

MIA GÓRNICZO-HUT

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Zagadnienia interpolacji Lagrange'a i Hermite'a Sprawozdanie – Ćwiczenie 2

> Maciej Kmąk Informatyka WI AGH, II rok 15. Kwietnia 2025

1 Cel Ćwiczenia

Celem ćwiczenia jest porównanie metod interpolacji wielomianowej Lagrange'a i Hermite'a w odniesieniu do funkcji f(x), przedstawionej na rysunku 1, zadanej wzorem:

$$f(x) = e^{-3 \cdot \sin(x)} + 3 \cdot \cos(x)$$
 na przedziale $[-2\pi, 4\pi]$

Podstawy teoretyczne obu metod zostały przywołane w **Sekcji 3** - **Wstęp Teoretyczny**. Analiza eksperymentalna objęła:

- różną liczbę węzłów interpolacyjnych,
- dwa sposoby ich rozmieszczenia: równoodległe i węzły Czebyszewa.

Zbadano wpływ zarówno liczby węzłów, jak i sposobu ich rozmieszczenia na uzyskane wyniki interpolacyjne. Na podstawie przeprowadzonej analizy dokonano porównania obu metod, zwracając szczególną uwagę na:

- dokładność odwzorowania funkcji w całym przedziale,
- wielomian, który najlepiej przbyliża zadaną funkcję,
- różnice w zachowaniu interpolacji przy węzłach równoodległych i węzłach Czebyszewa.

Rysunek 1: Funkcja f(x) na przedziale $[-2\pi, 4\pi]$

2 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o specyfikacji:

- System Operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel(R) Core(TM) i5-1235U 1.3 GHz
- Język: Python 3.12
 - Wykorzystane moduły języka Python: NumPy, Pandas, Matplotlib, CSV, Math

3 Wstęp Teoretyczny

3.1 Interpolacja Lagrange'a

W ramach interpolacji Lagrange'a zastosowano zarówno klasyczny wzór Lagrange'a, jak i wzór Newtona, co umożliwia porównanie ich efektywności i stabilności numerycznej. Wzór Newtona ułatwia rozszerzanie wielomianu o nowe węzły, podczas gdy wzór Lagrange'a jest bardziej przejrzysty, lecz mniej efektywny obliczeniowo.

Zakłada się, że dysponujemy n+1 węzłami x_0, x_1, \ldots, x_n , na podstawie których wyznaczany jest wielomian interpolacyjny $P_n(x)$ stopnia n.

3.1.1 Wzór Lagrange'a

Wielomian interpolacyjny $P_n(x)$ można przedstawić jako liniową kombinację funkcji bazowych Lagrange'a:

$$P_n(x) = \sum_{k=0}^{n} f(x_k) \cdot L_k(x),$$

gdzie $L_k(x)$ to k-ta funkcja bazowa zdefiniowana wzorem:

$$L_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}.$$

Własność interpolacyjna tej bazy spełnia warunek:

$$L_k(x_j) = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}.$$

Funkcja $P_n(x)$ spełnia więc warunek $P_n(x_i) = f(x_i)$ dla każdego węzła x_i , co oznacza, że dokładnie interpoluje funkcję w danych punktach.

3.1.2 Wzór Newtona

Wielomian interpolacyjny Newtona zapisuje się w postaci:

$$W(x) = \sum_{k=0}^{n} b_k \cdot p_k(x),$$

gdzie: - b_k — współczynniki uzyskane z różnic dzielonych, - $p_0(x)=1$, - $p_k(x)=(x-x_0)(x-x_1)\dots(x-x_{k-1})$ dla $k\geq 1$.

Dla przykładowych pierwszych wartości mamy:

$$p_0(x) = 1,$$

 $p_1(x) = (x - x_0),$
 \vdots
 $p_n(x) = \prod_{i=0}^{k-1} (x - x_i).$

Taka postać wielomianu Newtona jest szczególnie wygodna obliczeniowo, ponieważ pozwala na stopniowe rozbudowywanie wielomianu bez konieczności przekształcania wcześniej obliczonych wyrażeń.

