

Android Raw GNSS Measurement Datasets for Precise Positioning

<u>Guoyu (Michael) Fu</u>, Mohammed Khider, Frank van Diggelen, Google, Inc.

> Session C3, Sep 24, 2020 ION GNSS+ Virtual 2020

Authors

Dr. Guoyu (Michael) Fu

Dr. Mohammed Khider gomo@google.com

Dr. Frank van Diggelen fvandiggelen@google.com

Over 1/3 of publications focus on high precision positioning

Publication stats in Google Scholar

Motivations

High precision smartphone positioning is helpful for:

- Lane level mapping, traffic monitoring, navigation
- Ubiquitous geo-surveying
- Entertaining precision agriculture
- Precise augmented reality (AR) applications
- Better indoor mapping and positioning
- Other novel applications ...

Google will share smartphone test datasets to:

- provide a set of benchmark tests with ground truth, and
- a common evaluation tool with standard positioning metrics.

Measurements & Common Positioning Algorithms

We release ...

Google will release in GitHub in October 2020:

- ~60 traces collected between May and Aug, 2020
 - GnssLog with raw GNSS and IMU readings (mostly from Pixel phones)
 - Converted RINEX observation files
 - Chipset positions in NMEA format
 - Ground truth NMFA files
 - OSR (Observation Space Representation) RINEX files from nearby stations owned by Verizon, Inc.
 - SSR (State Space Representation) text files from SwiftNav, Inc.
- A set of Matlab scripts for evaluating the result NMEA files

Open Data Directories

• Datasets/YYYY-MM-DD-{Country code in 2 letters}-{Region}-{Collection index} (e.g.

2020-05-14-US-MTV-1)

- {Phone name}_GnssLog.txt: GnssLogger log file
- SPAN_{Phone name}_{Report rate}.nmea: Ground truth positions at the phone's position
- {Phone name}_chipset.nmea: Chipset positions in NMEA format
- {Phone name}_chipset.kml: Chipset positions in KMI_format
- Corrections/YYYY-MM-DD-{Country code in 2 letters}-{Region}-{Collection index}/
 - OSR/: RINEX files of nearby base stations by Verizon
 - SSR/: SwiftNav SSR corrections in JSON

Outline

Outline

SPAN IMU-to-DUT Lever Arm

- The vector from the SPAN IMU to the DUT.
- Lever arm of each DUT has been compensated in its GT NMEA file.

Displacement of the **example** phone: x = 0, y = 0.80m, z = 0.15m.

Lever arm of the antenna: x = 0, y = 0, z = 1.3m.

Outline

NMEA File Format

Example NMEA snippet (for one position):

\$GPRMC,234339.00,A,3718.875,N,12157.068,W,0.0,266.5,270720,... A*21

...

GGA - Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

RMC - Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver. This sentence is transmitted at intervals not exceeding 2-seconds and is always accompanied by RMB when a destination waypoint is active.

RMC and RMB are the recommended minimum data to be provided by a GNSS receiver. All data fields must be provided, null fields used only when data is temporarily unavailable.

Outline

NmeaUtils: Nmea2RtkMetrics.m

NumValid Pts	50% (m)	80% (m)	95% (m)	XTrack 50% (m)	XTrack 80% (m)	XTrack 95% (m)	AlongTrack 50% (m)	AlongTrack 80% (m)	AlongTrack 95% (m)
1630	2.64	3.26	4	0.79	1.14	1.75	2.49	3.11	3.77

High Precision Positioning Metrics

NumValidPts: Number of valid solution points.

50% (m): 50-percentile of horizontal error (meters)

80% (m): 80-percentile of horizontal error (meters)

95% (m): 95-percentile of horizontal error (meters)

Horizontal positioning errors

TT1M (s): Time (seconds) to 1-meter horizontal error

TA1M (s): Average consecutive time (seconds) of 1 meter or less horizontal error

AA5S (m): Horizontal accuracy (meters) at the 5th second

AA10S (m): Horizontal accuracy (meters) at the 10th second

Convergence metrics

X-track 50% (m): 50-percentile of cross-track horizontal error (meters)

X-track 80% (m): 80-percentile of cross-track horizontal error (meters)

X-track 95% (m): 95-percentile of cross-track horizontal error (meters)

Along-track 50% (m): 50-percentile of along-track horizontal error (meters)

Along-track 80% (m): 80-percentile of along-track horizontal error (meters)

Along-track 95% (m): 95-percentile of along-track horizontal error (meters)

Cross-track & along-track errors

NmeaUtils: Nmea2ErrorPlot.m

Outline

GnssLog Format - RAW sentence

Example RAW GNSS measurement sentence:

Raw,1595893567433,13326953000000,18,,-1279915458480313484,-0.7581386566162109,36.676308809546754,5.250991947053456,10.31209756655846 4,2788,8,0.0,16399,171985355993445,14,33.7,-440.52789306640625,0.20000000298023224,21,-11431.158460699902,0.002397700231676362,1.57542003 E9,...,0,.1,1.85,...,,C,9534437134304

