TUI/EP200 4/013019

BUNDESREPUBLIK DEU CHLAND

Rec'd PCT/PTO 19 SEP 2005 16/549789

REC'D 1 2 JAN 2005

WIPO

PRIORETY

DOCUMENT

SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 031 038.6

Anmeldetag:

25. Juni 2004

Anmelder/Inhaber:

Winfried K.W. Holscher, 78234 Engen/DE

Bezeichnung:

Verbindungsvorrichtung für zwei strangartige

Hohlprofile

Priorität:

22. Januar 2004 DE 20 2004 000 978.1

IPC:

F 16 S, F 16 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 30. November 2004

Deutsches Patent- und Markenamt

Der Präsident

In Auftrag

BEST AVAILABLE COPY

Antrag auf Erteilung eines Patents Request for grant of a patent

Unser Zeichen: H292DE2

H/ke

	(31)	Prioritätsnummer / Priority Application Number:	20 2004 000 978.1
	(32)	Prioritätstag / Priority Date:	22. Januar 2004
	(33)	Prioritätsland / Priority Country:	DE
	(54)	Titel / Title:	Verbindungsvorrichtung für zwei strangartige Hohlprofile
	(71)	Anmelder/in / Applicant:	Winfried K. W. Holscher Theodor-Storm-Straße 1 D-78234 Engen
	(73)	Erfinder / Inventor:	ist der Anmelder
	(74)	Vertreter / Agent:	DiplIng. Gerhard F. Hiebsch DiplIng. Dr. oec. Niels Behrmann M.B.A. (NY) DiplPhys. Dr. Jan Nestler M.A. (SUNY) Heinrich-Weber-Platz 1 D-78224 Singen

Verbindungsvorrichtung für zwei strangartige Hohlprofile und Verfahren zu deren Herstellung

Die Erfindung betrifft eine Verbindungsvorrichtung zum Anschluss eines -- einen Profilkanal sowie zumindest einen hinterschnittenen Nutenraum an einer Längsnut aufweisenden -- ersten strangartigen Hohlprofils an ein anderes Werkstück mittels eines Schraubelementes od.dgl. Organs, das eine Öffnung des Werkstückes durchsetzt sowie in den Innenraum des anderen Werkstückes einsetzbar ist. Zudem erfasst die Erfindung ein Verfahren zur Herstellung der Vorrichtung.

Die Schrift zu DE 92 15 843 des Anmelders beschreibt eine Verbindungsvorrichtung zum Festlegen in einem hinterschnittenen Innenraum einer Längsnut eines Hohlprofils od.dgl. Werkstücks mit wenigstens einer die Breite des engen Nutenquerschnitts übersteigenden Erstreckung zum Anschluss eines die Längsnuten aufweisenden ersten Werkstückes an ein anderes Werkstück, welches seinerseits mit Längsnuten versehen ist, deren Querschnitt sich zur Profilstirn hin öffnet. Dieses Element kommt insbesondere bei metallischen Hohlprofilen zur Anwendung, deren Innenraum von außen her nicht zugänglich ist; es ist etwa quaderförmig ausgebildet und weist wenigstens zwei einander gegenüberliegende, in einem Winkel geneigte Flankenwände auf sowie ein Federorgan, das einerseits an einer der geneigten Flankenwände festliegt und anderseits die engere Oberfläche des Elements mit seinem freien Ende übergreift. Dieses ist in entspanntem Zustand der Feder in Abstand zum Element angeordnet. Wird das Federorgan an das Mutterelement angedrückt, kann dieses -mit seiner Schmalseite zuerst -- ohne weiteres in die hinterschnittene Nut eingeschoben werden.

Bei einem anderen Verbindungsorgan zum Festlegen in einem hinterschnittenen Nutenraum einer Längsnut eines Hohlprofils nach DE 198 40 057 A1 des Anmelders sowie zum An-

.\ _

schluss des Hohlprofils an ein anderes, seinerseits mit entsprechenden Längsnuten versehenes Werkstück, ist an der Oberfläche von Winkelarmen eines winkelförmigen Formstückes als Befestigungs- oder Verbindungseinrichtung jeweils zumindest eine der Breite einer den engen Nutenquerschnitt bildenden Längsnut etwa entsprechende Anformung vorgesehen sowie im Winkelarm wenigstens eine ihn durchsetzende Schraube angebracht; die Breite des Winkelarms übersteigt die Breite der Längsnut. Zudem verjüngt sich der Querschnitt der Anformung von der Oberfläche des Winkelarms weg.

In Kenntnis dieser Gegebenheiten hat sich der Erfinder das Ziel gesetzt, eine betriebssichere Befestigungsmöglichkeit von insbesondere stranggepressten Hohlprofilen mehreckigen -- bevorzugt rechteckigen -- Querschnittes zu schaffen, die miteinander zu verbinden sind, dies vor allem in einem etwa rechten Winkel. Insbesondere soll ein System verbessert werden, bei dem die Profilstirn des einen Werkstückes auf einer Längsseite des anderen Werkstückes aufliegt und daran -- weitestgehend verdrehsicher -- gehalten wird. Ein weiteres Ziel des Erfinders ist es, den Verbindungsvorgang an sich erheblich zu vereinfachen.

