NLS and Sharp Interpolation Estimates Michael Weinstein, Commun. Math. Phys. 87, 567-576 (1983)

Sebastian Gherghe

April 3 2019

Introduction: Prelude to the NLS

Finding the "best constant" of various inequalities usually has some geometric or analytic significance. As an example:

Theorem (Isoperimetric Inequality)

Consider a domain $D \in \mathbb{R}^n$ with boundary ∂D . Then,

$$V^{n-1} \leqslant n^{-n} \omega_n^{-1} A^n$$

- V is the volume (Lebesgue Measure) of D
- ω_n is the volume of the n-ball of radius 1
- A is the "surface area" of D, generalized by by $M_{n-1}(\partial D)$, the (n-1)-dimensional Minkowski Content of ∂D .

Equality is obtained only when D is the n-ball!

Introduction: Prelude to the NLS

How does this geometric fact concern inequalities? Consider the following Sobolev-type Embedding theorem:

Theorem

Consider $u \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$||u||_{L^{\frac{n}{n-1}}}\leqslant C(n)||\nabla u||_{L^1}$$

and the best constant is the same as in the Isoperimetric Inequality, ie. $C(n)_{sharp} = n^{-n}\omega_n^{-1}$.

Introduction

Weinstein's 1983 paper presents a relationship between the sharp constant for a classical interpolation inequality by Nirenberg and Gagliardo and a criterion for global existence for the Nonlinear Schrödinger Equation:

$$i\frac{\partial\phi}{\partial t} + \Delta\phi + |\phi|^{2\sigma}\phi = 0 \tag{NLS}$$

where $x \in \mathbb{R}^N$, $t \in \mathbb{R}^+$ and initial conditions $\phi(x,0) = \phi_0(x)$ in the L^2 -critical case $N\sigma = 2$.

Introduction

This presentation will tackle three things:

- I. Sharpest Constant for the (classical) Gagliardo-Nirenberg Interpolation Inequality and the ground state solution of the NLS: Solution of a Variational Problem
- II. A sufficient condition for global existence of H^1 solutions of the NLS: Global Existence for the IVP in the L^2 critical case
- III. (time-permitting) comments on stability and finite blow-up

Consider a particular Gagliardo-Nirenberg Interpolation Inequality:

$$||f||_{2\sigma+2}^{2\sigma+2} \le C_{\sigma,N}^{2\sigma+2} ||\nabla f||_2^{\sigma N} ||f||_2^{2+\sigma(2-N)}$$

for $0<\sigma<\frac{2}{N-2}$ and $N\geqslant 2$. This is a particular case of the general inequality:

$$||D^{j}f||_{p} \leqslant C||D^{m}f||_{r}^{\alpha}||f||_{q}^{1-\alpha}$$

for some function $f: \mathbb{R}^N \to \mathbb{R}$ with $p=2\sigma+2, \ m=1, \ q=r=2$, which fixes $\alpha=n(\frac{1}{2}-\frac{1}{2\sigma+2})$

In order to find the sharpest constant $C_{\sigma,N}$, we define the functional:

$$J^{\sigma,N}(f) = \frac{\|\nabla f\|_2^{\sigma N} \|f\|_2^{2+\sigma(2-N)}}{\|f\|_{2\sigma+2}^{2\sigma+2}}$$

Now this turns into a minimization problem!

We will show that the minimum is attained at some H^1 function ψ^* . We obtain explicit forms for $C_{\sigma,N}$ and the equation it solves by applying the Euler-Lagrange equations to $J^{\sigma,N}$.

Note that by the original estimate $J^{\sigma,N}$ is defined on $H^1(\mathbb{R}^N)$ for $0<\sigma<\frac{2}{N-2}$.

Theorem

For
$$0 < \sigma < \frac{2}{N-2}$$
, $\alpha = \frac{1}{N-2}$

$$\alpha \equiv \inf_{u \in H^1(\mathbb{R}^N)} J^{\sigma,N}(u)$$

is attained at a function ψ with the following properties

- 1) ψ is positive and a function of |x| alone
- 2) $\psi \in H^1(\mathbb{R}^N) \cap C^\infty(\mathbb{R}^N)$
- 3) ψ is a solution of:

$$\frac{\sigma N}{2}\Delta\psi - (1 + \frac{\sigma}{2}(2 - N))\psi + \psi^{2\sigma + 1} = 0$$

of minimal L² norm (the ground state), and in addition

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma + 1}$$

Ideas behind the proof:

- (1) show that positive minimizers satisfy the same minimization problem, and a "symmetrization" argument to show the same for radial minimizers (Strauss 1977)
- (2) Compactness lemma gives compact embedding of radial functions, obtain a convergent minimizing sequence!
- (3) Apply the Euler-Lagrange equations to $J^{\sigma,N}$

Lemma (Compactness Lemma)

For $0 < \sigma < \frac{2}{N-2}$, the embedding

$$H^1_{radial}(\mathbb{R}^N) o L^{2\sigma+2}(\mathbb{R}^N)$$

is compact.

