PATENT SPECIFICATION

809.913

Date of Application and filing Complete Specification Nov. 9, 1955 No. 32094/55.

Application made in United States of America on Nov. 10, 1954. Application made in United States of America on Nov. 26, 1954. Complete Specification Published March 4, 1959.

Index at acceptance: —Classes 2(3), C3A6, C3A7(A4:B:C:E2:F1:G1:G2:J1:J3:K3), C3C2; and 81(1), B2(B3:D:H:J:L:N:P:Q:R:S).

International Classification: -A61k. C07g.

COMPLETE SPECIFICATION

A new Acid derived from an Alkaloid named "Deserpidine," its Esters and Salts thereof, and process for their manufacture

We, CIBA LIMITED, a Body Corporate organised according to the laws of Switzerland, of Basle, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to the production from a new alkaloid, which can be isolated from plants of the *Rauwolfia* species and is called "deserpidine", of a new acid and the preparation of its esters and salts.

Describine, which is an alkaloid having a sedative and hypotensive action, can be obtained by the process described in Specification No. 25680/55 (Serial No. 809,912). It can be used as a medicament for sedation and for the treatment of hypertension. The present invention is based on the unexpected observation that, when described below, a new carboxylic acid is obtained, which is hereinafter referred to as "described below, a we carboxylic acid is obtained, which is hereinafter referred to as "describing acid." We have found that, in addition to the free carboxyl group, descripidic acid contains a free hydroxyl group, and may therefore be represented by the formula

Des COOH

OH

in which "Des" stands for the divalent organic radical containing carbon, hydrogen, oxygen and nitrogen which is bound to the free hydroxyl and carboxyl groups in deserpidic acid. We have also found that by converting the carboxyl group into an esterified carboxyl group, for example, the carbomethoxy group, and the hydroxyl group into an esterified hydroxyl group, for example, the 3:4-dimethoxy-benzoyloxy group or 3:4:5-trimethoxy-benzoyloxy group, or one of the other acyloxy groups mentioned below, deserpidic acid can be converted into valuable esters.

Deserpidic acid crystallizes from methanol

and melts at 270—273° (with decomposition). According to analysis, deserpidic acid has the empirical formula C₂, H₂₆O₄N₂. Its infra red spectrum in "Nujol" (mineral oil) has the following absorption bands: strong bands at 3379—3201, 1580, 1454, 1377, 1318, 1199, 1137, 1082, 740 cm⁻¹; medium bands at 1709, 1241, 1227, 1190, 1025, 1009, 977 cm⁻¹; weak bands at 925, 900, 877, 849 cm⁻¹; and shoulders at 1301, 1156, 837, 765, 720 cm⁻¹. "Nujol" is a Registered Trade Mark.

In addition to deserpidic acid of the above formula and a process for its manufacture, the invention includes esters of deserpidic acid in which at least the carboxyl group is esterified, and a process for their manufacture, and salts of such acid and its esters. Besides deserpidic acid, the invention includes more especially those esters in which the carboxyl group is esterified with an alkanol, preferably a lower alkanol, such as ethanol, propanol, butanol, and preferably methanol, and in which the hydroxyl group is free or esterified with an The lower alkyl residues as defined herein contain at the most 5 carbon atoms. The preferred acids are sulphonic and carboxylic acids, especially those of the aromatic, heterocyclic or araliphatic series, and primarily those of these series which contain an aromatic monocyclic ring. Especially valuable are aromatic or araliphatic carboxylic acids containing a phenyl radical which is advantageously substituted, preferably at least in 4-position, by etherified hydroxyl groups, especially lower alkoxy groups such as methoxy or a methylene dioxy group; such acids are, for example, benzoic acid, phenyl acetic acid or cinnamic acid, but preferably 3,4,5-trimeth-oxy-benzoic acid, 3,4-dimethoxy-benzoic acid, 4-methoxy-benzoic acid, O-carbalkoxy-syringic acids, such as O-carbethoxy-syringic acid, or 3,4,5-trimethoxy-cinnamic acid. Further acids are furane carboxylic acids such as furane-2carboxylic acid, or pyridine-carboxylic acids such as pyridine-3-carboxylic acid or lower alkane carboxylic acids, preferably acetic acid.

45

60

0,5

70

75

80

85

•

BNSDOCID: <GB_____809913A__I_>

Deserpidic acid and its esters, in which at least the carboxylic group is esterified, and the salts thereof are new. The compounds of this invention, which have a free hydroxyl group, can be used as intermediate products in the manufacture of medicaments; thus they can be converted into their esters with acids. These esters, especially those of the aromatic, araliphatic and heterocyclic series and primarily 10 those with the acids containing an aromatic monocyclic ring and especially a phenyl radical as indicated above, have valuable pharmaceutical properties. They exhibit sedative action. Esters of this formula possess also hypotensive activity. These new esters can therefore be used as medicaments to bring about sedation and for the treatment of hypertension. They are also useful as intermediates for preparing valuable substances with related 20

Especially valuable with respect to their pharmacological activity are O-(3,4,5-trimethoxy-benzoyl)-methyl deserpidate, O-(3,4-dimethoxy-benzoyl)-methyl deserpidate, O-(4methoxy-benzoyl)-methyl deserpidate, furoyl-(2)-methyl deserpidate, O-nicotinoyl-methyl deserpidate, O-(3,4,5-trimethoxy-cinnamoyl)-methyl deserpidate, O-(3,4,5-trimethoxy-benzoyl)-ethyl deserpidate, O-(O'-carbethoxy-syringoyl)-methyl deserpidate, and Oacetyl-methyl deserpidate.

The first stage of the process of this invention for the preparation of said compounds comprises subjecting deserpidine to the action

of an alkaline saponifying medium.

