

Inhalt

- Vorstellung
- Lernziele
- Themenübersicht
- Didaktisches Konzept / Arbeitsweise
- Leistungsnachweise
- Material und Arbeitsumgebung
- Grundlagen
 - Kontinuierlich/Analog vs. Diskret/Digital
 - Zahlendarstellung & Fehlertypen
 - Funktion vs. Folge vs. Daten
- Numpy & Matplotlib

Riemann sum convergence.png, CC BY-SA 3.0, KSmrq

Vorstellung: Lukas Hollenstein

- Theoretischer Physiker (Kosmologie)
 - Master Uni Zürich (2000 2005)
 - PhD Uni Portsmouth (2006 2009)
 - Postdoc Uni Genf & CEA Saclay (2009 2013)
- ZHAW seit 2013
 - Dozent Mathe & Simulation
 - Co-Leitung Forschungsschwerpunkt Digital Labs & Production
 - Leitung Forschungsgruppe Simulation & Optimization
- Sonst so
 - Familie: 2 Töchter
 - Musik: Schlagzeug, Jazz, Funk, Reggae
 - Life Long Learning

- hols@zhaw.ch
- www.zhaw.ch/=hols

Vorstellung: David de la Gala

- Brau- und Getränketechnologe
 - BEng Hochschule Weihenstephan-Triesdorf (2021)
- ZHAW seit 2022
 - Wissenschaftlicher Assistent Simulation
 & Optimization
 - Student MSc Life Sciences in Applied Computational Life Sciences
- Sonst so
 - Klettern

- deag@zhaw.ch
- www.zhaw.ch/=deag

Lernziele

- Fachkompetenzen
- Grundbegriffe und -konzepte der numerischen Mathematik erklären und verwenden
- Systematisches Vorgehen für iterative, numerische Algorithmen nutzen
- Grundlegende Methoden und Algorithmen der numerischen Analysis, linearen Algebra und Simulation von Zufallsvariablen nennen, erklären und rudimentär implementieren

- Sachkompetenzen
- Techniken zur Programmierung von Algorithmen zu verwenden und zu vergleichen
- Python Packages NumPy, SciPy und Matplotlib effektiv in eigenem Code einzusetzen
- Sich beim Programmieren anhand von Dokumentation und Online-Ressourcen selbst helfen
- Über Arbeitsweise von Programmcode reflektieren

• Grundlagen:

- Arbeiten mit mehrdimensionalen Arrays
- Lineare Algebra
- Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

Themenübersicht → Semesterplan auf Moodle

- Grundlagen:
 - Arbeiten mit mehrdimensionalen Arrays
 - Lineare Algebra
 - Funktionen und Daten darstellen
- Zwischenwerte schätzen: Interpolation
- Gleichungen lösen: Nullstellen & Fixpunkte
- Ableitung in einer und mehreren Variablen
- Integration
- Gewöhnliche Differentialgleichungen
- Zufallszahlen simulieren

				FS23 (Stand: 07.02.2023)
SW	KW	Tag	Datum	Thema
1	8	Do	23. Feb	Einführung, Zahlendarstellung, Fehlertypen, Numpy
		Fr	24. Feb	
2	9	Do	02. Mär	Darstellung von Daten und Funktionen in mehreren Variablen
		Fr	03. Mär	Isokonturlinien, Höhenlinien
3	10	Do	09. Mär	Interpolation von Daten und numerischen Funktionen
		Fr	10. Mär	
4	11	Do	16. Mär	Nullstellen und Fixpunkte
		Fr	17. Mär	
5	12	Do	23. Mär	Ableitung in einer Variablen
		Fr	24. Mär	
6	13	Do	30. Mär	Ableitungen in mehreren Variablen
		Fr	31. Mär	Darstellung Gradient, Gradient Descent
7	14	Do	06. Apr	Iterationsverfahren, Konvergenz, Performance
		Fr	07. Apr	
8	15	Do	13. Apr	Integration von Funktionen und Daten
		Fr	14. Apr	
9	16	Do	20. Apr	Gewöhnliche Differentialgleichungen
		Fr	21. Apr	Euler-Verfahren
10	17	Do	27. Apr	Zufalslzahlen erzeugen
		Fr	28. Apr	
11	18	Do	04. Mai	
		Fr	05. Mai	
12	19	Do	11. Mai	Simulieren von Zufallsvariablen
		Fr	12. Mai	Samplen von Daten
13	20	Do	18. Mai	
		Fr	19. Mai	
14	21	Do	25. Mai	Projekt Präsentationen
		Fr	26. Mai	
15	22	Do	01. Jun	Projekt Präsentationen
		Fr	02. Jun	Puffer

