Geir Storvik

Geilo Winter school 2023

Outline

Markov chain Monte Carlo

Metropolis-Hastings algorithms

Gibbs sampling

- Assume now simulating from $\pi(\mathbf{x})$ is difficult directly
 - $\pi(\cdot)$ complicated
 - x high-dimensional

- Assume now simulating from $\pi(\mathbf{x})$ is difficult directly
 - $\pi(\cdot)$ complicated
 - x high-dimensional
- Markov chain Monte Carlo:
 - Generates $\{\boldsymbol{x}^{(t)}\}$ sequentially
 - Markov structure: $\mathbf{x}^{(t)} \sim P(\cdot | \mathbf{x}^{(t-1)})$

- Assume now simulating from $\pi(\mathbf{x})$ is difficult directly
 - $\pi(\cdot)$ complicated
 - x high-dimensional
- Markov chain Monte Carlo:
 - Generates $\{x^{(t)}\}$ sequentially
 - Markov structure: $\mathbf{x}^{(t)} \sim P(\cdot | \mathbf{x}^{(t-1)})$
- Aim now:
 - The distribution of $\mathbf{x}^{(t)}$ converges to $\pi(\cdot)$ as t increases
 - $\hat{\mu}_{MCMC} = N^{-1} \sum_{t=1}^{N} h(\mathbf{x}^{(t)})$ converges towards $\mu = E^{\pi}[h(\mathbf{x})]$ as t increases
- References:
 - Givens and Hoeting (2012): Computational statistics
 - Robert and Casella (1999): Monte Carlo statistical methods

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = \mathbf{x}^* | X^{(t-1)} = x) = P(\mathbf{x}^* | \mathbf{x})$$
 transition probabilities

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = \mathbf{x}^* | X^{(t-1)} = x) = P(\mathbf{x}^* | \mathbf{x})$$
 transition probabilities

- Assume the chain is
 - irreducible: Possible to move from any x to any x^* in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = \mathbf{x}^* | X^{(t-1)} = x) = P(\mathbf{x}^* | \mathbf{x})$$
 transition probabilities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{X}^{(T)} = \! \boldsymbol{x}^* | \boldsymbol{X}^{(0)} = \boldsymbol{x}) = \pi(\boldsymbol{x}^*)$$

$$\lim_{T \to \infty} \hat{\mu}_{MCMC} = \mu = E^{\pi}[\boldsymbol{h}(X)] \qquad \qquad \hat{\mu}_{MCMC} = \frac{1}{T} \sum_{t=1}^{T} h(\boldsymbol{x}^{(t)})$$

• Assume $\{X^{(t)}\}\$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = \mathbf{x}^* | X^{(t-1)} = x) = P(\mathbf{x}^* | \mathbf{x})$$
 transition probabilities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - aperiodic: Does not go in cycles
- Then there exists a unique distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{X}^{(T)} = \boldsymbol{x}^* | \boldsymbol{X}^{(0)} = \boldsymbol{x}) = \pi(\boldsymbol{x}^*)$$

$$\lim_{T \to \infty} \hat{\mu}_{MCMC} = \mu = E^{\pi}[\boldsymbol{h}(\boldsymbol{X})] \qquad \qquad \hat{\mu}_{MCMC} = \frac{1}{T} \sum_{t=1}^{T} h(\boldsymbol{x}^{(t)})$$

• How to find $\pi(\cdot)$ (the stationary distribution): Solve

$$\pi(\boldsymbol{x}^*) = \sum_{\boldsymbol{x}} \pi(\boldsymbol{x}) P(\boldsymbol{x}^* | \boldsymbol{x})$$

• Assume $\{X^{(t)}\}$ is a Markov chain where $X^{(t)}$ is a discrete random variable

$$Pr(X^{(t)} = \mathbf{x}^* | X^{(t-1)} = x) = P(\mathbf{x}^* | \mathbf{x})$$
 transition probabilities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any state infinitely often.
 - · aperiodic: Does not go in cycles
- Then there exists a unique distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{X}^{(T)} = \boldsymbol{x}^* | \boldsymbol{X}^{(0)} = \boldsymbol{x}) = \pi(\boldsymbol{x}^*)$$

$$\lim_{T \to \infty} \hat{\mu}_{MCMC} = \mu = E^{\pi}[\boldsymbol{h}(\boldsymbol{X})] \qquad \qquad \hat{\mu}_{MCMC} = \frac{1}{T} \sum_{t=1}^{T} h(\boldsymbol{x}^{(t)})$$

