Name: Ashish Verma

Course:CS773 Exam1

Solution 1

Given

Professional#	Experience (years)	Actual Salary (\$K)
1	2	38
2	4	38
3	6	50

Given Linear Equation

salary(\$K)=30+2.5×Experience (in years)

Professional 1 Predicted Salary

- Predicted Salary=30+2.5×2= **35K**
- MSE=(38-35)^2
- MSE=9

Professional 2 Predicted Salary

- Predicted Salary=30+2.5×4= **30K**
- MSE=(38-40)^2
- MSE=4

Professional 3 Predicted Salary

- Predicted Salary=30+2.5×6= **45K**
- MSE=(50-45)^2
- MSE=25

Total MSE = 1/3(9+4+25) = 12.67

Given

Decision Tree Analysis

Applicant (i): Education=MS, GPA=4.0, Experience=8 years

Education: MSGPA: 4.0

Experience: 8 years

Following the decision tree:

- For MS, GPA >= 3, experience >= 5:
 - Use Eqn7: Salary = 50 + 8 * Experience
 - \circ Salary = 50 + 8 * 8
 - \circ Salary = 50 + 64
 - Salary = 114 K

Applicant (ii): Education=HS, GPA=3.5, Experience=12years

- Education: HS
- GPA: 3.5
- Experience: 12 years

Following the decision tree:

- For HS, experience >= 3:
 - Use Eqn2: Salary = 10 + 10 * Experience
 - Salary = 10 + 10 * 12
 - \circ Salary = 10 + 120
 - Salary = 130 K

Applicant (iii): Education=PhD, GPA=3.0, Experience=0 years

- Education: PhD
- o GPA: 3.0
- Experience: 0 years

Following the decision tree:

- For PhD, experience < 2:
 - Use Eqn8: Salary = 60
 - Salary = 60 K

The estimated salaries for the three applicants are:

- Applicant (i): 114 K
- Applicant (ii): 130 K
- Applicant (iii): 60 K

Given

Professional#	Name	Education	Experience (years)
1	John	BS	10
2	Jane	PhD	5
3	Jim	HS	25

```
def predict_salary(education, experience):
   if education >= "BS" and experience < 8:
        salary = 60 + 4 * experience
   elif education == "PhD":
        salary = 80 + 5 * experience
    elif experience > 10:
        if education >= "BS":
            salary = 70 + 7 * experience
        else:
            salary = 50 + 5 * experience
    else:
        salary = 40 + 3 * experience
    return salary
# Predicting salaries for John, Jane, and Jim
john_salary = predict_salary("BS", 10)
jane_salary = predict_salary("PhD", 5)
jim_salary = predict_salary("HS", 25)
# Output the predicted salaries
print(f"Predicted salary for John: ${john_salary}")
print(f"Predicted salary for Jane: ${jane_salary}")
print(f"Predicted salary for Jim: ${jim_salary}")
```

- Predicted salary for John: \$70
- Predicted salary for Jane: \$80
- Predicted salary for Jim: \$245

Given

Derived Rules from the decision tree path

- If the outlook is Sunny and the humidity is High, then Play = No.
- If the outlook is Sunny and the humidity is Normal, then Play = Yes.
- If the outlook is Overcast, then Play = Yes.
- If the outlook is Rain and the wind is Strong, then Play = No.
- If the outlook is Rain and the wind is Weak, then Play = Yes.

Given

Instance#	Price	Capacity	Safety	Acceptability
1	L	4	High	Good
2	Н	2	High	Bad
3	М	4	Medium	Good
4	L	7	High	Good
5	М	7	Low	Bad
6	Н	7	Medium	Bad

Frequency Table

Acceptability	Price	Capacity	Safety	Count
Good	L	4	High	1
Good	ш	7	High	1
Bad	I	2	High	1
Bad	М	7	Low	1
Bad	Н	7	Medium	1

Applying Laplace Smoothing

Acceptability	Price	Capacity	Safety	Count
Good	L	4	High	2
Good	L	7	High	2
Bad	Н	2	High	2
Bad	М	7	Low	2
Bad	Н	7	Medium	2

Calculating Probabilities

For Acceptability = Good:

P(Acceptability=Good|Price=L,Capacity=7,Safety=M)= 0.5×0.67×0.33×0.33=0.0363

For Acceptability = Bad:

 $P(Acceptability=Bad|Price=L,Capacity=7,Safety=M)=0.5\times0.33\times0.67\times0.33=0.0363$

