

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение транспортной задачи. Задание 8»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Задание 1. Сбалансированная задача Дано

			Дано			
ПО∖ПН	B_{I}	B_2	B_3	B 4	B 5	a_i
A_{1}	4	5	5	4	5	330
A 2	4	5	6	2	6	320
A_3	4	4	5	5	6	410
A 4	2	3	5	6	4	430
A 5	4	4	5	3	4	400
b_{j}	340	370	420	410	350	

а. Метод северо-западного угла

			Дано			
ПО\ПН	B_{I}	B 2	B 3	B 4	B 5	a _i
A_{I}	4	5	5	4	5	330
A 2	4	5	6	2	6	320
A 3	4	4	5	5	6	410
A 4	2	3	5	6	4	430
A 5	4	4	5	3	4	400
b_j	340	370	420	410	350	

	Метод северо-западного угла											
ПО\ПН	B 1	B 2	B 3	B 4	B 5	a_i						
A_{1}	330 4	5	5	4	5	330						
A 2	4 10	5 310	6	2	6	320						
A 3	4	4 60	5 350	5	6	410						
A 4	2	3	70	6 360	4	430						
A 5	4	4	5	50 50	4 350	400						
b_{j}	340	370	420	410	350							

f = 8960

Рассматриваем левый верхний угол и ставим туда максимально возможную перевозку — 330. Далее переходим ко второй строке и видим, что мы не выполнили все заказы в пункте B_1 , поэтому дополняем пункт нужным количеством груза — 10 и переходим к следующему пункту B_2 . Тоже заполняем его максимально возможной перевозкой — 310 и т. д.

$$f = 4 * 330 + 4 * 10 + 5 * 310 + 4 * 60 + 5 * 350 + 5 * 70 + 6 * 360 + 3 * 50 + 4 * 350 = 8960$$

 \downarrow

f = 8960

Стоит также отметить, что мы получили невырожденный допустимый план, так как количество базисных клеток совпало с M+N-1=5+5-1=9.

b. Метод минимального элемента

			Дано			
ПО\ПН	B_{I}	B 2	B 3	B 4	<i>B</i> 5	a _i
A_{1}	4	5	5	4	5	330
A 2	4	5	6	2	6	320
A 3	4	4	5	5	6	410
A 4	2	3	5	6	4	430
A 5	4	4	5	3	4	400
b_j	340	370	420	410	350	

	Метод минимального элемента										
ПО∖ПН	E	31	В	32	В	3	E	34	В	5	a_i
A_{1}		4		5	290	5		4	40	5	330
A 2		4		5		6	320	2		6	320
A 3		4	280	4	130	5		5		6	410
A 4	340	2	90	3		5		6		4	430
A 5		4		4		5	90	3	310	4	400
b_j	3	40	31	70	42	20	4	10	35	50	

f = 6520

Находим минимальный тариф, в данном случае я выбрал $A_4B_1 - 2$. В эту клетку записываем максимально возможную перевозку — 340 и исключаем столбец B_1 из дальнейшего рассмотрения, так как мы удовлетворили данный пункт и т.д.

$$f = 5 * 290 + 5 * 40 + 2 * 320 + 4 * 280 + 5 * 130 + 2 * 340 + 3 * 90 + 3 * 90 + 4 * 310 = 6520$$

 \downarrow

f = 6520

Стоит также отметить, что мы получили невырожденный допустимый план, так как количество базисных клеток совпало с M+N-1=5+5-1=9.

с. Метод Фогеля

	Дано										
ПО\ПΗ	B_{1}	B 2	Вз	B 4	B 5	a_i					
A_{1}	4	5	5	4	5	330					
A_2	4	5	6	2	6	320					
A_3	4	4	5	5	6	410					
A 4	2	3	5	6	4	430					
A 5	4	4	5	3	4	400					
b_j	340	370	420	410	350						

	Метод Фогеля										
	1 итерация										
ПО∖ПН	B_{I}	B_2	B 3	B 4	Bs	a_i	Штрафы				
A_{1}	4	5	5	4	5	330	0				
A 2	4	5	6	320 <u>2</u>	6	320	2				
A 3	4	4	5	5	6	410	0				
A 4	2	3	5	6	4	430	1				
A 5	4	4	5	3	4	400	1				
b_j	340	370	420	410	350						
Штрафы	2	1	0	1	0						

Сначала вычислим штрафы. Наибольший по строкам штраф получился 2, поэтому мы рассматриваем соответствующую строку -2. Далее в этой строке у нас минимальный тариф 2 и мы ему приписываем максимально возможную перевозку, то есть 320 и исключаем эту строку из рассмотрения. Переходим к следующему шагу.

