System Verification

Introduction:

In order to verify the EDF scheduler, we will implement an application of 6 tasks as follows:

Task_1, Task_2: will monitor rising and falling edge on button_1 and button_2 and send this event to the consumer task.

Task_3: will send periodic string every 100ms to the consumer task

Task_4: This is the consumer task which will write on UART any received string from other tasks.

Task_5, Task_6: These two tasks shall be implemented as an empty loop that loops X times. You shall determine the X times to achieve the required execution time mentioned above. (Hint: In run-time use GPIOs and logic analyzer to determine the execution time)

Tasks:

Name	Periodicity (ms)	Deadline (ms)
Button_1_Monitor	50	50
Button_2_Monitor	50	50
Periodic_Transmitter	100	100
Uart_Receiver	20	20
Load_1_Simulation	10	10
Load_2_Simulation	100	100

Analytical Method:

Hyper period:

Hyperperiod =Least Common Multiplier (50, 50, 100, 20, 10, 100)

Hyperperiod = 100ms

CPU Load:

Name	Execution Time	OccurrenceDuringHyperperiod
Button_1_Monitor	0 .008	2
Button_2_Monitor	0.008	2
Periodic_Transmitter	0.0096	1
Uart_Receiver	0.017	5
Load_1_Simulation	5ms	10
Load 2 Simulation	12ms	1

CPU Load = [(0.008*2)*2 + (0.0096*1) + (0.017*5) + (5m*10) + (12ms*1)] / 100 = 0.62 = 62%

Schedualability:

1. Rate-Monotonic Analysis:

$$\sum_{k=0}^{n} \frac{C_i}{P_i} \le n(2^{\frac{1}{n}} - 1)$$

$$LHS = \frac{0.008}{50} + \frac{0.008}{50} + \frac{0.096}{100} + \frac{0.071}{20} + \frac{5}{10} + \frac{12}{100} = 0.621$$

$$RHS = 6\left(2^{\frac{1}{6}} - 1\right) = 0.735$$

So, the system is schedulable: LHS <= RHS

2. Time Demand Analysis:

As a Rate-Monotonic Scheduler: The smaller the periodicity, the higher the priority.

Name	Periodicity (ms)	Execution Time (ms)
Load_1_Simulation	10	5
Uart_Receiver	20	0.017
Button_1_Monitor	50	0.008
Button_2_Monitor	50	0.008
Periodic_Transmitter	100	0.0096
Load_2_Simulation	100	12

Critical Instant = 100ms

$$W_1(10) = 5 + 0 = 5 < deadline$$

$$W_2(20) = 0.017 + \frac{20}{10} * 5 = 10.017 < deadline$$

$$W_3(50) = 0.008 + \frac{50}{10} * 5 + \frac{50}{20} * 0.017 = 25.059 < deadline$$

$$W_4(50) = 0.008 + \frac{50}{10} * 5 + \frac{50}{20} * 0.017 + \frac{50}{50} * 0.008 = 25.067 < deadline$$

$$W_5(100) = 0.0096 + \frac{100}{10} * 5 + \frac{100}{20} * 0.071 + \frac{100}{50} * 0.008 * 2 = 50.1266 < deadline$$

$$W_6(100) = 12 + \frac{100}{10} * 5 + \frac{100}{20} * 0.071 + \frac{100}{50} * 0.008 * 2 + \frac{100}{100} * 0.0096 = 61.1266$$
< deadline

So, all tasks are less than the deadline → System is Schedulable

SimSo Simulation:

Keil Simulation:

