STAT GU4206/5206 Midterm

Christine Chong cc4190

June 8, 2017

The STAT GU4206/5206 midterm is open notes, open book(s), and online resources are allowed. Students are **not** allowed to communicate with any other people during the midterm with the exception of the GU4206/5206 instructor. When you are finished with the midterm, please upload both the .pdf and .Rmd files on Canvas.

For the entire midterm we consider the **Auto** dataset taken from the *Introduction to Statistical Learning* package. Before starting the midterm, make sure the package **ISLR** is installed on your laptop.

```
#install.packages("ISLR")
library(ISLR)
```

Problem 1: Basic Operations

1.i)

Display the first 3 rows of the **Auto** dataset:

```
head(Auto,3)
```

```
##
     mpg cylinders displacement horsepower weight acceleration year origin
## 1
                  8
                              307
                                         130
                                                3504
                                                              12.0
                                                                     70
                                                                              1
     18
## 2
      15
                  8
                              350
                                         165
                                                3693
                                                              11.5
                                                                     70
                                                                              1
## 3 18
                  8
                              318
                                         150
                                                3436
                                                              11.0
                                                                     70
                                                                              1
##
## 1 chevrolet chevelle malibu
## 2
             buick skylark 320
## 3
            plymouth satellite
```

1.ii)

How many rows are in this dataset?

```
nrow(Auto)
```

[1] 392

Problem 2: Regression and the Bootstrap

2.i)

Consider extracting only the rows corresponding to 6 cylinder cars. Also consider running a linear regression on a car's acceleration versus its weight. The working filtering and linear regression code is displayed below.

```
Auto.6.cyl <- Auto[Auto$cylinders==6,]
beta.hats <- coef(lm(acceleration~weight,data=Auto.6.cyl))
beta.hats</pre>
```

```
## (Intercept) weight
## 4.368123570 0.003711944
```

Identify the estimated slope and intercept of the above linear model.

Solution: The estimated slop of the model should be the weight which is around 0.0037. The estimated intercept of the model should be 4.38.

2.ii)

Now suppose as researchers, we want to infer upon the true slope relating a six cylinder car's acceleration versus its weight. Also suppose that we do not want to make strong assumptions on the errors of the linear regression model; hence we will perform a bootstrap procedure. Below is almost complete working code that runs a bootstrap procedure for the slope. Fill in the one missing line of \mathbf{R} code and make sure to uncomment each line below. Run the bootstrap procedure after filling in the missing line.

```
set.seed(0)
B <- 1000
n <- nrow(Auto.6.cyl)
slopes.boot <- rep(NA,B)
for (b in 1:B) {
    sample.boot <- sample(1:n, n, replace = TRUE )
    regression.boot <- lm(acceleration~weight,data=Auto.6.cyl[sample.boot,])
    slopes.boot[b] <- coef(regression.boot)[2]
}
slope.hat <- beta.hats[2]
LL <- 2*slope.hat-quantile(slopes.boot,.975)
UL <- 2*slope.hat-quantile(slopes.boot,.025)
c(LL,UL)</pre>
```

```
## weight weight
## 0.002748981 0.004727104
```

2.iii)

At 5% significance, is a six cylinder car's acceleration statistically related to its weight? Support your answer using the computed bootstrap interval c(LL,UL).

Solution:

Due to the value at 5% significance being not 0, it is safe to say that a six cylinder's car accleration is stastiscally related. If the number was closer to 1, it would have more of a significant relation.

2.iv)

Create a histogram of the bootstrapped slope estimates. Make sure to label the histogram appropriately and use 30 breaks for the bins.

Histogram of slopes.boot

Problem 3: Subseting

The original **Auto** dataframe consists of cars with 3,4,5,6 and 8 cylinders. Create a new dataframe named **Auto.new** that consists of only the cars with 4,6 and 8 cylinders. Check that the number of rows in this new dataframe is equal to 385.

```
newdata <- rbind(Auto$cylinders == "4",], Auto[Auto$cylinders =="6",], Auto[Auto$cylinders =="8",]
Auto.new <- data.frame(newdata)
dim(Auto.new)
## [1] 385 9</pre>
```

Problem 4: Character Srings and Regular Expressions

4.i)

head(Auto\$name)

Look at the first few cases of the variable **name**.

```
## [1] chevrolet chevelle malibu buick skylark 320
## [3] plymouth satellite amc rebel sst
```

Notice that the first word in each string is the car's company, i.e., chevrolet, buick, toyota, etc... Append a new variable on the **Auto.new** dataframe named **company** that displays the company of each car. For example, if the **name** of the car is "chevrolet chevelle malibu", then the car's company should be "chevrolet". Show the first three observations in this new dataset.

