Recitation # 5: Length of Curves & Surface Area

Group work:

Problem 1 Find the length of the following curves (length is in feet):

(a)
$$y = \frac{4}{3}x^{\frac{3}{2}}$$
 from $(0,0)$ to $\left(1, \frac{4}{3}\right)$.

(b)
$$x = \frac{1}{9}e^{3y} + \frac{1}{4}e^{-3y}$$
 from $\left(\frac{13}{36}, 0\right)$ to $\left(\frac{265}{288}, \ln 2\right)$.

Problem 2 Find the surface area of the surface generated by revolving the curve given by

- (a) $x = 2y^3$ from (0,0) to (2,1) about the y-axis.
- (b) $y = \frac{1}{6}x^3 + \frac{1}{2x}$ from $\left(2, \frac{19}{12}\right)$ to $\left(3, \frac{14}{3}\right)$ about the x-axis.

Problem 3 Set up an integral (or a sum of integrals) to find the perimeter of the region bounded by the curves $y = 2x^2 - 5x + 13$ and $y = x^2 + 6x - 11$.

Problem 4 A steady wind blows a kite due west. The kite's height above the ground from horizontal position x = 0 ft. to x = 80 ft. is given by

$$y = 150 - \frac{1}{40}(x - 50)^2.$$

Set up the integral to find the distance traveled by the kite.