! Try again once you are ready

TO PASS 75% or higher

Try again

grade 25%

Sorting

501.0018		
то	TAL POINTS 4	
1.	What is the running time of selecting the minimum element on each iteration of the selection sort?	0 / 1 point
	igwedge Incorrect We need to look at all the elements to select the minimum, so it is $O(n)$.	
2.	Can we use the merging procedure from the lectures to merge the arrays [1, 3, 2, 5, 4] and [5, 6, 7, 8, 9] in order to receive a sorted array? No Yes	0 / 1 point
	X Incorrect Both arrays must be sorted prior to merging. See the lecture about Merge Sort.	
3.	How many operations are needed to merge two sorted arrays of sizes m and n respectively? $O(nm)$ $O(n+m)$ $O(m\log n)$ $O(1)$	1/1 point
	\checkmark Correct $ \label{eq:correct} {\it Merge works in } O(n+m). $	
4.	Can you use Count Sort to sort an array of positive real numbers which are less than 100, such as $[0.572, 0.25, 2.34, 3.14159, 2.781828, 42]$, in $O(n)$ time? O Yes, because the numbers are bounded No	0 / 1 point
	X Incorrect Although the numbers in the array are bounded, Count Sort is not applicable, because it can only be applied to integer numbers: real numbers cannot play the role of indices of an array.	