井室急或 E24105038 复多尺14 Homework 1

Seetlin 1.1

9)
$$-M_1K_1 + K_2 = b_1$$
 (1)
 $-M_2K_1 + K_2 = b_2$ (2) where M_1, M_2, b_1, b_2 are constants

a) > id |m, + m2

$$(1) \Rightarrow id [m_1 \neq m_2]$$

 $\Rightarrow 0 \times m_1 = 0 \times m_1 : -m_1 M_2 \chi_1 + m_1 M_2 \chi_2 + m_1 M_2 \chi_1 - m_1 \chi_2 = m_2 b_1 - m_1 b_2$
 $(m_2 - m_1) \chi_2 = m_2 b_1 - m_1 b_2$

From (a) question:
$$(M_2 - M_1)/(2 - M_2)$$

 $\Rightarrow \begin{cases} -m_1 \times (1 + \chi_2 = b_1) & -m_1 \cdot b_2 & -m_2 \cdot b_1 - m_1 \cdot b_2 \\ (M_2 - M_1) \times (2 - M_2) & -m_1 \cdot b_2 & -m_2 \cdot b_1 - m_1 \cdot b_2 \end{cases}$

$$L(m_2-m_1) 1(2-m_2)$$
=> Since $m_1 = M_2$, ... (2): $m_2b_1 - m_1b_2 = 0$

$$(a): M_2 b_1 - M_1 b_2 = 0$$
 (since $M_1 = M_2$)

William, is constant, so the only way that
this system be consistent is if
$$b_1-b_2=0$$

The billiam is the consistent is if $b_1-b_2=0$

The billiam is consistent is the billiam is consistent in the billiam i

Section 1,2 6) a) $\begin{cases} 2x+y=1 \\ 7x+6y=1 \end{cases} \Rightarrow \begin{cases} 2 \\ 7 \\ 6 \\ 1 \end{cases}$ $\Rightarrow \begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{cases} 2\chi_{1} + \chi_{2} - \chi_{3} + \chi_{4} = 6 \\ 2\chi_{1} - \chi_{2} + \chi_{3} - \chi_{4} = -3 \end{cases} \Rightarrow \begin{cases} 1 & 1 & -1 & 1 & | & 6 \\ 2 - 1 & 1 & -1 & | & -3 \\ 3 & 1 & -2 & 1 & | & 9 \end{cases} \Rightarrow \begin{cases} 0 & 3 & -3 & 3 & | & 15 \\ 0 & 2 & -1 & 2 & | & 9 \\ 3 & 1 & -2 & 1 & | & 9 \end{cases} \Rightarrow \begin{cases} 3\chi_{1} + \chi_{2} - 2\chi_{3} + \chi_{4} = 9 \\ 3\chi_{1} + \chi_{2} - 2\chi_{3} + \chi_{4} = 9 \end{cases} \Rightarrow \begin{cases} 1 & 1 & -1 & 1 & | & 6 \\ 2 & -1 & 1 & -1 & | & -3 \\ 3 & 1 & -2 & 1 & | & 9 \end{cases} \Rightarrow \begin{cases} 1 & 1 & -1 & 1 & | & 6 \\ 0 & 3 & -3 & 3 & | & 15 \\ 0 & 2 & -1 & 2 & | & 9 \end{cases}$ $= \begin{cases} \begin{bmatrix} 1 & 1 & -1 & 1 & | & 6 \\ 0 & 1 & -1 & 1 & | & 5 \\ 0 & 0 & -1 & 0 & | & 1 \end{bmatrix} = \begin{cases} \begin{bmatrix} 1 & 1 & -1 & 1 & | & 6 \\ 0 & 1 & -1 & | & 5 \\ 0 & 0 & 1 & 0 & | & -1 \end{bmatrix} = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 1 & | & 5 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & -1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 0 & 1 & | & 5 \\ 0 & 0 & 1 & 0 & | & -1 \end{bmatrix} = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 1 & | & 5 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & -1 \end{bmatrix} \end{cases}$ $= \begin{cases} 10000 | 1 \\ 0101 | 1 \end{cases} : X_1, X_2, X_3 : leading variables, X_4 : free variable, let X_4 = X_4 = X_5 =$ () $\{ \chi_1 - 10\chi_2 + 5\chi_3 = -4 \}$ $\{ \chi_1 + \chi_2 + \chi_3 = 1 \}$ $\{ \chi_1 + \chi_2 + \chi_3 = 1 \}$ $\{ \chi_1 + \chi_2 + \chi_3 = 1 \}$ $\{ \chi_1 + \chi_2 + \chi_3 = 1 \}$ => [1 -10 5 | -4] => [1 0 | 15 | 6 | 11 | 17] 1et 113=0 [1. (11, 12, 13)] $\begin{cases} X_{1}-2X_{2}+3X_{3}+X_{4}=4\\ 2X_{1}+X_{2}-X_{3}+X_{4}=1\\ X_{1}+3X_{2}+X_{3}+X_{4}=3 \end{cases} \begin{bmatrix} 1-2 & 3 & 1 & 1 & 1\\ 2 & 1 & -1 & 1 & 1\\ 1 & 3 & 1 & 1 & 3 & 3 & 1 \end{cases}$ => $\begin{bmatrix} 1 & 0 & 0 & \frac{14}{25} \\ 0 & 1 & 0 & \frac{14}{25} \\ 0 & 0 & 1 & \frac{1}{5} \\ 0 & 0 & 1 &$ 1, = - = x , x) #

