P1. DATA MINING TECHNIQUE FOR RETAIL INDUSTRY by Sameer

Note: This is a summary of detailed project. Only the Solution and Results are shown.

DESCRIPTION OF SOLUTION

The proposed study is performed in data mining tool 'Orange'. It is an open source data analysis and visualization tool, which performs data mining through Python scripting and visual programming. Clustering prove beneficial in gaining a broad knowledge of the data. Two clustering algorithm K-means and Hierarchical clustering algorithm is used to compare this study.

First, Data mining is performed. Here, data mining refers to exploring an existing large dataset to known hidden patterns, trends and relationships that are present in data. A small sample from large dataset is used to perform data mining. In case of this work, the selected dataset is very small so I am using the whole dataset for data mining process. The knowledge discovery from data (KDD) process was performed for data mining. After finding the hidden patterns and trends we can easily identify our goal and target variable to perform clustering algorithms. The below figure explain the steps of the KDD Process and the overall process of finding and interpreting patterns and trends from dataset.

1.1. KDD process for data mining in this work

The data mining task consist of the KDD process such as regression, classification, and clustering, etc. In the second step, the same dataset is used to predict the presence of heart disease, using different classification algorithms.

Steps in KDD process:

- 1. **Data Selection:** It is defined as the step where relevant data is retrieved from database and used to analysis. A target variable must be focus here.
- 2. **Data Pre-processing:** Data cleaning and preprocessing comprises removing noise or outliers in order to acquire the information needed to model. Also we decide techniques for handling missing data values.
- 3. **Data Transformation:** In this step data dimension reduction or data transformation takes place. In this step data is transformed into appropriate form required by mining procedure like regression or clustering.
- 4. **Data Mining:** It is defined as the techniques that are applied to extract hidden patterns and trends potentially useful.
- 5. **Pattern / Trends Evaluation:** This step is defined as identifying increasing patterns representing knowledge based on given measures. This can be done by finding score of each pattern, visualization, and report summary.
- 6. **Knowledge Representation:** This is defined as methods or a technique which utilizes visualization tools to represent data mining outcomes.

The proposed methodology of this study comprises of following steps as data collection, data understanding, data pre-processing, feature transformation and data mining.

1.2. Flowchart of the proposed study (Orange Data Mining Tool)

RESULTS

To find the number of clusters I have used silhouette coefficient score. Out of the 8 scores, the 6^{th} number gives the higher silhouette score. So, K=6 will be the optimal value to find clustering.

1.3. Silhouette Score for K number of cluster

From K-means clustering:

1.4. K-means clustering between age and annual income

1.5. K-means clustering between age and spending score

1.6. K-means clustering between annual income and spending score

For comparative analysis between two clustering algorithms, I have visualized the hierarchical clustering as shown below.

1.7. Hierarchical clustering between annual income and spending score

DISCUSSION

We can see that Fig 1.6 and Fig 1.7 having similar features but the cluster is more accurate and objects are more tightly bound in K-means clustering. The centroid in K-means clustering works well while the Euclidean distance metric is not able to measure the distance between two objects in hierarchical clustering.

P2. DATA MINING APPROACH FOR HEART DISEASE PREDICTION

DESCRIPTION OF SOLUTION

This study is performed in data mining tool 'Orange'. It is an open source data analysis and visualization tool, which performs data mining through Python scripting and visual programming. The work is performed in two steps. First is data mining and second is machine learning. In this study data mining techniques such as K-means clustering and classification are used in extracting knowledge from database.

In first step, Data mining refers to exploring an existing large dataset to known hidden patterns, trends and relationships that are present in data. A small sample from large dataset is used to perform data mining. In case of this work, the selected dataset is very small so I am using the whole dataset for data mining process. The knowledge discovery from data (KDD) process was performed for data mining. After finding the hidden patterns and trends we can easily identify our goal and target variable to perform machine learning step for prediction.

The data mining task consist of the KDD process such as regression, classification, and clustering, etc. In the second step, the same dataset is used to predict the presence of heart disease, using different machine learning classification algorithms.

The proposed methodology of this study comprises of following steps as data collection, data understanding, data pre-processing, feature transformation and data mining.

