CONCOURS CENTRALE SUPELEC 2023 MATHÉMATIQUES 1 - PC

Pierre-Paul TACHER

This document is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. © ① ⑤ ②

1.

Soit $i \in [1, n]$. Comme $X \neq 0$, soit $k \in [1, n]$, $x_k > 0$.

$$(AX)_i = \sum_{j=1}^n a_{ij} x_j$$

$$\geqslant a_{ik} x_k > 0$$

On a montré $\forall i \in [1, n], (AX)_i > 0$, c'est à dire AX > 0. Ensuite,

$$(|AB|)_{ij} = \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|$$

$$\leqslant \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

$$= (|A| |B|)_{ij}$$

ainsi $|AB| \leq |A| |B|$.

2.

Soit $(X,Y) \in (M_{n,1}(\mathbb{R}))^2$. L'inégalité de Cauchy-Schartz est:

$$|\langle X \mid Y \rangle| \leqslant ||X|| ||Y||$$

$$\Leftrightarrow \left| \sum_{i=1}^{n} x_i y_i \right| \leqslant \left(\sum_{i=1}^{n} x_i^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} y_j^2 \right)^{\frac{1}{2}}$$

On peut l'appliquer directement à $(Z, W) \in (M_{n,1}(\mathbb{R}))^2$, définis par:

$$Z = \begin{bmatrix} |z_1| \\ \vdots \\ |z_k| \\ \vdots \\ |z_n| \end{bmatrix}, W = \begin{bmatrix} |w_1| \\ \vdots \\ |w_k| \\ \vdots \\ |w_n| \end{bmatrix} \geqslant 0$$

$$\left| \sum_{i=1}^{n} |z_i| |w_i| \right| = \sum_{i=1}^{n} |z_i| |w_i| \le \left(\sum_{i=1}^{n} |z_i|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |w_j|^2 \right)^{\frac{1}{2}}$$

3.

En posant z = a + ib, $(a, b) \in \mathbb{R}^2$,

$$|1+z|^2 = (1+|z|)^2$$

$$\Leftrightarrow 1+a^2+2a+b^2 = 1+a^2+b^2+2\sqrt{a^2+b^2}$$

$$\Leftrightarrow \qquad a = \sqrt{a^2+b^2}$$

$$\Leftrightarrow \qquad a \geqslant 0 \land a^2 = a^2+b^2$$

$$\Leftrightarrow \qquad a \geqslant 0 \land b = 0$$

$$\Leftrightarrow \qquad z \in \mathbb{R}^+$$

Soit maintenant $(z, z') \in \mathbb{C}^2$, $z \neq 0$.

$$|z + z'| = |z| + |z'|$$

$$\Leftrightarrow |z| \left| 1 + \frac{z'}{z} \right| = |z| \left(1 + \left| \frac{z'}{z} \right| \right)$$

$$\Leftrightarrow \left| 1 + \frac{z'}{z} \right| = 1 + \left| \frac{z'}{z} \right|$$

$$\Leftrightarrow \exists \alpha \in \mathbb{R}^+, \quad \frac{z'}{z} = \alpha$$

4.

Comme les z_i sont non tous nuls, quitte à renuméroter on peut supposer $z_1 \neq 0$. On a:

$$|z_n| + \left| \sum_{k=1}^{n-1} z_k \right| \geqslant \left| \sum_{k=1}^n z_k \right| = \sum_{k=1}^n |z_k|$$

$$\Leftrightarrow \left| \sum_{k=1}^{n-1} z_k \right| \geqslant \sum_{k=1}^{n-1} |z_k| \left(\geqslant \left| \sum_{k=1}^{n-1} z_k \right| \right)$$

Cela montre que l'égalité est réalisée dans la dernière inégalité. En réitérant, on a:

$$\forall m \in [1, n], \quad \left| \sum_{k=1}^{m} z_k \right| = \sum_{k=1}^{m} |z_k|$$

Posons, pour $k \in [1, n]$, $z_k = e^{i\theta_k} |z_k|$ avec $\theta_k \in \mathbb{R}$. L'égalité précédente pour m = 2 donne

$$\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} e^{i(\theta_2 - \theta_1)} \in \mathbb{R}^+$$

$$\Leftrightarrow z_2 = 0 \lor \theta_2 = \theta_1 \mod 2\pi$$

$$\Leftrightarrow \qquad z_2 = e^{i\theta_1} |z_2|$$

Mais en renumérotant les z_i , $i \ge 2$, on remarque que le raisonnement précédent donne aussi

$$\forall k \in [2, n], \quad |z_1 + z_k| = |z_1| + |z_k|$$

$$\Leftrightarrow \quad \forall k \in [2, n], \quad z_k = e^{i\theta_1} |z_k|$$

5.