Proof.

Proof follows from the interpolation estimate:

$$||u||_{2\sigma+2}^{2\sigma+2} \leqslant C||u||_{H^1}^{\sigma N}||u||_2^{2+\sigma(2-N)}$$

for $0 < \sigma < \frac{2}{N-2}$ and $u \in H^1(\Omega)$ where Ω is a bounded domain.

We extend to $u \in H(\mathbb{R}^N)$ if we can show that a bounded sequence in $H(\mathbb{R}^N)_{radial}$ is uniformly small at infinity. This follows by Strauss' Radial Lemma.

Lemma (Radial Lemma 1)

Let $N \ge 2$. Every radial function $u \in H^1$ is almost everywhere equal to a function U(x), continuous for $x \ne 0$, such that

$$|U(x)| \leqslant c|x|^{\frac{1-N}{2}} ||u||_{H^1}$$

for $|x| \geqslant 1$, and where c depends only on n.

Sketch of 1).

Argue that if the minimization problem has a solution, then it also has a solution that is non-negative and radial.

Let u be a solution. Argue that $u^+(x) := \max(u(x), 0)$ solves the same minimization problem (observe that $\nabla(u^+) = (\nabla u)^+$ and that $u^+ \in H^1$).

To assume that u is radial we will argue using Steiner Symmetrization, imitating Strauss 1977 who in turn extended the classical version of this technique (Polya and Szegö 1951).

"Symmetrize" a given bounded domain with "nice" boundary about a hyperplane that passes through the origin.

Applying the symmetrization multiple times...

Theorem (Ljusternik-Gross Sphericalization Theorem)

Let Ω be a non-empty compact set and $\mathbb G$ the family of all multiple symmetrizations (finite composition of symmetrizations) of Ω . Then there is a subsequence $\Omega_n \subset \mathbb G$ and a closed ball $\overline B$ with the same volume as Ω and

$$\Omega_n o \overline{B}$$
 as $n o \infty$

Define

$$D = \{(x, t) \in \mathbb{R}^{N+1} : 0 \leqslant t \leqslant u(x)\}$$

Let D^* be the symmetrization of D around the hyperplane $x_1 = 0$. Then, D^* is of the form

$$D = \{(x,t) \in \mathbb{R}^{N+1} : 0 \leqslant t \leqslant u^*(x)\}$$

and we argue that u^* is also a solution of the same problem. So by successive choice of hyperplanes, we get a (non-negative) radial solution.

Sketch of 2).

Since $J^{\sigma,N}(u) \geqslant 0$ there exists a minimizing sequence $u_{\nu} \in H^1(\mathbb{R}^N) \cap L^{2\sigma+2}(\mathbb{R}^N)$. We assume this u_{ν} to be positive and radial.

Define the scaling

$$u^{\lambda,\mu}(x) \equiv \mu u(\lambda x)$$

and fix values of λ and μ as follows.

$$\lambda_{\nu} = \frac{\|u_{\nu}\|_2}{\|\nabla u_2\|_2}$$

and

$$\mu_{\nu} == \frac{\|u_{\nu}\|_{2}^{\frac{N}{2}-1}}{\|\nabla u_{2}\|_{2}^{\frac{N}{2}}}$$

Then the sequence $\psi_{\nu}(x)=u^{\lambda_{\nu},\mu_{\nu}}(x)$ with the following properties:

- (a) $\psi_{\nu} \geqslant 0$, $\psi_{\nu} = \psi_{\nu}(|x|)$
- (b) $\psi_{\nu} \in H^1(\mathbb{R}^N)$
- (c) $\|\psi_{\nu}\|_{2} = 1$ and $\|\nabla\psi_{\nu}\|_{2} = 1$
- (d) $J^{\sigma,N}(\psi_{\nu})\downarrow \alpha$ as $\nu\to\infty$

Since the sequence ψ_{ν} is bounded in $H^1(\mathbb{R}^N)$ some subsequence has a weak H^1 limit ψ^* (Recall the Banach-Alaoglu Theorem). We can use the Compactness Lemma to take ψ_{ν} strongly convergent to ψ^* in $L^{2\sigma+2}(\mathbb{R}^N)$ for $0<\sigma<\frac{2}{N-2}$.

