计算机组成短距

2017年修订

西南交通大学信息科学与技术学院 唐慧佳 hjtang@home. swjtu. edu. cn

- § 4.1 基本算术运算的实现
- § 4.2 定点加减运算
- § 4.3 带符号数的移位和舍入操作
- § 4.4 定点乘法运算
- § 4.5 定点除法运算
- § 4.6 规格化浮点运算
- § 4.7 十进制整数的加法运算
- § 4.8 逻辑运算与实现
- § 4.9 运算器的基本组成结构

本章要点:

- 1. 与门、与或门、三态门、寄存器等器件的典型应用方法,以及它们的组合应用方法;
- 2. 加法器的先行进位原理; 定点数的加减乘除运算方法(其中补码数运算最重要), 并能把数据表示、运算方法(算法)和电路实现联系起来;
- 3. 微操作的概念及描述方法;
- 4. 逻辑运算及其实现方法、浮点数的运算方法;
- 5. 定点运算器的典型结构.

本章内容包括两个方面:

算术、逻辑运算的运算原理和规则 — 运算方法(算法) 运算算法的硬件实现 — 运算电路

本章的教学目标:

- (1) 掌握运算器内部的工作原理和基本结构;
- (2) 提高硬件方面的专业素质;
- (3) 提升计算思维能力 即如何把问题转化为可计算的算法。

几个名词及其相互关系:

运算方法: 算术运算和逻辑运算的运算规则。

运算器:运算算法的硬件电路实现。

ALU: 运算器的核心部件

加法器: ALU中最基本的部件

1. 门电路

与门

$$F = A \cdot B$$

或门

$$F = A+B$$

1. 门电路

异或

1. 门电路

非门、三态门等

 G=0 时, Q=D;

 G=1 时, Q为高阻态

2. 寄存器

具有记忆(存储)功能。

典型结构:由多个触发器组成,每个触发器对应1位。

计算机各个部件的内部,主要由两种类型的电路组成:

- 1)没有记忆功能的组合逻辑电路,由门电路组成;
- 2) #记忆功能的器件, 最典型的就是寄存器, 其它记忆 元件也可以看作是寄存器。

§ 4.1 基本算术运算的实现

加法运算是最基本的算术运算,减、乘、除运算最终都可以归结为加法运算。

4.1.1 加法器

1. 全加器 (FA)

4.1.1 加法器

1. 全加器 (FA)

输入量: $A_i \setminus B_i \setminus C_{i-1}$ (低位传来的进位);

输出量: S_i (本位和)、 C_i (向高位的进位)。

$$Si = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$$

- 2. 串行加法器和并行加法器
- 1) 串行加法器用一个全加器进行n位字长的加法运算。 特点:器件少,但运算速度慢,因为运算数据需逐位 串行送入加法器进行运算。
- 2) 并行加法器由n个全加器组成(n为字长),数据的各位同时运算。

4.1.2 进位的产生和传递

最简单的并行加法器是串行进位(行波进位)加法器:

虽然操作数的各位是同时提供的,但高位运算需要使用低位运算后所产生的进位。

一由此可见,提高并行加法器速度的关键是尽量加快进位产生 和传递的速度。

4.1.3 并行加法器的快速进位

1. 并行进位方式

又叫先行进位,解决加法器中进位的传递速度问题。

基本思路: 让各位的进位输入与低位的进位产生无关,仅与两个参加操作的数有关,以提高加法器的运算速度。

串行进位逻辑:

$$C_1 = G_1 + P_1 C_0$$
 (其中: Gi=AiBi 称为本地进位)
 $C_2 = G_2 + P_2 C_1$ (Pi=Ai \oplus Bi 称为传递进位)
 $C_3 = G_3 + P_3 C_2$
 $C_4 = G_4 + P_4 C_3$

• • • • •

可改写为:

$$\begin{split} & C_1 &= G_1 + P_1 C_0 \\ & C_2 &= G_2 + P_2 G_1 + P_2 P_1 C_0 \\ & C_3 &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0 \\ & C_4 &= G_4 + P_4 G_3 + P_4 P_3 G_2 + P_4 P_3 P_2 G_1 + P_4 P_3 P_2 P_1 C_0 \end{split}$$

• • • • •

---- 并行进位(先行进位CLA—Carry Look Ahead)

并行进位逻辑:

$$C_{1} = G_{1}+P_{1}C_{0}$$

$$C_{2} = G_{2}+P_{2}G_{1}+P_{2}P_{1}C_{0}$$

$$C_{3} = G_{3}+P_{3}G_{2}+P_{3}P_{2}G_{1}+P_{3}P_{2}P_{1}C_{0}$$

$$C_{4} = G_{4}+P_{4}G_{3}+P_{4}P_{3}G_{2}+P_{4}P_{3}P_{2}G_{1}+P_{4}P_{3}P_{2}P_{1}C_{0}$$

• • • • •

并行进位逻辑电路可以用与或门实现,其每个进位输出C_i仅由G_i、 P_i及最低进位输入C₀决 定,可以同时产生。

2. 分组并行进位方式

(1) 单级先行进位方式(组内并行、组间串行) 以16位加法器为例:

先行进位时间图

2. 分组并行进位方式

(2) 多级先行进位方式(组内并行、组间并行)

把单级先行进位中的式子变成:

$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0 = G_1^* + P_1^* C_0$$
 $C_8 = G_8 + P_8G_7 + P_8P_7G_2 + P_8P_7P_6G_5 + P_8P_7P_6P_5C_4 = G_2^* + P_2^* C_4$

再改写成:

 G_i *称为组进位产生函数, P_i *称为组进位传递函数。

成组先行进位电路BCLA,是CLA电路的修改,增加了Gi*和Pi*逻辑输出,去掉了其中最高位并行进位的输出。

两级先行进位时间图

? 思考:

- 1. 在全加器里进位输出表达式 $C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$ 为什么可以简化为 $C_i = A_i B_i + (A_i + B_i) C_{i-1}$?
- 2. 先行进位主要是解决什么问题,采用什么设计思路?

