

The question setshouldcover the entire syllabus& must be Innovative type for open book system Examination. As examination duration is 2 hours, the answer of any question should not take more than 20 minutes. Question file name should be subject name in full.

SET-I

HOD Official Email id: hod.mathematics@igitsarang.ac.in

Phone Nos.:

(a). HOD: 6371839855

(b) Controller of Examination: 9861110442

Total Number of Pages: BTECH/BARCH/MTECH/MCA/N		H/MTECH/MCA/MSC	
	Subject Code:	BSMA1106	
	and Compostor Boardon & Book Franciscation Contains	han 2021	
	2 nd Semester Regular & Back Examination Septem Subject Name: MATHEMATICS-II	per 2021	
	-		
	Branch: B.Tech Time: 2 Hours		
	Max Marks: 60		
	Question Code:		
	Allthe questions are compulsory		
	The figures in the right-hand margin indicate m	narks.	
Stud	dents are requested to email good quality scanned copy of the Ans		ile)
to yo	our HOD.	, -	•
Q1	Solve $(y - y^2x^2\sin x)dx + xdy = 0$.	(10))
Q2	Solve the differential equation by the method of variation)
	$(D^2 - 3D + 2)y = e^x + x$.		
Q3	Prove that $P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$, where $P_n(x)$ is Legendre polynomial.)
Q4	A, B, C can hit a target with probability $\frac{3}{5}, \frac{2}{5}, \frac{3}{4}$ respectively.	Determine the (10))
	probability that (i) two shots hit (ii) at least two shots hit.		
Q5	Given that the probability of an accident in an industry is 0.005 a	nd assuming the (10))
	accidents are independent (a) determine the probability that in a	, • .	
	of 400 days, there will be an accident one day?(b) What is the	probability that	
	there are at most three days with an accident?		
Q6	Find the rank correlation for the following data:	(10))
	X: 11.1 10.3 12.0 15.1 13.7 18.5 17.3 14.2 14.8 15.3		
	Y: 10.9 14.2 13.8 21.5 13.2 21.1 16.4 19.3 17.4 19.0		

SET-II

HOD Official Email id: hod.me@igitsarang.ac.in

Phone Nos.:

(a). HOD: +91 9861190444

(b) Controller of Examination:9437528149

<u> Tota</u>	I Number of Pages: 02 BTECH			
	Subject Code: ESME2113			
	2nd Semester Regular Examination May 2020			
	Subject Name: ENGINEERING MECHANICS Branch: MECHANICAL ENGINEERING			
	Time: 2 Hours			
	Max Marks: 60			
	Question Code:			
	All the questions are compulsory			
	The figures in the right-hand margin indicate marks.			
	ents are requested to email good quality scanned copy of the Answer Booklet (singl	e PDF file		
to yo	our HOD.			
Q1	(a) State the triangle law of forces and the Lami's theorem.	(10)		
ŲΙ	(b) Explain the theory of transmissibility of force.	(10)		
Q2	(a) Define the terms statically determinate, statically indeterminate and	(10)		
•	redundant support.	\ - /		
	(b) State the assumptions made in the analysis of trusses.			
Q3	State and derive Varignon's theorem of moments.			
Q4	, ,			
	are connected at their centers by a string AB of length I = 40cm., and rest upon a			
	horizontal plane, supporting above them a third cylinder of weight Q = 2000N			
	radius r =15cm shown in the figure. Find the forces S in the string AB and the			
	pressures produced on the floor at the points of contact D and E.			
	W C W			
Q5	Two blocks of weights W_1 and W_2 rest on a rough inclined plane and are connected by a short piece of string as shown in the fig. If the coefficients of friction are $\mu_1=0.2$ and $\mu_2=0.2$, respectively. Find the angle of inclination of the			
	plane for which sliding will impend. Assume W1 = W2 = 22.25N.			
	$ w_2 $	(10)		

By conservation of energy method, find maximum deflection in the spring. If A ball of mass 5 kg is dropped on to a spring of stiffness 500 N/m. From a height of 10cm.

(10)