교육 과정 계획

• 교육 과정 계획

- 01 4차 산업혁명의 개요
- 02 빅데이터 개요
- 03 인공지능 개요
- 04 사물인터넷 개요
- 05 자율주행차 개요
- 06 가상·증강·혼합·확장현실 개요
- 07 드론 개요
- 08 중간고사
- 09 3D프린팅과 헬스케어 개요
- 10 블록체인 개요
- 11 클라우드 컴퓨팅 개요
- 12 신재생에너지와 산업 변화 (또는 산업체직무전문가 특강)
- 13 플랫폼 비즈니스 개요 (또는 산업체직무전문가 특강)
- 14 스마트 생태계 개요
- 15 기말고사

정보처리산업기사 실기 신기술 토픽들

학습 목표

• 학습 목표

- 드론 개념 이해하기
- 드론의 구성과 운용 방법 알아보기
- 드론의 활용 및 미래 동향 파악하기
- 신기술 용어 익히기

• 목차

- 01 드론의 이해
- 02 드론의 구성과 운용
- 03 드론의 활용 및 미래 동향

드론의 이해

• 드론의 정의

- 무인항공기(UAV: Unmanned Aerial Vehicle): 조종사가 탑승하지 않고 지정된 임무를 수행할 수 있도록 제작한 비행체
- 무인항공기를 다른 이름으로 '드론(drone)'이라고 부름
- 국립국어원에서는 드론을 우리말 '무인기'로 사용할 것을 권고함
- 우리나라 항공법에서 무인항공기(무인기)는 '사람이 탑승하지 아니하고 연료를 제외한 무게가 150kg 이하인 무인동력 비행장치이다'라고 정의함
- 무인동력 비행장치 중 사람이 탑승하지 않으면서 프로펠러를 여러 개 가진 비행체라는 뜻에서 '무인멀티콥터'라고 함

드론의 이해

표 2. 무인항공기의 이름과 개념

• 드론의 정의

용어	일반적인 개념
드론	Drones: 대중 및 미디어에서 가장 많이 사용되는 용어 중 하나로, 무인항공기를 통칭. 실제로는 군용 표적기를 부를 때 처음 사용되었고, 영국의 경우 소형무인항공기(Small Unmanned Aircraft, sUAV)로 정의함.
무인 비행장치 (UAV)	Unmanned Aerial Vehicle: 항공기'의 분류를 명확하게 하는 점진적 과정에서 생겨난 용어로, 비행체 그 자체를 의미함. 우리나라 등 대다수 국가에서 사용.
무인 항공기 시스템 (UAS)	Unmanned Aircraft System or Unmanned Aerial System: UAV 등의 비행체, 임무장비, 지상통제장비, 데이터링크, 지상지원 체계를 모두 포함한 개념으로, 전반적인 시스템을 지칭할 때 사용.
무인 항공기 (UA)	Unmanned Aircraft: 조종사가 탑승하지 않은 상태에서 원격조종 또는 탑재 컴퓨터 프로그래밍에 따라 비행이 가능한 항공기 그 자체를 설명할 때 사용.
원격조종 항공기 (RPA)	RPA/RPAS: ICAO에서 새롭게 사용하기 시작한 용어로, 원격 조종하는 자에게 책임을 물을 수 있다는 의미를 내포함.

