

**UTILITY PATENT
APPLICATION TRANSMITTAL**

(Only for new nonprovisional applications
under 37 CFR 1.53(b))

Attorney Docket No.	000294	Total Pages	17/00
First Named Inventor or Application Identifier			U.S. 5,282,609
Kazuhiko TAKADA			1/17/00
Express Mail Label No.			1C511

Check Box, if applicable [] Duplicate

APPLICATION ELEMENTS FOR:

SEMICONDUCTOR DEVICE HAVING A GUARD RING

ADDRESS TO: Assistant Commissioner for Patents
BOX PATENT APPLICATIONS
Washington, D.C. 20231

1. Fee Transmittal Form (Incorporated within this form)
(Submit an original and a duplicate for fee processing)
2. Specification Total Pages [29]
3. Drawing(s) (35 USC 113) Total Sheets [12]
4. Oath or Declaration Total Pages [5]
 - a. Newly executed (original)
 - b. Copy from prior application (37 CFR 1.63(d))
(for continuation/divisional with Box 17 completed).
 - i. Deletion of Inventor(s)
Signed statement attached deleting inventor(s) named in prior application,
see 37 CFR 1.63(d)(2) and 1.33(b).
5. Incorporation by reference (useable if box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under box 4b, is considered as being part of the disclosure of the accompanying application and is incorporated by reference therein.
6. Microfiche Computer Program (Appendix)
7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement Verifying identity of above copies
8. Assignment Papers (cover sheet and document(s))
9. 37 CFR 3.73(b) Statement (when there is an assignee) Power of Attorney

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet and document(s))
9. 37 CFR 3.73(b) Statement (when there is an assignee) Power of Attorney

**UTILITY PATENT
APPLICATION TRANSMITTAL**
(Only for new nonprovisional applications
under 37 CFR 1.53(b))

Attorney Docket No.	000294
First Named Inventor or Application Identifier	
Kazuhiko TAKADA	
PAGE 2 OF 3	

10. English translation Document (if applicable)
11. Information Disclosure Statement Copies of IDS Citations
12. Preliminary Amendment
13. Return Receipt Postcard (MPEP 503)
14. Small Entity Statement(s) Statement filed in prior application
Status still proper and desired.
15. Claim for Convention Priority Certified copy of Priority Document(s)
- a. Priority of _____ application no's. _____ filed on _____ is claimed under 35 USC 119. The certified copies/copy have/has been filed in prior application Serial No. _____.
(For Continuing Applications, if applicable).
16. Other _____
17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:
 Continuation Division Continuation-in-part (CIP) of prior application no. ____ / ____

FEES TRANSMITTAL	Number Filed	Number Extra	Rate	Basic Fee
The filing fee is calculated below				\$690.00
Total Claims	12-20	0	x \$18.00	
Independent Claims	2-3	0	x \$78.00	
Multiple Dependent Claims			\$260.00	
			Basic Filing Fee	690.00
Reduction by ½ for small entity				
Fee for recording enclosed Assignment			\$40.00	40.00
TOTAL				730.00

UTILITY PATENT
APPLICATION TRANSMITTAL
(Only for new nonprovisional applications
under 37 CFR 1.53(b))

Attorney Docket No. **000294**

First Named Inventor or Application Identifier

Kazuhiko TAKADA

PAGE 3 OF 3

- [XX] A check in the amount of \$730.00 is enclosed to cover the filing fee of \$690.00 and the assignment recordation fee of \$40.00.
- [] Please charge our Deposit Account No. **01-2340** in the total amount of to cover the filing fee and the assignment recordation fee. A duplicate of this sheet is attached.
- [XX] The Commissioner is hereby authorized to charge payment for any additional filing fees required under 37 CFR 1.16 or credit any overpayment to Deposit Account No. **01-2340**. A duplicate of this sheet is attached.

18. CORRESPONDENCE ADDRESS

ARMSTRONG, WESTERMAN, HATTORI
McLELAND & NAUGHTON
1725 K Street, N.W. Suite 1000
Washington, D.C. 20006
Telephone: (202) 659-2930
Facsimile: (202) 887-0357

SUBMITTED BY

Typed or Printed Name **William G. Kratz, Jr.** Reg. No. **22,631**

Signature Date: **March 17, 2000**

WGK/lf

SPECIFICATION

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT I, Kazuhiko Takada, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan have invented certain new and useful improvements in

SEMICONDUCTOR DEVICE HAVING A GUARD RING

of which the following is a specification : -

TITLE OF THE INVENTION

SEMICONDUCTOR DEVICE HAVING A GUARD
RING

5 CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on Japanese priority application No.11-76730 filed on March 13, 1999, the entire contents of which are hereby incorporated by reference.

10

BACKGROUND OF THE INVENTION

The present invention generally relates to semiconductor devices and more particularly to a semiconductor device having a guard ring.

15

In the art of semiconductor devices, a so-called multilayer interconnection structure is used for interconnecting various semiconductor elements formed on a common substrate. A multilayer interconnection structure includes a number of interlayer insulation films provided on the common substrate for covering the semiconductor elements, wherein the interlayer insulation films carry an interconnection pattern in such a manner that the interconnection pattern are embedded in the interlayer insulation films.

20

25

30

In such semiconductor devices that use the multilayer interconnection structure, it is generally practiced to provide a guard ring structure along an outer periphery of the semiconductor substrate so as to block the penetration of moisture or corrosive gas into the interior of the semiconductor device along the interface between the interlayer insulation films.

