Paper_MEPOP_1

AUTHOR Pedro Fierro

The Impact of Political Campaigns on Affection: The Case of the First Chilean Constitutional Process (2022)

Authors: Pedro Fierro, Claudia Ramírez, Andrés Sherman, Sebastián Rivera y Magdalena Saldaña

⁺ Este documento es para compartir ideas y tener acceso al código que estamos ocupando.

Environment

Preparing our environment (loading libraries).

```
library(haven)
library(knitr)
library(lattice)
library(tidyverse)
library(here)
library(flextable)
library(devtools)
library(lavaan)
library(ggplot2)
library(plm)
library(naniar)
library(purrr)
library(psych)
library(semPlot)
```

Cross-Sectional Approach

Importing data and creating variables

```
#Import Data

data_w1 <- read_sav("Data_W1.sav")

# ID
data_w1$id <- data_w1$CodPanelista

# Age</pre>
```

```
data_w1$age_num <- data_w1$age</pre>
# Socioeconomic Status
data w1$ses <- data w1$RECO NSE
# Education
data_w1$educ <- data_w1$P60
# Sex (1=women)
data w1 <- data w1%>%
  mutate(sex = ifelse(SEX == 2, 1,
                        ifelse(SEX == 1, 0, NA)))
# Ideology
data_w1$ideology <- ifelse(data_w1$P32 == 99, NA, data_w1$P32)</pre>
# Online Political Efficacy
data_w1$ope1 <- data_w1$P59_1</pre>
data w1$ope2 <- data w1$P59 2
data_w1$ope3 <- data_w1$P59_3</pre>
data_w1\$ope4 \leftarrow data_w1\$P59_4
# External Political Efficacy (recode)
data w1$extef1 <- data w1$P58 1
data w1$extef2 <- data w1$P58 2
data_w1$extef3 <- data_w1$P58_3</pre>
# To recode efficacies (intef1, intef3, extef1, extef3, extef4)
data w1 <- data w1 %>%
  mutate(across(c(extef1, extef2, extef3), \sim 6 - .x))
# Internal Political Efficacy
data w1$intef1 <- data w1$P58 4
data_w1$intef2 <- data_w1$P58_5</pre>
data_w1$intef3 <- data_w1$P58_6</pre>
# Media Exposure
data w1$tv <- data w1$P4 1
data_w1$cable <- data_w1$P4_2</pre>
data_w1$newspaper <- data_w1$P4_3</pre>
data_w1$radio <- data_w1$P4_4
data_w1$tradonline <- data_w1$P4_5</pre>
data w1$online <- data w1$P4 6
data_w1$podcast <- data_w1$P4_7</pre>
data_w1$officialsm <- data_w1$P4_8</pre>
# Social Media Exposure
data_w1$fb \leftarrow ifelse(data_w1$P5_1 == 99, NA, data_w1$P5_1)
data_w1$insta <- ifelse(data_w1$P5_2 == 99, NA, data_w1$P5_2)
data_w1$twitter <- ifelse(data_w1$P5_3 == 99, NA, data_w1$P5_3)</pre>
data w1$whatsapp \leftarrow ifelse(data w1$P5 4 == 99, NA, data w1$P5 4)
```

localhost:5265 2/30

```
data_w1$youtube <- ifelse(data_w1$P5_5 == 99, NA, data_w1$P5_5)</pre>
data_w1$tiktok <- ifelse(data_w1$P5_6 == 99, NA, data_w1$P5_6)</pre>
data_w1$discord <- ifelse(data_w1$P5_7 == 99, NA, data_w1$P5_7)</pre>
data w1$twitch <- ifelse(data w1$P5 8 == 99, NA, data w1$P5 8)
# Franja Exposure
data_w1$franja <- data_w1$P6_1</pre>
# Social Media Political Use
data_w1$use1 <- data_w1$P25_5</pre>
data_w1$use2 <- data_w1$P25_6</pre>
data w1$use3 <- data w1$P25 7
data_w1$use4 <- data_w1$P25_8</pre>
data_w1$use5 <- data_w1$P25_9</pre>
data_w1$use6 <- data_w1$P25_10
data_w1$use7 <- data_w1$P25_11</pre>
# Interest
data_w1$polint <- data_w1$P21</pre>
data_w1$procint <- data_w1$P22</pre>
data_w1$plebint <- data_w1$P23</pre>
```

Checking the new variables

2

1 988 1129

```
describe(data_w1$age_num)
                      sd median trimmed
                                          mad min max range skew kurtosis
           n mean
                                                                             se
X1
      1 2117 44.26 14.78
                             42
                                  43.83 16.31 18 84
                                                          66 0.27
                                                                     -0.890.32
table(data_w1$ses)
      2
          3
293 289 511 740 284
table(data w1$educ)
 1
      2
          3
                          7
                      6
                              8
                                    10
 6 27 105 141 543 182 324 236 414 139
table(data_w1$SEX)
```

localhost:5265 3/30

```
table(data_w1$sex)
  0
      1
988 1129
table(data_w1$ideology)
       2 3 4 5
                       6 7 8
135 43 95 129 125 571 91 107 80 51 178
table(data_w1$ope1)
 1 2 3 4 5
590 352 687 268 220
table(data_w1$ope2)
 1 2 3 4
459 335 680 340 303
table(data_w1$ope3)
 1 2
        3
            4
338 265 689 439 386
table(data_w1$ope4)
 1 2 3 4
719 386 618 210 184
table(data_w1$extef1)
 1 2 3 4
914 384 478 170 171
table(data_w1$extef2)
```

localhost:5265 4/30

5

3 4

1

2

1172 334 375 110 126

```
table(data_w1$extef3)
```

1 2 3 4 5 1003 309 476 154 175

```
table(data_w1$intef1)
```

1 2 3 4 5 164 166 732 467 588

```
table(data_w1$intef2)
```

1 2 3 4 5 244 242 671 469 491

```
table(data_w1$intef3)
```

1 2 3 4 5 133 169 594 485 736

```
table(data_w1$tv)
```

1 2 3 4 5 405 298 407 342 665

```
table(data_w1$cable)
```

1 2 3 4 5 700 333 398 336 350

table(data_w1\$newspaper)

