

QUÍMICA GENERAL

MATERIA Y

ESTRUCTURA ATÓMICA

OBJETIVOS

- Comprender como se define la materia, su clasificación y los cambios que se producen.
- Identificar y calcular las partículas subatómicas que presenta el átomo.
- Determinar la notación cuántica del electrón.

CONTENIDO

1.Materia

2. Estructura atómica

3. Números cuánticos

Vamos a reflexionar

¿De que están formado?

¿De qué dependen sus propiedades?

1. MATERIA

¿QUÉ ES LA MATERIA?

Se define como todo aquello que tiene masa y ocupa un lugar en el espacio.

Características y Propiedades Generales

- ✓ Extensión: ocupa un espacio
- ✓ Impenetrabilidad: dos cuerpos no ocupan el mismo espacio a la vez
- ✓ Inercia: resistencia de un cuerpo en reposo al cambio de posición.
- ✓ Indestructibilidad: materia no se crea ni se destruye

Características y Propiedades Generales

✓ Divisibilidad: los cuerpos pueden dividirse.

Clasificación de la materia

Es un cuerpo homogéneo de composición y propiedad definida

Materia

Es la reunión de 2 o más sustancias de composición y propiedad variable.

SUSTANCIAS

MEZCLAS

Tiene formula química

NO tiene formula química

Elemento

Compuesto

Homogénea

Heterogénea

Formada por un átomo(s) de un mismo elemento

Formada por átomos de dos o mas elementos diferentes.

Es aquella que ha simple vista o con microscopio no se puede diferenciar la separación de sus componentes.

Es aquella que ha simple vista o con ayuda del microscopio se puede apreciar la separación de sus componentes.

- ✓ Oro (Au)
- ✓ Oxigeno (O2)

- ✓ Amoniaco (NH3)
- √ Glucosa (C12H6O12)
- ✓ Agua potable (H2O+ iones)
- \checkmark Bronce (Cu + Sn)

- ✓ Agua+arena
- ✓ Concreto

De las siguientes sustancias, Indique el número de elementos y compuestos,, respectivamente.

- I. Fullereno (C₆₀)
- II. Calcopirita (CuFeS₂)
- III. Fósforo (P₄)
- IV. Oro (Au)

De las siguientes Mezclas, Indique el número de mezclas homogéneas y heterogéneas, respectivamente.

- l. Agua potable
- II. aire
- III. gasolina
- IV. Humo

Reconoce los tipos de materia de acuerdo a su composición

<u>Ejercicio</u>

Clasifiquemos las siguientes sustancias:

(Estrategia: Observa qué tipo de sustancia se representa con un símbolo y que sustancia se representa con una fórmula. En las mezclas, qué mezcla forma más de una fase).

	Sustancia pura		Mezcla	
	Elemento	Compuesto	Homogénea	Heterogénea
Sulfato cúprico (CuSO ₄)				
Láminas de aluminio (Al)				
Lejía (2% hipoclorito de sodio)				
Sal de mesa (95 % de cloruro de sodio)				
Barras de acero (aleación hierro- carbono)				

- Al es un símbolo.
- Agua con aceite forma dos fases.

QUIMICA

CAMBIOS DE LA MATERIA

QUÍMICO

Es un proceso de tipo IRREVERSIBLE donde las sustancias cambian su composición, dando lugar a la formación de nuevas sustancias.

FÍSICO

Es un proceso de tipo REVERSIBLE donde las sustancias mantienen su composición, es decir no cambian su identidad

Identifica los cambios que se producen en la materia

Ejercicio 3:

Identifica como <u>cambio físico</u> o <u>cambio químico</u>: el alcohol se evapora, el carbón arde en una parrilla, se escapa el aire de un globo, tejido de telas.

Solución:

(Estrategia: Debes imaginar el suceso en la vida real y determinar si existe o no un cambio en la identidad de la sustancia).

