CS5275 The Algorithm Designer's Toolkit

Final Examination Helpsheet

AY2024/25 Semester 2 · Prepared by Tian Xiao @snoidetx

Concentration Inequalities

Markov's inequality: Z non-negative: $\Pr[Z \ge t] \le \frac{\mathbb{E}[Z]}{t}$.

• Z any, ϕ non-decreasing & non-negative:

$$\Pr[Z \ge t] \le \Pr[\phi(Z) \ge \phi(t)] \le \frac{\mathbb{E}[\phi(Z)]}{\phi(t)}.$$

Chebyshev's inequality: $\Pr[|Z - \mathbb{E}[Z]| \ge t] \le \frac{\operatorname{Var}[Z]}{t^2}$.

Chernoff bound: $\Pr[Z \ge t] \le e^{-\lambda t} \mathbb{E}[e^{\lambda Z}].$

- Cramér-Chernoff inequality: $\Pr[Z \ge t] \le e^{-\psi_Z^*(t)}$, where $\qquad \qquad \forall \chi^*(t) = \sup_{\lambda > 0} (\lambda t - \psi_Z(\lambda));$
- $\begin{array}{c} \forall \ \varphi_Z(t) = \sup_{\lambda \geq 0} \mathbb{E}[e^{\lambda Z}] \text{ for } \lambda \geq 0. \\ \Rightarrow \ \forall z(\lambda) = \log \mathbb{E}[e^{\lambda Z}] \text{ for } \lambda \geq 0. \\ \bullet \text{ Sum of independent rv: } Z = X_1 + \dots + X_n: \\ \Pr\left[\frac{1}{n}|Z \mathbb{E}[Z]| \geq \epsilon\right] \leq \frac{\operatorname{Var}[X]}{n\epsilon^2}; \end{array}$

$$\Pr\left[\frac{1}{n}|Z - \mathbb{E}[Z]| \ge \epsilon\right] \le \frac{\operatorname{Var}[X]}{n\epsilon^2};$$

$$\Pr[Z \ge n\epsilon] \le e^{-n\psi_X^*(\epsilon)}.$$

 \triangleright Gaussian $X \sim \mathcal{N}(0, \sigma^2)$: $\Pr[|Z| \ge n\epsilon] \le 2e^{-\frac{n\epsilon^2}{2\sigma^2}}$.

Sub-Gaussian: A zero-mean rv X is sub-Gaussian with parameter σ^2 (i.e., $\in \mathcal{G}(\sigma^2)$) if $\psi_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$ for all $\lambda > 0$.

- Equivalent definitions:
 - $ightharpoonup \exists K_0 > 0 \text{ s.t. } \psi_X(\lambda) \leq K_0^2 \lambda^2 \text{ for all } \lambda > 0;$
 - $\Rightarrow \exists K_1 > 0 \text{ s.t. } \Pr[|X| \ge t] \le 2 \exp\left(-\frac{t^2}{K_1^2}\right) \text{ for all } t \ge 0;$
- $\Rightarrow \exists K_2 > 0 \text{ s.t. } \mathbb{E}[|X|^p]^{\frac{1}{p}} \le K_2 \sqrt{p} \text{ for all } p \ge 1.$ Concentration:
- - $\begin{array}{l} \rhd \ \Pr[|X| \geq t] \leq 2e^{-\frac{t^2}{2\sigma^2}}; \\ \rhd \ \operatorname{Independent} \ \sum a_i X_i \in \mathcal{G}(\sum a_i \sigma_i^2); \end{array}$
 - ightharpoonup Sum of independent $\Pr[|Z| \ge n\epsilon] \le 2e^{-\frac{n\epsilon^2}{2\sigma^2}}$.

Bounded: A zero-mean bounded rv $X \in [a, b]$ satisfies $X \in \mathcal{G}(\frac{(b-a)^2}{4})$.