	2 итерация										
ПО\ПН	B_{1}	B_2	B 3	B_4	B 5	a_i	Штрафы				
A_{1}	4	5	5	4	5	330	0,0				
A_2	4	5	6	320 320	6	320 (0)	2,-				
A 3	4	4	5	5	6	410	0,0				
A 4	340 <u>2</u>	3	5	6	4	430	1,1				
A 5	4	4	5	3	4	400	1,1				
b_{j}	340	370	420	410 (90)	350						
Штрафы	2,2	1,1	0,0	1,1	0,0		-				

		3 итерация										
ПО∖ПН	B_{I}	B_2	B 3	B 4	B 5	a_i	Штрафы					
A_{1}	4	5	5	4	-	330	0,0,1					
A_2	4	5	6	2 320	·	320 (0)	2,-					
A_3	4	4	5	5	(410	0,0,1					
A 4	2 340	<u>3</u>	5	6	4	430 (90)	1,1,1					
A 5	4	4	5	90	4	400	1,1,1					
b_{j}	340 (0)	370	420	410 (90)	350							
Штрафы	2,2,-	1,1,1	0,0,0	1,1,1	0,0,0							

	4 итерация										
ПО∖ПН	B_{I}	B 2	B_3	B 4	B 5	a_i	Штрафы				
A 1	4	5	5	4	-	330	0,0,1,0				
A_2	4	5	6	2 320	·	320 (0)	2,-				
A 3	4	4	5	5	·	410	0,0,1,1				
A 4	2 340	<u>3</u> 90	5	6	4	430 (90)	1,1,1,1				
A 5	4	4	5	90 90	4	400 (310)	1,1,1,0				
b_{j}	340 (0)	370	420	410 (0)	350						
Штрафы	2,2,-	1,1,1,1	0,0,0,0	1,1,1,-	0,0,0,0		_				

	5 итерация										
ПО∖ПН	B_{I}	B 2	B_3	B 4	B 5	ai	Штрафы				
A 1	4	5	5	4	5	330	0,0,1,0,0				
A_2	4	5	6	2 320	6	320 (0)	2,-				
A 3	4	280 <u>4</u>	5	5	6	410	0,0,1,1,1				
A_4	340 2	90 90	5	6	4	430 (0)	1,1,1,1,-				
A 5	4	4	5	90 90	4	400 (310)	1,1,1,0,0				
b_j	340 (0)	370 (280)	420	410 (0)	350						
Штрафы	2,2,-	1,1,1,1,0	0,0,0,0,0	1,1,1,-	0,0,0,0,1		-				

	6 итерация										
ПО∖ПН	B_{I}	B_{2}	B 3	B_4	B 5	a_i	Штрафы				
A_{1}	4	5	5	4	5	330	0,0,1,0,0,0				
A_2	4	5	6	320 2	6	320 (0)	2,-				
A 3	4	280 280	5	5	6	410 (130)	0,0,1,1,1,1				
A_4	340 2	90 90	5	6	4	430 (0)	1,1,1,1,-				
A 5	4	4	5	90 90	310	400 (310)	1,1,1,0,0,1				
b_j	340 (0)	370 (0)	420	410 (0)	350						
Штрафы	2,2,-	1,1,1,1,0,-	0,0,0,0,0,0	1,1,1,-	0,0,0,0,1,1		•				

			7 итерация	ı			
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i	Штрафы
A_{1}	4	5	5	4	5	330	0,0,1,0,0,0,0
A_2	4	5	6	320 320	6	320 (0)	2,-
A 3	4	280 280	5 130	5	6	410 (130)	0,0,1,1,1,1,1
A_4	2 340	90 90	5	6	4	430 (0)	1,1,1,1,-
A_{5}	4	4	5	90 90	4 310	400 (0)	1,1,1,0,0,1,-
b_j	340 (0)	370 (0)	420	410 (0)	350 (40)		
Штрафы	2,2,-	1,1,1,1,0,-	0,0,0,0,0,0,0	1,1,1,-	0,0,0,0,1,1,1		_

			8 итерация	ı			
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i	Штрафы
A_{1}	4	5	<u>5</u> 290	4	<u>5</u>	330	0,0,1,0,0,0,0,0
A_2	4	5	6	2 320	6	320 (0)	2,-
A_{β}	4	280 280	5 130	5	6	410 (0)	0,0,1,1,1,1,1,-
A_4	2 340	90 90	5	6	4	430 (0)	1,1,1,1,-
A_{5}	4	4	5	90 90	310 4	400 (0)	1,1,1,0,0,1,-
b_{j}	340 (0)	370 (0)	420 (290)	410 (0)	350 (40)		
Штрафы	2,2,-	1,1,1,1,0,-	0,0,0,0,0,0,0,0	1,1,1,-	0,0,0,0,1,1,1,5		-

			9 итерация	ı]
ПО∖ПН	B_{I}	B 2	B_{β}	B 4	B 5	a_i	Штрафы
A_{1}	4	5	5 290	4	<u>5</u>	330	0,0,1,0,0,0,0,0,5
A_{2}	4	5	6	2 320	6	320 (0)	2,-
A_{β}	4	280 280	5 130	5	6	410 (0)	0,0,1,1,1,1,1,-
A_4	2 340	90 90	5	6	4	430 (0)	1,1,1,1,-
A_{5}	4	4	5	90 90	310 4	400 (0)	1,1,1,0,0,1,-
b_j	340 (0)	370 (0)	420 (0)	410 (0)	350 (40)		
Штрафы	2,2,-	1,1,1,1,0,-	0,0,0,0,0,0,0,-	1,1,1,-	0,0,0,0,1,1,1,5		-

