2.9 The Random Effects Model

- So far we have assumed the factor levels were fixed. That is, the factor levels were set at fixed levels by the experimenter.
- In many one-factor CRDs, the a factor levels are randomly selected from a population of levels. For this type of experiment, the factor is called a **random factor**, and the associated effects are called **random effects**.
- In theory, for random effects, we assume the population is infinite. In practice, it is acceptable if the number of randomly selected factor levels (a) is small relative to the number of levels in the population (N). In general, we want a/N < .10 (or, < 10%).
- The random effects model for a one-factor CRD is:

$$y_{ij} = \tag{5}$$

where both τ_i and ϵ_{ij} are <u>random</u> variables. The model assumptions are

- The ϵ_{ij} 's are IID $N(0, \sigma^2)$ and the τ_i 's are IID $N(0, \sigma_{\tau}^2)$.
- $-\tau_i$ and ϵ_{ij} are independent for all i, j.
- τ_i is a random variable with $Var(\tau_i) = \sigma_{\tau}^2$. σ_{τ}^2 is the variance associated with the distribution or population of all τ_i 's. We assume τ_i is independent of the random error ϵ_{ij} which has variance σ^2 .
- The variances σ_{τ}^2 and σ^2 are called
- The hypotheses of interest involve the variance component σ_{τ}^2 :

and

- If $\sigma_{\tau}^2 = 0$, then the random τ_i effects are identical. In this case, the variability of the $\hat{\tau}_i$ estimates (i = 1, 2, ..., a) should be close to 0 in comparison to the MSE.
- If $\sigma_{\tau}^2 > 0$, then the random τ_i effects are not identical. In this case, the variability of the $\hat{\tau}_i$ estimates (i = 1, 2, ..., a) should be large in comparison to the MSE.
- Testing hypotheses about the equality of means is inappropriate in the random effects case. Therefore, we do not perform a multiple comparison procedure to compare means.
- The ANOVA table for a random factor is the same as the ANOVA table for a fixed factor with $SS_T = SS_{trt} + SS_E$.
- To see this we need to look at the expected mean squares for the random effects model in (5).

2.9.1 Expected Mean Squares

• Theoretically, the expected values of MS_E and MS_{trt} are

$$E(MS_E) = \sigma^2 \tag{6}$$

$$E(MS_{trt}) = \sigma^2 + \tag{7}$$

where $n_0 = \frac{1}{a-1} \left[N - \frac{\sum_{i=1}^{a} n_i^2}{N} \right].$

- If all of the sample sizes are equal $(n_i = n \text{ for } i = 1, 2, ..., a)$, then $n_0 = n$.
- If $H_0: \sigma_{\tau}^2 = 0$ is **true**, then $E(MS_{trt}) = \sigma^2 + 0 = \sigma^2$.

If $H_0: \sigma_{\tau}^2 = 0$ is **false**, then $\sigma_{\tau}^2 > 0$, and

$$E(MS_{trt}) = \sigma^2 + (positive\ quantity) \longrightarrow$$

• As the variability among the τ_i 's increases, the F-ratio

$$F = \frac{E(MS_{trt})}{E(MS_E)} =$$

also increases.

- $F_0 = \frac{MS_{trt}}{MS_E}$ is an estimate of F, and $H_0 : \sigma_{\tau}^2 = 0$ will be rejected for large values of F_0 .
- The ANOVA table for the random effects model is the same as the ANOVA for the fixed effects model. However, the hypotheses being tested are different.
- Remember: The hypotheses for the random effects model apply to a distribution or population (with variance component σ_{τ}^2) while the hypotheses for a fixed effects model apply to equality of fixed treatment effects (τ_i 's) or means (μ_i 's).

2.9.2 Estimation of Variance Components

• For the random effects model, we are interested in finding estimates $\hat{\sigma}^2$ and $\hat{\sigma}_{\tau}^2$ of the variance components σ^2 and σ_{τ}^2 .

