#### Ejercicio 1 1

#### Ejercicio 2b de la guia de sistemas discretos 1.1

Se pide hallar la ecuacion en diferencias el siguiente diagrama de bloques:



Figure 1: Diagrama en bloques del sistema del Ej:2b

Asumiendo que el sistema esta relajado y que la entrada es causal, lo que quiere decir que:

$$\begin{cases} y(nT) = x(nT) = 0; \quad \forall n < 0 \end{cases}$$

Se tiene el siguiente diagrama en boques luego de aplicarle la transformada Z a la red:

Figure 2: Diagram de bloques del sistema en Z

## Ejercicio 9 de la guia de sistemas discretos

Se pide determinar la respuesta al impulso, al escalon y la respuesta en frecuencia del siguiente sistema de segundo orden:



Figure 3: Sistema del ej9 de sistemas discretos

Los valores de  $\alpha$  y  $\beta$  son:

a) 
$$\alpha = 1, \beta = -\frac{1}{2}$$

b) 
$$\alpha = \frac{1}{2}, \beta = -\frac{1}{8}$$

a) 
$$\alpha = 1$$
,  $\beta = -\frac{1}{2}$   
b)  $\alpha = \frac{1}{2}$ ,  $\beta = -\frac{1}{8}$   
c)  $\alpha = \frac{5}{4}$ ,  $\beta = -\frac{25}{32}$ 

De dicha red se obtiene la siguiente ecuacion en diferencias:

$$\frac{1}{2}x(nT - 2T) + \alpha y(nT - T) + \beta y(nT - 2T) = y(nT)$$
 (1)

Para simplificar las cuentas, se normaliza el período a la unidad (T=1) y luego se desnormaliza cuando se llega a los resultados:

$$\frac{1}{2}x(n-2) + \alpha y(n-1) + \beta y(n-2) = y(n)$$

Aplicando la transformada Z a la ecuación (1)se obtiene la siguiente expresion:

$$\tfrac{1}{2}z^{-2}[z^2.x(-2)+z.x(-1)+X(z)] + \alpha.z^{-1}[z.y(-1)+Y(z)] + \beta.z^{-2}[z^2y(-2)+z.y(-1)+Y(z)] = Y(z)$$

Donde X(z) e Y(z) son las transformadas Z de x(n) e y(n) respectivamente.

Considerando al sistema relajado(condiciones iniciales nulas) y la entrada como causal la ecuacion anterior se simplifica a:

$$\frac{1}{2}z^{-2}X(z) + \alpha z^{-1}Y(z) + \beta z^{-2}Y(z) = Y(z)$$
$$\frac{1}{2}z^{-2}X(z) = Y(z)[1 - \beta z^{-2} - \alpha z^{-1}]$$

$$\frac{Y(z)}{X(z)} = H(z) = \frac{z^2}{z^2} \cdot \frac{\frac{1}{2}z^{-2}}{1 - \beta z^{-2} - \alpha z^{-1}} = \frac{1}{2} \cdot \frac{1}{z^2 - \alpha z - \beta}$$
 (2)

Los polos de H(z) (transformada Z de la respuesta impulsiva) tienen la siguiente forma:

$$\frac{\alpha \pm \sqrt{\alpha^2 + 4\beta}}{2} = \frac{\alpha}{2} \pm \sqrt{\left(\frac{\alpha}{2}\right)^2 + \beta}$$

Tanto para el caso a), b) y c) los valores de  $\alpha$  y  $\beta$  son tales que cumplen que:

$$(\frac{\alpha}{2})^2 + \beta < 0 \Longrightarrow z_{1,2} = \frac{\alpha}{2} \pm j\sqrt{-[(\frac{\alpha}{2})^2 + \beta]}$$

Por conveniencia definimos  $\omega = \sqrt{-[(\frac{\alpha}{2})^2 + \beta]}$ Se puede reescribir H(z) como:

$$H(z) = \frac{1}{2} \cdot \frac{1}{(z-z_1)(z-z_2)}$$

Una forma posible de obtener la antitransformada de H(z) es medinte residuos utilizando la siguiente formula:

$$h(n) = u(n). \sum_{i=1}^{M} Res\{H(z).z^{n-1}, z_i\}$$

En este caso las singularidades de  $H(z).z^{n-1}$  son:

$$z_{1,2} = \frac{\alpha}{2} \pm j\omega$$
 y para n=0 $z_3 = 0$ 

Los residuos correspondientes son:

- $\lim_{z \to z_1} (z \overline{z_1}) \cdot \frac{1}{2} \frac{z^{n-1}}{(z \overline{z_1})(z z_2)} = \frac{1}{2} \cdot \frac{[(\frac{\alpha}{2}) + j\omega]^{n-1}}{2j\omega} \stackrel{Polares}{=} \frac{1}{j4\omega} \cdot (\sqrt{-\beta})^{n-1} e^{j(n-1)\theta}$
- $\lim_{z \to z_2} (z \overline{z_2}) \cdot \frac{1}{2} \frac{z^{n-1}}{(z-z_1)(z-\overline{z_2})} = -\frac{1}{2} \cdot \frac{[(\frac{\alpha}{2}) j\omega]^{n-1}}{2j\omega} \stackrel{Polares}{=} -\frac{1}{j4\omega} \cdot (\sqrt{-\beta})^{n-1} e^{-j(n-1)\theta}$
- $\lim_{z\to 0}(z)\cdot \frac{1}{2}\cdot \frac{1}{z(z-z_1)(z-z_2)} = \frac{1}{2}\cdot \frac{1}{z_1\cdot z_2} = \frac{1}{2}\cdot \frac{1}{z_1\cdot \bar{z_1}} = \frac{1}{2}\cdot \frac{1}{|z_1|^2} = \frac{1}{2}\cdot \frac{1}{(\frac{\alpha}{2})^2-(\frac{\alpha}{2})^2-\beta} = -\frac{1}{2}\cdot \frac{1}{\beta}$ Donde  $\theta = arctg(\frac{2\omega}{\alpha})$

De dichos residuos se obtiene como expresion de antitransformada:

$$h(n) = -\frac{1}{2} \cdot \frac{1}{\beta} \delta(n) + u(n) \left[ \frac{1}{j4\omega} \cdot (\sqrt{-\beta})^{n-1} e^{j(n-1)\theta} - \frac{1}{j4\omega} \cdot (\sqrt{-\beta})^{n-1} e^{-j(n-1)\theta} \right]$$

$$h(n) = \frac{1}{2} \left[ -\frac{1}{\beta} \delta(n) + u(n) \cdot \frac{(\sqrt{-\beta})^{n-1}}{\omega} \cdot \left( \underbrace{\frac{e^{j(n-1)\theta} - e^{-j(n-1)\theta}}{2j}}_{sin[(n-1)\theta]} \right) \right]$$

Si evaluamos en n=0 se obtiene que:

$$h(0) = \tfrac{1}{2} [ - \tfrac{1}{\beta} + \tfrac{1}{\omega \cdot \sqrt{-\beta}} . sin(-\theta) ] = \tfrac{1}{2} [ - \tfrac{1}{\beta} - \tfrac{1}{\cancel{\varphi} \sqrt{-\beta}} . \tfrac{\cancel{\varphi}}{\sqrt{-\beta}} ] = \tfrac{1}{2} [ - \tfrac{1}{\beta} + \tfrac{1}{\beta} ] = 0$$

Por lo que se puede reescribir la respuesta impulsiva del sistema como:

$$h(n) = \frac{1}{2\omega} \cdot (\sqrt{-\beta})^{n-1} sin[(n-1)\theta] \cdot u(n-1)$$

Luego, teniendo en cuenta el período de muestreo T, se reescribe se llega a la forma final de la respuesta como:

$$h(nT) = \frac{1}{2\omega} \cdot (\sqrt{-\beta})^{nT-T} \sin[(nT-T)\theta] \cdot u(nT-T)$$
(3)

Se realizo un script ("Ej9-impulso") para graficar esta respuesta impulsiva para los tres casos a), b) y c), el resultado fue el siguiente:



Figure 4: Graficas de las respuestas impulsivas

#### 1.2.1 Respuesta al escalon

Para la respuesta al escalon del sistema se comenzo planteando la forma generica de la respuesta de un sistema LTI en tiempo discreto:

$$y(n) = (h * u)(n)$$

Transformando ambos lados de la ecuación se obtiene:

$$Y(z) = H(z).Z\{u(n)\}(z)$$

Donde:

$$Z\{u(n)\}(z) = \sum_{k=0}^{+\infty} z^{-k} = \frac{1}{1-z^{-1}} = \frac{z}{z-1}, |z| > 1$$