	Результаты вычислений									
ПО\ПН	B_{I}	B 2	B 3	B 4	B 5	a_i				
A_1	4	5	290	4	40	330 (0)				
A 2	4	5	6	320 2	6	320 (0)				
A_3	4	280 4	5 130	5	6	410 (0)				
A 4	340 2	90 3	5	6	4	430 (0)				
A 5	4	4	5	90 90	310 4	400 (0)				
b_j	340 (0)	370 (0)	420 (0)	410 (0)	350 (0)					

f = 6520

После 9 итериций мы получили следущий результат.

$$f = 5*290 + 5*40 + 2*320 + 5*130 + 4*280 + 3*90 + 2*340 + 3*90 + 4*310 = 6520$$

 \downarrow

f = 6520

Стоит также отметить, что мы получили невырожденный допустимый план, так как количество базисных клеток совпало с M+N-1=5+5-1=9.

d. Метод потенциалов

	Дано									
ПО\ПН	B_{I}	B 2	В 3	B 4	B 5	a_i				
A_{1}	4	5	5	4	5	330				
A 2	4	5	6	2	6	320				
A 3	4	4	5	5	6	410				
A 4	2	3	5	6	4	430				
A 5	4	4	5	3	4	400				
b_{j}	340	370	420	410	350					

1	1ачальнь	iu oonyen	ишмыш пл	ан (мето	о Фогеля	<u> </u>
ПО\ПН	B 1	B 2	B 3	B 4	B 5	ai
A_{1}	4		5 290	4	5 40	330
A_2	4	5	6	320 2	6	320
A_3	4	280 4	5 130	5	6	410
A_4	3 40	90 90	5	6	4	430
A_5	4	4	5	90 90	310 4	400
b_j	340	370	420	410	350	·

f = 6520

	Метод потенциалов									
ПО\ПН	B 1	B 2	B 3	B 4	B 5	a_i	α_i			
A_{1}	4	5	5 290	4	5 40	330	0			
A 2	4	5	6	320 2	6	320	-2			
A 3	4	280 4	5 130	5	6	410	0			
A 4	340 2	90 3	5	6	4	430	-1			
A 5	4	4	5	90 90	4 310	400	-1			
b_{j}	340	370	420	410	350					
β_j	3	4	5	4	5					

Пусть $\alpha_1 = 0$

Проверим, является ли наш допустимый план оптимальным. Пусть $\alpha_1 = 0$, тогда мы получим соответствующие значения для платежей α_i и β_i .

$$\begin{array}{lll} \alpha_1 + \beta_1 = 3 \leq 4 \ (c_{11}) & \alpha_1 + \beta_2 = 4 \leq 5 \ (c_{12}) & \alpha_1 + \beta_4 = 4 \leq 4 \ (c_{14}) \\ \alpha_2 + \beta_1 = 1 \leq 4 \ (c_{21}) & \alpha_2 + \beta_2 = 2 \leq 5 \ (c_{22}) & \alpha_2 + \beta_3 = 3 \leq 6 \ (c_{23}) \\ \alpha_2 + \beta_5 = 3 \leq 6 \ (c_{25}) & \alpha_3 + \beta_1 = 3 \leq 4 \ (c_{31}) & \alpha_3 + \beta_4 = 4 \leq 5 \ (c_{34}) \\ \alpha_3 + \beta_5 = 5 \leq 6 \ (c_{35}) & \alpha_4 + \beta_3 = 4 \leq 5 \ (c_{43}) & \alpha_4 + \beta_4 = 3 \leq 6 \ (c_{44}) \\ \alpha_4 + \beta_5 = 4 \leq 4 \ (c_{45}) & \alpha_5 + \beta_1 = 2 \leq 4 \ (c_{51}) & \alpha_5 + \beta_2 = 3 \leq 4 \ (c_{52}) \end{array}$$

Получили, что во всех свободных клетках выполняется условие $c_{ij} \geq s_{ij}$, следовательно наш план является оптимальным.

Возьмём начальный план из метода северо-западного угла и сделаем 2 итерации.

	Метод северо-западного угла								
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i			
A_{I}	330	5	5	4	5	330			
A 2	10	310	6	2	6	320			
A 3	4	60 60	350	5	6	410			
A 4	2	3	70	6 360	4	430			
A 5	4	4	5	50	4 350	400			
b_j	340	370	420	410	350				

	Метод потенциалов										
	1 итерация										
ПО\ΠΗ	B 1	B 2	B 3	B 4	B 5	a_i	α_i				
A_{I}	330	5	5	4	5	330	0				
A 2	4 10	310 I -5	6	- ¬ ²	6	320	0				
A 3	4	60 +	3 50 -	1 5	6	410	-1				
A 4	2	3	70 -5	360 -	4	430	-1				
A 5	4	4	5	50 50	4 350	400	-4				
b_j	340	370	420	410	350						
β_j	4	5	6	7	8						

f = 8960

Пусть $\alpha_1 = 0$

Пусть $\alpha_1 = 0$. Находим потенциалы α_i и β_j .

