JP 09293508-A CEIVED CEIVED COPY OF PAPERS L(3-E1B5) *JP 09293508-A Cathode active material for lithium non-aqueous electrolytic SONY 96.04.25 secondary battery - comprises lithium nickel oxide particles 96.04.25 96JP-131094 (97.11.11) H01M 4/58, 4/02, 4/04, 10/40, 4/48 The cathode active material comprises lithium nickel oxide particles The active material gives excellent charging/discharging cycle Also claimed is the lithium nickel oxide particle made of M^1 , $M^2 = Al$, Mn, Fe, Ni, Co, Cr, Ti, Zn, P and B; and x, y, z = positive numbers but their sum = 1. surface coated with vanadium pent:oxide coated with vanadium pentoxide. characteristics to the battery. L03 $LiNi_xM^1_yM^2_zO_2$ (6pp109DwgNo.0/3) ADVANTAGE C98-013253 98-039244/04 SONY CORP

一年 発表 1000

COPY OF PAPERS

ORIGINALLY FILED

POSITIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURE AND NONAQUEOUS ELECTROLYTE Y BATTERY USING IT SECONDAT

Ratent Number:

JP9293508

Mublication date:

1997-11-11

Ia ventor(s):

YAMAURA KIYOSHI

oplicant(s)::

SONY CORP

Requested Patent:

□ JP9293508

Application Number: JP19960131094 19960425

Priority Number(s):

IPC Classification:

H01M4/58; H01M4/02; H01M4/04; H01M4/48; H01M10/40

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To enhance the cycle characteristic of a nonaqeuous electrolyte secondary battery using lithium nickel composite oxide particles as positive electrode material. SOLUTION: A nonaqueous electrolyte secondary battery is provided with a positive electrode containing lithium nickel composite oxide particles, a negative electrode made of material which can be doped with and dedoped from lithium, or metal lithium or lithium alloy, and nonaqueous electrolyte which is formed by dissolving or dispersing lithium salt in a nonaqueous medium. In the nonaqueous electrolyte secondary battery, as the lithium nickel composite oxide particles the particles whose surfaces are covered by V2 O5 are used.

Data supplied from the esp@cenet database - I2

RECEIVED

MAR 1.6 2002

TC 1700

RECEIVED TO 1700

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-293508

(43)公開日 平成9年(1997)11月11日

(51) Int.Cl. ⁶		· 識別記号	庁内整理番号	FΙ			;	技術表示箇所
H 0 1 M	4/58			H01M	4/58			
	4/02				4/02 4/04 4/48		С	7,
	4/04						Α	
	4/48							
	10/40			1	0/40	**:	Z	
				審査請求	未請求	請求項の数 9	FD	(全 6 頁)
(21) 出願番号 特願平8-131094		(71) 出願人	000002185 ソニー株式会社					
(22)出願日		平成8年(1996)4月25日		(72)発明者	東京都品川区北品川6丁目7番35号 山浦 潔 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内			
				(74)代理人	弁理士	田治米登	(外14	各)

(54) 【発明の名称】 リチウム二次電池用正極材料、その製造方法及びそれを用いた非水電解液二次電池

(57)【要約】

【課題】 リチウムニッケル複合酸化物粒子を正極材料 として使用する非水電解液二次電池のサイクル特性を向 上させる。

【解決手段】 リチウムニッケル複合酸化物の粒子を含有する正極と、リチウムをドープ・脱ドープ可能な材料あるいは金属リチウム又はリチウム合金からなる負極と、リチウム塩を非水媒体に溶解又は分散してなる非水電解液とを備えた非水電解質二次電池において、リチウムニッケル複合酸化物の粒子として、その表面が V_2O_5 で覆われているものを使用する。

【特許請求の範囲】

【請求項1】 リチウムニッケル複合酸化物を含有する リチウム二次電池用正極材料において、リチウムニッケ ル複合酸化物の粒子の表面が V2O5で覆われていること を特徴とするリチウム二次電池用正極材料。

$$0..1 \le [\{W1/(W1+W2)\} \times 100] \le 10$$

の範囲である請求項1記載のリチウム二次電池用正極材 料。

【請求項3】 リチウムニッケル複合酸化物が、式 (1)

$$\{4L1\}LiNi_xM^1_yM^2_zO_2 \tag{1}$$

(式中、M¹及びM²は、それぞれ独立的にA₁, M_n, Fe, Ni, Co, Cr, Ti, Zn, P及びBから選 択される少なくとも一種の元素であり、x,y及びzは それぞれ 0以上の数であるが、但しそれらの総和は1で ある。) で表される請求項1又は2記載のリチウム二次

$$0.1 \le [(W1/(W1+W2)) \times 100] \le 10$$

の範囲である請求項4記載の製造方法。

【請求項6】 リチウムニッケル複合酸化物が、式 (1)

$$\{(2) LiNi_xM^1_yM^2_zO_2$$
 (1)

