

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

### Отчёт по лабораторным работам №2 по дисциплине "Методы машинного обучения"

| <b>Тема</b> Модель полиномиальной регрессии - Регуляризация. |
|--------------------------------------------------------------|
| Студент Варламова Е. А.                                      |
| Группа <u>ИУ7-23М</u>                                        |
| Оценка (баллы)                                               |
| Преполаватели Сололовников Владимир Игоревич                 |

# СОДЕРЖАНИЕ

| 1        | Теоретическая часть |                                         |  |  |  |  |  |
|----------|---------------------|-----------------------------------------|--|--|--|--|--|
|          | 1.1                 | Полиномиальная регрессия. Регуляризация |  |  |  |  |  |
|          | 1.2                 | Постановка задачи                       |  |  |  |  |  |
|          | 1.3                 | Функционал эмпирического риска          |  |  |  |  |  |
|          | 1.4                 | Регуляризация                           |  |  |  |  |  |
|          | 1.5                 | Описание алгоритма                      |  |  |  |  |  |
| <b>2</b> | Практическая часть  |                                         |  |  |  |  |  |
|          | 2.1                 | Выбор средств разработки                |  |  |  |  |  |
|          |                     |                                         |  |  |  |  |  |

## 1 Теоретическая часть

### 1.1 Полиномиальная регрессия. Регуляризация.

Полиномиальная регрессия — это метод восстановления зависимости между независимыми и зависимыми переменными при помощи полиномиальной функции. Он часто используется для приближения нелинейного поведения данных и улучшения качества предсказаний по сравнению с линейной регрессией. Полиномиальная регрессия позволяет уловить сложные взаимосвязи в данных и учитывать нелинейные зависимости.

Регуляризация в статистике и машинном обучении – метод добавления некоторых дополнительных ограничений к условию с целью предотвратить переобучение. Чаще всего эта информация имеет вид штрафа за сложность модели.

Целью данной лабораторной работы является применение регуляризации к модели полиномиальной регрессии.

Для этого необходимо решить следующие задачи:

- формализовать задачу;
- описать алгоритм работы ПО, решающего поставленную задачу;
- привести особенности реализации ПО, решающего поставленную задачу;
- провести исследование зависимости среднеквадратичной ошибки регрессии от степени полинома;
- провести исследование зависимости значения функционала эмпирического риска на обучающей и контрольной выборках от степени полинома.

#### 1.2 Постановка задачи

Функция:

$$y(x) = \frac{1}{1 + 25x^2}, x \in [-2, 2]$$
(1.1)

Обучающая выборка:

$$S_l: x_i = \frac{4(i-1)}{l-1} - 2, i = 1, \dots, l$$
 (1.2)

Контрольная выборка:

$$S_k: x_i = \frac{4(i-0.5)}{l-1} - 2, i = 1, \dots, l-1.$$
 (1.3)

Построить модель полиномиальной регрессии, аппроксимирующей данные обучающей выборки. Исходить из того, что степень полинома (начальный закон генерации обучающей выборки) неизвестен. Обучение проводить методом наименьших квадратов.

Для оптимальной модели полиномиальной регрессии, а также для модели полиномов меньшей и большей степеней  $(\pm 3)$  вывести значения коэффициентов полинома (всего 3 полинома).

К выбранным моделям (полиномам соответствующих степеней) применить метод регуляризации с использованием гребневой регрессии (ридж-регрессии) и Лассо-регрессии. Вывести значения коэффициентов полинома. Повторить для различных значений параметра.

Рассчитать функционал эмпирического риска (функционал качества) для всех полученных моделей на обучающей и контрольной выборках (вывести графики).

#### 1.3 Функционал эмпирического риска

Функционал эмпирического риска (empirical risk functional) используется в машинном обучении для измерения качества модели на обучающей выборке. Он представляет собой среднее значение функции потерь (loss function) на обучающих примерах.

Для задачи регрессии, наши данные состоят из пар  $(x_i, y_i)$ , где  $x_i$  - входное значение, а  $y_i$  - соответствующее целевое значение. Пусть h(x) - модель, а  $\ell(h(x), y)$  - функция потерь. Тогда эмпирический риск R(h) может быть записан следующим образом:

$$R(h) = \frac{1}{N} \sum_{i=1}^{N} \ell(h(x_i), y_i)$$

Здесь N - количество обучающих примеров, и сумма берется по всем парам  $(x_i, y_i)$ . Функция потерь  $\ell(h(x_i), y_i)$  оценивает разницу между предсказанным значением  $h(x_i)$  и истинным значением  $y_i$ .

В данной работе используется квадратичная функция потерь, а, соотвественно, функционал эмпирического риска равен среднеквадратичной ошибке.

