食品免疫学

Food Immunology

教学组织与考核方法

教学

共40个学时,理论28学时;实验12学时

自学

参考书目、网络慕课、推荐动漫、兴趣小组资料讨论

考核办法

期末考试: 50% 实验: 20%

课堂测试: 15% 分组汇报15%

课程QQ群

群名称:食品免疫学2020级食质班周... 群 号:571069254

腾讯会议

会议时间: 2022/09/05-2022/09/26 16:00-18:00,

每周 一

https://meeting.tencent.com/dm/2bJr8VAKKqm6

腾讯会议: 635-4990-4695

参考资料

• 参考教材

- Janeway's Immunobiology , 第九版, Taylor & Francis, Jul 25, 2011 888 pages
- 》《医学免疫学》第6版,曹雪涛主编,科学出版社。
- > 《食品免疫论》,庞广昌著,科学出版社。

• 专业网站

- > Bi站 工作细胞

第一章 绪论

【目的要求】

- 1. 掌握 免疫、免疫学和食品免疫学的 概念; 人体免疫系统的三大功能; 免疫应答 的类型和特点。
- 2. 熟悉 免疫学的形成和发展过程,以 及当代免疫学发展的特点;食品免疫学学科 组成及其地位。
- 3. 了解 免疫学发展前沿;免疫学在生命科学领域的重要地位。

推动现代生命科学前进的三架马车

- 分子生物学(Molecular Biology)
- 免疫学(Immunology)
- ●细胞生物学(Cell Biology)

免疫学及食品免疫学

- 1901-2021,免疫学在诺贝尔奖百年间27次近50人获奖
- 在生命科学理论上取得的突破,以及在实践应用上获得的巨大成功。
- 食品免疫学是将免疫学原理运用于食品科学,揭示膳食营养与免疫的关系;探究食物过敏的原因及预防;运用免疫学技术检测食品中的毒性物质、添加剂、残留物质等进行检测。

第一节什么是免疫

1.免疫概念--随着人类疾病的演变不断完善

(1)免疫的原始概念: Immunity(免疫),源于拉丁语,意 指身体的卫士,抵抗疾病,免除瘟疫。

《说文》"疫,民皆疾也。"把凡能传染的病通称为"疫"。"瘟"则是烈性传染病,可以在禽畜动物与人之间相互感染。所以中国古代把传染病、流行病通称为"瘟疫"。

人类与瘟疫的交锋有着漫长的历史。瘟疫、战争、饥荒、 死亡被《圣经新约》称为"天启四骑士"。

萦绕人类历史的瘟疫

15世纪末

天花

2019-

2400年前

>.t >→

第一次记 载的瘟疫

雅典瘟疫

黑死病

疫情持续了五六十年, 流行期每天死亡上万人, 死亡总数近一亿人。

14世纪

欧洲人踏上美洲大陆时带来了天花, 2000多万原住民在约100年后显剩下不

约100年后只剩下不到100万人,被史学家称为"人类史上最大的种族屠杀"。

新型冠 状病毒

unknow

西班牙 流感

1918年

截至北京时间2022年3月3日,全 球累计新冠肺炎438968263例,死 亡病例5969439例。

根据世卫组织最新实时统计数据,

SARS MERS

2004年

由禽流感病毒变异引起的"西班牙流感",医学界现称为H1N1禽流感。1918年3月首先爆发于美国堪萨斯州的芬森军营,一年内席卷全球,患病人数超过5亿,死亡人数近4000万,相当于第一次世界大战死亡人数的4倍。

一. 经验免疫学时期—19世纪之前,免疫=抵抗瘟疫

"又东二百! 金玉、桢木 牛而白首, 日蜚,行水 见则天下大

(Pieter Brueghel the Elder, 1526/1530-1569) 创作名画《死神的胜利》。

*一. 经验免疫学时期---*19世纪之前,免疫=抵抗瘟疫

- ■人们对免疫的朴素认知。
- 16~17世纪,中国人种"人痘" 预防天花一"以毒攻毒"。
- 18世纪,英国人爱德华琴纳发明牛痘苗,预防天花,人类最终战胜了天花病毒。
- 最后一例天花病人于1976年在索马里 被治愈,其后未再发现。
- 世界卫生组织(WHO)于1979年10月 26日正式宣布全世界消灭天花。

