

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Proof of Soundness

Proving Soundness

• Theorem:

• Let ϕ_1 , ϕ_2 , ..., ϕ_n and ψ be propositional logic formulas: If ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ holds then ϕ_1 , ϕ_2 , ..., ϕ_n |= ψ holds.

Proving Soundness

• Theorem:

• Let ϕ_1 , ϕ_2 , ..., ϕ_n and ψ be propositional logic formulas. If ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ holds then ϕ_1 , ϕ_2 , ..., ϕ_n |= ψ holds.

• Proof Outline:

- If ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ holds <u>then there is a proof</u> of ψ from the premises ϕ_1 , ϕ_2 , ..., ϕ_n
- We show <u>by mathematical induction on the length of this</u> proof that $\varphi_1, \varphi_2, ..., \varphi_n = \psi$ must hold.
 - Length of the proof is the number of lines (i.e. steps).
- To be precise, by induction on k, we show M(k):
 - For all sequents ϕ_1 , ϕ_2 , ..., ϕ_n | ψ which have a proof of length k,
 - $\varphi_1, \varphi_2, ..., \varphi_n = \psi$ holds.

Induction on the length of a Proof

Consider the following sequent

$$p \land q \longrightarrow r \mid -p \longrightarrow (q \longrightarrow r)$$

and the following proof of it:

1	p∧q>r	Premise
2	р	Assumption
3	q	Assumption
4	p∧q	∧i 2,3
5	r	>e1,4
6	q>r	>i3-5
7	p>(q>r)	>i2-6

- •Suppose we remove the last line:
 - we don't get a complete proof (of anything).
 - Why?

Induction on the length of a Proof - Example

A proof of:

$$p \land q --> r \mid -p --> (q --> r)$$

1	p∧q>r	Premise
2	p	Assumption
3	q	Assumption
4	p∧q	∧i 2,3
5	r	>e1,4
6	q>r	>i3-5_
7	p>(q>r)	>i2-6

 Removing the last line results in an incomplete proof.

•We can fix this:

- by <u>changing the assumption in</u> line 2 <u>into a premise</u>
- •Then we get a (shorter) proof of

$$p \wedge q \longrightarrow r, p \mid - (q \longrightarrow r)$$

1	p∧q>r	Premise
2	р	Premise
3	q	Assumption
4	p∧q	∧i 2,3
5	r	>e1,4
6	q>r	>i3-5

Proving Soundness (by induction on *proof length*):

- Let M(k) be :
 - For all sequents φ_1 , φ_2 , ..., φ_n |- ψ that have a proof of length k, φ_1 , φ_2 , ..., φ_n |= ψ holds.
- Base Case: (k=1)
 - Then the proof must only have a premise, say ψ . Why?
 - i.e. this is a proof of ψ |- ψ .
 - But trivially, $\psi \mid = \psi$.
 - Why?
- Induction Step:
 - **Hypothesis**: Assume M(k') to be true for all k' < k.

Consider the proof of the sequent ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ of length k:

What was the last rule applied? Consider case by case:

Consider the proof of the sequent ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ of length k:

What was the last rule applied? Consider case by case:

case ∧i: (see opposite column)

- If the last rule were ∧i:
 - then ψ is of the form $\psi_1 \wedge \psi_2$
- •in which case there were sub-proofs for ψ_1 and ψ_2
 - i.e. we have proofs of

•
$$\phi_1, \phi_2, ..., \phi_n \mid -\psi_1$$
 and

•
$$\phi_1, \phi_2, ..., \phi_n \mid -\psi_2$$

- each of length < k.
- By hypothesis,

•
$$\phi_1$$
, ϕ_2 , ..., $\phi_n | = \psi_1$ and

•
$$\phi_1, \phi_2, ..., \phi_n = \psi_2$$

- and so
 - $\varphi_1, \varphi_2, ..., \varphi_n \mid = \psi_1 \wedge \psi_2$ (by semantics)

Consider the proof of the sequent ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ of length k:

ϕ_1	Premise
φ_{n}	Premise
Ψ	

What was the last rule applied? case -->i: (see opposite column)

- <u>If the last rule were -->i</u>:
 - then ψ is of the form $\psi_1 \longrightarrow \psi_2$
- •in which case there was a subproof for ψ_2 assuming ψ_1
 - i.e. we have a proof of

•
$$\phi_1$$
, ϕ_2 , ..., ϕ_n , $\psi_1 | - \psi_2$

- of length < k.
- By hypothesis,

•
$$\phi_1, \phi_2, ..., \phi_n, \psi_1 = \psi_2$$

- and so
 - $\phi_1, \phi_2, ..., \phi_n \mid = \psi_1 --> \psi_2$ (by truth table)

Consider the proof of the sequent ϕ_1 , ϕ_2 , ..., ϕ_n |- ψ of length k:

ϕ_1	Premise
φ_{n}	Premise
•••	
Ψ	

Other cases are similar – do the following case:

case -->e:

Proving Soundness

- Thus we have proven that, for all k,
 - For all sequents ϕ_1 , ϕ_2 , ..., ϕ_n | ψ which have a proof of length k,
 - $\varphi_1, \varphi_2, ..., \varphi_n = \psi$ holds
- by assuming that
 - for all sub-proofs deriving an intermediate ψ' , which are of length less than k,
 - $\phi_1, \phi_2, ..., \phi_n = \psi'$ holds.

Q.E.D.

