Programozáselmélet Összefoglaló / gyakorlat jegyzet

Készült Borsi Zsolt előadásai és Gregorics Tibor gyakorlatai alapján

Sárközi Gergő, 2021-22-1. félév Nincsen lektorálva!

Tartalomjegyzék

1.	ZH	$1 \; \ddot{\text{o}} \text{ssz}$	efoglaló 2
	1.1.	Jelölés	sek, matematikai alapok
	1.2.	Progra	amok, programfüggvények, stb. relációi 2
	1.3.	_	jdonságai
	1.4.		$_{ m ogalmak}$
	1.5.		o nétertér, specifikáció
2.	\mathbf{ZH}	2 össz	efoglaló 4
	2.1.	Progra	amkonstrukciók
		2.1.1.	
		2.1.2.	
		2.1.3.	
		2.1.4.	
		2.1.5.	
		2.1.6.	, , , , , , , , , , , , , , , , , , , ,
		2.1.0.	
	0.0	Т	± =
	2.2.		etési szabályok
		2.2.1.	Specifikáció Tétele
		2.2.2.	Ų.
		2.2.3.	Elágazás Levezetési SZabálya
		2.2.4.	Ciklus Levezetési SZabálya 6
		2.2.5.	Atomi program Levezetési SZabálya 6
		2.2.6.	Várakoztató utasítás Levezetési SZabálya
		2.2.7.	Párhuzamos blokk Levezetési SZabálya
	2.3.	Helves	sségbizonvítás

1. ZH 1 összefoglaló

1.1. Jelölések, matematikai alapok

- Jelölni "ha $l: \mathbb{L}$ igaz, akkor abc" így: $l \to abc$
- Tömb: $x:\mathbb{Z}^n$ ahol $n\in\mathbb{N}$ (nem kell külön bevezetni); első elem: x[1]
- Intervallum: i : [1..n] vagy $\forall j \in [1..n]$
- Reláció: $R \subseteq A \times B$ (üres halmaz is az)
- Függvény: $R \in A \to B \ (|R(a)| \le 1); \text{ vagy } R: A \to B \ (D_R = A)$
- Kompozíció: $Q \circ P = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in P \land (b, c) \in Q\}$
- Sorozatok: $H^{**} = H^* \cup H^{\infty}$ (véges/végtelen hossz); pl.: <1,2,2,...>
 - -* véges sokat, akár nullát jelöl. Példa: $<0,1,(2,3)^*,(4,5)^{\infty}>$
- $\lceil R \rceil = \{ a \in A | R(a) = igaz \} \text{ \'es } (Q \implies R) \Leftrightarrow (\lceil Q \rceil \subseteq \lceil R \rceil)$
 - $-R \in A \to \mathbb{L}$ akkor [R] csak megegyezés miatt adhatja meg D_R -t

1.2. Programok, programfüggvények, stb. relációi

- Ezek mind levezethetők definíciókból.
- $S_1 \subseteq S_2 \implies D_{p(S_2)} \subseteq D_{p(S_1)}$
- $S_1 \subseteq S_2 \implies \forall a \in D_{p(S_2)} : p(S_1)(a) \subseteq p(S_2)(a)$
- $S' \subseteq S$ és S megoldja F-et, akkor S' is
- $F \subseteq F'$ és S megoldja F'-t, attól még S nem oldja meg F-t
- F, S és p(S) determinisztikussága nem nagyon következtethető ki egymásból.

1.3. lf tulajdonságai

- ha $Q \implies R$ akkor $lf(S, Q) \implies lf(S, R)$
- $lf(S, Q) \wedge lf(S, R) = lf(S, Q \wedge R)$ (\vee -val is igaz)
- Számolás: R-be behelyettesítjük S-t: (és S nem abortál) $lf((x:=3),(x<10))=(igaz \wedge (x<10)^{\leftarrow x:=3})=(3<10)=igaz$

