This lecture will be recorded in Echo360!

Welcome to

CS539: Machine Learning Regression Prof. Yanhua Li

Time: 6:00pm –8:50pm Mondays KH116 Spring 2025

Regression

Regression: Output a scalar

Stock Market Forecast

) = Dow Jones Industrial Average at tomorrow

Self-driving Car

) = Degree to turn

Recommendation

$$f($$
 Customer A, Product B $) =$ Likelihood of purchase

Example Application

Estimating the Combat Power (CP) of a pokemon after evolution

Image Recognition:

Framework

$$f(\bigcap)=$$
 "cat"

Step 1: Model

$$y = b + w \cdot x_{cp}$$

A set of function Model

$$f_1, f_2 \cdots$$

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

infinite

CP after evolution

Linear model:
$$y = b + \sum_{i} w_i x_i$$

 x_i : x_{cp} , x_{hp} , x_w , x_h ...

features

 w_i : weight, b: bias

 $y = b + w \cdot x_{cp}$

A set of function

Model

 $f_1, f_2 \cdots$

function function input: Output (scalar):

Training Data

Source: https://www.openintro.org/book/statdata/index.php?data=pokemon

Step 3: Best Function

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

Step 3: Gradient Descent $\left| \frac{\overline{\partial w}}{\partial L} \right|$

$$egin{bmatrix} \dfrac{\partial L}{\partial w} \\ \dfrac{\partial L}{\partial b} \end{bmatrix}$$
 gradient

- How about two parameters? $w^*, b^* = arg \min_{x \in \mathcal{X}} L(w, b)$
 - (Randomly) Pick an initial value w⁰, b⁰
 - ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$, $\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

$$w^1 \leftarrow w^0 - \frac{\eta}{\partial w} \big|_{w=w^0, b=b^0} \qquad b^1 \leftarrow b^0 - \frac{\eta}{\partial b} \big|_{w=w^0, b=b^0}$$

ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$, $\frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

$$w^2 \leftarrow w^1 - \frac{\partial L}{\partial w}|_{w=w^1,b=b^1} \qquad b^2 \leftarrow b^1 - \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$$

When solving:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

Step 3: Gradient Descent .OSS Very slow at Lthe plateau Stuck at saddle point W_1^{30} W_2 Stuck at local minima $\partial L / \partial w$ $\partial L / \partial w$ $\partial L / \partial w$ ≈ 0 The value of the parameter w

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + \underline{w} \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)$$

$$\frac{\partial L}{\partial b} = ?$$

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right) \left(-x_{cp}^n\right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

How's the results?

How's the results? - Generalization

What we really care about is the error on new data (testing data)

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

Best Function

b = -10.3

 $W_1 = 1.0$, $W_2 = 2.7 \times 10^{-3}$

Average Error = 15.4

Testing:

Average Error = 18.4

Better! Could it be even better?

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

Best Function

$$b = 6.4$$
, $w_1 = 0.66$

$$W_2 = 4.3 \times 10^{-3}$$

$$w_3 = -1.8 \times 10^{-6}$$

Average Error = 15.3

Testing:

Average Error = 18.1

Slightly better. How about more complex model?

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$

Best Function

Average Error = 14.9

Testing:

Average Error = 28.8

The results become worse ...

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$
+ $w_5 \cdot (x_{cp})^5$

Best Function

Average Error = 12.8

Testing:

Average Error = 232.1

The results are so bad.

Training Data

Model Selection

1.
$$y = b + w \cdot x_{cp}$$

2.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

3.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

4.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$$

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$
5.
$$+ w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

A more complex model yields lower error on training data.

If we can truly find the best function

Model Selection

Training	Testing
31.9	35.0
15.4	18.4
15.3	18.1
14.9	28.2
12.8	232.1
	15.4 15.3 14.9

A more complex model does not always lead to better performance on *testing data*.

This is *Overfitting*.

Select suitable model

Let's collect more data

What are the hidden factors?

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$x_s = \text{species of } x$$

If
$$x_S = \text{Pidgey}$$
: $y = b_1 + w_1 \cdot x_{cp}$

If
$$x_s$$
 = Weedle: $y = b_2 + w_2 \cdot x_{cp}$

If
$$x_s$$
 = Caterpie: $y = b_3 + w_3 \cdot x_{cp}$

If
$$x_S$$
 = Eevee: $y = b_4 + w_4 \cdot x_{cp}$

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$y = b_1 \cdot 1$$
 $+w_1 \cdot 1 \cdot x_{cp}$
 $+b_2 \cdot 0$
 $+w_2 \cdot 0$
 $+b_3 \cdot 0$
 $+w_3 \cdot 0$
 $+b_4 \cdot 0$
 $+w_4 \cdot 0$

$$\delta(x_S = \text{Pidgey})$$

$$\begin{cases} = 1 & \text{If } x_S = \text{Pidgey} \\ = 0 & \text{otherwise} \end{cases}$$

$$\text{If } x_S = \text{Pidgey}$$

$$y = b_1 + w_1 \cdot x_{cp}$$

Are there any other hidden factors?

Back to step 1: Redesign the Model Again

If
$$x_s = \text{Pidgey}$$
: $y' = b_1 + w_1 \cdot x_{cp} + w_5 \cdot (x_{cp})^2$

If
$$x_s = \text{Weedle}$$
: $y' = b_2 + w_2 \cdot x_{cp} + w_6 \cdot (x_{cp})^2$

If
$$x_s = \text{Caterpie}$$
: $y' = b_3 + w_3 \cdot x_{cp} + w_7 \cdot (x_{cp})^2$

If
$$x_s = \text{Eevee}$$
: $y' = b_4 + w_4 \cdot x_{cp} + w_8 \cdot (x_{cp})^2$

$$y = y' + w_9 \cdot x_{hp} + w_{10} \cdot (x_{hp})^2 + w_{11} \cdot x_h + w_{12} \cdot (x_h)^2 + w_{13} \cdot x_w + w_{14} \cdot (x_w)^2$$

Training Error = 1.9

Testing Error = 102.3

Overfitting!

Back to step 2: Regularization

$$y = b + \sum w_i x_i$$

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i} \right) \right)^{2} + \lambda \sum_{i} (w_{i})^{2}$$

The functions with smaller w_i are better

$$+\lambda \sum (w_i)^2$$

 \triangleright Smaller w_i means ... smoother

moother
$$y = b + \sum w_i x_i$$
$$y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$$

> We believe smoother function is more likely to be correct Do you have to apply regularization on bias?

- \triangleright Training error: larger λ , considering the training error less
- > We prefer smooth function, but don't be too smooth.

Conclusion

- Pokémon: Original CP and species almost decide the CP after evolution
 - There are probably other hidden factors
- Gradient descent
 - More theory and tips in the following lectures
- We finally get average error = 11.1 on the testing data
 - How about new data? Larger error? Lower error?
- Next:
 - Linear regression (Theory)
 - Where does the error come from?
 - More theory about overfitting and regularization
 - The concept of validation

Reference

• Bishop: Chapter 1.1

Questions?