第八章 狭义相对论

- § 8.1 牛顿相对性原理和伽里略变换
- § 8. 2 爱因斯坦相对性原理和光速不变
- § 8. 3 同时性的相对性和时间延缓
- § 8.4 长度缩短
- § 8.5 洛仑兹坐标变换
- § 8. 6 相对论速度变换
- § 8.7 相对论质量
- § 8.8 力和加速度的关系
- § 8.9 相对论动能
- § 8.10 相对论能量
- § 8. 11 动量和能量的关系
- § 8. 12 相对论力的变换

在上世纪初,发生了三次概念上的 革命,它们深刻地改变了人们对物 理世界的了解。这就是狭义相对论 (1905年)、广义相对论(1916年) 和量子力学(1925年)。

从相对性到相对论

一、认识的相对性

"横看成岭侧成峰,远近高低各不同"

认识世界的基本观点:

运动的描述与参考系有关,

而物质运动的基本规律与参考系无关。

牛顿力学:

一切惯性系中牛顿定律成立 划分惯性系与非惯性系

"有限度"的相对性

二、从相对性到相对论

相对论的核心问题: 两方面

- 1) 相对性原理——基本物理规律的不变性;
- 2) 建立变换关系——与规律不变相协调。

时空坐标的变换。

对于时空,两种对立观点:

时空是绝对的,与运动(参考系)无关 → 时空是相对的,与运动和物质分布有关!

认识论上:要超越自我,自觉摆脱经验的束缚。

与日常经验吻合

§ 1 力学相对性原理和伽利略变换

一、伽利略变换

惯性系S、惯性系S'

$$t = t' = 0$$
时,原点 $O \setminus O'$ 重合

$$x' = x - ut$$
, $y' = y$, $z' = z$, $t' = t$

空间和时间相互独立:

长度和时间间隔大小都是绝对的

速度变换与加速度变换

$$v'_x = v_x - u, \quad v'_y = v_y, \quad v'_z = v_z$$

$$a'_x = a_x - \frac{du}{dt}, \quad a'_y = a_y, \quad a'_z = a_z$$

$$u = const.$$

惯性系

二、力学相对性原理

原理: 牛顿力学规律在一切惯性系中形式相同, 或一切惯性系对力学规律平权。

§ 2 爱因斯坦相对性原理和光速不变

- 一. 电磁理论引起的困惑
- 1) 电磁场方程组没有伽利略变换的协变性

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3 \times 10^8 \, m/s$$

与光的传播方向、光源的运动无关与惯性系的选择无关

伽利略变换 S: c

 $S': c \pm u$

问题:此c是在什么参考系中测量?

2) 蟹状星云

九百多年前的一次超新星爆炸后形成的

V约1500千米/秒,l约五千光年 t_A 比 t_B 短25年 史书记载从出现到隐没不到两年

光速与光源运动无关

3) 迈克耳逊-莫雷的0结果

当时认为光在"以太"(ether)中以速度c传播。设"以太"相对太阳静止。

Michelson干涉仪

实验目的: A, B互换, 观测干涉条纹是否移 动?

实验结果:条纹无移动。以太不存在,光 速与参考系无关。 修改电磁学定律,还是修改伽利略变换?

电磁学定律:实验验证是正确的

伽利略变换:适用于低速情况

低速→高速

绝对时空观→相对论时空观

伽利略变换→洛仑兹(Lorentz)变换

- 二. 爱因斯坦相对性原理与光速不变原理 1905年爱因斯坦在《论动体的电动力学》
 - 1. 一切物理规律对所有惯性系都相同 ---相对性原理
 - 2. 在任何惯性系中,光在真空中的光速都相同 ----光速不变原理

与此对应的是新的时空观

Einstein的相对性理论是Newton理论的发展

§ 3 同时性的相对性和时间延缓

- 一、同时性的相对性——相对论时空观的精髓
 - 1. 光速不变→同时性的相对性 S地面参考系, S'火车参考系

在火车上

A'、B' 分别放置信号接收器

中点M'放置光信号发生器

$$t = t' = 0$$
 M' 发一光信号

爱因斯坦火车

事件1 A' 接收到闪光 事件2 B' 接收到闪光

在两个参考系分别测量两事件

 $\overline{A'M'} = \overline{B'M'}$ A' B' 同时接收到光信号 事件1、事件2 同时发生

S 光一旦发出,与M'不再有任何关系

A', B' 随 S'运动

A' 迎着光 比B' 早接收到光

事件1、事件2 不同时发生 事件1先发生

沿两个惯性系相对运动方向发生的两个事件,若在一个惯性系中同时发生,则在另一惯性系中观察,总是在运动后方的事件先发生。

时间的量度是相对的。

2. 沿垂直于相对运动方向发生的两件事的同时性并不具有相对性

二、时间延缓(时间膨胀)

