MA109 Calculus-I D4-T6 Tutorial 1

Adish Shah

8th December 2021

Definition of convergence of a sequence

Definition

Let (a_n) be a sequence of real numbers. We say that (a_n) is convergent if there is $L \in \mathbb{R}$ such that the following condition holds. For every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ for all $n \ge n_0$.

This is known as the $\epsilon-n_0$ definition of convergence of a sequence. In this case, we say that (a_n) converges to L, or that L is the limit of (a_n) , and we write

$$\lim_{n\to\infty}a_n=L$$

Some properties of convergent sequences :

• Every convergent sequence is bounded.

Definition of convergence of a sequence

Definition

Let (a_n) be a sequence of real numbers. We say that (a_n) is convergent if there is $L \in \mathbb{R}$ such that the following condition holds. For every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ for all $n \ge n_0$.

This is known as the $\epsilon-n_0$ definition of convergence of a sequence. In this case, we say that (a_n) converges to L, or that L is the limit of (a_n) , and we write

$$\lim_{n\to\infty}a_n=L$$

Some properties of convergent sequences :

- Every convergent sequence is bounded.
- Every bounded **and** monotonic sequence is convergent.

Adish Shah MA109 Calculus-I 8th December 2021 2 / 17

To Prove:

$$\lim_{n\to\infty}\frac{n^{2/3}\sin(n!)}{n+1}=0$$

Adish Shah MA109 Calculus-I 8th December 2021 3 / 1

To Prove:

$$\lim_{n\to\infty}\frac{n^{2/3}\sin(n!)}{n+1}=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}-0\right|<\epsilon\quad\forall n\geq n_0$$

To Prove:

$$\lim_{n\to\infty}\frac{n^{2/3}\sin(n!)}{n+1}=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}-0\right|<\epsilon\quad\forall n\geq n_0$$

Simplifying the LHS : Use the fact that $|\mathit{sinx}| \leq 1 \ \ \forall x$

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}\right| \leq \left|\frac{n^{2/3}}{n+1}\right| < \left|\frac{n^{2/3}}{n}\right| < \epsilon$$

To Prove:

$$\lim_{n\to\infty}\frac{n^{2/3}\sin(n!)}{n+1}=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}-0\right|<\epsilon\quad\forall n\geq n_0$$

Simplifying the LHS : Use the fact that $|\mathit{sinx}| \leq 1 \ \ \forall x$

$$\left| \frac{n^{2/3} \sin(n!)}{n+1} \right| \le \left| \frac{n^{2/3}}{n+1} \right| < \left| \frac{n^{2/3}}{n} \right| < \epsilon$$

$$\frac{1}{n^{1/3}} < \epsilon \iff \frac{1}{\epsilon^3} < n$$

Adish Shah MA109 Calculus-I 8th December 2021 3 / 17

To Prove:

$$\lim_{n\to\infty}\frac{n^{2/3}\sin(n!)}{n+1}=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}-0\right|<\epsilon\quad\forall n\geq n_0$$

Simplifying the LHS : Use the fact that $|sinx| \leq 1 \ \ \forall x$

$$\left|\frac{n^{2/3}\sin(n!)}{n+1}\right| \leq \left|\frac{n^{2/3}}{n+1}\right| < \left|\frac{n^{2/3}}{n}\right| < \epsilon$$

$$\frac{1}{n^{1/3}} < \epsilon \iff \frac{1}{\epsilon^3} < n$$

. Thus, we can choose $n_0 = \lfloor \frac{1}{\epsilon^3} \rfloor + 1$ and the desired inequality holds.

$$\lim_{n\to\infty}\left(\frac{n}{n+1}-\frac{n+1}{n}\right)=0$$

Adish Shah MA109 Calculus-I 8th December 2021 4 / 17

$$\lim_{n\to\infty}\left(\frac{n}{n+1}-\frac{n+1}{n}\right)=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left| \left(\frac{n}{n+1} - \frac{n+1}{n} \right) - 0 \right| < \epsilon \quad \forall n \ge n_0$$

$$\lim_{n\to\infty}\left(\frac{n}{n+1}-\frac{n+1}{n}\right)=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left| \left(\frac{n}{n+1} - \frac{n+1}{n} \right) - 0 \right| < \epsilon \quad \forall n \ge n_0$$

