

Aleksa Pulai RA22/2020 Đorđe Ristić RA16/2020 Katarina Topolić RA164/2020 Petar Popov RA24/2020 Istorija nafte

- Nafta je posle vode najzastupljenija tečnost na Zemlji
- Koristi se već nekoliko hiljada godina
- 1859. godine Edwin Drake, Pensilvanija

Hemijski sastav

- Sirova nafta sadrži molekule ugljovodonika i drugih jedinjenja
- Cilj prerade nafte je da se fizičkim i hemijskim procesima dobije derivat željenih karakteristika
 - Određene gustine
 - Toplotne moći
 - Temperature paljenje

Inicijalna separacija

- Obavlja se na bušotini
- Priprema sirovu naftu za transport do rafinerije
- Izdvajanje gasa (dvofazni separator)
- Izdvajanje vode (trofazni separator)
- Treba nam niska relativna gustina i nizak sadržaj sumpora

Destilacija

 Primarna metoda za razdvajanje mešavine ugljovodonika u sirovoj nafti na razlicite frakcije u zavisnosti od njihovih tački ključanja

- 1. Zagrevanje sirove nafte
- Separacija u destilacionom tornju
- Prikupljanje izdvojenih frakcija
- 4. Dalje procesovanje teških ostataka

- Prednosti:
 - Efikasnost separacije
 - Može da obradi velike količine sirove nafte
- Mane:
 - Zahteva puno energije kako bi se postigle visoke temperature
 - Uticaj na okolinu
 - Kompleksnost

Katalitički kreking

Razbijanje molekula ugljovodonika u manje, vrednije (benzin, dizel...)

- 1. Priprema sirovine
- 2. Reaktor
- 3. Separacija produkata
- 4. Frakcionisanje
- 5. Regeneracija katalizatora

- Prednosti:
 - o Bolji kvalitet proizvoda
 - Efikasnost
 - Zahteva manje dodatne prerade
- Mane:
 - Cena katalizatora
 - Zagađenje

Alkilacija

• Proces za proizvodnju visokooktanskog benzina

- 1. Priprema sirovine
- 2. Reaktor
- 3. Separacioni proces
- 4. Frakcionisanje

- Prednosti:
 - Dobija se kvalitetan proizvod
 - Efikasnost procesa
- Mane:
 - o Bezbednosni rizik
 - Cena opreme

Hidrodesulfurizacija

Hidrodesulfurizacija (HDS) je ključni proces u rafiniranju nafte koji se koristi za uklanjanje sumpora iz naftnih derivata, kao što su benzin, dizel i drugi.

Ovaj proces je od vitalnog značaja za smanjenje emisija sumpor-dioksida (SO₂) koje nastaju tokom sagorevanja goriva, što pomaže u smanjenju zagađenja vazduha i negativnih uticaja na okolinu.

Proces Hidrodesulfurizacije

- 1. Priprema sirovine:
- 2. Reakcija s vodonikom
- 3. Katalitička konverzija
- 4. Separacija
- 5. Obrada vodonik-sulfida

Prednosti Hidrodesulfurizacije

- Ekološke koristi: Značajno smanjenje emisija SO₂ koje doprinosi smanjenju kiselih kiša i zagađenja vazduha.
- Kvalitet goriva: Poboljšanje kvaliteta goriva čime se smanjuje habanje motora i emisija štetnih gasova.
- Regulatorna usklađenost:
 Pomoć rafinerijama da ispune stroge ekološke standarde i propise.

Izazovi

- Visoki troškovi: Proces hidrodesulfurizacije je energetski intenzivan i skup zbog upotrebe vodonika i specijalizovanih katalizatora.
- Katalitički problemi: Katalizatori se s vremenom troše i zagađuju, te ih je potrebno redovno menjati ili regenerisati.
- Složena tehnologija: Zahteva sofisticiranu opremu i pažljivo upravljanje procesom.