§ 4.2 定点加减运算

定点数的加减运算包括原码、补码和反码3种带符号数的加减运算,其中补码加减运算实现起来最方便。

4.2.1 原码加减运算

运算规则:

- (1) 符号位单独处理,用绝对值(即尾数)参加运算;
- (2) 原码同号相加或异号相减时,尾数作加法运算,得和的原码尾数(需要判溢出),最后结果取被加(减)数的数符;
- (3) 原码异号相加或同号相减时,尾数作减法运算,不需判溢出,减的结果为负时应把结果变补才是原码的尾数,结果的原码按是否够减决定结果数符。
- 注:减法运算A-B可转换为加法运算A+[B]_{变补}。

4.2.2 补码加减运算

1. 运算方法

符号位参加运算。

补码运算的两个重要公式:

- 2. 运算溢出判断
- 1) 根据运算前后数的符号位判断

设:操作数
$$A = A_s$$
, $A_1 A_2 \dots A_n$

操作数
$$B = B_s$$
, $B_1 B_2 \dots B_n$

其和为:
$$S = S_s, S_1 S_2 \dots S_n$$

则: 溢出条件
$$V_f = A_s \cdot B_s \cdot \overline{S}_s + \overline{A}_s \cdot \overline{B}_s \cdot S_s$$

两个负数相加,结果却为正数

两个正数相加,结果却为负数

- 2. 运算溢出判断
- 2) 采用进位位判断

设:C。为符号位产生的进位,

C₁为最高数值位产生的进位

则: 溢出条件 $V_f = \overline{C}_s \cdot C_1 + \overline{C}_s \cdot C_1 = C_s \oplus C_1$

3) 运算时补码采用双符号位(变形补码)

溢出条件
$$V_f = S_{s1} \cdot S_{s2} + S_{s1} \cdot S_{s2} = S_{s1} \oplus S_{s2}$$

$$S_{s1}S_{s2} = 01, 结果正溢 \qquad S_{s1}S_{s2} = 10, 结果负溢$$

左边的符号位Ssi叫做真符。

当结果的双符号位 $S_{s1}S_{s2}$ 为00或11时,值用补码能够表示。

③
$$A=-0.1101, B=-0.1010, 求[A+B]_{*}$$

4 A=0. 1101, B=-0. 1010,
$$\Re[A-B]_{*}$$
.

∴[A-B]_补 正溢出!

习题: P135 2, 4, 5,

6(用恒舍法,并求[2Y]_补), 7, 8, 10(2)(4), 11

习题: P120 2, 4, 5,

6(用恒舍法,并求[2Y]_补), 7, 8, 10(2)(4), 12

加法运算(即 $X \leftarrow X + Y$), 应给该运算器提供如下控制信号:

 $X \rightarrow F$; $Y \rightarrow F$; $F \rightarrow X$; CPx (其它控制信号为低电平)

减法运算(即 X←X-Y),应给该运算器提供如下控制信号:

$$X \rightarrow F$$
; $\overline{Y} \rightarrow F$; $F \rightarrow X$; $1 \rightarrow F$; CPx

控制信号的波形为:

减法运算(即 X←X-Y),应给该运算器提供如下控制信号:

$$X \rightarrow F$$
; $\overline{Y} \rightarrow F$; $F \rightarrow X$; $1 \rightarrow F$; CPx

注:控制信号"1→F"为加法器的最低位的进位输入。 上述的加法或减法运算都是一步完成的。

计算机硬件所实现的所有的功能,都是通过把它分解成一步一步的基本操作来实现的,这些基本操作称为 微操作。每个微操作都是寄存器到寄存器的传送。

硬件电路的微操作,可用<u>寄存器传送语言</u>来描述。 例如:

R0←R1 (或 R1→R0)

表示寄存器R1的数据送给寄存器R0

AR**←**DB**←**PC

表示寄存器PC的数据经过数据总线DB送给寄存器AR

AR**←**PC

表示寄存器PC的数据送给寄存器AR

 $X \leftarrow X + Y$

表示寄存器X和寄存器Y相减后结果送给寄存器X

寄存器传送语言,与指令系统功能描述的写法有些差异!

注意:

微操作 "AR←DB←PC"如果分成如下两步:

- (1) $DB \leftarrow PC$
- (2) AR←DB ——错了!

这是因为DB没有记忆功能,上述两步各自都不能构成微操作!

课外扩展阅读:寄存器传送语言(英文材料 Chapter 4)

§ 4. 3 带符号数的移位和舍入操作

带符号数的移位指算术移位。

算术左移1位即乘以2操作,算术右移1位即除以2操作, 移位的规则与码制有关。

4.3.1 带符号数的移位操作

1. 原码的移位规则

符号位均不变,空出位一律以"0"补入。

例: 移位前 1X₁X₂ ... X_{n-1}X_n

移位后 $1X_2X_3 \dots X_n$ (若 X_1 为1则溢出)

右移后 $1_{\underline{0}}X_1 \dots X_{n-2}X_{n-1}$ (X_n丢弃)

2. 补码的移位规则

左移:符号位不变,所有位左移,末位补入"0" 如果所有位左移后符号位变了,则溢出!

