

- For more records, click the Records link at page end.
- To change the format of selected records, select format and click Display Selected.
- To print/save clean copies of selected records from browser click Print/Save Selected.
- To have records sent as hardcopy or via email, click Send Results.

Print/Save Selected

Send Results

Display Selected

Format
Full ▼

1. 2/19/1

03961632 **Image available**

MANUFACTURE OF SEMICONDUCTOR DEVICE

Pub. No.: 04-326732 [JP 4326732 A] **Published:** November 16, 1992 (19921116)

Inventor: SUZUKI KOSUKE KIYOKAWA HAJIME

Applicant: FUJITSU LTD [000522] (A Japanese Company or Corporation), JP (Japan)

Application No.: 03-097373 [JP 9197373]

Filed: April 26, 1991 (19910426)

INTL CLASS: International Class: 5] H01L-021/316; H01L-021/90 JAPIO Class: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO Keyword: R004 (PLASMA)

Journal: Section: E, Section No. 1344, Vol. 17, No. 169, Pg. 119, March 31, 1993 (19930331)

ABSTRACT

PURPOSE: To flatten a difference in level and to enhance the thermal conductivity of the title dev wherein a mixed gas by TEOS gas and by TEB gas and a mixed gas by phosphine gas and by oxyg alternately and a chemical vapor growth reaction is executed under a reduced pressure.

CONSTITUTION: By performing a plasma chemical vapor growth reaction, an Si(sub 3)N(sub 4) to cover a Cu interconnection layer 3 in order to prevent the Cu interconnection layer 3 from being mixed gas by tetraethoxysilane TEOS gas and by triethyl borate TEB gas and a mixed gas by phos oxygen gas are introduced alternately; a chemical vapor growth reaction is performed at a growth deg.C and under a reduced pressure of 1Torr. Thereby, a borophosphosilicate glass BPSG film 5 v formed on the Si(sub 3)N(sub 4) film 4. An Al interconnection layer 7 is formed so as to come into interconnection layer 3 via a contact hole 6; after that, an LSI semiconductor chip 8 is mounted an interconnection layer 7. The difference in level which is produced on the surface of the interconnection by an interlayer insulating film.

JAPIO (Dialog® File 347): (c) 1999 JPO & JAPIO. All rights reserved.

Translation)

(19) Japan Patent Office

(12) Patent Release (A)

(11) Patent Application Release

Hei.4 (1992)-326732

(43) Release Date: Nov. 16,

1992

(51) $Int.Cl^5$ Ident. No. Agency Control No. FI Technology Indicator

H 01 L 21/316 X 8528-4M H 8518-4M

21/90 P 7353-4M

Examination Request: Not yet requested Items in Application: 2 (Total 4 pages)

(21) Patent Appl. No.: Hei.3-97373

(22) Application Date: April 26, 1991

(71) Applicant: 000005223

FUJITSU Ltd.

1015 Kami-Odanaka, Nakahara-ku Kawasaki-shi, Kanagawa Prefecture

[Japan]

(72) Inventor: Hajime Kiyokawa

c/o FUJITSU Ltd.

[same address]

(74) Agent: Sadaichi Igeta, Patent attorney

(54) Name of Invention: Method of Manufacturing Semicon-

ductor Device

(57) Summary

Purpose: This invention has the purpose of providing a method for manufacturing a semiconductor device that can use interlayer dielectric film to adequately flatten stepping caused by the wiring layer surface, that can also

raise the heat transmissibility, can make heat radiation away from semiconductor chips improve and can yield a stable semi- conductor device of high reliability.

Makeup: Made up to include a process which forms silica glass film containing boron and phosphorus (BPSG film) on underlying film (4) by introducing a mixture of tetraethoxy- silane gas (TEOS gas) and tetraethylborate gas (TEB gas), alternating that with a mixture of phosphene gas (PH $_3$ gas) and oxygen gas (O $_2$ gas) to induce chemical vapor deposition reactions under low pressure.

Scope of Patent Application

Application Item 1: A method of manufacturing a semiconduc- tor device which is characterized by including a process to form silica glass containing boron and phosphorus (BPSG film) on underlying film (4) by introducing a mixture of tetraethoxysilane gas (TEOS gas) and tetraethylborate gas (TEB gas), alternating that with phosphene gas (PH $_3$ gas) and oxygen gas (O $_2$ gas) and inducing a chemical vapor deposition reaction under low pressure.

