

FCC TEST REPORT

Test report

On Behalf of

Mercury Communication Co., Ltd

For

Smart Phone

Model No.: Cirrus C2

FCC ID: 2ALAS-C2

Prepared for: Mercury Communication Co., Ltd

6F,1 Bldg, Jia'an Science&Technology Park, No.1 Liuxian Road, Bao an District,

Shenzhen, China.

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an

District, Shenzhen City, China

Date of Test: July 30, 2018~Aug. 22, 2018

Date of Report: Sep. 04, 2018

Report Number: HUAK180904960E

TEST RESULT CERTIFICATION

Applicant's name:	Mercury C	ommunica	ation Co., Ltd		
Address::	6F,1 Bldg, Jia'an Science&Technology Park, No.1 Liuxian Road, Bao an District, Shenzhen, China.				
Manufacture's Name:	Mercury Communication Co., Ltd				
Address::	6F,1 Bldg, Jia'an Science&Technology Park, No.1 Liuxian Road, Bao ar District, Shenzhen, China.				Road, Bao an
Product description	Smart Phone				
Brand Name	Cloud Mob	oile			
Mode Name	Cirrus C2				
Standards:	FCC Rules	s and Re	gulations Part	15B	
This publication may be reproduce Shenzhen HUAK Testing Technolo material. Shenzhen HUAK Testing iability for damages resulting from placement and context.	gy Co., Lto Technolog the reader	d. is acknow y Co., Lto	owledged as c d. takes no res	opyright owner and so ponsibility for and will	ource of the not assume
		luly 20	2019 Aug 22	2019	
Date (s) of performance of tests		•	2018~Aug. 22,	2010	
Date of Issue		Sep.04,	2018		
Test Result	·····::	Pass			
Testing Engir	neer :		Good Di	ian	
			(Gary Qi	an)	
Technical Ma	nager :		Edan	Hu	
			(Eden H	u)	
Authorized S	ignatory:		Jason 2	Phon	

(Jason Zhou)

RevisionIssue DateRevisionsRevised ByV1.0Sep.04, 2018Initial IssueJason Zhou

TABLE OF CONTENTS

1. SYSTEM DESCRIPTION	5
2. MEASUREMENT UNCERTAINTY	
3. PRODUCT INFORMATION	
4. SUPPORT EQUIPMENT	
5. TEST FACILITY	
6. TEST ITEMS AND THE RESULTS	10
7. FCCLINE CONDUCTED EMISSION TEST	11
7.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
7.2. BLOCK DIAGRAM OF TEST SETUP	11
7.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST	12
7.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
8. FCC RADIATED EMISSION TEST	15
8.1. EXCEPT FOR CLASS A DIGITAL DEVICES, THE FIELD STRENGTH OF RADIATED EMISSIONS	
FROM UNINTENTIONAL RADIATORS AT A DISTANCE OF 3 METERS SHALL NOT EXCEED THE	
FOLLOWING VALUES:	15
8.2. BLOCK DIAGRAM OF TEST SETUP	16
8.3. PROCEDURE OF RADIATED EMISSION TEST	17
8.4. TEST RESULT OF RADIATED EMISSION TEST	18
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	22

1. SYSTEM DESCRIPTION

EUT test procedure:

- 1. Connect EUT and peripheral devices (PC) through USB port.
- 2. Power on the EUT, use the software to transfer data between EUT and PC.
- 3. Make sure the EUT operates normally during the test.

Test Mode

TEST MODE DESCRIPTION						
NO.	TEST MODE DESCRIPTION	WORST				
1	1 USB (connection for data transferring) V					
Note:	Note: 1. V means EMI worst mode					

2. MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. PRODUCT INFORMATION

Housing Type	Plastic and metal	
Hardware Version	52_MB_V20	
Software Version	Cirrus_C2_20180822	
EUT Input Rating	DC3.8V by battery or DC 5V by Micro-USB	

I/O Port Information (⊠Applicable

Item	Equipment	Model No.	ID or Specification	Remark
1	Smart Phone	Cirrus C2	2ALAS-C2	EUT
2	Battery	Cirrus C2	DC 3.8V/2100mAh	Accessory
3	USB	N/A	N/A	Accessory

