Lecture 08

Physics-based Simulation and Articulated Rigid Bodies

Libin Liu

School of Intelligence Science and Technology Peking University

VCL @ PKU

Problems of Kinematic Methods

Interaction with the environment

Physics-based Character Animation

Physics-based Character Animation

Outline

- Simulation Basis
 - Numerical Integration: Euler methods
- Equations of Rigid Bodies
 - Rigid Body Kinematics
 - Newton-Euler equations
- Articulated Rigid Bodies
 - Joints and constraints
- Contact Models
 - Penalty-based contact
 - Constraint-based contact

https://www.cs.cmu.edu/~baraff/sigcourse/

$$x(t = 0)$$

$$v(t = 0)$$

$$m$$

$$x(t = 10) = ?$$

$$x(t), v(t)$$
 m

$$f = ma$$

$$x(t), v(t)$$
 m

$$f = ma$$

$$a = \dot{v}$$

$$v = \dot{x}$$

$$x(t), v(t)$$
 m

$$f = ma$$

$$a = f/m$$

$$a = \dot{v}$$

$$v = v_0 + \int_{t_0}^t a dt$$

$$v = \dot{x}$$

$$x = x_0 + \int_{t_0}^t v dt$$

$$x(t), v(t)$$
 m

$$f = ma$$

$$a = f/m$$

$$a = \dot{v}$$

$$v = v_0 + at$$

$$v = \dot{x}$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$x(t), v(t)$$
 m

$$x(t = 10)$$

$$= x_0 + 10v_0 + 50\frac{f}{m}$$

$$f = ma$$

$$a = f/m$$

$$v = v_0 + at$$

$$v = \dot{x}$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$x(t), v(t)$$
 m

$$x(t=10)=?$$

$$f = ma$$

$$a = f(x, v, t)/m$$

$$a = \dot{v}$$

$$v = v_0 + \int_{t_0}^t a dt$$

$$v = \dot{x}$$

$$x = x_0 + \int_{t_0}^t v dt$$

Temporal Discretization

Simulation time step

Temporal Discretization

$$a = f(x, v, t)/m$$

$$v = v_0 + \int_{t_0}^t a dt$$

$$x = x_0 + \int_{t_0}^t v dt$$

$$a = f(x, v, t)/m$$

$$v_{n+1} = v_n + \int_{t_n}^{t_{n+1}} adt$$

$$x_{n+1} = x_n + \int_{t_n}^{t_{n+1}} v dt$$

• Explicit/Forward Euler Integration

$$v_{n+1} = v_n + a_n h$$
$$x_{n+1} = x_n + v_n h$$

Implicit/Backward Euler Integration

$$v_{n+1} = v_n + a_{n+1}h$$

 $x_{n+1} = x_n + v_{n+1}h$

Explicit/Forward Euler Integration

$$v_{n+1} = v_n + a_n h$$
$$x_{n+1} = x_n + v_n h$$

Implicit/Backward Euler Integration

$$v_{n+1} = v_n + a_{n+1}h$$
 Requires "future" information $x_{n+1} = x_n + v_{n+1}h$

Explicit/Forward Euler Integration

$$v_{n+1} = v_n + a_n h$$
$$x_{n+1} = x_n + v_n h$$

Implicit/Backward Euler Integration

$$v_{n+1} = v_n + f(x_{n+1}, v_{n+1})h$$
 Requires "future" information $x_{n+1} = x_n + v_{n+1}h$

Explicit/Forward Euler Integration

$$v_{n+1} = v_n + a_n h$$
$$x_{n+1} = x_n + v_n h$$

Implicit/Backward Euler Integration

$$v_{n+1} = v_n + a_{n+1}h$$
 Requires "future" information $x_{n+1} = x_n + v_{n+1}h$

• Symplectic / Semi-implicit Euler Integration

$$v_{n+1} = v_n + a_n h$$
 \longleftarrow All information is current $x_{n+1} = x_n + v_{n+1} h$

