Osnovne algebrske strukture

Algebrska struktura

Definicija 1.1

Naj bo S poljubna neprazna množica.

Vsaki preslikavi $\varphi: \mathbb{S} \times \mathbb{S} \to \mathbb{S}$ rečemo DVOMESTNA NOTRANJA OPERACIJA ali okrajšano DNO na množici \mathbb{S} .

Sliko urejenega para $(a,b) \in \mathbb{S} \times \mathbb{S}$ pišemo $a\varphi b$ (namesto običajnega zapisa $\varphi(a,b)$) in jo imenujemo KOMPOZITUM (SESTAV) ELEMENTOV a in b iz \mathbb{S} .

Dvomestno notranjo operacijo označujemo z znaki: $+,\cdot,\circ,\triangle,\heartsuit,\ldots$

Zgled 1.2

- a) $\mathbb{S} = \mathbb{N}$ \circ je običajno seštevanje naravnih števil. Sledi, je DNO, saj $\forall a, b \in \mathbb{N}$ je $a \circ b \in \mathbb{N}$.
- b) $\mathbb{S} = \mathbb{N}$ \circ je običajno odštevanje naravnih števil. Sledi, ni DNO, npr.: za $1 \circ 2 = 1 - 2 = -1 \notin \mathbb{N}$.

Definicija 1.3

DNO o na množici $\mathbb{S} \neq \emptyset$ je ASOCIATIVNA če za vse elemente $a,b,c \in \mathbb{S}$ velja

$$(a \circ b) \circ c = a \circ (b \circ c)$$

KOMUTATIVNA, če za vsaka elementa $a, b \in \mathbb{S}$ velja

$$a \circ b = b \circ a$$

Zgled 1.4.

- a) $\mathbb{S} = \mathbb{Z}$
 - o je običajno seštevanje celih števil.

Sledi, je DNO.

Sledi, o je komutativna, in je asociativna.

b) $\mathbb{S} = \mathbb{Z}$

o je odštevanje celih števil.

Sledi, je DNO.

Preverimo komutativnost:

$$a = 1, b = 0$$

 $a \circ b = 1 - 0 = 1$
 $b \circ a = 0 - 1 = -1$

Sledi, ni komutativno.

Preverimo, asociativnost:

$$a = 1, b = 2, c = 3$$

 $(a \circ b) \circ c = (1 - 2) - 3 = -4$
 $a \circ (b \circ c) = 1 - (2 - 3) = 2$

Sledi, ni asociativno.

c) $S = \mathbb{R}^{n \times n}$ (kvadratne matrike z realnimi koeficienti) \circ je običajno množenje matrik.

Sledi, je DNO, ker je rezultat zmnožka spet kvadratna matrika velikosti $n \times n$ z realnimi koeficienti.

Preverimo asociativnost:

$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, C = \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}$$

$$(A \circ B) \circ C = \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}$$

$$= \begin{bmatrix} (a_1a_2 + b_1c_2)a_3 + (a_1b_2 + b_1d_2)c_3 & (a_1a_2 + b_1c_2)b_3 + (a_1b_2 + b_1d_2)d_3 \\ (c_1a_2 + d_1c_2)a_3 + (c_1b_2 + d_1d_2)c_3 & (c_1a_2 + d_1c_2)b_3 + (c_1b_2 + d_1d_2)d_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1a_2a_3 + b_1a_3c_2 + a_1c_2c_3 + b_1c_3d_2 & a_1a_2b_3 + b_1b_2d_3 + a_1b_2c_3 + b_1c_2d_3 \\ c_1a_2a_3 + d_1a_3c_2 + c_1c_2c_3 + d_1c_3d_2 & c_1a_2b_3 + d_1b_2d_3 + c_1b_2c_3 + d_1c_2d_3 \end{bmatrix}$$

$$A \circ (B \circ C) = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \cdot \begin{bmatrix} a_2a_3 + b_2c_3 & a_2b_3 + b_2d_3 \\ c_2a_3 + d_2c_3 & c_2b_3 + d_2d_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1(a_2a_3 + b_2c_3) + b_1(c_2a_3 + d_2c_3) & a_1(a_2b_3 + b_2d_3) + b_1(c_2b_3 + d_2d_3) \\ c_1(a_2a_3 + b_2c_3) + d_1(c_2a_3 + d_2c_3) & c_1(a_2b_3 + b_2d_3) + d_1(c_2b_3 + d_2d_3) \end{bmatrix}$$

