DSTAR

Manual

Index

- Input Trajectory
- 2. Target Dataframe
- 3. Generate Fingerprint and Train ML Model
 - 3 1. Only Generation or Training
 - 3 2. Other Arguments
- 4. Fingerprint Substitution
 - 4 1. Elements & Substitution Type Selection
 - 4 2. Other Arguments
- 5. Target Prediction from Substituted Fingerprint

1. Making Input Trajectory

1) Save surfaces with tagged adsorbates as trajectory file format to ~/DSTAR/atoms/ for training

```
/home/ahrehd0506/git/DSTAR/atoms
(base) [ahrehd0506@haber atoms]$ ls
0.traj 11.traj 13.traj 15.traj 17.traj 19.traj 20.traj 2.traj 4.traj 6.traj 8.traj
10.traj 12.traj 14.traj 16.traj 18.traj 1.traj 21.traj 3.traj 5.traj 7.traj 9.traj
```

* Adsorption atoms should be tagged with non-zero integer, and the other surface atoms are tagged with zero.

2. Making Target Dataframe

- 1) Generate Dataframe with name and target columns. It doesn't matter if there are other columns
- 2) name column indicates name (id) of input surface trajectory file and target column indicates corresponding target value (In our study, binding energy)

surface named 12.traj with target value 4

3) Save filled Dataframe named target.csv	to
~/DSTAR/atoms/	

	name	target
0	1	1
1	2	2
2	3	3
3	4	4
4	5	5
5	6	6
6	7	7
7	8	8
8	9	9
9	0	1
10	10	2
11	11	3
1	12	4
13	13	5
14	14	6
15	15	7
16	16	8
17	17	9
18	18	1
	19	2
19		
19 20	20	3

```
(base) [ahrehd0506@haber atoms]$ pwd
/home/ahrehd0506/git/DSTAR/atoms
(base) [ahrehd0506@haber atoms]$ ls
0.traj 11.traj 13.traj 15.traj 17.traj 19.traj 20.traj 2.traj 4.traj 6.traj 8.traj target.csv
10.traj 12.traj 14.traj 16.traj 18.traj 1.traj 21.traj 3.traj 5.traj 7.traj 9.traj
```

3. Generate Fingerprint and Train ML Model

- 1) Run python train.py in ~/DSTAR/
- 2) Training is successful if displayed as below image.

```
Namespace(algo='total', atom path='./atoms/', convert only=False, data path='./data/fp.csv', desire range=0.1, desire target=-0.67, load data=False, model path='./model/', subs ;
ath='./subs/fp/', test=False, test ratio=0.2)
Initiate Conversion Atoms to Fingerprint...
100%
                                                                                                                                                  | 23/23 [00:03<00:00, 6.27it/s]
Successfully Generate Fingerprint!
2022-07-13 11:33:29,004 - INFO - Start Gradient Boosting Regression
2022-07-13 11:33:30,608 - INFO - Start Kernel Ridge Regression
2022-07-13 11:33:30,836 - INFO - Start ElasticNet Regression
/home/ahrehd0506/miniconda3/lib/python3.8/site-packages/sklearn/linear model/ coordinate descent.py:645: ConvergenceWarning: Objective did not converge. You might want to increas
 the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.875e+00, tolerance: 4.991e-02
 model = cd fast.enet coordinate descent(
2022-07-13 11:33:30,924 - INFO - Start Support Vector Regression
2022-07-13 11:33:30,962 - INFO - Start Gaussian Process Regression
/home/ahrehd0506/miniconda3/lib/python3.8/site-packages/sklearn/gaussian process/kernels.py:430: ConvergenceWarning: The optimal value found for dimension 0 of parameter kl cons
tant_value is close to the specified upper bound 100000.0. Increasing the bound and calling fit again may find a better value.
 warnings.warn(
/home/ahrehd0506/miniconda3/lib/python3.8/site-packages/sklearn/gaussian process/kernels.py:420: ConvergenceWarning: The optimal value found for dimension 0 of parameter k2 leng
th scale is close to the specified lower bound 1e-05. Decreasing the bound and calling fit again may find a better value.
 warnings.warn(
Best performance model : Kernel Ridge Regressor
MAE : 5.066529515330492
RMSE : 6.360076086100101
```

3) Train_results.csv and Test_results.csv will be generated in ~/DSTAR/.

They have name, target, pred column, indicating surface file id,

true target value and predicted target value, respectively

4) Fingerprint file named fp.csv will be generated in ~/DSTAR/data/. It contains surface informations converted into active motif—based fingerprint.