1 2 3 4 5 1069 361 336 192 159

```
table(data_w1$radio)
```

localhost:5265 5/30

```
1 2 3 4 5
778 335 410 287 307
```

```
table(data_w1$tradonline)
```

1 2 3 4 5 757 371 427 314 248

```
table(data_w1$online)
```

1 2 3 4 5 891 351 361 266 248

```
table(data_w1$podcast)
```

1 2 3 4 5 1307 288 256 163 103

```
table(data_w1$officialsm)
```

1 2 3 4 5 615 273 445 337 447

```
table(data_w1$fb)
```

1 2 3 4 5 494 272 358 300 622

```
table(data_w1$insta)
```

1 2 3 4 5 539 279 325 287 503

```
table(data_w1$twitter)
```

1 2 3 4 5 698 185 237 202 309

```
table(data_w1$whatsapp)
 1 2 3 4 5
636 276 347 247 583
table(data_w1$youtube)
 1 2 3 4
728 300 317 283 399
table(data_w1$tiktok)
 1 2 3 4 5
771 181 225 149 277
table(data_w1$discord)
               4
                    5
  1
      2
          3
1025
      66
          80
               41
                   28
table(data_w1$twitch)
 1
    2
       3
           4
999 76 75 36 35
table(data_w1$franja)
 1 2 3 4
661 451 442 255 308
table(data_w1$polint)
 1 2 3 4
533 243 539 430 372
table(data_w1$procint)
```

localhost:5265

7/30

1

2 3 4 5

386 186 403 447 695

```
table(data_w1$plebint)
```

```
1 2 3 4 5
346 171 331 382 887
```

Creating Factors

Reliability Test

```
cronbach_ope <- alpha(na.omit(data_w1[c("ope1", "ope2", "ope3", "ope4")]))
cronbach_ope

cronbach_intef <- alpha(na.omit(data_w1[c("intef1", "intef2", "intef3")]))
cronbach_intef

cronbach_extef <- alpha(na.omit(data_w1[c("extef1", "extef2", "extef3")]))
cronbach_extef

cronbach_media <- alpha(na.omit(data_w1[c("tv", "cable", "newspaper", "radio", "tradonlin cronbach_media

cronbach_social <- alpha(na.omit(data_w1[c("fb", "insta", "twitter", "whatsapp", "youtube cronbach_social

cronbach_interest <- alpha(na.omit(data_w1[c("polint", "procint", "plebint")]))
cronbach_interest

cronbach_poluse <- alpha(na.omit(data_w1[c("use1", "use2", "use3", "use4", "use5", "use6" cronbach_poluse</pre>
```

Confirmatory Factor Analysis

```
data_w1_na <- na.omit(data_w1[c("id", "polint", "procint", "plebint", "ope1", "ope2", "op
sum(is.na(data_w1_na))

data_w1_na <- data_w1_na %>%
    mutate(across(where(is.labelled), as.numeric))

cfa.model <- 'ope =~ ope1 + ope2 + ope3 + ope4
    intef =~ intef1 + intef2 + intef3
        extef =~ extef1 + extef2 + extef3
        media =~ tv + cable + newspaper + radio + tradonline + online + podcast + o
        social =~ fb + insta + twitter + whatsapp + youtube + tiktok + discord + tw
        interest =~ polint + procint + plebint</pre>
```

```
poluse =~ use1 + use2 + use3 + use4 + use5 + use6 + use7'

fit_cfa <- cfa(cfa.model, data = data_w1_na)
latent_scores <- predict(fit_cfa)

data_w1_scores <- cbind(data_w1_na, latent_scores)</pre>
```

Cross-sectional Analysis

Para estos modelos, debiésemos pensar si incluir o no political interest como control. Yo acá las incluí, pero no estoy seguro. Creo que "teóricamente" sería sensato no incluirla, porque puede esconder parte del efecto (multicolinealidad ¿?)

OLSE for Online Political Efficacy

Media Exposure on OPE

```
ols_ope1 <- lm(ope ~ age_num + ses + educ + sex + interest + media, data = data_w1_scores
summary(ols_ope1)</pre>
```

```
Call:
lm(formula = ope ~ age_num + ses + educ + sex + interest + media,
    data = data_w1_scores)
Residuals:
     Min
                                 30
               10
                   Median
                                        Max
-2.08246 -0.67363 0.01413 0.58393 2.54230
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
            0.167571
                        0.222072
                                  0.755 0.450659
            -0.007486
                        0.001975 -3.790 0.000159 ***
age_num
                        0.029457 1.583 0.113743
ses
             0.046625
educ
             0.008761
                        0.016388
                                  0.535 0.593047
                        0.055913 -1.953 0.051109 .
sex
            -0.109179
             0.271343
                        0.031602
                                  8.586 < 2e-16 ***
interest
                                  4.675 3.3e-06 ***
             0.246881
                        0.052811
media
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9318 on 1127 degrees of freedom
Multiple R-squared: 0.1326,
                               Adjusted R-squared: 0.1279
F-statistic: 28.7 on 6 and 1127 DF, p-value: < 2.2e-16
```