If we replace $E(MS_E)$ with MS_E in equation (6), we get $\widehat{\sigma}^2 =$ If we replace σ^2 with $\widehat{\sigma}^2 = MS_E$ and $E(MS_{trt})$ with MS_{trt} in equation (7), we get

$$MS_{trt} \approx$$

Solving for σ_{τ}^2 gives

$$\hat{\sigma}_{\tau}^2 =$$

- This estimation approach can give a negative estimate of σ_{τ}^2 ($\hat{\sigma}_{\tau}^2 < 0$). But we know that a variance component cannot be negative. The following are 3 possible ways to handle this situation:
 - 1. Assume $\sigma_{\tau}^2 = 0$ and the negative estimate occurred due to random sampling. The problem is that using zero instead of a negative number can affect other estimates.
 - 2. Estimate σ_{τ}^2 using the REML (restricted maximum likelihood) method because it always yields a nonnegative estimate. This method will adjust other variance component estimates. REML methods are included in SAS.
 - 3. Assume the model is incorrect, and examine the problem in another way. For example, add or remove an effect from the model, and then analyze the new model.

2.9.3 A Random Effects Example

A company supplies a customer with a large number of batches of raw materials used in a chemical production process. The customer wants a high percentage of usable chemical to be produced from the raw material. The customer is concerned that there may be significant variation among the batches (which is not good for the production process). An experiment was run. Ten random batches are selected, and four random samples are taken from each batch. The response is 'percent usable chemical'. The experimental data are

Batch									
1	2	3	4	5	6	7	8	9	10
74	68	75	72	79	74	72	72	79	72
76	71	77	74	81	73	74	75	81	68
75	72	77	73	79	75	73	77	80	68
75	70	75	72	80	73	75	74	77	69

• The model is $y_{ij} = \mu + \tau_i + \epsilon_{ij}$ with

$$\epsilon_{ij} \sim IIDN(0, \sigma^2)$$
 $\tau_i \sim IIDN(0, \sigma_\tau^2)$ $i = 1, 2, \dots, 10$

• The ANOVA table below indicates the p-value < .0001 for testing

$$H_0: \sigma_{\tau}^2 = 0$$
 and $H_1: \sigma_{\tau}^2 > 0$.

Therefore we **reject** $H_0: \sigma_{\tau}^2 = 0$, and conclude that there is significant variability in percent usable chemical in the population of batches.

• The estimates of the variance components are

$$\widehat{\sigma}^2 = MSE = \qquad \qquad \widehat{\sigma}_{\tau}^2 = \frac{MS_{batch} - MS_E}{n} =$$

• In the SAS code, include a RANDOM statement to perform the F-test and output the expected mean squares. Use the VARCOMP procedure to generate estimates of the variance components.

ANOVA WITH RANDOM BATCH EFFECTS

The GLM Procedure

Dependent Variable: yield

Source	DF	Sum of Squares		F Value	Pr > F
Model	9	411.1000000	45.6777778	22.65	<.0001
Error	30	60.5000000	2.0166667		
Corrected Total	39	471.6000000			

R-Square Coeff Va		Root MSE	yield Mean	
0.871713	1.908728	1.420094	74.40000	

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
batch	9	411.1000000	45.6777778	22.65	<.0001	

		yield			
Level of batch	N	Mean	Std Dev		
1	4	75.0000000	0.81649658		
2	4	70.2500000	1.70782513		
3	4	76.0000000	1.15470054		
4	4	72.7500000	0.95742711		
5	4	79.7500000	0.95742711		
6	4	73.7500000	0.95742711		
7	4	73.5000000	1.29099445		
8	4	74.5000000	2.08166600		
9	4	79.2500000	1.70782513		
10	4	69.2500000	1.89296945		

SAS NOTATION: VAR=02

The GLM Procedure Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: yield

1-201

CORRECT ANOVA

THIS '	TABLE	15		ba
SAME	AST	HE	ANOVA	Ei

(44)		0,01,01,0				
Source	DF	Туре III SS	Mean Square	F Value	Pr > F	
batch	9	411.100000	45.677778	22.65	<.0001	1
Error; MS(Error)	30	60.500000	2.016667			

VERY STRONG

REJECT HO: GRATCH

TABLE ASSUMING BATCHES

WERE FIXED.

ANOVA WITH RANDOM BATCH EFFECTS VARIANCE COMPONENT ESTIMATION

THIS WILL NOT BETRUE

Variance Components Estimation Procedure

WITH FACTORIAL AND NESTED FFFELTS MODELS.

