SCRUM Domain Optimization Model

Generated from Entities, Relationships, Goals, Conditions, Decision Variables ${\rm August}\ 12,\,2025$

Contents

1	1. Sets (Entities)	3
2	2. Indices	4
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

Notation Prelude (Relationships as Incidence Sets & Parameters)

To use all CSV inputs coherently, we introduce incidence sets (from Relationships.csv) and parameters (from Entities.csv attributes). Whenever an entity attribute is needed, we denote it by a parameter named after the attribute, indexed by the entity's index (see Sections 1–2). For example, story-points_{us} for a user story $us \in \mathcal{US}$, effort_{tsk} for a task $tsk \in \mathcal{TSK}$, budget_p for a project $p \in \mathcal{P}$, etc.

Incidence Sets from Relationships.csv:

- $A^{\text{TP}} \subseteq \mathcal{T} \times \mathcal{P}$ (R1: is_assigned_to_project)
- $A^{\text{WT}} \subseteq \mathcal{W} \times \mathcal{T}$ (R2: belongs_to_team) (Employee interpreted as Worker)
- $A^{WS} \subseteq \mathcal{W} \times \mathcal{S}$ (R3: has_skill)
- $A^{WR} \subseteq \mathcal{W} \times \mathcal{R}$ (R4: takes_on_role)
- $A^{\text{PO,PB}} \subseteq \mathcal{PO} \times \mathcal{PB}$ (R5: manages_backlog)
- $A^{T,SM} \subseteq \mathcal{T} \times \mathcal{SM}$ (R6: is_supported_by)
- $A^{\text{PB,F}} \subseteq \mathcal{PB} \times \mathcal{F}$ (R7: contains_feature)
- $A^{\text{PB,E}} \subset \mathcal{PB} \times \mathcal{E}$ (R8: contains_epic)
- $A^{E,US} \subseteq \mathcal{E} \times \mathcal{US}$ (R9: contains_user_story)
- $A^{\text{US,TSK}} \subseteq \mathcal{US} \times \mathcal{TSK}$ (R10: consists_of_tasks)
- $A^{\text{US,SBL}} \subseteq \mathcal{US} \times \mathcal{SBL}$ (R11: is_in_sprint_backlog)
- $A^{\text{SBL,SP}} \subseteq \mathcal{SBL} \times \mathcal{SP}$ (R12: belongs_to_sprint)
- $A^{SP,SG} \subset \mathcal{SP} \times \mathcal{SG}$ (R13: pursues_goal)
- $A^{\text{SCB,TSK}} \subset \mathcal{SCB} \times \mathcal{TSK}$ (R14: contains_tasks)
- $A^{\text{FED,F}} \subset \mathcal{FED} \times \mathcal{F}$ (R15: documents_feature)
- $A^{\text{TSK,BL}} \subset \mathcal{TSK} \times \mathcal{BL}$ (R16: is_blocked_by)
- $A^{SH,SR} \subseteq \mathcal{SH} \times \mathcal{SR}$ (R17: participates_in)
- $A^{\text{SM,SRE}} \subseteq \mathcal{SM} \times \mathcal{SRE}$ (R18: moderates_retrospective)
- $A^{\text{VEL,T}} \subset \mathcal{VEL} \times \mathcal{T}$ (R19: refers_to_team)
- $A^{\text{REP,F}} \subset \mathcal{REP} \times \mathcal{F}$ (R20: plans_release)
- $A^{\text{REP,RM}} \subset \mathcal{REP} \times \mathcal{RM}$ (R21: is_part_of_roadmap)
- $A^{SP,DEV} \subseteq \mathcal{SP} \times \mathcal{DEV}$ (R22: generates_snapshot)

1 1. Sets (Entities)

We define one set per entity (from Entities.csv). The mnemonic in parentheses is the entity's SetName.

