Colles de mathématiques en PCSI 5

11 octobre 2011

On notera $\mathbb{U} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ et $\mathbb{H} = \{ z \in \mathbb{C} \mid \mathcal{I}m(z) > 0 \}$.

Exercice nº 1

Soient $z, z' \in \mathbb{U}$, avec $zz' \neq -1$. Prouver que $\frac{z+z'}{1+zz'} \in \mathbb{R}$.

Exercice nº 2

Calculer pour $n \ge 1$

$$\sum_{k=0}^{n} k \cos(kx), \quad \sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k} x}, \quad \sum_{k=0}^{n} \binom{n}{k} \cos(kx).$$

Exercice nº 3

1. Résoudre, selon le paramètre $\theta \in \mathbb{R}$, l'équation en $z \in \mathbb{C}$ suivante :

$$z^{2} - 2^{\theta+1}\cos(\theta)z + 2^{2\theta} = 0. \tag{1}$$

2. Soient A et B les points du plan complexe ayant les solutions de ?? comme affixe. Déterminer les valeurs de θ pour lesquelles le triangle OAB est équilatéral.

Exercice nº 4

Soit $z \in \mathbb{C} \setminus \{i\}$. Prouver l'équivalence

$$\left| \frac{z-i}{z+i} \right| < 1 \Longleftrightarrow \mathcal{I}m(z) > 0.$$

En déduire que $z\mapsto \frac{z-i}{z+i}$ induit une bijection de $\mathbb H$ sur $\mathbb D.$

Exercice nº 5

Soient $(a, b, c, d) \in \mathbb{R}^4$ tels que ad - bc > 0, et posons $\mathbb{H} = \{z \in \mathbb{C} \mid \mathcal{I}m(z) > 0\}$. On définit une application

$$f: \quad \mathbb{H} \to \quad \mathbb{H}$$
$$z \quad \mapsto \quad \frac{az+b}{cz+d}.$$

- 1. Vérifier que f est bien définie, c'est à dire que son expression a un sens en tout point de \mathbb{H} et qu'elle est bien à valeur dans \mathbb{H} .
- 2. Vérifier que f est une bijection de $\mathbb H$ dans lui-même.

Exercice nº 6

[Constructibilité du pentagone régulier] Soit $\omega=\mathrm{e}^{\frac{2i\pi}{5}}.$

- 1. En utilisant la relation $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$, donner une équation du second degré dont $\cos\left(\frac{2\pi}{5}\right)$ est solution.
- **2.** En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$.
- **3.** Expliquer alors comment tracer à la règle et au compas un pentagone régulier dans un cercle.

Exercice nº 7

Calculer pour $z \in \mathbb{C}$: $nz^{n-1} + (n-1)z^{n-2} + \cdots + 2z + 1$. En déduire

$$\sum_{k=1}^{n} k \sin\left(\frac{2k\pi}{n}\right).$$

Exercice nº 8

Soit $\omega = e^{\frac{2i\pi}{n}}$. Simplifier

$$\sum_{k=1}^{n} (1 + \omega^k)^n.$$

Exercice nº 9

Résoudre dans \mathbb{C}

$$z^{n} + 2z^{n-1} + \dots + 2z^{2} + 2z + 1 = 0.$$

Exercice nº 10

Soit E un ensemble fini de cardinal n. Déterminer en fonction de n

$$\sum_{X\in \mathcal{P}(E)}\operatorname{Card} X\;,\quad \sum_{X,Y\in \mathcal{P}(E)}\operatorname{Card}(X\cap Y)\;.$$

Exercice nº 11

- 1. Exprimer en fonction de $n \ge 1$: $\sum_{k=1}^{n} k$.
- 2. Prouver que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

3. En développant $(k+1)^4 - k^4$, déduire de ce qui précède une expression de

$$\sum_{k=1}^{n} k^3$$

4. Expliquer comment on peut calculer $\sum k^p$, $p \ge 1$, dans le cas général.

Exercice nº 12

Soit $n \ge 2$. Calculer

$$\sum_{1 \leqslant i,j \leqslant n} \min(i,j) , \quad \sum_{1 \leqslant i < j \leqslant n} ij , \quad \sum_{1 \leqslant i < j \leqslant n} (j-i) .$$

2

Exercice nº 13

On calcule une somme en la transformant en somme télescopique.

1. Prouver que pour tout entier naturel k on a la relation

$$\frac{2k}{k^4+k^2+1} = \frac{1}{k^2-k+1} - \frac{1}{k^2+k+1}.$$

2. Simplifier l'expression

$$\sum_{k=0}^{n} \frac{k}{k^4 + k^2 + 1}.$$

Exercice nº 14

[Passage du cartésien au polaire] Soit M un point du plan complexe, distinct de l'origine, dont l'affixe s'écrit $z=x+iy=r\mathrm{e}^{i\theta},\,x,y\in\mathbb{R},\,r>0$ et $\theta\in[-\pi,\pi[$. Exprimer alors r en fonction de x,y, puis θ en fonction de $\arctan\left(\frac{y}{x}\right)$, puis θ en fonction de $\arctan\left(\frac{y}{x+\sqrt{x^2+y^2}}\right)$. On prendra bien garde au domaine de validité des relations mises en évidence.