

PROJETO.....

Requisitos da disciplina Modelagem de Software e Arquitetura de Sistemas

Lucas Camargo 25027831

Gabriel Pacheco 25027826 Rogério Rodrigues Viera 25028005

Luan Fernandes 25027831 Daniel César 25027234

Adriana Carmem - 11413

São Paulo 2025

Sumário

1 INTRODUÇÃO	4
2. DOCUMENTO DE ABERTURA DO PROJETOS	5
2.1 – Project Charter	5
2.2 – Histórias do Usuário	6
3. DESIGN SPRINT – Ideação e prototipação do desafio	7
3.1 Desafio	7
3.2 Entender Mapear	7
3.3 Ideação – desenho da solução (trilha do usuário)	7
3.4 Prototipagem	7
4.REQUISITOS DE SISTEMA	
4.1 REQUISITOS FUNCIONAIS DE SOFTWARE	7
4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE	8
5. CASOS DE USO	9
6. DIAGRAMA DE CLASSE	11
7. ARQUITETURA DO SISTEMA	12
8. REFERÊNCIAS BIBLIOGRÁFICAS	12

FECAP

1 INTRODUÇÃO

Tendo.....

Incluir o documento do Projeto do PI – Problemas de Smart Cities

Smart Cities/Smart House

Nome da Instituição: Flex Automation

Objetivo da Aplicação:

ADS1 O objetivo do desafio é gerar um dashboard de uma cidade/casa inteligente que permita o

controle de sensores e atuadores.

Este desafio busca, de forma modular, introduzir como uma cidade/casa inteligente pode ser

controlada, tratando seus dados de forma a aprimorar o sistema e otimizando a sustentabilidade.

Seu dashboard deverá receber e enviar sinais de/para um simulador de casa/cidade inteligente,

provenientes da rede/internet. O servidor será fornecido pelos professores.

Desafio:

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades

inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto

na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle

para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a

conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma

a instruir sobre as melhores maneiras para a cidade a ser sustentável.

Personas a Serem Atendidas:

-Usuário final do sistema, que deseja controlar sua casa de forma a gastar menos e otimizar os

recursos da cidade. Considere que o usuário possui conhecimento básico para utilizar dispositivos

mobile.

-Controlador da cidade, um funcionário da cidade que deve acompanhar um

dashboard/mapa/painel informativo da cidade, tratando situações inesperadas, acompanhando os

dados dos sensores e acionando os programas da cidade. Considere que ele tem um conhecimento

médio para avançado de tecnologia.

Recursos:

https://store.steampowered.com/app/949230/Cities_Skylines_II/

https://store.steampowered.com/app/2741560/SimCity_3000_Unlimited/

https://planetsmartcity.com/ https://flexautomation.com.br

2. DOCUMENTO DE ABERTURA DO PROJETOS

2.1 - Project Charter

Prefácio

Deve definir os possíveis leitores do documento e descrever seu histórico de versões, incluindo uma justificativa para a criação de uma nova versão e um resumo das mudanças feitas em cada versão.

Introdução

Deve descrever a necessidade para o sistema. Deve descrever brevemente as funções do sistema e explicar como ele vai funcionar com outros sistemas. Também deve descrever como o sistema atende aos objetivos globais de negócio ou estratégicos da organização que encomendou o software.

Glossário

Deve definir os termos técnicos usados no documento. Você não deve fazer suposições sobre a experiência ou o conhecimento do leitor.

Definição de requisitos de usuário

Deve descrever os serviços fornecidos ao usuário. Os requisitos não funcionais de sistema também devem ser descritos nessa seção. Essa descrição pode usar a linguagem natural, diagramas ou outras notações compreensíveis para os clientes. Normas de produto e processos que devem ser seguidos devem ser especificados.

Arquitetura do sistema

Deve apresentar uma visão geral em alto nível da arquitetura do sistema previsto, mostrando a distribuição de funções entre os módulos do sistema. Componentes de arquitetura que são reusados devem ser destacados.

Especificação de requisitos do sistema

Deve descrever em detalhes os requisitos funcionais e não funcionais. Se necessário, também podem ser adicionados mais detalhes aos requisitos não funcionais. Interfaces com outros sistemas podem ser definidas.

