This excerpt from

Principles of Data Mining. David J. Hand, Heikki Mannila and Padhraic Smyth. © 2001 The MIT Press.

is provided in screen-viewable form for personal use only by members of MIT CogNet. $\,$

Unauthorized use or dissemination of this information is expressly forbidden.

If you have any questions about this material, please contact cognetadmin@cognet.mit.edu.

A Priori algorithm, 143, 147, 157–160	AT&T, 13, 19
A priori relationships, 197	Attributes, 4, 405
Absolute error, 216	Automated recommender systems,
Accurate measurements, 45	471–472
Actual error rate, 359	Autoregressive models, 199-200, 202,
Acyclic directed graphical models,	478
290	Average of points, 297
AD-Tree data structure, 425	
Additive form, 189	B-trees, 402–403
Additive predictor, 393–394	Backfitting algorithms, 394
Advanced Scout system, 14	Backpropagation method, 256
Agglomerative methods, 308, 311–314	Backward elimination, 380
Aggregate, 414	Backward selection algorithms, 243
Aggregation, 414	Bandwidth, 176, 285, 350
Akaike information criterion (AIC),	Basic algorithms for partition-based
225	clustering, 302–308
Algebra, relational, 409	Basis functions, 195
Algorithm parameters, 267	Basket data, 405–406
Algorithms. See Data mining algo-	Bayes assumption, first-order, 354
rithms; specific types	Bayes error rate, 334
Alternative hypothesis, 124	Bayes factor, 130
ANNs, 391–393	Bayes rule, 337–338
Apparent error rate, 359	Bayes theorem, 353
Approximation, 169, 265, 322-323	Bayesian approximations, 322–323
Artificial neural networks (ANNs),	Bayesian estimation, 93, 96, 106, 116-
391–393	124, 220, 283
ASCII characters and codes, 206–207	Bayesian Information Criterion (BIC),
Association analysis, 315	225–227, 235, 292, 380
Association rules, 14, 158-160, 433-	Bayesian model, 120, 359, 361-362
435	Beam search strategy, 246, 440
Assumption, 289	Beam width search strategy, 246

Belief networks, 290 Bernoulli distributions, 487	Chaining, 312–313 Chance, 93–97. <i>See also</i> Uncertainty
Best classification tree problem, 241	Chernoff faces, 74
Best unbiased estimators, 107	Chi-squared distributions, 489–490
Beta distributions, 119	Chomsky hierarchy of grammars, 202
Beta posterior, 122–123	City-block metric, 36
Beta prior, 122–123	Class identifiers, 367
Between-cluster variation, 297–298	Class of patterns, 204
Bias of measurements, 45	Class variables, 329
Bias-variance, 221–224	Class-conditional approach, 335–339
trade-off, 223	Classical hypothesis testing, 124–130
Biased estimation, 106	Classical multidimensional scaling, 86
Biasing, 283–284	Classification
BIC, 225–227, 235, 292, 380	document, 469-470
Binary data, 36–37	in high dimensions, feature selec-
Binomial distributions, 487	tion for, 362–363
Blind search, 245–246	maximal predictive, 301
Bonferroni inequality, 131	multilayer perceptrons for, 153–157
Boolean conditions and propositions,	predictive models for, 327–366
213, 411, 429, 458, 461, 475	classification models and, 329-
Boosting methods, 358	339
Bootstrap methods, 116, 360–361	evaluating and comparing, 359-
Box, George, 168	362
Boxplots, 61–63	feature selection for high-
Bracketing methods, 254–255	dimension, 362–363
Branch-and-bound concept, 246–247	linear discriminants and, 341–343
Breadth-first search, 245	logistic discriminant analysis,
Brent's method, 254	352–353
Brushing, 71	naive Bayes model, 353–356
Building models, 378–381	nearest neighbor methods, 347–352
Canonical discriminant function, 343	other methods, 356–359
Canonical parameter, 388	overview, 180–182, 327–329
CART algorithms, 145-151, 157, 228,	perceptrons and, 339-341
335, 345	tree models, 343–347
Cartesian product operations, 409, 412	text, 469–470
Cases, 4	Classification And Regression Trees
Categorical data, 187, 287–292	(CART), 145–151, 153, 228, 335,
Categorical variables, 6	345
Causation, 101–102	Classification learning, 169, 328–329
Central limit theorem, 115–116	Classification models
Centroid of points, 297	background information, 329–330

building real classifiers and, 335–	Conditional density, 98
339	Conditional error rate, 359
decision boundaries, 330–331	Conditional independence ("naive")
discriminative, 330–331	Bayes model, 191, 353–356
probabilistic models and, 331–334	Conditionally independent variables,
Classifiers	99–100, 289, 354
building real, 335–339	Confidence
evaluating and comparing, 359–362	interval, 115
Closed form methods, 249–250	itemsets and, frequent, 430–431
Cluster analysis, 12, 293–296, 323	limits, 115
Cluster centers, 297	Confusion matrix, 361
Clustering techniques, 12–13, 279.	Conjugate directions, 258
See also Hierarchical cluster-	Conjugate families of distributions,
ing; Partition-based clustering	122–123
algorithms; Probabilistic model-	Constrained optimization, 259–260
based clustering using mixture	Constraints, 10
models	Content retrieval. See Retrieval by
Clusters, 137	content
Co-occurrence patterns, 158	Context-free grammar, 202
Coding, image, 166–167	Contigency table, 188
Coefficients, 35, 37, 361	Contour plots, 65–67
Collaborative filtering, 471–472	Convenience samples, 21, 48
Collision, 404	"Cookbook" approach, 152-153
Column vectors, 36	Cosine distance, 459
Combinatorial optimization, 236, 239	Counts, 31
Commensurability, 32	Covariance matrix, 78, 299
Complete link method, 313	Covariances, 33–35
Complexity of models	Coverage of a pattern, 214
nesting and, 172	Coxcomb plot, 11
scoring and, 220–228	Credibility interval, 123
bias-variance, 221–224	Critical region, 125
concepts in comparing, general, 220–221	Cross-validation, 148–149, 227–228, 322, 360
penalizing, 224–227	Cumulative distribution function, 485
validation and, external, 227–228	Curse of dimensionality, 19, 193–196
in selecting predictive models, 183	Customer transactions, 405–406
Compression, data, 166	Customer transactions, 100 100
Computational methods, 141, 235, 291	Data. See also Databases; Graphical
Computational resources, 268	data exploration methods; Mea-
Concatenation property, 27	surement and data
Condensed nearest neighbor meth-	analysis, 166–167
ods, 352	background information, 25–26
000, 002	background information, 25–20

