EE401: Advanced Communication Theory

Professor A. Manikas Chair of Communications and Array Processing

Imperial College London

Multi-Antenna Wireless Communications

Part-A: An Introductory Overview

Table of Contents Introduction

- SISO Wireless Channel Tx & Rx
- Generic Rx Architecture
- Wireless Systems Classification
- SIMO, MISO and MIMO: Non-Parametric Models
- SIMO, MISO and MIMO: Parametric Approach
 - Introduction
 - Differential Geometry Introduction
 - Antenna Array Space Response
 - Antenna Array Patterns and Channel Capacity
- Motivation Examples
 - SIMO Wireless Reception and Tracking
 - MAI Cancellation
 - Cochannel Interference Cancellation with Motion
 - Space-only and Spatiotemporal Gain Patterns (SIMO)
 - Spatiotemporal Capacity
- Examples of Real Array Systems
 - A 2GHz Antenna Array of 48 Elements
 - Owens Valley Radio Observatory Array
 - The New Mexico Very Large Array of 27 Elements
 - A Large Circular Array
 - Antenna Arrays for Modern Wireless Systems

SISO Wireless Channel Tx & Rx

- A wireless system can be partitioned into 3 main parts:
 - Tx (a "source " that sends/transmits some information using wave propagation)
 - Wireless Channel (the physical propagation paths)
 - 3 Rx (a "sink " that receives the transmitted waves)

and the objective in general is

to increase the communication speed (which is known as channel capacity)
without sacrificing the quality of service (for a given energy +

bandwidth)

Generic Rx Architecture

- The quality of the receiver (Rx) is a function of the quality of the estimated channel parameters
- Note that the receiver is **continuously designed** (based on these estimates) from **time frame** to **time frame**.

◆ロト ◆部ト ◆草ト ◆草ト 草 めなべ

Wireless Systems Classification

- There are many classifications. For instance:
 - according to the bandwidth/carrier: narrowband or wideband
 - 2 according to the spreading capabilities: conventional or spread spectrum
 - according to the number of carriers: single carrier or multicarrier
 - 4 according to the "generation": 1G, 2G, 3G, 3G+
 - according to the "access": TDMA,FDMA , CDMA ,
- The overall aims:
 - speed = ↑,
 - but maintaining reliability (quality of service) & spectral efficiency (EUE,BUE)
- The current speed is expected to increase by the utilisation of the new technology of multiple antennas (MIMO) and this gives rise to a new classification which super-sets all the above.

New Wireless Systems Classification

 This new classification is according to the number of antennas used in both Tx and Rx

New Wireless Systems Classification

 This new classification is also according to the number of antennas and the space-only or spatiotemporal signal processing used in both Tx and Rx (this is the main focus of this topic)

My Terminology

Terminology-1 (More Representative)			
1	SISO:	Scalar-Input-Scalar-Output Channel	
2	SIVO:	Scalar-Input-Vector-Output Channel	
3	VISO:	Vector-Input-Scalar-Output Channel	
4	VIVO:	Vector-Input-Vector-Output Channel	

Alternative Terminology

Terminology-2 (Initial)

1 SESE: from Single-Element (SE) Tx to Single-Element (SE) Rx 2

SEME: from Single-Element (SE) Tx to Multiple-Element (ME) Rx 3 MESE: from Multiple-Element (ME) Tx to Single-Element (SE) Rx

MEME: from Multiple-Element (ME) Tx to Multiple-Element (ME) Rx 4

Terminology-3 (More Popular)

1 SISO: Single-Input-Single-Output

2 SIMO: Single-Input-Multiple-Output

3 MISO: Multiple-Input-Single-Output

MIMO: 4 Multiple-Input-Multiple-Output

Mobile Evolution - Motivation

Mobile Evolution - Motivation (cont.)

