	Utech
Name :	
Roll No.:	To diverse the Same and Explained
Invigilator's Signature :	

CS/B.Tech(CHE)/SEPARATE SUPPLE/SEM-8/CHE-802/2011 2011

BIOTECHNOLOGY AND BIO-MEDICAL ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) Immobilization of enzyme can retain its activity
 - a) longer than enzyme in solution
 - b) shorter than enzyme in solution
 - c) equal to enzyme in solution
 - d) any one of the three situations can happen.
- ii) The reactor using external loop for fluid circulation is
 - a) Bubble column reactor
 - b) Fluidized bed reactor
 - c) CSTR
 - d) Air lift fermenter.

SS-265 Turn over

CS/B.Tech(CHE)/SEPARATE SUPPLE/SEM-8/CHE-80

- Gradient of catalyst concentration exists in
 - a) Fluidized bed reactor
 - **CSTR** b)
 - Bubble column reactor c)
 - Air lift fermenter. d)
- iv) The typical concentration of microbes in air is
 - a)
 - 10^{5} to 10^{6} /m³ b) 10 to 10^{2} /m³
 - - 10^{3} to 10^{4} /m³ d) 10^{7} to 10^{9} /m³.
- Liquid recycle is required for continuous inoculation in v) case of
 - a) **CSTR**
 - b) **PFR**
 - c) Fluidized bed reactor
 - d) Bubble column reactor.
- Tracer pulse at the exit will be exactly same as that in vi) the entrance in case of
 - Ideal PFR a)
- Ideal CSTR b)
- c) Both of these
- d) None of these.

- vii) Mg^{2+} is
 - a) Cofactor
- b) Coenzyme
- c) Prosthetic group
- d) None of these.

viii) ATP stands for

- a) Adenosine tri phosphate
- b) Adenine tri phosphate
- c) Adenosyl tri phosphate
- d) None of these.
- ix) Hexokinase belongs to
 - a) Oxidoreductases
- b) Transferases

c) Lyases

- d) Ligases.
- x) Identify the Macronutrient
 - a) Ca ²⁺

b) Zn²⁺

c) Mo $^{2+}$

- d) Mg^{2+} .
- xi) Hemoglobin contains
 - a) Mg^{2+}

b) Fe ²⁺

c) Cu ²⁺

d) Zn²⁺.

CS/B.Tech(CHE)/SEPARATE SUPPLE/SEM-8/CHE-80

- xii) Pyruvate \varnothing Lactate is an example of
 - a) Alcoholic fermentation
 - b) Homolactic fermentation
 - c) Both of these
 - d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. What is substrate saturation limit? Explain how the rate of an enzymatic reaction is depending on pH and temperature. 1+2+2
- 3. Outline the application of biotechnology in the field of agricultural processes very briefly.
- 4. What is isoenzyme? Give the international classification of enymes. 2 + 3
- 5. What is Reverse Osmosis (RO) ? How does industrial reverse osmosis work ? 2+3
- 6. What are the major types of bioreactors used in industry as fermenter?
- 7. Define specific growth rate (μ) of microbial growth. What is the difference between the specific growth rate (μ) and the rate of cell increase (dX/dt)?

SS-265 4

GROUP - C

(Long Answer Type Questions). Answer any *three* of the following.

- Discuss the essential characteristics of mono and poly 8. saccharides. What is steroid? How can ethanol be produced using immobilized yeast cells? 4 + 1 + 10
- 9. The bioconversion of sucrose by the enzyme sucrase at room temperature resulted in the batch reaction data given in the table below:

Cs	m	1.0	0.84	0.68		0.53		0.38		0.27
	moles/l									
t	hr	0	1	2		3		4		5
	0.16	0.09	0.04		0.0	18	0	.006	(0.0025
	6	7	8		g)		10		11

The initial concentration used was 0.01 m.moles/l. Determine whether these data can reasonably fit the Michaelis-Menten kinetics.

$$-r_A = \frac{k_3 C_3 C_E}{C_s + k_m}$$

where \boldsymbol{k}_m is the Michaelis-Menten constant. If the fit is reasonable, determine the constants $\boldsymbol{k}_3^{}$ and $\boldsymbol{k}_m^{}$. Use integral methods of analysis. 15

CS/B.Tech(CHE)/SEPARATE SUPPLE/SEM-8/CHE-802

10. Prove that for Reverse Osmosis using diffusion type model, the rejection co-efficient,

 $R = \frac{B(\Delta P - \Delta \pi)}{1 + B(\Delta P - \Delta \pi)}$ where symbols stand for usual notations.

It is desired to use Ultrafiltration for 800 kg of a solution containing 0.05 wt% of a protein to obtain a solution of 1.10 wt%. The feed is re-circulated by the membrane with a surface area of 0.90 m 2 . The permeability of the membrane is $2.50~\infty~10^{-2}~kg/s.m^2$. atm. Neglecting the effects of concentration polarization, if any, calculate the final amount of solution and the time to perfrom this using a pressure difference of 0.50 atm. 6+9

- 11. a) What is the difference between chemostat and turbiostat?
 - b) Writing a material balance on the cell concentration around chemostat prove that $\mu_g \ (\text{ specific growth rate }) = D \ (\text{ dilution rate of the reactor }).$
 - c) Writing down the material balance on the limiting substrate S in absence of endogenous metabolism, prove that

$$X = Y_{x/s} \left(\left. S_o - S \right. \right) \ \, \text{at steady state } i.e., \, \mathrm{d}s/\mathrm{d}t = 0 \, \, \text{and}$$

$$\mu g = D$$

where, X = cell concentration, g/L

 S_o , S = feed and effluent concentration, g/L

 $Y_{x/s}$ = Yield coefficient, gm cell / gm substrate S.

2 + 6 + 7

SS-265

12. Write short notes on any three of the following:

- a) Apoenzyme
- b) Cofactor
- c) Induced fit model
- d) Classification of enzymes.

SS-265 7 [Turn over