

IE598 Big Data Optimization Summary and Outlook

Instructor: Niao He

Nov 15, 2016

Big Data, Big Picture

This Course

Big Data Optimization

- Explore modern optimization theories, algorithms, and big data applications
- Emphasize a deep understanding of structure of optimization problems and computation complexity of numerical algorithms
- Expose to the frontier of research in large-scale optimization and machine learning

Central Topics

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, \dots, k$

$$h_j(x) = 0, j = 1, \dots, \ell$$

$$x \in X$$

Large-Scale Convex Optimization

Scalable First-Order Methods

What Did We Cover

"The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

— R. Rockafellar, SIAM Review 1993

Fundamentals I

- Basics of Convex Optimization
 - Convex sets and convex functions
 - Operations that preserve convexity
 - Several characterizations of convex functions
 - Subgradient and subdifferential sets
 - First order optimality conditions
 - differentiable and non-differentiable cases
 - unconstrained and constrained cases
 - Lagrangian duality, saddle point, and KKT conditions
 - Convex conjugate, Fenchel duality

Fundamentals II

- Conic Optimization
 - Linear Programing (LP)
 - Second-Order Cone Programming (SOCP)
 - Semi-definite Programming (SDP)
 - Conic representable functions and sets
 - Conic duality (weak and strong duality)
- Polynomial-time Solvability
 - Interior Point Method (barrier functions, path-following)

Highlights

- **(Convex function)** $f: R^n \to R \cup \{+\infty\}$ is convex on if $\forall x, y, \forall \lambda \in [0,1], f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$
- (Subgradient) g is a subgradient of a convex function f at x if $f(y) \ge f(x) + g^T(y x)$, $\forall y$
- (Convex program) A local minimum is a global minimum.
- (Optimality condition) If f is convex and differentiable on a convex set X, then

$$x_* = argmin_{x \in X} f(x) \Leftrightarrow (x - x_*)^T \nabla f(x_*) \ge 0, \forall x \in X$$

Algorithms and Complexity I

Smooth Convex Optimization

$$\min_{x \in X} \ f(x)$$

Algorithm	Iteration Complexity		Iteration Cost
	Convex	Strongly Convex	
GD	$\mathcal{O}(rac{LD^2}{\epsilon})$	$\mathcal{O}\left(\frac{L}{\mu}\log(\frac{1}{\epsilon})\right)$ $\mathcal{O}(\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon}))$ $\mathcal{O}\left(\frac{L}{\mu}\log(\frac{1}{\epsilon})\right)$ $\mathcal{O}(\frac{LD^2}{\epsilon})$	one gradient
\mathbf{AGD}	$\mathcal{O}(rac{\sqrt{L}D}{\sqrt{\epsilon}})$	$\mathcal{O}(\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon}))$	one gradient
PGD	$\mathcal{O}(rac{LD^2}{\epsilon})$	$\mathcal{O}\left(rac{L}{\mu}\log(rac{1}{\epsilon}) ight)$	one gradient + one projection
${f FW}$	$\mathcal{O}(rac{LD^2}{\epsilon})$	$\mathcal{O}(rac{LD^2}{\epsilon})$	one gradient + one linear minimization
BCGD	$\mathcal{O}(rac{bLD^2}{\epsilon})$	$\mathcal{O}(rac{bL}{\mu}\log(rac{1}{\epsilon}))$	(randomized): O(1)-block gradient (cyclic): O(b)-block gradient (Gauss Southwell): O(b)-block gradient

Example

Logistic Regression

$$\min_{w} f(w) := \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||_2^2$$

