Inf-KDDM: **Knowledge Discovery and Data Mining**

Winter Term 2020/21

Lecture 3: Frequent Itemsets and Association Rule Mining

Lectures: Prof. Dr. Matthias Renz

Exercises: Steffen Strohm

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Introduction

- Frequent patterns are patterns that appear frequently in a dataset.
 - Patterns: items, substructures, subsequences ...
- Typical example: Market basket analysis

transact	tions		items
		Customer transactions	
	Tid	Transaction items	
	1	Butter, Bread, Milk Sugar	
\setminus	2	Butter, Flour, Milk, Sugar	
\nearrow	3	Butter, Eggs, Milk, Salt	
	4	Eggs	
	5	Butter, Flour, Milk, Salt, Sugar	

- We want to know: What products were often purchased together?
 - e.g.: beer and diapers?

The parable of the beer and diapers: http://www.theregister.co.uk/2006/08/15/beer_diapers/

- Applications:
 - Improving store layout, Sales campaigns, Cross-marketing, Advertising

Applications beyond marked basket data

- Market basket analysis
 - Items are the products, transactions are the products bought by a customer during a supermarket visit
 - Example: $\{"Diapers"\} \rightarrow \{"Beer\} (0.5\%, 60\%)$
- Similarly in an online shop, e.g. Amazon
 - Example: $\{\text{"Computer"}\} \rightarrow \{\text{"MS office"}\}\ (50\%, 80\%)$
- University library
 - Items are the books, transactions are the books borrowed by a student during the semester
 - Example: $\{\text{"Kumar book"}\} \rightarrow \{\text{"Weka book"}\} (60\%, 70\%)$
- University
 - Items are the courses, transactions are the courses that are chosen by a student
 - Example: $\{"CS"\} \land \{"DB"\} \rightarrow \{"Grade\ A"\} (1\%, 75\%)$
- ... and many other applications.
- Also, frequent patter mining is fundamental in other DM tasks.

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Homework
- Things you should know from this lecture

Basic concepts: Items, itemsets and transactions 1/2

- Items I: the set of items $I = \{i_1, ..., i_m\}$
 - e.g. products in a supermarket, books in a bookstore
- Itemset X: A set of items $X \subseteq I$
- Itemset size: the number of items in the itemset
- k-Itemset: an itemset of size k
 - e.g. {Butter, Bread, Milk, Sugar} is a 4-Itemset, {Butter, Bread} is a 2-Itemset
- Transaction T: $T = (tid, X_T)$
 - e.g. products bought during a customer visit to the supermarket
- Database DB: A set of transactions T
 - e.g. customers purchases in a supermarket during the last week
- Items in transactions or itemsets are lexicographically ordered
 - □ Itemset $X = (x_1, x_2, ..., x_k)$, such as $x_1 \le x_2 \le ... \le x_k$

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

Basic concepts: Items, itemsets and transactions 2/2

Let X be an itemset.

■ Itemset cover: the set of transactions containing X:

$$cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$$

(absolute) Support/ support count of X: # transactions containing X

$$supportCount(X) = |cover(X)|$$

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

- (relative) Support of X: fraction of transactions containing X (or the probability that a transaction contains X) support(X) = P(X) = supportCount(X) / |DB|
- Frequent itemset: An itemset X is frequent in DB if its support is no less than a minSupport threshold s: $support(X) \ge s$
- L_k : the set of frequent k-itemsets
 - L comes from "Large" ("large itemsets"), another term for "frequent itemsets"

Example: Itemsets

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

- support(Butter) = 4/5=80%
 - cover(Butter) = {1,2,3,4}
- support(Butter, Bread) = 1/5=20%
 - cover(Butter, Bread) =
- support(Butter, Flour) = 2/5=40%
 - cover(Butter, Flour) =
- support(Butter, Milk, Sugar) = 3/5=60%
 - Cover(Butter, Milk, Sugar)=

The Frequent Itemsets Mining (FIM) problem

Problem 1: Frequent Itemsets Mining (FIM)

- Given:
 - A set of items I
 - A transactions database DB over I
 - A minSupport threshold s
- Goal: Find all frequent itemsets in *DB*, i.e.:

$${X \subseteq I \mid support(X) \ge s}$$

transactionID	items
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Support of 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support of 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Support of 3-Itemsets:

(A, B, C), (B, E, F): 25%

Support of 4-Itemsets: -

Support of 5-Itemsets: -

Support of 6-Itemsets: -

Basic concepts: association rules, support, confidence

Let X, Y be two itemsets: $X,Y \subset I$ and $X \cap Y = \emptyset$.