- $\Pr[|X \mathbb{E}[X]| \ge t] \le 2e^{-\frac{2t^2}{(b-a)^2}};$ Hoeffding's inequality: $Z = X_1 + \dots + X_n$ (independent & bounded):

$$\Pr\left[\frac{1}{n}|Z - \mathbb{E}[Z]| \geq \epsilon\right] \leq 2\exp\left(-\frac{2n\epsilon^2}{\frac{1}{n}\sum_{i=1}^n(b_i - a_i)^2)}\right);$$

$$\Pr\left[\tfrac{1}{n}|Z-\mathbb{E}[Z]| \geq \epsilon\right] \leq 2\exp\left(-\tfrac{2n\epsilon^2}{(b-a)^2}\right) \text{ if all } a_i/b_i\text{'s equal.}$$

 \triangleright Setting RHS = δ , we have $n \ge \frac{(b-a)^2}{2\epsilon^2} \log \frac{2}{\delta}$.

Probability Method

Aim: Prove the existence of certain objects with certain properties.

- Counting: Construct a set of m bad events each with probability at most p. The object of interest must exist when none of the events happens (w.p. at least 1 - mp).
- Expectation: The probability that a rv is larger/smaller than its expectation is positive.
- Second moment: Use Chebyshev's inequality.
- Sample and modify
- Lovász local lemma: Let $\mathcal{B}_1, \dots, \mathcal{B}_m$ be bad events such that for each $i \in [m], \Pr[\mathcal{B}_i] \leq p$ and \mathcal{B}_i is mutually independent to all but $\leq d$ events. If $4pd \leq 1$, then $\Pr\left[\bigcap_{i=1}^{m} \tilde{\mathcal{B}}_{i}\right] \geq (1-2p)^{m} > 0$.

Convex Optimization

Convexity:

- Convex set: If $\mathbf{x}, \mathbf{x}' \in D$, then $\lambda \mathbf{x} + (1 \lambda) \mathbf{x}' \in D$ for all $\lambda \in [0, 1]$.
- Convex function: $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{x}') \leq \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{x}')$.
 - ▷ Any local minimum is also a global minimum.
 - $\triangleright f$ differentiable \Rightarrow convex iff $f(\mathbf{x}') \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{x}' \mathbf{x})$ for all \mathbf{x}, \mathbf{x}' .
 - $\triangleright f$ twice differentiable \Rightarrow convex iff $\nabla^2(\mathbf{x}) \ge \mathbf{0}$ for all \mathbf{x} .
 - \triangleright If f_1, f_2 convex, $\alpha_1, \alpha_2 > 0$, then $\alpha_1 f_1 + \alpha_2 f_2$ convex.
 - \triangleright If f_1, \dots, f_L convex, then $\max_{\ell \in [L]} f_\ell$ convex.
 - \triangleright If h linear/affine and g convex, then $g \circ h$ convex.
 - ▶ Jensen's inequality: For any random vector X and convex function f, $f(\mathbb{E}[\mathbf{X}]) \leq \mathbb{E}[f(\mathbf{X})]$.

Convex optimization: (1) f_0 and all f_i are convex; (2) all h_i affine.

$$\lim_{\mathbf{x}} f_0(\mathbf{x})$$

s.t.
$$f_i(\mathbf{x}) \leq 0$$
, $\forall i = 1, \dots, m_{\text{ineq}}$
 $h_i(\mathbf{x}) = 0$, $\forall i = 1, \dots, m_{\text{eq}}$.

Lagrangian: $L(\mathbf{x}, \lambda, \nu) = f_0(\mathbf{x}) + \sum_{i \in [m_{\text{ineq}}]} \lambda_i f_i(\mathbf{x}) + \sum_{i \in [m_{\text{eq}}]} \nu_i h_i(\mathbf{x})$.

- λ and ν are Lagrangian multipliers.
- Lagrangian dual: $q(\lambda, \nu) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu)$.
- Lagrangian dual problem: $\max_{\lambda,\mu} g(\lambda,\nu)$ s.t. $\lambda \geq 0$.
- Weak duality: $g(\lambda^*, \nu^*) \leq f_0(\mathbf{x}^*)$.
- Strong duality: If original problem is convex and a mild regularity condition holds, then $g(\lambda^*, \nu^*) = f_0(\mathbf{x}^*)$.
 - \triangleright Slater's condition: There exists at least one feasible \mathbf{x} s.t. all $f_i(\mathbf{x}) < 0$ and all $i(\mathbf{x}) = 0$.
 - \triangleright Another sufficient condition: All f_i are linear.

