

ATGTGGAAATGGATACTGACACATTGTGCCTCAGCCTTCCCCACCTGCCGGCTGCTGC
1 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 60
TACACCTTACCTATGACTGTGTAACACGGAGTCGGAAAGGGGTGGACGGGCCGACGACG
M W K W I L T H C A S A F P H L P G C C
TGCTGCTGCTTTGTTGCTGTTCTGGTGTCTCCGTCCCTGTCACCTGCCAAGCCCTT
61 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 120
ACGACGACGAAAAACAACGACAAGAACACAGAAGGCAGGGACAGTGGACGGTTGGAA
C C C F L L L F L V S S V P V T C Q A L
GGTCAGGACATGGTGTACCAAGAGGCCACCAACTCTTCTTCCCTCCTCTCCT
121 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 180
CCAGTCCTGTACCAACAGTGGTCTCCGGTGGTTGAGAAGAAGGAGGAGGAAGAGGAGGAGGA
G Q D M V S P E A T N S S S S S S F S S P
TCCAGCGCGGGAAAGGCATGTgCGGAGCTACAATCACCTCAAGGAGATGTCCGCTGGAGA
181 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 240
AGGTTCGCGCCCTTCCGTACACGCCTCGATGTTAGTGGAAAGTTCTACAGGCGACCTCT
S S A G R H V R S Y N H L Q G D V R W R

MATCH WITH FIG. 1B

FIG.1A

MATCH WITH FIG. 1A

AAGCTATTCTCTTCAACCAAGTACTTCTCAAGATTGAGAAGAACGGGAAGGTAGCGGG
241 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 300
TTCGATAAGAGAAAGTGGTCATGAAAGAGTTCTAACTCTTCTGCCCTCCAGTCGCC

K L F S F T K Y F L K I E K N G K V S G

ACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT
301 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 360
TGGTTCTTCCTCTTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTAGCCTCAA

T K K E N C P Y S I L E I T S V E I G V

GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGAAACTC
361 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 420
CAACGGCAGTTCGGTATTGTCGTTGATAATGAATCGGTACTGTTCTCCCTTGAG

V A V K A I N S N Y Y L A M N K K G K L

TATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGA
421 -----+-----+-----+-----+-----+-----+-----+-----+ 480
ATACCGAGTTTCTTAAATTGTTACTGACATTGACTTCCTCTCCTATCTCCTTTACCT

Y G S K E F N N D C K L K E R I E E N G

MATCH WITH FIG. 1C

FIG. 1B

MATCH WITH FIG. 1B

181 TACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTG
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 540
ATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCCTCCGTTACATACACCGTAAC
Y N T Y A S F N W Q H N G R Q M Y V A L
AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCAC
541 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 600
TTACCTTTCTCGAGGTTCTCTCCTGTCTTGTGCTTCCTTTGTGGAGACGAGTG
N G K G A P R R G Q K T R R K N T S A H
TTTCTTCCAATGGTGGTACACTCATAG
601 -----+-----+----- 627
AAAGAAGGTTACCAACATGTGAGTATC
F L P M V V H S *

FIG. 1C

1

50

FGF4 MS.GPGTAAV ALLPAVLLAL LA..... .PWAGRGGAA APTAPNGTLE
FGF6 MSRGAGRLQG TLWALVFLGI LV..... .GMVVPSAG TR.ANNTLLD
FGF5MSL SFLLLFFSH LILSAWAHGE KRLAPKGQPG PAATDRNPIG
FGF1
FGF2
FGF9MAPLGEVG NYFGVQDAVP
FGF7MHKW ILTWILPTLL YRSCF HIICLVGTIS
KGF2MWKW ILTHCASAfp HLPGCCCCF LLLFLVSSVP
FGF3
FGF8 MGSPRSALSC LLLHLLVLCL QAQVRSAAQK RGPGAGNPAD TLGQGHEDRP

51

100

FGF4 AELERRWESL VALSIARLPV AA..QPKEAA VQSGAGDY... .LLGIKRL
FGF6 S...RGWGL LSRSRAGLAG EI.....AG VNWESG.Y... .LVGIKRQ
FGF5 SSSRQSSSSA MSSSSASSSP AASLGSQGSG LEQSSFQW... .SPSGRRT
FGF1MAEG EITTFTALTE KFN...LPPGN...YK...KP
FGF2MAAG SITTLPALPE DGGSGAFPPGH...FK...DP
FGF9 FGNVPVLPVD SPVLLSDHLG QSEAGGLPRG PAVTDLDH... .LKGILRR
FGF7 LACNDMTPEQ M...ATNVNCSSPE RHTRSYDY... .MEGGDIR
KGF2 VTCQALGQDM VSPEATNSSS SSFSSPSSAG RHVRSYNH... .LQ.GDVR
FGF3 PGWPAAGPGA RLRRDAG GRGGVYEH... .L.GGAPR
FGF8 FGQRSRAGKN FTNPAPNYPE EGSKEQRDSV LPKVTQRHVR EQSLVTDQLS