35

FIG.1A shows a typical conventional guard ring in an enlarged view, while FIG.1B shows the overall construction of the guard ring of FIG.1A in a plan view.

Referring to FIGS.1A and 1B, it can be seen that a guard ring structure 12 is formed along an outer periphery of the semiconductor chip on which a semiconductor device 11 is formed, 5 in such a manner that the guard ring structure 12 surrounds the semiconductor device 11 continuously.

FIG.2 shows a cross-sectional view of the structure of FIG.1B taken along a line 2-2'.

10 Referring to FIG.2, the semiconductor device 11 is formed on a Si substrate 21 formed with a field oxide film 22, wherein the field oxide film 22 defines a diffusion region 21A on the surface of the Si substrate 21.

15 On the Si substrate 21, it should be noted that interlayer insulation films 23 - 25 are deposited consecutively so as to cover the field oxide film 22 and the diffusion region 21A, wherein the interlayer insulation films 22 - 25 20 may be formed of an inorganic material such as SiO₂, PSG, BPSG, and the like. Alternatively, the interlayer insulation films may be formed of an organic material such as fluorocarbon, hydrocarbon, polyimide, or organic SOG.

25 As represented in FIG.2, the interlayer insulation film 23 is formed of a contact groove 23A exposing the diffusion region 21A, such that the contact groove 23A extends continuously along the outer periphery of the semiconductor device 30 11. The contact groove 23A is filled with a conductive wall 23B of W, and the like, and a conductive pattern 24A of W, WSi or polysilicon is formed on the interlayer insulation film 23 in mechanical as well as electrical contact with the 35 conductive wall 23B. Thereby, the conductive pattern 24A extends along the outer peripheral edge of the semiconductor device 11.

The conductive pattern 24A thus formed, in turn, is covered by the interlayer insulation film 24, wherein the interlayer insulation film 24 is formed with a contact groove 24B so as to expose the conductive pattern 24A. Thereby, the contact groove 24B extends continuously and in parallel with the contact groove 24A along the outer periphery of the semiconductor device 11.

The contact groove 24B is filled with a conductive wall 24C of W, and the like, and a conductive pattern 25A of W, WSi or polysilicon is formed on the interlayer insulation film 24 in electrical as well as mechanical contact with the conductive wall 24C. Thereby, the conductive pattern 25A extends along the outer periphery of the semiconductor device in correspondence to the contact groove 24B.

The conductive pattern 25A, in turn, is covered by the interlayer insulation film 25 and a contact groove 25B is formed in the interlayer insulation film 25 continuously along the outer periphery of the semiconductor device 11 in a parallel relationship with respect to the conductive groove 24B, wherein the contact groove 25B is formed so as to expose the conductive pattern 25A.

Further, the contact groove 25B is filled with a conductive wall 25C and a conductive pattern 26A of W, WSi or polysilicon is formed on the interlayer insulation film 25 in electrical as well as mechanical contact with the conductive groove 25C, wherein the conductive pattern 26A is formed continuously along the outer periphery of the semiconductor device 11 in correspondence to the contact groove 25B. The conductive pattern 26A is covered by a protective film 26 such as SiN formed on the interlayer insulation film 25.

According to the construction of FIG.2, the conductive walls 23B, 24C and 25C form, together with the conductive patterns 24A, 25A and 26A, the guard ring 12 represented in FIG.1B.

5 By forming such a guard ring 12, the problem of penetration of H₂O or corrosive gas into the interior of the semiconductor device 11 along the interface boundary between the interlayer insulation films, such as the interface between

10 the interlayer insulation film 23 and the interlayer insulation film 24, is effectively blocked.

Conventionally, the guard ring structure such as the one represented in FIG.2 has been formed simultaneously to the formation of the multilayer interconnection structure. In such conventional multilayer interconnection structure, it has been practiced to form a conductive pattern on an underlying layer and 20 cover the conductive pattern thus formed by an insulation film. The insulation film thus formed is further subjected to a planarization process.

In recent advanced semiconductor devices called sub-micron devices or sub-quarter-micron devices, on the other hand, delay of electric signals in the multilayer interconnection structure is becoming a serious problem. Thus, in order to address the foregoing problem of signal delay, it has been practiced to 30 use low-resistance Cu for the conductive pattern in such a multilayer interconnection structure in combination with organic interlayer insulation films, which have a characteristically low dielectric constant.

35 In the multilayer interconnection structure using Cu for the interconnection pattern, it has been practiced to use a so-called

dual-damascene process in view of the fact that patterning of Cu by a dry etching process is difficult, contrary to the conventional conductor material such as Al, W, Si or Au used for this purpose. In a dual-damascene process, interconnection grooves or contact holes are formed in the interlayer insulation film in advance and the interconnection grooves or contact holes are filled with a Cu layer by way of a suitable deposition process such as an electrolytic plating process. After the deposition of the Cu layer, the part of the Cu layer remaining on the interlayer insulation film is removed by a chemical mechanical polishing (CMP) process. As a result of the CMP process, a Cu pattern of Cu plug filling the interconnection groove or contact hole is obtained.

In view of the potential usefulness of forming extremely minute patterns, dual-damascene process is used not only in the multilayer interconnection structure that uses Cu for the interconnection patterns but also in general multilayer interconnection structure for use in advanced, highly miniaturized semiconductor devices. Further, CMP process can provide an exactly flat surface and is used extensively in various planarizing processes.

FIG.3A shows a CMP process conducted to the semiconductor device 11 represented in FIGS.1A and 1B, while FIG.3B shows a part of FIG.3A in an enlarged view.