By weak convergence we have $\|\psi^*\|_2 \leqslant 1$ and $\|\nabla \psi^*\|_2 \leqslant 1$. So using the definition of the operator $J^{\sigma,N}$:

$$\alpha \leqslant J^{\sigma,N}(\psi^*)$$

$$\leqslant \frac{1}{\int |\psi^*|^{2\sigma+2} dx}$$

$$= \lim_{\nu \uparrow \infty} J(\psi_n u) = \alpha$$

It follows that

$$\|\psi^*\|_2^{\sigma N} \|\psi^*\|_2^{2+\sigma(2-N)} = 1$$

so then $\|\psi^*\|=\|\nabla\psi^*\|_2=1$ and we have strong convergence of $\psi_{\nu}\to\psi^*$ in H^1 .

Sketch of 3).

Applying the Euler-Lagrange equation to $J^{\sigma,N}$:

$$\left. \frac{d}{d\epsilon} \right|_{\epsilon=0} J^{\sigma,N}(\psi^* + \epsilon \eta) = 0$$

for all $\eta \in C_0^\infty(\mathbb{R}^N)$. Using $\|\psi^*\| = \|\nabla \psi^*\|_2 = 1$ we obtain from the E-L equation:

$$\frac{\sigma N}{2} \Delta \psi^* - (1 + \frac{\sigma}{2} (2 - N)) \psi^* + \alpha (\sigma + 1) (\psi^*)^{2\sigma + 1} = 0$$

Rescaling we let $\psi^*=[\alpha(\sigma+1)]^{-\frac12\sigma}\psi$ and we obtain a solution the equation in Theorem B with

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{(\sigma+1)}$$

Theorem

For
$$0 < \sigma < \frac{2}{N-2}$$
,

$$\alpha \equiv \inf_{u \in H^1(\mathbb{R}^N)} J^{\sigma,N}(u)$$

is attained at a function ψ with the following properties

- 1) ψ is positive and a function of |x| alone
- 2) $\psi \in H^1(\mathbb{R}^N) \cap C^\infty(\mathbb{R}^N)$
- 3) ψ is a solution of:

$$\frac{\sigma N}{2}\Delta\psi - (1 + \frac{\sigma}{2}(2 - N))\psi + \psi^{2\sigma + 1} = 0$$

of minimal L² norm (the ground state), and in addition

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma + 1}$$

Also obtain two corollaries:

Corollary (Corollary B.1)

The best (smallest) constant for which the classical interpolation estimate holds is given by

$$C_{\sigma,N} = \left(\frac{\sigma+1}{\|\psi\|_2^{2\sigma}}\right)^{\frac{1}{2\sigma+2}}$$

where ψ is the ground state of the NLS.

Corollary (Corollary B.2)

Let $0 < \sigma < \frac{2}{N-2}$. Then, the equation

$$\Delta u - u + u^{2\sigma + 1} = 0$$

has a positive, radial solution of class $H^1(\mathbb{R}^N)$.

Building on the results of Ginibre and Velo for global existence:

Theorem (Theorem 3.1)

Let $\phi_0 \in H^1(\mathbb{R}^N)$. Then:

(i) If $0<\sigma<\frac{2}{N}$, then there exists a unique solution $\phi\in C([0,\infty];H^1(\mathbb{R}^N))$ of the IVP (NLS) in the sense of the equivalent integral equation:

$$\phi = U(t - t_0)\phi - i \int_{t_0}^t U(t - s)(|\phi|^{2\sigma}\phi)(s)d2s$$

where U(t) is the Schrödinger Kernel.

Theorem (Theorem 3.1)

- (ii) If $\sigma = \frac{2}{N}$, then for $\|\phi_0\|_2$ sufficiently small, the conclusion of (i) holds.
- (iii) As long as $\phi(x,t)$ remains in $H^1(\mathbb{R}^N)$, the quantities

$$\mathcal{N}(\phi) \equiv \int |\phi(x,t)|^2 dx$$

and

$$\mathcal{H}(\phi) \equiv \int (|
abla \phi(x,t)|^2 - rac{1}{\sigma+1}|\phi(x,t)|^{2\sigma+2})$$

are constants in time.

