CÁLCULO 1

Prof. Dr. Milton Kist

Universidade Federal da Fronteira Sul Curso: Ciência da Computação UFFS – Câmpus Chapecó milton.kist@uffs.edu.br

Nós começamos tentando resolver o problema da área: Encontre a área da região S que está sob a curva y = f(x) de a a b. Isso significa que S, ilustrada na Figura 1, está limitada pelo gráfico de uma função contínua f [onde $f(x) \ge 0$], pelas retas verticais x = a e x = b e pelo eixo x.

Para um retângulo, a área é definida como o produto do comprimento e da largura. A área de um triângulo é a metade da base vezes a altura. A área de um polígono pode ser encontrada dividindo-o em triângulos (como na Figura 2) e a seguir somando-se as áreas dos triângulos.

Exemplo:

Use retângulos para estimar a área sob a parábola $y = x^2$ de 0 até 1 (a região parabólica S ilustrada na Figura 3).

Figura 3

Observamos primeiro que a área de S deve estar em algum lugar entre 0 e 1, pois S está contida em um quadrado com lados de comprimento 1, mas certamente podemos fazer melhor que isso. Suponha que S seja dividida em quatro faixas

 S_1 , S_2 , S_3 , e S_4 , traçando as retas verticais $x = \frac{1}{4}$, $x = \frac{1}{2}$ e $x = \frac{3}{4}$, como na Figura 4(a).

Figura 4(a)

Podemos aproximar cada faixa por um retângulo com base igual à largura da faixa e altura igual ao lado direito da faixa [veja a Figura 4(b)]. Em outras palavras, as alturas desses retângulos são os valores

da função $f(x) = x^2$ nas extremidades direitas dos subintervalos

$$[0, \frac{1}{4}], [\frac{1}{4}, \frac{1}{2}], [\frac{1}{2}, \frac{3}{4}], e[\frac{3}{4}, 1].$$

Cada retângulo tem largura de $\frac{1}{4}$ e a altura e $(\frac{1}{4})^2$, $(\frac{1}{2})^2$, $(\frac{3}{4})^2$, e 1².

Figura 4(b)

Se R_4 for a soma das áreas dos retângulos aproximados, teremos

$$R_4 = \frac{1}{4} \cdot (\frac{1}{4})^2 + \frac{1}{4} \cdot (\frac{1}{2})^2 + \frac{1}{4} \cdot (\frac{3}{4})^2 + \frac{1}{4} \cdot 1^2 = \frac{15}{32} = 0,46875$$

Da Figura 4(b) vemos que a área A de S é menor que R_4 , logo

Em vez de usar os retângulos na Figura 4(b), poderíamos usar os retângulos menores na Figura 5, cujas alturas seguem os valores de *f* nas extremidades *esquerdas* dos subintervalos. (O retângulo mais à esquerda desapareceu, pois sua altura é 0.)

Figura 4(b)

Figura 5

A soma das áreas desses retângulos aproximantes é

$$L_4 = \frac{1}{4} \cdot 0^2 + \frac{1}{4} \cdot (\frac{1}{4})^2 + \frac{1}{4} \cdot (\frac{1}{2})^2 + \frac{1}{4} \cdot (\frac{3}{4})^2 = \frac{7}{32} = 0.21875$$

Vemos que a área de S é maior que L_4 e, então, temos estimativas inferior e superior para A:

Podemos repetir esse procedimento com um número maior de faixas.

Figura 6 mostra o que acontece quando dividimos a regiãoS em oito faixas com a mesma largura.

(b) Usando as extremidades direitas

Aproximando S por 8 retângulos

Figura 6

Calculando a soma das áreas dos retângulos menores (L_8) e a soma das áreas dos retângulos maiores (R_8), obtemos estimativas inferior e superior melhores para A:

$$0,2734375 < A < 0,3984375$$
.

Assim, uma resposta possível para a questão é dizer que a verdadeira área de S está em algum lugar entre 0,2734375 e 0,3984375.

Podemos obter melhores estimativas aumentando o número de faixas.