右移: 符号位不变, 连同符号位右移

3. 移位功能的实现

- (1) 由移位寄存器来实现
- (2) 用移位器来实现

移位器可以由多路选择器构成,常接在加法器的输出端,可以实现直传(不移位)、左斜一位送(左移一位)和右斜一位送(右移一位)的功能。

注意: 多路选择器是没有记忆功能的!

移位操作除了算术移位外,还有逻辑移位和循环移位。

逻辑移位:逻辑左移

逻辑右移

循环移位:小循环(左移为例)

4.3.2 带符号数的舍入操作

算术右移时常见的舍入方法有:

- (1) 恒舍法(切断) 末尾多余部分的位一律舍去。
- (2) 恒置1法(冯·诺依曼舍入法) 不论末尾舍去的是什么,都把保留部分的最低位置1。
- (3) 下舍上入法 (0舍1入)
- (4) 查表舍入法(ROM舍入法)

各种舍入方法的误差统计数值不同。

4.3.2 带符号数的舍入操作

查表舍入的一般方法:

当 K位数据的高K-1位为全"1"时按恒舍法填入K-1位全"1",否则其余单元都按下舍上入法来填其内容。

思考: 计算机硬件中的微操作有些什么特点?

习题: P136 2, 4, 5, 6(用恒舍法,并求出[2Y]_补), 7, 8, 10(2)(4), 11

习题: P120 2, 4, 5, 6(用恒舍法,并求出[2Y]_补), 7, 8, 10(2)(4), 12

§ 4.4 定点乘法运算

乘除的实现途径:

- 1) 软件实现 (低档机中只提供加、减、移位等指令)
- 2) 在加减运算器基础上增加少量电路实现(有乘除指令)
- 3) 设置专用的高速阵列乘除运算器。

被乘数、乘数用原码表示,所求的积也用原码表示。

处理方法: 符号位单独处理

$$P_S = X_S \oplus Y_S$$

绝对值相乘得积的尾数 $|P| = |X| \times |Y|$

手算例子

 $0.1101 \times 0.1011 = ?$

手算例子 $0.1101 \times 0.1011 = ?$ 0.1101 × 0.1011 0000 1101 1101 1101 100111 1101 1101 0000 0000 100111 1101 0.10001111

手算例子 $0.1101 \times 0.1011 = ?$ 0. 1101 \times 0. 1011 0000 1101 1101 1101 100111 1101 1101 0000 0000 100111 1101 1101 0.10001111 10001111

原码一位乘法框图: (P104图4-12)

- B 寄存器 -- 被乘数
- C 寄存器 -- 乘数。运算结束后乘数不再保留,改为存放乘积的 低位部分
- A 寄存器 -- 初值为 0,存放部分积或最后乘积的高位部分

原码一位乘法框图: (P104图4-12)

加法器: n+2位的

与门: n+2个, (控制是加被乘数还是加0)

异或门: 1个,处理符号位

计算机的计算过程:

$$P_S = X_S \oplus Y_S = 0 \oplus 1 = 1$$

$$X \times Y = -0.10001111$$

$$C_4 = 1, + |X|$$

部分积右移一位
$$C_4=1$$
, $+|X|$

部分积右移一位
$$C_4=0$$
,+0

部分积右移一位
$$C_4=1$$
, $+|X|$

部分积右移一位

B寄存器

原码一位乘法流程图(P104图4-11)

4.4.2 补码一位乘法

1. 校正法

校正法是将 $[X]_{i}$ 和 $[Y]_{i}$ 按原码规则运算,所得结果再根据乘数的符号再加以校正,从而得到正确的 $[X\times Y]_{i}$ 。

补码乘法校正法在乘数为负数需要多一步校正,控制起来要复杂一些。

$$[X \times Y]_{\nmid h} = [X]_{\nmid h} \times (0. Y_1 Y_2 \dots Y_n) + [-X]_{\nmid h} \times Y_s$$

$$[X \times Y]_{\frac{1}{2}h} = [X]_{\frac{1}{2}h} \times (0. Y_{1} Y_{2} ... Y_{n}) + [-X]_{\frac{1}{2}h} \times Y_{s}$$

$$= [X]_{\frac{1}{2}h} \times (Y_{1} 2^{-1} + Y_{2} 2^{-2} + ... + Y_{n} 2^{-n}) + [-X]_{\frac{1}{2}h} \times Y_{s}$$

$$= [X]_{\frac{1}{2}h} \times [-Y_{s} + Y_{1} (2^{0} - 2^{-1}) + Y_{2} (2^{-1} - 2^{-2}) + ... + Y_{n} (2^{-(n-1)} - 2^{-n}) + 0]$$

$$= [X]_{\frac{1}{2}h} \times [(Y_{1} - Y_{S}) 2^{0} + (Y_{2} - Y_{1}) 2^{-1} + ... + (Y_{n+1} - Y_{n}) 2^{-n}] + [Y_{n+1} = 0]$$

$$[X \times Y]_{\dag h} = [X]_{\dag h} \times (0, Y_{1} Y_{2} ... Y_{n}) + [-X]_{\dag h} \times Y_{s}$$

$$= [X]_{\dag h} \times (Y_{1} 2^{-1} + Y_{2} 2^{-2} + ... + Y_{n} 2^{-n}) + [-X]_{\dag h} \times Y_{s}$$