Simplifying the LHS:

$$\left| \frac{n}{n+1} - \frac{n+1}{n} \right| = \left| 1 - \frac{1}{n+1} - 1 - \frac{1}{n} \right| = \left| \frac{1}{n+1} + \frac{1}{n} \right| < \frac{2}{n} < \epsilon$$

Adish Shah MA109 Calculus-I

$$\lim_{n\to\infty}\left(\frac{n}{n+1}-\frac{n+1}{n}\right)=0$$

Let $\epsilon > 0$ be given. We need to show that $\exists n_0 \in \mathbb{N}$ such that

$$\left| \left(\frac{n}{n+1} - \frac{n+1}{n} \right) - 0 \right| < \epsilon \quad \forall n \ge n_0$$

Simplifying the LHS:

$$\left| \frac{n}{n+1} - \frac{n+1}{n} \right| = \left| 1 - \frac{1}{n+1} - 1 - \frac{1}{n} \right| = \left| \frac{1}{n+1} + \frac{1}{n} \right| < \frac{2}{n} < \epsilon$$

Choose $n_0 = \lfloor \frac{2}{\epsilon} \rfloor + 1$ and the required inequality holds.

Adish Shah MA109 Calculus-I 8th December 2021 4 / 17

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Adish Shah MA109 Calculus-I 8th December 2021 5 / 17

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Consider

$$A_{n} = \left(\frac{n}{n^{2} + n} + \frac{n}{n^{2} + n} + \dots + \frac{n}{n^{2} + n}\right)$$

$$C_{n} = \left(\frac{n}{n^{2} + 1} + \frac{n}{n^{2} + 1} + \dots + \frac{n}{n^{2} + 1}\right)$$

Adish Shah MA109 Calculus-I 8th December 2021 5 / 1

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Consider

$$A_{n} = \left(\frac{n}{n^{2} + n} + \frac{n}{n^{2} + n} + \dots + \frac{n}{n^{2} + n}\right)$$

$$C_{n} = \left(\frac{n}{n^{2} + 1} + \frac{n}{n^{2} + 1} + \dots + \frac{n}{n^{2} + 1}\right)$$

We can observe that,

5 / 17

Adish Shah MA109 Calculus-I

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Consider

$$A_n = \left(\frac{n}{n^2 + n} + \frac{n}{n^2 + n} + \dots + \frac{n}{n^2 + n}\right)$$

$$C_n = \left(\frac{n}{n^2+1} + \frac{n}{n^2+1} + \dots + \frac{n}{n^2+1}\right)$$

We can observe that,

$$A_n \leq B_n \leq C_n$$

Note that $\lim_{n\to\infty}A_n=\lim_{n\to\infty}\frac{n^2}{n^2+n}=1$ and

5 / 17

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Consider

$$A_n = \left(\frac{n}{n^2 + n} + \frac{n}{n^2 + n} + \dots + \frac{n}{n^2 + n}\right)$$

$$C_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 1} + \dots + \frac{n}{n^2 + 1}\right)$$

We can observe that,

$$A_n \leq B_n \leq C_n$$

Note that $\lim_{n\to\infty}A_n=\lim_{n\to\infty}\frac{n^2}{n^2+n}=1$ and $\lim_{n\to\infty}C_n=\lim_{n\to\infty}\frac{n^2}{n^2+1}=1$

5 / 17

Let

$$B_n = \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}\right)$$

Consider

$$A_{n} = \left(\frac{n}{n^{2} + n} + \frac{n}{n^{2} + n} + \dots + \frac{n}{n^{2} + n}\right)$$

$$C_{n} = \left(\frac{n}{n^{2} + 1} + \frac{n}{n^{2} + 1} + \dots + \frac{n}{n^{2} + 1}\right)$$

