Yakeen NEET 2.0 2026

Physics By Saleem Sir

Laws of Motion

DPP: 3

Q1 A $50~\mathrm{kg}$ person stands on a $25~\mathrm{kg}$ platform. He pulls on the rope which is attached to the platform via the frictionless pulleys as shown in the figure. The platform moves upward at a steady rate if the force with which the person pulls the rope is:

- (A) 500 N
- (B) 250 N
- (C) 25 N
- (D) 50 N
- **Q2** A sphere of radius 25 cm and mass 1 kg is hung by a string of negligible mass and length 40 cm, then tension in the string is:

- (A) 10.81 N
- (B) 18.4 N
- (C) 10 N
- (D) 8 N
- Q3 A body of weight 2 kg is suspended as shown in the figure. The tension T_1 in the horizontal string (in kg wt.) is:

- (A) $\frac{2}{\sqrt{3}}$
- (B) $\frac{\sqrt{3}}{2}$
- (C) $2\sqrt{3}$
- (D) 2
- What is the acceleration of 3 kg mass when acceleration of 2 kg mass is 2 m/s^2 as shown?

- (A) 3 m/s^2
- (B) 2 m/s^2
- (C) 0.5 m/s^2
- (D) Zero
- Q5 A dynamometer D is attached to two blocks of masses $6~{
 m kg}$ and $4~{
 m kg}$ as shown in the figure. The reading of the dynamometer is

- (A) 18 N
- (B) 28 N
- (C) 38 N
- (D) 48 N
- **Q6** A small metallic sphere of mass *m* is suspended from the ceiling of a car accelerating on a horizontal road with constant acceleration *a*. The tension in the string attached with metallic sphere is:
 - (A) mg
- (B) mg(g + a)

- (C) m(g a)
- (D) $m\sqrt{g^2+a^2}$
- $\mbox{\bf Q7}$ In the system shown, the blocks A, B and C are of weight 4~W,~W and W respectively. The system set free. The tension in the string connecting the blocks B and C is

- (A) $\frac{2W}{3}$
- (B) $\frac{6W}{5}$
- (C) $\frac{5W}{3}$
- (D) $\frac{4W}{3}$
- **Q8** Three blocks A, B and C of masses $4~{\rm kg}, 2~{\rm kg}$ and 1 kg respectively, are in contact on a frictionless

surface, as shown. If a force of $14\ N$ is applied on the $4\ kg$ block, then the contact force between A and B is:

- (A) 6 N
- (B) 8 N
- (C) 18 N
- (D) 2 N
- **Q9** Force of $3\ N$ acts on a system of two blocks of mass $2\ kg$ and $1\ kg$ as shown in figure. Contact force between the block is:

- (A) $1 \, \text{N}$
- (B) 2 N
- (C) 3 N
- (D) 0

Q10 Three blocks are connected as shown, on a horizontal frictionless table and pulled to the right with a force $60~\mathrm{N}$. If $m_1=10~\mathrm{kg}, m_2=20~\mathrm{kg}$ and $m_3=30~\mathrm{kg},$

(A) 10 N

the tension T_2 is -

- (B) 20 N
- (C)30N
- (D) 60 N
- Q11 For the system shown, string and pulley are massless. The pulley is smooth. Acceleration of the lighter block is: (g is acceleration due to gravity)

- (A) g
- (B) $\frac{g}{3}$
- (C) $\frac{g}{9}$
- (D) Zero
- **Q12** In the given arrangement, n number of equal masses

are connected by strings of negligible masses. The tension in the string connected to nth mass is

- (A) $\frac{mMg}{nm+M}$
- (B) $\frac{mMg}{nmM}$
- (C) mg
- (D) $\frac{mMg}{mN+M}$

Answer	Key
---------------	-----

Q1	(B)	Q 7	(D)
Q2	(A)	Q8	(A)
Q3	(C)	Q9	(A)
Q4	(B)	Q10	(C)
Q5	(C)	Q11	(B)
Q6	(D)	Q12	(A)

Master NCERT with PW Books APP

