Problem 1

The plate shown in Figure 1 with dimensions w = 100 mm, a = 10 mm and thickness = 10 mm is made from a material with $K_{IC} = 60$ MPa (m)^{0.5}. The load pair P_A is at a position x with respect to the edge of the plate as shown.

- a) Determine P_A when the plate fails for x=0.
- b) Determine P_A when the plate fails for x=w/2.

SUGGESTION: depending on the configuration, you may have K from M, Sg, or both of them;

Figure 1 Stress intensity factor solutions for the problem

Results for Problem 1 a)

Step 1 Calculate contributions of bending (subscript b) and tension (subscript m)

Results for Problem 1 a)

Step 2 Calculate stress intensity factor K_m for tension.

Let's assume P = 1000 N (1kN) as a first tentative. Then,

$$\sigma_m = \frac{P_A}{wt} = \frac{P_A}{1000} = 1 \ (N/mm^2)$$

Thus,
$$K_m = \sigma_m F \sqrt{\pi a} = 1 \cdot 1.209 \cdot \sqrt{3.14 \cdot \frac{10}{1000}} = 0.214 \ (MPa \cdot \sqrt{m})$$

Step 3 Calculate stress intensity factor K_b for bending.

Let's assume P = 1000 N (1kN) as a first tentative. Then,

$$\cdot \sigma_b = \frac{6M}{w^2 t} = \frac{6P_A \frac{w}{2}}{w^2 t} = \frac{3P_A}{1000} = 3.00 \ (N/mm^2)$$

Thus,
$$K_b = \sigma_b F \sqrt{\pi a} = 3.00 \cdot 1.041 \cdot \sqrt{3.14 \cdot \frac{10}{1000}} = 0.553 \ (MPa \cdot \sqrt{m})$$

Results for Problem 1 a)

Step 4 Give a total stress concentration factor.

$$K_{total} = K_m + K_t = 0.214 + 0.553 = 0.768 \ (MPa \cdot \sqrt{m})$$

Step 5 P_A when the plate fails can be calculated based on K_{IC} .

1000N:
$$K_{total} = P_A$$
: $K_{IC} \leftrightarrow P_A = \frac{1000K_{IC}}{K_{total}} = 782000N = 78.2kN$

Results for Problem 1 b)

Step 1 Calculate stress intensity factor K_m for tension.

Let's assume P = 1000 N (1kN) as a first tentative. Then,

$$\sigma_m = \frac{P_A}{wt} = \frac{P_A}{1000} = 1 \ (N/mm^2)$$

Thus,
$$K_m = \sigma_m F \sqrt{\pi a} = 1 \cdot 1.209 \cdot \sqrt{3.14 \cdot \frac{10}{1000}} = 0.214 \ (MPa \cdot \sqrt{m})$$

Step 2 P_A when the plate fails can be calculated based on K_{IC} .

$$1000N: K_m = P_A: K_{IC} \leftrightarrow P_A = \frac{1000K_{IC}}{K_m} = 280080N = 280.1kN$$

Problem 2

A plate with center crack is made of an aluminum alloy; see Figure 2. The plate has dimensions b = 140 mm, t = 2.8 mm and h = 945 mm. During the tests, the plate cyclic axial loading was loaded between $P_{min} = 40 \text{ kN}$ and $P_{max} = 110 \text{ kN}$. The crack size vs. number of cycles was measured and reported in Table 1.

- a) Calculate ΔK and da/dN associated with this data and make the da/dN versus ΔK plot. Define approximate values of C and m for each measured crack length using point by point approach. **SUGGESTION:** α is derived from average crack length a; pay attention to unit of measure;
- b) Use a log-log least squares fit to obtain better estimates of C and m. Compare C and m values and discuss the variation of the results

$$K=FS_g\sqrt{\pi a}$$
 where $S_g={}^P/_{2bt}$ and $F={}^{1}-0.5lpha+0.326lpha^2/_{\sqrt{1-lpha}}}$, $lpha=a/b$

