ДЕРЖАВНИЙ УНІВЕРСИТЕТ ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЙ І ЗВ'ЯЗКУ

Звіт

з дисципліни Телекомунікаційні та інформаційні мережі

Практична робота №1

на тему: «Елементи синтезу та аналізу телекомунікаційних мереж»»

Виконав: студент гру	пи 1113-3.04
	Бухта М.М
Перевірив: Білоусова	C.C.

ВАРІАНТ 1 МЕТА РОБОТИ

Створення модельного представлення вхідної телекомунікаційної мережі, включно з графовим представленням і дискретними формами моделі графа.

ЗАВДАННЯ

Опис завдання:

На табл 1.1 зображені вихідні лані. Вони подані масивом, 1-й та 2-й рядки в якому містять номера пунктів, сполучених лініями зв'язку, а 3-й — вагові характеристика цих ліній.

Вихідна телекомунікаційна мережа містить 10 пунктів й 19 ліній, що забезпечуюсь зв'язок поміж пунктами в обох напряжках.

Побудуйте усі форми модельного подання вихідної телекомунікаційної мережі (графову, а також дискретні форми подання графа) і наведіть їх, забезпечивши необхідними коментарями, у пояснительной записці.

н.в	1	1	1	1	1	2	2	3	3	4	5	5	6	6	6	7	8	8	9
к.в	2	4	5	7	8	3	4	6	7	6	6	8	7	8	9	10	9	10	10
вага	15	20	25	6	43	95	30	12	10	35	71	63	50	18	48	21	90	15	10

Таблиця 1.1 – вихідні дані.

Виконання:

У цьому завданні ми побудуємо 4 типу представлення телекомунікаційної мережі. Один вигляд буде у формі графа (рис 1.1) та усі інші вже у вигляді матриці (тобто у дискретній формі): матриця суміжностей (табл 1.2), матриця інцидентностей (табл 1.3) та матриця вагів (табл 1.4). Так як вихідна телекомунікаційна мережа містить 10 пунктів й 19 ліній, що забезпечуюсь зв'язок поміж пунктами в обох напрямках, то працювати ми будемо з неорієнтованим графом. На кожному ребрі графа зображено його номер (зверху) і вагу (знизу)

Рисунок 1.1 – представлення вихідної телекомунікаційної мережі у вигляді неорієнтованого графа.

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	1	1	0	1	1	0	0
2	1	0	1	1	0	0	0	0	0	0
3	0	1	0	0	0	1	1	0	0	0
4	1	1	0	0	0	1	0	0	0	0
5	1	0	0	0	0	1	0	1	0	0
6	0	0	1	1	1	0	1	1	1	0
7	1	0	1	0	0	1	0	0	0	1
8	1	0	0	0	1	1	0	0	1	1
9	0	0	0	0	0	1	0	1	0	1
10	0	0	0	0	0	0	1	1	1	0

Таблиця 1.2 – матриця суміжностей.

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19
V1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V2	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
V3	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0
V4	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
V5	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
V6	0	0	0	0	0	0	0	1	0	1	1	0	1	1	1	0	0	0	0
V7	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0
V8	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	1	1	0
V9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1
V10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

Таблиця 1.3 – матриця інцидентностей

	1	2	3	4	5	6	7	8	9	10
1	0	15	0	20	25	0	6	43	0	0
2	15	0	95	30	0	0	0	0	0	0
3	0	95	0	0	0	12	10	0	0	0
4	20	30	0	0	0	35	0	0	0	0
5	25	0	0	0	0	71	0	63	0	0
6	0	0	12	35	71	0	50	18	48	0
7	6	0	10	0	0	50	0	0	0	21
8	43	0	0	0	63	18	0	0	90	15
9	0	0	0	0	0	48	0	90	0	10
10	0	0	0	0	0	0	21	15	10	0

Таблиця 1.4 – матриця вагів

КЛЮЧОВЫ ПИТАННЯ

- 1. Які задачі належать до класу задач синтезу і які до класу аналізу?
 - Задача синтезу мережі виникає при побудові нової мережі та при реконструкції й розвиткові існуючих мереж.
 - Задача аналізу мережі виникає при відшуванні оптимальних шляхів передавання інформаційних повідомлень, визначення сукупності шляхів заданої транзитності, оцінки припускної здатності мережі, ймовірності встановлення сполучення поміж пунктами тощо.
- 2. Для чого використовується модельне подання мережі?

Модельне подання дає змогу виявити й відбити найбільш істотні з точки зору посталої проблеми елементи об'єкта і зв'язки поміж ними, не відволікаясь на деталі.

- 3. Перелічіть форми модельного подання телекомунікаційної мережі, як об'єкта синтезу й аналізу. Схарактеризуйте кожну з них.
 - Геометрична форма зображення графа у виді точок і ліній.
 - Дискретна форма використовується при виведенні графової моделі в ЕОМ.
- 4. Що називається графом? Орієнтованим графом? Неорієнтованим графом?
 - Орієнтований граф це граф, в якому задаєтся напрямог дуг.
 - Неорієнтований граф це граф, де немає жодної направленої дуги.

5. Що відбивають відношення суміжності й інцидентності елементів графа?

Если перенумеровать в произвольном порядке дуги (ребра) графа и поставить эти номера в соответствие с номерами строк некоторой матрицы, а номера столбцов оставить, как и раньше, соответствующими номерам вершин графа, то в такой матрице можно отразить отношение инцидентности элементов графа.

6. В чому полягає відмінна риса мережної моделі?

У мережної моделі ϵ вагова характеристика (тобто зважений граф). За вагові характеристики мережі можуть виступати відстані, пропускна здатність, вартість тощо.

ВИСНОВОК

Під час практичної роботи було побудовано модельні уявлення телекомунікаційної мережі, включно з графовим представленням і дискретними формами моделі графа. Це дало змогу провести аналіз і синтез мережі, оцінити її характеристики та потенціал для доопрацювання. Такі моделі корисні для спрощення аналізу складних мереж та оптимізації їхньої роботи.