

CoolSiC™ M1 CoolSiC™ MOSFET 650 V G1

The 650 V CoolSiC™ is built over the solid silicon carbide technology developed in Infineon in more than 20 years. Leveraging the wide bandgap SiC material characteristics, the 650V CoolSiC™ MOSFET offers a unique combination of performance, reliability and ease of use. Suitable for high temperature and harsh operations, it enables the simplified and cost effective deployment of the highest system efficiency.

PG-T0247-4

Drain Pin 1. Tab Gate Pin 4 Driver Source Pin 3 Source

Features

- Optimized switching behavior at higher currents
- Commutation robust fast body diode with low Q_{fr}
- Superior gate oxide reliability
- T_{j,max}=175°C and excellent thermal behavior
- Lower $R_{DS(on)}$ and pulse current dependency on temperature
- Increased avalanche capability
- Compatible with standard drivers
- Kelvin source provides up to 4 times lower switching losses

Benefits

- Unique combination of high performance, high reliability and ease of use
- Ease of use and integration
- Suitable for topologies with continuous hard commutation
- Higher robustness and system reliability
- Efficiency improvement
- Reduced system size leading to higher power density

Potential applications

- SMPS
- UPS (uninterruptable power supplies)
- Solar PV inverters
- EV charging infrastructure
- · Energy storage and battery formation
- Class D amplifiers

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: The source and driver source pins are not exchangeable. Their exchange might lead to malfunction.

Table 1 Key performance parameters

abite 1 Rey periormanee parameters								
Parameter	Value	Unit						
$V_{DS} @ T_J = 25 ^{\circ}\text{C}$	650	V						
$R_{\mathrm{DS(on),typ}}$	107	mΩ						
$R_{\mathrm{DS(on),max}}$	142	mΩ						
$Q_{G,typ}$	15	nC						
I _{DM,max}	48	A						
Q _{oss} @ 400 V	35	nC						
E _{oss} @ 400 V	5.3	μЈ						

Part number	Package	Marking	Related links
IMZA65R107M1H	PG-TO247-4	65R107M1	see Appendix A

Public

CoolSiC™ MOSFET 650 V G1 IMZA65R107M1H

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Operating range	
Electrical characteristics	6
Electrical characteristics diagrams	
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	16
Disclaimer	16

1 Maximum ratings

at $T_i = 25$ °C, unless otherwise specified.

Note: for optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Table 2 Maximum ratings

Davamakau	Compleal	Values			11-:4	Nate / Test condition
Parameter	Symbol Min. Typ. Max.		Unit	Note / Test condition		
Continuous DC drain current 1)	I _{DDC}	-	-	21 15	А	$T_c = 25 ^{\circ}\text{C}$ $T_c = 100 ^{\circ}\text{C}$
Peak drain current ²⁾	I _{DM}	-	-	48	А	$T_{\rm c}$ = 25 °C, $V_{\rm GS}$ = 18 V
Avalanche energy, single pulse	E _{AS}	-	-	76	mJ	/ = 2.9 A // = 50 //: see table 11
Avalanche energy, repetitive	E_{AR}	-	-	0.38	mJ	I _D = 2.8 A, V _{DD} = 50 V; see table 11
Avalanche current, single pulse	I _{AS}	-	-	2.8	А	-
MOSFET <i>dv/dt</i> ruggedness	dv/dt	-	-	200	V/ns	V _{DS} = 0400 V
Gate source voltage (static) 3)	V_{GS}	-5	-	23	V	-
Gate source voltage (transient)	$V_{\rm GS}$	-7	-	25	V	t _{pulse} ≤ 1% duty cycle/f _{sw}
Power dissipation	P_{tot}	-	-	94	W	T _c = 25 °C
Storage temperature	$T_{\rm stg}$	-55	-	150	°C	
Operating junction temperature	T _j	-55	-	175	°C	1-
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws
Continuous reverse drain current 1)	I _{SDC}	-	-	21 14	А	$V_{\rm GS} = 18 \text{ V}, T_{\rm c} = 25 ^{\circ}\text{C}$ $V_{\rm GS} = 0 \text{ V}, T_{\rm c} = 25 ^{\circ}\text{C}$
Peak reverse drain current ²⁾	I _{SM}	-	-	48	Α	$T_{\rm c}$ = 25 °C, $t_{\rm p} \le$ 250 ns
Insulation withstand voltage	V _{ISO}	-	-	n.a.	٧	$V_{\rm rms}$, $T_{\rm c} = 25$ °C, $t = 1$ min

 $^{^{1)}}$ Limited by $T_{\rm j,max}$

²⁾ Pulse width t_{pulse} limited by $T_{\text{j,max}}$.

