Epreuve écrite

Examen de fin d'études secondaires 2007	
Section: BC	Numéro d'ordre du candidat
Branche: PHYSIQUE	

I. Mouvement d'un projectile dans le champ de pesanteur uniforme

- 1. Etude dynamique : faire un schéma et établir l'expression du vecteur accélération. (5)
- 2. Etude cinématique : établir les équations horaires du mouvement. (5)
- 3. Etablir l'équation de la trajectoire. (2)
- 4. Exercice:

Un bouchon de champagne sort à la vitesse de 12 m/s d'une bouteille inclinée vers le haut d'un angle de 60° par rapport à l'horizontale. La bouteille se trouve 4 m au-dessus du niveau du sol. En négligeant tous les frottements et en prenant $g = 10 \text{ m/s}^2$, calculer :

- a) La durée du vol. (2)
- b) L'abscisse du point où le bouchon touche le sol. (2)

(16 points)

II. Interférences lumineuses : expérience des fentes de Young

- 1. Etablir l'expression de la différence de marche. (8)
- 2. En déduire les positions des franges obscures. (4)
- 3. Exercice:

Un électron passe de la couche N vers la couche L d'un atome d'hydrogène.

- a) L'atome émet-il ou absorbe-t-il un photon? Justifier la réponse. (2)
- b) Le rayonnement correspondant à cette transition traverse un dispositif de Young. La distance entre les fentes est de 0,5 mm et la distance entre le plan des fentes et l'écran mesure 4 m. Calculer la distance qui sépare deux franges brillantes voisines sur l'écran. (4)

(18 points)

III. Questions de compréhension

Les affirmations suivantes sont-elles vraies ou fausses ? Justifier chaque réponse !

- 1. Il est impossible que deux satellites terrestres, évoluant sur la même orbite circulaire, entrent en collision. (2)
- 2. La demi-vie d'un nucléide radioactif dépend du référentiel d'inertie. (2)

Epreuve écrite

Examen de fin d'études secondaires 2007

Section: BC

Branche: PHYSIQUE

Numéro d'ordre du candidat

3. Une inductance pure $(r = 0; L \neq 0)$ ne s'oppose pas au courant qui la traverse. (2)

4. Si la fréquence de deux pendules élastiques est la même, alors le rapport des masses est égal au rapport des raideurs. (2)

5. Si l'énergie électromagnétique d'un circuit LC donné (L et C sont fixes) est conservée, alors l'intensité maximale i_{max} du courant dans le circuit dépend uniquement de la tension maximale u_{max} aux bornes de C. (2)

6. La superposition de deux ondes de même nature engendre des interférences. (2)

(12 points)

IV. Désintégration a

Le noyau $^{239}_{94}Pu$ se désintègre en émettant une particule α . Un laboratoire achète une source renfermant exactement 5,000 g de $^{239}_{94}$ Pu.

1. Ecrire l'équation de la désintégration. (1)

2. Calculer, en unités SI, l'activité A_0 de la source au moment de l'achat. (3)

3. On décide de remplacer la source l'année où son activité aura diminué de 0,2 % par rapport à son activité initiale A₀. Pendant combien d'années pourra-t-on la garder ? (3)

4. En combien d'années la masse de $^{239}_{94}Pu$ n'est elle plus que de 0,625 g ? (1)

5. Calculer, en MeV, l'énergie libérée lors de la désintégration d'un noyau de $\frac{239}{94}$ Pu. (2)

6. On accélère la particule α à l'aide d'un cyclotron. L'intensité du champ magnétique uniforme vaut 300 mT. Quel doit être le rayon minimal des 'dees" pour que l'énergie cinétique des particules à la sortie de l'appareil soit 10 MeV ? (Calcul non relativiste.) (4)

Données:

Masse molaire:

$$M(^{239}_{94}Pu) = 239,0522 \frac{g}{mol}$$

Masses des noyaux :

$$M\binom{239}{94}Pu = 239,0522 \frac{g}{mol}$$

 $m\binom{239}{94}Pu = 239,0006 \text{ u} ; m\binom{235}{92}U = 234,9934 \text{ u}$

