固定翼自主编队飞行

The Fixed-Wing Autonomous Formation Flying

王曦漫, 吴昌伟, 冯学伟, 张效良

July 8, 2020

Contents

1	绪论		1
	1.1	研究背景及意义	1
	1.2	国内外研究现状	1
		1.2.1 固定翼的研究现状	1
		1.2.2 固定翼自主编队飞行研究现状	1
2	Fixe	ed Wing UAV Control Architecture	2
	2.1	Control Architecture Overview	2
	2.2	navigator	2
	2.3	position controller	2
	2.4	attitude controller	2
3	UA	Vs Formation Algorithms	3
	3.1	Algorithms overview	3
	3.2	leader	3
	3.3	followers	3
4	Soft	tware In the Loop (SITL) simulation	4
	4.1	整体框图	4
	4.2	ROS	4
	4.3	gazebo	4
	4.4	QGround Control	4
	4.5	Data Flow	4
5	Har	edware In the Loop (HITL) simulation	5
	5.1	整体框图	5
	5.2	飞控	5
	5.3	树莓派	5
	5.4	QGC	5
	5.5	X-plane	5
	5.6	Data Flow	5
6	Sim	ulation	6

7	Conclusion	7
8	reference	8

摘要

无人飞行器(UnmannedAirVehicle. UAV)具有广阔的应用前景,是近年来高技术研究的热点目标之一。随着计算机技术,通信技术,传感器技术,电池技术等的飞速发展,开展微型UAV研究并把它运用到军事或民用中已经成为可能。

关键字: 无人机; 航线规划; PX4;

Abstract

Unmanned Air Vehicle (Unmanned Air Vehicle.UAV) has broad application prospects and is one of the focuses of long-range high-tech research. Through computer technology, communication technology, sensor technology, battery technology, etc. Based on the PX4 control logic.

keywords— Unmanned Air Vehicle; Path Manager; PX4

1 绪论

引出本文话题

1.1 研究背景及意义

介绍研究背景等内容

1.2 国内外研究现状

1.2.1 固定翼的研究现状

介绍研究现状之余, 也可以介绍一下多旋翼和固定翼的区别.

1.2.2 固定翼自主编队飞行研究现状

2 Fixed Wing UAV Control Architecture

固定翼的体系结构(仿照px4官网),一些飞行模式及其各个控制器介绍.

2.1 Control Architecture Overview

Control Architecture Overview

2.2 navigator

控制器介绍

2.3 position controller

控制器介绍

2.4 attitude controller

控制器介绍

3 UAVs Formation Algorithms

课题中主要用到的算法介绍.

3.1 Algorithms overview

算法伪代码

3.2 leader

主机用到的算法, 及其数据流走向

3.3 followers

从机的编队算法, 及其数据流走向

4 Software In the Loop (SITL) simulation

介绍一些软件在环的

4.1 整体框图

4.2 ROS

系统介绍, 及其使用机制

4.3 gazebo

系统介绍, 及其使用机制

4.4 QGround Control

系统介绍, 及其使用机制

4.5 Data Flow

上面部分串联起来, 描述软件在环数据流走向表示.

5 Hardware In the Loop (HITL) simulation

5.1 整体框图

5.2 飞控

系统简单介绍, 及其使用机制

5.3 树莓派

系统简单介绍, 及其使用机制

5.4 QGC

系统简单介绍, 及其使用机制

5.5 X-plane

系统简单介绍, 及其使用机制

5.6 Data Flow

上面部分串联起来, 描述硬件在环数据流走向表示.

6 Simulation

仿真结果

7 Conclusion

总结

8 reference

参考文献