COMP2119C Data Structures & Algorithms

2024-25

Tutorial 1 – Graph Terminology (Appendix)

Jeff Siu

Definition of a Graph

A graph G = (V, E) consists of

- V, the set of vertices (nodes, points), and
- E, the set of edges (lines)

Undirected graphs are graphs where edges have no direction (E: unordered pairs of V).

Example:

$$V = \{u, x, y, z\}$$

 $E = \{(x, y), (x, z), (y, u), (z, x), (z, u)\}$

Simple Graphs and Multigraphs

Simple graphs - at most one edge between any pair of vertices, no self-loop.

Unless otherwise stated, a "graph" means a simple graph.

Multi-graphs - having multiple edges between the same (ordered) pair of vertices, self-loops allowed

If x, y are two vertices, and $e = \{x, y\}$ is in E, then

- x and y are adjacent
- e is **incident** with x and y
- x and y are the endpoints of e

Graph Degree

The degree of a vertex of a graph is the number of edges that are incident to the vertex.

Example: deg(y)=2, deg(u)=2, deg(x)=3, deg(z)=5

Graph Degree

For an undirected graph G = (V, E):

$$\sum_{v \in V} deg(v) = ? 2|E|$$

Proof: Every edge is counted twice in counting degrees.

For a directed graph G=(V, E),

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$
in-degree
out-degree

Graph Operations

A graph H = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V, E' \subseteq E$.

d

Is this a subgraph of G?

The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

Paths

A path of length n from u to v in a graph G is a sequence of edges e_1 , e_2 , ..., e_n , such that $e_1=(u,x_1)$, $e_2=(x_1,x_2)$, ..., $e_n=(x_{n-1},v)$.

A path is simple if it doesn't contain the same vertex more than once.

Example:

> Undirected graph:

Not a path
A path

> Directed graph:

Circuits

A circuit of length n in a graph G is a sequence of edges e_1 , e_2 , ..., e_n , such that $e_1=(x_0,x_1)$, $e_2=(x_1,x_2)$, ..., $e_n=(x_{n-1},x_0)$.

i.e., a circuit is a path that starts and ends at the same vertex.

A cycle is a circuit that does not contain the same vertex more than once.

Simple Paths

If there is a path between *u* and *v*, then there is a simple path between *u* and *v*.

Example:

$$u \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow a \rightarrow b \rightarrow v$$
 is a path $u \rightarrow a \rightarrow b \rightarrow v$ is a simple path $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow a$ is a circuit