Social Media Exposure on OPE

localhost:5265 9/30

```
ols_ope2 <- lm(ope \sim age_num + ses + educ + sex + interest + social, data = data_w1_score summary(ols_ope2)
```

```
Call:
```

```
lm(formula = ope ~ age_num + ses + educ + sex + interest + social,
    data = data w1 scores)
```

Residuals:

```
Min 1Q Median 3Q Max -2.2066 -0.6774 0.0196 0.5708 2.6678
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.155862
                       0.218911
                                  0.712 0.476622
                       0.001952 -3.348 0.000841 ***
age num
           -0.006537
ses
            0.027649
                       0.029203 0.947 0.343962
                       0.016167 0.894 0.371409
educ
            0.014456
           -0.122152
                       0.055164 - 2.214 0.027005 *
sex
interest
            0.270681
                       0.029706 9.112 < 2e-16 ***
social
            0.235806
                       0.031859 7.402 2.63e-13 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9187 on 1127 degrees of freedom Multiple R-squared: 0.1567, Adjusted R-squared: 0.1522 F-statistic: 34.91 on 6 and 1127 DF, p-value: < 2.2e-16

Franja Exposure on OPE

```
ols_ope3 <- lm(ope ~ age_num + ses + educ + sex + interest + franja, data = data_w1_score summary(ols_ope3)
```

Call:

```
lm(formula = ope ~ age_num + ses + educ + sex + interest + franja,
    data = data_w1_scores)
```

Residuals:

```
Min 10 Median 30 Max -2.03446 -0.67228 0.04088 0.60559 2.49983
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.113075
                       0.231997
                                  0.487 0.626071
           -0.007528
                       0.001995 - 3.774 \ 0.000169 ***
age num
                       0.029724 1.721 0.085499 .
            0.051160
ses
            0.010789
                       0.016597
                                  0.650 0.515785
educ
                       0.056748 - 1.947 0.051727.
           -0.110514
sex
```

20/09/2024, 14:00

```
Paper_MEPOP_1
            0.325612
                      0.030324 \quad 10.738 < 2e-16 ***
interest
franja
            0.011272
                      0.020765
                                0.543 0.587357
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9406 on 1127 degrees of freedom
Multiple R-squared: 0.116, Adjusted R-squared: 0.1113
F-statistic: 24.64 on 6 and 1127 DF, p-value: < 2.2e-16
Social Media Political Use on OPE
 ols_ope4 <- lm(ope ~ age_num + ses + educ + sex + interest + poluse, data = data_w1_score
 summary(ols ope4)
Call:
lm(formula = ope ~ age_num + ses + educ + sex + interest + poluse,
   data = data_w1_scores)
Residuals:
    Min
              10
                  Median
                              30
                                     Max
-2.34027 -0.66994 0.02551 0.58008 2.46143
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2857804 0.2159867
                                1.323 0.18606
           age_num
ses
            0.0114148 0.0288750 0.395 0.69268
           -0.0003239 0.0159404 -0.020 0.98379
educ
           -0.1001032 0.0542733 -1.844 0.06538 .
sex
            interest
            poluse
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9044 on 1127 degrees of freedom
Multiple R-squared: 0.1828,
                             Adjusted R-squared: 0.1785
F-statistic: 42.02 on 6 and 1127 DF, p-value: < 2.2e-16
OLSE for Internal Efficacy
Media Exposure on IPE
```

```
ols_intef1 <- lm(intef ~ age_num + ses + educ + sex + interest + media, data = data_w1_sc
summary(ols intef1)
```

```
Call:
```

```
lm(formula = intef ~ age_num + ses + educ + sex + interest +
   media, data = data w1 scores)
```

localhost:5265 11/30

```
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-1.94800 -0.33611 0.00455 0.36349 1.46184
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.363010
                       0.125192 -2.900 0.00381 **
            0.006803
                       0.001114 6.109 1.38e-09 ***
age num
                       0.016606
                                  0.182 0.85586
ses
            0.003017
            0.013575
                       0.009239 1.469 0.14202
educ
                       0.031521 - 2.405 0.01631 *
```

-0.075822

0.293515

0.095937

media ___

sex

interest

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

 $0.017816 \quad 16.475 < 2e-16 ***$

0.029772 3.222 0.00131 **

Residual standard error: 0.5253 on 1127 degrees of freedom Multiple R-squared: 0.3152, Adjusted R-squared: 0.3115 F-statistic: 86.44 on 6 and 1127 DF, p-value: < 2.2e-16

Social Media Exposure on IPE

```
ols_intef2 <- lm(intef ~ age_num + ses + educ + sex + interest + social, data = data_w1_s
summary(ols intef2)
```

Call:

```
lm(formula = intef ~ age_num + ses + educ + sex + interest +
    social, data = data_w1_scores)
```

Residuals:

```
Min
                   Median
                                30
              10
                                        Max
-1.90888 -0.33829 0.00729 0.35953 1.42242
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                       0.125720 - 2.951 0.00323 **
(Intercept) -0.371061
age num
            0.006825
                       0.001121 6.086 1.58e-09 ***
ses
            0.003759
                       0.016771
                                 0.224 0.82270
educ
            0.014289
                       0.009284 1.539 0.12408
                       0.031680 - 2.393 0.01687 *
sex
           -0.075816
                       0.017060 18.371 < 2e-16 ***
interest
            0.313414
social
            0.011329
                       0.018297 0.619 0.53592
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5276 on 1127 degrees of freedom Multiple R-squared: 0.3091, Adjusted R-squared: 0.3054 F-statistic: 84.03 on 6 and 1127 DF, p-value: < 2.2e-16

localhost:5265 12/30

ses

educ

-0.002336

0.012202

Franja Exposure on IPE

```
ols_intef3 <- lm(intef ~ age_num + ses + educ + sex + interest + franja, data = data_w1_s
 summary(ols_intef3)
Call:
lm(formula = intef \sim age num + ses + educ + sex + interest +
    franja, data = data_w1_scores)
Residuals:
     Min
               10
                   Median
                                 30
                                        Max
-1.89064 -0.33505 0.00811 0.35401 1.39402
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.338893
                       0.130095 -2.605 0.00931 **
age_num
            0.006747
                        0.001119 6.031 2.2e-09 ***
                                  0.313 0.75398
ses
             0.005225
                        0.016668
                       0.009307 1.433 0.15204
educ
            0.013340
                        0.031822 - 2.260 0.02403 *
            -0.071906
sex
interest
            0.320533
                        0.017004 18.850 < 2e-16 ***
           -0.011325 0.011644 -0.973 0.33095
franja
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5275 on 1127 degrees of freedom
Multiple R-squared: 0.3094,
                               Adjusted R-squared: 0.3057
F-statistic: 84.16 on 6 and 1127 DF, p-value: < 2.2e-16
Social Media Political Use on IPE
 ols intef4 <- lm(intef ~ age num + ses + educ + sex + interest + poluse, data = data w1 s
 summary(ols_intef4)
Call:
lm(formula = intef ~ age_num + ses + educ + sex + interest +
    poluse, data = data_w1_scores)
Residuals:
     Min
               10
                   Median
                                 30
                                        Max
-1.98528 -0.32789 0.00003 0.35932 1.41830
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                       0.125529 - 2.758 0.00591 **
(Intercept) -0.346221
             0.007002
                        0.001117
                                  6.270 5.14e-10 ***
age num
```

localhost:5265

1.317 0.18807

0.016782 -0.139 0.88933

0.009264

OLSE for External Efficacy

Media Exposure on EPE

```
ols_extef1 <- lm(extef ~ age_num + ses + educ + sex + interest + media, data = data_w1_sc
summary(ols_extef1)</pre>
```

```
Call:
```

```
lm(formula = extef ~ age_num + ses + educ + sex + interest +
    media, data = data_w1_scores)
```

Residuals:

```
Min 1Q Median 3Q Max -1.41141 -0.65649 -0.08126 0.49539 2.64045
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.238243
                      0.188089
                                1.267
                                        0.2055
                      0.001673 -6.452 1.64e-10 ***
age num
          -0.010794
            0.045041
                      0.024949 1.805
                                       0.0713 .
ses
                      0.013880 0.658 0.5109
educ
           0.009128
                      0.047357 1.315 0.1888
           0.062272
sex
interest
           -0.044979
                      0.026766 -1.680 0.0932 .
media
            0.018439
                      0.044730
                                0.412
                                       0.6803
```

```
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.7892 on 1127 degrees of freedom Multiple R-squared: 0.05861, Adjusted R-squared: 0.0536 F-statistic: 11.69 on 6 and 1127 DF, p-value: 9.626e-13
```

Social Media Exposure on EPE

```
ols_extef2 <- lm(extef \sim age_num + ses + educ + sex + interest + social, data = data_w1_s summary(ols_extef2)
```

```
Call:
lm(formula = extef ~ age num + ses + educ + sex + interest +
```

```
social, data = data_w1_scores)
```

Residuals:

```
Min 10 Median 30 Max
-1.44562 -0.62662 -0.07256 0.50110 2.64300
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.24044
                      0.18720
                               1.284 0.19926
                      0.00167 -6.240 6.19e-10 ***
age_num
          -0.01042
           0.03650
                      0.02497
                               1.462 0.14409
ses
                     0.01383
                               0.786 0.43192
educ
           0.01087
           0.05688 0.04717
                               1,206 0,22819
sex
interest
          -0.06271
                     0.02540 - 2.469 0.01371 *
social
           0.08806
                      0.02724 3.232 0.00126 **
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7856 on 1127 degrees of freedom Multiple R-squared: 0.06711, Adjusted R-squared: 0.06215 F-statistic: 13.51 on 6 and 1127 DF, p-value: 7.525e-15

Franja Exposure on EPE

```
ols_extef3 <- lm(extef \sim age_num + ses + educ + sex + interest + franja, data = data_w1_s summary(ols_extef3)
```

Call:

```
lm(formula = extef ~ age_num + ses + educ + sex + interest +
    franja, data = data w1 scores)
```

Residuals:

```
Min 1Q Median 3Q Max -1.46010 -0.65337 -0.06918 0.49670 2.65073
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.170608 0.194509
                                 0.877
                                         0.3806
age_num
           -0.010741
                      0.001672 -6.422 1.98e-10 ***
ses
            0.044755
                      0.024921 1.796
                                        0.0728 .
                      0.013915 0.770 0.4414
educ
            0.010716
                                         0.2399
sex
            0.055948
                      0.047578
                                1.176
interest
           -0.049246
                      0.025424 -1.937
                                         0.0530 .
franja
            0.022883
                      0.017409
                                 1.314
                                         0.1890
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7886 on 1127 degrees of freedom Multiple R-squared: 0.05991, Adjusted R-squared: 0.0549 F-statistic: 11.97 on 6 and 1127 DF, p-value: 4.612e-13

