Transient beta and gamma bursts in the mouse basolateral amygdala during the open field test

SungJun Cho Jee Lab, KIST Seoul, Republic of Korea

Introduction

Single bursts affect static power estimates

Quinn et al., Brain Topography, 2019

Burst durations correlate with motor impairments

Blue: ON dopaminergic medication **Grey**: OFF dopaminergic medication

Tinkhauser et al., Brain, 2017

Gamma bursts underlie working memory

Lundqvist et al., Neuron, 2016

Table of Burst Detection Algorithms

Schematics of Neural Signal Simulations

Power estimates of simulated bursts

Bursts

- Modelled with Tukey windows
- Duration from 3 12 cycles
- SNR_{dB} levels from -10 10 dB
- Amplitude constant of β =0.630 mV and γ =0.551 mV

Noise Processes

- Aperiodic noise with an all-pole IIR filter
- Gaussian noise sampled from $z \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu = 0$ and $\sigma = 0.630/\sqrt{10^{\text{SNR}_{\text{dB}}}}$

Trials

- 11,000 trials (1000 signals of varying lengths of bursts per each SNR_{dB} level)
- Total duration per signal: 300 s

Burst Detection Efficiency

Definitions of Statistical Metrics

Precision,
$$P=\frac{TP}{(TP+FP)}$$

Recall, $R=\frac{TP}{(TP+FN)}$

F1-Score, $F_1=\frac{2PR}{P+R}$

TP: True positives FP: False positives FN: False negatives

Note

- The bursts of shorter durations are relatively more dependent on the selected algorithms (C, F, I).
- MTP and CWT resulted with best performances for the most transient bursts (G).

Temporal Concurrence between Simulated and Detected Bursts

<u>Detection of shorter transient bursts is algorithm-dependent</u>

Temporal Concurrence =

$$\frac{1}{N_{TP}} \sum_{n=1}^{N_{TP}} \frac{\min(s_{n,stop}, d_{n,stop}) - \max(s_{n,start}, d_{n,start})}{\max(s_{n,stop}, d_{n,stop}) - \min(s_{n,start}, d_{n,start})}$$

where N_{TP} is the number of TP bursts and $\vec{S}_n = (s_{n,start}, s_{n,stop})$ and $\vec{D}_n = (d_{n,start}, d_{n,stop})$ for n^{th} TP burst indicate the onset and cessation of a real burst S and a detected burst D, respectively.

Applications of Algorithms on Beta Burst Detection in Open Field Test

Statistical Tests

Location occupancy: Two-Way ANOVA with Tukey's HSD

Burst rates

- Algorithm dependency: One-Way ANOVA with Tukey's HSD
- Location dependency: Kruskal-Wallis Test with Dunn's Test with Šidák Correction

Burst durations

- Algorithm dependency: Kruskal-Wallis Test with Dunn's Test with Šidák Correction
- Location dependency: One-Way ANOVA with Tukey's HSD

Note

- The burst detections and their signal properties are dependent on the selected algorithm.
- No statistically significant changes in burst rates and durations were reported with respect to the demarcated locations.

Conclusion

- It is necessary to consider the distinct advantages of each method in relation to the burst properties one wants to study.
- 2. The burst-induced **dynamic changes in cognitive processes** were not observed in the open field test (i.e., non-trial based nature-like experiment), but we believe these observations will be seen from similar experiments in the future.
- 3. We encourage the **hybrid use of multiple methods** to maximize temporal precisions of burst detection, especially when cognition and behaviors have to be correlated.

Thank you for listening

Warm thanks to ...

SungJun Cho Postgraduate Researcher

Jee Hyun Choi Pl

Jungyoung Kim MSc Candidate

Jaehyun Lee Post-Doc

Kyuhwan Lee MSc Candidate

Acknowledgements

- KIST Intramural Grant
- National Research Foundation of Korea

Bowon Kim Post-Doc

Hio-Been Han PhD Candidate

Seoyoung Kim Postgraduate Researcher

Yujin Lee Undergraduate RA Haeon Kim Undergraduate RA

Jiae Park Undergraduate RA