MATH 7337: Harmonic Analysis

Frank Qiang Instructor: Christopher Heil

Georgia Institute of Technology Fall 2025

Contents

1	Aug	g. 19 — The Fourier Transform	2
	1.1	The Fourier Transform on $L^1(\mathbb{R})$	2
	1.2	Motivation for the Fourier Transform	3

Lecture 1

Aug. 19 — The Fourier Transform

1.1 The Fourier Transform on $L^1(\mathbb{R})$

All integrals will be taken over \mathbb{R} unless otherwise specified.

Definition 1.1. The Fourier transform of $f \in L^1(\mathbb{R})$ is

$$\widehat{f}(\xi) = \int f(x)e^{-2\pi i \xi x} dx, \quad \xi \in \mathbb{R}.$$

Remark. Note that by the triangle inequality,

$$|\widehat{f}(\xi)| \le \int |f(x)e^{-2\pi i \xi x}| dx = \int |f(x)| dx = ||f||_1 < \infty,$$

so $\widehat{f}(\xi)$ exists for all $\xi \in \mathbb{R}$ (in fact, \widehat{f} is continuous).

Remark. The Fourier transform is an operator $\mathcal{F}: L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$ as $\|\widehat{f}\|_{\infty} = \operatorname{ess\,sup}_{\xi \in \mathbb{R}} |\widehat{f}(\xi)| \leq \|f\|_1$. This is linear in f. The operator norm of \mathcal{F} is

$$\|\mathcal{F}\| = \|\mathcal{F}\|_{L^1 \to L^\infty} = \sup_{\|f\|_1 = 1} \|\widehat{f}\|_{\infty} \le \sup_{\|f\|_1 = 1} \|f\|_1 = 1,$$

so \mathcal{F} is a bounded linear operator. However, \mathcal{F} is not isometric (norm-preserving) in general.

Remark. Observe that

$$\widehat{f}(0) = \int f(x)e^{-2\pi i \cdot 0 \cdot x} dx = \int f(x) dx.$$

So if $f \ge 0$ and we normalize f so that $\widehat{f}(0) = 1$, then we have

$$|\widehat{f}(\xi)| \le \int f(x) \, dx = \widehat{f}(0),$$

and so $\|\widehat{f}\|_{\infty} = \operatorname{ess\,sup}_{\xi \in \mathbb{R}} |\widehat{f}(\xi)| \leq 1$. This is one particular case where \mathcal{F} does preserve the norm.

Definition 1.2. For $r \neq 0$, dilation of f by r is $f_r(x) = rf(rx)$. Note that $||f_r||_1 = ||f||_1$.

Example 1.2.1. The *Dirichlet function* is $d(\xi) = \sin(\xi)/\pi\xi \in C_0(\mathbb{R})$. Note that $d \notin L^1(\mathbb{R})$. We can also define the *sinc* function as $\sin \xi = \sin(\pi \xi)/(\pi \xi) = d\pi(x)$.

¹Recall that $C_0(\mathbb{R})$ is the space of continuous functions $f: \mathbb{R} \to \mathbb{C}$ such that $\lim_{x \to \pm \infty} f(x) = 0$.

However, d is the Fourier transform of a function in $L^1(\mathbb{R})$. Consider the

$$\chi_{-[T,T]}(x) = \begin{cases} 1 & \text{if } |x| \le T, \\ 0 & |x| > T. \end{cases}$$

Note that $\chi_{-[T,T]} \in L^1(\mathbb{R})$. Then we have

$$\widehat{\chi}_{-[T,T]}(\xi) = \int_{-T}^{T} e^{-2\pi i \xi x} \, dx = \left. \frac{e^{-2\pi i \xi x}}{-2\pi i \xi} \right|_{-T}^{T} = \frac{\sin(2\pi T \xi)}{\pi \xi} = d_{2\pi T}(\xi),$$

so we see that $\widehat{\chi}_{-[T,T]} \in C_0(\mathbb{R}) \subsetneq L^{\infty}(\mathbb{R})$.

Remark. We will see in general that $\mathcal{F}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$, this is the Riemann-Lebesgue lemma. The image of \mathcal{F} is a proper dense subspace of $C_0(\mathbb{R})$, which implies that \mathcal{F}^{-1} must be unbounded as a linear operator by Banach space theory.

Proposition 1.1. If $f \in L^1(\mathbb{R})$, then \widehat{f} is uniformly continuous on \mathbb{R} , i.e.

$$\|\widehat{f} - T_{\eta}\widehat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\widehat{f}(\xi) - \widehat{f}(\xi - \eta)| \xrightarrow{\eta \to 0} 0,$$

where $T_{\eta}\widehat{f}(\xi) = \widehat{f}(\xi - \eta)$.

Proof. We can write the difference as

$$|\widehat{f}(\xi) - \widehat{f}(\xi - \eta)| = \left| \int f(x) (e^{-2\pi i \xi x} - e^{-2\pi i (\xi - \eta) x}) \, dx \right| \le \int |f(x)| |e^{-2\pi i \xi x} - e^{-2\pi i (\xi - \eta) x}| \, dx.$$

Note that $f \in L^1(\mathbb{R})$ and $|e^{-2\pi i \xi x} - e^{-2\pi i (\xi - \eta)x}| = |1 - e^{2\pi i \eta x}| \to 0$ as $\eta \to 0$ independent of ξ , so the statement follows from the dominated convergence theorem (the integrand is dominated by 2f).

1.2 Motivation for the Fourier Transform

Remark. We will define the *inverse Fourier transform* of $f \in L^1(\mathbb{R})$ as

$$\widecheck{f}(x) = \int f(x)e^{2\pi i \xi x} \, d\xi.$$

Note that $\check{f}(\xi) = \widehat{f}(-\xi)$. With enough assumptions, this is an inverse to the Fourier transform.

Proposition 1.2 (Fourier inversion formula). If $f, \hat{f} \in L^1(\mathbb{R})$, then

$$f(x) = (\widehat{f})^{\vee}(x) = \int \widehat{f}(\xi) e^{2\pi i \xi x} d\xi.$$

Remark. Note that $e_{\xi}(x) = e^{2\pi i \xi x} = \cos 2\pi \xi x + i \sin 2\pi \xi x$ and $e_{\xi} : \mathbb{R} \to S^1 = \{z \in \mathbb{C} : |z| = 1\}$. We have $e_{\xi}(x+y) = e_{\xi}(x)e_{\xi}(y)$, so e_{ξ} is a homomorphism, and it is also continuous. Thus e_{ξ} is a *character* on \mathbb{R} (in fact, every character on \mathbb{R} is of the form e_{ξ} for some ξ). One can use this idea to define Fourier transforms in much more general settings.

Remark. The Fourier transform decomposes a function f into the pure harmonics e_{ξ} , and the inversion formula says that we can recover f as a "sum" of these pure harmonics.