = res2\$cluster %>% as.data.frame() %>% dplyr::select(-1) %>% mutate(country = region_index) %>% dplyr::select(2,1) %>% rename(GMM_class = col) %>% mutate(kmeans_class = clusters\$cluster)

res4[1:50,] %>%

knitr::kable(booktabs = T, align = 'c')

country	GMM_class	kmeans_class
Afghanistan	3	1
Albania	1	1
Algeria	3	1
Andorra	1	1
Argentina	3	1
Armenia	3	1
Australia	3	1
Austria	2	1
Azerbaijan	3	1
Bahrain	3	1
Bangladesh	3	1
Belarus	3	1
Belgium	2	1
Bolivia	1	1
Bosnia and Herzegovina	1	1
Brazil	3	1
Brunei	1	1
Bulgaria	3	1
Burkina Faso	1	1
Cambodia	3	1
Canada	3	1
Chile	3	1
China	$\frac{3}{2}$	3
Colombia	3	1
Congo (Kinshasa)	1	1
Costa Rica	1	1
Cote d'Ivoire	1	1
Croatia	3	1
Cuba	1	1
Cyprus	1	1
Denmark	3	1
Dominican Republic	3	1
Ecuador	3	1
Egypt	3	1
Estonia	3	1
Finland	3	1
France	$\frac{3}{2}$	3
Georgia	3	1
Germany	$\frac{3}{2}$	3
Ghana	1	1
Greece	3	1
Guatemala	1	1
Honduras	1	1
Hungary	1	1
Iceland	3	1
India	3	1
Indonesia	3	1
Iran	$\frac{3}{2}$	3
Iraq	3	1
Ireland	3	1

```
res4[51:100,] %>%
```

knitr::kable(booktabs = T, align = 'c')

	country	${\rm GMM_class}$	${\rm kmeans_class}$
51	Israel	3	1
52	Italy	2	2
53	Jamaica	1	1
54	Japan	3	1
55	Jordan	1	1
56	Kazakhstan	1	1
57	Kenya	1	1
58	Korea, South	2	1
59	Kuwait	3	1
60	Kyrgyzstan	1	1
61	Latvia	1	1
62	Lebanon	3	1
63	Liechtenstein	1	1
64	Lithuania	1	1
65	Luxembourg	3	1
66	Malaysia	3	1
67	Malta	1	1
68	Martinique	1	1
69	Maritius Mauritius	1	1
70	Mexico	3	1
71	Moldova	1	1
72	Monaco	3	1
73	Montenegro	1	1
74	Morocco	1	1
75	Netherlands	$\overset{1}{2}$	1
76	New Zealand	1	1
77	Nigeria	3	1
78	North Macedonia	3	1
79	Norway	$\frac{3}{2}$	1
80	Oman	3	1
81	Pakistan	3	1
82	Panama	3	1
83	Paraguay	3	1
84	Peru	3	1
85	Philippines	3	1
86	Poland	3	1
87	Portugal	3	1
88	Qatar	3	1
89	Qatar Romania	3	1
90	Russia	3	1
91	Rwanda	1	1
92	San Marino	1	1
93	Saudi Arabia	3	1
94	Senegal	3	1
95	Serbia	3	1
96	Singapore	3	1
97	Slovakia	1	1
98	Slovenia	3	1
0.0	South Africa	3	1
99 100	South Africa Spain	$\frac{3}{2}$	3

```
res4[101:116,] %>%
knitr::kable(booktabs = T, align = 'c')
```

	country	GMM_class	kmeans_class
101	Sri Lanka	3	1
102	Sweden	3	1
103	Switzerland	2	1
104	Taiwan*	3	1
105	Thailand	3	1
106	Trinidad and Tobago	1	1
107	Tunisia	1	1
108	Turkey	3	1
109	Ukraine	1	1
110	United Arab Emirates	3	1
111	United Kingdom	2	1
112	Uruguay	1	1
113	$_{ m US}$	2	2
114	Uzbekistan	1	1
115	Venezuela	1	1
116	Vietnam	3	1

```
kmean_mean = clusters$centers %>%
  as.data.frame()
a_mean = mean(res$a_value)
a_sd = sd(res$a_value)
b_mean = mean(res$b_value)
b_sd = sd(res$b_value)
c_mean = mean(res$c_value)
c_sd = sd(res$c_value)
em_mean = res3 %>%
 mutate(
    a_value = a_value*a_sd+a_mean,
   b_value = b_value*b_sd+b_mean,
    c_value = c_value*c_sd+c_mean,
mean_value = rbind(em_mean,kmean_mean) %>%
  mutate(method = c("GMM", "GMM", "GMM", "Kmeans", "Kmeans", "Kmeans")) %>%
 dplyr::select(c(4,1,2,3))
mean_value %>%
  knitr::kable(booktabs = T, align = 'c')
```

method	a_value	b_value	c_value
GMM	212.797	0.4922645	14.14861
GMM	43289.675	0.2424189	39.97001
GMM	1268.728	0.2631294	32.00442
Kmeans	1614.435	0.3345930	26.72833
Kmeans	122665.500	0.2860000	41.00000
Kmeans	62764.210	0.2040220	44.78282

```
df_map = df.raw %>%
  janitor::clean_names() %>%
  dplyr::select(country_region, province_state, date, confirmed_cases, lat,long) %>%
  filter(confirmed_cases != 0) %>%
  group_by(country_region,lat,long) %>%
  summarise(max=max(confirmed_cases)) %>%
  filter(max > 20) %>%
  as.data.frame() %>%
  mutate(
    country_region = as.character(country_region)
  )
GMM_class = NULL
kmeans_class = NULL
for(i in 1:212){
  GMM_class[i] = res4[which(res4$country == df_map[i,1]),2]
  kmeans_class[i] = res4[which(res4$country == df_map[i,1]),3]
df_map = df_map %>%
 mutate(
   GMM_class = GMM_class,
   kmeans_class = kmeans_class
  )
mp<-NULL
mapworld<-borders("world",colour = "gray50",fill="white") #</pre>
mp<-ggplot()+mapworld+ylim(-60,90)</pre>
df_map_1 = df_map %>% filter(GMM_class ==1)
df_map_2 = df_map %>% filter(GMM_class ==2)
df_map_3 = df_map %>% filter(GMM_class ==3)
mp2<-mp+geom_point(aes(x=long,y=lat,size=max),data = df_map_1,color="#0099CC")+scale_size(range=c(1,5))
geom_point(aes(x=long,y=lat,size=max),data = df_map_2,color="#FF6666")+scale_size(range=c(1,5)) +
geom_point(aes(x=long,y=lat,size=max),data = df_map_3,color="#E69F00")+scale_size(range=c(1,5)) +
theme(legend.position = "none")
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## blue class1
                red class2 yellow class3
mp2
```


d <- dist(em_dat_scaled, method = "euclidean")
plotcluster(em_dat, res2\$cluster[,2])</pre>

plotcluster(em_dat, clusters\$cluster) dc 1 km_stats <- cluster.stats(d, clusters\$cluster)</pre> km_stats\$dunn ## [1] 0.122663 gmm_stats <- cluster.stats(d, res2\$cluster[,2])</pre>

gmm_stats\$dunn
[1] 0.00130779
<pre>method = c("Kmeans", "GMM") Dunn_index = round(c(km_stats\$dunn,gmm_stats\$dunn),4) cbind(method,Dunn_index) %>% as.data.frame() %>% knitr::kable(booktabs = T, align = 'c')</pre>

method	Dunn_index
Kmeans	0.1227
GMM	0.0013