Introduction to the tsfeatures package

Yangzhuoran Yang and Rob J Hyndman

2019-04-16

- tsfeatures
 - Installation
 - Usage
 - List of features
 - entropy
 - lumpiness and stability
 - o max level shift, max var shift and max kl shift
 - crossing points
 - flat spots
 - hurst
 - unitroot kpss and unitroot pp
 - stl features
 - o acf features
 - pacf features
 - holt_parameters and hw_parameters
 - heterogeneity
 - nonlinearity
 - arch stat
 - · compengine feature set
 - embed2_incircle
 - o ac_9
 - firstmin_ac
 - o firstzero ac
 - trev num
 - o motiftwo entro3
 - binarize mean
 - walker propcross
 - localsimple taures
 - sampen_first and sampenc
 - std1st_der
 - o spreadrandomlocal meantaul
 - histogram mode
 - o outlierinclude mdrmd
 - fluctanal prop r1
 - Reproducing papers
 - Hyndman, Wang and Laptev (ICDM 2015)
 - Kang, Hyndman & Smith-Miles (IJF 2017)
 - Resources
 - License

tsfeatures

The R package tsfeatures provides methods for extracting various features from time series data.

Installation

The **stable** version on R CRAN is coming soon.

You can install the **development** version from Github with:

```
# install.packages("devtools")
devtools::install_github("robjhyndman/tsfeatures")
```

Usage

The function tsfeatures() computes a tibble of time series features from a list of time series.

```
mylist <- list(sunspot.year, WWWusage, AirPassengers, USAccDeaths)</pre>
tsfeatures(mylist)
#> # A tibble: 4 x 20
    frequency nperiods seasonal period trend
                                              spike linearity curvature
        <dbL>
               <dbL>
                               <dbl> <dbl>
                                              <dbL>
                                                       <dbL>
                                                                 <dbL>
#> 1
                                    1 0.125 2.10e-5
                                                        3.58
                                                                  1.11
#> 2
           1
                     0
                                    1 0.985 3.01e-8
                                                        4.45
                                                                  1.10
#> 3
          12
                   1
                                   12 0.989 2.12e-8
                                                       11.0
                                                                 1.10
           12
                                                        -2.13
                     1
                                   12 0.796 9.67e-7
                                                                  2.85
#> # ... with 13 more variables: e acf1 <dbl>, e acf10 <dbl>, entropy <dbl>,
    x_acf1 <dbl>, x_acf10 <dbl>, diff1_acf1 <dbl>, diff1_acf10 <dbl>,
#> # diff2_acf1 <dbl>, diff2_acf10 <dbl>, seasonal_strength <dbl>,
#> # peak <dbl>, trough <dbl>, seas acf1 <dbl>
```

The default functions that tsfeatures uses to compute features are frequency, stl_features, entropy and acf_features. Each of them can produce one or more features. Detailed information of features included in the *tsfeatures* package are described below. Functions from other packages, or user-defined functions, may also be used.

List of features

FEATURES			
acf_features	max_kl_shift	compengine	outlierinclude_mdrmd
arch_stat	max_level_shift	ac_9	sampenc

FEATURES			
crossing_points	max_var_shift	binarize_mean	sampen_first
entropy	nonlinearity	embed2_incircle	spreadrandomlocal_meantaul
flat_spots	pacf_features	firstmin_ac	std1st_der
heterogeneity	stability	firstzero_ac	trev_num
holt_parameters	stl_features	fluctanal_prop_r1	walker_propcross
hurst	unitroot_kpss	histogram_mode	
hw_parameters	unitroot_pp	localsimple_taures	
lumpiness		motiftwo_entro3	

entropy

The spectral entropy is the Shannon entropy

$$-\int_{-\pi}^{\pi}\hat{f}\left(\lambda
ight)\log\hat{f}\left(\lambda
ight)d\lambda,$$