basket, 405–406	18, 143, 296, 421-426. See also
binary, 36–37	Databases
categorical, 187, 287–292	Data matrix, 41, 203–206. See also Data
compression, 166	sets
cube, 419–420	Data mining. See also Data mining al-
defined, 25	gorithms
experimental, 1	analysis of, 144
flattened, 7, 20, 43, 358	background information, 1-4
form of, 41–44	data sets and, 4–9
geographic, 44	databases and, 421–426
high-dimensional, 194-196, 362-	defined, 1
363	dredging and, 22–23
image, 44	fishing and, 22–23
market-basket, 158, 429-430	interactive, 11, 450
maximum variability in, 77	keyword spotting and, 479
mode and, 56	knowledge discovery in databases
model, 405	and, 3
multirelational, 42–43	models and, 1-2, 10-11, 175, 271
observational, 1	patterns and, 1–2, 10–11, 271
orthogonality of, 240	samples and, 93
"out-of-sample," 227, 328, 372	snooping and, 22-23
quality, 44–51	statistics and, 18–21
for collection of data, 47-51	structures, 9–11, 142
for individual measurements, 44-	summary information, 23–24
47	synthesis of, 144
poor, 51	tasks, 11–15, 142
repeated measures, 349–350	visual techniques and, 11
sequential, 477	Data mining algorithms. See also Score
spatial, 44	functions for data mining algo-
standard, 41	rithms
structured, models for, 197–203	background information, 141–145
summarizing, 54–57	Classification And Regression
summary information, 52	Trees, 145–151, 153, 228, 335, 345
suspect, 50–51	components of, 15–18, 142–145
in table, 41	defined, 141
time series, 476–481	nonscalable versions of, 424
transforming, 38–41, 194–196, 363	reductionist viewpoint, 151–162
unordered categorical, joint distri-	A Priori algorithm, 157–160
butions for, 187	background information, 151–
warehousing, 417–419	153
Data management techniques, 17-	multilayer perceptrons for regres-

sion and classification and, 153– 157	Structured Query Language, 409, 413–415
vector-space for text retrieval	Deciles, 56
and, 160–162	Decision boundaries, 330–331
scalable versions of, 423-424	Decision region, 330
summary information, 162–164	Decision surfaces, 330–331
tuple, 146, 151, 154–155	Decision trees, 422
Data sets. See also Databases	Degrees of freedom, 376–377, 489–490
data mining and, 4–9	Dendrograms, 313
defined, 4, 7	Density estimation, 12, 184
heterogeneous, 279	Density function, 97–98, 355, 485. See
likelihood of, 108-109	also Probability distribution and
massive, 421–426	density function models
nature of, 4–9	Density mixtures, 279–281
pseudo, 425–426	Density models, parametric, 275–279.
Data-driven hypothesis generation,	See also Probability distribution
53	and density function models
Data-squashing, 425	Denumerable domain, 485
Databases. See also Data set	Dependency modeling, 12
aggregation in, 414	Dependent variables, 35
background information, 399-400	Depth-first search, 245
data mining and, 421–426	Derived variables, 198
data model in, 405	Descriptive models
data warehousing, 417–419	background information, 271–272
index structures, 402–404	cluster analysis, 293–296
knowledge discovery in, 3	functions of, 12–13
management of data and, 421-426	goal of, 12
manipulating tables and, 409–412	hierarchical clustering, 308–315
massive data sets and, 421–426	agglomerative methods, 308,
memory hierarchy, 400-401	311–314
multidimensional indexing, 404–405	background information, 308–311 divisive methods, 308, 314–315
online analytical processing, 417–	nonprobabilistic, 219
419	-
operational, 417	partition-based clustering algorithms, 296–308
purpose of, 400	
* *	background information, 296–297
query execution and optimization, 415–417	basic algorithms for, 302–308
relational, 405–409	_
strategic, 417	for nonprobabilistic predictive models, 219
strategic, 417 string, 420–421	score functions for, 296–302
sumg, 420–421	5001E TUTIONS 101, 270-302

