## **BAH Machine Learning Engineering Presentation** Team #2

**Team Name: NMV** 

Members: Sebhat Gezehey, Abel Kebekabe, Alexander Bradley

April 2023

# TEAM 2 (NMV) Project: Home Loan Approval

BAH TechX Machine Learning Engineering Program

#### **INTRODUCTIONS**



SEBHAT GEZEHEY

Associate

Lead Engineer



ABEL KEBEKABE Senior Consultant ML Engineer



ALEXANDER BRADLEY
Senior Consultant
ML Engineer

## **Project**

Home Loan Approval

- 1. Introductions
- 2. Project Overview
- 3. Project Process and Schedule
- 4. <u>Design/Architecture Diagram</u>
- 5. Tools/Environments Used
- 6. EDA
- 7. Models and Results
- 8. <u>Challenges/Issues/Lessons</u>
- 9. Future Plans
- 10. <u>Demo</u>
- 11. Questions and Answers



#### **Project Overview**

• **Summary:** A bank has a list of past applicants who previously applied for home loans. Data is provided for each applicant and whether the loan was approved or denied. A model to predict whether a loan is approved based off applicant information requested.

#### Business Case:

- Reduce loan process time
- Increase consistency among all home loan approvals across the company
- Problem Statement: Identify the best way to approve home loans based off available applicant data
- Goal(s): Deploy an ML model that determines approval of home loans consistent with past approvals
- Scope:
  - Report any significant findings in the data
  - Create and deploy a predictive model that determines home loan approval
  - Out-of-scope: Determining reason for loan approval
- Current State Metrics:
  - <u>F-Score</u>, Accuracy, Precision, Recall, AUC

#### Project Process and Schedule

- Day 1-2
  - Perform EDA to understand dataset
  - Discuss metrics for scoring models to fit business case
  - Establish Project Overview
- Day 3
  - Create multiple models and compare results
- Day 4
  - Continue model evaluation
  - Choose a final model to deploy based off metrics and ease of deployment
- Day 5
  - Finalize documentation and presentation

## System Design and Architecture



#### Technologies and Environment used

- AWS SageMaker
- AWS EC2
- AWS S3
- AWS ECR
- GitHub

## **Exploratory Data Results**



Loan Amounts of \$0 value removed for graph and statistics

Minimum Loan: \$900k

**Maximum Loan: \$60M** 

Median Loan: 12.8M

## **Exploratory Data Results**

| 468             | 500                                          |
|-----------------|----------------------------------------------|
| Female          | Female                                       |
| Yes             | No                                           |
| 2               | 0                                            |
| Not<br>Graduate | Graduate                                     |
| NaN             | No                                           |
| 21000           | 64500                                        |
| 291700.0        | 368300.0                                     |
| 9800000         | 11300000                                     |
|                 |                                              |
| 360.0           | 480.0                                        |
| 360.0<br>1.0    | 480.0<br>1.0                                 |
|                 |                                              |
|                 | Female Yes 2 Not Graduate NaN 21000 291700.0 |

#### Exploratory Data Results – Continued...



#### **Observation:**

Target Variable is Imbalanced

#### Exploratory Data Results – Continued...



#### Exploratory Data Results – Continued...



#### Exploratory Data Results – ...Continued

#### Other Observations

6 of the 12 of the columns contained missing values. The table to the right shows the 6 columns with the highest percentage of missing values.

Variable "Loan\_Amount" contained loans of \$0 value

**Dataset Properties** 

|                | % of Missing Values |
|----------------|---------------------|
| Credit_History | 8.14%               |
| Self_Employed  | 5.21%               |
| Dependents     | 2.44%               |
| Term           | 2.28%               |
| Gender         | 2.12%               |
| Married        | 0.49%               |

| Rows | Columns | Duplicate rows | Target column | Missing target values | Invalid target values | Detected problem type |  |
|------|---------|----------------|---------------|-----------------------|-----------------------|-----------------------|--|
| 614  | 12      | 0.00%          | Status        | 1.88%                 | 1.88%                 | BinaryClassification  |  |

**Detected Column Types** 

|              | Numeric | Categorical | Text  | Datetime | Sequence |
|--------------|---------|-------------|-------|----------|----------|
| Column Count | 4       | 7           | 0     | 0        | 0        |
| Percentage   | 36.36%  | 63.64%      | 0.00% | 0.00%    | 0.00%    |

#### **Model Versions**

| Version        | Model                         | Description                                                                                          |  |  |  |
|----------------|-------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Baseline       | Amazon<br>SageMaker<br>AutoML | AutoML was used to produce a quick analysis of multiple models. WeightedEnsemble was the best model. |  |  |  |
| Version<br>1.0 | Random<br>Forest              | Model was chosen for being a viable solution to a binary classification problem.                     |  |  |  |
| Version<br>1.1 | XGBoost                       | Chosen as it was one of the better performing algorithms from the AutoML.                            |  |  |  |
| Version<br>1.2 | XGBoost                       | Additional tuning of XGBoost was done.                                                               |  |  |  |



