TO THE SHORT CONTEXT AND BEYOND: MODELLING LONG SEQUENCES WITH LONGLORA

Elisa Forcada Rodríguez eforcada001@ikasle.ehu.eus

Tutor: Eneko Agirre

Fine-Tuning

Fine-tuning adjusts a pre-trained model, trained on general tasks, to adapt it to a more specific task

Dense layers of transformers: matrixes with full rank

Even if it is faster and easier than training a model from scratch...

- High computational costs
- High time cost
- Updates all the parameters of the pre-trained models
- Potential problem: I/O bottleneck

GPT-3 175 B VRAM: 1.2TB

LoRA

Li et al. (2018a); Aghajanyan et al. (2020): Pre-trained language models have a low "instrisic dimension" \longrightarrow still learn efficiently despite a random projection to a smaller subspace

- Reduces computational cost
- Reduces training time
- Reduces the number of parameters to update of the pre-trained models

Main idea: decompose the matrix ΔW into two matrices B and A with much lower rank

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

GPT-3 175 B VRAM: **35MB** with **r=4**

LongLoRA

If we want to increase the pre-trained context lenght

LoRA loses its good performance, even significantly enlarging r

Normal attention: divide the lengthened context length into equal groups (Pattern 1)

Problem: no relationships between groups

MAIN IDEAS

- 1. Shifted sparse attention (S2 -Attn)
 - a. Pattern 1: partition in equal groups
 - b. Pattern 2: shifting the partition by half group size in half attention heads
 - c. Combination of Pattern 1 and Pattern 2
- 2.LoRA for embedding and normalization layers (original LoRA only adapts attention weights)
- 3. Easy implementation (2 lines of code!)

Results

Effectiveness of S2 -Attn under different context lengths

Setting	Position Embedding	Training		Target Context Length		
		Attention	Shift	8192	16384	32768
Full Attn	Short Attn PI (Chen et al., 2023)	Long	-	8.02	8.05	8.04
Short Attn		Short	X	8.29	8.83	9.47
S ² -Attn		Short	✓	8.04	8.03	8.08

