1. For the circuit below, determine the value of Rx such that \underline{NO} current flows through the 10 Ω resistor in the circuit. (12pt)

Mesh analysis:

Mesh3: $20(i_3 - i_2) + R_x i_3 + 100 = 0$ 3(2')

We can get: $R_x^2 + 20R_x - 500 = 0$

and the value of Rx is : $R_x = 10(\sqrt{6} - 1) = 14.49\Omega$ (4')

Nodal analysis:

Additional equation(No current flows the 10Ω resistor): $V_1 = V_2$ 3(2)

We can get: $R_x^2 + 20R_x - 500 = 0$

and the value of Rx is: $R_x = 10(\sqrt{6} - 1) = 14.49\Omega$ (4')

$$\Rightarrow \begin{cases} i_{1} = \frac{24}{11000} & A. & -- & 2 \\ i_{2} = \frac{1}{2100} & A. & -- & 2 \\ i_{R} = i_{1} - i_{2} \approx 0.001 \end{cases} A = 1 - \int_{1}^{1} M A -- 2$$

nodal

$$\begin{cases} nodal \): \frac{V_1 - I_0}{3 \, \text{k} \Omega} + \frac{V_1}{2 \, \text{k}} + \frac{V_1 - V_2}{1 \, \text{k}} = 2i \\ nodal \ 2: \frac{V_2 - V_1}{1 \, \text{k}} + \frac{V_2}{3 \, \text{k}} + 2i = 0.002 \\ i = \frac{V_1 - I_0}{3 \, \text{k}} - 2 \\ V_2 = \frac{38}{11} \ V. \end{cases}$$

$$\begin{cases} V_1 = \frac{38}{11} \ V. \\ V_2 = \frac{81}{11} \ V. \end{cases}$$

$$i_R = \frac{V_1}{2 \, \text{k}} = \frac{19}{11} \, \text{mA} \approx 1.73 \, \text{mA}. \qquad 2$$

3. Use Mesh Analysis method to calculate the power supplied by the 1A current source. (12')

Mesh analysis:

Mesh
$$1:50i_1 + 30(i_1 - i_3) + 20(i_1 - i_2) = 0$$
(2')

Mesh3:
$$i_3 = -0.02u$$
 $3(2')$

Additional equation:
$$i_2 = 1$$
 $4(1')$

We can get:
$$u = \frac{100}{3} = 33.33v$$
(2')

and the power is
$$P = -ui_2 = -\frac{100}{3} = -33.33W$$
(2')

It represents the 1A current source is supplying power of 33.33W......(1')

Hint: if students used the nodal analysis method, they would not get grades.

4. Linear Property & Superposition (12pt)

- (1) For the two independent sources below, if keeping the independent voltage source only (turn off the independent current source), find Vo and the power absorbed by the 2Ω resistor.
- (2) For the two independent sources below, if keeping the independent current source only (turn off the independent voltage source), find Vo and the power absorbed by the 2Ω resistor.
- (3) From the results in (1) and (2), find the power absorbed by the 2Ω resistor in the following figure.

平 (1)中Vo', Pr (2)中Vo', P2 (3)中P 五个霉分数上数均 会分,但单位少1个和分 整个大是这个个和分

(3)
$$V_0 = V_0' + V_0'' = 8V$$
 ($8V \pm 0.05V = 32V$)
$$P = \frac{V_0^2}{2\pi} = 32VV - 2'$$
($32VV \pm (W \neq 0.05V = 32V)$

¥ 笔编解等 P=P1+P2=17.78W

6. Max power transfer. (47).

(1) DENER THE 10D isc =
$$\frac{|k-V|}{R^2} + \frac{o-U}{R^2} - \frac{1}{12}$$

(1) DENER THE 10D isc = $\frac{|k-V|}{R^2} + \frac{o-U}{R^2} - \frac{1}{12}$

(1) DENER THE 10D isc = $\frac{|k-V|}{R^2} + \frac{o-U}{R^2} - \frac{1}{12}$

(2) $\frac{R}{R} + \frac{R}{R^2} + \frac{$

- 7. Assume that the ideal operational amplifier is operating in its linear range. (12pt)
- (1) Solve for v_b . (2) Solve for v_o . (3) Solve for i_o .

长关于3)问

公武部分 · 分图为9.4而非 9k4k 》 给 · 分

刘 18世4、张 写对,但方向写见 尹 给 1分

3) 基余错误不得分

答案部分:写 2.25 A而非 2.25mA .- 律不得分 (属于答案错误而非单位错误)

- *关于小小引河、只要 光子到对,答案错仍给过程分
- * 前工小问求错, 引可答案对不给分 (已验证你无法得出该答案)
- * 未在对应小问给出对应答案(写在别处),此次未扣分

$$\frac{4^{1}}{3} \cdot \frac{Va-5}{5k} + \frac{Va}{5k} = 0$$

$$\Rightarrow Va = 2.50$$

$$Vb = Va = 2.50$$

8. Assume that the ideal operational amplifiers in following circuit are both operating in linear range. Please calculate the output voltage v_o given $v_1 = 4V$ and $v_2 = 6V$. (12pt)

$$\begin{cases} V_{\alpha} = 0V \\ V_{c} = 0V \\ \frac{V_{1} - V_{\alpha}}{10k} + \frac{V_{b} - V_{\alpha}}{20k} = 0 \end{cases} (2')$$

$$\begin{cases} \frac{V_{1} - V_{\alpha}}{10k} + \frac{V_{b} - V_{\alpha}}{20k} = 0 \\ \frac{V_{2} - V_{c}}{10k} + \frac{V_{b} - V_{c}}{10k} + \frac{V_{d} - V_{c}}{20k} = 0 \end{cases} (4')$$

$$V_{0} = 4V$$

$$V_{b} = -\frac{R^{2}}{R_{1}}V_{1} = -8V \qquad (4')$$

$$V_{d} = -(\frac{RS}{R_{2}}V_{b} + \frac{RS}{R4}V_{*}) \qquad (4')$$

$$V_{0} = V_{d} = 4V \qquad (4')$$