Entonces reemplazando la tranformada del escalon calculada previamente y H(z) por lo obtenido en (2), se tiene:

$$Y(z) = \frac{1}{2} \cdot \frac{z}{(z-1)(z^2 - \alpha z - \beta)}$$

Decomponiendo en fracciones simples:

$$Y(z) = \frac{A}{z-1} + \frac{Bz+C}{z^2 - \alpha z - \beta} \Rightarrow \frac{z}{2} = A(z^2 - \alpha z - \beta) + B.z(z-1) + C(z-1)$$

z = 1

$$\frac{1}{2} = A(1 - \alpha - \beta) \to A = \frac{1}{2(1 - \alpha - \beta)}$$

$$\underline{z=0}$$

$$z = -1$$

$$0 = -\frac{\beta}{2(1-\alpha-\beta)} - C \to C = -\frac{\beta}{2(1-\alpha-\beta)}$$

$$-\frac{1}{2}=\frac{1+\alpha-\beta}{2(1-\alpha-\beta)}+2B+\frac{\frac{1}{2}\beta}{\frac{1}{2}(1-\alpha-\beta)}$$

$$-\frac{1}{2} - \frac{1+\alpha-\beta}{2(1-\alpha-\beta)} - \frac{2\beta}{2(1-\alpha-\beta)} = 2B$$

$$\frac{-1+\cancel{\phi}+\cancel{\beta}-1-\cancel{\phi}+\cancel{\beta}-2\cancel{\phi}}{2(1-\alpha-\beta)}=2B\to B=-\frac{1}{2(1-\alpha-\beta)}$$

Teniendo en cuenta que:

• 
$$Z\{\delta(n-k)\}=z^k$$

• 
$$\delta(n-k) * x(n) = x(n-k)$$

La antitransformada de Y(z) es:

$$y(n) = A.u(n-1) + 2C.h(n) + 2B.h(n-1)$$

$$y(n) = \frac{1}{2(1 - \alpha - \beta)}u(n - 1) - \frac{\beta}{1 - \alpha - \beta}h(n) - \frac{1}{1 - \alpha - \beta}h(n + 1)$$
(4)

Al igual que para le respuesta impulsiva se realizo un script("Ej9-escalon") para graficar la repuesta al escalon de cada item.







# 2 Ejercicio 3.a

Se pide verificar la estabilidad del siguiente filtro recursivo:

$$H(z) = \frac{z^6}{6z^6 + 5z^5 + 4z^4 + 3z^3 + 2z^2 + z + 1}$$
 (5)

Asumiendo que el sistema es causal se tiene que el sistema es estable si se tiene que todas sus singularidades estan dentro del circulo untario (|z| < 1).

Se deinfe como funcion caracteristica del sistema a:

$$f(z) = 6z^6 + 5z^5 + 4z^4 + 3z^3 + 2z^2 + z + 1 = 0$$

$$f(z) = z^6 + \frac{5}{6}z^5 + \frac{2}{3}z^4 + \frac{1}{2}z^3 + \frac{1}{3}z^2 + \frac{1}{6}z + \frac{1}{6}z = 0$$
 (6)

Para que el sistema sea estable debe cumplir:

- 1. Todos los coeficientes de (6) deben ser menor al orden de la misma
- 2.  $\left|\frac{a_0}{a_n}\right| < 1$ , donde  $a_0$  es el coeficiente que acompana al ttermino independiente y  $a_n$  el que acompana a  $z^n$

Una simple inspeccion de la f(z) muestra que se cumple la condicion 1, en cuanto a la condicion  $2 \left| \frac{a_0}{a_n} \right| = \frac{1}{6} < 1$ . Esto significa que en primera instancia la funcion caracteristica cumple con las condiciones necesarias.

Como siguiente paso se arman las matrices triangulares correspondientes:

$$H_1 = \left( egin{array}{cccccccc} 6 & 5 & 4 & 3 & 2 & 1 & 1 \ 0 & 6 & 5 & 4 & 3 & 2 & 1 \ 0 & 0 & 6 & 5 & 4 & 3 & 2 \ 0 & 0 & 0 & 6 & 5 & 4 & 3 \ 0 & 0 & 0 & 0 & 6 & 5 & 4 \ 0 & 0 & 0 & 0 & 0 & 6 & 5 \ 0 & 0 & 0 & 0 & 0 & 6 & 5 \ \end{array} 
ight), \ H_2 = \left( egin{array}{cccccccc} 6 & 5 & 4 & 3 & 2 & 1 & 1 & 0 \ 5 & 4 & 3 & 2 & 1 & 1 & 0 & 0 \ 4 & 3 & 2 & 1 & 1 & 0 & 0 & 0 \ 3 & 2 & 1 & 1 & 0 & 0 & 0 & 0 \ 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} 
ight)$$

