Primary Productivity Model based on satellite observation

Article		
CITATION	S	READS
0		68
1 autho	r:	
65	Ichio Asanuma	
	Tokyo University of Information Sciences	
	88 PUBLICATIONS 1,563 CITATIONS	
	SEE PROFILE	
Some of	f the authors of this publication are also working on these related projects:	
Project	Office of Naval Research - Global View project	

Primary Productivity Model based on satellite observation

August 2006 at INPE, Brazil

Ichio Asanuma, Prof.
The Tokyo University of Information Sciences

1. Introduction and simple primary productivity model

- 1. Carbon cycle
- 2. Definition of primary productivity
- 3. Simple primary productivity model
- 4. Monthly binned data
 - a. Chlorophyll-a concentration
- 5. Practice
 - a. How to play on SeaDAS
 - b. How to implement simple primary productivity model

Why primary productivity?

- Phytoplankton is the base of food chain followed by zooplankton and fish.
- Phytoplankton has a role to transport carbons into a deep water (biological pump).
- It is necessary to evaluate a contribution of phytoplankton in a carbon cycle.

Approach:

- Modeling to estimate primary productivity from satellite observations.
- Regional to global model.

The global carbon cycle

"Wigley, T.M.L. and Schimel,D.S. (2000) The Carbon Cycle" shows the reservoirs and fluxes (GtC/yr) relevant to the anthropogenic perturbation as annual averages over 1980 to 1989.

CO₂ and O₂ cycle

$$CH_2 + 3/2O_2$$
? $CO_2 + H_2O$

$$CO_2 + H_2O$$

Fossil-fuel burning

=destruction of organic matter

CH2: fossil fuel

$$H2O + CO2 \rightleftharpoons CH2O + O2$$

Photosynthesis and respiration

= formation of organic matter

CH2O: terrestrial organic matter

$$CO_2 + CO_3 + H_2O \Longrightarrow 2HCO_{\Re}$$
 Exerctions of the carbon

system in seawater

CO₂: carbon dioxide

CO3: carbonate

HCO₃: bicarbonate

The exchanges of carbon gasses across the air-sea interface are driven by disequilibrium between the air and sea, where a natural state seeks for a chemical equilibrium.

Uncertainty of photosynthesis processes

The approximate magnitude of net carbon fixation and biomass in the oceanic and terrestrial environments is known within approximately a 30 % uncertainty.

Table. Comparison of productivity and biomass in marine and terrestrial ecosystems.

Ecosystem Type	Total Net Primary Productivity (10 ¹⁵ g/yr)	Total Living Plant Biomass (10 ¹⁵ g)	Turnover Time (years)
Marine	25 – 50	1 - 2	0.02 - 0.08
Terrestrial	50 - 75	600 - 800	8 -16

From Falkowski et al. (1998)

Uncertainty of photosynthesis processes

The oceanic and terrestrial ecosystems exhibits different aspects:

- 1. The absolute magnitude of carbon fixation attributed to marine photosynthetic organisms accounts for approximately 40 % of the global total,
- 2. The Oceanic photosynthetic organisms turn over much more rapidly than their terrestrial counterparts, and
- 3. The Marine photosynthetic organisms, composed almost entirely of single-celled phytoplankton, account for less than 1 % of the total global plant biomass.

Biological pump

The biological pump is proposed by Volk and Hoffert (1985), which sustains a steady-state, air-sea gradient in inorganic carbon as a carbon flux.

Major questions on the oceanic biological pump in the global climate are:

- 1. Is the biological pump changing or is it in steady state?
- 2. If it is changing, what is the sign of the change, and how will the change affect atmospheric gas composition?
- 3. What could cause the biological pump to change and what is the capacity of the ocean to remove or add CO2 from, or to, the atmosphere via biological processes?

Why primary productivity?

