Information Demand Effects on the Sign of the Change in Asset Index Returns at Daily Frequencies:

Supplementary Material

EC981-7-FY-CO

Financial Econometrics Masters Dissertation

Jonathan Mordkowiez-Legrand September 2, 2019

List of Tables

1	SVI Descriptive Statistics	4
2	Descriptive Statistics	5
3	$\mathrm{SPX}_{\mathrm{CPV}}$ In-Sample Regression Coefficients	11
4	$\mathrm{SPX}_{\mathrm{CPV}}$ Out-of-CPV-Sample Regression Coefficients	13
5	SPX Out-of-Sample Recursive Variance Forecast (using $\Delta SVI^{SPX_{CPV}}$) Error Statistics	19
6	SPX Out-of-Sample Positive Excess Return Probability Forecast (using ΔSVI_{CPV})	
	Error Statistics	19
List	of Figures	
1	Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi=0.49$	6
2	Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi=0.495$	7
3	Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi=0.5$	8
4	Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi=0.505$	9
5	Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi=0.51$	10
6	Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the	
	ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.49$	14
7	Cumulative Returns of an Agent Investing as per Strategies with the SPX SPX as per	
	the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.495$	15
8	Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the	
	ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.5$	16
9	Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the	
	ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.505$	17
10	Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the	
	ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.51$	18
11	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GARCH}$ strategy	
	for $0 \le \psi \ge 1$	20
12	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GARCH}$ strategy	
	for $0.45 \le \psi \ge 0.6$	20
13	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GARCHSVI}$ strat-	
	egy for $0 \le \psi \ge 1$	21
14	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GARCHSVI}$ strat-	
	egy for $0.45 \le \psi \ge 0.6$	21
15	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GJRGARCH}$ strat-	
	egy for $0 \le \psi \ge 1$	22
16	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm GJRGARCH}$ strat-	
	egy for $0.45 \le \psi \ge 0.6$	22
17	Cumulative Returns of Active Investment Strategy Following the $\text{C\&D}_{\text{GJRGARCHSVI}}$	
	strategy for $0 \le \psi \ge 1$	23

18	Cumulative Returns of Active Investment Strategy Following the C&D _{GJRGARCHSVI}	
	strategy for $0.45 \le \psi \ge 0.6$	23
19	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm EGARCH}$ strat-	
	egy for $0 \le \psi \ge 1$	24
20	Cumulative Returns of Active Investment Strategy Following the C&D $_{\rm EGARCH}$ strat-	
	egy for $0.45 \le \psi \ge 0.6$	24
21	Cumulative Returns of Active Investment Strategy Following the $\text{C\&D}_{\text{EGARCHSVI}}$	
	strategy for $0 \le \psi \ge 1$	25
22	Cumulative Returns of Active Investment Strategy Following the $\text{C\&D}_{\text{EGARCHSVI}}$	
	strategy for $0.45 \le \psi \ge 0.6$	25

Table 1: SVI Descriptive Statistics

	Statistic							
Variable	Mean	Standard Deviation	Median	Skewness	Kurtosis	1^{st} Lag Autocorrelation		
SVI^{FTSE}	2.764727	2.916147	2	8.9068	236.1216	0.575		
$\overline{SVI^{SPX_1}}$	11.8463	7.164055	10	3.135406	18.8146	0.869		
SVI^{SPX_2}	9.723473	6.673175	8	3.064971	19.41453	0.669		
$SVI^{SPX_{CPV}*}$	9.24238	4.948923	8	2.994608	31.55793	0.523		
$\overline{SVI^{SPX_{CPV-US}*}}$	10.22849	5.953334	9	3.050486	25.5173	0.583		

Tabulated statistics were computed from all full-sample trading days except the ones with asterisks (*) which were computed from full-CPV-sample trading days. Significant figures differ as per their origin in the R code.