Referring to FIGS.3A and 3B, the CMP process is conducted on a rotating polishing platen covered with a polishing cloth, and a semiconductor wafer 10, on which a number of semiconductor devices are formed, is urged against the polishing cloth under a predetermined

pressure while dropping a polishing slurry. As the same time, the semiconductor wafer 10 itself is also rotated at a predetermined speed.

When such a CMP process is applied to
5 the semiconductor device 11 having the guard ring structure, it will be understood from FIG.3B that there is a moment in which the direction of the CMP coincides with the elongating direction of the guard ring structure 12.

10 FIG.4 shows the relative distribution of the velocity of slurry particles for the case in which the wafer 10 of FIG.3A is urged against the polishing platen rotating at the rotational speed of 0.857 rps (rotation per second) while
15 rotating the wafer 10 at the rotational speed of 0.857 rps.

Referring to FIG.4, it will be noted that the velocity v_x and the velocity v_y of the polishing particles change, when the particles
20 are on the central part of the wafer 10, along a circular path represented by a shading as a result of the rotation or revolution of the wafer 10. On the other hand, the velocities v_x and v_y of the slurry particles on the peripheral part of
25 the wafer 10 change along a circular path represented in FIG.4 by a continuous line. It should be noted that the x-direction and y-direction are defined for the two-dimensional Cartesian coordinate system fixed to the wafer 10.

30 As can be seen clearly from FIG.4, the relative speed of the abrasive particles becomes larger in the peripheral part of the wafer 10 than in the central part due to the effect of increased distance from the rotational center of
35 the rotating platen. This effect of increased relative speed of the abrasive particles at the peripheral part of the wafer 10 is enhanced when

the diameter of the wafer 10 is increased.

Referring back to FIGS.3A and 3B, it should be noted that the guard ring 12 on the wafer 10 experience a large stress at the time of 5 the CMP process as a result of the engagement with the slurry particles, wherein the effect of the stress is enhanced in the semiconductor devices 11 that are formed on the peripheral part of the wafer 10 than in the semiconductor devices 10 11 formed on the central part.

In the state of FIG.3B, it can be seen that the abrasive particles exert a stress in the elongating direction of the guard ring structure 12. In view of the fact that such a long 15 continuous pattern generally includes, somewhere therein, a defective part where the adhesion to the underlying layer is poor, there is a substantial risk, in the state of FIG.3B, that an exfoliation of the guard ring 12 may occur in 20 such a defective part when the elongating direction of the guard ring 12 is coincident with the moving direction of the polishing particles. In the case the elongating direction of the guard ring 12 is oblique to the direction of the moving 25 polishing particles, on the other hand, the guard ring 12 is laterally supported by the walls of the groove in which the guard ring 12 is formed, and no substantial exfoliation occurs even in the defective part. Further, such a problem of 30 conductive pattern exfoliation associated with the CMP process does not occur in the interconnection patterns in the multilayer interconnection structure in view of the fact that such an interconnection pattern generally 35 has a zigzag or complex pattern.

In the state of FIG.3B, the guard ring 12 extending in the y-direction lacks such a

lateral support structure, and thus, the existence of defective part in any of the conductive walls 23B, 24C or 25C easily causes damaging in the guard ring 12 in correspondence 5 to such a defective part as represented in FIG.5. In FIG.5, it should be noted that those parts corresponding to the parts described previously are designated by the same reference numerals and the description thereof will be omitted. In 10 the structure of FIG.5, it will be noted that the bottom surface and the side wall of the contact groove 23A is covered by an adhesion film (23B)₁ of a refractory metal compound such as TiN for improving the adhesion.

15

SUMMARY OF THE INVENTION

Accordingly, it is a general object of the present invention to provide a novel and useful semiconductor device wherein the foregoing 20 problems are eliminated.

Another and more specific object of the present invention is to provide a semiconductor device having a guard ring structure wherein the problem of exfoliation of the guard ring 25 structure during a CMP process is effectively eliminated.

Another object of the present invention is to provide a semiconductor device, comprising:
30 a substrate; and
 a multilayer interconnection structure formed on said substrate,
 said multilayer interconnection structure including: an interlayer insulation film provided on said substrate; and a guard ring 35 pattern embedded in said interlayer insulation film, said guard ring pattern extending along a periphery of said substrate in contact with a

surface of said substrate,

wherein said guard ring pattern has a zigzag pattern when viewed perpendicular to said substrate.

5 Another object of the present invention is to provide a method of fabricating a semiconductor device, comprising the steps of:

depositing an interlayer insulation film on a substrate;

10 forming a first groove in said interlayer insulation film to as to extend continuously along a periphery of said substrate;

15 forming a second groove in said interlayer insulation film such that said second groove extend continuously in said first groove;

depositing a conductive layer on said interlayer insulation film set as to fill said first and second grooves; and

20 removing a part of said conductive layer locating above said interlayer insulation film by a chemical mechanical polishing process, to form a guard ring pattern filling said first and second grooves,

25 wherein said step of forming said second groove is conducted such that said second groove has a zigzag pattern in said first groove.

According to the present invention, the guard ring has a pattern that avoids extending continuously in a predetermined direction for a 30 long distance. Thereby, the guard ring pattern is effectively supported by the interlayer insulation film at the side walls thereof in any two, mutually perpendicular directions.