Mass on a Spring

$$f = -kx$$

Explicit Euler Integration

$$v_{n+1} = v_n - \frac{kx_n}{m}h$$
$$x_{n+1} = x_n + v_n h$$

Semi-implicit Euler Integration

$$v_{n+1} = v_n - \frac{kx_n}{m}h$$
$$x_{n+1} = x_n + v_{n+1}h$$

Implicit Euler Integration

$$v_{n+1} = v_n - \frac{kx_n}{m}h$$
 $v_{n+1} = v_n - \frac{kx_n}{m}h$ $v_{n+1} = v_n - \frac{kx_{n+1}}{m}h$ $x_{n+1} = x_n + v_n h$ $x_{n+1} = x_n + v_{n+1} h$ $x_{n+1} = x_n + v_{n+1} h$

Mass on a Spring

$$f = -kx$$
$$\hat{k} = k/m$$

$$\hat{k} = k/m$$

Explicit Euler Integration

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & -\hat{k}h \\ h & 1 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

Semi-implicit Euler Integration

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & -\hat{k}h \\ h & 1 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix} \qquad \begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & -\hat{k}h \\ h & 1 - \hat{k}h^2 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

Implicit Euler Integration

$$\begin{bmatrix} 1 & \hat{k}h \\ -h & 1 \end{bmatrix} \begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \frac{1}{1 + \hat{k}h^2} \begin{bmatrix} 1 & -\hat{k}h \\ h & 1 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

Mass on a Spring

$$f = -kx$$

Explicit Euler Integration

Semi-implicit Euler Integration

Implicit Euler Integration

- Explicit/Forward Euler
 Symplectic/Semi-implicit Euler
 - Fast, no need to solve equations
 - Can be unstable under large time step

$$v_{n+1} = v_n + f(x_n, v_n)h$$
$$x_{n+1} = x_n + v_n h$$

$$v_{n+1} = v_n + f(x_n, v_n)h$$
$$x_{n+1} = x_n + v_{n+1}h$$

- Implicit/Backward Euler
 - Rock stable (unconditionally)
 - Slow, need to solve a large problem

$$v_{n+1} = v_n + f(x_{n+1}, v_{n+1})h$$

 $x_{n+1} = x_n + v_{n+1}h$

More Advanced Integration

- Runge–Kutta methods
- Variational integration
- Position-based dynamics (PBD)

•

Rigid Bodies

• They are rigid....

Position and Orientation

Position and Orientation

$$x' = x + Rr_0$$

Position and Orientation

$$x' = x + Rr_0 = x + r$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$v$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$v$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$v$$

$$RR^T = I$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$v$$

$$RR^T = I$$

$$\frac{d(RR^T)}{dt} = 0$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$RR^T = I$$

$$\dot{R}R^T + R\dot{R}^T = 0$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$RR^{T} = I$$

$$\dot{R}R^{T} + (\dot{R}R^{T})^{T} = 0$$

 $\dot{R}R^T$ is a Skew-Symmetric Matrix

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \dot{R}r_0$$

$$v$$

$$RR^{T} = I$$

$$\dot{R}R^{T} + (\dot{R}R^{T})^{T} = 0$$

$$\dot{R}R^{T} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} = [\omega]_{\times}$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + [\omega]_{\times} Rr_0$$

$$v$$

$$\dot{R} = [\omega]_{\times} R$$

$$\dot{R}R^T = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} = [\omega]_{\times}$$

$$x' = x + Rr_0 = x + r$$

$$\frac{dx'}{dt} = ?$$

$$\frac{dx'}{dt} \Leftrightarrow \dot{x}' = \dot{x} + \omega \times (Rr_0)$$

$$v$$

$$\dot{R} = [\omega]_{\times} R$$

$$\dot{R}R^T = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} = [\omega]_{\times}$$

