1 Полугруппы и моноиды

Определение 1.1 (Полугруппа). Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Пример 1.1 (Примеры полугрупп).

Теорема 1.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n = 1, нет скобок

Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 1.2 (Нейтральный элемент). e_l называется нейтральным слева в полугруппе, если $e_l*a=a$ для всех $a,\ e_r$ называется нейтральным справа в полугруппе, если $a*e_r=a$ для всех $a,\ e$ нейтральный слева и справа

Пример 1.2 (Примеры нейтрального элемента). $(\omega, +)$ - 0, (ω, \cdot) - 1, (ω, max) - 0, (ω, min) - нет нейтрального

Теорема 1.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие. Если нейтральный элемент существует, то он единственный.

Определение 1.3 (Моноид). Моноид - полугруппа с нейтральным элементом ИЛИ

Моноид - это элементы многообразия, которые определяются равенствами

$$\begin{cases} x * (y * z) = (x * y) * z \\ x * e = x \\ e * x = x \end{cases}$$

Пример 1.3 (Примеры моноидов). $(\omega, +, 0), (\omega, \cdot, 1), (\omega, max, 0)$

 A^A - множество одноместных функций из A в A $h=f\circ g$, если h(a)=g(f(a)) для любого $a\in A$

Доказать что (A^A, \circ) - моноид

Доказательство. e(a) = a для всех a, тогда

$$\begin{cases}
(e \circ f)(a) = f(e(a)) = f(a) \\
(f \circ e)(a) = e(f(a)) = f(a)
\end{cases} e \circ f = f \circ e = f$$

e - нейтральный элемент

$$((f \circ g)h)(a) = h(f \circ g)(a) = h(g(f(a)))$$
$$(f(g \circ h))(a) = (g \circ h)(f(a)) = h(g(f(a)))$$
$$((f \circ g)h)(a) = (f(g \circ h))(a)$$

Выполняется ассоциативность, соответственно (A^A, \circ, e) - моноид

Определение 1.4 (Свободный моноид). Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&, \varepsilon), A^*$ - множество всех слов в алфавите A, & - конкатенация, ε - пустое слово.

Теорема 1.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$
$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 1.4 (Примеры свободных моноидов и их гомоморфных образов). Пусть дан алфавит $A = \{1\}$, который образует $A^* = \{\varepsilon, 1, 11, ...\}$ и моноид $\mathcal{A} = (A^*; \&, \varepsilon)$, тогда

- 1. $mathcal B = (1; \cdot, 1)$, порождённый элементами A является гомоморфным образом A, $h: A \to B$, h(1...1) = 1
- 2. $mathcalC = (\omega; +, 0)$, порождённый элементами A (натуральные числа можно получить сложением единицы) является гомоморфным образом A, $h: A \to B$, $h(\underbrace{1...1}) = n$

Определение 1.5 (Циклический моноид). Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e, a, a^1, a^2, a^3, \dots$$
 - элементы моноида $< a >$

- 1. $a^i \neq a^j$ при $i \neq j$ $h : \langle a \rangle \rightarrow (\{a\}^*; \&), h(a^i) = i$ - изоморфизм.
- 2. $a^i = a^j$ при $i \neq j$

$$k = i + (k - i) = i + y(j - i) + r$$
$$r = (k - i)mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} = \underbrace{(a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r}}_{a^{i}a^{i-i} = a^{i+j-i} = a^{j} = a^{i})}_{q} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} = \underbrace{a^{i}a^{r} = a^{i+r}(r < j - i; i + r < j)}_{q}$$

к чему весь этот список?

