

+1/1/60+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

## IPSQuizz du 13/11/2013

Nom et prénom : DESSARTHE Jean-Baptiste

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

| Question 1 •      | Classer ses  | différentes | technologies | de | CAN | par | ordre | de | Temps | de | conversion |
|-------------------|--------------|-------------|--------------|----|-----|-----|-------|----|-------|----|------------|
| (du plus rapide a | u plus lent) | ?           |              |    |     |     |       |    |       |    |            |

| flash - approximation successives - double rampe - simple | rampe |
|-----------------------------------------------------------|-------|
| approximation successives - flash - simple rampe - double | rampe |
| double rampe - flash - approximation successives - simple | rampe |
| approximation successives - flash - double rampe - simple | rampe |
| flash - approximation successives - simple rampe - double | rampe |

## Question 2 •

On considère une résistance thermométrique Pt100 de résistance  $R_C(T) = R_0(1 + \alpha T)$  où Treprésente la température en °C,  $R_0=1$ k $\Omega$  la résistance à 0°C et  $\alpha=3,85.10^{-3}$ °C  $^{-1}$  le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant



## Question 3 •

Quelle est la capacité d'un condensateur plan ? On note :

- $\bullet$   $\epsilon$  : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \epsilon dS$$

$$C = \frac{\epsilon}{Sd}$$



$$C = \frac{\epsilon d}{S}$$

## Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...



0/4

2/2

3/3

2/2

... des températures. ... des courants. ... des différences de températures. ... des potentiels. ... des résistances.



|     | Question 5 • Pourquoi faire du sur-échantillonnage ?                                                                                                                                                                                                                                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/2 | Pour améliorer l'efficacité du filtre antirepliement.  Pour supprimer les perturbations de mode commun.  Pour réduire le bruit de quantification                                                                                                                                                                      |
| 1/1 | Question 6 ◆ A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?  La longueur du potentiomètre  La course électrique.  Le pas de bobinage  La résistance maximale du pôtentiomètre  La taille des grains de la poudre utilisée                                                            |
| 1/1 | Question 7 •  Des jauges extensométriques permettent de mesurer  des températures.  des courants.  des résistances.  des grands déplacements.  des flux lumineux.                                                                                                                                                     |
| 1/1 | Question 8 • Un capteur LVDT permet de mesurer :  des déplacement linéaire des déplacements angulaires des courants des températures des flux lumineux                                                                                                                                                                |
| 3/3 | Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?  De rejeter les perturbations de mode différentiel.  Les voies sont symétriques.  Le gain est fixé par une seule résistance.                                                                                                              |
| O/O | Les impédances d'entrées sont élevés.  Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.                                                                                                                                                                                                     |
|     | Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_{C_n} = 1 \text{ms}$ . Quel est le pas de quantification de ce CAN?                                                                                       |
| 1/1 | Question 11 •  On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$ , avec $U_s$ la sortie de l'AOP et $\epsilon = u_+ - u$ . Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre $E$ et $U_s$ , Que dire de la stabilité du système bouclé ? |
| 0/6 |                                                                                                                                                                                                                                                                                                                       |