

EBI Metagenomics Bioinformatics Course November 2020

Georg Zeller & Jakob Wirbel

Univariate statistical tests for metagenomic data

Comparing microbiome composition in case-control studies

Tools for microbial community comparison

Assessing difference in overall community structure

- Clustering
- Ordination

Testing for changes in individual taxa

Statistical testing

Bilophila wadsworthia

[Yachida et al. Nat. Medicine 2019]

Which statistical test is appropriate?

Some things to keep in mind:

- Microbiome data show zero-inflation
- Extreme variance across individuals
- Microbiome data do not follow a lognormal distribution

Nonparametric Wilcoxon test suitable for metagenomics

Simulations suggest the Wilcoxon test to...

- maintain false-discoveryrate control,
- have reasonable sensitivity (stat. power), which increases with sample size.

[Hawinkel et al. Brief. Bioinform. 2017]

Multiple testing correction

- Since we test several hundreds of taxa, some tests will be "significant" by chance
- It is thus crucial to perform a multiple testing correction, e.g.
 - The Benjamini-Hochberg procedure controls the false discovery rate (proportion of true positives among those for which the null hypothesis is rejected)
 - The Bonferroni procedure controls the family-wise error rate (probability of the significant set to contain any false positive)

Multiple testing correction

- Since we test several hundreds of taxa, some tests will be "significant" by chance
- It is thus crucial to perform a multiple testing correction, e.g.
 - The Benjamini-Hochberg procedure controls the false discovery rate (proportion of true positives among those for which the null hypothesis is rejected)
 - The Bonferroni procedure controls the family-wise error rate (probability of the significant set to contain any false positive)

Technical and biological effects on community composition can be challenging to deconvolute

- Technical factors can strongly affect microbial community profiles (batch effects), e.g. DNA extraction protocols, sequencing approach (16S primers), bioinformatic profiling
- Biological factors other than that of interest can affect profiles (confounders), e.g. medication, lifestyle, host demographics

[Schmidt et al. Cell 2018]

Caveat: confounding (here due to metformin)

- Two studies reported associations between the gut microbiome and type 2 diabetes
 - However, there was little overlap in the set of associated taxa
- Metformin is a common medication for treatment of type 2 diabetes
- Metformin alters the composition of the gut microbiome

[Forslund et al. Nature 2015]

Caveat: association does not imply causation

Correspondence: jerniwaterituco.

Caveat: significance not to be confused with effect size

- Statistical significance does not mean that the difference is big, important or biologically significant.
 It simply means you can be confident that there is a difference.
- Any (even a tiny) difference can create a significant results if the sample size is large enough
- What is a good effect size measure for microbiome data?

Colorectal cancer (CRC) as an introductory example

- Collected stool samples from 53 colorectal cancer (CRC) patients and 88 healthy controls
- Used metagenomic sequencing and profiled gut bacterial species
- Can microbiome differences be used for non-invasive detection of cancer?

[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014] [Wirbel*, Pyl*, et al., Nat. Med. 2019]

Statistically significant associations with CRC across five studies

Generalized fold change as measure for effect size

Generalized fold change as measure for effect size

Machine learning / statistical modelling of metagenomic data

Colorectal cancer example (continued)

- Collected stool samples from 53 colorectal cancer (CRC) patients and 88 healthy controls
- Used metagenomic sequencing and profiled gut bacterial species
- Can microbiome differences be used for non-invasive detection of cancer?
- How does metagenomic detection compare to standard noninvasive diagnostic test (FOBT)?

[Zeller*, Tap*, Voigt* et al., Mol. Syst. Biol. 2014]

A microbiome "signature" of colorecatal cancer

Descriptive statistics versus statistical modeling

- Hypothesis testing:
 Could the observed difference also be observed by chance?
- Modeling:
 Given only the measurement, can we tell which group the measurement corresponds to?
- Recall that P-values depend on both effect size and sample size!

Why statistical modelling / machine learning?

- Modeling ideally extracts the essence of a biological phenomenon
- Model needed to make predictions on new data (necessary e.g. for microbiome-based diagnostics)
- Prediction accuracy is often a more meaningful measure of association than statistical significance of differences
- Suitable methods can select predictive taxa (and ignore others)
- Sparse statistical models are based on only "few" taxa,
 therefore useful for microbiome biomarker / signature extraction

$$y_i = f(\mathbf{x}_i) + \varepsilon$$

For i samples / patients y_i – label (e.g. disease or control), always binary herein x_i – features (e.g. species abundance profile, a vector) f – our model ϵ – modeling error

Introduction to notation and input data format

Feature data X (also observations, predictors):
 n x p matrix x_{ij}
 species/gene abundances in rows (i),
 samples/patients in columns (j)

observations based on which we wish to make predictions \mathbf{x}_i denotes the feature vector, i.e. abundance profile, for the i-th sample

Label data y (also dependent variable, response):
 vector of length n, containing binary values in our cases

the phenomenon which we wish to predict: disease vs. healthy, response vs. non-response etc.

Ordination versus modelling (I)

 Using PCoA (with various dissimilarity measures), it is difficult to resolve for each oral microbiome sample the precise sampling site.

