COMS W4733: Computational Aspects of Robotics Homework 1

Your Name Your UNI

September 26, 2025

Problem 1: Homogeneous Transformations

1. Convert to homogeneous coordinates (1 point)

Convert $p_A^{\text{cart}} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ to homogeneous:

$$p_A = \begin{bmatrix} p_A^{ ext{cart}} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

2. Construct ${}^{A}T_{B}$ (4 points)

Rotation 90° about +z:

$$R = R_z(90^\circ) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad t = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}.$$

Therefore

$${}^{A}\!T_{B} = \begin{bmatrix} R & t \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

3. Transform the point (3 points)

Use
$$({}^{A}T_{B})^{-1} = \begin{bmatrix} R^{\top} & -R^{\top}t\\ 0 & 1 \end{bmatrix}$$
:

$$^{B}T_{A} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad p_{B} = {}^{B}T_{A} p_{A} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 1 \end{bmatrix}.$$

So
$$p_B^{\text{cart}} = (3, -1, 1)^{\top}$$
.

4. Interpret the result (2 points)

The 90° rotation swaps $(x,y) \mapsto (-y,x)$; the translation adds (+1,-2,0), yielding (3,-1,1) as expected.

Problem 2: Configuration Space and Workspace (Mobile Robot)

1. C-space and DOF (2 points)

(a) $q = (x, y, \theta) \in \mathbb{R}^2 \times S^1$ with

$$Q = [0, 5] \times [0, 4] \times (-\pi, \pi].$$

(b) DOF = 3 (two translational, one rotational).

2. Position workspace of P (5 points)

(a) Ignoring footprint:

$$\mathcal{W} = [0, 5] \times [0, 4].$$

(b) With disc footprint $r_R = 0.35$:

$$W_{\text{clear}} = \{(x, y) : 0.35 \le x \le 4.65, \ 0.35 \le y \le 3.65\}.$$

(c) $(0.30, 0.30) \notin \mathcal{W}_{clear}$ (collision).

3. Workspace \rightarrow C-space obstacles (2 points)

Obstacle $\mathcal{O} = \{(x, y) : ||(x, y) - (0.9, 0.3)|| \le 0.10\}$. Grow by r_R :

$$\|(x,y) - (0.9,0.3)\| \le 0.10 + 0.35 = 0.45 \iff (x-0.9)^2 + (y-0.3)^2 \le 0.45^2 = 0.2025.$$

Thus $Q_{\text{obs}} = \{(x, y, \theta) : (x - 0.9)^2 + (y - 0.3)^2 \le 0.2025\}$. For $q^* = (1.20, 0.40, 0.524)$: $(1.20 - 0.9)^2 + (0.40 - 0.3)^2 = 0.10 < 0.2025 \Rightarrow q^* \in Q_{\text{obs}}$.

4. Connectivity (1 point)

 Q_{free} is path-connected if any two configurations in it are connected by a continuous collision-free path.

Problem 3: Forward Kinematics (2R Planar Arm)

1. Geometric FK for position & orientation (4 points)

(a) Vector form:

$$p_E = \underbrace{R(\theta_1) \begin{bmatrix} L_1 \\ 0 \end{bmatrix}}_{\text{Link 1}} + \underbrace{R(\theta_1 + \theta_2) \begin{bmatrix} L_2 \\ 0 \end{bmatrix}}_{\text{Link 2}}, \quad R(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

(b) Scalars:

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2), \quad y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2).$$

(c) Orientation: $\phi = \theta_1 + \theta_2$ (since θ_2 is relative).

2. Pose in SE(2) (3 points)

$${}^{0}T_{E} = \begin{bmatrix} \cos \phi & -\sin \phi & x \\ \sin \phi & \cos \phi & y \\ 0 & 0 & 1 \end{bmatrix} = \underbrace{R_{z}(\theta_{1})T_{x}(L_{1})}_{{}^{0}T_{1}} \underbrace{R_{z}(\theta_{2})T_{x}(L_{2})}_{{}^{1}T_{E}}.$$

