Hierarchical clustering

François Husson

Applied Mathematics Department - Rennes Agrocampus

husson@agrocampus-ouest.fr

Hierarchical clustering

- Introduction
- Principles of hierarchical clustering
- 3 Example
- 4 K-means : a partitioning algorithm
- 6 Extras
 - Making more robust partitions
 - Clustering in high dimensions
 - Qualitative variables and clustering
 - Combining with factor analysis clustering
- 6 Describing classes of individuals

- 1 Introduction
- 2 Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- **5** Extras
- **6** Characterizing classes of individuals

Introduction

- Definitions :
 - Clustering is : making or building classes
 - Class: set of individuals (or objects) with similar shared characteristics
- Examples
 - of clustering: animal kingdom, computer hard disk, geographic division of France, etc.
 - of classes : social classes, political classes, etc.
- Two types of clustering :
 - hierarchical: tree
 - partitioning methods

Hierarchical example: the animal kingdom

- 1 Introduction
- 2 Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- **5** Extras
- 6 Characterizing classes of individuals

What data? What goals?

Clustering is for data tables: rows of individuals, columns of quantitative variables

Goals: build a tree structure that:

- shows hierarchical links between individuals or groups of individuals
- detects a "natural" number of classes in the population

Critères

Measuring similarity of individuals :

- Euclidean distance
- similarity indices
- etc.

Similarity between groups of individuals :

- minimum jump or single linkage (smallest distance)
- complete linkage (largest distance)
- Ward criterion

Algorithm

Trees and partitions

Trees always end up ... cut through!

Remark: given how it was made, the partition is interesting but not optimal $\ensuremath{\mathsf{I}}$

Partition quality

When is a partition a good one?

- If individuals placed in the same class are close to each other
- If individuals in different classes are far from each other

Mathematically speaking?

- small within-class variability
- large between-class variability
- ⇒ Two criteria. Which one to use?

Partition quality

 \bar{x}_k the mean of the x_k , \bar{x}_{qk} the mean of the x_k in class q

$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_k)^2 = \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_{qk})^2 + \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (\bar{x}_{qk} - \bar{x}_k)^2$$
total inertia

within-class inertia

between-class inertia

 \Longrightarrow 1 criterion only!

Partition quality

Partition quality is measured by :

$$0 \leq \frac{\text{between-class inertia}}{\text{total inertia}} \leq 1$$

$$\frac{\text{inertia}_{\text{between}}}{\text{inertia}_{\text{total}}} = 0 \Longrightarrow \forall k, \forall q, \bar{x}_{qk} = \bar{x}_k$$
 by variable, classes have the same means Doesn't allow us to classify

$$\frac{\text{inertia}_{\text{between}}}{\text{inertia}_{\text{total}}} = 1 \Longrightarrow \forall k, \forall q, \forall i, x_{iqk} = \bar{x}_{qk}$$
 individuals in the same class are identical ldeal for classifying

Warning: don't just accept this criteria at face value: it depends on the number of individuals and classes

Ward's method

- Initialize : 1 class = 1 individual \Longrightarrow Between-class inertia = total inertia
- At each step: combine classes a and b that minimize the decrease in between-class inertia

Inertia(a) + Inertia(b) = Inertia(a
$$\cup$$
 b) - $\underbrace{\frac{m_a m_b}{m_a + m_b}}_{\text{to minimize}} d^2(a, b)$

Group together objects with smal weights and avoid chain effects

with similar centers of gravity

Group together classes

Direct use for clustering

Hierarchical clustering

- 1 Introduction
- Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- **5** Extras
- 6 Characterizing classes of individuals

Temperature data

- 23 individuals : European capitals
- 12 variables: mean monthly temperatures over 30 years