Other objects and further features of
35 the present invention will become apparent from the following detailed description when read in conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS.1A and 1B are diagrams showing a guard ring structure of a related art;

5 FIG.2 is a diagram showing the guard ring structure of the related art in a cross-sectional view;

FIGS.3A and 3B are diagrams showing a CMP process according to a related art;

10 FIG.4 is a diagram showing the relative distribution of slurry particles during a CMP process of a wafer;

FIG.5 is a diagram showing an example of a defective guard ring structure;

15 FIG.6 is a diagram showing a guard ring structure according to a first embodiment of the present invention in a plan view;

FIG.7 is a diagram showing the guard ring structure of FIG.6 in a cross-sectional view;

20 FIGS.8A - 8D are diagrams showing the fabrication step of the semiconductor device of FIG.6;

25 FIG.9 is a diagram showing a guard ring structure according to a second embodiment of the present invention in a plan view;

FIG.10 is a diagram showing a guard ring structure according to a third embodiment of the present invention in a plan view; and

30 FIG.11 is a diagram showing a guard ring structure according to a fourth embodiment of the present invention in a plan view.

DETAILED DESCRIPTION OF THE INVENTION

35 [FIRST EMBODIMENT]

FIG.6 shows the construction of a semiconductor device 40 according to a first

embodiment of the present invention in a plan view, while FIG.7 shows the semiconductor device 40 in a cross-sectional view.

Referring to the cross-sectional view
5 of FIG.7 first, the semiconductor device 40 is formed on a Si substrate 42 carrying thereon a field oxide film 42, wherein the field oxide film 42 defines a diffusion region 41A on the surface of the Si substrate 41.

10 The Si substrate 41 is covered with an interlayer insulation film 43₁ formed of any of an inorganic insulation film such as SiO₂, PSG or BPSG, or an organic insulation film such as fluorocarbon, hydrocarbon, polyimide or organic
15 SOG, wherein the interlayer insulation film 43₁ is formed so as to cover the field oxide film 42 and the diffusion region 41A.

The interlayer insulation film 43₁ is formed with a contact groove 43_{1a} exposing the
20 diffusion region 41A, wherein the contact groove 43₁ has a zigzag form and is formed continuously along the periphery of the semiconductor device 41 as will be explained below with reference to the plan view of FIG.6. The contact groove 43_{1a} is
25 filled with a conductive wall 43_{1b} of W, and the like.

In the construction of FIG.7, it should be noted that the interlayer insulation film 43₁ is covered by an SiN film 43₂ functioning as an
30 etching stopper, and another interlayer insulation film 43₃ is deposited on the etching stopper film 43₂. The interlayer insulation film 43₃ may be formed of any of an inorganic insulation film such as SiO₂, PSG or BPSG, or an
35 organic insulation film such as fluorocarbon, hydrocarbon, polyimide or organic SOG, similar to the interlayer insulation film 43₁.

Further, the interlayer insulation film 43₃ is formed with a groove 43_{3a} so as to expose the top surface of the interlayer insulation film 43₁ penetrating through the etching stopper layer 43₂ underneath, wherein the groove 43_{3a} exposes the foregoing contact groove 43_{1a}. The groove 43_{3a} is then filled with a conductive pattern 43_{3b} of W.

The conductive pattern 43_{3b} thus formed makes a continuous contact with the conductive wall 43_{1b}.

10 The conductive pattern 43_{3b} has a flush surface with the interlayer insulation film 43₃, and the interlayer insulation film 43₁, the etching stopper film 43₂ and the interlayer insulation film 43₃ form together an interlayer insulation structure 43.

On the interlayer insulation structure 43, there is provided an interlayer insulation film 44₁ of any of an inorganic insulation film such as SiO₂, PSG or BPSG, or an organic insulation film such as fluorocarbon, hydrocarbon, polyimide or organic SOG similar to the interlayer insulation film 43₁, such that the interlayer insulation film 44₁ covers the conductive pattern 43_{3b}. The interlayer insulation film 44₁ is formed with a contact groove 44_{1a} exposing the conductive pattern 43_{3b}, wherein the contact groove 44_{1a} has a zigzag pattern and extends continuously along the outer periphery of the semiconductor device 41 constituting an integrated circuit as will be explained below with reference to FIG.6. The contact groove 44_{1a} is filled with a conductive wall 44_{1b} of Cu, W, and the like.

The interlayer insulation film 44₁ is covered by an SiN film 44₂ functioning as an etching stopper, and another interlayer insulation film 44₃ is deposited on the etching

stopper film 44₂. The interlayer insulation film 44₃ may be formed of any of an inorganic insulation film such as SiO₂, PSG or BPSG, or an organic insulation film such as fluorocarbon, 5 hydrocarbon, polyimide or organic SOG, similar to the interlayer insulation film 44₁.

Further, the interlayer insulation film 44₃ is formed with a groove 44_{3a} so as to expose the top surface of the interlayer insulation film 10 44₁ penetrating through the etching stopper layer 44₂ underneath, wherein the groove 44_{3a} exposes the foregoing contact groove 44_{1a}. The groove 44_{3a} is then filled with a conductive pattern 44_{3b} of W. The conductive pattern 44_{3b} thus formed makes a 15 continuous contact with the conductive wall 44_{1b}.

The conductive pattern 44_{3b} has a flush surface with the interlayer insulation film 44₃, and the interlayer insulation film 44₁, the etching stopper film 44₂ and the interlayer 20 insulation film 44₃ form together an interlayer insulation structure 44.

