

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

لمحتوى المفاهيمي :

الأحماض و الأسس و التوزان الكيميائي

مفهوم الحمض و الأساس

<u>• مفهوم الحمض:</u>

- حسب برونشتد الحمض HA هو كل فرد كيميائي جزيئيا كان أم شارديا قادر على التخلي عن بروتون H^+ أو أكثر خلال تفاعل كيميائي . وفق المعادلة :

$$HA = H^+ + A^-$$

- ينحل الحمض HA في الماء وفق المعادلة:

$$HA + H_2O = H_3O^+ + A^-$$

و بالتالي يمكن القول أن الحمض هو كل فرد كيميائي قادر على إعطاء شوارد الهيدرونيوم H_3O^+ أثناء انحلاله في الماء

- إذا كان الحمض HA تام الانحلال في الماء يقال عنه حمض قوي ، أما إذا كان انحلاله في الماء جزئيا يقال عنه حمض ضعيف .

أمثلة:

• حمض كلور الهيدروجين HCl هو حمض قوي ، ينحل في الماء وفق المعادلة :

$$HC1 + H2O = H3O+ + C1-$$

• حمض الكبريت H_2SO_4 هو حمض قوى ، ينحل في الماء وفق المعادلة :

$$H_2SO_4 + 2 H_2O = 2 H_3O^+ + SO_4^{2-}$$

• كل الأحماض التي من الشكل RCOOH (مثل حمض الميثانويك HCOOH ، الإيثانويك CH3COOH ، حمض البنزويك CoHicooH) هي أحماض ضعيفة تنحل في الماء وفق المعادلة الكيميائية التالية:

$$RCOOH + H_2O = RCOO^- + H_3O^+$$

مفموم الأساس :

حسب برونشتد الأساس \mathbf{B} هو كل فرد كيميائي جزيئيا كان أم شارديا قادر على تثبيت بروتون \mathbf{H}^+ أو أكثر خلال تفاعل كيميائي . وفق المعادلة :

$$B + H^+ = BH^+$$

- ينحل الأساس B في الماء وفق المعادلة:

$$B + H_2O = BH^+ + HO^-$$

و بالتالي يمكن القول أن الأساس هو كل فرد كيميائي قادر على إعطاء شوارد الهيدروكسيد ·HO أثناء انحلاله في الماء

- إذا كان الأساس B تام الانحلال في الماء يقال عنه أساس قوي ، أما إذا كان انحلاله في الماء جزئيا يقال عنه أساس ضعيف .

أمثلة:

• هيدروكسيد الصوديوم NaOH هو أساس قوى ، ينحل في الماء وفق المعادلة :

$$NaOH = Na^+ + HO^-$$

• هيدروكسيد البوتاسيوم KOH هو أساس قوى ينحل في الماء وفق المعادلة:

$$KOH = K^+ + HO^-$$

• النشادر NH₃ هو أساس ضعيف ينحل في الماء وفق المعادلة :

$$NH_3 + H_2O = NH_4^+ + HO^-$$

ملاحظة: ملاحظة H_2O أن يسلك سلوك حمض وذلك بتخليه عن بروتون هيدروجين H_1 ليتحول إلى شاردة الهيدروكسيد ·HO ، وفق المعادلة:

$$H_2O = HO^- + H^+$$

 H_3O^+ كما يمكنه أيضا أن يسلك سلوك أساس و ذلك بتثبيته لبروتون هيدروجين H^+ ليتحول إلى شاردة الهيدرونيوم وفق المعادلة:

$$H_2O + H^+ = H_3O^+$$

يقال عن الماء في هذه الحالة و كذلك كل نوع كيميائي يسلك هذا السلوك أنه مذبذب .

● مفهوم الثنائية (أساس/حهض) :

- لكل حمض أساس مر افق و لكل أساس حمض مر افق .
- عندما يتخلى الحمض HA على بروتون H^+ يعطى أساسه المرافق A^- وفق المعادلة :

$$HA = A^{-} + H^{+}$$

و عندما يثبت أساس ${\rm B}$ بروتون ${\rm H}^+$ يعطي حمضه المرافق ${\rm BH}^+$ وفق المعادلة :

$$B + H^+ = BH^+$$

- نرمز للحمض و أساسه المرافق أو الأساس و حمضه المرافق بثنائية من الشكل (أساس/حمض) و تدعى الثنائية حمض أساس .

<u>أهثلة لبعض الثنائيات :</u>

الحمض	الأساس	الثنائية (أساس/حمض)
H ₂ O	OH ⁻	(H_2O/HO^-)
HBr	Br ⁻	(HBr/Br ⁻)
NH ₄ ⁺	NH_3	(NH_4^+/NH_3)
CH ₃ COOH	CH ₃ COO	(CH ₃ COOH/CH ₃ COO ⁻)
H_3O^+	H ₂ O	(H_3O^+/H_2O)

<u>التمرين (1) :</u>

أكتب صيغة الحمض المرافق لكل أساس و صيغة الأساس المرافق لكل حمض مع تحديد الثنائية (أساس/حمض) في كل ما يلى :

الحمض	الأساس	الثنائية (أساس/حمض)
	HO	
HNO_3		
	NH ₃	
НСООН		
	SO ₄ ²⁻	
	CH ₃ O ⁻	
	NaOH	
HC1		
	PO ₄ ³⁻	
CH ₃ NH ₃ ⁺		
	CH ₃ COO	

<u>الأجوبة :</u>

الحمض المرافق و الأساس المرافق:

الحمض	الأساس	الثنائية (أساس/حمض)
H_2O	OH	(H_2O/HO^-)
HNO_3	NO_3	(HNO_3/NO_3^-)
NH_4^+	NH_3	(NH_4^{+}/NH_3)
HCOOH	HCOO ⁻	(HCOOH/HCOO ⁻)
HSO ₄	SO_4^{2-}	(HSO_4^{-1}/SO_4^{-2})
H_2SO_4	304	(H_2SO_4/SO_4^{2-})
CH ₃ COOH	CH ₃ COO	(CH ₃ COOH/CH ₃ COO ⁻)
Na ⁺	NaOH	(Na ⁺ /NaOH)
HC1	C1	(HCl/Cl ⁻)

HPO ₃ ²⁻ H ₂ PO ₃ ⁻	PO ₃ ³⁻	(HPO_3^{2-}/PO_3^{3-}) $(H_2PO_3^{-}/PO_3^{3-})$
H_3PO_3		(H_3PO_3/PO_3^{3-})
CH ₃ NH ₃ ⁺	CH ₃ NH ₂	(CH ₃ NH ₃ ⁺ /CH ₃ NH ₂)
CH ₃ COOH	CH ₃ COO	(CH ₃ COOH/CH ₃ COO ⁻)

<u>• مفهوم التفاعل حمض – أساس :</u>

حسب العالمين برونشتد و لوري ، التفاعل حمض- أساس هو كل تفاعل يحدث فيه تبادل بروتوني (فقدان و اكتساب بروتون H^+) بين حمض و أساس لينتج الأساس و الحمض المرافقين وفق الآلية المبينة في المعادلة التالية :

أمثلة:

• ينحل حمض الإيثانويك CH₃COOH في الماء وفق المعادلة:

$$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$$

هذا التفاعل هو تفاعل حمض- أساس ، لأنه حدث فيه تبادل بروتوني كما يلي :

$$CH_3COOH = CH_3COO^- + H^+$$

$$H_2O + H^+ = H_3O^+$$

و الثنائيتين (أساس/حمض) الداخلتين في التفاعل هما:

$$(H_3O^+/H_2O) \cdot (CH_3COOH/CH_3COO^-)$$

• يتفاعل حمض الإيثانويك CH3COOH مع الميثانول CH3OH و فق المعادلة :

$$CH_3COOH + CH_3OH = CH_3COOCH_3 + H_2O$$

هذا التفاعل ليس تفاعل حمض- أساس ، لأنه لم يحدث فيه تبادل بروتوني .

