

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Science and Technology (FST)
Department of Computer Science (CS)
Undergraduate Program

COURSE PLAN

Summer 2021-2022 SEMESTER

I. Course Core and Title

CSC 4261: Advanced Programming In Web

Technologies

II. Credit 3 credit hours (2 hours of theory + 3

hours of lab per week)

III. Nature

Elective Course for CS, CSE, CSSE, SE, CIS

IV. Prerequisite CSC 3222: Web Technologies

V. Vision:

Our vision is to be the preeminent Department of Computer Science through creating recognized professionals who will provide innovative solutions by leveraging contemporary research methods and development techniques of computing that is in line with the national and global context.

VI. Mission:

The mission of the Department of Computer Science of AIUB is to educate students in a student-centric dynamic learning environment; to provide advanced facilities for conducting innovative research and development to meet the challenges of the modern era of computing, and to motivate them towards a life-long learning process.

VII - Course Description:

- At the end of the course, the following objectives shall have been attained
- Understood and appreciated the object-oriented programming concept using PHP
- Understood and appreciated programming Web-based applications using PHP framework
- Understood and appreciated programming the security for framework-based applications
- Prepared and presented a group project using PHP framework
- Understood and appreciated the object-oriented programming concept using JavaScript
- Understood and appreciated programming Web-based applications using JS framework
- Prepared and presented a group project using JS framework

VIII – Course outcomes (CO) Matrix:

By the end of this course, students should be able to:

COs	CO Description	Lev	Level of		PO	
*		Don	nain	**		Assessed
		С	P	A	S	***
CO1	Determine and model an economic and optimized software		3			PO-k-1
	solution to a real-life problem.		٦			I O K I
CO2			3			PO-k-1
	applied on the developed software solution.		3			1 O-K-1
CO3	Demonstrate the management skill and contribution to the		3			PO-k-1
	developed solution as a team member/team leader		3			1 O-K-1

C: Cognitive; P: Psychomotor; A: Affective; S: Soft-skills (CT: Critical Thinking, TS: Teamwork)

^{*} CO assessment method and rubric of COs assessment is provided in Appendix section

^{**} The numbers under the 'Level of Domain' columns represent the level of Bloom's Taxonomy each CO corresponds to.

^{***} The numbers under the 'PO Assessed' column represent the PO (appendix) each CO corresponds.

IX – Topics to be covered in Theory class*:

TOPICS	Specific Objective(s)	Time Frame	Teaching Activities	Assessment Strategy(s)	CO mapped
Mission & Vision of AIUB; Course Introduction, Introduction PHP	Importance of the course, Career opportunity, Course outline & class policy, OOP in PHP	Week 1	Lecture and Lab	34	•
Introduction to object oriented PHP.	Object oriented PHP overview. Project building	Week 1	Lecture, Lab Work and Assignments		
Introduction to PHP Framework and View Engine	Understanding the concepts of dynamic web application using framework and template layout	Week 2	Lecture, Lab Work and Assignments	Lab Task	
Frameworks Controller and Data Transportation	Understanding View- Controller Data Transportation/Action Form actions and data validations	Week3	Lecture, Lab Work and Assignments	Report	CO1
Storage management using framework	Session-Cookies, Middleware, ORM, and Database	Week 4 -	Lecture, Lab Work and Assignments	Report	CO1
Security Management	Authentication and Middleware Revise	Week 6	Lab Exam	Lab Task & Assignments	
PHP API Management	Week 7 API vs RESTful API, PHP Framework API Creation and Interaction	Week 8-9	Lecture, Lab Work	Lab Task & Assignments	
Introduction to object oriented JavaScript	Introduction to JS and Object oriented JS overview. JQuery	Week 9	Lecture, Lab	Lab Task &	
İ		WCCK 9	Work	Assignments	
Building dynamic web application using framework	(AJAX) and JSON Understanding the concepts of dynamic web application using Node.Js framework	Week 10	/ / /	Assignments Project	CO2
web application	(AJAX) and JSON Understanding the concepts of dynamic web application using Node.Js	199	Work Lecture, Lab Work and		CO2
web application using framework Introduction to ORM using JS	(AJAX) and JSON Understanding the concepts of dynamic web application using Node.Js framework Creating and integrating database with web applications using Active Record and CRUD operation Creating dynamic applications and web services using JS framework.	Week 11-12 Week 13	Work Lecture, Lab Work and Assignments Lecture, Lab Work and	Project Lab Task &	CO2

^{*} The faculty reserves the right to change, amend, add or delete any of the contents.

