

SIM_1

תרגיל בית 1

DECEMBER 21, 2021 316007988 אביאל כהן 208397414 שירן דפט

מערכות ספרתיות

$MUX 2 \rightarrow 1$

 Tpdlh
 Tpdhl

 NOT
 1
 6

 OR2
 10
 10

 XOR2
 7
 9

עבור חישוב השהיות כל המסלולים הגורמים שינוי בתוצאה, עבור חישוב השהיות של אביאל כהן, 316007988. בחרנו את תעודת הזהות של אביאל $f(d_0,d_1,Sel)=\Sigma(3,4,6,7)$

d_0	d_1	Sel	Z	Path	d_0	d_1	Sel	T_{pd}
0	0	0	0	$d_0 \to g_3 \to g_5 \to g_7 \to g_8 \to z$	0 → 1	1	0	27
0	0	1	0	$d_0 \rightarrow g_3 \rightarrow g_5 \rightarrow g_7 \rightarrow g_8 \rightarrow z$	1 → 0	1	0	27
0	1	0	0	$d_1 \rightarrow g_1 \rightarrow g_4 \rightarrow g_6 \rightarrow g_8 \rightarrow z$	Ф	0 → 1	1	27
0	1	1	1	$d_1 \rightarrow g_1 \rightarrow g_4 \rightarrow g_6 \rightarrow g_8 \rightarrow z$	Ф	1 → 0	1	27
1	0	0	1	$Sel ightarrow g_5 ightarrow g_7 ightarrow g_8 ightarrow z$	0	1	0 → 1	26
1	0	1	0	$Sel ightarrow g_5 ightarrow g_7 ightarrow g_8 ightarrow z$	0	1	1 → 0	21
1	1	0	1	$Sel \rightarrow g_2 \rightarrow g_4 \rightarrow g_6 \rightarrow g_8 \rightarrow z$	1	0	0 → 1	27
_1	1	1	1	$Sel \rightarrow g_2 \rightarrow g_4 \rightarrow g_6 \rightarrow g_8 \rightarrow z$	1	0	1 → 0	27

על מנת לפתור את התרגיל השתמשנו במפת קרנו הבאה:

$f(d_0, d_1, sel) = (sel' + d_1')' + (sel + d_0')'$								
00 01 11								
0	0	0	1	1				
1	0	1	1	0				

<u>שאלה 2.2:</u>

Path	d_0	d_1	d_2	d_3	Sel_0	Sel_1	T_{pd}
$Sel_1 \rightarrow mux_2 \rightarrow z$	1	1	0	1	0	0 → 1	27
$Sel_1 \rightarrow mux_2 \rightarrow z$	1	1	0	1	0	1 → 0	27

רכיב הmux2 מאפשר לנו לבחור את הפעולה הרצויה לפי sel, למעשה ה-msb בוחר באיזה בורר נשתמש . וה- lsb בוחר את הכניסה הרצויה.

<u>שאלה 3.3:</u>

בסימולציה זו ניתן לראות כי כעבור שינוי הביט Sel_1 מ-0 ל-1, לאחר תוצאת ה-mux4 המוציאה (המסתיימת לאחר 54 יחידות זמן שהן מעבר בדרך הארוכה ביותר), יוביל לשינוי של תוצאת ה-mux4(z) הם יחידות זמן, בדיוק כפי שחישבנו בסעיף 2.1. החלפה ה-mux4(z) מ-1 ל-0, יגרור שינוי בתוצאת ה-mux4(z) וכן שינוי זה יקרה לאחר 21 יחידות זמן, כפי שחושב בסעיף 2.1.

