Al Beyond the Hype

What Leaders Need to Know Now

Christina Pamela Kreutzmann

Global Al Deployment Lead

Analytics & Medical Imaging at Roche

Very few molecules make it from bench to bedside

Some statistics show success rate of less than 4% from target identification to launch (average development time of 10-12 years)^{1,2,3}

STAGE OF DRUG DEVELOPMENT	Target-to-H it	Hit-to- Lead	Lead Optimize	Pre- Clinical	Phase I	Phase II	Phase III	Submission to Launch
SUCCESS RATE	80%	75%	85%	69%	54%	34%	70%	91%

1. V Subbiah. The next generation of evidence-based medicine. Nature Medicine. 2023. 29:49-58.

RK Harrison. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov. 2016. 15(12):817-818.

This is not sustainable

The need for new solutions is obvious

The potential for Al-powered tools in clinical trial design & conduct

Growing
Trust and
Validation: FDA
Approvals of Al
Solutions in
Healthcare

Retinal OCT Segmentation Algorithm, ROSA, enables automated, rapid and reliable assessment and quantification of disease activity based on routinely acquired OCT images

From Subjective Image Analysis to Objective Trend Curves & Precise Data Analytics

Advancing OCT Analysis in nAMD and DR/DME Treatment

Retinal fluids, layers, biomarker quantification, and thickness measurements

Retinal segmentation = Pathology + Layer

Retinal Pathology Segmentation

Intraretinal Fluid (IRF)

Subretinal Fluid (SRF)

Pigment Epithelial Detachment (PED)

Biomarker Quantification

SRF, IRF, and PED area and volume

Retinal Layer Segmentation

Internal Limiting Membrane (ILM)

Retinal Pigment Epithelium (RPE)

Bruch's Membrane (BM)

Thickness Measurements

Central Subfield Thickness (CST)

ILM IB-RPE BM

The Broader Impact of Al Implementation

Enhanced Productivity

Distribute tasks for enhanced productivity and reduced workload

Time Savings

B-scan segmented by ROSA in seconds

Novel Insights

Ability to analyze immensely growing image dataset across studies

Roche's Ophthalmology Imaging Suite

Thoughts of an Al Deployment Lead

Learnings and Challenges

Tie your Al product vision to the corporate strategy

Long-term orientation is in short supply

You Need One Small Use Case Done Well

20% code and 80% communication

Operational trust must be designed, not assumed

Why the Timing is Right

What does the future hold for AI & Life Sciences?

Let's Chat

christina_pamela.kreutzmann@roche.com

linkedin.com/in/christinapamela

Acknowledgement

Daniela Ferrara

Vivide Chang

Tom Albrecht

Neha Anegondi Braelyn Argente

April Arundine

Siva Balasubramanian

Laura Barras

Fethallah Benmansour

Kristina Boleda

Acner Camino Benech

Dinah Chen

Mike Chen

Julia Cluceru

Jian Dai

Dimitrios Damopoulos

Alex Dumay

Leslie Fendt

Heide Galvao

Simon Gao

Michael Kawczynski

Yusuke Kikuchi

Edward Korot

Chin-Yu Lin

Ian Lloyd Jones

Huanxiang Lu

Jennifer Luu

Andreas Maunz

Marco Miranda

Ales Neubert

Jelena Novosel

Christina Rabe

Theodore Spaide

Nripun Sredar

Verena Steffen

Jamie Lee Taylor

Ali Valcarcel

Qi "Tina" Yang

References

- 1. United Nations. Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019 (custom data acquired via website). Accessed 15 March 2022. https://population.un.org/wpp/.
- 2. United Nations. Department of Economic and Social Affairs. World Population Prospects 2019 Highlights.
- 3. Hajat C et al. Prev Med Rep. 2018;12:284-293.
- 4.World Health Organization. Health Workforce. WHO. Retrieved from www.who.int/news-room/fact-sheet/detail/health-workforce
- 5. Luca Lorenzoni, Alberto Marino, David Morgan, and Chris James (2019). Health Spending Projections to 2030: OECD Health Working Papers. OECD iLibrary.
- 6. Stan Benjamens, et al. Nature. Digital Medicine. 2020. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. https://www.nature.com/articles/s41746-020-00324-0
- 7. Artificial Intelligence and Machine Learning (AI/ML)- Enabled Medical Devices

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

- 8.Arcadu, F., Benmansour, F., Maunz, A., Willis, J., Haskova, Z. and Prunotto, M., Deep learning algorithm predicts diabetic retinopathy progression in individual patients. *npj Digital Medicine*, 2(1), Article number: 92. 20 Sep. 2019, https://www.nature.com/articles/s41746-019-0172-3 (C)
- 9. Ferrara, D., Newton, E.M. and Lee, A.Y., "Artificial intelligence-based predictions in neovascular age-related macular degeneration." Current Opinion in Medicine and Computer Science, 15 July. 2021, https://pubmed.ncbi.nlm.nih.gov/34265783/ (C)
- 10. Schmidt-Erfurth, Ursula, and Sebastian M Waldstein. "A Paradigm Shift in Imaging Biomarkers in Neovascular Age-Related Macular Degeneration." *Prog Retin Eye Res*, Jan. 2016, © https://pubmed.ncbi.nlm.nih.gov/26307399/
- 11.Zeppieri, M., Marsili, S., Enaholo, E.S., Shuaibu, A.O., Uwagboe, N., Salati, C., Spadea, L. and Musa, M., Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. *Medicina*, 59(12), p.2114. Dec.2023 https://www.mdpi.com/1648-9144/59/12/2114