INŻYNIERIA BIOMEDYCZNA.

Podstawy i Zastosowania

Redaktorzy tomu: K. Cieślicki, T. Lipniacki, J. Waniewski

Spis treści

Ι	Modelowanie procesów fizjologicznych i patologicznych	1
Ι	Modelowanie matematyczne układów fizjologicznych	3
1	Modelowanie rozkładu i transportu wody i substancji w organizmie pacjenta (M. Dębowska, L. Pstraś, J. Poleszczuk, M. Pietribiasi, J. Piętka-Stachowska, A. Jung)	5
2	Modelowanie fali pulsu w naczyniach tętniczych (J. Poleszczuk)	7
3	Modelowanie układu krążenia, wybrane aspekty (K. Zieliński)	9
4	Modelowanie krążenia mózgowego (K. Cieślicki)	11
5	Modelowanie układu oddechowego (T. Gólczewski)	13
6	Modelowanie interakcji oddechowo-krążeniowej (T. Gólczewski, K. Zieliński)	15
7	Modelowanie metabolizmu mineralnego (M. Dębowska)	17
8	Modelowanie metabolizmu węglowodanów, układ glukoza – insulina (J. Waniewski, J. Śmieja)	19
9	Modelowanie homeostazy cholesterolu (K. Kubica, M. Żulpo, J. Balbus)	21
10	Modelowanie motoryki pęcherzyka żółciowego (M. Żulpo, J. Balbus, K. Kubica)	23
11	Numeryczne modelowanie przepływu krwi, płynu mózgowo-rdzeniowego i powietrza w rzeczywistych geometriach (A. Piechna, K. Cieślicki)	25
12	Modelowanie mechaniki struktur tętniczych (K. Cieślicki, A. Piechna)	27
13	Modelowanie procesów słuchowych w celu oceny ryzyka uszkodzeń słuchu (J. Kotus, A. Czyżewski)	29
Π	Modelowanie matematyczne procesów tkankowych i komórkowych	31
14	Modelowanie procesów transportu wody i substancji na poziomie tkankowym (J. Stachowska-Piętka)	33
15	Modelowanie transportu światła w tkance (A. Liebert)	35
16	Modelowanie transportu ciepła w tkance (A. Nowakowski)	37

SPIS TREŚCI iii

17	Modelowanie przepływu krwi przez chirurgiczne zespolenia naczyniowe (Z. Małota, J. Waniewski)	39
18	Modelowanie przepływu krwi przez zastawki serca (Z. Małota)	41
19	Modelowanie motoneuronu (M. Piotrkiewicz)	43
20	Modelowanie sieci neuronów (T. Bem)	45
21	Modelowanie odpowiedzi immunologicznej na rozwój nowotworu (J. Poleszczuk, U. Foryś)	47
22	Modelowanie wapnia komórkowego (B. Kaźmierczak) 22.1 Homeostaza wapniowa w komórce	49 49
23	Modelowanie sieci sygnałowych (T. Lipniacki)	51
Bi	bliografia	53

Tom I

Modelowanie procesów fizjologicznych i patologicznych

Część I

Modelowanie matematyczne układów fizjologicznych

Modelowanie rozkładu i transportu wody i substancji w organizmie pacjenta (M. Dębowska, L. Pstraś, J. Poleszczuk, M. Pietribiasi, J. Piętka-Stachowska, A. Jung)

Modelowanie kompartmentowe. Farmakokinetyka. Pozaustrojowe oczyszczanie krwi. Kinetyczny model mocznika. Usuwanie mało- i średnio-cząsteczkowych substancji w hemodializie i dializie otrzewnowej. Modele pseudo-jednokompartmentowe: kinetyka fosforanów w hemodializie. Usuwanie makrocząsteczek: dializa otrzewnowa, zabiegi sztucznej wątroby. Usuwanie nadmiaru wody w czasie hemodializy i dializy otrzewnowej. Model regionalnego przepływu krwi.

Modelowanie fali pulsu w naczyniach tętniczych (J. Poleszczuk)

Modelowanie układu krążenia, wybrane aspekty (K. Zieliński)

Modelowanie krążenia mózgowego (K. Cieślicki)

Modelowanie układu oddechowego (T. Gólczewski)

Modelowanie interakcji oddechowo-krążeniowej (T. Gólczewski, K. Zieliński)

Modelowanie metabolizmu mineralnego (M. Dębowska)

Modelowanie metabolizmu węglowodanów, układ glukoza – insulina (J. Waniewski, J. Śmieja)

Modelowanie homeostazy cholesterolu (K. Kubica, M. Żulpo, J. Balbus)

Modelowanie motoryki pęcherzyka żółciowego (M. Żulpo, J. Balbus, K. Kubica)

Numeryczne modelowanie przepływu krwi, płynu mózgowo-rdzeniowego i powietrza w rzeczywistych geometriach (A. Piechna, K. Cieślicki)

Modelowanie mechaniki struktur tętniczych (K. Cieślicki, A. Piechna)

Modelowanie procesów słuchowych w celu oceny ryzyka uszkodzeń słuchu (J. Kotus, A. Czyżewski)

Część II

Modelowanie matematyczne procesów tkankowych i komórkowych

Modelowanie procesów transportu wody i substancji na poziomie tkankowym (J. Stachowska-Piętka)

Modelowanie transportu światła w tkance (A. Liebert)

Modelowanie transportu ciepła w tkance (A. Nowakowski)

Modelowanie przepływu krwi przez chirurgiczne zespolenia naczyniowe (Z. Małota, J. Waniewski)

Modelowanie przepływu krwi przez zastawki serca (Z. Małota)

Modelowanie motoneuronu (M. Piotrkiewicz)

Modelowanie sieci neuronów (T. Bem)

Modelowanie odpowiedzi immunologicznej na rozwój nowotworu (J. Poleszczuk, U. Foryś)

Modelowanie wapnia komórkowego (B. Kaźmierczak)

- 22.1 Homeostaza wapniowa w komórce
- 22.2 title

Losowa praca zacytowana dla prawidłowej kompilacji bibliografii: [1]

Białka transportujące wapń

Białka wiążące wapń

Mikrodomeny

Modelowanie sieci sygnałowych (T. Lipniacki)

Bibliografia

[1] Abu-Hamad S., Arbel N., Calo D., Arzoine L., Israelson A., Keinan N., Ben-Romano R., Friedman O., Shoshan-Barmatz V.: The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. *Journal of cell science*, 122(Pt 11):1906–16, Czerw. 2009.