NAME Diego Urbe A	PAGES #1	SPEAKER/CLASS Pichado/P. P. M.	DATE-TIME 15/6/2023
	nes de las natris	tes	
Keyword	mismo homono correspondientes Poro que la su Lebe tener la m Esemplo:	ma de dor mat se obtiene supard en los posición inna de motrices ismo dimensión.	er respectivos esté definido
Questions	Resto	+ (e h) = (a c	$ \begin{array}{ccc} + e & b + x \\ + g & d + h \end{array} $ $ = \begin{pmatrix} a - e & b - x \\ c - g & d - h \end{array} $
ummary:			

Keyword Topic: Multiplication Multiplicación: Generalmente, la multiplicación de maturas cumple la propuedod no conmultituo es decir, importo el orden de los dementes durante la multiplicación. Existencionos llamodos maticas commutativos que ní cumplen la propued Dean R y X dos matrices no commutativos, implica que: R X X R Dean R y X dos matrices no commutativos, implica que: R x X R Dean R y X dos matrices no commutativos, implica que: R x dos matrices recestamos que in multiplicar dos matrices necestamos que divinera de columnos de la primera matriza de númera de futos de la regunda multiplicar de futos de fu	Diego Vibe Sono	PAGES they # 2	SPEAKER/CLASS Pichordo/PPM	DATE-TIME 15/6/2023
Multiplicación: Consolmente, la multiplicación to matrices cumple la propuedad no conmultituo es decir, importo el orden de los elementes durante la multiplicación. Existencosos llamados matrices conmutativos que ní cumplen la propred Sean Ry X dos matrices no conmutativos, implica que: RX \neq X R Dean R'y X' dos matrices no conmutativos, implica que: Rx \neq X R Dean R'y X' dos matrices conmutativos, implica que: Roma multiplicar dos matrices necesitamos que d'número de columnos de la primera matriz roa igual al número de pilos de la regunda ma (a b). (e f) = (a·e + b·g). (a·f + b·h). (c·e + d·g). (c·f + d·h). (1 - 3 6). (9 2 = (8 - 9). (3 0 - 7). (3 0 - 7).				
for a multiplicar des motuces necesitamos de el número de columnos de la primera matuz sea igual al número de livos de la segunda ma (a b) (e b) = (a·e+b·g) (a·b+b·h) (c·e+d·g) (c·f+d·h) (c·e+d·g) (c·f+d·h) (final de livos) (fi	Keyword To	nultiplicación motrices cun decir, importa multiplicación tricas conmuntos conmuntos con Ry X dos plica que f	cation 1: Considerate, la representation de la propiedad el orden de los elen on Existenciaros tativos que sí cun matrices no considerativos que sí cun entre en considerativos que sí cun entre en considerativos no considerativos en considerativo en considerativo en considerativo en considerativo en considerativo en	nutatios,
$\begin{pmatrix} 1 & -3 & 6 \\ 5 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 9 & 2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} -8 & -9 \\ -1 & -15 \end{pmatrix}$	for dr Sea	a multiplia vímero de co igual al nu	for dos motices slumnos de la pr imero de filos de	necesitamos que imero matuz e la segunda ma
mmary:			/1 -3	
	mmary:			

Diogo Vibe	PAGES SPEAKER/CLASS DATE-TIME Danchey 77 3 Pidrade/PPM 15/06/2023
	racioner de los motives
Keyword	La división de motrices se quede expresar como la multiplicación entre la matriz que iria en el numerodor, multiplicado por la matriz inversa como denominador.
Questions	Tzxz - Tzxz (fzxz)-1 Fzxz
mmary:	