Проверим, будет ли являться наш план оптимальным:

$$A_1B_2: 0+5=5 \le 5$$

$$A_1B_3: 0+6=6>5 \rightarrow v_{13}=0+6-5=1$$

$$A_1B_4: 0+7=7>4 \rightarrow v_{14}=0+7-4=3$$

$$A_1B_5: 0+8=8>5 \rightarrow v_{15}=0+8-5=3$$

$$A_2B_3: 0+6=6 \le 6$$

$$A_2B_4: 0+7=7>2 \rightarrow v_{24}=0+7-2=5$$

$$A_2B_5: 0+8=8>6 \rightarrow v_{25}=0+8-6=2$$

$$A_3B_1: -1+4=3 \le 4$$

$$A_3B_4: -1+7=6 > 5 \rightarrow v_{34} = -1+7-6=1$$

$$A_3B_5: -1+8=7>6 \rightarrow v_{35}=-1+8-7=1$$

$$A_4B_1: -1+4=3>2 \rightarrow v_{41}=-1+4-3=1$$

$$A_4B_2: -1+5=4>3 \rightarrow v_{42}=-1+5-3=1$$

$$A_4B_5: -1+8=7 > 4 \rightarrow v_{45}=-1+8-4=3$$

$$A_5B_1: -4+4=0 \le 4$$

$$A_5B_2: -4+5=1 \le 4$$

$$A_5B_3: -4+6=2 \le 5$$

$$max \{1, 3, 3, 5, 2, 1, 1, 1, 1, 3\} = 5$$

Следовательно выбираем свободную клетку A_2B_4 , так как она имеет максимальный штраф и строим из неё цикл.

Цикл:
$$A_2B_4 \rightarrow A_2B_2 \rightarrow A_3B_2 \rightarrow A_3B_3 \rightarrow A_4B_3 \rightarrow A_4B_4$$

Максимальное количество груза, которое мы можем перебросить по этому циклу -310. Наша целевая функция изменится на следующее значение:

$$\delta f = 310 * [(2+4+5) - (5+5+6)] = -1550$$

В результате после 1 итерации мы получаем следующий план:

	Результат 1 итерации									
ПО∖ПН	B_{1}	B 2	B 3	B 4	B 5	a_i				
A_{1}	330 4	5	5	4	5	330				
A 2	10	5	6	310 2	6	320				
A 3	4	370 4	40	5	6	410				
A 4	2	3	5 380	6 50	4	430				
A 5	4	4	5	50 50	4 350	400				
b_j	340	370	420	410	350					

 A_2B_2 стала свободной клеткой, а A_2B_4 стала базисной клеткой. Переходим ко 2 итерации.

	2 итерация										
ПО\ПН	B_{1}	B 2	B 3	B 4	B 5	a_i	α_i				
A_{1}	330 4	5	5	4	5	330	0				
A 2	10 1-4	5	6	2 310 +	6	320	0				
A_3	4 	4 370	5 40	5	6	410	4				
A_4	+ - 2	3	380 - ⁵	6 50 -	4	430	4				
A 5	4	4	5	50 50	4 350	400	1				
b_{j}	340	370	420	410	350						
β_j	4	0	1	2	3						

Пусть $\alpha_1 = 0$

Пусть $\alpha_1 = 0$. Находим потенциалы α_i и β_j .

Проверим, будет ли являться наш план оптимальным:

```
A_1B_2: 0+0=0 \le 5
A_1B_3: 0+1=1 \le 5
A_1B_3: 0+2=2 \le 4
A_1B_4: 0+2=2 \le 4
A_1B_5: 0+3=3 \le 4
A_2B_2: 0+0=0 \le 5
A_2B_3: 0+1=1\leq 6
A_2B_5: 0+3=3\leq 6
A_2B_5: 0+3=3 \le 6
A_3B_1: 4+4=8>4 \rightarrow v_{31}=4+4-4=4
A_3B_4: 4+2=6>5 \rightarrow v_{34}=4+2-5=1
A_3B_5: 4+3=7>6 \rightarrow v_{34}=4+3-6=1
A_4B_1: 4+4=8>2 \rightarrow v_{41}=4+4-2=6
A_4B_2: 4+0=4>3 \rightarrow v_{42}=4+0-3=1
A_4B_5: 4+3=7>4 \rightarrow v_{45}=4+3-4=3
A_5B_1: 1+4=5>4 \rightarrow v_{51}=4+1-4=1
A_5B_2: 1+0=1 \le 4
A_5B_3:1+1=2\leq 5
```

$$max \{4, 1, 1, 6, 1, 3, 1\} = 6$$

Следовательно выбираем свободную клетку A_4B_1 , так как она имеет максимальный штраф и строим из неё цикл.