Note: You might have to convert the factor variable back into a character variable.

```
max = nrow(Auto.new)
Auto.new$name <- as.character(Auto.new$name)
for(i in 1:max){
   new <- strsplit(Auto.new$name[i], split = " ")
   unlistnew <- unlist(new)
   titlecompany <- unlistnew[1]
   titlecompany
   Auto.new$company[i] <- titlecompany
}
head(Auto.new, 3)</pre>
```

```
mpg cylinders displacement horsepower weight acceleration year origin
## 15
                   4
                                                 2372
                                                                      70
      24
                              113
                                           95
                                                              15.0
## 19
       27
                   4
                               97
                                           88
                                                 2130
                                                              14.5
                                                                      70
                                                                              3
## 20
       26
                   4
                               97
                                           46
                                                1835
                                                              20.5
                                                                      70
                                                                              2
##
                               name
                                        company
## 15
             toyota corona mark ii
                                         toyota
                       datsun pl510
                                         datsun
## 20 volkswagen 1131 deluxe sedan volkswagen
```

4.ii)

When the experimenter was recording the data, he entered a few typos for the car's company names, i.e., one case shows "toyouta" and another case shows "vokswagen". Fix these two typos in the **Auto.new** dataframe by using the **grep** function to find the location of the typos and then assigning new strings to these elements. After fixing the typos, create a table of the variable **company**.

```
loc1<-grep("toyouta", Auto.new$name)
Auto.new$name[loc1] <- "toyota corona mark ii(sw)"
loc2<-grep("vokswagen", Auto.new$name)
Auto.new$name[loc2] <- "volkswagen rabbit"
Auto.new$name[loc1]
## [1] "toyota corona mark ii(sw)"
Auto.new$name[loc2]</pre>
```

[1] "volkswagen rabbit"

Problem 5: The Apply Family

5.i)

Using the appropriate apply function, compute the maximum **horsepower** per **company**. Also sort this output.

```
horsemax <- tapply(Auto.new$horsepower, Auto.new$company, max)
horsemax
##
                             audi
                                                            buick
                                                                        cadillac
              amc
                                              bmw
##
                               95
                                                              225
              190
                                              113
                                                                              180
##
                       chevroelt
                                        chevrolet
            capri
                                                            chevy
                                                                        chrysler
##
                                              220
                                                              200
               92
                              105
                                                                              215
##
           datsun
                                             fiat
                                                             ford
                                                                               hi
                            dodge
                                                                              193
##
              132
                              210
                                               90
                                                              215
            honda
                                            mazda mercedes-benz
##
                            maxda
                                                                         mercury
               97
                               65
##
                                               75
                                                              120
                                                                              208
##
           nissan
                      oldsmobile
                                             opel
                                                         peugeot
                                                                        plymouth
##
                              180
               88
                                               90
                                                              133
                                                                              215
##
          pontiac
                          renault
                                             saab
                                                          subaru
                                                                          toyota
##
              230
                               83
                                              115
                                                               93
                                                                              122
##
                          triumph
                                       vokswagen
                                                      volkswagen
                                                                            volvo
          toyouta
                                                                              125
##
               97
                               88
                                               62
                                                               78
##
               vw
##
               76
```

5.ii)

Using the appropriate apply function, compute the average value of quantitative variables **mpg**, **displacement**, **horsepower**, **weight** and **acceleration**. To save some time I provided the vector of character strings in the below code chunk.

```
variables <- c("mpg","displacement","horsepower","weight","acceleration")
apply(Auto.new[variables],2,mean)

## mpg displacement horsepower weight acceleration
## 23.44545 196.06364 104.69610 2982.62078 15.54104</pre>
```

Problem 6: R Base Graphics

Construct a base \mathbf{R} plot that shows a car's acceleration (Y) versus a its weight (X) split by the number of cylinders in the car (4,6, and 8). Note that you should be using the **Auto.new** dataset. For full credit, create the scatter plot and split the data up by different colors to represent the number of cylinders. Also create a legend and label the plot appropriately.

For extra credit, plot regression lines for each subgroup, i.e., plot 3 least squares lines: one line for 4 cylinders, one line for 6 cylinders and one line for 8 cylinders.

```
col_counter <- col_counter + 1
}</pre>
```

