UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2025

HOMEWORK 11

Instructor: GAUTAM BHARALI Assigned: MARCH 29, 2025

1. Find a rational number that approximates $(7.9)^{1/3}$ and estimate the error of approximation by:

- defining $f(x) := x^{1/3}$ for all $x \in [0, +\infty)$ —where $x^{1/3}$, for $x \ge 0$, denotes the unique non-negative cube-root of x—and letting your approximation be the Taylor polynomial $T_1f(7.9; \alpha)$ for an appropriate $\alpha > 0$; and
- selecting an appropriate interval $[a,b] \subseteq [0,+\infty)$ and applying Taylor's Theorem to $f|_{[a,b]}$.

With your choices, what is the best (i.e., smallest) upper bound for

$$|(7.9)^{1/3} - T_1 f(7.9; \alpha)|$$

predicted by Taylor's Theorem?

Note. You may assume — **no explanations** needed — that the function $(0, +\infty) \ni x \longmapsto x^{-p}$ is a decreasing function for any p > 0.

2. Let a < b be real numbers and let $f : [a, b] \to \mathbb{R}$ be a bounded function. Show that for any two partitions \mathbb{P}_1 and \mathbb{P}_2 on the interval [a, b],

$$L(\mathbb{P}_1, f) \leq U(\mathbb{P}_2, f).$$

3. Define the function $f: \mathbb{R} \to \{0,1\}$ as follows:

$$f(x) := \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Fix two real numbers a < b. Give an expression for each of the Riemann sums $L(\mathbb{P}, f)$ and $U(\mathbb{P}, f)$. Is $f|_{[a,b]} \in \mathcal{R}([a,b])$?

4. Let a < b be real numbers and suppose $f : [a, b] \to \mathbb{R}$ is Riemann integrable.

- (i) Let $\alpha, \beta \in \mathbb{R}$ be such that $a \leq \alpha < \beta \leq b$. Show that $f|_{[\alpha,\beta]} \in \mathscr{R}([\alpha,\beta])$.
- $(ii) \text{ Let } c \in (a,b). \text{ By } (i), \text{ we know that } f|_{[a,c]} \in \mathscr{R}([a,c]) \text{ and } f|_{[c,b]} \in \mathscr{R}([c,b]). \text{ Show that } f|_{[a,c]} \in \mathscr{R}([a,c]) \text{ and } f|_{[c,b]} \in \mathscr{R}([c,b]).$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{a}^{b} f(x) \, dx.$$

5. Let a < b be real numbers and let $f : [a,b] \to \mathbb{R}$ be Riemann integrable on [a,b]. Suppose $\mathsf{range}(f) \subseteq [\alpha,\beta]$ and suppose $\phi : [\alpha,\beta] \to \mathbb{R}$ is a continuous function. Show that $\phi \circ f$ is Riemann integrable on [a,b].

6. Let a < b be real numbers and let $f, g \in \mathcal{R}([a, b])$. Let p and q be positive real numbers such that $p^{-1} + q^{-1} = 1$. Prove **Hölder's inequality:**

$$\left| \int_a^b fg(x) \, dx \right| \le \left| \int_a^b |f(x)|^p dx \right|^{1/p} \left| \int_a^b |g(x)|^q dx \right|^{1/q},$$

by completing the outline provided by parts (a)–(c) of Problem 10 in "Baby" Rudin, Chapter 6, taking $\alpha=\mathsf{id}_{[a,b]}$.

- **7. Review/Self-study.** Please review by April 2 the statement and the proof of the result studied in UMA101 called the "First Fundamental Theorem of Calculus," which is presented as Theorem 6.20 in Rudin's book.
- 8–9. Problems 7 and 15 from "Baby" Rudin, Chapter 6.