BRAZO CILINDRICO

Integrantes:

FLAVIO ANTONIO VAZQUEZ

ALEXIS ISRAEL VIORATO ARAMBULA

LEVI HAZAEL CHAGOYA DE LA CRUZ

CHRISTIAN SALVADOR GOMEZ CARRILLO

FRANCISCO JAVIER HERNANDEZ MORALES

BRYAN ALEJANDRO BEATRIS NUÑEZ

UNIVERSIDAD POLITECNICA DE LA ZONA METROPOLITANA

DE GUADALAJARA

Índice

1. INTRODUCCION	3
1.1 MARCO TEORICO	3
1.2 META	4
1.3 OBJETIVO	4
2. JUSTIFICACION	4
2.1 METODOLOGIA	4
2.2 CRONOGRAMA	5
2.3 MATERIALES	6
з. DISEÑO	7
3.1 PIEZAS	7
3.2 CALCULOS	10
3.3 PARAMETROS DH	19
4. PROGRAMACION	20
4.1 CODIGO MBED	20
4.2 COMANDOS	21
5. CONCLUSIONES	22
6. ANEXOS	23
6.1 ANEXO 1	23
6.2 ANEXO 2	24
7. BIBLIOGRAFIA	50

1. INTRODUCCION

El brazo robótico cilíndrico es empleado para operaciones de ensamblaje, manipulación de máquinas herramientas, soldadura por punto y manipulación en máquinas de fundición a presión. Es un robot cuyos ejes forman un sistema de coordenadas cilíndricas.

Tipos de robot:

- **Robot cartesiano:** Usado para trabajos de "pick and place" (tomar y colocar), aplicación de silicona en componentes SMD, operaciones de ensamblado, manipulación de máquinas herramientas y soldadura por arco. Es un robot cuyo brazo tiene tres articulaciones prismáticas, cuyos ejes son coincidentes con los ejes cartesianos.
- **Robot cilíndrico:** Usado para operaciones de ensamblaje, manipulación de máquinas herramientas, soldadura por punto, y manipulación en máquinas de fundición a presión. Es un robot cuyos ejes forman un sistema de coordenadas cilíndricas.
- **Robot paralelo:** Uno de los usos es la plataforma móvil que manipula las cabinas de los simuladores de vuelo. Es un robot cuyos brazos tienen articulaciones prismáticas o rotatorias concurrentes.
- Robot Antropomórfico: también llamados manipuladores de codo, robots angulares, etc. Una configuración de este tipo posee 3 articulaciones de posicionamiento y por general 3 articulaciones de orientación, es decir para el efector final, también llamado pinza o gripper

1.1 MARCO TEORICO

Un brazo robótico es un tipo de brazo mecánico, normalmente programable, con funciones parecidas a las de un brazo humano; este puede ser la suma total del mecanismo o puede ser parte de un robot más complejo. Las partes de estos manipuladores o brazos son interconectadas a través de articulaciones que permiten un movimiento rotacional (tales como los de un robot articulado), o según sea el caso un movimiento trasnacional o desplazamiento lineal.

Fig. 1.1

1.2 META

Diseñar, programar y maquilar un brazo robótico del tipo cilíndrico, que sea capaz de mover cada uno de sus tres grados de libertad mediante una programación basado en ROS y mbed.

1.3 OBJETIVOS

- 1. Construir un brazo robótico cilíndrico
- 2. Aplicando los conocimientos adquiridos durante este cuatrimestre.
- 3. Programar una freescale en MBED

2. JUSTIFICACION

Además, este proyecto se realizó con la finalidad de desarrollar los conocimientos adquiridos durante los cuatrimestres anteriores, porque se implementarán, no solo los de esta materia, si no también todas las que cursamos en el cuatrimestre actual y alunas otras de cuatrimestres pasados.

2.1 METODOLOGIA

Para la elaboración de este proyecto obtuvimos conocimiento a través de investigaciones que se realizamos cada uno de los integrantes del equipo, repartimos temas y diferentes tareas, debido a que llegamos a la conclusión que cada uno tenía una habilidad que se podría utilizar para que no se dificultara el trabajo. Cada uno hicimos lo necesario para cumplir con las tareas designadas, investigamos en internet, en algunos libros, hicimos también investigaciones de campo para llevar la teoría a la práctica y asi ver si algo podría fallar o algo que tuviéramos que cambiar.

2.2 CRONOGRAMA

BRAZO ROBOTICO

Nombres de los recursos 19 febrero 2019 marzo 2019 aurii 20 recursos 2019 la 13 18 23 28 02 07 12 17 22 27 04 09 14 19 24 29 03 → Duración → Comienzo → Fin EQUIPO COMPLETO ASIGNACION DEL 2 días PROYECTO 08/01/19 09/01/19 vie 18/01/19 ALEXIS VIORATO ANALISIS DE 7 días 10/01/19 RECOLECCION DE 3 días FLAVIO VAZQUEZ, LEVI CHAGOYA 22/01/19 24/01/19 INFORMACION LEVI CHAGOYA EQUIPO COMPLETO DISEÑO PROPUESTO 7 días vie 25/01/19 lun EQUIPO COMPL 04/02/19 DE PROYECTO vie 25/01/19 vie 25/01/19 CHRISTIAN GON CHRISTIAN GOMEZ PRIMER AVANCE 1 día PROYECTO ANALISIS DE vie 25/01/19 vie 01/02/19 ALEXIS VIORATO ALEXIS VIORATO ESELIERZO DE PROYECTO JAVIER HERNANDEZ , CHRISTIAN GOMEZ 1RA COMPRA DE 6 días JAVIER HERNAN 05/02/19 12/02/19 MAQUINADO DEL EQUIPO COMPLETO 21 días EQUIPO COMPL 13/02/19 13/03/19 MATERIAL QUE SE NECESITARA PARA LA ELABORACION abril 2019 mayo 2019 junio. JAVIER HERNAN JAVIER HERNANDEZ , CHRISTIAN GOMEZ 2DA COMPRA DE 4 días vie 15/03/19 mié MATERIAL 20/03/19 CHRISTIAN GON ENSAMBLAJE DEL 6 días vie 22/03/19 vie 29/03/19 EQUIPO COMPL EQUIPO COMPLETO PROYECTO PRIMERA PARTE **■ CHRISTIAN GOMEZ** ENTREGA DE 1 día vie 29/03/19 vie 29/03/19 CHRISTIAN GON SEGUNDO AVANCE ENSAMBLAJE DEL 7 días EQUIPO COMPLETO mié EQUIPO COMPL PROYECTO SEGUNDA 02/04/19 10/04/19 PARTE **III EQUIPO COMPLETO** ENTREGA FINAL DEL 1 día vie 26/04/19 vie 26/04/19 EQUIPO COMPL PROTOTIPO EQUIPO COMPLETO INSTLACION DE ROS 7 días EQUIPO COMPL 06/05/19 14/05/19 PRIMER AVANCE DEL 1 día JAVIER HERNANDEZ JAVIER HERNAN 20/05/19 20/05/19 PROYECTO PARTE 2 ANIMACIONES DEL 6 días vie 14/06/19 vie 21/06/19 JAVIER HERNAN BRAZO ROBOTICO EN BLENDER Y PASO JAVIER HERNAN JAVIER HERNANDEZ PRIMER AVANCE DEL 1 día 20/05/19 20/05/19 PROYECTO PARTE 2 JAVIER HERNANDEZ ANIMACIONES DEL 6 días vie 14/06/19 vie 21/06/19 JAVIER HERNAN BRAZO ROBOTICO EN BLENDER Y PASO A GAZEBO EQUIPO COMPLETO PRUEBA DE MOTORES QUE SE 21/05/19 28/05/19 UTILIZARAN EN EL BRAZO ROBOTICO ENTREGA SEGUNDO 1 día AVANCE PARTE 2 JAVIER HERNAN JAVIER HERNANDEZ , CHRISTIAN GOMEZ 25/06/19 25/06/19 EQUIPO COMPLETO EQUIPO COMPL mié mié 26/06/19 24/07/19 DEL BRAZO ROBOTICO EQUIPO COMPLETO ENTREGA FINAL DEL 1 día vie 26/07/19 vie 26/07/19 EQUIPO COMPL

