

<u>Bobineuse</u> <u>Réponse à l'appel d'offre</u>

Amsallem Aurélie
Asseke Yannick
Aubonnet Matthieu
Baudey François-Xavier
Losa Romain
Souquet François
Sun Mandini
Vermet Thomas

ECAM 3 – A&M Promotion 2022 Groupe E1 Année 2019-2020 Ernesto André

Table des matières

Introduction	3
Fonctionnement général	8
Choix des solutions techniques	11
Motoréduction	11
Fixation bobine	11
Accouplement arbre moteur – arbre bobine	12
Orientation du fil	12
Blocage et découpe du fil	13
Variation de la vitesse de bobinage	15
Stockage des bobines	16
Problèmes rencontrés	17
Annexes	18
A1 – Diagramme bête à cornes	18
A2 – QQOQCPC	19
A3 – Diagramme pieuvre	20
A4 – Simulation numérique : dimensionnement moteur	21
A5 – Dimensionnement système de guidage	24

Introduction

Présentation générale

Nous sommes huit étudiants de l'ECAM Lyon en formation arts-et-métiers de la promotion 2022. Nous avons décidé, dans le cadre de notre formation en conception mécanique, de répondre à l'appel d'offre lancé par l'ECAM de Lyon au travers de son commanditaire M. ERNESTO. L'étude se décompose en trois étapes. D'abord, la réalisation d'un pré-projet pour recenser toutes les fonctions requises du système bobineur et baliser tous les objectifs du projet. Ensuite vient la conception de la bobineuse. Enfin nous procéderons à un prototypage.

Contexte

L'ECAM Lyon a lancé un appel d'offre pour la réalisation d'une bobineuse. Il faut pouvoir bobiner du fil plastique produit par une extrudeuse déjà existante. L'extrudeuse produit en continu du fil plastique. Il a pour vocation de recharger une imprimante 3D en permettant une réduction des coûts liés au remplacement des bobines d'alimentation des imprimantes mais s'inscrit aussi dans une optique de développement responsable au travers d'une réduction ou d'une réutilisation des déchets. Or, ce fil n'est pas utilisé immédiatement après sa production, il faut donc un moyen de le stocker qui permet son utilisation ultérieure dans les imprimantes. Le stockage par bobine semble ainsi indiqué. Il faut donc une bobineuse en sortie d'extrudeuse pour traiter le fil produit.

La bobineuse s'inscrit dans une chaîne comprenant l'extrudeuse du FabLab de l'ECAM Lyon, la bobineuse à proprement parler, une zone de stockage pour entreposer les bobines en attente puis les imprimantes qui utilisent les bobines. Cette chaîne permet la production de fil à partir de granulés en polymère ou de déchets plastique par l'action de l'extrudeuse existante. L'enjeu du projet est de traiter ce fil produit. C'est le rôle de la bobineuse, l'objet de notre étude. Notre étude porte aussi sur les moyens de stockage des bobines vides et pleines avant et après leur utilisation par la bobineuse.

Problématique

Le but d'associer une bobineuse à l'extrudeuse est donc de réaliser des économies en achetant uniquement des granules de polymères plutôt que des bobines prêtes à l'emploi, bien plus onéreuses.

De plus, il est aussi possible de bobiner du fil produit par l'extrudeuse à partir de déchets plastiques directement présent sur le campus.

La bobineuse doit non seulement être fonctionnelle mais doit aussi répondre à des attentes pédagogiques, c'est-à-dire qu'elle doit pouvoir être utilisée comme outil d'apprentissage pour les promotions suivantes.

Le projet s'inscrit donc dans trois enjeux : économique, environnemental et pédagogique. Il faut concevoir une bobineuse qui réponde intégralement à ces trois enjeux.

Si l'enjeu économique est en partie traité par l'extrudeuse en sa capacité à recycler du plastique pour le transformer en fil ou à acheter simplement des granules plastiques. Il faut tout de même considérer la bobineuse en ses aspects de consommation énergétique ou encore sur son coup de fabrication.

