Chapitre 3: Anneaux

I Généralités

A) Définition

Soit A un ensemble muni de deux lois notées + et \times .

On dit que $(A,+,\times)$ est un anneaux lorsque :

- (A,+) est un groupe commutatif.
- × est associative et distributive sur +
- Il y a dans A un élément neutre pour \times

Si de plus \times est commutative, on dit que $(A,+,\times)$ est un anneau commutatif.

Remarque, notations:

D'après les résultats généraux sur les lois de composition interne, si $(A,+,\times)$ est un anneau, il ne possède qu'un seul élément neutre pour +, il est noté 0_A et est appelé le zéro de A, et il ne possède qu'un seul élément neutre pour \times , il est noté 1_A et est appelé l'élément unité de A.

A moins que l'anneau A ne soit réduit au singleton $\{0_A\}$, on a $0_A \neq 1_A$.

En effet, si on a $0_A = 1_A$ alors, pour tout $x \in A$, on a :

$$x = x \times 1_A = x \times 0_A = x \times (0_A + 0_A) = x \times (1_A + 1_A) = x \times 1_A + x \times 1_A = x + x$$

De x = x + x on tire, selon la règle de régularité des éléments du groupe (A,+), que $x = 0_A$.

B) Règles de calcul

Soit $(A,+,\times)$ un anneau, et a, b, c, d des éléments quelconques de A. On a :

• $a \times 0_A = 0_A \times a = 0_A$ (on dit que 0_A est absorbant)

En effet,
$$a \times 0_A = a \times (0_A + 0_A) = a \times 0_A + a \times 0_A$$
.

D'où, par régularité des éléments dans le groupe (A,+), $a \times 0_A = 0_A$.

De même de l'autre côté.

• $a \times (-b) = -(a \times b) = (-a) \times b$

En effet:

$$ab + a(-b) = a(b + (-b)) = a \times 0_A = 0_A$$

D'où a(-b) = -(ab). De même pour l'autre égalité.

• Développement des produits de sommes

(a+b)(c+d) = ac + ad + bc + bd (attention à l'ordre dans les produits)

Immédiat en appliquant deux fois la distributivité.

• Pour $n \in \mathbb{N}$, on définit a^n par $a^0 = 1$, et $\forall n \in \mathbb{N}, a^{n+1} = a^n a$.

Alors $\forall (n, p) \in \mathbb{N}^2$, $a^{n+p} = a^n a^p$ (immédiat par associativité de \times).

Et
$$\forall (n, p) \in \mathbb{N}^2, (a^n)^p = a^{np}$$

(mais attention : $(ab)^n = ab \times ab ... ab$, \times n'est pas nécessairement commutative)

• Dans le groupe (A,+), on a toujours la définition et les propriétés pour n.a $(n \in \mathbb{Z},)$, et de plus : $(n.a) \times b = n.(ab) = a \times (n.b)$ (qu'on peu noter nab)

En effet, pour $n \in \mathbb{N}$, on le montre aisément par récurrence, en utilisant la distributivité de \times sur +, puis pour n = -p avec $p \in \mathbb{N}$, on a :

 $(p(-a)) \times b = (p(-a) \times b) = p(-ab) = p(a(-b)) = a \times (p(-b))$ d'après les règles précédentes.

D'où $(n.a) \times b = n.(ab) = a \times (n.b)$ selon la règle (-p)x = p(-x).

C) Deux identités remarquables

Dans tout anneau $(A,+,\times)$, a et b étant deux éléments de A **qui commutent**, on a, pour tout $n \in \mathbb{N}$:

$$(a+b)^{n} = \sum_{p=0}^{n} C_{n}^{p} a^{p} b^{n-p} \text{ (formule du binôme)}$$

$$a^{n} - b^{n} = (a-b) \sum_{p=0}^{n-1} a^{p} b^{n-p-1} \text{ (avec } n \ge 1\text{)}$$

Démonstration :

