Deep Generative Pattern-Set Mixture Models for Nonignorable Missingnes

Sahra Ghalebikesabi, Rob Cornish, Luke Kelly, Chris Holmes

July 11, 2021

Missingness Types

Missingness Completely at Random (MCAR):

$$P(M|X) = P(M)$$

Missingness at Random (MAR):

$$P(M|X) = P(M|X_{obs})$$

Missingness Not at Random (MNAR)

Nonignorable Missingness Models [Little and Rubin, 2019]

• Selection Models [Little and Rubin, 2019]

$$p(X, M|\theta, \phi) = p(X|\theta)p(M|X, \phi),$$

• Pattern Mixture Models [Little and Rubin, 2019]

$$p(X, M|\theta, \phi) = p(X|M, \theta)p(M|\phi).$$

• Pattern-Set Mixture Models [Little, 1993]

$$p(X, R, M|\theta, \phi, \varphi) = p(X|R, \theta)p(M|X, R, \phi)p(R|\varphi)$$

HIVAE [Nazabal et al., 2020]

(a) Generative Model.

(b) Recognition Model.

not-MIWAE [Ipsen et al., 2021]

(a) Generative Model.

(b) Recognition Model.

Pattern-Set Mixture Model

(a) Generative Model.

(b) Recognition Model.

Probabilistic Semi-Supervision

Put simply, we sample each $x_{mis,i}^{i}$ from

$$y_{i,j}P_{\theta}(\widetilde{x}_{mis,j}) + (1 - y_{i,j})\mathbb{1}(x_{obs,j}^{i}),$$

where y_j is an independent Bernoulli random variable with known success probability π' if $m_j=1$, and with probability 1 otherwise

Results

Model	Adult		Letter		Wine	
	MCAR	MNAR	MCAR	MNAR	MCAR	MNAR
PSMVAE(a)	.2494	.4943	.0964	.0835	.0958	.1034
PSMVAE(b)	.2426	.5249	.0936	.0864	.0890	.1158
→ K=10.000	.2306	.4981	.0879	.0854	.0832	.1069
→ w/o M	.2450	.4815	.0941	.0908	.0885	.1167
DLGM	.2467	.5468	.0947	.0947	.0923	.1234
HIVAE	.2693	.4907	.1023	.0947	.0940	.1246
VAE	.2562	.5012	.1119	.1061	.1067	.1255
MIWAE	.2845	.6081	.1183	.1024	.1129	.1253
↓ K=10.000	.2373	.5872	.1149	.1242	.0915	.0803
not-MIWAE	.2374	.5201	.1153	.1192	.0928	.0756
GAIN	.2570	.5940	.1518	.1316	.1749	.1151
MICE	.2383	.5879	.1167	.1235	.0881	.0782

References

- Roderick JA Little and Donald B Rubin. *Statistical analysis with missing data*, volume 793. John Wiley & Sons, 2019.
- Roderick JA Little. Pattern-mixture models for multivariate incomplete data. *Journal of the American Statistical Association*, 88(421):125–134, 1993.
- Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling Incomplete Heterogeneous Data using VAEs. *Pattern Recognition*, page 107501, 2020.
- Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-MIWAE: Deep Generative Modelling with Missing not at Random Data. In *International Conference on Learning Representations*, 2021.