HW 5: CBOW and Word2Vec

Andrei A Simion

October 25, 2023

Negative Sampling for CBOW

In class we looked at the Skip-Gram and CBOW models and we looked at Negative Sampling. In the Skip-Gram model, we want to predict the the outside words from the center word. Negative Sampling removed the softmax dependency, which is expensive. The upshot is for a (w_c, w_o) pair we have

$$p(w_o|w_c) = \frac{\exp b_{w_o}^{\mathsf{T}} a_{w_c}}{\sum_{j=1}^{|\mathcal{V}|} \exp b_{w_j}^{\mathsf{T}} a_{w_c}}$$

and replace this by

$$p(w_o|w_c) = (\frac{1}{1 + \exp{-b_{w_o}^\intercal a_{w_c}}}) E_{w_k \sim p_{sample}(w)} [\prod_{k=1}^K \frac{1}{1 + \exp{b_{w_k}^\intercal a_{w_c}}}]$$

You can consider the expectation by: "Draw K random samples from the set V, with probability $p_{sample}(w)$ ". For CBOW, we want to predict the inner word from the words around it. Thus, if m = 1, for example, we have

$$p(w_c|w_{c-1}, w_{c+1}) = \frac{\exp b_{w_c}^{\mathsf{T}} a_{avg}}{\sum_{i=1}^{|\mathcal{V}|} \exp b_{w_i}^{\mathsf{T}} a_{avg}}$$

In this case, a_{avg} is the average a vector of the words w_{c-1}, w_{c+1} . The first goal is to submit what the objective for Negative Sampling would look like for CBOW. I.e., for the above example, what would it look like? Please submit a formula with justification. Your next goal is to take the notebook I give you and, using the hints and the notebook for Skip-Gram in class, implement the Negative Sampling Approach for CBOW. Can you print out the associated vectors for the validation words? Are they related, in turn, to each validation word.

Mathematical Problems

- Problem 1 Let w be some word in the vocabulary \mathcal{V} and let e_w be it's one-hot encoding (pretend the word is actually integer w, we might have itos[w] = "cat" for example depending on how we set up the hash map between words and integers). Explain why $B^{\dagger}e_w = b_w \in \mathbb{R}^d$ and why this multiplication selects the w^{th} column of B^{\dagger} . Remember, if $B \in \mathbb{R}^{|\mathcal{V}| \times d}$ then $B^{\dagger} \in \mathbb{R}^{d \times |\mathcal{V}|}$.
- Problem 2 Assume you do CBOW and Skip-Gram with negative sampling. Assume m=1. Which method, on average, will get more training samples? Suppose there are 3 sentences with 7, 8, and 11 tokens. How many training sampling (positive training samples), will each method get. Draw a picture of a sentence with token counts and think about the number of samples each method gives. This is why Skip-Gram is used more often. It is more "sample efficient": you get more training data per Corpus.
- Problem 3 In class we looked at the formula for the Skip-Gram for 1 sample (w_c, w_o) and got

$$\mathcal{L}(A, B) = -\log p(b_{w_o}|a_{w_c})) = -b_{w_o}^{\mathsf{T}} a_{w_c} + \log \sum_{w \in \mathcal{V}} \exp b_w^{\mathsf{T}} a_{w_c}$$

Then, we said that the gradients were as below. Prove this. Also, explain why $\frac{\partial \mathcal{L}}{\partial a_{w_c}}$ can be be interpreted as a difference between a hard guess and an expected value.

$$\frac{\partial \mathcal{L}}{\partial b_{w_o}} = -a_{w_c} + \frac{a_{w_c} \exp b_{w_o}^{\mathsf{T}} a_{w_c}}{\sum_{u \in \mathcal{V}} \exp b_{u}^{\mathsf{T}} a_{w_c}}$$

$$\frac{\partial \mathcal{L}}{\partial a_{w_c}} = -b_{w_o} + \sum_{w \in \mathcal{V}} b_w \frac{\exp b_w^{\mathsf{T}} a_{w_c}}{\sum_{u \in \mathcal{V}} \exp b_u^{\mathsf{T}} a_{w_c}}$$