Régression logistique

Michaël Genin

Université de Lille 2

EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- 6 Exemple

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- Exemple

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
 - Exemple

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- - Pouvoir discriminant du modèle
 - Calibration du modèle

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- Exemple

- Contexte général
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- 6 Exemple

- Contexte général
- 2 Introduction à la régression logistique
- Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

Contexte : Deux familles de méthodes de classification

Classification non-supervisée (clustering)

- Partitionner les observations en groupes différents (classes, catégories) mais les plus homogènes possible au regard de variables décrivant les observations.
- Le nombre de classes n'est pas connu à l'avance
- Méthodes : Classification hiérarchique, K-plus-proches voisins, Classification bayésienne naïve

Classification supervisée (discrimination)

- Obtenir un critère de séparation afin de prédire l'appartenance à une classe $(Y = f(X) + \epsilon)$.
- Le nombre de classes est connu à l'avance (Variable à expliquer)
- Méthodes : Régression logistique, Analyse discriminante, Arbres de décision, Réseaux de neurones...

Classification supervisée

2 objectifs principaux:

- Etude du lien entre Y (Variable à expliquer : classes) et les X_j (Variables explicatives) \Rightarrow Facteurs prédictifs
- Prédiction (système d'aide à la décision (scores cliniques, crédit scoring, ...)

Différentes procédures :

- 2 classes ⇒ Régression logistique
- > 2 classes : Analyse discriminante, Arbres de décision, Réseaux de neurones....

- Contexte généra
- 2 Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique

Régression logistique = méthode de régression

- Etudier le lien entre une Variable A Expliquer (VAE) qualitative Y
- ET
- $\{X_j\}_{j:1...p}$ variables explicatives quantitatives ou binaires

Très utilisée en épidémiologie

- Etape liaison (facteurs prédictifs) et ajustement
- Prédiction : Création de scores pronostiques

3 types de régression logistique

- binaire ⇒ VAE binaire (ex : vivant / décés)
- ordinale ⇒ VAE ordinale (ex : stades de cancer)
- multinomiale ⇒ VAE qualitative (ex : types de cancer)

Cours basé uniquement sur la régression logistique binaire car :

- Reg. Ordinale : hypothèses complémentaires fortes (proportionnalité entre les modalités de Y)
- *Reg. Multinomiale*: peut être vue comme plusieurs régressions logistiques binaires. L'interprétation des coefficients est plus difficile.

Rappel

En régression linéaire multiple, le modèle est linéaire :

$$Y = f(X_1, X_2, \dots, X_p) + \epsilon = \beta_0 + \sum_{i=1}^p \beta_i X_i + \epsilon$$

Question

Qu'en est-il de la régression logistique?

$$Y = f(X_1, X_2, ..., X_p) + \epsilon = ?$$

- Contexte généra
- Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

Exemple introductif

- Y VAE binaire $(1 \text{ ou } 0) \Rightarrow \text{Présence (ou absence)}$ de maladie cardiovasculaire
- ullet Une seule variable explicative quantitative X: l'âge

Représentation graphique

Remarque : Pas vraiment intéressant, pas d'échelle naturelle ⇒ VAE qualitative

ldée

Modéliser les modalités de Y (présence ou absence) en termes de % par rapport à X

Question

- $\mathbb{P}(Y = 1/X)$ est un attribut numérique
- ⇒ utilisation d'un modèle linéaire?

Problème évident

- $\mathbb{P}(Y/X = 1) \in [0,1]$
- Or si on modélise par une régression linéaire, $\mathbb{P}(Y/X=1) \in]-\infty;+\infty[$

Nécessité de trouver une nouvelle modélisation (lien non-linéaire) ⇒ Courbe logistique

- Contexte généra
- 2 Introduction à la régression logistique
 - Contexte
 - Exemple introductif
 - Modèle logistique
- Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

Modèle logistique - Courbe logistique / Fonction sigmoïde

Courbe logistique

Fonction sigmoïde:

$$\mathbb{P}(Y=1/X)=\pi(X)=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

Propriétés intéressantes

$$X
ightarrow +\infty$$
 alors $\pi(X)
ightarrow 1$ $X
ightarrow -\infty$ alors $\pi(X)
ightarrow 0$ $\pi(X) \in [0,1]$

