МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №3

по дисциплине: Теория автоматов и формальных языков тема: «Регулярные языки и конечные распознаватели»

Выполнил: ст. группы ПВ-223 Степанов Дмитрий Сергеевич

Проверили:

Рязанов Юрий Дмитриевич

Лабораторная работа №3 Регулярные языки и конечные распознаватели Вариант 1

Цель работы: изучить основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.

1. Язык L1 в алфавите {a,b,c}, представляющий собой множество цепочек, которые содержат хотя бы один символ а, задан грамматикой:
$S \rightarrow RA$
$R \rightarrow Rb$
$R \rightarrow Rc$
$R \rightarrow \varepsilon$
$A \rightarrow aP$
$P \rightarrow aP$
$P \rightarrow bP$
$P \rightarrow cP$
$P \rightarrow \varepsilon$
Построить детерминированный конечный распознаватель языка L1.
Чтобы получить распознаватель необходимо преобразовать грамматику в автоматную правую.
Удалим е-правила:
$S \rightarrow RA$
$S \rightarrow A$
$R \rightarrow Rb$
$R \rightarrow b$
$R \rightarrow Rc$
$R \rightarrow c$
$A \rightarrow aP$
$A \rightarrow a$
$P \rightarrow aP$
P→a
$P \rightarrow bP$
$P \rightarrow b$
$P\rightarrow cP$
$P \rightarrow c$
Избавимся от цепных правил:
$S\rightarrow RA$
$S \rightarrow aP$
$S \rightarrow a$

 $R \rightarrow Rb$ $R \rightarrow Rc$ $R \rightarrow b$

```
R \rightarrow c
A→aP
A→a
P \rightarrow aP
P \rightarrow a
P \rightarrow bP
P \rightarrow b
P \rightarrow cP
P \rightarrow c
Избавимся от левой рекурсии:
S \rightarrow RA
S \rightarrow aP
S \rightarrow a
R→bB1
R\rightarrow cB1
A \rightarrow aP
A \rightarrow a
P \rightarrow aP
P \rightarrow a
P \rightarrow bP
P \rightarrow b
P \rightarrow cP
P \rightarrow c
B1→bB1
B1→cB1
B1 \rightarrow \epsilon
Избавимся от е-правил:
S \rightarrow RA
S \rightarrow aP
S \rightarrow a
R→bB1
R \rightarrow b
R→cB1
R \rightarrow c
A \rightarrow aP
A→a
P \rightarrow aP
P \rightarrow a
P \rightarrow bP
P \rightarrow b
P \rightarrow cP
P \rightarrow c
B1→bB1
B1\rightarrow cB1
B1\rightarrow b
B1\rightarrow c
```

Преобразуем грамматику к виду, когда все правые части правил начинаются с терминала:

 $S \rightarrow bB1A$

 $S \rightarrow cB1A$

 $S \rightarrow bA$

 $S \rightarrow cA$

 $S \rightarrow aP$

S→a

R→bB1

 $R \rightarrow b$

R→cB1

 $R \rightarrow c$

 $A \rightarrow aP$

A→a

 $P \rightarrow aP$

 $P \rightarrow a$

 $P \rightarrow bP$

 $P \rightarrow b$

 $P \rightarrow cP$

 $P \rightarrow c$

B1→bB1

B1→cB1

B1→b

 $B1\rightarrow c$

Удалим недостижимые символы:

 $S \rightarrow bB1A$

 $S \rightarrow cB1A$

 $S \rightarrow bA$

 $S \rightarrow cA$

 $S \rightarrow aP$

S→a

A→aP

A→a

 $P \rightarrow aP$

P→a

 $P \rightarrow bP$

 $P \rightarrow b$

 $P \rightarrow cP$

 $P \rightarrow c$

B1→bB1

B1→cB1

 $B1\rightarrow b$

 $B1\rightarrow c$

Приведём грамматику к правосторонней грамматике:

 $N1 \rightarrow bB1A$, то же что и $N1 \rightarrow bN1$

 $N1 \rightarrow cB1A$, то же что и $N1 \rightarrow cN1$

 $N1 \rightarrow bA$

 $N1 \rightarrow cA$

Привели грамматику к правосторонней:

 $S \rightarrow bN1$

 $S \rightarrow cN1$

 $S \rightarrow aP$

 $S \rightarrow a$

 $S \rightarrow bA$

 $S \rightarrow cA$

 $A \rightarrow aP$

A→a

 $P \rightarrow aP$

 $P \rightarrow a$

 $P \rightarrow bP$

 $P \rightarrow b$

 $P \rightarrow cP$

 $P \rightarrow c$

B1→bB1

 $B1\rightarrow cB1$

 $B1\rightarrow b$

 $B1\rightarrow c$

 $N1 \rightarrow bN1$

 $N1 \rightarrow cN1$

 $N1 \rightarrow bA$

 $N1 \rightarrow cA$

Приведём грамматику к правосторонней автоматной. Введём правило N2 ightarrow ϵ :

 $S \rightarrow bN1$

 $S \rightarrow cN1$

 $S \rightarrow aP$

S→aN2

 $S \rightarrow bA$

 $S \rightarrow cA$

 $A \rightarrow aP$

A→aN2

 $P \rightarrow aP$

P→aN2

 $P \rightarrow bP$

P→bN2

 $P \rightarrow cP$

P→cN2

 $B1\rightarrow bB1$

 $B1\rightarrow cB1$

B1→bN2

 $B1\rightarrow cN2$

 $N1 \rightarrow bN1$

 $N1 \rightarrow cN1$

 $N1 \rightarrow bA$

 $N1 \rightarrow cA$

 $N2 \to \epsilon$

Теперь можем построить распознаватель:

	\downarrow					1
	S	A	P	B1	N1	N2
a	P, N2	P, N2	P, N2			
b	N1, A		P, N2	B1, N2	N1, A	
С	N1, A		P, N2	B1, N2	N1, A	

Приведём недетерминированный распознаватель к детерминированному:

	\downarrow	1	
	{S}	{P, N2}	{N1, A}
a	{P, N2}	{P, N2}	{P, N2}
b	{N1, A}	{P, N2}	{N1, A}
С	{N1, A}	{P, N2}	{N1, A}

	\downarrow	1	
	S 1	S2	S 3
a	S2	S2	S2
b	S3	S2	S3
С	S3	S2	S3

Получили детерминированный распознаватель для языка L1:

2. Язык L2 в алфавите {a,b,c}, представляющий собой множество цепочек, которые содержат хотя бы один символ b, задан регулярным выражением: (a+c)*b(a+b+c)*

Избавимся от е-переходов:

 $e(S1) = \{S1, S2, S3\}$

 $e(S2) = \{S2, S3\}$

 $e(S3) = \{S3\}$

 $e(S4) = \{S4, S5, S6\}$

 $e(S5) = \{S5, S6\}$

 $e(S6) = \{S6\}$

	 	\downarrow	\	1	1	1
	e(S1)	e(S2)	e(S3)	e(S4)	e(S5)	e(S6)
	{S1, S2,	{S2, S3}	{S3}	{S4, S5,	{S5, S6}	{S6}
	S3}			S6}		
a	e(S2)	e(S2)		e(S5)	e(S5)	
b	e(S4)	e(S4)	e(S4)	e(S5)	e(S5)	
С	e(S2)	e(S2)		e(S5)	e(S5)	

Удалим недостижимый символ S6

	 	\downarrow	\downarrow	1	1
	S1	S2	S 3	S4	S5
a	S2	S2		S5	S5
b	S4	S4	S4	S5	S5
С	S2	S2		S5	S5

Преобразуем недетерминированный распознаватель в детерминированный

	\downarrow		1	1
	{S1, S2,	{S2}	{S4}	{S5}
	{S1, S2, S3}			
a	{S2}	{S2}	{S5}	{S5}
b	{S4}	{S4}	{S5}	{S5}
С	{S2}	{S2}	{S5}	{S5}

	\		1	1
	S1	S2	S 3	S4
a	S2	S2	S4	S4
b	S3	S 3	S4	S4
С	S2	S2	S4	S4

Получили детерминированный распознаватель для языка L2

3. Построить минимальный детерминированный конечный распознаватель языка L3 в алфавите {a,b,c}, представляющий собой множество цепочек, которые содержат хотя бы один символ а или хотя бы один символ b.