Didaktisches Konzept

- Ziele / Überzeugung
- Motivation durch konkrete Beispiele
 - Mehr Praxis weniger Theorie
- Lernen durch aktives Tun
 - Viel selbstständige Arbeit
- Produktives Scheitern
 - Selb ausprobieren in der Gruppe diskutieren
 - Iterativ verbessern und vertiefen
- Flipped Classroom
 - Wissensvermittlung im Selbststudium mithilfe eines Arbeitsblatts
 - Vertiefung & Festigung in Präsenz

 Arbeitsweise Selbststudium

Einarbeitung Kurzer Input implementieren

Selbst rudimentär

Vertiefung im Präsenz-Plenum

- Fragen klären
- · Lösungsvorschläge diskutieren
- Verfeinerung
- Beispiele

Festigung im Online-Plenum

- Übungen in Gruppen
- Diskussion der Lösungen und Fragen

Übungen im Selbststudium

 Übungsblatt fertig lösen

Lernzyklus (auch auf Moodle)

Phase	Ziele	Aktivitäten	Sozialform	Medien / Material	Dauer / Aufwand
Einarbeitung (Fr - Do)	 Kennenlernen der Problemstellung & Methode exploratives Erarbeiten von Lösungen / Implementationen 	 - Kurzer Input studieren - Selber eine Lösung versuchen zu implementieren 	Einzeln oder in Lerngruppen (frei)	Arbeitsblatt, Videos, Websites, Texte	2 - 3 Stunden
Plenum vor Ort (Do)	 Vertiefen der Problemstellung, Motivation & Methode Vertiefung & Verfeinerung der Lösung & Implementation 	 Fragen zur Methode klären Lösungsvorschläge zeigen & diskutieren Schwierigkeiten beseitigen Weitere Beispiele & Anwendungen diskutieren 	Plenum & teilweise Kleingruppen	PPT, Jupyter Notebooks	2 Lektionen
Plenum online (Fr)	- Festigung	1-2 Aufgaben in KleingruppenDiskussion der Lösungen bzw.Schwierigkeiten im Plenum	Kleingruppen & Plenum	Übungsblatt mit 3-4 Aufgaben	2 Lektionen
Nachbereitung (Fr - Do)	- Festigung	 Übungsblatt fertig bearbeiten Allfällige offene Fragen via Q&A klären 	Einzeln oder in Lerngruppen (frei)	Übungsblatt mit 3-4 Aufgaben	ca. 1 Stunde

Leistungsnachweise

- Erfahrungsnote durch Gruppenarbeit (Projekt)
 - Start ca. in Woche 4
 - (Einige benötigte Methoden werden erst in den Wochen danach behandelt.)
 - Präsentation in den letzten 2 Semesterwochen
 - Gewichtung 40 %
- Abgesetzte Modulprüfung im Juni
 - Einzelarbeit
 - Papier & E-Assessment
 - Dauer 90 min
 - Gewichtung 60 %
- Details zu beiden folgen später.

Material und Arbeitsumgebung

- Moodle-Kurs anschauen
 - Nachrichtenforum
 - Wichtige Dokumente
 - Links zu Ressourcen
- GitHub Repo
 - Anleitung
 - Arbeitsmaterial

Arbeitsumgebung aufsetzen

- 1. Arbeitsverzeichnis erstellen
- 2. GitHub Repository klonen
- 3. Virtual Environment erzeugen
- 4. (optional) Eigenes Repo aufsetzen