编译原理第一次作业

一、判断题

- 1. 编译程序是对高级语言的翻译。(对)
- 2. 设有表达式 $a \times b c$. 将其中 $a \times b$ 识别为表达式的编译阶段是语法分析。(对)
- 3. 一个有限状态自动机中,有且仅有一个唯一的终态。(错)
- 4. 由"非终结符->符号串"形式的规则构成的文法是1型文法。(错)
- 5. 文法识别符号经过任意步推导得到的结果是句型。(对)
- 6. 最左短语一定是句柄。(错)
- 7. 在编译中产生语法树是为了语法分析。(对)
- 8. 语法分析时必须先消除文法中的左递归。(错)
- 9. 自下而上分析过程是对句子实施推导的过程。(错)
- 10.LR分析法在自左至右扫描输入串时就能发现错误,但不能准确地指出出错地点。(对)

二、主观题

描述下列正则表达式所表示的语言,或对于下列语言分别写出它们的正则表达式

- $(1) \ a(a|b) * a$
- (2) $((\epsilon | a)b*)*$
- (3) (a|b)*a(a|b)(a|b)
- (4) a*ba*ba*ba*
- (5) (aa|bb)*((ab|ba)(aa|bb)*(ab|ba)(aa|bb)*)*
- (6) 包含5个元音的所有小写字母串,这些串中的元音按顺序出现。
- (7) 所有由按词典递增序排列的小写字母组成的串。
- (8) 所有由 0 和 1 组成且包含偶数个 1 的串。
- (9) 所有由 a 和 b 组成且不含子序列 abb 的串。
- (10)所有由 a 和 b 组成且不含子串 abb 的串。

解析:

- (1) 所有以a开始并以a结尾的由a和b组成的字符串。
- (2) 所有由a和b组成的字符串。

- (3) 所有由 a 和 b 组成且倒数第三个字符是 a 的串。
- (4) 所有由 a 和 b 组成且只包含三个 b 的串。
- (5) 所有由偶数个a和偶数个b构成的串。

(6)

```
Plain Text

1 want -> other* a (other|a)* e (other|e)* i (other|i)* o (other|o)* u (o ther|u)*
2 other -> [bcdfghjklmnpqrstvwxyz]
```

(7)

```
Plain Text

1 a* b* ... z*
```

(8)

```
Plain Text

1 (0|10*1)*
```

(9)

```
Plain Text

1 b* | b*a+ | b*a+ba*
```

(10)

```
Plain Text

1 b*(a+b?)*
```

2. 将下面的正则表达式转化成 DFA

 $((\epsilon | a)b^*)^*$

(1) 使用 Thompson 构造法为其构造 NFA, 写出每个 NFA 处理符号串 ababbab 过

程中的状态转换序列。

- (2) 利用子集构造法将(1)得到的 NFA 转换为 DFA,同样写出分析符号串 ababbab 过程中的状态转换。
- (3) 最小化(2) 得到的 DFA

解析:

(1)

ababbab 状态转换序列:

$$\begin{array}{c} 0 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \end{array}$$

(2)

$$\epsilon - closure(\{0\}) = \{0, 1, 2, 3, 4, 6, 7, 9, 10\} = A$$

$$\epsilon - closure(\delta(A,a)) = \{1,2,3,4,5,6,7,9,10\} = B$$

$$\epsilon - closure(\delta(A,b)) = \{1,2,3,4,6,7,8,9,10\} = C$$

$$\epsilon$$
 – closure($\delta(B,a)$) = B

$$\epsilon$$
 – closure($\delta(B,b)$) = C

$$\epsilon - closure(\delta(C,a)) = B$$

$$\epsilon$$
 – $closure(\delta(C,b)) = C$

3. 已知文法 G[A]

 $E \rightarrow TE'$

 $E' \rightarrow + E | \epsilon$

 $T \rightarrow FT'$

 $T' \to T | \epsilon$

 $F \rightarrow PF'$

F' →* F'|€

 $P \rightarrow (E)|a|b| \wedge$

- (1) 给出(a*+b*)的最左推导。
- (2) 对每个非终结符写出不带回溯的递归子程序。
- (3) 经改写后的文法是否是 LL(1)的? 给出它的预测分析表。
- (4) 给出输入串 a 的分析过程, 并说明该串是否为 G 的句子。

解析:

(1)

```
E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow PF'T'E' \Rightarrow (E)F'T'E' \Rightarrow (TE')F'T'E' \Rightarrow (FT'E')F'T'E' \\ \Rightarrow (PF'T'E')F'T'E' \Rightarrow (aF'T'E')F'T'E' \Rightarrow (a*F'T'E')F'T'E' \Rightarrow (a*T'E')F'T'E' \\ \Rightarrow (a*E')F'T'E' \Rightarrow (a*+E)F'T'E' \Rightarrow (a*+TE')F'T'E' \Rightarrow (a*+FT'E')F'T'E' \\ \Rightarrow (a*+PF'T'E')F'T'E' \Rightarrow (a*+bF'T'E')F'T'E' \Rightarrow (a*+b*F'T'E')F'T'E' \Rightarrow (a*+b*F'T'E')F'T'E' \\ \Rightarrow (a*+b*F'T'E')F'T'E' \Rightarrow (a*+b*F'T'E')F'T'E' \Rightarrow (a*+b*F'T'E')F'T'E' \\ \Rightarrow (a*+b*
```

