Université Paris Cité - LIPADE

Algorithmic Complexity Space Complexity

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

2022

Outline

Basics on Space Complexity

Main Space Complexity Classes

Deterministic and Non-Deterministic Space
Space-Time Relations

Determining Space Complexity
Hardness and Completeness
Well-Known Problems

Space Used by a Turing Machine

- ▶ If \mathcal{M} is a Turing Machine and x an input word, the space used by \mathcal{M} on x is the number of different squares visited by \mathcal{M} during the computation.
- ▶ For $f : \mathbb{N} \to \mathbb{N}$, we say that a Turing Machine \mathcal{M} works with space $\mathcal{O}(f(n))$ if
 - $ightharpoonup \mathcal{M}$ stops for every input x
 - ▶ on every input x, \mathcal{M} uses on x a space s(n) with $s(n) \in \mathcal{O}(f(n))$

Space Complexity Classes

- ▶ For $f : \mathbb{N} \to \mathbb{N}$, DSPACE(f(n)) is the set of languages which are decided by a deterministic Turing Machine \mathcal{M} working with space $\mathcal{O}(f(n))$.
- ▶ For $f: \mathbb{N} \to \mathbb{N}$, NSPACE(f(n)) is the set of languages which are decided by a non-deterministic Turing Machine \mathcal{M} working with space $\mathcal{O}(f(n))$.

Deterministic vs Non-Deterministic Space

Intuition: Non-determinism is not "so important" for space complexity...

Theorem [Savitch 1970]

For all function *f* space-constructible,

 $\mathsf{DSPACE}(f(n)) \subseteq \mathsf{NSPACE}(f(n)) \subseteq \mathsf{DSPACE}(f(n)^2)$

Complement Classes

Proposition

For all function f(n) space-constructible,

DSPACE(f(n)) = coDSPACE(f(n))

Theorem [Immerman 1988, Szelepcsényi 1988]

For all function $f(n) \ge \log(n)$ space-constructible,

NSPACE(f(n)) = coNSPACE(f(n))

Outline

Basics on Space Complexity

Main Space Complexity Classes

Deterministic and Non-Deterministic Space
Space-Time Relations

Determining Space Complexity
Hardness and Completeness
Well-Known Problems

Deterministic Space Complexity

- ► L = DSPACE(log(n)) is the class of decision problems that can be solved by a DTM using logarithmic space
- ▶ PSPACE = $\bigcup_{k>0}$ DSPACE(n^k) is the class of decision problems that can be solved by a DTM using polynomial space

Deterministic Space Complexity

- ► L = DSPACE(log(n)) is the class of decision problems that can be solved by a DTM using logarithmic space
- ▶ PSPACE = $\bigcup_{k>0}$ DSPACE(n^k) is the class of decision problems that can be solved by a DTM using polynomial space

 $L \subseteq PSPACE$

Non-Deterministic Space Complexity

- NL = NSPACE(log(n)) is the class of decision problems that can be solved by a NDTM using logarithmic space
- ▶ NPSPACE = $\bigcup_{k>0}$ NSPACE(n^k) is the class of decision problems that can be solved by a NDTM using polynomial space

Non-Deterministic Space Complexity

- NL = NSPACE(log(n)) is the class of decision problems that can be solved by a NDTM using logarithmic space
- ▶ NPSPACE = $\bigcup_{k>0}$ NSPACE(n^k) is the class of decision problems that can be solved by a NDTM using polynomial space NL \subseteq NPSPACE

PSPACE vs NPSPACE

Proposition

PSPACE = NPSPACE

PSPACE vs NPSPACE

Proposition

PSPACE = NPSPACE

Proof:

- ► For any k > 0, NSPACE $(n^k) \subseteq \mathsf{DSPACE}((n^k)^2) = \mathsf{DSPACE}((n^{2k}) \subseteq \mathsf{PSPACE},$ so NPSPACE $\subseteq \mathsf{PSPACE}$
- ► For any k > 0, DSPACE $(n^k) \subseteq NSPACE(n^k) \subseteq NPSPACE$, so PSPACE $\subseteq NPSPACE$

Relations Between Time and Space (1/3)

Proposition

For any mapping $f : \mathbb{N} \to \mathbb{N}$, $\mathsf{NTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n))$

