HOMEWORK #6 SOLUTION

Yihua Guo (yhguo@umich.edu), Qi Chen (alfchen@umich.edu), Tianyi Ma (mtianyi@umich.edu)

1. Exercise 6.1 Illustrate local sensitivity analysis

Problem: Make an original example to illustrate the local-analysis concepts of this chapter. **Solution:**

2. Exercise 6.2 Illustrate global sensitivity analysis

Problem: Using AMPL, make an original example, with at least three constraints, graphing the objective value of (P), as a single b[i] is varied from $-\infty$ to $+\infty$. As you work on this, bear in mind Theorem 6.3. **Solution:** Consider the standard-form problem (P) with m=3 and n=5

where

$$A := \begin{pmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & -4 & 2 & 2 & 0 \\ 0 & -9 & 0 & 6 & 3 \end{pmatrix} , \quad b := (1, 2, 18)' , \quad c := (16, 7, 20, 10, 4)' .$$

Using AMPL, at each time we vary only one b_i from b and check the range of b_i in which the optimal basis for (P) keeps the same. We show the optimal basis as follows:

	b_1		$(-\infty, -13)$		(-13, -1)			$,+\infty)$	
optimal basis β		$\{2, 3, 4\}$		$\{2, 4, 5\}$			{1,	$\{1, 4, 5\}$	
$c'_{\beta}A^{-1}_{\beta}$		$(-12.8 \ 10 \ -3.8)$		(-23/3 - 17/6 4/3)			(3)	$(16 \ 9 \ 4/3)$	
objective value		$-12.8b_1 - 48.4$		(-	$(-23/3)b_1 + 55$		$3 16b_1$	$16b_1 + 42$	
	b_2		$(-\infty,0)$		(0,6)		$(6,+\infty)$		
	optimal basis β		$\{1, 2, 5\}$		$\{1, 4, 5\}$		$\{1, 3, 4\}$		
	$c'_{\beta}A^{-1}_{\beta}$		(16 - 8.75 4/3)		3) (16 9 4/3)		16 10 18)		
	objective value		$-8.75b_2 + 4$	10	$0 9b_2 + 4$		$10b_2 + 34$		
	b_3		$(-\infty,0)$		(0,6)	(6,	$,+\infty)$		
	optimal basis β		$\{1, 2, 3\}$	-	$\{1, 3, 4\}$	$\{1, 4, 5\}$			
	$c'_{\beta}A^{-1}_{\beta}$		$(16\ 10\ -7)$) ((16 10 1)		$(16 \ 9 \ 4/3)$		
	objective value		$-7b_3 + 36$		$b_3 + 36$ $(4/3)b_3$		$)b_3 + 34$		

Table 1. Changing single b_i from $-\infty$ to $+\infty$

As we get the above data from AMPL, we graph the objective value of (P) as a single b_i is varied from $-\infty$ to $+\infty$ in Figure 1.

3. Exercise 6.3 "I feel that I know the change that is needed." - Mahatma Gandhi

Problem: We are given 2m numbers satisfying $L_i \leq 0 \leq U_i$, i = 1, 2, ..., m. Let β be an optimal basis for all of the m problems

(3.1)
$$\min_{\substack{c'x\\ \text{s.t.}}} c'x\\ s.t. \quad Ax = b + \Delta_i e^i;\\ x \ge 0.$$

for all Δ_i satisfying $L_i \leq \Delta_i \leq U_i$. Lets be clear on what this means: For each i individually, the basis β is optimal when the ith right-hand side component is changed from b_i to $b_i + \Delta_i$, as long as Δ_i is in the interval $[L_i, U_i]$.

Date: March 26, 2014.

1

FIGURE 1. Objective value of (P) as a single b_i is varied from $-\infty$ to $+\infty$

The point of this problem is to be able to say something about *simultaneously* changing all of the b_i . Prove that we can simultaneously change b_i to

$$\tilde{b}_i := b_i + \lambda_i \left\{ \begin{array}{c} L_i \\ U_i \end{array} \right\}$$

where $\lambda_i \geq 0$, when $\sum_{i=1}^m \lambda_i \leq 1$. [Note that in the formula above, for each i we can i = 1 pick either L_i (a decrease) or U_i (an increase)].

Proof:

Let
$$D_i = \left\{ \begin{array}{c} L_i \\ U_i \end{array} \right\}$$
, so $\max_{k:h_k^i > 0} -\frac{\overline{b}_k}{h_k^i} \le D_i \le \min_{k:h_k^i < 0} -\frac{\overline{b}_k}{h_k^i}$, where $\overline{b} = A_{\beta}^{-1}b \ge 0$, $h^i = A_{\beta}^{-1}e^i$, and $k = 1$. m

Thus, what we need to prove is that the basis β is optimal when we simultaneously change b_i to $\tilde{b}_i := b_i + \lambda_i D_i$, where $\sum_{i=1}^m \lambda_i = 1$. In the other word, we need to prove that the basis β is optimal for (3.2), where $\sum_{i=1}^m \lambda_i = 1$.