probabilistic model-based cluster-	Mahalanobis, 276–277
ing, 315–323	measurements, 31–38
advantages, 319	minimum, 298
background information, 315-	pairwise, 312
316	between queries and documents,
disadvantages, 319-321	462
examples, 316–319	similarity and, 15, 451
techniques, 321–323	weighted Euclidean, 33
probability distribution and density	Distortion of samples, 49–50
function models and, 272–292	Distribution-free tests, 129
background information, 272-	Distributions. See also Probability
274	distribution and density function
Expectation Maximization algo-	models
rithm for, 281–284	Bernoulli, 487
joint distributions for categorical	Beta, 119
data, 287–292	binomial, 487
mixture distributions and densi-	chi-squared distribution, 489-490
ties, 279–281	conjugate families of, 122-123
nonparametric density estima-	exponential family of, 388
tion, 284–287	F, 490
parametric density models, 275-	finite mixture, 280
279	independently and identically dis-
score functions for, 274–275	tributed, 108
score functions for, 212, 217–219	joint
Deviance of model, 389–390	for categorical data, 287–292
Diagnostic methods, 10, 338, 381–384	for unordered categorical data,
Dice coefficient, 37	187
Difference operation, 410	left-skewed, 57
Discovery task, pattern, 205	mixture, 279–281
Discriminant functions, 331	multimodal, 56, 60
Discriminative approach, 335–339	multinominal, 487–488
Discriminative classification, 330–331	multivariate normal, 490
Disk access, special-purpose algo-	Normal, 60, 113, 115–116, 118, 121–
rithms for, 424	122, 127, 171, 276, 350, 488
Dispersion measurement, 56	Poisson, 280–281, 388, 488
Dispersion parameter, 388	posterior, 117, 122–123
Dissection, 293	predictive, 120–121
Distance	prior, 117, 122–123
cosine, 459	probability, 485, 487–490
distance, 32–33, 85	relative, 459
edit-distance, 312	right-skewed, 57
Euclidean, 32–33, 85, 459, 480	skewness of, 56–57

student's <i>t-</i> , 489	nonparametric density, 284–287
Divisive methods, 308, 314–315	over, 216
Document, 456, 461–465, 469–470	parameter, 240
Dredging, 22–23	probability distribution and den-
Duplicates, 411	sity, 274–275
1	quasilikelihood, 390
EDA, 11–12	query selectivity, 273
Edit-distance, 312	regression and, 13
Edited nearest neighbor methods, 352	stochastic, 123, 265
EFFORT (software program), 29–30	unbiased, 106, 227
EM algorithms. See Expectation Max-	uncertainty and, 105–124
imization algorithms	background information, 105–
Entities, 4	106
Episodes, 207–208, 436–438	Bayesian, 93, 116–124
Epsem sample, 134	maximum likelihood and, 93,
Errors	108–116
absolute, 216	properties of estimators and, de-
actual error rate, 359	sirable, 106–108
apparent error rate, 359	stochastic, 123, 265
Bayes error rate, 334	under, 216
conditional error rate, 359	Estimators, 106–109
defined, 373	Euclidean distance, 32–33, 85, 459, 480
estimation, 216	Euclidean metric, 36
family error rate, 131	Euclidean space, 298
mean squared, 107, 223–224	Evaluation
misclassification of objects and,	of classifiers, 359–362
359–361	of models and patterns, 229–231
quadratic error function, 340	of retrieval systems, 452–456
resubstitution error rate, 359	Event-sequence, 43
risk of, 45	"Exclusive-or" structure, 71
squared, 216	Expectation Maximization (EM) algo-
true error rate, 359	rithms
Estimation	function of, 21
Bayesian, 93, 96, 106, 116–124, 220,	for mixture models, 187, 281–284
283	
biased, 106	optimization and, 260–265
cross-validation, 148–149	red blood cell example, 317–318
defined, 93	Expected value, 486
density, 12, 184	Experimental design 122
errors, 216	Experimental design, 132
maximum likelihood, 96, 106, 108– 116	Explanatory variable 168
110	Explanatory variable, 168

Exploratory data analysis (EDA), 11-Forecasting, 133 12 Form of data, 41-44 Forward selection algorithms, 243, Exploring data. See Graphical data exploration methods 379 Exponential family of distributions, Freedom, degrees of, 376-377, 489-Expressive power of model structure, Frequency of episode, 436–437 183 Frequent itemsets, 429–433 Frequent sets, 204, 431, 433-435 F distributions, 490 Frequentist view of probability, 95 From clause, 413 Factor analysis, 83 Factor loadings, 83 FSM, 202 Factored form, 292 Function approximation problems, Factorization, 187-193, 290 Factors, 195 Functional dependency, 206 Furthest neighbor methods, 313 Family error rate, 131 Family of model structures, 238 Fate, 93-97. See also Uncertainty Gaussian noise, 199 Feasible region, 259 Generalizations, 295, 377-378, 435-Feature extraction approach, 197-198 436, 476 Feature selection for classification in Generalized additive models, 393–395 high dimensions, 362–363 Generalized linear models, 173, 353, 384-390 Features, 4 Feed-forward neural networks, 357, Generative models, 272 391 Generic score functions, 16, 219 Fields, 4, 202 Genetic search, 266–267 Geographic data, 44 File, inverted, 461 Filtering, collaborative, 471–472 GIGO, 44–45 Finite mixture distributions, 280 Gini coefficient of performance, 361 Finite state machine (FSM), 202 Global models, 442–443, 478–480 First normal form, 408 Global pattern, 9 Goodness-of-fit tests, 126, 142, 372, First-order autoregressive model. 199-201 377 First-order Bayes assumption, 354 Google system, 15 First-order Markov property, 101 Grades, 31 Fisher information, 122 Gradient descent method, 253 Fisher, R.A., 341 Gradient-based methods, 250-251 Fisher's linear discriminant analysis Grammars, 202 method, 331, 353, 356, 362 Graphical data exploration methods Fishing, 22–23 background information, 53–55 Fitted model, 10-11 hypothesis testing and, 53 Flattened data, 7, 20, 43, 358 multidimensional scaling, 84-90