Remark If $\sigma \geqslant \frac{2}{N}$, solutions may develop singularities in finite time.

Theorem (Theorem A)

Let $\phi_0 \in H^1(\mathbb{R}^N)$. For $\sigma = \frac{2}{N}$, a sufficient condition for global existence in the IVP is:

$$\|\phi_0\|_2 \le \|\psi\|_2$$

where ψ is a positive solution of the equation

$$\Delta u - u + u^{\frac{4}{N}+1} = 0$$

of minimal L^2 norm (the ground state), and $\psi e^{\frac{it}{2}}$ is an exact solution of the IVP.

The idea behind the proof of Theorem A:

In the theorem of Ginibre and Velo $(0 < \sigma < \frac{2}{N-2})$ they show that the length T of the interval of existence $[t_0, t_0 + T]$ can be taken to depend only on $\|\phi(t_0)\|_{H^1}$.

Then if $\phi(x,t)$ is a maximally defined solution on $[t_0,t_{max}]$ we have two possibilities:

(i)
$$t_{max} = +\infty$$

(ii)
$$\lim_{t\uparrow t_{max}} \lVert \phi(t) \rVert_{H^1} = +\infty$$

In Ginibre and Velo's proof they use the invariants $\mathcal{N}(\phi)$ and $\mathcal{H}(\phi)$ to obtain an *a priori* bound of the type:

$$\|\phi(t)\|_{H^1(\mathbb{R}^N)} \leqslant C(\mathcal{N}, \mathcal{H})$$

We seek to imitate their proof by showing a particular version of the bound.

Sketch of Proof of Theorem A: Using the constants of motion and the interpolation estimate:

$$\|\nabla\phi(t)\|_{2}^{2} \leqslant \mathcal{H} + \frac{C_{\sigma,N}^{2\sigma+2}}{\sigma+1} \|\phi_{0}\|_{2}^{2+\sigma(2-N)} \|\nabla\phi(t)\|_{2}^{\sigma N}$$

If the case $\sigma = \frac{2}{N}$, we re-arrange:

$$(1 - \frac{C_N^{\frac{4}{N}}}{\frac{2}{N} + 1} \|\phi_0\|_2^{\frac{4}{N}}) \|\nabla\phi(t)\|_2^2 \leqslant \mathcal{H}$$

Using Corollary 1.1 (explicit expression for $C_{\sigma,N}^{2\sigma+2}$), we obtain the estimate:

$$(1 - (\frac{\|\phi_0\|_2}{\|\psi\|_2})^{\frac{4}{N}})\|\nabla\phi(t)\|_2^2 \leqslant \mathcal{H}$$

Taking $\|\phi_0\|_2 \leq \|\psi\|_2$, we obtain a time-independent bound on $\|\nabla\phi(t)\|_2^2$.

We use the fact that the scaling $f(x) \to \lambda^{\frac{1}{\sigma}} f(\lambda x)$ leaves the L^2 norm of f unchanged when $\sigma = \frac{2}{N}$. Since ψ solves the E-L equation for $J^{\sigma,N}$ in the critical case, then re-scaling ψ by $\frac{1}{\sigma}$ yields the equation

$$\Delta\psi - \psi + \psi^{\frac{4}{N}+1} = 0$$

Theorem (Theorem A)

Let $\phi_0 \in H^1(\mathbb{R}^N)$. For $\sigma = \frac{2}{N}$, a sufficient condition for global existence in the IVP is:

$$\|\phi_0\|_2 \le \|\psi\|_2$$

where ψ is a positive solution of the equation

$$\Delta u - u + u^{\frac{4}{N}+1} = 0$$

of minimal L^2 norm (the ground state), and $\psi e^{\frac{it}{2}}$ is an exact solution of the IVP.

