LOFAR GSM database project

Alexey Mints

February 27, 2013

1 Those involved:

- 1. Ger van Diepen [diepen at astron.nl];
- 2. George Heald [heald at astron.nl];
- 3. Alexey Mints [a.mints at hs.uni-hamburg.de];
- 4. Ronald Nijboer [rnijboer at astron.nl];
- 5. Bart Scheers [bartscheers at gmail.com];

2 Abbreviations

The following abbreviations and designations are used in this document as well as in the code.

```
GSM — Global Sky Model;
```

KSP — Key Science Project (of the LOFAR);

MSSS — Multifrequency Snapshot Sky Survey;

ra — right ascension;

decl — declination;

pa — positional angle;

fov — field of view;

Note 1: if not stated otherwise, by *band* we mean a combination of the frequency band and Stokes parameter.

Note 2: by *size* of the extended source we mean Gaussian parameters: minor and major axes and positional angle.

Note 3: by *detections* we will mean newly detected objects, reported by the source-finder and passed to the GSM, and by *sources* we will mean objects already stored in the database.

3 Project description

3.1 Goals

Main goal of the project is to provide a database solution for the Global Sky Model (hereafter GSM), basing on MSSS data [6, 2, 3]. For a given field of view BBS-format file with the list of the known source should be produced.

The pipeline is based on the one developed for the Transient KSP [5].

3.2 Software requirements

The next programs/modules are needed to run the GSM pipeline:

```
MonetDB or PostgreSQL;
```

Python tested on versions 2.6 and 2.7;

psycopg2 if PostgreSQL is used;

numpy;

configobj or lofar.parameterset;

healpy (includes HealPix library);

To check if all requirements are met one may use validate_install.py script, provided with the package (see 7.6.2).

4 Inputs

4.1 Input data flow

Data comes from pyBDSM or pySE source detection tools in the MSSS pipeline. Inputs for every step are:

- a Parset file, containing image properties and list of references to the catalog files;
- b Catalog files that are ASCII-tables produced by a source-finder.

Data is first passed to the detections table¹. Then it is copied (with proper transformations and filtering) into a extracted sources table. Then matching to known sources is done and results are stored in the temp_associations table. Source positions/fluxes are updated or inserted into runningcatalog and runningcatalog_fluxes as needed according to the temp_associations table. Relevant associations between extracted sources and runningcatalog are kept in assocxtrsources.

5 Outputs

5.1 Tables and columns

5.1.1 Basic information

At the end data is loaded into the database into several tables ²:

- 1. images one record describing the image (unique ID, frequency, fov, pointing etc.);
- 2. image_stats statistics on the image associations;
- 3. extracted sources all sources detected in each image;
- 4. temp_assocxtrsources temporary associations between detections in extractedsources and sources from runningcatalog. All possible associations are inserted here for each image. Emptied after all associations will be processed and all problems resolved;
- 5. assocxtrsources actual associations between detections in extractedsources and sources from runningcatalog;
- 6. runningcatalog positions and sizes of sources included into the catalog;
- 7. runningcatalog_fluxes fluxes (in each band) of sources from runningcatalog;

¹The full list of tables with descriptions see below.

²For a detailed database description see 7.2

Number of cross-matches to extracted sources is stored as well in the running catalog and running catalog_fluxes tables in datapoints columns.

For each value V (can be: ra, decl, major/minor axes, positional angle, peak/total flux) several columns are used in runningcatalog or runningcatalog_fluxes tables. Weights are assigned given measured error ΔV as $w = \frac{1}{(\Delta V)^2}$. Columns for each V are:

$$\mathbf{wm}_{-}\mathbf{V}$$
 — weighted average value $\frac{\sum w_{i}V_{i}}{\sum w_{i}}$; $\mathbf{wm}_{-}\mathbf{V}_{-}\mathbf{err}$ — weighted error $\sqrt{\frac{1}{\sum w_{i}}}$; $\mathbf{avg}_{-}\mathbf{wV}$ — sum of weighted values $\sum w_{i}V_{i}$; $\mathbf{avg}_{-}\mathbf{weight}_{-}\mathbf{V}$ — sum of weights $\sum w_{i}$;

5.1.2 Storing and matching extended sources

Extended sources are stored in a special way. As they can look different in different frequencies, we have to store positional and size information in the runningcatalog table in a per-band way. One extra record without band is stored as well, and named "Cross-band" source. For a cross-band source Gaussian parameters are weighted sums from per-band parameters for this source. For each record in the extractedsources table there are therefore two records in assocxtrsources table — one for the cross-band record in the runningcatalog and one for the per-band record.

