Elli Kiiski

Edited version of an exercise from the course History of Mathematics University of Helsinki

Beer pong numbers

Beer pong numbers (also known as triangular numbers) are figurative numbers that can be represented by arranging red cups (or evenly spaced dots) into a shape of an equilateral triangle.

The series of beer pong numbers starts with 1, 3, 6, 10, 15, 21... and the *n*th pong number can be constructed followingly

$$T_n = 1 + 2 + 3 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Let's show that the sum of any two consecutive beer pong numbers is always a square number. We have

$$T_n + T_{n+1} = \frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2}$$
$$= \frac{1}{2}(n^2 + n + n^2 + 3n + 2)$$
$$= n^2 + 2n + 1$$
$$= (n+1)^2,$$

and as we see, the sum indeed makes a square of (n + 1). Also, we notice that

$$T_{n+1} - T_n = \sum_{k=1}^{n+1} k - \sum_{k=1}^{n} k = n+1,$$

which means that the sum of two consecutive beer pong numbers equals the square of their difference. Formally

$$T_n + T_{n+1} = (T_{n+1} - T_n)^2$$
.

Figure 1 shows an example with n=2, commonly known as overtime layout $(T_2=3)$ plus 1vs1 layout $(T_3=6)$.

Figure 1: Sum of two consecutive beer pong numbers illustrated.