Algorithms and Complexity II

Nonsmooth Convex Optimization

$$\min_{x \in X} f(x)$$

Algorithm	Iteration Complexity (Convex Case)	Iteration Cost
Subgradient Descent	$ \mathcal{O}\left(\frac{M_{\ \cdot\ _{2}}^{2}(f)\cdot\max_{x,y\in X}\ x-y\ _{2}^{2}}{\epsilon^{2}}\right) $	one subgradient one projection
Mirror Descent	$\mathcal{O}\left(\frac{M_{\ \cdot\ _*}^2(f)\cdot\max_{x,y\in X}V(x,y)}{\epsilon^2}\right)$	one subgradient one prox-mapping
Proximal Point Algorithm	$\mathcal{O}\left(\frac{\ x_0 - x_*\ _2^2}{\epsilon}\right)$	one proximal operator
Acc Proximal Point Algorithm	$\mathcal{O}\left(\frac{\ x_0 - x_*\ _2}{\sqrt{\epsilon}}\right)$	one proximal operator

[•] V(x,y): Bregman distance w.r.t. some norm $||\cdot||$ defined on X, M: Lipschitz constant of f(x)

Algorithms and Complexity III

Nonsmooth Convex Optimization

$$\min_{x \in X} f(x) := \max_{y \in Y} \{ \langle Ax + b, y \rangle - \phi(y) \}$$

Algorithm	Iteration Complexity (Convex Case)	Iteration Cost	
$egin{aligned} \mathbf{Nesterov's} \ \mathbf{Smoothing} \ + \ \mathbf{GD} \end{aligned}$	$\mathcal{O}\left(rac{\ A\ ^2D_X^2D_Y^2}{\epsilon^2} ight)$	one gradient of smoothed objective	
${\bf Nesterov's~Smoothing}\\ + {\bf AGD}$	$\mathcal{O}\left(rac{\ A\ D_XD_Y}{\epsilon} ight)$	one gradient of smoothed objective	
Mirror Prox	$\mathcal{O}\left(\frac{L \cdot \max_{z,z' \in X \times Y} V(z,z')}{\epsilon}\right)$	two gradients and two prox-mappings	

[•] V(z,z'): Bregman distance w.r.t. some norm $||\cdot||$ defined on $X\times Y$, D_X , D_Y : diameter of sets X and Y

L: Lipschitz constant of the gradient of the saddle function

Algorithms and Complexity IV

Nonsmooth Convex Optimization

$$\min_{x} f(x) + g(x)$$

Algorithm	Iteration Complexity (Convex Case)	Iteration Cost
Proximal Gradient	$\mathcal{O}\left(\frac{L\ x_0 - x_*\ _2^2}{\epsilon}\right)$	one gradient of f one proximal operator of g
Accelerated Proximal Gradient	$\mathcal{O}\left(\frac{\sqrt{L}\ x_0 - x_*\ _2}{\sqrt{\epsilon}}\right)$	one gradient of f one proximal operator of g
Douglas-Rachford Splitting (special case of ADMM)	$\mathcal{O}\left(\frac{\ x_0 - x_*\ _2^2}{\epsilon}\right)$	one proximal operator of f one proximal operator of g
$egin{aligned} \mathbf{Krasnosel'skii\text{-}Mann}(\mathbf{KM}) \ & (\mathbf{generalization}) \end{aligned}$	$\mathcal{O}\left(\frac{\ x_0 - x_*\ _2^2}{\epsilon}\right)$	one proximal operator of f one proximal operator of g

• L: Lipschitz constant of $\nabla f(x)$

Example

LASSO

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||x||_{1}$$

Algorithms and Complexity V

Stochastic Convex Optimization

$$\min_{x \in X} f(x) = \mathbb{E}[F(x,\xi)]$$

Approach	Sample Complexity	
Sample Average Approximation (SAA)	$\mathcal{O}\left(\frac{\max_{x\in X} Var[F(x,\xi)]}{\epsilon^2}\right)$	
Stochastic Approximation (SA) (when f is μ -strongly convex)	$\mathcal{O}\left(\frac{\max_{x\in X}\mathbb{E}[\ F'(x,\xi)\ _2^2]}{\mu^2\epsilon}\right)$	
Mirror Descent SA (when f is general convex)	$\mathcal{O}\left(\frac{\max_{x\in X}\mathbb{E}[\ F'(x,\xi)\ _{*}^{2}]\cdot\max_{x,y\in X}V(x,y)}{\epsilon^{2}}\right)$	

