Question 1:

(a)

$$\begin{aligned} \text{Let } x \in R^n \text{ given as } x &= (x_1, x_2, \dots, x_n) \\ \|x\|_{\infty} &= \max_{1 \leq i \leq n} \{|x_i|\} \leq \sum_{i=1}^n |x_i| = \|x\|_1 \\ \|x\|_1 &= \sum_{i=1}^n |x_i| \leq \sum_{i=1}^n \max_{1 \leq i \leq 0} \{|x_i|\} = n \times \max_{1 \leq i \leq n} \{|x_i|\} = n \|x\|_{\infty} \end{aligned}$$
 Again
$$\|x\|_{\infty} &= \max_{1 \leq i \leq n} \{|x_i|\} \\ &= \left(\left(\max_{1 \leq i \leq n} \{|x_i|\}\right)^2\right)^{\frac{1}{2}} \\ &\leq \left(x_1^2 + x_2^2 + \dots + \left(\max_{1 \leq i \leq n} \{|x_i|\}\right)^2 + \dots + x_n^2\right)^{\frac{1}{2}} \\ &= \|x\|_2 \\ \|x\|_2 &= (x_1^2 + \dots + x_n^2)^{\frac{1}{2}} \\ &\leq \left[\sum_{i=1}^n \left(\max_{1 \leq i \leq n} \{|x_i|\}\right)^2\right]^{\frac{1}{2}} \\ &= \left[\sum_{i=1}^n (\|x\|_{\infty})^2\right]^{\frac{1}{2}} \\ &= \left(n(\|x\|_{\infty})^2\right)^{\frac{1}{2}} \end{aligned}$$

(b)

let c_1, c_2 be positive costant such that

 $= \sqrt{n} \|x\|_{\infty}$

$$c_1 \|x\|_a \le \|x\|_b \le c_2 \|x\|_a \quad \forall x \in R^n$$

let
$$M \in \mathbb{R}^{n \times n}$$
. Then $Mx \in \mathbb{R}^n \quad \forall x \in \mathbb{R}^n$

$$\therefore c_1 \|Mx\|_a \le \|Mx\|_b \le c_2 \|Mx\|_a \quad \forall x \in \mathbb{R}^n$$

Taking supremun over R^n of above inequality, we gets

$$Sup \{c_1 ||Mx||_a \mid x \in R^n, ||x||_a = 1\} \le Sup \{ ||Mx||_b \mid x \in R^n, ||x||_b = 1\}$$

$$\leq Sup\{c_2 ||Mx||_a | ||x||_a = 1, x \in \mathbb{R}^n\}$$

$$\therefore \quad c_1 \, Sup \, \{ \|Mx\|_a \mid x \in R^n, \|x\|_a = 1 \, \} \leq \quad \|M\|_b \leq \, c_2 \, Sup \, \{ \|Mx\|_a \mid x \in R^n, \|x\|_a = 1 \, \}$$

$$: c_1, c_2 > 0$$

$$c_1 \|M\|_a \le \|M\|_b \le c_2 \|M\|_a$$

Question 2:

Given,

$$A = \begin{bmatrix} 1 & 1+\varepsilon \\ 1-\varepsilon & 1 \end{bmatrix}$$

(a)

Determinant for a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is given by ad - bc

 \therefore Determinant for A or det(A) or |A|

$$|A| = [1.1 - (1 + \varepsilon)(1 - \varepsilon)]$$

$$= 1 - [1^2 - \varepsilon^2]$$

$$= 1 - 1 + \varepsilon^2$$

$$|A| = \varepsilon^2$$

(b)

For determenant |A| to be zero, the value of ε should be 0

$$|A| = 0$$

$$\varepsilon^2 = 0$$

$$\varepsilon = 0$$

(c)

LU factorization of A

$$A = LU$$

For lower triangular matrix L, the enties of the diagonal should be 1, the entries

above the diagonals should be 0, and the entries below the diagonals can be

anything

 \therefore the 2 × 2 L can be represented as

$$L = \begin{bmatrix} 1 & 0 \\ & 1 \end{bmatrix}$$

For upper triangular matrix *U*, the entries of the diagonals can be anything, the entries above the diagonal can be anything and entries below the diagonal should be 0.

 \therefore the 2 × 2 *U* can be represented as

$$U = \begin{bmatrix} 0 \end{bmatrix}$$

To find the in matrix U, we multiply $Elementory\ matrix(E)$ with the given matrix A

$$E \times A = U$$

The Elementry matrix E is represented as

$$E = \begin{bmatrix} 1 & 0 \\ & 1 \end{bmatrix}$$
$$\therefore \begin{bmatrix} 1 & 0 \\ & 1 \end{bmatrix} \begin{bmatrix} 1 & 1+\varepsilon \\ 1-\varepsilon & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Now.let us assume blank entity in E as x and perform matrix multiplication of second row of E and first column of A which is equal to 0.

$$x \times 1 + 1 \times (1 - \varepsilon) = 0$$

$$x + (1 - \varepsilon) = 0$$

$$x = -(1 - \varepsilon)$$

$$\therefore E = \begin{bmatrix} 1 & 0 \\ -(1 - \varepsilon) & 1 \end{bmatrix}$$

$$now, E \times A = U$$

$$\begin{bmatrix} 1 & 0 \\ -(1 - \varepsilon) & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 0 \cdot (1 - \varepsilon) & 1 \cdot (1 - \varepsilon) + 0 \cdot 1 \\ -(1 - \varepsilon) + (1 - \varepsilon) & -(1 - \varepsilon)(1 - \varepsilon) + 1 \cdot 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 + \varepsilon \\ 0 & -(1 - \varepsilon^2) + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 + \varepsilon \\ 0 & -1 + \varepsilon^2 + 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 + \varepsilon \\ 0 & \varepsilon^2 \end{bmatrix}$$

To find the value of matirx L

$$E \times A = U \implies A = E^{-1} \times U$$

$$A = L \times U$$

$$\therefore L = E^{-1}$$

$$\therefore L = \begin{bmatrix} 1 & 0 \\ -(1 - \varepsilon) & 1 \end{bmatrix}^{-1}$$

$$L = \begin{bmatrix} 1 & 0 \\ 1 - \varepsilon & 1 \end{bmatrix}$$

(d)

For U to be singular, its determenat |U| = 0

$$|U| = 1 \cdot \varepsilon^2 - 0 \cdot (1 + \varepsilon)$$
$$|U| = \varepsilon^2$$

To satisfy the condition |U| = 0

$$\varepsilon^2 = 0$$

$$\varepsilon = 0$$

The value of $\varepsilon = 0$ for U to be singular.