X- Course Requirements

At least 80% class attendance is necessary to sit for the exam. If there is any assignment given to the students, they have to submit it before the deadline decided by the course teacher.

XI - Evaluation & Grading System

The following grading system will be strictly followed in this class

		Final Grade/ Grand Total			
(Midterm and Final term)		Midterm:	40%		
Quiz	10%	Final Term:	60%		
Attendance	5%	Grand Total	100%		
Lab Task/Assignment	15%				
Project	70%				
Total	100%				

Grand Total = 40% of Midterm + 60% of Final Term

The evaluation system will be strictly followed as par the AIUB grading policy.

Letter	Grade Point	INUITIEFICAL 70
A+	4.00	90-100
A	3.75	85 - < 90
B+	3.50	80 - < 85
В	3.25	75 - < 80
C+	3.00	70 - < 75
С	2.75	65 - < 70
D+	2.50	60 - < 65
D	2.25	50 - < 60
F	0.00	< 50 (Failed)
A+	4.00	90-100
I	Incomplete	
W	Withdrawal	
UW	Unofficial Withdrawal	

XII – Teaching Methods

- Maximum topics will be covered from the textbook. For the rest of the topics, reference books will be followed. Some Class notes will be uploaded on the web. White board will be used for most of the time.
- For some cases, multimedia projector will be used for the convenience of the students.
- Students must study up to the last lecture before coming to the class and it is suggested that they should go
 through the relevant chapter before coming to the class. Just being present in the class is not enoughstudents must participate in classroom discussions.

XIII - Textbook/ References

- 1. PHP Advanced and Object-Oriented Programming, 3rd Edition; Larry Ullman; Peachpit, Press, 2013
- 2. PHP Objects, Patterns and Practice, 5th Edition; Matt Zandstra; Apress, 2016
- 3. Learning PHP, MySQL, JavaScript and CSS, 2nd Edition; Robin Nixon; O'Reilly, 2009
- 4. Eloquent JavaScript: A Modern Introduction to Programming; Marijn Haverbeke; 2011 Learning Node.js: A Hands On Guide to Building Web Applications in JavaScript; Marc Wandschneider; Addison-Wesley, 2013
- 5. Beginning Node.js; Basarat Ali Syed; Apress, 2014
- 6. PHP: Hypertext Preprocessor, URL: http://php.net
- 7. W3Schools Online Web Tutorials, URL: http://www.w3schools.com
- 8. Laravel Web Framework, URL: https://laravel.com/
- 9. Node.js, URL: https://nodejs.org/en/

XIV - List of Faculties Teaching the Course

- 1. Rashidul Hasan Nabil
- 2. Sazzad Hossain

XV – Verification:

Prepared by :	Moderated by :	/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Rashidul Hasan Nabil		
Course Convener	Point Of Contact OBE Implementation Committee for	or CS
Date:	Date:	Z ⁷ /
Checked by:	Certified by:	Approved by:
Dr. Abdullah-Al-Jubair	Prof. Dr. Dip Nandi	Mr. Mashiour Rahman
Head,	Director,	Associate Dean,
Department of Computer	Faculty of Science & Technology	Faculty of Science &
Science		Technology

APPENDIX

		Table 1: Knowledge Profile (WK / K)
		Curriculum
Ind	icator	Attribute
K1	Theory based natural science	A systematic, theory-based understanding of the natural sciences applicable to the discipline
K2	Conceptual based mathematics	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline
К3	Theory based engineering fundamentals	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
К4	Forefront specialist knowledge for practice	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
К5	Engineering Design	Knowledge that supports engineering design in a practice area
К6	Engineering Practice (Technology)	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
К7	Comprehension of engineering in society	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability
К8	Research Literature	Engagement with selected knowledge in the research literature of the discipline