Modèle logistique - formulation

Modèle logistique à une variable explicative X

$$Y=\pi(X)+\epsilon=rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}+\epsilon$$

Remarque sur les erreurs

- $\epsilon = 1 \pi(X)$ si Y = 1
- $\epsilon = -\pi(X)$ si Y = 0

Modèle logistique multivarié

$$Y = \mathbb{P}(Y = 1/\{X_j\}) + \epsilon = \pi(\{X_j\}) + \epsilon = \frac{e^{\beta_0 + \sum_{j=1}^p \beta_j X_j}}{1 + e^{\beta_0 + \sum_{j=1}^p \beta_j X_j}} + \epsilon$$

Modèle logistique - Transformation LOGIT

Transformation LOGIT

$$\mathsf{Logit}[\pi(X)] = \mathsf{In}\left(\frac{\pi(X)}{1 - \pi(X)}\right) = \beta_0 + \beta_1 X$$

Intérêts

- Permet de revenir à un modèle linéaire classique
- Interprétation des coefficients du modèle comme une mesure d'association de X par rapport à Y (Notion d'odds-ratio)

Modèle logistique - Construction

Construction du modèle comme en régression linéaire multiple :

- Estimation des coefficients
- Tests
- Interprétation des coefficients
- Mesure d'adéquation et validité du modèle

- Contexte général
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

- Contexte généra
- 2 Introduction à la régression logistique
- Stimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle
- 4 Interprétation des coefficients
- Validation du modèle
- 6 Exemple

Estimation des coefficients - Généralités

En régression linéaire multiple \Rightarrow Méthode des moindres carrés ordinaires (MC0)

RLM: Minimisation du critère des MCO

$$\min \sum_{i=1}^{n} (e_i)^2 = \min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min \sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j X_j))$$

En régression logistique, la MMC ne permet pas d'obtenir une estimation des coefficients. On utilise la

Méthode du maximum de vraisemblance (Maximum likelihood)

Méthode classique qui permet d'estimer les paramètres d'une loi, d'un modèle.

Maximum de vraisemblance (1/5)

Exemple simple : Y binaire (0/1) et une seule variable explicative X quantitative

Population
$$\begin{cases} Y(0/1) & \longrightarrow \\ X & n-echantillon \end{cases} (y_i, x_i)_{i:1...n}$$

Avec pour une observation i:

$$Y_i = egin{cases} 1 ext{ avec une proba} : \pi(x_i) = \mathbb{P}(Y = 1/X = x_i) \ 0 ext{ avec une proba} : 1 - \pi(x_i) \end{cases}$$

$$Y_i \sim \mathcal{B}(1, \pi(x_i))$$

avec

$$\pi(x_i) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

Maximum de vraisemblance (2/5)

Sur cet échantillon on peut calculer une vraisemblance (probabilité d'observer l'échantillon)

$$L = \mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n)$$

$$L = \mathbb{P}(\{Y_1 = y_1\} \cap \{Y_2 = y_2\} \cap \dots \cap \{Y_n = y_n\}) = \bigcap_{i=1}^n \mathbb{P}(Y_i = y_i)$$

Comme les observations sont considérées indépendantes entre elles :

$$L = \bigcap_{i=1}^{n} \mathbb{P}(Y_i = y_i) = \prod_{i=1}^{n} \mathbb{P}(Y_i = y_i)$$

Maximum de vraisemblance (3/5)

 $\mathbb{P}(Y_i = y_i)$ est exprimée de la sorte (Loi de Bernoulli) :

$$\mathbb{P}(Y_i = y_i) = \pi(x_i)^{y_i} \left[1 - \pi(x_i)\right]^{1 - y_i}$$

Donc

$$L = \prod_{i=1}^{n} \mathbb{P}(Y_i = y_i) = \prod_{i=1}^{n} \pi(x_i)^{y_i} [1 - \pi(x_i)]^{1 - y_i}$$

Or selon le modèle logistique :

$$\pi(x_i) = \mathbb{P}(Y = 1/X = x_i) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Aussi

$$L = \prod_{i=1}^{n} \left(\frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \right)^{y_i} \left(1 - \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \right)^{1 - y_i}$$