$$= [X]_{\dag h} \times [-Y_{s} + Y_{1} 2^{-1}] + Y_{2} (2^{-1} - 2^{-2}) + ... + Y_{n} (2^{-(n-1)} - 2^{-n}) + 0]$$

$$= [X]_{\dag h} \times [(Y_{1} - Y_{s}) 2^{0} + (Y_{2} - Y_{1}) 2^{-1} + ... + (Y_{n+1} - Y_{n}) 2^{-n}] | Y_{n+1} = 0$$

$$= [X]_{\dag h} (Y_{1} - Y_{s}) + [X]_{\dag h} (Y_{2} - Y_{1}) 2^{-1} + ... + [X]_{\dag h} (Y_{n+1} - Y_{n}) 2^{-n}]$$

$$= [X]_{\dag h} (Y_{1} - Y_{s}) + 2^{-1} ([X]_{\dag h} (Y_{2} - Y_{1}) + 2^{-1} (... + 2^{-1} ([X]_{\dag h} (Y_{n+1} - Y_{n}) + 0) ...))$$

注:
$$S = \frac{a_0}{a_0} + \frac{a_1t}{a_1t} + \frac{a_2t^2}{a_2t} + \frac{a_3t^3}{a_4t} + \frac{a_4t^4}{a_4t}$$
 ($t = 2^{-1}$)

需7次乘4次加!

而 $S = \frac{a_0}{a_0} + \frac{t}{t}(\frac{a_1}{a_2} + \frac{t}{t}(\frac{a_3}{a_4} + \frac{t}{t}(\frac{a_4}{a_4} + 0))))$
只需4次乘5次加! 而且运算很有规律(加乘的循环)

可用递推公式计算:

$$[Z_0]_{\stackrel{}{N}} = 0$$
 — 初始部分积 $[Z_1]_{\stackrel{}{N}} = 2^{-1}\{[Z_0]_{\stackrel{}{N}} + (Y_{n+1} - Y_n)[X]_{\stackrel{}{N}}\}$ — 第1次累加并右移之后的部分积 $[Z_2]_{\stackrel{}{N}} = 2^{-1}\{[Z_1]_{\stackrel{}{N}} + (Y_n - Y_{n-1})[X]_{\stackrel{}{N}}\}$ — 第2次累加并右移之后的部分积

-- 初始部分积

$$[Z_n]_{*} = 2^{-1}\{[Z_{n-1}]_{*} + (Y_2 - Y_1)[X]_{*}\}$$
 — 第n次累加并右移之后的部分积

∴
$$[X \times Y]_{*} = [Z_n]_{*} + (Y_1 - Y_s)[X]_{*} - 最后1次累加,但不移位!$$

可用递推公式计算:

$$[Z_0]_{N} = 0$$
 — 初始部分积 $[Z_1]_{N} = 2^{-1} \{ [Z_0]_{N} + (Y_{n+1} - Y_n)[X]_{N} \}$ — 第1次累加并右移之后的部分积 $[Z_2]_{N} = 2^{-1} \{ [Z_1]_{N} + (Y_n - Y_{n-1})[X]_{N} \}$ — 第2次累加并右移之后的部分积

- -- 初始部分积

∴
$$[X \times Y]_{*} = [Z_n]_{*} + (Y_1 - Y_s)[X]_{*} - 最后1次累加,但不移位!$$

由此可见,Booth乘法可以把符号位和数值位同等 对待,一起参加运算。运算共需做n+1次累加(用双符 号位运算),n次移位,第n+1次不移位。

Booth乘法运算规则:

判断位 Yn	Y_{n+1}	操作
0	0	原部分积+0,再右移一位
0	1	原部分积+[X]*, 再右移一位
1	0	原部分积加[-X]*, 再右移一位
1	1	原部分积+0,再右移一位

Booth乘法示例

$$∴ [X \times Y]_{*}=1.01110001$$

$$\therefore X \times Y = -0.100011111$$

3. Booth乘法运算的实现

思考: P136 9

习题: P136 2, 4, 5, 6(用恒舍法,并求[2Y]*), 7,

8, 10(2)(4), 11

习题: P120 2, 4, 5, 6(用恒舍法,并求[2Y]_补), 7,

8, 10(2)(4), 12

4.4.3 补码两位乘法

每次处理乘数中的两位,从而使乘法的速度提高了一倍。可理解为将Booth乘法的每两步累加移位合并为一次来做。

被乘数和部分积取3个符号位;

乘数的数值位n为偶数时取2个符号位,共需作(n/2)+1次累加,n/2次移位(最后一次不移位);当n为奇数时,乘数只需1个符号位,共需(n+1)/2次累加和移位,但最后一次仅移一位。

