Machine Learning 1 Review of week 1-3

Patrick Forré

Review of the most important topics from week 1-3 covered in lecture 08. This is an incomplete list! The midterm exam will cover more than these slides!!!

Different Types of Learning: Supervised Learning

What is? (Supervised Learning)

We talk about <u>Supervised Learning</u>, if for the known data cases x_1, \ldots, x_n we also know the target variables t_1, \ldots, t_n . The task now is to make a good prediction for the target variable t for new data x, where t is not known anymore.

This boils down to estimating a function f such that for all known and unknown(!) (x,t) we have $f(x) \approx t$.

Definition (Classification and Regression)

- If t is a discrete variable (i.e. takes values in a countable or finite set like $\{0,1\}$) this task is called <u>Classification</u>.
- If t is a continuous variable (i.e. takes values in \mathbb{R} or \mathbb{R}^d) it is called *Regression*.

Different Types of Learning: Unsupervised Learning

What is? (Unsupervised Learning)

We talk about <u>Unsupervised Learning</u> if for the known data cases x_1, \ldots, x_n no target variables are given.

The task now is to find an "inner representation" of the known data to make it more accessible and such that new data x can relate to it.

Typical approaches are <u>Clustering</u>, <u>Dimensionality Reduction</u>, Density Estimation.

Which approach to use depends on our application in mind.

Remark

Clustering can in some cases be seen as "unsupervised classification", and dimensionality reduction as a kind of "unsupervised regression".

The Rules of Probability Theory

Theorem (The Rules of Probability Theory)

For random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ we have the following rules:

	discrete RV	continuous RV
σ -Additivity	$\mathbb{P}(X \in A) = \sum_{x \in A} p(x)$	$\mathbb{P}(X \in A) = \int_A p(x) dx$
Positivity	$p(x) \geqslant 0$	$p(x) \geqslant 0$
Normalization	$\sum_{x \in \mathcal{X}} p(x) = 1$	$\int_{\mathcal{X}} p(x) dx = 1$
Sum Rule	$p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$	$p(x) = \int_{\mathcal{Y}} p(x, y) dy$
Product Rule	$p(x,y) = p(x y) \cdot p(y)$	$p(x,y) = p(x y) \cdot p(y)$

$$p(y|x) = \frac{p(x|y) \cdot p(y)}{p(x)} = \begin{cases} \frac{p(x|y) \cdot p(y)}{\sum_{y' \in \mathcal{Y}} p(x|y') \cdot p(y')} & \text{for discrete RV} \\ \frac{p(x|y) \cdot p(y)}{\int_{\mathcal{Y}} p(x|y') \cdot p(y') dy'} & \text{for continuous RV} \end{cases}$$

I.a.w. the conditioning can be "exchanged" by this rule.

In the context of Bayesian inference (see later) we call:

- p(y): the prior probability of Y (i.e. before observing x).
- p(y|x): the posterior probability of Y (i.e. after observing x).
- p(x|y): the <u>likelihood</u> of X = x given Y = y.
- p(x): the <u>evidence</u> for X = x.

Independent Random Variables

Definition (Independence)

Two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ are called independent if for all values x, y we have:

$$p(x,y) = p(x) \cdot p(y).$$

This is equivalent to saying that for all x and y (with p(y) > 0) we have:

$$p(x|y) = p(x).$$

In words: X and Y are independent iff measuring X gives no information about Y, and vice versa.

Multivariate Gaussian

Definition (Multivariate Gaussian distribution in D dimensions)

A vector valued random variable $X = (X_1, \dots, X_D)^T$ is said to be multivariate Gaussian distributed with parameters

$$\mu = (\mu_1, \dots, \mu_D)^T$$
 and $\Sigma = (\Sigma_{ij})_{i,j}$ if X has the density in $X = (x_1, \dots, x_D)^T$:

$$\mathcal{N}(x|\mu, \Sigma) := \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right),$$

where Σ is a $D \times D$ covariance matrix and $|\Sigma|$ its determinant. We have: $\mathbb{E}[X] = \mu$ and $\mathrm{Cov}(X) = \Sigma$. Note that $\mathcal{N}(x|\mu,\Sigma)$ has D(D+3)/2 parameters.

