Scatterplots: Tasks, Data, and Designs

Alper Sarikaya - Michael Gleicher

Hailey Báez CIS6930 - Data Visualization University of South Florida

Problem Definition

- Scatterplots are a very popular form of visualization designed to emphasize spatial distribution of data in two dimensions.
- Scatterplots can rapidly fail as data grows in scale and complexity.
- Designs presented to address this complexity are specific to the data characteristics and task of that plot.

Problem Definition

• There is little guidance in how to select among different scatterplot design choices.

"The goal is to design a framework that helps designers select scatterplot designs appropriate for their scenario by identifying the factors that affect the appropriateness of scatterplot designs"

Abstractions

Scatterplot Tasks: Specific task analysis made for scatterplots compiled from a variety of sources of data visualization literature.

Data Characteristics: Which characteristics influence the design of a scatterplot?

Data Attribute	Possible Values	Relevant Work
Class label	No class label, 2-4 classes, 5+ classes	Elliott and Rensink [2015], Gramazio et al. [2014], Sips et al. [2009]
Num. of points	Small (<10), medium (10–100), large (100–1000), very large (>1000)	Cottam et al. [2013], Gleicher et al. [2013], Keim et al. [2010], Mayorga and Gleicher [2013], Tory et al. [2007]
Num. of dimensions	Two continuous, two derived, or >2 dimensions	Best et al. [2006], Chan et al. [2010], Sedlmair et al. [2013]
Spatial nature	Dimensions do/do not map to spatial position	MacEachren [1995], Montello et al. [2003]
Data distribution	Random, linear correlation, overlap, manifolds, clusters	Bertini et al. [2011], Li et al. [2008], Rensink and Baldridge [2010], Sedlmair et al. [2013], Sips et al. [2009], Tatu et al. [2010], Dang and Wilkinson [2014], Wilkinson et al. [2005]

	# Task	Description	
	1 Identify object	Identify the referent from the representation	
tric	2 Locate object	Find a particular object in its new spatialization	
object-centric	3 Verify object	Reconcile attribute of an object with its spatialization (or other encoding)	
	4 Object comparison	Do objects have similar attributes? Are these objects similar in some way?	
gu	5 Explore neighborhood	Explore the properties of objects in a neighborhood	
browsing	6 Search for known motif	Find a particular known pattern (cluster, correlation)	
	7 Explore data	Look for things that look unusual, global trends	
	8 Characterize distribution	Do objects cluster? Part of a manifold? Range of values?	
-level	9 Identify anomalies	Find objects that do not match the 'modal' distribution	
gate	10 Identify correlation	Determine level of correlation	
aggregate-lev	11 Numerosity comparison	Compare the numerosity/density in different regions of the graph	
	12 Understand distances	Understanding a given spatialization (e.g., relative distances)	

Design Decisions

Cluster	Design Choice	Example	Cluster
Point Encoding	Color	000/000	Point P
	Size		
	Symbols	$\bigcirc \triangle \oplus$	
	Outline		
	Opacity		
	Texture	$\otimes \oslash \otimes$	
	Depth of Field	京 春 春	
	Blurriness		
Point Grouping	Representation Type	implicit explicit	Graph
	Positional Binning	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Polygon Enclosure	convex statistical density	
	Shape Abstraction	.∜` → □	

Cluster	Design Choice	Example
Point Position	Subsampling	.;;· → .;;·
	Displacement	
	Animation	(b) (b)
	Projection	· · · · · · · · · · · · · · · · · · ·
	Zooming	→
Graph Amenities	Grid Lines	
	Axis Ticks	<u></u> → ³ / ₁₄₄₄₄
	Legend	Series 1Series 2
	Trend Lines	inear nonlinear
	Annotations	This item is an outlier!

Results

Results (60 cells out of 4300)

	A	В	С	D	Е
Task	Point encoding	Point position	Point grouping	Interaction intent	Graph amenities
1 Identify object	~	~	\$	V	✓ *
2 Locate object	~		\$	~	~
3 Verify object	~	v *		~	~
4 Compare objects	~	~		~	~
5 Explore neighborhood	~	~	~	~	~
6 Search for motif	~	~	~	~	v *
7 Explore data	~	~	~	~	~
8 Characterize distribution	~	~	~	\$	~
9 Find anomalies		v *	\$	v *	~
10 Identify correlation	×	×	~	×	~
11 Characterize numerosity	×	×	~	×	×
12 Characterize distances	v *	~	✓ *	v *	~

- ✓ general support
- ✓* support in particular situations
- $\boldsymbol{\diamondsuit}$ requires concurrent support from other encodings
- 🗶 no improvement to task support

Results (60 cells out of 4300)

	A	В	С	D	Е
Task	Point encoding	Point position	Point grouping	Interaction intent	Graph amenities
1 Identify object	~	~		~	v *
2 Locate object	~	\$		~	~
3 Verify object	~	v *		~	~
4 Compare objects	~	~		~	~
5 Explore neighborhood	~	~	~	~	~
6 Search for motif	~	~	~	~	v *
7 Explore data	~	~	~	~	~
8 Characterize distribution	~	~	~	\$	~
9 Find anomalies		v *	\$	v *	~
10 Identify correlation	×	×	~	×	~
11 Characterize numerosity	×	×	~	×	x
12 Characterize distances	v *	~	✓ *	v *	~

- ✓ general support
- ✓* support in particular situations
- $\boldsymbol{\diamondsuit}$ requires concurrent support from other encodings
- 🗶 no improvement to task support

Results

First data attribute:

Class label

7

First value:

2-4 classes

▼

Second data attribute:

Number of objects

▼

Very large (>1000)

▼

Currently viewing task appropriateness for data characteristics

Class label (2-4 classes) and Number of objects (Very large (>1000))

E	dit Rankings	View Rankings		
#	Task Name	Ranking	Rationale	Strategies
1	Identify object	Need support	Difficult to identify an object with so many points (though class separation can help identification); aggregation can hurt this task	Provide explicit support to "see what's here", consider jittering/subsampling over aggregation
2	Locate object	Need support	Difficult to locate an object with so many points (though class separation can help)	Provide explicit support for filtering, selecting an object's representation
3	Verify object	Doable	Reconciling spatialization of a point is relatively easy, once point is identified (though potentially noisy)	Provide support for emphasizing the object of interest (and any other important landmarks)
4	Object comparison	Need support	Very difficult to do detailed comparison between objects with so many objects, though categorizing the points help to separate out point spatialization	Filter data to concentrate on those points relevant to analysis (see Shneiderman2015), provide support for selecting class of interest

Scatterplots: Tasks, Data, and Designs

Alper Sarikaya - Michael Gleicher

Hailey Báez CIS6930 - Data Visualization University of South Florida