Problem Statement:

The company wants to understand and process the data coming out of data engineering pipelines. The data is not cleaned & haphazard with so many raw columns:

- We are expected to Clean, sanitize and manipulate data to get useful features out of raw fields
- Make sense out of the raw data and help the data science team to build forecasting models on it

Data Dictionary

Column Profiling:

- data tells whether the data is testing or training data
- trip_creation_time Timestamp of trip creation
- route_schedule_uuid Unique Id for a particular route schedule
- route_type Transportation type
- FTL Full Truck Load: FTL shipments get to the destination sooner, as the truck is making no other pickups or drop-offs along the way
- Carting: Handling system consisting of small vehicles (carts)
- trip_uuid Unique ID given to a particular trip (A trip may include different source and destination centers)
- source_center Source ID of trip origin
- source_name Source Name of trip origin
- destination cente Destination ID
- destination name Destination Name
- od_start_time Trip start time
- od_end_time Trip end time
- start_scan_to_end_scan Time taken to deliver from source to destination
- is_cutoff Unknown field
- cutoff_factor Unknown field
- cutoff_timestamp Unknown field
- actual_distance_to_destination Distance in Kms between source and destination warehouse
- actual_time Actual time taken to complete the delivery (Cumulative)
- osrm_time An open-source routing engine time calculator which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) and gives the time (Cumulative)
- osrm_distance An open-source routing engine which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) (Cumulative)
- factor Unknown field
- segment_actual_time This is a segment time. Time taken by the subset of the package delivery

- segment_osrm_time This is the OSRM segment time. Time taken by the subset of the package delivery
- segment_osrm_distance This is the OSRM distance. Distance covered by subset of the package delivery
- segment_factor Unknown field

Loading The Dataset

```
In [77]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from numpy import NaN, nan, NAN
          from scipy import stats
          import statsmodels.api as sm
          import warnings
          warnings.filterwarnings("ignore")
         df=pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001
 In [2]:
 In [3]:
         df.shape
          (144867, 24)
 Out[3]:
          Removing the columns that are taged as unknown field in data dictionary as we dont
         have any information about these columns and hence cant be leveraged in analysis
         df.drop(columns=['segment_factor','data','factor','is_cutoff', 'cutoff_factor','cu'
 In [4]:
                           'route_schedule_uuid'],
                 axis=1, inplace=True)
          print('Rows:', df.shape[0],'\n' 'Columns: ',df.shape[1])
 In [5]:
          Rows: 144867
         Columns: 17
         df.head(1)
 In [6]:
 Out[6]:
            trip_creation_time route_type
                                                 trip_uuid
                                                                             source_name destina
                                                           source_center
                  2018-09-20
                                                                        Anand_VUNagar_DC
                                                     trip-
                                                          IND388121AAA
          0
                                                                                             INC
                                Carting
                                        153741093647649320
               02:35:36.476840
                                                                                  (Gujarat)
          df.columns
 In [7]:
          Index(['trip_creation_time', 'route_type', 'trip_uuid', 'source_center',
 Out[7]:
                 'source_name', 'destination_center', 'destination_name',
                 'od_start_time', 'od_end_time', 'start_scan_to_end_scan'
                 'actual_distance_to_destination', 'actual_time', 'osrm_time',
                 'osrm_distance', 'segment_actual_time', 'segment_osrm_time',
                 'segment_osrm_distance'],
                dtype='object')
 In [8]: df.info()
```

Missing Values & their treatment

```
In [9]: # Function to create a data frame with number and percentage of missing data in a def missing_to_df(df):
    #Number and percentage of missing data in training data set for each column total_missing_df = df.isnull().sum().sort_values(ascending =False)
    percent_missing_df = (df.isnull().sum()/df.isnull().count()*100).sort_values(asmissing_data_df = pd.concat([total_missing_df, percent_missing_df], axis=1, key return missing_data_df
In [10]: missing_df = missing_to_df(df)
missing_df[missing_df['Total'] > 0]
Out[10]: Total Percent

source_name 293 0.202254

destination_name 261 0.180165
```

- Only two fields have missing values which consists of only 0.02% of the data
- As we have enough observations to proceed with the Analysis we will be dropping the missing values for this dataset. Though we can treat the missing values by mean/median/mode imputation
- My reason for dropping the missing values is that I dont intent to disturb the distribution of features via imputation.