Modelos do sistema

Pode incluir modelos gráficos do sistema que mostram os relacionamentos entre os componentes do sistema, o sistema e seu ambiente. Exemplos de possíveis modelos são modelos de objetos, modelos de fluxo de dados ou modelos semânticos de dados.

Evolução do sistema

Deve descrever os pressupostos fundamentais em que o sistema se baseia, bem como quaisquer mudanças previstas, em decorrência da evolução de hardware, de mudanças nas necessidades do usuário etc. Essa seção é útil para projetistas de sistema, pois pode ajudá-los a evitar decisões capazes de restringir possíveis mudanças futuras no sistema.

Apêndices

Deve fornecer informações detalhadas e específicas relacionadas à aplicação em desenvolvimento, além de descrições de hardware e banco de dados, por exemplo. Os requisitos de hardware definem as configurações mínimas ideais para o sistema. Requisitos de banco de dados definem a organização lógica dos dados usados pelo sistema e os relacionamentos entre esses dados.

2.2 - Histórias do Usuário

Alguns detalhes sobre a casa inteligente que cujos dados estão no arquivo anexo:

- -2 Pessoas vivem nesta casa
- -A casa possuí 2 quartos, 1 sala, 1 cozinha e 1 piscina e são identificados respectivamente pelos sensores de ID: 1, 2, 3, 4, 5.
- -O gasto energético médio para deixar cada local ligado é:

Quartos (ID 1 e 2) – 1,5KWatts/Hora (Considerando 1 TV,1 lâmpada e um ar-condicionado)

Sala (ID 3) – 50Watts/Hora (Considerando 1 TV e 5 lâmpadas)

Cozinha (ID 4) – 3KWatts/Hora (Considerando 1 Micro-ondas, 1 máquina de lavar louça e 3 lâmpadas)

Piscina (ID 5) – 7KWatts/Hora (Bomba + Aquecedor)

Você tem a possibilidade de adicionar comandos separados para controlar cada um dos elementos descritos acima.

EXEMPLO DA BASE DOS SENSORES

TimeStamp	ID_Sensor	Temperatura	Umidade	Movimento
28/4/25 0:18	3	39	71	0

	13 13 13	13 14 14 14	13 13 13	12 12 12 12
22/5/25 4:43	4	19	82	0
20/4/25 20:38	3	24	71	0
12/2/25 0:03	1	22	22	0
14/4/25 1:33	2	19	46	1
27/1/25 14:21	2	37	27	0
30/5/25 7:19	1	10	87	0
21/7/25 6:17	1	34	88	0
21/1/25 9:20	3	39	28	0
2/2/25 23:55	4	28	33	0
22/6/25 14:15	3	17	32	0
24/6/25 15:22	2	38	29	0
30/4/25 0:32	2	18	88	1
26/6/25 2:00	2	26	63	0
26/6/25 10:09	2	21	50	0
1/3/25 7:15	5	40	30	1
27/6/25 7:02	3	15	28	1

3. DESIGN SPRINT – Ideação e prototipação do desafio

- 3.1 Desafio
- 3.2 Entender Mapear
- 3.3 Ideação desenho da solução (trilha do usuário)
- 3.4 Prototipagem

4.REQUISITOS DE SISTEMA

4.1 REQUISITOS FUNCIONAIS DE SOFTWARE

Necessários 6 requisitos

RFS01	
Função	
Descrição	
Entradas	

Fonte	2222222222222
Saídas	
Ação	
	RFS02
Função	
Descrição	
Entradas	
Fonte	
Saídas	
Ação	

4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE

Necessários 6 requisitos

RFS01	
Função	
Descrição	
Entradas	
Fonte	
Saídas	
Ação	

RFS02		
Função		
Descrição		
Entradas		
Fonte		
Saídas		
Ação		

5. CASOS DE USO

Apresentar 3 casos de uso do sistema

6. DIAGRAMA DE CLASSE

7. ARQUITETURA DO SISTEMA

8. REFERÊNCIAS BIBLIOGRÁFICAS

SOMMERVILLE, I. Engenharia de Software. 11ª Edição. São Paulo: Pearson Addison-Wesley, 2017.