Maximum de vraisemblance (4/5)

Méthode du maximum de vraisemblance

Objectifs : trouver $\hat{\beta}_0$ et $\hat{\beta}_1$ qui maximisent la probabilité d'observer l'échantillon (i.e. maximisation de la vraisemblance)

$$\max_{\beta_0,\beta_1}(L) = \max_{\beta_0,\beta_1}(\mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n)) = \max_{\beta_0,\beta_1}\left(\prod_{i=1}^n \mathbb{P}(Y_i = y_i)\right)$$

$$\max_{\beta_0,\beta_1}(L) = \max_{\beta_0,\beta_1} \left(\prod_{i=1}^n \left(\frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \right)^{y_i} \left(1 - \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \right)^{1 - y_i} \right)$$

Pour des raisons de simplicité de calcul, on passe généralement par le log

$$\max_{\beta_0,\beta_1}(L) = \max_{\beta_0,\beta_1} \log(L)$$

Maximum de vraisemblance - (5/5)

Méthode de Newton-Raphson (analyse numérique)

Pour trouver $\hat{\beta}_0$ et $\hat{\beta}_1$ qui maximisent L (ou log L), on a recours aux dérivées partielles :

$$\frac{\partial L}{\partial \beta_0} = 0 \text{ et } \frac{\partial L}{\partial \beta_1} = 0$$

Intérêts

Une fois $\hat{\beta}_0$ et $\hat{\beta}_1$ estimés, on peut calculer, pour tout $i, \ \hat{\pi}(x_i)$:

$$\hat{\pi}(x_i) = \mathbb{P}(Y_i = 1/X = x_i) = \frac{e^{\hat{eta}_0 + \hat{eta}_1 X_1}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 X_1}}$$

Ou avec le modèle Logit

$$\operatorname{logit}(\hat{\pi}(x_i)) = \operatorname{In}\left(\frac{\hat{\pi}(x_i)}{1 - \hat{\pi}(x_i)}\right) = \hat{eta}_0 + \hat{eta}_1 x_i$$

- Estimation des coefficients et tests
 - Estimation des coefficients
 - Tests dans le modèle

Test global de significativité

Test de Rapport de Vraisemblance (TRV)

- \mathcal{H}_0 : Pas de liaison entre Y et les $X_j \Leftrightarrow \beta_1 = \beta_2 = \ldots = \beta_p = 0$
- ullet \mathcal{H}_1 : Le modèle a du sens \Leftrightarrow Au moins 1 $eta_j
 eq 0$

Exemple simple : considérons le cas avec une seule variable explicative X

Principe du TRV

Comparer la vraisemblance L_X (avec variable explicative (\mathcal{H}_1)) avec la vraisemblance L_0 sans variable explicative (\mathcal{H}_0) .

Intuitivement

Si $L_X > L_0$ alors la variable X apporte à l'estimation de $\mathbb{P}(Y)$

Test global de significativité

Construction de la statistique de test

- L_x vraisemblance avec $X \to d\acute{e}j\grave{a}$ calculée
- L_0 vraisemblance sans X (sous \mathcal{H}_0)

Sur l'échantillon de taille
$$N$$
 on observe :
$$\begin{cases} {\it card}\{y=1\} = {\it n}_1 \\ {\it card}\{y=0\} = {\it N}-{\it n}_1 \end{cases}$$

Avec
$$\hat{\pi} = \mathbb{P}(Y = 1) = \frac{n_1}{N}$$
 et $1 - \hat{\pi} = \mathbb{P}(Y = 0) = 1 - \frac{n_1}{N}$

Aussi

$$L_0 = \prod_{i=1}^{N} \hat{\pi}^{y_i} [1 - \hat{\pi}]^{1 - y_i} = \prod_{i=1}^{N} \left(\frac{n_1}{N}\right)^{y_i} \left(1 - \frac{n_1}{N}\right)^{1 - y_i} = \left(\frac{n_1}{N}\right)^{\sum_{i=1}^{N} y_i} \left(1 - \frac{n_1}{N}\right)^{\sum_{i=1}^{N} (1 - y_i)}$$

$$L_0 = \left(\frac{n_1}{N}\right)^{n_1} \left(1 - \frac{n_1}{N}\right)^{N - n_1}$$

