ECON 1123 Section 8

Slides at github.com/cjleggett/1123-section

Outline

- Name Circle
- Problem Set Feedback
- Lecture Recap / Questions + Practice Problems
 - Weak Instruments
 - Intrinsic Heterogeneity
 - J Statistics

Name Circle

Name Circle

- Name
- Where you're from

Problem Set Feedback

Problem Set 7 Feedback

- OVB Problems: Omitted Variable should be measured before treatment.
- Exogeneity: Randomness is not sufficient
- Reduced form does not give any insights into exogeneity

Lecture Recap

Weak Instruments

Weak Instruments

- If our instruments are weak (π_1 close to 0) then our results are biased toward OLS results
- We can test against this using "effective First-Stage F-statistic" or ${\cal F}^{MOP}$
- For just one instrument, we already practiced this.
- For more than one instrument, we need to use code for calculation
- But same idea, compare F^{MOP} with critical value

Weak Instruments

- What if we have some weak instruments?
 - Throw them away
 - Use tools robust to weak instruments

Anderson and Ruben Cl

- Works even in the case of weak instruments!
- We have code to help you build this

Anderson and Ruben Cl: Math

- For each potential β_1 :
 - Use OLS with X and Y to find residuals using β_1
 - Use OLS with residuals on left and instruments on the right
 - Use an F test to see if the instruments are significant
 - If they are significant, then assuming exogeneity, we have the wrong eta_1
 - If they are not significant, then include β_1 in the CI

Many Weak Instruments

- If we have a lot of weak instruments, sometimes the results will be misleading
- Solve this by not having a lot of weak instruments
- We can use LASSO to eliminate instruments
- You won't have to do this in class

Nonlinear IV Regression

- Sometimes we want to introduce nonlinearity into our models, but we have to be careful in IV regressions
- DO NOT use probit/logit in first-stage
- If you want effect of X and X^2, use instruments Z and Z^2
- If you want effect of X and X*I, use instruments Z and Z*I

Intrinsic Heterogeneity

ATE vs. LATE

- ATE: Average Treatment Effect
- LATE: Local Average Treatment Effect
- Treatments have different effects on different people. (eg. College) $\beta_i = Y_i(1) Y_i(0) \text{ vs. } \beta_j = Y_j(1) Y_j(0)$
- We can't measure individual effects, so we hope to measure ATE $E[\beta_i]$

ATE vs. LATE

• In IV Regressions, we actually estimate the LATE:

$$LATE = \frac{E[\beta_{1i} \times \pi_{1i}]}{E[\pi_{1i}]} = E[\beta_{1i}] + \frac{cov(\beta_{1i}, \pi_{1i})}{E[\pi_{1i}]}$$

- LATE is a weighted average of treatment effects, where the weight is $\frac{\pi_{1i}}{E[_{1i}]}$
- Who is this higher for?
 - People effected most by the instrument

ATE vs. LATE

- Why is this important?
- IV Results only apply to those who respond to instrument (Compliers) (Grasshoppers)
- So it's as if we're only studying the compliers

Which is Bigger, LATE or ATE?

- New problem type for psets + exams!
- Solve with three steps:
 - 1. Explain why ATE is not equal to LATE
 - 2. Use intuition to think of who the compliant people (grasshoppers) are
 - 3. Use intuition to decide whether treatment effect is higher or lower for compliant people (grasshoppers) and form conclusion

Step 1: Eliminate Three Cases

- π_{1i} does not vary
- β_{1i} does not vary
- $cov(\pi_{1i}, \beta_{1i}) = 0$
- Very Rare!

Step 2: Identify Compliant Subjects

- Who responds more strongly to the instrument
- Explain verbally

Step 3: Compare compliant to population

- LATE puts more weight on compliant
- Who will have a larger β_{1i} ? Use intuition.
- Use this to determine whether LATE is bigger than or smaller than ATE in absolute value.

ATE vs. LATE: Which is bigger?

$eta^{Compliers}$ bigger than $eta^{Non-Compliers}$	LATE bigger than ATE
$eta^{Compliers}$ smaller than $eta^{Non-Compliers}$	LATE smaller than ATE

J Statistic

J Test of over identifying restrictions

- Sometimes we have more instruments than X variables
- J Test checks whether or not each instrument individually identifies the same treatment effect
- If we reject that they are the same:
 - Something may be wrong: one or more variables not exogenous
 - Everything is fine, but the two variables identify different LATEs

J Test Interpretation

J Test Interpretation

J Test Interpretation

J Test Math

- First step is to estimate 2SLS using both instruments
- Then calculate residuals from 2sls using the actual X_i

$$\hat{u}_i \equiv Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 W_i$$

Now run OLS with homoskedastic standard errors (no , robust):

$$\hat{u}_i = \lambda_0 + \lambda_1 Z_{1i} + \lambda_2 Z_{2i} + \lambda_3 W_i + v_i$$

- Test hypothesis that H_0 : $\lambda_1 = 0$ and $\lambda_2 = 0$
- The J statistic = # instruments \times F stat
- Distributed as χ_k^2 with dof = # instruments— # endogenous X_i 's

Exercises!