(3.2)
$$\min_{\text{s.t.}} c'x \\ \text{s.t.} \quad Ax = b + \sum_{i=1}^{m} \lambda_i D_i e^i; \\ x \ge 0.$$

Consider a fixed and optimal basis β for (3.3). For β to be optimal for (3.2), we need $A_{\beta}^{-1}(b + \sum_{i=1}^{m} \lambda_i D_i e^i) = \overline{b} + \sum_{i=1}^{m} \lambda_i D_i h^i \geq 0$.

(3.3)
$$\min_{x \in A} c'x$$
s.t. $Ax = b$;
$$x \ge 0$$
.

For
$$k = 1...m$$
,
$$\overline{b}_k + \sum_{i=1}^m \lambda_i D_i h_k^i = \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i D_i h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i D_i h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (\max_{k':h_{k'}^i > 0} - \frac{\overline{b}_{k'}}{h_{k'}^i}) h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (\min_{k':h_{k'}^i < 0} - \frac{\overline{b}_{k'}}{h_{k'}^i}) h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (\min_{k':h_{k'}^i < 0} - \frac{\overline{b}_{k'}}{h_{k'}^i}) h_k^i + \sum_{i=1,h_k^i < 0}^m \lambda_i (-\frac{\overline{b}_k}{h_k^i}) h_k^i = \overline{b}_k + \sum_{i=1,h_k^i > 0}^m \lambda_i (-\overline{b}_k) + \sum_{i=1,h_k^i < 0}^m \lambda_i (-\overline{b}_k) = \overline{b}_k + \sum_{i=1}^m \lambda_i (-\overline{b}_k) = \overline{b}_k + (-\overline{b}_k) \sum_{i=1}^m \lambda_i = 0$$

Thus, $\overline{b} + \sum_{i=1}^{m} \lambda_i D_i h^i \geq 0$, and β is feasible and hence still optimal for (3.2).

4. Exercise 6.4 Domain for objective variations

Problem: Prove Theorem 6.4: The domain of g is a convex set.

Proof:

Suppose that c^j is in the domain of g, for j = 1, 2. Therefore, there exist x^j that are feasible for (4.1), for j = 1, 2.

(4.1)
$$\min_{\mathbf{s.t.}} c^{j'}x$$

$$\mathbf{s.t.} \quad Ax = b;$$

$$x \ge 0.$$

For any $0 < \lambda < 1$, consider $\hat{c} := \lambda c^1 + (1 - \lambda)c^2$, to prove the domain of g is a convex set, we need to prove that (4.2) is feasible and not unbounded.

Consider $\widehat{x} := \lambda x^1 + (1 - \lambda)x^2$,

- $\therefore x^j$ that are feasible for (4.1), for j=1,2
- $\therefore x^j \geq 0$, and $Ax^j = b$, for j = 1, 2
- $\therefore A\hat{x} = A(\lambda x^{1} + (1 \lambda)x^{2}) = \lambda Ax^{1} + (1 \lambda)Ax^{2} = \lambda b + (1 \lambda)b = b$
- $\therefore \lambda > 0$
- $\hat{x} = \lambda x^1 + (1 \lambda)x^2 \ge 0$
- \hat{x} is a feasible solution to (4.2)
- \therefore (4.2) is feasible

Consider the objective function $\hat{c}'x$ of (4.2),

- $\therefore c^j$ is in the domain of g, for j=1,2
- \therefore (4.1) is not unbounded for j = 1, 2
- $\therefore \exists k^j \in \mathbb{R}$, for any x, such that $c^{j'}x \geq k^j$, for j = 1, 2
- \therefore for a feasible solution \overline{x} of (4.2), $\overrightarrow{c'x} = (\lambda c^1 + (1-\lambda)c^2)'\overline{x} = \lambda c^{1'}\overline{x} + (1-\lambda)c^{2'}\overline{x} \ge (\lambda k^1 + (1-\lambda)k^2)$
- $\therefore k^1, k^2 \in \mathbb{R}, 0 < \lambda < 1$
- \therefore (4.2) is feasible and not unbounded
- $\therefore \hat{c}$ is in the domain g
- \therefore the domain of g is a convex set

5. Exercise 6.5 Concave piecewise-linear function

Problem: Prove Theorem 6.5: g is a concave piecewise-linear function on its domain.

The function g is

(5.1)
$$g(c) := \min \quad c'x$$
s.t.
$$Ax = b;$$

$$x > 0.$$

So a basis β is feasible or not for (5.1), independent for c_{β} . So g can be written as

$$g(c) = \min \left\{ c'_{\beta}(A_{\beta}^{-1}b) : \beta \text{ is a feasible basis for } (5.1) \right\}$$

- $\therefore c'_{\beta}(A_{\beta}^{-1}b)$ are affine functions
- $\therefore g$ is the pointwise minimum of a finite number of affine functions
- $\therefore g$ is a concave piecewise-linear function

_