Weighted Rewriting

Martin Avanzini and Akihisa Yamada

Abstract reduction systems

abstract reduction system (ARS) defined through:

- * set of objects A (e.g., terms, graphs, configurations, etc)
- \star binary relation $\rightarrow \subseteq A \times A$, the reduction relation

give rise to a rich theory of general properties of reduction

- * termination (aka. strong normalization, SN)
- ★ confluence (aka. Church-Rosser, CR)
- * unique normal forms (UN)

* ..

Abstract reduction systems

abstract reduction system (ARS) defined through:

- \star set of objects A (e.g., terms, graphs, configurations, etc)
- \star binary relation $\rightarrow \subseteq A \times A$, the reduction relation

give rise to a rich theory of general properties of reduction

- * termination (aka. strong normalization, SN)
- ⋆ confluence (aka. Church-Rosser, CR)
- * unique normal forms (UN)

* ...

ARSs do not capture quantitative aspects well

- * metrical reasoning
- * complexity
- * probabilistic program properties

* ...

Outline

- 1. Weighted abstract reduction systems (wARSs)
- 2. Instances
- 3. Quantitative termination-like properties (boundedness)
- 4. Embeddings & ranking functions

From qualitative to quantitative ARS

- 1. equip objects with quantitative information obs : $A \rightarrow W$
 - quantitative ARSs à la (Faggian, 2022; Ariola & Blom, 2002)
 - observation capture information
 - assumes CPO structure (W, \leq) compatible with reductions ($a \rightarrow b$ implies $obs(a) \leq obs(b)$)
 - for study of confluence & convergence properties of infinite systems

From qualitative to quantitative ARS

- 1. equip objects with quantitative information obs : $A \rightarrow W$
 - quantitative ARSs à la (Faggian, 2022; Ariola & Blom, 2002)
 - observation capture information
 - assumes CPO structure (W,\leq) compatible with reductions (a o b implies $obs(a) \leq obs(b)$)
 - for study of confluence & convergence properties of infinite systems
- 2. turn relation $\rightarrow \subseteq A \times A$, i.e., $\rightarrow \equiv A \times A \rightarrow \{0,1\}$, into functions $R: A \times A \rightarrow W$
 - quantitative ARSs à la (Gavazzo & Florio, 2023)
 - weights W capture distances
 - given as quantals $(W,0,+,\leq)$ (monoid + complete lattice), satisfying certain distributivity laws
 - quantal structure enables relation composition $(R;S)(a,c) = \bigvee_{b \in A} (R(a,b) + S(b,c))$

From qualitative to quantitative ARS

- 1. equip objects with quantitative information obs : $A \rightarrow W$
 - quantitative ARSs à la (Faggian, 2022; Ariola & Blom, 2002)
 - observation capture information
 - assumes CPO structure (W, \leq) compatible with reductions ($a \rightarrow b$ implies $obs(a) \leq obs(b)$)
 - for study of confluence & convergence properties of infinite systems
- 2. turn relation $\rightarrow \subseteq A \times A$, i.e., $\rightarrow \equiv A \times A \rightarrow \{0,1\}$, into functions $R: A \times A \rightarrow W$
 - quantitative ARSs à la (Gavazzo & Florio, 2023)
 - weights W capture distances
 - given as quantals $(W,0,+,\leq)$ (monoid + complete lattice), satisfying certain distributivity laws
 - quantal structure enables relation composition $(R;S)(a,c) = \bigvee_{b \in A} (R(a,b) + S(b,c))$
- 3. associate step directly with weight $R \subseteq W \times A \times A$
 - many instances in the literature
 - o weighted automata for cost analysis, natural language processing, probabilistic systems, etc.
 - o monoid measured ARSs abstracting over reduction lengths (van Oostrom & Toyama, 2016)
 - o termination & complexity analysis of probabilistic systems (A. et al., 2018,2020,2021,2022)
 - o ...
 - most general, few intrinsic constraints on weights

Weighted ARSs

Given monoid W = (W, 0, +) of weights.

* \mathcal{W} -weighted ARS: $R \subseteq W \times A \times A$

$$a R^{[w]} b : \iff (w, a, b) \in R$$

- * weighted order: $\leadsto \subseteq W \times A \times A$
 - reflexive: $a \rightsquigarrow^{[0]} a$
 - transitive: $a \rightsquigarrow^{[v]} b \rightsquigarrow^{[w]} c \implies a \rightsquigarrow^{[v+w]} c$

Weighted ARSs

Given monoid W = (W, 0, +) of weights.

*
$$\mathcal{W}$$
-weighted ARS: $R \subseteq W \times A \times A$

$$a R^{[w]} b : \iff (w, a, b) \in R$$

- * weighted order: $\rightsquigarrow \subseteq W \times A \times A$
 - reflexive: $a \rightsquigarrow^{[0]} a$
 - transitive: $a \rightsquigarrow^{[v]} b \rightsquigarrow^{[w]} c \implies a \rightsquigarrow^{[v+w]} c$
- * weighted order \rightsquigarrow_R : least weighted order extending R

$$\overset{*}{\leadsto_{R}^{*}} \triangleq \bigcup_{w \in W} \overset{\mathsf{M}}{\leadsto_{R}^{\mathsf{M}}}$$

$$\overset{+}{\leadsto_{\mathsf{R}}^+} \triangleq \bigcup_{w \neq 0} \overset{w}{\leadsto_{\mathsf{R}}^w}$$

$$\leadsto_{R}^{*} \triangleq \bigcup_{w \in W} \leadsto_{R}^{W} \qquad \leadsto_{R}^{+} \triangleq \bigcup_{w \neq 0} \leadsto_{R}^{W} \qquad \mathsf{NF}(R) \triangleq \{a \mid \nexists b.a \leadsto_{R}^{+} b\}$$