FIG. 1.2. Cronograma

El proyecto se realizó en cuatro meses

El primer mes como se muestra en el cronograma fue dedicado para juntar todo lo necesario como materiales, investigaciones y compartimos ideas de cómo lo realizamos.

El segundo mes fue para juntar toda la documentación y lo más esencial del material que utilizamos y hacer algunos cálculos y simulaciones en software para conocer los parámetros de la dinámica del brazo.

El tercer mes fue dedicado para empezar a hacer pruebas de ensamblado total y así ver que material hacía falta para que ya quedara todo el ensamble, parte del equipo empezó a realizar códigos de programación de los motores.

El cuarto mes iniciamos con la programación en el software ROS para poder controlar los movimientos con diversos comandos, además de simular en gazebo que es un software de animación especializado para robot

2.3 MATERIALES

La lista de materiales a necesitar fueron los siguientes, en primera instancia se consideró un presupuesto que iba de los 2500 a 3000 pero que después se tuvo que considerar que el costo de algunos materiales era más elevado así que se tuvo que extender a los casi 5000 contemplando también el maquilado

	Materiales						
Cantidad	Descripción	Costo (C/U)					
3	Barras de acero cromado de 64 cm	450					
3	Barras de acero cromado de 37 cm	350					
N/A	Acero inoxidable	800					

3	Baleros	25		
3	Motores paso a paso	250		
1	Esparrago de 64 cm	50		
1	Esparrago de 37 cm	30		
30	Tornillos	2		
1	Placa de acero	100		
	Total	4265		

3. DISEÑO

3.1 Piezas

Fig. 3.1 En la figura 3.1 se diseñó este tipo de placa para que tenga lineamiento en 2 de sus ejes ya que 2 son lineales y 1 rotatorio.

Fig.3.2 En la figura 3.2 son 3 placas iguales a las de la figura .1 que servirán para el alineamiento del brazo

Fig. 3.3 La figura 3.3 está diseñada para los movimientos lineales son las que se pondrán a lo largo de los 2 ejes.

Fig. 3.4 La figura 3.4 está diseñada para ir en la base para sujetar el brazo desde abajo.

Fig. 3.5 La figura 3.5 es el diseño de la base donde se pondrá el brazo

Fig. .6 La figura 3.6 es para la parte del eje del movimiento giratorio que va en la parte de abajo del brazo.

Como podremos notar son pocas figuras esto debido a que 2 ejes del brazo robótico como es el eje vertical y horizontal están hechos con las mismas piezas solo que en diferente medida.

3.2 CALCULOS

Project

First Saved	Friday, May 31, 2019
Last Saved	Friday, May 31, 2019
Product Version	18.1 Release
Save Project Before Solution	No
Save Project After Solution	No

En la tabla 3.2.1 se encuentra la versión con la cual se obtuvieron los cálculos de esfuerzo de nuestro brazo robótico cilíndrico.

- Model (B4)
 - o <u>Geometry</u>
 - Parts
 - o Coordinate Systems
 - o Connections
 - Contacts
 - Contact Regions
 - o Mesh
 - Static Structural (B5)
 - Analysis Settings
 - Loads
 - Solution (B6)

- Solution Information
- Results

Model (B4) > Geometry

Model (B4) > Geometry						
Object Name	Geometry					
State	Fully Defined					
	Definition					
Source	C:\Users\Alexis Viorato\Documents\ensamblaje 1 robot cilindrico.IGS					
Туре	Iges					
Length Unit	Meters					
Element Control	Program Controlled					
Display Style	Body Color					
	Bounding Box					
Length X	0.53317 m					
Length Y	0.51434 m					
Length Z	0.37002 m					
	Properties					
Volume	1.8869e-003 m³					
Mass	14.813 kg					
Scale Factor Value	1.					
	Statistics					
Bodies	18					
Active Bodies	18					
Nodes	20155					
Elements	5049					
Mesh Metric	None					
	Basic Geometry Options					
Solid Bodies	Yes					
Surface Bodies	Yes					

CARLOS ENRIQUE MORAN GARABITO

Line Bodies	No
Parameters	Independent
Parameter Key	ANS;DS
Attributes	No
Named Selections	No
Material Properties	No
,	Advanced Geometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\Alexis Viorato\AppData\Local\Temp
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

En la tabla 3.2.2 se encuentra la información sobre el brazo, tal como masa, volumen, tipo de diseño, etc.