where $\hat{f}(\lambda)$ is an estimate of the spectral density of the data. This measures the "forecastability" of a time series, where low values indicate a high signal-to-noise ratio, and large values occur when a series is difficult to forecast.

```
entropy(AirPassengers)
#> entropy
#> 0.5876078
```

lumpiness and stability

Stability and lumpiness are two time series features based on tiled (non-overlapping) windows. Means or variances are produced for all tiled windows. Then stability is the variance of the means, while lumpiness is the variance of the variances.

```
stability(AirPassengers)
#> stability
#> 0.9330704
lumpiness(AirPassengers)
#> Lumpiness
#> 0.01924803
```

max_level_shift, max_var_shift and max_kl_shift

These three features compute features of a time series based on sliding (overlapping) windows.

max_level_shift finds the largest mean shift between two consecutive windows. max_var-shift finds the largest variance shift between two consecutive windows. max_kl_shift finds the largest shift in Kulback-Leibler

divergence between two consecutive windows. Each feature returns a vector of 2 values: the size of the shift, and the time index of the shift.

```
max_level_shift(AirPassengers)
#> max_level_shift time_level_shift
#> 54.5 117.0
max_var_shift(AirPassengers)
#> max_var_shift time_var_shift
#> 2342.152 107.000
max_kl_shift(AirPassengers)
#> max_kl_shift time_kl_shift
#> 0.1210444 122.0000000
```

crossing points

crossing points are defined as the number of times a time series crosses the mean line.

```
crossing_points(AirPassengers)
#> crossing_points
#> 7
```

flat_spots

flat_spots are computed by dividing the sample space of a time series into ten equal-sized intervals, and computing the maximum run length within any single interval.

```
flat_spots(AirPassengers)
#> flat_spots
#> 18
```

hurst

We use a measure of the long-term memory of a time series (hurst), computed as 0.5 plus the maximum likelihood estimate of the fractional differencing order d given by Haslett & Raftery (1989). We add 0.5 to make it consistent with the Hurst coefficient. Note that the fractal dimension can be estimated as $D=2-\mathrm{hurst}$.

```
hurst(AirPassengers)
#> hurst
#> 0.9992466
```

unitroot_kpss and unitroot_pp

unitroot_kpss is a vector comprising the statistic for the KPSS unit root test with linear trend and lag one, and unitroot_pp is the statistic for the "Z-alpha" version of PP unit root test with constant trend and lag one.

```
unitroot_kpss(AirPassengers)
#> [1] 2.739474
```

```
unitroot_pp(AirPassengers)
#> [1] -6.565597
```

stl_features

stl_features Computes various measures of trend and seasonality of a time series based on an STL decomposition. The mstl function is used to do the decomposition.

nperiods is the number of seasonal periods in the data (determined by the frequency of observation, not the observations themselves) and set to 1 for non-seasonal data. seasonal_period is a vector of seasonal periods and set to 1 for non-seasonal data.

The size and location of the peaks and troughs in the seasonal component are used to compute strength of peaks (peak) and strength of trough (trough).

The rest of the features are modifications of features used in Kang, Hyndman & Smith-Miles (2017). We extend the STL decomposition approach (Cleveland et al.1990) to handle multiple seasonalities. Thus, the decomposition contains a trend, up to M seasonal components and a remainder component:

$$x_t=f_t+s_{1,t}+\cdots+s_{M.t}+e_t,$$

where f_t is the smoothed trend component, $s_{i,t}$ is the ith seasonal component and e_t is a remainder component. The components are estimated iteratively. Let $s_{i,t}^{(k)}$ be the estimate of s_i , t at the kth iteration, with initial values given as $s_{i,t}^{(0)} = 0$. The we apply an STL decomposition to $x_t - \sum_{j \neq 1}^{j=1} {}^M s_{j,t}^{k-1}$ to obtained updated estimates $s_{i,t}^{(k)}$ for $k=1,2,\ldots$ In practice, this converges quickly and only two iterations are required. To allow the procedure to be applied automatically, we set the seasonal window span for STL to be 21 in all cases. For a non-seasonal time series, we simply estimate $x_t = f_t + e_t$ where f_t is computed using Friedman's "super smoother" (Friedman 1984).