<u>التمرين (2) :</u>

من بين التفاعلات التالية ما هي التفاعلات التي تعتبر تفاعل حمض-أساس مبينا الثنائيات (أساس/حمض) الداخلة في التفاعل

a)
$$NH_3 + H_2O = NH_4^+ + HO^-$$

b)
$$CH_4 + 2O_2 = 2CO_2 + 2H_2O$$

c)
$$H_2O + H_2O = H_3O^+ + OH^-$$

d)
$$Cu + H_2SO_4 = CuSO_4 + H_2O$$

e)
$$HC1 + H_2O = H_3O^+ + C1^-$$

f)
$$C_2H_5OH + Na = C_2H_5O^- + Na^+ + 1/2H_2$$

g)
$$HCOOH + H_2O = HCOO^- + H_3O^+$$

h)
$$Cu^{2+}_{(aq)} + 2HO_{(aq)} = Ca(OH)_{2(s)}$$

i)
$$CH_3NH_2 + CH_3COOH = CH_3NH_3^+ + CH_3COO^-$$

- j) $HCOOH + CH_3OH = HCOOCH_3 + H_2O$
- k) $HCl + NH_3 = NH_4^+ + Cl^-$
- 1) $Fe + H_2SO_4 = FeSO_4 + H_2$

<u>الأجوبة :</u>

التفاعل حمض أساس:

التفاعل	تفاعل حمض أساس أم لا	التبادل البروتوني الحادث	الثنائيات (أساس/حمض)
		$NH_3 + H^+ = NH_4^+$	(NH_4^+/NH_3)
a	نعم	$H_2O = HO^- + H^+$	(H_2O/HO^-)
b	Y		
0	3	$\mathbf{H}_2\mathbf{O} + \mathbf{H}^+ = \mathbf{H}_3\mathbf{O}^+$	(H_3O^+/H_2O)
С	نعم	$H_2O = HO^- + H^+$	(H_2O/HO^-)
d	Y		
		$HCl = Cl^- + H^+$	(HCl/Cl ⁻)
e	نعم	$\mathbf{H}_2\mathbf{O} + \mathbf{H}^+ = \mathbf{H}_3\mathbf{O}^+$	(H_3O^+/H_2O)
F	Y		
~		$HCOOH = HCOO^- + H^+$	(HCOOH/HCOO ⁻)
g	نعم	$\mathbf{H}_2\mathbf{O} + \mathbf{H}^+ = \mathbf{H}_3\mathbf{O}^+$	(H_3O^+/H_2O)
h	¥		
i		$CH_3NH_2 + H^+ = CH_3NH_3^+$	$(CH_3NH_3^+/CH_3NH_2)$
1	نعم	$CH_3COOH = CH_3COO^- + H^+$	(CH ₃ COOH/CH ₃ COO ⁻)
j	¥		
k	:	HCl/Cl	(HCl/Cl ⁻)
K	نعم	$\mathbf{NH_3} + \mathbf{H^+} = \mathbf{NH_4}^+$	(NH_4^+/NH_3)
1	Y		

<u>• النسبة الكتلية :</u>

النسبة الكتلة P (أو نسبة النقاوة) في نوع كيميائي غير نقي تركيزه المولي C_0 و كثافته P ، هي كتلة النوع الكيميائي النقي في P من النوع الكيميائي غير النقي ، يعبر عنها بأحد العلاقة التالية :

$$P = \frac{M.C_0}{10.d}$$

التمرين (3):

d=1.3 عينة مخبرية S_0 لمحلول هيدروكسيد الصوديوم تحمل المعلومات التالية : $C_0=8.8~{
m mol.L}^{-1}$. $C_0=8.8~{
m mol.L}^{-1}$

<u>الأجوبة :</u>

- التركيز المولى للمحلول:

$$C_0 = \frac{10 \cdot d \cdot P}{M} = \frac{10 \cdot 1.3 \cdot 27}{40} = 8.8 \text{ mol/L}$$

pH -2 المحاليل المائية

• هفهوم الـ pH:

- من أجل المحاليل الممدة (المخففة) يعرف الـ pH بالعلاقة التالية :

$$pH = -\log[H_3O^+]$$

و هذه العلاقة تكافئ :

$$\left[H_3O^+\right] = 10^{-pH} \text{ mol/L}$$

- بازدياد قيمة الـ pH تنقص قيمة $\left[H_3O^+
 ight]$ و العكس صحيح .
- من أجل قياس pH محلول نستعمل جهاز إلكتروني يدعى pH متر إذا كان القياس يتطلب دقة ، و يمكن استعمال ورق pH إذا كان القياس لا يتطلب دقة .

● الجداء الشاردي للماء في المحاليل المائية :

- : الماء المقطر يتفكك ذاتيا إلى شوارد الهيدرونيوم H_3O^+ و و شوارد الهيدروكسيد H_3O^+ وفق المعادلة : $H_2O_{(\ell)} + H_2O_{(\ell)} = H_3O^+_{(aq)} + HO^-_{(aq)}$
 - هذا التفكك ضعيف جدا ، ما يجعل الماء المقطر ناقل ضعيف جدا للتيار الكهربائي .