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Area
Amsterdam	2.9	2.5	5.7	8.2	12.5	14.8	17.1	17.1	14.5	11.4	7.0	4.4	West
Athens	9.1	9.7	11.7	15.4	20.1	24.5	27.4	27.2	23.8	19.2	14.6	11.0	South
Berlin	-0.2	0.1	4.4	8.2	13.8	16.0	18.3	18.0	14.4	10.0	4.2	1.2	West
Brussels	3.3	3.3	6.7	8.9	12.8	15.6	17.8	17.8	15.0	11.1	6.7	4.4	West
Budapest	-1.1	0.8	5.5	11.6	17.0	20.2	22.0	21.3	16.9	11.3	5.1	0.7	East
Copenhagen	-0.4	-0.4	1.3	5.8	11.1	15.4	17.1	16.6	13.3	8.8	4.1	1.3	North
Dublin	4.8	5.0	5.9	7.8	10.4	13.3	15.0	14.6	12.7	9.7	6.7	5.4	North
Elsinki	-5.8	-6.2	-2.7	3.1	10.2	14.0	17.2	14.9	9.7	5.2	0.1	-2.3	North
Kiev	-5.9	-5.0	-0.3	7.4	14.3	17.8	19.4	18.5	13.7	7.5	1.2	-3.6	East
Krakow	-3.7	-2.0	1.9	7.9	13.2	16.9	18.4	17.6	13.7	8.6	2.6	-1.7	East
Lisbon	10.5	11.3	12.8	14.5	16.7	19.4	21.5	21.9	20.4	17.4	13.7	11.1	South
London	3.4	4.2	5.5	8.3	11.9	15.1	16.9	16.5	14.0	10.2	6.3	4.4	North
Madrid	5.0	6.6	9.4	12.2	16.0	20.8	24.7	24.3	19.8	13.9	8.7	5.4	South
Minsk	-6.9	-6.2	-1.9	5.4	12.4	15.9	17.4	16.3	11.6	5.8	0.1	-4.2	East
Moscow	-9.3	-7.6	-2.0	6.0	13.0	16.6	18.3	16.7	11.2	5.1	-1.1	-6.0	East
Oslo	-4.3	-3.8	-0.6	4.4	10.3	14.9	16.9	15.4	11.1	5.7	0.5	-2.9	North
Paris	3.7	3.7	7.3	9.7	13.7	16.5	19.0	18.7	16.1	12.5	7.3	5.2	West
Prague	-1.3	0.2	3.6	8.8	14.3	17.6	19.3	18.7	14.9	9.4	3.8	0.3	East
Reykjavik	-0.3	0.1	0.8	2.9	6.5	9.3	11.1	10.6	7.9	4.5	1.7	0.2	North
Rome	7.1	8.2	10.5	13.7	17.8	21.7	24.4	24.1	20.9	16.5	11.7	8.3	South
Sarajevo	-1.4	0.8	4.9	9.3	13.8	17.0	18.9	18.7	15.2	10.5	5.1	0.8	South
Sofia	-1.7	0.2	4.3	9.7	14.3	17.7	20.0	19.5	15.8	10.7	5.0	0.6	East
Stockholm	-3.5	-3.5	-1.3	3.5	9.2	14.6	17.2	16.0	11.7	6.5	1.7	-1.6	North

Which cities have similar weather patterns? How to characterize groups of cities?

Temperature data: hierarchical tree

Temperature data

Sum of losses of inertia = 12

Using the tree to build a partition

Should we make 2 groups? 3? 4?

66 % of the information is contained in this 2-class cut What can we compare this percentage with?

Using the tree to build a partition

Separate cold cities into 2 groups :

$$\frac{\text{between-class inertia}}{\text{total inertia}} = \frac{2.36}{12} = 20$$

Using the tree to build a partition

The move from 23 cities to 3 classes : 56 % + 20 % = 76 % of the variability in the data

Determining the number of classes

- Starting from the tree
- Depends on the use (survey, etc.)

