

Logos Family FPGAs Datasheet

(DS02001, V3.0) (16.03.2023)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Description			
V3.0	16.03.2023	Initial release.			

(DS02001, V3.0) 1/51

About this Manual

Terms and Abbreviations

Terms and Abbreviations	Meaning				
CLM	Configurable Logic Module				
DRM	Dedicated RAM Storage Module				
HMEMC	Hard IP Memory Controller, including DDRC and DDR PHY				
DDRC	Double Data Rate Controller				
DDR	Double Data Rate Synchronous Dynamic Random Access Memory				
ADC	Analogue to Digital Converter				
PLL	Phase Locked Loop				
ESD	Electro Static Discharge				
RAM	Random Access Memory				
LVDS	Low Voltage Differential Signaling				
HSTL	High-Speed Transceiver Logic				
SSTL	Stub Series Terminated Logic				
UID	Unique Identification				
UI	Unit Interval				
HSST	High-Speed Serial Transceiver				
PCIe	Peripheral Component Interconnect Express				

Related Documentation

The following documentation is related to this manual:

- 1. UG020001_Logos Family FPGAs Configurable Logic Module (CLM) User Guide
- 2. UG020002_Logos Family FPGAs Dedicated RAM Module (DRM) User Guide
- 3. UG020003_Logos Family FPGAs Arithmetic Processing Module (APM) User Guide
- 4. UG020004_Logos Family FPGAs Clock Resources (Clock) User Guide
- 5. UG020005_Logos Family FPGAs Configuration User Guide
- 6. UG020006_Logos Family FPGAs Input/Output Interface (IO) User Guide
- 7. UG020009_Logos Family FPGAs Analogue-to-Digital Converter (ADC) Module User Guide
- 8. UG0200011_Logos Family Products HMEMC Use Case User Guide
- 9. UG0200013_Logos Family FPGAs High-Speed Serial Transceiver (HSST) User Guide

(DS02001, V3.0) 2 / 51

Table of Contents

About this Manual Table of Contents Tables	3 5
Tables	5 7
	7
Figures	8
Chapter 1 Overview of Logos Family FPGAs	
1.1 Features of Logos Family FPGAs Products	8
1.2 Logos Family FPGAs Resource Scale and Packaging Information	10
1.3 Brief Description of Logos Family FPGAs	11
1.3.1 CLM	11
1.3.2 DRM	11
1.3.3 APM	11
1.3.4 Input/Output	11
1.3.5 Memory Controller System	12
1.3.6 ADC	13
1.3.7 Clock Resources	13
1.3.8 Configuration	14
1.3.9 HSST	15
1.3.10 Logos Family FPGAs Reference Materials	16
1.4 Logos Family FPGAs Ordering Information	
Chapter 2 Operating Conditions	18
2.1 Absolute Voltage Limits of the Device	18
2.2 V _I AC Overshoot Limit Value	
2.3 Device Quiescent Current	
2.4 Recommended Operating Conditions for the Device	20
2.5 DC Characteristics of the Device Under Recommended Operating Conditions	
2.6 Power-up/Power-down Sequences	21
2.7 Hot Plug	23
2.7.1 Hot Plug Specification	
2.7.2 Hot Plug Application Restrictions	
2.8 ESD (HBM, CDM), Latch-Up Specifications	
Chapter 3 DC Characteristics	
3.1 Input/Output Pin DC Characteristics	
Chapter 4 AC Characteristics	
4.1 IO AC Characteristics Parameters	
4.2 APM AC Characteristics Parameters	36

4.3 PLL AC Characteristics Parameters	37
4.4 DQS AC Characteristics Parameters	38
4.5 Global Clock Network AC Characteristics Parameters	38
4.6 Regional Clock Network AC Characteristics Parameters	39
4.7 IO Clock Network AC Characteristics Parameters	39
4.8 Configuration and Programming of AC Characteristics Parameters	39
4.8.1 Power-up Timing Characteristics	39
4.8.2 AC Characteristics of Each Download Mode	40
Chapter 5 Performance Parameters	43
5.1 LVDS Performance Parameters	43
5.2 MIPI Performance Parameters	43
5.3 Memory Interface Performance Parameters	43
5.4 DRM Performance Parameters	44
5.5 APM Performance Parameters	44
Chapter 6 ADC Characteristics Parameters	45
Chapter 7 High-Speed Serial Transceiver (HSST) Characteristics	46
7.1 HSST Hard Core Absolute Voltage Limits	46
7.2 Recommended Operating Conditions for HSST Hard Core	46
7.3 HSST Hard Core DC Characteristics Parameters	46
7.4 High-Speed Serial Transceiver (HSST) AC Characteristics	47
Chapter 8 PCIe Hard Core Features	50
Disclaimer	51

Tables

Table 1-1 Logos FPGA Resource Count	10
Table 1-2 Logos FPGA Package Information and User IO Count	10
Table 1-3 Clock Resources of Logos Family Products	14
Table 1-4 Configure Mode	15
Table 1-5 Logos Family FPGAs User Guide Documents	16
Table 1-6 Descriptions of the Product Quality Grades	17
Table 2-1 Absolute Maximum Voltage of the Device	18
Table 2-2 IO Input AC Overshoot Voltage Limit Values	18
Table 2-3 Quiescent Current	19
Table 2-4 Recommended Operating Conditions for PGL12G, PGL22G	20
Table 2-5 Recommended Operating Conditions for PGL25G	20
Table 2-6 Recommended Operating Conditions for PGL50G, PGL50H, and PGL100H	21
Table 2-7 DC Characteristics of the Device under Recommended Operating Conditions	21
Table 2-8 Power Supply Ramp Rate	22
Table 2-9 Hot Plug Leakage Current Specifications	23
Table 2-10 ESD, Latch-Up Specifications	23
Table 3-1 Input and Output Voltage Range of Single-Ended IO Level Standard	24
Table 3-2 Output Current of Single-Ended IO Level Standard	24
Table 3-3 Bank Support Description for Input IO Level Standard	26
Table 3-4 Bank Support Description for Output IO Level Standard	27
Table 3-5 Bank Support Description for Bidirectional IO Level Standard	28
Table 3-6 Parameter Requirements for Differential Input Standard	29
Table 3-7 Parameter Requirements for Differential Output Standard	29
Table 4-1 IOB Input and Output Delays	30
Table 4-2 Output Switching Characteristics when IOB tri-state is Enabled	32
Table 4-3 IOL Register AC Parameters	32
Table 4-4 Input Deserializer Switching Parameters	33
Table 4-5 Output Serializer Switching Parameters	34
Table 4-6 CLM Module AC Characteristics	34
Table 4-7 DRM Module AC Characteristics	35
Table 4-8 APM Module AC Characteristics	36
Table 4-9 PLL AC Characteristics	37
Table 4-10 DQS AC Characteristics	38
Table 4-11 Global Clock Network AC Characteristics	38
Table 4-12 Regional Clock Network AC Characteristics	39
Table 4-13 IO Clock Network AC Characteristics	39

	Tables
Table 4-14 Power-up Timing Characteristics Parameters	40
Table 4-15 AC Characteristics of Download Modes Supported by Logos Family FPGAs	40
Table 5-1 LVDS Performance	43
Table 5-2 MIPI Performance	43
Table 5-3 Memory Interface Performance	43
Table 5-4 DRM Performance	44
Table 5-5 APM Performance	44
Table 6-1 ADC Hard Core Characteristics	45
Table 7-1 HSST Absolute Voltage Limits	46
Table 7-2 Recommended Operating Conditions for HSST Hard Core	46
Table 7-3 HSST Hard Core DC Characteristics	46
Table 7-4 HSST Hard Core Performance Parameters	47
Table 7-5 HSST Hard Core Reference Clock Switching Characteristics	47
Table 7-6 HSST Hard Core PLL/Lock Time Characteristics	48
Table 7-7 HSST Hard Core User Clock Switching Characteristics	48
Table 7-8 HSST Hard Core Transmitter Side Switching Characteristics	48
Table 7-9 HSST Hard Core Receiver Side Switching Characteristics	49
Table 8-1 PCIe Performance Parameters	50

Figures

Figure 1-1 Content and Meaning of Logos Family FPGAs Product Model Numbers	17
Figure 2-1 Recommended Power-up Timing	22
Figure 2-2 Recommended Power-down Timing	22
Figure 3-1 Differential Electrical Characteristics Parameters	29
Figure 4-1 Device Power-up Timing Characteristics	39
Figure 4-2 Device Reset and Reconfiguration of Timing Characteristics	39

(DS02001, V3.0) 7 / 51

This document mainly includes an overview of the features, product models and resource scale list, AC and DC characteristics of the Logos family FPGA devices from Shenzhen Pango Microsystems Co., Ltd. (hereinafter referred to as Pango Microsystems). It enables users to understand the features of the Logos family FPGAs devices, facilitating device selection.

The -5 parameters in this document apply only to the current PGL25G device.

Chapter 1 Overview of Logos Family FPGAs

Logos family programmable logic devices are brand-new low-power, low-cost FPGA products launched by Shenzhen Pango Microsystems Co., Ltd., featuring a full intellectual property architecture and mainstream 40nm process technology. The Logos Family FPGAs include innovative Configurable Logic Modules (CLM), dedicated 18Kb storage unit (DRM), Arithmetic Processing Units (APM), multi-function high-performance I/Os, extensive on-die clock resources and other modules. It also integrates hard core resources such as the Memory Controller (HMEMC) and Analogue-to-Digital Converter (ADC) modules, supports various configuration modes, and provides functions like Bit stream Encryption and Device Unique ID (UID) to secure user's design. Based on the above functions, the Logos Family FPGAs are widely applicable to various application areas such as video, industrial control, automotive electronics, and consumer electronics.

1.1 Features of Logos Family FPGAs Products

- Low-cost and Low-power Consumption
- Low power consumption, mature 40nm
 CMOS process
- Core voltage down to 1.1V
- > IO with Multiple Standards
- Up to 498 user IOs, supports 1.2V, 1.5V,
 1.8V, 2.5V, 3.3V I/O standards
- HSTL, SSTL memory interface standards supported
- MIPI D-PHY interface standard supported
- LVDS, MINI-LVDS, SUB-LVDS, SLVS

- (MIPI two-wire level standard), TMDS (applicable for HDMI, DVI interfaces) and other differential standards supported
- Programmable IO BUFFER,
 high-performance IO LOGIC
- Flexible Programmable Logic Module CLM
- LUT5 logic architecture
- Each CLM contains 4 multi-function LUT5s and 6 registers
- Fast arithmetic carry logic supported
- Distributed RAM mode supported
- cascade chains supported

(DS02001, V3.0) 8/51

> DRM with Multiple Write Modes

- A single DRM provides 18Kb of memory space, configurable as 2 independent 9Kb storage blocks
- Various working modes supported, including single-port (SP) RAM, dual-port (DP) RAM, simple dual-port (SDP) RAM, ROM, and FIFO mode
- Dual-port RAM and simple dual-port RAM support mixed bit width for both ports
- Three write modes: Normal-Write,
 Transparent-Write, and
 Read-before-Write¹
- Byte Write function supported
- Efficient Arithmetic Processing Unit (APM)
- Each APM supports one 18*18 operation or two 9*9 operations
- Input register and output register supported
- 48-bit Post-adder supported
- "Signed" and "Unsigned" data operations supported
- > Integrated Hard Core Memory Controller HMEMC
- DDR2, DDR3, LPDDR supported
- A single HMEMC supports x8, x16 data widths
- Standard AXI4 bus protocol supported
- DDR3 write leveling and DQS gate training supported
- DDR3 rate up to 800Mbps
- > Integrated ADC Hard Core

- 10bit resolution, 1MSPS (independent ADC operation) sampling rate
- Up to 12 input channels
- Integrated temperature sensors

Extensive Clock Resources

- 3 types of clock networks supported, configurable with flexibility
- Region-based global clock network
- Each region has 4 regional clocks, supports vertical cascading
- High-speed IO clock, supports IO clock division
- Optional data address hold, output registers
- Integrates multiple PLLs, each PLL supports up to 5 clock outputs
- > Flexible Configuration Methods
- Multiple programming modes supported
- JTAG mode Compliant with IEEE 1149.1 and IEEE 1532 standards
- Master SPI can select up to 8bit data width, effectively increasing programming speed
- BPI x8/x16, Slave Serial, Slave Parallel modes supported
- AES-256 bit stream encryption supported², supports 64bit UID protection
- Supports SEU error detection and correction
- Supports multi-version bit stream fallback function
- Supports watchdog timeout detection
- Supports programming/downloading
- Supports internal debugging

(DS02001, V3.0) 9/51

High-performance High-speed Serial Transceiver HSST

- Data Rate up to 6.375Gbps supported
- Flexibly configurable PCS supports protocols such as PCIe GEN1/GEN2,

Gigabit Ethernet, CPRI, SRIO, etc.