³⁾ The maximum gate-source voltage in the application design should be in accordance to IPC-9592B.

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			11	Note / Test condition
raiailletei	Symbol	Min.	Тур.	Max.		Note / Test condition
Thermal resistance, junction - case	$R_{th(j-c)}$	-	-	1.6	°C/W	-
Thermal resistance, junction - ambient	$R_{th(j-a)}$	-	-	62	°C/W	Leaded
Thermal resistance, junction - ambient, SMD version	$R_{th(j-a)}$	-	-	-	°C/W	n.a.
Soldering temperature, wavesoldering only allowed at leads	$T_{\rm sold}$	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

3 Operating range

Table 4 Operating range

Parameter	Symbol	Values			Linit	Note / Test candition	
raiailletei	Syllibor	Min.	Тур.	Max.		Note / Test condition	
Gate-source voltage operating range including undershoots ⁴⁾	V_{GS}	-2	-	20	V		
Recommended turn-on voltage	$V_{\rm GS(on)}$	-	18	-	V	-	
Recommended turn-off voltage	$V_{\rm GS(off)}$	-	0	-	V		

4)

Important notice: If the gate source voltage of the device in application exceeds the operating range (Table 4), the device RDS,on and VGS(th) might exceed the maximum value stated in the datasheet at the end of the lifetime of the device. In order to ensure sound operation of the device over the planned lifetime, the maximum ratings (Table 2) and the CoolSiC TM MOSFET 650V M1 trench power device application note AN_1907_PL52_1911_144109 must be considered.

4 Electrical characteristics

at T_i = 25 °C, unless otherwise specified

Table 5 Static characteristics

Parameter	Symbol	Values			l lni+	Note / Test condition	
raiailletei	Symbol	Min.	Тур.	Max.		Note / Test condition	
Drain-source voltage	$V_{\rm DSS}$	650	-	-	V	$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.3 \text{ mA}$	
Gate threshold voltage ⁵⁾	$V_{\rm GS(th)}$	3.5	4.5	5.7	V	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 3$ mA	
Zero gate voltage drain current	I _{DSS}	-	1 3	100	μΑ	$V_{\rm DS} = 650 \text{ V}, V_{\rm GS} = 0 \text{ V}, T_{\rm j} = 25 \text{ °C}$ $V_{\rm DS} = 650 \text{ V}, V_{\rm GS} = 0 \text{ V}, T_{\rm j} = 175 \text{ °C}$	
Gate-source leakage current	I_{GSS}	-	-	100	nA	$V_{\rm GS} = 20 \text{ V}, V_{\rm DS} = 0 \text{ V}$	
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	_	107 150	142 -	mΩ	$V_{GS} = 18 \text{ V}, I_D = 8.9 \text{ A}, T_j = 25 \text{ °C}$ $V_{GS} = 18 \text{ V}, I_D = 8.9 \text{ A}, T_j = 175 \text{ °C}$	
Internal gate resistance	$R_{G,int}$	-	12.0	-	Ω	f= 1 MHz	