De même, l'enjeu environnemental est largement assuré par la production de fil de l'extrudeuse, il faut néanmoins adopter une conception responsable permettant un recyclage aisé en fin de vie du produit.

L'enjeu pédagogique doit quant à lui être assuré par différentes options de la bobineuse. D'abord elle doit être mobile pour pouvoir la transporter de salle en salle ou pour pouvoir l'exposer lors de journée portes-ouvertes. Pour ces expositions, elle doit pouvoir être résistance aux intempéries : vent, pluie, mais aussi à une exposition directe et prolongée au Soleil. Quelques informations sur le fonctionnement du système pourraient aussi être ajoutées de sorte que le fonctionnement de la machine soit compréhensible par le plus grand nombre de personnes sans les explications supplémentaires de quelqu'un connaissant déjà le système.

Notre conception s'évertue de répondre au mieux à ces trois enjeux tout en répondant de la façon la plus précise à l'appel d'offre.

Tableau récapitulatif des fonctions

Classes	Numéro	Désignation	Critère	Niveau	Flexibilité
	FP1	Enrouler un fil de polymère autour de la bobine	Enrouler 2 types de fil	d = 1,65mm d = 2,85mm	0
	FC1	Récupérer le fil à la sortie de l'extrudeuse	Adaptation à la sortie de l'extrudeuse		0
	FC2	Amener le fil de l'extrudeuse à la bobine	Accrochage mécanique	Rapide	1
	FC3	Enrouler le fil progressivement au démarrage	Pas d'à-coup au démarrage	Variateur	0
	FC4	Entrainer la bobine en rotation	Pas de glissement (axe/bobine)		0
Contraintes en fonctionnement			Tout le diamètre	Valeurs qui	0
		FC5 Enrouler une bobine complète	Toute la largeur	dépendent des dimensions de bobine	0
	FC6	Adapter la vitesse de rotation au cours de l'enroulement	V = ωR (Ne pas étirer le fil)	ω diminue R augmente	0
	FC7	Arrêter la bobine lorsqu'elle est pleine	Blocage puis coupe du fil		0
	FC8	Amorcer l'autre bobine	Amorçage mécanique		
	FC9	Fonctionner indépendemment de l'extrudeuse	Enrouler les chutes		0
	FC9	Respecter les contraintes	Dimensions machine	L*l≤1m²	0
Contraintes	103	d'encombrement	Passage de porte	I < 900mm	0
bobineuse	FC10	Être facilement transportable	Poids total machine	P ≤ 40 kg	0

	FC11	S'adapter sur le secteur	Transformateur petit courant	12 V	0
Contraintes bobine	FC12	S'adapter à plusieurs bobines	Plusieurs dimensions	Re, ra, l	0
	FC13	Etre réglable au niveau du diamètre de l'axe de rotation de la bobine	Tous les diamètres	ra	0
	FC14	Supporter le poids P de la bobine pleine	Tous les poids (fonctions des bobines)	Р	0
	FC15	Adapter son programme en fonction de la bobine	2 types de bobines	Bobine 1 (cf caractéristiques) Bobine 2 (cf caractéristiques)	0
Contraintes d'initialisations	FC16	Immobiliser la bobineuse avant la mise en fonctionnement	Blocage de la bobineuse	Système d'attache ou antidérapant	0
	FC17	Pouvoir être contrôlé à distance	Distance de contrôle	≤ 10m	2
		Permettre un montage/démontage	Minimiser le nombre d'outils	0 ou 1 outil	1
	FC18	simple de la bobine	Contrainte de temps	≤ 5min	0
Contraintes liées à l'environnement extérieur	FC19	Ne pas être sensible aux vibrations	Limiter les vibrations		1