principal components analysis, 74– 84	in context, 130–132
summarizing data, 54–57	IBM, 474
visual techniques	Icon plot, 74
for more than two variables, 70–	Icons, 74
74	Idealization, 95
for relationships between two	IDF, 463
variables, 62–70	iid, 108
for single variables, 57–62	Image
Graphical models, 189–190	coding, 166–167
Greedy heuristic search methods, 241	form of data and, 44 invariants, 475–476
Hash indices, 403–404	local part of, 166
Hazard, 93-97. See also Uncertainty	queries, 473–474
Heterogeneous data set, 279	representation, 473
Heteroscedasticity, 381	retrieval, 472–476
Heuristic search methods, 241, 244-	understanding, 473
246, 439–440	whole, 166
Hidden Markov models (HMMs),	Improper priors, 122
201–202, 291 Hidden variables, 187, 190–191, 195	Independence in high dimensions, 187–193
Hierarchical clustering	Independent variables, 99, 188–189
agglomerative methods, 308, 311–314	Independently and identically distribution (iid), 108
background information, 308-311	Indicator matrix, 429–430
divisive methods, 308, 314–315	Individual contribution, 170
Hierarchical structure, 44	Individual preferences, modeling,
High-dimensional data, 194–196, 362–	470–472
363	Individual X variables, 194–195
"Hill-climbing" algorithm, 244	Individuals, 4
Histograms, 57–59, 61, 284	Inference, 377–378
HMMs, 201–202, 291	Information retrieval (IR). See Text re-
Homoscedasticity, 381	trieval
Horseshoe effect, 88	Input variable, 329
Hypertetrahedron, 258	Inspection, model, 381–384
Hypothesis testing	Interactive techniques, 11, 456
graphical data exploration methods	Interestingness, criteria for, 440–441
and, 53	Interquartile range, 56
random variables and, 99	Intersection operation, 410
uncertainty and, 124–132	Interval scale, 28–29
background information, 124	Inverse-document-frequency (IDF),
classical, 124–130	463

Inverted file, 461 diagnostic methods and, 381-384 IR. See Text retrieval generalization and, 377–378 ISODATA algorithm, 307 inference and, 377–378 Itemsets, frequent, 429–433 interpreting, 375–377 Iteratively weighted least square model building and, 378–381 method, 258, 389 model inspection and, 381–384 Least squares method, 114, 211, 370 Jaccard coefficient, 37 Leaving-one-out method, 360 Jackknife methods, 360–361 Lee, M., 425 Jeffrey's prior, 122 Left-skewed distributions, 57 Join operations, 412 Length variables, 32 Joint density function, 97–98 Letters, 206. See also Strings Joint distributions Likelihood function, 105, 108-109, for categorical data, 287-292 274-275 for unordered categorical data, 187 Likelihood ratio, 125–126 Linear algebra methods, 249–250 K-means algorithms, 298, 305 Linear correlation, 35 k-nearest neighbor method, 348–349 Linear covariance, 35 Kalman filters, 201–202 Linear dependencies, 35 KDD, 3 Linear discriminants, 341–343 Kernel density method, 284 Linear function, 9 Kernel estimates, 59–62, 176 Linear models Kernel function, 285 background information, 368-370 Kernel methods, 176–178 diagnostic methods and, 381–384 Kernel models, 287 generalization and, 377–378 Kernel plots, 61 generalized, 384-390 Keyword spotting, 479 global, 478 Knowledge discovery in databases inference and, 377–378 (KDD), 3 inspection, 381–384 Kolmogorov-Smirnov test statistic, model building and, 378-381 129 - 130probabilistic interpretation of, 372kth mixing proportion, 281 375 kth-order Markov model, 200 Linear predictor, 388 Kuhn-Tucker conditions, 260 Linear programming, 259 Linear regression models. See Linear Lagrange multipliers, 259–260 Laplace approximation, 323 models Linear structure, regression models Latent semantic indexing (LSI), 465-469 with, 169–173 Local exploration, 243 Latent variables, 187, 190–191, 195 Local extremum, finding, 251 Least squares fitting computational issues in, 370-372 Local improvement, 241 defined, 370 Local part of image, 166

Local piecewise model structures for regression, 174–175	Maximum a posteriori (MAP) method, 117, 226, 283, 291
Locally linear, 174	Maximum variability in data, 77
Locally weighted regression model,	MCMC methods, 123, 268
175–176	MDL method, 226
Location measurements, 55	Mean squared error (MSE), 107, 223-
Location parameters, 184	224
Loess regression model, 175–176	Measurements. See also Data
Log-likelihood, 122, 274–275	accurate, 45–46
Log-linear models, 292	amounts and, 31
Logistic discriminant analysis, 352-	background information, 25–26
353	balances and, 31
Logistic link function, 385	bias of, 45
Logistic regression, 384–385	counted fractions and, 31
Logit link function, 385	counts versus, 31
Logit transformation, 40	dispersion, 56
"Lower resolution" data samples, 11	distance, 31–38
LSI, 465–469	grades and, 31
Luck, 93–97. See also Uncertainty	individual data quality for, 44–47
	location, 55
Mahalanobis distance, 276–277	metrical versus categorical, 31
Manhattan metric, 36	pairs of, 327 precise, 45
Manipulation of variables, 168	qualitative versus quantitative, 31
MAP method, 117, 226, 283, 291	ranks and, 31
Marginal density, 98	reliability of, 46
Marginal likelihoods, 130, 226	representational, 29–31
Market-basket data, 158, 429–430	summary information, 52
Markov chain model, 189-190, 202,	types of, 26–31
290	validity of, 46–47
Markov Chain Monte Carlo (MCMC)	variability, 56
methods, 123, 268	Median, 55
Markov linear-switching model, 479-	Memory hierarchy, 400-401
480	Minimum description length (MDL)
Markov random fields, 202	method, 226
Massive data sets, 421–426	Minimum distance, 298
Mathematical programming, 259	Minkowski metric, 36
Maximal predictive classification, 301	Missing data, optimization with, 260–
Maximum likelihood estimation, 93,	265
106, 108–116	Mixture distributions and densities,
Maximum likelihood estimator	279–281 Mintage on a dela
(MLE), 109, 113	Mixture models

