

Fundamentos de teoría de la computación. Fecha 1. 13/07/2021

EJERCICIO 1:

Dada la siguiente información:

"Tini es feliz si aparece en TV. Si Tini es buena cantante, entonces graba un disco, pero si no es buena cantante, se deprime y no graba un disco. Tini aparece en TV cuando graba un disco o cuando se deprime".

Simbolizar en el lenguaje de la lógica de Enunciados y responder:

- (a) Tini es buena cantante? Fundamentar.
- (b) Tini no es buena cantante? Fundamentar.
- (c) Tini es feliz? Fundamentar.

Resolución:

p = Tini es feliz q= Tini aparece en TV r= Tini es buena cantante s= Tini graba un disco t= Tini se deprime

- $q \rightarrow p$ = Tini es feliz si aparece en TV
- $r \rightarrow s = Si Tini es buena cantante, entonces graba un disco$
- $\neg r \rightarrow (t \land \neg s) = si \text{ no es buena cantante, se deprime y no graba un disco}$
- (s v t) \rightarrow q = Tini aparece en TV cuando graba un disco o cuando se deprime
- a) r?
- b) ¬r?
- c) q?

Puedo garantizar que el enunciado es válido solo si no existe una combinación de premisas verdaderas tales que la conclusión sea falsa.

a) No Puedo concluir **r = Tini es buena cantante** dado que encontré una combinación de premisas verdaderas tales que la conclusión r = F

р	q	r	S	t	$q\top$	$r \rightarrow s$	¬r → (t ^ ¬s)	$(s v t) \rightarrow q$
F	>	F	F	>	V	٧	٧	V

b) No Puedo concluir \neg **r** = **Tini no es buena cantante** dado que encontré una combinación de premisas verdaderas tales que la conclusión \neg **r** = F

р	q	r	s	t	$q\top$	$r \rightarrow s$	$\neg r \rightarrow (t \land \neg s)$	$(s \lor t) \to q$	¬r
V	٧	٧	V	٧	V	V	V	V	F

- c) Puedo concluir que **p** = **Tini es feliz** dado que no puedo hallar una combinación de premisas verdaderas tales que la conclusión sea falsa.
 - Si P es falso
 - Para que $q \rightarrow p = V$, q = F

- dado que q = F para que (s v t) \rightarrow q = V, s = F y t = F
- dado que s = F para que $r \rightarrow s = V$, r = F
- con r = F s = F y t = F, \neg r \rightarrow (t ^ \neg s) = F

р	q	r	S	t	$q \rightarrow p$	$r \rightarrow s$	¬r → (t ^ ¬s)	$(s v t) \rightarrow q$
F	F	H	F	F	V	V		٧

EJERCICIO 2:

Sean A, B y C formas enunciativas. Se sabe que (\neg (A \rightarrow B)) es tautología.

Dar un ejemplo de Fbf A y otro de B y otro de C.

Determinar, si es posible, cuáles de las siguientes formas enunciativas son tautologías y cuáles contradicciones. Justificar las respuestas.

- i. (A→B)
- ii. $(B \rightarrow A)$
- iii. (($(\neg A) \lor B) \to C$)

Resolución:

- i. $(A \rightarrow B)$: **contradicción** dado que si $(\neg (A \rightarrow B))$ es tautología $(A \rightarrow B) = \neg (\neg (A \rightarrow B))$ y si negamos siempre un resultado Verdadero obtenemos en todos los casos un resultado Falso
- ii. (B \rightarrow A): (\neg (A \rightarrow B)) sabemos que es una tautología, para que eso ocurra A \rightarrow B = F, para que dicho operador sea = F, A= V y B=F, es el único caso en el cual el condicional es = F. Por ende dado que B=F (B \rightarrow A) es una **tautología** dado que al ser falso el antecedente, el condicional siempre tomará el valor verdadero
- iii. ((\neg A) \lor B) \rightarrow C): Por lo explicado en el punto anterior se sabe que A = V y B = F. En este caso el antecedente ($(\neg$ A) \lor B) siempre tomará el valor falso, por lo cual el condicional siempre será verdadero, estamos ante una **tautología**

EJERCICIO 3

- 3.1. Indicar si las siguientes afirmaciones valen en el sistema formal L (justificar). Escribir las afirmaciones en lenguaje natural.
 - i. |-L (p→p) ii. {p} |-L (p→q)

Resolución:

i. $|-L(p\rightarrow p)$: Vale dado que $p\rightarrow P$ es teorema en L ya que es una tautología. Si se realiza la tabla de verdad nunca va a suceder que el antecedente sea verdadero y el consecuente falso, dado que ambos tienen el mismo valor, por ende el condicional siempre tomará el valor verdadero.

