## Numerical calculation potential in MOS

Assignment #5

20202010 Hyunsuk Shin



Figure 1 Schematic image for MOS structure

## Analytic solution for Poisson's equation:

Oxide layer:

$$\epsilon_{ox} \frac{d^2}{dx^2} \phi_{ox} = 0$$

$$\phi_{ox} = \frac{C_1}{\epsilon_{ox}} x + C_2$$

$$\phi_{ox}(0) = C_2 = 0$$

$$\phi_{ox}(t_{ox}) = \frac{C_1}{\epsilon_{ox}} t_{ox} = C_1 = \frac{\phi_{ox}(t_{ox}) \epsilon_{ox}}{t_{ox}}$$

$$\phi_{ox}(x) = \frac{\phi_{ox}(t_{ox})}{t_{ox}} x \text{ where } 0 < x < t_{ox}$$

Semiconducting layer

$$\epsilon_{si} \frac{d^2}{dx^2} \phi_{si} = eN_{acc}$$

$$\phi_{si} = \frac{eN_{acc}}{2\epsilon_{si}} x^2 + D_1 x + D_2$$

However, we know the solution has mirror symmetry from their structure, the solution must be

$$\phi_{si} = \frac{eN_{acc}}{2\epsilon_{si}} \left( x - \left( \frac{t_{si}}{2} + t_{ox} \right) \right)^2 + D'$$

$$\phi_{ox}(t_{ox}) = \frac{C_1}{\epsilon_{ox}} t_{ox} => C_1 = \frac{\phi_{ox}(t_{ox})\epsilon_{ox}}{t_{ox}} \text{ where } t_{ox} < x < t_{ox} + t_{si}$$

Now we use boundary condition between oxide layer and semiconducting layer .

i) 
$$\phi_{ox}(t_{ox}) = \phi_{si}(t_{ox})$$

$$\phi_{ox}(t_{ox}) = \phi_{si}(t_{ox}) = \frac{eN_{acc}}{2\epsilon_{si}} \left(\frac{t_{ox}}{2}\right)^2 + D'$$

ii) 
$$\begin{aligned} \epsilon_{ox} \frac{d}{dx} \phi_{ox}(t_{ox}) &= \epsilon_{si} \frac{d}{dx} \phi_{si}(t_{ox}) \\ \phi_{ox}(t_{ox}) &= \phi_{si}(t_{ox}) = -\frac{e N_{acc} t_{ox} t_{si}}{2 \epsilon_{ox}} \\ & \therefore \frac{e N_{acc}}{2 \epsilon_{si}} \left(\frac{t_{si}}{2}\right)^2 + D' = -\frac{e N_{acc} t_{ox} t_{si}}{2 \epsilon_{ox}} \\ D' &= -\frac{e N_{acc} t_{ox} t_{si}}{2 \epsilon_{ox}} - \frac{e N_{acc}}{2 \epsilon_{si}} \left(\frac{t_{si}}{2}\right)^2 \end{aligned}$$

Then, the solution is as follows:

| $0 < x < t_{ox}$                                                                    | $t_{ox} < x < t_{ox} + t_{si}$                                                                                                                                                                                                | $t_{ox} + t_{si} < x < 2t_{ox} + t_{si}$                                                                             |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $\phi_{ox}(x) = -\frac{\mathrm{eN}_{\mathrm{acc}}t_{\mathrm{si}}}{2\epsilon_{ox}}x$ | $\phi_{si} = \frac{eN_{acc}}{2\epsilon_{si}} \left( x - \left( \frac{t_{si}}{2} + t_{ox} \right) \right)^2 - \frac{eN_{acc}t_{ox}t_{si}}{2\epsilon_{ox}} - \frac{eN_{acc}}{2\epsilon_{si}} \left( \frac{t_{si}}{2} \right)^2$ | $\phi_{ox}(x) = \frac{\mathrm{eN}_{\mathrm{acc}} t_{\mathrm{si}}}{2\epsilon_{ox}} (x - (2t_{ox} + t_{\mathrm{si}}))$ |
| $\phi_{ox}(x) = -C1x$                                                               | $\phi_{ox}(x) = C2(x - C3)^2 - C4$                                                                                                                                                                                            | $\phi_{ox}(x) = C1(x-a)$                                                                                             |

Where  $\epsilon_{ox}$  is permittivity of oxide,  $\epsilon_{si}$  is permittivity of silicon(or semiconducting layer). Let's calculate the coefficients.

|                                                                                                                        | $N_{\rm acc} = 10^{23} m^{-3}$      | $N_{\rm acc} = 10^{24} m^{-3}$      | $N_{\rm acc} = 10^{25} m^{-3}$      |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $C1 = \frac{eN_{acc}t_{si}}{2\epsilon_{ox}}$                                                                           | $1.16 \times 10^6 \text{ V/m}$      | $1.16 \times 10^7 \text{ V/m}$      | $1.16 \times 10^8 \text{ V/m}$      |
| $C2 = \frac{eN_{acc}}{2\epsilon_{si}}$                                                                                 | $7.73 \times 10^{13} \text{ V/}m^2$ | $7.73 \times 10^{14} \text{ V/}m^2$ | $7.73 \times 10^{15} \text{ V/m}^2$ |
| $C3 = \frac{t_{si}}{2} + t_{ox}$                                                                                       | 3.3 nm                              | 3.3 nm                              | 3.3 nm                              |
| $C4 = \frac{eN_{acc}t_{ox}t_{si}}{2\epsilon_{ox}} + \frac{eN_{acc}}{2\epsilon_{si}} \left(\frac{t_{si}}{2}\right)^{2}$ | $1.40 \times 10^{-3} \text{ V}$     | $1.40 \times 10^{-2} \text{ V}$     | $1.40 \times 10^{-1} \text{ V}$     |

## **Numerical Results**



Figure 2.  $N_{acc} = 10^{23} m^{-3}$ , N = 66 case. Blue line indicates analytic solution and red dotted line our numerical results.



Figure 3.  $N_{acc} = 10^{23} m^{-3}$ , N = 660 case. Blue line indicates analytic solution and red dotted line our numerical results.



Figure 4.  $N_{acc} = 10^{24} m^{-3}$  , N=660 case.



Figure 5.  $N_{acc} = 10^{25} m^{-3}$ , N = 660 case.

## Error analysis

|         | Intersection 1 | midpoint | Intersection 2 |
|---------|----------------|----------|----------------|
| N = 66  | 11.6 %         | 0.264 %  | 1.06 %         |
| N = 660 | 0.480 %        | 0.0931%  | 0.209 %        |