- \mathcal{P} (P): Projects
- \mathcal{T} (T): Teams
- \mathcal{W} (W): Workers
- \mathcal{F} (F): Features
- S (S): Skills
- \mathcal{R} (R): Roles
- \mathcal{PO} (PO): Product Owners
- \mathcal{SM} (SM): Scrum Masters
- \mathcal{PB} (PB): Product Backlogs
- \mathcal{SP} (SP): Sprints
- SPP (SPP): Sprint Plannings
- \mathcal{DS} (DS): Daily Scrums
- \mathcal{SR} (SR): Sprint Reviews
- \mathcal{SRE} (SRE): Sprint Retrospectives
- \mathcal{SBL} (SBL): Sprint Backlogs
- \mathcal{SG} (SG): Sprint Goals
- \mathcal{E} (E): Epics
- \mathcal{US} (US): User Stories
- \mathcal{TSK} (TSK): Tasks
- \mathcal{DEV} (DEV): Development Snapshots
- \mathcal{BL} (BL): Blockers
- \mathcal{SH} (SH): Stakeholders
- VEL (VEL): Velocity records
- \mathcal{REP} (REP): Release Plans
- \mathcal{RM} (RM): Roadmaps
- \mathcal{SCB} (SCB): Scrum Boards
- \mathcal{FED} (FED): Feature Documentations

$\mathbf{2}$ 2. Indices

Index symbols (from Entities.csv Index column) and their domains:

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}$
- $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$
- $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sa \in \mathcal{SG}$
- $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $bl \in \mathcal{BL}$
- $sh \in \mathcal{SH}$, $vel \in \mathcal{VEL}$, $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fed \in \mathcal{FED}$

3 3. Goals

Each goal item shows (ID, snake_case name) followed by its logical intent and mathematical form. Weights from Goals.csv appear as ω . Criteria Type $\in \{2 \text{ (must)}, 1 \text{ (may)}, 0 \text{ (cannot)}\}\$ acts as a filter on eligible items.

• G0 maximize_total_story_points (Criteria: 1, $\omega = 1.0$).

Logic: Prefer selecting user stories with higher story_points into sprints.

Math: max
$$\omega \sum_{us \in \mathcal{US}} \sum_{sp \in \mathcal{SP}} z_{us,sp} \cdot \text{story_points}_{us}$$

• G1 minimize_total_task_effort (Criteria: 2, $\omega = 1.0$).

Logic: Reduce the aggregate planned effort of tasks.

Math: min
$$\omega \sum_{tsk \in \mathcal{TSK}} \text{effort}_{tsk}$$

• G2 maximize_velocity_average (Criteria: 1, $\omega = 1.0$).

Logic: Increase average velocity (story points per sprint) per team. Math: max $\omega \sum_{vel \in \mathcal{VEC}} \overline{v}_{vel}$

Math: max
$$\omega \sum_{vel \in \mathcal{VEL}} \overline{v}_{vel}$$

• G3 maximize_velocity_peak (Criteria: 1, $\omega = 0.8$).

Logic: Prefer configurations correlating with higher observed peak velocity. Math: max $\omega \sum_{vel \in \mathcal{VE}} v_{vel}^{\max}$

Math: max
$$\omega \sum_{vel \in \mathcal{VEL}} v_{vel}^{\max}$$

• G4 maximize_velocity_trend (Criteria: 1, $\omega = 0.6$).

Logic: Encourage positive velocity trend over time.

Math: max
$$\omega \sum_{vel \in \mathcal{VEL}} \text{trend}_{vel}$$

• G5 minimize_blocker_severity_sum (Criteria: 2, $\omega = 1.0$).

Logic: Reduce cumulative severity of open blockers only.

Math: min
$$\omega \sum_{bl \in \mathcal{BL}^{open}} \text{severity}_{bl}$$
 with $\mathcal{BL}^{open} = \{bl \in \mathcal{BL} : \text{status}_{bl} \neq \text{resolved}\}$

4

• G6 minimize_project_budget (Criteria: 1, $\omega = 1.0$).

Logic: Minimize approved budget across projects.
 Math: min
$$\omega \sum_{p \in \mathcal{P}} A_p$$
 (DV12)

• G7 maximize_team_size_utilization (Criteria: 1, $\omega = 0.7$).

Logic: Favor higher effective capacity (via team size).

Math: max
$$\omega \sum_{t \in \mathcal{T}} \text{team_size}_t$$

• G8 maximize_sprint_goal_achievement (Criteria: 2, $\omega = 1.0$).

Logic: Maximize achievement score recorded on sprints.

$$\textit{Math: } \max \ \omega \ \sum_{sp \in \mathcal{SP}} \text{achievement_of_goal}_{sp}$$

• G9 maximize_review_attendance (Criteria: 1, $\omega = 0.5$).

$$\label{eq:logic:$$

• G10 minimize_daily_scrum_duration (Criteria: 1, $\omega = 0.3$).

Logic: Keep daily scrums short (10–15 minutes).

Math: min
$$\omega \sum_{ds \in \mathcal{DS}} m_{ds}$$
 (DV11)

• G11 maximize_board_throughput (Criteria: 1, $\omega = 0.4$).

