RETO: TITANIC - MACHINE LEARNING FROM DISASTER

Equipo 2

1 INTRODUCCIÓN

2 PROCESAMIENTO DE DATOS

O3 ANÁLISIS DE DATOS

04 MODELOS PREDICTIVOS

05, CONCLUSIONES

INTRODUCCIÓN

El hundimiento del Titanic el 15 de abril de 1912, tras chocar contra un iceberg, resultó en la muerte de aproximadamente 1,500 personas de las 2,224 a bordo.

Aunque el barco fue promocionado como insumergible, la falta de suficientes botes salvavidas y varios errores humanos contribuyeron al desastre. Solo unos 700 pasajeros sobrevivieron, y las probabilidades de supervivencia variaron según factores como la clase social, el género, la edad, entre otros.

Este proyecto utilizaremos modelos de predicción para analizar estas variables y determinar qué factores influenciaron la probabilidad de sobrevivir en esta tragedia.

PROCESAMIENTO DE DATOS

2.1 LIMPIEZA DE DATOS

- Manejo de valores faltantes (Cabin, Age, Fare, Embarked)
- Transformación de nuevas variables (Title, Ticket, Tipo_fam)
- Codificación de variables categóricas

ANÁLISIS DE DATOS

MODELOS PREDICTIVOS

3.1 REGRESIÓN LOGÍSTICA

```
# Características y variable objetivo
y = df_train_cleaned['Survived']
features = ['Pclass', 'Title', 'Embarked', 'Tipo_Fam', 'Ticket_len', 'Ticket_2letter']
X = df_train_cleaned[features]
# Dividimos los datos en entrenamiento y validación (70% entrenamiento, 30% validación)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)
# Procesador para transformar las variables
# Aquí agrego un SimpleImputer para valores numéricos (si es necesario) y con OneHotEncoder para categóricas
preprocessor = ColumnTransformer(transformers=[
    ('onehot', OneHotEncoder(handle_unknown='ignore'), features)
# Definimos el modelo de regresión logística con los hiperparámetros proporcionados
modelo = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('model', LogisticRegression(
        random_state=42,
       max_iter=1000,
        C=100,
                                   # Hiperparámetro C ajustado
        class_weight=None,
                                   # Sin balanceo de clases
        penalty='l2',
                                    # Penalización L1
        solver='newton-cg'))])
# Entrenamiento del modelo
modelo.fit(X_train, y_train)
# Predicciones en el conjunto de validación
y_pred = modelo.predict(X_val)
```


	Precision	Recall	F1-Score	Support
Class 0	0.83	0.91	0.87	175
Class 1	0.80	0.66	0.72	93
Accuracy			0.82	268
Macro Avg	0.82	0.79	0.80	268
Weighted Avg	0.82	0.82	0.82	268

Cuadro 1: Informe de clasificación con puntuación de precisión de 0.8246

3.2 RANDOM FOREST

```
# Caracteristicas y variable objetivo
y = df_train_cleaned["Survived"]
features = ["Pclass", "Title", "Embarked", "Tipo_Fam", "Ticket_len", "Ticket_2letter"]
X = df_train_cleaned[features]
# Dividimos los datos en entrenamiento y validación (70% entrenamiento, 20% validación)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.3, random_state = 42)
# Procesador para transformar a variables dummy
preprocessor = ColumnTransformer(transformers =[('onehot', OneHotEncoder(handle_unknown = "ignore"), features), ])
# Definimos el modelo y hacemos la transformación a variables dummy
modelo = Pipeline(steps=[('preprocessor', preprocessor),
    ('model', RandomForestClassifier(random_state = 42, n_estimators = 500, max_depth = 5))])
# Entrenamiento del modelo
modelo.fit(X_train, y_train)
# Predicciones en el conjunto de validación
y_pred = modelo.predict(X_val)
```


	Precision	Recall	F1-Score	Support
Class 0	0.83	0.94	0.88	175
Class 1	0.85	0.65	0.73	93
Accuracy			0.84	268
Macro Avg	0.84	0.79	0.81	268
Weighted Avg	0.84	0.84	0.83	268

Cuadro 2: Informe de clasificación con puntuación de precisión de 0.8358

3.3 RED NEURONAL

```
# Caracteristicas y variable objetivo
y = df_train_cleaned['Survived']
features = ['Pclass','Title','Embarked','Tipo_Fam','Ticket_len','Ticket_2letter']
X = df_train_cleaned[features]
# Dividimos los datos en entrenamiento y validación (70% entrenamiento, 30% validación)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.3, random_state = 42)
# Procesador para transformar a variables dummy y escalar características numéricas
preprocessor = ColumnTransformer(transformers = [
    ('onehot', OneHotEncoder(handle_unknown = 'ignore'), ['Pclass','Title','Embarked','Tipo_Fam','Ticket_2letter']),
    ('scaler', StandardScaler(), ['Ticket_len'])])
# Definimos el modelo utilizando una red neuronal (MLPClassifier) con la función de activación 'tanh'
modelo = Pipeline(steps = [
    ('preprocessor', preprocessor),
    ('model', MLPClassifier(random_state = 42,
                            max_iter = 1000, # Incrementamos el número de iteraciones
                            hidden_layer_sizes = (350, 150, 100), # Aumentamos el tamaño de las capas
                            activation = 'tanh',
                            alpha = 0.01, # Regularización
                            learning_rate_init = 0.01))])
# Entrenamiento del modelo
modelo.fit(X_train, y_train)
# Predicciones en el conjunto de validación
y_pred = modelo.predict(X_val)
```


	Precision	Recall	F1-Score	Support
Class 0	0.86	0.90	0.88	175
Class 1	0.80	0.72	0.76	93
Accuracy			0.84	268
Macro Avg	0.83	0.81	0.82	268
Weighted Avg	0.84	0.84	0.84	268

Cuadro 3: Informe de clasificación con puntuación de precisión de $0.8396\,$

TABLA DE COMPARACIÓN

Modelo	Precisión (%)
Regresión Logística	$\frac{326}{418} = 77,99\%$
Random Forest	$\frac{335}{418} = 80,14\%$
Red Neuronal	$\frac{336}{418} = 80,38\%$

\odot	my_submission.csv Complete · now	0.77990
\odot	my_submission.csv Complete · 37s ago	0.80143
\odot	my_submission.csv Complete · 1m ago	0.80382

CONCLUSIONES

A lo largo de este proyecto, se exploraron diferentes enfoques de modelado predictivo para estimar la probabilidad de supervivencia de los pasajeros del Titanic, empleando técnicas como Regresión Logística, Random Forest y Redes Neuronales. Cada modelo mostró sus propias fortalezas, destacando que la elección del método adecuado depende de la estructura de los datos y del propósito del análisis. Mientras que la Regresión Logística permitió una interpretación clara de las relaciones entre las variables, Random Forest y Redes Neuronales destacaron por su capacidad para manejar interacciones no lineales y patrones complejos, logrando una mayor precisión. Este análisis no solo permitió mejorar los resultados predictivos, sino que subrayó la importancia de un procesamiento de datos adecuado y la evaluación de distintas estrategias de modelado.

iGRACIAS!