3.2 Interpolacja Hermite'a

W przypadku interpolacji Hermite'a wykorzystuje się wzór Newtona rozszerzony o warunki dotyczące pochodnych. Oznacza to, że dla każdego węzła x_i znana jest nie tylko wartość funkcji $f(x_i)$, ale także jej pochodna $f'(x_i)$.

Dla n węzłów, z których każdy ma znaną wartość funkcji oraz pierwszą pochodną, stopień wielomianu Hermite'a wynosi 2n-1.

3.2.1 Postać Newtona dla interpolacji Hermite'a

Szukany wielomian interpolacyjny Hermite'a ma postać:

$$H_n(x) = \sum_{l=0}^{n} b_l \cdot p_l(x) = \sum_{i=0}^{k} \sum_{j=0}^{m_i - 1} b_{s(i)+j} \cdot p_{s(i)+j}(x)$$

gdzie: - m_i — liczba warunków interpolacyjnych związanych z punktem x_i (np. $m_i = 2$, jeśli znana jest wartość i pochodna), - s(i) — liczba wszystkich warunków przed punktem x_i , czyli $s(i) = \sum_{r=0}^{i-1} m_r$, - $b_{s(i)+j}$ — współczynniki wyznaczone z tablicy różnic dzielonych (lub obliczone bezpośrednio w przypadku pochodnych), - $p_{s(i)+j}(x)$ — funkcje bazowe Newtona z powtórzonymi węzłami.

W kontekście zastosowanej funkcji f(x), pochodna została obliczona analitycznie:

$$f'(x) = -3 \cdot \cos(x) \cdot e^{-3 \cdot \sin(x)} - 3 \cdot \sin(x),$$

Taka postać umożliwia konstrukcję dokładnego wielomianu $H_n(x)$, który odwzorowuje zarówno wartości, jak i zachowanie funkcji w punktach węzłowych.

4 Przebieg Doświadczenia

Dla funkcji f(x), zrealizowano interpolację metodami Lagrange'a i Hermite'a, zgodnie z następującym zakresem liczby wezłów:

- dla interpolacji Lagrange'a (zarówno wzorem Lagrange'a, jak i Newtona)
- dla interpolacji Hermite'a.

Dla każdej wartości $n \in \{4, 7, 10, 13, 16, 19, 20, 25, 30, 40, 45, 50\}$ wykonano interpolację w dwóch wariantach rozmieszczenia węzłów:

- rozmieszczenie równoodległe,
- rozmieszczenie według zer wielomianu Czebyszewa.

Po skonstruowaniu wielomianu interpolacyjnego P(x) dla danego przypadku, obliczono błędy względem funkcji f(x) w N=500 równomiernie rozłożonych punktach testowych na przedziale $[-2\pi, 4\pi]$. Zastosowano dwa typy błędów:

- błąd maksymalny,
- błąd średni.

4.1 Wzory na błąd maksymalny i błąd średni

Maksymalny bład:

$$e_{\max} = \max_{i \in \{1,\dots,N\}} (|f(x_i) - p(x_i)|)$$

Średni błąd:

$$e_{\text{avg}} = \frac{\sqrt{\sum_{i=1}^{N} (f(x_i) - p(x_i))^2}}{N}$$

Gdzie:

 $f(x_i)$ – wartość funkcji w punkcie x_i ; $p(x_i)$ – wartość wielomianu interpolującego w punkcie x_i

5 Wyniki Doświadczenia

W tabelach 1 i 2 przedstawiono zestawienie błędów interpolacji dla różnych metod oraz sposobów rozmieszczenia węzłów interpolacyjnych: równoodległych i według zer wielomianu Czebyszewa.

Na rysunkach 2a i 2b zaprezentowano wykresy przedstawiające odpowiednio błędy średnie oraz maksymalne dla interpolacji Lagrange'a dla wzorów Lagrange'a i Newtona oraz interpolacji Hermite'a dla wzoru Newtona, wykonane dla węzłów równoodległych. Analogicznie, na rysunkach 3a i 3b przedstawiono te same miary błędów (średni i maksymalny) obliczone dla węzłów Czebyszewa, umożliwiając bezpośrednie porównanie z wynikami uzyskanymi dla węzłów równoodległych.

