

AP2129

#### **General Description**

The AP2129 is a 300mA, positive Voltage regulator ICs fabricated by CMOS process. The AP2129 provides two kinds of output voltage operation modes for setting the output voltage. Fixed output voltage mode senses the output voltage on  $V_{OUT}$ , adjustable output voltage mode needs two resistors as a voltage divider

The AP2129 series have features of low dropout voltage, low noise, high output voltage accuracy, and low current consumption which make them ideal for use in various battery-powered devices.

AP2129 has 1.0V, 1.2V, 1.8V, 2.6V, 2.8V, 3.0V and 3.3V fixed voltage version and 0.8V to 4.5V adjustable voltage version.

The AP2129 series are available in DFN-1.5x2-6 (1.0V, 1.2V, 1.8V, 2.6V, 2.8V, 3.0V, 3.3V) and SOT-23-5 (1.0V, 1.2V, 3.3V, ADJ) packages.

#### **Features**

- Wide Operating Voltage: 1.8V to 6V
- High Output Voltage Accuracy: ±2%
- High Ripple Rejection:
   65dB@ f=1kHz, 45dB@ f=10kHz
  - Low Standby Current: 0.1µA
- Low Quiescent Current: 60µA Typical
- Low Output Noise: 60μVrms
- Short Current Limit: 50mA
- Over Temperature Protection
- Compatible with Low ESR Ceramic Capacitor:  $1\mu F$  for  $C_{IN}$  and  $C_{OUT}$
- Excellent Line/Load Regulation
- Soft Start Time: 50µs
- Auto Discharge Resistance:  $R_{DS(ON)}=60\Omega$

#### **Applications**

- Datacom
- Notebook Computers
- Mother Board



Figure 1. Package Type of AP2129



AP2129

# **Pin Configuration**



Figure 2. Pin Configuration of AP2129 (Top View)

# **Pin Description**

| Pin Number  |          | Pin Name         | Function                                                             |  |  |
|-------------|----------|------------------|----------------------------------------------------------------------|--|--|
| DFN-1.5x2-6 | SOT-23-5 | 1 in reame       | Tunction                                                             |  |  |
| 1           | 3        | V <sub>IN</sub>  | Input Voltage                                                        |  |  |
| 2           | 2        | GND              | Ground                                                               |  |  |
| 3           | 1        | Shutdown         | Active High Enable Input Pin. Logic high=enable, logic low=shut-down |  |  |
| 4, 5        |          | NC               | No Connection                                                        |  |  |
|             | 5        | ADJ/NC           | Adjust Output for ADJ version/No Connection for Fixed Version        |  |  |
| 6           | 4        | V <sub>OUT</sub> | Regulated Output Voltage                                             |  |  |



AP2129

# **Functional Block Diagram**





Figure 3. Functional Block Diagram of AP2129



AP2129

## **Ordering Information**



| Package     | Temperature Range | Part Number          | Marking ID | Packing Type |
|-------------|-------------------|----------------------|------------|--------------|
| SOT-23-5    | -40 to 85°C       | AP2129K- ADJTRG1 GEJ |            | Tape & Reel  |
|             |                   | AP2129K-1.0TRG1      | GEK        | Tape & Reel  |
|             |                   | AP2129K-1.2TRG1      | GEL        | Tape & Reel  |
|             |                   | AP2129K-3.3TRG1      | GEM        | Tape & Reel  |
| DFN-1.5x2-6 | -40 to 85°C       | AP2129DN-1.0TRG1     | LA         | Tape & Reel  |
|             |                   | AP2129DN-1.2TRG1     | MA         | Tape & Reel  |
|             |                   | AP2129DN-1.8TRG1     | LB         | Tape & Reel  |
|             |                   | AP2129DN-2.6TRG1     | MB         | Tape & Reel  |
|             |                   | AP2129DN-2.8TRG1     | LC         | Tape & Reel  |
|             |                   | AP2129DN-3.0TRG1     | MC         | Tape & Reel  |
|             |                   | AP2129DN-3.3TRG1     | LD         | Tape & Reel  |

BCD Semiconductor's products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.



