## Retrieved from www.mathcs.emory.edu/~rg/vizing.pdf 9 April 2015

"The Book proof" of Vizing's Generalized Theorem and Shannon's Theorem (proof obtained from B. Toft)

Let G be a multigraph and let  $k \geq \Delta(G)$ . Let  $\phi$  be a k-edge coloring of G-e for some  $e \in E(G)$ . Assume that G is not k-edge colorable.

For a vertex v, let  $\phi(v)$  be the set of colors of  $\phi$  present at vertex v. Similarly, let  $\overline{\phi}(v)$  be the set of colors of  $\phi$  not present at v.

A fan  $F_x$  is an ordered sequence of edges  $(e_1, e_2, \ldots, e_n)$  at vertex x such that for every j,  $2 \le j \le n$ , there exists an  $i, 1 \le i \le j-1$  such that  $\phi(e_j) \in \overline{\phi}(y_i)$ .



Figure 1: The Fan  $F_x$ .

Claim 1: In a fan  $F_x$ ,  $\overline{\phi}(y_j) \cap \overline{\phi}(x) = \emptyset$  for all  $j, 1 \leq j \leq n$ .

Proof: Assume this is not the case. Choose the fan  $F_x$  and coloring  $\phi$  such that  $\overline{\phi}(y_j) \cap \overline{\phi}(x) \neq \emptyset$  with j as small as possible. Let  $\alpha \in \overline{\phi}(y_j) \cap \overline{\phi}(x)$ .

If  $y_j = y_1$ , then color  $\alpha$  is missing at both x and  $y_1$ . Then e can be colored  $\alpha$  ( $e_1 = e$  and G - e is k-edge colorable) and G is k-edge colorable. Since this is not the case,  $y_j \neq y_1$ .

Let  $\beta = \phi(e_j)$  Then there is an  $i, 1 \leq i \leq j-1$  such that  $\beta \in \overline{\phi}(y_i)$ . Recolor  $e_j$  with the color  $\alpha$ . The result is a new k-edge coloring  $\phi'$  of G-e. Then,  $(e_1, e_2, \ldots, e_i)$  is a fan with respect to  $\phi'$  and  $\overline{\phi'}(y_i) \cap \overline{\phi'}(x) \neq \emptyset$  since  $\beta$  is in this intersection. This contradicts the minimality of j and completes the proof of the claim.  $\Box$ 

Claim 2: In a fan  $\overline{\phi}(y_i) \cap \overline{\phi}(y_j) = \emptyset$  for all i and j where  $y_i \neq y_j$ .

Proof: Assume this is not the case. Choose the fan  $F_x$  and coloring  $\phi$  such that  $\overline{\phi}(y_i) \cap \overline{\phi}(y_j) \neq \emptyset$  with  $y_i \neq y_j$ , and with i as small as possible and subject to this j-i as small as possible.

Let  $\alpha \in \overline{\phi}(y_i) \cap \overline{\phi}(y_j)$ . Let  $\beta \in \overline{\phi}(x)$ . Such a  $\beta$  exists since  $k \geq \Delta(G)$  and there is an uncolored edge at x. By Claim 1,  $\beta \in \phi(y_h)$  for all h and  $\alpha \in \phi(x)$ .



For  $1 \le h \le n$  let  $P_h$  denote the alternating  $\alpha - \beta$  chain containing  $y_h$ .

Case 1: Suppose  $x \notin P_i$ .

Change  $\alpha$  and  $\beta$  on  $P_i$  and obtain  $\phi'$ . The color  $\beta$  is then missing at  $y_i$  and at x. Then  $(e_1, e_2, \ldots, e_i)$  is a fan with respect to  $\phi'$ , contradicting Claim 1.  $\square$ 

Case 2: Suppose  $x \in P_i$  and  $x \notin P_j$ .

Change color  $\alpha$  and  $\beta$  on  $P_j$  and obtain  $\phi'$ . The color  $\beta$  is then missing at  $y_j$  and x. Then  $(e_1, e_2, \ldots, e_j)$  is a fan with respect to  $\phi'$ , contradicting Claim 1.  $\square$ 

Case 3: Suppose  $x \in P_i$  and  $x \in P_j$ .

Then  $P_i = P_j$  and  $x, y_i, y_j$  all have degree 1 in  $P_i$ . This is impossible.  $\square$ 

Let  $F_x$  be maximal. Let  $\phi(\overline{F}_x)$  be the colors of  $\phi$  at x not in the fan  $F_x$ .

Claim 3:  $\phi(\overline{F}_x) \cap \overline{\phi}(y_i) = \emptyset$  for all  $i, 1 \le i \le n$ .

Proof: This follows directly from  $F_x$  being maximal and the definition of a fan.  $\square$ 

Now let  $z_1(=y_1), z_2, \ldots, z_m$  be the different  $y_i$  (recall we are in a multigraph so y's may be repeated)  $(2 \le m \le n)$ . Claims 1, 2, 3 imply that  $\overline{\phi}(z_1), \overline{\phi}(z_2), \ldots, \overline{\phi}(z_m), \overline{\phi}(x)$  and  $\phi(\overline{F}_x)$  are disjoint subsets of the set of k colors of  $\phi$ . Hence,

$$|\overline{\phi}(z_1)| + |\overline{\phi}(z_2)| + \ldots + |\overline{\phi}(z_m)| + |\overline{\phi}(x)| + |\phi(\overline{F}_x)| \le k.$$

Hence,

$$k - (deg(z_1) - 1) + (k - (deg(z_2)) + \ldots + (k - deg(z_m)) + (k - (deg(x) - 1)) + (deg(x) - 1 - (n - 1)) \le k.$$

Thus,

$$k(m+1) + 2 - n - (\sum_{i=1}^{m} deg(z_i)) \le k$$

or

$$2 \le \left(\sum_{i=1}^{m} deg(z_i)\right) + n - mk.$$

If  $\mu(x, z_i)$  denotes the number of edges between x and  $z_i$ , then  $n \leq \sum_{i=1}^m \mu(x, z_i)$ . With this the following inequality holds:

(\*) 
$$2 \le \sum_{i=1}^{m} (deg(z_i) + \mu(x, z_i) - k)$$

with  $m \geq 2$ .

From (\*) we get the following:

A. There exists a  $z_i$  such that  $deg(z_i) + \mu(x, z_i) - k \ge 1$ .

B. There exists  $z_i, z_j(z_i \neq z_j)$  such that

$$deg(z_i) + deg(z_j) + \mu(x, z_i) + \mu(x, z_j) - 2k \ge 2.$$

Further, since  $deg(x) \ge \mu(x, z_i) + \mu(x, z_j)$ , B implies:

C. There exists  $z_i, z_j \ (z_i \neq z_j)$  such that

$$deg(z_i) + deg(z_i) + deg(x) - 2k \ge 2.$$

If  $k \ge \Delta(G) + \mu(G)$ , where  $\mu(G)$  is the max. multiplicity of G, then A gives a contradiction. Hence the assumption that G is not k-edge colorable must be wrong and Vizing's theorem holds.

Further note: If  $k \ge \lfloor \frac{3}{2}\Delta(G) \rfloor$ , then C (B) gives a contradiction. Hence, again the assumption that G is not k-edge colorable must be wrong. From this we conclude:

Thm: G is  $\Delta(G) + \mu(G)$  edge colorable. (generalized Vizing, 1964)

Thm: G is  $\frac{3}{2}\Delta(G)$ - edge colorable. (Shannon, 1949).