Mathématiques – Première spécialité

Corrigés des exercices

Table des matières

1	Le second degré : équations et paraboles	2
2	Probabilités	11

1 Le second degré : équations et paraboles

Dans chaque exercice, on note ${\mathcal S}$ l'ensemble des solutions des équations.

Exercice 1 1. On résout l'équation $x^2 + 2x = 0$:

On factorise:

$$x(x+2) = 0.$$

Un produit de facteurs est nul lorsque l'un des facteurs est nul, donc il y a deux possibilités :

$$x = 0$$
 ou $x + 2 = 0$
 $x + 2 - 2 = 0 - 2$
 $x = -2$

Conclusion : l'équation a deux solutions : x = 0 et x = -2. Autrement dit :

$$\mathscr{S} = \{0; -2\}.$$

2. On résout l'équation $x^2 - 16 = 0$:

On « isole » x^2 :

$$x^{2} - 16 = 0$$

$$x^{2} - \cancel{16} + \cancel{16} = 0 + 16$$

$$x^{2} = 16$$

Comme 16 est positif, il y a deux solutions :

$$x = \sqrt{16} = 4$$
 ou $x = -\sqrt{16} = -4$.

Conclusion:

$$\mathscr{S} = \{4; -4\}.$$

3. On résout l'équation (2x-1)(x-5) = 0:

$$2x-1=0 \qquad \text{ou} \qquad x-5=0$$

$$2x-\cancel{1}+\cancel{1}=0+1 \qquad \text{ou} \qquad x-\cancel{5}+\cancel{5}=0+5$$

$$\frac{\cancel{2}x}{\cancel{2}}=\frac{1}{2} \qquad \text{ou} \qquad x=5$$

$$x=\frac{1}{2}$$

Conclusion:

$$\mathscr{S} = \left\{ \frac{1}{2}; 5 \right\}.$$

4. On résout l'équation $x^2 + 7 = 0$:

$$x^{2} + 7 = 0$$

$$x^{2} + 7 - 7 = 0 - 7$$

$$x^{2} = -7$$

Il n'y a pas de solution, car un carré est positif (donc aucun nombre x ne peut avoir un carré égal à -7). Conclusion :

$$\mathcal{S} = \emptyset$$
.

(On rappelle que Ø désigne l'ensemble vide : l'ensemble qui ne contient aucun élément.)

Exercice 2 Dans chaque cas, on note Δ le discriminant.

- 1. On résout l'équation $x^2 3x 4 = 0$:
 - a = 1, b = -3, c = -4.
 - $\Delta = b^2 4ac = (-3)^2 4 \times 1 \times (-4) = 9 + 16 = 25$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{3 - 5}{2} = -1,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2} = \frac{3 + 5}{2} = 4.$$

Conclusion:

$$\mathscr{S} = \{-1; 4\}.$$

2. On résout l'équation $2x^2 - 12x = -18$:

On se ramène d'abord à la situation du cours (équation de la forme $ax^2 + bx + c = 0$) en « transposant -18 »:

$$2x^{2} - 12x + 18 = -18 + 18$$
$$2x^{2} - 12x + 18 = 0$$

- a = 2, b = -12, c = 18.
- $\Delta = b^2 4ac = (-12)^2 4 \times 2 \times 18 = 144 144 = 0.$
- $\Delta = 0$, donc il y a une seule solution :

$$x_0 = \frac{-b}{2a} = \frac{-(-12)}{2 \times 2} = \frac{12}{4} = 3.$$

Conclusion:

$$\mathscr{S} = \{3\}.$$

- 3. On résout l'équation $x^2 4x + 5 = 0$:
 - a = 1, b = -4, c = 5.
 - $\Delta = b^2 4ac = (-4)^2 4 \times 1 \times 5 = 16 20 = -4$.
 - Δ < 0, donc il n'y a pas de solution.

Conclusion:

$$\mathcal{S} = \emptyset$$
.

- 4. On résout l'équation $x^2 + 2x 4 = 0$:
 - a = 1, b = 2, c = -4.
 - $\Delta = b^2 4ac = 2^2 4 \times 1 \times (-4) = 4 + 16 = 20$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{20}}{2 \times 1} = \frac{-2 - \sqrt{20}}{2},$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{20}}{2 \times 1} = \frac{-2 + \sqrt{20}}{2}.$$

Conclusion:

$$\mathcal{S} = \left\{ \frac{-2 - \sqrt{20}}{2}; \frac{-2 + \sqrt{20}}{2} \right\}.$$

Remarque: On peut écrire les solutions de façon plus élégante : sachant que

$$\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times \sqrt{5},$$

on trouve

$$x_2 = \frac{-2 + \sqrt{20}}{2} = \frac{-2 + 2\sqrt{5}}{2} = \frac{\cancel{2}(-1 + \sqrt{5})}{\cancel{2}} = -1 + \sqrt{5}.$$

De même, $x_1 = -1 - \sqrt{5}$.

