MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 20, 2024 Lecture 21 D3

Rekha Santhanam Lecture 21 D3

Gram-Schmidt Process

By induction,

$$\begin{aligned} w_r &:= v_r - \operatorname{proj}_{\mathsf{Span}\{w_1, \dots w_{r-1}\}}(v_r) = \\ v_r - \operatorname{proj}_{w_1}(v_r) - \operatorname{proj}_{w_2}(v_r) - \dots - \operatorname{proj}_{w_{r-1}}(v_r) \\ &= v_r - \frac{w_1^T v_r}{\|w_1\|^2} w_1 - \frac{w_2^T v_r}{\|w_2\|^2} w_2 - \dots - \frac{w_{r-1}^T v_r}{\|w_{r-1}\|^2} w_{r-1} \end{aligned}$$

Now take $q_1 = \frac{w_1}{\|w_1\|}$, $q_2 = \frac{w_2}{\|w_2\|}$, ..., $q_r = \frac{w_r}{\|w_r\|}$. Then $\{q_1,\ldots,q_r\}$ is an orthonormal set and

 $W = \text{Span}\{v_1, \dots, v_r\} = \text{Span}\{w_1, \dots, w_r\} = \text{Span}\{q_1, \dots, q_r\}.$

In particular, $\{q_1, q_2, \dots, q_r\}$ is an orthonormal basis for W.

Exercise: Show that if $\{w_1, \ldots, w_r\}$ is an orthogonal set, then

$$\mathsf{proj}_{\mathsf{Span}\{w_1, \dots w_{i-1}\}}(v_i) = \mathsf{proj}_{w_1}(v_i) + \mathsf{proj}_{w_2}(v_i) + \dots + \mathsf{proj}_{w_{i-1}}(v_i).$$

Lecture 21 D3

Gram-Schmidt Method: Example

Q: Let
$$S = \left\{ v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} -5 \\ 1 \\ 5 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix} \right\}$$
 and $W =$

Span(S). Find an orthonormal basis for W.

Exercise: First verify that $\{v_1, v_2, v_3\}$ are linearly independent. (Check that rank of $\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is 3). Hence S is a basis of W.

Use Gram-Schmidt method:
$$w_1 = v_1$$
, $w_2 = v_2 - \left(\frac{w_1^T v_2}{\|w_1\|^2}\right) w_1$

$$\Rightarrow w_2 = v_2 - \left(\frac{-15 + 1 - 5 - 21}{9 + 1 + 1 + 9}\right) w_1 = v_2 - \left(\frac{-40}{20}\right) w_1 = v_2 + 2w_1$$

$$= \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T.$$

Observe: v_1 , $v_2 \in \text{Span}\{w_1, w_2\}$, w_1 , $w_2 \in \text{Span}\{v_1, v_2\} \Rightarrow \text{Span}\{v_1, v_2\} = \text{Span}\{w_1, w_2\}$.

Gram-Schmidt Method: Example (Contd.)

Recall
$$w_1 = \begin{pmatrix} 3 & 1 & -1 & 3 \end{pmatrix}^T$$
, $w_2 = \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T$, and $v_3 = \begin{pmatrix} 1 & 1 & -2 & 8 \end{pmatrix}^T$. (Check $w_1^T w_2 = 0$).

Now $w_3 = v_3 - \left(\frac{w_1^T v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2^T v_3}{\|w_2\|^2}\right) w_2 = v_3 - \left(\frac{3+1+2+24}{20}\right) w_1 - \left(\frac{1+3-6-8}{20}\right) w_2$

$$\Rightarrow w_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}.$$

Check $w_1^T w_3 = 0 = w_2^T w_3$ and $Span\{v_1, v_2, v_3\} = Span\{w_1, w_2, w_3\}$. Hence $\{w_1, w_2, w_3\}$ is an orthogonal basis of W. An orthonormal basis for W is $\left\{\frac{1}{\sqrt{20}}w_1, \frac{1}{\sqrt{20}}w_2, \frac{1}{\sqrt{20}}w_3\right\}$.

Diagonalizing Symmetric Matrices: Example

Example: Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Then
$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{bmatrix} \text{ and }$$

$$\det(A - \lambda I) = (1 - \lambda)[(1 - \lambda)^2 - 1] - 1[1 - \lambda - 1] + 1[1 - (1 - \lambda)]$$

$$= (3 - \lambda)\lambda^2 \quad \text{Eigenvalues: } \lambda_1 = 3, \lambda_2 = 0, \lambda_3 = 0.$$
 To find $N(A - 3I)$, solve $A - 3I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$ $N(A)$ is the plane $x + y + z = 0$. Hence, the associated eigenvectors are $v_1 = (1, 1, 1)^T$, $v_2 = (-1, 0, 1)^T$ and

Lecture 21 D3 Rekha Santhanam

 $v_3 = (0, -1, 1)^T$.