REML Iterations							
Iteration	Objective	Var(batch)	Var(Error)				
0	55.4378867503	10.9152777778	2.0166666667				
1	55.4378867503	10.9152777778	2.0166666667				

(xx)

Convergence criteria met.

SAS code for random effects analysis

```
*****************
*** A COMPLETELY RANDOMIZED ONE-FACTOR DESIGN ***;
       WITH RANDOM BATCH EFFECTS
***********
TITLE 'ANOVA WITH RANDOM BATCH EFFECTS';
DATA in;
 DO batch = 1 TO 10;
DO rep = 1 TO 4;
INPUT yield @@; OUTPUT;
  END; END;
 LINES;
 74 76 75 75
               68 71 72 70
                            75 77 77 75
                                          72 74 73 72
                                                        79 81 79 80
 74 73 75 73
               72 74 73 75
                           72 75 77 74
                                         79 81 80 77
                                                        72 68 68 69
PROC GLM DATA=IN;
     CLASS batch;
                                 , GENERATES (X) OUT PUT
    MODEL yield = batch / SS3;
MEANS batch;
     RANDOM batch / TEST; &
   RANDOM batch / 1251; & ( OUTPUT OUT-diag P=pred R=resid; ) & NOT NEEDED UNLESS YOU WANT TO LOCK AT VALUES
                                              FOR ŷ AND RESIDUALS.
USE: PROC PEINT DATM=diag;
PROC VARCOMP DATA=in METHOD=REML; CLASS batch;
    MODEL yield = batch ;
TITLE2 'VARIANCE COMPONENT ESTIMATION';
RUN;
                                        GENERATES (**) OUTPUT
```

2.9.4 Confidence Intervals for Variance Components

Given the normality and independence assumptions of the random effects model, we can generate various confidence intervals related to the variance components.

1. For
$$\sigma^2$$
: Because $\frac{SS_E}{\sigma^2} = \frac{(N-a)MS_E}{\sigma^2} \sim \chi^2_{N-a}$, a $100(1-\alpha)\%$ confidence interval for σ^2 is

 \leq

2. For $\frac{\sigma_{\tau}^2}{\sigma^2}$: Because MS_E and MS_{trt} are independent,

$$\frac{MS_{trt}/(\sigma^2 + n_0\sigma_{\tau}^2)}{MS_E/\sigma^2} = F_0\left(\frac{\sigma^2}{\sigma^2 + n_0\sigma_{\tau}^2}\right) \sim F(a-1, N-a).$$

Let $F_L = F_{1-\alpha/2}(a-1, N-a)$ and $F_U = F_{\alpha/2}(a-1, N-a)$. Then,

$$\begin{aligned} 1 - \alpha &= P \left[F_L \le F_0 \left(\frac{\sigma^2}{\sigma^2 + n_0 \sigma_\tau^2} \right) \le F_U \right] \\ &= P \left[\frac{1}{F_L} \ge \frac{1}{F_0} \left(\frac{\sigma^2 + n_0 \sigma_\tau^2}{\sigma^2} \right) \ge \frac{1}{F_U} \right] = P \left[\frac{1}{F_U} \le \frac{1}{F_0} \left(\frac{\sigma^2 + n_0 \sigma_\tau^2}{\sigma^2} \right) \le \frac{1}{F_L} \right] \\ &= P \left[\frac{1}{F_U} \le \frac{1}{F_0} \left(1 + \frac{n_0 \sigma_\tau^2}{\sigma^2} \right) \le \frac{1}{F_L} \right] \\ &= P \left[\frac{1}{n_0} \left(\frac{F_0}{F_U} - 1 \right) \le \frac{\sigma_\tau^2}{\sigma^2} \le \frac{1}{n_0} \left(\frac{F_0}{F_L} - 1 \right) \right] \end{aligned}$$