讨论一个匀速运动的钟和一系列"静止"的同步的钟的比较。

原时:同地发生的两事件的时间间隔

$$\Delta t' = \frac{2d}{c}$$

测时: 异地发生的该两事 件的时间间隔

$$\Delta t = \frac{2l}{c} = \frac{2}{c} \sqrt{d^2 + (\frac{u\Delta t}{2})^2}$$

$$\Delta t' = \frac{2d}{c}, \quad \Delta t = \frac{2l}{c} = \frac{2}{c} \sqrt{d^2 + (\frac{u\Delta t}{2})^2}$$

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - u^2 / c^2}}$$
原时

测时>原时,原时最短,测时比原时长。

S系中的观察者发现S'系中的事物的时间进程变慢—"时间延缓"

例如,与S系中一系列静止同步钟的"1秒"相比,一个运动钟的"1秒"长,运动钟变慢了。时间延缓完全是一种相对效应。

时间膨胀效应的来源是光速不变原理,它 是时空的一种属性,并不涉及时钟的任何 机械原因和原子内部的任何过程。

三、时间延缓的实验验证

1、μ子的寿命

 μ 子在约10⁴m高的大气顶层形成,静止时平均寿命约为2×10⁻⁶s,运动速率为 0.995c.

若无时间膨胀效应,只能走640m就消失了。

在地面上看其寿命膨胀 $1/\sqrt{1-0.995^2} \approx 10$ 倍,衰变前可飞行6400m,可到达地面。

2、两组铯原子钟绕地球一周,运动钟变慢 在误差范围内相符理论结果。

FIGURE 40-10 A clock taken around the world on an airplane has been used to test time dilation.

运 动 钟 变 慢: 203±10ns,而理论值 为: 184 ± 23ns,在 误差范围内二者相符。 【例】飞船以 $u=9\times10^3$ ms⁻¹(32400km/h)的速率相对地面飞行。飞船上的钟走了 5 秒,问用地面上的钟测量经过了几秒?

原时 $\Delta t' = 5s$ 测时=?

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - u^2/c^2}} = \frac{5}{\sqrt{1 - \left(\frac{9 \times 10^3}{3 \times 10^8}\right)^2}}$$
$$= 5.0000000002 s$$

时间延缓效应很难测出。

§ 4 长度缩短(length contraction)

长度的测量和同时性的概念密切相关。在S系中运动杆AB的长度,是同时测量($t_1=t_2$)杆的A端和B端的位置 x_1 和 x_2 ,并由下式给出

$$l = x_2 - x_1$$

$$l \neq x_2 - x_1$$

运动尺长度的测量:

S系中P处测杆首尾 通过时间差Δt

$$l = u\Delta t$$

S'系中杆首尾处测P通过时间差 $\Delta t'$

$$l'=u\Delta t'$$

$$\Delta$$
t为原时 $\Delta t' = \Delta t / \sqrt{1 - u^2 / c^2}$

$$l' = \frac{l}{\sqrt{1 - u^2/c^2}}$$

l'为静长

(原长,本征长度)

$$l' = \frac{l}{\sqrt{1 - u^2/c^2}}$$

原长最长,测长比原长短一"长度收缩"

运动尺的缩短是相对论的效应,并不是运动尺的结构发生了改变。与尺一起运动的观测者感受不到尺的变短。

垂直于运动方向的长度测量与参考系无关

当一个圆球体以接近于光速的速度从观察者面前飞过时, 视觉形象或拍下来的照片上的图象是什么样子?