- في الدرجة °C يكون:

$$[H_3O^+] = [HO^-] = 10^{-7} \text{ mol/L}$$

و عند هذه الدرجة يكون أيضا:

$$[H_3O^+][HO^-]=10^{-14}$$

- يعرف هذا الجداء بالجداء الشاردي للماء ، يرمز له بـ Ke و هو بدون وحدة و نكتب :

$$Ke = [H_3O^+][HO^-]$$

- قيمة هذا الجداء نفسها في جميع المحاليل المائية عند نفس درجة الحرارة .
- $[H_3O^+][HO^-]$ في محلول ما ، ينتج عنها نقصان في قيمة $[HO^-]$ كي يبقى الجداء $[H_3O^+][HO^-]$ إذا از دادت قيمة ثابت في المحلول.
 - تتغير قيمة الـ Ke بتغير درجة الحرارة كما مبين في الجدول التالي:

درجة الحرارة	0	25°C	40°C	60°C	80°C	100°C
Ke	$1.1 \cdot 10^{-15}$	$1.0 \cdot 10^{-14}$	$3.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-13}$	$2.5 \cdot 10^{-13}$	$5.5 \cdot 10^{-13}$

- مثلما عرفنا الـ pH فإن الـ pKe يعبر عنه بالعلاقة:

$$pKe = - log Ke$$

و هذه العلاقة تكافئ:

$$Ke = 10^{-pKe}$$

<u>متال:</u> في الدرجة ℃25 يكون:

 $Ke = 10^{-14} \rightarrow pKe = 14$

في الدرجة °C00 يكون:

 $Ke = 10^{-13} \rightarrow pKe = 13$

• سلم الـ pH:

في الماء المقطر و المحلول المعتدل يكون:

$$\left[H_3O^+\right] = \left[HO^-\right]$$

و منه بکون:

$$Ke = [H_3O^+][HO^-] = [H_3O^+]^2$$

$$Ke = [H_3O^+]^2$$

$$log Ke = log[H3O+]2$$

$$log Ke = 2log[H3O+]$$

$$-log Ke = 2(-log[H3O+])$$

$$pKe = 2pH$$

إذن :

$$pH = \frac{1}{2}pKe$$

 $_{\rm H_3O^+}$ و ينقص الـ $_{\rm H_3O^+}$ و عندها يزداد $_{\rm H_3O^+}$ و ينقص الـ $_{\rm H_3O^+}$ و ينقص الـ $_{\rm H_3O^+}$

$$pH < \frac{1}{2}pKe$$

pH و يزداد الـ $[H_3O^+]$ و يندها ينقص و عندها ينقص و يزداد الـ الكون :

$$pH > \frac{1}{2}pKe$$

- pH المحلول محصور بين 0 و pKe و يمكن الحصول على الجدول التالي :

سلم الـ pH في المحاليل المائية عند الدرجة كيفية						
أساسية معتدلة حمضية						
$0 < pH < \frac{1}{2} pKe$	$pH = \frac{1}{2}pKe$	$\frac{1}{2} pKe < pH < pKe$				

مثال:

المحاليل المائية عند الدرجة 25°C (pKe = 14					
أساسية معتدلة حمضية					
pH < 7	pH = 7	pH > 7			

$(pKe = 13) 60^{\circ}C$ المحاليل المائية عند الدرجة						
حمضية	أساسية معتدلة حمضية					
pH < 6.5	1 < 6.5 $pH = 6.5$ $pH > 6.5$					

<u>التمرين (4) :</u>

أكمل الجدول التالي علما أن القيم معطاة عند الدرجة 20°C .

pН	2		3.4		8		
$[H_3O^+] (mol.L^{-1})$		4.10^{-3}				$1.25 \cdot 10^{-9}$	
$[HO^{-}]$ (mol.L ⁻¹)							$1.25 \cdot 10^{-4}$
الطبيعة				معتدل			

الأجوبة :

إكمال الجدول:

pН	2	2.4	3.4	7	8	8.9	10.1
$[H_3O^+] (mol.L^{-1})$	10^{-2}	4.10 ⁻³	3.98 . 10 ⁻⁴	10^{-7}	10^{-8}	1.25 . 10 ⁻⁹	8.10 ⁻¹¹
[HO ⁻] (mol.L ⁻¹)	10^{-12}	$2.5 \cdot 10^{-12}$	$2.51 \cdot 10^{-11}$	10^{-7}	10^{-6}	8.10-6	$1.25 \cdot 10^{-4}$
الطبيعة	حمضي	حمضىي	حمضي	معتدل	أساسي	أساسي	أساسي

3- التوازن الكيميائي

تعریف التوازن الکیمیائی:

- إذا كان التفاعل الكيميائي عكوس فهو حتما سيكون غير تام لأن الأنواع الكيميائية الناتجة تتفاعل بعدما تتشكل ، و هذا ما يجعل المتفاعلات لا تختفي كليا .
- في التحول غير التام عند نلاحظ عدم تطور الجملة الكيميائية بعد مدة ، أي عندما تكون المتفاعلات و النواتج موجودة في الحالة النهائية بكميات ثابتة نقول عن الجملة الكيميائية أنها في حالة توازن .
- عند التوازن يتوقف التفاعل ظاهريا فقط ، لكن على المستوى المجهري لا يتوقف و إنما يكون التفاعل و التفاعل و التفاعل و التفاعل المعاكس ثابتي و متساويي السرعة (توازن ديناميكي).

● كسر التفاعل :

- نعتبر جملة كيميائية تتكون من الأنواع الكيميائية D ، C ، B ، A متوازنة و فق المعادلة :

$$a A + b B = c C + d D$$

في لحظة t من التفاعل ، نعرف كسر التفاعل الذي يرمز له بـ Q_r و هو بدون وحدة بالعلاقة :

$$Q_{r} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- في وسط تفاعلي مائي ، لا يدخل في عبارة كسر التفاعل السابقة كل نوع كيميائي غازي أو صلب أو إذا كان النوع الكيميائي بزيادة مثل الماء أو شوارد الهيدرونيوم H_3O^+ عندما تستعمل في تحميض وسط تفاعلي .
 - كسر التفاعل ليس له وحدة .
 - في نهاية التفاعل غير التام (المحدود) يكون:

$$Q_{\text{r}} = Q_{\text{rf}} = K$$

يسمى المقدار K بثابت التوازن الكيميائي و نكتب :

$$K = \frac{[C]_{f}^{c}[D]_{f}^{d}}{[A]_{f}^{a}[B]_{f}^{b}}$$

- في نهاية التفاعل التام K معنى لثابت التوازن الكيميائي K لأن تركيز أحد المتفاعلين أو كلاهما يكون معدوم

● نسبة التقدم:

- في اللحظة t من التحول الكيميائي أين يكون التقدم x ، تعرف نسبة تقدم التفاعل في هذه اللحظة و التي يرمز لها τ و هي بدون وحدة و محصورة بين t و t بالعبارة :

$$\tau = \frac{x}{x_{\text{max}}}$$

- في نهاية التفاعل أين يكون $x=x_f$ ، يعبر عن نسبة التقدم و التي تسمى في هذه الحالة نسبة التقدم النهائي بالعلاقة :

$$\tau_{f} = \frac{x_{f}}{x_{max}}$$

- م التفاعل يكون تام ${
 m x_f}={
 m x_{max}}$ او ${
 m au_f}={
 m t}$ فإن هذا التفاعل يكون تام ${
 m x_f}={
 m t}$
- . إذا كان في تفاعل ما ${
 m x_f} < {
 m x_max}$ أو ${
 m t_f} < 1$ فإن هذا التفاعل يكون غير تام
 - م يمكن اعتبار التفاعل تام . $Q_{rf}>>10^4$ ، يمكن اعتبار التفاعل تام

<u> ملاحظة :</u>

- أثبتت التجارب أن نسبة التقدم النهائي لا تتغير بتغير درجة الحرارة في حين تتناقص بتزايد التراكيز الابتدائية للمتفاعلات ، كما أن ثابت التوازن K (كسر التفاعل النهائي Q_{rf}) يتغير بتغير درجة الحرارة ، و لا يتغير بتغير التراكيز الابتدائية للمتفاعلات .

