## **Worldwide Applications of AOP**

Ryerson University
Advanced Water Treatment Technologies

Arsalan Barolia June 11<sup>th</sup>, 2021

#### **OUTLINE**

- Introduction
  - What are AOPs
  - Advancements of AOPs
  - Usefulness of AOPs
- Types of AOP Characteristics
- Worldwide Applications
  - What system works
  - Factors to be considered
  - > Real life examples
    - Textile Wastewater
    - Swimming Pools
    - Landfill Leachate
- Future Work & Summary

#### **Importance of Water**

- Majority of Earth is surrounded by water
- Humans are made up of 70% water
- Water used for:
  - > Drinking
  - Cooking
  - Washing
  - > Agriculture
  - Energy Production
  - Waste Disposal
  - **>** ...



Figure 1: Example of Clean Water [Pine Harbour Water, 2021]



Figure 2: Clean Drinking Water [Wired, 2021]

#### What Happens to the Water

- Creates wastewater(WW) in
  - Domestic
    - √ Greywater
      - Bathroom
      - Laundry
      - Kitchen
    - √ Blackwater
      - Urine
      - Faeces
  - Industrial
  - Stormwater Runoff



Figure 3: Waste contaminating water [SolutionsTRAK, 2017]



Figure 5: Pollutants in Water [Medium, 2016]



Figure 4: Influent Wastewater [TheWastewaterBlog, 2020]

## Cleaning water with AOPs

- AOPs produce hydroxyl radicals that breakdown organic compounds and pollutants.
  - ➤ By a few hundreds' PPM to less than 5 PPB

$$PPM = \frac{Mass \ of \ Solute \ (g)}{Mass \ of \ Solution \ (g)} \times 10^{6}$$
 (Eq. 1)

$$PPB = \frac{Mass \ of \ Solute \ (g)}{Mass \ of \ Solution \ (g)} \times 10^9$$
 (Eq. 2)



Figure 6: Properties of Hydroxyl Radicals [De Gruyter, 2015]

#### **Advancements of AOP**

- AOPs were first used in purifying drinking water in the 1980s
  - Was then used applied to treating municipal and industrial wastewater
- Discovered AOPs work more effectively when combined with a catalyst like ozone (O<sub>3</sub>) or ultraviolet (UV) radiation in wastewater treatment
- AOPs in filtering water destroyed toxic synthetic organic matter (SOM)
  - Pesticides
  - > Herbicides
  - > Fuels
  - > Solvents
  - > Drugs



Figure 7: SOM in pesticides and waster pollution [SDWF, 2021]

#### **Characteristics of AOPs**

- Electrochemical Potential is in voltage (V) due to oxidation and reduction reactions
  - > Change of electron
- Fluorine (F<sub>2</sub>) has an oxidation potential of 3.0V [4]
  - Surplus amounts can be harmful to plants
  - ➢ Fluoride ions (F⁻) have been used with calcium ions (Ca²⁺) to form calcium fluoride (CaF₂) which precipitates and helps breakdown solid inorganic coagulants.

Table 1: Oxidation Potential, in voltage, of common oxidizing agents in acidic solution [Yang et al., 2001]

|                                   | Oxidants               | Chemical Formula  | Electrochemical Potential (V) |
|-----------------------------------|------------------------|-------------------|-------------------------------|
| $\begin{bmatrix} 1 \end{bmatrix}$ | Free Radical           | ·OH               | 2.8                           |
| '                                 | Ozone atom             | 0                 | 2.42                          |
|                                   | Ozone                  | O <sub>3</sub>    | 2.07                          |
|                                   | Hydrogen Peroxide      | $H_2O_2$          | 1.78                          |
|                                   | Potassium Permanganate | KMnO <sub>4</sub> | 1.7                           |
|                                   | Chlorine Dioxide       | C1O <sub>2</sub>  | 1.57                          |
|                                   | Chlorine gas           | C1 <sub>2</sub>   | 1.36                          |
|                                   | Oxygen                 | $O_2$             | 1.23                          |
|                                   | Bromine                | Br                | 1.09                          |
|                                   | Hypochlorous Acid      | HOC1              | 0.95                          |
|                                   | Sodium Hypochlorite    | NaOC1             | 0.94                          |
|                                   | Iodine                 | I                 | 0.54                          |

#### **Characteristics of AOPs**

- Pairing AOPs with different catalysts allow for different harmful chemicals to be removed
- Different AOPs target different chemical waste to not form toxic byproducts
  - Due to the change in physical and chemical properties of the pollutants and condition of wastewater
  - Different molecules will react differently when mixed with other types of molecules
- The strength of an AOP is based on how the chemicals in the AOP method react with the effluent [4].

