МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №1 «Погрешности при решении СЛАУ» Группа ФН11-52Б

Вариант 9

Студент: Очкин Н. В.

Преподаватель: Кутыркин В. А.

Оценка:

Задание 1.1

Дана СЛАУ (N – номер студента в журнале, $\alpha = \frac{n-50}{100}$, где n – номер группы):

$$\begin{cases}
150(1+0.5N+\alpha)x^{1} + 150(1+0.5N)x^{2} + 150(1+0.5N)x^{3} = 150(3+1.5N+\alpha); \\
150.1 \cdot (1+0.5N)x^{1} + 149.9 \cdot (1+0.5N+\alpha)x^{2} + 150(1+0.5N)x^{3} = 150(3+1.5N+\alpha); \\
149.9 \cdot (1+0.5N)x^{1} + 150 \cdot (1+0.5N)x^{2} + 150.1 \cdot (1+0.5N+\alpha)x^{3} = 150(3+1.5N+\alpha);
\end{cases} (1)$$

Предполагается, что ошибка в матрице этой СЛАУ достаточно мала и относительная ошибка в её правой части равна 0,01. Приближённая СЛАУ имеет вид:

$$\begin{cases}
150(1+0.5N+\alpha)x^{1} + 150(1+0.5N)x^{2} + 150(1+0.5N)x^{3} = 150(3+1.5N+\alpha)(1+0.01); \\
150.1 \cdot (1+0.5N)x^{1} + 149.9 \cdot (1+0.5N+\alpha)x^{2} + 150(1+0.5N)x^{3} = 150(3+1.5N+\alpha)(1-0.01); \\
149.9 \cdot (1+0.5N)x^{1} + 150 \cdot (1+0.5N)x^{2} + 150.1 \cdot (1+0.5N+\alpha)x^{3} = 150(3+1.5N+\alpha)(1+0.01);
\end{cases}$$
(2)

Требуется найти число обусловленности матрицы рассматриваемой СЛАУ и относительную погрешность в решении приближённой СЛАУ. Затем, прокомментировать получившиеся результаты.

Решение

Подставим N=9 и $\alpha=\frac{52-50}{100}=0.02$ в (1):

$$\begin{cases}
828x^{1} + 825x^{2} + 825x^{3} = 2478; \\
825.55x^{1} + 827.448x^{2} + 825x^{3} = 2478; \\
824.45x^{1} + 825x^{2} + 828.552x^{3} = 2478;
\end{cases}$$
(3)

Матрица СЛАУ (1) имеет вид:

$$A = \begin{pmatrix} 828 & 825 & 825 \\ 825.55 & 827.448 & 825 \\ 824.45 & 825 & 828.552 \end{pmatrix} \tag{4}$$

1. Найдем число обусловленности матрицы А.

Число обусловленности матрицы равно:

$$cond(A) = ||A|| \cdot ||A^{-1}|| \tag{5}$$

Вычислим обратную матрицу с помощью функции inv() библиотеки sympy:

$$A^{-1} = \begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.178193673016471 & 0.272396398402827 & -0.0937988785782234 \\ -0.0515460443076003 & -0.135912660797018 & 0.187861995036292 \end{pmatrix}$$
 (6)

Норма матрицы вычисляется по формуле:

$$||A|| = \max \left\{ \sum_{j=1}^{n} |a_j^i| : i = \overline{1, n} \right\}$$
 (7)

Вычислим нормы:

$$||A|| = 2478.002 \tag{8}$$

$$||A^{-1}|| = 0.544388949997522 (9)$$

Теперь вычислим число обусловленности матрицы:

$$\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}|| = 2478.002 \cdot 0.544388949997522 \approx 1348.99690687176 \tag{10}$$

Следовательно, СЛАУ (3) плохо обусловлена.

2. Найдем относительную погрешность в решении приближенной СЛАУ (2).