For a physical reason it might also happen, that some extended source will have more than one sub-component in a given band. Thus it is allowed for an extended source to contain several per-band sources bound to one crossband source. Note that in the general case a sum of datapoints values for per-band sources is *greater or equal* then datapoints value for a cross-band source (see section 6.5.1). Also there might arise a problem that two or more extended sources share the same cross-band source.

5.2 Formulas

Here we introduce a special notation used to describe problem resolution:

A-D — point sources;
K-Q — extended sources (cross-band);
k-q — extended sources (per-band);

X-Z — detections (always single-band);

0-9 — band (might be multiple comma-separated values);

() — weighted average;

With such a notation a problem resolution might be expressed as a transformation from one source set to another.

Examples:

$$A1 + X1 = (AX)1 \tag{1}$$

$$A1 + X2 = (AX)1, 2 (2)$$

$$Kk1, l2 + X1 = (KX)(kX)1, l2$$
 (3)

$$Kk1, l2 + X3 = (KX)k1, l2, m3$$
 (4)

$$A1, 2, 3 + X1 + Y1 = (AX)1, 2, 3 + (AY)1, 2, 3$$
 (5)

$$A1, 2, 3 + B1, 2, 3 + X1 = (AX)1, 2, 3 + B1, 2, 3$$
 (6)

$$Kk1, l2 + X1 + Y1 = (KX)(kX)1, l2 + (KY)(kY)1, l2$$
 (7)

$$Kk1, l2 + Lk1, l2 + X1 = (KX)(kX)1, l2 + Lk1, l2$$
 (8)

$$Kk1, l2 + Lk1, l2 + X3 = (KX)k1, l2, m3 + Lk1, l2$$
 (9)

$$Kk1, l2 + Lm3, n4 + X5 = (KLX)k1, l2, m3, n4, o5$$
 (10)

$$A1 + B1 + X1 + Y1 = Group1$$
 (11)

For example, in equation 7 means, that we have matched two detections (X and Y) in band 1 to one extended (cross-band) source K that has perband sources k in band 1 and l in band 2. As a result we get two cross-band sources:

- 1. source with cross-band position equal to weighted average of positions of sources K and X, position and flux in band 1 equal to weighted average of positions and flux of sources k and X, position and flux in band 2 equal to position and flux of source l;
- 2. source with cross-band position equal to weighted average of positions of sources K and Y, position and flux in band 1 equal to weighted average of positions and flux of sources k and Y, position and flux in band 2 equal to position and flux of source l;

5.3 API

ToDo.

5.4 Errors

If error an is detected, it is reported to output and to the log. Whenever possible, the transaction is rolled back.

6 Databases and pipelines

6.1 Matching criteria

Sources for matching are pre-selected basing on the following conditions:

- source kind (point-like or extended) has to be the same;
- angular distance between source centers has to be below r_{min} , set in the settings file, see 6.2;

Matching criteria for point sources is based on de Ruiter distance [1]:

$$R_{deRuiter}^{2} = \frac{(\alpha_{1}\cos\delta_{1} - \alpha_{2}\cos\delta_{2})^{2}}{(\Delta\alpha_{1})^{2} + (\Delta\alpha_{2})^{2}} + \frac{(\delta_{1} - \delta_{2})^{2}}{(\Delta\delta_{1})^{2} + (\Delta\delta_{2})^{2}}$$
(12)

where $\alpha_{1,2}$ and $\delta_{1,2}$ are right ascensions and declinations of the two sources and $\Delta \alpha$ and $\Delta \delta$ are reported positional errors.

The first point comes from the runningcatalog and the second one – from extracted sources. For all pairs that have $R_{deRuiter} < R_x$, where R_x is a chosen critical value, an association is possible. For such a pair a record is inserted into temp_runningcatalog, containing references to both objects, $R_{deRuiter}$ and distance (in arcsec) $r_{arc} = 2 \arcsin{(r_{12}/2)}$ where $r_{12} = \sqrt{(r_{1,x} - r_{2,x})^2 + (r_{1,y} - r_{2,y})^2 + (r_{1,z} - r_{2,z})^2}$ is the 3D geometrical distance between sources.