4.4.4 阵列乘法器

由高速乘法模块组成,以提高乘法运算的速度。

1. 不带符合的阵列乘法器

例如: m=n=5,

					$\mathbf{a_4}$	\mathbf{a}_3	$\mathbf{a_2}$	$\mathbf{a_1}$	$\mathbf{a_0}$	$=\mathbf{A}$
				×	$\mathbf{b_4}$	$\mathbf{b_3}$	$\mathbf{b_2}$	$\mathbf{b_1}$	$\mathbf{b_0}$	=B
					$\mathbf{a_4b_0}$	a_3b_0	$\mathbf{a_2b_0}$	$\mathbf{a_1}\mathbf{b_0}$	$\mathbf{a_0}\mathbf{b_0}$	
				a_4b_1	a_3b_1	$\mathbf{a_2}\mathbf{b_1}$	$\mathbf{a_1}\mathbf{b_1}$	$\mathbf{a_0}\mathbf{b_1}$		
			a_4b_2	a_3b_2	$\mathbf{a_2b_2}$	$\mathbf{a_1}\mathbf{b_2}$	$\mathbf{a_0b_2}$			
		a_4b_3	a_3b_3	$\mathbf{a_2b_3}$	$\mathbf{a_1}\mathbf{b_3}$	$\mathbf{a_0}\mathbf{b_3}$				
+	a_4b_4	a_3b_4	a_2b_4	$\mathbf{a_1}\mathbf{b_4}$	$\mathbf{a_0}\mathbf{b_4}$					
P ₉	P_8	$\mathbf{P_7}$	$\mathbf{P_6}$	P ₅	$\mathbf{P_4}$	P_3	$\mathbf{P_2}$	$\mathbf{P_1}$	$\mathbf{P_0}$	=]

1. 不带符号的阵列乘法器

2. 带符号的阵列乘法器(间接法)

? 思考: 求补器的电路设计?

§ 4.5 定点除法运算

引例: X=0.1011, Y=0.1101

用手算求商C和余数R

问题:

- ① 机器如何判断够减?
 - i. 逻辑比较器
 - ii. 先减1次! 余数>=0则够减,否则不够减。

§ 4.5 定点除法运算

引例: X=0.1011, Y=0.1101

用手算求商C和余数R

结果: C = 0.1101, $R = R_4 = 0.000001111$

问题:

② 商符如何确定?

原码:单独处理 ---- 模2加(异或)

补码: 带符号运算。负值上商为反码。

§ 4.5 定点除法运算

引例: X=0.1011, Y=0.1101

用手算求商C和余数R

结果: C = 0.1101, $R = R_4 = 0.000001111$

问题:

- ③ 如何进行计算?
 - i. 可将n位除转化成若干次"减法一移位"
 - ii. 采用阵列除法模块可实现快速除法。

4.5.1 原码除法运算

- 1. 原码比较法和恢复余数法
- (1) 比较法

用比较线路实现比较,计算过程类似于手工运算。 (增加了硬件的代价)

4.5.1 原码除法运算

- 1. 原码比较法和恢复余数法
- (2) 恢复余数法

先做减法试探是否够减:若部分余数为非负表示够减,该位商上"1"否则表示不够减,该位商上"0",并要恢复余

缺点:

运算的实际操作次数不固定。恢复余数降低了除法的执行速度。

4.5.1 原码除法运算

- 1. 原码比较法和恢复余数法
- (2) 恢复余数法

先做减法试探是否够减:若部分余数为非负表示够减,该位商上"1"否则表示不够减,该位商上"0",并要恢复余数。 求第i次求商操为:

- ① $\mathbf{r}_{i} \leftarrow 2\mathbf{r}_{i-1} \mathbf{Y};$ (试减)
- ② 若够减(r_i>0),商1。
 否则(r_i<0),商0、恢复余数
 r_i ← r_i+Y (r_i恢复为原来的2r_{i-1})

2. 原码不恢复余数法(原码加减交替法)

求新余数 r_{i+1} 时,把恢复余数、左移和相减简化为左移相加 $2(r_i+Y) - Y \rightarrow 2r_i+Y$

即,若 r_i >0,商1,下次作 $2r_i$ -Y求新余数和商若 r_i <0,商0,下次作 $2r_i$ +Y求新余数和商使运算的次数固定。通式表示:

$$r_{i+1} = 2r_i + (1-2Q_i)Y$$

? 思考:

1. 从原码的恢复余数法变到加减交替法,其数学推导并不复杂,但电路的实现变得简单了,运算速度也快了, 你从中得到了什么启发? 原码加减交替除法示例:

已知: X=-0.10101, Y=0.11110, 求: X÷Y。 (P113 例12)

$$|X|=00.10101$$
→A, $|Y|=00.11110$ →B, 0→C $[|Y|]_{*}=11.00010$

原码加减交替除法示例:

原码加减交替除法示例:

即, $X/Y = -0.10110 + (-0.01100 \times 2^{-5})/0.11110$) 或写成 $X/Y = -(0.10110 + (0.01100 \times 2^{-5})/0.11110$)(余数项的分子和分母都取正)

4.5.2 补码加减交替除法运算

1. 求商及新余数的运算规则

[r_{i+1}]_补与[Y]_补同号:上商1,下一步作左移、相减; 异号:上商0,下一步作左移、相加。

末位商恒置"1"

此法操作简单,易于实现。运算的最大误差为2⁻ⁿ

2. 补码加减交替除法示例

例: 已知 X=0.1000, Y=-0.1010, 求X÷Y。 (P116 例13)
$$[X]_{\stackrel{}{\uparrow}}=00.1000 \rightarrow A, \quad [Y]_{\stackrel{}{\uparrow}}=11.0110 \rightarrow B, \quad 0 \rightarrow C$$

$$[-Y]_{\stackrel{}{\uparrow}}=00.1010$$

2. 补码加减交替除法示例

加减共 n+1 次

[商]*=1.0011

4.5.3 阵列除法器

1. 可控的加法/减法单元CAS单元

P=0,作加法运算

P=1,作减法运算

4.5.3 阵列除法器

2. 阵列除法原理图

习题: P136 2, 4, 5, 6(用恒舍法, 并求[2Y]_补),

7, 8, 10(2)(4), 11

习题: P120 2, 4, 5, 6(用恒舍法,并求[2Y]*), 7,

8, 10(2)(4), 12

课堂练习:已知X = -0.1000,Y = 0.1101,用原码、补码加减交替除法计算 $[X/Y]_{g}$ 、 $[X/Y]_{h}$,要求写出规范的运算过程。