Outline

- 1. Weighted abstract reduction systems (wARSs)
- 2. Instances
- 3. Quantitative termination-like properties (boundedness)
- 4. Embeddings & ranking functions

Example — Uniform weighted ARSs

given ARS $\rightarrow \subseteq$ A \times A, unitary weighted ARS assigns weight $1::\mathbb{N}$ to each step

$$\{1\} \times \rightarrow = \{(1, \mathbf{a}, \mathbf{b}) \mid \mathbf{a} \rightarrow \mathbf{b}\}$$

Observations

- $\star \to^n = (\{1\} \times \to)^n$
- $\star \rightarrow^+ = (\{1\} \times \rightarrow)^+$
- $\star \to^* = (\{1\} \times \to)^*$
- $\star \ \mathsf{NF}(\to) = \mathsf{NF}(\{1\} \times \to)$

Example — Weighted Term Rewriting

* weighted term rewrite system: $\mathcal{R} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$ $0 + y \mathcal{R}^{[1]} y \qquad \qquad \mathbf{S}(x) + y \mathcal{R}^{[2]} \mathbf{S}(x + y) \qquad \qquad x + y \mathcal{R}^{[0]} y + x$

Example — Weighted Term Rewriting

* weighted term rewrite system: $\mathcal{R} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$

$$0 + y \mathcal{R}^{[1]} y$$
 $S(x) + y \mathcal{R}^{[2]} S(x + y)$ $x + y \mathcal{R}^{[0]} y + x$

- * weighted rewrite relation: $\rightarrow \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$
 - closed under substitutions: $s \rightarrow^{[w]} t \implies s\theta \rightarrow^{[w]} t\theta$
 - closed under contexts: $s \rightarrow^{[w]} t \implies f(\dots, s, \dots) \rightarrow^{[w]} f(\dots, t, \dots)$

Example — Weighted Term Rewriting

* weighted term rewrite system: $\mathcal{R} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$

$$0 + y \mathcal{R}^{[1]} y$$
 $S(x) + y \mathcal{R}^{[2]} S(x + y)$ $x + y \mathcal{R}^{[0]} y + x$

- * weighted rewrite relation: $\rightarrow \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$
 - closed under substitutions: $s \rightarrow^{[w]} t \implies s\theta \rightarrow^{[w]} t\theta$
 - closed under contexts: $s \rightarrow^{[w]} t \implies f(\dots, s, \dots) \rightarrow^{[w]} f(\dots, t, \dots)$
- \star weighted rewrite relation $\to_{\mathcal{R}}$: least weighted rewrite relation extending \mathcal{R}

$$\underline{\mathbf{S}(x) + \mathbf{0}} \to_{\mathcal{R}}^{[2]} \mathbf{S}(\underline{x + \mathbf{0}}) \to_{\mathcal{R}}^{[0]} \mathbf{S}(\underline{\mathbf{0} + x}) \to_{\mathcal{R}}^{[1]} \mathbf{S}(x) \quad \text{i.e.} \quad \mathbf{S}(x) + \mathbf{0} \to_{\mathcal{R}}^{3} \mathbf{S}(x)$$

```
 \text{$\star$ probabilistic ARS: $\mathcal{P}\subseteq A\times \text{Dist}(A)$} \qquad \text{$(Bournez \& Garnier'05)$}   \text{$w(n)$ $\mathcal{P}$ } \{\text{$w(n-1)^{1/2}$, $w(n+1)^{1/2}$}\} \qquad \text{$(for $n>0)$}   -\text{ seen as wARS } \mathcal{P}\subseteq [0,1]\times \text{$MDist(A)\times MDist(A)$} \qquad \text{$(A., Yamada \& Dal Lago, 2018)$}   \{\text{$w(n)^1$}\} \ \mathcal{P}^{[1]} \ \{\text{$w(n-1)^{1/2}$, $w(n+1)^{1/2}$}\} \qquad \text{$(for $n>0)$}
```

- \star probabilistic rewrite relation : $\hookrightarrow \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$
 - convex closed: $\forall i.\mu_i \hookrightarrow^{w_i} \nu_i \implies \biguplus_i p_i \cdot \mu_i \hookrightarrow^{\sum_i p_i \cdot w_i} \biguplus_i p_i \cdot \nu_i \text{ where } \sum_i p_i = 1$
- * probabilistic rewrite relation $\hookrightarrow_{\mathcal{P}}$: least convex closed weighted order (refl., trans.) extending \mathcal{P}

* probabilistic ARS :
$$\mathcal{P} \subseteq A \times \mathsf{Dist}(A)$$

(Bournez & Garnier'05)

$$\mathbf{w}(n) \mathcal{P} \{ \mathbf{w}(n-1)^{1/2}, \mathbf{w}(n+1)^{1/2} \}$$
 (for $n > 0$)

- seen as wARS $\mathcal{P} \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$ (A., Yamada & Dal Lago, 2018)

$$\{\mathbf{w}(n)^1\} \mathcal{P}^{[1]} \{\mathbf{w}(n-1)^{1/2}, \mathbf{w}(n+1)^{1/2}\}$$
 (for $n > 0$)