Alternatively if missing values comprise of large part of data they can be treated using responce coding, mode, mean median imputation, probabilistic based imputation & other forms of imputations decided by business team/ managers.

```
In [11]: #dropping the missing values
    df.dropna(inplace=True)

In [12]: d1=df.copy()
```

Feature Engineering

```
In [13]: d_grouped=d1.groupby(['trip_uuid','source_center','destination_center']).count().re
```

Lets pick one trip_uuid to understand its journey in raw data and we will create features accrodingly

```
d1[d1['trip_uuid']=='trip-153741093647649320']
In [14]:
Out[14]:
              trip_creation_time route_type
                                                         trip_uuid
                                                                     source_center
                                                                                              source_name des
                      2018-09-20
                                                                                        Anand_VUNagar_DC
                                                              trip-
           0
                                     Carting
                                                                    IND388121AAA
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
                     2018-09-20
                                                              trip-
                                                                                        Anand_VUNagar_DC
                                                                    IND388121AAA
           1
                                      Carting
                                              153741093647649320
                 02:35:36.476840
                                                                                                  (Gujarat)
                                                                                        Anand_VUNagar_DC
                      2018-09-20
                                                              trip-
                                                                    IND388121AAA
           2
                                     Carting
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
                      2018-09-20
                                                                                        Anand_VUNagar_DC
                                                              trip-
           3
                                                                    IND388121AAA
                                      Carting
                                              153741093647649320
                 02:35:36.476840
                                                                                                  (Gujarat)
                     2018-09-20
                                                                                        Anand_VUNagar_DC
                                     Carting
                                                                    IND388121AAA
           4
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
                      2018-09-20
                                                                                    Khambhat_MotvdDPP_D
                                                                    IND388620AAB
           5
                                      Carting
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
                     2018-09-20
                                                                                    Khambhat_MotvdDPP_D
                                                                    IND388620AAB
           6
                                      Carting
                                              153741093647649320
                 02:35:36.476840
                                                                                                  (Gujarat)
                      2018-09-20
                                                                                    Khambhat_MotvdDPP_D
                                                              trip-
                                                                    IND388620AAB
           7
                                      Carting
                                              153741093647649320
                 02:35:36.476840
                                                                                                  (Gujarat)
                     2018-09-20
                                                                                    Khambhat_MotvdDPP_D
           8
                                                                    IND388620AAB
                                     Carting
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
                                                                                    Khambhat_MotvdDPP_D
                     2018-09-20
                                      Carting
                                                                    IND388620AAB
                 02:35:36.476840
                                              153741093647649320
                                                                                                  (Gujarat)
```

```
#as below mentioned columns are comprising of segment related details we will do a
In [18]:
         d1['agg_segment_actual_time']=d1.groupby(['trip_uuid','source_center','destination]
         d1['agg_segment_osrm_time']=d1.groupby(['trip_uuid','source_center','destination_center']
         d1['agg_segment_osrm_distance']=d1.groupby(['trip_uuid','source_center','destination
In [19]:
         #After finding out the cumsum of above columns we will pick their max
         d1['agg_segment_actual_time1']=d1.groupby(['trip_uuid','source_center','destination
         d1['agg_segment_osrm_time1']=d1.groupby(['trip_uuid','source_center','destination_d
         d1['agg_segment_osrm_distance1']=d1.groupby(['trip_uuid','source_center','destinat:
         # aggregation of below mentioned based on their Trip_uuid, Source ID and Destination
In [20]:
         # as they are mentioned as a cumsum in data dictionary we will take max
         d1['agg_distance_to_destination']=d1.groupby(['trip_uuid','source_center','destination']
         d1['agg_actual_time']=d1.groupby(['trip_uuid','source_center','destination_center'
         d1['agg_osrm_time']=d1.groupby(['trip_uuid','source_center','destination_center'])
         d1['agg_osrm_distance']=d1.groupby(['trip_uuid','source_center','destination_center
         #creating column with city place state from source centre & destination centre
In [21]:
         d1[['Source_City','Source_Place','Source_Code/State']]=d1['source_name'].str.rspli'
         d1[['destination_City','destination_Place','destination_Code/State']]=d1['destinat
In [22]: #creating column with city place state from source centre & destination centre
         d1[['Source_Code','Source_State']]=d1['Source_Code/State'].str.rsplit('(',2, expand
         d1[['destination_Code','destination_State']]=d1['destination_Code/State'].str.rspl
         #dropping the existing columns as we have already got engineered features from the
In [23]:
         d1.drop(columns=['od_end_time','od_start_time','trip_creation_time','source_name',
         d1.shape
In [24]:
         (144316, 36)
Out[24]:
         d1.duplicated().sum()
In [25]:
Out[25]:
         We see there are no duplicated for now in the dataset. The purpose of feature
         engineering was to create one row for one unique uuid. Lets drop those features from
         which we have already generated new features & again check for the duplicates. We
         will definietly find duplicated now and we will remove them
In [26]:
         df_merge=d1.loc[:,['route_type', 'trip_uuid',
                 'start_scan_to_end_scan', 'trip_creation_month',
                 'trip_creation_year', 'trip_creation_day', 'Timediff_start_end_H', 'agg_segr
```