$$x' = x + Rr_0 = x + r$$

$$v' = v + \omega \times r$$

$$\dot{x} = v$$

$$\dot{R} = [\omega]_{\times} R$$

v: linear velocity

Rodrigues' rotation formula

$$\delta x = x' - x$$

$$= (\sin \theta) u \times x + (1 - \cos \theta) u \times (u \times x)$$

$$||u||=1$$

$$||u|| = 1$$

Rodrigues' rotation formula

$$\delta x = x' - x$$

$$= (\sin \theta) u \times x + (1 - \cos \theta) u \times (u \times x)$$

$$\dot{\boldsymbol{x}} = \frac{d\boldsymbol{x}}{dt} = \frac{d\boldsymbol{x}}{d\theta} \cdot \frac{d\theta}{dt} = \dot{\theta}\boldsymbol{u} \times \boldsymbol{x}$$

Rodrigues' rotation formula

$$\delta x = x' - x$$

$$= (\sin \theta) \mathbf{u} \times x + (1 - \cos \theta) \mathbf{u} \times (\mathbf{u} \times x)$$

$$\dot{x} = \frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt} = \dot{\theta} \mathbf{u} \times x$$

$$\dot{x} = \boldsymbol{\omega} \times x$$

$$\dot{R} = [\omega]_{\times} R$$

$$R = \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix}$$

$$\dot{R} = [\omega]_{\times} R$$

$$R = \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{\chi} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix}$$

$$\dot{\boldsymbol{e}}_{\chi} = \boldsymbol{\omega} \times \boldsymbol{e}_{\chi}$$

$$\dot{\boldsymbol{e}}_y = \boldsymbol{\omega} \times \boldsymbol{e}_y$$

$$\dot{\boldsymbol{e}}_z = \boldsymbol{\omega} \times \boldsymbol{e}_z$$

$$\dot{R} = [\omega]_{\times} R$$

$$R = \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix}$$

$$\dot{\mathbf{x}} \quad \dot{R} = \begin{bmatrix} | & | & | \\ \dot{\mathbf{e}}_{x} & \dot{\mathbf{e}}_{y} & \dot{\mathbf{e}}_{z} \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \boldsymbol{\omega} \times \dot{\mathbf{e}}_{x} & \boldsymbol{\omega} \times \dot{\mathbf{e}}_{y} & \boldsymbol{\omega} \times \dot{\mathbf{e}}_{z} \\ | & | & | & | \end{bmatrix}$$

$$\dot{R} = [\omega]_{\times} R$$

$$R = \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix}$$

$$\dot{R} = \begin{bmatrix} | & | & | \\ \dot{\boldsymbol{e}}_{x} & \dot{\boldsymbol{e}}_{y} & \dot{\boldsymbol{e}}_{z} \\ | & | & | \end{bmatrix} = [\boldsymbol{\omega}]_{\times} \begin{bmatrix} | & | & | \\ \boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{z} \\ | & | & | \end{bmatrix}$$

$$x' = x + Rr_0 = x + r$$

$$v' = v + \omega \times r$$

$$\dot{x} = v$$

$$\dot{R} = [\omega]_{\times} R$$

v: linear velocity

Numerical Integration

Numerical Integration

Numerical Integration

$$\dot{x} = v$$

$$x' = x + \delta t \cdot v$$

$$R' = R + \delta t \cdot [\omega]_{\times} R$$

Need orthogonalization!

Numerical Integration: Quaternion

Numerical Integration: Quaternion

$$\dot{x} = v$$

$$\dot{q} = \frac{1}{2}\overline{\omega}q$$

$$\overline{\omega} = (0, \omega)$$

$$x' = x + \delta t \cdot v$$

$$q' = q + \delta t \cdot \dot{q}$$

Need Normalization!

Kinematics vs. Dynamics

Kinematics

x, R v, ω a, α

. . .

