Descrizione Sistema

La cpu dispone di una cache dati a 2 vie da 16KiB complessivi e linee da 64 byte, gestita con stato MESI e con politica di scrittura Write-Around in caso di miss.

Si considerino A,B,C immagazzinate in memoria a partire rispettivamente dagli indirizzi: 0x0100 8000, 0x0100 A000, 0x0100 C000

- 1) Si disegni la mappa della memoria
- 2) Si analizzi la dinamica della cache dati, e, tenendo ben presente che il sistema ha un solo caching agent, si risponda in modo preciso, schematico, conciso e tabellare ai seguenti quesiti:

Quali sono gli indici di set e linea, e i tag associati ad A,B,C per il primo e l'ultimo blocco contenenti le matrici?

Quante linee di cache occuperanno nel loro insieme? Possono i due vettori e la variabile stare per intero e simultaneamente in cache?

- 3) Si consideri la dinamica della cache nel calcolo della prima iterazione i=0, j=0, k=0 nel calcolo del primo elmento di C, disegnando lo stato MESI, il contenuto della cache e il valore del bit LRU dopo ogni operazione elementare (Load e Store) e si indichi il numero di accessi, il numero di miss e il numero di cicli di writeback e gli eventuali cicli di write allocate.
- 4) Si indichi il numero di accessi, il numero di misse il numero di cicli di writebacke gli eventuali cicli di write allocate, nonché lo stato MESI della cache al termine del calcolo del primo elemento di C[0][0]. (si riporti il contenuto del primo ed ultimo set della cache)

a) Si disegni la mappa della memoria. Punti 2

BA[310]	Byte8	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0	BA[310]
0v0100 DEEE	c[31][31]_MSB							c[31][31]_LSB	0x0100 CFF8
0.0100 0111	C[31][31]_W3D							c[31][31]_L3D	000100 0110
0x0100 C007	c[0][0]_MSB							c[0][0]_LSB	0x0100 C000
0::04.00 BEEE	L[24][24] N4CD							F[34][34] LCD	004.00 DEFO
0x0100 BFFF	b[31][31]_MSB							b[31][31]_LSB	0x0100 BFF8
0x0100 A007	b[0][0]_MSB							b[0][0]_LSB	0x0100 A000
0x0100 9FFF	a[31][31]_MSB							a[31][31]_LSB	0x0100 9FF8
0x0100 9F07	a[31][0]_LSB							a[31][0]_LSB	0x01008F00
0x0100 80FF	a[0][31]_MSB							a[0][31]_LSB	0x0100 80F8
0x0100 800F								a[0][1]_LSB	0x0100 8008
0x0100 8007	a[0][0]_MSB							a[0][0]_LSB	0x0100 8000

Si compilino i campi in arancione							
C	con le risposte						
Nome							
Cognome							
Matricola							

Testo:

La cpu dispone di una cache dati a 2 vie da 16KiB complessivi e linee da 64 byte, gestita con stato MESI e con politica di scrittura Write-Around in caso di miss.

Capacità:		2^14	16KiB
Dimensione Blocco:		2^6	64B
Numero di blocchi nella			
cache:	2^14/2^6	2^8	256
Numero di set	2^8/2	2^7	128
Numero di bit index			7
Numero di bit di tag	32-7-6		19
	Scomposizione indirizzo:		
TAG	Index	Offset /B	ytes in Blocks
BA[3113]	BA[126]	В	A[50]
(Address >> 13) & 0x7 FFFF	(Address >> 6) & 111 1111	Addres	s & 11 1111
0x0 0804	0x00 - b000 0000 - d0		0x00

Address 0x0100 8000

0x010080F8

0x0 0804	0x00 - b000 0000 - d0	0x00
0x00804	0x03 - b000 0011 - d3	0x38

- 3. Si analizzi la dinamica della cache dati, e, tenendo ben presente che il sistema ha un solo caching agent, si risponda in modo preciso, schematico, conciso e tabellare ai seguenti quesiti: 11 Punti
- a) Quali sono gli indici di set e linea, e i tag associati ad A,B,C per il primo e l'ultimo blocco contenenti le matrici?

	Contenuto Blocco di Cache Da A			TAG BA[??]	Set_id/indice BA[??]	Numero progressivo delle
Indirizzo primo elemento della linea/ blocco di cache	estremi del blocc	ndo le variabili agli o di cache (Byte più eno significativo).		identifican	tino sotto i "?" do i bit utilizzati g e indice.	linee/blocchi di cache occupati da A,B,C e D.
0x0100 8000	A[0][0]	A[0][7]	0x0100801F	0x0804	0x00	1
0x0100 9FE0 0x0100 A000	A[31][24] B[0][0]	A[31][31]	0x0100 9FFF 0x0100 A01F	0x0804 0x0805	0x3F 0x00	127 128
0X0100 A000		B[0][7]	0X0100 A01F			
0x0100 BFE0	B[31][24]	B[31][31]	0x0100 BFFF	0x0805	0x3F	255
0x0100 C000	C[0][0]	C[0][7]	0x0100 C01F	0x0806	0x00	128
0x0100 DFE0	C[31][24]	C[31][31]	0x0100 DFFF	0x0806	0x3F	255

a) Quante linee di cache occuperanno nel loro insieme? Possono i due vettori e la variabile stare per intero e simultaneamente in cache?