SIMO Wireless Systems (non-parametric)

Single-Input Multiple-Output (SIMO)

ullet Remember: SISO - one complex number eta per path

MISO Wireless Systems (non-parametric)

Multiple-Input Single-Output (MISO)

MIMO Wireless Systems (non-parametric)

Multiple-Input Multiple-Output (MIMO)

$$\begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,N^{(\mathsf{Tx})}} \\ \beta_{2,1} & \beta_{2,2} & \dots & \beta_{2,N^{(\mathsf{Tx})}} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{N^{(\mathsf{Rx})},1} & \beta_{N^{(\mathsf{Rx})},2} & \dots & \beta_{N^{(\mathsf{Rx})},N^{(\mathsf{Tx})}} \end{bmatrix}$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト 9 Q (^)

13 / 42

Parametric Approaches

Introduction

- The above modelling will result into a statistical approach (used in Wiener's estimation theory and Shannon's communication theory).
 e.g. many MIMO books, papers and tutorials: non parametric
- Although this approach is suitable for single antenna systems (i.e. SISO), it does not properly fit multiple antennas since it
 - ▶ ignores the Cartesian coordinates and orientations of Tx and Rx (i.e. ignoring the geometry/location of the multiple antennas),
 - ignores the directions of the signals,
 - ▶ ignores propagation models (planewaves or spherical waves),
 - etc.

Revisiting Multiple-Input Multiple-Output (MIMO)

◆ロ > ◆昼 > ◆ 種 > ■ り へ ○

Summary Table of SISO, MISO, SIMO and MIMO

	Non-Parametric	Parametric (Array Processing)
SISO:	β	
SIMO:	$\begin{bmatrix} \beta_{\mathcal{T}_{X},1} \\ \beta_{\mathcal{T}_{X},2} \\ \dots \\ \beta_{\mathcal{T}_{X,N^{(R_{X})}} \end{bmatrix}$	$=eta {f a}^{({\sf Rx})}$
MISO:	$\begin{bmatrix} \beta_{1,Rx} \\ \beta_{2,Rx} \\ \dots \\ \beta_{\mathcal{N}^{(Tx)},Rx} \end{bmatrix}$	$=eta {f a}^{({\sf Tx})}$
мімо:	$\begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \dots & \beta_{1,N^{(Tx)}} \\ \beta_{2,1} & \beta_{2,2} & \dots & \beta_{2,N^{(Tx)}} \\ \dots & \dots & \dots & \dots \\ \beta_{N^{(Rx)},1} & \beta_{N^{(Rx)},2} & \dots & \beta_{N^{(Rx)},N^{(Tx)}} \end{bmatrix}$	$= \beta \underline{a}^{(Rx)} \underline{a}^{(Tx)^H}$ $\Leftrightarrow \beta \underline{a}^{(\textit{virtual})}$

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ● りへ○

The Structure of the Array Response Vector

 From now on in this presentation the vector <u>a</u> will represent all multiple antenna wireless systems, i.e.

$$\underline{a} \triangleq \left\{ \begin{array}{ll} \underline{a}^{(\mathsf{Rx})} & \mathsf{SIMO} \\ \underline{a}^{(\mathsf{Tx})} & \mathsf{MISO} \\ \underline{a}^{(\mathsf{virtual})} = \underline{a}^{(\mathsf{Tx})} \otimes \underline{a}^{(\mathsf{Rx})} & \mathsf{MIMO} \end{array} \right\}$$

- The vector \underline{a} is known as
 - Array Manifold Vector or
 - Array Response Vector (alternative symbol <u>S</u>)
- The vector <u>a</u> has a profound mathematical structure and is a function of a number of parameters such as Directions, carrier,etc

$$\underline{\mathbf{a}}(\theta, \phi, F_c, c, \underline{r}_1, \underline{r}_2, \underline{r}_3, \dots, \underline{r}_N)$$

Prof. A. Manikas (Imperial College) EE.401: Multi-Antenna Wireless Comms v.17 17 / 43

Note

- we can also add more wireless parameters from the Tx and Rx.
- For instance

```
\underline{a}(\theta, \phi, F_c, c, \underline{r}_x, \underline{r}_y, \underline{r}_z), pseudorandom sequ, delay, polarisation parameters, No.of subcarriers/carriers, bandwidth, Doppler frequency).
```

 Various forms of <u>a</u> have different dimensions but always a profound mathematical structure

This leads to Differential Geometry which complements the statistical signal processing and Shannon's communication theory in array processing problems and wireless systems.