Relations Between Time and Space (1/3)

Proposition

For any mapping $f : \mathbb{N} \to \mathbb{N}$, $\mathsf{NTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n))$

Corollary

 $\mathsf{NP}\subseteq\mathsf{PSPACE}$

Relations Between Time and Space (2/3)

Polynomial Hierarchy vs Polynomial Space

 $\mathsf{PH} \subseteq \mathsf{PSPACE}$

Intuition

For each class of the polynomial hierarchy, there is a complete problem $\forall_i QBF$ or $\exists_i QBF$. All these problems are special instances of TQBF, so they are in PSPACE.

Relations Between Time and Space (3/3)

$$\mathsf{L}\subseteq\mathsf{NL}\subseteq P\subseteq {\mathsf{NP}\atop\mathsf{coNP}}\subseteq \Delta_2^{\mathsf{P}}\subseteq {\mathsf{\Sigma}_2^{\mathsf{P}}\atop\mathsf{\Pi_2^{\mathsf{P}}}}\subseteq\cdots\subseteq\mathsf{PH}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}\subseteq\mathsf{NEXP}$$

We also know that some inclusions are strict:

- ► NL ⊂ PSPACE
- ightharpoonup P \subset EXP

Outline

Basics on Space Complexity

Main Space Complexity Classes

Deterministic and Non-Deterministic Space
Space-Time Relations

Determining Space Complexity
Hardness and Completeness
Well-Known Problems

5

The notions of hardness and completeness exist for space complexity classes.

 For most of the complexity classes, the definition is exactly the same as hardness and completeness for time complexity

S 14

- For most of the complexity classes, the definition is exactly the same as hardness and completeness for time complexity
 - ▶ A problem \mathcal{P} is C-hard if for every problem \mathcal{P} ' in C, $\mathcal{P}' \leq_f^P \mathcal{P}$, *i.e.* there is a polynomial reduction from any problem in C to \mathcal{P}

5 14

- For most of the complexity classes, the definition is exactly the same as hardness and completeness for time complexity
 - ▶ A problem \mathcal{P} is C-hard if for every problem \mathcal{P} ' in C, $\mathcal{P}' \leq_i^{\mathcal{P}} \mathcal{P}$, *i.e.* there is a polynomial reduction from any problem in C to \mathcal{P}
 - ► A problem is C-complete if it is in C and it is C-hard

5 14

- For most of the complexity classes, the definition is exactly the same as hardness and completeness for time complexity
 - ▶ A problem \mathcal{P} is C-hard if for every problem \mathcal{P} ' in C, $\mathcal{P}' \leq_f^P \mathcal{P}$, *i.e.* there is a polynomial reduction from any problem in C to \mathcal{P}
 - ► A problem is C-complete if it is in C and it is C-hard
 - This definition works for PSPACE-hardness and PSPACE-completeness

- For most of the complexity classes, the definition is exactly the same as hardness and completeness for time complexity
 - ▶ A problem \mathcal{P} is C-hard if for every problem \mathcal{P} ' in C, $\mathcal{P}' \leq_f^P \mathcal{P}$, *i.e.* there is a polynomial reduction from any problem in C to \mathcal{P}
 - ► A problem is C-complete if it is in C and it is C-hard
 - This definition works for PSPACE-hardness and PSPACE-completeness
 - It does not work for L and NL

Logarithmic Space and Completeness

Logarithmic-Space Functional Reduction

A logarithmic-space functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 ,

- \blacktriangleright f(i) can be computed in logarithmic-space in the size of i
- ▶ *i* is a positive instance of \mathcal{P}_1 iff f(i) is a positive instance of \mathcal{P}_2

Notation: $\mathcal{P}_1 \leq_f^L \mathcal{P}_2$

Logarithmic Space and Completeness

Logarithmic-Space Functional Reduction

A logarithmic-space functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 ,

- \blacktriangleright f(i) can be computed in logarithmic-space in the size of i
- ▶ *i* is a positive instance of \mathcal{P}_1 iff f(i) is a positive instance of \mathcal{P}_2

Notation: $\mathcal{P}_1 \leq_f^L \mathcal{P}_2$

Observation: If $\mathcal{P}_1 \leq_f^L \mathcal{P}_2$, then $\mathcal{P}_1 \leq_f^P \mathcal{P}_2$

