Almost periodic Functions and the Scott Analysis of Linear Orderings

David Gonzalez

UC Berkeley

July 2024 TU Wein

Outline

- ► The definitions and history of Scott analysis
- Classification for linear orderings
- A recent construction using almost periodic functions

 $ightharpoonup \mathcal{L}_{\omega_1,\omega}$ is infinitary logic; it extends first order logic by allowing countable conjunctions and disjunctions.

- \triangleright $\mathcal{L}_{\omega_1,\omega}$ is infinitary logic; it extends first order logic by allowing countable conjunctions and disjunctions.
- $\varphi \in \mathcal{L}_{\omega_1,\omega}$ is in $\Sigma_0^{\mathrm{in}} = \Pi_0^{\mathrm{in}}$ if it is quantifier free and has no infinitary disjunctions or conjunctions.
- For $\alpha \in \omega_1$, φ is $\Sigma_{\alpha}^{\text{in}}$ if $\varphi = \bigvee_i \exists \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Pi_{\beta}^{\text{in}}$ with $\beta < \alpha$.
- For $\alpha \in \omega_1$, φ is Π_{α}^{in} if $\varphi = \bigwedge_i \forall \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Sigma_{\beta}^{\text{in}}$ with $\beta < \alpha$.

- \triangleright $\mathcal{L}_{\omega_1,\omega}$ is infinitary logic; it extends first order logic by allowing countable conjunctions and disjunctions.
- $\varphi \in \mathcal{L}_{\omega_1,\omega}$ is in $\Sigma_0^{\mathrm{in}} = \Pi_0^{\mathrm{in}}$ if it is quantifier free and has no infinitary disjunctions or conjunctions.
- For $\alpha \in \omega_1$, φ is $\Sigma_{\alpha}^{\text{in}}$ if $\varphi = \bigvee_i \exists \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Pi_{\beta}^{\text{in}}$ with $\beta < \alpha$.
- For $\alpha \in \omega_1$, φ is Π_{α}^{in} if $\varphi = \bigwedge_i \forall \bar{x} \psi_i(\bar{x})$ for $\psi_i \in \Sigma_{\beta}^{\text{in}}$ with $\beta < \alpha$.
- $\qquad \qquad \text{For } \alpha \in \omega_1 \text{, } \varphi \text{ is } d\text{-}\Sigma_\alpha^\text{in} \text{ if } \varphi = \psi \wedge \chi \text{ for } \psi \in \Sigma_\alpha^\text{in} \text{ and } \chi \in \Pi_\alpha^\text{in}$

- For two models M, N we say $M \leq_{\alpha} N$ if $\Pi_{\alpha}^{\text{in}} \text{Th}(M) \subseteq \Pi_{\alpha}^{\text{in}} \text{Th}(N)$.
- ▶ Note that $M \ge_{\alpha} N$ if and only if $\Sigma_{\alpha}^{\text{in}} \text{Th}(M) \subseteq \Sigma_{\alpha}^{\text{in}} \text{Th}(N)$.
- ▶ We put $M \equiv_{\alpha} N$ if both of the above hold.

Scott Complexity

Theorem: [Scott] For every countable structure M there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ such that $N \cong M \iff N \models \varphi$.

Scott Complexity

Theorem: [Scott] For every countable structure M there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ such that $N \cong M \iff N \models \varphi$. **Definition:** A φ as in the theorem statement is called a *Scott sentence*.

Scott Complexity

Theorem: [Scott] For every countable structure M there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ such that $N \cong M \iff N \models \varphi$.

Definition: A φ as in the theorem statement is called a *Scott sentence*.

Definition: The Scott complexity (SC) of M is the least among $\{\Sigma_{\alpha}^{\mathrm{in}}, \Pi_{\alpha}^{\mathrm{in}}, d\text{-}\Sigma_{\alpha}^{\mathrm{in}}\}_{\alpha \in \omega_1}$ such that M has a Scott sentence of said complexity.

