EAS 5830: BLOCKCHAINS

Cryptography on the blockchain

Professor Brett Hemenway Falk

Cryptography

- Collision-resistant hash functions
 - Symmetric-key cryptography
- Digital signatures
 - Public-key cryptography
- No Encryption

Signatures

Key Generation

- Generates a random private key
 - Usually a uniformly random 256-bit string
- Computes a corresponding public key
 - Usually an element in an elliptic curve group
 - Address is derived from public key
- **Signing** (private)
 - Takes a message and the private key and produces a signature
- Verification (public)
 - Takes a message, signature and public key, and checks whether the signature was computed using the corresponding private key

The Elliptic-Curve Digital Signature Algorithm (ECDSA)

- Accepted as <u>ANSI standard</u> in 1999
- Accepted as <u>NIST standard</u> in 2000
- Security rests on the elliptic-curve discrete-log problem
 - Discrete-log problem modulo p
 - Given integers g, h, p find a such that $g^a = h \mod p$
 - Elliptic-curve discrete-log problem:
 - Given a curve C, a generator G, and a point H, find an integer a such that $a \cdot G = H$

Signatures

- o <u>Bitcoin</u> ECDSA
 - <u>Taproot</u> Schnorr
- o <u>Ethereum</u> ECDSA
 - Attestations BLS
- o BNB ECDSA
- o Ripple ECDSA + ED25519
- o Solana ED25519
- o <u>Cardano</u> ED25519
- o TRON ECDSA
- o <u>Polkadot</u> Schnorr
- o <u>Avalanche</u> ECDSA
- o Cosmos ECDSA + ED25519

Signatures

- o Bitcoin ECDSA
 - <u>Taproot</u> Schnorr
- o Ethereum ECDSA
 - Attestations BLS
- o BNB ECDSA
- o Ripple ECDSA + ED25519
- o Solana ED25519
- o Cardano ED25519
- o TRON ECDSA
- o <u>Polkadot</u> Schnorr
- o <u>Avalanche</u> ECDSA
- o Cosmos ECDSA + ED25519

All these schemes are vulnerable to quantum attacks

Efficient Signature Generation by Smart Cards¹

C. P. Schnorr

Universität Frankfurt, Robert-Mayer-Strasse 6-10, W-6000 Frankfurt a.M., Federal Republic of Germany United States Patent [19]

Schnorr

[11] Patent Number:

4,995,082

[45] Date of Patent:

Feb. 19, 1991

[54] METHOD FOR IDENTIFYING SUBSCRIBERS AND FOR GENERATING AND VERIFYING ELECTRONIC SIGNATURES IN A DATA EXCHANGE SYSTEM

[76] Inventor:

Claus P. Schnorr, Frankfurterstr. 81,

6350 Bad Nauheim, Fed. Rep. of

Germany

[21] Appl. No.: 484,127

[22] Filed: Feb. 23, 1990

on Public-Key Techniques", I.E.E.E., Communcations, vol. 25, No. 7, 1987, pp. 73-79.

Beth, T., "Efficient Zero-Knowledge Identification Scheme for Smart Cards", Advances in Cryptology-Eurocrypt, '80, pp. 77-84.

Primary Examiner—Thomas H. Tarcza Assistant Examiner—David Cain

Attorney, Agent, or Firm-Hill, Van Santen, Steadman &

Simpson

ED25519

High-speed high-security signatures

Daniel J. Bernstein¹, Niels Duif², Tanja Lange², Peter Schwabe³, and Bo-Yin Yang⁴

Bridging Bitcoin To Avalanche: A Technical Overview

Michael Kaplan · Follow

Published in Avalanche · 8 min read · Jun 24, 2022

There are different curves

- o NIST recommends secp256r1
- o Bitcoin / Ethereum use secp256k1
 - Apple's cryptokit supports ECDSA
 - But won't generate signatures over secp256k1