Подставим N=9 и $\alpha=\frac{52-50}{100}=0.02$ в (2):

$$\begin{cases} 828x^{1} + 825x^{2} + 825x^{3} = 2502.78; \\ 825.55x^{1} + 827.448x^{2} + 825x^{3} = 2453.22; \\ 824.45x^{1} + 825x^{2} + 828.552x^{3} = 2502.78; \end{cases}$$
(11)

Запишем СЛАУ (3) в матричной форме:

$$\begin{pmatrix} 828 & 825 & 825 \\ 825.55 & 827.448 & 825 \\ 824.45 & 825 & 828.552 \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} 2478 \\ 2478 \\ 2478 \end{pmatrix}$$
(12)

$$x = A^{-1}b =$$

$$=\begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.178193673016471 & 0.272396398402827 & -0.0937988785782234 \\ -0.0515460443076003 & -0.135912660797018 & 0.187861995036292 \end{pmatrix} \begin{pmatrix} 2478 \\ 2478 \\ 2478 \end{pmatrix} = \begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.0937923080651046 \\ 0.187861995036292 \end{pmatrix} \begin{pmatrix} 2478 \\ 2478 \\ 2478 \end{pmatrix} = \begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.0937923080651046 \\ 0.187861995036292 \end{pmatrix} \begin{pmatrix} 2478 \\ 2478 \\ 2478 \\ 0.187861995036292 \end{pmatrix} \begin{pmatrix} 0.230115056512510 & -0.0937223080651046 \\ -0.0937923080651046 \\ 0.187861995036292 \end{pmatrix} \begin{pmatrix} 0.2478 \\$$

$$= \begin{pmatrix} 0.999915466153453 \\ 1.00073239055399 \\ 0.999352450688377 \end{pmatrix} \approx \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (13)

Запишем СЛАУ (11) в матричной форме:

$$\begin{pmatrix} 828 & 825 & 825 \\ 825.55 & 827.448 & 825 \\ 824.45 & 825 & 828.552 \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} 2502.78 \\ 2453.22 \\ 2502.78 \end{pmatrix}$$
(14)

$$\Delta b = \begin{pmatrix} 2502.78 \\ 2453.22 \\ 2502.78 \end{pmatrix} - \begin{pmatrix} 2478 \\ 2478 \\ 2478 \end{pmatrix} = \begin{pmatrix} 24.78 \\ -24.78 \\ 24.78 \end{pmatrix} \tag{15}$$

Тогда ошибка $\Delta x = A^{-1} \Delta b =$

$$=\begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.178193673016471 & 0.272396398402827 & -0.0937988785782234 \\ -0.0515460443076003 & -0.135912660797018 & 0.187861995036292 \end{pmatrix} \begin{pmatrix} 24.78 \\ -24.78 \\ 24.78 \end{pmatrix} = \begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.178193673016471 & 0.272396398402827 & -0.0937988785782234 \\ -0.0515460443076003 & -0.135912660797018 & 0.187861995036292 \end{pmatrix} \begin{pmatrix} 24.78 \\ 24.78 \\ 24.78 \end{pmatrix} = \begin{pmatrix} 0.230115056512510 & -0.135989231310137 & -0.0937223080651046 \\ -0.0515460443076003 & -0.135912660797018 & 0.187861995036292 \end{pmatrix} \begin{pmatrix} 24.78 \\ -24.78 \\ 24.78 \end{pmatrix} = \begin{pmatrix} 0.230115056512510 & -0.0937988785782234 \\ -0.0937887882234 \\ -0.0937888785782234 \\ -0.09378887882234 \\ -0.09378887882234 \\ -0.09378887882234 \\ -0.09378887882234 \\ -0.0937888882234 \\ -0.0937888882234 \\ -0.0937888882234 \\ -0.0937888888234 \\ -0.093788888888 \\ -0.09388888888 \\ -0.09388888888 \\ -0.0938888888 \\ -0.093888888 \\ -0.093888888 \\ -0.093888888 \\ -0.0938888888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.093888888 \\ -0.09388888 \\ -0.093888888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.09388888 \\ -0.0938888 \\ -0.09388888 \\ -0.09388888 \\ -0.0938888 \\ -0.0938888 \\ -0.0938888 \\ -0.093888 \\ -0.0938888 \\ -0.093888 \\ -0.093888$$

$$= \begin{pmatrix} 6.74962545839196 \\ -13.4899581809387 \\ 6.74582499360713 \end{pmatrix}$$
 (16)

