## Staukontrolle durch Active Queue Management



**Thomas Fischer** 

Betreuer: Martin Metzker 05.07.2014

# Gliederung



- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
  - RED
  - BLUE
  - AVQ
- Vergleich der vorgestellten Algorithmen
  - BLUE vs. RED
  - AVQ vs. RED
- Zusammenfassung

# Gliederung



- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
  - RED
  - BLUE
  - AVQ
- Vergleich der vorgestellten Algorithmen
  - BLUE vs. RED
  - AVQ vs. RED
- Zusammenfassung



Random Early Detection, Floyd und Van Jacobson 1993

### Prinzip:

Ankommende Pakete werden mit bestimmter Wahrscheinlichkeit markiert, die sich proportional zum Anteil der Übertragungsrate verhält, welche diese Verbindung belegt.

"Markieren" kann dabei Fallenlassen des Pakets oder setzen des ECN-Bits sein



## Messgröße: durchschnittliche Queuelänge $Q_{avg}$ :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue  $w_q$ 

## Vergleichsparameter $Q_{min}$ und $Q_{max}$ :

- $-Q_{min} > Q_{avg}$ : keine Aktion
- $-Q_{min} < Q_{avg} < Q_{max}$ : markieren mit Wahrscheinlickeit  $p_a$
- $-Q_{ava} > Q_{max}$ : immer markieren



## Markierungswahrscheinlichkeit $p_b$ :

$$p_b = max_b \cdot \frac{Q_{avg} - Q_{min}}{Q_{max} - Q_{min}}$$
, mit  $max_b$ , dem Maximum für  $p_b$ 

## finale Markierungswahrscheinlichkeit $p_a$ :

$$p_a = \frac{p_b}{1 - z \cdot p_b}$$
 , mit Zähler z



RED kann auch Bytelänge (Anzahl an Bytes eines Pakets) anstatt Queuelänge in Paketen nutzen. Dafür Modifikation von  $p_b$  zu

$$p_b = p_b \cdot \frac{Paketbytes}{maximale \ Paketbytes}$$



### Algorithmus:

for jedes ankommende Paket do

Berechne  $Q_{avg}$ ;

if  $Q_{min} < Q_{avg} < Q_{max}$  then

Berechne  $p_a$ ;

Markiere ankommendes Paket mit Wahrscheinlichkeit  $p_a$ ;

else if  $Q_{max} < Q_{avq}$  then

Markiere ankommendes Paket

end



1999, Feng et.al., University of Michigan mit IBM

entwickelt, um Schwachstellen von RED zu verbessern:

- RED benötigt viele Parameter, welche konfiguriert werden müssen
- RED funktioniert nur gut, wenn richtig konfiguriert und ausreichend Pufferplatz

**➡** BLUE als neues Verfahren



Kennt nur eine globale Markierungswahrscheinlichkeit  $p_m$ 

Nutzt Paketverlust und Verbindungsauslastung zur Berechnung von  $p_m$ 

Kann Pakete fallen lassen oder ECN-Bit setzen



### Ablauf:

- Jedes ankommende Paket wird mit Wahrscheinlichkeit  $p_m$  markiert
- p<sub>m</sub> ändert sich auf Basis verloren gegangener Pakete bzw.
   ungenutzter Verbindungen:
  - Router erfährt, dass Paket verloren: p<sub>m</sub> → p<sub>m</sub> + d<sub>1</sub>
  - Router erkennt ungenutzte Verbindung:  $p_m \rightarrow p_m d_2$
- Zusätzlich  $freeze\_time$ : Zeitintervall, dass zwischen Änderungen an  $p_m$  gewartet werden muss, damit Änderungen wirksam werden können



### Algorithmus:

for jedes ankommende Paket do

if Paketverlust && (now – last\_update) < freeze\_time then</pre>

$$p_m = p_m + d_1;$$

*last update = now;* 

if Verbindung frei && (now – last\_update) < freeze\_time
then</pre>

$$\rho_m = \rho_m - d_2;$$

*last update = now;* 

#### end



#### Wahl der Parameter:

- $d_1$  (Erhöhung von  $p_m$ ) sollte deutlich größer als  $d_2$  (Reduzierung von  $p_m$ ) sein, da auf Staus sehr schnell reagiert werden muss
- freeze\_time wurde von Autoren in Versuchen konstant gehalten; sollte aber zufällig gewählt werden, um globale Synchronisation zu vermeiden