TABLE 3
Model (B4) > Geometry > Parts

	Model (B4) > Geometry > Parts										
Object Name	Part 1	Part 2		Part 4		Part 6		Part 8	Part 9	Part 10	Part 11
State	Meshed										
				Gra	phics P	ropertie	s				
Visible						Yes					
Transpare ncy						1					
					Defini	tion					
Suppress ed						No					
Stiffness Behavior						Flexible					
Coordinat e System	Default Coordinate System										
Reference Temperat ure		By Environment									
Behavior						None					
					Mate	rial					
Assignme nt					Str	uctural S	steel				
Nonlinear Effects		Yes									
Thermal Strain Effects	Strain Yes										
	Bounding Box										
Length X	1.e-0	02 m	7.62e- 002 m	1.e- 002 m	0.4254 m	8.5123 e-002 m		0.307	'85 m		0.1772 4 m

Length Y	1.e-0	02 m	7.2938 e-002 m	1.e- 002 m	0.5143 4 m	0.1162 5 m	0.276		609 m		0.1797 1 m	
Length Z	1.e-0	02 m	1.27e- 002 m	0.35 m	1.e-002 m		1.3611e-002 m				7.0023 e-002 m	
	Properties Properties Properties											
Volume	7.8532 m		3.5295 e-005 m³	2.748 6e- 005 m ³	1.1226 e-003 m³	3.9927 e-005 m³	3.1413e-005 m³			1.8939 e-004 m ³		
Mass	6.1648 k		0.2770 6 kg	0.215 77 kg	8.8128 kg	0.3134 3 kg		0.246	59 kg		1.4867 kg	
Centroid X	0.1510 8 m	0.139 86 m	0.169	004 m	0.1690 7 m	0.1499 6 m	0.3329 9 m	0.2997 4 m	0.3163 7 m	0.2997 4 m	0.2045 m	
Centroid Y	9.286 9e- 002 m	- 0.115 21 m	-5.7120 n	6e-002 n	5.706 1e- 002 m	- 9.509 7e- 002 m	- 3.933 9e- 002 m	- 1.988 7e- 003 m	2.066 4e- 002 m	- 1.988 7e- 003 m	- 9.681 7e- 002 m	
Centroid Z	-0.110)19 m	9.154 2e- 002 m	4.980 8e- 002 m	- 0.120 19 m	- 0.110 19 m	0.234	l81 m	0.2098 1 m	0.1848 1 m	0.2095 1 m	
Moment of Inertia Ip1	8.9133 kg·		1.5191 e-004 kg·m²	2.183 e-003 kg·m²	4.6069 e-002 kg·m²	4.5073 e-005 kg·m²	3	.2581e-0	003 kg∙n	1 ²	2.4494 e-003 kg·m²	
Moment of Inertia Ip2	8.9153 kg-		7.9649 e-005 kg·m²	2.183 e-003 kg·m²	0.1490 6 kg·m²	3.0019 e-004 kg·m²	3.2581e-003 kg⋅m²		1.7041 e-003 kg·m²			
Moment of Inertia Ip3	7.6146 kg·		7.966e -005 kg·m²	2.645 8e- 006 kg·m²	0.1949 9 kg·m²	3.4004 e-004 kg·m²	3.0237e-006 kg·m²		3.2561 e-003 kg·m²			
	Statistics											
Nodes	860		1383	854	1638	492		8	54		4349	
Elements	155		164	154	212	54		18	54		2022	
Mesh Metric		None										

En la tabla 3.2.3 se obtienen las propiedades, material, etc. Solo de la parte 1 a la 11 para ver las partes restantes puede ir al anexo 1 y los encontrara.

TABLE 8
Model (B4) > Connections > Contact Regions

	Model (B4) > Connections > Contacts > Contact Regions										
	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio n	Regio n 2	Regio n 3	Regio n 4	Regio n 5	Regio n 6	Regio n 7	Regio n 8	Regio n 9	Regio n 10	Regio n 11
	11	112	113	114	113	110	11 7	110	119	11 10	11 11
State					Fu	lly Defin	ed				
					Scop	е					
Scoping Method					Geom	etry Sel	ection				
Contact	1 Face	2 Faces	1 Face	2 Fa	aces	1 Face			2 Faces		
Target	1 Face	2 Faces	1 Face	2 Fa	aces	1 Face			2 Faces		
Contact Bodies	Pa	rt 1	Pa	rt 2	Pa	rt 3			Part 4		
Target Bodies	Part 5	Part 6	Part 5	Part 6	Part 4	Part 18	Part 5	Part 6	Part 11	Part 17	Part 18
					Definit	ion					
Туре						Bonded					
Scope						utomati	•				
Mode						Muloman					
Behavior					Progra	am Cont	trolled				
Trim Contact					Progra	am Cont	trolled				
Trim Tolerance		2.0702e-003 m									
Suppress ed	INO										
	Advanced										
Formulati on	Program Controlled										
Detection Method					Progra	am Cont	trolled				

Penetratio n Tolerance	Program Controlled
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
	Geometric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

En la tabla 3.2.3 se encuentran las características y especificaciones las caras. Para poder ver el resto, se encuentran en el anexo 2.

TABLE 19
Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

Time [s]	Minimum [Pa]	Maximum [Pa]
1.	1.6537e-003	2.2116e+006

FIGURE 4
Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Figure

En la tabla 3.2.4 obtendremos la fuerza que se obtiene al hacer el movimiento. Y en la figura 3.2.1 se obtiene el punto que hace más esfuerzo.

TABLE 20
Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation

Time [s]	Minimum [m]	Maximum [m]
1.	0.	3.3113e-005

FIGURE 6
Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation > Figure

En la tabla 3.3.5 se obtiene la fuerza de la deformación total. Y en la figura 3.2.2 se encuentra la deformación total.

Material Data Structural Steel

TABLE 21 Structural Steel > Constants

Otractara Otect > Otristants								
Density	7850 kg m^-3							
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1							
Specific Heat	434 J kg^-1 C^-1							
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1							
Isotropic Resistivity	1.7e-007 ohm m							

En la tabla 3.2.6 se encuentra las constantes finales del brazo. Para poder ver todas las constantes, se encuentran en el anexo 1.