Logic: Prefer higher number of cards processed on Scrum boards.

Math: max
$$\omega \sum_{scb \in \mathcal{SCB}} \text{number_of_cards}_{scb}$$

4 4. Conditions

Each condition item shows (ID, snake_case name) with logical and mathematical expressions. Criteria Type drives filtering; where applicable we define filtered subsets (Must: restrict domain; May: soft preference; Cannot: exclusion). We also incorporate relationship-based consistency.

• C0 active_projects_only (Must, weight 1.0).

Logic: Consider only active projects.

Math: $\mathcal{P}^{act} = \{ p \in \mathcal{P} : \text{status}_p = \text{active} \}$; replace \mathcal{P} by \mathcal{P}^{act} in budget/assignment sums.

• C1 exclude_resolved_blockers (Cannot, weight 1.0).

Logic: Ignore resolved blockers in penalties/goals.

Math:
$$\mathcal{BL}^{open} = \{bl \in \mathcal{BL} : \text{status}_{bl} \neq \text{resolved}\}.$$

• C2 user_stories_with_acceptance_criteria (Must, weight 1.0).

Logic: Schedule only user stories that specify acceptance criteria.

Math: For any us with $z_{us,sp} = 1$: acceptance_criteria_{us} $\neq \emptyset$.

• C3 focus_on_development_tasks (May, weight 0.6).

Logic: Prefer tasks with type = development.

Math (soft): Add $-0.6 \sum_{t \le k} \mathbf{1}[\text{type}_{t \le k} = \text{development}]$ to the objective.

• C4 active_sprints_only (Must, weight 1.0).

Logic: Only active sprints eligible for scheduling.

Math: If $z_{us,sp} = 1$ then status_{sp} = active.

• C5 prefer_certified_skills (May, weight 0.7).

Logic: Prefer workers with certified skills on assigned work.

Math (soft): $-0.7 \sum_{(w,s) \in A^{WS}} \mathbf{1}[\text{certified}_s = \text{true}].$

- C6 roles_with_defined_responsibility (Must, weight 0.9).
 - Logic: Any worker-role assignment requires specified responsibility.

Math: $\forall (w, r) \in A^{WR}$: area_of_responsibility_r $\neq \emptyset$.

- C7 exclude_inactive_workers (Cannot, weight 1.0).
 - Logic: Inactive workers cannot be assigned to teams.

Math: $\forall (w,t) \in A^{\text{WT}}$: status_w \neq inactive.

- C8 goal_achievement_reported (Must, weight 0.9).
 - Logic: Sprint goals must report achievement status.

Math: $\forall (sp, sg) \in A^{SP,SG}$: achievement_status_{sq} $\in \{$ achieved, partial, missed $\}$.

• C9 prefer_current_backlog (May, weight 0.5).

Logic: Prefer product backlogs with manageable status (e.g., current).

Math (soft): $-0.5 \sum_{pb \in \mathcal{PB}} \mathbf{1}[\text{status}_{pb} = \text{current}].$

• C10 epics_with_valid_status (Must, weight 0.8).

Logic: Only epics with a valid status can be scheduled into backlogs/sprints via their stories.

 $Math: \text{ If } (e, us) \in A^{E, US} \text{ and } z_{us, sp} = 1 \text{ then status}_e \in \{\text{proposed}, \text{approved}, \text{in_progress}\}.$

- C11 exclude_blocked_tasks (Cannot, weight 1.0).
 - Logic: Tasks with blocking blockers cannot be scheduled/executed.

Math: If $(us, tsk) \in A^{\text{US,TSK}}$ and $(tsk, bl) \in A^{\text{TSK,BL}}$ with status_{bl} \neq resolved, then tsk cannot be started (e.g., effort allocation $a_{tsk} = 0$).

