Computergraphik

Vorlesung im Wintersemester 2012/13 Kapitel 9: Kurven und Flächen

Prof. Dr.-Ing. Carsten Dachsbacher Lehrstuhl für Computergrafik Karlsruher Institut für Technologie

Kurven und Flächen – Inhalt

- Polynomkurven
 - Bernstein Polynome
- Bézierkurven
 - de Causteljau-Algorithmus
- Béziersplines
- B-Splines
- Tensorproduktflächen

Kurven und Splines

- Kurven in der Ebene oder in 3D
 - Spline = glatte, zusammengesetzte Kurven
- Anwendungen
 - 2D Illustration (z.B. Adobe Illustrator)
 - Schriften
 - 3D Modeling (Rotationskörper)
 - Farbverläufe
 - Animation, Trajektorien, Keyframe-Interpolation

Kurven und Splines

Sichtweisen und Anwendungen

- Approximation und Interpolation
 - gegeben eine Menge von (Daten-)Punkten
 - wie können wir die Punkte mit einer Kurve approximieren oder interpolieren?
- Interpolation:
 die Kurve geht durch alle vorgegebenen Punkte

Approximation: die Kurve geht nicht durch alle (oder auch gar keinen) Punkt

Interpolation und Approximation

- Interpolation:
 die Kurve geht durch alle vorgegebenen Punkte
 - klingt an sich sinnvoll
 - kann aber instabil sein und Überschwinger erzeugen

- Approximation: die Kurve geht nicht durch alle (oder auch gar keinen) Punkt
 - erlaubt Kurven mit "angenehmen" Eigenschaften
 - wir beschäftigen uns hiermit

Kurven und Splines

Sichtweisen und Anwendungen

- Approximation und Interpolation
 - gegeben eine Menge von (Daten-)Punkten
 - wie können wir die Punkte mit einer Kurve approximieren oder interpolieren?
- Modellierung und Benutzerschnittstelle
 - wie kann ein Benutzer eine (glatte) Kurve definieren?
 - heutzutage der wichtigere Aspekt in der CG
- wie kann man eine glatte Kurve definieren?
 - ▶ angeben einer parametrischen Funktion $\binom{x}{y} = f(u)$
 - ightharpoonup implizite Beschreibung f(x,y)=0
 - mit der Maus zeichnen
 - platzieren einiger "Kontrollpunkte" (unser Fokus)

Kurven und Splines

Allgemeines

- festgelegt durch einige/wenige Kontrollpunkte
 - gut für Definition durch Benutzer und Speichern der Daten
- \triangleright ergibt eine glatte parametrische Kurve P(u)
 - ightharpoonup definiert in kartesischen Koordinaten x(u) und y(u)
 - \triangleright praktisch für Animation, wenn u als Zeit interpretiert wird
 - ightharpoonup praktisch für Tessellierung: wenn u diskretisiert wird kann die Kurve stückweise durch Liniensegmente approximiert werden
 - meist polynomial

- ightharpoonup definiert durch 4 Kontrollpunkte \mathbf{b}_i
- \triangleright die Kurve geht durch den ersten und letzten Kontrollpunkt (\mathbf{b}_0 und \mathbf{b}_3)
- und approximiert die anderen beiden
- mathematische Beschreibung mit einem kubischen Polynom

- $P(u) = (1-u)^3 \mathbf{b}_0 + 3u(1-u)^2 \mathbf{b}_1 + 3u^2(1-u)\mathbf{b}_2 + u^3 \mathbf{b}_3$
 - ightharpoonup mit $\mathbf{b}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$, $\mathbf{b}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, ...
 - $\Rightarrow x(u) = (1-u)^3 x_0 + 3u(1-u)^2 x_1 + 3u^2(1-u)x_2 + u^3 x_3$
 - \rightarrow $y(u) = \cdots$

- $P(u) = (1-u)^3 \mathbf{b}_0 + 3u(1-u)^2 \mathbf{b}_1 + 3u^2(1-u)\mathbf{b}_2 + u^3 \mathbf{b}_3$
 - ightharpoonup mit $\mathbf{b}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$, $\mathbf{b}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, ...
 - $\Rightarrow x(u) = (1-u)^3 x_0 + 3u(1-u)^2 x_1 + 3u^2(1-u)x_2 + u^3 x_3$
 - \rightarrow \Rightarrow $y(u) = \cdots$
- \triangleright was passiert, wenn wir u=0 oder u=1 setzen?

- \triangleright definiert durch 4 Kontrollpunkte \mathbf{b}_i
- \triangleright die Kurve geht durch den ersten und letzten Kontrollpunkt (\mathbf{b}_0 und \mathbf{b}_3)
- ightharpoonup Kurve ist bei \mathbf{b}_0 tangential an $\overline{\mathbf{b}_0\mathbf{b}_1}$ und bei \mathbf{b}_3 tangential an $\overline{\mathbf{b}_3\mathbf{b}_2}$
- eine Bézierkurve liegt innerhalb der konvexen Hülle ihrer Kontrollpunkte

Wo kommen die Formeln her?