ESTRUCTURA FISICA

Podemos ver los resultados al juntar todo lo realizado conforme a lo establecido en el cronograma, se llegó a un resultado formidable. Aunque tuvimos problemas con 2 de los motores, el primero del eje vertical fue porque el motor funcionaba, pero no giraba a la hora de darle movimiento parecería que estaba barrido y ya no daba las vueltas. Y el segundo con el eje horizontal porque el motor que primero compramos era muy pequeño para el esfuerzo que habría que hacer.

3.3 ECUACIONES D-H

CODIGO:

```
syms theta1
syms theta2
syms theta3
syms d1
syms d2
T1=[cos(theta1),-sin(theta1),0,0;0,0,-
1,0;sin(theta1),cos(theta1),0,0;0,0,0,1]
syms L1
T2=[cos(theta2),-
sin(theta2),0,L1;sin(theta2),cos(theta2),0,0;0,0,1,d1;0,0,0,1]
syms L2
T3=[cos(theta3),-
sin(theta3),0,L2;sin(theta3),cos(theta3),0,0;0,0,1,d2;0,0,0,1]
syms ans
ans =T1*T2*T3
```

$$T_1^0 = \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \sin(\theta_1) & \cos(\theta_1) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_2^1 = \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) & 0 & L_1 \\ \sin(\theta_2) & \cos(\theta_2) & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_3^2 = \begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & L_2 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_3^0 = \begin{pmatrix} \sigma_1 & -\cos(\theta_3) \ \sigma_3 - \sin(\theta_3) \ \sigma_2 & 0 & L_2 \ \sigma_2 + L_1 \cos(\theta_1) \\ 0 & 0 & -1 & -d_1 - d_2 \\ \cos(\theta_3) \ \sigma_3 + \sin(\theta_3) \ \sigma_2 & \sigma_1 & 0 & L_2 \ \sigma_3 + L_1 \sin(\theta_1) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where

$$\sigma_1 = \cos(\theta_3) \ \sigma_2 - \sin(\theta_3) \ \sigma_3$$

$$\begin{aligned} \sigma_2 &= \cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2) \\ \\ \sigma_3 &= \cos(\theta_1) \sin(\theta_2) + \cos(\theta_2) \sin(\theta_1) \end{aligned}$$

4.PROGRAMACION 4.1 Código MBED

ros::NodeHandle nh; brazo.	// en esta parte abrimos el nodo en ros ya que es el medio donde se van a controlar los movimientos del
DigitalOut step(D2);	
DigitalOut dir(D5);	
DigitalOut en(D8);	
DigitalOut step1(D3);	
DigitalOut dir1(D6);	
DigitalOut step2(D4);	
DigitalOut dir2(D7); //a	quí se declaran los pines para la shield que se utilizó para el manejo de voltaje y corriente de los motores.
float stepDelay = 0.0016	; //en esta parte declaramos el tiempo que tarde en cambiar de un paso a otro.
void vertical(const std_n	nsgs::Int16& cmd_msg)
ros::Subscriber <std_msg< td=""><td>s::Int16> sub("VERTI", vertical); //esta parte del código se utiliza para mover el eje vertical del brazo</td></std_msg<>	s::Int16> sub("VERTI", vertical); //esta parte del código se utiliza para mover el eje vertical del brazo
void horizontal(const std	I_msgs::Int16& cmd_msg)
ros::Subscriber <std_msg< td=""><td>s::Int16> sub1("HORI", horizontal); //esta parte del código se utiliza para mover el eje horizontal del brazo</td></std_msg<>	s::Int16> sub1("HORI", horizontal); //esta parte del código se utiliza para mover el eje horizontal del brazo
void base(const std_ms	gs::Int16& cmd_msg)
ros::Subscriber <std_msg< td=""><td>s::Int16> sub2("BASE", base); //esta parte del código se utiliza para mover el eje de la base del brazo</td></std_msg<>	s::Int16> sub2("BASE", base); //esta parte del código se utiliza para mover el eje de la base del brazo

4.2 COMANDOS PARA EJECUTAR EL PROGRAMA

Fig. 4.2.1

Primeramente, se abre la terminal en Ubuntu y se corre Ros como se muestra en la figura 4.2.1

Fig. 4.2.2

Después abrimos otra terminal el nodo y el puerto en donde se encuentra el microcontrolador donde está el programa con el que se controlara el brazo y se pone el comando para activarlo como se muestra en la fig. 4.2.2

Una vez activado se abre una nueva ventana y para que se pueda mover el brazo debes poner el comando que pusiste en el código y las vueltas que quieres que este haga.

Ejemplo:

5. Conclusiones

Bryan Alejandro Beatris Nuñez

Una vez expuestos los resultados obtenidos, podemos concluir que llevamos a cabo el total de conocimientos adquiridos a lo largo de la carrera, tras lograr el objetivo deseado, que, aunque fue cambiante por diversas causas las metas han sido cumplidas, cabe mencionar que todo fue realizado con gran esfuerzo por cada uno de los integrantes del equipo.

Francisco Javier Hernandez Morales:

Una vez terminado el brazo pude poner a prueba mis conocimientos que he tenido durante los cuatrimestres pasado, aunque hubo muchos problemas y fallas, así como con motores, programa, microcontrolador y conexiones. Al final los resultados nos favorecieron y se logró el objetivo con éxito.

Flavio Antonio Vázquez:

Este proyecto se trato de un brazo robótico tipo cilíndrico con el cual se desarrollo a loa largo de un proyecto anual este brazo se desarrollo en base a todas las habilidades adquiridas durante este periodo e incluso puso a prueba mis capacidades de investigación y pensamiento cognitivo ya que se arreglaron problemas que surgieron el principal problema para mí fue la programación ya que nunca había utilizado comandos en base a coordenadas pero una vez hecho me hizo crecer como ingeniero ya que estuve al límite de mi conocimiento.

Christian Salvador Gómez Carrillo

En este proyecto anual pusimos a prueba nuestros conocimientos adquiridos a lo largo de la carrera, en la construcción que va desde el diseño, selección de materiales adecuados para la elaborar y construir el brazo robótico, que se tuvo algunas complicaciones en la parte de la programación que con investigación pudimos resolver a prueba y error pudimos llevar acabo los movimientos requeridos para el brazo.

Chagoya de la Cruz Levi Hazael.

El objetivo principal de este proyecto fue poner en practica conocimientos como diseño CAD, mecánica industrial y programación. El objetivo principal fue el movimiento prismático y rotativo en el brazo robótico El reto de este proyecto fue que utilizamos sistemas operativos y plataformas distintas a lo habitual como fue LINUX y ROS. En lo personal reforcé mis conocimientos en mecánica y programación para tener un mejor desempeño en el ámbito profesional.