Demi-vie du $^{239}_{94}Pu$:

$$t_{1/2} {239 \choose 94} Pu = 2,41 \cdot 10^4 \text{ ans}$$

(14 points)

Relevé des principales constantes physiques

Grandeur physique	Symbole usuel	Valeur numérique	Unité
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	JK ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	Nm ² kg ⁻²
Célérité de la lumière dans le vide	С	2,998.108	ms ⁻¹
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	Hm ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	Fm ⁻¹
Charge élémentaire	е	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,109.10 ⁻³¹	kg
		$0.549 \cdot 10^{-3}$	u
		0,511	MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg
		1,0073	u
		938,27	MeV/c^2
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
		3727,4	MeV/c ²
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg	R _∞	$1,097 \cdot 10^7$	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondaments	al E ₁	-13,6	eV

Grandeurs terrestres qui peuvent dépendre du lieu ou du temps			tilisée sauf 1 contraire
Accélération de la pesanteur à la surface terrestre	g	9,81	ms ⁻²
Composante horizontale du champ magnétique terrestre	B_h	2.10^{-5}	T
Rayon de la Terre	R	6370	km
Masse de la Terre	M	5,98.10 ²⁴	kg

Conversion d'unités en usage avec le SI

= 1 \mathring{A} = 10⁻¹⁰ m = 1 eV = 1,602·10⁻¹⁹ J = 1 u = 1,661·10⁻²⁷ kg = 931,49 MeV/c² 1 angström 1 électronvolt

1 unité de masse atomique

TABLEAU PERIODIQUE DES ELEMENTS

. 1	groupes principaux											gro	groupes principaux	ncipaux		
											=	2	^	I	II/	III/
																4,0
																He
1	ſ															2
											10,8	12,0	14,0	16,0	19,0	20,2
Be											8	ပ 	Z	0	u_	Ne
											5	9	7	8	6	10
24,3					groupes	groupes secondaires	laires				27,0	28,1	31,0	32,1	35,5	39,9
Mg											A	Si	۵	S	ਹ	Ā
12		>	^	IA	IIA		III/			=	13	14	15	16	17	18
40,1	45,0	47,9	6,03	52,0	54,9	55,8	58,9	28'2	63,5	65,4	2,69	72,6	74,9	79,0	6'62	83,8
Ca	Sc	F	>	ပံ	Ψ	Fe	ပိ	Ž	J C	Zu	Ga	Ge	As	Se	В	ᄌ
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
9'/8	88,9	91,2	92,9	6,36	(26)	101,1	102,9	l	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
ζ,	>	Zr	g	0	Tc	Ru	몺	ਠ	Ag	B	In	Sn	Sb	Te	-	Xe
38	39	40	- 1	42	43	44	45	46	47	48	49	50	51	52	53	54
137,3	175,0	178,5	180,9	183,9		190,2	192,2	165,1	197,0	200,6	204,4	207,2	209,0	(503)	(210)	(222)
Ba	7	Ŧ	Та	>		Os	ı	꿉	Αn	Hg	F	Pb	<u></u>	Po	At	Rn
56	7.1	72	73				22	78	62	80	81	82	83	84	85	98
226,0	(260)	(261)	(262)	(592)	(264)		(268)									
Ra	Ļ	Rf	Op	Sg		Hs	¥		-							
88	103	104	105	106	107	108	109									

Ce Pr	PN	Pm)	2,1) f 0	ر ا ا	00'0	0,0
	90		Sm	Eu Gd	P 9	Tb	Δ	Ho Er	山	H	Yb
	00	61	62	63	64	65	99	29	68	69	70
227,0 232,0 231,0	238,0	237,0	(244)		l	(247)	(251)	(254)	(257)	(258)	(259)
	<u> </u>	dN		Am	CB	BK	Ç	Es	Fm	Ρ	^o Z
0 91	92	93	94	95	96	26	98	66	100	101	102
0 91		93	94			97	98	တ်			100

lanthanides

actinides