Strength of trend (trend) and strength of seasonality (seasonal.strength) are defined as

$$ext{trend} = 1 - rac{ ext{Var}(e_t)}{ ext{Var}(f_t + e_t)} \quad ext{and} \quad ext{seasonal.strength} = 1 - rac{ ext{Var}(e_t)}{ ext{Var}(s_{i,t} + e_t)}.$$

If their values are less than 0, they are set to 0, while values greater than 1 are set to 1. For non-seasonal time series seasonal.strength is 0. For seasonal time series, seasonal.strength is an M-vector, where M is the number of periods. This is analogous to the way the strength of trend and seasonality were defined in Wang, Smith & Hyndman (2006), Hyndman, Wang & Laptev (2015) and Kang, Hyndman & Smith-Miles (2017).

spike measures the "spikiness" of a time series, and is computed as the variance of the leave-one-out variances of the remainder component e_t .

linearity and curvature measures the linearity and curvature of a time series calculated based on the coefficients of an orthogonal quadratic regression.

We compute the autocorrelation function of e_t , and e_acf1 and e_acf10 contain the first autocorrelation coefficient and the sum of the first ten squared autocorrelation coefficients.

stl_features(AirPassengers) #> seasonal period nperiods trend spike 1.0000000 12.0000000 0.9886426 4.3879083 #> linearity curvature e acf1 e acf10 1325.3880968 131.3883022 0.5515403 1.0783947 #> seasonal strength peak trough 0.9252932 11.0000000 7.0000000

acf_features

We compute the autocorrelation function of the series, the differenced series, and the twice-differenced series. acf_features produces a vector comprising the first autocorrelation coefficient in each case, and the sum of squares of the first 10 autocorrelation coefficients in each case.

```
acf_features(AirPassengers)
#> x_acf1 x_acf10 diff1_acf1 diff1_acf10 diff2_acf1 diff2_acf10
#> 0.9480473 5.6700871 0.3028553 0.4088376 -0.1910059 0.2507803
#> seas_acf1
#> 0.7603950
```

pacf_features

We compute the partial autocorrelation function of the series, the differenced series, and the second-order differenced series. Then pacf_features produces a vector comprising the sum of squares of the first 5 partial autocorrelation coefficients in each case.

```
pacf_features(AirPassengers)
#> x_pacf5 diff1x_pacf5 diff2x_pacf5 seas_pacf
#> 0.9670971 0.2122454 0.2476615 -0.1354311
```

holt_parameters and hw_parameters

holt_parameters Estimate the smoothing parameter for the level-alpha and the smoothing parameter for the trend-beta of Holt's linear trend method. hw_parameters considers additive seasonal trend: ETS(A,A,A) model, returning a vector of 3 values: alpha, beta and gamma.

```
holt_parameters(AirPassengers)

#> alpha beta

#> 0.9998999962 0.0001000071

hw_parameters(AirPassengers)

#> alpha beta gamma

#> 0.9934803629 0.0001911792 0.0005800325
```

heterogeneity

The heterogeneity features measure the heterogeneity of the time series. First, we pre-whiten the time series to remove the mean, trend, and autoregressive (AR) information (Barbour & Parker 2014). Then we fit a GARCH(1,1) model to the pre-whitened time series, x_t , to measure for autoregressive conditional heteroskedasticity (ARCH) effects. The residuals from this model, z_t , are also measured for ARCH effects using a second GARCH(1,1) model.