Depending on the procedure which is followed, it is possible to split both ester groups or to saponify deserpidine partially, splitting only the esterified hydroxyl group. Thus one may work with different alkaline saponifying agents or with the same but under different conditions, as e.g. in the presence or absence of water, at a lower or higher temperature or for a longer or shorter period of time. For example, when deserpidine is heated for a comparatively long time with the solution of an alkali hydroxide, such as potassium hydroxide, in an alcohol, such as methanol, both ester groups are hydrolyzed. When the treatment is performed with the same agent under milder conditions, e.g. for a short time only, only the esterified hydroxyl group is split.

For partial saponification, however, there is used as alkaline saponifying agent especially one capable of converting an esterified hydroxyl group into a free hydroxyl group with the formation of an ester, that is to say, by alcoholysis, the carbomethoxy group being redepending on the conditions employed. It is thus of advantage to work in an anhydrous alcohol in the presence of an alcoholate, such as an alkali metal or aluminum alcoholate or some other alcoholyzing agent, such as sodium carbonate or piperidine. absolute methanol in the presence of e.g. an

alkali methylate, such as sodium methylate or aluminum tertiary butylate, piperidine, or sodium carbonate, there is formed the deserpidic acid methyl ester. When the alcoholysis is carried out in other absolute alcohols, such as ethanol or butanol in the presence, for example, of the corresponding alcoholates, such as sodium ethylate or sodium butylate or other alcoholyzing agents, there are obtained by reesterification the corresponding deserpidic acid esters, such as deserpidic acid ethyl ester or butyl ester. For conversion into deserpidic acid, the esters can be further treated in an alkaline medium, e.g. with an alkaline solution of an alkali hydroxide such as a methanolic solution of potassium hydroxide.

Deserpidic acid esters with a free hydroxyl group can also be obtained by treating deserpidic acid with an esterifying agent capable of converting a carboxyl group into an esterified carboxyl group. To this end the deserpidic acid can be converted into an ester thereof either directly or by way of a functional derivative thereof. Advantageously deserpidic acid is reacted with a diazoalkane or it is esterified with an alcohol, especially an alkanol, in the presence of a strong acid, such as a hydrohalic

To prepare an ester of the deserpidic acid of which both functional groups are esterified, a deserpidic acid ester with a free hydroxyl group is treated with an esterifying agent capable of converting a hydroxyl group into an esterified hydroxyl group. One procedure is to react an ester with a free hydroxyl group with the desired acid advantageously in the form of a reactive functional derivative thereof, especially a halide, such as, for example, the chloride, or an anhydride. The reaction is advantageously conducted in the presence of a diluent 105 and/or a condensing agent. When an acid halide is used it is advantageous to work in an anhydrous solvent in the presence of an acid, binding agent, such as an alkali carbonate or alkaline earth carbonate or a strong 110 organic base, such as a tertiary amine. There may be used, e.g. an acid halide in pyridine as solvent.

Depending on the method of working, deserpidic acid and its esters are obtained in the 115 free form or as salts. Since deserpidic acid, in addition to the carboxyl group, contains a basic group, it can form salts with bases or acids. It is possible to prepare from deserpidic acid, e.g. by reaction with a metal hydroxide, a metal salt, e.g. an alkali metal salt such as sodium or potassium salt. On the other hand, deserpidic acid and its esters can be converted into their salts with acids, for example, by treating them with inorganic or organic acids, such as hydro- 125 halic acids, sulfuric acid, phosphoric acid, nitric acid, hydroxyethane sulfonic acid, toluene sulfonic acid, acetic acid, tartaric acid. or citric acid. From the salts, deserpidic acid and its esters can be obtained in the free form. 130

Free deserpidic acid is obtained, for example, from deserpidic acid hydrochloride by reaction Where the esters of with silver carbonate. deserpidic acid with an esterified hydroxy group are intended for therapeutic use in the form of their salts, these salts are understood to be non-toxic and therapeutically useful.

In the afore-described reactions, the starting materials can also be used in the form of the 10 salts mentioned. Thus it is possible, e.g. to react deserpidic acid in the form of its hydrochloride with a diazoalkane. Instead of deserpidine, material containing deserpidine can be used as starting material, such as an extract 15 from plant material of the Rauwolfia species, e.g. of Rauwolfia canescens, or a crude alkaloid mixture containing deserpidine and reserpine.

The invention includes also any modification of the process which comprises using as starting material a compound obtainable as an intermediate product at any stage of the process and carrying out the remaining process

-/E.*

steps.
The new pharmacologically active esters of the invention can be made up for therapeutic administration into pharmaceutical compositions. These compositions may be in any suitable solid or liquid dosage form, especially in a form suitable for oral or parenteral administration, e.g. tablets, powder, capsules, pills, solutions, emulsions or suspensions, e.g. in the form of ampouled injectable solutions. As pharmaceutical carriers there may be employed materials or mixtures of such which do not react with deserpidine and are therapeutically useful. Substances or mixtures thereof, such as water, gelatine, lactose, starch, magnesium stearate, talc, vegetable oils, benzyl alcohol, ascorbic acid, gums, glycols such as propylene glycol or polyalkylene glycol, petroleum jelly, cholesterol, tragacanth, alcohol or others may be employed. In preparing the novel compositions the esters or its salts are admixed with the pharmaceutical carrier and formulated in the desired dosage unit form according to pharmaceutical practice. compositions may be sterilized and may contain auxiliary substances such as preservative, stabilizing, wetting or emulsifying substances, salts for the control of the osmotic pressure or buffer substances or other therapeutically active substances, such as 1-hydrazino-phthalazine hydrochloride or pure reserpine.

The following examples will serve to illustrate the invention, the relationship of parts by weight to parts by volume being the same as

the gram to the milliliter:-

Example 1.