Преобразуем недетерминированный распознаватель в детерминированный:

	\downarrow	1	1		1	1	1
	{S1,	{S2,	{S3,	{S3,	{S2,	{S2,	{S3,
	S'1}	S'2}	S'3}	S'2}	S'3}	S'4}	S'4}
a	{S2,	{S2,	{S2,	{S2,	{S2,	{S2,	{S2,
	S'2}	S'2}	S'4}	S'2}	S'4}	S'4}	S'4}
b	{S3,	{S2,	{S3,	{S3,	{S2,	{S2,	{S3,
	S'3}	S'3}	S'4}	S'3}	S'4}	S'4}	S'4}
c	{S3,	{S2,	{S3,	{S3,	{S2,	{S2,	{S3,
	S'2}	S'2}	S'4}	S'2}	S'4}	S'4}	S'4}

	\downarrow	1	1		1	1	1
	S 1	S2	S 3	S4	S5	S6	S7
a	S2	S2	S 6	S2	S 6	S6	S6
b	S 3	S5	S7	S 3	S6	S 6	S7
c	S4	S2	S7	S4	S 6	S 6	S7

Выполним минимизацию:

 $K1 = \{S1, S4, e\}$

 $K2 = \{S2, S3, S5, S6, S7\}$

	K1			K2				
	S 1	S4	e	S2	S 3	S5	S6	S7
a	K2	K2	K1	K2	K2	K2	K2	K2
b	K2	K2	K1	K2	K2	K2	K2	K2
С	K1	K1	K1	K2	K2	K2	K2	K2

Получили таблицу переходов в классы 0-эквивалентных состояний. На основе этой таблицы можем построить таблицу переходов в классы 1-эквивалентных состояний.

	K1 K3			K2				
	S 1	S4	e	S2	S 3	S5	S 6	S 7
a	K2	K2	K3	K2	K2	K2	K2	K2
b	K2	K2	K3	K2	K2	K2	K2	K2
С	K1	K1	K3	K2	K2	K2	K2	K2

По таблице видно, что классы 2-эквивалентных состояний совпадают с классами 1-эквивалентных состояний, следовательно, классы 1-эквивалентных состояний представляют собой классы эквивалентных состояний. Переобозначим K1=S1, K2=S2. Таблица переходов минимального распознавателя:

	\downarrow	1
	S 1	S2
a	S2	S2
b	S2	S2
С	S1	S2

Получили минимальный детерминированный распознаватель для языка L3.

4. Написать программу компиляционного типа для реализации минимального детерминированного конечного распознавателя языка L3.

```
MESSAGES = {
  -1: "Отвергнуть, невалидный входной символ",
  0: "Отвергнуть, цепочка не содержит а или b",
  1: "Допустить",
def validate(input):
  original input = input
  s = 0
 while len(input) > 0 and s >= 0:
    current_symbol = input[0]
    if s == 0:
      if current_symbol == "c":
      elif current_symbol == "a" or current_symbol == "b":
        s = 1
      else:
        s = -1
    elif s == 1:
      if current_symbol == "a" or current_symbol == "b" or current_symbol == "c":
        s = -1
    input = input[1:]
  print(original_input, MESSAGES[s])
  return s
```

5. Написать программу интерпретационного типа для реализации минимального детерминированного конечного распознавателя языка L3.

```
MESSAGES = {
 -1: "Отвергнуть, невалидный входной символ",
  0: "Отвергнуть, цепочка не содержит а или b",
  1: "Допустить",
PERMITTING = [1]
MATRIX = {
 "a": [1, 1],
 "c": [0, 1]
def validate(input):
 original_input = input
 s = 0
 while len(input) > 0 and s >= 0:
    current_symbol = input[0]
    if current symbol in MATRIX:
      s = MATRIX[input[0]][s]
      s = -1
      break
```

```
input = input[1:]

if s in PERMITTING:
    s = 1

print(original_input, MESSAGES[s])
return s
```

- 6. Подобрать наборы тестовых данных так, чтобы в процессе тестирования сработал каждый переход конечного распознавателя.
 - a. caabc
 - b. chabc
- 7. Подобрать наборы тестовых данных так, чтобы в процессе тестирования распознаватель закончил обработку цепочек в каждом состоянии конечного распознавателя.
 - a. ccc
 - b. a
- 8. Выполнить тестирование программ для реализации минимального детерминированного конечного распознавателя языка L3.

Результат выполнения программ:

```
сааbс Допустить cbabc Допустить ссс Отвергнуть, цепочка не содержит а или b а Допустить
```

```
сааbс Допустить cbabc Допустить ссс Отвергнуть, цепочка не содержит а или b а Допустить
```

Вывод: в ходе лабораторной работы изучили основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.