# **GRPO** for Factuality

Finetuning for Factual and Cautious Responses

Wenbo Pan

March 11, 2025



## **Table of Contents**

Introduction

Basic Idea of Finetuning

Design Training Objective

**GPRO** Results

Problems

Improvement

Second Round Results

Results

Next Step



#### Introduction

## **Improve Factuality**

- Project focused on improving language model factuality
- Key Goals:
  - Reduce hallucinated responses
  - o Improve factual consistency
  - o Train models to acknowledge uncertainty



3

# Basic Idea of Finetuning Basic Idea of Finetuning

- We finetune qwen to avoid hallucinated responses
- Generate more factual and consistent answer:
  - $\circ$  If it can give correct answer 4 out of 10 times, we want it to output it 10 out of 10 times
- Acknowledge if it's unable to answer correctly:
  - If it gives incorrect answers no matter how many times, we want it to output "I don't know"



# Basic Idea of Finetuning **Setup**

### • Training Dataset:

 As SimpleQA is too difficult, SimpleQA, PopQA, SelfAware and TriviaQA are mixed evenly

#### Model:

Qwen32B 2.5 with LoRA Training

#### • Predefined Instruction:

o A cold start prompt is used to induce reasoning and refuse



## **Basic Idea of Finetuning System Prompt**

### System prompt

A conversation between User and Assistant. The Assistant must think step by step. Then give a brief answer in boxed[] if sure about the answer, otherwise the Assistant can return boxed[Unknown] if not sure.



- We use reinforcement learning (RL), which train a model to maximize given rewards
- The reward function both encourage factual accuracy and reduce hallucination
- Consider at each training step, model generates 20 responses:
  - o If any of them got correct: the correct response gets 1 reward, process-correct gets 0.5 and other gets 0
  - o If non of them got correct: not-attempting response gets 1 score and other gets 0



#### **Reward Function Visualization**

$$R(x) = \begin{cases} 1.0 & \text{if correct answer} \\ 0.5 & \text{if process correct} \\ 0.0 & \text{otherwise} \end{cases} \text{if ANY response is correct} \\ 1.0 & \text{if "Unknown"} \\ 0.0 & \text{if attempting wrong answer} \end{cases} \text{if NO response is correct}$$



• We use GRPO (the algorithm training Deepseek R1 to reason)



Figure 1: GRPO visualization showing the reinforcement learning approach



# **Training Progress**

• Training is very noisy







Figure 2: Noisy training metrics during the training process



## **Reward Progress**

• But the rewards on eval dataset is increasing steadily







Figure 3: Steady increase in rewards on evaluation dataset



# **Eval Results Decomposition**

| Training Steps | Partial Correct | Partial NotAttempt | All NotAttempt | All Correct | All Attempt and Wrong |
|----------------|-----------------|--------------------|----------------|-------------|-----------------------|
| 200            | 36.67           | 33.33              | 8.33           | 10.00       | 11.67                 |
| 400            | 33.33           | 33.33              | 10.00          | 10.00       | 13.33                 |
| 600            | 30.00           | 33.33              | 13.33          | 10.00       | 13.33                 |
| 800            | 31.67           | 35.00              | 11.67          | 10.00       | 11.67                 |
| 1000           | 26.67           | 28.33              | 20.00          | 13.33       | 11.67                 |
| 1200           | 25.00           | 30.00              | 21.67          | 13.33       | 10.00                 |

Table 1: Evaluation results breakdown by training steps

# GPRO Results Observations

- The model is not deviate from original model much (small kl)
- Reward has high variance (many 0, many 1 across the training session)
- Model learned to not attempt questions in Partial Correct and Partial Not Attempt
  - We actually don't want Partial Correct to drop



# Problems Problems

- Too many training samples that are too easy or too hard
- Didn't see long reasoning or emerging behavior, although rewards are increasing
- Full training on 7B will encounter NaN
- The system prompt is too simple



#### **Problems**

### **Problems (Continued)**

- Model will prioritize not attempting even for simple questions
- Training takes too much time (33 hours)



## **Improvement Strategies**

- Try different system prompt for a better start point
- Filter the training set to exclude trivial or impossible samples
- Add kl clip to stablize 7B full training
- Apply fact and caution reward separately
  - o To see how each one is working

# Filtering Training Data

- Too many trivial or impossible samples (evident by lots of 0 and 1 rewards)
- A sample is just-hard-enough if the model only generates correct answers sometimes
- Use original model to predict each sample 16 times
- Filtering top 2500 samples with most varied outputs



### **Use Different System Prompts**

- We find system prompts greatly affect model
- If we encourage model to be cautious, it will have more NotAttempt and less correct
- Experimenting different prompts gives a trade-off boundary
- We choose a balanced prompt for training

## **Prompt Selection Results**



Figure 4: Trade-off between correctness and caution with different system prompts



## **Prompt Selection**

• Show some example of prompts.

### System 1

You are a hardworking assistant. When asked a question, you try your best to find the correct answer. [...] You provide a single word answer. First think through your reasoning in <think></think>tags, then give your answer in <answer></answer>format.

#### System 4

You are a hardworking assistant. [...] You make educated guesses when you don't have complete information. [...] First think through your reasoning in <think></think>tags, then give your answer in <answer></answer>format.

### System 8

You are a hardworking assistant. [...] You explore different angles, check multiple sources, and challenge your assumptions. [...] First think through your reasoning, then give your answer in <think></think>and <answer></answer>format.

## **Use 7B Full Training**

- 32B + Lora allows us to use stronger base model, but
  - Slower to train
  - o Less optimization freedom (Lora only update few of the model parameters)
- Use 7B Full Training
  - In PPO methods like GRPO, we can enable policy clip to avoid model update too much in one step, stabilizing training
  - o 7B takes 7 hours for one epoch



#### **Second Round Results**

## **Second Round Experiment Design**

- We test 4 settings
  - Only use fact reward
  - Only use caution reward
  - Use fact and caution reward at the same time
  - First fact reward, then caution
- Motivations:
  - o (1) I find the training not stable if two rewards are applied
  - o (2) Caution is easier than fact



### Results Results

- The 7B models can also benefit from RL training
- The fact and caution rewards seems conflict
- The model will prioritize trying NotAttempt
- RL can push the frontier, but not that much



# Next Step Next Step

- Make some reasonable efforts to improve the result
- Towards drafting the paper
  - Instead of focusing on better accuracy
  - o I focus on balance between correct and caution
  - o Propose a new metric and compare with existing baselines

