Correctness of subset construction

We will prove the following first.

Lemma

For any NFA A that has no ϵ transitions, there is an equivalent DFA B such that L(A) = L(B).

Recall the definition of $\hat{\delta}$

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with no ϵ moves.

Let $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$ be defined as follows:

Let $S \subseteq Q$

 $\hat{\delta}(S,\epsilon):=S$ If A has epsilon transitions, then $\hat{\delta}(S,\epsilon)$ will be defined accordinly

$$\hat{\delta}(S, xa) := \bigcup_{q \in \hat{\delta}(S, x)} \delta(q, a)$$

Properties of $\hat{\delta}$

Properties of $\hat{\delta}$

- (P_1) For any $a \in \Sigma$, $S \subseteq Q$, $\hat{\delta}(S, a) = \bigcup_{q \in \hat{\delta}(S, \epsilon)} \delta(q, a)$.
- (P_2) For any $x,y\in \Sigma^*,\ S\subseteq Q,\ \hat{\delta}(S,xy)=\hat{\delta}\left(\hat{\delta}(S,x),y\right).$
- (P_3) For any $S_1, S_2, \ldots, S_k \subseteq Q$, $x \in \Sigma^*$, $\hat{\delta}(\bigcup_i S_i, x) = \bigcup_i \hat{\delta}(S_i, x)$.

Definition (of $\hat{\delta}$)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with no ϵ moves.

Let $\hat{\delta}: 2^{\hat{Q}} \times \Sigma^* \to 2^{Q}$ be defined as follows:

Let $S \subseteq Q$

 $\hat{\delta}(S, \epsilon) := S$

 $\hat{\delta}(S, xa) := \bigcup_{q \in \hat{\delta}(S, x)} \delta(q, a)$

Lemma

For all $w \in \Sigma^*$ and for all $S \subseteq Q$, $\hat{\delta}'(S, w) = \hat{\delta}(S, w)$.

Proof of correctness

Lemma

For all $w \in \Sigma^*$ and for all $S \subseteq Q$, $\hat{\delta}'(S, w) = \hat{\delta}(S, w)$.

Proof.

Base case: Let $w = \epsilon$.

$$\hat{\delta}'(S,\epsilon) = \hat{\delta}(S,\epsilon)$$

Induction step: Let $w = x \cdot a$

$$\hat{\delta}'(S, w) = \hat{\delta}'\left(\hat{\delta}'(S, x), a\right) \qquad \qquad \text{By } (P_2)$$

$$= \hat{\delta}'\left(\hat{\delta}(S, x), a\right) \qquad \qquad \text{By Induction hypothesis}$$

$$= \hat{\delta}\left(\hat{\delta}(S, x), a\right) \qquad \qquad \text{By def'n of } \hat{\delta}$$

$$= \hat{\delta}(S, w) \qquad \qquad \text{By } (P_2)$$

Hanlding the ϵ moves

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{c} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Example

