Results are obtained with h_0^P estimated

$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS, } h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \textbf{WITH } \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \textbf{ FROM MLE UNDER P AND UPDATED UNDER Q}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	8.5029e - 08 $(4.4877e - 07)$ $4.8556e - 10$	9.2714e - 06 $(2.7968e - 05)$ $1.1932e - 09$	1.9246e - 07 $(1.0856e - 06)$ $9.6775e - 10$	2.2129e - 06 $(6.4184e - 06)$ $1.6296e - 09$	1.9389e - 06 $(6.6239e - 06)$ $1.4218e - 09$	4.1610e - 07 $(2.4952e - 06)$ $1.6699e - 09$	5.9987e - 07 (2.9189 $e - 06$) 8.8906e - 10	3.5299e - 07 (2.0142 $e - 06$) 3.4979e - 10	5.5812e - 07 $(2.7146e - 06)$ $6.2288e - 10$
$lpha \ ext{std} \ ext{median}$	2.5394e - 05 $(2.2029e - 05)$ $1.7658e - 05$	2.1003e - 05 $(2.0947e - 05)$ $1.9181e - 05$	1.8778e - 05 $(1.6410e - 05)$ $1.2068e - 05$	1.3908e - 05 $(1.1489e - 05)$ $1.2723e - 05$	1.3646e - 05 $(8.5375e - 06)$ $1.3239e - 05$	1.3883e - 05 $(5.9109e - 06)$ $1.3217e - 05$	1.3858e - 05 $(8.0356e - 06)$ $1.3228e - 05$	8.2692e - 06 (4.8704e - 06) 8.3302e - 06	1.5954e - 05 $(9.4418e - 06)$ $1.4242e - 05$
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.5032 (0.3188) 0.5759	0.3363 (0.3212) 0.3823	0.4882 (0.3411) 0.5857	$0.3724 \\ (0.3801) \\ 0.3025$	0.1836 (0.2898) 0.0003	0.1643 (0.2274) 0.0007	0.2466 (0.3159) 0.0018	0.1768 (0.3270) 0.0001	0.2450 (0.3193) 0.0023
$\gamma^* \ ext{std} \ ext{median}$	152.7405 (136.5742) 112.0207	213.9027 (168.6915) 155.9251	178.3425 (140.6359) 147.8898	268.5595 (295.7190) 169.4020	254.9716 (239.7515) 202.0041	221.9130 (41.5011) 228.8470	209.9787 (73.9368) 208.6253	301.8938 (189.9283) 261.8796	202.9867 (132.2615) 167.7543
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{std} \ & \mathbf{median} \end{aligned}$	1.2504e - 04 $(8.4350e - 05)$ $1.0398e - 04$	1.6094e - 04 $(1.0127e - 04)$ $1.3887e - 04$	8.8020e - 05 (3.9993e - 05) 7.9893e - 05	6.3516e - 05 $(3.0169e - 05)$ $5.2671e - 05$	6.4968e - 05 (3.7802e - 05) 5.4472e - 05	1.0677e - 04 $(5.3934e - 05)$ $8.9209e - 05$	9.4593e - 05 (6.6163e - 05) 6.9330e - 05	4.2065e - 05 $(2.5624e - 05)$ $3.6036e - 05$	1.2042e - 04 $(9.2499e - 05)$ $1.0226e - 04$
persistency std median	0.8400 (0.1471) 0.8873	0.8357 (0.1267) 0.8444	0.8048 (0.2039) 0.8985	0.7215 (0.2405) 0.7596	0.6850 (0.2211) 0.7232	0.7899 (0.0938) 0.7879	0.7567 (0.1574) 0.7342	0.6880 (0.2170) 0.7017	0.6960 (0.1905) 0.7484
MSE	1.1660	4.6442	2.4437	4.3159	7.5939	6.1701	10.7231	20.7106	13.3130
IVRMSE	0.0633	0.0921	0.0863	0.0894	0.0927	0.0927	0.1089	0.1237	0.0887
MAPE	0.0734	0.0906	0.1179	0.1315	0.1531	0.1484	0.1669	0.2416	0.1395
OptLL	216.3430	211.5388	252.2146	334.4711	356.0208	438.7128	515.4908	559.3221	688.0683