MATCH WITH FIG. 2B

FIG. 2A

MATCH WITH FIG. 2A

	101	150
FGF4	RRL.....YC NVGIGFHLQA LPDGRIGGAH ADT.RDSLLE LSPVERGV.V	
FGF6	RRL.....YC NVGIGFHLQV LPDGRISGTH EEN.PYSLLE ISTVERGV.V	
FGF5	GSL.....YC RVGIGFHLQI YPDGKVNGSH EAN.MLSVLE IFAVSQGI.V	
FGF1	KLL.....YC SNG.GHFLRI LPDGTVDGTR DRSDQHIQLQ LSAESVGE.V	
FGF2	KRL.....YC KNG.GFFLRI HPDGRVDGVR EKSDPHIKLQ LQAEERGV.V	
FGF9	RQL.....YC R.T.GFHLEI FPNGTIQGTR KDHSRGFILE FISIAVGL.V	
FGF7	VRR.....LF CRT.QWYLRI DKRGKVKGQTQ EMKNYNIME IRTVAVGI.V	
KGF2	WRK.....LF SFT.KYFLKI EKNGKVSGTK KENCPYSILE ITSVEIGV.V	
FGF3	RRK.....LY CAT.KYHLQL HPSGRVNGSL .ENSAYSILE ITAVEVGI.V	
FGF8	RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPFAKLI VETDTFGSRV	

	151	200
FGF4	SIFGVASRFF VAMSSKGKLY G.SPFFTDEC TFKEILLPNN YNAYESYKYP	
FGF6	SLFGVRSALF VAMNSKGRLY A.TPSFQEEC KFRETLLPNN YNAYESDLYQ	
FGF5	GIRGVFSNKF LAMSKKGKLH A.SAKFTDDC KFRERFQENS YNTYASAIHR	
FGF1	YIKSTETGQY LAMDTDGLLY G.SQTPNEEC LFLERLEENH YNTYISKHH.	
FGF2	SIKGVCANRY LAMKEDGRLL A.SKCVTDEC FFFERLESNN YNTYRSRKY.	
FGF9	SIRGVDSGLY LGMNEKGELY G.SEKLTQEC VFREQFEENW YNTYSSNLYK	
FGF7	AIKGVESEFY LAMNKEGKLY A.KKECNEDC NFKELILENH YNTYAS....	
KGF2	AVKAINSNEY LAMNKKGKLY G.SKEFNNDC KLKERIEENG YNTYAS....	
FGF3	AIRGLFSGRY LAMNKRGRLY A.SEHYSAEC EFVERIHELG YNTYASRLYR	
FGF8	RVRGAETGLY ICMNKKGKLI AKSNGKGKDC VFTEIVLENN YTALQNAKY.	

MATCH WITH FIG. 2C

FIG. 2B

MATCH WITH FIG. 2B

	201	250
FGF4	GM.....FI ALSKNGKTKK G..NRVSPTM KVTHFLPRL.
FGF6	GT.....YI ALSKYGRVKR G..SKVSPIM TVTHFLPRI.
FGF5	TEKTGREWYV ALNKRGKAKR GCSPRVKPQH IsthFLPRFK
FGF1AEKNWFV GLKKNGSCKR G..PRTHYGQ KAILFLPLPV
FGF2T..SWYV ALKRTGQYKL G..SKTGPQG KAILFLPMSA
FGF9	HV.....	..DTGRRYYV ALNKGDTPRE G..TRTKRHQ KFTHFLPRPV
FGF7	AKW THNGGEM.FV ALNQKGIPVR G..KKTKEQ KTAHFLPMAI
KGF2	FNW QHNGRQM.YV ALNGKGAPRR G..QKTRRKN TSAHFLPMVV
FGF3	TVSSTPGARR	QPSAERLWYV SVNGKGRPRR G..FKTRRTQ KSSLFLPRVL
FGF8EGWYM AFTRKGRPRK G..SKTRQHQ REVHFMKRLP

	251	300
FGF4
FGF6
FGF5	QSEQPELSFT	VTVPEKKNPP SPIKSKIPLS APRKNTNSVK YRLKFRFG..
FGF1	SSD.....
FGF2	KS.....
FGF9	DPDKVPELYK	DILSQS.....
FGF7	T.....
KGF2	HS.....
FGF3	DHRDHEMVRQ	LQSQLPRPPG KGVQPRRRRQ KQSPDNLEPS HVQASRLGSQ
FGF8	RGHHTTEQSL	RFEFLNYPPF TRSLRGSQRT WAPEPR.....

