Кафедра квантовой радиофизики и электроники Отчет по лабораторной работе N1

Исследование твердотельных структур методом ЭПР-спектроскопии

Выполнили студенты 440 группы Виноградов И.Д., Понур К.А., Шиков А.П.

1. Теоретическая часть

1.1. Условия выделения кривых и дисперсии на детекторе

Волноводный отражательный резонатор с отверстием связи можно представить в виде эквивалентного колебательного контура, импеданс которого определяется выражением

$$Z = R + i[\omega L_0 - \frac{1}{\omega C}],$$

где R, L_0 и – эквивалентные сопротивление, индуктивность и ёмкость соответственно. При наличии парамагнетика с магнитной проницаемостью μ индуктивность резонатора будет записывать как $L=\mu L_0$. При частичном заполнении резонатора образцом магнитная проницаемость выражается через восприимчивость χ следующим образом

$$\mu = 1 + 4\pi\eta\chi$$

где χ – коэффициент заполнения резонатора парамагнетиком. В результате получаем

$$Z = R + i\frac{L_0}{\omega} \left(\omega^2 - \frac{1}{L_0 C}\right) + i\omega L_0 \cdot 4\pi \eta \chi.$$

Величина $\frac{1}{\sqrt{L_0C}}$ дает собственную частоту резонатора. При резонансе $\omega^2=\frac{1}{L_0C}=\omega_0^2$ и выражение для Z принимает вид

$$Z = R + i\omega L_0 \cdot 4\pi \eta \chi = R(1 + i4\pi \eta \chi' Q + 4\pi \eta'' Q),$$

где $Q = \frac{\omega L_0}{R}$ - добротность резонатора. Если обозначить характеристическое сопротивление волновода через Z_0 , то комплексный коэффициент отражения от резонатора Γ , определяемый как отношение амплитуды падающего на резонатор поля E_n к амплитуде отраженного поля, будет равен

$$\Gamma = \frac{Z - Z_0}{Z + Z_0}$$

С учётом этого отраженную от резонатора сигнальную волну в точке детектирования можно записать в виде

$$E_1 = |E_n| \cdot \Gamma \cdot e^{-i4\pi \frac{L_1}{\lambda}},$$

где L_1 – длина волноводного плеча от детектора до резонатора. Кроме этой волны на детектор поступает сигнал, отраженный ль балансного плеча

$$E_2 = \alpha^2 |E_n| e^{-i4\pi \frac{L_2}{\lambda}},$$

где α - коэффициент ослабления аттенюатора, а L_2 - соответствующая длина балансного плеча. Суммарное поле на детекторе получим в следующем виде:

$$E = |E_n| \cdot e^{-i4\pi \frac{L_1}{\lambda}} \cdot \left\{ \Gamma + \alpha^2 e^{-i4\pi \frac{L_2 - L_1}{\lambda}} \right\}.$$

При малых уровнях СВЧ-мощности ток детектора пропорционален квадрату напряженности поля E в этом случае имеем

$$i_{\text{дет}} = S|E|^2 = SP_n \cdot \left|\Gamma + \alpha^2 e^{-i4\pi \frac{L_2 - L_1}{\lambda}}\right|^2,$$

где S – коэффициент преобразования детектора, а P_n – мощность, падающая на резонатор. Используя неравенства $\chi' \ll 1$, $\chi'' \ll 1$ и условие хорошей согласованности волновода с резонатором, получаем вид сигнала ЭПР:

$$i_{\text{дет}} = SP_n \cdot 4\pi Q \eta \left[\chi'' \cos\left(\frac{4\pi}{\lambda}\Delta L\right) - \chi' \sin\left(\frac{4\pi}{\lambda}\Delta L\right) \right] \tag{1}$$

Отсюда следует, что в зависимости от положения замыкающего поршня балансного плеча сигнал на выходе детектора может быть пропорционален либо χ' , либо χ'' . При разности $\Delta L = L_2 - L_1$, кратной $\frac{\lambda}{4}$, ток детектора будет пропорционален χ'' , а при дополнительном сдвиге на $\frac{\lambda}{8}$ – пропорционален кривой χ' .

