

KNIME

Data analytics, profiling, reporting and integration platform

Links

✓ https://www.knime.com

License GNU [GPL-3.0] + license

Version 4.1.2 **Last Update** 3/5/2020

OS Linux, macOS, Windows

System Requirements Sophisticated graphics hardware is not needed, multi core systems a plus as KNIME makes use of multiple cores. The available hard drive space (NOT main memory) limits the amount of processable data - several tens GB free space are recommended. Main memory should be 1GB or above, on 32-bit systems up to 1.5GB can be used, more on 64-bit systems

Description KNIME Analytics Platform is an open solution for data-driven innovation, designed for discovering the potential hidden in data, mining for fresh insights, or predicting new futures. Organizations can take their collaboration, productivity and performance to the next level with a robust range of commercial extensions to our open source platform.

KNIME Analytics Platform provides the tools to connect to a host of databases and data warehouses, access a variety of file formatts (formatted text files, binary files, SOAP and REST web services, databases, big data platforms, files from other proprietary software tools, and more), retrieve data from cloud resources or external services, and more. The broad set of out-of-the-box functionality, allows you to seamlessly integrate and transform the data in one uniform, visual environment on your own - no dependencies on central IT. If there's a functionality you're missing, simply integrate the tools you like or take advantage of the many integrations we have with other open source projects. Workflows created with KNIME Analytics Platform automatically document each step of your data wrangling process. Meaning, if you share workflows or results with your colleagues, they can easily understand the individual steps of your workflow and provide feedback.

KNIME Software covers all kinds of data analytics functionality - for example classification, regression, dimension reduction, or clustering, using advanced algorithms including deep learning, tree-based methods, and logistic regression. Among these, are integrations with other large, open source projects such as Keras or Tensorflow for deep learning, H2O for high performance machine learning, R and Python for coding, and various implementations for model interpretability and validation.

From integrations with Apache Spark for big data processing, to KNIME Server distributed executors for handling concurrent workflow execution, KNIME Software ensures data science is created and deployed quickly and efficiently.

Features

- Powerful Analytics
- Data and Tool Blending
- Over 1000 modules and growing
- Connectors for all major file formats and databases
- Supports multiple data types: XML, JSON, images, documents etc.
- Native and in-database data blending and transformation
- Math and statistical functions
- Advanced predictive and machine learning algorithms
- Workflow control
- Tool blending for Python, R, SQL, Java, Weka and others
- Interactive data views and reporting

Connectivity / Supported Data Sources & Formats

- Simple text formats (CSV, PDF, XLS, JSON, XML, etc.)
- Unstructured data types (images, documents, networks, molecules, etc.)
- Time series data
- Connect to a host of databases and data warehouses to integrate data from Oracle, Microsoft SQL, Apache Hive, and more
- Load Avro, Parquet, or ORC files from HDFS, S3, or Azure
- Access and retrieve data from sources such as Twitter, AWS S3, Google Sheets, and Azure and extended via pandas

Limitations

The number of rows is unlimited, but the number of columns shouldn't get much larger than ~10 000. In case all your columns have the same type, you may want to have a look at the "KNIME Nodes for Wide Data" extension. It allows to read all columns into a single "array" column.

Performance

KNIME works with 1.3M records but the performance is slow and takes good amount of memory from the system as shown in Pic 1 and 2. You will need a machine with appropriate capacity.

Feedback from Cystic Fibrosis Team:

Kieran Earlam and Rebecca Cosgriff from the Cystic Fibrosis team used Knime to analyze data. Neither Kieran nor Rebecca have technical roles and despite this Kieran was able to get Knime working within 3 days. While they toiled valiantly to some degree of success, it should not and would not be that hard for the appropriate staff. If one considers what it takes to create a trusted high quality dataset, if the resources are unable to run data profiling tools which report data quality gaps, it seems unlikely they would be able to run other data quality tools and processes which contribute to creating a high quality dataset.

The feedback was as follows:

- KNIME is quiet resource intensive for system resources, it took a while to interrogate data with i5 Coffeelake processor overclocked at 4.2ghz and 16gb of ram.
- We store our verified data sets in .dta files for Stata and therefore had to convert to .csv for use in KNIME.

- Complex workflows could be created and run; however, it took substantial time to get to grips with the tool.
- The node repository seemed vast with detailed explanations on how to work a node into the workflow.
 However as previously mentioned complex workflows were hard to get to grips with and lots of time had to be spent debugging and learning the basics.

- The in-window explanations (show above) were very detailed and helpful, and given the days and weeks it would take to learn the tool I'm sure it would effectively interrogate most data.
- The huge number of extensions and functionality meant that when searching for solutions I was given multiple routes to achieve my goal, which can be both an advantage and a disadvantage
- KNIME had the ability to function with R coding, our stats team primarily use STATA.

• The node repository was vast with 100s of tools to integrate into workflows. With adequate training KNIME looks like it could handle huge data sets.

The supporting document "Data Quality Tool Assessment Request - Data Custodian Cystic Fibrosis.docx" contains all feedback provided by the Cystic Fibrosis team.

KNIME DATA ANALYSIS

- 1. Download Knime from "https://www.knime.com/downloads/download-knime".
- 2. Install Knime and from "Workflow Coach" tool box drag and drop the "Microsoft SQL Server Connector" and configure with the "HostName" port and DB Names.
- 3. Right click and select "Execute".

- 4. Drag and drop the "DB Query Reader" and configure it by writing the SQL Queries and make a link to the MS SQL Server Connector. Right click and execute.
- 5. Drag and Drop the "Statistics" node and link to the DB Query reader and "Execute and Open Views". Sample screen shot of this tool is below,

6. The file extension for a KNIME workflow, is .knwf (KNIME workflow file). Importing and exporting workflows are also introduced in this video: Import/Export Workflows (https://youtu.be/4GiwmM-qcC4).