Katalitički reforming

Katalitički reforming je proces koji se koristi u rafinerijama za poboljšanje kvaliteta benzina i proizvodnju visokooktanskih benzinskih komponenti, kao i za proizvodnju aromatičnih ugljovodonika i vodonika.

Ovaj proces igra ključnu ulogu u modernim rafinerijama zbog svoje sposobnosti da poboljša karakteristike goriva i podrži druge procese u rafineriji.

Proces Katalitičkog Reforminga

- Ulazna sirovina
- 2. Pred tretman:
- 3. Reakcioni deo
- 4. Reakcije u reaktoru:
 - Dehidrogenacija naftena do aromata
 - Izomerizacija parafina:
 - Ciklizacija parafina:
- 5. Separacija
- 6. Korišćenje vodonika

Prednosti Katalitičkog Reforminga

- Poboljšan oktanski broj: Proizvodnja visokooktanskih komponenti koje su ključne za kvalitet benzina.
- Proizvodnja aromata: Važni za petrohemijsku industriju, uključujući benzen, toluen i ksilene.
- Proizvodnja vodonika: Ključan za mnoge procese unutar rafinerije, posebno za hidroprocesiranje.

Izazovi i Problemi

- Trošak katalizatora: Platina i drugi plemeniti metali su skupi, a katalizator se mora redovno regenerisati ili zameniti.
- Trovanje katalizatora: Prisustvo sumpora, azota ili drugih zagađivača može deaktivirati katalizator.
- Energetski zahtevi: Proces je energetski intenzivan zbog potrebne visoke temperature.

Proces Bleding

Proces blendovanja, ili sekundarna obrada, je ključan korak u proizvodnji finalnih naftnih derivata u rafinerijama.

Ovaj proces se koristi za mešanje različitih komponenti i aditiva kako bi se postigli željeni kvalitet i specifikacije goriva kao što su benzin, dizel, i mazut .

Ključni Aspekti Procesa Blendovanja

- Sirovine i Komponente: Proces mešanja koristi različite naftne frakcije i komponente koje su proizvedene tokom primarne obrade (destilacije, krekovanja, reforminga, itd.). Svaka frakcija ima specifična svojstva koja doprinosi krajnjem proizvodu.
- 2. Dodavanje Aditiva: Aditivi se dodaju kako bi se poboljšale performanse i karakteristike goriva. Primeri uključuju oktanska i cetanska poboljšivača, deterdžente, stabilizatore, inhibitore korozije, antioksidante i antistatičke aditive.
- 3. Ciljane Specifikacije: Cilj blendovanja je postizanje preciznih specifikacija koje su propisane standardima i regulativama. Ovo uključuje oktanski broj za benzin, cetanski broj za dizel, tačku paljenja, sadržaj sumpora, gustinu i druge važne parametre.

Proces Mešanja

- 1. Planiranje i Recepture:
- 2. Mešanješanje se može obaviti u serijama (batch blending) ili kontinuirano (in-line blending).
 - Batch blending: Svi sastojci se dodaju u rezervoar i mešaju dok se ne postigne homogena smeša.
 - In-line blending: Komponente se mešaju dok prolaze kroz cevi i ventile, omogućavajući kontinuiran protok i mešanje.
- 3. Kontrola Kvaliteta: Tokom i nakon mešanja, uzimaju se uzorci i analiziraju kako bi se osiguralo da konačni proizvod ispunjava sve specifikacije. Ovo može uključivati laboratorijske analize i upotrebu on-line senzora.
- Ispravljanje i Podešavanje: Ako rezultati analize pokažu da proizvod ne ispunjava određene kriterijume, dodaju se dodatne komponente ili aditivi kako bi se postigle potrebne karakteristike.
- 5. Skladištenje i Distribucija: Nakon završetka mešanja, gotovi proizvodi se skladište u rezervoarima pre nego što budu transportovani do tržišta.

