IMPORTING THE DEPENDENCIES

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

DATA COLLECTION AND PROCESSING

In [45]:	titanic_	_data	= pd.read	d_csv('	titanic.c	sv')						
In [46]:	titanic_	_data.	head()									
Out[46]:	Passer	gerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
	2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
	3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
	4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN
4												•
In [47]:	titanic_data.shape											
Out[47]:	(418, 12)											
In [48]:	titanic_	_data.	info									

localhost:8888/nbconvert/html/TASK 1 TITANIC SURVIVAL PREDICTION.ipynb?download=false

```
<bound method DataFrame.info of</pre>
                                                 PassengerId Survived Pclass \
Out[48]:
                                             3
          0
                        892
                                    0
                                             3
          1
                        893
                                    1
          2
                        894
                                    0
                                             2
          3
                        895
                                    0
                                             3
                                             3
          4
                        896
                                    1
                        . . .
                                           . . .
          . .
                                   . . .
                                             3
          413
                       1305
                                    a
                                             1
          414
                      1306
                                    1
          415
                      1307
                                    0
                                             3
                                             3
          416
                                    0
                       1308
          417
                       1309
                                    0
                                             3
                                                                         Age SibSp
                                                                                      Parch \
                                                          Name
                                                                   Sex
          0
                                             Kelly, Mr. James
                                                                  male 34.5
                                                                                   0
                                                                                          0
                            Wilkes, Mrs. James (Ellen Needs) female 47.0
          1
                                                                                   1
                                                                                          0
          2
                                   Myles, Mr. Thomas Francis
                                                                        62.0
                                                                                   0
                                                                                          0
                                                                  male
          3
                                             Wirz, Mr. Albert
                                                                  male
                                                                        27.0
                                                                                   0
                                                                                          0
          4
               Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0
                                                                                   1
                                                                                          1
          413
                                           Spector, Mr. Woolf
                                                                  male
                                                                         NaN
                                                                                   0
                                                                                          0
          414
                                                                                   0
                                                                                          0
                                Oliva y Ocana, Dona. Fermina female 39.0
          415
                                Saether, Mr. Simon Sivertsen
                                                                                   0
                                                                                          0
                                                                        38.5
                                                                  male
          416
                                          Ware, Mr. Frederick
                                                                  male
                                                                         NaN
                                                                                   0
                                                                                          0
          417
                                    Peter, Master. Michael J
                                                                  male
                                                                         NaN
                                                                                   1
                                                                                          1
                            Ticket
                                        Fare Cabin Embarked
          0
                            330911
                                      7.8292
                                                NaN
                                                            Q
                                                NaN
                                                            S
          1
                            363272
                                      7.0000
          2
                            240276
                                      9.6875
                                                NaN
                                                            Q
          3
                            315154
                                      8.6625
                                                NaN
                                                            S
          4
                                                            S
                           3101298
                                     12.2875
                                                NaN
                                                . . .
                               . . .
          . .
                                                            S
          413
                         A.5. 3236
                                      8.0500
                                                NaN
                         PC 17758
                                    108.9000
                                               C105
                                                            C
          414
          415
               SOTON/0.Q. 3101262
                                      7.2500
                                                NaN
                                                            S
          416
                            359309
                                      8.0500
                                                NaN
                                                           S
                                                            C
          417
                              2668
                                     22.3583
                                                NaN
          [418 rows x 12 columns]>
          #HANDLING MISSING VALUES
In [49]:
          titanic_data.isnull().sum()
          PassengerId
                            0
Out[49]:
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                           86
          Age
          SibSp
                            0
          Parch
                            0
                            0
          Ticket
          Fare
                            1
                          327
          Cabin
          Embarked
                            0
          dtype: int64
          titanic_data = titanic_data.drop(columns = 'Cabin',axis = 1)
In [50]:
          titanic data = titanic data.drop(columns = 'Fare',axis = 1)
In [51]:
          titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
In [52]:
```

```
titanic_data.isnull().sum()
In [53]:
         PassengerId
                        0
Out[53]:
         Survived
         Pclass
                        0
         Name
                        0
         Sex
                        0
         Age
         SibSp
                        0
                        0
         Parch
         Ticket
         Embarked
                        0
         dtype: int64
```

