Prove that InArray \leq_k LongSimplePath. Use proof by construction to prove this. So firstly, we need to adopt a function m that maps the input of InArray to the input of LongSimplePath, which is from $\langle A, i \rangle$ to $\langle G, a, b, k \rangle$. Also, notice that the problem InArray \in **P**. So for LongSimplePath, we will prepare two instances for it, i_t being the true instance, and i_f being the false instance. And for i_t , it could be $G = \langle V, E \rangle$ where $V = \{a, b\}$ and $E = \{\langle a, b \rangle\}$, the vertices a, b, and k = 1. For i_f , it could be $G = \langle V, E \rangle$ where $V = \{a, b\}$ and $E = \{\langle a, b \rangle\}$, the vertices a, b, and b, and b, introduce a graph b, introduce a graph b, in b, in

For the only if direction, suppose for InArray, i is in A, then it's true and k = 1, which for LongSimplePath, it would map to i_t . For the if direction, suppose for InArray, i is not in A, and for the purpose of contradiction, LongSimplePath would output true. And this means it has k = 1, and this is only the case when i is in A, which is a contradiction.