4

Table 2: Descriptive Statistics

Variable -				Statisti	c		
		Mean	Standard Deviation	Median	Skewness	Kurtosis	1^{st} Lag Autocorrelation
	R^{FTSE}	0.000131821	0.01169291	0.000534463	-0.01498459	8.390776	-0.029
R^{Index}	R^{SPX}	0.000311301	0.01142788	0.000660012	-0.1953126	11.30544	-0.109
	ΔSVI^{FTSE}	0.5477989	2.347539	0	14.91342	495.2456	0.043
	ΔSVI^{SPX_1}	0.00342827	3.660369	0	0.6474908	64.14817	-0.328
ΔSVI^{Index}	ΔSVI^{SPX_2}	1.288502	4.958929	1	1.75178	28.29457	-0.172
	$\Delta SVI^{SPX_{CPV}}$ *	1.026404	4.643211	1	0.8574528	46.73912	-0.224
	$\Delta SVI^{SPX_{CPV-US}}$ *	1.177238	5.090036	1	2.279915	39.23575	-0.186
	RV^{FTSE}	0.009091193	0.005814697	0.0075211	3.733061	29.93447	0.725
RV^{Index}	RV^{SPX}	0.007907957	0.00610196	0.006119621	3.653883	22.38065	0.823
r_f^{Index}	r_f^{FTSE}	5.510478×10^{-05}	0.002283866	$3.954246 \text{x} 10^{-05}$	0.05807592	2.712622	0.003
	r_f^{SPX}	$-3.335806 \text{x} 10^{-07}$	$5.495562 \text{x} 10^{-05}$	0	0.8408268	60.85758	0.171

All statistics were computed from all full-sample trading days except the ones with asterisks (*) which were computed from full-CPV-sample trading days. Results were shown in a manner akin to CPV to aid readers wishing to compare results. Significant figures differ as per their origin in the R code.

Figure 1: Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi = 0.49$

Figure 2: Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi = 0.495$

Figure 3: Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi = 0.5$

Figure 4: Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi = 0.505$

Figure 5: Cumulative Returns of an Agent Investing as per Strategies with the SPX for $\psi = 0.51$

Table 3: SPX_{CPV} In-Sample Regression Coefficients

Model	AR Model Coefficients				Variance Model Coefficients				
	C	ϕ_1	ϕ_2	c	α	β	γ	δ	
GARCH	0.000407	0.007451		$2.672989 \mathrm{x} 10^{-08}$	0.000044	0.998944			
	(0.000445)	(0.063518)		(0.000001)	(0.000819)	(0.000870)			
	[0.36105]	[0.90662]		[0.96595]	[0.95730]	[0.00000]			
GARCH-	0.000384	0.00999	0.00004	0.00000	0.000103	0.999683		0.00000	
$\mathrm{SVI}^{\mathrm{SPX}_{\mathrm{CPV}}}$	(0.000451)	(0.06431)	(0.000054)	(0.000001)	(0.000025)	(0.000029)		(0.000001)	
	[0.39539]	[0.87655]	[0.46534]	[1.00000]	[0.00004]	[0.00000]		[0.9813]	
GJRGARCH	0.000317	-0.007488		0.000004	6.371049×10^{-10}	0.885774	0.066545		
	(0.000442)	(0.064021)		(0.000000)	(0.013990)	(0.017150)	(0.046984)		
	[0.47272]	[0.90690]		[0.00000]	[1.00000]	[0.00000]	[0.15667]		
GJRGARCH-	0.000277	-0.005637	0.000032	0.000002	0.000042	0.931814	0.058354	0.00000	
$\mathrm{SVI}^{\mathrm{SPX}_{\mathrm{CPV}}}$	(0.00044)	(0.063602)	(0.000054)	(0.000002)	(0.009747)	(0.004924)	(0.032944)	(0.00000)	
	[0.528576]	[0.929376]	[0.5512]	[0.287679]	[0.996566]	[0.00000]	[0.076509]	[0.00000]	
EGARCH	0.000267	-0.000534		-4.436117	-0.305879	0.555263	-0.276841		
	(0.000443)	(0.051882)		(0.140141)	(0.046682)	(0.014156)	(0.090104)		
	[0.546929]	[0.991785]		[0.000000]	[0.000000]	[0.000000]	[0.002123]		
EGARCH-	0.000262	0.008484	0.00003	-4.388953	-0.308007	0.560063	-0.277695	-0.000068	
$\mathrm{SVI}^{\mathrm{SPX}_{\mathrm{CPV}}}$	(0.000451)	(0.029618)	(0.000056)	(0.039679)	(0.0624)	(0.003765)	(0.103796)	(0.010271)	
	[0.561093]	[0.774527]	[0.596947]	[0.00000]	[0.000001]	[0.00000]	[0.007464]	[0.994692]	

This tables shows coefficients estimated from models outlined in the dissertation under which are displayed their standard errors and p-values in brackets and square brackets respectively. Statistical-significance of the non-bracketed values (*i.e.* the coefficients) are to the CL of the difference between their attached square-bracketed values and one. Significant figures differ as per their origin in the R code.