Application Item 2: A method of manufacturing a semiconductor device which is characterized by the abovenoted silica glass film containing boron and phosphorus (BPSG film) being an interlayer dielectric film.

Detailed Explanation of Invention

0001 Field for Commercial Utilization: This invention bears on a method for manufacturing a semiconductor device, and specifically bears on a method of manufacturing a semiconductor device which has a process to form an interlayer dielectric film that can cause the surface flattening and heat radiation to improve.

0002 In recent years, in data equipment requiring the high-speed processing of mini-computers a problem has become delays in the wiring (print boards) between ICs; and ways are being devised to systemize entire wafers by attaching IC chips directly wired onto them. With this, manufacturing methods for semiconductor devices are being sought that especially can flatten the wiring steps between IC chips formed on the wafers and can yield a semiconductor device of high reliability.

explaining the usual method of manufacturing semiconductor devices. In Figure 3, 31 is a substrate of silicon or the like. Silicon dioxide film 32 is formed on this substrate 31 to be a dielectric film. 33 is a wiring layer of aluminum, formed on SiO₂ film 32 and patterned, creating a step on its surface. 34 is a polyimide resin film constituting an interlayer dielectric film formed to cover wiring layer 33. Contact hole 35 is made in this polyimide resin film 34, exposing wiring layer 33. 36 is an aluminum wiring layer that makes contact with wiring layer 33 through contact hole 35. On this aluminum wiring layer 36 are arrayed and attached semiconductor chips such as an LSI (IC).

O004 Next I will explain this manufacturing method. First, silicon substrate 31 is thermo-oxidized to form SiO₂ film 32, and aluminum is laminated on SiO₂ film 32 by sputtering to form an aluminum film. After that RIE is used to pattern the aluminum film and form aluminum wiring layer 33. The steps created on the surface of aluminum wiring layer 33 at this time then have polyimide resin applied to cover alumi- num wiring 33. It is cured at roughly 450~500EC to form polyimide film 34, which will become interlayer dielectric film. Polyimide resin film 34 is patterned by RIE or the like to form contact hole 35, which exposes aluminum wiring layer 33.

0005 Then aluminum wiring layer 36 is made to make contact with aluminum wiring layer 33 within contact hole 35. By attaching and positioning LSI semiconductor chip 37 on aluminum wiring layer 36, one can get the semiconductor device shown in Figure 3.

O006 Problems the Invention Seeks to Resolve: With the usual semiconductor manufacturing method described above, one has done the flattening of the stepping arising on the surface of wiring 33 and the insulation between wiring layers 33 and 36, with polyimide resin film 34 serving as the interlayer dielectric film. However, with the demand these days for extreme element miniaturization, the problems have arisen that with this polyimide resin film 34 the film thickness is too great and surface flattening inadequate. Also, it has been a problem that with this polyimide resin film 34 heat transmissibility is low and its ability to radiate away heat from semiconductor chip 37 is poor.

- 0007 So, this invention has the purpose of providing a method for semiconductor device manufacture which can adequately flatten with the interlayer dielectric film the stepping created at the wiring layer surface, also improve heat transmissibility by the interlayer dielectric film and improve its ability to radiate away heat from the semiconductor chip.
- **0008 Means to Resolve Problems:** To attain the above purposes, the semiconductor device manufacturing method of this invention is one that includes a process to form a silica glass film containing boron and phosphorus (BPSG film) on the underlying film by introducing a mixed gas of tetraethoxysilane gas (TEOS gas) and triethylborate gas (TEB gas), alternating that with a mixture of phosphene gas (PH₃ gas) and oxygen gas to produce a chemical vapor deposition reaction at low pressure.
- **0009** For the underlying film of this invention one could use semiconductor films of silicons, dielectric films of SiO_2 , $\mathrm{Si}_3\mathrm{N}_4$, etc., or conductive films such as copper or the like. In this invention it is desirable that the deposition temperature be between 750EC and 900EC, because below 750EC the deposition rate drops sharply. Also, above 900EC is not desirable because higher temperatures markedly worsen the BPSG film's quality.
- 0010 Effects: As shown in Figures 1 and 2, to be discussed later, with this invention one can make BPSG film 5 of a more uniform quality than with the usual polyimide resin film because one forms BPSG film 5 while doing reflow below the melting point of the copper that makes up copper wiring layer 3 and so can adequately flatten the stepping created on the surface of copper wiring layer 3. Moreover, by giving BPSG film 5 a heat transmissibility superior to that of the usual polyimide resin film, one can improve its ability to radiate away heat from semiconductor chip 8.
- **0011 Application Examples:** I will explain this invention below basing that on the figures. Figures 1 and 2 are diagrams illustrating one application example of this invention's method of manufacturing a semiconductor device. Figure 1 is a diagram explaining the method of manufacturing a semiconductor device following an application example from this invention, while Figure 2 is a sketch showing a model of the chamber from this invention's application example. In Figures 1 and 2, 1 is