5. On résout l'équation $x^2 = -6x$:

À partir de maintenant, on s'autorise à aller un peu plus vite : on transpose directement le «-6x» dans le membre de gauche, qui devient «+6x».

$$x^2 = -6x$$
$$x^2 + 6x = 0.$$

Ici, il y a deux méthodes possibles:

- soit on utilise le discriminant, avec a = 1, b = 6 et c = 0 (puisque $x^2 + 6x = 1x^2 + 6x + 0$);
- soit on factorise.

On utilise la deuxième méthode, qui est plus rapide 1:

$$x(x+6) = 0$$

 $x = 0$ ou $x+6 = 0$
 $x = -6$.

Conclusion:

$$\mathcal{S} = \{0; -6\}.$$

Exercice 3 On commence par un schéma indicatif, qui n'est bien sûr pas à l'échelle puisqu'on ne connaît pas x.

D'après le théorème de Pythagore :

$$x^2 + (x+7)^2 = 17^2$$
.

On développe $(x+7)^2$ avec l'identité remarquable

$$(a+b)^2 = a^2 + 2 \times a \times b + b^2$$
.

L'équation se réécrit :

$$x^{2} + x^{2} + 2 \times x \times 7 + 7^{2} = 289$$
$$2x^{2} + 14x + 49 - 289 = 0$$
$$2x^{2} + 14x - 240 = 0.$$

- a = 2, b = 14, c = -240.
- $\Delta = b^2 4ac = 14^2 4 \times 2 \times (-240) = 196 + 1920 = 2116$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 - \sqrt{2116}}{2 \times 2} = \frac{-14 - 46}{4} = -15,$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 + \sqrt{2116}}{2 \times 2} = \frac{-14 + 46}{4} = 8.$$

Or x désigne une longueur, donc la première solution (x_1) est impossible. On a donc x=8.

Remarque: Ce n'est pas demandé, mais on peut donner la longueur des trois côtés:

$$x = 8$$
, $x + 7 = 8 + 7 = 15$ et 17.

On peut alors vérifier que

$$8^2 + 15^2 = 17^2$$
.

^{1.} De plus, il y a un gros risque d'erreur de résolution lorsqu'on utilise la méthode avec Δ dans le cas où b ou c valent 0.

Exercice 4 1. Voici un schéma du terrain en notant x la largeur de la pelouse (donc la longueur est 2x):

2. La longueur du terrain (en m) est

$$2x + 3 + 3 = 2x + 6,$$

sa largeur est

$$x + 3 + 3 = x + 6$$
.

Donc la surface du terrain (en m²) est

longueur × largeur =
$$(2x+6) \times (x+6)$$
.

Or on sait que cette surface vaut 360 m², donc

$$(2x+6) \times (x+6) = 360.$$

3. On résout l'équation obtenue dans la question précédente ² :

$$(2x+6) \times (x+6) = 360$$

$$\iff 2x \times x + 2x \times 6 + 6 \times x + 6 \times 6 = 360$$

$$\iff 2x^2 + 12x + 6x + 36 = 360$$

$$\iff 2x^2 + 18x + 36 - 360 = 0$$

$$\iff 2x^2 + 18x - 324 = 0.$$

Il s'agit d'une équation du second degré.

- a = 2, b = 18, c = -324.
- $\Delta = 18^2 4 \times 2 \times (-324) = 2916$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-18 - \sqrt{2916}}{2 \times 2} = \frac{-18 - 54}{4} = \frac{-72}{4} = -18,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-18 + \sqrt{2916}}{2 \times 2} = \frac{-18 + 54}{4} = \frac{36}{4} = 9.$$

Or x désigne une longueur, donc x ne peut pas être négatif et seule la solution $x_2 = 9$ est valable.

Conclusion : x = 9, donc la longueur du terrain (en m) est $2 \times 9 + 3 + 3 = 24$, sa largeur est 9 + 3 + 3 = 15.