⁵⁾ Tested after 1 ms pulse at V_{GS} = +20 V

Table 6 Dynamic characteristics

Danamatan.	Cumahal		Values		1154	Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Input capacitance	C _{iss}	-	496	-	pF		
Reverse transfer capacitance	C _{rss}	-	7	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}$	
Output capacitance ⁶⁾	C _{oss}	-	58	75	pF		
Output charge ⁶⁾	$Q_{\rm oss}$	-	35	46	nC	calculation based on C _{oss}	
Effective output capacitance, energy related ⁷⁾	$C_{ m o(er)}$	-	66	-	pF	$V_{GS} = 0 \text{ V},$ $V_{DS} = 0400 \text{ V}$	
Effective output capacitance, time related ⁸⁾	$C_{ m o(tr)}$	-	87	-	pF	$I_{\rm D}$ = constant, $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 0 400 V	
Turn-on delay time	t _{d(on)}	-	6.6	-	ns		
Rise time	t _r	-	7.4	-	ns	$V_{\rm DD} = 400 \text{V}, V_{\rm GS} = 0/18 \text{V},$	
Turn-off delay time	$t_{\sf d(off)}$	-	12.2	-	ns	$I_D = 8.9 \text{ A}, R_{G,ext} = 1.8 \Omega;$ I see table 10	
Fall time	t_{f}	-	6.4	-	ns	13ee table 10	

⁶⁾ Maximum specification is defined by calculated six sigma upper confidence bound

⁷⁾ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400 V.

⁸⁾ $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400 V.

Table 7 Gate charge characteristics

Parameter	Symbol	Values			Linit	Note / Test condition	
raiailletei	Syllibot	Min.	Тур.	Max.		Note / Test Condition	
Plateau gate to source charge	$Q_{GS(pl)}$	-	4	-	nC		
Gate to drain charge	Q_{GD}	-	4	-	nC	$V_{\rm DD} = 400 \text{V}, I_{\rm D} = 8.9 \text{A},$ $V_{\rm GS} = 0 \text{to} 18 \text{V}$	
Total gate charge	Q_{G}	-	15	-	nC	VGS 0 to 10 v	

Table 8 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition	
	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition	
Drain-source reverse voltage	$V_{\rm SD}$	-	4.0	-	V	$V_{GS} = 0 \text{ V}, I_{S} = 8.9 \text{ A}, T_{j} = 25 \text{ °C}$	
MOSFET forward recovery time	t_{fr}	-	55	-	ns		
MOSFET forward recovery charge ⁹⁾	Q_{fr}	-	76	-		$V_{\rm DD} = 400 \text{ V}, I_{\rm S} = 8.9 \text{ A},$	
MOSFET peak forward recovery current	I _{frm}	-	6.8	-	А	$di_s/dt = 1000 A/\mu s$; see table 9	

⁹⁾ $Q_{\rm fr}$ includes $Q_{\rm oss}$

5 Electrical characteristics diagrams

6 Test circuits

Table 9 Body diode characteristics

Table 10 Switching times

Table 11 Unclamped inductive load

7 Package outlines

NOTES:
DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS

PACKAGE - GROUP NUMBER:	PG-TO2	47-4-U02			
DIMENSIONS	MILLIM	ETERS	DIMENSIONS	MILLIM	ETERS
DIMENSIONS	MIN.	MAX.	DIMENSIONS	MIN.	MAX.
Α	4.90	5.10	E	15.70	15.90
A1	2.31	2.51	E1	13.10	13.50
A2	1.90	2.10	E2	2.40	2.60
A3	0.05	0.25	е	5.0	08
b	1.10	1.30	e1	2.	79
b1	0.65	0.79	e2	2.	54
b2		0.20	N	4	1
b3	1.34	1.44	L	19.80	20.10
С	0.58	0.66	øΡ	3.50	3.70
D	20.90	21.10	øP1	7.00	7.40
D1	16.25	16.85	øP2	2.40	2.60
D2	1.05	1.35	Q	5.60	6.00
D3	24.97	25.27	S	6.	15
D4	4.90	5.10	Т	9.80	10.20
			U	6.00	6.40

Figure 1 Outline PG-TO247-4, dimensions in mm

8 Appendix A

Table 12 Related links

- IFX CoolSiC CoolSiC™ MOSFET 650 V G1 Webpage
- IFX CoolSiC CoolSiC™ MOSFET 650 V G1 Application Note
- IFX CoolSiC CoolSiC™ MOSFET 650 V G1 Simulation Model
- IFX Design tools

Revision history

IMZA65R107M1H

Revision 2025-01-20, Rev. 2.2

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2019-12-16	Release of final version
2.1		$V_{\rm GS}$ specs update , $T_{\rm j,max}$ update , $I_{\rm DSS}$ update, nomenclature update, datasheet layout update.
2.2	2025-01-20	Corrected Is value in test condition of parameter Vsd.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.