A tabela à direita mostra os resultados de cálculos similares (com um computador) usando n retângulos cujas alturas são encontradas com as extremidades esquerdas (L_n) ou com as extremidades direitas (R_n) . Em particular, vemos que usando 50 faixas a área está entre 0,3234 e 0,3434. Com 1.000 faixas conseguimos estreitar a desigualdade ainda mais: A está entre 0,3328335 e 0,3338335. Uma boa

n	L _n	$\mathbf{R}_{\mathbf{a}}$
10	0,2850000	0,3850000
20	0,3087500	0,3587500
30	0,3168519	0,3501852
50	0,3234000	0,3434000
100	0,3283500	0,3383500
1000	0,3328335	0,3338335

números: $A \approx 0,33333335$.

estimativa é obtida fazendo-se a média aritmética desses

Das Figuras 8 e 9, parece que conforme n aumenta, ambos L_n e R_n se tornam aproximações cada vez melhores à área de S.

As extremidades da direita produzem somas superiores pois $f(x) = x^2$ é crescente

Figura 8

As extremidades da direita produzem somas inferiores pois $f(x) = x^2$ é crescente

Figura 9

Portanto, definimos a área A como o limite das somas das áreas desses retângulos aproximantes. Isto é,

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n = \frac{1}{3}$$

Vamos retornar ao problema apresentado no início da aula

Encontre a área da região S que está sob a curva y = f(x) de a a b. Isso significa que S, ilustrada na Figura 1, está limitada pelo gráfico de uma função contínua f [onde $f(x) \ge 0$], pelas retas verticais x = a e x = b e pelo eixo x.

 $S = \{(x,y) \mid a \leq x \leq b, \ 0 \leq y \leq f(x)\}$

Figura 1

Prof. Dr. Milton Kist

Começamos por subdividir S em n faixas S_1 , S_2 , ..., S_n de igual largura, como na Figura 10.

Figura 10

A largura do intervalo [a, b] é b – a, assim, a largura de cada uma das n faixas é

$$\Delta x = \frac{b - a}{n}$$

Essas faixas dividem o intervalo [a, b] em n subintervalos

$$[x_0, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n]$$

onde $x_0 = a$ e $x_n = b$. As extremidades direitas dos subintervalos são

$$x_1 = a + \Delta x,$$

$$x_2 = a + 2 \Delta x,$$

$$x_3 = a + 3 \Delta x,$$

Vamos aproximar a i-ésima faixa S_i por um retângulo com largura Δx e altura $f(x_i)$, que é o valor de f na extremidade direita (veja a Figura 11).

Então, a área do i-ésimo retângulo é $f(x_i) \Delta x$. O que consideramos intuitivamente como a área de S é aproximado pela soma das áreas desses retângulos, que é

$$R_n = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

A Figura 12 mostra a aproximação para n = 2, 4, 8 e 12. Observe que essa aproximação parece tornar-se cada vez melhor à medida que aumentamos o número de faixas, isto é, quando $n \to \infty$.

Figura 12

Portanto, vamos definir a área A da região S da seguinte forma.

2 Definição A área A da região S que está sob o gráfico de uma função contínua f é o limite da soma das áreas dos retângulos aproximantes:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \big[\, f(x_1) \, \Delta x \, + \, f(x_2) \, \Delta x \, + \, \cdots \, + \, f(x_n) \, \Delta x \big].$$

Pode ser demonstrado que o limite na Definição 2 sempre existe, uma vez que estamos supondo que *f* seja contínua. Pode também ser demonstrado que obteremos o mesmo valor se usarmos as extremidades esquerdas dos aproximantes:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0) \Delta x + f(x_1) \Delta x + \cdots + f(x_{n-1}) \Delta x].$$

De fato, em vez de usarmos as extremidades esquerda ou direita, podemos tomar a altura do i-ésimo retângulo como o valor de f em qualquer número x_i * no i-ésimo subintervalo $[x_{i-1}, x_i]$. Chamamos os números x_1 *, x_2 *, . . . ,

 x_n^* de **pontos amostrais**.

A Figura 13 mostra os retângulos aproximamantes quando os pontos amostrais não foram escolhidos como as extremidades. Logo, uma

Figura 13

expressão mais geral para a área S é

$$A = \lim_{n \to \infty} \left[f(x_1^*) \Delta x + f(x_2^*) \Delta x + \cdots + f(x_n^*) \Delta x \right]$$

Integral Definida – Definição

2 Definição de Integral Definida Se f é uma função contínua definida em $a \le x \le b$, dividimos o intervalo [a, b] em n subintervalos de comprimentos iguais $\Delta x = (b - a)/n$. Sejam $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ as extremidades desses subintervalos, e sejam $x_1^*, x_2^*, \ldots, x_n^*$ pontos amostrais arbitrários nesses subintervalos, de forma que x_i^* esteja no i-ésimo subintervalo $[x_{i-1}, x_i]$. Então a integral definida de f de a a b é

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

desde que o limite exista e dê o mesmo valor para todas as possíveis escolhas de pontos amostrais. Se ele existir, dizemos que f é integrável em [a, b].

$$\sum_{i=1}^{n} f(x_i^*) \, \Delta x$$

que ocorre na Definição 2 é chamada **soma de Riemann**, em homenagem ao matemático Bernhard Riemann (1826-1866).

