1. $(3A58)_{16} = (0011\ 1010\ 0101\ 1000)_2$,

尾数=1.001011000 (符合规格化要求), 阶码=0,01110 真值=1.001011000× $2^{0,01110}$ = -0.110101× 2^{+1110}

2. 一) 原码一位乘:

$$x*=0.110111$$
, $y*=0.101110$

$$x_0=0$$
, $y_0=1$, $z_0=x_0 \oplus y_0=0 \oplus 1=1$

原码一位乘:

$$x* \times y* = 0.100111100010$$

加符号位, [x×y]_原=1.100 111 100 010

二)补码一位乘:

[x]*=x=00.110111, [y]*=1.010010, [-x]*=11.001001 补码一位乘的计算过程如下:

	部分积	乘数 Y _n	附加位 Y _{n+1}
	00.000000	1.01001 <u>0</u>	<u>0</u>
→ 1	00.000000	0 1 0100 <u>1</u>	<u>0</u>
	+ 11.001001		
	11.001001		
→ 1	11.100100	10 1010 <u>0</u>	<u>1</u>
	+ <u>00. 110111</u>		
	00.011011		
→1	00.001101	110 101 <u>0</u>	<u>0</u>
→ 1	00.000110	1110 10 <u>1</u>	<u>0</u>
	+ <u>11. 001001</u>		
	11. 001111		
→ 1	11.100111	11110 1 <u>0</u>	<u>1</u>
	+ <u>00. 110111</u>		
	00.011110		
→ 1	00.001111	011110 <u>1</u>	<u>0</u>
	+ 11. 001001		
	11.011000	011110	

说明: 最后一步不移位,得[x×y]*=1.011 000 011110。

3. (1) 8341H =1000 0011 0100 0001

寻址方式: 相对寻址; EA= (PC)+2+形式地址 A=5431+2+0041H=5474H

(2) 1468H =0001 0100 0100 1000

寻址方式:直接寻址; EA=形式地址 A=0068H

(3) 8100H =1000 0001 0000 0000

寻址方式: 寄存器间接寻址; EA=(R1)=3525H

(4) 6264H = 0110 0010 0110 0100

寻址方式: 变址寻址; EA=(R2)+位移量 D=6783H+0064H=67E7H

4.

中断源			屏蔽字		
十岁I <i>0</i> 8	0	1	2	3	4
L_0	1	0	0	1	0
$\mathbf{L_1}$	1	1	1	1	1
L_2	1	0	1	1	0
L ₃	0	0	0	1	0
$\mathbf{L_4}$	1	0	1	1	1

5.

- 6. 当CPU发出主存地址后,地址映射机构按照全相联映射方式将主存地址标记与Cache 所有字块的标记进行比较,以判断出所访主存字(主存地址的内容)是否已在 Cache 中。若命中,直接访问 Cache,将该字送至 CPU; 若未命中,一方面要访问主存,将该字传送给 CPU,与此同时,要按照全相联映射方式转换的 Cache 地址将该字所在的主存块装入 Cache,如果此时 Cache 已满,就要执行替换算法,腾出空位才能将新的主存块调入。7.CPU 可从时间和空间两个层面来区分访存取来的指令和数据。
- 1)时间层面:在取指周期(或运行取指微程序)内,由 PC 提供访存地址,取来的即为指令;在执行周期(或运行执行周期相对应的微程序段)内,由指令的地址码部分提供访存地址,取来的即为操作数,也就是数据。
- 2)空间层面:取来的机器指令应存放在指令寄存器,而取来的数据(或操作数)则应该存放在以累加器为代表的通用寄存器内。