# Analog Lab 2022 EE2401

## akumar@ee.iith.ac.in

## **Experiment 1: Inverter characteristics**

1. Determine large-signal  $I_{out}$  vs  $V_{in}$  of a CMOS inverter using the circuit below:



Figure 1: Setup to find  $I_{out}$  without using an ammeter.

- Sweep  $V_{in}$  from 0V to  $V_{DD}$  (6V).
- What is the self-bias voltage  $(V_B)$  of the inverter?  $[V_B = V_{in} \text{ when } I_{out} = 0]$
- Find the transconductance at  $V_B$ .
- Choose appropriate supply voltages for the opamp.
- 2. Determine large-signal  $V_{out}$  vs  $V_{in}$  of a CMOS inverter using the circuit below:



Find small-signal resistance of the self-biased inverter using the circuit shown below for  $V_{DD} = 5$ V, 6V and 9V:



IIT Hyderabad Page 1 of 2

3. Using the data from above two experiments, estimate small-signal  $g_m$  and  $r_o$  of the transconductor. Also find out  $V_T$  and  $\beta$  of the NMOS and PMOS of inverter.

#### Submit the following:

- Testbench snapshot, output plots
- Hand calculation
- Any unusual observation along-with comments

#### IC product page:

- Use models of the components available at their product page
- CD4069 https://www.ti.com/product/CD4069UB
- LM324 https://www.ti.com/product/LM324
- PSPICE models can be used in LTspice using this procedure: https://www.analog.com/en/technical-articles/ltspice-simple-steps-to-import-third-party-models.html

IIT Hyderabad Page 2 of 2