

Projet MF01: Simulation du modèle de Lundberg Ruine en Assurance

Réalisé par :

Yannick ZIRIHI (MF01) Adnane EL KASMI (MF01) Aboubacar KOUROUMA (MF01)

Plan de Travail

- Cahier des charges
- Presentation du modele de risque Classique (Cramer-Lundberg)
- □ Les lois qui regissent le modele et leurs simulations
- □ Calcule et simulation de la probabilité de la ruine
- □ le travail en équipe

Objectifs du projet

Simulation Mont-Carlo Échantillonnage préférentiel Évaluer la probabilité de ruine à horizon fini et infini d'une compagnie d'assurance

Simulation Mont-Carlo naïf

Etude Mathématique

Simulation grace aux méthodes de Monte Carlo

Simulation avec des données réelles

Le cahier des charges

→ Etude théorique :

- Etude théorique des lois de probabilité qui sous-tendent le modèle de Lundberg (loi gamma ,loi exponentielle , loi de Pareto ,loi exponentielle composée).
- Etude de théorique de la transformation d'Esscher pour le calcul de la probabilité de la ruine.

→Simulations:

- Simulation des différentes lois par la méthodes de Monte-Carlo.
- Simulation de la probabilité de la ruine.

Le modèle du risque Classique (Cramer-Lundberg)

$$R(t) = x + c.t - X(t) = x + c.t - \sum_{k=1}^{N_t} Z_k$$

- $R(\overline{t})$: la réserve à l'instant t.
- \mathcal{X} : la réserve à l'instant de départ.
- C: la prime d'assurance.
- X(t): la somme des sinistres a l'instant t.
- N_t : le nombres de réclamations sur [0, t].
- Z_k : le montant des sinistres.

 $\{N(t), t \ge 0\}$: le processus de comptage du nombre de réclamation sur [0, t]

- τ_i l'instant d'arrivée d'un sinistre $\tau \hookrightarrow poisson(\lambda)$.
- $T_k = \sum_{i=0}^k \tau_i$ avec n > 1 T_n : l'inter-occurrence d'un sinister.
- $N_t = \sum_{k=1}^{\infty} 1_{\{T_k \le t\}} \hookrightarrow poisson\ compos\'{e}e\ (\lambda t).$

- Algorithme de simulation de v.a Exponentielle :
 - function[τ] = $V_A_Exponentielle(\lambda)$
 - $\circ U = rand()$
 - $\circ \operatorname{set} \tau = -\frac{1}{2} \cdot \ln(1 U)$
 - endfunction
- Algorithme de simulation de N_t :

• function[
$$N_t$$
] = V_A _Processus_comptage(λ, t, N)

$$0 N_t = 0$$

$$\circ T = 0$$

$$\circ$$
 for $\mathbf{k} = \mathbf{1}$: \mathbf{N}

$$\circ \mathbf{for} \, \mathbf{i} = \mathbf{1} : \mathbf{k}$$

$$\circ \tau(i) = V_A_Exponentielle(\lambda)$$

$$\circ T = T + \tau(i)$$

o endfor

$$\circ$$
 if $T \leq t$

$$\circ N_t = N_t + 1$$

- o endif
- \circ endfor
- endfunction

Ici N représente un grand nombre pour remplacer l'infini.

 Z_k : le montant des sinistres

• Processus à queue Fine: $Z_k \hookrightarrow gamma(\alpha, \beta)$ (accident de la route, visite chez le medecin)

- Algorithme de simulation de loi $Gamma(\alpha = n, \beta)$: $n \in N$
- function[X] = $V_A_Gamma(n, \beta)$
- $\circ Set Y = V_A_Exponentielle(\lambda)$
- $\circ U = rand()$, i = 1
- $\circ \ While \ i < n$

$$\circ Y = Y - \frac{1}{\lambda} \cdot ln(1 - U)$$

- \circ $\mathbf{i} = \mathbf{i} + \mathbf{1}$
- o endwhile
- \circ Set X = Y
- endfunction