MATCH WITH FIG. 2D

FIG. 2C

MATCH WITH FIG. 2C

301

FGF4
FGF6
FGF5
FGF1
FGF2
FGF9
FGF7
KGF2
FGF3	LEASAH
FGF8

FIG.2D

GGAATTCCGG	GAAGAGAGGG	AAGAAAACAA	CGGCGACTGG	GCAGCTGCCT	CCACTTCTGA	60
CAACTCCAAA	GGGATATACT	TGTAGAAGTG	GCTCGCAGGC	TGGGGCTCCG	CAGAGAGAGA	120
CCAGAAGGTG	CCAACCGCAG	AGGGGTGCAG	ATATCTCCCC	CTATTCCCCA	CCCCACCTCC	180
CTTGGGTTTT	GTTCACCGTG	CTGTCATCTG	TTTTCAGAC	CTTTTGGCA	TCTAACATGG	240
TGAAGAAAGG	AGTAAAGAAG	AGAACAAAGT	AACTCCTGGG	GGAGCGAAGA	GCGCTGGTGA	300
CCAACACCAAC	CAACGCCACC	ACCAGCTCCT	GCTGCTGCAG	CCACCCACGT	CCACCATTAA	360
CCGGGAGGCT	CCAGAGGCAGT	AGGCAGCGGA	TCCGAGAAAG	GAGCGAGGGG	AGTCAGCCGG	420
CTTTCCGAG	GAGTTATGGA	TGTTGGTGCA	TTCACTTCTG	GCCAGATCCG	CGCCCAGAGG	480
GAGCTAACCA	GCAGCCACCA	CCTCGAGCTC	TCTCCTTGCC	TTGCATCGGG	TCTTACCCCTT	540
CCAGTATGTT	CCTTCTGATG	AGACAATTTC	CAGTGCCGAG	AGTTTCAGTA	CA ATG	595
Met						
TGG AAA	TGG ATA	CTG ACA	CAT TGT	GCC TCA	TTC CCC	643
Trp Lys	Trp Trp	Ile Leu	Thr His	Cys Ala	Ser Ala	
				Phe	Pro	His
				Leu	Pro	
GGC TGC	TGC TGC	TGC TGC	TTT TTG	TTG CTG	TTC TTG	691
Gly Cys	Cys Cys	Cys Cys	Phe Leu	Leu Leu	Phe Leu	
				Val	Ser	Ser
				Val	Ser	Val
CCT GTC	ACC TGC	CAA GCC	CTT GGT	CAG GAC	ATG ATG	739
Pro Val	Thr Cys	Gln Ala	Leu Gly	Gln Asp	Met Val	
				Ser	Ser	Pro
				Pro	Glu	Ala
ACC AAC	TCT TCC	TCC TCC	TTC TCC	TCT CCT	TCC AGC	787
Thr Asn	Ser Ser	Ser Ser	Ser Phe	Ser Ser	Pro Ser	
				Asn	Ser	Gly
				Ala	Gly	Arg
CAT GTG	CGG AGC	TAC AAT	CAC CTT	CAA GGA	GAT GTC	835
His Val	Arg Ser	Tyr Asn	His Leu	Gln Gly	Asp Val	
				Asp	Arg	Trp
				Val	Arg	Arg
				Trp	Arg	Lys
CTA TTC	TCT TTC	ACC AAG	TAC TTT	CTC AAG	ATT GAG	883
Leu Phe	Ser Phe	Thr Tyr	Leu Lys	Ile Glu	Lys Asn	
				Ile	Gly	Lys
				Gl	Asn	Gly
				Ile	Gly	Lys
GTC AGC	GGG ACC	AAG AAG	GAG AAC	TGC CCG	TAC AGC	931
Val Ser	Gly Thr	Lys Lys	Glu Asn	Cys Pro	Tyr Ser	
				Ile	Ile	Ile
				Leu	Leu	Leu
				Gl	Gl	Gl
ACA TCA	GTA GAA	ATC GGA	GTT GTT	GCC GTC	AAA GCC	979
Thr Ser	Val Glu	Ile Gly	Val Val	Ala Val	Val Ala	
				Ile	Ile	Asn
				Asn	Ser	Asn
TAT TAC	TTA GCC	ATG AAC	AAG AAG	GGG AAA	CTC TAT	1027
Tyr Tyr	Leu Ala	Met Asn	Lys Lys	Gly Lys	Leu Tyr	
				Leu	Gly	Ser
				Tyr	Ser	Lys
				Gl	Gl	Gl
TTT AAC	AAT GAC	TGT AAG	CTG AAG	GAG AGG	ATA GAG	1075
Phe Asn	Asn Asp	Cys Lys	Leu Lys	Glu Arg	Ile Glu	
				Ile	Gl	Asn
				Gl	Gl	Gly
				Tyr	Tyr	Tyr