Lagrangian of LP:

(P)
$$\underset{\mathbf{x}}{\text{min}} \quad \mathbf{c}^{\top} \mathbf{x}$$
 \Leftrightarrow (D) $\underset{\boldsymbol{\nu}}{\text{max}} \quad \mathbf{b}^{\top} \boldsymbol{\nu}$ \Leftrightarrow s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}; \mathbf{x} \geq \mathbf{0}$.

- If we replace by $Ax \ge b$, then add constraint $\nu \ge 0$.
- Strong duality: $\min(\overline{\mathbf{P}}) = \max(\mathbf{D})$.

Examples of convex optimization formulation:

Examples of convex optimization birected graph
$$G = (V, E)$$
; source s , $\sin k t$;
$$\max_{\{fuv\}} \sum_{v:(s,v) \in E} f_{sv}$$

$$s.t. \quad 0 \le f_{uv} \le c_{uv}$$

$$\sum_{u:(u,v) \in E} f_{uv} = \sum_{w:(v,w) \in E} f_{vw},$$

$$\forall v \in V \setminus \{s,t\}.$$

MaxFlow

Noisy channel
$$R_i = \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_i^2}\right);$$

$$P_1, \dots, P_K \quad \sum_{i=1}^K \frac{1}{2} \log \left(1 + \frac{P_i}{\sigma_i^2}\right)$$
s.t. $\sum_{i=1}^K P_i \le P_{\text{total}}$

$$P_i \ge 0, \forall i = 1, \dots, K.$$

POWERALLOCATION

PORTFOLIOOPTIMIZATION

Dual of MaxFlow:

$$\min_{\boldsymbol{\lambda}, \boldsymbol{\mu}} \sum_{(u,v) \in E} c_{uv} \lambda_{uv}$$

s.t.
$$\mu_s = 1, \mu_t = 0$$

$$\lambda_{uv} \ge \mu_u - \mu_v, \lambda_{uv} \ge 0, \ \forall (u, v) \in E.$$

 \triangleright Max flow = min cut.

Submodular

Submodularity: $\forall S \subseteq T \subseteq V, \ e \in V \setminus T, \ \Delta(e|S) \ge \Delta(e|T)$.

- Related notions:
 - ightharpoonup Monotonicity: $S \subseteq T \subseteq V \Rightarrow f(S) \leq f(T)$.
 - \triangleright Modularity: $\Delta(e|S) = \Delta(e|T)$.
 - \triangleright Supermodularity: $\Delta(e|S) \leq \Delta(e|T)$.
- Equivalent definitions:
 - $\ \, \forall S,T,\ f(S)+f(T)\geq f(S\cup T)+f(S\cap T).$
 - $\forall S, e, e', \ \Delta(e|S) \ge \Delta(e|S \cup \{e'\}).$
 - $\triangleright \text{ (If } f \text{ monotone) } \forall S, T, \ f(T) \leq f(S) + \sum_{e \in T \setminus S} \Delta(e|S).$
- Relation to concavity:
 - ▷ Diminishing returns;
 - (Non-monotone case) Any local maximum is within 1/2 of global maximum.
 - ▶ Maximization (unconstrained or constrained) can be done approximately efficiently.
 - $\triangleright f(S) = g(|S|)$ is submodular if g is concave.
- Relation to convexity:
 - ▶ Unconstrained minimization can be done exactly efficiently.
 - \triangleright An extension from sets to continuous values called $Lov\acute{a}sz$ extension is a convex function.
- Properties: Suppose f_1, f_2 are submodular:
 - \triangleright Linear combinations: $c_1, c_2 > 0 \Rightarrow c_1 f_1 + c_2 f_2$ submodular.
 - Concave of modular: g modular, h concave $\Rightarrow h \circ g$ submodular.
 - $ightharpoonup \operatorname{Residual}: f(S) = f_1(S \cup B) f_1(B)$ submodular for any B.
 - Conditioning: $f(S) = f_1(S \cap A)$ submodular for any A.
 - Reflection: $f(S) = f_1(V \setminus S)$ submodular.
 - Truncation: If f_1 also monotone, then $f(S) = \min\{c, f_1(S)\}$ is submodular for any c.
 - Minimum: $\min\{f_1, f_2\}$ is submodular if either $f_1 f_2$ or $f_2 - f_1$ is monotone.

