CIS 360 Lab #5 Appendix

Note: Following the textbook, [1..n] indexing is presented; most implementation languages use [0..n-1].

Adjacency Matrix - represents graphs using an array (*examples below*). Used by algorithms 3.4, 3.5.

W[i][j] = distance from vertex i to vertex j.

Directed vs undirected graphs:

W	1	2	3	4
1	0	5	8	8
2	∞	0	4	∞
3	∞	∞	0	9
4	8	8	8	0

W	1	2	3	4
1	0	5	8	8
2	5	0	4	8
3	∞	4	0	9
4	8	8	9	0

Floyd's algorithm

The algorithm works by adding intermediate vertices one-by-one and checking if these intermediate vertices improve any of the current shortest paths. $D^{(k)}$ represents the shortest paths using (1, 2, ..., k) as intermediate vertices.

D(0)	1	2	3	4	
1	0	10	1	8	
2	∞	0	∞	8	
3	∞	∞	0	2	
4	∞	3	∞	0	
$D^{(0)} = W.$					

D(1)	1	2	3	4
1	0	10	1	8
2	8	0	∞	8
3	∞	∞	0	2
4	∞	3	∞	0

No paths can be improved using vertex 1.

D ⁽²⁾	1	2	3	4
1	0	10	1	∞
2	8	0	∞	∞
3	∞	∞	0	2
4	8	3	8	0

No paths can be improved using vertex 2.

D(3)	1	2	3	4
1	0	10	1	3
2	8	0	8	8
3	∞	∞	0	2
4	∞	3	8	0

The path from vertices 1 to 4 is improved using vertex $3 (\infty \rightarrow 3)$.

D ⁽⁴⁾	1	2	3	4
1	0	6	1	3
2	∞	0	∞	∞
3	∞	5	0	2
4	∞	3	8	0

The path from vertices 1 to 2 is improved using vertex 4 ($10\rightarrow6$).

The path from vertices 3 to 2 is improved using vertex 4 ($\infty \rightarrow 5$).

Test your solution on these 2 graphs:

Graph A: directed, n = 6.

Graph B: undirected, n = 6.

Pseudo code (from Neapolitan section 3.2):

W[i][j] is the original adjacency matrix. W[i][j] is the distance from vertex i to vertex j.

D[[]] contains our calculated shortest distances. D[i][j] contains the shortest distance from vertex i to vertex j.

P[][] is used to print the shortest paths. P[i][j] contains the last intermediate vertex on the shortest path from vertex i to vertex j (or 0 if there are no intermediate vertices).

Algorithm 3.4

```
void floyd2 (int n,
             const number W[][],
                   number D[][],
                   index P[][]
 index, i, j, k;
  for (i = 1; i \le n; i++)
     for (j = 1; j \le n; j++)
        P[i][j] = 0;
 D = W;
  for (k = 1; k \le n; k++)
     for (i = 1; i \le n; i++)
        for (j = 1; j \le n; j++)
           if (D[i][k] + D[k][j] < D[i][j]){
               P[i][j] = k;
               D[i][j] = D[i][k] + D[k][j];
           }
```

Algorithm 3.5

```
void path (index q, r)
{
    if (P[q][r] != 0){
        path(q, P[q][r]);
        cout << ''v'' << P[q][r];
        path(P[q][r], r);
    }
}</pre>
```