Note

1: Does not support configuring both ports to Read-before-Write mode simultaneously.

2: PGL25G does not support AES-256 bit stream encryption.

1.2 Logos Family FPGAs Resource Scale and Packaging Information

The resource scale and packaging information of the Logos Family FPGAs are as shown in Table 1-1 and Table 1-2.

Table 1-1 Logos FPGA Resource Count

	CLM ^{1,2}				18Kb	4 D3 4	DI I	A.D.C.	HME	MAX	TTGGT	PCIE
Device	LUT5 (units)	Equivalent LUT4 (units)	FF (units)	Distributed RAM (bits)	DRM (units)	APM (units)	PLL (units)	ADC (units)	MC (units)	USER IO (units)	HSST LANE	GNE2 X4 CORE
PGL12G	10400	12480	15600	84480	30	20	4	1	0	160	0	0
PGL22G	17536	21043	26304	71040	48	30	6	1	2	240	0	0
PGL22GS ³	17536	21043	26304	71040	48	30	6	0	0	140	0	0
PGL25G	22560	27072	33840	242176	60	40	4	0	0	308	0	0
PGL50G	42800	51360	64200	544000	134	84	5	0	0	341	0	0
PGL50H	42800	51360	64200	544000	134	84	5	0	0	304	4	1
PGL100H	85392	102470	128088	1013504	286	188	8	0	0	498	8	1

Note

- 1. Each CLM contains 4 multi-function LUT5s and 6 registers; each multi-function LUT5 is equivalent to 1.2 LUT4s.
- 2. The CLMs in the chip include CLMA and CLMS, only CLMS can be configured as Distributed RAM.
- 3. PGL22GS-176 includes a maximum of 140 IOs, comprising 68 differential pairs and 4 single-ended IOs; 140 MAX USER IOs indicates the number of IO pins available outside the chip, there are additional pins inside the chip for connection to SDRAM.

Table 1-2 Logos FPGA Package Information and User IO Count

Package	FBG256	FBG484	FBG900	MBG484	MBG324	LPG176	LPG144
Size (mm)	17×17	23×23	31×31	19×19	15×15	22x22	22x22
Pitch (mm)	1.0	1.0	1.0	0.8	0.8	0.4	0.5
Device	User IO						
PGL12G	160	-	-	-	-	-	103
PGL22G	186	-	-	-	240	-	-
PGL22GS	-	-	-	-	-	140	-
PGL25G	186	308	-	-	226	-	-
PGL50G	-	332	-	341	218	-	-
PGL50H	-	296	-	304	190	-	-
PGL100H	-	-	498	-	-	-	-

(DS02001, V3.0) 10 / 51

1.3 Brief Description of Logos Family FPGAs

1.3.1 CLM

CLM (Configurable Logic Module) is the basic logic unit of Logos Family products, mainly composed of multi-function LUT5, registers, and expansion function selectors. CLMs are distributed in columns in Logos Family products and come in two forms: CLMA and CLMS. Both CLMA and CLMS support logic functions, arithmetic functions, and register functions, but only CLMS supports the Distributed RAM function. CLMs are interconnected with each other and with other on-die resources through the signal interconnect module.

Each CLMA contains 4 LUT5s, 6 registers, multiple expansion function selectors, and 4 independent cascade chains, among others. CLMS is an extension of CLMA, adding support for Distributed RAM on top of all functions supported by CLMA. CLMS can be configured as single-port RAM or simple dual-port RAM.

1.3.2 DRM

A single DRM has 18K bits of storage unit, which can be independently configured as 2x9K or 1x18K, supporting various working modes including dual-port RAM, simple dual-port RAM, single-port RAM or ROM mode, as well as FIFO mode. DRM supports configurable data widths and supports dual-port mixed data widths in DP RAM and SDP RAM modes. For PGL12G, ROM is not supported. For detailed usage of DRM, please refer to the "Logos Family FPGAs Dedicated RAM Module (DRM) User Guide".

1.3.3 APM

Each APM consists of I/O Unit, Preadder, Mult, and Postadder functional units, supporting output from each register stage. Each APM can implement one 18*18 multiplier or two 9*9 multipliers, supporting pre-addition function; it can also implement one 48-bit Postadder or two 24-bit Postadders. The APMs of Logos FPGA support cascading, enabling applications such as filters and high-bit-width multipliers.

1.3.4 Input/Output

> IOB

The IOs of Logos FPGA are distributed by Bank, with each Bank powered by an independent IO

(DS02001, V3.0) 11/51

power supply. IOs are flexibly configurable, supporting 1.2V to 3.3V power supply voltages and various single-ended and differential interface standards, to accommodate different application scenarios. All user IOs are bidirectional, containing IBUF, OBUF, and tri-state control TBUF. The powerful IOBs of Logos FPGA have flexible configuration options for interface standards, Output Drive, Slew Rate, Input Hysteresis, etc. For detailed IO characteristics and usage, please refer to the "Logos Family FPGAs Input/Output Interface (IO) User Guide".

> IOL

The IOL module is located between the IOB and the core, managing signals to be input to and output from the FPGA Core.

IOL supports various high-speed interfaces, in addition to supporting direct data input/output and IO register input/output modes; it also supports the following functions:

- ISERDES: For high-speed interfaces, it supports 1:2; 1:4; 1:7; 1:8 input Serial-to-Parallel Converter.
- OSERDES: For high-speed interfaces, it supports 2:1; 4:1; 7:1; 8:1 output Parallel-to-Serial Converter.
- Built-in IO delay function, which can dynamically/statically adjust input/output delay.
- Built-in input FIFO, mainly used for clock domain conversion from external non-continuous DQS (for DDR memory interface) to internal continuous clock and compensating for the phase difference between the sampling clock and internal clock in some special Generic DDR applications.

1.3.5 Memory Controller System

PGL DDR Memory Controller System provides users with a complete DDR memory controller solution, with flexible configuration options.

PGL22G integrates HMEMC, and has the following functions:

- ➤ LPDDR, DDR2, DDR3 supported
- > x8, x16 Memory Device supported
- > Standard AXI4 bus protocol (does not support fixed burst type) supported
- ➤ Three AXI4 Host Ports in total, one 128-bit, two 64-bit
- ➤ AXI4 Read Reordering supported
- ➤ BANK Management supported
- Low Power Mode, Self-refresh, Power down, Deep Power Down supported

(DS02001, V3.0) 12 / 51

- Bypass DDRC and Bypass HMEMC supported
- ➤ DDR3 Write Leveling and DQS Gate Training supported
- DDR3 rate up to 800 Mbps

PGL12G, PGL25G, PGL50G, PGL50H, PGL100H can only use soft core to implement control of DDR memory, with the following functions:

- ➤ DDR3 supported
- > x8, x16 Memory Device supported
- A maximum data width of 16 bits supported
- > Trimmed AXI4 bus protocol supported
- ➤ One AXI4 128-bit Host Port
- > Self-refresh, Power down supported
- > Bypass DDRC supported
- ➤ DDR3 Write Leveling and DQS Gate Training supported
- DDR3 rate up to 800 Mbps

1.3.6 ADC

Each ADC has a resolution of 10 bits, a sampling rate of 1MSPS, and 12 channels, 10 of which are Analogue Inputs multiplexed with GPIO, and an additional 2 use dedicated analogue input pins. The scanning mode of the 12 channels is fully controlled by the FPGA with flexibility, and users can determine the number of channels that share the 1MSPS ADC sampling rate by User Logic. The ADC provides monitoring functions for on-die voltage and temperature. It can detect VCC, VCCAUX, VDDM (internal LDO output voltage); see Table 6-1 for detailed characteristics parameters.

1.3.7 Clock Resources

Logos Family products are divided into different numbers of regions, offering extensive on-die clock resources, including PLL and three types of clock networks: global clock, regional clock, and I/O clock. Among them, the I/O clock has the characteristics of high frequency, small clock skew, and short delay time. See Table 1-3 for details on clock resources.

(DS02001, V3.0) 13/51

Table 1-3 Clock Resources of Logos Family Products

Features	PGL12G	PGL22G	PGL25G	PGL50H PGL50G	PGL100H
Number of Regions	4	6	4	6	10
Number of Global Clocks	20	20	20	30	30
Number of Global Clocks Supported by Each Region	16	12	16	16	16
Number of Regional Clocks Supported by Each Region	4	4	4	4	4
Number of IO BANKs	4	6	4	4	6
Number of IO Clocks Supported by Each IO BANK	2	2	4	BANK0/2: 4 BANK1/3: 6	BANK0/2: 4 BANK1/3: 10
Total Number of IO Clocks	8	12	16	20	28
Number of PLLs	4	6	4	5	8

Logos FPGAs embed multiple PLLs, each with up to 5 clock outputs, supporting frequency synthesis, phase adjustment, dynamic configuration, clock source synchronization, zero delay buffering, and more. Additionally, PLLs support Power Down, allowing users to turn off the PLL to reduce power consumption when it is not in use.

To increase clock performance, Logos FPGA also offers special IO related to CLK, including four types: clock input pins, PLL reference clock input pins, PLL feedback input clock pins, and PLL clock output pins. Compared with general IO, using these clock input/output pins can avoid interference from standard routing resources, thus achieving better clock performance. When not used as clock inputs/outputs, these clock pins can be used as general IOs. For detailed information on clock usage, please refer to the "Logos Family FPGAs Clock Resources (Clock) User Guide".

1.3.8 Configuration

Configuration is the process of programming the FPGA. Logos FPGA uses SRAM cells to store configuration data, which must be reconfigured after every power up; the configuration data can be actively obtained by the chip from external flash or downloaded into the chip via an external processor or controller.

Logos FPGA supports multiple configuration modes, including JTAG mode, Master SPI mode, Slave SPI mode, Slave SPI mode, Slave Serial mode, and Master BPI mode. The supported configuration modes for each device are shown in Table 1-4.

(DS02001, V3.0) 14/51

Table 1-4 Configure Mode

	Data	PGL12G		PGL22G		PGL22GS	PGL25G	PGL50H PGL50G	PGL 100H
Mode	Data Bit width	LPG144	FBG 256	FBG256	MBG324	LPG176	FBG256 MBG324 FBG484	FBG484 MBG484 MBG324	FBG900
JTAG	1	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
	1	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
Master	2	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
SPI	4	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
	8	Supported	Supported	Supported	Supported	Supported	Not supported	Not supported	Not supported
Slave SPI	1	Supported	Supported	Supported	Supported	Not supported	Not supported	Not supported	Not supported
	8	Supported	Supported	Supported	Supported	Not supported	Supported	Supported	Supported
Slave Parallel	16	Supported	Supported	Supported	Supported	Not supported	Supported	Supported	Supported
	32	Supported	Supported	Not supported	Supported	Not supported	Not supported	Not supported	Not supported
Slave Serial	1	Supported	Supported	Supported	Supported	Not supported	Supported	Supported	Supported
	8 (Asynchronous)	Not supported	Not supported	Not supported	Supported	Not supported	Not supported	Not supported	Supported
Master BPI	16 (Asynchronous)	Not supported	Not supported	Not supported	Supported	Not supported	Not supported	Not supported	Supported
	16 (Synchronous)	Not supported	Not supported	Not supported	Supported	Not supported	Not supported	Not supported	Not supported

The configuration-related functions of Logos FPGA are as follows:

- > Supports configuration data stream compression, effectively reducing the size of the bit stream, saving memory space and programming time
- > Supports SEU 1-bit error correction and 2-bit error detection through the internal parallel interface
- ➤ Watchdog timeout detection function supported
- Supports configuration bit stream version fallback function in Master BPI/Master SPI modes

To protect user designs, Logos FPGA also provides the UID function. Each FPGA device has a unique identification number that is uniquely determined at the factory. Users can read the identification number via the UID interface and JTAG interface, and incorporate the results into the programming data stream after processing with their own unique encryption algorithm. Every time the data stream is reloaded, the FPGA enters user mode, where the user logic will first read the UID and process it with a unique encryption algorithm to compare with the results in the previous programming data stream; if there is a discrepancy, the FPGA will not function properly.