- Phytoplankton in the water fixes inorganic carbons into organic carbons through phtosynthesis.
- In the photosynthesis,
 chlorophyll-a receives light and
 associated pigments transfer
 light energy to chlorophyll-a.
- Chlorophyll-a ingest inorganic carbon and nutrients (NO3, P, Si) with light energy.

$$2H2O + CO2 + light \longrightarrow$$

$$(CH2O) + H2O + O2$$

CO2: oxidized or inorganic form of carbon as;

CO₂ carbon dioxide

HCO3 bicarbonate

CO₃² carbonate

CH2O: organic matters

→: photosynthesis

-: respiration

$$2H2O + CO2 + light$$
 \longrightarrow $(CH2O) + H2O + O2$

+ light

Chlorophyll-a absorbs blue-green and red photon.

Antenna (associated pigments) absorbs other spectrum photon.

$$P_n = P_G - R_l$$

 P_n : Net photosynthesis

PG: Gross photosynthesis is defined as the number of electrons photochemically produced from the splitting of water

R1: All the losses of fixed carbon due to respiratory processes of the photosynthetic organism *in the light*.

Photosynthesis can occur only in the light.

$$PP = ? (P_n - R_d)dt$$

PP : Primary productivity

Primary productivity has dimensions of carbon fixed, or oxygen evolved, per unit area and per unit of time (Rate of primary production).

 P_n : Net photosynthesis

Rd: **Dark** respiration by the photosynthetic organism. (Respiratory losses in the dark.)

$$PP_{total} = ? PP_{dd}$$

PPtotal: Integrated water column primary productivity.

Export and new primary production

14

Export and new primary production

Nutrients

- vertical fluxes from the ocean interior
- biological nitrogen fixation
- atmospheric deposition
- lateral fluxes from terrestrial runoff

Wavelength resolved models (WRMs)

$$SPP = ?_{?=400}?_{sunrise}?_{z=0}f(?,t,z)PAR(?,t,z)a*(?,z)Chl(z) d?dtdz - R$$

Wavelength integrated models (WIMs)

$$SPP = ?_{sunrise}?_{z=0}^{sunset} F(t,z) PAR(t,z) a*(z) Chl(z) dtdz - R$$

Time integrated models (TIMs)

$$S PP = ?$$
 $z=0$
 Zeu
 $P^b(z) PAR(z) DL Chl(z) dz$

Depth integrated models (DIMs)

$$S PP = P^{b}_{opt} PAR(0) DL Chl Zeu$$

Wavelength resolved models (WRMs)

$$SPP = ?_{?=400}?_{sunrise}?_{z=0}f(?,t,z)PAR(?,t,z)a^*(?,z)Chl(z) d?dtdz - R$$

f(?,t,z): chlorophyll specific quantum yields for *available*

photosynthetically active radiation (PAR),

PAR(?,t,z): photosynthetically active radiation,

a *(?,z) : chlorophyll specific spectral absorption coefficient for

phytoplankton, which is normalized for chl-a conc.

Chl(z): chlorophyll a concentration at depth z,

R: daily phytoplankton respiration,

Zeu : depth of the euphotic zone,

? : wavelength,

t: time,

z: depth.

Wavelength integrated models (WIMs)

$$S PP = ?_{sunrise}?_{z=0}^{sunset} F(t,z) PAR(t,z) Chl(z) dtdz - R$$

F(t,z): chlorophyll specific quantum yields for *absorbed*

photosynthetically active radiation (PAR),

PAR(t,z): photosynthetically active radiation,

Chl(z): chlorophyll a concentration at depth z,

R: daily phytoplankton respiration.

Time integrated models (TIMs)

$$S PP = ?$$
 $z=0$
 Zeu
 $P^b(z) PAR(z) DL Chl(z) dz$

 $P^{b}(z)$: chlorophyll specific photosynthetic rate,

PAR(z): photosynthetically active radiation,

DL : day length,

Chl(z): chlorophyll a concentration at depth z.

