Úvod do informatiky

přednáška třetí

Miroslav Kolařík

Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Množiny, relace a funkce

- jsou matematickými protějšky jevů, se kterými se setkáváme v každodenním životě. Množina je protějškem souboru (seskupení). Relace je protějškem vztahu.
 Funkce je protějškem přiřazení.
- umožňují přesné, srozumitelné a jednoduché vyjadřování.
- se používají v matematice (bez jejich znalostí nemůžeme číst žádný matematický text) a v řadě aplikovaných oborů včetně informatiky (funkcionální programování, relační databáze, informační systémy, znalostní inženýrství a další).

Množina je objekt, který se skládá z jiných objektů, tzv. **prvků** té množiny. Množiny zpravidla označujeme velkými písmeny (A, B, \ldots, Z) , jejich prvky pak malými písmeny (a, b, \ldots, z) . Fakt, že x je prvkem množiny A označujeme $x \in A$. Není-li x prvkem A píšeme $x \notin A$.

Množina je jednoznačně dána svými prvky, tj. tím, které prvky do ní patří a které ne. Nemá tedy smysl hovořit o pořadí prvků v množině a nemá smysl uvažovat, kolikrát je daný prvek v dané množině.

Speciální množinou je tzv. **prázdná množina**; označuje se \emptyset . Tato množina neobsahuje žádný prvek, tj. pro každý prvek x platí $x \notin \emptyset$.

Množiny se dělí na konečné a nekonečné. Množina A se nazývá **konečná**, právě když existuje přirozené číslo n tak, že prvky této množiny lze jednoznačně očíslovat čísly $1,2,\ldots,n$. **Číslo** n se přitom nazývá **počet prvků** množiny A a značíme ho |A|, tj. |A| = n.

Množina A se nazývá **nekonečná**, není-li konečná. Pak píšeme, že $|A| = \infty$ a říkáme, že A má **nekonečně mnoho prvků**.

Například množina $A = \{11, 13, 15, 21\}$ je konečná a |A| = 4. Množina všech přirozených čísel $\mathbb N$ je nekonečná a $|\mathbb N| = \infty$. Proprázdnou množinu je zřejmě $|\emptyset| = 0$.

Množiny se dělí na konečné a nekonečné. Množina A se nazývá **konečná**, právě když existuje přirozené číslo n tak, že prvky této množiny lze jednoznačně očíslovat čísly $1,2,\ldots,n$. Číslo n se přitom nazývá **počet prvků** množiny A a značíme ho |A|, tj. |A|=n.

Množina A se nazývá **nekonečná**, není-li konečná. Pak píšeme, že $|A| = \infty$ a říkáme, že A má **nekonečně mnoho prvků**.

Například množina $A = \{11, 13, 15, 21\}$ je konečná a |A| = 4. Množina všech přirozených čísel $\mathbb N$ je nekonečná a $|\mathbb N| = \infty$. Pro prázdnou množinu je zřejmě $|\emptyset| = 0$.

Zapisování množin

Množiny zapisujeme:

- výčtem prvků. Množina sestávající právě z prvků
 a₁,...,a_n se označuje {a₁,...,a_n}
- udáním tzv. **charakteristické vlastnosti**. Množina sestávající právě z prvků, které splňují vlastnost $\varphi(x)$, se označuje $\{x|\varphi(x)\}$. Vlastnost $\varphi(x)$ může být popsána i v přirozeném jazyce, musí ale mít jednoznačný smysl.

Poznámka: Zápis $\{x \in A | \varphi(x)\}$ označuje množinu $\{x | x \in A \text{ a } \varphi(x)\}.$

Poznámka: Často se používá zápis $\{a_i|i\in I\}$. Přitom I je množina (říká se jí **indexová**) a pro každý (index) $i\in I$ je a_i nějaký prvek. Pak $\{a_i|i\in I\}$ je množina $\{x|\exists i\in I \text{ tak, že } x=a_i\}$.

Zapisování množin

Množiny zapisujeme:

- výčtem prvků. Množina sestávající právě z prvků
 a₁,...,a_n se označuje {a₁,...,a_n}
- udáním tzv. charakteristické vlastnosti. Množina sestávající právě z prvků, které splňují vlastnost $\varphi(x)$, se označuje $\{x|\varphi(x)\}$. Vlastnost $\varphi(x)$ může být popsána i v přirozeném jazyce, musí ale mít jednoznačný smysl.