Suceso	Cambio Físico	Cambio Químico
El alcohol se evapora.	X	
El carbón arde en la parrilla.		X
Se escapa el aire de un globo	X	
Se teje una chompa	X	

Identifique los siguientes cambios como físicos (F) o químicos(Q), según correspondan:

- a) Explosión de la nitroglicerina (TNT).....()
- b) Corrosión de una plancha de acero.(
- c) Desgate de los dientes de un serrucho.()
- d) Deshielo del nevado Huascaran..... (

2. ESTRUCTURA ATÓMICA

Atomo

Partes del átomo

Núcleo

- ✓ Parte central del átomo.
- ✓ Es compacta y tiene elevada densidad.
- ✓ Representa carga positiva.
- ✓ Representa el 99,99% de la masa.

Zona extranuclear

- ✓ Parte que rodea el núcleo.
- ✓ Es casi vacía, de muy baja densidad y muy grande en comparación al núcleo.
- ✓ Presenta carga negativa
- ✓ Determina el tamaño y volumen del átomo

D = 10 000 d

Diámetro del átomo

Diámetro del núcleo

NÚCLIDOS

Es una especie nuclear que tiene un valor específico para el numero atómico y numero de masa.

Átomo

Es una especie eléctricamente neutra.

Protones = # Electrones

NO TIENE CARGA

Número de masa

$$A = \#p^+ + \# n^0$$

Número atómico

$$#p^+ = #e^- = Z PEZ$$

El número de protones es el responsable de las propiedades físico químicas de un elemento.

lones

Es una especie química que tiene carga.

Protones = # Electrones

Protones =
$$\#p^+ = Z$$
Neutrones = $A - Z$
Electrones = $\#e^- = Z$

PROBLEMA 1

¿Cuántos protones, neutrones y electrones tienen el átomo?

 $^{238}_{92}U$

PROBLEMA 2

¿Hallar la suma de A, protones, neutrones y electrones?

$$_{45}X_{48}$$

NÚCLIDOS

Es una especie nuclear que tiene un valor especifico para el numero atómico y numero de masa.

Átomo

Protones = # Electrones

lones

Carga

Es una especie química que tiene carga.

Protones = # Electrones

Protones =
$$\#p^+=Z$$

Neutrones = $A-Z$
Electrones = $\#e^-=Z-a$

Catión: ión con carga neta positiva.

Para formarlo, el átomo debe perder uno o más electrones

Anión: ión con carga neta negativa.

Para formarlo, el átomo debe ganar uno o más electrones

PROBLEMA 3

¿Cuántos protones, neutrones y electrones tienen el átomo?

$$_{25}^{55}Mn^{4+}$$

PROBLEMA 4

Para una especie química que tiene 12 electrones, 14 protones y cuyo número de masa es 29, se pide:

a ¿Es un átomo o ión?	
b) ¿Cuál es la carga eléctrica de la especie?	
c) ¿cuál es su número atómico?	
d)¿ cuantos neutrones tiene?	
e) ¿Cuál es su representación?	

PROBLEMA 5

Completar la siguiente tabla:

ION	TIPO	Z	Α	p+	e-	n°
$^{24}_{12}Mg^{2+}$	Catión divalente					
³¹ ₁₅ P ³⁻	Anión trivalente					
$^{80}_{35}Br^{-}$						
⁵⁶ ₂₆ Fe ³⁺						
³⁹ ₁₉ K+						

3. NÚMEROS CUÁNTICOS

NÚMEROS CUANTICOS

Número cuántico principal (n):

- Describe el nivel de energía principal ocupado por el electrón.
- Puede ser un entero positivo (n = 1, 2, 3,...)
- A medida que n aumenta:

Mayor es el tamaño del orbital

Mayor tiempo el electrón estará distante del núcleo.

Mayor es la energía del electrón.

Menor es la atracción del electrón hacia el núcleo.

n=4

#subnivel: n
de orbitales:

de orbitales: n² # e- máximos: 2n²

2. EL NÚMERO CUÁNTICO SECUNDARIO O AZIMUTAL (£)

Indica el número de subniveles o subcapas.