<u>Field name</u>	<u>Description</u>
Raw	Prefix of sentence
utcTimeMillis	Milliseconds since UTC epoch (1970/1/1), converted from GnssClock
TimeNanos	GnssClock#getTimeNanos()
LeapSecond	GnssClock#getLeapSecond()
TimeUncertaintyNanos	GnssClock#getTimeUncertaintyNanos()
FullBiasNanos	GnssClock#getFullBiasNanos()
BiasNanos	GnssClock#getBiasNanos()
BiasUncertaintyNanos	GnssClock#getBiasUncertaintyNanos()
DriftNanosPerSecond	GnssClock#getDriftNanosPerSecond()
DriftUncertaintyNanosPerSeco nd	GnssClock#getDriftUncertaintyNanosPerSe cond()

Signal arrival time

Signal transmit time

Doppler

<u>Field name</u>	<u>Description</u>
HardwareClockDiscontinuityCount	GnssClock#getHardwareClockDisconti nuityCount()
Svid	GnssMeasurement#getSvid()
TimeOffsetNanos	GnssMeasurement#getTimeOffsetNan os()
State	GnssMeasurement#getState()
ReceivedSvTimeNanos	GnssMeasurement#getReceivedSvTim eNanos()
ReceivedSvTimeUncertaintyNanos	GnssMeasurement#getReceivedSvTim eUncertaintyNanos()
CnoDbHz	GnssMeasurement#getCnoDbHz()
PseudorangeRateMetersPerSecond	GnssMeasurement#getPseudorangeR ateMetersPerSecond()
PseudorangeRateUncertaintyMeters PerSecond	GnssMeasurement#getPseudorangeR ateUncertaintyMetersPerSecond()

More details: [5][6] Google at ION GNSS+ Virtual 2020

GnssLog Format - RAW sentence (Cont')

<u>Field name</u>	<u>Description</u>
AccumulatedDeltaRangeState	GnssMeasurement#getAccumulatedE eltaRangeState()
AccumulatedDeltaRangeMeters	GnssMeasurement#getAccumulatedE eltaRangeMeters()
AccumulatedDeltaRangeUncertai ntyMeters	GnssMeasurement#getAccumulatedE eltaRangeUncertaintyMeters()
CarrierFrequencyHz	GnssMeasurement#getCarrierFrequer cyHz()
CarrierCycles	GnssMeasurement#getCarrierPhase() Deprecated in API level 28 (Android P i 2018)
CarrierPhase	GnssMeasurement#getCarrierPhase() Deprecated in API level 28 (Android P i 2018)
CarrierPhaseUncertainty	GnssMeasurement#getCarrierPhaseUrcertainty() Deprecated in API level 28 (Android Pi 2018)
MultipathIndicator	GnssMeasurement#getMultipathIndicator()
SnrInDb	GnssMeasurement#getSnrInDb()

Carrier phase

Inter-Signal Biases

<u>Field na</u>	<u>ıme</u>	<u>Description</u>
Constellatio	опТуре	GnssMeasurement#getConstellationType()
AgcDl	•	GnssMeasurement#getAutomaticGainControlL evelDb()
BasebandCr	noDbHz	GnssMeasurement#getBasebandCnoDbHz() Added in API level 30 (Android 11 in 2020)
FullInterSignali	BiasNanos	GnssMeasurement#getFullInterSignalBiasNan os() Added in API level 30 (Android 11 in 2020)
FullInterSignalBiasUncertainty Nanos		GnssMeasurement#getFullInterSignalBiasUnc ertaintyNanos() Added in API level 30 (Android 11 in 2020)
SatelliteInterSign	alBiasNanos	GnssMeasurement#getSatelliteInterSignalBias Nanos() Added in API level 30 (Android 11 in 2020)
SatelliteInterSigna intyNan		GnssMeasurement#getSatelliteInterSignalBias
n CodeTy	pe	GnssMeasurement#getCodeType() Added in API level 29 (Android 10 in 2019)
ChipsetElapsedRe	altimeNanos	GnssClock#getElapsedRealtimeNanos() Added in API level 29 (Android 10 in 2019)

Chipset timestamp ir Android time scale (used to sync IMU measurement)

More details: [5][6] Google at ION GNSS+ Virtual 2020

Example Filters for Noisy Measurements

Measurements from GNSS chipsets of mobile phones are often noisier and more erroneous. Example of filters your can apply (to exclude) are:

- Full bias nanoseconds is zero or invalid
- 2. BiasUncertaintyNanos too large
- 3. Arrival time is negative or unrealistically large
- 4. Unknown constellation
- 5. TimeNanos is empty
- 6. State is not <u>STATE_TOW_DECODED</u>
- 7. ReceivedSvTimeUncertaintyNanos is high
- 8. AdrState violating this condition: <u>ADR_STATE_VALID</u> == 1 & <u>ADR_STATE_RESET</u> == 0 & <u>ADR_STATE_CYCLE_SLIP</u> == 0
- 9. AdrUncertaintyMeters is high
- 10. ... more filters to be applied

GnssLog Format - Assisted sensors sentences

Uncalibrated Accelerometer

Header:

UncalAccel.utcTimeMillis elapsedRealtimeNanos, UncalAccelXMps2,UncalAccelYMps2,UncalAccelZMps2,BiasXMps2,BiasYMps2,BiasZMps2

Example content:

UncalAccel,1594250738570,20337419021212,-1.1348436,9.876386,1.1284244,0.0,0.0,0.0

Uncalibrated Gyroscope

Header:

UncalGyro, **utcTimeMillis**, **elapsedRealtimeNanos**, UncalGyroXRadPerSec, UncalGyroXRadPerSec, UncalGyroZRadPerSec, DriftXRadPerSec, DriftYRadPerSec, DriftZRadPerSec

Example content:

UncalGyro,1594250738568,20337417901212,0.12336553,0.02968888,-0.014162418,4.348 146E-4,3.291696E-4,-0.0012910228

Uncalibrated Magnetic Field

Header:

UncalMag, **utcTimeMillis**, **elapsedRealtimeNanos**, UncalMagXMicroT, UncalMagYMicroT, UncalMagZMicroT, BiasXMicroT, BiasZMicroT, BiasZMicroT

Example content:

UncalMag,1594250738582,20337431900795,30.27242,-59.439495,-27.946125,21.504183,-10.548593,-11.250341

SensorEvent#timestamp

- Chipset timestamp in Android time scale (elapsed time since **device boot**)
- Used to sync GNSS measurement for API 29 and above

utcTimeMillis

- Milliseconds since UTC epoch (1970/1/1)
- = elapsedRealtimeNanos + estimated UTC time at device boot after a network sync (NTP).

RINEX observation files converted from GnssLogs Google

RINEX Data [4]	Android <u>GnssMeasurementEvent</u> APIs		
Epoch time	Process <u>GnssClock</u> to compute the signal arrival time (*arrivalTime*). Floor it to 100 nanosecond level (F11.7). Adjust measurements using Doppler. 1. Process <u>GnssClock</u> to compute arrivalTime. 2. Use GnssMeasurement.getReceivedSvTime*() to compute satellite transmit time. 3. Compute raw pseudorange by subtracting the two times above.		
Code pseudorange (C)			
Carrier phase (L) cycles (Required in cycles. Please refer Page 11 Section 3.3 [4])			
Doppler (D) in Hz (Table A2 [4])	-1 * GnssMeasurement.getPseudorangeRateMetersPerSecond() / wavelength		
Signal Strength (S) in dB-Hz	GnssMeasurement.getCnoDbHz()		
Loss of Lock Indicator bit	ADR state is retrieved using GnssMeasurement.getAccumulatedDeltaRangeState() Blank = Unknown loss of lock status / ADR state is invalid or reset. ADR state invalid or ADR state Reset O = OK Default bit 1 (least significant bit) = loss of lock/cycle slip (observation should be discarded) ADR state cycle slip bit 2 = half-cycle slip (observation should be discarded) ADR state half cycle reported		
Signal Strength Indicator bit	This is straightforward from section 5.7 of [4]		

Summary

- Google will release:
 - ~60 smartphone traces in October, which include:
 - GnssLog files,
 - RINEX observation files,
 - chipset NMEA files,
 - ground truth NMEA files,
 - OSR and SSR corrections
 - a set of Matlab scripts to evaluate positioning results.

New updates in *GnssLogger* (App) and *GnssAnalysisTools* (Matlab program)

Download *GnssLogger* v3

in Google PlayStore

- Launch in Sep 2020

| Corporation |

Table View

View

Plots

Sensor & RINEX Logs

Download GnssAnalysisTools

in <u>q.co/qnsstools</u>

- Launch in Oct 2020

Android Raw GNSS Measurements in RINEX v3.03 Observation file

References

- 1. National Marine Electronics Association. NMEA 0183--Standard for interfacing marine electronic devices. NMEA, 2002.
- 2. Google Scholar, searches with "android gnss measurements", result URL: https://scholar.google.com/scholar?q=android+gnss+measurements+&hl=en&as_sdt=0%2C5&as_ylo=2016&as_yhi=2019
- 3. Google Scholar, searches with "android gnss measurements (RTK OR PPP OR PRECISE)", result URL: https://scholar.google.com/scholar?as_ylo=2016&q=android+gnss+measurements+(RTK+OR+PPP+OR+PRECISE)&hl=en&as_sdt=0.5
- 4. RINEX the receiver independent exchange format v3.03 (2015).
- 5. The GSA GNSS Raw Measurements Task Force. [White Paper] Using GNSS Raw Measurements on Android devices, 2017. URL: https://www.gsa.europa.eu/newsroom/news/available-now-white-paper-using-gnss-raw-measurements-android-devices
- 6. Frank van Diggelen, Mohammed Khider. GNSS Analysis Tools from Google. InsideGNSS Magazine, Mar 2018. URL: https://drive.google.com/open?id=1Y9yhJQXim2EsdH-3MoGoZ-if98vBLH71

Thank you!

Questions? Please send to <u>android-aps-datasets@google.com</u>.

