Hands-on Machine Learning

5. Support Vector Machines

Support Vector Machine

- ➤ A *support vector machine* (SVM) is a powerful machine learning model, capable of performing linear or nonlinear classification and regression tasks.
- > SVMs shine with small to medium-sized nonlinear datasets (i.e., hundreds to thousands of instances), especially for classification tasks.
- > SVMs don't scale very well to very large datasets.

1. Linear SVM Classification

The Idea Behind SVM

- ➤ If classes are linearly separable, find a line that separates the two classes and stays far away from the closest training instances.
- > You can think of an SVM classifier as fitting the widest possible street. This is called *large margin classification*.
- > Support vectors: the instances located on the edge of the street.

Sensitivity to Feature Scales

- SVMs are sensitive to the feature scales.
- > After feature scaling using Scikit-Learn's StandardScaler:

Soft Margin Classification

- ➤ Hard margin classification: we strictly impose that all instances must be off the street and on the right side.
 - It only works if the data is linearly separable
 - It is sensitive to outliers.
- > Soft margin classification: find a good balance between keeping the street as large as possible and limiting the margin violations.

Soft Margin Classification

- ➤ We can use the regularization parameter C in SVM model to balance the tradeoff between margin violations and a better generalization (i.e., wider street).
- ➤ If your SVM model is overfitting, you can try regularizing it by reducing C.

Implementation in Scikit-Learn

```
X_new = [[5.5, 1.7], [5.0, 1.5]]
svm_clf.predict(X_new)
array([ True, False])
```

LinearSVC vs. SVC

➤ Instead of using the LinearSVC class, we could use the SVC class with a linear kernel:

```
SVC(kernel="linear", C=1)
```

- ➤ Unlike LogisticRegression, LinearSVC doesn't have a predict_proba() method to estimate the class probabilities.
 - > Use the SVC class and set its probability hyperparameter to True.
 - > The model will fit an extra model at the end of training to map the SVM decision function scores to estimated probabilities.
 - > After that, the predict_proba() and predict_log_proba() methods will be available.

2. Nonlinear SVM Classification

Nonlinear Datasets

- Many datasets are not even close to being linearly separable.
- > One approach to handling nonlinear datasets is to add more features, such as polynomial features.
 - This may result in a linearly separable dataset.

Linear SVC for Nonlinear Dataset

> Create a pipeline containing a PolynomialFeatures transformer followed by a StandardScaler and a LinearSVC.

```
from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = make_pipeline(
    PolynomialFeatures(degree=3),
    StandardScaler(),
    LinearSVC(C=10, max_iter=10_000, random_state=42)
)
polynomial_svm_clf.fit(X, y)
```


Polynomial Kernel

- > Adding polynomial features is simple to implement and work with all sorts of ML algorithms.
 - > Low polynomial degree: cannot deal with very complex datasets.
 - > High polynomial degree: huge number of features make a slow model.
- > The *kernel trick* makes it possible to get the same result as if you had added many polynomial features, even with very high-degree polynomials, without actually having to add them.
 - No combinatorial explosion of the number of features because you don't actually add any features.

Polynomial Kernel

Similarity Features

- > Another way to tackle nonlinear problems is to add features computed using a *similarity function*, which measures how much each instance resembles a particular *landmark*.
- > Example. Gaussian *Radial Basis Function* (RBF):

$$\phi_{\gamma}(\mathbf{x}, l) = \exp(-\gamma ||\mathbf{x} - l||^2)$$

Landmarks

- How to select the landmarks?
 - > The simplest approach is to create a landmark at the location of each and every instance in the dataset.
 - Doing that creates many dimensions and increases the chances that the transformed training set will be linearly separable.
 - The downside is that a training set with m instances and n features gets transformed into a training set with m instances and m features (assuming you drop the original features).
 - > If your training set is very large, you end up with an equally large number of features.

Gaussian RBF Kernel

- ➤ The similarity features method can be useful with any machine learning algorithm, but it is computationally expensive.
 - For each landmark, we have a new feature.
- > The kernel trick makes it possible to obtain a similar result as if you had added many similarity features.

SVM Classifiers with RBF Kernel

Computational Complexity

- > The LinearSVC class is based on the liblinear library.
 - \triangleright Its training time complexity is almost $O(m \times n)$.
- > The SVC class is based on the libsvm library.
 - > Training time complexity is between $O(m^2 \times n)$ and $O(m^3 \times n)$.
 - > It scales well with the number of features, especially with *sparse features* (i.e., when each instance has few nonzero features).

Class	Time complexity	Out-of-core support	Scaling required	Kernel trick
LinearSVC	$O(m \times n)$	No	Yes	No
SVC	$O(m^2 \times n)$ to $O(m^3 \times n)$	No	Yes	Yes
SGDClassifier	$O(m \times n)$	Yes	Yes	No

3. SVM Regression

SVM Regression

- ➤ Using SVM for regression: fit as many instances as possible on the street while limiting margin violations (i.e., instances off the street).
 - \succ The width of the street is controlled by a hyperparameter, ϵ .

SVM Regression

Univariate linear SVR (allowing for errors)

Implementing SVM Regression

➤ Use Scikit-Learn's LinearSVR class to perform linear SVM Regression:

> To tackle nonlinear regression tasks, use a kernelized SVM model:

SVM Regression