1.4. Alapfogalmak

- Állapot: változókkal címkézett értékek; állapottér: lehetséges állapotok
 - Alap-állapottér: segédváltozók nélküli (azaz A, nem pedig \overline{A})
- Feladat: $F \subseteq A \times A$ ahol A egy állapottér
- Program: $S \subseteq A \times (\overline{A} \cup \{fail\})^{**}$ ahol:
 - $-D_S = A$ és a végrehajtási sorozat (vs.) első tagja a bemenet
 - Az utolsó állapot lehet csak fail; valamint vagy fail vagy A-beli
 - Semmit nem változtató értékadás is bekerül a végrehajtási sorozatba.
- Programfüggvény: $p(S) \subseteq A \times A$ ahol S program A felett
 - $-D_{p(S)} = \{a \in A | S(a) \subseteq \overline{A}^*\}$ (ahol S véges, nem fail vs-t ad)
 - $-p(S)(a) = \{b \in A | \exists vs \in S(a) : b = vs_{|vs|} \}$ (utolsó vs tagok)
- Megoldás: S m.o. F-et ha $D_F \subseteq D_{p(S)}$ és $\forall a \in D_F : p(S)(a) \subseteq F(a)$
- Gyenge programfüggvény: $\tilde{p}(S) \subseteq A \times (A \cup \{fail\})$
 - $D_{\tilde{p}(S)} = \{ a \in A | S(a) \cap (\overline{A} \cup \{fail\})^* \neq \emptyset \} \quad \text{(ahol min 1 véges vs)}$
 - $-\widetilde{p}(S)(a) = \{b \in A \cup \{fail\} | \exists vs \in S(a) \cap (\overline{A} \cup \{fail\})^* : b = vs_{|vs|}\}$
- Parciális helyesség: S parc. helyes F-re ha $\forall a \in D_F : \widetilde{p}(S)(a) \subseteq F(a)$
- Leggyengébb előfeltétel: $lf(S,R):A \to \mathbb{L}$ (ahonnan S után R igaz)
 - $-\lceil lf(S,R)\rceil = \{a \in A | a \in D_{p(S)} \land p(S)(a) \subseteq \lceil R \rceil \}$

1.5. Paramétertér, specifikáció

- B az F paramétertere ha $F = F_2 \circ F_1$ (ahol $F_1 \subseteq A \times B$ és $F_2 \subseteq B \times A$)
 - minden feladatnak végtelen sok van, pl.: $B=A,\,F_1=i\mathrm{d},\,F_2=F$
 - paraméter: paramétertér egy eleme (hasonló: állapottér vs állapot)
- Specifikáció: A (állapottér), B (paramtér), Q (előfeltétel), R (utófeltétel)
 - $\forall b \in B : \lceil Q_b \rceil = F_1^{-1}(b)$ (a-k, amikhez F_1 rendel b-t)
 - $-\ \forall b \in B: \lceil R_b \rceil = F_2(b) \ (a\text{-k, a$ $miket}\ F_2 \ \text{rendel egy}\ b\text{-hez})$
 - ha $\forall b \in B : Q_b \implies lf(S, R_b)$ akkor S megoldja F-t
- Szigorúbb feladat: gyengített előfeltétel és/vagy szigorúbb utófeltétel.

2. ZH 2 összefoglaló

2.1. Programkonstrukciók

2.1.1. Szekvencia: $(S_1; S_2)$

- $(S_1; S_2)(a) = \{vs \in \overline{A}^{\infty} \mid vs \in S_1(a)\}$ $(S_1 \text{ végtelen vs-t ad})$ $\cup \{vs \in (\overline{A} \cup \{fail\})^* \mid vs \in S_1(a) \land vs_{|vs|} = fail\}$ $(S_1 \text{ vs vége fail})$ $\cup \{vs \in (\overline{A} \cup \{fail\})^{**} \mid vs = x \oplus y \land x \in S_1(a) \land |x| < \infty \land x_{|x|} \neq fail \land y \in S_2(x_{|x|})\}$ $(S_1 \text{ vs véges és nem fail: } S_2\text{-vel folytatjuk})$
- $p((S_1; S_2)) = p(S_2) \odot p(S_1)$ (szigorú kompozíció) $Q \odot P = \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in P \land (b, c) \in Q \land P(a) \subseteq D_Q\}$
- $D_{p((S_1;S_2))} = \{ a \in D_{p(S_1)} \mid p(S_1)(a) \subseteq D_{p(S_2)} \}$

2.1.2. Elágazás: $IF = IF(\pi_1 : S_1, ..., \pi_n : S_n)$

- $IF(a) = w_0(a) \cup \bigcup_{i=1..n} w_i(a)$ $w_0(a) = \langle a, fail \rangle \text{ ha } \forall i : (a \in D_{\pi_i} \wedge \neg \pi_i(a)) \text{ egyébként } \varnothing$ $w_i(a) = \begin{cases} S_i(a) \text{ ha } a \in D_{\pi_i} \wedge \pi_i(a) \\ \varnothing & \text{ha } a \in D_{\pi_i} \wedge \neg \pi_i(a) \\ \{\langle a, fail \rangle\} \text{ ha } a \not\in D_{\pi_i} \end{cases}$
- $p(IF)(a) = \bigcup_{i=1} \{x \in p(S_i)(a) \mid a \in [\pi_i] \}$
- $D_{p(IF)} = \{ a \in A \mid a \in \bigcap D_{\pi_i} \land a \in \bigcup \lceil \pi_i \rceil \land (a \in \lceil \pi_i \rceil \implies a \in D_{p(S_i)}) \}$

