Linguaggio SQL

- DML: operatori insiemistici
- DML: query nidificate semplici

Database di esempio

S

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SNum</u>	<u>PNum</u>	QTY
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Р	<u>PNum</u>	PName	Color	Weight	City
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	Р3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

Operatori insiemistici

- SQL mette a disposizione gli operatori insiemistici union, intersect, except corrispondenti agli operatori di unione, intersezione e differenza dell'algebra relazionale
- In Oracle l'operatore except viene chiamato minus
- Si possono applicare esclusivamente a tabelle definite sullo stesso insieme di attributi
- Di solito gli operatori insiemistici rimuovono dal risultato i duplicati a meno di chiedere esplicitamente di mantenerli aggiungendo la keyword all

Unione insiemistica

 Algebra relazionale:
 Date due relazioni A e B, A U B è l'insieme delle tuple x tali che x appartiene ad A o appartiene a B (o appartiene a

• SQL:

entrambi)

select *EspressioneListaAttributi1* from *ListaTabelle1* where *Condizioni1*

union [all]

select *EspressioneListaAttributi2* from *ListaTabelle2* where *Condizioni2*

• EspressioneListaAttributi1 esprime attributi dello stesso tipo di EspressioneListaAttributi2

Unione insiemistica

• Esempio:

```
select PNum
from P
where Weight>16
union
select PNum
from SP
where SNum='S2';
```


 Ricava i codici dei prodotti che pesano più di 16 kg e/o sono forniti dal fornitore S2

Unione insiemistica

PNum

P2

P3

P6

P1

P2

• Esempio:

 Ricava i codici dei prodotti che pesano più di 16 kg e/o sono forniti dal fornitore S2 mantenendo i duplicati

Intersezione insiemistica

- Algebra relazionale:
 Date due relazioni A e B, A ∩ B è l'insieme delle tuple x tali che x appartiene ad A e appartiene anche a B
- SQL:

```
select EspressioneListaAttributi1 from ListaTabelle1 where Condizioni1
```

intersect [all]

select *EspressioneListaAttributi2* from *ListaTabelle2* where *Condizioni2;*

• EspressioneListaAttributi1 esprime attributi dello stesso tipo di EspressioneListaAttributi2

Intersezione insiemistica

• Esempio:

- Ricava i codici dei prodotti che pesano più di 16 kg e che sono forniti dal fornitore S2
- Oracle non supporta l'operatore intersect all;
 PostgreSQL sì

Sottrazione insiemistica

- Date due relazioni A e B, A except B è l'insieme delle tuple x tali che x appartiene ad A ma non appartiene a B
- Sintassi

```
select EspressioneListaAttributi1 from ListaTabelle1 where Condizioni1
```

except [all]

select *EspressioneListaAttributi2* from *ListaTabelle2* where *Condizioni2*;

• EspressioneListaAttributi1 esprime attributi dello stesso tipo di EspressioneListaAttributi2

Sottrazione insiemistica

• Esempio:

- Ricava i codici dei prodotti che pesano più di 16 kg ma che non sono forniti dal fornitore S2
- Oracle non supporta l'operatore minus all;
 PostgreSQL supporta except all

Esempi (con soluzioni alternative)

- Trovare i codici dei fornitori che hanno fornito almeno un prodotto di colore rosso o verde
- Soluzione 1 (con operatore insiemistico):

```
select SP.SNum
from SP join P on SP.PNum=P.PNum
where Color='Red'
union
select SP.SNum
from SP join P on SP.PNum=P.PNum
where Color='Green';
```

Soluzione 2 (senza operatore insiemistico):

```
select distinct SP.SNum
from SP join P on SP.PNum=P.PNum
where Color='Red' or Color='Green';
```

Esempi (con soluzioni alternative)

- Trovare i codici dei fornitori che hanno fornito almeno un prodotto di colore rosso e uno di colore verde
- Soluzione 1 (con operatore insiemistico):

```
select SP.SNum
from SP join P on SP.PNum=P.PNum
where Color='Red'
```

intersect

```
select SP.SNum
from SP join P on SP.PNum=P.PNum
where Color='Green';
```

Soluzione 2 (senza operatore insiemistico):

```
select distinct SP1.SNum
from SP SP1 join P P1 on SP1.PNum=P1.PNum, SP SP2 join P P2 on
SP2.PNum=P2.PNum
where SP1.SNum=SP2.SNum AND P1.Color='Red' AND P2.Color='Green';
```

