Maximal Ideals

Let R be a commutative ring with $1 \neq 0$.

Proposition 7.1: Ideals containing units

Let $I \subset R$ an ideal

- (i) I = R if and only if I contains a unit.
- (ii) R is a field if and only if the only ideals of R and 0 and R

Proof.

(i) If I = R, then $1 \in I$

Conversely, if $u \in I$ and $u \in R^{\times}$ say $u \cdot v = 1$, then $u \cdot v = 1 \in I$ implies, if $r \in R$, then

$$r \cdot (u \cdot v) = r \in I \implies R \subset I \implies R = I$$

(ii) If $I \subset R$ is an ideal in a field, and $\exists a \in I \setminus \{0\}$ (non-zero element of the field), then $a \in R^{\times}$ (since it is a field) implies I = R (by part (i)).

Conversely, suppose 0 and R are the only ideals in R. Let $a \in R \setminus \{0\}$ and consider $(a) \subset R$, then

$$(a) \neq 0 \implies (a) = R \underset{\text{by part (i)}}{\Longrightarrow} \exists u \in (a), u \in R^{\times}(\text{say } u \cdot v = 1)$$

Since $u \in (a)$, we may write $u = r \cdot a, r \in R$, then

$$(r \cdot a) \cdot v = u \cdot v = 1 = a \cdot (r \cdot v) \implies a \in \mathbb{R}^{\times} \implies \mathbb{R} \text{ is a field}$$

Corollary 7.1: Homomorphism from field to ring is injective

If F is a field, then any nonzero ring homomorphism

$$f: F \to R$$

is an injective map

Proof. Ker f = 0 or F. Because f is nonzero, we conclude that Ker f = 0, which means f is injective since the only element that maps to 0 is 0.

Definition 7.1: Maximal Ideal

An ideal $M \subset R$ is called a **maximal ideal** if

- (i) $M \neq R$
- (ii) If $I \subset R$ is an ideal such that $M \subset I$, then I = M or I = R

Not all rings admit maximal ideals and a given ring may admit multiple maximal ideals, e.g $2\mathbb{Z}, 3\mathbb{Z}$ are maximal ideals in \mathbb{Z} .

A Digression on Zorn's Lemma

Definition 7.2: Partial Order

A partial order on a non-empty set A is a relation \leq such that

- (i) $x \le x$ (Reflexive)
- (ii) $x \le y, y \le x \implies x = y$ (Anti-symmetric)
- (iii) $x \le y, y \le z \implies x \le z$ (Transitive)

Example 7.1.

If X is any set then the power set (the set of all subsets) is written

$$\wp(X) = \{ \text{subsets } U \subset X \}$$

Then inclusion is a partial order on $\wp(X)$, e.g.

$$\{a,b,c\}$$

$$\subset \quad \cup \quad \supset$$

$$\{a,b\} \quad \{a,c\} \quad \{b,c\}$$

$$\cup \quad \subset \supset \quad \cup$$

$$\{a\} \quad \{b\} \quad \{c\}$$

$$\supset \quad \cup \quad \subset$$

$$\varnothing$$

Definition 7.3: Poset, Chain, Upper Bound, Maximal Element

If A, \leq is a **partially ordered set** (**poset**), then

- (i) A subset $B \subset A$ is a **chain** if $\forall x, y \in B \implies x \leq y$ or $y \leq x$ (everything can be compared).
- (ii) An **upper bound** on a subset $B \subset A$ is an element $u \in A$ such that

$$\forall b \in B, b \leq u$$

(iii) A **maximal element** of a subset $B \subset A$ is an element of $m \in B$ such that if $b \in B$ and $b \ge m$, then b = m.

Lemma 7.1: Zorn's Lemma

If A is a non-empty poset such that every chain admits an upper bound, then A has a maximal element.

Proposition 7.2: All proper ideals contained in maximal ideal

If R is a commutative ring with $1 \neq 0$, then every proper ideal is contained in a maximal ideal

Proof.

Let $I \subseteq R$ be a proper ideal.

Consider

 $S := \{ \text{proper ideals of } R \text{ containing } I \}$

 ${\mathcal S}$ is partially ordered by inclusion

A chain of ideals in S is a collection of ideals

$$\mathcal{C} = \{ \ldots \subset I_{-1} \subset I_0 \subset I_1 \subset I_2 \subset \ldots \}$$

and to apply Zorn's Lemma, we need to show $\mathcal C$ has an upper bound. Let

$$J = \bigcup_{I_k \in C} I_k$$

Claim: J is an ideal containing I.

Proof.

 $I \subset J$ is clear, since I is contained in all the ideals $I_k \in S$. It remains to show J itself is an ideal.

 $0 \in J$ because $0 \in I_k$ for any k.

If $a, b \in J$, then $\exists I_{k_1}, I_{k_2}$ such that $a \in I_{k_1}, b \in I_{k_2}$, so w.l.o.g say $I_{k_1} \subset I_{k_2}$, then

$$a, b \in I_{k_2} \implies a - b \in I_{k_2} \subset J \implies a - b \in J$$

If $r \in R$, then $r \cdot a \in I_{k_2} \subset J \implies r \cdot a \in J$.

Hence, J is an ideal containing I.

Therefore J is an upper bound for \mathcal{C} and we can apply Zorn's lemma.

Therefore, S admits a maximal element, i.e a proper ideal $M \subset R$ such that $I \subset M$. If $M' \subset R$ is an ideal such that $M \subset M'$, then $I \subset M'$ and so

$$\underbrace{M' \in \mathcal{S}}_{M' \text{ is proper}} \implies M' = M \quad \text{or} \quad \underbrace{M' \notin \mathcal{S}}_{M' \text{ is not proper}} \implies M' = R$$

Theorem 7.1: M maximal in comm. $R \iff R/M$ is field

If R is a commutative ring with $1 \neq 0$, then $M \subset R$ is maximal if and only if R/M is a field.

Proof.

Using the Lattice (fourth) Isomorphism Theorem we have

 $\{ \text{Ideals of } R \text{ containing } M \} \longleftrightarrow \{ \text{Ideals of } R/M \}$

$$\{M,R\}\longleftrightarrow\{0,R/M\}$$

Since, the only ideals of R/M are 0 and itself, R/M is a field by Prop 7.1 (ii).

Recall: $P \subset R$ is prime if and only if R/P is an integral domain.

Corollary 7.2: Maximal ideals are prime

Maximal ideals are prime.

Proof.

If M is maximal then R/M is a field. Therefore, R/M is an integral domain and hence M is prime.

Example 7.2.

 $n\mathbb{Z}\subset\mathbb{Z}$ is maximal if and only if $\mathbb{Z}/n\mathbb{Z}$ is a field, i.e n is prime. So in \mathbb{Z} we have

 ${prime ideals} = {maximal ideals}$

Example 7.3.

The ideal generated by x, $(x) \subset \mathbb{Z}[x]$ is prime (check).

However, it is not maximal as $(x) \subset (2, x)$, but $1 \notin (2, x)$ and therefore $(2, x) \subsetneq \mathbb{Z}[x]$. So, in this case prime ideals are not necessarily maximal.

Example 7.4.

 $(x) \subset \mathbb{R}[x]$ is maximal.

$$\mathbb{R}[x]/(x) \cong \mathbb{R}$$

and recall \mathbb{R} is a field.