Discovery of copy number variations (CNVs) from exome read depth using XHMM (eXome-Hidden Markov Model)

Dr Reza Rafiee Newcastle University 2017

Copy number variation (CNV)

Gene • Reference: Gene Gene • Deletion: • Duplication: Gene Gene Gene

Aim

- Use exome sequencing to accurately call copy number variation (CNV) at exon-level resolution
 - Based on "depth" of sequencing (number of items a portion of the genome is "read") = read-depth

CNV calling pipeline

Calculation of depth-of-coverage

 For each target, calculate the number of reads covering each base in the target, and then average

Original read-depth for region

26 targets across 177 kB

Duplication?

Normalized read-depth for region

CNVs can now be detected more easily!

Duplication

Principal Component Analysis (PCA)

- Rotates high-dimensional data and finds underlying structure
 - Here, we use it to find and remove sample batching effects and target biases (e.g., GC content)
 - Similar to normalisation in CoNIFER (Krumm, et al., Genome Research, 2012)

Data-driven ccorrection for GC bias

Target GC content

3rd principal component (Pearson correlation = 0.65)

PC correlated with sample sex

• A "female" pattern of read-depth variation:

Analysis of PCA components

- Remove first 18 components of readdepth variation, which correlate with:
 - Sample properties
 - Batch, population, mean read depth
 - Target properties
 - GC, size, mean read depth

Principal components

Variance in PCs also drops a ier ~20 components

 No a priori knowledge required, except assumption that largest effects are not CNV signal

Run HMM to call CNVs across neighboring targets

 Hidden Markov model (HMM) to "connect the dots" between adjacent targets

Takes into account genome-wide
 CNV rate, length, and distance
 between exome targets

Related methods using NGS

Yoon, et al., 2009: event-wise testing (EWT) of intervals of read-depth data

 Nord, et al., 2011: set-normalized depth of coverage is corrected for GC bias, and supplemented by a scan for partiallymapped reads at CNV edges

HMM finds regions of consistent deviation in read-depth

• Run hidden Markov model for each sample

Uncovered duplications and deletions make statistical sense

Duplication read-depth > Deletion read-depth

Quality filtering using HMM

- CNV call quality (Phred-scaled):
 - 10 * log₁₀ [1 -P(Some CNV in called region)]
 - Higher quality means event is likely to be real
- For example, for a called deletion, we calculate the probability that at least one of the targets is deleted
 - Calculated efficiently using HMM chain structure

CNV by XHMM

(eXome-Hidden Markov Model)

- Key steps:
 - Running depth of coverage calculations using GATK
 - Coverage normalization
 - CNV calling using Hidden Markov Model
 - Statistical genotyping
- Input:
 - list of exome targets
 - exome sequencing reads
 - Markov model parameters
- Output:
 - CNVs of all target regions

Input files

- List of exome targets (exons)
 - EXOME.interval list
 - e.g., 22:17072368-17072566
- Exome sequencing reads
 - BAM files (and .bai BAM index files)
- XHMM model parameters
 - params.txt

```
1. Exome-wide CNV rate
 2. Mean number of targets in CNV
 3. Mean distance between targets within CNV (in KB)
                                                               Goes into
 4. Mean of DELETION z-score distribution
 5. Standard deviation of DELETION z-score distribution
                                                         transition probability
 6. Mean of DIPLOID z-score distribution
 7. Standard deviation of DIPLOID z-score distribution
 8. Mean of DUPLICATION z-score distribution
 9. Standard deviation of DUPLICATION z-score distribution
As an example, the file with parameters:
Input CNV parameters file:
translates into XHMM parameters of:
Pr(start DEL) = Pr(start DUP) = 1e-08
mean number or targets in CNV [geometric distribution] = 6
Mean distance between targets within CNV [exponential decay] = 70 KB
DEL read depth distribution ~ N(mean=-3, var=1)
DIP read depth distribution ~ N(mean=0, var=1)
DUP read depth distribution ~ N(mean=3, var=1)
```

 Exome-wide CNV rate 2. Mean number of targets in CNV 3. Mean distance between targets within CNV (in KB) Goes into 4. Mean of DELETION z-score distribution 5. Standard deviation of DELETION z-score distribution transition probability 6. Mean of DIPLOID z-score distribution 7. Standard deviation of DIPLOID z-score distribution 8. Mean of DUPLICATION z-score distribution 9. Standard deviation of DUPLICATION z-score distribution As an example, the file with parameters: Input CNV parameters file: translates into XHMM parameters of: Pr(c+ar+DEL) = Pr(c+ar+DUD) = 16-08Mean number of targets in CNV [geometric distribution] = 6 Mean distance serveen targets within the responding accura DEL read depth distribution ~ N(mean=-3, var=1) DIP read depth distribution ~ N(mean=0, var=1) DUP read depth distribution ~ N(mean=3, var=1)

Goes into

transition probability

- 1. Exome-wide CNV rate
- Mean number of targets in CNV
- 3. Mean distance between targets within CNV (in KB)
- 4. Mean of DELETION Z-Score distribution
- 5. Standard deviation of DELETION z-score distribution
- 6. Mean of DIPLOID z-score distribution
- 7. Standard deviation of DIPLOID z-score distribution
- 8. Mean of DUPLICATION z-score distribution
- 9. Standard deviation of DUPLICATION z-score distribution

Emission probability

- 1. Exome-wide CNV rate
- 2. Mean number of targets in CNV
- 3 Moon distance between targets within CNV (in KR)
- 4. Mean of DELETION z-score distribution
- 5. Standard deviation of DELETION z-score distribution