	Table 2: Range of Complex Engineering Problem Solving (WP / P)							
	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7							
Indicator	Title	Description						
P1	Depth of knowledge required	Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach						
P2	Range of conflicting requirements	Involve wide-ranging or conflicting technical, engineering and other issues						
Р3	Depth of analysis required	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models						
P4	Familiarity of issues	Involve infrequently encountered issues						
P5	Extent of applicable codes	Are outside problems encompassed by standards and codes of practice for professional engineering						
Р6	Extent of stakeholder involvement and conflicting requirements	Involve diverse groups of stakeholders with widely varying needs						
Р7	Interdependence	Are high level problems including many component parts or sub- problems						

	Table 3: Range of Complex Engineering Activities (A)							
Comple	Complex activities means (engineering) activities or projects that have some or all of the following characteristics							
Indicator	Title	Description						
A1	Range of resources	Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)						
A2	Level of interaction	Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues						
А3	Innovation	Involve creative use of engineering principles and research-based knowledge in novel ways						
A4	Consequences for society and the environment	Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation						
A5	Familiarity	Can extend beyond previous experiences by applying principles-based approaches						

Mapping of PO / PLOs to CS Courses and K, P, A

PO-a: Engineering Knowledge

Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
PO-a-1	Apply information and concepts in natural science with the familiarity of issues.	Cognitive Level 3 (Applying)	CSC 4125 Computer Science Mathematics	CSC 1101 Introduction to Computer Studies	0	K1 Theory based natural science	P1	
PO-a-2	Apply information and concepts of mathematics with the familiarity of issues.	Cognitive Level 3 (Applying)	CSC 2211: Algorithms	CSC 1204: Discrete Mathematics	CSC 4233 Natural Language Processing	K2 Conceptual based mathematics	P1	
PO-a-3	Apply information and concepts in engineering fundamentals to solve complex engineering problems with a range of conflicting requirements.	Cognitive Level 3 (Applying)	CSC 3113: Theory of Computation	CSC 4232 Machine Learning		K3 Theory based engineering fundamental s	P1, P2, P3	
PO-a-4	Apply information and concepts in specialized engineering sciences with the in-depth of analysis of a complex engineering problem.	Cognitive Level 3 (Applying)	CSC 3220: Compiler Design	CSC 4231 Parallel Computing	CSC 4251 Image Processing	K4 Forefront specialist knowledge for practice	P1, P2, P3	

PO-b: Problem Analy sis

Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4).

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
PO-b-1	Identify first principles of natural sciences and engineering sciences in practical applications.	Cognitive Level 2 (Understanding)	CSC 4230 Bioinformatics	CSC 1204: Discrete Mathematics		K1 Theory based natural science	P1	
PO-b-2	Formulate solutions, procedures, and methods using first principles of mathematics for engineering sciences.	Cognitive Level 4 (Analyzing)	CSC 2105: Data Structure	CSC 4126 Basic Graph Theory	CSC 4233 Natural Language Processing	K2 Conceptual based mathematics	P1	
PO-b-3	Analyze solutions for complex engineering problem reaching substantiated conclusion.	Cognitive Level 5 (Evaluating)	CSC 3214 Operating Systems	CSC 4128 Linear Programming	CSC 4127 Advanced Algorithm Techniques	K3 Theory based engineering fundamentals	P1, P3	
PO-b-4	Research literature of engineering science and analyze the validity and accuracy of existing solution for complex engineering problems.	Cognitive Level 4 (Analysis)	CSC 2209 Object Oriented Analysis and Design	CSC 3214 Operating Systems	0	K4 Forefront specialist knowledge for practice	P1, P3, P7	

PO-c: Design/ development of solutions

Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5).

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
PO-c-1	Design solutions for a complex engineering problem considering public health and safety.	Psychomotor Level 6 (Create)	CSC 3215 Web Technologies	CSC 4264 Advanced Programming with .NET	CSC 1205 Object Oriented Programming 1	K5 Engineering Design	P1, P3, P5, P6	A3, A4
PO-c-2	Develop system or components that meets specific needs considering health, safety and environment.	Psychomotor Level 6 (Create)	CSC 4262 Programming in Python	CSC 4263 Advanced Programming with JAVA	CSC 3215 Web Technologies	K5 Engineering Design	P1, P3, P7	A3, A4

PO-d: Investigation

Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
P O-d-1	Conduct investigations of complex problems using research-based knowledge	Cognitive Level 5 (Evaluating)	CSC 4180 Introduction to Data Science	CSC 4298 Thesis/Project	CSC 4285 Data Warehouse and Data Mining	K8 Research Literature	P1, P2, P3, P4, P7	
PO-d-2	Use appropriate research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.	Psychomotor Level 6 (Create)	CSC 4180 Introduction to Data Science	CSC 4298 Thesis/Project	CSC 4285 Data Warehouse and Data Mining	K8 Research Literature	P1, P4, P5, P6	A2, A3

PO-e: Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6).