We can observe that,

$$A_n \leq B_n \leq C_n$$

Note that $\lim_{n\to\infty}A_n=\lim_{n\to\infty}\frac{n^2}{n^2+n}=1$ and

$$\lim_{n\to\infty} C_n = \lim_{n\to\infty} \frac{n^2}{n^2+1} = 1$$

Using Sandwich Theorem, $\lim_{n\to\infty} B_n = 1$

5 / 17

$$\lim_{n\to\infty} n^{1/n}$$

Adish Shah MA109 Calculus-I 8th December 2021 6 /

$$\lim_{n\to\infty} n^{1/n}$$

Define
$$h_n = n^{1/n} - 1$$

Adish Shah MA109 Calculus-I

$$\lim_{n\to\infty} n^{1/n}$$

Define $h_n = n^{1/n} - 1$

Note that $n^{1/n} \geq 1$, hence $h_n \geq 0 \ \forall n \in \mathbb{N}$. For n > 2, we have :

Adish Shah MA109 Calculus-I 8th [

$$\lim_{n\to\infty} n^{1/n}$$

Define $h_n = n^{1/n} - 1$

Note that $n^{1/n} \ge 1$, hence $h_n \ge 0 \ \forall n \in \mathbb{N}$. For n > 2, we have :

$$n = (1 + h_n)^n > 1 + nh_n + n_{C_2}h_n^2 > n_{C_2}h_n^2 > \frac{n(n-1)}{2}h_n^2$$

$$\lim_{n\to\infty} n^{1/n}$$

Define $h_n = n^{1/n} - 1$

Note that $n^{1/n} \ge 1$, hence $h_n \ge 0 \ \forall n \in \mathbb{N}$. For n > 2, we have :

$$n = (1 + h_n)^n > 1 + nh_n + n_{C_2}h_n^2 > n_{C_2}h_n^2 > \frac{n(n-1)}{2}h_n^2$$

Thus,

$$0 < h_n < \sqrt{\frac{2}{n-1}} \quad \forall n > 2$$

6 / 17

$$\lim_{n\to\infty} n^{1/n}$$

Define $h_n = n^{1/n} - 1$

Note that $n^{1/n} \ge 1$, hence $h_n \ge 0 \ \forall n \in \mathbb{N}$. For n > 2, we have :

$$n = (1 + h_n)^n > 1 + nh_n + n_{C_2}h_n^2 > n_{C_2}h_n^2 > \frac{n(n-1)}{2}h_n^2$$

Thus,

$$0 < h_n < \sqrt{\frac{2}{n-1}} \quad \forall n > 2$$

Hence, by using Sandwich Theorem we get that $\lim_{n \to \infty} h_n = 0$

$$\implies \lim_{n\to\infty} n^{1/n} = 1$$

6 / 17

$$\lim_{n\to\infty}\frac{\cos(\pi\sqrt{n})}{n^2}$$

Adish Shah MA109 Calculus-I 8th December 2021 7 / 1

$$\lim_{n\to\infty}\frac{\cos\bigl(\pi\sqrt{n}\bigr)}{n^2}$$

$$-1 \leq \cos \bigl(\pi \sqrt{n}\bigr) \leq 1 \ \forall n \in \mathbb{N}$$

Adish Shah MA109 Calculus-I 8th December 2021 7 / 17

$$\lim_{n\to\infty}\frac{\cos(\pi\sqrt{n})}{n^2}$$

$$-1 \le \cos(\pi\sqrt{n}) \le 1 \ \forall n \in \mathbb{N}$$

Therefore,

$$\frac{-1}{n^2} \le \frac{\cos\left(\pi\sqrt{n}\right)}{n^2} \le \frac{1}{n^2}$$

$$\lim_{n\to\infty}\frac{\cos(\pi\sqrt{n})}{n^2}$$

$$-1 \le \cos(\pi\sqrt{n}) \le 1 \ \forall n \in \mathbb{N}$$

Therefore,

$$\frac{-1}{n^2} \le \frac{\cos\left(\pi\sqrt{n}\right)}{n^2} \le \frac{1}{n^2}$$

Hence, using Sandwich Theorem, the limit = 0.