로 이 이해

• 드론의 역사

구분	연도	드론 이름	내용
1세대 무인기 시스템	1898년	테슬라 소형 무인 선박	라디오주파수 모터전원제어 / 미국 뉴욕 매디슨 스 퀘어 가든 전시회
	1918년	케터링버그 Kettering Bug	최초 무인비행기 80km 비행 폭탄타격/ 미국
	1918년	퀸비 Queen Bee	지대공사격연습 무인기 / 영국
	1940년	데니드론 / Radioplane OQ-2	레지널드 데니 / 대공포 사격용 무인표적기 / 미국
	1943년	프리츠엑스 FX-1400 / V-1	최초 원격조종 항공기 (최초의 군사작전 투입) / 독 일 무인공격기 4개의 날개 무게 1톤
	1950년	파이어비 Firebee	군사용 무인감시기 / 미국 방산업체 라이언 베트남 전 활용
2세대 무인 항공기 (UAV) 시스템	1960년	스텔스 항공기 프로그램 시작	군사용 무인기 / 미국 (정찰용에서 전투용으로 전 환) 레이더에 잡히지 않는 무인기 개발
	1982년	스카우트 Scout 소형정찰무인기	소련 대공방어망 무력화 성공 / 이스라엘
	1995년	MQ-1 프레데터	미국 방산업체 제너럴아토믹스 무인비행기 9.11사태 후 테러범 제거에 이용
	2000년	글로벌호크 Global Hawk MQ-9 리퍼 (사신)	무인정찰기 / 미국 최대 20km 상공에서 지상 30cm 크기 물체 식별
	2010년	패럿 Parrot	스마트폰 조종 최조의 AR드론 / 프랑스 드론업체
	2016년	이항184	최초의 유인드론 / 중국 Ehang 사람이 탑승 가능
		UAS) / 인공지능이 스스로 판단해 술운용 시스템	레이저 무기, 인공지능이 결합된 미래 드론

[이미지출처] https://www.dronesbuy.net/wp-content/uploads/2017/03/History_of_drones_Infographic.png

[출처] 바른행활^드를 ^{살업}역자로로 열短게 화정하다 영상, https://blog.naver.com/erke2000/221697675770

드론의 이해

- 무인항공기의 분류
 - 형태에 따라 크게 고정익(fixed wing) 무인항공기와 회전익(rotary wing) 무 인항공기, 두 가지의 혼합형인 틸트로터(tilt-rotor)형 무인항공기로 나눔

- 고정익: 고정된 날개 형태, 연료소모가 상대적으로 적음, 이착륙을 위한 넓은 개 활지 필요, 바람의 영향을 많이 받음 - 회전익: 회전하는 날개로 비행, 수직 이 착륙 가능, 고정익 보다 비행속도 느림

출처: 박현섭 외 3 (2014). 무인항공기의 활용현황 및 발전방안. 6 [출처] 강욱, 공공임무용 드론의 효과적 활용방안에 관한 연구, 한국경호경비학회 - 제62호(2020)

• 드론의 주요 구성품

- 비행체, 지상통제시스템, 임무탑재 장비로 구성
- 비행체: 프레임, 모터, 프로펠러, 컨트롤러유닛, 파워관리유닛, 변속 기, 관성측정장치, 위성항법장치, 짐벌, 배터리
- 지상통제시스템 : 원격조종기, 지 상통제시스템 장비, 데이터 링크 등
- 임무탑재장비: 촬영용 카메라, 매 핑 장비, 통신 중계 장비, 특수 장 비(약제 살포 등) 등

출처: 무인이동체 기술혁신과 성장 10개년 로드맵, 과학기술정보통신부

• 드론의 부품과 용도

- 프레임: 기체의 기본 틀로 플라스틱, 알루미늄, 카본 등의 재질 사용
- 모터 : 기체의 추진력을 담당
- 프로펠러 : 회전력을 전진력으로 바꾸어 추진 기관으로 사 용하는 장치
- 컨트롤러 유닛 : 입력데이터를 비교 분석하여 각 유닛 관리 하는 장치
- 파워관리 유닛 : 배터리에서 공급된 전원을 관장하는 장치
- 변속기 : 전자속도제어기로 모터의 속도를 조절해주는 장치
- 관성측정장치 : 중력을 측정하는 가속도 센서와 각속도를 측정하는 자이로센서로 이루어짐
- 데이터표시장치 : 비행 정보를 확인하는 장치(배터리 잔량
- 위성항법장치 : 위성에서 신호를 받아 현재 위치를 기체에 알려주는 기능
- 짐벌: 구조물의 흔들림과 관계없이 카메라의 위치를 정립 상태로 유지
- 조종기/송수신기 : 주파수는 2.4GHz, 차세대통신 LTE, 5G 등 사용
- 배터리 : 전지는 화학적 에너지를 전기적 에너지로 바꾸는 장치