### Adaptive Virtual Queue, Kunniyur und Srikant, 2001



Prinzip: nutze virtuelle Queue, deren Größe dynamisch angepasst wird, um bessere Leistungsgrenzen zu erhalten



Keine Markierungswahrscheinlichkeiten; Entscheidung über Markieren wird anhand der Kapazität der virtuellen Queue getroffen

Unterstützt Fallenlassen von Paketen und das Setzen des ECN-Bits



Virtuelle Queue mit Kapazität  $C_{\nu} \le C$ , C ist Kapazität der tatsächlichen Verbindung, zu Beginn  $C_{\nu} = C$ 

Überprüfe für ankommende Pakete, ob virtuelle Queue Paket aufnehmen könnte:

- Falls ja: Paket in tatsächliche Queue einreihen
- Falls nein: Paket markieren



Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

### wobei

- α ein Glättungsparameter
- γ die angestrebte Auslastung der Verbindung
- λ die Ankunftsrate der Verbindung

Da keine Pakete in virtuelle Queue eingereiht werden ist lediglich die Kapazität von Interesse



### Algorithmus:

for jedes ankommende Paket do

if 
$$VQ = max(VQ - C_v(t - s), 0)$$
 then

Paket markieren;

### else

$$VQ = VQ + b;$$

$$C_{v} = max(min(C_{v} + \alpha \cdot \gamma \cdot C(t - s), C) - \alpha \cdot b, 0);$$

$$s = t;$$

#### end

B: Puffergröße, s: Ankunftszeit des letzten Pakets,

t: aktuelle Zeit, b: Paketgröße, VQ: Bytes in virt. Queue

# Gliederung



- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
  - RED
  - BLUE
  - AVQ
- Vergleich der vorgestellten Algorithmen
  - BLUE vs. RED
  - AVQ vs. RED
- Zusammenfassung





### Von den Autoren von BLUE

### Aufbau:

- ECN aktiviert
- Messen der Auslastung und Paketverluste nach 100s Übertragung + 100s Warten
- RED:  $Q_{min} = 20\%$ ,  $Q_{max} = 80\%$
- BLUE:  $d_1 = 10 \cdot d_2$
- Variation der Buffergröße von 100 KB bis 1000 KB, entspricht Verzögerung von 17,8 ms bis 178 ms

## BLUE vs. RED



1000 Quellen:

Auslastung bei beiden 100%

4000 Quellen:

Auslastung bei beiden 100%



## AVQ vs. RED



### Von den Autoren von AVQ

### Aufbau:

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms
- Flaschenhals Queuelänge: 100 Pakete bzw. 1000 bytes
- RED:  $Q_{min} = 37\%$ ,  $Q_{max} = 75\%$
- AVQ: A:  $\gamma = 98\%$  B:  $\gamma = 100\%$ ;  $\alpha = 0.15$
- A: Variation der FTP Verbindungen von 20 bis 180;
  - B: 40 FTP Verbindungen, steigende Anzahl an short-flows

## AVQ vs. RED



### A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

### B (short flows Variation):

Auslastung RED: 94% - 99 %

Auslastung AVQ: 100%





05.07.2014 Active Queue Management

# Gliederung



- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
  - RED
  - BLUE
  - AVQ
- Vergleich der vorgestellten Algorithmen
  - BLUE vs. RED
  - AVQ vs. RED
- Zusammenfassung

# Zusammenfassung



**AQM Algorithmen notwendig** 

Es gibt zahlreiche, weitere Algorithmen

Wichtig für die Zukunft: Einführung von AQM im Internet auf allen Routern (RED bereits 1998 in RFC 2309 empfohlen, noch vor ECN, welches 1999 in RFC 2481 erwähnt)

Alternative Verfahren zur Staukontrolle: z.B. Zugangssteuerung oder Routing unter Verkehrsberücksichtigung

### Vielen Dank für Ihre Aufmerksamkeit!



Fragen?