## The Process of Hydroxyl Radicals

- Hydroxyl radicals reaction rate range from 10<sup>8</sup> to 10<sup>10</sup> M<sup>-1</sup>s<sup>-1</sup>
- Interact with organic pollutants/compounds to produce carbon centered radicals

R- or R- - OH

- Once oxygen (O<sub>2</sub>) is presented in the solution, these radicals are changed to organic peroxyl radicals (ROO·).
- All radicals start to react further and create other reactive molecules like hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and super oxide (O<sub>2</sub> · ·).
  - > This aids in the decomposition of organic compounds to remove
  - ➤ Due to the short-lived radicals, they are paired with other oxidizing methods, on site, like UV radiation, ultrasound, hydrogen peroxide, ozone, and catalysts (like Fe<sup>2+</sup>).

## **Worldwide Applications**



Figure 7: General purpose water plant with high fluoride [Olmec Technical Services Ltd., 2018]



Figure 8: Largest metropolitan water treatment plant (WTP) [ABB, 2021]

## **Choosing the Right AOP System**

- Common for industrial wastewater to have phenolic compounds
  - > High toxicity
  - Displeasing smell and taste
- Factors to be considered are:
  - Water Composition
  - Purpose of Treatment
  - UV Dosage
  - Chemical Dosage
  - Cost and Design







Figure 9: Using UV and ozone separately versus with AOPs [Suez, 2021]

#### **Textile Wastewaters**

- Textiles include
  - Clothing
  - > Bags
  - Baskets
  - Accessories
  - **>** ...



Figure 10: Different colours of textile [GreenBiz, 2019]

- Leading Countries for producing and exporting textile goods are:
  - > China
  - > India
  - > USA
  - > European Union
- Unacceptable amounts of dye in effluent and hard to degrade

#### **Solution**



Figure 11: Steps that occur in a textile company and the waste discharged into the water [Yaseen et al., 2018]

Table 2: Average dye effluent discharge in wastewater [Yaseen et al., 2018]

| Process     | pH<br>(-)   | Colour<br>(ADMI) | TSS<br>(mg/l) | TS (mg/l)         | TDS<br>(mg/l)   | COD<br>(mg/l)   | BOD<br>(mg/l) |
|-------------|-------------|------------------|---------------|-------------------|-----------------|-----------------|---------------|
| Desizing    |             |                  |               | 16,000–<br>32,000 |                 | 4600–<br>5900   | 1700–<br>5200 |
| Scouring    | 10-<br>13   | 694              |               | 7600–<br>17,400   |                 | 8000            | 100-<br>2900  |
| Bleaching   | 8.5–<br>9.6 | 153              |               | 2300–<br>14,400   | 4800-<br>19,500 | 6700–<br>13,500 | 100–<br>1700  |
| Mercerising | 5.5-<br>9.5 |                  |               | 600–1900          | 4300-<br>4600   | 1600            | 50–100        |
| Dyeing      | 5–10        | 1450–4750        |               | 500–<br>14,100    | 50              | 1100–<br>4600   | 10–1800       |

# ADMI American Dye Manufactures Institute unit TSS Total suspended solids TDS Total dissolve solids

# **Trial AOP System**



Figure 12: Schematic of an AOP trial system [Hutagalung et al., 2020]

## **Trial AOP System**



Figure 13: Functions and specifications of the given trial AOP system [Hutagalung et al., 2020]

#### Ozone and UV

- Breaking the system down into several physical, chemical, and biological processes to treat contaminants.
- The process used in this test to treat textile wastewater was ozone and UV.

$$O_3 + hv + H_2O \rightarrow H_2O_2 + O_2$$
  
 $H_2O_2 + hv \rightarrow 2(HO \cdot)$   
 $2O_3 + H_2O \rightarrow 2(HO \cdot) + 3O_2$ 

- Ozone used for it is a good oxidizer at high pH values.
  - Dyes in wastewater have a pH of 5-10
- Ozonation is also viable when discussing textile wastewater as it does not change the pH of the solution since no chemicals are being added

### Disadvantage of using Ozone

Ozone produced using corona discharge process



AC= 10000V

Figure 14: Visualization of the Corona Discharge Process [Rekhate et al., 2020]

- Becomes difficult to remove ozone particles from the water.
  - ➤ Minimize this by using an efficient electrochemical ozone generator where the appropriate amount of ozone is produced based on the water being treated

