数据挖掘互评作业三: 分类与预测

3220190840 刘聪聪

<u> 仓库地址: (https://github.com/liucc1997/DMC/tree/master/assignment3)</u>

https://github.com/liucc1997/DMC/tree/master/assignment3 (https://github.com/liucc1997/DMC/tree/master/assignment3)

1. 问题描述 ¶

数据集: Video Game Sales

该数据集包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。

数据量: 11列共1.66W数据。

基于这个数据集,可进行以下问题的探索:

- 电子游戏市场分析: 受欢迎的游戏、类型、发布平台、发行人等;
- 预测每年电子游戏销售额。
- 可视化应用: 如何完整清晰地展示这个销售故事。

也可以自行发现其他问题,并进行相应的挖掘。

2. 数据处理

首先导入数据集,查看数据概要,并对数据集中的缺失值进行处理

In [1]:

```
import matplotlib
import numpy as np
import pandas as pd
%matplotlib inline
dataset_path = "data/vgsales.csv"
dataset = pd. read_csv(dataset_path)
dataset_origin = pd. read_csv(dataset_path)
```

Video Game Sales数据集的的属性包括:

- Rank 游戏销量排名
- Name 游戏名
- Year 发布年份
- Platform 游戏平台/发布平台
- Genre 游戏类型
- Publisher 游戏厂商/发行人
- NA_Sales EU_Sales JP_Sales Other_Sales Global_Sales 北美销量 欧洲销量 日本销量 其它地区销量 全球销量

Video Game Sales数据集的概要如下所示:

In [2]:

dataset

Out[2]:

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	
•••									
16593	16596	Woody Woodpecker in Crazy Castle 5	GBA	2002.0	Platform	Kemco	0.01	0.00	
16594	16597	Men in Black II: Alien Escape	GC	2003.0	Shooter	Infogrames	0.01	0.00	
16595	16598	SCORE International Baja 1000: The Official Game	PS2	2008.0	Racing	Activision	0.00	0.00	
16596	16599	Know How 2	DS	2010.0	Puzzle	7G//AMES	0.00	0.01	
16597	16600	Spirits & Spells	GBA	2003.0	Platform	Wanadoo	0.01	0.00	

16598 rows × 11 columns

查看数据集中存在的缺失值:

In [3]:

dataset.isnull().sum()

Out[3]:

0 Rank 0 Name Platform 0 Year 271 Genre 0 Publisher 58 NA_Sales 0 EU Sales 0 JP_Sales () Other Sales 0 Global_Sales 0 dtype: int64

Year和Publisher属性存在缺失, 删除空值所在的行。

In [4]:

dataset.dropna(inplace=True)

3. 问题探索

3.1 电子游戏市场分析

最受欢迎的游戏

不同游戏按照不同平台、不同发行年份统计销量,区分平台和年份的话,最受欢迎的游戏是2006年Wii的Wii Sports,全球销量达到了82.74

In [5]:

print(dataset.iloc[0,:])

Rank 1 Wii Sports Name Platform Wii Year 2006 Genre Sports Publisher Nintendo NA Sales 41.49 EU_Sales 29.02 JP Sales 3.77 $Other_Sales$ 8.46 Global Sales 82.74 Name: 0, dtype: object

不区分平台和年份的情况,依然是Wii Sports

```
In [6]:
dataset.groupby("Name").sum()["Global Sales"].idxmax(axis=0, skipna=True)
Out[6]:
'Wii Sports'
最受欢迎的游戏类型
In [7]:
dataset.groupby("Genre").sum()["Global_Sales"].idxmax(axis=0, skipna=True)
Out[7]:
'Action'
最受欢迎的发布平台
In [8]:
dataset.groupby("Platform").sum()["Global_Sales"].idxmax(axis=0, skipna=True)
Out[8]:
'PS2'
最受欢迎的发行人
In [9]:
dataset.groupby("Publisher").sum()["Global_Sales"].idxmax(axis=0, skipna=True)
Out[9]:
'Nintendo'
```

3.2 预测电子游戏销售额

预测每年全球电子游戏销售额

les"]

由于该数据更新于4年前,所以删除2015年之后的数据,然后绘制历年全球电子游戏销售额的散点图

```
In [10]:
total_sales = dataset.drop(dataset[dataset["Year"]>2015].index).groupby("Year").sum()["Global_Sa"]
```

In [11]:

```
import matplotlib.pyplot as plt
plt.xlabel('Year')
plt.ylabel('Global_Sales')
plt.scatter(total_sales.keys(), total_sales, c='r')
```

