

XIII $\chi^{(3)}$ $\chi^{(s)}$ nm ×nu Predicted Ratings, $(\theta^{(1)})^{T} x^{(1)} (\theta^{(2)})^{T} x^{(1)}$ Low Rank Matrices \$Low hank Matrix Factorization, Y=XOT

Movie

 $X^{(1)}$

Alice

Bob

Carol

May 31,2021

nn=5, nn=4

Dave

Finding helated Movies, For each movie i, we learn a feature vector $x^{(i)}E^nR$. $\rightarrow x_i = romance, x_i = action, etc$ To find movies j related to movie i's small || x(i)-x(i)|| > movie i and j are "similar" Find 5 most similar movies; find 5 movies jul smallest llx(i)-x(j)|1. Mean Normalization for New User Recommendations; Y= \begin{array} 5 & 5 & 0 & 0 & 7 \\ 5 & 7 & 2 & 0 & 7 \\ 0 & 0 & 5 & 9 & 1 \\ 0 & 0 & 5 & 0 & 1 \\ \end{array} \rightarrow \frac{7}{1} \rightarrow \ SE very movie now has avay rating of

For user j on movie i, predict; $(O^{(j)})^T \times (\mathcal{A})^T \times \mathcal{A}$; i. For new user $\theta^{(s)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, (\theta^{(s)})^T x^{(i)} + M_i = M_i$.
Assume average rathy if no rathy.