- Möglichkeit 1
 - pure Magie, hab' ich aus dem Hut gezaubert, interpoliert bzw. approximiert erstaunlicherweise die Punkte
- Möglichkeit 2
 - es ist eine Linearkombination von geeigneten Basispolynomen

Polynomkurven

Grundlagen

- ▶ Polynom *n*-ten Grades: $p(u) = a_n u^n + a_{n-1} u^{n-1} + \dots + a_1 u + a_0$
 - ightharpoonup Koeffizienten des Polynoms a_n , a_{n-1} , ..., a_1 , $a_0 \in \mathbb{R}$
 - \triangleright wenn $a_n \neq 0$, dann ist n der Grad des Polynoms
- ightharpoonup Menge aller Polynome $p\in\mathbb{P}$
 - ▶ Polynome vom Grad höchstens $n: \mathbb{P}_n = \{p \in \mathbb{P}: \operatorname{grad}(p) \leq n\}$

Polynomkurve

 \triangleright eine d-dimensionale Polynomkurve ist eine parametrisierte Kurve $u\mapsto P(u)$:

$$P(u) = \sum_{i=0}^{n} \mathbf{a}_{i} u^{i} = \mathbf{a}_{n} u^{n} + \mathbf{a}_{n-1} u^{n-1} + \dots + \mathbf{a}_{1} u + \mathbf{a}_{0}$$
, mit $\mathbf{a}_{i} \in \mathbb{R}^{d}$

hickspace
ightharpoonup Menge der d-dimensionalen Polynomkurven von Grad $n\colon \mathbb{P}_n^d$

Polynomkurven

Andere Basen von \mathbb{P}_n

- $ightharpoonup \mathbb{P}$ und \mathbb{P}_n sind lineare Räume (Vektorräume)
 - ightharpoonup Dimension $\dim(\mathbb{P}_n) = n + 1$ (= Anzahl der Freiheitsgrade, hier \mathbf{a}_i)
 - ightharpoonup Standardbasis für \mathbb{P}_n ist die Monombasis $1, u, u^2, \dots, u^n$
- \triangleright Beispiel: \mathbb{P}_3
 - \triangleright Standardbasis 1, u, u^2 , u^3
 - Basis: Menge von "Vektoren"
 - Linearkombinationen dieser Basisvektoren spannen den Raum auf
 - kein Basisvektor durch Linearkombination der Anderen darstellbar
 - mögliche andere Basen aus denen mit Linearkombinationen alle kubischen Polynome dargestellt werden können:
 - \triangleright 1, 1 + u, 1 + u + u², 1 + u u² + u³
 - $\triangleright u^3$, $u^3 + u^2$, $u^3 + u$, $u^3 + 1$
 - Lagrange-Polynome, ...
- was ist eine geschickte Basis für (Bézier-)Kurven?

Kubische Bernstein-Polynome (Basis des \mathbb{P}_3)

$$B_0^3(u) = (1-u)^3$$

$$B_1^3(u) = 3u(1-u)^2$$

$$B_2^3(u) = 3u^2(1-u)$$

$$B_3^3(u) = u^3$$

Kubische Bézierkurve in der Bernstein-Basis

- $F(u) = \mathbf{b}_0 B_0^3(u) + \mathbf{b}_1 B_1^3(u) + \mathbf{b}_2 B_2^3(u) + \mathbf{b}_3 B_3^3(u)$
 - b_i sind die Koeffizienten
 - \triangleright die Kontrollpunkte \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 sind die Koordinaten der Kurve in der Bernstein-Basis (einer Basis für \mathbb{P}_3)
 - festlegen einer Bézierkurve mit Kontrollpunkten ist intuitiv wie das Angeben von 2D Punkten mit x und y Koordinaten

Anmerkung:

wir haben es mit 2 Vektorräumen zu tun

die Ebene in der die Kurve liegt (2D Vektorraum)

Raum der kubischen Polynome (4D Raum)

die 2D Kontrollpunkte können einfach durch 3D Punkte ersetzt werden

Bernstein-Polynome als Gewichtungsfunktion

$$\triangleright B_0^3(u) = (1-u)^3$$

$$B_1^3(u) = 3u(1-u)^2$$

$$B_2^3(u) = 3u^2(1-u)$$

$$B_3^3(u) = u^3$$

- Bézierkurve: $F(u) = \mathbf{b}_0 B_0^3(u) + \mathbf{b}_1 B_1^3(u) + \mathbf{b}_2 B_2^3(u) + \mathbf{b}_3 B_3^3(u)$
- anschaulich: jedes B_i^3 legt den Einfluss von \mathbf{b}_i auf die Kurve an der Stelle u fest
 - erst hat b₀ den größten Einfluss, dann \mathbf{b}_1 , \mathbf{b}_2 und dann \mathbf{b}_3
 - \triangleright **b**₁ und **b**₂ haben nie vollen Einfluss und werden daher nicht interpoliert

Definition (nach Sergei N. Bernstein, 1912)

 $\triangleright i$ -tes Bernstein-Polynom vom Grad n

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$
, mit $i = 0, ..., n$

- ightharpoonup man vereinbart $B_i^n \equiv 0$ falls i < 0 oder i > n
- ightharpoonup Binomialkoeffizient $\binom{n}{k}\coloneqq \frac{n!}{k!(n-k)!}$
 - rekursive Definition: $\binom{n}{0} \coloneqq 1$, $\binom{0}{k} \coloneqq 0$ und $\binom{n+1}{k+1} \coloneqq \frac{n+1}{k+1} \binom{n}{k}$
 - ▶ Pascalsches Dreieck: $\binom{n+1}{k+1} \coloneqq \binom{n}{k+1} + \binom{n}{k}$
 - Symmetrie $\binom{n}{k} = \binom{n}{n-k}$

Eigenschaften

 $\triangleright i$ -tes Bernstein-Polynom vom Grad n

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$
, mit $i = 0, ..., n$

- $ightharpoonup \sum_{i=0}^n B_i^n(u) = 1$ (Partition der 1, Beweis über binomischen Lehrsatz)
- $\triangleright B_i^n(u) \ge 0$ für $u \in [0; 1]$ (Positivität)
- $B_i^n(u) = u \cdot B_{i-1}^{n-1}(u) + (1-u) \cdot B_i^{n-1}(u)$ (Rekursion, wichtig!)
- $\triangleright B_i^n(u) = B_{n-i}^n(1-u)$
- $ightharpoonup B_i^n(u)$ hat Maximum in [0; 1] bei u = i/n

