AD-R183 771 MS-116R HIGH VOLTAGE PROTECTION UNIT(U) MILLER (R A) 1/1
INDUSTRIES INC GRAND HAVEN MI T H SEEKHAN 19 JUL 87
DARB87-86-C-R819 F/G 10/2 ML

A CONTRACTOR OF THE PROPERTY O

MS-116A HIGH VOLTAGE PROTECTION UNIT FINAL STATUS REPORT

PREPARED BY:

THOMAS H. SEEKMAN
R.A. MILLER INDUSTRIES, INC.
14500 168TH AVENUE
GRAND HAVEN, MI 49417

JULY 10, 1987

CONTRACT NO: DAABO7-86-C-A010 CLIN 0002 SEQUENCE A002 IAW DI-S-4057

PREPARED FOR:

THE UNITED STATES ARMY COMMUNICATIONS ELECTRONICS COMMAND FORT MONMOUTH, NJ 07703-5000

OVERVIEW

This is the final status report for the development contract DAABO7-86-C-AO1O. The report is split into two (2) parts, Part 1 is on the development and preliminary testing and Part 2 is on the production and final testing. This was doe because, even though both had testing involved, the approach is totally different. The mentality of development and that of production are opposite in every way and each warrants separate reporting. It is intended that each part report everything that was done in a concise but thorough way with conclusions drawn from what ha been observed.

LIST OF FIGURES

PART 1

Figure 1: Flexural Strength Test Set-up

Figure 2: Dielectric Withstanding Voltage Test Set-up

Figure 3: Assembly Displacement (SAG) Test Set-up

Figure 4: Plug Designs

PART 2

Figure 1: Final Test Report Excerpts

PART 1: DEVELOPMENT AND PRELIMINARY TESTING

1. INTRODUCTION

This status report covers everything that R.A. Miller Industries has accomplished in the area of development and testing of MS-116A High Voltage Protection Unit (HVPU). A Included in this report are the status of Mechanical/Electrical Design, Prototype Production, Testing (both Preliminary Design and Finished Prototype), and System Safety Analysis. It is the intention of this reporter to provide a succinct synopsis on each of the afore mentioned scopes. The synopsis will cover all aspects since the commencement of development until the present day.

TO COLOUR MESSANDA STATES OF COMPANY OF SOCIOLOGICAL PROPERTY OF SOCIOLOGICA PROPERTY OF SOCIOLOGICA PROPERTY OF SOCIOLOGICA PROPERTY OF SOCIOLOGI

2. OBJECTIVES

2.1 MECHANICAL/ELECTRICAL DESIGN

The Mechanical/Electrical design of the HVPU was conceived after consideration of the operating conditions experienced and the function to be accomplished. Many possible designs were considered, weighing the disadvantages and advantages of each to achieve the optimum result. Preliminary testing played a vital role in the Mechanical/Electrical Design process. The HVPU was developed by close comparative testing with a conventional MS-116A Unit so that the basic characteristics were as similar as possible. The HVPU Mechanical/Electrical Design has been accomplished and a detailed set of drawings to be used for prototype manufacture has been produced.

2.2 TESTING

2.2.1 PRELIMINARY TESTING FOR MECHANICAL/ELECTRICAL DESIGN

Much preliminary testing was required and accomplished in the design phase to achieve the optimum result. In each development test, the prototype HVPU and a conventional MS-116A Unit were subjected to the same conditions and comparisons drawn.

2.2.1.1 FLEXURAL STRENGTH

To compare flexural strength (which is the most important Mechanical design aspect), a fixture which places the Test Specimen parallel to the ground is employed. A dynamometer/force application set-up was used to apply and measure force applied to the tip end (as opposed to the male-threaded end, which is screwed into the fixture) of the Test Specimen at a right angle

to the specimen's axial direction (Perpendicular to the ground). The conventional MS-116A unit was testing first and the force required for failure was noted and used as a target for design. Many plug materials were tested and compared with many fracturing before reaching the design threshold. The chosen plug material, an 80% glass fiber/epoxy resin pultrusion rod exceeded the design threshold before the tube yielded, effectively providing more flexural strength than a conventional MS-116A. See figures 1 and 4 and test reports.

2.2.1.2 HIGH VOLTAGE

To check for deleterious effects on the High Voltage Coaxial Capacitor (HVCC) components, the prototypical design was subjected to a 30 KVDC test (which is a greater voltage than the anticipated maximum of 25 KVDC.) The components showed no damage after one (1) minute of continuous application. The test was repeated after subjection to the sag test (2.2.1.3) and there was no difference. See figure 2 and test reports.

2.2.1.3 ASSEMBLY DISPLACEMENT (SAG)

The conventional fifteen (15) foot HF Military Whip Antenna (3 MS-116A, 1 MS-117A, and 1 MS-118A Units) was fixtured in a horizontal position an displacement measurements at different places along the assemblys length taken from an assembly using an MS-116A HVPU. The test yielded that the HVPU is more rigid than the standard unit. See figure 3 and test report.

2.2.1.4 HVCC CAPACITANCE

The effect of installing a capacitor in the whip had to be determined by analyzing the AN/CRC-106 Radio Set. Since an AN/CRC-106 Radio was not supplied to us, assumptions had to be made. Since the AT-1095A/VRC Modified Upper Whip Section that R.A. Miller is developing has a capacitance value of around 130pf, it was used as a goal. Several lengths and dielectric materials for the capacitor were tried until the target value was achieved.

2.2.1.5 BALLISTIC SHOCK

Preliminary testing of the MS-116A HVPU in the whip assembly subjecting it to ballistic shock was deemed necessary before producing the finished prototypes as assurance that the assemblys mechanical integrity was not compromised by the HVPU. An antenna assembly containing an HVPU was subjected to and passed ballistic shock testing.

