Optimization for Deep Learning

Lecture 10-1: Adversarial Learning

Kun Yuan

Peking University

Main contents in this lecture

- Motivation and applications
- Adversarial attack
- Adversarial defense

DNN model

- ullet We model DNN as $h(x;\xi):\mathbb{R}^d
 ightarrow \mathbb{R}^c$
 - $\circ \ x \in \mathbb{R}^d$ is the DNN model parameter to be trained
 - \circ ξ is the input data sample
 - \circ c is the number of classes
- ullet Given the model parameter x, DNN outputs prediction scores \hat{y}_i for input ξ_i

DNN model training

- \bullet Given a dataset $\{\xi_i,y_i\}_{i=1}^m$ where y_i is the ground-truth label for data ξ_i
- Define $L(\hat{y}_i, y_i) = L(h(x; \xi_i), y_i)$ as a loss function to measure the difference/mismatch between predictions and ground-truth labels
- DNN training is to find a model parameter x such that the mismatch (between pred and real) are minimized across the entire dataset:

$$x^* = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \left\{ \frac{1}{m} \sum_{i=1}^m L(h(x; \xi_i), y_i) \right\}$$

DNN is fragile to adversarial attacks

Figure: A demonstration of the adversarial example [Goodfellow et.al., 2015].

Adversarial stop sign

Adversarial Examples Clean Stop Sign Real-world Stop Sign **Adversarial Example Adversarial Example** in Berkeley "Stop sign" "Speed limit sign 45km/h" "Speed limit sign 45km/h" "Stop sign"

Adversarial T-shirt

Adversarial glass

Adversarial eyeglass frame

Adversarial attacks in NLP

Targeted caption

Original top caption

A man holding a tennis racquet on a tennis court

Adversarial top caption

A woman brushing her teeth in a bathroom

Original top caption

A cake that is sitting on a table

Adversarial top caption

A dog and a cat are playing with a Frishee

Adversarial keywords:

"dog", "cat" and "Frisbee"

Adversarial attacks in NLP

Original Input	Connoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Positive (77%)
Adversarial example [Visually similar]	Aonnoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (52%)
Adversarial example [Semantically similar]	Connoisseurs of Chinese <u>footage</u> will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (54%)

How to construct adversarial examples?

- ullet An adversarial example is a perturbation η to maximize misclassification
- ullet Given an input pair (ξ,y) , its adversarial example $\eta\in\mathbb{R}^d$ is defined as

$$\eta \in \arg\max_{\eta: \|\eta\| \le \epsilon} L(h(x^*, \xi + \eta), y)$$

where x^{\star} is the optimal DNN model.

ullet ℓ_{∞} -norm is most commonly-used. Hard to perceive.

How to construct adversarial examples?

- ullet An adversarial example is a perturbation η to maximize misclassification
- ullet Given an input pair (ξ,y) , its adversarial example $\eta\in\mathbb{R}^d$ is defined as

$$\eta \in \arg\max_{\eta: \|\eta\| \le \epsilon} L(h(x^*, \xi + \eta), y)$$

where x^{\star} is the optimal DNN model.

ullet ℓ_1 -norm promotes sparse perturbation. Change a few elements.

Why does adversarial example exists?

Figure: A small perturbation leads to misclassification.

Algorithm: Fast gradient sign method (FGSM)

ullet Recall the problem to solve η

$$\eta \in \arg\max_{\eta: \|\eta\|_\infty \le \epsilon} L_y \big(h_{x^\star}(\xi+\eta)\big)$$
 where $L_y \big(h_{x^\star}(\xi+\eta)\big) := L \big(h(x^\star,\xi+\eta),y\big)$.

• By linearizion, we have (Goodfellow et al., 2014)

$$\begin{split} & \eta^{\star} = \ \arg \max_{\eta: \|\eta\|_{\infty} \leq \epsilon} L_{y} \Big(h_{x^{\star}}(\xi + \eta) \Big) \\ & \approx \ \arg \max_{\eta: \|\eta\|_{\infty} \leq \epsilon} \big\langle \nabla_{\xi} \Big[L_{y} \Big(h_{x^{\star}}(\xi) \Big) \Big], \eta \big\rangle \\ & = \epsilon \operatorname{sign} \Big(\nabla_{\xi} \Big[L_{y} \Big(h_{x^{\star}}(\xi) \Big) \Big] \Big) \\ & = \epsilon \operatorname{sign} \Big(\nabla_{h} \Big[L_{y} \Big(h_{x^{\star}}(\xi) \Big) \Big]^{T} \nabla_{\xi} \Big[h_{x^{\star}}(\xi) \Big] \Big) \end{split}$$

Results of FGSM on MNIST

Figure: MNIST images with the predicted digit.

Figure: MNIST images perturbed by a FGSM attack.

