

EECS 442 – Computer vision

Camera Calibration

- Review camera parameters
- Camera calibration problem
- Example

Reading: [FP] Chapter 3

[HZ] Chapter 7

f = focal length

f = focal length $u_o, v_o = offset$

Units: k,I [pixel/m]

f [m]

Non-square pixels

 α , β [pixel]

f = focal length

 u_o , v_o = offset

 α , β \rightarrow non-square pixels

f = focal length

$$u_o, v_o = offset$$

 $\alpha, \beta \rightarrow$ non-square pixels

 θ = skew angle

$$P' = \begin{bmatrix} \alpha & s & u_o & 0 \\ 0 & \beta & v_o & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

f = focal length u_0 , v_0 = offset α , β \rightarrow non-square

 α , $\beta \rightarrow$ non-square pixels θ = skew angle

K has 5 degrees of freedom!

$$\mathbf{P'} = \begin{bmatrix} \boldsymbol{\alpha} & -\boldsymbol{\alpha}\cot\boldsymbol{\theta} & \mathbf{u}_{o} & 0 \\ 0 & \frac{\boldsymbol{\beta}}{\sin\boldsymbol{\theta}} & \mathbf{v}_{o} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

K has 5 degrees of freedom!

f = focal length

$$u_o$$
, v_o = offset
 α , β \rightarrow non-square pixels
 θ = skew angle

$$P = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}_{4 \times 4} P_{w}$$

$$T = -R \widetilde{O}_c$$

f = focal length $u_o, v_o = offset$

 α , $\beta \rightarrow$ non-square pixels θ = skew angle R,T = rotation, translation

f = focal length u_o , v_o = offset α , $\beta \rightarrow$ non-square pixels θ = skew angle R,T = rotation, translation

Properties of Projection

- Points project to points
- Lines project to lines
- Distant objects look smaller

Properties of Projection

Angles are not preserved

•Parallel lines meet!

Vanishing point

Cameras

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
- Other camera models

Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

Orthographic (affine) projection

Distance from center of projection to image plane is infinite

Pros and Cons of These Models

- Weak perspective much simpler math.
 - Accurate when object is small and distant.
 - Most useful for recognition.
- Pinhole perspective much more accurate for scenes.
 - Used in structure from motion.

Weak perspective projection

Qingming Festival by the Riverside Zhang Zeduan ~900 AD

The Kangxi Emperor's Southern Inspection Tour (1691-1698) By Wang Hui

$$P' = M \ P_{w} = K \left[R \ T \right] P_{w}$$
 Internal parameters External parameters

$$P' = M P_{w} = K[R T]P_{w}$$

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix}_{3 \times 4}$$

$$\mathbf{K} = \begin{bmatrix} \boldsymbol{\alpha} & -\boldsymbol{\alpha} \cot \boldsymbol{\theta} & \mathbf{u}_{o} \\ 0 & \frac{\boldsymbol{\beta}}{\sin \boldsymbol{\theta}} & \mathbf{v}_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{r}_{1}^{\mathrm{T}} \\ \mathbf{r}_{2}^{\mathrm{T}} \\ \mathbf{r}_{3}^{\mathrm{T}} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_{x} \\ \mathbf{t}_{y} \\ \mathbf{t}_{z} \end{bmatrix}$$

Goal of calibration

Estimate intrinsic and extrinsic parameters from 1 or multiple images

$$P' = M P_{w} = K[R T]P_{w}$$

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix}_{3 \times 4}$$

$$\mathbf{K} = \begin{bmatrix} \boldsymbol{\alpha} & -\boldsymbol{\alpha}\cot\boldsymbol{\theta} & \mathbf{u}_{o} \\ 0 & \frac{\boldsymbol{\beta}}{\sin\boldsymbol{\theta}} & \mathbf{v}_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \mathbf{r}_{1}^{\mathrm{T}} \\ \mathbf{r}_{2}^{\mathrm{T}} \\ \mathbf{r}_{3}^{\mathrm{T}} \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} \mathbf{t}_{x} \\ \mathbf{t}_{y} \\ \mathbf{t}_{z} \end{bmatrix} \qquad \begin{array}{c} \text{Change notation:} \\ \mathbf{P} = \mathbf{P}_{w} \\ \mathbf{p} = \mathbf{P}' \end{array}$$

- •P₁... P_n with known positions in [O_w,i_w,j_w,k_w]
- •p₁, ... p_n known positions in the image

Goal: compute intrinsic and extrinsic parameters

How many correspondences do we need?