1.3.9 HSST

PGL50H and PGL100H have built-in high-speed serial interface modules with line rates up to 6.375Gbps, known as HSST. In addition to the PMA, HSST also integrates a rich set of PCS

(DS02001, V3.0) 15/51

functions, which can be flexibly applied to various serial protocol standards. Internally, each HSST supports 1 to 4 full-duplex transmit and receive LANEs. The key features of HSST include:

- ➤ Supported line rates are shown in Table 7-4
- > Flexible reference clock selection
- Programmable output swing and de-emphasis
- > Adaptive equalizer at receiver side
- The data channels support 8bit only, 10bit only, 8b10b 8bit, 16bit only, 20bit only, 8b10b 16bit, 32bit only, 40bit only, 8b10b 32bit, 64b66b/64b67b 16bit, and 64b66b/64b67b 32bit modes
- ➤ The PCS is flexibly configurable and supports protocols such as PCI Express GEN1, PCI Express GEN2, XAUI, Gigabit Ethernet, CPRI, SRIO, etc.
- > Flexible byte alignment function
- RxClock Slip function is supported to ensure a fixed receive delay
- Protocol standard 8b10b encoding/decoding supported
- ➤ Protocol standard 64b66b/64b67b data adaptation function supported
- > Flexible CTC scheme
- > x2 and x4 channel bonding supported
- ➤ HSST configuration supports dynamic modification
- Near-end loopback and far-end loopback
- ➤ Built-in PRBS Function

1.3.10 Logos Family FPGAs Reference Materials

Section 1.3 provides a brief description of the various Logos FPGA modules, as well as the clock and configuration system. For detailed information on the respective modules, please refer to the user guide documents related to Logos FPGA, as shown in Table 1-5 below.

Table 1-5 Logos Family FPGAs User Guide Documents

Document Number	Document Name	Content of the Document
UG020001	Logos Family FPGAs Configurable Logic	Functional description of Logos Family FPGAs
00020001	Module (CLM) User Guide	Configurable Logic Module
UG020002	Logos Family FPGAs Dedicated RAM Module	Functional description of Logos Family FPGAs
00020002	(DRM) User Guide	Dedicated RAM Module
UG020003	Logos Family FPGAs Arithmetic Processing	Functional description of Logos Family FPGAs
00020003	Module (APM) User Guide	Arithmetic Processing Module
UG020004	Logos Family FPGAs Clock Resources (Clock)	Logos Family FPGAs Clock Resources,
00020004	User Guide	including the function and usage of PLL
		Description of the configuration interface,
UG020005	Logos Family FPGAs Configuration User Guide	configuration modes, and configuration process
		in Logos Family FPGAs
UG020006	Logos Family FPGAs Input/Output Interface (IO)	Functional description of Logos Family FPGAs

(DS02001, V3.0) 16/51

Document Number	Document Name	Content of the Document
	User Guide	Input/Output Interface
UG020009	Logos Family FPGAs Analogue-to-Digital Converter (ADC) Module User Guide	Functional description of Logos Family FPGAs Analogue-to-Digital Converter
UG020011	Logos Family Products HMEMC Use Case User Guide	Description of the use cases for Logos Family FPGAs Memory Control System
UG020013	Logos Family FPGAs High-Speed Serial Transceiver (HSST) User Guide	Description of the applications for Logos Family FPGAs High-Speed Serial Transceiver

1.4 Logos Family FPGAs Ordering Information

Content and meaning of Logos Family FPGAs product model numbers are shown in Figure 1-1.

Figure 1-1 Content and Meaning of Logos Family FPGAs Product Model Numbers

Descriptions of the product quality grades are shown in Table 1-6.

Table 1-6 Descriptions of the Product Quality Grades

		Speed Grade and Temperature Range		
Product Family	Device	Commercial (C) 0 °C to 85 °C	Industrial (I) -40 ℃ to 100 ℃	
	PGL12G	-6C	-6I	
	PGL22G	-6C	-6I	
	PGL25G	-5C	-5I	
Logos		-6C	-6I	
	PGL50G	-6C	-6I	
	PGL50H	-6C	-6I	
	PGL100H	-6C	-6I	

(DS02001, V3.0) 17/51

Chapter 2 Operating Conditions

2.1 Absolute Voltage Limits of the Device

Table 2-1 Absolute Maximum Voltage of the Device

Symbol	Description	Min.	Max.	Unit
VCC	Core Power Supply Voltage	-0.16	1.32	V
VCCAUX	Auxiliary Power Voltage (for powering IOB, LDO, etc.)	-0.16	3.63	V
VCCAUX_A	Auxiliary Power Voltage (for powering ADC, POR, Bandgap, etc.)		3.63	V
VCCIO	BANK IO Power Supply Voltage	-0.16	3.63	V
VCCEFUSE	Efuse Programming Voltage	-0.16	3.63	V
VCCIOCFG	BANKCFG Power Supply Voltage	-0.16	3.63	V
VI	IO DC Input Voltage	-0.16	3.63	V

Note: Exceeding the above voltage limits may cause permanent damage to the device. Operating within the voltage limits will not damage the device, but does not guarantee normal function at these limits. Long-term operation of the device at the voltage limits will drastically impact its reliability.

2.2 V_I AC Overshoot Limit Value

Table 2-2 IO Input AC Overshoot Voltage Limit Values

Input Pin	Overshoot Voltage	Specification	Temperature	Condition	Limit Value	Unit
				100%UI	4.02	V
				55%UI	4.07	V
				30%UI	4.12	V
				17%UI	4.17	V
		Industrial		9.5%UI	4.22	V
			-40 ℃~100 ℃	5.5%UI	4.27	V
	OVERSHOOT			3.1%UI	4.32	V
I/O input voltage, with				1.7%UI	4.37	V
respect to ground				1.0%UI	4.42	V
				0.5%UI	4.47	V
				0.3%UI	4.52	V
				0.2%UI	4.57	V
				0.1%UI	4.62	V
				100%UI	-0.16	V
	UNDERSHOOT	Industrial	-40 ℃~100 ℃	72%UI	-0.21	V
				55%UI	-0.26	V

(DS02001, V3.0) 18/51

Input Pin	Overshoot Voltage	Specification	Temperature	Condition	Limit Value	Unit
				40%UI	-0.31	V
				30%UI	-0.36	V
				22%UI	-0.41	V
				17%UI	-0.46	V
				12%UI	-0.51	V
				10%UI	-0.56	V
				8%UI	-0.61	V
				6%UI	-0.66	V
				4%UI	-0.71	V
				3%UI	-0.76	V

Note: UI width is less than 15μs.

2.3 Device Quiescent Current

Table 2-3 Quiescent Current

Symbol	Description	Device	Speed Grade		Unit
			-5	-6	
		PGL12G		13	mA
		PGL22G		19	mA
т	Cara valtaga aviasaant aurrant	PGL25G	28	28	mA
$I_{ m vcc}$	Core voltage quiescent current	PGL50G		45	mA
		PGL50H		48	mA
		PGL100H		92	mA
		PGL12G		3	mA
		PGL22G		3	mA
ī	BANK voltage quiescent current	PGL25G	3	3	mA
I_{vccio}	BANK voltage quiescent current	PGL50G		3	mA
		PGL50H		3	mA
		PGL100H		6	mA
ī	Auxiliary voltage VCCAUX_A quiescent current	PGL12G		2	mA
I _{vccaux_a}	Auxiliary voltage VCCAUA_A quiescent current	PGL22G		2	mA
		PGL12G		11	mA
		PGL22G		32	mA
ī	Auxiliary voltage VCCAUX (3.3V) quiescent	PGL25G	9	9	mA
I _{vccaux}	current	PGL50G		8	mA
		PGL50H		8	mA
		PGL100H		9	mA
I _{VCCA_PLL_0}	HSST PLL0 single quad analogue power supply	PGL50H		0.9	mA

(DS02001, V3.0) 19/51

Symbol	Description	Device	Speed Grade		Unit	
	· · ·		-5	-6		
	quiescent current	PGL100H		0.9	mA	
T	HSST PLL1 single quad analogue power supply	PGL50H		0.9	mA	
I _{VCCA_PLL_1}	quiescent current	PGL100H		0.9	mA	
T	HSST single quad analogue power supply quiescent	PGL50H		6.11	mA	
IVCCA_LANE	current	PGL100H		6.11	mA	

Note:

- 1. The above quiescent current values are measured at standard pressure, $T_j=25$ °C. For $T_j=100$ °C, the PPP and PPC analysis tools can be used for evaluation.
- 2. The above data is measured with a blank device, no output current load, no internal pull-up resistors, and all I/Os in a tri-state.

2.4 Recommended Operating Conditions for the Device

Table 2-4 Recommended Operating Conditions for PGL12G, PGL22G

Symbol	Description		Тур.	Max.	Unit
VCC	Core Power Supply Voltage	1.045	1.1	1.155	V
VCCAUX	Auxiliary Power Voltage (for powering IOB, LDO, etc.)	3.135	3.3	3.465	V
VCCAUX_A	Auxiliary Power Voltage (for powering ADC, POR, Bandgap, etc.)		3.3	3.465	V
VCCIO	BANK IO Power Supply Voltage	1.14		3.465	V
VCCEFUSE	Efuse Programming Voltage	3.135	3.3	3.465	V
VCCIOCFG	BANKCFG Power Supply Voltage			3.465	V
T _J (Commercial)	Commercial chip junction temperature	0		85	С
T _J (Industrial)	Industrial chip junction temperature	-40		100	\mathcal{C}

Note: Recommended operating voltage is within ±5% of the typical operating voltage.

Table 2-5 Recommended Operating Conditions for PGL25G

Symbol	Description	Min.	Тур.	Max.	Unit
VCC	Core Power Supply Voltage	1.14	1.2	1.26	V
VCCAUX	Auxiliary power supply voltage, including BANK configuration voltage, Efuse programming voltage, etc.	3.135	3.3	3.465	V
VCCIO	BANK IO Power Supply Voltage	1.14		3.465	V
T _J (Commercial)	Commercial chip junction temperature	0		85	\mathcal{C}
T _J (Industrial)	Industrial chip junction temperature	-40		100	$\mathcal C$

Note: Recommended operating voltage is within ±5% of the typical operating voltage.

(DS02001, V3.0) 20 / 51

Table 2-6 Recommended C	Operating Condition	s for PGL50G	. PGL50H. and PGL100H

Symbol	Description		Min.	Тур.	Max.	Unit
VCC	Core Power Supply Voltag	je –	1.14	1.2	1.26	V
	Auxiliary power supply	VCCAUX=3.3V	3.135	3.3	3.465	V
VCCAUX voltage, including BANK configuration voltage, etc.		VCCAUX=2.5V	2.375	2.5	2.625	V
VCCIO	BANK IO Power Supply V	Voltage	1.14		3.465	V
VCCEFUSE	Efuse Programming Voltag	ge	3.135	3.3	3.465	V
T _J (Commercial)	Commercial chip junction	0		85	C	
T _J (Industrial)	Industrial chip junction ter	-40		100	\mathcal{C}	

Note: Recommended operating voltage is within ±5% of the typical operating voltage.

2.5 DC Characteristics of the Device Under Recommended Operating Conditions

Table 2-7 DC Characteristics of the Device under Recommended Operating Conditions

Identification	Min.	Тур.	Max.	Description
	80uA		200uA	PAD pull-up current (V _{IN} =0; V _{CCIO} =3.3V)
	40uA		120uA	PAD pull-up current (V _{IN} =0; V _{CCIO} =2.5V)
$ m I_{PU}$	60uA		190uA	PAD pull-up current (V _{IN} =0; V _{CCIO} =1.8V)
	60uA		190uA	PAD pull-up current (V _{IN} =0; V _{CCIO} =1.5V)
	30uA		120uA	PAD pull-up current (V _{IN} =0; V _{CCIO} =1.2V)
	30uA		225uA	PAD pull-down current (V _{IN} =3.3V)
	30uA		220uA	PAD pull-down current (V _{IN} =2.5V)
I_{PD}	30uA		240uA	PAD pull-down current (V _{IN} =1.8V)
	30uA		240uA	PAD pull-down current (V _{IN} =1.5V)
	30uA		260uA	PAD pull-down current (V _{IN} =1.2V)

2.6 Power-up/Power-down Sequences

- Recommended power-up sequence to ensure I/Os are tri-stated during power-up: VCC, VCCA_LANE, VCCA_PLL0, VCCA_PLL1 > VCCAUX, VCCAUX_A, VCCIOCFG, VCCEFUSE > VCCIO;
- 2. The recommended power-down sequence is the reverse of the Power-up sequence;
- 3. Recommended power-up timing is shown in Figure 2-1;
- 4. Recommended Power-down timing is shown in Figure 2-2;
- 5. When the amplitude of VCCIO voltage is same as VCCAUX, VCCAUX_A, VCCIOCFG, VCCEFUSE, they can share the same power supply.