Zur Lösung dieser Aufgabe führt die Lehre der unabhängigen Ansprüche; die Unteransprüche geben günstige Weiterbildungen an. Zudem fallen in den Rahmen der Erfindung alle Kombinationen aus zumindest zwei der in der Beschreibung, der Zeichnung und/oder den Ansprüchen offenbarten Merkmale. Bei angegebenen Bemessungsbereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart und beliebig einsetzbar sein.

ein einen Hohlprofil dem Erfindungsgemäß ist an streifenartiges Sockelprofil festgelegt, das radial Längsachse des Profilkanals verläuft und zumindest einends Schraubelementes Aufnahme des Stufenfläche zur innerhalb der in Ruhelage letzteres welch aufweist,

Seitenkonturen des Sockelprofils liegt und dieses in Anschlussstellung zumindest an einer Seite überragt und in den Hinterschneidungsraum des Nutenraumes des anderen Hohlprofils haltend eingreift. Bevorzugt ist das Sockelprofil an der Stirnfläche des Hohlprofils festgelegt.

Als günstig hat es sich erwiesen, das Sockelprofil mit einer Fußplatte an einem Kopfstreifen geringerer Längsschnittlänge -- als es die Länge der Fußplatte ist -- auszustatten, so dass ein Teil von letzterer die Stirnseite/n des Kopfstreifens unter Ausbildung ihrer Oberfläche als Stufenfläche überragt.

weist Erfindung Merkmal der anderen einem Nach rechteckigen i.w. Draufsicht in Schraubelement einen Sockelstreifen auf, von dessen Oberfläche eine Schrauboder Sockelhülse für eine sie axial durchsetzende Schraube aufragt, insbesondere für eine Innenmehrkantschraube. Die Außenkontur dieser Schraub- oder Sockelhülse soll zwei diagonal zu ihrem Innenraum angeordnete -- bevorzugt von einer Längskante des Sockelstreifens ausgehende -- Eckkanten aufweisen, von denen jeweils beidseits eine ebene Wandfläche als Teil der Hülsenwand ausgeht; letztere geht in einen Bogenbereich der Hülsenwand querschnittlich gekrümmten über. Diese Formgebung verbessert die Drehfähigkeit des Schraubelements, wenn dieses in eine Längsnut eines Hohlprofils eingesetzt ist.

Vorteilhafterweise überragt der Sockelstreifen in seiner Längsachse die Hülsenwand. Die Eckbereiche dieses Sockelstreifens können in Draufsicht teilkreisförmig ausgebildet, und der Eckkante der Hülsenwand kann ein gerundeter Eckbereich des Sockelstreifens zugeordnet sein. Das Sockelprofil soll zudem von einem etwa zentrisch in seinem Kopfstreifen angeordneten Durchbruch für ein Schrauborgan durchsetzt sein, welches im Profilkanal des Hohlprofils festlegbar ist, dessen Stirnfläche der Firstfläche des Sockelprofils anliegen soll.

Im Rahmen der Erfindung liegt es, dass eine Ober- oder Stufenfläche des Sockelprofils -- oder deren beide -- in einem Abstand zur Stirnfläche des Hohlprofils verläuft -- bzw. verlaufen --, welcher der Höhe der Stirnseite des Kopfstreifens entspricht bzw. der Summe aus der Dicke von -- den Hinterschneidungsraum übergreifenden und die Längsnut begrenzenden -- Formrippen sowie der Dicke des Sockelstreifens.

Von erfindungsgemäßer Bedeutung ist zudem, dass die Längsachse des Sockelstreifens des Schrauborgans in Einschublage parallel zur Längsachse des Hohlprofils verläuft und der Sockelstreifen in der Längsnut verfahrbar angeordnet ist. Zum Verbinden beider Hohlprofile werden erfindungsgemäß die Schrauborgane in Anschlussstellung den Hinterschneidungsraum des einen Hohlprofils übergreifende Formrippen jeweils von deren Sockelstreifen untergriffen, wodurch die Formrippen des einen Hohlprofils an der Stirnfläche des anderen Hohlprofils anliegend fest gehalten werden. In Anschlussstellung steht dann die Längsachse des Sockelstreifens quer zur Längsachse des zugeordneten Hohlprofils.

Als Verbindungselement soll im Rahmen der Erfindung eine in die Längsnut eingesetzte Hülse mit seitlichen Außenrippen Radialnuten des Hohlprofils eingesetzt dienen, die in werden können. Der Hülse ist eine Spannschraube zugeordnet, gegebenenfalls teilweise den --Mehrkantquerschnitt versehenen -- Hülseninnenraum koaxial eingesetzt zu werden vermag; die Spannschraube wird durch ihre Hülse am Hohlprofil gehalten. Die zumindest in ihrem dreiecksförmige Endbereich querschnittlich etwa Außenrippe soll mit ihren Rippenflächen in Formrinnen der Hülsenumfangsfläche übergehen, und die beiden Rippenflächen sollen bevorzugt in eine Rippenspitze übergehen, die als Schneide ausgebildet sein kann.