FIG.3A

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT	1123
Asn Thr Tyr Ala Ser Phe Asn Trp Glu His Asn Glu Arg Glu Met Tyr	
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA	1171
Val Ala Leu Asn Glu Lys Glu Ala Pro Arg Arg Glu Glu Lys Thr Arg	
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA	1216
Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	
TAGAGGAAGG CAACGTTGT GGATGCAGTA AAACCAATGG CTCTTTGCC AAGAATAGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTT GAAGGTTTT GTATTCACTG CTGACATATG ATGTTCTTT	1396
AATTAGTTCT GTGTCAATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAAGTT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTGTTGT TGTTGTCAAG TTTTGTTTT	1516
TAAACCTCTG AGATAGAACT TAAAGGACAT AGAACAAATCT GTTGAAAGAA CGATCTCGG	1576
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACAA ATACAAATAG TATGGTATGC TTGTGCATT	1816
TGCCTTCATC CCTTTCTATT TCTTCTAACAG TTATTTATT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTCT TTTTATTCAAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTAAAAC TGGCGAACAC TTCAAAAATA	1996
GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTGCA	2056
CTTCTGCAGT AATAACCATC AACAAATAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTGAA AACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2176
GACCAGAAGG CCAAATTCTT CTCTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAAA TTAATTGCTA AATACATTAA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAAC CCTCTGTAAA	2356
TTCCACATAA TGCATCTTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2416

CCCAGGGGCT TAAACTGAGC AAATCAAATA TATACTGGTA TATGTGTAAC CATATACAAA	2476
AACCTGTTCT AGCTGTATGA TCTAGTCTTT ACAAAACCAA ATAAAACCTG TTTTCTGTAA	2536
ATTTAAAGAG CTTTACAAGG TTCCATAATG TAACCATATC AAAATTCAATT TTGTTAGAGC	2596
ACGTATAGAA AAGAGTACAT AAGAGTTTAC CAATCATCAT CACATTGTAT TCCACTAAAT	2656
AAATACATAA GCCTTATTG CAGTGTCTGT AGTGATTTA AAAATGTAGA AAAATACTAT	2716
TTGTTCTAAA TACTTTAAG CAATAACTAT AATAGTATAT TGATGCTGCA GTTTTATCTT	2776
CATATTCTT GTTTGAAAA AGCATTAT TGTTGGACA CAGTATTTG GTACAAAAAA	2836
AAAGACTCAC TAAATGTGTC TTACTAAAGT TTAACCTTG GAAATGCTGG CGTTCTGTGA	2896
TTCTCCAACA AACTTATTG TGTCAATACT TAACCAGCAC TTCCAGTTAA TCTGTTATT	2956
TTAAAAATTG CTTTATTAAG AAATTTTTG TATAATCCA TAAAAGGTCA TATTTTCCC	3016
ATTCTCAAA AAAACTGTAT TTCAGAAGAA ACACATTGA GGCACTGTCT TTTGGCTTAT	3076
AGTTAAATT GCATTTCATC ATACTTGCT TCCAACTTGC TTTTGGCAA ATGAGATTAT	3136
AAAAATGTTT AATTTTG GTTGGATCT GGATGTTAAA ATTTAATTGG TAACTCAGTC	3196
TGTGAGCTAT AATGTAATGC ATTCTATCC AAACCTAGGTA TCTTTTTTC CTTTATGTTG	3256
AAATAATAAT GGCACCTGAC ACATAGACAT AGACCACCA CAACCTAAAT TAAATGTTG	3316
GTAAGACAAA TACACATTGG ATGACCACAG TAACAGCAAA CAGGGCACAA ACTGGATTCT	3376
TATTCACAT AGACATTTAG ATTACTAAAG AGGGCTATGT GTAAACAGTC ATCATTATAG	3436
TACTCAAGAC ACTAAAACAG CTTCTAGCCA AATATATTAA AGCTTGCAGA GGCCAAAAAT	3496
AGAAAACATC TCCCCGTCT CTCCCACATT TCCCTCACAG AAAGACAAAA AACCTGCCTG	3556
GTGCAGTAGC TCACACCTGT AATCCCAGCA GTTGGGAGA CTGTGGGAAG ATGGCTTGAG	3616
TCCAGGAGTT CTAGACAGGC CTGAGAAACC TAGTGAGACA TCCTTCTCTT AAACAAAACA	3676
AAACAAAACA AATGTAGCCA TGCCTGGG CATATACCTG TGGTCCCAAC TACTCAGGAG	3736
GCTGAAACGG AAGGATCTCT TGGGCCAG GAGTTGAGG CTGCAGTGAG CTATAATCTT	3796
GCCATTGCAC TCCAGCCTGG GTGAAAAAGA GCCAGAAAGA AAGGAAAGAG AGAAAAGAGA	3856
AAAGAAAAGAG AGAAAAGACA GAAAGACAGG AAGGAAGGAA GGAAGGAAGG AAGGAAGGAA	3916
GGAAGCAAGG AAAGAAGGAA GGAAGGAAAG AAGGGAGGGA AGGAAGGAGA GAGAAAGAAA	3976
GATTGTTGG TAAGGAGTAA TGACATTCTC TTGCATTTAA AAGTGGCATA TTTGCTTGAA	4036

