

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

Учебное пособие

Билеты для сдачи экзамена по курсу

«Математический анализ»

МГТУ имени Н.Э. Баумана

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

Билеты для сдачи экзамена по курсу

«Математический анализ»

Москва МГТУ имени Н.Э. Баумана

2012

<u>Билет №1.</u> Доказать теорему Ролля.

Пусть дана функция y = f(x).

- 1. Определена и непрерывна на отрезке [a;b].
- 2. Дифференцируема на интервале (a;b).
- 3. И на концах отрезка принимает одинаковые значения. f(a) = f(b).

Тогда найдется, по крайней мере, 1 (•) E, принадлежащая интервалу (a;b): f'(E) = 0.

Доказательство: Т.к. функция f(x) непрерывна на отрезке [a;b], то согласно 2 теореме Вейерштрасса она достигает своего минимального и максимального значения.

$$m = \min f(x), x \in [a;b],$$

$$M = \max f(x), x \in [a;b].$$

Случаи:

- 1. $m = M \Rightarrow f(x) = const$, E любое из интервала (a;b)
- 2. $m \neq M \implies$ в силу 3-го условия теоремы, одно из значений минимального или максимального достигается функцией во внутренней точке интервала (a;b).

Согласно второму условию теоремы Ролля, функция дифференцируема на интервале (a;b) в любой точке, то по теореме Ферма существует E: f'(E) = 0.

Доказать теорему о предельном переходе в неравенстве.

Пусть $f_1(x)$ при $x \to a$ имеет конечный предел A_1 , $f_2(x)$ при $x \to a$ имеет конечный предел A_2 , и существует $\bigcup_{0}^{0}(a) \colon f_1(x) \le f_2(x)$ для $\forall x \in \bigcup_{0}^{0}(a)$, тогда $A_1 \le A_2$.

Доказательство:

$$\begin{split} &\exists \lim_{x \to a} f_1(x) = A_1 \Leftrightarrow \forall \{x_n\} \xrightarrow[n \to \infty]{} a \,,\; x_n \neq a \Rightarrow \{f_1(x_n)\} \xrightarrow[n \to \infty]{} A_1 \\ &\exists \lim_{x \to a} f_2(x) = A_2 \Leftrightarrow \forall \{x_n\} \xrightarrow[n \to \infty]{} a \,,\; x_n \neq a \Rightarrow \{f_2(x_n)\} \xrightarrow[n \to \infty]{} A_2 \\ &\forall E > 0 \exists N_1(E) \colon \forall n > N_1(E) \Rightarrow \mid f_1(x_n) - A_1 \mid \leq E \\ &\forall E > 0 \exists N_2(E) \colon \forall n > N_2(E) \Rightarrow \mid f_2(x_n) - A_2 \mid \leq E \\ &A_1 - E \leq f_1(x_n) \leq f_2(x_n) \leq A_2 + E \Rightarrow A_1 \leq A_2 \\ &\Pi \text{ УСТЬ } E < \frac{\mid A_2 - A_1 \mid}{2} \end{split}$$

Это неравенство выполняется для любого n > 0, $N = \max(N_1(E); N_2(E))$ отсюда $A_1 \le A_2$

<u>Билет №2.</u> Доказать теорему Лагранжа.

Пусть функция y = f(x).

- 4. Определена и непрерывна на отрезке [a;b].
- 5. Дифференцируема на интервале (a;b).

Тогда существует E из интервала (a;b): $f(b)-f(a)=f'(E)\cdot(b-a)$.

Доказательство: Рассмотрим вспомогательную функцию $F(x) = f(x) - \lambda \cdot x$, где λ - константа.

$$\lambda$$
: $F(a) = F(b)$

$$f(a) - \lambda \cdot a = f(b) - \lambda \cdot b$$

$$\lambda = \frac{f(b) - f(a)}{b - a}$$

- 1. Она непрерывна на [a;b]
- 2. $\,$ дифференцируема на (a;b).

Все условия теоремы Ролля выполняются \Rightarrow существует E из (a;b): F'(E) = 0

$$F'(x) = f'(x) - \lambda \Rightarrow f'(E) = \lambda = \frac{f(b) - f(a)}{b - a}$$

<u>Формула Маклорена для</u> $y = \sin x$ <u>с остаточным членом в форме Пеано.</u>

$$f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} * x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + R_n(x), \ \partial e$$

1)
$$R_n(x) = \bar{o}(x^n)$$
 Пеано

2)
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} * x^{n+1}$$
, $\partial e^{-\xi} = a + \Theta(x-a)$ - Лагранж

3)
$$R_n(x) = \frac{f^{(n+1)}(a+\Theta(x-a))}{n!} * (1-\Theta)^n (x-a)^{n+1}$$
 - Kowu

$$y = \sin x$$
, $y' = \cos x = \sin(x + \frac{\pi}{2})$, $y'' = -\sin x = \sin(x + 2 \cdot \frac{\pi}{2})$, $y'' = \sin(x + n \cdot \frac{\pi}{2})$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \overline{o}(x^{2n+2}), x \to 0, \text{ т.к. sin x - нечет., то вып. усл.: } f^{(2n)}(0) = 0$$

Билет №3.

<u>Формула Маклорена для</u> $y = e^x$ с остаточным членом в форме Пеано.

$$f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} * x^2 + ... + \frac{f^{(n)}(0)}{n!} x^n + R_n(x), \ \partial e$$

1)
$$R_n(x) = \bar{o}(x^n)$$
 Пеано

2)
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} * x^{n+1}$$
, где $\xi = a + \Theta(x-a)$ - Лагранж

3)
$$R_n(x) = \frac{f^{(n+1)}(a + \Theta(x-a))}{n!} * (1-\Theta)^n (x-a)^{n+1}$$
 - Kowu

$$y = e^{x}$$
, $y^{(n)}(x) = e^{x}$, $y^{(n)}(0) = 1$, $\forall n$; $e^{x} = 1 + x + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + \overline{o}(x^{n})$

<u>Сравнение на бесконечности роста показательной, степенной и логарифмических функций.</u>

1)
$$\lim_{x \to +\infty} \frac{\log_a x}{x^s}$$
, где s>0, x>0; $\lim_{x \to +\infty} \frac{1}{x * \ln a * s * x^{s-1}} = \lim_{x \to +\infty} \frac{1}{s * \ln a * x^s} = 0$. $\log_a x = \bar{o}(x^s)$

2)
$$\lim_{x \to +\infty} \frac{x}{a^x}$$
; $\lim_{x \to +\infty} \frac{x}{a^x}$; $\lim_{x \to +\infty} \frac{x^s}{a^x} = \lim_{x \to +\infty} \frac{x^s}{\left(\frac{x}{a^s}\right)^s} = \left[a^{\frac{1}{s}} = b\right] = \lim_{x \to +\infty} \frac{x^s}{b^{xs}} = (\lim_{x \to +\infty} \frac{x}{b^x})^s = 0$; $x^s = \bar{o}(a^x)$.

3)
$$\lim_{x\to +\infty} \frac{\log_a x}{a^x} = 0$$
 (по транзитивности) $\log_a x = \bar{o}(a^x)$

Билет №4.

Доказать первое достаточное условие экстремума функции.

Пусть функция f(x) определена и дифференцируема в окрестности точки С. Для того, чтобы точка С являлась точкой локального экстремума, достаточно чтобы при переходе значений аргумента через точку С производная функции меняла знак с "+" на "-" – локальный максимум, с "-" на "+" – локальный минимум.

Доказательство: Рассмотрим точку Х из указанной окрестности, тогда:

- 1. на [x,c] f(x) непрерывна.
- 2. на (x,c) дифференцируема.

По т. Лагранжа $f(c)-f(x)=f'(E)\cdot(c-x)$, где $E\in(x,c)$, т.к. x< c , то f(c)>f(x) на [c,x]: $f(x)-f(c)=f'(E)\cdot(x-c)<0$ где $E\in(c,x)$, f(x)< f(c)

Доказать теорему о связи функции, её предела и бесконечно малой.

Для того, чтобы функция f(x), определённая в $\bigcup_{i=0}^{0} (a)$ имела конечный предел при $x \to a$,

необходимо и достаточно чтобы эту функцию можно было представить в виде суммы предела и б.м.ф. при $x \to a$ ($\Leftrightarrow f(x) = b + \alpha(x)$, где $\alpha(x)$ - б.м.ф. при $x \to a$).

Доказательство: І Необходимость:

Дано: $\exists \lim_{x \to a} f(x) = b$

Доказать: $f(x) = b + \alpha(x)$, где $\alpha(x)$ - б.м.ф. при $x \rightarrow a$.

 $\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |f(x) - b| < E$

Пусть $\alpha(x) = f(x) - b \Rightarrow$ по определению б.м.ф

 $\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |\alpha(x)| < E \Longrightarrow \alpha(x) - б.м.ф. при x \to a$.

 $f(x) = b + \alpha(x) : \forall x : 0 < |x - a| < \delta$

II Достаточность:

Дано: $f(x) = b + \alpha(x)$, где $\alpha(x)$ - б.м.ф. при $x \rightarrow a$.

Доказать: $\exists \lim_{x \to a} f(x) = b$

 $\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |\alpha(x)| = |f(x) - b| < E \Longrightarrow \exists \lim_{x \to a} f(x) = b$

Билет №5.

Доказать второе достаточное условие экстремума.

Пусть функция f(x) определена и имеет в окрестности точки с производную до n-го порядка включительно, причем в самой точке с все производные до (n-1)-го порядка включительно равны 0, а n-ая производная в точке C отлична от нуля. Если n – четное, тогда C – точка локального экстремума, в частности, если $f^{(n)}(c) > 0$, то x = c - локальный минимум, если $f^{(n)}(c) < 0$, то x = c - локальный максимум.

Доказательство: Запишем формулу Тейлора с остаточным членом в форме Пеано с центром в точке С.

$$\begin{split} f(x) &= f(c) + \frac{f'(c)}{1!} * (x-c) + \ldots + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + \overline{o}((x-c)^n) = \\ &= f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n \end{split}, \text{ где } \alpha(x) - \text{б.м.ф. при}$$

 $x \to c, x \in \bigcup_{1}(c)$. Пусть n – четное, тогда $(x-c)^n$ не меняет знак при переходе через С.

$$\lim_{x\to c}\frac{f^{(n)}(c)+\alpha(x)}{n!}=\lim_{x\to c}\frac{f^{(n)}(c)}{n!}\neq 0.\ \ \exists\bigcup_{z}(c)\ \ \text{в которой функция сохраняет знак своего предела}.$$

$$f(x) = f(c) + \frac{f'(c)}{1!} * (x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + o((x-c)^n) = f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n,$$

$$\frac{f^{(n)}(c) + \alpha(x)}{(n)!} * \frac{f^{(n)}(c)}{n!} > 0 \forall x \in \bigcup_{2}(c) . \ \bigcup_{1}(c) = \bigcup_{1}(c) \cap \bigcup_{2}(c) .$$

$$\forall x \in \bigcup(c), f(x) - f(c) = \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x - c)^n > 0$$
, если $f^{(n)}(c) > 0 \Rightarrow f(x) > f(c) \Rightarrow x = c$ - точка локального экстремума.

Вывести уравнение наклонной асимптоты.