Bevorzugt weist die Außenrippe einends eine Seitenkante auf, die mit einer etwa durch die Mitte der Außenrippe gelegten Radiallinie einen Winkel von etwa 45° bildet; die Außenrippe ist an ihrer geneigten Seitenkante angestaucht.

Diese Hülse bietet zumindest drei zu ihrer Mittelachse parallele Gruppen von Außenrippen an, die in Befestigungslage Radialnuten zugeordnet sind; letztere sollen im Nutentiefsten der Längsnut des Hohlprofils sowie in zueinander Längsnut die von Flächen weisenden Profilseitenfläche begrenzenden Formrippen angebracht sein. Dabei hat es sich als günstig erwiesen, die Seitenkanten zur Mittelachse Außenrippen parallel einer Gruppe von miteinander fluchten zulassen. Die geneigte Seitenkante der vorteilhafterweise bildet Außenrippe Berührungswiderstand zwischen der Hülse und den zugeordneten Radialnuten, welcher einen Einsatz der Außenrippen ermöglicht.

die ist Bedeutung erfinderischer selbständiger Ausgestaltung der erwähnten Hülse und ihr Zusammenspiel mit der ihr zugeordneten Spannschraube; die in die Längsnut eingesetzte Hülse ist -- wie gesagt -- mit von ihrer Umfangsfläche abragenden seitlichen Außenrippen versehen, die in Radialnuten des Hohlprofils einsetzbar ausgebildet Innenraum ihren in Hülse eine wird der Zudem sind. zugeordnet, Spannschraube einschiebbare Schraubenkopf ein Rundschaft angeformt ist. Dieser soll in Abstand zum Schraubenkopf in einen koaxialen Schraubschaft übergehen.

Zur besseren Befestigung hat es sich als günstig erwiesen, den Außendurchmesser des Gewindes bzw. des Schraubschaftes größer zu wählen als den Innendurchmesser des Hülseninnenraumes.

Nach einem weiteren Merkmal der Erfindung weist der Innenraum der Hülse einen zylindrischen Abschnitt auf, an den ein Mehrkantquerschnitt anschließt, dessen achsparallele Kanten als Kerbrinnen ausgebildet sind.

Auch liegt im Rahmen der Erfindung ein Verfahren zum Herstellen der beschriebenen Vorrichtung, bei dem die Hülse auf den Rundschaft der Spannschraube aufgeschoben und das aus dem Hülsenraum koaxial abragende freie Ende des Rundschaftes zu einem Gewinde verformt wird. Dies geschieht insbesondere durch Rollformen.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in:

- Fig. 1: die Stirnansicht eines -- Längsnuten aufweisenden -- stranggepressten Hohlprofils mit in zwei der Längsnuten eingeschobenen Verbindungsorganen für ein an jenes Hohlprofil rechtwinkelig angesetztes zweites Hohlprofil gleicher Formgebung;
- Fig. 2: eine Seitenansicht eines Abschnitts des Hohlprofils mit einem zugeordneten, geschnitten dargestellten Sockelprofil als Teil eines Verbindungsorgans;
- Fig. 3: das Sockelprofil gemäß Fig. 2 in verkleinerter Wiedergabe;
- Fig. 4: einen vergrößerten Ausschnitt aus Fig. 3 bzw. 14 nach deren Pfeil IV;
- Fig. 5: die Draufsicht auf das Sockelprofil;
- Fig. 6: eine Schrägsicht auf das Sockelprofil;
- Fig.7, 8: Draufsicht und Seitenansicht eines Schraubelements für das Sockelprofil;
- Fig. 9: die Draufsicht auf eine andere Ausgestaltung des Schraubelementes;
- Fig. 10: die Stirnansicht eines Teiles eines Hohlprofils mit Seitenansicht eines zugeordneten anderen Hohlprofils während des Einführens eines Schraubelementes;

- Fig. 11: die Hohlprofile der Fig. 10 in zueinander festgelegter Stellung;
- Fig. 12: eine Schrägsicht auf eine andere Ausgestaltung des Sockelprofils;
- Fig. 13: die Draufsicht auf das Sockelprofil der Fig. 12;
- Fig. 14: den Längsschnitt durch Fig. 13 nach deren Linie XIV-XIV;
- Fig. 15: die Stirnansicht eines weiteren Hohlprofils mit eingebautem Verbindungselement;
- Fig.16: eine Seitenansicht des teilweise geschnittenen Hohlprofils der Fig. 15;
- Fig. 17: eine vergrößerte Draufsicht auf das Verbindungselement der Fig. 15;
- Fig. 18: einen Teil des Verbindungselementes in vergrößerter und teilweise geschnittener Seitenansicht;
- Fig. 19: einen vergrößerten Ausschnitt aus Fig. 18;
- Fig. 20: eine Seitenansicht einer Hülse mit dieser axial zugeordneter Spannschraube;
- Fig. 21: die teilweise geschnittene Paarung der Fig. 20 in einer anderen Betriebsstellung;

Fig. 22: eine Schrägsicht auf die Hülse der Fig. 20, 21;

Fig. 23: eine Frontansicht zu Fig. 22;

Fig. 24: einen vergrößerten Ausschnitt aus Fig. 20 nach deren Feld XXIV;

Fig. 25: eine der Fig. 22 entsprechende Darstellung einer anderen Ausgestaltung der Hülse;

Fig. 26: einen Längsschnitt durch die Hülse der Fig. 25 mit zugeordneter Spannschraube.