2.2.2 PROTOTYPE ENVIRONMENTAL TESTING

Once the one hundred (100) prototype units have been produced they will be divided into five (5) lots of twenty (20) for environmental testing. The environmental tests to be performed are a specified in R.A. Miller Industries' Design Plan which was submitted and accepted in August 1986. A test plan has been written and submitted for acceptance which details the individual test procedures. The division into 5 lots of 20 units was done for time considerations, so not all of the prototypes will be subjected to all the tests.

2.3 SYSTEM SAFETY ANALYSIS

A System Safety Assessment Report was written and submitted in December 1986. It was the report's conclusion that there were no significant factors in the device's design which would have any impact on safety (i.e. no toxic/hazardous materials are used in the HVPU's construction).

3.0 CONCLUSIONS

It is the conclusion of R.A. Miller Industries that the preliminary design work has been successfully completed. The manufacture of the prototypes will commence immediately with environmental testing to follow upon prototype production completion.

であることでは、これのものでは、これできないのである。これできないのできないできないのできないのでは、「「「「「「「「「」」」」というのできない。「「「「」」」というのできない。「「「「」」」というできない。「「「」」

Figure 1

Figure 3

TO MERCESSESSION

Figure 4

k en en en energeza (1920) 1920 (1920) (1920) (1920) en en egan (1920) (1920) (1920) (1920) (1920) (1920) (1920)

Standard MS-116A	•
Force Req'd for failure: 96	66 lb
~	
HVPU	
Force Req'd for Failure:	966 lb.
2 ·	
Remarks: <u>Failure in the s</u>	standard unit was determined when tube
buckling occurred. The HVPI	U also failed when tube buckled and there
was no visible damage in th	he plug area. The plug area was covered
with a fiberglass cloth wra	ap which adds to the profile of the unit.
The plug material used was	a 70% glass. 30% polyester resin which is
also used for AT-1095 whip	cores. A test will be performed on a test
	s cloth wrap to determine if it is required.
	e e e e e e e e e e e e e e e e e e e
To an information 1 Base	
Test Witnessed By:	TUDAL COFFICALAN MEGU FAC 25
	AN THOMAS SEEKMAN-MECH ENG. 25
Thomas H. Seekma	ELECT ENG 25 JUL 31

Contract: DAAB07-86-C-A010	
Test Date: 29-JULM-1986	
Standard_MS-116A	
Force Req'd for failure: 966 lb.	
HVPU	
Force Req'd for Failure: 704 lb.	
Remarks: The test item failed at a much lower force value than	
the first test. Failure occurred with a brittle fracture of the	}
core material. The fiberglass cloth wrap is necessary for flexu	ıral
strength. Another test item will be manufactured and tested to	
verify that the design is satisfactory.	
verify that the design is seeing.	
	
Test Witnessed By:	
Thomas H. Seekman THOMAS SEEKMAN-MECH. E	NG. 29-10
	7 JUL 96
Value Comment ELECT ENG 27	<u> </u>

Standard MS-116A	
Force Req'd for failu	re: 966 lb.
HVPU	
Force Req'd for Failu	re: 860 lb.
Remarks: The HVPU	failed via brittle fracture of the plug material
and the fiberglass	loth wrap. This failure was totally unanticipated
because of the initi	ial test's success. Manufacturing techniques will
be scrutinized as the	ne probable cause of the premature failure.
Alternate plug mater	rials and shapes will be researched also.
Test Witnessed By: Thomas H. Se	ekman THOMAS SEEKMAN-MECH ENG.
Bu Paray	_ FLECT ENG 14 OCT 96

	1621	Report	
	t: DAAB07-86-C-A010		
Test Dai	te: 21-NOVEMBER-1986		
Standar	d MS-116A		
Force Re	eq'd for failwre: 966 1	ib.	
	_		
HVPU		·	
Force Re	eq'd for Failure:752	1b	
			•
Remarks	The plug's overall	length was increased by	two (2) inches
for add	ed adhesion but brittle	fracture occurred. The	added moment
arms ca	used by the increased le	ength caused the fracture.	. The plug
materia	l seems to be weaker wh	en the step is machined in	it also.
A solid	plug design will be im	plement and a stronger ma	terial will
be rese	arched and procured.		
	tnessed By:		
Test Wi			
Hon	as H. deekman	THOMAS SEEKMAN	I-MECH. ENG.

lest keport
Contract: DAAB07-86-C-A010
Test Date: 6-FEBRUARY-1987
Standard MS-116A
Force Req'd for failure: 966 lb.
Porce Red d for latiture: 900 IB.
HVPU
Force Req'd for Failure: 1024 lb.
Torce ked d tor ratture
Remarks: A solid plug of 80% glass, 20% epoxy resin was used.
The diameter of the plug was .025" undersize and didn't have the
fiberglass cloth wrap. Failure occurred via tube buckling. It was
determined that the 80% glass, 20% epoxy resin material is the best
material available. The unprotected material showed only a small
amount of crazing and provided more flexural strength than the solid
steel tube. The proper diameter and an overwrap will be used.
· .
•
Test Witnessed By:
Thomas H. Seekman THOMAS SEEKMAN-MECH. ENG. 6-FEB-8.
By Pomers Elect Eve GEST

Elected assessment assessment become a second and the second and t

MS-116A HVPU

High Voltage Test Report

6	Contract:	DAAB07-86-C-A0	.0	
	Test Date:	26-June-1986		
	Test Voltag	ge (KV)	Current Leakage (MA)	
	25 30		1 1.5	
	Remarks:	The test item	was tested at 25KV and 30KV (5KV more than	
	required	for added assur	ance) and showed no detrimental effects with the	
	_current 1	eakage values :	ecorded. There is no evidence of arcing, neither	
			o burn marks were found on the item.	
6	-			
र्ष				_

•	Test Witnes		Elect Eng 26 JUN 80	a
		1		

MS-116A HVPU

High Voltage Test Report

9 23		
	DAAB07-86-C-A01	.0
Test Date:	5-March-1987	
Test Volta	ge (KV)	Current Leakage (AA)
25 30		1 1.5
		was high voltage tested after being subjected to
		ment (SAG) test to check if the stresses encountered
induced a	ny detrimental e	effects to the capacitive capability of the HVPU.
It was fo	und that there w	was negligible effect in the measurements.
		