从生物分类角度上来说,猴痘病毒与天花病毒都属于痘病毒科正痘病毒属,所以他们两个还是"亲戚"。但是猴痘是人兽共患病,人和动物都能被感染,而天花病毒只感染人类。

据美国广播公司报道,美国猴痘疫情持续蔓延,美国疾病控制与预防中心(CDC)最新数据显示,截至当地时间8月31日,全美已有近1.9万例猴痘确诊病例,儿童确诊病例也增至31例。

工*经典免疫学时期一*19世纪-20世纪后半叶**,** 免疫=抗感染

- ■病原体的发现,微生物学的发展,推动了抗感染免疫,即人工被动免疫的发展。
- ■1850年,显微镜下观察到炭疽杆菌
- Pasteur 发明液体培养基,培养的 炭疽杆菌致动物发病
- Pasteur制备出减毒疫苗

免疫经典概念形成--抗原抗体的发现

白喉抗毒素的应用:白喉抗毒素含有特异性抗体,具有中和白喉毒素的作用,可用于白喉杆菌感染的预防和治疗

Emil von Behring 1854 - 1917, Nobel Prize in 1901 for demonstrating that circulating antitoxins against diphtheria and tetanus toxins conferred immunity.

Robert Koch 1843-1910, Nobel Prize in 1905 for his work on tuberculosis, Anthrax, Cholera, Tubercule bacillus

Koch发明固体培养基, 分离出结核杆菌,提 出病原菌致病的概念

接种时间	接种疫苗	次数	可预防的传染病	接种时间	接种疫苗	次数	可預防的传染病
出生	乙型肝炎疫苗	第一针	乙型病毒性肝炎	9月龄	A群流脑疫苗	第二针	流行性脑脊髓膜炎
24小时内	卡介苗	初种	结核病		百白破疫苗	第四次	百日咳、白喉、破伤风
1月龄	乙型肝炎疫苗	第二针	乙型病毒性肝炎	1.5	麻疹(或麻风腮)	第二次	麻疹 (风疹、腮腺炎)
2月龄	脊髓灰质炎糖丸	第一次	脊髓灰质炎(小儿麻痹)	~2岁	脊髓灰质炎糖丸	加强	脊髓灰质炎(小儿麻痹)
- D#A	脊髓灰质炎糖丸	第二次	脊髓灰质炎(小儿麻痹)		乙脑疫苗	加强	流行性乙型脑炎
3月龄	百白破疫苗	第一次	百日咳、白喉、破伤风		A群流脑疫苗,也	第三针	流行性脑脊髓膜炎
4月龄	脊髓灰质炎糖丸	第三次	脊髓灰质炎(小儿麻痹)	3岁	可用A+C流脑加强		
	百白破疫苗	第二次	百日咳、白喉、破伤风	4岁	脊髓灰质炎疫苗	加强	脊髓灰质炎(小儿麻痹)
5月龄	百白破疫苗	第三次	百日咳、白喉、破伤风		麻疹(或麻风腮)	第三次	麻疹 (风疹、腮腺炎)
6月龄	乙型肝炎疫苗	第三针	乙型病毒性肝炎		精白破	第一次	百日咳、白喉、破伤风
	A群流脑疫苗	第一针	流行性脑脊髓膜炎	6岁	乙脑疫苗	初免两针	流行性乙型脑炎
8月龄	麻疹(或麻风腮)	第一针	麻疹 (风疹、腮腺炎)		A群流脑疫苗	第四针	流行性脑脊髓膜炎
	乙脑疫苗	非活第 一、二次	流行性乙型脑炎	12岁	卡介苗	加强农村	结核病

新中国成立初期,我国卫生状况恶劣,传染病大肆流行, 人均寿命只有35岁。70年间,全国人民的平均寿命从35 岁提高到77岁,当中历尽艰辛,不断克服困难与突破难 关,铸成了一部漫长而骄傲的卫生防疫史。