 $\ddot{x}, \ddot{\omega}$

Dynamics

p, L

F, τ

Linear and Angular Momentum of a Particle

$$p = m v$$

Linear momentum of *x*

$$L = m r \times v$$

Angular momentum of x w.r.t. o

Force and Torque

$$\tau = r \times F$$

Torque and Angular Momentum

https://en.wikipedia.org/wiki/Torque

Rigid Body as a Collection of Particles

$$M = \sum_{i} m_i$$

$$x_c = \frac{\sum_i m_i x_i}{\sum_i m_i}$$

$$v_c = \frac{\sum_i m_i v_i}{\sum_i m_i}$$

Moments of a Rigid Body

$$p = \sum_{i} m_{i} v_{i} \qquad L_{o} = \sum_{i} m_{i} r_{i}' \times v_{i}$$

$$L_o = \sum_{i} m_i r_i' \times v_i = Mr_c \times v_c + \sum_{i} m_i r_i \times v_i$$

$$L_{x_c} = \sum_{i} m_i r_i \times v_i$$

$$L = \sum_{i} m_i r_i \times v_i$$

$$L = \sum_{i} m_i r_i \times v_i$$

$$L = \sum_{i} m_{i} r_{i} \times (\omega \times r_{i})$$

$$L = \sum_{i} -m_{i}[r_{i}]_{\times}^{2} \omega$$

$$[a]_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

$$L = I\omega$$

Moment of Inertia:
$$I = \sum_{i} -m_{i}[r_{i}]_{\times}^{2}$$

Moment of Inertia

Moment of Inertia

https://en.wikipedia.org/wiki/Moment_of_inertia

Rotation of Moment of Inertia

$$M = M_0$$

$$I = RI_0R^T$$

$$(Rr) \times x = R \left(r \times (R^T x) \right)$$
$$[Rr]_{\times} = R[r]_{\times} R^T$$
$$[Rr]_{\times}^2 = R[r]_{\times}^2 R^T$$

Principal Axes of Moment of Inertia

Eigendecomposition
$$\Rightarrow I = RI_0R^T$$

$$I_0 = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix} = \operatorname{diag}(I_1, I_2, I_3)$$

Center of Momentum (CoM) Frame

$$p = Mv_c$$
 $L = I\omega$

Force on a Rigid Body

Force on a Rigid Body

$$\tau = r \times f$$

Torque on a Rigid Body

$$\tau = ???$$

Parallel Forces and Torques

Center of Momentum (CoM) Frame

Center of Momentum (CoM) Frame

$$p = Mv_c$$

$$L = I\omega$$

$$f = \sum_{i} f_{i}$$

$$au = \sum_i au_i$$

Kinematics

m, I

Dynamics

x, R

 v,ω

p, L

$$x, R, v, \omega$$

$$p = Mv$$

$$L = I\omega$$

Newton's Second Law: f = Ma

$$x, R, v, \omega$$

$$p = Mv$$

$$L = I\omega$$

Newton's Second Law:
$$\frac{a}{2}$$

$$x, R, v, \omega$$

$$p = Mv$$

$$L = I\omega$$

Newton's Second Law:
$$\frac{dp}{dt} = f$$

Euler's laws of motion:
$$\frac{dL}{dt} = \tau$$

$$x, R, v, \omega$$

$$p = Mv$$

$$L = I\omega$$

Newton's Second Law:

$$\frac{dp}{dt} = f$$
 \Rightarrow $M\dot{v} =$

Euler's laws of motion:

$$\frac{dL}{dt} = \tau \quad \Rightarrow \quad I\dot{\omega} + \dot{I}\omega = \tau$$

$$x, R, v, \omega$$

$$p = Mv$$

$$L = I\omega$$

$$\dot{I} = \frac{d}{dt} (RI_0 R^T)$$

$$= \dot{R}I_0 R^T + RI_0 \dot{R}^T$$

$$= [\omega]_{\times} RI_0 R^T + RI_0 R^T [\omega]_{\times}^T$$

 $\dot{I}\omega = \omega \times I\omega + I(-\omega \times \omega)$

Newton's Second Law:

$$\frac{dp}{dt} = f$$

$$M\dot{v} = f$$

Euler's laws of motion:

$$\frac{dL}{dt} = \tau$$

$$I\dot{\omega} + \omega \times I\omega = \tau$$

Newton-Euler Equations

$$x, R, v, \omega$$

$$p = mv$$

$$L = I\omega$$

$$\begin{bmatrix} m\mathbf{I_3} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

