Course Notes

Conjecture and Proof

Alex Rutar

Contents

1	An Introduction						
	1.1	Sidon	Sets	3			
	1.2	Irratio	onal Numbers	4			
		1.2.1	A few proofs of irrationality	4			
		1.2.2	Algebraic Numbers	5			

Chapter 1

An Introduction

1.1 Sidon Sets

We define a Sidon set $S \subseteq N$ as a subset such that pairwise sums are unique. Write $1 \le a_1 < a_1 < \cdots < a_k \le n$ with $a_i + a_j \ne a_l + a_r$ (possibly i = j, l = r). what is the maximum value of k? For example, the powers of two provide a lower bound of $\max k \ge \lfloor \log_2 n \rfloor + 1$ by binary representations and uniqueness of multiplication by 2.

We can also bound above: $2 \le a_i + a_j \le 2n$ and the number of sums is $\binom{k}{2} + k$. We must have

$$\binom{k}{2} + k \le 2n - 1$$

which can be rearranged to (losing a small amount of precision)

$$k < 2\sqrt{n}$$

We can get a better upper bound: note that if we have equal sums, we also have equal differences: $a_i + a_j = a_l + a_r$ implies $a_i - a_l = a_r - a_j$. We now have $\binom{k}{2}$ differences and n - 1 places, and by the same argument as above we get

$$k < \sqrt{2n} + 1$$

This trick works because subtraction is not commutative!

Let's now try to get a better lower bound. Always pick the smallest number available that does not violate the rule. We can take

Assume that we already picked $a_1 < a_2 < a_3 < \cdots < a_l$. Then can we take a_{l+1} : x is bad if $x + a_i = a_j + a_k$, $x + x = a_j + a_k$, $x = a_j + a_k - a_i$ so there are at most l^3 bad numbers. The second is impossible otherwise we would have $x < \max\{a_j, a_k\}$. Thus there are at most l^3 bad numbers, including $a_i = a_i + a_j - a_k$. Thus if $l^3 < n$, we can certainly pick an a_{l+1} . We therefore have

$$\sqrt[3]{n} \le \max k < \sqrt{2n} + 1$$

1.2 Irrational Numbers

1.2.1 A few proofs of irrationality

Proof We provide five different proofs that $\sqrt{5}$ is irrational:

- 1. By contradiction, suppose $\sqrt{5} = \frac{a}{b}$ with (a, b) = 1 and b > 0. Then $5b^2 = a^2$, so $5|a^2$. But since 5 is prime (or generally, a product of distinct primes), 5|a and write a = 5c so that $5b^2 = (5c)^2 = 25c^2$. But then $b^2 = 5c^2$ so 5|b, a contradiction.
- 2. As above, get $5b^2 = a^2$. Using unique factorization in \mathbb{Z} , note that n is a square iff $n = p_1^{k_1} \cdots p_l^{k_l}$ and $2|k_i$ for all i (proof is constructive). But then b^2 , a^2 both have an even exponent in the 5 position, so that $5b^2$ has an odd exponent, a contradiction.

More generally, if there exists an odd exponent in the standard form of m, then \sqrt{m} is irritional.

- 3. Suppose $\sqrt{5} = \frac{a}{b}$. We must have $\lim_{n\to\infty} (\sqrt{5}-2)^n \to 0$. If we multiply $(c+d\sqrt{5})(h+j\sqrt{5})$, we have another number of the same form. Then $(\sqrt{5}-2)^n = A_n B_n\sqrt{5} = A_n + B_n\frac{a}{b} = \frac{C_n}{b} \ge \frac{1}{b}$ with $C_n \ne 0$, contradicting the limit.
- 4. In geometry, we say a and b are commesurable (have a common measure) if there exists c so that kc = a and lc = b where $k, l \in \mathbb{Z}$. Then a/b is rational if and only if a, b have a common measure. To see the forward direction, we have $\frac{a}{b} = \frac{m}{n}$ so that $\frac{a}{m} = \frac{b}{n}$ and a common measure is $\frac{a}{m}$. Conversely, if kc = a and lc = b then $\frac{a}{b} = \frac{k}{l}$.

Thus we will show that $\sqrt{5}$ and 1 have no common measure. Suppose c is a common measure of 1 and $\sqrt{5}$. Consider a rectangle with sides 1, 2 and diagonal of length $\sqrt{5}$. Let AB = 1, BC = 2 and choose E so that EC = BC. Drop a perpindicular from E onto AB. Then $AEF \sim ABC$ since they share two angles. But then FE = 2AE. Then c is also a common measure of FE. Similarly, FB = FE since $FBC \cong FEC$. Then C is also a common measure of E0 and thus of E1.

Repeat this construction, so we must have c arbitrarily small because the ratios of the hypotenuses are a constant ratio less than 1. Thus we have our contradiction.

5. $\sqrt{5}$ is a root of the polynomial $x^2 - 5$. We have the rational root test, which states that possible rational roots must Write $f = a_0 + a_1x + \cdots + a_nx^n$. Consider a root of the form r/2, so f(r/s) = 0. Then

$$0 = a_0 s^n + a_1 r s^{n-1} + a_2 r^2 s^{n-2} + \dots + a_n r^n$$

so $s|a_nr^n$ so $s|a_n$ (since (s,r)=1). Similarly, $r|a_0$.

