

氢能源行业分析

同学们大家好,我是冀老师,今天给大家分享的主题是氢能源行业。

微淼公开课

低碳环保大势所趋清洁能源消费升级

新能源系列——氢能源

第7期

讲师 冀老师 2021年12月4日

众所周知,全球气候变暖对环境造成的影响,比如海平面上升、极端恶劣气候频发 等等。

全球气候变暖主要是由于人类将生产和生活中燃烧煤炭、石油、天然气等传统化石能源产生大量的二氧化碳直接排放到大气中,导致大气中二氧化碳的含量增加造成的。

为应对全球变暖的问题,我国政府在 2020 年 9 月提出了 2030 年前实现碳达峰, 2060 年前实现碳中和的双碳目标。

碳中和·碳达峰

国家重大战略需求

2020年9月22日第七十五 届联合国大会

- ●二氧化碳排放力争于 2030年前达到峰值
- ●努力争取2060年前实现 碳中和

12月12日,气候雄心峰会,进一步明确了减排、 增汇的具体目标和指标。

12月18日,中央经济工作会议,"做好碳达峰、碳中和工作"列为重点工作之一。

双碳目标的提出使我国的清洁能源产业发展迎来了机遇期。

本节课,我们就一起来了解一下最受投资者欢迎的清洁能源:氢能源。

氢能源发展背景

氢能源产业链

发展趋势与机遇

一、氢能源发展背景

(一) 氢的来源与分类

氢作为二次能源(二次能源就是自然界中有但是不能直接用的能源)的载体,不仅可以通过煤炭、石油、天然气等化石能源重整、生物质热裂解等途径制取,还可以从焦化、氯碱、钢铁、治金等工业副产气获取,也可以利用电解水制取。

资料来源:中国氢能联盟,中国银河证券研究院

氢气按照生产来源分为"灰氢""蓝氢"和"绿氢"三类。

"灰氢"中有96%的氢气来自化石燃料,制氢成本较低但碳强度最高;

"蓝氢"是"灰氢"的"升级版",配合了碳捕集和存储技术,碳强度相对较低但成本较高;

"绿氢"是利用可再生能源(如风电、水电、太阳能)电解生成,零碳排放,无污染,但成本很高。

如上图所示,蓝色代表化石能源制氢,灰色代表工业副产氢,绿色代表可再生能源 电解制氢,也就是利用风电、水电制氢。

目前制氢占比最大的还是化石能源和工业副产,达到了 97%,但是从发展趋势上可以看到,这两个部分的占比是越来越低的,可再生能源电解制氢与生物制氢的占比会越来越大,预计 2050 年占比达到 80%。

(二) 氢能源的环保特性

氢气燃烧产生的热量非常高,是汽油的 3 倍,酒精的 3.9 倍,焦炭的 4.5 倍。而且 氢燃烧的产物是水,可以说氢能是世界上最干净的能源,也是人类能源的终极目标。

(三) 氢能源的产业现状

从需求、政策、各国发展三个方面来看一下氢能源产业的现状。

1、市场需求变化

○微淼

中国氢能联盟预计到 2030 年,中国氢气需求量将在终端所有能源体系中占比达到 5%。到 2050 年,占比至少要达到 10%。这意味着到了那时,氢能源的使用可以减少大概 7 亿吨二氧化碳的排放,这对我们国家实现双碳目标具有非常大的意义,未来氢能源的需求是巨大的。

2、国家政策支持

一个产业的发展离不开政策的支持,下图是我国近几年氢能相关政策的发布情况。

表 1: 国家层面氢能产业相关政策

时间	相关部门	政策	主要内容
2019.3	国务院	《2019年政府工作报告》	推动充电、加氢等设施建设。
2019.11	国家发改委等 15 部门	《关于推动先进制造业和现代服务业 深度融合发展的实施意见》	推动氮能产业创新、集聚发展,完善氮能制备、储运、加注等设施和 服务。
2020.6	国家能源局	《2020年能源工作指导意见》	推动储能、氢能技术进步与产业发展。
2020.9	财政部等5部门	《关于开展燃料电池汽车示范应用的 通知》	对 2020 年开始的 4 年"示范期"的氩燃料电池支持政策进行了初步明确,主要特点是以奖代补、地方主导、分区推广与全产业链支持。
2020.11	国务院办公厅	《新能源汽车产业发展规划 (2021-2035)》	有序推进氢燃料供给体系建设; 攻克氮能储运、加氢站、车载储氮等 氮燃料电池汽车应用支撑技术。
2021.3	全国人大	《中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》	在氫能与儲能等前沿科技和产业变革领域,组织实施未来产业孵化与 加速计划,谋划布局一批未来产业。
2021.4	国家能源局	《2021年能源工作指导意见》	开展氢能产业试点示范, 探索多种技术发展路线和应用路径。