AP2129

## **Absolute Maximum Ratings (Note 1)**

| Parameter                                | Symbol           | Value                        |     | Unit |  |    |
|------------------------------------------|------------------|------------------------------|-----|------|--|----|
| Input Voltage                            | V <sub>IN</sub>  | 6.5                          |     | V    |  |    |
| Shutdown Input Voltage                   | $V_{CE}$         | -0.3 to V <sub>IN</sub> +0.3 |     | V    |  |    |
| Output Current                           | $I_{ m OUT}$     |                              | 450 |      |  |    |
| Junction Temperature                     | $T_{J}$          | 150                          |     | 150  |  | °C |
| Storage Temperature Range                | T <sub>STG</sub> | -65 to 150                   |     | °C   |  |    |
| Lead Temperature (Soldering, 10sec)      | $T_{LEAD}$       | 260                          |     | °C   |  |    |
| Thomas Degistance (Junction to Ambient)  | Δ.               | DFN-1.5x2-6                  | 100 | °C/W |  |    |
| Thermal Resistance (Junction to Ambient) | $\theta_{ m JA}$ | SOT-23-5 250                 |     |      |  |    |
| ESD (Human Body Model)                   | ESD              | 6000                         |     | V    |  |    |
| ESD (Machine Model)                      | ESD              | 200                          |     | V    |  |    |

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

## **Recommended Operating Conditions**

| Parameter                           | Symbol           | Min | Max | Unit |  |
|-------------------------------------|------------------|-----|-----|------|--|
| Input Voltage                       | $V_{\rm IN}$     | 1.8 | 6   | V    |  |
| Operating Ambient Temperature Range | $T_{\mathbf{A}}$ | -40 | 85  | °C   |  |



AP2129

#### **Electrical Characteristics**

## AP2129-1.0/1.2/1.8/2.6/2.8/3.0/3.3 Electrical Characteristics

 $(C_{IN}\!\!=\!\!1\mu F,C_{OUT}\!\!=\!\!1\mu F,Bold\ type face\ applies\ over\ -40^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!85^{o}C,unless\ otherwise\ specified.$ 