Robustness and Scott Rank

Definition: [Montalbán] The parametrized *Scott rank* (pSR) of *M* is the least $\alpha \in \omega_1$ such that *M* has a $\Sigma_{\alpha+2}^{in}$ Scott sentence.

Robustness and Scott Rank

Definition: [Montalbán] The parametrized *Scott rank* (pSR) of *M* is the least $\alpha \in \omega_1$ such that *M* has a $\Sigma_{\alpha+2}^{in}$ Scott sentence.

Definition: [Montalbán] The unparametrized *Scott rank* (uSR) of M is the least $\alpha \in \omega_1$ such that M has a $\Pi_{\alpha+1}^{in}$ Scott sentence.

Robustness and Scott Rank

Definition: [Montalbán] The parametrized *Scott rank* (pSR) of *M* is the least $\alpha \in \omega_1$ such that *M* has a $\Sigma_{\alpha+2}^{in}$ Scott sentence.

Definition: [Montalbán] The unparametrized *Scott rank* (uSR) of M is the least $\alpha \in \omega_1$ such that M has a $\Pi_{\alpha+1}^{in}$ Scott sentence.

Theorem: [Montalbán] The (un)parameterized Scott rank of M is the $\alpha \in \omega_1$ such that M the automorphism orbits of all tuples in M are definable in a $\Sigma_{\alpha}^{\rm in}$ way with(out) parameters. There are also many other equivalent statements.

Scott analysis

For
$$T\in \mathcal{L}_{\omega_1,\omega}$$
 let

$$I_{SC}(T,\Gamma) = |\{M : M \models T \land SC(M) = \Gamma\}|,$$

$$I_{u}(T,\alpha) = |\{M : M \models T \land uSR(M) = \alpha\}|,$$

$$I_{p}(T,\alpha) = |\{M : M \models T \land pSR(M) = \alpha\}|.$$

Scott analysis

For $T \in \mathcal{L}_{\omega_1,\omega}$ let

$$I_{SC}(T,\Gamma) = |\{M : M \models T \land SC(M) = \Gamma\}|,$$

$$I_{u}(T,\alpha) = |\{M : M \models T \land uSR(M) = \alpha\}|,$$

$$I_{p}(T,\alpha) = |\{M : M \models T \land pSR(M) = \alpha\}|.$$

Scott analysis generally refers to any inquiry into the behavior of the above functions.

- 1. $I_{SC}(LO, \Pi_n) = 1$ if $n \leq 2$
- 2. $I_{SC}(LO, \Sigma_n) = 0$ if $n \leq 3$

- 1. $I_{SC}(LO, \Pi_n) = 1 \text{ if } n \leq 2$
- 2. $I_{SC}(LO, \Sigma_n) = 0$ if $n \leq 3$
- 3. $I_{SC}(LO, d-\Sigma_n) = \aleph_0$ if $n \le 4$
- 4. $I_{SC}(LO, \Sigma_4) = \aleph_0$
- 5. $I_{SC}(LO,\Pi_3) = \aleph_0$

- 1. $I_{SC}(LO, \Pi_n) = 1 \text{ if } n \leq 2$
- 2. $I_{SC}(LO, \Sigma_n) = 0$ if $n \leq 3$
- 3. $I_{SC}(LO, d-\Sigma_n) = \aleph_0$ if $n \le 4$
- 4. $I_{SC}(LO, \Sigma_4) = \aleph_0$
- 5. $I_{SC}(LO,\Pi_3)=\aleph_0$
- 6. $I_{SC}(LO,\Gamma) = 2^{\aleph_0}$ otherwise

The Relationship of the Concepts

Alvir, Greenberg, Harrison-Trainor and Turetsky (AGHTT) showed that Scott sentence complexity is related to Montalbán's Scott ranks.

