Recall that if $\vec{u} = (u_1) * \vec{v} : (v_1) * (v_2)$ are Such that $\vec{v} : d\vec{u} d : Scalar$ we called $\vec{u} * \vec{v}$ as linearly dependent vectors.

If not, we call $\vec{u} * \vec{v}$ as l i vectors.

Ex: $\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \times \vec{v} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ Can we express $\vec{v} = \vec{v} = \vec{v$

7 & v are along the Same direction & the vector w is in a diff direction $\vec{W} \stackrel{?}{=} \alpha_1 \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \alpha_2 \left(\begin{array}{c} 2 \\ 0 \end{array} \right)$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \stackrel{?}{=} \alpha_1 \begin{pmatrix} 1 \\ 6 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 & \alpha_2 \\ 0 \end{pmatrix}$

(1) = $(\alpha_1 + 2\alpha_2)$ No way to get $(\alpha_1(0) + \alpha_2(0))$ $2^{n\partial}$ coordinate of $(\alpha_1(0) + \alpha_2(0))$ $2^{n\partial}$ coordinate of $(\alpha_1 + \alpha_2)$ $2^{n\partial}$ $2^{n\partial}$ coordinate of $(\alpha_1 + \alpha_2)$ $2^{n\partial}$ coordinate of $(\alpha_1 + \alpha_2)$ $2^{n\partial}$ $2^{n\partial}$ $2^{n\partial}$ coordinate of $(\alpha_1 + \alpha_2)$ $2^{n\partial}$ $2^{n\partial}$

Ex:
$$\vec{u}$$
: $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ \vec{v} : $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ \vec{v} : $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ \vec{v} : $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ \vec{v} : \vec{v} :

$$A = 2\alpha_1 + 1\alpha_2$$
 Solving this
 $5 = \alpha_1 + 2\alpha_2$ We get
 $\alpha_1 = 1 \quad \alpha_2 = 2$. $\alpha_1 = 1, \alpha_2 = 2$

If i * i are perpendicular then

the Sum of products of their to components is zero $\vec{u} \cdot \vec{v} = 0$ $\vec{v} \cdot \vec{v} = 0$ Note: If $\vec{u} = (u_1)$ is a vector $\vec{u} = 0$ and we want a vector perferd.

to \vec{u} , $u_1 v_1 + u_2 v_2 = 0$ $\vec{u} : (-u_2)$ $\vec{u}_1 (-u_2) + u_2 (u_1) = 0$ Dot product returns a scalar $\vec{u} : Scalar product$ $\vec{u} : (u_1) \Rightarrow (u_1)^{2 \times 1} \text{ matrix}$ $\vec{u} : (u_1) \Rightarrow (u_1)^{2 \times 1} \text{ matrix}$

 $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} & 2x_1 \text{ matrix}$ $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2$ $= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} v_1 \end{bmatrix} - \begin{bmatrix} v_2 \\ v_2 \end{bmatrix}$ $(\vec{u} \cdot \vec{v}) = u^T v = v^T u = \vec{v} \cdot \vec{u}$ If the vectors are perpendicular then $\vec{u} \cdot \vec{v} = u^T v = v^T u = \vec{v} \cdot \vec{u} = 0$

How do we find the angle b/w in v?