	FC20	Résister aux chocs provoqués par l'utilisateur et protection de l'utilisateur	Normes de sécurité	Utilisation d'un carter de protection	0
	FC21	Résister à la température de l'extrudeuse et du fil	Matériaux résistants à de hautes températures	222°C	0
	FC22	Rester en extérieur	Résister aux intempéries (pluie, vent, soleil)	IP 35 mini	0
	FC23	Être silencieuse	Bruit en fonctionnement	< 50dB	
	FC24	Être sans risque pour l'utilisateur	Empêcher l'accès aux zones dangereuses	Pas de risque de coupure ni de brûlure	0
Budget	FC25	Respecter le budget	Budget imposé	750 €	0
	FC26	Prévenir l'extrudeuse lors de l'arrêt de la machine	Arret du fil avant arrêt machine	3min avant	1
	FC27	Calculer le nombre de mètres linéaires enroulés	Longueur max d'enroulement	dépend du type de bobine	2
	FC28	Prévenir l'utilisateur du fonctionnement de la machine	Indice de fonctionnement	LED Verte	2
Communication	FC29	Prévenir l'utilisateur en cas de problème	Indice de problème	LED Orange	1
avec l'utilisateur	FC30	Comporter un arrêt d'urgence	Arrêt de la machine	Arrêt immédiat	0
	FC31	Prévenir l'utilisateur dès que la bobine est pleine	Indice de fin d'enroulement	Indication sonore	1
	F633	A.C.	Temps total	≈ 5h30/6h	1
	FC32	Afficher la progression de l'enroulement	Pourcentage/ Temps restant	De 0 à 100%	
	FC33	Avoir une prise en main facile	Indication sur le carter	8cm²	1

Fonctionnement général

Le rôle principal du système est de permettre le bobinage de fil polymère. Notre système comporte trois bobines : une en train de se faire bobiner, deux autres en attentes, déjà bobinées ou en attente d'être enroulées. Elles sont disposées aux extrémités d'une croix à trois branches. Le nombre de trois permet d'assurer des fonctions de stockage et de remplacement de bobines tout en permettant de maintenir la croix en équilibre en centrant les efforts. Cette croix est en liaison pivot avec le bâti pour permettre le renouvellement de la bobine avec sa rotation. D'abord pensé comme un plateau tournant, la forme de croix permet à la pièce d'être plus légère et ainsi de favoriser l'éventuelle manutention de la bobineuse. Chaque bobine est placée sur une branche, sur un arbre en liaison pivot avec la croix. La bobine est fixée à cet arbre à l'aide d'un système type cric automobile. Un accouplement démontable par la translation d'une noix permet la transmission du couple fourni par le bloc motoréducteur à l'arbre de la bobine en cours d'enroulement.

Schéma cinématique de la bobineuse vu de profil

Schéma cinématique de la bobineuse vu de face

L'utilisation de la croix est basée sur le principe de la grande roue, le support de celle-ci se base également sur le support des grandes roues.

La conception de la bobineuse se décompose en plusieurs blocs correspondant chacun à un ou plusieurs objectifs fonctionnels. On distingue le bloc motoréducteur, le bloc de fixation de la bobine, le bloc d'accouplement de l'arbre moteur à l'arbre de la bobine et le bloc de découpe du fil. Chacun de ces blocs seront détaillés ci-après. Voici un schéma cinématique présentant les blocs dans le système pour appréhender leur position et leurs fonctions.

L'encombrement prévisionnel de la bobineuse est un parallélépipède de dimensions 300x200x350 comme le montre le croquis suivant :

L'encombrement imposé de 1000x1000x1000 est ainsi respecté. Le passage par les portes (largeur = 900) est aussi assuré avec cette bobineuse.

