Computer Graphics -Geometry Processing

Junjie Cao @ DLUT Spring 2016

http://jjcao.github.io/ComputerGraphics/

Last time: Curves, Surfaces & Meshes

Mathematical description of geometry

- simplifying assumption: manifold
- gives local coordinates (Manhattan)
- Data structures for surfaces
 - polygon soup
 - halfedge mesh
 - storage cost vs. access time, etc.
- Today:
 - how do we manipulate geometry?
 - geometry processing / resampling

Comparison of Polygon Mesh Data Structures

	Polygon Soup	Incidence Matrices	Halfedge Mesh
storage cost*	~3 x #vertices	~33 x #vertices	~36 x #vertices
constant-time neighborhood access?	NO	YES	YES
easy to add/remove mesh elements?	NO	NO	YES
nonmanifold geometry?	YES	YES	NO

Conclusion: pick the right data structure for the job!

Digital Geometry Processing

- Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals:
 - upsampling / downsampling / resampling / filtering ...
 - aliasing (reconstructed surface gives "false impression")
- Also some new challenges (very recent field!):
 - over which domain is a geometric signal expressed?
 - no terrific sampling theory, no fast Fourier transform, ...
- Often need new data structures & new algorithms

Digital Geometry Processing: Motivation

3D Scanning

• 3D Printing

Geometry Processing Pipeline

Geometry Processing Tasks

Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct continuous surface
- What are "samples"? Many possibilities:
 - points, points & normals, ...
 - image pairs / sets (multi-view stereo)
 - line density integrals (MRI/CT scans)
- How do you get a surface? Many techniques:
 - PDE-based (e.g., Poisson reconstruction)
 - Voronoi-based (e.g., power crust)
 - silhouette-based (visual hull)
 - Radon transform / isosurfacing (marching cubes)

Geometry Processing: Upsampling

- Increase resolution via interpolation
- Images: e.g., bilinear, bicubic interpolation
- Polygon meshes:
 - subdivision
 - bilateral upsampling
 - •

Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- · Images: again, bilinear, bicubic interpolation (again)
- Polygon meshes:
 - iterative decimation
 - variational shape approximation

• ...

Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: ...not usually an issue!
 - pixels are always stored on a regular grid
- Polygon meshes: shape of polygons extremely important!
 - approximation
 - simulation
 - further processing

Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, compressed sensing, ...
- Polygon meshes:
 - curvature flow
 - bilateral filter

•

Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
 - segmentation
 - correspondence
 - symmetry detection
 - •

Ok, enough! Let's process some geometry!