Prednosti i Izazovi Blendovanja

Prednosti:

- Fleksibilnost: Omogućava rafinerijama da odgovore na različite zahteve tržišta i prilagode proizvodnju sezonskim promenama ili specifičnim potrebama.
- Optimizacija: Omogućava optimalno korišćenje različitih frakcija i minimizaciju otpada.
- Kontrola Kvaliteta: Precizna kontrola nad finalnim proizvodom osigurava da goriva ispunjavaju regulative i standarde kvaliteta.

Izazovi:

- Kompleksnost: Zahteva sofisticirane sisteme za kontrolu procesa i kvalitetne laboratorijske analize.
- Troškovi: Dodavanje aditiva i korišćenje napredne opreme povećava troškove.
- Regulatorne Promene: Stalne promene u regulativama zahtevaju stalnu prilagodbu i ažuriranje recepata.

ZAŠTITA U NAFTNOPRERAĐIVAČKOJ INDUSTRIJI

Bezbednost Radnika

- Obuka i Edukacija: Redovna obuka zaposlenih o bezbednosnim procedurama, korišćenju zaštitne opreme i hitnim postupcima. Kontinuirana edukacija koja uključuje najnovije bezbednosne protokole i tehnike, te specijalizovana obuka za specifične zadatke, poput rada u zatvorenim prostorima i rukovanja opasnim materijalima.
- Zaštitna Oprema (PPE): Obavezna upotreba zaštitne opreme kao što su kacige, naočare, rukavice, zaštitne cipele i respiratori. Oprema mora biti standardizovana i redovno proveravana.

Tehnološka Bezbednost

Redovno Održavanje

- Preventivno Održavanje: Implementacija programa za preventivno održavanje (PM) koji uključuje redovno proveravanje i zamenu delova pre nego što dođe do kvara.
- Prediktivno Održavanje: Korišćenje tehnologija kao što su senzori i analitika podataka za predviđanje i prevenciju potencijalnih kvarova.

Automatizacija i Kontrola

- SCADA Sistemi: Korišćenje sistema za nadzor i akviziciju podataka (SCADA) za realno-vremensko praćenje i upravljanje operacijama u rafinerijama.
- Bezbednosni Sistemi: Implementacija sistema za hitno isključivanje (ESD) i sigurnosne interlocke koji automatski prekidaju rad u slučaju opasnosti.

Ekološka Zaštita

Upravljanje Otpadom

 Segregacija Otpada: Razdvajanje različitih vrsta otpada (npr. opasan, neopasan, reciklabilan) na izvoru.

Kontrola zagađenja

- Sistemi za Kontrolu Zagađenja: Upotreba elektrofilterskih sistema, ciklona, mokrih prečistača i drugih tehnologija za smanjenje emisija u vazduh.
- Kontinuirano Praćenje: Postavljanje monitora za kontinuirano praćenje emisija i korišćenje softvera za analizu podataka u realnom vremenu.

Klasifikacija Zona prema IEC Standardima

Klasifikacija zona u naftnopreradjivačkoj industriji prema IEC standardima (Međunarodna elektrotehnička komisija) odnosi se na identifikaciju i kategorizaciju područja u kojima mogu biti prisutne eksplozivne supstance. IEC standardi definišu ove zone kako bi se osigurala upotreba odgovarajuće opreme i sprovođenje bezbednosnih mera za prevenciju eksplozija i drugih opasno

Projekat - priprema gasa

Predmet projekta

- Zamena postojećih zastarelih pneumatskih regulacionih krugova na procesnim sudovima novim elektropneumatskim krugovima
- Proces pripreme gasa
- Kikinda 2018.
- Nova oprema omogućava lokalno i daljinsko upravljanje

Proces pripreme gasa

- Separator, apsorber, regenerator glikola
- Odvajanje gasne faze od tečne
- Apsorpcija vlage
- Regeneracija trietilen glikola