资料来源: 政府部门公告,中国银河证券研究院

2019 年两会期间,氢能源在政府的工作报告中首次提及。2020 年,三部门发文支持 氢能源发展。2021 年,氢能源被写入十四五规划。整体来看,我国政府对于氢能的支持 力度是在逐年增强的。

3、全球产业格局

美国

美国是最早将氢能和燃料电池作为战略能源的国家,早在1970年,美国就提出了"氢经济概念"。在氢能和燃料电池领域拥有的专利数仅次于日本,排名第二。目前拥有加氢站42座,计划在2025年增加到200座。

日本

日本高度重视氢能产业的发展,并提出"要成为全球第一个实现氢能社会的国家"。

日本在 1974 年就开始了氢能的研究,政府先后投入数千亿日元用于氢能和燃料电 池技术的研究和推广,并且对加氢站这些基础设施的建设及终端应用都进行了补贴。

经过这么多年的发展,日本在氢能和燃料电池技术方面,专利数达到了全球第一。 在应用方面,也已经实现氢燃料电池车大规模的商业化推广。截止到 2020 年,日本已经建成了 137 座加氢站,预计 2025 年增加到 320 座。

欧洲

欧洲将氢能源作为能源安全的重要保障,截止到 2020 年,已建成 179 座加氢站,预计 2025 年可达到 770 座。

○ 微淼

韩国

韩国政府也在 2018 年将氢能产业定为三大战略投资领域之一,并在 2019 年提出:将 在未来 5 年投资 2.6 万亿韩元,把氢能经济变成拉动创新增长的重要动力。预计到 2030 年 迈入氢能源社会,引领全球氢能和燃料电池产业的发展。

韩国目前有43座加氢站,预计2025年可达到210座。

就以上内容做个小结,如下图所示: (下面图标题改)

1.市场需求变化

以氢气为代表的清洁能源在未来能源消费格局中愈发重要

2.国家政策支持

重视氢能的研发与应用:资金补贴助力产业发展以及市场成长

3.全球产业格局

众多发达国家率先试水氢能源, 已取得不错成果

二、氢能源产业链

氢能源产业链分为上、中、下游。其中:上游环节是电解水制氢;中游环节是氢能源的储存和运输;下游环节是氢能源的应用。

(一) 上游

电解水制氢不仅绿色环保无污染,而且生产灵活、纯度高(一般在99.7%以上),还

产生了高价值的氧气。

表 4: 电解水制氢主要技术路线对比

	碱性电解水	质子交换膜电解水 (PEM)	固体氧化物电解水(SOE)
示意图	Alkaline O ₂ Descriptions Alkaline H ₂ AOH Anode AOH S Electrolyte Solution (KOH)	Proton Exchange Membrane St generator 4gr 2H ₂ Anode 2H ₂ Cathode 2H ₂ O	Solid Oxide DC granular 40 2H ₂ + 2O ² Cathode 2H ₂ O 8 2H ₂ O 2H
电解质/隔膜	30%氢氧化钾/石棉膜	纯水/质子交换膜	固体氧化物
工作效率	4.5-5.5 (KWh/立方米)	≤4.0-5.0 (KWh/立方米)	~100%
产氢纯度	≥99.8%	≥99	.99%
设备相对体积	1	~1/3	1
操作特征	启	停便利	启停不便
产业化程度	高度产业化	商业化起步	实验室阶段

