TYPES OF INFERENCES

- 1. IPENTIFYING THE POPULATION MEAN
- 2. IPENTIFYING THE POPULATION %
- 3. VERIFYING WHETHER THE POPULATION MEAN IS EQUAL TO A CERTAIN VALUE
- 4. VERIFYING WHETHER THE POPULATION % IS EQUAL TO A CERTAIN VALUE
- 5. VERIFYING WHETHER 2 POPULATION MEANS ARE DIFFERENT
 - 6. VERIFYING WHETHER 2 POPULATION % ARE DIFFERENT

3. VERIFYING WHETHER THE POPULATION MEAN IS EQUAL TO A CERTAIN VALUE

CASE STUDY: A MEDICAL STUDY

MOST ANALYSIS OR RESEARCH STARTS WITH A HYPOTHESIS

MOST ANALYSIS OR RESEARCH STARTS WITH A HYPOTHESIS

"The average life expectancy of an Indian college graduate is 70 yrs"

"The use of Drug A reduces the risk of heart attack"

YOU NEED TO TEST THIS HYPOTHESIS TO KNOW HOW ACCURATE IT IS

LET'S TAKE THIS HYPOTHESIS

"The average life expectancy of an Indian college graduate is 70 yrs"

HOW WILL WE GO ABOUT TESTING IT?

COLLECT A SAMPLE OF INDIAN COLLEGE GRADUATES

CALCULATE SAMPLE STATISTICS

MEAN LIFE EXPECTANCY OF THAT SAMPLE = 65 SD OF LIFE EXPECTANCY OF THAT SAMPLE = 10 # PEOPLE IN THAT SAMPLE = 100

CALCULATE SAMPLE STATISTICS

MEAN = 65 SP = 10# PEOPLE = 100

SP OF SAMPLE STANDARD ERROR = SQRT(SIZE OF SAMPLE)

SP OF THE PISTRIBUTION YOU GET IF YOU COMPUTED THE MEAN FOR A LARGE NUMBER OF SAMPLES

$$= \frac{10}{SQRT(100)}$$

CALCULATE SAMPLE STATISTICS

```
MEAN = 65

SD = 10

# PEOPLE = 100

STANDARD ERROR = 1
```

PERFORM A TEST OF SIGNIFICANCE

"The average life expectancy of an Indian college graduate is 70 yrs"

SAMPLE STATISTICS

MEAN = 65

SP = 10

PEOPLE = 100 STANDARD ERROR = 1 SAMPLE MEAN = 65
WHICH IS NOT THAT FAR FROM 70

SO, IS THE POPULATION MEAN 70 OR <>70?

"The average life expectancy of an Indian college graduate is 70 yrs"

WE NEED TO UNDERSTAND IF THE DIFFERENCE OF 65 VS 70 IS DUE TO CHANCE, OR IF THE POPULATION MEAN <> 70 TOO

"The average life expectancy of an Indian college graduate is 70 yrs"

WE NEED TO UNDERSTAND IF THE DIFFERENCE OF 65 VS 70 IS DUE TO CHANCE, OR IF THE POPULATION MEAN <> 70 TOO

NULL HYPOTHESIS

"The average life expectancy of an Indian college graduate is 70 yrs"

WE NEED TO UNDERSTAND IF THE DIFFERENCE OF 65 VS 70 IS DUE TO CHANCE, OR IF THE POPULATION MEAN <> 70 TOO

ALTERNATIVE HYPOTHESIS

NULL HYPOTHESIS ALL VARIATIONS OBSERVED ARE DUE TO CHANCE I.E. A FLUKE

ALTERNATIVE HYPOTHESIS
THE VARIATIONS OBSERVED CANNOT
JUST BE EXPLAINED BY CHANCE

STEP: 3 PERFORM A TEST OF SIGNIFICANCE NULL HYPOTHESIS VS ALTERNATIVE HYPOTHESIS

A TEST OF SIGNIFICANCE WILL TELL YOU WHICH OF THESE IS BETTER

A TEST OF SIGNIFICANCE NULL HYPOTHESIS VS ALTERNATIVE HYPOTHESIS

THIS INVOLVES

A) COMPUTING A (EST STATISTIC)

SOME VARIABLE WHOSE PROBABILITY DISTRIBUTION IS KNOWN

A TEST OF SIGNIFICANCE NULL HYPOTHESIS VS ALTERNATIVE HYPOTHESIS

THIS INVOLVES

A) COMPUTING A TEST STATISTIC

B) COMPUTE THE PROBABILITY IF THE NULL HYPOTHESIS IS TRUE

A TEST OF SIGNIFICANCE NULL HYPOTHESIS VS ALTERNATIVE HYPOTHESIS

THIS INVOLVES

A) COMPUTING A TEST STATISTIC

B) COMPUTE THE PROBABILITY IF THE NULL HYPOTHESIS IS TRUE

C) IF THE PROBABILITY IS TOO LOW, REJECT THE NULL HYPOTHESIS, ELSE ACCEPT IT

IN OUR EXAMPLE

"The average life expectancy of an Indian college graduate is 70 yrs"