DATA ANALYSIS

In [54]:	<pre>titanic_data.describe()</pre>									
Out[54]:		PassengerId	Survived	Pclass	Age	SibSp	Parch			
	count	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000			
	mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344			
	std	120.810458	0.481622	0.841838	12.634534	0.896760	0.981429			
	min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000			
	25%	996.250000	0.000000	1.000000	23.000000	0.000000	0.000000			
	50%	1100.500000	0.000000	3.000000	30.272590	0.000000	0.000000			
	75%	1204.750000	1.000000	3.000000	35.750000	1.000000	0.000000			
	max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000			
In [56]:	<pre>titanic_data['Survived'].value_counts()</pre>									
Out[56]:		266								

DATA VISUALIZATION

Name: Survived, dtype: int64

152

```
In [57]: sns.set()
In [60]: sns.countplot('Survived', data = titanic_data)
Out[60]: <AxesSubplot:xlabel='Survived', ylabel='count'>
```



```
In [62]: sns.countplot('Sex', data = titanic_data)
Out[62]: <AxesSubplot:xlabel='Sex', ylabel='count'>
```



```
In [79]: sns.countplot('Sex', hue = 'Survived', data = titanic_data)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only va
lid positional argument will be `data`, and passing other arguments without an exp
licit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[79]: <AxesSubplot:xlabel='Sex', ylabel='count'>


```
In [81]: sns.countplot('Pclass', data = titanic_data)
Out[81]: <AxesSubplot:xlabel='Pclass', ylabel='count'>
```


In [83]: sns.countplot('Pclass', hue = 'Survived', data = titanic_data)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only va
lid positional argument will be `data`, and passing other arguments without an exp
licit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[83]: <AxesSubplot:xlabel='Pclass', ylabel='count'>

encoding the categorical columns

```
titanic_data['Sex'].value_counts()
In [86]:
                    266
          male
Out[86]:
          female
                    152
          Name: Sex, dtype: int64
          titanic_data['Embarked']
In [93]:
                 2
Out[93]:
          2
                 2
          3
          413
                 0
          414
                 1
          415
          416
                 a
          417
                 1
          Name: Embarked, Length: 418, dtype: int64
```

#converting categorical columns

```
In [91]: titanic_data.replace({'Sex':{'male':0 ,'female':1},'Embarked':{'S':0,'C':1,'Q':2}},
```

#separating future and target

```
In [94]: X = titanic_data.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1)
         Y = titanic_data['Survived']
In [98]:
         print(X)
             Pclass Sex
                               Age SibSp
                                          Parch
                                                 Embarked
                     0 34.50000
                  3
                                                       2
                       1 47.00000
         1
                  3
                                              0
                                                       0
                                       1
                  2
                         62.00000
                                       0
                                              0
                                                       2
         3
                  3
                     0 27.00000
                                       0
                                              0
                                                       0
                  3 1 22.00000
                                       1
                                              1
                                                       0
                 3 0 30.27259
                                       0
                                              0
                                                       0
         413
                      1 39.00000
         414
                  1
                                       0
                                              0
                                                       1
         415
                          38.50000
                                       0
                                              0
                                                       0
         416
                  3
                     0 30.27259
         417
                     0 30.27259
         [418 rows x 6 columns]
In [99]:
         print(Y)
```

```
0 0
1 1
2 0
3 0
4 1
...
413 0
414 1
415 0
416 0
417 0
Name: Survived, Length: 418, dtype: int64
```

splitting Data into training and testing Data

```
In [101... X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size= 0.2,random_state = print(X.shape,X_train.shape,X_test.shape)

(418, 6) (334, 6) (84, 6)
```

MODEL TRAINING

```
In [105... model = LogisticRegression()
In [106... model.fit(X_train,Y_train)
Out[106]: LogisticRegression()
```

model Evaluation on Accuracy Score

```
In [110...
   X train prediction = model.predict(X train)
   print(X_train_prediction)
   1]
In [111...
   training_data_accuracy = accuracy_score(Y_train,X_train_prediction)
   print('Accuracy score of training data:',training data accuracy)
   Accuracy score of training data: 1.0
   X test prediction = model.predict(X test)
In [112...
   print(X_test_prediction)
In [113...
```

In [114... test_data_accuracy = accuracy_score(Y_test, X_test_prediction)
print('Accuracy score of test data : ', test_data_accuracy)

Accuracy score of test data : 1.0