Out[29]:		route_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip_creatior
	124981	FTL	trip- 153671041653548748	999.0	9	
	125002	FTL	trip- 153671041653548748	1260.0	9	
4	_					

Note that the above merging of rows has been performed on the basis of trip_uuid,source_centre,destination_centre

we can also further merge the rows on the basis of trip_uuid

```
df_merge.duplicated().sum()
In [30]:
Out[30]:
                             df_merge.shape
In [31]:
                             (26223, 20)
Out[31]:
                            df_uuid=df_merge.copy()
In [32]:
In [33]:
                             # aggregation of below mentioned based on their Trip_uuid, Source ID and Destination
                             # as they are mentioned as a cumsum in data dictionary we will take max
                             df_uuid['start_scan_to_end_scan11']=df_uuid.groupby(['trip_uuid'])['start_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end_scan_to_end
                             df_uuid['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid.groupby(['trip_uuid'])['Timediff_start_end_H11']=df_uuid(['trip_uuid'])['Timediff_start_end_H11']=df_uuid(['trip_uuid'])['Timediff_start_end_H11']=df_uuid(['trip_uuid'])['Time
                             df_uuid['agg_segment_actual_time11']=df_uuid.groupby(['trip_uuid'])['agg_segment_a
                             df_uuid['agg_segment_osrm_time11']=df_uuid.groupby(['trip_uuid'])['agg_segment_osrm
                             df_uuid['agg_segment_osrm_distance11']=df_uuid.groupby(['trip_uuid'])['agg_segment]
                             df_uuid['agg_distance_to_destination11']=df_uuid.groupby(['trip_uuid'])['agg_distan
                             df_uuid['agg_actual_time11']=df_uuid.groupby(['trip_uuid'])['agg_actual_time'].trail
                             df_uuid['agg_osrm_time11']=df_uuid.groupby(['trip_uuid'])['agg_osrm_time'].transfo
                             df_uuid['agg_osrm_distance11']=df_uuid.groupby(['trip_uuid'])['agg_osrm_distance']
                             df_uuid['Source_City11']=df_uuid.groupby(['trip_uuid'])['Source_City'].transform('
                             df_uuid['Source_Place11']=df_uuid.groupby(['trip_uuid'])['Source_Place'].transform
                             df_uuid['Source_Code/State11']=df_uuid.groupby(['trip_uuid'])['Source_Code/State']
                             df_uuid['destination_City11']=df_uuid.groupby(['trip_uuid'])['destination_City'].tr
                             df_uuid['destination_Place11']=df_uuid.groupby(['trip_uuid'])['destination_Place']
                             df_uuid['destination_Code/State11']=df_uuid.groupby(['trip_uuid'])['destination_Code/State11']
In [34]: df1=df_uuid.loc[:,['route_type', 'trip_uuid',
                                                     'trip_creation_month', 'trip_creation_year', 'trip_creation_day',
                                                  'start_scan_to_end_scan11', 'Timediff_start_end_H11',
'agg_segment_actual_time11', 'agg_segment_osrm_time11',
                                                   'agg_segment_osrm_distance11', 'agg_distance_to_destination11',
                                                   'agg_actual_time11', 'agg_osrm_time11', 'agg_osrm_distance11',
                                                   'Source_City11', 'Source_Place11', 'Source_Code/State11',
                                                   'destination_City11', 'destination_Place11',
                                                   'destination_Code/State11']]
                            df1.duplicated().sum()
In [35]:
Out[35]:
```

```
#before merging checking 1 unique uuid for cross check purpose
In [36]:
          df1[df1['trip_uuid']=='trip-153671041653548748']
Out[36]:
                                       trip_uuid trip_creation_month trip_creation_year trip_creation_day
                  route_type
          124981
                                                                               2018
                                                                                                 12
                             153671041653548748
                                           trip-
          125002
                                                                               2018
                                                                                                 12
                            153671041653548748
          df1.drop_duplicates(inplace=True)
In [37]:
          df1.duplicated().sum()
In [38]:
Out[38]:
          df1.shape
In [39]:
          (14787, 20)
Out[39]:
```

So after the entire merging the final dataset that has been created with multiple induced features and distict rows has:

- 14787 rows
- 20 columns

Comparing the difference between time taken between od_start_time and od_end_time and start scan to end scan.

```
In [40]: df1['scan_diff_check']=df1['Timediff_start_end_H11']-df1['start_scan_to_end_scan11
In [41]: #checking if there is any value where difference is > 1 min
# df1[df1['scan_diff_check']>1]
```

Visualising the Difference between the two start_scan_to_end_scan & Timediff_start_end_H:

```
In [42]: plt.figure(figsize=(16,5))
   plt.subplot(121)
   plt.hist(df1['Timediff_start_end_H11'],bins=100,label='Timediff_start_end_H')
   plt.hist(df1['start_scan_to_end_scan11'],bins=100,label='start_scan_to_end_scan')
   plt.legend()
   plt.grid()
   plt.subplot(122)
   sns.kdeplot(df1['Timediff_start_end_H11'],label='Timediff_start_end_H')
   sns.kdeplot(df1['start_scan_to_end_scan11'],label='start_scan_to_end_scan')
   plt.legend()
   plt.grid()
   plt.show()
```


 As We can clearly see both the curves are overlapping which means they are fairly same.

Now lets proof the above comparision using hypothesis Testing

Defining Null & Alternate Hypothesis

- $H0: \mu a = \mu o$ the mean for Timediff_start_end_H & start_scan_to_end_scan are same
- $Ha: \mu a > \mu o$ the mean for start_scan_to_end_scan is more than start_scan_to_end_scan

Defining T-statistics:

We will perform 2 tailed test as variance of the population is not known

In order to test them we shall run a one-tailed t-test using an arbitrated α level of 0.05

• $\alpha = 0.05$

```
In [43]: def htResult(p_value):
    significance_level = 0.05
    if p_value <= significance_level:
        print('Reject NULL HYPOTHESIS')
    else:
        print('Fail to Reject NULL HYPOTHESIS')

In [44]: import scipy.stats as stats
    st,p = stats.ttest_ind(df1['Timediff_start_end_H11'],df1['start_scan_to_end_scan11 print('P-value :',(p/2))
    htResult(p/2)
    P-value : 0.45401740157102755</pre>
```

• As p value > alpha We fail so reject the null hypothesis @ there is no mean difference between start_end_H and start_scan_to_end_scan

Visual analysis

Fail to Reject NULL HYPOTHESIS

Comparision Between Aggregate Actual time & Aggregate OSRM Time

```
In [45]:
           plt.figure(figsize=(16,5))
           plt.subplot(121)
           plt.hist(df1['agg_actual_time11'],bins=10,label='agg_actual_time')
           plt.hist(df1['agg_osrm_time11'],bins=10,label='agg_osrm_time')
           plt.grid()
           plt.subplot(122)
           sns.kdeplot(df1['agg_actual_time11'],label='agg_actual_time')
           sns.kdeplot(df1['agg_osrm_time11'],label='agg_osrm_time')
           plt.legend()
           plt.grid()
           plt.show()
                                             agg_actual_time
                                                                                                   agg_actual_time
           12000
                                                agg_osrm_time
                                                                                                   agg_osrm_time
                                                              0.005
           10000
                                                              0.004
           8000
                                                              0.003
           6000
                                                              0.002
           4000
                                                              0.001
           2000
                                                              0.000
                                                                                     3000
                                                                                  agg_actual_time11
```

 Clearly visible, agg_actual_time is somewhat greater than agg_osrm_time and which is intutive as well

Comparision Between Aggregate OSRM distance & Aggregate Segment osrm distance

```
In [46]: plt.figure(figsize=(16,5))
   plt.subplot(121)
   sns.kdeplot(df1['agg_osrm_distance11'],label='agg_osrm_distance')
   sns.kdeplot(df1['agg_segment_osrm_distance11'],label='agg_segment_osrm_distance')
   plt.legend()
   plt.grid()
   plt.subplot(122)
   plt.hist(df1['agg_osrm_distance11'],bins=10,label='agg_osrm_distance')
   plt.hist(df1['agg_segment_osrm_distance11'],bins=10,label='agg_segment_osrm_distance11'],bins=10,label='agg_segment_osrm_distance11']
   plt.show()
```


• Clearly visible there is a overlap between both the variables which suggests segment distances & agg distances are almost same

