20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2015.csv")

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2015-10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN
1	2015-10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3
2	2015-10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1
3	2015-10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2015-10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN
210091	2015-08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN
210092	2015-08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN
210093	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN
210094	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN
210095	2015-08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN

210096 rows × 14 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25
                              'SO_2', 'TCH', 'TOL', 'station'],
                            dtype='object')
In [5]:
                <class 'pandas.core.frame.DataFrame'>
                Int64Index: 16026 entries, 1 to 210078
                Data columns (total 14 columns):
                         Column Non-Null Count Dtype
                 --- ----- ------ -----
                 0 date 16026 non-null object
1 BEN 16026 non-null float64
2 CO 16026 non-null float64
3 EBE 16026 non-null float64
4 NMHC 16026 non-null float64
5 NO 16026 non-null float64
6 NO_2 16026 non-null float64
7 O_3 16026 non-null float64
7 O_3 16026 non-null float64
8 PM10 16026 non-null float64
9 PM25 16026 non-null float64
10 SO_2 16026 non-null float64
11 TCH 16026 non-null float64
11 TCH 16026 non-null float64
12 TOL 16026 non-null float64
13 station 16026 non-null int64
                  13 station 16026 non-null int64
                dtypes: float64(12), int64(1), object(1)
```

memory usage: 1.8+ MB

In [6]: data=df[['CO' ,'station']]

Out[6]:

	СО	station
1	8.0	28079008
6	0.3	28079024
25	0.7	28079008
30	0.3	28079024
49	8.0	28079008
210030	0.1	28079024
210049	0.3	28079008
210054	0.1	28079024
210073	0.3	28079008
210078	0.1	28079024

16026 rows × 2 columns

Line chart

In [7]:

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Histogram

le7

Area chart

Box chart

station

Pie chart

In [14]:

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16026 entries, 1 to 210078
Data columns (total 14 columns):

#	Column	Non-Nu	ull Count	Dtype
0	date	16026	non-null	object
1	BEN	16026	non-null	float64
2	CO	16026	non-null	float64
3	EBE	16026	non-null	float64
4	NMHC	16026	non-null	float64
5	NO	16026	non-null	float64
6	NO_2	16026	non-null	float64
7	0_3	16026	non-null	float64
8	PM10	16026	non-null	float64
9	PM25	16026	non-null	float64
10	S0_2	16026	non-null	float64
11	TCH	16026	non-null	float64
12	TOL	16026	non-null	float64
13	station	16026	non-null	int64
J.L	C1+	CA/431	1	-1-2141

-		BEN	CO	EBE	NMHC	NO	NO_2	
_	count	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16
	mean	0.504823	0.380594	0.394247	0.123099	23.842256	40.948771	
	std	0.716896	0.260805	0.678592	0.092368	51.255660	33.236098	
	min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	
	25%	0.100000	0.200000	0.100000	0.070000	1.000000	14.000000	
	50%	0.200000	0.300000	0.100000	0.100000	6.000000	35.000000	
	75%	0.700000	0.500000	0.400000	0.140000	24.000000	60.000000	
	max	17.700001	4.500000	12.100000	1.090000	960.000000	369.000000	:

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x15d6b6e96a0>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

Out[21]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]: lr.intercept_
Out[25]: 28079039.851153057
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [26]:
Out[26]:
                 Co-efficient
            BEN
                   4.628165
             CO
                   -7.125844
            EBE
                   -0.859688
           NMHC
                   25.784782
                   -0.002893
           NO_2
            0_3
                   -0.020427
           PM10
                   0.064927
           SO_2
                   -1.132136
            TCH
                  -12.530883
            TOL
                   -0.117378
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x15d74cc4850>

ACCURACY

```
In [28]:
Out[28]: 0.8104176630101703
In [29]:
Out[29]: 0.8064141605763858
    Ridge and Lasso
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
    Accuracy(Ridge)
In [32]:
Out[32]: 0.8124423265621671
In [33]:
Out[33]: 0.8040435501718737
In [34]: la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.6267277652866841
    Accuracy(Lasso)
In [36]:
Out[36]: 0.6451813981381826
In [37]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)
Out[37]: ElasticNet()
```

Evaluation Metrics

```
In [42]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))

3.195467973791199
    15.773693450734976
    3.97161093899377
```

Logistic Regression