Adish Shah MA109 Calculus-I

2 (vi)

$$\lim_{n\to\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})$$

Rationalize

$$a_n = \sqrt{n} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

8 / 17

2 (vi)

$$\lim_{n\to\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})$$

Rationalize

$$a_{n} = \sqrt{n} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} < a_{n} < \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n}}$$

8 / 17

2 (vi)

$$\lim_{n\to\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})$$

Rationalize

$$a_{n} = \sqrt{n} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} < a_{n} < \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n}}$$
$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} = \frac{1}{2}\sqrt{\frac{n}{n+1}} = \frac{1}{2}\sqrt{1 - \frac{1}{n+1}} \ge \frac{1}{2}\left(1 - \frac{1}{\sqrt{n+1}}\right)$$

Adish Shah MA109 Calculus-I

8 / 17

$$\lim_{n\to\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})$$

Rationalize

$$a_{n} = \sqrt{n} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} < a_{n} < \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n}}$$
$$\frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+1}} = \frac{1}{2}\sqrt{\frac{n}{n+1}} = \frac{1}{2}\sqrt{1 - \frac{1}{n+1}} \ge \frac{1}{2}\left(1 - \frac{1}{\sqrt{n+1}}\right)$$

We have shown that :

$$\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right) < a_n < \frac{1}{2}$$

Using Sandwich Theorem, the limit is $\frac{1}{2}$

|ロト 4回 ト 4 m ト 4 m ト 9 m 9 q 0 c

8 / 17

$$a_n = \frac{n^2}{n+1} \quad \forall n \ge 1$$

$$a_n = rac{n^2}{n+1} \quad orall n \geq 1$$
 $(n-1)(n+1)+1$

$$a_n = \frac{n^2 - 1 + 1}{n + 1} = \frac{(n - 1)(n + 1) + 1}{n + 1} = n - 1 + \frac{1}{n + 1}$$

$$a_n = \frac{n^2}{n+1} \quad \forall n \ge 1$$

$$a_n = \frac{n^2 - 1 + 1}{n+1} = \frac{(n-1)(n+1) + 1}{n+1} = n - 1 + \frac{1}{n+1}$$

Clearly a_n is unbounded and hence it is not a convergent sequence.

Adish Shah MA109 Calculus-I

9 / 17

$$a_n = \frac{n}{n^2 + 1}$$

Adish Shah MA109 Calculus-I

4 (i)

$$a_n = \frac{n}{n^2 + 1}$$

Consider $a_{n+1} - a_n$

$$a_{n+1} - a_n = \frac{n+1}{(n+1)^2 + 1} - \frac{n}{n^2 + 1} = \frac{-n - n^2 + 1}{((n+1)^2 + 1)(n^2 + 1)}$$

Adish Shah MA109 Calculus-I

4 (i)

$$a_n = \frac{n}{n^2 + 1}$$

Consider $a_{n+1} - a_n$

$$a_{n+1} - a_n = \frac{n+1}{(n+1)^2 + 1} - \frac{n}{n^2 + 1} = \frac{-n - n^2 + 1}{((n+1)^2 + 1)(n^2 + 1)}$$
$$a_{n+1} - a_n = \frac{-(n^2 + n - 1)}{((n+1)^2 + 1)(n^2 + 1)} < 0$$

Adish Shah MA109 Calculus-I 8th December 2021 10 / 17

4 (i)

$$a_n = \frac{n}{n^2 + 1}$$

Consider $a_{n+1} - a_n$

$$a_{n+1} - a_n = \frac{n+1}{(n+1)^2 + 1} - \frac{n}{n^2 + 1} = \frac{-n - n^2 + 1}{((n+1)^2 + 1)(n^2 + 1)}$$
$$a_{n+1} - a_n = \frac{-(n^2 + n - 1)}{((n+1)^2 + 1)(n^2 + 1)} < 0$$

Therefore a_n is a decreasing sequence.

