UNIVERSIDADE FEDERAL DO PARANÁ

Athos Bryan Oliveira João Victor Padilha Luiz Augusto Dembicki Fernandes Thiago Zagonel de Linhares

ANÁLISE DE FALHA EM UNIDADES DE PRODUÇÃO DE FERTILIZANTES

Trabalho apresentado ao curso de Graduação em Engenharia Química, Setor de Tecnologia, Universidade Federal do Paraná, como requisito parcial à aprovação na disciplina Resistência dos Materiais. Orientador:Prof.Dr.Haroldo de Araújo Ponte

SUMÁRIO

<u>SUMARIO</u>	3
INTRODUÇÃO	3
MOTIVAÇÃO	5
1. PRIMEIRO CASO	6
2.1 DESCRIÇÃO DO SISTEMA	6
2.2 ANÁLISE DA FALHA	7
2.3 CONCLUSÕES E RECOMENDAÇÕES	8
2. SEGUNDO CASO	9
3.1 DESCRIÇÃO DO SISTEMA	9
3.2 ANÁLISE DA FALHA	9
3.3 CONCLUSÕES E RECOMENDAÇÕES	13
REFERÊNCIAS	14

INTRODUÇÃO

A corrosão pode ser entendida como um processo de degradação ou destruição de material, consequente de uma ação química ou eletroquímica. A degradação pode ser total, parcial, superficial ou estrutural e trazem consequências severas ao material e a operação que o mesmo está sendo utilizado. A corrosão pode desencadear diversos defeitos em estruturas, equipamentos, tubulações e peças metálicas. A presença dos defeitos de corrosão, somada aos fatores de suscetibilidade podem gerar falhas no material. As falhas podem trazer grandes riscos para a qualidade do processo, para o meio ambiente e para a saúde e segurança das pessoas. Por isso há a necessidade do monitoramento, análise, e entendimento de tudo que permeia a corrosão dentro do processo a ser estudado, avaliando os locais passíveis e agindo para prevenir a degradação. Além disso, é importante fazer a análise de falhas anteriores para evitar que erros semelhantes ocorram.

O processo de produção de fertilizantes é passível de falhas de corrosão por conta da composição química dos fertilizantes. São produtos químicos que, em estado líquido, podem reagir entre si formando produtos agressivos à superfície metálica.

Como na produção industrial de fertilizantes são utilizados diversos equipamentos metálicos que têm contato direto e contínuo com o material, é de extrema importância avaliar o processo e propor formas de evitar a recorrência da corrosão. A partir da avaliação, podemos determinar as melhores condições para o processo, relacionando a capacidade produtiva com a melhora da vida útil dos equipamentos e maior segurança no processo industrial.

1. MOTIVAÇÃO

O papel do engenheiro químico é cuidar do processo de transformação dos recursos naturais em produtos úteis e refinados. A transformação de materiais através de processos físicos e químicos é crucial para a criação de uma ampla gama de produtos de uso diário. O engenheiro é fundamental na criação de novos materiais e na garantia do êxito na cadeia produtiva. São diversas as áreas de atuação do Engenheiro Químico, desde tratamento de efluentes até a indústria petroquímica. Onde há processos químicos envolvidos, há a necessidade de um Engenheiro Químico para fazer a gestão e acompanhamento do processo, evitando perdas, garantindo a segurança, e otimizando continuamente a indústria.

Na indústria de fertilizantes há diversos processos químicos que necessitam do acompanhamento de um Engenheiro, e por isso, no presente relatório são estudados 3 artigos que fazem uma análise das falhas ocorridas em operações relacionadas aos fertilizantes. Com isso, será possível avaliar os erros cometidos em cada caso e fazer considerações para que falhas como as investigadas não ocorram, e caso ocorram, sejam tratadas rapidamente da melhor forma possível.

2. PRIMEIRO CASO

2.1 DESCRIÇÃO DO SISTEMA

No caso relatado por Liu *et. al* (2022), uma planta de produção de fertilizantes apresentou início repentino de vazamentos em uma tubulação de aço carbono. Após o vazamento a tubulação foi trocada por uma de aço inox 304 e apresentou trincas novamente.

A tubulação que apresentou falha fazia parte do processo de produção de aldeído de octano. A planta convertia Butanal em 2-etil-2-hexeno e água na torre de condensação, essa reação é catalisada por NaOH. A tubulação que apresentou o vazamento estava localizada imediatamente após a torre de condensação e o conteúdo da tubulação continha 2-etil-2-hexeno, hidróxido de sódio e água. Antes da da falha a planta operou em 110% de capacidade por um ano e o conteúdo de hidróxido de sódio estava maior do que o normal. O local da falha é representado na figura 1

FIGURA 1 - Localização da falha

Fonte: Liu et al. (2022)

O local foi analisado para verificar a composição química da tubulação, com análise macroscópica e microscópica da falha, e da composição do material da corrosão.

