Nome: _____

Nº USP: _____

3/05/2018

Questão	Valor	Nota
1^a	3	
2^a	2	
3^a	2	
4^a	3	

As respostas sem as contas necessárias não serão consideradas.

Questão 1

Sejam $\mathbf{E} = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ uma base de V^3 , $\vec{f_1} = \vec{e_1} - \vec{e_2} + \vec{e_3}$, $\vec{f_2} = -2\vec{e_1} + \vec{e_3}$ e $\vec{f_3} = \vec{e_1} + \vec{e_2} - \vec{e_3}$.

- (i) Mostre que $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de V^3 .
- (ii) Obtenha a matriz de mudança da base F para base E.
- (iii) Sendo $\vec{u} = \vec{e}_1 3\vec{e}_2 + \vec{e}_3$, calcule as coordenadas de \vec{u} na base **F**.

Questão 2

Seja $\mathbf{B} = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal positiva de V^3 .

- (a) Sejam $\vec{v} = (2, 3, -1)_{\mathbf{B}}$ e $\vec{u} = (2, 1, 0)_{\mathbf{B}}$ dois vetores. Decomponha o vetor \vec{v} como soma de dois vetores \vec{p} e \vec{q} , de modo que \vec{p} seja paralelo a \vec{u} e \vec{q} seja ortogonal a \vec{u} .
- (b Determine \vec{x} tal que $\vec{x} \wedge (\vec{i} + \vec{j}) = 2(\vec{i} \vec{j} + \vec{k})$ e $||\vec{x}|| = \sqrt{6}$.

Questão 3

Seja $\mathbf{B} = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal positiva de V^3 e sejam

$$\vec{u} = (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})_{\mathbf{B}}, \ \vec{v} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})_{\mathbf{B}},$$

- (i) Construa uma base ortonormal positiva $\mathbf{E} = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ de V^3 com $\vec{e_1}, \vec{e_2}$ vetores no plano gerado por \vec{u} e \vec{v} .
- (ii) Calcule a área do triangulo determinado pelos vetores \vec{v} e $\vec{u}-3\vec{v}$.

Questão 4

Seja $\Sigma = (O,E)$ um sistema de coordenadas no espaço Euclideano.

- (a) Obtenha uma equação geral do plano que contem o ponto (1,3,4) e é paralelo ao plano $\pi: 2x+y+z-5=0.$
- (b) Obtenha a interseção da reta $r: X = (0,1,1) + \lambda(2,1,-3), \lambda \in \mathbb{R}$, com o plano

$$\pi: X = (0,5,5) + \alpha(1,3,0) + \beta(0,1,1), \alpha, \beta \in \mathbb{R}.$$