Eigenschaften

i-tes Bernstein-Polynom vom Grad n

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$
, mit $i = 0, ..., n$

- $B_i^n(u) = u \cdot B_{i-1}^{n-1}(u) + (1-u) \cdot B_i^{n-1}(u)$ (Rekursion, wichtig!)
- $B_0^1(u) = u \text{ und } B_1^1(u) = 1 u$
- $B_0^2(u) = u \cdot B_{-1}^1(u) + (1-u) \cdot B_0^1(u) = (1-u) \cdot u = 1-u^2$
- $B_1^2(u) = u \cdot B_0^1(u) + (1-u) \cdot B_1^1(u) = u \cdot u + (1-u)^2 = 2u^2 2u + 1$

Allgemeine Definition

eine Polynomkurve

$$F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i$$
 , mit $\mathbf{b}_i \in \mathbb{R}^d$

heißt $B\acute{e}zierkurve$ vom Grad n, die Punkte \mathbf{b}_i heißen Kontroll- oder $B\acute{e}zierpunkte$ und bilden das Kontrollpolygon

- entwickelt von Paul de Casteljau 1959
- bekannt geworden durch Pierre Étienne Bézier 1962 für Karosseriedesign

Basiswechsel

- ightharpoonup die Bernstein-Polynome B_i^n bilden eine Basis des \mathbb{P}_n
 - wie sind die Koeffizienten einer Bézierkurve bzgl. der Monombasis? Also: gesucht $\{\mathbf{a}_i\}$ für $F(u) = \sum_i \mathbf{a}_i u^i = \sum_i \mathbf{b}_i B_i^n(u)$
- Basiswechsel kann durch eine Matrix ausgedrückt werden
 - Satz aus der linearen Algebra:
 - peg. zwei Linearkombinationen, die einen Vektor \mathbf{v} darstellen mit $\mathbf{v} = \sum_i \gamma_i \mathbf{c}_i = \sum_i \delta_i \mathbf{d}_i$, dann gilt:

$$\begin{pmatrix} \vdots \\ \mathbf{c}_i \\ \vdots \end{pmatrix} = \mathbf{M} \begin{pmatrix} \vdots \\ \mathbf{d}_i \\ \vdots \end{pmatrix} \Rightarrow \begin{pmatrix} \vdots \\ \delta_i \\ \vdots \end{pmatrix} = \mathbf{M}^{\mathrm{T}} \begin{pmatrix} \vdots \\ \gamma_i \\ \vdots \end{pmatrix}$$

Beweis:

$$\mathbf{c}_{i} = \sum_{j} m_{ij} \mathbf{d}_{j}$$

$$\Rightarrow \mathbf{v} = \sum_{i} \gamma_{i} \sum_{j} m_{ij} \mathbf{d}_{j} = \sum_{j} \left(\sum_{i} \gamma_{i} m_{ij} \right) \mathbf{d}_{j} = \sum_{j} \delta_{j} \mathbf{d}_{j}$$

$$\Rightarrow \delta_{j} = \sum_{i} m_{ij} \gamma_{i}$$

Basiswechsel

- ightharpoonup die Bernstein-Polynome B_i^n bilden eine Basis des \mathbb{P}_n
 - wie sind die Koeffizienten einer Bézierkurve bzgl. der Monombasis? Also: $F(u) = \sum_i \mathbf{a}_i u^i = \sum_i \mathbf{b}_i B_i^n(u)$
- Basiswechsel kann durch eine Matrix ausgedrückt werden
- ▶ Beispiel n = 2: $F(u) = \mathbf{b}_0 B_0^2(u) + \mathbf{b}_1 B_1^2(u) + \mathbf{b}_2 B_2^2(u)$

$$B_0^2(u) = {2 \choose 0} u^0 (1-u)^{2-0} = (1-u)^2 = 1 - 2u + u^2$$

$$B_1^2(u) = {2 \choose 1} u^1 (1-u)^{2-1} = 2u(1-u) = 2u - 2u^2$$

$$B_2^2(u) = {2 \choose 2} u^2 (1-u)^{2-2} = u^2$$

$$\begin{bmatrix}
B_0^2 \\
B_1^2 \\
B_2^2
\end{bmatrix} = \begin{pmatrix}
1 & -2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\ u \\ u^2
\end{pmatrix} \Rightarrow \begin{pmatrix}
\mathbf{a}_0 \\
\mathbf{a}_1 \\
\mathbf{a}_2
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
-2 & 2 & 0 \\
1 & -2 & 1
\end{pmatrix} \begin{pmatrix}
\mathbf{b}_0 \\
\mathbf{b}_1 \\
\mathbf{b}_2
\end{pmatrix}$$

Basiswechsel

- ightharpoonup die Bernstein-Polynome B_i^n bilden eine Basis des \mathbb{P}_n
 - wie sind die Koeffizienten einer Bézierkurve bzgl. der Monombasis? Also: $F(u) = \sum_i \mathbf{a}_i u^i = \sum_i \mathbf{b}_i B_i^n(u)$
- Basiswechsel kann durch eine Matrix ausgedrückt werden
- ▶ Beispiel n = 3: $F(u) = \mathbf{b}_0 B_0^3(u) + \mathbf{b}_1 B_1^3(u) + \mathbf{b}_2 B_2^3(u) + \mathbf{b}_3 B_3^3(u)$
 - $\triangleright B_0^3(u) = (1-u)^3$
 - $\triangleright B_1^3(u) = 3u(1-u)^2$
 - $B_2^3(u) = 3u^2(1-u)$
 - $> B_3^3(u) = u^3$

$$F(u) = (\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ u \\ u^2 \\ u^3 \end{pmatrix}$$

Zusammenfassung

- kubische Polynome bilden einen Vektorraum
- die Bernstein-Basis ist die kanonische Darstellung für Bézierkurven
 - kann als Gewichtungsfunktion für die Kontrollpunkte gesehen werden
 - Kontrollpunkte sind die Koordinaten der Kurve in der Bernstein-Basis
- Basiswechsel elegant mit Matrizen

Eigenschaften (Lemma von Bézier)