(式中、M¹及びM²は、それぞれ独立的にA₁, M_n, Fe. Ni, Co, Cr, Ti, Zn, P及びBから選 択される少なくとも一種の元素であり、x,y及びzは それぞれ0以上の数であるが、但しそれらの総和は1で ある。) で表される請求項4又は5記載の製造方法。

【請求項7】 リチウムニッケル複合酸化物の粒子を含 有する正極と、リチウムをドープ・脱ドープ可能な材料

の範囲である請求項7記載の非水電解液二次電池。

【請求項9】 リチウムニッケル複合酸化物が、式 (1)

[化3]
$$\text{LiNi}_{x}M^{1}_{y}M^{2}_{z}O_{2}$$
 (1)

(式中、 M^1 及び M^2 は、それぞれ独立的に A_1 , M_n , Fe, Ni, Co, Cr, Ti, Zn, P及びBから選 択される少なくとも一種の元素であり、x,y及びzは それぞれ 0以上の数であるが、但しそれらの総和は1で ある。) で表される請求項7又は8記載の非水電解液二 次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リチウム二次電池 に適した正極材料、その製造方法及びそれを用いた非水 電解液二次電池に関する。

[0002]

【従来の技術】近年、電子技術の進歩に伴い、カメラー 体型VTR、携帯電話、ラップトップコンピューター等 の小型のポータブル電子機器が開発され、これらに使用 するためのポータブル電源として、小型軽量で且つ高工 ネルギー密度の二次電池の開発が強く要請されている。

【請求項2】 V_2O_5 の重量をW1とし、リチウムニッ ケル複合酸化物の重量をW2とした場合に、 V_2O_5 の重 量比率[{W1/(W1+W2)}×100](%)が 式(A)

【数1】

(A)

電池用正極材料。

【請求項4】 リチウムニッケル複合酸化物とV₂O₅と を混合し、その混合物を650℃~750℃に加熱する ことを特徴とするリチウム二次電池用正極材料の製造方 法。

【請求項5】 V_2O_5 の重量をW1とし、リチウムニッ ケル複合酸化物の重量をW2とした場合に、V2O5の重 量比率[{W1/(W1+W2)} ×100](%)が 式(A)

【数2】

(A)

あるいは金属リチウム又はリチウム合金からなる負極 と、リチウム塩を非水溶媒に溶解してなる非水電解液と を備えた非水電解液二次電池において、リチウムニッケ ル複合酸化物の粒子の表面がV2O5で覆われていること を特徴とする非水電解液二次電池。

【請求項8】 V₂O₅の重量をW1とし、リチウムニッ ケル複合酸化物の重量をW2とした場合に、 V_2O_5 の重 量比率[{W1/(W1+W2)}×100](%)が 式(A)

【数3】

 $0.1 \le [(W1/(W1+W2)) \times 100] \le 10$ (A)

【0003】従来より二次電池としては、Ni-Cd二 次電池、鉛蓄電池、リチウム二次電池等が広く知られて いるが、これらの中でも、高出力で高エネルギー密度の 電池を構成することができるリチウム二次電池が注目さ れており、一部商品化されている。

【0004】このようなリチウム二次電池の場合、リチ ウムが水に対して非常に大きな反応性を有しているの で、炭酸プロピレンや炭酸ジエチルなどの非水溶媒に、 LiPF。などのリチウム塩を溶解させた非水電解液が 使用されている。また、負極活物質としては、金属リチ ウムやリチウム合金を使用する場合もあるが、最近では 充放電を繰り返してもデンドライドが形成されない材 料、例えばリチウムイオンをドープ・脱ドープ可能な炭 素質材料が好ましく使用されるようになっている。