- \star probabilistic rewrite relation : $\hookrightarrow \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$
 - convex closed: $\forall i.\mu_i \hookrightarrow^{w_i} \nu_i \implies \biguplus_i p_i \cdot \mu_i \hookrightarrow^{\sum_i p_i \cdot w_i} \biguplus_i p_i \cdot \nu_i \text{ where } \sum_i p_i = 1$
- * probabilistic rewrite relation $\hookrightarrow_{\mathcal{P}}$: least convex closed weighted order (refl., trans.) extending \mathcal{P}

$$\{\mathtt{w}(\mathtt{1})^1\} \hookrightarrow^1_\mathcal{P} \{\mathtt{w}(\mathtt{0})^{1/2}, \mathtt{w}(\mathtt{2})^{1/2}\}$$

* probabilistic ARS :
$$\mathcal{P} \subseteq A \times \mathsf{Dist}(A)$$

(Bournez & Garnier'05)

$$\mathbf{w}(n) \mathcal{P} \{ \mathbf{w}(n-1)^{1/2}, \mathbf{w}(n+1)^{1/2} \}$$
 (for $n > 0$)

- seen as wARS $\mathcal{P} \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$ (A., Yamada & Dal Lago, 2018)

$$\{\mathbf{w}(n)^1\} \mathcal{P}^{[1]} \{\mathbf{w}(n-1)^{1/2}, \mathbf{w}(n+1)^{1/2}\}$$
 (for $n > 0$)

- \star probabilistic rewrite relation : $\hookrightarrow \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$
 - convex closed: $\forall i.\mu_i \hookrightarrow^{w_i} \nu_i \implies \biguplus_i p_i \cdot \mu_i \hookrightarrow^{\sum_i p_i \cdot w_i} \biguplus_i p_i \cdot \nu_i \text{ where } \sum_i p_i = 1$
- * probabilistic rewrite relation $\hookrightarrow_{\mathcal{P}}$: least convex closed weighted order (refl., trans.) extending \mathcal{P}

$$\begin{split} \{ \mathbf{w}(\mathbf{1})^1 \} \hookrightarrow^1_{\mathcal{P}} \{ \mathbf{w}(\mathbf{0})^{1/2}, \underline{\mathbf{w}(\mathbf{2})^{1/2}} \} \\ \hookrightarrow^{1/2}_{\mathcal{P}} \{ \mathbf{w}(\mathbf{0})^{1/2}, \underline{\mathbf{w}(\mathbf{1})^{1/4}}, \underline{\mathbf{w}(\mathbf{3})^{1/4}} \} \end{split}$$

$$\begin{array}{ll} \star \;\; \mathsf{probabilistic\; ARS} : \mathcal{P} \subseteq \mathsf{A} \times \mathsf{Dist}(\mathsf{A}) & (\mathsf{Bournez\;\&\;Garnier'05}) \\ \\ & \mathsf{w}(n) \; \mathcal{P} \; \{ \mathsf{w}(n-1)^{1/2}, \mathsf{w}(n+1)^{1/2} \} & (\mathsf{for} \; n > 0) \\ \\ - \;\; \mathsf{seen\; as\; wARS} \; \mathcal{P} \subseteq [0,1] \times \mathsf{MDist}(\mathsf{A}) \times \mathsf{MDist}(\mathsf{A}) & (\mathsf{A.,\;Yamada\;\&\;Dal\;Lago,\;2018}) \\ \\ & \{ \mathsf{w}(n)^1 \} \; \mathcal{P}^{[1]} \; \{ \mathsf{w}(n-1)^{1/2}, \mathsf{w}(n+1)^{1/2} \} & (\mathsf{for} \; n > 0) \end{array}$$

- * probabilistic rewrite relation: $\hookrightarrow \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$
 - convex closed: $\forall i.\mu_i \hookrightarrow^{w_i} \nu_i \implies \biguplus_i p_i \cdot \mu_i \hookrightarrow^{\sum_i p_i \cdot w_i} \biguplus_i p_i \cdot \nu_i \text{ where } \sum_i p_i = 1$
- * probabilistic rewrite relation $\hookrightarrow_{\mathcal{P}}$: least convex closed weighted order (refl., trans.) extending \mathcal{P}

$$\begin{split} \{ \mathbf{w}(1)^1 \} &\hookrightarrow^1_{\mathcal{P}} \{ \mathbf{w}(0)^{1/2}, \underline{\mathbf{w}(2)^{1/2}} \} \\ &\hookrightarrow^{1/2}_{\mathcal{P}} \{ \mathbf{w}(0)^{1/2}, \underline{\mathbf{w}(1)^{1/4}}, \underline{\mathbf{w}(3)^{1/4}} \} \\ &\hookrightarrow^{1/2}_{\mathcal{P}} \{ \mathbf{w}(0)^{1/2}, \underline{\mathbf{w}(0)^{1/8}}, \underline{\underline{\mathbf{w}(2)^{1/8}}}, \underline{\underline{\mathbf{w}(2)^{1/8}}}, \underline{\underline{\mathbf{w}(2)^{1/8}}}, \underline{\underline{\mathbf{w}(2)^{1/8}}}, \underline{\underline{\mathbf{w}(2)^{1/8}}} \} \end{split}$$