#### Регуляризация 1.4

Регуляризация в статистике и машинном обучении – метод добавления некоторых дополнительных ограничений к условию с целью предотвратить переобучение. Чаще всего эта информация имеет вид штрафа за сложность модели.

Если выбрана излишне сложная модель при недостаточном объеме данных, то в итоге может быть получена модель, которая хорошо описывает обучающую выборку, но не обобщается на тестовую. Переобучение в большинстве случаев проявляется в том, что итоговые модели имеют слишком большие значения параметров. Одним из способов борьбы с негативным эффектом излишнего подстраивания под данные – использование регуляризации, т.е. добавление некоторого штрафа за большие значения коэффициентов у линейной модели. Тем самым запрещаются слишком "резкие" изгибы, и предотвращается переобучение.

Наиболее часто используемые виды регуляризации —  $L_1$  и  $L_2$ , а также их линейная комбинация – эластичная сеть.

В представленных ниже формулах для эмпирического риска Q приняты следующие обозначения: L – функция потерь,  $\beta$  – вектор параметров  $q(x,\beta)$  из модели алгоритма,  $\lambda$  – неотрицательный гиперпараметр (коэффициент регуляризации).

Если в качестве функционал качества используется сумма квадратов остатков (Residual Sum of Squares – RSS), тогда изначально:

$$L(y_i, g(x_i, \beta)) = (g(x_i, \beta) - y_i)^2$$
(1.4)

$$L(y_i, g(x_i, \beta)) = (g(x_i, \beta) - y_i)^2$$

$$RSS = Q(\beta, X^l) = \sum_{i=1}^l (L(y_i, g(x_i, \beta))) = \sum_{i=1}^l (g(x_i, \beta) - y_i)^2$$
(1.4)

 $L_2$ -регуляризация (ridge regularization) или регуляризация Тихонова (Tikhonov regularization):

$$Q(\beta, X^{l}) = \sum_{i=1}^{l} L(y_{i}, g(x_{i}, \beta)) + \lambda \sum_{j=1}^{n} \beta_{j}^{2}$$
(1.6)

Минимизация регуляризованного соответствующим образом эмпирического риска приводит к выбору такого вектора параметров  $\beta$ , которое не слишком сильно отклоняется от нуля. В линейных классификаторах это позволяет избежать проблем мультиколлинеарности и переобучения.

 $L_1$ -регуляризация (lasso regularization) или регуляризация через манхэттенское расстояние:

$$Q(\beta, X^{l}) = \sum_{i=1}^{l} L(y_{i}, g(x_{i}, \beta)) + \lambda \sum_{j=1}^{n} |\beta_{j}|$$
(1.7)

Данный вид регуляризации также позволяет ограничить значения вектора  $\beta$ . Однако, к тому же он обладает интересным и полезным на практике свойством – обнуляет значения некоторых параметров, что в случае с линейными моделями приводит к отбору признаков.

#### 1.5 Описание алгоритма

Схема алгоритма, вычисляющего оптимальную степень полинома по обучающей выборке, представлена на рисунке 1.1.



Рис. 1.1: Схема работы алгоритма

## 2 Практическая часть

#### 2.1 Выбор средств разработки

В качестве языка программирования был использован язык Python, поскольку этот язык кроссплатформенный и для него разработано огромное количество библиотек и модулей, решающих разнообразные задачи.

В частности, имеются библиотеки, включающие в себя алгоритмы аппроксимации полиномом, линейной регрессии и регуляризации в библиотеке [1].

Для создания графиков была выбрана библиотека matplotlib [2], доступная на языке Python, так как она предоставляет удобный интерфейс для работы с данными и их визуализации.

#### 2.2 Исследование ПО

В листинге 2.1 представлен код, выводящий максимальное по модулю значение коэффициентов полинома и значение ошибок на обучающей и контрольной выборок для моделей полиномиальной регрессии без регуляризации и с регуляризацией с помощью Лассо и Ридж методов для степеней полинома 10, 13 и 20 и для разных параметров  $\alpha$ . Кроме того, для указанных моделей предусмотрен интерфейс вывода графиков фнукционала эмпирического риска в зависимости от степени полинома с возможностью варьировать параметры методов регуляризации.

