Programmable Microfluidics

William Thies*, J.P. Urbanski[†], Mats Cooper[†], David Wentzlaff*, Todd Thorsen[†], and Saman Amarasinghe*

* Computer Science and Artificial Intelligence Laboratory † Hatsopoulos Microfluids Laboratory

Massachusetts Institute of Technology

October 12, 2004

Microfluidic Chips

- Idea: a whole biological lab on a single chip
 - Input/output
 - Actuators: temperature, light/dark, cell lysis, etc.
 - Sensors: luminescence,
 pH, glucose, etc.

1 mm

- Benefits:
 - Small sample volumes
 - High throughput
 - Geometrical manipulation

Our Goal:

Provide Abstraction Layers for this Domain

Current interface: gate-level control (Labview)

- New abstraction layers will enable:
 - Scalability
 - Adaptivity

- Portability
- Optimization
- NOT our goal: replace silicon computation

A General-Purpose Microfluidic Chip

Control layerFlow layer

A General-Purpose Microfluidic Chip

Control layerFlow layer

A General-Purpose Microfluidic Chip

All fluid operations are lossy

How to control the error?

All fluid operations are lossy

How to control the error?

Solution: discrete samples

All fluid operations are lossy

How to control the error?

Solution: discrete samples

All fluid operations are lossy

How to control the error?

Solution: discrete samples

All fluid operations are lossy

How to control the error?

Solution: discrete samples

All fluid operations are lossy

How to control the error?

Solution: discrete samples

Programming Model

```
Fluid blue = input (0);
Fluid yellow = input(1);
for (int i=0; i<=4; i++) {
    mix(blue, i/4, yellow, 1-i/4);
}</pre>
```

New abstractions:

- Regenerating fluids
- Efficient mixing algorithms

450 Valve Operations

Example: Fixed pH Reaction

```
Fluid sample = input (0);
Fluid acid = input(1);
Fluid base = input(2);
do {
  // test pH of sample
  Fluid pH_test = mix(sample, 0.9, indicator, 0.1);
  double pH = test_luminescence(pH_test);
  // if pH is out of range, adjust sample
  if (pH > 7.5) {
     sample = mix (sample, 0.9, acid, 0.1);
  } else if (pH < 6.5) {
     sample = mix (sample, 0.9, base, 0.1);
  wait(5);
} while (detect_activity(sample));
```

Example: Fixed pH Reaction

```
Fluid sample = input (0);
Fluid acid = input(1);
Fluid base = input(2);
do {
  // test pH of sample
  Fluid pH_test = mix(sample, 0.9, indicator, 0.1);
  double pH = test_luminescence(pH_test);
  If pH is out of range, adjust sample
  if (pH > 7.5) {
     sample = mix (sample, 0.9, acid, 0.1);
  ellipsymbol{} else if (pH < 6.5) {
     sample = mix (sample, 0.9, base, 0.1);
  wait(5);
 while (detect_activity(sample));
```

Feedback-Intensive Applications:

- Cell isolation and manipulation
- Dose-response curves
- High-throughput screening
- Long, complex protocols

Opportunities for Computer Scientists

- Experimental biology is becoming a digital science
 - What are the right abstraction layers?
 - We can have a large impact

Software:

- scheduling
- programming abstractions
- verifying safety properties
- optimizing throughput, cost

Hardware:

- parallelism
- error tolerance
- reducing design complexity
- minimizing control overhead

Vision: A defacto language for experimental science