Прямая $y=k_1x+b_1$ - называется правосторонней наклонной асимптотой графика f(x) при $x\to +\infty$, если $f(x)=k_1x+b_1+\alpha_1(x)$, где $\alpha_1(x)$ -б.м.ф. при $x\to +\infty$. Прямая $y=k_2x+b_2$ - называется левосторонней наклонной асимптотой графика f(x) при $x\to -\infty$, если $f(x)=k_2x+b_2+\alpha_2(x)$, где $\alpha_2(x)$ -б.м.ф. при $x\to -\infty$. Если $k_1=k_2=k$, $b_1=b_2=b$, то y=kx+b - двусторонняя наклонная асимптота.

Теорема. Для того, чтобы y=kx+b была правосторонней (левосторонней) наклонной асимптотой y=f(x) при $x\to +\infty$ (при $x\to -\infty$) необходимо существование двух пределов: $\lim_{x\to +\infty} \frac{f(x)}{x}=k$; $\lim_{x\to +\infty} f(x)-kx=b$ И достаточно существование $\lim_{x\to +\infty} f(x)-kx=b$.

<u>Необходимость</u> Дано: у=kx+b – правосторонняя наклонная асимптота.

Доказать:
$$\exists \lim_{x \to +\infty} \frac{f(x)}{x} = k$$
; $\lim_{x \to +\infty} f(x) - kx = b$.

Док-во:
$$f(x) = kx + b + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.; $f(x) = \frac{kx}{x} + \frac{b}{x} + \frac{\alpha(x)}{x}$. $\exists \lim_{x \to +\infty} \frac{f(x)}{x} = k$. Т.к.

$$\frac{b}{x} = 0, \frac{\alpha(x)}{x} = 0. \text{ II } \lim_{x \to +\infty} f(x) - kx = \lim_{x \to +\infty} b + \alpha(x) = b.$$

<u>Достаточность</u> Дано: $\lim_{x \to +\infty} f(x) - kx = b$

Доказать: y=kx+b – правосторонняя наклонная асимптота.

Док-во. Т.к. существует предел
$$\lim_{x\to +\infty} f(x) - kx = b$$
, то $f(x) - kx = b + \alpha(x)$.

 $f(x) = kx + \alpha(x) \Rightarrow y = kx + b$ - правосторонняя наклонная асимптота (из определения).

<u>Билет №6.</u>

Доказать необходимое условие возрастания дифференцируемой функции.

Для того, чтобы f(x), определённая и дифференцируемая на интервале (a;b) была возраст. на этом интервале, необходимо, чтобы, $f'(x) \ge 0$.

Дано:f(x)-возраст. Док-ть: $f'(x) \ge 0$.

Доказательство: из опред. возраст. ф-ции $\Rightarrow \forall x \in (a,b): x > x_0 \longrightarrow f(x) \ge f(x_0);$

$$\forall x \in (a,b): x < x_0 \longrightarrow f(x) \le f(x_0);$$

$$\Rightarrow$$
если $x \in (a,b)(x \neq x_0)$, то $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Т.к. $f(x) - диф$ -ма, то $\exists \lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

По св-ву сохранения знака нестрогого нер-ва при предельном переходе : $f'(x_0) \ge 0$. (2 дост. - по т. Лагранжа).

<u>Предел числовой последовательности.</u> Сформулировать признак сходимости монотонной последовательности. Доказать теорему о единственности предела.

Число а называется пределом числовой последовательности $\{x_n\}$ при $n\to\infty$ если для любого E>0 существует натуральное число N(E), такое, что для любых n>N(E) выполняется условие $|x_n-a|<$ E, записывают $\lim_{n\to\infty}x_n=a$.

$$\forall E > 0 \exists N(E) : \forall n > N(E) \Longrightarrow |x_n - a| < E$$

Числовая последовательность $\{x_n\}$ монотонно не убывает (не возрастает) при $n \to \infty$, если для $\forall n$ выполнено $x_{n+1} \ge x_n (x_{n+1} \le x_n)$.

Признак: если числовая последовательность $\{x_n\}$ при $n\to\infty$, монотонно не убывает (не возрастает) и ограничена сверху (снизу) числом A (B), тогда она сходится и её предел не больше, чем A (не меньше, чем B)

Если последовательность $\{x_n\}$, при $n \to \infty$ имеет конечный предел, то он единственный .

Доказательство: Пусть $\{x_n\}$ имеет 2 предела а и b при $n\to\infty$. Пусть для определённости a>b $E=\frac{b-a}{3}\,.$

$$\forall E > 0 \exists N_1(E) : \forall n > N_1(E) \Longrightarrow |x_n - a| < E;$$

$$\forall E > 0 \exists N_2(E) : \forall n > N_2(E) \Longrightarrow |x_n - b| < E$$
.

 $N=\max(N_1;N_2) \Rightarrow \forall n>N$ эти неравенства выполняются одновременно, чего быть не может, т.к. по определению Е окрестность точки а содержит все члены последовательности, и Е окрестность точки b содержит все члены последовательности \Rightarrow все члены не могут быть одновременно в 2 окрестностях, т.к. они не пересекаются.

Билет №7.

Доказать необходимое условие экстремума дифференцируемой функции. Для того, чтобы функция, дифференцируемая в точке ξ , имела локальный экстремум необходимо,

чтобы производная в этой точке ξ была равна 0. $f'(\xi) = 0$

Доказательство: следует из теоремы Ферма.

Дано: точка ξ – точка локального экстремума.

Доказать: $f'(\xi) = 0$.

Согласно определению локального экстремума, функция принимает в $U(\xi)$ либо максимальное, либо минимальное значение \Rightarrow по теореме Ферма производная в точке ξ равна 0.

Т. Ферма:

Пусть y=f(x) определена на (a;b) и в некоторой точке этого интервала принимает наибольшее или наименьшее значение. Если в этой точке функция имеет производную, то эта производная равна нулю.

Доказательство: (Для наибольшего значения). Пусть $f(\xi) > f(x), \forall x \in (a;b)$. так как функция

дифференцируема в
$$(\bullet)\xi$$
 $\exists \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi} = f'(\xi)$. $f'_+(\xi) = \lim_{x \to \xi + 0} \frac{f(x) - f(\xi)}{x - \xi} \le 0$;

$$f'_{-}(\xi) = \lim_{x \to \xi - 0} \frac{f(x) - f(\xi)}{x - \xi} \ge 0$$
; T.K. $\exists f'(\xi) \Rightarrow f'_{+}(\xi) = f'_{-}(\xi) = 0$.

Вывести 1 замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Пусть $BD \perp OA$, $CA \perp OA$.

Ясно, что
$$S_{\mathit{OAB}} < S_{\mathit{cerm}} < S_{\mathit{OCA}}$$
, но

$$S_{OAB} = \frac{1}{2}OA \cdot BD = \frac{1}{2}\sin x$$

$$S_{cerm} = \frac{1}{2}(OA)^2 \cdot BD = \frac{1}{2}x$$

$$S_{OCA} = \frac{1}{2}OA \cdot AC = \frac{1}{2}tgx$$
, T.e.

$$\sin x < x < tgx$$
, т.к. $\sin x > 0 \Rightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x} \Rightarrow \frac{\sin x}{x} < 1, \forall x \in (0, \frac{\pi}{2}) \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1$.

Билет №8-1.

Доказать теорему Бернулли-Лопиталя для предела отношения двух бесконечно малых функций.

Теорема. Пусть ф-ции f(x) и g(x) определены и дифференцируемы в $\bigcup_{x \to a}^{0} (a)$, представляют собой б.м.ф. при $x \to a$, причем $g'(x) \neq 0$ в $\bigcup_{x \to a}^{0} (a)$. Если $\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \Rightarrow \lim_{x \to a} \frac{f'(x)}{g(x)}$, $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$.

Доказательство: Рассмотрим $\{x_n \underset{x \to \infty}{\to} a, x_n \in \bigcup_{x \to \infty}^0 (a)$. Доопределим по непрерывности данные функции нулем в точке а (f(a)=0, g(a)=0). Тогда на $[a, x_n]$ функции f(x) и g(x) непрерывны, на $(a; x_n)$ f(x) и g(x) дифференцируемы. По теореме Коши $\exists \xi_n \in (a; x_n)$: $\frac{f(x_n) - f(a)}{g(x_n) - g(a)} = \frac{f'(\xi_n)}{g'(\xi_n)} \Rightarrow \frac{f(x_n)}{g(x_n)} = \frac{f'(\xi_n)}{g'(\xi_n)}$ при $n \to \infty, x_n \to a \Rightarrow \xi_n \to a$ по условию теоремы $\exists \lim_{x \to \infty} \frac{f'(\xi_n)}{g'(\xi_n)} \Rightarrow \lim_{x \to \infty} \frac{f(x_n)}{g(x_n)} \Rightarrow \exists \lim_{x \to a} \frac{f'(x)}{g(x)} > 0$

Замечание 1: точка а может быть бесконечной, тогда $\bigcup_{i=0}^{\infty}(a)=(b;+\infty)$ или $\bigcup_{i=0}^{\infty}(a)=(-\infty;c)$. Формулировка: пусть f(x) b g(x) определены и дифференцируемы на $(b;+\infty)$ и представл. Б.м.ф. при $x \to +\infty$, причем $g'(x) \neq 0, \forall x \in (b;+\infty)$. Если $\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} \Rightarrow \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$.

Замечание 2: если f'(x) и g'(x) удовлетворяют всем условиям Б-Л и $\exists \lim_{x \to a} \frac{f''(x)}{g''(x)}$, то $\exists \lim_{x \to a} \frac{f''(x)}{g''(x)} = \exists \lim_{x \to a} \frac{f''(x)}{g''(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$ и т. д.

Билет №8-2.

Векторная функция скалярного аргумента: $R \to R^3$ и её производная.

<u>Касательная к пространственной кривой. Теорема о производной вектор</u>функции постоянной длины.

Рассмотрим [a,b]. Пусть любому $t \in [a,b]$ поставлен в соответствии некоторый вектор $\vec{r}(t)$, тогда говорят, что на [a,b] задана векторная функция скалярного аргумента.

Пусть задана ортонормированная система координат с базисом \vec{i} , \vec{j} , \vec{k} , тогда $\vec{r}(t) = x(t)*\vec{i} + y(t)*\vec{j} + z(t)*\vec{k}$

Функции x(t), y(t), z(t)- скалярные функции действительного аргумента – координатные функции для вектор-функции $\vec{r}(t)$.

Геометрический смысл векторной функции:

Функции $\vec{r}(t)$ соответствует некоторая кривая

$$\Gamma = \{ M(x, y, z) \in \mathbb{R}^3 \mid x = x(t), y = y(t), z = z(t), t \in [a, b] \}$$

Такое представление кривой называют годографом. \bar{a} называется пределом функции $\vec{r} = \vec{r}(t)$ скалярного аргумента при $t \to t_0$ если:

$$\lim_{t \to t_0} |\vec{r}(t) - a| = 0 \Leftrightarrow \lim_{t \to t_0} \vec{r}(t) = 0.$$

Рассмотрим приращение векторной функции, придадим t приращение Δt , тогда $\Delta \vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)$.

