CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹with huge thanks to Anna Bretscher and Albert Lai

priority queue

Collection of priority-job pairs; priorities must be comparable.

- insert(p, j): insert job j with priority p
 max(): return job with max priority
- extract-max(): remove and return job with max priority

heap

A heap is one way to store a priority queue. A heap is:

- a binary tree
- "nearly complete": every level i has 2ⁱ nodes, except the bottom level; the bottom nodes flush to the left

• at each node n: $priority(n) \ge priority(n.left)$ and $priority(n) \ge priority(n.right)$

.

heap insert: example

Insert job with priority 15.

 $\sqrt{\ }$ The tree is still "nearly-complete". But:

solution: Snap 15 with 7 and 15 with 14

heap insert: algorithm

```
insert(p, j):
```

- 1. v := new node(p, j)
- 2. insert v at bottom level, leftmost free place (keep the tree "nearly-complete")
- 3. while v has parent p with p.priority < v.priority:
 - swap v.priority and p.priority
 - swap v.job and p.job
 - v := parent(v)

heap extract-max: example

new root?

move 7 to noot snap 7 and 15 swap 7 and 14

heap extract-max: algorithm

extract-max():

- 1. max_p, max_j = root.priority, root.job
- 2. move (priority, job) from last (bottom, rightmost) node into root
- remove last node
- 4. v := root
- 5. while v has child c with c.priority > v.priority:
 - c := child of v with largest priority
 - swap v.priority and c.priority
 - swap v.job and c.job
 - v := c
- return max_p, max_j

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

Easy:

- where to insert/remove?
- saves space:

Where are children/parents?

- left child of node at index i:
- right child of node at index i: 2;+
- parent of index node at *i*:

Downside?

heap: height

Let *n* be the number of nodes, *h* be the height.

- largest n: bottom level is full
- smallest n: only 1 node at bottom level

• h-1 levels are full $O(\log n)$ $O(\log n)$

maximum number of nodes with height h: 2h-1 minimum number of nodes with height h:

$$2^{h-1}-1+1=2^{h-1}$$

At height $2^{h-1} \le n \le 2^{h-1} \implies h = \lfloor \log_2 n \rfloor + 1$ $(2h-1 \le n \le 2h)$