Thus, a $100(1-\alpha)\%$ confidence interval for σ_{τ}^2/σ^2 is (L,U) where

$$L =$$
 and $U =$

3. For $\frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma^2}$: Note that

$$\begin{split} 1 - \alpha &= P \big[\, L \le \sigma_\tau^2 / \sigma^2 \le U \, \big] &= P \big[\, 1 + L \le 1 + \sigma_\tau^2 / \sigma^2 \le 1 + U \, \big] \\ &= P \big[\, 1 + L \le \frac{\sigma^2 + \sigma_\tau^2}{\sigma^2} \le 1 + U \, \big] &= P \left[\frac{1}{1 + L} \ge \frac{\sigma^2}{\sigma^2 + \sigma_\tau^2} \ge \frac{1}{1 + U} \, \right] \\ &= P \left[\, 1 - \frac{1}{1 + L} \le 1 - \frac{\sigma^2}{\sigma^2 + \sigma_\tau^2} \le 1 - \frac{1}{1 + U} \, \right] \\ &= P \left[\frac{L}{1 + L} \le \frac{\sigma_\tau^2}{\sigma^2 + \sigma_\tau^2} \le \frac{U}{1 + U} \, \right] \end{split}$$

Thus, $\left(\frac{L}{1+L}, \frac{U}{1+U}\right)$ is a $100(1-\alpha)\%$ confidence interval for $\frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma^2}$ which represents the proportion of the total variability attributable to the variability among the treatments.

4. For σ_{τ}^2 : There is no closed form for an exact confidence interval for σ_{τ}^2 . The following formula produces an approximate confidence interval.

 (L_{τ}, U_{τ}) is an approximate $100(1-\alpha)\%$ confidence interval for σ_{τ}^2 where

$$L_{\tau} = \frac{SS_{trt} \left(1 - \frac{F_U}{F_0} \right)}{n_0 \chi_{\alpha/2, a-1}^2}$$
 and $U_{\tau} = \frac{SS_{trt} \left(1 - \frac{F_L}{F_0} \right)}{n_0 \chi_{1-\alpha/2, a-1}^2}$

Example of 95% Confidence Intervals for Variance Components

Dependent Variable: yield

Type 1 Analysis of Variance								
Source DF		Sum of Squares	Mean Square	Expected Mean Square				
batch	4	147.733333	36.933333	Var(Error) + 3 Var(batch)				
Error	10	18.000000	1.800000	Var(Error)				
Corrected Total	14	165.733333						

Type 1 Estimates						
Variance Component	Estimate	95% Confidence Limits				
Var(batch)	11.71111	3.77313	101.00296			
Var(Error)	1.80000	0.87877	5.54363			

- \bullet We are 95% confident that the observed variability attributable to random (replication) error is between .8788 and 5.5436.
- We are 95% confident that the ratio of variance attributable to differences in batches to the variance attributable to random error is between 1.197 and 60.156.
- We are 95% confident that the proportion of variability of an observation attributable to differences in batches is between .5448 and .9945.
- \bullet We are 95% confident that the observed variability attributable to random batch-to-batch variability is between 3.773 and 101.003.

In this example, $SS_E = 18.0$, $SS_{trt} = 147.7\overline{3}$, $F_0 = 20.51852$, and $n_0 = n = 3$, with

- $\chi^2(.975, 10) = 3.2470$ and $\chi^2(.025, 10) = 20.4832$
- $F_L = F(.975, 4, 10) = 0.11307$ and $F_U = F(.075, 4, 10) = 4.46834$
- $\chi^2(.975, 4) = 0.4844$ and $\chi^2(.025, 4) = 11.1433$

2.10 Tests for Homogeneity of Variance

• In an ANOVA, one assumption is the **homogeneity of variance (HOV)** assumption or (**equal variances assumption**. That is, in an ANOVA we assume that treatment variances are equal:

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_a^2.$$

- Moderate deviations from the assumption of equal variances do not seriously affect the results in the ANOVA. Therefore, the ANOVA is robust to small deviations from the HOV assumption. We only need to be concerned about large deviations from the HOV assumption.
- Evidence of a large heterogeneity of variance (or unequal variances) problem is easy to detect in residual plots. Residual plots also provide information about patterns among the variance.
- Some researchers like to perform a hypothesis test to validate the HOV assumption. We will consider two common HOV tests: Levene's Test and the Brown-Forsythe Test.
- Both tests require replication for each of the a treatments.
- These tests are not powerful for detecting small or moderate differences in variances. This is okay because we are only concerned about large deviations from the HOV assumption.
- A third test, called Bartlett's Test, will not be covered because it is no longer popular due to its sensitivity to nonnormality.