Numerical Integration

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

$$\frac{1}{h} \begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} v_{n+1} - v_n \\ \omega_{n+1} - \omega_n \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_n \times I_n \omega_n \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

Rigid Body Simulation

$$\frac{1}{h} \begin{bmatrix} mI_3 & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} v_{n+1} - v_n \\ \omega_{n+1} - \omega_n \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_n \times I_n \omega_n \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix}$$

$$I_n = R_n I_0 R_n^T$$

$$v_{n+1} = \cdots$$

$$\omega_{n+1} = \cdots$$

$$x_{n+1} = x_n + h v_{n+1}$$

$$q_{n+1} = q_n + \frac{1}{2} h \overline{\omega}_{n+1} q$$

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & \\ & I_1 & \\ & & m_2 \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix}$$

$$M\dot{v} + C(x, v) = f$$

$$M\dot{v} + C(x, v) = f$$

A System with Two Links and a Joint

$$M\dot{v} + C(x, v) = f$$

A System with Two Links and a Joint

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + \boldsymbol{f}_{I}$$

Constraints

$$g(\mathbf{x}) = C$$

$$\frac{d}{dt}g(\mathbf{x}) = 0$$

Constraints

$$g(\mathbf{x}) = C$$

$$\frac{d}{dt}g(\mathbf{x}) = 0$$

$$\frac{\partial g}{\partial \mathbf{x}} \cdot \frac{d\mathbf{x}}{dt} = 0$$

Constraints

$$g(\mathbf{x}) = C$$

$$\frac{d}{dt}g(\mathbf{x}) = 0$$

$$J\boldsymbol{v}=0$$

$$J = [\nabla g]^T$$

Constraint Force

* Constraint is passive No energy gain or loss!!!

$$f_c \cdot v = 0$$

Constraint Force

* Constraint is passive No energy gain or loss!!!

$$f_c \cdot v = 0 \iff f_c^T v = 0$$

$$f_c = J^T \lambda$$

unknown

Equation of Motion with Constraints

$$M\dot{v} = f + J^T \lambda$$

$$Jv = 0$$

$$M\frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$

$$Jv_{n+1} = 0$$

Numerical Solution

$$M \frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$
$$J v_{n+1} = 0$$

Numerical Solution

$$M\frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$

$$Jv_{n+1} = \mathbf{0}$$

$$g(x) = C$$
 $Jv_{n+1} = \alpha \frac{C - g(x_n)}{h}$

Correction of numerical errors α : error reduction parameter (ERP)

Numerical Solution

$$M\frac{v_{n+1} - v_n}{h} = f + J^T \lambda$$

$$Jv_{n+1} = b_n$$

$$JM^{-1}J^T\lambda = c_n$$

$$(JM^{-1}J^T + \beta \mathbf{I})\lambda = c_n$$

 β : constraint force mixing (CFM)

