Sublinear Algorihms for Big Data

Lecture 2

Grigory Yaroslavtsev

http://grigory.us

Recap

• (Markov) For every c > 0:

$$\Pr[X \ge c \ \mathbb{E}[X]] \le \frac{1}{c}$$

• (Chebyshev) For every c > 0:

$$\Pr[|X - \mathbb{E}[X]| \ge c \mathbb{E}[X]] \le \frac{Var[X]}{(c \mathbb{E}[X])^2}$$

• (Chernoff) Let $X_1 \dots X_t$ be independent and identically distributed r.vs with range [0, c] and expectation μ . Then if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$\Pr[|X - \mu| \ge \delta \mu] \le 2 \exp\left(-\frac{t\mu\delta^2}{3c}\right)$$

Today

- Approximate Median
- Alon-Mathias-Szegedy Sampling
- Frequency Moments
- Distinct Elements
- Count-Min

Data Streams

• Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g.

$$\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$$

• f_i = frequency of i in the stream = # of occurrences of value i

$$f = \langle f_1, \dots, f_n \rangle$$

Approximate Median

- $S = \{x_1, ..., x_m\}$ (all distinct) and let $rank(y) = |x \in S : x \le y|$
- Problem: Find ϵ -approximate median, i.e. y such that

$$\frac{m}{2} - \epsilon m < rank(y) < \frac{m}{2} + \epsilon m$$

- Exercise: Can we approximate the value of the median with additive error $\pm \epsilon n$ in sublinear time?
- Algorithm: Return the median of a sample of size t taken from S (with replacement).

Approximate Median

• Problem: Find ϵ -approximate median, i.e. y such that

$$\frac{m}{2} - \epsilon m < rank(y) < \frac{m}{2} + \epsilon m$$

- Algorithm: Return the median of a sample of size t taken from S (with replacement).
- Claim: If $t=\frac{7}{\epsilon^2}\log\frac{2}{\delta}$ then this algorithm gives ϵ -median with probability $1-\delta$

Approximate Median

Partition S into 3 groups

$$S_{L} = \left\{ x \in S : rank(x) \le \frac{m}{2} - \epsilon m \right\}$$

$$S_{M} = \left\{ x \in S : \frac{m}{2} - \epsilon m \le rank(x) \le \frac{m}{2} + \epsilon m \right\}$$

$$S_{U} = \left\{ x \in S : rank(x) \ge \frac{m}{2} + \epsilon m \right\}$$

- **Key fact**: If less than $\frac{t}{2}$ elements from each of S_L and S_U are in sample then its median is in S_M
- Let $X_i = 1$ if i-th sample is in S_L and 0 otherwise.
- Let $X = \sum_i X_i$. By Chernoff, if $t > \frac{7}{\epsilon^2} \log \frac{2}{\delta}$

$$\Pr\left[X \ge \frac{t}{2}\right] \le \Pr\left[X \ge (1+\epsilon)\mathbb{E}[X]\right] \le e^{-\frac{\epsilon^2\left(\frac{1}{2}-\epsilon\right)t}{3}} \le \frac{\delta}{2}$$

• Same for S_U + union bound \Rightarrow error probability $\leq \delta$

AMS Sampling

- Problem: Estimate $\sum_{i \in [n]} g(f_i)$, for an arbitrary function g with g(0) = 0.
- Estimator: Sample x_{J} , where J is sampled uniformly at random from [m] and compute:

$$r = \left| \left\{ j \ge \boldsymbol{J} : x_j = x_{\boldsymbol{J}} \right\} \right|$$

Output: X = m(g(r) - g(r - 1))

• Expectation:

$$\mathbb{E}[X] = \sum_{i} \Pr[x_{J} = i] \mathbb{E}[X|x_{J} = i]$$

$$= \sum_{i} \frac{f_{i}}{m} \left(\sum_{r=1}^{f_{i}} \frac{m(g(r) - g(r-1))}{f_{i}} \right) = \sum_{i} g(f_{i})$$

- Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2,...\}$
 - $-F_0 = \#$ number of distinct elements
 - $-F_1 = \#$ elements
 - $-F_2$ = "Gini index", "surprise index"

- Define $F_k = \sum_i f_i^k$ for $k \in \{0,1,2,...\}$
- Use AMS estimator with $\mathbf{X} = m (r^k (r-1)^k)$ $\mathbb{E}[\mathbf{X}] = F_k$
- Exercise: $0 \le X \le m k f_*^{k-1}$, where $f_* = \max_i f_i$
- Repeat t times and take average \widehat{X} . By Chernoff:

$$\Pr[|\widehat{X} - F_k| \ge \epsilon F_k] \le 2 \exp\left(-\frac{tF_k \epsilon^2}{3m \ k \ f_*^{k-1}}\right)$$