Поскольку $\|x\| = 1$ и $\|\Delta x\| = 6.74962545839196$, относительная погрешность $\frac{\|\Delta x\|}{\|x\|} = 6.74962545839196$

Действительно,

$$\frac{\|^{>}\Delta x\|}{\|^{>}x\|} = 6.74962545839196 \le \operatorname{cond}(A) \cdot \frac{\|^{>}\Delta b\|}{\|^{>}b\|} = 1242.47190776588 \cdot 0.01 = 12.4247190776588$$

Результаты

Число обусловленности $\operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\| = 1242.47190776588 > 10^2$, значит, матрица СЛАУ плохо обусловлена. Относительная погрешность решения $\frac{\|\geq \Delta x\|}{\|\geq x\|} = 6.74962545839196$ очень велика вследствие плохой обусловленности СЛАУ.

Задание 1.2

Исходные данные варианта 9:

N	α	$\lambda + \alpha$	λ	F	a	b
9	$\frac{55 - 52}{100} = 0.03$	0.4	0.37	arctan	0	1

Согласно этой таблице, на отрезке [a;b] выбрана центрально равномерная сетка с десятью узлами

$$s_1 = \tau_1 = a + \frac{h}{2},$$

 $s_2 = \tau_2 = \tau_1 + h,$
 $s_3 = \tau_3 = \tau_2 + h,$
 \dots
 $s_{10} = \tau_{10} = \tau_9 + h,$

имеющая шаг $h = \frac{b-a}{10} = 0.1$

Требуется решить приближённую СЛАУ:

$$(E + \lambda A)^{>}x = {}^{>}b + {}^{>}\Delta b$$
, где (17)

 $\lambda = 0.37$;

 $E \in GL(\mathbb{R}; 10)$ — единичная матрица;

 $A=(a_j^i)_{10}^{10}\in GL(\mathbb{R};10)$ — матрица, которая определяется соотношением: $a_j^i=F(s_i\cdot au_j)_{10}^{b-a}$ для $i,j=\overline{1,10};$

 $b=[b^1,\dots,b^{10})\in{}^>\mathbb{R}^{10}$ — вектор, который определяется соотношением: $b=(E+\lambda A)\cdot{}^>x_*$ и $b=(E+\lambda$

Найти число обусловленности матрицы рассматриваемой СЛАУ и относительную погрешность в решении приближённой СЛАУ (17). Затем, прокомментировать получившиеся результаты. Кроме того, найти решение СЛАУ, которая получается из СЛАУ (17) делением каждого её i-го уравнения $(i=\overline{1,10})$ на число $b_i+\Delta b_i$. После этого сравнить абсолютную погрешность в решении получившейся СЛАУ с абсолютной погрешностью в решении приближённой СЛАУ (17).

Решение

 $0.00025 \quad 0.00075 \quad 0.00125 \quad 0.00175 \quad 0.00225 \quad 0.00275 \quad 0.00325 \quad 0.00375 \quad 0.00425 \quad 0.00475$ 0.00375 $0.00674 \quad 0.00823$ 0.009720.0112 $0.01268 \quad 0.01415$ 0.002250.00525 $0.02094 \quad 0.02332$ 0.001250.00375 $0.00624 \quad 0.00873$ 0.0112 $0.01366 \quad 0.01611 \quad 0.01853$ $0.00175 \quad 0.00525$ 0.00873 0.01219 0.01562 0.01902 0.02237 0.025670.03210.028920.002250.006740.0112 $0.01562 \quad 0.01998 \quad 0.02426$ 0.028460.032550.036530.0404 A =0.00275 $0.01366 \quad 0.01902 \quad 0.02426 \quad 0.02937 \quad 0.03433 \quad 0.03912$ $0.04373 \quad 0.04815$ 0.00823 $0.01611 \quad 0.02237 \quad 0.02846 \quad 0.03433 \quad 0.03998 \quad 0.04536$ 0.003250.00972 $0.05048 \quad 0.05532$ 0.003750.01120.01853 0.025670.03255 0.03912 0.04536 0.05124 $0.05675 \quad 0.06191$ 0.004250.01268 0.02094 0.02892 0.03653 0.04373 0.05048 0.05675 $0.06257 \quad 0.06793$ $0.00475 \quad 0.01415 \quad 0.02332$ 0.0321 $0.0404 \quad 0.04815 \quad 0.05532 \quad 0.06191$ $0.06793 \quad 0.07342$ (18)