10 / 17

$$a_n = \frac{1-n}{n^2} \quad \forall n \geq 2$$

Adish Shah MA109 Calculus-I 8th I

$$a_n = \frac{1-n}{n^2} \quad \forall n \ge 2$$

Consider $a_{n+1} - a_n \quad \forall n \geq 2$

$$a_{n+1} - a_n = \frac{1 - (n+1)}{(n+1)^2} - \frac{1-n}{n^2} = \frac{n-1}{n^2} - \frac{n}{(n+1)^2}$$

$$a_n = \frac{1-n}{n^2} \quad \forall n \ge 2$$

Consider $a_{n+1} - a_n \quad \forall n \geq 2$

$$a_{n+1} - a_n = \frac{1 - (n+1)}{(n+1)^2} - \frac{1-n}{n^2} = \frac{n-1}{n^2} - \frac{n}{(n+1)^2}$$

$$a_{n+1} - a_n = \frac{(n^2 - n - 1)}{n^2(n+1)^2} = \frac{(n-2)^2 + 3(n-2) + 1}{n^2(n+1)^2} > 0$$

Adish Shah MA109 Calculus-I 8th December 2021 11/

$$a_n = \frac{1-n}{n^2} \quad \forall n \ge 2$$

Consider $a_{n+1} - a_n \quad \forall n \geq 2$

$$a_{n+1} - a_n = \frac{1 - (n+1)}{(n+1)^2} - \frac{1-n}{n^2} = \frac{n-1}{n^2} - \frac{n}{(n+1)^2}$$

$$a_{n+1} - a_n = \frac{(n^2 - n - 1)}{n^2(n+1)^2} = \frac{(n-2)^2 + 3(n-2) + 1}{n^2(n+1)^2} > 0$$

Therefore a_n is an increasing sequence.

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Adish Shah MA109 Calculus-I 8th December 2021 12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

Proof by Induction:

We can see that the claim holds for n = 1 as $\sqrt{2} \le a_1 < 2$.

12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

Proof by Induction:

We can see that the claim holds for n = 1 as $\sqrt{2} \le a_1 < 2$.

Let us assume that the claim holds for $n = k \implies \sqrt{2} \le a_k < 2$.

12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

Proof by Induction:

We can see that the claim holds for n = 1 as $\sqrt{2} \le a_1 < 2$.

Let us assume that the claim holds for $n = k \implies \sqrt{2} \le a_k < 2$.

Now, $a_{k+1} = \sqrt{2 + a_k} \implies a_{k+1}^2 = 2 + a_k$.

12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

Proof by Induction:

We can see that the claim holds for n = 1 as $\sqrt{2} \le a_1 < 2$.

Let us assume that the claim holds for $n = k \implies \sqrt{2} \le a_k < 2$.

Now, $a_{k+1} = \sqrt{2 + a_k} \implies a_{k+1}^2 = 2 + a_k$.

From the induction hypothesis, $a_{k+1}^2 < 2 + 2$. $\implies a_{k+1} < 2$. Also

12 / 17

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ \forall n \ge 1$$

First we prove that the sequence is bounded.

Claim: $\sqrt{2} \le a_n < 2 \ \forall n \ge 1$

Proof by Induction:

We can see that the claim holds for n = 1 as $\sqrt{2} \le a_1 < 2$.

Let us assume that the claim holds for $n = k \implies \sqrt{2} \le a_k < 2$.

Now, $a_{k+1} = \sqrt{2 + a_k} \implies a_{k+1}^2 = 2 + a_k$.

From the induction hypothesis, $a_{k+1}^2 < 2 + 2$. $\implies a_{k+1} < 2$. Also

$$a_{k+1}^2 \ge 2 + \sqrt{2} \implies a_{k+1} \ge \sqrt{2}.$$

Adish Shah MA109 Calculus-I 8th December 2021 12 / 17

Next we show that the sequence is monotonic.

Next we show that the sequence is monotonic.

Consider $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \sqrt{2 + a_n} - a_n = \frac{(\sqrt{2 + a_n} - a_n)(\sqrt{2 + a_n} + a_n)}{\sqrt{2 + a_n} + a_n}$$

Adish Shah MA109 Calculus-I 8th December 2021 13 / 17

Next we show that the sequence is monotonic.

