Title of the document

Your name(s) here (Dated: September 27, 2021)

PROBLEM 1.

Given

$$\gamma \frac{d^2 u(x)}{dx^2} = -Fu(x) \tag{1}$$

with the definition $\hat{x} = x/L$, such that

$$\frac{d\hat{x}}{dx} = \frac{1}{L} \implies dx = Ld\hat{x}$$

Equation 1 can be written

$$\gamma \frac{d^2 u(\hat{x})}{L^2 d\hat{x}^2} = -Fu(\hat{x}) \implies \frac{d^2 u(\hat{x})}{d\hat{x}^2} = -\frac{FL^2}{\gamma} u(\hat{x}) = -\lambda u(\hat{x})$$

with $\lambda = FL^2/\gamma$.

PROBLEM 2.

For an arbitrary composite matrix A = BC the transpose of $A^T = (BC)^T = C^T B^T$. Hence for $\vec{w}_i = U \vec{v}_i$

$$\vec{w}_i^T \vec{w}_j = \vec{v}_i^T U^T U \vec{v}_j = \vec{v}_i^T \vec{v}_i = \delta_{i,j}$$

as $U^TU = U^{-1}U = I$

PROBLEM 3.

TABLE I. Eigenvector number 1.

arma::sym	Analytic	Difference
-0.231921	-0.231921	1.11022e-16
-0.417907	-0.417907	1.11022e-16
-0.521121	-0.521121	3.33067e-16
-0.521121	-0.521121	3.33067e-16
-0.417907	-0.417907	3.33067e-16
-0.231921	-0.231921	3.33067e-16

TABLE II. Eigenvector number 2.

arma::sym	Analytic	Difference
-0.417907	-0.417907	1.66533e- 16
-0.521121	-0.521121	1.11022e-16
-0.231921	-0.231921	8.32667e-17
0.231921	0.231921	1.94289e-16
0.521121	0.521121	2.22045e-16
0.417907	0.417907	2.77556e-16