Исходная СЛАУ:

$$(E + \lambda A)^{>} x = {}^{>} b \tag{19}$$

 $1.00009 \quad 0.00028 \quad 0.00046 \quad 0.00065 \quad 0.00083 \quad 0.00102 \quad 0.00120 \quad 0.00139 \quad 0.00157$ 0.001390.00194 0.00249 $0.00305 \quad 0.00360$ 0.00414 0.00469 1.00083 0.00524 $0.00046 \quad 0.00139$ 1.00231 0.00323 0.00414 0.00505 0.00596 0.00686 0.007750.00863 $0.00065 \quad 0.00194 \quad 0.00323$ $1.00451 \quad 0.00578 \quad 0.00704 \quad 0.00828$ $0.00950 \quad 0.01070$ 0.01188 $0.00083 \quad 0.00249$ $0.00414 \quad 0.00578$ $1.00739 \quad 0.00898 \quad 0.01053 \quad 0.01204 \quad 0.01352$ 0.01495 $E + \lambda A =$ $0.00102 \quad 0.00305$ 0.00505 $0.00704 \quad 0.00898$ $1.01087 \quad 0.01270$ 0.014470.01618 0.01782 $0.00120 \quad 0.00360$ 0.00596 0.00828 0.01053 0.01270 1.01479 0.01678 0.018680.02047 $0.00139 \quad 0.00414 \quad 0.00686 \quad 0.00950 \quad 0.01204 \quad 0.01447 \quad 0.01678$ 1.01896 0.02100 0.02291 $0.00157 \quad 0.00469 \quad 0.00775 \quad 0.01070 \quad 0.01352 \quad 0.01618 \quad 0.01868$ 0.02100 1.02315 0.02513 $0.00176 \quad 0.00524 \quad 0.00863 \quad 0.01188 \quad 0.01495 \quad 0.01782 \quad 0.02047 \quad 0.02291 \quad 0.02513$ (20)

5

$$(E + \lambda A)^{-1} = \begin{pmatrix} 0.99992 & -0.00025 & -0.00041 & -0.00058 & -0.00074 & -0.00091 & -0.00108 & -0.00125 & -0.00142 & -0.00159 \\ -0.00025 & 0.99926 & -0.00124 & -0.00173 & -0.00223 & -0.00273 & -0.00323 & -0.00373 & -0.00423 & -0.00473 \\ -0.00041 & -0.00124 & 0.99794 & -0.00288 & -0.00371 & -0.00453 & -0.00535 & -0.00617 & -0.00698 & -0.00780 \\ -0.00058 & -0.00173 & -0.00288 & 0.99597 & -0.00517 & -0.00631 & -0.00743 & -0.00854 & -0.00964 & -0.01072 \\ -0.00074 & -0.00223 & -0.00371 & -0.00517 & 0.99338 & -0.00805 & -0.00946 & -0.01083 & -0.01218 & -0.01349 \\ -0.00091 & -0.00273 & -0.00453 & -0.00631 & -0.00805 & 0.99024 & -0.01142 & -0.01302 & -0.01457 & -0.01606 \\ -0.00108 & -0.00323 & -0.00535 & -0.00743 & -0.00946 & -0.01142 & 0.98670 & -0.01510 & -0.01681 & -0.01843 \\ -0.00125 & -0.00373 & -0.00617 & -0.00854 & -0.01083 & -0.01302 & -0.01510 & 0.98295 & -0.01889 & -0.02060 \\ -0.00142 & -0.00423 & -0.00698 & -0.00964 & -0.01218 & -0.01457 & -0.01681 & -0.01889 & 0.97919 & -0.02258 \\ -0.00159 & -0.00473 & -0.00780 & -0.01072 & -0.01349 & -0.01606 & -0.01843 & -0.02060 & -0.02258 & 0.97562 \end{pmatrix}$$