autoregressive models, 202	background information, 168–169
parametric, 185–187 probabilistic model–based cluster-	local piecewise model structures
ing using, 315–323	for regression, 174–175
advantages, 319	nonparametric "memory-based"
background information, 315–	local models, 175–178
316	regression models with linear
disadvantages, 319–321	structure, 169–173
examples, 316–319	selecting, of appropriate com-
techniques, 321–323	plexity, 183
and radial basis function ap-	stochastic components of, 178-
proaches, 357	180
MLE, 109, 113	for probability distributions and
MLPs, 153–157, 357, 391	density, 184–193
Mode, 56	background information, 184 concepts, general, 184–185
Model averaging methods, 346	factorization and independence
Models. See also Complexity of mod-	in high dimensions, 187–193
els; Patterns; specific types	joint distributions for unordered
background information, 165–167	categorical data, 187
building, 378–381	mixtures of, 185–187
classes of structure, 235, 238	search methods for, 238-241, 378-
curse of dimensionality and, 193– 196	381
data, 405	background information, 238-
data mining and, 1–2, 10–11, 175,	241
271	branch-and-bound, 246–247
defined, 165	heuristic search, 244–246
deviance of, 389–390	simple greedy search algorithm, 243–244
evaluation of, 229–231	state-space formulation, 241–243
expressive power of, 183	systematic search, 244–246
fundamentals, 167–168	for structured data, 197–203
generalized linear, 173, 353, 384–390	Momentum-based methods, 254
generative, 272	Monothetic divisive methods, 315
global, 442–443, 478–480	Monotonic regression, 87
goal of, 102	Monte Carlo Markov Chain (MCMC)
for individual preferences, 470–472	methods, 123, 268
inspection of, 381–384	Monte Carlo sampling techniques,
kth order Markov, 200	123, 226
Markov chain, 189–190, 202, 290	Morse codes, 85
parameters of, 167, 276	MSE, 107, 223–224 Multicollinearity, 371
for prediction, 168–183	Multicollinearity, 371

Multidimensional indexing, 404–405	NIST, 456
Multidimensional scaling, 84–90	NLP, 457
Multidimensional scaling plot, 88	Nominal scales, 28, 31
Multilayer perceptrons (MLPs), 153–	Non-metric multidimensional scaling,
157, 357, 391	87
Multimodal distributions, 56, 60	Nonlinear function, 10, 154
Multinomial distributions, 487–488	Nonlinear global models, 478-479
Multiple regression, 368–369 Multirelational data, 42–43	Nonparametric density estimation, 284–287
Multivariate function, 113–114	Nonparametric "memory-based" lo-
Multivariate gradient descent	cal models, 175–178
method, 256	Nonparametric models, 185
Multivariate normal distributions, 490	Nonparametric test, 130
Multivariate parameter optimization, 255–259	Nonprobabilistic descriptive models, 219
Multivariate random variables, 97-	Nonrepresentational procedures, 30
102	Nonscalable versions of data mining algorithms, 424
Naive Bayes model, 191, 353-356	Nonsystematic variation, 179–180
NASA Earth Observing System, 19	Normal density, 197, 355
Natural language processing (NLP),	Normal distribution, 60, 113, 115–116,
457	118, 121–122, 127, 171, 276, 350,
Natural parameter, 388	488
Nearest neighbor methods	Normal posterior, 122–123
agglomerative methods and, 312-	Normal prior, 122–123
313	NR method, 252–253, 255, 389
condensed, 352	Null hypothesis, 124–126
edited, 352	Numerical scales, 31
nonparametric "memory-based" lo-	
cal models and, 176, 178	Objects, 4
pairwise distances of the members	Observational data, 1
of each cluster and, 312–313	Odds ratio, 352–353
parametric models and, 351	OLAP, 417–419
predictive models for classification	OLTP, 417–419
and, 347–352	One-tailed test, 125
reduced, 352	Online algorithms, 265–266
Nelder and Mead variant, 259	Online analytical processing (OLAP),
Nesting, 172	417–419
Neural networks, 173	Online approximation, 265
Newton-Raphson (NR) method, 252–	Online transaction processing (OLTP),
253, 255, 389	417–419
Newton's method, 256–257	Operational databases, 417
•	•

Operational procedures, 30	Parallel coordinates plots, 74, 76
Opportunity samples, 21, 48	Parameter optimization methods
Optimization	background information, 247–249
background information, 235–238	closed form, 249–250
combinatorial, 236, 239	constrained, 259–260
as component of data mining algo-	gradient-based, 250–251
rithms, 16–17, 142–143	linear algebra, 249–250
constrained, 259–260	multivariate, 255–259
Expectation Maximization algo-	univariate, 251–255
rithm and, 260–265	Parameters
maximum likelihood estimation	algorithm, 267
and, 114	canonical, 388
with missing data, 260–265	defined, 47
online algorithm and, 265–266	dispersion, 388
parameter optimization methods,	estimation, 240
247–260	linear function of, 9
background information, 247-	location, 184
249	of models, 167, 276
closed form, 249–250	natural, 388
constrained, 259–260	regression model, 173
gradient-based, 250-251	scale, 184, 388
linear algebra, 249–250	Parametric models
multivariate, 255–259	density, 275–279
univariate, 251–255	mixtures of, 185–187
query, 415–417	nearest neighbor methods and, 351
single-scan algorithms and, 265-	overview, 184
266	Parents of variables, 189
stochastic, 266–268	Partition-based clustering algorithms
Ordinal scales, 28, 31	background information, 296-297
Organization of data. See Databases	basic algorithms for, 302–308
Orthogonality of data, 240	for nonprobabilistic descriptive
"Out-of-sample" data, 227, 328, 372	models, 219
Overestimation, 216	score functions for, 296–302
Overfitting, 19, 183, 223	Pattern search, 259
	Patterns. See also Models
<i>p</i> -dimensional space, 10, 12, 165, 180,	background information, 165–167
277, 479	class of, 204
<i>p</i> -dimensional vector, 9, 36, 174, 329–	co-occurrence, 158
330, 399	coverage of, 214
PageRank, 15	in data matrices, 203–206
Pairs of measurements, 327	data mining and, 1–2, 10–11, 271
Pairwise distance, 312	defined, 165