真空中的光速c是实际物体速度的极限。

$$\Delta l = \Delta l' \sqrt{1 - u^2/c^2}$$

若u≥c,则测长为零或虚数,不合理。

【例】长度为5m的飞船,相对地面的速度为9×10³ms⁻¹,在地面测量飞船长度(测长)为

$$\Delta l = 5 \times \sqrt{1 - (9 \times 10^3 / 3 \times 10^8)^2}$$
 m
= 4.9999999999999

长度收缩效应也很难测出。

例: π^+ 介子静止时的平均寿命约 τ =2.5×10⁻⁸秒,衰变为 μ 子和中微子;以速度u=0.99c运动的 π^+ 介子,衰变前运动距离平均约为l=52m.解释之($u\tau$ =7.4m<<l.)

解释: l为地面测量值 $\Delta t = \gamma \tau$, $\gamma = 7.09$ $l = u \Delta t = \gamma u \tau = 52.6 m \approx 观测值$

§ 5 洛仑兹变换

要寻找适合光速不变原理的新的时空变换关系

设 S, S' 皆为惯性系 P(x,y,z,t) x'/x, y'/y, z'/z, u = const.

且0'与0重合时

$$t=0$$
, $t'=0$.

S 系中测量:
$$x = ut + x'\sqrt{1 - \frac{u^2}{c^2}}$$
 (1)

$$x' = x\sqrt{1 - \frac{u^2}{c^2} - ut'}$$
 (2)

$$x' = \frac{x - ut}{\sqrt{1 - \frac{u^2}{c^2}}} \quad ,$$

$$t' = \frac{t - \frac{u}{c^2} x}{\sqrt{1 - \frac{u^2}{c^2}}} \quad .$$

垂直运动方向上长度测量与参考系无关,

于是有:

洛仑兹变换

$$x' = \frac{x - ut}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{u}{c^2} x}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$\beta = \frac{u}{c}$$
,

正变换

$$x' = \gamma (x - ut)$$
$$y' = y$$

$$z' = z$$

$$t' = \gamma \left(t - \frac{\beta}{c} x \right)$$

逆变换

则有:

$$x = \gamma (x' + ut')$$

$$y = y'$$

$$z=z'$$

$$t = \gamma \left(t' + \frac{\beta}{c} x' \right)$$

例 用洛仑兹变换理解同时性的相对性

$$S': P_1(x'_1, t'), P_2(x'_2, t')$$

S:
$$P_1(x_1, t_1), P_2(x_2, t_2)$$

$$t_1 = \gamma \left(t' + \frac{u}{c^2} x_1' \right), \ t_2 = \gamma \left(t' + \frac{u}{c^2} x_2' \right)$$

$$t_1 - t_2 = -\gamma \frac{u}{c^2} (x_2' - x_1') < 0$$

例 S' 系相对S系以u = 0.6c运动。有两个事件,在S系中测量: $x_1=0$, $t_1=0$; $x_2=3000$ m,

$$t_2=4\times 10^{-6}$$
s

求: S' 系中测量的相应时空坐标

解:
$$\gamma = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} = 1.25$$
 代入洛仑兹变换式,得
$$x_1' = \gamma (x_1 - ut_1) = 0$$

$$t_1' = \gamma (t_1 - ux_1 / c^2) = 0$$

$$x_2' = \gamma (x_2 - ut_2) = 2.85 \times 10^3 m$$

$$t_2' = \gamma (t_2 - ux_2 / c^2) = -2.5 \times 10^{-6} s$$

例 用洛仑兹变换理解因果性的绝对性

时空测量的相对性是否会改变因果律呢?

两事件不同时,在时间上有先后顺序,简称时序设两事件 P_1 、 P_2 在S和S'系中的时空坐标为

S:
$$P_1(x_1, t_1)$$
, $P_2(x_2, t_2)$
S': $P_1(x'_1, t'_1)$, $P_2(x'_2, t'_2)$
SS'
 $t'_2-t'_1>0$?
$$x'_1, t'_1 \qquad x'_2-t_1>0$$
 $x'_2, t'_2 \qquad x'$