Logarithmic Space and Completeness

Logarithmic-Space Functional Reduction

A logarithmic-space functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 ,

- \blacktriangleright f(i) can be computed in logarithmic-space in the size of i
- ▶ *i* is a positive instance of \mathcal{P}_1 iff f(i) is a positive instance of \mathcal{P}_2

Notation: $\mathcal{P}_1 \leq_f^L \mathcal{P}_2$ Observation: If $\mathcal{P}_1 \leq_f^L \mathcal{P}_2$, then $\mathcal{P}_1 \leq_f^P \mathcal{P}_2$

NL-Hardness and NL-Completeness

- ▶ A problem \mathcal{P} is NL-hard iff $\forall \mathcal{P}' \in \text{NL}$, $\mathcal{P}' \leq_f^{\mathsf{L}} \mathcal{P}$
- ▶ A problem \mathcal{P} is NL-complete iff \mathcal{P} is NL-hard and $\mathcal{P} \in \mathsf{NL}$

What About L-Completeness?

Theorem

Any problem in L is L-complete with respect to \leq_f^L !

What About L-Completeness?

Theorem

Any problem in L is L-complete with respect to \leq_f^L !

To define a meaningful notion of L-completeness, the hardness must be defined with another kind of functional reductions More details in [Garey and Johnson 1979]

Canonical PSPACE-Complete Problem

Reminder:

- ► A canonical QBF is a formula $Q_1X_1, Q_2X_2, \dots Q_nX_n, \phi$:
 - $ightharpoonup \mathcal{Q}_i \in \{\forall,\exists\} \text{ and } \mathcal{Q}_i \neq \mathcal{Q}_{i+1}$
 - \triangleright $\mathcal{X}_1, \dots \mathcal{X}_n$ form a partition of the Boolean variables in ϕ
 - $ightharpoonup \phi$ is a propositional formula
- ▶ $\exists_n QBF$: is the QBF $\exists \mathcal{X}_1, \forall \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?
- ▶ \forall_n QBF: is the QBF $\forall \mathcal{X}_1, \exists \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?

Canonical PSPACE-Complete Problem

Reminder:

- ▶ A canonical QBF is a formula $Q_1 \mathcal{X}_1, Q_2 \mathcal{X}_2, \dots Q_n \mathcal{X}_n, \phi$:
 - $ightharpoonup Q_i \in \{\forall,\exists\} \text{ and } Q_i \neq Q_{i+1}$
 - \triangleright $\mathcal{X}_1, \dots \mathcal{X}_n$ form a partition of the Boolean variables in ϕ
 - $ightharpoonup \phi$ is a propositional formula
- ▶ $\exists_n QBF$: is the QBF $\exists \mathcal{X}_1, \forall \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?
- ▶ \forall_n QBF: is the QBF $\forall \mathcal{X}_1, \exists \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?

Complexity of TQBF

$$\mathsf{TQBF} = \bigcup_{n \geq 1} (\exists_n \mathsf{QBF} \cup \forall_n \mathsf{QBF})$$

TQBF is PSPACE-complete

Tic-Tac-Toe

- ► Classical Tic-Tac-Toe: In a 3 × 3 grid, two players must draw some marks (X or O). The winner is the first who has placed three marks in a horizontal, vertical or diagonal row
- ► Generalized Tic-tac-toe ((m, n, k) game): In a $m \times n$ grid, a player wins when he has placed k marks in a row
- ► A winning strategy at time *t* for a player is a sequence of moves (drawing a mark in the grid) such that the player wins.

- ► Classical Tic-Tac-Toe: In a 3 × 3 grid, two players must draw some marks (X or O). The winner is the first who has placed three marks in a horizontal, vertical or diagonal row
- ► Generalized Tic-tac-toe ((m, n, k) game): In a $m \times n$ grid, a player wins when he has placed k marks in a row
- ► A winning strategy at time *t* for a player is a sequence of moves (drawing a mark in the grid) such that the player wins.