Производной $\vec{r}(t)$ в точке t_0 называется предел разностного отношения при $\Delta t \to 0$

$$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}, \ \vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}.$$

$$\vec{r} = \vec{r}_{1}(t) = x(t) * \vec{i} + y(t) * \vec{j} + z(t) * \vec{k}, \ \vec{r}'(t) = x'(t) * \vec{i} + y'(t) * \vec{j} + z'(t) * \vec{k}.$$

$$\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{(x(t + \Delta t) - x(t)) * \vec{i} + (y(t + \Delta t) - y(t)) * \vec{j} + (z(t + \Delta t) - z(t)) * \vec{k}}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta x}{\Delta t} * \vec{i}\right) + \lim_{\Delta t \to 0} \left(\frac{\Delta y}{\Delta t} * \vec{j}\right) + \lim_{\Delta t \to 0} \left(\frac{\Delta z}{\Delta t} * \vec{k}\right) = x'(t) * \vec{i} + y'(t) * \vec{j} + z'(t) * \vec{k}$$

Пусть $t \to t_0$. Предельное положение секущей $M_0 M$ при $t \to t_0$ называют касательной к кривой Γ в точке M_0 . $M_0 M \| \Delta r \Leftrightarrow M_0 M \| \Delta r \to M_0 M \|$

$$\frac{x-x(t_0)}{x'(t_0)} = \frac{y-y(t_0)}{y'(t_0)} = \frac{z-z(t_0)}{z'(t_0)}$$
 - каноническое уравнение касательной.

Теорема: Пусть векторная функция скалярного аргумента $\vec{r} = F(t)$, r(t) $t \in [a,b]$ - является непрерывно-дифференцируемой функцией на [a,b], которой соответствует некоторая кривая Γ : $\{R^3 \mid \vec{r} = \vec{r}(t), t \in [a,b]\}$. Тогда $\exists M > 0$: длина дуги Γ удовлетворяет: $\vec{r}(b) - \vec{r}(a) \leq S_\Gamma \leq M(b-a)$ (при этом Γ

имеет конечную длину).

Доказательство: $S_n = \sum_{i=1}^n |\vec{r}(t_i) - \vec{r}(t_{i-1})| \leq \sum_{i=1}^n |\vec{r}'(t_{i-1} + \Theta_i \cdot \Delta t_i)| \cdot \Delta t_i$, где $\Theta_i \in (0,1)$, по условию теоремы,

функция непрерывно-дифференцируема, значит $\vec{r}'(t)$ на отрезке [a,b] - непрерывная функция.

$$\exists M = \max(|\vec{r}'(t)|), t \in [a,b]$$
 (по 1 теореме Вейерштрасса).

$$\Delta t_i \leq M \cdot \sum_{i=1}^n \Delta t_i = M(b-a) \Rightarrow$$
 при $M \to \infty, S_n \leq M(b-a)$.

Билет №9-1.

Формула Тейлора с остаточным членом в форме Пеано, Лагранджа. Теорема. Пусть ф-ция F(x) определена в $\bigcup (a)$ и имеет в $\bigcup (a)$ производные до (n+1)-го порядка включительно. Пусть x – произвольное значение аргумента ϕ -ции из $\bigcup (a)$, тогда для произвольного значения P, p>0 $\exists \xi$, расположенная между а и x, такие что справедлива следующая формула:

$$f(x) = f(a) + \frac{f'(a)}{1!} * (x-a) + \frac{f''(a)}{2!} * (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} * (x-a)^n + R_n(x).$$

 $R_n(x) = (\frac{x-a}{x-\xi})^p * \frac{(x-\xi)^{n+1}}{n!*p} * f^{n+1}(\xi)$. Формула называется формулой Тейлора с центром в точке а;

 $R_{n}(x)$ - остаточный член в формуле Тейлора в общем виде.

$$\triangleleft P_n(x,a) = f(a) + \frac{f'(a)}{1!} * (x-a) + ... + \frac{f^n(a)}{n!} * (x-a)^n$$
 эта функция – многочлен степени n –

многочлен Тейлора с центром в точке а.

Обозначим $f(x) - P_n(x, a) = R_n(x)$. Рассмотрим вспомогательную функцию $\psi(t)$.

$$\psi(t) = f(x) - P_n(x,t) - (x-t)^p * Q(x)$$
, где $Q(x) = \frac{R_n(x)}{(x-a)^p}$. Покажем, что на [a;x] $\psi(t)$ удовлетворяет

всем условиям теоремы Ролля:

- непрерывность на [a;x];
- 2) дифференцируема на (a;x);

3)
$$\psi(a) = f(x) - f(a) + f'(a) * (x-a) - \dots - \frac{f^{(n)}(a)}{n!} * (x-a)^p - (x-a)^p \cdot \frac{R_n(x)}{(x-a)^p} = R_n(x) - R_n(x) = 0^{n!}$$

$$\psi(x) = f(x) - f(x) = 0$$
; $\psi(a) = \psi(x) = 0$; $\exists \xi \in (a; x) : \psi'(\xi) = 0$

$$\psi(t) = f(x) - f(t) - \frac{f'(t)}{1!} * (x - t) - \dots - \frac{f^{(n)}(t)}{n!} * (x - t)^n - (x - t)^p * Q(x).$$

$$\psi'(t) = -f'(t) + \frac{f'(t)}{1!} - \frac{f''(t)}{1!} * (x-t) + \frac{2f''(t)(x-t)}{2!} - \frac{f''(t)}{2!} * (x-t)^2 + \dots - \frac{f^{(n+1)}(t)}{n!} * (x-t)^n + p(x-t)^{p-1} * Q(x).$$

$$\psi'(\xi) = -\frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n + p(x - \xi)^{p-1} * Q(x) = 0. \quad \frac{p(x - \xi)^{p-1} * R_n(x)}{(x - a)^p} = \frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n;$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)(x-\xi)^{n+1}}{n! p} * (\frac{x-a}{x-\xi})^p >$$

Теорема. Остаточный член в форме Тейлора представляет собой б. м. более высокого порядка малости, чем $(x-a)^n$ при $x \to a$. $R_n(x) = o((x-a)^n)$, $x \to a$.

Доказать:
$$\lim_{x\to a} \frac{R_n(x)}{(x-a)^n} = 0.$$

$$|\sin_{x \to a} \frac{f(x) - P_n(x, a)}{(x - a)^n} = 0; \quad (f'(x) - P'_n(x, a)) | x = a = 0;$$

$$P'_n(x,a) = f'(a) + \frac{2f''(a)}{2!} * (x-a) + ... + \frac{n * f^n(a)}{n!} * (x-a)^{n-1};$$

$$P_n''(x,a) = f''(a) + \frac{2!f'''(a)}{3!} * (x-a) + ... + \frac{n*(n-1)f^n(a)}{n!} * (a); P^{(n)}(a,a) = f^{(n)}(a);$$

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = \lim_{x \to a} \frac{f'(x) - p_n'(x,a)}{n*(x-a)^{n-1}} = \text{п раз применяем пр. Б-Л.= } \lim_{x \to a} \frac{f^n(x) - P_n^{(n)}(x,a)}{n!} = 0.$$

Такую запись остаточного члена называют ост. Чл. В форме Пеано: $R_n(x) = o((x-a)^n)$.

Рассмотрим другие формы записи остаточного члена. $\xi = a + \Theta^*(x - a)$, $\Theta \in (0;1)$

$$\begin{split} R_n(x) &= \left(\frac{x-a}{(x-a)-\Theta(x-a)}\right)^p * \frac{((x-a)-\Theta(x-a))^{n+1}}{n!*p} * f^{n+1}(a+\Theta(x-a)) = \\ &= \frac{(x-a)^{n+1}*(1-\Theta)^{n-p+1}}{n!*p} * f^{n+1}*(a+\Theta(x-a)) \\ 1) \text{ p=n+1, тогда } R_n(x) &= \frac{(x-a)^{n+1}}{(n+1)!} * f^{n+1}*(a+\Theta(x-a)) = \frac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!} * (x-a)^{n+1} - \frac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!} * f^{(n+1)}(a+\Theta(x-a)) = \frac{f$$

остаточный член в форме Лагранжа.

2) p=1 – в форме Коши:
$$R_n(x) = \frac{f^{(n+1)}(a+\Theta(x-a))}{n!}*(1+\Theta)^n(x-a)^{n+1}$$
 Число Θ в формуле

Лагранжа и формуле Коши разные, т. К. зависят от Р. Остаточный член в форме Лагранжа и Коши представляют собой погрешность, которую мы получаем, заменяя функцию f(x) ее многочленом Тейлора. Если нас интересует порядок малости такой замены при $x \to a$, то он совпадает с порядком малости остаточного члена в форме Пеано.

Оценка остаточного члена в форме Лагранжа.

Пусть функция имеет производную любого порядка в $\bigcup (a)$ и эти производные ограничены одной и той же константой М. $\exists M > 0, |f^{(n)}(x)| < M, \forall n : \forall x \in \bigcup (a)$

$$\left| R_n(x) = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} * (x-a)^{n+1} \right| \le M * \frac{(x-a)^{n+1}}{(n+1)!} ; \lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0.$$

Билет №9-2.

Свойства б.м. функций.

1. Сумма конечного числа б.м.ф. при $x \to a$ представляет собой б.м. функцию при $x \to a$.

$$\triangleleft \lim_{x \to a} (\alpha_1(x) + ... + \alpha_n(x)) = \sum_{k=1}^n \lim_{x \to a} \alpha_k(x) = 0 \Longrightarrow \sum_{k=1}^n \lim_{x \to a} \alpha_k(x) - \text{б.м.ф.} >$$

2. Произведение конечного числа б.м.ф. при $x \to a$ представляет собой б.м. функцию при $x \to a$.

$$\lhd \lim_{x \to a} (\alpha_1(x) \cdot ... \cdot \alpha_n(x)) = \prod_{k=1}^n \lim_{x \to a} \alpha_k(x) = 0 \Rightarrow \prod_{k=1}^n \lim_{x \to a} \alpha_k(x) - \text{б.м.ф.} >$$

3. Пусть $\alpha(x)$ - б.м.ф. при $x \to a$, а f(x) - ограничена в $\bigcup_{x \to a}^{0} (a)$, тогда $\alpha(x) \cdot f(x)$ - б.м.ф. при

$$\triangleleft \exists M > 0 \exists \delta_1(M) > 0 : \forall x : 0 < |x - a| < \delta_1(M) \Longrightarrow |f(x)| < M$$

$$\forall \frac{E}{M} > 0 \exists \, \delta_2(E,M) > 0 : \forall x : 0 < |x-a| < \delta_2(E,M) \Rightarrow |\alpha(x)| < \frac{E}{M}. \qquad \text{Пусть} \qquad \delta = \min(\delta_1, \delta_2) \,, \qquad \text{тогда}$$

 $\forall x : 0 < |x-a| < \delta \Rightarrow |\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{E}{M} \cdot M = E$, для $\forall E > 0$, тогда $\alpha(x) \cdot f(x)$ - б.м.ф. при $x \to a$. \triangleright

Билет №10.

Доказать первое достаточное условие экстремума функции.

Пусть функция f(x) определена и дифференцируема в окрестности точки С. Для того, чтобы точка С являлась точкой локального экстремума, достаточно чтобы при переходе значений аргумента через точку С производная функции меняла знак с "+" на "-" – локальный максимум, с "-" на "+" – локальный минимум.

Доказательство: Рассмотрим точку x из указанной окрестности, тогда на [x,c]:

- 1. f(x) непрерывна.
- 2. на (x,c) дифференцируема.

По т. Лагранжа $f(c) - f(x) = f'(E) \cdot (c - x)$, где $E \in (x, c)$, т.к. x < c, то f(c) > f(x) на [c, x]: $f(x) - f(c) = f'(E) \cdot (x - c) < 0$ где $E \in (c, x)$, f(x) < f(c)

<u>Дифференциал функции – определение, геометрический смысл. Доказать</u> инвариантность формы дифференциала первого порядка.

Дифференциалом функции y=f(x) в точке называют главную линейную, относительно приращения аргумента, часть полного приращения функции в данной точке.

