CyberSecurity: Principle and Practice

BSc Degree in Computer Science 2023-2024

Lesson 4: Cryptographic Tools pt.1

Prof. Mauro Conti
Department of Mathematics
University of Padua
conti@math.unipd.it
http://www.math.unipd.it/~conti/

Teaching Assistants
Tommaso Bianchi
tommaso.bianchi@phd.unipt.it
Riccardo Preatoni
riccardo.preatoni@studenti.unipd.it

Università degli Studi di Padova

Historical Facts

Alan Turing: decryption of German's ciphers during WWII (1940s)

Historical Facts

Ceasar Cipher: private correspondence (~50BC)

Introduction

- Cryptographic algorithms important element in security services
- Review various types of elements
 - symmetric encryption
 - public-key (asymmetric) encryption
 - secure hash functions
- Example of encryption

Encryption

Encryption

Encryption

Symmetric Encryption

Symmetric Encryption - Threats

- Cryptanalysis
 - Rely on nature of the algorithm
 - Plus some knowledge of plaintext characteristics
 - Even some sample plaintext-ciphertext pairs
 - Exploits characteristics of algorithm to deduce specific plaintext or key
- Brute-force attack
 - Try all possible keys on some ciphertext until get an intelligible translation into plaintext

Exhaustive Key Search

Key Size (bits)	Number of Alternative Keys		e Required at 1 Decryption/µs	Time Required at 106 Decryptions/µ		
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s$	= 35.8 minutes	2.15 milliseconds		
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours		
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{ years}$	5.4 × 1018 years		
168	$2^{168} = 3.7 \times 10^{50}$	2167 µs	$= 5.9 \times 10^{36} \text{ years}$	5.9 × 10 ³⁰ years		
26 characters (permutation)	26! = 4 × 10 ²⁶	2 × 10 ²⁶ j	$us = 6.4 \times 10^{12} \text{ years}$	6.4 × 10 ⁶ years		

Symmetric Encryption

	DES	Triple DES	AES
Plaintext block size (bits)	64	64	128
Ciphertext block size (bits)	64	64	128
Key size (bits)	56	112 or 168	128, 192, or 256

DES = Data Encryption Standard AES = Advanced Encryption Standard

DES and Triple-DES

- Data Encryption Standard (DES) is the most widely used encryption scheme
 - Uses 64 bit plaintext block and 56 bit key to produce a 64 bit ciphertext block
 - Concerns about algorithm & use of 56-bit key
- Triple-DES
 - Repeats basic DES algorithm three times
 - Using either two or three unique keys
 - Much more secure but also much slower

Block vs. Stream Ciphers

(a) Block cipher encryption (electronic codebook mod

(b) Stream encryption

Example 1 - Caesar Cipher

- Substitution cipher
 - the alphabet is shifted
 - one of the easiest ciphers (and not really secure)

Example 1 - Caesar Cipher

Cyphertext:
 "QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD"

Any ideas?

Example 1 - Caesar Cipher

- Cyphertext:
 - "QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD"
- Solution: try all the possible combinations of alphabets (shifts)
- Cryptanalysis + brute force in this case is easier than cryptanalysis
- Plaintext: "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

- XOR is it widely adopted in crypto algorithms
 - Boolean operation
 - 0 xor 0 = 0
 - \bullet 0 xor 1 = 1
 - \blacksquare 1 xor 0 = 1
 - \blacksquare 1 xor 1 = 0
 - Represented with the symbol " ^ "
- enc_message = clear_message ^ key

Properties:

- XOR is commutativea ^ b = b ^ a
- XOR is associative
 a ^ (b ^ c) = (a ^ b) ^ c
- Anything XORed with itself is zero
 a ^ a = 0
- Anything XORed with zero is anything
 a ^ 0 = a

enc_message = clear_message ^ key

clear_message = enc_message ^ key

key = clear_message ^ enc_message

- XOR is used between a key and a message
 - Often len(key) << len(message)
 - We "repeat the key" on the message
- Example
 - clear_message = "THIS IS A MESSAGE"
 - o key = "YOU"

Т	Н	I	S		I	S		Α		М	Е	S	S	Α	G	Е
Υ	0	U	Υ	0	U	Υ	0	U	Υ	О	U	Υ	0	U	Υ	0

Т	Н	I	S		I	S		Α		М	Е	S	S	Α	G	Е
84	72	73	83	32	73	83	32	65	32	77	69	83	83	65	71	69

Y	0	U	Y	0	U	Υ	0	U	Υ	0	U	Υ	0	U	Υ	0
89	79	85	89	79	85	89	79	85	89	79	85	89	79	85	89	79

msg	84	72	73	83	32	73	83	32	65	32	77	69	83	83	65	71	69
key	89	79	85	89	79	85	89	79	85	89	79	85	89	79	85	89	79

enc

The XOR between two integer it is the result of the xor of their binary representations.

- 84 = 1010100
- 89 = 1011001
- 13 = 0001101

XOR - Kasiski Elimination

Kasiski elimination:

- Technique to attack substitution ciphers
 - E.g., Vigenère cipher
 (Polyalphabetic cipher, base on initial idea of Bellaso)
- Involve the inspection of character sequences inside a ciphertext
 - We look for anomaly amount of repetitions
 - At least sequences with more than 3 characters
 - An anomaly might be derived by a repetition on the plaintext
- Useful to identify the key length
 - ... and cryptanalysis

XOR - Kasiski Elimination

Student @ UniPD ~1537

ISTITUTO
PER LA STORIA DELL'UNIVERSITÀ DI PADOVA

ACTA
GRADUUM ACADEMICORUM

AB ANNO 1526 AD ANNUM 1537

a cura di ELDA MARTELLOZZO FORIN

EDITRICE ANTENORE · PADOVA MCMLXX

XOR - Kasiski Elimination

13	7	28	10	111	28	10	111	20	121	2	16	10	28	20	30	10
								- 								
Т	Н	I	S		I	S		Α		М	Е	S	S	Α	G	Е
Υ	0	U	Υ	0	U	Y	0	U	Υ	0	U	Υ	0	U	Υ	0

Questions? Feedback? Suggestions?