| Parameter                                             | Symbol                                                               | Conditions                                                                     |                                        | Min                      | Тур  | Max                       | Unit   |
|-------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|--------------------------|------|---------------------------|--------|
| Output Voltage                                        | V <sub>OUT</sub>                                                     | $V_{IN}=V_{OUT}+1V$ , (Note 2)<br>$1mA \le I_{OUT} \le 300mA$                  |                                        | 98%*<br>V <sub>OUT</sub> |      | 102%*<br>V <sub>OUT</sub> | V      |
| Input Voltage                                         | V <sub>IN</sub>                                                      |                                                                                |                                        | 1.8                      |      | 6                         | V      |
| Maximum Output Current                                | I <sub>OUT(MAX)</sub>                                                |                                                                                |                                        |                          | 450  |                           | mA     |
| Load Regulation                                       | $\Delta V_{OUT}$ /( $\Delta I_{OUT}*V_{OUT}$ )                       | V <sub>IN</sub> -V <sub>OUT</sub> =1V, (N<br>1mA≤I <sub>OUT</sub> ≤300m        |                                        |                          |      | 1.5                       | %/A    |
| Line Regulation                                       | $\Delta V_{OUT}$ /( $\Delta V_{IN}^* V_{OUT}$ )                      | V <sub>OUT</sub> +0.5V≤V <sub>IN</sub> ≤<br>I <sub>OUT</sub> =30mA             | 66V, (Note 2)                          |                          |      | 0.06                      | %/V    |
|                                                       |                                                                      | V <sub>OUT</sub> =1.0V, I <sub>OUT</sub> =                                     | =300mA                                 |                          | 800  |                           |        |
|                                                       |                                                                      | V <sub>OUT</sub> =1.2V, I <sub>OUT</sub> =                                     | =300mA                                 |                          | 600  |                           |        |
| Dropout Voltage                                       | $V_{DROP}$                                                           | V <sub>OUT</sub> =1.8V, I <sub>OUT</sub> =                                     | =300mA                                 |                          | 600  | 700                       | mV     |
|                                                       |                                                                      | V <sub>OUT</sub> =2.6V/2.8V/<br>I <sub>OUT</sub> =300mA                        | V <sub>OUT</sub> =2.6V/2.8V/3.0V/3.3V, |                          | 170  | 300                       |        |
| Quiescent Current                                     | $I_Q$                                                                | V <sub>IN</sub> =V <sub>OUT</sub> +1V, I <sub>OUT</sub> =0mA                   |                                        |                          | 60   | 90                        | μΑ     |
| Standby Current                                       | I <sub>STD</sub>                                                     | V <sub>IN</sub> =V <sub>OUT</sub> +1V,<br>V <sub>SHUTDOWN</sub> in off mode    |                                        |                          | 0.1  | 1.0                       | μΑ     |
|                                                       | PSRR                                                                 | Ripple 1Vp-p<br>V <sub>IN</sub> =V <sub>OUT</sub> +1V                          | f=100Hz                                |                          | 65   |                           | dB     |
| Power Supply<br>Rejection Ratio                       |                                                                      |                                                                                | f=1KHz                                 |                          | 65   |                           | dB     |
|                                                       |                                                                      | IN 001                                                                         | f=10KHz                                |                          | 45   |                           | dB     |
| Output Voltage<br>Temperature Coefficient             | $\begin{array}{c} (\Delta V_{OUT}/V_{OUT}) \\ /\Delta T \end{array}$ | I <sub>OUT</sub> =30mA, -40°C≤T <sub>J</sub> ≤85°C                             |                                        |                          | ±100 |                           | ppm/°C |
| Output Current Limit                                  | I <sub>LIMIT</sub>                                                   | V <sub>IN</sub> -V <sub>OUT</sub> =1V, V <sub>OUT</sub> =0.98*V <sub>OUT</sub> |                                        |                          | 400  |                           | mA     |
| Short Current Limit                                   | I <sub>SHORT</sub>                                                   | V <sub>OUT</sub> =0V                                                           |                                        |                          | 50   |                           | mA     |
| Soft Start Time                                       | $t_{\mathrm{UP}}$                                                    |                                                                                |                                        |                          | 50   |                           | μs     |
| RMS Output Noise                                      | V <sub>NOISE</sub>                                                   | T <sub>A</sub> =25°C, 10Hz ≤1                                                  | f≤100kHz                               |                          | 60   |                           | μVrms  |
| Shutdown "High" Voltage                               |                                                                      | Shutdown input voltage "High"                                                  |                                        | 1.5                      |      | 6                         | V      |
| Shutdown "Low" Voltage                                |                                                                      | Shutdown input voltage "Low"                                                   |                                        | 0                        |      | 0.4                       | V      |
| V <sub>OUT</sub> Discharge MOSFET R <sub>DS(ON)</sub> |                                                                      | Shutdown input voltage "Low"                                                   |                                        |                          | 60   |                           | Ω      |
| Shutdown Pull Down Resistance                         |                                                                      |                                                                                |                                        |                          | 3    |                           | ΜΩ     |
| Thermal Shutdown                                      |                                                                      |                                                                                |                                        |                          | 165  |                           | °C     |
| Thermal Shutdown Hysteresis                           |                                                                      |                                                                                |                                        |                          | 30   |                           | °С     |
| Thormal Desisten                                      |                                                                      |                                                                                | DFN-1.5x2-6                            |                          | 20   |                           | 00.777 |
| Thermal Resistance                                    | $\theta_{ m JC}$                                                     | SOT-23-5                                                                       |                                        |                          | 150  |                           | °C/W   |

