

离散数学

计算机科学与技术学院 朴明浩

前言

- ▶离散数学
 - ✓是现代数学的一个重要分支,是计算机科学中基础理论的核心课程
 - ✓是以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此它充分描述了计算机科学离散性的特点
 - ✓是随着计算机科学的发展而逐步建立的它形成于七十年代初期是一 门新兴的工具性学科
- ▶ 离散数学与计算机科学中的数据结构、操作系统、编译理 论、算法分析、逻辑设计等课程有紧密联系

离散数学的特点:

定义多、定理多、证明多

内容

- >数理逻辑
 - ✓命题逻辑
 - ✓谓词逻辑
- >集合论
 - ✓集合与关系
 - ✓函数
- >代数系统
 - ✓代数结构
 - ✓格和布尔代数
- ▶图论

课程安排

- >考试要求: 闭卷
- >考试成绩:
 - ✓平时: 20%
 - ✓其中: 20%
 - ✓期末: 60%
- ▶平时
 - ✓作业:每2-3周一次
 - ✓出勤

命题逻辑

计算机科学与技术学院 朴明浩

乔治•布尔

(1815-1864)

建立布尔代数

亚里士多德 (公元前384-322)

所有的人都是要死的. 苏格拉底是人. 所以苏格拉底也是要死的。

萌芽

戈特弗里德•威廉•莱夫尼茨 (1616 - 1716)设想过能否通用的科学语言,把 推理像数学一样,用公式计算

弗里德里希●弗雷格

(1848-1925)

算术基础:引入量词

完善

皮亚诺

德•摩根

罗素

丰富和发展了数理逻辑,使现代 数理逻辑最基本的理论基础逐步 形成,成为一门独立的学科

数理逻辑

逻辑学:有辨证逻辑与形式逻辑

- 1、辨证逻辑:以辨证法认识论和世界观为基础的逻辑学
- 2、形式逻辑:对思维的形式结构和规律进行研究的类似于语法的一门工具性学科

数理逻辑

- ▶ **思维形式结构:** 概念、判断和推理之间的关系
 - ✓概念是思维的基本单位,通过概念对事物是否具有某种属性进行肯定或否定的回答,即为判断
 - ✓由一个或多个判断推出另一个判断的思维形式即为推理
 - 推理的前提和结论都是命题
 - 因而命题是推理的基本单位
 - ✓用数学方法研究推理的规律即为数理逻辑
 - 而此处的数学方法也就是引进一整套符号体系,故数理逻辑也叫做符号 逻辑,是从量的侧面来研究思维规律

第一章 命题逻辑

- ▶1-1 命题及其表示法
- ▶1-2 联结词
- ▶1-3 命题公式与翻译
- ▶1-4 真值表与等价公式
- ▶1-5 重言式与蕴含式
- ▶1-6 其他联结词
- ▶1-7 对偶与范式
- ▶1-8 推理理论

命题及其表示法

▶命题: 能分辨真假的陈述句

例1: A: 北京是中华人民共和国首都

B: 南京是中国最大的城市

C: 三角形内角和是180度

例2: R: 2004年人类将登上火星 → 命题

例3: M: 本命题是假的

分析: 若指派 "命题"为真,则M为假; 若指派 "命题"为假,则M为真;

命题

故M是不能分辨真假的陈述句,是陈述句中的怪论,即悖论

- ▶作为命题的陈述句所表达的判断结果称为命题的**真值**,真值只取两个值:真(T)或假(F)
- ▶ 真值为真的命题称为**真命题**,真值为假的命题称为**假命题**

命题及其表示法

- >下述都是非命题
 - ✓把门关上!
 - ✓滚出去!
 - ✔你要出去吗?
 - \checkmark X+Y>0

▶注意:

- ✓有时还需依靠环境、条件、时间、地点、实际情况才能确定命题的真值
- ✓一个句子本身是否能分辨真假与我们是否知道它的真假是两回事
- ✓对于一个句子,有时无法判断它的真假,但这个句子本身却是有真假的
 - 我喜欢踢足球
 - 今天是晴天
 - 地球外的星球上也有人
 - 1+1=10 (十进制假命题,二进制真命题,根据上下文才能判断)

命题标识符

- ▶表示命题的符号,如 P 和[13]
 - ✓命题标识符若表示确定的命题,则称为命题常量
 - ✓若表示任意命题的位置标识,则称为命题变元
 - ✓当命题变元用特定命题取代,并能确定命题变元的真值,该过程称 为对变元进行指派
 - ✓不能分解为更简单的陈述句的命题叫做原子命题
 - ✓由联结词、标点符号和原子命题复合构成的命题称为复合命题

>约定:

✓通常用大写的带或不带下标的英文字母表示命题(包括原子命题和复合命题)

$$A, B, C, \ldots, P, Q, R, \ldots, A_i, B_i, C_i, \ldots, P_i, Q_i, R_i, \ldots$$

原子命题/复合命题

- >原子命题
 - ✓北京是中国的首都
- >复合命题
 - ✓简单命题之间是通过如"或者"、"并且"、"不"、"如果...... 则....."、"当且仅当"等这样的**关联词和标点符号复合而成**
- ▶复合命题
 - ✓四川不是一个国家
 - ✓3 既是素数又是奇数
 - ✓张谦是大学生或是运动员
 - ✓如果周末天气晴朗,则我们将到郊外旅游
 - ✓两个三角形全等当且仅当三角形的三条边全部相等

命题联结词

命题联结词

- >常见的联结词主要有以下五种:
 - ✓ "或者"、"并且"、"不"、"如果.....则....."、"当且 仅当"

>列:

- ✓四川不是一个国家
- ✓3 既是素数又是奇数
- ✓张谦是大学生或是运动员
- **✓如果**周末天气晴朗,**则**我们将到郊外旅游
- ✓两个三角形全等当且仅当三角形的三条边全部相等

联结词

- ▶数理逻辑中,复合命题由原子命题与联结词组合而成,为 便于书写和推演,须对联结词明确规定并符号化
 - ✓否定
 - √合取
 - ✓析取
 - ✓条件
 - ✓双条件

联结词: 否定

- ▶定义:设P为命题,P的否定为一新命题,记作一P;
 - ✓若P为T, ¬ P为F; 若P为F, ¬ P为T; "¬"表示命题的否定。
 - ✓该联结词亦记作" "。
 - ✓P与一 P的关系如表所示:

Р	¬P
Т	F
F	T

例: P:苏州是一个古城

一 P:苏州并不是一个古城

注: "一"为一元运算

联结词: 合取

- ▶定义: 命题P和Q的合取是复合命题,记作P ∧ Q。
- \triangleright 当且仅当P与Q均为T时,P \wedge Q才为T; 其它情况均为F。
- ▶该联结词的定义如下表:

例:

1. P: 今天下雨; Q: 明天下雨

P ^ Q: 今天下雨而且明天下雨;

今天与明天都下雨

这两天都下雨

P	Q	$P \wedge Q$
Т	T	Т
Т	F	F
F	Т	F
F	F	F

2. P: 我们去看电影; Q: 房间里有十张桌子

P ^ Q: 我们去看电影与房间里有十张桌子

注: 自然语言中,上述命题(2)是没有意义的。但作为数理逻辑可以成为一个命题

联结词: 合取

>注:

- ✓ " \wedge " 具有对称性, 即P \wedge Q \Leftrightarrow Q \wedge P, 且为二元运算;
- ✓ $P \land \neg P$ 永为 "F",且可以多次使用 " \land ",如: $P \land Q \land R$
- ✓此处的逻辑"与",汉语中的"与"意义并不完全相同。
- ✓ "∧"是自然语言中的"并且"、"既···又···"、"但"、"和"、 "与"、"不仅···而且···"、"虽然···但是···"、"一面···,一 面···"等的逻辑抽象
- ✓但不是所有的"和", "与"都要使用合取联结词表示,要根据句子的语义进行分析
 - 2 和 3 的最小公倍数是 6
 - 点 a 位于点 b 与点 c 之间

这两个命题都是简单命题,不能再分

联结词: 析取

- ▶定义: 命题P, Q的析取是复合命题, 记作P ∨ Q。
- ▶当且仅当P和Q同时为F时, P ∨ Q才为F; 否则其真值为T。
- >其真值表如下表:

例:

1. P: 张倩是大学生; Q: 张倩是运动员 P V Q: 张倩是大学生或是运动员

例:能否使用析取?

