ECON8000: Quantitative Skills for Economics Lecture 6: Functions

Shino Takayama

University of Queensland

February 2020

Functions: The Environment

We will study functions $f: S \to \mathbb{R}$ where $S \subset \mathbb{R}$ will usually be either open or compact. Of course such a function is *continuous* if $f^{-1}(U)$ is an open subset of S whenever $U \subset \mathbb{R}$ is open.

The Intermediate Value Theorem

Theorem: If $f:[a,b] \to \mathbb{R}$ is continuous and $f(a) \le f(b)$ $(f(b) \le f(a))$, then $[f(a),f(b)] \subset f([a,b])$ $([f(b),f(a)] \subset f([a,b]))$.

Differentiation

Let $I \subset \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. It is differentiable at $x \in I$ if

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

exists, in which case the limit is called the *derivative* of f at x, and is denoted by f'(x) or $f^{(1)}(x)$. We say that f is *continuously differentiable* if it is differentiable and $f': I \to \mathbb{R}$ is continuous. Inductively, for $k \geq 2$ we say that f is k times continuously differentiable if it is k-1 times continuously differentiable and $f^{(k-1)}$ is continuously differentiable, in which case its derivative is denoted by $f^{(k)}$. If f is k times continuously differentiable for every k it is C^{∞} .

The Chain Rule

Theorem: If $f:(a,b)\to(c,d)$ is differentiable at t and $g:(c,d)\to\mathbb{R}$ is differentiable at f(t), then

$$(g \circ f)'(t) = g'(f(t)) \cdot f'(t).$$

Proof. Clearly $(g \circ f)'(t)$ and f'(t) are zero if f is constant on a neighborhood of t, and otherwise

$$\lim_{h \to 0} \frac{g(f(t+h)) - g(f(t))}{h}$$

$$= \lim_{h \to 0} \frac{g(f(t+h)) - g(f(t))}{f(t+h) - f(t)} \cdot \frac{f(t+h) - f(t)}{h} = g'(f(t)) \cdot f'(t).$$

The Product Rule

Theorem: If $f, g:(a, b) \to \mathbb{R}$ are continuous and differentiable at t, then

$$(fg)'(t) = f'(t)g(t) + f(t)g'(t).$$

Proof. We have

$$\lim_{h \to 0} \frac{f(t+h)g(t+h) - f(t)g(t)}{h} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \cdot g(t+h)$$
$$+ \lim_{h \to 0} f(t) \cdot \frac{g(t+h) - g(t)}{h}.$$

The Mean Value Theorem

Theorem: If $f:(a,b) \to \mathbb{R}$ is differentiable at t and $f(t) = \max_s f(s)$ or $f(t) = \min_s f(s)$, then f'(t) = 0.

Proof. If $f(t) = \max_{s} f(s)$, then

$$\lim_{h \to 0^{-}} \frac{f(t+h) - f(t)}{h} \ge 0 \ge \lim_{h \to 0^{+}} \frac{f(t+h) - f(t)}{h}.$$

The proof when $f(t) = \min_s f(s)$ is similar.

Rolle's Theorem

Rolle's Theorem: If $f:[a,b] \to \mathbb{R}$ is continuous and differentiable at every point in (a,b), and f(a)=f(b), then there is a $t \in (a,b)$ such that f'(t)=0.

Proof. Since [a, b] is compact there are t_-, t_+ such that $f(t_-) = \min_s f(s)$ and $f(t_+) = \max_s f(s)$. The last result gives the desired conclusion when $t_- \in (a, b)$ or $t_+ \in (a, b)$. If $t_-, t_+ \in \{a, b\}$, then f(t) = f(a) for all t and f'(t) = 0 for all $t \in (a, b)$.

In applications the most convenient form of Rolle's theorem is:

Mean Value Theorem: If $f:[a,b] \to \mathbb{R}$ is continuous and differentiable at every point in (a,b), then there is a $t \in (a,b)$ such that

$$f'(t) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Let $g:[a,b] \to \mathbb{R}$ be the function

$$g(t) = f(t) - \frac{f(b) - f(a)}{b}(t - a).$$

Applying Rolle's theorem to g gives a t such that

$$0 = g'(t) = f'(t) - \frac{f(b) - f(a)}{b}.$$

Maximization

If $f:(a,b)\to\mathbb{R}$ is a function, a point t is a *strict local maximum* if there is an $\delta>0$ such that f(t)>f(s) for all $s\in(t-\delta,t)\cup(t,t+\delta)$.

Theorem: Let $f:(a,b) \to \mathbb{R}$ by C^2 , and let t be a point in (a,b). If t is a local maximum, then f'(0) = 0 and $f''(0) \le 0$. If f'(0) = 0 and f''(t) < 0, then t is a local maximum.

The Lagrangean

The following result may seem a bit silly, but the one dimensional case is our model for higher dimensional problems, so we should be sure to understand it.