For extended sources an alternative formula is used:

$$\tilde{R}_{deRuiter}^2 = \frac{r_{arc}^2}{g_{major,1}^2 + g_{major,2}^2},$$
(13)

where g_{major} is a reported major axis. The criteria is then $\tilde{R}_{deRuiter} < \tilde{R}_x$.

6.2 Matching settings file

A special file named **settings.ini** is located at the src folder. It contains several settings:

Value Parameter name Default R_x match_distance 1.0 \tilde{R}_x match_distance_extended 0.5

 r_{min} maximum_association_distance 0.05 (radian)

matcher type matcher - (should be SQL or F90)

6.3 Matching across 360 degrees border

It might happen, that source and detection will be close by, but separated by zero point in right ascension. I.e. the source will have $ra=0^{\circ}.001$ and the detection $ra=359^{\circ}.99$. They have to match, but eq. 12 will fail. To override this issue for an detection close to the 0-degree border ($|\alpha-360^{\circ}| < (\cos \delta)^{-1}$), a copy is created, mirrored along this border. A copied detection carries the id of the original.

This does not apply, however, on the extended sources, as an alternative de Ruiter distance 13 does not suffer from near-360-degree problems.

6.4 Off-database matching

For large number of sources in the field/image matching can be slow in the database. To solve this issue it is possible to activate a F90-based matcher. It is not very efficient, and as such provides no performance increase, at least comparing to PostgreSQL. The improvement is that there is a parallel version of this tiny code making use of the OpenMP technology. It scales almost lineary with the number of CPU cores used (set from console by export OMP_NUM_THREADS="4").

To activate F90-matcher set matcher=F90 in the settings file (see 6.2), otherwise set it to SQL.

6.5 Problem resolution

Column kind of temp_associations table is then set to the following values:

- 1 one-to-one match;
- 2 one-to-many match (one observation match many sources in the catalog);
- **3** many-to-one match (many observations match to one source in the catalog);

- 4 many-to-many match. In this case group_head_id column is important. It refers to the smallest ID of the source in the group;
- 5 extended sources join proposed, see below;

		Catalog entries			
		0	1	2+	
Ina a ma	0	X	No detection	-	
Image	1	New source	Perfect match	Merged source	
sources			(kind=1)	(kind in $(2,5)$)	
	2	New sources	Resolved source	Group (kind=4)	
			(kind=3)		

New source/New sources — add sources to database;

Perfect match — add to fluxes and associations tables (update positional information);

Update of the point source (A) by a new observation (X) in a known band (1):

$$A1 + X1 = (AX)1 (14)$$

Update of the point source (A) by a new observation (X) in a new band (2):

$$A1 + X2 = (AX)1, 2 \tag{15}$$

Update of the extended source (K) by a new observation (X) in a known band (1), per-band source (k) is updated:

$$Kk1, l2 + X1 = (KX)(kX)1, l2$$
 (16)

Update of the extended source (K) by a new observation (X) in a new band (3), per-band source (m) is created:

$$Kk1, l2 + X3 = (KX)k1, l2, m3$$
 (17)

Merged source — add association to the nearest; For point sources (X is closer to A):

$$A1, 2, 3 + B1, 2, 3 + X1 = (AX)1, 2, 3 + B1, 2, 3$$
 (18)

For extended sources (X is closer to K):

$$Kk1, l2 + Lk1, l2 + X1 = (KX)(kX)1, l2 + Lk1, l2$$
 (19)

Same, but with new band:

$$Kk1, l2 + Lk1, l2 + X3 = (KX)k1, l2, m3 + Lk1, l2$$
 (20)

If band sets for matched catalog sources (K and L) are non-intersecting and the observation band is also not in neither of this sets than the two extended sources are merged:

$$Kk1, l2 + Lm3, n4 + X5 = (KLX)k1, l2, m3, n4, o5$$
 (21)

Resolved source — see below in section 6.5.1;

$$A1, 2, 3 + X1 + Y1 = (AX)1, 2, 3 + (AY)1, 2, 3$$
 (22)

$$Kk1, l2 + X1 + Y1 = (KX)(kX)1, l2 + (KY)(kY)1, l2$$
 (23)