SC	pSR	uSR	complexity of parameters	
$\Sigma_{\alpha+2}^{\mathrm{in}}$	α	$\alpha + 2$	$\Pi^{ ext{in}}_{lpha+1}$	
d - $\Sigma_{\alpha+1}^{\mathrm{in}}$	α	$\alpha + 1$	$\Pi_{lpha}^{ m in}$	
$\Pi_{lpha+1}^{ m in}$	α	α	none	
lpha limit				
$\Sigma_{lpha+1}^{ m in}$	α	$\alpha+1$	$\Pi_{lpha}^{ m in}$	
$\Pi_{lpha}^{ m in}$	α	α	none	

For limit α , $\Sigma_{\alpha}^{\rm in}$ and $d\text{-}\Sigma_{\alpha}^{\rm in}$ are not possible.

The Relationship of the Concepts

Alvir, Greenberg, Harrison-Trainor and Turetsky (AGHTT) showed that Scott sentence complexity is related to Montalbán's Scott ranks.

SC	pSR	uSR	complexity of parameters	
$\Sigma_{\alpha+2}^{\mathrm{in}}$	α	$\alpha + 2$	$\Pi^{ ext{in}}_{lpha+1}$	
d - $\Sigma_{\alpha+1}^{\mathrm{in}}$	α	$\alpha + 1$	$\Pi_{lpha}^{ m in}$	
$\Pi_{lpha+1}^{ m in}$	α	α	none	
lpha limit				
$\Sigma_{lpha+1}^{ m in}$	α	$\alpha + 1$	$\Pi_{lpha}^{ m in}$	
$\Pi_{lpha}^{ m in}$	α	α	none	

For limit α , $\Sigma_{\alpha}^{\rm in}$ and d- $\Sigma_{\alpha}^{\rm in}$ are not possible. Notice the limit case is left ambiguous in their work.

▶ In 1983, A. Miller gave examples of all possible Scott complexities except for $\Sigma_{\lambda+1}$.

- ▶ In 1983, A. Miller gave examples of all possible Scott complexities except for $\Sigma_{\lambda+1}$.
- ▶ 38 years later AGHTT gave an example of Scott complexity $\Sigma_{\lambda+1}$.

- ▶ In 1983, A. Miller gave examples of all possible Scott complexities except for $\Sigma_{\lambda+1}$.
- ▶ 38 years later AGHTT gave an example of Scott complexity $\Sigma_{\lambda+1}$.
- The example is very pretty, but quite complex.

► The results of AGHTT did not give robust criteria for limit levels.

- ► The results of AGHTT did not give robust criteria for limit levels.
- ▶ G. and Rossegger developed the following two years later.

Definition: A λ -unstable sequence in \mathcal{A} is a fundamental sequence $\delta_i \to \lambda$ along with tuple $a_i \in \mathcal{A}$ with $a_i \equiv_{\delta_i} a_{i+1}$ and $a_i \not\equiv_{\delta_{i+1}} a_{i+1}$.

- ► The results of AGHTT did not give robust criteria for limit levels.
- ▶ G. and Rossegger developed the following two years later.

Definition: A λ -unstable sequence in \mathcal{A} is a fundamental sequence $\delta_i \to \lambda$ along with tuple $a_i \in \mathcal{A}$ with $a_i \equiv_{\delta_i} a_{i+1}$ and $a_i \not\equiv_{\delta_{i+1}} a_{i+1}$.

Theorem: \mathcal{A} with $\mathsf{uSR}(\mathcal{A}) = \mathsf{pSR}(\mathcal{A}) = \lambda$ has $\mathsf{SC}(\mathcal{A}) = \Pi_{\lambda+1}$ if and only if it has some λ -unstable sequence.

- ► The results of AGHTT did not give robust criteria for limit levels.
- ▶ G. and Rossegger developed the following two years later.