Na análise metalúrgica se observou diferença na composição química e na microestrutura na região da matriz do metal e nas regiões da solda. Ao analisar as trincas formadas no material, os autores notaram que elas se concentram na região de fusão e que no interior das trincas havia uma concentração mais elevada de Sódio e Enxofre. O produto de corrosão coletado era formado por NaFeO2*H2O que é o produto característico da corrosão cáustica, por isso os autores classificaram o caso como corrosão cáustica.

2.2 ANÁLISE DA FALHA

Durante a análise do caso, Liu et al (2022), concluíram se tratar de um caso de corrosão cáustica. A corrosão cáustica, também chamada de fendimento por álcali é um um tipo de corrosão que ocorre em meios alcalinos, ocorrendo mais frequentemente em caldeiras que usam bases para proteger a tubulação. Esse tipo de falha ocorre em locais de tensão sobre o material, como em regiões de solda. Normalmente ela se inicia com a deposição do hidróxido de sódio em uma região do material, que se acumula podendo chegar a concentrações tão elevadas quanto 350 g/L. Essa solução concentrada acaba atacando o metal causando corrosão. (GENTIL, 2022).

O mecanismo mais provável para esse ataque é a formação de hidrogênio pela reação do aço pela solução básica concentrada.

$$Fe + 2 NaOH \rightarrow Na_2 FeO_2 + H_2$$
 (1)

No caso avaliado, o mecanismo de falha proposto por Liu et al (2022), foi o seguinte: primeiro ocorre a perda da passivação do material, depois ocorre corrosão intergranular, permitindo o depósito de hidróxido de sódio e a formação de trincas por corrosão cáustica. O mecanismo proposto está ilustrado na Figura 2.

(c)

| Columbia | Colu

FIGURA 2 - Mecanismo da corrosão

Fonte: Liu et al. (2022)

2.3 CONCLUSÕES E RECOMENDAÇÕES

A falha foi causada por corrosão cáustica, atacando a região de solda do material. Como essa corrosão normalmente ocorre em regiões do material que estão sujeitas a uma tensão maior, recomenda-se realizar tratamento térmico da região da solda para reduzir as tensões. Essa foi uma das recomendações feitas pelos autores do artigo, que recomendaram usar tubulação de aço carbono e prestar mais atenção à qualidade da soldagem e realizar tratamento térmico posterior.

As recomendações realizadas por Liu et al (2022), incluem reduzir a concentração de hidróxido de sódio, e trocar o material da tubulação por um material mais resistente à corrosão como aço inoxidável austenítico.

3. SEGUNDO CASO

3.1 DESCRIÇÃO DO SISTEMA

Sivasprad, Narang e Singh (2006), relatam o caso de uma planta de produção de fertilizantes que apresentou vazamento em uma tubulação de amônia líquida. O vazamento ocorria através de um furo com 2 a 3 mm de diâmetro que atravessa o tubo, localizado em uma porção horizontal da tubulação. O exato mesmo ponto da tubulação já havia apresentado vazamentos em várias ocasiões, causando interrupção no funcionamento da planta.

A tubulação com vazamento transportava amônia líquida do aquecedor de amônia até o reator para produção de uréia. Nas plantas de fertilizantes normalmente são usadas tubulações de aço carbono com alto teor de manganês, para essa finalidade.

3.2 ANÁLISE DA FALHA

Uma seção da tubulação foi retirada para avaliação. À inspeção, ela apresentava um orifício atravessando toda a espessura do cano, além de trincas longitudinais de 4 a 5 mm de comprimento, se propagando a partir do orifício. Essas trincas eram visíveis a olho nu na superfície externa, mas só foram visualizadas após polimento na superfície interna da tubulação. A parte externa apresentava vários pontos rasos de pitting, mas a superfície interna não apresentava corrosão ou sinais de pitting. O aspecto da tubulação está presente na Figura 3.

FIGURA 3 - Aspecto da seção da tubulação com falha

Fonte: Sivasprad, Narang e Singh (2006)

Amostras da tubulação foram retiradas para análise da composição química e das propriedades mecânicas.

Para análise microscópica da falha tubulação foi cortada e quebrada em nitrogênio líquido e submetida a microscopia eletrônica e a composição química das áreas de corrosão foi analisada por espectroscopia de raio-X. A Figura 4 mostra o orifício atravessando toda a espessura do material, o lado direito da imagem corresponde à parte externa da tubulação.

B B B A A A

FIGURA 4 - Imagem da fratura na tubulação

Fonte: Sivasprad, Narang e Singh (2006)

Segundo os autores, a composição e as propriedades mecânicas do material estavam dentro do esperado para esse tipo de aço. Porém na microscopia eletrônica se notou que a largura do orifício era maior na superfície externa do que na interno, e vários pites menores eram visíveis ao redor do orifício no exterior da tubulação. Enquanto o interior não apresentava pitting nem sinais de corrosão. Assim, Sivasprad, Narang e Singh (2006) concluíram que a corrosão se iniciou na parte externa do cano. A superfície externa da tubulação apresentava severa corrosão por pitting e um dos pites se desenvolveu mais acentuadamente causando a falha.