•P has 11 unknown • We need 11 equations • 6 correspondences would do it

In practice: user may need to look at the image and select the n>=6 correspondences

$$P_{i} \rightarrow M P_{i} \rightarrow p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix} \qquad M = \begin{bmatrix} \mathbf{m}_{1} P_{i} \\ \mathbf{m}_{2} P_{i} \\ \mathbf{m}_{3} P_{i} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}_i \\ \mathbf{v}_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_1 P_i}{\mathbf{m}_3 P_i} \\ \frac{\mathbf{m}_2 P_i}{\mathbf{m}_3 P_i} \end{bmatrix}$$

$$\mathbf{u}_{i} = \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{2} P_{i}} \rightarrow \mathbf{u}_{i}(\mathbf{m}_{3} P_{i}) = \mathbf{m}_{1} P_{i} \rightarrow u_{i}(\mathbf{m}_{3} P_{i}) - \mathbf{m}_{1} P_{i} = 0$$

$$\mathbf{v}_{i} = \frac{\mathbf{m}_{2} \mathbf{P}_{i}}{\mathbf{m}_{3} \mathbf{P}_{i}} \rightarrow \mathbf{v}_{i}(\mathbf{m}_{3} \mathbf{P}_{i}) = \mathbf{m}_{2} \mathbf{P}_{i} \rightarrow \mathbf{v}_{i}(\mathbf{m}_{3} \mathbf{P}_{i}) - \mathbf{m}_{2} \mathbf{P}_{i} = 0$$

$$\begin{cases} u_{1}(\mathbf{m}_{3} P_{1}) - \mathbf{m}_{1} P_{1} = 0 \\ v_{1}(\mathbf{m}_{3} P_{1}) - \mathbf{m}_{2} P_{1} = 0 \\ \vdots \\ u_{i}(\mathbf{m}_{3} P_{i}) - \mathbf{m}_{1} P_{i} = 0 \\ v_{i}(\mathbf{m}_{3} P_{i}) - \mathbf{m}_{2} P_{i} = 0 \\ \vdots \\ u_{n}(\mathbf{m}_{3} P_{n}) - \mathbf{m}_{1} P_{n} = 0 \\ v_{n}(\mathbf{m}_{3} P_{n}) - \mathbf{m}_{2} P_{n} = 0 \end{cases}$$

Block Matrix Multiplication

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

What is AB?

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

$$\begin{cases} -u_{1}(\mathbf{m}_{3} P_{1}) + \mathbf{m}_{1} P_{1} = 0 \\ -v_{1}(\mathbf{m}_{3} P_{1}) + \mathbf{m}_{2} P_{1} = 0 \\ \vdots \\ -u_{n}(\mathbf{m}_{3} P_{n}) + \mathbf{m}_{1} P_{n} = 0 \\ -v_{n}(\mathbf{m}_{3} P_{n}) + \mathbf{m}_{2} P_{n} = 0 \end{cases}$$

Homogenous linear system

$$\mathcal{P} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{P}_1^T & \boldsymbol{0}^T & -u_1 \boldsymbol{P}_1^T \\ \boldsymbol{0}^T & \boldsymbol{P}_1^T & -v_1 \boldsymbol{P}_1^T \\ \dots & \dots & \dots \\ \boldsymbol{P}_n^T & \boldsymbol{0}^T & -u_n \boldsymbol{P}_n^T \\ \boldsymbol{0}^T & \boldsymbol{P}_n^T & -v_n \boldsymbol{P}_n^T \end{pmatrix}_{2\text{n x 12}}$$

Homogeneous M x N Linear Systems

M=number of equations = 2n N=number of unknown = 11

Rectangular system (M>N)

- 0 is always a solution
- To find non-zero solution
 Minimize |Ax|²
 under the constraint |x|² =1

$$\mathcal{P}\mathbf{m} = 0$$

How do we solve this homogenous linear system?

DLT algorithm (Direct Linear Transformation)

General Calibration Problem

Last column of V gives *m*

M

 $M P_i \rightarrow p_i$

Extracting camera parameters

$$egin{aligned} & \mathcal{M} = egin{pmatrix} lpha oldsymbol{r}_1^T - lpha \cot heta oldsymbol{r}_2^T + u_0 oldsymbol{r}_3^T & lpha t_x - lpha \cot heta t_y + u_0 t_z \ & rac{eta}{\sin heta} t_y + v_0 t_z \ & rac{eta}{\sin heta} t_y + v_0 t_z \ & t_z \end{pmatrix} = \mathbf{K} egin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix} \ & \mathbf{K} = egin{bmatrix} lpha & -lpha \cot heta & \mathbf{u}_0 \ 0 & rac{eta}{\sin heta} & \mathbf{v}_0 \ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$

