1

Analog 12.7

EE:1205 Signals and System Indian Institute of Technology, Hyderabad

Prashant Maurya EE23BTECH11218

Question 15: A 100μ F capacitor in series with a 40Ω resistance is connected to a 110V, 60Hz supply.

- (a) What is the maximum current in the circuit?
- (b) What is the time lag between the current maximum and the voltage maximum?

Solution

Symbol	Value	Description
V	110 V	Voltage Supplied
ν	60 <i>Hz</i>	Frequency
R	40 Ω	Resistance
С	100 μF	Capacitance
ω	$2\pi v$	Angular Frequency
φ	$tan^{-1}\frac{1}{\omega CR}$	Phase Angle
I_0	$\frac{V_0}{Z}$	Max Current
V_0	$V \sqrt{2}$	Peak Voltage
Z	$\sqrt{R^2 + \frac{1}{\omega^2 C^2}}$	Impedance
H(s)	$\frac{V(s)}{I(s)}$	Transfer Function

TABLE 1: Given Parameters

Fig. 1: RC Circuit

Fig. 2: RC Circuit

(a) V_{out} across capacitor,

$$V_{out} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} V_{in} \tag{1}$$

$$\frac{V_{out}}{V_{in}} = H(s) \tag{2}$$

$$\implies H(s) = \frac{1}{1 + sRC} \tag{3}$$

$$=\frac{1}{\sqrt{1+(\omega RC)^2}}e^{-tan^{-1}}\frac{1}{(\omega RC)}$$
(4)

On taking fourier transform of H(s),

$$V_{out} = \frac{110}{\sqrt{1 + (\omega RC)^2}} cos \left(\omega t - tan^{-1} \frac{1}{(\omega RC)}\right)$$
(5)

For current across circuit,

$$\implies I = C \frac{dV_{out}}{dt}$$

$$= \frac{110\omega C}{\sqrt{1 + (\omega RC)^2}} sin(\omega t - tan^{-1}(\omega RC))$$
(7)

Fig. 3: Current vs ω

Maximum current in the circuit,

$$\implies I_0 = \frac{110\omega C}{\sqrt{1 + (\omega RC)^2}}$$

$$= 3.24 A$$
(8)

(b) In a capacitor circuit, the voltage lags behind the current by a phase angle of ϕ .

$$\implies \phi = tan^{-1} \frac{1}{(\omega RC)} \tag{10}$$

$$=\frac{33.56\pi}{180\times120\pi}\tag{11}$$

$$\phi = \frac{33.56\pi}{180} rad \tag{12}$$

$$\implies Time \ lag = \frac{\phi}{\omega}$$

$$= \frac{33.56\pi}{180 \times 120\pi}$$
(13)

$$=\frac{33.56\pi}{180\times120\pi}$$
 (14)

$$=1.55ms$$
 (15)

(c) Plot of Impedance vs Angular Frequency

Fig. 4: Impedance vs ω