- 1. 他可能是100米或400米赛跑的冠军可以用析取连接词
- 2. 今天晚上我在家看电视或去剧场看戏 不能直接用析取连接词来表示,不可兼或
- 3. 他昨天做了二十或三十道习题 不能直接用析取连接词来表示,只是表示了近似的习 题数目,不是联结词,它是简单命题

联结词: 析取

- ▶联结词"∨" 是自然语言中的"或"、"或者" 等的逻辑抽象。
- ▶自然语言中的"或" 有"可兼或"(或称为同或)、"不可 兼或"(即异或) 两种。
- ▶严格来讲,析取联结词实际上代表的是"可兼或"

命题: 张红生于1982 年或1983 年, 令

P: 张红生于1982 年;

Q: 张红生于1983 年。

P 与Q 不能同时为真,即为"不可兼或"

联结词:条件

- ▶定义: 命题P, Q, 其条件命题是复合命题, 记作P \rightarrow Q。
 - ✓读作"如果P, 那么Q"或"若P则Q"; 称P为前件, Q为后件。
- ▶当且仅当P为T, Q为F时, $P \rightarrow Q$ 真值为F; 否则 $P \rightarrow Q$ 均为T。
- >其真值表如下表:

例

- 1. P:我拿起这本书, Q:我一口气读完这本书
 - 则 $P \rightarrow Q$:如果我拿起这本书,则我一口气读完它
- 1. P:他是苏州人, Q:他是江苏人
 - 则 P→Q:如果他是苏州人,那么他是江苏人
- 1. P:月亮出来了, Q:三乘三等于九

则 P → Q:如果月亮出来了,那么三乘三等于九

注: P与Q不一定有关系,为二元联结词

P	Q	$P \rightarrow Q$
T	T	Т
T	F	F
F	T	Т
F	F	Т

联结词:条件

- ▶在自然语言中,前件为假,不管结论真假,整个语句的意 义,往往无法判断
- ightharpoonup 但对于数理逻辑中的蕴涵联结词来说,当前件P 为假时,不管Q 的真假如何,则P ightharpoonup Q 都为真。此时称为"善意推定"
 - ✓判定嫌疑人是否有罪
 - 如果证据充足, 判定有罪
 - 如果证据不足, 判定无罪

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

≽列

- ✓命题:如果角A和角B是对顶角,则角A等于角B
- ✓这个命题是我们非常熟悉的一个定理,当然是真命题。当前件为假时,这个定理依然成立

联结词:条件

- ▶设P: 约翰学习微积分,Q: 约翰是大学一年级学生。则以下的复合命题均可用P → Q 表示
 - ✓如果约翰学习微积分,则他是大学一年级学生。如果P,则Q
 - ✓因为约翰学习微积分,所以他是大学一年级学生。因为P,所以Q
 - ✓只要约翰学习微积分,他就是大学一年级学生。只要P,就Q
 - ✓约翰学习微积分仅当他是大学一年级学生。P 仅当 Q
 - ✓只有约翰是大学一年级学生,他才能学习微积分。只有Q,才P
 - ✔除非约翰是大学一年级学生,他才能学习微积分。除非Q, 才P
 - ✔除非约翰是大学一年级学生,否则他不学习微积分。除非Q,否则:P

联结词:双条件(等价)

- **▶定义:** 命题P, Q, 双条件命题P \leftrightarrow Q也是复合命题,读作 "P当且仅当(iff)Q";
- ightharpoonup 该命题真值由P与Q的真值确定; 当P,Q具有相同的真值时, ightharpoonup Q是 "T",否则为 "F"。
- >其真值表如下:

例

P: $a^2+b^2=a^2$, Q: b=0, 则P \leftrightarrow Q: $a^2+b^2=a^2$ 当且仅当b=0 注:

P	Q	$P \leftrightarrow Q$
Т	T	Т
Т	F	F
F	T	F
F	F	Т

- 命题 "P iff Q"与命题 "P和Q是互为充分必要的"、命题 "有且仅有P才能有Q"是等价命题;且其为二元联结词
- 也就是对应于自然语言中的"等价"、"充分必要条件"、"当且仅当"等逻辑抽象

回顾

联结词	记号	复合命题	读法	记法	真值结果
否定	_	P 的否定	非 P	¬P	¬P 的真值为 "真" 当且仅当 P 的 真值为 "假"
合取	^	P 并且 Q	P 合取 Q	$P \wedge Q$	P ∧ Q 的真值为 "真" 当且仅当 P、 Q 的真值同为 "真"
析取	\ \	P 或者 Q	P 析取 Q	$P \lor Q$	P∨Q的真值为"真"当且仅当P、 Q的真值至少—个为"真"
蕴涵 条件	\rightarrow	若 P , 则 Q	P 蕴涵 Q 条件	P o Q	$P \to Q$ 的真值为 "假" 当且仅当 P 的真值为 "真"、 Q 的真值为 " 假"
等 价 双条件	\leftrightarrow	P 当且仅当 Q	P 等价于 Q 双条件	$P \leftrightarrow Q$	P ↔ Q 的真值为 "真" 当且仅当 P、 Q 的真值同为 " 真" 或同为 " 假"

命题联接词 "^"、"\"、"\"、"\+" 具有对称性 , 而 "¬"、"\+" 没有。

签到

离散数学0222

微信扫码签到

QQ群

命题公式与翻译

命题符号化

命题公式与翻译

- ▶设P,Q是任意命题,则
 - ✓¬P, $P \lor Q$, $(P \land Q) \lor (P \rightarrow Q)$, $P \leftrightarrow (Q \lor \neg P)$ 等都是**复合命题**

▶若P和Q是命题变元

- ✓则上述各式均称为**命题公式**,也称**合成公式**,
- ✓而P和Q称作命题公式的分量

注:

- 1、命题公式没有真假值,仅当在对命题变元进行真值指派 时方能成为命题
- 2、并不是由命题变元、联结词和一些括号组成的字符串都能成为命题公式

命题公式:定义

- 1. 单个命题变元本身是一个命题公式
- 2. 如果A是合式公式,那么 一A也是命题公式
- 3. 如果A, B是合式公式, 那么A∧B, A∨B, A→B, A→B都是命题公式
- 4. iff 能够有限次应用(1)、(2)、(3)所得到的包含命题变元、联结词和括号的符号串是命题公式
 - \checkmark ¬(P∧Q), ¬(P→Q) \lor R, (¬P↔Q) \land (P→¬R) 均为命题公式
 - \checkmark (P→Q) \rightarrow (\land Q), (P \rightarrow Q, (P \land Q) \rightarrow Q), 由于不符合定义,则不能成为合式公式

注:

- 1、上合式公式以递归形式给出,(1)为基础,(2)(3)是归纳,(4)称之为界限;
- 2、为减少使用圆括号数量,约定最外层括号可以省略;

命题公式:定义

- ▶"否定"只作用于邻接其后的命题
- ▶联结词运算规定优先次序: ¬, ∧ , ∨ , → , ↔
- >同级的联结词,按其出现的先后次序(从左到右)
- ▶若运算要求与优先次序不一致时,可使用括号;同级符号相邻时,也可使用括号。括号中的运算为最高优先级

自然语言陈述→数理逻辑的符号形式

直接翻译法(根据逻辑含义去翻译)

- ▶他既聪明又用功。
 - ✓设 P: 他聪明 Q: 他用功
 - ✓原命题可翻译为: P / Q
- >我今天进城,除非下雨。
 - ✓设 P:我今天进城 Q:下雨
 - ✓原命题可翻译为: $P \rightarrow \neg Q$ (或 $Q \rightarrow \neg P$)
- >如果你来了,那么他唱不唱歌将看你是否伴奏而定。
 - ✓设 P:你来 Q:他唱歌 R:你伴奏
 - ✓原命题可翻译为: $P \rightarrow (Q \leftrightarrow R)$
- >除非你努力,否则你将失败。
 - ✓设 P: 你努力 Q: 你失败。
 - ✓原命题可翻译为: ¬P→Q

自然语言陈述→数理逻辑的符号形式

真值表法 (构作真值表)

▶上海到北京的14次列车是下午五点半或六点开。 (不可兼或)

✓P:上海到北京的14次列车是下午五点半开。

✓Q:上海到北京的14次列车是下午六点开。

—(P→Q) ⇔ P / —Q 他们等价,

用后面公式更容易看懂

▶构造真值表:

P	Q	原命题	$P \leftrightarrow Q$	$\neg (P \leftrightarrow Q)$
T	Т	F	Т	F
T	F	T	F	Т
F	Т	Т	F	Т
F	F	F	T	F

▶故原命题公式可翻译为:¬(P ↔ Q)(注意比较上两种方法利弊)

命题联接词与开关电路

设命题 P; 开关 S_1 闭合; 命题 Q; 开关 S_2 闭合。则用复合命题表示:

- (图 1) 开关电路的 "串联": P ∧ Q
- (图 2) 开关电路的 "并联": P∨Q
- (图 3) 开关电路的"断开":¬P

命题联接词与逻辑电路

命题联接词 "△"、"▽"、"¬" 对应于与门、或门和非门电路,从而命题逻辑是计算机硬件电路的表示、分析和设计的重要工具。

命题联接词与网页检索

☞ 布尔检索

在布尔检索中,联接词 "^"(一般用 AND 表示)用于匹配包含两个检索项的记录,联接词 "\"(一般用 OR 表示)用于匹配包含两个检索项至少一个的记录,而联接词 "¬"(一般用 NOT 表示)用于排除某个特定的检索项。

Example

- New AND Mexico AND universities:
 检索新墨西哥州各大学的网页。
- ② (New AND Mexico OR Arizona) AND universities: 检索新墨西哥州或亚利桑那州各大学的网页。