Na rysunkach 4a–9b przedstawiono wybrane wykresy wielomianów interpolowanych wraz z zaznaczonymi węzłami.

Tabela 1: Porównanie błędów (Węzły równoodległe): Interpolacja Lagrange'a (Wzory Lagrange'a jako $e^{(lagr)}$ i Newtona jako $e^{(newt)}$), Interpolacja Hermite'a (Wzór Newtona jako $e^{(herm)}$)

n	$e_{\max}^{(lagr)}$	$e_{\max}^{(newt)}$	$e_{\max}^{(herm)}$	$e_{avg}^{(lagr)}$	$e_{avg}^{(newt)}$	$e_{avg}^{(herm)}$
4	1.6160e + 01	1.6160e + 01	2.1892e+01	3.1174e-01	3.1174e-01	8.4605e+00
7	3.0708e+01	3.0708e+01	1.6249e+01	4.6279 e - 01	4.6279 e - 01	6.3213e+00
10	2.2276e + 01	2.2276e+01	2.3129e+03	3.5093e-01	3.5093e-01	5.7893e + 02
13	4.1580e + 02	4.1580e + 02	7.1865e + 03	4.9570e + 00	4.9570e + 00	1.6271e + 03
16	7.6144e + 02	7.6144e + 02	3.4174e + 05	5.7103e+00	5.7103e+00	5.5677e + 04
19	6.2195e + 02	6.2195e+02	2.9704e + 06	5.8461e+00	5.8461e+00	5.1485e + 05
20	1.1195e + 04	1.1195e + 04	3.7797e + 06	9.6694e + 01	9.6694e + 01	5.4313e + 05
25	1.0627e + 05	1.0627e + 05	5.2564e + 08	7.3160e + 02	7.3160e + 02	7.2353e + 07
30	8.0294e + 05	8.0294e + 05	2.2136e+10	4.4750e + 03	4.4750e + 03	2.3843e + 09
40	2.1319e+07	2.1319e+07	2.5688e + 14	9.1720e + 04	9.1720e + 04	2.2468e + 13
45	3.7669e + 08	3.7669e + 08	6.2928e + 17	2.0265e + 06	2.0265e + 06	4.1670e + 16
50	4.5561e + 09	4.5561e + 09	1.1571e + 21	2.2665e + 07	2.2666e + 07	8.5150e + 19

(a) Błąd średni w skali logarytmicznej

(b) Błąd maksymalny w skali logarytmicznej

Rysunek 2: Porównanie błędów (Węzły równoodległe): Interpolacja Lagrange'a - wzór Lagrange'a $(e^{(\text{lagr})})$ i wzór Newtona $(e^{(\text{newt})})$, Interpolacja Hermite'a – wzór Newtona $(e^{(\text{herm})})$.

Tabela 2: Porównanie błędów (Węzły Czebyszewa): Interpolacja Lagrange'a (Wzory Lagrange'a jako $e^{(lagr)}$ i Newtona jako $e^{(newt)}$), Interpolacja Hermite'a (Wzór Newtona jako $e^{(herm)}$)