- Pour la formule du binôme, on peut reprendre la démonstration faite dans l'anneau $(\mathbb{R},+,\times)$, étant donné qu'elle n'utilise que les règles de calculs dans un anneau et le fait que a et b commutent.
 - Pour la seconde :

$$(a-b)\sum_{p=0}^{n-1} a^p b^{n-p-1} = a\sum_{p=0}^{n-1} a^p b^{n-p-1} - b\sum_{p=0}^{n-1} a^p b^{n-p-1} \quad \text{(distributivit\'e)}$$

$$= \sum_{p=0}^{n-1} a^{p+1} b^{n-p-1} - \sum_{p=0}^{n-1} b a^p b^{n-p-1} \quad \text{(distributivit\'e)}$$

$$= \sum_{p=0}^{n-1} a^p b^{n-p-1} - \sum_{p=0}^{n-1} a^p b^{n-p} \quad \text{(b et a commutent)}$$

$$= \sum_{p=1}^{n} a^p b^{n-p} - \sum_{p=0}^{n-1} a^p b^{n-p} \quad \text{(changement de variables)}$$

$$= a^n - b^n$$

D) Exemples d'anneaux

 $(\mathbb{Z},+,\times)$, $(\mathbb{Q},+,\times)$, $(\mathbb{R},+,\times)$, $(\mathbb{C},+,\times)$ pour les lois usuelles sont des anneaux.

E étant un ensemble, et $(A,+,\times)$ un anneau, en définissant les lois + et \times sur $\mathfrak{F}(E,A)$ par :

Pour $f,g \in \mathfrak{F}(E,A)$, $f+g:x\mapsto f(x)+g(x)$, $fg:x\mapsto f(x)g(x)$, on vérifie immédiatement que $(\mathfrak{F}(E,A),+,\times)$ est un anneau, commutatif si A l'est.

En particulier:

- En prenant pour $(A,+,\times)$ l'anneau $(\mathbb{R},+,\times)$, et en prenant toujours E un ensemble quelconque :
- $\mathfrak{F}(E,\mathbb{R})$, muni des lois « naturelles » + et × d'addition et de multiplication de fonctions est un anneau commutatif.

Et si on prend $E = \mathbb{N}$, on obtient :

- $\mathfrak{F}(N,\mathbb{R})$, c'est-à-dire l'ensemble des suites réelles indexées par N (noté aussi \mathbb{R}^N), muni des lois naturelles d'addition et de multiplication de suites, est un anneau commutatif.
- Et de même en prenant pour $(A,+,\times)$ l'anneau $(\mathbb{C},+,\times)$, $(\mathfrak{F}(E,\mathbb{C}),+,\times)$ est un anneau commutatif, et en particulier $(\mathbb{C}^{\mathbb{N}},+,\times)$ est un anneau commutatif.

II Sous anneaux

Définition:

Soit $(A,+,\times)$ un anneau, et soit B une partie de A.

On dit que B est un sous anneau de A lorsque :

- B est stable par + et \times .
- 1_A ∈ B
- $\forall x \in B, (-x) \in B$

Proposition:

Soit $(A,+,\times)$ un anneau, et soit B une partie de A. Si B est un sous anneau de $(A,+,\times)$, alors + et \times constituent des lois de composition internes sur B, et $(B,+,\times)$ est un anneau, commutatif si A l'est.

Exemples:

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} sont des sous anneaux de $(\mathbb{C},+,\times)$.
- L'ensemble des suites réelles convergentes (et indexées par \mathbb{N}) constitue un sous anneau de $(\mathbb{R}^{\mathbb{N}},+,\times)$.

III Morphismes d'anneaux

Définition:

Soient $(A,+,\times)$ et $(B,+,\times)$ deux anneaux.

Un morphisme d'anneaux de A vers B est une application $\varphi: A \to B$ telle que :

- (1) $\forall (x, y) \in A^2, \varphi(x+y) = \varphi(x) + \varphi(y)$
- (2) $\forall (x, y) \in A^2, \varphi(x \times y) = \varphi(x) \times \varphi(y)$
- (3) $\varphi(1_A) = 1_B$

Remarque:

Un morphisme d'anneau φ de $(A,+,\times)$ vers $(B,+,\times)$ est en particulier un morphisme de groupes de (A,+) vers (B,+), on a donc nécessairement $\varphi(0_A) = 0_B$.