NULL HYPOTHESIS

Population mean = 70

THE DIFFERENCE BETWEEN 65 AND 70 IS DUE TO CHANCE

ALTERNATIVE HYPOTHESIS

Population mean !=70

THE DIFFERENCE BETWEEN 65 AND 70 IS REAL

STEP: 3A COMPUTE A TEST STATISTIC

Z REPRESENTS THE NORMALIZED DISTANCE BETWEEN THE SAMPLE MEAN AND THE POPULATION MEAN

Z REPRESENTS THE NORMALIZED DISTANCE BETWEEN THE SAMPLE MEAN AND THE POPULATION MEAN

Z REPRESENTS THE NORMALIZED

SAMPLE MEAN - POPULATION MEAN

Z REPRESENTS THE NORMALIZED

SAMPLE MEAN - POPULATION MEAN STANDARD ERROR

SAMPLE MEAN - POPULATION MEAN

STANDARD ERROR

$$z = \frac{X - \mu}{\sigma}$$

OK.. BUT HOW WILL THIS HELP?

$$z = \frac{X - \mu}{\sigma}$$

1. THIS VARIABLE REPRESENTS THE DIFFERENCE WHICH WE WANT TO UNDERSTAND

WE ALREADY KNOW THE SAMPLE MEAN IS NORMALLY DISTRIBUTED

$$z = \frac{X - \mu}{\sigma}$$

2. THE Z-STATISTIC PROBABILITY DISTRIBUTION IS ALSO NORMAL (MEAN = 0, SP 1)

$$z = \frac{X - \mu}{\sigma}$$

LET'S COMPUTE THE Z-STATISTIC FOR THE NULL HYPOTHESIS

Population mean = 70

$$z = \frac{65}{X} - \frac{70}{\mu}$$

$$\sigma$$

THE NULL HYPOTHESIS

$$\mu = 70$$

SAMPLE MEAN = 65

STANDARD ERROR = 1

WE'LL CALCULATE
THE PROBABILITY OF
THIS VALUE
FINE, WHAT NEXT?

STEP: 3B COMPUTE THE PROBABILITY IF THE NULL HYPOTHESIS IS TRUE

THE PROBABILITY
DISTRIBUTION OF Z IS
NORMAL (MEAN = 0, SD 1)

Y-VALUE SI I - I - I

P(IZI > 5)

= P (THE DIFFERENCE >5)

= AREA UNDER THE CURVE ABOVE 5 AND BELOW -5

P-VALUE

P(IZI > 5)

= P (THE DIFFERENCE >5)

= AREA UNDER THE CURVE ABOVE 5 AND BELOW -5

P(|Z|>5)

THERE ARE MANY WAYS TO-COMPUTE THIS VALUE

1. LOOK UP A TABLE OF NORMAL PISTRIBUTION VALUES

2. USE A FUNCTION IN R OR EXCEL WE'LL USE THE SECOND METHOD HERE

P(|Z|>5)
FUNCTION IN R

PNORM() IN R WILL TELL YOU THE AREA UNDER THE CURVE FROM -INF TO Z (CUMULATIVE DISTRIBUTION FUNCTION)

```
> 1-(pnorm(5)-pnorm(-5))
[1] 5.733031e-07
```

P-VALUE

P(IZI > 5)

= P (THE DIFFERENCE >5)

= AREA UNDER THE CURVE ABOVE 5 AND BELOW -5

= 0.000005

HOW LOW IS LOW? IT PEPENDS

- 0.1 90% confidence that null hypothesis is false 90% confidence that the difference observed is statistically significant
- 0.05 95% confidence that null hypothesis is false 95% confidence that the difference observed is statistically significant
- 0.01 99% confidence that null hypothesis is false 99% confidence that the difference observed is statistically significant

IN OUR EXAMPLE

"The average life expectancy of an Indian college graduate is 70 yrs"

NULL HYPOTHESIS

Population mean = 70

THE DIFFERENCE BETWEEN 65 AND 70 IS DUE TO CHANCE

ALTERNATIVE HYPOTHESIS

Population mean !=70

THE DIFFERENCE BETWEEN 65 AND 70 IS REAL

HOW LOW IS LOW? IT PEPENDS

- 0.1 90% confidence that null hypothesis is false 90% confidence that the difference observed is statistically significant
- 0.05 95% confidence that null hypothesis is false 95% confidence that the difference observed is statistically significant
- 0.01 99% confidence that null hypothesis is false 99% confidence that the difference observed is statistically significant

TYPES OF INFERENCES

- 1. IPENTIFYING THE POPULATION MEAN
- 2. IPENTIFYING THE POPULATION %
- 3. VERIFYING WHETHER THE POPULATION MEAN IS EQUAL TO A CERTAIN VALUE
- 4. VERIFYING WHETHER THE POPULATION % IS EQUAL TO A CERTAIN VALUE
- 5. VERIFYING WHETHER 2 POPULATION MEANS ARE DIFFERENT
 - 6. VERIFYING WHETHER 2 POPULATION % ARE DIFFERENT