

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™





Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA



# **Workshop Setup Instructions**

 Copy the ZIP file: SPSHandsOnWorkshop.zip



- 3. At the MATLAB command prompt type:
  - >> start SPSHandsOnWorkshop



#### 1. Introduction

- SimPowerSystems component libraries
- How does SimPowerSystems work?

### 2. Three-Phase Systems

- Measurements
- State initialization
- Transformers
- Star vs. delta connections
- Floating vs. neutral connections
- Reference frame transformations



#### 3. Electrical Machines

- Machine measurements
- Machine initialization
- Load flow calculation
- Mechanical connections to loads and prime movers

#### 4. Simulation Performance

- Model fidelity vs. simulation speed
- SimPowerSystems simulation modes



#### Control of Electrical Machines

- Electrical disturbances
- Control of synchronous generators
- Electric motor drives

### 6. Custom Electrical Components

- Simulink-based electrical components
- Modifying Specialized Technology library components
- Simscape language and Simscape Components library
- Simscape and SimPowerSystems interfaces
- Model sharing and IP protection



#### 7. Power Electronics

- SimElectronics or SimPowerSystems?
- Ideal switching algorithm
- Power quality and harmonic analysis
- Control design and linearization
- 8. Discussion and Q&A



### **MathWorks Product Overview**

| Fixed-Point Modeling                                                                     | Event-Based Modeling                  | Physical Modeling                    | Applications                         |
|------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Rapid Prototyping and<br>HIL Simulation                                                  | Verification,<br>Validation, and Test | Simulation Graphics<br>and Reporting | Control Systems                      |
| SIMULINK® Simulation and Model-Based Design  Parallel Computing Code Generation  MATLAB® |                                       |                                      | Signal Processing and Communications |
|                                                                                          |                                       |                                      | Image Processing and Computer Vision |
|                                                                                          |                                       |                                      | Test and<br>Measurement              |
| The Language of Technical Computing                                                      |                                       |                                      | Computational<br>Finance             |
| Math, Statistics, and<br>Optimization                                                    | Application<br>Deployment             | Database Access and<br>Reporting     | Computational<br>Biology             |



# Physical Modeling in Simulink®



Electrical power systems



Multi-domain physical systems



Fluid power and control



Mechanical dynamics (3-D)



Drivetrain systems (1-D)



Electromechanical and electronic systems



# **Model-Based Design Process**

### **System and Component Level Design**