- Algorithme de simulation de loi $Gamma(\alpha, \beta)$ par la méthode de Rejet :
- function[X] = $V_A_Gamma_Rejet(\alpha, \beta)$
- $\circ U = rand()$
- $\circ Y = V_A_Gamma(n, \delta)$
- $\circ \text{ if } \mathbf{U} \leq \frac{f_X(Y)}{C.\,g_Y(Y)}$
- \circ Set X = Y
- o endif
- endfunction
- Algorithme de fonction de densité de loi $Gamma(\alpha, \beta)$:
- function[f] = $f_Gamma(x, \alpha, \beta)$

$$\circ f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot e^{-\beta x}$$

endfunction

 Z_k : le montant des sinistres

- Processus à queue Lourdes: $Z_k \hookrightarrow Pareto(\alpha, \beta)$ (les tremblements de Terre, La COVID-19)
 - Algorithme de simulation de loi Pareto(a,b) :
 - function[X] = $V_A_Pareto(a, b)$
 - $\circ U = rand()$
 - $\circ \operatorname{set} X = b. (1 u)^{\frac{-1}{a}}$
 - endfunction
 - Algorithme de simulation d'une chaine de v.a Pareto(a,b) :
 - function[X] = $Chaine_V_A_Pareto(a, b)$
 - \circ for $n = 1: N_{mc}$
 - $\circ X(n) = V_A_Pareto(a, b)$
 - \circ end for
 - endfunction

Simulation de la reserve

• Algorithme de simulation de R_t à queues fines :

• function[
$$Rt$$
] = $Rt_fines(c, x, \lambda, \alpha, \beta, t)$
 $\circ N_t = V_A_Poisson_Compose(\lambda, t)$
 $\circ X = 0$
 $\circ for \ k = 1:N_t$
 $\circ Z_k = V_A_Gamma(\alpha, \beta)$
 $\circ X = X + Z_k$
 $\circ endfor$
 $\circ set \ Rt = x + c.t - X$
• endfunction

• Algorithme de simulation de R_t à queues lourde :

• function[
$$Rt$$
] = $Rt_lourde(c, x, \lambda, a, b, t)$
 $\circ N_t = V_A_Poisson_Compose(\lambda, t)$
 $\circ X = 0$
 $\circ for k = 1: N_t$
 $\circ Z_k = V_A_Pareto(a, b)$
 $\circ X = X + Z_k$
 $\circ endfor$
 $\circ set Rt = x + c.t - X$
• endfunction

Probabilité de ruine en temps infini :

$$\psi(x) = P(\inf_{t \ge 0} R(t) < 0 \mid R(0) = x)$$

L'instant de ruine :

$$T_x = \inf\{t > 0, \ R(t) < 0\}$$

Probabilité de ruine en temps fini :

$$\psi(x,T) = P(\inf_{0 \le t \le T} R(t) < 0 \mid R(0) = x)$$

Simulation Monte-Carlo naïf

Probabilité de ruine à horizon fini T:

$$\mathbb{p}(X_T > a) = \mathbb{E}_p \left[\mathbb{I}_{X_T > a} \right] = \frac{1}{Nmc} \sum_{n=0}^{Nmc} \mathbb{I}_{X_T > a}$$

- Algorithme de simulation de Probabilité de ruine :
 - function[Proba] = $Proba_Ruine(c, x, \lambda, T, \alpha, \beta)$
 - \circ Counter = 0, a = x + c.T
 - \circ for $n = 1: N_{mc}$

$$\circ X(n) = V_A_X(c, x, \lambda, T, \alpha, \beta)$$

$$\circ$$
 if $X(n) > a$

- \circ Counter = Counter + 1
- o endif
- \circ endfor

$$\circ$$
 set Proba = $\frac{Counter}{N_{mc}}$

endfunction


```
Pour: { c=100, x=50, T=1, \lambda=6, \alpha=8, \beta=2.5 } pour N_{mc}=10^6 on trouve: 

>>> Proba_ruine_fines(100,50,1,6,8,2.5,1000000) 0.264787 

>>> Proba_ruine_lourde(100,50,1,6,8,2.5,1000000) 0.0
```