<u>שאלה 2.3:</u>

<u>full adder subtractor</u>

Path	T_{pd}
$a \rightarrow g_4 \rightarrow g_0 \rightarrow s$	18
$a \rightarrow g_{11} \rightarrow g_8 \rightarrow g_9 \rightarrow g_{10} \rightarrow cout$	27
$b \to g_4 \to g_0 \to s$	18
$b \rightarrow g_5 \rightarrow g_7 \rightarrow g_8 \rightarrow g_9 \rightarrow g_{10} \rightarrow cout$	42
$a_{ns} \rightarrow s$	φ
$a_{ns} \rightarrow g_{11} \rightarrow g_8 \rightarrow g_9 \rightarrow g_{10} \rightarrow cout$	35
$cin \rightarrow g_0 \rightarrow s$	9
$cin \rightarrow g_5 \rightarrow g_7 \rightarrow g_8 \rightarrow g_9 \rightarrow g_{10} \rightarrow cout$	42

על מנת לפתור סעיף זה נעזרנו בשתי מפות קרנו,

$Cout = ((b + cin)' + (ans \oplus a)') + (cin + b')'$								
a, b	00	01	11	10				
cin, a_ns								
00	0	1	0	0				
01	0	0	1	0				
11	0	1	1	1				
10	1	1	1	0				

$Sel = (a \oplus b) \oplus cin)$								
a, b	00	01	11	10				
cin, a_ns								
00	0	1	0	1				
01	0	1	0	1				
11	1	0	1	0				
10	1	0	1	0				

<u>שאלה 3.4</u>

בסימולציה זו ניתן לראות כי עבור שינוי הביט cin מ-0 ל-1, לאחר תוצאת ה-fa/s המוציאה (המסתיימת לאחר 42 יחידות זמן שהן מעבר בדרך הארוכה ביותר עם 10 יחידות זמן ללא שינוי), יוביל לשינוי של תוצאת ה-fa/s יחידות זמן ללא שינוי), יוביל לשינוי של תוצאת ה-fa/s יחידות זמן, בדיוק כפי שחישבנו בסעיף 2.3. החלפה נוספת של fa/s מ-1 ל-0, יגרור שינוי בתוצאת ה-fa/s וכן שינוי זה יקרה לאחר 52 יחידות זמן, כפי שחושב בסעיף 2.3.

<u>ALU</u>

Path	T_{pd}
$a \rightarrow fa/s \rightarrow cout$	27
$a \rightarrow fa/s \rightarrow mux4 \rightarrow s$	72
$b \rightarrow fa/s \rightarrow cout$	42
$b \rightarrow fa/s \rightarrow mux4 \rightarrow s$	72
$cin \rightarrow cout$	42
$cin \rightarrow fa/s \rightarrow mux4 \rightarrow s$	63
$op_0 \rightarrow g_3 \rightarrow fa/s \rightarrow cout$	41
$op_0 \rightarrow g_3 \rightarrow fa/s \rightarrow mux4 \rightarrow s$	φ
$op_1 \rightarrow mux4 \rightarrow cout$	φ
$op_1 \rightarrow mux4 \rightarrow s$	27

רכיב הmux4 מאפשר לנו לבחור את הפעולה הרצויה לפי op, למעשה ה-lsb בוחר אם נשתמש בחיבור או חיסור. וה- msb בוחר אם נשתמש בשתי הפעולות הראשונות או השניות.

<u>שאלה 2.5:</u>

ALU 64bit

ראינו בכיתה מימוש דומה עבור 32 alu ביט, השתמשנו באותו עיקרון בכדי לפתור את הבעיה.

Path	<i>a</i> [63:0]	b [63:0]	op[0:1]	T_{pd}
$cin \rightarrow ALU \rightarrow ALU \rightarrow \cdots \rightarrow ALU \rightarrow s$ [63]	64'b1	64'b0	10	2709

:3.5 שאלה

בסימולציה זו ניתן לראות כי כעבור שינוי הביט cin מ-0 ל-1, לאחר מעבר דרך 63 רכיבי ALU בסימולציה זו ניתן לראות כי כעבור שינוי הביט s[63] כך למעשה נקבל את הזמן השהייה הארוך נבחר את הדרך של cin המגיעה לשער יציאה s[63] כך למעשה נקבל את הזמן השהייה הארוך ביותר ברכיב זה דרך שער כניסה cin לפי סעיף 2.4 ביותר שכן הדרך עם זמן ההשהיה הארוך ביותר ברכיב זה דרך שער כניסה הבדיקה.