Social Media Political Use on EPE

```
ols_extef4 <- lm(extef ~ age_num + ses + educ + sex + interest + poluse, data = data_w1_s
summary(ols_extef4)
Call:
lm(formula = extef \sim age num + ses + educ + sex + interest +
   poluse, data = data_w1_scores)
Residuals:
    Min
              10
                  Median
                              30
                                      Max
-1.35393 -0.62228 -0.07628 0.48927 2.53237
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.317891
                      0.185045
                                1.718
                                       0.0861 .
age_num
          -0.010072
                      0.001646 -6.118 1.31e-09 ***
                      0.024738 0.896 0.3703
ses
            0.022173
            0.003207
                      0.013657 0.235
                                       0.8144
educ
            0.066601
                      0.046498 1.432 0.1523
sex
                      0.027984 -4.748 2.32e-06 ***
interest
          -0.132870
            poluse
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7748 on 1127 degrees of freedom
Multiple R-squared: 0.09258,
                             Adjusted R-squared: 0.08775
F-statistic: 19.16 on 6 and 1127 DF, p-value: < 2.2e-16
```

Longitudinal Approach

Importing data and creating variables

```
#Import Data
data_w3 <- read_sav("Data_W3.sav")

# ID
data_w3$id <- data_w3$CodPanelista

# Age
data_w3$age_num <- data_w3$age

# Socioeconomic Status
data_w3$ses <- data_w3$RECO_NSE

# Sex (1=women)</pre>
```

```
data_w3 <- data_w3%>%
  mutate(sex = ifelse(SEX == 2, 1,
                        ifelse(SEX == 1, 0, NA)))
# Ideology
data_w3$ideology <- ifelse(data_w3$P32 == 99, NA, data_w3$P32)</pre>
# Social Media Political Use
data w3$use1 <- data w3$P25 5
data_w3$use2 <- data_w3$P25_6
data_w3$use3 <- data_w3$P25_7</pre>
data w3$use4 <- data w3$P25 8
data_w3$use5 <- data_w3$P25_9</pre>
data_w3$use6 <- data_w3$P25_10</pre>
data_w3$use7 <- data_w3$P25_11</pre>
# Online Political Efficacy
data_w3$ope1 <- data_w3$P59_1</pre>
data_w3$ope2 <- data_w3$P59_2</pre>
data_w3$ope3 <- data_w3$P59_3</pre>
data_w3$ope4 <- data_w3$P59_4</pre>
# External Political Efficacy (recode)
data_w3$extef1 <- data_w3$P58_1</pre>
data w3$extef2 <- data w3$P58 2
data_w3$extef3 <- data_w3$P58_3</pre>
# To recode efficacies (intef1, intef3, extef1, extef3, extef4)
data w3 <- data w3 %>%
  mutate(across(c(extef1, extef2, extef3), \sim 6 - .x))
# Internal Political Efficacy
data w3$intef1 <- data w3$P58 4
data_w3$intef2 <- data_w3$P58_5</pre>
data_w3$intef3 <- data_w3$P58_6</pre>
```

Checking the new variables

1 2 3 4 5 148 132 244 281 97

```
table(data_w3$SEX)
 1 2
438 464
table(data_w3$sex)
438 464
table(data_w3$P32)
          3
                   5
                                 9 10 99
               4
                      6
                        7
                             8
53 19 49 36 51 276 51 36 50 18 64 199
table(data_w3$ideology)
           3
              4 5
                                 9 10
    1
                      6 7
                             8
53 19 49 36 51 276 51 36 50 18 64
table(data_w3$ope1)
 1 2 3 4
227 118 325 105 127
table(data_w3$ope2)
 1 2 3 4
178 108 321 147 148
table(data_w3$ope3)
 1 2
        3
            4
132 100 321 184 165
table(data_w3$ope4)
```

localhost:5265

1

2 3 4 5

308 145 271 102 76

```
table(data_w3$extef1)
```

```
1 2 3 4 5
465 176 169 37 55
```

```
table(data_w3$extef2)
```

```
1 2 3 4 5
568 133 136 31 34
```

```
table(data_w3$extef3)
```

```
1 2 3 4 5
453 145 182 55 67
```

```
table(data_w3$intef1)
```

```
1 2 3 4 5
59 65 327 194 257
```

```
table(data_w3$intef2)
```

```
1 2 3 4 5
83 104 307 176 232
```

```
table(data_w3$intef3)
```

```
1 2 3 4 5
40 46 279 198 339
```

Creating Long Dataset

```
# Subset the necessary variables
data_w1_selec <- data_w1 %>% select(id, ope1, ope2, ope3, ope4, intef1, intef2, intef3, e

data_w3_selec <- data_w3 %>% select(id, ope1, ope2, ope3, ope4, intef1, intef2, intef3, e

# Find common ids in both datasets
common_ids <- intersect(data_w1_selec$id, data_w3_selec$id)</pre>
```

```
# Filter both data frames to include only those ids
data_w1_selec <- data_w1_selec %>% filter(id %in% common_ids)
data_w3_selec <- data_w3_selec %>% filter(id %in% common_ids)

# Add a wave identifier
data_w1_selec$wave <- 1
data_w3_selec$wave <- 2

# Combine the datasets into a long format
data_long <- rbind(data_w1_selec, data_w3_selec)

# Check the first few rows of the combined dataset
head(data_long)

# Check the distribution of data across waves
table(data_long$wave)</pre>
```

