Recurrent Spiking Neural Networks A quick overview of the e-prop online learning framework

Florent Pollet

Modelling in neuroscience ENS Paris-Saclay

March 26, 2024

Introduction

Review of paper A solution to the learning dilemma for recurrent networks of spiking neurons Bellec et al., 2020, following papers Bellec et al., 2019 and Bellec et al., 2018.

- Artificial Neural Networks (ANN) consume more and more power
- Brain energy-efficiency is much higher than current electronic systems
- ⇒ Development of neuromorphic computing
 - Spiking Neural Networks are a promising brain-inspired alternative to ANN
 - However the most efficient methods to train them are not biologically plausible
- ⇒ How to design a biologically-plausible and efficient training strategy?

"Neuromorphic computing" by DALL-E 3

Outline

- Recurrent Spiking Neural Networks
 - Neuron models
 - Coding
 - Architectures
 - Training
- The e-prop learning framework
 - Biological considerations
 - e-prop definition and derivations
 - e-prop applications
- Experiments with e-prop
 - Jax implementation for Spyx
 - e-prop on another dataset

Leaky Integrate-and-Fire (LIF) model - continuous

Analogy between ion and electron transfers, by Ramon Stein (1967):

- ullet $V_m(t)$ membrane potential
- I(t) input current
- $\tau_m = C_m R_m$ membrane time constant
- \bullet C_m membrane capacitor
- \bullet R_m membrane resistor
- Soft reset to V_{reset} after a spike emission (action potential) when V_{th} is crossed

Figure: Equivalent circuit from Chen et al., 2021

$$\tau_m \frac{dV_m(t)}{dt} = -[V_m(t) - V_{rest}] + R_m I(t)$$

Leaky Integrate-and-Fire (LIF) model - discrete

- internal/hidden state v^t
- ullet observable state $z^t \in \{0,1\}$
- *n* inputs $(x_i^t)_i \in \{0, 1\}$
- wⁱⁿ the input synapse weights
- δt the discrete time step size (1 ms for instance)
- $\alpha = \exp(-\delta t/\tau_m)$ the decay time constant
- H the Heaviside step function (non differentiable)

$$\begin{cases} v^{t+1} &= \alpha v^t + \sum_{i} w_i^{in} x_i^{t+1} - z^t v_{th} \\ z^{t+1} &= H(v^{t+1} - v_{th}) \end{cases}$$

Adaptive Leaky Integrate-and-Fire (ALIF) model

Introduced by Bellec et al., 2018, inspired by a biological phenomenon: spike-frequency adaptation (SFA)

Neuron with SFA \implies more expressivity for the neural network

- a_t the deviation in the baseline threshold voltage
- ullet eta scaling factor
- $m{\bullet}$ $ho = \exp(-\delta t/ au_{a})$ the exponential decay parameter
- ullet au_a the adaptation time constant of the threshold decay

$$\begin{cases} v^{t+1} &= \alpha v^t + \sum_{i} w_i^{in} x_i^{t+1} - z^t v_{th} \\ a^{t+1} &= \rho a^t + z^t \\ z^{t+1} &= H(v^{t+1} - v_{th} - \beta a^t) \end{cases}$$

Refractory period can be enforced for both LIF and ALIF models by setting z^t to 0 for a few timesteps

(ロ) (個) (重) (重) (重) のQ()

LIF - ALIF comparison

Figure: Comparison of LIF and ALIF neuron models with a random input spike train

March 26, 2024

Other famous neuron models

- Izhikevich: includes the refractory period in the model, but shown to perform badly with e-prop in van der Veen, 2022
- Hodgkin-Huxley: the most biologically accurate, conductance based instead of current input based, but more computationally-intensive
- Leaky output neurons

$$y^t = \kappa y^{t-1} + \sum_j w_j z_j^t + b$$

- Real-valued, not spiking
- Decay factor $\kappa = exp(-\delta_t/\tau_{out})$ by analogy to the LIF neurons
- Bias b
- Code implementation: $y^t = \kappa y^{t-1} + (1 \kappa) \sum_j w_j z_j^t$

→ □ ▶ → □ ▶ → □ ▶ → □ ◆ の ○ ○

Input data encoding

- Rate coding
 - Widespread in the community
 - Not the sparsest (not ideal for energy efficiency)
- Temporal coding
 - Very sparse
 - Can resort to logscale to increase the range
- Other coding schemes
 - Delta modulation coding, inspired from neurophysiology
- Decoding can be done in a similar fashion