Maximum Likelihood Estimation

- Data set $D = (x_1, ..., x_N)$ of N independent observations given.
- We are presented with a class of probability distributions $\{p(x|w)|w\in\mathcal{W}\}$ for x, where \mathcal{W} is an index set (in some \mathbb{R}^d).
- The Maximum Likelihood Estimator w_{ML} is determined by:

$$\begin{array}{ll} w_{\mathsf{ML}} & := & \operatorname{argmax}_{w \in \mathcal{W}} p(D|w) \\ & = & \operatorname{argmax}_{w \in \mathcal{W}} \prod_{i=1}^{N} p(x_i|w) \\ & = & \operatorname{argmax}_{w \in \mathcal{W}} \sum_{i=1}^{N} \log p(x_i|w) \\ & = & \operatorname{argmin}_{w \in \mathcal{W}} \left\{ - \sum_{i=1}^{N} \log p(x_i|w) \right\} \end{array}$$

Bayesian Prediction

- Data set $D=(x_1,\ldots,x_N)$ of N independent observations given.
- We are presented with a class of probability distributions $\{p(x|w)|w\in\mathcal{W}\}$ for x, where \mathcal{W} is an index set (in some \mathbb{R}^d).
- Goal: Estimate the distribution of a new data point x'.
- Bayesian Principle: Instead of searching for one optimal w consider all $w \in \mathcal{W}$ simultaneously and assign a probability distribution p(w) over it, reflecting the plausability of each w.
- p(w) is called the prior distribution of w.
- Then adjust/update p(w) with the occurrence of data D to p(w|D), making some w more plausible and others less (in accordance with D).
- p(w|D) is called the <u>posterior distribution</u> of w after observing D.

Bayesian Prediction (II)

• The posterior p(w|D) can be computed with Bayes' Rule:

$$\rho(w|D) = \frac{\rho(D|w)}{\rho(D)} \cdot \rho(w).$$

- p(D|w) is called the <u>likelihood</u> and p(D) the <u>evidence</u>.
- Before learning *D* the predictive distribution is:

$$p(x') = \int_{S} p(x'|w)p(w)dw.$$

After learning D the predictive distribution becomes:

$$p(x'|D) = \int_{\mathcal{W}} p(x'|D, w)p(w|D)dw = \int_{\mathcal{W}} p(x'|w)p(w|D)dw.$$

Maximum A Posteriori Probability Estimation

- Data $D = (x_1, ..., x_N)$ of N independent observations given.
- Probability distributions $\{p(x|w)|w \in \mathcal{W}\}$ for x given.
- Bayesian setting: probability distribution p(w) given.
- Maximum a Posteriori Principle: The most likely "explanation" of D is not just given by the index w which maximizes p(D|w), but which maximizes the a posteriori $p(w|D) = \frac{p(D|w)p(w)}{p(D)}$.
- The Maximum A Posteriori Estimator w_{MAP} is:

```
\begin{array}{lll} w_{\text{MAP}} & := & \operatorname{argmax}_{w \in \mathcal{W}} p(w|D) \\ & = & \operatorname{argmax}_{w \in \mathcal{W}} p(D|w) p(w) \\ & = & \operatorname{argmax}_{w \in \mathcal{W}} \log p(D|w) + \log p(w) \\ & = & \operatorname{argmax}_{w \in \mathcal{W}} \sum_{i=1}^{N} \log p(x_i|w) + \log p(w). \end{array}
```

Supervised Learning: General Concept

- Goal: Predict target variable t from corresponding data x.
- Training Data: We have a data set $D = (x_1, \ldots, x_N)$ of N observations together with their target variables (estimates) $T = (t_1, \ldots, t_N)$ given $(\rightarrow \text{supervision})$.
- Model: We choose a class of functions in x: $\{y(x, w)|w \in \mathcal{W}\}$ as possible prediction function (with the aim $y(x, w) \approx t$).
- Two Error functions:
 - Interested in minimal error on test data (like RMSE or misclassification rate).
 - But we minimize another (regularized) error function on training data (like Ridge/Lasso regularized sum-of-squares, cross-entropy, neg-log-likelihood, neg-log-a-posteriori etc.)
- Methods: Stochastic gradient descent (online), iteratively reweighted least squares (batch).

Supervised Learning: Evaluating the Error in Praxis

Question

How do we measure the error of a prediction for unknown data sets (x, t) (since we do not know the correct target variable t)?