经典免疫学时期,免疫学基本理论形成

- 1. 免疫概念拓展
- 2. 从器官、细胞和分子水平揭示了免疫系统和免疫细胞的存在, 阐明免疫球蛋白分子结构与功能。
- 3. 确定了免疫(应答)的分类 提出非特异性免疫 和特异性免疫(应答)。
- 4. 提出了体液和细胞免疫学说。
- 5. 观察到免疫应答的两面性 免疫防御和病理损伤。
- 6. 建立了血清学技术 基于抗原-抗体反应。

三. 现代免疫学时期—20世纪中叶至今,疾病谱的重要改变赋予免疫新的内涵

20世纪40年代-至今

人类主要致死性疾病已经由传染病变迁为以肿瘤、

心脑血管疾病为主的慢性非传染性疾病

三. 现代免疫学时期--20世纪中叶至今, 免疫的新内涵

■抗原概念的内涵极大丰富

- ■抗原除了微生物或毒素等外源性物质,还包括被免疫系统判断为"非己"的内源性物质。
- ■病理性自身成分--肿瘤细胞,衰老细胞、代谢废物
- 生理性自身成分--凡是胚胎时期未与免疫细胞接触过的物质都可视为异物,如眼晶体蛋白,甲状腺蛋白,脑组织
- ■提出免疫防御与免疫损伤

免疫的现代概念:

机体对"声言"和 "非己(抗原异物)" 的识别,并排除非己物质,维持机体生理平 衡和稳定的功能。

表1-1 20世纪获得诺贝尔奖的免疫学家							
年代	学 者 姓 名	国家	研 究 成 就				
1901	Emil von Behring	德 国	开创了应用白喉抗毒素治疗白喉患者				
1905	Robert Koch	德 国	对结核病的研究具有诸多发现,结核杆菌,结核菌素及 其反应,Koch现象等				
1908	Elie Metchnikoff Paul Ehrlich	俄国 德国	吞噬作用的理论研究 抗体产生的侧链学说				
1913	Charles Richet	法国	发现过敏反应				
1919	Jules Border	比利时	揭示了补体溶菌现象的原理				
1930	Karl Landsteiner	美国	昭示人类红细胞血型				
1951	Max Theiler	南非	发现黄热病病毒并创建黄热病疫苗				
1957	Daniel Bovet	瑞士	发明了抗组织胺药物				
1960	F. Macfarlane Burnet	澳大利亚	发现获得性免疫耐受				
1972	Rodney R. Porter	英国	阐明抗体的化学结构				
1977	Rosalyn R. Yalow	美国	开创多肽激素放射免疫分析技术				
1980	Gorge Snell	美国	发现主要组织相容性复合体(MHC)				
1984	Cesar Milstein Niels K. Jerne	英国 丹麦	创建单克隆抗体生产技术 独特型一抗独特型的级联网络				
1987	Susumu Tonegava	日本	对Ig基因研究并阐明抗体多样性				
1991	E. Donnall Thomas	美国	提出移植免疫学				
1996	Peter C. Doherty Rolf M. Zinkernagel	澳大利亚 瑞士	提出细胞介导免疫应答的特异性 24 MHC限制性				

2011年10月17日诺贝尔医学奖

■三位免疫学家博伊特勒(Bruce A. Beutler)、霍夫曼(Jules A. Hoffmann)和斯坦曼(Ralph M. Steinman),共同获得本年度诺贝尔医学奖。但斯坦曼则不幸运于颁奖前三天溘然离世。

人类及其他动物依靠免疫系统抵抗 细菌等微生物的侵害, 博伊特勒和霍 夫曼发现了关键受体蛋白质, 它们能 够识别微生物对动物机体的攻击并激 活免疫系统, 这是免疫反应的第一步。 斯坦曼则发现了能够激活并调节适应 性免疫的树突细胞, 这种细胞促使免 疫反应进入下一阶段并将微生物清除 出机体。