15)
$$\begin{cases} X_{1} + 380 = X_{2} + 430 \\ X_{3} + 940 = X_{3} + 440 \\ X_{3} + 940 = X_{3} + 440 \end{cases} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 & 50 \\ 1 & 0 & 1 & 0 & -120 \\ 0 & 1 & -1 & 0 & -120 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 0 & 1 & 150 \\ 0 & 0 & 0 & 1 & 150 \\ 0 & 0 & 0 & 1 & 150 \\ 0 & 0 & 0 & 1 & 150 \\ 0 & 0 & 1 & 0 & 150 \\ 0 & 0 & 0 & 1 & 150 \\ 0 & 0 & 0 &$$

Section 1.1

9(c):

• a 小題的 b1, b2 使用 random 的方式生成 constants, 以證明不影響當 m1!= m2 會擁有 unique solution 的事實, 但是因爲作圖的範圍我有限制, 因此 b1, b2 的 random value,我也有設置一個範圍,不然最終交匯點會超出我的圖的範圍

[Matlab ex]

ex. 1(a), (b):

>> HW1 1a						>> HW1 1b				
100	1a 69	87	74	119		_	168	193	155	222
161	93	163	160	145		78	141	145	144	197
						57		124	85	125
162	45	163	192	212		54	121	113	78	121
236	87	237	198	243						
234	73	242	222	244		50	147	147	76	131
201	159	226	190	191		61	129	135	70	83
123	122	136	142	169		90	166	155	96	86
170	168	156	167	166		132	202	170	173	78
180	207	210	231	250		64	118	100	55	54
91	105	88	102	88		111	195	174	148	93
201	159	226	190	191		71	168	193	155	222
123	122	136	142	169		78	141	145	144	197
170	168	156	167	166		57	127	124	85	125
180	207	210	231	250		54	121	113	78	121
91	105	88	102	88		50	147	147	76	131
100	69	87	74	119		61	129	135	70	83
161	93	163	160	145		90	166	155	96	86
162	45	163	192	212		132	202	170	173	78
236	87	237	198	243		64	118	100	55	54
234	73	242	222	244		111	195	174	148	93

- From the result 1a above, we can conclude that A1 = A4 and A2
 = A3
- From the result 1b above, we can conclude that A1 = A3 and A2
 = A4