- $\circ~$ arch_acf is the sum of squares of the first 12 autocorrelations of $\{x_t^2\}.$
- \circ garch_acf is the sum of squares of the first 12 autocorrelations of $\{z_t^2\}$.
- \circ $\ \ {\rm arch_r2}$ is the R^2 value of an AR model applied to $\{x_t^2\}.$
- $\circ \hspace{0.1cm}$ garch_r2 is the R^2 value of an AR model applied to $\{z_t^2\}$

The statistics obtained from $\{x_t^2\}$ are the ARCH effects, while those from $\{z_t^2\}$ are the GARCH effects. Note that the two R^2 values are used in the Lagrange-multiplier test of Engle (1982), and the sum of squared autocorrelations are used in the Ljung-Box test proposed by Ljung & Box (1978).

```
heterogeneity(AirPassengers)
#> arch_acf garch_acf arch_r2 garch_r2
#> 0.2295944 0.2277382 0.2106310 0.2101623
```

nonlinearity

The nonlinearity coefficient is computed using a modification of the statistic used in Teräsvirta's nonlinearity test. Teräsvirta's test uses a statistic $X^2 = T \log(\mathrm{SSE1/SSE0})$ where SSE1 and SSE0 are the sum of squared residuals from a nonlinear and linear autoregression respectively. This is non-ergodic, so instead, we define it as $10X^2/T$ which will converge to a value indicating the extent of nonlinearity as $T \to \infty$. This takes large values when the series is nonlinear, and values around 0 when the series is linear.

```
nonlinearity(AirPassengers)
#> nonlinearity
#> 0.4238969
```

arch_stat

arch_stat Computes a statistic based on the Lagrange Multiplier (LM) test of Engle (1982) for autoregressive conditional heteroscedasticity (ARCH). The statistic returned is the \mathbb{R}^2 value of an autoregressive model of order specified as lags applied to \mathbb{R}^2 .

```
arch_stat(AirPassengers)
#> ARCH.LM
#> 0.9171945
```

compengine feature set

compensine calculate the features that have been used in the <u>CompEngine</u> database, using a method introduced in package kctsa.

The features involved can be grouped as autocorrelation, prediction, stationarity, distribution, and scaling, which can be computed using autocorr_features, pred_features, station_features, dist_features, and scal features.

```
comp <- compengine(AirPassengers)
knitr::kable(comp)</pre>
```

	x
embed2_incircle_1	0.0000000
embed2_incircle_2	0.0000000
ac_9	0.6709483

	х
firstmin_ac	8.0000000
trev_num	-4902.1958042
motiftwo_entro3	1.1302445
walker_propcross	0.2027972
localsimple_mean1	2.0000000
localsimple_lfitac	3.0000000
sampen_first	Inf
std1st_der	33.7542815
spreadrandomlocal_meantaul_50	12.7800000
spreadrandomlocal_meantaul_ac2	38.9400000
histogram_mode_10	125.0000000
outlierinclude_mdrmd	0.4166667
fluctanal_prop_r1	0.7692308

embed2_incircle

embed2_incircle gives proportion of points inside a given circular boundary in a 2-d embedding space.

```
embed2_incircle(AirPassengers, boundary = 1e5)
#> [1] 0.2608696
```

ac_9

ac_9 is just the autocorrelation at lag 9, included here for completion and consistency.

```
ac_9(AirPassengers)
#> [1] 0.6709483
```

firstmin_ac

firstmin_ac returns the time of first minimum in the autocorrelation function.

```
firstmin_ac(AirPassengers)
#> [1] 8
```

firstzero_ac

firstzero_ac returns the first zero crossing of the autocorrelation function.

```
firstzero_ac(AirPassengers)
#> [1] 52
```

trev_num

trev_num returns the numerator of the trev function of a time series, a normalized nonlinear autocorrelation. The time lag is set to 1.

```
trev_num(AirPassengers)
#> [1] -4902.196
```