Листинг 2.1: код

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from matplotlib.widgets import Slider
import warnings
warnings.filterwarnings("ignore")
```

```
def true function(x):
      return 1 / (1 + 25 * x**2)
12
13
14
  X_{train} = np.array([4 * (i - 1) / (l - 1) - 2 for i in range(1, l + 1)]).
     reshape(-1, 1)
  X control = np.array([4 * (i - 0.5) / (l - 1) - 2 \text{ for } i \text{ in } range(1, l)]).
     reshape(-1, 1)
  y_{train} = true_function(X_train)
  y control = true function(X control)
  degrees = [10, 13, 16]
  def fit polynomial regression (X, y, degree, model):
      poly features = PolynomialFeatures (degree=degree)
21
      X_poly = poly_features.fit_transform(X)
22
      model.fit(X poly, y)
23
      return poly_features
24
25
26
  def calculate error (model, poly features, X, y):
27
      X_{poly} = poly_{features.transform(X)
28
      y pred = model.predict(X poly)
      return mean_squared_error(y, y_pred), y_pred
  def get_errs(model, X_train, y_train, X_control, y_control):
31
      train_errors = []
32
      control_errors = []
33
      for degree in degrees:
34
           poly_features = fit_polynomial_regression(X_train, y_train, degree,
35
              model)
          train error, y p t = calculate error(model, poly features, X train,
36
              y train)
          control\_error, y\_p\_c = calculate\_error(model, poly\_features,
37
              X_control, y_control)
           train _ errors . append (train _ error)
38
           control errors.append(control error)
39
      return train_errors,control_errors
40
  def update ridge(val):
42
      train errors ridge, control errors ridge = get errs(Ridge(alpha=val),
43
         X_train, y_train, X_control, y_control)
      ridge_plot_train.set_ydata(train_errors_ridge)
44
      ridge_plot_control.set_ydata(control_errors_ridge)
45
      fig.canvas.draw_idle()
46
  def update lasso(val):
48
      train errors lasso, control errors lasso = get errs(Lasso(alpha=val),
49
         X_train, y_train, X_control, y_control)
      lasso plot train.set ydata(train errors lasso)
50
      lasso_plot_control.set_ydata(control_errors_lasso)
51
      fig.canvas.draw idle()
52
53
```

```
def output errors():
       models = [LinearRegression(),
55
                  Lasso (alpha = 0.1),
56
                  Lasso (alpha=10),
57
                  Lasso (alpha=100),
58
                  Lasso (alpha = 1000),
59
                  Ridge (alpha = 0.1),
60
                  Ridge (alpha=10),
61
                  Ridge (alpha = 100),
62
                  Ridge (alpha = 1000)
63
      names = ["
64
                             , alpha = 0.1,
                 П
                             , alpha = 10",
                 П
                             , alpha = 100"
67
                             , alpha = 1000".
68
                             alpha = 0.1",
69
                 II
                             alpha = 10",
70
                             alpha = 100",
71
                             alpha = 1000"]
72
       degs = [10, 13, 20]
73
       i = 0
74
       for model in models:
75
           for degree in degs:
76
                poly features = fit polynomial regression(X train, y train,
77
                   degree, model)
                train_error, y_p_t = calculate_error(model, poly features,
78
                   X_train, y_train)
                control error, y p c = calculate error(model, poly features,
79
                   X control, y control)
                print("\hline {} & {} & {:.3f} & {:.3f} & {:.3f} & {:.3f} \\\\".
80
                   format(names[i],
                                                                           degree,
81
                                                                           np.max(np.
82
                                                                               abs(
                                                                               y_p_t)),
                                                                           np.max(np.
83
                                                                               abs(
                                                                               y_p_c)),
                                                                           train_error
84
                                                                           control_error
85
                                                                               ))
           i += 1
  output errors()
87
  fig , ax = plt.subplots()
88
89
  ax slider ridge = plt.axes([0.1, 0.01, 0.8, 0.03])
90
  ax_slider_lasso = plt.axes([0.1, 0.9, 0.8, 0.03])
91
_{93} train errors lin, control errors lin = get errs(LinearRegression(), X train,
```