Ordination versus modelling (I)

- Using PCoA (with various dissimilarity measures), it is difficult to resolve for each oral microbiome sample the precise sampling site.
- Statistical models, in contrast, can very accurately recognize sample origin.

ROC curves for LASSO models (each vs rest)

Ordination versus modelling (II)

A typical machine learning workflow

Data filtering

Normalization

Data splitting

Model training

Prediction / evaluation

Association testing

Confounder testing

[Wirbel et al., BioRxiv 2020]

siamcat.embl.de

Starting with SIAMCAT

- > source("https://bioconductor.org/biocLite.R")
- > biocLite("SIAMCAT")
- > browseVignettes("SIAMCAT")

File formats supported:

- phyloseq
- BIOM
- LEfSe
- MaAsLin
- metagenomeSeq

microbiome-tools.embl.de

This workflow is implemented in the SIAMCAT Bioconductor package, which we will explore in detail in the practical.

delines of the siamulation of

What to use as input (features)?

- Use your domain expertise to engineer features that are likely predictive of the phenomenon of interest – microbiome examples:
 - Species abundances (or higher / lower resolution taxonomic profiles)
 - Metabolic pathway abundance (e.g. KEGG / CAZy maps)
 - Functional gene annotations (GO terms, domains, ...)
 - Orthologous gene families (COGs, eggNOG families, ...)
 - Toxins, virulence factors, ABX resistance genes, ...
- Consider interpretability –
 predictive species/metabolic pathways may be preferred over k-mers or log-ratios
- Importantly, do NOT use the label information for selecting features for modeling (more on this later)

Model evaluation (classification)

In many applications, classes aren't equal – neither are errors!

		True condition	
		positive ("cancer")	negative ("healthy")
Predicted condition	positive ("predicted to have cancer")	True positives TP	False positives FP (Type I errors)
	negative ("predicted not to have cancer")	False negatives FN (Type II errors)	True negatives TN

True positive rate (TPR, **sensitivity**, **recall**)
True negative rate (TNR, **specificity**)
False positive rate (FPR, 1 – specificity)

are all independent of prevalence (fraction of positives in the population) Precision (positive pred. value, PPV)
False discovery rate (FDR, 1 – precision)

are both dependent on prevalence (fraction of positives in the population)

Model evaluation II – ROC curves

Model evaluation II – ROC curves

Model evaluation II – ROC curves

- Change decision threshold to obtain other tradeoffs between sensitivity and specificity
- Receiver operating characteristic (ROC) curve plots all of them
- Area under the ROC curve as a summary statistic

ROC curves from single features / distances

 Enrichment of a species in disease group can be directly quantified using ROC curves (disease biomarker).

 Separation between groups in terms of pairwise dissimilarities can also be assessed using ROC curves.

Ordination versus modelling (II) - revisited

Model evaluation III – assessing generalization

- What might seem a good idea at first: Minimizing the training error...
 But with increasing flexibility, models will fit the training data better and better.
- Better: maximize generalization to new data sets...
 Since overfitting the training data will result in poor generalization (i.e. large test error)

Here for illustration, smoothing splines are used where model flexibility / complexity increases with the degree of the polynomials.

[James, Witten, Hastie & Tibshirani, Springer 2013]

Resampling data for external validation or cross validation

Some data need wheatys be researly edd foor resoluted attion delevaluation....

Validation on external data

total number of samples (split into 2 subsets)

- Train model on training set
- Test on test set
- Assess error on test predictions

Cross-validation (CV)

total number of samples (split into 5 subsets)

- For each CV fold:
 - Train a model on training set
 - Predict on the test set
- Either concatenate or average predictions from (all) test sets to estimate error
- More efficient use of (training) data

Cross-validation pitfalls I – illustration

Cross-validation pitfalls II

- Cross validation works under the i.i.d. assumption (observations have the same probability distribution and are mutually independent)
 - E.g. a series of (fair or unfair) coin flips is i.i.d. as the next flip doesn't depend on the previous ones.
- However, biological samples are rarely completely independent:
 - Multiple time-point measurements from the same subject or related subjects
 - Spatial structure / dependencies between measurements
- Data (sets) are not always identically distributed
 - Batch effects: e.g. experiments or diagnostic tests performed in different labs (by different technicians, at different times, using different reagent lots, ...) may exhibit (subtle) distributional shifts

Take home messages

- Model fitting is easy, model evaluation is not at all!
 Understand the generalization assessed consult experts!
- Beware of **overfitting** especially on small data sets, especially with complex algorithms! Typically N > 50, better > 100 per group is a requirement; start with simple algorithms first
- Trade off interpretability (white-box models) and maximal prediction accuracy wisely!
- Models can be confounded too! [see e.g. Forslund et al., *Nature* 2015 or Vujkovic-Cvijin et al., *Nature* 2020]
- Diagnostic application is relatively straightforward, but underlying mechanisms are generally difficult to glean from models (predictability does NOT imply causality!)

Outlook – disease classification using SIAMCAT

www.siamcat.embl.de

[Wirbel et al., bioRxiv 2020]