Out[11]:

 $\langle matplotlib.collections.PathCollection at 0x111bf5b0 \rangle$

然后建立回归模型

In [12]:

```
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
X = []
y = []
for i in total_sales.keys():
    X.append([i])
    y.append(total_sales[i])

polynomial = PolynomialFeatures(degree = 3)
x_transformed = polynomial.fit_transform(X)

poly_linear_model = LinearRegression()
poly_linear_model.fit(x_transformed, y)
```

Out[12]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

预测游戏销售额,显示可视化结果

In [13]:

```
predict_x = [[2016], [2017], [2018], [2019], [2020]]
predict_x_tran = polynomial. fit_transform(predict_x)
predict_y = poly_linear_model. predict(predict_x_tran)
test_y = poly_linear_model. predict(polynomial. fit_transform(X))
plt. xlabel('Year')
plt. ylabel('Global_Sales')
plt. scatter(total_sales. keys(), total_sales, label='real', c='r')
plt. scatter(X, test_y, label='predict', c='b')
plt. scatter(predict_x, predict_y, label='predict', c='b')
```

Out[13]:

<matplotlib.collections.PathCollection at 0x1dcc3988>

In [14]:

```
predict_y
```

Out[14]:

array([268.61451471, 195.00840974, 109.71814442, 12.15264106, -98.27917337])

预测某一款游戏的全球销售额

这里以Animal Crossing: New Horizons为例,预测其销售量。

Animal Crossing: New Horizons于2020-03-20由Nintendo发行,发行平台Nintendo Switch,模拟经营类 (Simulation) 游戏。

In [133]:

选取数据集80%的游戏的销售情况作为训练集,建立决策树预测模型

首先准备训练数据

In [168]:

```
dataset_train = dataset.drop(["Rank", "NA_Sales", "EU_Sales", "JP_Sales", "Other_Sales"], axis = 1)
dataset_train_baka = dataset_train.copy(deep=True)
#print(dataset train baka)
name1, name2, name3 = [], [], []
for index, row in dataset_train.iterrows():
    array = row[0].split(" ")
    name1. append (array [0])
    name2.append("NaN" if len(array) < 2 else array[1]) name3.append("NaN" if len(array) < 3 else array[2])
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
dataset_train["Platform"] = le.fit_transform(dataset_train["Platform"].values)
dataset_train["Genre"] = le.fit_transform(dataset_train["Genre"].values)
dataset_train["Publisher"] = le.fit_transform(dataset_train["Publisher"].values)
dataset_train["name1"] = le.fit_transform(name1)
dataset_train["name2"] = 1e.fit_transform(name2)
dataset_train["name3"] = le.fit_transform(name3)
dataset_train = dataset_train.drop(["Name"], axis = 1)
dataset_train
```

Out[168]:

	Platform	Year	Genre	Publisher	Global_Sales	name1	name2	name3
0	26	2006.0	10	359	82.74	3674	2850	1799
1	11	1985.0	4	359	40.24	3267	1924	455
2	26	2008.0	6	359	35.82	2060	1706	2883
3	26	2009.0	10	359	33.00	3674	2850	2186
4	5	1996.0	7	359	31.37	2588	2492	422
16593	6	2002.0	4	269	0.01	3699	3299	3012
16594	7	2003.0	8	241	0.01	2115	3398	408
16595	16	2008.0	6	21	0.01	2897	1594	348
16596	4	2010.0	5	8	0.01	1848	1533	71
16597	6	2003.0	4	544	0.01	3175	3	2472

16291 rows × 8 columns

训练模型

```
In [169]:
```

```
X = []
y = []
X_test, y_test = [],[]
X_train, y_train = [], []
X = list(zip(dataset_train["Platform"], dataset_train["Year"], dataset_train["Publisher"], dataset_
train["name1"], dataset_train["name2"], \
    dataset_train["name3"]))
y = list(dataset_train["Global_Sales"])
y = 1ist(map(int, y))
# print (len(X))
# print(len(y))
for i in range (0, len(X)):
    if i\%5 == 0:
        X_test.append(X[i])
        y_test.append(y[i])
    else:
        X_train.append(X[i])
        y_train.append(y[i])
from sklearn import tree
dtree = tree.DecisionTreeClassifier()
dtree. fit (X_train, y_train)
```

Out[169]:

```
DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')
```

可视化地展示测试集结果的误差:

In [170]:

```
y_predict = dtree.predict(X_test)
```

In [171]:

```
plt. xlabel('id')
plt. ylabel('value')
xarary = list(range(0, len(X_test)))
plt. scatter(xarary, y_predict-y_test, c='b')
```

