

CONGRESO NACIONAL DE ESTUDIANTES DE ESTADÍSTICA

ESTIMACIÓN DE LA PREVALENCIA DE UNA ENFERMEDAD CUANDO LAS PRUEBAS DE DIAGNÓSTICO ESTAN SUJETAS A ERROR DE CLASIFICACIÓN: ENFOQUE BAYESIANO

MSc. Evelyn Gutierrez

CONNEST XXI - 2019

Estimación de la prevalencia

 $Prevalencia = \frac{Pacientes \ enfermos}{Total \ pacientes}$

Cuando existe una prueba gold standard:

■ ¿Qué pasa si no existe una prueba perfecta?

No siempre existen pruebas exactas.

¿Por qué?:

- Altos costos
- Tecnología limitada.

Alternativas:

Pruebas con baja
 sensibilidad y/o
 especificidad.

Problema en la estimación:

Sesgos en la estimación de la prevalencia.

Problemas

- En la estadística **frequentista**, se require de muchos **supuestos** acerca de la **sensibilidad y especificidad**.
- La sensibilidad y especificidad no son exactamente conocidos. Usualmente solo se tiene una idea de ellos.

Objetivos

- Estudiar modelos bayesianos para estimar la prevalencia cuando tenemos dos pruebas imperfectas.
- Implementarlos usando R. (código abierto)
- Estimar la prevalencia de enfermedad renal crónica en el Perú.

Los datos.

■ Para dos pruebas, disponemos de 4 valores:

	Test 2				
Test 1	Positive (+)	Total			
Positive (+)	n_{11}	n_{10}	$n_{11} + n_{10}$		
Negative (-)	n_{01}	n_{00}	$n_{01} + n_{00}$		
Total	$n_{11} + n_{01}$	$n_{10} + n_{00}$	N		

Tabla cruzada con los resultados de las pruebas medicas: test1 y test2

Resultados de dos pruebas diagnósticas para N pacientes.

La función de verosimilitud:

 $Y \propto Binomial(N, \pi)$

Variables observables

N: #Pacientes

	Test 2					
Test 1	Positive (+)	Total				
Positive (+)	n_{11}	n_{10}	$n_{11} + n_{10}$			
Negative (-)	n_{01}	n_{00}	$n_{01} + n_{00}$			
Total	$n_{11} + n_{01}$	$n_{10} + n_{00}$	N			

Variables latentes

Y: #Enfermos

	Test 2						
	Positive Negative Total						
Test 1	Positive	y_{11}	y_{10}	$y_{11} + y_{10}$			
	Negative	y_{01}	y_{00}	$y_{01} + y_{00}$			
	Total	$y_{11} + y_{01}$	$y_{10} + y_{00}$	Y			

$$\mathbf{n} = (n_{11}, n_{10}, n_{01}, n_{00})$$

$$\mathbf{y} \propto Multinomial(m{n}, m{p_1})$$

$$\mathbf{y} = (y_{11}, y_{10}, y_{01}, y_{00})$$

$$L(\mathbf{n};\theta,\mathbf{y}) \propto \pi^{Y} P_{11|1}^{y_{11}} P_{10|1}^{y_{10}} P_{01|1}^{y_{01}} P_{00|1}^{y_{00}} (1-\pi)^{(N-Y)} P_{11|0}^{(n_{11}-y_{11})} P_{10|0}^{(n_{10}-y_{10})} P_{01|0}^{(n_{01}-y_{01})} P_{00|0}^{(n_{00}-y_{00})}$$

Las prioris:

Utilizaremos dos métodos de modelamiento:

- 1. Método FE:
 - Asumimos un modelo en donde hay asociación entre las pruebas
- 2. Método BMA:
 - Asumimos 4 modelos según diferentes casos de asociación entre las pruebas.
 - Promediamos los resultados.

En ambos, utilizaremos distribuciones betas para las prioris de estas variables:

- La **prevalencia** (π)
- La sensibilidad de las pruebas (S_1, S_2)
- La **especificidad** de la prueba i (C_1, C_2)

$$\pi \sim beta(\alpha_{\pi}, \beta_{\pi})$$

$$S_i \sim beta(\alpha_{S_i}, \beta_{S_i})$$

$$C_i \sim beta(\alpha_{C_i}, \beta_{C_i})$$

Flexibilidad para incorporar información previa sobre π , S_i o C_i

Dos caminos:

- método FE: Fixed effects
 - Asumimos asociación entre las pruebas

- Los P_{ij} de la verosimilitud se parametrizan en función de S_i , C_i y los dos nuevos parámetros:

$$covS \sim genbeta(\alpha_{covS}, \beta_{covS}, \mu_s)$$

 $covC \sim genbeta(\alpha_{covC}, \beta_{covC}, \mu_c)$

- Método BMA: Bayesian Model Averaging
 - 4 casos de asociación

En lugar de seleccionar un caso, se toma en cuenta todos.