Alexis Israel Viorato Arambula

Al finalizar este proyecto puedo concluir que debido al gran trabajo en equipo y organización se logro realizar el brazo, personalmente tuve algunos contratiempos con la parte de las tareas que me asignaron como partes del código para mover los motores debido a que tuvimos que cambiar motores porque nos falló, se esforzaba demasiado, entonces me enfoque en realizar mas investigación por mi cuenta y con las consultas de algunos compañeros pude resolver esos errores, pero al final

6. Anexos

6.1 Anexo 1

Código MBED

```
#include "mbed.h"
#include <ros.h>
#include <std_msgs/Int16.h>
ros::NodeHandle nh;
DigitalOut step(D2);
DigitalOut dir(D5);
DigitalOut en(D8);
DigitalOut step1(D3);
DigitalOut dir1(D6);
DigitalOut step2(D4);
DigitalOut dir2(D7);
float stepDelay = 0.0016;
void vertical( const std_msgs::Int16& cmd_msg)
  int vrec = cmd_msg.data;
  //myled = vrec;
  if(vrec > 50000) {
    int vr = vrec-50000;
    for (int x = 0; x < vr; x++) {
      step=1;
      dir=0;
      en=0;
      wait(stepDelay);
      step=0;
    }
  if(vrec < 50000) {
    for (int x = 0; x < vrec; x++) {
      step=1;
      dir=1;
      en=0;
```

```
wait(stepDelay);
      step=0;
  }
void horizontal( const std_msgs::Int16& cmd_msg)
  int vrec = cmd_msg.data;
  //myled = vrec;
  if(vrec > 50000) {
    int vr = vrec-50000;
    for (int x = 0; x < vr; x++) {
      step1=1;
      dir1=0;
      en=0;
      wait(stepDelay);
      step1=0;
  if(vrec < 50000) {
    for (int x = 0; x < vrec; x++) {
      step1=1;
      dir1=1;
      en=0;
      wait(stepDelay);
      step1=0;
  }
void base( const std_msgs::Int16& cmd_msg)
  int vrec = cmd_msg.data;
  //myled = vrec;
  if(vrec > 2000) {
    int vr = vrec-2000;
    for (int x = 0; x < vr; x++) {
      step2=1;
      dir2=0;
      en=0;
      wait(stepDelay);
      step2=0;
  if(vrec < 2000) {
    for (int x = 0; x < vrec; x++) {
      step2=1;
      dir2=1;
      en=0;
      wait(stepDelay);
      step2=0;
  }
ros::Subscriber<std_msgs::Int16> sub2("BASE", base);
ros::Subscriber<std_msgs::Int16> sub1("HORI", horizontal);
ros::Subscriber<std_msgs::Int16> sub("VERTI", vertical);
int main()
  nh.initNode();
  nh.subscribe(sub);
  nh.subscribe(sub2);
  nh.subscribe(sub1);
  while (1) {
    nh.spinOnce();
```

```
wait_ms(1);
}
```

6.2 Anexo 2

REPORTE DE CALCULOS

Project

First Saved	Friday, May 31, 2019
Last Saved	Friday, May 31, 2019
Product Version	18.1 Release
Save Project Before Solution	No
Save Project After Solution	No

Contents

- Units
- Model (B4)
 - o **Geometry**
 - Parts
 - o Coordinate Systems
 - o Connections
 - Contacts
 - Contact Regions
 - o Mesh
 - o Static Structural (B5)
 - Analysis Settings
 - Loads
 - Solution (B6)
 - Solution Information
 - Results
- Material Data
 - o Structural Steel

Report Not Finalized

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. View first state problem. To finalize this report, edit objects as needed and solve the analyses.

Units

TABLE 1

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (B4)

Geometry

TABLE 2
Model (B4) > Geometry

Model (64) > Geometry								
Object Name	Geometry							
State	Fully Defined							
Definition								

Source	C:\Users\Alexis Viorato\Documents\ensamblaje 1 robot cilindrico.IGS				
Туре	Iges				
Length Unit	Meters				
Element Control	Program Controlled				
Display Style	Body Color				
	Bounding Box				
Length X	0.53317 m				
Length Y	0.51434 m				
Length Z	0.37002 m				
	Properties				
Volume	1.8869e-003 m³				
Mass	14.813 kg				
Scale Factor Value	1.				
	Statistics				
Bodies	18				
Active Bodies	18				
Nodes	20155				
Elements	5049				
Mesh Metric	None				
	Basic Geometry Options				
Solid Bodies	Yes				
Surface Bodies	Yes				
Line Bodies	No				
Parameters	Independent				
Parameter Key	ANS;DS				
Attributes	No				
Named Selections	No				
Material Properties	No				

Advanced Geometry Options								
Use Associativity	Yes							
Coordinate Systems	No							
Reader Mode Saves Updated File	No							
Use Instances	Yes							
Smart CAD Update	Yes							
Compare Parts On Update	No							
Attach File Via Temp File	Yes							
Temporary Directory	C:\Users\Alexis Viorato\AppData\Local\Temp							
Analysis Type	3-D							
Mixed Import Resolution	None							
Decompose Disjoint Geometry	Yes							
Enclosure and Symmetry Processing	Yes							

TABLE 3
Model (B4) > Geometry > Parts

	Model (B4) > Geometry > Parts										
Object Name	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8	Part 9	Part 10	Part 11
State	State Meshed										
				Gra	phics P	ropertie	s				
Visible						Yes					
Transpare ncy						1					
					Definit	tion					
Suppress ed	INO										
Stiffness Behavior	FIEXIDIE										
Coordinat e System				С	efault C	Coordinat	te Syste	m			

