Mathematics 201-NYC-05 Linear Algebra

1. (5 points) Given
$$x_1 + 2x_2 + 6x_3 + 4x_4 = 5$$

$$x_2 + 5x_3 + 3x_4 = 7$$

$$x_1 + 3x_2 + 11x_3 + 7x_4 = 12$$

- (a) Write the general solution in parametric vector form.
- (b) Find a basis for the column space of the coefficient matrix.
- **2.** (8 points) In each part, write a 3×3 matrix A that fits the description or explain why no such matrix exists.
 - (a) $\dim(\text{Nul}(A)) = 0$
 - (b) The columns of A form a linearly dependent set, but the rows of A form a linearly independent set.
 - (c) The null space of A is a plane.
 - (d) A has rank 1, and I + A is non-invertible.
- **3.** (3 points) Set up an augmented matrix for finding the loop currents of the following electrical circuit. You do not have to solve it.

- **4.** (6 points) Let A, B, and C be 4×4 matrices such that $\det(A) = -2, \det(B) = 3$, and C is non-invertible. Find the value of each of the following:
 - (a) $\det(-5A^2B^{-1})$
 - (b) $\det(\operatorname{adj}(B))$
 - (c) $\det((ABC)^T)$
- **5.** (4 points) Let $A = \begin{bmatrix} 2 & 6 & -1 \\ 1 & 2 & -3 \\ 3 & 7 & -6 \end{bmatrix}$. Find the inverse of A.

- **6.** (4 points) Write an LU Factorization for the matrix $A = \begin{bmatrix} 2 & 5 & 4 \\ 6 & 12 & 6 \\ -4 & -22 & -27 \end{bmatrix}$
- 7. (3 points) Use Cramer's rule to solve the following system for x_2 only.

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}.$$

8. (5 points) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation that shifts the first three entries down one spot and brings the negative of the last entry to the top.

For example,
$$T\left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}\right) = \begin{bmatrix} -4\\1\\2\\3 \end{bmatrix}$$

- (a) Find the standard matrix A of this transformation.
- (b) Find A^{87} .
- 9. (6 points) A non-zero square matrix is said to be nilpotent of degree 2 if $A^2 = 0$.
 - (a) Provide an example of a 2×2 matrix that is nilpotent of degree 2.
 - (b) Show that if A is nilpotent of degree 2, then so is the block matrix $\begin{bmatrix} A & 0 \\ I & -A \end{bmatrix}$.
 - (c) Suppose A is an $n \times n$ matrix that is nilpotent of degree 2. Is there any non-zero scalar k such that A + kI is nilpotent of degree 2?
- **10.** (10 points) Let $H = \left\{ A \in M_{2 \times 2} \colon A \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.
 - (a) Find a non-zero matrix in H.
 - (b) Does H contain the zero matrix? Justify.
 - (c) Is H closed under addition? Justify.
 - (d) Is H closed under scalar multiplication? Justify.
 - (e) Is H a subspace of $M_{2\times 2}$? Justify.
- 11. (4 points) Find a basis for the vector space $V = \{ \mathbf{p}(t) \in \mathbb{P}_3 \colon \mathbf{p}(-2) = 0, \mathbf{p}(2) = 0 \}$.
- 12. (10 points) Let \mathcal{P} be the plane x-2y-3z=-4, and let A be the point (-3,1,-2).
 - (a) Find a parametric vector equation for the line through A and perpendicular to \mathcal{P} .
 - (b) Find the point on \mathcal{P} closest to A.
 - (c) Find an equation of the form ax + by + cz = d of the plane through A and parallel to \mathcal{P} .
 - (d) What is the distance from A to \mathcal{P} ?

(e) The plane -4x + 7y + kz = h is perpendicular to \mathcal{P} and goes through A. Find k and h.

Linear Algebra

- **13.** (6 points) Let $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$.
 - (a) Find a unit vector \mathbf{u} perpendicular to both \mathbf{v} and \mathbf{w} .
 - (b) Find the volume the parallelepiped \mathcal{P} formed by \mathbf{v} , \mathbf{w} , and the vector \mathbf{u} you found in part (a).
 - (c) Now let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a transformation with standard matrix $A = \begin{bmatrix} 3 & 2 & 9 \\ 0 & -4 & 3 \\ 0 & 0 & 5 \end{bmatrix}$. Find the volume of $T(\mathcal{P})$, that is, the image of \mathcal{P} under T.
- **14.** (4 points) Find a condition on a, b, c so that $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is in the span of $\left\{ \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 14 \\ 6 \\ 4 \end{bmatrix} \right\}$
- **15.** (4 points) Let A, B, and C be invertible matrices such that $B^{-1}AB + B^{-1}C = I$.
 - (a) Solve for A in terms of the other matrices.
 - (b) Prove that B cannot equal C.
- **16.** (6 points) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation associated with a standard transformation matrix A.
 - (a) If m > n, find an expression for the maximum possible value of dim(Col(A))?
 - (b) If m > n, is it possible for T to be one-to-one? Justify.
 - (c) If m=4 and n=6 and the dim(Nul(A)) of A is 3, give the dimension of the column space, row space, and null space of A^T .
- 17. (8 points) Complete each of the following sentences with "must", "might", or "cannot".
 - (a) If $\mathbf{x} \in \text{Nul}(A)$, then $-2\mathbf{x}$ also be in Nul(A).