Estimated values

Intrinsic

$$\rho = \frac{\pm 1}{|\mathbf{a}_3|} \quad \mathbf{u}_o = \rho^2 (\mathbf{a}_1 \cdot \mathbf{a}_2)$$

$$\mathbf{v}_o = \rho^2 (\mathbf{a}_2 \cdot \mathbf{a}_3)$$

$$\cos \theta = \frac{(\mathbf{a}_1 \times \mathbf{a}_3) \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}{|\mathbf{a}_1 \times \mathbf{a}_3| \cdot |\mathbf{a}_2 \times \mathbf{a}_3|}$$

Theorem (Faugeras, 1993)

Let $\mathcal{M} = (\mathcal{A} \ \mathbf{b})$ be a 3×4 matrix and let \mathbf{a}_i^T (i = 1, 2, 3) denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M} .

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$ and

$$(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0.$$

 A necessary and sufficient condition for M to be a perspective projection matrix with zero skew and unit aspect-ratio is that Det(A) ≠ 0 and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

Extracting camera parameters

$$\underline{\mathcal{M}} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

$$\frac{\alpha t_x - \alpha \cot \theta t_y + u_0 t_z}{\frac{\beta}{\sin \theta} t_y + v_0 t_z} = K[R \quad T]$$

Estimated values

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^{\mathrm{T}} \\ \mathbf{a}_2^{\mathrm{T}} \\ \mathbf{a}_3^{\mathrm{T}} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \qquad \boldsymbol{\alpha} = \boldsymbol{\rho}^2 |\mathbf{a}_1 \times \mathbf{a}_3| \sin \boldsymbol{\theta}$$
$$\boldsymbol{\beta} = \boldsymbol{\rho}^2 |\mathbf{a}_2 \times \mathbf{a}_3| \sin \boldsymbol{\theta}$$

Intrinsic

$$\boldsymbol{\alpha} = \boldsymbol{\rho}^2 |\mathbf{a}_1 \times \mathbf{a}_3| \sin \boldsymbol{\theta}$$

$$\boldsymbol{\beta} = \boldsymbol{\rho}^2 |\mathbf{a}_2 \times \mathbf{a}_3| \sin \boldsymbol{\theta}$$

Extracting camera parameters

$$egin{aligned} \mathcal{M} = egin{pmatrix} lpha m{r}_1^T - lpha \cot heta m{r}_2^T + u_0 m{r}_3^T \ & rac{eta}{\sin heta} m{r}_2^T + v_0 m{r}_3^T \ & m{r}_3^T \end{aligned}$$

$$\underline{\mathcal{M}} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \mathbf{a}_3^T \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \qquad \mathbf{r}_1 = \frac{(\mathbf{a}_2 \times \mathbf{a}_3)}{|\mathbf{a}_2 \times \mathbf{a}_3|} \qquad \mathbf{r}_3 = \frac{\pm 1}{|\mathbf{a}_3|}$$

Estimated values

Extrinsic

$$\mathbf{r}_1 = \frac{\left(\mathbf{a}_2 \times \mathbf{a}_3\right)}{\left|\mathbf{a}_2 \times \mathbf{a}_3\right|} \qquad \mathbf{r}_3 = \frac{\pm 1}{\left|\mathbf{a}_3\right|}$$

$$\mathbf{r}_2 = \mathbf{r}_3 \times \mathbf{r}_1 \qquad \mathbf{T} = \boldsymbol{\rho} \; \mathbf{K}^{-1} \mathbf{b}$$

Degenerate cases

- •P_i's cannot lie on the same plane!
- Points cannot lie on the intersection curve of two quadric surfaces

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Issues with lenses: Radial Distortion

Pin cushion

Barrel (fisheye lens)

Image magnification decreases with distance from the optical center

$$\begin{bmatrix} \frac{1}{\lambda} & 0 & 0 \\ 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{M} \ \mathbf{P}_{i} \rightarrow \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \mathbf{p}_{i}$$

$$d^2 = a u^2 + b v^2 + c u v$$

$$d^2 = a \ u^2 + b \ v^2 + c \ u \ v \qquad \lambda = 1 \pm \sum_{p=1}^3 \kappa_p d^{2p}$$
 To model radial behavior