Comparision Between Aggregate Actual time & Aggregate segment_actual_time

```
In [47]: plt.figure(figsize=(16,5))
           plt.subplot(121)
           sns.kdeplot(df1['agg_actual_time11'],label='agg_actual_time')
           sns.kdeplot(df1['agg_segment_actual_time11'],label='agg_segment_act_time')
           plt.legend()
           plt.grid()
           plt.subplot(122)
           plt.hist(df1['agg_actual_time11'],bins=10,label='agg_actual_time')
           plt.hist(df1['agg_segment_actual_time11'],bins=10,label='agg_segment_actual_time')
           plt.legend()
           plt.grid()
           plt.show()
                                              agg_actual_time
                                                                                               agg_actual_time
            0.0025
                                                               12000
                                              agg_segment_act_time
                                                                                               agg_segment_actual_time
                                                                10000
            0.0020
                                                                8000
            0.0015
                                                                6000
            0.0010
            0.0005
            0.0000
                                                                  0
                        1000
                              2000
                                    3000
                                         4000
                                               5000
                                                                          1000
```

• Clearly visible there is a overlap between both the variables which suggests segment distances & agg distances are almost same

Comparision Between Aggregate OSRM time & Aggregate Segment OSRM Time

```
In [48]: plt.figure(figsize=(16,5))
   plt.subplot(121)
   sns.kdeplot(df1['agg_osrm_time11'],label='agg_osrm_time')
   sns.kdeplot(df1['agg_segment_osrm_time11'],label='agg_segment_osrm_time')
   plt.legend()
   plt.grid()
   plt.subplot(122)
```

```
plt.hist(df1['agg_osrm_time11'],bins=10,label='agg_osrm_time')
plt.hist(df1['agg_segment_osrm_time11'],bins=10,label='agg_segment_osrm_time')
plt.legend()
plt.grid()
plt.show()
```


Clearly visible there is a overlap between both the variables which suggests osrm time
 & segment osrm times are almost same

Now lets do some hypothesis testing on the above comparisions:

Hypothesis test of mean difference of Agg_actual_time & agg_osrm_time

Defining Null & Alternate Hypothesis

- $H_0: \mu_a = \mu_o$ the mean for agg_Actual_time & agg_osrm_time are same
- H_a : $\mu_a > \mu_o$ the mean for agg_Actual_time is more than agg_osrm_time

In order to test them we shall run a one-tailed t-test using an arbitrated α level of 0.05

• $\alpha = 0.05$

```
import scipy.stats as stats
st,p = stats.ttest_ind(df1['agg_actual_time11'],df1['agg_osrm_time11'])
print('P-value :',(p/2))
htResult(p/2)
```

P-value : 1.1794664115414192e-307 Reject NULL HYPOTHESIS

• As $\mathbf{p} < \mathbf{\alpha}$ we have enough evidence to reject the null hypothesis @ there is a difference between the mean for agg_Actual_time & agg_osrm_time

Hypothesis test of mean difference of Agg_actual_time & agg_segment_actual_time

- H_0 : $\mu_a = \mu_o$ the mean for agg_Actual_time & agg_segment_actual_time are same
- H_a : μ_a > μ_o the mean for agg_Actual_time & agg_segment_actual_time are different

```
import scipy.stats as stats
st,p = stats.ttest_ind(df1['agg_actual_time11'],df1['agg_segment_actual_time11'])
print('P-value :',(p/2))

htResult(p/2)
```

P-value: 0.30929173856919245
Fail to Reject NULL HYPOTHESIS

• As $\mathbf{p} > \mathbf{\alpha}$ we have enough evidence to reject the null hypothesis @ there is a difference between the mean for agg_Actual_time & agg_segment_actual_time

Hypothesis test of mean difference of Agg_osrm_distance & agg_segment_osrm_distance

- H_0 : μ_a = μ_o the mean for Agg_osrm_distance & agg_segment_osrm_distance are same
- H_a : μ_a > μ_o the mean for Agg_osrm_distance & agg_segment_osrm_distance are different

```
In [51]: import scipy.stats as stats
    st,p = stats.ttest_ind(df1['agg_osrm_distance11'],df1['agg_segment_osrm_distance11
    print('P-value :',(p/2))
    htResult(p/2)
P-value : 4.118038087190506e-05
```

• As $\mathbf{p} < \mathbf{\alpha}$ we have enough evidence to reject the null hypothesis @ there is no difference