1	name	FNN	Same	Sub	target
2	0	{'Co': 1, 'Si': 1}	{'Co': 5, 'Si': 3}	{'Al': 2}	1

surface named 0,traj converted into the number of elements in FNN / SNN_same / SNN_sub site

- ** Can change file name and path by running with argument (Default: _/data/fp.csv)
 ** python main.py --data-path {your_data_path}
- 5) ML model and Scaler used in training will be saved as ~/DSTAR/model/{current-date}/model.pkl & scaler.pkl

```
(base) [ahrehd0506@haber model]$ ls
2022-06-01/ 2022-06-02/ 2022-06-03/ 2022-07-13/
(base) [ahrehd0506@haber model]$ cd 2022-07-13/
(base) [ahrehd0506@haber 2022-07-13]$ ls
model.pkl scaler.pkl
```

3 – 1. Only Generation or Training

1) Only generate fingerprint by running with --convert-only argument (Default: False)

```
(base) [ahrehd0506@haber DSTAR]$ python train.py --convert-only Namespace(algo='total', atom_path='./atoms/', convert_only=True, th='./subs/fp/', test=False, test_ratio=0.2)

Initiate Conversion Atoms to Fingerprint...

100%|
Successfully Generate Fingerprint!
```

2) Only train model from existed fingerprint by running with —load-data —data-path {your_data_path} argument (data-path Default: ./data/fp.csv)

```
(base) [ahrehd0506@haber DSTAR]$ python train.py --load-data --data-path ./data/test.csv
Namespace(algo='total', atom_path='./atoms/', convert_only=False, data_path='./data/test.path='./subs/fp/', test=False, test_ratio=0.2)

Load Motif From test.csv...
Initiate Conversion Motifs to Fingerprint...
22it [00:00, 148.06it/s]
Successfully Generate Fingerprint!

2022-07-13 13:44:51,304 - INFO - Start Gradient Boosting Regression
2022-07-13 13:44:53,923 - INFO - Start Kernel Ridge Regression
2022-07-13 13:44:53,943 - INFO - Start ElasticNet Regression
```

3 – 2. Other Arguments

- 1) Change input trajectory files path for training by running with --atom-path {your_atom_path} argument (Default: ./atoms/)
- 2) Adjust the train / test ratio by running with -test-ratio {test_ratio} argument (Default : 0.2)
- 3) Change ML algorithm by running with —algo {algorithm} argument (Default: Use all and choose the best)

Available Algorithms: GBR / KRR / ELN / SVR / GRP

4. Fingerprint Substitution

- 1) Substitute elements in the fingerprint file generated from previous process
- 2) Run python subs.py in ~/DSTAR/. Successful if displayed as below image

```
(base) [ahrehd0506@haber DSTAR]$ python subs.py
Namespace(bi_only=False, data_path='./data/fp.csv', get_bi=False, subs_path='./subs/fp/', subs_type='comb')
Initiate Active Motif Subsititution
100%|
Successfully Generate New Active Motifs!!
```

- 3) Substituted fingerprints files will be saved in
 ~/DSTAR/subs/{your_subs_path}/ (Default : ~/DSTAR/subs/fp/)

```
(base) [ahrehd0506@haber fp]$ ls
Ag_Ag.csv Al_Al.csv As_Au.csv Au_Cu.csv Co_In.csv Cr_Os.csv Cu_Ru.csv Fe_W.csv Ge_Os.csv
Ag_Al.csv Al_As.csv As_Co.csv Au_Fe.csv Co_Ir.csv Cr_Pb.csv Cu_Sb.csv Fe_Zn.csv Ge_Pb.csv
```

4 – 1. Elements & Substitution Type Selection

1) Can change elements for substitution by modifying el_set_A / el_set_B list in Line 31~34 from ~/DSTAR/sub.py

- 2) Select substitution type by running with --subs-type {subs_type} argument (Default : comb)
- comb : Combination N elements in el_set_A (√∏₂)
- prod : Product between el_set_A and el_set_B
- ex) If you want substitute with combination between Metal +
 Chalcogen, modify like below image and use prod

4 – 2. Other Arguments

- 1) Change substituted fingerprint save path by running with --subs-path {your_subs_path} argument (Default: ./subs/fp/)
- 2) Substitute without unary materials ($_NC_2$) by running with —bi-only argument (Default : False)
- 3) Extract original fingerprint only with binary materials by running with -get-bi argument (Default: False)

(Automatically substitute only binary without this arg.)

Extracted fingerprint only with binary materials saved as {your_data_path}/{data_name}_binary.csv (Default : ./data/fp_binary.csv)

5. Target Prediction from Substituted Fingerprint

1) Run python train.py --test --model-path {your_model_path} in ~/DSTAR/. Successful if displayed as below image.

```
(base) [ahrehd0506@haber DSTAR]$ python train.py --test --model-path ./model/2022-07-13/
Namespace(algo='total', atom_path='./atoms/', convert_only=False, data_path='./data/fp.cs
3/', subs_path='./subs/fp/', test=True, test_ratio=0.2)

Load Model 2022-07-13
Initiate Screening...
100%|
Successfully Predict Ideal Surface Density!!
```

- * model path argument must be included
- 2) pred column (predicted target value will be added in fingerprint files in
 {your_subs_path}

I		name	FNN	Same	Sub	target	pred			
Ì	0	5	{'Ag': 1}	{'Ag': 2}	{'Ag': 1}	0	4	_	L	There are two same ids because both
	1	5	{'Ag': 1}	{'Ag': 2}	{'Ag': 1}	0	4			A _x B _y / B _x A _y are substituted from one material
										^ J - ^ J

4) dens.csv file will be generated in ~/DSTAR/, which contains elements and density column.

desnity indicates the ratio of surfaces with predicted target value within desire target range. -> higher, the better activity.

- Set desire target for ideal surface by running with
 --desire-target {target_value} argument
 (Default: -0.67, Ideal CO binding energy for CO2RR)
- Set target error range for ideal surface by
 running with —desire-range {range_value} argument
 (Default: ± 0.1)

D
density
0
0
0
0
0
0
0
0
0
0
0