Normalize Probabilities

P(Acceptability=Good|Price=L,Capacity=7,Safety=M) = 0.0363/(0.0363+0.0363) = 0.5

P(Acceptability=Bad|Price=L,Capacity=7,Safety=M) = 0.0363/(0.0363+0.0363) = 0.5

Construct the Prediction Table

Instance#	Price	Capacity	Safety	Acceptability (Predicted)	Probability (Good)	Probability (Bad)
1	L	4	High	Good	0.5	0.5
2	Н	2	High	Bad	0.5	0.5
3	M	4	Medium	Good	0.5	0.5
4	L	7	High	Good	0.5	0.5
5	M	7	Low	Bad	0.5	0.5
6	Н	7	Medium	Bad	0.5	0.5
New	L	7	M	?	0.5	0.5

Acceptability: Good
Probability (Good): 0.5
Probability (Bad): 0.5

Given

Instance#	Price	Capacity	Safety	Acceptability
1	L	4	High	Good
2	Н	2	High	Bad
3	М	4	Medium	Good
4	L	7	High	Good
5	М	7	Low	Bad
6	Н	7	Medium	Bad

Since calculations are very long for entropy with given time frame I am going with python based implementation

```
import pandas as pd
  import math
  # Define the training data
  data = {
      'Price': ['L', 'H', 'M', 'L', 'M', 'H'],
      'Capacity': [4, 2, 4, 7, 7, 7],
'Safety': ['High', 'High', 'Medium', 'High', 'Low', 'Medium'],
'Acceptability': ['Good', 'Bad', 'Good', 'Good', 'Bad', 'Bad']
  # Convert the data into a pandas DataFrame
  df = pd.DataFrame(data)
  # Calculate the entropy of a target column
  def calculate_entropy(target_column):
      entropy = 0
      values = target_column.unique()
      for value in values:
          fraction = target_column.value_counts()[value] / len(target_column)
          entropy += -fraction * math.log2(fraction)
      return entropy
  # Calculate information gain for a given attribute
  def calculate_information_gain(data, attribute, target):
      # Calculate entropy of the entire dataset
      total_entropy = calculate_entropy(data[target])
      # Calculate weighted entropy for the attribute
      attribute\_entropy = 0
      attribute_values = data[attribute].unique()
      for value in attribute_values:
          subset = data[data[attribute] == value]
          fraction = len(subset) / len(data)
          attribute_entropy += fraction * calculate_entropy(subset[target])
      # Calculate information gain
      information_gain = total_entropy - attribute_entropy
      return information_gain
  # Calculate information gain for each attribute
  attributes = ['Price', 'Capacity', 'Safety']
  target = 'Acceptability'
  information_gains = {}
  for attribute in attributes:
      information_gains[attribute] = calculate_information_gain(df, attribute, target)
  print("Information gains:")
  for attribute, gain in information_gains.items():
     print(f"{attribute}: {gain}")
  # Determine the attribute with the highest information gain (root of the decision tree)
  root_attribute = max(information_gains, key=information_gains.get)
  print(f"\nRoot of the decision tree: {root_attribute}")
Information gains:
Price: 0.6666666666666667
Capacity: 0.5408520829727552
Safety: 0.20751874963942196
Root of the decision tree: Price
```

As we can clearly Price is the root

Given

Inst#	Age	Height	Weight	Health
1	35	5.6	175	Excellent
2	55	6	150	Good
3	50	5.8	200	Okay
4	65	5.5	175	Good
5	45	5.6	190	Okay

Normalize the attribute

Age: 30-70Height: 4.0-7.0Weight: 100-300

• Normalized Age = 50 - 30/70 - 30 = 0.5

• Normalized Height = 5.5 - 4.0 / 7.0 - 4.0 = 0.5

• Normalized Weight = 190 - 100 / 300 - 100 = 0.45

The normalized unknown instance is <0.5,0.5,0.45>

Calculate Euclidean distances

Instance 1

- ED1 = $sqrt((0.5 0.125)^2+(0.5 0.533)^2+(0.45 0.375)^2)$
- ED1 = 0.384

Instance 2

- ED2 = $sqrt((0.5 0.625)^2 + (0.5 0.6667)^2 + (0.45 0.25)^2)$
- ED2 = 0.289

Instance 3

- ED2 = $sqrt((0.5 0.5)^2 + (0.5 0.6)^2 + (0.45 0.5)^2)$
- ED2 = 0.10125

Instance 4

- ED2 = $sqrt((0.5 0.875)^2+(0.5 0.5)^2+(0.45 0.375)^2)$
- ED2 = 0.382

Instance 5

- ED2 = $sqrt((0.5 0.375)^2 + (0.5 0.5333)^2 + (0.45 0.45)^2)$
- ED2 = 0.129

The nearest instance to the unknown instance <0.5,0.5,0.45> is instance 1 with a Euclidean distance of approximately 0.129

Predict Health

Age=50, Height=5.5, Weight=190> is **Okay**.