Hold out known data! Given that our known data set $D = (x_1, \ldots, x_N)$ with targets $T = (t_1, \ldots, t_N)$ is big enough then we randomly divide the data set D into three groups:

- training set $(D_{\rm tr} \approx 60\% \text{ of } D)$: Only $D_{\rm tr}$ and $T_{\rm tr}$ will be used for training (i.e. finding the "right" w^* for $y(x, w^*)$).
- 2 validation set $(D_{\rm val} \approx 20\% \text{ of } D)$: $D_{\rm val}$ and $T_{\rm val}$ will be used for monitoring the estimated test error: $E(y(D_{\rm val}, w^*), T_{\rm val})$.
- **②** <u>test set</u> ($D_{\rm test} \approx 20\%$ of D): $D_{\rm test}$ will only be allowed to be used <u>once</u> (!!!) for reporting the estimated <u>test error</u>: $E(y(D_{\rm test}, w^*), T_{\rm test})$.

If D is not big enough, we rely on weaker evaluation techniques.

Linear Basis Function Model with Ridge Regularization

- Training data: $D = (x_1, \dots, x_N)^T$ with targets $T = (t_1, \dots, t_N)^T$, where every $x_i \in \mathbb{R}^D$ is a D-dimensional vector $x_i = (x_{i,1}, \dots, x_{i,D})^T$.
- Fix a number M and choose basis functions/"features" of x: $(\phi_0(x), \ldots, \phi_{M-1}(x))^T =: \phi(x)$, with $\phi_0 \equiv 1$.
- Model functions with parameters $w = (w_0, \dots, w_{M-1}) \in \mathbb{R}^M$:

$$y(x, w) = \sum_{i=0}^{M-1} w_i \cdot \phi_i(x) = w^T \phi(x).$$

• Minimize the Ridge regularized sum-of-squares error function:

$$E_{\mathrm{RG}}(D, T, w) := \frac{1}{2} \sum_{i=1}^{N} (t_i - y(x_i, w))^2 + \frac{\lambda}{2} \sum_{k=0}^{M-1} |w_k|^2.$$

• Unique minimizer: $w_{\rm RG} = (\lambda \mathbb{1}_M + \Phi^T \Phi)^{-1} \Phi^T T$, with $\overline{N \times M}$ -matrix $\overline{\Phi}$ with entries $\Phi_{ik} = \phi_k(x_i)$.

Problems: Underfitting and Overfitting

• Underfitting: model not flexible/complex enough (M too low) to capture variability of true function f.

Detection: both training and test error comparatively high. Possible solutions:

- ullet Increase parameter space ${\mathcal W}$, i.e. complexity M,
- create additional basis functions / "features" ϕ_j of the data x,
- measure new meaningful properties of the samples.
- Overfitting: model too flexible (M too big in comparison to number of observations N). It will start to model variance and noise instead of true underlying function.

Detection: training error low, test error high.

Possible solutions:

- get more data (increase N).
- ullet decrease parameter space ${\mathcal W}$, i.e. lower complexity M,
- penalize big parameters / coefficients w_i ("Shrinkage", "Weight Decay", "Regularization", "Bayesian Approach").

Model Comparison and Model Selection

Question

If we have different models (e.g. different M, λ etc.) to describe the data which should we choose?

- If we have enough data then we split the data into training, validation and test data and evaluate every model (fully trained on the training set) on the <u>validation set</u>. Choose the one with lowest validation test error.
- If data is scarce one can use <u>S-fold cross validation</u>.
- One could use <u>information criteria</u>, which penalize complexity:
 - Akaike IC (AIC): Choose model with minimal:

$$M - \ln p(D|w_{\rm ML})$$
.

Bayesian IC (BIC): Choose model with minimal:

$$\frac{1}{2}M\ln N - \ln p(D|w_{\text{MAP}}).$$

• Full Bayesian.

Expected Test Error: Bias - Variance - Decomposition

• Let X, ϵ be independent random variables with $\mathbb{E}[\epsilon] = 0$ and $T = h(X) + \epsilon$ and $D = (X_1, \ldots, X_N)$ i.i.d. instances of X and W a noisy parameter "learned" from D and Y the predictive function. Then the expected (quadratic) test error is:

$$\mathbb{E}[(T - y(X, W))^{2}]$$

$$= \mathbb{E}[(T - h(X))^{2}] \qquad \text{(noise)}^{2}$$

$$+ \mathbb{E}[(h(X) - \mathbb{E}_{D}[y(X, W)])^{2}] \qquad \text{(bias)}^{2}$$

+ $\mathbb{E}[(\mathbb{E}_D[v(X,W)]-v(X,W))^2]$

(variance)

- Expected Test Error = Bias² + Variance + Noise²,
- Bias: measures the "difference" between desired regression function h and the avarage prediction over all data sets.
- Variance: measures sensitivity of y to particular choice of data set around the average over all data sets.
- Noise: just a constant coming from the variance of ϵ .