真值表与等价公式

命题联结词的真值表

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

联结词是两个命题真值之间的联结,而不是命题内容之间的连接,因此复合命题的真值只取决于构成他们的各简单命题的真值,而与它们的内容无关,与二者之间是否有关系无关。

Example

命题 1:雪是白的当且仅当北京是中国的首都。命题 2:如果 2是偶数,则天上就可以掉馅饼。

尽管两个简单命题的内容之间无关联,但二者均为合法命题,且具有确定的真值。

命题公式的解释

▶定义

- \checkmark 设 P_1 、 P_2 、 P_3 、 \cdots 、 P_n 是出现在公式G中的所有命题变元,指定 P_1 、 P_2 、 P_3 、 \cdots 、 P_n 一组真值,则这组真值称为G的一个解释(指派),常记为I
- ightrarpoonup设有公式: $G = P \rightarrow (\neg Q \land R)$
 - ✓I₁: P=0; Q=1; R=0是G 的一个解释, 使得G 的真值为1。
 - ✓I2: P=1; Q=0; R=0是G 的一个解释, 使得G 的真值为0。
- ▶一般来说,若有n个命题变元,则应有2n个不同的解释
- >利用真值表,可得到公式的所有成真赋值和成假赋值
- ▶由公式G在其所有可能的解释下所取真值构成的表,称为G 的**真值表**(truth table)

真值表与等价公式

- **定义(教科书):** 在命题公式中,对于分量指派真值的各种可能组合,即可确定该命题公式的各种真值情况,汇列其为表,就称为该命题公式的真值表
- ▶ ¬ P∨Q真值表的构造

P	Q	¬P	$\neg P \lor Q$
Т	T	F	T
T	F	F	F
F	T	T	Т
F	F	T	Т

▶注:在真值表中,命题公式中真值的取值数目,取决于分量的个数,一般是n个命题变元组成的命题公式共有2ⁿ种真值情况

真值表

- ▶如何画真值表
 - ✓一般我们将公式中的命题变元放在真值表的左边,将公式的结果放在真值表的右边
 - ✓有时为了清楚起见,可将求公式的中间结果也放在真值表中

例								
设有组	设有公式: $G = (P \rightarrow ((\neg P \leftrightarrow Q) \land R)) \lor Q$,则 G 的真值表为:							
Р	Q	R	$ \neg P $	$\neg P \leftrightarrow Q$		$(\neg P \leftrightarrow Q) \land R$	$P \to ((\neg P \leftrightarrow Q) \land R)$	G
0	0	0	1	0		0	1	1
0	0	1	1	0		0	1	1
0	1	0	1	1		0	1	1
0	1	1	1	1		1	1	1
1	0	0	0	1		0	0	0
1	0	1	0	1		1	1	1
1	1	0	0	0		0	0	1
1	1	1	0	0		0	0	1
_								

等价或逻辑相等

定义: 命题公式A,B,设P₁,P₂,…,P_n为所有出现于A和B的原子变元。若给P₁,P₂,…,P_n任一真值指派,A和B真值均相同,则称A与B等价或逻辑相等,记作A \Leftrightarrow B

▶列: 证明 $\neg (A \rightarrow B) \Leftrightarrow A \land \neg B$ (利用真值表进行验证)

A	В	¬ В	$A \rightarrow B$	$A \land \neg B$	$\neg(A \rightarrow B)$
T	Т	F	Т	F	F
Т	F	Т	F	Т	T
F	Т	F	Т	F	F
F	F	Т	Т	F	F

由上表可知: $\neg(A \rightarrow B) \Leftrightarrow A \land \neg B$ (真值为T)

公式的等价

>写出下面公式的真值表

$$G_1 = (P \to Q) \leftrightarrow (\neg P \lor Q)$$
 $G_2 = (P \leftrightarrow Q) \leftrightarrow (\neg (P \to Q) \lor \neg (Q \to P))$
 $G_3 = (P \to \neg Q) \lor \neg Q$

Р	Q	G_1	G_2	G_3	
0	0	1	0	1	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	0	0	

公式等价的充分必要条件

- ▶对于任意两个公式G 和H, G ⇔ H 的充分必要条件
 - ✓公式G ↔ H 是永真公式

▶证明

- ✓必要性: 假定 $G \Leftrightarrow H$,则G,H 在其任意解释I 下或同为真或同为假,于是由 " \leftrightarrow "的意义知,公式 $G \leftrightarrow H$ 在其任何的解释I 下,其真值为"真",即 $G \leftrightarrow H$ 为永真公式
- ✓充分性: 假定公式 $G \leftrightarrow H$ 是永真公式, I 是它的任意解释, 在I 下, $G \leftrightarrow H$ 为真, 因此, G, H 或同为真, 或同为假, 由于I 的任意性, 故有 $G \leftrightarrow H$

十大命题定律

对等律	$\neg \neg P \Leftrightarrow P$
幂等律	$P \lor P \Leftrightarrow P, P \land P \Leftrightarrow P$
th: 人h	$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$
☐ 结合律 ☐	$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$
】 交換律	$P \lor Q \Leftrightarrow Q \lor P$
文操 律	$P \land Q \Leftrightarrow Q \land P$
┃ ┃ 分配律	$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
刀"乱 "	$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
W 吸收律	$P \lor (P \land Q) \Leftrightarrow P$
7次4又1手	$P \land (P \lor Q) \Leftrightarrow P$
 	$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$
/ 德. 摩根律 // ***********************************	$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
同一律	$P \lor F \Leftrightarrow P, P \land T \Leftrightarrow P$
零律	$P \land F \Leftrightarrow F, P \lor T \Leftrightarrow T$
否定律	$P \lor \neg P \Leftrightarrow T, P \land \neg P \Leftrightarrow F$

蕴含式	$P \rightarrow Q \Leftrightarrow \neg P \lor Q$
假言易位	$P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
等价式	$P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$ $\Leftrightarrow (\neg P \lor Q) \land (\neg Q \lor P)$
等价否定 等式	$P \leftrightarrow Q \Leftrightarrow \neg Q \leftrightarrow \neg P$
归谬论	$(P \rightarrow Q) \land (P \rightarrow \neg Q) \Leftrightarrow \neg P$

子公式和等价置换

- ▶定义: 如果X是合式公式A的一部分,且X本身也是一个合式 公式,则称X为公式A的子公式
- ightharpoonup定理:设X是合式公式A的子公式,若X \Leftrightarrow Y,如果将A中的 X用Y来置换,所得到公式B与公式A等价,即A \Leftrightarrow B

▶证明:

- ✓因为在相应变元的任一种指派情况下,X与Y的真值相同,故以Y取代X后,公式B与公式A在相应的指派情况下,其真值亦必相同,故A ⇔ B
- »满足上述定理的置换称为**等价置换**

证明公式等价

Example

利用命题公式的基本等价关系,证明 $P \to (Q \to R) = (P \land Q) \to R$ 。

证明

$$P \rightarrow (Q \rightarrow R)$$

 $= \neg P \lor (Q \rightarrow R)$ (蕴含式)
 $= \neg P \lor (\neg Q \lor R)$ (蕴含式)
 $= (\neg P \lor \neg Q) \lor R$ (结合律)
 $= \neg (P \land Q) \lor R$ (德摩根律)
 $= (P \land Q) \rightarrow R$ (蕴含式)

开关电路化简

>利用命题公式的基本等价关系, 化简如下左图所示开关电

路

$$((P \land Q \land R) \lor (P \land Q \land S)) \land ((P \land R) \lor (P \land S))$$

$$= (P \land Q \land (R \lor S)) \land (P \land (R \lor S))$$

$$= P \land Q \land (R \lor S) \land P \land (R \lor S)$$

$$= P \land Q \land (R \lor S)$$

智力游戏

- > 侦探调查了罪案的四位证人。从证人的话侦探得出的结论是:
 - ✓ 如果男管家说的是真话,那么厨师说的也是真话;
 - ✓ 厨师和园丁说的不可能都是真话;
 - ✓ 园丁和杂役不可能都在说谎;
 - ✓ 如果杂役说真话,那么厨师在说谎。
- > 侦探能判定这四位证人分别是在说谎还是在说真话吗?解释你的推理。
 - ✓命题P: 男管家说的是真话; Q: 厨师说的是真话; R: 园丁说的是真话; S: 杂役说的是真话
- ▶ 将上述已知条件符号化并列出真值表,选取真值结果全为真的行如下表:

Р	Q	R	5	P o Q	$\neg(Q \land R)$	$\neg(\neg R \land \neg S)$	S ightarrow eg Q
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1
0	0	1	1	1	1	1	1

可见,我们能确定 P , Q 必然为假,但无法确定 R 和 S 的值,因而侦探只能判定男管家和厨师在说谎,但无法判定园丁与杂役谁在说真话。

真值表告诉我们什么?

>写出下面公式的真值表

$$G_1 = \neg(P \rightarrow Q) \rightarrow P$$

$$G_2 = (P \rightarrow Q) \land P$$

$$G_3 = \neg(P \land \neg Q) \leftrightarrow \neg(P \rightarrow Q)$$

P	Q	G_1	G_2	G_3	
0	0	1	0	0	
0	1	1	0	0	
1	0	1	0	0	
1	1	1	1	0	
		全为真	有真有假	全为假	

▶重言式

✓对一命题公式,若无论对分量作怎样的指派,其对应的真值永为T, 则该命题公式为重言式或永真公式

>矛盾式

- ✓对一命题公式,若无论对分量作怎样的指派,其对应的真值永为F,则该命题公式为矛盾式或永假公式
- **▶定理**: 任何两个重言式的合取或析取, 仍为重言式
 - ✓证明:设A,B为两个重言式,则不论A和B的分量指派任何值,总有A为T,B为T。则 $A \land B \Leftrightarrow T$, $A \lor B \Leftrightarrow T$
- ▶ **定理:** 一重言式,对同一分量都用任何公式置换,其结果仍为一重言式。
 - ✓证明:由于重言式的真值与分量的指派无关。故对同一分量的任何 合式公式置换后,重言式真值仍为T

- **▶定理:** 设A,B为命题公式,A \Leftrightarrow B iff A \leftrightarrow B为一个重言式 \checkmark 证明:
 - " \leftarrow ": 由A \Leftrightarrow B知, A与B具有相同的真值,则由双条件联结词 定义可知: A \leftrightarrow B \Leftrightarrow T;

> 蕴含式

✓定义: $iff P \rightarrow Q$ 为重言式时, 称 "P**蕴含Q**", 即P \Rightarrow Q

>注:

- \checkmark 1、因 P→Q 不是对称关系,则 P→Q 与 Q→P 不等价
- ✓2、对 $P \rightarrow Q$,其逆换式为 $Q \rightarrow P$,反换式为 $\neg P \rightarrow \neg Q$,逆反式 为 $\neg Q \rightarrow \neg P$
- \checkmark 3, $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$, $Q \rightarrow P \Leftrightarrow \neg P \rightarrow \neg Q$

下表所列是常见蕴含式,均可以使用上述等价方式进行证明:

$P \wedge Q \Rightarrow P$	1	$P \wedge (P \rightarrow Q) \Rightarrow Q$	8
$P \wedge Q \Rightarrow Q$	2	$\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$	9
$P \Rightarrow P \vee Q$	3	$\neg P \land (P \lor Q) \Rightarrow Q$	10
$\neg P \Rightarrow P \rightarrow Q$	4	$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R$	11
$Q \Rightarrow P \rightarrow Q$	5	$(P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow R) \Rightarrow R$	12
$\neg (P \rightarrow Q) \Rightarrow P$	6	$(P \rightarrow Q) \land (R \rightarrow S) \Rightarrow (P \land R) \rightarrow (Q \land S)$	13
$\neg (P \rightarrow Q) \Rightarrow \neg Q$	7	$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$	14

▶定理:

 \checkmark 设P, Q为任意两命题公式, P \Leftrightarrow Q的充要条件: P \Rightarrow Q 且 Q \Rightarrow P

▶证明:

- "←": P⇔Q, 则P↔Q⇔T(重言式);
- ✓因为等价式 $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P) \Leftrightarrow T$,故 $P \rightarrow Q \Leftrightarrow T$, $Q \rightarrow P \Leftrightarrow T$,
- ✓则 $P \Rightarrow Q, Q \Rightarrow P$ 。
 - " \Rightarrow ": 若, $P \Rightarrow Q$ 且 $Q \Rightarrow P$,则 $P \rightarrow Q \Leftrightarrow T$, $Q \rightarrow P \Leftrightarrow T$ 。
- ✓因此, $(P \rightarrow Q) \land (Q \rightarrow P) \Leftrightarrow T$,
- ✓由等价式, $\mathbb{P} \leftrightarrow \mathbb{Q} \Leftrightarrow \mathbb{T}$ (重言式)。
- ✓所以 P ⇔ Q

蕴含常见性质

- 1. 设A、B、C为合式公式,若A \Rightarrow B且A是重言式,则B也是重言式
 - \checkmark 证: 由A \Rightarrow B知: A→B \Leftrightarrow T。再由条件定义知A为T时,B必为T
- 2. $\forall A$ → B, B → C,则 A → C,即蕴含关系是传递的

 - ✓又因为 $(A \rightarrow B) \land (B \rightarrow C) \Rightarrow A \rightarrow C$, 故由性质1, $A \rightarrow C \Leftrightarrow T$, 即 $A \Rightarrow C$

蕴含常见性质

- 3. 若A \Rightarrow B, A \Rightarrow C, 则A \Rightarrow (B\C)
 - ✓证: 因为A→B ⇔ T, A→C⇔ T
 - \checkmark 1)设A为T,则B与C均为T,故B \land C为T。因此,A \rightarrow (B \land C)为T
 - ✓2) 设A为F,则A→(B∧C)为T
 - ✓所以, $A \Rightarrow (B \land C)$
- 4. 若A \Rightarrow B且C \Rightarrow B,则(A \lor C) \Rightarrow B
 - ✓证: 因为A→B ⇔ T, C→B⇔ T
 - ✓故 $(\neg A \lor B) \land (\neg C \lor B) \Leftrightarrow T$,
 - \checkmark ($\neg A \lor B$) \land (\neg C $\lor B$) \Leftrightarrow ($\neg A \land \neg$ C) $\lor B \Leftrightarrow \neg (A \lor C) \lor B \Leftrightarrow$ (A \lor C)
 - → B⇔ T

内容复习

其他联结词

其他联结词:不可兼析取

▶定义:设命题公式P,Q,复合命题P⊽Q称作P和Q的不可兼 析取。

✓ P $\overline{\mathsf{V}}$ Q 真值为T iff P与Q取不同真值,否则P $\overline{\mathsf{V}}$ Q为F。该联结词定义如下表:

"▽"性质,P、Q、R为命题公式

 $(1) P \overline{V} Q \Leftrightarrow Q \overline{V} P$

(2) $(P \nabla Q) \nabla R \Leftrightarrow P \nabla (Q \nabla R)$

 $(3) P \wedge (Q \overline{V} R) \iff (P \wedge Q) \overline{V} (P \wedge R)$

 $(4) (P \nabla Q) \Leftrightarrow (P \wedge \neg Q) \vee (\neg P \wedge Q)$

 $(5) (P \nabla Q) \Leftrightarrow \neg (P \leftrightarrow Q)$

(6) $P \nabla P \Leftrightarrow F, F \nabla P \Leftrightarrow P, T \nabla P \Leftrightarrow \neg P$

注:该连接词亦称为"异或"

其他联结词:不可兼析取

- **▶定理:** 设P、Q、R为命题公式。若P $\overline{\lor}$ Q \Leftrightarrow R,则P $\overline{\lor}$ R \Leftrightarrow Q,Q $\overline{\lor}$ R \Leftrightarrow P,且P $\overline{\lor}$ Q $\overline{\lor}$ R为矛盾式
- ≻证明:

则
$$P \overline{\vee} R \Leftrightarrow P \overline{\vee} P \overline{\vee} Q \Leftrightarrow F \overline{\vee} Q \Leftrightarrow Q$$
 $Q \overline{\vee} R \Leftrightarrow Q \overline{\vee} P \overline{\vee} Q \Leftrightarrow F \overline{\vee} P \Leftrightarrow P$ $P \overline{\vee} Q \overline{\vee} R \Leftrightarrow R \overline{\vee} R \Leftrightarrow F$

其他联结词:条件否定

定义: 设P和Q为命题公式,复合命题P $\stackrel{c}{\rightarrow}$ Q称作P \rightarrow Q的条件否定,P $\stackrel{c}{\rightarrow}$ Q的真值为T iff P的真值为T,Q的真值为F,否则其真值为F,该联结词真值表

Р	Q	Р -	$\stackrel{c}{\rightarrow}$ Q
T	Τ		F
T	F		T
F	Т		F
F	F		F

其他联结词:与非

- 》定义:设P和Q是命题公式,复合命题P \uparrow Q称作P和Q的"与非"。iff P和Q真值均为T时,P \uparrow Q为F,否则其真值均为T。该联结词定义如表,性质如下
 - \checkmark (1) P ↑ P \Leftrightarrow \neg (P \land P) \Leftrightarrow \neg P
 - \checkmark (2) (P \(\) Q) \(\) (P \(\) Q) \(\Lor \) \(\
 - \checkmark (3) (P ↑ P) ↑ (Q ↑ Q) \Leftrightarrow ¬P ↑ ¬Q \Leftrightarrow ¬(¬ P \land ¬Q) \Leftrightarrow P \lor Q

P	Q	P↑Q
T	T	F
T	F	T
F	T	Т
F	F	T

其他联结词:或非

▶设P和Q为命题公式,复合命题P↓Q称作P和Q的"或非", iff P和Q真值均为F时,P↓Q为T,否则其真值均为F。该联 结词定义如表,性质如下

$$\checkmark P \downarrow P \Leftrightarrow \neg (P \lor P) \Leftrightarrow \neg P$$

$$\checkmark (P \downarrow Q) \downarrow (P \downarrow Q) \Leftrightarrow \neg (P \downarrow Q) \Leftrightarrow P \lor Q$$

$$\checkmark$$
 (P \downarrow P) \downarrow (Q \downarrow Q) \Leftrightarrow \neg P \downarrow \neg Q \Leftrightarrow P \land Q

P	Q	P↓Q
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

>联结词组

- ✓对于任何一个命题公式,都能由仅含这些联结词的命题公式等价代换。这些联结词所组成的集合称为联结词组。
- \checkmark 如: { \neg , \land }, { \neg , \land , \lor } 是联结词组
- ▶最小联结词组
 - ✓是联结词组,即对于任何一个命题公式,都能由仅含这些联结词的命题公式等价代换,而比这些联结词再少的命题公式不能对给定的公式作等价代换
- ▶由上述章节所学习的联结词以及相关知识可知, {¬,∧} 或{¬, ∨}为最小联结词组。
- ▶根据"↑","↓"的性质可知,"¬","∧","∨"可分别用"↑","↓"所替代。所以{↑},{↓}也是最小联结词组

