MapReduce and Graph Data

Based on slides from Jimmy Lin's lecture slides (http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/index.html) (licensed under Creation Commons Attribution 3.0 License)

Why Graphs

- Graphs can be used to represent many Data problems today:
 - Social networks: Facebook, Twitter, etc
 - Communication networks
 - Biological networks
 - Transportation, road networks
 - **—** ...
- Many of these problems deal with Big Data
 - So, use MapReduce (or in general cluster computing)

Graph DBs

- Graph databases getting attention!
 - http://www.forbes.com/sites/danwoods/
 2014/02/14/50-shades-of-graph-how-graph-databases-are-transforming-online-dating/
 - http://www.pcworld.com/article/2361140/
 graph-databases-find-answers-for-the-sick-and-their-healers.html

Graph Algorithms in MapReduce

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Representing Graphs

- G = (V, E)
- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

$$-n = |V|$$

 $-M_{ij} = 1$ means a link from node *i* to *j*

1	1	2	1
1		3	4

Adjacency Matrices: Critique

Advantages:

- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks

• Disadvantages:

- Lots of zeros for sparse matrices
- Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

```
1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1: 2, 4

2: 1, 3, 4

3: 1

4: 1, 3
```

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: b is reachable from a if b is on adjacency list of a
 - DISTANCETO(s) = 0
 - For all nodes p reachable from s,DISTANCETO(p) = 1
 - For all nodes n reachable from some other set of nodes M, DISTANCETO $(n) = 1 + \min(\text{DISTANCETO}(m), m \in M)$

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - − Key: node *n*
 - Value: d (distance from start), adjacency list (list of nodes reachable from n)
 - Initialization: for all nodes except for start node, $d = \infty$
- Mapper:
 - $\forall m \in$ adjacency list: emit (m, d + 1)
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (n, adjacency list) as
 well

BFS Pseudo-Code

```
1: class Mapper
        method Map(nid n, node N)
2:
           d \leftarrow N.\text{Distance}
3:
           Emit(nid n, N)
                                                                  ▶ Pass along graph structure
4:
           for all nodeid m \in N. Adjacency List do
5:
               Emit(nid m, d+1)
                                                         ▶ Emit distances to reachable nodes
6:
1: class Reducer
        method Reduce(nid m, [d_1, d_2, \ldots])
2:
           d_{min} \leftarrow \infty
3:
           M \leftarrow \emptyset
4:
           for all d \in \text{counts } [d_1, d_2, \ldots] do
5:
               if IsNode(d) then
6:
                   M \leftarrow d
                                                                     ▷ Recover graph structure
7:
               else if d < d_{min} then
                                                                    ▶ Look for shorter distance
8:
                   d_{min} \leftarrow d
9:
           M.Distance \leftarrow d_{min}
                                                                    ▶ Update shortest distance
10:
           Emit(nid m, node M)
11:
```

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...
 - Six degrees of separation?

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features,
 edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

Random Walks Over the Web

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
 - One of thousands of features used in web search
 - Note: query-independent

PageRank: Defined

Given page x with inlinks $t_1...t_n$, where

- -C(t) is the out-degree of t
- $-\alpha$ is probability of random jump
- -N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes PR_i "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling links
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling links come from?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
1: class Mapper.
      method Map(nid n, node N)
          p \leftarrow N.PageRank/|N.AdjacencyList|
3:
          Emit(nid n, N)
                                                          ▶ Pass along graph structure
4:
          for all nodeid m \in N. Adjacency List do
5:
             Emit(nid m, p)
                                                   ▶ Pass PageRank mass to neighbors
6:
1: class Reducer
      method Reduce(nid m, [p_1, p_2, \ldots])
2:
          M \leftarrow \emptyset
3:
          for all p \in \text{counts } [p_1, p_2, \ldots] do
4:
             if IsNode(p) then
5:
                                                             ▷ Recover graph structure
                 M \leftarrow p
6:
             else
7:
                                            s \leftarrow s + p
8:
          M.PageRank \leftarrow s
9:
          Emit(nid m, node M)
10:
```

Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?
- Solution:
 - Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{|G|} \right) + (1 - \alpha) \left(\frac{m}{|G|} + p \right)$$

- − p is PageRank value from before, p' is updated PageRank value
- |G| is the number of nodes in the graph
- m is the missing PageRank mass

PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don't change
 - Iterate until PageRank rankings don't change
 - Fixed number of iterations
- Convergence for web graphs?

Efficient Graph Algorithms

- Sparse vs. dense graphs
- Graph topologies

Local Aggregation

- Use combiners!
 - In-mapper combining design pattern also applicable
- Maximize opportunities for local aggregation
 - Simple tricks: sorting the dataset in specific ways