detection of, 102	Percentiles, 56
discovering, 13-14, 438-441	Perceptrons, 153-157, 339-341, 357,
discovery task, 205	391
evaluation of, 229–231	Permutation tests, 129
finding, 427–448	Piecewise model structures for regres-
association rules, 433–435	sion, 174–175, 182
background information, 427-	Point estimates, 115, 119
428	Poisson distributions, 280-281, 388,
episodes from sequences, 436-	488
438	Poisson regression, 388
from local patterns to global	Polysemy, 457
models, 442–443	Polythetic divisive methods, 315
generalizations, 435–436	Population drift, 49
itemsets, frequent, 429–433	Position, sequential, 477
predictive rule induction and,	Posterior distributions, 117
443–447	Precise functional form, 176
rule representations, 428–429	Precise measurement, 45
selective discovery, 438–441	Precision, 121, 453–456
global, 9	Predicted intervals, 374–375
local, to global models, 442–443	Predictive distributions, 120–121
primitive, 204	Predictive models
Q, 450, 454	background information, 168-169
scoring, 212–215	for classification, 327–366
search methods for, 238–241, 378–	classification models and, 329-
381	339
background information, 238– 241	evaluating and comparing, 359-
branch-and-bound, 246–247	362
heuristic search, 241, 244–246	feature selection for high-
simple greedy search algorithm,	dimension, 362–363
243–244	linear discriminants and, 341–343
state-space formulation, 241–243	logistic discriminant analysis,
systematic search, 244–246	352–353
for strings, 206–208	naive Bayes model, 353–356
structure of, 158	nearest neighbor methods, 347-
structures, 203–208	352
in data matrices, 203–206	other methods, 356-359
for strings, 206–208	overview, 180-182, 327-329
text retrieval, 14	perceptrons and, 339–341
PCA. See Principal components analy-	tree models, 343–347
sis	examples of, 14
Penalized likelihood, 321–322	goal of, 13

local piecewise model structures for regression, 174–175	examples, 316–319 techniques, 321–323
nonparametric "memory-based" lo- cal models, 175–178	Probabilistic models for classification, 331–334
for regression, 367–398	Probabilistic rule, 213–214, 428
artificial neural networks, 391–	Probability, 93–97
393	Probability calculus, 94–96
background information, 367–368	Probability distribution and density function models
generalized linear models, 384–390	background information, 184 concepts, general, 184–185
least squares fitting, 368–384	descriptive models and
linear models, 368–384	background information, 272-
other highly parameterized mod-	274
els, 393–397 regression models with linear struc-	Expectation Maximization algorithm for, 281–284
ture, 169–173	joint distributions for categorical
score functions for, 212, 215–217	data, 287–292
selecting, of appropriate complex- ity, 183	mixture distributions and densities, 279–281
stochastic components of, 178–180	nonparametric density estima-
Predictive performance, 196	tion, 284–287
Predictive rule induction, 443–447	parametric density models, 275-
Predictor variables, 168, 367	279
PREFERENCE property, 27	score functions for, 274–275
Preferences, modeling individual,	estimation, 274–275
470–472	factorization and independence in
PRIM algorithms, 445–446	high dimensions, 187–193
Primitive patterns, 204	joint distributions for unordered
Principal components, 195	categorical data, 187
Principal components analysis (PCA)	mixtures of, 185–187
graphical data exploration methods	Probability distributions, 485, 487–490
and, 74–84	Probability mass function, 485
high-dimensional data and, 196	Probability theory, 94–95
Principal coordinates method, 86	Projection operation, 411
Prior distributions, 117 Priors, 122–123	Projection pursuit methods, 77, 195–196, 357, 395–397
Probabilistic model-based clustering	Proximity, 32
using mixture models	Pruning, 153, 159
advantages, 319	Pseudo data sets, 425–426
background information, 315–316	
disadvantages, 319–321	QBIC, 15, 474