To 1 part by weight of deserpidine in 20 parts by volume of methanol is added a solu-tion of 2 parts by weight of potassium hydroxide in 10 parts by volume of water. This mixture is refluxed for 2 hours under an atmosphere of nitrogen. At the end of this

period all the deserpidine is dissolved and the resulting solution is filtered through glass wool. After cooling, glacial acetic acid (3 parts by volume) is added to give the solution a pH of about 6. The solution is then evaporated in vacuo to a white, solid froth, which is triturated with 25 parts by volume of ether and filtered. The ether insoluble portion is similarly treated with two portions each of 25 parts by volume of ether. The white, ether-insoluble solid is triturated once with 100 parts by volume of acetone and then with 5 portions each of 50 parts by volume of acetone. After each trituration the mixture is filtered and the filtrates evaporated to dryness in vacuo. The white, solid froths thus resulting from the first four triturations are combined and crystallized from methanol, yielding white prisms, melting at 267—269° C. (dec.). The product is recrystallized by dissolving in a large volume of methanol and methylene chloride, filtering and concentrating until a smal volume of methanol remains. After two such recrystallizations deserpidic acid is obtained in the form of white prisms melting at 270-273° C. (dec.). According to analysis, deserpidic acid has the empirical formula C₂₁H₂₆O₄N₂. Free deserpidic acid can be converted into its salts; thus, by treating with aqueous methanolic potassium hydroxide solution, filtering and adding ether to the obtained solution, there is obtained the potassium salt as a white powder. By treatment with acids such as nitric acid or hydrochloric acid, the corresponding acid addition salts are The alkaloid deserpidine used as obtained. starting material can be obtained according to 100 the process decribed in British Patent Application No. 25680/55.

Example 2.

To 0.5 part by weight of deserpidine is added a solution of 0.05 part by weight of 105 sodium in 25 parts by volume of methanol. The mixture is refluxed under nitrogen for one hour during which the deserpidine all dissolves. After cooling, the solution is concentrated in vacuo to a volume of about 10 parts by volume. 30 parts by volume of water are added and then concentrated hydrochloric acid in a dropwise manner until the solution is strongly acidic. It is then extracted with 15 parts by volume of ether and re-extracted with 3 portions each of 10 parts by volume of ether. The aqueous phase is then made basic with concentrated aqueous ammonia and extracted with 15 parts by volume of methylene chloride and re-extracted with 3 portions each of 10 parts by volume of methylene chloride. The combined methylene chloride extracts are dried over anhydrous potassium carbonate and concentrated in vacuo to give methyl deserpidate as a pale, yellow solid froth which analyzes for the empirical formula $C_{22}H_{28}O_4N_2$. same manner, by employing dry ethanol or butanol instead of methanol, the corresponding alkyl deserpidates are obtained.

Methyl deserpidates shows in the U.V. absorption spectrum, taken in ethanol solution, the following bands: maxima: $\lambda = 225$ m_{μ} (ϵ =33000), 281—282 m_{μ} (ϵ =7510), 289 m_{μ} (e=6400); minima: $\lambda = 248 \text{ m}_{\mu}$ (e=2000), 288 m $_{''}$ (ϵ =6360).

A "Nujol" mull showed the following bands in the infra red, given in reciprocal centimeters: strong bands at 3362, 2942, 2851, 1724, 1466, 1140, 1102, 742; medium bands at 1378, 1356, 1333, 1317, 1303, 1287, 1275, 1258, 1243, 1225, 1203, 1166, 1157 1053, 1040, 1013, 993, 986, 680; medium weak bands at 923, 880, 651; weak bands at 959, 900, 850, 837, 805; shoulders at 3022, 1090.

0.33 part by weight of the above described methyl deserpidate is chromatographed on 5 parts by weight of alumina ("Alcoa", acid washed; Activity No. 3). "Alcoa" is a Registered Trade Mark. A fraction eluted with 25 parts by volume of benzene containing 1 per cent methanol gives, after removal of solvent, a non-crystalline residue. 0.03 part by weight of this is dissolved in 1.2 parts by volume of 10 per cent acetic acid and a few drops of saturated sodium nitrate solution is added After standing at room temperature several days, the crystalline material is filtered. This is re-crystallized from methanol to give prisms of the nitric acid salt of methyl deserpidate, which melts at 271—276° C. and analyzes for C22H28O4N2.HNO3. Other salts, which can be obtained from methyl deserpidate are, for example, those with hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, tartaric acid, citric acid, hydroxy ethane sulfonic acid and toluene sulfonic acid.

Methyl deserpidate can also be obtained from deserpidic acid by reaction with diazomethane in methanolic solution. In the same manner, using diazoethane, ethyl deserpidate can be obtained; using other diazoalkanes, such as diazopropane or butane, the corresponding esters are obtained. Instead of employing diazoalkanes, the alcohols in the presence of an acid catalyst such as hydrochloric acid may be employed to esterify the deserpidic acid. The esterifying agent may be employed in equivalent amounts or in excess.

By boiling methyl deserpidate in a solution 50 of sodium hydroxide in aqueous methanol under an atmosphere of nitrogen and working up as described in Example 1, there is obtained deserpidic acid, melting at 270-273° 55 (dec.).

Example 3.

0.3 part by weight of methyl deserpidate is dissolved in 2 parts by volume of dry distilled pyridine and added slowly to a cooled mixture of 0.33 part by weight of 3,4,5-trimethoxycinnamoyl chloride in 2 parts by volume of dry distilled pyridine. 1 part by volume of dry pyridine is used as a rinse. After standing at ° C. for 4 days, the reaction mixture is poured into 20 parts by volume of water and ice. 10