§ 4. 6 规格化浮点运算

引例:十进制数运算

$$3.35\times10^4 + 9.78\times10^5$$

$$= 0.335 \times 10^5 + 9.78 \times 10^5$$

 $= 10.115 \times 10^5$

 $\approx 1.01 \times 10^5$

设两个非0的规格化浮点数分别为:

$$A = M_A \times 2^{EA}$$
 记为 (M_A, E_A)

$$B = M_B \times 2^{EB}$$
 记为 (M_A, E_A)

阶码为定点整数, 尾数为定点小数

: 浮点运算可归结为尾数部分和阶码部分的定点运算。

4.6.1 浮点加减运算

规格化浮点数A、B加减运算通式为:

$$A \pm B = (M_{A}, E_{A}) \pm (M_{B}, E_{B})$$

$$= \begin{cases} (M_{A} \pm M_{B} \times 2^{-(E_{A} - E_{B})}, E_{A}) & E_{A} > E_{B} \\ (M_{A} \times 2^{-(E_{B} - E_{A})} \pm M_{B}, E_{B}) & E_{A} < E_{B} \end{cases}$$

- 1. 浮点数加减运算步骤
- (1) 对阶

使两个数的阶码相等(即小数点位置对齐)

①求阶差

$$\Delta E = E_B - E_A$$

- ②小阶向大阶对阶
 - 1) ΔE=0 不需再对阶
 - 2) △E>0 则E_A←E_A+△E, M_A算术右移△E位
 - 3) △E<0 则E_R←E_R+△E, M_R算术右移△E位

- 1. 浮点数加减运算步骤
- (2) 尾数求和(差)

$$M_A \pm M_B \rightarrow M_C$$

(3) 尾数结果规格化

以2为基数的二进制补码尾数规格化形式为:

00. 1X...X

或 11.0X...X

例如: $00.010 \times 2^{010} \rightarrow 00.100 \times 2^{001}$ (向左规格化)

10.110×2⁰¹⁰ → 11.011×2¹¹ (向右规格化)

1. 浮点数加减运算步骤

(4) 舍入

最简单的舍入方法是恒舍法,即无条件的丢掉正常尾数最低位之后的全部数值。

(5) 溢出判断

阶码采用双符号位来判溢,当规格化操作后,阶码的两个符号位不同,则溢出。

以补码表示的阶码为例:

```
01,00...0 -- 上溢! 机器需停止运算,做溢出中断处理。
```

10,00...0 一 下溢! 机器不做溢出处理, 而是按机器零处理。

2. 浮点数加减运算举例

有两浮点数为 $A = 0.101110 \times 2^{-01}$,

 $B = - (0.101011) \times 2^{-10}, \Re A+B.$

数的格式: 阶码4位, 用移码(偏置值为23)表示;

尾数8位,用补码表示,包含一位符号位,即

阶码; 尾数

 $[A]_{2} = 0111; 0.1011100$

 $[B]_{\cancel{2}} = 0110; 1.0101010$

(1) 对阶

 $[B]_{\mathscr{P}}' = 0111; 1.1010101$

(2) 尾数求和

$$00.\ 1011100 \\ +11.\ 1010101 \\ \hline 00.\ 0110001$$

(3) 尾数结果规格化

$$[A+B]_{\beta}=0110; 0.1100010$$

4.6.2 浮点乘除运算

乘法: 阶码相加,尾数相乘

$$X \times Y = (M_X \times M_Y) 2^{Ex+Ey}$$

注意:

1) 当阶码用移码表示时,

$$[E_A \pm E_B]_{8} = [E_A]_{8} \pm [E_B]_{8} + 2^n$$
 (即符号位需修正)

2) 结果要规格化。左规时调整阶码后如果发生阶码下 溢,则做机器零处理。

4.6.2 浮点乘除运算

除法: 阶码相减, 尾数相除

$$X/Y = (M_X/M_Y) 2^{Ex-Ey}$$

具体步骤: 预置(判0)

尾数调整(使 $|M_X| < |M_Y|$

求阶差及尾数除法

规格化,判溢出

4.6.3 浮点运算器的实现

主要组成:

(1) 阶码运算部件

完成阶码加、减,以及控制对阶时小阶的尾数右移次数和规格化时对阶码的调整;

(2) 尾数运算部件

用来完成尾数的四则运算以及判断尾数是否已规格化;

(3) 溢出判断电路等

现代计算机可把浮点运算部件做成任选件,或称为<mark>协处</mark> 理器。它只能协助主处理器工作,不能单独工作。

§ 4.7 十进制整数的加法运算

一些通用计算机中设有十进制数据表示,可以直接对十进制整数进行算术运算。

实现方法:

- 1) 十进制运算器
- 2) 在二进制运算部件上增加少量设备与通路
- 3) 二进制运算指令+十进制调整指令(微机上用得多)

下面以一位十进制加法运算为例。

§ 4.7 十进制整数的加法运算

1. 余3码十进制加法器

余3码:用四位二进制数表示一位十进制数,每一个十进制位的值比二进制码多3。

例: 3—0110, 5—1000, 9—1100

无进位,结果 应减去3修正!