$$= \begin{bmatrix} a_1a_2a_3 + b_1a_3c_2 + a_1c_2c_3 + b_1c_3d_2 & a_1a_2b_3 + b_1b_2d_3 + a_1b_2c_3 + b_1c_2d_3 \\ c_1a_2a_3 + d_1a_3c_2 + c_1c_2c_3 + d_1c_3d_2 & c_1a_2b_3 + d_1b_2d_3 + a_1b_2c_3 + d_1c_2d_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1a_2a_3 + b_1a_3c_2 + a_1c_2c_3 + b_1c_3d_2 & a_1a_2b_3 + b_1b_2d_3 + a_1b_2c_3 + b_1c_2d_3 \\ c_1a_2a_3 + d_1a_3c_2 + c_1c_2c_3 + d_1c_3d_2 & c_1a_2b_3 + d_1b_2d_3 + c_1b_2c_3 + d_1c_2d_3 \end{bmatrix}$$

Sledi, je asociativno.

Preverimo komutativnost:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$A \circ B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B \circ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$$

Trditev 1.5.

Če je DNO o na $\mathbb{S} \neq \emptyset$ asociativna, potem je produkt (kompozitum) elementov $a_1, a_2, ..., a_n \in \mathbb{S} \ (n \in \mathbb{N})$ natančno določen z vrstnim redom teh elementov. Tak produkt označimo z $a_1 \circ a_2 \circ \cdots \circ a_n$.

Dokaz: izpustimo!

Trditev 1.6.

Če je o asociativna in komutativna DNO na $\mathbb{S} \neq \emptyset$, potem je naš produkt elementov $a_1, a_2, \ldots, a_n \in \mathbb{S}$ $(n \in \mathbb{N})$ enolično določen ne glede na vrstni red naših elementov. Dokaz: izpustimo!

Definicija 1.7.

Naj bo $\mathbb{S} \neq \emptyset$ z DNO \circ .

Element $l \in \mathbb{S}$ je LEVI NEUTRALNI ELEMENT v množici \mathbb{S} , če za $\forall a \in \mathbb{S}$ velja

$$l \circ a = a$$

Element $d \in \mathbb{S}$ je DESNI NEUTRALNI ELEMENT v množici \mathbb{S} , če za $\forall a \in \mathbb{S}$ velja

$$a \circ d = a$$

Če je $e \in \mathbb{S}$ hkrati levi in desni neutralni element v množici \mathbb{S} , mu preprosto rečemo NEUTRALNI ELEMENT.

Oznaka: (S, \circ) ... neprazna množica S z DNO.

Trditev 1.8.

Če (\mathbb{S},\circ) premore levi in desni neutralni element, potem sta enaka.

Dokaz:

Naj bo $l \in \mathbb{S}$ levi neutralni element in $d \in \mathbb{S}$ desni neutralni element v množici \mathbb{S} , potem:

$$l = l \circ d = d$$

Torej sklepamo, da je l = d, kar smo želeli pokazati.

Zgled 1.9.

a)
$$S = \mathbb{R}^{2 \times 2} = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \}$$
 \circ je običajno množenje matrik.

Sledi, je DNO.

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 je neutralni element, saj za $\forall A \in S$ velja $I \cdot A = A \cdot I = A$.

b)
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right\}; a, b \in \mathbb{R}$$

o je običajno množenje matrik.
$$\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ax & ay \\ 0 & 0 \end{bmatrix}$$
Sledi, je DNO. Levi neutralni element:

$$\begin{bmatrix} ax & ay \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$a = 1, b = \text{ poljuben}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall b \in \mathbb{R} \text{ je } \begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix} \text{ levi neutralni element v } S$$

Desni neutralni element:

desni neutralni element ne obstaja!

Definicija 1.10.

Naj (S, \circ) premore neutralni element $e \in S$, ter naj bo $a \in S$ poljuben. Potem $l \in S$ je LEVI OBRAT (ali INVERZ) ELEMENTA $a \in S$ če velja

$$l \circ a = e$$

Element $d \in S$ je DESNI OBRAT ELEMENTA $a \in S$ če velja

$$a \circ d = e$$

OBRAT ELEMENTA $a \in S$ je tak element iz S ki je hkrati levi in desni obrat od a.