- 드론 비행 전 준비사항
 - 배터리 충전 상태 확인 및 충전
 - 다른 제품의 배터리를 연결해서는 안됨
 - 배터리 완충 후에는 정격 충전기에서 분리함(과충전 피하기)
 - 기체 운반시 유의사항
 - 배터리 등 장착물을 분리하고 운반
 - 이동 전에 모든 전원 스위치가 꺼진 상태인지 확인
 - 비행 전 육안 확인 사항
 - 기체 외관상 파손
 - 프로펠러, 모터, 커넥터, 배선 등의 이상 유무
 - 연결부위 결합 및 고정 상태
 - 캘리브레이션(calibration): 드론에 사용되는 장치나 센서의 초기 값에 문제가 있을 경우 이를 정상으로 복구해주는 작업

- 드론 비행 절차
 - 비행 안전 구역 확인 및 상황 판단
 - 다른 비행체 비행 여부 확인
 - 기체의 이착륙 지점 확인
 - 기체로부터 15m 이상 떨어진 장소에 위치하여 시동을 걸고 다른 일반인 접근 통제
 - 기상 상태를 확인하여 비행 가능 여부 판단
 - 풍속이 5m/s 이상인 상태라면 비행 제한
 - 지자계의 수치가 5이상이라면 비행 제한
 - 시동 전 조정기 점검 실시
 - 조종기의 스위치가 바르게 위치되어 있는지와 스틱에 이물질로 인한 조종 장애여부 등의 문제가 없는지를 다시 한번 체크
 - GPS 수신 상태를 확인
 - 비행 전 인허가 사항 점검
 - 12kg 이하의 아주 작은 기체라도 카메라가 장착되어 있다면 반드시 비행 전 국방부, 서울은 수도방위사령부의 허가를 받아야 함

• 조종사 준수사항

드론 이것만 알면 안전해요!

드론의 세계에 입문하신 여러분, 환영합니다! 이제부터 당신은 "드론 조종사" 입니다. 드론을 조종하는 동안, 당신의 소중한 기체와 주변 사람들의 안전은 여러분의 두 손에 달려있습니다. 다음의 준수사항을 꼭 지키면서, 안전하고 즐겁게 비행하세요.

※드론 비행은 항공법의 적용을 받으며 자세한 내용은 국토교통부 홈페이지 www.molit.go.kr에서 확인 가능합니다.

(홈페이지 접속 → 정책마당 → 정책Q&A → 무인비행장치Q&A)

야간에 비행하지 않습니다. (야간: 일몰 후부터 일출 전까지)

(인구밀집 지역 위 위험한 방식으로 비행금지)

비행 중 위험한 낙하물을 투하하지 않습니다.

음주 상태에서 조종하지 않습니다.

항공 촬영시 관할 기관의 사전 승인이 필요합니다. 비행하기전 해당제품의 메뉴얼을 숙자합니다.

비행하기 전 반드시 승인 받아야할 경우

비행금지구역에서 비행 (서울 강북지역, 휴전선 · 원전 주변)

지상고도 150m 이상에서 비행 (지면, 수면, 장애물 기준 150m 이상)

드론의 활용 및 미래 동향

• 이동체의 운용 환경

〈그림 2〉 이동체의 운용 환경과 사용목적에 따른 분류

(출처: 무인이동체 기술혁신과 성장 10개년 로드맵, 과학기술정보통신부)