2.1 Flowchart of the proposed study (in Orange tool)

Data Info

Name: heart_1 Rows: 1025 Features: 3 categorical, 10 numeric Target: categorical outcome 'target'

2.2 Data info of Heart Disease dataset

	Name	Туре	Role	Values
1	age	N numeric	feature	
2	sex	C categorical	feature	0, 1
3	ср	N numeric	feature	
4	trestbps	N numeric	feature	
5	chol	N numeric	feature	
6	fbs	C categorical	feature	0, 1
7	restecg	N numeric	feature	
8	thalach	N numeric	feature	
9	exang	C categorical	feature	0, 1
10	oldpeak	N numeric	feature	
11	slope	N numeric	feature	
12	ca	N numeric	feature	
13	thal	N numeric	feature	
14	target	C categorical	target	0, 1

2.3 Snapshot of data type and role

2.4 Distribution of age in dataset

2.5 Distribution of cholesterol in different category of patients

Feature Statistics:

2.6 Feature statistics of the dataset

Correlation between features:

-		lada.					
Pear	son corre	elation			0.120		
				23	-0.129	ca	restecg
1	-0.575	oldpeak	slope	24	+0.128	chol	trestbps
2	+0.395	slope	thalach	25	-0.124	restecg	trestbps
3	-0.390	age	thalach	26	-0.120	slope	trestbps
4	+0.371	age	ca	27	-0.114	thal	thalach
5	-0.350	oldpeak	thalach	28	-0.108	ca	slope
6	+0.307	ср	thalach	29	+0.104	ca	trestbps
7	+0.305	ca	oldpeak	30	-0.097	slope	thal
8	+0.271	age	trestbps	31	+0.089	chol	thal
9	-0.266	ca	thalach	32	+0.086	restecg	slope
10	-0.230	ca	ср	33	-0.082	chol	ср
11	+0.220	age	chol	34	-0.072	age	ср
12	+0.208	age	oldpeak	35	+0.071	age	thal
13	+0.203	oldpeak	thal	36	+0.065	chol	oldpeak
14	+0.187	oldpeak	trestbps	37	+0.058	thal	trestbps
15	-0.175	ср	oldpeak	38	-0.050	oldpeak	restecg
16	-0.174	ср	thal	39	+0.048	restecg	thalach
17	-0.169	age	slope	40	+0.044	ср	restecg
18	-0.147	chol	restecg	41	-0.039	thalach	trestbps
19	+0.147	ca	thal	42	+0.038	ср	trestbps
20	+0.141	ca	chol	43	-0.022	chol	thalach
21	-0.133	age	restecg	44	-0.020	restecg	thal
22	+0.132	ср	slope	45	-0.014	chol	slope

2.7 Correlation between the numerical features

2.8 Correlation between patient age and resting blood pressure

2.9 Correlation between slope of exercise and heart rate

OUTLIER DETECTION

2.10 Detecting the outliers in 'chol' attributes

MISSING VALUES

2.11 Handling missing values

TRAIN/TEST SPLIT VALIDATION

2.12 Train/Test split validation

RESULTS

K-means clustering on Heart disease dataset:

2.13 Clustering in age and maximum heart rate (thalach)

2.14 Clustering in age and resting blood pressure (trestbps)

2.15 Clustering in age and cholesterol (chol)

Settings							
Sampling type: Stratified Shuffle split, 2 random samples with 80% data Target class: Average over classes							
Scores	AUC	CA	F1	Precision	Recall		
Naive Bayes	0.9294285714285714	0.8658536585365854	0.8658608441350782	0.8658783338529664	0.8658536585365854		
Logistic Regression Decision Tree	0.9480952380952381 0.955654761904762	0.8853658536585366 0.9365853658536586	0.8849882152974671 0.9365763117939574	0.8884594585529441 0.9381737299362701	0.8853658536585366 0.9365853658536586		

2.17. Snapshot of accuracy and performance evaluation measures

2.18 Accuracy of machine learning algorithm

DISCUSSION:

The most suitable model in building a Heart disease predictor is based on the performance of the machine algorithm. The performance summary is given in Fig 2.17.

From Fig 2.17 we can see that DT outperforms all the ML algorithms. DT with train/test ratio of 80:20 has the best predictive accuracy of 93.66%.