- \star probabilistic rewrite relation : $\hookrightarrow \subseteq [0,1] \times \mathsf{MDist}(A) \times \mathsf{MDist}(A)$
 - convex closed: $\forall i.\mu_i \hookrightarrow^{w_i} \nu_i \implies \biguplus_i p_i \cdot \mu_i \hookrightarrow^{\sum_i p_i \cdot w_i} \biguplus_i p_i \cdot \nu_i \text{ where } \sum_i p_i = 1$
- * probabilistic rewrite relation $\hookrightarrow_{\mathcal{P}}$: least convex closed weighted order (refl., trans.) extending \mathcal{P}

$$\begin{split} \{ \mathbf{w}(\mathbf{1})^1 \} &\hookrightarrow^1_{\mathcal{P}} \{ \mathbf{w}(\mathbf{0})^{1/2}, \underline{\mathbf{w}(\mathbf{2})^{1/2}} \} \\ &\hookrightarrow^{1/2}_{\mathcal{P}} \{ \mathbf{w}(\mathbf{0})^{1/2}, \underline{\mathbf{w}(\mathbf{1})^{1/4}}, \underline{\mathbf{w}(\mathbf{3})^{1/4}} \} \\ &\hookrightarrow^{1/2}_{\mathcal{P}} \{ \mathbf{w}(\mathbf{0})^{1/2}, \underline{\mathbf{w}(\mathbf{0})^{1/8}}, \underline{\underline{\mathbf{w}(\mathbf{2})^{1/8}}}, \underline{\underline{\mathbf{w}(\mathbf{2})^{1/8}}}, \underline{\underline{\mathbf{w}(\mathbf{2})^{1/8}}}, \underline{\underline{\mathbf{w}(\mathbf{4})^{1/8}}} \} \\ &\hookrightarrow^{3/8}_{\mathcal{P}} \dots \end{split}$$

Example — Barycentric ARSs

- * barycentric ARS: $\mathcal{B} \subseteq W \times A \times A$ where monoid W and A are \mathcal{M} -abgebras
 - \mathcal{M} -abgebra X: X equipped with barycentric operator $\sum_i p_i \cdot x_i$ ($\sum_i p_i = 1$)
 - generalizes convex combinator $+_p: X \times X \to X$ of convex space/barycentric algebra
- * barycentric rewrite relation : $\rightsquigarrow \subseteq W \times A \times A$
 - convex closed: $\forall i.a_i \leadsto^{[w_i]} b_i \implies \sum_i p_i \cdot a_i \leadsto^{[\sum_i p_i \cdot w_i]} \sum_i p_i \cdot b_i$
- \star barycentric rewrite relation $\leadsto_{\mathcal{B}}$: least convex closed extension of \mathcal{B}

Instances

- (weighted) probabilistic ARSs $\mathcal{P}^{[\cdot]} \subseteq W \times A \times Dist(A)$ with $\sum_i p_i \cdot \mu_i \triangleq \biguplus p_i \cdot \mu_i$

Example — Barycentric ARSs

- * barycentric ARS: $\mathcal{B} \subseteq W \times A \times A$ where monoid W and A are \mathcal{M} -abgebras
 - \mathcal{M} -abgebra X: X equipped with barycentric operator $\sum_i p_i \cdot x_i$ ($\sum_i p_i = 1$)
 - generalizes convex combinator $+_p: X \times X \to X$ of convex space/barycentric algebra
- * barycentric rewrite relation : $\rightsquigarrow \subseteq W \times A \times A$
 - convex closed: $\forall i.a_i \leadsto^{[w_i]} b_i \implies \sum_i p_i \cdot a_i \leadsto^{[\sum_i p_i \cdot w_i]} \sum_i p_i \cdot b_i$
- \star barycentric rewrite relation $\leadsto_{\mathcal{B}}$: least convex closed extension of \mathcal{B}

Instances

- (weighted) probabilistic ARSs $\mathcal{P}^{[\cdot]} \subseteq W \times A \times Dist(A)$ with $\sum_i p_i \cdot \mu_i \triangleq \biguplus p_i \cdot \mu_i$
- $\text{ chemical reaction } \left\{ HCl^{1/2}, NaOH^{1/2} \right\} R^{[56.5]} \left\{ NaCl^{1/2}, H_2O^{1/2} \right\} : \\ \left\{ HCl^{1/5}, NaOH^{4/5} \right\} \leadsto_{\mathsf{p}}^{[11.3]} \left\{ NaCl^{1/10}, H_2O^{1/10}, HCl^{1/10}, NaOH^{7/10} \right\} \leadsto_{\mathsf{p}}^{[11.3]} \left\{ NaCl^{1/5}, H_2O^{1/5}, NaOH^{3/5} \right\}$

Example — Barycentric ARSs

- * barycentric ARS: $\mathcal{B} \subseteq W \times A \times A$ where monoid W and A are \mathcal{M} -abgebras
 - \mathcal{M} -abgebra X: X equipped with barycentric operator $\sum_i p_i \cdot x_i$ ($\sum_i p_i = 1$)
 - generalizes convex combinator $+_p: X \times X \to X$ of convex space/barycentric algebra
- * barycentric rewrite relation : $\rightsquigarrow \subseteq W \times A \times A$
 - convex closed: $\forall i.a_i \leadsto^{[w_i]} b_i \implies \sum_i p_i \cdot a_i \leadsto^{[\sum_i p_i \cdot w_i]} \sum_i p_i \cdot b_i$
- \star barycentric rewrite relation $\leadsto_{\mathcal{B}}$: least convex closed extension of \mathcal{B}