(DS02001, V3.0) 21/51

Figure 2-1 Recommended Power-up Timing

Figure 2-2 Recommended Power-down Timing

6. Power Supply Ramp Rate

Table 2-8 Power Supply Ramp Rate

Identification	ification Description		Max.	Unit
T _{VCC RAMP}	VCC Power Supply Ramp Rate	0.006	6	V/ms
Т	VCCAUX=3.3V Power Supply Ramp Rate	0.0165	6.6	V/ms
T _{VCCAUX RAMP}	VCCAUX=2.5V Power Supply Ramp Rate	0.0125	5	V/ms
T _{VCCIO RAMP}	VCCIO Power Supply Ramp Rate	0.0165	6.6	V/ms
T _{VCCEFUSE RAMP}	VCCEFUSE Power Supply Ramp Rate	0.0165	6.6	V/ms
T _{VCCA_LANE RAMP}	VCCA LANE Power Supply Ramp Rate	0.024	2.4	V/ms
T _{VCCA_PLL_0 RAMP}	VCCA PLL0 Power Supply Ramp Rate	0.024	2.4	V/ms
T _{VCCA_PLL_1 RAMP}	VCCA PLL1 Power Supply Ramp Rate	0.024	2.4	V/ms

Note: The power supply ramp rate must be monotonic.

(DS02001, V3.0) 22 / 51

For PGL12G, PGL22GS, if the recommended power-up sequence is not followed, and there is a discrepancy between VCCAUX and VCCIO voltages, then during the power-up process, all available IO pins cannot remain in high-impedance state.

For PGL25G, PGL50G, PGL50H, PGL100H, if the recommended power-up sequence is not followed, and there is a discrepancy between VCCAUX and VCCIO voltages, then during the power-up process, the IO pins of BANK0 and BANK2 cannot remain in high-impedance state.

If EFuse is configured, the VCCEFUSE voltage must follow the recommended power-up and power-down sequences, otherwise it may lead to misconfiguration of EFuse. For specific EFuse applications please refer to the EFuse section in "UG02005 Logos Family FPGAs Configuration User Guide".

2.7 Hot Plug

2.7.1 Hot Plug Specification

Table 2-9 Hot Plug Leakage Current Specifications

Symbol	Parameter Description	Max.
$I_{DK} (DC)^1$	DC Current, per I/O	1mA
$I_{DK} (AC)^2$	AC Current, per I/O	6mA

Note

- 1. When the chip is not powered-up, apply voltage to the hot pluggable I/O and test the maximum current flowing into the chip from the I/O.
- 2. Apply voltage to the hot-pluggable I/O and then test the maximum current flowing into the chip from the I/O during the power-up/down process following the recommended sequence.

2.7.2 Hot Plug Application Restrictions

To fulfill hot plug requirement, the following conditions must be met:

- 1. Power-up/Power-down must be performed according to the chip's recommended sequence.
- 2. To ensure application requirements are met, the user must choose appropriate external circuitry (such as pull-up/pull-down resistors and series resistors) etc.

2.8 ESD (HBM, CDM), Latch-Up Specifications

Table 2-10 ESD, Latch-Up Specifications

Human Body Model (HBM)	Charge Device Model (CDM)	Latch-up	
±2000V	±500V	±100mA	

(DS02001, V3.0) 23 / 51

Chapter 3 DC Characteristics

3.1 Input/Output Pin DC Characteristics

The input and output voltage range of each single-ended IO level standard is shown in Table 3-1 below.

Table 3-1 Input and Output Voltage Range of Single-Ended IO Level Standard

Cinals Ended IO	VIL(V)		VIH(V)		VOL (V)	VOH(V)
Single-Ended IO	Min.	Max.	Min.	Max.	Max.	Min.
LVTLL33 LVCMOS33	-0.16	0.8	2	3.465	0.4	VCCIO-0.4
LVCMOS25	-0.16	0.7	1.7	3.465	0.4	VCCIO-0.4
LVCMOS18	-0.16	0.35VCCIO	0.65VCCIO	3.465	0.4	VCCIO-0.4
LVCMOS15	-0.16	0.35VCCIO	0.65VCCIO	3.465	0.4	VCCIO_0.4
LVCMOS12	-0.16	0.35VCCIO	0.65VCCIO	3.465	0.4	VCCIO-0.4
SSTL25_I	-0.16	VREF -0.18	VREF +0.18	3.465	0.54	VCCIO-0.62
SSTL25_II	-0.16	VREF -0.18	VREF +0.18	3.465	0.35	VCCIO-0.43
SSTL18_I	-0.16	VREF -0.125	VREF +0.125	3.465	0. 4	VCCIO-0.4
SSTL18_II	-0.16	VREF -0.125	VREF +0.125	3.465	0.28	VCCIO-0.28
SSTL15_I SSTL15_I_CAL	-0.16	VREF-0.1	VREF+0.1	3.465	0.31	VCCIO-0.31
SSTL15_II SSTL15_II_CAL	-0.16	VREF-0.1	VREF+0.1	3.465	0.31	VCCIO-0.31
HSTL18_I	-0.16	VREF-0.1	VREF+0.1	3.465	0.4	VCCIO-0.4
HSTL18_II	-0.16	VREF-0.1	VREF+0.1	3.465	0. 4	VCCIO-0.4
HSTL15_I HSTL15_I_CAL	-0.16	VREF-0.1	VREF+0.1	3.465	0. 4	VCCIO-0.4

Note: Only PGL22G supports CAL.

For the output current of each single-ended IO level standard, see the table below.

Table 3-2 Output Current of Single-Ended IO Level Standard

Single-Ended IO	IOL(mA)	IOH(mA)	VREF(V)	VTT(V)
	4	-4	-	-
	8	-8	-	-
LVTTL33 LVCMOS33	12	-12	-	-
2.002000	16	-16	-	-
	24	-24	-	-
	4	-4	-	-
LVCMOS25	8	-8	-	-
	12	-12	-	-

(DS02001, V3.0) 24/51

Single-Ended IO	IOL(mA)	IOH(mA)	VREF(V)	VTT(V)
	16	-16	-	-
	4	-4	-	-
LVCMOS18	8	-8	-	-
	12	-12	-	-
	4	-4	-	-
LVCMOS15	8	-8	-	-
	2	-2	-	-
LVCMOS12	6	-6	-	-
SSTL25_I	8.1	-8.1	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
SSTL25_II	16.2	-16.2	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
SSTL18_I	6.7	-6.7	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
SSTL18_II	13.4	-13.4	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
SSTL15_I SSTL15_I_CAL	7.5	-7.5	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
SSTL15_II SSTL15_II_CAL	8.8	-8.8	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
HSTL18_I	8	-8	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
HSTL18_II	16	-16	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO
HSTL15_I HSTL15_I_CAL	8	-8	0.45VCCIO 0.5VCCIO 0.55VCCIO	0.5VCCIO

Note: Only PGL22G supports CAL, PGL22GS_LPG176 L0 BANK does not support all level standards that use VREF.

(DS02001, V3.0) 25 / 51

Table 3-3 Bank Support Description for Input IO Level Standard

			Device							
	Mode	IO Standard	PGL22G		PGL12G		PGL25G/PGL5 0G /PGL50H		PGL100	Н
		Standard	BANK L0 BANK L1 BANK L2	BANKR0 BANKR1 BANKR2	BANKL0 BANKL1	BANKR0 BANKR1	BANK0 BANK2	BANK1 BANK3	BANK0 BANK2	BANK1 BANK3 BANK4 BANK5
	Single- Ended	LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33 LVTTL33 SSTL15_II SSTL15_II SSLT18_II HSLT18_II HSLT18_II HSTL18_II SSTL25_II	Supported	Supported	Supported	Supported	Support ed	Support ed	Support ed	Support ed
Input		SSTL15_I_ CAL SSTL15_II_ CAL HSTL15_I_ CAL	Supported	Supported	Not supported	Not supported	Not supporte d	Not supporte d	Not supporte d	Not supporte d
		LVPECL LVDS25 LVDS33 SLVS MINI-LVDS SUB-LVDS TMDS	Supported	Supported	Supported	Supported	Support ed	Support ed	Support ed	Support ed
	Differe ntial	RSDS PPDS SSTL15D_II SSTL15D_II SSTL18D_II SSTL18D_II SSTL25D_I SSTL25D_II HSTL15D_I HSTL18D_I HSTL18D_I	Supported	Supported	Supported	Supported	Support	Support ed	Support ed	Support
		SSTL15D_I _CAL SSTL15D_II _CAL HSTL15D_I _CAL	Supported	Supported	Not supported	Not supported	Not supporte d	Not supporte d	Not supporte d	Not supporte d

(DS02001, V3.0) 26/51

Table 3-4 Bank Support Description for Output IO Level Standard

			Device							
			PGL22G		PGL12G		PGL25G/ PGL50H	PGL50G/	PGL100H	I
	Mode	IO Standard	BANKL0 BANKL1 BANKL2	BANKR0 BANKR1 BANKR2	BANKL0 BANKL1	BANKR0 BANKR1	BANK0 BANK2	BANK1 BANK3	BANK0 BANK2	BANK1 BANK3 BANK4 BANK5
0.4	LVCMOSI	SSTL15_I SSTL15_II SSLT18_I SSTL18_II HSLT18_I HSTL18_II SSTL25_I SSTL25_II	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
put		SSTL15_II_	Supported	Supported	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported
		LVDS25 LVDS33 SLVS MINI-LVDS SUB-LVDS TMDS	Supported	Supported	Not supported	Supported	Supported	Not supported	Supported	Not supported
	Differe ntial	PPDS RSDS LVPECL SSTL15D_II SSTL15D_II SSTL18D_II SSTL25D_II SSTL25D_II HSTL15D_II HSTL15D_II	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported

(DS02001, V3.0) 27/51

Table 3-5 Bank Support Description for Bidirectional IO Level Standard

			Device							
			PGL22G		PGL12G		PGL25G/ PGL50H	PGL50G/	PGL100H	[
	Mode	IO Standard	BANK L0 BANK L1 BANK L2	BANKR0 BANKR1 BANKR2	BANKL0 BANKL1	BANKR0 BANKR1	BANK0 BANK2	BANK1 BANK3	BANK0 BANK2	BANK1 BANK3 BANK4 BANK5
	Single- Ended	LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33 LVTTL33 SSTL15_II SSTL15_II SSLT18_II SSTL18_II HSLT18_II HSTL18_II SSTL25_I	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
Bi-Dire ctional		SSTL15_I_CAL SSTL15_II_CA L HSTL15_I_CA L	Supported	Supported	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported
		LVDS25 LVDS33 MINI-LVDS SUB-LVDS SLVS TMDS	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported
	Differe ntial	PPDS RSDS SSTL15D_I SSTL15D_II SSTL18D_II SSTL18D_II SSTL25D_I SSTL25D_II HSTL15D_I HSTL18D_II HSTL18D_II LVPECL	Supported	Supported	Supported	Supported	Supported	Supported	Supported	Supported
		SSTL15D_I_C AL SSTL15D_II_C AL HSTL15D_I_C AL	Supported	Supported	Not supported	Not supported	Not supported	Not supported	Not supported	Not supported

The main electrical characteristics of the differential IO level standards are defined in the following figure, with the input and output voltage ranges as shown in Table 3-6 and Table 3-7.

(DS02001, V3.0) 28 / 51

Differential Electric al Characteristics Parameters

Figure 3-1 Differential Electrical Characteristics Parameters

Table 3-6 Parameter Requirements for Differential Input Standard

	VICM			VID	VID Input Differential Mode Voltage (V)			
Standard	Input Co	mmon Mode V	Voltage (V)	Input Di				
	min	typ	max	min	typ	max		
LVDS25	0.5	1.2	1.9	0.1	0.35	0.5		
LVDS33	0.5	1.2	1.9	0.1	0.35	0.5		
MINI-LVDS	0.4		1.9	0.2	0.4	0.6		
SUB-LVDS	0.6	0.9	1.2	0.08	0.1	0.2		
SLVS	0.07		0.3	0.08		0.46		
LVPECL	0.5		1.9	0.3		1.1		

Table 3-7 Parameter Requirements for Differential Output Standard

	VOCM			VOD				
Standard	Output Comm	on-Mode Volta	age (V)	Output Diffe	Output Differential Mode Voltage (V)			
	min	typ	max	min	typ	max		
LVDS25	1	1.25	1.4	0.25	0.35	0.45		
LVDS33	1	1.25	1.4	0.25	0.35	0.45		
MINI-LVDS	1	1.2	1.4	0.3		0.6		
SUB- LVDS	0.8	0.9	1	0.1	0.15	0.2		
SLVS	0.15	0.2	0.25	0.14	0.2	0.27		

(DS02001, V3.0) 29 / 51

Chapter 4 AC Characteristics

This chapter primarily lists the AC characteristics of each logic unit of the Logos Family FPGAs under recommended operating conditions.

4.1 IO AC Characteristics Parameters

The switching characteristics of the IOB are as shown in Table 4-1.