Ein Hohlprofil 10 quadratischen Querschnitts der äußeren Seitenlänge a von hier 45 mm mit in Fig. 1 durch das -- von einem in der Profillängsachse A verlaufenden Profilkanal 12 bestimmten -- Zentrum Z seiner Stirnfläche 14 gelegten Querschnittsachsen B, B_1 als Symmetrieachsen weist eine den Profilkanal 12 enthaltende Mittelsäule 11 quadratischen in der Mitte jeweils Querschnitts auf sowie Profilseitenflächen 16 eine -- beidseits von Formrippen 18 der Dicke c von hier 6 mm begrenzte -- Längsnut 20 einer Breite b von beispielsweise 12 mm, die zur Profillängsachse A hin in einen querschnittlich hinterschnittenen Nutenraum 22 übergeht. Die Formrippen 18 sind an der Profilseitenfläche 16 mit Eckausnehmungen 17 versehen.

Der Hinterschneidungs- oder Nutenraum 22 wird zum Stirnflächenzentrum Z hin von einem Boden oder Nutentiefsten 24 begrenzt und ist als eine von jenen Formrippen 18 übergriffene rinnenartige Ausnehmung der Höhe e von etwa 8 mm sowie einer maximalen Breite f des Hinterschneidungs- oder Nutenraumes 22 von etwa 20 mm gestaltet. Das freie Ende jeder der rinnenartigen Ausnehmungen bildet in der Stirnfläche 14 des Hohlprofils 10 eine sechseckige Stirnöffnung 25e, wie

auch die Längsnut 20 in den Profilseiten eine Öffnungsfläche 16 darstellt.

Den vier die Nutentiefsten 24 bildenden Außenflächen jener Mittelsäule 11 ist jeweils beidseits ihres Querschnitts eine armartige Rippe 26 zugeordnet, die zu den Querschnittsachsen B, B1 in einem Winkel von 45° geneigt -- also in der Stirnfläche 14 diagonal -- verläuft. Jede dieser an die Mittelsäule 11 angeformten Rippen 26 geht in einen der Eckbereiche 28 des Hohlprofils 10 über; in jedem dieser Eckbereiche 28 befindet sich -- parallel zur Profillängsachse A -- ein Eckkanal 30 nahezu quadratischen Querschnitts, von dem schmale Sackschlitze 32 der Formrippen 18 ausgehen, die in letzteren achsparallel verlaufen.

Das in Fig. 1 obere Hohlprofil 10 wird an einer seiner Stirnflächen 14 von einem rechtwinkelig zugeordneten zweiten Hohlprofil 10 identischen Querschnitts untergriffen und ist durch Verbindungsorgane angeschlossen. Beide Hohlprofile 10 sind bevorzugt aus einer Aluminiumlegierung stranggepresst.

In Fig. 2 ist das eine Ende des in Fig. 1 oberen Hohlprofils 10 skizziert mit einem an seiner Stirnfläche 14 fest-zulegenden Sockelprofil 34 für in Fig. 1 bei 50 angedeutete Verbindungsorgane. Dieses Sockelprofil 34, dessen Längsachse mit E kenntlich gemacht ist, weist eine Fußplatte 36 der beispielsweisen Länge g von 44 mm, einer Breite b1 von 10 mm sowie einer Höhe h von 5 mm auf, an das ein mittiger Kopfstreifen 38 gleicher Breite b1, geringer Länge g1 von etwa 24 mm sowie der Höhe h1 von etwa 9 mm angeformt ist. Die Fußplatte 36 bildet beidseits des mit ihr einstückigen Kopfstreifens 38 jeweils eine zu dessen Firstfläche 40 parallele Stufenfläche 35, welche an die Stirnseite 39 des Kopfstreifens 38 anschließt. An die Stirnseiten 37 der Fußplatte 36 können gemäß Fig. 4 querschnittlich dreiecksförmige Bodenleisten 41 der Höhe h2 von 0,3 mm angeformt sein.

Dieses Sockelprofil 34 wird mittels einer -- einen zentralen Durchbruch 42 des Durchmessers d von 8 mm durchgreifenden -- in Fig. 2 bei 44 angedeuteten Schraube im Profilkanal 12 so festgelegt, dass die Firstfläche 40 des Kopfstreifens 38 des Sockelprofils 34 der Stirnfläche 14 des Hohlprofils 10 anliegt. Beidseits des Kopfstreifens 38 ist in der Stufen- oder Oberfläche 35 der Fußplatte 36 bei 46 eine Vertiefung des Durchmessers d1 von 5 mm angedeutet; statt deren können auch -- gemäß Fig. 12 -- Schraublöcher 48 vorgesehen werden.