2.10.1 Levene's Test and the Brown-Forsythe Tests

To perform Levene's Test:

- 1. Calculate each $z_{ij} = |e_{ij}|$ where residual $e_{ij} = y_{ij} \overline{y}_i$.
- 2. Run an ANOVA on the set of z_{ij} values.
- 3. If p-value $\leq \alpha$, reject H_0 and conclude the variances are not all equal.
- Levene's Test is robust because the true significance level is very close to the nominal significance level for a large variety of distributions.
- It is not sensitive to symmetric heavy-tailed distributions (e.g., double exponential and t distributions).

To perform the Brown-Forsythe Test:

- 1. Calculate each $z_{ij} = |y_{ij} \tilde{y}_i|$ where \tilde{y}_i is the median for the i^{th} treatment.
- 2. Run an ANOVA on the set of z_{ij} 's.
- 3. If p-value $\leq \alpha$, reject H_o and conclude the variances are not all equal.
- The Brown-Forsythe Test is relatively insensitive to departures from normality.
- It is not sensitive to skewed distributions (e.g., χ^2) and extremely heavy-tailed distributions (e.g., Cauchy). In these cases, it is more robust than Levene's Test.

2.10.2 Example of Levene's Test and the Brown-Forsythe Test

A textile company has five looms that weave cloth. The company is concerned that there may be significant variability in the strengths of the cloth produces by the looms. Five random samples of cloth are taken from the cloth produced by each loom. Each sample is tested and the strength of the cloth is recorded. The data are:

		Loom		
1	2	3	4	5
14.0	13.9	14.1	13.6	13.8
14.1	13.8	14.2	13.8	13.6
14.2	13.9	14.1	14.0	13.9
14.0	14.0	14.0	13.9	13.8
14.1	14.0	13.9	13.7	14.0

SAS Output for HOV Tests

The GLM Procedure

Dependent Variable: cloth

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	0.34160000	0.08540000	5.77	0.0030
Error	20	0.29600000	0.01480000		
Corrected Total	24	0.63760000			

R-Square	Coeff Var	Root MSE	cloth Mean
0.535759	0.872957	0.121655	13.93600

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
loom	4	0.34160000	0.08540000	5.77	0.0030	

		clo	th		
Level of loom	N	Mean	Std Dev		
1	5	14.0800000	0.08366600		
2	5	13.9200000	0.08366600		
3	5	14.0600000	0.11401754		
4	5	13.8000000	0.15811388		
5	5	13.8200000	0.14832397		

		for Homoş olute Devi			
Source	Source DF		Mean Square	F Value	Pr > F
loom	4	0.0122	0.00304	0.67	0.6179
Error	rror 20		0.00451		

Brown and Forsythe's Test for Homogeneity of cloth Variance ANOVA of Absolute Deviations from Group Medians									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
loom	4	0.0136	0.00340	0.57	0.6897				
Error	20	0.1200	0.00600						

- From the following analysis in SAS, the *p*-values for Levene's Test and the Brown-Forsythe are .6179 and .6897, respectively.
- We would fail to reject $H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2$. Therefore, we conclude that we cannot reject the HOV assumption for the oneway ANOVA.
- And, assuming there are no serious violations of any other assumptions, we would reject H_0 : for the oneway ANOVA.

SAS Code for HOV Tests

```
DM 'LOG; CLEAR; OUT; CLEAR;';
ODS GRAPHICS ON;
* ODS PRINTER PDF file='C:\COURSES\ST541\HOVTEST.PDF';
OPTIONS NODATE NONUMBER;
******************
*** 5 Looms, Response = Cloth Output, n=5 ***;
*** Bartlett's, Brown-Forsythe, Levene's Tests ***;
********************
DATA in; INPUT loom cloth @@; CARDS;
1 14.0 1 14.1 1 14.2 1 14.0 1 14.1
2 13.9 2 13.8 2 13.9 2 14.0 2 14.0
3 14.1 3 14.2 3 14.1 3 14.0 3 13.9
4 13.6 4 13.8 4 14.0 4 13.9 4 13.7
5 13.8 5 13.6 5 13.9 5 13.8 5 14.0
PROC GLM DATA=in;
    CLASS loom;
    MODEL cloth = loom / ss3;
    MEANS loom / HOVTEST=BF;
    MEANS loom / HOVTEST=LEVENE(TYPE=ABS);
RUN;
```

Data Analysis Options When the HOV Assumption is Not Valid

- If we reject $H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_a^2$, then what options do we have to analyze the data? We will consider the following two options:
 - 1. Weighted least squares.
 - 2. Using a variance stabilizing transformation.