<u>}</u>		·
, 		
		
		
Test Witne	essed By:	•
	as 41. Sees	Aman THOMAS SEEKMAN-MECH. ENG. 5-MAR
40	mol	
	170000	Paul Miller - Engreering Manager 5-MA
		

Antenna MS-116A Assembly Displacement (SAG) Test

Contract: DAAB07-86-C-A010

Test Dates: 3-March-1987 to 5-March-1987

Standard Un	it
-------------	----

	Time	Wall Mount	1st Joint	2nd Joint	3rd Joint	4th Joint	<u>Tip</u>
3-MAR	8:00 AM 9:00 AM 10:00 AM 11:00 AM 1:00 PM 3:00 PM	107 107 107 107 107	1034 1034 1034 1034 1034 1034	95 94 3/4 94 3/4 94 3/4 94 3/4	84 83 3/4 83 3/4 83 3/4 83 3/4	72 72 72 72 72 72 72	60 59 3/4 59 3/4 59 3/4 59 1/2 59 1/2
4-MAR	8:00 AM	107	103号	94 3/4	83 3/4	72	59 1/2

HVPU Unit

	Time	Wall Mount	1st <u>Joint</u>	2nd Joint	3rd Joint	4th Joint	<u>Tip</u>
4-MAR 5-MAR	8:00 AM 9:00 AM 10:00 AM 11:00 AM 1:00 PM 3:00 PM 8:00 AM	107 107 107 107 107 107	103½ 103½ 103½ 103½ 103½ 103½	95 3/8 95 1/4 95 1/4 95 95 95 95 94 7/8	84 3/4 84 3/4 84 3/4 84 3/8 84 1/4 84 1/4 84 1/8	73 1/4 73 1/8 73 1/8	62 3/8 62 61 3/4 61 5/8 61 3/8 61 3/8 61 1/8

^{*}All measurements in inches from floor

Test Witnessed By:

Paul Miller Engineering Manager

Thomas 41. Seekman 5-MARCH-1987

Jame Clark Test Engineer

Mary Ramirez RAR 505 March 1987

PART 2: PRODUCTION AND TESTING

1 INTRODUCTION

This status report covers the aspects of R.A. Miller Industries' production and subsequent production testing of the MS-116A High Voltage Protection Unit (HVPU). Included in this report are the status of Prototype Production and Testing, Final Test Report Excerpts, and the final conclusions of the design team. It is intended that this report provide a succinct synopsis of all aspects since the commencement of production until its completion.

2 OBJECTIVES

2.1 PRODUCTION OF HVPU

Upon completion of the design/development phase, the one hundred (100) prototype unit production phase commenced. In the production phase, manufacturing techniques had to be developed for use on the HVPU's. While these techniques produced very satisfactory results, they are by no means 100% perfect nor would they be expected to be. Fine-tuning of these techniques would be expected on any future production. These fine-tunements would not adversely affect the performance of the HVPU since the basics of techniques will remain unchanged.

<u>JARI (1972) (Kanasana) (Kanamana) (Kanasana) (Kanasana) (Kanasana) (Kanasana) (Kanasana) (Kanasana) (Kanasana)</u>

2.2 TESTING

Upon completion of the production of the HVPU's, the first Article Product Assurance Testing commenced as was set forth in our Test Plan (submitted 26-February-1987) with five (5) lots of twenty (20) antennae. The HVPU's were subjected to the following sequence of tests: Capacitance, Visual/Mechanical, High Voltage Stress, Voltage Standing Wave Ratio, High temperature, Low Temperature, Ballistic Shock, Humidity, Vibration, and Impedance (order of tests). The HVPU's passed all the tests without any failures (See Figure 1-Final Test Report Excerpts).

A special testing note: This is to explain the rather large discrepancy between the leakage current values measured in the development preliminary testing and the ones measured during prototype production testing (lmA vs. 4mA). During the development testing the HVPU was fixtured differently than during the production testing and it was discovered that positioning in the fixture affected the leakage current because the fixture had leakage through it also. Another reason for the

discrepancy is the fact that during development testing the humidity level was much lower than it was during the production testing. High humidity causes more leakage to occur. The values recorded for production testing were the worst values obtainable. The HVPU's were moved in the fixture until the worst value (highest value for leakage current) was found.

3.0 CONCLUSIONS

It is the conclusion of R.A. Miller Industries that the production prototypes will offer the desired high voltage protection without compromising the mechanical integrity of the whip. It has been shown that the flexural properties have been actually improved with the inclusion of the capacitance unit. The flexural strength of the HVPU was increased over that of the standard MS-116 and the assembly is more rigid because of the HVPU's presence. This will enhance the stability of the assembly by eliminating harmonic frequencies when it is vibrated during operation.

1.0 INTRODUCTION

A high voltage coaxial capaictor is fitted within the MS-116 lowest section. The purpose of the coaxial capacitor is to protect military vehicle personnel from high voltage shock if the vehicle's whip antenna contacts an overhead powerline (typically 15-20 KVRMS).

After final design of the MS-116 HVPU is complete, one hundred units shall be built. They will be spilt into five lots of 20 so that different tests may be ongoing at the same time to speed testing. The units will be stepped through the following tests according to 2.0 Test Requirements.

1.1 MANUFACTURER

R.A. Miller Industries, Inc. P.O. Box 858 14500 168th Avenue Grand Haven, MI 49417

1.2 DRAWING SPECIFICATION OF EXHIBIT

The 100 116 HVPU's will be IAW CENCOMS technical requirements COM-TR-033-01, dated 15 APR 85.

