Enrollment no.

Sardar Vallabhbhai Patel Institute of Technology, Vasad Computer Engineering Department Mid Semester Exam

B.E. Computer Engineering - Sem. VII

Date: 11-09-2018 Subject: - Compiler Design (2170701) Duration:-90min. Max. Marks: - 40 Instruction: · All questions are compulsory Make suitable assumptions and draw neat figures wherever required. · Figures to the right indicate marks. Answer the following: Q-1 [05] Draw diagram for phases of Compiler. Also explain each Phase in brief. a) [03] Explain input buffering techniques. b) [12] Attempt the following:: Q-2 Construct the SLR parsing table for the following grammar: a) E -> E+T E -> T T -> T*F T-> F F -> (E) F -> id Find out First and Follow and construct LL (1) parsing table for the following grammar b) and also state whether the grammar is LL (1) or not. S-> aBDh B->cC C-> bC | € D -> GF G->g | € F->f| E OR [12] Attempt the following:: Q-2 Construct the LALR parsing table for the following augmented grammar: 5'->5

S->CC

C-> cC | d

Page 1 of 2

b)	Construct the LR parsing table for the following grammar: $s \rightarrow L = R$	
	$s \rightarrow R$	
	$L \rightarrow R$	
A TOP OF	$L \rightarrow id$	
	$R \rightarrow L$	
Q-3	Attempt the following::	[10]
a)	Give following definitions:	1
b)	a. suffix b. prefix c. substring d. proper prefix, suffix and substring e. subsequence Define Left Recursion. Eliminate Left Recursion from the grammar. S→Aa/b	
	A → Ac/Sd/e	
	OR	
Q-3	Attempt from the following::	[10]
a)	Explain the following terms:	
	a)Parse tree b) Ambiguity c) Lexeme d) Token e) Pattern f) Complier	
p)	Define Left Recursion. Eliminate Left Recursion from the grammar. $A \rightarrow B C \mid a$	
	$B \rightarrow CA \mid Ab$	
	$C \rightarrow AB \mid CC \mid a$	
Q-4	Attempt any two from the following::	[10]
a)	What is intermediate code? What is its importance? Convert the following statement into three address code, triple, indirect triple and quadruple forms. $a=(a*b)+(c+d)-(a+b+c+d)$	
b)	List all and Explain(any two) code optimization techniques with example.	
c)	Explain peephole optimization and its characteristics.	
	The first disconsisted,	

ALL THE BEST *****

Page 2 of 2

Sardar Vallabhbhai Patel Institute of Technology, Vasad First Internal Examination Sep 2018 LYCE Sem-VII(CE)

Date	: 14/0	/2018	ation And Network Secur	rity		Subject Code: 21 Time: 2:30 pm to 4: Total Mar	
1 2	. Ma	empt all que ke Suitable a ure to the rig	assumptions wherever no ght indicate full marks. Cryptography and Crypt		Draw and expla	in Conventional	06
	b)	Define F	ollowing Terms: Oata Confidentiality 2) I	Data Auth	nentication 3) Da	ata Integrity	03
Q-2	2)		ne terms diffusion and o uplain the avalanche eff			rpose of S-box in	07
				Or	-		
	a)	Explain I	Byte Substitution and S	hift row	operation Of AE	S in Detail.	07
	b)	List Out	various application of I	Digital Si	gnature.		03
)-3	a)	"jazz	PlayFair algorithm wit			d encrypt the text	04
		2) Lapi	im CDC block cipher		peration.		03
				Or			
	a)	1) Encry	ypt the message "Exan		he Hill Cipher	with the key	04
		2) Expla	in CFB block cipher n	node of c	peration.		03

	b)	Explain Encryption and Decryption in RSA algorithm. Also Discuss various attacks on RSA.	07
		Or	
	b)	Explain the operation of secure hash algorithm on 512 bit block.	07
0.4	a)	What is VDC2 With the Late of the Control of the Co	
Q-4	a)	What is KDC? With the help of Diagram explain how KDC do key Distribution.	07
		Or	
	a)	List and Explain various types of attacks.	07

Sardar Vallabhbhai Patel Institute of Technology, Vasad

Mid Semester Exam- 2018

BE - 7th Semester Computer Engineering Department

Subject Name: Mobile Computing and Wireless Communication Subject Code: 2170710 Total Marks: 40 Time: 1:30 Hrs.
Q.1 Describe the Switching Techniques. Differentiate the Circuit 08 Switching and Packet Switching.
Q.2 What is Direct Sequence Spread Spectrum technology? How does it work in CDMA technology?
What is Mobile IP? Explain Discovery, Registration and 08 Tunnelling with Mobile IP
Q.3 Draw and Explain GSM Architecture with roles of its components OR What is handoff? Explain its various types and How it handles in cellular Architecture using different strategies?
.4 Let us Consider an example that relates that Nyquist and Shannon formulations. Suppose that the spectrum of a channel is between 3 MHz and 4 MHz and SNR _{db} = 24 dB. So, how many signalling levels are required? OR Explain Nyquist theorem? Find the relationship among Channel Capacity(C), Bandwidth (B) and Signal to Noise Ratio (SNR).
What is android Runtime? Explain Dalvik Virtual Machine. Give 08 the difference between JVM and DVM? OR
Draw and Explain Android Architecture in Detail.
All the Rost

Q.5

SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY COMPUTER DEPARTMENT MID SEMESTER EXAM -2018-19 (7th SEMESTER)

Subject: Data Mining and Business Intelligence

Subject Code: 2170715 Total Marks: 40

Date: 15/09/18

01/0	What is OLAP Operations. List out operation and explain any two operations in	1051
Q.1 (A)	detail.	
0.1(0)	Difference between OLAP vs OLTP	[04]
Q.1 (B)		1021
Q.1 (C)	Suppose that a data warehouse consists of the three dimensions time, doctor and patient and the two measures count and charge where charge is the fee that a doctor charges a patient for a visit. Draw star schema.	[03]
Q.2	Explain DW architecture with suitable diagram.	[07]
THE REAL PROPERTY.	OR	
Q.2	Why naïve Bayesian classification is called "naïve"? Briefly outline the major idea of naïve Bayesian classification.	[07]
Q.3	Explain KDD Process	[07]
	OR	
Q.3	What is data cleaning? How to handle the missing values in data mining.	[07]
Q.4		[07]
10000	Use these methods to normalize the following group of data:	[07]
	200, 300, 400, 600, 1000	
	(a) min-max normalization by setting $min = 0$ and $max = 1$	
	(b) z-score normalization	
0.4	OR	
Q:4	Explain the Apriori algorithm. Also explain how the association rules are generated from frequent item sets.	[07]
Q:5	Find the frequent item sets in the following database of 4 transactions. with the	
	Final Rules.	[07]
	Transaction ID Items Bought	
	ABC	
	200 A,C	
	A,D	1
	D,E,F	-
1	OR	
		1

Using Naïve the unseen	Bayesian classifi tuple (Refund= No	cation on the follow , Married, income=	ving given train	ning set, class
RID	Refund	Marital Status	Taxable	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	120K	No
4	Yes	Married	70K	No
5	No	Divorced	95K	Yes
1				

Married Divorced

Single Married

Single

6

7

8

9

10

No

Yes

No

No

No

ALL THE BEST

60K

220K

85K

75K

90K

an in

No

No

Yes

No

Yes