Reference													
Temperat ure					Ву	Environr	ment						
Behavior						None							
	Material Material												
Assignme nt	Structural Steel												
Nonlinear Effects		Yes											
Thermal Strain Effects						Yes							
				E	Boundin	g Box							
Length X	1.e-0	02 m	7.62e- 002 m	1.e- 002 m	0.4254 m	8.5123 e-002 m		0.307	'85 m		0.1772 4 m		
Length Y	1.e-0	02 m	7.2938 e-002 m	1.e- 002 m	0.5143 4 m	0.1162 5 m	0.27609 m				0.1797 1 m		
Length Z	1.e-0	02 m	1.27e- 002 m	0.35 m	1.e-0	02 m		1.36116	e-002 m		7.0023 e-002 m		
					Proper	ties							
Volume	7.8532 m		3.5295 e-005 m³	2.748 6e- 005 m ³	1.1226 e-003 m³	3.9927 e-005 m³		3.1413e	-005 m³	i	1.8939 e-004 m³		
Mass	6.1648 k		0.2770 6 kg	0.215 77 kg	8.8128 kg	0.3134 3 kg		0.246	59 kg		1.4867 kg		
Centroid X		0.139 86 m	0.169	004 m	0.1690 7 m	0.1499 6 m	0.3329 9 m	0.2997 4 m	0.3163 7 m	0.2997 4 m	0.2045 m		
Centroid Y	9.286 9e- 002 m	- 0.115 21 m	-5.7120 r	6e-002 n	1e- 7e- 9e- 7e- 4e- 7e-		1.988	- 9.681 7e- 002 m					
Centroid Z	-0.110)19 m	- 9.154 2e- 002 m	4.980 8e- 002 m	- 0.120 19 m	- 0.110 19 m	0.234	l81 m	0.2098 1 m	0.1848 1 m	0.2095 1 m		

Moment of Inertia Ip1	8.9133e-008 kg·m²	1.5191 e-004 kg·m²	2.183 e-003 kg·m²	4.6069 e-002 kg·m²	4.5073 e-005 kg·m²	3.2581e-003 kg⋅m²	2.4494 e-003 kg·m²	
Moment of Inertia Ip2	8.9153e-008 kg·m²	7.9649 e-005 kg·m²	2.183 e-003 kg·m²	0.1490 6 kg·m²	3.0019 e-004 kg·m²	3.2581e-003 kg⋅m²	1.7041 e-003 kg·m²	
Moment of Inertia Ip3	7.6146e-008 kg·m²	7.966e -005 kg·m²	2.645 8e- 006 kg·m²	0.1949 9 kg·m²	3.4004 e-004 kg·m²	3.0237e-006 kg·m²	3.2561 e-003 kg·m²	
				Statist	tics			
Nodes	860	1383	854	1638	492	854	4349	
Elements	155	164	154	212	54	154	2022	
Mesh Metric None								

TABLE 4
Model (B4) > Geometry > Parts

		iviouei (D4) > Geom	cuy - i ai	ເວ						
Object Name	Part 12	Part 13	Part 14	Part 15	Part 16	Part 17	Part 18				
State		Meshed									
Graphics Properties											
Visible		Yes									
Transparency				1							
			Definitio	n							
Suppressed				No							
Stiffness Behavior				Flexible							
Coordinate System			Default (Coordinate	System						
Reference Temperature		By Environment									
Behavior		None									
			Materia								
Assignment			Stı	ructural Ste	eel						

Nonlinear Effects	Yes											
Thermal Strain Effects		Yes										
Bounding Box												
Length X		1.e-002 m		5.4947e-002 m 9.9884e- 002 m			0.14118 m					
Length Y		1.e-002 m		5.9995	e-002 m	9.9768e- 002 m	0.14118 m					
Length Z		0.3 m		7.e-0	002 m	1.e-002 m	2.5e-002 m					
			Propertie	:S								
Volume	2	2.356e-005 r	n³	4.	6849e-005	5 m³	1.3375e- 004 m³					
Mass		0.18494 kg		0.36776 kg			1.05 kg					
Centroid X	0.17109 m	0.13374 m	0.16699 m	0.46231 m	0.17098 m	0.16963 m	0.16935 m					
Centroid Y	-2.183e- 002 m	-5.5071e- 002 m	-9.2421e- 002 m	0.10867 m	-0.15061 m	-5.716e- 002 m	-5.7144e- 002 m					
Centroid Z	7	7.4808e-002	m	0.20939 m 0.21981 m			-7.3884e- 002 m					
Moment of Inertia lp1	1.3	375e-003 kg	·m²	1.4992e-004 kg·m²			5.5149e- 004 kg·m²					
Moment of Inertia lp2	1.3	375e-003 kg	·m²	1.5988e-004 kg⋅m²			5.6884e- 004 kg·m²					
Moment of Inertia lp3	2.2	2678e-006 kç	g∙m²	3.0366e-004 kg·m²			1.0024e- 003 kg·m²					
			Statistic	S								
Nodes		796			800		1515					
Elements		143		92			812					
Mesh Metric				None								

Coordinate Systems

TABLE 5

Model (B4) > Coordinate Systems > Coordinate System

Object Name | Global Coordinate System

State	Fully Defined									
Definition										
Туре	Cartesian									
Coordinate System ID	0.									
Origin										
Origin X	0. m									
Origin Y	0. m									
Origin Z	0. m									
Directio	nal Vectors									
X Axis Data	[1. 0. 0.]									
Y Axis Data	[0. 1. 0.]									
Z Axis Data	[0. 0. 1.]									

Connections

TABLE 6
Model (B4) > Connections

Object Name	Connections							
State	Fully Defined							
Auto Detection								
Generate Automatic Connection On Refresh	Yes							
Transparency								
Enabled	Yes							

TABLE 7
Model (B4) > Connections > Contacts

Model (B4) > Collicotions > Collacts										
Object Name	Contacts									
State	Fully Defined									
Definition										
Connection Type	Contact									
Scope										
Scoping Method Geometry Selection										

Geometry	All Bodies									
Auto Detection										
Tolerance Type	Slider									
Tolerance Slider	0.									
Tolerance Value	2.0702e-003 m									
Use Range	No									
Face/Face	Yes									
Face Overlap Tolerance	Off									
Cylindrical Faces	Include									
Face/Edge	No									
Edge/Edge	No									
Priority	Include All									
Group By	Bodies									
Search Across	Bodies									
Statistics										
Connections	35									
Active Connections	35									

TABLE 8
Model (B4) > Connections > Contacts > Contact Regions

		moaci (,	• • • • • • • • •	J	• • • • • • • • • • • • • • • • • • • •					
	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio
	n	n 2	n 3	n 4	n 5	n 6	n 7	n 8	n 9	n 10	n 11
State		Fully Defined									
Scope											
Scoping Method		Geometry Selection									
Contact	1 Face	1 2 1 2 Faces 1 Face 2 Faces Face 2 Faces									
Target	1 2 1 2 Faces 1 2 Faces Face 2 Faces										