Depth integrated models (DIMs)

$$S PP = P^{b}_{opt} PAR(0) DL Chl Zeu$$

 P^{b}_{opt} : optimum chlorophyll specific carbon

fixation rate within a water column,

PAR(0): photosynthetically active radiation,

DL : day length,

Chl : chlorophyll a concentration,

Zeu : depth of euphotic zone.

Measurement of primary productivity

13C enriched Sodium Hydrogen Carbonate ([13C]-NaHCO₃), or 14C enriched Sodium Hydrogen Carbonate ([14C]-NaHCO₃)

c-1. In-situ incubation

b. Tracer spiking

Polycarbonate bottle

c-2. Simulated in-situ incubation on deck (light source=the sun) in lab (light source=artificial light)

before sunrise, or shortly before local apparent noon e.g. Niskin water sampling bottle

In-Situ Incubation Plan for K95-06 (Jan, 1996) JAMSTEC

13C Bottle 1000 m lx 2 at each incubation

Measurement of primary productivity

3. Simple primary productivity model

Implementation of empirical model

• Epply et al. (1985)

$$log_{10}(dpc) = 3.0 + 0.5log_{10}(C_K)$$

• Berger (1989)

$$log_{10}(dpc) = 2.793 + 0.559log_{10}(C_K)$$

where

dpc: daily productivity, mgCm⁻²d⁻¹

 C_K : average chlorophyll *a* concentration, mgChl m⁻³

3. Simple primary productivity model

Implementation of empirical model

- One approach to expand the seasonal and spatial range
- Annual primary production algorithm
- Annual mean chlorophyll a concentration within the top optical depth
- Daily phytoplankton particulate organic carbon production, averaged monthly and annually.

$$Ppc = 135.3 + 47.8 C_K$$

Ppc : annual primary productivity, gCm-2yr-1

 C_K : annual mean chlorophyll a concentration, mgChlm-3

SeaDAS practice 1

Ichio Asanuma
The Tokyo University of Information Sciences

- 1. Estimate daily primary productivity for one month of the globe with the empirical model proposed by Berger (1989).
- 2. Estimate annual primary productivity with the annual algorithm by Behrenfeld et al. (1997).

- 2-1. Depth integrated primary productivity model
- 2-2. Monthly binned data
 - a. Chlorophyll-a concentration
 - b. Sea surface temperature
 - c. PAR
 - d. K490
- 2-3. Practice 2
 - a. How to play on SeaDAS
 - b. How to implement temperature and PAR dependent primary productivity model

Depth integrated primary productivity models (DIMs)

$$S PP = P^{b}_{opt} PAR(0) DL Chl Zeu$$

 P^{b}_{opt} : optimum chlorophyll specific carbon

fixation rate within a water column,

PAR(0): photosynthetically active radiation,

DL : day length,

Chl : chlorophyll a concentration,

Zeu : depth of euphotic zone.

Depth integrated primary productivity models (DIMs)

Simplest one: Chlorophyll a concentration only

(Smith and Baker 1978, Eppley et al. 1985)

Second level: Depth-integrated chlorophyll-a concentration

Daily integrated surface PAR

(Falkowski 1981, Platt 1986)

Third level: Depth of euphotic zone

(Light penetration depth of 1 % surface irradiance)

Depth-integrated chlorophyll-a concentration

Daily integrated surface PAR with day length

(Wright 1959, Platt and Sathyendranath 1993, Behrenfeld and Falkowski 1997)

Depth integrated primary productivity models (DIMs)

$$S PP = P^{b}_{opt} PAR(0) DL Chl Zeu$$

will be;

$$S PP = P_{opt}^b f(PAR_0) DL Chl_{surf} Z_{eu}$$
,

where

 $f(PAR_0)$ is the irradiance dependent function, Chl_{surf} is the surface chlorophyll a concentration, Z_{eu} is the depth of the euphotic zone.