Element $a \in S$ je obrnljiv (v množici S) če premore obrat v množici S.

Trditev 1.11.

Naj veljajo oznake iz definicije 1.10.

Neutralni element e je obrat samega sebe.

Dokaz:

$$e \circ e = e$$

Trditev 1.12.

Naj bo $S \neq \emptyset$ z DNO \circ , ki je asociativna in naj bo $e \in S$ neutralni element. Če ima element $a \in S$ levi in desni obrat v S, potem sta enaka.

Dokaz: Naj veljajo predpostavke iz trditve 1.12. in $a \in S$.

∃levi obrat za
$$a$$
 v $S \Rightarrow \exists l \in S : l \circ a = e$

 \exists desni obrat za $a \vee S \Rightarrow \exists d \in S : a \circ d = e$

Potem je

$$(l \circ a) \circ d = e \circ d = d$$

$$l \circ (a \circ d) = l \circ e = l$$

ker je o asociativna operacija.

Torej, je l = d.

Definicija 1.13.

Če je $S \neq \emptyset$ z DNO \circ , ki je asociativna, potem rečemo, da je (S, \circ) POLGRUPA. Polgrupa z neutralnim elementom je MONOID.

Monoid v katerem je vsak element obrnljiv je GRUPA.

(S, \circ)	o asociativna	∃ neutralen element	$\forall a \in S \text{ je obrnljiv}$
POLGRUPA	✓	×	×
MONOID	✓	✓	×
GRUPA	✓	✓	√

Definicija 1.14.

Če izbrano DNO na $S \neq \emptyset$ označimo s +, potem govorimo o SEŠTEVAJOČEM (ali ADITIVNEM) ZAPISU.

Element a+b je VSOTA elementov $a,b\in S$, neutralni element označimo z $0\in S$ (in mu rečemo ničla), obratu elementa $a\in S$ rečemo NASPROTNI ELEMENT in ga označimo z -a.

Če izbrano DNO na $S \in \emptyset$ označimo z·, potem govorimo o MNOŽEČEM (ali MULTIPLIKATIVNEM) ZAPISU.

$$a \cdot b = ab$$

Element ab je zmnožek (ali PRODUKT) elementa $a, b \in S$, neutralni element označimo z $1 \in S$ (in mu rečemo enka), obrat elementa $a \in S$ rečemo INVERZ, označimo z a^{-1} .

Definicija 1.15.

Naj bo $\Omega \neq \emptyset$.

 $Map(\Omega) = \{f : \Omega \to \Omega\} \leftarrow \text{množica vseh preslikav iz } \Omega \vee \Omega.$

Množico $Map(\Omega)$ opremimo z (običajno) operacijo levega sestavljanja preslikav:

$$\forall f, q: \Omega \to \Omega \text{ je } f \circ q: \Omega \to \Omega$$

in
$$\forall x \in \Omega$$
 velja $(f \circ g)(x) = f(g(x))$

Operacija \circ iz definicije 1.15 je DNO na $Map(\Omega)$.

Trditev 1.16.

 $(Map(\Omega), \circ)$ je monoid.

Dokaz:

 $I) \circ je$ asociativna. (moramo dokazati, oz. dokazano spodaj)

$$\forall f, q, q \in Map(\Omega) : (f \circ q) \circ h = f \circ (q \circ h)$$

Opazimo:

$$((f\circ g)\circ h)(x)=f(g(h(x)))$$

$$(f\circ (g\circ h))(x)=f(g(h(x)))$$

II) \exists neutralnega elementa v $Map(\Omega)$ za \circ

 $\forall x \in \Omega \text{ naj bo } id : x \to x \text{ (identična preslikava)}$

Pogazati moramo: $\forall f \in Map(\Omega) : f \circ id = id \circ f = features$

$$\forall x \Omega \text{ velja: } (f \circ id)(x) = f(id(x)) = f(x)$$

 $(id \circ f)(x) = id(f(x)) = f(x)$

Definicija 1.15. (nadaljevanje)

Podobno definiramo:

$$Inj(\Omega) = \{ f : \Omega \to \Omega; f \text{ je injektivna } \}$$

$$Sur(\Omega) = \{f : \Omega \to \Omega; f \text{ je surjektivna }\}$$

 $Bij(\Omega) = \{f : \Omega \to \Omega; f \text{ je bijektivna }\}$

in jih opremimo z operacijo sestavljanja preslikav z istim predpisom.