Problème ? (Ruine rare)

On veut simuler la probabilité de ruine d'une ruine rare pour les jeux de paramètres :

 $\{$ c= **100**, x= **50**, T= **1**, $\lambda=$ **7**, $\alpha=$ **4**, $\beta=$ **1**. 5 $\}$ Pour $N_{mc}=10^2$, normalement si on calcule cette probabilité avec la simulation de Monte-Carlo naïf on obtient une probabilité nulle :

```
>>> Proba_ruine_fines(100,50,1,7,4,1.5,100)
```


Simulation Monte-Carlo : Échantillonnage préférentiel

Probabilité de la ruine avec la transformation d'Esscher(permet de calculer de petite probabilité):

$$\mathbb{P}(X_t > a) = \mathbb{E}_p \left[\mathbb{I}_{X_t > a} \right] = \mathbb{E}_Q \left[\mathbb{I}_{X_Q^{d\mathbb{P}}} \right] = \mathbb{E}_Q \left[\mathbb{I}_{X_T^Q > a} e_T^{-\theta X^Q + \Gamma(\theta)} \right] \text{ et par Monte-Carlo} : \mathbb{P}(X_t > a) = \frac{1}{Nmc} \sum_{n=0}^{Nmc} \mathbb{I}_{X_T^Q > a} e_T^{-\theta X^Q + \Gamma(\theta)}$$

- Algorithme de simulation de X_{π}^{Q} :
- function[X] = $V A X O(c, x, \lambda, T, \alpha, \beta)$

$$\circ \theta = \beta - \beta \left(\frac{\beta \cdot (x + c \cdot T)}{\alpha \lambda T} \right)^{\frac{-1}{\alpha + 1}}$$

$$\circ \lambda^{Q} = \lambda \cdot \left(\frac{\beta}{\beta - \theta}\right)^{\alpha}$$

- $\circ N_T = V \ A \ Poisson \ Compose(\lambda^Q, T)$
- $\circ X = 0$
- \circ for $k = 1: N_T$
 - $\circ Z_{b}^{Q} = V_{A}Gamma(\alpha, \beta \theta)$
 - $\circ X = X + Z_{k}^{Q}$
- o end for
- o set X
- endfunction

- Algorithme de simulation de Probabilité de ruine Q:
- function $[Proba] = Proba Ruine O(c, x, \lambda, T, \alpha, \beta)$

$$\circ \theta = \beta - \beta \left(\frac{\beta \cdot (x + c \cdot T)}{\alpha \lambda T} \right)^{\frac{-1}{\alpha + 1}}$$

$$\circ \Gamma(\theta) = \lambda T \left(\left(\frac{\beta}{\beta - \theta} \right)^{\alpha} - 1 \right)$$

- \circ Counter = 0. a = x + c.T
- \circ for $n = 1: N_{mc}$

$$\circ X^{Q}(n) = V_{A}X_{Q}(c, x, \lambda, T, \alpha, \beta)$$

- \circ if $X^{Q}(n) > a$

 \circ Counter = Counter + $e^{-\theta . X^Q(n) + \Gamma(\theta)}$

- o endif
- \circ end for
- o set Proba =
- endfunc

Problème (Ruine rare)?

On veut simuler la probabilité de ruine d'une ruine rare pour les jeux de paramètres :

 $\{c = 100, x = 50, T = 1, \lambda = 7, \alpha = 4, \beta = 1.5\}$ Pour $N_{mc} = 10^2$, normalement si on calcule cette probabilité avec la simulation de Monte-Carlo naïf on obtient une probabilité nulle :

Solution

On applique cette méthode pour les jeux de paramètres précédents dont on a trouvé que la probabilité de ruine est nulle par la méthode Monte-Carlo naïf et on trouve :

Donc on a trouvé que $P(X_T > a) = 1.45.10^{-22}$ ce qui est impossible d'obtenir avec Monte-Carlo naïf.