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	А
PO-e-1	Select and apply appropriate techniques, tools and resources (e.g., prediction & modeling) to solve complex engineering problems considering their limitations.	Cognitive Level 3 (Applying)	CSC 2210 Object Oriented Programming 2	CSC 2107: Introduction to Database	CSC 4271 Software Quality and Testing	K6 Engineering Practice (Technology)	P1, P4	A1, A2, A3
PO-e-2	Create appropriate techniques, tools or resources (e.g., prediction & modeling) to solve complex engineering problems considering their limitations.	Psychomotor Level 6 (Create)	CSC 2209: Object Oriented Analysis and Design	CSC 2210 Object Oriented Programming 2	CSC 4272 Mobile Application Development	K6 Engineering Practice (Technology)		A1, A2, A3

PO-f: The Engineer and Society

Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems (K7)

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
PO-f-1	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues in relation to professional engineering practice and solution.	Cognitive Level 5 (Evaluate)	CSC4226: Artificial Intelligence and Expert System	CSC 3114: Software Engineering		K7 Comprehension of engineering in society	P1, P4, P5	
PO-f-2	Assess the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.	Cognitive Level 4 (Analyze)	CSC4226: Artificial Intelligence and Expert System	CSC 3114: Software Engineering		K7 Comprehension of engineering in society	P1, P6	

PO-g: Environment and Sustainability

Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	Р	Α
P O-g-1	Understand the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.	Cognitive Level 5 (Evaluate)	CSC 4273 Software Architecture & Design Patterns	CSC 4118 Computer Graphics		K7 Comprehension of engineering in society	P1, P3, P4	
PO-g-2	Evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.	Cognitive Level 5 (Evaluate)	CSC 3216 Compiler Design	CSC 4251 Image Processing	CSC 4270 Software Development Project Management	K7 Comprehension of engineering in society	P1, P5, P7	

PO-h: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	К	P	Α	
PO-h-1	Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.	Psychomotor Level 3 (Apply)	CSC 4195: Research Methodology	CSC 4183 Cyber Laws & Information Security	CHE	K7 Comprehension of engineering in society			

PO-i: Individual and Team work

Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	K	P	Α	\
PO-i-1	Function effectively as an individual in diverse teams and in multi-disciplinary settings.	Affective Level 5 (Evaluate)	CSC 4298 Thesis/Project	CSC 1102 Introduction to Programming Language	CSC 4254 Computer Vision & Pattern Recognition	x			
PO-i-2	Function effectively as a member or leader in diverse teams and in multidisciplinary settings.	Affective Level 5 (Evaluate)	CSC 4298 Thesis/Project	CSC 1102 Introduction to Programming Language	CSC 4254 Computer Vision & Pattern Recognition	x			

PO-j: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as be ing able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PC Indica ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	K	Р	А
PO-j	Comprehend and write effective reports and design documentation for effective communication on complex engineering activities.	Psychomotor Level 5 (Evaluate)	CSC 4195: Research Methodology	CSC 2210 Object Oriented Programming 2		х	P1, P2, P3	A1, A3, A5
PO-j	Make effective presentations to exchange clear instructions with engineering community and the society at large.	Psychomotor Level 6 (Create)	CSC 4299 Internship	CSC 4298 Thesis/Project		х		A1, A4

PO-k: Project Management and Finance

Demonstrate knowledge and understanding of engineering management principles and economic decision making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	K	Р	Α
PO-k-1	Apply engineering management principles and economic decision to manage project as a team member / team leader.	Psychomotor Level 3 (Apply)	CSC 4298 Thesis/Project	CSC 4261 Advanced Programming in Web Technologies	CSC 4160 Software Requirement Engineering	x		A2, A3, A5
PO-k-2	Apply engineering management principles and economic decision to manage project in multidisciplinary environments.	Psychomotor Level 3 (Apply)	CSC 4298 Thesis/Project	CSC 4181 Advance Database Management Systems	CSC 4251 Image Processing	x		A2, A3, A5