1.2. Определение числа парамагнитных частиц в образце

Чтобы получить соотношение, позволяющее определить число парамагнитных частиц исходя из характеристики наблюдаемого сигнала ЭПР, воспользуемся выражением (1). При $\Delta L \simeq \frac{\lambda}{4}$ имеем

$$i_{\text{дет}} \simeq SP_n \cdot 4\pi Q\eta \chi''.$$

Введем технический коэффициент A, характеризующий коэффициент усиления тракта «детектор-усилитель-осциллограф». Его величину можно измерить, подавая известный по величине модулированный СВЧ-сигнал на детекторную головку и измеряя при этом амплитуду видеосигнала на экране осциллографа. Если обозначить через L_M высоту видеосигнала модуляции на экране, а P_M – величину модулированной компоненты СВЧ-мощности, то коэффициент усиления A будет равен $\frac{L_M}{P_M}$. Если учесть такого рода амплитудную калибровку, высота сигнала ЭПР на экране осциллографа может быть записана как

$$L_C = AP_n \cdot 4\pi Q\eta \chi''(\omega_0) \tag{2}$$

Коэффициент заполнения η определяется как отношение двух интегралов вида $\int H_1^2 \, \mathrm{d} \nu$ по объему образца и резонатора соответственно. В условиях данной ЭПР-установки с

достаточной степенью точности можно считать

$$\eta \simeq rac{2V_{
m o 6p}}{V_{
m pes}}.$$

Значение χ'' для малых полей H_1 при $\omega=\omega_0$ можно записать в виде

$$\chi''(\omega_0) = \frac{N_0 \mu^2}{3KT} \omega_0 T_2^*$$

Отсюда количество парамагнитных частиц можно оценить как

$$N_0 = 3KT \frac{\chi''(\omega_0)}{\mu^2 \omega_0 T_2^*}. (3)$$

Сопоставляя (2) и (3) получаем окончательно

$$N_0 = \frac{3KT}{8\pi Q\mu^2 \omega_0 T_2^*} \cdot \frac{L_C}{L_M} \cdot \frac{P_M}{P_n} \cdot \frac{V_{\text{pes}}}{V_{\text{ofp}}}$$

$$\tag{4}$$

2. Экспериментальная часть

2.1. Исследование ЭПР в молекулах дифенила

Рис. 1: Принципиальная схема установки

Получение на экране осциллографа кривых поглощения и дисперсии сигнала $\mathbf{Э}\Pi\mathbf{P}$. Для исследования $\mathbf{Э}\Pi\mathbf{P}$ в молекулах дифенила, образец был помещен в резонатор, и произведена первоначальная настройка установки. Клистронный генератор был настроен на центр одной из зон по максимуму мощности ($\nu = 8.96~\Gamma\Gamma$ ц при $\alpha = 0$), а резонаторная камера была настроена в резонанс (соотв. минимуму сигнала при $\alpha = 1$).

При подключенном к выходе детектора был включен источник постоянного тока для магнитных катушек. Поле H_0 было выведено на резонансное значение $H_0 = 3547$ Гс (при значении тока $I_0 = 160$ мА). Момент резонанса был определен по характерной наблюдаемой осциллограмме (см. рис. 2(a)).

Рис. 2: Характерная осциллограмма при $\Theta\PiP(a)$, кривая χ' (б), кривая χ'' (в)

Для получения кривых χ' и χ'' , в соответствии с формулой (1) (при $\alpha = 0$) перемещался плунжер балансного плеча. Полученные осциллограммы приведены на рис. 2(6,8).

Измерение ширины линий поглощения сигнала ЭПР в единицах поля. Для получения ширины линии, шкала осциллографа была проградуирована по единицам поля $(21.88 \ \Gamma c/\kappa \pi)$. Ширина линии поглощения χ'' на половине высоты

$$\Delta H = 10.9 \ \delta H$$

Расчет ширины линии в единицах частоты.

Определение числа парамагнитных частиц в образце. Для вычисления числа парамагнитных частиц, воспользуемся пунктом 1.2 теории и формулой (4).

$$N_0 = \frac{3KT}{8\pi Q\mu^2 \omega_0 T_2^*} \cdot \frac{L_C}{L_M} \cdot \frac{P_M}{P_n} \cdot \frac{V_{\text{pes}}}{V_{\text{offp}}},$$

где T_2^* – время поперечной релаксации, K – постоянная Больцмана, μ – магнитная проницаемость дифенила,

Свыше нам даны следующие величины:

$$Q = 5000, \quad \frac{V_{\text{pe3}}}{V_{\text{ofp}}} \simeq 200, \quad \frac{P_M}{P_n} = 1$$

Из эксперимента остается определить собственную частоту резонатора ω_0 (нашли в 2.1.3), время поперечной релаксации T_2^* и отношение L_C/L_M (нашли двумя параграфами выше).