Pharmacological Actions:

Analgesic action: effective against dull throbbing pain of inflammation

- Peripheral effect: NSAIDs block the synthesis of prostanoids (PGE₂ & PGI₂) which sensitize pain receptors to activators
- Central effect: equianalgesic effects when administered intrathecally & systemically

Antipyretic action: NSAIDs inhibit the production of PGE₂ resulting in an antipyretic effect by changing the hypothalamic temperature set-point back to normal

Uricosuric effect: NSAIDs inhibit urate crystal phagocytosis & prostaglandin production by inhibit COX enzymes

Anti-inflammatory action: NSAIDs block the production of prostanoids by inhibiting COX enzymes

→ COX2 is major source of proinflammatory prostanoids

PGE₂ & PGI₂ involved in inflammation

- Increase local blood flow
- Increase vascular permeability
- Increase leukocyte infiltration

NSAIDs:

- Organic acids
- Well-absorbed orally
- Highly protein bound
- Excreted by glomerular filtration or tubular secretion

COX non-selective (Naproxen)

- Risk of GI ulceration
- Inhibit platelet aggregation

COX-2 selective (Celexocib)

- Designed to limit GI ulceration (protection mediated by COX1)
- CV events (no significant platelet aggregation inhibition)

ASA: irreversibly blocks COX enzymes by acetylation

- Low doses preferentially block
 COX-1 enzymes in platelets →
 blocks thromboxane A₂
 production → decreased platelet
 aggregation & vasodilation
- Duration of effect related to platelet lifetime (7 days)

Side Effects:

GI: NVD, abd pain, dyspepsia, GI ulceration & bleeding

GI ulcer risk factors:

- History of ulcer complications
- Multiple, high-dose or longacting NSAIDs
- Concomitant anticoagulants
- Age ≥ 60 (further increased if ≥ 70)
- Heart disease
- → Risk highest with: piroxicam, ketorolac, SR form
- → Risk lowest with ibuprofen; celecoxib (<6 mo use)</p>

CV: thrombosis, myocardial infarction, stroke

→ Risk thought to be higher with COX-2 selective NSAIDS

Hematology: bruising, bleeding

CNS: HA, dizziness, vertigo

Renal: salt & water retention; edema; worsening of renal function; hyperkalemia

Nephrotoxicity:

TRIPLE WHAMMY: ACEI/ARB + diuretic + NSAID

- → Diuretic reduces blood volume
- → ACEI/ARB prevents efferent arteriolar vasoconstriction
- → NSAID prevents prostaglandin-mediated afferent arteriolar vasodilation
- = reduced renal perfusion & renal dysfunction

[Risk factors: pre-existing renal dysfunction, elderly, heart failure]

	Low GI ulcer risk	Mod GI ulcer risk	High GI ulcer risk
Low CV risk	Ibuprofen	Celecoxib NSAID + PPI/ misoprostol	Avoid NSAIDs Celecoxib + PPI/ misoprostol
High CV risk	Naproxen	Naproxen + PPI / misoprostol	Avoid NSAIDs

Contraindications

- Hypersensitivity (potential crosssensitivity)
- Caution/avoid in:
 - History of GI ulceration
 - Blood dyscrasias, coagulation defects, on anticoagulants
 - Congestive heart failure
 - Low circulatory volume (risk of renal toxicity)

ASA toxicity and treatment

- Salicylism: vomiting, tinnitus, decreased hearing, vertigo
 → Reversible with dose decrease
- Acute ingestion of > 200 mg/kg → toxic
 - O Hyperpnea (direct effect on medulla)
 →respiratory alkalosis
 - o Followed by salicylate accumulation
 - → metabolic acidosis
 - Respiratory depression, cardiotoxicty, seizures
 - → Supportive care, activated charcoal, gastric lavage

Drug interactions

- Some NSAIDs metabolized by Phase I, then Phase II enzymes; others by direct glucoronidation (Phase II)
- Renal excretion for final elimination
- Highly protein bound → potential to displace other drugs from plasma membranes

Methotrexate	Decreases renal clearance of MTX, increasing MTX levels; minimal with COX2 selective	
Warfarin	Increased bleed risk	
Penicillins	Levels of both decreased because of plasma protein competition	
SSRIs, SNRIs	Increased risk of upper GI bleed; inhibit serotonin uptake by platelets necessary for platelet aggregation	
Corticosteroids	Increased GI irritation; decreased healing; ulcer risk	
Digoxin	Increase digoxin levels	
Lithium	Increased lithium levels due to decreased excretion	
ACEIs, diuretics	Triple whammy → nephrotoxicity	

Acetaminophen: analgesic and antipyretic activity (no anti-inflammatory activity); NOTE: NOT AN NSAID

Potential mechanisms of action:

- APAP reduces COX → inactive form (peroxide-dependent) → blocks PG synthesis
- APAP may inhibit COX-3 (weakly produces PGs)
- APAP involved in activation of descending endogenous opioid pathways & self-synergistic interaction b/w spinal and supraspinal sites
- 4. APAP may be involved in endogenous serotonergic descending pain inhibitory pathway (originates in PAG in midbrain)
- A metabolite of APAP blocks cellular uptake of endocannabinoid, indirectly activating CB1 receptors
 - a. Endocannabinoids inhibit nociception
 - b. Via CB1R, lowers body temperature
- APAP metabolite activates TRPV1 (antinociception)

Drug interactions:

Warfarin: enhanced coagulation

SEs (rare): rash, neutropenia, thrombocytopenia

Metabolism: glucuronidation & sulfation in liver

- → If exceeds therapeutic doses, glucurodination & sulfation pathways are saturated & CY2E1/3A4 (glutathione conjugation) becomes more important
 - MAX DOSE: 3-4 g/24 h
- → If there is not enough glutathione for CYP450 pathway, conjugation cannot occur → toxic metabolite
- → Chronic alcoholics at higher risk
 - Ethanol induces CYP2E1
 - o Often malnourished, so glutathione levels

APAP toxicity: acute ingestion of 150-200 mg/kg for children or 7g total for adults toxic

- Initially: asymptomatic or mild GI upset
- After 24-36h: evidence of hepatotoxicity
- Severe: fulminant liver failure, death
- → >150-200 mg/L 4h after = risk for hepatotoxicity
- → Staggered overdoses associated w/ multi-organ injury & need for liver transplantation
- → Txt: acetylcysteine (glutathione substitute)