- ightharpoonup für $F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i$ gilt
 - ▶ F(u) liegt in der abgeschlossenen konvexen Hülle des Kontrollpolygons (für $u \in [0; 1]$, F(u) ist Konvexkombination der $\{\mathbf{b}_i\}$)
 - Grund:

 - $\triangleright B_i^n(u) \ge 0$ für $u \in [0; 1]$ (Positivität)

- ▶ Endpunktinterpolation $F(0) = \mathbf{b}_0$ und $F(1) = \mathbf{b}_3$
- ▶ Tangentenbedingung $F'(0) = n(\mathbf{b}_1 \mathbf{b}_0) \land F'(1) = n(\mathbf{b}_n \mathbf{b}_{n-1})$
 - ▶ allgemein $F'(u) = n \sum_{i=0}^{n-1} B_i^{n-1}(u) (\mathbf{b}_{i+1} \mathbf{b}_i)$ $F''(u) = n(n-1) \sum_{i=0}^{n-2} B_i^{n-2}(u) (\mathbf{b}_{i+2} - 2\mathbf{b}_{i+1} + \mathbf{b}_i)$

Eigenschaften (Lemma von Bézier)

ightharpoonup affine Invarianz: sei $\varphi(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$ eine affine Abbildung, dann gilt

$$\varphi(F(u)) = \sum_{i=0}^{n} B_i^n(u)\varphi(\mathbf{b}_i)$$

- \triangleright d.h. um die Kurve zu transformieren genügt es, die $\{\mathbf{b}_i\}$ zu transf.
- \triangleright Beweis: lineare Transformation A für n=2:

$$F_{A}(u) = A \left((\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}) \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ u \\ u^{2} \end{pmatrix} \right) =$$

$$= \left(\mathbf{A}(\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2) \right) \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ u \\ u^2 \end{pmatrix}$$

Eigenschaften (Lemma von Bézier)

ightharpoonup affine Invarianz: sei $\varphi(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$ eine affine Abbildung, dann gilt

$$\varphi(F(u)) = \sum_{i=0}^{n} B_i^n(u)\varphi(\mathbf{b}_i)$$

- ightharpoonup d.h. um die Kurve zu transformieren genügt es, die $\{\mathbf{b}_i\}$ zu transf.
- \triangleright Beweis: Translation **t** für n=2:

$$F_{\mathbf{t}}(u) = (\mathbf{b}_0 + \mathbf{t})B_0^2(u) + (\mathbf{b}_1 + \mathbf{t})B_1^2(u) + (\mathbf{b}_2 + \mathbf{t})B_2^2(u) =$$

$$= \mathbf{b}_0 B_0^2(u) + \mathbf{b}_1 B_1^2(u) + \mathbf{b}_2 B_2^2(u) + \mathbf{t} \underbrace{\left(B_0^2(u) + B_1^2(u) + B_2^2(u)\right)}_{=1} =$$

$$= F(u) + \mathbf{t}$$

ightharpoonup Beweis für $\varphi(\mathbf{x}) = A\mathbf{x} + \mathbf{t}$ und andere n analog

Eigenschaften (Lemma von Bézier)

- ightharpoonup für $F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i$ gilt
 - **Variationsreduzierung** ("variation diminishing property"): "Eine Bézier-Kurve F wackelt nicht stärker als ihr Kontrollpolygon B"
 - ▶ sei H eine beliebige Hyperebene in \mathbb{R}^d (Gerade in \mathbb{R}^2 , Ebene in \mathbb{R}^3) dann gilt $\#(H \cap F) \leq \#(H \cap B)$
 - ▶ Beweis: G. Farin. "Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide". Academic Press, 4. Auflage, 1997

Effiziente Auswertung und Unterteilung von Bézierkurven

- möglich durch die rekursive Darstellung der Bernstein-Polynome
 - \triangleright zur Erinnerung: $B_i^n(u) = u \cdot B_{i-1}^{n-1}(u) + (1-u) \cdot B_i^{n-1}(u)$
 - $\triangleright \mathbf{b}_i^0 \coloneqq \mathbf{b}_i$
 - $\mathbf{b}_{i}^{j} \coloneqq (1-u) \cdot \mathbf{b}_{i}^{j-1} + u \cdot \mathbf{b}_{i+1}^{j-1}, \ i = 0, ..., n-j$
 - $\Rightarrow \mathbf{b}_0^n = F(u)$ ist ein Punkt auf der Bézierkurve
- ▶ Berechnung von $F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i$ durch fortgesetzte lineare Interpolation, ohne die Bernstein-Polynome zu bestimmen

Effiziente Auswertung und Unterteilung von Bézierkurven

Beispiel: quadratische Beziérkurve

$$B_0^2(u) = {2 \choose 0} u^0 (1-u)^{2-0} = (1-u)^2$$

$$B_1^2(u) = {2 \choose 1} u^1 (1-u)^{2-1} = 2u(1-u)$$

$$B_2^2(u) = {2 \choose 2} u^2 (1-u)^{2-2} = u^2$$

rekursive Auswertung

$$\triangleright \mathbf{b}_i^0 \coloneqq \mathbf{b}_i$$

$$\mathbf{b}_{i}^{j} \coloneqq (1-u) \cdot \mathbf{b}_{i}^{j-1} + u \cdot \mathbf{b}_{i+1}^{j-1}, \ i = 0, ..., n-j$$

$$\mathbf{b}_{i}^{2} = (1 - u) \cdot \mathbf{b}_{i}^{1} + u \cdot \mathbf{b}_{i+1}^{1}$$

$$= (1 - u) \cdot \left((1 - u) \cdot \mathbf{b}_{i}^{0} + u \cdot \mathbf{b}_{i+1}^{0} \right) + u \cdot \left((1 - u) \cdot \mathbf{b}_{i+1}^{0} + u \cdot \mathbf{b}_{i+2}^{0} \right)$$

$$= (1 - u)^{2} \cdot \mathbf{b}_{i}^{0} + 2u(1 - u) \cdot \mathbf{b}_{i+1}^{0} + u \cdot u \cdot \mathbf{b}_{i+2}^{0}$$