由洛仑兹变换有:

$$\Delta t' = t_2' - t_1' = \gamma \left[(t_2 - \frac{u}{c^2} x_2) - (t_1 - \frac{u}{c^2} x_1) \right]$$

$$\begin{bmatrix} u & x_2 - x_1 \end{bmatrix}$$

$$= \gamma(t_2 - t_1) \left[1 - \frac{u}{c^2} \cdot \frac{x_2 - x_1}{t_2 - t_1} \right]$$

$$= \gamma \Delta t (1 - \frac{u}{c^2} \cdot \boldsymbol{v}_s) ,$$

$$\boldsymbol{v}_{s} = \frac{x_2 - x_1}{t_2 - t_1}$$

若两事件有因果关系

v。代表其间物理过程进行速度或信号运动速度

则
$$\boldsymbol{v}_{s} \leq c$$
 , 又 $u < c$,

$$\therefore 1 - \frac{u}{c^2} v_s > 0 \longrightarrow \Delta t' \, 和 \, \Delta t \, 同号 \, .$$

有因果(有信息联系, $V_s \leq c$)的两个事件发生的先后次序(因果性)是绝对的,在任何惯性系中都不应颠倒。

若 P_1 、 P_2 为相互独立事件,则可能 $\mathbf{v}_s > c$,

无因果(无信息联系,v_s可取任意值)的两个事件发生的先后次序在不同惯性系可能颠倒。

例 用洛仑兹变换理解运动长度缩短

事件1: 测棒的左端

 x_{1}, t_{1}

事件2: 测棒的右端

 x_{2}, t_{2}

$$S'$$
 x'_1, t'_1
 x'_2, t'_2

$$l_0 = x_2' - x_1'$$

静长

$$S \longrightarrow S'$$

$$l = x_2 - x_1$$

$$\Delta t = 0$$

由洛仑 兹变换

$$\Delta x' = \frac{\Delta x - u\Delta t}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$l = l_0 \sqrt{1 - \frac{u^2}{c^2}}$$

【例】火车以速度u通过隧道,火车和隧道静止长度均为 l_0 ,从地面看,火车前部到达隧道末端的同时,有一闪电击中隧道的另一端,试问此雷击是否能在火车的尾部留下痕迹? (分别在地面和火车参照系分析)

解1: 事件1 b与B相遇 , 事件2 A处遭雷击

地面: 两事件同时发生

$$l = l_0 \sqrt{1 - \frac{u^2}{c^2}}$$

火车上无痕迹

火车: 两事件不同时

$$l' = l_0 \sqrt{1 - \frac{u^2}{c^2}}$$

事件1先发生,

事件2后发生

火车的左端进入了隧道

$$\Delta t' = \gamma \left(\Delta t - \frac{u}{c^2} \Delta x \right)$$
$$= -\frac{u}{c^2} \gamma \Delta x$$

隧道长度缩短

$$\Delta l' + l_0 = l_0 \sqrt{1 - \frac{u^2}{c^2} + u \Delta t'}$$

$$\Delta l' = l_0 \sqrt{1 - u^2/c^2} + u \frac{l_0 u/c^2}{\sqrt{1 - u^2/c^2}} - l_0$$

$$=\frac{l_0(1-\sqrt{1-u^2/c^2})}{\sqrt{1-u^2/c^2}}>0$$

解2: 事件1 b与B相遇, 事件2 A处遭雷击

地面S:
$$t_1 = t_2$$

$$x_1 = l_0, \qquad x_2 = 0$$

火车S':
$$x_1' = l_0$$

$$x_2' - x_1' = \frac{(x_2 - x_1) - u(t_2 - t_1)}{\sqrt{1 - u^2 / c^2}} = \frac{(-l_0)}{\sqrt{1 - u^2 / c^2}}$$

$$x_2' = l_0 - \frac{l_0}{\sqrt{1 - u^2 / c^2}} < 0$$

A处遭雷击发生在a的后面

党明

1. u << c时, 洛仑兹变换过渡到伽里略变换。

洛仑兹变换 相对论时空

伽利略变换 绝对时空

$$\begin{cases} x' = \frac{x - ut}{\sqrt{1 - u^2 / c^2}} \\ y' = y \\ z' = z \\ t' = \frac{t - \frac{u}{c^2} x}{\sqrt{1 - u^2 / c^2}} \end{cases} \quad \begin{cases} x' = x - ut \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

2. c 为一切可作为参考系的物体的极限速率,

u > c 变换无意义

3: *原时

一定涉及到一只钟指示的时间间隔;

或说,在使用洛仑兹变换时必须存在的条件:

$$\Delta x = 0$$
$$(\Delta x' = 0)$$

*静长(原长)

