E11 – Skineffekt

2. November 2015

Versuchsleiter: Raphael Frey

Assistent: Jeffrey Gantner

Inhaltsverzeichnis

1	Ark	peitsgrundlagen	1
	1.1	Grundidee	1
	1.2	Vollzylinder	1
	1.3	Hohlzylinder	3
2	Dui	rchführung	5
	2.1	Versuchsanordnung	5
	2.2	Versuchsablauf	5
3	Aus	swertung	6
	3.1	Hohlzylinder	6
	3.2	Vollzylinder	6
4 Fehlerrechnung			9
Li	terat	turverzeichnis	10

Versionsgeschichte

20.10.2015: Version 1

1 Arbeitsgrundlagen

Dieses Kapitel behandelt in Kurzform die wichtigsten Grundlagen, welche zum Verständnis des Versuches erforderlich sind. Die detaillierten Herleitungen sind in der Versuchsanleitung zu finden [1].

1.1 Grundidee

Hochfrequente Wechselströme haben die Eigenschaft, dass sie v.a. an der Oberfläche eines Leiters fliessen und nicht tief in den Leiter eindringen. Dieses als *Skineffekt* bekannte Phänomen soll in diesem Versuch experimentell nachgewiesen werden.

Wird ein Leiter in ein wechselndes Magnetfeld eingeführt, werden in ihm Wirbelströme induziert. Ist die Frequenz des externen Magnetfelds niedrig, verteilen sich diese Wirbelströme auf den gesamten Querschnitt (wenn auch nicht gleichmässig). Wird die Frequenz des externen Magnetfelds erhöht, so verlagern sich die Wirbelströme in den Oberflächenbereich des Leiters. Da sie der Änderung des externen Feldes gemäss der Lenz'schen Regel [2] entgegenwirken, schwächen sie im Innern des Leiters das externe Feld ab, es gibt einen Abschirmeffekt. Je höher die Frequenz des externen Feldes, um so ausgeprägter ist diese Abschirmung.

Als Versuchsobjekte dienen die Fälle eines eingeführten Hohlzylinders und eines eingeführten Vollzylinders. Es werden sowohl gängige Näherungen wie auch die exakten Lösungen aus der Theorie mit den Messergebnissen verglichen.

Es sei hier noch angemerkt, dass auch der Selbstinduktionskoeffizient L sowie der Ohm'sche Widerstand R der Konfiguration aus Spule und eingeführtem Leiter verändert werden. Aus Zeitgründen wurde dieses Verhalten in diesem Versuch nicht gemessen, jedoch werden in Abschnit trotzdem einige Schlussfolgerungen aus den erfassten Daten gezogen.

1.2 Vollzylinder

Abbildung 1: Spule mit Vollzylinder *Quelle:* Skript zum Versuch [1]

1.2.1 B-Feld, exakte Lösung

Die exakte Beschreibung des Magnetfelds innerhalb des Leiters ist die Lösung der folgenden Differentialgleichung:

$$0 = r^2 \cdot \hat{B}''(r) + r \cdot \hat{B}'(r) - i \cdot \omega \mu_0 \sigma \cdot r^2 \cdot \hat{B}(r)$$
(1)

wobei:

r: Distanz zu Zylinderachse

 \hat{B} : gemessenes Magnetfeld im Innern des Leiters (komplexe Grösse)

 ω : Kreisfrequenz des äusseren Magnetfeldes

 σ : spezifische Leitfähigkeit des eingeführten Leiters

Die Lösung dieser Differentialgleichung (gültig für beliebige Frequenzen und Positionen) ist:

$$\hat{B}(r) = \frac{J_0(k \cdot r)}{J_0(k \cdot r_0)} \cdot \hat{B}_0, \tag{2}$$

wobei

$$k = \sqrt{\frac{\omega \cdot \mu_0 \cdot \sigma}{2}} \cdot (1 - i)$$

 r_0 : Radius des eingeführten Zylinders

 \hat{B}_0 : Äusseres Magnetfeld (erzeugt von Zylinderspule)

 $J_0(z)$: Besselfunktion erster Art (siehe auch [3])

Beachte: $\hat{B}(r)$ ist eine komplexe Zahl!