Complexity of (m, n, k)-STRAT

(m-n-k)-STRAT is the decision problem: "Is there a winning strategy for player X in the (m,n,k) game?" (m-n-k)-STRAT is PSPACE-complete

▶ Determining if there is a winning strategy for player X is like asking the question:

Is there a way to draw an X at step 1, such that for all possible moves of the O player at step 2, there is a way to draw an X at step 3, such that for all possible moves of the O player at step 4, there is . . . such that X player wins?

Tic-Tac-Toe: Intuition

- ► Determining if there is a winning strategy for player *X* is like asking the question:
 - Is there a way to draw an X at step 1, such that for all possible moves of the O player at step 2, there is a way to draw an X at step 3, such that for all possible moves of the O player at step 4, there is . . . such that X player wins?
- ► This can be represented as a QBF formula

Generalized Super Mario Bros. [Demaine et al. 2016]

Figure – Super Mario Bros. is PSPACE-complete

Lemmings [Viglietta 2015]

Figure – Lemmings is PSPACE-complete

NL-Complete Problem in Graphs

Reach

Given a directed graph $G = \langle N, E \rangle$ and two nodes $n_1, n_2 \in N$, is there a path from n_1 to n_2 in G?

Theorem [Papadimitriou 1994]

Reach is NL-complete

Reach is NL-complete: Proof

- ► Reach ∈ NL
- ► Reach is NL-hard

Reach ∈ NL?

► Let us find a non-deterministic logspace algorithm that solves Reach

Reach ∈ NL: Proof

Algorithm 1 Reach

```
Input: G = \langle N, E \rangle, n_1, n_2 \in N
  V = n_1
  cpt = 0
  while cpt < |N| do
      Non-deterministically pick v' some neighbour of v
      V = V'
     if v == n_2 then
         return YES
     end if
     cpt + +
  end while
  return NO
```

► Space is logarithmic: we only need to store *v* and *cpt*

▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f : \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f : \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by

- ▶ We need to prove that $\forall \mathcal{P} \in NL$, $\mathcal{P} \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f : \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by
 - ightharpoonup N is the set of configurations of $\mathcal M$

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f : \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by
 - ightharpoonup N is the set of configurations of \mathcal{M}
 - ▶ $(a,b) \in E$ iff there is a step that goes from a to b when \mathcal{M} is executed on x

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f: \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by
 - ightharpoonup N is the set of configurations of \mathcal{M}
 - (a, b) ∈ E iff there is a step that goes from a to b when M is executed on x
 - $ightharpoonup n_1$ is the initial configuration and n_2 is the accept configuration

- ▶ We need to prove that $\forall \mathcal{P} \in NL$, $\mathcal{P} \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f: \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by
 - ightharpoonup N is the set of configurations of \mathcal{M}
 - (a, b) ∈ E iff there is a step that goes from a to b when M is executed on x
 - $ightharpoonup n_1$ is the initial configuration and n_2 is the accept configuration
 - $ightharpoonup \mathcal{M}$ accepts x iff there is a path from n_1 to n_2

- ▶ We need to prove that $\forall P \in NL$, $P \leq_f^L Reach$
- ▶ Given $P \in NL$, let M be a NDTM that decides P
- ▶ We will define $f: \mathcal{P} \to \text{Reach}$ such that $x \in \mathcal{P}$ iff $f(x) \in \text{Reach}$
- $f(x) = (G_x = \langle N, E \rangle, n_1, n_2)$ is defined by
 - ightharpoonup N is the set of configurations of \mathcal{M}
 - (a, b) ∈ E iff there is a step that goes from a to b when M is executed on x
 - $ightharpoonup n_1$ is the initial configuration and n_2 is the accept configuration
 - $ightharpoonup \mathcal{M}$ accepts x iff there is a path from n_1 to n_2
 - See [Papadimitriou 1994] for more details

NL-Complete Problem in Logics

Reminder on 2SAT

2SAT is a special case of satisfiability problem with CNF formulas with only clauses of length $\leq 2\,$

Theorem [Papadimitriou 1994]

2SAT is NL-complete

- ► 2SAT∈ NL
- ► 2SAT is NL-hard

- ► 2SAT∈ NL
- 2SAT is NL-hard
- ► Reminder: From previous theorem [Immerman 1988, Szelepcsényi 1988], coNL = NL