Reliability Test for Long Dataset

```
cronbach_ope_long <- alpha(na.omit(data_long[c("ope1", "ope2", "ope3", "ope4")]))
cronbach_ope_long

cronbach_intef_long <- alpha(na.omit(data_long[c("intef1", "intef2", "intef3")]))
cronbach_intef_long

cronbach_extef_long <- alpha(na.omit(data_long[c("extef1", "extef2", "extef3")]))
cronbach_extef_long

cronbach_poluse_long <- alpha(na.omit(data_long[c("use1", "use2", "use3", "use4", "use5", cronbach_poluse_long</pre>
```

Creating Latent Variables for Long Dataset

localhost:5265 20/30

```
semPaths(fit_cfa_long, "std", layout = "tree", rotation = 2,
    whatLabels = "std", edge.label.cex = 0.8,
    sizeMan = 3, sizeLat = 7, title = TRUE)
```


Converting to Panel Dataset

```
# Convert your data to a panel data frame
pdata <- pdata.frame(data_long_scores, index = c("id", "wave"))</pre>
```

Panel Regression for OPE

Primero, estimamos dos modelos, uno con efectos fijos (FE) y otros con random effects (RA). Luego de estimar el test de Hausman (p-value > 0,05), decidimos reportar el modelo con random effects:

```
# Fit a random effects model
model_re_ope <- plm(ope ~ poluse + ideology + ses + sex + age_num, data = pdata, model =

# Fit a FE model
model_fe_ope <- plm(ope ~ poluse + ideology + ses + sex + age_num, data = pdata, model =

# Perform the Hausman test
hausman_test_ope <- phtest(model_fe_ope, model_re_ope)</pre>
```

localhost:5265 21/30

```
# Print the results of the Hausman test
print(hausman_test_ope)
```

Hausman Test

```
data: ope ~ poluse + ideology + ses + sex + age_num
chisq = 2.9046, df = 4, p-value = 0.5739
alternative hypothesis: one model is inconsistent
```

```
# Summary of the random effects model
summary(model_re_ope)
```

```
Oneway (individual) effect Random Effect Model (Swamy-Arora's transformation)
```

Call:

```
plm(formula = ope ~ poluse + ideology + ses + sex + age_num,
    data = pdata, model = "random")
```

```
Unbalanced Panel: n = 771, T = 1-2, N = 1403
```

Effects:

var std.dev share idiosyncratic 0.5286 0.7270 0.608 individual 0.3401 0.5832 0.392 theta:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2199 0.3387 0.3387 0.3270 0.3387 0.3387
```

Residuals:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -1.90094 -0.52418 0.02308 0.00054 0.46377 2.18764
```

Coefficients:

```
Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.1400564 0.1504043 0.9312 0.35175
poluse 0.3942251 0.0267159 14.7562 < 2e-16 ***
ideology 0.0152520 0.0106178 1.4365 0.15087
ses -0.0102614 0.0234937 -0.4368 0.66227
sex 0.0415483 0.0583131 0.7125 0.47615
age_num -0.0039471 0.0020856 -1.8925 0.05842 .
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 856.36 Residual Sum of Squares: 736.75

R-Squared: 0.13967

```
Adj. R-Squared: 0.13659
Chisq: 227.325 on 5 DF, p-value: < 2.22e-16
```

Panel Regression for IPE

Primero, estimamos dos modelos, uno con efectos fijos (FE) y otros con random effects (RA). Luego de estimar el test de Hausman (p-value < 0,05), decidimos reportar el modelo con efectos fijos:

```
# Fit a random effects model
model_re_intef <- plm(intef ~ poluse + ideology + ses + sex + age_num, data = pdata, mode

# Fit a fixed effects model
model_fe_intef <- plm(intef ~ poluse + ideology + ses + sex + age_num, data = pdata, mode

# Perform the Hausman test
hausman_test_intef <- phtest(model_fe_intef, model_re_intef)

# Print the results of the Hausman test
print(hausman_test_intef)</pre>
```

Hausman Test

```
data: intef ~ poluse + ideology + ses + sex + age_num
chisq = 17.792, df = 4, p-value = 0.001355
alternative hypothesis: one model is inconsistent
```

```
# Summary of the random effects model
summary(model_fe_intef)
```

```
Oneway (individual) effect Within Model
Call:
plm(formula = intef ~ poluse + ideology + ses + sex + age_num,
   data = pdata, model = "within")
Unbalanced Panel: n = 771, T = 1-2, N = 1403
Residuals:
   Min. 1st Ou.
                   Median 3rd Ou.
                                        Max.
-1.03647 -0.10495 0.00000 0.10495 1.03647
Coefficients:
           Estimate Std. Error t-value Pr(>|t|)
poluse
        0.03420092 0.02366427 1.4453
                                         0.1489
ideology 0.00092247 0.01222762 0.0754
                                        0.9399
         0.01853026 0.03654759 0.5070
                                         0.6123
age_num 0.02178730 0.04529339 0.4810
                                         0.6307
```

Total Sum of Squares: 70.951 Residual Sum of Squares: 70.664

R-Squared: 0.0040503 Adj. R-Squared: -1.2234

F-statistic: 0.638481 on 4 and 628 DF, p-value: 0.63521

Panel Regression for EPE

Primero, estimamos dos modelos, uno con efectos fijos (FE) y otros con random effects (RA). Luego de estimar el test de Hausman (p-value > 0,05), decidimos reportar el modelo con random effects:

```
# Fit a random effects model
model_re_extef <- plm(extef ~ poluse + ideology + ses + sex + age_num, data = pdata, mode