(2)

```
1 char CH;
2 void P E() {
     if(IsIn(CH,FIRST TE')){ //产生式E->TE'
        P T();
5
        P E'();
     }
7 else ERR;
8 }
9 void P_E'(){
10 if(CH=='+'){ //产生式E'->+E
11
       READ (CH);
12
        P E();
13 }
14 else{ //产生式E'->ε
    if(IsIn(CH,FOLLOW_E'))
15
16
           return;
    else ERR;
17
18 }
19 }
20 void P T() {
21 if(IsIn(CH,FIRST FT')){ //产生式T->FT'
22
        P F();
23
        P T'();
24 }
25 else ERR;
26 }
27 void P T'() {
28 if(IsIn(CH,FIRST T)){ //产生式T'->T|ε
29
     READ(CH);
30
30 31 }
       P T();
32 else{ //产生式T'->ε
33
    if(IsIn(CH,FOLLOW T'))
34
          return;
    else ERR;
35
36 }
37 }
38 void P F() {
39 if(IsIn(CH,FIRST PF')){ //产生式E->PF'
40
        P P();
        P F'();
41
  }
42
```

```
43
      else ERR;
44 }
45 void P_F'(){
    if(CH=='*'){ //产生式F'->*F'
46
         READ(CH);
47
48
         P F'();
49
     else{ //产生式F'->ε
50
         if(IsIn(CH,FOLLOW F'))
51
52
             return;
53
         else ERR;
  }
54
55 }
56 void P P() {
57
      if(CH=='a')READ(CH); //产生式P->a
     else if(CH=='b')READ(CH); //产生式P->b
58
59 else if(CH=='^')READ(CH); //产生式P->^
     else if(CH=='('){
60
61
         READ (CH);
62
         P E();
         if (CH==')') READ (CH);
63
64
         else ERR;
65
      }
     else ERR;
66
67 }
```

(3) 计算 FIRST 集和 FOLLOW 集

$$FIRST(E) = FIRST(T) = FIRST(F) = FIRST(P) = \{(,a,b, \land)\}$$

 $FIRST(E') = \{+, \epsilon\}$
 $FIRST(T') = \{(,a,b, \land, \epsilon\}\}$
 $FIRST(F') = \{*, \epsilon\}$
 $FOLLOW(E) = FOLLOW(E') = \{\$, \}$
 $FOLLOW(T) = FOLLOW(T') = \{+, \$, \}$
 $FOLLOW(F) = FOLLOW(F') = \{(,a,b, \land, +, \$,)\}$
 $FOLLOW(P) = \{*, (,a,b, \land, +, \$,)\}$
预测分析表如下:

	+	*	()	α	b	٨	#
E			E'→TE'		E→TE'	E→TE'	E→TE'	
E'	E'→+E			Ε'→ε				Ε'→ε
T			T'→FT'		T→FT'	T→FT'	T→FT'	
T'	T'→ε		T'→T	T'→ε	$T \rightarrow T$	T'→T	$T \rightarrow T$	Т→ε
F			F→PF'		F→PF'	F→PF'	F→PF'	
F'	F'→ε	F'→*F'	F'→ε	F'→ε	F'→ε	F'→ε	F'→ε	F'→ε
P			P→(E)		P→a	P→b	P→^	

(4) 给出串 a\$ 的分析过程

步骤	分析栈	剩余输入串	所用产生式
1	\$ E	a\$	E→TE'
2	\$E'T	a\$	T→FT'
3	\$E'T'F	a\$	F→PF'
4	\$E'T'F'P	α\$	P→a
5	\$E'T'F'a	a\$	a匹配
6	\$E'T'F'	\$	F' →ε
7	\$E'T'	\$	T'→ε
8	\$E'	\$	E' →ε
9	\$	\$	接受

4. 证明下面文法是 SLR(1)文法, 并构造其 SLR 分析表

 $E \to E + T | T$

 $T \to TF | F$

 $F \to F^*|a|b$

解析:

该文法的拓广文法 G'为:

 $(0)E' \rightarrow E$

 $(1)E \rightarrow E + T$

 $(2)E \rightarrow T$

 $(3)T \rightarrow TF$

 $(4)T \rightarrow F$

 $(5)F \to F^*$

$$(6)F \rightarrow a$$

 $(7)F \rightarrow b$

由产生式求 First 集和 Follow 集:

$$FIRST(E') = FIRST(E) = FIRST(T) = FIRST(F) = \{a,b\}$$

 $FOLLOW(E') = \{\$\}$

 $FOLLOW(E) = \{+,\$\}$

 $FOLLOW(T) = \{ +, \$, a, b \}$

 $FOLLOW(F) = \{ +, \$, a, b, * \}$

G'的LR(0)项目集族及识别活前缀的DFA如下图所示:

构造的 SLR 分析表如下:

状态	action					goto		
	+	*	a	b	\$	Е	T	F
0			S4	S5		1	2	3
1	S 6				acc			
2	r2		S4	S5	r2			7
3	r4	S8	r4	r4	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6			S4	S5			9	3
7	r3	S8	r3	r3	r3			
8	r5	r5	r5	r5	r5			
9	r1		S4	S5	r1			7

显然,此分析表没有移入-规约冲突,也没有规约-规约冲突,所以该文法是 SLR(1)文法。