parts by volume of 10 per cent aqueous ammonia are added, the mixture is triturated for about 5 minutes and then extracted with three portions each of 15 parts by volume methylene The combined extracts are washed chloride. with 5 parts by volume of cold sodium chloride solution, dried over anhydrous potassium carbonate, and concentrated in vacuo to a solid residue. 0.41 part by weight of this is dissolved in 10 parts by volume of benzene and 2 parts by volume of hexane and chromatographed on 8 parts by weight activated alumina (Woelm; Activity No. 1). From the fractions eluted with benzene (400 parts by volume), followed by removal of the solvent and crystallization from methanol-hexane, O - (3,4,5 - trimethoxy - cinnamoyl) - methyl deserpidate is obtained in the form of small white plates which sinter to a glass at 133—143° C., recrystallize at 182° C. and melt at 85 216—217° C. It possesses sedative and It possesses sedative and hypotensive activity. It analyempirical formula $C_{0.1}H_{10}O_8N_2$. It analyzes for the In the U.V. spectrum taken in ethanolic solution it possesses the following maxima: $\lambda = 226 - 227$ m μ (ϵ =53900), 291 m μ (ϵ =21600) and a minimum at λ =254—255 m μ (ϵ =6700). Its infra-red spectrum (in "Nujol") shows the following absorption bands: strong bands at 2939—2839, 1729, 1704, 1458, 1313, 1276, 1252, 1182, 1153, 1129 cm⁻¹; medium bands at 3402, 1636, 1584, 1507, 1420, 1378, 1044, 995, 831, 728 cm⁻¹; weak bands at 916, 878 cm⁻¹; shoulders at 3360, 3043, 1330, 1301, 1211, 1102, 1057, 1010, 738 cm⁻¹. The 3,4,5-100 trimethoxy-cinnamoyl chloride used as starting material can be obtained as follows:

4 parts by weight of 3,4,5-trimethoxy-cinnamic acid are refluxed for 35 minutes in an anhydrous system, with 6 parts by volume 105 redistilled thionyl chloride. The excess 1700nyl chloride is removed under vacuum and v distilling from the residue two portions of cay benzene. The crystalline residue is twice crystallized from hexane-ether to give 3,4,5trimethoxy-cinnamoyl chloride as bright yellow prisms, melting at 95-96° C.

EXAMPLE 4

0.5 part by weight of methyl descrpidate, dried by distilling toluene under vacuum from 115 it twice, is dissolved in 5 parts by volume of dry, freshly distilled pyridine. 0.5 part by volume of acetic anhydride is added with cool-The reaction mixture is allowed to stand at 5° C. for 5 days, after which it is poured into 50 parts by volume of water and ice. 12 parts by volume of 5 per cent aqueous ammonia are added and the mixture triturated for about 10 minutes. It is then extracted with 50 parts by volume of methylene chloride and 125 re-extracted with 15 parts by volume and then with 10 parts by volume of the same solvent. The combined extracts are washed with 2 portions each of 10 parts by volume of a sodium

70

RNSDOCID- >GR

chloride solution, dried over anhydrous potassium carbonate and evaporated in vacuo to give the crude O-acetyl-methyl deserpidate. After crystallization from methanol, it melts at 275-278° C. and analyzes for the empirical formula C₂₄H₃₀O₅N₂. O-acetyl-methyl deserpidate possesses sedative activity. Its optical rotation is $[\alpha]_D^{26} = -132^{\circ} \pm 1^{\circ}$ (chloroform). Its infra-red absorption spectrum taken in "Nujol" shows the following bands: strong bands at 2948-2853, 1737, 1709, 1263, 1252 1092, 732 cm⁻¹; medium bands at 3386, 1462, 1444, 1379, 1358, 1333, 1314, 1301, 1287, 1214, 1184, 1157, 1116, 1042, 1010, 975, 880, 15 645 cm⁻¹; weak bands at 954, 928, 916, 908, 850, 829, 804 cm⁻¹; shoulders at 3043, 1490, 1222, 1195, 1145, 1127, 1105, 1056, 1034 cm⁻¹. Its U.V. absorption spectrum in ethanolic solution shows the following 20 maxima: $\lambda = 226$ m μ ($\epsilon = 32200$), 282—283 m μ ($\epsilon = 7340$), 289—290 m μ ($\epsilon = 6300$); and minima: $\lambda = 247 - 248 \text{ m}\mu \ (\epsilon = 2070), 288 \text{ m}\mu$ (e = 6240).

Example 5 To a solution of 0.46 part by weight of methyl descripidate (dried by distilling toluene from it twice) in 5 parts by volume of freshly distilled pyridine is added dropwise and with cooling 0.46 part by weight of p-toluene-sul-30 fonyl chloride in 1 part by volume of dry ben-I part by volume of pyridine is used to rinse the reagent into the flask which is securely stoppered and allowed to stand at 5° C. for 5 days. The reddish solution is poured into approximately 50 parts by volume of ice and water. 12 parts by volume of 5 per cent aqueous ammonia are added and the semi-solid precipitate is triturated for about 5 minutes. The mixture is then extracted with three por-40 tions of methylene chloride of 50 parts by volume, 15 parts by volume and 10 parts by volume. The combined methylene chloride extracts are washed three times with small portions of a cold sodium chloride solution, dried over anhydrous potassium carbonate and evaporated in vacuo to a semi-crystalline resi-0.63 part by weight of this is dissolved in methylene chloride, filtered through approximately 0.02 part by weight of activated charcoal on a diatomaceous earth filter cell, evaporated and crystallized from 4 parts by volume of benzene. Additional material is obtained from the benzene mother liquors. Recrystallization from methanol gives O-(ptoluenesulfonyl)-methyl deserpidate, melting at 226—228° C. It analyzes for the empirical formula C_2 , H_3 , O_6N_2 S and has the optical rotation $[\alpha]_0^{26} = -85^\circ \pm 2^\circ$ (chloroform). Its U.V. absorption spectrum taken in ethanolic solution shows the following maxima: $\lambda = 225 \text{ m}\mu$ $(\epsilon = 22250)$, 282 m μ ($\epsilon = 7860$) and a minimum at $\lambda = 247$ my ($\epsilon = 2300$). Its infra-red absorption spectrum taken in "Nujol" shows the following bands: strong bands 2956—2837, 65 1739, 1464, 1368, 1347, 1334, 1181, 1157,

1116, 1094, 940, 920, 906, 844, 815, 740 cm⁻¹; medium bands at 3429, 1600, 1378, 1313, 1303, 1287, 1275, 1266, 1253, 1211, 1142, 1129, 1055, 1041, 1023, 1010, 982, 877, 798, 723, 666 cm⁻¹; weak bands at 704, 647 cm⁻¹; shoulders at 3043, 1582, 1500, 1392, 1325, 1227, 1193, 1101, 830, 807 cm⁻¹.