Behrenfeld and Falkowski (1997) proposed the depth integrated model.

$$S PP = C_{surf} Z_{eu} P_{opt}^{b} DL 0.66125 PAR_{0}/(PAR_{0}+4.1),$$

where

```
S PP is the daily carbon fixation ( mgC.m<sup>-2</sup>.d<sup>-1</sup>), C_{surf} is the chlorophyll concentration ( mg.Chl.m-3 ), Z_{eu} is physical depth receiving 1 % of surface irradiance ( m ), P^{b}_{opt} is the optimum chlorophyll-specific carbon fixation rate ( mg C (mg Chl)-1 h-1 ), DL is the day length ( h ), PAR_{0} is the photosynthetically available radiation ( Ein.m-2.d-1).
```

- S PP is the daily carbon fixation from the surface to Z_{eu} (mgC.m⁻².d⁻¹),
- C_{surf} is the chlorophyll concentration measured at the depth nearest the surface or as derived by satellite (mg.Chl.m-3),
- Z_{eu} is physical depth receiving 1 % of surface irradiance, which is equivalent to 4.6. divided by the mean attenuation coefficient for PAR (i.e. k_d) (m),
- $P^b_{\ opt}$ is the optimum chlorophyll-specific carbon fixation rate observed within a water column measured under conditions of variable irradiance during incubations typically spanning several hours (mg C (mg Chl)-1 h-1),

DL is the day length (h),

 PAR_0 is the photosynthetically available radiation (Ein.m-2.d-1).

S PP is the daily carbon fixation from the surface to Z_{eu} (mgC.m⁻².d⁻¹),

 C_{surf} is the chlorophyll concentration measured at the depth nearest the surface or as derived by satellite (mg.Chl.m-3).

From the equation, the integrated chlorophyll concentration along the water column is given as;

$$S C = C_{surf} \times Zeu$$
 (mg Chl m-2).

 Z_{eu} is physical depth receiving 1 % of surface irradiance, which is equivalent to 4.6. divided by the mean attenuation coefficient for PAR (i.e. k_d) (m).

$$Zeu = 4.6/k_d,$$

where Zeu is the euphotic depth, k_d is the attenuation coefficient for PAR $^{\sim} k_{d490}$.

For reference, the integration depth, which ocean color sensor observes, is proposed by the next equation.

$$Zint = 1.0/k_d$$

Ryther and Yentsch (1957) $P^{b}_{opt} = 3.7 \text{ mg C (mg Chl)}^{-1} \text{ h}^{-1} \text{)} \cdot \cdot \cdot \cdot \text{ B}$ Falkowski (1981) $P^b_{opt} = 2.5 \,\mathrm{mg}\,\mathrm{C}\,\mathrm{(mg\,Chl)^{-1}\,h^{-1}}\,\mathrm{)}$ · · · · · A Cullen (1990) Megard (1972) $P^{b}_{opt} = 0.118 \ T + 1.25 \ \text{mg C (mg Chl)}^{-1} \ \text{h}^{-1}) \ \cdot \ \cdot \ \cdot \ \cdot \ \text{D}$ Antoine et al. (1996) following to Eppley (1972) $P^{b}_{opt} = 10^{(0.0275T-0.07)}$ normalized to 4.6 mg C (mg Chl)⁻¹ h⁻¹) at 20d-C · · · · · Behrenfeld and Falkowski (1997) $P_{opt}^{b} = -3.27x10^{-8}T^{7} + 3.4132x10^{-6}T^{6} - 1.348x10^{-4}T^{5}$ $+2.462x10^{-3}T^{4}-0.0205T^{3}+0.0617T^{2}+0.2749T+1.2956$

$$\cdot \cdot \cdot F$$

Balch et al. (1992)

$$P^{b}_{out} DL = 10^{(-0.054T+2.21)} \cdot \cdot \cdot \cdot G$$

Lmnnl. Oceunogr. 42(1), 1997. I-20 ©1997, by the Amencan Society of Limnology and Oceanography, Inc January 1997 Volume 42 Number 1 Photosynthetic rates derived from satellite-based chlorophyll concentration Michael J. Behrenfeld and Paul G. Falkowski Oceanographic and Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000 Lmnnl. Oceunogr.. 42(1), 1997. I-20 ©1997, by the Amencan Society of Limnology and Oceanography, Inc January 1997 Volume 42 Number 1 Photosynthetic rates derived from satellite-based chlorophyll concentration Michael J. Behrenfeld and Paul G. Falkowski Oceanographic and Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000