1.3 QUANTITY OF ITEMS TO BE TESTED

(100) One Hundred

1.4 SECURITY OF ITEMS TO BE TESTED

Unclassified

1.5 DATE BY WHICH TESTS ARE TO BE COMPLETED

May 30, 1987

1.6 DISPOSITION OF SPECIMENS

To be shipped to:

Consolidated Property Office Building 117 Fort Monmouth, NJ 07703

Mark for:

AMSEL-RD-COM-TR-I Building 39, Evans Area Contract DAABO7-86-C-AO10

		MS-1	MS-116 HVPU	J S/N	_	Order of	Tests			
Test	SEC.	1-20	21-40	41-60	61-80	41-60 61-80 81-100	L 1	*	*	***
Capacitance	6-1		-		1	1	×			1/2
Visual Mechanica	6-2	2	2	2	2	2				1/2
High Voltage Stress	6-3	3	3	3	3	3			×	1/2
VSWR .	6 - 4	4	4	4	4	4		. ×	×	1/2
High Temperature	6 - 5		5		S					1 1/2
Low Temperature	9-9	5		2						1 1/2
Ballistic Shock	2-9					2		×		7
Humidity 1	8-9	١.,	9							14
Vibration	6-9				9			×		3
Impedance	6-10	9		9				×		2

NOTE: 1. * = Test before unit complete

2. ** = Uses complete 15 foot whip assembly

3. *** = This test repeated as post testing

**** = Test duration per lot (20 unit) in days (not including post testing)

3.0 STANDARD TEST CONDITIONS

Unless otherwise specified, the following standard test conditions shall prevail during testing:

CONDITION VALUE/TOLERANCE

Temperature Altitude

Prevailing ambient Ground level

4.0 LIST OF TEST EQUIPMENT

EQUIPMENT NAME	REF
Capacitance Meter Sencore LC53	6.2
Model 05460A D.C. Hypot - Assoc. Research Inc.	6.3
Wiltron Model 640 Network Analyzer	6.4
Hewlit Packard Model 4191A RF Impedance Analyzer	6.10

Equivalent equipments may be substituted.

5.0 LIST OF ABBREVIATIONS

- 1. HVPU High Voltage Protection Unit
- 2. S/N Serial Number
- 3. pF Pico Farads
- 4. mA Micro amperes
- 5. R.F. Radio Frequency
- 6. Cu Copper
- 7. R. Loss Return Loss
- 8. VSWR Voltage Standing Wave Ratio
- 9. F Farenheit
- 10. C Centigrade
- 11. Fig. Pigure
- 12. +ve Positive
- 13. MHz MegaHertz
- 14. Sec. Section
- 15. Q.C. Quality Control
- 16. Rep. Representative
- 17. Gov't- Government

c. CAPACITANCE TEST DATA SHEET

MS-116 HVPU

DATE: 6-4-87

STED BY: Jim Clark

S/T: A VIEWS: Anthony Sharriff N/A

QC BEP RAM 2 GOV'T BEP

	CAPACITANCE		CAPACITATOR
S/T	in of	S/N	ia of
1	138	11	140
2	142	12	142
3	139	13	142
4	141	14	142
5	140	15	143
6	142	16	140
7	141	17	140
8	139	18	141
9	142	19	143
10	142	20	143

VISUAL AND MECHANICAL TEST DATA SHEET

MS-116 HVPU

DATE: 6-12-87	_ INSPECTED BY	: Amy Hudd	· · · · · · · · · · · · · · · · · · ·
S/N:A	WITNESS BY:		for N/A
		QC REP FAM 4	GOV'T REP
CHARACTERISTIC	.	ACTUAL MEASUREMENT RESULTS	PASS FAIL (X) (X)
Overall Length 39]	1/2 <u>+</u> 1/4	See Attached Sheet	<u> </u>
Upper Threads			<u>x</u>
Upper Diameter			
Upper Taper	•		<u> </u>
Lower Threads			
Lower Taper			
Surface Finish			X
Cleanliness			<u> </u>
Workmanship			_ <u>X</u>
Comments: *Verified	though Interc	habilty	

OVERALL LENGTH MS-116 HVPU

DATE:6-12-	-87		CTED BY: Amy Hu
REQUIREMENT	7: 39 1/2 ± 1/4		Q.C. REP GO
5/N 1 -2	<u>ACTUAL</u>	PASS	FAIL
1	<u>39 17/32</u>	<u> </u>	
_2	39 17/32	<u>·X</u>	
3_	. 39 17/32	<u>-x</u> .	
4	39 9/16	<u> </u>	
5	39 17/32	<u> x</u>	
6	. 39 17/32	X	
	39_1/2	X	
8	39 9/16	X	
	<u>39 17/32</u>	<u> </u>	
10	<u> 39 9/16</u>	<u>x</u>	•
11	<u>-39 17/32</u>	<u>X</u>	
12	39 17/32	_; X	
13		X	
14	<u>39 9/16</u>	X	
15	39 17/32	X	
1 6	_39_19/32	X	
17	39 17/32	X .	
-	20. 17/22		
18	39 17/32,	<u> </u>	·
<u>19</u> 20	39 9/16 39 17/32	<u> </u>	

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU n Clar TESTED 6-12-87 DATE: S/N: 8 ANTENNA WITHSTOOD DIELECTRIC BREAKDOWN S/N YES NO 21 3.211 A 22 <u>ع. 1. 3.</u>4 23 4.0 1LA 24 3.7.11 A 25 3.51LA 26 4.1.LA 27 3.7.LLA 28 3.8UA 29 3.7.14A **30** . 3.4.LLA 31 2.911 A 32 3.0.12A 33 4.012 A 34 3.03.20 A 35 3.GLL A 36 251114

. Comments:

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE:	6-12-87	TESTED TESTED	Jain Clark		
S/N:	8	347.5	onnie : vies P Cornie fi	ylio 6	N/A GV'T REP
ANTENNA S/N		WITHSTOOD YES	DIELECTRIC BR	EAKDOWN	
37		المبركبة			
38	•	ىدھ.3		•	
39		2.8.1			
40_		2.6.1	<u></u>		
				•	
				•	
				•	
			•	•	
			•		
•					
					