EXAMPLE 6

0.5 part by weight of methyl deserpidate, dried by distilling toluene under vacuum from it twice, is dissolved in 5 parts by volume of dry distilled pyridine. 0.5 part by volume of 2-furoyl chloride (freshly distilled) is added with cooling. The resulting precipitate is re-dissolved by the addition of 2 parts by volume of dry benzene. After standing at 5° C. for 5 days the reaction mixture is poured into 50 parts by volume water and ice. parts by volume of 5 per cent aqueous ammonia are added and the mixture triturated for about 10 minutes. It is then extracted with 50 parts by volume methylene chloride and re-extracted with 15 parts by volume and then with 10 parts by volume of the same solvent. The combined extracts are washed with 2 portions each of 10 parts by volume sodium chloride solution, dried over anhydrous potassium carbonate and concentrated in vacuo. part by weight of the residue is dissolved in 15 parts by volume of dry benzene and chromatographed on 14 parts by weight activated alumina (Woelm; Activity No. 1). From the fractions eluted with 200 parts by volume of benzene and with 100 parts by volume of benzene containing 0.1 per cent methanol, followed by removal of the solvents and crystallization from methanol, O-furoyl-(2)-methyl deserpidate is obtained in fine, white needles, melting at 244—247° C. It has sedative and hypotensive activity. It analyzes for the 105 empirical formula $C_{27}H_{30}O_6N_2$ and shows the optical rotation $[\alpha]_D^{25}=141^\circ\pm0.5^\circ$ (chloroform), its U.V. absorption spectrum taken in ethanolic solution shows the following maxima: $\lambda=226 \text{ m}\mu$ ($\epsilon=37700$), $\lambda=255 \text{ m}\mu$ (e=18000); a minimum at λ =241 m μ (e=14800) and a plateau at λ =278—284 m μ . Its infra-red spectrum taken in "Nujol" shows the following bands: strong bands at 2941-2816, 1710, 1305, 1187, 1123, 738 cm⁻¹; 115 medium bands at 1631, 1575, 1463, 1400, 1378, 1350, 1266, 1230, 1109, 1093, 1061, 1041, 1030, 1015, 979, 969, 933, 766, 755, 746 cm⁻¹; weak bands at 3516, 3377, 3283, 917, 902, 885, 853, 822 cm⁻¹; shoulders at 3042, 1736, 1441, 1327, 1282, 1223, 1213, 1155, 1145, 1181, 985, 721 cm⁻¹.

Example 7

To a solution of 0.5 part by weight of methyl description in 4 parts by volume of dry, distilled pyridine is added 0.5 part by weight of 3,4-dimethoxy-benzoyl chloride in 2 parts by volume of benzene, dropwise and with cooling

70

and stirring. I part by volume of pyridine is used to rinse the reagent into the reaction flask which is stoppered and kept at 5° C. for 5 The reaction mixture is poured into 50 parts by volume of water containing ice. 2 parts by volume of concentrated aqueous ammonia in 10 parts by volume of water are After trituration for 5 minutes the mixture is extracted with 3 portions of methyl-10 ene chloride: 50 parts by volume, 15 parts by volume and 10 parts by volume. The comform). bined methylene chloride extracts are washed twice with 10 parts by volume of saturated sodium chloride solution. After drying over obtained. anhydrous potassium carbonate, the solution is filtered and evaporated in vacuo to dryness, The tan solid froth is crystallized from 5 parts by volume of methanol to give crystals melting at 211—215° C. This, on recrystallization from methanol after activated charcoal treatment in methanol-methylene chloride solution, gives white prisms of O-(3,4-dimethoxy-benzoyl)-methyl deserpidate having sedative and hypotensive activity and melting at $213-216^{\circ}$ C. Its optical rotation is $[x]_D^{25.5} = -140^{\circ} \pm$ 2° (chloroform) and it analyzes for the empirical formula $C_{31}H_{36}O_7N_2$. Its infra-red absorption spectrum when taken in "Nujol" cal formula $C_{31}H_{36}O_7N_2$. shows the following bands: strong bands at 2929—2837, 1714, 1467, 1287, 1272, 1230, 1180, 1141, 1099 cm⁻¹; medium bands 3392, 1605, 1519, 1423, 1381, 1354, 1338, 1324, 1313, 1298, 1251, 1209, 1066, 1028, 980, 953, 925, 880, 826, 762, 741, 727 cm⁻¹; weak bands at 909, 850, 808, 650 cm⁻¹; shoulders at 1596, 1151, 1110, 1038, 1015, 986. It shows the following characteristic bands in the U.V. absorption spectrum, taken in ethanolic solution: maxima, $\lambda = 224$ m μ ($\epsilon = 52880$), 265 m μ ($\epsilon = 17900$), 284 m μ ($\epsilon = 13300$), 290 m μ (ϵ =13360); minima, λ =242—243 m μ (ϵ = 7350), 281 m μ (ϵ =12980) and 287 m μ (ϵ = 12980). EXAMPLE 8 To a solution of 0.5 part by weight of methyl deserpidate in 4 parts by volume of dry, distilled pyridine is added 0.5 part by weight of 3,4,5-trimethoxybenzoyl chloride in 2 parts by volume of benzene, dropwise and with cooling 963, 865, 832.

and stirring. 1 part by volume of dry pyridine is used to rinse the reagent into the reaction mixture. After storing in a well-stop-pered flask at 5° C. for 5 days, the mixture is poured into 50 parts by volume of water con-2 parts by volume of concentaining ice. trated aqueous ammonia in 10 parts by volume of water are added with stirring. After trituration for 5 minutes, the mixture is extracted three times with methylene chloride: 50 parts by volume, 15 parts by volume, 10 parts by The combined methylene chloride volume. extracts are washed with 2 portions each of 10 parts by volume saturated sodium chloride

solution, dried over anhydrous potassium car-

bonate, filtered and taken to dryness in vacuo.