Association rules: rules of the form

head or LHS (left-hand side) or antecedent of the rule

body or RHS (right-hand side) or consequent of the rule

Support s of a rule: the percentage of transactions containing $X \cup Y$ in the DB

$$support(X \rightarrow Y) = support(X \cup Y)$$

■ Confidence c of a rule: the percentage of transactions containing $X \cup Y$ in the set of transactions containing X. Or, in other words the conditional probability that a transaction containing X also contains Y

$$confidence(X \rightarrow Y) = P(E_Y | E_X) = \frac{P(E_X \cap E_Y)}{P(E_X)} = \frac{support(X \cup Y)}{support(X)}$$

- Support and confidence are measures of rules' interestingness.
- Rules are usually written as follows: $X \rightarrow Y$ (support, confidence)

E_X := Event that itemset X appears in a transaction

- {Diapers} → {Beer} (0.5%, 60%)
- {Toast bread} → {Toast cheese} (50%, 90%)

Example: association rules

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

Sample rules:

- {Butter} \rightarrow {Bread} (20%, 25%)
 - □ support(Butter ∪Bread)=1/5=20%
 - support(Butter)=4/5=80%
 - Confidence = 20%/80%=1/4=25%
- {Butter, Milk} → Sugar (60%, 75%)
 - □ support(Butter, Milk ∪ Sugar) = 3/5=60%
 - Support(Butter,Milk) = 4/5=80%
 - Confidence = 60%/80%=3/4=75%

The Association Rules Mining (ARM) problem

Problem 2: Association Rules Mining (ARM)

- Given:
 - A set of items I
 - A transactions database DB over I
 - □ A minSupport threshold s and a minConfidence threshold c
- Goal: Find all association rules $X \rightarrow Y$ in DB w.r.t. minimum support s and minimum confidence c, i.e.:

$$\{X \rightarrow Y \mid support(X \cup Y) \ge s, confidence(X \rightarrow Y) \ge c\}$$

These rules are called strong.

transactionID	items
2000	A,B,C
1000	ĄC
4000	A,D
5000	B,E,F

Solving the problems

- Problem 1 (FIM): Find all frequent itemsets in DB, i.e.: $\{X \subseteq I \mid support(X) \ge s\}$
- Problem 2 (ARM): Find all association rules $X \to Y$ in DB, w.r.t. min support s and min confidence c, i.e.,: $\{X \to Y \mid support(X \cup Y) \ge s$, $confidence(X \to Y) \ge c$, $X,Y \subseteq I$ and $X \cap Y = \emptyset$
- Problem 1 is part of Problem 2:
 - Once we have support(X \cup Y) and support(X), we can check if X \rightarrow Y is strong.
- 2-step method to extract the association rules:
 - □ Step 1: Determine the frequent itemsets w.r.t. min support s:
 - "Naïve" algorithm: count the frequencies for all k-itemsets
 - □ Inefficient!!! There are $O(\binom{|I|}{\nu})$ such subsets
 - Total cost: O(2^{|||})
 - => Apriori-algorithm and variants
 - Step 2: Generate the association rules w.r.t. min confidence c: from frequent itemsets X, generate $Y \rightarrow (X Y)$, $Y \subset X$, $Y \neq \emptyset$, $Y \neq X$

FIM problem

Step 1(FIM) is the most costly, so the overall performance of an association rules mining algorithm is determined by this step.

Itemset lattice complexity

- The number of itemsets can be really huge. Let us consider a small set of items: $I = \{A,B,C,D\}$
- **1** # 1-itemsets: $\binom{4}{1} = \frac{4!}{(4-1)!*1!} = \frac{4!}{3!} = 4$
- **a** # 2-itemsets: $\binom{4}{2} = \frac{4!}{(4-2)!*2!} = \frac{4!}{2!*2!} = 6$
- **4** 3-itemsets: $\binom{4}{3} = \frac{4!}{(4-3)!*3!} = \frac{4!}{3!} = 4$
- **4** 4-itemsets: $\binom{4}{4} = \frac{4!}{(4-4)!*4!} = 1$
- In the general case, for |/| items, there exist:

$$\binom{\mid I \mid}{1} + \binom{\mid I \mid}{2} + \dots + \binom{\mid I \mid}{k} = 2^{\mid I \mid} - 1$$

So, generating all possible combinations and computing their support is inefficient!