• How to find $\pi(\cdot)$ (the stationary distribution): Solve

$$\pi(\boldsymbol{x}^*) = \sum_{\boldsymbol{x}} \pi(\boldsymbol{x}) P(\boldsymbol{x}^* | \boldsymbol{x})$$

- Our situation: We have $\pi(\mathbf{x})$, want to find $P(\mathbf{x}^*|\mathbf{x})$
 - Note: Many possible P(x*|x)!

• Assume $\{x^{(t)}\}$ is a Markov chain where $x^{(t)} \in S$

$$\Pr(\boldsymbol{x}^{(t)} \in A | \boldsymbol{x}^{(t-1)} = \boldsymbol{x}) = P(\boldsymbol{x}, A) = \int_{\boldsymbol{x}^* \in A} P(\boldsymbol{x}^* | \boldsymbol{x}) d\boldsymbol{x}^*$$

giving the transition densities

ullet Assume $\{oldsymbol{x}^{(t)}\}$ is a Markov chain where $oldsymbol{x}^{(t)} \in S$

$$\Pr(\boldsymbol{x}^{(t)} \in A | \boldsymbol{x}^{(t-1)} = \boldsymbol{x}) = P(\boldsymbol{x}, A) = \int_{\boldsymbol{x}^* \in A} P(\boldsymbol{x}^* | \boldsymbol{x}) d\boldsymbol{x}^*$$

giving the transition densities

- Assume the chain is
 - irreducible: Possible to move from any x to any x^* in a finite number of steps
 - reccurrent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles

References

• Assume $\{\boldsymbol{x}^{(t)}\}\$ is a Markov chain where $\boldsymbol{x}^{(t)} \in S$

$$Pr(\mathbf{x}^{(t)} \in A | \mathbf{x}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{x}^* \in A} P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}^*$$

giving the transition densities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any A ⊂ S infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{x}^{(T)} \in A | \boldsymbol{x}^{(0)} = \boldsymbol{x}) = \int_{A} \pi(\boldsymbol{x}^*) d\boldsymbol{x}^*$$

$$\hat{\mu}_{MCMC} \to \mu$$

ullet Assume $\{ {m x}^{(t)} \}$ is a Markov chain where ${m x}^{(t)} \in S$

$$Pr(\mathbf{x}^{(t)} \in A | \mathbf{x}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{x}^* \in A} P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}^*$$

giving the transition densities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any $A \subset S$ infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{x}^{(T)} \in A | \boldsymbol{x}^{(0)} = \boldsymbol{x}) = \int_{A} \pi(\boldsymbol{x}^*) d\boldsymbol{x}^*$$
$$\hat{\mu}_{MCMC} \to \mu$$

• How to find $p(\cdot)$ (the stationary distribution): Solve

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

ullet Assume $\{oldsymbol{x}^{(t)}\}$ is a Markov chain where $oldsymbol{x}^{(t)} \in S$

$$Pr(\mathbf{x}^{(t)} \in A | \mathbf{x}^{(t-1)} = \mathbf{x}) = P(\mathbf{x}, A) = \int_{\mathbf{x}^* \in A} P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}^*$$

giving the transition densities

- Assume the chain is
 - irreducible: Possible to move from any x to any x* in a finite number of steps
 - reccurent: The chain will visit any A ⊂ S infinitely often.
 - aperiodic: Do not go in cycles
- Then there exists a distribution $\pi(\mathbf{x})$ such that

$$\lim_{T \to \infty} \Pr(\boldsymbol{x}^{(T)} \in A | \boldsymbol{x}^{(0)} = \boldsymbol{x}) = \int_{A} \pi(\boldsymbol{x}^*) d\boldsymbol{x}^*$$
$$\hat{\mu}_{MCMC} \to \mu$$

• How to find $p(\cdot)$ (the stationary distribution): Solve

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

• Our situation: We have $\pi(\cdot)$, want to find $P(\mathbf{x}^*|\mathbf{x})$

Detailed balance

• The task: Find a transition probability/density $P(x^*|x)$ satisfying

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Detailed balance

• The task: Find a transition probability/density $P(\mathbf{x}^*|\mathbf{x})$ satisfying