一定涉及到两个同时发生的事件的空间距离;或说,在使用洛仑兹变换时必须存在的条件是:

$$\Delta t = 0$$
$$(\Delta t' = 0)$$

例: 飞船正以4c/5飞离地球.宇航员发射一电信号时,经地球反射,60S后宇航员才收到返回信号

- (1) 在地球发射信号的时刻,从飞船上测得的地球离飞船多远
- (2) 当飞船接收到反射信号时,地球上测得飞船离地球多远

解. (1) 飞船上测量

信号到达地球又返回,来回所用时间相等

地球离飞船 $L_1 = c \times 30 = 9 \times 10^9 m$

(2) 地球上测量

飞船上看是原时
$$\Delta t' = 60s$$

地球上测量
$$\Delta t = \Delta t' / \sqrt{1 - u^2 / c^2} = 100s$$

宇航员发射信号时,地球上测量飞船与地球的距离是原长。

飞船上测量
$$l' = c \times 30 - \frac{4}{5}c \times 30 = 6c$$

地球上测量 $l = l' / \sqrt{1 - u^2 / c^2} = 10c$

当飞船接收到反射信号时,地球上测得飞船 离地球

$$L = l + u\Delta t = 10c + \frac{4}{5}c \times 100 = 90c = 2.7 \times 10^{10} m$$

事件一: 宇航员发射信号 (x_1,t_1) , (x'_1,t'_1)

事件二: 地球反射信号 (x_2,t_2) , (x_2',t_2')

$$\Delta x_{12} = \frac{\Delta x_{12}' + u\Delta t_{12}'}{\sqrt{1 - u^2 / c^2}} = \frac{30c + \frac{4c}{5} \times (-30)}{\sqrt{1 - (\frac{4}{5})^2}} = 10c$$

$$L = \Delta x_{12} + u\Delta t = 10c + \frac{4}{5}c \times 100 = 90c = 2.7 \times 10^{10} m$$

*4. 由洛仑兹变换可以证明:

时空间隔△√万为洛仑兹变换下的不变量。

时间和空间紧密相连, 两者构成统一的四维 时空(闵可夫斯基空间) $P_1(x_1,y_1,z_1,t_1)$

$$\begin{array}{c|c}
 & X \\
P_{1}(x_{1}, y_{1}, z_{1}, t_{1}) \\
P_{1}(x_{1}, y_{1}, z_{1}, t_{1})
\end{array}$$

$$\Delta S = \sqrt{(c\Delta t)^2 - (\Delta l)^2}$$
(洛)
$$= \sqrt{(c\Delta t')^2 - (\Delta l')^2} = \Delta S'$$

空间间隔
$$\Delta l = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$$
$$\Delta l' = \sqrt{(\Delta x')^2 + (\Delta y')^2 + (\Delta z')^2}$$

▲用光信号联系的两个事件 $\Delta S = 0$ (:: $\Delta l = c\Delta t$)

§ 6 相对论速度变换

Relativistic velocity transformation

速度的定义:同一参考系中坐标对时间的变化率

$$v_x = dx / dt$$

$$v_x' = dx' / dt'$$

$$\frac{\mathrm{d} x'}{\mathrm{d} t} = \frac{v_x - u}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$\frac{\mathrm{d}\,t'}{\mathrm{d}\,t} = \frac{1 - \frac{u}{c^2} v_x}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$v_x' = \frac{v_x - u}{1 - \frac{u}{c^2} v_x}$$

由洛仑兹变换知

$$\frac{dy'}{dt'} = \frac{dy}{dt'} = \frac{\frac{dy}{dt}}{\frac{dt'}{dt}}$$

$$\frac{dt'}{dt} = \frac{1 - \frac{u}{c^2} v_x}{\sqrt{1 - \frac{u^2}{c^2}}}$$

由上两式得

$$v'_{y} = \frac{v_{y}}{1 - \frac{u^{2}}{c^{2}}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

$$v'_{z} = \frac{v_{z}}{1 - \frac{u}{c^{2}}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