Choix des solutions techniques

Motoréduction

Il faut une vitesse de rotation faible pour l'arbre bobine. Le couple nécessaire est quant à lui très faible. On opte alors pour un moteur à courant continu. La vitesse de rotation du moteur est trop importante et ne correspond pas à la vitesse de rotation voulu pour le bobinage. Il faut donc placer un réducteur pour obtenir une vitesse ralentie. L'augmentation résultante du couple nous assure de plus l'entraînement en rotation de la bobine. La réduction s'effectue par un système d'engrenages ce qui permet une forte réduction de vitesse. Le moteur sélectionné a une vitesse de rotation de 2000 tr/min qu'il faut abaisser à environ 6 tr/min (voir simulation numérique en annexes). On a choisi un rapport de réduction de 343 permettant d'obtenir une vitesse de rotation de 5.83 tr/min en sortie de réducteur. La réduction se déroule par une succession de trois engrenages à train classique d'une réduction de 7 chacun. On les dispose à l'horizontal ce qui permet de gagner en hauteur et éviter de trop faire monter l'ensemble du système.

Schéma cinématique de la réduction

On retient une réduction par engrenages et non par courroies car les engrenages permettent d'obtenir un rapport de réduction plus important pour un encombrement donné. De plus, il n'est pas nécessaire au fonctionnement du système de transporter la rotation sur un entraxe long, un des avantages d'une transmission par courroies.

Fixation bobine

L'enjeu est ici de pouvoir fixer chacune des quatre bobines du cahier des charges à chacun des trois arbres-bobines. Il faut cependant pouvoir être capable de démonter la bobine de son arbre afin d'effectuer les remplacements des bobines pleines par des vides. Le démontage-remontage doit être simple et rapide. L'utilisation d'un système type cric de voiture garantit ces deux aspects en plus d'assurer la tenue des bobines. Il est en effet intuitif, l'opérateur n'a pas besoin de réfléchir pour comprendre comment l'utiliser.

Schéma cinématique du système de fixation

Accouplement arbre moteur – arbre bobine

L'accouplement de l'arbre moteur à l'arbre bobine est nécessaire pour entraîner la bobine en rotation. L'arbre moteur est toujours le même, mais l'arbre bobine change avec la bobine. Il faut donc permettre l'accouplement de l'arbre moteur à chacun des arbres bobines lorsque ceux-ci se présentent devant l'arbre moteur. On utilise pour cela une noix en liaison glissière qui permet d'accoupler et de découpler les deux arbres. Il suffit ainsi de translater la noix vers l'arbre moteur pour libérer l'arbre bobine, ou de translater la noix vers l'arbre bobine pour accoupler les deux arbres.

Orientation du fil

L'enjeu est ici de guider le fil pour que chaque tour soit collé au précédent. Il faut donc faire translater le fil sur toute la largeur de la bobine et cela peu importe la largeur de la bobine. Il faut donc un système réglable pour s'adapter à la largeur du bobinage. La difficulté est ici de générer un mouvement alternatif d'amplitude variable pour permettre au fil d'effectuer des allers-retours sur chacune des bobines.

Schéma cinématique du système d'orientation du fil

Il faut synchroniser les allers-retours du dispositif de guidage du fil avec la rotation du moteur pour que le fil s'enroule uniformément autour de la bobine. Il faut réduire la vitesse de rotation du pignon semi-denté. Le calcul donne un rapport de réduction de 16933 (voir annexe 5 : dimensionnement système de guidage).

Blocage et découpe du fil

L'étape de découpe du fil doit répondre à deux enjeux. D'une part, découper le fil pour permettre de fermer la bobine. D'autre part, il doit bloquer le fil coupé relié à la bobine pour éviter qu'elle ne se déroule avant que l'opérateur ne vienne la fermer définitivement.

Page 13 sur 24

Le blocage et la découpe se déroule en quatre étapes :

Etape 1 :

A l'étape 1 : le levier est levé et le bloque-fil est lui aussi maintenu levé par la butée verte qui est clipsée sur celui-ci et par la butée bleue

Etape 2:

L'opérateur abaisse bleu ce qui entraine tout l'ensemble.