Taken from https://adversarial-ml-tutorial.org/adversarial_examples/

Results of FGSM on MNIST¹

 $^{^1{\}sf This}$ figure is from https://adversarial-ml-tutorial.org

Algorithm: Projected gradient descent

• We rewrite the adversarial attack problem into

$$\max_{\eta\in\mathcal{C}}\quad f(\eta),\quad \text{where}\quad f(\eta)=L\Big(h(x^\star,\xi+\eta),y\Big)$$
 and $\mathcal{C}=\{\eta:\|\eta\|_\infty\leq\epsilon\}.$

• The projected gradient descent is

$$\eta_{k+1} = \operatorname{Proj}_{\mathcal{C}} \{ \eta_k + \gamma \nabla f(\eta_k) \}, \quad k = 0, 1, \dots$$

where the projection is element-wise clipping between $[-\epsilon,\epsilon].$

 Result in a more powerful adversarial attack than FGSM; but results in more rounds of update per sample

Algorithm: Projected steepest descent

We rewrite the adversarial attack problem into

$$\max_{\eta\in\mathcal{C}}\quad f(\eta),\quad \text{where}\quad f(\eta)=L\Big(h(x^\star,\xi+\eta),y\Big)$$
 and $\mathcal{C}=\{\eta:\|\eta\|_\infty\leq\epsilon\}.$

• The projected steepest descent is

$$\begin{split} g_k &= \mathop{\arg\min}_{g:\|g\|_{\infty} \leq \gamma} \{g^T \nabla f(\eta_k)\} \\ \eta_{k+1} &= \mathsf{Proj}_{\mathcal{C}} \{\eta_k + g_k\}, \quad k = 0, 1, \cdots \end{split}$$

• The above recursion can be simplified as (Madry et al., 2017)

$$\eta_{k+1} = \operatorname{Proj}_{\mathcal{C}} \{ \eta_k + \gamma \operatorname{sign}(\nabla f(\eta_k)) \}, \quad k = 0, 1, \dots$$

Results of PGD on MNIST²

 $^{^2\}mathsf{This}$ figure is from <code>https://adversarial-ml-tutorial.org</code>

Targeted attack

• It is possible to explicitly change the label to a particular class

$$\max_{\eta: \|\eta\| \leq \epsilon} L \Big(h(x^\star, \xi + \eta), y \Big) - L \Big(h(x^\star, \xi + \eta), y_{\text{target}} \Big)$$

An illustration³

³This figure is from https://adversarial-ml-tutorial.org

Adversarial learning

Adversarial machine learning is to make models robust to attacks

$$\min_{x \in \mathbb{R}^d} \quad \frac{1}{m} \sum_{i=1}^m f_i(x) \quad \text{where} \quad f_i(x) = \max_{\eta: \|\eta\|_{\infty} \leq \epsilon} L(h(x; \xi_i + \eta), y_i)$$

- We maximize η to construct adversarial examples but minimize x to construct robust machine learning models; minimax optimization!
- How to compute the gradient is a great challenge

$$abla_x f_i(x) =
abla_x \left(\max_{\eta: \|\eta\|_{\infty} \le \epsilon} L(h(x; \xi_i + \eta), y_i) \right).$$

It involves differentiating with respect to a maximization

Danskin's theorem

Theorem 1

Let $\eta^{\star}(x)$ be the optimal (maximized) adversarial example given x, then

$$\nabla_x \Big(L(h(x; \xi_i + \eta^*(x)), y_i) \Big)$$

is a descent direction of $f_i(x)$.

Therefore, an intuitive way to find $\nabla_x f_i(x)$ is

- Find $\eta^{\star}(x) \in \max_{\eta:\|\eta\|_{\infty} < \epsilon} \{L(h(x; \xi_i + \eta), y_i)\}$ (see previous slides)
- Compute $\nabla_x f_i(x) \approx \nabla_x \Big(L(h(x; \xi_i + \eta^*(x)), y_i) \Big)$

Adversarial learning algorithm

Algorithm 1: Adversarial learning

```
Input: Learning rate \gamma, iterations K, batch size B
Initialization: Initialize neural network parameter x_0
for k = 0, 1, \dots, K do
     Initialize gradient q_k = 0;
     Select a mini-batch of data \mathcal{B} \subseteq \{1, \dots, m\};
     for i \in \mathcal{B} do
          Find an attack \eta^* by solving
           \eta^{\star}(x) \in \max_{n:||\eta||_{\infty} \leq \epsilon} \{L(h(x; \xi_i + \eta), y_i)\};
         Accumulate gradient
         g_k = g_k + \nabla_x \Big( L(h(x_k; \xi_i + \eta^*(x)), y_i) \Big)
     Update model by x_{k+1} = x_k - \frac{\gamma}{B}g_k
```

One can use FGSM or PGD to achieve the attack $\eta^{\star}(x)$

Adversarial learning with PGD oracle

For simplicity we set B=1

Algorithm 2: Adversarial learning with PGD oracle (Madry et al., 2017)

Update model by $x_{k+1} = x_k - \gamma \nabla_x L(h(x_k; \xi_{i_k} + \eta_M), y_{i_k})$

Strong defense performance, but very expensive due to the inner loop; incurs additional KM evaluations of the gradient

"Free" Adversarial learning with PGD oracle

This algorithm is from (Shafahi et al., 2019). We omit subscript for simplicity.