between the mean for Agg_osrm_distance & agg_segment_osrm_distance

Exploratory Data Analysis

Univariate Data Analysis

Reject NULL HYPOTHESIS

```
In [52]:    num_cols = df.select_dtypes('float64').columns.values
    cat_cols = df1.select_dtypes('object').columns.values

In [53]:    num_cols=df1.select_dtypes('float64').columns.values
    for i in num_cols:
        print('###########")
        print(df1[i].value_counts())
```

```
##############
148.0 51
115.0
        51
87.0
       50
      49
113.0
128.0
         49
1895.0
1634.0
         1
         1
1199.0
1205.0
         1
2429.0
          1
Name: start_scan_to_end_scan11, Length: 2203, dtype: int64
###############
319.61
         4
286.63
         4
122.43
         4
         4
147.10
86.20
         4
         . .
227.87
         1
         1
924.06
658.28
         1
3732.37
        1
427.69
         1
Name: Timediff_start_end_H11, Length: 13573, dtype: int64
###############
47.0
         121
41.0
         112
60.0
         107
35.0
        100
55.0
        100
        1
1
1120.0
1684.0
2862.0
          1
2662.0
           1
2750.0
           1
Name: agg_segment_actual_time11, Length: 1885, dtype: int64
###############
17.0
         221
20.0
         213
19.0
         210
         209
18.0
22.0
         208
        . . .
1845.0
       1
1
2422.0
938.0
           1
1185.0
           1
1723.0
Name: agg_segment_osrm_time11, Length: 1240, dtype: int64
##############
42.2424
           2
139.9819
           2
27.5998
           2
27.6689
           2
53.1450
           2
33.1927
          1
120.2104
         1
234.5058
           1
213.8828
           1
131.1238
           1
```

```
Name: agg_segment_osrm_distance11, Length: 14724, dtype: int64
############
32.177092
              2
27.959967
              2
18.036366
              2
              2
25.878761
195.585266
             2
176.696070
            1
187.836591
              1
167.384229
              1
31.552168
              1
73.680667
              1
Name: agg_distance_to_destination11, Length: 14771, dtype: int64
##############
60.0
          134
50.0
          130
42.0
          121
48.0
         115
38.0
         111
966.0
          1
2817.0
           1
2331.0
           1
2379.0
            1
2784.0
Name: agg_actual_time11, Length: 1851, dtype: int64
#############
20.0
          265
34.0
          265
29.0
         254
23.0
         239
         235
32.0
         . . .
        1
967.0
1087.0
          1
782.0
            1
1744.0
            1
702.0
Name: agg_osrm_time11, Length: 827, dtype: int64
#############
15.8695
            2
42.3121
            2
53.3295
            2
61.0186
            2
37.0811
            2
150.0793
          1
44.1600
          1
103.9523
           1
267.3213
            1
111.2709
            1
Name: agg_osrm_distance11, Length: 14706, dtype: int64
##############
0.88
        116
0.87
        109
0.50
        103
0.75
        101
0.31
        97
1.66
          1
1.48
          1
2.27
          1
3.61
          1
```

3.81

1

```
##############
           8906
Carting
FTL
           5881
Name: route_type, dtype: int64
###############
trip-153741093647649320
                           1
trip-153836648611826977
                           1
trip-153681920064110379
trip-153744931166370622
                           1
trip-153764628243892763
                           1
                          . .
trip-153741177166786003
                           1
trip-153801210039247977
                         1
trip-153737819969505360
trip-153739632610417618
                           1
trip-153746066843555182
                           1
Name: trip_uuid, Length: 14787, dtype: int64
#############
Bengaluru
                         1014
Gurgaon
                         1011
Bhiwandi
                          811
                          731
Bangalore
Delhi
                          617
Parvathipuram_Central
                           1
Koraput
Jasai
                            1
Baripada
                            1
Ashta
Name: Source_City11, Length: 706, dtype: int64
#############
Bilaspur
                    959
Mankoli
                    811
Nelmngla
                    732
Н
                    643
Ι
                    571
Ymunpurm
                      1
Shahdara (Delhi)
                      1
KalikDPP
                      1
PuranDPP
                      1
ShantiNg
                      1
Name: Source_Place11, Length: 672, dtype: int64
##############
                      937
HB (Haryana)
HB (Maharashtra)
                      811
HB (Karnataka)
                      757
H (Karnataka)
                      751
H (Punjab)
                      370
2 (Andhra Pradesh)
1 (Andhra Pradesh)
                        1
2 (Karnataka)
                        1
D (Meghalaya)
                        1
9 (Gujarat)
                        1
Name: Source_Code/State11, Length: 181, dtype: int64
###############
             1056
Bengaluru
              869
Gurgaon
Mumbai
              814
Hyderabad
              630
Bangalore
              628
Shahabad
             1
```

```
Nadiad
                1
Mussoorie
                1
                1
Jairampur
Kanigiri
                1
Name: destination_City11, Length: 799, dtype: int64
#############
Bilaspur
            856
Nelmngla
            628
Mankoli
            604
            542
            488
JJCpxDPP
            1
GhtimDPP
Thsil3PL
              1
Sector02
              1
Ghansoli
Name: destination_Place11, Length: 747, dtype: int64
#############
HB (Haryana)
H (Karnataka)
                    655
HB (Karnataka)
                    589
HB (Maharashtra)
                    573
H (Punjab)
                    431
L (Punjab)
I (Tripura)
                      1
7 (Maharashtra)
                      1
4 (Maharashtra)
                      1
L (Kerala)
                      1
Name: destination_Code/State11, Length: 184, dtype: int64
```