드론의 팀

• 무인기 분야 기술 범위

[함께 생각해 봅시다] 드론은 필요한 도구 vs 위험한 도구

기술 핵심기술		기술정의		
분류	70/12	712 0 − 1	구분	
무인기 핵심기술	항법 및 상황인지 기술	다양한 센서로 자신의 위치를 인식하고 운항하고, 외부 환경을 파악하여 안전하게 비행하며 임무를 수행할 수 있도록 하는 기술	원천	
	자율운항기술	상황인지 및 중요도 판단에 의해 스스로 임무 수행 계획을 설정하여 운항하는 기술	원천	
	자가 건전성 관리 기술	고장 진단 및 건전성 분석을 통해 임무 수행 가능 여부를 판단하고, 자가치유 및 변형기동 등을 통해 비행자세를 복원하는 기술	원천	
	지능협업기술	다수·다종 무인기 군집비행 시 협력 임무를 계획하고 상황에 따라 조정하며 실행하는 기술	원천	
	원격통제 및 운용 기술	조종기 등을 통해 무인기의 경로, 임무를 효율적으로 계획하고 통제하며 운용하는 기술	원천	
무인기 기반기술	동력원 및 이동 기술	무인기용 중소형 엔진, 고효율 배터리, 플렉서블 태양전지, 연료전지, 하이브리드 동력원, 무선전력전송 기술과 무인기용 매니퓰레이터 기술	0원천	
	항법제어 기술	무인기 항법제어를 위한 하드웨어 및 소프트웨어 플랫폼, 응용소프트웨어 개발 지원 기술, 무인기 개발용 시뮬레이터 기술	원천	
	신무인기 기체 및 플랫폼 기술	무인기 개발 프로세스, 구조 건전성 향상, 맞춤형 제조 기술, 신개념 무인기 플랫폼 기술	원천	
	임무탑재 센서 기술	무인기 임무 수행을 위한 EO/IR, 라이다, 분광센서, 환경센서, SAR 등의 센서 기술	원천	
	통신기술	다수·다종 무인기 통신 네트워크, 광/레이저/위성통신, 고속통신, 안테나 최적화 기술	원천	
	보안 및 역기능 억제기술	무인기 통신 네트워크 보안, 항재밍 및 스푸핑 대응, 역기능 방지 기술	원천	
무인기 응용서비스 기술	1차산업	농업활용, 수목 관리, 해양 상태 분석, 양식장 관리 기술	산업 융합	
	운송	장거리 화물 운송, 승객 운송, 단거리 무인 배송 기술	산업 융합	
	공공서비스	재난재해 감시 및 현장 지원, 교통상황 감시, 실종자 수색, 치안 유지, 환경 탐사 기술	산업 융합	
	국토인프라	교통, 통신, 에너지 등 대형 사회 인프라 시설 관리, 3차원 정밀 공간정보 구축 기술	산업 융합	
	문화·레저	미디어 활용을 위한 영상 촬영, AR / VR 기반 레저문화관광 활용 기술	산업 융합	
인프라 기술	교통관제	무인기 교통관리(UTM) 체계 플랫폼 구축 및 운용 기술	산업 융합	
	운용 인프라	무인기 전용 이착륙, 충전, 정비 인프라 구축, 유·무인기 공역 통합 운용, 통신 인프라 구축 기술	산업 융합	
	안전인증체계	무인기 인증을 위한 기술표준, 시험평가, 인증 체계 구축 기술	산업 융합	
	불법 무인기 관리	불법 무인기 식별 및 퇴치 기술	산업 융합	

13

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Thin Client PC(씬 클라이언트 PC)
 - 하드 디스크나 주변 장치 없이 기본적인 메모리만 갖추고 서버와 네트워크로 운용되는 개 인용 컴퓨터(PC)를 의미하며 서버 기반 컴퓨팅이라고도 함
 - 기억 장치를 따로 두지 않기 때문에 PC를 분실하더라도 정보가 유출될 우려가 없음
 - Phablet(패블릿)
 - 폰과 태블릿의 합성어로 태블릿 기능을 포함한 5인치 이상의 대화면 스마트폰
 - 톱니 효과 : 동영상 시청 등 대화면 기기를 한 번 사용해보면 작은 기기를 사용할 수 없다 는 효과(소비 수준이 올라가면 다시 쉽게 내려가지 않는 현상)
 - ANC(AP Centric Network)
 - AP가 내장된 단말기로 구성된 네트워크
 - 스마트 폰 같은 모바일 단말의 확산으로 트래픽이 빠르게 증가하고 있지만 모바일용 인프라는 이에 대응하지 못하고 있어 4G 네트워크가 구축되기 이전에 와이파이 공유 모델을 기반으로 하는 ACN 기술 실용화를 추진하고 있음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - BYOD(Bring Your Own Device)
 - 개인 소유 단말기를 업무에 사용하는 환경
 - 스마트폰과 스마트패드와 같은 모바일 기기를 이용한 모바일 오피스 환경이 구축되면서 단말기 공급 및 유지관리와 통신비 등으로 발생되는 부담을 덜 수 있다는 측면에서 활용되 고 있지만 모바일 단말을 이용하기 때문에 보안에 취약
 - LTE(Long Term Evolution, 미래 장기 진화)
 - 3GPP 이동 통신 표준화 단체에서 직교 주파수 분할 다중 접속(OFDMA)과 다중 입력 다중 출력(MIMO) 기술 기반으로 제정한 표준
 - Smart Phone(스마트 폰)
 - 휴대폰에 컴퓨터 지원기능을 추가한 지능형 휴대폰