Given

Instance#	Price	Capacity	Safety	Acceptability
1	L	4	High	Good
2	Н	2	High	Bad
3	М	4	Medium	Good
4	L	7	High	Good
5	L	7	Low	Bad
6	Н	7	High	Bad

Analyze each attribute

Price:

- L: 3 instances (1, 4, 5)
- M: 1 instance (3)
- H: 2 instances (2, 6)

Capacity:

- 2: 1 instance (2)
- 4: 2 instances (1, 3)
- 7: 3 instances (4, 5, 6)

Safety:

- High: 4 instances (1, 2, 4, 6)
- Medium: 1 instance (3)
- Low: 1 instance (5)

Calculate error rates for each attribute

Price:

• L: Error rate = 1/3 (1 incorrect out of 3) = 0.33

- M: Error rate = 0/1 = 0
- H: Error rate = 2/2 = 1.0

Capacity:

- 2: Error rate = 1/1 = 1.0
- 4: Error rate = 0/2 = 0
- 7: Error rate = 2/3 = 0.67

Safety:

- High: Error rate = 1/4 = 0.25
- Medium: Error rate = 0/1 = 0
- Low: Error rate = 1/1 = 1.0

Select the attribute with the lowest error rate

From the analysis, **Price** has the lowest error rate:

- L: Error rate = 0.33
- M: Error rate = 0
- H: Error rate = 1.0

Therefore, the 1R rule is to predict **Acceptability** based on **Price**:

- L predicts Good
- M predicts Good
- H predicts Bad

Final Selected Rule:

- If Price = L, then Acceptability = Good
- If Price = M, then Acceptability = Good
- If Price = H, then Acceptability = Bad

Given

Inst#	Age	Height	Weight	Predicted Prob.			Actual
				Okay	Good	Excellent	
1	35	5.6	175	0.4	0.4	0.2	Okay
2	55	6	150	0.3	0.2	0.5	Good
3	50	5.8	200	0.1	0.6	0.3	Excellent

Quadratic loss function

Instance 1

Okay: (0.4-1)^2=(0.6)^2=0.36Good: (0.4-0)^2=(0.4)^2=0.16

• Excellent: (0.2-0)^2=(0.2)^2=0.04

MSE = 1/3*(0.26+0.16+0.04) = 0.153

Instance 2

Okay: (0.3-0)^2=(0.3)2=0.09
Good: (0.2-1)^2=(0.8)2=0.64

• Excellent: (0.5-0)^2=(0.5)2=0.25

MSE = 1/3*(0.09+0.64+0.25) = 0.3267

Instance 3

Okay: (0.1-0)2=(0.1)2=0.01
Good: (0.6-0)2=(0.6)2=0.36
Excellent: (0.3-1)2=(0.7)2=0.49

MSE = 1/3*(0.01+0.36+0.49)

=0.2867

Total MSE = (0.153+0.3267+0.2867)/3

Information loss function

Instance 1

Instance 2

Instance 3

Loss =
$$-(0*log_2(0.1)+0*log_2(0.6)+1*log_2(0.3))$$

=1.7369

Total Entropy loss =(1.3219+2.3219 +1.7369)/3

=1.7936

Given

- Total number of volunteers (N) = 2500
- Number of volunteers who actually have the disease (Disease positive) = 1500
- Number of volunteers identified by the test as having the disease (Test positive) = 1750
- Number of volunteers correctly identified as having the disease (True positives, TP) = 1000
- TP = 1000
- FN = 1500 1000 = 500
- TN = 2500-1500-(1750-1000)=1000
- FP= 1750-1000=750