The residue, a light tan froth, is crystallized from 5 parts by volume of acetone to give white needles melting at 113° C., resolidifying at 165° C. and remelting at 224—227° C. After recrystallizing twice from methanol, O - (3,4,5 - trimethoxy - benzoyl) - methyl deserpidate having sedative and hypotensive activity melts at 228—232° C. It analyzes for the empirical formula $C_{33}H_{36}O_sN_2$ and shows an optical rotation $[x]_D^{23} = -134°$ (chloroform). By employing ethyl deserpidate instead of methyl deserpidate O-(3,4,5-trimethoxy - benzoyl) - ethyl deserpidate is obtained.

It will be appreciated that other esters of alkyl deserpidates with other acids may be obtained using the appropriate acids, their chlorides or anhydrides. Such acids, for example, are: 4-methoxy-benzoic, nicotinic, isonicotinic, cinnamic, phenylacetic, mandelic, tropic, p-methoxy-cinnamic, 3,4,5-triethoxy-benzoic, 3,4-methylene-dioxy-benzoic, O-carbethoxy-syringaic, thienoic, picolinic or quinoline carboxylic acids.

EXAMPLE 9

To a suspension of 0.75 part by weight of serpidic acid in 50 parts by volume of meth-

70

deserpidic acid in 50 parts by volume of methanol and 50 parts by volume of ether, cooled in an ice bath, is added in portions and with frequent swirling a cold ethereal solution of diazoethane prepared from 6 parts by volume of nitrosoethyl-urethane. There is slow dissolving of the deserpidic acid, so that finally all acid is dissolved while still an excess of diazoethane is present. The solution is evaporated, 100 first at atmospheric pressure and finally in vacuo to give a light tan frothy solid. thus obtained ethyl deserpidate shows the following infra-red spectrum taken in a "Nujol" (mineral oil) mull; the wave lengths are given 105 in reciprocal centimeters and grouped together according to their strength: strong bands at 3381—3280, 2965—2837, 1727—1714, 1458, 1153, 1138, 1100, 738; medium to strong bands at 1378, 1332, 1314, 1301, 1283, 1241, 110 1189, 1049, 1018; medium bands at 982, 945, 928; weak bands at 1632, 1587, 901, 886, 851, 691, 648; shoulders at 3048, 1500, 1273, 1224,

Ethyl deserpidate can be converted into its 115 salt with nitric acid in the following way:—

To a solution of ethyl deserpidate in dilute acetic acid is added saturated sodium nitrate solution. After cooling at 5° C. for several days the crystals formed are filtered and washed wih a small volume of water. The thus obtained salt of ethyl deserpidate with nitric acid melts at 268—271° C. (dec.). It can be recrystallized from methanol and is thus obtained in needles melting at 272—275° C. (dec.).

EXAMPLE 10
To 0.5 parts by weight of ethyl deserpidate,

dried by distilling toluene from it twice, in 4 parts by volume of dry, distilled pyridine, is added dropwise and with stirring 0.5 part by weight of 3,4,5-trimethoxy-benzoyl chloride in 2 parts by volume of dry benzene. 1 part by volume of dry pyridine is used as a rinse. The flask is securely stoppered and kept at 5° C. for 3 days and then at room temperature over night. The reaction mixture is poured into 10 50 parts by volume of water and ice. 2 parts by volume of concentrated aqueous ammonia in 10 parts by volume of water are added slowly and with stirring. After stirring for 5 minutes, the mixture is extracted three times with methylene chloride: 50 parts by volume; 15 parts by volume; 10 parts by volume. The combined methylene chloride extracts are washed with 2 portions of saturated sodium chloride solution. After drying over anhyd-20 rous potassium carbonate, the solution is filtered and evaporated in vacuo to dryness. Toluene is vacuum-distilled from the residue three times.

0.51 parts by weight of the above residue is 25 dissolved in 10 parts by volume benzene and poured onto a column of 10 parts by weight of activated alumina (Woelm; Activity I), using 15 parts by volume of benzene as wash. The fractions eluted with benzene, benzene containing 0.1 per cent methanol and benzene containing 0.2 per cent methanol, were evaporated to dryness and the residue dissolved in methanol. Dilute nitric acid (1:4) was added to the methanolic solution, whereupon the nitric acid salt of O - (3,4,5 - trimethoxy - benzoyl) - ethyl deserpidate crystallizes, m.p. 255—260° C. (dec.). It can be recrystallised from a mixture of methanol and methylene chloride by evaporating the methylene chloride; it then melts at 258-260° C. (dec.).

Example 11 To a solution of 0.90 part by weight of methyl deserpidate in 20 parts by volume of dry distilled pyridine is added 1.0 part by weight of nicotinoyl chloride. The reaction mixture is kept at 5° C. for 5 days and then poured into 100 parts by volume of water. 10 parts by volume of aqueous ammonia are added and the mixture extracted 3 times with 30 parts by volume each of methylene chlor-The combined extracts are washed with 30 parts by volume of a saturated aqueous sodium chloride solution, dried over magnesium sulfate and anhydrous sodium carbonate, 55 filtered and evaporated to dryness in vacuo at The residue is chromatoroom temperature. graphed over 10 parts by weight of magnesium silicate (Florex) using about 150 parts by volume of methylene chloride for elution. After evaporation of the solvent and crystallization from benzene methyl O-nicotinoyl-deserpidate melting at 167—169° C. (decomp.) is obtained.