【0005】一方、正極活物質としては、TiS2、M oS2、NbSe2、V2O5などのリチウムを含有しない 金属硫化物や金属酸化物なども使用されている。例え ば、高容量電池を実現するためにⅤ₂○5を使用し、特に その二次粒子径を150μm以下とすることが提案され ている(特開平7-230801号公報)。しかしなが ら、これらの正極活物質の場合、エネルギー密度が十分

でなく、しかも製造コストも比較的高く、サイクル特性 も十分ではないという問題があった。このため、最近で は、それらに比べより高いエネルギー密度とサイクル特 性とを実現でき、しかも低コストで製造することのでき る正極材料として、リチウムとニッケルとの複合酸化物 (以下、リチウムニッケル複合酸化物と略称する。)が 使用されることが多くなっている。

[0006]

【発明が解決しようとする課題】ところで、近年、種々 のポータブル機器の性能が飛躍的に向上するようになっ ているが、それに対応して、リチウムニッケル複合酸化 物を正極活物質として使用したリチウム二次電池に対し ても、電池特性を向上させることが求められている。特 に、サイクル特性をより向上させることが求められてい

【〇〇〇7】本発明は、以上の従来の技術の課題を解決 しようとするものであり、リチウムニッケル複合酸化物 を正極活物質として使用したリチウム非水電解液二次電 池のサイクル特性を向上させることを目的とする。

[0008]

【課題を解決するための手段】本発明者は、リチウムニ ッケル複合酸化物粒子とV2O5とを混合して所定の温度 に加熱処理することにより、表面がⅤ₂○₅で覆われたリ チウムニッケル複合酸化物粒子が得られること、そして そのようなリチウムニッケル複合酸化物粒子を正極活物 質として使用することにより、リチウム非水電解液二次 電池のサイクル特性を向上させることを見出し、本発明 を完成させるに至った。

【0009】即ち、本発明は、リチウムニッケル複合酸 化物を含有するリチウム二次電池用正極材料において、 リチウムニッケル複合酸化物の粒子の表面がV2O5で覆

0. $1 \le [\{W1/(W1+W2)\} \times 100] \le 10$

の範囲であることが好ましい。

【〇〇16】また、リチウムニッケル複合酸化物として は、式(1)

[0017]

$$\{(4) Li Ni_x M_y M_z^2 O_2$$
 (1)

(式中、M¹及びM²は、それぞれ独立的にA1, Mn, Fe, Ni, Co, Cr, Ti, Zn, P及びBから選 択される少なくとも一種の元素であり、x,y及びzは それぞれ 0 以上の数であるが、但しそれらの総和は 1 で ある。)で表される化合物を使用することができる。具 体的には、LiNi_{0.8}Co_{0.2}O₂、LiNi_{0.9}Co _{0.05} A 1_{0.05} O₂などを挙げることができる。

【0018】なお、リチウムニッケル複合酸化物粒子の 粒子径は特に制限はないが、通常0.5~20μm、好 ましくは1~10μmである。

【0019】本発明の正極材料は、リチウムニッケル複 合酸化物と V_2O_5 とを均一に混合し、その混合物を650℃~750℃、好ましくは680~720℃に加熱す われていることを特徴とするリチウム二次電池用正極材 料を提供する。

【〇〇10】また、本発明は、リチウムニッケル複合酸 化物とV₂O₅とを混合し、その混合物を650℃~75 ○℃に加熱することを特徴とするリチウム二次電池用正 極材料の製造方法を提供する。

【0011】更に、本発明は、リチウムニッケル複合酸 化物の粒子を含有する正極と、リチウムをドープ・脱ド ープ可能な材料あるいは金属リチウム又はリチウム合金 からなる負極と、リチウム塩を非水溶媒に溶解してなる 非水電解液とを備えた非水電解液二次電池において、リ チウムニッケル複合酸化物の粒子の表面がV2O5で覆わ れていることを特徴とする非水電解液二次電池を提供す る。

[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。 【0013】本発明のリチウム二次電池用正極材料は、 リチウムニッケル複合酸化物粒子を含有し、その表面が V,O5で覆われていることを特徴としている。このよう なリチウムニッケル複合酸化物を正極活物質として使用 することにより、リチウム二次電池のサイクル特性を向 上させることができる。これは、正極と電解液との界面 における電解液の分解反応が抑制されるためと考えられ る。