FIG.3C

ATGGAAATAG AATTCTGGTC CCTTTGCAA CTACTGAAGA AAAAAAAAAG CAGTTTCAGC	4096
CCTGAATGTT GTAGATTGA AAAAAAAA AAAAAAACTC GAGGGGGGGC CCGTACCCAA	4156
TTCGCCCTAT AGTGAGTCGT A	4177

FIG.3D

FIG. 4A

FIG. 4C

FIG. 4E

FIG.5

FIG. 6

FIG.7

FIG. 8

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION
4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES
10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.9

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION
4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES
7-9 GRANULATION TISSUE, CELLS, FIBROBLASTS, NEW EPITHELIUM
10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.10

ANTI-CYTOKERATIN IMMUNOSTAINING
0-NO CLOSURE
5-SLIGHT TO MODERATE CLOSURE
10-COMPLETE CLOSURE

FIG.11

ANTI-CYTOKERATIN IMMUNOSTAINING
0-NO CLOSURE
5-SLIGHT TO MODERATE CLOSURE
10-COMPLETE CLOSURE

FIG. 12

PCNA SCORING
0-2 SLIGHT PROLIFERATION
3-5 MODERATE PROLIFERATION
6-8 INTENSE PROLIFERATION

FIG. 13

PCNA SCORING
0-2 SLIGHT PROLIFERATION
3-5 MODERATE PROLIFERATION
6-8 INTENSE PROLIFERATION

FIG.14

ATGAGAGGATCGCATACCATCACCATCACGGATCCTGCCAGGCTCTGGGTC
AGGACATGGTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTTCTCTTCCC
CGTCTTCCGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTACGTTG
GTTGGCGTAAACTGTTCTTTACCAAATACTTCCTGAAAATCGAAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTG
GAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAG
CAACTATTACTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAG
AATTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGAT
ACAATACCTATGCATATTAACTGGCAGCATAATGGAGGCAAATGTAT
GTGGCATTGAaTGGAAAAGGAGCTCCAaGGAGAGGACAGAAAACACGAAG
GAAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MRGSHHHHHGSCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGD
VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSN
YYLAMNKKGKLYGSKEFNNDKLKERIEENGYNTYASFNWQHNGRQMYVA
LNGKGAPRRGQKTRRKNTSAHFLPMVHS

