Organizační úvod

TODO!!!

Úvod

TODO!!!

Definice 0.1

Zúplnění míry λ_B^n nazveme Lebesgueovou mírou v $\mathbb{R}^n.$

Poznámka 1. Lebesgueova míra je σ -konečná.

- 2. Množinu $\mathcal{B}_0(\mathbb{R}^n) := \sigma(\mathcal{B}(\mathbb{R}^n) \cup \mathcal{N})$ nazýváme σ -algebrou lebesgueovsky měřitelných množin. Platí $\mathcal{B}(\mathbb{R}^n) \subsetneq \mathcal{B}_0(\mathbb{R}^n) \subsetneq \mathcal{P}(\mathbb{R}^n)$.
- 3. Lebesgueova míra je regulární v následujícím smyslu:

 $\forall E \in \mathcal{B}_0(\mathbb{R}^n) \, \forall \varepsilon > 0 \, \exists \text{otevřená množina } G \, \exists \text{uzavřená množina } F : F \subset E \subset G \land \mu(G \backslash F) < \varepsilon.$

Definice 0.2 (Značení)

Nechť X,Y jsou množiny a $f:X\to Y$. Je-li $\mathcal{S}\subset\mathcal{P}(Y)$, pak $f^{-1}(\mathcal{S}):=\{f^{-1}(S)|S\in\mathcal{S}\}.$

Věta 0.1 (O zobrazení $f: X \to Y$)

 $\textit{Necht } X, Y \textit{jsou mno} \textit{žiny } a \ f: X \rightarrow Y.$

- 1. Je-li \mathcal{M} σ -algebra na Y, pak $f^{-1}(\mathcal{M})$ je σ -algebra na X.
- 2. Je-li $S \subset \mathcal{P}(Y)$, pak $f^{-1}(\sigma(S)) = \sigma(f^{-1}(S))$.

Důkaz Později.

1 Měřitelná zobrazení

Definice 1.1 (Měřitelné zobrazení)

Necht (X, \mathcal{A}) , (Y, \mathcal{M}) jsou měřitelné prostory. Zobrazení $f: X \to Y$ nazveme měřitelným (vzhledem k \mathcal{A} a \mathcal{M}), jestliže $f^{-1}(\mathcal{M}) \subset \mathcal{A}$.

Jestliže některý z prostorů X, Y je metrický prostor, pak za příslušnou σ -algebru bereme σ -algebru borelovských podmnožin (pokud není řečeno jinak).

Měřitelné zobrazení mezi dvěma metrickými prostory se nazývá borelovsky měřitelné (krátce borelovské).

Poznámka 1. Snadno se ověří, e kompozice dvou měřitelných zobrazení je měřitelné zobrazení.

2. Z věty O zobrazení… plyne, že jsou-li $(X, \mathcal{A}), (Y, \mathcal{M})$ měřitelné prostory, pak zobrazení $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(\mathcal{S}) \subset \mathcal{A}$, kde $\mathcal{S} \subset \mathcal{P}(Y)$ je generátor σ -algebry \mathcal{M} . Speciálně je-li (X, \mathcal{A}) a Y metrický prostor, pak zobrazení $f: X \to Y$ je měřitelné $\Leftrightarrow f^{-1}(G) \in \mathcal{A} \ \forall$ otevřenou množinu $G \subset Y$.

Důsledek

Každé spojité zobrazení mezi dvěma metrickými prostory je měřitelné (borelovské).

 $D\mathring{u}kaz$

Z věty O zobrazení... (vzory otevřených množin při spojitém zobrazení jsou otevřené množiny). $\hfill\Box$

Věta 1.1 (Generátory $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$)

Borelovská σ -algebra \mathcal{B}^n je generována

- 1. otevřenými intervaly $(a_1, b_1) \times \ldots \times (a_n, b_n)$, $kde -\infty < a_i < b_i < +\infty$,
- 2. systémem $S := \{(-\infty, a_1) \times \ldots \times (-\infty, a_n)\}, kde \ a_i \in \mathbb{R}.$

Věta 1.2 (O měřitelných zobrazeních)

Nechť (X, A) je měřitelný prostor.

- 1. Jsou-li $f:X\to\mathbb{R}^n$ a $g:X\to\mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $(f,g):X\to\mathbb{R}^{n+m}$ je měřitelné.
- 2. Jsou-li $f, g: X \to \mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $f \pm g$ jsou měřitelná zobrazení.
- 3. Jsou-li $f, g: X \to \mathbb{R}$ měřitelné funkce, pak také $f \cdot g, \max(f, g), \min(f, g)$ jsou měřitelné.

