Short Syllabus

BECE308L Optical Fiber Communications (2-0-0-2)

OpticalFiber: Structures, Waveguides - Ray optics, Mode theory, Fiber Types; Signal Degradation - Nonlinear Optical Effects, SRS, SBS, SPM, CPM, FWM; Optical Transmitters - Power and Modulation Bandwidth, Modulators, Transmitter Design; Optical Receivers – Photodetector, PIN, APD, Receiver Design; Digital links and Measurements – Point to Point Links, Attenuation, OTDR; WDM Concepts and Components - Filters, Multiplexers, WDM System Performance Issues; Optical Amplifiers - Semiconductor Optical Amplifiers;

Course Code	Course Title	L	Т	Р	С
BECE308L	Optical Fiber Communications	2	0	0	2
Pre-requisite	BECE306L, BECE306P	Syll	Syllabus version		
		1.0			

Course Objectives

- 1. To understand the principles of optical fibers and their signal degradation.
- 2. To familiarize with the fundamentals of optical sources and detectors used in communications.
- 3. To learn WDM techniques and its components in contemporary optical communication systems.

Course Outcomes

At the end of the course, the students will be able to:

- 1. List the fundamental optical laws, structures and waveguides.
- 2. Comprehend the various signal degradation in the fiber optical communication.
- 3. Design the optical transmitters and receivers and evaluate their performances.
- 4. Estimate the system requirements for point to point communication.
- 5. Examine the significance of WDM techniques and their applications.
- 6. Comprehend and analyse the performance of the various optical amplifiers.

Module:1 Optical Fiber: Structures, Waveguides

3 hours

Key elements of optical fiber system-Ray optics, Mode theory, Geometrical-Optics Description, Fiber Types - specialty fibers.

Module:2 | Signal Degradation

5 hours

Attenuation-Absorption, Scattering, Bending losses, Dispersion-Material, Waveguide Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mode Transit time, Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPM, CPM, FWM.

Module:3 Optical Transmitters

4 hours

Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bandwidth- LASER-DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and external modulators, Transmitter Design.

Module:4 Optical Receivers

5 hours

Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR&SNR), Receiver Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performance-Probability of error, Bit Error rate, Eye-Diagram.

Module:5 | Digital links and Measurements

4 hours

Digital links: Point-to-Point Links-System Consideration-Link power budget-Rise time budget, System performance- Attenuation, Dispersion measurements-OTDR.

Module:6 | WDM Concepts and Components

5 hours

Overview of WDM, Fiber Coupler-Wave guide coupler-Star couplers, Isolators and Circulators - Fiber Bragg Grating, Filters, Multiplexers, WDM System Performance Issues-Compensation techniques.

Module:7 Optical Amplifiers

2 hours

Semiconductor Optical Amplifiers, Raman Amplifiers, Erbium-Doped Fiber Amplifiers.

Module:8 | Contemporary Issues

2 hours

							Total L	ecture hours:	30 hours		
Text Book(s)											
1.		-	•	Fiber	Con	nmunicatio	ns, 201	7, 5 th Edition,	McGraw Hill		
	Education, India.										
Ref	Reference Books										
1.	Conway, E., Optical Fiber Communications Principles and Practice, 2018, 1st Edition,										
	ED-TECH Press, United Kingdom.										
2.	Singal	Singal, T. L. Optical Fiber Communications: Principles and Applications, 2017,									
	Cambridge University Press, India.										
3.	Keiser, G., Fiber Optic Communications, 2021, 1st Edition, Springer, Singapore										
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final										
Assessment Test											
Red	Recommended by Board of Studies 14-05-2022										
App	Approved by Academic Council No. 66 Date 16-06-2022										