# A Comparison of Antenna Placement Algorithms

Abhinav Jauhri

March 30, 2015

#### **Contributions**

- ► Formulation of the antenna placement problem
- Evaluation of standard stochastic algorithms on a real-world problem
- Able to achieve global optimum with as low as 25% evaluations of search space

#### Outline of this talk

- ► Part 1: Introduction to the antenna placement problem
- ► Part 2: Description of stochastic algorithms, their properties and operators
- ► Part 3: Evaluation of test cases



Part 1: Introduction to the antenna placement problem



#### **Antenna Placement Problem**

Given, platform

allowable placements of antennas





#### **Antenna Placement Problem**





#### **Problem:** find best antenna placements



#### **Antenna Placement Problem**

#### Given:

- ▶ platform *P* with its surface gridded such that end points represent possible antenna placements
- ▶ set of *m* antennas  $A = A_1, A_2, ..., A_m$  such that m > 1
- ▶ for each  $A_i$ ,  $L_i$  denote the set of allowable placements  $\in \mathbb{R}^3$  such that  $|L_i| = n_i$  and  $\forall i, n_i > 1$ ;  $L_i = \{(x_1, y_1, z_1) ... (x_{n_i}, y_{n_i}, z_{n_i})\}$

**Problem**: Find a set of n optimal antenna placements on P

Question: How is a good antenna placement quantified in the context of platform and other antennas?



## **Mutual Coupling**

When two antennas are in proximity, and one is transmitting, the second will receive some of the transmitted energy.



## Minimize Mutual Coupling

$$F_{MC} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} CP(A_i, A_j), \tag{1}$$

#### where

►  $CP(\cdot,\cdot) \in \mathbb{R}$  is the coupling between two antennas, and computed using a simulator

Example: If n = 3, then  $F_{MC} = CP(A_1, A_2) + CP(A_1, A_3) + CP(A_2, A_3)$ 

#### **Radiation Pattern**

Free-space pattern without platform or other antennas



#### Pattern with platform and antennas (in-situ)



#### Radiation Pattern

Free-space pattern without platform or other antennas



Pattern with platform and antennas (in-situ)



Pattern with platform and antennas (in-situ) similar to free-space pattern



#### Minimize Difference in Radiation Pattern

$$F_{RP} = \sum_{i=1}^{n} \sum_{\theta=0}^{\pi} \sum_{\phi=0}^{2\pi} \left( FSG_i(\theta, \phi) - ISG_i(\theta, \phi) \right)^2, \qquad (2)$$

#### where

- $\triangleright$   $\theta, \phi$  spherical coordinates
- ►  $FSG(\cdot)$  returns free-space gain pattern
- ►  $ISG(\cdot)$  returns in-situ gain pattern

## **Objective Function**

Find a placement such that F is minimal:

$$F = \alpha F_{MC} + \beta F_{RP}, \tag{3}$$

where  $\alpha,\beta$  are adjustable weights for each of the objectives

# Part 2: Stochastic Algorithms



## **Stochastic Algorithms**

We will consider algorithms which rely on randomization principle.

- ► Genetic Algorithm
- Evolutionary Strategy
- Simulated Annealing
- Hill Climbing

Each algorithm maintains a candidate solution or pool of candidate solutions called population

## **Stochastic Algorithms: Operand**

**Candidate solution** or an **individual** is a member of a set of possible olutions.

 Simulated Annealing and Hill Climbing maintain single individual



 Genetic algorithm and Evolutionary Strategy maintain a population of individuals





## **Stochastic Algorithms: Mutation Operator**

1. Given an individual, select an antenna uniformly at random, let's say antenna 1:



2. For antenna 1, select any other allowable placement:



3. Change position for antenna 1 in individual:



## **Stochastic Algorithms: Crossover Operator**

1. Select two individuals from population:



2. Select a crossover point, and swap placements prior to the point:



3. Two new offsprings created:



Question: Why use stochastic algorithms?