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Sufficient criterion:

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$
 Detailed balance

Detailed balance

• The task: Find a transition probability/density $P(\mathbf{x}^*|\mathbf{x})$ satisfying

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Sufficient criterion:

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$
 Detailed balance

We then have

$$\int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}} \pi(\mathbf{x}^*) P(\mathbf{x} | \mathbf{x}^*) d\mathbf{x}$$
$$= \pi(\mathbf{x}^*) \int_{\mathbf{x}} P(\mathbf{x} | \mathbf{x}^*) d\mathbf{x} = \pi(\mathbf{x}^*)$$

since $P(x|x^*)$ is, for any given x^* , a density wrt x.

Detailed balance

• The task: Find a transition probability/density $P(\mathbf{x}^*|\mathbf{x})$ satisfying

$$\pi(\mathbf{x}^*) = \int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x}$$

Can in general be a difficult criterion to check

Sufficient criterion:

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$
 Detailed balance

We then have

$$\int_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x}^* | \mathbf{x}) d\mathbf{x} = \int_{\mathbf{x}} \pi(\mathbf{x}^*) P(\mathbf{x} | \mathbf{x}^*) d\mathbf{x}$$
$$= \pi(\mathbf{x}^*) \int_{\mathbf{x}} P(\mathbf{x} | \mathbf{x}^*) d\mathbf{x} = \pi(\mathbf{x}^*)$$

since $P(x|x^*)$ is, for any given x^* , a density wrt x.

- Question: What would be the ideal choice of $P(x^*|x)$?
- Question: Why only necessary to check for $x^* \neq x$.
- Question: Why do you think it is called detailed ballance?

Metropolis-Hastings algorithms

Metropolis-Hastings algorithms

- $P(\mathbf{x}^*|\mathbf{x})$ defined through an algorithm:
 - **1** Sample a candidate value \mathbf{x}^* from a proposal distribution $g(\cdot|\mathbf{x})$.
 - Compute the Metropolis-Hastings ratio

$$R(\boldsymbol{x}, \boldsymbol{x}^*) = \frac{\pi(\boldsymbol{x}^*)g(\boldsymbol{x}|\boldsymbol{x}^*)}{\pi(\boldsymbol{x})g(\boldsymbol{x}^*|\boldsymbol{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{x}^* & \text{with probability min}\{1, R(\mathbf{x}, \mathbf{x}^*)\}\\ \mathbf{x} & \text{otherwise} \end{cases}$$

Metropolis-Hastings algorithms

- $P(\mathbf{x}^*|\mathbf{x})$ defined through an algorithm:
 - **Sample** a candidate value \mathbf{x}^* from a proposal distribution $g(\cdot|\mathbf{x})$.
 - Compute the Metropolis-Hastings ratio

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{x}^* & \text{with probability min}\{1, R(\mathbf{x}, \mathbf{x}^*)\}\\ \mathbf{x} & \text{otherwise} \end{cases}$$

• For $\mathbf{x}^* \neq \mathbf{x}$:

$$P(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}^*|\mathbf{x}) \min \left\{ 1, \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} \right\}$$

- Note: P(x|x) somewhat difficult to evaluate in this case.
- Detailed balance fulfilled?

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x}) \min\left\{1, \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})}\right\}$$

$$= \min\{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x}), \pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)\}$$

$$= \pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*) \min\left\{\frac{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})}{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}, 1\right\} = \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$

Random walk chains

Popular choice of proposal distribution:

$$\mathbf{x}^* = \mathbf{x} + \boldsymbol{\varepsilon}$$

- Popular choices: Uniform, Gaussian, t-distribution
- Note: If $g(\cdot)$ is symmetric, $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}|\mathbf{x}^*)$ and

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{\pi(\mathbf{x}^*)}{\pi(\mathbf{x})}$$

- Results in the original Metropolis algorithm (Metropolis et al., 1953)
- Extended by Hastings (1970) for non-symmetric (·) to the now-called Metropolis-Hastings algorithm

Independence chains

• Assume $g(\mathbf{x}^*|\mathbf{x}) = g(\mathbf{x}^*)$. Then

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x})}{\pi(\mathbf{x})g(\mathbf{x}^*)} = \frac{\frac{\pi(\mathbf{x}^*)}{g(\mathbf{x}^*)}}{\frac{\pi(\mathbf{x})}{g(\mathbf{x})}},$$

fraction of importance weights!