Sensitivity = TP/(TP+FN) = 1000/1000+500 = 0.667

Specificity = TN/(TN+FP) = 1000/1000+750 = 0.571

Given

Customer#	Predicted Prob (Yes)	Actual
1	0.85	Yes
2	0.5	No
3	0.95	No
4	0.99	Yes
5	0.45	Yes
6	0.97	No
7	0.8	Yes
8	0.6	No
9	0.75	Yes
10	0.7	No

Python

```
import numpy as np
import pandas as pd
from sklearn.metrics import roc_curve
# Customer data
customers = [
    {"predicted_prob": 0.85, "actual": "Yes"},
    {"predicted_prob": 0.5, "actual": "No"},
    {"predicted_prob": 0.95, "actual": "No"},
    {"predicted_prob": 0.99, "actual": "Yes"},
    {"predicted_prob": 0.45, "actual": "Yes"},
    {"predicted_prob": 0.97, "actual": "No"},
    {"predicted_prob": 0.8, "actual": "Yes"},
    {"predicted_prob": 0.6, "actual": "No"},
    {"predicted_prob": 0.75, "actual": "Yes"},
    {"predicted_prob": 0.7, "actual": "No"}
1
# Sort customers by predicted probability (descending)
customers.sort(key=lambda x: x["predicted_prob"], reverse=True)
# Extract actual labels and predicted probabilities
actual = np.array([1 if c["actual"] == "Yes" else 0 for c in customers])
predicted_prob = np.array([c["predicted_prob"] for c in customers])
# Calculate ROC curve
fpr, tpr, thresholds = roc_curve(actual, predicted_prob)
# Create a DataFrame for the ROC curve table
roc_df = pd.DataFrame({
    'Threshold': np.concatenate(([1.0], thresholds)),
    'TPR': np.concatenate(([0.0], tpr)),
    'FPR': np.concatenate(([0.0], fpr))
})
# Print the ROC curve table
print(roc_df)
 Threshold TPR FPR
0
  1.00 0.0 0.0
1
  1.99 0.0 0.0
2
  0.99 0.2 0.0
  0.95 0.2 0.4
3
```

0.75 0.8 0.4 0.50 0.8 1.0 0.45 1.0 1.0 Sort the data with predicted probability in descending order

Customer#	Predicted Prob (Yes)	Actual
4	0.99	Yes
6	0.97	No
3	0.95	No
7	0.8	Yes
1	0.85	Yes
9	0.75	Yes
10	0.7	No
8	0.6	No
2	0.5	No
5	0.45	Yes

Now, calculate TPR, FPR, and the threshold for each data point:

Threshold = 1.0 (All predicted as Yes)

- TPR = 4/4 = 1.00
- FPR = 6/6 = 1.00

Threshold = 0.99

- TPR = 4/4 = 1.00
- FPR = 6/6 = 1.00

Threshold = 0.95

- TPR = 4/4 = 1.00
- FPR = 5/6 = 0.833

Threshold = 0.85

• TPR = 4/4 = 1.00

•
$$FPR = 3/6 = 0.500$$

Threshold = 0.8

- TPR = 4/4 = 1.00
- FPR = 2/6 = 0.333

Threshold = 0.75

- TPR = 4/4 = 1.00
- FPR = 1/6 = 0.167

Threshold = 0.7

- TPR = 3/4 = 0.75
- FPR = 1/6 = 0.167

Threshold = 0.6

- TPR = 3/4 = 0.75
- FPR = 1/6 = 0.167

Threshold = 0.5

- TPR = 3/4 = 0.75
- FPR = 1/6 = 0.167

Threshold = 0.45

- TPR = 3/4 = 0.75
- FPR = 1/5 = 0.200

Threshold = 0.0 (All predicted as No)

- TPR = 0/4 = 0.00
- FPR = 0/6 = 0.00

Threshold	TPR	FPR
1	1	1
0.99	1	1
0.95	1	0.833
0.85	1	0.5
0.8	1	0.333
0.75	1	0.167
0.7	0.75	0.167
0.6	0.75	0.167
0.5	0.75	0.167
0.45	0.75	0.2
0	0	0

Given

Instance#	Actual	Predicted
1	2.5	3
2	4	4.3
3	3.5	2.5
4	5	3

MAE =
$$(2.5-3 + 4.3-4+ 3.5-2.5 + 5-3)/4 = 0.95$$

So, the mean absolute error for your predictions is **0.95**

RAE =
$$(0.2+0.075+0.286+0.4)/4 = 0.25 = 25\%$$

Given

instance#	Age	GPA	Salary(\$K)	Cluster#
1	25	3.8	50	C1
2	30	3.6	65	C1
3	23	4	40	C1
4	35	3	70	C2
5	55	3.3	90	C2