> Example 12 To a solution of 0.90 part by weight of

methyl deserpidate in 20 parts by volume of dry distilled pyridine is added 1.5 parts by weight of 6-quinoline carboxylic acid chloride. The reaction mixture is kept at 5° C. for 5 days and then poured into 100 parts by volume 10 parts by volume of aqueous of water. ammonia are added and the mixture extracted 3 times with 30 parts by volume each of The combined extracts methylene chloride. are washed with 30 parts by volume of a saturated aqueous sodium chloride solution, dried over magnesium sulfate and anhydrous sodium carbonate, filtered and evaporated to dryness in vacuo at room temperature. The residue in vacuo at room temperature. is crystallized from a mixture of methanol and The thus obtained dihydrate of ether. O - quinoline-6-carbonyl-deserpidate methyl melts at 172—174° C. (decomp.).

Example 13

To a solution of 0.90 part by weight of methyl deserpidate in 20 parts by volume of dry distilled pyridine is added 1.2 part by weight of β -naphthoyl chloride. The reaction mixture is kept at 5° C. for 5 days and then poured into 100 parts by volume of water. 10 parts by volume of aqueous ammonia are added and the mixture extracted 3 times with 30 parts by volume each of methylene chloride. The combined extracts are washed with 30 parts by volume of a saturated aqueous sodium chloride solution, dried over magnesium sulfate and anhydrous sodium carbonate, filtered and evaporated to dryness in vacuo at room The residue is chromatotemperature. graphed over 10 parts by weight of magnesium silicate (Florex) using about 150 parts by 100 volume of methylene chloride for elution. After evaporation of the solvent and crystallization from benzene methyl O-(β -naphthoyl)deserpidate melting at 191-192° obtained.

Example 14

To a solution of 0.90 parts by weight of methyl deserpidate in 20 parts by volume of dry distilled pyridine is added 1.0 part by weight of 3,4-methylene-dioxybenzoyl chloride. The reaction mixture is kept at 5° C. for 5 days and then poured into 100 parts by volume of water. 10 parts by volume of aqueous ammonia are added and the mixture extracted 4 times with 30 parts by volume each of methylene chlor- 115 The extracts are combined, dried over magnesium sulfate and anhydrous sodium carbonate, filtered and evaporated to dryness. The residue is chromatographed over 10 parts by weight of magnesium silicate (Florex) using 120 methylene chloride containing 5% methanol After evaporation of the solvent as eluant. and crystallization from a mixture of methylene chloride, methanol and ligroin methyl O-(3,4methylenedioxybenzoyl) - deserpidate melting 125 at 195-196° C. is obtained.

Example 15

0.3 part by weight of deserpidic acid is dis-

BNSDOCID: <GB______809913A | >

solved in 20 parts by volume of a 1:1-mixture of methylene chloride and dioxane. A solution of diazo-n-butane in ether is added dropwise with cooling in an ice bath until nitrogen 5 is no longer evolved and a slight orange color persists. The mixture is left standing for 24 hours at room temperature and then freed from solvents under reduced pressure. The residue is dissolved in methylene chloride and passed 10 over a short column of 5 parts by weight of magnesium silicate (Florex). Methylene chloride containing 10 per cent methanol is used as eluant. After evaporation of the solvent n-butyl deserpidate remains.

This residue is dissolved in 10 parts by volume of dry pyridine and 5 parts by volume of acetic anhydride added. After standing for four days at 5° C. the reaction mixture is poured into water, 10 parts by volume of concentrated aqueous ammonia added and the mixture extracted four times with methylene chloride. The extracts are washed with a

saturated aqueous sodium chloride solution and dried over magnesium sulfate and anhydrous sodium carbonate. After evaporation there is obtained a crude residue which is purified by passing over 5 parts by weight of magnesium silicate (Florex) using methylene chloride as a solvent. The fraction eluted with methylene chloride containing 10 per cent methanol yields crystalline n-butyl O-acetyl-deserpidate,

m.p. 226—228° C.

WHAT WE CLAIM IS:-

1. Deserpidic acid and salts thereof.

2. Esters of deserpidic acid in which at least the carboxyl group is esterified and, if the hydroxyl group is esterified with 3:4:5-trimethoxy-benzoic acid, the esterified carboxyl group contains more than two carbon atoms, and salts thereof.

3. Deserpidic acid alkyl esters containing a free hydroxyl group, and salts thereof.

4. Deserpidic acid methyl ester and salts thereof.

5. Deserpidic acid ethyl ester and salts thereof.

6. Deserpidic acid alkyl esters in which the hydroxyl group is esterified and, if the hydroxyl group is esterified with 3:4:5-trimethoxy-benzoic acid, the esterified carboxyl group contains more than two carbon atoms.

7. Deserpidic acid alkyl esters in which the hydroxyl group is esterified with a carboxylic acid and, if the hydroxyl group is esterified with 3:4:5-trimethoxy-benzoic acid, the esterified carboxyl group contains more than two carbon atoms, and salts thereof.

8. Deserpidic acid alkyl esters and salts thereof as claimed in Claim 7, in which the hydroxyl group is esterified with an aromatic carboxylic acid.

9. Deserpidic acid alkyl esters in which the hydroxyl group is esterified with an aliphatic carboxylic acid, and salts thereof.

10. Deserpidic acid alkyl esters in which the hydroxyl group is esterified with an araliphatic carboxylic acid, and salts thereof.

11. Deserpidic acid alkyl esters in which the hydroxyl group is esterified with a heterocyclic carboxylic acid, and salts thereof.

