Triangulating Exotic 4-Manifolds

Rhuaidi Burke

University of Queensland

rhuaidi.burke@uq.edu.au

June 7, 2021

Outline

- The Wild World of 4-Manifolds
- 2 Crystallisation Theory
- Results
- 4 Ongoing Research

4-Manifolds are spaces which are locally modelled on \mathbb{R}^4 :

• A basic problem of topology is the classification of manifolds.

- A basic problem of topology is the classification of manifolds.
- In dimensions ≤ 3, the behaviour of manifolds is captured geometrically (e.g. compact orientable surfaces are classified by their genus).

- A basic problem of topology is the classification of manifolds.
- In dimensions ≤ 3, the behaviour of manifolds is captured geometrically (e.g. compact orientable surfaces are classified by their genus).

• In dimensions \geq 5, algebra and surgery theory take over.

- A basic problem of topology is the classification of manifolds.

- In dimensions \geq 5, algebra and surgery theory take over.
- The situations is quite different in four dimensions...

ullet Any finitely representable group can appear as π_1 of a 4-manifold.

- Any finitely representable group can appear as π_1 of a 4-manifold.
- Determining whether two finitely presented groups are isomorphic is **undecidable** (cf. **Adyan-Rabin** (1955)). Consequently...

- Any finitely representable group can appear as π_1 of a 4-manifold.
- Determining whether two finitely presented groups are isomorphic is **undecidable** (cf. **Adyan-Rabin** (1955)). Consequently...

Theorem 1 (Markov, 1960)

There is no algorithm that can tell whether two arbitrary closed 4-manifolds are diffeomorphic.

- Any finitely representable group can appear as π_1 of a 4-manifold.
- Determining whether two finitely presented groups are isomorphic is **undecidable** (cf. **Adyan-Rabin** (1955)). Consequently...

Theorem 1 (Markov, 1960)

There is no algorithm that can tell whether two arbitrary closed 4-manifolds are diffeomorphic.

• Simply-connected *topological* 4-manifolds have been classified by **Freedman** (1982).

- Any finitely representable group can appear as π_1 of a 4-manifold.
- Determining whether two finitely presented groups are isomorphic is undecidable (cf. Adyan-Rabin (1955)). Consequently...

Theorem 1 (Markov, 1960)

There is no algorithm that can tell whether two arbitrary closed 4-manifolds are diffeomorphic.

- Simply-connected *topological* 4-manifolds have been classified by **Freedman** (1982).
- Dimension 4 is the first dimension in which the distinction between topological and smooth manifolds appear.

- Any finitely representable group can appear as π_1 of a 4-manifold.
- Determining whether two finitely presented groups are isomorphic is **undecidable** (cf. **Adyan-Rabin** (1955)). Consequently...

Theorem 1 (Markov, 1960)

There is no algorithm that can tell whether two arbitrary closed 4-manifolds are diffeomorphic.

- Simply-connected *topological* 4-manifolds have been classified by **Freedman** (1982).
- Dimension 4 is the first dimension in which the distinction between topological and smooth manifolds appear.
- Smooth 4-manifolds remain something of a mystery.

Exotic Structures

Exotic Manifolds

Smooth manifolds M and N, are exotic if M and N are homeomorphic but not diffeomorphic.

Key Idea: If M and N are an exotic pair, we can *continuously* deform M into N and vice versa, but we can't do it *smoothly*!

Fact: \mathbb{R}^n admits a unique smooth structure for $n \neq 4$, but \mathbb{R}^4 admits uncountably many distinct smooth structures.

Exotic Structures

Same when viewed topologically...

Exotic Structures

...different beasts differentiably.

Big Picture Motivation

Theorem 2 (Generalised Poincaré Conjecture)

Fix a category of manifold: TOP (topological), PL (piecewise-linear) or DIFF (differentiable). Then every closed n-manifold homotopy equivalent to the n-sphere in the chosen category is isomorphic in the chosen category to the standard n-sphere.

Big Picture Motivation

Theorem 2 (Generalised Poincaré Conjecture)

Fix a category of manifold: TOP (topological), PL (piecewise-linear) or DIFF (differentiable). Then every closed n-manifold homotopy equivalent to the n-sphere in the chosen category is isomorphic in the chosen category to the standard n-sphere.

- Theorem 2 known to be either true or false, depending on category of manifold, as well as the dimension:
 - TOP: True in all dimensions.
 - PL: True in dimensions other than 4 where it is currently unsettled (as of 2021).
 - DIFF: False in general. True in dimensions 1, 2, 3, 5 and 6. The first known counterexample is in dimension 7. Unknown in dimension 4 where DIFF is equivalent to PL.

Big Picture Motivation

Theorem 2 (Generalised Poincaré Conjecture)

Fix a category of manifold: TOP (topological), PL (piecewise-linear) or DIFF (differentiable). Then every closed n-manifold homotopy equivalent to the n-sphere in the chosen category is isomorphic in the chosen category to the standard n-sphere.

- Theorem 2 known to be either true or false, depending on category of manifold, as well as the dimension:
 - TOP: True in all dimensions.
 - PL: True in dimensions other than 4 where it is currently unsettled (as of 2021).
 - DIFF: False in general. True in dimensions 1, 2, 3, 5 and 6. The first known counterexample is in dimension 7. Unknown in dimension 4 where DIFF is equivalent to PL.
- Finding an exotic \mathbb{S}^4 would be a counterexample to the smooth Poincaré conjecture and would be the final brick in this particular wall.

Hope

Theorem 3 (Whitehead)

Every smooth manifold is uniquely triangulizable (admits a PL structure).