Note 2: V<sub>IN</sub>=2.8V for 1.0 and 1.2 version



AP2129

# **Electrical Characteristics (Continued) AP2129-ADJ Electrical Characteristics**

 $(C_{IN}=1\mu F, C_{OUT}=1\mu F, Bold typeface applies over -40^{o}C \le T_{J} \le 85^{o}C$ , unless otherwise specified.)

| Parameter                                             | Symbol                                           | Conditions                                                                  |                                      | Min   | Тур  | Max   | Unit   |
|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|-------|------|-------|--------|
| Reference Voltage                                     | $V_{REF}$                                        | V <sub>IN</sub> =1.8V<br>1mA≤I <sub>OUT</sub> ≤300mA                        |                                      | 0.748 | 0.8  | 0.816 | V      |
| Input Voltage                                         | $V_{\rm IN}$                                     |                                                                             |                                      | 1.8   |      | 6     | V      |
| Maximum Output Current                                | I <sub>OUT(MAX)</sub>                            |                                                                             |                                      |       | 450  |       | mA     |
| Load Regulation                                       | $\Delta V_{OUT}$ /( $\Delta I_{OUT} * V_{OUT}$ ) | $V_{IN}$ - $V_{OUT}$ =1 $V$ ,<br>$1$ m $A \le I_{OUT} \le 300$ m.           | A                                    |       |      | 1.5   | %/A    |
| Line Regulation                                       | $\Delta V_{OUT}$ /( $\Delta V_{IN}^* V_{OUT}$ )  | $V_{OUT}$ +0.5 $V \le V_{IN} \le I_{OUT}$ =30mA                             | 66V                                  |       |      | 0.06  | %/V    |
| Quiescent Current                                     | $I_Q$                                            | V <sub>IN</sub> =V <sub>OUT</sub> +1V, I <sub>O</sub>                       | <sub>UT</sub> =0mA                   |       | 60   | 90    | μΑ     |
| Standby Current                                       | $I_{STD}$                                        | V <sub>IN</sub> =V <sub>OUT</sub> +1V,<br>V <sub>SHUTDOWN</sub> in off mode |                                      |       | 0.1  | 1.0   | μΑ     |
|                                                       | PSRR                                             | Ripple 1Vp-p<br>V <sub>IN</sub> =V <sub>OUT</sub> +1V                       | f=100Hz                              |       | 65   |       | dB     |
| Power Supply<br>Rejection Ratio                       |                                                  |                                                                             | f=1KHz                               |       | 65   |       | dB     |
| ,                                                     |                                                  |                                                                             | f=10KHz                              |       | 45   |       | dB     |
| Output Voltage<br>Temperature Coefficient             | $(\Delta V_{OUT}/V_{OUT})$ $/\Delta T$           | I <sub>OUT</sub> =30mA, -40°C≤T <sub>J</sub> ≤85°C                          |                                      |       | ±100 |       | ppm/°C |
| Output Current Limit                                  | I <sub>LIMIT</sub>                               |                                                                             |                                      |       | 400  |       | mA     |
| Short Current Limit                                   | $I_{SHORT}$                                      | V <sub>OUT</sub> =0V                                                        | V <sub>OUT</sub> =0V                 |       | 50   |       | mA     |
| Soft Start Time                                       | $t_{\mathrm{UP}}$                                |                                                                             |                                      |       | 50   |       | μs     |
| RMS Output Noise                                      | V <sub>NOISE</sub>                               | T <sub>A</sub> =25°C, 10Hz ≤f                                               | T <sub>A</sub> =25°C, 10Hz ≤f≤100kHz |       | 60   |       | μVrms  |
| Shutdown "High" Voltage                               |                                                  | Shutdown input voltage "High"                                               |                                      | 1.5   |      | 6     | V      |
| Shutdown "Low" Voltage                                |                                                  | Shutdown input voltage "Low"                                                |                                      | 0     |      | 0.4   | V      |
| V <sub>OUT</sub> Discharge MOSFET R <sub>DS(ON)</sub> |                                                  | Shutdown input voltage "Low"                                                |                                      |       | 60   |       | Ω      |
| Shutdown Pull Down Resistance                         |                                                  |                                                                             |                                      |       | 3    |       | ΜΩ     |
| Thermal Shutdown                                      |                                                  |                                                                             |                                      |       | 165  |       | °C     |
| Thermal Shutdown Hysteresis                           |                                                  |                                                                             |                                      |       | 30   |       | °C     |
| Thermal Resistance                                    |                                                  | DFN-1.5x2-6                                                                 |                                      |       | 20   |       | 00.777 |
| THEITHAI RESISTANCE                                   | $\theta_{ m JC}$                                 | SOT-23-5                                                                    |                                      |       | 150  |       | °C/W   |