First, recall some conservation laws:

Theorem

Let $|x|\phi_0(x) \in L^2$, and let $\phi(x,t)$ be an H^1 solution of the NLS for $0 \le t \le T$. Then, for $0 \le t \le T$:

(i)
$$\frac{d}{dt} \int \{|x\phi - it\nabla\phi|^2 - \frac{t^2}{\sigma + 1}|\phi|^{2\sigma + 1}\} dx = t\frac{\sigma N - 2}{\sigma + 1} \int |\phi|^{2\sigma + 2} dx$$

(ii)
$$\frac{d^2}{dt^2} \int |\phi|^2 |x|^2 dx = 2\mathcal{H}(\phi_0) + \frac{N}{\sigma+1} (\frac{2}{N} - \sigma) \int |\phi|^{2\sigma+2} dx$$

Remark Identity (i) is referred to as "pseudoconformal conservation law". (i) proved by Ginibre and Velo 1979, (ii) proved by Vlasov et al 1971.

Glassey 1977 proved a result on finite time blow up of solutions to the NLS in the case $\sigma \geqslant \frac{2}{N}$. Tsutsumi strengthened this:

Theorem (Tsutsumi)

Let either

(*i*)
$$\mathcal{H}(\phi_0) < 0$$

(ii)
$$\mathcal{H}(\phi_0) = 0$$
 and $\text{Im} \int x \cdot \overline{\phi_0} \nabla \phi_0 dx < 0$

(iii)
$$\mathcal{H}(\phi_0) > 0$$
 and $\text{Im} \int x \cdot \overline{\phi_0} \nabla \phi_0 dx \leqslant -2 \sqrt{\mathcal{H}(\phi_0)} \|x \phi_0\|$

Then, there exists a time $0 < T < \infty$ such that

$$\lim_{t\uparrow T} \lVert \nabla \phi(t)\rVert_2 = +\infty$$

In the critical case $\sigma = \frac{N}{2}$ the identity due to Vlasov reduces to:

$$\frac{d^2}{dt^2}\int |\phi|^2|x|^2dx=2\mathcal{H}(\phi_0)$$

If we consider particular solutions $\Phi(x, t) = e^{it/2}R(x)$ where R(x) is an H^1 function satisfying the equation:

$$\Delta u - u + u^{\frac{4}{N}+1} = 0$$

then we have that $\mathcal{H}(R)=0$. As a consequence Weinstein obtains the following instability result when $\sigma=2/N$, which expresses the "sharpness" of the condition in his global existence theorem.

Theorem (Instability Theorem)

Let $\sigma = 2/N$. The nontrivial H^1 solutions of

$$\Delta u - u + u^{\frac{4}{N}+1} = 0$$

are unstable for the nonlinear Schrödinger equation in the following sense:

Let $R \in H^1(R \neq 0)$ solve the above equation. Then for any $\delta > 0$, there is a function η , with $\|\eta - R\|_2 < \delta$ such that for $\phi(x,t)$ the solution of the IVP with $\phi_0 = \eta$ and:

$$\lim_{t\to T^-}\lVert \nabla \phi(t)\rVert_2=\infty$$

for some $0 < T < \infty$

The following picture emerges in the critical case $\sigma = 2/N$:

(1) If $\phi_0 \in H^1(\mathbb{R}^N)$ and $\|\phi_0\|_2 < \|\psi\|_2$, where ψ is the ground state of

$$\Delta u - u + u^{\frac{4}{N}+1} = 0$$

(ie. positive radial and H^1 solution of minimal L^2 norm), then the IVP has a unique global solution $\phi(x,t)$ of class $C([0,\infty):H^1(\mathbb{R}^N))$.

- (2) If $\mathcal{H}(\phi_0) < 0$ then the solution $\phi(x,t)$ of the NLS blows up in finite time in $H^1(\mathbb{R}^N)$.
- (3) By Tsutsumi's Theorem $\mathcal{H}(\phi_0) \geqslant 0$ is not sufficient for global existence.
- (4) If $\|\phi_0\|_2 < \|\psi\|_2$, then $\mathcal{H}(\phi_0) \geqslant 0$

(5) If R is a nontrivial H^1 solution of the above equation then $Re^{it/2}$ is an exact solution of the NLS and $\mathcal{H}(Re^{it/2})=0$. These solutions are unstable in the sense of the Instability Theorem.

Conclusion

Weinstein obtains a sharp sufficient condition for global existence for the NLS

$$\frac{\partial \phi}{\partial t} + \Delta \phi + |\phi|^{2\sigma} \phi = 0$$

in the L^2 critical case $\sigma = \frac{2}{N}$, in terms of an exact stationary solution of the NLS.

This condition is derived by investigating the the sharpest constant for a classic interpolation inequality of the type Gagliardo-Nirenberg.