			· —	•	
				•	
			· ——	•	
			· 	•	
		-	<u></u>		
.Comments	:				
				· 	

(28)

VSWR TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foot whip and Dyff

DATE: 6-12-37 TESTED Sandy D'Oyly

DATE: _ TESTED BY Lot B

Connie fylos
Connie Lyles

QC REP GOV'T REP

N/A

S/N	Frequency of resonance in MHz	R Loss	VSWR
21	19.5	26	1.11
22	19.6	26	1.11
23	19.6	24	1.13
24	19.6	25	1.12
25	19.6	23	1.15
26	19.7	25	1.12
27	19.5	27	1.09
28	19.6	28	1.08
29	19.5	27	1.09
30	19.5	28	1.08
31	19.5	28	1.08
32	19.6	26	1.11
33	19.4	27	1.09
34	19.4	28	1.08
35	19.6	27	1.09
36	19.6	26	1.11
37	19.5	27	1.09
38	19.5	27	1.09
39	19.4	28	1.08
40	19.5	28	1.08
Standard MS 116	17.2	22	1.17

TEST ENGINEER TEST TECH. GSIMITNESS PRODUCT DESCRIPTION (Modes Na. Type. Ser. Na. Quantity, Siz.) MS 116 STIPD SN 21_41/61_30 TEST DESCRIPTION (Wo. Shock. Siz.) High temperature TEST PROC. R.A. Miller DATE TIME EVENT DESCRIPTION 6-16-87 11:55 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°S) 6-17-87 11:50 Returned chamber to ambient temperature +70° F 6-17-67 13:50 Preformed post test		·	PRODUCT TESTING LABORATORY TEST LOG
PROQUET DESCRIPTION (Modes No. Type Ser. No. Quantity, Etc.) MS 116 UTIDD SN 21_41/61_30 TEST DESCRIPTION (VIb. Shock, Etc.) High temperature TEST PROC. R.A. Miller CATE TIME EVENT DESCRIPTION 6-16-87 11:15 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed bost test	108 NO	M0019	CUSTOMER P.O. NO
PRODUCT DESCRIPTION (Mode No. Type Ser. No. Quantity, Etc.) MS 116 UTIDD SN 21-41/81-30 TEST DESCRIPTION (VIb. Shock, Etc.) High temperature TEST PROC. R.A. Miller CATE TIME EVENT DESCRIPTION 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) +100°C +1	TEST ENG	INEER + 4	CONTRACTOR CONTRACTOR
TEST DESCRIPTION (VID. Shock. Etc.) High temperature TEST PROC. R.A. Miller CATE TIME EVENT DESCRIPTION 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed post test			
TEST PROC R.A. Miller CATE TIME EVENT DESCRIPTION 6-16-87 11:15 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°C F 6-17-87 13:50 Preformed post test	PRODUCT	DESCRIPTIO	ON (Model No., Type, Ser. No., Quantity, Ele.) MS 116 HIPD SN 21-41/61-30
TEST PROC R.A. Miller CATE TIME EVENT DESCRIPTION 6-16-87 11:15 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°C F 6-17-87 13:50 Preformed post test	 		· · · · · · · · · · · · · · · · · · ·
CATE TIME EVENT DESCRIPTION 6-16-87 11:15 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed post test	TEST DESC	SRIPTION (V	/ib. Shock. Ele.) High temperature
CATE TIME EVENT DESCRIPTION 6-16-87 11:15 Placed test items into chamber 6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed post test	TEST PROC	3.A.	Miller
6-16-87 11:50 Allowed chamber temperature to stabilize -71°C (+160°C) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed boost test			
6-16-87 11:50 Allowed chamber temperature to stabilize +71°C (+160°S) 6-17-87 11:50 Returned chamber to ambient temperature +70°F 6-17-87 13:50 Preformed post test			
6-17-87 11:50 Returned chamber to ambient temperature +70° F 6-17-87 13:50 Preformed post test			· · · · · · · · · · · · · · · · · · ·
6-17-87 13:50 Preformed post test			
	6-17-87	13:50	
	•		<u> </u>
		-	
			والمراجع
		<u> </u>	
		·	
		<u> </u>	
		<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	
			· ·

112(9-74)MS

ÜNNES DES SESSENTE SESSENTE SESSENTE BESSENTE DES SESSENTE DES SESSENTE DES SESSENTES DES SESSENTES DES SES

POST HIGH TEMP PRE HIMIDITY

VSWR TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foot whip for the 15 foot whip foot whip

DATE: 6-17-87

Lot B

WITNESS Connie Lyles

N/A

fylos REP

	Frequency of resonance in		
S/N	MHz	R Loss	VSWR
21	19.3	30	1.06
22	19.5	27	1.09
23	19.5	30	1.06
24	19.5	32	1.04
25	19.5	30	1.06
26	19.5	29	1.07
27	19.5	30	1.06
28	19.3	33	1.04
29	19.5	30	1.06
30	19.5	28	1.08
31	19.3	28	1.08
32	19.5	28	1.08
33	19.5	30	1.06
34	19.3	30	1.06
35	19.5	32	1.04
36	19.5	30	1.06
37	19.4	30	1.06
38	19.4	30	1.06
39	19.3	31	1.05
40	19.3	32	1.04
Standard	17.2	22	1.17

POST HIGH TEMP PRE HUMIDITY HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE: <u>6-1</u> 5/N:	3	TESTE:	SS: Connie		N/A GOV'T REP
			QC REP CO	nie fylo	GOV'T REP
ANTENNA S/N	·		WITHSTOOD DIEL YES	ECTRIC BREAKDOWN NO	_
21		• .	3.1.1.LA	·	
22	•		4.0.112		
23			ملله		
24			3.6.113		
25			3.71LA		
26			4.211A		
27			3.511 A		
28	:		4.211 A		
29			3.91LA .		
30	•		3.311A		
31			3.3 1\ A		
32			2.9 LA		
33			4.311.4		
34			3.211 A		
35			3.611 A		
36			2.711		
Comments:					