Contact Bodies	Pa	rt 1	Pa	rt 2	Part 3			Part 4				
Target Bodies	Part 5	Part 6	Part 5	Part 6	Part 4	Part 18	Part 5	Part 6	Part 11	Part 17	Part 18	
					Definit	ion						
Туре						Bonded						
Scope Mode		Automatic										
Behavior					Progra	am Cont	trolled					
Trim Contact		Program Controlled										
Trim Tolerance		2.0702e-003 m										
Suppress ed		No										
	Advanced											
Formulati on		Program Controlled										
Detection Method					Progra	am Cont	trolled					
Penetratio n Tolerance					Progra	am Cont	trolled					
Elastic Slip Tolerance					Progra	am Cont	trolled					
Normal Stiffness					Progra	am Cont	trolled					
Update Stiffness					Progra	am Cont	trolled					
Pinball Region					Progra	am Cont	trolled					
				Geom	etric Mo	dificati	on					
Contact Geometry Correction						None						

Target	
Geometry	None
Correction	

TABLE 9
Model (B4) > Connections > Contacts > Contact Regions

Model (B4) > Connections > Contacts > Contact Regions											
	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio
	n 12	n 13	n 14	n 15	n 16	n 17	n 18	n 19	n 20	n 21	n 22
State		Fully Defined									
	Scope										
Scoping Method		Geometry Selection									
Contact	1 Face					2 Fa	aces				
Target	1 Face	6 Faces 2 Faces		6 Faces	2 Fa	aces	6 Faces	2 Fa	ices	6 Faces	
Contact Bodies	Part 5	Part 7				Part 8			Part 9		
Target Bodies	Part 6	Part 11	Part 15	Part 16	Part 11	Part 15	Part 16	Part 11	Part 15	Part 16	Part 11
					Definit	ion					
Туре						Bonded					
Scope					^	utomati	C				
Mode					,	Mutomati	C				
Behavior					Progr	am Cont	trolled				
Trim Contact					Progra	am Cont	trolled				
Trim Tolerance		2.0702e-003 m									
Suppress ed		No									
	Advanced										
Formulati on					Progra	am Cont	trolled				

Detection Method	Program Controlled
Penetratio n Tolerance	Program Controlled
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
	Geometric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

TABLE 10
Model (B4) > Connections > Contacts > Contact Regions

	oject ame	Conta ct Regio n 23	Conta ct Regio n 24	Conta ct Regio n 25	Conta ct Regio n 26	Conta ct Regio n 27	Conta ct Regio n 28	Conta ct Regio n 29	Conta ct Regio n 30	Conta ct Regio n 31	Conta ct Regio n 32	Conta ct Regio n 33
S	tate					Fu	lly Defin	ed				
	Scope											
Scor Met	ping hod		Geometry Selection									
Con	itact		2 Faces					2 Fa	aces	3 Faces	2 Faces	3 Faces
Та	rget			2 Faces			1 Face	2 Faces 3 Faces		3 Faces	2 Faces	3 Faces
	tact dies	Part 10 Part 11							Par	t 12	Par	t 13

Target Bodies	Part 15	Part 16	Part 12	Part 13	Part 14	Part 16	Part 17	Part 18	Part 17	Part 18
		Definition								
Туре		Bonded								
Scope Mode					A	Automatio				
Behavior					Progr	am Cont	rolled			
Trim Contact					Progr	am Cont	rolled			
Trim Tolerance					2.0	702e-00	3 m			
Suppress ed						No				
					Advan	ced				
Formulati on		Program Controlled								
Detection Method		Program Controlled								
Penetratio n Tolerance	Program Controlled									
Elastic Slip Tolerance		Program Controlled								
Normal Stiffness		Program Controlled								
Update Stiffness		Program Controlled								
Pinball Region		Program Controlled								
Geometric Modification										
Contact Geometry Correction		None								
Target Geometry Correction						None				

TABLE 11
Model (B4) > Connections > Contacts > Contact Regions

Model (B4) > Connections > Contacts > Contact Regions				
Object Name	Contact Region 34	Contact Region 35		
State	Fully Defined			
Scope				
Scoping Method	Geometry	Selection		
Contact	2 Faces	3 Faces		
Target	2 Faces	3 Faces		
Contact Bodies	Par	t 14		
Target Bodies	Part 17	Part 18		
	Definition			
Туре	Bon	ded		
Scope Mode	Autor	matic		
Behavior	Program (Controlled		
Trim Contact	Trim Contact Program Controlled			
Trim Tolerance	nce 2.0702e-003 m			
Suppressed	Suppressed No			
Advanced				
Formulation	Program (Controlled		
Detection Method	Program (Controlled		
Penetration Tolerance	Program (Controlled		
Elastic Slip Tolerance	Program (Controlled		
Normal Stiffness	Program (Controlled		
Update Stiffness Program Controlled		Controlled		
Pinball Region	Pinball Region Program Controlled			
Geometric Modification				
Contact Geometry Correction	No	ne		
Target Geometry Correction	No	ne		

Mesh

TABLE 12 Model (B4) > Mesh

Model (B4) > Mesh Object Name	ı Mesh
Object Name	
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Element Order	Program Controlled
Sizing	
Size Function	Adaptive
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Assembly
Transition	Fast
Span Angle Center	Coarse
Automatic Mesh Based Defeaturing	On
Defeature Size	Default
Minimum Edge Length	7.8197e-004 m
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None

·	
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
Rigid Body Behavior	Dimensionally Reduced
Mesh Morphing	Disabled
Triangle Surface Mesher	Program Controlled
Topology Checking	No
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	20155
Elements	5049

Static Structural (B5)

TABLE 13 Model (B4) > Analysis

Wodel (B4) > Allalysis				
Object Name	Static Structural (B5)			
State	Solved			
Definition				
Physics Type	Structural			
Analysis Type	Static Structural			
Solver Target	Mechanical APDL			
Options				