#### **Results Found**

Table 3: Findings of the trial AOP system [Hutagalung et al., 2020]

| • | COD and SS |
|---|------------|
|   | decreased  |

 51.73% decrease of COD from 16.167 mg/L to 8.364 mg/L after the process

| No | Sample                                            | pН  | COD    | SS    | Color     |
|----|---------------------------------------------------|-----|--------|-------|-----------|
| 1  | Activated sludge                                  | 7   | 15,693 | 9,225 | heavy     |
|    | After process (homogenous)                        | 7   | 15,504 | 5,100 | •         |
|    | After process (sediment)                          | 7   | 7,956  | 687   |           |
| 2  | ex jet dyeing medium color T / R (ozone + UV)     | 7.9 | 2,346  | 162.5 | heavy     |
|    | after the process of 10 minutes PAC was deposited | 5.6 | 476    | 8     | light     |
|    | After process (30 minutes)                        | 6.9 | 5,916  |       |           |
|    | After process (60 minutes)                        | 7.2 | 5,022  |       |           |
| 3  | Ex Desizing non-color scouring (ozone)            | 7.1 | 28,254 | 162.5 | moderate  |
|    | After process ( 60 minutes)                       | 7   | 23,511 |       |           |
| 4  | Spunpolly (weight reduce) (Ozone + UV)            | 8.6 | 16,167 | 75    | light     |
|    | After process                                     | 7   | 8,364  | 87.5  | light     |
| 5  | Mud from coagulation                              | 5.9 | 7,089  | 9,075 | heavy     |
|    | After process                                     | 5.7 | 7,293  | 8,850 | heavy     |
| 6  | C 26 (Resin finish) (Ozone + UV)                  | 6.1 | 28,458 | 1,600 | light     |
|    | After process                                     | 5.2 | 28,050 | 1,237 | light     |
| 7  | Concentrated color waste                          | 7.9 | 1,224  | 62.5  | heavy     |
|    | After process (homogenous)                        | 7.2 | 1,648  | 46    | decreased |
|    | After process (sediment)                          | 7.2 | 1,360  | 50    | light     |

#### **Results Found**



Figure 15: a) the decrease of SS in activated sludge, b) change in colour, and c) after processing the solution [Hutagalung et al., 2020]

## **Treating Swimming Pools**

- Chlorine has been used for treating swimming pools for decades
- Adding chlorine to untreated water can form toxic disinfection by-products (DBP)
  - Trihalomethanes (THMs)
  - Chloramines (CAMs)
  - ➤ Haloacetic acids (HAAs)
- Chlorinated water mixed with photolysis of hypochlorous acid (HOCI) produced hydroxyl chlorine radicals to help remove waste
- Aikaterini et al. conducted a research that investigated how chlorine, nitrate, and hydrogen peroxide, as radical initiators, can be affected with UV irradiation.

## **Common Misconception**

Table 4: Differences between drinking water and pool water [Ilyas et al., 2018]

| Factors                                      | Drinking Water | Pool Water    |
|----------------------------------------------|----------------|---------------|
| TOC                                          | 0.3-1.4 mg/L   | 0.5-7.0 mg/L  |
| Nitrate-Nitrogen (NO3 <sup>-</sup> -N) Level | 1.1-1.9 mg/L   | 6.6-23.8 mg/L |
| Total Nitrogen (TN)                          | 0.1-0.3 mg/L   | 3.6-12.3 mg/L |
| Temperature                                  | 25-35 °C       | 1.0-23 °C     |
| Free Residual Chlorine (FRC)                 | 0.03-57 mg/L   | 0.24-1.4 mg/L |
| pH                                           | 6.8-7.8        | 7.6-8.2       |

## The Study

- 3 pools
  - ➤ 2 practice pools → average temperature of 26 °C
  - $\succ$  1 therapy pool (hot tub)  $\rightarrow$  temperature of 34 °C
- Tests conducted immediately after samples were collected for
  - ➤ pH
  - > Free chlorine
  - Combined chlorine
- UV treatment used a quasi-collimated beam apparatus





Figure 16: Using a collimated beam apparatus to minimize the light propagation [Wikipedia, 2016]

## **Results and Findings**

- The results for the pools were
  - > pH of 7.10 to 7.24
  - > TOC of 1.58 to 2.14 mg/L
  - Free chlorine of 0.44 to 1.37 mg/L
  - Combined chlorine of 0.17 to 0.36 mg/L