- ▶ 定义: 给定命题公式A,将∨换成∧,将∧换成∨,若有特殊变元F和T亦相互取代,所得A*称为A的对偶式
 - ✓注: 命题公式A中只含"一, ∧, ∨")
 - ✓A也是A*的对偶式
- ▶ 定理a: 设A和A*是对偶式,P1, P2, ···, Pn, 是出现在A和A*中的原子变元,则

$$\neg A(P_1, P_2, \dots, P_n) \Leftrightarrow A*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

$$A(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \neg A*(P_1, P_2, \dots, P_n)$$

- ▶证明
 - ✓由德.摩根律知: $P \land Q \Leftrightarrow \neg(\neg P \lor \neg Q)$, $P \lor Q \Leftrightarrow \neg(\neg P \land \neg Q)$
 - ✓ 设法使 ¬(¬ P∨¬ Q) 和 P∨Q 相等
 - 故: ¬ A(P1, P2, …, Pn) ⇔ A*(¬ P1, ¬ P2, …, ¬ Pn)
 - 同理: A(¬ P1, ¬ P2, …, ¬ Pn) ⇔ ¬ A*(P1, P2, …, Pn)

- **ightarrow定理**: 设P1, P2, ···, Pn是出现在公式A和B中的所有原子变元, 若A \Leftrightarrow B, 则A* \Leftrightarrow B*
- ▶证明
 - ✓因为 $A \Leftrightarrow B$,即 $A(P1, P2, \dots, Pn) \leftrightarrow B(P1, P2, \dots, Pn) \Leftrightarrow T$
 - \checkmark to A(¬ P1, ¬ P2, ···, ¬ Pn) \leftrightarrow B(¬ P1, ¬ P2, ···, ¬ Pn) \Leftrightarrow T
 - ✓ \mathbb{P} A(\neg P1, \neg P2, \cdots , \neg Pn) \Leftrightarrow B(\neg P1, \neg P2, \cdots , \neg Pn)
 - ✓则由 <u>定理a</u> 知 ¬A*(P1, P2, ···, Pn) ⇔¬B*(P1, P2, ···, Pn)
 - ✓故 A* ⇔ B*
- ▶注:由真值表与对偶律可以简化或推证一些命题公式。同一命题公式可以有各种相互等价的表达形式,为了对其规范化,引进"**范式**"概念

- \triangleright 定义: 命题公式称为合取范式, iff 它具有形式: A1 \land A2 $\land \cdots \land$ An (n \geqslant 1), 其中A1, A2, …, An都是命题变元或其 否定所组成的析取式
 - ✓例如: $(P \lor Q) \land \neg Q \land (\neg P \lor Q \lor R)$, $(P \lor Q \lor R)$ 为合取范式
- **定义**: 命题公式称为**析取范式**, *iff* 它具有形式: $A1 \lor A2 \lor \cdots \lor An$ ($n \ge 1$),其中A1,A2,…, An都是命题变元或其否定所组成的合取式
 - ✓例如: $(P \land \neg Q) \lor R \lor (\neg P \land R \land Q)$, $P \land Q \land \neg R$ 为析取范式

- ▶任何命题公式,其合取范式或析取范式均可按照下面三个 步骤进行:
 - \checkmark (1)将公式中的联结词化归为 \land , \lor 及 ¬
 - ✓(2)利用德. 摩根律将否定一直接移到各个命题变元之前
 - ✓(3)利用分配律、结合律将公式归约为合取范式或析取范式
- ▶求 $(P \land (Q \rightarrow R)) \rightarrow S$ 的合取范式。

解:
$$(P \land (Q \rightarrow R)) \rightarrow S \Leftrightarrow (P \land (\neg Q \lor R)) \rightarrow S$$

 $\Leftrightarrow \neg (P \land (\neg Q \lor R)) \lor S$
 $\Leftrightarrow \neg P \lor (Q \land \neg R) \lor S$
 $\Leftrightarrow (\neg P \lor S) \lor (Q \land \neg R) // 结合律$
 $\Leftrightarrow (\neg P \lor S \lor Q) \land (\neg P \lor S \lor \neg R) // 分配律$

▶求¬ (P∨Q)↔(P∧Q)的析取范式。
 解: 因为: A ↔B⇔(A∧B)∨(¬A∧¬B)
 故¬ (P∨Q)↔(P∧Q)
 ⇔ (¬(P∨Q)∧(P∧Q))∨((P∨Q)∧¬(P∧Q)) //等价式
 ⇔ (¬P∧¬Q∧P∧Q)∨((P∨Q)∧(¬P∨¬Q))
 ⇔ (¬P∧¬Q∧P∧Q)∨(P∧¬P)∨(Q∧¬P)∨(P∧¬Q) //两次分配律

>注: 命题公式的合取范式或析取范式并不唯一

如: $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

 \Leftrightarrow $(P \land P) \lor (P \land R) \lor (Q \land P) \lor (Q \land R)$

▶为使任一命题公式化成唯一的等价命题的标准形式,下面引进"主范式"概念

- ▶ 定义: n个命题变元的合取式,称作布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次
 - ✓例如,设P、Q、R是三个命题变元,如下表所示

m	下标编码(十进制数)	下标编码 (二进制数)	小项
$m_0 (m_{000})$	0	000	$\neg P \land \neg Q \land \neg R$
$m_1 (m_{001})$	1	001	$\neg P \land \neg Q \land R$
$m_2 (m_{010})$	2	010	$\neg P \land Q \land \neg R$
$m_3 (m_{011})$	3	011	$\neg P \land Q \land R$
$m_4 (m_{100})$	4	100	$P \land \neg Q \land \neg R$
$m_5 (m_{101})$	5	101	$P \land \neg Q \land R$
$m_6 (m_{110})$	6	110	$P \land Q \land \neg R$
$m_7 (m_{111})$	7	111	$P \wedge Q \wedge R$

- ▶一般地,n个命题变元可以有2n个小项
- ▶小项的真值:只有唯一一组指派,使得小项真值为T
- ▶小项的表示: 用m₀, m₁, ···, m₇(或m₀₀₀, m₀₀₁, ···m₁₁₁) 表示小项

		$m_{00}(m_0)$	$m_{01}(m_1)$	$m_{10}(m_2)$	$m_{11}(m_3)$
P	Q	$\neg P \land \neg Q$	$\neg P \land Q$	$P \wedge \neg Q$	$P \wedge Q$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- 没有两个不同的极小项是等价的。
- 每个极小项只有一组成真赋值,因此可用于给极小项编码。 编码规律为:命题变元 与 1 对应,命题变元的否定与 0 对应。

- ▶以三个命题变元为例,真值T和F分别记为"1"和"0"
- ▶小项具有的性质
 - ✓每一个小项当其真值指派与编码相同时,其真值为T,在其余2ⁿ-1种 指派情况下均为F。如:三个命题变元P,Q,R

小项	对应为真的指派	小项	对应为真的指派
	(P Q R)		(P Q R)
$\neg P \land \neg Q \land \neg R$	(F F F)	$P \land \neg Q \land \neg R$	(T F F)
$\neg P \land \neg Q \land R$	(F F T)	$P \land \neg Q \land R$	(T F T)
$P \land \neg Q \land \neg R$	(F T F)	$P \land Q \land \neg R$	(T T F)
$\neg P \land Q \land R$	(F T T)	$P \land Q \land R$	(T T T)

- ▶以三个命题变元为例,真值T和F分别记为"1"和"0"
- >小项具有的性质

 - ✓全体小项的析取式永为真,记作

$$\sum_{i=0}^{2^{n}-1} m_{i} \Leftrightarrow m_{0} \vee m_{1} \vee \cdots \vee m_{2^{n}-1} \Leftrightarrow T$$

主析取范式

- **定义:** 对给定的命题公式,若有一等价公式,仅由小项析取组成,则该等价式称作原式的主析取范式
- ▶ **定理:** 在真值表中,公式真值为T的指派所对应的小项的析取,即为此公式的主析取范式
- **证明:** 设给定公式为A, 其真值为T的指派所对应的小项为 m_1' , m_2' , ···, m_k' 这些小项的析取式记为B,即证A \Leftrightarrow B,即A与B在相应指派下具有相同真值
 - \checkmark 对A为T的某一指派,其对应的小项为 m_i ',则因为 m_i '为T,而 m_1 ', m_2 ',…, m_{i-1} ', m_{i+1} ',…, m_k '均为F,故B为T。
 - ✓对A为F的某一指派,其对应小项不包含在B中,即 m_1 ′, m_2 ′,···, m_k ′ 均为F,故B为F。因此A ⇔ B

主析取范式

▶例:设公式A的真值表如下

P	Q	R	A	P	Q	R	A
T(1)	T(1)	T(1)	T	F(0)	T(1)	T(1)	F
T(1)	T(1)	F(0)	F	F(0)	T(1)	F(0)	F
T(1)	F(0)	T(1)	F	F(0)	F(0)	T(1)	F
T(1)	F(0)	F(0)	T	F(0)	F(0)	F(0)	T

>则公式A的主析取范式为:

 \checkmark A \Leftrightarrow (\neg P \land \neg Q \land \neg R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \Leftrightarrow m₀ \lor m₄ \lor m₇,简记为 $\Sigma_{0.4.7}$

主析取范式

- >求命题公式的主析取范式的方法:
- 1. 可以从真值表直接得出。
- 2. 可以是由基本等价公式推出,推理步骤为:
 - I. 化归为析取范式;
 - II. 除去析取范式中所有永假的析取项;
 - 将析取范式中重复出现的合取项和现同的变元合并;
 - Ⅳ. 对合取项补入没有出现的命题变元,如变元P未出现,即添加(P\\¬P)的合取项,然后应用分配律展开
- ▶任何命题公式的主析取范式,如果固定变元出现的次序, 此公式的主析取范式便是唯一的

- >定义: n个命题变元的析取式,称作布尔析取或大项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次
- ▶设P、Q、R是三个命题变元,如下表所示

M	下标编码(十进制数)	下标编码 (二进制数)	大项
$M_{O}(M_{OOO})$	0	000	$P \bigvee Q \bigvee R$
$\mathbf{M}_{1}\left(\mathbf{M}_{001}\right)$	1	001	$P \vee Q \vee \neg R$
$\mathrm{M}_{2}\left(\mathrm{M}_{\mathrm{O10}}\right)$	2	010	$P \lor \neg Q \lor R$
$\mathbf{M}_{3}\left(\mathbf{M}_{011}\right)$	3	011	$P \lor \neg Q \lor \neg R$
$\mathrm{M}_4\left(\mathrm{M}_{100}\right)$	4	100	$\neg P \lor Q \lor R$
$\mathbf{M}_{5}\left(\mathbf{M}_{101}\right)$	5	101	$\neg P \lor Q \lor \neg R$
$M_{6}(M_{110})$	6	110	$\neg P \lor \neg Q \lor R$
$\mathrm{M}_{7}\left(\mathrm{M}_{111}\right)$	7	111	$-P \lor -Q \lor -P$

小项 vs. 大项

▶小项(极小项)和大项(极大项)的编码方式刚好相反

P	Q	R	极小项	极大项
0	0	0	$m_0 = \neg P \wedge \neg Q \wedge \neg R$	$M_0 = P \lor Q \lor R$
0	0	1	$m_1 = \neg P \wedge \neg Q \wedge R$	$M_1 = P \lor Q \lor \neg R$
0	1	0	$m_2 = \neg P \land Q \land \neg R$	$M_2 = P \vee \neg Q \vee R$
0	1	1	$m_3 = \neg P \wedge Q \wedge R$	$M_3 = P \vee \neg Q \vee \neg R$
1	0	0	$m_4 = P \wedge \neg Q \wedge \neg R$	$M_4 = \neg P \lor Q \lor R$
1	0	1	$m_5 = P \wedge \neg Q \wedge R$	$M_5 = \neg P \lor Q \lor \neg R$
1	1	0	$m_6 = P \wedge Q \wedge \neg R$	$M_6 = \neg P \lor \neg Q \lor R$
1	1	1	$m_7 = P \wedge Q \wedge R$	$M_7 = \neg P \lor \neg Q \lor \neg R$

- $m_i = \neg M_i$ $M_i = \neg m_i$
- 3 $\bigvee_{i=0}^{2^{n}-1} m_{i} = 1$ $\bigwedge_{i=0}^{2^{n}-1} M_{i} = 0$

- ▶用M₀, M₁, ···, M₇ (或M₀₀₀, M₀₀₁, ···M₁₁₁)分别表示大项
- ▶一般地,n个命题变元可以有2n个大项

- ▶真值T和F分别表示为"1"和"0"
- >大项具有的性质
 - ✓每个大项当其真值指派与编码相同时,其真值为F,在其余2n-1种指派情况下均为T。如P、Q、R为三个变元,则

大项	对应为假的指派	大项	对应为假的指派
	(P Q R)		(P Q R)
$\neg P \lor \neg Q \lor \neg R$	(T T T)	$P \vee \neg Q \vee \neg R$	(F T T)
$\neg P \lor \neg Q \lor R$	(T T F)	$P \vee \neg Q \vee R$	(F T F)
$\neg P \lor Q \lor \neg R$	(T F T)	$P \vee Q \vee \neg R$	(F F T)
$\neg P \lor Q \lor R$	(T F F)	$P \vee Q \vee R$	(F F F)

- ▶真值T和F分别表示为"1"和"0"
- >大项具有的性质
 - ✓每个大项当其真值指派与编码相同时,其真值为F,在其余2ⁿ-1种指派情况下均为T

		$M_{11}(M_3)$	$M_{10}(M_2)$	$M_{01}(M_1)$	$M_{00}(M_0)$
Р	Q	$\neg P \lor \neg Q$	$\neg P \lor Q$	$P \lor \neg Q$	$P \lor Q$
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

- 没有两个不同的极大项是等价的。
- 每个极大项只有一组成假赋值,因此可用于给极大项编码。 编码规律为: 命题变元 与 0 对应, 命题变元的否定与 1 对应。

- ▶真值T和F分别表示为"1"和"0"
- >大项具有的性质
 - ✓ 任意两个不同大项的析取式为永真(T)。 $M_i \lor M_j \Leftrightarrow T(i \neq j)$
 - \checkmark 3) 全体大项的合取式必为永假,记为: $\prod_{i=0}^{2^n-1} \boldsymbol{M}_i = \boldsymbol{M}_0 \wedge \boldsymbol{M}_1 \wedge \cdots \wedge \boldsymbol{M}_{2^n-1} \Leftrightarrow \boldsymbol{F}$

- ▶ **定义:** 对于给定的命题公式,若一等价公式,它仅由大项的合取所组成,则该等价式称作原式的主合取范式
- ▶ 定理: 在真值表中,一公式的真值为F的指派对应的大项的合取,即为此公式的主合取范式

✓例: 设公式A的真值表如下

P	Q	R	A	P	Q	R	A
T(1)	T(1)	T(1)	T	F(0)	T(1)	T(1)	F
T(1)	T(1)	F(0)	F	F(0)	T(1)	F(0)	F
T(1)	F(0)	T(1)	F	F(0)	F(0)	T(1)	F
T(1)	F(0)	F(0)	T	F(0)	F(0)	F(0)	T

>则公式A的主合取范式为:

$$\Leftrightarrow \!\! \mathsf{M}_{001} \! \wedge \! \mathsf{M}_{010} \! \wedge \! \mathsf{M}_{011} \! \wedge \! \mathsf{M}_{101} \! \wedge \! \mathsf{M}_{110}$$

$$\Leftrightarrow M_1 \wedge M_2 \wedge M_3 \wedge M_5 \wedge M_6$$

简记为Ⅱ_{1,2,3,5,6}

P	Q	R	A	P	Q	R	A
T(1)	T(1)	T(1)	T	F(0)	T(1)	T(1)	F
T(1)	T(1)	F(0)	F	F(0)	T(1)	F(0)	F
T(1)	F(0)	T(1)	F	F(0)	F(0)	T(1)	F
T(1)	F(0)	F(0)	T	F(0)	F(0)	F(0)	T

- ▶一个公式主合取范式除可用真值表构成外,亦可用基本等 价式推出,其推演步骤为
 - ✓化归为合取范式;
 - ✔除去合取范式种所有为永真的合取项;
 - ✔合并相同的析取项和相同的变元;
 - ✓对析取项补入没有出现的命题变元,即添加(P / ¬P)式,然后应用分配律展开

- ▶一个公式主合取范式除可用真值表构成外,亦可用基本等价式推 出
- ▶例: $\bar{\chi}(P \land Q) \lor (\neg P \land R)$ 的主析取范式和主合取范式。

解: 原式 \Leftrightarrow ((P \land Q) \lor ¬P) \land ((P \land Q) \lor R)

- \Leftrightarrow $(P \lor \neg P) \land (Q \lor \neg P) \land (P \lor R) \land (Q \lor R) / P \lor \neg P = T$
- \Leftrightarrow $(Q \lor \neg P) \land (P \lor R) \land (Q \lor R) / P \land T = P$
- $\Leftrightarrow (Q \lor \neg P \lor (R \land \neg R)) \land (P \lor (Q \land \neg Q) \lor R) \land ((P \land \neg P) \lor Q \lor R)$

$$//R \land \neg R = F, P \lor F = P$$

- $\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\underline{P \lor Q \lor R}) \land (P \lor \neg Q \lor R)$
 - $\wedge \quad (\underline{P \vee Q \vee R}) \wedge (\neg P \vee Q \vee R) \quad \Leftrightarrow M_{000} \quad \wedge M_{010} \wedge M_{100} \quad \wedge M_{101} \Leftrightarrow \Pi_{0, \, 2, \, 4, \, 5}$

原式 \Leftrightarrow m_{001} $\vee m_{011}$ $\vee m_{110}$ $\vee m_{111} \Leftrightarrow \Sigma_{1,3,6,7}$