Инвариантность формы первого дифференциала.

t=g(x); y=f(t);y=f(g(x)), где X — независимая переменная. dy=(f(g(x)))'*dx=f'(g(x))*g'(x)dx=f'(t)*dt

Билет №11.

Доказать второе достаточное условие экстремума.

f(x) определена и имеет в окрестности точки с производную до n-го порядка включительно, причем в самой точке с все производные до (n-1)-го порядка включительно равны 0, а nная производная в точке C отлична от нуля. Если n – четное, тогда C – точка локального экстремума, в частности, если $f^{(n)}(c) > 0$, то x=c –локальный минимум, если $f^{(n)}(c) < 0$, то x=c –локальный максимум.

Доказательство: Запишем формулу Тейлора с остаточным членом в форме Пеано с центром в точке C.

$$f(x) = f(c) + \frac{f'(c)}{1!} * (x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + \overline{o}((x-c)^n) = f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n$$
, где $\alpha(x)$ -б.м.ф. при $x \to c, x \in \bigcup_1(c)$. Пусть n – четное, тогда $(x-c)^n$ не меняет знак при переходе через C . $\lim_{x \to c} \frac{f^{(n)}(c) + \alpha(x)}{n!} = \lim_{x \to c} \frac{f^{(n)}(c)}{n!} \neq 0$. $\exists \bigcup_2(c)$ в которой функция сохраняет знак своего предела.
$$f(x) = f(c) + \frac{f'(c)}{1!} * (x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + \overline{o}((x-c)^n) = f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n$$
, $\frac{f^{(n)}(c) + \alpha(x)}{(n)!} * \frac{f^{(n)}(c)}{n!} > 0 \forall x \in \bigcup_2(c)$. $\bigcup(c) = \bigcup_1(c) \cap \bigcup_2(c)$.

 $\forall x \in \bigcup (c), f(x) - f(c) = \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x - c)^n > 0$, если $f^{(n)}(c) > 0 \Rightarrow f(x) > f(c) \Rightarrow x = c$ - точка локального экстремума.

<u>Доказать теорему о пределе произведения функций.</u> Пусть f(x) и g(x) при $x \to a$ имеют конечные пределы равные A и B соответственно, тогда $\exists \lim (f(x) \cdot g(x)) = A \cdot B$

Дано:
$$\exists \lim_{x \to a} f(x) = A, \exists \lim_{x \to a} g(x) = B$$
 Доказательство: $\forall \{x_n\} \underset{n \to \infty}{\to} a, x_n \neq a \Rightarrow \{f(x_n)\} \underset{x \to a}{\to} A, \ \forall \{x_n\} \underset{n \to \infty}{\to} a, x_n \neq a \Rightarrow \{g(x_n)\} \underset{x \to a}{\to} B, \{f(x_n)^* g(x_n)\} \underset{n \to \infty}{\to} A^* B$

Билет №12.

Доказать достаточное условие выпуклости графика функции.

Пусть f(x) определена и дважды дифференцируема на (a,b). Для того, чтобы график функции имел направление выпуклости вниз (вверх) достаточно, чтобы f''(x) была неотрицательная (неположительная) на (a,b).

Доказательство:

Дано: $f''(x) \ge 0(a,b)$

Доказать: f(x) - выпуклость вниз на (a,b).

Пусть $M(x_0, f(x_0)), \forall x_0 \in (a,b)$.

Уравнение касательной: $Y - f(x_0) = f'(x_0) \cdot (x - x_0)$

$$y = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2,$$
где $\xi \in (x_0, x),$ если $x > x_0,$ $\xi \in (x, x_0),$ если $x < x_0,$

$$y - Y = \frac{f''(\xi)}{2!} \cdot (x - x_0)^2$$
, t.k. $f''(\xi) \ge 0 \forall \xi \in (a,b)$

 $y-Y=\ge 0 \Rightarrow y\ge Y \Rightarrow$ график функции f(x) на (a,b) лежит не ниже касательной $\Rightarrow f(x)$ выпуклость вниз на (a,b).

Доказать теорему о знакопостоянстве функции, имеющей отличный от нуля предел.

Если $\lim_{x\to a} f(x) = b \neq 0$, то существует окрестность точки а, в которой $f(x) \neq 0$ и знак f(x) совпадает со знаком значения b.

Доказательство: по условию $\lim_{x \to a} f(x) = b \neq 0$, т.е. $\forall E > 0 \exists \delta(E) > 0 : \forall x \in \bigcup_{a=0}^{\infty} (a) \Rightarrow |f(x) - b| < E$, или $\forall x$ справедливы неравенства b - E < f(x) < b + E.

Возьмём за E число $E = \frac{|b|}{2}$. Тогда b , b+E , b-E являются числами одного знака. Следовательно, в силу неравенства b-E < f(x) < b+E , $f(x) \neq 0$ и имеет знак числа b в указанной δ -окрестности точки а

Билет №13.

Необходимое и достаточное условие существования точки перегиба графика функции. Доказать необходимое условие.

Пусть функция f(x) определена и дважды непрерывно-дифференцируема в окрестности точки C. Для того, чтобы (c, f(c)), была точкой перегиба графика функции f(x), необходимо чтобы f''(c) = 0.

Доказательство:

Дано: (c, f(c)) – точка перегиба.

Доказать: f''(c) = 0.

 $f''(c) \neq 0$ - это значит, согласно свойству непрерывности, что функция обладает знакопостоянством.

 $f''(c) \neq 0 \exists \upsilon(c) : f''(x) \neq 0, \forall x \in \upsilon(c)$, т.е. в этой окрестности график функции имеет одинаковые направления выпуклости слева и справа от точки С, что противоречит определению точки перегиба \Rightarrow в точке С f''(c) = 0.

Доказать теоремы об эквивалентных бесконечно малых. Теорема. Для того, чтобы б.м.ф. $\alpha(x)$ и $\beta(x)$ при $x \to a$ были эквивалентными, при $x \to a$

необходимо и достаточно, чтобы
$$(\alpha(x) - \beta(x)) = \bar{o}(\alpha(x)), \ (\alpha(x) - \beta(x)) = \bar{o}(\beta(x)).$$

Доказательство. <u>Необходимость</u>. Дано. $\alpha(x) \sim \beta(x)$. Доказать, что

$$((\alpha(x) - \beta(x)) = \bar{o}(\alpha(x)) \cdot \lim_{x \to a} (\frac{\alpha(x) - \beta(x)}{\alpha(x)}) = \lim_{x \to a} (1 - \frac{\beta(x)}{\alpha(x)}) = 0 \Rightarrow (\alpha(x) - \beta(x)) = \bar{o}(\alpha(x))$$

<u>Достаточность</u>. Дано. $(\alpha(x) - \beta(x)) = o(\alpha(x))$ Доказательство.

$$\lim_{x \to a} (\frac{\alpha(x) - \beta(x)}{\alpha(x)} = 0 \Rightarrow \frac{\beta(x)}{\alpha(x)} = 1 \Rightarrow \beta(x) \underset{x \to a}{\sim} \alpha(x).$$

Рассмотрим сумму конечного числа б.м.ф. $\alpha_1(x) + ... + \alpha_n(x)$, где $\alpha_k(x)$ - б.м.ф. при $x \to a$.

Пусть $\alpha_k(x) = \bar{o}(\alpha_1(x))$, k=2,3,....n тогда $\alpha_1(x)$ - главная часть б.м.ф.

Билет №14.

Доказать теорему Коши. Пусть функции f(x) и g(x): 1) определены и непрерывна на [a,b]; 2) дифференцируемы на интервале (a,b); 3) $g'(x) \neq 0 \forall x \in (a,b)$ тогда $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}, \xi \in (a,b)$.

Доказательство: $g(b) \neq g(a)$; Вводим вспомогательную функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} *(g(x) - g(a))$$
. Эта функция удовлетворяет всем условиям теоремы

Ролля: 1) F(x) непрерывна на [a,b]; 2) F(x) дифференцируема на (a,b); 3) F(a) = F(b) = 0.

$$\exists \xi \in (a,b): F'(\xi) = 0 \text{ (по теор. Ролля)}. \ f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} * g'(\xi) = 0 \ . \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}, \xi \in (a,b) \ .$$

Вывести формулу для производной сложной функции.

Пусть функция x = g(t), дифф. В точке t=t0, а функция y = f(x)- дифференцируема в точке $x_0 = g(t_0)$, тогда функция y = f(g(t)) дифференцируема в точке t=t0, причем y' = f'(g(t)) * g'(t).

Док-во (должны доказать, что $\Delta y = A * \Delta t + \alpha * \Delta t$). Имеем, что $\Delta x = g'(t_0) * \Delta t + \alpha_1 * \Delta t$.

$$\Delta y = f'(x_0 * \Delta x) + \alpha_2 * \Delta x.$$

$$\Delta y = f'(x_0) * (g'(t_0) * \Delta t + \alpha_1 * \Delta t) + \alpha_2 * (g'(t_0) * \Delta t + \alpha_1 * \Delta t) = f'(x_0) * g'(t_0) * \Delta t + (\alpha_1 + \alpha_2) * \Delta t + g'(t_0) * \alpha_2 * \Delta t = f'(x_0) * g'(t_0) * \Delta t + (\alpha_1 + \alpha_2) * \Delta t + g'(t_0) * \alpha_2 * \Delta t = f'(x_0) * g'(t_0) * \Delta t + \alpha * \Delta t$$

$$\Rightarrow (f(g(t)))' = f'(g(t)) * g'(t).$$

Билет №15.

Доказать достаточное условие возрастания дифференцируемой функции.

Для того, чтобы функция f(x), определённая и дифференцируемая на (a,b), возрастала на (a,b), достаточно, чтобы f'(x) > 0 на (a,b).

Доказательство:

Дано: f'(x) > 0

Доказать: f(x) - возрастает на (a,b)

 $\forall x_1, x_2 \in (a,b) : x_1 < x_2 \Longrightarrow$

- [a,b] определена
- 2) (a,b) дифференцируемая.

Согласно т. Лагранжа $\exists E \in (x_1, x_2) : f(x_2) - f(x_1) = f'(E) \cdot (x_2 - x_1),$ т.к. $f'(E) > 0, x_2 - x_1 > 0 \Rightarrow f(x_2) - f(x_1) > 0, \ f(x_2) > f(x_1) \Rightarrow f(x)$ - возрастает на (a,b).

<u>Длина дуги плоской кривой. Производная и дифференциал длины дуги</u> плоской кривой.

Рассмотрим в XOY плоскую кривую Г.

 $r=\overset{-}{r}(s),s\in [0;s_0];\; \frac{|\alpha(s)-\alpha(s_0)|}{\Delta s}$ - Средняя кривизна кривой Γ . Кривизной кривой Γ в точке s_0

называют предел (если он существует) средней коивизны при $\Delta s \to 0$. $k(s_0) = \lim_{\Delta s \to 0} \frac{\left|\alpha(s) - \alpha(s_0)\right|}{\Delta s}$;

$$R(s_0) = \frac{1}{k(s_0)}$$
; Если $k(s_0) = 0$, то полагают $R(s_0) = \infty$

Билет №16-1.