- ► 2SAT∈ NL
- 2SAT is NL-hard
- Reminder: From previous theorem [Immerman 1988, Szelepcsényi 1988], coNL = NL
- ▶ We define Unreach = $\{(G = \langle N, E \rangle, n_1, n_2) \mid G \text{ is a directed graph}, n_1, n_2 \in N, \text{ and there is no path from } n_1 \text{ to } n_2 \text{ in } G\}$
- ▶ By definition, Unreach ∈ coNL = NL

- ► 2SAT∈ NL
- ► 2SAT is NL-hard
- Reminder: From previous theorem [Immerman 1988, Szelepcsényi 1988], coNL = NL
- ▶ We define Unreach = $\{(G = \langle N, E \rangle, n_1, n_2) \mid G \text{ is a directed graph}, n_1, n_2 \in N, \text{ and there is no path from } n_1 \text{ to } n_2 \text{ in } G\}$
- ▶ By definition, Unreach ∈ coNL = NL
- We will use Reach and Unreach to prove that 2SAT is NL-complete

Implication graph of a 2CNF formula

- ▶ Given ϕ a 2CNF formula on variables X, we build $G_{\phi} = \langle N, E \rangle$ a directed graph such that
 - $N = X \cup \{ \bar{x} \mid x \in X \}$
 - ▶ $(I_1, I_2) \in E$ iff $\neg I_1 \lor I_2$ is a clause in ϕ (i.e. $I_1 \Rightarrow I_2$)

Implication graph of a 2CNF formula

- ▶ Given ϕ a 2CNF formula on variables X, we build $G_{\phi} = \langle N, E \rangle$ a directed graph such that
 - $N = X \cup \{ \bar{x} \mid x \in X \}$
 - $(I_1, I_2) \in E$ iff $\neg I_1 \lor I_2$ is a clause in ϕ (i.e. $I_1 \Rightarrow I_2$)

$$\phi_2 = (\neg x_1 \lor x_2) \land (\neg x_2 \lor \neg x_1) \land (x_1 \lor x_3) \land (\neg x_3 \lor x_1)$$

2SAT and the implication graph

- ▶ Lemma: The formula ϕ is unsatisfiable iff $\exists x$ such that there is a path from x to \bar{x} and a path from \bar{x} to x in G_{ϕ}
- ► The following non-deterministic algorithm solves 2UNSAT

Algorithm 2 2UNSAT

Input: ϕ Build G_{ϕ} Non-deterministically pick xreturn $(G_{\phi}, x, \bar{x}) \in \text{Reach AND } (G_{\phi}, \bar{x}, x) \in \text{Reach}$

► So 2UNSAT∈ NL, and 2SAT∈ coNL = NL

- We reduce Unreach to 2SAT
- ▶ Let $G = \langle N, E \rangle$ be a directed graph, and n_1 , n_2 in N. We define $f(G, n_1, n_2) = \phi$ with
 - ▶ if $(x, y) \in E$, then $\neg x \lor y$ is a clause in ϕ
 - $ightharpoonup n_1$ is a unit clause in ϕ
 - $ightharpoonup \neg n_2$ is a unit clause in ϕ

- We reduce Unreach to 2SAT
- ▶ Let $G = \langle N, E \rangle$ be a directed graph, and n_1 , n_2 in N. We define $f(G, n_1, n_2) = \phi$ with
 - ▶ if $(x, y) \in E$, then $\neg x \lor y$ is a clause in ϕ
 - $ightharpoonup n_1$ is a unit clause in ϕ
 - $ightharpoonup \neg n_2$ is a unit clause in ϕ
- ▶ if $(G, n_1, n_2) \in \text{Unreach}$, we can make a partition of $N: N_1, N_2$ s. t. $n_1 \in N_1$ and $n_2 \in N_2$, and there is no edge from N_1 to N_2

- We reduce Unreach to 2SAT
- ▶ Let $G = \langle N, E \rangle$ be a directed graph, and n_1 , n_2 in N. We define $f(G, n_1, n_2) = \phi$ with
 - ▶ if $(x, y) \in E$, then $\neg x \lor y$ is a clause in ϕ
 - $ightharpoonup n_1$ is a unit clause in ϕ
 - $ightharpoonup \neg n_2$ is a unit clause in ϕ
- ▶ if $(G, n_1, n_2) \in \text{Unreach}$, we can make a partition of $N: N_1, N_2$ s. t. $n_1 \in N_1$ and $n_2 \in N_2$, and there is no edge from N_1 to N_2
- $\forall x \in N_1$, choose $\omega(x) = 1$, $\forall x \in N_2$, choose $\omega(x) = 0$. $\omega \models \phi$