Figure 2 Centre cracked plate

Table 1 Measured test data

Crack length a (mm)	Number of cycles N	
5.47	0	
6.90	9500	
8.17	14300	
9.72	17100	
11.40	19100	
13.23	20500	
15.18	21500	
19.50	22400	
24.36	23000	
29.76	23400	
35.70	23700	

Results for Problem 2 a)

(1)

(2)

(3)

(4)

(5)

(6)

Crack length	Number of cycles N	da/dN	a _{ave} (mm)	α _{ave} (mm)	F	ΔΚ	m	С
a (mm)		(mm/cycle)				(MPa · m^0.5)		
5.47	0							
6.90	9500	0.0001505	6.185	0.044	1.001	12.46	5.69	8.85E-11
8.17	14300	0.0002646	7.535	0.054	1.001	13.76	8.55	4.87E-14
9.72	17100	0.0005536	8.945	0.064	1.002	15.00	4.98	7.74E-10
11.4	19100	0.0008400	10.56	0.075	1.003	16.31	5.68	1.10E-10
13.2	20500	0.0013071	12.315	0.088	1.004	17.63	5.51	1.80E-10
15.2	21500	0.0019500	14.205	0.101	1.005	18.96	8.81	1.08E-14
19.5	22400	0.0048000	17.34	0.124	1.008	21.00	4.28	1.05E-08
24.4	23000	0.0081000	21.93	0.157	1.012	23.72	4.56	4.32E-09
29.8	23400	0.0135000	27.06	0.193	1.019	26.54	3.66	8.44E-08
35.7	23700	0.0198000	32.73	0.234	1.029	29.47	-	-

(1) Crack growth rata:
$$\left(\frac{da}{dN}\right)_i = \frac{a_i - a_{i-1}}{N_i - N_{i-1}}$$

(5) Slope:
$$m_i = \frac{\log(da/dN)_i - \log(da/dN)_{i+1}}{\log \Delta K_i - \log \Delta K_{i+1}}$$

(2) Average of the crack length: $a_{i,ave} = \frac{a_i + a_{i-1}}{2}$

(6) Coefficient:
$$C_i = \frac{(da/dN)_i}{\Delta K_i^m}$$

(3) Ratio of crack length for plate width: $\alpha_{i,ave} = \frac{a_{i,ave}}{b}$

(4) Stress intensity factor range: $\Delta K_i = F_i \Delta S \sqrt{\pi a_{i,ave}/1000}$

Results for Problem 2 a)

Results for Problem 2 b)

Trendline by least squares fit should be made. Then, obtain C and m values.

da/dN vs ΔK plot

 $\Delta K \text{ (MPa } \cdot \text{m}^{0.5})$

0.0170000	27		l .
•	onstant C values o tive in different tw	•	
many variations	s due to different i	ncrement ar	nd any
Thus, the curve	e-fitting is good mealue and then char	ethod to dete	ermine
relationship for		acterize da/t	λιν-Διν

,	da/dN (mm/cycle)	ΔK (MPa ⋅ m′0.5)	m	С
	0.0001505	12.46	5.69	8.85E-11
	0.0002646	13.76	8.55	4.87E-14
	0.0005536	15.00	4.98	7.74E-10
	0.0008400	16.31	5.68	1.10E-10
	0.0013071	17.63	5.51	1.80E-10
	0.0019500	18.96	8.81	1.08E-14
	0.0048000	21.00	4.28	1.05E-08
	0.0081000	23.72	4.56	4.32E-09
	0.0135000	26.54	3.66	8.44E-08
	0.0198000	29.47	-	-

Problem 3

A steel plate with center crack has dimensions b = 45 mm, t = 5.0 mm and h = 80 mm. A cyclic force, R = 0.40 and ΔP = 140 kN was applied. Crack growth properties for the steel are γ = 0.719, m = 4.24 and C = 8.01 x 10⁻¹⁰ (units: MPa m^{0.5}, mm /cycle). For the material, f_{ν} = 780 MPa and K_{lc} = 120 MPa·m^{0.5}. The initial crack length is a_i = 1 mm.