No detection — so far ignored;

Group — mark and leave for manual resolution, also see 6.6:

$$A1 + B1 + X1 + Y1 = Group1$$
 (24)

6.5.1 Treating resolved sources

For **point sources** a "flux splitting" technique is applied. For example there are two observations in band j with fluxes $f_1^j = 0.2$ and $f_2^j = 0.8$ observed in place where one source with flux $f_0^j = 1$ was observed before. In this case we create a new source (source "b") and copy all existing positional information from the old one (source "a"). Flux information for each band i (including band j) is also copied, but weighted according to fluxes in the new observations:

$$f_a^i = f_0^i \frac{f_1^j}{f_1^j + f_2^j} \tag{25}$$

$$f_b^i = f_0^i \frac{f_2^j}{f_1^j + f_2^j} \tag{26}$$

Then old and new sources are updated with one of the new observations (see equation 22). Positional information from the old source will be updated with (presumably) much more precise information from the new observations, thus the new information will have much higher weight, and final positions will have good quality. "Flux splitting" have to be used for fluxes, as light-curve might be wanted. In this case copying the flux information will lead to

Figure 1: Lightcurves inllustrating "flux splitting" approach. *Left*: two constant sources without (red) and with (green) "flux splitting". *Right*: Same, but fainter source is variable.

instantaneous jumps in fluxes, which might be recognized as ones of transient nature. An example is shown at the figure 1. For constant sources this approach works fine, removing artificial jumps. But if one of the sources is variable, than this variability is split between both sources, which is obviously wrong. Thus for variable sources some post-processing will be required to remove this artifact.

For extended sources flux splitting is applied only at per-band level. Only per-band sources are duplicated, while the cross-band source remains the same (see equation 23). Thus several per-band sources with the same band can appear for one cross-band source. This might cause complications, as two different sources might end up having just one cross-band source. This has to be resolved at post-processing. Note, that in the case of extracted sources it is possible, that sum of values in the datapoints columns for per-band sources will not match datapoints value in the cross-band source. This is due to the fact that both resulting per-band sources (kX and kY in the equation 23) will inherit datapoints from "parent" per-band source (k). Such duplicated datapoints will not be counted twice for cross-band source.

The example of source splitting is shown below. Table 1 shows runningcatalog content before splitting. There are two per-band sources with 2 and 1 datapoints and a corresponding cross-band source with 2+1=3 datapoints. Then there was a detection of two objects near per-band source with id=2. This source was splitted in two, having ids 2 and 4, with 3 datapoints each. Cross-band source was also updated, but only 2 datapoints were added from 2 new detections. Thus the sum of per-band datapoints is greater than the number of cross-band datapoints, see table 2.

runcatid	band	datapoints	parent_id
1	-	3	-
2	1	2	1
3	2	1	1

Table 1: runningcatalog before extended source splitting

runcatid	band	datapoints	$parent_id$
1	-	4	-
2	1	3	1
3	2	1	1
4	1	3	1

Table 2: runningcatalog after extended source splitting

6.6 Group resolution

There are several cases when many-to-many problem can be easily solved.

Two algorithms are implemented so far. They might be used from within the pipeline only, so groups already stored in the database cannot be treated so far.

Although, they have to be used with care, as they might produce wrong matching, which might be worth than no match at all.

Two-by-two problem with fluxes If there are two detections matched to two sources with flux information in this band, than we can take this flux information into account. We construct modified de-Ruiter distance:

$$\hat{R}_{deRuiter}^2 = R_{deRuiter}^2 + \frac{(f_1 - f_2)^2}{(\Delta f_1)^2 + (\Delta f_2)^2},$$
(27)

where $f_{1,2}$ are fluxes and $\Delta f_{1,2}$ are flux errors.