a substrate made of silicon or the like; and silicon dioxide film 2 is formed on this substrate 1 to be a dielectric film. 3 is a copper wiring layer formed by patterning copper film formed on SiO_2 film 2; and $\mathrm{Si}_3\mathrm{N}_4$ film 4 is formed on this copper wiring layer 3 to prevent its oxidization. 5 is BPSG film formed on silicon nitride film 4. Contact hole 6 is made in this BPSG film 5 and $\mathrm{Si}_3\mathrm{N}_4$ film 4, exposing copper wiring layer 3. 7 is an aluminum wiring layer of aluminum or the like to make contact with copper wiring layer 3 via this contact hole. Semiconductor chip 8, such as an LSI (IC), is installed on aluminum wiring layer 7. 9 is the chamber.

0012 Next I will explain this method of manufacture. First, as shown in Figure 1(a), silicon substrate 1 is thermo-oxidized to form SiO_2 film 2 some 3000D thick. After laminating copper on silicon dioxide film 2 by sputtering or the like to form a copper film some $2{\sim}3Fm$ thick, one uses RIE or the like to pattern the copper film and form copper wiring layer 3. This produces stepping on the surface of copper wiring layer 3.

- 0013 Then, as shown in Figure 1(b), $\mathrm{SiH_3}$ and $\mathrm{NH_3}$ gases are introduced and a plasma chemical vapor deposition reaction (CVD) is done at 1Torr and a deposition temperature of some $350\mathrm{EC}\sim400\mathrm{EC}$ so as to form $\mathrm{Si_3N_4}$ film 4 some $3000\sim5000\mathrm{D}$ thick to cover copper wiring layer 3 and prevent its oxidation. At this time, the surface of silicon nitride film 4 also is affected by the stepping on the surface of copper wiring layer 3 and gets stepping.
- 0014 Now, as shown in Figure 1(c), a mixture of TEOS gas and TEB gas is introduced. alternating with a mixture of PH_3 gas and O_2 gas and a chemical vapor deposition reaction is done at a deposition temperature of 800EC and 1Torr pressure to form flat-surfaced BPSG film 5 some 10Fm thick on Si_3N_4 film 4. Here the test material is arranged in a round chamber, as shown in Figure 2; and introduction of the above-noted mixed gases is done as they circle around the center.
- 0015 Then contact hole 6 is formed in BPSG film 5 and $\mathrm{Si_3N_4}$ film 4 to expose copper wiring layer 3. After aluminum wiring layer 7 is formed to make contact through this contact hole 6 with copper wiring layer 3, one can mount LSI semiconductor chip 8 on aluminum wiring layer 7 to

yield the semiconductor device shown in Figure 1(d).

0016 I.e., with this application example one forms BPSG film 5 on $\mathrm{Si_3N_4}$ film 4 by introducing a mixture of TEOS gas and TEB gas alternately with a mixture of PH $_3$ gas and oxygen gas and does a chemical vapor deposition reaction at a deposition temperature of 800EC and a low pressure of 1Torr. Thus, because one forms BPSG film 5 while reflowing at less than the melting point of copper, which makes up copper wiring layer 3, one can form good BPSG film 5 of a more uniform quality than with the usual polyimide resin film and can do adequate flattening of the stepping that arises on copper wiring layer 3's surface.

Moreover, since one has made BPSG film 5 with a heat transmissibility superior to that of the usual polyimide resin film, it can improve the radiation of heat away from semiconductor chip 8. Hence, it can yield a stabilized semiconductor device of high reliability.