Table 4-1 IOB Input and Output Delays

NO Standard	T _{IOPI}		T _{IOOP}		T _{IOTP}		Unit
I/O Standard	-5	-6	-5	-6	-5	-6	Unit
LVTTL33,4mA,Slow	1.725	1.50	3.289	2.86	3.289	2.86	ns
LVTTL33,8mA,Slow	1.725	1.50	3.174	2.76	3.174	2.76	ns
LVTTL33,12mA,Slow	1.725	1.50	3.059	2.66	3.059	2.66	ns
LVTTL33,16mA,Slow	1.725	1.50	2.944	2.56	2.944	2.56	ns
LVTTL33,24mA,Slow	1.725	1.50	2.829	2.46	2.829	2.46	ns
LVTTL33,4mA,Fast	1.725	1.50	3.22	2.80	3.22	2.80	ns
LVTTL33,8mA,Fast	1.725	1.50	3.105	2.70	3.105	2.70	ns
LVTTL33,12mA,Fast	1.725	1.50	2.99	2.60	2.99	2.60	ns
LVTTL33,16mA,Fast	1.725	1.50	2.875	2.50	2.875	2.50	ns
LVTTL33,24mA,Fast	1.725	1.50	2.76	2.40	2.76	2.40	ns
LVCMOS33,4mA,Slow	1.725	1.50	3.289	2.86	3.289	2.86	ns
LVCMOS33,8mA,Slow	1.725	1.50	3.174	2.76	3.174	2.76	ns
LVCMOS33,12mA,Slow	1.725	1.50	3.059	2.66	3.059	2.66	ns
LVCMOS33,16mA,Slow	1.725	1.50	2.944	2.56	2.944	2.56	ns
LVCMOS33,24mA,Slow	1.725	1.50	2.829	2.46	2.829	2.46	ns
LVCMOS33,4mA,Fast	1.725	1.50	3.22	2.80	3.22	2.80	ns
LVCMOS33,8mA,Fast	1.725	1.50	3.105	2.70	3.105	2.70	ns
LVCMOS33,12mA,Fast	1.725	1.50	2.99	2.60	2.99	2.60	ns
LVCMOS33,16mA,Fast	1.725	1.50	2.875	2.50	2.875	2.50	ns
LVCMOS33,24mA,Fast	1.725	1.50	2.76	2.40	2.76	2.40	ns
LVCMOS25,4mA,Slow	2.07	1.80	3.404	2.96	3.404	2.96	ns
LVCMOS25,8mA,Slow	2.07	1.80	3.289	2.86	3.289	2.86	ns
LVCMOS25,12mA,Slow	2.07	1.80	3.174	2.76	3.174	2.76	ns
LVCMOS25,16mA,Slow	2.07	1.80	3.059	2.66	3.059	2.66	ns
LVCMOS25,4mA,Fast	2.07	1.80	3.335	2.90	3.335	2.90	ns
LVCMOS25,8mA,Fast	2.07	1.80	3.22	2.80	3.22	2.80	ns
LVCMOS25,12mA,Fast	2.07	1.80	3.105	2.70	3.105	2.70	ns

(DS02001, V3.0) 30 / 51

	T _{IOPI} T _{IOOP}		OOP T _{IOTP}				
I/O Standard	-5	-6	-5	-6	-5	-6	Unit
LVCMOS25,16mA,Fast	2.07	1.80	2.99	2.60	2.99	2.60	ns
LVCMOS18,4mA,Slow	3.335	2.90	3.749	3.26	3.749	3.26	ns
LVCMOS18,8mA,Slow	3.335	2.90	3.519	3.06	3.519	3.06	ns
LVCMOS18,12mA,Slow	3.335	2.90	3.289	2.86	3.289	2.86	ns
LVCMOS18,4mA,Fast	3.335	2.90	3.68	3.20	3.68	3.20	ns
LVCMOS18,8mA,Fast	3.335	2.90	3.45	3.00	3.45	3.00	ns
LVCMOS18,12mA,Fast	3.335	2.90	3.22	2.80	3.22	2.80	ns
LVCMOS15,4mA,Slow	4.14	3.60	3.864	3.36	3.864	3.36	ns
LVCMOS15,8mA,Slow	4.14	3.60	3.634	3.16	3.634	3.16	ns
LVCMOS15,4mA,Fast	4.14	3.60	3.795	3.30	3.795	3.30	ns
LVCMOS15,8mA,Fast	4.14	3.60	3.565	3.10	3.565	3.10	ns
LVCMOS12,2mA,Slow	7.36	6.40	5.129	4.46	5.129	4.46	ns
LVCMOS12,6mA,Slow	7.36	6.40	4.209	3.66	4.209	3.66	ns
LVCMOS12,2mA,Fast	7.36	6.40	5.06	4.40	5.06	4.40	ns
LVCMOS12,6mA,Fast	7.36	6.40	4.14	3.60	4.14	3.60	ns
SSTL25_I	1.38	1.20	3.22	2.80	3.22	2.80	ns
SSTL25_II	1.38	1.20	3.22	2.80	3.22	2.80	ns
SSTL18_I	1.495	1.30	3.45	3.00	3.45	3.00	ns
SSTL18_II	1.495	1.30	3.45	3.00	3.45	3.00	ns
SSTL15_I	1.84	1.60	3.45	3.00	3.45	3.00	ns
SSTL15_II	1.84	1.60	3.45	3.00	3.45	3.00	ns
SSTL135	2.07	1.80	3.795	3.30	3.795	3.30	ns
HSTL18_I	1.495	1.30	3.45	3.00	3.45	3.00	ns
HSTL18_II	1.495	1.30	3.45	3.00	3.45	3.00	ns
HSTL15_I	1.84	1.60	3.45	3.00	3.45	3.00	ns
LVDS25	1.38	1.20	2.76	2.40	2.76	2.40	ns
LVDS33	1.38	1.20	2.76	2.40	2.76	2.40	ns
MINI_LVDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
SUB_LVDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
SLVS	1.38	1.20	2.76	2.40	2.76	2.40	ns
TMDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
PPDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
LVPECL	1.38	1.20	2.76	2.40	2.76	2.40	ns
RSDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
BLVDS	1.38	1.20	2.76	2.40	2.76	2.40	ns
SSTL25D_I	1.38	1.20	3.22	2.80	3.22	2.80	ns
SSTL25D_II	1.38	1.20	3.22	2.80	3.22	2.80	ns
SSTL18D_I	1.495	1.30	3.45	3.00	3.45	3.00	ns

(DS02001, V3.0) 31/51

I/O Standard	T _{IOPI}		T _{IOOP}		T _{IOTP}		- Unit
1/O Stanuaru	-5	-6	-5	-6	-5	-6	UIII
SSTL18D_II	1.495	1.30	3.45	3.00	3.45	3.00	ns
SSTL15D_I	1.84	1.60	3.45	3.00	3.45	3.00	ns
SSTL15D_II	1.84	1.60	3.45	3.00	3.45	3.00	ns
SSTL135D	2.3	2.00	3.795	3.30	3.795	3.30	ns
HSTL18D_I	1.495	1.30	3.45	3.00	3.45	3.00	ns
HSTL18D_II	1.495	1.30	3.45	3.00	3.45	3.00	ns
HSTL15D_I	1.84	1.60	3.45	3.00	3.45	3.00	ns

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

 T_{IOPI} : Delay from the IOB Pad through IBUF to the DIN of the IOBUFFER.

 T_{IOOP} : Delay from the DO of the IOBUFFER through OBUF to the IOB Pad.

 T_{IOTP} : Delay from the TO of the IOBUFFER through OBUF to the IOB Pad.

Table 4-2 Output Switching Characteristics when IOB tri-state is Enabled

	Crmbol	Characteristic Denomentary Description	Speed Grade	Unit	
Symbol	Characteristic Parameter Description	-5	-6		
Ī	T _{IOTPHZ}	T input to Pad high-impedance	3.105	2.7	ns

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report. T_{IOTPHZ} parameter: Delay from the TO of the IOBUFFER through OBUF to the IOB Pad when tri-state is enabled.

The AC characteristics of the IOL are as shown in Table 4-3 to Table 4-5.

Table 4-3 IOL Register AC Parameters

Cymab al	A.C. Characteristics Parameters Description		Value		Unit	C
Symbol	AC Characteristics Parameters I	AC Characteristics Parameters Description				Comment
		Setup Time/	Hold Time			
	CE -> CLK setup/hold	Rising Edge	0.151/-0.051	0.131/-0.044	ns	
		Falling Edge	0.074/-0.036	0.064/-0.031	ns	
	LRS -> CLK setup/hold	Rising Edge	0.319/-0.114	0.277/-0.099	ns	
TEE		Falling Edge	0.251/-0.102	0.218/-0.089	ns	
IFF	DIN -> CLK setup/hold	Rising Edge	0.061/-0.014	0.053/-0.012	ns	
		Falling Edge	-0.005/-0.003	-0.004/-0.003	ns	
		Combinatori	al Logic Delay			
	DIN S DV DATA DD	0 -> 1	0.173	0.150	ns	Bypass
	DIN -> RX_DATA_DD	1 -> 0	0.173	0.150	ns	Mode
		Sequential Delays Timing Delay				

(DS02001, V3.0) 32 / 51

Cymab ol	A.C. Characteristics Devenuetous	Dogovintion	Value		Ti-a!4	Commont
Symbol	AC Characteristics Parameters	Description	-5	-6	Unit	Comment
	DIN DV DATA	0 -> 1	0.273	0.237	ns	Latch
	DIN -> RX_DATA	1 -> 0	0.268	0.233	ns	Mode
		0 -> 1	0.413	0.359	ns	
	CLK -> Q Output	1 -> 0	0.434	0.377	ns	
	LRS -> Q Output	0 -> 1	0.620	0.539	ns	
		1 -> 0	0.620	0.539	ns	
		Setup Time/	Hold Time			
	TX_DATA -> CLK setup/hold	Rising Edge	0.164/-0.053	0.143/-0.046	ns	
		Falling Edge	0.085/-0.037	0.074/-0.032	ns	
	CE -> CLK setup/hold	Rising Edge	0.194/-0.067	0.169/-0.058	ns	
		Falling Edge	0.141/-0.060	0.123/-0.052	ns	
	TG CTDL . CLV . A 11	Rising Edge	0.140/-0.067	0.122/-0.058	ns	
OFF/TSFF	TS_CTRL -> CLK setup/hold	Falling Edge	0.085/-0.061	0.074/-0.053	ns	
		Sequential I	Delays Timing D	elay		
	TX DATA -> DO	0 -> 1	0.416	0.362	ns	Latch
	IA_DAIA -> DO	1 -> 0	0.424	0.369	ns	Mode
	CLV > OFF O/TSEF O	0 -> 1	0.415	0.361	ns	
	CLK -> OFF Q/TSFF Q	1 -> 0	0.426	0.370	ns	
	LRS -> OFF Q Output/TSFF Q	0 -> 1	0.641	0.557	ns	
	Output	1 -> 0	0.641	0.557	ns	

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report..

