

Dr Pooja Agarwal

Professor,

Department of Computer Science & Engineering

MODULE 5

Propositional Logic

Dr Pooja Agarwal

Department of Computer Science & Engineering

Propositional Logic

Outline

PES INIVERSITY ONLINE

- ◆ Propositional logic A very Simple Logic
 - Syntax and Semantics
 - A Simple Knowledge Base
 - A Simple Inference Procedure

Propositional Logic (Syntax and Semantics)

Propositional Logic (Syntax and Semantics)

Propositions

Propositions are building blocks of logic.

- e.g. 1. The president of India is a woman. (P)
- 2. Toronto is the capital of Canada. (P)
- 3. Watch a movie. (P)
- 4. What is your name? (P)

Propositional Logic (Syntax and Semantics)

Propositional Logic - Syntax

Syntax defines the sentences in the language.

- Atomic Sentences
- Complex Sentences

Atomic Sentences – consists of a single proposition symbol.

Each such symbol stands for a proposition that can be true or false.

Two proposition symbol with fixed meaning -

TRUE – Always true proposition

FALSE – Always false proposition

Propositional Logic (Syntax and Semantics)

Propositional Logic - Syntax

Syntax defines the sentences in the language.

- Atomic Sentences
- Complex Sentences

Complex Sentences – are constructed from simple sentences.

There are *five logical connectives* in common use:-

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

The Semantics defines the rules for determining the truth of a sentence with respect to a particular model.

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$

One possible model will be

$$m1 = \{P_{1,2} = false, P_{2,2} = false, P_{3,1} = true\}$$

With these three proposition symbols, 8 possible models, can be enumerated automatically.

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

Semantics for propositional logic must specify how to compute the truth value of any sentence, given a model m.

$\neg S$	is true iff	S is false
$S_1 \wedge S_2$	is true iff	S ₁ is true and S ₂ is true
$S_1 \vee S_2$	is true iff	S ₁ is true or S ₂ is true
$S_1 \Rightarrow S_2$	is true unless	S_1 is true and S_2 is false in m.
$S_1 \Leftrightarrow S_2$	is true iff	$S_{1,}S_{2}$ are both true or both false.

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

• The order from highest to lowest:

$$\emptyset, \land, \lor, \Rightarrow and \Leftrightarrow$$

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

BNF (Backus- Naur form) grammar, Like CFG has four components:-

- A set of terminal symbols
- A set of non-terminal symbols
- A start symbol
- A set of rewrite rules of the form

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

• BNF Grammar for simple arithmetic expressions:-

```
Expr \rightarrow Expr operator Expr | (Expr) | Number Number \rightarrow Digit | Number Digit Digit \rightarrow 0|1|2|3|4|5|6|7|8|9 Operator \rightarrow +|-|/|*
```

Propositional Logic (Syntax and Semantics)

Propositional Logic - Semantics

BNF grammar of sentences in propositional logic, along with operator precedence, from highest to lowest

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \wedge Sentence
\mid Sentence \vee Sentence
\mid Sentence \Rightarrow Sentence
```

Propositional Logic (Syntax and Semantics)

Example: $\neg A \land B$

Sentence

P=A

BNF grammar of sentences in propositional logic

Sentence — AtomicSentence | ComplexSentence

AtomicSentence —→True | False | P | Q | R | ...

ComplexSentence — (Sentence) | [Sentence]

| → Sentence

| Sentence \(\times \) Sentence

Sentence V Sentence

Sentence \Rightarrow *Sentence*

Sentence ⇔ *Sentence*

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

Negation ~ Or ¬

P	~P
T	F
F	Т

e.g.

1. P: Ram is a good boy

¬P: Ram is not a good boy.

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

Conjunction ^

P Q P∧Q T T T T F F F T F F F F

Disjunction V

Р	Q	PvQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

Conjunction A

e.g.

P: Today is Friday.

Q: It is raining today.

 $P \wedge Q$: Today is Friday and it is raining today.

Disjunction V

e.g.

1. P: Today is Friday.

Q: It is raining today.

PVQ: Today is Friday or it is raining today.

2. P: Sam is an Architect.

Q: Sam is a draftsman.

PVQ: Sam is an Architect or a draftsman.

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

<u>Conditional Statement (Implication/ Implies)</u> ⇒ Antecedent

(If..then)

Р	Q	P ⇒Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

 $P \Rightarrow Q$ Consequent

is true unless P is true and Q is false in model.

e.g.

1. P: Emma learns AI.

Q: Emma will find a good job.

 $P \Rightarrow Q$: If Emma learns AI, then she will find a good job.

2. If you do hard work, then you **would** get 90% on final.

If you do not do hard work, then you **may or may not** get 90% on final.

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

Antecedent **Conditional Statement (Implication/Implies)** ⇒ (If..then) $P \Rightarrow Q$ Consequent

If it is raining, then home team wins

is true unless P is true and Q is false in model.

Р	Q	P⇒Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

P implies Q also means

- Ponly if Q
- Q whenever P
- Q is necessary condition for P
- Q follows from P
- Q unless ¬P

The home team wins whenever it is raining The home team wins unless it is not raining

Propositional Logic (Syntax and Semantics)

Truth table of Five Logical Connectives

Biconditional Operator (If and Only If) ⇔

Р	Q	P⇒Q	Q⇒P	P ⇔ Q
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

 $P \Leftrightarrow Q$ means $P \Rightarrow Q$ and $Q \Rightarrow P$

 $P \Leftrightarrow Q$ is a conjunction of $P \Rightarrow Q$, $Q \Rightarrow P$

$$P \Leftrightarrow Q \equiv P \Rightarrow Q \land Q \Rightarrow P$$

e.g.

P: You can take the flight

Q: You buy a ticket.

Then

 $P \Leftrightarrow Q$: You can take the flight if and only if you buy a ticket.

Propositional Logic (Syntax and Semantics)

PES UNIVERSITY ONLINE

Truth table of Five Logical Connectives

Р	Q	¬P	PΛQ	QVP	P⇒Q	P ⇔Q
T	Т	F	Т	Т	Т	Т
T	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$

Propositional Logic (Syntax and Semantics)

Example

=> means the presence of pits if there is a breeze.

Biconditional,

$$B_{1,1} \Leftrightarrow P_{1,2} \text{ or } P_{2,1}$$

• \Leftrightarrow means (requires) the absence of pits if there is no breeze.

Propositional Logic (Syntax and Semantics)

Tautology

 A tautology is when you use different words to repeat the same idea.

e.g. 1. The phrase

"It was <u>adequate enough</u>" is a tautology. The words adequate and enough convey the same meaning.

2.
$$P \Rightarrow Q \equiv \neg P \lor Q$$

Propositional Logic Examples

Example

1. Translate the following English sentence into a logical Expression.

"You can access the Internet from campus <u>ONLY IF</u> you are a computer Science major <u>OR</u> you are not a fresher."

Propositional Logic Examples

2. Prove the logical Equivalence of

$$\mathbf{P} \Rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$$

Propositional Logic Examples

3. Prove the logical Equivalence for Biconditional

$$\mathbf{P} \Leftrightarrow \mathbf{Q} \equiv (\mathbf{P} \wedge \mathbf{Q}) \vee (\neg \mathbf{P} \wedge \neg \mathbf{Q})$$

P	Q		

THANK YOU

Dr Pooja Agarwal
Department of Computer Science & Engineering
poojaagarwal@pes.edu