0017 With the above application example, I have explained the desirable form of copper wiring layer 3 used from the aspect of durability in heat and conductivity; but this invention is not limited to that, for it would apply also if using such high melting-point metals as tungsten or molybdenum, which have better heat durability than aluminum.

0018 Invention's Effectiveness: This invention has the effect that one can use the interlayer dielectric film to adequately flatten the stepping created on the wiring layer surface, can also improve the heat transmissibility of the interlayer dielectric film and can raise the radiativity for heat from semiconductor chips, thus yielding a stabilized semiconductor chip of high reliability.

Simple Explanation of Figures

Figure 1 is a diagram illustrating the method of fabricating a semiconductor device as worked out in one application example of this invention.

Figure 2 is a sketch of the chamber devised in one application example of this invention.

Figure 3 is a diagram showing the method of manufacturing an example of the usual semiconductor device.

Explanation of Keying Symbols

1,	31	Silicon substrate
2,	32	Silicon dioxide film
3,	33	Copper wiring layer
4		Underlying Si ₃ N ₄ film
5		BPSG film
6,	35	Contact hole
7,	36	Aluminum wiring layer
8,	37	Semiconductor chip
9		Chamber
34		Polyimide resin film

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-326732

(43)公開日 平成4年(1992)11月16日

(51) Int.C1.5

鎌別記号 庁内整理番号 FΙ

技術表示箇所

H 0 1 L 21/316

X 8518-4M

H 8518-4M

21/90

P 7353-4M

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平3-97373

(71)出願人 000005223

(22)出題日

平成3年(1991)4月26日

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 鈴木 浩助

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 清川 肇

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

【目的】 本発明は、半導体装置の製造方法に関し、配 線層表面に生じた段差の平坦化を層間絶縁膜によって十 分行うことができ、しかも層間絶縁膜の熱伝導率を良く することができ、半導体チップからの熱の放射性を向上 させることができ、信頼性の高い安定した半導体装置を 得ることができる半導体装置の製造方法を提供すること を目的とする。

【構成】 テトラエトキシシランガス (TEOSガス) 及びトリエチルポレイトガス (TEBガス) の混合ガス と、ホスフィンガス (PHI ガス) 及び酸素ガス (O2 ガス)の混合ガスとを交互に導入し、減圧下で化学気相 成長反応を行うことにより下地の膜4上にポロンリン含 有シリカガラス膜(BPSG膜)を形成する工程を含む ように構成する。

本義男の一実施例に関した半導体装置の製造方法を設覧する国

【特許請求の範囲】

ţ

【請求項1】 テトラエトキシシランガス (TEOSガ ス) 及びトリエチルポレイトガス (TEBガス) の混合 ガスと、ホスフィンガス (PH) ガス)及び酸素ガス (O2 ガス) の混合ガスとを交互に導入し、減圧下で化 学気相成長反応を行うことにより下地の膜 (4)上にポ ロンリン含有シリカガラス膜(BPSG膜)を形成する 工程を含むことを特徴とする半導体装置の製造方法。

【請求項2】 前記ポロンリン含有シリカガラス膜(B 装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法 に係り、特に表面平坦化と放熱性を向上させることがで きる層間絶縁膜を形成する工程を有する半導体装置の製 造方法に関する。

【0002】近年、ミニコン等の高速処理を必要とする 情報機器においては、IC間の配線(プリント基盤)に よる遅延が問題となってきており、ICチップを直接配 20 線されたウェハー上に貼り付け、ウェハー全体をシステ ム化することが考えられてきている。これに伴い、特に ウェハー上に形成するICチップ間の配線段差の平坦化 と、配線と「Cチップ間の絶縁とを同時に良好に行うこ とができ、信頼性の高い半導体装置を得ることができる 半導体装置の製造方法が要求されている。

[0003]

【従来の技術】図3は従来の半導体装置の製造方法を説 明する図である。図3において、31は51等からなる基 板であり、この基板31上には絶縁膜となるSiOx膜32 30 が形成されている。33はSiOz 膜32上に形成されA1 膜がパターニングされ形成されたAlからなる配線層で あり、この配線層33表面に段差が生じている。34は配線 層33を覆うように形成された層間絶縁膜となるポリイミ ド系樹脂膜であり、このポリイミド系樹脂膜34には配線 層33が露出されたコンタクトホール35が形成されてい る。36はコンタクトホール35を介してAI配線層33とコ ンタクトされるAIからなる配線層であり、このAI配 線層36上にはLSI(IC) 等の半導体チップ37が取り 付け配置されている。