Environment Temperature	22. °C
Generate Input Only	No

TABLE 14
Model (B4) > Static Structural (B5) > Analysis Settings

Model (B4) > Static Structural (B5) > Analysis Settings					
Object Name	Analysis Settings				
State	Fully Defined				
	Step Controls				
Number Of Steps	1.				
Current Step Number	1.				
Step End Time	1. s				
Auto Time Stepping	Program Controlled				
	Solver Controls				
Solver Type	Program Controlled				
Weak Springs	Off				
Solver Pivot Checking	Program Controlled				
Large Deflection	Off				
Inertia Relief	Off				
Rotordynamics Controls					
Coriolis Effect	Off				
	Restart Controls				
Generate Restart Points	Program Controlled				
Retain Files After Full Solve	No				
Combined Restart Files	Program Controlled				
Nonlinear Controls					
Newton-Raphson Option	Program Controlled				
Force Convergence	Program Controlled				
Moment Convergence	Program Controlled				
Displacement Convergence	Program Controlled				
Rotation Convergence	Program Controlled				

Line Search	Program Controlled			
Stabilization	Off			
Output Controls				
Stress	Yes			
Strain	Yes			
Nodal Forces	No			
Contact Miscellaneous	No			
General Miscellaneous	No			
Store Results At	All Time Points			
Analysis Data Management				
	Analysis Data Management			
Solver Files Directory	Analysis Data Management C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\			
Solver Files Directory Future Analysis				
	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\			
Future Analysis	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\			
Future Analysis Scratch Solver Files Directory	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\ None			
Future Analysis Scratch Solver Files Directory Save MAPDL db	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\ None No			
Future Analysis Scratch Solver Files Directory Save MAPDL db Delete Unneeded Files	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\ None No Yes			

TABLE 15 Model (B4) > Static Structural (B5) > Loads

Model (D4) > Static Structural (D3) > Loads					
Object Name	Pressure	Pressure 2	Fixed Support		
State	Fully Defined				
Scope					
Scoping Method	Geometry Selection				
Geometry	1 Face				
Definition					
Туре	Pres	ssure	Fixed Support		
Define By	Normal To				
Applied By	Surface Effect				

Magnitude	100. Pa (ramped)	-200. Pa (ramped)	
Suppressed		No	

FIGURE 1 Model (B4) > Static Structural (B5) > Pressure

FIGURE 2 Model (B4) > Static Structural (B5) > Pressure 2

Solution (B6)

TABLE 16 Model (B4) > Static Structural (B5) > Solution

Object Name	Solution (B6)			
State	Solved			
Adaptive Mesh Ref	inement			
Max Refinement Loops	1.			
Refinement Depth	2.			
Information				
Status	Done			
MAPDL Elapsed Time	32. s			
MAPDL Memory Used	162. MB			
MAPDL Result File Size	7.625 MB			
Post Processing				
Beam Section Results	No			

TABLE 17
Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

Object Name	Solution Information			
State	Solved			
Solution Information				
Solution Output	Solver Output			
Newton-Raphson Residuals	0			
Identify Element Violations	0			
Update Interval	2.5 s			
Display Points	All			
FE Connection Visibility				
Activate Visibility	Yes			
Display	All FE Connectors			
Draw Connections Attached To	All Nodes			
Line Color	Connection Type			
Visible on Results	No			
Line Thickness	Single			

Display Type Lines

TABLE 18
Model (B4) > Static Structural (B5) > Solution (B6) > Results

Model (B4) > Static Structural (B5) > Solution (B6) > Results				
Object Name	Equivalent Stress	Total Deformation		
State Solved				
Scope				
Scoping Method Geometry Selection		etion		
Geometry	All Bodies			
	Definition			
Туре	Equivalent (von-Mises) Stress	Total Deformation		
Ву	Time			
Display Time	Last			
Calculate Time History	listory Yes			
Identifier				
Suppressed	No			
I	ntegration Point Results			
Display Option	Display Option Averaged			
Average Across Bodies	No			
	Results			
Minimum	1.6537e-003 Pa	0. m		
Maximum	2.2116e+006 Pa	3.3113e-005 m		
Minimum Occurs On	Part 5			
Maximum Occurs On	Part 4	Part 15		
	Information			
Time	1. s			
Load Step	ер 1			
Substep	1			
Iteration Number	tion Number 1			

FIGURE 3
Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

TABLE 19
Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

Time [s]	Minimum [Pa]	Maximum [Pa]
1.	1.6537e-003	2.2116e+006

Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Figure

FIGURE 5
Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation

TABLE 20
Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation

Time [s]	Minimum [m]	Maximum [m]
1.	0.	3.3113e-005

FIGURE 6
Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation > Figure

Material Data Structural Steel

TABLE 21 Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1

Specific Hear	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 22 Structural Steel > Appearance

Red	Green	Blue
132	139	179

TABLE 23

Structural Steel > Compressive Ultimate Strength

Compressive	Ultimate Strength Pa
	0

TABLE 24

Structural Steel > Compressive Yield Strength

Compressive Yield Strength Pa
2.5e+008

TABLE 25

Structural Steel > Tensile Yield Strength

Tensile Yield Strength Pa
2.5e+008

TABLE 26

Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength Pa
4.6e+008

TABLE 27

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C
22

TABLE 28

Structural Steel > Alternating Stress Mean Stress

Alternating Stress Pa	Cycles	Mean Stress Pa
3.999e+009	10	0

2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0
8.62e+007	1.e+006	0

TABLE 29 Structural Steel > Strain-Life Parameters

Strength Coefficient Pa	_	Ductility Coefficient	,	Cyclic Strength Coefficient Pa	Cyclic Strain Hardening Exponent
9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 30 Structural Steel > Isotropic Elasticity

Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	
	2.e+011	0.3	1.6667e+011	7.6923e+010	

TABLE 31
Structural Steel > Isotropic Relative Permeability

Relative Permeability
10000

6. BIBLIOGRAFÍA

Brazo Robótico. (2018, 7 de noviembre). Recuperado 16 de mayo 2019, de https://es.wikipedia.org/wiki/Brazo_rob%C3%B3tico

BFMexico, (Fundada en 1977), Recuperado el 10 de abril 2019, de https://www.bfmx.com/tipos-de-robots-industriales-masutilizados/

Jose Cortes Parejo. (marzo 2008) de https://personal.us.es/jcortes/Material/Material_archivos/Articulos%20PDF/RepresentDH.pdf

Blascar. (2019), Recuperada 20 de junio 2019 de

http://blascarr.com/portfolio-item/denavit-hartenberg-robot/

Ros.org. (2007), Recuperada 12 de mayo 2019 de

http://wiki.ros.org/rosserial_mbed/Tutorials/rosserial_mbed%20Setup