Poznámka: Zápis $\{x \in A | \varphi(x)\}$ označuje množinu $\{x | x \in A \text{ a } \varphi(x)\}.$

Poznámka: Často se používá zápis $\{a_i | i \in I\}$. Přitom I je množina (říká se jí **indexová**) a pro každý (index) $i \in I$ je a_i nějaký prvek. Pak $\{a_i | i \in I\}$ je množina $\{x | \exists i \in I \text{ tak, že } x = a_i\}$.

Poznámka: Pokud mluvíme o množině, jejíž prvky jsou opět množinami, říkáme někdy místo "množina množin" spíše "systém množin".

Poznámka: Přístup k množinám, který zde představujeme, je tzv. naivní (popř. intuitivní). Může totiž vést k paradoxům. Začátkem 20. století na ně upozornil Bertrand Russel. Přístup, ve kterém se paradoxy nevyskytují nabízí tzv. axiomatická teorie množin. Pro naše účely ale zůstaneme u naivního přístupu, je jednodušší a stačí nám.

Vztahy mezi množinami

Základními vztahy mezi množinami jsou **rovnost** (označujeme ji =) a **inkluze** (označujeme ji \subseteq). Jsou-li A a B množiny, pak A = B čteme "(množina) A se rovná (množině) B" a $A \subseteq B$ čteme "(množina) A je podmnožinou (množiny) B". Přitom

A = B znamená, že pro každý $x : x \in A$, právě když $x \in B$

 $A \subseteq B$ znamená, že pro každý x: jestliže $x \in A$, pak $x \in B$

 $A \neq B$ znamená, že neplatí A = B

 $A \nsubseteq B$ znamená, že neplatí $A \subseteq B$.

Poznámka: Všimněme si, že A = B platí, právě když je zároveň $A \subseteq B$ a $B \subseteq A$.

Množina, jejímiž prvky jsou právě všechny podmnožiny dané množiny X, se nazývá **potenční množina** množiny X; značí se $\mathscr{P}(X)$ nebo také 2^X . Tedy $2^X = \{A | A \subseteq X\}$.

Zřejmě vždy \emptyset a množina X jsou prvky množiny 2^X . Poznamenejme, že $|2^X| = 2^{|X|}$. Například pro tříprvkovou množinu $B = \{a, b, c\}$ je $|2^B| = 2^3 = 8$, přičemž $2^B = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Množina, jejímiž prvky jsou právě všechny podmnožiny dané množiny X, se nazývá **potenční množina** množiny X; značí se $\mathcal{P}(X)$ nebo také 2^X . Tedy $2^X = \{A | A \subseteq X\}$.

Zřejmě vždy \emptyset a množina X jsou prvky množiny 2^X . Poznamenejme, že $|2^X| = 2^{|X|}$. Například pro tříprvkovou množinu $B = \{a,b,c\}$ je $|2^B| = 2^3 = 8$, přičemž $2^B = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$.

Operace s množinami

Mezi základní operace s množinami patří **průnik** (značí se \cap), **sjednocení** (značí se \cup) a **rozdíl** (značí se \setminus nebo také -).

Jsou-li A,B množiny, definujeme množiny $A\cap B,\,A\cup B$ a $A\setminus B$ předpisy

$$A \cap B = \{x | x \in A \text{ a } x \in B\},$$

 $A \cup B = \{x | x \in A \text{ nebo } x \in B\},$
 $A \setminus B = \{x | x \in A \text{ a } x \notin B\}.$

Množiny A a B nazýváme (navzájem) **disjunktn**í, právě když $A \cap B = \emptyset$.

Operace s množinami

Mezi základní operace s množinami patří **průnik** (značí se ∩), sjednocení (značí se ∪) a **rozdíl** (značí se \ nebo také −).

Jsou-li A,B množiny, definujeme množiny $A\cap B, A\cup B$ a $A\setminus B$ předpisy

$$A \cap B = \{x | x \in A \text{ a } x \in B\},$$

 $A \cup B = \{x | x \in A \text{ nebo } x \in B\},$
 $A \setminus B = \{x | x \in A \text{ a } x \notin B\}.$

Množiny A a B nazýváme (navzájem) **disjunktní**, právě když $A \cap B = \emptyset$.