Definition: A λ -unstable sequence in \mathcal{A} is a fundamental sequence $\delta_i \to \lambda$ along with tuple $a_i \in \mathcal{A}$ with $a_i \equiv_{\delta_i} a_{i+1}$ and $a_i \not\equiv_{\delta_{i+1}} a_{i+1}$.

Theorem: \mathcal{A} with uSR(\mathcal{A}) = pSR(\mathcal{A}) = λ has SC(\mathcal{A}) = $\Pi_{\lambda+1}$ if and only if it has some λ -unstable sequence.

Theorem: \mathcal{A} with uSR(\mathcal{A}) = λ and pSR(\mathcal{A}) = $\lambda+1$ has SC(\mathcal{A}) = $\Sigma_{\lambda+1}$ if and only if it has no λ -unstable sequence over some parameters.

▶ G. and Rossegger showed there is no Linear ordering of Scott complexity Σ_3 and gave examples of all other possibilities... except for $\Sigma_{\lambda+1}$ which was left open.

- ▶ G. and Rossegger showed there is no Linear ordering of Scott complexity Σ_3 and gave examples of all other possibilities... except for $\Sigma_{\lambda+1}$ which was left open.
- ▶ G., Harrison-Trainor and Ho showed there is a linear ordering of Scott complexity $\Sigma_{\lambda+1}$.

- ▶ G. and Rossegger showed there is no Linear ordering of Scott complexity Σ_3 and gave examples of all other possibilities... except for $\Sigma_{\lambda+1}$ which was left open.
- ▶ G., Harrison-Trainor and Ho showed there is a linear ordering of Scott complexity $\Sigma_{\lambda+1}$.
- ▶ We will now focus on this construction and its surprising life.

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

$$\cdots$$
, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

$$\cdots$$
, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

$$\cdots$$
, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

$$\cdots$$
, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

```
\cdots, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots
```

The Construction: almost periodic Functions

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown} (i+1)^{\frown} \sigma_i$. Limits of these finite strings produce almost periodic function.

```
\cdots, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots
```

The Construction: almost periodic Functions

Definition: A function $f : \mathbb{Z} \to \mathbb{N}$ is almost periodic if for all n $f_n := \min(f, n)$ is periodic but f itself is not periodic.

Example: Let $\sigma_0 = 0$ and $\sigma_{i+1} = \sigma_i^{\frown} (i+1)^{\frown} \sigma_i$. Limits of these finite strings produce almost periodic function.

```
\cdots, 4,0, 1, 0, 2, 0, 1, 0, 3,0, 1,0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, \cdots
```

The Construction: λ -mixable pairs

Definition

An ordered pair $(\{L_i\}_{i\in\omega},K)$ of a sequence of linear orderings $\{L_i\}_{i\in\omega}$ and a single linear ordering K is called a λ -mixable pair if the following properties hold for some non-zero fundamental sequence $\delta_i \to \lambda$:

- 1. $uSR(K) < \lambda$
- 2. $uSR(L_i) < \lambda$

The Construction: λ -mixable pairs

Definition

An ordered pair $(\{L_i\}_{i\in\omega}, K)$ of a sequence of linear orderings $\{L_i\}_{i\in\omega}$ and a single linear ordering K is called a λ -mixable pair if the following properties hold for some non-zero fundamental sequence $\delta_i \to \lambda$:

- 1. $uSR(K) < \lambda$
- 2. $uSR(L_i) < \lambda$
- 3. $L_i \equiv_{\delta_i} L_{i+1}$
- 4. $L_i \not\equiv_{\delta_{i+1}} L_{i+1}$

The Construction: λ -mixable pairs

Definition

An ordered pair $(\{L_i\}_{i\in\omega}, K)$ of a sequence of linear orderings $\{L_i\}_{i\in\omega}$ and a single linear ordering K is called a λ -mixable pair if the following properties hold for some non-zero fundamental sequence $\delta_i \to \lambda$:

- 1. $uSR(K) < \lambda$
- 2. $uSR(L_i) < \lambda$
- 3. $L_i \equiv_{\delta_i} L_{i+1}$
- 4. $L_i \not\equiv_{\delta_{i+1}} L_{i+1}$
- 5. any finite alternating sum $1 + L_{a_0} + 1 + K + 1 + L_{a_1} + 1 + K + \cdots + 1 + L_{a_n}$ has intervals isomorphic to K only within the written K blocks (or as the entire written K block).

