

Progress in differential deposition for improving the figures of full-shell astronomical grazing incidence X-ray optics

- * Kiranmayee Kilaru, USRA/NASA MSFC
- * Carolyn Atkins, University of Alabama in Huntsville/NASA MSFC
- * Brian D. Ramsey, NASA MSFC
- * Jeffery Kolodziejczak, NASA MSFC
- * Mikhail V. Gubarev, NASA MSFC
- * Stephen L. O'Dell, NASA MSFC
- * David M. Broadway, NASA MSFC

Why differential deposition?

Typical mid-spatial frequency range in X-ray mirrors

Plot Credits: Steve O'Dell, NASA MSFC

- * Imaging quality of X-ray optics can be significantly improved if the RMS height variations can be reduced

Concept of differential deposition

- * Use of physical vapor deposition to selectively deposit material on the mirror surface to smooth out figure imperfections
- * Various approaches -
 - * A) Constant mirror velocity- varying slit width
 - * B) Varying mirror translation velocity
 - * C) Varying power on target material
 - * D) Combination of above all

- * Ice, G. E., Chung, J. S., Tischler, J. Z., Lunt, A., and Assoufid, L., "Elliptical x-ray microprobe mirrors by differential deposition", *Rev. Sci. Instr.*, 71(7), 2635-2639 (2000).
- * Handa Soichiro, Hidekazu Mimura, Hirokatsu Yumoto, Takashi Kimura, Satoshi Matsuyama, Yasuhisa Sano, Kazuto Yamauchi, "Highly accurate differential deposition for X-ray reflective optics", *Surface and Interface Analysis*, 40, 1019-1022 (2008).
- * Alcock, S. G., and S. Cockerton. "A preferential coating technique for fabricating large, high quality optics." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 616, no. 2 (2010): 110-114.
- * Two-dimensional differential deposition for figure correction of thin-shell mirror substrates for x-ray astronomy, David L. Windt...following talk

Process Sequence

Proof of concept on miniature optics

- * An existing vacuum chamber was modified for the proof of concept on the miniature optics developed for radio-nuclide imaging

Coating Systems (DC magnetron)

Vertical chamber for segmented optics and very large full shell optics (>0.5m diameter)

Horizontal chamber for 0.25m diameter and up to 0.6m length - scale full shell optics

Coating Systems

Sputtering head with copper mask positioned inside shell

Horizontal differential-deposition chamber

- * For full-shell cylindrical optics
- * Oriented horizontally - mounted on rail system - splits into 3 section for easy access
- * Computer controlled translation and rotation stages with encoders
- * Matlab - GUI interface to control the stages

SPIE SanDiego 2015

Coating Systems

Vertical deposition chamber

- * Details in the upcoming talk by Dr. Carolyn Atkins
- * Optimization of coating parameters
- * Good estimate of sputter beam profile for various slit-widths

Test Coatings

- * KLA-Tencor step profiler is used to measure the coating thickness on glass samples
- * Good agreement with simulations

Metrology - VLTP

- * Vertical Long Trace Profiler
- * 1mm spatial interval
- * New 2D camera and modified software
- * Established procedures to obtain repeatability of <100 Angstroms

150 mm diameter shell – single meridian; pre- and post- two stages of correction - high frequencies only

Higher-frequencies complete full-shell – average of all meridians

- * Higher-frequencies of individual meridians are similar in deviations - replicate from the mandrel
- * Average of all meridians - 1st stage of correction
- * 2nd stage of correction is better achieved with specialized correction at first stage

X-ray testing – pre-and post- differential coating

* Though initial metrology profiles show an estimated improvement from ~15 to ~ 6 arc secs, careful analysis of all the possible errors bring this number down to of 9.23 arc secs

Possible Sources of Errors - Improvements

- * Variation of sputtered beam profile along the length of mirror - particularly for short focal length mirrors - Improvements in mechanical set-up
- * Thorough characterization of the overlap areas in the case of customized correction for each meridian
- * Improvements in the mask to shell alignment system
- * Stress effects - Quantify and control stress

Coating Stress Measurement System

- * Simulations show that for full shell optic need < 10MPa stress to get < 1 arcsec optic (dominated by longer-wavelength corrections). Set up dedicated system to characterize coating stresses.

Conclusions

- * Advantages -
 - * Can be used on any type of optic, full-shell or segmented, mounted or unmounted
 - * Can be used to correct a wide range of spatial errors
 - * Could be used in conjunction with other techniques... e.g. active optics
- * Efforts are in progress to achieve the best possible improvement with differential deposition and to quantify the improvement with X-ray testing