La energía de un subnivel.

La forma del subnivel y orbital.

Valores de " ℓ " = [desde 0 hasta (n - 1)]

- Para $\ell = 0$, subnivel/orbital s (Sharp)
- Para $\ell = 1$, subnivel/orbital p (principal)
- Para $\ell = 2$, subnivel/orbital d (difuse)
- Para $\ell = 3$, subnivel/orbital f (fundamental)

3. NÚMERO CUÁNTICO MAGNÉTICO: m_L /m

El valor del número cuántico magnético, define la orientación espacial del orbital frente a un campo magnético externo.

Valores de m: Desde + $\ell \rightarrow$ pasa $\rightarrow 0 \rightarrow$ hasta $-\ell$

El número de valores que puede tener " m_e " indica el número de orbitales que puede contener un subnivel de energía

orbital	n	l	m
1S	1	0	0
2s	2	0	0
2p	2	1	-1, 0, +1
3s	3	0	0
3p	3	1	-1, 0, +1
3d	3	2	-2,-1, 0, +1,+2
4s	4	О	0
4p	4	1	-1, 0, +1
4d	4	2	-2,-1, 0, +1,+2
4f	4	3	-3, -2,-1, 0, +1,+2, +3

4.NÚMERO CUÁNTICO DEL SPIN (MS/M)

El número cuántico del spin, representado por "m_s", o "s" indica el sentido de rotación del electrón sobre su eje.

Es independiente de los otros números cuánticos.

Puede adoptar dos únicas posibilidades y opuestas entre sí, horario o antihorario.

$$m_s = -1/2 + 6 + 1/2$$

$$m_{s} = +\frac{1}{2}$$

$$m_s = -\frac{1}{2}$$

Paso 1

Identificar los elementos

El número cuántico principal (n) = 4

Tipo de orbital	Valor I	
s	0	
Р	1	
d	2	
f	3	

Con esta tabla calculamos el valor del número cuántico secundario (l)

Paso 2

Cálculo del Número Cuántico Secundario

Paso 3

Càlculo del Número Cuantico Magnético y Spin Magnético

Continuación...

Subnivel (I)	Orbitales	Número de orbitales
s (I = 0)	<u>↑↓</u> 0	1
p (l = 1)	$\frac{\uparrow \downarrow}{-1} \frac{\uparrow \downarrow}{0} \frac{\uparrow \downarrow}{+1}$	3
d (I = 2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
f (I = 3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7

Con esta tabla nos damos cuenta que el subnivel "d" tiene 5 orbitales.

Continuación...

Continuación...

Cálculo del spin magnético:

Vemos que la "flecha hacia abajo" tiene un spin magnético igual a -1/2

Número cuántico spin magnético (m) = -1/2

Escribir los números cuánticos del último electrón acomodado en la configuración electrónica del sodio

https://www.youtube.com/watch?v=77WC5PMgQ5I

Calcular los números cuánticos del último electron acomodado en la configuración electrónica del silicio (Si)

https://www.youtube.com/watch?v=77WC5PMgQ5l

Desarrollar los números cuánticos para representar cada electrón:

A) 4, 0, 0, +1/2

Desarrollar los números cuánticos para representar cada electrón:

A) 3,2,-1,+1/2

Desarrollar los números cuánticos para representar cada electrón:

A) 2,1,0,-1/2

Desarrollar los números cuánticos para representar cada electrón:

A) 5,1,-1,+1/2

Referencias Bibliográficas

- ✓ Atkins, Peter W. Química Inorgánica. México. McGraw-Hill/Iberoamericana de México. 2008.
- ✓ Brown T. Química. La ciencia central. Novena Edición. Prentice Hall INC. México. 2010
- ✓ Chang, R. Química. España. 11va Edición. Ed. Mc Graw Hill Interamericana 2013.

GRACIAS POR SU ATENCIÓN