$$2\cos^3 x + \sqrt{3}\cos^2 x + 2\cos x + \sqrt{3} = 0$$
.

б) Укажите корни этого уравнения, принадлежащие отрезку
$$\left[-2\pi; -\frac{\pi}{2}\right]$$
.

Решение.

а) Запишем исходное уравнение в виде:

$$\left(2\cos x + \sqrt{3}\right)\left(\cos^2 x + 1\right) = 0.$$

Значит, или $\cos^2 x = -1$, что невозможно, или $\cos x = -\frac{\sqrt{3}}{2}$, откуда $x = \frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$, или $x = -\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.

Получим числа: $-\frac{7\pi}{6}$; $-\frac{5\pi}{6}$.

Other: a)
$$\frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{7\pi}{6}$; $-\frac{5\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте b ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта a и пункта b	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

$$\frac{\sin 2x}{\sin\left(\frac{3\pi}{2} - x\right)} = \sqrt{2}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

Решение.

а) Запишем исходное уравнение в виде:

$$\frac{2\sin x \cos x}{-\cos x} = \sqrt{2} \ .$$

Значит, $\sin x = -\frac{\sqrt{2}}{2}$, откуда $x = -\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$, или $x = -\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$.

При этих значениях переменной $\cos x \neq 0$.

б) С помощью числовой окружности отберём корни,

принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

Получим число $\frac{13\pi}{4}$.

OTBET: a)
$$-\frac{\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{13\pi}{4}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а или в пункте б ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта а и пункта б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

$$\cos 2x + 2\sqrt{2}\sin\left(\frac{\pi}{2} + x\right) - 2 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку
$$\left[\frac{\pi}{2}; 2\pi\right]$$
.

Решение.

а) Запишем исходное уравнение в виде:

$$2\cos^2 x - 1 + 2\sqrt{2}\cos x - 2 = 0; \left(\sqrt{2}\cos x - 1\right)\left(\sqrt{2}\cos x + 3\right) = 0.$$

Значит,
$$\cos x = \frac{\sqrt{2}}{2}$$
, откуда $x = \frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$, или $x = -\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$.

Уравнение $\cos x = -\frac{3\sqrt{2}}{2}$ корней не имеет.

б) С помощью числовой окружности отберём корни, π

принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.

Получим число $\frac{7\pi}{4}$.

OTBET: a)
$$\frac{\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$;
6) $\frac{7\pi}{4}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте b ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта a и пункта b	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

15

а) Решите уравнение

$$4\sin^2 x = \operatorname{tg} x.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $[-\pi; 0]$.

Решение.

а) Запишем исходное уравнение в виде:

$$4\sin^2 x = \frac{\sin x}{\cos x}; \; \frac{4\sin^2 x \; \cos x - \sin x}{\cos x} = 0; \; \frac{\sin x \cdot (2\sin 2x - 1)}{\cos x} = 0.$$

Значит, или $\sin x = 0$, откуда $x = \pi k$, $k \in \mathbb{Z}$, или $\sin 2x = \frac{1}{2}$, откуда $x = \frac{\pi}{12} + \pi n$,

$$n \in \mathbb{Z}$$
, или $x = \frac{5\pi}{12} + \pi m$, $m \in \mathbb{Z}$.

При найденных значениях переменной $\cos x \neq 0$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $[-\pi;0]$.

Получим числа:
$$-\pi$$
; $-\frac{11\pi}{12}$; $-\frac{7\pi}{12}$; 0.

OTBET: a)
$$\pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{12} + \pi n$, $n \in \mathbb{Z}$;

$$\frac{5\pi}{12} + \pi m$$
, $m \in \mathbb{Z}$;

6)
$$-\pi$$
; $-\frac{11\pi}{12}$; $-\frac{7\pi}{12}$; 0.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте b ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта a и пункта b	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

$$2\cos 2x + \sqrt{2}\sin x + 1 = 0$$
.

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

Решение.

а) Запишем исходное уравнение в виде:

$$2-4\sin^2 x+\sqrt{2}\sin x+1=0; (\sqrt{2}\sin x+1)(2\sqrt{2}\sin x-3)=0.$$

Значит,
$$\sin x = -\frac{\sqrt{2}}{2}$$
, откуда $x = -\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$, или $x = -\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$.

Уравнение $\sin x = \frac{3\sqrt{2}}{4}$ корней не имеет.

б) С помощью числовой окружности отберём корни,

принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

Получим число $\frac{7\pi}{4}$.

OTBET: a)
$$-\frac{\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$;

6)
$$\frac{7\pi}{4}$$
.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а или в пункте б ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта а и пункта б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

$$8\sin^2 x + 2\sqrt{3}\cos x + 1 = 0$$
.

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

Решение.

а) Запишем исходное уравнение в виде:

$$8 - 8\cos^2 x + 2\sqrt{3}\cos x + 1 = 0; \left(2\cos x + \sqrt{3}\right)\left(4\cos x - 3\sqrt{3}\right) = 0.$$

Значит,
$$\cos x = -\frac{\sqrt{3}}{2}$$
, откуда $x = \frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$, или $x = -\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$.

Уравнение $\cos x = \frac{3\sqrt{3}}{4}$ корней не имеет.

б) С помощью числовой окружности отберём

корни, принадлежащие отрезку
$$\left[-\frac{7\pi}{2}; -2\pi\right]$$
.

Получим числа: $-\frac{19\pi}{6}$; $-\frac{17\pi}{6}$.

Otbet: a)
$$\frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$;

6)
$$-\frac{19\pi}{6}$$
; $-\frac{17\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а или в пункте б ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта а и пункта б	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

$$16^{\sin x} = \left(\frac{1}{4}\right)^{2\sin 2x}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку
$$\left[2\pi; \frac{7\pi}{2}\right]$$
.

Решение.

а) Запишем исходное уравнение в виде:

$$4^{2\sin x} = 4^{-4\sin x \cos x}$$
; $-4\sin x \cdot \cos x = 2\sin x$; $2\sin x (2\cos x + 1) = 0$.

Значит, или $\sin x = 0$, откуда $x = \pi k$, $k \in \mathbb{Z}$, или $\cos x = -\frac{1}{2}$, откуда $x = 2\pi + 2\pi n$, $x = 2\pi n$,

$$x = \frac{2\pi}{3} + 2\pi n$$
, $n \in \mathbb{Z}$, или $x = -\frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil 2\pi; \frac{7\pi}{2} \right\rceil$.

Получим числа: 2π ; $\frac{8\pi}{3}$; 3π ; $\frac{10\pi}{3}$.

Ответ: a) πk , $k \in \mathbb{Z}$, $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$;

$$-\frac{2\pi}{3}+2\pi m\,,\;m\in\mathbb{Z}\,;$$

6)
$$2\pi$$
, $\frac{8\pi}{3}$; 3π ; $\frac{10\pi}{3}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте <i>а</i> или в пункте <i>б</i> ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов — пункта <i>а</i> и пункта <i>б</i>	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2