一位余3码加法器原理:

一位余3码加法器:

2.8421码十进制加法器

8421码:

用四位二进制数表示一位十进制数的另一种方法。

0 - 0000

1 - 0001

• • • • •

9 — 1001

例

```
① 3+5=8
0011
+) 0101
1000--结果正确!
```

```
② 3+9=12
0011
+)1001
1100 --结果超过9,需校正!
+)0110 -- +6校正
1,0010
```

```
③ 8+9=17
1000
+)1001
1,0001 —有进位,需+6校正
+)0110 — +6校正 (为什么?)
1,0111
```

∴ 8421码加法包括 <u>和校正</u>和 <u>进位校正</u>: 相加结果≤9时,不需校正; 相加结果>9时或有进位时,和加6校正,并产生进位。

	S _{i4} '	S _{i3} '	S _{i2} '	S _{i1} '	对应的十进制数
	1	0	1	0	10
大于9的	1	0	1	1	11
数必须修	1	1	0	0	12
Œ	1	1	0	1	13
	1	1	1	0	14
	1	1	1	1	15

判断二进制加法结果是否大于9的逻辑表达式为:

$$C_{i4} = C_{i4}' + S_{i4}' S_{i3}' + S_{i4}' S_{i2}'$$

判断二进制加法结果是否大于9的逻辑表达式为:

$$C_{i4} = C_{i4}$$
 + S_{i4} S_{i3} + S_{i4} S_{i2}

一位8421码加法器原理:

一位8421码加法器:

§ 4.8 逻辑运算与实现

逻辑运算特点:位与位之间没有进位或借位的关系。可用与门、或门、异或门、非门等实现。

1. 逻辑非(求反)

对各位按位取反。

例: 输入: X=X₀X₁...X_n,

输出: Z=Z₀Z₁...Z_n,

则: $Z_i = \overline{X}_i$ (i=0, 1, ..., n)

2. 逻辑乘(按位与)

$$Z_i = X_i \wedge Y_i$$
 (i=0, 1, ..., n) 可用与门实现

3. 逻辑加(按位或)

$$Z_{i} = X_{i} \vee Y_{i}$$
 (i=0, 1, ..., n)

可用或门实现,也可通过逻辑乘和逻辑非实现。

4. 逻辑异或

$$Z_{i} = X_{i} \oplus Y_{i}$$
 (i=0, 1, ..., n)

异或又称半加、不带进位加、模2加。

§ 4.9 运算器的基本组成结构

运算器在控制器的控制下,不仅可以完成数据信息的算逻运算,还可以作为数据信息的传送通路。

§ 4.9 运算器的基本组成结构

- 4.9.1 运算器结构
 - 1. 运算器的基本结构

基本的运算器包含----

ALU: 实现基本算术、逻辑运算功能(核心部件)

寄存器组: 提供操作数与暂存结果

判别逻辑和控制电路

数据传输通路

常见的基本结构有两类:

(1) 带多路选择器的运算器 内总线 移位器 Ro Rn M **ALU** +1 **S**3 注意:多路选择器无记忆功能! 选择器 选择器 Ro ... Rn Ro ... Rn

常见的基本结构有两类:

(2) 带输入锁存器的运算器

2. 运算器的内部总线结构

运算器内的各功能模块之间的连接也广泛采用总线结构。

(1) 单总线结构运算器 (如图4-25)

例如,实现R0+R1→R2运算需三步:

- \bigcirc R0 \rightarrow A
- ② R1→B
- ③ A+B→R2

(2) 双总线结构运算器

例如,实现R0+R1→R2运算需两步:

- ② C→R2

通用寄存器组必须是双端口器件,可同时提供两个操作数。

(3) 三总线结构运算器

例如,实现R0+R1→R2运算只需一步。

通用寄存器组必须是双端口器件,可同时提供两个操作数。 如果要实现R0→R1,可通过总线旁路器把数据送出。

4.9.2 ALU举例

1. ALU电路1

逻辑运算:用与门、或门和异或门实现

算术运算:加法器为核心

$$F_{i} = X_{i} \oplus Y_{i} \oplus C_{i}$$

$$C_{i+1} = X_{i}Y_{i} + (X_{i}+Y_{i})C_{i}$$

4.9.2 ALU举例

1. ALU电路1

$S_2 S_1 S_0$	F_i
0 0 0	0
0 0 0	$X_i \wedge Y_i$
0 0 0	$X_i \vee Y_i$
0 0 0	$X_i \oplus Y_i$
0 0 0	$X_i + Y_i$

S₂ 用于控制位与位之间的进位联系

2. 4位ALU芯片74181

74181能执行16种算术运算(先行进位)和16种逻辑运算。 其运算功能见P132表4-14。

以正逻辑的功能为例:

输入数据A、B为正逻辑,末位进位输入为负逻辑;输出F为正逻辑。

若要进行 "F←A加B"运算,则应给其提供的控制信号为: $S_3S_2S_1S_0=1001$,M=0, $\overline{C_n}=1$

可以用74181级连实现多位ALU,或用74181和74182 构成多级先行进位的ALU。

4.9.3 浮点运算器举例(课外阅读)

- 1. 80X87的数据格式
- 2. 80X87的内部结构

(见教材P134)

在80X87的浮点运算部件中,分别设置了阶码(指数)运算部件与 尾数运算部件,并设有加速移位操作的移位器。它们通过指数总线和

尾数总线与8个80位字长的寄存器组相连。

地址/总约

80X87从主存取数或向主存写数时,均用80位的临时浮点数与其他数据类型执行自动转换。在80X87中的全部数据都以80位临时浮点数的形式表示。

地址/总约

80X87与主微处理器协同工作,微处理器执行所有的常规指令,而 80X87只执行专门的算术协处理器指令,称为换码(ESC)指令。微处 理器和协处理器可以同时或并行执行各自的指令。

补充4-1.