Etape 3:

Le levier bleu a été complètement abaissé ce qui a déclipsé la butée butée verte et a clipsé la butée orange. Durant cette étape, le fil a été coupé mais il est maintenu bloqué par le bloque-fil. L'utilisateur a effectué le blocage sans en être conscient.

Etape 4:

L'opérateur déclispe orange et remonte le bloque-fil rouge après avoir changé la bobine. Lorsqu'il remonte le bloque-fil rouge, la butée verte se reclipse automatiquement et le système se retrouve en position haute, initiale.

Variation de la vitesse de bobinage

Au cours du bobinage, le diamètre d'enroulement varie. En effet, à chacune des couches de fil, le rayon de la bobine augmente du diamètre du fil bobiné. La vitesse linéaire associée, étant fonction du rayon ($V=R\omega$), augmente quand le bobinage progresse dans le temps. Or la vitesse linéaire du fil en sortie de l'extrudeuse reste constante. Il faut donc adapter la vitesse de rotation de la bobine pour garantir la même vitesse linéaire de bobinage et de production de fil pour éviter un affaissement du fil ou sa striction.

Schéma cinématique du variateur de vitesse

Stockage des bobines

Si la forme même de la bobineuse permet de stocker jusqu'à deux bobines supplémentaires à celle en cours de confection, on souhaite pouvoir stocker encore plus de bobines. Pour cela, deux cylindres verticaux vont servir à accueillir les bobines. On fait coïncider les axes des bobines avec l'axe d'un cylindre et chaque bobine restera en place sous l'action de la gravité. Utiliser deux cylindres distincts permet de différencier le stockage des bobines pleines du stockage des bobines vides. Pour s'adapter à toutes les bobines, on choisira nos cylindres avec un diamètre de 27,5 pour une hauteur de 150 afin de stocker jusqu'à trois bobines par cylindre.

Problèmes rencontrés

Travailler à huit permet de grandement gagner en efficacité. Cependant, il faut pour cela une très bonne coordination et gérer la répartition des tâches. Le travail en équipe n'a rien d'évident et fût l'un des défis à relever pour répondre à l'appel d'offre. L'autre défi majeur de ce travail consiste au pré dimensionnement des pièces. D'abord, à travers l'ordre de grandeur des dimensions du système global, puis dans les dimensions propres à chaque pièce permettant d'une part de répondre aux contraintes fonctionnelles, et d'autre part de s'inscrire dans un sous-ensemble cinématique. De cette problématique découle aussi des choix de réponses techniques, comme le choix du mode de réduction ou de découpe et maintien du fil.

Annexes

<u>A1 – Diagramme bête à cornes</u>

A2 - QQOQCPC

Quoi?

- Recharger une imprimante 3D de bobine de fil plastique ABS
- Une bobineuse : réaliser des bobines de fil plastique
- Stocker la production de l'extrudeuse

Qui?

- Les utilisateurs des imprimantes sont concernés.
- Particulièrement les responsables des imprimantes qui gèrent la gestion des bobines et notamment leur remplacement.

<u>Où</u> ?

 Au FabLab à l'ECAM Lyon :
 Il s'agit d'une bobineuse pour alimenter les imprimantes 3d du FabLab à partir de l'extrudeuse, elle-même au FabLab

Quand?

• On a besoin de la bobineuse quand il y a du fil à bobiner, c'est-à-dire lorsque l'extrudeuse est en fonctionnement et produit du fil.

Comment?

- En sortie d'extrudeuse
- A partir de chutes de fil

Pourquoi?

- Stocker le fil créé par l'extrudeuse
- Recharger les imprimantes 3d
- Réduire les coûts d'achat de bobine

Combien?