Soosia essessia (soosoosa) essessia oosoosa eennesia oosooosa essessia eessessia ksssssa essesia essessia esse

POST HIGH TEMP PRE HUMIDITY

HIGH VOLTAGE STRESS DATA SHEET

		1	15-116 HVPU	Olen	
DATE:	6-17-87	TESTED	1) FLP -//	ark	
5/N:	В	WITNESS:	Connie Ly	les	N/A
			QC REP Con	algh sun	GOV'T REP
ANTENNA S/N	···.	→		ECTRIC BREAKDOWN	_
37			4.211 A		
38			3.5 11 A		
39			2.8dl A		
40			2.8 JLA		
		:			
				•	
-					
-	·				
					
					
					
.Comments	:		·		

IMPEDANCE TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foot whip assembly

DATE: 6-23-87 TESTED BY: Jim Clark

amy Luckel

WITNESS > Amy Hude / ... Lot #C QC REP -

RAM 4 GOV'T REP

57 MS. 116 S/N S/N Freq. Freq. 14 е à (MHz) IZI 1 zi (MHz) 9 171 8 .9994-5.2 2.0 1.1Kr-89.6 2.00 - 89 . 6 .9993-6.0 953 10.0 10.0 199.3-88.78 9901-28:16 9804-34.5 161 -88.0 12.0 -87.501.9747-35.95 12.0 .9409-4639 154 116.45 -85.26 14.0 14.0 -85.92 .9498-46.2 8581-65.55 117 77.2 -80.42 99.21-84.01 .9199-5333 15.0 15.0 .7442-82.10 57.09-73.17 16.0 16.0 81.35-80.92 .8682-62.86 37.79-54.39 .5311-109 25 16.5 16.5 .3772-131.81 72.10-78.10 .8225-69.07 31.33-32.76 17.0 62.75-73.6 .7534-76.53 17.0 32.82-2.85 .2089-173.1 .1665+109.5d 17.5 | 54.57-66.17 .6527-84.50 17.5 44.83+17.85 47.21-56.94 .543d-94.0 18.0 18.0 60.35+30.12 .2853+69.42 18.5 41.01-40.28 .3784-166.20 84.42+37.60 .4240+48.17 18.5 19.a .0179-122.71 19.0 .5360+34.15 48.44+2.2 16.60 + 40.49 19.5 40.76-18.84 .1949+105 19.5 158.d+39.75 .6225+24.24 20.0 .2079+51.76 20.0 64.34+18.81 .6950+16.57 216.d+37.71 21.0 141.2+30.94 21 .0 .5461+22.46 435.44+16.4 .8019+3.17 22.0 .7240+3.98 1-33.7 .8554-6.0 22.0 305.2 +12.12 533 25.0 .9261-28.48 25.0 199.8 -78.06 .9057-27.62 -80.60195 30.0 30.0 125.53-84.53 .9364-43.31 126.50-84.75 .9392243.02

NAME	TITLE	DWG. NO.
SMITH CHART FORM 756-N		DATE

IMPEDANCE OR ADMITTANCE COORDINATES

NAME	TITLE	DWG. NO.
SMITH CHART FORM 756-N		DATE

POST HIGH TEMP PRE VIBRATION

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

/N: <u>D</u>	WITNESS: Connie L	nie Fyles yles	N/A GOV'T R
NTENNA S/N	WITHSTOOD DIELE YES	CTRIC BREAKDOWN	
61_	4.811.A	-	
62	3.1di.A		
63	3.DJLA		
64	3.044		
65_	4.8114		
66	3.6.11 A		
67	2.9114		
68	ALP.E		
69	3.9.114		
70	3.1224		
71	4.4.W.A		
72	3 DULA		
73	3.724		
74	MILBE		
75	3 DJU		
76	3.4.24		
omments:			

SESSI PERSONAL PERSONAL SESSION (SESSION) PERSONAL PERSON

POST HIGH TEMP PRE VIBRATION

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU DATE: N/A S/N: WITHSTOOD DIELECTRIC BREAKDOWN ANTENNA S/N YES NO 2.82LA 77_ 3.0WA __78__ 4.9ULA 79 2.91LA ____80__ . Comments:

POST HIGH TEMP PRE VIBRATION

VSWR TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foot whip for the 15 foot whip foot whip

DATE: __6-18-87

LOT D TNESS.

Connie Lyles
QC REP

N/A

S/N	Frequency of resonance in MHz	R Loss	VSWR
61	19.7	32	1.04
62	19.6	30	1.06
63	19.7	30	1.06
64	19.8	32	1.04
65	19.9	34	1.03
66	19.8	33	1.03
67	19.9	30	1.06
68	19.5	30	1.06
69	19.8	30	1.06
70	19.6	30	1.06
71	19.7	30	1.06
72	19.5	28	1.08
73	20.	33	1.03
74	19.7	30	1.08
75	19.6	30	1.08
76	19.7	32	1.04
77	19.8	32	1.04
78	19.8	32	1.04
79	19.7	32	1.04
80	19.6	30	1.06
Standard	17.3	24	1.13