Exercice 5 On utilise le mètre comme unité de longueur, le mètre carré comme unité de surface. On note *x* et *y* les dimensions du champ.

^{2.} Les « 👄 » que l'on place entre les lignes se lisent « équivalent à ». Cela signifie que la résolution de l'équation écrite à une ligne est équivalente à la résolution de l'équation écrite à la ligne suivante.

• Le périmètre est 54, donc la moitié du périmètre est

$$x + y = 27$$
.

• L'aire est 180, donc

$$x \times y = 180$$
.

On obtient ainsi le système

$$\begin{cases} x + y = 27 & L_1 \\ xy = 180 & L_2 \end{cases}$$

On multiplie L_1 par x:

$$(x + y) \times x = 27 \times x$$
, soit $x^2 + xy = 27x$.

Or d'après L_2 , xy = 180, donc

$$x^2 + 180 = 27x$$
, et ainsi $x^2 - 27x + 180 = 0$.

On aboutit à une équation du 2^d degré. En utilisant la méthode habituelle, on trouve deux solutions (je ne détaille pas) : $x_1 = 12$, $x_2 = 15$.

On sait que x + y = 27, donc si x = 12, alors y = 27 - x = 27 - 12 = 15; et si x = 15, alors y = 27 - x = 27 - 15 = 12. Dans les deux cas, on obtient un champ qui mesure 12 m sur 15 m.

Exercice 6 On note n le nombre d'amis initialement présents, et p le prix à payer par chacun (en euros).

• Le montant total de la location est 2 400 €, donc

$$n \times p = 2400. \tag{1}$$

• Si deux amis s'en vont, le montant individuel augmente de 40 €. On a donc dans ce cas (*n* − 2) amis, et chacun paye alors (*p* + 40) €. En revanche, le montant total de la location ne change pas, il vaut toujours 2 400 €. On en déduit

$$(n-2) \times (p+40) = 2400.$$

En développant, cela donne encore

$$np + 40n - 2p - 80 = 2400. (2)$$

On compare (1) et (2) : comme les membres de droite valent 2400 dans les deux cas, on obtient l'égalité

$$np = np + 40n - 2p - 80$$
,

soit

$$40n - 2p - 80 = 0$$
.

Finalement, le couple (n, p) est solution du système

$$\begin{cases} n \times p = 2400 \\ 40n - 2p - 80 = 0. \end{cases}$$

On résout ce système comme dans l'exercice 5 (je ne détaille pas) et l'on obtient

$$n = 12$$
 , $p = 200$.

Conclusion : comme 12 - 10 = 2, ce sont 10 amis qui sont finalement partis.

Exercice 7 1. $P_1: y = x^2 - 6x + 5$.

- a = 1, b = -6, c = 5.
- a est \oplus , donc P_1 est vers le haut.
- On note S le sommet de P_1 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-6}{2 \times 1} = \frac{6}{2} = 3.$$

On en déduit

$$y_S = 3^2 - 6 \times 3 + 5 = 9 - 18 + 5 = -4.$$

On a donc S(3; -4).

Venons-en au tracé de la parabole. On fait un tableau de valeurs sur [0;6], avec un pas de 1³. Pour cela, on utilise la calculatrice:

^{3.} Nous choisissons un intervalle symétrique par rapport à l'abscisse du sommet, et qui ne soit ni trop court, ni trop long. On choisit un pas de 1 par facilité, mais le graphique serait bien sûr plus précis avec un pas plus petit.

• MODE ou MENU • 4: TABLE ou 4: Tableau • f(X)=X² - 6X + 5 EXE (si on demande g(X)=, ne rien rentrer)

• Début?0 EXE

• Fin?6 EXE

• Pas?1 EXE

Pas

choisir Valider

NUMWORKS

X s'obtient avec la touche x, t, θ, n
• $f(x)$
$\bullet Y_1 = X^2 - 6X + 5 \boxed{EXE}$
• 2nde déf table
• DébTable=0 EXE
• PasTable=1 EXE
ou
ΔTbl=1 EXE
• 2nde table

TI graphiques

	CASIO graphiques
	X s'obtient avec la touche X, θ, T
che	MENU puis choisir TABLE EXE
	• $Y_1: X^2 - 6X + 5$ EXE
	• F5 (on choisit donc SET)
	• Start :0 EXE
	• End:6 EXE
	• Step:1 EXE
	• EXIT
	• F6 (on choisit donc TABLE)

On obtient le tableau de valeurs :

х	0	1	2	3	4	5	6
у	5	0	-3	-4	-3	0	5

Enfin on construit le graphique (j'ai un peu « écrasé » l'axe des ordonnées pour gagner de la place) :

Remarque : On peut avoir intérêt à ajouter des points près du sommet pour obtenir un tracé plus précis. C'est ce que l'on a fait ci-dessus avec les deux losanges rouges, correspondant au tableau de valeurs ci-dessous.

