

CZĄSTKI ELEMENTARNE I ODDZIAŁYWANIA

VIII CHARM & BEAUTY

Agnieszka Obłąkowska-Mucha

http://home.agh.edu.pl/~amucha/ Katedra Oddziaływań i Detekcji Cząstek D11 p. 106

Istnienie hadronów z 4. kwarkiem zostało przewidziane teoretycznie (w przeciwieństwie do kwarka s).

Oszacowano jego masę na ok. 2 GeV.

I pokolenie	Q	masa	II pokolenie	Q	masa
u	+2/3	0.35 GeV	С	+2/3	1.5 GeV
d	-1/3	0.35 GeV	S	-1/3	0.5 GeV

Charm – liczba kwantowa c jest zachowana w oddz. silnych i elm, nie zachowana w słabych (podobnie jak s).

Najlżejsze MEZONY POWABNE to skalary $D^0(cu), D^+(cd), D_s^+(cs)$

Mezony "czarmowe" wektorowe mają taki sam skład kwarkowy, ale spiny kwarków ustawione są równolegle: $D^{*0}(cu)$, $D^{*+}(cd)$, $D_s^{*+}(cs)$

Rozpady czarmowych mezonów zachodzą poprzez oddziaływania słabe $\tau \sim 10^{-12}$ s, przeważnie na mezony dziwne (z kwarkiem s).

A.Obłąkowska-Mucha

W 1974 roku w Brookhaven badano produkcję nowej cząstki J w zderzeniach protonów przy najwyższych (wtedy) energiach: $\sqrt{s} = 3.1$ GeV w procesie:

$$p + N \rightarrow J + X \rightarrow e^+ + e^- + X$$

Stan *X* był dowolny, ale badana cząstka *J* miała znane liczby kwantowe i miała się rozpadać na elektron i pozyton.

Spektrometr został dedykowany poszukiwaniom wektorowej cząstki o liczbach kwantowych fotonu $J^{PC} = 1^{--}$ rozpadającej się na e^+e^- .

$$J^{(3097)}$$

$$J^{PC} = 1^{-}$$

beam target tracking chambers

Przypadek taki pojawiał się raz na milion. Najważniejsze-separacja pionów – progowe liczniki Czerenkowa i kalorymetr

Dwa odkrycia – jedna cząstka

Zaobserwowano znaczny rezonans w stanach końcowych z hadronami, mionami i elektronami:

Skoro dwa eksperymenty odkryły ten sam stan, to dano mu nazwę:

$$J/\Psi (3097)$$

 $J^{PC} = 1^{-}$

Dotychczas omawiane cząstki miały na tyle długi czas życia, że mogły być obserwowane bezpośrednio.

Jeśli masa hadronu jest wystarczająco duża, aby rozpadł się on poprzez oddziaływania silne – nawet w czasie 10⁻²⁴s to rozpadają się w miejscu powstania (prawie).

O takich stanach mówimy **REZONASE**.

Ewidencja rezonansów możliwa jest poprzez:

- obserwację maksimum w procesie produkcji

LUB

- obserwację maksimum na spektrum masy niezmienniczej stanów końcowych:

$$M_{cd} = \sqrt{(E_c + E_d)^2 - (\overrightarrow{p_c} + \overrightarrow{p_d})^2}$$

 M_{cd}

$$\Psi(t) = \Psi(0)e^{-iE_Rt} e^{-t/2\tau} = \Psi(0) e^{-t(iE_R + \Gamma/2)} \qquad \tau = 1/\Gamma$$

Po czasie "0" stan o energii E_R ewoluuje w czasie i może się rozpaść – prawd. znalezienia cząstki po czasie t:

$$I(t) = \Psi^* \Psi = \Psi(0)^2 e^{-t/\tau}$$

Zależność energetyczna jest transformatą Fouriera wykładniczej zależności od czasu (zad*):

$$\Psi(E) = \int \Psi(t) e^{iEt} dt = \Psi(0) \int e^{-t[\Gamma/2 + iE_R - iE]} dt$$

$$= \frac{K}{(E_R - E) - i\Gamma/2}$$

$$\sigma(E) = \Psi(E) \Psi^*(E) = \sigma_{max} \frac{\Gamma^2/4}{(E - E_R)^2 - \Gamma^2/4}$$
0.4
0.2

A.Obłąkowska-Mucha

$$\sigma(E) = \frac{(2J+1)}{(2s_a+1)(2s_b+1)} \frac{4\pi}{E^2} \frac{\Gamma_i \Gamma_f}{(E-M_R)^2 + (\Gamma/2)^2}$$

Wzór relatywistyczny (prawie identyczny kształt):

$$\sigma(E) = \sigma_{max} \frac{M^2 \Gamma^2}{(s - M^2)^2 - M^2 \Gamma^2}$$

Parametry rezonansów:

M – masa, Γ- szerokość, J – całkowity spin,

 Γ_i , Γ_f - szerokości cząstkowe stanów początkowego i końcowych.

$$\sigma(E) = \frac{3\pi}{s} \frac{\Gamma_e \Gamma_f}{(E - M_R)^2 + (\Gamma/2)^2}$$

wracając do powabu:

Odkryta cząstka była niezwykle wąska. Obecna wartość: $\Gamma(J/\psi)$ ~87 keV

Po dokładniejszych skanach przy stopniowo zmienianej energii odkrywane były nowe stany, wszystkie o małej szerokości.

Z rozkładów doświadczalnych obserwowana szerokość ok. 3 MeV wynika z rozdzielczości detektorów, ale wyznaczenie przekroju czynnego umożliwia wyznaczenie szerokości (splot-konwolucja).

Rozpad J/2 na dwa powabne mezony jest niemożliwy (zbyt mała masa) – rozpad na lekkie cząstki (np. leptony) zachodzi b. rzadko

ślad cząstek w przypadku wyjaśnia nazwę ψ

Szerokość rezonansu

Rozpad na mezony D dozwolony -normalna szerokość dla rozpadów silnych, Γ(Ψ")=24 MeV

Diagramy z niepołączonymi liniami są silnie tłumione -reguła Zweiga- (trzy gluony)

number of events (arbitrary units)

Skoro mieliśmy trzy pokolenia leptonów, powinno być również 3. pokolenie kwarków. W 1977 w Tevatronie odkryto stan związany kwarków b anty-b.

$$p + (Cu, Pt) \rightarrow \mu^+\mu^- + X$$

Nazwano ten stan $\Upsilon(9460)$ Oszacowano m(b) = 4.7 GeV

no i odkrywano nowe stany....

State	Quark	M(MeV)	Γ/τ	J^{PC}	I
$\Upsilon(1^1S_3)$	$bar{b}$	9460	54 keV	1	0
$\Upsilon(2^1S_3)$	$bar{b}$	10023	32 keV	1	0
$\Upsilon(3^1S_3)$	$bar{b}$	10355	$20\mathrm{keV}$	1	0
$\Upsilon(4^1S_3)$	$bar{b}$	10580	$20\mathrm{MeV}$	1	0
B^+	$uar{b}$	5279	1.6 ps	0_{-}	1/2
B^{0}	$dar{b}$	5279	1.5 ps	0_{-}	1/2
B_s^0	$sar{b}$	5368	1.5 ps	0_{-}	0
B_c^+	$c\bar{b}$	6286	0.5 ps	0_	0

9 10 11 12 13

 $m(\mu^+\mu^-)(\text{GeV})$

Późniejsze wyniki (CLEO 1980):

Spektrum "bottonium"

Odkrycie dwóch stanów związanych ciężkich kwarków i ich całego spektrum porównuje się do układu pozytonium (elektron – pozyton), który oddziałuje ze sobą poprzez potencjał kulombowski $V_{em} = -\frac{\alpha_{em}}{r}$.

A zatem część potencjału przy małych odległościach (nierelatywistyczną, bo kwarki ciężkie) oddz. silnych można zapisać jako:

$$V_{QCD} = -\frac{4}{3}\frac{\alpha_s}{r}$$

$$\begin{pmatrix} c \\ s \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{t} \\ \mathbf{b} \end{pmatrix}$$

Kwark t miał być bardzo ciężki i produkowany musiał być w parach.

1995 roku w Tevatronie ogłoszono 27 przypadków przy $\sqrt{s} = 2$ TeV w procesie: $p + \bar{p} \rightarrow t \bar{t} + X$

$$t \to W^+ + b \to W^+ + jet(\overline{b}) \qquad W \to e \nu_e$$

$$\bar{t} \rightarrow W^- + \bar{b} \rightarrow W^- + jet(b)$$
 $W \rightarrow q \bar{q} \rightarrow jet \ 2 + jet \ 3$

Szuka się:

- jeden elektron (mion),
- jedno neutrino,
- 4 pęki hadronów (2 z b),

tu widać "przemianę" kwarka t w kwark b – jest to możliwe TYLKO w oddziaływaniach słabych

Topowy przypadek

 $M(t) = 174.2 \pm 3.3 \text{ GeV}$

Kwark t jest tak ciężki, że zanim utworzy stan związany, ulega rozpadowi.

Jego czas życia jest krótszy niż typowy czas hadronizacji.

Brak "toponium"!

Brak top - hadronów.