			290	DUCT TEST	ING LABOR	ATORY TES	T LOG			
	108 NO 71	1010 3		CUSTOMER			i	.c. NO.		
N/A	TEST ENGIN		were (lat	_			GZI/WI.	TNESS		
]	•	ON (Model No.,						NO 61	-80
d) •					· <u> </u>	· .				
	TEST DESC	ZIGTION O	ib., Shock, Ele.	, Vibrat	ion					
	ı					<u> </u>				
	TEST PROC.	X . A . AI .	Ller Test	Plan						
	CATE	TIME			٤	VENT DESC	RIPTION			
Start	6-18-87	10:00	' SN 72	At 55hz	2					
Stop	6-18-87	12:00								
Start	6-18-87	14:00	SN 71	At 55hz						
Stop	6-18-87	16:00			**		•			
Start	6-18-87	16:03	SN 63	At 53.5	hz.			•		
Stop	6-18-87	17:03	•	1	£ ,=	-				
Start	6-19-87	10:00	-6N. 63	At53.5h	z		• • •			٠.
Stop	6-19-87	11:00		`.						
Start.	6-19-87	11:10	SN 65	At 52hz						
Stop	6-19-87	13:10					<u></u>			1
rt	6-19-87	13:15	SN 78	At 53hz		-	j			
Stop	6-19-87	15:15		· ·	3	- 47.		٠		
Start	6-19-87	.15:18	SN 66	-At 52hz	\$2000 C	- 12, 20				
Stop	6-19-87	17:18	•						. :	
Start	6-22-87	09:55	' sin 77	At -56hz		•				
Stop	6-22-87	11:55	***	į.			ئىرىنى ئارىخىنى		•	•
Start	6-22-87	11:55	SN 77	At 56h				••••	•	•
Stop	6-22-87	13:55			-			<u> </u>		•
Start	6-22-87	13:57	SN 79	At 52.5	hz.		•			
Stop	6-22-87	15:57								
Start	6-22-87	15:57	SN 67	At 55h	z ·					
Stop	6-22-87	16:57								
Start	6-23-87	08:15	SN 67	At 55hz						
Stop	5-23-87	09:15				·			•	
Start	6-23-87	09:15	SN 80	At 54hz			· · · · · · · · · · · · · · · · · · ·			
Stop	6-23-87	11:15	·							
Start	6-23-87	11:15	SN 70	At 53.	5hz					
00	6-23-87	13:15	· · · - · · · · · · · · · · · · · · · ·			·				
L art	6-23-87	13:15	SN73	At 55hz						
Stop	6-23-87	15:15		·				·		
]									

PAGE . QF

113(9-74)NS

PRODUCT	TESTING L	ARORAT	CRY 1	EST t	_00
---------	-----------	--------	-------	-------	-----

	108 NO. 1			CUSTOMER			.م	G. NO		
***	TEST FNG	inees Jal	mes Jant	X	TEST TECH.		GSI/WIT	NESS		
**	i i			_				Serial No	0 61-80	Cont
	TEST DESC	ERIPTION (V	ib., Shock, Ele	yibra	tion					_
•	TEST PRO	R.A.	Miller T	est Plan	· · · · · · · · · · · · · · · · · · ·		·	·	· · · · · · · · · · · · · · · · · · ·	
	CATE	TIME			EVE	ENT DESCR	IPTICN			=
Start	6-23-87	15:15	SN 64	At 53hz				· · · · · · · · · · · · · · · · · · ·		
Stop	6-23-87	17:15		· · · · · · · · · · · · · · · · · · ·				-		 i
Start	6-24-87	08:10	SN 68 A	t 55hz	•• ••					
Stop	6-24-87	-10:10.			•					
Start	6-24-87	10:10.	SN 61	At 55.5h	Z	· .				
Stop	6-24-87	12:10		·	=		· •			
Start	6-24-87	12:10	'SN 69	At 54.51	1Z		٠.,			
Stop .	6-24-87								· · · · · · · · · · · · · · · · · · ·	
Start.	6-24-87	14:10	SN 74	At 53hz	· .		· .			
Stop	6-24-87	16:.10				•	-		1	
rrt	6-24-87	16:1.0	SN 76	At 56hz				<u> </u>		
Stop	6-24-87	17:00	- · · · ·			- :54				
Start	6-25-87	. 08:10		At 56hz		1			,	
Stop	6-25-87	09:20			•		:		:	
Start	6-25-87	09:20	SN: 62	At 54hz						
Stop	6-25-87	11:20		·			J. 3. 3. 4.			
Start			~ .	••		ما معرف النام				
Stop						29		·		
Start							<u> </u>			
Stop	·									
Start										
Stop										
Start										
Stop				·		··	·		ı	
Start			·							
Stop			·					·		
Start										
V. co			····					•		
i urt										
Stop									<u> </u>	
	113(5-76)MS							PAGE	OF	

SEEDI (CECCCOM CONDICTOR O SECONDA CONDICTOR O DESCRIPTOR O DESCRIPTOR DE SECONDA DE CONTRA DE SERVE DE SESTI

(41):

POST VIBRATION

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE: 7-1-87	_ TESTED BY	Combines:	L Carly	
S/N:	WITNESS:	Amy Hudd	amy Hedd	N/A GOV'T REP
	•		RAM 4	
ANTENNA S/N	WIT	HSTOOD DIE	LECTRIC BREADOWN	-
61		4.9 UA		
62		3.0 LA		
63		3.2 ALA		
64		3.4 ILA	. —	
65	•	4.7 MA		•
66		3.6 MJA	eriolisii Pigama	
67		3.0 LX)A		
68	•	3.5.nla		•
69	·	3.711 A		
		3.4 ILA		
<u>71</u>		4.1.WA		
72		2.9 JLA		
73		3.4.1LA		
74		3.5 LA		
75		3.011A		
75		3.311.A		
Comments:		· · · · · · · · · · · · · · · · · · ·	·	
			· · · · · · · · · · · · · · · · · · ·	

POST VIBRATION HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE: _	7-1-87	TESTED BY	: _James_J	Conta		
S/N:		WITNESS:	Amv Hudd	ame	Levelal	
ANTENNAS/N		wit	QC REP TRAN TN HSTOOD DIELE YES	34		GOV'T REF
77	•		3.011		•	
78			3.0 JA		•	
79			4.8111A		•	
80		3	2.8 ALA	. —	•	
		•			•	•
		. •			•	
					• • 47 4 • 4 4	
		÷			•	
					•	,
			•		•	
					•	
		٠,			•	
Comments	J:			•	•	
		(43)				