Instances

- (weighted) probabilistic ARSs $\mathcal{P}^{[\cdot]} \subseteq W \times A \times Dist(A)$ with $\sum_i p_i \cdot \mu_i \triangleq \biguplus p_i \cdot \mu_i$
- $\text{ chemical reaction } \left\{ \mathrm{HCl}^{1/2}, \mathrm{NaOH}^{1/2} \right\} \, \mathsf{R}^{[56.5]} \left\{ \mathrm{NaCl}^{1/2}, \mathrm{H_2O}^{1/2} \right\} : \\ \left\{ \mathrm{HCl}^{1/5}, \mathrm{NaOH}^{4/5} \right\} \leadsto_{\mathsf{b}}^{[11.3]} \left\{ \mathrm{NaCl}^{1/10}, \mathrm{H_2O}^{1/10}, \mathrm{HCl}^{1/10}, \mathrm{NaOH}^{7/10} \right\} \leadsto_{\mathsf{b}}^{[11.3]} \left\{ \mathrm{NaCl}^{1/5}, \mathrm{H_2O}^{1/5}, \mathrm{NaOH}^{3/5} \right\}$
- $-x \succ_{\mathbb{P}}^{[w]} y : \iff x \ge w + y \text{ is c.c. } (\forall i. \ x_i \ge w_i + y_i \Rightarrow \sum_i p_i \cdot x_i \ge \sum_i p_i \cdot w_i + \sum_i p_i \cdot y_i)$
- ..

Outline

- 1. Weighted abstract reduction systems (wARSs)
- 2. Instances
- 3. Quantitative termination-like properties (boundedness)
- 4. Embeddings & ranking functions

weighted ARS $R \subseteq W \times A \times A$ is ...

- * weakly normalizing on $S \subseteq A$ if every $a \in S$ has b with $a \leadsto_R^w b \in NF(\rightarrow)$
- * strongly normalizing on $S \subseteq A$ if all reduction sequences from $a \in S$ are terminating

 $WN_R(S)$

 $SN_R(S)$

Note: reduction sequence $a_0 \rightsquigarrow_R^{[w_1]} a_1 \rightsquigarrow_R^{[w_2]} a_2 \rightsquigarrow_R^{[w_3]} \cdots$ is

- terminating if finite or $w_i = w_i + 1 = \cdots = 0$ for some $i \in \mathbb{N}$

weighted ARS $R \subseteq W \times A \times A$ is ...

- * weakly normalizing on $S \subseteq A$ if every $a \in S$ has b with $a \leadsto_R^w b \in NF(\rightarrow)$
- * strongly normalizing on $S \subseteq A$ if all reduction sequences from $a \in S$ are terminating if weights W partially ordered, then R is ...
 - * weakly bounded on $S \subseteq A$ if $\mathsf{WB}_R(S)$ all reduction sequences from $a \in S$ are bounded

 $WN_R(S)$

Note: reduction sequence $a_0 \rightsquigarrow_R^{[w_1]} a_1 \rightsquigarrow_R^{[w_2]} a_2 \rightsquigarrow_R^{[w_3]} \cdots$ is

- terminating if finite or $w_i = w_i + 1 = \cdots = 0$ for some $i \in \mathbb{N}$
- bounded (by $u \in W$) if $\sum_i w_i \le u$

weighted ARS $R \subseteq W \times A \times A$ is ...

- * weakly normalizing on $S \subseteq A$ if $WN_R(S)$ every $a \in S$ has b with $a \leadsto_R^W b \in NF(\rightarrow)$
- * strongly normalizing on $S \subseteq A$ if all reduction sequences from $a \in S$ are terminating if weights W partially ordered, then R is ...
- * weakly bounded on $S \subseteq A$ if $WB_R(S)$ all reduction sequences from $a \in S$ are bounded
- \star strongly bounded on $S\subseteq A$ if $\mathrm{SB}_R(S)$ all reduction sequences from $a\in S$ are bounded by fixed u_a

Note: reduction sequence $a_0 \rightsquigarrow_R^{[w_1]} a_1 \rightsquigarrow_R^{[w_2]} a_2 \rightsquigarrow_R^{[w_3]} \cdots$ is

- terminating if finite or $w_i = w_i + 1 = \cdots = 0$ for some $i \in \mathbb{N}$
- bounded (by $u \in W$) if $\sum_i w_i \le u$

 $\star \ \mathsf{WN} \not\Rightarrow \mathsf{SN} \colon \ \neg \bigcirc \circ \xrightarrow{1} \circ$

* WN
$$\not\Rightarrow$$
 SN: $\neg \bigcirc \bigcirc \bigcirc \longrightarrow \circ$

* WN \Rightarrow SN: $\neg \bigcirc \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc$

* WB $\not\Rightarrow$ WN: $\otimes \xrightarrow{1} \circ \xrightarrow{\frac{1}{2}} \circ \xrightarrow{\frac{1}{4}} \circ \xrightarrow{\frac{1}{8}} \cdots$ 2 Zeno sequence

* WN \Rightarrow SN: $\neg \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

non-Zeno

* WN ≠ SN: ¬() □ → ○

Zeno sequence

not (strongly)

Summary

Outline

- 1. Weighted abstract reduction systems (wARSs)
- 2. Instances
- 3. Quantitative termination-like properties (boundedness)
- 4. Embeddings & ranking functions

Warm-up — Monotone embeddings and termination

mapping
$$\eta:A\to X$$
 is (monotone) embedding of $\to\subseteq A\times A$ into $\succ\subseteq X\times X$ if $a\to b \implies \eta(a)\succ \eta(b)$ (i.e., $\eta(\to)\subseteq \succ$)

Theorem: finitely branching ARS \to is SN $\iff \eta(\to) \subseteq >_{\mathbb{N}}$ for some $\eta: A \to \mathbb{N}$

Warm-up — Monotone embeddings and termination

mapping
$$\eta:A\to X$$
 is (monotone) embedding of $\to\subseteq A\times A$ into $\succ\subseteq X\times X$ if $a\to b \implies \eta(a)\succ \eta(b)$ (i.e., $\eta(\to)\subseteq \succ$)