Consider $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \sqrt{2 + a_n} - a_n = \frac{(\sqrt{2 + a_n} - a_n)(\sqrt{2 + a_n} + a_n)}{\sqrt{2 + a_n} + a_n}$$

$$\implies a_{n+1} - a_n = \frac{2 + a_n - a_n^2}{\sqrt{2 + a_n} + a_n} = \frac{(2 - a_n)(1 + a_n)}{\sqrt{2 + a_n} + a_n} > 0$$

Therefore a_n is a monotonically increasing sequence.

13 / 17

Next we show that the sequence is monotonic.

Consider $a_{n+1} - a_n$:

$$a_{n+1} - a_n = \sqrt{2 + a_n} - a_n = \frac{(\sqrt{2 + a_n} - a_n)(\sqrt{2 + a_n} + a_n)}{\sqrt{2 + a_n} + a_n}$$

$$\implies a_{n+1} - a_n = \frac{2 + a_n - a_n^2}{\sqrt{2 + a_n} + a_n} = \frac{(2 - a_n)(1 + a_n)}{\sqrt{2 + a_n} + a_n} > 0$$

Therefore a_n is a monotonically increasing sequence.

We have shown that the sequence is convergent as it is monotonic and bounded.

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}=L$$

Take limit on both sides of the equation : $a_{n+1} = \sqrt{2 + a_n}$

$$L = \sqrt{2 + L} \implies L^2 = 2 + L \implies L = 2$$

Adish Shah MA109 Calculus-I 8th December 2021 13/17

Given $\lim_{n\to\infty} a_n = L \neq 0$.

Adish Shah MA109 Calculus-I 8th December 2021 14 /

Given $\lim_{n\to\infty} a_n = L \neq 0$. Choose $\epsilon = \frac{|L|}{2}$ (which is indeed > 0).

Given $\lim_{n\to\infty} a_n = L \neq 0$. Choose $\epsilon = \frac{|L|}{2}$ (which is indeed > 0). By the $\epsilon - n_0$ definition, for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon = \frac{|L|}{2}$ for all $n \geq n_0$.

Adish Shah MA109 Calculus-I 8th December 2021 14 / 17

Given $\lim_{n\to\infty} a_n = L \neq 0$. Choose $\epsilon = \frac{|L|}{2}$ (which is indeed > 0). By the $\epsilon - n_0$ definition, for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon = \frac{|L|}{2}$ for all $n \geq n_0$. Using the triangle inequality,

$$||a_n| - |L|| \le |a_n - L| < \frac{|L|}{2}$$

Adish Shah MA109 Calculus-I 8th December 2021 14 / 17

Given $\lim_{n\to\infty} a_n = L \neq 0$. Choose $\epsilon = \frac{|L|}{2}$ (which is indeed > 0). By the $\epsilon - n_0$ definition, for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon = \frac{|L|}{2}$ for all $n \geq n_0$. Using the triangle inequality,

$$||a_n| - |L|| \le |a_n - L| < \frac{|L|}{2}$$

Thus,

$$-\frac{|L|}{2} < |a_n| - |L| < \frac{|L|}{2}$$

Given $\lim_{n\to\infty} a_n = L \neq 0$. Choose $\epsilon = \frac{|L|}{2}$ (which is indeed > 0). By the $\epsilon - n_0$ definition, for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - L| < \epsilon = \frac{|L|}{2}$ for all $n \geq n_0$. Using the triangle inequality,

$$||a_n| - |L|| \le |a_n - L| < \frac{|L|}{2}$$

Thus,

$$-\frac{|L|}{2} < |a_n| - |L| < \frac{|L|}{2}$$
$$\frac{|L|}{2} < |a_n| < 3\frac{|L|}{2}$$

for all $n \ge n_0$ as required.

