Übungen zu Analysis 3, 4. Übung 4. 11. 2019

28. Bestimmen Sie alle Lösungen der Gleichung f * f = cf für $f \in L^1(\mathbb{T}), c \in \mathbb{C}$. Für $c \neq 0$ können dann wegen dem Riemann Lebesguelemma nur endlich viele Koeffizienten

Fur $c \neq 0$ können dann wegen dem Riemann Lebesguelemma nur endlich viele Koeffizienten ungl. 0 sein. f ist also ein trigonometrisches Polynom mit allen nichtverschwindenden Koeffizienten gleich $\frac{c}{\sqrt{2\pi}}$.

- 29. Zeigen Sie, dass für Funktionen f von beschränkter Variation $|\hat{f}(n)| \leq \frac{\sqrt{2}}{\sqrt{\pi}n} ||f||_{BV}, n \neq 0$. Hinw.: Verwenden Sie partielle Integration für Riemann-Stieltjes-Integrale.
- 30. Zeigen Sie, dass für eine $2\pi/n$ -periodische Funktion $f \in L^1(\mathbb{T})$ gilt $\hat{f}(l) = 0$ für $l \notin n\mathbb{Z}$.
- 31. Sei $f \in L^1(\mathbb{T})$ und $g \in L^{\infty}(\mathbb{T})$. Zeigen Sie, dass $\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x)g(nx) dx = \hat{f}(0)\hat{g}(0)$ gilt. (Lemma von Fejér)
- 32. Zeigen Sie, dass für $f \in L^1(\mathbb{T})$ die Operatornorm von $T_f: L^1 \to L^1$, $T_f g = f * g$ gleich $||f||_1$ ist.

Hinw. Betrachten Sie $T_f F_n$.

- 33. Zeigen Sie:
 - –Für $f \in L^1(\mathbb{T})$ mit Stammfunktion F mit $\int_{\mathbb{T}} F(t) dt = 0$ gilt $\hat{F}(n) = \frac{-\mathrm{i}}{n} \hat{f}(n)$ $n \neq 0, F(0) = 0$.
 - –Sei $||f||_{A(\mathbb{T})} = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|$ auf dem Raum $A(\mathbb{T})$ aller Funktionen mit absolut konvergenter Fourierreihe. Dann gilt $||fg||_{A(\mathbb{T})} \le ||f||_{A(\mathbb{T})} ||g||_{A(\mathbb{T})}$
- 34. Sei $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$, $\alpha > \frac{1}{2}$, d.h. es gilt $\|f \tau_h f\|_{\infty} \leq C_f h^{\alpha}$ für eine von f abhängige Konstante C_f . Zeigen Sie f in $A(\mathbb{T})$ mit $\|f\|_{A(\mathbb{T})} \leq |\hat{f}(0)| + C_f C_{\alpha}$ mit einer nur von α abhängigen Konstanten C_{α} .

Hinw.: Zeigen Sie $|(f - \tau_h f)^{\wedge}(n)| \geq \sqrt{2}|\hat{f}(n)|$ für geeignetes h und $3^m \leq n \leq 3^{m+1} - 1$. Schätzen Sie so mit der Bessel'schen Ungleichung $\sum_{n=3^m}^{3^{m+1}-1} |\hat{f}(n)|^2 + |\hat{f}(-n)|^2$ durch $||f - \tau_h f||_2^2$ ab und verwenden Sie dann die Hölder'sche Ungleichung.

35. Zeigen Sie: Ist $f \in L^1(\mathbb{T})$ mit $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0$ dann konvergiert die Reihe $\sum_{n=1}^{\infty} \frac{1}{n} \hat{f}(n)$. Zeigen Sie, dass es Folgen $(a_n)_{n \in \mathbb{Z}}$ mit $a_n \to 0$ für $|n| \to \infty$ gibt, die nicht Fouriertransformierte einer L^1 -Funktion sind.

Hinw.: Betrachten Sie die Fejérreihe der Stammfunktion von f und verwenden Sie Bsp. 33.

36. Zeigen Sie dass für f absolut stetig auf $\mathbb T$ mit $f'\in L^2(\mathbb T)$ gilt:

$$\sum_{n\in\mathbb{Z}} |\hat{f}(n)| \le |\hat{f}(0)| + \frac{\pi}{\sqrt{3}} ||f'||_2.$$

Hinw.: Zeigen Sie $\hat{f}'(n) = in\hat{f}(n)$ für absolut stetige Funktionen und verwenden Sie Bsp. 25 (dort wurde gezeigt $\sum_{n=1}^{\infty} n^{-2} = \pi^2/6$),