REAL ANALYSIS

Section 1.5 Construction of the Real Numbers

Exercise 1.5.1

Show that for any $a, b \in \mathbb{Q}$, we have $||a| - |b|| \le |a - b|$.

Proof. Since $a, b \in \mathbb{Q}$,

$$|a+b| \le |a| + |b|$$

So

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$|b| = |a + b - a| \le |b - a| + |a|$$

These can be rewritten as

$$|a| - |b| \le |a - b|$$

$$|b| - |a| \le |b - a|$$

Since |a - b| = |b - a| and if $t \ge x$ and $t \ge -x$ then $t \ge |x|$, therefore

$$||a| - |b|| \le |a - b|$$

Exercise 1.5.5

If a sequence $(a_k)_{k\in\mathbb{N}}$ converges in \mathbb{Q} show that $(a_k)_{k\in\mathbb{N}}$ is a Cauchy sequence in Q.

Proof. By definition if $(a_k)_{k\in\mathbb{N}}$ converges in \mathbb{Q} given any rational number r > 0 there exists an integer N such that if $n \ge N$ then $|a_n - a| < r$.

Suppose $(a_k)_{k\in\mathbb{N}}$ converges to $a, a \in \mathbb{Q}$. Let r > 0, since $(a_k)_{k\in\mathbb{N}}$ converges to a, $\exists N$ such that $\forall n \geq N$, $|a_n - a| < \frac{r}{2}$.

Then $\forall n, m > N$

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_m|$$

Since n > N and m > N

$$|a_n-a|<\frac{r}{2}$$

and

$$|a-a_m|=|a_m-a|<\frac{r}{2}$$

therefore

$$|a_n - a_m| < \frac{r}{2} + \frac{r}{2} = r$$

Absolute values on Q satisfy the Triangle Inequality