Report No.: HUAK180904960E

4. SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable
PC	Apple Inc.				0.8m Unshielded
Adapter	Apple Inc.				1.25m Unshielded

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

5. TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.			
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China			
Designation Number	CN1229			
Test Firm Registration Nu	mber : 616276			

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Conducted Emission Shielding Room Test Site (744)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2018	
LISN	R&S	ENV216	HKE-002	Dec. 28, 2018	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	

TEST EQUIPMENT OF RADIATED EMISSION TEST

Radiated Emission Test Site (966)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Receiver	R&S	ESCI-7	HKE-010	Dec. 28, 2018	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	
Preamplifier	EMCI	EMC051845SE	HKE-015	Dec. 28, 2018	
Preamplifier	Agilent	83051A	HKE-016	Dec. 28, 2018	
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018	
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 28, 2018	
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 28, 2018	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 28, 2018	
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	
RF cable	Times	1-40G	HKE-034	Dec. 28, 2018	

6. TEST ITEMS AND THE RESULTS

Test item	Test Requirement	Test Method	Class/Severity	Result
CONDUCTED EMISSION	FCC Part 15.107 Rules	ANSI C63.4:2014	Class B	Pass
RADIATED EMISSION	FCC Part 15.109 Rules	ANSI C63.4:2014	Class B	Pass

 $\langle A | A \rangle$

7. FCCLINE CONDUCTED EMISSION TEST

7.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Fraguency	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz-500kHz	66-56	56-46	
500kHz-5MHz	56	46	
5MHz-30MHz	60	50	

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

7.2. BLOCK DIAGRAM OF TEST SETUP

Page 12 of 23 Report No.: HUAK180904960E

7.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST

- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received DC 3.8V power from adapter with receive AC120V/60Hz power from a LISN.
- (5) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (6) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- (7) During the above scans, the emissions were maximized by cable manipulation.
- (8) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions.
- (9) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

The test data of the worst case condition (mode 1) was reported on the Summary Data page.

7.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST-L

Suspected List

NO.	Freq. [MHz]	Level Factor [dBµV] [dB]		Limit [dBµV]	Margin [dB]	Detector
1	0.1860	55.28	10.05	64.22	8.94	PK
2	0.2445	48.13	10.03	61.95	13.82	PK
3	3.0705	43.58	10.22	56.00	12.42	PK
4	3.8760	43.98	10.25	56.00	12.02	PK
5	10.3875	45.02	10.05	60.00	14.98	PK
6	18.3390	36.80	10.04	60.00	23.20	PK

Final Data List

NO.	Freq.	Factor	QP Value	QP Limit	QP Margin	AV Value	AV Limit	AV Margin
140.	[MHz]	[dB]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]
1	0.1845	10.05	50.52	64.28	13.76	30.76	54.28	23.52
2	0.2435	10.03	44.30	61.97	17.67	26.52	51.97	25.45
3	3.0503	10.22	31.78	56.00	24.22	22.97	46.00	23.03
4	3.7938	10.25	39.11	56.00	16.89	25.99	46.00	20.01
5	10.5386	10.04	35.65	60.00	24.35	28.74	50.00	21.26
6	18.1983	10.04	29.98	60.00	30.02	24.12	50.00	25.88

LINE CONDUCTED EMISSION TEST-N

Suspected List

NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector
1	0.1905	50.84	10.04	64.02	13.18	PK
2	0.2490	44.73	10.04	61.80	17.07	PK
3	0.6900	35.87	10.05	56.00	20.13	PK
4	3.7050	40.71	10.25	56.00	15.29	PK
5	9.3660	44.18	10.10	60.00	15.82	PK
6	18.3705	40.17	10.05	60.00	19.83	PK

Final Data List

NO.	Freq.	Factor	QP Value	QP Limit	QP Margin	AV Value	AV Limit	AV Margin
110.	[MHz]	[dB]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]
1	0.1871	10.04	49.32	64.16	14.84	31.52	54.16	22.64
2	0.2500	10.04	42.21	61.76	19.55	26.48	51.76	25.28
3	0.6923	10.05	30.23	56.00	25.77	22.32	46.00	23.68
4	3.6415	10.25	34.71	56.00	21.29	26.64	46.00	19.36
5	9.5185	10.09	39.51	60.00	20.49	33.14	50.00	16.86
6	18.1923	10.04	33.28	60.00	26.72	27.95	50.00	22.05

RESULT: PASS

8. FCC RADIATED EMISSION TEST

8.1. EXCEPT FOR CLASS A DIGITAL DEVICES, THE FIELD STRENGTH OF RADIATED EMISSIONS FROM UNINTENTIONAL RADIATORS AT A DISTANCE OF 3 METERS SHALL NOT EXCEED THE FOLLOWING VALUES:

Frequency (MHz)	Distance (m)	Maximum Field Strength Limit (dBuV/m/ Q.P.)				
30~88	3	40.0				
88~216	3	43.5				
216~960	3	46.0				
Above 960	3	54.0				

Note: The lower limit shall apply at the transition frequency.

8.1.1 The following table is the setting of spectrum analyzer and receiver:

Spectrum Parameter	Setting					
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP					
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP					
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP					
Start ~Stop Frequency	1GHz~26.5GHz					
Clart - Clop i requericy	1MHz/1MHz for Peak, 1MHz/10Hz for Average					

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

 $\chi \Delta I \Delta \chi$

8.2. BLOCK DIAGRAM OF TEST SETUP

System Diagram of Connections between EUT and Simulators

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 17 of 23 Report No.: HUAK180904960E

8.3. PROCEDURE OF RADIATED EMISSION TEST

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Then 1MHz RBW and 3MHz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 11. The test data of the worst case condition (mode 1) was reported on the Summary Data page.

8.4. TEST RESULT OF RADIATED EMISSION TEST

RADIATED EMISSION TEST AT 3M DISTANCE-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		68.8000	11.48	9.09	20.57	40.00	-19.43	peak			
2	*	201.3667	19.39	11.86	31.25	43.50	-12.25	peak			
3		240.1667	24.33	7.90	32.23	46.00	-13.77	peak			
4		348.4833	13.77	18.64	32.41	46.00	-13.59	peak			
5		460.0333	6.89	20.70	27.59	46.00	-18.41	peak			
6		959.5833	3.00	29.91	32.91	46.00	-13.09	peak			

RESULT: PASS

RADIATED EMISSION TEST AT 3M DISTANCE-VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		73.6500	21.13	3.36	24.49	40.00	-15.51	peak			
2		131.8500	16.45	11.80	28.25	43.50	-15.25	peak			
3	*	240.1667	20.59	12.94	33.53	46.00	-12.47	peak			
4		369.5000	9.94	18.87	28.81	46.00	-17.19	peak			
5		460.0333	10.18	20.70	30.88	46.00	-15.12	peak			
6		899.7667	3.63	28.60	32.23	46.00	-13.77	peak			

RESULT: PASS

Note: 1.Measurement = Reading + Factor, Over = Measurement – Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION ABOVE 1GHZ (1-10TH HARMONICS) –HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2408.333	16.99	15.65	32.64	74.00	-41.36	peak			
2		4225.000	23.04	16.27	39.31	74.00	-34.69	peak			
3	*	5625.000	27.17	15.86	43.03	74.00	-30.97	peak			

RADIATED EMISSION ABOVE 1GHZ (1-10TH HARMONICS) –VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		1725.000	15.37	15.47	30.84	74.00	-43.16	peak			
2		3591.667	21.29	16.43	37.72	74.00	-36.28	peak			
3	*	5750.000	26.58	15.88	42.46	74.00	-31.54	peak			

Note: 1. Emissions range from 6GHz to 12.5GHz have 20dB margin. No recording in the test report.

- 2. Factor=Antenna Factor + Cable loss Amplifier gain, Margin=Measurement-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

----END OF REPORT----