Effiziente Auswertung und Unterteilung von Bézierkurven

- möglich durch die rekursive Darstellung der Bernstein-Polynome
 - $\triangleright \mathbf{b}_i^0 \coloneqq \mathbf{b}_i$

$$\mathbf{b}_{i}^{j} \coloneqq (1-u) \cdot \mathbf{b}_{i}^{j-1} + u \cdot \mathbf{b}_{i+1}^{j-1}, \ i = 0, ..., n-j$$

- ▶ Beispiel: $\mathbf{b}_0 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\mathbf{b}_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 - **b**₀¹ = $\frac{1}{2}$ **b**₀ + $\frac{1}{2}$ **b**₁ = $\begin{pmatrix} -\frac{1}{2} \\ 0 \end{pmatrix}$
 - **b**₁ = $\frac{1}{2}$ **b**₁ + $\frac{1}{2}$ **b**₂ = $\binom{1/2}{0}$
 - **b**₀² = $\frac{1}{2}$ **b**₀¹ + $\frac{1}{2}$ **b**₁¹ = $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Effiziente Auswertung: grafische Interpretation/Konstruktion

▶ \mathbf{b}_i^j ist lineare Interpolation gemäß u zwischen \mathbf{b}_i^{j-1} und \mathbf{b}_{i+1}^{j-1} : $\mathbf{b}_i^j \coloneqq (1-u) \cdot \mathbf{b}_i^{j-1} + u \cdot \mathbf{b}_{i+1}^{j-1}$

Parameterintervalle

- wir brauchen Folgendes nur für die Ideen der nächsten Folien...
- ▶ Bernstein-Polynome können auf ein beliebiges Parameterintervall $\Delta \coloneqq [s; t]$ verallgemeinert werden

$$B_i^{\Delta,n}(u) = \frac{1}{(t-s)^n} \binom{n}{i} (u-s)^i (t-u)^{n-i}$$

- ► Herleitung: $\varphi(u) = \frac{u-s}{t-s}$ einsetzen in $B_i^n(\varphi(u)) = B_i^{\Delta,n}(u)$
- ightharpoonup wenn u von s nach t läuft, so läuft $\varphi(u)$ von 0 bis 1
- ho $\varphi(u)$ ist baryzentrische Koordinate von u bzgl. s und t
- wir werden im Folgenden einfache und verallgemeinerte Bernstein-Polynome verwenden

Unterteilung von Bézierkurven

- ▶ Bézierkurve $F(u) = \sum_{i=0}^{n} B_i^{\Delta,n}(u) \mathbf{b}_i$ und $\Delta = [s,t], q \in [s,t]$
 - $ightharpoonup F_l(u) = \sum_{i=0}^n B_i^{\Delta_l,n}(u) \mathbf{b}_0^i(q)$ über $\Delta_l = [s,q]$
 - $ightharpoonup F_r(u) = \sum_{i=0}^n B_i^{\Delta_r,n}(u) \mathbf{b}_i^{n-i}(q)$ über $\Delta_r = [q,t]$
 - $ightharpoonup \mathbf{b}_i^j(q)$ sind die Punkte des de Casteljau-Algorithmus bei q
 - Anm. Beachtung der Parameterintervalle ist wichtig, um die Stetigkeit an der Anschlussstelle zu gewährleisten
- ▶ Beispiel: linke Teilkurve für n=3 und $q=\frac{u-s}{t-s}=\frac{1}{3}$

Zeichnen einer Bézierkurve

Algorithmus 1

- werte F(u) an m Parametern q_j mit $q_j < q_{j+1}$ aus (mittels de Casteljau oder Auswerten der Bernstein-Polynome)
- \triangleright zeichne den Polygonzug $F(q_0), ..., F(q_{m-1})$
- ▶ Beispiel: n = 3, $\Delta = [0; 1]$, $q_0 = 0$, $q_1 = \frac{1}{4}$, $q_2 = \frac{1}{2}$, $q_3 = \frac{3}{4}$, $q_4 = 1$
 - ightharpoonup drei Auswertungen, da $F(q_0)$ und $F(q_4)$ bekannt sind

Zeichnen einer Bézierkurve

Algorithmus 2

- ▶ unterteile F(u) in der parametrischen Mitte $(q = \frac{s+t}{2})$ in $F_l(u)$ und $F_r(u)$ mittels de Casteljau
- führe rekursiv bis zu einer Rekursionstiefe r fort
- zeichne die Kontrollpolygone der jeweils letzten Rekursion
- \triangleright Beispiel: n=3, r=2
 - gleicher Aufwand wie Algorithmus 1, aber vgl. Ergebnis!

- Modellieren von komplexeren Formen mit Bézierkurven
 - 1) verwende eine Bézierkurve von hohem Grad
 - ▶ u.U. numerische Probleme, aber noch wichtiger: jeder Kontrollpunkt beeinflusst die ganze Kurve → schwierig bei der Modellierung
 - > 2) füge mehrere Bézierkurven niedrigen Grades stückweise aneinander
- Bézier-Spline: stückweise polynomielle Kurve, deren einzelne Abschnitte durch Bézierkurven beschrieben sind
 - (parametrische) Stetigkeit des Überganges? Glattheit der Kurve?

