4. Oluşan her üçgen için 3. maddedeki etkinlik sonucu ulaştığınız sonuçlardan hareketle genellemelerinizi varsayımlarınızla karşılaştırınız.

- **5.** Bir üçgenin iki köşesinden çizilen dış açıortaylar ile diğer köşesinden çizilen iç açıortayın aynı noktada kesişip kesişmediğini, kesişiyorsa bu noktanın özelliğine dair önermenizi ifade ediniz.
- **6.** Oluşturduğunuz önerme yardımı ile aşağıda verilen problemi çözünüz.
 - Yandaki şekilde seyirci bölümü üç farklı yönden sahneye bakacak şekilde kenarları düz tasarlanmış bir gösteri salonunun görseli verilmiştir.
 - Bu salonda sahneye çıkan bir oyuncunun seyirci bölümlerinin üçüne de eşit uzaklıkta olması istenmektedir.
 - Buna göre oyuncunun sahnede bulunması gereken konumunu belirleyecek yöntemi yazınız.

9. Örnek

Ön yüzü sarı, arka yüzü mavi olan kare biçimindeki bir kâğıt Şekil 1'deki gibi [CE] ve [CF] boyunca katlandığında karenin BC kenarı ve CD kenarı Şekil 2'deki gibi B ve D köşeleri K noktasına gelecek şekilde [EF] üzerinde çakışmaktadır.

Buna göre

- a) ECF açısının ölçüsünü bulunuz.
- b) AEF üçgeni için C noktasının özelliğini belirleyiniz.
- c) Karenin çevresi ile AEF üçgeninin çevresi arasında nasıl bir ilişki olduğunu belirleyiniz.

Çözüm

Katlama işlemlerine göre yandaki şekilde gösterildiği gibi CDE ile CKE ve CBF ile CKF üçgenleri eş üçgenler olduğundan

$$m(\widehat{KCE}) = m(\widehat{DCE}), m(\widehat{KCF}) = m(\widehat{BCF}) \text{ ve } |DE| = |EK|, |BF| = |FK| \text{ olur.}$$

Buna göre

- a) $m(\widehat{ECF}) = \frac{m(\widehat{BCD})}{2} = 45^{\circ} dir.$
- **b)** [EC] ve [FC], AEF üçgeninin dış açıortayları olduğundan C noktası AEF üçgeninin dış teğet çemberlerinden birinin merkezidir.
- c) $\zeta(\widehat{AEF}) = |AE| + |EK| + |AF| + |FK| = |AE| + |DE| + |AF| + |FB| = |AB| + |AD|$ $\zeta(ABCD) = |AB| + |BC| + |CD| + |AD| = 2 \cdot \zeta(\widehat{AEF}) \text{ dir.}$