```
In [50]: [50]
In [51]:
      prediction=logr.predict(observation)
      [28079008]
In [52]:
Out[52]: array([28079008, 28079024], dtype=int64)
In [53]:
Out[53]: 0.9947585174092101
In [54]:
Out[54]: 1.0
In [55]:
Out[55]: array([[1.00000000e+00, 5.69793111e-39]])
      Random Forest
                   In [56]:
In [57]: rfc=RandomForestClassifier()
Out[57]: RandomForestClassifier()
In [58]: | parameters={'max_depth':[1,2,3,4,5],
               'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [59]: from sklearn.model_selection import GridSearchCV
      grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
Out[59]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
               param_grid={'max_depth': [1, 2, 3, 4, 5],
                        'min_samples_leaf': [5, 10, 15, 20, 25],
                        'n_estimators': [10, 20, 30, 40, 50]},
               scoring='accuracy')
In [60]:
Out[60]: 0.9950080228204671
In [61]:
```

```
In [62]: from sklearn.tree import plot_tree
                           plt.figure(figsize=(80,40))
Out[62]: [Text(1271.0, 1993.2, 'NO_2 <= 18.5\ngini = 0.5\nsamples = 7076\nvalue = [548]</pre>
                           9, 5729]\nclass = b'),
                             Text(496.0, 1630.8000000000000, 'SO_2 <= 5.0 \neq 0.158 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193 = 2.193
                            value = [305, 3211]\nclass = b'),
                              Text(248.0, 1268.4, 'gini = 0.0\nsamples = 2000\nvalue = [0, 3211]\nclass =
                              Text(744.0, 1268.4, 'gini = 0.0\nsamples = 193\nvalue = [305, 0]\nclass = a
                             Text(2046.0, 1630.8000000000002, 'CO <= 0.25\ngini = 0.44\nsamples = 4883\nv
                            alue = [5184, 2518]\nclass = a'),
                              Text(1240.0, 1268.4, 'PM10 <= 16.5\ngini = 0.041\nsamples = 744\nvalue = [2
                            5, 1167]\nclass = b'),
                              Text(992.0, 906.0, 'TCH <= 1.475 \cdot 1
                            562] \nclass = b'),
                              Text(496.0, 543.59999999999, 'BEN <= 0.15\ngini = 0.015\nsamples = 335\nva
                            lue = [4, 541] \setminus ass = b'),
                              Text(248.0, 181.199999999999, 'gini = 0.032\nsamples = 145\nvalue = [4, 24
                            4] \nclass = b'),
                             Text(744.0, 181.1999999999982, 'gini = 0.0\nsamples = 190\nvalue = [0, 29
                            7]\nclass = b'),
                              Text(1488.0, 543.59999999999, 'NO_2 <= 31.5\ngini = 0.5\nsamples = 27\nval
                            ue = [21, 21] \setminus nclass = a'),
                              Text(1240.0, 181.199999999999, 'gini = 0.472\nsamples = 22\nvalue = [21, 1
                            3] \nclass = a'),
                              Text(1736.0, 181.199999999999, 'gini = 0.0\nsamples = 5\nvalue = [0, 8]\nc
                            lass = b'),
                              Text(1488.0, 906.0, 'gini = 0.0\nsamples = 382\nvalue = [0, 605]\nclass = b
                             ١),
                              Text(2852.0, 1268.4, '0_3 <= 2.5\ngini = 0.329\nsamples = 4139\nvalue = [515
                            9, 1351\nclass = a'),
                              Text(2232.0, 906.0, 'SO_2 <= 12.0\ngini = 0.058\nsamples = 295\nvalue = [14,
                            454\nclass = b'),
                              Text(1984.0, 543.59999999999, 'gini = 0.0\nsamples = 287\nvalue = [0, 45]
                            4] \nclass = b'),
                              Text(2480.0, 543.59999999999, 'gini = 0.0\nsamples = 8\nvalue = [14, 0]\nc
                            lass = a'),
                              Text(3472.0, 906.0, 'TCH <= 1.355\ngini = 0.253\nsamples = 3844\nvalue = [51
                            45, 897]\nclass = a'),
                              nvalue = [148, 559]\nclass = b'),
                              Text(2728.0, 181.199999999999, 'gini = 0.28\nsamples = 51\nvalue = [69, 1
                            4] \nclass = a'),
                              Text(3224.0, 181.1999999999982, 'gini = 0.221\nsamples = 397\nvalue = [79,
                            545]\nclass = b'),
                              value = [4997, 338]\nclass = a'),
                              Text(3720.0, 181.199999999999, 'gini = 0.113\nsamples = 171\nvalue = [17,
                            266]\nclass = b'),
                              Text(4216.0, 181.199999999999, 'gini = 0.028\nsamples = 3225\nvalue = [498]
                            0, 72]\nclass = a')]
```


Conclusion

Accuracy

Linear Regression :0.8064141605763858

Ridge Regression :0.6267277652866841

Lasso Regression :0.6451813981381826

ElasticNet Regression: 0.7534161872553767

Logistic Regression: 0.9947585174092101

Random Forest :0.9950080228204671

Random Forest is suitable for this dataset