Shortest path algorithms Data Structures and Algorithms for Com (ISCL-BA-07) Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2021/22

Shortest path

- · Finding shortest paths on a weighted (directed) graph is one of the most common problems in many fields

 • Applications include

- Navigation
 Navigation
 Navigation
 Routing in computer networks
 Optimal construction of electronic circuits, VLSI chips
 Robotics, transportation, finance, ...
- Shortest paths on weighted graphs
 - · Different versions of the problem:
 - Single source shortest path: find shortest path from a source node to all others
 Single target (sometimes called sink) shortest path find shortest path from all nodes to a target node
 - Source to target: from a particular source node to a particular target node
 All pairs: shortest paths between all pairs of nodes
 Restrictions on weights:

 - Euclidean weights
 Non-negative weights
 Arbitrary weights
- Dijkstra's algorithm
- 1: D[s] ← 0 for each node $v \neq s$ do $D[v] \leftarrow \infty$
- We maintain a list D of mini know distances to each node
- · At each step we take closest node out of Q
 update the distances of all no
- Can be more efficient if Q is implemented using a (adaptable) priority queue
- 4: Q ← nodes 5: while Q is not empty do Remove node u with min D[u] from Qfor each edge (u, v) do if D[u] + w(u, v) < D[v] then $D[v] \leftarrow D[u] + w(u, v)$
- 10: D contains the shortest distances from s

Dijkstra's algorithm

Weighted graphs

- $\star\,$ A $weighted\,graph$ is a graph, where each edge is as Weights can be any numeric value, but for some algorithms require Non-negative weights
 Euclidean' weights: weights that are proper distance metrics.

 - Weights often indicate distance or cost, but they can also represent positive relations (e.g., affinity between nodes)
 - Weight of a path is the sum of wights of the edges on the path

Shortest paths on unweighted graphs

- · A BFS search tree gives the sh path from the source node to all other nodes The BPS is not enough on weighted graphs
- Shortest-cost path may be longer in

Dijkstra's algorithm

- Dijkstra's algorithm is a 'weighted' version of the BPS
 The algorithm finds shortest path from a single source node to all connected
- · Weights has to be non-o
- It is a greedy algorithm that grows a 'cloud' of nodes for which we know the shortest paths from the source node * The new nodes are included in the cloud in order of their shortest paths from
- the source node

Dijkstra's algorithm

Dijkstrá s algorithm
demonstration

Shortest-path tree

- The way we introduced, the Dijkstra's algorithm does not give the shortest-path
- Similar to traversal algorithms, we can extract it from distances D

 Running time is O(n²) (or O(n + m))
- $\begin{array}{ll} t: T \leftarrow \varnothing \\ 2: \mbox{ for } u \in D \{s\} \mbox{ do } \\ 3: \mbox{ for each edge}(v,u) \mbox{ do } \\ 4: \mbox{ if } D[y] \longrightarrow D[u] + w(v,u) \mbox{ then } \\ 5: \mbox{ } T \leftarrow T \cup \{v,u\} \end{array}$
- The shortest path can be found more efficiently, if the graph is a DAG
- The algorithm is similar to Dijkstra's, but simpler and faster
 Only difference is we follow a topological order
- The algorithm will also work with negative edge weights

8 / University of Tablegon Waster Security 2001/02 16 / 19

C Ciliday, 18 / Decemby of Silvey

Dijkstra's algorithm

Shortest-paths on DAGs

letter Semester 2021, 02

