Лекция 25. Монотонность и экстремум

25.1. Условия монотонности функции на интервале

Прежде всего, напомним определения монотонности функции на интервале.

Определение 25.1. Говорят, что функция f(x) монотонно возрастает (убывает) на интервале (a,b), если для любых двух точек x_1 и x_2 интервала (a,b), удовлетворяющих условию $x_1 < x_2$ справедливо неравенство $f(x_1) \le f(x_2)$ ($f(x_1) \ge f(x_2)$).

Определение 25.2. Говорят, что функция f(x) строго монотонно возрастает (убывает) на интервале (a,b), если для любых двух точек x_1 и x_2 интервала (a,b), связанных условием $x_1 < x_2$ справедливо неравенство $f(x_1) < f(x_2)$ $(f(x_1) > f(x_2))$.

Теорема 25.1.1. Для того чтобы дифференцируемая на интервале (a,b) функция f(x) монотонно возрастала (убывала) на этом интервале, необходимо и достаточно, чтобы производная этой функции была неотрицательной (неположительной) всюду на этом интервале.

Доказательство. 1). Достаточность. Пусть $f'(x) \ge 0$ ($f'(x) \le 0$) всюду на интервале (a,b). Требуется доказать, что f(x) монотонно возрастает (убывает) на интервале (a,b). Пусть x_1 и x_2 – любые две точки интервала (a,b), удовлетворяющие условию $x_1 < x_2$. Функция f(x) непрерывна всюду на отрезке $[x_1,x_2]$, т. к. f(x) дифференцируема на интервале $(a,b) \supset [x_1,x_2]$, и дифференцируема на (x_1,x_2) . Поэтому к f(x) можно применить на отрезке $[x_1,x_2]$ теорему Лагранжа, в результате чего получим

$$f(x_2) - f(x_1) = (x_2 - x_1)f'(\xi), \tag{25.1}$$

где $x_1 < \xi < x_2$.

По условию $f'(x) \ge 0$ ($f'(x) \le 0$), $x_2 - x_1 > 0$. Поэтому правая часть (25.1) неотрицательна (неположительна), что и доказывает монотонное возрастание (убывание) f(x) на интервале (a,b).

2). Необходимость. Пусть функция f(x) дифференцируема на интервале (a,b) и монотонно возрастает (убывает) на этом интервале. Требуется доказать, что $f'(x) \geq 0$ ($f'(x) \leq 0$) всюду на этом интервале. Возьмем произвольные точки x_1 и x_2 на интервале (a,b). Пусть $x_2 > x_1$, тогда $f(x_2) \geq f(x_1)$ ($f(x_2) \leq f(x_1)$) в силу монотонности, и $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \geq 0$. Поскольку $\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$, и в пределе сохраняется знак нестрогого неравенства, то $f'(x_1) \geq 0$ ($f'(x_1) \leq 0$), что и требовалось доказать.

Теорема 25.1.2. Если f'(x) > 0 (f'(x) < 0) для всех $x \in (a,b)$, то функция f(x) строго монотонно возрастает (убывает) на этом интервале.

Доказательство провести самостоятельно.

Замечание 25.1. Утверждение, обратное теореме 25.1.2 несправедливо. Например, $f(x) = x^3$ строго монотонно возрастает, но $f'(x) = 3x^2 = 0$ при x = 0. Значит, если f(x) строго монотонно возрастает (убывает) на интервале (a,b), то это не значит, что f'(x) > 0 (f'(x) < 0) для всех $x \in (a,b)$.

Пример 25.1. Является ли монотонной функция

$$f(x) = \begin{cases} \frac{\sin x}{x}, & 0 < x \le \frac{\pi}{2}, \\ 1, & x = 0 \end{cases}$$

на интервале $(0, \pi/2)$? Найти односторонние производные функции f(x) в граничных точках отрезка определения.

Так как $\lim_{x\to +0}\frac{\sin x}{x}=1=f(0)$, то функция f(x) непрерывна на отрезке $[0,\frac{\pi}{2}]$. На интервале $(0,\pi/2)$ функция f(x) дифференцируема как частное дифференцируемых функций. Для все $x\in(0,\frac{\pi}{2})$ имеем

$$f'(x) = \left(\frac{\sin x}{x}\right)' = \frac{x \cos x - \sin x}{x^2} = \frac{\cos x}{x^2}(x - \operatorname{tg} x) < 0,$$

так как $x < \operatorname{tg} x$ при $0 < x < \frac{\pi}{2}$. Следовательно, функция f(x) строго убывает на интервале $(0, \frac{\pi}{2})$, поэтому $f(0) > f(x) > f(\frac{\pi}{2})$, т.е.

$$\frac{2}{\pi} < \frac{\sin x}{x} < 1$$
 при $0 < x < \frac{\pi}{2}$.

