Stochastic Thinking and Random Walks, Segment 2

Implementing a Random Process

```
import random

def rollDie():
    """returns a random int between 1 and 6"""
    return random.choice([1,2,3,4,5,6])

def testRoll(n = 10):
    result = ''
    for i in range(n):
        result = result + str(rollDie())
    print(result)
```

Probability of Various Results

- •Consider testRoll(5)
- •Which of the following outputs would surprise you?

1111154424

•What is the probability of each?

Probability Is About Counting

- Count the number of possible events
- Count the number of events that have the property of interest
- Divide one by the other
- Probability of 11111?
 - · 11111, 11112, 11113, ..., 11121, 11122, ..., 66666
 - 1/(6**5)
 - · ~0.0001286
- Probability of 54425?

Three Basic Facts About Probability

- Probabilities are always in the range 0 to 1. 0 if impossible, and 1 if guaranteed.
- If the probability of an event occurring is p, the probability of it not occurring must be 1-p.
- •When events are <u>independent</u> of each other, the probability of all of the events occurring is equal to a product of the probabilities of each of the events occurring.

Independence

•Two events are independent if the outcome of one event has no influence on the outcome of the other.

Will One of Real Madrid or Barça Lose?

- Both good teams
- Assume that both are playing
- Assume each wins, on average, 7 out of 8 games
- Probability of both winning is 7/8 * 7/8 = 49/64
- Probability of at least one losing is 1 49/64 = 15/64
- •But suppose they are playing each other?
 - Outcomes are not independent
 - Probability of one of them losing is much higher than

15/64!

Will One of Real Madrid or Barça Lose?

- Both good teams
- Assume that both are playing
- Assume each wins, on average, 7 out of 8 games
- Probability of both winning is 7/8 * 7/8 = 49/64
- Probability of one losing is 1 49/64 = 15/64
- •But suppose they are playing each other?
 - Outcomes are not independent
 - Probability of one of them losing is much higher than 15/64

A Simulation

```
def runSim(goal, numTrials):
    total = 0
    for i in range(numTrials):
        result = ''
        for j in range(len(goal)):
            result += str(rollDie())
        if result == goal:
            total += 1
    print('Actual probability =',
          round(1/(6**len(goal)), 8))
    estProbability = round(total/numTrials, 8)
    print('Estimated Probability =',
          round(estProbability, 8))
runSim('11111', 1000)
```

Output of Simulation

- •Actual probability = 0.0001286
- Estimated Probability = 0.0
- •Actual probability = 0.0001286
- Estimated Probability = 0.0

- •How did I know that this is what would get printed?
- •Why did simulation give me the wrong answer?

Let's try 1,000,000 trials

How Common Are Boxcars?

6.00.2X LECTURE 5 11

How Common Are Boxcars?

- •6² possible combinations of two die
 - One 1 with two 6's
 - Hence probability is 1/36
- Another way of computing it
 - Probability of rolling 6 with one die = 1/6
 - Probability of rolling 6 with other die = 1/6
 - Since these events are independent, probability of rolling a 6 with both die = $1/6 * 1/6 = 1/36 \cong 0.02778$

Approximating Using a Simulation

```
def fracBoxCars(numTests):
    numBoxCars = 0.0
    for i in range(numTests):
        if rollDie() == 6 and rollDie() == 6:
            numBoxCars += 1
    return numBoxCars/numTests

print('Frequency of double 6 =',
        str(fracBoxCars(100000)*100) + '%')
```

Morals

- •Moral 1: It takes a lot of trials to get a good estimate of the frequency of occurrence of a rare event. We'll talk lots more in later lectures about how to know when we have enough trials.
- Moral 2: One should not confuse the sample probability with the actual probability
- •Moral 3: There was really no need to do this by simulation, since there is a perfectly good closed form answer. We will see many examples where this is not true.
- •But simulations are often useful, as we will see

6.00.2X LECTURE 5 14