This produces a matrix of distances for sources A, B and detections X, Y:

$$\hat{R}_{deRuiter,AX} \quad \hat{R}_{deRuiter,AY}
\hat{R}_{deRuiter,BX} \quad \hat{R}_{deRuiter,BY}$$
(28)

Here we assign X and Y so that $\hat{R}_{deRuiter,AX} < \hat{R}_{deRuiter,AY}$. We choose as

Figure 2: Example of nearest-neighbour group resolution

resolution condition the following:

$$\begin{cases}
\hat{R}_{deRuiter,AX} < \hat{R}_{min} \\
\hat{R}_{deRuiter,BY} < \hat{R}_{min} \\
\hat{R}_{deRuiter,AY} / \hat{R}_{deRuiter,AX} > P \\
\hat{R}_{deRuiter,BX} / \hat{R}_{deRuiter,BY} > P
\end{cases}$$
(29)

This means that in coordinate-flux space detection X is P times closer to A then to B, and detection Y is P times closer to B then to A. Thus we state that A matches X and B matches Y. For the current implementation P=10.

Nearest neighbour In this approach we can treat N-to-N problems, i.e. when the number of confused detections and sources is equal. We find for each detection and source it's nearest neighbour amongst sources and detections respectively. The resolution criteria is then:

- each detection has a mutual nearest neighbour source at de Ruiter distance d and
- there is no other source within 50d.

An example of such situation (distances between pairs are not to scale) is shown in figure 2.

6.7 Spectral information

Stored in the database as polinomia coefficients calculated according to [4]. Last date of spectral fitting is stored as well. Fits are done upon request, if there are detections newer then the last fit performed.

6.8 Reprocessing and image status

Reprocessing is possible. There are two columns to indicate reprocessing in the images table. status shows the status of this image. On creation (before any processing was done), status is 0. After the processing stage is completed,

status is changed to 1. If reprocessing is done, than all data coming from a given image is removed first from runningcatalog, runningcatalog_fluxes and assocxtrsources tables and status is set to 2. If needed, original data from extractedsources is also removed and image status is then changed to 3.

After removal a second stage of reprocessing is data processing itself. It is done in the same way as the first-time processing. When this stage is completed, status is set to 1 and counter in the reprocessing column is incremented.

7 Development and Deployment

7.1 Coding rules

For Python use PEP8 (http://www.python.org/dev/peps/pep-0008/), wherever possible. For SQL — to be defined basing on the existing code.

7.2 Database structure

frequencybands			
freqbandid	integer	-	
freq_central	float	Band middle frequency (Hz)	
freq_low	float	Band lower limit frequency (Hz)	
freq_high	float	Band upper limit frequency (Hz)	

		datasets
dsid	integer	-
rerun	integer	-
dstype	integer	-
process_ts	timestamp	-
dsinname	character(64)	-
dsoutname	character(64)	-
description	character(100)	-

runs			
runid	integer	-	
$start_date$	timestamp	Time of run begin	
$end_{-}date$	timestamp	Time of run end	
status	integer	Run status ()	
user_id	character(100)	User who started a run	
process_id	integer	System process id	

		images
imageid	integer	-
ds_id	integer	-
tau	integer	-
band	integer	Frequency band
stokes	character(1)	One of IQUV
imagename	character(64)	LOFAR image ID
centr_ra	float	Pointing ra (degrees)
$\operatorname{centr_decl}$	float	Pointing decl (degrees)
fov_radius	float	Field of view (degrees)
bmaj	float	Beam major axis (degrees)
bmin	float	Beam minor axis (degrees)
bpa	float	Beam pitch angle (degrees)
url	character(120)	Image file name
reprocessing	integer	Number of reprocessings of this image
status	integer	Image status ()
process_date	timestamp	Last image processing date
svn_version	integer	SVN version of the pipeline of the last processing
run_id	integer	-

		extractedsources	
xtrsrcid	integer	-	
xtrsrcid2	integer	Reference to xtrsrcid for sources mirrored across 360-degrees	
image_id	integer	-	
zone	integer	integer part of decl	
healpix_zone	integer	Zone of HEALpix division	
ra	float	right ascention (degrees)	
decl	float	declination (degrees)	
ra_err	float	error of ra	
decl_err	float	error of decl	
X	float	x-coordinate on 3D unit sphere	
У	float	y-coordinate on 3D unit sphere	
Z	float	z-coordinate on 3D unit sphere	
$\det \underline{\operatorname{sigma}}$	float	detection threshold	
source_kind	smallint	0=point source, 1=extended source	
g_major	float	major axis for extended source	
g_major_err	float	error of major axis for extended source	
g_minor	float	minor axis for extended source	
g_minor_err	float	error of minor axis for extended source	
g_pa	float	positional angle for extended source	
g_pa_err	float	error of positional angle for extended source	
f_peak	float	Peak flux	
f_peak_err	float	Peak flux error	
f_int	float	Integrated flux	
f_{int_err}	float	Integrated flux error	

