

ML BASED SOLICITATION IN FEDERAL TRANSCRIPTS

BITS Pilani
Pilani Campus

DILIP PRASAD

2020MT12208

innovate achieve lead

PROJECT DETAILS

- For the given German government federal archive written in Germany, implement NLP based search engine.
- This search performed should be more than a simple Regex based or word to word match.
- So, it has to be a semantic based search understanding the meaning and also get results based on synonyms

Problem statement

- There are multiple web pages in the German federal archive website, written in German language.
- Implementing a search based on word/ sentence could be done with a Regex based match, However, this in turn results only with exact match.
- Fetching details based on synonyms or on the basis of context is lacking

NLP Phases

There are 5 phases on any given NLP projects and the same will be performed here

- Lexical & Morphological analysis
- Syntactic analysis (parsing)
- Semantic analysis
- Discourse integration
- Pragmatic analysis

Data cleanup

Below are the common steps performed to clean or normalize the data

- Tokenizing the string
- Lowercasing
- Removing stop words and punctuation
- Stemming

NLP Tasks

Overview of the tasks performed

- Using a language library
- Building pipeline object
- Using token
- Part of speech tagging
- Understanding token attributes

Web scraping

Architecture Diagram

Architecture Explained

- The web crawler module, crawls and finds all the given set of possible links in the entire website.
- Azure Queue functionality is used to maintain the crawled URL temporarily
- Later, the URL Validator module dequeues each of the links validates the same.
- Post that, the same module extracts web text without HTML or Rich media and queues to another queue hosted in azure
- Finally, the NLP modules performs data cleanup and pr processing techniques to build a model

Architecture Explained Cont.

- After creating a module, we make use of it by consuming from an API
- This API is created as a RESTful service to perform REAI operations mostly or CRUD in general.
- To facilitate the search operation, we will be creating a web application in Dot Net core with Docker container.
- Upon performing search, it invokes the API and the API fetches the relevant text from the NLP Model

Info extraction architecture

Frequency Distribution

Sample Frequency distribution

Manual trigger

 Below UI helps us to trigger the various steps in this NL Project

Search Screen

Below UI helps us to perform search on our model

i webtriggerui.azurewebsites.net/Search			臣	☆	
<u>WebTriggerUI</u>	Triggers Search				
	S	Search for statements			
	Search				

Scope for improvement

- Use no server methodologies by making use of azure o demand or AWS functionless offerings
- Communicate between serverless functions to create a cascading experience
- Create a MLOPS pipeline to continuously train and deploy model for enhancements

Conclusion

- Though there are multiple algorithms to handle these scenarios, we have used a simple one available in the market.
- Going forward these algorithms will be replaced with a proprietary algorithm developed in house.

Thank You