Theorem 4 (Hirsch-Mazur, Cerf, et. al.)

For $n \le 6$, PL-manifolds can be smoothed (admit a smooth structure).

So in particular, PL and smooth structures are equivalent for 4-manifolds.

Hope: Gain an understanding of exotic 4-manifolds via combinatorial/computational methods.

- A knot K is a copy of \mathbb{S}^1 embedded in \mathbb{S}^3 , considered up to isotopy.
- A link is a disjoint union of (possibly interlinking) knots.

- A framing on a knot is a choice of trivialisation of the normal (disk) bundle νK .
- Framings are parameterised by the number of times, $c \in \mathbb{Z}$, a tubular neighbourhood of the knot "twists" around the knot.

Let (L, c) be a framed link, with I components, and $c = (c_1, \ldots, c_I)$.

We build a 4-manifold, called the 2-handlebody (or link trace) associated to (L,c) via

$$M^{4}(L,c)=D^{4}\cup_{\varphi}(H_{1}\cup\cdots\cup H_{l}),$$

where $H_i = D^2 \times D^2$, and

$$\varphi_i: \partial D^2 \times D^2 \to \partial D^4$$

is such that:

- $\phi_i(\mathbb{S}^1 \times \{0\}) = L_i$, and
- L_i has linking number c_i with $\phi_i(\mathbb{S}^1 \times \{x\})$, $\forall x \in D^2 \setminus \{0\}$ (i.e. has framing c_i).

Key Idea: These are 4-manifolds we can visualise as link diagrams decorated with integers on each component.

Exotic Homotopy $\overline{\mathbb{CP}^2}_0$ (Akbulut, 1991).

Exotic Homotopy $\mathbb{S}^2 \times D^2 - D^4$ (Yasui, 2015).

Exotic "Nuclei" of the Elliptic Surface E(n), $(n \ge 3 \text{ odd})$ (Gompf, 1991).

Exotic Homotopy $\mathbb{C}P^2\#2\overline{\mathbb{C}P^2}-D^4$ (Naoe, 2017).

• We have many examples (and diagrams) of exotic 4-manifolds in the smooth setting...

- We have many examples (and diagrams) of exotic 4-manifolds in the smooth setting...
- But combinatorial representatives of these same manifolds are almost non-existent!

- We have many examples (and diagrams) of exotic 4-manifolds in the smooth setting...
- But combinatorial representatives of these same manifolds are almost non-existent!
- One readily available example, due to **Kronheimer** and **Mrowka** (1994): $(\mathbb{R}P^4 \# K3, \mathbb{R}P^4 \# 11(S^2 \times S^2))$.
- Have triangulations of $\mathbb{R}P^4$, K3 and $S^2 \times S^2$, so easy to construct the above example.

- We have many examples (and diagrams) of exotic 4-manifolds in the smooth setting...
- But combinatorial representatives of these same manifolds are almost non-existent!
- One readily available example, due to **Kronheimer** and **Mrowka** (1994): $(\mathbb{R}P^4 \# K3, \mathbb{R}P^4 \# 11(S^2 \times S^2))$.
- Have triangulations of $\mathbb{R}P^4$, K3 and $S^2 \times S^2$, so easy to construct the above example.
- Main Problem: No systematic way of generating triangulations of (exotic) 4-manifolds.

- Crystallisation theory allows us to represent PL-manifolds by edge-coloured graphs.
- An (n+1)-coloured graph (Γ, γ) consists of:
 - A finite multigraph $\Gamma = (V, E)$,
 - A surjective map $\gamma: E \to \Delta_n$, where $\Delta_n = \{0, \dots, n\}$ is a set of colours, and we have $\gamma(e) \neq \gamma(f)$ whenever e and f are adjacent.

• Construct a triangulation of a PL *n*-manifold from (Γ, γ) :

- Construct a triangulation of a PL *n*-manifold from (Γ, γ) :
 - For each node $v \in V(\Gamma)$, take an *n*-simplex and label its vertices by Δ_n .

- Construct a triangulation of a PL *n*-manifold from (Γ, γ) :
 - For each node $v \in V(\Gamma)$, take an *n*-simplex and label its vertices by Δ_n .

• If $u, v \in V(\Gamma)$ are joined by a c-coloured edge, identify the (n-1)-facets of $\sigma(u)$ and $\sigma(v)$ opposite to the c-labelled vertices such that equally labelled vertices coincide.

Casali (2000) described an algorithm for producing a coloured graph representing $M^4(L,c)$ directly from its link diagram, however no implementation was available.

Results

- We have now implemented this algorithm (in C++).
- This provides a systematic way of quickly generating triangulations of 2-handlebodies.
- In particular this has allowed us to generate triangulations of the exotic 4-manifold pairs shown before.

Manifold	Vertices	Edges	Triangles	Tetrahedra	Pentachora
$\overline{A_1}$	5	72	206	207	70
A_2	5	156	458	459	154
$\overline{Y_1}$	5	440	1310	1311	438
Y_2	5	508	1514	1515	506
N_1	7	88	254	258	88
N_2	7	144	422	426	144
$\overline{W_1}$	7	62	228	280	112
W_2	7	64	236	290	116

Ongoing Research

- Find more exotic 2-handlebodies.
- Construct minimal examples.
- Extend to a wider class of 4-manifold (e.g. 4-manifolds with 1-handles).
- Investigation of corks and related objects (currently understood as what can give rise to "exoticness") in a purely PL/computational setting.
- Investigation into computationally feasible PL invariants.

Thank You