Example: $A = Q\Lambda Q^T$

A has eigenvalues $\lambda_1=3, \lambda_2=0, \lambda_3=0$ with associated eigenvectors $v_1=(1,1,1)^T, \ v_2=(-1,0,1)^T$ and $v_3=(0,-1,1)^T.$ Note that v_2 and v_3 are linearly independent in N(A). Observe $v_1^Tv_2=0=v_1^Tv_3.$

How do we get an orthogonal Q such that $A = Q\Lambda Q^T$, where Λ is diagonal with entries 3, 0, 0 on the diagonal?

Steps: 1. Let $u_1 = v_1/||v_1||$.

- 2. Start with the basis $\{v_2, v_3\}$ of N(A), and apply the Gram-Schimdt process to get an orthonormal basis $\{u_2, u_3\}$ for N(A). Note that u_2 and u_3 are eigenvectors of A associated to $\lambda=0$, and are linearly independent since they are non-zero orthogonal vectors.
- 3. Then $Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ is orthogonal, and $Q^{-1}AQ = \Lambda$.
- 4. Since $Q^{-1} = Q^{T}$, $A = Q\Lambda Q^{T}$.

Diagonalizing Symmetric Matrices

Let A be a symmetric matrix, which is diagonalizable. Then there is an orthogonal matrix Q, and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

Observe: Eignevectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let λ and μ be distinct eigenvalues of A with associated eigenvectors v and w repectively. Now,

$$\lambda(v^T w) = (\lambda v)^T w = (Av)^T w = v^T (A^T w) = v^T (Aw) = \mu(v^T w).$$

Since $\lambda \neq \mu$, this imples $v^T w = 0$, proving the result.

Step 1: Find the eigenvalues and the respective eigenvectors.

Step 2: Use Gram-Schmidt process to get an orthogonal basis for each eignespace.

Theorem: (Real Spectral Theorem)

Every symmetric matrix (with real entries) is diagonalizable, and hence decomposes as above.

Rekha Santhanam

QR Factorization

Let $A = \begin{pmatrix} v_1 & \cdots & v_r \end{pmatrix}$ be an $n \times r$ matrix of rank r. Then v_1, \ldots, v_r are linearly independent vectors in \mathbb{R}^n . By the Gram-Schmidt method, we get an orthonormal basis $\{q_1, \ldots, q_r\}$ of C(A), where $q_i = \frac{w_i}{\|w_i\|}$ and $w_1 = v_1$, and for k > 1,

$$w_k = v_k - \left(\frac{w_1^T v_k}{\|w_1\|^2}\right) w_1 - \dots - \left(\frac{w_{k-1}^T v_k}{\|w_{k-1}\|^2}\right) w_{k-1}.$$

Let
$$Q = (q_1 \dots q_r)$$
. How are A and Q related?

Note that $\text{Span}\{v_1, \dots, v_k\} = \text{Span}\{w_1, \dots, w_k\} = \text{Span}\{q_1, \dots, q_k\}$ for all k. If $v_k = c_1q_1 + \dots + c_kq_k$, then $c_1 = q_1^T v_k, \quad c_2 = q_2^T v_k, \quad \dots, \quad c_k = q_k^T v_k$. Thus Hence $v_k = (q_1^T v_k)q_1 + \dots + (q_k^T v_k)q_k$.

Rekha Santhanam

QR factorization (Contd.)

$$v_k = (q_1^T v_k)q_1 + \ldots + (q_k^T v_k)q_k$$
 for each k .

Therefore

$$\begin{pmatrix} v_1 & v_2 & \dots & v_r \end{pmatrix} = \begin{pmatrix} q_1 & q_2 & \dots & q_r \end{pmatrix} \begin{pmatrix} q_1^T v_1 & q_1^T v_2 & & q_1^T v_r \\ 0 & q_2^T v_2 & & q_2^T v_r \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & q_r^T v_r \end{pmatrix}$$

i.e. A = QR, where the columns of Q form an orthonormal set and R is an invertible $r \times r$ matrix. Q: Why is R invertible? This is called QR-factorization of A.

• If A is invertible $n \times n$, then A = QR, where Q is an orthogonal matrix and R is an invertible upper triangular matrix, both are $n \times n$ matrices.

Rekha Santhanam