Procesos no estacionarios e identificación de modelos

Edgar Javier López Moreno

Universidad los Libertadores

Abril, 2020

Índice

- ARIMA(p,d,q)
- Especificación del modelo
- 3 Ejemplo Practico

Modelos para series no estacionarias

Sea $\{Y_t\}$ la siguiente serie no estacionaria:

$$Y_t = \mu_t + X_t$$

donde μ_t es una función de media no constante y X_t serie estacionaria de media cero.

Diferenciación

La definimos de la siguiente manera:

$$\nabla Y_{t} = Y_{t} - Y_{t-1}$$

$$\nabla^{2} Y_{t} = (Y_{t} - Y_{t-1}) - (Y_{t-1} - Y_{t-2})$$

$$\vdots$$

$$\nabla^{d} Y_{t} = (Y_{t} - Y_{t-1}) - \dots - (Y_{t-(d-1)} - Y_{t-d})$$

Definición modelo ARIMA(p,d,q)

 $\{Y_t\}$ sigue un modelo integrado autoregresivo de media móvil, esto quiere decir que si la d-ésima diferencia $W_t = \nabla^d Y_t$ es un proceso estacionario y si $\{W_t\}$ sigue un modelo ARMA(p,q), decimos que $\{Y_t\}$ sigue un proceso ARMA(p,d,q)

Ejemplo: ARIMA(p,1,q)

Considere que $\{Y_t\}$ sigue un proceso ARIMA(p,1,q), luego $W_t = Y_t - Y_{t-1}$ así tenemos que:

$$W_{t} = \phi_{1}W_{t-1} + \dots + \phi_{p}W_{t-p} + e_{t} - \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q}$$

$$Y_{t} - Y_{t-1} = \phi_{1}(Y_{t-1} - Y_{t-2}) + \dots + \phi_{p}(Y_{t-p} - Y_{t-p-1}) + e_{t} - \theta_{1}e_{t-1} + \dots$$

lo podemos escribir como:

$$Y_{t} = (1 + \phi_{1})Y_{t-1} + \dots + (\phi_{p} - \phi_{p-1})Y_{t-p} - \phi_{p}Y_{t-p-1} +$$

$$e_{t} - \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q}$$

Ejemplo: IMA(2,2)

IMA(2,2)

$$\bigtriangledown^2 = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

en términos de Y_t tenemos que:

$$Y_t = 2Y_{t-1} - Y_{t-2} + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

Gráficos diferenciación IMA(2,2)

Otras Transformaciones

Buscando que la serie sea estacionaria en varianza, tenemos que la función logaritmo nos ayuda a estabilizarla.

Supongamos que $Y_t > 0$ para todo t $E(Y_t) = \mu_t \vee \sqrt{Var(Y_t)} = \mu_t \sigma$

luego tenemos que:

 $E(\log(Y_t)) \approx \log(\mu_t) \vee Var(\log(Y_t)) \approx \sigma^2$

Ya que por la expansión de Taylor

$$\log(Y_t) \approx \log(\mu_t) + \frac{Y_t - \mu_t}{\mu_t}$$

Si la desviación estándar de la serie es proporcional al nivel de la serie, entonces la transformación produce una serie con una varianza aproximadamente constante.

Ejemplo Electricidad

1990

2000

1980

"Power Transformations"

Introducido por Box en 1964:

$$g(x) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} &, & \lambda \neq 0 \\ \log(x) &, & = 0 \end{cases}$$

Si λ tiende a cero, entonces g(x) tiende a $\log(x)$ Aplica para valores estrictamente mayores que cero.

PT Electricidad

Test raíz unitaria o Dickey-Fuller

Considere el modelo $Y_t = \alpha Y_{t-1} + X_t$ para t = 1, 2, ... donde $\{X_t\}$ es estacionario $\{Y_t\}$ es no estacionario si $\alpha = 1$, es estacionaria si $|\alpha| < 1$ Luego tenemos el siguiente sistema de hipótesis:

$$\begin{cases} H_0: \alpha = 1 \\ H_a: |\alpha| < 1 \end{cases}$$

Así que bajo H_0 tenemos que $X_t = Y_t - Y_{t-1}$

Continuación

Luego haciendo: $a = (\alpha - 1)$:

$$Y_{t} - Y_{t-1} = (\alpha - 1)Y_{t-1} + X_{t}$$

$$= aY_{t-1} + \phi_{1}X_{t-1} + \dots + \phi_{k}X_{t-k} + e_{t}$$

$$= aY_{t-1} + \phi_{1}(Y_{t-1} - Y_{t-2}) + \dots + \phi_{k}(Y_{t-k} - Y_{t-k-1}) + e_{t}$$

donde a=0 bajo la hipótesis nula Y_t es diferenciado no estacionario o si $\{Y_t\}$ es estacionario tal que $|\alpha| < 1$, entonces Y_t todavía satisface una ecuación similar a una ecuación de coeficientes diferenciados.

Por ejemplo, $a = (1 - \phi - \dots - \phi_k)(1 - \alpha) < 0$, en efecto $\{Y_t\}$ es un AR(k+1) y su ecuación característica está dada por $\Phi(x)(1-\alpha x)=0$, luego H_0 corresponde al caso donde el polinomio característico tiene raíz unitaria y H_a no tiene raíces.

Funciones de autocorrelación parcial

Se define como la correlación entre Y_t y Y_{t-k} después de remover los efectos de variables $Y_{t-1}, Y_{t-2}, ..., Y_{t-k+1}$. Notación: ϕ_{kk} Si $\{Y_t\}$ es una serie de tiempo normalmente distribuida, tenemos que:

$$\phi_{kk} = Corr(Y_t, Y_{t-k}|Y_{t-1}, Y_{t-2}, ..., Y_{t-k+1})$$

Funciones de autocorrelación estimada

ACF

$$\gamma_k = \frac{\sum_{t=k+1}^n (Y_t - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{t=1}^n (Y_t - \overline{Y})^2}$$

para k = 1, 2, ...

PACE

$$\phi_{kk} = \frac{\rho_k - \sum_{j=1}^{k-1} \phi_{k-1,j} \rho_{k-j}}{1 - \sum_{j=1}^{k-1} \phi_{k-1,j} \rho_j}$$

donde $\phi_{k,j} = \phi_{k-1,j} - \phi_{k,k} \phi_{k-1,k-j}$, para i = 1, 2, ..., k - 1

Comportamiento general ACF y PACF para modelos ARMA

	AR(p)	MA(q)	ARMA(p,q)
ACF	Colas	Corte rezago q	Colas
PACF	Corte rezago p	Colas	Colas

Ver archivo complementario.

Otras especificaciones

AIC

$$AIC = -2\log(Verosimilitud) + 2k$$

BIC

$$BIC = -2\log(Verosimilitud) + k\log(n)$$

Como el AIC y BIC es insesgado, lo penalizamos con el segundo factor como sigue:

AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{n-k-2}$$

17/22

Precios del petroleo

Estacionariedad

Diferenciación

ACF y PACF

