

Problem

Undergraduates, especially underclassmen, in biology-based and biotech majors are unaware of the field of bioinformatics

Solution

A four week
asynchronous course
designed to introduce
students to the tools
and skills necessary for
bioinformatics

Impact

More undergraduates will learn about the field of bioinformatics earlier in their college career

How has it been worked on so far?

- "Soft publish" of a blast module
- A quiz, step by step tutorial, hands on application, end of module survey
- Previous Surveys

0

Previous Survey Respondents(23-24)

Most people enjoy learning about biological structures, analyzing gene activity, and genetic difference Genetic Difference 64 %

Prefer Canvas

Canvas

100%

NEVER used Pfam

Pfam

92%

Why Past work isn't sufficient

Short

One module about Blast was published

Soft publish

Not used by the BIG-RT lab?

Engagement Issues

Lack Eye-catching titles that inspire people

Unconnected

Doesn't define the broad scope of bioinformatics

VISION STATEMENT

Empowering Students Through Hands on Bioinformatics

A 4-week bioinformatics course designed to engage students with mini-projects/case studies each week.

Develop very simple skills in data analysis, computational tools, and biological insights.

Focus on real-world applications to maintain motivation and practical understanding.

Bridge the gap between no knowledge of bioinformatics and application, preparing students for research or industry roles.

0

PROJECT SCHEDULE

Week 1-2

Course framework design, defining mini-projects.

Week 5-8

Testing projects, refining exercises, and designing assessments.

Framework

Developmen

Testing

Review

Developing instructional content and materials.

Week 3-4

Final review, feedback integration, and deployment.

Week 9+

COURSE SCHEDULE

ROLES & RESPONSIBILITIES

Provide guidance, deliver lectures, and lead discussions

Help troubleshoot issues and guide students through projects

Assistants

Technical Support

Ensures computational tools and platforms are accessible to students

Assessors

Develops grading rubrics and evaluates student performance

CHALLENGES & SOLUTIONS

Challenges

- Students with different programming backgrounds
- Computational Resource Constraints
- Engagement dropping overtime
- Students struggling with biological concepts
- Limited Instructors

Solutions

- Provide students with everything they would need to know in the course
- Can use programs built for all operating systems
- Use mini-projects milestones for motivation
- Incorporate visual aids into lectures
- Asynchronous delivery method

_		$\overline{}$
	\sim	_

Bioinformatics Professor	Bioinformatics Core Members	Andrew Yao
 Engage students through case study format and hands-on learning Introduce tools and show how to use them specifically for the project Focus on biology students rather than CS students 	 Focus on R and Command Line for lecture examples Use Web-based tools such as Galaxy for hands-on learning Time is too limiting to actually cover how to use command line/R Encourage students to take further classes to perform actual bioinformatics work 	 Convincing students that bioinformatics is not scary Set learning goals for each module Keep asking people for feedback during course formation Target biology students to show the power of tech in biology

Main Takeaways from Interviews

Target Audience

Undergraduates, especially underclassmen, in biology-based and biotech majors

Course Format

4 case studies/real-life examples paired with hands-on projects to engage students in introductory course

Course Material

Web-based software for hands-on section and introduce Command Line at the end of the course

Survey Respondents

Year in College / Graduate School / Professor 31 responses

- First Year (Freshman)
- Second Year (Sophomore)
- Third Year (Junior or 1st Year Transfer)
- Fourth Year (Senior or 2nd Year Transfer)
- Graduate Student Master
- Graduate Student PhD
- Professor

Survey Research Experience

Do you have any experience with Bioinformatics?

This could be in a class setting, lab setting or on your own.

30 responses

How long have you been in a research team, journal club, etc?

12 responses

0 - 1 year

3+ years

1 - 3 years

Bioinformatics Knowledge - No Exp

Do you know what Bioinformatics, as a field, is? 18 responses

Have you heard of these opportunities to work with Bioinformatics at UC Davis previously?

Majors - Undergraduate No Experience

Major/Minor

18 responses

Majors - Undergraduate Experience

Major

12 responses

Bioinformatics Tools - Undergrad No Exp

What Bioinformatics tools have you heard of/would like to learn about?

Bioinformatics Tools - Undergrad Exp

What aspects of Bioinformatics do you use in your research?

Conclusion

In order to combat the lack of awareness of the bioinformatics field in undergraduates, we have designed a four week asynchronous course to give a "taste" of the field by introducing necessary tools and skills. If students enjoy their "taste", they can actively take steps to take a bigger "bite" and pursue bioinformatics further.