```
y_train , X_control , y_control)
  ax.plot(degrees, train errors lin, label='
  ax.plot(degrees, control errors lin, label='
  train_errors_lasso, control_errors_lasso = get_errs(Lasso(alpha=0.1),
     X train, y train, X control, y control)
  lasso_plot_train , = ax.plot(degrees , train_errors_lasso , label='
  lasso plot_control, = ax.plot(degrees, control_errors_lasso, label='
100
  train errors ridge, control errors ridge = get errs(Ridge(alpha = 0.1),
     X train, y train, X control, y control)
  ridge_plot_train , = ax.plot(degrees , train_errors_ridge , label='
102
  ridge_plot_control, = ax.plot(degrees, control_errors_ridge, label=')
103
104
  slider ridge = Slider(ax slider ridge, 'Ridge', valmin=0, valmax=1000,
105
      valinit = 0.1
  slider ridge.on changed(update ridge)
106
107
  slider_lasso = Slider(ax_slider_lasso, 'Lasso', valmin=0, valmax=1000,
108
      valinit = 0.1)
  slider_lasso.on_changed(update_lasso)
109
  ax.legend()
110
111
  plt.xlabel(
112
  plt.ylabel(
113
  plt.title(
114
                                       ')
  plt.legend()
115
  plt.show()
116
```

На рисунке 2.1 показана зависимость значения ошибки от степени полинома для обучающей и контрольной выбоорок для разных моделей.

В таблице 2.1 показано, что при применении методов регуляризации максимальный по модулю коэффициент не такой большой, как без регуляризации.



Рис. 2.1:

Таблица 2.1: Результаты работы ПО

| таолица 2.1: Результаты расоты 11О |                  |              |                |           |             |  |  |  |
|------------------------------------|------------------|--------------|----------------|-----------|-------------|--|--|--|
|                                    |                  | тах модуль   | тах модуль     |           |             |  |  |  |
| Тип                                | Степень полинома | коэффициента | коэффициента   | Ошибка на | Ошибка на   |  |  |  |
| модели                             |                  | полинома     | полинома       | обучающей | контрольной |  |  |  |
| Модели                             | Hommowa          | на обучающей | на контрольной | выборке   | выборке     |  |  |  |
|                                    |                  | выборке      | выборке        |           |             |  |  |  |
| Линейная                           | 5                | 0.415        | 0.411          | 0.027     | 0.025       |  |  |  |
| Линейная                           | 10               | 0.692        | 0.665          | 0.008     | 0.008       |  |  |  |
| Линейная                           | 20               | 1.000        | 360.683        | 0.000     | 13108.005   |  |  |  |
| Лассо, $alpha = 0.1$               | 5                | 0.199        | 0.199          | 0.048     | 0.047       |  |  |  |
| Лассо, $alpha = 0.1$               | 10               | 0.211        | 0.211          | 0.047     | 0.045       |  |  |  |
| Лассо, $alpha = 0.1$               | 20               | 0.217        | 0.217          | 0.046     | 0.044       |  |  |  |
| Лассо, $alpha = 10$                | 5                | 0.141        | 0.141          | 0.057     | 0.055       |  |  |  |
| Лассо, $alpha = 10$                | 10               | 0.155        | 0.155          | 0.054     | 0.053       |  |  |  |
| Лассо, alpha = 10                  | 20               | 0.177        | 0.177          | 0.052     | 0.051       |  |  |  |
| Лассо, $alpha = 100$               | 5                | 0.141        | 0.141          | 0.057     | 0.055       |  |  |  |
| Лассо, alpha = 100                 | 10               | 0.141        | 0.141          | 0.057     | 0.055       |  |  |  |
| Лассо, alpha = 100                 | 20               | 0.160        | 0.160          | 0.054     | 0.053       |  |  |  |
| $\Pi$ acco, alpha = 1000           | 5                | 0.141        | 0.141          | 0.057     | 0.055       |  |  |  |
| Лассо, alpha = 1000                | 10               | 0.141        | 0.141          | 0.057     | 0.055       |  |  |  |
| Лассо, alpha = 1000                | 20               | 0.158        | 0.158          | 0.055     | 0.054       |  |  |  |
| Pидж, $alpha = 0.1$                | 5                | 0.408        | 0.404          | 0.027     | 0.025       |  |  |  |
| Pидж, $alpha = 0.1$                | 10               | 0.494        | 0.486          | 0.018     | 0.016       |  |  |  |
| Pидж, $alpha = 0.1$                | 20               | 0.511        | 1.432          | 0.016     | 0.226       |  |  |  |
| Ридж, alpha = 10                   | 5                | 0.258        | 0.257          | 0.040     | 0.038       |  |  |  |
| Ридж, alpha = 10                   | 10               | 0.287        | 0.286          | 0.036     | 0.034       |  |  |  |
| Ридж, alpha = 10                   | 20               | 0.296        | 0.296          | 0.036     | 0.034       |  |  |  |
| Ридж, alpha = 100                  | 5                | 0.212        | 0.211          | 0.046     | 0.045       |  |  |  |
| Ридж, alpha = 100                  | 10               | 0.230        | 0.229          | 0.044     | 0.043       |  |  |  |
| Ридж, alpha = 100                  | 20               | 0.249        | 0.407          | 0.042     | 0.058       |  |  |  |
| Ридж, alpha = 1000                 | 5                | 0.170        | 0.170          | 0.051     | 0.050       |  |  |  |
| Ридж, alpha = 1000                 | 10               | 0.201        | 0.201          | 0.048     | 0.046       |  |  |  |
| Ридж, alpha = 1000                 | 20               | 0.220        | 0.220          | 0.046     | 0.046       |  |  |  |

## СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Scikit-learn: Machine learning in Python / F. Pedregosa [и др.]. 2011.
- 2. Библиотека визуализации данных matplotlib [Электронный ресурс]. Режим доступа: URL: https://matplotlib.org (дата обращения: 13.12.2023).