UNI & DOOR W

SEQUENCE LISTING

<110> Strom, Terry B.

Maslinski, Wlodzimierz
Zheng, Xin Xiao
Kim, Yon Su
Lacraz, Sylvie Ferrari

<120> COMPOSTION AND METHOD FOR ACHIEVING IMMUNE SUPPRESSION

<130> 01948-056001

<140> 09/855,313

<141> 2001-05-14

<150> 60/203,801

<151> 2000-05-12

<160> 7

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 489

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(486)

<400> 1

atg aga att tcg aaa cca cat ttg aga agt att tcc atc cag tgc tac

Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys Tyr

1 10 15

ttg tgt tta ctt cta aac agt cat ttt cta act gaa gct ggc att cat
Leu Cys Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile His
20 25 30

gtc ttc att ttg ggc tgt ttc agt gca ggg ctt cct aaa aca gaa gcc Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu Ala
35 40 45

caa tct atg cat att gat gct act tta tat acg gaa agt gat gtt cac
Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His
65 70 75 80

ccc agt tgc aaa gta aca gca atg aag tgc ttt ctc ttg gag tta caa 288
Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln
85 90 95

Al

Cont

gtt att tca ctt gag tcc gga gat gca agt att cat gat aca gta gaa 336 Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu aat ctg atc atc cta gca aac aac agt ttg tct tct aat ggg aat gta 384 Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val 120 aca gaa tot gga tgc aaa gaa tgt gag gaa ctg gag gaa aaa aat att 432 Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile 135 aaa gaa ttt ttg gac agt ttt gta cat att gtc gac atg ttc atc aac 480 Lys Glu Phe Leu Asp Ser Phe Val His Ile Val Asp Met Phe Ile Asn 150 155 act tct tga 489 Thr Ser <210> 2 <211> 162 <212> PRT <213> Homo sapiens <400> 2 Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys Tyr Leu Cys Leu Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile His 25 Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu Ala 40 Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu Ile 55 Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln 8.5 90 Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu 105 Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val 120 Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile 135 140 Lys Glu Phe Leu Asp Ser Phe Val His Ile Val Asp Met Phe Ile Asn 155 🛰 Thr Ser <210> 3 <211> 489 <212> DNA <213> Homo sapiens

<220>

Out Al

<221> CDS <222> (1)...(486)

<400 atg Met 1	aga	att Ile	tcg Ser	aaa Lys 5	cca Pro	cat His	ttg Leu	aga Arg	agt Ser 10	att Ile	tcc Ser	atc Ile	cag Gln	tgc Cys 15	tac Tyr	48
ttg Leu	tgt Cys	tta Leu	ctt Leu 20	cta Leu	aac Asn	agt Ser	cat His	ttt Phe 25	cta Leu	act Thr	gaa Glu	gct Ala	ggc Gly 30	att Ile	cat His	96
gtc Val	ttc Phe	att Ile 35	ttg Leu	ggc Gly	tgt Cys	ttc Phe	agt Ser 40	gca Ala	ggg Gly	ctt Leu	cct Pro	aaa Lys 45	aca Thr	gaa Glu	gcc Ala	144
aac Asn	tgg Trp 50	gtg Val	aat Asn	gta Val	ata Ile	agt Ser 55	gat Asp	ttg Leu	aaa Lys	aaa Lys	att Ile 60	gaa Glu	gat Asp	ctt Leu	att Ile	192
caa Gln 65	tct Ser	atg Met	cat His	att Ile	gat Asp 70	gct Ala	act Thr	tta Leu	tat Tyr	acg Thr 75	gaa Glu	agt Ser	gat Asp	gtt Val	cac His 80	240
ccc Pro	agt Ser	tgc Cys	aaa Lys	gta Val 85	aca Thr	gca Ala	atg Met	aag Lys	tgc Cys 90	ttt Phe	ctc Leu	ttg Leu	gag Glu	tta Leu 95	caa Gln	288
gtt Val	att Ile	tca Ser	ctt Leu 100	gag Glu	tcc Ser	gga Gly	gat Asp	gca Ala 105	agt Ser	att Ile	cat His	gat Asp	aca Thr 110	gta Val	gaa Glu	336
aat Asn	ctg Leu	atc Ile 115	atc Ile	cta Leu	gca Ala	aac Asn	aac Asn 120	agt Ser	ttg Leu	tct Ser	tct Ser	aat Asn 125	ggg Gly	aat Asn	gta Val	384
aca Thr	gaa Glu 130	tct Ser	gga Gly	tgc Cys	aaa Lys	gaa Glu 135	tgt Cys	gag Glu	gaa Glu	ctg Leu	gag Glu 140	gaa Glu	aaa Lys	aat Asn	att Ile	432
aaa Lys 145	gaa Glu	ttt Phe	ttg Leu	cag Gln	agt Ser 150	ttt Phe	gta Val	cat His	att Ile	gtc Val 155	caa Gln	atg Met	ttc Phe	atc Ile	aac Asn 160	480
	tct Ser	tga														489

<210> 4 <211> 162 <212> PRT

<213> Homo sapiens

<400> 4 Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys Tyr 1 $$ 5 $$ 10 $$ 15

Out Al

Leu Cys Leu Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile His 20 25 Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu Ala 40 45 Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu Ile 55 Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His 70 75 Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln 8.5 90 Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu 100 105 Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val 115 120 Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile 135 Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile Asn 150 155 ----Thr Ser <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetically generated oligonucleotide <400> 5 ggaattcaac tgggtgaatg taata 25 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetically generated oligonucleotide <400> 6 cgggatcctc aagaagtgtt gatgaa 26 <210> 7 <211> 60 <212> DNA <213> Artificial Sequence <223> Synthetically generated oligonucleotide <400> 7

cgggatcctc aagaagtgtt gatgaacatg tcgacaatat gtacaaaact gtccaaaaat

60