- Bézier-Spline: stückweise polynomielle Kurve, deren einzelne Abschnitte durch Bézierkurven beschrieben sind
- ≥ zwei Polynomkurven $F: [r,s] \mapsto \mathbb{R}^d$ und $G: [s,t] \mapsto \mathbb{R}^d$ sind \mathbb{C}^k -stetig bei s, wenn F(s) = G(s), F'(s) = G'(s), ..., $F^k(s) = G^k(s)$
 - C⁰-stetig = stetig, keine Sprungstellen
 - C¹-stetig = C⁰-stetig + gleicher Tangentenvektor
 - $ightharpoonup C^2$ -stetig = C^1 -stetig + gleicher Schmiegekreis

C^k-Übergang zweier Bézierkurven

- $F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i \text{ und } G(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{c}_i$
 - $ightharpoonup C^0$ -stetig $\Leftrightarrow F(1) = G(0) \Leftrightarrow \mathbf{b}_n = \mathbf{c}_0$
 - $ightharpoonup C^1$ -stetig $\Leftrightarrow F'(1) = G'(0) \Leftrightarrow \mathbf{b}_n \mathbf{b}_{n-1} = \mathbf{c}_1 \mathbf{c}_0$ (und $\mathbf{b}_n = \mathbf{c}_0$)
 - ► C^2 -stetig $\Leftrightarrow C^1$ -stetig und F''(1) = G''(0) $\Leftrightarrow \mathbf{b}_{n-1} + (\mathbf{b}_{n-1} - \mathbf{b}_{n-2}) = \mathbf{c}_1 + (\mathbf{c}_1 - \mathbf{c}_2)$
- Anm. bei verallgemeinerten Bernstein-Polynomen spielen die Verhältnisse der Intervallgrößen eine Rolle (nicht in dieser Vorlesung)
- Beispiel: kubische Bézierkurven und "A-Frame"-Eigenschaft

Beispiel: Übergang zweier kubischer Bézierkurven

- $F(u) = \sum_{i=0}^{3} B_i^3(u) \mathbf{b}_i$ und $G(u) = \sum_{i=0}^{3} B_i^3(u) \mathbf{c}_i$
 - $ightharpoonup C^0$ -stetig $\Leftrightarrow F(1) = G(0) \Leftrightarrow \mathbf{b}_n = \mathbf{c}_0$
 - $ightharpoonup C^1$ -stetig $\Leftrightarrow F'(1) = G'(0) \Leftrightarrow \mathbf{b}_n \mathbf{b}_{n-1} = \mathbf{c}_1 \mathbf{c}_0$ (und $\mathbf{b}_n = \mathbf{c}_0$)
 - ightharpoonup nicht C²-stetig, weil $\mathbf{b}_2 + (\mathbf{b}_2 \mathbf{b}_1) \neq \mathbf{c}_1 + (\mathbf{c}_1 \mathbf{c}_2)$
- Asymmetrie: einige Kontrollpunkte werden interpoliert, andere nicht

Tensorprodukt zweier Vektoren

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \end{bmatrix}$$

das Tensorprodukt angewendet auf die Basen zweier Kurven ergibt eine Basis für eine Flächendarstellung:

$$[A_0^n \quad \dots \quad A_n^n] \otimes [B_0^n \quad \dots \quad B_n^n] = \begin{bmatrix} A_0^n B_0^n & \dots & A_n^n B_0^n \\ \vdots & \ddots & \vdots \\ A_0^n B_n^n & \dots & A_n^n B_n^n \end{bmatrix}$$

ightharpoonup gegeben zwei Bézierkurven in \mathbb{R}^3 :

$$F(u) = \sum_{i=0}^{n} B_i(u) \mathbf{c}_i \text{ und } G(v) = \sum_{j=0}^{m} B_j(v) \mathbf{d}_j$$

das Tensorprodukt ist die TP-Bézier-Fläche:

$$S(u,v) \coloneqq \sum_{i=0}^{n} \sum_{j=0}^{m} B_i^n(u) B_j^m(v) \mathbf{b}_{i,j}$$

- die Kontrollpunkte b_{i,j} bilden das Kontrollnetz
- Anm. es sind Kombinationen beliebiger Kurvenschemata und Grade möglich

▶ Basisfunktionen $B_i^2(u)B_j^2(v)$

▶ Basisfunktionen $B_i^3(u)B_j^3(v)$

Tensorprodukt-Fläche ist eine "Kurve von Kurven"

Ausklammern

$$\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i}^{n}(u) B_{j}^{m}(v) \mathbf{b}_{i,j} = \sum_{i=0}^{n} B_{i}^{n}(u) \left(\sum_{j=0}^{m} B_{j}^{m}(v) \mathbf{b}_{i,j} \right) = \sum_{j=0}^{m} B_{j}^{m}(v) \left(\sum_{i=0}^{n} B_{i}^{n}(u) \mathbf{b}_{i,j} \right)$$

- ho u festhalten ergibt Kontrollpunkte der v-Kurve mit $\mathbf{c}_j = \sum_{i=0}^n B_i^n(u) \mathbf{b}_{i,j}$
- ightharpoonup Beispiel: $u={}^3/_4$ ergibt 4 Kontrollpunkte ${f c}_i$ einer Bézierkurve in v

Formeigenschaften von TP-Bézier-Flächen

- konvexe Hülle-Eigenschaft
- ightharpoonup Interpolation der 4 Ecken des Kontrollnetzes $\{\mathbf{b}_{i,j}\}$

$$\triangleright S(0,0) = \mathbf{b}_{0,0}, S(1,0) = \mathbf{b}_{n,0}, S(0,0) = \mathbf{b}_{0,m}, S(1,1) = \mathbf{b}_{n,m}$$

- Fläche ist tangential in den Eckpunkten
 - ightharpoonup z.B. bei S(0,0) tangential zur Ebene aufgespannt von ${f b}_{1,0}-{f b}_{0,0}$ und ${f b}_{0,1}-{f b}_{0,0}$
- die Randkurven der Fläche sind Bézierkurven
 - ightharpoonup z.B. S(0, v) = F(v) ist eine Bézierkurve
- affine Invarianz
- Variationsreduzierung gilt nicht!