Цикл:
$$A_4B_1 \to A_4B_4 \to A_2B_4 \to A_2B_1$$

Максимальное количество груза, которое мы можем перебросить по этому циклу -10. Наша целевая функция изменится на следующее значение:

$$\delta f = 10 * [(2+2) - (4+6)] = -60$$

В результате после 2 итерации мы получаем следующий план:

		Резульн	nam 2 um	ерации		
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i
A_{1}	330	5	5	4	5	330
A 2	4	5	6	320 2	6	320
A 3	4	4 370	5 40	5	6	410
A 4	2 10	3	5 380	6 40	4	430
A 5	4	4	5	50 50	4 350	400
b_j	340	370	420	410	350	

f = 7350

 A_2B_1 стала свободной клеткой, а A_4B_1 стала базисной клеткой. Значение целевой функции после двух итераций стало:

$$f = 8960 - (1550 + 60) = 7350$$

Задание 2. Несбалансированная задача

Дано

Дано										
ПО\ПН	B_{I}	B 2	B 3	B 4	a_i					
A_{I}	4	3	3	3	250					
A 2	4	5	4	4	150					
A 3	5	3	3	6	50					
A 4	5	4	3	5	350					
A 5	4	5	6	5	300					
b_j	350	50	50	450						

	Сбалансированная задача										
ПО∖ПН	B ₁	B 2	B 3	B 4	<i>B</i> 5	a_i					
A_{I}	4	3	3	3	0	250					
A 2	4	5	4	4	0	150					
A 3	5	3	3	6	0	50					
A 4	5	4	3	5	0	350					
A 5	4	5	6	5	0	300					
b_{j}	350	50	50	450	200						

 $\Sigma a_i = 1100$ $\Sigma b_i = 900$ $b_{\phi} = 200$

У нас получается несбалансированная задача, так как:

$$\sum_{i=1}^{5} a_i = 250 + 150 + 50 + 350 + 300 = 1100$$

$$\sum_{j=1}^{4} b_j = 350 + 50 + 50 + 450 = 900$$

А именно траспортная задача с избытком запасов, так как: $\sum_{i=1}^5 a_i > \sum_{j=1}^4 b_j$

Вводим фиктивный пункт B_5 с количеством заявок: $b_f=1100-900=200$. Цены перевозок задаём равными нулю: $c_{fj}=0,\ j=1,...,5$. В итоге мы получили сбалансированную задачу.

а. Метод северо-западного угла

	Дано											
ПΟ\ΠΗ	B ₁	B 2	B 3	B 4	<i>B</i> 5	a _i						
A_{1}	4	3	3	3	0	250						
A_2	4	5	4	4	0	150						
A_3	5	3	3	6	0	50						
A 4	5	4	3	5	0	350						
A 5	4	5	6	5	0	300						
b_{j}	350	50	50	450	200							

	Λ	1етод сев	веро-запа	дного угл	a	
ПО∖ПН	B 1	B 2	B 3	B 4	B 5	a_i
A_{1}	4 250	3	3	3	0	250
A 2	4 100	5 50	4	4	0	150
A 3	5	3	50 50	6	0	50
A 4	5	4	3	5 350	0	350
A 5	4	5	6	5 100	0 200	300
b_{j}	350	50	50	450	200	

f = 4050

Алгоритм такой же как и в прошлом задании.

$$f = 4 * 250 + 4 * 100 + 5 * 50 + 3 * 50 + 5 * 350 + 5 * 100 + 0 * 200 = 4050$$

 \downarrow

f = 4050

Стоит также отметить, что мы получили вырожденный допустимый план, так как количество базисных клеток не совпало с M+N-1=5+5-1=9, а базисных клеток у нас 7.

Сведём этот план к невырожденному. Сделаем так, чтобы базисные клетки можно было бы соединить ломанной линией. В итоге получаем следующий результат:

M	Метод северо-западного угла (невырожденный)											
ПО\ΠΗ	B 1	B 2	B 3	B 4	B 5	a_i						
A_{1}	250	3	3	3	0	250						
A 2	100 - 4	50 I	4	4	0	150						
A 3	5	0! _3	50 ⁻¹ 3	6	0	50						
A 4	5	4	0! - 3	3 50	0	350						
A 5	4	5	6	100 - 5	0 200	300						
b_j	350	50	50	450	200							

То есть клетки A_3B_2 и A_4B_3 мы сделали базисными с перевозкой 0.

b. Метод минимального элемента

	Дано										
ПО\ПН	B_{I}	B 2	B 3	B 4	B 5	a_i					
A_{1}	4	3	3	3	0	250					
A 2	4	5	4	4	0	150					
A 3	5	3	3	6	0	50					
A 4	5	4	3	5	0	350					
A 5	4	5	6	5	0	300					
b_j	350	50	50	450	200						

	Метод минимального элемента											
ПО∖ПН	В	3,	B 2		B 3		В	4	В	5	a_i	
A_{1}		4	50	3	50	3	150	3		0	250	
A 2	150	4		5		4		4		0	150	
A 3		5		3		3		6	50	0	50	
A 4		5		4		3	300	5	50	0	350	
A 5	200	4		5		6		5	100	0	300	
b_{j}	3:	50	50		50		45	0	20	00		

f = 3650

Алгоритм такой же как и в прошлом задании.

$$f = 3*50 + 3*50 + 3*150 + 4*150 + 0*50 + 5*300 + 0*50 + 4*200 + 0*100 = 3650$$

 \downarrow

f = 3650

Стоит также отметить, что мы получили невырожденный допустимый план, так как количество базисных клеток совпало с M+N-1=5+5-1=9.