Separator

- Dvofazni, trofazni
- Niski, srednji i visoki pritisak

Separator

- Funkcija: dvofazni separator odvaja gasnu od tečne faze
- Ulazna smesa: smesa gasa i tečnosti (voda + ugljovodonični kondenzat)
- Odvajanje: U separator dolazi do odvajanja gasne faze od tečne usled razlike u gustini. (Gas se diže na vrh, tečnost ostaje na dnu)
- Izlazne struje:
 - Gasna faza: izdvojeni gas se usmerava prema apsorberu
 - Tečna faza:Tečnost, koja se sastoji od sloja vode i ugljovodoničnog kondenzata, ide u odgovarajuće rezervoare gde se dalje odvaja kondenzat od vode.
- Radna temperatura 10 40 °C, radni pritisak 42-45barg, protok do 0.5 m^3/h

• Pomoću trietilen glikola (TEG) uklanja vlagu iz gasa

- Gas, preko odvajača kapljica kondenzata, ulazi u apsorber
- Kontakt sa TEG-om: gas prolazi kroz slojeve trietilen glikola, koji apsorbuje vlagu iz gasa
- Izlazne struje:
 - Osušeni gas: nakon što je vlaga apsorbovana, osušen gas se usmerava u gasovod
 - Zasićeni TEG: Trietilen glikol zasićen vlagom se šalje u regenerator glikola
- Radna temperatura 20 50 °C, radni pritisak 42-45barg, protok 0.4 - 0.5 m^3/h

- Voda u gasu nije poželjna (stvaranje korozije i hidrata)
- Skraćenje veka gasovoda; ometanje transporta gasa, oštećenja filtera, ventila i kompresora kao i pucanje cevi

- Apsorpcija kontakt gasa sa tečnošću sa velikim afinitetom ka vodi
- Gas struji od dole ka gore, a apsorbens od gore ka dole
- Najčešće korišćen trietilen glikol izuzetna higroskopnost, laka regeneracija, stabilnost na radnoj temperaturi
- Nedostatak pri regeneraciji može doći do ispuštanja otrovne materije

- Proces apsorbcije se poboljšava
 - Povećanjem protoka TEG-a
 - Povećanjem pritiska gasne faze
 - Procesom regeneracije

Regenerator glikola

• Regeneracija zasićenog trietilen glikola (TEG)

Regenerator glikola

- Funkcija: uklanja vlagu iz zasićenog trietilen glikola kako bi ga pripremio za ponovno korišćenje
- Zagrevanje: zagrevanjem zasićenog TEG-a dovodi do isparavanja vlage
- Izlazne struje:
 - Regenerisani TEG: nakon uklanjanja vlage se vraća u apsorber
 - Isparena vlaga: ispušta se u atmosferu
- Radna temperatura 80 150 °C, radni pritisak atmosferski, protok do 0.5 m^3/h

Merni uređaji i izvršni organi

Separator

- Regulacioni ventil sa pneumatskim aktuatorom i I/P pozicionerom i transmiterom položaja ventila, kugla ventili za drenažu cevovoda i izolacioni ventili
- U by-pass grani ručni regulacioni ventil
- Izolovan radi održavanja radne temperature fluida
- Merenje nivoa sa magnetnim plovkom
- Manometar (0 100 bar)
- Termometar (0 100 °C)
- Oprema predviđena za rad u Ex zonama

- Regulacioni ventil sa pneumatskim aktuatorom i I/P pozicionerom i transmiterom položaja ventila, kugla ventili za drenažu cevovoda i izolacioni ventili
- U by-pass grani ručni regulacioni ventil
- Izolovan radi održavanja radne temperature fluida
- Merenje nivoa sa magnetnim plovkom
- Manometar (0 100 bar)
- Termometar (0 100 °C)
- Oprema predviđena za rad u Ex zonama