Out[171]:

<matplotlib.collections.PathCollection at 0x1ded1220>

模型的预测准确率为:

In [172]:

```
dtree.score(X_test,y_test)
```

Out[172]:

0.7999386314820497

然后预测Animal Crossing: New Horizons的销量

```
In [193]:
```

```
example = {"Name":"Animal Crossing: New Horizons",
           "name1":"Anima1",
           "name2": "Crossing:",
           "name3":"New",
           "Platform": "NS".
           "Year": 2020.0,
           "Publisher": "Nintendo",
           "Genre": "Simulation"
dataset train baka["name1"] = name1
dataset train baka["name2"] = name2
dataset train baka["name3"] = name3
platform_dict = dict(zip(dataset_train_baka["Platform"].values, dataset_train["Platform"].values
gen_dict = dict(zip(dataset_train_baka["Genre"].values, dataset_train["Genre"].values))
pub_dict = dict(zip(dataset_train_baka["Publisher"].values, dataset_train["Publisher"].values))
name1 dict = dict(zip(dataset train baka["name1"].values, dataset train["name1"].values))
name2_dict = dict(zip(dataset_train_baka["name2"].values, dataset_train["name2"].values))
name3_dict = dict(zip(dataset_train_baka["name3"].values, dataset_train["name3"].values))
example array = [[platform dict.get(example["Platform"]),
                  example["Year"],
                  pub_dict.get(example["Publisher"]),
                  name1 dict.get(example["name1"]),
                  name2_dict.get(example["name2"]),
                  name3_dict.get(example["name3"]),
                 ]]
#platform dict
example array
```

Out[193]:

[[None, 2020.0, 359, 165, 791, 1831]]

预测结果为:

In [201]:

```
x = dataset_train["Platform"].mode()[0]
example_array[0][0] = x
print(dtree.predict(example_array))
```

[9]

4. 可视化应用

如何开发一款可能更受欢迎的游戏?

首先选择做什么类型的游戏

In [233]:

```
dataset.groupby("Genre").sum()["Global_Sales"].plot(kind='bar',figsize=(20,15))
```

Out[233]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x238768f8}{\gt}$

由此看出,选择动作类和体育类的游戏占据了比较大的市场,然后我们看不同类型游戏的销量均值:

In [214]:

dataset.groupby("Genre").mean()["Global_Sales"].plot(kind='bar',figsize=(20,15))

Out[214]:

<matplotlib.axes._subplots.AxesSubplot at 0x228db0b8>

这里看出,虽然动作类和体育类的游戏占据了比较大的市场,但是就平均销量而言,平台类和射击类游戏的的销量更高。综合两个图来看,冒险类和策略类游戏的总销量和平均销量都是最后两位,所以开发这两种的类型的游戏可能对销量造成一定的影响。

然后考虑游戏平台

下图显示了历年来不同平台的总销售量。

In [230]:

```
import seaborn
f = pd.crosstab(dataset.Platform, dataset.Year).sort_values(by="Platform", ascending = False)
max = f.values.max()
min = f.values.min()
f['Total'] = f.sum(axis=1)
plt.figure(figsize=(24,15))
seaborn.heatmap(f, vmin = min, vmax = max, annot=True, cmap='Blues', fmt="d")
plt.xticks()
plt.show()
```


可以看到,PS系列已知以来是来比较热门的游戏主机,此外近年来比较游戏销量比较高的平台还有X360、3DS、Wii和PC。

最后考虑合作的游戏厂商或者是作为参照的厂商

下面的图列出来历年来前50位的不同厂商游戏的累计销量。

In [255]:

dataset["Publisher"].value_counts()[:50].plot(kind='bar',figsize=(20,10))

Out[255]:

 ${\tt matplotlib.axes._subplots.AxesSubplot}$ at ${\tt 0x285de448}{\gt}$

由此看出,考虑合作的游戏厂商或者是作为参照的厂商可以从Electronics Ats、Activision、Namco Bandai Games、Ubisoft、Konami Digital Entertainment、THQ、Nintendo、Sony Computer Entertainment等厂商中 选择。

In [257]:

dataset["Publisher"]. value_counts()[:8]

Out[257]:

Electronic Arts	1339
Activision	966
Namco Bandai Games	928
Ubisoft	918
Konami Digital Entertainment	823
THQ	712
Nintendo	696
Sony Computer Entertainment	682
Name: Publisher dtype: int64	

Name: Publisher, dtype: int64