Esempi (con soluzioni alternative)

- Trovare i codici dei fornitori che hanno fornito almeno un prodotto di colore rosso ma non uno di colore verde
- Soluzione 1 (con operatore insiemistico):

Soluzione 2 (senza operatore insiemistico):

DEVO USARE UN NUOVO COSTRUTTO: le query nidificate

Interrogazioni nidificate

- È possibile annidare sottoquery in una query
- Le sottoquery sono utili per risolvere sottoproblemi
- Per es. ricavare i codici dei fornitori il cui status è inferiore alla media
- Sottoproblema: qual è la media degli status?
- Usiamo una (sotto)query per ottenere la media select avg(Status) from S
 e la annidiamo nell'altra query select SNum from S
 where Status < (select avg(Status) from S);

Interrogazioni nidificate

- Esistono due tipi di sottoquery:
 - semplici (o stratificate): è possibile valutare prima
 l'interrogazione più interna (una volta per tutte), poi, sulla base del suo risultato, valutare l'interrogazione più esterna
 - correlate (o incrociate): l'interrogazione più interna fa riferimento a una delle tabelle appartenenti all'interrogazione più esterna. Per ciascuna riga candidata alla selezione nell'interrogazione più esterna, è necessario valutare nuovamente la sottoquery

Interrogazioni nidificate

- Le sottoquery annidate possono essere usate:
 - nella clausola where (utilizzando test di selezione sofisticati come all/any, in, exists)
 - nella clausola from (permettono di valutare query su tabelle derivate)
 - nella clausola select (standard SQL:2003, non supportata da tutti i DBMS)

Sottointerrogazioni semplici

- Iniziamo a vedere le sottointerrogazioni semplici specificate nella clausola where
- Se c'è la certezza che la query restituisca una sola riga con un solo valore, si possono utilizzare gli usuali operatori di confronto (=, <>, <, >, <=, >=)

Sottointerrogazioni semplici

 Esempio: trovare il codice dei fornitori che operano nella stessa città di S1

```
select SNum
from S
where City =
( select City from S where SNum='S1' );
```

- Se la sottointerrogazione restituisce più di un valore, per effettuare il confronto è necessario utilizzare uno dei quantificatori seguenti:
 - any: il predicato deve essere soddisfatto da almeno una riga restituita dalla sottointerrogazione
 - all: il predicato deve essere soddisfatto da tutte le righe restituite dalla sottointerrogazione
- Sintassi

```
select ... from ... where EspressioneAttr operatoreDiConfronto any/all (select ... from ... where ... );
```

- Esempio: ricavare i codici dei fornitori che non hanno il valore di status più grande
- Scrivere

```
select SNum from S
where Status < max(Status);</pre>
```

sarebbe **errato** perché non è permesso usare operatori aggregati nella clausola where (la clausola where agisce a livello di riga)

 Possiamo usare il quantificatore any e una sottoquery

 Esempio: ricavare i codici dei fornitori che non hanno il valore di status più grande

 Solo i fornitori S3 e S5 con stato massimo (30) non vengono selezionati perché il loro status non è minore di nessuno status

- Esempio: ricavare i codici dei fornitori che hanno dato la fornitura con la più grande quantità di parti
- Scrivere qualcosa del tipo

```
select SNum, max(Qty) from SP;
oppure
select SNum from SP where Qty=max(Qty);
sarebbe errato per motivi già discussi
```

 Possiamo scrivere select SNum from SP where Qty=(select max(Qty) from SP); oppure usare il quantificatore all e una sottoquery

```
select SNum from SP

where Qty >= all

( select Qty
from SP );
```

 Vengono selezionati i fornitori S1, S2 e S4 perché la quantità fornita (400) è maggiore o al più uguale a qualsiasi valore di Qty

- Cosa succede a un'interrogazione di questo tipo se l'attributo assume (o può assumere) valori nulli?
- Per esempio Status è nullable, quindi la tabella S potrebbe assumere i seguenti valori:

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens
S6	Pippo	(null)	Rome

Cosa restituisce la seguente query?

 Il predicato della clausola where non è vero nel caso di S6 (Status >= null è unknown), quindi il risultato della query è vuoto

Cosa restituisce la seguente query?

```
select SNum from S
where Status = all
( select Status
from S );
```

 Per questi motivi l'operatore di uguaglianza non viene (quasi) mai usato con il quantificatore all

Cosa restituisce la seguente query?

```
select SNum from S
where Status = all
( select Status
from S );
```

 Per questi motivi l'operatore di uguaglianza non viene (quasi) mai usato con il quantificatore all

Nulla! Uno Status che è uguale a tutti non esiste.