资料来源: 《迎接电解水制氢储能高潮》,国际可再生能源机构,中国银河证券研究院

如上图所示,根据中间隔膜材料的不同,电解水制氢的方法主要分为三种:碱性电解水、 质子交换膜电解水和固体氧化物电解水。

其中,碱性电解水技术最成熟,而且成本比较低;质子交换膜技术处于产业化发展初期,虽然在耗电量和制取氢气的纯度两方面比碱性电解水要更胜一筹,但是由于质子交换膜等核心部件依赖进口,导致成本偏高。固体氧化物电解水主要采用水蒸气电解,能效是最高的,但是目前还处于实验室的研发阶段。

电解水制氢的成本受电价的影响很大,电费占到其总成本的 70%以上,大概是 30-40 元每公斤,同时考虑到目前火力发电占比比较大,依旧存在碳排放的问题。但是,未来利用可再生能源发电制氢的潜力还是非常大的。

水力发电电光人发电电电电

$\qquad \qquad \Rightarrow \qquad \qquad \\$

制氢

使用地

	电量	制氢潜力26	可供应公交车数量27
弃风	169 亿千瓦时	30.2 万吨	6.6 万辆
弃光	46 亿千瓦时	8.2 万吨	1.8 万辆
弃水	300 亿千瓦时	53.6 万吨	11.6 万辆
合计	515 亿千瓦时	92 万吨	20 万辆

资料来源: 国家能源局, 车百智库

一方面,从生产电到制取氢气全过程的碳排放量为零,且随着可再生能源发电不再用国家补贴,那么电解水制氢的成本也会随之降低。

另一方面,**地区电网**容量是有限的,如果发电量超过了电网容量限度就会出现浪费现象,利用好局部区域内的弃风、弃光、弃水等被丢弃的能源来制取氢气,每年可以多生产 26 万吨的氢气,可以实现区域能源优化配置,提高能源的利用效率。

(二) 中游

储存和运输是使用氢<mark>能源的中</mark>间环节,提高储运<mark>效率,</mark>降低储运成本,是氢能储存运输 技术发展的重点。

运氢

储运氢气的方式主要分为三种:气态储运、液态储运和固态储运。

气态储氢是指利用高压气态储存氢气,目前已经得到了广泛的应用。气态的输送方式分为两种:长管拖车和管道运输。长管拖车适合近距离运输,技术比较成熟。管道运输适合大规模、长距离运输。

液态储氢的密度更高,分为低温液态储氢和有机液体储氢。液氢的运输一般适合距离比较远、运输量较大的场景。目前海外已经有超过 1/3 的加氢站使用液态储运的方式。

固态储氢是通过物理和化学吸附的方式来储存氢,储存密度高、体量大。国内固态储氢已经在分布式发电中使用。固态运输相对于前两种运输方式来说,技术难度较大,目前还处在研发阶段。

氢能源的利用和发展还有一个重要载体——加氢站,它的作用类似于加油站。

全球截止到 2020 年底总共有 553 座加氢站,中国有 131 座,其中 108 座是正在使用的。

从区域分布上看,目前我国加氢站主要集中在东部沿海地区,也就是燃料电池汽车产业 发展领先的地方,比如广东、上海等。

图16: 截至2021年3月末我国加氢站分布情况

数据来源: 前瞻产业研究院, 东莞证券研究所

加氢站的建造成本是非常高的,如果不算土地费,一座 500 公斤加氢站的费用相当于传统加油站的 3 倍,其中设备成本就占了将近 70%,而且还有设备的维护、运营、人工等等都需要成本。

近几年,各地对氢能的发展政策逐渐增多,根据加氢站的规模给予相应的补贴。

(三)下游

燃料电池设备可以广泛的应用在交通、工业、建筑、军事等场景,有利于实现氢能的大规模普及。

未来,随着数字化技术的不断深入,无人驾驶、大数据也是燃料电池的应用领域。

工业

无人驾驶

互联网数据中心

随着燃料电池技术的不断成熟,相关产品也已经开始在市场中出现。比如燃料电池车, 是氢能源产业链下游的主要应用。

简单将燃料电池车与传统汽车和纯电动汽车做对比:

表 6: 不同能源车辆性能特点对比

时间	传统汽车	纯电动汽车	燃料电池汽车
		充电时间根据电	
补能方式	加油平均时间 3 分	压、电流、温度等因素。	加氢平均时间 3 分钟
	钟	快充 0.5-1 小时, 慢充	
		6-8 小时	
能量效率	30%	40%	60%
	国六排放标准较为	无直接污染, 制造产	排出物为水,较为
环保	环保, 主要污染物质为	业污染目前仍处于论证	
环体	一氧化碳、碳氢化合物、	阶段,国家电能结构若主	环保,制氢过程也较为 环保
	颗粒物等	要为火电,则污染较高。	外体
寿命	10年以上	电池寿命5年	理论无损耗
		存在爆燃风险, 电解	安全性远高于普
安全性	存在易燃、爆炸风险	液等成分废旧处理污染	通燃油车与电动车
		较大	
	产业链成熟,核心部	三点系统为主要成本	电堆成本目前较
成本	件成本可控	构成,规模化使成本逐渐	高
	11 100 4 1 12	降低	

资料来源: 同济大学, 汽车之家, 中国银河证券研究院整理

环保方面,燃料电池汽车的排出物是水,完全无污染,制氢过程也比较环保。传统汽车 和纯电动汽车多少都会有污染。

能量效率方面,燃料电池汽车的能量转换效率比较高,可以达**到 60%**,传统汽车只有 **30%**,纯电动汽车也只有 **40%**。

补能方面,传统汽车和<mark>燃料电池</mark>汽车相差不大,加油、加氢三五分钟就可以完成,但纯 电动汽车一般快充需要半个到一个小时,慢的话要六到八个小时。

续航能力方面,电动车在低温的状态下续航能力非常短,甚至要降低空调的使用频率来 提高续航能力。氢能源汽车成功克服了这个弱点,而且续航时间更长。

从上面四个方面比较来看,燃料电池车的优点非常突出。

但是,不同于纯电动车可以直接利用现有的电网设施进行充电,氢能源汽车使用的加氢 站要依赖长管拖车运输,这种运输方式效率低而且成本比较高。

加氢站建设成本高、运输效率低限制了氢能源汽车的发展,所以氢能源汽车还没有得到大规模普及使用。截止 2021 年 9 月底,我国氢能源汽车仅有 8263 辆。

图13: 我国燃料电池汽车销量

数据来源:中汽协,东莞证券研究所

2030-2035 年实现氢燃料电池汽车的大规模使用,预计可达到 100 万辆左右。

2030-2035 年实现氢能源燃料电池汽车

2020年 国务院 《新时代的中国能源发 展白皮书》

三、氢能源发展趋势

(一) 电解水替代化石能源

绿色环保、纯度高

从目前的能源结构上来看,最主要的还是化石能源,但它会产生温室气体,同时污染比较严重,势必会被其他绿色环保的能源逐步替代。

(二) 成本继续降低

发展初期	中期	远期
以工业副产氢就近供给为 主	以可再生能源发电制氢、 煤制氢等大规模集中稳定 供氢为主	以可再生能源发电制氢为 主

未来,随着氢能及燃料电池应用达到产业规模化,制造成本和用氢成本会迅速下降,氢 能源产业链的整体利用效率会进一步提升。

(三) 结论

- 1、在实现双碳目标的大背景下,氢能源将会进一步替代化石能源,实现更大规模的应 用,市场潜力巨大。
- 2、氢能源产业各环节的技术和成本有待优化提高,随着各个环节技术的突破、政策的 大力扶持,未来氢能成本的下降空间还很大。

四、风险

未来, 氢能源发展面临的风险主要表现在四个方面:

(一) 技术要求

制氢技术领先的国家对技术进行封锁, 氢燃料电池关键材料与核心组件的性能及产能仍需要大力提升。

(二) 市场化不达预期

消费者对氢能源使用的安全性仍存在顾虑,市场认可度不高。

(三) 政策滞后

由于技术等原因的限制, **氢燃料电池汽车并未实现规模化**量产。以至于我国助力氢燃料电池汽车发展的相关补贴政策也迟迟未落地, 客观上造成了许多车企不敢盲目加码, 大家对于氢燃料电池的投资态度也保持谨慎。

(四) 未实现规模化

氢能燃料电池方面的技术标准、检测体系不够健全和完善,远不能满足产业快速发展的 需求,尚未实现规模化生产。

思维导图:

学习投资知识,就在微森公开课

微森公开课专注投资干货科普 助你提升投资技能

(长按识别二维码关注我们)

每周六晚 20:00 微森名师直播解读小白也能看懂的行业、个股、热点分析