Input data coding

Figure: Rate and temporal coding comparison for simple integer values

SNN architectures

- Classical feed-forward architectures
 - Can replicate famous ANNs like ResNet, VGG
 - More common, mainly for Computer Vision or tasks related to Robotics
- Recurrent architectures (RSNN)
 - Closer to brain networks
 - Recurrent weights
 - The paper Bellec et al., 2018 introduces the Long short-term memory Spiking Neural Networks (LSNN), which is an RNN with a mix of LIF and ALIF neurons, thus showing SFA
- Transformers: early development Zhou et al., 2022

LSNN computational graph

Figure: Example of a computational graph for a Spiking Neural Network. Inputs are written $(x_t)_t$, outputs $(z_t)_t$, and hidden states of the network $(h_t)_t$. Blue arrows are only present for Recurrent Spiking Neural Networks.

SNN training strategies

Main issue: activation functions are not differentiable

- ANN-to-SNN conversion: easier approach and best results for Deep SNN
- Spike-timing-dependent plasticity (STDP)
 - Most biologically-plausible method
 - Variation of Hebbian learning Neurons who fire together, wire together
 - Temporal order taken into account (pre- and post-synaptic)
 - Medium performance
- BackPropagation Through Time Werbos, 1990
 - Similar from RNN/LSTM training in Deep Learning
 - Uses surrogate gradients like arctan, Gaussian functions or even Straight-Through Estimators
 - Good performance
- Real-Time Recurrent Learning
 - Online method
 - Bad complexity $O(n^4)$, with n the number of neurons

Biological considerations

In the brain:

- Eligibility traces: preceding activity leaves traces at molecular level (calcium ions or CAMKII enzymes)
- Learning signals: top down signals thanks to dopamine or acetylcholine, to inform the neurons of behavioral results

Figure: Credits https://around.uoregon.edu/content/uo-neuroscientists-get-new-view-how-neurons-communicate

e-prop definitions

We define the ideal learning signal for neuron j as L_j^t and the eligibility trace for synapse of indices ji as e_{ji}^t :

- $\frac{d}{d}$ indicates the total derivative
- $\frac{\partial}{\partial \cdot}$ indicates the partial derivative, which only makes sense between directly connected nodes of the computational graph
- $\left[\frac{d}{d}\right]_{local}$ consists in the total derivative in an altered computational graph, for which links from z_t to h_{t+1} are removed: see next slide

$$\begin{split} L_{j}^{t} &= \frac{\partial \mathcal{L}}{\partial z_{j}^{t}} \quad (\approx \frac{d\mathcal{L}}{dz_{j}^{t}}) \\ &= \left[\frac{dz_{j}^{t}}{dW_{ji}}\right]_{local} \\ &= \frac{\partial z_{j}^{t}}{\partial h_{j}^{t}} \cdot \sum_{t' < t} \frac{\partial h_{j}^{t}}{\partial h_{j}^{t-1}} ... \frac{\partial h_{j}^{t+1}}{\partial h_{j}^{t'}} \cdot \frac{\partial h_{j}^{t'}}{\partial W_{ji}} \end{split}$$

←□ → ←□ → ← = → → = → りへで

e-prop derivations - truncated graph

Figure: Truncated graph for local derivatives

e-prop derivations - chain rule

From the BPTT original paper Werbos, 1990, we have this factorization of the derivatives:

$$\frac{d\mathcal{L}}{dW_{ji}} = \sum_{t'} \frac{d\mathcal{L}}{dh_j^{t'}} \cdot \frac{\partial h_j^{t'}}{\partial W_{ji}}$$

We can expand this expressive using a recursive formula:

$$\frac{d\mathcal{L}}{dh_j^t} = \frac{d\mathcal{L}}{dz_j^t} \cdot \frac{\partial z_j^t}{\partial h_j^t} + \frac{d\mathcal{L}}{dh_j^{t+1}} \cdot \frac{\partial h_j^{t+1}}{\partial h_j^t}$$

