Report for the Markov model (cohort state-transition model)

2020.12.20

Results from the paper

These two tables are from the result part of the paper by Yaqin Si.

Table 1: Increased QALY with no screening

	est	LB	UB
strategy1	498	103	894
strategy2	691	233	194
strategy3	654	105	1108

 Table 2: Prevent CVD events

 est
 LB
 UB

 strategy1
 298
 155
 441

 strategy2
 374
 181
 567

 strategy3
 346
 154
 538

Parameters

Markov model

Model input

% latex table generated in R 3.6.3 by xtable 1.8-4 package % Sun Dec 20 16:07:18 2020

Table 3: Data from Global Health Data Exchange

	Index	sex	$rate_incidence_CVD$	$rate_death_CVD$	rate_death_nonCVD
1	40	male	0.003888	0.000819	0.002494
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399
3	50	male	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	$_{\mathrm{male}}$	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
_14	70	female	0.033907	0.013398	0.014907

```
rate_data <- rate_data[1:7,]</pre>
```

```
## General setup
source("./function/transform_func.R")
n_t <- 7 # time horizon, number of cycles
# S1: live; S2: cvd; S3: cvdth; S4: oth_death
v_names_states <- c("S1", "S2", "S3", "S4")</pre>
n_states <- length(v_names_states) # number of health states</pre>
v_names_str <- c("Strategy0", "Strategy1", "Strategy2", "Strategy3") # store the strategy names
           <- length(v_names_str)</pre>
                                        # number of strategies
n_str
# Utilities: for calculation of QALY
out_cvd_free <- 1  # utility when being S1</pre>
out_cvd <- 0.9 # utility when being S2
out_dth <- 0  # utility when being S3 and S4 together
out_trans_to_cvd <- -0.038
p_live_oth_death <- rate_to_prob(r=rate_data$rate_death_nonCVD,t = 5)</pre>
p_live_cvd <- rate_to_prob(r=rate_data$rate_incidence_CVD,t = 5)</pre>
```

Model input MARKOV MODEL

Table 4: Incedence rate Item CVD incidence(HR) CVD cause-specific mortality (HR) Low risk 0.63 1 Strategy 1 Medium risk 1.56 1 High risk 1.6 1.7 Low risk 0.43 1 Strategy 2 Medium risk 0.971 2.06 1.7 High risk Low risk 0.63 1 Strategy 3 Medium risk 1.09 1 High risk 2.11 1.7 Weight control 0.93 0.93Intervention Smoke cession 0.850.72 Salt reduction 0.810.66Statin and antihypertensive Medication

```
p_live_cvdth <- rate_to_prob(r=rate_data$rate_death_CVD,t = 5)

# transition probability from S1 to S2
p_live_cvd_l <- ProbFactor(p_live_cvd,HR_l_stg1)
p_live_cvd_m <- ProbFactor(p_live_cvd,HR_m_stg1)
p_live_cvd_h <- ProbFactor(p_live_cvd,HR_h_stg1)
# transition probability from S1 to S3
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1) # equal
# p_live_cvdth_m <- ProbFactor(p_live_cvdth,1.7) # intervention etc.
# p_live_cvdth_h <- ProbFactor(p_live_cvdth,1) # intervention etc.
# transition probability from S2 to S3
p_ccvd_acvd <- rate_to_prob(rate_data$rate_incidence_CVD*HR_cvdhistory_cvd,t=5)
p_ccvd_cvdth <- rate_to_prob(rate_data$rate_death_CVD*HR_cvdhistory_cvdth,t=5)</pre>
```

Component 1: A transition probability matrix P_t

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

For example, for the cycle $n_t = 1$, the transition matrix for the cohort is:

$$P_1 = \begin{cases} P4 & P1 & P2 & P3 \\ 0 & P6 & P5 & P3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$$

Model input MARKOV MODEL

```
p1 = p2 = p3 = p4 = p5 = p6 = 0.5
### Fill in array
## From S1
a_P["S1", "S1", ] <- (1-(p_live_cvd+p_live_cvdth+p_live_oth_death))*p4
a_P["S1", "S2", ] <- p_live_cvd*p1
a_P["S1", "S3", ] <- p_live_cvdth*p2
a_P["S1", "S4", ] <- p_live_oth_death*p3</pre>
## From S2
a_P["S2", "S1", ] <- 0
a_P["S2", "S2", ] <- p_ccvd_acvd*p4
a_P["S2", "S3", ] <- p_ccvd_cvdth*p5
a_P["S2", "S4", ] \leftarrow p_live_oth_death*p3
  # 1 - (p_ccvd_acvd + p_ccvd_cvdth)
## From S3
a_P["S3", "S1", ] <- 0
a_P["S3", "S2", ] <- 0
a_P["S3", "S3", ] <- 1
a_P["S3", "S4", ] <- 0
## From S4
a_P["S4", "S1", ] <- 0
a_P["S4", "S2", ] <- 0
a_P["S4", "S3", ] <- 0
a_P["S4", "S4", ] <- 1
```

Component 2: A cohort trace matrix M

```
#### Run Markov model ####
## Initial state vector
# All starting healthy
v_s_init <- c(strategy0 = 1, strategy1 = 0, strategy2 = 0, strategy3 = 0) # initial state vector
v_s_init
## strategy0 strategy1 strategy2 strategy3
          1
                     0
                               0
## Initialize cohort trace for cSTM
m_M \leftarrow matrix(0, nrow = (n_t + 1), ncol = n_states,
              dimnames = list(0:n_t, v_names_states))
# Store the initial state vector in the first row of the cohort trace
m_M[1, ] <- v_s_init
## Iterative solution of cSTM
for(t in 1:n_t){
 m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
plot_trace(m_M)
```

Model input MARKOV MODEL

