Digital Design and Computer Organization Laboratory UE19CS206

3rd Semester, Academic Year 2020-21

Date:22-10-2020

Name: SRN:PES2UG19CS412 Section : G
Suhan.B.Revankar

Experiment Number: 6

Week#:6

Title of the Program:

16 Bit Program Counter

Aim of the Program:

To Design and Implementation of a 16 bit Program Counter

Code (pc.v)

```
File Edit Format View Help
// Write code for modules you need here
//module pc (input wire clk, reset, inc, add, sub, input wire [15:0] offset, output wire [15:0] pc);
// Declare wires here
// Instantiate modules here
module fa (input wire i0, i1, cin, output wire sum, cout);
wire t0. t1. t2:
xor3 _i0 (i0,i1,cin,sum);
and2 _i1 (i0,i1,t0);
and2 _i2 (i1,cin,t1);
and2 _i3 (i0,cin,t2);
or3 _i4 (t0,t1,t2,cout);
endmodule
module addsub (input wire addsub, iO, i1, cin, output wire sumdiff, cout);
wire t:
fa_iO (iO,t,cin,sumdiff,cout);
xor2 i1 (i1,addsub,t);
endmodule
module pc_slice (input wire clk, reset, cin, load, inc, sub, offset, output wire cout, pc);
wire in, inc ;
invert invert_0 (inc,inc_);
and2 and2_0 (offset,inc_,t);
addsub addsub_0 (sub,pc,t,cin,in,cout);
dfrl dfrl_0 (clk,reset,load,in,pc);
endmodule
```

```
pc - Notepad
File Edit Format View Help
module pc_slice( (input wire clk, reset, cin, load, inc, sub, offset, output wire cout, pc);
wire in;
or2 or2_0 (offset,inc,t);
addsub addsub_0 (sub,pc,t,cin,in,cout);
dfrl dfrl_0 (clk,reset,load,in,pc);
endmodule
module pc (input wire clk, reset, inc, add, sub, input wire [15:0] offset, output wire [15:0] pc);
input wire load;
input wire [15:0] c;
or3 or3 0 (inc add sub load):
pc_slice0 pc_slice_0 (clk, reset, sub, load, inc, sub, offset[0], c[0], pc[0]);
pc_slice pc_slice_1 (clk, reset, c[0], load, inc, sub, offset[1], c[1], pc[1]);
pc_slice pc_slice_2 (clk, reset, c[1], load, inc, sub, offset[2], c[2], pc[2]);
pc_slice pc_slice_3 (clk, reset, c[2], load, inc, sub, offset[3], c[3], pc[3]);
pc_slice pc_slice_4 (clk, reset, c[3], load, inc, sub, offset[4], c[4], pc[4]);
pc_slice pc_slice_5 (clk, reset, c[4], load, inc, sub, offset[5], c[5], pc[5]);
pc_slice pc_slice_6 (clk, reset, c[5], load, inc, sub, offset[6], c[6], pc[6]);
pc_slice pc_slice_7 (clk, reset, c[6], load, inc, sub, offset[7], c[7], pc[7]);
pc_slice pc_slice_8 (clk, reset, c[7], load, inc, sub, offset[8], c[8], pc[8]);
pc_slice pc_slice_9 (clk, reset, c[8], load, inc, sub, offset[9], c[9], pc[9]);
pc_slice pc_slice_10 (clk, reset, c[9], load, inc, sub, offset[10], c[10], pc[10]);
pc_slice pc_slice_11 (clk, reset, c[10], load, inc, sub, offset[11], c[11], pc[11]);
pc_slice pc_slice_12 (clk, reset, c[11], load, inc, sub, offset[12], c[12], pc[12]);
pc_slice pc_slice_13 (clk, reset, c[12], load, inc, sub, offset[13], c[13], pc[13]);
pc_slice pc_slice_14 (clk, reset, c[13], load, inc, sub, offset[14], c[14], pc[14]);
pc_slice pc_slice_15 (clk, reset, c[14], load, inc, sub, offset[15], c[15], pc[15]);
endmodule
```

TABLE

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 1	1	0	0	XXXX	0001
CASE 2	0	1	0	00A5	00A6
CASE 3	0	0	0	XXXX	00A6
CASE 4	1	0	0	XXXX	00A7
CASE 5	0	0	1	0014	0093

Output waveform

SCREENSHOT1

CASE1:PC Increment Operation with no offset

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 1	1	0	0	XXXX	0001

CASE 2 : Add Offset to PC

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 2	0	1	0	00A5	00A6

CASE 3: No change in PC

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 3	0	0	0	XXXX	00A6

CASE 4 : Auto increment current value of PC

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 4	1	0	0	XXXX	00A7

CASE 5 : Subtract offset contents from PC

	inc	add	sub	offset [15:0]	output
	Bit 18	Bit 17	Bit 16	Bit 15 to Bit0	pc[15:0]
CASE 5	0	0	1	0014	0093