- We reduce Unreach to 2SAT
- ▶ Let $G = \langle N, E \rangle$ be a directed graph, and n_1 , n_2 in N. We define $f(G, n_1, n_2) = \phi$ with
 - ▶ if $(x, y) \in E$, then $\neg x \lor y$ is a clause in ϕ
 - $ightharpoonup n_1$ is a unit clause in ϕ
 - $ightharpoonup \neg n_2$ is a unit clause in ϕ
- ▶ if $(G, n_1, n_2) \in \text{Unreach}$, we can make a partition of $N: N_1, N_2$ s. t. $n_1 \in N_1$ and $n_2 \in N_2$, and there is no edge from N_1 to N_2
- $\forall x \in N_1$, choose $\omega(x) = 1$, $\forall x \in N_2$, choose $\omega(x) = 0$. $\omega \models \phi$
- ▶ $(G, n_1, n_2) \in \mathsf{Unreach} \Rightarrow \phi \in \mathsf{2SAT}$

- ▶ if $(G, n_1, n_2) \notin \text{Unreach}$, then there is a path $(n_1, x_1, \ldots, x_k, n_2)$ in G. The translation of edges in clauses means that $n_1 \Rightarrow x_1 \Rightarrow \cdots \Rightarrow x_k \Rightarrow n_2$, so if n_1 is true, then n_2 . But ϕ contains both unitary clauses n_1 and $\neg n_2$
- ightharpoonup So ϕ is unsatisfiable

- ▶ if $(G, n_1, n_2) \notin \text{Unreach}$, then there is a path $(n_1, x_1, \ldots, x_k, n_2)$ in G. The translation of edges in clauses means that $n_1 \Rightarrow x_1 \Rightarrow \cdots \Rightarrow x_k \Rightarrow n_2$, so if n_1 is true, then n_2 . But ϕ contains both unitary clauses n_1 and $\neg n_2$
- ightharpoonup So ϕ is unsatisfiable
- ► $(G, n_1, n_2) \notin Unreach \Rightarrow \phi \notin 2SAT$

- ▶ if $(G, n_1, n_2) \notin \text{Unreach}$, then there is a path $(n_1, x_1, \ldots, x_k, n_2)$ in G. The translation of edges in clauses means that $n_1 \Rightarrow x_1 \Rightarrow \cdots \Rightarrow x_k \Rightarrow n_2$, so if n_1 is true, then n_2 . But ϕ contains both unitary clauses n_1 and $\neg n_2$
- ightharpoonup So ϕ is unsatisfiable
- ▶ $(G, n_1, n_2) \notin Unreach \Rightarrow \phi \notin 2SAT$
- ▶ We can conclude Unreach \leq_f^L 2SAT

References

- [Savitch 1970] W. J. Savitch, *Relationships between nondeterministic and deterministic tape complexities*. Journal of Computer and System Sciences, 177–192, 1970.
- [Immerman 1988] N. Immerman, *Nondeterministic space is closed under complementation*. SIAM Journal on Computing 17, 935–938, 1988.
- [Szelepcsényi 1988] R. Szelepcsényi, *The Method of Forced Enumeration for Nondeterministic Automata*. Acta Informatica vol. 26, no 3, 279–284, 1988.

References

- [Garey and Johnson 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman. Section 7.5: Logarithmic Space, 177–181, 1979.
- [Papadimitriou 1994] C.H Papadimitriou, *Computational Complexity*. Addison-Wesley, 1994.
- [Demaine *et al.* 2016] E.D. Demaine, G. Viglietta and A. Williams, *Super Mario Bros. Is Harder/Easier than We Thought*. Proceedings of the 8th International Conference on Fun with Algorithms, 2016.
- [Viglietta 2015] G. Viglietta, *Lemmings Is PSPACE-Complete*. Theor. Comput. Sci. 586: 120-134, 2015.