5 5. DecisionVariables

Decision variables (from DecisionVariables.csv) including domains and bounds:

- DV0 assign_team_to_project: $x_{t,p} \in \{0,1\}$ (binary), for $(t,p) \in \mathcal{T} \times \mathcal{P}$. Bounds: $0 \le x_{t,p} \le 1$. (R1 consistency: $x_{t,p} = 1 \Rightarrow (t,p) \in A^{\mathrm{TP}}$)
- **DV1** assign_worker_to_team: $y_{w,t} \in \{0,1\}$ (binary), for $(w,t) \in \mathcal{W} \times \mathcal{T}$. Bounds: $0 \le y_{w,t} \le 1$. (R2)
- DV2 assign_user_story_to_sprint: $z_{us,sp} \in \{0,1\}$ (binary), linking via $A^{\text{US,SBL}}$ and $A^{\text{SBL,SP}}$. Bounds: $0 \le z_{us,sp} \le 1$.
- **DV3** select_feature_for_release: $u_{f,rep} \in \{0,1\}$ (binary), $(f,rep) \in \mathcal{F} \times \mathcal{REP}$. Bounds: $0 \le u_{f,rep} \le 1$. (R20)
- DV4 select_epic_for_backlog: $v_{e,pb} \in \{0,1\}$ (binary), $(e,pb) \in \mathcal{E} \times \mathcal{PB}$. Bounds: $0 \leq v_{e,pb} \leq 1$. (R8)
- DV5 plan_sprint_length_days: $\ell_{sp} \in \mathbb{Z}, 7 \leq \ell_{sp} \leq 30$.
- DV6 allocate_task_effort_hours: $a_{tsk} \in \mathbb{Z}, 1 \leq a_{tsk} \leq 80.$
- DV7 set_team_size: $n_t \in \mathbb{Z}, 3 \leq n_t \leq 11$.
- DV8 set_story_points: $s_{us} \in \mathbb{Z}, 1 \leq s_{us} \leq 13$.
- DV9 set_blocker_severity: $bsev_{bl} \in \mathbb{Z}, \ 1 \leq bsev_{bl} \leq 5.$
- DV10 set_scrum_board_column_count: $c_{scb}^{col} \in \mathbb{Z}, \ 2 \leq c_{scb}^{col} \leq 7.$
- DV11 schedule_daily_scrum_minutes: $m_{ds} \in \mathbb{Z}, 10 \le m_{ds} \le 15$.
- DV12 approve_budget_per_project: $A_p \in \mathbb{R}_{\geq 0}, \ 0 \leq A_p \leq 1,000,000.$

Canonical Combined Objective

If a single scalar objective is required, combine goal components with their weights (maximization form; convert minimizing terms by sign):

$$\max \underbrace{\omega_{G0} \sum_{us,sp} story_points_{us}}_{G0} - \underbrace{\omega_{G1} \sum_{tsk} effort_{tsk}}_{G1} + \omega_{G2} \sum_{vel} \overline{v}_{vel} + \omega_{G3} \sum_{vel} v_{vel}^{max} + \omega_{G4} \sum_{vel} trend_{vel} - \omega_{G5} \sum_{bl \in \mathcal{BL}} v_{bl}^{max} + \underbrace{\omega_{G2} \sum_{vel} v_{vel}^{max}}_{G1} + \underbrace{\omega_{G3} \sum_{vel} v_{vel}^{max}}_{C1} + \underbrace{\omega_{G4} \sum_{vel} trend_{vel}}_{C1} - \underbrace{\omega_{G5} \sum_{bl \in \mathcal{BL}}}_{C1}$$

Soft "May" conditions (C3, C5, C9) can be embedded as additional positive bonuses or penalties on the objective, as shown in Section 4.

Selected Structural Constraints (Consistency & Relationships)

- Team–Project assignment (R1): $x_{t,p} = 0$ if $(t,p) \notin A^{TP}$.
- Worker–Team assignment (R2): $y_{w,t} = 0$ if $(w,t) \notin A^{\text{WT}}$; and (C7) $y_{w,t} = 0$ if status_w = inactive.
- Story–Sprint link (R11–R12): $z_{us,sp} \leq \sum_{sbl:(us,sbl) \in A^{\text{US,SBL}}} \mathbf{1}[(sbl,sp) \in A^{\text{SBL,SP}}].$
- Acceptance criteria (C2): $z_{us,sp} \leq 1$ [acceptance_criteria $_{us} \neq \emptyset$].
- Active sprints only (C4): $z_{us,sp} \leq \mathbf{1}[\text{status}_{sp} = \text{active}].$
- Epic status validity (C10): $z_{us,sp} \leq \mathbf{1}[\text{status}_e \in \{\text{proposed}, \text{approved}, \text{in_progress}\}]$ for any e with $(e, us) \in A^{E,US}$.
- Blocked tasks excluded (C11): For any $(us, tsk) \in A^{\text{US,TSK}}$, if $\exists bl : (tsk, bl) \in A^{\text{TSK,BL}}$ with status_{bl} \neq resolved, then $a_{tsk} = 0$.