Problem Set 1

Data Analysis and Interpretation (EE 223)

Instructor: Prof. Prasanna Chaporkar EE Department, IIT Bombay

1 Warming Up

- 1. Find moment generating function, expectation and variance for the following distributions:
 - (a) Bernoulli(p)
 - (b) Binomial(n, p)
 - (c) Poisson(λ)
 - (d) Geometric (p)
 - (e) Exponential(λ)
 - (f) $Gamma(n, \lambda)$
 - (g) Uniform(a, b)
 - (h) Gaussian (μ, σ^2)
 - (i) Chi-square $(\chi^2(n))$
 - (j) $f_X(x) = c_{\alpha} x^{-\alpha}$ for $x \ge 1$ and zero otherwise, and $\alpha \ge 2$.
- 2. Let X_1, X_2, \dots, X_n are independent. Define $S_n = \sum_{k=1}^n X_k$. Find the distribution of S_n when -
 - (a) X_k 's are i.i.d. Exponential(λ).
 - (b) $X_k \sim \text{Gaussian}(\mu_k, \sigma_k^2)$
 - (c) X_k 's are i.i.d. Bernoulli(p)
 - (d) $X_k \sim \text{Poisson}(\lambda_k)$

2 Getting more into it

- 1. Let $X \sim \text{Uniform}(0,1)$, then show that $Y = -2 \log X$ is $\chi^2(2)$.
- 2. You are waiting on a bus stop. The inter-arrival time between the buses is $\text{Exp}(\lambda)$. The number of passengers in the bus is a uniform random variable taking values in $\{0, 1, \ldots, \alpha\}$. You only board a bus if it has less than β passengers. The number of passenger across buses are independent random variables. Denote X to be your waiting time until you board a bus. Find the distribution of X.
- 3. In the same setting above. Suppose you go to bus stop for observing the process. Suppose you arrive at time zero and leave at time t. Let Y denote the number of buses that you saw. Find the distribution of Y.
- 4. Let X_1, X_2, \ldots, X_n be iid random variables. Also, let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be their non-decreasing permutation. Find the distribution of $X_{(k)}$.
- 5. Suppose X and Y are random variables such that

$$f_{XY}(x,y) = \frac{e^{-x/y}e^{-y}}{y},$$

whenever $0 < x, y < \infty$. Find $\mathbb{E}[\mathbb{P}(X > 1|Y)]$.

6. Let $Y \sim \text{Uniform}(0, X)$, where $X \sim \text{Gamma}(2, \lambda)$. Also let Z = X - Y. Show that Y and Z are independent.

3 Now, That's the limit

1. Let X_1, X_2, \ldots be iid random variables with density function $f(x) = e^{-x+\theta}$ for $x \ge \theta$ and zero otherwise. Show that following weak limits hold

$$\frac{1}{n} \sum_{k=1}^{n} X_k \to 1 + \theta$$
$$\min\{X_1, \dots, X_n\} \to \theta.$$

2. Let X_1, X_2, \ldots be iid random variables with distribution F. Show that following weak limits hold:

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \to E[X]$$

$$\frac{1}{n+u} \sum_{k=1}^{n} X_k^2 \to E[X^2], \text{ where } u \text{ is a given constant2}$$

$$\frac{1}{n-1} \sum_{k=1}^{n} (X_k - \overline{X})^2 \to var(X)$$

3. You have invited 1000 friends for your wedding. Each friend gives you a gift. The expected value of a gift is 2000 Rs. and variance in the amount is 300 Rs. Find a good approximation to the probability that the total value of your gifts is less than 15,00,000 Rs. or greater than 22,00,000 Rs.

All the best!! May God be with you!!