Следовательно,

$$||E + \lambda A|| = 1.1559365,$$

$$||(E + \lambda A)^{-1}|| = 1.09161556563663$$

и число обусловленности

$$\operatorname{cond}(E + \lambda A) = ||E + \lambda A|| \cdot ||(E + \lambda A)^{-1}|| = 1.26183827628753.$$

Таким образом, матрица СЛАУ (17) хорошо обусловлена.

Найдем решение $x = (E + \lambda A)^{-1} b$ СЛАУ.

$$= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \tag{23}$$

Погрешность решения приближенной СЛАУ найдем так:

$$^{>}\Delta x = (E + \lambda A)^{-1>} \Delta b, \text{ где}$$
 (24)

$$^{>}\Delta b = [\Delta b^{1}, \dots, \Delta b^{10}) = 0.01 \cdot [b^{1}, -b^{2}, b^{3}, -b^{4}, b^{5}, -b^{6}, b^{7}, -b^{8}, b^{9}, -b^{10}) \in \mathbb{R}^{10} =$$

 $= [0.0100925000000000, -0.0102764640000000, 0.01045780100000000, \\ -0.0106349940000000, 0.0108065630000000, -0.01097169400000000, \\ 0.01112990600000000, -0.0112804960000000, 0.01142368600000000, \\$

```
-0.0115593650000000\rangle
```

(25)

```
0.0100925000000000
                    -0.00025 \ -0.00041 \ -0.00058 \ -0.00074 \ -0.00091 \ -0.00108 \ -0.00125 \ -0.00142 \ -0.00159
                                                                                                                           -0.0102764640000000
          -0.00025
                     0.99926
                               -0.00124 \quad -0.00173 \quad -0.00223 \quad -0.00273 \quad -0.00323 \quad -0.00373 \quad -0.00423 \quad -0.00473
                                          -0.00288 \quad -0.00371 \quad -0.00453 \quad -0.00535 \quad -0.00617 \quad -0.00698 \quad -0.00780
                                                                                                                            0.0104578010000000
          -0.00041 -0.00124
                               0.99794
                                                      -0.00517 -0.00631 -0.00743 -0.00854 -0.00964 -0.01072
                                                                                                                            -0.0106349940000000
          -0.00058 \quad -0.00173 \quad -0.00288
                                           0.99597
                                          -0.00517
                                                      0.99338
                                                                 -0.00805
                                                                            -0.00946
                                                                                      -0.01083
                                                                                                  -0.01218 \quad -0.01349
                                                                                                                            0.0108065630000000
^{>}\Delta x =
                                                                                                                            -0.0109716940000000
                    -0.00273 \quad -0.00453 \quad -0.00631
                                                      -0.00805
                                                                 0.99024
                                                                            -0.01142
                                                                                      -0.01302
                                                                                                  -0.01457 -0.01606
                                                                                                                            0.0111299060000000
          -0.00108 -0.00323 -0.00535 -0.00743 -0.00946 -0.01142
                                                                            0.98670
                                                                                       -0.01510 -0.01681 -0.01843
          -0.00125 -0.00373 -0.00617 -0.00854 -0.01083 -0.01302
                                                                           -0.01510
                                                                                                  -0.01889 \quad -0.02060
                                                                                                                            -0.0112804960000000
                                                                                        0.98295
          -0.00142 -0.00423 -0.00698 -0.00964 -0.01218 -0.01457
                                                                                                             -0.02258
                                                                                                                            0.0114236860000000
                                                                           -0.01681
                                                                                      -0.01889
                                                                                                   0.97919
                                                                                                                            -0.0115593650000000
          -0.00159 \quad -0.00473 \quad -0.00780 \quad -0.01072 \quad -0.01349 \quad -0.01606 \quad -0.01843 \quad -0.02060
                                                                                                  -0.02258
                                                                                                              0.97562
```