kgf-2 synthetic cys37 Bam HI
AAAGGATCCTGCCAGGCTCTGGTCAGGACATG

FIG.15

FIG. 16

GLUCOCORTICOID TREATED ANIMALS

FIG.17

FIG. 18

FIG. 19A

DAY 10 POSTWOUNDING

FIG. 19B

GLUCOCORTICOID TREATED GROUP

FIG.20

FIG.21A

FIG.21B

FIG.21C

FIG.22A

FIG.22A-1

FIG.22B

BEST AVAILABLE COPY

FIG. 22C

ATGTGGAAATGGATACTGACCCACTGCGCTCTGCTTCCGCACCTGCCGGGTTGCTG 60
Met Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys
|
TGCTGCTGCTTCCTGCTGCTGTTCCCTGGTTCTTCTGTTCCGGTACCTGCCAGGCTCTG 120
Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gln Ala Leu
|
GGTCAGGACATGGTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTTCTTCCCCG 180
Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Phe Ser Ser Pro
|
ACTTCCGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTACGTTGGCGT 240
Thr Ser Ala Gly Arg His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg
|
AAACTGTTCTTTACCAAATACTTCCTGAAAATCGAAAAACGGTAAAGTTCTGGG 300
Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys Val Ser Gly
|
ACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT 360
Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val
|
GTTGCCGTCAAAGCCATTAACAGCAACTATTACTGCCATGAACAGAAGGGAAACTC 420
Val Ala Val Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu
|
TATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGA 480
Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly
|
TACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTG 540
Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr Val Ala Leu
|
AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAACACCTCTGCTCAC 600
Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His
|
TTTCTTCCAATGGTGGTACACTCATAG 627
Phe Leu Pro Met Val Val His Ser *

FIG.23

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGAAGCTACCAACTCTTCCTCT 60
MetThrCysG1nA1aLeuG1yG1nAspMetVa1SerProG1uA1aThrAsnSerSerSer

TCCTCTTCTCTTCCCCGTCTCCGCTGGTCGTACGTTGTTACAACCACCTGCAG 120
SerSerPheSerSerProSerSerA1aG1yArgHisVa1ArgSerTyrAsnHisLeuG1n

GGTGACGTTGTTGGCGTAAACTGTTCTCTTACCAAATACTCCTGAAAATCGAAAAAA 180
G1yAspVa1ArgTrpArgLysLeuPheSerPheThrLysTyrPheLeuLysI1eG1uLys

AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACA 240
AsnG1yLysVa1SerG1yThrLysLysG1uAsnCysProTyrSerI1eLeuG1uI1eThr

TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAAACAGCAACTATTACTGCCATG 300
SerVa1G1uI1eG1yVa1Va1A1aVa1LysA1aI1eAsnSerAsnTyrTyrLeuA1aMet

ACAAGAAGGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAG 360
AsnLysLysG1yLysLeuTyrG1ySerLysG1uPheAsnAsnAspCysLysLeuLysG1u

AGGATAGAGGAAAATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGG 420
ArgI1eG1uG1uAsnG1yTyrAsnThrTyrA1aSerPheAsnTrpG1nHisAsnG1yArg

CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGG 480
G1nMetTyrVa1A1aLeuAsnG1yLysG1yA1aProArgArgG1yG1nLysThrArgArg

AAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG 525
LysAsnThrSerA1aHisPheLeuProMetVa1Va1HisSer *

FIG.24A

ATGACTTGCCAGGCACTGGGTCAAGACATGGTTCCCCGGAAGCTACCAACAGCTCCAGCTCTAGCTTCA
70
TACTGAACGGTCCGTGACCCAGTTCTGTACCAAAGGGCCTCGATGGTTGTCGAGGTGAGATCGAAGT
M T C Q A L G Q D M V S P E A T N S S S S S F
GCAGCCCACATCTAGCGCAGGTGTCACGTTCGCTCTTACAACCACTTACAGGGTGATGTTGTTGGCGCAA
140
CGTGGGTAGATCGCGTCCAGCAGTGCAAGCGAGAATGTTGGTGAATGTCCCACATAAGCAACCGCGTT
S S P S S A G R H V R S Y N H L Q G D V R W R K
ACTGTTCAGCTTACCAAGTACTTCCTGAAAATCGAAAAACGGTAAAGTTCTGGGACCAAGAAGGAG
210
TGACAAGTCGAAATGGTTCATGAAGGACTTTAGCTTTGCCATTCAAAGACCCCTGGTTCTTCCTC
L F S F T K Y F L K I E K N G K V S G T K K E
AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCGTCAAAGCCATTAACA
280
TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTAGCCTAACAAACGGCAGTTGGTAATTGT
N C P Y S I L E I T S V E I G V V A V K A I N
GCAACTATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAA
350
CGTTGATAATGAATCGGTACTTGTCTCCCTTGAGATACCGAGTTCTAAATTGTTACTGACATT
S N Y Y L A M N K K G K L Y G S K E F N N D C K
GCTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATCATTAACGGCAGCATAATGGGAGG
420
CGACTTCCTCTCCTATCTCCTTACCTATGTTATGGATAACGTAGTAAATTGACCGTGTATTACCCCTCC
L K E R I E E N G Y N T Y A S F N W Q H N G R
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAACACCT
490
GTTTACATAACCGTAACCTACCTTCTCGAGGTTCTCTCCTGTCTTTGTGCTTCCCTTGTGGA
Q M Y V A L N G K G A P R R G Q K T R R K N T
CTGCTCACTTTCTTCCAATGGTGGTACACTCATAG
525
GACGAGTGAAAGAAGGTTACCAACCATGTGAGTATC
S A H F L P M V V H S