с. Метод Фогеля

	Дано											
ПО\ΠΗ	В1	B 2	В 3	B 4	В5	a _i						
A_{1}	4	3	3	3	0	250						
A 2	4	5	4	4	0	150						
A 3	5	3	3	6	0	50						
A 4	5	4	3	5	0	350						
A 5	4	5	6	5	0	300						
b_{j}	350	50	50	450	200							

		Me	тод Фоге	ля								
	1 итерация											
ПО∖ПН	B_{1}	B_2	B 3	B 4	B 5	a_i	Штрафы					
A_{1}	4	3	3	3	0	250	0					
A 2	4	5	4	4	0	150	0					
A 3	5	3	3	6	0	50	0					
A 4	5	4	<u>3</u>	5	0	350	1					
A 5	4	5	6	5	0	300	1					
b_j	350	50	50	450	200							
Штрафы	0	0	0	1	0		•					

Алгоритм такой же как и в прошлом задании.

	2 итерация										
ПО∖ПН	B_{I}	B 2	B_{β}	B 4	B_{5}	a_i	Штрафы				
A_{I}	4	3	3	3	0	250	0,0				
A 2	4	5	4	4	0	150	0,0				
A_3	5	<u>3</u>	3	6	0	50	0,2				
A 4	5	4	50 50	5	0	350	1,1				
A 5	4	5	6	5	0	300	1,1				
b_{j}	350	50	50	450	200						
Штрафы	0,0	0,0	0, -	1,1	0,0		-				

		3	итераци	я			
ПО∖ПН	B_{1}	B 2	B 3	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	3 250	0	250	0,0,1
A_2	4	5	4	4	0	150	0,0,0
A_3	5	50 50	3	6	0	50	0,2,-
A 4	5	4	50 50	5	0	350	1,1,0
A 5	4	5	6	5	0	300	1,1,1
b_{j}	350	50	50	450	200		
Штрафы	0,0,0	0,0,-	0, -	1,1,1	0,0,0		

		4	итераци	я			
ПО\ПН	B_{1}	B 2	B_{β}	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	3 25 0	0	250	0,0,1,-
A_2	4	5	4	4	0	150	0,0,0,0
A_{β}	5	50 50	3	6	0	50	0,2,-
A 4	5	4	50 50	5	0	350	1,1,0,0
A 5	300 <u>4</u>	5	6	5	0	300	1,1,1,1
b_{j}	350	50	50	450	200		
Штрафы	0,0,0,0	0,0,-	0, -	1,1,1,1	0,0,0,0		-

		5	итераци	я			
ПО∖ПН	B_{1}	B_2	B_{β}	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	3 25 0	0	250	0,0,1,-
A 2	4	5	4	4 150	0	150	0,0,0,0,0
A 3	5	50 50	3	6	0	50	0,2,-
A 4	5	4	50 50	5	0	350	1,1,0,0,0
A 5	4 300	5	6	5	0	300	1,1,1,1
b_j	350	50	50	450	200		
Штрафы	0,0,0,0,1	0,0,-	0, -	1,1,1,1,1	0,0,0,0,0		-

		6	итераци	я]
ПО∖ПН	B_{1}	B_2	B_β	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	250	0	250	0,0,1,-
A_2	4	5	4	4 150	0	150	0,0,0,0,0,-
A_3	5	50 50	3	6	0	50	0,2,-
A 4	<u>5</u>	4	50 50	<u>5</u>	0	350	1,1,0,0,0,0
A 5	4 300	5	6	5	0	300	1,1,1,1
b_{j}	350	50	50	450	200		
Штрафы	0,0,0,0,1,5	0,0,-	0, -	1,1,1,1,1,5	0,0,0,0,0,0		-

		7	итераци	я			
ПО∖ПН	B_{I}	B 2	B_{β}	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	3 250	0	250	0,0,1,-
A_2	4	5	4	4 150	0	150	0,0,0,0,0,-
A_3	5	50 50	3	6	0	50	0,2,-
A 4	5 50	4	3 50	<u>5</u>	0	350	1,1,0,0,0,0,5
A 5	4 300	5	6	5	0	300	1,1,1,1
b_{j}	350	50	50	450	200		
Штрафы	0,0,0,0,1,5,-	0,0,-	0, -	1,1,1,1,5	0,0,0,0,0,0,0		-

		8	итераци	я			
ПО∖ПН	B_{I}	B 2	B_{β}	B 4	B 5	a_i	Штрафы
A_{1}	4	3	3	250	0	250	0,0,1,-
A_2	4	5	4	4 150	0	150	0,0,0,0,0,-
A_{β}	5	50 50	3	6	0	50	0,2,-
A 4	5 50	4	50 50	5 50	<u>0</u> 200	350	,1,0,0,0,0,5,
A_5	4 300	5	6	5	0	300	1,1,1,1
b_{j}	350	50	50	450	200		
Штрафы	0,0,0,0,1,5,-	0,0,-	0, -	1,1,1,1,1,5,-	0,0,0,0,0,0		-

После 8 итераций мы получили следующий результат:

		Резульп	пат вычі	іслений		
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i
A_{I}	4	3	3	250	0	250
A 2	4	5	4	4 150	0	150
A 3	5	50 50	3	6	0	50
A 4	5 50	4	3 50	5 50	0 200	350
A 5	4 300	5	6	5	0	300
b_{j}	350	50	50	450	200	·

f = 3350

$$f = 3 * 250 + 4 * 150 + 3 * 50 + 5 * 50 + 3 * 50 + 5 * 50 + 0 * 200 + 4 * 300 = 3350$$

f = 3350

Стоит также отметить, что мы получили вырожденный допустимый план, так как количество базисных клеток не совпало с M+N-1=5+5-1=9, а базисных клеток у нас 8.