 $\bullet \ \ \text{Taking} \ t = \frac{3mkf_*^{k-1}\log\frac{1}{\delta}}{\epsilon^2F_k} \ \text{gives} \ \Pr[\left|\widehat{\pmb{X}} - F_k\right| \geq \epsilon F_k] \leq \delta$

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

- Result: $t = \frac{3mkf_*^{k-1}\log\frac{1}{\delta}}{\epsilon^2F_k} = O\left(\frac{kn^{1-\frac{1}{k}}\log\frac{1}{\delta}}{\epsilon^2}\log n\right)$ memory suffices for (ϵ,δ) -approximation of F_k
- Question: What if we don't know m?
- Then we can use probabilistic guessing (similar to Morris's algorithm), replacing $\log n$ with $\log nm$.

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

- Exercise: $F_k \ge n \left(\frac{m}{n}\right)^k$ (Hint: worst-case when $f_1 = \cdots = f_n = \frac{m}{n}$. Use convexity of $g(x) = x^k$).
- Case 1: $f_*^k \le n \left(\frac{m}{n}\right)^k$

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mn^{1-\frac{1}{k}} \left(\frac{m}{n}\right)^{k-1}}{n \left(\frac{m}{n}\right)^k} = n^{1-\frac{1}{k}}$$

Lemma:

$$\frac{mf_*^{k-1}}{F_k} \le n^{1-1/k}$$

• Case 2:
$$f_*^k \ge n \left(\frac{m}{n}\right)^k$$

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mf_*^{k-1}}{f_*^k} \le \frac{m}{f_*} \le \frac{m}{n^{1-\frac{1}{k}}} \left(\frac{m}{n}\right) = n^{1-\frac{1}{k}}$$

Hash Functions

• Definition: A family H of functions from $A \to B$ is k-wise independent if for any distinct $x_1, \dots, x_k \in A$ and $i_1, \dots i_k \in B$:

$$\Pr_{h \in_R H} [h(x_1) = i_1, h(x_2) = i_2, \dots, h(x_k) = i_k] = \frac{1}{|B|^k}$$

• Example: If $A \subseteq \{0, ..., p-1\}, B = \{0, ..., p-1\}$ for prime p

$$H = \left\{ h(x) = \sum_{i=0}^{k-1} a_i x^i \mod p: 0 \le a_0, a_1, \dots, a_{k-1} \le p-1 \right\}$$

is a k-wise independent family of hash functions.

Linear Sketches

- Sketching algorithm: picks a random matrix $Z \in \mathbb{R}^{k \times n}$, where $k \ll n$ and computes Zf.
- Can be incrementally updated:
 - We have a sketch Zf
 - When i arrives, new frequencies are $f' = f + e_i$
 - Updating the sketch:

$$Zf' = Z(f + e_i) = Zf + Ze_i$$

= $Zf + (i - th \ column \ of \ Z)$

Need to choose random matrices carefully

F_2

- Problem: (ϵ, δ) -approximation for $F_2 = \sum_i f_i^2$
- Algorithm:
 - Let Z ∈ $\{-1,1\}^{k \times n}$, where entries of each row are 4-wise independent and rows are independent
 - Don't store the matrix: k 4-wise independent hash functions σ
 - Compute Zf, average squared entries "appropriately"
- Analysis:
 - Let s be any entry of Zf.
 - Lemma: $\mathbb{E}[s^2] = F_2$
 - Lemma: $Var[s^2] \le 4F_2^2$

F_2 : Expectaton

• Let σ be a row of Z with entries $\sigma_i \in_R \{-1,1\}$.

$$\mathbb{E}[s^{2}] = \mathbb{E}\left[\left(\sum_{i=1}^{n} \sigma_{i} f_{i}\right)^{2}\right]$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} \sigma_{i}^{2} f_{i}^{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i} \sigma_{j} f_{i} f_{j}]\right)$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} f_{i}^{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i} \sigma_{j}] f_{i} f_{j}\right)$$

$$= F_{2} + \sum_{i \neq j} \mathbb{E}[\sigma_{i}] \mathbb{E}[\sigma_{j}] f_{i} f_{j} = F_{2}$$

• We used 2-wise independence for $\mathbb{E}[\sigma_i \sigma_j] = \mathbb{E}[\sigma_i]\mathbb{E}[\sigma_j]$.