motiftwo_entro3

Local motifs in a binary symbolization of the time series. Coarse-graining is performed. Time-series values above its mean are given 1, and those below the mean are 0. motiftwo_entro3 returns the entropy of words in the binary alphabet of length 3.

```
motiftwo_entro3(AirPassengers)
#> [1] 1.130244
```

binarize_mean

binarize_mean converts an input vector into a binarized version. Time-series values above its mean are given 1, and those below the mean are 0.

```
str(binarize_mean(AirPassengers))
#> num [1:144] 0 0 0 0 0 0 0 0 0 0 ...
```

walker_propeross

Simulates a hypothetical walker moving through the time domain. The hypothetical particle (or 'walker') moves in response to values of the time series at each point. The walker narrows the gap between its value and that of the time series by 10. walker_propcross returns the fraction of time series length that walker crosses time series.

```
walker_propcross(AirPassengers)
#> [1] 0.2027972
```

localsimple taures

Simple predictors using the past trainLength values of the time series to predict its next value. localsimple_taures returns the first zero crossing of the autocorrelation function of the residuals from this Simple local time-series forecasting.

```
localsimple_taures(AirPassengers)
#> [1] 2
```

sampen_first and sampenc

sampen_first returns the first Sample Entropy of a time series where the embedding dimension is set to 5 and the threshold is set to 0.3. sampenc is the underlying function to calculate the first sample entropy with optional dimension and threshold settings.

```
sampen_first(AirPassengers)
#> [1] Inf
sampenc(AirPassengers, M = 5, r = 0.3)
#> [1] Inf
```

std1st_der

std1st der returns the standard deviation of the first derivative of the time series.

```
std1st_der(AirPassengers)
#> [1] 33.75428
```

spreadrandomlocal meantaul

100 time-series segments of length I are selected at random from the time series and the mean of the first zero-crossings of the autocorrelation function in each segment is calculated using spreadrandomlocal_meantaul.

```
spreadrandomlocal_meantaul(AirPassengers)
#> [1] 13.28
```

histogram_mode

histogram_mode measures the mode of the data vector using histograms with a given number of bins (default to 10) as suggestion.

```
histogram_mode(AirPassengers, numBins = 10)
#> [1] 125
```

outlierinclude_mdrmd

outlierinclude_mdrmd measures the median as more and more outliers are included in the calculation according to a specified rule, of outliers being furthest from the mean.

The threshold for including time-series data points in the analysis increases from zero to the maximum deviation, in increments of 0.01*sigma (by default), where sigma is the standard deviation of the time series.

At each threshold, proportion of time series points included and median are calculated, and outputs from the algorithm measure how these statistical quantities change as more extreme points are included in the

calculation.

outlierinclude mdrmd essentially returns the median of the median of range indices.

```
outlierinclude_mdrmd(AirPassengers)
#> [1] 0.4166667
```

fluctanal_prop_r1

fluctanal_prop_r1 implements fluctuation analysis. It fits a polynomial of order 1 and then returns the range. The order of fluctuations is 2, corresponding to root mean square fluctuations.

```
fluctanal_prop_r1(AirPassengers)
#> [1] 0.7692308
```

Reproducing papers

Hyndman, Wang and Laptev (ICDM 2015)

Here we replicate the analysis in Hyndman, Wang & Laptev (ICDM 2015). However, note that crossing_points, peak and trough are defined differently in the *tsfeatures* package than in the Hyndman et al (2015) paper. Other features are the same.

```
library(tsfeatures)
library(dplyr)
yahoo <- yahoo_data()
hwl <- bind_cols(
        tsfeatures(yahoo,
           c("acf_features","entropy","lumpiness",
             "flat spots", "crossing points")),
         tsfeatures(yahoo, "stl_features", s.window='periodic', robust=TRUE),
         tsfeatures(yahoo, "max kl shift", width=48),
         tsfeatures(yahoo,
           c("mean","var"), scale=FALSE, na.rm=TRUE),
         tsfeatures(yahoo,
           c("max level shift", "max var shift"), trim=TRUE)) %>%
  select(mean, var, x acf1, trend, linearity, curvature,
         seasonal strength, peak, trough,
         entropy, lumpiness, spike, max level shift, max var shift, flat spots,
         crossing_points, max_kl_shift, time_kl_shift)
# 2-d Feature space
library(ggplot2)
hwl pca <- hwl %>%
 na.omit() %>%
 prcomp(scale=TRUE)
```

```
hwl_pca$x %>%
  as_tibble() %>%
  ggplot(aes(x=PC1, y=PC2)) +
   geom_point()
```


Kang, Hyndman & Smith-Miles (IJF 2017)

Compute the features used in Kang, Hyndman & Smith-Miles (IJF 2017). Note that the trend and ACF1 are computed differently for non-seasonal data in the *tsfeatures* package than in the Kang et al (2017). tsfeatures uses mstl which uses supsmu for the trend calculation with non-seasonal data, whereas Kang et al used a penalized regression spline computed using mgcv instead. Other features are the same.

```
library(tsfeatures)
library(dplyr)
library(tidyr)
library(forecast)
M3data <- purrr::map(Mcomp::M3,</pre>
  function(x) {
      tspx \leftarrow tsp(x$x)
      ts(c(x$x,x$xx), start=tspx[1], frequency=tspx[3])
  })
khs_stl <- function(x,...) {</pre>
  lambda <- BoxCox.lambda(x, lower=0, upper=1, method='loglik')</pre>
  y <- BoxCox(x, lambda)
  c(stl_features(y, s.window='periodic', robust=TRUE, ...), lambda=lambda)
}
khs <- bind_cols(
  tsfeatures(M3data, c("frequency", "entropy")),
  tsfeatures(M3data, "khs_stl", scale=FALSE)) %>%
  select(frequency, entropy, trend, seasonal_strength, e_acf1, lambda) %>%
  replace_na(list(seasonal_strength=0)) %>%
  rename(
```

```
Frequency = frequency,
Entropy = entropy,
Trend = trend,
Season = seasonal_strength,
ACF1 = e_acf1,
Lambda = lambda) %>%
mutate(Period = as.factor(Frequency))

# Fig 1 of paper
khs %>%
select(Period, Entropy, Trend, Season, ACF1, Lambda) %>%
GGally::ggpairs()
```



```
# 2-d Feature space (Top of Fig 2)
khs_pca <- khs %>%
    select(-Period) %>%
    prcomp(scale=TRUE)
khs_pca$x %>%
    as_tibble() %>%
    bind_cols(Period=khs$Period) %>%
    ggplot(aes(x=PC1, y=PC2)) +
        geom_point(aes(col=Period))
```


Resources

<u>Hyndman, R. J., Wang, E., & Laptev, N. (2015, November). Large-scale unusual time series detection. In Data Mining Workshop (ICDMW), 2015 IEEE International Conference on (pp. 1616-1619). IEEE.</u>

Kang, Y., Hyndman, R. J., & Li, F. (2018). Efficient generation of time series with diverse and controllable characteristics.

Haslett, J., & Raftery, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource. Applied Statistics, 1-50.

Barbour, A. J., & Parker, R. L. (2014). psd: Adaptive, sine multitaper power spectral density estimation for R. Computers & Geosciences, 63, 1-8.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.

Ljung, G. M., & Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303.

Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345-358.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend Decomposition. Journal of Official Statistics, 6(1), 3-73.

<u>Friedman, JH (1984). A variable span scatterplot smoother. Technical Report 5. Laboratory for Computational Statistics, Stanford University.</u>

Wang, X, KA Smith & RJ Hyndman (2006). Characteristic-based clustering for time series data. Data Mining and Knowledge Discovery 13(3), 335–364.

Kang, Y., Hyndman, R. J., & Smith-Miles, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345-358.

License

This package is free and open source software, licensed under GPL-3.