PERCENTAGE OF REQUISITE INFORMATION AVAILABLE:

ROW COUNTS:

HIGHEST AND LOWEST VALUE OF KEY ELEMENTS:

MISSING VALUES (UNUSABLE VALUES):

REAL WORLD VALUES AND DUPLICATES:

FILL MISSING VALUES:

MIN AND MAX DATES:

△ Group table - 0:12 - GroupBy

File Hilite Navigation View

Row ID	S PATIENT	S Max(START) S	Min(START)
Row0	00185faa-2760-4218-9bf5-db301acf		0-11-09T15:06:3
Row1	0042862c-9889-4a2e-b782-fac1e540		0-05-06T23:31:3
Row2	0047123f-12e7-486c-82df-53b3a450		0-03-06123:31:3 0-09-25T00:15:5
Row3	0.10d4a3a-2316-45ed-ae15-16f01c6		0-09-23100:15:5 0-06-20T04:32:1
Row4	01207ecd-9dff-4754-8887-4652eda2	207 12025 00 2210 11021212 202	9-05-20104:32:1
Row5	0149d553-f571-4e99-867e-fcb9625d		8-06-23T13:13:2
Row6	01e1f394-7219-4189-bceb-3cbd90cf		4-10-01T14:39:2
Row7	023a7d29-32b3-4db5-89c8-b88bd75	2011 2020 00 00112010 11222 200	9-05-05T13:04:2
Row8	0288abb6-633c-40c3-ba0c-66c7d957	727e 2019-11-06T04:07:36Z 195	2-02-22T04:07:3
Row9	02ea2f1a-ddcf-4809-8279-dde7a62e	0318 2019-04-11T12:49:12Z 201	2-03-16T12:49:1
Row10	02f9aadd-72de-4b20-b381-f4c3b1cf	7aa3 2005-10-01T20:06:53Z 198	2-05-13T20:06:5
Row11	03172f6e-fb21-4770-8eef-51373017	4ab7 1968-01-23T09:16:22Z 196	1-03-14T09:16:2
Row12	0325261f-61eb-46f8-acc6-89d15053	fecd 2007-09-01T13:04:22Z 192	6-05-04T13:04:2
Row13	034e9e3b-2def-4559-bb2a-7850888	e 2018-01-29T17:45:28Z 201	0-01-23T17:45:2
Row14	03612a7e-6460-4ef6-9528-59d60f97	0b93 2014-09-16T12:21:33Z 195	7-08-03T12:21:3
Row15	03963166-b49f-4440-a80d-30abb90l	04 2019-08-25T10:41:23Z 199	3-09-19T10:41:2
Row16	03c5e223-c016-4477-947f-22c691d6	a62c 2020-03-17T15:05:51Z 201	1-04-14T15:05:5
Row17	0447625b-b860-483c-9f30-17ed375b	1493 2020-04-26T09:16:22Z 196	8-09-06T09:16:2
Row18	04630e85-e9f5-4a9b-be75-97f2c334	6037 2019-12-21T23:46:24Z 195	8-03-13T23:46:2
Row19	04a29a39-c12f-480b-9521-f2d20559	089f 2020-01-26T05:41:47Z 197	3-12-16T05:41:4
Row20	04a849f4-1aaf-4112-a62f-d44df432	5773 2020-02-28T20:13:17Z 201	0-08-13T20:13:1
Row21	04db6603-0017-4cc6-a46d-6df577b0	a 10d 2020-04-13T08:54:26Z 198	9-10-23T08:54:2
Row22	04dff6e5-123a-4c13-bd08-ad690d28	7173 2018-11-28T00:51:06Z 201	0-05-04T00:51:0
Row23	0522e580-6775-49f5-b471-b396242	30 2016-04-27T08:39:57Z 197	0-11-26T08:39:5
Row24	052c405b-ad28-4411-a81e-18cd811		9-11-23T04:56:0

RECORDS PER MONTH TIMELINES:

COLUMN FORMATS AND RANGE:

RANGE:

COUNTS OF REAL WORLD AND DUPLICATES:

OUTLIERS:

A Robust Statistics - 0:14 - Box Plot (local)

File Hilite Navigation View

ı	Table default - Ro	default - Rows: / Spec - Columns: 5 Properties Flow Variables				
	Row ID	D CODE	D BASE_E	D TOTAL	D PAYER	D REASO
	Minimum	22,298,006	77.49	77.49	0	6,072,007
	Smallest	22,298,006	129.16	129.16	0	6,072,007
	Lower Quartile	162,673,000	129.16	129.16	17.49	55,822,004
	Median	185,347,001	129.16	129.16	69.16	72,892,002
	Upper Quartile	390,906,007	129.16	129.16	89.16	195,967,001
	Largest	702,927,004	129.16	129.16	129.16	403,191,005
	Maximum	702,927,004	129.16	129.16	129.16	124,171,00

PERCENTAGE OF COLUMNS:

Table default - Rows: 4 Spec - Columns: 3 Properties Flow Va							
Row ID	? column1	? column2	? column3				
Row0	a	b	С				
Sum	10	10	10				
Max	6	4	3				
Percentage	60.0	40.0	30.0				

HISTOGRAM SAMPLES:

LIMITATIONS:

• Works for 1.3M records, there is a performance drop and it can able to handle it by taking more system memory. A system with more memory will be recommended for KNIME while operating with huge datasets. Example shown below,

