AGN monitoring

- Mrk421 Photometry & Polarimetry - Astronomical Observation and Lab. 1

Suho · Donghwa · Cédric

Contents

- 1. Definition of AGN and Blazars
- 2. Information of our target Mrk421
- 3. Importance of studying Mrk421
- 4. Methodology
 - 1) Photometry
 - 2) Polarimetry
- 5. Results
- 6. Conclusion

What is an AGN?

- Active Galactic Nucleus
- Compact region at the center of a galaxy with higher luminosity
- Result from the accretion of matter by a SMBH at the center
- Most luminous persistent sources of electromagnetic radiation

What are Blazars?

- AGNs that <u>have a jet</u> aligned with the observer
- Polarization variability studies may provide <u>information on the structure</u> and magnitude of the magnetic fields

Markarian 421 (Mrk 421)

Wikipedia "Markarian 421" https://en.wikipedia.org/wiki/Markarian 421, 2018-06-13

- A blazar located in the constellation Ursa Major (큰곰자리)
- Strong source of gamma ray
- Magnitude g'=13.804, r'=13.090, i'=12.805
- About 397 million LY apart (z=0.0308)
- -RA 11h04m27s, Dec +38°12´
- Companion Galaxy (Mrk 421-5)

Importance Of Studying Mrk 421

- Provides a phenomenological picture of the physical mechanism driving the observed patterns.
- The spectral curvature is relevant to the understanding of radiative mechanisms.
- One of the closest and most studied blazars.
- Excellent candidate to study physical processes within blazar jets and correlations among different energy bands.

Methodology – 1. Photometry

1) Selection of standard stars

First day (4/17)

HIP 52181	Feige 34	10:39:37	+43:06:09.2
HIP 52771	BD+29 2091	10:47:23	+28:23:56.0

Second day (5/8)

HIP 61602	Feige 66	12:37:24	+25:03:59.9	
HIP 66441	BD+30 2428B	13:37:14	+30:05:14.2	Ī

Simbad, "HIP52181"," HIP52771", "HIP61602"," HIP66441", http://simbad.u-strasbg.fr/simbad/, 2018-06-13

Captured image

1. Photometry

2) 51 UMA

Simbad, "mrk421", http://simbad.u-strasbg.fr/simbad/, 2018-06-13 Captured image

Right Ascension:	11 ^h 04 ^m 31 ^s ^[2]		
Declination:	+38°14'28" ^[2]		
Distance:	80.6 parsec 262.7 lightyears ^[1]		
Proper motion (speed):	71.3 mas/yr ^[1]		
Proper motion (pos ang):	271.6°		

		Magnitudes		
u	g	r	1	Z
7.31	7.83	7.54	9.67	7.88
	Magni	tude uncertai	inties	
err_u	err_g	err_r	err_i	err_z
0.00	0.00	0.00	0.01	0.00

1. Photometry

3) Observation schedule

Altitude-time graph of first day (4/17)

Altitude-time graph of second day (5/8)

1. Photometry

- 4) Processing
 - TA's lecture note codes & TRIPOLpy

2. Polarimetry

- AGN emission is polarized
- The purpose is to calculate the degree of polarization

2. Polarimetry

- 2) What is the degree of polarization (P)? :Portion of polarization
 - Perfectly polarized = 100%, non-polarized = 0%

- P =
$$\frac{\sqrt{Q^2 + u^2}}{I}$$

(Q = $\frac{I_0}{I_0} - \frac{I_{45}}{I_{45}}$, $u = I_{22.5} - I_{67.5}$, $I = [I_0 + I_{22.5} + I_{45} + I_{67.5}]/2$)

2. Polarimetry

3) Observation schedule

Usual photometry with variation of polarization degree $(0^{\circ}/22.5^{\circ}/45^{\circ}/67.5^{\circ})$

Polarization Degree

61cm 망원경 관측 LOG BOOK 2018 년 04월 17일 취요일

관측자 : 김	對於	로 세드릭	과제당	별 : A	01				フ	171: TRIPOL
날 사	4	온 도	습 도	2	풍 속	1	풍 향		부경 위치	평균 시상
		°C		%	m/	s		0		4~5 "
화일번호	관측 대	대상 (α, δ)	노출시작	노출	필터	ALT	AZI	시상	비	고
L	Mr	-K42	:	- 0					Test	
2~6	f	OCUS	리: 08	1					focus	
7~11	Mr	k421	21:26	180X5		84°	181°		X: 126 Y: 358	
12~16	ні	052771	21:58	120X5		77,50	209.50		X: 320,4, Y:3.	29.6
17~21	HI	52/81	7:18	120X5		79°50'	300.5		X:379.6 Y	alite AD
22	Mr	k 421	22:38	180		810	227,50			.238 HWP:00
23	Mr	k 421	22:42	180		80°	2775		X'.ZS7 4	1236.5 HWP: 22.
24	Mr	K421	22:45	180		800	227.5			236.5 HWP.45
2,5	Mr	4421	22:49	180	-	79°	227.5		X'.257 Y.2	36.5 HWP:67.
26	Mr	4421	22:53	180		18.50	277°451		X:254 4:2	36.5 HWP:0°
27	M.	K421	72:57	180			227 90°		X:252.7 4:2	35.1 HWP: 27.5
28	Mr	-K421	23:01	180		77°	278°			135.1 HWR 45"
29	Mrl	471	23:07	180		15.5°				235-1 HWP:67:
30		421	23:11	180			278			235 HWP:00
31	Mr	k421	23:14	180	-		278,50			235. HWP: 22.8
32	M.	-k421	23:18	180	-		278'40			235, 1 HWP: 45°
33	M	1421	23:22	180			279°			235- L 1-16 P. G7.
34	M	rk421	23:26	180		72°	279°			242.2 HWP:0
35	М	rk421	23:30	180		H°	2790			242.2 HW/252
36	M.	-k 421	23:33			10.50	279.50			1245 HWP:45
37		rK421	23:37	_		70°	180			246 4 44.1P:CT
38243		1FF52771	23:47	120×6	(01.5°	26 4°			. ZZ3.8
	往	P37181	;						Co Image 40-s to	lescope moved stightly