## Multi-Modal Search Space



Search space for one of the test cases evaluated. There are multiple local minimas which makes convergence difficult. z-axis is the combined fitness F (refer Eq. 3)



## **Genetic Algorithm**

```
1 P \leftarrow generate p random individuals. Compute
   fitness(ind_i), i \in [1, p];
 i = 0:
   while i < gen_{max} do
         Elitism: Select n_e fittest individuals to add to P';
        for (p-n_e)/2 times do
 5
              /* select returns pair of individuals
              M \leftarrow select(P,2);
              if rand(0,1) < p_c then
                   Apply crossover(M) to get two offsprings
                   Add O to P':
10
              else
                   Add M to P';
11
         Uniformly select p_m \cdot (p - n_e) individuals from P,
12
         and apply mutation operator to each;
         Update P \leftarrow P':
13
         Compute fitness(ind_i); i \in [1, p];
14
         Update i \leftarrow i + 1:
15
```

## **Genetic Algorithm**

```
1 P \leftarrow generate p random individuals. Compute
   fitness(ind_i), i \in [1, p];
 i = 0:
   while i < gen_{max} do
         Elitism: Select n_e fittest individuals to add to P';
         for (p-n_e)/2 times do
              /* select returns pair of individuals
              M \leftarrow select(P,2):
              if rand(0,1) < p_c then
                   Apply crossover(M) to get two offsprings
                   Add O to P':
              else
10
                   Add M to P':
11
         Uniformly select p_m \cdot (p - n_e) individuals from P,
12
         and apply mutation operator to each;
         Update P \leftarrow P':
13
         Compute fitness(ind_i); i \in [1, p];
14
         Update i \leftarrow i + 1:
15
```



Plateaus suggesting stagnation of search

## **Evolutionary Strategy**

```
    P← generate μ random individuals;
    i = 0;
    while i < gen<sub>max</sub> do
    Create λ/μ offsprings from each μ individuals by applying mutation operator, and add all offsprings to P;
    Compute fitness(ind<sub>i</sub>), i ∈ [1,λ];
    Keep μ best individuals in P, and discard remaining λ − μ individuals;
    Update i ← i + 1
```

## **Evolutionary Strategy**

```
    P← generate μ random individuals;
    i = 0;
    while i < gen<sub>max</sub> do
    Create λ/μ offsprings from each μ individuals by applying mutation operator, and add all offsprings to P;
    Compute fitness(ind<sub>i</sub>), i ∈ [1,λ];
    Keep μ best individuals in P, and discard remaining λ − μ individuals;
```



Less likely to stagnate search space exploration

Update  $i \leftarrow i + 1$ 

## **Simulated Annealing**

```
1 c \leftarrow \text{generate a random individual};

2 i = 0;

3 \text{while } i < i_{max} \text{ do}

4 \text{n} \leftarrow \text{mutate}(\mathbf{c});

5 \text{if } fitness(c) < fitness(n) \text{ then}

6 \text{if } rand(0,1) < e^{-\delta f/T} \text{ then}

7 \text{c} \leftarrow \mathbf{n}

8 \text{else}

9 \text{c} \leftarrow \mathbf{n};

10 T \leftarrow T \cdot f_{cooling};

11 \text{i} \leftarrow i + 1;
```

## **Simulated Annealing**

```
1 c \leftarrow generate \ a \ random \ individual \ ;
2 i=0;
3 while i < i_m ax \ do
4 n \leftarrow mutate(c);
5 if \ fitness(c) < fitness(n) \ then
6 if \ \frac{rand(0,1) < e^{-\delta f/T}}{c \leftarrow n} \ then
8 else
9 c \leftarrow n;
10 c \leftarrow n;
11 c \leftarrow i+1;
```



Fluctuation in fitness gradually reduces due to cooling

# Hill Climbing

## Hill Climbing

```
1 Initialize \mathbf{c} \leftarrow \text{generate a random inidividual};

2 Compute \textit{fitness}(\mathbf{c});

3 i = 0;

4 while i < i_{max} do

5 | \mathbf{n} \leftarrow \textit{mutate}(\mathbf{c});

6 | if \textit{fitness}(n) < \textit{fitness}(c) then

7 | c \leftarrow n

8 | i \leftarrow i + 1
```



Greedy approach to accept only fitter(low fitness) individuals

# Part 3: Evaluation of test cases



## **Experimental Setup**

- 1. All test cases describe platforms which are replicas of real-world use cases like mobile devices, tanks, and cars
- 2. We use a popular NEC2 simulator  $^1$  to get fitness parameters
- 3. Evaluate the entire search space using an exhaustive algorithm to find the optimal antenna locations



### **Experiments: Test Cases**





Test Case #1 with 7056(84x84) allowable placements

Test Case #2 with 50625(45x45x45) allowable placements



### **Experiments: Test Cases**





Test Case #3 with  $126025(71\times71\times25)$  allowable placements

Test Case #4 with 20736(12x12x12x12) allowable placements















#### Results - Mean Best Fitness With Std. Dev.



#### **Results - Success Rates**



#### Conclusion

- ► Formulation of the antenna placement problem
- Generic problem formulation to accommodate multiple antennas and platforms
- ► Optimal placements found using Evolutionary Strategy with at most 25% evaluations of search space