Cálculo Vetorial — Teste I

Modalidades. Este teste consiste em dois problemas, cada questão valendo um ponto, em um total de dez pontos. As respostas devem ser argumentadas, e a aplicação de propriedades ou teoremas deve ser feita mediante a verificação das hipóteses. Os alunos têm a opção de devolver suas respostas por escrito em papel, pessoalmente ou por foto para o e-mail raphael.tinarrage@fgv.br, ou como um documento escrito com um software de redação matemática, enviado para o mesmo e-mail. Este documento será entregue aos alunos no 13/03/2024, e o prazo final é o 27/03/2024 às 11h10.

Problema 1 (campos vetoriais fechados no toro). Sejam os conjuntos

$$L = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0, \ y = 0\},\$$

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, \ z = 0\},\$$

$$\Omega = \mathbb{R}^3 \setminus (L \cup S)$$

e os campos vetoriais

$$F: \Omega \longrightarrow \mathbb{R}^{3} \qquad G: \Omega \longrightarrow \mathbb{R}^{3}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \frac{-y}{x^{2} + y^{2}} \\ \frac{x}{x^{2} + y^{2}} \\ 0 \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \frac{-xz}{\sqrt{x^{2} + y^{2}} \left(\left(\sqrt{x^{2} + y^{2}} - 1\right)^{2} + z^{2}\right)} \\ \frac{-yz}{\sqrt{x^{2} + y^{2}} \left(\left(\sqrt{x^{2} + y^{2}} - 1\right)^{2} + z^{2}\right)} \\ \frac{\sqrt{x^{2} + y^{2}} - 1}{\left(\sqrt{x^{2} + y^{2}} - 1\right)^{2} + z^{2}} \end{pmatrix}$$

- (a) Justifique que F e G são bem definidos e são de classe C^{∞} .
- (b) Mostre que o rotacional destes campos vale zero.
- (c) Da pergunta anterior, podemos concluir que os campos são conservativos? Detalhe.
- (d) Esboce F no plano $\{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$ e G no plano $\{(x, y, z) \in \mathbb{R}^3 \mid y = 0\}$.
- (e) Mostre que as duas seguintes curvas são curvas integrais de F e G, respectivamente. Conclua que os campos não são conservativos.

$$\gamma_F \colon \mathbb{R} \longrightarrow \mathbb{R}^3 \qquad \qquad \gamma_G \colon \mathbb{R} \longrightarrow \mathbb{R}^3
t \longmapsto \begin{pmatrix} \cos(4t)/2 \\ \sin(4t)/2 \\ 0 \end{pmatrix} \qquad \qquad t \longmapsto \begin{pmatrix} 1 + \cos(4t)/2 \\ 0 \\ \sin(4t)/2 \end{pmatrix}.$$

Indicações: Um campo vetorial conservativo tem rotacional nulo. Além disso, uma curva integral para o campo $F: \mathbb{R}^3 \to \mathbb{R}^3$ é uma curva $\gamma: \mathbb{R} \to \mathbb{R}^3$ tal que $\gamma' = F \circ \gamma$. Se um campo admite uma curva integral não-constante e não-injetora, então não é conservativo.

Comentário: Como veremos mais adiante, a existência de campos vetoriais conservativos de rotacional nulo depende da topologia do espaço subjacente. Por exemplo, se o domínio for simplesmente conexo, então tais campos não existem (esse resultado é o lema de Poincaré). Por outro lado, o domínio Ω em nosso problema é, topologicamente falando, um toro (mais precisamente, Ω se retrai em um toro). No toro, há essencialmente dois campos vetoriais conservativos com rotacional nulo: são os campos F e G acima.

Problema 2 (velocidade da luz). Neste problema, trabalharemos no espaço \mathbb{R}^4 , cujos pontos serão denotados genericamente (x,y,z,t), sendo as três primeiras coordenadas entendidas como coordenadas espaciais e a quarta como uma coordenada temporal. Dada uma função $F: \mathbb{R}^4 \to \mathbb{R}^3$, que veremos como um campo vetorial dinâmico (ou seja, dependente do tempo), calcularemos o rotacional (rot), o divergente (div) e o laplaciano vetorial (∇^2) com relação às coordenadas espaciais. Isto é, denotando (F_1, F_2, F_3) as componentes de F, consideraremos

$$\begin{split} \operatorname{rot} F &= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \ \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \ \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right), \\ \operatorname{div} F &= \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}, \\ \nabla^2 F &= \left(\frac{\partial^2 F_1}{\partial x^2} + \frac{\partial^2 F_1}{\partial y^2} + \frac{\partial^2 F_1^2}{\partial z^2} \right) \\ \frac{\partial^2 F_2}{\partial x^2} + \frac{\partial^2 F_2}{\partial y^2} + \frac{\partial^2 F_2}{\partial z^2} \right). \\ \left(\frac{\partial^2 F_3}{\partial x^2} + \frac{\partial^2 F_3}{\partial y^2} + \frac{\partial^2 F_3}{\partial z^2} \right). \end{split}$$