Table 4: SPX_{CPV} Out-of-CPV-Sample Regression Coefficients

Model	AR	Model Coeffic	cients		Variance	Model Coeffic	cients	
	C	ϕ_1	ϕ_2	c	α	β	γ	δ
GARCH	0.000576	-0.058178		0.000002	0.107079	0.86976		
	(0.000127)	(0.018835)		(0.000001)	(0.010964)	(0.012269)		
	[0.000005]	[0.00201]		[0.01025]	[0.000000]	[0.000000]		
GARCH-	0.000578	-0.057564	-0.000015	0.000002	0.107065	0.869897		0.000000
$SVI^{SPX_{CPV}}$	(0.000087)	(0.01754)	(0.000029)	(0.000001)	(0.011281)	(0.012114)		(0.000000)
	[0.000000]	[0.001031]	[0.617863]	[0.033188]	[0.000000]	[0.000000]		[0.000000]
GJRGARCH	0.000251	-0.056098		0.000002	0.000000	0.885186	0.178236	
	(0.000114)	(0.018418)		(0.000000)	(0.003675)	(0.007808)	(0.013578)	
	[0.027615]	[0.00232]		[0.000000]	[0.999971]	[0.000000]	[0.000000]	
GJRGARCH-	0.000279	-0.054135	-0.000042	0.000002	0 (0.011415)	0.884319	0.18127	0.000000
$SVI^{SPX_{CPV}}$	(0.000038)	(0.018431)	(0.000027)	(0.000001)	[0.999997]	(0.012745)	(0.025751)	(0.000000)
	[0.000000]	[0.003313]	[0.120634]	[0.06902]		[0.000000]	[0.000000]	[0.000000]
EGARCH	0.000249	-0.058445		-0.216729	-0.146819	0.976623	0.125034	
	(0.0001)	(0.018324)		(0.002598)	(0.008819)	(0.000037)	(0.005885)	
	[0.012897]	[0.001425]		[0.000000]	[0.000000]	[0.000000]	[0.000000]	
EGARCH-	0.000268	-0.058522	-0.000042	-0.236693	-0.148078	0.97508	0.133889	0.005867
$SVI^{SPX_{CPV}}$	(0.000092)	(0.011508)	(0.000008)	(0.003009)	(0.007142)	(0.000123)	(0.009203)	(0.002042)
	[0.003655]	[0.000000]	[0.000000]	[0.000000]	[0.000000]	[0.000000]	[0.000000]	[0.004059]

This tables shows coefficients estimated from models outlined in the dissertation under which are displayed their standard errors and p-values in brackets and square brackets respectively. Statistical-significance of the non-bracketed values (*i.e.* the coefficients) are to the CL of the difference between their attached square-bracketed values and one. Significant figures differ as per their origin in the R code.

Figure 6: Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.49$ This graph shows $\mathcal{R}_{j,t}^{SPX_{CPV}}$ for the out-of-CPV-sample period.

Figure 7: Cumulative Returns of an Agent Investing as per Strategies with the SPX SPX as per the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.495$

This graph shows $\mathcal{R}_{j,t}^{SPX_{CPV}}$ for the out-of-CPV-sample period.

Figure 8: Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.5$ This graph shows $\mathcal{R}_{j,t}^{SPX_{CPV}}$ for the out-of-CPV-sample period.

Figure 9: Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.505$ This graph shows $\mathcal{R}_{j,t}^{SPX_{CPV}}$ for the out-of-sample period.