n	$e_{\max}^{(lagr)}$	$e_{\max}^{(newt)}$	$e_{\max}^{(herm)}$	$e_{avg}^{(lagr)}$	$e_{avg}^{(newt)}$	$e_{avg}^{(herm)}$
4	1.6668e + 01	1.6668e + 01	2.2980e+01	2.9745e-01	2.9745e-01	8.4833e+00
7	2.5254e + 01	2.5254e+01	2.1787e + 01	3.7948e-01	3.7948e-01	7.9501e+00
10	1.1939e+01	1.1939e+01	9.7211e+00	2.2946e-01	2.2946e-01	3.3997e+00
13	1.0572e + 01	1.0572e + 01	5.6649e+00	1.7417e-01	1.7417e-01	1.8649e + 00
16	1.1455e + 01	1.1455e + 01	3.0520e+00	1.6612e-01	1.6612e-01	8.5049 e-01
19	5.7080e + 00	5.7080e+00	1.3680e+00	9.4249e-02	9.4249e-02	3.8031e-01
20	7.2704e+00	7.2704e+00	2.6340e+00	8.7268e-02	8.7268e-02	3.9931e-01
25	4.4343e+00	4.4343e+00	3.1167e + 04	6.3969e-02	6.3969e-02	3.3109e+03
30	1.4842e+00	1.4842e+00	2.9415e+07	2.4397e-02	2.4397e-02	2.3335e+06
40	5.5998e-01	4.0794e+00	1.2910e + 14	6.7468e-03	2.1263e-02	1.2438e + 13
45	3.2134e-01	3.4883e+02	6.4790e + 17	4.3166e-03	1.4984e+00	4.3175e + 16
50	1.1036e-01	2.0676e + 04	1.4910e + 21	1.4660e-03	8.2048e + 01	1.3693e + 20

(a) Błąd średni w skali logarytmicznej (węzły Czebyszewa)

(b) Bład maksymalny w skali logarytmicznej (wezły Czebyszewa)

Rysunek 3: Porównanie błędów (Węzły Czebyszewa): Interpolacja Lagrange'a – wzór Lagrange'a $(e^{(\text{lagr})})$, Newtona $(e^{(\text{newt})})$ oraz Hermite'a – wzór Newtona $(e^{(\text{herm})})$.

Analiza wykresów błędów interpolacji przedstawionych na rysunkach 2a, 2b, 3a i 3b pozwala wyciągnąć następujące wnioski:

- Dla węzłów **równoodległych** zauważalny jest wyraźny wzrost błędów (zarówno średniego, jak i maksymalnego) w miarę zwiększania liczby węzłów. Zjawisko to jest typowym objawem efektu Rungego, który nasila się szczególnie przy n > 10.
- W przypadku węzłów Czebyszewa wszystkie metody odznaczają się wyraźnie większą stabilnością i niższymi błędami. Szczególnie dobrze wypada tutaj interpolacja Lagrange'a, której błąd (dla wzoru Lagrange'a) maleje wraz ze wzrostem liczby węzłów. Natomiast przy zastosowaniu wzoru Newtona przy n=40 pojawia się zauważalny wzrost błędów spowodowany ograniczeniami arytmetyki zmiennoprzecinkowej. Z kolei w przypadku interpolacji Hermite'a przy n>19 obserwuje się nagły wzrost błędu wynikający z niestabilności obliczeń zmiennoprzecinkowych.

W celu lepszego zobrazowania zjawisk towarzyszących interpolacji, na kolejnych rysunkach zostaną przedstawione wybrane przebiegi funkcji interpolujących wraz z zaznaczonymi węzłami.

Rysunek 4: Porównanie metod rozmieszczenia węzłów dla metody Lagrange'a dla n=45

Rysunek 5: Wykresy dla n = 4 dla różnych metod interpolacji i rozmieszczenia węzłów.

Rysunek 6: Porównanie dla n=7 dla Metody Lagrange'a i Hermite'a, Węzły równoodległe

Rysunek 7: Porównanie wybranych wyników interpolacji dla różnych metod i rozmieszczeń węzłów dla n=10,13,16.

Rysunek 8: Wykresy dla n = 19,20 dla różnych metod interpolacji, węzły Czebyszewa.

Rysunek 9: Najlepsze dopasowanie wielomianu oraz analogiczne warunki dla metody Hermite'a

6 Opracowanie Danych

6.1 Różnice w metodach interpolacji i rozmieszczenia węzłów

Na rysunkach 4a i 4b ukazano, jak **rozmieszczenie węzłów** wpływa na kształt wielomianu: węzły równoodległe (4b) prowadzą do silnych oscylacji na krańcach, natomiast węzły Czebyszewa (4a) znacząco je redukują. Rysunki 5a i 5b pokazują **różnice między metodami Lagrange'a i Hermite'a** przy małej liczbie węzłów. W metodzie Lagrange'a (5a) wielomian przyjął niemal stałą wartość, natomiast metoda Hermite'a (5b) poprawnie dopasowała nachylenie krzywej w węzłach. Efekt ten widać także na rysunkach 6a i 6b, gdzie wielomian z rys. 6b dzięki wykorzystaniu informacji o pochodnych zdecydowanie lepiej oddaje okresowość funkcji.

