Implementing Binary Arithmetic

Cezar Ionescu cezar.ionescu@th-deg.de

WS 2023-24

Outline

Admin

2 Review

Implementing binary arithmetic

Admin

Questions?

Review

Binary arithmetic

Addition (carry is 0 or 1):

```
1111 (carry)
10110
+01110
-----
100100
```

Multiplication

```
1110

× 1001

-----

1110

0000

0000

1110

-----

1111110
```

Logic gates

- NOT, OR, AND, XOR, NAND, NOR
- sum-of-terms expressions
- Karnaugh maps

Implementing binary arithmetic

Reference

We follow Chapter 4 of *Foundations of Computer Science*, A.J.T. Colin, Macmillan 1980, which is also the source of the following images.

- Addition on natural numbers is a function of type $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
 - If n + n = 0, then n = 0
- If we consider addition on $\mathbb B$ to be of the analog type $\mathbb B \times \mathbb B \to \mathbb B$, we have a loss of information:
 - 1 + 1 = 0 (therefore 1 = 0?)
- ullet To avoid loss of information, we can extend the output type: $\mathbb{B} imes \mathbb{B} o \mathbb{B} imes \mathbb{B}$
 - $1+1=(0,1)\neq 0$
 - alternative notation

```
addes: B^2 \rightarrow B^2
addes (x, y) = (sum, carry)
where sum = (x + y) \mod 2
carry = (x + y) \operatorname{div} 2
```

- Addition on natural numbers is a function of type $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
 - If n + n = 0, then n = 0
- If we consider addition on $\mathbb B$ to be of the analog type $\mathbb B \times \mathbb B \to \mathbb B$, we have a loss of information:
 - 1 + 1 = 0 (therefore 1 = 0?)
- ullet To avoid loss of information, we can extend the output type: $\mathbb{B} imes \mathbb{B} o \mathbb{B} imes \mathbb{B}$
 - $1+1=(0,1)\neq 0$
 - alternative notation:

```
add<sub>0.5</sub> : B^2 \rightarrow B^2
add<sub>0.5</sub> (x, y) = (sum, carry)
where sum = (x + y) \mod 2
carry = (x + y) \operatorname{div} 2
```

- Addition on natural numbers is a function of type $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
 - If n + n = 0, then n = 0
- If we consider addition on $\mathbb B$ to be of the analog type $\mathbb B \times \mathbb B \to \mathbb B$, we have a loss of information:
 - 1 + 1 = 0 (therefore 1 = 0?)
- ullet To avoid loss of information, we can extend the output type: $\mathbb{B} imes \mathbb{B} o \mathbb{B} imes \mathbb{B}$
 - $1+1=(0,1)\neq 0$
 - alternative notation:

```
add<sub>05</sub>: \mathbf{B}^2 \rightarrow \mathbf{B}^2
add<sub>05</sub> (x, y) = (sum, carry)
where sum = (x + y) mod 2
carry = (x + y) div 2
```

- Addition on natural numbers is a function of type $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
 - If n + n = 0, then n = 0
- If we consider addition on $\mathbb B$ to be of the analog type $\mathbb B \times \mathbb B \to \mathbb B$, we have a loss of information:
 - 1 + 1 = 0 (therefore 1 = 0?)
- ullet To avoid loss of information, we can extend the output type: $\mathbb{B} imes \mathbb{B} o \mathbb{B} imes \mathbb{B}$
 - $1+1=(0,1)\neq 0$
 - alternative notation:

```
add_{0.5}: B^2 \rightarrow B^2
add_{0.5} (x, y) = (sum, carry)
where sum = (x + y) mod 2
carry = (x + y) div 2
```

```
add<sub>05</sub>: B^2 \rightarrow B^2
add<sub>05</sub>(x, y) = (sum, carry)
where sum = (x + y) mod 2
carry = (x + y) div 2
```

• We want to use add_{0.5} to add two-digit binary numbers, e.g. 01 + 11

```
0 1
1 1
.....
cirire
```

```
add_{05}(1, 1) = (sum_0, car_0) = (0, 1) -- ok

add_{05}(0, 1) = (sum_1, car_1) = (1, 0) -- ok
```

But the result is $\underline{\text{not}} \ \text{carisumisum}_0 = [1, 0]$ (first element of the results of add₀₅), because $\underline{\text{we'}} \text{ve lost car}_0$.

```
add<sub>05</sub>: B^2 \rightarrow B^2
add<sub>05</sub> (x, y) = (sum, carry)
where sum = (x + y) \mod 2
carry = (x + y) \operatorname{div} 2
```

• We want to use addes to add two-digit binary numbers, e.g. 01 + 11

But the result is $\underline{\text{not}} \ \text{carisumisum}_0 = [1, 0]$ (first element of the results of add₀₅), because $\underline{\text{we'}} \text{ve lost car}_0$.