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Femtocell
 - 일반적인 이동 통신 서비스 반경보다 훨씬 작은 지역을 커버하는 초소형 기지국
 - 사용 대역에 제한이 없어 남는 주파수를 활용할 수 있는 장점
 - Femtocell Base Station(펨토셀 기지국)
 - 사무실이나 집에 설치하는 초소형 이동 통신 기지국
 - PES(Personal Environment Service, 개인환경 서비스)
 - 사용자에게 최적화한 생활 환경을 제공하는 서비스
 - 사용자가 휴대 전화를 가지고 가정과 사무실, 자동차, 공공 장소를 이동하면, 휴대 전화가 주변의 각종 생활 기기들을 자동으로 인식하고 제어하여 사용자 개인에게 최적화한 생활 환경을 제공
 - Mobile Computing(모바일 컴퓨팅)
 - 휴대형 기기로 이동하면서 자유로이 네트워크에 접속하여 업무를 처리할 수 있는 환경

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Netbook(넷북)
 - 휴대형 미니 노트북 컴퓨터로서 인터넷, 문서작업, 이메일 등 컴퓨터의 기본 기능을 수행 하면서 이동성을 갖도록 제작된 것
 - SCO(Synchronous Connection Oriented link, 동기식 접속 지향 링크)
 - 블루투스 데이터 링크의 하나로 두 장비 간에 음성과 같이 지정된 대역폭 통신을 위한 전용 회선의 동기식 접속 방법
 - 주로 음성 데이터인 동기식 접속 지향 링크(SCO) 패킷 전송에 사용
 - App Store(앱 스토어)
 - 애플(Apple)사가 개발·운영하는 모바일용 온라인 소프트웨어 장터
 - 개인이나 기업이 개발한 소프트웨어를 취급하며 이용자는 소프트웨어를 검색하고 다운로 드 받을 수 있음
 - 과거에는 휴대 전화와 휴대용 멀티미디어 플레이어(PMP)를 사면 내장되거나, 이동통신 업체를 통해 전송받은 소프트웨어가 전부였음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - AP(Access Point, 무선 접속장치)
 - 무선 랜(WLAN)을 설치하기 위한 중계 장치로 유선 랜을 통하여 무선망에 연결하는 기능을 수행
 - 이동 전화망을 사용하는 경우와 마찬가지로 사용자의 위치에 따라 하나의 접근점(AP)에서 다른 AP로 통화 채널 전환되므로 사용자가 이동하며 무선 휴대 단말기를 사용할 수 있음
 - USIM(Universal Subscriber Identity Module, 범용 가입자 식별 모듈)
 - 사용자의 인증을 목적으로 휴대전화 사용자의 개인 정보(통신 사업자와 사용자 비밀번호, 로밍 정보, 사용자의 개인 전화번호)를 저장하는 모듈을 의미
 - m-Commerce(m-커머스, 모바일 상거래)
 - 스마트폰, 개인정보 단말기, 기타 이동 전화 등 모바일 기기를 이용한 전자상거래
 - 무선 데이터 장비를 이용하여 은행 업무, 지불 업무, 티켓 업무 등 결제 기반의 정보, 서비스, 상품 등을 거래하는 것으로 안전한 지불 업무는 m-commerce의 핵심 중의 하나로 즉시성, 편의성, 개인성, 위치 인지성 등의 특징이 있음

학습 정리

"그동안 학습한 내용을 복습 및 정리해봅시다!"

참고 및 자료 출처

- [1] 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020
- [3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do