Figure 17: Chemical reactions of brominated species formation [Aikaterini et al., 2015]

## **Results and Findings**

Table 5: Advantages of using AOP with chlorine instead of just chlorine [Blue Haven Pools, 2019]

| Number | Reason                                                                    | Explanation                                                                                                        |  |  |
|--------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| 1      | Unmatched Cleaning Power                                                  | AOP hydroxyl radicals destroy 99% of waste                                                                         |  |  |
|        |                                                                           | AOP produces micro-flocculation which forms<br>non-visible clumps, to humans, but is trapped by<br>the pool filter |  |  |
| 3      | Comprehensive Disinfection                                                | Known to remove different types of waste that is produced by humans such as sweat, body oils, bacteria, etc.       |  |  |
| 4      | Safer, gentler sanitization                                               | Dangerous to microorganism and toxic contaminates, but not to humans.                                              |  |  |
| 5      | Faster Performance                                                        | Chlorine takes hours to kill, but AOPs are almost instantaneous with the hydroxyl radicals.                        |  |  |
| 6      | Lower Chemical Demand                                                     | Drastically reduce the level of chlorine                                                                           |  |  |
| 7      | 7 Environmentally Safe Removes waste and does not for toxic by-production |                                                                                                                    |  |  |

#### **Landfill Leachate**

- Efficiency of AOP rely on:
  - Chemical properties of contaminants
  - Operation conditions
  - ➤ pH
- Composed of organic waste like:
  - Microorganisms
  - Metabolic products
  - > Faeces
  - Results in: odour, colour, and taste change
- Composed of inorganic waste like:
  - > Ammonium
  - > Phosphorus
  - Sulphate
  - Metals
  - Results in: less transparency and thicker water

## **Managing Landfill Leachate**

- Study showed approximately 25% of New Jersey was contaminated with landfill leachate
  - Costs \$750K to \$14M to manage
- AOPs first used on landfill leachate in 1990
  - Hydroxyl radical's ability to biodegrade organic waste and remove/breakdown organic constituents

Table 6: Advantages of using AOP with chlorine instead of just chlorine [Deng et al., 2015]

| AOP method                                  | Average Leachate Removal<br>(%) of COD | Standard Deviation<br>(%) |
|---------------------------------------------|----------------------------------------|---------------------------|
| Ozonation<br>(O3)                           | 53                                     | 24                        |
| Ozone and hydrogen peroxide<br>(O3/H2O2)    | 43                                     | 23                        |
| Ozone and UV light<br>(O₃/UV)               | 52                                     | 19                        |
| UV light and hydrogen peroxide<br>(UV/H2O2) | 77                                     | 11                        |
| Fenton Processes                            | 71                                     | 13                        |

## **Findings**

- Fenton and hydrogen peroxide both scavenge for hydroxyl radicals
- Important to identify the molar ratio of Fe(II) and H<sub>2</sub>O<sub>2</sub> to ensure enough radicals are present to treat the waste
- Pre-treatment of landfill leachate effluent using AOP was found to be useless as the BOD and COD was 0.50.
- Found that sulfate radicals may be more useful than hydroxyl radicals due to sulfate-based radicals having the ability to rapidly react with ammonia-containing molecules.
- Concluded that sulfate-based radicals yielded a 100% removal rate of ammonia and a reduction in COD by 91% in pH 3.0 to 4.0.

#### **Future Work**

- Purification using sulfate-based radicals should be used more often to determine if it is safe
  - Now knowing that it reacts with some compounds faster than the hydroxyl radical
- 2 of the 3 worldwide water treatment applications discussed used ozone.
   Thus, if more studies with ozone paired with other combinations of AOPs are conducted, it could deem to be useful.

## **Summary**

- Textile wastewaters → COD lowered by 51.73% when using ozone and UV light
  - Colour, odour, and suspended solid in activated sludge was decreased
- Swimming pool waters and drinking waters cannot be treated the same way
  - UV light found to break bonds that contained bromine causing for toxic bromine by-products to form.
- Fenton and H<sub>2</sub>O<sub>2</sub> processes were beneficial for removing organic and inorganic waste in landfill leachate
  - ➤ Sulfate-based radicals react with ammonia containing compounds faster than hydroxyl radicals as it has a 100% effective rate and has lowered the COD by 91%.
- Treating wastewater is crucial for maintaining a safe and healthy environment.

