Variable compleja

Los números complejos

Definición 1.1 Un número complejo es una expresión a + bi donde $a, b \in \mathbb{R}$ y i es la unidad imaginaria, fruto de resolver la ecuación $x^2 + 1 = 0$ en \mathbb{R} . Así, definimos $i = \sqrt{-1}$. Si $z \in \mathbb{C} = a + bi$, $a = \operatorname{Re} z$ y $b = \operatorname{Im} z$ son la parte **real** e **imaginaria** de z.

Definición 1.2 La **suma** y **multiplicación** están definidas en los complejos así:

$$(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i$$

$$(x_1 + y_1i)(x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$$

Y con estas operaciones (\mathbb{C} , +, ·) es un cuerpo, con $0_{\mathbb{C}} = 0 + 0i$ y $1_{\mathbb{C}} = 1 + 0i$.

Definición 1.3 Dado un complejo z = x + yi, llamamos **conjugado** de z, z a x - yi.

Proposición 1.3.1 Se verifica que $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ y $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.

Definición 1.4.1 Se denomina **módulo** de un complejo z = x + yi, |z| a $\sqrt{x^2 + y^2}$. Se cumple que $|z| = \sqrt{z\overline{z}}$. El módulo cumple que (1) $|z| \ge 0$, (2) $|z| = 0 \iff z = 0$, (3) $|z_1z_2| = |z_1||z_2|$ y (4) $|z_1 + z_2| \le |z_1| + |z_2|$

Demostración. (4)
$$|z_1 + z_2|^2 = (z_1 + z_2) (\overline{z_1 + z_2}) = (z_1 + z_2) (\overline{z_1} + \overline{z_2}) = z_1 \overline{z_1} + z_1 \overline{z_2} + z_2 \overline{z_1} + z_2 \overline{z_2} = z_1 \overline{z_1} + z_1 \overline{z_2} + z_1 \overline{z_2} + z_2 \overline{z_2} = |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \overline{z_2}) \le |z_1|^2 + |z_2|^2 + 2 |z_1| |z_2| = (|z_1| + |z_2|)^2$$

Definición 1.5 Dado un z = a + bi, aplicando u = p + iq = z/|z|, entonces $|u| = 1 = p^2 + q^2$. El ángulo tal que $p = \cos \alpha$, $q = \sin \alpha$ se denomina **argumento**, arg z. Así, z puede representarse como $z = |z|(\cos \alpha + i \sin \alpha)$. Esta forma es la **forma polar**, y también se representa como $z = |z|e^{i\alpha}$.x

El argumento cumple que (1) arg $\overline{z} = -\arg z$ y (2) arg $z_1z_2 = \arg z_1 + \arg z_2$.

Definición 1.7 / 1.8 El espacio topológico (\mathbb{C} , δ_E) con distancia euclídea no es compacto. Sin embargo, si tomamos $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ entonces sí es compacto, y lo denominamos **plano complejo ampliado**. La **esfera de Riemann**, \mathbb{S} , es la representación del conjunto $\hat{\mathbb{C}}$ en $\mathbb{R}^3_{(\xi,\eta,\zeta)}$ en una esfera con centro (0, 0, 1/2) con ecuación $\xi^2 + \eta^2 + \zeta^2 - \zeta = 0$.

La relación entre la esfera y el plano es

$$\xi = \frac{x}{1 + x^2 + y^2}, \eta = \frac{y}{1 + x^2 + y^2}, \zeta = \frac{x^2 + y^2}{1 + x^2 + y^2}$$

La **distancia cordal** entre dos puntos z_1 , z_2 es la distancia euclídea entre los puntos P_1 , P_2 de la esfera de la esfera de Riemman.

$$\delta(z_1, z_2) = \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2} = \frac{\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}{\sqrt{(1 + x_1^2 + y_1^2)(1 + x_2^2 + y_2^2)}}$$

Para un punto en el infinito, la distancia es $\delta(z,\infty) = \frac{1}{\sqrt{1+x^2+y^2}}$

Funciones complejas

Definición 2.0 Una función puede ser de tipo $f: \mathbb{R} \to \mathbb{C}$ (f. compleja de var. real) o $f: \mathbb{C} \to \mathbb{C}$ (f. compleja de var. compleja).

Definición 2.1.1 f = f(z) es **continua** en $z_0 \in \mathbb{C}$ si para todo $\epsilon > 0$ existe $\delta > 0$ tal que si $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. f es **uniformemente continua** en $B \subset \mathbb{C}$ si dado $\epsilon > 0$ existe $\delta > 0$ tal que para todo $z_0 \in B$ y para todo z tal que $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. Si f es uniformemente continua es continua, pero no siempre a la inversa.

Teorema 2.1.1 Si $f_1(z)$, $f_2(z)$ están definidas en $A \subset \mathbb{C}$, A abierto, y son continuas en $z_0 \in A$, $f_1 + f_2$ y f_1/f_2 son continuas en z_0 . Así, los polinomios complejos son continuos.

Definición 2.1.2 Una función f(z) en $A \subset S$ es

continua en z_0 si para todo $\epsilon > 0$ existe $\eta > 0$ tal que para todo $z \in A$ donde $\delta(z, z_0) < \eta$ entonces $\delta(f(z_0), f(z)) < \epsilon$.

Definición 2.2.1, 2.2.2 Una función f(z) es **derivable** en z_0 si existe el límite $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ y es finito. Si $z_0=\infty$, consideramos g(z)=f(1/z) y f es derivable en ∞ si g es derivable en z=0. Una función $f:A\mathbb{C}\to\mathbb{C}$ derivable en todo A se llama función **holomorfa** o **analítica.**

Proposición 2.3.2 Si f es derivable en un punto, también es continua en ese punto.

Proposición 2.3.4 (Regla de la cadena) Sean $g: A \to \mathbb{C}$ y $f: B \to \mathbb{C}$ tal que $g(A) \subset B$. Si g es derivable en z_0 y f es derivable en $g(z_0)$ entonces $f \circ g'(z_0) = f'(g(z_0))g'(z_0)$.