 $\begin{pmatrix} 0.0101022344981114 \\ -0.0102475051573947 \\ 0.0105054578609862 \\ -0.0105695306103990 \\ 0.0108887038899682 \\ -0.0108740881677665 \\ 0.0112415673850983 \\ -0.0111558957774656 \\ 0.0115598593276807 \\ -0.0114126855030443 \end{pmatrix}$ (26)

Найдем решение приближенной СЛАУ:

$$\begin{pmatrix} 1.01010223449811 \\ 0.989752494842605 \\ 1.01050545786099 \\ 0.989430469389601 \\ 1.01088870388997 \\ 0.989125911832234 \\ 1.01124156738510 \\ 0.988844104222534 \\ 1.01155985932768 \\ 0.988587314496956 \end{pmatrix}$$
 (27)

Рассмотрим результаты:

$$||^> x|| = 1,$$

 $\|\Delta x\| = 0.0115598593276807,$

||b|| = 1.1559365,

 $\|^{>}\Delta b\| = 0.011423686 ,$

 $\frac{\|^{>}\Delta x\|}{\|^{>}x\|} = 0.0115598593276807 ,$

 $\operatorname{cond}(A) \ \tfrac{\| \geq \Delta b \|}{\| \geq b \|} = 0.0124702734545453 \ ,$

T.K. 0.0115598593276807 < 0.0124702734545453,

можем сделать вывод, что неравенство $\frac{\|\geq \Delta x\|}{\|\geq x\|} < \operatorname{cond}(A) \frac{\|\geq \Delta b\|}{\|\geq b\|}$ - выполняется

Найдем решение СЛАУ, которая получается из СЛАУ (17) делением каждого ее i-го уравнения $(i=\overline{1,10})$ га число $b_i+\Delta b_i$.

Получим матрицу

 $0.98112 \quad 0.00027 \quad 0.00045 \quad 0.00064 \quad 0.00082$ 0.0010 $0.00118 \quad 0.00136 \quad 0.00154 \quad 0.00172$ $0.00027 \quad 0.98374$ 0.00136 $0.00191 \quad 0.00245$ 0.00299 0.00353 $0.00407 \quad 0.00461$ 0.00515 $0.00044 \quad 0.00131$ 0.94894 $0.00306 \quad 0.00392$ 0.004790.007340.008170.005640.00649 $0.00061 \quad 0.00184$ 0.00307 $0.95407 \quad 0.00549$ 0.006680.00786 $0.00902 \quad 0.01016 \quad 0.01128$ $0.00076 \quad 0.00228$ 0.003800.005300.922970.008220.009650.011030.01238 0.01370 B = $0.00094 \quad 0.00280$ 0.004650.006480.008260.930650.011690.013330.014900.01640 $0.00107 \quad 0.00320$ 0.005300.007360.009370.01130 0.902740.01493 0.016620.01821 $0.00124 \quad 0.00371$ 0.006140.008500.01078 0.01296 0.015030.91242 0.01880 0.02051 $0.00136 \quad 0.00407$ 0.00672 $0.00927 \quad 0.01171$ $0.01402 \quad 0.01619$ 0.018200.88677 0.02178 $0.00154 \quad 0.00457$ $0.00754 \quad 0.01038 \quad 0.01306 \quad 0.01557 \quad 0.01789 \quad 0.02002 \quad 0.02196$ (28)

