Exam - Computer Architecture Unit I [08/02/2023] (B)

Surname:	Name:
Student ID Number (Matricola):	

DSA Students should solve only the first 4 exercises (grade will be scaled accordingly)

Exercise 1 (8 points)

Design a sequential circuit with two inputs x1, x0, that encode the characters O, R, C as follows:

x1, x0	carattere
00	0
01	R
1-	С

The circuits has 2 outputs z1 and z0. The circuit outputs z1=1 when it receives on input the sequence ORCO, and outputs z0=1 when it receives on input the sequence ORO. Overlaps are allowed. Draw the circuit.

Solution:

Same state transition diagram of text A. Just replace A->O, L->R, F->C and the states accordingly (R state is here called 'S'). Invert z1 and z0.

State encoding:

S	00
0	01
OR	10
ORC	11

Output and next state table:

CS	S ₁	S ₀	X ₁	X 0	NS	S ₁ '	S ₀ '	z1	z0
S	0	0	0	0	0	0	1	0	0
S	0	0	0	1	S	0	0	0	0
S	0	0	1	-	S	0	0	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	1	OR	1	0	0	0
0	0	1	1	-	S	0	0	0	0
OR	1	0	0	0	0	0	1	0	1
OR	1	0	0	1	S	0	0	0	0
OR	1	0	1	-	ORC	1	1	0	0
ORC	1	1	0	0	0	0	1	1	0
ORC	1	1	0	1	S	0	0	0	0
ORC	1	1	1	-	S	0	0	0	0

Equations and circuit the same as text A (just invert z1 and z0).

Exercise 2 (6 points) A combinational circuit has a 4 bit input $A=a_3a_2a_1a_0$ representing a two's complement number, and outptus $Z=z_1z_0$ as an unsigned binary number, such that: Z=0 se $-7 \le A < -3$

Z=1 se 4≤A≤7

Z=2 se -3≤A<4

Z=3 se A=-8

Write down:

- The corresponding truth table
- The minimal POS form for z₀
- The all-NAND and all-NOR form for z_0 (NOT gates are allowed, i.e., you don't need to translate NOT with NAND/NOR)
- z₀ using only three 2:1 multiplexers

Solution:

Truth table:

a ₃	a ₂	a ₁	a_0	z1	z0
0	0	0	0	1	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	1	0

Minimal POS form for z₀:

$$z_0 = (a3+a2)*(~a3+~a2)*(a2+~a0)*(a2+~a1)$$

all-NAND form for z₀:

$$z_0 = {\sim}({\sim}({\sim}({\sim}a3*{\sim}a2)*{\sim}(a3*a2)*{\sim}({\sim}a2*a0)*{\sim}({\sim}a2*a1)))$$

all-NOR form for z₀:

$$z_0 = ^((a3+a2)+^(a3+a2)+^(a2+a0)+^(a2+a1))$$

z_0 using MUX:

Exercise 3 (5 points)

Analyze the state machine shown in the figure. Write down next state and output tables and draw the state

Solution:

It is a Moore FSM (output does not depend on the input).

Outputs table + state encoding

z=y0'+y1

y0	у1	Z	Stato
0	0	1	S0
0	1	1	S1
1	0	0	S2
1	1	1	S3

Next state table

y0	y1	CS	х	y0'	y1'	NS
0	0	S0	0	0	0	S0
0	0	S0	1	1	0	S2
0	1	S1	0	1	0	S2
0	1	S1	1	0	0	S0
1	0	S2	0	0	0	S0
1	0	S2	1	1	1	S3
1	1	S3	0	1	0	S2
1	1	S3	1	0	1	S1

Exercise 4 (3 points)

Draw the state transition diagram described by the following SystemVerilog code:

```
module fsm2(input logic clk, reset,
            input logic a, b,
            output logic y);
  logic [1:0] state, nextstate;
  parameter S0 = 2'b00;
  parameter S1 = 2'b01;
  parameter S2 = 2'b10;
  parameter S3 = 2'b11;
  always_ff @(posedge clk, posedge reset)
    if (reset) state <= S0;
    else state <= nextstate;</pre>
  always_comb
    case (state)
      S0: if (a \mid b) nextstate = S2;
           else nextstate = SO;
       S1: if (a \mid b) nextstate = S2;
           else nextstate = SO;
       S2: if (a \& b) nextstate = S3;
           else nextstate = SO;
       S3: if (a ^ b) nextstate = S3;
           else nextstate = S1;
    endcase
  assign y = (state== S1) | (state== S3);
endmodule
```

Solution:

Similar to track A.

Exercise 5 (4 points)

Given X = 775 and Y = -1524 represented in base 10:

- Convert them to two's complement numbers using the minimum number of bits necessary to represent both values
- Compute X+Y and Y-X
- Convert the results to base 10 number and check their correctness
- Convert X and Y to IEEE 754 half-precision representation

Solution:

Base 2 conversion:

775 = 001100000111 1524 = 010111110100 => -1524 = 101000001100

Sum and difference in base 10:

X+Y = 101000001100+ 001100000111=

110100010011 = -749 = 775-1524

-775 = 110011111001

Y-X = 101000001100+ 110011111001=

011100000101 =**Overflow!** -1524 - 775 = -2299 (11 bit are not enough, they can only represent up to -2048)

Half-precision conversion

 $775 = 001100000111.0 = 1.100000111 * 2^9$ X = 775:

Sign = 0

Exponent = 9_{10} Exponent + bias = 9_{10} + 15_{10} = 24_{10} = 11000_2 Fraction = 100000111IEEE: 0 11000 1000001110 $1524 = 010111110100.0 = 1.0111110100 * 2^{10}$ Y = -1524Sign = 1

Exponent = 10Exponent + bias = 10+15 = 25 = 11001Fraction = 0111110100IEEE = 110010111110100

Exercise 6 (4 points)

Given the expression $f = \left(\overline{c(abd+c)} + \overline{e}\right) \oplus (e+cd)$ simplify it and bring to minimal POS form.

Solution:

$$f = \left(\overline{c(\overline{abd} + c)} + \overline{e}\right) \oplus (e + cd)$$

$$= \left(\overline{cabd} + c + \overline{e}\right) \oplus (e + cd)$$

$$= (\overline{c} + \overline{e}) \oplus (e + cd)$$

$$= \overline{(c} + \overline{e}) \oplus (e + cd)$$

$$= \overline{(c} + \overline{e}) (e + cd) + (\overline{c} + \overline{e}) \overline{(e + cd)} =$$

$$= ce(e + cd) + (\overline{c} + \overline{e}) \overline{e} \cdot \overline{cd} = ce + dce + \overline{c} \overline{e} \overline{cd} = ce + \overline{e} \overline{c} + \overline{e} \overline{d} =$$

$$= (c + \overline{e})(c + \overline{c})(e + \overline{e})(e + \overline{c}) + \overline{e} \overline{d} = (c + \overline{e})(c + \overline{e} + \overline{d})(e + \overline{c} + \overline{e})(e + \overline{c} + \overline{d})$$

$$= (c + \overline{e})(c + \overline{e} + \overline{d})(e + \overline{c} + \overline{d}) = (c + \overline{e})(e + \overline{c} + \overline{d})$$