FIG.24B

ATGACCTGCCAGGCTCTGGGTCAAGGACATGGTTCTCCGGAAGCTACCAACTCTCC
TCTTCCTCTTCTCTTCCCCGTCTCCGCTGGTCGTACGTTCTTACAACCAC
CTGCAGGGTGACGTTGGCGTAAACTGTTCTCTTACCAAATACTTCCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATGGAGTTGCCGTAAAGCCATTAACAGCAAC
TATTACTTAGCCATGAACACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATAACAATACCTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTTCCAATGGT
GTACACTCATAG

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE
KNGVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAMNKKGKLGSKEFNNDCKL
KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.25

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGGCGT
AAACTGTTCTCTTACCAAATACTCCTGAAAATCGAAAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATC
GGAGTTGGCATTGAACAGCAACTATTACTAGCCATGAACAAGAAG
GGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATA
GAGGAAAATGGATAACAATACCTATGCATCTTAACTGGCAGCATAATGGGAGGCAA
ATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGG
AAAAACACCTCTGCTCACTTCTTCCAATGGTGGTACACTCATAG

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGVSGTKKENCPYSILEITSVEIGV
VAVKAINSYYLAMNKKGKLGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA
LNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.26

ATGGTTGTTGGCGTAAACTGTTCTCTTACCAAATACTTCCTGAAAATCGAAAAA
AACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATA
ACATCAGTAGAAATCGGAGTTGTTGCCGTAAAGCCATTAACAGCAACTATTACTTA
GCCATGAACAAGAAGGGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAG
CTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATCATTAACTGGCAG
CATAAATGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGA
CAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTTCCAATGGTGGTACACTCA
TAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAM
NKKGKL YGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTR
RKNTSAHFLPMVVHS.

FIG.27

ATGGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCAT
CCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTAAAGCCATTAACAGCA
ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTAAAAGAATTAAAC
AATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAATGGATAACAATACCTATGCATC
ATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG
CTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTTCCA
ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAMNKKGKL YGSKEFNNDC
KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH
S.

FIG.28

ATGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGT
TGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC
TCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
AATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTA
TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAA
ACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MENCPSILEITSVEIGVVAVKAINSYYLAMNKKKL YGSKEFNNNDKLKERIEENGY
NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.29

ATGGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACT
CTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
ATGGATACAATACCTATGCATCATTAACTGGCAGCATAATGGGAGGCAAATGTAT
GTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAAA
CACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MVKAINSYYLAMNKKKL YGSKEFNNNDKLKERIEENGYNTYASFNWQHNGRQMY
VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.30

ATGGGGAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAGGAGAG
GATAGAGGAAAATGGATAACAATACCTATGCATCATTAACTGGCAGCATAATGGGA
GGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACA
CGAAGGAAAACACCTCTGCTCACTTCTCCAATGGTGGTACACTCATAG

MGKL YGSKEFNNNDKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKT
RRRKNTSAHFLPMVVHS.

FIG.31

ATGACCTGCCAGGCTCTGGTCAGGACATGGTTCTCCGGAAGCTACCAACTCTTCC
TCTTCCTCTTCTCTTCCCCGTCTCCGCTGGTCGTACGTTCTTACAACCCAC
CTGCAGGGTGACGTTCGTGGCGTAAACTGTTCTCTTACCAAATACTTCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGTCGCGTCAAAGCCATTAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAAT
GACTGTAAGCTGAAG

MTCQALGQDMVSPEATNSSSSFSSPSSAGRHVR\$YNHLQGDVRWRKLF\$FTKYFLKIE
KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSYYLAMNKKGKL YGSKEFNNDCKL
K

FIG.32

ATGGCTGGTCGTACGTTCTTACAACCACCTGCAGGGTGACGTTGGCGT
AAACTGTTCTCTTACCAAATACTTCTGAAAATCGAAAAAAACGGTAAAGTTCT
GGGACCAAGAAGGAGAACTGCCGTACAGCATCCTGGAGATAACATCAGTAGAAATC
GGAGTTGTCGCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAG
GGGAAACTCTATGGCTAAAAGAATTAAACAATGACTGTAAGCTGAAG