Algorithm 3: "Free" Adversarial learning with PGD oracle

Input: Learning rate γ , outer iterations K, inner iterations M Initialization: Initialize neural network parameter x and $\eta=0$ for $k=0,1,\cdots,K/M$ do

Sample a random data (ξ,y) ;
for $j=0,1,\cdots,M-1$ do

$$\begin{aligned} & \textbf{for } j = 0, 1, \cdots, M-1 \textbf{ do} \\ & \nabla_x, \nabla_\eta = \nabla_x L(h(x; \xi + \eta), y), \nabla_\eta L(h(x; \xi + \eta), y) \\ & \delta = \eta + \alpha \mathrm{sign}(\nabla_\eta) \\ & \eta = \max(\min(\delta, \epsilon), -\epsilon) \\ & L = x - \gamma \nabla_x \end{aligned}$$

Simultaneously update η and x; one backward results in two gradients; incurs **no** additional evaluations of the gradient; much more efficient

Adversarial learning with FGSM oracle

"Free" adversarial learning only use ${\cal K}/M$ samples; Generally speaking, utilization of more samples will lead to better performance

Algorithm 4: Adversarial learning with FGSM oracle (Wong et al., 2020)

Input: Learning rate γ , outer iterations K, inner iterations M Initialization: Initialize neural network parameter x and $\eta=0$ for $k=0,1,\cdots,K$ do

```
\begin{split} & \text{Sample a random data } (\xi,y) \text{ ;} \\ & \text{Initialize } \eta = \text{Uniform}(-\epsilon,\epsilon) \\ & \delta = \eta + \alpha \text{sign}(\nabla_{\eta}L(h(x;\xi+\eta),y)) \\ & \eta = \max(\min(\delta,\epsilon),-\epsilon) \\ & x = x - \gamma \nabla_x L(h(x;\xi+\eta),y) \end{split}
```

Sample K random data; converge much faster (in iterations) than "Free" adversarial learning; incurs additional K evaluations of gradient; less efficient than "Free" adversarial learning per iteration

Fast is better than free!

Method	Standard accuracy	PGD ($\epsilon = 8/255$)	Time (min)
FGSM + DAWNBench			
+ zero init	85.18%	0.00%	12.37
+ early stopping	71.14%	38.86%	7.89
+ previous init	86.02%	42.37%	12.21
+ random init	85.32%	44.01%	12.33
+ $\alpha = 10/255$ step size	83.81%	46.06%	12.17
+ $\alpha = 16/255$ step size	86.05%	0.00%	12.06
+ early stopping	70.93%	40.38%	8.81
"Free" $(m = 8)$ (Shafahi et al., 2019) ¹	85.96%	46.33%	785
+ DAWNBench	78.38%	46.18%	20.91
PGD-7 (Madry et al., 2017) ²	87.30%	45.80%	4965.71
+ DAWNBench	82.46%	50.69%	68.8

Fast is better than free!

Table 3: Time to train a robust CIFAR10 classifier to 45% robust accuracy using various adversarial training methods with the DAWNBench techniques of cyclic learning rates and mixed-precision arithmetic, showing significant speedups for all forms of adversarial training.

Method	Epochs	Seconds/epoch	Total time (minutes)
DAWNBench + PGD-7	10	104.94	17.49
DAWNBench + Free $(m = 8)$	80	13.08	17.44
DAWNBench + FGSM	15	25.36	6.34
PGD-7 (Madry et al., 2017) ⁵	205	1456.22	4965.71
Free $(m = 8)$ (Shafahi et al., 2019) ⁶	205	197.77	674.39

Summary

- DNN is fragile; not robust to adversarial attacks
- Adversarial attack approaches: FGSM/PGD/PSD
- Adversarial learning promotes robustness
- Fast is better than Free

References I

- I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," *arXiv preprint arXiv:1412.6572*, 2014.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards deep learning models resistant to adversarial attacks," arXiv preprint arXiv:1706.06083, 2017.
- A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein, "Adversarial training for free!" Advances in Neural Information Processing Systems, vol. 32, 2019.
- E. Wong, L. Rice, and J. Z. Kolter, "Fast is better than free: Revisiting adversarial training," arXiv preprint arXiv:2001.03994, 2020.