Fig. 7. Measured (?; +SD) and modeled (——; Eq. 11) median value of the photoadaptive parameter, Pbopt, as a function of sea surface temperature. Dashed curve indicates the theoretical maximum specific growth rate (μ ; d-l) of photoautotrophic unicellular algae described by Eppley (1972), which is used in a variety of productivity models (e.g. Balch and Byrne 1994; Antoine et al. 1996).

Lmnol Oceanogr, 42(7), 1997, 1479-1491

© 1997, by the American Society of Limnology and Oceanography, Inc A consumer's guide to phytoplankton primary productivity models

Michael J. Behrenfeld and Paul G. Falkowski

Department of Applied Science, Oceanographic and Atmospheric Sciences Division, Brookhaven National Laboratory,

Upton, New York 11973-5000

Lmnol Oceanogr, 42(7), 1997, 1479-1491
© 1997, by the American Society of Limnology and Oceanography, Inc
A consumer's guide to phytoplankton primary productivity models
Michael J. Behrenfeld and Paul G. Falkowski
Department of Applied Science, Oceanographic and Atmospheric Sciences Division, Brookhaven
National Laboratory,
Upton, New York 11973-5000

Summary of published models for estimating the optimum chlorophyll-specific carbon fixation rate within a water column (Pbopt).

A = calculated value implicit in the 9 model of Falkowski (1981).

B = Ryther and Yentsch's (1957) estimate of 3.7 mg C (mg Chl)-' h -I.

C = Cullen's (1990) revised value for B of 4.8 mg C (mg Chl--l h-l.

D = Megard's (1972) model converted to hourly rates by dividing by 13.7 h (Eq. 32).

E = Eppley's (1972) equation for the optimum specific growth rates (Eq. 33) converted to carbon fixation by normalizing to 4.6 mg C (mg Chl)-' h-l at 20° C following Antoine et al. (1996).

F = Behrenfeld and Falkowski's (1997) seventh-order polynomial model.

G = Balch et al. (1992) (Eq. 34). H = Biphasic model of Balch and Byrne (1994) for the maximum achievable Pbopt (c alculated for 20-30" latitude using a carbon: chlorophyll ratio of 150 and expressed in units of mg C (mg Chl)-' h-l (see their Fig. 6). The left axis applies to models A-G and the right axis to model H. T' = Levitus climatological median upper ocean temperature (18.1"C) as computed by Antoine et al. (1996).

2-1. Depth integrated primary productivity models

Practice for P^b_{opt}

 P^b_{opt} is the optimum chlorophyll-specific carbon fixation rate observed within a water column measured under conditions of variable irradiance during incubations typically spanning several hours (mg C (mg Chl)-1 h-1).

Calculate Pb opt models from A to G on the Excel and plot its graphs.

2-2. Monthly binned data (Ca)

The chlorophyll-a concentration is the product of SeaWiFS, called OC4V4.

$$Ca = 10^{0.366-3.067R+1.930R^2+0.649R^3-1.532R^4}$$

where

$$R = log_{10}^{R} (r_{s}443 > R_{rs}490 > R_{rs}510 - R_{rs}555),$$

 R_{rs} is the remote sensing reflectance at the wavelength.

2-2. Monthly binned data (SST) The sea surface temperature is the product of MODIS.

The standard MODIS 11µm NLSST algorithm (non-linear sea surface temperature)

$$NLSST = c1 + c2(T31) + c3(T32 - T31) + c3(T32 - T31)(SST_{guess}) + c4(sec? -1)(T32 - T31),$$

where

T31 and T32 are the brightness temperature (deg-C) at bands 31 and 32, SST_{guess} is the first guess SST from Reynolds OISST products, ? is the satellite zenith angle,

c1 to c4 are coefficients derived by RSMAS.