1) Extinction coefficient (Mrk 421 on April 17th, g'r'i' band in order)

No linear relation found

2) Linear fitting (g'r'i' band in order) - April 17th

2) Linear fitting (g'r'i' filter in order) - 8th of May (51 UMa included)

2) Linear fitting (g'r'i filter in order) - 8th of May (51 UMa not included)

Standard stars nor 51 UMa are reliable

3) Photometry results (magnitudes)

	g'	r'	i'
17th of April	13.10	12.89	12.71
8th of May (51 UMA included)	14.38	14.15	11.93
8th of May (51 UMA not included)	19.86	13.77	13.77
Category	13.80	13.09	12.81

4) Magnitude - polarized axis angle (g' r' i' filter in order)

Conclusion

- Failed to measure extinction coefficient
- Second day standard stars were not reliable (as data analysis is inconclusive), it is necessary to observe more stars. It might be a result of similar brightness characteristics
- 51 UMa does not have enough observation data to be used as a standard star and SDSS data mentions that it is highly unreliable. So it is better not use as one and previous researches recommends the same as well.
- Polarized observation data is not quite satisfying, probably due to the companion galaxy's emission, issue that couldn't be resolved.
- First observation night provided acceptable data, measurements show small variations from the category magnitude little difference from the category magnitude is measured. This might be due to polarization issues and variance of AGN luminosity.
- More observations in a longer period of time are needed in order to obtain more reliable information on Mrk 421 behaviour. As well as possible jet activity, accretion matter, opening opportunities for other kind of researches.
- Corrections to coding are necessary for future observations, leading to better data analysis and, therefore, more reliable results

Thank you! 감사합니다! ¡Gracias! ありがとう

References

- B. Glenn Piner1, Niraj Pant etal., nov 2010, "THE JETS OF TeV BLAZARS AT HIGHER RESOLUTION: 43 GHz AND POLARIMETRIC VLBAOBSERVATIONS FROM 2005 TO 2009", The Astrophysical Journal, page 1150-1167 Fraija, N., Benítez, E., Hiriart, D., Sorcia, M., López, J., Mújica, R., Cabrera, J., Diego, J., Rojas-Luis, M., Salazar-Vázquez, F. and Galván-Gámez, A. (2017). Long-term Optical Polarization Variability and Multiwavelength Analysis of Blazar Mrk 421. The Astrophysical Journal Supplement Series, 232(1), p.7.
- Gorham, P., van Zee, L., Unwin, S. and Jacobs, C. (2000). Markarian 421'[CSC]s[/CSC] Unusual Satellite Galaxy. The Astronomical Journal, 119(4), pp.1677-1686.
- In-the-sky.org, "The star 51-Uma", 2018-06-13, https://in-thesky.org/data/object.php?id=TYC3010-2500-1#source_01
 N. Fraija1, E. Benítez etal., sep 2017, "Long-term Optical Polarization Variability and Multiwavelength Analysis of BlazarMrk 421", The Astrophysical Journal Supplement Series 232:7, page 25
- M. Balokovi c, D. Paneque etal., dec 2015, "Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013", The Astrophysical Journal
- ResearchGate, "How can I measure the linear degree of polarization at 90 degrees?", 2018-16-13, https://www.researchgate.net/post/How_can_I_measure_the_linear_degree_of_polarization_at_90_degrees2 Simbad, 2018-06-13, http://simbad.u-strasbg.fr/simbad/sim-fbasic
- Staralt, 2018-06-13, http://catserver.ing.iac.es/staralt/
- 10.
- Space telescope, "Magnetic funnel around a supermassive black hole", 2018-06-13, https://www.spacetelescope.org/images/opo1332b/ Tramacere, A., Giommi, P., Perri, M., Verrecchia, F. and Tosti, G. (2009). Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission. Astronomy & Astrophysics, 501(3), pp.879-898.
- Xu Chen, Shao Ming Hu*& Di Fu Guo, 2014, "Microvariability Detection of Mrk 421", J. Astrophys. Astr. Xu Chen·Shao Ming Hu etal., 2014, "Optical variability of Mrk 421", Astrophys Space Sci, page 909-917 12.