- Plot with the bars
- Ultimate criterion : interpretability of the classes

Hierarchical clustering

- 1 Introduction
- 2 Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- **5** Extras
- 6 Characterizing classes of individuals

Partitioning algorithm: K-means

Algorithm for aggregating around moving centers (K-means)

- Choose randomly Q centers of gravity
- Assign the points to the closest center
- Calculate anew the Q centers of gravity

Extras

- 1 Introduction
- 2 Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- 6 Extras
- 6 Characterizing classes of individuals

clustering

The partition obtained by hierarchical clustering is not optimal and can be improved or made robust using K-means

Algorithm:

- use the obtained hierarchical partition to initialize K-means
- run a few iterations of K-means

 $\Longrightarrow \mathsf{potentially} \ \mathsf{improved} \ \mathsf{partition}$

Advantage : more robust partition

Disadvantage: loss of hierarchical structure

Extras

Hierarchical clustering in high dimension

- If many variables: do PCA and keep only first axes
 ⇒ takes
 us to classical case
- If many individuals, hierarchical algorithm is too long
 - Use K-means to partition into around 100 classes
 - Build tree using these classes (weighted by the number of individuals in each class)
 - Gives us the "top" of the tree

Extras

Hierarchical clustering in high dimension

- If many variables: do PCA and keep only first axes
 ⇒ takes
 us to classical case
- If many individuals, hierarchical algorithm is too long
 - Use K-means to partition into around 100 classes
 - Build tree using these classes (weighted by the number of individuals in each class)
 - Gives us the "top" of the tree

Tree from original data

Tree using classes

Hierarchical clustering on qualitative data

Two strategies:

- Transform them to quantitative data
 - Do MCA and keep only the first dimensions
 - Do hierarchical clustering using the principal axes of the MCA
- Use measures/indices suitable for qualitative variables : similarity indices, Jaccard index, etc.

Doing factor analysis followed by clustering

- Qualitative data : MCA outputs quantitative principal components
- Factor analysis eliminates the last components, which are just noise ⇒ more stable clustering

Doing factor analysis followed by clustering

Representation of the tree and classes on two factor axes
 FA gives continuous information, the tree gives
 discontinuous information. The tree hints at information
 hidden in further axes

- 1 Introduction
- 2 Principles of hierarchical clustering
- 3 Example
- 4 Partitioning algorithm : K-means
- **5** Extras
- 6 Characterizing classes of individuals

The class make-up: using "model individuals"

Model individuals: the ones closest to each class center

Goals :

- Find the variables which are most important for the partition
- Characterize a class (or group of individuals) in terms of quantitative variables
- Sort the variables that best describe the classes

Questions :

- Which variables best characterize the partition
- How can we characterize individuals in the 1st class?
- Which variables describe them best?

Characterizing/describing classes

Which variables best represent the partition?

- For each quantitative variable :
 - build an analysis of variance model between the quantitative variable and the class variable
 - do a Fisher test to detect class effect
- Sort the variables by increasing p-value

```
Eta2
                P-value
         0.8990 1.108e-10
October
March
         0.8865 3.556e-10
November 0.8707 1.301e-09
September 0.8560 3.842e-09
     0.8353 1.466e-08
April
February 0.8246 2.754e-08
December 0.7730 3.631e-07
January
        0.7477 1.047e-06
        0.7160 3.415e-06
August
July
        0.6309 4.690e-05
         0.5860 1.479e-04
May
June
         0.5753 1.911e-04
```


Tamparatura

1st idea : if the values of X for class q seem to be randomly drawn from all the values of X, then X doesn't characterize class q.

2nd idea : the more a random draw appears unlikely, the more X characterizes class q.

Idea : use as reference a random draw of n_q values from N

What values can \bar{x}_q take? (i.e., what is the distribution of \bar{X}_q ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \, \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ because $ar{X}_q$ is a mean

$$\implies \ \, \mathsf{Test \ statistic} = \frac{\bar{x}_q - \bar{x}}{\sqrt{\frac{s^2}{n_q} \ \left(\frac{N - n_q}{N - 1}\right)}} \sim \mathcal{N}(0, 1)$$

- If $|\text{test statistic}| \ge 1.96$ then X characterizes class q
- and the more the test statistic is large, the better *X* characterizes class *q*.