Este problema trata das equações de Maxwell no vácuo sem carga e sem corrente:

$$\operatorname{div} E = 0 \tag{1}$$

$$\operatorname{div} B = 0 \tag{2}$$

$$rot E = -\frac{\partial B}{\partial t} \tag{3}$$

$$rot B = \mu_0 \epsilon_0 \frac{\partial E}{\partial t} \tag{4}$$

onde $E,B\colon\mathbb{R}^4\to\mathbb{R}^3$ são funções de classe C^2 , chamadas respectivamente de campo elétrico e campo magnético, $\mu_0=4\pi\times10^{-7}$ é a permeabilidade do vácuo e $\epsilon_0\approx8.85\times10^{-12}$ é a permissividade do vácuo. Além disso, dado $\omega\in\mathbb{R},\,k\in\mathbb{R}^3$ unitário e $n\in\mathbb{R}^3$ ortogonal a k, pomos a seguinte função, chamada de onda plana monocromática:

$$F_{(\omega,k,n)} \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^3$$

$$(x,z,y,t) \longmapsto \cos(\langle k, (x,y,z) \rangle - t\omega)n.$$
(5)

O termo ω é chamado de velocidade, k de vetor de propagação e n de polarização.

- (f) Sejam $\omega \in \mathbb{R}$ e $k, n \in \mathbb{R}^3$ ortogonais. Calcule rot $F_{(\omega,k,n)}$, div $F_{(\omega,k,n)}$ e $\frac{\partial}{\partial t}F_{(\omega,k,n)}$.
- (g) Seja $\omega \in \mathbb{R}$, $k \in \mathbb{R}^3$ unitário, $n \in \mathbb{R}^3$ ortogonal a k, e define $\widetilde{n} = \frac{1}{\omega}k \times n$. Além disso, consideremos as funções $E = F_{(\omega,k,n)}$ e $B = F_{(\omega,k,\widetilde{n})}$. Mostre que E e B são soluções das equações (1), (2), (3) e (4) se e somente se $\omega = 1/\sqrt{\mu_0 \epsilon_0}$.
- (h) Seja $F: \mathbb{R}^4 \to \mathbb{R}^3$ de classe C^2 . Prove que $\frac{\partial}{\partial t}$ rot $F = \operatorname{rot} \frac{\partial}{\partial t} F$.
- (i) Sejam $E, B: \mathbb{R}^4 \to \mathbb{R}^3$ soluções de classe C^2 das equações (1), (2), (3) e (4). Mostre

$$\nabla^2 E = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2},\tag{6}$$

$$\nabla^2 B = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}.\tag{7}$$

Poderemos aplicar o operador rotacional aos membros das equações (3) e (4) e usar a pergunta anterior e a indicação abaixo.

(j) Dada $F: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 , e denotando genericamente os pontos de \mathbb{R}^2 como (x,t), considere equação

$$\frac{\partial^2 F}{\partial t^2} = \mu_0 \epsilon_0 \frac{\partial^2 F}{\partial x^2}.$$
 (8)

Mostre que para toda função $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 e todos $(k, \omega) \in \mathbb{R}^3 \times \mathbb{R}$, a seguinte função é solução da equação (8):

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,t) \longmapsto f(kx - t\omega).$

Indicação: Uma função $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ de classe C^2 satisfaz a relação

$$rot(rot(F)) = \nabla \operatorname{div} F - \nabla^2 F$$
.

Comentário: O resultado da questão (g) é uma das previsões notáveis das equações de Maxwell: para que uma onda plana seja uma solução, sua velocidade deve ser igual a $1/\sqrt{\mu_0\epsilon_0}\approx 2,9\times 10^8$, ou seja, a velocidade da luz. Hoje sabemos que a luz é uma onda eletromagnética, e este resultado pode parecer tautológico. No entanto, em uma época em que esse conhecimento ainda não estava solidificado, as equações de Maxwell permitiram argumentar a favor da luz como uma onda eletromagnética. Além disso, vemos na questão (i) que as equações admitem, em nosso caso (no vácuo, sem carga e sem corrente), uma desacoplagem dos campos elétrico e magnético. Elas seguem então a equação da onda. Em geral, a equação da onda admite uma grande variedade de soluções, como vemos na questão (j), no caso unidimensional em espaço. No entanto, ao adicionar as equações (1) e (2) de Mawxell, que atuam como valor inicial, mostrase que as soluções são, na realidade, apenas combinações lineares das ondas planas monocromáticas da equação (5) (na verdade, precisamos tomar "combinações lineares infinitas", por meio da teoria das séries de Fourier).