B-Feld, Hochfrequenznäherung

Im Falle hoher Frequenzen kann man folgende Näherung verwenden:

$$\hat{B}(x) = \hat{B}_0 \cdot exp\left(-\frac{x}{s_{skin}}\right) \cdot exp\left(-i \cdot \frac{x}{s_{skin}}\right)$$
(3)

wobei

$$s_{skin} = \sqrt{\frac{2}{\omega \cdot \mu_0 \cdot \sigma}}$$

$$\begin{split} s_{skin} &= \sqrt{\frac{2}{\omega \cdot \mu_0 \cdot \sigma}} \\ \text{Die Lösung brauchbar ist für } s_{skin} &<< r_0. \end{split}$$

Selbstinduktionskoeffizient und Ohm'scher Widerstand, exakte Lösung

Der Selbstinduktionskoeffizient der Konfiguration aus Spule und Leiter ergibt:

$$L = \frac{\mu_0 \cdot 2\pi \cdot r_0 \cdot N_0^2}{l} \cdot Re\left(\frac{J_1(k \cdot r_0)}{k \cdot J_0(k \cdot r_0)}\right) + L_{Rand}$$
(4)

wobei

l: Länge der Zylinderspule

 N_0 : Anzahl Windungen der Zylinderspule $L_{Rand} = \frac{\mu_0 \cdot 2\pi \cdot r_0 \cdot (r_{Sp} - r_0) \cdot N_0^2}{l} \text{ mit } r_{Sp}$: Radius Zylinderspule

Der Ohm'sche Widerstand errechnet sich zu:

$$R_{\Omega,tot} = -\frac{\mu_0 \cdot 2\pi \cdot r_0 \cdot N_0^2}{l} \cdot Im \left(\frac{J_1(k \cdot r_0)}{k \cdot J_0(k \cdot r_0)} \right) + R_{\Omega,0}$$
 (5)

Wobei $R_{\Omega,0}$ der Ohm'sche Widerstand der Zylinderspule ist (also des Drahts, aus dem die Spule konstruiert ist).

1.3 Hohlzylinder 3

Letztlich noch der auf den Spulenstrom normierten magnetischen Fluss:

$$\frac{\hat{\Phi}}{\hat{I}} = \frac{\mu_0 \cdot 2\pi \cdot r_0 \cdot N_0^2}{l} \cdot \left(\frac{J_1(k \cdot r_0)}{k \cdot J_0(k \cdot r_0)} + r_{Sp} - r_0 \right)$$
 (6)

Auch für diese Werte gibt es Näherungslösungen. Da aber bei der Durchführung des Versuches das Gewicht auf das B-Feld gelegt wurde, wird an dieser Stelle nicht weiter auf diese eingegangen. Näherungen sind primär interessant beim Vergleich mit Messwerten und Beobachtungen; das Vergleichen einiger Kurven basierend auf Gleichungen ohne Referenzwerte aus dem Labor ist in den Augen des Autors weniger aufschlussreich und wird daher weggelassen, um diesen Bericht in seinem Umfang nicht allzu sehr wachsen zu lassen.

1.3 Hohlzylinder

Abbildung 3: Spule mit Hohlzylinder, Querschnitt *Quelle:* Skript zum Versuch [1]

1.3.1 B-Feld, exakte Lösung

$$0 \le r \le r_1 : \hat{B}(r) = \hat{B}(r_1) = konst. \tag{7}$$

$$r_1 \le r \le r_2 : \hat{B}(r) = \frac{J_{0,r} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{0,r}}{J_{0,r_2} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{0,r_2}} \cdot \hat{B}_0$$
(8)

$$r_2 \le r \le r_{Sp} : \hat{B}(r) = \hat{B}_0 = konst. \tag{9}$$

Mit $J_{0,r_i} = J_0(k \cdot r_i)$ und k gemäss Abschnitt zum Vollzylinder.

1.3.2 B-Feld, Näherungslösung niedrige Frequenzen

Solange die Wandstärke kleiner ist als die Eindringtiefe s_{skin} , kann das Rohr als dünnwanding betrachtet und folgende Formel verwendet werden:

$$B_{tot} = \frac{\mu_0 \cdot N_0 \cdot I_0}{l} \cdot \left(\frac{2}{i \cdot \omega \cdot \mu_0 \cdot r_1 \cdot d \cdot \sigma + 2} \right)$$
 (10)

wobei:

 r_1 : mittlerer Radius des Metallrohrs

d: Wandstärke des Metallrohrs

1.3.3 Selbstinduktionskoeffizient und Ohm'scher Widerstand, exakte Lösung

$$\frac{\hat{\Phi}}{\hat{I}} = \frac{\mu_0 \cdot N_0^2}{l} \\
\cdot \left(r_1^2 \cdot \frac{J_{0,r_1} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{0,r_1}}{J_{0,r_2} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{0,r_2}} \right. \\
+ \frac{2}{k} \frac{r_2 \cdot (J_{1,r_2} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{1,r_2}) - r_1 \cdot (J_{1,r_1} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{1,r_1}}{J_{0,r_2} \cdot Y_{2,r_1} - J_{2,r_1} \cdot Y_{0,r_2}} \\
+ (r_{Sp}^2 - r_2^2) \right)$$
(11)