Integral Definida - Propriedades

1. $\int_a^b c \, dx = c(b-a)$, onde c é qualquer constante

$$2 \int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

3 $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, onde c é qualquer constante

4
$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

5.
$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

6. Se
$$f(x) \ge 0$$
 para $a \le x \le b$, então $\int_a^b f(x) dx \ge 0$.

7. Se
$$f(x) \ge g(x)$$
 para $a \le x \le b$, então $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

8. Se $m \le f(x) \le M$ para $a \le x \le b$, então

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

Teorema Fundamental do Cálculo

Definição 38 Uma função F(x) é chamada uma primitiva da função f(x) em um intervalo I se, para todo $x \in I$, temos F'(x) = f(x).

Definição 39 Se F(x) é uma primitiva de f(x), a expressão F(x) + c é chamada integral indefinida da função f(x) e é denotada por $\int f(x)dx = F(x) + c$.

Teorema 20 (Teorema Fundamental do Cálculo) Se f é contínua sobre [a,b] e se F é uma primitiva de f neste intervalo, então: $\int_a^b f(t)dt = F(b) - F(a)$

Logo,

$$\int f(x) \, dx = F(x) \qquad \text{significa} \qquad F'(x) = f(x).$$

Por exemplo, podemos escrever

$$\int x^2 dx = \frac{x^3}{3} + C \qquad \text{pois} \qquad \frac{d}{dx} \left(\frac{x^3}{3} + C \right) = x^2.$$

Portanto, podemos olhar uma integral indefinida como representando toda uma família de funções (uma primitiva para cada valor da constante *C*).

Cada fórmula pode ser verificada derivando-se a função do lado direito e obtendo-se o integrando. Por exemplo,

$$\int \sec^2 x \, dx = tg \, x + C \qquad pois \qquad \frac{d}{dx} (tg \, x + C) = \sec^2 x.$$

1 Tabelas de Integrais Indefinidas

$$\int cf(x) dx = c \int f(x) dx \qquad \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \quad \int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int sen x dx = -\cos x + C \qquad \int cos x dx = sen x + C$$

$$\int sec^2 x dx = tg x + C \qquad \int cossec^2 x dx = -\cot g x + C$$

$$\int sec x tg x dx = sec x + C \qquad \int cossec x \cot g x dx = -x + C$$

$$\int \frac{1}{x^2 + 1} dx = tg^{-1}x + C \qquad \int \frac{1}{\sqrt{1 - x^2}} dx = sen^{-1}x + C$$

$$\int senh x dx = cosh x + C \qquad \int cosh x dx = senh x + C$$

Calcule $\int \frac{\cos \theta}{\sin^2 \theta} d\theta$.

SOLUÇÃO: Essa integral indefinida não é imediatamente reconhecível na Tabela 1, logo, usamos identidades trigonométricas para reescrever a função antes de integrá-la:

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \operatorname{cossec} \theta \operatorname{cotg} \theta d\theta = -\operatorname{cossec} \theta + C$$

Calcule
$$\int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$
.

SOLUÇÃO: Precisamos primeiro escrever o integrando em uma forma mais simples, efetuando a divisão:

$$\int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t} - 1}{t^{2}} dt = \int_{1}^{9} (2 + t^{1/2} - t^{-2}) dt$$

$$= 2t + \frac{t^{3/2}}{\frac{3}{2}} - \frac{t^{-1}}{-1} \bigg]_{1}^{9}$$

$$= 2t + \frac{2}{3}t^{3/2} + \frac{1}{t} \bigg]_{1}^{9}$$

$$= (2 \cdot 9 + \frac{2}{3} \cdot 9^{3/2} + \frac{1}{9}) - (2 \cdot 1 + \frac{2}{3} \cdot 1^{3/2} + \frac{1}{1})$$

 $= 18 + 18 + \frac{1}{9} - 2 - \frac{2}{3} - 1 = 32\frac{4}{9}$

