Nome e No.:_

Seja $L = (\mathcal{C}, \mathcal{F}, \mathcal{R}, \mathcal{N})$ uma linguagem. Mostre que, para todo $t \in \mathcal{T}_L$, existe em t uma ocorrência de uma variável ou de uma constante.

Resolução:

Para cada $t \in \mathcal{T}_L$, seja P(t) a proposição "existe em t uma ocorrência de uma variável ou de uma constante". Provemos que, para todo $t \in \mathcal{T}_L$, P(t) é verdade. Pelo Princípio de Indução Estrutural para \mathcal{T}_L , é suficiente demonstrar as proposições 1), 2) e 3) a seguir indicadas.

- 1) Para todo $c \in \mathcal{C}$, P(c) é verdade.
- dem: Seja $c \in \mathcal{C}$. Ora c é uma ocorrência de uma constante. Logo P(c) é verdade.
- 2) Para todo $x \in \mathcal{V}$, P(x) é verdade.
- dem: Seja $x \in \mathcal{V}$. Ora x é uma ocorrência de uma variável. Logo P(x) é verdade.
- 3) para todo $t_1,...,t_n \in \mathcal{T}_L$, para todo $f \in \mathcal{F}$ n-ário, se $P(t_1)$ é verdade,..., $P(t_n)$ é verdade, então $P(f(t_1,...,t_n))$ é verdade.

dem: Sejam $t_1, ..., t_n \in \mathcal{T}_L$ e $f \in \mathcal{F}$ n-ário tais que $P(t_1)$ é verdade,..., $P(t_n)$ é verdade. Queremos mostrar que $P(f(t_1, ..., t_n))$ é verdade, isto é, que existe uma ocorrência de uma variável ou de uma constante em $f(t_1, ..., t_n)$. Mas uma tal ocorrência é garantida, pois, do facto de $P(t_i)$ ser verdade, segue que existe uma ocorrência de variável ou constante em t_i .