Idea: rank the variables by decreasing |test statistic|

\$quanti\$'1'

	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
July	-1.99	16.80	18.90	2.450	3.33	0.046100
June	-2.06	14.70	16.80	2.520	3.07	0.039600
August	-2.48	15.50	18.30	2.260	3.53	0.013100
May	-2.55	10.80	13.30	2.430	2.96	0.010800
September	-3.14	11.00	14.70	1.670	3.68	0.001710
January	-3.26	-5.14	0.17	2.630	5.07	0.001130
December	-3.27	-2.91	1.84	1.830	4.52	0.001080
November	-3.36	0.60	5.08	0.940	4.14	0.000781
April	-3.39	4.67	8.38	1.550	3.40	0.000706
February	-3.44	-4.60	0.96	2.340	5.01	0.000577
October	-3.45	5.76	10.10	0.919	3.87	0.000553
March	-3.68	-1.14	4.06	1.100	4.39	0.000238

\$'2' NULL

\$'3'

	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
September	3.81	21.20	14.70	1.54	3.68	0.000140
October	3.72	16.80	10.10	1.91	3.87	0.000201
August	3.71	24.40	18.30	1.88	3.53	0.000211
November	3.69	12.20	5.08	2.26	4.14	0.000222
July	3.60	24.50	18.90	2.09	3.33	0.000314
April	3.53	14.00	8.38	1.18	3.40	0.000413
March	3.45	11.10	4.06	1.27	4.39	0.000564
February	3.43	8.95	0.96	1.74	5.01	0.000593
June	3.39	21.60	16.80	1.86	3.07	0.000700
December	3.39	8.95	1.84	2.34	4.52	0.000706
January	3.29	7.92	0.17	2.08	5.07	0.000993
May	3.18	17.60	13.30	1.55	2.96	0.001460

Which variables best characterize the partition?

- For each qualitative variable, do a χ^2 test between it and the class variable
- Sort the variables by increasing *p*-value

```
$test.chi2
p.value df
Area 0.001195843 6
```

Does the *South* category characterize the 3rd class?

	Cluster 3	Other cluster	Total
South	$n_{mc} = 4$	1	$n_m = 5$
Not south	0	18	18
Total	$n_c = 4$	19	n = 23

Test: H_0 : $\frac{n_{mc}}{n} = \frac{n_m}{n}$ versus H_1 : m abnormally overrepresented in C

Under
$$H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$$
 $P_{H_0}(N_{mc} \ge n_{mc})$

Cluster 3

$$\frac{4}{5} \times 100 = 80 \; ; \; \frac{4}{4} \times 100 = 100 \; ; \; \; \frac{5}{23} \times 100 = 21.74 \; ; \; \; P_{\mathcal{H}(4, \frac{5}{23}, 23)}[N_{mc} \ge 4] = 0.000564$$

 \implies H_0 rejected, South is overrepresented in the 3rd class Sort the categories in terms of *p*-values

These are also quantitative variables

\$'1'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.1	-3.32	-3.37	0	0.85	3.15	0.000908
\$ '2'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.3	-2.41	-0.18	0	0.22	0.36	0.015776
\$'3'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.1	3.86	5.66	0	1.26	3.15	0.000112

- Clustering can be done on tables of individuals vs quantitative variables
 - ⇒ MCA transforms qualitative variables into quantitative ones
- hierarchical clustering gives a hierarchical tree ⇒ number of classes
- K-means can be used to make classes more robust.
- Characterize classes by active and supplementary variables, quantitative or qualitative

More

Husson F., Lê S. & Pagès J. (2017) Exploratory Multivariate Analysis by Example Using R 2nd edition, 230 p., CRC/Press.

The FactoMineR package for performing clustering: http://factominer.free.fr/index_fr.html

Movies on Youtube :

- a Youtube channel: youtube.com/HussonFrancois
- a playlist with 11 movies in English
- a playlist with 17 movies in French