See next slide for to visualize on the graph

e-prop derivations - chain rule

Figure: Chain rule for e-prop derivations $\frac{d\mathcal{L}}{dh_{i}^{t}}$

e-prop derivations - main equation

We can therefore write the full recursion and reorder the sum, to get the e-prop main equation:

$$\begin{split} \frac{d\mathcal{L}}{dW_{ji}} &= \sum_{1 \leq t' \leq t_m} \left(\sum_{t' \leq t \leq t_m} \frac{d\mathcal{L}}{dz_j^t} \cdot \frac{\partial z_j^t}{\partial h_j^t} \cdot \left[\prod_{t'+1 \leq t'' \leq t} \frac{\partial h_j^{t''}}{\partial h_j^{t''-1}} \right] \right) \cdot \frac{\partial h_j^{t'}}{\partial W_{ji}} \\ &= \sum_{1 \leq t \leq t_m} \frac{d\mathcal{L}}{dz_j^t} \cdot \frac{\partial z_j^t}{\partial h_j^t} \cdot \left(\sum_{1 \leq t' \leq t} \left[\prod_{t'+1 \leq t'' \leq t} \frac{\partial h_j^{t''}}{\partial h_j^{t''-1}} \right] \cdot \frac{\partial h_j^{t'}}{\partial W_{ji}} \right) \\ &= \sum_{t} \frac{d\mathcal{L}}{dz_j^t} e_{ji}^t \end{split}$$

To enforce an online setting, one approximate $\frac{d\mathcal{L}}{dz_j^t}$ by its partial derivative (see next slide).

→ロ → → 付 → → ま → り へ ○

e-prop derivations - learning signal approximation

Figure: Learning signal approximation for e-prop derivations (orange: partial derivative, orange+green: total derivative)

Broadcast weights

Supervised learning here (for Reinforcement Learning: reward e-prop):

$$\mathcal{L}_{\mathcal{MSE}} = \frac{1}{2} \sum_{t,k} (y_k^t - y_k^{*,t})^2 \qquad \qquad \mathcal{L}_{\mathcal{CE}} = -\sum_{t,k} \pi_k^{*,t} \log \pi_k^t$$

Family of learning signals with broadcast weights (B_{jk}) :

$$\tilde{L}_j^t = \sum_k B_{jk} \sum_{t' \ge t} (\zeta_k^{t'} - \zeta_k^{*,t'}) \kappa^{t'-t}$$

Hence, the e-prop gradient:

$$\frac{d\mathcal{L}}{dW_{ji}} \approx \sum_{k,t} B_{jk} \sum_{t' \geq t} (\zeta_k^{t'} - \zeta_k^{*,t'}) \kappa^{t'-t} e_{ji}^t$$

$$\approx \sum_{k,t} B_{jk} (\zeta_k^t - \zeta_k^{*,t}) \sum_{t' < t} \kappa^{t-t'} e_{ji}^{t'}$$

 $\sum_{t' \leq t} \kappa^{t-t'} e_{jj}^{t'}$: temporal low-pass filter of the eligibility traces

e-prop variants

How to choose the broadcast weights?

- ullet symmetric e-prop (ideal learning signal, best approximation): $B_{jk}=W_{kj}^{out}$
- ullet random e-prop: constant random weights \Longrightarrow bad performance, except for multi-layer
- adaptive e-prop: random weights updated with the same rule as the other weights

Detailed calculations for each method can be found in Bellec et al., 2020.

Learning phoneme recognition

- TIMIT dataset from Garofolo, John S. et al., 1993
- Preprocessing to extract Mel coefficients, as inputs
- No encoding, continuous input in [0, 1]

Figure: TIMIT tasks Bellec et al., 2020

Figure: TIMIT results Bellec et al., 2020

Difficult temporal credit assignment

- Goal: choose the side with most cues
- Interest: prove the learning of long-time dependencies

Figure: Architecture comparison Bellec et al., 2020

Figure: Task results Bellec et al., 2020

4 D > 4 A > 4 B > 4 B > B 9 Q Q

symmetric e-prop through auto-differentiation

Why Jax instead of PyTorch? It can be XLA JIT-compiled and the code can fully run on GPU with optimized kernels.

How to leverage auto-differentiation from modern machine learning frameworks to compute e-prop?

