Globalno usavršavanje slučajne šume

D. Doljanin, J. Grgić, R. Kustura, F. Pavičić

1. Uvod u temu

- → Globalno usavršavanje
 Usavršavanje vektora u listovima
- Globalno obrezivianje Uklanjanje čvorova u stablima radi manjeg zauzeća memorije i bolje generalizacije

Refined-A vs Refined-E

- Maksimalna točnost modela
- Minimalno zauzeće memorije
- Razlika iteraciji zaustavljanja

Rezultati

Dataset	Performance (Error)			Compression Ratio			
Dataset	Error Scale	RF	ADF/ARF	refined-A	refined-E	refined-A	refined-E
(c) letter	10^{-2}	4.50 ± 0.13	3.76 ± 0.14	2.98 ± 0.15	4.33 ± 0.08	2.33	30.32
(c) usps	10^{-2}	6.21 ± 0.21	5.60 ± 0.16	5.10 ± 0.10	5.69 ± 0.15	2.86	15.14
(c) Char74k	10^{-2}	18.3 ± 0.15	16.9 ± 0.16	15.4 ± 0.10	18.0 ± 0.09	1.70	37.04
(c) MNIST	10^{-2}	3.14 ± 0.04	2.73 ± 0.05	2.05 ± 0.02	2.95 ± 0.03	6.29	76.92
(c) covtype	10^{-2}	16.4 ± 0.10	15.3 ± 0.11	4.11 ± 0.04	15.6 ± 0.08	1.68	166.67
(r) abalone		2.11 ± 0.05	2.10 ± 0.03	2.10 ± 0.01	2.11 ± 0.03	12.65	16.67
(r) ailerons	10^{-4}	2.01 ± 0.01	1.98 ± 0.01	1.75 ± 0.02	1.95 ± 0.02	33.13	124.82
(r) cpusmall		3.15 ± 0.05	2.95 ± 0.04	2.90 ± 0.05	3.02 ± 0.03	22.73	66.53
(r) cadata	10^{4}	5.50 ± 0.05	5.40 ± 0.05	5.05 ± 0.06	5.36 ± 0.05	36.14	62.50
(r) deltaelevators	10^{-3}	1.46 ± 0.04	1.46 ± 0.02	1.46 ± 0.03	1.46 ± 0.03	37.04	37.04

Usporedba rezultata

Rezultati rada	Refined-A error	Refined-E error	Compression Refined-E
MNIST	0.0205	0.0295	76.92
Letter	0.0298	0.0433	30.32
Cpusmall	2.9	3.02	66.53
Abalone	2.1	2.11	16.67

Naši rezultati	Refined-A error	Refined-E error	Compression Refined-E
MNIST	0.021	0.0299	47.14
Letter	0.0328	0.0432	21.45
Cpusmall	2.89	3.138	46.12
Abalone	2.22	2.26	10.13

Spiking neural networks Tema za usporedbu

- Neuronske mreže na koje utječe duljina signala, a ne samo snaga
- Modeliranje vremenski ovisnih signala

Usporedba rezultata

Dataset	Performance (Error)			Compress	Compression Ratio		
Dataset	Error Scale	RF	ADF/ARF	refined-A	refined-E	refined-A	refined-E
(c) letter	10^{-2}	4.50 ± 0.13	3.76 ± 0.14	2.98 ± 0.15	4.33 ± 0.08	2.33	30.32
(c) usps	10^{-2}	6.21 ± 0.21	5.60 ± 0.16	5.10 ± 0.10	5.69 ± 0.15	2.86	15.14
(a) Char74k	10-2	18 3±0 15	16.0±0.16	15.4±0.10	18.040.00	1.70	37.04
(c) MNIST	10^{-2}	3.14 ± 0.04	2.73 ± 0.05	2.05 ± 0.02	2.95 ± 0.03	6.29	76.92
(c) cortype	10	10.4±0.10	15.3±0.11	7.111	15.0±0.00	1.00	100.07
(r) abalone		2.11 ± 0.05	2.10 ± 0.03	2.10 ± 0.01	2.11 ± 0.03	12.65	16.67
(r) ailerons	10^{-4}	2.01 ± 0.01	1.98 ± 0.01	1.75 ± 0.02	1.95 ± 0.02	33.13	124.82
(r) cpusmall		3.15 ± 0.05	2.95 ± 0.04	2.90 ± 0.05	3.02 ± 0.03	22.73	66.53
(r) cadata	10^{4}	5.50 ± 0.05	5.40 ± 0.05	5.05 ± 0.06	5.36 ± 0.05	36.14	62.50
(r) deltaelevators	10^{-3}	1.46 ± 0.04	1.46 ± 0.02	1.46 ± 0.03	1.46 ± 0.03	37.04	37.04