assocxtrsources			
xtrsrc_id	integer	Reference to extracted sources	
$runcat_id$	integer	Reference to running catalog	
weight	float	Association weight	
distance_arcsec	float	Distance in arcseconds	
lr_method	integer	-	
r	float	de Ruiter distance	
lr	float	-	

		detections
run_id	integer	-
image_name	character(64)	-
lra	float	-
ldecl	float	-
lra_err	float	-
ldecl_err	float	-
lf_peak	float	-
lf_peak_err	float	-
lf_int	float	-
lf_int_err	float	-
g_minor	float	-
g_minor_err	float	-
g_major	float	-
g_major_err	float	-
g_pa	float	-
g_pa_err	float	-
ldet_sigma	float	-
healpix_zone	integer	-

	runr	ingcatalog
runcatid	integer	-
first_xtrsrc_id	integer	Id of the first observation
ds_id	integer	-
band	integer	Frequency band for per-band extended source
stokes	character(1)	Stokes parameter for per-band extended source
datapoints	integer	Number of observations
decl_zone	integer	integer part of decl
healpix_zone	integer	Zone of HEALpix division
wm_ra	float	-
wm_ra_err	float	-
avg_wra	float	-
avg_weight_ra	float	-
wm_decl	float	-
wm_decl_err	float	-
avg_wdecl	float	-
avg_weight_decl	float	-
source_kind	smallint	0=point source, 1=extended source
parent_runcat_id	integer	Id of the cross-band source for per-band extendedsource
wm_g_minor	float	-
wm_g_minor_err	float	-
avg_wg_minor	float	-
avg_weight_g_minor	float	-
wm_g_major	float	-
wm_g_major_err	float	-
avg_wg_major	float	-
avg_weight_g_major	float	-
wm_g_pa	float	-
wm_g_pa_err	float	-
avg_wg_pa	float	-
avg_weight_g_pa	float	-
is_group	boolean 18	True if a source belongs to a group
group_head_id	integer	Group ID
deleted	boolean	True if this source was deleted
last_update_date	timestamp	Date of the last source update
х	float	x-coordinate on 3D unit sphere

runningcatalog_fluxes				
runcat_id	integer	Reference to running catalog		
band	integer	Frequency band		
stokes	character(1)	Stokes parameter		
datapoints	integer	Number of observations		
wm_f_peak	float	Peak flux		
wm_f_peak_err	float	-		
avg_wf_peak	float	-		
avg_weight_f_peak	float	-		
wm_f_int	float	Integrated flux		
wm_f_int_err	float	-		
avg_wf_int	float	-		
$avg_weight_f_int$	float	-		

		temp_associations
xtrsrc_id	integer	-
$xtrsrc_id2$	integer	-
runcat_id	integer	-
$\underline{\text{distance_arcsec}}$	float	-
lr_method	integer	-
r	float	-
lr	float	-
xtr_count	integer	-
run_count	integer	-
kind	integer	-
group_head_id	integer	-
flux_fraction	float	-
image_id	integer	-

image_stats					
$image_id$	integer	-			
run_id	integer	-			
kind	integer	-			
lr_method	integer	-			
value	integer	-			

In temp_associations				
1	Point-point association			
2	Extended sources – per-band association			
3	Extended sources – cross-band association			
In assocxtrsources				
1	Point-point association			
2	Extended sources – per-band association			
3	Extended sources – cross-band association			
4	Copied during source-splitting			
5	Group association			

Table 3: Values of lr_method

7.3 sqllist development utility

There are lots of SQL statements spread around this project. Some of them contain repetitative parts, some have to be modified for the MonetDB compatibility, and most have lots of parameters.

To simplify the development, a tool named "sqllist" is included into the project.

It loads SQL-statements from sql-files. Groups of statements are separated by a special comment line, beginning with -#SQLLIST NAME, where SQLLIST NAME is a unique name of this statement. These groups are loaded at startup and stored in the sqllist.SQL_LIST hash. They can be retrieved later by sqllits.get_sql function. This function receives at least one parameter – sqllist-name. Second and all following parameters are passed further as SQL-parameters (see below).