By stopping the gradients from z_t to h_{t+1} , we obtain the truncated computational graph shown in a previous slide, that leads to the following simplifications:

$$L_{j}^{t} = \frac{\partial \mathcal{L}}{\partial z_{j}^{t}} = \frac{d\mathcal{L}}{dz_{j}^{t}}$$

$$e_{ji}^{t} = \frac{dz_{j}^{t}}{dW_{ji}}$$

$$\frac{d\mathcal{L}}{dW_{ji}} = \sum_{t} L_{j}^{t} e_{ji}^{t}$$

⇒ We can use auto-differentation to compute symmetric e-prop.

Jax implementation for Spyx: gradient computations

Figure: Jax logo - Bradbury et al., 2018

Figure: Spyx logo - Heckel and Nowotny, 2024

	EH vs EA	EH vs BPTT autodiff
5 timesteps	e-08	0.1
25 timesteps	e-07	0.26
100 timesteps	e-07	0.57

Spiking Heidelberg Digits (SHD) dataset

- Benchmark dataset for spiking neural networks Cramer et al., 2020
- Audio digit classification in German and English
- Roughly 1000 samples
- Delta modulation encoding via synthetic cochlear

Figure: SHD dataset (x-axis: time, y-axis: channel)

LSNN with symmetric e-prop test on SHD dataset

- Network parameters: batch size of 256 (not online), 400 ALIF neurons, 60 iterations and 128 timesteps
- Training time: roughly 2 min (this is fast!)
- Baseline benchmark test accuracy: 0.76 (state of the art with SNN: 0.95)

Figure: e-prop - train loss: 1.66, test accuracy: 0.75

Figure: BPTT - train loss: 1.62, test accuracy: 0.76

LSNN with symmetric e-prop test on SHD dataset

Figure: e-prop - train loss: 1.66, test accuracy: 0.75

Figure: BPTT - train loss: 1.62, test accuracy: 0.76

Limitations and further work

- Connect this work to STDP, another biological learning mechanism, which is not discussed in the paper but a bit in van der Veen, 2022
- Compare e-prop to Real-Time Recurrent Learning (RTRL) and other variations, such as Online Training Through Time (OTTT) and Online SpatioTemporal Learning (OSTL) Summe, Schaefer, and Joshi, 2023 - or at least study more the online advantages of e-prop approximations
- e-prop may be more interesting for Reinforcement Learning (RL), with reward e-prop, because supervised learning is dominated by ANN
- More generally, think about good heuristics for SNN design because of a very large hyperparameter search space compared to ANN
- Another interesting dataset to test Brain-To-Text, with real human spiking data https://eval.ai/web/challenges/challenge-page/2099/

Thanks! Any questions?

Code: https://github.com/florian6973/btt-spyx

References I

- Bellec, Guillaume et al. (2019). Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets. arXiv: 1901.09049 [cs.NE].
- Bellec, Guillaume et al. (July 2020). "A solution to the learning dilemma for recurrent networks of spiking neurons". In: *Nature Communications* 11.1. ISSN: 2041-1723. DOI: 10.1038/s41467-020-17236-y. URL: http://dx.doi.org/10.1038/s41467-020-17236-y.
- Bradbury, James et al. (2018). JAX: composable transformations of Python+NumPy programs. Version 0.3.13. URL: http://github.com/google/jax.
- Chen, Jiankun et al. (2021). SAR Image Classification Based on Spiking Neural Network through Spike-Time Dependent Plasticity and Gradient Descent. arXiv: 2106.08005 [cs.CV].

References II

- Cramer, B. et al. (2020). "The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks". In: *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–14. ISSN: 2162-2388. DOI: 10.1109/TNNLS.2020.3044364.
- Garofolo, John S. et al. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus. DOI: 10.35111/17GK-BN40. URL: https://catalog.ldc.upenn.edu/LDC93S1.
- Heckel, Kade M. and Thomas Nowotny (2024). Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural Networks. arXiv: 2402.18994 [cs.NE].
- Summe, Thomas, Clemens JS Schaefer, and Siddharth Joshi (2023).

 Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs.

 arXiv: 2311.16151 [cs.NE].
- Van der Veen, Werner (2022). Including STDP to eligibility propagation in multi-layer recurrent spiking neural networks. arXiv: 2201.07602 [cs.NE].

References III

Zhou, Zhaokun et al. (2022). Spikformer: When Spiking Neural Network Meets Transformer. arXiv: 2209.15425 [cs.NE].