重庆理工大学 2010 年期末考试 (含答案)

《电力电子技术基础》试卷

题号	-	_	三	四	五.	六	七	八	九	+	总分
得分											

得分 评卷人

一、(共 15 分)

1. 写出下列电路符号的名称或简称。

2. 画出单结晶体管的电路符号及伏安特性;说明单结晶体管的导通条件和截止条件。

3. 在第1题所给的器件中,哪些属于自关断器件?

得分	评卷人

二、(共 18 分)

具有续流二极管的单相桥式全控整流电路,对发电机励磁绕组供电。绕组的电阻为 5Ω ,电感为 0.4H,励磁直流平均电流 I_d 为 30A,交流电源电压 U_2 为 220V。(1)画出电路图;(2)计算晶闸管和续流二极管的电流有效值;电源电流 I_2 、容量 S 以及功率因数;(3)作出整流输出电压 u_d 、输出电流 i_d 和电源电流 i_2 的波形;(4)若电压和电流都考虑 2 倍的安全裕量,采用 KP50-8 的晶闸管是否合理?为什么?

得分	评卷人		

试卷类型: A 考试科目: 电力电子学 专业: 自动化 班级:

V 	装			线		
三、(共 25 分) 2		≈U ~-45° E -100V		VT,		
□知: U ₂ =200V,	$R=2\Omega$, $L=\infty$, $L_B=1$ mH, $\alpha=45^\circ$, $E_M=100$ V。 1. 计算输出直流平均电压 U_d 、平均电流 I_d 和换流重叠角 γ ;标出 U_d 和 E_M 的实际极性,说明变流电路和直流电动机的工作状态。 2. 作出输出电压 U_d 、流过晶闸管 VT_1 的电流 i_{T1} 的波形。					
	3. 若电动机处于发	支电制动状态,变流电 路	各应工作在	状态。 此时,控制角α应。		
	画出 β=45°, v	相触发脉冲丢此时输出				
	将出现这种情	况。为了防止这种情况	的发生, 逆变角β不能	,说明其确定依据,给出一般		
	取值范围。					
得分 评卷人	四、(共 10 分)	由实验测得某整流电路	的输出电压波形如图 4-	1 所示。		
	1. 电路全称为		,波形对应的控制	制角 α =, $U_{ m d}$ = U_2 。晶闸管的触		
	发脉冲要求用	脉冲或	脉冲。在图 4-2 中画	i出 u _{TI} 波形。		
	2. 若负载为大电源	感负载,则控制角α的和	多相范围是	,在图 4-3 中画出 α=90° 的 u _d 波形。		
u _d u _{nv} u _{nv} u _v u _v u	A A A A A A A A A A A A A A A A A A A	Up 1	**************************************	1		
图 4-1		图4-	2	F** スペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペペ		

试卷类型: A 考试科目: 电力电子学 专业: 自动化 班级:

壮	-}7	华	
	- VJ		

评卷人 得分

五、(共8分)

已知: 电源电压为 220V, $R=2\Omega$, L=5.5mH。

- 1. α=30°, 触发信号为宽脉冲时, 求负载电流有效值、功率及功率因数, 写出电流表达式。
- 2. 若使输出电压大小可调,给出移相控制的移相范围。

得分 评卷人

六、(共12分) 斩波电路如图所示。

1. 从输出电压的量值上看,此电路为型斩波器,电动 机工作在______象限,处于______运行状态。为了改变负载两

端直流平均电压的大小,可以采用____、___、 三种调制方法。

2. 已知: E=110V, R=0.5Ω, $E_m=16$ V, L 足够大, 斩波周期 T=5ms, VT 导通时间 $t_{on}=3$ ms。(1) 计算负 载平均电压 U_0 、负载平均电流 I_0 ;(2)画出稳态时输出电压 u_0 和输出电流 i_0 的波形。

得分 评卷人

七、(共12分)交-直-交变频电路框图如图 7-1 所示。

图 7-1

图 7-2

- __滤波,逆变器属于____型,开关器件用的是自关断器件__ 1. 中间直流环节采用___ 其两端不需要并联_____二极管。整流电路换相方式为_____, 逆变电路换相方式为___
- 2. 若 PWM 型逆变器输出电压波形如图 7-2 所示, 其载波比为多大, 属于单极性调制还是双极性调制波。 举出生成 SPWM 波的四种方法。

参考答案:

一、(共15分)

1. (4分)(a) 晶闸管 (b) 电力场效应晶体管 (c) GTR (d) IGBT

2. (8分)

导通条件: $u_e > U_p$, $i_e > I_p$ (2分) 截止条件: $u_e < U_v$, $i_e < I_v$ (2分)

3. (3分)(b),(c),(d)

二、(共18分)

(1) (3分)

(3)(6分)

(2)(6分)

解得 α=59°

$$\begin{split} & \vdots \quad I_T = \sqrt{\frac{\pi - \alpha}{2\pi}} \cdot I_d = 17.4A \\ & I_{DR} = \sqrt{\frac{\alpha}{\pi}} \cdot I_d = 17.2A \\ & I_2 = \sqrt{2} \cdot I_T = 24.6A \\ & S = I_2 U_2 = 5412 \, KVA \\ & \cos\phi = \frac{P_d}{S} = \frac{I_d^2 \cdot R}{S} = 0.83 \end{split}$$

(4) (3 $\frac{1}{1}$) : $I_{T(AV)} = \frac{I_T}{1.57} \times 2 = 22 A \langle 50 A \rangle$

$$U_{_{DRM}}=U_{_{RRM}}=\sqrt{2}U_{_2}\times 2=622V\langle 800V$$

∴采用 KP50-8 的晶闸管是合理的。

三、(共25分)

解得: $I_d = 30A$ $U_d = 160V$ (4分)

> 解得: γ=3° (2分)

 $^{\text{th}}\cos\alpha - \cos(\alpha + \gamma) = \frac{2I_d x_B}{\sqrt{6}U_2}$

 U_d 和 E_M 的极性均为上正下负,变流电路工作在可控整流状态,电动机工作在电动运行状态。(4分)

2.(4分)

3. (11 分) 有源逆变, 大于 90°。逆变失败, 小于, 太小, 根据晶闸管的 关断时间、换流重叠角和安全裕量角来确定 β_{min} ,一般取

试卷类型: A 考试科目: 电力电子学 专业: 自动化 班级:

30°~35°。(9分)

(2分)

四、(10分)

1. (7分) 三相桥式全控整流电路, 30°, 2, 宽, 双窄。

2. (3分) 0~90°。

五、(共8分)

1. (6分) $\varphi = tg^{-1} \frac{\omega L}{R} = 41^{\circ} \quad \alpha \langle \varphi \quad i_{\circ}$ 为正弦波 $I_{\circ} = 83A$, $P_{\circ} = 13.778$ KW, $\cos \phi = 0.75$ \circ

 $i_o = 117\sin(\omega t - 41^o)$

2. (2分) 41°~180°。

六、(共12分)

1. (6分) 降压,第一,电动,PWM、PFM、混合调制。

2.
$$(6 \%)$$
 $U_o = \frac{t_{on}}{T} E = 66V$

$$I_o = \frac{U_o - E_M}{R} = 100A$$

七、(共12分)

1. (6分) 电感, 电流, GTO, 反馈, 电网换相, 器件换相

2. (6分) 载波比为9, 属双极性调制波。(2分)

自然采样,规则采样,谐波消除,专用集成芯片。(4分)