- Examples:
 - $\triangleright f(S)$ = area covered by activating all sensors in S.
 - \triangleright Let **X** be a matrix, V be the set of column indices, **X**_S is the submatrix indexed by $S \subseteq V$. Then $r_S = \operatorname{rank}(\mathbf{X}_S)$ is monotone submodular.
 - $\triangleright f(S) = \text{total number of users influenced by advertising to}$ S (in a graph).
 - $\triangleright f(S) = \text{representativeness of images in } S.$
 - $\triangleright f(S) = \text{ number of edges between } S \text{ and } S^c \text{ is submodular}$ but non-monotone.
 - $\triangleright f(S) = H(\mathbf{X}_S)$ where entropy $H_X = \sum_x P_X(x) \log \frac{1}{P_X(x)}$ is monotone submodular.

Cardinality-constrained submodular maximization:

$$\max_{S \in \mathcal{S}} f(S)$$

s.t.
$$S = \{S : |S| \le k\}.$$

- \bullet Greedy algorithm: For k times, add $e = \arg\max_{e \in V \setminus S_{i-1}} \Delta(e|S_{i-1}).$
- Useful fact: $1 x \le e^{-x}, \forall x \in \mathbb{R}$.
- Approximation: If f monotone submodular with $f(\emptyset) = 0$, then $f(S_k) \ge (1 - 1/e)f(S_k^*).$
- Generalization: If we perform ℓ instead of k iterations, then $f(S_{\ell}) \ge (1 - e^{-\ell/k}) f(S_k^*).$

$$\begin{split} Proof. \quad & f(S^*) \leq f(S^* \cup S_i) \quad \text{(monotonicity)} \\ & = f(S_i) + \sum_{j=1}^k \Delta(e_j^* | S_i \cup \{e_1^*, \cdots, e_{j-1}^*\}) \\ & \leq f(S_i) + \sum_{j=1}^k \Delta(e_j^* | S_i) \quad \text{(submodularity)} \\ & \leq f(S_i) + \sum_{j=1}^k \Delta(e_{i+1}^* | S_i) \quad \text{(greedy)} \\ & \leq f(S_i) + k(f(S_{i+1}) - f(S_i)). \\ & \text{So } f(S^*) - f(S_{i+1}) \leq (1 - 1/k)(f(S^*) - f(S_i)). \text{ Since } (1 - 1/k)^{\ell} \leq e^{-\ell/k}, \text{ we have proven the theorem.} \end{split}$$

Multiplicative Weight Update

Simple majority: Binary prediction and a perfect expert exists:

- ① Let $S_t \subseteq [n]$ be the set of experts that make no mistake at the first t-1 iterations;
- At iteration t, predict the majority vote from S_t .
- The simple majority algorithm makes at most $\log n$ mistakes.

Proof. Each mistakes eliminate $\geq \frac{1}{2}$ of remaining experts.

Weighted majority: Binary prediction:

- ① Fix $\eta \in (0, \frac{1}{2}]$; initialize each expert's weight to 1;
- ② At each iteration $t \in [T]$:
 - (a) Predict the weighted majority vote;
 - (b) For those who predict wrongly, decay their weight to 1η .
- The weighted majority algorithm makes at most $2(1 + \eta)M_i +$ $\frac{2 \log n}{n}$ mistakes for any expert i, where i makes M_i mistakes.

Proof. Each mistake decreases $\geq \frac{\eta}{2}$ of total weight. Hence, final weight of i, $(1-\eta)^{M_i} \leq \text{final total weight} \leq n \cdot (1-\frac{\eta}{2})^M$.

Randomized weighted majority: At each iteration, predict 0 or 1 with probability proportional to its total weight.

• The randomized weighted majority algorithm, in expectation, makes at most $(1+\eta)M_i + \frac{\log n}{\eta}$ mistakes for any expert i.