Bayesian Model Comparison for Linear Basis Function Model

• Linear Basis Function Models:

$$\mathcal{M}_{M} = (M; \mathcal{W}_{M} = \mathbb{R}^{M}; \phi_{0}, \dots, \phi_{M-1}; y(x, w) = w^{T} \phi(x); \alpha, \beta)$$

- Training data: $D = (x_1, ..., x_N)^T$ with targets $T = (t_1, ..., t_N)^T$.
- Likelihood: $p(T|w, D, \beta, M) = \prod_{i=1}^{N} \mathcal{N}(t_i|w^T\phi(x_i), \beta^{-1}).$
- Prior: $p(w|\alpha, M) = \mathcal{N}(w|0, \alpha^{-1}\mathbb{1}_M)$.
- Posterior: $p(w|T, D, \alpha, \beta, M) = \mathcal{N}(w|\mu_N, \Sigma_N)$ with:

$$\Sigma_{N} = (\alpha \mathbb{1}_{M} + \beta \Phi^{T} \Phi)^{-1}$$

$$\mu_{N} = \beta \Sigma_{N} \Phi^{T} T.$$

We get the log <u>Model Evidence</u> (by Bayes' rule):

$$\begin{split} & \ln p(T|D,\alpha,\beta,M) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E_{\mathrm{RG}}(\mu_N) + \frac{1}{2} \ln |\Sigma_N| - \ln(2\pi) \\ & \text{with } E_{\mathrm{RG}}(\mu_N) = \frac{\beta}{2} ||T - \Phi \mu_N||_2^2 + \frac{\alpha}{2} ||\mu_N||_2^2. \end{split}$$

• Model Selection: Choose the one with highest model evidence.

Linear Discriminant Analysis (LDA) for Multiple Classes

- Given: Training set $D = (x_1, ..., x_N)^T$ with targets $T = (t_1, ..., t_N)^T$ of K classes $t_i \in \{c_1, ..., c_K\}$.
- Prior: $p(c_k) =: q_k, k = 1, ..., K$.
- LDA-assumption: $p(x|c_k) = \mathcal{N}(x|\mu_k, \Sigma)$ (same Σ for every k).
- (Unbiased) maximum likelihood estimates:

$$\begin{aligned}
N_k &:= & \#\{1 \leqslant n \leqslant N | t_n = c_k\}, \\
q_{k,\text{ML}} &= & \frac{N_k}{N}, \\
\mu_{k,\text{ML}} &= & \frac{1}{N_k} \sum_{n:t_n = c_k} x_n, \\
\tilde{\Sigma}_{\text{ML}} &= & & \frac{1}{N-K} \sum_{k=1}^K \sum_{n:t_n = c_k} (x_n - \mu_{k,\text{ML}})(x_n - \mu_{k,\text{ML}})^T, \end{aligned}$$

• Posterior: $p(c_k|x) \approx \sigma_k(w_1^T x + w_{10}, \dots, w_K^T x + w_{K0})$ with:

$$w_j = \tilde{\Sigma}_{\mathrm{ML}}^{-1} \mu_{j,\mathrm{ML}}, \qquad w_{j0} = -\frac{1}{2} \mu_{j,\mathrm{ML}}^T \tilde{\Sigma}_{\mathrm{ML}}^{-1} \mu_{j,\mathrm{ML}} + \ln q_{j,\mathrm{ML}}.$$

- We assign x to class c_k if $\sigma_k > \sigma_j$ for all $j \neq k$, i.e.:
- Decision regions: $\mathcal{R}_k = \{x | w_k^T x + w_{k0} > w_i^T x + w_{j0}, \forall j \neq k\}.$
- Decision boundaries: $\mathcal{B}_{jk} = \{x | w_j^T x + w_{j0} = w_k^T x + w_{k0}\}$
- ullet For use of <u>basis functions</u> ϕ_{m} replace x with $\phi(x)$ everywhere. $_{_{20\,/_{23}}}$