2-2. Monthly binned data (PAR)

The photosynthetically active radiation (PAR) is the product of SeaWiFS, which is the integrated energy of the downwelling irradiance between 400 and 700 nm, (Einstein.m-2.day-1).

$$PAR = ? \begin{cases} sunset & 700 \\ ? & Ed(?,t)d?dt, \\ sunrise & 400 \end{cases}$$

where Ed(?,t) is the downwelling spectrum irradiance at

? nm at t.

2-2. Monthly binned data (K490)

The diffused attenuation coefficient at 490 nm (K490) is the product of SeaWiFS. K490 indicates the turbidity of the water column – how visible light in the blue – green region of the spectrum penetrates within the water column.

$$K(490) = K_w(490) + A[L_w(?_1)/L_w(?_2)]^B,$$

where $K_w(490)$ is the diffuse attenuation coefficient for pure water, 0.016 m⁻¹,

$$A = 0.15645$$

$$B = -1.5401$$

$$?_1 = 490 nm$$

$$?_2 = 555 nm$$

SeaDAS practice 2

Ichio Asanuma
The Tokyo University of Information Sciences

1. Estimate a primary productivity with SST and PAR dependent model for P^b_{opt} of A to G.

3. Time and Depth resolved primary productivity model

- 1. Depth resolved primary productivity model
 - a. Vertical distribution of PAR
 - b. Vertical distribution of chlorophyll-a
- 2. Monthly binned data
 - a. Chlorophyll-a concentration
 - b. Sea surface temperature
 - c. PAR and MODTRAN estimated PAR
- 3. Practice
 - a. How to implement the depth resolved primary productivity model

Time & depth resolved primary productivity model

$$PP_{eu} = ?_t?_z P^b(z, PAR(z, noon), T) C(z)$$

$$PAR_M(0,t)/PAR_M(0, noon)dz dt$$

 PP_{eu} ; primary productivity (mgC.m- 2 .day- 1)

 P^b ; carbon fixation rate (mgC.mgChl-a⁻¹.hour⁻¹)

PAR; photosynthetically available radiation observed (Ein.m⁻².day⁻¹)

 PAR_M ; photosynthetically available radiation MODTRAN estimated (Ein.m⁻².day⁻¹)

C; chlorophyll-a concentration (mg.m $^{-3}$)

T ; temperature (deg-C)

$Chl-a = 0.5 \text{ mg/m}^{-3}$

Chl-a = 1 .0 mg/m⁻³

Chl-a = 5.0 mg/m^{-3}

(1) Vertical distribution of PAR%

$$log(PAR\%) = (-0.025 C_0 - 0.017)Z + 2$$

(2) Vertical distribution of chlorophyll-a concentration

$$C(z)=[0.1-0.7C_0)exp\{-0.8PAR\%(z,C_0)\}]$$

 $exp\{-0.8PAR\%(z,C_0)\}+C_0$ (mg.m⁻³)

Vertical distribution of Chl-a and PAR

Pb function (red) fitted forobserved Pb (blue) as a function of PAR at temperature range

Pb function (red) fitted forobserved Pb (blue) as a function of PAR at temperature range

Pb function (red) fitted forobserved Pb (blue) as a function of PAR at temperature range

(8) Carbon Fixation Rate Pb(z,PAR₀,T)

$$P^{b}(z) = 17 [1-exp\{-0.04 \ a \ PAR\%(z) \ 0.01\}]$$
 $exp\{-0.3 \ b \ PAR\%(z) \ 0.01\}$
 $a=0.1 \ s \ PAR(0,day)+i$
 $s=-0.0001T^{3}+0.0036T^{2}-0.0007T+0.2557$
 $i=0.00024T^{3}-0.0113T^{2}+0.0868T-0.1042$
 $b=0.00048T^{3}-0.019T^{2}+0.1T+3.1214$

Carbon Fixation Rate as a function of SST & PAR

Asanuma 2001

(4c) Carbon fixation rate is given for PAR at noon.

```
PAR(noon)
=PAR(day) PAR_{M}(noon)/PAR_{M}(day)
```

PAR(noon): PAR on the surface at noon estimated

PAR(day) : Integrated PAR for a day observed.