【0014】このようなリチウム二次電池用正極材料に おいて、 V_2O_5 の重量をW1とし、リチウムニッケル複 合酸化物の重量をW2とした場合に、 V_2O_5 の重量比率 「{W1/(W1+W2)}×100](%)が式

(A)

[0015]

【数4】

(A)

ることにより製造することができる。650℃を下回る と V₂ O5 (融点 6 4 0 ~ 6 5 0 ℃) が充分に溶融せず、 リチウムニッケル複合酸化物粒子の表面を覆わなくな り、750℃を超えるとV₂O₅が分解するようになるの で好ましくない。

【0020】なお、加熱時間は、長過ぎるとⅤ₂О₅がリ チウムニッケル複合酸化物中に固溶するおそれがあるの で、10分程度で十分である。

【0021】ここで、リチウムニッケル複合酸化物は、 リチウム化合物及びニッケル化合物例えば、リチウムや ニッケルの炭酸塩、硝酸塩、硫酸塩、酸化物、水酸化 物、ハロゲン化物を原料として製造することができる。 例えば、所望の組成に応じてリチウム塩原料とニッケル 塩原料とをそれぞれ計量し、十分に混合した後に酸素存 在雰囲気下600℃~1000℃の温度範囲で加熱焼成 することにより製造することができる。この場合、各成 分の混合方法は、特に限定されるものでなく、粉体状の 塩類をそのまま乾式の状態で混合してもよく、あるいは 粉体状の塩類を水に溶解して水溶液の状態で混合しても よい。

【OO22】一方、 V_2O_5 は、市販品を使用することができ、またその粒径も、リチウムニッケル複合酸化物と混合しにくくならない限り特に制限はない。

【OO23】また、リチウムニッケル複合酸化物の重量(W2)に対する V_2O_5 の重量(W1)の比率 [$\{W1 \nearrow (W1+W2)\} \times 100$]を、前述した式(A)の範囲とすることが好ましい。また、リチウムニッケル複合酸化物として、前述した式(1)で表される化合物を使用することが好ましい。

【〇〇24】なお、以上説明した本発明の正極材料から正極を作製する場合、正極活物質の粉末と必要に応じてカーボンブラックやグラファイトなどの導電材料と、更にポリフッ化ビニリデン(PVdF)などのバインダー樹脂とを均一に混合して正極合剤組成物を調製し、それを圧縮成形することによりコイン型セル用のペレット形状の正極を作製することができる。あるいは、正極活物質の粉末と導電材料とバインダー樹脂とに加えて、更にホルムアミドやNーメチルピロリドンなどの溶媒を添加してペースト状の正極合剤組成物を調製し、それを正極集電体に塗布し乾燥することにより、巻き回し型セル用の正極を作製することができる。

【0025】本発明の正極材料から形成された正極は、 リチウムをドープ・脱ドープ可能な材料あるいは金属リ チウム又はリチウム合金からなる負極と、リチウム塩を 非水溶媒に溶解してなる非水電解液とを備えた非水電解 液二次電池を構成する場合に好ましく使用することがで きる。このような非水電解液二次電池は、サイクル特性 に優れたものとなる。

【0026】なお、この非水電解液二次電池において、

リチウムをドープ・脱ドープ可能な材料としては、例え ば、熱分解炭素類、コークス類(ピッチコークス、ニー ドルコークス、石油コークス等)、グラファイト類、ガ ラス状炭素類、有機高分子化合物焼成体(フェノール樹 脂、フラン樹脂などを適当な温度で焼成して炭素化した もの)、炭素繊維、活性炭等の炭素質材料、あるいはポ リアセチレン、ポリピロールなどのポリマー等を使用す ることができる。また、リチウム合金としては、リチウ ムとアルミニウムとの合金等を使用することができる。 【0027】なお、これらの材料から負極を作製する 際、金属リチウムやリチウム合金を使用する場合には、 板状の金属リチウム又は合金を所定の形状(例えばペレ ット形状) に機械的に打ち抜くことにより負極を作製す ることができる。また、炭素質材料を使用する場合に は、正極を作製する場合と同様に、炭素質材料の粉末と ポリフッ化ビニリデン (PVdF) などのバインダー樹 脂とを均一に混合して負極合剤組成物を調製し、それを 圧縮成形することによりコイン型セル用のペレット形状 の負極を作製することができる。あるいは、炭素質材料