The Construction: λ -mixable pair examples

$$ightharpoonup L_i = \omega^{\delta_i}$$
 and $K = \zeta$

The Construction: λ -mixable pair examples

- $ightharpoonup L_i = \omega^{\delta_i}$ and $K = \zeta$
- $ightharpoonup L_i = \zeta^{\delta_i} \text{ and } K = \omega$

The Construction: λ -mixable pair examples

- $ightharpoonup L_i = \omega^{\delta_i}$ and $K = \zeta$
- $ightharpoonup L_i = \zeta^{\delta_i}$ and $K = \omega$
- $ightharpoonup L_i = \sum_{n < i} (n + \zeta^{\delta_n}) + \sum_{n \ge i} (n + \zeta^{\delta_i})$ and $K = \omega$.

The Construction

Given any λ -mixable pair $(\{L_i\}_{i\in\omega}, K)$ and almost periodic function $f: \mathbb{Z} \to \mathbb{N}$,

$$L_f = \sum_{n \in \mathbb{Z}} (1 + L_{f(n)} + 1 + K)$$

has Scott complextiy $\Sigma_{\lambda+1}$.

The Construction

Given any λ -mixable pair $(\{L_i\}_{i\in\omega}, K)$ and almost periodic function $f: \mathbb{Z} \to \mathbb{N}$,

$$L_f = \sum_{n \in \mathbb{Z}} (1 + L_{f(n)} + 1 + K)$$

has Scott complextiy $\Sigma_{\lambda+1}$.

Example:

$$\cdots + \omega + \zeta + \omega^2 + \zeta + \omega + \zeta + \omega^3 + \zeta + \omega + \zeta + \omega^2 + \zeta + \omega + \cdots$$

Going Further: The Structure of almost periodic Functions

Definition: $fE_{\mathbb{Z}}g$ if there is an $n \in \mathbb{Z}$ such that for all $m \in \mathbb{Z}$ f(m) = g(m+n).

Going Further: The Structure of almost periodic Functions

Definition: $fE_{\mathbb{Z}}g$ if there is an $n \in \mathbb{Z}$ such that for all $m \in \mathbb{Z}$ f(m) = g(m+n).

Definition: $fE_{fin}g$ if for all n $f_nE_{\mathbb{Z}}g_n$.

Going Further: The Structure of almost periodic Functions

Definition: $fE_{\mathbb{Z}}g$ if there is an $n \in \mathbb{Z}$ such that for all $m \in \mathbb{Z}$ f(m) = g(m+n).

Definition: $fE_{fin}g$ if for all n $f_nE_{\mathbb{Z}}g_n$.

Translation: $fE_{\mathbb{Z}}g$ if and only if $L_f \cong L_g$. $fE_{fin}g$ if and only if $L_f \equiv_{\lambda} L_g$.

Going Further: Similar and Simple

There were no known previous examples of a pair \mathcal{A}, \mathcal{B} with $SC(\mathcal{A}) = SC(\mathcal{B}) = \Sigma_{\alpha+1}$ with $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ (even away from the limit).

Going Further: Similar and Simple

There were no known previous examples of a pair \mathcal{A}, \mathcal{B} with $SC(\mathcal{A}) = SC(\mathcal{B}) = \Sigma_{\alpha+1}$ with $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ (even away from the limit).

We found continuum many \equiv_{λ} -equivalent linear orderings all with Scott complexity $\Sigma_{\alpha+1}$.