Theorem: finitely branching ARS \to is SN \iff $\eta(\to) \subseteq >_{\mathbb{N}}$ for some $\eta: A \to \mathbb{N}$

proof idea

$$\iff \mathsf{a}_0 \to \mathsf{a}_1 \to \mathsf{a}_2 \to \cdots \quad \Longrightarrow \quad \eta(\mathsf{a}_0) >_{\mathbb{N}} \eta(\mathsf{a}_1) >_{\mathbb{N}} \eta(\mathsf{a}_2) >_{\mathbb{N}} \cdots$$

 \implies : derivation height $dh(a) \triangleq \max\{n \mid a \rightarrow^n b\}$ defines embedding

Warm-up — Monotone embeddings and termination

mapping
$$\eta:A\to X$$
 is (monotone) embedding of $\to\subseteq A\times A$ into $\succ\subseteq X\times X$ if $a\to b \implies \eta(a)\succ \eta(b)$ (i.e., $\eta(\to)\subseteq \succ$)

Theorem: finitely branching ARS \to is SN \iff $\eta(\to) \subseteq >_{\mathbb{N}}$ for some $\eta: A \to \mathbb{N}$

proof idea

$$\iff \mathsf{a}_0 \to \mathsf{a}_1 \to \mathsf{a}_2 \to \cdots \quad \Longrightarrow \quad \eta(\mathsf{a}_0) >_{\mathbb{N}} \eta(\mathsf{a}_1) >_{\mathbb{N}} \eta(\mathsf{a}_2) >_{\mathbb{N}} \cdots$$

 \implies : derivation height $dh(a) \triangleq \max\{n \mid a \rightarrow^n b\}$ defines embedding

Notes

 \star $\eta: A
ightarrow \mathbb{N}$ essentially ranking function

Warm-up — Monotone embeddings and termination

mapping
$$\eta: A \to X$$
 is (monotone) embedding of $\to \subseteq A \times A$ into $\succ \subseteq X \times X$ if $a \to b \implies \eta(a) \succ \eta(b)$ (i.e., $\eta(\to) \subseteq \succ$)

Theorem: finitely branching ARS \to is SN \iff $\eta(\to) \subseteq >_{\mathbb{N}}$ for some $\eta: A \to \mathbb{N}$

proof idea

$$\iff$$
 $a_0 \to a_1 \to a_2 \to \cdots \implies \eta(a_0) >_{\mathbb{N}} \eta(a_1) >_{\mathbb{N}} \eta(a_2) >_{\mathbb{N}} \cdots$

 \implies : derivation height $dh(a) \triangleq \max\{n \mid a \rightarrow^n b\}$ defines embedding

Notes

- \star $\eta: A
 ightarrow \mathbb{N}$ essentially ranking function
- * embeddings can prove boundedness, actually

Potential

potential(s) of $a \in A$ w.r.t weighted ARS $\rightarrow \subseteq W \times A \times A$ on partially ordered W is

$$\mathsf{Pots}_{\leadsto}(a) \triangleq \{ w \mid \exists b.a \leadsto_R^w b \}$$
 $\mathsf{pot}_{\leadsto}(a) \triangleq \sup \mathsf{Pots}_{\leadsto}(a)$

$$\mathsf{pot}_{\leadsto}(a) \triangleq \sup \mathsf{Pots}_{\leadsto}(a)$$

Notes

- \star potential pot : $A \rightarrow W$ is a partial function
- $\star \mathsf{pot}_{\{1\} \times \to}(a) = \mathsf{dh}_{\to}(a) \mathsf{ for ARSs } \to \subseteq \mathsf{A} \times \mathsf{A}$
- $\star \operatorname{\mathsf{pot}}_{\hookrightarrow_{\mathcal{D}}}(\mu) = \mathbb{E}(\operatorname{\mathsf{dh}}_{\mathcal{P}}(a))$ for probabilistic ARS $\mathcal{P} \subseteq A \times \operatorname{\mathsf{Dist}}(A)$

Potential

potential(s) of $a \in A$ w.r.t weighted ARS $\rightarrow \subseteq W \times A \times A$ on partially ordered W is

$$\mathsf{Pots}_{\leadsto}(a) \triangleq \{ w \mid \exists b.a \leadsto_{R}^{w} b \}$$
 $\mathsf{pot}_{\leadsto}(a) \triangleq \sup \mathsf{Pots}_{\leadsto}(a)$

$$\mathsf{pot}_{\leadsto}(a) \triangleq \sup \mathsf{Pots}_{\leadsto}(a)$$

Notes

- \star potential pot : $A \rightarrow W$ is a partial function
- $\star \mathsf{pot}_{\{1\} \times \to}(a) = \mathsf{dh}_{\to}(a) \mathsf{ for ARSs } \to \subseteq \mathsf{A} \times \mathsf{A}$
- $\star \operatorname{\mathsf{pot}}_{\hookrightarrow_{\mathcal{D}}}(\mu) = \mathbb{E}(\operatorname{\mathsf{dh}}_{\mathcal{P}}(a))$ for probabilistic ARS $\mathcal{P} \subseteq A \times \operatorname{\mathsf{Dist}}(A)$

Proposition: $SB_{\sim}(S) \iff Pots_{\sim}(S)$ is bounded

Embeddings and strong boundedness

mapping
$$\eta: A \to X$$
 is embedding of $\leadsto \subseteq W \times A \times A$ into $\succ \subseteq W \times X \times X$ if $a \leadsto^{[w]} b \implies \eta(a) \succ^{[w]} \eta(b)$ (i.e., $\eta(\leadsto) \subseteq \succ$)