【0004】次に、その製造方法について説明する。ま ず、Si基板31を熱酸化してSiO。膜32を形成し、ス パッタ法等によりSiO。膜32上にAlを堆積してAl 膜を形成した後、RIE等によりAI膜をパターニング してA1配線層33を形成する。この時、A1配線層33表 面に段差が生じる次に、AI配線層33を覆うようにポリ イミド系樹脂を塗布し、 450~ 500℃程度でキュアして 層間絶操膜となるポリイミド系樹脂膜34を形成し、RI E等によりポリイミド系樹脂膜34をパターニングしてA 1 配線層33が露出されたコンタクトホール35を形成す 50 . 【実施例】以下、本発明を図面に基づいて説明する。図

る.

【0005】そして、コンタクトホール35内のA1配線 層33とコンタクトを取るようにA1配線層36を形成し、 A I 配線層36上にLS I 半導体チップ37を取り付け配置 することにより、図3に示すような半導体装置を得るこ とができる。

[0006]

【発明が解決しようとする課題】上記した従来の半導体 装置の製造方法では、配線層33表面に生じた段差の平坦 PSG膜) が層間絶縁膜であることを特徴とする半導体 10 化と各配線層33,36間の絶縁とを層間絶縁膜となるポリ イミド系徴脂膜34によって行っていたが、近時の厳しい 素子微細化の要求に伴い、このポリイミド系樹脂膜34で は膜厚分布が大きく表面平坦化が不十分であるという問 題があった。また、このポリイミド系樹脂膜34では熱伝 導率が低く、半導体チップ37からの熱を放熟する放熱性 が悪いという問題があった。

> 【0007】そこで本発明は、配線層表面に生じた段差 の平坦化を層間絶縁膜によって十分行うことができ、し かも層間絶縁膜の熱伝導率を良くすることができ、半導 体チップからの熱の放射性を向上させることができ、信 頼性の高い安定した半導体装置を得ることができる半導 体装置の製造方法を提供することを目的としている。

[0008]

【課題を解決するための手段】本発明による半導体装置 の製造方法は上記目的達成のため、テトラエトキシシラ ンガス(TEOSガス)及びトリエチルポ レイトガス (TEBガス) の混合ガスと、ホスフィンガス (PH1 ガス)及び酸素ガス(Ozガス)の混合ガスとを交互に 導入し、減圧下で化学気相成長反応を行うことにより下 地の膜上にポロンリン含有シリカガラス膜(BPSG 膜)を形成する工程を含むものである。

【0009】本発明に係る下地の膜には、SI等の半導 体膜、SiOz、Siz Nィ等の絶縁膜、Cu等の導電 性膜が挙げられる。本発明においては、成長温度を750 **℃以上900 ℃以下にするのが好ましく、750 ℃より低温** にすると成長レートが著しく低下し好ましくないからで あり、また900℃より高温にするとBPSG膜の膜質が 著しく悪くなり好ましくないからである。

[0010]

【作用】本発明では、後述する図1,2に示すように、 Cu配線層3を構成するCuの融点以下でリフローしな がらBPSG膜5を形成するようにしたため、従来のポ リイミド系樹脂膜の場合よりも膜質の均一性の良いBP SG獏5を形成することができ、Cu配線層3表面に生 じた段差の平坦化を十分行うことができる。しかも、従 来のポリイミド系樹脂膜の場合よりも熱伝導率に優れた BPSG膜5を形成しているため、半導体チップ8から の熱の放熱性を向上させることができる。

[0011]

1, 2は本発明に係る半導体装置の製造方法の一実施例 を説明する図であり、図1は本発明の一実施例に則した 半導体装置の製造方法を説明する図、図2は本発明の一 実施例に則したチャンパーを示す概略図である。図1. 2において、1はSi等からなる基板であり、この基板 1上には絶縁膜となるSIO2 膜2が形成されている。 3はSiOz 膜2上に形成されたCu膜がパターニング され形成されたCuからなる配線層であり、このCu配 線層3上にはCu配線層3酸化防止のためのSi N. れたBPSG膜であり、このBPSG膜5及びSin N ↓ 膜4にはCu配線層3が露出されたコンタクトホール 6が形成されている。7はこのコンタクトホール6を介 してCu配線層3とコンタクトするように形成されたA 1等からなる配線層であり、A1配線層7上にはLSI (IC) 等の半導体チップ8が取り付け配置されてい る。9はチャンパーである。