If $\sqrt{5} = 1/b$, then a|-5 and b|1 so $a/b = \pm 1, \pm 5$. Check, and none of these work, so there are no rational roots.

Proof Assume $e = \frac{a}{b}$, b > 0, (a, b) = 1 and write

$$\frac{a}{b} = e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

and muliply by b! to get

integer = integer +
$$\frac{1}{b+1}$$
 + $\frac{1}{(b+1)(b+2)}$ + \cdots

but the infinite sum is positive less than $\frac{1}{2} + \frac{1}{4} + \cdots = 1$, a contradiction.

Prop. 1.2.2 $\sin 1^{\circ}$ *is irrational.*

PROOF We show that if $\sin 1^\circ$ is rational, then $\sin 45^\circ$ is rational. Write $z = \cos 1^\circ + i \sin 1^\circ$ so that $z^{45} = (\cos 1^\circ + i \sin 1^\circ)^{45} = \cos 45^\circ + i \sin 45^\circ$. Expand the binomial coefficient to get

$$\sum_{n=0}^{45} {\binom{45}{n}} (\cos 1^{\circ})^{n} (i \sin 1^{\circ})^{45-n} = \text{real} + \sum_{\substack{n=0\\2|n}}^{45} {\binom{45}{n}} (\cos 1^{\circ})^{n} (i \sin 1^{\circ})^{45-n}$$
$$= \text{real} + i \sum_{\substack{n=0\\2|n}}^{45} (\pm 1) {\binom{45}{n}} (\cos 1^{\circ})^{n} (\sin 1^{\circ})^{45-n}$$

but since $(\cos 1^\circ)^2 = 1 - (\sin 1^\circ)^2$ is rational, the entire imaginary part is rational. Thus equating with $\sin 45^\circ$ means that $\sin 45^\circ = \sqrt{2}/2$ is rational, our contradiction.

1.2.2 Algebraic Numbers

It is interesting to consider numbers which are roots of polynomials with rational (equiv. integer) coefficients of degree at least 1. The rational numbers $\frac{a}{b}$ are roots of the degree one polynomials $x - \frac{a}{b}$.

Def'n. 1.2.3 We say that $\alpha \in \mathbb{C}$ is algebraic if there exists $p \in \mathbb{Z}[x]$, $p \neq 0$, so that $p(\alpha) = 0$. If α is not algebraic, then it is transcendental.

Def'n. 1.2.4 We say that f is the minimal polynomial of α if $f(\alpha) = 0$ and f has minimal degree.

Def'n. 1.2.5 With this in mind, we define the **degree** of an algebraic number $\deg \alpha = \deg m_{\alpha}$.

We have the following properties of the minimal polynomial:

Thm. 1.2.6 *The following hold:*

- (a) The minimal polynomial is unique up to a constant factor.
- (b) $g(\alpha) = 0 \Leftrightarrow m_{\alpha}|g$
- (c) $g = m_{\alpha} \Leftrightarrow g(\alpha) = 0$ and g is irreducible over \mathbb{Q} , i.e. g cannot be factored into polynomials of smaller degree with rational coefficients.

(d) The algebraic numbers form a subfield of the complex numbers.

PROOF We first show (*b*). If $m_{\alpha}|g$, then $g(\alpha) = m_{\alpha}(\alpha)f(\alpha) = 0$. For the reverse direction, write $g = m_{\alpha} \cdot q + r$ where $\deg r < \deg m_{\alpha}$. Then $0 = g(\alpha) = m_{\alpha}(\alpha) \cdot q + r(\alpha)$ so $r(\alpha) = 0$. But since m_{α} is the minimal polynomial, we must have r = 0 and $m_{\alpha}|g$.

Now we see (a) from (b). Suppose p,q are both minimal polynomials. Then p|q so q=hp, where deg $q=\deg p$. Thus deg h=0 is a constant polynomial.

Now we see (*c*). We certainly have $g(\alpha) = 0$. Now suppose for contradiction that *g* is reducible, and write $g = f \cdot h$. But then $f(\alpha)h(\alpha) = 0$, so w.l.o.g. $f(\alpha) = 0$ with deg $f < \deg g$, so *g* is not minimal. Conversely, $m_{\alpha}|g$ so $m_{\alpha} = cg$.

Ex. 1.2.7 Show that deg $\sqrt[3]{2} = 3$. By (c), it suffices to show that $x^3 - 2$ is irreducible, which follows by the rational root test.

Now consider $f = x^4 - 2$, and suppose $f = g \cdot h$. g and h cannot be degree 1 by the rational root theorem, but we could have $\deg g = \deg h = 2$. To prove this, we use the Eisenstein criterion with p = 2. multiplication by i

Thm. 1.2.8 (Gelfond-Schneider) Suppose $0,1 \neq \alpha$ is algebraic, and β is algebraic, and not rational. Then α^{β} is transcendental.

Cor. 1.2.9 $\beta = \log_{10} 3$ is transcendental.

Proof Write $10^{\beta} = 3$. Suppose β is algebraic. β is certainly irrational, but then 10^{β} is transcendental, a contradiction.