Polynomial function

$$\begin{bmatrix} \frac{1}{\lambda} & 0 & 0 \\ 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{M} \mathbf{P}_{i} \rightarrow \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \mathbf{p}_{i} \qquad \mathbf{Q} = \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3} \end{bmatrix}$$

$$p_{i} = \begin{bmatrix} u_{i} \\ v_{i} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{q}_{1} P_{i}}{\mathbf{q}_{3} P_{i}} \\ \frac{\mathbf{q}_{2} P_{i}}{\mathbf{q}_{3} P_{i}} \end{bmatrix} \longrightarrow \begin{cases} u_{i} \mathbf{q}_{3} P_{i} = \mathbf{q}_{1} P_{i} \\ v_{i} \mathbf{q}_{3} P_{i} = \mathbf{q}_{2} P \end{cases}$$

Is this a linear system of equations?

$$\begin{cases} u_i \mathbf{q}_3 \ P_i = \mathbf{q}_1 \ P_i \\ v_i \mathbf{q}_3 \ P_i = \mathbf{q}_2 \ P \end{cases}$$
No! why?

General Calibration Problem

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{q}_1 P_i}{\mathbf{q}_3 P_i} \\ \frac{\mathbf{q}_2 P_i}{\mathbf{q}_3 P_i} \end{bmatrix} \xrightarrow{\mathbf{X}} X = f(P)$$
measurement parameter
$$f() \text{ is nonlinear}$$

- -Newton Method
- -Levenberg-Marquardt Algorithm
 - Iterative, starts from initial solution
 - May be slow if initial solution far from real solution
 - Estimated solution may be function of the initial solution
 - Newton requires the computation of J, H
 - Levenberg-Marquardt doesn't require the computation of H

General Calibration Problem

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{q}_1 P_i}{\mathbf{q}_3 P_i} \\ \frac{\mathbf{q}_2 P_i}{\mathbf{q}_3 P_i} \end{bmatrix} \xrightarrow{X} X = f(P)$$
measurement parameter
$$f() \text{ is nonlinear}$$

A possible algorithm

- 1. Solve linear part of the system to find approximated solution
- 2. Use this solution as initial condition for the full system
- 3. Solve full system using Newton or L.M.

General Calibration Problem

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{q}_1 P_i}{\mathbf{q}_3 P_i} \\ \frac{\mathbf{q}_2 P_i}{\mathbf{q}_3 P_i} \end{bmatrix} \xrightarrow{X} X = f(P)$$
measurement parameter
$$f() \text{ is nonlinear}$$

Typical assumptions:

- zero-skew, square pixel
- u_o , v_o = known center of the image
- no distortion

Just estimate f and R, T

$$\begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix} \longrightarrow \mathbf{p}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix}$$

Can estimate m₁ and m₂ and ignore the radial distortion?

$$\frac{u_i}{v_i} = slope$$

Estimating m₁ and m₂...

$$\mathbf{p}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix} \qquad \frac{u_{i}}{v_{i}} = \frac{\frac{(\mathbf{m}_{1} P_{i})}{(\mathbf{m}_{3} P_{i})}}{(\mathbf{m}_{2} P_{i})} = \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{2} P_{i}}$$

$$\begin{cases} v_{1}(\mathbf{m}_{1} P_{1}) - u_{1}(\mathbf{m}_{2} P_{1}) = 0 \\ v_{i}(\mathbf{m}_{1} P_{i}) - u_{i}(\mathbf{m}_{2} P_{i}) = 0 \\ \vdots \\ v_{n}(\mathbf{m}_{1} P_{n}) - u_{n}(\mathbf{m}_{2} P_{n}) = 0 \end{cases} \qquad \mathbf{Q} \mathbf{n} = 0 \qquad \mathbf{n} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \end{bmatrix}$$

$$\mathbf{m}_{2} \mathbf{m}_{3} \mathbf{m}_{4} \mathbf{m}_{2} \mathbf{m}_{2} \mathbf{m}_{3} \mathbf{m}_{4} \mathbf{m}_{4} \mathbf{m}_{5} \mathbf{m}$$

Once that \mathbf{m}_1 and \mathbf{m}_2 are estimated...

$$\mathbf{p}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} = \frac{1}{\lambda} \begin{bmatrix} \frac{\mathbf{m}_{1} P_{i}}{\mathbf{m}_{3} P_{i}} \\ \frac{\mathbf{m}_{2} P_{i}}{\mathbf{m}_{3} P_{i}} \end{bmatrix}$$

 \mathbf{m}_3 is non linear function of \mathbf{m}_1 , \mathbf{m}_2 , $\boldsymbol{\lambda}$

There are some degenerate configurations for which m₁ and m₂ cannot be computed

Camera Calibration Toolbox for Matlab J. Bouguet – [1998-2000]

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

Calibration images

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Next lecture

Single view reconstruction