Table 4-4 Input Deserializer Switching Parameters

C-mah al			Speed Grade	TT .*4		
Symbol	Characteristic Parameter Description			-5	-6	Unit
		Signal Setup Time	Hold Time		•	
	PADI -> RCLK		Rising Edge	-0.001/0.025	-0.001/0.022	ns
			Falling Edge	0.012/0.016	0.010/0.014	ns
IDDR		Sequential Delays	Timing Del	ay		
	RCLK -> Q Side		Rising Edge	0.298	0.259	ns
			Falling Edge	0.302	0.263	ns
	Maximum Frequency of RCLK			266	266	MHz

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

(DS02001, V3.0) 33 / 51

Table 4-5 Output Serializer Switching Parameters

Ch al	Chanactanistic Danameter Description		Speed Grade	TT24		
Symbol	Characteristic Pa	Characteristic Parameter Description			-6	Unit
		Signal Setup Time	/Hold Time			
	D -> RCLK		Rising Edge	0.240/-0.109	0.209/-0.095	ns
	D-> KCLK		Falling Edge	0.208/-0.041	0.181/-0.036	ns
	T -> RCLK		Rising Edge	0.254/-0.112	0.221/-0.097	ns
ODDR			Falling Edge	0.210/-0.041	0.183/-0.036	ns
		Sequential Delays	Timing Del	ay		
	RCLK -> PADO Side/PADT Side		Rising Edge	0.728	0.633	ns
			Falling Edge	0.784	0.682	ns
	Maximum Frequency of RCLK			266	266	MHz

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

CLM AC Characteristics Parameters

Table 4-6 CLM Module AC Characteristics

NO	Danier de Danier d'au	Value	D	Unit				
NO.	Parameter Description	-5	-6	Property	Unit			
Logic	Logic Delay							
1	LUT5 input Ax/Bx/Cx/Dx to Y0/Y1/Y2/Y3 delay	0.590	0.513	Max.	ns			
2	LUT5 input Ax/Bx/Cx/Dx and M0/M1 to Y6AB/Y6CD delay	0.449	0.39	Max.	ns			
3	LUT5 input Ax/Bx/Cx/Dx and M0/M1/M2 to Y1 (LUT7) delay	0.621	0.54	Max.	ns			
4	LUT5 input Ax/Bx/Cx/Dx and M0/M1/M2/M3 to Y3 (LUT8) delay	0.673	0.585	Max.	ns			
5	LUT input Ax to cout delay	0.426	0.37	Max.	ns			
6	LUT input Bx to cout delay	0.445	0.387	Max.	ns			
7	LUT input Cx to cout delay	0.501	0.436	Max.	ns			
8	LUT input Dx to cout delay	0.496	0.431	Max.	ns			
9	CIN input to cout delay	0.231	0.201	Max.	ns			
10	CIN input to Y0/Y1/Y2/Y3 delay	0.319	0.277	Max.	ns			
Timir	ng Parameter							
11	CLK input with respect to TCO of Q0/Q1/Q2/Q3	0.300	0.261	Max.	ns			
12	CLK input with respect to TCO of Y0 (QP0)/Y2 (QP1)	0.374	0.325	Max.	ns			
13	Ax/Bx/Cx/Dx with respect to DFF setup/hold	0.056/-0.030	0.049/-0.026	Min.	ns			
14	M with respect to DFF setup/hold	0.029/-0.003	0.025/-0.003	Min.	ns			

(DS02001, V3.0) 34/51

NO.	Parameter Description	Value		Property	Unit
15	CE with respect to DFF setup/hold	0.213/-0.186	0.185/-0.162	Min.	ns
16	RS with respect to DFF setup/hold	0.213/-0.186	0.185/-0.162	Min.	ns
17	CIN with respect to DFF setup/hold	0.030/-0.005	0.0263/-0.004	Min.	ns
18	SHIFTIN with respect to DFF setup/hold	0.213/-0.186	0.185/-0.162	Min.	ns
19	Minimum pulse width of RS	1.035	0.9	Min.	ns
Distri	buted RAM Timing Parameters				
20	CLK -> Y0/Y1/Y2/Y3 mem read delay	0.828	0.72	Max.	ns
21	CLK -> RS (as WE) timing check, setup/hold	0.213/-0.186	0.185/-0.162	Min.	ns
22	CLK -> M0/M1/M2/M3 address timing check, setup/hold	-0.239/0.267	-0.208/0.232	Min.	ns
23	CLK -> AD/BD/CD/DD data timing check, setup/hold	-0.239/0.267	-0.208/0.232	Min.	ns

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

DRM AC Characteristics Parameters

Table 4-7 DRM Module AC Characteristics

Cb al	AC Characteristics Parameters	Value		D	TI24
Symbol	Description	-5	-6	Property	Unit
Tco_9k	CLKA/CLKB->QA/QB (Output register disabled, 9K mode)	2.682	2.351	Max.	ns
Tco_9k_reg	CLKA/CLKB->QA/QB (Output register enabled, 9K mode)	0.796	0.698	Max.	ns
Tco_18k	CLKA/CLKB->QA/QB (Output register disabled, 18K mode & FIFO mode)	2.682	2.351	Max.	ns
Tco_18k_reg	CLKA/CLKB->QA/QB (Output register enabled, 18K mode & FIFO mode)	0.796	0.698	Max.	ns
Tco_flag_full	CLKA->FULL(ALMOST_FULL) Flag	1.205	1.058	Max.	ns
Tco_flag_empty	CLKB->EMPTY(ALMOST_EMPTY) Flag	0.874	0.766	Max.	ns
Tsu_9k_ad/ Thd_9k_ad	Address Input Setup/Hold Time (9K mode)	-0.150/0.21 2	-0.130/0.18 4	Min.	ns
Tsu_9k_d/ Thd_9k_d	Data Input Setup/Hold Time (9K mode)	-0.110/0.17 1	-0.096/0.14 9	Min.	ns
Tsu_9k_ce/ Thd_9k_ce	CE Input Setup/Hold Time (9K mode)	0.081/-0.02	0.070/-0.01	Min.	ns
Tsu_9k_we/ Thd_9k_we	WE Input Setup/Hold Time (9K mode)	0.032/-0.03	0.028/-0.02 6	Min.	ns
Tsu_9k_be/ Thd_9k_be	BE Input Setup/Hold Time (9K mode)	-0.036/0.09 8	-0.031/0.08 5	Min.	ns
Tsu_9k_oe/ Thd_9k_oe	OCE Input Setup/Hold Time (9K mode)	-0.046/0.09 9	-0.040/0.08 6	Min.	ns
Tsu_9k_rst/ Thd_9k_rst	Synchronous Reset Input Setup/Hold Time (9K mode)	0.025/0.026	0.022/0.023	Min.	ns
Tsu_18k_ad/ Thd_18k_ad	Address Input Setup/Hold Time (18K mode)	-0.225/0.28 8	-0.196/0.25 0	Min.	ns

(DS02001, V3.0) 35/51

Cymah ol	AC Characteristics Parameters	Value		Duomanter	TI-a:4
Symbol	Description	-5	-6	Property	Unit
Tsu_18k_d/ Thd_18k_d	Data Input Setup/Hold Time (18K mode)	-0.118/0.18 1	-0.103/0.15 7	Min.	ns
Tsu_18k_ce/ Thd_18k_ce	CE Input Setup/Hold Time (18K mode)	0.070/-0.01	0.061/-0.01	Min.	ns
Tsu_18k_we/ Thd_18k_we	WE Input Setup/Hold Time (18K mode)	0.046/0.015	0.040/0.013	Min.	ns
Tsu_18k_be/ Thd_18k_be	BE Input Setup/Hold Time (18K mode)	0.048/0.014	0.042/0.012	Min.	ns
Tsu_18k_oe/ Thd_18k_oe	OCE Input Setup/Hold Time (18K mode)	-0.064/0.10 6	-0.056/0.09 2	Min.	ns
Tsu_18k_rst/ Thd_18k_rst	Synchronous Reset Input Setup/Hold Time (18K mode)	0.044/0.009	0.038/0.008	Min.	ns
Tsu_fifo_wctl/ Thd_fifo_wctl	WREOP(WRERR) Input Setup/Hold Time	0.095/-0.04 3	0.083/-0.03 7	Min.	ns
Tsu_fifo_rctl/ Thd_fifo_rctl	RDNAK Input Setup/Hold Time	0.067/-0.01 5	0.058/-0.01	Min.	ns
Tmpw_norm	CLKA/CLKB MPW (NW/TW)	1.328	1.643	Min.	ns
Tmpw_rbw	CLKA/CLKB MPW (RBW)	1.772	2.350	Min.	ns
Tmpw_fifo	CLKA/CLKB MPW (FIFO)	2.018	1.766	Min.	ns

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

4.2 APM AC Characteristics Parameters

Table 4-8 APM Module AC Characteristics

AC Characte	ristics Parameters	Pre-	M W.P.	Post-	Value		TT . *4
Description		adder	Multiplier	adder	-5	-6	Unit
	Data/Control Pin to Input Res	gister CL	K Setup and I	Hold Tim	e		
Z -> preadd ur	nit register CLK setup/hold	Yes	NA	NA	3.034/-0.819	2.638/-0.712	ns
X -> preadd ur	nit register CLK setup/hold	Yes	NA	NA	2.995/-0.605	2.604/-0.526	ns
Z-> input unit	register CLK setup/hold	NA	NA	NA	0.978/-0.101	0.850/-0.088	ns
X-> input unit	register CLK setup/hold	NA	NA	NA	1.002/-1.139	0.871/-0.99	ns
Y-> input unit	register CLK setup/hold	NA	NA	NA	1.007/-0.099		
MODEX-> prosetup/hold	MODEX-> preadd unit register CLK setup/hold		NA	NA	1.635/-0.423	1.422/-0.368	ns
	Data Pin to Pipeline Register	CLK Set	up and Hold	Time			
Y-> Multiplier	unit register CLK setup/hold	NA	Yes	No	2.198/-0.438	1.911/-0.381	ns
X-> Multiplier setup/hold	r unit register CLK	Yes	Yes	No	2.777/-0.682	2.415 / -0.593	ns
X-> Multiplier unit register CLK setup/hold		No	Yes	No	2.213/-0.509	1.924 / -0.443	ns
Z-> Multiplier	unit register CLK setup/hold	Yes	Yes	No	2.819/-0.759	2.451/-0.660	ns
	Data/Control Pin to Output R	egister C	LK Setup and	l Hold Ti	me		
Y-> postadd u	nit register CLK setup/hold	NA	Yes	Yes	2.997/-0.783	2.606/-0.681	ns

(DS02001, V3.0) 36/51

AC Characte	ristics Parameters	Pre-	M14:1:	Post-	Value		T 1 24
Description		adder	Multiplier	adder	-5	-6	Unit
X-> postadd u	nit register CLK setup/hold	NO	Yes	Yes	3.039/-0.806	2.643/-0.701	ns
X-> postadd u	nit register CLK setup/hold	Yes	Yes	Yes	3.598/-0.966	3.129/-0.840	ns
Z-> postadd u	nit register CLK setup/hold	Yes	Yes	Yes	3.640/-1.071	3.165/-0.931	ns
Z-> postadd u	nit register CLK setup/hold	NA	NA	Yes	3.120/-0.477	2.713/-0.415	ns
CPI -> postado setup/hold	d unit register CLK	NA	NA	Yes	2.530/-0.260	2.200/-0.226	ns
	From Each Stage of Register	CLK to A	APM Output I	Pin Time			
postadd unit re	egister CLK ->P output	NA	NA	NA	1.114	0.884	ns
Multiplier uni	t register CLK -> Poutput	NA	NA	Yes	1.110	0.881	ns
pretadd unit re	egister CLK -> DPO output	Yes	Yes	Yes	3.224	2.559	ns
Z input unit re	gister CLK -> DPO output	No	No	Yes	2.177	1.728	ns
	From Data/Control Pin to AP	M Outpu	t Pin Combin	ational L	ogic Delay		
Y-> Poutput		NA	Yes	NO	3.117	2.474	ns
Y->P output		NA	Yes	Yes	3.866	3.068	ns
X ->P output		No	Yes	No	2.638	2.094	ns
X ->P output		Yes	Yes	NO	3.117	2.474	ns
X -> Poutput		Yes	Yes	Yes	3.866	3.068	ns
Z -> P output		Yes	Yes	Yes	3.866	3.068	ns
CPI -> P outpo	ıt	NA	NA	Yes	2.655	2.107	ns

Note: The parameters in the table are only applicable to PGL22G, PGL25G; for parameters of other devices in the Logos Family, please refer to the PDS timing report.