2.11 Weighted Least Squares

- Linear regression models (such as the models used in this course) can be fitted by the **weighted** least squares (WLS) method.
- With the WLS method, the squared deviation between the observed data value and the predicted value $(y_i \hat{y}_i)^2$ is multiplied by a weight w_i . This weight is proportional to the variance of y_i .
- For a one factor CRD, the WLS function is

$$W(\mu, \tau_1, \dots, \tau_a) =$$

• To find the least squares normal equations, you simultaneously solve

$$\partial W/\partial \mu = 0$$
 and $\partial W/\partial \tau_i = 0$ for $i = 1, 2, \dots, a$.

• The WLS normal equations are:

$$\sum_{i=1}^{a} \sum_{j=1}^{n_i} w_{ij} y_{ij} = \widehat{\mu} \sum_{i=1}^{a} \sum_{j=1}^{n_i} w_{ij} + \sum_{i=1}^{a} \left(\widehat{\tau}_i \sum_{j=1}^{n_i} w_{ij} \right)$$

$$\sum_{j=1}^{n_i} w_{ij} y_{ij} = \widehat{\mu} \sum_{j=1}^{n_i} w_{ij} + \widehat{\tau}_i \sum_{j=1}^{n_i} w_{ij} \text{ for } i = 1, 2, \dots, a$$

- The solution to these (a+1) equations subject to one constraint (such as $\sum_{i=1}^{a} \tau_i = 0$) are the WLS estimates for $\hat{\mu}$ and $\hat{\tau}_i$ for i = 1, 2, ..., a.
- However, because the variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_a^2$ are unknown, we need to estimate the weight $w_{ij} = 1/\sigma_i^2$ for $j = 1, 2, \ldots, n_i$ from the data.
- For the one-factor CRD, we know the sample variance s_i^2 for treatment i is an unbiased estimate of σ_i^2 $(E(s_i^2) = \sigma_i^2)$. The estimated weight is $\widehat{w}_{ij} = 1/s_i^2$ for $j = 1, 2, ..., n_i$.
- SAS and Minitab will perform a WLS analysis, but you have to supply the weights.

Weighted Least Squares (WLS) Example: A company wants to test the effectiveness of a new chemical disinfectant. Five dosage levels were considered (1 through 5 grams per 100 ml). The experiment involved applying equal amounts of the disinfectant at each level to a surface that was covered with a common bacteria. The results are given below. The design was completely randomized.

Dose	%	Dose	%	Dose	%	Dose	%	Dose	%
1	5	2	13	3	12	4	17	5	22
1	1	2	13	3	16	4	13	5	30
1	3	2	6	3	9	4	16	5	27
1	5	2	7	3	18	4	19	5	32
1	2	2	11	3	16	4	26	5	32
1	6	2	4	3	7	4	15	5	43
1	1	2	14	3	14	4	23	5	29
1	3	2	12	3	13	4	27	5	26

The sample variances s_i^2 are

$$s_1^2 = s_2^2 = s_3^2 = s_4^2 = s_5^2 = s_5^$$

Thus, the weights $w_{ij} = 1/s_i^2$ for $j = 1, 2, ..., n_i$ are

$$w_{1j} = w_{2j} = w_{3j} = w_{4j} = w_{5j} =$$

SAS Output for WLS Example

SAMPLE VARIANCES AND WEIGHTS FOR EACH TREATMENT trt

Obs	trt	var_y	wgt
1	1	3.6429	0.27451
2	2	14.2857	0.07000
3	3	13.8393	0.07226
4	4	27.4286	0.03646
5	5	38.1250	0.02623

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	207.5551273	51.8887818	51.89	<.0001
Error	35	35.0000000	1.0000000		
Corrected Total	39	242.5551273			

R-Square	Coeff Var	Root MSE	y Mean
0.855703	11.86288	1.000000	8.429653

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
trt	4	207.5551273	51.8887818	51.89	<.0001	