Wenn das Sockelprofil 34 an der Stirnfläche 14 des Hohlprofils 10 festgelegt ist, verlaufen die von den beiden Enden der Fußplatte 36 angebotenen Oberflächen 35 in Abstand h_1 zur Stirnfläche 14 und dienen jeweils zur Auflage eines Schraubelementes 50, mit dem die beiden sich kreuzenden Hohlprofile 10 verbunden werden.

Dieses aus einem harten Metall gefertigte Schraubelement 50 umfasst einen rechteckigen Sockelstreifen 52 -- der Länge a₁ von etwa 16 mm, der Dicke c₁ von etwa 3 mm und der Breite f₁ von etwa 9 mm -- sowie eine diesem angeformte Schraubhülse 54. Jene Breite f1 des Sockelstreifens 52 ist auch die Breite f₁ der Sockelhülse 54, deren Länge a₂ etwa 9 mm misst, also der Breite f_1 entspricht. Zwischen zwei diagonal zueinander stehenden, jeweils von zwei in Draufsicht rechtwinkelig aufeinander stoßenden Wandflächen 55 an den Längskanten 56 des Sockelstreifens 52 gebildeten Eckkanten der Sockelhülse 54 bzw. zwischen jenen Wandflächen 55 ist die Außenkontur der Sockelhülse 54 in Draufsicht in teilkreisförmig gestaltet. 90°-Bogen 58 zylindrischen Innenraum 60 der Sockelhülse 52 sitzt eine Innensechskant-Schraube 62.

Bei der Ausgestaltung des Schraubelementes 50_a nach Fig. 9 sind zwei Eckbereiche 53 des Sockelstreifens 52_a gerundet und liegen den Eckkanten 56 der Schraub- oder Sockelhülse 54 gegenüber.

Beim Zusammenfügen zweier Hohlprofile 10 wird gemäß Fig. 10, 11 der Sockelstreifen 52 des -- auf eine Stufenfläche 36 des am oberen Hohlprofil der Fußplatte festgelegten Sockelprofils beschriebener Weise aufgeschraubten Schraubenelements 50 bzw. 50_a auf die dass seitlich aufgelegt, er 36 so Fußplatte übersteht, wobei die Längsachse des Sockelstreifens parallel zur Längsachse A des Hohlprofils 10 verläuft. Dann Schraubelement 50 in die Längsnut eingesetzt werden. Wenn auf dessen Hohlprofils 10 16 die Stirnfläche 14 des anderen Profilseitenfläche Hohlprofils 10 aufsitzt, wird das Schraubelement 50 bzw. 50a mittels eines INBUS-Schlüssels an der INBUS-Schraube 62 so dass die abkragenden Bereiche des gedreht, Sockelstreifens 52 bzw. 52a die benachbarten Formrippen 18 untergreifen. Durch einen weiteren Schraubvorgang werden die Oberflächen 51 des Sockelstreifens 52 bzw. 52a an die Unterflächen 19 der Formrippen 18 herangezogen und halten die Hohlprofile 10 klemmend aneinander .-

Das Sockelprofil 34a der Fig. 12 bis 14 weist nur an einer Stirnseite des Kopfstreifens 38 einen vorspringenden Bereich der Fußplatte 36a auf und damit nur eine Stufenfläche 35. Diese ist mit einem Schraubloch 48 zur Aufnahme der Inbus-Schraube 62 des aufzusetzenden Schraubelements 50, 50a ausgestattet. Der Verbindungsvorgang erfolgt in der oben beschriebenen Weise durch Drehen der Stufenfläche 35 unter die Unterfläche 19 einer Formrippe 18 sowie anschließendes Aneinanderpressen beider Flächen 19, 35.

Das Hohlprofil 10_a der Fig. 15, 16 weist beidseits der Längsnuten 20 querschnittlich hakenförmige Formrippen 18_a auf. Die Hakenenden 21 der Formrippen 18_a sind zum Nutentiefsten 24 des hinterschnittenen Nutenraumes 22 gerichtet. Die Eckkanäle 30 sind hier von nahezu quadratischem Querschnitt.

In dem in Fig. 15 unten liegenden Hinterschneidungsraum 22 ist eine Hülse 70 mit zylindrischem Innenraum 72 zu erkennen, von deren Umfangsfläche 74 radiale Außenrippen 76 der Frontbreite i von 5 mm abragen; diese bilden -- jeweils im parallel drei zueinander Umfangsabstand q Mittelachse M der Hülse 70 verlaufende Kragreihen 80, deren jede hier vier Außenrippen 76 enthält. Jener Innenraum 72 der Hülse 70 -- einer Länge y von 25 mm Außendurchmessers k von 10,2 mm und des Innendurchmessers 6,0 mm -- geht am oberen Hülsenende in einen Sechskantbereich 73 axialer Länge y_1 von 6 mm über. Von der Bereich im ragen der Hülse 70 Umfangsfläche 74 zylindrischen Bereiches des Hülsenraumes 72 -- in axialen mittleren Abständen n von etwa 4 mm voneinander -- die erwähnten Außenrippen 76 mit einer Kragweite i₁ von etwa 1 mm ab.