Joint Constraint

$$x_{1} + R_{1}r_{1} = x_{J} = x_{2} + R_{2}r_{2}$$

$$d/dt$$

$$v_{1} + \omega_{1} \times r_{1} = v_{2} + \omega_{2} \times r_{2}$$

Joint Constraint

$$\begin{bmatrix} I_3 & -[r_1]_{\times} & -I_3 & [r_2]_{\times} \end{bmatrix} \begin{bmatrix} v_1 \\ w_1 \\ v_2 \\ w_2 \end{bmatrix} = 0$$

$$Jv = 0$$

A System with Two Links and a Joint

$$M\dot{v} + C(x, v) = f + J^T \lambda$$

$$Jv = 0$$

A System with Two Links and a Joint

$$\begin{bmatrix} m_1 \mathbf{I}_3 & & \\ & I_1 & \\ & & m_2 \mathbf{I}_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1 \\ \dot{\omega}_1 \\ \dot{v}_2 \\ \dot{\omega}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_1 \times I_1 \omega_1 \\ 0 \\ \omega_2 \times I_2 \omega_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ \tau_1 \\ f_2 \\ \tau_2 \end{bmatrix} + \begin{bmatrix} I_3 \\ [r_1]_{\times} \\ -I_3 \\ -[r_2]_{\times} \end{bmatrix} \lambda$$

$$Jv = 0$$

Different Types of Joints

Hinge joint Revolute joint

Universal joint

Ball-and-socket

$$\begin{bmatrix} I_3 & -[r_1]_{\times} & -I_3 & [r_2]_{\times} \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} v_1 \\ w_1 \\ v_2 \\ w_2 \end{bmatrix} = 0$$

A System with Many Links Joints

Contacts

Contact Detection

Contact Detection

Penalty-based Contact Model

$$f_n = -k_p d - k_d v_{c,\perp}$$

Frictional Contact

Coulomb's law of friction: $|f_t| = \mu f_n$

Frictional Contact

$$f_n = -k_p d - k_d v_{c,\perp}$$

$$f_n = -k_p d - k_d v_{c,\perp}$$

$$f_t = -\mu f_n \frac{v_{c,\parallel}}{\|v_{c,\parallel}\|}$$

Frictional Contact

Coulomb's law of friction: $|f_t| \le \mu f_n$

How to model static friction???

Contact as a Constraint

$$x_c = x + r_c$$

$$v_c = v + \omega \times r_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$v_{c,\perp} = v + \omega \times r_c = J_{c,\perp} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

Contact as a Constraint

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$
$$\lambda \ge 0$$

Contact as a Constraint

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$
$$\lambda \ge 0$$

$$v_c > 0 \Rightarrow \lambda = 0$$

$$\lambda > 0 \Rightarrow v_c = 0$$

Contact as a Linear Complementary Problem

$$\begin{bmatrix} m\mathbf{I}_3 & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \times I\omega \end{bmatrix} = \begin{bmatrix} f \\ \tau \end{bmatrix} + J_c^T \lambda$$

$$v_c = J_c \begin{bmatrix} v \\ \omega \end{bmatrix} \ge 0$$

$$\lambda \geq 0$$

$$v_c \perp \lambda = 0$$

(Mixed) Linear Complementary Problem (LCP)

To solve an LCP:

e.g. Lemke's algorithm – a simplex algorithm

Contact as a Linear Complementary Problem

How to deal the friction?

David Baraff. SIGGRAPH '94 Fast contact force computation for nonpenetrating rigid bodies.

Simulation of a Rigid Body System

$$I_n = R_n I_0 R_n^T$$

$$f_c$$
 = Penalty

$$M_n(v_{n+1} - v_n)/h + C_n(v_n) = f_c + J_n^T \lambda$$

 $J_n v_{n+1} = c_n$

$$x_{n+1} = x_n + hv_{n+1}$$
$$q_{n+1} = q_n + \frac{h}{2}\overline{\omega}_{n+1}q$$

Outline

- Simulation Basis
 - Numerical Integration: Euler methods
- Equations of Rigid Bodies
 - Rigid Body Kinematics
 - Newton-Euler equations
- Articulated Rigid Bodies
 - Joints and constraints
- Contact Models
 - Penalty-based contact
 - Constraint-based contact

https://www.cs.cmu.edu/~baraff/sigcourse/

Questions?

