Machine Intelligence:: Deep Learning Week 7

Beate Sick, Pascal Bühler, Oliver Dürr

Ensembling approaches for improving the performance and uncertainty estimates of NN models by taking into account the algorithmic epistemic uncertainty.

1

Outline:

- Uncertainty in DL models
 - Epistemic uncertainty
 - Algorithmic uncertainty
 - Aleatoric uncertainty
- Approaches to take algorithmic and/or algorithmic & epistemic uncertainty into account:
 - Deep Ensembling
 - MC Dropout
 - Bayes
 - Theoretical Background for all
 - Variational Inference (possible next week)

Probabilistic CNNs as we know them so far

CNNs yield high accuracy and calibrated (=unbiased) probabilities, but...

How good do we know probabilistic CNNs?

What happens if we present a novel class to the CNN?

You might expect:

What do you expect?

How good do we know probabilistic CNNs?

What happens if we present a novel class to the CNN?

A non-Bayesian NN cannot ring the alarm

What happens if we present a novel class to the CNN?

We need some error bars!

Importance to detect OOD

- Current DL Systems bad in out of distribution OOD situations
- Application need at least to detect OOD situations

Algorithmic uncertainty in Deep Learning

If we train the same NN model twice on the same data, we get two (slightly) different trained models due to algorithmic uncertainty, i.e.

- Because we initialize the weights randomly before starting the training
- Becuase we split the train data randomly in mini-batches and the determined gradients $\partial L/\partial w_i$ depend in the mini-batch on which they are determined. After each epoch a new split in mini-batches is done.
- Because we often work with data augmentation methods, where the augmented samples differe randomly from the a sample in the mini-batch

Extrapolation: Causes Problems

Figure 7.2 Bad case of DL. The high performant VGG16-CNN trained on ImageNet data fails to see the elephant in the room. The five highest-ranked class predictions of the objects in the image are horse_cart, shopping_cart, palace, streetcar, gondola; the elephant is not found! This image is an extrapolation of the training set. In the regression problem on the right side of the dashed vertical line, there's zero uncertainty in the regions where there's no data (extrapolation).

Definition Aleatroic vs. Epistemic Uncertainty

Much spread in data, aleatroic (from "Alea Acta est"))

- *Aleatoric* uncertainty is due to the uncertainty in the data.
- The uncertainty when leaving the 'known ground' is called epistemic uncertainty.

We can model this uncertainty when we take the uncertainty with which we know the weights (called parameter uncertainty) into account. This can be done with Bayesian reasoning or phenomenological.

Aleatoric Unctertainty

- Regression
 - The spread of the Data.

- Classification
 - Spread?

$$H(P) = -\sum_{i} p_{i} \cdot \log(p_{i})$$

One has H=~2.3 and on H=0. Which one

How to model the epistemic and/or algorithmic uncertainty?

Deep Ensembling

Basic Idea of deep ensembling

- Use an ensemble of n-different models and see if they agree
- How to get different ensembles?
- Traditional Statics?
 - Bagging Boot Strapping and Aggregating
- Deep Learning
 - Deep Learning just average over different solutions of gradient descent

The loss-landscape in DL is usually not convex

The loss-landscape of DL models has many local minima with similar depth.

Training is started with a **random** weight value initialization → training the NN with SGD and the same data several times is usually ending in different local minima.

Blackboard Regression Ensembling with 3 solutions

In the data points, solutions are similar. Outside the data there are difference

Ensemble of 5 Networks (Regression)

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. *Advances in neural information processing systems*, *30*.

Classification

What happens if we haved trained the same CNN twice with the same data? Present example in training set.

Classification

What happens if we haved trained the same CNN twice with the same data? But present OOD example.

Larger difference if not (cat).

Deep ensembling: Train several NN models and average their predicitions

Nice:

For the convex NLL loss, it is guaranteed, that the NLL of the ensemble prediction is better (smaller or equal) than the average NLL of the individual models.

Deep ensembling improves prediction power

Ensembes with as few as 3 or 5 members are typically enough to achieve a perfromance gain.