Proof. Each mistake decreases $\geq \eta f^{(t)}$ of total weight, where $f^{(t)}$ is the weighted fraction of mistakes at t. Hence, final weight of i, $(1-\eta)^{M_i} \leq \text{final total weight} \leq n \cdot \prod (1-\eta f^{(t)}) \leq$ $n \cdot \exp\left(-\eta \sum_{i} f^{(t)}\right) = n \cdot \exp(-\eta \mathbb{E}[M]).$

 $\label{eq:multiplicative weight update: Real-valued bounded loss} \in [-1,1]:$

- ① Fix $\eta \in (0, \frac{1}{2}]$; initialize each expert's weight to 1;
- ② At each iteration $t \in [T]$:
 - (a) Follow expert i's advice w.p. its normalized weight;
 - (b) Decay each expert i's weight to 1η its loss.
- The MWU algorithm, in expectation, has loss at most $\sum_{t \in [T]} m_i^{(t)} + Mutual information$: Information between random variables: $\sum_{t \in [T]} \left| m_i^{(t)} \right| + \frac{\log n}{\eta}$ (proof \approx randomized weighted majority).

Fourier Transform

Fourier series: Let $f:[-\pi,\pi]\to\mathbb{R}$ be piecewise continuous:

- General bases: $f(x) = \sum_{n=1}^{\infty} \langle f, e_n \rangle e_n(x)$.
- ▶ Inner product: $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx$. Trigonometric bases: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,
 - $b \ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx;$ $b \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx;$ $c \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx;$ $c \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx;$
 - $\triangleright b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx; 0 \text{ for even functions.}$
- Complex exponential bases: $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$,

 $c_n = \hat{f}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$ $* c_k = c_{-k} \text{ for even functions; } -c_{-k} \text{ for odd functions.}$

Parseval's theorem: $||f||^2 = \sum_{n=-\infty}^{\infty} |\hat{f}_n|^2 = \sum_{n=-\infty}^{\infty} |\langle f, e^{inx} \rangle|^2$.

• Energy of a signal = energy of its Fourier transform.

Fourier transform: Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous on every finite interval & absolutely integrable $(\int_{-\infty}^{\infty} |f(x)| dx < \infty)$:

$$\hat{f}(\omega) = \mathcal{F}(f(x)) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx;$$

$$f(x) = \mathcal{F}^{-1}(\hat{f}(\omega)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega.$$

- $$\begin{split} \bullet \ f(x) &= \begin{cases} 1 \ |x| \leq \frac{1}{2} \\ 0 \ \text{otherwise} \end{cases} \Rightarrow \hat{f}(\omega) = \frac{\sin(\omega/2)}{\omega/2} = \operatorname{sinc}(\omega/2\pi) \ . \\ \bullet \ \text{Linearity:} \ \mathcal{F}(af + bg) = a\mathcal{F}(f) + b\mathcal{F}(g). \\ \bullet \ \text{Shifting:} \ f(ax) \Rightarrow \frac{1}{a}\hat{f}(\omega/a), \ f(x-c) \Rightarrow \hat{f}(\omega)e^{-ic\omega}. \end{split}$$

- Convolution: $(f*g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y) dy \Rightarrow \hat{f}(\omega)\hat{g}(\omega)$. Derivative: $\mathcal{F}(f'(x)) = i\omega\mathcal{F}(f(x))$. Parseval's theorem: $\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega$.

Information Theory

Information of an event: If event A occurs with probability p, $\operatorname{Info}(A) = \psi(p) = \log_b \frac{1}{n}$.

- When b = 2, information is measured in <u>bits</u>.
- Axiomatization of $\psi(p)$:
 - \triangleright Non-negativity: $\psi(p) > 0$;
 - \triangleright Zero for definite events: $\psi(1) = 1$;
 - $ightharpoonup Monotonicity: <math>p \le p' \Rightarrow \psi(p) \ge \psi(p');$
 - ightharpoonup Continuity: $\psi(p)$ is continuous in p;
- \triangleright Additivity under independence: $\psi(p_1p_2) = \psi(p_1) + \psi(p_2)$.