4□ > 4□ > 4□ > 4□ > 4□ > □
900

Differential Geometry

 Differential geometry is a branch of mathematics that is concerned with the application of differential calculus for the investigation of the properties of geometric curves, surfaces and other objects known as 'manifolds'.

 Manifolds have a deep and profound mathematical structure and have been an area of intense pure mathematical analysis.

 $p \mapsto$ mathematical object

- In Physics, Albert Einstein (Nobel 1921) used differential geometry to express his general theory of relativity
 - where the universe is a smooth manifold equipped with pseudo-Riemannian metric (described the curvature of space-time).

Fundamental Questions

- Diff. Geom. helps answering some fundamental questions such as:
 - Q1 Is it possible to **express** a wireless system as a space curve or a surface (or a manifold in general)?
 - Q2 Is it possible to **analyse** a wireless system **by analysing** a curve or a surface?
 - Q3 Is it possible to **design** a wireless system **by designing** a curve or a surface?
 - Q4 What do we **stand to gain** by expressing wireless systems as mathematical objects such as curves or surfaces?

Imperial College Press

Antenna Array Space Response

• SIMO Example: Rx-Array Diversity

 Array systems (smart antennas) and techniques can be seen as the most sophisticated and advanced space diversity systems/techniques. (This type of systems/techniques will be considered in this course.)

Single Antenna (N=1): Space Response

(rotated by 90°)

Two Antennas (N=2): Space Response

(rotated by 90°)

Three Antennas (N=3): Space Response

(rotated by 90°)

Four Antennas (N=4): Space Response

(rotated by 90°)

Five Antennas (N=5): Space Response

(rotated by 90°)

Space-Only Example: Uniform Linear Array (ULA)

- Intersensor spacing= $\lambda/2$;
- N = number of antennas (located on the x-axis).
- Channel Capacity (AWGN):

$$C = B \log_2(1 + N \times SNIR_{in}) \tag{1}$$

$$B \longrightarrow \infty \Rightarrow C \longrightarrow N \times 1.44 \frac{P_s}{N_0 + N_i \downarrow}$$
 (2)

◆ロト ◆問ト ◆ 恵ト ◆ 恵 ・ からぐ

SIMO Wireless Reception and Tracking (ULA, N=5)

Multiple Access Interference Cancellation (ULA, N=5)

Co-Channel Interference Cancellation with Motion (ULA, N=5)

Example: Space-only & Spatiotemporal Gain Patterns

Spatio-Temporal Example: PN-code of period 31; Uniform Linear Array (ULA) with intersensor spacing= $\lambda/2$; N = number of antennas

SISO capacity :

$$C = B \log_2(1 + \mathsf{SNIR}_{out}) \; \; \mathsf{bits/sec}$$
 (3)

• MIMO Capacity :

$$C = B \log_2 \left(\frac{\det(\mathbb{R}_{xx})}{\det(\mathbb{R}_{nn})} \right) \quad \mathsf{bits/sec}$$
 (4)

• If bandwidth $B \longrightarrow \infty$ then C = ?

SISO:
$$\lim_{B \to \infty} C = 1.44 \frac{P_s}{N_0 + N_J}$$
 (5)

space-only SIMO :
$$\lim_{B\to\infty} C = N \times 1.44 \frac{P_s}{N_0 + N_J}$$
 (6)

spatiotemporal-SIMO :
$$\lim_{B \to \infty} C = N \times N_{SP} \times 1.44 \frac{P_s}{N_0 + N_J \downarrow 0}$$
 (7)

where N denotes the number of array elements (antennas)

Space and Spatiotemporal Capacity Curves

N=5 antennas

A 2GHz Antenna Array of 48 Elements

Owens Valley Radio Observatory Array

38 / 42

The New Mexico Very Large Array of 27 Elements

(along rail road tracks - 35km)

A Large Circular Array

40 / 42

Antenna Arrays for Modern Wireless Systems

Antenna Arrays for Modern Wireless Systems (cont.)

