5.1.

Basándose en el ejercicio 4.2.:

- a- Plantear y resolver su problema dual.
- b- Obtener su tabla óptima del dual a partir de su tabla óptima directa.
- c- Comparar las tablas óptimas duales obtenidas en a y en b-.

Problema original

$$-2X1 + X2 \le 2$$

$$X1 - X2 \le 2$$

$$X1 + X2 \le 5$$

$$Z = 10X1 + 3X2 \rightarrow max$$

a) Problema dual, plantear y resolver

$$-2Y1 + Y2 + Y3 >= 10$$

$$Y1 - Y2 + Y3 >= 3$$

$$Z = 2 Y1 + 2 Y2 + 5 Y3 \rightarrow min$$

Se agregan variables slack

$$Y1 - Y2 + Y3 - Y5 = 3$$

Evaluó en el (0,0,0)

$$- Y4 = 10$$

$$- Y5 = 3$$

Como las variables no pueden ser negativas, se agrega al (0,0,0) como solución usando variables artificiales m1 y m2.

$$Y1 - Y2 + Y3 - Y5 + m2 = 3$$

$$Z = 2 Y1 + 2 Y2 + 5 Y3 + M m1 + M m2 \rightarrow min$$

Primera iteración

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2
М	m1	10	-2	1	1	-1	0	1	0
М	m2	3	1	-1	1	0	-1	0	1
	Z = inf							0	0

$$Z1 = M (-2) + M = -M \rightarrow Z1 - C1 = -M - 2$$

$$Z2 = M - M = 0 \rightarrow Z2 - C2 = -2$$

 $Z3 = M + M = 2 M \rightarrow Z3 - C3 = 2M - 5$
 $Z4 = -M \rightarrow Z4 - C4 = -M$
 $Z5 = M \rightarrow Z5 - C5 = M$

Como es de mínimo tienen que ser menor o igual a cero. Entra Y3

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2	tita
М	m1	10	-2	1	1	-1	0	1	0	10
М	m2	3	1	-1	1	0	-1	0	1	3
	Z = inf		-M-2	-2	2M-5	-M	М	0	0	

Sale m2 por tener menor tita

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2
M	m1	7	-3	2	0	-1	1	1	-1
5	Y3	3	1	-1	1	0	-1	0	1
	Z = inf				0			0	

$$Z1 = M(-3) + 5 = -3M + 5 \rightarrow Z1 - C1 = -3M + 3$$

$$Z2 = M \ 2 - 5 = 2M - 5 \rightarrow Z2 - C2 = 2M - 7$$

$$Z3 = 5 \rightarrow Z3 - C3 = 0$$

$$Z4 = -M \rightarrow Z4 - C4 = -M$$

 $Z5 = M - 5 \rightarrow Z5 - C5 = M - 5$

$$Zm2 = -M + 5 \rightarrow Zm2-Cm2 = -2M + 5$$

Entra Y2.

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2	tita
М	m1	7	-3	2	0	-1	1	1	-1	7/2
5	Y3	3	1	-1	1	0	-1	0	1	-
	Z = inf				0			0		

Sale m1

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2
2	Y2	7/2	-3/2	1	0	-1/2	1/2	1/2	-1/2
5	Y3	13/2	-1/2	0	1	-1/2	-1/2	1/2	1/2
Z = 39,5			0	0					

$$Z1 = 2(-3/2) + 5(-1/2) = -5.5 \rightarrow Z1 - C1 = -7.5$$

$$Z2 = 2 \rightarrow Z2 - C2 = 0$$

$$Z3 = 5 \rightarrow Z3 - C3 = 0$$

$$Z4 = 2 (-1/2) + 5 (-1/2) = -3.5 \rightarrow Z4 - C4 = -3.5$$

$$Z5 = 2 (1/2) + 5 (-1/2) \rightarrow Z5 - C5 = -1,5$$

$$Zm1 = 2 (1/2) + 5 (1/2) \rightarrow Zm1-Cm1 = 3,5 - M$$

$$Zm2 = 2 (-1/2) + 5 (1/2) \rightarrow Zm2-Cm2 = 2,5 - M$$

Como todos dieron negativo o cero, se está en la tabla óptima con Z = 39,5.

b) Obtener su tabla óptima del dual a partir de su tabla óptima directa.

Tabla directa

Ck	Xk	Bk	A1	A2	A3	A4	A5	
0	Х3	15/2	0	0	1	3/2	1/2	Y1
10	X1	7/2	1	0	0	3/2	1/2	Y4
3	X2	3/2	0	1	0	1/2	1/2	Y5
Z = 39,5			Y4	Y5	Y1	Y2	Y3	

Ck	Xk	Bk	A1	A2	A3	A4	A5
2	Y2	7/2	-3/2	1	0	-3/2	-1/2
5	Y3	13/2	-1/2	0	1	-1/2	-1/2
Z = 39,5				0	0		

c) Comparar las tablas

Ck	Xk	Bk	A1	A2	A3	A4	A5
2	Y2	7/2	-3/2	1	0	-3/2	-1/2
5	Y3	13/2	-1/2	0	1	-1/2	-1/2
Z = 39,5				0	0		

Ck	Xk	Bk	A1	A2	A3	A4	A5	m1	m2
2	Y2	7/2	-3/2	1	0	-1/2	1/2	1/2	-1/2
5	Y3	13/2	-1/2	0	1	-1/2	-1/2	1/2	1/2
Z = 39,5			0	0					

Se tienen dos valores diferentes