Так как f(x) непрерывна на отрезке $[0,\frac{\pi}{2}]$ и существует предел

$$\lim_{x \to \pi/2 - 0} f'(x) = \lim_{x \to \pi/2 - 0} \frac{x \cos x - \sin x}{x^2} = -\frac{4}{\pi^2},$$

то в силу следствия 4 из теоремы Лагранжа $f'_{-}(\pi/2) = -\frac{4}{\pi^2}$. Аналогично можно найти и производную $f'_{+}(0)$:

$$f'_{+}(0) = \lim_{x \to +0} \frac{x \cos x - \sin x}{x^2} = \lim_{x \to +0} \frac{x(1 + o(x)) - x + o(x^2)}{x^2} = \lim_{x \to +0} \frac{o(x^2)}{x^2} = 0.$$

Заметим, что $x \cdot o(x) = o(x^2)$, $o(x^2) + o(x^2) = o(x^2)$. Можно найти производную в точке x = 0 справа и по определению:

$$f'_{+}(0) = \lim_{\Delta x \to +0} \frac{\frac{\sin(\Delta x)}{\Delta x} - 1}{\Delta x} = \lim_{\Delta x \to +0} \frac{\sin \Delta x - \Delta x}{\Delta x^2} = \lim_{\Delta x \to +0} \frac{\Delta x + o(\Delta x^2) - \Delta x}{\Delta x^2} = 0.$$

25.2. Экстремум функции.

25.2.1. Необходимое условие экстремума

Определение 25.3. Пусть функция f(x) определена всюду в некоторой окрестности точки c. Говорят, что функция f(x) имеет в точке c локальный максимум (минимум), если

найдется такая окрестность точки c, что для любого $x \neq c$ из этой окрестности $f(c) \geq f(x)$ $(f(c) \leq f(x))$.

Говорят, что функция f(x) имеет в точке c строгий локальный максимум (минимум), если найдется такая окрестность точки c, что для любого $x \neq c$ из этой окрестности f(c) > f(x) (f(c) < f(x)).

Рис. 1: Локальный максимум и локальный минимум.

Здесь слово "локальный" показывает, что с f(c) сравниваются значения функции только в некоторой малой окрестности точки c в отличие от "глобального" максимума или минимума, которые относятся ко всей области определения функции.

Локальный максимум и локальный минимум называют экстремумами функции.

Теорема 25.2.1 (Необходимое условие экстремума дифференцируемой функции). Если функция f(x) дифференцируема в точке с и имеет в этой точке экстремум, то f'(c) = 0.

Доказательство. Пусть c – точка максимума функции f(x). Тогда существует $U_{\varepsilon}(c)$ – ε -окрестность точки c, в которой выполнены условия теоремы Ферма:

1.
$$f(c) = \max_{U_{\varepsilon}(c)} f(x),$$

2. $\exists f'(c)$.

Значит, f'(c) = 0, что и требовалось доказать.

Определение 25.4. Точки, в которых производная функции равна нулю, называются с та ц и о на р ны м и точками функции. Внутренние точки области определения функции, в которых не существует производной функции, называются к р и т и ч е с к и м и точками функции.

Замечание 25.1. Функция f(x) = |x|, очевидно, имеет в точке x = 0 локальный минимум, но, как известно, не существует f'(0). Следовательно, если функция в точке c имеет экстремум, то точка c является стационарной или критической точкой функции. Обратное утверждение несправедливо. В стационарной или критической точке может не быть экстремума. Например, $f(x) = x^3$ имеет производную $f'(x) = 3x^2 = 0$ при x = 0, но f(x) строго монотонно возрастает и не имеет экстремума в точке x = 0.

Д/З: Привести пример непрерывной функции, которая в критической точке, не имеет экстремума.

Стационарные и критические точки будем называть точками возможного экстремума.

25.2.2. Первое достаточное условие экстремума

Определение 25.5. Пусть функция f(x) определена в окрестности точки c всюду, кроме, может быть самой точки c. Говорят, что функция f(x) меняет знак при переходе через точку c с плюса на минус (с минуса на плюс), если существует ε -окрестность точки c такая, что f(x) > 0 (f(x) < 0) при $c - \varepsilon < x < c$ и f(x) > 0 (f(x) < 0) при $c < x < c + \varepsilon$.

Теорема 25.2.2. Пусть точка с является точкой возможного экстремума непрерывной функции f(x), и пусть функция f(x) дифференцируема всюду в некоторой проколотой окрестности точки с. Тогда, если при переходе через точку с производная f'(x) меняет знак с плюса на минус (с минуса на плюс), то функция f(x) имеет в точке с локальный максимум (минимум). Если при переходе через точку с функция f'(x) знак не меняет, то экстремума в точке с нет.