#### References

- [1] Gehringer, P., (n.d.). Radiation Induced Oxidation For Water Remediation. https://www.osti.gov/etdeweb/servlets/purl/592132.
- [2] Deng, Y., & Zhao, R. (2015, September 18). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports. https://link.springer.com/article/10.1007/s40726-015-0015-z.
- [3] Ghime, D., & Ghosh, P. (2020, June 10). Advanced Oxidation Processes: A Powerful Treatment Option for the Removal of Recalcitrant Organic Compounds. IntechOpen. https://www.intechopen.com/books/advanced-oxidation-processes-applications-trends-and-prospects/advanced-oxidation-processes-a-powerful-treatment-option-for-the-removal-of-recalcitrant-organic-com.
- [4] Yang, M., Zhang, Y., Shao, B., Qi, R., & Myoga, H. (n.d.). *PRECIPITATIVE REMOVAL OF FLUORIDE FROM ELECTRONICS WASTEWATER*. https://www.oieau.org/eaudoc/system/files/documents/34/172714/172714\_doc.pdf.
- [5] AOP Advanced Oxidation Process Systems. SUEZ Water Water Technologies & Water. (n.d.). https://www.suezwatertechnologies.com/products/disinfection-oxidation/aopsystems.
- [6] Yaseen, D. A., & Scholz, M. (2018, November 27). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology. https://link.springer.com/article/10.1007/s13762-018-2130-z.
- [7] Rekhate, C. V., & Srivastava, J. K. (2020, October 2). Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chemical Engineering Journal Advances. https://www.sciencedirect.com/science/article/pii/S2666821120300314.
- [8] Ilyas, H., Masih, I., & Van der Hoek, J. P. (2018, June 16). Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control. MDPI. https://www.mdpi.com/2073-4441/10/6/797/htm.
- [9] Aikaterini, S., Kamilla Marie Speht, H., & Henrik Rasmus, A. (2015). *Disinfection by-product formation of UV treated swimming pool water*. DTU. https://backend.orbit.dtu.dk/ws/portalfiles/portal/114720483/Spiliotopoulou\_Disinfection\_by\_products\_formation\_of\_UV\_treated\_swimming\_pool\_water.pdf.
- [10] Spas, B. H. P. &. (n.d.). What is Advanced Oxidation Process (AOP) for Swimming Pool Sanitization? Swimming Pool Facts and Tips. https://articles.bluehaven.com/what-is-advanced-oxidation-process-aop-for-swimming-pool-sanitization.
- [11] Jelonek, P., & Neczaj, E. (n.d.). *The use of Advanced Oxidation Processes (AOP) for the treatment of landfill leachate*. Inżynieria i Ochrona Środowiska. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.921.8452&rep=rep1&type=pdf.
- [12] "NEW CONNECTIONS." Pine Harbour Water, www.pineharbourwater.co.nz/about-us.
- [13] Zhang, Sarah. "Big Question: Why Does Tap Water Go Stale Overnight?" Wired, Conde Nast, 29 June 2017, www.wired.com/2015/08/big-question-tap-water-go-stale-overnight/.
- [14] Fuller, Rick. "Influent Wastewater Characteristics." Thewastewaterblog, 20 Nov. 2020, www.thewastewaterblog.com/single-post/influent-wastewater-characteristics.
- [15] "A Cheat Sheet: Wastewater Definitions." SolutionsTRAK, 5 Dec. 2017, www.solutionstrak.com/blog/wastewater-definitions/.
- [16] Buthiyappan, Archina. "Recent Advances and Prospects of Catalytic Advanced Oxidation Process in Treating Textile Effluents." De Gruyter, De Gruyter, 1 Feb. 2016, www.degruyter.com/document/doi/10.1515/revce-2015-0034/html.
- [17] Hancock, Nicole. "Pesticides and Water Pollution." *Safe Drinking Water Foundation*, Safe Drinking Water Foundation, 7 May 2019, www.safewater.org/fact-sheets-1/2017/1/23/pesticides.
- [18] "Collimated Beam." Wikipedia, Wikimedia Foundation, 22 May 2021, en.wikipedia.org/wiki/Collimated\_beam.
- [19] "Why Nike and MIT See Textiles as Material to Climate Change." *Greenbiz*, www.greenbiz.com/article/why-nike-and-mit-see-textiles-material-climate-change.
- [20] Hutagalung, S. S., Muchlis, I., Khotimah K. (2020, January). *Textile Wastewater Treatment using Advanced Oxidation Process (AOP)*. ResearchGate. (n.d.). https://www.researchgate.net/publication/338718559\_Textile\_Wastewater\_Treatment\_using\_Advanced\_Oxidation\_Process\_AOP.