- Behave very much like importance sampling and SIR
- Difficult to specify g(x) for high-dimensional problems
- Theoretical properties easier to evaluate than for random walk versions.

Question: For independence chains, acceptance rates should be as large as possible, for random walk it shou be in the range [0.2,0.7]. Why this difference?

Example

- Assume $p(x) \propto \exp(-|x|^3/3)$
- Proposal distribution $N(x, \sigma_p^2)$
- Example_MH_cubic.R
- $N = 10\,000$ samples, varying values of σ_0^2

Example - $\sigma_p = 10$

Acceptance rate = 0.13

Example - $\sigma_p = 1$

Acceptance rate = 0.72

Example - $\sigma_p = 4$

Acceptance rate = 0.26

M-H and unknown constant

• Assume now $\pi(\mathbf{x}) = c \cdot q(\mathbf{x})$ with c unknown.

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{c \cdot q(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{c \cdot q(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{q(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{q(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})}$$

• Do not depend on c!

M-H and multivariate settings

- $\mathbf{x} = (X_1, ..., X_p)$
- Typical in this case: Only change one or a few components at a time.
 - Choose index j (randomly)
 - 2 Sample $X_i^* \sim g_i(\cdot | \mathbf{x})$, put $X_k^* = X_k$ for $k \neq j$
 - Compute

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{\pi(X_j^*|\mathbf{x}_{-j})g_j(X_j|\mathbf{x}^*)}{\pi(X_j|\mathbf{x}_{-j})g_j(X_j^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{x}^* & \text{with probability min} \{1, R(\mathbf{x}, \mathbf{x}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

M-H and multivariate settings

- $\mathbf{x} = (X_1, ..., X_p)$
- Typical in this case: Only change one or a few components at a time.
 - Choose index j (randomly)
 - 2 Sample $X_i^* \sim g_j(\cdot | \mathbf{x})$, put $X_k^* = X_k$ for $k \neq j$
 - Compute

$$R(\mathbf{x}, \mathbf{x}^*) = \frac{\pi(\mathbf{x}^*)g(\mathbf{x}|\mathbf{x}^*)}{\pi(\mathbf{x})g(\mathbf{x}^*|\mathbf{x})} = \frac{\pi(X_j^*|\mathbf{x}_{-j})g_j(X_j|\mathbf{x}^*)}{\pi(X_j|\mathbf{x}_{-j})g_j(X_j^*|\mathbf{x})}$$

Put

$$\mathbf{Y} = \begin{cases} \mathbf{x}^* & \text{with probability } \min\{1, R(\mathbf{x}, \mathbf{x}^*)\} \\ \mathbf{x} & \text{otherwise} \end{cases}$$

- Can show that this version also satisfies detailed balance
- Can even go through indexes systematic
 - Should then consider the whole loop through all components as one iteration

Example

- Assume $\pi(\mathbf{x}) \propto \exp(-||\mathbf{x}||^3/3) = \exp(-[||\mathbf{x}||^2]^{3/2}/3) =$
- Algorithm given current value x^t:
- 1: Sample $j \in \{1, ..., p\}$
- 2: Put

$$X_k^* = \begin{cases} X_k^t & \text{if } k \neq j \\ N(X_k^t, \sigma_k^2) & \text{if } k = j \end{cases}$$

3: Calculate $R(\boldsymbol{x}^t, \boldsymbol{x}^*) = \pi(\boldsymbol{x}^*)/\pi(\boldsymbol{x}^t)$