$$B^{-1} = \begin{pmatrix} 1.01926 & -0.00025 & -0.00044 & -0.00061 & -0.00081 & -0.00099 & -0.00121 & -0.00139 & -0.00164 & -0.00182 \\ -0.00025 & 1.01662 & -0.00131 & -0.00183 & -0.00243 & -0.00296 & -0.00363 & -0.00416 & -0.00488 & -0.00541 \\ -0.00042 & -0.00126 & 1.05406 & -0.00304 & -0.00404 & -0.00492 & -0.00601 & -0.00689 & -0.00806 & -0.00892 \\ -0.00059 & -0.00176 & -0.00305 & 1.04862 & -0.00565 & -0.00685 & -0.00835 & -0.00954 & -0.01113 & -0.01227 \\ -0.00076 & -0.00227 & -0.00391 & -0.00545 & 1.08423 & -0.00875 & -0.01063 & -0.01210 & -0.01405 & -0.01543 \\ -0.00093 & -0.00277 & -0.00478 & -0.00664 & -0.00879 & 1.07560 & -0.01283 & -0.01454 & -0.01681 & -0.01838 \\ -0.00110 & -0.00328 & -0.00565 & -0.00782 & -0.01032 & -0.01240 & 1.10917 & -0.01686 & -0.01939 & -0.02109 \\ -0.00127 & -0.00379 & -0.00651 & -0.00900 & -0.01182 & -0.01414 & -0.01697 & 1.09772 & -0.02179 & -0.02358 \\ -0.00145 & -0.00430 & -0.00738 & -0.01015 & -0.01329 & -0.01582 & -0.01890 & -0.02109 & 1.12978 & -0.02584 \\ -0.00162 & -0.00481 & -0.00823 & -0.01129 & -0.01472 & -0.01744 & -0.02072 & -0.02301 & -0.02605 & 1.11648 \end{pmatrix}$$

 $^{>}\Delta b' = [\Delta b'^{1}, \dots, \Delta b'^{10}] = 0.01 \cdot [b'^{1}, -b'^{2}, b'^{3}, -b'^{4}, b'^{5}, -b'^{6}, b'^{7}, -b'^{8}, b'^{9}, -b'^{10}] \in ^{>}\mathbb{R}^{10} = 0.01 \cdot [b'^{1}, -b'^{2}, b'^{3}, -b'^{4}, b'^{5}, -b'^{6}, b'^{7}, -b'^{8}, b'^{9}, -b'^{10}] \in ^{>}\mathbb{R}^{10}$

 $= [0.0099009900990, -0.0101010101010101, 0.00990099009900990\\ -0.0101010101010101, 0.0099009900990, -0.0101010101010101\\ 0.00990099009900990, -0.0101010101010101, 0.0099009900990,\\ -0.010101010101010101\\)$

(32)

$$^{>}\Delta x' = B^{-1} \cdot ^{>}\Delta b' = \begin{pmatrix} 0.0101022344981114 \\ -0.0102475051573948 \\ 0.0105054578609862 \\ -0.0105695306103990 \\ 0.0108887038899682 \\ -0.0108740881677665 \\ 0.0112415673850983 \\ -0.0111558957774656 \\ 0.0115598593276807 \\ -0.0114126855030442 \end{pmatrix}$$
 (33)

Таким образом, абсолютная погрешности:

 $\|\Delta x'\| = 0.0115598593276807$ и

 $\|\Delta x\| = 0.0115598593276807$

решений приближенной и исходной СЛАУ совпадают.

Результаты

Число обусловленности матрицы СЛАУ (17) $\operatorname{cond}(E+\lambda A)=1.26183827628753<$ 10, то есть матрица $E+\lambda A$ хорошо обусловлена. Следствие этого является малая относительная погрешность при решении приближенной СЛАУ $\frac{\|\geq \Delta x\|}{\|\geq x\|}=0.0115598593276807$. Эта погрешность в 1.0787565056855462 раз меньше верхней границы относительной погрешности $\operatorname{cond}(A)\frac{\|\geq \Delta b\|}{\|\geq b\|}=0.0124702734545453$. Кроме того, при делении каждого i-го уравнения ($i=\overline{1,10}$) СЛАУ на число $b_i+\Delta b_i$ абсолютная погрешность не изменилась: $\|\geq \Delta x'\|=\|\geq \Delta x\|=0.0115598593276807$.