Пример 1.5 (Пример циклического моноида). $\langle a \rangle = (\{e, a, ...\}; *)$ Таблица умножения (*) -

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

Теорема 1.4. Если j - наименьшее число такое что $a^i = a^j$ для какогото i < j, то < a > codeржит ровно <math>j элементов

Доказательство.

$$\underbrace{e,a^1,...,a^{j-1}}_{\text{нет равных}},\underbrace{a^j=a^i,a^{j+1}=a^{i+1},...}_{\text{повоторяющиеся}}$$

если j - номер наименьшего повтора, тогда

$$a^x * a^y = \begin{cases} a^{x+y}, & \text{если } x+y < j \\ a^{i+(x+y-i)mod(j-i)}, & \text{если } x+y \ge i \end{cases}$$

$$x + y = k,$$

$$k = i + (k - i \cdot z + r)$$

$$r = (k - i) mod(j - i)$$

$$a^{k} = a^{i+z}$$

$$a^{x+y} = a^k = a^{i+(x+y-i)mod(j-i)}$$

Определение 1.6 (Идемпотент). Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 1.6 (Примеры идемпотентов). $(\omega; +)$ - 0

Определение 1.7 (Моноид типа (i, j-i)). Моноид типа (i, j-i) - моноид с элементами

???

4

Теорема 1.5. В моноиде типа (i, j - i), где i > 0 существует идемпотент $b \neq e$

Определение 1.8 (Обратный элемент). b_l - левый обратный для элемента a, если $b_l*a=e$, b_r - правый обратный для элемента a, если $a*b_l=e$, b - обратный для элемента a, если b*a=a*b=e

Пример 1.7. Пример чего-то: Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & npu \ x < b \\ ab & npu \ x \ge b \end{cases}$$

Доказательство.

Пример 1.8 (Пример изоморфизма). Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A

Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$

$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 1.9 (Пример полугруппы). Является ли $(\omega, HOД())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$HOД(HOД(x,y),z) = HOД(x,HOД(y,z))$$

1. \Rightarrow Пусть d:d| НОД(x,y),d|zНадо доказать d| НОД(y,z),d|x

$$d \mid \text{HOД}(x, y) \Rightarrow d \mid x$$

 $d \mid \text{HOД}(x, y) \Rightarrow d \mid y$
 $d \mid x, d \mid y \Rightarrow d \mid \text{HOД}(y, z)$

2. ⇐ также

Пример 1.10 (Построение моноидов). *Построить все моноиды из двух* элементов $\{e,x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Таблица умножения $(*_1)$

	e	x
e	e	x
x	x	e

Таблица умножения $(*_2)$

	e	x
e	e	x
x	x	x

Доказать их ассоциативность: a * (b * c) = (a * b) * c

1. a = e

$$e * (b * c) = b * c = (e * b) * c$$

- $2. b = e \ make$
- 3. c = e также
- 4. a = b = c = x

$$x * (x * x) = x * e = e * x = (x * x) * x$$

Все остальные моноиды или изоморфны или тривиальны

Теорема 1.6. Если в конечном моноиде каждый элемент имеет левый обратный, то существует правый обратный

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет левый обратный, то хотя бы для одного не существует правый обратный: $ab_r \neq e$ для всех b_r

Определение 1.9 (Сократимый элемент). Сократимый слева (справа) - такой элемент моноида, что из $ax = ay \ (xa = ya)$ следует x = y

Пример 1.11 (Пример сократимого элемента). ($\mathbb{Z}, +, 0$), $x + a = y + a \Rightarrow x = y$

Теорема 1.7. Неединичные идемпотенты несократимы

Доказательство. $a\cdot a=a=e\cdot a$ но $a\neq e$, соответственно a несократим справа, $a\cdot a=a=a\cdot e$ но $a\neq e$, соответственно a несократим слева a несократим

Теорема 1.8. Все обратимые слева(справа) элементы сократимы слева(справа)

Доказательство. Пусть a - обратимый слева, тогда $ax = ay \Rightarrow b_l ax = b_l ay \Rightarrow ex = ey \Rightarrow x = y$, следовательно a - сократимый слева

Пример 1.12 (Пример обратимого элемента). ($\mathbb{Z}^+,\cdot,1$), обратимый только 1, сократимы все. (Какой к половым органам это пример?)