Normalized Data

Instance	Normalized Age	Normalized GPA	Normalized Salary	Cluster
1	0.1	0.95	0.375	C1
2	0.2	0.9	0.5625	C1
3	0.06	1	0.25	C1
4	0.3	0.75	0.625	C2
5	0.7	0.825	0.875	C2

Single-linkage method:

Distance(C11,C21) =
$$sqrt((0.1 - 0.3)^2 + (0.95-0.75)^2 + (0.375 - 0.625)^2)$$

Distance(C1_1, C2_2):

Distance(C11,C22) =
$$sqrt((0.1 - 0.7)^2 + (0.95-0.825)^2 + (0.375 - 0.875)^2)$$

Distance(C1_2, C2_1)

Distance(C12,C21) =
$$sqrt((0.2 - 0.3)^2 + (0.9-0.75)^2 + (0.5625 - 0.625)^2)$$

= 0.191
Distance(C1_2, C2_2)
Distance(C13,C21) = $sqrt((0.06 - 0.3)^2 + (1.0-0.75)^2 + (0.25 - 0.625)^2)$
= 0.55
Distance(C1_3, C2_2):
Distance(C1_3,C22) = $sqrt((0.06 - 0.7)^2 + (1.0-0.825)^2 + (0.25 - 0.825)^2)$
= 0.92

Minimum distance = min(0.574, 0.796, 0.191, 0.785, 0.55, 0.92)

Minimum distance ≈ 0.191

Centroid-linkage method:

Centroid-linkage method computes the distance between the centroids of the two clusters.

Distance using Centroid-linkage method:

- Distance = $sqrt((0.12 0.5)^2 + (0.95 0.7875)^2 + (0.394 0.75)^2)$
- Distance = sqrt(0.1696 + 0.02600625 + 0.129936)
- Distance = sqrt(0.32553625)
- Distance ≈ 0.571

Therefore, the distance between the centroids of clusters C1 and C2 using the centroid-linkage method is approximately **0.571**.

Given

For Performance = Good:

P(Good,GPA=B,Experience=High,Salary=Low)=0.35×0.5×0.1×0.25=0.004375

For Performance = Average:

P(Average,GPA=B,Experience=High,Salary=Low)=0.4×0.2×0.2×0.45=0.0072

For Performance = Poor:

P(Poor,GPA=B,Experience=High,Salary=Low)=0.3×0.1×0.4×0.3=0.0036

Normalization

P(GPA=B,Experience=High,Salary=Low)=0.004375+0.0072+0.0036=0.015175

Conditional probabilities:

- P(Good|GPA=B,Experience=High,Salary=Low) = 0.004375/ 0.015175 = 0.288
- P(Average|GPA=B,Experience=High,Salary=Low) = 0.0072/0.015175 = 0.474
- P(Poor|GPA=B,Experience=High,Salary=Low) = 0.0036/0.015175 = 0.237

Good: 0.288 **Average**: 0.474 **Poor**: 0.237

Given

Instance#	Color	Size	Act	Age	Inflated (outcome)
1	Υ	S	S	Α	Yes
2	Υ	S	S	С	Yes
3	Υ	S	D	Α	Yes
4	Υ	S	S	С	No
5	Υ	L	S	Α	Yes
6	Р	L	S	С	Yes
7	Р	L	D	Α	No
8	Р	L	D	С	No
9	Р	S	S	Α	Yes
10	Р	S	S	С	No

From the dataset, the instances that satisfy the rule "Color=Y and Size=S and Act=S and Age=A and Inflated=Yes" are:

- Instance 1
- Instance 2
- Instance 5
- Instance 9

So, the number of instances that satisfy the rule = 4

Total number of instances in the dataset = 10

Accuracy:

From the instances that satisfy the rule:

- Instance 1: Inflated=Yes
- Instance 2: Inflated=Yes
- Instance 5: Inflated=Yes
- Instance 9: Inflated=Yes

Number of instances that satisfy the rule and have Inflated=Yes = 4

Accuracy = 4 / 4 = 1.0

Therefore, the support of the rule is **0.4** and the accuracy of the rule is **1.0**.