の粉末とバインダー樹脂とに加えて、更にホルムアミドやNーメチルピロリドンなどの溶媒を添加してペースト 状の負極合剤組成物を調製し、それを負極集電体に塗布 し乾燥することにより、巻き回し型セル用の負極を作製 することができる。

【0028】また、非水電解液としては、従来よりリチウムイオン非水電解液二次電池において用いられている 非水溶媒にリチウム塩電解質を溶解してなるる非水電解 液と同様のものを使用することができる。

【〇〇29】非水電解液において使用する非水溶媒とし ては、従来よりリチウムイオン二次電池において用いら れている非水溶媒を使用することができ、例えば高誘電 率溶媒であるプロピレンカーボネート、エチレンカーボ ネート、ブチレンカーボネート、ビニレンカーボネー ト、アーブチロラクトン等の環状カーボネート類や、低 粘度溶媒である1,2-ジメトキシエタン、2-メチル テトラヒドロフラン、ジメチルカーボネート、メチルエ チルカーボネート、ジエチルカーボネート、ジプロビル カーボネート等を挙げることができる。その他にも、ス ルホラン、1,2-ジエトキシエタン、3-メチルー 1.3-ジオキソラン、プロピオン酸メチル、酪酸メチ ルなどを使用することができる。中でも、耐電圧性の点 から、プロピレンカーボネート、ビニレンカーボネート 等の環状カーボネート類と、ジメチルカーボネート、ジ エチルカーボネート、ジプロピルカーボネート等の鎖状 カーボネート類とを併用することが好ましい。

【0030】また、非水溶媒に溶解させるリチウム塩電解質としては、一般に、リチウム電池用として使用されるLiClO4、LiAsF $_6$ 、LiPF $_6$ 、LiBF $_4$ 、LiCl、LiBr、CH $_3$ SO $_3$ Li、CF $_3$ SO $_3$ Li、LiN(CF $_3$ SO $_2$) $_2$ 等を挙げることができる。これらは単独でも2種類以上を混合して用いることができる。

【0031】なお、非水電解液二次電池の他の構成、例えばセパレータ、電池缶等については、従来のリチウムイオン非水電解液二次電池と同様とすることができる。また、電池形状についても特に限定はなく、円筒型、角型、コイン型、ボタン型などの種々の形状とすることができる。

[0032]

【実施例】以下、本発明を実施例により具体的に説明する。

【0033】実施例1~4及び比較例1~3

表1に示す配合割合でLiNi〇2とV2〇5粉末とをメノウ乳鉢で十分に混合した。得られた混合物を700℃で10分間加熱して正極活物質粉末を得た。得られた正極活物質粉末90重量部とグラファイト7重量部とフッ素系高分子バインダー(ポリフッ化ビニリデン)3重量部とをDMF中で均一に混合した。その混合物からジメチルホルムアミドを十分に揮散させて乾燥させた後に、

この混合物約60mgを秤取り、約2cm²の表面積の 円盤状に加圧成形することにより正極を作製した。

【0034】一方、金属リチウムを円盤状に打ち抜き、 負極とした。ここで、負極のリチウム量は、正極の最大 充電能力の数百倍以上の量であり、正極の電気化学的性 能を制限するものではない。 【0035】このようにして得られた正極と負極とを用い、更に、非水電解液としてプロピレンカーボネート中に LiPF_6 を1 mol / 1で溶解させたものを使用し、コイン型のテストセルを作製した。

[0036]

【表1】

	LiNiO ₂	V, O ₅	{W1/(W1+W2)} × 100	
	_	W1 (重量部		
実施例1	90.0	10.0	10.0	
2	95.0	5.0	5.0	
3	99.0	1. 0	1. O	
4	99.9	0.1	0.1	
比較例1	100.0	_	· O	
2	99.99	0.01	0.01	
3	85.0	15.0	15.0	

【0037】(評価)まず実施例1で得られた正極活物質粉末を走査型電子顕敞鏡で観察したところ図1に示すように、複数の形態を持つ粒子は観測されず、表面が非常に滑らかなLi Ni O $_2$ 粒子のみが観察された。このことから、 V_2 O $_5$ が単独で粒子を形成していないことがわかる。また、図1の実線(A \sim B \sim C)に沿ってNi とVに関してEPMA元素分析を行った。その結果を図2に示す。図2から、ほぼ均一にNi とVとが存在していることがわかった。更に、粉末X線回折結果から、実施例1の正極活物質の格子定数と比較例1の正極活物質の格子定数と比較例1の正極活物質の格子定数はほぼ等しく、V がLi Ni O $_2$ 中に固溶していないことがわかった。以上の結果から、実施例1のLi Ni O $_2$ 粒子の表面が V_2 O $_5$ で覆われていることがわかる。