Lets try to find Bussiest Corridor

```
In [55]: d_grouped.route_type.max()
Out[55]: 
81
In [56]: # find trip uuid of max count
    d_grouped[d_grouped['route_type']==81]
    df[df['trip_uuid']=='trip-153755502932196495']
```

Out[56]:		trip_creation_time	route_type	trip_uuid	source_center	source_name				
	61008	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_ŀ (Punjab				
	61009	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61010	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61011	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61012	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	•••									
	61084	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61085	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61086	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61087	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	61088	2018-09-21 18:37:09.322207	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_F (Punjab				
	81 rows × 17 columns									
1						•				

Bussiest Corridor is from source Chandigarh_Mehmdpur_H (Punjab) to
 Bangalore_Nelmngla_H (Karnataka) Average_distance between them is 1927 kms & average time taken is 3784 mins

The entire data is heavily right skewed

Outlier Detection & their Treatment

```
def uni(d):
In [60]:
                f,ax = plt.subplots(nrows=1,ncols=2,figsize=(7,3))
                sns.histplot(d, kde=True, ax=ax[0])
                ax[0].axvline(d.mean(), color='y', linestyle='--',linewidth=2)
                ax[0].axvline(d.median(), color='r', linestyle='dashed', linewidth=2)
ax[0].axvline(d.mode()[0],color='g',linestyle='solid',linewidth=2)
                ax[0].legend({'Mean':d.mean(),'Median':d.median(),'Mode':d.mode()})
                sns.boxplot(x=d, showmeans=True, ax=ax[1])
                plt.tight_layout()
           num_cols = df.select_dtypes('float64').columns.values
In [61]:
           for f in num cols:
In [62]:
                uni(df[f])
           plt.show()
                                             Mean
             17500
                                              Median
             15000
                                              Mode
             12500
           j 10000
               7500
               5000
               2500
                                                  8000
                                                                                       8000
                           2000
                                   4000
                                          6000
                                                                2000
                                                                       4000
                                                                               6000
                           start_scan_to_end_scan
                                                                start_scan_to_end_scan
```


There are outliers in almost all of the numeric feature

```
In [63]:
         #treating outliers:
         def treat_outlier(variable):
              #Takes two parameters: dataframe & variable of interest as string
              q1,q3=np.percentile(variable,[25,75])
              iqr = q3-q1
              lo_range = q1-(1.5*iqr)
              up\_range = q3+(1.5*iqr)
              return lo_range,up_range
In [64]: for col in num_cols:
              ir,ur=treat_outlier(df[col])
              df[col]=np.where(df[col]>ur,ur,df[col])
              df[col]=np.where(df[col]<ir,ir,df[col])</pre>
         #Lets check where outliers are removed or not:
In [65]:
         for f in num_cols:
              uni(df[f])
         plt.show()
```


Outliers are removed

```
fig1, ax1 = plt.subplots(figsize=(7,3))
ax1.pie(df1['route_type'].value_counts(), labels=df['route_type'].unique(), autopcounts()
plt.show()
```


• 60% data is from Carting rout_type & the remaining 40% is from FTL

```
In [67]: sns.countplot(y=df1['trip_creation_day'])
   plt.xticks(rotation=90)
   plt.show()
```


- Start & End dates of the months have less percent of trips compare to mid of the month. Though the difference is not huge
- Thats very strange to see that there is absolutely no trip from 4th- 11th day of the month

```
In [68]: f,ax = plt.subplots(nrows=1,ncols=2,figsize=(15,12))
sns.countplot(y=d1['Source_State'],ax=ax[0])
sns.countplot(y=d1['destination_State'],ax=ax[1])

plt.xticks(rotation=90)
plt.show()
plt.tight_layout()
```


<Figure size 432x288 with 0 Axes>

- Most of the orders are coming from/reaching to Maharashtra followed by Karnataka
- Least orders are coming from/reaching to Seven Sisters(NE states)

Bivariate Analysis

- Almost all the features are heavy positively correleated with each other & which is intutive as well.
- There is a high -ve correlation between almost all the other features & trip_creation_month

```
In [71]: fig1 = plt.figure()
    ax1 = fig1.add_subplot(121)
    ax1.pie(df1['trip_creation_month'].value_counts(), labels=df1['trip_creation_month
    plt.show()
    fig2 = plt.figure()
    ax2 = fig2.add_subplot(122)
    sns.countplot(df1['trip_creation_month'], hue=df1['route_type'])
    plt.show()
```


88% of the trips are from October Month & remaining are from November

One Hot Encoding of Categorical Features

Dealing with high Cardinality in Categorical Feature

• Some of the features are having high cardinality like source_city, source_place etc:

A categorical feature is said to possess high cardinality when there are too many of these unique values. One-Hot Encoding becomes a big problem in such a case since we have a separate column for each unique value (indicating its presence or absence) in the categorical variable.

