Computabilità e Algoritmi (Mod. A) 30 Agosto 2010

Esercizio 1

Enunciare e dimostrare il teorema di Rice.

Esercizio 2

Dire se è calcolabile la funzione $f:\mathbb{N}\to\mathbb{N}$ definita da

$$f(x) = \begin{cases} \varphi_x(x+1) + 1 & \text{se } \varphi_x(x+1) \downarrow \\ \uparrow & \text{altrimenti} \end{cases}$$

Motivare adeguatamente la risposta.

Esercizio 3

Si dica che una funzione $f : \mathbb{N} \to \mathbb{N}$ è *strettamente crescente* se per ogni $y, z \in \text{dom}(f), y < z$ implica f(y) < f(z). Studiare la ricorsività dell'insieme $A = \{x \mid \varphi_x \text{ strettamente crescente}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Sia $B = \{x \mid \forall m \in \mathbb{N}. \ m \cdot x \in W_x\}$. Studiare la ricorsività dell'insieme B, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $\varphi_x(y) = x - y$.