In [174]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler

import re

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

In [218]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2006

Out[218]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	PM10	
0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000	97.570000	40.25
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.820000	
2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000	34.419998	
3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000	28.260000	
4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000	54.180000	
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999	93.120003	
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.469999	15.64
230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000	64.680000	35.00
230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN	94.360001	
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.490002	27.92

230568 rows × 17 columns

In [219]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 230568 entries, 0 to 230567 Data columns (total 17 columns): Column Non-Null Count Dtype --------------0 date 230568 non-null object BEN float64 1 73979 non-null 2 CO 211665 non-null float64 3 EBE 73948 non-null float64 4 33422 non-null float64 MXY 5 NMHC 90829 non-null float64 6 NO 2 228855 non-null float64 7 NOx 228855 non-null float64 8 OXY 33472 non-null float64 float64 9 0 3 216511 non-null PM10 227469 non-null float64 10 11 PM25 61758 non-null float64 12 PXY 33447 non-null float64 13 229125 non-null float64 SO 2 14 TCH 90887 non-null float64 TOL 73840 non-null float64 15 16 station 230568 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 29.9+ MB

```
In [261]: b=a.fillna(value=60)
b
```

Out[261]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	
0	2006- 02-01 01:00:00	60.00	1.84	60.00	60.00	60.00	155.100006	490.100006	60.00	4.880000	97.570000	_
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.820000	(
2	2006- 02-01 01:00:00	60.00	1.25	60.00	60.00	60.00	66.800003	192.000000	60.00	4.430000	34.419998	(
3	2006- 02-01 01:00:00	60.00	1.68	60.00	60.00	60.00	103.000000	407.799988	60.00	4.830000	28.260000	(
4	2006- 02-01 01:00:00	60.00	1.31	60.00	60.00	60.00	105.400002	269.200012	60.00	6.990000	54.180000	(
							***	***			•••	
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	60.00	0.20	112.500000	218.000000	60.00	24.389999	93.120003	(
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.469999	
230565	2006- 05-01 00:00:00	0.96	60.00	0.69	60.00	0.19	135.100006	179.199997	60.00	11.460000	64.680000	;
230566	2006- 05-01 00:00:00	0.50	60.00	0.67	60.00	0.10	82.599998	105.599998	60.00	60.000000	94.360001	(
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.490002	:

230568 rows × 17 columns

```
In [262]: b.columns
```

In [263]: c=b.head(10) c

Out[263]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM
0	2006- 02-01 01:00:00	60.00	1.84	60.00	60.000000	60.00	155.100006	490.100006	60.00	4.88	97.570000	40.2599
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.360000	0.32	94.339996	229.699997	3.04	7.10	25.820000	60.0000
2	2006- 02-01 01:00:00	60.00	1.25	60.00	60.000000	60.00	66.800003	192.000000	60.00	4.43	34.419998	60.0000
3	2006- 02-01 01:00:00	60.00	1.68	60.00	60.000000	60.00	103.000000	407.799988	60.00	4.83	28.260000	60.0000
4	2006- 02-01 01:00:00	60.00	1.31	60.00	60.000000	60.00	105.400002	269.200012	60.00	6.99	54.180000	60.0000
5	2006- 02-01 01:00:00	9.41	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.99	89.190002	43.1500
6	2006- 02-01 01:00:00	60.00	1.28	60.00	60.000000	0.57	94.320000	294.000000	60.00	6.77	55.130001	60.0000
7	2006- 02-01 01:00:00	0.27	1.51	0.28	60.000000	0.46	144.699997	385.299988	60.00	5.30	80.150002	60.0000
8	2006- 02-01 01:00:00	60.00	2.65	60.00	60.000000	60.00	197.100006	673.099976	60.00	2.64	142.500000	60.0000
9	2006- 02-01 01:00:00	60.00	1.30	60.00	60.000000	60.00	130.899994	282.000000	60.00	5.14	49.029999	24.0100
4 0												•

Out[264]:

_	BE	N	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	SO_2
	0 60.0	0 1	1.84	60.00	60.000000	60.00	155.100006	490.100006	60.00	4.88	97.570000	60.00	33.779999
	1 1.6	8 1	1.01	2.38	6.360000	0.32	94.339996	229.699997	3.04	7.10	25.820000	2.48	11.890000
	2 60.0	0 1	1.25	60.00	60.000000	60.00	66.800003	192.000000	60.00	4.43	34.419998	60.00	19.719999
	3 60.0	0 1	1.68	60.00	60.000000	60.00	103.000000	407.799988	60.00	4.83	28.260000	60.00	21.129999
	4 60.0	0 1	1.31	60.00	60.000000	60.00	105.400002	269.200012	60.00	6.99	54.180000	60.00	11.050000
	5 9.4	1 1	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.99	89.190002	10.11	28.990000
	6 60.0	0 1	1.28	60.00	60.000000	0.57	94.320000	294.000000	60.00	6.77	55.130001	60.00	39.299999
	7 0.2	7 1	1.51	0.28	60.000000	0.46	144.699997	385.299988	60.00	5.30	80.150002	60.00	41.400002
	8 60.0	0 2	2.65	60.00	60.000000	60.00	197.100006	673.099976	60.00	2.64	142.500000	60.00	56.509998
	9 60.0	0 1	1.30	60.00	60.000000	60.00	130.899994	282.000000	60.00	5.14	49.029999	60.00	25.129999

In [265]: sns.pairplot(d)

Out[265]: <seaborn.axisgrid.PairGrid at 0x1b68b7cd3d0>


```
In [266]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[266]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [267]: sns.heatmap(d.corr())

Out[267]: <AxesSubplot:>


```
In [268]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [269]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [270]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[270]: LinearRegression()

```
In [271]: print(lr.intercept_)
           1.7841336927158977
In [272]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
           coeff
Out[272]:
                    Co-efficient
                  1.013620e-01
             BEN
              CO -4.007668e-14
             EBE
                  1.006963e-01
             MXY -2.545772e-01
           NMHC 7.699373e-01
            NO_2 -2.870174e-16
             NOx 1.494060e-16
             OXY 2.528460e-01
In [273]: prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[273]: <matplotlib.collections.PathCollection at 0x1b69f2a6340>
            60
            50
            40
            30
            20
                             20
                                    30
                                           40
                                                  50
                                                         60
In [274]: print(lr.score(x_test,y_test))
           0.93204609328714
In [275]: from sklearn.linear_model import Ridge,Lasso
In [276]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[276]: Ridge(alpha=10)
In [277]: rr.score(x_test,y_test)
Out[277]: 0.8329333580798355
```

```
In [278]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[278]: Lasso(alpha=10)

In [279]: la.score(x_test,y_test)

Out[279]: 0.9997172818812317

In [280]: a1=b.head(7000)

a1

Out[280]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM2
0	2006- 02-01 01:00:00	60.00	1.84	60.00	60.00	60.00	155.100006	490.100006	60.00	4.88	97.570000	40.25999
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.10	25.820000	60.00000
2	2006- 02-01 01:00:00	60.00	1.25	60.00	60.00	60.00	66.800003	192.000000	60.00	4.43	34.419998	60.00000
3	2006- 02-01 01:00:00	60.00	1.68	60.00	60.00	60.00	103.000000	407.799988	60.00	4.83	28.260000	60.00000
4	2006- 02-01 01:00:00	60.00	1.31	60.00	60.00	60.00	105.400002	269.200012	60.00	6.99	54.180000	60.00000
6995	2006- 02-12 06:00:00	1.54	0.44	2.80	7.86	0.19	61.410000	84.349998	2.85	8.77	12.230000	60.00000
6996	2006- 02 - 12 06:00:00	60.00	0.46	60.00	60.00	60.00	53.340000	75.160004	60.00	7.88	10.200000	60.00000
6997	2006- 02-12 06:00:00	60.00	1.06	60.00	60.00	60.00	73.279999	231.899994	60.00	4.38	22.160000	60.00000
6998	2006- 02-12 06:00:00	60.00	0.57	60.00	60.00	60.00	47.400002	52.240002	60.00	15.17	28.490000	60.00000
6999	2006- 02-12 06:00:00	2.12	0.66	2.39	4.76	0.11	74.879997	163.600006	2.69	8.16	27.770000	19.55999

7000 rows × 17 columns