Simulation Monte-Carlo

Probabilité de ruine à horizon infini :

```
• Algorithme de simulation de T_x à queues fines :
```

- function[t] = $Tx_fines(c, x, \lambda, \alpha, \beta, \Delta)$
- $\circ R_t = Rt_fines(c, x, \lambda, \alpha, \beta, t)$
- $\circ t = 0$
- \circ while $R_T > 0$
 - $\circ t = t + \Delta$
- o endwhile
- o set t
- endfunction
- Algorithme de simulation de T_x à queues lourde :
 - function[t] = Tx_lourde(c, x, λ , α , β , Δ)
 - $\circ R_t = Rt_lourde(c, x, \lambda, \alpha, \beta, t)$
 - $\circ t = 0$
 - \circ while $R_T > 0$
 - $\circ t = t + \Delta$
 - o endwhile
 - o set t
 - endfunction


```
T_x = \inf\{t > 0, \ R(t) < 0\}
```

```
Pour les jeux de paramètres { c = 100, x = 50, \lambda = 6, \alpha = 8, \beta = 2.5 } on obtient avec \Delta = 0.01:
                            >>> Tx=Tx fines(50,100,6,8,2.5,0.01)
                            >>> Tx
                            0.32000000000000001
Et la probabilité de ruine pour l'instant T_r pour N_{mc}=10^6 on trouve :
                            >>> Tx=Tx fines(50,100,6,8,2.5,0.01)
                            >>> Tx
                            0.32000000000000001
                            >>> Proba ruine fines (50, 100, Tx, 6, 8, 2.5, 1000000)
```

Simulation de la probabilité de la ruine

Simulation Monte-Carlo

Présentation du rôle de chaque membre du groupe

Membres\Langages	Mathématiques	Simulation	Rapport & Présentation
Adnane EL KASMI	X	Х	Х
Yannick ZIHIRI	X	Х	Х
Aboubacar KOUROUMA	X	Х	Х

Ce que nous avons réalisé

EISTI

- Se familiariser avec des notions mathématiques de l'assurance et avœdes bases de la théorie de la ruine : le modèle de Lundberg-Cramer.
- ✓ Montrer théoriquement que le processus de comptage N_t suit la loi de Poisson de paramètre λt .
- ✓ Calculer l'espérance E[X(t)] avec $X(t) = \sum_{k=1}^{N_t} Z_k$
- ✓ Calculer une espérance très utile : la fonction génératrice des moments de X(t) :

$$M_{X(t)}(\theta) = E[e^{\theta X(t)}]$$

- \checkmark Simuler par Monte-Carlo le processus de comptage N_t par deux façons différentes et de tracer les graphes de fonction de densité de Poisson.
- Simuler par Monte-Carlo la loi $Gamma(\alpha = n, \beta)$ avec $n \in N$ et simuler par la méthode de rejet la loi $Gamma(\alpha, \beta)$ avec $\alpha > 0$ puis tracez les graphes de fonction de densité de Gamma pour les différents paramètres et les comparer avec le graphe de Wikipédia.
- ✓ Simuler par Monte-Carlo la loi Pareto(a,b) et tracez les graphes de fonction de densité de Pareto pour les différents paramètres afin de modéliser des dommages causés par COVID-19
- ✓ Estimer la probabilité de ruine au bout d'un an (horizon fini) pour des deux jeux de paramètres par la méthode Monte-Carlo naïf et par échantillonnage préférentiel.

Ce que nous avons réalisé

- ✓ Estimer la probabilité de ruine et le temps de la ruine (horizon infini) pour des deux jeux de paramètres par la méthode Monte-Carlo naïf et par échantillonnage préférentiel.
- ✓ Etudier la méthode de changement de l'espace de probabilité et la transformation d'Esscher.
- ✓ Simuler une ruine rare à l'aide de transformation d'Esscher.
- ✓ Etudier le mécanisme de fonctionnement de compagnie diversifiée.
- ✓ Construire le graphe qui affiche l'évolution de la probabilité de ruine en fonction du capital de départ.
- ✓ Construire le graphe qui affiche l'évolution de la probabilité de ruine en fonction du l'horizon T.

Merci de votre attention