I	х	2,5	3,5
	у	-3,75	-3,75

- 2. $P_2: y = -0.5x^2 x + 4.$
 - a = -0.5, b = -1, c = 4.
 - $a \operatorname{est} \ominus$, donc $P_2 \operatorname{est} \operatorname{vers} \operatorname{le} \operatorname{bas}$.
 - On note S le sommet de P_2 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-1}{2 \times (-0,5)} = \frac{1}{-1} = -1.$$

On en déduit

$$y_S = -0.5 \times (-1)^2 - (-1) + 4 = -0.5 + 1 + 4 = 4.5.$$

On a donc S(-1; 4,5).

Tableau de valeurs :

х	-4	-3	-2	-1	0	1	2
у	0	2,5	4	4,5	4	2,5	0

Tracé de la parabole:

Exercice 8 1. On trace la parabole P:

- qui coupe l'axe des abscisses en $x_1 = -1$ et en $x_2 = 3$.
- dont le sommet est le point S(1;2).

Remarque : Il est difficile de faire un tracé hyper précis avec si peu d'informations. L'élève intéressé peut essayer de prouver – en faisant un bel effort – que $f(x) = -0.5x^2 + x + 1.5$. Auquel cas, il pourra faire un tableau de valeurs et obtenir une courbe presque aussi parfaite que celle dessinée ci-dessus avec l'ordinateur.

- 2. On pose $\Delta = b^2 4ac$.
 - Comme P est vers le bas, a est du signe Θ .
 - Comme P coupe l'axe des abscisses en deux points, il y a deux racines et Δ est du signe \oplus .

Exercice 9 La trajectoire de la balle en fonction du temps est la parabole $P: y = -0.525t^2 + 2.1t + 1.9$, tracée ci-dessous :

1. Clément commence sa passe à la hauteur

$$h(0) = -0.525 \times 0 + 2.1 \times 0 + 1.9 = 1.9$$
 mètres.

Cela correspond au point bleu sur la figure.

2. La hauteur maximale de la balle est l'ordonnée du sommet S de la parabole, en rouge sur la figure.

- a = -0.525, b = 2.1, c = 1.9.
- On calcule avec la formule:

$$x_S = -\frac{b}{2a} = -\frac{2,1}{2 \times (-0,525)} = \frac{-2,1}{-1,05} = 2.$$

On en déduit

$$y_S = -0.525 \times 2^2 + 2.1 \times 2 + 1.9 = 4$$

et donc la hauteur maximale de la balle est de 4 mètres.

3. Pour déterminer le temps de vol de la balle, on cherche à quel moment elle retombe au sol (point vert sur la figure). On résout donc l'équation

$$-0.525t^2 + 2.1t + 1.9 = 0.$$

- $\Delta = 2, 1^2 4 \times (-0,525) \times 1, 9 = 8, 4.$
- $\Delta > 0$, donc il y a deux solutions :

$$t_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2, 1 - \sqrt{8, 4}}{2 \times (-0, 525)} \approx 4,76,$$

$$t_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2, 1 + \sqrt{8, 4}}{2 \times (-0, 525)} \approx -0,76.$$

La deuxième solution est impossible, car le temps cherché est positif.

Conclusion: la balle retombe au sol après 4,76 secondes environ.

Exercice 10 On a tracé une parabole $P: y = ax^2 + bx + c$.

- 1. a > 0, car P est vers la haut.
 - Si x = 0, alors $y = a \times 0^2 + b \times 0 + c = c$, donc la P passe par le point de coordonnées (0; c) autrement dit, elle coupe l'axe des ordonnées en c.

Par lecture graphique, on obtient donc c < 0.

- Il y a deux racines, car P coupe l'axe des abscisses deux fois. On a donc $\Delta > 0$.
- 2. D'après le cours, $x_S = -\frac{b}{2a}$, donc

$$x_S \times 2a = -\frac{b}{2a} \times 2a$$
$$x_S \times 2a = -b$$
$$-x_S \times 2a = b.$$

On sait que $x_S < 0$ et a > 0, donc $b = -\underbrace{x_S}_{\oplus} \times \underbrace{2a}_{\oplus}$ est du signe $\oplus : b > 0$.

