EE6361:Advanced Topics in VLSI

Assignment 2

Define a simple IIT6361 Processor with the following features . Use the below diagrams for reference

- 1. 32 8-bit Memory Registers $(R_0 R_{31})$
- 2. 5 Address Lines $(A_4, A_3, A_2, A_1, A_0)$
- 3. 8 bit Data Lines
- 4. 4 bit Flag Registers
- 5. 4 function ALU with
 - a) R_0, R_1 Mapped input for ADD and SUBTRACT
 - b) R_4, R_5 Mapped input for COMPARE: $R_4 > R_5$
 - c) R_0 Mapped input for INC
 - d) R_2 Mapped Output
 - e) 2 ALU function select lines F_1, F_0

For the above processor design , write testbench code to simulate the following

- 1. Loading Value into the register
 - a) Load 141 to R_4
 - b) Load 208 to R_6
 - c) Load 32 to R_8
- 2. Moving Value Across Register
 - a) Move R_4 to R_5
 - b) Move R_8 to R_9
 - c) Move R_6 to R_7
- 3. $R_4 + R_6 = > R_{10}$, check R_{10} and check if Carry
- 4. $R_6-R_8 = > R_{11}$, check R_{11} and check if Borrow

- 5. $R_8 R_4 = > R_{12}$, check R_{12} and check if Borrow.
- 6. INC R_{12} , check R_{12} .
- 7. $R_4 \ge R_6$? check the flag
- 8. $R_4 R_4 = > R_{13}$, check R_{13} and check zero flag
- 9. * Add the numbers with carry using a Loop and store in R_{13} . $R_4+R_5+R_6+R_7+R_8+R_9=>R_{13}$, check R_{13} with carry.
- 10. * Find the largest number in $R_4, R_5, R_6, R_8, R_9, R_{10}$ and store in R_{13} , check R_{13} .

Function Select Line	Function
0	00 - ADD
1	01 - SUBTRACT
2	10 - COMPARE
3	11 - INC

Table 1: ALU Functions

Figure 1: ALU Functions

Bit number	Flag name	Description
0	LO	Carry/Borrow/Overflow/u nderflow
1	L1	Shifted out bit
2	L2	is set if any ALU operation results in Zero
3	L3	1 indicates result of compare is true, 0 otherwise

Figure 2: Flag Registers

Execution Unit for IIT6361-μP101

Figure 3: Flag Registers

Note:

- Use the Register Memory designed in Assignment 1.
- We will also run a plagiarism check to ensure that the code is not copied .
- Maintain Good Practices and add comments in your code explaining what you have done.
- Assignment should be submitted on or before Sunday, 10th March, 11:59:59 pm.
- Assignment should be sent in a zip file to cindrellask@tenet.res.in and cc to ee23s059@smail.iitm.ac.in with subject "EE6361 Assignment 2".
- ullet The format of the zip file should be Rollno.zip . The zip file should contain:
 - a) .v files of the module and testbench
 - b) Screenshot of the Simulation
 - c) Report Containing Simulation Result of all the 10 Operations