2.1.3. Ciklus: $DO = DO(\pi : S)$

- $DO(a) = \begin{cases} (S; DO)(a) \text{ ha } a \in D_{\pi} \land \pi(a) \\ < a > \text{ ha } a \in D_{\pi} \land \neg \pi(a) \\ < a, fail > \text{ ha } a \notin D_{\pi} \end{cases}$
- p(DO)(a) = ? (nem hangzott el EA-n)
- $D_{p(DO)} = \lceil \neg \pi \rceil \cup \{x \in \lceil \pi \rceil \cap D_{p(S)} \mid p(S)(x) \subseteq D_{p(DO)}\}$ (nem volt EA-n)

2.1.4. Atomi program: [S](a) = S(a)

- Atomikus: nem megszakítható
 - Értékadások, logikai függvények kiértékelése alapból atomikus
- ullet S nem tartalmazhat sem ciklust, sem várakoztató utasítást (Miért?)
- p([S]) = p(S) és $D_{p([S])} = D_{p(S)}$

2.1.5. Várakoztató utasítás: await β then S ta; stukiban: $\frac{\bigcap}{S}$

• S nem tartalmazhat sem ciklust, sem várakoztató utasítást (Miért?)

•
$$(await \ \beta \ then \ S \ ta)(a) = \begin{cases} [S](a) \ \text{ha} \ a \in D_{\beta} \land \beta(a) \ (\beta \ \text{\'es} \ S \ \text{egy\"{u}tt} \ \text{atomikus}) \\ (skip, await \ \beta \ then \ S \ ta)(a) \ \text{ha} \ a \in D_{\beta} \land \neg \beta(a) \\ < a, fail > \ \text{ha} \ a \not\in D_{\beta} \end{cases}$$

- p(AWAIT) = p(S) (nem hangzott el EA-n)
- $D_{p(AWAIT)} = \lceil \neg \beta \rceil \cup (\lceil \beta \rceil \cap D_{p(S)})$ (nem hangzott el EA-n)
- \bullet Holtpontban van, ha nem egy párhuzamos blokk része és $Q \implies \neg \beta$

2.1.6. Párhuzamos blokk: parbegin $S_1||...||S_n$ parend; stukiban: $S_1||S_2|$

- $(parbegin S_1||...||S_n \ parend)(a) = \bigcup_{i=1}^n (u_i; parbegin ...||S_{i-1}||T_i||S_{i+1}||... \ parend)(a)$ - ahol $S_i = (u_i, T_i)$ $(T_i \text{ nincs, ha } S_i \text{ atomikus})$
- p(PAR) = ? (nem hangzott el EA-n)
- $D_{p(PAR)} = ?$ (nem hangzott el EA-n)
- Holtpontra jutott, ha minden (és legalább 1) be nem fejeződött komponense (S_i) tartalmaz hamis őrfeltételű várakoztató utasítást (blokkolt).
- Interferencia: értékadások "megtámadhatják" a komponensek helyességét.
 - Formálisan: kritikus utasítások támadhatnak, amik vagy értékadások, vagy atomikus programok, bennük értékadással.

2.2. Levezetési szabályok

2.2.1. Specifikáció Tétele

- Legyen F feladat specifikációja A, B, Q, R
- \bullet Ha $Q \implies lf(S,R)$ akkor S program megoldja F-et

2.2.2. SZekvencia Levezetési SZabálya

- Legyen $S=(S_1;S_2);$ elő- és utófeltételek: $Q\to(S_1)\to Q'\to(S_2)\to R$
- Ha $Q \implies lf(S_1, Q')$ és $Q' \implies lf(S_2, R)$ akkor $Q \implies lf(S, R)$

2.2.3. Elágazás Levezetési SZabálya

- Legyen $IF = IF(\pi_1 : S_1, ..., \pi_n : S_n)$
- $\bullet\,$ Ha az alsók teljesülnek, akkor $Q\implies lf(S,R)$
 - $-Q \implies AND_{i=1}^n \pi_i \vee \neg \pi_i$ (mindegyik mindenhol értelmes)
 - $-Q \implies OR_{i=1}^n \pi_i$ (mindenhol legalább egy teljesül)
 - $\forall i \in [1..n] : Q \wedge \pi_i \implies lf(S_i, R)$ (bármelyik ágon R igaz lesz)