De la suma de ambas matrices se obtiene:

$$H_7 = H_1 + H_2 = \begin{pmatrix} 12 & 10 & 8 & 6 & 4 & 2 & 2 \\ 5 & 10 & 8 & 6 & 4 & 3 & 1 \\ 4 & 3 & 8 & 6 & 5 & 3 & 2 \\ 3 & 2 & 1 & 7 & 5 & 4 & 3 \\ 2 & 1 & 1 & 0 & 6 & 5 & 4 \\ 1 & 1 & 0 & 0 & 0 & 6 & 5 \\ 1 & 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

Definiendo los ddeterminantes internos de la matriz como:

• 
$$\nabla_1 = 7 > 0$$

$$\bullet \ \nabla_3 = \left| \begin{array}{ccc} 8 & 6 & 5 \\ 1 & 7 & 5 \\ 1 & 0 & 6 \end{array} \right| = 295 > 0$$

$$\bullet \ \nabla_5 = \left| \begin{array}{cccc} 10 & 8 & 6 & 4 & 3 \\ 3 & 8 & 6 & 5 & 3 \\ 2 & 1 & 7 & 5 & 4 \\ 1 & 1 & 0 & 6 & 5 \\ 1 & 0 & 0 & 0 & 6 \end{array} \right| = 12383 > 0$$

El calculo de los determinantes internos de la matriz se realizo con el script de python titulado "Determinantes". Como la funcion caracteristica del sistema cumple las condiciones necesarias mencionadas previamente y todos sus determinantes internos son positivos, se concluye que el sistema es estable.

# 3 Ejercicio 6

### 3.1 Item a

Se pide demostrar la siguiente igualdad:

$$|H(e^{j\omega})|^2 = H(z).H(z^{-1})|_{z=e^{j\omega}}$$

demostracion:

$$H(z).H(z^{-1}) \stackrel{definicion}{=} \left(\sum_{k=-\infty}^{k=+\infty} h(k).z^{-k}\right).\left(\sum_{n=-\infty}^{n=+\infty} h(n).z^{n}\right)$$

$$\stackrel{distributiva}{=} \sum_{k=-\infty}^{k=+\infty} \left(\sum_{n=-\infty}^{n=+\infty} h(n).z^{n}\right)h(k).z^{-k} \stackrel{z=e^{j\omega}}{\to} \sum_{k=-\infty}^{k=+\infty} \left(\sum_{n=-\infty}^{n=+\infty} h(n).e^{jn\omega}\right)h(k).e^{-jk\omega}$$

$$\stackrel{Conjugado}{=} \sum_{k=-\infty}^{k=+\infty} \left(\sum_{n=-\infty}^{n=+\infty} \overline{h(n)}.e^{-jn\omega}\right)h(k).e^{-jk\omega} \stackrel{h\in\mathbb{R}}{=} \sum_{k=-\infty}^{k=+\infty} \left(\sum_{n=-\infty}^{n=+\infty} h(n).e^{-jn\omega}\right)h(k).e^{-jk\omega}$$

$$\stackrel{definicion}{=} \sum_{k=-\infty}^{k=+\infty} \overline{H(\omega)}h(k).e^{-jk\omega} = \overline{H(\omega)}.\sum_{k=-\infty}^{k=+\infty} h(k).e^{-jk\omega} \stackrel{definicion}{=} \overline{H(\omega)}.H(\omega) = |H(\omega)|^{2}$$

## 3.2 Item b

Se pide demostrar que el siguiente sistema es un filtro pasa todo(ganancia unitaria para toda frecuencia):

$$H(z) = \frac{1 - az + bz^2}{b - az + z^2}$$

demostracion:

$$\begin{split} |H(e^{j\omega})|^2 &= H(z).H(z^{-1}) = \frac{(1-az+bz^2)}{b-az+z^2}.\frac{(1-az^{-1}+bz^{-2})}{b-az^{-1}+z^{-2}} \\ &= \underbrace{\frac{bz^2 - (ab+a)z + 1 + a^2 + b^2 - (ab+a)z^{-1} + bz^{-2}}{bz^2 - (ab+a)z + 1 + a^2 + b^2 - (ab+a)z^{-1} + bz^{-2}}}_{bz^2 - (ab+a)z + 1 + a^2 + b^2 - (ab+a)z^{-1} + bz^{-2}}.1 = 1 \end{split}$$

## 3.3 Item c