 PAR_{M} : PAR computed by MODTRAN-4 for

day and hour by the oceanic atmosphere.

PAR on the surface in June by MODTRAN

PAR in June by MODTRAN4.3 (Ein.m-2.hour-1) (Model:Mid-Latitude Summer, Visibility:Ocean 23km)

Validation of the model

(1) Vertical distribution of PAR%

$$ln(PAR\%) = (-.0018 C_0^3 + .022 C_0^2 - .11 C_0 - .024)Z$$

(3) Kd for PAR

$$Ln(PAR(z)/PAR(0))$$
=(-.0018 C_0^3 +.022 C_0^2 -.11 C_0 -.024)Z

$$Kd = -.0018 C_0^3 + .022 C_0^2 - .11 C_0 - .024$$

SeaDAS practice 3

Ichio Asanuma
The Tokyo University of Information Sciences

- 1. Estimate a primary productivity by the time and depth resolved primary productivity model on the glove.
- 2. Estimate a primary productivity for the region of interest off Brazil.

SeaDAS practice 4

Ichio Asanuma

The Tokyo University of Information Sciences

- 1. Compare estimate primary productivity among models.
 - 1) Statistics of the region of interest.
 - a. on oligotrophic water
 - b. on eutrophic water
 - 2) Line profile along the meridian line.
- 2. Discuss the difference of estimated primary productivity.
- 3. Estimate a time series of primary productivity and discuss the temporal change.

References

- Falkouski, P. G., M. J. Behrenfeld, W. E. Esaias, W. Balch, J. W. Campbell, R. L. Iverson, D. A. Kiefer, A. Morel, and J. A. Yoder (1998) Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth, SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, Editors, TM-104566, 42, 36pp.
- Behrenfeld, M. J. and P. G. Falkowski (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20.
- Behrenfeld, M. J. and P. G. Falkowski (1997b) A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr., 42(7), 1479-1491.
- Balch, W. M. and C. F. Byrne (1994) Factors affecting the estimate of primary production from space. J. Geophys. Res., 99, C4, 7555-7570.
- Carr, M. E., et al. (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research II, 53, 741-770.
- Asanuma, I., J. Nieke, K. Mastumoto, T. Kawano (2003) Optical properties contraol primary productivity model on the East China Sea. in Frouin, J. R. (Ed.), Ocean Remote Sensing and Applications, 4892, SPIE, 312-319.
- Ryther, J. H. and C. S. Yentsch (1957) The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr., 2, 281-286.
- Falkowski, P. G. (1981) Light-shade adaptation and assimilation numbers. J. Plankton Res., 3, 203-216.
- Cullen, J. J. (1990) On models of growth and photosynthesis in phytoplankton.
 Deep-Sea Res., 37, 667-683.

References

- Megard, R. O. (1972) Phytoplankton, photosynthesis, and phosphorus in Lake Minnetonka, Minnesota. Limnol. Oceanogr., 17, 68-87.
- Antoine, D., J. –M. Andre, and A. Morel (1996) Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycles, 10, 57-69.
- Eppley, R. W. (1972) Temperature and phytoplankton growth in the sea. Fish. Bull., 70, 1063-1085.
- Balch, W. M., R. Evans, J. Brown, G. Feldman, C. McClain, and W. Esaias (1992) The remote sensing of ocean primary productivity: Use of new data compilation to test satellite models. J. Geophys. Res., 97, C2, 2279-2293.

Photosynthetic carotenoid (PSC) or Photo-protective carotenoids (PPC)