On the interlayer insulation structure 44, there is provided an interlayer insulation film 45₁ of any of an inorganic insulation film 25 such as SiO₂, PSG or BPSG, or an organic insulation film such as fluorocarbon, hydrocarbon, polyimide or organic SOG similar to the interlayer insulation film 44₁, such that the interlayer insulation film 45₁ covers the 30 conductor pattern 44_{3b}. The interlayer insulation film 45₁ is formed with a contact groove 45_{1a} exposing the conductive pattern 44_{3b}, wherein the contact groove 45_{1a} has a zigzag pattern and extends continuously along the outer 35 periphery of the semiconductor device 41 as will be explained below with reference to FIG.6. The contact groove 45_{1a} is filled with a conductive

wall 45_{1b} of Cu, W, and the like.

The interlayer insulation film 45₁ is covered by an SiN film 45₂ functioning as an etching stopper, and another interlayer 5 insulation film 45₃ is deposited on the etching stopper film 45₂. The interlayer insulation film 45₃ may be formed of any of an inorganic insulation film such as SiO₂, PSG or BPSG, or an organic insulation film such as fluorocarbon, 10 hydrocarbon, polyimide or organic SOG, similar to the interlayer insulation film 45₁.

Further, the interlayer insulation film 45₃ is formed with a groove 45_{3a} so as to expose the top surface of the interlayer insulation film 15 45₁ penetrating through the etching stopper layer 45₂ underneath, wherein the groove 45_{3a} exposes the foregoing contact groove 45_{1a}. The groove 45_{3a} is then filled with a conductive pattern 45_{3b} of W. The conductive pattern 45_{3b} thus formed makes a 20 continuous contact with the conductive wall 45_{1b}.

The conductive pattern 45_{3b} has a flush surface with the interlayer insulation film 45₃, and the interlayer insulation film 45₁, the etching stopper film 45₂ and the interlayer 25 insulation film 45₃ form together an interlayer insulation structure 45. Further, a protective film 46 of SiN is formed on the interlayer insulation film 45₃.

In the layered structure in which the 30 foregoing interlayer insulation structures 43 - 45 are stacked, water or corrosive gas penetrating along the layer boundary is effectively blocked by the conductive walls 43_{1b}, 44_{1b} and 45_{1b} and/or by the conductive patterns 43_{3b}, 44_{3b} and 45_{3b}. Thereby, the conductive walls 35 43_{1b}, 44_{1b} and 45_{1b} and the conductive patterns 43_{3b}, 44_{3b} and 45_{3b} form together a guard ring 40A of the

semiconductor integrated circuit 40.

FIGS.8A - 8D show the fabrication process of the semiconductor device 40 of FIG.7.

Referring to FIG.8A, the interlayer insulation film 43₁, SiN etching stopper layer 43₂ and the interlayer insulation film 43₃ are deposited consecutively on the Si substrate 41 on which the diffusion region 41A and the field oxide film 42 are formed, and a resist pattern 51 having a resist opening 51A is formed on the interlayer insulation film 43₃. Further, a dry etching process is conducted while using the resist pattern 51 as a mask, until the etching stopper 43₂ is exposed. As a result of the dry etching process, a groove 43_{3a} is formed in the interlayer insulation film 43₃.

Next, in the step of FIG.8B, the resist pattern 51 is removed and another resist pattern 52 is formed on the structure thus formed such that the resist pattern 52 has a resist opening 52 inside the groove 43_{3a}. Further, by applying a dry etching process to the SiN film 43₂ and the interlayer insulation film 43₁ while using the resist pattern 51 as a mask, a structure represented in FIG.8C is obtained.

Next, in the step of FIG.8D, a Cu layer 53 is deposited on the structure of FIG.8C by a sputtering process or electrolytic plating process. Further, by removing the Cu layer 53 for the part locating above the interlayer insulation film 43₃ by a CMP process. Further, by repeating the similar processes, the structure of FIG.7 is obtained.

Referring to the plan view of FIG.6 again, the uppermost conductive pattern 45_{3b} extends along an edge surface 41E of the semiconductor substrate 41 with a typical width L

of 10 μm , wherein it will be noted that the uppermost conductive wall 45_{1b} extends, within a band-like region having a width of L_w of typically 8 μm , with a zigzag pattern. The conductive wall 5 45_{1b} itself has a width W_c of typically 0.5 μm .

As can be seen in the cross-sectional view of FIG.7, the lowermost conductive patterns 43_{3b} and 44_{3b} extend parallel with the uppermost conductive pattern 45_{3b}, while the intermediate 10 conductive wall 44_{1b} has a zigzag pattern of the anti-phase relationship with respect to the uppermost conductive wall 45_{1b}. On the other hand, the lowermost conductive wall 43_{1b} extends in an in-phase relationship with respect to the 15 uppermost conductive wall 45_{1b}.

More specifically, each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} are bent repeatedly and alternately with an angle θ of $\pm 120^\circ$ in each unit lengthy L_c of typically 6.4 μm . 20 Thereby, the conductive walls 43_{1b}, 44_{1b} and 45_{1b} have a width W_{CL} of about 0.58 μm when measured in the direction perpendicular to the edge surface 41E, and a margin L_a of about 1 μm is secured between the side edge of the conductive wall and 25 the edge surface 41E.