Формула Тейлора с остаточным членом в форме Пеано, Лагранджа. Теорема. Пусть ф-ция F(x) определена в $\bigcup (a)$ и имеет в $\bigcup (a)$ производные до (n+1)-го порядка включительно. Пусть x – произвольное значение аргумента ϕ -ции из $\bigcup (a)$, тогда для произвольного значения P, p>0 $\exists \xi$, расположенная между а и x, такие что справедлива следующая формула:

$$f(x) = f(a) + \frac{f'(a)}{1!} * (x-a) + \frac{f''(a)}{2!} * (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} * (x-a)^n + R_n(x).$$

 $R_n(x) = (\frac{x-a}{x-\xi})^p * \frac{(x-\xi)^{n+1}}{n!*p} * f^{n+1}(\xi)$. Формула называется формулой Тейлора с центром в точке а;

 $R_{n}(x)$ - остаточный член в формуле Тейлора в общем виде.

$$\triangleleft P_n(x,a) = f(a) + \frac{f'(a)}{1!} * (x-a) + ... + \frac{f^n(a)}{n!} * (x-a)^n$$
 эта функция – многочлен степени n –

многочлен Тейлора с центром в точке а.

Обозначим $f(x) - P_n(x, a) = R_n(x)$. Рассмотрим вспомогательную функцию $\psi(t)$.

$$\psi(t) = f(x) - P_n(x,t) - (x-t)^p * Q(x)$$
, где $Q(x) = \frac{R_n(x)}{(x-a)^p}$. Покажем, что на [a;x] $\psi(t)$ удовлетворяет

всем условиям теоремы Ролля:

- непрерывность на [a;x];
- 2. дифференцируема на (a;x);

3.
$$\psi(a) = f(x) - f(a) + f'(a) * (x-a) - \dots - \frac{f^{(n)}(a)}{n!} * (x-a)^p - (x-a)^p \cdot \frac{R_n(x)}{(x-a)^p} = R_n(x) - R_n(x) = 0^{n!}$$

$$\psi(x) = f(x) - f(x) = 0$$
; $\psi(a) = \psi(x) = 0$; $\exists \xi \in (a; x) : \psi'(\xi) = 0$

$$\psi(t) = f(x) - f(t) - \frac{f'(t)}{1!} * (x - t) - \dots - \frac{f^{(n)}(t)}{n!} * (x - t)^n - (x - t)^p * Q(x).$$

$$\psi'(t) = -f'(t) + \frac{f'(t)}{1!} - \frac{f''(t)}{1!} * (x-t) + \frac{2f''(t)(x-t)}{2!} - \frac{f''(t)}{2!} * (x-t)^2 + \dots - \frac{f^{(n+1)}(t)}{n!} * (x-t)^n + p(x-t)^{p-1} * Q(x).$$

$$\psi'(\xi) = -\frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n + p(x - \xi)^{p-1} * Q(x) = 0. \quad \frac{p(x - \xi)^{p-1} * R_n(x)}{(x - a)^p} = \frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n;$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)(x-\xi)^{n+1}}{n! p} * (\frac{x-a}{x-\xi})^p >$$

Теорема. Остаточный член в форме Тейлора представляет собой б. м. более высокого порядка малости, чем $(x-a)^n$ при $x \to a$. $R_n(x) = o((x-a)^n)$, $x \to a$.

Доказать:
$$\lim_{x\to a} \frac{R_n(x)}{(x-a)^n} = 0.$$

$$|\sin_{x \to a} \frac{f(x) - P_n(x, a)}{(x - a)^n} = 0; \quad (f'(x) - P'_n(x, a)) | x = a = 0;$$

$$P'_n(x,a) = f'(a) + \frac{2f''(a)}{2!} * (x-a) + ... + \frac{n * f^n(a)}{n!} * (x-a)^{n-1};$$

$$P_n''(x,a) = f''(a) + \frac{2!f'''(a)}{3!} * (x-a) + ... + \frac{n*(n-1)f^n(a)}{n!} * (a); P^{(n)}(a,a) = f^{(n)}(a);$$

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = \lim_{x \to a} \frac{f'(x) - p_n'(x,a)}{n^*(x-a)^{n-1}} = \text{n раз применяем пр. Б-Л.} = \lim_{x \to a} \frac{f^n(x) - P_n^{(n)}(x,a)}{n!} = 0.$$

Такую запись остаточного члена называют ост. чл. в форме Пеано: $R_n(x) = o((x-a)^n)$.

Рассмотрим другие формы записи остаточного члена. $\xi = a + \Theta^*(x - a)$, $\Theta \in (0;1)$

$$\begin{split} R_n(x) &= \left(\frac{x-a}{(x-a)-\Theta(x-a)}\right)^p * \frac{((x-a)-\Theta(x-a))^{n+1}}{n!*p} * f^{n+1}(a+\Theta(x-a)) = \\ &= \frac{(x-a)^{n+1}*(1-\Theta)^{n-p+1}}{n!*p} * f^{n+1}*(a+\Theta(x-a)) \\ 1) \text{ p=n+1, тогда } R_n(x) &= \frac{(x-a)^{n+1}}{(n+1)!} * f^{n+1}*(a+\Theta(x-a)) = \frac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!} * (x-a)^{n+1} - \frac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!} * f^{(n+1)}(a+\Theta(x-a)) = \frac{f$$

остаточный член в форме Лагранжа.

2) p=1 — в форме Коши:
$$R_n(x) = \frac{f^{(n+1)}(a+\Theta(x-a))}{n!}*(1+\Theta)^n(x-a)^{n+1}$$
 Число Θ в формуле

Лагранжа и формуле Коши разные, т. к. зависят от Р. Остаточный член в форме Лагранжа и Коши представляют собой погрешность, которую мы получаем, заменяя функцию f(x) ее многочленом Тейлора. Если нас интересует порядок малости такой замены при $x \to a$, то он совпадает с порядком малости остаточного члена в форме Пеано.

Оценка остаточного члена в форме Лагранжа.

Пусть функция имеет производную любого порядка в $\bigcup (a)$ и эти производные ограничены одной и той же константой М. $\exists M > 0, |f^{(n)}(x)| < M, \forall n : \forall x \in \bigcup (a)$

$$\left| R_n(x) = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} * (x-a)^{n+1} \right| \le M * \frac{(x-a)^{n+1}}{(n+1)!} ; \lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0.$$

Билет №16-2.

<u>Доказать непрерывность функций</u> $y = \sin x$ <u>и</u> $y = e^x$

1) $y = \sin x$

Зададим приращение аргумента функции $y = \sin x$ в точке X:

$$\Delta y = \Delta \sin x = \sin(x + \Delta x) - \sin(x) = 2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2}) \Rightarrow$$
$$\Rightarrow |\Delta y| = 2|\sin\frac{\Delta x}{2}||\cos(x + \frac{\Delta x}{2})| \le 2|\sin\frac{\Delta x}{2}| \le 2\frac{|\Delta x|}{2} = \Delta x$$

Здесь использовано неравенство $|\sin\alpha| \le |\alpha|$, $\forall \alpha \in R$. Итак, $|\Delta y| \le |\Delta x|$. Тогда

$$\Delta x \to 0 \Longrightarrow |\Delta x| \to 0 \Longrightarrow |\Delta y| \to 0 \Longrightarrow \Delta y \to 0$$
 , m.e. $\lim_{Xx \to 0} \Delta y = 0 \Longrightarrow \phi$ ункция $y = \sin x$ непрерывна в точке X , а

т.к. точка X принадлежит R , т.е. произвольна, то можна сказать, что функция $y = \sin x$ непрерывна на всей числовой оси.

2)
$$y = e^x$$
 b18

Зададим приращение аргумента функции $y = e^x$ в точке X:

$$\Delta y = \Delta e^x = e^{x+\Delta x} - e^x$$
, $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} e^{x+\Delta x} - e^x = \lim_{\Delta x \to 0} e^x (e^{\Delta x} - 1) = 0 \Rightarrow e^x$ - непрерывная функция.

Билет №17.

Доказать первое достаточное условие экстремума функции.

Пусть функция f(x) определена и дифференцируема в окрестности точки С. Для того, чтобы точка С являлась точкой локального экстремума, достаточно чтобы при переходе значений аргумента через точку С производная функции меняла знак с "+" на "-" – локальный максимум, с "-" на "+" – локальный минимум.

Доказательство: Рассмотрим точку X из указанной окрестности, тогда:

- 1. на [x,c] f(x) непрерывна.
- 2. на (x,c) дифференцируема.

По т. Лагранжа $f(c) - f(x) = f'(E) \cdot (c - x)$, где $E \in (x, c)$, т.к. x < c, то f(c) > f(x) на [c, x]: $f(x) - f(c) = f'(E) \cdot (x - c) < 0$ где $E \in (c, x)$, f(x) < f(c)

Непрерывность сложной функции.

Пусть y = f(x) - непрерывна в точке x=a, а функция z = g(y) - непрерывна в точке b=f(a), тогда сложная функция z=g(f(x)) – непрерывна в точке x=a.

Доказательство: Т.к g(y) — непрерывна в точке y=b, то $\forall E > 0 \exists \delta(E) : \forall y : |y-b| < \delta \Longrightarrow |g(y)-g(b)| < E$, т.к. y=f(x) — непрерывна в точке x=a, то $\delta > 0 \forall E > 0 \exists \delta_1(E) : \forall x : |x-a| < \delta_1 \Longrightarrow |f(x)-f(a)| < E$ $\forall E > 0 \exists \delta_1(E) : \forall x : |x-a| < \delta_1 \Longrightarrow |g(f(x))-g(f(a))| < E \Longrightarrow \exists \lim_{x \to a} g(f(x)) = g(f(a))$.

Замечание: $\lim_{x\to a} g(f(x)) = g \cdot \lim_{x\to a} f(x)$

Билет №18.

Теорема о связи дифференцируемости и непрерывности.

Для того чтобы функция была дифференцируема в точке, необходимо, чтобы она была непрерывной в этой точке.

Дано: f(x) - дифференцируема в точке.

Доказать: f(x) - непрерывна в точке.

$$\Delta y = f'(x)\Delta x + \alpha \Delta x$$
, где α - б.м.ф. при $\Delta x \rightarrow 0$.

 $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (f'(x)\Delta x + \alpha \Delta x) = 0 \Longrightarrow f(x)$ - непрерывна в заданной точке.

Доказать теорему о пределе промежуточной функции.

Пусть функции $f_1(x)$ и $f_2(x)$ имеет конечный предел A при $x \to a$ и пусть

$$\exists \bigcup\nolimits_{(a)}^0: f_1(x) \leq g(x) \leq f_2(x), \text{ тогда } \exists \lim_{x \to a} g_1(x) = A, \forall x \in \bigcup\nolimits_{(a)}^0$$

Доказательство:

$$\exists \lim_{x \to a} f_1(x) = A \Leftrightarrow \forall \{x_n\} \xrightarrow[n \to \infty]{} a, \ x_n \neq a \Rightarrow \{f_1(x_n)\} \xrightarrow[n \to \infty]{} A$$

$$\exists \lim_{x \to a} f_2(x) = A \iff \forall \{x_n\} \xrightarrow[n \to \infty]{} a, \ x_n \neq a \Longrightarrow \{f_2(x_n)\} \xrightarrow[n \to \infty]{} A$$

$$\forall E > 0 \exists N_1(E) : \forall n > N_1(E) \Longrightarrow |f_1(x_n) - A| < E$$

$$\forall E > 0 \exists N_2(E) : \forall n > N_2(E) \Longrightarrow |f_2(x_n) - A| < E$$

Рассмотрим $N = \max(N_1(E); N_2(E))$, начиная с некоторого номера N $\{f_1(x)\}$ и $\{f_2(x)\}$, будут одинакого выполняться $A - \varepsilon < f_1(x) \le g(x) \le f_2(x) < A + \varepsilon, \forall n > N$. Значит,

$$|g(x) - A| < \varepsilon \Rightarrow \exists \lim_{x \to a} g_1(x) = A, \forall x \in \bigcup_{x \to a}^{0} (a)$$

<u>Билет №19.</u> Доказать теорему Лагранжа.