Auswertung von TP-Bézier-Flächen

ightharpoonup wende (m+1)-mal den univariaten de Casteljau-Algorithmus in u an

$$\mathbf{c}_j = \sum_{i=0}^n B_i^n(u) \mathbf{b}_{i,j}$$

ightharpoonup wende einmal univariaten de Casteljau-Algorithmus in v an

$$S(u,v) = \sum_{j=0}^{m} B_j^m(v) \mathbf{c}_j$$

 \triangleright ... oder erst in v-, dann in u-Richtung auswerten

Auswertung für TP-Bézier-Flächen

- de Casteljau für Bézierkurven basiert auf fortgesetzter linearer Interpolation
- durch bilineare Interpolation lässt sich ein de Casteljau-Algorithmus für Flächen formulieren

Quake 3 Arena verwendet bikubische Bézier-Flächen

Ausblicke

Trimming ("Zuschneiden") von Flächen:

- bestimme eine Menge von Konturen Γ_i im Parametergebiet die festlegen, ob ein Punkt S(u,v) zur Fläche gehört
 - ightharpoonup Test ob ein Punkt (u, v) innerhalb liegt mit Odd-Even-Test

- ightharpoonup Test für Punkt $P = (x_p, y_p)$
 - ightharpoonup betrachte alle Schnitte der Gerade $y=y_p$ mit den Polygonkanten
 - ▶ P liegt im Polygon ⇔ links und rechts eine ungerade Zahl von Schnitten existiert
 - ▶ P liegt außerhalb ⇔ links und rechts eine gerade Zahl von Schnitten existiert

- ightharpoonup Test für Punkt $P = (x_p, y_p)$
 - ightharpoonup betrachte alle Schnitte der Gerade $y=y_p$ mit den Polygonkanten
 - ▶ P liegt im Polygon ⇔ links und rechts eine ungerade Zahl von Schnitten existiert
 - ▶ P liegt außerhalb ⇔ links und rechts eine gerade Zahl von Schnitten existiert

- ightharpoonup Test für Punkt $P = (x_p, y_p)$
 - ightharpoonup es genügt auch die Schnitte entlang einer Halbgerade von P in eine beliebige Richtung zu zählen
 - ightharpoonup P liegt im Polygon \Leftrightarrow ungerade Anzahl
 - ightharpoonup P liegt außerhalb \Leftrightarrow gerade Anzahl

- Spezialfälle
 - liegt ein Eckpunkt des Polygons auf der Gerade $y=y_p$, dann darf der Schnitt nur einmal gezählt werden (z.B. nur für Kante b im linken Bild)
 - ightharpoonup zähle Schnitte nicht, für Kanten die auf oder über der Geraden $y=y_p$ liegen (rechtes Beispiel: der Schnitt zählt nur für Kante c)

- Computer Graphics: Principles and Practice (Foley, Van Dam, Feiner, Hughes)
 - Seite 34: "Next, choose a ray that starts at the test point and extends infinitely in any direction, and that does not pass through any vertices"
 - Seite 339: "intersections at vertices" are a "special case"
- Lösung: http://jedi.ks.uiuc.edu/~johns/raytracer/rtn/rtnv3n4.html#art22

Ausblicke

- mit polynomiellen Kurven ist es nicht möglich Kegelschnitte (z.B. einen Kreisbogen) exakt darzustellen
 - rationale Bézierkurven und rationale B-Spline-Kurven (NURBS)
 - rationale Bézierkurve mit Gewichten w_i:

$$F(u) = \frac{\sum_{i=0}^{n} B_{i}^{n}(u) w_{i} \mathbf{b}_{i}}{\sum_{i=0}^{n} B_{i}^{n}(u) w_{i}}$$

Beispiel: quadratische rationale Bézierkurve

- Dreiecks-Bézierflächen: mehr topologische Flexibilität
 - ightharpoonup Bernstein-Polynome in baryzentrischen Koordinaten $B_{ijk}^n(t_1,t_2,t_3)$

Klausur

- Wann?
 12. März 2013 um 11.00 Uhr
- Wo? Hörsaal "Daimler" und "Benz"
 - wir kündigen auf der Webseite an, wer in welchem Hörsaal schreibt
- Wie lange? 60 Minuten (plus 5 Minuten Lesezeit)
- Anmeldung nicht vergessen!
 - Anmeldung: 11. Februar 2013 bis 6. März 2013
- Sonstiges...
 - keine Hilfsmittel
 - Studentenausweis nicht vergessen!
- Nachklausur:
 - 10. April 2013, 14 Uhr, Hörsaal "Daimler" und "Benz"
 - → immer Ankündigungen auf der Webseite beachten!

Die folgenden Folien enthalten "Bonus-Material"

Kubische B-Splines (Bonusmaterial)

Kubische B-Splines (Splines mit einer anderen Polynombasis)

- 4 oder mehr Kontrollpunkte
- die Kurve ist aus kubischen Segmenten zusammengesetzt
- die Kurve muss nicht durch Kontrollpunkte verlaufen

eine B-Spline Kurve liegt ebenfalls innerhalb der konvexen Hülle ihrer (lokalen) Kontrollpunkte

Kubische B-Splines (Bonusmaterial)

▶ Basisfunktionen N_{i-3}^3 , N_{i-2}^3 , N_{i-1}^3 , N_{i-0}^3

kubisches Kurvensegment

$$F(u) = \frac{(1-u)^3}{6} \mathbf{d}_{i-3} + \frac{3u^3 - 6u^2 + 4}{6} \mathbf{d}_{i-2} + \frac{-3u^3 + 3u^2 + 3u + 1}{6} \mathbf{d}_{i-1} + \frac{u^3}{6} \mathbf{d}_i$$

$$F(u) = (\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ u \\ u^2 \\ u^3 \end{pmatrix}$$

Kubische B-Splines (Bonusmaterial)

- Teilkurven können aneinander gereiht werden
- bessere Kontrolle der Kurve: ein Kontrollpunkt hat nur Einfluss auf einen Teil der B-Spline Kurve