【0012】次に、その製造方法について説明する。ま ず、図1(a)に示すように、SI基板1を熱酸化して 膜厚3000A程度のSiOz膜2を形成し、スパッタ法等 20 とができる。 によりSiOz 膜2上にCuを堆積して膜厚2~3μm 程度Cu膜を形成した後、RIE等によりCu膜をパタ ーニングしてCu配線層3を形成する。この時、Cu配 線層3表面に段差が生じる。

. 【0013】次に、図1(b)に示すように、SIH。 ガス及びNH: ガスを導入し、成長温度を 350℃~ 400 ℃程度とし1Torr下でプラズマ化学気相成長反応 (CV D)を行うことによりCu配線層3を覆うようにCu配 線層3酸化防止のために膜厚3000~5000人程度のSix N. 膜4を形成する。この時、Sii N. 膜4表面にも 30 Cu配線層3表面の段差の影響を受け段差が生じる。

【0014】次に、図1 (c) に示すように、TEOS ガス及びTEBガスの混合ガスとPH: ガス及びO2 ガ スの混合ガスとを交互に導入し、成長温度を 800℃と し、1 Torrの減圧下で化学気相成長反応を行うことによ りSix N4 膜4上に膜厚10μm程度の表面が平坦なB PSG膜5を形成する。ここでは図2に示すように、試 料が円筒状のチャンパー内で配置されており、上記混合 ガスの導入は円筒の中心の回りを回転している際行われ

【0015】そして、BPSG膜5及びSi: N. 膜4 にCu配線層3が露出されたコンタクトホール6を形成

し、このコンタクトホール6を介してCu配線層3とコ ンタクトを取るようにAI配線層7を形成した後、AI 配線層7上にLS【半導体チップ8を取り付け配置する ことにより、図1(d)に示すような半導体装置を得る ことができる.

【0016】すなわち、本実施例では、TEOSガス及 びTEBガスの混合ガスと、PH、ガス及びO、ガスの 混合ガスとを交互に導入し、成長温度を 800℃とし、1 Torrという減圧下で化学気相成長反応を行うことにより 膜4が形成されている。5はSin N、膜4上に形成さ 10 Sin N、膜4上にBPSG膜5を形成するようにして いる。このように、Cu配線層3を構成するCuの融点 以下でリフローしながらBPSG膜5を形成するように したため、従来のポリイミド樹脂膜の場合よりも膜質の 均一性の良いBPSG膜5を形成することができ、Cu 配線層3表面に生じた段差の平坦化を十分行うことがで きる。しかも、従来のポリイミド系樹脂膜の場合よりも 熱伝導率に優れたBPSG膜5を形成しているため、半 導体チップ8からの熱の放熱性を向上させることができ る。従って、信頼性の高い安定した半導体装置を得るこ

> 【0017】なお、上記実施例では、Cu配線層3にC uを用いる耐熱性、導電性等の点で好ましい態機の場合 について説明したが、本発明はこれに限定されるもので はなく、Alよりも耐熱性の点で優れたW、Mo等の高 融点金属を用いる場合であってもよい。

[0018]

【発明の効果】本発明によれば、配線層表面に生じた段 差の平坦化を層間絶縁膜によって十分行うことができ、 しかも層間絶縁膜の熱伝導率を良くすることができ、半 導体チップからの熱の放射性を向上させることができ、 信頼性の高い安定した半導体装置を得ることができると いう効果がある。

【図面の簡単な説明】

【図1】本発明の一実施例に則した半導体装置の製造方 法を説明する図である。

【図2】本発明の一実施例に則したチャンパーを示す概 略図である。

【図3】従来例の半導体装置の製造方法を説明する図で ある。

【符号の説明】

BPSG膜

【図1】

[**2**] 2]

本発明の一支施例に関した平等体装置の製造方法を製引する図

本発明の一定施例に関したチャンバーを示す概略関

PH₃/O₁
PH₃/O₂
PH₃/O₃
PH₃/O₃

従未男の半導体装置の製造方法を設勢する面