Le polynôme caractéristique de A est

$$\chi_A(X) = X^2 - \operatorname{Tr} AX + \det A$$

d'oû

$$\Delta = \text{Tr}^2 A - 4 \det A$$

= $(a+d)^2 A - 4(ad-bc)$
= $(a+d)^2 A - 4(ad-bc)$
= $(a-d)^2 + 4bc > 0$

6.

Comme $\Delta > 0$, χ_A a deux racines réelles distinctes que l'on note $\lambda < \mu$. χ_A est scindé sur \mathbb{R} à racines simples donc A est diagonalisable et, quitte à permuter les colonnes de P,

$$\exists P \in GL_n(\mathbb{R}), \quad A = P\underbrace{\begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix}}_{D} P^{-1}$$

7.

On a

$$\lambda + \mu = \operatorname{Tr} A$$
$$= a + d$$

Si $\lambda \geqslant 0$, $|\lambda| = \lambda < \mu$. Sinon,

$$-|\lambda| + \mu = a + d > 0$$

$$\Rightarrow |\lambda| < \mu$$

8.

Comme on a

$$A^{k} = P \begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix}^{k} P^{-1}$$
$$= P \begin{bmatrix} \mu^{k} & 0 \\ 0 & \lambda^{k} \end{bmatrix} P^{-1}$$

il est clair que

$$(A^k)$$
 CV $\Leftrightarrow (D^k)$ CV $\Leftrightarrow (\lambda, \mu) \in]-1, 1]^2$

Comme $|\lambda| < \mu \le 1$, si de plus $(-1 <)\mu < 1$, alors (A^k) converge vers la matrice nulle. Si $\mu = 1$,

$$\lim_{k \to +\infty} A^k = P \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$$

qui est un projecteur de rang 1.

49.

On remarque que

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

est vecteur propre de B, associé à la valeur propre $1-\alpha-\beta$.

$$\begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

est vecteur propre de B, associé à la valeur propre $1 \neq 1 - \alpha - \beta$. On a donc automatiquement $\mathbb{R}^2 = E_1 \oplus E_{1-\alpha-\beta}$ et B diagonalisable:

$$B = \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 - \alpha - \beta \end{bmatrix} \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix}^{-1}$$

10.

On a $1-\alpha-\beta\in]-1,1[$, ainsi (D^k) converge, puis (B^k) converge et

$$\lim_{k \to +\infty} B^k = \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix}^{-1}$$
$$= \Lambda$$

11.

Il n'y pas de difficulté à montrer que

$$\forall A \in M_n(\mathbb{C}), \quad ||A||_{\infty} \geqslant 0$$

avec

$$||A||_{\infty} = 0$$

$$\Leftrightarrow A = 0$$

soit $i \in [1, n]$.

$$\sum_{j=1}^{n} |(A+B)_{ij}| = \sum_{j=1}^{n} (|a_{ij}| + |b_{ij}|)$$

$$= \sum_{j=1}^{n} |a_{ij}| + \sum_{j=1}^{n} |b_{ij}|$$

$$\leq ||A||_{\infty} + ||B||_{\infty}$$

Ce qui montre l'inégalité triangulaire $\|A+B\|_{\infty} \leqslant \|A\|_{\infty} + \|B\|_{\infty}$.

Soit C = AB. Soit $i \in [1, n]$.

$$\sum_{j=1}^{n} |c_{ij}| = \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|$$

$$\leqslant \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

$$= \sum_{k=1}^{n} |a_{ik}| (\sum_{j=1}^{n} |b_{kj}|)$$

$$\leqslant \sum_{k=1}^{n} |a_{ik}| ||B||_{\infty}$$

$$= ||B||_{\infty} \sum_{k=1}^{n} |a_{ik}|$$

$$\leqslant ||B||_{\infty} ||A||_{\infty}$$

Le résultat s'ensuit en prenant le max sur i.