## Systemy komputerowe

Lista zadań nr 9

Na zajęcia 18 – 21 maja 2020

UWAGA! W trakcie prezentacji należy zdefiniować pojęcia oznaczone wytłuszczoną czcionką.

**Zadanie 1.** Opisz różnice między **przerwaniem sprzętowym** (ang. *hardware interrupt*), **błędem** (ang. *fault*)| i **pułapką** (ang. *trap*). Dla każdego z tych rodzajów **wyjątków** (ang. *exceptions*) podaj co najmniej trzy przykłady zdarzeń, które je wyzwalają. W jakim scenariuszu błąd nie spowoduje błędu czasu wykonania (przerwania działania) programu?

**Zadanie 2.** Opisz mechanizm **obsługi przerwań** bazujący na **wektorze przerwań** (ang. *interrupt vector table*). Co robi procesor przed pobraniem pierwszej instrukcji **procedury obsługi przerwania** (ang. *interrupt handler*) i po natrafieniu na instrukcję powrotu z przerwania? Dlaczego procedura obsługi przerwania powinna być wykonywana w **trybie nadzorcy** i używać odrębnego stosu?

**Zadanie 3.** Wzorując się na slajdach do wykładu "Virtual Memory Systems" (strony 10–21) powtórz proces **translacji adresów** i adresowania pamięci podręcznej dla adresów: 0x027c, 0x03a9 i 0x0040 zakładając poniższy stan **TLB**, pamięci podręcznej i **tablicy stron**.



**Zadanie 4.** W tym zadaniu będziemy analizowali w jaki sposób system operacyjny musi aktualizować **tablicę stron** wraz z kolejnym dostępami do pamięci głównej. Załóż, że strony są wielkości 4KiB, TLB jest **w pełni asocjacyjne** z zastępowaniem LRU. Jeśli potrzebujesz **wtoczyć** (ang. *swap-in*) stronę z dysku użyj następnego numeru **ramki** (ang. *page frame*) większego od największego istniejącego w tablicy stron.

Dla poniższych danych podaj ostateczny stan TLB i tablicy stron po wykonaniu wszystkich dostępów do pamięci. Dla każdej operacji dostępu do pamięci wskaż czy było to trafienie w TLB, trafienie w tablicę stron, czy też **błąd strony**.

| VPN | Valid? | PPN  |
|-----|--------|------|
| 0   | 1      | 5    |
| 1   | 0      | dysk |
| 2   | 0      | dysk |
| 3   | 1      | 6    |
| 4   | 1      | 9    |
| 5   | 1      | 11   |
| 6   | 0      | dysk |
| 7   | 1      | 4    |
| 8   | 0      | dysk |
| 9   | 0      | dysk |
| 10  | 1      | 3    |
| 11  | 1      | 12   |
| 12  | 0      | brak |

| Valid? | Tag | LRU | PPN |
|--------|-----|-----|-----|
| 1      | 11  | 0   | 12  |
| 1      | 7   | 1   | 4   |
| 1      | 3   | 2   | 6   |
| 0      | 4   | 3   | 9   |

| Początkowy | stan | TL | В |
|------------|------|----|---|
|------------|------|----|---|

| Adres |
|-------|
| 4669  |
| 2227  |
| 13916 |
| 34587 |
| 48870 |
| 12608 |
| 49225 |
|       |

Ciąg dostępów do pamięci

Początkowy stan tablicy stron

Uwaga: Wszystkie liczby w tym zadaniu podane są w systemie dziesiętnym.

**Zadanie 5.** Niech system posługuje się 32-bitowymi adresami wirtualnymi, rozmiar strony ma 4KiB, a rozmiar wpisu tablicy stron zajmuje 4 bajty. Dla procesu, który łącznie używa 1GiB swojej przestrzeni adresowej podaj rozmiar tablicy stron: (a) jednopoziomowej, (b) dwupioziomowej, gdzie katalog tablicy stron (czyli tablica stron pierwszego poziomu) ma 1024 wpisy. Dla drugiego przypadku – jaki jest maksymalny i minimalny rozmiar tablicy stron?

**Zadanie 6 (2pkty).** Zdefiniuj format czteropoziomowej tablicy stron zaimplementowany w procesorach architektury x86-64. W jaki sposób tłumaczone są adresy wirtualne na fizyczne? Jaką przewagę ma taka taka tablica nad tablicą jednopoziomową? Opisz dokładnie format pola w tablicach każdego poziomu i wyjaśnij znaczenie bitów pomocniczych.

Wskazówka: Przeczytaj rodział 7.9.1 z podręcznika CSAPP3e. Szczegóły można znaleźć w rodziale 4.5 wolumenu 3 dokumentacji procesorów Intel.

Zadanie 7 (2pkty). Na wykładzie przyjęliśmy, że translacja adresów jest wykonywana przed dostępem do pamięci podręcznej. Taki schemat określa się mianem pamięci podręcznej indeksowanej i znakowanej adresami fizycznymi (ang. physically-indexed, physically-tagged). Wyjaśnij jak zrównoleglić dostęp do TLB i pamięci podręcznej, stosując schemat pamięci indeksowanej wirtualnie i znakowanej fizycznie.

Wskazówka: Posłuż się slajdem 34 do wykładu "Virtual Memory: Concepts", ale wytłumacz to szczegółowo!