Test global de significativité

Statistique de test du TRV

On montre que sous \mathcal{H}_0 :

$$D = -2 \ln \left(\frac{L_0}{L_X}\right) \sim \chi^2_{1 \ d.l.l.}$$

Interprétation

- Non rejet de \mathcal{H}_0 : le modèle n'a pas de sens, X n'apporte rien à l'estimation de $\mathbb{P}(Y)$
- Rejet de \mathcal{H}_0 : le modèle a du sens, X apporte à l'estimation de $\mathbb{P}(Y)$

Test global de significativité

Extension du test à p variables explicatives X_j

Hypothèses du test

- \mathcal{H}_0 : $\beta_1 = \beta_2 = \ldots = \beta_p = 0$ (absence de liaison)
- \mathcal{H}_1 : \exists au moins un $\beta_j \neq 0$ (présence de liaison)

Statistique de test sous \mathcal{H}_0

$$D = -2 \ln \left(\frac{L_0}{L_{X_i}}\right) \sim \chi^2_{p \ d.l.l.}$$

Test global / Tests individuels

Dans le cas d'un régression logistique multiple

Si on ne rejette pas \mathcal{H}_0 associée au TRV alors STOP

Si on rejette \mathcal{H}_0 alors test individuel de chaque coefficient :

Test sur un coefficient - Hypothèses

- \mathcal{H}_0 : $\beta_j = 0$ (la variable n'est pas significative dans le modèle)
- $\mathcal{H}_1: \beta_i \neq 0$ (la variable est significative dans le modèle)

Test sur un coefficient - Statistique de test (Test de Wald)

On peut montrer que si \mathcal{H}_0 est vraie alors :

$$K = rac{\hat{eta}_j^2}{\mathbf{s}_{\hat{eta}_i}^2} \sim \chi_1^2 \; \mathrm{ddl}$$

- Contexte généra
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
- 6 Exemple

- Contexte généra
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
- 6 Exemple

Rappel sur l'odds-ratio

	М	M
E^+	a	b
E-	С	d

Odds-ratio : mesure d'association entre exposition et maladie

$$OR = \frac{ad}{bc} = \frac{\frac{a}{b}}{\frac{c}{d}}$$

$$a = \mathbb{P}(M/E^+)$$
 $b = \mathbb{P}(\bar{M}/E^+)$ $b = \mathbb{P}(\bar{M}/E^+)$ $b = \mathbb{P}(\bar{M}/E^+)$: rapport de côtes (odd) d'être exposé

$$c = \mathbb{P}(M/E^-)$$
 $d = \mathbb{P}(\bar{M}/E^-)$ $d = \mathbb{P}(\bar{M}/E^-)$ $d = \mathbb{P}(\bar{M}/E^-)$ $d = \mathbb{P}(\bar{M}/E^-)$: rapport de côtes (odd) d'être non-exposé

Mesure de l'association entre maladie et exposition? ⇒ Odds-ratio

$$OR = \left(\frac{\mathbb{P}(M/E^{+})}{\mathbb{P}(\bar{M}/E^{+})} \middle/ \frac{\mathbb{P}(M/E^{-})}{\mathbb{P}(\bar{M}/E^{-})}\right)$$

Remarque : si $\mathbb{P}(M)$ est faible (< 10%) alors $\mathsf{OR} \approx \mathsf{RR} \; (RR = \frac{P(M/E^+)}{P(M/E^-)})$

$$OR = \frac{\mathbb{P}(M/E^+)}{\mathbb{P}(\bar{M}/E^+)} \times \frac{\mathbb{P}(\bar{M}/E^-)}{\mathbb{P}(M/E^-)} = \underbrace{\frac{\mathbb{P}(M/E^+)}{\mathbb{P}(M/E^-)}}_{RR} \times \underbrace{\frac{\mathbb{P}(\bar{M}/E^-)}{\mathbb{P}(\bar{M}/E^+)}}_{\approx 1}$$