Going Further: Similar and Simple

There were no known previous examples of a pair \mathcal{A}, \mathcal{B} with $SC(\mathcal{A}) = SC(\mathcal{B}) = \Sigma_{\alpha+1}$ with $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ (even away from the limit).

We found continuum many \equiv_{λ} -equivalent linear orderings all with Scott complexity $\Sigma_{\alpha+1}$.

Combinatorial solution: There are continuum many E_{fin} classes in a single $E_{\mathbb{Z}}$ class. In fact, $E_0 \leq_B E_{\mathbb{Z}}|_{[b]_{E_{fin}}}$.

Thank you!

▶ In 2013 Montalbán asked if there could be a Π_{α} sentence φ where every $M \models \varphi$ has $uSR(M) > \alpha$.

- ▶ In 2013 Montalbán asked if there could be a Π_{α} sentence φ where every $M \models \varphi$ has $\mathsf{uSR}(M) > \alpha$.
- In his thesis, Matthew Harrison-Trainor carefully produced a Π_2 formula with only models of Scott rank α for any α .

- ▶ In 2013 Montalbán asked if there could be a Π_{α} sentence φ where every $M \models \varphi$ has $uSR(M) > \alpha$.
- In his thesis, Matthew Harrison-Trainor carefully produced a Π_2 formula with only models of Scott rank α for any α .
- ► This was the only known example

Theorem: There is a Scott complexity $\Sigma_{\lambda+1}$ linear ordering L such that if $M \equiv_{\lambda} L$ then $SC(M) = \Sigma_{\lambda+1}$.

Naive Desire: Find a L_f such that all $M \equiv_{\lambda} L_f$ are isomorphic to L_g for a semi-periodic g.

Naive Desire: Find a L_f such that all $M \equiv_{\lambda} L_f$ are isomorphic to L_g for a semi-periodic g.

Close! Need to extend semi-periodic functions to output infinite values $f: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$.

Naive Desire: Find a L_f such that all $M \equiv_{\lambda} L_f$ are isomorphic to L_g for a semi-periodic g.

Close! Need to extend semi-periodic functions to output infinite values $f: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$.

Example: The 2-adic valuation - it is infinite at 0.

Naive Desire: Find a L_f such that all $M \equiv_{\lambda} L_f$ are isomorphic to L_g for a semi-periodic g.

Close! Need to extend semi-periodic functions to output infinite values $f: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$.

Example: The 2-adic valuation - it is infinite at 0.

Everything works out using a λ -mixable pair that has a unique (i.e. Scott complexity Π_{λ}) limit structure like $L_i = \sum_{n < i} (n + \zeta^{\delta_n}) + \sum_{n \geq i} (n + \zeta^{\delta_i})$.

A Dual Surprise

Theorem: Any structure \mathcal{A} is \equiv_{λ} to at most one Scott complexity $\Pi_{\lambda+1}$ structure. Every \equiv_{λ} -class contains a structure that is no Scott complexity $\Pi_{\lambda+1}$.

A Dual Surprise

Theorem: Any structure \mathcal{A} is \equiv_{λ} to at most one Scott complexity $\Pi_{\lambda+1}$ structure. Every \equiv_{λ} -class contains a structure that is no Scott complexity $\Pi_{\lambda+1}$.

This means there is no analogue for Harrison-Trainor's general Scott skipping result at the level of Scott complexity.

A Dual Surprise

Theorem: Any structure \mathcal{A} is \equiv_{λ} to at most one Scott complexity $\Pi_{\lambda+1}$ structure. Every \equiv_{λ} -class contains a structure that is no Scott complexity $\Pi_{\lambda+1}$.

This means there is no analogue for Harrison-Trainor's general Scott skipping result at the level of Scott complexity.

A new paradigm: $\Sigma_{\lambda+1}$ was considered rare for sociological reasons, $\Pi_{\lambda+1}$ is actually rare even if it has very simple examples like ω^{λ} .