# Fit a fixed effects model
model_fe_extef <- plm(extef ~ poluse + ideology + ses + sex + age_num, data = pdata, mode

# Perform the Hausman test
hausman_test_extef <- phtest(model_fe_extef, model_re_extef)

# Print the results of the Hausman test
print(hausman_test_extef)</pre>
```

Hausman Test

```
data: extef \sim poluse + ideology + ses + sex + age_num chisq = 1.1179, df = 4, p-value = 0.8914 alternative hypothesis: one model is inconsistent
```

```
# Summary of the random effects model
summary(model_re_extef)
```

```
Residuals:
   Min.
        1st Ou.
                  Median
                             Mean 3rd Ou.
                                              Max.
-1.23285 -0.43847 -0.12064 -0.00252 0.36063 2.30798
Coefficients:
             Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.4189241 0.1271025 3.2960 0.0009809 ***
            poluse
           -0.0155444 0.0089000 -1.7466 0.0807124 .
ideology
           -0.0079190 0.0197904 -0.4001 0.6890530
ses
            0.0798354 0.0495226 1.6121 0.1069404
sex
           -0.0077897    0.0017703    -4.4002    1.081e-05 ***
age_num
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       471.34
Residual Sum of Squares: 451.68
               0.041723
R-Squared:
Adj. R-Squared: 0.038293
Chisq: 60.7255 on 5 DF, p-value: 8.6054e-12
```

What's next

Esta es mi primera vez analizando datos panel, entonces me quedé con dudas sobre la parte panel regression.

- 1. Incluí variables sociodemográficas como control, pero son variables constantes en ambas olas... Creo que no está del todo correcto incluirlas, quizás es mejor estimar panel regression con FE.
- 2. Hay que ver cómo reportar el R-squared within, between y overall. Parece ser clave para interpretar los resultados del panel regression, pero no es algo que el código reporte por defecto.

Appendix Analyses With a Balanced Panel

En este apéndice testeamos los modelos pero, antes, balanceamos el panel En los modelos reportados antes, la muestra seguía desbalanceada, probablemente por casos que tenían NAs en algunas de las variables y algunas de las olas. Los resultados utilizando el panel balaneado son iguales.

```
# Subset and check for complete cases in each wave
data_w1_complete <- data_w1 %>%
    select(id, ope1, ope2, ope3, ope4, intef1, intef2, intef3, extef1, extef2, extef3, use1
    filter(complete.cases(.))

data_w3_complete <- data_w3 %>%
    select(id, ope1, ope2, ope3, ope4, intef1, intef2, intef3, extef1, extef2, extef3, use1
    filter(complete.cases(.))
```

localhost:5265 25/30

```
# Find common ids that are complete in both datasets
common_ids_complete <- intersect(data_w1_complete$id, data_w3_complete$id)

# Filter both data frames to include only those complete ids
data_w1_selec <- data_w1_complete %>% filter(id %in% common_ids_complete)
data_w3_selec <- data_w3_complete %>% filter(id %in% common_ids_complete)

# Add a wave identifier
data_w1_selec$wave <- 1
data_w3_selec$wave <- 2

# Combine the datasets into a long format
data_long_complete <- rbind(data_w1_selec, data_w3_selec)

# Check the first few rows of the combined dataset
head(data_long_complete)</pre>
```

```
# A tibble: 6 \times 23
  id
           ope1
                                     ope4
                                             intef1 intef2 intef3 extef1 extef2
                    ope2
                            ope3
           <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl+l> <dbl>
  <chr>
1 010a9d3... 1 [1 M... 1 [1 M... 1 [1 M... 5 [5 M... 3 [3]
                                                              2 [2]
                                                                                   1
2 0191331... 4 [4] 4 [4] 5 [5 M... 1 [1 M... 4 [4]
                                                     4 [4]
                                                              5 [5 M...
                                                                            1
                                                                                   1
                   1 [1 M... 3 [3]
                                     2 [2]
                                             5 [5 M... 1 [1 M... 2 [2]
3 023294d... 2 [2]
                                                                            1
                                                                                   1
4 030ff44... 2 [2]
                   3 [3]
                                     5 [5 M... 4 [4]
                                                     5 [5 M... 4 [4]
                                                                            2
                                                                                   1
                            3 [3]
5 038d5d9... 3 [3] 3 [3]
                            4 [4]
                                     3 [3] 4 [4]
                                                     3 [3]
                                                              4 [4]
                                                                            2
                                                                                   3
6 03c9053... 1 [1 M... 1 [1 M... 1 [1 M... 1 [1 M... 3 [3]
                                                                                   5
                                                     3 [3]
                                                              3 [3]
                                                                            3
# i 13 more variables: extef3 <dbl>, use1 <dbl+lbl>, use2 <dbl+lbl>,
    use3 <dbl+lbl>, use4 <dbl+lbl>, use5 <dbl+lbl>, use6 <dbl+lbl>,
#
    use7 <dbl+lbl>, sex <dbl>, ses <dbl+lbl>, age num <dbl>, ideology <dbl>,
    wave <dbl>
```

```
# Check the distribution of data across waves
table(data_long_complete$wave)
```

1 2 632 632

localhost:5265 26/30

```
data_long_complete_scores <- cbind(data_long_complete, latent_scores_long_complete)
# Convert your data to a panel data frame
pdata_complete <- pdata.frame(data_long_complete_scores, index = c("id", "wave"))</pre>
```

Panel Regressions OPE

