Álgebra Abstracta y Codificación

Nota:

Parcial #2

Estudiante:	15 + de 1611 -

Indicaciones generales

- Este es un examen individual con una duración de 120 minutos.
- No se permite el uso de cualquier medio electrónico.
- Los celulares deben estar apagados y guardados durante todo el examen.
- Cualquier incumplimiento de lo anterior conlleva la anulación del examen.
- 1. [1 pt] Sea A un dominio euclídeo, con función euclídea d. Demuestre que si $a \in A$, tal que $a \neq 0$ satisface d(1) = d(a) entonces a es una unidad.
- [1 pt] Sean a y b dos enteros positivos cuya suma es un primo v. Demuestre que un máximo común divisor entre ellos es 1.
- 3. [1 pt] Encuentre las unidades en $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2}, a, b \in \mathbb{Z}\}.$
- [1 pt] Sean n y m dos enteros. Demuestre que un máximo común divisor entre ellos en \mathbb{Z} es también máximo común divisor entre ellos en $\mathbb{Z}[i]$.
- [1 pt] Demuestre que un elemento irreducible en un PID es un elemento primo. Obs: En un dominio entero D, un elemento $a \in D$ se dice primo si para cuales $a, b \in D$ tales que a|bc entonces a|b o a|c.

Álgebra Abstracta y Codificación

Parcial #2

Estudiante:

Nota:

Indicaciones generales

- Este es un examen individual con una duración de 120 minutos.
- No se permite el uso de cualquier medio electrónico.
- Los celulares deben estar apagados y guardados durante todo el examen. Cualquier incumplimiento de lo anterior conlleva la anulación del examen.
- 1. [1 pt] Sea A un dominio euclídeo, con función euclídea d. Demuestre que si $a \in A$ es una unidad entonces d(a) = d(1).
- 2. [1 pt] Demuestre que $\langle x \rangle$ es un ideal primo de $\mathbb{Z}[x]$ pero no es maximal.
- 3. [1 pt] Encuentre las unidades en $\mathbb{Z}[i]$.
- 4. [1 pt] Demuestre que un elemento primo en un dominio de integridad es irreducible.
- 5. [1 pt] Sean $a \ y \ b$ dos enteros. Demuestre que si $a \mid b$ en $\mathbb{Z}[i]$ entonces $a \mid b$ en \mathbb{Z} .