 \triangleright 注:可以证明命题公式的主合取范式中 Π 的下标与主析取范式 Σ 下标合在一起恰好是 0, 1, …, 2 n -1

推理

推理理论

- ▶ 在实际应用的推理中,常把本门学科的一些定律、定理和 条件,作为假设前提,尽管这些前提在数理逻辑中并非永 真
- ▶但在推理过程中,却总是假设这些命题为T,并使用一些公 认的规则,得到另外的命题,形成结论,此过程即为论证
- **▶定义:** 设A和C是命题公式,iff A→C为一重言式,即 A \Rightarrow C,称C是A的有效结论
- ▶把上述定义推广到有n个前提的情况
 - ✓设 H_1, H_2, \dots, H_n, C 是命题公式, iff $H_1 \wedge H_2 \wedge \dots \wedge H_n \Rightarrow C \qquad \textbf{(A)}$
 - ✓称C是一组前提 H_1 , H_2 , ···, H_n 的有效结论

推理理论

- >判别有效结论的过程就是论证过程,基本方法有真值表法、 直接证法和间接证法
 - ✓真值表法
 - ✓直接证法
 - ✓间接证法
 - 反证法
 - CP规则 (附加前提规则)

- $ightharpoonup 设 P_1, P_2, \dots, P_n$ 是出现于前提 H_1, H_2, \dots, H_m 和结论 C中的全部命题变元,假定对 P_1, P_2, \dots, P_n 作全部真值指派,则能对应地确定 H_1, H_2, \dots, H_m 和C的所有真值,列出真值表,即可得出 (A) 是否成立
- 》解释:从真值表上找出 H_1 , H_2 , …, H_m 真值均为T的行,对于每一这样的行,C也有真值T,则(A)成立。或证:若C的真值为F的行,在每一这样的行中, H_1 , H_2 , …, H_m 的真值中至少有一个为F,则(A)也成立

$$H_1 \wedge H_2 \wedge \cdots \wedge H_n \Rightarrow C$$
 (A)

▶例: 若X是偶数,则X²是偶数; X是偶数; 所以X²是偶数。

解: 设 P:X是偶数; Q:X²是偶数

则 前提: H₁:P→Q; H₂:P

结论: C:Q

即证 $H_1 \wedge H_2 \Rightarrow C = ((P \rightarrow Q) \wedge P) \rightarrow Q$

- ▶例: 若X是偶数,则X²是偶数; X是偶数; 所以X²是偶数。
 - ✓从真值表上找出 H_1 , H_2 , ···, H_m 真值均为T的行,对于每一这样的行,C也有真值T,则(A)成立。
 - ✓或证: 若C的真值为F的行,在每一这样的行中, H_1 , H_2 , ···, H_m 的真值中至少有一个为F

$$>H_1 \land H_2 \Longrightarrow C = ((P \rightarrow Q) \land P) \rightarrow Q$$

真值表:

P	Q	P→Q
T	T	T
Т	F	F
F	T	T
F	F	T

- ▶例: 若X是偶数,则X2是偶数; X是偶数; 所以X2是偶数。
 - ✓定义: 设A和C是命题公式, iff $A \rightarrow C$ 为一重言式,即 $A \Rightarrow C$,称C是 A的有效结论
- \rightarrow H1 \land H2 \Rightarrow C = ((P \rightarrow Q) \land P) \rightarrow Q
- >真值表:

P	Q	P→Q	(P→Q)∧P	$((P \rightarrow Q) \land P) \rightarrow Q$
T	T	T	T	T
T	F	F	F	Т
F	T	T	F	T
F	F	T	F	T

例题: 真值表法

- ▶一份统计表格的错误或者是由于材料不可靠,或者是由于 计算机错误;这份统计表格的错误不是由于材料不可靠, 所以这份统计表格是由于计算机有错误。
- >设各命题变元为
 - ✓P:统计表格的错误是由于材料不可靠
 - ✓Q:统计表格的错误是由于计算机错误
- ▶前提 $H1:P \lor Q$, $H2:\neg P$, C:Q, 即 $(P \lor Q) \land \neg P \rightarrow Q$

P	Q	PvQ	⊸P	(P∨Q)∧¬P	$(P \lor Q) \land \neg P \rightarrow Q$
Т	T	T	F	F	T
Т	F	T	F	F	T
F	T	T	T	Т	T
F	F	F	T	F	T

例题: 真值表法

- ▶如果张老师来了,这个问题就可以得到解答,如果李老师 来了,这个问题也可以得到解答,总之张老师或李老师来了, 这个问题就可得到解答。
- >设各命题变元为
 - ✓P:张老师来了
 - ✓Q:李老师来了
 - ✓R:这个问题也可以得到解答
- ▶前提 H1:P→R, H2:Q→R, H3:P∨Q, C:R,
- $\triangleright \mathbb{P} \quad (P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) \rightarrow R$

例题: 真值表法

▶前提 H1:P→R, H2:Q→R, H3:P∨Q, C:R,

 $\triangleright \exists \exists (P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) \rightarrow R$

P	Q	R	P→R	Q→R	PvQ	$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q)$	$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) \rightarrow R$
T	T	T	T	T	T	Т	T
T	T	F	F	F	T	F	T
Т	F	T	T	T	T	Т	T
T	F	F	F	F	T	F	T
F	T	T	T	T	T	Т	T
F	T	F	T	F	T	F	T
F	F	T	T	T	F	F	T
F	F	F	T	T	F	F	T

推理理论:直接证法

- ▶即由一组前提,利用一些公认的推理规则,根据已知的等价或蕴含公式,推演得到有效的结论
- ▶**P规则(前提引用规则):** 前提在推导过程中的任何时候都可以引入使用
- ▶**T规则(逻辑结果引用规则):** 在推导中,如果有一个或多个公式、重言蕴含着公式S,则公式S可引入推导之中

直接证法: 常用蕴含式

利别有效免息等	表 1-8.3 人名英格兰 美国
I_1	$P \land Q \Rightarrow P$
I_2	$P \land Q \Rightarrow Q$
I_3	$P \Rightarrow P \lor Q$
I_4	$Q \Rightarrow P \lor Q$
o A of A $\pi_1 I_5$	$\neg P \Rightarrow P \rightarrow Q$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	

直接证法: 常用等价式

E HU	表 1-8.4
E_1	$\neg \neg P \Leftrightarrow P$
E_2	$P \land Q \Leftrightarrow Q \land P$
E_3	$P \lor Q \Leftrightarrow Q \lor P$
E_4	$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$
E_{5}	$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$
E_6	$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$
E_7	$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
E_8	
E_9	
E_{10}	$P \lor P \Leftrightarrow P$
E_{11}	$P \wedge P \Leftrightarrow P$
E_{12}	$R \lor (P \land \neg P) \Leftrightarrow R$
E_{13}	$R \wedge (P \vee \neg P) \Leftrightarrow R$
E_{14}	$R \lor (P \lor \neg P) \Leftrightarrow T$
E_{15}	$R \wedge (P \wedge \neg P) \Leftrightarrow F$
E_{16}	$P \rightarrow Q \Leftrightarrow \Box P \lor Q$
E_{17}	$\neg (P \rightarrow Q) \Leftrightarrow P \land \neg Q$
E_{18}	$P \rightarrow Q \Leftrightarrow \square Q \rightarrow \square P$
E_{19}	$P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$
E_{20}	$P \not = Q \Leftrightarrow (P \to Q) \land (Q \to P)$
E_{21}	$P \not = Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$
E_{22}	

推理理论:直接证法

 \triangleright 例: 证明 $(W \lor R) \rightarrow V$, $V \rightarrow C \lor S$, $S \rightarrow U$, $\neg C \land \neg U \Rightarrow \neg W$

>演绎思路

- ✓如何得到一W?
- \checkmark W出现在(W \lor R)→V, 缺的是否定
- ✓否定之后, $\neg W \land \neg R$; W, R同时出现在($W \lor R$) $\rightarrow V$
- ✓需要得到¬(W∨R)
- ✓ (W∨R)→V, V→C∨S, 可得到(W∨R) → C∨S
- ✓如果由¬ (C∨S),则 ¬(W∨R)
- ✓因此需要 $\neg(C \lor S)$,也就是 $\neg C \land \neg S$

推理理论:直接证法

```
\triangleright例: 证明 (W∨R)→V, V→C∨S, S→U, ¬C∧¬U \Rightarrow ¬W
              (1) \neg C \land \neg U
              (2) \rightarrow U
                                                                         T(1), I2
              (3) \qquad S \rightarrow U
              (4) \quad \neg \quad S
                                                                         T(2), (3), I12
             (5) \qquad \neg \quad \mathsf{C}
                                                                         T(1), I1
              (6) \qquad \neg \quad C \quad \wedge \neg \quad S
                                                                         T(4), (5), I9
              (7) \qquad \neg \quad (C \vee S)
                                                                          T(6), E9
              (8) \qquad (\mathbb{W} \vee \mathbb{R}) \rightarrow \mathbb{V}
                                                                           Р
              (9) \qquad V \rightarrow C \vee S
              (10) \quad (\mathbb{W} \vee \mathbb{R}) \rightarrow \mathbb{C} \vee \mathbb{S}
                                                                           T(8), (9), I13
              (11) \quad \neg (W \lor R)
                                                                           T(7), (10), I12
              (12) \quad \neg \quad \mathbb{W} \wedge \neg \quad \mathbb{R}
                                                                           T(11), E9
              (13) \quad \neg \quad \mathbb{W}
                                                                            T(12), I1
```


推理理论: 间接证法

▶定义:

- ✓假设公式 H_1 , H_2 , ···, H_m 中的命题变元 P_1 , P_2 , ···, P_n ,对于 P_1 , P_2 , ···, P_n 的一些真值指派,若能使 $H_1 \land H_2 \land \cdots \land H_m$ 的真值为T,则称公式 H_1 , H_2 , ···, H_m 是相容的。
- \checkmark 若对于 P_1 , P_2 , ···, P_n 的每一组真值指派使得 $H_1 \land H_2 \land \cdots \land H_m$ 的真值均为F,则称公式 H_1 , H_2 , ···, H_m 是不相容的

推理理论: 间接证法

- \triangleright **反证法:** 设有一组前提 H_1, H_2, \dots, H_m ,要推出结论C,即证 $H_1 \wedge H_2 \wedge \dots \wedge H_n \Rightarrow C$,记作 $S \Rightarrow C$,即一 $C \rightarrow \neg S$ 为永真 (E18),或 $C \vee \neg S$ 为永真(E16),故一 $C \wedge S$ 为永假
- ▶因此要证明 $H_1 \land H_2 \land \cdots \land H_n \Rightarrow C$,只要证明 H_1, H_2, \cdots, H_m 与¬C是不相容的

推理理论:间接证法(反证法)

```
例: 证明 (P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow S) \Rightarrow S \vee R
1. \neg (S \lor R)
                                                    P(附加前提)
2. \neg S \wedge \neg R
                                                    T(1), E
3. P \vee Q
4. ¬ P→ Q
                                                    T(3), E
5. Q→S
                                                    Р
6. ¬ P→S
                                                    T(4), (5), I
                                                    T(6), E
7. \neg S \rightarrow P
8. (\neg S \land \neg R) \rightarrow (P \land \neg R)
                                                    T(7), I
                                                    T(2), (8), I
9. P \wedge \neg R
10. (10) P \rightarrow R
                                                    Р
                                                    T(10), E
11. (11) \rightarrow P \vee R
                                                    T(11), E
12. (12) \rightarrow (P \land \neg R)
                                                    T(9), (12), I
13. (P \land \neg R) \land \neg (P \land \neg R) (矛盾)
 (注意:反证法的证明格式)
```


推理理论:间接证法(反证法)

```
例: 证明 (P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow S) \Rightarrow S \vee R
1. \neg (S \lor R)
                                                P(附加前提)
2. \neg S \land \neg R
                                                T(1), E9
3. P \vee Q
4. ¬ P→ Q
                                                T(3), E16
5. Q→S
                                                Р
6. ¬ P→S
                                                T(4), (5), I13
7. \neg S \rightarrow P
                                                T(6), E18
8. (\neg S \land \neg R) \rightarrow (P \land \neg R)
                                               T(7), I16
                                                T(2), (8), I11
9. P \wedge \neg R
10. P→R
                                      Р
                                   T(10), E16
11. \neg P \lor R
                                      T(11), E8
12. \neg (P \land \neg R)
13. (P \land \neg R) \land \neg (P \land \neg R) (矛盾) T(9), (12), I9
 (注意:反证法的证明格式)
```


推理理论: 间接证法

- **▶ CP规则**: 若要证 $H1 \land H2 \land \dots \land Hn \Rightarrow (R \rightarrow C)$ 。
 - ✓设 $H1 \land H2 \land \cdots \land Hm$ 为S, 即证S $\Rightarrow (R \rightarrow C)$ 或S $\Rightarrow (\neg R \lor C)$
 - ✓故 S \rightarrow (\neg R \lor C)为永真式。
 - ✓因为 $S \rightarrow (\neg R \lor C) \Leftrightarrow \neg S \lor (\neg R \lor C) \Leftrightarrow \neg (S \land R) \lor C \Leftrightarrow (S \land R) \rightarrow C$
 - ✓因此将R作为附加前提,证明(S \land R) \Rightarrow C,即证得S \Rightarrow (R \rightarrow C)
- ▶例:证明 $A \rightarrow (B \rightarrow C)$, $\neg D \lor A$, B 重言蕴含 $D \rightarrow C$
 - 1. D
 - $2. \quad \neg D \lor A$
 - 3. A
 - 4. $A \rightarrow (B \rightarrow C)$
 - 5. B→C
 - 6. B
 - 7. C
 - 8. D→C

- P(附加前提)
- Р
- T(1), (2), I10
- Р
- T(3), (4), I11
- Р
- T(5), (6), I11
- CP

(注意: CP规则的证明格式)

推理理论:间接证法(CP规则)

- > 例:设有下列情况,结论是否有效?
 - ✓ (a) 或者是天晴,或者是下雨。(b) 如果是天晴,我就去看电影。如果我去看电影,我就不看书。 结论:如果我在看书则天在下雨。

```
▶解: 若设M:天晴 Q:下雨 S:我看电影 R:我看书
\triangleright 故本题即为证明: M \overline{\vee} Q, M→S, S→¬R \RightarrowR→Q
> M \overline{\nabla} Q = \neg (M \leftrightarrow Q)
> 证
    ✓ R
                                              P(附加前提)
    \checkmark S \rightarrow \neg R
    \checkmark R \rightarrow \neg S
                                              T(2), E18
    \checkmark \neg S
                                              T(1), (3), I11
    \checkmark M \rightarrow S
    ✓ ¬ M
                                              T(4), (5), I12
    \checkmark \neg M \leftrightarrow 0)
                                             T(7), E22
    \checkmark M \leftrightarrow \neg Q
    \checkmark M \rightarrow \neg Q) \land (\neg Q \rightarrow M)
                                              T(8), E 20
    ✓ ¬Q→M
                                              T(9), I2
    ✓ ¬M→Q
                                              T(10), E18
    ✓ Q
                                              T(6), (11), I11
    ✓ R→Q
                                              CP
```


推理理论: 主析取范式法

判断推理 $P \rightarrow Q, P \Rightarrow Q$ 是否有效?

方法一: 真值表技术

P	Q	$((P \to Q) \land P) \to Q$
0	0	1
0	1	1
1	0	1
1	1	1

方法二:公式转换法

$$((P \rightarrow Q) \land P) \rightarrow Q$$

$$= \neg((\neg P \lor Q) \land P) \lor Q$$

$$= \neg(\neg P \lor Q) \lor \neg P \lor Q$$

$$= \neg(\neg P \lor Q) \lor (\neg P \lor Q)$$

$$= 1$$

方法三:主析取范式法

$$((P \to Q) \land P) \to Q = \neg((\neg P \lor Q) \land P) \lor Q = \neg(\neg P \lor Q) \lor \neg P \lor Q$$

$$= (P \land \neg Q) \lor \neg P \lor Q = (P \land \neg Q) \lor (\neg P \land (\neg Q \lor Q)) \lor ((\neg P \lor P) \land Q)$$

$$= (\neg P \wedge \neg Q) \vee (\neg P \wedge Q) \vee (P \wedge \neg Q) \vee (P \wedge Q) (m_0 \vee m_1 \vee m_2 \vee m_3)$$

命题演绎举例

- >符号化下面的语句,并使用演绎法证明:
 - ✓ "如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那 么烤熟的鸭子还会跑;烤熟的鸭子不会跑。所以羊不吃草。"

>设命题

✓P: 马会飞;

√Q: 羊吃草;

✓R: 母鸡是飞鸟;

✓S: 烤熟的鸭子会跑:

>则推理符号化成:

 $\checkmark (P \lor Q) \rightarrow R, R \rightarrow S, \neg S \Rightarrow \neg Q$

命题演绎举例

$$\triangleright (P \lor Q) \rightarrow R, R \rightarrow S, \neg S \Rightarrow \neg Q$$

Proof.					
(1)	$\neg S$	Р			
(2)	R o S	P			
(3)	$\neg R$	T, (1), (2), I			
(4)	$(P \lor Q) \to R$	P			
(5)	$\neg (P \lor Q)$	T, (3), (4), I			
(6)	$\neg P \land \neg Q$	T, (5) , E			
(7)	$\neg Q$	T, (6), I			

作业

▶教科书第8页, 习题1-1, 1-2

- (1)指出下列语句哪些是命题,哪些不是命题,如果是命题,指出它的 真值。
 - a) 离散数学是计算机科学系的一门必修课。
 - b) 计算机有空吗?
 - c) 明天我去看电影。
 - d) 请勿随地吐痰!
 - e) 不存在最大质数。
 - f) 如果我掌握了英语、法语,那么学习其他欧洲语言就容易得多。
 - g) 9+5≤12.
 - h) x = 3.
 - i) 我们要努力学习。
- ▶教科书第17页, 习题1-4
- (1) 求下列各复合命题的真值表。
- a) $P \rightarrow (Q \lor R)$.
- b) $(P \land R) \lor (P \rightarrow Q)$.
- c) $(P \lor Q) \not\supseteq (Q \lor P)$.

作业

- ▶教科书第23页,习题1-5
 - (1) 试证下列各式为重言式。
 - a) $(P \land (P \rightarrow Q)) \rightarrow Q_{\circ}$
 - b) $\neg P \rightarrow (P \rightarrow Q)$.
- ▶符号化下面的语句,并使用**直接证法**证明:
 - ✓若数a 是实数,则它不是有理数就是无理数。若a 不能表示成分数,则它不是有理数。a 是实数且它不能表示成分数。所以,a 是无理数.

谢谢

Thanks!