齐鲁工业大学 19/20 学年第 2 学期《大学物理Ⅲ》期末考试试卷

(B 卷)

(本试卷共5页)

题号	_	III	四	五	六	总分
得分						

得分 阅卷人

一、选择题(共30分,每题3分)

1.一运动质点在某瞬时位于矢径 $\bar{r}(x,v)$ 的端点处,其速度大小为

(A) $\frac{dr}{dt}$

(B) $\frac{d\vec{r}}{dt}$

(C) $\frac{d|\vec{r}|}{1}$

(D) $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$

2. 自感为 0.25 H 的线圈中, 当电流在(1/16) s 内由 2 A 均匀减小到零时,线圈 中自感电动势的大小为:

- (A) $7.8 \times 10^{-3} \text{ V}$. (B) $3.1 \times 10^{-2} \text{ V}$. (C) 8.0 V. (D) 12.0 V.

- 3. 已知平行板电容器间为均匀电场,则该区域内

- (A) 电势值为恒量.
- (B) 电势为零. (C) 电势差相等的等势面间距相等.

4. 真空中一根无限长直细导线上通电流 I,则距导线垂直距离为 a 的空间某点处 ٦ 的磁能密度为

(A)
$$\frac{1}{2}\mu_0(\frac{\mu_0 I}{2\pi a})^2$$
 (B) $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2\pi a})^2$ (C) $\frac{1}{2}(\frac{2\pi a}{\mu_0 I})^2$ (D) $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2a})^2$

5. 下列说法正确的是

- (A)等势面上各点场强的大小一定相等.
- (B)在电势高处,电势能也一定高.
- (C)场强大处,电势一定高.
- (D)场强的方向总是从电势高处指向电势低处.

6. 对一个物体系	来说,在下列	条件中,哪种	中情况下系统的	机械能守恒		-
(A) 合外	·力为零	(B) 外	、力和非保守力	邻不做功		
(C) 合外	·力不做功	(D) 外	·力和保守内力	邻不做功		
7.在标准状态下,		的体积比 V_1/V_2	$V_2 = 1/2$,则内能	之比 E_1/E_2 为	J []
(A) 1/2.	(B) $5/3$.	(C) 5/6.	(D) $3/10$.			
8. 如图,木块加沿	·固定的光滑叙	面下滑,当下	降 h 高度时,重力]的瞬时功率	是[-
(A) mg(2g)	$(h)^{1/2}$		m			
$(B) mg \cos$	$\theta(2gh)^{1/2}$		5	1		
$(C) mg \sin \theta$	$\theta(\frac{1}{2}gh)^{1/2}$, i	9	h		
$(D) mg \sin \theta$	$\theta(2gh)^{1/2}$					
9. 一绝热容器被	隔板分为两半	,一半是真空	,另一半理想气	体,若把隔板扩	油出,气/	体将
进行自由膨胀,	达到平衡后					-
(A) 温度7	下变. (B) 温	上度升高.				
(C) 温度降	峰低. (D) 以	上都不正确				
10. 电位移矢量	的时间变化率	$\mathrm{d}ec{D}/\mathrm{d}t$ 的单位	是			-
(A)库仑/米	² . (B)库仑/秒	⁾ . (C)安培/シ	枨². (D)安培;	米 ²		
得分		填空题(共 3	80 分,每空 3	分)		
阅卷人						
1. 一质点从静止出发	$ \dot{c}$,沿半径 $R=4$	lm 的圆周运动	动, 切向加速度	$\xi a_t = 2m/s^2,$	当总加:	速度
与半径成 45°角时	,所经过的时	间 t =	秒,在上这	时间内质点	所经过	的路
程 S =	米。					
2. 保守力做功的大小	、与路径无关,	只取决于	位置。			
3. 一质量为 <i>m</i> , 电荷	f为q的粒子,	以,速度垂	直进入均匀的和	急恒磁场』中	,电荷	将作
半径为]圆周运动。				
		2				

4. 一人从 10m 深的井中提水,起始时桶中装有 10kg 的水,桶的质量为 1kg,由于水桶漏水,每升高 1m 要漏去 0.2kg 的水,水桶匀速从井中提到井口,人所作的功

W	

- 5. 均匀磁场的磁感应强度 \vec{B} 垂直于半径为 r 的圆面,今以该圆周为边线作一半球面 S,则通过 S 面的磁通量的大小为
- 6. 一个质量为 m 的质点,沿 x 轴作直线运动,受到的作用力为 $\bar{F} = F_0 \cos \omega t \bar{i}$ (SI), t=0 时刻,质点的位置坐标为 x_0 ,初速度 $\bar{v}_0=0$.则质点的位置坐标和时间的关系式是 x=
- 7. 刚体的转动惯量与以下三个因素有关: 1、转轴的位置; 2、_____。 3、_____。
- 8. 在相同的温度和压强下,单位体积的氢气(刚性双原子气体)与氦气的内能之比为

. 得	
分	
阅卷人	

三、计算题(本题10分)

如图所示,长l=100 cm 的细杆可绕过其上端的水平光滑固定轴O在竖直平面内转动,已知细杆对于O轴的转动惯量J=20 kg·m²,且初态细杆静止并自然下垂。若位于细籽的下端水平射入质量m=0.01 kg、速率v=400 m·s¹的子弹并嵌入杆内,试求此时: (1)杆和子弹一起运动时的角速度; (2)杆和子弹的转动动能。

得分	
阅卷人	

四、 计算题 (本题 10 分)

设电流均匀流过无限大导电平面,其电流密度为一,求导电平面两测的磁感应强度的大小.

得分	
阅卷人	

五、计算题(本题 10 分)

一定量的理想气体,由状态 a 经 b 到达 c,(如图,abc 为一直线)求此过程中.(1)气体对外作的功;(2)气体内能的增量;(3)气体吸收的热量.[1atm=1.013 \times 10 5 Pa]

六、计算题(本题 10 分)

在半径为 R_1 的金属球之外有一半径为 R_2 的均匀介质层.设电介质相对电容率为 \mathcal{E}_r ,金属球带电量为 Q. 求(1)介质层内、外的电场强度.