Пусть функция y = f(x).

- 6. Определена и непрерывна на отрезке [a;b].
- 7. Дифференцируема на интервале (a;b).

Тогда существует E из интервала (a;b): $f(b)-f(a)=f'(E)\cdot(b-a)$.

Доказательство: Рассмотрим вспомогательную функцию $F(x) = f(x) - \lambda \cdot x$, где λ - константа.

$$\lambda$$
: $F(a) = F(b)$

$$f(a) - \lambda \cdot a = f(b) - \lambda \cdot b$$

$$\lambda = \frac{f(b) - f(a)}{b - a}$$

- 3. Она непрерывна на [a;b]
- 4. дифференцируема на (a;b).

Все условия теоремы Ролля выполняются \Rightarrow существует E из (a;b): F'(E) = 0

$$F'(x) = f'(x) - \lambda \Rightarrow f'(E) = \lambda = \frac{f(b) - f(a)}{b - a}$$

<u>Дифференциал функции – определение, геометрический смысл. Доказать</u> инвариантность формы дифференциала первого порядка.

Дифференциалом функции y=f(x) в точке называют главную линейную, относительно приращения аргумента, часть полного приращения функции в данной точке.

Инвариантность формы первого дифференциала.

$$t=g(x);$$
 $y=f(t);$ $y=f(g(x)),$ где X - независимая переменная. $dy=(f(g(x)))'*dx=f'(g(x))*g'(x)dx=f'(t)*dt$

Билет №20.

Доказать теоремы Ролля и Ферма.

Пусть дана функция y = f(x).

- 8. Определена и непрерывна на отрезке [a;b].
- 9. Дифференцируема на интервале (a;b).
- 10. И на концах отрезка принимает одинаковые значения.

Тогда существует точка E, принадлежащая отрезку (a;b): f'(E) = 0.

Доказательство: Т.к. функция f(x) непрерывна на отрезке [a;b], то согласно 2 теореме Вейерштрасса она достигает своего минимального и максимального значения.

$$m = \min f(x), x \in [a;b],$$

$$M = \max f(x), x \in [a;b].$$

Случаи:

- 3. $m = M \Rightarrow f(x) = const$, E любое из интервала (a;b)
- 4. $m \neq M \implies$ в силу 3-го условия теоремы, одно из значений минимального или максимального достигается функцией во внутренней точке отрезка [a;b].

Согласно второму условию теоремы Ролля, функция дифференцируема на интервале (a;b) в любой точке, то по теореме Ферма существует E: f'(E) = 0.

Т. Ферма:

Пусть y=f(x) определена на (a;b) и в некоторой точке этого интервала принимает наибольшее или наименьшее значение. Если в этой точке функция имеет производную, то эта производная равна нулю. Доказательство: (Для наибольшего значения). Пусть $f(\xi) > f(x), \forall x \in (a;b)$.

$$\exists f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}. \quad f'_{+}(\xi) = \lim_{x \to \xi + 0} \frac{f(x) - f(\xi)}{x - \xi} \le 0; \quad f'(\xi) = \lim_{x \to \xi + 0} \frac{f(x) - f(\xi)}{x - \xi} \ge 0; \quad \text{T.K.}$$

$$\exists f'(\xi) \Rightarrow f'_{+}(\xi) = f'_{-}(\xi) = 0.$$

Доказать теорему о связи функции, её предела и бесконечно малой.

Для того, чтобы функция f(x), определённая в $\bigcup_{i=0}^{0} (a)$ имела конечный предел при $x \to a$,

необходимо и достаточно чтобы эту функцию можно было представить в виде суммы предела и б.м.ф. при $x \to a$ ($\Leftrightarrow f(x) = b + \alpha(x)$, где $\alpha(x)$ - б.м.ф. при $x \to a$).

Доказательство: І Необходимость:

Дано:
$$\exists \lim_{x \to a} f(x) = b$$

Доказать:
$$f(x) = b + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to a$.

$$\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |f(x) - b| < E$$

Пусть
$$\alpha(x) = f(x) - b \Rightarrow$$
 по определению б.м.ф

$$\forall E > 0 \exists \delta(E) > 0$$
: $\forall x : 0 < |x - a| < \delta \Longrightarrow |\alpha(x)| < E \Longrightarrow \alpha(x)$ - б.м.ф. при $x \to a$.

$$f(x) = b + \alpha(x) : \forall x : 0 < |x - a| < \delta$$

II Достаточность:

Дано:
$$f(x) = b + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to a$.

Доказать:
$$\exists \lim_{x \to a} f(x) = b$$

$$\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |\alpha(x)| = |f(x) - b| < E \Longrightarrow \exists \lim f(x) = b$$

Билет №21.

<u>Формула Маклорена для</u> $y = \sin x$ <u>с остаточным членом в форме Пеано.</u>

$$f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} * x^2 + ... + \frac{f^{(n)}(0)}{n!} x^n + R_n(x), \ \partial e$$

1)
$$R_n(x) = \bar{o}(x^n)$$
 Пеано

2)
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} * x^{n+1}$$
, где $\xi = a + \Theta(x-a)$ - Лагранж

3)
$$R_n(x) = \frac{f^{(n+1)}(a+\Theta(x-a))}{n!} * (1-\Theta)^n (x-a)^{n+1}$$
 - Kowu

$$y = \sin x$$
, $y' = \cos x = \sin(x + \frac{\pi}{2})$, $y'' = -\sin x = \sin(x + 2 \cdot \frac{\pi}{2})$, $y^n = \sin(x + n \cdot \frac{\pi}{2})$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \overline{o}(x^{2n+2}), x \to 0$$
 (Пеано) , т.к. $\sin x$ - нечет., то вып.

усл.:
$$f^{(2n)}(0) = 0$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \frac{f^{n+1}(\xi)}{(n+1)!} \cdot (x-a)^{n+1}, \ \xi \in (x;a) \ (\text{Лагранж})$$

<u>Сформулировать определение функции, непрерывной на отрезке.</u> Основные теоремы о функциях, непрерывных на отрезке.

Функцию f(x) называют непрерывной на [a,b], если она непрерывна на (a,b) и непрерывна справа в точке x=a и непрерывна слева в точке x=b.

Первая теорема Вейерштрасса.

Если f(x) непрерывна на [a,b], то она ограничена на этом отрезке.

$$\exists M > 0 : \forall x \in [a,b] \Rightarrow |f(x)| \leq M$$
.

Вторая теорема Вейерштрасса.

Если f(x) непрерывна на [a,b], то она достигает на этом отрезке своего наименьшего (наибольшего) значения.

Первая теорема Больцано-Коши.

Функция
$$f(x) \in C[a,b], f(a) * f(b) < 0$$
, тогда $\exists c \in [a,b] : f(c) = 0$

Доказательство: [a,b] разделим пополам и получим отрезки [a,a+b/2] и [a+b/2,b]. Из них выберем тот, на концах которого ф-ция принимает значения, разные по знаку и обозначим [a1,b1], f(a1)*f(b1)<0. С этим отрезком поступим так же. [a1,a1+b1/2] и [a1+b1/2,b1]. Выберем отрезок с разными по знаку

концами. Когда-нибудь получим отрезок
$$[a_n,b_n]$$
: $f(a_n)*f(b_n)<0$. $b_n-a_n=\frac{b-a}{2^n}$. При $n\to\infty$,

$$\frac{b-a}{2^n} \to 0$$
 . Получим систему вложенных отрезков $[a,b] > [a_1,b_1] > ... > [a_n,a_n]$. Если при делении отрезка

пополам значение функции в середине отрезка равно нулю, то теорему можно считать доказанной. Система вложенных отрезков, длина которых стремится к нулю, имеет одну общую точку => существует точка С. Докажем, что f(c)=0. Предположим, что f(c) \neq 0 . Для определенности f(c)>0. Т.к. ф-ция непрерывна на отрезке [a,b], то она непрерывна в точке С. Раз f(c)>0, то

$$\exists (c - \varepsilon; c + \varepsilon) : \forall x \in (c - \varepsilon; c + \varepsilon) : f(x) > 0;$$

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n > N(\varepsilon) \Rightarrow [a_n;b_n] \subset (c-\varepsilon;c+\varepsilon) \Rightarrow f(a_n) * f(b_n) > 0 \text{ - притиворечие, что и треб. доказ.}$$

Вторая теорема Больцано-Коши.

Пусть f(x) непрерывна на [a,b] и на концах отрезка принимает значения B и A, $(A \le B)$, тогда для любого числа C: $A \le C \le B \exists c \in [a,b]$: f(c) = C.

Доказательство. Рассмотрим F(x)=f(x)-C.

- 1) F(x) непрерывна на отрезке, как разность двух непрерывных функций.
- 2) F(a)*F(b)<0

По первой теореме Б-К $\exists c \in [a,b]: f(c) = 0 \Rightarrow F(c) = f(c) - C = 0 \Rightarrow f(c) = C$.

Билет №22.

Доказать первое достаточное условие экстремума функции.

Пусть функция f(x) определена и дифференцируема в окрестности точки С. Для того, чтобы точка С являлась точкой локального экстремума, достаточно чтобы при переходе значений аргумента через точку С производная функции меняла знак с "+" на "-" – локальный максимум, с "-" на "+" – локальный минимум.

Доказательство: Рассмотрим точку x из указанной окрестности, тогда на [x,c]:

- 3. f(x) непрерывна.
- 4. на (x,c) дифференцируема.

По т. Лагранжа $f(c)-f(x)=f'(E)\cdot(c-x)$, где $E\in(x,c)$, т.к. x< c , то f(c)>f(x) на [c,x]: $f(x)-f(c)=f'(E)\cdot(x-c)<0$ где $E\in(c,x)$, f(x)< f(c)

Пусть $BD \perp OA$, $CA \perp OA$.

Ясно, что $S_{\mathit{OAB}} < S_{\mathit{cerm}} < S_{\mathit{OCA}}$, но

$$S_{OAB} = \frac{1}{2}OA \cdot BD = \frac{1}{2}\sin x$$

$$S_{cekm} = \frac{1}{2}(OA)^2 \cdot BD = \frac{1}{2}x$$

$$S_{OCA} = \frac{1}{2}OA \cdot AC = \frac{1}{2}tgx$$
, T.e.

 $\sin x < x < tgx$, т.к. $\sin x > 0 \Rightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x} \Rightarrow \frac{\sin x}{x} < 1, \forall x \in (0, \frac{\pi}{2}) \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1$.

Билет №23.

Доказать второе достаточное условие экстремума.

Пусть функция f(x) определена и имеет в окрестности точки с производную до n-го порядка включительно, причем в самой точке с все производные до (n-1)-го порядка включительно равны 0, а n-ая производная в точке C отлична от нуля. Если n – четное, тогда C – точка локального экстремума, в частности, если $f^{(n)}(c) > 0$, то x = c – локальный минимум, если $f^{(n)}(c) < 0$, то x = c – локальный максимум.