Shannon entropy: Let X be a <u>discrete</u> random variable with probability mass function P_X . The *Shannon entropy* of X is the average information we learn from observing X=x (note: $0\log_2\frac{1}{0}=0$):

$$H(X) = \mathbb{E}_{X \sim P_X} [\psi(X = x)] = \sum_{x} P_X(x) \log_2 \frac{1}{P_X(x)}.$$

• Joint entropy:
$$H(X,Y) = \mathbb{E}_{(X,Y) \sim P(X,Y)} \left[\psi(X=x,Y=y) \right]$$

$$= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{XY}(x,y)}.$$

Conditional entropy

$$H(Y|X) = \mathbb{E}_{(X,Y) \sim P(X,Y)} \left[\psi(Y = y|X = x) \right]$$

$$= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{Y|X}(y|x)}$$

$$= \sum_{x} P_{X}(x)H(Y|X = x).$$

- Entropy measures $\underline{\underline{\text{information}}}$ or $\underline{\underline{\text{uncertainty}}}$ in X.
 - ightharpoonup Binary source: $H(X) = H_2(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$;
 - \triangleright Uniform source: $H(X) = \log_2 |\mathcal{X}|$.
- Properties of entropy:
 - \triangleright Non-negativity: $H(X) \ge 0$;
 - \triangleright Upper bound: $H(X) \le \log_2 |X|$;
 - \triangleright Chain rule (2 var): H(X,Y) = H(X) + H(Y|X);
 - \triangleright Chain rule (n var):
 - $H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i|X_1, \dots, X_{i-1});$ \triangleright Conditioning reduces entropy: $H(X|Y) \le H(X)$ with equality if and only if X and Y are independent;
 - \triangleright Sub-additivity: $H(X_1, \dots, X_n) \leq \sum_{i=1}^n H(X_i)$.

KL divergence:

$$D(P||Q) = \mathbb{E}_{X \sim P} \left[\log_2 \frac{P(x)}{O(x)} \right] = \sum_x P(x) \log_2 \frac{P(x)}{O(x)}.$$

- $D(P||Q) \ge 0$ with equality if and only if P = Q.
- I(X;Y) = H(Y) H(Y|X).
 - Terminologies:

- $\triangleright H(Y)$: Prior uncertainty in Y;
- \triangleright H(Y|X): Remaining uncertainty in Y after observing X;
- $\triangleright I(X;Y)$: Information we learn about Y after observing X.
- Joint mutual information:

$$I(X_1, X_2; Y_1, Y_2) = H(Y_1, Y_2) - H(Y_1, Y_2 | X_1, X_2).$$

• Conditional mutual information:

$$I(X;Y|Z) = H(Y|Z) - H(Y|X,Z).$$

- Properties of mutual information:

$$\begin{split} & \stackrel{\triangleright}{\text{Alternative Forms:}} \\ & I(X;Y) = D(P_{XY}||P(X) \times P(Y)) \\ & = \sum_{x,y} P_{XY}(x,y) \log_2 \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)} \\ & = \sum_{x,y} P_{XY}(x,y) \log_2 \frac{P_{Y|X}(y|x)}{P_Y(y)}; \\ & \stackrel{\triangleright}{\text{Symmetry:}} I(X;Y) = I(Y;X) = H(X) + H(Y) - H(X,Y); \end{split}$$

- \triangleright Non-negativity: $I(X;Y) \ge 0$ with equality if and only if X and Y are independent;
- and Y are independent;

 > Upper bounds: $I(X;Y) \le H(X)$; $I(X;Y) \le H(Y)$.

 > Chain rule: $I(X_1, \dots, X_n | Y) = \sum_{i=1}^n I(X_i; Y | X_1, \dots, X_{i-1})$;

 > Data processing inequality: If X and Z are conditionally independent given Y, then $I(X;Z) \le I(X;Y)$;

 > Partial sub-additivity: If Y_1, \dots, Y_n are conditionally independent given Y.
- pendent given X_1, \dots, X_n , and Y_i depends on X_1, \dots, X_n only through X_i , then

$$I(X_1, \dots, X_n; Y_1, \dots, Y_n) \le \sum_{i=1}^n I(X_i; Y_i).$$

Error-Correcting Codes

Linear code: Any code with parity checks is a *linear code*.

