NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

MA1522 Linear Algebra for Computing

Tutorial 10

- 1. A population of ants is put into a maze with 3 compartments labeled a, b, and c. If the ant is in compartment a, an hour later, there is a 20% chance it will go to compartment b, and a 40% change it will go to compartment c. If it is in compartment b, an hour later, there is a 10% chance it will go to compartment a, and a 30% chance it will go to compartment c. If it is in compartment c, an hour later, there is a 50% chance it will go to compartment a, and a 20% chance it will go to compartment b. Suppose 100 ants has been placed in compartment a.
 - (a) Find the transition probability matrix **A**. Show that it is a stochastic matrix.
 - (b) By diagonalizing **A**, find the number of ants in each compartment after 3 hours.
 - (c) (MATLAB) We can use MATLAB to diagonalize the matrix A. Type

The matrix **P** will be an invertible matrix, and **D** will be a diagonal matrix. Compare the answer with what you have obtained in (b).

- (d) In the long run (assuming no ants died), where will the majority of the ants be?
- (e) Suppose initially the numbers of ants in compartments a, b and c are α , β , and γ respectively. What is the population distribution in the long run (assuming no ants died)?
- 2. By diagonalizing $\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, find a matrix \mathbf{B} such that $\mathbf{B}^2 = \mathbf{A}$.
- 3. For each of the following symmetric matrices A, find an orthogonal matrix P that orthogonally diagonalizes A.

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
.

(b)
$$\mathbf{A} = \begin{pmatrix} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{pmatrix}$$
.

4. (**MATLAB**) Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 1 \end{pmatrix}$$
.

(a) Find an orthogonal matrix \mathbf{P} that orthogonally diagonalizes \mathbf{A} , and compute $\mathbf{P}^T \mathbf{A} \mathbf{P}$.

(b) We will use MATLAB to orthogonally diagonalize A. Type

Compare the result with your answer in (a).

5. Find the SVD of the following matrices **A**.

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$
.

(b)
$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
.

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
.

6. (**MATLAB**) Let
$$\mathbf{A} = \begin{pmatrix} -18 & 13 & -4 & 4 \\ 2 & 19 & -4 & 12 \\ -14 & 11 & -12 & 8 \\ -2 & 21 & 4 & 8 \end{pmatrix}$$
.

- (a) Find a SVD of **A**.
- (b) In MATLAB, type

Compare the result with your answer in (a).

Extra problems

- 1. Let **A** be a stochastic matrix. Prove that $\lambda = 1$ is an eigenvalue of **A**.
- 2. Let \mathbf{v}_1 be an eigenvector of \mathbf{A} associated to the eigenvalue λ_1 and \mathbf{v}_2 an eigenvector of \mathbf{A}^T associated to eigenvalue λ_2 . Suppose $\lambda_1 \neq \lambda_2$. Show that v_1 and v_2 are orthogonal.
- 3. Let **A** be an $n \times n$ matrix. Show that there exists an orthogonal matrix **Q** such that

$$\mathbf{A}\mathbf{A}^T = \mathbf{Q}^T \mathbf{A}^T \mathbf{A} \mathbf{Q}$$