Manual for TCSFA Package

BY TIMY

1 Form of the Light Field

Dipole approximation is employed. The light field is defined by its vector potential with the \sin^2 -envolope:

$$\mathbf{A} \cdot \hat{\mathbf{z}} = -\frac{E_0}{\omega \sqrt{1 + \xi^2}} \sin^2 \left(\frac{\omega t}{2N_c}\right) \sin \left(\omega t + \varphi\right)$$

$$\mathbf{A} \cdot \hat{\mathbf{x}} = -\frac{E_0 \, \xi}{\omega \sqrt{1 + \xi^2}} \sin^2 \left(\frac{\omega t - \pi/2}{2 \, N_c} \right) \cos \left(\omega t + \varphi \right),$$

where E_0 is the electric field amplitude, ω is carrier frequency, N_c is the number of optical cycles, φ is the phase, ξ is the ellipticity. When $\xi = 0$, it describes the linearly polarized field with the polarization direction along the z-axis.

1 Organization of the TCSFA Package

- src
 - o ccsfa: The main directory for the source of the TCSFA package
 - core: the core part of the TCSFA
 - include: stores head files generated by the Python script "config.py".
 - p_entry: entry point of the parallel version.
 - s_entry: entry point of the standalone version.
 - main.f90: is the entry point of standalone computation. One can modify this file to calculate a single trajectory or multiple trajectories and related quantities, or whatever.
 - data_proc.f90: is used to reproduce a batch of trajectories selected from the raw data with certain conditional filter. Given a subset of the raw data select.dat and filter, it generates the index of the data satisfying the critera filter.dat and the corresponding transition amplitude traj_m.dat.
 - config.py: translates parameter list into individual head file for each module.
 - mmff: MPI Framework for Fortran (\(\text{hlink} \) https://github.com/timy/MMFF\(\text{MMFF} \))
- ana
 - o proc: post-process programs for analysis of the generated raw data
 - plot: some easy-to-use python scripts for quick access to visualization of results
 - o data: data results for visualization

 W_{sub} without Coulomb correction can be integrated numerically with the function $\mathtt{action_W_im_num}$ with the integrand $\mathtt{v2_integrand}$ from t_s to t_0 ; or it can be obtained with the analytical expression with the function $\mathtt{action_W_im}$. W_{mix} (S-representation) or $W_{\mathrm{mix}} + W_{\mathrm{kep}}$ (W-representation) can be directly obtained as an argument from function $\mathtt{rk4_re}$ by numerical integration.