Neoxa 3

Project Approach

Reference: HBS_PNXA_DP003

Version: 1.0 Date: 30/06/2025 Author: JKEB/AGHR

Class: D - Restricted

Project Scope

Neoxa 3

- Neoxa 3 is the upgraded version of the previous Neoxa 2.
- The main goal is to improve the current version by addressing its limitations and the areas needing some improvement.
- What Neoxa 3 adds compared to Neoxa 2:
 - Mechanical enhancement: miniaturized design and wireless setup,
 - **New features**: PPG sensing (in addition to EEG), on-board processing and bone conduction audio (to be confirmed),
 - **System optimization and hardening**: reliable connectivity (BLE), robust sensing (signal quality), energy efficiency
- Project deadline: December 2025 (5 prototypes)
- Next big milestone: CES 2026

Technical challenges

Sofiatech

Design considerations for Neoxa 3

Mechanical aspects:

- Form factor (size)
- Ergonomics and comfort of use
- Choice of materials

Functional aspects:

- BLE connectivity
- EEG/PPG sensing
- Signal processing (features extraction, filtering, ...)
- Data processing (compression, formatting, storage, ...)

Non-functional aspects:

- Signal quality (signal noise, motion impact, interference)
- Communication reliability (range, throughput, latency, security)
- Power management (components selection, battery selection, operating modes, ...)

Prioritized:

- Optimization ↗
- Reliability and Robustness ↗
- Energy consumption ≥

- Average performance →
- Average responsiveness →
- Memory usage ✓

To keep in mind:

- Portability
- Maintainability
- Scalability

Preliminary Architecture*

*: To Be Confirmed Post-Analysis/Detailed Design

How many EEG electrodes should be used? How many PPG electrodes should be used? Are EEG and PPG signals acquired simultaneously?

Preliminary Technical Choices*

*: To Be Confirmed Post-Analysis/Detailed Design

Hardware components:

- MCU → NXP NHS52504 (Evaluation Kit: NHS52S04EVK \$412.00)
- EEG AFE → TI ADS1299 (Evaluation Kit: ADS1299EEGFE-PDK \$199.00)
- PPG AFE → <u>AD MAX86176</u> (Evaluation Kit: MAX86176EVKIT \$170,13)

Software components:

- Sensor drivers (Serial driver, EEG driver, PPG driver)
- Filtering and noise reduction algorithm
- Memory management (Embedded filesystem)
- BLE stack + Custom Profile for EEG/PPG data
- RTOS (for system orchestration)

Since we're still in the prototyping phase, we'll skip the RF certification for now. This can be handled later for the final design of the product.

NHS52S04: Ultra-Low-Power Bluetooth® Low Energy Solution With Arm® Cortex®-M33 TrustZone® for Medical IoT

NHS52S04 Receive alerts @

Ultra-Low Power / Optimized for Medical IoT / Integrated Security / Small Form Factor / BLE 5.3 / Direct Battery Support / 3 FlexComm interfaces

Low Noise / Multiple Channels / SPI and I2C interfaces / Low Power Consumption

100 maxim

Analog Devices / Maxim Integrated MAX86176 PPG and ECG Analog Front-End (AFE)

Dedicated PPG AFE / Designed for Wearable Applications / SPI interface / Low Power Consumption

Preliminary Project Timeline

Assumptions & Constraints

Milestone	Date	Risk	Impact/Mitigation Plan
Start of Work	07/07/2025	_	-
Reception of Evaluation Kits (MCU + AFEs)	01/08/2025	Delayed reception of Eval Kits	Project overtime / Allocate enough time (10 days) for shipment process
Reception of Prototypes	24/10/2025	HW Design delay due to mechanical constraints Signal issues for EEG and PPG on prototype	Project overtime / Synchronization meetings with OVA Design Non-useful prototype / Bypass the PPG AFE by hardware design
End of Work	01/12/2025	_	_

Project organization

We propose to mange the project with several successive packages:

Package 1: Requirements definition and components selection

Objectives: Co-design workshops to define priority functionalities and requirements and establishment of the product backlog.

Package 2: Design and Development (HW and SW) and FAB

Objectives: Design of the HW and development of the SW POC on eval kits.

Package 3: Integration, Validation and Bug fixing

Objectives: Finalization of the solution and final testing.

The estimation of the project workload is not possible in this stage of the project. We suggest to proceed in a man and material model.

Thank you