Embeddings and strong boundedness

mapping
$$\eta:A\to X$$
 is embedding of $\leadsto\subseteq W\times A\times A$ into $\succ\subseteq W\times X\times X$ if $a\leadsto^{[w]}b\implies \eta(a)\succ^{[w]}\eta(b)$ (i.e., $\eta(\leadsto)\subseteq\succ$)

Embeddings and strong boundedness

mapping
$$\eta: A \to X$$
 is embedding of $\leadsto \subseteq W \times A \times A$ into $\succ \subseteq W \times X \times X$ if
$$a \leadsto^{[w]} b \implies \eta(a) \succ^{[w]} \eta(b) \qquad \qquad \text{(i.e., } \eta(\leadsto) \subseteq \succ\text{)}$$

what are choices for \geq ?

Ranking functions

 \star for partially ordered $\,\mathcal{W}$, define weighted ARS $\succ_{\mathcal{W}} \subseteq W \times W^{\infty} \times W^{\infty}$

$$x \succ_{\mathcal{W}}^{[w]} y :\iff x \geq w + y$$

 \star embeddings into $\succ_{\mathcal{W}}$ give notion of \mathcal{W} -valued ranking function

$$\eta(\leadsto) \subseteq \succ_{\mathcal{W}} \text{ means } a \leadsto_{R}^{[w]} b \implies \eta(a) \ge w + \eta(b)$$

Ranking functions

 \star for partially ordered $\mathcal W$, define weighted ARS $\succ_{\mathcal W} \subseteq W \times W^\infty \times W^\infty$

$$x \succ_{\mathcal{W}}^{[w]} y :\iff x \ge w + y$$

 \star embeddings into $\succ_{\mathcal{W}}$ give notion of \mathcal{W} -valued ranking function

$$\eta(\leadsto) \subseteq \succ_{\mathcal{W}} \text{ means } a \leadsto_{R}^{[w]} b \implies \eta(a) \ge w + \eta(b)$$

* if \mathcal{W} is positive ($w \ge 0$) then $\mathsf{pot}_{\succeq_{\mathcal{W}}}(w) = w$, thus by previous theorem:

$$\eta(\leadsto) \subseteq \succ_{\mathcal{W}} \implies \mathsf{pot}_{\leadsto}(a) \leq \eta(a)$$

Ranking functions

 \star for partially ordered \mathcal{W} , define weighted ARS $\succ_{\mathcal{W}} \subseteq \mathcal{W} \times \mathcal{W}^{\infty} \times \mathcal{W}^{\infty}$

$$x \succ_{\mathcal{W}}^{[w]} y :\iff x \geq w + y$$

 \star embeddings into $\succ_{\mathcal{W}}$ give notion of \mathcal{W} -valued ranking function

$$\eta(\leadsto) \subseteq \succ_{\mathcal{W}} \text{ means } a \leadsto_{R}^{[w]} b \implies \eta(a) \ge w + \eta(b)$$

 \star if \mathcal{W} is positive (w ≥ 0) then $\mathsf{pot}_{\succeq_{\mathcal{W}}}(\mathsf{w}) = \mathsf{w}$, thus by previous theorem:

$$\eta(\leadsto) \subseteq \succ_{\mathcal{W}} \implies \mathsf{pot}_{\leadsto}(a) \leq \eta(a)$$

Theorem: for ${\mathcal W}$ positive, bounded complete & continuous

$$SB_{\leadsto}(S) \iff wARS \leadsto admits ranking function on S (i.e., \eta(S) \subseteq W)$$

- bounded complete: $\sup X \in W$ for bounded $X \subseteq W$
- continuous: $\sup\{x+w\mid x\in X\}=\sup X+w$

For weighted TRSs... recall: closed under

contexts & substitutions

Rewrite orders:

for weighted TRS \mathcal{R} and rewrite order $\succ \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$

$$\mathcal{R} \subseteq \; \succ \;\; \Longrightarrow \;\; \mathsf{Pots}_{\rightarrow_{\mathcal{R}}}(t) \subseteq \mathsf{Pots}_{\succ}(t)$$

Theorem: $SB_{\rightarrow_{\mathcal{R}}}(S) \iff \mathcal{R} \subseteq \succ \text{ for some rewrite order } \succ \text{ with } SB_{\succ}(S)$

Interpretation method:

 \star term algebra \mathcal{A} interprets terms into carrier A (e.g., \mathbb{N})

$$0_{\mathcal{A}} \triangleq 1$$
 $S_{\mathcal{A}}(x) \triangleq x + 1$ $+_{\mathcal{A}}(x, y) = 3(x + y)$

 \star gives rise to interpretation of terms $[\![t]\!]_{\mathcal{A}}$ within A

$$[S(x) + y]_{A} = 3(x + 1 + y)$$

Interpretation method:

 \star term algebra $\mathcal A$ interprets terms into carrier $\mathcal A$ (e.g., $\mathbb N$)

$$0_{\mathcal{A}} \triangleq 1$$
 $S_{\mathcal{A}}(x) \triangleq x + 1$ $+_{\mathcal{A}}(x, y) = 3(x + y)$

 \star gives rise to interpretation of terms $[t]_{\mathcal{A}}$ within A

$$[S(x) + y]_{A} = 3(x + 1 + y)$$

- \star interpretation lifts $\succ \subseteq W \times A \times A$ (e.g., $\succ_{\mathbb{N}}$) to $\succ_{\mathcal{A}} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$
 - $\succ_{\mathcal{A}}$ is rewrite order when \mathcal{A} monotone wrt. \succ