When a CMP process is applied to the guard ring 40A having such a structure in the step of FIG.8D, a stress acting oppositely to the polishing direction is applied to the guard ring 30 40A, and each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} experience a stress component acting in the elongating direction thereof. On the other hand, in view of the fact that the length of elongation of the conductive walls is limited 35 within the length L_c (more exactly the length of $(L_w^2 + L_c^2)^{1/2}$ for each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b}, the situation of the stress acting

to the guard ring extending over a long distance as in the case of FIGS.1A and 1B is effectively avoided. It should be noted that each of the conductive walls 43_{1b} , 44_{1b} and 45_{1b} constituting
5 the guard ring 40A has the longitudinal ends supported by the interlayer insulation structure 43, 44 or 45, and the exfoliation is effectively avoided even in such a case a defective part is included in the conductive wall.

10

[SECOND EMBODIMENT]

FIG.9 shows the construction of a semiconductor device 50 according to a second embodiment of the present invention in a plan view. As the semiconductor device 50 of the present embodiment is a modification of the semiconductor device 40 described previously, those parts corresponding to the parts described previously are designated by the same reference numerals and the description thereof will be
15 omitted.
20

Referring to FIG.9, the uppermost conductive pattern 45_{3b} extends along the edge surface 41E of the semiconductor substrate 41 with a typical width L of 10 μm , wherein it will be noted that the uppermost conductive wall 45_{1b} extends, within a band-like region having a width of L_w of typically 8 μm , with a rectangular wave pattern. The conductive wall 45_{1b} itself has a
25 width W_c of typically 0.5 μm .
30

In the present embodiment, too, the lowermost conductive patterns 43_{3b} and 44_{3b} extend parallel with the uppermost conductive pattern 45_{3b} , while the intermediate conductive wall 44_{1b} has a zigzag pattern of the anti-phase relationship with respect to the uppermost conductive wall 45_{1b} . On the other hand, the
35

lowermost conductive wall 43_{1b} extends in a in-phase relationship with respect to the uppermost conductive wall 45_{1b}.

More specifically, each of the 5 conductive walls 43_{1b}, 44_{1b} and 45_{1b} are bent repeatedly and alternately with an angle θ of \pm 90° in each unit lengthy Lc of typically 6.4 μm . Thereby, the conductive walls 43_{1b}, 44_{1b} and 45_{1b} have a width W_{CL} of about 0.58 μm when measured in 10 the direction perpendicular to the edge surface 41E, and a margin L_a of about 1 μm is secured between the side edge of the conductive wall and the edge surface 41E.

When a CMP process is applied to the 15 guard ring 40A having such a structure in the step of FIG.8D, a stress acting oppositely to the polishing direction is applied to the guard ring 40A, and each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} experience a stress component acting in 20 the elongating direction thereof. On the other hand, in view of the fact that the length of elongation of the conductive walls is limited for each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b}, the situation of the stress acting to the guard 25 ring extending over a long distance as in the case of FIGS.1A and 1B is effectively avoided. It should be noted that each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} constituting the guard ring 40A has the longitudinal ends supported by the 30 interlayer insulation structure 43, 44 or 45, and the exfoliation as explained with reference to FIG.5 is effectively avoided even in such a case a defective part is included in the conductive wall.

35

[THIRD EMBODIMENT]

FIG.10 shows the construction of a

semiconductor device 60 according to a third embodiment of the present invention in a plan view. As the semiconductor device 60 of the present embodiment is a modification of the 5 semiconductor device 40 described previously, those parts corresponding to the parts described previously are designated by the same reference numerals and the description thereof will be omitted.

10 Referring to FIG.10, the uppermost conductive wall 45_{1b} extends in the form of a zigzag pattern, in a band region typically having a width of 8 μm , with a width W_c of 0.5 μm , and the uppermost conductive pattern 45_{3b} extends 15 along the conductive wall 45_{1b} with a typical width L of 10 μm in the form of a corresponding zigzag pattern.

In the present embodiment, too, the intermediate conductive wall 44_{1b} extends in a 20 zigzag pattern with an anti-phase relationship with respect to the uppermost conductive wall 45_{1b}.

On the other hand, the lowermost conductive wall 43_{1b} extends zigzag in an in-phase relationship with respect to the uppermost conductive wall 45_{1b}.

25 Associated with this, the conductive pattern 44_{3b} of the intermediate layer extend zigzag along the intermediate conductive wall 44_{1b}, and the conductive pattern 43_{3b} extends also zigzag along the lowermost conductive wall 43_{1b}.

30 More specifically, each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} are bent repeatedly and alternately with an angle θ of $\pm 120^\circ$ in each unit lengthy L_c of typically 6.4 μm . Thereby, a margin L_a of about 1 μm is secured 35 between the side edge of the conductive wall and the edge surface 41E.

When a CMP process is applied to the

guard ring 40A having such a structure in the step of FIG.8D, a stress acting oppositely to the polishing direction is applied to the guard ring 40A, and each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} experience a stress component acting in the elongating direction thereof. On the other hand, in view of the fact that the length of elongation of the conductive walls is limited for each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b},

5 the situation of the stress acting upon the guard ring extending over a long distance as in the case of FIGS.1A and 1B is effectively avoided. It should be noted that each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} constituting the guard ring 40A

10 has the longitudinal ends supported by the interlayer insulation structure 43, 44 or 45, and the exfoliation as explained with reference to FIG.5 is effectively avoided even in such a case a defective part is included in the conductive

15 wall.

20

[FOURTH EMBODIMENT]

FIG.11 shows the construction of a semiconductor device 70 according to a fourth embodiment of the present invention in a plan view. As the semiconductor device 70 of the present embodiment is a modification of the semiconductor device 50 described previously, those parts corresponding to the parts described

25 previously are designated by the same reference numerals and the description thereof will be omitted.