Deep ensembles improve uncertainty measures

We want that a model, that is trained on normal MNIST letter data, should provide large uncertainties when applied on novel (NOT-MNIST) letter images.

Epistemic uncertainty Dropout during test time

Recall: Classical Dropout only during training

Using dropout during training implies:

- In each training step only weights to not-dropped units are updated → we train a sparse sub-model NN
- For non-Bayesian NN we freeze the weights after training to a value $w \cdot p^*$

Recall: Dropout fights overfitting in a CIFAR10 CNN

From Dropout during training to MC Dropout during test time

When using Dropout only during training

For non-Bayesian NN we freeze the weights after training to a value $w \cdot p^*$ and use then the trained NN for prediction:

Probability of predicted class: **p**_{max}

Input: image pixel values

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

MC Dropout during test time yields a multivariate predictive distribution for the parameters

Remark: Mean of marginal give components of mean in multivariate distribution.

Experiment with unknown phenotype

Dürr O, Murina E, Siegismund D, Tolkachev V, Steigele S, Sick B. Know when you don't know, Assay Drug Dev Technol. 2018

Probability distribution from MC dropout runs

Image with known class 15

100 MC predictions for an image with known phenotype 15

Probability distribution from MC dropout runs

Image with known class 15

100 MC predictions for an image with known phenotype 15

100 Probability 75 -1.00 0.75 0.50 0.25 25 -7 8 9 10 11 12 13 14 15 16 17

Class

Image with unknown class

100 MC predictions for an image with an unknown phenotype

Hands-on Time

Train a CNN with only 9 of the 10 classes and investigate if the uncertainties are different when predicting images from known or unknown classes.

How does MC dropout compare with deep ensembles?

- For MC dropout we only need to compare one NN with as many parameters as a classical NN. We then average different MC dropout predictions
- For deep ensembles we need to train several NNs (typical 3 to 5) with different random initialization. We then average the predictions of these NNs
- Deep ensembles are computationally more costly but provide typically better prediction performance (and also better uncertainty measures) than MC dropout

Bayesian Neural Networks

Bayesian NN

Ensembling and MCMC Dropout work

But why?

Bayesian Statistics is the language to formulate epistemic uncertainty

In the following a sneak preview into Bayesian Statistics

For NN we will introduce a direct approximation. Variational Inference

MC Dropout and Ensembling can be also seen a Bayesian Approximations

Bayes the hackers' way

Let's look at good old linear regression to understand the gist of the Bayes idea. Assume $\sigma = 3$ to be known.

Combining different fits

Also take the other fits with different parameters into account and weight them

Question: How to get the weight?

Idea: use the (normalized) likelihood $p_{\text{norm}}(D|(a,b))$!

Don't put all egg's in one Basket

Also take other solutions for parameters a, b into account

$$p(y|x,D) = \sum_{a} \sum_{b} p(y|x,(a,b)) \cdot p_{\text{norm}}(D|(a,b))$$

Likelihood at 30x30 different positions of a and b. Normalized to be one. https://github.com/tensorchiefs/dl_book/blob/master/chapter_07/nb_ch07_02.ipynb

Result

$$p(y|x,D) = \sum_{a} \sum_{b} p(y|x,(a,b)) \cdot p_{\text{norm}}(D|(a,b))$$

Figure 7.6 The predictive distribution for the Bayesian linear regression model, trained with the four data points shown on the left side by the color-code and on the right as conditional distribution at two different x positions. You can clearly see that the uncertainty gets larger when leaving the x-regions where there's data.