洛仑兹速度变换式

正变换

逆变换

$$v'_{x} = \frac{v_{x} - u}{1 - \frac{u}{c^{2}} v_{x}}$$

$$v'_{y} = \frac{v_{y}}{1 - \frac{u}{c^{2}} v_{x}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

$$v'_{z} = \frac{v_{z}}{1 - \frac{u}{c^{2}} v_{x}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

$$1 - \frac{u}{c^{2}} v_{x}$$

$$v_{x} = \frac{v'_{x} + u}{1 + \frac{u}{c^{2}} v'_{x}}$$

$$v_{y} = \frac{v'_{y}}{1 + \frac{u}{c^{2}} v'_{x}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

$$v_{z} = \frac{v'_{z}}{1 + \frac{u}{c^{2}} v'_{x}} \sqrt{1 - \frac{u^{2}}{c^{2}}}$$

$$1 + \frac{u}{c^{2}} v'_{x}$$

讨论:

1. 满足"对应原理"

$$v_{x}' = \frac{v_{x} - u}{1 - \frac{uv_{x}}{c^{2}}}$$

若 $u \ll c$,

由洛仑兹速度变换

伽利略速度变换: $\vec{v}' = \vec{v} - \vec{u}$

$$\vec{v}' = \vec{v} - \vec{u}$$

2. 在各惯性系中真空中的光速都是 C

例1. 在S系中一束光 沿 x方向传播, 速率为 $v_x=c$, 在S' 系中, 此束光的速率多大?

解

$$v_x' = \frac{v_x - u}{1 - \frac{uv_x}{c^2}} = \frac{c - u}{1 - \frac{uc}{c^2}}$$
$$= \frac{(c - u)c^2}{c(c - u)} = c$$

(与 u无关!)

例2. 在 S' 系中一束光 沿 y' 方向传播, 速率为 c, 在 S 系中, 此束光的速率多大?

解 由洛仑兹速度逆变换公式

$$v_x = \frac{v_x' + u}{1 + \frac{v_x' u}{c^2}} = \frac{0 + u}{1 + 0} = u,$$

$$v_{y} = \frac{v'_{y}}{\gamma \left(1 + \frac{uv'_{x}}{c^{2}}\right)} = \sqrt{1 - \frac{u^{2}}{c^{2}}c}$$

$$v_{x} = u$$

$$v_y = \sqrt{1 - \frac{u^2}{c^2}} c$$

$$v_z = \frac{v_z'}{\gamma \left(1 + \frac{uv_x'}{c^2}\right)} = 0,$$

$$v^2 = v_x^2 + v_y^2 + v_z^2$$

$$= \boldsymbol{u}^2 + \left(1 - \frac{\boldsymbol{u}^2}{\boldsymbol{c}^2}\right) \boldsymbol{c}^2 = \boldsymbol{c}^2$$

光的速度方向发生了改变,但光的速率不变。

在 S'系中一東光 沿 y' 方向传播, 速率为 c,

3. 两个物体之间的相对速度

不可能超过光速。

例. 已知: 在地面上测得, 两飞船的速度

$$v_{\rm A} = 0.9c$$
 $v_{\rm B} = -0.9c$

求: A飞船相对于B飞船的速度。

【解】有人说: A飞船相对与B飞船的速度为 1.8 c, 对不对?

在地面上建立参考系 S, 在飞船 B上建立参考系 S',

参考系S中: 飞船 A的速度 $v_{Abb} = 0.9c = v_x$ 参考系S' 的速度 u = -0.9c

参考系S'中:飞船 A的速度

$$v_{x}' = \frac{v_{x} - u}{1 - \frac{uv_{x}}{c^{2}}} = \frac{0.9c - (-0.9c)}{1 - \frac{(-0.9c)}{c^{2}}(0.9c)} = 0.994c$$

A飞船相对于 B飞船的速度并没有超过光速。

注意: 从地面测量, 二者相互离开的速度还是 1.8c。

- ◆在同一个惯性系中,速度的合成法则由速度的 矢量性来决定,这与速度的高低毫无关系。
- ◆不可将速度的合成与速度的变换相混淆。
- 讨论4. 由洛仑兹速度变换, 进一步可得到加速度变换。

$$a_{x} = \frac{dv_{x}}{dt} \qquad (x, y, z)$$

$$a'_{x} = \frac{dv'_{x}}{dt'} \qquad (x', y', z')$$

结果是: $\vec{a}' \neq \vec{a}$ (略)

加速度在伽里略变换中是不变量; 在洛仑兹变换中不是不变量。