Доказательство: Запишем формулу Тейлора с остаточным членом в форме Пеано с центром в точке С.

$$f(x) = f(c) + \frac{f'(c)}{1!} * (x-c) + ... + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + o((x-c)^n) = 0$$
, где $\alpha(x)$ - б.м.ф. при
$$= f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n$$

 $x \to c, x \in \bigcup_{1}(c)$. Пусть n – четное, тогда $(x-c)^n$ не меняет знак при переходе через С.

$$\lim_{x\to c}\frac{f^{(n)}(c)+\alpha(x)}{n!}=\lim_{x\to c}\frac{f^{(n)}(c)}{n!}\neq 0.\ \ \exists\bigcup_{z}(c)\ \ \text{в которой функция сохраняет знак своего предела}.$$

$$f(x) = f(c) + \frac{f'(c)}{1!} * (x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-1)!} (x-c)^{n-1} + \frac{f^{(n)}(c)}{(n)!} (x-c)^n + o((x-c)^n) = f(c) + \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x-c)^n,$$

$$\frac{f^{(n)}(c) + \alpha(x)}{(n)!} * \frac{f^{(n)}(c)}{n!} > 0 \forall x \in \bigcup_{2}(c) . \ \bigcup_{1}(c) = \bigcup_{1}(c) \cap \bigcup_{2}(c) .$$

$$\forall x \in \bigcup (c), f(x) - f(c) = \frac{f^{(n)}(c) + \alpha(x)}{n!} * (x - c)^n > 0$$
, если $f^{(n)}(c) > 0 \Rightarrow f(x) > f(c) \Rightarrow x = c$ - точка локального экстремума.

Вывести уравнение касательной и нормали к плоской кривой.

С геометрической точки зрения значении производной f'(a) в данной точке x=a равно угловому коэффициенту касательной к графику ф-ции y = f(x) в точке M(a,f(a)). Из аналит. геометрии известно, что уравнение прямой с заданным угловым коэффициентом k и проходящей через точку M(a,f(a)) имеет вид: y - f(a) = f'(a)(x - a).

Прямую, проходящую через точку M, перпендикулярно касательной называют нормалью к графику функции в точке M. Если $f'(a) \neq 0$, то уравнение нормали имеет вид: $y - f(a) = -\frac{1}{f'(a)}(x - a)$.

Предельное положение секущей при $P \to M(\Delta x \to 0)$ называют касательной к графику функции в

точке М.
$$MN = \lim_{P \to M} MP$$
. $tg(\varphi) = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$

Билет №24.

Доказать теорему Бернулли-Лопиталя для предела отношения двух бесконечно малых функций.

Теорема. Пусть ф-ции f(x) и g(x) определены и дифференцируемы в $\bigcup_{x \to a}^{0} (a)$, представляют собой б.м.ф. при $x \to a$, причем $g'(x) \neq 0$ в $\bigcup_{x \to a}^{0} (a)$. Если $\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \Rightarrow \lim_{x \to a} \frac{f'(x)}{g(x)}$, $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$.

Доказательство: Рассмотрим { $x_n \to a, x_n \in \bigcup_{x \to \infty}^0 (a)$. Доопределим по непрерывности данные функции нулем в точке а (f(a)=0, g(a)=0). Тогда на $[a, x_n]$ функции f(x) и g(x) непрерывны, на $(a; x_n)$ f(x) и g(x) дифференцируемы. По теореме Коши $\exists \xi_n \in (a; x_n)$: $\frac{f(x_n) - f(a)}{g(x_n) - g(a)} = \frac{f'(\xi_n)}{g'(\xi_n)} \Rightarrow \frac{f(x_n)}{g(x_n)} = \frac{f'(\xi_n)}{g'(\xi_n)}$ при $n \to \infty, x_n \to a \Rightarrow \xi_n \to a$ по условию теоремы $\exists \lim_{x \to \infty} \frac{f'(\xi_n)}{g'(\xi_n)} \Rightarrow \lim_{x \to \infty} \frac{f(x_n)}{g(x_n)} \Rightarrow \exists \lim_{x \to a} \frac{f'(x)}{g(x)} > 0$

Замечание 1: точка а может быть бесконечной, тогда $\bigcup(a) = (b; +\infty)$ или $\bigcup(a) = (-\infty; c)$. Формулировка: пусть f(x) b g(x) определены и дифференцируемы на $(b; +\infty)$ и представл. б.м.ф. при $x \to +\infty$, причем $g'(x) \neq 0, \forall x \in (b; +\infty)$. Если $\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} \Rightarrow \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$.

Замечание 2: если f'(x) и g'(x) удовлетворяют всем условиям Б-Л и $\exists \lim_{x \to a} \frac{f''(x)}{g''(x)}$, то $\exists \lim_{x \to a} \frac{f''(x)}{g''(x)} = \exists \lim_{x \to a} \frac{f''(x)}{g''(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$ и т. д.

Вывести формулу для производной частного от деления двух функций.

Пусть функции u(x) и v(x) дифференцируемы в точке, тогда дифференцируемыми в этой точке будут

$$u(x)/v(x)$$
, причем $v(x) \neq 0$, $\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$.

Док-во:

$$\left(\frac{u(x)}{v(x)}\right)' = \lim_{\Delta x \to 0} \frac{\left(\frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{u(x + \Delta x) * v(x) - u(x) * v(x + \Delta x)}{\Delta x * v(x + \Delta x) * v(x)} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x + \Delta x) * v(x) - u(x) * v(x) - u(x) * v(x + \Delta x) + u(x) * v(x)}{\Delta x * v(x + \Delta x) * v(x)} = \lim_{\Delta x \to 0} \frac{\frac{\Delta u}{\Delta x} * v(x) - u(x) * \frac{\Delta v}{\Delta x}}{v(x + \Delta x) * v(x)} =$$

$$= \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$

Билет №25.

Доказать первое достаточное условие экстремума функции.

Пусть функция f(x) определена и дифференцируема в окрестности точки С. Для того, чтобы точка С являлась точкой локального экстремума, достаточно чтобы при переходе значений аргумента через точку С производная функции меняла знак с "+" на "-" – локальный максимум, с "-" на "+" – локальный минимум.

Доказательство: Рассмотрим точку x из указанной окрестности, тогда на [x,c]:

- 5. f(x) непрерывна.
- 6. на (x,c) дифференцируема.

По т. Лагранжа $f(c) - f(x) = f'(E) \cdot (c - x)$, где $E \in (x, c)$, т.к. x < c, то f(c) > f(x) на [c, x]: $f(x) - f(c) = f'(E) \cdot (x - c) < 0$ где $E \in (c, x)$, f(x) < f(c)

<u>Сформулировать определение функции, непрерывной на отрезке.</u> <u>Свойства функций, непрерывных на отрезке.</u>

Функцию f(x) называют непрерывной на [a,b], если она непрерывна на (a,b) и непрерывна справа в точке x=a и непрерывна слева в точке x=b.

Первая теорема Вейерштрасса.

Если f(x) непрерывна на [a,b], то она ограничена на этом отрезке.

 $\exists M > 0 : \forall x \in [a,b] \Rightarrow |f(x)| \leq M$.

Вторая теорема Вейерштрасса.

Если f(x) непрерывна на [a,b], то она достигает на этом отрезке своего наименьшего (наибольшего) значения.

Первая теорема Больцано-Коши.

Функция $f(x) \in C[a,b], f(a) * f(b) < 0$, тогда $\exists c \in [a,b] : f(c) = 0$

Доказательство: [a,b] разделим пополам и получим отрезки [a,a+b/2] и [a+b/2,b]. Из них выберем тот, на концах которого ф-ция принимает значения, разные по знаку и обозначим [a1,b1], f(a1)*f(b1)<0. С этим отрезком поступим так же. [a1,a1+b1/2] и [a1+b1/2,b1]. Выберем отрезок с разными по знаку

концами. Когда-нибудь получим отрезок
$$[a_n,b_n]$$
: $f(a_n)*f(b_n)<0$. $b_n-a_n=\frac{b-a}{2^n}$. При $n\to\infty$,

 $\frac{b-a}{2^n} \to 0$. Получим систему вложенных отрезков $[a,b] > [a_1,b_1] > ... > [a_n,a_n]$. Если при делении отрезка

пополам значение функции в середине отрезка равно нулю, то теорему можно считать доказанной. Система вложенных отрезков, длина которых стремится к нулю, имеет одну общую точку => существует точка С. Докажем, что f(c)=0. Предположим, что f(c) \neq 0 . Для определенности f(c)>0. Т.к. ф-ция непрерывна на отрезке [a,b], то она непрерывна в точке С. Раз f(c)>0, то

$$\exists (c - \varepsilon; c + \varepsilon) : \forall x \in (c - \varepsilon; c + \varepsilon) : f(x) > 0;$$

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n > N(\varepsilon) \Rightarrow [a_n; b_n] \subset (c - \varepsilon; c + \varepsilon) \Rightarrow f(a_n) * f(b_n) > 0$$
 - притиворечие, что и треб. доказ.

Вторая теорема Больцано-Коши.

Пусть f(x) непрерывна на [a,b] и на концах отрезка принимает значения B и A, $(A \le B)$, тогда для любого числа C: $A \le C \le B \exists c \in [a,b]$: f(c) = C.

Доказательство. Рассмотрим F(x)=f(x)-C.

- 3) F(x) непрерывна на отрезке, как разность двух непрерывных функций.
- 4) F(a)*F(b)<0

По первой теореме Б-К $\exists c \in [a,b]$: $f(c) = 0 \Rightarrow F(c) = f(c) - C = 0 \Rightarrow f(c) = C$.

Билет №26.

Доказать теоремы Ролля и Ферма.

Пусть дана функция y = f(x).

- 1. Определена и непрерывна на отрезке [a;b].
- 2. Дифференцируема на интервале (a;b).
- 3. И на концах отрезка принимает одинаковые значения.

Тогда существует точка E, принадлежащая отрезку (a;b): f'(E) = 0.

Доказательство: Т.к. функция f(x) непрерывна на отрезке [a;b], то согласно 2 теореме Вейерштрасса она достигает своего минимального и максимального значения.

$$m = \min f(x), x \in [a;b],$$

$$M = \max f(x), x \in [a;b].$$

Случаи:

- 1. $m = M \Rightarrow f(x) = const$, E любое из интервала (a;b)
- 2. $m \neq M \implies$ в силу 3-го условия теоремы, одно из значений минимального или максимального достигается функцией во внутренней точке отрезка [a;b].

Согласно второму условию теоремы Ролля, функция дифференцируема на интервале (a;b) в любой точке, то по теореме Ферма существует E: f'(E) = 0.

Т. Ферма:

Пусть y=f(x) определена на (a;b) и в некоторой точке этого интервала принимает наибольшее или наименьшее значение. Если в этой точке функция имеет производную, то эта производная равна нулю. Доказательство: (Для наибольшего значения). Пусть $f(\xi) > f(x), \forall x \in (a;b)$.

$$\exists f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}. \quad f'_{+}(\xi) = \lim_{x \to \xi + 0} \frac{f(x) - f(\xi)}{x - \xi} \le 0; \quad f'(\xi) = \lim_{x \to \xi + 0} \frac{f(x) - f(\xi)}{x - \xi} \ge 0; \text{ T.K.}$$

$$\exists f'(\xi) \Rightarrow f'_{+}(\xi) = f'_{-}(\xi) = 0.$$

Вывести формулу для производной обратной функции.

Пусть функция y=f(x) строго монотонна (возрастает или убывает) в некоторой окрестности точки x_0 , и дифференцируема в точке x_0 , тогда $\exists x = f^{-1}(y)$ - дифференцируемая в точке $y_0 = f(x_0)$.

