- 3. $f(x) = 2^{x-1} 4 + 1.5x \qquad x \in \mathbb{R}$
 - (a) Show that the equation f(x) = 0 can be written as

$$x = \frac{1}{3}\left(8 - 2^x\right)$$

The equation f(x) = 0 has a root α , where $\alpha = 1.6$ to one decimal place.

(b) Starting with $x_0 = 1.6$, use the iteration formula

$$x_{n+1} = \frac{1}{3} (8 - 2^{x_n})$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(2)

(c) By choosing a suitable interval, prove that $\alpha = 1.633$ to 3 decimal places.

(2)

(i) The functions f and g are defined by

$$f: x \to e^{2x} - 5, \qquad x \in \mathbb{R}$$

$$x \in \mathbb{R}$$

$$g: x \to \ln(3x - 1), \qquad x \in \mathbb{R}, \ x > \frac{1}{3}$$

$$x \in \mathbb{R}, \ x > \frac{1}{3}$$

(a) Find f^{-1} and state its domain.

(3)

(b) Find fg(3), giving your answer in its simplest form.

(2)

(ii) (a) Sketch the graph with equation

$$y = |4x - a|$$

where a is a positive constant. State the coordinates of each point where the graph cuts or meets the coordinate axes.

(2)

Given that

$$|4x - a| = 9a$$

where a is a positive constant,

(b) find the possible values of

$$|x - 6a| + 3|x|$$

giving your answers, in terms of a, in their simplest form.

(5)

	Leave	
	blank	-
Question 5 continued		

6. (a) Express $\sqrt{5}\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ State the value of R and give the value of α to 4 significant figures.

(3)

(b) Solve, for $-\pi < \theta < \pi$,

$$\sqrt{5}\cos\theta - 2\sin\theta = 0.5$$

giving your answers to 3 significant figures.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(4)

$$f(x) = A(\sqrt{5}\cos\theta - 2\sin\theta) + B$$
 $\theta \in \mathbb{R}$

where A and B are constants.

Given that the range of f is

$$-15 \leqslant f(x) \leqslant 33$$

(c) find the value of B and the possible values of A.

(4)

Question 6 continued	blank
Question o continued	
	Q6
(Total 11 marks)	

10. The curve C satisfies the equation

$$x e^{5-2y} - y = 0$$
 $x > 0, y > 0$

The point P with coordinates $(2e^{-1}, 2)$ lies on C.

The tangent to C at P cuts the x-axis at the point A and cuts the y-axis at the point B.

Given that O is the origin, find the exact area of triangle OAB, giving your answer in its simplest form.

1	7	1
ı	1	- 1
•		,

	blank
Question 10 continued	
	Q10
(Total 7 marks)	
(10ttl / marks)	

Leave blank

11.

By writing
$$\sec \theta$$
 as $\frac{1}{\cos \theta}$, show that when $x = 3 \sec \theta$,

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec\theta\tan\theta$$

(2)

$$\cot x - \tan x \equiv 2 \cot 2x, \quad x \neq 90n^{\circ}, n \in \mathbb{Z}$$

(4)

(b) Hence, or otherwise, solve, for $0 \le \theta < 180^{\circ}$

$$5 + \cot(\theta - 15^{\circ}) - \tan(\theta - 15^{\circ}) = 0$$

giving your answers to one decimal place.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

1	-	. 1
1	J	•
`		/

	blank
Question 12 continued	
	012
	Q12
(Total 9 marks)	
(Total 9 marks)	

14. Given that

$$y = \frac{(x^2 - 4)^{\frac{1}{2}}}{x^3} \qquad x > 2$$

(a) show that

$$\frac{dy}{dx} = \frac{Ax^2 + 12}{x^4(x^2 - 4)^{\frac{1}{2}}} \qquad x > 2$$

where A is a constant to be found.

Figure 4

Figure 4 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = \frac{24(x^2 - 4)^{\frac{1}{2}}}{x^3} \qquad x > 2$$

(b) Use your answer to part (a) to find the range of f.

(5)

(6)

(c) State a reason why f^{-1} does not exist.

2

0

(1)

	Leave
	blank
Question 14 continued	

Question 14 continued	Leave	
	Q14	
(Total 12 marks)		
TOTAL FOR PAPER: 125 MARKS		
END		