4.3 PLL AC Characteristics Parameters

Table 4-9 PLL AC Characteristics

Parameter	Description	Min.	Тур.	Max.	Unit
Fin	PLL Input Reference Frequency	5		625	MHz
t _{RST_PLL}	PLL Initialization High-Level Reset Signal Width				MS
F_{pfd}	PFD Input Frequency			320	MHz
F_{sw}	Frequencies supported by PLL input reference clock when the auto-switching function of the input clock is supported			320	MHz
Fout	PLL Output Clock Frequency	1.172		625	MHz
F _{vco}	VCO Operating Range	600		1250	MHz
t _{fpa}	Fine Adjustment Phase Error (All Settings for CLKOUT1)	-50	0	50	ps
t_{OPW}	Output Clock Width (High or Low)	0.8			ns
$t_{ m OPIIT}$	Output Clock Period Jitter (fOUT >= 100MHz)			300	ps p-p
01011	Output Clock Period Jitter (fOUT < 100MHz)			0.03	UIPP

(DS02001, V3.0) 37/51

Parameter	Description	Min.	Тур.	Max.	Unit
	Output Clock Cycle-to-Cycle Jitter (fOUT >=100MHz)			300	ps p-p
t _{OPJIT_cyc}	Output Clock Cycle-to-Cycle Jitter (fOUT < 100MHz)			0.03	UIPP
t_{LOCK}	Lock time(5 – 320 MHz)			200	us
Input Clock Red	quirements				
	Input Clock Cycle-to-Cycle Jitter (fPFD >=100MHz)			0.15	UIPP
t _{IPJIT_cyc}	Input Clock Cycle-to-Cycle Jitter (fPFD <100MHz)			750	ps p-p
IN DUTY CYCLE	Input Clock Duty Cycle	40%		60%	-
OUT DUTY CYCLE	Output Clock Duty Cycle (CLKOUT1, at 50% Setting)	45%	50%	55%	-

4.4 DQS AC Characteristics Parameters

Single-step phase offset values of DQS phase adjustment are shown in the following table:

Table 4-10 DQS AC Characteristics

Cross had	Smood Crods	AC Characterist	ics Parameters D	escription	TT	
Symbol	Speed Grade	Min.	Тур.	Max.	Unit	
DQS	-6	15	25	34	ps	

4.5 Global Clock Network AC Characteristics Parameters

Table 4-11 Global Clock Network AC Characteristics

Symbol	Description	Maximum Frequency		Maximum SKEW	
Symbol	Description	-5	-6	-5	-6
GLOBAL CLK	Global Clock Network	340MHZ	400MHZ	235PS	200PS

(DS02001, V3.0) 38/51

4.6 Regional Clock Network AC Characteristics Parameters

Table 4-12 Regional Clock Network AC Characteristics

Symbol	Description	Maximum Frequency -5 -6		Maximum SKEW	
	Description			-5	-6
REGIONAL CLK	Regional Clock Network	340MHZ	400MHZ	235PS	200PS

4.7 IO Clock Network AC Characteristics Parameters

Table 4-13 IO Clock Network AC Characteristics

Cymbol	Description	Maximum Frequency		Maximum SKEW	
Symbol	Description	-5	-6 -5 -6		-6
IO CLK	IO Clock Network	400MHZ	470MHZ	71PS	60PS

4.8 Configuration and Programming of AC Characteristics Parameters

4.8.1 Power-up Timing Characteristics

Figure 4-1 Device Power-up Timing Characteristics

Note: Pulling "VCC/VCCAUX/VCCIOCFG" signal high indicates that all three power supplies have been powered up. If the recommended power-up sequence VCC>VCCAUX/VCCIOCFG is followed, then VCCAUX/VCCIOCFG has been powered up at the starting point of T_{POR} .

Figure 4-2 Device Reset and Reconfiguration of Timing Characteristics

(DS02001, V3.0) 39/51

Table 4-14 Power-up Timing Characteristics Parameters

Symbol	Description	Value	Property	Unit
$T_{ m PL}$	Program Latency	4.5	Max.	ms
T_{POR}	Power-up Reset	15	Max.	ms
T _{ICCK}	CFG_CLK Output Delay	400	Max.	ns
T _{RSTN}	RST_N Low Pulse Width	800	Min.	ns

Note: T_{ICCK} indicates the latest time by which the peer device, namely Flash, must ensure data can be read.

4.8.2 AC Characteristics of Each Download Mode

Table 4-15 AC Characteristics of Download Modes Supported by Logos Family FPGAs

Symbol	Symbol	AC Characteristics Parameters Description	Value	Unit	Property
	F_{TCK}	TCK Frequency	15	MHz	Max.
	T _{TCKH}	TCK Low Pulse Width	33	ns	Min.
	T _{TCKL}	TCK High Pulse Width	33	ns	Min.
JTAG	T _{TMSSU} /T _{TDISU}	TMS/TDI Setup Time (TCK Rising Edge)	4	ns	Min.
	T _{TMSH}	TMS Hold Time (TCK Rising Edge)	2	ns	Min.
	T _{TDIH}	TDI Hold Time (TCK Rising Edge)	7	ns	Min.
	T _{TCK2TDO}	TCK Falling Edge to TDO Output Valid	7	ns	Max.
	T.	CFG_CLK Frequency	80	MHz	Max.
	F _{SSCLK}	CFG_CLK Frequency (Daisy Chain)	50	MHZ	Max.
	T _{SSCLKL}	CFG_CLK Low Pulse Width	6.25	ns	Min.
	T_{SSCLKH}	CFG_CLK High Pulse Width	6.25	ns	Min.
Slave	T _{SSINIT2CLK}	INIT_FLAG_N Rising Edge to CLK Valid Time	200	us	Min.
Serial	T _{SSDSU}	D[1] Setup Time (CFG_CLK Rising Edge)	2.5	ns	Min.
	T _{SSDH}	D[1] Hold Time (CFG_CLK Rising Edge)	1.5	ns	Min.
	T _{SSDSUF}	D[1] Setup Time (CFG_CLK Falling Edge)	2.5	ns	Min.
	T_{SSDHF}	D[1] Hold Time (CFG_CLK Falling Edge)	1.5	ns	Min.
	T _{SSCLK2DOUT}	CFG_CLK Falling Edge to DOUT_BUSY Output Valid	2/7.5	ns	Min./Max.
	F _{SPCLK}	CFG_CLK Frequency	50	MHz	Max.
	T _{SPCLKL}	CFG_CLK Low Pulse Width	10	ns	Min.
	T_{SPCLKH}	CFG_CLK High Pulse Width	10	ns	Min.
	T _{SPINIT2CS}	INIT_FLAG_N Rising Edge to CS_N Pull Low Time	200	us	Min.
Slave	T_{SPDSU}	D[31:0] Setup Time (CFG_CLK Rising Edge)	4.5	ns	Min.
Parallel	T_{SPDH}	D[31:0] Hold Time (CFG_CLK Rising Edge)	1.5	ns	Min.
	T _{SPCRSU}	CS_N/RDWR_N Setup Time (CFG_CLK Rising Edge)	3.5	ns	Min.
	T _{SPCRH}	CS_N/RDWR_N Hold Time (CFG_CLK Rising Edge)	1.5	ns	Min.
	T _{SPCLK2D}	CFG_CLK Rising Edge to D[31:0] Output Valid	9	ns	Max.

(DS02001, V3.0) 40 / 51

	Symbol	AC Characteristics Parameters Description	Value	Unit	Property
	$T_{SPCS2BUSY} \\$	CFG_CLK Rising Edge to BUSY Output Valid	8	ns	Max.
	T _{SPCS2CSO}	CS_N to CSO_N Output Delay	7	ns	Max.
	F _{SSPICLK}	CFG_CLK Frequency	100	MHz	Max.
	$T_{SSPICLKL}$	CFG_CLK Low Pulse Width	2.5	ns	Min.
	T _{SSPICLKH}	CFG_CLK High Pulse Width	2.5	ns	Min.
Slave	T _{SSPIINIT2CS}	INIT_FLAG_N Rising Edge to CS_N Pull Low Time	200	us	Min.
SPI	T _{SSPICDSU}	CS_N/D[3]/D[0] Setup Time (CFG_CLK Rising Edge)	3	ns	Min.
	T _{SSPICDH}	CS_N/D[3]/D[0] Hold Time (CFG_CLK Rising Edge)	1	ns	Min.
	$T_{SSPICLK2D} \\$	CFG_CLK Falling Edge to d[1] Output Valid	8	ns	Max.
	T _{SSPICLK2DO}	CFG_CLK Falling Edge to daisy_o Output Valid	8	ns	Max.
	F _{MCLK}	CFG_CLK Frequency	50	MHz	Max.
	T _{MCLKD}	CFG_CLK Duty Cycle	45%/55%		Min./Max.
	F _{MCLKTOL}	CFG_CLK Frequency Deviation	20%		Max.
	T _{MDSU}	D[7:0] Setup Time (CFG_CLK Rising Edge)	8	ns	Min.
Master	T_{MDH}	D[7:0] Hold Time (CFG_CLK Rising Edge)	0	ns	Min.
SPI	T _{MDSUF}	D[7:0] Setup Time (CFG_CLK Falling Edge)	8	ns	Min.
511	$T_{ m MDHF}$	D[7:0] Hold Time (CFG_CLK Falling Edge)	0	ns	Min.
	T _{MCLK2D}	CFG_CLK Falling Edge to d[0]/d[4] Output Valid	2	ns	Max.
	T _{MCLK2CS}	CFG_CLK Falling Edge to fcs_n/fcs2_n Output Valid	2	ns	Max.
	T _{MCLK2DOUT}	CFG_CLK Falling Edge to daisy_o Output Valid	1	ns	Max.
		CFG_CLK Frequency (Asynchronous Low Speed)	10	MHz	Max.
	E.	CFG_CLK Frequency (Asynchronous High Speed)	33	MHz	Max.
	F_{MBCLK}	CFG_CLK Frequency (Synchronous Low Speed)	25	MHz	Max.
		CFG_CLK Frequency (Synchronous High Speed)	50	MHz	Max.
-	T _{MBCLKD}	CFG_CLK Duty Cycle	45%/55%		Min./Max.
	F _{MBCLKTOL}	CFG_CLK Frequency Deviation	20%		Max.
Master	T_{MBDSU}	d[15:0] Setup Time (CFG_CLK Rising Edge)	8	ns	Min.
BPI	T_{MBDH}	d[15:0] Hold Time (CFG_CLK Rising Edge)	0	ns	Min.
	T _{MBDSUF}	d[15:0] Setup Time (CFG_CLK Falling Edge)	8	ns	Min.
	T_{MBDHF}	d[15:0] Hold Time (CFG_CLK Falling Edge)	0	ns	Min.
	T _{MBCLK2D}	CFG_CLK Falling Edge to d[31:0]/adr[31:16] Output Valid	3	ns	Max.
	T _{MBCLK2F}	CFG_CLK Falling Edge to fce_n/fwe_n/foe_n/adv_n Output Valid	2	ns	Max.
Ī	T _{MBCLK2DO}	CFG_CLK Falling Edge to daisy_o Output Valid	1	ns	Max.
Internal	F _{IPCLK}	IPAL_CLK Frequency	100	MHz	Max.
Parallel	T _{IPCLKL}	IPAL_CLK Low Pulse Width	2.5	ns	Min.
Slave	T _{IPCLKH}	IPAL_CLK High Pulse Width	2.5	ns	Min.
Mode	T _{IPDSU}	IPAL_CS_N/IPAL_RDWR_N/IPAL_DIN[31:0]	2	ns	Min.

(DS02001, V3.0) 41/51

Symbol	Symbol	AC Characteristics Parameters Description	Value	Unit	Property
		Setup Time (IPAL_CLK Rising Edge)			
	T_{IPDH}	IPAL_CS_N/IPAL_RDWR_N/IPAL_DIN[31:0] Hold Time (IPAL_CLK Rising Edge)	1	ns	Min.
	T _{IPCLK2D}	IPAL_CLK Rising Edge to IPAL_DOUT[31:0]/IPAL_BUSY Output Valid	4	ns	Max.
	T _{IPCLK2V}	2	ns	Max.	
	F _{IMCLK}	CFG_I_FCLK Frequency	70	MHz	Max.
	T _{IMCLKD}	CFG_I_FCLK Duty Cycle	45%/55%		Min./Max.
	F _{IMCLKTOL}	CFG_I_FCLK Frequency Deviation	20%		Max.
Master	T _{IMDSU}	i_d[3:0] Setup Time (CFG_I_FCLK Rising Edge)	6	ns	Min.
Internal SPI	T _{IMDH}	i_d[3:0] Hold Time (CFG_I_FCLK Rising Edge)	0	ns	Min.
Mode	T _{IMDSUF}	i_d[3:0] Setup Time (CFG_I_FCLK Falling Edge)	6	ns	Min.
	T _{IMDHF}	i_d[3:0] Hold Time (CFG_I_FCLK Falling Edge)	0	ns	Min.
	T _{IMCLK2D}	CFG_I_FCLK Falling Edge to i_d[0] Output Valid	1	ns	Max.
	T _{IMCLK2CS}	CFG_I_FCLK Falling Edge to i_fcs_n Output Valid	1	ns	Max.

(DS02001, V3.0) 42 / 51

Chapter 5 Performance Parameters

This chapter lists the performance characteristics of common applications for Logos Family FPGAs.