#### **Typical Performance Characteristics**



100 T<sub>C</sub>=25°C V<sub>OUT</sub>=0.8V No Load 80 70 Supply Current (µA) 40 30 20 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Input Voltage(V)

Figure 4. Output Voltage vs. Output Current

Figure 5. Supply Current vs. Input Voltage





Figure 6. Supply Current vs. Output Current

Figure 7. Supply Current vs. Case Temperature







Figure 8. Short Current vs. Case Temperature

Figure 9. Output Voltage vs. Case Temperature





Figure 10. Output Voltage vs. Output Current

Figure 11. Output Voltage vs. Input Voltage







Figure 12. Output Voltage vs. Input Voltage (I<sub>OUT</sub>=300mA)

 $\label{eq:figure 13. Load Transient}$  (Conditions:  $C_{IN} = C_{OUT} = 1 \mu F, \ V_{IN} = 2.5 V, \ V_{OUT} = 0.8 V)$ 





 $\label{eq:figure 14. Load Transient}$  (Conditions: C  $_{IN}$  = C  $_{OUT}$  = 1  $\mu\text{F},~V_{IN}$  = 4.4V, V  $_{OUT}$  = 3.3V)

 $\label{eq:Figure 15. Line Transient}$  (Conditions: I\_OUT=30mA, C\_IN=C\_OUT=1 \$\mu\$F, \$V\_{IN}\$=2.5 to 3.5V, \$V\_{OUT}\$=0.8V)





 $\label{eq:conditions} Figure 16. Line Transient \\ (Conditions: I_{OUT}=30mA, C_{IN}=C_{OUT}=1\mu F, \\ V_{IN}=4 \ to \ 5V, \ V_{OUT}=3.3V)$ 

$$\label{eq:conditions} \begin{split} & \text{Figure 17. Soft Start Time} \\ & \text{(Conditions: I}_{OUT}\text{=0mA, C}_{IN}\text{=C}_{OUT}\text{=1}\mu\text{F,} \\ & \text{$V_{\overline{S}$hutdown}$=0 to 2V, $V_{OUT}$=3.3V)} \end{split}$$



 $\label{eq:figure 18.} Figure 18. Soft Start Time \\ (Conditions: I_{OUT}=0mA, C_{IN}=C_{OUT}=1\mu F, \\ V_{\overline{Shutdown}}=0 \text{ to 2V, V}_{OUT}=0.8V) \\$ 



Figure 19. PSRR vs. Frequency



AP2129





Figure 20. PSRR vs. Frequency

Figure 21. Power Dissipation vs. Case Temperature



## **Typical Application**



 $V_{OUT}=0.8*(1+R1/R2) V$ 



V<sub>OUT</sub>=1.0V, 1.2V, 1.8V, 2.6V, 2.8V, 3.0V, 3.3V

Figure 22. Typical Application of AP2129

Unit: mm(inch)



# 300mA HIGH SPEED, EXTREMELY LOW NOISE CMOS LDO REGULATOR

AP2129

#### **Mechanical Dimensions**

DFN-1.5x2-6





AP2129

#### **Mechanical Dimensions (Continued)**

SOT-23-5 Unit: mm(inch)







#### **BCD Semiconductor Manufacturing Limited**

http://www.bcdsemi.com

#### IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

#### MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

#### REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

#### - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

#### **Taiwan Office**

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788