

André Viegas - A92833 Carlos Ferreira – A92846 Beatriz Demétrio – A92839 Ano 2 - Turno 1 – Grupo 3 Engenharia Física

T9 - Interferência e Difração

L (cm)	75.50
--------	-------

Cálculo do comprimento de onda (λ) a partir da difracção da dupla fenda				
b (mm)	a (mm)	Nº de franjas (N)	y (cm)	λ (m)
0.04	0.25	10.00	2.00	6.62E-07
0.04	0.50	20.00	2.00	6.62E-07
0.08	0.25	6.00	1.20	6.62E-07

Cálculo do comprimento de onda (λ) a partir da difracção da fenda simples				
b (mm)	Nº de franjas (N)	y (cm)	θ (rad)	λ (m)
0.02	1.00	2.40	0.03	6.35E-07
0.04	1.00	1.20	0.02	6.36E-07
0.08	1.00	0.60	0.01	6.36E-07
0.16	1.00	0.30	0.00	6.36E-07
			média	6.36E-07

L (cm)	106.30
λ (nm)	632.80

Espessura do cabelo				
Dono do cabelo	Nº de franjas (N)	y(cm)	θ (rad)	Espessura (m)
Beatriz	2.00	1.60	0.01	8.41E-05
André	3.00	2.00	0.01	1.01E-04
Carlos	2.00	1.60	0.01	8.41E-05

Para o cálculo do comprimento de onda utilizou-se a seguinte fórmula:

$$\lambda = \frac{a}{N} * \frac{y}{L}$$

tendo obtido, assim, $\lambda=662nm$, o que está bastante próximo do valor teórico: $\lambda_{teórico} = 632nm$.

Obteve-se θ através da equação seguinte:

$$\theta = \arctan\left(\frac{y}{N*L}\right)$$

 $\theta = \arctan\left(\frac{y}{N*L}\right)$ Deste modo, calculou-se λ da seguinte forma:

$$\lambda = b * \sin(\theta)$$

tendo obtido $\lambda = 636nm$, sendo assim este valor muito mais próximo do valor teórico que o valor calculado anteriormente.

Deduz-se, então, que este será um método melhor.

Para o cálculo do θ utilizou-se a mesma fórmula que no ponto anterior e de forma a obter a espessura recorreu-se ao seguinte:

$$Espessura = \frac{\lambda}{\sin(\theta)}$$

Sendo que a espessura média de um cabelo é cerca 7*10^-5, considerou-se, então, que os resultados obtidos encontram-se na mesma ordem de