Given conditions:

- Color = Y
- Size = S
- Act = S
- Age = A
- Inflated = Yes

Instances that match these conditions:

- Instance 1: Color=Y, Size=S, Act=S, Age=A, Inflated=Yes
- Instance 2: Color=Y, Size=S, Act=S, Age=C, Inflated=Yes
- Instance 5: Color=Y, Size=L, Act=S, Age=A, Inflated=Yes

Now, calculate the support and accuracy:

Support: Number of instances that match the rule = 3 (instances 1, 2, and 5)

Accuracy: Percentage of instances that are Inflated = Yes among those that match the rule

Out of the 3 instances that match the rule, all 3 have Inflated = Yes.

Accuracy = (3/3) * 100 = 100%

Since the accuracy is 100%, we don't need to prune based on accuracy. Let's check the support:

Support = 3

The rule already meets the minimum support (3) and accuracy (100%) criteria. Therefore, the rule is:

Given

#	COLOR	AGE	RESULT
1	YELLOW	ADULT	F
2	YELLOW	CHILD	Т
3	YELLOW	ADULT	Т
4	RED	ADULT	F
5	RED	CHILD	F
6	RED	ADULT	Т
7	RED	CHILD	F
8	RED	ADULT	F
9	RED	CHILD	Т
10	RED	ADULT	F

Frequency Count

Item	Frequency
YELLOW	3
RED	7
ADULT	6
CHILD	4
F	6
Т	4

Filtering Items

Items that meet the minimum threshold of 5 are:

- RED
- ADULT
- F

Filtered Transaction

Based on the filtered items, the relevant transactions are:

#	COLOR	AGE	RESULT
4	RED	ADULT	F
6	RED	ADULT	Т
8	RED	ADULT	F
10	RED	ADULT	F

FP-tree Construction

- Insert {RED, ADULT, F}
- Insert {RED, ADULT}
- Insert {RED, ADULT, F}
- Insert {RED, ADULT, F}

FP-TREE

```
null

|
RED (4)

|
ADULT (4)

|
F (3)
```

Solution 17

Given

Attr	Class
80	Т
50	F
65	F
40	F
25	Т
119	Т

Split Point: Between 25 and 40

Partitions:

```
• Left: <25, T>
```

• Right: <40, F>, <50, F>, <65, F>, <80, T>, <110, T>

H(Left) = 0

Right partition:

```
• T: 2 (80, 110)
```

• F: 3 (40, 50, 65)

```
H(Right) = -(0.4*log_20.4+0.6*log_20.6)
```

H(Right) = 0.971

Split Point: Between 40 and 50

Partitions:

- Left: <25, T>, <40, F>
- Right: <50, F>, <65, F>, <80, T>, <110, T>

$$H(Left) = -(0.5*log_2(0.5)+0.5*log_2(0.5))$$

=1

Right partition:

- T: 2 (80, 110)
- F: 2 (50, 65)

Split Point: Between 50 and 65

Partitions:

- Left: <25, T>, <40, F>, <50, F>
- Right: <65, F>, <80, T>, <110, T>

$$H(Left) = -(0.333*log_2(0.333)+0.667*log_2(0.667))$$

$$= 0.918$$

$$H(Right) = -(0.667*log_2(0.667)+0.333*log_2(0.333))$$

$$= 0.918$$

$$H(Split) = 3/6*0.918 + 3/6*0.918$$

$$= 0.918$$

Split Point: Between 65 and 80

Partitions:

```
• Left: <25, T>, <40, F>, <50, F>, <65, F>
```

• Right: <80, T>, <110, T>

$$H(Left) = -(0.25*log_2(0.25)+0.75*log_2(0.75))$$

H(Left)=0.811

H(Right)=0

H(Split) = 4/6*0.811+0

H(Split) = 0.541

Split Point: Between 80 and 110

Partitions:

- Left: <25, T>, <40, F>, <50, F>, <65, F>, <80, T>
- Right: <110, T>

 $H(Left) = -(0.4*log_2(0.4) + 0.6*log_2(0.6))$

H(Left)=0.971

H(Right)=0 (since it has only one class)