No in quanto la cache ha capacità di 16KiB ma le tre matrici occupano 24KiB

- 3. Si analizzi la dinamica della cache dati, e, tenendo ben presente che il sistema ha un solo caching agent, si risponda in modo preciso, schematico, conciso e tabellare ai seguenti quesiti: 11 Punti
- b) Si consideri la dinamica della cache nel calcolo della prima iterazione i=0, j=0, k=0 nel calcolo del primo elmento di C, disegnando lo stato MESI, il contenuto della cache e il valore del bit LRU dopo ogni operazione elementare (Load e Store) e si indichi il numero di accessi, il numero di miss e il numero di cicli di writeback e gli eventuali cicli di write allocate.

Si consideri la dinamica della cache nel calcolo della prima iterazione i=0, j=0, k=0 nel calcolo del primo elmento di C, disegnando lo stato MESI, il contenuto della cache e il valore del bit LRU dopo ogni operazione elementare (Load e Store).

	Passo:	0	Miss	1		Hit	0		
Stato MESI	Operazione elementare:				f0 = C[i][k]				
	Via0					Via1			
set_id	TAG	Data	MESI	LRU	TAG	Data	MESI		
0	0x0 0806	C[0][0]C[0][7]	E	1			I		
	Passo:	1	Miss	2		Hit	0		
Stato MESI	Оре	razione element	are:			f1 = B[i][k]			
		Via0		LRU		Via1			
set_id	TAG	Data	MESI	LKU	TAG	Data	MESI		
0	0x0 0806	C[0][0]C[0][7]	E	0	0x0 0805	B[0][0]B[0][7]	E		
	Passo:	2	Miss	3		Hit	1		
Stato MESI	Operazione elementare:				f2 = A[i][k]				
	Via0				Via1				
set_id	TAG	Data	MESI	LRU	TAG	Data	MESI		
0	0x0 0804	A[0][0]A[0][7]	E	1	0x0 0805	B[0][0]B[0][7]	E		
	Passo:		Miss	4		Hit	1		
Stato MESI	Ope	Operazione elementare:				C[i][k] = f0			
	Via0			LRU	Via1				
set_id	TAG	Data	MESI		TAG	Data	MESI		
0	0x0 0804	A[0][0]A[0][7]	E	1	0x0 0805	B[0][0]B[0][7]	Е		

Si indichi il numero di accessi, il numero di miss e il numero di cicli di writeback e gli eventuali cicli di write allocate.

nella prima iterazione ci sono 3 accessi in lettura, 3 missi in lettura

c) Si indichi il numero di accessi, il numero di miss e il numero di cicli di writeback e gli eventuali cicli di write allocate, nonché lo stato MESI della cache al termine del calcolo del primo elemento di C[0][0]. (si riporti il contenuto del primo ed ultimo set della cache)

Stato MESI	Passo:		WB:	0				
Stato IVILSI	Via0			LDII	Via1			
set_id	TAG	Data	MESI	1ESI LRU		Data	MESI	
0	0x0 0804	A[0][0]A[0][7]	E	1	0x0 0805	B[0][0]B[0][7]	E	
1	0x0 0804	A[0][8]A[0][15]	E	1				
2	0x0 0804	A[0][16]A[0][23]	Е	1				
3	0x0 0804	A[0][24]A[0][31]	Е	1				
4	0x00805	B[1][0-7]	E	0				
127	0x00805	B[31][0-7]	E	0				

Si indichi il numero di accessi, il numero di miss e il numero di cicli di writeback e gli eventuali cicli di write allocate? Si giustifichi la domanda

Per il calcolo di C[0][0] vengono eseguite 32 iterazioni in k. A ciascuna iterazione corrispondono 2 accessi in lettura agli elementi di A[0][k] e B[k][0]. Per un totale di 32*2 accessi in lettura. Al termine delle 32 iterazioni viene eseguita la scrittura di C[0][0] ed un corrispondente accesso in scrittura all'elemento.

Ogni 8 accessi di A danno origine ad una miss in lettura e 7 hit in lettura per un totale di 4 miss e 28 hit. Tutti gli accessi a B danno origine ad una miss in lettura per un totale di 32 miss.

La scrittura di C da origine ad una miss in scrittura, viene gestita in write around e non comporta uno spostamento di una linea di cache dalla memoria alla cache. Non ci sono cicli di WB.

A 0 0 0 0 0 1 6 F