Exercice 11 Soit $P: y = ax^2 + bx + c$ une parabole et S son sommet. On sait que $x_S = -\frac{b}{2a}$, donc

$$\begin{split} y_S &= a \times \left(-\frac{b}{2a} \right)^2 + b \times \left(-\frac{b}{2a} \right) + c = \cancel{a} \times \frac{b^2}{4a^{\frac{1}{2}}} - \frac{b^2 \times 2}{2a \times 2} + \frac{c \times 4a}{1 \times 4a} \\ &= \frac{b^2}{4a} - \frac{2b^2}{4a} + \frac{4ac}{4a} = \frac{b^2 - 2b^2 + 4ac}{4a} = \frac{-b^2 + 4ac}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{\Delta}{4a}. \end{split}$$

Exercice 12 1. Le coût de fabrication des *x* objets est

$$C(x) = x^2 + 230x + 325$$
.

9

Chaque objet est vendu 300 \in , donc la recette issue de la vente des x objets est

$$R(x) = 300x$$
.

On en déduit que le bénéfice est

$$B(x) = \text{Recette} - \text{Coût} = R(x) - C(x) = 300x - (x^2 + 230x + 325) = 300x - x^2 - 230x - 325 = -x^2 + 70x - 325.$$

- 2. Le bénéfice est une expression du second degré, avec a < 0. Il est donc représenté par une parabole orientée vers le bas. Maximiser le bénéfice revient donc à trouver le (l'abscisse du) sommet de cette parabole :

 - a = -1, b = 70, c = -325. $x_S = -\frac{b}{2a} = -\frac{70}{2 \times (-1)} = \frac{-70}{-2} = 35$.

Conclusion: le bénéfice est maximal lorsqu'on produit et vend 35 objets.

Remarque: Le bénéfice maximal est

$$-35^2 + 70 \times 35 - 325 = 900 \in$$
.

Exercice 13 1. On résout l'équation :

$$x^{3} = 2x$$

$$\Rightarrow \qquad x^{3} - 2x = 0$$

$$\Rightarrow \qquad x(x^{2} - 2) = 0$$

$$\Leftrightarrow \qquad x = 0 \quad \text{ou} \quad x^{2} - 2 = 0$$

$$\Leftrightarrow \qquad x^{2} = 2$$

$$\Leftrightarrow \qquad x = \sqrt{2} \quad \text{ou} \quad x = -\sqrt{2}$$

Conclusion: il y a trois solutions:

$$\mathcal{S} = \left\{0; \sqrt{2}; -\sqrt{2}\right\}.$$

(a) Pour démontrer l'égalité, on développe et on réduit le membre de droite : pour tout nombre x,

$$(x+1)(x^2+3x-4) = x \times x^2 + x \times 3x + x \times (-4) + 1 \times x^2 + 1 \times 3x + 1 \times (-4)$$
$$= x^3 + 3x^2 - 4x + x^2 + 3x - 4$$
$$= x^3 + 4x^2 - x - 4.$$

Conclusion: on a bien

$$x^{3} + 4x^{2} - x - 4 = (x+1)(x^{2} + 3x - 4).$$

(b) On utilise la factorisation de la question 2.(a) pour résoudre l'équation :

$$x^{3} + 4x^{2} - x - 4 = 0$$

$$\iff (x+1)(x^{2} + 3x - 4) = 0$$

$$\iff x+1=0 \quad \text{ou} \quad x^{2} + 3x - 4 = 0$$

On résout chaque équation séparément :

$$x+1=0 \iff x=-1.$$

L'autre équation est du second degré, on utilise le discriminant :

$$x^2 + 3x - 4 = 0$$
.

- a = 1, b = 3, c = -4.
- $\Delta = 3^2 4 \times 1 \times (-4) = 9 + 16 = 25$.

• $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - \sqrt{25}}{2 \times 1} = \frac{-3 - 5}{2} = -4,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + \sqrt{25}}{2 \times 1} = \frac{-3 + 5}{2} = 1.$$

Conclusion : l'équation $x^3 + 4x^2 - x - 4 = 0$ a trois solutions :

$$\mathcal{S} = \{-1; -4; 1\}.$$

2 Probabilités

Exercice 14 1. On traduit les données de l'énoncé par un tableau d'effectif :

	Abonnés au soir	Pas abonnés au soir	Total
Abonnés au matin	50	20	70
Pas abonnés au matin	50	160	210
Total	100	180	280

2. (a)
$$P(S) = \frac{100}{280} = \frac{5}{14}$$
 et $P(\overline{M}) = \frac{210}{280} = \frac{3}{7}$.

