Universität Konstanz

Classifying Domains as Misinformation with a GNN

Konstanz, 18.02.25

Content

- 1. Research Question
- 2. Method
- 3. Work Plan & Challenges
- 4. Data
- 5. Model
- 6. Next steps

1. Research Question

2. Method

Graph Neural Network

- Co-occurrences of Domains in Telegram chats build the graph
- node classification task for labeling domains as misinformation

Node Features:

- messages: how many messages in the data contained this url
- avalanches: how many avalanches (i.e. individual bursts of spreading)
- virality: how "bursty" the spread of the url was. virality=1 if it spreads in one large continuous burst, virality=0 if it spreads over time in many small independent bursts
- article embedding
- message sentiment
- chat popularity
- chat topics

3. Work Plan & Challenges

- get access to database of research group in Göttingen
- scraping URLs

- classification task
 with benchmark
 model
- training of basic GCN

- content-agnostic approach?
- "fact checking" tool?

Data Preprocessing

- filter and clean data
- create embeddings
- matrix grouping and validation

- Model evaluation
- GCN, GraphSage or GAT?
- hyperparameter fine-tuning

4. Data

- Data from Priesemann Research Group in Göttingen
- Telegram Chat Data from 2020 -2023
- Data includes
 - chats with names, description
 - URLs with timestamps
 - Chat x Url share matrix
 - 11 520 domain ratings from Lasser et al.

Word Cloud of Domains in URLs

	domain	pc1	afm	afm_bias	afm_min	afn
0	reuters.com	1.000000	0.962600	0.950100	0.950100	0.97
1	apnews.com	0.998049	0.960400	0.933400	0.933400	0.98
2	charitynavigator.org	0.985752	0.929423	0.934419	0.909962	0.92
3	rollcall.com	0.982851	0.916600	0.911500	0.911500	0.92
4	smith sonian mag.com	0.971184	0.891200	0.883200	0.883200	0.89
	***		***	***	***	

Cut-out of Lasser at al. domain ratings

4. Data - Misinformation Score

0 = Misinformation; 1 = Information

4. Data - Domains

4. Data - Domains

4. Data - Article Embeddings

UMAP Projection of Article Embeddings

4. Data - Network Structure

Network Visualization (Top 10% Nodes by Degree)

- → 388 chats
- → 4753 train domains
- → 1189 test domains
- \rightarrow 1519640 edges

4. Data - Network Structure

Projection of the Bipartite Network of Chats and Domains

- → Validating Network with Bipartite Configuration model
- → using Poisson
 Distribution to check for statistically validated node similarities
- → reduced edges from 1519640 to 154254

5. Model - Classification

- Classification Task as starting point
- goal is binary classification, with "trustworthy" and not "trustworthy" domains as a result
- Finding Threshold is difficult, because of unbalanced data
- for now: Threshold = 0.5

5. Model - GCN

First basic GCN with the features: 'virality', 'year', 'avalanches', 'messages'

GCN((conv1): GCNConv(388, 64) (conv2): GCNConv(64, 2)) Ir = 0.0001 epochs = 100

5. Model - SBERT vs. GCN

5. Model - SBERT vs. GCN

SBERT - Classification Task	GCN - Classification Task Classification Report: precision recall f1-score support		
Classification Report: precision recall f1-score support			
0 0.53 0.50 0.52 305	Class 0 0.54 0.10 0.16 1208		
1 0.83 0.85 0.84 884	Class 1 0.76 0.97 0.85 3545		
accuracy 0.76 1189 macro avg 0.68 0.67 0.68 1189 weighted avg 0.75 0.76 0.76 1189	accuracy 0.75 4753 macro avg 0.65 0.53 0.51 4753 weighted avg 0.70 0.75 0.68 4753 (messed up to test with the test data)		

6. Next Steps

- adding additional features: messages and chat topics
- try another BERT model for embeddings
- set different thresholds and balance the data
- improving the models
- experiment with different Graph Neural Networks
- try content agnostic approach (without article embeddings)

Universität Konstanz

Questions or Advices?

Sources

- https://www.statista.com/statistics/1263360/most-popular-messe nger-apps-worldwide-by-monthly-downloads/
- https://www.skillademia.com/statistics/telegram-statistics/
- Carragher et al. 2024, https://doi.org/10.1184/R1/25174193.v1
- A. Maulana and J. Langguth, doi: 10.1109/SNAMS60348.2023.10375407.
- Hause Lin, Jana Lasser, Stephan Lewandowsky, Rocky Cole, Andrew Gully, David G Rand, Gordon Pennycook, https://doi.org/10.1093/pnasnexus/pgad286

5. Model - Bert

Regression Task with last layer of SBERT model

5. Model - Bert

Regression Task with last layer of SBERT model

3. The Data

Telegram:

- free instant messaging service
- third most downloaded messenger worldwide
- 800 million monthly active users
- end-to-end encryption and high user privacy level