30

Referring to FIG.11, the uppermost conductive wall 45_{1b} extends in the form of a rectangular waveform pattern, in a band region typically having a width of 8 μm , with a width W_c of 0.5 μm , and the uppermost conductive pattern

35

45_{3b} extends along the conductive wall 45_{1b} with a typical width L of 10 μm in the form of a corresponding rectangular waveform pattern.

In the present embodiment, too, the intermediate conductive wall 44_{1b} extends in a rectangular waveform pattern with an anti-phase relationship with respect to the uppermost conductive wall 45_{1b}. On the other hand, the lowermost conductive wall 43_{1b} extends in a rectangular waveform pattern of the in-phase relationship with respect to the uppermost conductive wall 45_{1b}. Associated with this, the conductive pattern 44_{3b} of the intermediate layer extend in the rectangular waveform pattern along the intermediate conductive wall 44_{1b}, and the conductive pattern 43_{3b} extends also in the form of rectangular waveform pattern zigzag along the lowermost conductive wall 43_{1b}.

More specifically, each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} are bent repeatedly and alternately with an angle θ of $\pm 90^\circ$ in each unit lengthy Lc of typically 6.4 μm . Thereby, a margin L_a of about 1 μm is secured between the side edge of the conductive wall and the edge surface 41E.

When a CMP process is applied to the guard ring 40A having such a structure in the step of FIG.8D, a stress acting oppositely to the polishing direction is applied to the guard ring 40A, and each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} experience a stress component acting in the elongating direction thereof. On the other hand, in view of the fact that the length of elongation of the conductive walls is limited for each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b}, the situation of the stress acting upon the guard ring extending over a long distance as in the

case of FIGS.1A and 1B is effectively avoided. It should be noted that each of the conductive walls 43_{1b}, 44_{1b} and 45_{1b} constituting the guard ring 40A has the longitudinal ends supported by the
5 interlayer insulation structure 43, 44 or 45, and the exfoliation as explained with reference to FIG.5 is effectively avoided even in such a case a defective part is included in the conductive wall.

10 In the present invention, it should be noted that the conductive patterns and conductive walls constituting the guard ring is not limited to Cu but various other metals or conductors such as W, Au, Al, polysilicon, and the like, may be
15 used also. Further, it is not necessary for the guard ring to surround the substrate continuously and completely, but the guard ring may be formed intermittently.

Further, the present invention is not
20 limited to the embodiments described heretofore, but various variations and modifications may be made without departing from the scope of the invention.

WHAT IS CLAIMED IS

5

1. A semiconductor device, comprising:
a substrate; and
a multilayer interconnection structure
formed on said substrate,

10 said multilayer interconnection
structure including: at least first and second
interlayer insulation films provided on said
substrate; and a guard ring pattern embedded in
each of said first and second interlayer
15 insulation films, said guard ring pattern
extending along a periphery of said substrate,
wherein said guard ring pattern changes
a direction thereof repeatedly and alternately in
a plane parallel to said substrate,

20 said guard ring pattern including: a
conductive wall extending in each of said first
and second interlayer insulation films from a
bottom principal surface thereof to a top
principal surface thereof; and a conductive
25 pattern making a contact with a top part of said
conductive wall and having a principal surface
coincident to said top principal surface of said
interlayer insulation film, said conductive wall
changing a direction thereof repeatedly and
30 alternately in said plane in correspondence to
said guard ring pattern,

 said conductive wall in said first
interlayer insulation film being offset with
respect to said conductive wall in said second
35 interlayer insulation film in a direction
parallel to a principal surface of said substrate
toward an interior of said substrate when viewed

in a direction perpendicular to said principal surface of said substrate.

5

2. A semiconductor device as claimed in claim 1, wherein said guard ring pattern extends continuously along said periphery of said
10 substrate.

15

3. A semiconductor device as claimed in claim 1, wherein said conductive pattern extends in the form of a straight line along a peripheral edge of said substrate.

20

25

4. A semiconductor device as claimed in claim 1, wherein said conductive pattern changes a direction thereof repeatedly and alternately in said plane in correspondence to said conductive wall.

30

5. A semiconductor device as claimed in claim 1, wherein said conductive wall and conductive pattern comprises Cu.

35

6. A semiconductor device as claimed in
claim 1, wherein said interlayer insulation film
comprises a first insulation film that supports
said conductive wall laterally and a second
5 insulation film that supports said conductive
pattern laterally.

10

7. A semiconductor device as claimed in
claim 6, further comprising an etching stopper
layer interposed between said first insulation
film and said second insulation film.

15

8. A method of fabricating a
20 semiconductor device, comprising the steps of:
depositing an interlayer insulation
film on a substrate;
forming a first groove in said
interlayer insulation film to as to extend
25 continuously along a periphery of said substrate;
forming a second groove in said
interlayer insulation film such that said second
groove extend continuously in said first groove;
depositing a conductive layer on said
30 interlayer insulation film so as to fill said
first and second grooves; and
removing a part of said conductive
layer locating above said interlayer insulation
film by a chemical mechanical polishing process,
35 to form a guard ring pattern filling said first
and second grooves,
wherein said step of forming said

second groove is conducted such that said second groove changes, in said first groove, a direction thereof alternately and repeatedly in a plane parallel to said substrate.

5

9. A method as claimed in claim 8,
wherein said step of forming said first groove is
conducted such that said first groove extends in
a straight pattern along a peripheral edge of
said substrate.

15

10. A method as claimed in claim 8,
wherein said step of forming said first groove is
conducted that said first groove changes a
direction thereof alternately and repeatedly in
said plane in correspondence to said second
groove.