Quadratic discriminant function, 343 Quadratic error function, 340	Receiver Operating Characteristic
Quadratic error function, 340 Quadratic function, 249	(ROC) curve, 361, 454
	Reciprocals of variances, 121
Quadratic programming, 259	Records, 4
Quality of data	Rectangular range query, 404
for collection of data, 47–51 for individual measurements, 44–47	Reduced nearest neighbor methods, 352
poor, 51	
QUALITY OF LIFE property, 29	Reductionist viewpoint on data min-
Quantitative variables, 6	ing algorithms
Quartiles, 56	A Priori algorithm, 157–160
Quasi-likelihood methods, 180	background information, 151–153
Quasi-Newton methods, 257–258	multilayer perceptrons for regres-
Quasilikelihood estimation, 390	sion and classification and, 153-
	157
Query	vector-space for text retrieval and,
aggregation in, 414	160–162
execution, 415–417	Redundant variables, 194
image, 473–474	Reference prior, 122
matching, 461–465	Regression
optimization, 415–417	approach, 335–339
pattern Q, 450, 454	defined, 169, 328-329
rectangular range, 404	estimation and, 13
selectivity estimation, 273	line, 368
Structured Query Language, 409,	linear, probabilistic interpretation
413–415	of, 372–375
text, 456–457	local piecewise model structures
Query by Image Content (QBIC), 15,	for, 174–175
474	locally weighted model, 175–176
	loess model, 175–176
Radial basis function networks, 393	logistic, 384–385
RAM, 17	methods, 348
Random samples, 20, 54, 123	models with linear structure, 169–
Random variables, 97–102, 485–490	173
Random variation, 179–180	
Random-access memory (RAM), 17	monotonic, 87
Randomization tests, 129	multilayer perceptrons for, 153–157
Randomness, 93–97. See also Uncer-	multiple, 368–369
tainty	plane, 368–369
Range, 56, 404	Poisson, 388
Ranks, 31	predictive models for, 367–398
Ratio scales, 28	artificial neural networks, 391-
Recall, 453–456	393

background information, 367-	image retrieval, 472–476
368	sequence retrieval, 476–481
generalized linear models, 384-	summary information, 481–482
390	for text, 456–470
least squares fitting, 368–384	background information, 456-
linear models, 368–384	457
other highly parameterized mod-	classification of document and
els, 393–397	text, 469–470
projection pursuit, 195-197, 395-	latent semantic indexing, 465-469
397	matching queries and docu-
rule-based, 446	ments, 461–465
simple, 368	patterns, 14
sum of squares, 376	representation of text, 457-461
Regular expression E, 207	time series, 476–481
Regular grammars, 202	Right-skewed distributions, 57
Regularities, 134	Risk of error, 45
Regularized discriminant analysis,	Robust methods, 231–232
343	ROC curve, 361, 454
Reject option, 350	Rocchio's algorithm, 470
Rejection region, 125	Root node, 244–245
Relation schema, 405	Rotations, random, 71
Relational algebra, 409	Rothamsted Experimental Station, 11-
Relational data model, 405	12
Relational databases, 405–409	Rows, 36
Relations, 405	Rules
Relative distributions, 459	discovering, 13-14, 438-441
Relevance feedback, 462, 470-471	finding
Reliability of measurements, 46	association rules, 433–435
Repeated measures data, 349–350	background information, 427-
Representational measurements, 29-	428
31	episodes from sequences and,
Resampling techniques, 322	436–438
Residual sum of squares, 376	from local patterns to global
Residuals, 369	models, 442–443
Response variable, 168, 367	generalizations, 435–436
Resubstitution error rate, 359	itemsets, frequent, 429–433
Retesting, effective, 46	predictive rule induction and,
Retrieval by content	443–447
applications of, 15	rule representations, 428-429
background information, 449-452	selective discovery of, 438-441
evaluation of systems, 452–456	probabilistic, 213–214, 428
goal of, 14	regression based on, 446

representations of, 428-429	evaluating, 229–231
set of, 443	function of, 142
structure of, 158	generic, 16, 219
	for partition-based clustering algo-
Sample correlation coefficient, 35	rithms, 296–302
Sample covariance, 35	patterns, scoring, 212–215
Sample mean, 33, 55	predictive, 212, 215–217
Sample-based estimate of sample	for probability distribution and
mean, 55	density function models, estimat-
Samples, 7. See also Data set	ing, 274–275
convenience, 21, 48	robust methods, 231–232
data mining and, 93	scoring method versus, 389
distortion of, 49–50	Scoring method
epsem, 134	complexity of a model and, 220–228
"lower resolution" data, 11	bias-variance, 221–224
opportunity, 21, 48	concepts in comparing, general,
random, 20, 54, 123	220–221
systematic, 133–134	penalizing, 224–227
uncertainty and, 102–105	validation and, external, 227–228
Sampling fraction, 133	score functions versus, 389
Sampling methods, 132-138, 338	Scree plots, 79–80
Sampling paradigm, 128	Search methods
Scalable versions of data mining algo-	background information, 235–238
rithms, 423–424	blind, 245–246
Scale parameter, 184, 388	branch-and-bound, 246–247
Scales, 28–29, 31	breadth-first, 245
Scatterplot matrix, 71–72	as component of data mining algo-
Scatterplots, 64–65	rithms, 16–17, 142–143
Schemas, 41–44, 405, 410	depth-first, 245
Score functions for data mining algo-	genetic, 266–267
rithms	greedy heuristic, 241
background information, 211–212	heuristic, 241, 244–246, 439–440
decomposable, 240	for models and patterns, 238-241,
defined, 211, 235	378–381
descriptive, 212, 217–219	simple greedy search algorithm,
with different complexities, 220-	243–244
228	state-space formulation, 241–243
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
bias-variance, 221–224	stochastic, 266–268
concept in comparing, general,	systematic, 244–246
concept in comparing, general, 220–221	systematic, 244–246 Search operators, 241–242
concept in comparing, general,	systematic, 244–246

