The Bakery Algorithm is FCFS

Theorem $Spec \Rightarrow FCFS$

1. Suffices Assume: $\Box Inv \land \Box [Next]_{vars}, \ p \in Procs, \ q \in Procs$

Prove: $Waiting(p) \land InNCS(q) \land \Box \neg InCS(p) \Rightarrow \Box \neg InCS(q)$

PROOF: By definition of Spec and FCFS, the invariance of Inv (the theorem $Spec \Rightarrow \Box Inv$), and temporal logic. We are using the proof rule $(F \Rightarrow G) \vdash (\Box F \Rightarrow \Box G)$, together with the observation that $\Box Inv \land \Box [Next]_{vars}$ is equivalent to $\Box (\Box Inv \land \Box [Next]_{vars})$.

Define: $WInv \triangleq Waiting(p) \land Before(p, q)$

We prove that $\Box Inv \wedge \Box \neg InCS(p)$ implies

$$Waiting(p) \land InNCS \land \Box[Next]_{vars} \Rightarrow \Box \neg InCS(q)$$

by proving that $\neg InCS(q)$ is an invariant of the specification

$$(Waiting(p) \land InNCS) \land \Box [Next]_{vars}$$

using the inductive invariant WInv. This is an ordinary invariance proof, except that because we are assuming $\Box Inv \wedge \Box \neg InCS(p)$, we can assume $Inv \wedge Inv' \wedge \neg InCS(p) \wedge \neg InCS(p)'$ in our action reasoning.

2. $Inv \wedge Waiting(p) \wedge InNCS(q) \Rightarrow WInv$

PROOF: By definition of WInv, since $Inv \wedge Waiting(p) \wedge InNCS(q)$ implies $(num[p] > 0) \wedge (num[q] = 0)$, which implies Before(p, q).

3. $Inv \wedge \neg InCS(p)' \wedge WInv \wedge [Next]_{vars} \Rightarrow WInv'$

PROOF: $\neg InCS(p)'$ implies that p can't enter its critical section, so $[Next]_{vars} \land Waiting(p)$ implies Waiting(p)'. Since $Inv \land Waiting(p)$ imply $num[p] \neq 0$, a Next step can make Before(p,q) false only by making $\langle num'[q], q \rangle \prec \langle num[p], p \rangle$ true, which is impossible because an enter(q) step sets num'[q] > num[p].

4. $Inv \wedge WInv \Rightarrow \neg InCS(q)$

PROOF: $Inv \wedge InCS(q)$ implies $(num[q] \neq 0) \wedge Before(q, p)$, which implies $\neg Before(p, q)$.

5. Q.E.D.

PROOF: Step 3 implies

$$\Box Inv \wedge \Box \neg InCS(p) \Rightarrow (WInv \wedge \Box [Next]_{vars} \Rightarrow \Box WInv)$$

which by steps 2 and 4 and the step 1 assumptions proves

$$Waiting(p) \land InNCS(q) \land \Box \neg InCS(p); \Rightarrow \Box \neg InCS(q)$$