25

11. A method as claimed in claim 8,
wherein said conductive layer is formed of Cu.

30

12. A method as claimed in claim 8,
wherein said step of forming said interlayer
35 insulation film comprises the steps of:
depositing a first insulation film on said
substrate; depositing an etching stopper layer on

said first insulation film; and depositing a second insulation film on said etching stopper layer, said step of forming said first groove comprises the step of: etching said first
5 insulation film until said etching stopper layer is exposed, and wherein said step of forming said second groove comprises the step of etching said etching stopper layer and said second insulation film until said second groove reaches a bottom
10 principal surface of said second insulation film.

ABSTRACT OF THE DISCLOSURE

A semiconductor device has a guard ring
in a multilayer interconnection structure,
wherein the guard ring includes a conductive wall
5 extending zigzag in a plane parallel with a
principal surface of a substrate.

10

15

20

25

30

1014715223560

**FIG.1A
RELATED ART**

**FIG.1B
RELATED ART**

FIG.2 REATED ART

II

FIG.3B

FIG.3A

FIG.4

FIG.5

FIG.6

FIG.7

40

FIG.8A

FIG.8B

FIG.8C

FIG.8D

FIG. 9

FIG.10

FIG.11

70

Declaration and Power of Attorney for U.S. Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named inventor, I hereby declare that:

私の住所、私書箱、国籍は下記の私の氏名の後に記載された通りです。

My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

SEMICONDUCTOR DEVICE HAVING A GUARD
RING

上記発明の明細書（下記の欄でx印がついていない場合は、本書に添付）は、

the specification of which is attached hereto unless the following box is checked:

一月一日に提出され、米国出願番号または特許協定条約国際出願番号を_____とし。
 （該当する場合）_____に訂正されました。

was filed on _____
 as United States Application Number or
 PCT International Application Number
 _____ and was amended on
 _____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Japanese Language Declaration
(日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基き下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基づく国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している、本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

外国での先行出願

Pat. Appln. No. 11-076730

(Number) (番号)	Japan (Country) (国名)
(Number) (番号)	(Country) (国名)

I hereby claim foreign priority under Title 35, United States Code, Section 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed
優先権主張なし

19/March/1999 (Day/Month/Year Filed) (出願年月日)	<input type="checkbox"/>
(Day/Month/Year Filed) (出願年月日)	<input type="checkbox"/>

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.) (出願番号)	(Filing Date) (出願日)	(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------	-----------------------------	------------------------

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT international application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Application No.) (出願番号)	(Filing Date) (出願日)
(Application No.) (出願番号)	(Filing Date) (出願日)

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)
(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

私は、私自身の知識に基づいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同様の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方により処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認めたし、よってここに上記のごとく宣誓を致します。

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Japanese Language Declaration
(日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続を米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。 (弁護士、または代理人の氏名及び登録番号を明記のこと)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)
See list of attorneys and/or agents on page 5.

書類送付先

Send Correspondence to:

ARMSTRONG, WESTERMAN, HATTORI,
McLELAND & NAUGHTON
1725 K Street, N.W., Suite 1000
Washington, D.C. 20006

直接電話連絡先： (名前及び電話番号)

Direct Telephone Calls to: (name and telephone number)

Telephone: (202) 659-2930 Fax: (202) 887-0357

唯一または第一発明者名		Full name of sole or first inventor	
		Kazuhiro Takada	
発明者の署名	日付	Inventor's signature	Date
		Kazuhiro Takada	Feb. 28, 2000
住所	Residence		
	Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship		
	Japan		
私書箱	Post Office Address		
	c/o FUJITSU LIMITED,		
	1-1, Kamikodanaka 4-chome, Nakahara-ku,		
	Kawasaki-shi, Kanagawa, 211-8588 Japan		
第二共同発明者	Full name of second joint inventor, if any		
第二共同発明者	日付	Second inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		

(第三以降の共同発明者についても同様に記載し、署名をすること)
(Supply similar information and signature for third and subsequent joint inventors.)

第三共同発明者		Full name of third joint inventor, if any	
第三発明者の署名	日付	Third inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		
第四共同発明者		Full name of fourth joint inventor, if any	
第四発明者の署名	日付	Fourth inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		
第五共同発明者		Full name of fifth joint inventor, if any	
第五発明者の署名	日付	Fifth inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		
第六共同発明者		Full name of sixth joint inventor, if any	
第六発明者の署名	日付	Sixth inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		

List of attorneys and/or agents

James E. Armstrong, III, Reg. No. 18,366; William F. Westerman, Reg. No. 29,988; Ken-Ichi Hattori, Reg. No. 32,861; Le-Nhung McLeland, Reg. No. 31,541; Ronald F. Naughton, Reg. No. 24,616; John R. Pegan, Reg. No. 18,069; William G. Kratz, Jr., Reg. No. 22,631; James P. Welch, Reg. No. 17,379; Albert Tockman, Reg. No. 19,722; Mel R. Quintos, Reg. No. 31,898; Donald W. Hanson, Reg. No. 27,133; Stephen G. Adrian, Reg. No. 32,878; William L. Brooks, Reg. No. 34,129; John F. Carney, Reg. No. 20,276; Edward F. Welsh, Reg. No. 22,455; Patrick D. Muir, Reg. No. 37,403; Gay A. Spahn, Reg. No. 34,978; John P. Kong, Reg. No. 40,054; and Luke A. Kilyk, Reg. No. 33,251.