MAGRHVR\$YNHLQGDVRWRKLF\$FTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV
VAVKAINSYYLAMNKKGKL YGSKEFNNDCKLK

FIG.33

C-37 To Ser

ATGACCTCTCAGGCTCTGGTCAGGACATGGTTCTCCGAAGCTACCAACTCTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGTCGTACGTTCTTACAACCAC
CTGCAGGGTGACGTTGGCGTAAACTGTTCTTACCAAATACTTCCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTGCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGTCGTCAAAGCCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTTCCAATGGTG
GTACACTCATAG

FIG.34

C-106 To Ser

ATGACCTGCCAGGCTCTGGTCAGGACATGGTTCTCCGAAGCTACCAACTCTCC
TCTTCCTCTTCTCTCCCCGTCTCCGCTGGTCGTACGTTCTTACAACCAC
CTGCAGGGTGACGTTGGCGTAAACTGTTCTTACCAAATACTTCCTGAAA
ATCGAAAAAAACGGTAAAGTTCTGGGACCAAGAAGGAGAACTCTCCGTACAGCATC
CTGGAGATAACATCAGTAGAAATCGGAGTTGTCGTCAAAGCCATTAAACAGCAAC
TATTACTTAGCCATGAACAAGAAGGGAAACTCTATGGCTAAAAGAATTAAACAAT
GACTGTAAGCTGAAGGAGAGGATAGAGGAAATGGATACAATACCTATGCATCATT
AACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCA
AGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTCTTCCAATGGTG
GTACACTCATAG

FIG.35

FIG. 36

EFFECT OF KGF-2 Δ 33 ON NORMAL WOUND HEALING RAT MODEL

TREATMENT GROUPS	WOUND SIZE (mm)	% WOUND CLOSURE	HISTOLOGICAL SCORE	RE-EPITH. (μ m)	BrdU SCORE
NO TREATMENT	25.9 \pm 2.5	58.8 \pm 3.7	6.8 \pm 0.2	1142 \pm 141	3.8 \pm 0.4
BUFFER	25.1 \pm 1.7	60.2 \pm 2.6	6.4 \pm 0.2	923 \pm 61	5.0 \pm 0.4
KGF-2/ Δ 33 (0.1 μ g)	22.0 \pm 0.9	65 \pm 1.4	6.8 \pm 0.2	1275 \pm 148	4.6 \pm 0.7
KGF-2/ Δ 33 (0.4 μ g)	21.1 \pm 1.4	68.4 \pm 2.4	8.0 \pm 0.5 p=0.0445*	1310 \pm 182	4.2 \pm 0.7
KGF-2/ Δ 33 (1.0 μ g)	19.9 \pm 1.5	66.2 \pm 2.1	8.4 \pm 0.4 p=0.0159* p=0.0053†	1389 \pm 115 p=0.0074†	3.3 \pm 0.25 p=0.0217†
KGF-2/ Δ 33 (4.0 μ g)	18.1 \pm 1.6 p=0.0398*	71.2 \pm 2.6 p=0.0367*	8.5 \pm 0.3 p=0.0047*	1220 \pm 89 p=0.0200† p=0.0217†	5.3 \pm 0.9 p=0.0254† p=0.0445†

FIG. 37

FIG.38

FIG.39

FIG. 40

FIG. 41

FIG.42A

FIG.42B

EFFECT OF KGF-2 Δ 33 ON PAF-INDUCED PAW EDEMA IN LEWIS RATS

FIG.43

EFFECT OF KGF-2 Δ 33 ON SURVIVAL OF WHOLE BODY IRRADIATED Balb/c MICE

FIG.44

EFFECT OF KGF-2 Δ 33 ON BODY WEIGHT OF
IRRADIATED MICE

FIG. 45

FIG. 46

FIG.47

FIG. 48

FIG. 49

FIG. 50

1 AAGCTTAAAAAACTGCAAAAAATAGT **-35 Operator 1**
 TTGACT **(TGTGAGCCGATAACAAT)**

50 **-10 Operator 2**
 TAAGATGTACCCAATTGTGAGCCGATAACAATTTCACACATTAA

94 **S/D**
 AGAGGGAGAAATTA CATATG

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

PROLIFERATION OF HEPATOCYTES FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

FIG. 57

PROLIFERATION OF PANCREATIC CELLS FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

FIG. 58

FIG. 59

FIG. 60

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.