5.1 LVDS Performance Parameters

Table 5-1 LVDS Performance

Description	IO Dogovenog	Maximum Rate	Unit	
Description	IO Resources	-5	-6	Omt
DDR LVDS Transmitter	OSERDES(DATA_WIDTH =4,7TO 8)	680	800	Mbps
DDR LVDS Receiver	ISERDES(DATA_WIDTH =4,7 TO 8)	680	800	Mbps

5.2 MIPI Performance Parameters

Table 5-2 MIPI Performance

Deganintion	Maximum Rate	Unit	
Description	-5	-6	Unit
MIPI Receiver	680	800	Mbps
MIPI Transmitter	680	800	Mbps

5.3 Memory Interface Performance Parameters

Table 5-3 Memory Interface Performance

Symbol	Description	Maximum Rate of Hard Core		Maximum Rate of Soft Core		Unit	
	1	-5	-6	-5	-6		
DDR3	DDR3 Interface	667	800	667	800	Mbps	
DDR2	DDR2 Interface		667			Mbps	
DDR	DDR Interface		533			Mbps	
LPDDR	LPDDR Interface		300			Mbps	

(DS02001, V3.0) 43 / 51

5.4 DRM Performance Parameters

Table 5-4 DRM Performance

Symbol	Mode Description	Maximum Performance (MHz)		
•	•	-5	-6	
F _{max_DRM9K_NW}	DRM (NW mode & read register enabled) @ 9K memory mode	255	300	
F _{max_DRM9K_TW}	DRM (TW mode & read register enabled) @ 9K memory mode	255	300	
$F_{max_DRM9K_RBW}$	DRM (RBW mode & read register enabled) @ 9K memory mode	170	200	
F _{max_DRM18K_NW}	DRM (NW mode & read register enabled) @ 18K memory mode	255	300	
F _{max_DRM18K_TW}	DRM (TW mode & read register enabled) @ 18K memory mode	255	300	
F _{max_DRM18K_RBW}	DRM (RBW mode & read register enabled) @ 18K memory mode	170	200	
F _{max_DRM_AFIFO}	DRM (asynchronous FIFO mode & read register enabled)	233	275	
F _{max_DRM_SFIFO}	DRM (synchronous FIFO mode & read register enabled)	233	275	

5.5 APM Performance Parameters

Table 5-5 APM Performance

Condition	Maximum Performance (MHz)			
Condition	-5	-6		
All registers used (using registers at every stage of APM)	300	400		
Only use INREG and PREG (only use APM's input and output registers)	170	200		
No register used (no registers used)	85	100		

(DS02001, V3.0) 44/51

Chapter 6 ADC Characteristics Parameters

This chapter mainly introduces the characteristic parameters of the ADC Hard core for Logos Family FPGAs, as shown in Table 6-1.

Table 6-1 ADC Hard Core Characteristics

Parameter	Description	Min.	Тур.	Max.	Unit
VCCAUX_A	Analogue Supply Voltage	2.97	3.3	3.63	V
VCC	Digital Supply Voltage	0.99	1.1	1.21	V
IVCCAUXA	Analogue Supply Current		1.5		mA
Resolution	Resolution		10		bit
C1- D-t-	1M Mode		1		MSPS
Sample Rate	Default Scan Mode			0.015	MSPS
Channel	Channel			12	
Voltage Reference	Reference Voltage (Internal or External)		2.5		V
Offset Error	Offset Error (Bipolar)		<u>+4</u>		LSB
Gain Error	Gain Error (External Reference Voltage)		±0. 3		%FS
DNL	Differential Nonlinearity (when FS>=1V)		±1		LSB
INL	Integeral Nonlinear		±3		LSB
SNR	Signal to Noise Ratio (Bipolar Fully Differential Mode)	52			dB
Temperature Measurement	Temperature Sensing		-40~85 ℃: ±4; 85~105 ℃:±6; 105~125 ℃: ±8;		C

Note: The ADC's 1.1V digital power supply draws less current.

(DS02001, V3.0) 45 / 51

Chapter 7 High-Speed Serial Transceiver (HSST) Characteristics

This chapter mainly introduces the characteristics of the HSST Hard Core for Logos Family FPGAs, including absolute voltage/current rating limits, recommended operating conditions, AC/DC characteristics, and features under typical protocol operating modes.

7.1 HSST Hard Core Absolute Voltage Limits

Table 7-1 HSST Absolute Voltage Limits

Symbol	Min.	Max.	Unit	Description
VCCA_LANE	-0.16	1.32	V	HSST analogue power supply 1.2V voltage
VCCA_PLL_0	-0.16	1.32	V	HSST PLL analogue power supply 1.2V voltage
VCCA_PLL_1	-0.16	1.32	V	HSST PLL analogue power supply 1.2V voltage

Note: Exceeding the above ratings limits may cause permanent damage to the device.

7.2 Recommended Operating Conditions for HSST Hard Core

The following table shows the recommended operating voltages for the HSST Hard core of Logos Family FPGAs.

Table 7-2 Recommended Operating Conditions for HSST Hard Core

Symbol	Min.	Тур.	Max.	Unit	Description
Voltage Values					
VCCA_LANE	1.14	1.2	1.26	V	HSST analogue power supply 1.2V voltage
VCCA_PLL_0	1.14	1.2	1.26	V	HSST PLL analogue power supply 1.2V voltage
VCCA_PLL_0	1.14	1.2	1.26	V	HSST PLL analogue power supply 1.2V voltage

7.3 HSST Hard Core DC Characteristics Parameters

Table 7-3 HSST Hard Core DC Characteristics

Symbol	Min.	Тур.	Max.	Unit	Condition	Description	
Input and Output Signals DC Characteristics							
HSST_VDINPP	300	-	1000	mV	External AC coupled	Differential input peak-to-peak voltage	
HSST_VDIN	0	-	VCCA_LANE	mV	DC coupled, VCCA_LANE =1.2V	Input absolute voltage values	

(DS02001, V3.0) 46/51

Symbol	Min.	Тур.	Max.	Unit	Condition	Description		
HSST_VINCM	-	2/3 VCCA_LANE	-	mV	DC coupled, VCCA_LANE =1.2V	Common mode input voltage value		
HSST_VDOUTPP	800	-	-	mV	Swing set to maximum	Differential output peak-to-peak voltage		
HSST_VOUTCMDC VCCA_LANE_HSST_VDOUTPP /4				1 0				
HSST_RDIN	-	100	-	Ω	Differential input resistance			
HSST_RDOUT	-	100	-	Ω	Differential output	it resistance		
HSST_TXSKEW	-	-	14	ps	Skew between Pa	Skew between P and N sides of TX output		
HSST_CDEXT	-	100	-	nF	Recommended external AC coupling capacitor value			
Reference Clock Input	Reference Clock Input DC Characteristics							
HSST_VRCLKPP	400	-	1000	mV	Differential input peak-to-peak voltage			
HSST_RRCLK	-	100	-	Ω	Differential input	Differential input resistance		
HSST_CRCLKEXT	-	100	-	nF	Recommended external AC coupling capacitor value			

7.4 High-Speed Serial Transceiver (HSST) AC Characteristics

The AC characteristics of the HSST Hard Core are shown in Table 7-4 to Table 7-9.

Table 7-4 HSST Hard Core Performance Parameters

Symbol	Grades	Unit	Description	
Symbol	-6	Umi	Description	
HSST_Fmax	6.375	Gbps	Maximum data rate of HSST	
HSST_Fmin	0.6	Gbps	Minimum data rate of HSST	
HSST_Fpllmax	3.1875	GHz	Maximum frequency of HSST PLL	
HSST_Fpllmin	1	GHz	Minimum frequency of HSST PLL	

The HSST reference clock switching characteristics are shown in the following table.

Table 7-5 HSST Hard Core Reference Clock Switching Characteristics

Cambol	Value			Unit	Condition	Description	
Symbol	Min.	Тур.	Max.	UIII	Condition	Description	
HSST_FREFCLK	60	-	625	MHz	Reference clock frequency range		
HSST_TRCLK	-	200	-	ps	20%-80% Reference clock rise time		
HSST_TFCLK	-	200	-	ps	80%-20% Reference clock fall time		
HSST_TRATIO	45	50	55	%	PLL	Reference clock duty cycle	

(DS02001, V3.0) 47/51

Table 7-	6 HSST H	ard Core	PII/I	ock Time	Charact	teristics
Table /-	$0 \cup 1 \cup 2 \cup 1 \cup 1$	aiu Coie	; F L /L / L .	OCK LITTE	 Haraci 	CHISHES

C-mh ol	Value			TI-s:4	Condition	Description
Symbol	Min.	Тур.	Max.	Unit	Condition	Description
HSST_TPLLLOCK	-	-	1.5	ms	From reset release to lock	PLL Lock Time
HSST_TCDRLOCK	-	60,000	2,500,000	UI	From PLL locking the reference clock and having data input to data lock	CDR Lock Time

The HSST Hard Core user clock switching characteristics are shown in the following table

Table 7-7 HSST Hard Core User Clock Switching Characteristics

Symbol	Frequency			Unit	Description					
Data Interface Cloc	Data Interface Clock Switching Characteristics									
HSST_FT2C	160	frequency of P_CLK2	CORE_TX							
HSST_FR2C	160	MHz Maximum frequency of P_CLK2COR								
HSST_FTFC	160	MHz	Maximum frequency of P_TX_CLK_FR_CORE							
HSST_FRFC	160	MHz	Maximum frequency of P_RX_CLK_FR_CORE							
APB Dynamic Configuration Interface Clock Switching Characteristics										
HSST_FAPB	100	MHz	Maximum	frequency of APB CL	K					

The HSST Hard Core Transmitter side switch characteristics are shown in the following table.

Table 7-8 HSST Hard Core Transmitter Side Switching Characteristics

Symbol	Min.	Typ.	Max.	Unit	Condition	Description
HSST_T _{TXR}	-	100	-	ps	20%-80%	TX Rising Time
HSST_T _{TXF}	-	100	-	ps	80%-20%	TX Falling Time
HSST_T _{CHSKEW}	-	-	500	ps	-	TX channel-to-channel skew
HSST_V _{TXIDLEAMP}	-	-	30	mV	-	Electrical idle amplitude
HSST_V _{TXIDLETIME}	-	-	150	ns	-	Electrical idle transition time
HSST_TJ _{0.6G}	-	-	0.1	UI	- 0.6Gbps	Total Jitter
HSST_DJ _{0.6G}	-	-	0.05	UI	0.0Gbps	Deterministic Jitter
HSST_TJ _{1.25G}	-	-	0.15	UI	1.25Chma	Total Jitter
HSST_DJ _{1.25G}	-	-	0.07	UI	1.25Gbps	Deterministic Jitter
HSST_TJ _{2.5G}	-	-	0.3	UI	- 2.5Gbps	Total Jitter
HSST_DJ _{2.5G}	-	-	0.15	UI	2.3G0ps	Deterministic Jitter
HSST_TJ _{3.125G}	-	-	0.3	UI	2.125Chns	Total Jitter
HSST_DJ _{3.125G}	-	-	0.15	UI	3.125Gbps	Deterministic Jitter
HSST_TJ _{5.0G}	-	-	0.35	UI	5 OChno	Total Jitter
HSST_DJ _{5.0G}	-	-	0.17	UI	5.0Gbps	Deterministic Jitter
HSST_TJ _{6.375G}	-	-	0.4	UI	6.375Gbps	Total Jitter

(DS02001, V3.0) 48/51

Symbol	Min.	Тур.	Max.	Unit	Condition	Description
HSST_DJ _{6.375G}	-	-	0.15	UI		Deterministic Jitter

The HSST Hard Core Receiver side switching characteristics are shown in the following table.

Table 7-9 HSST Hard Core Receiver Side Switching Characteristics

Symbol	Min.	Typ.	Max.	Unit	Description
HSST_T _{RXIDLETIME}	-		255	TREFC LK	Time from RXELECIDLE state to LOS signal response
HSST_RX _{VPPSIGDET}	50	-	300	mV	Differential input signal detection threshold peak-to-peak value
HSST_RX _{TRACK}	-5000	-	0	ppm	Receiver spread spectrum following, 33kHz modulation frequency
HSST_RX _{LENGTH}	-	-	150	UI	Support for the length of RX continuous long 0 or long 1
HSST_RX _{TOLERANCE}	-1500	-	1500	ppm	Frequency deviation tolerance of data/reference clock
		Sir	nusoidal jitt	ter tolerand	ee
HSST_SJ_1.25	0.42	-	-	UI	Sinusoidal jitter ¹ , 1.25Gbps
HSST_SJ_2.5	0.42	-	-	UI	Sinusoidal jitter ¹ , 2.5Gbps
HSST_SJ_3.125	0.4	-	-	UI	Sinusoidal jitter ¹ , 3.125Gbps
HSST_SJ_5.0	0.4	-	-	UI	Sinusoidal jitter ¹ , 5.0Gbps
HSST_SJ_6.375	0.3	-	-	UI	Sinusoidal jitter ¹ , 6.375Gbps

Note:

(DS02001, V3.0) 49 / 51

^{1.} The frequency of the injected sinusoidal jitter is 80MHz.

Chapter 8 PCIe Hard Core Features

Table 8-1 PCIe Performance Parameters

Symbol	Value	Unit	Description
Fpclk	250	MHz	Maximum Clock Frequency of PCIe Core
Fpclk_div2	125	MHz	Maximum Clock Frequency of User Interface

Note: For PCIe applications, the PCIe receiver differential input peak-to-peak voltage must meet the HSST_VDINPP value range.

(DS02001, V3.0) 50 / 51

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage licence, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its family products at any time without prior notice.

(DS02001, V3.0) 51/51