```
# Fit a random effects model
model_re_ope_bal <- plm(ope ~ poluse + ideology + ses + sex + age_num, data = pdata_compl
# Fit a FE model
model_fe_ope_bal <- plm(ope ~ poluse + ideology + ses + sex + age_num, data = pdata_compl
# Perform the Hausman test
hausman_test_ope_bal <- phtest(model_fe_ope_bal, model_re_ope_bal)
# Print the results of the Hausman test
print(hausman_test_ope_bal)</pre>
```

Hausman Test

```
data: ope ~ poluse + ideology + ses + sex + age_num
chisq = 2.6035, df = 4, p-value = 0.6262
alternative hypothesis: one model is inconsistent
```

```
# Summary of the random effects model
summary(model_re_ope_bal)
```

```
Oneway (individual) effect Random Effect Model
   (Swamy-Arora's transformation)
Call:
plm(formula = ope ~ poluse + ideology + ses + sex + age_num,
   data = pdata_complete, model = "random")
Balanced Panel: n = 632, T = 2, N = 1264
Effects:
                 var std.dev share
idiosyncratic 0.5147 0.7174 0.608
individual
             0.3321 0.5763 0.392
theta: 0.3393
Residuals:
    Min.
            1st Ou.
                      Median
                                3rd Ou.
                                             Max.
-1.886505 -0.514816 0.027464 0.468951 2.148464
```

Coefficients:

localhost:5265 27/30

```
Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.1424367 0.1589574 0.8961 0.37022
poluse
             0.3974195 0.0283958 13.9957 < 2e-16 ***
             0.0149748 0.0108462 1.3807 0.16739
ideology
            -0.0113996 0.0251782 -0.4528 0.65073
ses
             0.0575954 0.0621716 0.9264 0.35424
sex
            -0.0045821 0.0022110 -2.0724 0.03822 *
age num
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         753.66
Residual Sum of Squares: 646.79
R-Squared:
                0.1418
Adj. R-Squared: 0.13839
Chisq: 207.853 on 5 DF, p-value: < 2.22e-16
Panel Regressions IPE
 # Fit a random effects model
 model_re_intef_bal <- plm(intef ~ poluse + ideology + ses + sex + age_num, data = pdata_c</pre>
 # Fit a fixed effects model
 model_fe_intef_bal <- plm(intef ~ poluse + ideology + ses + sex + age_num, data = pdata_c</pre>
 # Perform the Hausman test
 hausman test intef bal <- phtest(model fe intef bal, model re intef bal)
 # Print the results of the Hausman test
 print(hausman test intef bal)
    Hausman Test
data: intef ~ poluse + ideology + ses + sex + age_num
chisq = 14.977, df = 4, p-value = 0.00475
alternative hypothesis: one model is inconsistent
 # Summary of the random effects model
 summary(model_fe_intef_bal)
Oneway (individual) effect Within Model
Call:
plm(formula = intef ~ poluse + ideology + ses + sex + age_num,
    data = pdata complete, model = "within")
Balanced Panel: n = 632, T = 2, N = 1264
Residuals:
                1st Ou.
                                        3rd Ou.
       Min.
                             Median
                                                        Max.
```

localhost:5265 28/30

```
-9.3478e-01 -1.1405e-01 -5.5511e-17 1.1405e-01 9.3478e-01
Coefficients:
           Estimate Std. Error t-value Pr(>|t|)
poluse
         0.02603575 0.02226596 1.1693
                                         0.2427
ideology 0.00095487 0.01130251 0.0845
                                         0.9327
         0.01747224 0.03378143 0.5172
                                         0.6052
age num 0.01849735 0.04186544 0.4418
                                         0.6588
Total Sum of Squares:
                         60.546
Residual Sum of Squares: 60.372
R-Squared:
                0.002878
Adj. R-Squared: -1.0054
F-statistic: 0.453155 on 4 and 628 DF, p-value: 0.77012
# Fit a random effects model
model_re_extef_bal <- plm(extef ~ poluse + ideology + ses + sex + age_num, data = pdata_c</pre>
# Fit a fixed effects model
model_fe_extef_bal <- plm(extef ~ poluse + ideology + ses + sex + age_num, data = pdata_c</pre>
# Perform the Hausman test
hausman test extef bal <- phtest(model fe extef bal, model re extef bal)
# Print the results of the Hausman test
print(hausman_test_extef_bal)
    Hausman Test
data: extef ~ poluse + ideology + ses + sex + age_num
chisq = 0.7499, df = 4, p-value = 0.945
alternative hypothesis: one model is inconsistent
# Summary of the random effects model
summary(model re extef bal)
Oneway (individual) effect Random Effect Model
   (Swamy-Arora's transformation)
Call:
plm(formula = extef ~ poluse + ideology + ses + sex + age_num,
    data = pdata complete, model = "random")
Balanced Panel: n = 632, T = 2, N = 1264
Effects:
                 var std.dev share
idiosyncratic 0.3282 0.5729 0.55
```

individual 0.2690 0.5187 0.45

theta: 0.3845

Residuals:

Min. 1st Qu. Median 3rd Qu. Max. -1.18351 -0.43023 -0.12477 0.34248 2.33106

Coefficients:

Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.3686503 0.1354970 2.7207 0.006514 **
poluse 0.1381676 0.0237726 5.8121 6.171e-09 ***
ideology -0.0143471 0.0091673 -1.5650 0.117576
ses -0.0171061 0.0213970 -0.7995 0.424023
sex 0.0995493 0.0532494 1.8695 0.061555 .
age_num -0.0063578 0.0018923 -3.3598 0.000780 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 431.91 Residual Sum of Squares: 411.86

R-Squared: 0.046423 Adj. R-Squared: 0.042633

Chisq: 61.2435 on 5 DF, p-value: 6.7243e-12