$$L = Re\left(\frac{\hat{\Phi}}{\hat{I}}\right) \tag{12}$$

$$R = -\omega \cdot Im \left(\frac{\hat{\Phi}}{\hat{I}}\right) + R_{\Omega,0} \tag{13}$$

2 Durchführung

In diesem Kapitel wird die Durchführung des Versuches beschrieben.

2.1 Versuchsanordnung

2.2 Versuchsablauf

2.2.1 Hohlzylinder

Abbildung 4: Spule mit Vollzylinder Quelle: Skript zum Versuch

2.2.2 Vollzylinder

Abbildung 5: Spule mit Hohlzylinder Quelle: Skript zum Versuch

6 3 AUSWERTUNG

Tabelle 1: Kupferrohr

Frequenz (Hz)	Phasenverschiebung (°)	Amplitude (mV)	Shunt-Spannung (mV)
1	2	70.0	195.3
10	19.2	66.0	200.0
20	35.5	57.8	200.0
40	56.7	41.8	200.3
80	76.7	24.4	200.0
120	87	16.9	200.1
160	94	12.7	200.1
200	100	10.0	200.0
400	121	4.8	200.0
600	140	2.9	199.7
800	155	1.9	200.5
1000	170	1.4	200.2
1200	180	1.0	200.0
1500	200	0.7	199.9

3 Auswertung

3.1 Hohlzylinder

3.1.1 Kupfer

3.1.2 Rostfreier Stahl

3.2 Vollzylinder

Es wurde ein Vollzylinder aus Aluminium verwendet.

3.2.1 Frequenzgang

3.2.2 Niedrige Frequenzen

3.2.3 Hohe Frequenzen

Tabelle 2: Rohr aus rostfreiem Stahl

Frequenz (Hz)	Phasenverschiebung (°)	Amplitude (mV)
40	1.8	68.7
120	5.4	69.1
200	9	68.7
400	17.5	66.2
600	25.4	62.7
800	32.4	59
1000	38.4	54.5
1200	43.5	50.5
1500	50	45
1750	54	41
2000	58	37.2
2500	64	32
3500	71	24
5000	78	18
7500	88	12

 ${\bf Tabelle~3:~Vollzylinder~aus~Aluminium,~frequenzabh\"{a}ngig}$

Frequenz (Hz)	Phasenverschiebung (°)	Amplitude (mV)
1	5.4	69
5	26	65
10	50	57
15	69	48
20	85	40
30	111	28.5
40	132	21
60	166	12.5
80	196	8
100	220	5.4
120	243	3.6
160	283	1.9
200	320	1
250	350	0.6

8 3 AUSWERTUNG

Tabelle 4: Vollzylinder aus Aluminium, $30\,\mathrm{Hz}$

Radius (mm)	Phasenverschiebung (°)	Amplitude (mV)
0	111	28.6
5	109	28.5
10	104	28.7
15	94	29
20	81	30
25	65	33
30	48.5	38
35	32	45
40	16	54
45	2.7	62
50	0	37

Tabelle 5: Vollzylinder aus Aluminium, $450\,\mathrm{Hz}$

Radius (mm)	Phasenverschiebung (°)	Amplitude (mV)
25	215	1.5
27.5	183	2.2
30	152	3.6
32.5	125	5.9
35	100	9.5
37.5	73	15.5
40	47	25
42.5	24	39
45	5.2	55
47.5	0.2	57.5
50	0	38

4 Fehlerrechnung

 Auf die Fehlerrechnung wurde in Absprache mit dem Dozenten verzichtet.

10 LITERATUR

Literatur

- [1] H. Looser, E11 Induktion/Skineffekt. Windisch: FHNW Aargau, 2015.
- [2] Lenz'sche Regel. Wikipedia. [Online]. Verfügbar: https://de.wikipedia.org/wiki/Lenzsche_Regel [Stand: 02. November 2015].
- [3] Besselsche Differentialgleichung. Wikipedia. [Online]. Verfügbar: https://de.wikipedia.org/wiki/Besselsche_Differentialgleichung [Stand: 02. Oktober 2015].