

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Subsidiary/Advanced Level In Physics (WPH016)

Paper 1: Practical Skills in Physics II

Question number	Answer		Mark	
1(a)	Gently push the glider and check that the times to go through each light gate are similar	(1)		
	Or			
	Put a glider on the track and check it remains stationary Or	(1)		
	Use a rule and/or set square to check the height of the track is the same in two places	(1)		
	Or	(1)	_	
	Use a spirit level to check the bubble is central	(1)	1	
	[accept any valid safe alternative practical method]			
1(b)	Use of $t_2 = 2t_1$	(1)		
	Three correct calculations shown	(1)		
	Conclusion consistent with calculation	(1)	3	
	Example of calculation			
	0.70/0.34 = 2.06			
	0.39/0.21 = 1.86			
	0.55/0.28 = 1.96			
	As all values are approximately equal to 2 then momentum was conserved.			
1(c)	(If the card is twice as long) the time should double	(1)		
	The resolution of the timer is constant Or the uncertainty is constant	(1)	3	
	So the percentage uncertainty for the time will halve, improving the investigation	(1)	3	
Total mark for Questio				

Question number	Answer		Mark
2	Any SIX from:		
	Measure the background count (rate)	(1)	
	Ensure the source and detector are in line	(1)	
	Use a metre rule to measure <i>d</i>	(1)	
	Measure the count (rate) several times and calculate a mean Or measure the count (rate) over a long time	(1)	
	Subtract the background count (rate)	(1)	
	Repeat for values of values of d up to 50 mm Or repeat until the count rate reaches the background count (rate)	(1)	
	Plot a graph of (corrected) count (rate) vs d	(1)	
	Sensible comment on safety based on distance, shielding or time	(1)	6
Total mark for Question			

Question number	Answer		Mark	
3(a)	Any THREE from			
	Measure multiple oscillations and divide by the number of oscillations	(1)		
	Repeat and calculate a mean	(1)		
	Use a timing marker (at the centre of the oscillations)	(1)		
	Start timing after several oscillations have completed	(1)	3	
3(b)(i)	Variable resistor	(1)	1	
3(b)(ii)	$\log T = n \log I$ is in the form of $y = mx (+ c)$	(1)		
	(hence if the relationship is valid) it will be a straight line (through the origin) with a gradient of n	(1)	2	
3(c)(i)	logI values correct with minimum 2 decimal places	(1)		
	log T values correct and minimum 2 decimal places	(1)		
	Axes labelled: y as $\log(T/s)$ and x as $\log(I/A)$	(1)		
	Most appropriate scales for both axes	(1)		
	Plots accurate to ± 1mm	(1)		
	Best fit line with even spread of plots	(1)	6	
3(c)(ii)	Correct calculation of gradient using large triangle shown	(1)		
	Value of <i>n</i> in range 0.49 to 0.53	(1)		
	Value of <i>n</i> given to 2 or 3 s.f., negative, no unit	(1)	3	
	Example of calculation			
	$n = \frac{-0.20.088}{0.3 - 0.075} = \frac{-0.112}{0.225} = -0.498$			
3(c)(iii)	$\log T = n \log l + \log k$	(1)		
	is in the form of $y = mx + c$	(1)		
	The graph shows a (non-zero) y intercept	(1)		
	Hence the value of k is not equal to 1 (so the prediction is correct) Or the value of c is not zero (so the prediction is correct)	(1)	4	
	Total mark for Question 3 = 19			

I/A	T/s	log(I/A)	log(T/s)
1.20	0.813	0.079	-0.090
1.40	0.754	0.146	-0.123
1.60	0.706	0.204	-0.151
1.80	0.663	0.255	-0.178
2.00	0.631	0.301	-0.200
2.20	0.593	0.342	-0.227

I/A	T/s	ln(I/A)	ln(T/s)
1.20	0.813	0.182	-0.207
1.40	0.754	0.336	-0.282
1.60	0.706	0.470	-0.348
1.80	0.663	0.588	-0.411
2.00	0.631	0.693	-0.460
2.20	0.593	0.788	-0.523

Question number	Answer		Mark
4(a)(i)	Digital / vernier calipers	(1)	1
4(a)(ii)	Any PAIR from:		
	Check for zero error		
	to eliminate <u>systematic</u> error	(1)	
	OR		
	Repeat at different places and calculate a mean	(1)	
	to reduce the effect of <u>random</u> errors	(1)	2
	[MP2 dependent on MP1]	()	
4(a)(iii)	area of slot = 1.03 (cm ²)	(1)	
	Calculation of U shown	(1)	
	U = 0.02 (cm ²) [d.p. consistent with area]	(1)	3
		()	
	Example of calculation		
	Area of slot = $a \times b = 0.47 \text{ cm} \times 2.19 \text{ cm} = 1.03 \text{ cm}^2$		
	%U in Area = (0.01/0.47) × 100 + (0.005/2.19) × 100		
	= 2.13% + 0.23% = 2.4%		
	U = $1.03 \text{ cm}^2 \times 2.4\% = 0.02 \text{ cm}^2$		
	Area of slot = $1.03 \text{ cm}^2 \pm 0.02 \text{ cm}^2$		
4(b)(i)	Use of area = $\pi d^2/4$	(1)	
	Area = $10.4 \text{ (cm}^2\text{)}$ [ecf $4(a)(iii) 3 \text{ s.f. only}$]	(1)	2
	Example of calculation		
	Whole area = $\pi d^2/4 = \pi \times (3.81 \text{ cm})^2/4 = 11.4 \text{ cm}^2$		
	Shaded area = whole area – area of slot = 11.4 cm ² – 1.03 cm ²		
	$= 10.4 \text{ cm}^2$		
4(b)(ii)	Calculation of %U in <i>d</i> using 0.005 shown	(1)	
	Double %U in <i>d</i> shown	(1)	
	U= 0.05 (cm ²) [ecf 4(a)(iii)]	(1)	3
	Example of calculation	` /	
	%U in $d^2 = 2 \times 0.005/3.81 \times 100 = 0.26\%$		
	U in whole area = $11.4 \text{ cm}^2 \times 0.26\% = 0.03 \text{ cm}^2$		
	U in shaded area = $0.03 \text{ cm}^2 + 0.02 \text{ cm}^2 = 0.05 \text{ cm}^2$		

4(c)(i)	Use of $\rho = \frac{m}{V}$	(1)		
	ρ = 8.47 (g cm ⁻³) [ecf 4(b)(i), 3 s.f. only]	(1)	2	
	Example of calculation			
	$V = 10.4 \text{ cm}^2 \times 1.137 \text{ cm} = 11.8 \text{ cm}^3$			
	ρ = 100 g / 11.8 cm ³ = 8.47 g cm ⁻³			
4(c)(ii)	Calculation of half range in <i>t</i> shown	(1)		
	Addition of %U in t and %U in shaded area shown	(1)		
	% U in ρ = 0.66% [ecf 4(b)(ii)]	(1)	3	
	Example of calculation			
	Half range in $t = (11.39 - 11.35)/2 = 0.02 \text{ mm}$			
	%U in $t = (0.02/11.37) \times 100 = 0.18\%$			
	% U in shaded area = (0.05/10.4) × 100 = 0.48%			
	% U in ρ = 0.18% + 0.48% = 0.66%			
4(d)	Correct calculation of upper and/or lower limit shown [ecf 4(c)]	(1)		
	With comparison of limit with value for brass and valid conclusion based on comparison	(1)		
	OR	(1)		
	Correct calculation of %D shown [ecf 4(c)]	(1)	2	
	Comparison of %D with %U and valid conclusion based on comparison			
	Example of calculation			
	Uncertainty in ρ = 8.47 g cm ⁻³ × 0.66% = ± 0.06 g cm ⁻³			
	Range of ρ to 8.41 g cm ⁻³ to 8.53 g cm ⁻³			
	The value for brass lies within this range therefore the mass could be made of brass			
	OR			
	Uncertainty in ρ = 8.47 g cm ⁻³ × 0.66% = ± 0.06 g cm ⁻³			
	$%D = \frac{8.5 - 8.47}{8.5} \times 100\% = 0.35\%$			
	As the %D is less than the %U the mass could be made of brass			
	Total mark for (Question	4 = 18	