Interprétation de l'odds-ratio :

- ullet OR=1: pas d'association
- OR > 1: E^+ est un facteur de risque de M
- ullet OR < 1: E^+ est un facteur protecteur de M

Remarque : si le test du χ^2 est non significatif alors $\mathit{OR}=1$

- Contexte général
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
- 6 Exemple

Lien entre OR, modèle Logit et coefficient de la régression :

Considérons une seule variable explicative X binaire
$$\begin{cases} 1:E^+\\0:E^- \end{cases}$$

$$\operatorname{logit}(\pi(X)) = \beta_0 + \beta_1 X$$

$$\operatorname{logit}(\pi(1)) = \beta_0 + \beta_1$$

$$\operatorname{logit}(\pi(0)) = \beta_0$$

$$\operatorname{logit}(\pi(1)) - \operatorname{logit}(\pi(0)) = \beta_1$$

Lien entre OR, modèle Logit et coefficient de la régression :

$$\operatorname{logit}\left(\frac{\pi(1)}{\pi(0)}\right) = \operatorname{log}\left[\underbrace{\frac{\frac{\pi(1)}{1 - \pi(1)}}{\frac{\pi(0)}{1 - \pi(0)}}}_{OR}\right] = \beta_{1}$$

On en déduit que :

$$OR = e^{\beta_1}$$

L'exponentiel du coefficient peut être interprété comme un odds-ratio

Remarque : idem dans le cas multiple mais les OR sont ajustés sur les autres variables X_i

- Contexte généra
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
- 6 Exemple

Supposons que X soit quantitative :

$$OR = e^{\beta_1} = OR^{X = x_0 + 1/X = x_0} \ \forall x_0$$

 \Rightarrow OR quand X augmente d'une unité, quelque soit la valeur de X (x_0).

Exemple : X : age en dizaines d'années et OR = 2.

Passer de 20 à 30 ans multiplie par 2 le risque de maladie =

Passer de 60 à 70 ans multiplie par 2 le risque de maladie

Cela sous-tend une hypothèse forte : log-linéarité de X qui est à vérifier.

Principe

- Découper X en déciles
- Pour chaque intervalle on calcule $\mathbb{P}(Y=1/X=c_1)$ (proportion de malades)
- Représenter graphiquement $\mathsf{Logit}(\pi(X))$ en fonction des déciles de X

Objectif : vérification de la présence d'une relation linéaire entre X et $\mathsf{Logit}(\pi(X))$

Sinon:

- Transformations mathématiques ($log(X), \sqrt{X},...$)
- Discrétisation de X en classes appropriées

- Contexte généra
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- Interprétation des coefficients
 - Rappel sur l'odds-ratio
 - Lien entre OR, modèle Logit et coefficient de la régression
 - Variable explicative quantitative
 - Variable explicative qualitative (+ de 2 modalités)
- Validation du modèle
- 6 Exemple

Cas des variables nominales :

- On choisit une modalité de référence (normal)
- Introduction dans le modèle
 - Test de la variable dans sa totalité ({CL ∪ CP}) (TRV)
 - Test des variables binaires une par une (test individuel)

Note : géré par les logiciels.

- Contexte général
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- 6 Exemple

Validation du modèle

- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle

Pouvoir discriminant du modèle

Pouvoir discriminant

Capacité du modèle à correctement classer les observations (ex M / \bar{M})

- Basé sur la courbe ROC (outil graphique d'évaluation du pouvoir discriminant)
- Critère AUC (Area Under Curve) = pouvoir discriminant du modèle

AUC	Discrimination
0.5	Nulle
0.7 - 0.8	Acceptable
0.8 - 0.9	Excellente
> 0.9	Exceptionnelle

Remarques

- Si AUC = 0.5 alors le modèle classe de manière complètement aléatoire les observations
- Si AUC > 0.9 le modèle est très bon, voire trop bon, il faut évaluer s'il y a overfitting

- Contexte général
- 2 Introduction à la régression logistique
- 3 Estimation des coefficients et tests
- 4 Interprétation des coefficients
- Validation du modèle
 - Pouvoir discriminant du modèle
 - Calibration du modèle
- 6 Exemple