O. MICAN OF DIFLOID 2-SCORE MISHIDUMON

- 7. Standard deviation of DIPLOID z-score distribution
- 8. Mean of DUPLICATION z-score distribution
- 9. Standard deviation of DUPLICATION z-score distribution

As an example, the file with parameters:

- 1. Exome-wide CNV rate
- 2. Mean number of targets in CNV
- 3. Mean distance between targets within CNV (in KB)
- 4. Mean of DELETION z-score distribution
- 5 Standard deviation of DELETION zecore distribution
- 6. Mean of DIPLOID z-score distribution
- 7. Standard deviation of DIPLOID z-score distribution

DOF 1eau depth distribution ~ N(mean-3, var-1)

- o. Mean of Dol Lication 2 score distribution
- 9. Standard deviation of DUPLICATION z-score distribution

As an example, the file with parameters:

Emission probability

- 1. Exome-wide CNV rate
- 2. Mean number of targets in CNV
- 3. Mean distance between targets within CNV (in KB)
- 4. Mean of DELETION z-score distribution
- 5. Standard deviation of DELETION z-score distribution
- 6. Mean of DIPLOID z-score distribution
- 7 Standard deviation of DIDLOID score distribution
- 8. Mean of DUPLICATION z-score distribution
- 9. Standard deviation of DUPLICATION z-score distribution

translates into XHMM parameters of:

Input CNV parameters file:

Pr(start DEL) = Pr(start DUP) = 1e-08

Mean number of targets in CNV [geometric distribution] = 6
Mean distance between targets within CNV [exponential decay] = 70 KB

DEL read depth distribution ~ N(mean=-3, var=1)

DUP read depth distribution ~ N(mean=3, var=1)

Emission probability

Running XHMM on cell lines

only Chr10 as an example

												_
	SAMPLE	CNV	FULL_INTERVAL	TARGET_IND		CHR	MID_BP		POSTERIO RD		ORIG_RD	
2	ons76_neg	DUP	10:135480360-135498556	U-2	10:135439254-13543992	_	_	135439587	0	0.18		
3	ons76_neg	DUP	10:135480360-135498556	U-1	10:135439968-13544036	10)	135440167	0	-2.23	42.88	
4	ons76_neg	DUP	10:135480360-135498556	1	10:135480360-13548177	' 10)	135481068	0.97	2.69	222.29	
5	ons76_neg	DUP	10:135480360-135498556	2	10:135483670-13548533	10)	135484504	1	3.26	220.03	
6	ons76_neg	DUP	10:135480360-135498556	3	10:135488179-13548864	10)	135488413	1	3.4	185.21	
7	ons76_neg	DUP	10:135480360-135498556	4	10:135490278-13549194	10)	135491109	1	4.12	230.51	
8	ons76_neg	DUP	10:135480360-135498556	5	10:135493588-13549525	10)	135494422	1	5.22	206.04	
9	ons76_neg	DUP	10:135480360-135498556	6	10:135498087-13549855	10)	135498321	0.99	2.49	179.56	
10	ons76_54gy_1	DEL	10:135480360-135498556	U-2	10:135439254-13543992	. 10)	135439587	0	-0.24	49.52	
11	ons76_54gy_1	DEL	10:135480360-135498556	U-1	10:135439968-13544036	10)	135440167	0	1.45	61.04	
12	ons76_54gy_1	DEL	10:135480360-135498556	1	10:135480360-13548177	10)	135481068	0.88	-2.24	216.32	
13	ons76_54gy_1	DEL	10:135480360-135498556	2	10:135483670-13548533	10)	135484504	1	-2.8	205.76	
14	ons76_54gy_1	DEL	10:135480360-135498556	3	10:135488179-13548864	10)	135488413	1	-3.56	177	
15	ons76_54gy_1	DEL	10:135480360-135498556	4	10:135490278-13549194	10)	135491109	1	-4.29	215.03	
16	ons76_54gy_1	DEL	10:135480360-135498556	5	10:135493588-13549525	10)	135494422	1	-5.1	194.87	
17	ons76_54gy_1	DEL	10:135480360-135498556	6	10:135498087-13549855	10)	135498321	0.52	-1.06	174.99	
18	ons76_54gy_2	DUP	10:135480360-135498556	U-2	10:135439254-13543992	. 10)	135439587	0	0.07	53.51	
19	ons76_54gy_2	DUP	10:135480360-135498556	U-1	10:135439968-13544036	10)	135440167	0	-2.53	55.73	
20	ons76_54gy_2	DUP	10:135480360-135498556	1	10:135480360-13548177	10)	135481068	0.95	2.54	237.03	
21	ons76_54gy_2	DUP	10:135480360-135498556	2	10:135483670-13548533	10)	135484504	1	2.98	223.87	
22	ons76_54gy_2	DUP	10:135480360-135498556	3	10:135488179-13548864	10)	135488413	1	2.45	201.47	
23	ons76_54gy_2	DUP	10:135480360-135498556	4	10:135490278-13549194	10	0	135491109	1	2.99	236.63	
24	ons76_54gy_2	DUP	10:135480360-135498556	5	10:135493588-13549525	10)	135494422	1	4.13	230.34	
25	ons76_54gy_2	DUP	10:135480360-135498556	6	10:135498087-13549855	10)	135498321	1	3.41	191.1	
26												

CNV by conumee: ONS76_54GY_1 (cell lines)

ONS76_54GY1

CNV by XHMM: Ons76_54gy_1

CNV by conumee: ONS76_54GY2

CNV by XHMM: Ons76_54gy_2

CNV by conumee: ONS76_neg

CNV by XHMM: Ons76_neg