Regenerator glikola

- Y-strainer za filtriranje TEG-a od krupnijih čestica
- Merilo nivoa sa magnetnim plovkom sa indikatorima za nivo zasićenog i regenerisanog TEG-a
- Regulacija temperature regeneracije TEG-a, (zaštita od previsoke temperature regeneracije)
- Merenje protoka mehaničkim PD merilom (poseduje reedswitch visoke rezolucije)
- Merenje temperature sondom (-40 600°C)

Tehničke specifikacije

- Za svaki procesni sud poseban kontroler na koji je povezana sva oprema koja odgovara datom sudu (HART protokol)
- Integracija sa postojećim nadzorno upravljačkim sistemom u kontrolnoj sobi
- Potrebno predvideti prenaponsku zaštitu za ulazno/izlazne signale, zaštita od groma, svi kablovi moraju biti otporni na požar i testirani na otpornost prema gorenju, otporni na atmosferske uticaje i UV zračenja
- Potrebno obezbediti za svu mernu opremu i kontrolere nezavisno i neprekidno napajanje sa autonomijom od minimum 30 min

Tehničke specifikacije

- Predviđeno je prateće elektro grejanje na mernim i regulacionim linijama na separatoru i na apsorberu
- Elektro grejanje cevovoda i instrumenata nivoa se izvodi samoregulišućim grejnim kablovima tipa PSB 15
- Grejni kabl se fiksira za opremu sa standardnom aluminijumskom folijom i standardnim silikonskim armiranim trakama

Zaštita od eksplozije

- Zona 1 je mesto sa eksplozivnom atmosferom, sastavljenom od mešavine zapaljivih supstanci u obliku gasa, isparenja ili izmaglica, koje se mogu povremeno pojaviti u običajenim radnim uslovima.
- Zona 2 je mesto sa eksplozivnom atmosferom, sastavljenom od mešavine zapaljivih supstanci u obliku gasa, isparenja ili izmaglica, za koje nije verovatno da se pojave, ali ako se pojave zadržaće se samo u kratkom vremenskom periodu

Zaštita od eksplozije

- Za separator i apsorber, Zona 1 je sfera poluprečnika 1m oko oduška sigurnosnog ventila, Zona 2 je horizontalno 3 m od ivica posude i Zone 1 i vertikalno 3m od ivica posude i Zone 1. Za regenerator glikola, Zona 2 je horizontalno i vertikalno 3m od ivica regeneratora
- Sva oprema koja se montira u prostor sadrži protiveksplozivnu (EEx ia) zaštiti

Zaštita od eksplozije - separator

Zaštita od eksplozije - apsorber

Zaštita od eksplozije - regenerator glikola

Mere bezbednosti

Mere bezbednosti

- Zabranjen pristup nezaposlenima, pušenje, upotreba alata koji varniči, unošenje otvorenog plamena, ostavljanje zapaljivog materijala
- Osoblje mora imati zaštitno odelo i potrebnu zaštitnu opremu
- Povrede radnog osoblja povrede podrazumevaju mehaničke, opekotine, gušenje, trovanje gasom.
- Zagađenja okoline nekontrolisanim ispuštanjem veće količine gasa ili gasnog kondenzata (u normalnoj eksploataciji nema nekontrolisanog ispusta gasa)

Senzori i ostala oprema

Merilo nivoa sa plovkom KROHNE BM26A

 https://krohne.com/en/products/levelmeasurement/level-indicators-bypasschambers/magnetic-bypass-level-indicators/bm26a-1000?contentset-440-

filter=%7B%22searchValue%22%3A%7B%2 %22%3A%22kp-550%22%7D%7D&content page=1

Min level senzor KROHNE OPTISWITCH 5100

 Postavlja se direktno na rezervoar i služi za detekciju minimalnog nivoa kao dodatni stepen pouzdanosti u slučaju kvara primarnog senzora.