- a) What is the crack length a_f at failure? Will failure be caused by brittle fracture or ductile yielding?
- b) How many cycles can be applied before failure?
- c) The component is required to operate for 120 000 cycles. A safety factor of 3 on life is required. The minimum detectable crack length during inspection is 1.0 mm. What is the appropriate inspection interval?

Results for Problem 3 a)

Step 1 Calculate crack length at full plastic yielding by using (1)

(1)
$$a_0 = b \left(1 - \frac{P_{max}}{2bt f_y} \right) = b \left(1 - \frac{\Delta P}{2bt f_y} \right) = 45 \left(1 - \frac{140000}{2 \cdot 40 \cdot 5 \cdot 780} \right) = 15.1 \text{ mm}$$

Step 2 Calculate crack length at brittle fracture by using (2)

(2)
$$a_c = \frac{1}{\pi} \left(\frac{K_{IC}}{FS_{max}} \right)^2 = \frac{1}{\pi} \left(\frac{K_{IC}}{F^{P_{max}}/_{2bt}} \right)^2 = \frac{1}{3.14} \left(\frac{120}{1.233000/_{2.45.5}} \right)^2 = 17.0 \text{ mm}$$

(F = 1.0 is assumed. The ratio $a_c/b = 0.379 < 0.4$; thus F = 1.0 is applicable.)

Step 3 Compare a_0 and a_c and take the smaller value as a_t

 $a_0 = 15.1 \ mm < a_c = 17.0 \ mm$; thus, $a_f = 15.1 \ mm$ and the plate fails by ductile yielding.

Results for Problem 3 b)

Step 1 Take R-ratio effects into account constant C value by using Walker equation (3)

(3)
$$C_R = \frac{C}{(1-R)^{m(1-\gamma)}} = \frac{8.01 \times 10^{-10}}{(1-0.5)^{4.24(1-0.719)}} = 1.47 \times 10^{-9}$$

Step 2 Calculate the number of cycles from initial crack size to critical crack length by using (4)

$$(4)N_f = \frac{a_f^{1-m/2} - a_i^{1-m/2}}{C_R(F\Delta S\sqrt{\pi})^m (1 - \frac{m}{2})} = \frac{\left(15.1/_{1000}\right)^{1-4.24/2} - \left(1/_{1000}\right)^{1-4.24/2}}{\left(1.47 \times 10^{-9}/_{1000}\right) \left(1 \cdot 311 \cdot \sqrt{3.14}\right)^{4.24} (1 - \frac{4.24}{2})} = 3145 \ cycle$$

(Remember the units of all quantities must be coherent; ΔS: MPa, a: m, C: MPa m^{0.5}, m /cycle)

Results for Problem 3 c)

The safety factor is 3145/120000 = 0.026 meaning that the component does not fulfill the minimum life requirement without inspections. Thus, the component should be inspected every 3145/3 = 1048 cycles.

To avoid inspection, you should explore new pre-service technologies since the minimum detectable crack length of 1 mm is too large (as we saw during the solution of problem, 1 mm cracks length does not fulfill the minimum safety requirement).

The minimum detectable crack length should be decreased from 1 mm so as to obtain a life of at least $N_f = 3*120000 = 360000$ cycles. This length a_i can be calculated by utilizing (4).

$$(4) N_f = \frac{a_f^{1-m/2} - a_i^{1-m/2}}{C_R (F\Delta S\sqrt{\pi})^m (1 - \frac{m}{2})} \rightarrow 360000 = \frac{\left(15.1/_{1000}\right)^{1-4.24/2} - \left(a_i/_{1000}\right)^{1-4.24/2}}{\left(1.47 \times 10^{-9}/_{1000}\right) \left(1 \cdot 311 \cdot \sqrt{3.14}\right)^{4.24} \left(1 - \frac{4.24}{2}\right)}$$

$$\rightarrow a_i = 0.000015 \ m = 0.015 \ mm$$

Therefore, an initial crack size of around 0.015 mm would be required.

Usually, civilian aircrafts have a detectable minimum crack length of 1 or 2 mm, based on a 90% of probability at a confidence level of 95% with the best inspection methods (sometimes a minimum crack of 0.1 mm can also be found but it is justified only in special cases/situations.)