HOON SECTIONS DESPENDENCE FOR THE PROPERTY SECTION OF THE PROPERTY SECTION OF THE PROPERTY SECTION OF THE PROPERTY OF THE PROPERTY SECTION OF THE PROP

POST VIBRATION

VSWR TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foot with

DATE: _7-1-87

TESTED BY Ed Exsenheimer comie Pyles

WITNESS Connie Lyles
QC REP

N/A

GOV'T REP

S/N	Frequency of resonance in MHz	R Loss	VSWR
61	19.8	18	1,28
62	1.9.7	20	1.22
63	19.8	19	1.25
64	19.5	19	1.24
65	19.9	19	1.24
66	19.9	19	1.24
67	20.	19	1.24
68	19.8	19	1.25
69	19.8	21	1.20
70	19.8	19	1.24
71	19.8	19.5	1.24
72	19.7	18.5	1.27
73	19.8	20	1.22
74	19.8	19	1.25
75	19.9	21	1.18
76	19.9	20	1.22
77	19.9	20	1.22
78	19.9	21	1.20
79	19.3	19	1.25
30	19.7	19	1.25
MS Telard	17.3	22	1.04

American Electronic Laboratories, Inc.

June 30, 1987

R.A. Miller Industries, Inc. P.O. Box 858
Grand Haven, MI 49417

Attention: Mr. Jim Clark Test Report No. 88-236-8205

Reference: R. A. Miller P. O. No. 9646

Gentlemen:

This report certifies the performance of Ballistic Shock testing on twenty (20) 15' Whip Antennas, P/N MS-116 HUPU, S/Nos. 81 thru 100, submitted by R. A. Miller Industries, Inc. The test was conducted in accordance with MIL-S-901, Grade A, Type A, Class 1. Four base mount assemblies and four standard MS-116 Whips (2 MS-116, 1 MS-117, 1 MS-118 per unit) were used repeatedly for the test.

The top section (MS-118) of each antenna was removed and taped 15" lower to the section below it (MS-117) to allow for ceiling clearance.

A visual inspection of the test specimens at the completion of the shock exposure revealed no anomalies due to testing. One base mount assembly was found cracked as a result of testing. All post shock tests are to be performed at R. A. Miller. A copy of the Test Logs and an Equipment List are included in this report.

The test was conducted at the AEL Product Testing Laboratory, Richardson Road, Lansdale, PA 19446. The test specimens were returned to R. A. Miller after completion of testing on June 23, 1987.

Very truly yours,

AMERICAN ELECTRONIC LABORATORIES, INC.

P. M./Spackman, Test Engineer Product Testing Laboratory

PMS:rb

EQUIPMENT LIST

EQUIPMENT	MANUFACTURER	MODEL NO.	AEL NO.	CAL DUE DATE
Light Weight High Impact Shock	New England Trawler	MIL-S-901	8944	Each Use

The above equipment has been calibrated by standards which are regularly calibrated and whose accuracies are traceable to the National Bureau of Standards.

Report No. 88-236-8205

Page 1 of 1 page

American Electronic Laboratories, Inc.

A Subsidiary of AEL Industries, Inc.

AMERICAN ELECTRONIC LABORATORIES, Inc. PRODUCT TESTING LABORATORY TEST LOG GSI/WITNESS TEST ENGINEER . PRODUCT DESCRIPTION (Model No., Type, Ser. No., Quantity, Etc.) TEST DESCRIPTION (Vib., Shock, Etc.) DATE TIME EVENT DESCRIPTION 1000 C 1 ~ U V

113(9-76)NS

1500

PAGE ___ OF

POST BALLISTIC SHOCK

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE:	7-1-87	TESTED BY: James	Lants	
S/N:	Ε	WITNESS: Connie Ly	les	N/A GOV'T REP
		QC REP COY	iniatyls	GOV I REP
ANTENNA S/N	··.	WITHSTOOD DIELE YES	CTRIC BREAKDOWN NO	<u>.</u>
81		2.6.1.1	•	
82	•	- 2.611A		
83		2.6.11A		
84		3.5.11A		
85		3.9.11A	-	
86	•	4.011 A		
87		2.611A		
88	•	2.611A	-	
89		2.611A		
90		3.41LA		
91		2.7.11A		
92		4.4.1.UA	-	
93_		3.6.11A	*******	
94		2.644		
95		2.7.1.la		
96		2.7.1.2a 2.5.1.2		
.Comments:				
				· • • • • • • • • • • • • • • • • • • •

POST BALLISTIC SHOCK

HIGH VOLTAGE STRESS DATA SHEET

MS-116 HVPU

DATE: 7-1-87	TESTED BY:	TESTED BY:			
S/N: E	WITHESS: C	Connie Lyles	N/A		
	OC. OC.	REP Cornec	N/A GOVIT REP		
ANTENNA S/N	WITHSTO YE	OOD DIELECTRIC	BREAKDOWN		
97	2.6	ـــ ملك			
98	2.9		_		
99	3.5	ALL:			
100	<u>.</u> 4.2	سلاد			
					
					
			_		
		·			
		<u> </u>	_		
					
	*******		· .		
	_				
	-				
	_				
.Comments:					
					

POST BALLISTIC

VSWR TEST DATA SHEET

MS-116 HVPU Incorporated in the 15 foor thi

NESS Connie Lyles

QC REP

G

GOV'T REP

S/N	Frequency of resonance in MHz	R Loss	YSWR
31	21.	20	1.20
82	19.5	20	1.25
83	19.8	24	1.13
84	19.9	21	1.20
85	19.8	20	1.22
86	19.8	20	1.22
87	20.	20	1.22
88	19.9	19	1.25
89	19.9	20	1.21
90	19.7	20	1.22
91	19.9	19	1.25
92	19.8	19	1.24
93	20	22	1.17
94	19.8	19	1.24
95	19.9	21	1.20
96	19.7	22	1.17
97	19.8	21	1.20
98	20.	19	1.25
99	19.8	19	1.24
100	19.9	20	1.22
Standard MS 116	17.3	22	1.04