这 3 位获奖者的研究成果揭示免疫反应的激活机制,使人们对免疫系统的理解发生"革命性变化"。

2018年诺贝尔生理学与医学奖

詹姆斯·艾利森

2018年诺贝尔生理学和医学奖授予美国免疫学家詹姆斯艾利森(James P. Allison)以及日本免疫学家本庶佑(Tasuku Honjo),以表彰其发现可使攻击体内异物的免疫反应停下的蛋白质,为癌症免疫疗法药物研发开辟了道路。

肿瘤免疫: 免疫检测点

现代免疫学时期--理论与应用的重大突破

- 抗体药物
- 基因工程疫苗
- 肿瘤疫苗:宫颈癌疫苗
- 免疫细胞治疗技术 CAR-T, TCR-T

治疗步骤:

第二节 免疫系统的三大基本功能

正常表现

异常免疫

免疫防御 (immunologic defense) 防御病原微生物侵袭

超敏反应、免疫缺陷

免疫稳定 消除损伤或衰老细胞(immunologic homeostasis)

免疫监视 防止正常细胞突变 (immunologic surveillance)

自身免疫病

导致肿瘤或持续性感染

第三节人体免疫物质基础-免疫系统

免疫

_中枢~:胸腺、骨髓

器官

\外周~:淋巴结、脾、

扁桃体

淋巴组织

弥散淋巴组织

淋巴小结

免疫细胞

单核-巨噬细胞、粒

细胞、NK细胞、淋巴细胞、抗原

呈递细胞, 嗜碱性粒细胞、肥大

细胞等

免疫活性

膜分子、抗体、补 体、细胞因子

第四节免疫应答的类型和特点

非特异性免疫,即固有免疫,是机体在种系发育和进化过程中形成的天然免疫防御功能,即出生后就已具备的非特异性防御功能,在最低等的无脊椎动物中就已存在,是生物在长期进化过程中形成的一系列防御机制。 天然免疫是机体对多种抗原物质的生理性排斥反应,在感染早期其主要作用。

与此相对应的是特异性免疫,即适应性免疫,指出生后通过与抗原物质接触后所获得的一系列防御功能,仅存在于脊椎动物中,具有特异性,在最终清除病原体,防止再次感染中起主导作用。

固有免疫的组成

◆固有免疫屏障:皮肤黏膜,血脑屏障, 血胎盘屏障,PH,酶类

◆固有免疫细胞:吞噬细胞、NK细胞

◆固有免疫分子:补体系统、细胞因子

固有免疫的组成

◆固有免疫屏障: 皮肤黏膜,血脑屏障,血胎盘屏障,

PH,酶类

◆固有免疫细胞:吞噬细胞、NK细胞

◆固有免疫分子: 补体系统、细胞因子

特异性免疫的组成

特异性免疫(specific immunity)又称获 得性免疫或适应性免疫。这种免疫只针对一种病 原。是经后天感染(病愈或无症状的感染)或人 工预防接种(菌苗、疫苗、类毒素、免疫球蛋白 等)而使机体获得抵抗感染能力。一般是在微生 物等抗原物质刺激后才形成的(免疫球蛋白、免 疫淋巴细胞),并能与该抗原起特异性反应。相 关的细胞是T淋巴细胞和B淋巴细胞。

特异性免疫的方式

体液免疫和细胞免疫: 抗原进入人体 后,有的会被体液中的相应抗体介导消灭, 有的会被相应的免疫细胞消灭。前者叫体 液免疫,由B细胞分泌抗体完成;后者叫 细胞免疫,由T细胞完成。

适应性(特异性)体液免疫应答产物—抗体模式图

(a)

细胞免疫

固有免疫与特异性获得性免疫的关系

- 在抗感染免疫中,二者相互协同
 - 固有免疫是抵御微生物侵袭的第1道防线
 - 特异性免疫应答继天然免疫应答之后发挥效应, 在最终清除病原体及防止再感染中起主导作用
- 特异性免疫受到天然免疫的"控制"
 - 固有免疫参与获得性免疫的启动
 - 固有免疫影响获得性免疫的强度
 - 固有免疫影响获得性免疫的类型
 - 固有免疫影响获得性免疫的记忆和耐受