Vários fatores podem levar a corrosão por pitting, um dos fatores mais frequentemente associados a esse tipo de falha é a presença de íons de Cloro. E no caso estudado os resultados da espectroscopia de raios-X mostrou a presença de íons cloreto na abertura dos pites, favorecendo a conclusão de que a corrosão foi causada por Cloro. Os resultados do ensaio de espectroscopia são apresentados na Tabela 1.

TABELA 1 - Resultados da espectroscopia por raios-X

Elt	X-ray	Int	Error	K	K ratio	W %	A%
Na	Ka	2.9	0.1859	0.0400	0.0323	8.37	13.35
Al	Ka	2.3	0.1657	0.0314	0.0253	4.08	5.54
Si	Ka	5.7	0.2586	0.0796	0.0642	8.75	11.42
S	Ka	5.1	0.2456	0.0905	0.0731	8.49	9.71
Cl	Ka	8.1	0.3089	0.1572	0.1269	15.20	15.71
K	Ka	7.0	0.2871	0.1624	0.1311	14.92	13.99
Ca	Ka	6.4	0.2753	0.1643	0.1326	15.15	13.85
Fe	Ka	5.1	0.2444	0.2745	0.2215	25.05	16.44

Fonte: Sivasprad, Narang e Singh (2006)

Inicialmente os autores consideraram que os íons cloreto viriam da água usada para lavar a tubulação após o processo, no entanto, a análise química da água não apresentava esse íon e a corrosão parece ter iniciado pela parte externa do tubo. Além disso, a planta está em uma região de litoral, onde o ar é úmido e rico em íons cloreto, explicando porque a corrosão teria iniciado pela parte externa.

A corrosão por pites é um tipo de corrosão localizada, que ocorre em pequenas áreas localizadas na superfície metálica, sendo caracterizada por cavidades com profundidade maior do que o seu diâmetro. Essa forma de corrosão é favorecida pela presença de íons cloreto no meio corrosivo. O mecanismo da corrosão inicia com o íon cloreto penetrando da película de passivação sobre a superfície do metal (No caso do aço carbono, Fe₂O₃), aumentando a condutividade iônica da película e causando o ataque anódico. O íon é adsorvido na interface entre a película e o metal, reduzindo a energia interfacial e causando fratura ou deslocamento da película. Inicialmente a corrosão ocorre lentamente, mas uma vez que o pite é formado, ele cria condições que favorecem a corrosão e o processo passa a se amplificar. Primeiro ocorre oxidação do ferro na área anódica, no interiro do pite:

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$
 (2)

Isso gera um excesso de cargas positivas no interior do pite, levando à migração de íons cloreto, pois estes apresentam maior mobilidade que os íons OH⁻ e formando cloreto de ferro. Este reage formando ácido clorídrico:

$$FeCl_2 + 2H_2O \rightarrow Fe(OH)_2 + 2H^+ + 2Cl^-$$
 (3)

E isso acelera o processo corrosivo pois o ácido clorídrico formado ataca o ferro:

$$Fe + 2HCl \rightarrow FeCl_2 + H_2$$
 (4)

3.3 CONCLUSÕES E RECOMENDAÇÕES

No caso de falha relatado por Sivasprad, Narang e Singh (2006), uma tubulação de uma indústria de fertilizantes apresentou vazamento devido à corrosão por pite, que provavelmente foi iniciada devido à umidade e ao cloreto presentes na atmosfera de uma região marinha. A formação do pite e seu crescimento rápido levaram à falha da tubulação. Os autores do artigo não apresentaram recomendações para prevenir a mesma falha no futuro. No entanto, uma medida comumente usada para proteger o aço carbono de atmosferas marinhas é o revestimento com tintas de alto desempenho, como resina à base de poliuretano, epóxi ou silicatos de zinco (GENTIL, 2022).

REFERÊNCIAS

GENTIL, Vicente. **Corrosão**. Grupo GEN, 2022. *E-book*. ISBN 9788521637998. Disponível em:

https://integrada.minhabiblioteca.com.br/#/books/9788521637998/

LIU, Menghao; ZHANG, Ziyang; CHAI, Peilin; GUO, Chuang; DU, Cuiwei; LIU, Zhiyong; SUN, Meihui; FAN, Endian; SHANG, Xueliang; LI, Xiaogang.Caustic Corrosion Cracking of the octene tube in the fertilizer industry. **Engineering Failure Analysis.** Vol. 133, março de 2022. Disponível em:

https://www.sciencedirect.com/science/article/pii/S1350630721008141#f0005">https://www.sciencedirect.com/science/article/pii/S1350630721008141#f0005

SIVAPRASAD, S.; NARANG, S. K.; SINGH, R. Failure of a high pressure ammonia line in a fertilizer plant - a case study. **Engineering Failure Analysis.** Vol. 13, f. 6, p. 867-875, setembro de 2006. Disponível em:

https://www.sciencedirect.com/science/article/pii/S135063070500155X

DSILVA, Preetish C.; BHAT, Sadhana; BANAPPANAVAR, Jagadish; KODANCHA, Krishnaraja G.; HEGDE, Subray R. Premature failure of superheater tubes in a fertilizer plant. **Engineering Failure Analysis.** Vol 121, março de 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S1350630720316769>