Theorem: Suppose that a < 0 < b and $u : (a, b) \to \mathbb{R}$ is C^1 . Let

$$\mathcal{L}(t;\lambda)=u(t)+\lambda t.$$

If t^* solves that problem of maximizing u(t) subject to $t \geq 0$, then there is a λ^* such that $\frac{\partial \mathcal{L}}{\partial t}(t^*;\lambda^*) = 0$. In addition, $\lambda^* \geq 0$ and $\lambda^* t^* = 0$. (This final condition is called *dual slackness*.)

Proof. If $t^* > 0$, then $u'(t^*) = 0$ and we can set $\lambda^* = 0$. If $t^* = 0$, then $u'(0) \le 0$, and we can set $\lambda^* = -u'(0)$.

Convex and Concave Functions

Let $I \subset \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is *convex* (*concave*) if, for all $s, t \in I$ and $\alpha \in [0, 1]$,

$$f((1-\alpha)s + \alpha t) \leq (\geq)(1-\alpha)f(s) + \alpha f(t).$$

We will only discuss convex functions, but everything we say applies equally to concave functions, with obvious modifications. We say that f is *strictly convex* if the inequality above holds strictly whenever $s \neq t$ and $\alpha \in (0,1)$.

Theorem: Continuous Convex Function

Theorem: If $I \subset \mathbb{R}$ is an open interval and $f: I \to \mathbb{R}$ is convex, then f is continuous.

Proof. Fix $a, b \in I$ with a < b and $\delta > 0$ such that $a - \delta, b + \delta \in I$. Let M and m be upper and lower bounds for f on $[a - \delta, b + \delta]$. If $a \le s < t \le b$, then

$$f(t) \leq \frac{\delta}{t-s+\delta} f(s) + \frac{t-s}{t-s+\delta} f(t+\delta) = f(s) + \frac{t-s}{t-s+\delta} (f(t+\delta) - f(s))$$
$$\leq f(s) + \frac{M-m}{\delta} (t-s)$$

and

$$f(s) \le \frac{t-s}{t-s+\delta} f(s-\delta) + \frac{\delta}{t-s+\delta} f(t) = f(t) + \frac{t-s}{t-s+\delta} (f(s-\delta) - f(t))$$

 $\le f(t) + \frac{M-m}{\delta} (t-s)$

Therefore

$$|f(t)-f(s)| \leq \frac{M-m}{\delta}(t-s).$$

Lemma: Convex Function

Lemma: If $f: I \to \mathbb{R}$ is convex and $a, b \in I$, then there are m and M such that $m \le f(t) \le M$ for all $t \in [a, b]$.

Proof. The claim is trivial when a = b, so without loss of generality assume that a < b.

- ightharpoonup Fix $s \in (a, b)$.
- For $t \in (a, s)$ we have $f(s) \leq \frac{b-s}{b-t}f(t) + \frac{s-t}{b-t}f(b)$ and thus $f(t) \geq \frac{b-t}{b-s}f(s) \frac{s-t}{b-s}f(b)$.
- ▶ Similarly, for $t \in (s, b)$ we have $f(t) \ge \frac{t-a}{s-a}f(s) \frac{t-s}{s-a}f(a)$.

Jensen's Inequality

Theorem: If $I \subset \mathbb{R}$ is an interval, $f: I \to \mathbb{R}$ is a convex function, $k \geq 2$ is an integer, $t_1, \ldots, t_k \in I$, $\alpha_1, \ldots, \alpha_k > 0$, and $\sum_i \alpha_i = 1$, then

$$f(\alpha_1 t_1 + \cdots + \alpha_k t_k) \leq \alpha_1 f(t_1) + \cdots + \alpha_k f(t_k).$$

Jensen's Inequality: Proof

Proof. We argue by induction on k. When k=2 the asserted inequality is just the definition of convexity. Assuming the inequality has been established with k-1 in place of k, we apply the definition of convexity, then the induction hypothesis, to compute that

$$f(\alpha_1 t_1 + \dots + \alpha_k t_k) = f((1 - \alpha_k)(\frac{\alpha_1}{1 - \alpha_k} t_1 + \dots + \frac{\alpha_{k-1}}{1 - \alpha_k} t_{k-1}) + \alpha_k t_k)$$

$$\leq (1 - \alpha_k)f(\frac{\alpha_1}{1 - \alpha_k} t_1 + \dots + \frac{\alpha_{k-1}}{1 - \alpha_k} t_{k-1}) + \alpha_k f(t_k)$$

$$\leq (1 - \alpha_k)(\frac{\alpha_1}{1 - \alpha_k} f(t_1) + \dots + \frac{\alpha_{k-1}}{1 - \alpha_k} f(t_{k-1})) + \alpha_k f(t_k) = \sum_i \alpha_i f(t_i).$$