COMP9318 Project

Part 1: PQ for L_1 distance Implementation

Given data in shape (N, M), number of partitions P, initial centroids for P blocks and max_iter:

- 1) Partition data and initial centroids into P blocks, obtaining P data-blocks in shape (N, M/P).
- 2) Conduct **K-Medians clustering** on each block.
 - a) Assign points to clusters by finding "mean" with smallest Manhattan distance (L_1 distance) We used *scipy.spatial.distance.cdist(data,init,metric='cityblock')* to compute Manhattan distance $D(x, y) = \sum |x_i y_i|$.
 - b) Update 'means' as median value (dimension-wise) of each cluster This is the major change we made to accommodate L₁ distanceBy adopting median to find new centroids make the algorithm more reliable for discrete or even binary data sets. In other words, this approach is more robust to outliers.
 - i) bad centroids are kept in the project to ensure K=256 clusters returned.
- 3) Obtain codebooks in shape (P, K, M/P) and re-do a) one time to return codes in shape (N, P).

Part 2: Query using Inverted Multi-index with L₁ distance implementation

Given queries in shape (Q, M), codebooks in shape (P, K, M/P), codes in shape (N, P) and T:

- 1) Partition query into P blocks.
- 2) In each block: obtain PQ codebooks for the higher-order inverted multi-indices by calculating L_1 distances between query and codebooks.
- 3) Querying the higher-order inverted multi-indices to retrieve candidates from codes.
 - a) First stage, all q_i , q_j , q_k , q_l are independently matched to corresponding codebooks. Rather than using separate inputs like i, j in Algorithm 3.1 that only applies to P=2, it would be wise to use an arr[] to combine them.
 - b) Second stage, we follow Algorithm 3.1 to transverse the possible combinations of codewords $[u_i, v_j, w_k, x_l]$ in the order of increasing distances from q. We use a dictionary to track whether the combination has already been pushed into priority queue. We also avoid cases where K is over 256.
- 4) Stop searching when candidates obtained from codes exceeds the predefined length T.

As Algorithm 3.1 is in the project spec, we use the above method. However, we also find a more efficient way of searching rather than using Algorithm 3.1:

In this project, the possible combinations of codewords is fixed at 256^P. However, there may be far less data points. In other words, there will be lots of empty lists that correspond tal_i , v_j , w_k , x_l . that never co-occur together using Algorithm 3.1. To improve efficiency, **instead of identifying a sufficient number of possible combinations of codewords** [u_i , v_j , w_k , x_l] that are closest to q and concatenating their lists W_{ijkl} which will lead to a lot of unnecessary empty searches, we use the

<u>existing</u> combinations from codes to calculate the distances(the PQ codebooks we obtained in 2) is used here) and retrieve answers from the inverted multi-index. By doing so, no empty lists are searched and thus reduce overheads in computational cost.