4: Generate $u \sim \text{Uniform}[0, 1]$

5: **if** $u < R(x, x^*)$ then

6: Put $\mathbf{x}^{t+1} = \mathbf{x}^*$

7: **else**

8: Put $\mathbf{x}^{t+1} = \mathbf{x}^t$

9: end if

Example_MH_cubic_multivariate.R

Results multivariate cubic

Acceptance rate: 0.30

- Assume $x = (X_1, ..., X_p)$
- Aim: Simulate $\mathbf{x} \sim \pi(\mathbf{x})$

Gibbs sampling

- Assume $x = (X_1, ..., X_p)$
- Aim: Simulate $\mathbf{x} \sim \pi(\mathbf{x})$
- Gibbs sampling:
 - Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - @ Generate, in turn

$$\begin{split} X_1^{(t+1)} \sim & \rho(x_1|x_2^{(t)}, x_3^{(t)}, ..., x_p^{(t)}) \\ X_2^{(t+1)} \sim & \rho(x_2|x_1^{(t+1)}, x_3^{(t)}, ..., x_p^{(t)}) \\ & \vdots \\ X_{p-1}^{(t+1)} \sim & \rho(x_{p-1}|x_1^{(t+1)}, ..., x_{p-2}^{(t+1)}, x_p^{(t)}) \\ X_p^{(t+1)} \sim & \rho(x_p|x_1^{(t+1)}, ..., x_{p-1}^{(t+1)}) \end{split}$$

Gibbs sampling

- Assume $x = (X_1, ..., X_p)$
- Aim: Simulate $\mathbf{x} \sim \pi(\mathbf{x})$
- Gibbs sampling:
 - Select starting values $\mathbf{x}^{(0)}$ and set t=0
 - Generate, in turn

$$\begin{split} X_1^{(t+1)} \sim & \rho(x_1|x_2^{(t)}, x_3^{(t)}, ..., x_p^{(t)}) \\ X_2^{(t+1)} \sim & \rho(x_2|x_1^{(t+1)}, x_3^{(t)}, ..., x_p^{(t)}) \\ & \vdots \\ X_{p-1}^{(t+1)} \sim & \rho(x_{p-1}|x_1^{(t+1)}, ..., x_{p-2}^{(t+1)}, x_p^{(t)}) \\ X_p^{(t+1)} \sim & \rho(x_p|x_1^{(t+1)}, ..., x_{p-1}^{(t+1)}) \end{split}$$

- Increment t and go to step 2.
- Completion of step 2 is called a cycle

Example - Ising model

• Ising model: $x_i \in \{-1, 1\}$, *i* lattice

$$p(\mathbf{x}) = \frac{1}{Z} e^{\beta \sum_{i \sim j} I(x_i = x_j)}$$

Conditional distributions:

$$\Pr(x_i = 1 | \mathbf{x}_{-i}) = \frac{e^{-\beta \sum_{j:j \sim i} I(x_j = 1)}}{e^{-\beta \sum_{j:j \sim i} I(x_j = 1)} + e^{-\beta \sum_{j:j \sim i} I(x_j = -1)}}$$

- Simulations: $\beta = 0.7$, $ss = \sum_{i \sim j} I(x_i = x_j)$
- R-script: Ising.R

Example - Ising model

Properties of Gibbs sampler (random scan)

- Gibbs sampling (random scan):
 - Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - 2 Sample $j \sim \text{Uniform}\{1, ..., p\}$
 - **3** Sample $X_i^{(t+1)} \sim p(x_i | \mathbf{x}_{-i}^{(t)})$
 - **1** Put $X_k^{(t+1)} = X_k^{(t)}$ for $k \neq j$

Properties of Gibbs sampler (random scan)

- Gibbs sampling (random scan):
 - **1** Select starting values $\mathbf{x}^{(0)}$ and set t = 0
 - ② Sample $j \sim \text{Uniform}\{1, ..., p\}$
 - 3 Sample $X_j^{(t+1)} \sim p(x_j | \mathbf{x}_{-j}^{(t)})$
 - **1** Put $X_k^{(t+1)} = X_k^{(t)}$ for $k \neq j$
- The chain $\{x^{(t)}\}$ is Markov
- Detailed balance:
 - Consider \boldsymbol{x} , \boldsymbol{x}^* where $x_j \neq x_i^*$ while $x_k = x_k^*$ for $k \neq j$

Properties of Gibbs sampler (random scan)