Calibration du modèle

Calibration

Comparaison des probabilités prédites par le modèle $\hat{\pi}_i(X_j)$ à celles observées dans l'échantillon. \Rightarrow Mesure d'adéquation

Idée

On cherche à avoir un modèle qui minimise la distance entre les probabilités observées et celles prédites par le modèle

Détermination de la calibration ⇒ Test de *Hosmer - Lemeshow*

Test de Hosmer - Lemeshow

Principe

On calcule pour chaque observation la probabilité prédite par le modèle $\hat{\pi}_i(X_j)$. On classe les observations par déciles de probabilités prédites. On compare dans chaque classe les effectifs observés et les effectifs théoriques.

- Si dans chaque classe ces deux effectifs sont proches alors le modèle est calibré
- S'il existe des classes dans lesquelles les effectifs sont trop différents, alors le modèle est mal calibré

Construction

- Calculer les $\hat{\pi}_i(X_j)$ prédites par le modèle
- **Q** Classer les données (observations $+ \hat{\pi}_i(X_j)$) par ordre croissant de $\hat{\pi}_i(X_j)$
- **3** Regrouper les données par déciles de $\hat{\pi}_i(X_j)$
- Construire le tableau suivant

Test de Hosmer - Lemeshow

	Malade (Y=1)		Non-M	alade (Y=0)
	Observés	Prédits	Observés	Prédits
G1: 0-10%	#M	#prédits	#NM	#G1 - #prédits
G2 : 10% - 20%		•		
G3 : 20% à 30%				
G4 : 30 à 40%				
G5 : 40% à 50%				
G6 : 50% à 60%				
G7 : 60% à 70%				
G8 : 70 à 80%				
G9 : 80% à 90%				
G10 : 90 à 100%	•	•	•	

- #M : le nombre de malades dans la classe (#NM : nb de non-malades)
- #prédits = $\sum_{G_1} \hat{\pi}_i(X_i)$ car $Y = \pi(X) + \epsilon$

Test de Hosmer - Lemeshow

Hypothèses du test

- \mathcal{H}_0 : les probabilités théoriques sont proches de celles observées (modèle calibré)
- $m{ ilde{ heta}}_1$: les probabilités théoriques sont différentes des observées (modèle non calibré)

Statistique de test

Sous \mathcal{H}_0

$$\widehat{C} = \underbrace{\sum_{G} \frac{(\#M - \#predits)^2}{\#predits}}_{\text{Malades}} + \underbrace{\sum_{G} \frac{(\#NM - \#predits)^2}{\#predits}}_{\text{Non Malades}} \sim \chi^2_{G-2 \text{ ddl}}$$

- Le modèle est calibré si on ne rejette pas \mathcal{H}_0
- En pratique on ne rejette pas \mathcal{H}_0 si p > 0.2

- Contexte général
- 2 Introduction à la régression logistique
- Estimation des coefficients et tests
- 4 Interprétation des coefficients
- 5 Validation du modèle
- 6 Exemple

Etude sur les facteurs prénataux liés à un accouchement prématuré chez les femmes déjà en travail prématuré.

9 variables explicatives dans l'étude pour 390 femmes incluses dans l'étude.

Variable à expliquer : PREMATURE : accouchement prématuré (1=oui ; $0=\mathsf{non}$)

Objectif: Quels sont les facteurs prédictifs d'un accouchement prématuré??

Source: http:

//eric.univ-lyon2.fr/~ricco/cours/supports_data_mining.html

Variables explicatives

- GEST : l'âge gestationnel en semaines à l'entrée dans l'étude
- DILATE : la dilatation du col en cm
- EFFACE : l'effacement du col (en %)
- **MEMBRAN** : les membranes rupturées (=1) ou non (=2) ou incertain (=3)
- **GRAVID** : la gestité (nombre de grossesses antérieures y compris celle en cours)
- PARIT : la parité (nombre de grossesses à terme antérieures)
- **DIAB** : la présence (=1) ou non (=2) d'un problème de diabète
- TRANSF: le transfert (1) ou non (2) vers un hôpital en soins spécialisés
- **GEMEL**: grossesse simple (=1) ou multiple (=2)

```
Code SAS:
```

```
proc logistic data=premature;
class membran(ref='2') diab(ref='2') transf(ref='2')
gemel(ref='1')/param=ref;
model premature(evt='1') = GEST DILATE EFFACE MEMBRAN
GRAVID PARIT DIAB TRANSF GEMEL / lackfit;
run;
```