- Per verificare che un valore sia presente o meno in un insieme possiamo utilizzare le condizioni in e not in
- Esempio: elencare i fornitori che hanno fornito parti rosse

```
select distinct SNum from SP
where PNum in
( select PNum from P
where Color='Red' );
```


Esempio: elencare i fornitori che non hanno fornito anche parti blu (elencare i fornitori che forniscono solo parti non blu o nessuna parte)

```
select distinct SNum from SP
where PNum not in
          ( select PNum from P
           where Color='Blue');
```

• È corretta?

SNum

S1

S2

S3

S4

 Esempio: elencare i fornitori che non hanno fornito anche parti blu (elencare i fornitori che forniscono solo parti non blu o nessuna parte)

```
select distinct SNum from SP

where PNum not in

( select PNum from P

where Color='Blue' );
```

No, abbiamo solo ricavato i fornitori che forniscono (anche)
 parti non blu (considerate S1 e S2 hanno fornito parti blu, rosse e verdi,
 S3 parti verdi, S4 parti verdi e rosse e S5, non fornisce parti)

Database di esempio

S

<u>SNum</u>	SName	Status	City
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

SP

<u>SNum</u>	<u>PNum</u>	QTY
<mark>S1</mark>	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
<mark>S1</mark>	P5	100
S1	P6	100
<mark>S2</mark>	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
<mark>S4</mark>	P5	400

Р	<u>PNum</u>	PName	Color	Weight	City
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	P3	Screw	Blue	<mark>17</mark>	Rome
	P4	Screw	Red	14	London
	P5	<mark>Cam</mark>	Blue	<mark>12</mark>	<mark>Paris</mark>
	P6	Cog	Red	19	London

 Esempio: Esempio: elencare i fornitori che non hanno fornito anche parti blu (elencare i fornitori che forniscono solo parti non blu o nessuna parte)

Ora è corretta

SNum

S2

S3

S5

 Esempio: elencare per ogni fornitore (con i suoi dettagli) la quantità massima fornita

```
select S.*, Qty
from S join SP on S.SNum=SP.SNum
where (SP.SNum, Qty) in
(select SNum, max(Qty)
```

from SP group by SNum);

	Nictore de cai considera	S3
•	Notare che si considera	S4
	l'appartenenza di una coppia di v	alor

 Manca S5. Come si può modificare la query per avere veramente ogni fornitore?

SNum	SName	Status	City	Qty
S1	Smith	20	London	400
S2	Jones	10	Paris	400
S3	Blake	30	Paris	200
S4	Clark	20	London	400

 Esempio: elencare per ogni fornitore la quantità massima fornita

```
select S.*, coalesce(Qty,0)

from S left join SP on S.SNum=SP.Snum
where SP.SNum is null or (SP.SNum, Qty) in
  (select SNum, max(Qty)
  from SP
  group by SNum);
```

SNum	SName	Status	City	Qty
S1	Smith	20	London	400
S2	Jones	10	Paris	400
S3	Blake	30	Paris	200
S4	Clark	20	London	400
S5	Adams	30	Athens	0

Sottoquery nella clausola from

 Esempio: elencare il nome del fornitore e la quantità massima da lui fornita

```
select SName, MaxQty
from S left join (
    select SNum, max(Qty) as MaxQty
    from SP
    group by SNum) SMax
    on S.SNum=SMax.SNum;
```

SName	MaxQty
Smith	400
Jones	400
Blake	200
Clark	400
Adams	(null)

- La sottoquery produce una tabella che viene usata dalla query più esterna
- Una sottoquery nella clausola from non può essere correlata

Sottoquery nella clausola select

 Esempio: elencare i fornitori e il numero totale di parti fornite

```
select SNum, (select sum(Qty) from SP where SP.SNum=S.SNum) TotQty
```

from S;

SNum	TotQty
S1	1350
S2	700
S3	200
S4	900
S5	(null)

- Una sottoquery nella clausola *select*deve restituire esattamente una riga con un valore
- Quasi sempre sarà una sottoquery correlata

Esercizio 5.1

 Elencare i fornitori che forniscono parti disponibili a Londra (sia con costrutto in/not in che con costrutto any/all)

Esercizio 5.2

 Elencare le città in cui non vi sono fornitori con status minore della media (sia con costrutto in/not in che con costrutto any/all)