EKSAMENSSAMARBEIDANDE FORKURSINSTITUSJONAR

Forkurs for ingeniørutdanning og maritim høgskoleutdanning

Universitetet i Stavanger, Høgskolen i Buskerud, Høgskolen i Nord-Trøndelag, Høgskulen i Sogn og Fjordane, Høgskolen i Sør-Trøndelag, Høgskolen i Telemark, Høgskolen i Tromsø, Høgskolen i Vestfold, Høgskolen i Østfold, Høgskolen Stord/Haugesund, Høgskolen i Ålesund, Sjøkrigsskolen, Bergen tekniske fagskole, Gjøvik tekniske fagskole

Eksamensoppgåve

8. juni 2006

FYSIKK

Nynorsk

Eksamenstid: 5 timar

Hjelpemiddel:

Godkjende formelsamlingar i matematikk og fysikk.
Godkjend kalkulator

Andre opplysningar:

Dette oppgåvesettet inneheld fem oppgåver med deloppgåver. Du skal svare på <u>alle oppgåvene og deloppgåvene</u>. Sjå oppgåvetekstene.

Oppgåvesettet har seks tekstsider medrekna framsida og eitt formelark.

OPPGÅVE 1

Figuren viser ei kule som blir sett i rørsle på eit bord i ein horisontal sirkel med konstant banefart. Når kula er ved punktet **p**, ryk snora.

a) Figurene under viser situasjonen sett ovanfrå. Kva for eit av svaralternativa under viser rørsla til kula framover?

- **b)** Ein liten båt ligg for anker. Han hevar og senker seg 15 gonger i minuttet. Det er 10 m mellom kvar bølgjetopp. Kva er bølgjelengda, frekvensen og bølgjefarten?
- c) Uran 238 U er radioaktivt. Reaksjonslikninga for α -utsending frå ei slik kjerne ser slik ut: $^{238}_{92}U \rightarrow ^{234}_{90}Th + \alpha$ Rekn ut den frigjorde energien i denne reaksjonen.

d) Ein stavhoppar held staven i ro som vist på figuren. Tyngda av staven er 31,4 N og angriper i punktet C, midt på staven. Stavhopparen skyv ned med krafta S i punktet A på enden av staven og lyftar med krafta L i punktet B. Rekn ut kreftene S og L.

e) Ein isbit med massen 0,060 kg og temperaturen –10 °C blir teke ut frå ein frysar og blir slept i eit glas med vatn som har temperaturen 0,0 °C. Kor mykje vatn vil fryse fast til isbiten dersom det ikkje går varme til eller frå verken glaset eller lufta?

OPPGÅVE 2

Figuren viser fartsgrafen for ein kjøretur med ein bil som har toppfart 36 m/s.

- a) Kva er toppfarten målt i km/h? Rekn ut akselerasjon til bilen dei første 30 sekunda.
- **b)** Teikn akselerasjonsgrafen for denne kjøreturen.
- **c)** Rekn ut gjennomsnittsfarten for heile turen.
- d) Teikn veggrafen for kjøreturen.

OPPGÅVE 3

Figuren viser ein strømkrins med eit bilbatteri, ei lampe, ein motstand, eit amperemeter og eit voltmeter.

Batteriet har emsen 12,7 V og indre resistans 1,00 Ω .

Motstanden har resistansen $R = 5,00 \Omega$. Amperemeteret har null resistans og voltmeteret har uendeleg resistans.

- a) Teikn eit oversiktleg koplingsskjema for strømkrinsen i figuren.
- b) Voltmeteret viser 7,20 V. Kva viser amperemeteret?
- c) Kva er polspenninga til batteriet?
- d) Rekn ut effekten til lampa.

OPPGÅVE 4

Ein leiketøyballong er fylt med 4,0 dm³ heliumgass. Det er festa ei snor til ballongen og massen til snora og ballongen utan gass er 2,5 g. Temperaturen i både gassen og lufta utanfor er 0,0 °C. Trykket i både gassen og lufta utanfor er 101 kPa.

- a) Kor mange heliumatom er det i gassen? Kva er massen til heliumet?
- **b)** Kor stor oppdrift får ballongen?
- **c)** Kva blir akselerasjonen til ballongen akkurat i det øyeblikket snora blir sloppe?

OPPGÅVE 5

Figuren viser ei skisse av eit hus. På toppen av taket, i posisjon 1 løysnar ein isbit. Han glir nedover til kanten av taket, dvs. posisjon 2 og held fram i fritt fall til han treff bakken i avstanden x frå husveggen. I dei tre første delspørsmåla ser vi bort frå friksjon og luftmotstand.

- a) Vis at farten til isklumpen er v_2 = 9,4 m/s når han kjem til kanten av taket. Rekn ut horisontal- og vertikalkomponenten til farten v_2 .
- **b)** Kor langt frå veggen landar isen?
- **c)** Kva er farten til isklumpen når han treff bakken? Hugs på storleiken og retninga.
- d) Ein student ønskjer å undersøkje kor stor friksjonen eigentleg er mellom taket og isklumpen. Ei fartsmåling viser at farten til isen berre er 8,5 m/s ved kanten av taket. Studenten reknar med at skilnaden på den teoretiske og den målte verdien kjem av friksjon. Bruk denne opplysninga og rekn ut friksjonstalet.

Supplerande formlar for fysikk på forkurs

Mekanikk	
Fjørkraft	$F = k \cdot x$
Potensiell energi i ei fjør	$E_{p} = \frac{1}{2}kx^{2}$
Lys og bølgjer	
Alternativ interferensformel	$S_1 P - S_2 P = n\lambda$
Termofysikk	
Tilstandslikning for gassar på generell form	pV = NkT