- Types of linear code $\mathbf{u} \to \mathbf{x}$:
 - $\,\vartriangleright\,$ Systematic parity-check code: The first k out of n bits of ${\bf x}$ are always precisely the original k bits, and the remaining n-k bits are parity checks.
 - \triangleright parity-check code: All n codeword bits may be arbitrarily parity checks.
- \bullet Generator matrix: $\mathbf{x}=\mathbf{uG},\,\mathbf{G}$ is the generator matrix.
- Linearity: $\mathbf{x} \oplus \mathbf{x}' = (\mathbf{u} + \mathbf{u}')\mathbf{G}$.
- \bullet Parity-check matrix: $\mathbf{x}\mathbf{H}=\mathbf{0}\Leftrightarrow\mathbf{x}$ is valid.
 - ${} \triangleright \text{ For systematic codes, } \mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix} \Rightarrow \mathbf{H} = \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix}.$

Distance properties:

• Hamming distance: The *Hamming distance* between two vectors ${\bf x}$ and ${\bf x}'$ is the number of positions in which they differ:

$$d_H(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^n \mathbb{I}[x_i \neq x_i']$$

 $d_H(\mathbf{x},\mathbf{x}') = \sum_{i=1}^n \mathbb{I}[x_i \neq x_i'].$ • Minimum distance: The *minimum distance* of a codebook $\mathcal C$ of length-n codewords is

$$d_{\min} = \min_{\mathbf{x} \neq \mathbf{x}' \in \mathcal{C}} d_H(\mathbf{x}, \mathbf{x}').$$

- ▶ If minimum distance is d_{\min} , then it is possible to correct up to $d_{\min} 1$ erasures and $\frac{d_{\min} 1}{2}$ bit flips.
- Weight: $w(\mathbf{x}) = \sum_{i=1}^{n} \mathbb{I}[x_i = 1].$ > For linear codes, minimum distances equal minimum weights.

Minimum distance decoding:

 \bullet Maximum-likelihood decoder: For any channel $P_{\mathbf{Y}|\mathbf{X}}$ and any codebook $\{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}\$, the decoding rule that minimizes the error probabiltiy P_e is the maximum-likelihood decoder:

$$\hat{m} = \operatorname*{arg\,max}_{j=1,\cdots,M} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}^{(j)}).$$

 \triangleright For a linear code, if the syndrome is $\mathbf{S} = \mathbf{y}\mathbf{H} = \mathbf{z}\mathbf{H}$, then the minimum-distance codeword to \mathbf{y} can be obtained by $\hat{\mathbf{z}} = \arg\min_{\tilde{\mathbf{z}}: \tilde{\mathbf{z}}\mathbf{H} = \mathbf{S}} w(\tilde{\mathbf{z}}),$

then computing $\hat{\mathbf{x}} = \mathbf{y} \oplus \hat{\mathbf{z}}$.

Expander Graphs

d-regular: Every vertex has degree d.

Edge expansion: For a graph G = (V, E) with n edges, let $\phi[S] = \frac{\text{no. of edges } (u, v) \text{ with } u \in S, v \notin S}{|S|}.$

Cheeger's constant is defined as $\phi_G = \min_{0 < |S| \le n/2} \phi[S]$.

Vertex expansion: For a graph G = (V, E) with n edges, let $\phi'[S] = \frac{\text{no. of vertices in } V \setminus S \text{ connected to } S}{|S|}$.

Vertex expansion number is defined as $\phi_G = \min_{0 < |S| \le n/2} \phi'[S]$.

Bipartite expander: A bipartite graph with |L| = n, |R| = m, $\deg(u)=d$ for all $u\in L$ is called a $(n,m,d,\gamma,\epsilon)\text{-}\mathit{expander}$ if for all $S\subseteq L$ with $0\leq |S|\leq \gamma n$ we have $|N(S)|\geq \epsilon d|S|,$ where N(S) is the neighbors of S in R.

• Theorem: Suppose the edges in a bipartite graph with |L| = n, |R|=m are constructed by: for each $u\in L$, select d vertices in R uniformly at random without replacement and connect them. Then for $d \geq 32, m \geq 3n/4$ and large enough n, w.p. $\geq \frac{18}{19}$ that the graph is an $(n, m, d, \frac{5}{8}, \frac{1}{10d})$ -expander.

Proof. Union bound the bad event $|N(S)| < \frac{5}{8}d|S|$ for all S.

 Regular expanders can be converted to bipartite expanders by double covering (i.e., maintaining two copies of each vertex).

Explicitness: A deterministic algorithm outputs the expander graph's entire adjacency matrix in poly(n) time.