(b) • L'événement « le pensionnaire est abonné aux deux journaux » s'écrit $S \cap M^4$. On a

$$P(S \cap M) = \frac{50}{280} = \frac{5}{28}.$$

- L'événement « le pensionnaire est abonné à au moins un journal » s'écrit *S* ∪ *M* ⁵. Il y a plusieurs façons de dénombrer les cas favorables à cet événement :
 - ▶ ajouter les pensionnaires qui sont abonnés au *Soir* et ceux qui sont abonnés au *Matin*, puis retrancher ceux qui sont abonnés aux deux journaux (sinon ils sont comptés deux fois) : 100 + 70 50 = 120.
 - ▶ ajouter ceux qui ne sont abonnés qu'au *Soir*, ceux qui ne sont abonnés qu'au *Matin*, et ceux qui sont abonnés aux deux journaux : 50 + 20 + 50 = 120.
 - ▶ retrancher l'effectif de pensionnaires qui ne sont abonnés à aucun journal de l'effectif total : 280 160 = 120.

Quelle que soit la méthode de calcul, on obtient :

$$P(S \cup M) = \frac{120}{280} = \frac{3}{7}.$$

(c) On choisit au hasard un pensionnaire abonné au *Matin*. La probabilité qu'il soit aussi abonné au *Soir* est ⁶

$$P_M(S) = \frac{50}{70} = \frac{5}{7}.$$

Exercice 15 1. Le candidat connaît 3 des questions d'histoire, donc $P(H) = \frac{3}{6} = \frac{1}{2}$; et il connaît 2 des 5 questions de géographie, donc $P(G) = \frac{2}{5}$.

2. Pour simplifier et sans rien enlever à la généralité du raisonnement, on suppose que les questions sont numérotées de 1 à 6 en histoire et de 1 à 5 en géographie, et que le candidat connaît les questions n°1, 2, 3 en histoire, n°1 et 2 en géographie. Dans le tableau ci-dessous, les questions connues sont écrites en bleu, les questions inconnues sont écrites en rouge.

On a colorié les cases de trois couleurs :

- en vert : le candidat connaît les deux questions;
- en orange : le candidat connaît une seule des deux questions ;
- en magenta : le candidat ne connaît aucune des deux questions.
- 4. On rappelle que \cap se lit « inter » et correspond au mot français « ET ».
- 5. On rappelle que ∪ se lit « union » et correspond au mot français « OU ».
- 6. On utilise la notation des probabilités conditionnelles, qui sera vue dans le paragraphe 2 du cours.

Hist Géo	1	2	3	4	5	6
1						
2						
3						
4						
5						

6 des 30 cases sont coloriées en vert, donc la probabilité que le candidat connaisse les deux questions est

$$P(G \cap H) = \frac{6}{30} = \frac{1}{5}.$$

3. 6+15 = 21 des 30 cases sont coloriées en vert ou en orange, donc la probabilité que le candidat connaisse au moins l'une des deux questions est

$$P(G \cup H) = \frac{21}{30} = \frac{7}{10}.$$

Remarque: On peut aussi obtenir 21 avec le calcul 30 – 9, ou utiliser la formule du cours de 2^{de} :

$$P(G \cup H) = P(G) + P(H) - P(G \cap H) = \frac{1}{2} + \frac{2}{5} - \frac{1}{5} = \frac{5}{10} + \frac{4}{10} - \frac{2}{10} = \frac{7}{10}.$$

Exercice 16 On utilise un tableau à double entrée. On place un symbole dans chacune des cases favorable à l'événement

A : « les deux dés montrent la même couleur ».

Dé n°2 Dé n°1						
•	$\stackrel{\wedge}{\square}$	$\stackrel{\wedge}{\square}$				
•	$\stackrel{\wedge}{\square}$	$\stackrel{\wedge}{\square}$				
•			$\stackrel{\wedge}{\square}$	$\stackrel{\wedge}{\square}$		
•			$\stackrel{\wedge}{\square}$	$\stackrel{\wedge}{\square}$		
					$\stackrel{\wedge}{\square}$	\Diamond
					\Diamond	\Diamond

Il y a 12 cases favorables à A sur 36, donc $P(A) = \frac{12}{36} = \frac{1}{3}$.