14 / 17

Given
$$a_n \ge 0$$
 $\lim_{n \to \infty} a_n = 0$. To prove $\lim_{n \to \infty} a_n^{1/2} = 0$

Given $a_n \ge 0$ $\lim_{n\to\infty} a_n = 0$. To prove $\lim_{n\to\infty} a_n^{1/2} = 0$ Let $\epsilon > 0$ be given. $\implies \epsilon^2 > 0$

15 / 17

Given $a_n \geq 0$ $\lim_{n \to \infty} a_n = 0$. To prove $\lim_{n \to \infty} a_n^{1/2} = 0$ Let $\epsilon > 0$ be given. $\implies \epsilon^2 > 0$ By the hypothesis, there exists $n_0 \in \mathbb{N}$ such that $|a_n - 0| < \epsilon^2$ for all $n > n_0$.

15 / 17

Given $a_n \geq 0$ $\lim_{n \to \infty} a_n = 0$. To prove $\lim_{n \to \infty} a_n^{1/2} = 0$ Let $\epsilon > 0$ be given. $\implies \epsilon^2 > 0$ By the hypothesis, there exists $n_0 \in \mathbb{N}$ such that $|a_n - 0| < \epsilon^2$ for all $n \geq n_0$. Hence,

$$|a_n^{1/2} - 0| = a_n^{1/2} < \epsilon \quad \forall n \ge n_0$$

15 / 17

Given $a_n \ge 0$ $\lim_{n \to \infty} a_n = 0$. To prove $\lim_{n \to \infty} a_n^{1/2} = 0$

Let $\epsilon > 0$ be given. $\implies \epsilon^2 > 0$

By the hypothesis, there exists $n_0 \in \mathbb{N}$ such that $|a_n - 0| < \epsilon^2$ for all $n > n_0$.

Hence,

$$|a_n^{1/2} - 0| = a_n^{1/2} < \epsilon \quad \forall n \ge n_0$$

Thus, by the definition of limit we have proved that $\lim_{n \to \infty} a_n^{1/2} = 0$

Adish Shah MA109 Calculus-I 8th December 2021 15 / 17

To prove: a_n is convergent if and only if (\iff) a_{2n} and a_{2n+1} are convergent to the same limit.

16 / 17

To prove: a_n is convergent if and only if (\iff) a_{2n} and a_{2n+1} are convergent to the same limit.

Proof. (\Longrightarrow) Given $\lim_{n\to\infty} a_n = L$.

16 / 17

To prove: a_n is convergent if and only if (\iff) a_{2n} and a_{2n+1} are convergent to the same limit.

Proof. (\Longrightarrow) Given $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$ be given.

By the $\epsilon - n_0$ definition of the limit, $\exists n_0 \in \mathbb{N}$ such that

 $|a_n-L|<\epsilon \quad \forall n\geq n_0.$

16 / 17

To prove: a_n is convergent if and only if (\iff) a_{2n} and a_{2n+1} are convergent to the same limit.

Proof. (\Longrightarrow) Given $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$ be given.

By the $\epsilon-n_0$ definition of the limit, $\exists n_0 \in \mathbb{N}$ such that

$$|a_n-L|<\epsilon \quad \forall n\geq n_0.$$

$$2n>n$$
 and $2n+1>n$. So $|a_{2n}-L|<\epsilon$ and $|a_{2n+1}-L|<\epsilon$ $\forall n\geq n_0$

16 / 17

To prove: a_n is convergent if and only if (\iff) a_{2n} and a_{2n+1} are convergent to the same limit.

Proof. (\Longrightarrow) Given $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$ be given.

By the $\epsilon-n_0$ definition of the limit, $\exists n_0 \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon \quad \forall n \geq n_0.$$

2n > n and 2n + 1 > n. So $|a_{2n} - L| < \epsilon$ and $|a_{2n+1} - L| < \epsilon$ $\forall n \ge n_0$

Hence, $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$

16 / 17

Given that $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = L$, we need to show that $\lim_{n\to\infty} a_n = L$.

Adish Shah MA109 Calculus-I 8th December 2021 17/17

10) Proof for (\iff)

Given that $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = L$, we need to show that $\lim_{n\to\infty} a_n = L$.