H(Split) = 5/6*0.971 + 0 =0.809

Hence minimum entropy we got between 65 and 80 as 0.541

First point of division =(65+80)/2 = 72.5

Python Implementation

```
import math
# Given data
data = [
   (80, 'T'),
    (50, 'F'),
   (65, 'F'),
   (40, 'F'),
   (25, 'T'),
   (119, 'T')
# Sort data by attribute value
data_sorted = sorted(data, key=lambda x: x[0])
# Calculate entropy function
def entropy(prob):
   if prob == \theta or prob == 1:
       return 0
    return -prob * math.log2(prob) - (1 - prob) * math.log2(1 - prob)
# Function to calculate weighted entropy
def weighted_entropy(groups):
   total_instances = sum(len(group) for group in groups)
   weighted_entropy_sum = 0
   for group in groups:
       if len(group) == 0:
           continue
       count_true = sum(1 for instance in group if instance == 'T')
       prob_true = count_true / len(group)
       group_entropy = entropy(prob_true)
       weighted_entropy_sum += (len(group) / total_instances) * group_entropy
    return weighted_entropy_sum
# Find the optimal split point
min_weighted_entropy = float('inf')
best_split_point = None
# Iterate through each possible split point
for i in range(len(data_sorted) - 1):
   split_point = (data_sorted[i][0] + data_sorted[i + 1][0]) / 2
   # Split the data
   group1 = [item[1] for item in data_sorted[:i+1]]
   group2 = [item[1] for item in data_sorted[i+1:]]
   # Calculate weighted entropy
   we = weighted_entropy([group1, group2])
   # Update minimum weighted entropy and best split point
   if we < min_weighted_entropy:</pre>
       min_weighted_entropy = we
       best_split_point = split_point
# Print results
best_split_point, min_weighted_entropy
```

Hence best split point is 72.5 and minimum entropy is 0.54075

Solution 18

Given

Class	Class Vector	
Good	11100111	
Average	00011000	
Poor	10101010	

Hamming Distance Calculation

Good Vs Average:

Good: 11100111Average: 00011000

Hamming distance = 5 (positions with differences)

Good vs. Poor:

Good: 11100111Poor: 10101010

Hamming distance = 4

Average vs. Poor:

Average: 00011000Poor: 10101010

Hamming distance = 6

Minimum Hamming distance (d) = 4

Error Calculations=(4-1)/2 = 1.5=1

- Hamming Distance (d): 4
- Number of errors that can be corrected: 1

Given

#	Attr Value		Outcome
1		0	Т
2	2	13	F
3	3	15	Т
4	ļ.	22	F
5)	40	F
6	5	20	Т
7	,	17	F
8	3	18	F
g)	60	Т

Equal-frequency binning

Binning:

- **C1**: [0, 13, 15]
- **C2**: [17, 18, 20]
- **C3**: [22, 40, 60]

Attribute Value Range and Sample Outcome for Each Category:

- **C1**: 0-15, Sample Outcome: T (from 0)
- **C2**: 17-20, Sample Outcome: F (from 17)
- **C3**: 22-60, Sample Outcome: F (from 22

Equal-width binning

Width = (Max Value - Min Value) / Number of Bins

$$= (60 - 0) / 3$$

= 20

Binning:

• **C1**: [0, 20)

• **C2**: [20, 40)

• **C3**: [40, 60]

Attribute Value Range and Sample Outcome for Each Category:

• **C1**: 0-19, Sample Outcome: T (from 0)

• **C2**: 20-39, Sample Outcome: T (from 20)

• C3: 40-60, Sample Outcome: F (from 40)

Solution 20

An approach to transforming the attributes Color (Yellow, Red, Purple) and Size (SM, MD, LG) into a single attribute is to use a hierarchical encoding method. This involves creating a composite key using both attributes while preserving their original structures, which can then be used as a single unique identifier.

Approach: Composite Key Encoding

1. **Concatenate Color and Size**: Combine the two attributes into a single string with a separator.

Combined Attribute

- Yellow SM
- Red MD
- Purple_LG

Justification

- 1. **Preservation of Information**: This method retains the distinct identity of each combination of Color and Size without losing any information.
- 2. **Ease of Decoding**: The combined attribute can be easily split back into the original attributes if needed, preserving the flexibility of the dataset.
- 3. **Efficiency in Modeling**: This combined attribute can be treated as a categorical variable in machine learning models, facilitating better handling of the dataset.

Example

Original Data:

Color: Yellow, Size: SMColor: Red, Size: MDColor: Purple, Size: LG

Transformed Data:

Combined Attribute: Yellow_SMCombined Attribute: Red_MDCombined Attribute: Purple_LG

This approach maintains a clear and distinct identification of each combination of attributes while allowing for efficient data processing and analysis.