CECS 440 ALU and ALU Control modules

OBJECTIVES:

- Model an **ALU** (Arithmetic Logic Unit) in Verilog
- ➤ Verify correct operation of ALU using a Test Fixture in Simulation
- ➤ Model the **ALU_Control** module in Verilog
- ➤ Verify correct operation of ALU_Control using a Test Fixture in Simulation
- ➤ Verify correct operation of ALU controlled by ALU_Control in Verilog simulation

ACTIVITY 1

Model an ALU (Arithmetic Logic Unit) in Verilog (ALU.v):

The ALU has:

- Two 32-bit data inputs (designate these as A and B)
- One 4-bit ALU_Ctl which is an operation selection control input
- One 32-bit data Output
- One 1-bit Zero result indicator (Zero Flag = 1 if Output == 0; Zero Flag = 0 otherwise)

The ALU is defined by the following table:

ALU_Ctl	Function for Output Assignment	Functional Description	
0000	A & B	AND	
0001	A B	OR	
0010	A + B	Add	
0110	A - B	Subtract	
0111	if(A < B))Output = 0x00000001 else Output = 0x00000000	Set on less than	
1100	~(A B)	NOR	

Be sure to include a default condition in your case statement where Output will be 32'hXXXXXXXX and Zero Flag will be 1'bX

Your ALU module source code will be contained in your Lab Submission.

Page 1 of 3 CECS 440

CECS 440 ALU and ALU Control modules

ACTIVITY 2

Verify correct operation of ALU using a Test Fixture in Simulation:

Write a simulation that will perform the following series of tests:

- Leave all inputs as 0 initially for the first 10 time units to check if the Zero flag works
- For each of the following test cases:
 - o Use the lower 8 digits of your Student ID in hex as the 32-bit value for input A
 - O Use the value 0x12345678 as the value for input B
 - o Test each valid ALU_Ctl input value to ensure each operates correctly
- For your last test case, provide an invalid ALU_Operation input value i.e. 4'b1111 to ensure the default condition produces garbage outputs as intended.
- DISPLAY SIMULATION VALUES IN HEX FOR EASE OF VIEWING
- Take a screenshot or multiple screenshots that clearly show the correct test results as they will be contained in your Lab submission.

ACTIVITY 3

Model a combinatorial ALU Control module in Verilog (ALU Control.v):

The ALU_Control module is defined by the following table:

Inputs		Output		Instruction Type	
FuncCode	ALU_Op	ALU_Ctl	Operation	Instruction Type	
100000	10	0010	Add		
100010	10	0110	Subtract		
100100	10	0000	AND	D Type	
100101	10	0001	OR R-Type		
101010	10	0111	SLT	SLT	
100111	10	1100	NOR		
XXXXXX	00	0010	Address Calculation	I-Type (load/store)	
XXXXXX	X1	0110	Equality Comparison	I-Type (branch equal)	

Be sure to include a default condition in your case statement.

Your ALU_Control module source code will be contained in your Lab Submission.

Page 2 of 3 CECS 440

CECS 440 ALU and ALU Control modules

ACTIVITY 4

Verify correct operation of ALU_Control using a Test Fixture in Simulation:

- The first test case will have input values set to 0 to test the invalid input scenario
- The following test cases will test each combination of valid inputs once
- Take a screenshot or multiple screenshots that clearly show the correct test results as they will be contained in your Lab submission.

ACTIVITY 5

Verify correct operation of ALU controlled by ALU_Control in Verilog simulation:

- Write a single Verilog test fixture that instantiates and interconnects both the ALU created in Activity 1 and the ALU_Control created in Activity 3
- Write a simulation that will test each operation once, for each test case:
 - O Use the lower order 8 digits Student ID as a 8 digit hex value for input A
 - Use your hex valued Student ID + 1 as the value for input B
- Take a screenshot or multiple screenshots that clearly show the correct test results as they will be contained in your Lab submission.

Page 3 of 3 CECS 440