Trditev 1.17.

 $(Inj(\Omega), \circ)$ in $(Sur(\Omega), \circ)$ sta monoida, $(Bij(\Omega), \circ)$ je grupa.

Dokaz: D.N. (za domačo nalogo)

Trditev 1.18.

Naj bo (A, \cdot) polgrupa z neutralnim elementom in naj bo

$$a_1, a_2, \dots, a_n \in A \ (n \in \mathbb{N})$$
 obrnljivi.

Potem velja: produkt a_1, a_2, \ldots, a_n je obrnljiv in njegov obrat je

$$(a_1, a_2, \dots, a_n)^{-1} = a_n^{-1}, \dots, a_2^{-1}, a_1^{-1}$$

Dokaz: Indukcija po n:

n=2; Naj bosta $a_1,a_2\in A$ obrnljiva

$$(a_1a_2) \cdot (a_1a_2)^{-1} = a_1 \cdot a_2 \cdot a_2^{-1} \cdot a_1^{-1} = a_1 \cdot 1 \cdot a_1^{-1} = a_1a_1^{-1} = 1$$

 $(a_1a_2)^{-1} \cdot (a_1a_2) = \dots$ podobno

n = n + 1; D.N. (za domačo nalogo)

Definicija 1.19.

Naj bo (A, \cdot) polgrupa z neutralnim elementom. Za $\forall a \in A$ in $\forall n \in \mathbb{N}$ definirajmo POTENCO a^n kot

$$a^{1} = a$$

$$a^{2} = a \cdot a$$

$$\vdots$$

$$a^{n+1} = a^{n} \cdot a = a \cdot a \cdot a \dots a$$

Dodatno definirajmo, $a^0 = 1$.

Če je element $a \in A$ obrnljiv definiramo

$$\forall n \in \mathbb{N} \quad a^{-n} = a^{(-1)n} = (a^{-1})^n$$

Izrek 1.20. (Adicijski izrek)

Naj bo (A, \cdot) polgrupa z neutralnim elementom in naj bosta $m, n \in \mathbb{N}_0$.

Potem $\forall a \in A \text{ velja } a^{m+n} = a^m \cdot a^n$

Če je $a \in A$ obrnljiv, velja adicijski izrek $\forall m, n \in \mathbb{Z}$.

Definicija 1.21.

Naj bo (A, \cdot) polgrupa z neutralnim elementom.

Element $a \in A$ ima KONČEN RED, če obstaja $n \in \mathbb{N}$, da je $a^n = 1$. V tem primeru najmanjšem številu $r \in \mathbb{N}$ za katerega je $a^r = 1$, rečemo RED ELEMENTA a.

opomba 1: |a| (red elementa a) opomba 2: v primeru (A, +) $a^n \to na$ in $1 \to 0$

Zgled 1.22.

a) $A = \mathbb{Z} \setminus \{0\}$

 \cdot je običajno množenje celih števil $\implies (\mathbb{Z} \setminus \{0\}, \cdot)$

 $1\in\mathbb{Z}\backslash\{0\}:1^1=1,1^2=1,1^3=1,\ldots$ element1ima končen red, red elementa1 je 1 $2\in\mathbb{Z}\backslash\{0\}:2^1=2,2^2=2\cdot 2=4,2^3=2\cdot 2\cdot 2=8,\ldots$ nima končnega reda

Torej, števila večja od 1 nimajo končnega reda.

$$-1 \in \mathbb{Z} \backslash \{0\} : (-1)^1 = -1, (-1)^2 = (-1) \cdot (-1) = 1$$
red elementa -1 je 2

b) $A=S^1=\{z\in\mathbb{C}; |z|=1\}$

· običajno množenje kompleksnih števil.

 $0+1i=i\in S^1: i^1=i, i^2=-1, i^3=-i, i^4=1$ red elementa i je 4

$$-i \in S^1 : (-i)^1 = -i, (-i)^2 = (-i) \cdot (-i) = -1$$
$$(-i)^3 = (-i)^1 \cdot (-i)^2 = -i \cdot (-1) = i$$
$$(-i)^4 = (-i)^2 \cdot (-i)^2 = (-1) \cdot (-1) = 1 \text{ red elementa } -i \text{ je } 4$$

c) $A = \mathbb{Z}$