3. Numeric evaluation (2 points)

For $\theta_1 = 30^{\circ} = \pi/6$ and $\theta_2 = 60^{\circ} = \pi/3$ with $L_1 = 1.0, L_2 = 0.8$:

$$\phi = 1.571, \quad x = 0.866, \quad y = 1.300, \qquad {}^{0}T_{E} = \begin{bmatrix} 0 & -1 & 0.866 \\ 1 & 0 & 1.300 \\ 0 & 0 & 1 \end{bmatrix}.$$

4. Tool offset (gripper) (1 point)

With $d_g = 0.10$ along x_E :

$${}^{E}T_{G} = T_{x}(d_{g}), \quad {}^{0}T_{G} = {}^{0}T_{E}{}^{E}T_{G} = \begin{bmatrix} \cos\phi & -\sin\phi & x + d_{g}\cos\phi \\ \sin\phi & \cos\phi & y + d_{g}\sin\phi \\ 0 & 0 & 1 \end{bmatrix}.$$

Numerically $(x_G, y_G) = (0.866, 1.400)$.

Problem 4: Inverse Kinematics (2R Planar Arm)

1. Reachability condition (2 points)

Let $r = \sqrt{x^2 + y^2}$. The point (x, y) is reachable iff

$$|L_1 - L_2| \le r \le L_1 + L_2$$

i.e., the target lies in the annulus between the inner (arm folded) and outer (arm stretched) circles.

2. Elbow angle θ_2 (3 points)

Law of cosines on triangle (L_1, L_2, r) with elbow interior angle $\pi - \theta_2$:

$$\cos \theta_2 = \frac{r^2 - L_1^2 - L_2^2}{2L_1L_2} =: c_2, \qquad s_2 = \pm \sqrt{1 - c_2^2}, \qquad \boxed{\theta_2 = \tan 2(s_2, c_2)}.$$

Two branches: elbow-up $(s_2 > 0)$ and elbow-down $(s_2 < 0)$.

3. Shoulder angle θ_1 (3 points)

Let $\alpha = \operatorname{atan2}(y, x)$ and $\beta = \operatorname{atan2}(L_2s_2, L_1 + L_2c_2)$. Then

$$\theta_1 = \alpha - \beta = \text{atan2}(y, x) - \text{atan2}(L_2 s_2, L_1 + L_2 c_2)$$

This yields one θ_1 for each choice of sign (s_2) .

4. Numeric test & joint limits (2 points)

Target $x^* = 1.20$, $y^* = 0.40$; link lengths $L_1 = 1.0$, $L_2 = 0.8$; limits

$$\theta_1 \in [-\pi, \pi), \qquad \theta_2 \in \left[-\frac{3\pi}{4}, \frac{3\pi}{4} \right] = [-2.356, 2.356].$$

Compute r, c_2, s_2 .

$$r = \sqrt{1.20^2 + 0.40^2} = 1.265,$$
 $c_2 = \frac{r^2 - L_1^2 - L_2^2}{2L_1L_2} = \frac{1.265^2 - 1.0^2 - 0.8^2}{2(1)(0.8)} = -0.025.$ $s_2 = \pm \sqrt{1 - c_2^2} = \pm 0.999687.$

Angles for the two branches.

$$\alpha = \operatorname{atan2}(0.40, 1.20) = 0.322, \qquad \beta = \operatorname{atan2}(L_2s_2, \ L_1 + L_2c_2) = \operatorname{atan2}(0.8 \, s_2, \ 0.980).$$
 Elbow-up $(s_2 > 0)$: $\theta_2 = +1.596, \quad \theta_1 = \alpha - \beta = -0.363,$ Elbow-down $(s_2 < 0)$: $\theta_2 = -1.596, \quad \theta_1 = \alpha - \beta = +1.006.$

(Values rounded to 3 decimals.)

Joint-limit check. Both sets lie within $\theta_1 \in [-\pi, \pi)$ and $\theta_2 \in [-2.356, 2.356]$:

$$(-0.363, +1.596)$$
 (elbow-up) and $(+1.006, -1.596)$ (elbow-down) are valid.

Forward check (tolerance 10^{-3}). Using the FK from Problem 3,

$$\hat{x} = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2), \qquad \hat{y} = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2),$$

both branches return $(\hat{x}, \hat{y}) = (1.200, 0.400)$ (error $< 10^{-12}$), hence the target is met.