En revanche, la condition (3) ne doit pas être oubliée car elle ne résulte pas de (1) et (2).

Exemple:

L'application $u \mapsto \lim u$ constitue un morphisme de l'anneau des suites réelles convergentes indexées par \mathbb{N} , muni des lois naturelles + et \times vers l'anneau $(\mathbb{R}, +, \times)$.

Définition:

De même que dans les groupes, on définit pour un morphisme φ de $(A,+,\times)$ vers $(B,+,\times)$ l'image de φ par $\operatorname{Im} \varphi = \{\varphi(x), x \in A\} = \varphi(A)$ et le noyau de φ par $\ker \varphi = \{x \in A, \varphi(x) = 0_B\}$ (c'est le noyau du morphisme de groupes correspondant)

Ici encore, $\operatorname{Im} \varphi$ et $\ker \varphi$ sont des sous anneaux respectivement de $(B,+,\times)$ et $(A,+,\times)$ (la démonstration est quasiment la même que pour les groupes)

Proposition:

Si φ est un morphisme d'anneaux de $(A,+,\times)$ vers $(B,+,\times)$, et si A' est un sous anneau de A, alors $\varphi(A')$ est un sous anneau de B.

Démonstration:

Evident en considérant Im φ_{A}

Proposition, définition:

Si φ est un morphisme d'anneaux de $(A,+,\times)$ vers $(B,+,\times)$, et si φ est bijectif, alors φ^{-1} est un morphisme d'anneaux bijectif de $(B,+,\times)$ vers $(A,+,\times)$. On dit alors que φ est un isomorphisme d'anneaux.

Démonstration:

Se baser toujours sur les morphismes de groupes.

IV Compléments

A) Eléments inversibles

Définition :

Soit A un anneau non réduit à $\{0\}$.

Un élément x de A est inversible lorsqu'il existe $x' \in A$ tel que $xx' = x'x = 1_A$.

Proposition, définition:

Si x est inversible, alors il existe un unique $x' \in A$ tel que $xx' = x'x = 1_A$. On l'appelle l'inverse de x, et on le note x^{-1} .

Proposition:

L'ensemble A^* des éléments inversibles de A forme un groupe pour \times .

Démonstration:

- Pour tous $x, y \in A^*$, $xy \in A^*$. En effet :

$$xyy^{-1}x^{-1} = y^{-1}x^{-1}xy = 1_4$$
, donc $xy \in A^*$ et $(xy)^{-1} = y^{-1}x^{-1}$

- × est associative.
- $1_4 \in A^*$ et est neutre pour \times
- Si $x \in A^*$, alors évidemment $x^{-1} \in A^*$ et est symétrique de x pour \times .

B) Anneau intègre

Soit $(A,+,\times)$ un anneau quelconque.

Il est faux en général que, pour $a,b \in A$:

$$ab = 0_A \Rightarrow a = 0_A \text{ ou } b = 0_A$$
.

Un élément a tel qu'il existe $b \neq 0_A$ de sorte que $ab = 0_A$ s'appelle un diviseur de 0_A (0_A est donc un diviseur de 0_A , puisque on a même pour tout $b \neq 0_A$, $0_A b = 0_A$)

Définition:

Soit $(A,+,\times)$ un anneau. On dit que A est intègre lorsque :

- (1) A n'est pas réduit à $\{0\}$.
- (2) A est commutatif.
- (3) A n'admet pas de diviseur de 0_A autre que 0_A , c'est-à-dire :

$$\forall x, y \in A, xy = 0_A \Rightarrow x = 0_A \text{ ou } y = 0_A.$$

Exemples:

Z est intègre.

 $\mathfrak{F}(\mathbb{R},\mathbb{R})$ ne l'est pas.

Attention:

Dans un anneau où il y a des diviseurs de 0_A autres que 0_A (c'est-à-dire non intègre), les éléments non nuls de A ne sont pas toujours réguliers pour x:

En effet:

$$ab = ac \Leftrightarrow ab - ac = 0_A \Leftrightarrow a(b - c) = 0_A$$

Ce qui peut arriver même si $a \neq 0_A$ et $b-c \neq 0_A$.