PO-I: Lifelong learning

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

	PO Indicator ID	PO Indicators Definition (As per the requirement of WKs)	Domain	Course 1	Course 2	Course 3	K	Р	А
	PO-I-1	Identify the need and prepare accordingly for independent learning in solving complex engineering problems and change of technologies.	Affective Level 5 (Evaluate)	CSC 4298 Thesis/Project	CSC 4160 Software Requirement Engineering		x		A1, A2, A3
•	PO-I-2	Demonstrate the ability to engage in independent and life-long learning in the broadest context of technological change.	Psychomotor Level 6 (Create)	CSC 4299 Internship	CSC 4182 Human Computer Interaction		x		A1, A3, A5

Mapping of CO Assessment Method and Rubric

The mapping between Course Outcome(s) (COs) and The Selected Assessment method(s) and the mapping between Assessment method(s) and Evaluation Rubric(s) is shown below:

СО	Description	Learning Domain	Assessment Method	Assessment Rubric
CO1	Determine and model an economic and optimized	Psychomotor	Report	Rubric for Report
	software solution to a real-life problem.			
CO2			Viva	Rubric for Viva
	principles applied on the developed software			
	solution.			
CO2	Demonstrate the management skill and contribution	Psychomotor	Project	Rubric for Project
	to the developed solution as a team member/team			
	leader.			

Rubric for Report Assessment (CO1) Evaluation Criteria:					
Category	Evaluation Definition				
Problem Analysis	How the students investigate a situation that allows them to understand the problem to recommend a practical solution.				
Use Case	How do students analyze the user-based interaction with the solution?				
Class Diagram	How do students build the structure of the economic solution?				

Assessment Criteria:

	Assessment Criteri	ia			
Criteria	Not Attended (0)	Inadequate (1)	Satisfactory (2)	Good (3-4)	Excellent (5)
Problem Analysis	Student did not attend	Student did not identify the problem.	Student poorly analyzed the problem.	Student identified the analyzed the problem.	Student analyzed the problem with strong arguments.
Use Case	Student did not attend	Student failed to identify users.	Student identified the users but failed to identify interactions properly.	Student identified proper interactions and users.	Student identified proper user interactions and drew the diagram using tools.
Class Diagram	Student did not attend	Student failed to describe the structure.	Student identified the structure but failed to complete system's classes.	Student identified the structure and clearly defined the systems classes.	Student identified the structure and clearly defined the systems classes using tools.

Rubric for Project & Viva Assessment (CO2)

Evaluation Criteria:

Category	Evaluation Definition
Promptness	How the students demonstrate their ability on instant situational conditions of a scenario.
Concept Understanding	How the students explain their integrated and functional grasp on the overall the topics that have been applied to develop the solution.
Justification	Student's overall response to the solution that would indicate the level of their contribution to the developed solution.
Teamwork	Student's overall response that would indicate the involvement/leadership to the project in an ethical and professional manner.

Assessment Criteria:

	Assessment Criteria				
Criteria	Not Attended (0)	Inadequate (1)	Satisfactory (2)	Good (3-4)	Excellent (5)
Promptness	Student did not attend	Did not have to prompt with probing questions at all	Prompted minimally (one or two probing questions)	Prompted moderately (a series of probing questions)	Prompted highly with almost all probing questions
Concept Understanding	Student did not attend	Shows no understanding of the topic and no argument per the categories above	Shows a superficial understanding of the topic, argument not developed enough per the categories above	Shows a limited understanding of the topic, not quite a fully developed argument per the categories above.	Shows a deep/robust understanding of the topic with a fully developed argument per the categories above.
Justification	Student did not attend	Shows no argument of contribution to the project.	Shows a minimal contribution to the project.	Shows a moderate contribution to the project.	Shows an effective contribution to the team and project.
Teamwork	Student did not attend	Team contribution is poor	Team contribution is moderate	Contributed to the project as a team member	Contributed to the project as a team leader.