Figure 10: Cumulative Returns of an Agent Investing as per Strategies with the SPX as per the ΔSVI_{CPV} data over the out-of-CPV-sample for $\psi=0.51$ This graph shows $\mathcal{R}_{j,t}^{SPX_{CPV}}$ for the out-of-CPV-sample period.

Table 5: SPX Out-of-Sample Recursive Variance Forecast (using $\Delta SVI^{SPX_{CPV}}$) Error Statistics

$\hat{\sigma}_{t t-1}$ Model	Mean	Standard Deviation	RMSE	DM
GARCH	0.001602547	0.004116072	0.004416406	-13.51
GARCH-SVI ^{SPX} CPV	0.0016737	0.004129915	0.004455542	$[2.2x10^{-16}]$
GJRGARCH	0.001437398	0.003692315	0.00396167	-11.929
$GJRGARCH$ - $SVI^{SPX_{CPV}}$	0.001515589	0.003714896	0.0040116	$[2.2x10^{-16}]$
EGARCH	0.001164601	0.003584217	0.003768115	-2.2602
EGARCH-SVI ^{SPX} CPV	0.001465401	0.004769846	0.004989125	[0.01194]

Under DM test statistics are located their p-values in squared brackets; their alternative hypothesis is that the SVI-implementing model is $\underline{\text{less}}$ accurate than the SVI-free one. Significant figures differ as per their origin in the R code.

Table 6: SPX Out-of-Sample Positive Excess Return Probability Forecast (using ΔSVI_{CPV}) Error Statistics

$\hat{\sigma}_{t t-1}$ and $\hat{\mu}_{t t-1}$ Model	Mean	Standard Deviation	Brier Score	DM
GARCH	0.008349835	0.4990836	0.2490721	-0.86718
GARCH-SVI ^{SPX} CPV	0.006548647	0.4991179	0.2490792	[0.807]
GJRGARCH	0.001995008	0.4988365	0.2487602	-2.1296
GJRGARCH-SVI ^{SPX} CPV	0.003271621	0.4989303	0.2488605	[0.9834]
EGARCH	0.002367203	0.4988579	0.2487831	-1.3117
EGARCH-SVI ^{SPX} CPV	0.001883716	0.4990035	0.2489263	[0.9051]

Under the DM test statistics are located their p-values in squared brackets; their alternative hypothesis is that the SVI-implementing model is $\underline{\text{more}}$ accurate than the SVI-free one. Significant figures differ as per their origin in the R code.

Figure 11: Cumulative Returns of Active Investment Strategy Following the C&D_{GARCH} strategy for $0 \le \psi \ge 1$

Figure 12: Cumulative Returns of Active Investment Strategy Following the C&D_{GARCH} strategy for $0.45 \le \psi \ge 0.6$

Figure 13: Cumulative Returns of Active Investment Strategy Following the C&D_{GARCHSVI} strategy for $0 \le \psi \ge 1$

Figure 14: Cumulative Returns of Active Investment Strategy Following the C&D_{GARCHSVI} strategy for $0.45 \le \psi \ge 0.6$

Figure 15: Cumulative Returns of Active Investment Strategy Following the C&D_{GJRGARCH} strategy for $0 \le \psi \ge 1$

Figure 16: Cumulative Returns of Active Investment Strategy Following the C&D_{GJRGARCH} strategy for $0.45 \le \psi \ge 0.6$

Figure 17: Cumulative Returns of Active Investment Strategy Following the C&D_{GJRGARCHSVI} strategy for $0 \le \psi \ge 1$

Figure 18: Cumulative Returns of Active Investment Strategy Following the C&D_{GJRGARCHSVI} strategy for $0.45 \le \psi \ge 0.6$

Figure 19: Cumulative Returns of Active Investment Strategy Following the C&D_{EGARCH} strategy for $0 \le \psi \ge 1$

Figure 20: Cumulative Returns of Active Investment Strategy Following the C&D_{EGARCH} strategy for $0.45 \le \psi \ge 0.6$

Figure 21: Cumulative Returns of Active Investment Strategy Following the C&D_{EGARCHSVI} strategy for $0 \le \psi \ge 1$

Figure 22: Cumulative Returns of Active Investment Strategy Following the C&D_{EGARCHSVI} strategy for $0.45 \le \psi \ge 0.6$