2.2.4. Ciklus Levezetési SZabálya

- Legyen $DO = DO(\pi : S)$, P invariáns és t termináló függvény
- Ha az alsók teljesülnek, akkor $Q \implies lf(DO,R)$
 - $-\ Q \implies P$ (invariáns alapból teljesül)
 - $-P \wedge \neg \pi \implies R$ (jó helyen áll meg)
 - $-P \implies \pi \vee \neg \pi$ (ciklusfeltétel nem abortál)
 - $-P \wedge \pi \implies t > 0$ (cikluson belül van még lépés)
 - $P \wedge \pi \wedge t = t_0 \implies lf(S, P \wedge t < t_0)$ (invariáns marad, lépés -)

2.2.5. Atomi program Levezetési SZabálya

• Ha $Q \implies lf(S,R)$ akkor $Q \implies lf([S],R)$

2.2.6. Várakoztató utasítás Levezetési SZabálya

- Ha az alsók teljesülnek, akkor $Q \implies lf(await \ \beta \ then \ S \ ta, R)$
 - $-\ Q \implies \beta \lor \neg \beta$ (őrfeltétel nem abortál)
 - $-Q \wedge \beta \implies lf(S,R)$
- Holtpontban van, ha nem egy párhuzamos blokk része és $Q \implies \neg \beta$

2.2.7. Párhuzamos blokk Levezetési SZabálya

- Ha az alsók teljesülnek, akkor $Q \implies lf(parbegin S_1||...||S_n parend, R)$
 - $-Q \implies Q_1 \wedge ... \wedge Q_n$ (belépési feltétel)
 - $-R_1 \wedge ... \wedge R_n \implies R$ (jó helyen állunk meg)
 - $\forall i \in [1..n] : Q_i \implies lf(S_i, R_i)$
 - $-\ Q_i \implies lf(S_i,R_i)$ teljes helyességi interferencia formulák interferenciamentesek
 - párhuzamos blokk holtpontmentes
- \bullet Interferenciamentesség: u nem interferál $Q \implies lf(S,R)$ -rel, ha:
 - $pre_u \wedge Q \implies lf(u, Q)$
 - $pre_u \wedge R \implies lf(u, R)$
 - Ha S-ben van ciklus: $pre_u \wedge t = t_0 \implies lf(u, t \le t_0)$
 - Ezt be kell látnia az összes u értékadásra és az összes, u-tól különböző komponensben található $Q \implies lf(S,R)$ helyességi formulára.
 - Egyszerűsítési lehetőség: u nem változtat a $Q \Longrightarrow lf(S,R)$ által használt változókon. ("1 \leadsto 2: nincs krit. ut.")
 - Hamis bármit implikál: ⇒ előtt ellentmondás az egyből jó
- Holtpontmentesség: nem lehet holtpontban (mert pl. nincs várakoztatás)
 - Be kell látni, hogy hamis: minden komponens vagy kész van, vagy blokkolt és legalább egy komponens blokkolt.
 - Példa: $parbegin (await \beta then S_1 ta) || S_2 parend$
 - * Be kell látni, hogy hamis: $pre(AWAIT) \land \neg \beta \land post(S_2)$
 - Példa: parbegin await β_1 then S_1 ta || await β_2 then S_2 ta parend
 - * Be kell látni, hogy ezek mindegyike hamis:
 - * $pre(A_1) \wedge \neg \beta_1 \wedge post(A_2)$
 - * $pre(A_2) \wedge \neg \beta_2 \wedge post(A_1)$
 - * $pre(A_1) \wedge \neg \beta_1 \wedge pre(A_2) \wedge \neg \beta_2$

2.3. Helyességbizonyítás

- Menete: specifikáció tételének felhasználása, majd mindent, ami nem értékadás, az ő levezetési szabályával levezetünk.
- $\bullet \ Q \implies \dots$ esetén vegyem úgy, hogy Qigaz és lássam be \dots -ot
- \bullet Helyezzek ki pipákat, ha belátok valamit, pl. hogy 1+1<3
- Értékkiválasztás: $lf(x :\in h, x \ even) = (h \neq \emptyset \land \forall e \in h : e \ even)$
- $(\forall k \in [1..n]: x[k] = ...)$ -on (x[i] = ...) végrehajtása: $\forall k$ 3 részre bontása: $(\forall k \in [1..i-1]:...)$ és (x[i] = ...) és $(\forall k \in [i+1..n]:...)$
- \lor (vagy)-ból következés: esetszétválasztás, akár negált is felhasználható, pl.: $(a \lor b \implies \dots)$ -nél: $(a \implies)$ vagy $(\neg a \land b \implies)$
- Értékadások és számolások, amik abortálhatnak:
 - -a := b ahol a : A és b : B abortál, ha $B \not\subseteq A$
 - $-a \mod b$ abortál, ha b = 0
 - -x[i] ahol $x:\mathbb{Z}^n$ abortál, ha $i\notin [1..n]$