Manometar model 232.50

Ovaj senzor se najčešće koristi u hemijskim i naftnim industrijana.

industrijama.

Termometar model 54.01

 Pokazao se kao veoma dobar senzor u naftnim industrijama zbog svoje otpornosti na vibracije

Regulacioni ventil EDGE GV2

 Aktuacija regulacionih ventila se može obaviti pomoću pneumatskih, elektromotornih ili hidrauličkih pogona, a

može se i vršiti manuelno.

Pozicioner SMAR FY301

- Služi za brzu detekciju otvorenosti regulacionog ventila
- Bitno je napomenuti da na izlazu daje signal u barima i tai signal se konvertuje u strujni dalje

taj signal se konvertuje u strujni dalje

Ručni regulacioni ventil SFERACO 413005

 Ovaj ventil se postavlja u povratnoj grani, nezavisnoj od grane gde se vrši regulacija kod regulacionog ventila

Kugla ventil za drenažu

 Kuglasti ventil za regulaciju protoka sa primenom u vodenim sistemima za hladnu i toplu vodu, sistemima grejanja i solarnim sistemima sa glikolom

Senzor protoka TRI-GEAR TG008

 Zasnovani na principu pozitivnog pomeranja, ovi merači protoka su pažljivo proizvedeni za merenje tečnosti sa tačnošću i preciznošću.

Transmiter FLUIDWELL F-SERIES

 Transmiter pojačava i filtrira signal sa izlaza senzora protoka i pretvara signal u digitalni oblik ako već nije

Strujni senzor

 Senzor struje je ugrađen u električno kolo koje napaja motor klapna pumpe. On meri struju u realnom vremenu koja teče kroz kolo

Senzor temperature pt100 KROHNE TT50C

 Otpornost elementa od platine se menja sa temperaturom, sa porastom temperature povećava se otpornost

Transmiter KROHNE TRA-S 12

 Transmiter pretvara signal otpora u standardizovani signal 4-20 mA koristeći određene protokole

Klapna pumpa

https://www.youtube.com/watch?v=H5Kg-RzKSjM&t=17s

P&I dijagram

Separator srednjeg pritiska

Ulazi/Izlazi

	DI	DO	Al	AO
	Senzor min nivoa	Ručni ventil	Senzor nivoa (plovak)	Regulacioni ventil
	Položaj ručnog ventila (on i off)	Izolacioni ventil x4	Manometar	
	Položaj izolacionog ventila x4 (on i off)	Ventil za drenažu x2	Termometar	
	Položaj ventila za drenažu x2 (on i off)	Start sistema	Pozicioner	
	Senzor min nivoa (plovak)		Položaj ventila (za procenu opterećenja)	
	Senzor maks nivoa (plovak)			
	GStop			

Apsorber

Ulazi/Izlazi

DI	DO	Al	AO
Senzor min nivoa x2 (off i on)	Ventil za drenažu x4	Senzor nivoa (plovak) x2	Regulacioni ventil x2
Položaj ventila za drenažu x4 (off i on)	Izolacioni ventil x8	Manometar	
Položaj izolacionog ventila x8 (off i on)	Ventil za drenažu x4	Termometar	
Senzor min nivoa (plovak)		Pozicioner x2	
Senzor maks nivoa (plovak)		Položaj ventila (za opterećenje) x2	
		Senzor protoka	

Regenerator

Ulazi/Izlazi

DI	DO	Al	AO
Senzor min nivoa	Stop pumpe	Senzor nivoa (plovak) x2	Regulacioni ventil
Indikator kvara pumpe	Izolacioni ventil x4	Transmiter protoka	Frekvencija pumpe
Položaj izolacionog ventila x4 (on i off)	Ventil za drenažu	Transmiter temperature	
Položaj ventila za drenažu (on i off)	Start pumpe	Strujni senzor	
Indikator rada pumpe			
Senzor maks nivoa (plovak)			
Senzor min nivoa (plovak)			