be a linearly dependent set of vectors in V.

- (b) Let ${\bf w}$ be orthogonal to both ${\bf u}$ and ${\bf v}$. Then ${\bf w}$ _____ be orthogonal to ${\bf u}+{\bf v}$.
- (c) Let \mathbf{u} be parallel to \mathbf{x} , and let \mathbf{v} be parallel to \mathbf{y} . Then $\mathbf{u} + \mathbf{v}$ _____ be parallel to $\mathbf{x} + \mathbf{y}$.
- (d) If E_1, E_2 are elementary matrices, then E_1E_2 also be an elementary matrix.
- **18.** (4 points) Let $T: V \to W$ be a one-to-one linear transformation of vector spaces. Show that if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is a linearly dependent set of vectors in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ must

ANSWERS

$$\mathbf{1.} \quad \text{(a)} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -9 \\ 7 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4 \\ -5 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} \quad \text{(b)} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\}$$

- **2.** (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (Answers may vary.)
 - (b) No such matrix exists.

(c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (Answers may vary.)

(d)
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (Answers may vary.)

3.
$$\begin{bmatrix} 6 & -4 & 0 & -8 \\ -4 & 8 & -3 & -3 \\ 0 & -3 & 7 & 10 \end{bmatrix}$$

4. (a)
$$\frac{2500}{3}$$
 (b) 27 (c) 0

5.
$$A^{-1} = \begin{bmatrix} -9 & -29 & 16 \\ 3 & 9 & -5 \\ -1 & -4 & 2 \end{bmatrix}$$

6.
$$LU = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 4 \\ 0 & -3 & -6 \\ 0 & 0 & 5 \end{bmatrix}$$

7.
$$x_2 = -\frac{9}{20}$$

8. (a)
$$A = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 (b) $A^{87} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \end{bmatrix}$

9. (a)
$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
 (Answers may vary.)

(b)
$$\begin{bmatrix} A & 0 \\ I & -A \end{bmatrix} \begin{bmatrix} A & 0 \\ I & -A \end{bmatrix} = \begin{bmatrix} A^2 & 0 \\ 0 & A^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(c) No

10. (a)
$$\begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix}$$
 (Answers may vary.) (b) Yes (c) Yes (d) Yes (e) Yes

- 11. $\mathcal{B} = \{t^2 4, t^3 4t\}$ (Answers may vary.)
- **12.** (a) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$ (b) $\left(-\frac{47}{14}, \frac{12}{7}, -\frac{13}{14}\right)$ (c) x 2y 3z = 1 (d) $\frac{5}{\sqrt{14}}$ (e) k = -6, h = 31
- **13.** (a) $\mathbf{u} = \frac{1}{\sqrt{26}} \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix}$ (b) $\sqrt{26}$ (c) $60\sqrt{26}$
- **14.** 4a 10b + c = 0
- **15.** (a) $A = I CB^{-1}$
 - (b) If B were to equal C, then A would equal 0, which contradicts the assumption that A is invertible.
- **16.** (a) n (b) Yes (c) $\dim(\text{Col}(A^T)) = 3$, $\dim(\text{Row}(A^T)) = 3$, $\dim(\text{Nul}(A^T)) = 1$
- 17. (a) must (b) must (c) might (d) might
- 18. Let $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ be a linearly dependent set of vectors in W. Then there must be real numbers a_1, a_2, a_3 not all zero such that $a_1T(\mathbf{v}_1) + a_2T(\mathbf{v}_2) + a_3T(\mathbf{v}_3) = \mathbf{0}_W$. Since T is linear, $T(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3) = \mathbf{0}_W$. Since T is 1-1, the only pre-image of $\mathbf{0}_W$ is $\mathbf{0}_V$, so $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{0}_V$. This dependence relation on vectors in V tells us that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly dependent.