Specifying and synthesizing Shield logically using DCSYNTH

Amol Wakankar, Paritosh K. Pandya and Raj Mohan Matteplackel

1 Formalization

Different notions of shield synthesis can be specified using hard and soft goals in DCSYNTH. We give several such definitions below. In the following, given a set of variables

- Conservative burst error shield.
 - Input: $I \cup O$. Output: O1
 - Hard requirement: REQ[0/01]
 - Soft requirement: $\wedge_{o \in O}$ (true ^ <0=01>)
- Conservative k-shield-V1
 - Input: $I \cup O$. Output: O1
 - Hard requirement: REQ[0/01]&&[]([[$\vee_{o \in O}$ (o \neq o1)]]=>slen<k).
- Conservative k-shield-V2.
 - Input: $I \cup O$. Output: O1
 - Hard requirement: REQ[0/01]&&[]([[ind && $\vee_{o \in O}(o \neq o 1)]] = slen < k$).
 - Indicator ind : REQ(I,0)
- Conservative k-shield-V3.
 - Input: $I \cup O$. Output: O1
 - Hard requirement: REQ[0/01]&&[]([[ind && $\lor_{o \in O}(o \neq o 1)]] => slen < k$).
 - Indicator ind : exists 02. ((([02=01] || pt)^<02=0>) && REQ(I,02)

2 Experiments

In this section we give the time and the states for the following formulas for each sheild.

- $\varphi_0 = \mathcal{G} \neg q \lor \mathcal{F}_{<=n}(q \land \mathcal{F}_{<=n}p)$. The corresponding QDDC formula is given by [[!q]] || (slen <= n) ^ <q> ^ (slen <= n) ^ <p>^ true.
- $\varphi_1 = \mathcal{G} \neg q \lor \mathcal{F}_{<=n}(q \land \mathcal{F}_{<=n}p)$. The corresponding QDDC formula is given by [[!q]] || pref((slen <= n) ^ <q> ^ (slen <= n) ^ <p> ^ true).

- $\varphi_2 = \mathcal{G}((q \wedge \neg r) => \neg r \mathcal{U}_{<=n}(p \wedge \neg r))$. The corresponding QDDC formula is []((<q && !r> ^ true) => ((([!r]||pt) && slen <= n) ^ <p&!r> ^ true) || ([[!r]] && slen<n)).
- $\varphi_3 = \mathcal{G} \ ((x => y \lor z) \land ((z \land \mathcal{X} \ ^n true) => \mathcal{X} \ \mathcal{G} \ _{=n}!z)$. The corresponding QDDC formula is [](($\langle x \rangle \ => \langle y | | z \rangle$) && ({{z}} ^ (slen==n) => (slen==1) ^ [[!z]])).
- $\varphi_4 = G_1 \wedge G_2 \wedge G_3$ where
 - $G_1 = \mathcal{G}$ (HREADY => \mathcal{X} START). QDDC equivalent of G_1 is [] ({{!HREADY}} => (slen == 1) ^ <!START>).
 - $\begin{array}{lll} & G_2 &= \mathcal{G} \ ((HMASTLOCK \land (HBURST = INCR) \land START \land HMASTERi) => \mathcal{X} \ (\neg START \ Unless \ \neg HBUSREQi)). \\ & \text{QDDC formula of } G_2 \text{ is roughly } \forall i \in \{0,1\} : [] \ (\{\{HMASTLOCK \ \&\& \ INCR \ \&\& \ START \ \&\& \ HMASTERi\}\} \ ^ \text{true} \ => \ (slen == 1) \ ^ \ ([[!START]] \ | \ | \ [[!START]] \ ^ < !HBUSREQi> ^ \text{true})). \end{array}$
 - $\begin{array}{l} -G_3 = \mathcal{G} \; ((HMASTLOCK \wedge HBURST = BURST4 \wedge START) => \\ & ((HREADY \wedge \mathcal{X} \; (\neg START \; \mathcal{U} \;_3 \; HREADY)) \; \bigwedge (\neg HREADY \wedge \mathcal{X} \; (\neg START \; \mathcal{U} \;_4 \; HREADY)))). \\ & \mathcal{Q} DDC \; formula \; is \; [] \; (< \texttt{HMASTLOCK} \; \&\& \; BURST4 \; \&\& \; START > \; ^ \; true \; => \\ & (\; \{ \texttt{HREADY} \} \; ^ \; ([[!HREADY]] \; | | \; (([[!START]] \; \&\& \; (scount \; HREADY == 3)) \; ^ \; true))) \; | | \; (\{ \texttt{!HREADY} \} \; ^ ([[!HREADY]] \; | | \; (([[!START]] \; \&\& \; (scount \; HREADY == 4)) \; ^ \; true))). \\ \end{array}$

Shield	Formula	n	k	States	Time
burst error	φ_0	16	-	36	1.404
	φ_1	16	-	4	1.372
	φ_2	12	-	14	0.064
	φ_3	4	-	7	0.012
	φ_4	-	-	6	0.056
K-Shield V1	φ_0	16	1	19	1.428
	φ_1	16	1	3	1.424
	φ_2	12	1	14	0.068
	φ_3	4	4	Unrealizable	0.016
	φ_4	-	1	Unrealizable	0.016
K-Shield V2	φ_0	16	1	174	1.516
	φ_1	16	1	6	1.512
	φ_2	12	1	27	0.160
	φ_3	4	4	16	0.052
	φ_4	-	1	24	0.460
K-Shield V3	φ_0	16	1	20	2.736
	φ_1	16	1	4	2.636
	φ_2	12	1	14	0.108
	φ_3	4	4	7	0.036
	φ_4	-	1	12	0.132

Table 1: Experiments for various shield synthesis notions.