• Strong explicitness: Given any $u \in [n], i \in [d]$, a deterministic algorithm outputs the *i*-th neighbor of u in poly($\log n$) time.

10 Communication Complexity

Problem setting:

- Alice has access to $x \in \mathcal{X} = \{0, 1\}^n$;
- Bob has access to $y \in \mathcal{Y} = \{0, 1\}^n$;
- Goal: Compute f(x, y) where $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ and $\mathcal{Z} = \{0, 1\}$.
- Deterministic protocol π : Determines which player sends the next message and what to send.
 - $\triangleright \pi$ computes a function f if the value f(x,y) can be deterministically computed following π .
- Communication cost: Total maximum number of bits exchanged.
- Communication complexity: Smallest communication cost.

Protocol tree: A binary tree branched based on a bit is 0 or 1

• Communication complexity = smallest depth among all trees that compute f.

Rectangle: $A \subseteq \mathcal{X}, B \subseteq \mathcal{Y}$, then $A \times B$ is a *rectangle*.

• Lemma: For every node v in the protocol tree, define

$$S_v = \{\text{all input pairs } (x, y) \text{ that leads to } v\};$$

$$X_v = \{ x \in \mathcal{X} : \exists y \in \mathcal{Y} \text{ s.t. } (x, y) \in S_v \};$$

$$Y_v = \{ y \in \mathcal{Y} : \exists x \in \mathcal{X} \text{ s.t. } (x, y) \in S_v \}.$$

Then,
$$S_v = \{y \in \mathcal{Y} : \exists x \in \mathcal{X} \text{ s.t. } (x,y) \in S_v\}.$$

Then, $S_v = X_v \times Y_v$. Also, the rectangles correspond to all

leaves form a partition of $\mathcal{X} \times \mathcal{Y}$.

Proof. Induction: A node v has left child u and right child w. WLOG suppose v is Alice sending a bit, then X_v is split into X_u and X_w based on whether it is 0 or 1.

- Monochromatic rectangle: Given $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ and $z \in \mathcal{Z}$, rectangle R is z-monochromatic if f(x,y) = z for all $(x,y) \in R$.
 - \triangleright Fact: If v is a leaf, then R_v is monochromatic.
 - \triangleright Theorem: If communication complexity of f is c, then $\mathcal{X} \times \mathcal{Y}$ can be partitioned to at most 2^c monochromatic rectangles with respect to f.
 - * Corollary: If cannot partition, then must exceed c.
 - \triangleright Theorem: If there exists a partition to at most 2^c monochromatic rectangles, then exists a protocol of length $O(c^2)$ that computes f.

Lower bounds from rectangles:

- EQUALS: $\geq n+1$ as each 1-monochromatic rectangle has size 1×1 .
- DISJ: There are 3^n 1's and each 1-monochromatic rectangle has size at most 2^n . So $\geq \log (3^n/2^n + 1)$.

Rank bound:

• Communication complexity of $f \leq \operatorname{rank}(M_f) + 1$.

Proof. Factorize $M_f = AB$. Alice sending the r-bit row of A to Bob suffices, Here $r \geq \operatorname{rank}(M_f)$.

• Communication complexity of $f \ge \log(\operatorname{rank}(M_f) + 1)$ if M_f is not the all-1 matrix.

Proof. Rank $c \Rightarrow$ at most 2^c monochromatic rectangles Rwith value z_R . Let M_R be the matrix indicating if $(x,y) \in R$ $(z_R \text{ if so otherwise 0}). \text{ If } z_R = 0, M_R \text{ has rank 0; 1 otherwise.}$ M is the sum of all M_R with at least 1 being all-0. Hence $\operatorname{rank}(M) \leq 2^c - 1 \text{ and } c \geq \log(\operatorname{rank}(M_f) + 1).$

Fooling set: Every monochromatic rectangle with respect to g can share at most one element with S.

- Theorem: Exists fooling set size $s \Rightarrow$ complexity $\geq \log s$.
- The set $S = \{(X, N \setminus X) : X \subseteq [n]\}$ is a fooling set for DISJ. \triangleright So communication complexity $\ge n+1$.

Most functions require high communication: Only a vanishingly small (as $n \to \infty$) fraction of such functions can be computed with n-2bits (or fewer) of communication using deterministic protocols.