• V(x,y): Bregman distance w.r.t. some norm $||\cdot||$ defined on X

Algorithms and Complexity VI

Finite Sum of Convex Functions

$$\min_{x} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

Algorithm	Iteration Complexity (Smooth + Strongly Convex)	Iteration Cost
GD	$\mathcal{O}\left(rac{L}{\mu}\log\left(rac{1}{\epsilon} ight) ight)$	O(n) gradient
\mathbf{SGD}	$\mathcal{O}\left(rac{L}{\mu^2\epsilon} ight)$	O(1) gradient
${ m SVRG/S2GD}$	$\mathcal{O}\left(\log\left(\frac{1}{\epsilon} ight) ight)$	$O(n + \frac{L}{\mu})$ gradient
SAG/SAGA	$\mathcal{O}\left(\max(n, \frac{L}{\mu})\log\left(\frac{1}{\epsilon}\right)\right)$	O(1) gradient $O(n)$ memory

Example

Large-scale Logistic Regression

$$\min_{w} f(w) := \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||_2^2$$

What We Did Not Cover

"Optimization hinders evolution."

-- Alan J. Perlis, 1982

More First-Order Algorithms

Nonsmooth Optimization Algorithms

- Bundle methods (e.g. the level method)
- Primal-dual methods
- Composite Mirror Descent/Mirror Prox

— ...

Stochastic Optimization Algorithms

- Dual averaging method
- Stochastic Frank Wolfe algorithms
- Stochastic dual coordinate ascent
- Stochastic ADMM algorithm

– ...

Beyond First-Order Algorithms

Second-Order Methods

- Newton method
- (stochastic) Quasi-Newton methods
- Gauss-Newton method
- Natural Gradient method

— ...

Zero-Order Methods (Derivative-free)

- Fast Differentiation technique
- Gaussian smoothing
- Random search

— ...

Beyond Black-Box

Methods with linear dimension-dependent convergence

- Cutting plane methods
- Center-of-Gravity method
- Inner and Outer Ellipsoid method
- Interior Point Method

Parallel and Distributed Algorithms

Many of the algorithms we learnt can be modified to take advantage of parallel processors and distributed machines

- Distributed ADMM
- Async-ADMM
- Hogwild!
- Downpour SGD
- Distributed dual averaging
- Gossip algorithms

More on Convex Optimization

- Problems with Convex Structure
 - Convex Minimization
 - Convex-Concave Saddle Point Problems
 - Variational Inequalities
 - Convex Nash Equilibrium
 - Monotone Inclusion Problems
- Convex Optimization under Hilbert spaces
- Online Convex Optimization

More Applications in ML

Aside from supervised learning, many other tasks in ML are also convex problems

- Boosting
- Bayesian Inference
- Reinforcement Learning
- Recommendation Systems
- Social Network Estimation
- ...

Beyond Convex Optimization

Non-Convex Problems

Many practical problems are non-convex and are hard to solve.

Nonlinear Optimization

- Polynomial optimization
- Convex equality constraints
- Eigenvalue problems

Integer and Combinatorial Optimization

Optimization under Uncertainty

- Robust Optimization
- Chance Constrained Programming
- Multi-Stage Stochastic Programming

Lots of problems in machine learning are indeed nonconvex, for instance

- Deep Learning
- Clustering (K-means, PCA, etc)
- Graphical Models (MRF, HMM, etc)
- Multi-class Classification
- Sparsity learning with non-convex regularization

Non-Convex Algorithms

- Converging to stationary points
 - Many algorithms from the convex world still apply but with weaker convergence
 - For example, GD, FW, SGD, SVRG, etc.
- Escaping from saddle points
 - Restarting
 - Using noisy gradient
 - Using Hessian information
- Converging to global optimum
 - Proven to be possible for several family of problems

Read more: http://www.offconvex.org/