Vergleich Bézier- und B-Spline-Kurven (Bonusmaterial T

Bernstein-Polygnome und Bézierkurven

B-Splines und B-Spline-Kurven

Wechsel zwischen Bézier- & B-Spline Darstellung (Bonus)

in beiden Fällen kubische Polynomkurven

ursprüngliche Kontrollpunkte als Bézierkurve

neue B-Spline Kontrollpunkte

ursprüngliche Kontrollpunkte der B-Spline-Kurve

neue Bézier Kontrollpunkte

- stückweise polynomielle Kurven mit "eingebauter" Stetigkeit
 - \triangleright Kurven vom Grad $n \rightarrow$ meist C^{n-1} -stetig
- ightharpoonup gegeben: Grad n und
 - ightharpoonup Knoten $t_0 < t_1 < t_2 < \cdots < t_{m+n}$ (m Anzahl der Kontrollpunkte)
 - ightharpoonup Knotenvektor $T=(t_i)_{i\in\mathbb{Z}}$ definiert die Parameterintervalle $[t_i;t_{i+1})$
 - ightharpoonup B-Spline Basisfunktionen $N_i^k(u)$ sind rekursiv für Grad k definiert

$$N_i^0(u) = \begin{cases} 1 & t_i \le u < t_{i+1} \\ 0 & sonst \end{cases}$$

$$N_i^k(u) = \frac{u - t_i}{t_{i+k} - t_i} N_i^{k-1}(u) + \frac{t_{i+k+1} - u}{t_{i+k+1} - t_{i+1}} N_{i+1}^{k-1}(u), \text{ mit } k = 1, \dots, n$$

Beispiel

▶ wir wählen den Knotenvektor T = (..., 0,1,2,3,4,5,6,...), d.h. $t_i = i$

$$k = 0: \quad N_3^0(u) = \begin{cases} 0 & u < 3 \\ 1 & 3 \le u < 4 \\ 0 & 4 \le u \end{cases}$$

Beispiel cont.

ightharpoonup wir wählen den Knotenvektor $T = (..., 0, 1, 2, 3, 4, 5, 6, ...), d.h. <math>t_i = i$

$$k = 1: \quad N_3^1(u) = \begin{cases} 0 & u < 3 \\ u - 3 & 3 \le u < 4 \\ 5 - u & 4 \le u < 5 \\ 0 & 5 \le u \end{cases}$$

Beispiel cont.

▶ wir wählen den Knotenvektor T = (..., 0,1,2,3,4,5,6,...), d.h. $t_i = i$

$$k = 2$$
: $N_3^2(u) = \frac{u-3}{5-3}N_3^1(u) + \frac{u-3}{5-3}N_4^1(u)$

$$= \begin{cases} 1/2 (u-3)^2 & u < 3 \lor 6 \le u \\ 1/2 (u-3)(5-u) + (6-u)(u-4) & 3 \le u < 4 \end{cases}$$

$$1/2 (6-u)^2 & 5 \le u < 6$$

Eigenschaften

- $ightharpoonup N_i^k$ ist stückweise polynomiell vom Grad k
- ► Träger von N_i^k : supp $(N_i^k) \coloneqq \{u | N_i^k(u) \neq 0\} = [t_i; t_{i+k+1}]$
 - \triangleright d.h. der Träger besteht aus k+1 Intervallen pro Abschnitt
- Positivität: $N_i^k(u) > 0$ für $u \in (t_i; t_{i+k+1})$
- ▶ Partition der 1: $\sum_{i=0}^{m-1} N_i^n(u)$

Definition

- ightharpoonup gegeben: Grad n und Knotenvektor $T=(t_i)_{i\in\mathbb{Z}}$
 - ightharpoonup Kontrollpunkte \mathbf{d}_0 , \mathbf{d}_1 , ..., $\mathbf{d}_{m-1} \in \mathbb{R}^2$ oder \mathbb{R}^3
 - heißen auch de Boor-Punkte (Carl de Boor, 1972) und bilden wieder ein Kontrollpolygon
 - B-Spline Kurve

$$F(u) \coloneqq \sum_{i=0}^{m-1} N_i^n(u) \mathbf{d}_i$$

Anm. der sogenannte de Boor-Algorithmus ist das Analogon zum de Casteljau-Algorithmus für Bézierkurven

Eigenschaften

- ▶ B-Spline Kurve $F(u) := \sum_{i=0}^{m-1} N_i^n(u) \mathbf{d}_i$
 - **▶** i.A. keine Endpunktinterpolation
 - ▶ für $t_i \le u < t_{i+1}$ liegt F(u) in der abgeschlossenen konvexen Hülle der (n+1)-vielen Kontrollpunkte \mathbf{d}_{i-n} , ..., \mathbf{d}_i ("lokale konvexe Hülle")

lokale Kontrolle: für $u \in [t_i; t_{i+1})$ ist die Kurve unabhängig von \mathbf{d}_j mit j < i-n und j > i

Eigenschaften cont.

▶ fallen n Kontrollpunkte zusammen
 → Kurve verläuft durch diesen Punkt und ist dort tangentiell an das Kontrollpolygon

▶ liegen n Kontrollpunkte auf einer Gerade
 → die Kurve berührt Gerade

der Kurve F(u) liegt auf L

▶ liegen n+1 Kontrollpunkte auf einer Geraden L→ es gilt: $F(u) \in L$ für $t_i \le u < t_{i+1}$, d. h. ein Segment

Eigenschaften cont.

- Fallen n Knoten $t_i=t_{i+1}=\cdots=t_{i+n+1}$ zusammen $\Rightarrow F(t_i)=\mathbf{d}_i$, d.h. die Kurve verläuft durch einen Kontrollpunkt und ist dort tangentiell an das Kontrollpolygon
- affine Invarianz

- Variationsreduzierung
 - ightharpoonup sei H eine Hyperebene in \mathbb{R}^d dann gilt $\#(H \cap F) \leq \#(H \cap B)$