Lenguaje natural: si ocurre P entonces ocurrirá P Se lee: la formula p entonces p es TEOREMA DE L ii. $\{p\} \mid -L \ (p \rightarrow q)$: No vale dado que sabiendo que p = V, no tengo ningún dato acerca del valor de verdad de q, y el mismo podría tomar el valor falso, lo cual llevaría a que el condicional sea falso

3.2. La siguiente cadena de pasos es una demostración en L a partir de un conjunto de gama de premisas. Indicar qué premisas, axiomas y/o reglas se usan en cada paso.

$$\left\{ \begin{array}{l} p \to ((\neg \, s) \to r), (\neg \, s) \, \right\} \left| \neg_L(p \to r) \right. \\ \\ 1. \; (\neg \, s) \\ 2. \; p \to ((\neg \, s) \to r) \\ 3. \; (p \to ((\neg \, s) \to r)) \to ((p \to (\neg \, s)) \to (p \to r)) \\ 4. \; (p \to (\neg \, s)) \to (p \to r) \\ 5. \; (\neg \, s) \to (p \to (\neg \, s)) \\ 6. \; (p \to (\neg \, s)) \\ 7. \; (p \to r) \end{array}$$

Resolución:

1. (¬ s) Se utiliza la premisa ¬ s

2. $p \rightarrow ((\neg s) \rightarrow r)$ Se utiliza la premisa $p \rightarrow ((\neg s) \rightarrow r)$

3. $(p \rightarrow ((\neg s) \rightarrow r)) \rightarrow ((p \rightarrow (\neg s)) \rightarrow (p \rightarrow r))$ Se utiliza el Axioma 2 con A=p, B=¬s y C=r

4. $(p \rightarrow (\neg s)) \rightarrow (p \rightarrow r)$ Se utiliza modus ponens entre 2 y 3

5. $(\neg s) \rightarrow (p \rightarrow (\neg s))$ Se utiliza el axioma 1 con A=¬s y B=p

6. (p \rightarrow (\neg s)) Se utiliza MP entre 1 y 5

7. $(p \rightarrow r)$ Se utiliza MP entre 4 y 6

EJERCICIO 4:

Expresar en un lenguaje de predicados de primer orden el conocimiento asociado a la siguiente situación: "Algunos alumnos de informática, mayores de 18 años han sido vacunados con la vacuna Sputnik V".

Usar al menos los siguientes predicados:

• P₁(x,y): "x es alumno de la carrera y"

• P₂(x,y):"x es mayor que y"

• P₃(x,y): "x fue vacunado con la vacuna y"

Dar una interpretación I donde la fórmula sea falsa. La I debe incluir el dominio y las interpretaciones de las letras de constantes, funciones y predicados.

Resolución:

P1(x,y): "x es alumno de la carrera y"

P2(x,y):"x es mayor que y"

P3(x,y): "x fue vacunado con la vacuna y"

 $C_1 = informática$

 $C_2 = 18 \, a\tilde{n}os$

 $C_3 = Sputnik V$

$$\exists (x)(P1(x,C_1) \land P2(x,C_2) \land P3(x,C_3))$$

La interpretación será con los números enteros

```
I(P1(x,y)): x es igual a y

I(P2(x,y)):"x es mayor que y"

I(P3(x,y)): "x es menor que y"

C_1 = 1

C_2 = 2

C_3 = 5
```

En lenguaje natural sería Existe x tal que es igual a 1 y mayor a 2 y menor a 5

EJERCICIO 5:

5.1. Para cada una de las siguientes fbf decir si es satisfactible, verdadera, falsa, contradictoria o lógicamente válida. Recordar que una fbf puede ser verdadera en una interpretación y falsa en otra. Justificar mostrando las diferentes interpretaciones.

```
Funciones = {f(x)}, Predicados = {P<sub>1</sub>, P<sub>2</sub>} 
i. \forall x \ (P_1(x) \rightarrow \neg P_1(f(x))) 
ii. P_1(x)
```

5.2. Indicar si las siguientes fórmulas son lógicamente equivalentes y justificar la respuesta:

```
\exists x (P_1(x) \land P_2(x))
\exists x P_1(x) \land \exists x P_2(x)
```

Resolución:

5.1

i.
$$\forall x (P1(x) \rightarrow \neg P1(f(x)))$$

Puede tomar el valor verdadero o falso dependiendo de la interpretación. Por ejemplo en el universo de los números naturales:

```
P1(x) = "x es mayor a 3"
```

f(x) = x * -1 Tu dominio debe ser los números Enteros, ya que los naturales son positivos y dadas dichas interpredicional ser la facilita de la facilita de

pero si en cambio f(x) = x * 1, sería lo mismo que decir $\forall x (P1(x) \rightarrow \neg P1(x))$ lo cual es una contradicción

ii. P1(x) Dependiendo el valor de P1 y el universo puede ser verdadero, satisfactorio o contradicción.

Por ejemplo en los números naturales:

siendo P1(x) = "X es menor a 0". Sería una contradicción dado que no hay números naturales menores a 0. Siendo P1(x) = "X es mayor o igual a 0". sería verdadera y si fuera por ej P1(x) = "X es mayor o igual a 5" sería satisfactible dependiendo del valor de "x" para ser contradictoria tiene que ser falsa en todas las interpretaciones.

5.2

 $\exists x (P_1(x) \land P_2(x)) \exists x P1(x) \land \exists x P2(x)$

No son lógicamente equivalentes, debido a que la tabla de verdad no es igual en todas las interpretaciones.

- ∃x(P1(x) ∧ P2(x)) en este primer caso la x del operador existe alcanza a P1 y P2, `plas x están ligadas al operador y son el mismo valor, en otras palabras se refieren a lo mismo.
- ∃x P1(x) ∧ ∃x P2(x): en este caso la x de P1 no necesariamente es la X de P2 podría ser una interpretación P1 = igual a 0, P2= x es un mamífero. y dada esa interpretación podría la primer x tomar el valor 0 y la segunda el valor perro por lo que me quedaría la frase "existe 0 igual a 0 y existe un perro que es un mamífero