0 1

```
add<sub>05</sub>: B^2 \rightarrow B^2
add<sub>05</sub>(x, y) = (sum, carry)
where sum = (x + y) mod 2
carry = (x + y) div 2
```

• We want to use addes to add two-digit binary numbers, e.g. 01 + 11

```
1 1
-----
crrre

addes(1, 1) = (sume, care) = (0, 1) -- ok
addes(0, 1) = (sum1, carr) = (1, 0) -- ok
```

But the result is $\underline{\text{not}}$ carisumisum₀ = [1, 0] (first element of the results of add_{0.5}), because $\underline{\text{we'}}$ ve lost car₀.

To accomodate the carry, we need to extend the input type as well.

```
add1 : B^3 -> B^2
add1 (x, y, c_0) = (sum, carry) where
sum = (x + y + c_0) mod 2
carry = (x + y + c_0) div 2
```

Example: Using add1 to implement two-bit addition.

```
a_1a_0 + b_1b_0 = c_1s_1s_0 where (s_0, c_0) = add_1(a_0, b_0, 0) -- initial carry is 0 (s_1, c_1) = add_1(a_1, b_1, c_0) -- intermediate carry is c_0
```

To accomodate the carry, we need to extend the input type as well.

```
add1 : B^3 -> B^2
add1 (x, y, c_0) = (sum, carry) where
sum = (x + y + c_0) mod 2
carry = (x + y + c_0) div 2
```

Example: Using add1 to implement two-bit addition.

```
a_1a_0 + b_1b_0 = C_1s_1s_0 where (s_0, c_0) = add_1(a_0, b_0, 0) \quad \text{-- initial carry is } 0 (s_1, c_1) = add_1(a_1, b_1, c_0) \quad \text{-- intermediate carry is } c_0
```

Implementing one-bit addition

у	С	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0

The one-bit adder

A one-bit adder is a circuit that implements one-bit addition. For example

Alternative implementation

The half-adder function can also be used to implement a one-bit adder:

```
add_1 (x, y, c_0) = (sum, carry)  where (s_1, c_1) = add_{05}(x, y) (sum, c_2) = add_{05}(s_1, c_0) carry = c_1  OR  C_2
```

The advantage of this formulation is that the half-adder is a very simple circuit to implement:

```
add_{05}(x, y) = (x XOR y, x AND y)
```

Alternative implementation

The half-adder function can also be used to implement a one-bit adder:

```
add_1 (x, y, c_0) = (sum, carry)  where (s_1, c_1) = add_{05}(x, y) (sum, c_2) = add_{05}(s_1, c_0) carry = c_1  OR  C_2
```

The advantage of this formulation is that the half-adder is a very simple circuit to implement:

```
add_{0.5}(x, y) = (x XOR y, x AND y)
```

Block representation of a one-bit adder

We can represent the one-bit adder as a black box, hiding the implementation:

Four-bit adders

Four-bit adders

Implementation:

Four-bit systems

In an n-bit system, circuits will usually work on groups of n bits in size (plus the occasional *control* bits like the carry).

Therefore, a more compact representation is adopted for such groups. For example:

This is similar to the introduction of vectors in linear algebra, allowing us to use $\mathbf{x} \in \mathbb{R}^n$ to represent $(x_{n-1},...,x_0)$, $x_i \in \mathbb{R}$.

Subtraction on *n* bit numbers

 \bullet Let xs and ys be n bit numbers. Then

$$xs - ys = xs + (-ys) = xs + (flip_n(ys) + 1)$$

where flip $_n$ inverts every bit of an n bit input.

Implementing two's complement

Implementing subtraction

The multiplexer

The two-way multiplexer selects one of the two input lines depending on the value of the control input (sel).

sel	Х	у	out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

A more compact description of the multiplexer:

sel	out
0	Х
1	у

Implementing a multiplexer

A four-way multiplexer

We can also build multiplexers that select one of more than two (usually 2^n) alternatives. In this case, we need more than one bit to represent the selection. For example, a four-way multiplexer selects one out of four signals u, v, x, y.

sel ₀ sel ₁	out
00	u
01	V
10	X
11	у

Shifting binary numbers

- Given a binary number x1x2...xn, the operation *left shift* produces the (truncated) result of the multiplication with 2: x2x3...xn0.
- Similarly, the *right shift* produces the (truncated) result of dividing the number by 2: $0x_1x_2...x_{n-1}$.

An arithmetic unit

Functionality table

Χ	Υ	Z	С	Effective function
0	0	0	0	R = A + B
0	0	0	1	R = A + B + 1
0	0	1	0	R = A - B - 1
0	0	1	1	R = A - B
0	1	0	0	R = 2A + B
0	1	0	1	R = 2A + B + 1
0	1	1	0	R = 2A - B - 1
0	1	1	1	R = 2A - B
1	0	0	0	$R = \frac{1}{2}A + B$
1	0	0	1	$R = \frac{1}{2}A + B + 1$
1	0	1	0	$R = \frac{1}{2}A - B - 1$
1	0	1	1	$R = \frac{1}{2}A - B - 1$ $R = \frac{1}{2}A - B$
1	1	0	0	R = B
1	1	0	1	R = B + 1
1	1	1	0	R = B - 1
1	1	1	1	R = B