固有免疫与特异性免疫缺一不可

	非特异性免疫	特异性免疫
细胞组成	粘膜和上皮细胞、吞噬细胞、 NK细胞NK1.1 ⁺ T细胞、γδT细 胞、B-1B细胞	T细胞、B细胞、 抗原提呈细胞
作用时相	即刻~96小时内	96小时后
作用特点	非特异作用,抗原识别谱较广; 不经克隆扩增和分化,即可发挥 免疫效应	特异性作用,抗原识别专一; 经克隆扩增和分化成为效应 细胞,发挥免疫效应
作用时间	无免疫记忆,作用时间短	有免疫记忆,作用时间长

非特异性免疫和特异性免疫的主要特点

特异性免疫的三个阶段-以体液 免疫为例

1、感应阶段: 抗原进入机体后除少数可以直接作用于淋巴细胞外,大多数要经抗原呈递细胞的摄取和处理,将其内部的抗原决定簇暴露出来呈递给T细胞,再由T细胞呈递给B细胞。这种呈递多数通过细胞表面的直接接触来完成。

2、反应阶段: B细胞受抗原刺激后进行一系列 增殖、分化,形成效应B细胞。这些B细胞有小部 分成为记忆细胞长期存在于体内,其余进一步增殖 分化形成大量的效应B细胞,即浆细胞,继而产生 更强烈的免疫反应。

3、效应阶段:浆细胞产生大量的抗体与抗原发生特异性结合,发挥免疫效应,将进入体内的抗原消灭。

如:天花病毒进入人体后,通过免疫三个阶段产生大量的抗天花抗体将天花病毒消灭。

第五节 免疫学与食品科学

- 食品营养及保健食品与人体免疫
- 食源性疾病与食品免疫学
- 免疫技术与食品分析检测

食物与免疫

人体的免疫力以遗传因素为基础,在 环境的塑造下形成,其中饮食是具有决定 性的影响力之一。人体免疫系统活力的保 持主要靠食物。有些食物的成分能协助刺 激免疫系统,增加免疫能力。缺乏这些营 养素,会严重影响到身体的免疫机能。

比如: 镁离子是B细胞发育的关键促进因子, 其缺乏导致B细胞无法发育为浆细胞, 因而无法产生抗体, 但深入分子机制尚待研究。

- 乳果糖低聚体促进肠黏膜IgA的分泌
- 具有促进IgA产生的食用蘑菇的探索
- β乳球蛋白(β-LG)促进淋巴细胞产生抗体
- β-LG促进干扰素 (IFN) 的产生
- 大豆胰蛋白酶抑制剂增强淋巴细胞产生IgM
- 调节肠Caco-2细胞产生 IL8的食品成分的研究
- 薄荷提取物具有促进IL8分泌的作用。

降低过敏性的食品研究

- 具有抗过敏性的乳酸菌株的筛选
- 具有抗过敏性的甜茶成分的分析
- 降低卵白蛋白刺激引起的IgE抗体水平的乳酸菌株的研究
- 降低β-LG免疫源性的新研究

免疫技术在食品行业的应用

免疫技术

- 免疫分析方法是利用待测物质(抗原或抗体)与其对应物质(抗体或抗原)之间的专一特异性反应而建立起来的一种高选择性分析方法。
- 免疫分析主要基于抗体(或抗原)作为选择性 化学试剂以分析测定抗原(或抗体)及半抗原。

免疫检测方法食品安全中的应用

- ◆免疫印迹实验(western-blot)
- ◆ELISA试剂盒
- ◆胶体金试纸条
- ◆磁珠免疫筛选技术
- ◆生物芯片
- ◆化学发光技术
- ◆免疫亲和柱

免疫检测三要素

- · 抗原-抗体系统
- 酶促系统
- · 检测系统

小结

- 免疫概念的历史发展
- 免疫系统构成
- 非特异性免疫与特异性免疫
- 免疫学发展前沿

谢 谢!