70

75

85

120

12. Deserpidic acid alkyl esters in which the hydroxyl group is esterified with a sulphonic acid, and salts thereof.

13. Methyl O-(3:4-dimethoxy-benzoyl)-deserpidate, and its salts.

14. Methyl O-furoyl-(2)-deserpidate, and its salts.

15. Methyl O-nicotinoyl-deserpidate, and its salts.

16. Methyl O-(3:4:5-trimethoxy-cinnamoyl)-deserpidate, and its salts.

17. Methyl O-phenylacetyl-deserpidate, and its salts.

18. Methyl O-(O¹-carbethoxy-syringyl)-deserpidate, and its salts.

19. Ethyl O-(3:4:5-trimethoxy-benzoyl)-deserpidate, and its salts.

20. Methyl O-acetyl-deserpidate, and its salts.

21. Methyl O-quinoline-6-carbonyl-deserpi- 9 date, and its salts.

22. Methyl O-(β -naphthoyl)-deserpidate, and its salts.

23. Methyl O-(3:4-methylenedioxyben-zoyl)-deserpidate and its salts.

24. n-Butyl O-acetyl-deserpidate, and its salts.

25. Methyl O-(para-toluenesulphonyl)-description and its salts.

26. A process for the manufacture of deser- 100 pidic acid and its esters, or salts thereof, which comprises subjecting deserpidine to the action of an alkaline saponifying agent and isolating the resulting deserpidic acid or ester thereof and, if desired, converting a deserpidic acid 105 ester so obtained into deserpidic acid and/or, if desired, treating the deserpidic acid with an esterifying agent capable of esterifying a carboxyl group, if desired, subjecting a deserpidic acid ester so obtained having a free hydroxyl 110 group to the action of an esterifying agent capable of esterifying a hydroxyl group, and, if desired, preparing a salt of the deserpidic acid or ester thereof so obtained or converting a salt of deserpidic acid or of an ester thereof so 115 obtained into the free acid or ester.

27. A process as claimed in Claim 26, wherein deserpidine or deserpidic acid or an ester thereof is reacted in the form of a salt thereof.

28. A process as claimed in Claim 26 or 27, wherein deserpidine is subjected to the action of a solution of an alkali metal hydroxide in an alcohol.

29. A process as claimed in Claim 26 or 27, wherein deserpidine is subjected to the action of a solution of an alkali metal alcoholate in an anhydrous alcohol.

30. A process as claimed in Claim 29,

BNSDOCID: <GB

609913A l >

50

70

wherein a solution of an alkali metal methylate in absolute methanol is used.

31. A process as claimed in any one of Claims 26—28, wherein deserpidic acid so obtained is subjected to the action of diazoalkane.

32. A process as claimed in any one of Claims 26—31, wherein a deserpidic acid ester having a free hydroxyl group so obtained is esterified with an acid halide or anhydride.

33. A process as claimed in any one of Claims 26—31 wherein a deserpidic acid lower alkyl ester having a free hydroxyl group is

5 34. A process as claimed in any one of Claims 26—32, wherein a deserpidic acid lower alkyl ester having an esterified hydroxyl group is made.

35. A process as claimed in Claim 4, wherein a lower alkyl deserpidate is made, in which the hydroxyl group is esterified with a carboxylic acid.

36. A process as claimed in Claim 34, wherein a lower alkyl deserpidate is made, in which the hydroxyl group is esterified with an aromatic carboxylic acid.

37. A process as claimed in Claim 34, wherein a lower alkyl deserpidate is made, in which the hydroxyl group is esterified with an araliphatic carboxylic acid.

38. A process as claimed in Claim 34, wherein a lower alkyl descriptate is made, in which the hydroxyl group is esterified with an aliphatic carboxylic acid.

39. A process as claimed in Claim 34, wherein a lower alkyl description is made, in which the hydroxyl group is esterified with a heterocyclic carboxylic acid.

40. A process as claimed in Claim 34, 40 wherein a lower alkyl deserpidate is made, in which the hydroxyl group is esterified with a sulphonic acid.

41. A process as claimed in Claim 36, wherein a lower alkyl descriptate is made in which the hydroxyl group is esterified with 3:4:5-trimethoxy-benzoic acid.

42. A process as claimed in Claim 36, wherein a lower alkyl descriptate is made in

which the hydroxyl group is esterified with 3:4-dimethoxy-benzoic acid.

43. A process as claimed in Claim 36, wherein a lower alkyl deserpidate is made in which the hydroxyl group is esterified with 3:4-methylenedioxybenzoic acid.

44. A process as claimed in Claim 38, wherein a lower alkyl deserpidate is made in which the hydroxyl group is esterified with acetic acid.

45. A process as claimed in Claim 39, wherein a lower alkyl deserpidate is made in which the hydroxyl group is esterified with picotinic acid

46. A process as claimed in Claim 39, wherein a lower alkyl descriptate is made in which the hydroxyl group is esterified with furane-(2)-carboxylic acid.

47. A process as claimed in Claim 37, wherein a lower alkyl deserpidate is made in which the hydroxyl group is esterified with 3:4:5-trimethoxy-cinnamic acid.

48. A process as claimed in any one of Claims 35—47, wherein the lower alkyl radical is methyl.

49. A modification of the process claimed in any one of Claims 26, 27 and 31—48, which consists in using as starting material a compound obtainable as an intermediate product at any stage of the said process and carrying out the remaining steps of the process.

50. A process for the preparation of deserpidic acid or an ester thereof, or a salt of such acid or ester, conducted substantially as described in any one of the examples herein.

51. A pharmaceutical preparation which comprises esters of deserpidic acid in which both the hydroxyl and the carboxyl group are esterified and, if the hydroxyl group is esterified with 3:4:5-trimethoxy benzoic acid, the esterified carboxyl group contains more than two carbon atoms, and/or salts thereof, in admixture with a pharmaceutical carrier.

ABEL & IMRAY, Agents for the Applicants, Quality House, Quality Court, Chancery Lane, London, W.C.2.

Published at The Patent Office, 25, Southampton Buildings, London, W.C.2, from which Learnington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press.—1959. copies may be obtained.

BNSDOCID: <GB 809913A 1 >

-

4 . 4 . 40

