

The Dataset

60% Training data and 40% Testing data

Baseline Accuracy: 93%

Since the dataset is biased towards one class there is a high chance that the model will predict more of the outputs as Class 1. The models will also show accuracy around 93% with least training.

Missing Values

Train Data Info

Test Data Info

The dataset has missing values in Number Of dependents and Income in both training and test dataset.

Handling Missing Values

Handling Missing Values

Random Forest Classifier
(60.8% accuracy)
for predicting the
NumberOfDependents

Random Forest Regressor
(84% accuracy)
for predicting the

MonthlyIncome

Using StandardScaler to bring all attributes to a common range.

Correlation

Two attributes which had high correlation more than 0.90 were dropped

NumberOfTime60-89DaysPastDueNotWorse

and

NumberOfTimes90DaysLate

Model Building with Logistic Regression

Model Building with Neural Networks

_ayer (type)	Output Shape	Param #
dense_18 (Dense)	(None, 1, 16)	144
dense_19 (Dense)	(None, 1, 32)	544
dense_20 (Dense)	(None, 1, 16)	528
dense_21 (Dense)	(None, 1, 8)	136
dense_22 (Dense)	(None, 1, 4)	36
dense_23 (Dense)	(None, 1, 1)	5

The data has to be converted to np array and the dimension had to be changed by using np.expand_dims so as to fit the model

Model Building with Neural Networks

Summary

- For the unbalanced dataset, the Accuracy score was higher but the AUC score was low
- The high accuracy in unbalanced dataset was because of the model doing predictions in the same class always and that class consisted of 93% of the total data
- For the balanced dataset, where we had to drop a large number of data points, the Accuracy was low. However, the AUC had increased
- The neural network models were slightly better than Logistic regression.
- Kaggle Score : 77.286%