F_2 : Variance

$$\mathbb{E}[(X^2 - \mathbb{E}X^2)^2] = \mathbb{E}\left(\sum_{i \neq j} \sigma_i \sigma_j f_i f_j\right)^2$$

$$= \mathbb{E}\left(2\sum_{i \neq j} \sigma_i^2 \sigma_j^2 f_i^2 f_j^2 + 4\sum_{i \neq j \neq k} \sigma_i^2 \sigma_j \sigma_k f_i^2 f_j f_k\right)$$

$$+ 24\sum_{i < j < k < l} \sigma_i \sigma_j \sigma_k \sigma_l f_i f_j f_k f_l\right)$$

$$= 2\sum_{i \neq j} f_i^2 f_j^2 + 4\sum_{i \neq j \neq k} \mathbb{E}[\sigma_j \sigma_k] f_i^2 f_j f_k$$

$$+ 24\sum_{i < j < k < l} \mathbb{E}[\sigma_i \sigma_j \sigma_k \sigma_l] f_i f_j f_k f_l \le 2 F_2^2$$

• $\mathbb{E}[\sigma_i \sigma_j \sigma_k \sigma_l] = \mathbb{E}[\sigma_i] \mathbb{E}[\sigma_j] \mathbb{E}[\sigma_k] \mathbb{E}[\sigma_l] = 0$ by 4-wise independence

F_0 : Distinct Elements

- Problem: (ϵ, δ) -approximation for $F_0 = \sum_i f_i^0$
- Simplified: For fixed T>0, with prob. $1-\delta$ distinguish:

$$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$$

• Original problem reduces by trying $O\left(\frac{\log n}{\epsilon}\right)$ values of T:

$$T = 1, (1 + \epsilon), (1 + \epsilon)^2, ..., n$$

F_0 : Distinct Elements

• Simplified: For fixed T>0, with prob. $1-\delta$ distinguish:

$$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$$

- Algorithm:
 - Choose random sets $S_1, ..., S_k \subseteq [n]$ where $\Pr[i \in S_j] = \frac{1}{T}$
 - Compute $s_j = \sum_{i \in S_j} f_i$
 - If at least k/e of the values s_j are zero, output $F_0 < (1 \epsilon)T$

$F_0 > (1 + \epsilon)T \text{ vs. } F_0 < (1 - \epsilon)T$

Algorithm:

- Choose random sets $S_1, \dots, S_k \subseteq [n]$ where $\Pr[i \in S_j] = \frac{1}{T}$
- Compute $s_j = \sum_{i \in S_j} f_i$
- If at least k/e of the values s_j are zero, output $F_0 < (1-\epsilon)T$

Analysis:

- If
$$F_0 > (1 + \epsilon)T$$
, then $\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3}$

- If
$$F_0 < (1 - \epsilon)T$$
, then $\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3}$

– Chernoff:
$$k = O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$$
 gives correctness w.p. $1 - \delta$

$F_0 > (1 + \epsilon)T$ vs. $F_0 < (1 - \epsilon)T$

Analysis:

- If
$$F_0 > (1 + \epsilon)T$$
, then $\Pr[s_j = 0] < \frac{1}{e} - \frac{\epsilon}{3}$
- If $F_0 < (1 - \epsilon)T$, then $\Pr[s_j = 0] > \frac{1}{e} + \frac{\epsilon}{3}$

• If T is large and ϵ is small then:

$$\Pr[s_j = 0] = \left(1 - \frac{1}{T}\right)^{F_0} \approx e^{-\frac{F_0}{T}}$$

• If $F_0 > (1 + \epsilon)T$:

$$e^{-\frac{F_0}{T}} \le e^{-(1+\epsilon)} \le \frac{1}{e} - \frac{\epsilon}{3}$$

• If $F_0 < (1 - \epsilon)T$:

$$e^{-\frac{F_0}{T}} \ge e^{-(1-\epsilon)} \ge \frac{1}{e} + \frac{\epsilon}{3}$$

Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g. $\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$
- f_i = frequency of i in the stream = # of occurrences of value $i, f = \langle f_1, ..., f_n \rangle$
- Problems:
 - Point Query: For $i \in [n]$ estimate f_i
 - Range Query: For $i, j \in [n]$ estimate $f_i + \cdots + f_j$
 - Quantile Query: For $\phi \in [0,1]$ find j with $f_1 + \cdots + f_j \approx \phi m$
 - Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$