Interpretation method:

 \star term algebra \mathcal{A} interprets terms into carrier A (e.g., \mathbb{N})

$$0_{\mathcal{A}} \triangleq 1$$
 $S_{\mathcal{A}}(x) \triangleq x + 1$ $+_{\mathcal{A}}(x, y) = 3(x + y)$

 \star gives rise to interpretation of terms $[t]_A$ within A

$$[S(x) + y]_{\mathcal{A}} = 3(x+1+y)$$

- * interpretation lifts $\succ \subseteq W \times A \times A$ (e.g., $\succ_{\mathbb{N}}$) to $\succ_{\mathcal{A}} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$
 - $\succ_{\mathcal{A}}$ is rewrite order when \mathcal{A} monotone wrt. \succ

$$0 + y \mathcal{R}^{[1]} y \qquad 1 + y \succ_{\mathbb{N}}^{[1]} y$$

$$S(x) + y \mathcal{R}^{[2]} S(x + y) \qquad 3(x + 1 + y) \succ_{\mathbb{N}}^{[2]} 3(x + y) + 1$$

$$x + y \mathcal{R}^{[0]} y + x \qquad 3(x + y) \succ_{\mathbb{N}}^{[0]} 3(x + y)$$

Interpretation method:

 \star term algebra $\mathcal A$ interprets terms into carrier $\mathcal A$ (e.g., $\mathbb N$)

$$0_{\mathcal{A}} \triangleq 1$$
 $S_{\mathcal{A}}(x) \triangleq x + 1$ $+_{\mathcal{A}}(x, y) = 3(x + y)$

 \star gives rise to interpretation of terms $[\![t]\!]_{\mathcal{A}}$ within A

$$[S(x) + y]_A = 3(x + 1 + y)$$

- * interpretation lifts $\succ \subseteq W \times A \times A$ (e.g., $\succ_{\mathbb{N}}$) to $\succ_{\mathcal{A}} \subseteq W \times \mathcal{T}(F, V) \times \mathcal{T}(F, V)$
 - $\succ_{\mathcal{A}}$ is rewrite order when \mathcal{A} monotone wrt. \succ

$$0 + y \mathcal{R}^{[1]} y \qquad 1 + y \succ_{\mathbb{N}}^{[1]} y$$

$$S(x) + y \mathcal{R}^{[2]} S(x + y) \qquad 3(x + 1 + y) \succ_{\mathbb{N}}^{[2]} 3(x + y) + 1$$

$$x + y \mathcal{R}^{[0]} y + x \qquad 3(x + y) \succ_{\mathbb{N}}^{[0]} 3(x + y)$$

For barycentric ARSs...

$$\eta(\sum_{i}^{A} p_{i} \cdot a_{i}) = \sum_{i}^{X} p_{i} \cdot \eta(a_{i})$$

Affine embeddings for barycentric ARSs:

for barycentric ARS $\mathcal B$ and affine mapping $\eta:A o X$ and convex closed \succ (e.g., $\succ_{\mathbb R}$),

$$\eta(\mathcal{B}) \subseteq \succ \implies \mathsf{Pots}_{\leadsto_{\mathcal{B}}}(a) \subseteq \mathsf{Pots}_{\succ}(\eta(a))$$

Theorem: $SB_{\leadsto_{\mathcal{B}}}(S) \iff \eta(\mathcal{B}) \subseteq \succ$ for affine embedding η into convex closed \succ

For barycentric ARSs...

$$\eta(\sum_{i}^{A} p_{i} \cdot a_{i}) = \sum_{i}^{X} p_{i} \cdot \eta(a_{i})$$

Affine embeddings for barycentric ARSs:

for barycentric ARS $\mathcal B$ and affine mapping $\eta:A o X$ and convex closed \succ (e.g., $\succ_{\mathbb R}$),

$$\eta(\mathcal{B}) \subseteq \succ \implies \mathsf{Pots}_{\leadsto_{\mathcal{B}}}(a) \subseteq \mathsf{Pots}_{\succ}(\eta(a))$$

Theorem: $SB_{\leadsto_{\mathcal{B}}}(S) \iff \eta(\mathcal{B}) \subseteq \succ$ for affine embedding η into convex closed \succ

Notes:

 \star encompasses Lyapunov ranking functions $\eta: \mathbf{A} \to [0,\infty)$ (Bournez & Garnier'05)

$$a \mathcal{P} \{b_i^{p_i}\} \Rightarrow \eta(a) \geq \epsilon + \sum_i p_i \cdot \eta(b_i)$$

- \star complete (\Longrightarrow) for probabilistic ARSs
- * affineness sufficient but not necessary in general

Conclusion

- \star abstract study of weighted ARSs $R \subseteq W \times A \times A$
 - conservative extension of ARSs
 - weighted TRSs
 - probabilistic / barycentric ARSs
- * weak & strong boundedness & their relationship to termination
- * ranking functions as a means to prove strong boundedness
 - rewrite orders & interpretation method
 - affine embeddings

Conclusion

- \star abstract study of weighted ARSs $R \subseteq W \times A \times A$
 - conservative extension of ARSs
 - weighted TRSs
 - probabilistic / barycentric ARSs
- * weak & strong boundedness & their relationship to termination
- * ranking functions as a means to prove strong boundedness
 - rewrite orders & interpretation method
 - affine embeddings

Future work

- * further quantitative versions of ARS properties (e.g., confluence, strategies) and methods (e.g., Newmans lemma)
- * applications (e.g., Newmans Lemma for probabilistic ARSs)
- * formalisation