Často uvažujeme jednu množinu X, které říkáme **univerzum** (obor našich úvah) a pracujeme jen s množinami, které jsou podmnožinami X.

Je-li dáno nějaké univerzum X a množina $A \subseteq X$, pak **doplněk** množiny A je množina $X \setminus A$ (značíme ji \overline{A}). Například pro $X = \{1,2,3,4,5\}$ je $\overline{\{3,4\}} = \{1,2,5\}$.

Je-li $A = \{B_i | i \in I\}$ množina, jejíž prvky jsou opět množiny (systém množin), definujeme $\bigcup A = \{x | \exists i \in I : x \in B_i\}$, tedy $x \in \bigcup A$, právě když x patří do nějaké množiny, která je prvkem A. Např. $\bigcup \{\{p,q,r,s\},\{1,2\},\{q,2,3\}\} = \{p,q,r,s,1,2,3\}$.

Poznámka: Operace a základní vztahy mezi množinami můžeme ilustrovat pomocí tzv. **Vennových diagramů**. Množiny jsou znázorňovány ohraničenými uzavřenými křivkami v rovině, prvky jako body v rovině.

Často uvažujeme jednu množinu X, které říkáme **univerzum** (obor našich úvah) a pracujeme jen s množinami, které jsou podmnožinami X.

Je-li dáno nějaké univerzum X a množina $A \subseteq X$, pak **doplněk** množiny A je množina $X \setminus A$ (značíme ji \overline{A}). Například pro $X = \{1,2,3,4,5\}$ je $\overline{\{3,4\}} = \{1,2,5\}$.

Je-li $A = \{B_i | i \in I\}$ množina, jejíž prvky jsou opět množiny (systém množin), definujeme $\bigcup A = \{x | \exists i \in I : x \in B_i\}$, tedy $x \in \bigcup A$, právě když x patří do nějaké množiny, která je prvkem A. Např. $\bigcup \{\{p,q,r,s\},\{1,2\},\{q,2,3\}\} = \{p,q,r,s,1,2,3\}$.

Poznámka: Operace a základní vztahy mezi množinami můžeme ilustrovat pomocí tzv. **Vennových diagramů**. Množiny jsou znázorňovány ohraničenými uzavřenými křivkami v rovině, prvky jako body v rovině.

Často uvažujeme jednu množinu X, které říkáme univerzum (obor našich úvah) a pracujeme jen s množinami, které jsou podmnožinami X.

Je-li dáno nějaké univerzum X a množina $A \subseteq X$, pak **doplněk** množiny A je množina $X \setminus A$ (značíme ji \overline{A}). Například pro $X = \{1,2,3,4,5\}$ je $\overline{\{3,4\}} = \{1,2,5\}$.

Je-li $A = \{B_i | i \in I\}$ množina, jejíž prvky jsou opět množiny (systém množin), definujeme $\bigcup A = \{x | \exists i \in I : x \in B_i\}$, tedy $x \in \bigcup A$, právě když x patří do nějaké množiny, která je prvkem A. Např. $\bigcup \{\{p,q,r,s\},\{1,2\},\{q,2,3\}\} = \{p,q,r,s,1,2,3\}$.

Poznámka: Operace a základní vztahy mezi množinami můžeme ilustrovat pomocí tzv. **Vennových diagramů**. Množiny jsou znázorňovány ohraničenými uzavřenými křivkami v rovině, prvky jako body v rovině.

Věta

Pro množiny A, B, C platí:

- \bullet $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$, $A \cup A = A$, $A \cap A = A$
- $\bullet \ A \cup B = B \cup A, \quad A \cap B = B \cap A$
- $\bullet (A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\bullet \ A \cup (A \cap B) = A, \quad A \cap (A \cup B) = A.$

Příklad

```
Pomocí Vennového diagramu zjistěte jaké prvky patří do množin C, C-A a C-B, je-li: univerzum X=\{1,2,3,4,5,6,7,8,9,10,11\} A\cap B\cap C=\{5,6\} X-(A\cup B\cup C)=\{9,10\} B\cap C=\{5,6,7\} A\cap C=\{4,5,6\} A\cap B=\{2,3,5,6\} A=\{1,2,3,4,5,6\} B=\{2,3,5,6,7,8\}.
```

Řešení: jednoduché.