

AOD468/AOI468

300V,11.5A N-Channel MOSFET

General Description

The AOD468 & AOI468 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low $R_{\rm DS(on)},\,C_{\rm iss}$ and $C_{\rm rss}$ along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs.These parts are ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

100% UIS Tested! 100% R_g Tested!

TO252 DPAK Top View Bottom View

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	300	V				
Gate-Source Voltage		V_{GS}	±30	V				
Continuous Drain	T _C =25°C	1	11.5					
Current ^B	T _C =100°C	'D	8.3	A				
Pulsed Drain Current ^C		I _{DM}	29					
Avalanche Current ^C		I _{AR}	3.8	A				
Repetitive avalanche energy ^C		E _{AR}	216	mJ				
Single pulsed avalanche energy H		E _{AS}	430	mJ				
Peak diode recovery dv/dt		dv/dt	5	V/ns				
_	T _C =25°C	P _D	150	W				
Power Dissipation B	Derate above 25°C	' D	1	W/ °C				
Junction and Storage Temperature Range		T _J , T _{STG}	-50 to 175	°C				
Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds		TL	300	°C				

Thermal Characteristics							
Parameter	Symbol	Typical	Maximum	Units			
Maximum Junction-to-Ambient A,G	$R_{ hetaJA}$	45	55	°C/W			
Maximum Case-to-sink ^A	$R_{\theta CS}$	-	0.5	°C/W			
Maximum Junction-to-Case D,F	$R_{ heta JC}$	0.7	1	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V, T _J =25°C	300						
		I _D =250μA, V _{GS} =0V, T _J =150°C		350		V			
BV _{DSS} /ΔTJ	Zero Gate Voltage Drain Current	ID=250μA, VGS=0V		0.29		V/°C			
	Zero Gate Voltage Drain Current	V _{DS} =300V, V _{GS} =0V			1				
I _{DSS}		V _{DS} =240V, T _J =125°C			10	10 μA			
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±30V			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =5V I _D =250μA	3.4	4	4.5	V			
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =6A		0.31	0.42	Ω			
g _{FS}	Forward Transconductance	V_{DS} =40V, I_{D} =6A		11		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V			
Is	Maximum Body-Diode Continuous Current				12	Α			
I _{SM}	Maximum Body-Diode Pulsed Current				29	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance		500	632	790	pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =25V, f=1MHz	55	90	125	pF			
C _{rss}	Reverse Transfer Capacitance		3	7	11	pF			
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	1.3	2.7	4.1	Ω			
SWITCHI	NG PARAMETERS								
Q_g	Total Gate Charge		10	12.8	16	nC			
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =240V, I _D =12A		4.4		nC			
Q_{gd}	Gate Drain Charge			4.3		nC			
t _{D(on)}	Turn-On DelayTime			18		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =150V, I_{D} =12A,		31		ns			
t _{D(off)}	Turn-Off DelayTime	$R_G=25\Omega$		36		ns			
t _f	Turn-Off Fall Time			20		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A,dI/dt=100A/μs,V _{DS} =100V	130	170	205	ns			
Q_{rr}	Body Diode Reverse Recovery Charge	_e I _F =12A,dI/dt=100A/μs,V _{DS} =100V	1	1.3	1.6	μС			

A. The value of R $_{\rm 0JA}$ is measured with the device in a still air environment with T $_{\rm A}$ =25 $^{\circ}$ C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C in a TO252 package, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C.

D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C.

G.These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.

H. L=60mH, I_{AS}=3.8A, V_{DD}=150V, R_G=10 Ω , Starting T_J=25°C

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