Сведём этот план к невырожденному. В итоге получаем следующий результат:

	Результат вычислений (невырожденный)											
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i						
A_{1}	4	3	3	250 3	0	250						
A 2	4	5	4	4 150	0	150						
A 3	5	50 50	0!	6	0	50						
A 4	5 50	4	3 50	5 50	0 200	350						
A 5	4 300	5	6	5	0	300						
b_{j}	350	50	50	450	200							

То есть клетку A_3B_3 мы сделали базисной с перевозкой 0.

d. Метод потенциалов

	Дано										
ПО\ПН	B_{1}	B 2	B 3	B 4	B 5	a_i					
A_{I}	4	3	3	3	0	250					
A 2	4	5	4	4	0	150					
A 3	5	3	3	6	0	50					
A 4	5	4	3	5	0	350					
A 5	4	5	6	5	0	300					
b_{j}	350	50	50	450	200						

1	Начальный допустимый план (метод Фогеля)										
ПО\ПН	B 1	B 2	B 3	B 4	B 5	a_i					
A_{1}	4	3	3	250	0	250					
A 2	4	5	4	4 150	0	150					
A 3	5	50 50	3 0	6	0	50					
A_4	5 50	4	50 50	5 50	0 200	350					
A 5	300 4	5	6	5	0	300					
b_j	350	50	50	450	200						

f = 3350

	Метод потенциалов											
ПО\ПН	B 1	B 2	B 3	B 4	B 5	ai	α_i					
A_{1}	4	3	3	250 250	0	250	0					
A 2	4	5	4	4 150	0	150	1					
A 3	5	50 50	0 3	6	0	50	2					
A 4	5 50	4	50 50	5 50	200	350	2					
A 5	300 4	5	6	5	0	300	1					
b_{j}	350	50	50	450	200							
β_j	3	1	1	3	-2							

Пусть $\alpha_1 = 0$

Проверим, является ли наш допустимый план оптимальным. Пусть $\alpha_1 = 0$, тогда мы получим соответствующие значения для платежей α_i и β_i .

$$\begin{array}{lll} \alpha_1 + \beta_1 = 3 \leq 4 & (c_{11}) & \alpha_1 + \beta_2 = 1 \leq 3 & (c_{12}) & \alpha_1 + \beta_3 = 1 \leq 3 & (c_{13}) \\ \alpha_1 + \beta_5 = -2 \leq 0 & (c_{15}) & \alpha_2 + \beta_1 = 4 \leq 4 & (c_{21}) & \alpha_2 + \beta_2 = 2 \leq 5 & (c_{22}) \\ \alpha_2 + \beta_3 = 2 \leq 4 & (c_{23}) & \alpha_2 + \beta_5 = -1 \leq 0 & (c_{25}) & \alpha_3 + \beta_1 = 5 \leq 5 & (c_{31}) \\ \alpha_3 + \beta_4 = 5 \leq 6 & (c_{34}) & \alpha_3 + \beta_5 = 0 \leq 0 & (c_{35}) & \alpha_4 + \beta_2 = 3 \leq 4 & (c_{42}) \\ \alpha_5 + \beta_2 = 2 \leq 5 & (c_{52}) & \alpha_5 + \beta_3 = 2 \leq 6 & (c_{53}) & \alpha_5 + \beta_4 = 4 \leq 5 & (c_{54}) \end{array}$$

Получили, что во всех свободных клетках выполняется условие $c_{ij} \ge s_{ij}$, следовательно наш план является оптимальным.

Возьмём начальный план из метода северо-западного угла и сделаем 2 итерации.

	Метод северо-западного угла										
		Т						_		Т	
ПО∖ПН	B_{I}		B_2		B_3		B 4		B 5		a_i
A_{1}	250	4	3			3		3	0		250
A 2	100	4 5	5 50			4		4	0		150
A 3		5	3)	50)	3		6	0		50
A 4		5	4	0		3	350	5	0		350
A 5	•	4	5			6	100	5	200		300
b_j	350		50		50		450		200		

		A.	Іетод пот	пенциало	16								
	1 итерация												
ПО\ПН	$\Pi O \backslash \Pi H$ B_1 B_2 B_3 B_4 B_5 α_i α_i												
A_1	₂₅₀ Γ $\frac{4}{1}$	3		- ¬ ³	0	250	0						
A_2	100 - 4	50 1 .	4	4	0	150	0						
A 3	5	0 +	50 3	6 	0	50	-2						
A 4	5	4	0 -3	_ 1 5	0	350	-2						
A 5	4	5	6	5 100	200	300	-2						
b_{j}	350	50	50	450	200								
β_j	4	5	5	7	2								

Пусть $\alpha_1 = 0$. Находим потенциалы α_i и β_j .

