Exercise 2 - Theory

Abdelaziz, Ibrahim Somkiadcharoen, Robroo Berg, Oliver

December 14, 2017

1 Theory

1.1 Homography Definition

In case of P^2 (2D Projection plane) we have homogeneous coordinates as $[x_1, x_2, x_3]$ and the H trans-

formation matrix is of size 3×3 as $\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$ where 8 of them are independent ratios(DOF) and

another one is the gain.

Using the same logic as above, you can get a point from P^n (n-dimensional Projection Space) as $[x_1, x_2, ..., x_n, x_{n+1}]$ and the H transformation matrix is of size $(n+1) \times (n+1)$. Thus, $(n+1)^2 - 1$ DOF. Motivated From [1][2]

1.2 Line preservation

Given that a point x = [x1, x2, x3] is a point in 2D Projection plane which is also on a line l, and all the points are on l which gives $l^T x_i = 0$. We can derive

$$l^{T}x_{i} = 0 = l^{T}H^{-1}Hx_{i} (1)$$

From (1) we get that the points $x' = Hx_i$ that is transformed lie on the line $l' = l^T H^{-1}$ In other words, we can perceived from the equation that points are transformed by x' and line is transformed by l' Highly Motivated by [3] [4]

2 Implementation

You may find the implementation code inside the main.py file. To run the code, call python main.py.

2.1 Relative rotation estimation from homography

To 4. : H_2 needs correction, as it not strictly conforms to the properties of a rotation matrix, namely MM^T does not exactly match the identity matrix and its determinant is not strictly equal to 1. This is most likely due to measuring errors.

2.2 Camera pose estimation from homography

To 2. "meaning of t = -RC": Motivated by [5], because the chessboard lies within the xy-plane, it holds

$$[K|0_3] \begin{bmatrix} R & -RC \\ 0_3^T & 1 \end{bmatrix} (XYZ1)^T \tag{2}$$

being subject to Z=0 corresponds to

$$K[r_1r_2t](XY1)^T (3)$$

where t now responds to the initial -RC. We translate the virtual camera to the real camera.

To 3. "3rd element of t being negative": With the translation being negative, this means the camera resides within the positive X-Y-Z quadrant of the world coordinate system, such that we need to do negative translation to move the camera to the world coordinate systems origin.

References

- [1] Homogeneous matrix has eight independent ratios of matrix elements? [Online]. Available: https://stackoverflow.com/questions/9534453/homogeneous-matrix-has-eight-independent-ratios-of-matrix-elements
- [2] Dynamic pn to pn alignment. [Online]. Available: https://www.cs.tau.ac.il/~wolf/papers/dyn-alignment.pdf
- [3] Projective geometry. [Online]. Available: http://www.umiacs.umd.edu/~ramani/cmsc828d/ ProjectiveGeometry.pdf
- [4] Projective geometry, camera models and calibration. [Online]. Available: http://www.cse.iitd.ernet.in/~suban/vision/geometry.pdf
- [5] Camera calibration. [Online]. Available: http://www.epixea.com/research/multi-view-coding-thesisse9.html