Para obtener las estimaciones finales, se promedia todos los casos.

Implementación:

método FE

 Asumimos asociación entre las pruebas

Gibbs Sampling

• Distribuciones condicionales, una por una.

 $P(S_i|S_{3-i}, covS, \mathbf{y}, u_s)$

 $P(C_i|C_{3-i}, covC, \mathbf{n}, \mathbf{y}, u_c)$

SIR: Sample Importance Resampling

 Distribuciones desconocidas.

Método BMA

4 casos de asociación

RJMCMC: Reversible Jump MCMC

 Saltar entre modelos. (Incluso modelos con diferentes parámetros)

Simulaciones

Diferentes escenarios:

Scenario	Prevalence	Relationship between tests	π
1	Low	Independence	.09
2	Low	Association	.09
3	Moderate	Independence	.30
4	Moderate	Association	.30
5	High	Independence	.60
6	High	Association	.60

Parámetros de las prioris:

Prevalencia: No informativa.

Beta(1,1)

 Sensibilidad y especificidad, los mismos en todos los casos:

		Prior Parameters	
Parameter	Mean	α	β
Sensibility Test 1 (S_1)	0.90	90	10
Specificity Test 1 (C_1)	0.65	65	35
Sensibility Test 2 (S_2)	0.75	60	20
Specificity Test 2 (C_2)	0.80	80	20

Cada escenario:

1000 veces => 1000 Int. Credibilidad En cada escenario simulado:

- Simulaciones de la posteriori: 20 500
- Descartadas: 500 primeras
- Selección cada 20.
- Final Obs.= 1 000

Resultados: Intervalos de credibilidad

- FE tiene mejor cobertura.
- BMA tiene cobertura variable.

FE tiene IC ligeramente más anchos que BMA.

Aplicación: Enfermedad Renal Crónica.

- ERC es un daño permanente a los riñones.
- Dos pruebas diagnósticas:
 - 1. Ratio entre proteina y creatinine. (PCR)
 - 2. Indice de filtración glomerular estimado (eGFR)

- Año: 2015.

Edad: 55 años (std=12.9 años)

Hombres: 50%

En dos grandes ciudades: Lima y Tumbes.

Aplicación: Enfermedad Renal Crónica.

- Datos: 404 pacientes.
- Resultados para las dos pruebas:

$PCR \ge 23$	eGFR< 601			
mg/mmol	Positive Negative Total			
Positive	2	26	28	
Negative	6	370	376	
Total	8	396	404	

Parámetros elegidos para las prioris:

Parameter	Mean	Precision	Alpha	Beta
	μ	ϕ	α	β
π	0.5	2	1	1
S_1	0.8	27.45	21.96	5.49
C_1	0.7	5.86	4.1	1.76
S_2	0.25	17.75	4.44	13.31
C_2	0.95	75	71.25	3.75

Según revisión de la literatura.

Resultados: Enfermedad Renal Crónica

■ Con el modelo FE, el Int. Credibilidad para la prevalencia es [0% a 7.2%]

-	FE Approach			BMA Approach		
_	Median 95% C.I.		Median	95%	C.I.	
	$P_{50\%}$	$P_{2.5\%}$ $P_{97.5\%}$		$P_{50\%}$	$P_{2.5\%}$	$P_{97.5\%}$
Prevalence (π)	0.010	0.000	0.072	0.015	0.001	0.112
Sensitivity Test 1 (S_1)	0.667	0.266	0.936	0.695	0.243	0.985
Specificity Test 1 (C_1)	0.931	0.894	0.965	0.939	0.917	0.985
Sensitivity Test 2 (S_2)	0.450	0.108	0.823	0.437	0.066	0.906
Specificity Test 2 (C_2)	0.975	0.926	0.994	0.985	0.972	1.000

C.I.: Credible Interval

Además, es posible actualizar las estimaciones para la sensibilidad y especificidad.

Conclusiones

- Intervalos de Credibilidad de FE tienen mejor cobertura que los de BMA.
- Los intervalos obtenidos con el método **FE son ligeramente más grandes** que con BMA
- Se estima que entre 0% y 7.2% de peruanos tienen enfermedad renal crónica.

ESTUDIANTES DE ESTADÍSTICA

¡GRACIAS!