Gemäß Fig. 19 ist der achsparallele Schnitt der Außenrippen 76 dreiecksförmig; die beiden von der Rippenspitze 77 ausgehenden Rippenflächen 78 bestimmen einen Querschnittswinkel w von nahezu 45°. Diese Rippenflächen 78 gehen jeweils in eine in die Umfangsfläche 74 eingeformte Rinne 75 der Tiefe i_2 von 0,3 mm über. Die beiden Seitenkanten 79, 79_a jeder der -- in drei achsparallelen Kragreihen oder Gruppen 80 gleichen Umfangsabstandes q angeordneten -- Außenrippen 76 sind gemäß Fig. 17 von der Umfangsfläche 74 weg in unterschiedlichen Winkeln t bzw. t1 von 15° bzw. etwa 45° zu einer die Außenrippe 76 mittig querenden Radiallinie Q geneigt; die Seitenkante 79 kann auch einen noch geringen Winkel t₁ bestimmen. Die angestauchte Seitenkante 79a verursacht einen größeren Berührungswiderstand beim Drehen der Hülse 70, den die Bedienungsperson beim Drehen registriert und die Drehung beendet. Im übrigen entspricht die Länge jenes Umfangsabstandes q etwa jener der Frontbreite i der Außenrippen 76.

Die Außenrippen 76 werden in Radialnuten 82 des Nutentiefsten 24 und der Hakenenden 21 drehend eingesetzt und ermöglichen einen festen Sitz der Hülse 70 im Hohlprofil 10a.

In den Hülsenraum 72, 73 kann eine Spannschraube 84 eingebettet werden, deren Schraubenkopf 86 ein Sechskantloch 87 für einen -- nicht dargestellten -- INBUS-Schlüssel anbietet, wobei der Schraubenkopf 86 in Spannstellung dem unteren Hülsenrand 68t anliegt. An den Schraubenkopf 86 schließt ein Rundschaft 88 an, der in einen Schraubschaft 90 als Gewindebereich übergeht. Dieser überragt in Fig. 18 den oberen Hülsenrand 68.

Eine andere Einheit aus einer Hülse 70a -- der Länge y von 18 mm sowie eines Außendurchmessers k von 10,2 mm -- und einer in sie eingeführten Spannschraube 84a zeigen die Fig. 20 bis 24. Die Hülse 70a weist ebenfalls drei Gruppen oder Kragreihen 80 von jeweils vier Außenrippen 76a auf, die einen Außendurchmesser k_2 von 12 mm bestimmen und deren Rippenspitze 77 sich gemäß Fig. 24 von einer Rippendicke n_1 von etwa 0,8 mm in einem Winkel w_1 von 30° querschnittlich 77 anschließenden Rippenspitze die an verjüngt. Die Rippenflächen 78 verlaufen parallel zueinander. Der axiale Abstand y_2 der Außenrippen 76_a voneinander beträgt hier 4mm.

Die Hülse 70_a bietet einen zylindrischen Hülsenraum 72 des Durchmessers k_1 von 6 mm an, der in einen Sechskantbereich 73_a der axialen Länge y_1 von 6 mm übergeht. In dessen sechs Ecken verlaufen hier Kerbrinnen 66. Der so entstehende äußere Innendurchmesser k_3 des Sechkantbereichs 73_a misst 6,9 mm.

Die Spannschraube 84_a besteht hier im Einbauzustand aus einem Schraubenkopf 86 der Axiallänge z von 6 mm mit stirnwärtigem Sechskantloch 87 für einen nicht gezeigten INBUS-Schlüssel und einem durchgehenden Rundschaft 88 der Länge z_1 von hier 30 mm; das Gewinde 89 wird in einer Länge

 z_2 von 9 mm erst eingeschnitten, nachdem die Hülse 70_a bis zum Anschlagen an den Schraubenkopf 86 auf den Rundschaft 88 aufgeschoben worden ist. Der Abstand des Gewindes 89 vom Schraubenkopf 86 ist mit z_3 bezeichnet. Die Montagerichtung ist in Fig. 24 bei x verdeutlicht.

21 ist aus Gründen der Übersichtlichkeit die Spannschraube 86 bereits wieder etwas vom Schraubenkopf 86 entfernt dargestellt; die Spannschraube 86 kann nach dem Aufbringen des Gewindes der Hülse 70. 89 axial in dank des Gewindes 89 nicht gänzlich verschoben, aber entfernt werden; dessen Außendurchmesser q_1 ist größer als der angrenzende Innendurchmesser k1 des Hülseninnenraumes 72.

Die Hülse 70b der Fig. 25 unterschiedet sich von der Hülse 70a nach Fig. 22 durch einen einends angeformten Kragen 92 beispielsweise 2 mm. h3 von der Höhe kürzer ist als Außendurchmesser k۵ mit 8 mm Außendurchmesser k der Hülse 70_b von 10,2 mm. Dieser Kragen 92 vergrößert die axiale Kontaktlänge g3 der Hülse 70_{b.} mit der Spannschraube 84 auf hier 20,5 mm. Deren Gewinde 89 verläuft erkennbar außerhalb der Hülse 70_b.