Quadratic Discriminant Analysis (QDA) for Multiple Classes

- Given: Training set $D = (x_1, ..., x_N)^T$ with targets $T = (t_1, ..., t_N)^T$ of K classes $t_i \in \{c_1, ..., c_K\}$.
- Prior: $p(c_k) =: q_k, k = 1, ..., K$.
- QDA-assumption: $p(x|c_k) = \mathcal{N}(x|\mu_k, \Sigma_k)$.
- (Unbiased) maximum likelihood estimates:

$$\begin{aligned}
N_k &:= & \#\{1 \leqslant n \leqslant N | t_n = c_k\}, \\
q_{k,\text{ML}} &= & \frac{N_k}{N}, \\
\mu_{k,\text{ML}} &= & \frac{1}{N_k} \sum_{n:t_n = c_k} x_n, \\
\tilde{\Sigma}_{k,\text{ML}} &= & \frac{1}{N_{k-1}} \sum_{n:t_n = c_k} (x_n - \mu_{k,\text{ML}}) (x_n - \mu_{k,\text{ML}})^T,
\end{aligned}$$

• Posterior: $p(c_k|x) \approx \sigma_k(a_1(x), \dots, a_K(x))$ with:

$$a(x) = -\frac{1}{2} |\tilde{\Sigma}_{k,\mathrm{ML}}| - \frac{1}{2} (x - \mu_{k,\mathrm{ML}})^T \tilde{\Sigma}_{k,\mathrm{ML}}^{-1} (x - \mu_{k,\mathrm{ML}}) + \log q_{k,\mathrm{ML}}.$$

- We assign x to class c_k if $a_k(x) > a_i(x)$ for all $j \neq k$, i.e.:
- Decision regions: $\mathcal{R}_k = \{x | a_k(x) > a_j(x), \forall j \neq k\}.$
- Decision boundaries: $\mathcal{B}_{jk} = \{x | a_j(x) = a_k(x)\}.$
- For use of <u>basis functions</u> ϕ_m replace x with $\phi(x)$ everywhere.

Classification with Logistic Regression

- Given: Data set $D = (x_1, \dots, x_N)^T$ with binary classes $T = (t_1, \dots, t_N)^T$ with $t_i \in \{c_0, c_1\} = \{0, 1\}$.
- Basis functions: $\phi = \phi(x) = (\phi_0(x), \dots, \phi_M(x))^T$.
- Model assumption of Logistic Regression: $\overline{p(c_1|\phi, w) = \sigma(w^T\phi)}.$
- Minimizing the cross-entropy error:

$$E(w) = -\ln p(T|\Phi, w) = -\sum_{n=1}^{N} [t_n \ln y_n + (1 - t_n) \ln(1 - y_n)].$$

- Using stochastic gradient descent or iterative reweighted least squares we end up with a approximate minimizer w^* of E(w).
- We assign a new data point x to class c_1 if $\sigma((w^*)^T \phi(x)) > \frac{1}{2}$, i.e. if $(w^*)^T \phi(x) > 0$.
- Decision regions: $\overline{\mathcal{R}}_1 = \{x | (w^*)^T \phi(x) > 0\}$ and $\overline{\mathcal{R}}_0 = \{x | (w^*)^T \phi(x) < 0\}.$
- Decision boundaries: $\mathcal{B} = \{x | (w^*)^T \phi(x) = 0\}.$

Logistic Regression for multiple classes

- Data $D = (x_1, \dots, x_N)^T$ with $T = (t_1, \dots, t_N)^T$ of K-dim one-vs-the-rest vectors $t_i = (0, \dots, 1, \dots, 0)^T$.
- Model assumption of Logistic Regression:

$$p(c_k|\phi, w_1, \dots, w_k) = \sigma_k(w_1^T \phi, \dots, w_K^T \phi),$$

with weight vectors $w_k = (w_{k,0}, \dots, w_{k,M}) \in \mathbb{R}^{M+1}$.

- Put $y_{nk} := \sigma_k(w_1^T \phi(x_n), \dots, w_K^T \phi(x_n)).$
- Minimize the cross-entropy error w.r.t. w:

$$E(W) = -\ln p(T|\Phi, W) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}.$$

- Gradient: $\nabla_{w_j} E(W) = \sum_{n=1}^N (y_{nj} t_{nj}) \phi(x_n)$
- Hessian: $\nabla_{w_k} \nabla_{w_i} E(W) = -\sum_{n=1}^N y_{nk} (\mathbb{1}_{nj} y_{nj}) \phi(x_n) \phi(x_n)^T$.
- We assign x to class c_k if $\sigma_k > \sigma_i$ for all $j \neq k$, i.e.:
- Decision regions: $\mathcal{R}_k = \{x | (w_k^*)^T \phi(x) > (w_i^*)^T \phi(x), \forall j \neq k\}.$
- Decision boundaries: $\mathcal{B}_{jk} = \{x | (w_i^*)^T \phi(x) = (w_k^*)^T \phi(x)\}.$