6.2 Efekt Rungego

Efekt Rungego pojawia się przy **równoodległych węzłach**, gdy wzrasta stopień wielomianu. Na rysunkach 7a i 7b (dla n = 10) widoczne są wyraźne oscylacje na krańcach przedziału, szczególnie w metodzie Hermite'a (rys. 7b), gdzie wyższy stopień (2n - 1) dodatkowo wzmacnia ten efekt.

6.3 Korzystny wpływ węzłów Czebyszewa

Na rysunkach 7c–7h pokazano, że **węzły Czebyszewa** znacząco poprawiają dokładność interpolacji, zwłaszcza w metodzie Hermite'a, gdzie dodatkowo wykorzystuje się informacje o pochodnych. Przy n=16 (rys. 7h) błąd maksymalny jest rzędu jedności, a przebieg interpolujący niemal pokrywa się z funkcją. Dla porównania, wielomian Lagrange'a o tej samej liczbie węzłów (rys. 7g) generuje błąd maksymalny sięgający rzędu 10 i wyraźniej odbiega od krzywej w obszarach między węzłami.

6.4 Wrażliwość obliczeń w interpolacji Hermite'a

Wzrost liczby węzłów wpływa także na wrażliwość obliczeniową, co dobrze widać na rysunkach 8a–8d. Dla n=19 (rys. 8b) metoda Hermite'a daje najlepsze uzyskane dla tej metody dopasowanie. Jednak już dla n=20 (rys. 8d) pojawiają się wyraźne odchylenia, wynikające przede wszystkim z wysokiego stopnia wielomianu (2n-1=39), który potęguje wpływ błędów obliczeń zmiennoprzecinkowych. Dla porównania, metoda Lagrange'a (rys. 8a i 8c), mimo że bywa mniej precyzyjna, zachowuje większą stabilność obliczeniową.

6.5 Przypadek dużej liczby węzłów

Ostatecznie, przy n=50 (rys. 9a i 9b) widać dwa skrajne przypadki. Najlepsze przybliżenie (zarówno względem błędu średniego, jak i maksymalnego) uzyskano na rys. 9a (Metoda Lagrange'a, wzór Lagrange'a). Natomiast w 9b (Metoda Hermite'a) obserwuje się błąd rzędu 10^{21} , co wskazuje na całkowite zaburzenie interpolacji.

7 Podsumowanie Zagadnienia

Przeprowadzone doświadczenia pokazują, że **interpolacja Lagrange'a**, tworzona według **wzoru Lagrange'a**, okazuje się wyjątkowo stabilna numerycznie, zwłaszcza przy zastosowaniu **węzłów Czebyszewa**, które istotnie ograniczają efekt Rungego i umożliwiają poprawne przybliżanie funkcji nawet przy dużej liczbie węzłów.

Natomiast interpolacja Hermite'a, dzięki wykorzystaniu informacji o pochodnych, może zapewnić wysoką dokładność przy relatywnie niewielkiej liczbie węzłów. Należy jednak pamiętać, że wysoki stopień wielomianu (2n-1) sprzyja pojawieniu się błędów arytmetyki zmiennoprzecinkowej (przy dużej liczbie węzłów) oraz nasileniu efektu Rungego (przy węzłach równoodległych).

Metoda Lagrange'a, wymagająca jedynie wartości funkcji (bez informacji o pochodnych), bywa więc najlepszym wyborem tam, gdzie kluczowa jest stabilność obliczeń przy wysokich stopniach wielomianu oraz uzyskanie globalnie dobrego dopasowania. Z kolei **Interpolacja Hermite'a** jest szczególnie przydatna w sytuacjach, gdy dysponujemy analizą pochodnych i zależy nam na precyzyjnym odtworzeniu przebiegu funkcji, w przypadku niewielkiej liczby węzłów.