PATENTANSPRÜCHE

Profilkanal (12) sowie zumindest einen hinterschnittenen Nutenraum (22) an einer Längsnut (20) aufweisenden ersten strangartigen Hohlprofils (10) an ein anderes derartiges Werkstück mittels eines Schraubelementes od.dgl. Organes (50, 50_a), das eine Öffnung (20, 25) des Werkstückes durchsetzt sowie in den Innenraum (22) des anderen Werkstückes einsetzbar ist,

dadurch gekennzeichnet,

Hohlprofil (10) ein streifenartiges dem das radial zum Sockelprofil (34) festgelegt ist, Profilkanal (12) verläuft und zumindest einends eine Stufenfläche (35) zur Aufnahme des Schraubelementes (50, 50a) aufweist, welches in Ruhelage innerhalb der Seitenkonturen des Sockelprofils liegt sowie dieses in Anschlussstellung zumindest an einer Seite überragt und Hinterschneidungsraum (24)des anderen in den Hohlprofils (10) haltend eingreift.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Sockelprofil (34) an der Stirnfläche (14) des Hohlprofils (10) festgelegt ist.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Sockelprofil (34) eine Fußplatte (36) an einem Kopfstreifen (38) geringerer Längsschnittlänge (g₁) als die Länge (g) der Fußplatte aufweist und ein Teil von letzterer die Stirnseite/n (39) des Kopfstreifens unter Bildung einer Ober- oder Stufenfläche (35) überragt.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schraubelement (50, 50a) einen

in Draufsicht i.w. rechteckigen Sockelstreifen (52) aufweist, von dessen Oberfläche (51) eine Schraub- oder Sockelhülse (54) für eine sie axial durchsetzende Schraube (63) aufragt.

- 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Außenkontur der Schraub- oder Sockelhülse (54) zwei diagonal zu ihrem Innenraum (54) angeordnete Eckkanten (56) aufweist, von denen jeweils beidseits eine ebene Wandfläche (55) als Teil der Hülsenwand (59) ausgeht.
- 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die ebene Wandfläche (55) in einen querschnittlich gekrümmten Bogenbereich (58) der Hülsenwand (59) übergeht.
- 7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Sockelstreifen (52) in seiner Längsachse (E) die Hülsenwand (59) überragt, wobei gegebenenfalls zumindest ein Eckbereich (53) des Sockelstreifens (52) in Draufsicht teilkreisförmig ausgebildet ist.
- 8. Vorrichtung nach Anspruch 4 und 7, dadurch gekennzeichnet, dass der Eckkante (56) der Hülsenwand (59) ein gerundeter Eckbereich (53) des Sockelstreifens (52) zugeordnet ist (Fig. 9).
- 9. Vorrichtung nach Anspruch 4 oder 8, dadurch gekennzeichnet, dass die Eckkante (56) der Schrauboder Sockelhülse (54) von einer Längskante (56) des Sockelstreifens (52) ausgeht.
- 10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Sockelprofil $(34,\ 34_a)$ von einem etwa zentrisch in seinem Kopfstreifen (38) ange-

ordneten Durchbruch (42) für ein Schrauborgan (44) durchsetzt ist.

- 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Schrauborgan (44) im Profilkanal (12) des Hohlprofils (10) nahe dessen Stirnfläche (14) festlegbar ist.
- 12. Vorrichtung nach Anspruch 1 oder 11, dadurch gekennzeichnet, dass die Ober- oder Stufenfläche/n (35) des Sockelprofils (34, 34a) in einem Abstand zur Stirnfläche (14) des Hohlprofils (10) verläuft/verlaufen, welcher der Höhe (h1) der Stirnseite (39) des Kopfstreifens (38) entspricht bzw. der Summe aus der Dicke (c) den Hinterschneidungsraum (24) übergreifender, die Längsnut (20) begrenzender Formrippen (18) sowie der Dicke (c1) des Sockelstreifens (52).
- 13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Längsachse (F) des Sockelstreifens (52) des Schrauborgans (50, 50a) in Einschublage parallel zur Längsachse (A) des Hohlprofils (10) verläuft und der Sockelstreifen in der Längsnut (20) verfahrbar angeordnet ist.
- 14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass zum Verbinden beider Hohlprofile (10) die Schrauborgane (50, 50a) in Anschlusstellung den Hinterschneidungsraum (24) des einen Hohlprofils (10) übergreifende Formrippen (18) jeweils von deren Sockelstreifen (52) untergriffen sind, wodurch die Formrippen des einen Hohlprofils an der Stirnfläche (14) des anderen Hohlprofils anliegend gehalten sind.
- 15. Vorrichtung ach Anspruch 14, dadurch gekennzeichnet, dass in Anschlussstellung die Längsachse (F) des Sockelstreifens (52) quer zur Längsachse (A) des zuge-ordneten Hohlprofils (10) steht.

