Sistemas de Informação - EACH-USP Sistemas Operacionais - Prof. Alexandre da Silva Freire Prova 2 - 30 de novembro de 2016

Nome:	NUSP:	Nota:	

ATENÇÃO ÀS SEGUINTES INSTRUÇÕES: (1) Pode fazer a prova a lápis; (2) Escreva seu nome completo e número USP em todas as folhas, inclusive nesta; (3) Devolva todas as folhas, inclusive os rascunhos e esta folha; (4) Desligue todos os aparelhos eletrônicos e não converse durante a prova; (5) Pode fazer as questões em qualquer ordem; (6) Faça apenas o que as questões pedem, sem se preocupar com o restante do código; (7) Qualquer dúvida, levante a mão e aguarde o professor chegar até você ou vá até o professor (não fale em voz alta).

Questão 1 (Valor: 2.5). Descreva, de forma precisa, como funciona o "algoritmo do banqueiro". Simule, passo a passo, o algoritmo do banqueiro para a situação descrita a seguir. Temos os processos $\{P_0, P_1, P_2, P_3, P_4\}$ e os recursos $\{A,B,C\}$. A tabela abaixo descreve como encontra-se o sistema no instante t_0 .

Processos	Instâncias Alocadas			Máximo Permitido		Instâ	Instâncias Disponíveis		
	Α	В	С	Α	В	С	Α	В	С
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	3	2	2			
P_2	3	0	2	9	0	2			
P ₃	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

No instante t_1 , o processo P_1 requisita mais uma instância do recurso A e duas instâncias do recurso C. No instante t_2 , o processo P_0 requisita 2 instâncias do recurso B.

Questão 2 (Valor: 2.5). Descreva, de forma detalhada, o que é "paginação" e "memória virtual". Qual é a motivação para utilizar cada uma dessas abordagens?

Questão 3 (Valor: 2.5). Considere uma fila de espera de requisições de leitura/escrita em disco, contendo os seguintes endereços, nesta ordem de chegada: 10, 90, 13, 120, 40, 80, 20, 150 (a cabeça começa no endereço 30). Simule os seguintes algoritmos de escalonamento de disco: FCFS (First Come First Served), SSTF (Shortest Seek Time First), LOOK e C-LOOK. Calcule a "distância" total percorrida por cada um dos 3 algoritmos (a distância para deslocar a cabeça do endereço e_1 para o endereço e_2 é dada por $|e_1-e_2|$).

Questão 4 (Valor: 2.5). Descreva, de forma detalhada, como funciona a criptografia de chave assimétrica. Descreva um contexto no qual a mensagem deve ser cifrada utilizando uma chave pública e um outro contexto no qual a mensagem deve ser cifrada utilizando chave privada. Justifique seus exemplos. Explique como funcionam as "assinaturas digitais" e os "certificados digitais".