#### **Model Versions**

| Version        | Model                         | Features                                                                                        |  |  |  |
|----------------|-------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Baseline       | Amazon<br>SageMaker<br>AutoML | Raw Data                                                                                        |  |  |  |
| Version<br>1.0 | Random<br>Forest              | Removed Missing Data     Label Encoded Categorical Variables                                    |  |  |  |
| Version<br>1.1 | XGBoost                       | Removed Missing Data     Label Encoded Categorical Variables                                    |  |  |  |
| Version<br>1.2 | XGBoost                       | 1) Removed Missing Data 2) Label Encoded Categorical Variables 3) Removed \$0 Loan Amount Value |  |  |  |



#### Model Results

| Version                      | Model                         | F1    | Accuracy | Precision                    | Recall | AUC   |
|------------------------------|-------------------------------|-------|----------|------------------------------|--------|-------|
| Baseline                     | Amazon<br>SageMaker<br>AutoML | 0.677 | 0.839    | 0.913                        | 0.538  | 0.247 |
| Version<br>1.0               | Random<br>Forest              | 0.85  | 0.77     | 0.77                         | 0.88   | 0.67  |
| Version<br>1.1               | XGBoost                       | 0.96  | 0.96     | 0.96<br>(1.0 on<br>Approval) | 0.96   | 0.942 |
| Production<br>Version<br>1.2 | XGBoost                       | 0.82  | 0.84     | 0.85                         | 0.84   | 0.748 |

## Challenges, Issues, Lessons

- More data desired for more testing
- Learned it is harder to deploy a Bring Your Own Model on AWS SageMaker than a native SageMaker algorithm
- On testing it was found that a large income, but no credit history resulted in a high likelihood of the loan being denied

#### Future Plans/Recommendations

- Additional common-sense checks of model inputs like the issue mentioned above where no credit history resulted in a high likelihood loan being denied
- Testing of additional models
- Hyperparameter tuning
- Create AWS MLOps Pipeline to make model iterations faster

#### Demo

```
predictions array
array([0.76343787, 0.46597332, 0.70553535, 0.83843571, 0.82133377,
       0.90497601, 0.72584224, 0.23788796, 0.78886515, 0.65653336,
       0.72160769, 0.76274806, 0.79909384, 0.74878019, 0.69548339,
       0.87321091, 0.87321091, 0.19923036, 0.78186738, 0.83322304,
       0.17902289, 0.19555779, 0.81155813, 0.23835607, 0.88869292,
       0.85579586, 0.87321091, 0.14648503, 0.69306409, 0.19666469,
      0.87843382, 0.81664765, 0.82935792, 0.71457011, 0.55616462,
      0.8456676 , 0.817568 , 0.80307311, 0.92997241, 0.71048701,
      0.58344918, 0.79251015, 0.82907891, 0.64178544, 0.90586245,
      0.13079849, 0.20029396, 0.66306961, 0.82758921])
from sklearn.metrics import classification_report
print(classification_report(test_data['Status'], np.round(predictions_array), target_names=['approve', 'deny']))
              precision
                          recall f1-score support
                   0.90
     approve
                             0.56
                                       0.69
                                                   16
        deny
                   0.82
                             0.97
                                       0.89
                                                   33
                                       0.84
                                                   49
    accuracy
                   0.86
                             0.77
                                       0.79
                                                   49
   macro avg
weighted avg
                                                   49
                   0.85
                             0.84
                                       0.82
```





#### **Newly Generated** Applicant Data

```
sample record_csv = '''Gender, Married, Dependents, Education, Self_Employed, Applicant_Income, Coapplicant_Income, Loan_Amount, Term, Credit_History, Area
1,0,0,1,0,584900,0,15000000,360,1,2
import pandas as pd
from io import StringIO
sample record io = StringIO(sample record csv)
sample_df = pd.read_csv(sample_record_io)
sample record io = StringIO(sample record csv)
sample_df = pd.read_csv(sample_record_io)
sample_record_io = StringIO(sample_record_csv)
sample df = pd.read csv(sample record io)
#if contains target column:
    # Drop the target column from the sample csv
    #print(f"Target column value of sample record: {sample df.iloc[0][target column name]}")
    #sample_df = sample_df.drop(columns=[target_column_name])
sample_record_payload = sample_df.to_csv(header=False, index=False)
print(f"Sample record to predict: {sample_record_payload}")
Sample record to predict: 1,0,0,1,0,584900,0,15000000,360,1,2
prediction = predictor.predict(sample record payload, initial args={"ContentType": "text/csv"})
print(f"The predicted target is: {prediction}")
if prediction > b'0.5':
  print("Loan has been approved")
elif prediction < b'0.5':
  print("Loan has been denied")
The predicted target is: b'0.8253770470619202'
```





Loan has been approved