Bonferroni (Dunn) t Tests for y

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Compariso	ns significan indicated		05 level ar	-e			
trt Comparison	Difference Between Means	95 Confi	aneous % dence nits				
5 - 4	10.6250	2.0487	19.2013	***			
5-3	17.0000	9.3642	24.6358	***			
5-2	20.1250	12.4564	27.7936	***			
5-1	26.8750	20.0292	33.7208	***			
4 - 5	-10.6250	-19.2013	-2.0487	***			
4 - 3	6.3750	-0.4297	13.1797		-	FTR	Ho: M3=M4
4-2	9.5000	2.6586	16.3414	***	someodesise	•	,,,,
4-1	16.2500	10.3455	22.1545	***			
3-5	-17.0000	-24.6358	-9.3642	***	on supplemental		
3-4	-6.3750	-13.1797	0.4297				
.3 - 2	3.1250	-2.4926	8.7426		7		
3-1	9.8750	5.4460	14.3040	***			Ho Mz=M
2-5	-20.1250	-27.7936	-12.4564	***		FTR	110 212 21
2 - 4	-9.5000	-16.3414	-2.6586	***	and the same of th		
2 - 3	-3.1250	-8.7426	2.4926				
2-1	6.7500	2.2649	11.2351	***			
1-5	-26.8750	-33.7208	-20.0292	***			
1-4	-16.2500	-22.1545	-10.3455	***			
1-3	-9.8750	-14.3040	-5.4460	***			
1-2	-6.7500	-11.2351	-2.2649	***			

```
Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 1
Critical Value of t 2.99605
```

```
DATA in; INPUT trt y @@; LINES; 1 5 1 1 1 3 1 5 1 2 2 13 2 6 2 7 2 11
2 13
3 12
                 2 6
3 9
                                          2 4
3 7
        2 13
                                  2 11
                                                  2 14
                                                           2 12
                         3 18
        3 16
                                  3 16
                                                  3 14
                                                           3 13
4 17
         4 13
                 4 16
                         4 19
                                                  4 23
                                                           4 27
PROC SORT DATA=in; BY trt;
PROC MEANS DATA=in noprint; BY trt;
                                               <-- Sort the data by treatments.
                                            <-- Calculate and save sample
                                               <-- variances in 'wset'.
DATA wset; SET wset;
wgt = 1/var_y; > \omega_{\text{ij}} = \frac{1}{5};

DROP _FREQ_ _TYPE_;
                                               <-- Calculate the weights from
                                               <-- the sample variance in wset.
TITLE 'SAMPLE VARIANCES AND WEIGHTS FOR EACH TREATMENT trt'; OUTPUT (M) TAGEE ON PAGE 51
DATA in; MERGE in wset; BY trt;
                                               <-- Attach the weights by treatment.
PROC GLM DATA=in;
     WEIGHT wgt;
                                               <-- Include the WEIGHT statement.
     CLASS trt;
     MODEL y = trt / SS3;
      MEANS trt / BON;
TITLE 'WEIGHTED LEAST SQUARES EXAMPLE WITH BONFERRONI MCP';
RUN:
```

2.12 Variance Stabilizing Transformations

- If the homogeneity of variance assumption is only moderately violated, the F-test results are only slightly affected when the design is balanced (equal $\overline{n_i}$'s). No transformation should be considered.
- If the homogeneity of variance assumption is either (i) <u>seriously</u> violated or (ii) moderately violated with very different n_i sample sizes (serious imbalance), then the effects on the F-test are more serious.
 - If the treatments having the larger variances have the smaller sample sizes, the true Type I error is larger than the nominal level.
 - If the treatments having the larger variances have the larger sample sizes, the true Type I error is smaller than the nominal level.
- A common approach to deal with nonconstant variance (heterogeneity of variance) is to apply a of the response that will equalize the variances across treatments. We then perform the ANOVA on the transformed data.
- Sometimes the variance of the response increases or decreases as the mean of the response increases. If this is the case, the residuals vs predicted values plot would have a funnel shape. This is when a variance stabilizing transformation may be appropriate.
- The statistical problem is to use the data to determine the form of the required transformation.
- Let μ_i be the mean for treatment *i*. Suppose the standard deviation of y_{ij} is proportional to a power of μ_i . That is, $\sigma_i = \theta \mu_i^{\alpha}$ for some α and θ . θ is called the
- The goal is to find a transformation $y^* = y^{\lambda}$ such that y^* has constant or near constant variance across all treatments.
- This implies that after transforming each y_{ij} to y_{ij}^* , we no longer have a HOV problem when the ANOVA is run with the y_{ij}^* values.
- It can be shown that the variance is constant if $\lambda = 1 \alpha$. If $\lambda \approx 0$, then we use a log transformation. We will now discuss two methods for estimating λ .