Let $\epsilon > 0$ be given. By the $\epsilon - n_0$ definition of the limit, $\exists n_1, n_2 \in \mathbb{N}$ such that $|a_{2n} - L| < \epsilon \quad \forall n \geq n_1$ and $|a_{2n+1} - L| < \epsilon \quad \forall n \geq n_2$

Adish Shah MA109 Calculus-I 8th December 2021 17/17

Given that $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = L$, we need to show that $\lim_{n\to\infty} a_n = L$.

Let $\epsilon>0$ be given. By the $\epsilon-n_0$ definition of the limit, $\exists n_1, n_2 \in \mathbb{N}$ such that $|a_{2n}-L|<\epsilon \quad \forall n\geq n_1$ and $|a_{2n+1}-L|<\epsilon \quad \forall n\geq n_2$ Choose $n_0=\max(2n_1,2n_2+1)$. Assume $n>n_0$ so that $n>2n_1$ and $n>2n_2+1$.

Adish Shah MA109 Calculus-I 8th December 2021 17/17

Given that $\lim_{n\to\infty}a_{2n}=\lim_{n\to\infty}a_{2n+1}=L$, we need to show that $\lim_{n\to\infty}a_n=L$.

Let $\epsilon > 0$ be given. By the $\epsilon - n_0$ definition of the limit, $\exists n_1, n_2 \in \mathbb{N}$ such that $|a_{2n} - L| < \epsilon \quad \forall n \geq n_1$ and $|a_{2n+1} - L| < \epsilon \quad \forall n \geq n_2$ Choose $n_0 = \max(2n_1, 2n_2 + 1)$. Assume $n > n_0$ so that $n > 2n_1$ and $n > 2n_2 + 1$.

If n is even, then n=2m for some $m\in\mathbb{N}$, and $2m>2n_1\implies m>n_1$, hence

$$|a_n - L| = |a_{2m} - L| < \epsilon$$

17 / 17

Given that $\lim_{n\to\infty}a_{2n}=\lim_{n\to\infty}a_{2n+1}=L$, we need to show that $\lim_{n\to\infty}a_n=L$.

Let $\epsilon>0$ be given. By the $\epsilon-n_0$ definition of the limit, $\exists n_1, n_2 \in \mathbb{N}$ such that $|a_{2n}-L|<\epsilon \quad \forall n\geq n_1$ and $|a_{2n+1}-L|<\epsilon \quad \forall n\geq n_2$ Choose $n_0=\max(2n_1,2n_2+1)$. Assume $n>n_0$ so that $n>2n_1$ and $n>2n_2+1$.

If n is even, then n=2m for some $m\in\mathbb{N}$, and $2m>2n_1\implies m>n_1$, hence

$$|a_n - L| = |a_{2m} - L| < \epsilon$$

If n is odd, then n = 2m + 1 for some m, and $2m + 1 > 2n_2 + 1 \implies m > n_2$, hence

$$|a_n-L|=|a_{2m+1}-L|<\epsilon$$

17 / 17

Given that $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = L$, we need to show that $\lim_{n\to\infty} a_n = L$.

Let $\epsilon>0$ be given. By the $\epsilon-n_0$ definition of the limit, $\exists n_1, n_2 \in \mathbb{N}$ such that $|a_{2n}-L|<\epsilon \quad \forall n\geq n_1$ and $|a_{2n+1}-L|<\epsilon \quad \forall n\geq n_2$ Choose $n_0=\max(2n_1,2n_2+1)$. Assume $n>n_0$ so that $n>2n_1$ and $n>2n_2+1$.

If n is even, then n=2m for some $m\in\mathbb{N}$, and $2m>2n_1\implies m>n_1$, hence

$$|a_n - L| = |a_{2m} - L| < \epsilon$$

If n is odd, then n = 2m + 1 for some m, and $2m + 1 > 2n_2 + 1 \implies m > n_2$, hence

$$|a_n-L|=|a_{2m+1}-L|<\epsilon$$

In either case, $|a_n - L| < \epsilon \quad \forall n > n_0$. Hence $\lim_{n \to \infty} a_n = L$

Adish Shah MA109 Calculus-I 8th December 2021 17 /