Bayesian statistics

The Bayesian Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Applied to $A = \theta$ and B = D

Parameters θ of a model e.g. weights w of NN

Training data D

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\sum_{\theta} p(D|\theta)p(\theta)} \sim p(D|\theta)p(\theta)$$

Revisiting the Hackers' example

Hacker's way

$$p(y|x,D) = \sum p(y|x,w) \cdot p_{\text{norm}}(D|w)$$

$$p_{\text{norm}}(D|w) = \frac{p(D|w)}{\sum_{w} p(D|w)}$$

Bayes

$$p(y|x,D) = \sum_{w} p(y|x,w) \cdot p(w|D)$$

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)} = \frac{p(D|w)p(w)}{\sum_{w} p(D|w)p(w)}$$

 \rightarrow The Hacker's way is Bayes, if we assume a uniform prior p(w) = const

Bayesian modeling has less problems with complex models

Frequentist's strategy:

You can only use a complex model if you have enough data!

Bayesian's strategy:

Use the model complexity you believe in.

Do not just use the best fitting model.

Do use the full posterior distribution over parameter settings leading to vague predictions since many different parameter settings have significant posterior probability.

$$p(y|x^*, traindata) = \int p(y|x^*, \theta) \cdot p_{norm}(\theta|traindata) d\theta$$

x*: new input

Image credits: Hinton coursera course

Bayesian terminology

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{p(D|\theta)p(\theta)}{\sum_{\theta} p(D|\theta)p(\theta)} \sim p(D|\theta)p(\theta)$$

```
p(\theta|D) posterior p(D|\theta) likelihood p(\theta) prior p(D) evidence just a normalization constant
```

The Bayesian Mantra (say it loud)

$$p(\theta|D) \sim p(D|\theta)p(\theta)$$

"The posterior is proportional to the likelihood, times the prior"

Interpretation updating the degree of belief

Parameters θ are random variables, following a distribution

This distribution reflects our belief about which values are probable for θ

The Bayes formula is seen as an update of our belief in the light of data

likelihood updates degree of belief

$$p(\theta|D) \sim p(D|\theta)p(\theta)$$

posterior (after seeing data)

prior belief (before seeing data)

Example Coin Toss

Head or tail?

 $Y_i \in \{0, 1\}$, here 0 stands for tail and 1 for head $Y \sim \text{Ber}(\theta)$, with 1 parameter $\theta = P(Y = 1)$

For a fair coin $\theta = 0.5$

But how to know if a coin is fair?

Analyzing a Coin Toss Experiment

- We do an experiment and observe 3 times head → D='3 heads'
- θ parameter for the Bernoulli-distribution (probability of head)
- Before the experiment we assume all value of θ are equally likely $p(\theta) = \cos \theta$
- Calculate likelihood $p(D|\theta) = p(y=1) \cdot p(y=1) \cdot p(y=1) = \theta \cdot \theta \cdot \theta = \theta^3$
- Posterior $p(\theta|D) \sim p(D|\theta)p(\theta) = \theta^3$ beliefs more in head

 $p(\theta|D) = 4 \cdot \theta^3$ (the factor 4 is needed for normalization so that the posterior integrates to 1)

Posterior Predictive Distribution

Posterior predictive distribution

$$p(y|x,D) = \int_{\theta} p(y|x,\theta) \cdot p(\theta|D) \ d\theta$$

The coin example is unconditional (there is no predictor x)

$$p(y|D) = \int_{\theta} p(y|\theta) \cdot p(\theta|D) \ d\theta$$

To compute the posterior predictive probability for head in the coin example, we need:

- $p(y = 1|D) = \theta$
- $p(\theta|D) = 4 \cdot \theta^3$

Posterior predictive distribution

$$p(y = 1|D) = \int_{\theta} \theta \cdot 4 \cdot \theta^3 d\theta = 0.8$$

$$P(Y=1|D) = \int_0^1 \theta \cdot 4 \cdot \theta^3 d\theta = \frac{4}{5} \cdot \theta^5 \Big|_0^1$$

$$P(Y = 1|D) = \frac{4}{5} \cdot 1^5 - \frac{4}{5} \cdot 0^5 = 0.8$$

$$P(Y = 0) = 1 - P(Y = 1) = 0.2$$

Prior and Posterior Predictive distribution

Coin example «the hacker's way»

Work through the notebook NB21 and do the excerise therein.

Result 40+11 times head and 9 tails

Prior

Posterior