Klasifikacija EMINIST seta

Refined-A

Accuracy = 89.61% (8961/10000) (classification)

iteracija: 11, error: 0.1039, len(W): 130826

Minimalni error: 0.10159999999999991

Refined-E

Accuracy = 88.75% (8875/10000) (classification)

iteracija: 15, error: 0.1125, size: 0.2288

Minimalni error: 0.10040000000000004

Data Sets	Contenders	Accuracy (%)	Setting	Control Rate (γ)	Epochs
	Deep SNN (O'Connor and Welling, 2016)	97.80	28×28-300-300-10 🌲	-	50
	Deep SNN-BP (Lee et al., 2016)	98.71	28×28-800-10	1.5	200
	SNN-EP ♡	97.63	$28 \times 28 - 500 - 10$	1.5	25
	HM2-BP (Jin et al., 2018)	98.84 ± 0.02	$28 \times 28 - 800 - 10$	-	100
MNIST	SNN-L (Rezaabad and Vishwanath, 2020)	98.23 ± 0.07	28×28-1000-R28-10	12	2
	SLAYER (Shrestha and Orchard, 2018)	98.39 ± 0.04	28×28-500-500-10	-	50
	SLAYER-U₁ ♣	98.53 ± 0.03	28×28-500-500-10	-	-
	$SLAYER-U_2$	98.59 ± 0.01	28×28-500-500-10	(-)	-
	BSNN (this work)	99.02 ± 0.04	28×28-500-500-10	-0.21	50
	SKIM (Cohen et al., 2016)	92.87	2*28×28-10000-10		-
	Deep SNN-BP	98.78	2*28×28-800-10	-	200
	HM2-BP	98.84 ± 0.02	2*28×28-800-10	15	60
N-MNIST	SLAYER	98.89 ± 0.06	2*28×28-500-500-10	-	50
	SLAYER- U_1	99.01 ± 0.01	2*28×28-500-500-10	-	_
	$SLAYER-U_2$	99.07 ± 0.02	2*28×28-500-500-10	-	-
	BSNN (this work)	99.24 ± 0.12	2*28×28-500-500-10	-0.49	50
	HM2-BP	88.99	28×28-400-400-10		15
	SLAYER	88.61 ± 0.17	28×28-500-500-10	-	50
Fashion-MNIST	$SLAYER-U_1$	90.53 ± 0.04	28×28-500-500-10	151	5
Fashion-MINIST	SLAYER- U_2	90.61 ± 0.02	28×28-500-500-10	1.0	-
	ST-RSBP (Zhang and Li, 2019)	90.00 ± 0.13	28×28-400-R400-10 ♦	-	30
	BSNN (this work)	91.22 ± 0.06	28×28-500-500-10	-0.32	50
	eRBP (Neftci et al., 2017)	78.17	28×28-200-200-47	-	30
	HM2-BP	84.43 ± 0.10	28×28-400-400-10	120	20
EMNIST	SNN-L	83.75 ± 0.15	28×28-1000-R28-10	-	-
EMINIST	SLAYER	85.73 ± 0.16	28×28-500-500-47	(-)	50
	SLAYER- U_2	86.62 ± 0.03	28×28-500-500-47	-	50
	BSNN (this work)	87.51 ± 0.23	28×28-500-500-47	-0.37	50

Usporedba rezultata

Rezultati rada	Accuracy
MNIST	99.02%
EMNIST	87.51%
Fashion-MNIST	91.22%

Naši rezultati	Refined-A accuracy	Refined-E accuracy
MNIST	97.9%	97.11%
EMNIST	83.06%	82.46%
Fashion-MNIST	89.61%	88.75%

Zaključak

- → Bolji rezultati neuronske mreže Za očekivati
- → Ne prevelike razlike uz manje zauzeće memorije

Poboljšane slučajne šume imaju potencijala

Literatura

```
https://openaccess.thecvf.com/content_cvpr
_2015/papers/Ren_Global_Refinement_of_201
5_CVPR_paper.pdf
```

https://www.jmlr.org/papers/volume22/20-1031/20-1031.pdf

Hvala na pažnji!