Доказательство. 1). Пусть производная f'(x) меняет знак при переходе через точку c с плюса на минус. Требуется доказать, что значение f(c) является наибольшим среди всех значений f(x) в рассматриваемой окрестности. Обозначим x_0 любое значение аргумента из рассматриваемой окрестности, отличное от c. Достаточно доказать, что $f(c) - f(x_0) > 0$. Функция f(x) непрерывна на отрезке $[c, x_0]$. Применяя к f(x) на отрезке $[c, x_0]$ теорему Лагранжа, будем иметь

$$f(c) - f(x_0) = f'(\xi)(c - x_0),$$

где ξ - некоторое значение аргумента между c и x_0 . Поскольку производная $f'(\xi)$ меняет знак при переходе через точку c с плюса на минус, выражение в правой части равенства $f'(\xi)(c-x_0)$ положительно при любом x_0 из рассматриваемой окрестности, следовательно, c — точка строгого локального максимума.

 $\mathbb{Z}/3$: Доказать случай, когда производная f'(x) меняет знак с минуса на плюс при переходе через точку c.

2). Пусть теперь производная f'(x) не меняет свой знак при переходе через точку c. Обозначая чрез x_0 любое значение аргумента, отличное от c, и повторяя проведенные выше рассуждения, можно доказать, что выражение в правой части равенства $f'(\xi)(c-x_0)$ имеет разные знаки при $x_0 < c$ и при $x_0 > c$. Это доказывает отсутствие экстремума в точке c.

25.2.3. Второе достаточное условие экстремума

Теорема 25.2.3. Пусть c-cтационарная точка функции f(x). Если $f''(c) \neq 0$, то c-mочка строгого локального минимума (максимума) при f''(c) > 0 (f''(c) < 0).

Доказательство. Пусть f''(c) > 0. Так как c стационарная точка функции f(x), то f'(c) = 0. Тогда по формуле Тейлора

$$f(x) - f(c) = f''(c)(x - c)^{2} + o((x - c)^{2}).$$

В достаточно малой окрестности точки c знак правой части определяется первым слагаемым. Следовательно, при f''(c)>0 в этой окрестности f(x)-f(c)>0 при $x\neq c$, то есть c-точка минимума. При f''(c)<0 аналогично доказывается, что c-точка максимума.

Пример 25.2. Исследовать на экстремум функцию $f(x) = x^m (1-x)^n$, где $x \in R, m, n \in N$. \diamond Находим производную функции f и приравниваем её к нулю:

$$f'(x) = (m+n)x^{m-1}(1-x)^{n-1}(\frac{m}{m+n}-x) = 0.$$

Стационарные точки: x=0 (m>1), x=1 (n>1), $x=\frac{m}{m+n}$. В них выполнено необходимое условие экстремума. Проверим достаточные условия.

Пусть $0 < \varepsilon < \frac{m}{m+n}$. При m четном $f'(-\varepsilon) < 0$, $f'(\varepsilon) > 0$, следовательно в точке x = 0 функция f(x) имеет минимум, равный нулю; при m нечетном $f'(-\varepsilon) > 0$, $f'(\varepsilon) > 0$, т. е. экстремума нет.

Аналогично для точки x=1: при n четном $f'(1-\varepsilon)<0$, $f'(1+\varepsilon)>0$, поэтому функция f(x) в этой точке имеет минимум, равный нулю; при n нечетном $f'(1-\varepsilon)>0$, $f'(1+\varepsilon)>0$, т. е. экстремума нет.

Наконец, для точки $x = \frac{m}{m+n}$ имеем

$$f'(\frac{m}{m+n}-\varepsilon) > 0, f'(\frac{m}{m+n}+\varepsilon) < 0.$$

Таким образом, в точке $x = \frac{m}{m+n}$ функция f(x) имеет максимум

$$f(\frac{m}{m+n}) = \frac{m^m n^n}{(m+n)^{m+n}}.$$

Случай, когда m = 1 (n = 1), рассмотреть самостоятельно.

25.3. Наибольшее и наименьшее значения функции

Если функция f(x) определена и непрерывна на отрезке [a,b], то согласно второй теореме Вейерштрасса функция f(x) на [a,b] достигает своих точных граней. Это означает существование точек $c,d \in [a,b]$: $M = \sup_{x \in [a,b]} f(x) = f(c), \ m = \inf_{x \in [a,b]} f(x) = f(d)$. В этом случае M — глобальный максимум (наибольшее значение), m — глобальный минимум (наименьшее значение) функции f(x) на отрезке [a,b]. Точки c и d при этом называют соответственно точкой глобального максимума и точкой глобального минимума.

Если наибольшее значение достигается во внутренней точке c отрезка [a,b], то M=f(c) будет локальным максимумом функции f(x), так как в этом случае существует окрестность точки c такая, что $f(x) \leq f(c)$. Однако свое наибольшее или наименьшее значение функция f(x) может принимать и на концах отрезка [a,b].

Следовательно, непрерывная на отрезке функция достигает своего наибольшего (наименьшего) значения в точке локального экстремума или в граничной точке отрезка.

Алгоритм поиска наибольшего и наименьшего значений непрерывной на отрезке функции

- 1. Находим стационарные и критические точки функции.
- 2. Вычисляем значения функции в этих и граничных точках.
- 3. Выбираем из полученных значений наибольшее и наименьшее.