下图为某模型机数据加工通路。其中∑为并行加法器,I→∑为最低位的进位。A,B,C,D为四个寄存器,PA,PB,PC,PD分别为四个寄存器的数据接收信号,且均为脉冲信号。图中其余的X→X控制信号均为电平信号,电平信号与脉冲信号的时间关系如下图(b)所示。试拟出在该图上实现下列运算所需的微操作。

- $(1) D C \rightarrow D$
- (2) $D/2 + C \rightarrow D$
- (3) D 1 \to D
- (4) 2C + I → C

补充4-1.

补充4-2.

某机运算器为三总线结构(如下图),三总线分别称为BI,B2,B3,连接B2,B3的控制信号为G。算逻部件ALU可进行ADD,SUB,AND,OR,XOR五种运算,输出多路器可进行直送(V),左移一位(L),右移一位(R)三种操作。三个通用寄存器RO,RI,R2都有输入和输出信号。

试写出实现下列功能所需的微操作: 1/2[R1-R2]→R1

补充4-2.

例题:

一个简单的运算器如下图所示, $\mathbf{X}_3 \sim \mathbf{X}_0$, $\mathbf{Y}_3 \sim \mathbf{Y}_0$ 为输入数据(补码表示的整数), $\mathbf{Z}_3 \sim \mathbf{Z}_0$ 为输出数据, \mathbf{C}_0 为最低进位,试分析该运算器在 \mathbf{S}_1 , \mathbf{S}_0 , \mathbf{C}_0 在以下不同组合下各完成什么运算?

$S_1 S_0 C_0$	运算
0 0 0	Z =
0 0 1	Z =
010	Z =
1 0 1	Z =
110	Z =

[解]

$S_1 S_0 C_0$	运算
0 0 0	$Z=Y_{3}Y_{2}Y_{1}Y_{0}=Y$
0 0 1	$Z=Y_3Y_2Y_1Y_0+1=Y+1$
010	$Z=Y_3Y_2Y_1Y_0+X_3X_2X_1X_0=Y+X$
1 0 1	$Z=Y_3Y_2Y_1Y_0-X_3X_2X_1X_0=Y-X$
110	$Z=Y_3Y_2Y_1Y_0-1=Y-1$

一、单选题

1.	运算器由许	多部件组成,	但核心部分是	0
		- , , , , . — , , , ,		-

- A. 数据总线 B. 算术逻辑运算单元
- C. 多路开关 D. 累加寄存器

2. 把n个全加器串接起来,就可进行两个n位数的相加,这种加法器称为。

- A. 串行进位的串行加法器 B. 并行进位的并行加法器
- C. 串行进位的并行加法器 D. 并行进位的串行加法器
- 3. 当采用变形补码(双符号位)运算时,发生负溢的特征是双符号位为。
 - A. 00 B. 01
- C. 10 D. 11

4. 在定点机中执行算术运算时会产生溢出,其原因是___。

- A. 主存容量不够 B. 操作数过大
- C. 操作数地址过大 D. 运算结果无法表示

5.若浮点数的阶码和尾数都用补码表示,判断运算结果是否规格化数的 方法是。

- A. 阶符与数符相同
- B. 数符与尾数最高有效数位相同
- C. 阶符与数符相异
- D. 数符与尾数最高有效位相异

一、单选题

- 6. 下溢指的是____。
 - A. 运算结果的绝对值小于机器所能表示的最小绝对值
 - B. 运算的结果小于机器所能表示的最小负数
 - C. 运算的结果小于机器所能表示的最小正数
 - D. 运算结果的最低有效位产生的错误
- 7. 若一台计算机的字长为4个字节,则表明该机器____。
 - A. 能处理的数值最大为4位十进制数
 - B. 能处理的数值最多由4位二进制数组成
 - C. 在CPU中能够作为一个整体加以处理的二进制代码为32位
 - D. 在CPU中运算的结果最大为2的32次方

二、填空题

- 为判断溢出,可采用双符号位补码,此时正数的符号用____表示,负数的符号用___表示。
- 2. 一个基数为2的浮点数,当其补码尾数右移____bit时,为使其值不变,阶码应该加1。
- 3. 一个基数为16的浮点数,当其补码尾数右移____bit时,为使其值不变, 阶码应该加1。
- 4. 行波进位的缺点是_____。
- 5. 正数补码算术移位时,符号位不变,空位补___。负数补码算术左移时 ,符号位不变,低位补___。负数补码算术右移时,符号位不变,高位 补___,低位___。

参考答案:

- 一、单选题: BACDD AC
- 二、填空题
 - 1. 00, 11
 - 2. 1
 - 3. 4
 - 4. 运算速度慢
 - 5. 0, 0, 1, 舍去

本章要点:

- 1. 理解和掌握与门、与或门、三态门、寄存器等器件的典型应用方法,以及它们的组合应用方法;
- 2. 加法器的先行进位原理;定点数的加减乘除运算方法(其中补码数运算最重要),并能把数据表示、运算方法(算法)和电路实现联系起来;
- 3. 学会用寄存器传送语言描述硬件的微操作;
- 4. 理解逻辑运算及其实现方法、浮点数的运算方法;
- 5. 了解定点运算器的典型结构.