【0038】また、得られたテストセルに対し、定電流 密度0.5mA/cm²で開回路電圧が4.2Vの定常 状態になるまでのサイクル毎の充電容量を測定し、次に 定電流密度0.5mA/cm²で電池電圧が3.0Vに なるまでのサイクル毎の放電容量を測定した。そして 5、10、15及び20サイクル目の容量維持率[= (nサイクル目の放電容量)/(初回放電容量)]を求めた。その結果を図3に示す。図3の結果から、実施例 $1\sim4$ のテストセルは V_2O_5 を使用していない比較例1

のテストセルに比べてサイクル特性が向上していることがわかる。

【0039】一方、比較例2のテストセルは、比較例1のテストセルと同程度のサイクル特性を示しているが、これは、 V_2O_5 が少ないために、 $LiNiO_2$ 粒子の表面が V_2O_5 で十分覆われていないためと考えられる。

【0040】また、比較例3のテストセルは、比較例1のテストセルよりも大きくサイクル特性が低下しているが、これは V_2O_5 が多過ぎるために核となるリチウムニッケル複合酸化物正極に対して、過負荷状態となったためと考えられる。

[0041]

【発明の効果】本発明によれば、リチウムニッケル複合酸化物粒子の表面を V_2O_5 で覆われたものを正極材料として使用しているので、非水電解液二次電池のサイクル特性を向上させることができる。

【図面の簡単な説明】

【図1】実施例1で使用した正極活物質粒子の走査型顕 微鏡写真である。

【図2】実施例1で使用した正極活物質粒子のEPMA 元素分析結果図である。

【図3】実施例 $1\sim4$ 及び比較例 $1\sim3$ のサイクル特性図である。

[図1]

图面代用写真

【図3】

61: 実施例 1

【図2】

19 10:34:28,

Search Title: li stuff

parties the

Matthew Francis, S4-74

MATSUSHITA ELECTRIC IND CO LTD Addnl. Data: manganese di:oxide or a double oxide of manganese and lithium Positive active material for batteries - comprises surface modified C97-127280 R(DE FR GB) 96.03.05 96JP-047177(+96JP-017279) (97.08.13) H01M 4/50, C01G NUNOME J, NAKASHIMA T, YOSHIZAWA H, TOA S 97.01.31 97EP-300663, 96.02.02 96JP-017280

deposition of an oxide of titanium, cobalt, nickel, strontium or double oxide having a surface modification layer obtained by Batteries comprise manganese oxide or a manganese and lithium lanthanum as the positive active material (1).

solution containing a salt of Ti, Co, Ni, Sr, or La. the manganese oxide or the double oxide powder in a treatment Production of the material (I) is also claimed comprising dispersing USE batteries e.g. carbon zinc dry type or alkaline manganese type etc. or (I) are used to manufacture Li ion secondary batteries or primary

97-395810/37

MATU 96.02.02 *EP 789410-A1

L(3-E1B8)

organic lithium primary batteries

ADVANTAGE

continuous discharge. (1) has low ohmic losses Batteries with (I) have longer lives at heavier loadings and

EXAMPLE

containing 0.2 moles per litre Ti(SO₄)₂ and 2 moles per litre H₂SO₄ 0.014 for unmodified EMD. 10 pts. wt. of the invention powder was washed and dried (80° C, 24 hrs). A sample was charged into a PTFE positive electrode. Discharge capacity ratio was 107 against 100 using mixed with 1 pt. acetylene black on a Pt plate to form a working die and its electrical conductivity measured as 0.8 S per cm against then heated at 80° C and the modified powder product separated off, unmodified EMD (EMD) powder in a $300\,\mathrm{g}$ amount was dispersed in 3 litres of solution (20pp1629DwgNo.0/10) 50 micron diameter grains of electrolytic manganese dioxide

SR:1.Jnl.Ref JP61237366 US5342712 WO9318557

EP 789410-A