Доказательство: Рассмотрим $x = f^{-1}(y)$, пусть Δy - приращение аргумента обратной функции в точке y_0 , тогда функция получит приращение Δx , $\Delta x \neq 0$ в силу строгой монотонности функции.

$$\frac{\Delta x}{\Delta y} = \frac{1}{\Delta y / \Delta x}$$

$$\exists \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\Delta y / \Delta x} = \frac{1}{f'(x_0)}$$

$$(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$$

Билет №27.

Необходимое и достаточное условие существования точки перегиба графика функции. Доказать достаточное условие.

Первое достаточное условие существования точки перегиба.

Пусть f(x) определена в $\bigcup (c)$, дважды дифференцируема в проколотой окрестности точки С и непрерывна в самой точке С. Для того, чтобы в точке (C, f(c)), была точка перегиба, достаточно, чтобы при переходе значения аргумента через точку С f''(x) меняла знак.

Дано: f''(x) меняет знак. Доказать: точка (c, f(c))- точка перегиба.

Док-во: Т.к. f''(x) меняет знак, то в левой и правой полуокрестностях график функций имеет различные направления выпуклости, согласно достаточным условиям выпуклости графика функции. По условию теоремы, функция непрерывна в точке С. По определению точка (c, f(c))- точка перегиба.>

Второе достаточное условие существования точки перегиба.

Пусть ф-ция f(x) определена в $\bigcup(c)$ и имеет производные до n-го порядка включительно в самой точке C, причем $f''(c) = f'''(c) = \dots = f^{(n)-1}(c) = 0$, а $f^{(n)}(c) \neq 0$. Для того, чтобы точка (c, f(c)) была точкой перегиба графики функции достаточно, чтобы n было нечетно.

Док-во: Рассмотрим f''(x) в окрестности точки C, она как функция имеет производные до (n-2) – го порядка. Разложим ее по формуле Тейлора с остаточным членом в форме Пеано.

$$f''(x) = f''(c) + \frac{f'''(c)}{1!} * (x-c) + ... + \frac{f^{(n-1)}(c)}{(n-3)!} (x-c)^{n-3} + \frac{f^{(n)}(c) + \alpha(x)}{(n-2)!} (x-c)^{n-2}$$
, где $\alpha(x)$ -б.м.ф. при

$$x \to c$$
 . $\alpha(x) * (x-c)^{n-2} = o((x-c)^{n-2})$. $\bigcup_1(c) \subseteq \bigcup(c)$. \subseteq —подмножество

$$\forall x \in \bigcup_{1}(c): f''(x) = \frac{f^{(n)}(c) + \alpha(x)}{(n-2)!} (x-c)^{n-2}. \lim_{x \to c} \frac{f^{(n)}(c) + \alpha(x)}{(n-2)!} = \lim_{x \to c} \frac{f^{(n)}(c)}{(n-2)!} \neq 0. \text{ Существует}$$

$$\bigcup_{2}(c): \left(\frac{f^{(n)}(c) + \alpha(x)}{(n-2)!}\right) * \left(\frac{f^{(n)}(c)}{(n-2)!}\right) > 0, \text{ (сохраняется знак предела)}. Если п-нечетное, существует$$

 $\bigcup_0(c) = \bigcup_1(c) \cap \bigcup_2(c)$ такая, в пределах которой при переходе значения аргумента через C, вторая производная меняет знак. Согласно первому достаточному условию, точка (c, f(c)) – точка перегиба.

Определение б.б. функций. Теорема об их связи с б.м. функциями.

Функция f(x) определённая в $\bigcup_{x\to a}^0 (a)$ называется б.б. функцией при $x\to a$, если $\lim_{x\to a} f(x) = \infty$, т.е.

$$\forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x - a| < \delta \Longrightarrow |f(x)| > E$$

Теорема:

I. Пусть функция f(x) является б.б.ф. при $x \to a$, тогда $\frac{1}{f(x)}$ - представляет собой б.м.ф. при

II. Пусть функция $\alpha(x)$ - б.м.ф. при $x \to a$ отличная от нуля в некоторой $\bigcup_{i=1}^{0} (a)$, тогда $\frac{1}{\alpha(x)}$ - б.б.ф. при $x \to a$.

$$\forall E = \frac{1}{\varepsilon} > 0 \exists \delta_1(E) > 0 : \forall x : 0 < |x - a| < \delta_1 \Longrightarrow |\alpha(x)| < E$$

$$\forall E = \frac{1}{\varepsilon} > 0 \exists \delta_2(E) > 0 : \forall x : 0 < |x - a| < \delta_2 \Longrightarrow |\alpha(x)| \neq 0 \ \delta = \min(\delta_1, \delta_2)$$

$$\Rightarrow \forall E > 0 \exists \delta(E) > 0 : \forall x : 0 < |x-a| < \delta \Rightarrow |\alpha(x)| < \frac{1}{E} \Rightarrow \frac{1}{|\alpha(x)|} > E$$
, тогда $\frac{1}{\alpha(x)}$ - б.б.ф. при $x \to a$. \triangleright

Билет №28.

Доказать достаточное условие выпуклости графика функции.

Пусть f(x) определена и дважды дифференцируема на (a,b). Для того, чтобы график функции имел направление выпуклости вниз (вверх) достаточно, чтобы f''(x) была неотрицательная (неположительная) на (a,b).

Доказательство:

Дано: $f''(x) \ge 0(a,b)$

Доказать: f(x) - выпуклость вниз на (a,b).

Пусть $M(x_0, f(x_0)), \forall x_0 \in (a,b)$.

Уравнение касательной: $Y - f(x_0) = f'(x_0) \cdot (x - x_0)$

$$y = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 , \text{ где } \xi \in (x_0, x) , \text{ если } x > x_0, \ \xi \in (x, x_0) , \text{ если } x < x_0,$$

$$y - Y = \frac{f''(\xi)}{2!} \cdot (x - x_0)^2$$
, t.k. $f''(\xi) \ge 0 \forall \xi \in (a, b)$

 $y-Y=\ge 0 \Rightarrow y\ge Y \Rightarrow$ график функции f(x) на (a,b) лежит не ниже касательной $\Rightarrow f(x)$ выпуклость вниз на (a,b).

Доказать теорему о пределе промежуточной функции.

<u>Пусть функции</u> $f_1(x)$ <u>и</u> $f_2(x)$ <u>имеет конечный предел A при</u> $x \to a$ <u>и пусть</u>

$$\underline{\exists \bigcup_{a=0}^{0} (a): f_1(x) \leq g(x) \leq f_2(x), \underline{morda}} \underline{\exists \lim_{x \to a} g_1(x) = A, \forall x \in \bigcup_{a=0}^{0} (a)$$

<u>Доказательство:</u>

$$\exists \lim_{x \to a} f_1(x) = A \Leftrightarrow \forall \{x_n\} \xrightarrow[n \to \infty]{} a, \ x_n \neq a \Rightarrow \{f_1(x_n)\} \xrightarrow[n \to \infty]{} A$$

$$\exists \lim_{x \to a} f_2(x) = A \Leftrightarrow \forall \{x_n\} \xrightarrow[n \to \infty]{} a, \ x_n \neq a \Rightarrow \{f_2(x_n)\} \xrightarrow[n \to \infty]{} A$$

$$\forall E > 0 \exists N_1(E) : \forall n > N_1(E) \Longrightarrow |f_1(x_n) - A| < E$$

$$\forall E > 0 \exists N_2(E) : \forall n > N_2(E) \Longrightarrow |f_2(x_n) - A| < E$$

Рассмотрим $N = \max(N_1(E); N_2(E))$, начиная с некоторого номера N $\{f_1(x)\}$ и $\{f_2(x)\}$, будут одинакого выполняться $A - \varepsilon < f_1(x) \le g(x) \le f_2(x) < A + \varepsilon, \forall n > N$. Значит,

$$|g(x) - A| < \varepsilon \Rightarrow \exists \lim_{x \to a} g_1(x) = A, \forall x \in \bigcup_{x \to a}^{0} (a)$$

<u>Билет №29.</u> Доказать теорему Лагранжа.

Пусть функция y = f(x).

- 11. Определена и непрерывна на отрезке [a;b].
- 12. Дифференцируема на интервале (a;b).

Тогда существует E из интервала (a;b): $f(b)-f(a)=f'(E)\cdot(b-a)$.

Доказательство: Рассмотрим вспомогательную функцию $F(x) = f(x) - \lambda \cdot x$, где λ - константа.

$$\lambda$$
: $F(a) = F(b)$

$$f(a) - \lambda \cdot a = f(b) - \lambda \cdot b$$

$$\lambda = \frac{f(b) - f(a)}{b - a}$$

- 5. Она непрерывна на [a;b]
- 6. $\,$ дифференцируема на (a;b).

Все условия теоремы Ролля выполняются \Rightarrow существует E из (a;b): F'(E) = 0

$$F'(x) = f'(x) - \lambda \Rightarrow f'(E) = \lambda = \frac{f(b) - f(a)}{b - a}$$

Вывести формулу для производной сложной функции.

Пусть функция x = g(t), дифф. В точке t=t0, а функция y = f(x)- дифференцируема в точке

 $x_0=g(t_0)$, тогда функция y=f(g(t)) дифференцируема в точке t=t0, причем y'=f'(g(t))*g'(t) . Док-во (должны доказать, что $\Delta y=A*\Delta t+\alpha*\Delta t$). Имеем, что $\Delta x=g'(t_0)*\Delta t+\alpha_1*\Delta t$.

$$\Delta y = f'(x_0 * \Delta x) + \alpha_2 * \Delta x.$$

$$\Delta y = f'(x_0) * (g'(t_0) * \Delta t + \alpha_1 * \Delta t) + \alpha_2 * (g'(t_0) * \Delta t + \alpha_1 * \Delta t) = f'(x_0) * g'(t_0) * \Delta t + (\alpha_1 + \alpha_2) * \Delta t + g'(t_0) * \alpha_2 * \Delta t = f'(x_0) * g'(t_0) * \Delta t + (\alpha_1 + \alpha_2 + g'(t_0) * \alpha_2) * \Delta t = f'(x_0) * g'(t_0) * \Delta t + \alpha * \Delta t$$

$$\Rightarrow (f(g(t)))' = f'(g(t)) * g'(t).$$

Билет №30.

Кривизна плоской кривой, формула кривизны. Рассмотрим в ХОУ плоскую кривую Γ . $\vec{r} = \vec{r}(S), S \in [0, S_r]$

$$\frac{\mid \alpha(S) - \alpha(S_0) \mid}{\Delta S}$$
 - средняя кривизна кривой Γ . Кривизной Γ в точке S_0 называют предел (если

он существует) средней кривизны при стремлении ΔS к нулю. $K(S_0) = \lim_{\Delta S \to 0} \frac{|\alpha(S) - \alpha(S_0)|}{\Delta S}$.

$$R(S_0) = \frac{1}{K(S_0)}$$
. Если $K(S_0) = 0$, то полагают $R(S_0) = \infty$, прямая, перпендикулярная касательной и

проходящая через точку касания называется нормалью к кривой Г. Точка нормали, отстоящая от точки касания на величину, равную радиусу кривизны, называют центром кривизны. Совокупность всех центров кривизны данной кривой называют эволютой и обозначат Ω . Сама кривая Γ по отношению к своей эволюте называется эвольвентой.

Некоторые свойства эволюты и эвольвенты:

- 1. Нормаль к кривой Г является касательной для эволюты в соответствующем центре кривизны.
- 2. При монотонном возрастании радиуса кривизны, приращение радиуса кривизны равно, по абсолютной величине, длине эволюты между соответствующими центрами кривизны.

Рассмотрим в XOY плоскую кривую Г.