Reducing Cardinality by using a simple Aggregating function Below is a simple function I use to reduce the cardinality of a feature. The idea is very simple. Leave instances belonging to a value with high frequency as they are and replace the other instances with a new category which we will call other.

Choose a threshold Sort unique values in the column by their frequency in descending order Keep adding the frequency of these sorted (descending) unique values until a threshold is reached. These are the unique categories we will keep and instances of all other categories shall be replaced by "other".

I am leaving that part for now as it is beyond the scope of this case study!

Column Standarization and Normalization

- Mean centering and Variance scaling (Standard Scaling)
- MinMax Scaling

```
st_df=df1.loc[:,['start_scan_to_end_scan11', 'trip_creation_month',
In [75]:
                  'trip_creation_day', 'Timediff_start_end_H11', 'agg_segment_actual_time11',
                  'agg_segment_osrm_time11', 'agg_segment_osrm_distance11',
                  'agg_distance_to_destination11', 'agg_actual_time11', 'agg_osrm_time11',
                  'agg_osrm_distance11']]
In [76]: from sklearn.preprocessing import StandardScaler, MinMaxScaler
          scaler = StandardScaler()
          std_data = scaler.fit_transform(st_df)
          std_data = pd.DataFrame(std_data, columns=st_df.columns)
          std_data.head()
Out[76]:
             start_scan_to_end_scan11 trip_creation_month trip_creation_day Timediff_start_end_H11 agg_se
          0
                           -0.508068
                                              -0.369459
                                                               0.206152
                                                                                    -0.508710
                           -0.345519
                                              -0.369459
                                                               0.586769
                                                                                    -0.346216
          2
                           -0.640233
                                                                                    -0.639932
                                              -0.369459
                                                              -0.555083
          3
                           0.761939
                                              -0.369459
                                                              -0.681955
                                                                                     0.761412
          4
                           -0.407804
                                              -0.369459
                                                               1.348004
                                                                                    -0.406557
```

Insights:

Based on EDA:

- The entire data is heavily right skewed
- Almost all the features are heavy positively correleated with each other & which is intutive as well.
- There is a high -ve correlation between almost all the other features & trip_creation_month
- 60% data is from Carting rout_type & the remaining 40% is from FTL
- 88% of the trips are from October Month & remaining are from November
- Start & End dates of the months have less percent of trips compare to mid of the month. Though the difference is not huge

- Thats very strange to see that there is absolutely no trip from 4th- 11th day of the month
- Most of the orders are coming from Maharashtra followed by Karnataka
- Least orders are coming from Seven Sisters(NE states)
- Bussiest Corridor is from source Chandigarh_Mehmdpur_H (Punjab) to
 Bangalore_Nelmngla_H (Karnataka) Average_osrm_distance between them is 2500 kms
 & average time taken is 3784 mins

Based on Hypothesis Testing:

- There is no difference in the population means of time taken between od_start_time and od_end_time and start_scan_to_end_scan
- There is a difference between the population means of agg_Actual_time & agg_osrm_time. Mean of agg_Actual_time is bigger than that of agg_osrm_time
- There is a difference between the population means of agg_Actual_time & agg_segment_actual_time. Mean of agg_Actual_time is bigger than that of agg_segment_actual_time
- There is a difference between the population means of agg_osrm_distance & agg_segment_osrm_distance.
- There is a difference between the population means of osrm_time & segment_osrm_time.

Recommendations:

- As its depicted from the analysis that there is absolutely no trip from 4th- 11th day of the month, The reason for that can be figured out and catered to receive the orders in the these dates as well.
- Least orders are reaching/coming from North East states, more corridors/campaigns can be promoted to penetrate in these states as well.
- Most of the orders are coming from/reaching to Maharashtra & Karnataka, existing
 corridors can be further enhanced to maintain the penetration from these areas. Also a
 further profiling of these orders can be made from more rich data to get to know why
 major orders are coming from these corridors
- FTL route consists of 40% of the total orders. More ways to promote FTL route handling system can be implemented to increase this percentage