- Gibbs sampling (random scan):
 - Select starting values $\mathbf{x}^{(0)}$ and set t=0
 - 2 Sample $j \sim \text{Uniform}\{1, ..., p\}$
 - **3** Sample $X_i^{(t+1)} \sim p(x_i | \mathbf{x}_{-i}^{(t)})$
 - **1** Put $X_{k}^{(t+1)} = X_{k}^{(t)}$ for $k \neq j$
- The chain $\{x^{(t)}\}\$ is Markov
- Detailed balance:
 - Consider \boldsymbol{x} , \boldsymbol{x}^* where $x_i \neq x_i^*$ while $x_k = x_k^*$ for $k \neq j$

$$\pi(\mathbf{x})P(\mathbf{x}^*|\mathbf{x}) = \pi(\mathbf{x})p^{-1}p(x_j^*|\mathbf{x}_{-j})$$

$$= \pi(\mathbf{x}_{-j})p(x_j|\mathbf{x}_{-j})p^{-1}p(x_j^*|\mathbf{x}_{-j})$$

$$= \pi(\mathbf{x}_{-j}^*)p(x_j|\mathbf{x}_{-j}^*)p^{-1}p(x_j^*|\mathbf{x}_{-j}^*)$$

$$= \pi(\mathbf{x}^*)p^{-1}p(x_j|\mathbf{x}_{-j}^*)$$

$$= \pi(\mathbf{x}^*)P(\mathbf{x}|\mathbf{x}^*)$$

Tuning the Gibbs sampler

- Random or deterministic scan?
 - Deterministic scan most common (?)
 - When high correlation, random scan can be more efficient

Tuning the Gibbs sampler

- Random or deterministic scan?
 - Deterministic scan most common (?)
 - When high correlation, random scan can be more efficient
- Blocking:
 - When dividing $\mathbf{x} = (X_1, ..., X_p)$, each X_i can be vectors
 - Making each X_i as large as possible will typically improve convergence
 - Especially beneficial when high correlation between single components

Tuning the Gibbs sampler

- Random or deterministic scan?
 - Deterministic scan most common (?)
 - When high correlation, random scan can be more efficient
- Blocking:
 - When dividing $\mathbf{x} = (X_1, ..., X_p)$, each X_i can be vectors
 - ullet Making each X_j as large as possible will typically improve convergence
 - Especially beneficial when high correlation between single components
- Hybrid Gibbs sampling
 - If $p(x_j|\mathbf{x}_{-j})$ is difficult to sample from, use an Metropolis-Hastings step for this component
 - Example (p = 5)
 - **1** Sample $X_1^{(t+1)} \sim p(x_1 | \mathbf{x}_{-1}^{(t)})$
 - 2 Sample $(X_2^{(t+1)}, X_3^{(t+1)})$ through an M-H step
 - 3 Sample $X_4^{(t+1)}$ through another M.H step
 - 4 Sample $X_5^{(t+1)} \sim p(x_5 | \mathbf{x}_{-5}^{(t+1)})$

Lemmings data

Model

$$\mathbf{y}_{t} \sim \operatorname{Binom}\left(1, \frac{\exp(\mathbf{x}_{t})}{1+\exp(\mathbf{x}_{t})}\right)$$

 $\mathbf{x}_{t} = a\mathbf{x}_{t-1} + \varepsilon_{t}, \quad \varepsilon_{t} \sim N(0, \sigma^{2})$
 $a \sim \operatorname{Uniform}[0, 1]$

Simulation of a given x:

$$a|\mathbf{x} \sim N(\frac{\sum_{i=2}^{T} x_i x_{i-1}}{\sum_{i=2}^{T} x_{i-1}^2} I(0 < a < 1)$$

Simulation of x_i:

o Simulate
$$x_i^* | \mathbf{x}_{-i} = N\left(\frac{a(x_{i-1} + x_{i+1})}{1 + a2}, \sigma \frac{1 - a^2}{1 - a^4}\right)$$

- Calculate $r = \frac{p(y_i|x_i^*)}{p(y_i|x_i)}$
- Accept x_i* with probability min{1, r}

Lemmings - results

Lemmings - results

Series a.sim[-c(1:2500)]

- G. H. Givens and J. A. Hoeting. *Computational statistics*, volume 710. John Wiley & Sons, 2012.
- W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. *Biometrika*, 57(1):97–109, 1970.
- N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092, 1953.
- C. P. Robert and G. Casella. *Monte Carlo statistical methods*, volume 2. Springer, 1999.