Understanding Limiting Distribution of Markov Chains

Cai Yufei (zhmgczh@foxmail.com)

May 11, 2022

Suppose there is an irreducible, aperiodic and positive recurrent Markov chain $\{X_n\}$ with k states. Assume the stationary distribution of the Markov chain is $\boldsymbol{\pi} = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_k \end{pmatrix}$.

Then we have known that $\lim_{n\to\infty} P_{ij}^n = \pi_j$ for i, j = 1, 2, ..., k.

The n-step transition matrix is given by

$$\boldsymbol{P}^{n} = \begin{pmatrix} P_{11}^{n} & P_{12}^{n} & \dots & P_{1k}^{n} \\ P_{21}^{n} & P_{22}^{n} & \dots & P_{2k}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{k1}^{n} & P_{k2}^{n} & \dots & P_{kk}^{n} \end{pmatrix}$$

Then

$$m{P}^{\infty} = egin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_k \ \pi_1 & \pi_2 & \dots & \pi_k \ dots & dots & \ddots & dots \ \pi_1 & \pi_2 & \dots & \pi_k \end{pmatrix} = egin{pmatrix} m{\pi} \ m{\pi} \ dots \ m{\pi} \end{pmatrix}$$

Now assume the initial state X_0 has the distribution $\mathbf{a} = \begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix}$

where $a_i \geq 0$, $\sum_{i=1}^k a_i = 1$ and $a_i = P(X_0 = i)$ for i = 1, 2, ..., k. Then \boldsymbol{aP} is the distribution of X_1 with $P(X_1 = i) = (\boldsymbol{aP})_i$, i = 1, 2, ..., k, \boldsymbol{aP}^2 is the distribution of X_2 with $P(X_2 = i) = (\boldsymbol{aP}^2)_i$, i = 1, 2, ..., k, ...

 $\forall n \in \{1, 2, ...\}, \ \boldsymbol{aP}^n \text{ is the distribution of } X_n \text{ with } P(X_n = i) = (\boldsymbol{aP}^n)_i,$ i = 1, 2, ..., k.

As a result, aP^{∞} is the distribution of X_n when n is sufficiently large. (Actually we can use $\epsilon - N$ language to describe it, but we do not need.)

Now, we want to figure out what aP^{∞} is exactly and whether aP^{∞} depends on \boldsymbol{a} or not.

Actually,

$$aP^{\infty} = a \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} \tag{1}$$

$$= \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix}$$
 (2)

$$=\sum_{i=1}^{n}a_{i}\boldsymbol{\pi}\tag{3}$$

$$= (\sum_{i=1}^{n} a_i) \pi \tag{4}$$

$$= \pi \tag{5}$$

So we can conclude that no matter what initial distribution from which a Markov chain starts, the limiting distribution of the r.v. X_n will never change and will always be the stationary distribution π when the Markov chain is irreducible, aperiodic and positive recurrent.

In other words, when n is sufficiently large, $P(X_n = i) \approx (\boldsymbol{a} \boldsymbol{P}^{\infty})_i = \pi_i$ (or $\lim_{n\to\infty} P(X_n=i) = (\boldsymbol{a}\boldsymbol{P}^{\infty})_i = \pi_i$) for i=1,2,...,k. This conclusion depends on the fact that $\lim_{n\to\infty} P_{ij}^n = \pi_j$.