- Une seule bobineuse pour aller avec la seule extrudeuse du FabLab
- Un seul utilisateur, le responsable du rechargement des bobines

<u>A3 – Diagramme pieuvre</u>

<u>A4 – Simulation numérique : dimensionnement moteur</u>

CARACTÉRISTIQUES MOTEUR				
Couple moteur 0,075 Nm				
Puissance	15,7	W		

VALEURS FIXÉES		
Module engrenages	1	mm
Diamètre arbre sortie	10	mm

1ère réduction

2ème réduction

NBR DENTS, DIAMÈTRES PRIM, RAPPORTS			
Dents engrenage mot 10 dents			
Dents engrenage arbre INT 1	70	dents	
D primitif in	10	mm	
D primitif out	70	mm	
R1 vitesse	0,143		
R1 couple	7		

Vitesse rot arbre INT 1	285,71	tr/min
	-	

NBR DENTS, DIAMÈTRES PRIM, RAPPORTS				
Dents engrenage arbre INT 1 10 dents				
Dents engrenage arbre INT 2	70	dents		
D primitif in	10	mm		
D primitif out	70	mm		
R2 vitesse 0,143				
R2 couple	7			

Vitesse rot arbre INT 2 40,82 tr/min

3ème réduction

NBR DENTS, DIAMÈTRES PRIM, RAPPORTS			
Dents engrenage arbre INT 2	10	dents	
Dents engrenage arbre sortie	70	dents	
D primitif in	10	mm	
D primitif out	70	mm	
R3 vitesse	0,143		
R3 couple	7		

Vitesse rot arbre sortie	5,83	tr/min

EN SORTIE (au max)				
Couple de l'arbre 25,725 Nm				
Vitesse rotation arbre	5,831	tr/min		
Vitesse linéaire arbre	3,05	mm/s		

N°	Legend
0	2 x M3 at 180°, depth 5 mm over Ø 32
2	2 holes Ø 2.75 ^{±0.05} at 120° depth 5 mm Ø 32
3	2 tags IEC 760, series 4.8 x 0.5
	L: 828000: 84.8 mm max.
	L : 828100 : 69.8 mm max.

<u>A5 – Dimensionnement système de guidage</u>

	Dimensio	nnement o	du pignon crémail	ère alternat	if (sous ensemble guidage fil)					
Formule utilisée	$L=R_p*\alpha$		L: distance parcourue par la crémaillère pendant 1 tr de bobine							
	$R_p=mZ/2$		R _p : rayon primitif du pignon							
	$R_p*\beta=60$		$lpha$: angle décrit par $R_{ m p}$ pendant un tr de bobine							
Données:	valeur en mm			module : m=1						
Largeur bobine mini	41									
Largeur bobine maxi	60									
Diamètre de fil:										
fil 1	1,65									
fil2	2,85									
L	2,8									
	Calcul du rayon primitif R_p , du nombre de dents du pignon Z_p et de l'angle $lpha$,									
R _p =	21,4822771	mm	m Z= 44 or le pignon ne s'étend que sur 160 degrés don		c Z _p =20 dents					
soit avec arrondi R _p =	22	mm								
rapport de réduction mo	rapport de réduction moteur vers arbre bobine= 343									
on veut	on veut pour 1 tr de bobine 1 déplacement de crémaillère de distance L=2,8mm soit une rotation d'angle α=L/R _p									
α=	0,12727273	rad								
	7,29219012	degrés								
Donc pour 1 tour de	Donc pour 1 tour de bobine on a une rotation du pignon d'un angle α ,									
	Calculons le rapport de réduction nécessaire entre le moteur et le pignon,									
ω_{mot} =	2000 tr/min			ω_{bobine} = 5,		5,831				
	209,43951	rad/s					0,610620892			
ainsi 5,831 tr/min de la	ainsi 5,831 tr/min de la bobine provoquent:				degrés par min de rotation du pignon					
		0,118113224	tr/min du pignon							
rapport de réduction e	rapport de réduction entre la bobine et le pignon doit être de: 49,36788									
ainsi le rapport de réc	ainsi le rapport de réduction entre le moteur et le pignon est le produit des deux rapports de réduction: 16933,1844									