There are several special syntax features that can simplify the development:

Python functions returning SQL-string can be inserted into SQL-code. They have to be enclosed into double dollar sign pair (\$\$). For example:

```
insert into runningcatalog_fluxes(
runcat_id, band, stokes, datapoints,
$$get_column_insert(['f_peak', 'f_int'])$$)...
```

will be substituted with:

```
insert into runningcatalog_fluxes(
```

```
runcat_id, band, stokes, datapoints,
wm_f_peak, wm_f_peak_err, avg_wf_peak,avg_weight_f_peak,
wm_f_int, wm_f_int_err, avg_wf_int,avg_weight_f_int)...
```

Positional parameters are written as {N}, where N is the parameter index, starting from zero. For example:

```
select freqbandid
  from frequencybands
where freq_low < {0} and freq_high > {0};
```

Non-positional parameters are written as %s – standart way of parameter substitution in Python.

Named constants are written as [S], where S is the parameter name. Named parameters are stored in sqllist.GLOBALS hash. Values used so far are: 'i': image_id, 'r': run_id, 'b': frequency band, 's': stokes parameter.

7.4 Tests

Unit tests — test that each function is working as desired;

Consistency tests — test that the pipeline and all of it's parts are working;

Stress tests — (or performance tests) test pipeline performance;

7.5 NVSS data load test

As a test, NVSS data was loaded into databases.

	PostgreSQL	MonetDB
Total load time with F90 matcher (seconds)	33	188
Total load time with SQL matcher (seconds)	207	611
Database size after load	93Mb	108Mb

7.6 Deployment and usage

7.6.1 How to install

The next programs/modules are needed to run the GSM pipeline:

MonetDB or PostgreSQL;

Python tested on version 2.7, but should work on earlier versions as well;

psycopg2 if PostgreSQL is used;

numpy;

configobj or lofar.parameterset;

7.6.2 User scripts

cleanup.py Tool to clean all data from the database.

Optional arguments:

```
-h, --help
              show this help message and exit
-D DATABASE, --database DATABASE
              name of the database to clean
              (default: test)
```

-M, --monetdb use MonetDB instead of PostgreSQL

recreate_tables.py Drops and recreates all database objects (tables/procedures/views/indices). Database should already exist. Also re-fills frequencies table. Usage: same as for cleanup.py.

validate_install.py Checks that all required modules are installed.

gsm_pipeline.py Tool to run GSM pipeline for a given parset. Multiple parsets can be listed.

```
usage: gsm_pipeline.py [-h] [-D DATABASE] [-M] [-p] [-q]
                       [filename [filename ...]]
```

```
positional arguments:
```

filename list of parset file names

optional arguments:

-q, --quiet

```
-h, --help
                      show this help message and exit
```

-D DATABASE, --database DATABASE

database name to load data into -M, --monetdb use MonetDB instead of PostgreSQL -p, --profile add SQL timing output to log switch console logging off

7.6.3 Parallel runs

Running several instances of the GSM pipeline at the same time is possible. Different instances will use the same tables, but will have different image_id.

Note, that parallel runs are obviously possible on the non-overlapping fields.

References

- [1] HR De Ruiter, HC Arp, and AG Willis. A Westerbork 1415 MHz survey of background radio sources. II-Optical identifications with deep IIIA-J plates. Astronomy and Astrophysics Supplement Series, 28:211–293, 1977.
- [2] George Heald, A G De Bruyn, Ronald Nijboer, M Wise, and Roberto F Pizzo. The LOFAR Multifrequency Snapshot Sky Survey (MSSS). (October), 2011.
- [3] G.H. Heald, G. de Bruyn, R. Nijboer, M. Wise, R. Pizzo, and L. Collaboration. The LOFAR Multifrequency Snapshot Sky Survey (MSSS): Description and First Results. In *American Astronomical Society Meeting Abstracts*, volume 219, 2012.
- [4] Anna M. M. Scaife and George H. Heald. A broad-band flux scale for low-frequency radio telescopes. *Monthly Notices of the Royal Astronomical Society: Letters*, pages no–no, March 2012.
- [5] Bart Scheers. Creating the initial Global Sky Model. pages 1–2, 2012.
- [6] Arno Schoenmakers. MSSS specifications and software requirements. pages 1–7, 2010.