```
In [282]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [283]: h=StandardScaler().fit transform(f)
In [284]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[284]: LogisticRegression(max_iter=10000)
In [285]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [286]: | i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [287]: | prediction=logr.predict(i)
          print(prediction)
          [28079039]
In [288]: logr.classes_
Out[288]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                 28079026, 28079027, 28079035, 28079036, 28079038, 28079039,
                 28079040, 28079099], dtype=int64)
In [289]: logr.predict proba(i)[0][0]
Out[289]: 1.2401677708906995e-76
In [290]: logr.predict proba(i)[0][1]
Out[290]: 1.7276678823793815e-128
In [291]: logr.score(h test,g test)
Out[291]: 0.56
In [292]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
Out[292]: ElasticNet()
In [293]: print(en.coef_)
          [ 3.63595980e-02  0.00000000e+00  7.60390821e-02  0.00000000e+00
            8.60453177e-01 0.00000000e+00 -6.89881428e-04 1.69675997e-02]
In [294]: print(en.intercept_)
          0.900645067964291
```

```
In [295]: prediction=en.predict(x test)
                                              print(en.score(x test,y test))
                                              0.9777319877517467
In [296]: from sklearn.ensemble import RandomForestClassifier
                                              rfc=RandomForestClassifier()
                                             rfc.fit(h_train,g_train)
Out[296]: RandomForestClassifier()
In [297]: parameters={'max depth':[1,2,3,4,5],
                                                   'min_samples_leaf':[5,10,15,20,25],
                                                   'n estimators':[10,20,30,40,50]
In [298]: from sklearn.model selection import GridSearchCV
                                               grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="<mark>accuracy</mark>")
                                             grid search.fit(h train,g train)
Out[298]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                                                               'min samples leaf': [5, 10, 15, 20, 25],
                                                                                                                                                               'n estimators': [10, 20, 30, 40, 50]},
                                                                                                        scoring='accuracy')
In [299]: grid search.best score
Out[299]: 0.5604081632653062
In [300]: rfc best=grid search.best estimator
In [301]: | from sklearn.tree import plot_tree
                                               plt.figure(figsize=(80,50))
                                             plot tree(rfc_best.estimators_[2],filled=True)
                                                   TEXT(2041.2221020/24024, 0/2.2,
                                                                                                                                                                                                  gilii = ש.ש/ווסמוויףובס = סס/וועמועפ = באיין ש, ש, ס
                                              9, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                                 Text(2824.1632653061224, 679.5, 'X[1] \leftarrow -0.295 \cdot e = 0.47 \cdot e = 132 \cdot e = 
                                              0]'),
                                                  Text(2733.061224489796, 226.5, 'gini = 0.498\nsamples = 93\nvalue = [0, 0, 0, 0, 6
                                              Text(2915.265306122449, 226.5, 'gini = 0.106\nsamples = 39\nvalue = [0, 0, 0, 0, 6
                                              7, 0, 0, 4, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                                  Text(3735.183673469388, 1585.5, X[8] <= -0.644 \setminus gini = 0.933 \setminus gini = 1797 \setminus gi
                                               ue = [194, 173, 205, 0, 0, 0, 216, 0, 206, 168, 0, 186\n186, 175, 201, 174, 0, 0,
                                              0, 0, 0, 201, 181, 168\n196, 0]'),
                                                  Text(3370.775510204082, \ 1132.5, \ 'X[1] <= -0.322 \\ line = 0.533 \\ lnsamples = 142 \\ lnvalu = 0.533 \\ lnsamples = 0.5
                                               e = [0, 0, 0, 0, 0, 0, 109, 0, 113, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 7, 0, 1, 0,
                                              0]'),
                                                  Text(3188.571428571429, 679.5, X[1] <= -0.341 \text{ ngini} = 0.148 \text{ nsamples} = 33 \text{ nvalue}
                                               = [0, 0, 0, 0, 0, 0, 2, 0, 47, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
                                                  0, 0, 0, 21, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
```

Conclusion: from this data set i observed that the LASSO has the highest accuracy of 0.9997172818812317

In []: