CLUSTERING. MIXTURE MODELS. EXPECTATION MAXIMIZATION

Mixture Models. Mezcla de modelos

- □ Suponemos que existen unos modelos que han generado los datos.
- Queremos encontrar los parámetros de esos modelos.

Mixture Models. Mezcla de modelos

Antes de empezar, volvamos a clasificación:

Modelos discriminativos

□ Regresión logística

- Hipótesis relacionada con la probabilidad $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$
- Interpretación
 - \blacksquare Si $h_{\theta}(x) = 0.7$
 - Existe un 70% de probabilidad de que x pertenezca a la clase y=1
- \square P(y|x, θ)
- Modelo discriminativo

Modelos generativos

- Planteamiento diferente del problema:
 - Encontrar un modelo para cada clase
 - Para clasificar un nuevo ejemplo, vemos a cual de los modelos que hemos construido se parece más.
 - Probabilidad a priori de la clase p(y)
 - Modelos de la distribución de las características en cada clase p(x|y=0) y p(x|y=1)
 - Teorema de Bayes $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$
 - \blacksquare $argmax_y p(y|x)$

Modelos gaussianos

- \square El modelo generativo más común: modelamos p(x|y) por medio de una distribución normal.
- Distribución normal multivariable

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} e^{(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))}$$

 \square Donde μ es la media y Σ la matriz de covarianzas

Distribución normal multivariable

- Ejemplos:
- $\mu = [1 1]; \Sigma = [0.9 \ 0.4; \ 0.4 \ 0.3];$

Distribución normal multivariable

$$\mu = [0\ 0]; \Sigma = [1\ 0; 0\ 1];$$

$$\Sigma$$
 = [0.25 0; 0 0.25];

$$\Sigma$$
 = [3 0; 0 3];

Distribución normal multivariable

Linear Discriminant Analysis

- En LDA se asume que la distribución de cada clase k es una distribución gaussiana multivariable.
- \square Además en LDA, se añade una simplificación: que la matriz de covarianzas Σ es la misma para todas las clases.
- Debido a esta suposición, es un clasificador lineal.

Linear Discriminant Analysis

☐ Frontera de decisión. Función discriminante

$$p(y_1|x) = p(y_2|x)$$

$$-\frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1) + \log(p(y_1)) = -\frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) + \log(p(y_2))$$

Linear Discriminant Analysis

- □ Fase de entrenamiento. Encontrar los parámetros de las distribuciones:
- □ Si derivamos la función de máxima verosimilitud:
- $p(y) = \frac{m_y}{m}$ % de elementos de la clase y
- $\square \mu_y = \frac{1}{m_y} \sum_{i=1}^m x^{(i)} \{ y^{(i)} = y \} \text{ media de los ejemplos de la clase y}$

Quadratic Discriminant Analysis

- En el QDA eliminamos la simplificación de que la matriz de covarianzas es la misma para todas las clases.
- □ Tendremos una matriz de covarianzas diferente para cada clase.

LDA y regresión logística

$$p(y = 1 | p(y), \mu_{y=1}, \mu_{y=0}, \Sigma) = \frac{1}{1 + e^{-\theta^T x}}$$

- $\ \square$ Donde θ es una función de p(y), $\mu_{y=1}$, $\mu_{y=0}$, Σ
- Resulta que es la regresión logística
 - Cual es mejor?
 - LDA hace unas **suposiciones** muy fuertes
 - Distribución normal de los datos
 - Idéntica matriz de covarianzas
 - Cuando se cumplen estas suposiciones LDA es asintóticamente eficiente (si la cantidad de datos es grande, no hay ningún algoritmo mejor)
 - Al hacer menos suposiciones, RL es más robusto

Mixture Models

- Cuando no tenemos las etiquetas de los datos.
- Queremos encontrar las distribuciones que han generado esos datos.
- Modelos generativos.

Máxima Verosimilitud

- Tenemos que encontrar los parámetros que definen una distribución
- Sean un conjunto de datos, pensamos que se distribuyen según una distribución de probabilidad $p(x|\Theta)$ siendo Θ los parámetros.
- Estimación: encontrar los parámetros óptimos, es decir, que más se ajusten a los datos.
- □ La función de verosimilitud de los parámetros dados esos datos es:

Si consideramos que los datos son independientes

$$L(\Theta|D) = \prod_{i=1}^{m} p(x^{(i)}|\Theta)$$

Máxima Verosimilitud

Entonces los parámetros óptimos son:

$$\square \Theta^* = argmax \prod_{i=1}^{m} p(x^{(i)}|\Theta)$$

Los podemos calcular igualando a cero:

 Si es una distribución normal única entonces nos encontramos con el problema de los modelos generativos. Derivamos y encontramos las ecuaciones para calcular la media y la varianza (matriz de covarianzas si es multidimensional)

Mixture Models

- ¿Qué ocurre si los datos provienen de una combinación de distribuciones, en lugar de una sola?
- Mixture Models. Mezcla de modelos:

$$P(x^{(i)}) = \sum_{j=1}^{nc} P(c_j) P(x^{(i)} | c_j)$$
$$\sum_{j=1}^{nc} P(c_j) = 1$$

No podemos resolver la derivada analíticamente

Expectation-Maximization

- El algoritmo EM es un método iterativo para encontrar la estimación de máxima verosimilitud de los parámetros en modelos estadísticos, en donde el modelo depende de unas variables ocultas.
- \square En LDA, QDA, conocíamos $y^{(i)}$ la clase, o el clúster, al que pertenece cada dato. Ahora esas variables no las conocemos, están ocultas.

Expectation-Maximization

- El algoritmo EM repite iterativamente el siguiente proceso:
 - primero estima (E) la verosimilitud utilizando la estimación actual de los parámetros
 - y después maximiza (M), calcula los parámetros que maximizan la verosimilitud esperada calculada en el paso (E).
 - Estos parámetros estimados son usados para determinar la distribución de las variables ocultas en el siguiente paso (E).

Expectation-Maximization

- □ Verosimilitud: $L(\Theta|D) = \prod_{i=1}^{m} p(x^{(i)}|\Theta)$
- □ Las variables ocultas les llamamos Z, por tanto $L(\Theta|D,Z)$
- □ **Expectation**: Calcular la (log) verosimilitud, con respecto a una distribución condicional Z, dados los datos D utilizando unos parámetros estimados Θ^t

$$Q(\Theta|\Theta^t) = E_{Z|D,\Theta^t}[\log(L(\Theta|D,Z))]$$

Maximization: Encontrar los parámetros que maximicen este valor

$$\Theta^{t+1} = argmax_{\Theta}Q(\Theta|\Theta^t)$$

Expectation Maximization. Mezcla de gaussianas

- \square Si sabemos que son distribuciones gaussianas $\Theta = (\mu_1, \sigma_1, \dots, \mu_K, \sigma_K)$
- □ En este caso, las variables Z no son 0 ó 1, como en el K-means, sino que cada ejemplo tendrá una probabilidad para pertenecer a cada cluster.
- Es lo que se llaman probabilidades de pertenencia.
- $\square P(z^{(i)} = j | x^{(i)}, \mathbf{\Theta}^t)$
- □ Lo podemos calcular con el teorema de Bayes:

$$\Box P(z^{(i)} = j | x^{(i)}, \Theta^t) = \frac{P(z^{(i)} = j)P(x^{(i)}, \Theta^t | z^{(i)} = j)}{P(x^{(i)})}$$

Expectation Maximization. Mezcla de gaussianas

Paso E: Para todos los ejemplos y todos los clústeres

$$P(x^{(i)}|z^{(i)} = j) = N(\mu_j, \sigma_j)$$

$$P(z^{(i)} = j|x^{(i)}) = \frac{P(c_j)P(x^{(i)}, |z^{(i)} = j)}{\sum_{k=1}^{K} P(z^{(i)} = k)P(x^{(i)}, |z^{(i)} = k)}$$

Paso M: Para todos los clústeres

$$P(c_{j}) = \frac{1}{m} \sum_{i=1}^{m} P(z^{(i)} = j | x^{(i)})$$

$$\mu'_{j} = \frac{\sum_{i=1}^{m} x^{(i)} P(z^{(i)} = j | x^{(i)})}{\sum_{i=1}^{m} P(z^{(i)} = j | x^{(i)})}$$

$$\sigma'_{j}^{2} = \frac{\sum_{i=1}^{m} (x^{(i)} - \mu_{j})^{2} P(z^{(i)} = j | x^{(i)})}{\sum_{i=1}^{m} P(z^{(i)} = j | x^{(i)})}$$

Expectation Maximization. Mezcla de gaussianas

EM y K-means

Distribución normal multivariable:

- \square Donde μ es la media y Σ la matriz de covarianzas
- $\ \square \ \Sigma$ va a ser una matriz diagonal
- □ ¿Existe relación entre EM y K-means?
- □ K-means es un caso especial de EM:
- \square Si todos los $P(z^{(i)}=j)$ son iguales y la varianza es la identidad