Select clause, 413 Standardization, 38 Selection operation, 411 Star icons, 74 Selectivity, 273 Star plot, 75 Sequence retrieval, 476–481 State space representation, 241 Sequences, episodes from, 436–438 State variables, 200–201 Sequential data, 477 State-space formulation for search Sequential position, 477 methods, 241–243 Set operations, 410 Stationarity, 198–199 Set of rules, 443 Statistical inference, 102–105 SEVERITY property, 27 Statistics, 18-21, 47, 425-426 Severity scale, 28 Stepwise model, 130 Significance level, 105, 125 Stochastic approximation, 265 Similarity, 15, 449, 451, 480 Stochastic components of model Simple greedy search algorithm, 243structures, 178-180 244 Stochastic estimation, 123, 265 Simple regression models, 368 Stochastic search methods, 266–268 Simplex algorithm, 258 Strategic databases, 417 Simplex search method, 258 Stratified random sampling, 135 Simpson's paradox, 100-101 Strings, 43, 206–208, 420–421 Simulated annealing, 267–268 Structural risk minimization (SRM) Simultaneous test procedures, 131 approach, 226 Single link method, 312–313 Structured data models, 197–203 Single-link criterion, 298 Structured Query Language (SQL), Single-scan algorithm, 265 409, 413–415 Singular-value decomposition (SVD), Structures, data mining, 9–11, 142 415, 466 Student's t- distributions, 489 Skewness, 56-57 Subsamples, 360 SKICAT system, 13 Subsets problem, 241 Sloan Digital Sky Survey, 19 "Sufficient statistic" concept, 112–113 Snooping, 22–23 Sufficient statistics, 19–20, 425–426 Spatial data, 44 Suffix tree data structure, 421 Special-purpose algorithms for disk Sum of squared errors (SSE), 155-156, access, 424 Spline function, 174 Sum of squared residuals, 376 Splines, 174–175 Summarizing data, 54–57 Supervised classification, 169, 328-Splitting a node, 344–345 SQL, 409, 413-415 329 Squared error, 216 Support, 430 SRM approach, 226 Support vector machines, 357 SSE, 155–156, 235 Surrogate document, 461 Standard data, 41 Suspect data, 50–51 Standard deviation, 56, 60 SVD, 415, 466

Synonmy, 457	Uncertainty
Systematic sampling, 133–134	background information, 93
Systematic search methods, 244–246	dealing with, 94–97
Systematic variation, 179	estimation and, 105–124
T-dimensional "term space," 461 Tables, 41, 188, 408–412 Tasks, data mining, 11–15, 142 Taylor series, 227, 257, 369 Temperature schedule, 267 Ten-fold cross-validation, 322 Term, 456 Term frequency (TF), 463 Test set, 360 Text retrieval background information, 456–457 classification of document and text, 469–470 latent semantic indexing, 465–469 matching queries and documents,	background information, 105–106 Bayesian, 93, 116–124 maximum likelihood and, 93, 108–116 properties of estimators and, desirable, 106–108 stochastic, 123, 265 hypothesis testing and, 124–132 background information, 124 classical, 124–130 in context, 130–132 multivariate random variables and, 97–102 probability and, 93–97
461–465	random variables and, 97–102
patterns, 14	samples and, 102–105
representation of text, 457–461	sampling method and, 132–138
Text retrieval Conferences (TREC),	statistical inference and, 102–105
456	summary information, 138
TF, 463	Underestimation, 216
Time series data, 476–481	Unexplainable variation, 179–180 Union operation, 410
Total sum of squares, 376	Univariate parameter optimization,
Training data, 7. See also Data set	251–255
Training data points, 346 Transactions, 405–406	Univariate random variables, 485–487
Transforming data, 38–41, 195–196,	Universal table, 408
363	Unordered categorical data, joint dis-
TREC, 456	tributions for, 187
Tree models, 174, 343–347	U.S. National Institute of Standards
Tree-structured rule sets, 443	and Technology (NIST), 456
Trellis plotting, 71, 73–74	
Trimmed mean, 231–232	Validation, 227–228
True error rate, 359	Validation log-likelihood, 275
True value concept, 45	Validation subset, 148–149
Tuple, algorithm, 146, 151, 154–155	Validity of measurements, 46–47
Unbiased estimation, 106, 227	Variability measurements, 56 Variables

categorical, 6	
class, 329	
conditionally independent, 99–100, 289, 354	
defined, 4	
dependent, 35	
derived, 198	
explanatory, 168	
frequent sets of, 204	
hidden, 187, 190–191, 195	
independent, 99, 188-189	
individual X, 194–195	
input, 329	
latent, 187, 190–191, 195	
length, 32	
linear dependencies between, 35	
manipulating, 168	
multivariate, 97–102	
parents of, 189	
predictor, 168, 367	
quantitative, 6	
random, 97–102, 485–490	
redundant, 194	
response, 168, 367	
selecting, 362–363	
selection for high-dimensional data,	
194–195	
state, 200–201	
transforming, 363	
univariate random, 485–487	
visual techniques for displaying	
more than two, 70–74	
relationships between two, 62–70	
single, 57–62	
weight, 32	
Variance function, 388	
Variances, 56, 78, 121, 221–224	
Variations, 297–298	
Vector space representation, 458	
Vector-space algorithms, 160–162	
Visual techniques	
data mining and, 11	

for more than two variables, 70–74 for relationships between two variables, 62–70 for single variables, 57–62

Warehousing, data, 417–419
WEIGHT property, 26–28
Weight variables, 32
Weighted Euclidean distance, 33
Weighted least squares solution, 382
Where clause, 413
Whole image, 166
Wilcoxon test statistic, 129–130
Within-cluster sum-of-squares, 298
Within-cluster variation, 297–298

Zero skewness, 57

This excerpt from

Principles of Data Mining. David J. Hand, Heikki Mannila and Padhraic Smyth. © 2001 The MIT Press.

is provided in screen-viewable form for personal use only by members of MIT CogNet. $\,$

Unauthorized use or dissemination of this information is expressly forbidden.

If you have any questions about this material, please contact cognetadmin@cognet.mit.edu.