

Travaux dirigés

Langage C

Partie I: Quelques exercices pour commencer:

Exercice 1: printf et scanf

- 1. Écrivez un programme C permettant d'afficher à l'écran le texte "Bonjour !". Compilez-le et exécutez-le.
- 2. Modifiez le programme afin qu'il demande et affiche également votre âge.

Exercice 2 : Déclaration des variables

Ecrire un programme qui déclare la variable constante Pi et la variable R contenant la valeur 20.

Déclarez trois variables D, P et S et affecter respectivement à ces variables les valeurs du diamètre, du périmètre et de la surface d'un cercle dont le rayon est R.

Afficher à l'écran le contenu de ces différentes variables.

Exercice 3: condition: If

Ecrire le programme permettant de déclarer et saisir 3 entiers. Le programme doit ensuite trouver le minimum, le maximum ainsi que la valeur médiane des trois entiers saisis.

Exercice 4: Itérations, la boucle while()

Ecrire le programme permettant de calculer xⁿ pour des variables x et n saisies au clavier.

Exercice 5: Itérations, la boucle while()

Ecrire le programme en C permettant la multiplication par addition successives.

Exercice 6: boucle do while() et for()

La formule de conversion des températures en degré Celsius en degré Fahrenheit est :

$$^{\circ}C = 5/9x(^{\circ}F - 32)$$

Ecrire un programme permettant d'afficher une liste d'équivalence pour des températures comprises entre $0^{\circ}F$ et $300^{\circ}F$. On choisit un incrément de $10^{\circ}F$.

Ecrire ce programme en utilisant successivement des boucles for(), while() et do...while().

Exercice 7: boucle do while() et for()

Ecrire un programme qui calcule les n^{emes} (n est un entier donné par l'utilisateur) termes des suites entières U_n et V_n .

$$\begin{cases} U_0 = 1 \\ U_n = V_{n-1} + 1 \end{cases} \quad \begin{cases} V_0 = 0 \\ V_n = 2U_{n-1} \end{cases}$$

Exercice 8 : boucle do while() et for()

Ecrire un programme qui affiche les formes suivantes. Le nombre de lignes est entré au clavier.

Nombre de lignes: 10

(A)	(B)	(C)	(D)
*	******	*******	*
**	******	******	**
***	******	******	***
****	*****	*****	***
****	*****	*****	****
****	****	****	****
****	***	****	****
*****	***	***	*****
*****	**	**	******
*****	*	*	******

Exercice 9:

Ecrire un programme permettant d'afficher un triangle isocèle formé d'étoiles de N lignes (N étant fourni au clavier):

Nombre de lignes : 8

Partie II: Les tableaux

Exercice 1:

Ecrire un programme permettant de déclarer un tableau de 10 réels. Le programme doit :

- 1. Trouver le maximum dans le tableau.
- 2. Trouver le minimum dans le tableau.
- 3. Calculer la somme des éléments du tableau.
- 4. Calculer la moyenne des éléments du tableau.

Exercice 2:

Ecrire un programme permettant de :

- 1. Définir un tableau de 10 caractères.
- 2. Remplir le tableau à partir du clavier
- 3. Afficher le tableau
- 4. Chercher et afficher le nombre d'occurrence de la lettre 'a', ainsi que les positions de chaque occurrence.
- 5. Remplacer les occurrences de la lettre 'a' dans le tableau par la lettre 'o'.
- 6. Afficher à nouveau le tableau

Exercice 3:

Ecrire un programme permettant de calculer le produit scalaire de deux vecteurs.

Exercice 4:

Ecrire un programme qui permet de saisir et afficher un tableau à deux dimensions.

Modifier le programme pour qu'il transfère un tableau M à deux dimensions L et C dans un tableau V à une dimension L*C

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \longrightarrow V = (1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9)$$

Exercice 5:

Ecrire un programme permettant d'afficher le produit de deux matrices carrées.