Model Information			
Data Set	WORK.PREMATURE		
Response Variable	PREMATURE		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique Fisher's scoring			

Number of Observations Read	390
Number of Observations Used	390

Response Profile				
Ordered Value	PREMATURE	Total Frequency		
1	0	124		
2	1	266		

Probability modeled is PREMATURE=1.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	489.745	377.710			
SC	493.711	421.338			
-2 Log L	487.745	355.710			

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr>					
Likelihood Ratio	132.0345	10	<.0001		
Score	103.6613	10	<.0001		
Wald	71.8505	10	<.0001		

Type 3 Analysis of Effects					
	Wald				
Effect	DF	Chi-Square	Pr > ChiSq		
GEST	1	5.7887	0.0161		
DILATE	1	9.6336	0.0019		
EFFACE	1	12.1470	0.0005		
MEMBRAN	2	24.5065	<.0001		
GRAVID	1	2.3602	0.1245		
PARIT	1	12.0120	0.0005		
DIAB	1	2.3590	0.1246		
TRANSF	1	4.3425	0.0372		
GEMEL	1	3.4059	0.0650		

Odds Ratio Estimates				
Effect	Point Estimate	95% Wald Confidence Limits		
GEST	0.900	0.826	0.981	
DILATE	1.632	1.198	2.223	
EFFACE	1.017	1.007	1.026	
MEMBRAN 1 vs 2	11.023	4.223	28.768	
MEMBRAN 3 vs 2	2.145	0.514	8.950	
GRAVID	1.243	0.942	1.641	
PARIT	0.497	0.335	0.738	
DIAB 1 vs 2	4.175	0.674	25.860	
TRANSF 1 vs 2	1.791	1.035	3.099	
GEMEL 2 vs 1	3.114	0.932	10.404	

Association of Predicted Probabilities and Observed Responses						
Percent Concordant 83.1 Somers' D 0.663						
Percent Discordant	Gamma	0.664				
Percent Tied 0.2 Tau-a 0.2						
Pairs	32984	c	0.832			

Partition for the Hosmer and Lemeshow Test						
		PREMAT	TURE = 1	PREMAT	TURE = 0	
Group	Total	Observed	Expected	Observed	Expected	
1	39	12	8.80	27	30.20	
2	40	13	14.89	27	25.11	
3	39	21	18.30	18	20.70	
4	39	17	22.25	22	16.75	
5	39	26	26.36	13	12.64	
6	39	30	29.91	9	9.09	
7	39	33	33.65	6	5.35	
8	39	38	36.35	1	2.65	
9	39	39	37.81	0	1.19	
10	38	37	37.68	1	0.32	

Hosmer and Lemeshow Goodness-of-Fit Test		
Chi-Square	DF	Pr > ChiSq
9.3867	8	0.3107

Annexe 1 - Logarithme de la fonction de vraisemblance

$$\log(L) = \log\left[\prod_{i=1}^{n} \mathbb{P}(Y_i = y_i)\right] = \log\left[\prod_{i=1}^{n} \pi(x_i)^{y_i} \left[1 - \pi(x_i)\right]^{1 - y_i}\right]$$

$$\log(L) = \log\left[\prod_{i=1}^{n} \pi(x_i)^{y_i}\right] + \log\left[\prod_{i=1}^{n} \left[1 - \pi(x_i)\right]^{1 - y_i}\right]$$

$$\log(L) = \sum_{i=1}^{n} y_i \log(\pi(x_i)) + \sum_{i=1}^{n} (1 - y_i) \log(1 - \pi(x_i))$$

$$\log(L) = \sum_{i=1}^{n} y_i \log\left(\frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}\right) + \sum_{i=1}^{n} (1 - y_i) \log\left(1 - \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}\right)$$

◆ Retour