Count-Min Sketch: Construction

- Let $H_1, ..., H_d$: $[n] \rightarrow [w]$ be 2-wise independent hash functions
- We maintain $d \cdot w$ counters with values: $c_{i,j} = \#$ elements e in the stream with $H_i(e) = j$
- For every x the value $c_{i,H_i(x)} \ge f_x$ and so: $f_x \le \widetilde{f_x} = \min(c_{1,H_1(x)},\dots,c_{d,H_1(d)})$
- If $w = \frac{2}{\epsilon}$ and $d = \log_2 \frac{1}{\delta}$ then: $\Pr[f_{\mathcal{X}} \leq \widetilde{f_{\mathcal{X}}} \leq f_{\mathcal{X}} + \epsilon m] \geq 1 - \delta.$

Count-Min Sketch: Analysis

• Define random variables $Z_1 \dots, Z_k$ such that $c_{i,H_i(x)} = f_x + Z_i$

$$\mathbf{Z}_{i} = \sum_{y \neq x, H_{i}(y) = H_{i}(x)} f_{y}$$

• Define $X_{i,y} = 1$ if $H_i(y) = H_i(x)$ and 0 otherwise:

$$\mathbf{Z}_i = \sum_{y \neq x} f_y \mathbf{X}_{i,y}$$

• By 2-wise independence:

$$\mathbb{E}[\boldsymbol{Z}_i] = \sum_{y \neq x} f_y \, \mathbb{E}[\boldsymbol{X}_{i,y}] = \sum_{y \neq x} f_y \, \Pr[H_i(y) = H_i(x)] \le \frac{m}{w}$$

By Markov inequality,

$$\Pr[\mathbf{Z}_i \ge \epsilon m] \le \frac{1}{w \ \epsilon} = \frac{1}{2}$$

Count-Min Sketch: Analysis

• All Z_i are independent

$$\Pr[Z_i \ge \epsilon m \ for \ all \ 1 \le i \le d] \le \left(\frac{1}{2}\right)^a = \delta$$

- The w.p. 1δ there exists j such that $Z_j \leq \epsilon m$ $\widetilde{f}_{\chi} = \min(c_{1,H_1(\chi)}, \dots, c_{d,H_d(\chi)}) =$
 - $= \min(f_{x}, +Z_{1} \dots, f_{x} + Z_{d}) \le f_{x} + \epsilon m$
- CountMin estimates values f_{χ} up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log \frac{1}{\delta}}{\epsilon^2}\right)$

Dyadic Intervals

• Define $\log n$ partitions of [n]:

```
\begin{split} I_0 &= \{1,2,3,\dots n\} \\ I_1 &= \big\{\{1,2\},\{3,4\},\dots,\{n-1,n\}\big\} \\ I_2 &= \{\{1,2,3,4\},\{5,6,7,8\},\dots,\{n-3,n-2,n-1,n\}\} \\ \dots \\ I_{\log n} &= \{\{1,2,3,\dots,n\}\} \end{split}
```

- Exercise: Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For n = 256: $[48,107] = [48,48] \cup [49,64] \cup [65,96] \cup [97,104] \cup [105,106] \cup [107,107]$

Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in [n]$ estimate $f_i + \cdots f_j$
- Approximate median: Find j such that:

$$f_1 + \dots + f_j \ge \frac{m}{2} + \epsilon m$$
 and
$$f_1 + \dots + f_{j-1} \le \frac{m}{2} - \epsilon m$$

Count-Min: Range Queries and Quantiles

• Algorithm: Construct $\log n$ Count-Min sketches, one for each I_i such that for any $I \in I_i$ we have an estimate \tilde{f}_I for f_I such that:

$$\Pr[f_l \le \widetilde{f}_l \le f_l + \epsilon m] \ge 1 - \delta$$

• To estimate [i,j], let $I_1 \dots, I_k$ be decomposition: $\widetilde{f_{[i,j]}} = \widetilde{f_{l_1}} + \dots + \widetilde{f_{l_k}}$

• Hence,

$$\Pr[f_{[i,i]} \le \widetilde{f_{[i,i]}} \le 2 \epsilon m \log n] \ge 1 - 2\delta \log n$$

Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$ but no elements with $f_i \le (\phi \epsilon)m$
- Algorithm:
 - Consider binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendant leaves
 - Compute Count-Min sketches for each I_i
 - Level-by-level from root, mark children I of marked nodes if $\widetilde{f}_l \ge \phi m$
 - Return all marked leaves
- Finds heavy-hitters in $O(\phi^{-1} \log n)$ steps

Thank you!

• Questions?