- 16. Vorrichtung nach wenigstens einem der Ansprüche 1 bis 15, gekennzeichnet durch eine in die Längsnut (20) einsetzbare Hülse (70, 70_a , 70_b) mit seitlichen Außenrippen (76, 76_a) die in Radialnuten (82) des Hohlprofils (10) einsetzbar ausgebildet sind (Fig. 15).
- 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass der Hülse (70, 70_a, 70_b) eine in ihren Innenraum (72) einsetzbare Spannschraube (84, 84_a) zugeordnet ist.
- 18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass ein Längsabschnitt (73) des Innenraumes (72) der Hülse (70, 70_a , 70_b) als ein Mehrkantquerschnitt, insbesondere als ein Sechskantquerschnitt, ausgebildet ist und an einen zylindrischen Innenraumabschnitt anschließt.
- 19. Vorrichtung nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass die zumindest in ihrem freien Endbereich querschnittlich etwa dreiecksförmige Außenrippe (76, 76a) mit ihren Rippenflächen (78) in Formrinnen (75) der Hülsenumfangsfläche (74) übergeht.
- 20. Vorrichtung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass die beiden Rippenflächen (78) in eine Rippenspitze (77, 77a) übergehen, die bevorzugt als Schneide ausgebildet ist.
- 21. Vorrichtung nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass die Außenrippe (76, 76a) einends eine Seitenkante (79a) aufweist, die mit einer etwa durch die Mitte der Außenrippe gelegten Radiallinie (Q) einen Winkel (t) von etwa 45° bildet.

- 22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass die Außenrippe (76, 76_a) an ihrer geneigten Seitenkante (79_a) angestaucht ist.
- 23. Vorrichtung nach einem der Ansprüche 16 bis 22, gekennzeichnet durch zumindest drei zur Mittelachse (M) der Hülse (70, 70_a , 70_b) parallele Gruppen (80) von Außenrippen (76, 76_a) die in Befestigungslage Radialnuten (82) zugeordnet sind.
- 24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass die Radialnuten (82) im Nutentiefsten (24) der Längsnut (20) des Hohlprofils (10) sowie in zueinander weisenden Flächen von die Längsnut an der Profilseitenfläche (16) begrenzenden Formrippen (18) angebracht sind.
- 25. Vorrichtung nach Anspruch 21 und 23, dadurch gekennzeichnet, dass die Seitenkanten (79_a) einer Gruppe (80)
 von Außenrippen (82) parallel zur Mittelachse (M) miteinander fluchten.
- 26. Vorrichtung nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die geneigte Seitenkante (79_a) der Außenrippe (82) einen Berührungswiderstand zwischen der Hülse (70, 70_a , 70_b) und den zugeordneten Radialnuten (82) bildet.
- 27. Vorrichtung zum Anschluss eines einen Profilkanal (12) sowie zumindest einen hinterschnittenen Nutenraum (22) einer Längsnut (20) aufweisenden ersten (10) strangartigen Hohlprofils an ein anderes derartiges Werkstück mittels eines Schraubelementes od.dgl. Organes $(50, 50_a)$, das eine öffnung (20, 25)des Werkstückes durchsetzt sowie in den Innenraum (22) des anderen Werkstückes einsetzbar ist, insbesondere Vorrichtung nach wenigstens einem der voraufgehenden Patentansprüche, dadurch gekennzeichnet, dass eine in

die Längsnut (20) eingesetzte Hülse (70, 70_a , 70_b) mit von ihrer Umfangsfläche (74) abragenden seitlichen Außenrippen (76, 76_a) versehen ist, die in Radialnuten (82) des Hohlprofils (10) einsetzbar ausgebildet sind.

- 28. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass der Hülse (70, 70_a , 70_b) eine in ihren Innenraum (72) einsetzbare Spannschraube (84, 84_a) zugeordnet ist, an deren Schraubenkopf (86) ein Rundschaft (88) angeformt ist.
- 29. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass der Rundschaft (88) in Abstand (z₃) zum Schraubenkopf (86) in einen koaxialen Schraubschaft (90) übergeht.
- 30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, dass der Außendurchmesser (q_1) des Gewindes (89) bzw. des Schraubschaftes (90) größer ist als der Innendurchmesser (k_1) des Hülseninnenraumes (72).
- 31. Vorrichtung nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass der Innenraum (72) der Hülse (70_a, 70_b) einen zylindrischen Abschnitt aufweist, an den ein Mehrkantquerschnitt (73_a) anschließt, dessen achsparallele Kanten als Kerbrinnen (66) ausgebildet sind.
- 32. Verfahren zum Herstellen einer Vorrichtung nach wenigstens einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, dass die Hülse (70, 70a, 70b) auf den Rundschaft (88) der Spannschraube (84a) aufgeschoben und das aus dem Hülsenraum (72, 73a) koaxial abragende freie Enden des Rundschaftes zu einem Gewinde (89) verformt wird.
- 33. Verfahren nach Anspruch 32, gekennzeichnet durch Rollformen des Gewindes (89).

į,

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

8
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.