Проверим, будет ли являться наш план оптимальным:

$$A_1B_2: 0+5=5>3 \rightarrow v_{12}=0+5-3=2$$

$$A_1B_3: 0+5=5>3 \rightarrow v_{13}=0+5-3=2$$

$$A_1B_4: 0+7=7>3 \rightarrow v_{14}=0+7-3=4$$

$$A_1B_5: 0+2=2>0 \rightarrow v_{15}=0+2-0=2$$

$$A_2B_3: 0+5=5>4 \rightarrow v_{23}=0+5-4=1$$

$$A_2B_4: 0+7=7>4 \rightarrow v_{24}=0+7-4=3$$

$$A_2B_5: 0+2=2>0 \rightarrow v_{25}=0+2-0=2$$

$$A_3B_1: -2+4=2 \le 5$$

$$A_3B_4: -2+7=5 \le 6$$

$$A_3B_5: -2+2=0 \le 0$$

$$A_4B_1: -2+4=2 < 5$$

$$A_4B_2: -2+5=3 \le 4$$

$$A_4B_5: -2+2=0 \le 0$$

$$A_5B_1: -2+4=2 \le 4$$

$$A_5B_2: -2+5=3 \le 5$$

$$A_5B_3: -2+5=3 \le 6$$

 $max \{2, 2, 4, 2, 1, 3, 2\} = 4$

Следовательно выбираем свободную клетку A_1B_4 , так как она имеет максимальный штраф и строим из неё цикл.

Цикл:
$$A_1B_4 \to A_1B_1 \to A_2B_1 \to A_2B_2 \to A_3B_2 \to A_3B_3 \to A_4B_3 \to A_4B_4$$

Максимальное количество груза, которое мы можем перебросить по этому циклу -50. Наша целевая функция изменится на следующее значение:

$$\delta f = 50 * [(3+4+3+3) - (4+5+3+5)] = -200$$

В результате после 1 итерации мы получаем следующий план:

	Результат 1 итерации										
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i					
A_{1}	200	3	3	50 50	0	250					
A 2	1 50	5	4	4	0	150					
A 3	5	50 50	0 3	6	0	50					
A 4	5	4	50 50	5 300	0	350					
A 5	4	5	6	5 100	200	300					
b_{j}	350	50	50	450	200						

 A_2B_2 стала свободной клеткой, а A_1B_4 стала базисной клеткой. Переходим ко 2 итерации.

2 итерация												
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i	α_i					
A_{1}	200 F =	3	3	50 +	0	250	0					
A 2	150	5	4	4	0	150	0					
A 3	5 	50 50	0	6	0	50	2					
A 4	5 	4	50 50	1 5 3001	0	350	2					
A 5	+ L4_	5			0 200	300	2					
b_{j}	350	50	50	450	200							
β_j	4	1	1	3	-2							

Пусть $\alpha_1 = 0$. Находим потенциалы α_i и β_j .

Проверим, будет ли являться наш план оптимальным:

$$\begin{aligned} A_1B_2:0+1&=1\leq 3\\ A_1B_3:0+1&=1\leq 3\\ A_1B_5:0-2&=-2\leq 0\\ A_2B_2:0+1&=1\leq 5\\ A_2B_3:0+1&=1\leq 4\\ A_2B_4:0+3&=3\leq 4\\ A_2B_5:0-2&=-2\leq 0\\ A_3B_1:2+4=6>5\to v_{31}=2+4-5=1\\ A_3B_4:2+3&=5\leq 6\\ A_3B_5:2-2&=0\leq 0\\ A_4B_1:2+4=6>5\to v_{41}=2+4-5=1\\ A_4B_2:2+1&=3\leq 4\\ A_4B_5:2-2&=0\leq 0\\ A_5B_1:2+4=6>4\to v_{51}=2+4-4=2\\ A_5B_2:2+1&=3\leq 5\\ A_5B_3:2+1&=3\leq 6\end{aligned}$$

$$max \{1, 1, 2\} = 2$$

Следовательно выбираем свободную клетку A_5B_1 , так как она имеет максимальный штраф и строим из неё цикл.

Цикл:
$$A_5B_1 \to A_1B_1 \to A_1B_4 \to A_5B_4$$

Максимальное количество груза, которое мы можем перебросить по этому циклу -100. Наша целевая функция изменится на следующее значение:

$$\delta f = 100 * [(3+4) - (4+5)] = -200$$

В результате после 2 итерации мы получаем следующий план:

Результат 2 итерации											
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i					
A_{I}	4 100	3	3	3 150	0	250					
A_2	4 150	5	4	4	0	150					
A_3	5	50 50	0	6	0	50					
A_4	5	4	3 50	5 300	0	350					
A 5	4 100	5	6		200	300					
b_{j}	350	50	50	450	200						

f = 3650

 A_5B_4 стала свободной клеткой, а A_5B_1 стала базисной клеткой. Значение целевой функции после двух итераций стало:

$$f = 4050 - (200 + 200) = 3650$$