Poznámka

Prostor \mathbb{R}^* je metrický prostor s metrikou např. ϱ^* danou předpisem $\varrho^*(x,y) = |\varphi(x) - \varphi(y)|$, kde $\varphi(x) := \frac{x}{1+|x|}$ pro konečné x a $\varphi(\pm \infty) = \pm 1$ (tzv. redukovaná metrika).

Redukovaná metrika má následující vlastnosti (viz Jarník – Diferenciální počet 2, str. 245, 246):

- 1. V množině \mathbb{R} je ekvivalentní s eukleidovskou metrikou.
- 2. Konvergence v prostoru $(\mathbb{R}^*, \varrho^*)$ splývá s konvergencí zavedenou v \mathbb{R}^* pomocí okolí bodů.

Platí
$$\mathcal{B}^* := \mathcal{B}(\mathbb{R}^*) = \sigma(\{\langle -\infty, a \rangle | a \in \mathbb{R}\})$$
. Plyne z:

- 1. \forall otevřenou množinu $G \subset \mathbb{R}^*$ lze psát jako spočetné sjednocení intervalů typu $\langle -\infty, a \rangle, (a, b), (b, \infty \rangle.$
- 2. $\langle -\infty, a \rangle$ je stejný jako v \mathbb{R}^* .
- 3. $(a, +\infty)$ je $\mathbb{R}^* \setminus \langle -\infty, a \rangle$.
- 4. $(a, +\infty) = \bigcup_{n \in \mathbb{N}} \langle a + \frac{1}{n}, +\infty \rangle$.
- 5. $(a,b) = \langle -\infty, b \rangle \cap (a, +\infty)$.

Věta 1.3 (O měřitelných funkcích)

Bud'(X, A) měřitelný prostor. Pak platí

- 1. $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná funkce právě tehdy, když $f^{-1}((-\infty,a))\in\mathcal{A}, \forall a\in\mathbb{R}.$
- 2. $f:(X,\mathcal{A})\to\mathbb{R}^*$ je měřitelná funkce právě tehdy, když $f^{-1}(\langle -\infty,a\rangle)\in\mathcal{A}, \forall a\in\mathbb{R}$.

Důsledek

Necht $f, g: (X, \mathcal{A}) \to \mathbb{R}^*$ jsou měřitelné funkce. Pak

- 1. množiny $\{x \in X | f(x) < g(x)\}, \{f \leq g\}, \{f = g\}$ jsou měřitelné.
- 2. funkce $\max(f, g), \min(f, g)$ jsou měřitelné funkce.

Věta 1.4 (O měřitelných funkcích podruhé)

Jsou-li funkce $(f_n)_{n=1}^{\infty}$ množiny (X, \mathcal{A}) do \mathbb{R}^* měřitelné funkce, pak funkce $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\lim \sup_{n \in \mathbb{N}} f_n$ jsou měřitelné.

Definice 1.2 (Jednoduchá funkce)

Funkce $S: X \to [0, +\infty)$ se nazývá jednoduchá, jestliže množina S(X) je konečná.

Platí, že $s(x) = \sum_{\alpha \in S(X)} \alpha \cdot \chi_{S=\alpha}$. Součet na pravé straně této rovnosti nazveme kanonickým vyjádřením jednoduché funkce.

2 Abstraktní Lebesgueův integrál

Věta 2.1 (O nezáporné měřitelné funkci)

Nechť $f:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ je měřitelná funkce. Pak existuje posloupnost jednoduchých (nezáporných) měřitelných funkcí $\{s_n\}_{n\in\mathbb{N}}$ tak, že $s_n\nearrow f$ (konverguje nahoru).

Jestliže navíc f je omezená, pak $s_n \rightrightarrows f$.

Definice 2.1

Nechť (X, \mathcal{A}, μ) je prostor s mírou.

1. Je-li $s:(X,\mathcal{A})\to [0,+\infty)$ jednoduchá měřitelná funkce, zapíšeme ji v kanonickém tvaru $s=\sum_{j=1}^k\alpha_j\chi_{E_j}$ a definujeme

$$\int_X s d\mu = \int_X s(x) d\mu(x) := \sum_{j=1}^k \alpha_j \mu(E_j).$$

2. Je-li $f:(X,\mathcal{A})\to [0,+\infty]$ měřitelná funkce, pak definujeme

$$\int_X f d\mu = \sup \left\{ \int_X s d\mu | 0 \le s \le f \wedge s \text{ je jednoduchá} \right\}.$$

3. Je-li $f:(X,\mathcal{A}) \to \mathbb{R}*$, pak definujeme

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu, \text{ má li pravá strana smysl.}$$