<u>التمرين (5) :</u>

- CH $_3$ COOH تركيزه المولي الابتدائي CH_3 COOH وحجمه C_1 = 2,7 . 10^{-3} mol/L تحضر محلول لحمض الإيثانويك D_3 COOH تركيزه المولي الابتدائي V_1 = 100 ml عند الدرجة V_1 = 100 ml
 - أ- أكتب معادلة انحلال حمض الإيثانويك في الماء .
 - ب- أنشئ جدول تقدم التفاعل ، و حدد من خلاله قيمة التقدم الأعظمي .
 - جـ أوجد التقدم النهائي x_{f} و كذا نسبة التقدم النهائي τ_{fl} . ماذا تستنتج ؟
 - $m K_1 = 1,6 \cdot 10^{-5}$ د- أكتب عبارة ثابت التوازن للتفاعل ثم بين أنه يساوي القيمة $m ^{-5}$.
 - $C_2 = 0.1 \text{ mol} / L$ عند الدرجة 25^0C الناقلية النوعية لمحلول آخر لحمض الإيثانويك تركيزه 25^0C الناقلية النوعية لمحلول أخر لحمض الإيثانويك تركيزه
 - . $\sigma = 5 \cdot 10^{-2} \text{ S/m}$ فنجد

أ- اعتمادا على جدول التقدم أثبت ما يلى :

 $[CH_3COO^-]_c = [H_3O^+]_c$

 $[CH₃COOH]_{f} = C - [H₃O⁺]_{f} \bullet$

ب- أكتب عبارة $[H_3O^+]$ بدلالة (H_3O^+) و $\lambda(H_3O^+)$ و (H_3O^+) و (H_3O^+)

 $au_{f2}=1.25$ جـ- أثبت أن $au_{f2}=\frac{\left[H_3O^+
ight]_f}{C}$: ثم بين أن نسبة التقدم النهائي جـ- أثبت أن

د. أحسب ثابت التوازن الكيميائي K_2 في هذا التفاعل K_2

 K_{2} ، K_{1} ، τ_{f2} ، τ_{f1} من خلال قیم کل من τ_{f1}

- ما تأثير التراكيز الابتدائية على ثابت التوازن K .

ما تأثیر التراکیز الابتدائیة علی نسبة التقدم النهائی $au_{\rm f}$.

 $\lambda(H_3O^+)=35.9.10^{-3}~S.m^2.mol^{-1}$, $\lambda(CH_3COO^-)=4,1.10^{-3}~S.m^2.mol^{-1}$: يعطى الأجوبة :

1-أ- معادلة الانحلال:

 $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$

ب- جدول التقدم النهائي:

الحالة	التقدم	$CH_3COOH + H_2O = CH_3COO^- + H_3O^+$						
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	$n_0 = CV$ بز 0 0					
انتقالية	X	CV - x	بز	X	X			
نهائية	X_f	$CV - x_f$	بز	X_f	$\mathbf{x}_{\mathbf{f}}$			

 $n_0(CH_3COOH) = CV = 2.7 \cdot 10^{-3} \cdot 0.1 = 2.7 \cdot 10^{-4} \text{ mol}$

- التقدم الأعظمي X_{max} : - إذا اعتبر نا التفاعل تام :

$$CV - x_{max} = 0 \rightarrow x_{max} = CV = 2.7 \cdot 10^{-4} \text{ mol}$$

ج- التقدم النهائي <u>X</u>f :

$$PH = 3.7 \rightarrow [H_3O^+]_{f1} = 10^{-3.7} = 2.0.10^{-4} \text{ mol}$$

من جدول التقدم:

$$[H_3O^+]_{f1} = \frac{n_{1f}(H_3O^+)}{V_1} = \frac{x_{f1}}{V_1} \rightarrow x_{f1} = [H_3O^+]_{f1}.V_1$$

$$x_{f1} = 2.10^{-4} .0.1 = 2.10^{-5} mol$$

$\pm \tau_{ m f}$ النسبة النهائية للتقدم

$$\tau_{\rm f} = \frac{x_{\rm f}}{x_{\rm max}}$$

$$\tau_{\rm f1} = \frac{2.10^{-5}}{2.7 \cdot 10^{-4}} = 0.074 \quad (7.4 \%)$$

الاستنتاج : $au_{\rm f} < 1$ ، نستنتج أن انحلال حمض الإيثانويك في الماء هو تحول غير تام ، كما أن الإيثانويك هو حمض

$$K_1 = \frac{\left[H_3O^+\right]_{f1}\left[CH_3COO^-\right]_{f1}}{\left[CH_3COOH\right]_{f1}}$$

 $K = 1.6 . 10^{-5}$ اثبات أن

$$[H_3O^+]_{f1} = 2.10^{-4} \text{ mol/L}$$

•
$$\left[\text{CH}_3 \text{COO}^- \right]_{\text{f1}} = \frac{x_{\text{f1}}}{V_1} = \frac{2.10^{-5}}{0.1} = 2.10^{-4} \text{ mol/L}$$

$$K_1 = \frac{2.10^{-4}.2.10^{-4}}{2.5.10^{-3}} = 1.6.10^{-5}$$

$$\frac{1}{2} \left[CH_3 COO^{-1} \right]_f = \left[H_3 O^{+1} \right]_f$$
 اعتمادا على حدول التقدم

$$\bullet \left[\mathbf{H}_{3}\mathbf{O}^{+} \right]_{f} = \frac{\mathbf{n}_{f} \left(\mathbf{H}_{3}\mathbf{O}^{+} \right)}{\mathbf{V}} \rightarrow \left[\mathbf{H}_{3}\mathbf{O}^{+} \right]_{f} = \frac{\mathbf{x}_{f}}{\mathbf{V}}$$

$$\left[\text{CH}_3 \text{COO}^- \right]_{\mathbf{f}} = \left[\text{H}_3 \text{O}^+ \right]_{\mathbf{f}}$$

$$\bullet \left[H_3 O^+ \right]_f = \frac{x_f}{V}$$

$$\left[\text{CH}_{3}\text{COOH} \right]_{\text{f}} = \frac{\text{CV}}{\text{V}} - \frac{\text{x}_{\text{f}}}{\text{V}}$$

$$\left[CH_{3}COOH \right]_{f} = C - \left[H_{3}O^{+} \right]_{f}$$

 $: \delta \cdot \lambda(CH_3COO^-) \cdot \lambda(H_3O^+)$ بدلالة $[H_3O^+]_f$ بيدالة بارة بيدالة بدلالة بدلال

$$\delta = \lambda(H_3O^+) \left[H_3O^+ \right] + \lambda(CH_3COO^-) \left[CH_3COO^- \right]_f$$

وجدنا سابقا:

$$\left[CH_3COO^{-} \right]_f = \left[H_3O^{+} \right]_f$$

رمنه يصبح

$$\delta = \lambda(H_3O^+)[H_3O^+] + \lambda(CH_3COO^-)[H_3O^+]_f$$

$$\delta = (\lambda(H_3O^+) + \lambda(CH_3COO^-))[H_3O^+]_f$$

$$\left[H_3O^+\right]_f = \frac{\delta}{\lambda(H_3O^+) + \lambda(CH_3COO^-)}$$

$$\left[H_3O^+\right]_f = \frac{5.10^{-2}}{35.9.10^{-3} + 4.1.10^{-3}} = 1.25 \text{ mol/m}^3 = 1.25.10^{-3} \text{ mol/L}$$

$$\underline{\tau_{\mathrm{f}}} = \frac{\left[\mathrm{H_{3}O^{+}}\right]_{\mathrm{f}}}{\mathrm{C}}$$
 يدينا :

$$\tau_{\rm f} = \frac{x_{\rm f}}{x_{\rm max}}$$

- اعتمادا على جدول التقدم:

$$\bullet \left[H_3 O^+ \right]_f = \frac{n_f \left(H_3 O^+ \right)}{V} \rightarrow \left[H_3 O^+ \right]_f = \frac{x_f}{V} \rightarrow x_f = \left[H_3 O^+ \right]_f V .$$

- باعتبار التفاعل التام يكون حيث وجدنا سابقا:

$$CV - x_{max} = 0 \rightarrow x_{max} = CV$$

- بالتعویض في عباره $au_{
m f}$:

$$\tau_{f} = \frac{\left[H_{3}O^{+}\right]_{f}.V}{CV}$$

$$\tau_{f} = \frac{\left[H_{3}O^{+}\right]_{f}}{C}$$

قيمة τ_{f2} :

$$\tau_{f2} = \frac{1.25.10^{-3}}{10^{-1}} = 1.25.10^{-2} \quad (1.25\%)$$

دـ ثابت التوازن الكيميائي $\frac{K_2}{2}$ في هذا التفاعل : لدينا :

$$K_{2} = \frac{\left[H_{3}O^{+}\right]_{f2}\left[CH_{3}COO^{-}\right]_{f2}}{\left[CH_{3}COOH\right]_{f2}}$$

اعتمادا على ما سبق:

 $\left[H_3 O^+ \right]_{r_2} = 1.25.10^{-3} \text{ mol/L}$

• $\left[\text{CH}_3 \text{COO}^- \right]_f = \left[\text{H}_3 \text{O}^+ \right]_f = 1.25 \cdot .10^{-3} \text{ mol/L}$

• $\left[\text{CH}_3 \text{COOH} \right]_{12} = \text{C} - \left[\text{H}_3 \text{O}^+ \right]_{12} = 0.1 - 1.25 \cdot 10^{-3} = 9.88 \cdot 10^{-2} \text{ mol/L}$

بالتعويض في عبارة K_2 نجد :

$$K_2 = \frac{1.25 \cdot 10^{-3} \cdot 1.25 \cdot 10^{-3}}{9.88 \cdot 10^{-2}} \approx 1.6 \cdot 10^{-5}$$

 $\frac{1}{2}$ تأثير التراكيز الابتدائية في ثابت التوازن $\frac{1}{2}$ و نسبة التقدم النهائية $\frac{1}{2}$

 $C_1 = 2.7 \cdot 10^{-3} \text{ mol/L} \rightarrow K_1 = 1.6 \cdot 10^{-5}$

 $C_2 = 1.0 \cdot 10^{-1} \text{ mol/L} \rightarrow K_2 = 1.6 \cdot 10^{-5}$

 $C_2 > C_1 \rightarrow K_1 = K_2$

هذا يعنى أن ثابت التوازن الكيميائي لا يتعلق بالتراكيز الابتدائية عندما لا تتغير درجة الحرارة .

وحدنا سابقا أبضا

 $C_1 = 2.7$. $10^{\text{--}3} \; mol/L \; \rightarrow \; \tau_{f1} = 7.4 \; \%$

 $C_2 = 1.0 \cdot 10^{-1} \text{ mol/L} \rightarrow \tau_{f2} = 1.25\%$

 $C_2 > C_1 \rightarrow \tau_{f2} < \tau_{f1}$

هذا يعنى أن نسبة التقدم النهائي تتناقص كلما از دادت التراكيز الابتدائية .

<u>التمرين (6) :</u>

V و تركيزه C مقدرا بالوحدة (NH_3 لدينا محلول للنشادر NH_3 حجمه V

1- اكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحاصل بين النشادر و الماء .

2- أنشئ جدولا لتقدم التفاعل الكيميائي السابق.

3- اعتمادا على جدول التقدم أثبت أن:

 $\left[NH_4^+\right]_f = \left[HO^-\right]_f \bullet$

 $[NH_3]_f = C - [HO^-]_f$

 $\tau_{\rm f} = \frac{[{\rm HO}^{-}]}{C} \bullet$

. (یهمل التشرد الذاتي للماء) $\left[HO^{\text{-}} \right]_f = \frac{\sigma_f}{\lambda (N{H_{\text{A}}}^+) + \lambda (HO^{\text{-}})}$ •

. pH = 10.6 و ذو $^{-2}$ mol/L و يا الدرجة $^{-2}$ L و دو $^{-2}$ النشادر $^{-2}$ النشادر $^{-2}$ النشادر و كانسادر $^{-2}$

أ- أحسب تراكيز الأفراد الكيميائية المتواجدة في المحلول عند حدوث التوازن .

ب- أحسب نسبة التقدم النهائي $au_{
m f}$. ماذا تستنتج علما أن النشادر عبارة عن أساس .

الأحمية :

1- معادلة التفاعل الكيميائي:

$$NH_3 + H_2O = NH_4^+ + HO^-$$

2- جدول التقدم:

الحالة	التقدم	NH ₃	+ H ₂ O	$=$ NH_4^+	+ HO ⁻
ابتدائية	$\mathbf{x} = 0$	$n_{0b} = CV$	بزيادة	0	0
انتقالية	X	CV - x	بزيادة	X	X
نهائية	X_f	CV - x _f	بزيادة	$\mathbf{X}_{\mathbf{f}}$	X_{f}

$$\frac{[NH_4^+]_f}{[MH_4^+]_f} = [HO^-]_f$$
 : اعتمادا على جدول التقدم

•
$$[HO^-]_f = \frac{n_f (HO^-)}{V} = \frac{x_f}{V} \rightarrow x_f = [HO^-]_f . V$$

• إثبات
$$_{f}$$
 = C - $[HO^{-}]_{f}$: اعتمادا على جدول التقدم :

$$\bullet \left[\mathrm{NH_3} \right]_{\mathrm{f}} = \frac{\mathrm{CV} - \mathrm{x_f}}{\mathrm{V}} = \frac{\mathrm{CV} - \left[\mathrm{HO}^{-} \right]_{\mathrm{f}} \cdot \mathrm{V}}{\mathrm{V}} = \frac{\mathrm{V} \left(\mathrm{C} - \left[\mathrm{HO}^{-} \right]_{\mathrm{f}} \right)}{\mathrm{V}} \rightarrow \left[\mathrm{NH_3} \right]_{\mathrm{f}} = \mathrm{C} - \left[\mathrm{HO}^{-} \right]_{\mathrm{f}}$$

$$\underline{\tau_{f}} = \frac{[HO^{-}]}{C}$$

$$\tau_{f} = \frac{x_{f}}{x_{max}}$$

اعتمادا على جدول التقدم:

$$[HO^{-}]_{f} = \frac{n_{f}(HO^{-})}{V} = \frac{x_{f}}{V} \rightarrow x_{f} = [HO^{-}]_{f}.V$$

بفرض أن التفاعل تام يكون:

$$CV - x_{max} = 0 \ \rightarrow \ x_{max} = CV$$

بالتعويض في عبارة τ_f:

$$\tau_{\rm f} = \frac{\left[\text{HO}^\text{-} \right]_{\!\! f} V}{\text{CV}} \ \to \ \tau_{\rm f} = \frac{\left[\text{HO}^\text{-} \right]_{\!\! f}}{\text{C}}$$

$$\frac{\sigma_f}{(+ 10^-)_f} = \frac{\sigma_f}{\lambda(N{H_4}^+) + \lambda(HO^-)}$$
 : (باهمال التشرد الذاتي للماء)

محلول النشادر يحتوي على الشوارد $\frac{1}{NH_4}$ ، $\frac{1}{NH_4}$ ، $\frac{1}{NH_4}$ التي إهمات بسبب إهمال التفكك الشاردي للماء ، لذا يكون:

$$\sigma_f = \lambda (N{H_4}^+) \left[N{H_4}^+ \right]_{\!\!f} + \lambda (HO^-) \left[HO^- \right]_{\!\!f}$$

اعتمادا على جدول التقدم:

$$\bullet \left[HO^{-} \right]_{f} = \frac{n_{f} \left(HO^{-} \right)}{V} = \frac{x_{f}}{V} \rightarrow x_{f} = \left[HO^{-} \right]_{f}.V$$

$$\bullet \left[NH_4^+ \right]_f = \frac{x_f}{V} = \frac{\left[HO^- \right]_f . V}{V} \rightarrow \left[NH_4^+ \right]_f = \left[HO^- \right]_f$$

$$\begin{split} \sigma_{f} &= \lambda (NH_{4}^{+}) \left[HO^{-} \right]_{f} + \lambda (HO^{-}) \left[HO^{-} \right]_{f} \\ \sigma_{f} &= \left(\lambda (NH_{4}^{+}) + \lambda (HO^{-}) \right) \left[HO^{-} \right]_{f} \quad \rightarrow \quad \left[HO^{-} \right]_{f} = \frac{\sigma_{f}}{\lambda (NH_{4}^{+}) + \lambda (HO^{-})} \end{split}$$

4-1 تراكيز الأفراد الكيميائية المتواجدة في المحلول عند حدوث التوازن : 1-1 الأفراد : 1-1

• pH =
$$10.6 \rightarrow [H_3O^+] = 10^{-10.6} = 2.5 \cdot 10^{-11} \text{ mol/L}$$

$$\bullet \left[\text{HO}^{-} \right] = \frac{\text{Ke}}{\left[\text{H}_{3}\text{O}^{+} \right]} = \frac{10^{-14}}{2.5.10^{-11}} = 4.10^{-4} \text{ mol/L}$$

اعتمادا على جدول التقدم و مما سبق:

•
$$[NH_4^+]_f = [HO^-]_f = 4.10^{-4} \text{mol/L}$$

•
$$[NH_3]_f = C - [HO^-]_f = 10^{-2} - 4.10^{-4} = 9.6.10^{-3} \text{ mol/L}$$

<u>ب</u>- نسبة التقدم النهائي : مما سبق و جدنا :

$$\tau_{\rm f} = \frac{\left[{\rm HO}^{-} \right]}{{\rm C}}$$

إذن :

$$\tau_f = \frac{4.10^{-4}}{10^{-2}} = 4.10^{-2} \quad (\tau_f = 4\%)$$

نلاحظ : $au_{
m f} < 1$ ، نستنتج أن انحلال النشادر في الماء هو تحول غير تام ، كما أن النشادر هو أساس ضعيف .

<u>تمارین مقترحة</u>

التمرين (7): (بكالوريا 2008 – علوم تجريبية) (الحل المفصل: تمرين مقترح 06 على الموقع)

- ننمذج التحول الكيميائي المحدود لحمض الإيثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته: - دنمذج التحول الكيميائي المحدود لحمض الإيثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته :

 $CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$

- 1- أعط تعريفا للحمض وفق نظرية برونشتد .
- 2- أكتب الثنائيتين (أساس/ حمض) الداخلتين في التفاعل الحاصل.
- $_{
 m C}$ أكتب عبارة ثابت التوازن $_{
 m K}$ الموافق للتفاعل الكيميائي السابق
- $C=2.7~.~10^{-3}~mol/L$ و تركيزه المولي V=100~mL و جممه V=100~mL و قيمة الـ V=100~mL
 - 1- استنتج التركيز المولي النهائي لشوارد الهيدرونيوم في محلول حمض الإيثانويك .
 - $_{
 m X_{max}}$ انشئ جدو لا لتقدم التقاعل ، ثم أحسب كلا من التقدم الأنهائي $_{
 m X_{f}}$ و التقدم الأعظمي $_{
 m X_{max}}$.
 - $(au_{
 m f})$ لتقدم التفاعل ماذا تستنتج النهائية النهائية ($(au_{
 m f})$
 - 4- أحسب :
 - . (CH₃COOH) و (CH₃COO⁻) أ- التركيز المولى النهائي لكل من
- ب- قيمة pKa لَلْتنائية (CH_3COOH/CH_3COO^-) ، و استنتج النوع الكيميائي المتغلب في المحلول الحمضي . برر أجابتك .

أجوبة مختصرة :

 H^+ الحمض هو كل فرد كيميائي جزيئيا كان أم شارديا قادر إلى إعطاء بروتون هيدروجين H^+ أو أكثر خلال تفاعل كيميائي .

.
$$K = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}$$
 (3 · (CH₃COOH/CH₃COO⁻) , (H₃O⁺/H₂O) (2

 $\left[H_3 O^+ \right]_f = 2.10^{-4} \text{ mol/L (1-II)}$

- جدول التقدم <u>:</u>

الحالة	التقدم	CH ₃ COOH +	$H_2O =$	CH ₃ COO ⁻ -	+ H ₃ O ⁺
ابتدائية	$\mathbf{x} = 0$	$2.7 \cdot 10^{-4}$	بزيادة	0	0
انتقالية	X	$2.7 \cdot 10^{-4} - x$	بزيادة	X	X
نهائية	X_f	$2.7 \cdot 10^{-4} - x_f$	بزيادة	X_{f}	$\mathbf{X}_{\mathbf{f}}$

$$\tau_f = \frac{x_f}{x_{max}} = 0.074 (74\%) \quad \text{`} \quad x_f = 2 . 10^{-5} \text{ mol}$$

. نستنتج أن انحلال CH3COOH في الماء غير تام و أن الحمض CH3COOH ضعيف $au_{
m f} < 1$ (3

$$[CH_3COOH]_f = 2.5 \cdot 10^{-3} \text{ mol/L} \cdot [CH_3COO^-]_f = 2.10^{-4} \text{ mol/L} \cdot (1-4)^{-4}$$

• pKa = 4.8 • Ka = $1.6 \cdot 10^{-5}$ (-

. CH $_3$ COOH النوع الكيميائي المتغلب هو بالحمض pH = 3.7 , pKa = $4.8 \
ightarrow$ pH < pKa

التمرين (8): (بكالوريا 2008 – رياضيات) (الحل المفصل: تمرين مقترح 07 على الموقع)

نعتبر محلولا مائيا لحمض الإيثانويك حجمه V=100~mL و تركيزه المولي $C=1.0 \cdot 10^{-2}~mol/L$. نقيس الناقلية $G=1.2 \cdot 10^{-2}~m$ فكانت النتيجة المحلول في الدرجة $C=1.2 \cdot 10^{-2}~m$ فكانت النتيجة $C=1.2 \cdot 10^{-2}~m$. $C=1.92 \cdot 10^{-4}~m$.

- $_{1}$ أحسب كتلة الحمض النقى المنحلة في الحجم $_{
 m V}$ من المحلول $_{
 m L}$
- 2- أكتب معادلة التفاعل المنمذج لانحلال حمض الإيثانويك في الماء .
- $^{\circ}$ أنشئ جدو لا لتقدم التفاعل $^{\circ}$ عرف التقدم الأعظمي $^{\circ}$ $_{\mathrm{max}}$ و عبر عنه بدلالة التركيز $^{\circ}$ للمحلول و حجمه $^{\circ}$
 - 4- أ) أعط عبارة الناقلية النوعية 6 للمحلول:
 - بدلالة الناقلية G للمحلول و الثابت k للخلية .

بدلالة التركيز المولي لشوارد الهيدرونيوم $[H_3O^+]$ ، و الناقلية المولية الشاردية $\lambda(H_3O^+)$ و الناقلية المولية الشاردية $\lambda(CH_3COO^-)$ (نهمل التشرد الذاتي للماء) .

- ج) استنتج قيمة pH المحلول .
- $(5)^{\dagger}$ أوجد عبارة كسر التفاعل $(2)^{\dagger}$ في الحالة النهائية (حالة التوازن) بدلالة $(2)^{\dagger}$ و التركيز $(2)^{\dagger}$ للمحلول ماذا يمثل $(2)^{\dagger}$ في هذه الحالة $(2)^{\dagger}$
 - 6) أحسب pka للثنائية (CH₃COOH/CH₃COO

 $M(O) = 16 \text{ g/mol} \cdot M(H) = 1 \text{ g/mol} \cdot M(C) = 12 \text{ g/mol}$ $\lambda(H_3O^+) = 35 \text{ mS.m}^2.\text{mol}^{-1} , \lambda(CH_3COO^-) = 4.1 \text{ mS.m}^2.\text{mol}^{-1} , \text{ Ke} = 10^{-14}$

<u>أجوبة مختصرة :</u>

. $CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$ ' $m = CVM = 0.06\,g$ (1

(3) <u>جدول التقدم:</u>

الحالة	التقدم	CH ₃ COOH +	$H_2O =$	CH ₃ COO ⁻ -	+ H ₃ O ⁺
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بزيادة	0	0
انتقالية	X	CV - x	بزيادة	X	X
نهائية	X_{f}	$CV - x_f$	بزيادة	X_{f}	X_{f}

. $x_{max} = n_0 = CV$ ، هو قيمة التقدم x عندما تتفاعل كل كمية الحمض و عليه x_{max} هو قيمة التقدم الأعظمي

.
$$\sigma = (\lambda(CH_3COO^-) + \lambda(H_3O^+))[H_3O^+]$$
 , $\sigma = \frac{G}{K}(1-4)$

.
$$pH = 3.4$$
 $\left[H_3O^+\right]_f = \frac{G}{K(\lambda(CH_3COO^-) + \lambda(H_3O^+)} = 0.4 \text{ mol/m}^3 = 4.10^{-4} \text{ mol/L} (-1.00 + 1.$

$$Q_{rf} = \frac{\left[H_3 O^+\right]_f^2}{C - \left[H_3 O^+\right]_f}$$
 (5)

. (CH₃COOH/CH₃COO في هذه الحالة ثابت الحموضة Ka للثنائية (Phi CH₃COOH/CH₃COO في هذه الحالة ثابت الحموضة والمحموضة والمحموضة

$$Ka = 1.66 \cdot 10^{-5} \rightarrow pKa \approx 4.8 (6)$$

التمرين (9): (بكالوريا 2011 - علوم تجريبية) (الحل المفصل: تمرين مقترح 12 على الموقع)

انحلال حمض الإيثانويك CH3COOH في الماء هو تحول كيميائي ينمذج بالتفاعل ذي المعادلة التالية:

$$CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

نقيس في الدرجة $^{-2}$ والناقلية النوعية للمحلول الذي تركيزه المولي الابتدائي $^{-1}$ $^{-2}$ mol. نقيس في الدرجة $^{-2}$ $\sigma = 1.6 \cdot 10^{-2} \text{ S.m}^{-1}$

. $\left[H_3 O^+_{(aq)} \right]_{\acute{e}a}$ و C_0 بدلالة و لايميائي K بدلالة التوازن الكيميائي -2

3- يعطى الشكل العام لعبارة الناقلية النوعية في كل لحظّة بدلالة التركيز المولي و الناقليات النوعية المولية الشاردية

. $\sigma = \sum_{i=1}^{n-11} \lambda_i \left[x_i \right]$ لمختلف الأفر اد الكيميائية المتواجدة في المحلول بالصيغة

اكتب العبارة الحرفية للناقلية النوعية σ للمحلول السابق ، (يهمل التفكُّ الذاتي للماء) .

4- أنشئ جدولا لتقدم التفاعل الحادث.

5- أ- احسب التراكيز المولية لمختلف الأفراد الكيميائية المتواجدة في المحلول عند توازن الجملة الكيميائية .

ب- احسب ثابت التوازن الكيميائي K.

جـ عين النسبة النهائية للتقدم au_{f} ماذا تستنتج ؟

 $\lambda(H_3O^+) = 35.9 \cdot 10^{-3} \text{ S.m}^2 \cdot \text{mol}^{-1} \; \; ; \quad \lambda(CH_3COO^-) = 4.10 \cdot 10^{-3} \text{ S.m}^2 \cdot \text{mol}^{-1}$ <u>اًجوبة مختصرة :</u>

$$. K = \frac{\left[H_{3}O^{+}\right]_{\acute{e}q}^{2}}{C_{0} - \left[H_{3}O^{+}\right]_{\acute{e}q}} \quad (CH_{3}COOH/CH_{3}COO^{-}) \quad ; \quad (H_{3}O^{+}/H_{2}O) (1)$$

$$\sigma_{f} = \lambda (CH_{3}COO^{-}) \left[CH_{3}COO^{-} \right]_{f} + \lambda (H_{3}O^{+}) \left[H_{3}O^{+} \right]_{f}$$
 (3)

الحالة	التقدم	CH ₃ COOH +	$H_2O =$	CH ₃ COO -	$+ H_3O^+$
ابتدائية	$\mathbf{x} = 0$	$n_0 = CV$	بزيادة	0	0
انتقالية	X	CV - x	بزيادة	X	X
نهائية	X_f	$CV - x_f$	بزيادة	$\mathbf{x}_{\mathbf{f}}$	X_{f}

$$\left[\text{CH}_{3}\text{COO}^{-} \right]_{\text{f}} = 4.10^{-4} \text{ mol/L} \cdot \left[\text{H}_{3}\text{O}^{+} \right]_{\text{f}} = 4.10^{-4} \text{ mol/L} (5)$$

. $K = 1.66.10^{-5}$ (\because $(CH_3COOH)_f = 9.6.10^{-3}$ mol/L

ي CH₃COOH في
$$au_f < 1$$
 ، $au_f = \frac{\left[H_3O^+\right]_f}{C} = 0.04$ (4%) (ج.) في $au_f < 1$ ، $au_f = \frac{\left[H_3O^+\right]_f}{C}$ الماء غير تام (محدود) و أن الحمض CH₃COOH ضعيف .

التمرين (10): (بكالوريا 2012 - رياضيات) (الحل المفصل: تمرين مقترح 15 على الموقع)

 C_6H_5COOH بتركيز مولي $V=200\,$ mL حجمه S_1 بتركيز مولي بتركيز مولي ، $PH_1=3.1\,$ فنجده $PH_1=3.1\,$ ثم نقيس $PH_1=3.1\,$

أ- اكتب معادلة تفاعل حمض البنزويك مع الماء .

ب- أنشئ جدو لا لتقدم التفاعل .

جـ احسب نسبة التقدم النهائي au_{1f} لهذا التفاعل ماذا تستنتج ؟

. $C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}$ د- اكتب عبارة ثابت الموضية K_{a1} للثنائية للثنائية

. ما أثبت أن $K_{a1}=C_1 \, rac{ au_{1f}^2}{1- au_{1f}}$ ؛ ثم احسب قيمته K_{a1}

2- نأخذ حجما S_1 من المحلول S_1 و نمدده S_1 مرات بالماء فنحصل على محلول S_1 لحمض البنزويك بتركيز مولى C_1 ، ثم نقيس C_1 هذا المحلول فنجده C_1 فنجده D_1 .

. $C_1' = 1.00 \cdot 10^{-3} \text{ mol.L}^{-1}$: أ- أثبت أن

ب- احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء .

جـ ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

أجوبة مختصرة :

 $C_6H_5COOH_{(aq)} + H_2O_{(\ell)} = C_6H_5COO_{(aq)}^- + H_3O_{(aq)}^+ (-1)^+$ (التقدم : جدول التقدم : جدول التقدم

الحالة	التقدم	$C_6H_5COOH + H_2O = C_6H_5COO^- + H_3O^+$				
ابتدائية	$\mathbf{x} = 0$	$n_0 = C_1 V$	بزيادة	0	0	
انتقالية	X	$C_1V - x$	بزيادة	X	X	
نهائية	X_{f}	$C_1V - x_f$	بزيادة	X_{f}	X_{f}	

ج) (8%) $\tau_{\rm f} = 0.08$ (8%) بستنتج أن التفاعل الحادث بين حمض البنزويك و الماء غير تام (محدود) كما أن حمض البنزويك ضعيف .

$$K_{a1} = 6.96.10^{-5}$$
 (ه. $K_{a1} = \frac{\left[C_6 H_5 COO^{-}\right]_f \left[H_3 O^{+}\right]_f}{\left[C_6 H_5 COOH\right]_f}$ (ع

 $\tau_{2f} = = 0.25 (25\%) (-2)$

جـ) بستنتج أن نسبة التقدم النهائي تزداد كلما خفف المحلول ، $m C_1' < C_1
ightarrow au_{2f} > au_{1f}$

التمرين (11): (الحل المفصل: تمرين مقترح 03 على الموقع)

نريد دراسة التفاعل بين 0.1 mol من شوارد الإيثانوات CH_3COO^- مع 0.1 mol من حمض الميثانويك HCOOH الذي يتم وفق المعادلة :

$$CH_3COO^{-}_{(aq)} + HCOOH_{(aq)} = CH_3COOH_{(aq)} + HCOO^{-}_{(aq)}$$

1- مثل جدول التقدم لهُذا التفاعل .

 Q_{ri} . Q_{ri} وجد قيمة كسر التفاعل الابتدائي Q_{ri}

 $au_{
m f}$ وجد عبارة كسر التفاعل في نهاية التفاعل بدلالة نسبة التقدم النهائي $au_{
m f}$

K=13 . استنتج . K=13 . استنتج

- النسبة النهاية لتقدم التفاعل.
 - التقدم النهائي .
- التركيب المولي للمزيج عند نهاية التفاعل .

<u>أجوبة هختصرة :</u>

1) جدول التقدم:

الحالة	التقدم	$CH_3COO^- + HCOOH = CH_3COOH + HCOO^-$				
ابتدائية	x = 0	0.1	0.1	0	0	
انتقالية	X	0.1 - x	0.1 - x	X	X	
نهائية	Xf	$0.1 - x_{\rm f}$	$0.1 - x_{\rm f}$	Xf	Xf	

$$x_f = \tau_f x_{max} = 0.078 \text{ mol}$$
 $\tau_f = 0.78 (4 \text{ K} = \frac{{\tau_f}^2}{(1 - {\tau_f})^2} (3 \text{ Qr}_i = 0) (2 \text{ M})$

 $n_f(CH_3COO^{\scriptscriptstyle{-}}) = n_f(HCOOH) = 0.022 \ mol \ {}^{\textstyle{\cdot}} \ n_f(CH_3COOH) = n_f(HCOO^{\scriptscriptstyle{-}}) = 0.078 \ mol$