Table 10.5

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^k x^k + \dots = \sum_{k=0}^{\infty} (-1)^k x^k, \quad \text{for } |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \text{for } |x| < \infty$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \quad \text{for } |x| < \infty$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^k x^{2k}}{(2k)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \quad \text{for } |x| < \infty$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{k+1} x^k}{k} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \quad \text{for } -1 < x \le 1$$

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^k}{k} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k}, \quad \text{for } -1 \le x < 1$$

 $\frac{1}{1-x} = 1 + x + x^2 + \dots + x^k + \dots = \sum_{k=0}^{\infty} x^k$, for |x| < 1

 $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^k x^{2k+1}}{2k+1} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, \text{ for } |x| \le 1$

$$x^3$$
 x^5 x^{2k+1} $= x^{2k+1}$ $= x^{2k+1}$ $= x^{2k+1}$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=1}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \quad \text{for } |x| < \infty$$

 $\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=1}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \quad \text{for } |x| < \infty$

$$x^2 x^4 x^{2k} \sum_{k=0}^{\infty} x^{2k}$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2k}}{(2k)!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad \text{for } |x| < \infty$$

 $(1+x)^p = \sum_{k=0}^{\infty} {p \choose k} x^k$, for |x| < 1 and ${p \choose k} = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}$, ${p \choose 0} = 1$