Machine Learning Project: part 1

Ignace Bleukx AND Quinten Bruynseraede March 18, 2020

1 Literature Review

In this first assignment we try to combine basic principles from game theory with the work concerning multi-agent reinforcement learning. Most literature included in this literature review will therefore more of less fall into one of these categories. First we give an overview of the relevant literature. Afterwards, we give a detailed list of the contributions for each paper.

Shoham and Leyton-Brown [7] introduces elementary concepts from game theory. Bloembergen [2] introduces basic concepts from multi-agent systems, and explains how reinforcement learning algorithms can be used to reach equilibriums in simple games. Replicator dynamics are introduced to model evolutionary concepts in multi-agent systems. Bloembergen [2] also introduces lenient reinforcement learning to overcome difficulties when bad initial exploration leads to convergence to wrong equilibria.

We use the game-theoretic reinforcement learning framework OpenSpiel for all experiments. The practical details are outlined in Lanctot et al. [5]. Details about solving the Prisoner's Dilemma using reinforcement learning algorithms are found in Harper et al. [4].

To implement the Lenient Frequency Adjusted Q-Learning, we used Bloembergen et al. [3] and Tuyls et al. [8].

Article	Contribution
Multi-agent systems:	This paper provides a thorough explaination of the different
Algorithmic, Game-	aspect of game theory, with respect to different types of
Theoretic, and Logical	equilibria. These concepts are of importance to us since
Foundations, Shoham and	we will investigate whether or not our learning algorithms
Leyton-Brown [7]	converge to one of these equilibria. Furthermore, the paper
	provides a detailed description of different types of games,
	such as cooperative games and none-cooperative games, as
Multi agent learning du	well as the notion of games in normal form.
Multi-agent learning dy- namics, Bloembergen [2]	This thesis on multi agent learning dynamics provides essential information about the different game theory aspects.
namies, Bioembergen [2]	Not all sections are relevant for our initial research on ma-
	trix games. Mainly section 2.3 on evolutionary game theory
	and chapter 3 are relevant. In this last chapter, the repli-
	cator dynamics of many matrix games are investigated and
	explained very clearly. In this chapter we find an example
	of the learning pattern we would like to observe with our
	application of different learning algorithms.
OpenSpiel: A Framework for Reinforcement Learn-	The paper provides the documentation of the OpenSpiel
ing in Games, Lanctot	framework. All aspects of the library are explained, from installation to implemented algorithms and games. Many
et al. [5]	design choices of the framework are clarified which helps to
""	understand the philosophy behind the framework. In the
	paper, the game theory aspects are briefly touched upon,
	as well as important concepts of the implemented learning
	algorithms. This paper is of very much importance to us
	as we will use (and potetially extend) the OpenSpiel frame-
Reinforcement learn-	work for this assignement. This document contains a detailed description of the pris-
ing produces dominant	oners dilemma. Since this is one of the matrix games we will
strategies for the Iter-	examine in the first part of the assignement, this belongs to
ated Prisoner's Dilemma,	the relevant lecture on this list. Furhermore, some examples
Harper et al. [4]	of parameters for the training algorithms are given, which
	will help to produce meaningfull results when training the
The replicator equation	learning algorithms of choice. The paper provides an insight on the visualization of the
on graphs, Ohtsuki and	replicator dynamics using phase, as well as some examples
Nowak [6]	relevant to our research. These examples include the pris-
	oners dilemma and biased rock-paper-scissors.
Analyzing Reinforcement	This thesis provides a rich source of information on the re-
Learning algorithmsusing	inforcement learning branch for evolutionary game theory.
Evolutionary Game The-	Many algorithms are examined, some of which are available
ory, Bloembergen [1]	in OpenSpiel. The paper also contains the exact parameter settings used to achieve the presented results. These
	paramters can be used by our agents to reproduce favor-
	able results of the paper.
Evolutionary Dynamics of	Like the other papers previously mentionned, this docu-
Multi-Agent Learning:A	ment provides a basic knowledge of game theory, as well as
Survey, Bloembergen	reinforcement learning. For our research, manly the part
et al. [3]	about lenient FAQ-learning as a way to increase the ro-
	bustness of Q-learning is important. FAQ-learning is able to recover from bad exploration in the start of the run,
	while normal Q-learning is not.
Extended Replicator Dy-	Extension of classical replicator dynamics by adding muta-
namics as a Key to Re-	tion, in accordance to Boltzmann dynamics, leniency as a
inforcement Learning in	way to overcome convergence to wrong equilibria.
Multi-agent Systems, cite-	
textrepl	

2 Independent learning

3 Dynamics of learning

References

- [1] Daan Bloembergen. Analyzing reinforcement learning algorithms using evolutionary game theory. *Journal of theoretical biology*, 2010.
- [2] Daan Bloembergen. Multi-agent learning dynamics. PhD thesis, 05 2015.
- [3] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. Evolutionary dynamics of multi-agent learning: a survey. *Journal of Artificial Intelligence Research*, 2015.
- [4] Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulos, Nikoleta E. Glynatsi, and Owen Campbell. Reinforcement learning produces dominant strategies for the iterated prisoner's dilemma. *PLOS ONE*, 12(12):1–33, 12 2017. doi: 10.1371/journal.pone.0188046. URL https://doi.org/10.1371/journal.pone.0188046.
- [5] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Openspiel: A framework for reinforcement learning in games, 2019.
- [6] Hisashi Ohtsuki and Martin A. Nowak. The replicator equation on graphs. Journal of theoretical biology, 243 1:86–97, 2006.
- [7] Yoav Shoham and Kevin Leyton-Brown. Multi-agent systems: Algorithmic, Game-Theoretic, and Logical Foundations. 2009.
- [8] Karl Tuyls, Dries Heytens, Ann Nowe, and Bernard Manderick. Extended replicator dynamics as a key to reinforcement learning in multi-agent systems. In Nada Lavrač, Dragan Gamberger, Hendrik Blockeel, and Ljupčo Todorovski, editors, *Machine Learning: ECML 2003*, pages 421–431, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.