2.12.1 The Empirical Method

- If $\sigma_i = \theta \mu_i^{\alpha}$, then $\log(\sigma_i) = \log(\theta) + \alpha \log(\mu_i)$. A plot of $\log(\sigma_i)$ vs $\log(\mu_i)$ is linear with slope equal to α . Thus, a simple way to estimate α would be to
 - 1. Calculate s_i and \overline{y}_i for treatment i = 1, 2, ..., a.
 - 2. Fit a regression line

- $\log(s_i) =$
- 3. The least squares estimate of the slope $\widehat{\alpha}$ is the estimate of α .
- 4. Transform each y_{ij} to $y_{ij}^* = y_{ij}^{\lambda}$ where $\lambda = 1 \widehat{\alpha}$.
- 5. Run the ANOVA on the y_{ij}^* values.
- Note that if $\alpha = 0$, then $\sigma_i = \theta$ for all i. Thus, the homogeneity of variance assumption is met without a transformation.

2.12.2 The Box-Cox Procedure

- Another approach is the **Box-Cox procedure** which will estimate the value of λ corresponding to the transformation y_{ij}^{λ} that maximizes the model R^2 .
- SAS can find the Box-Cox transformation using the TRANSREG procedure.

- To find the Box-Cox transformation,
 - 1. For a sequence of λ values, calculate $R^2(\lambda)$. $R^2(\lambda)$ is the model R^2 value from the ANOVA on the transformed y^{λ} values.
 - 2. Select the λ that maximizes $R^2(\lambda)$ (which is equivalent to maximizing the likelihood function).
 - 3. Run the ANOVA on the y_{ij}^{λ} values.

2.12.3 Transformation Example using the Empirical and Box-Cox Methods

EXAMPLE: We will use the same data used in the WLS example:

Dose	%	Dose	%	Dose	%	Dose	%		Dose	%
1	5	2	13	3	12	4	17	,	5	22
1	1	2	13	3	16	4	13		5	30
1	3	2	6	3	9	4	16		5	27
1	5	2	7	3	18	4	19		5	32
1	2	2	11	3	16	4	26		5	32
1	6	2	4	3	7	4	15		5	43
1	1	2	14	3	14	4	23		5	29
1	3	2	12	3	13	4	27		5	26

- We will see that the recommended transformation is a square root ($\lambda = .5$) transformation. The following SAS output contains
 - The empirical method results and the Box-Cox method results.
 - The analysis of the original data. Note that the variability increases with the Dose treatment levels (from 1 to 5).
 - The analysis of the transformed (square root) data. Note that the variability is now nearly constant across the Dose treatment levels (from 1 to 5).

EMPIRICAL SELECTION OF ALPHA

Obs	mean	std	logstd	logmean
1	3.250	1.90863	0.64638	1.17865
2	10.000	3.77964	1.32963	2.30259
3	13.125	3.72012	1.31376	2.57452
4	19.500	5.23723	1.65579	2.97041
5	30.125	6.17454	1.82044	3.40536

ANOVA TO FIND EMPIRICAL SELECTION OF ALPHA

The GLM Procedure

Variable: logstd

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.79599334	0.79599334	153.30	0.0011
Error	3	0.01557765	0.00519255		
Corrected Total	4	0.81157099			

GOOD FIT OF THE LINEAR REGRESSION

0.980806)	5.325109	0.072059	1.353200
R-Square	Coeff Var	Root MSE	logstd Mean

logmean	1	0.79599334	0.79599334	153.30	0.0011
Source	DF	Type III SS	Mean Square	F Value	Pr > F

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	0.0347067133	0.11126036	0.31	0.7755
logmean	0.5303019549	0.04283106	12.38	0.0011

 $\beta_0 = \log \hat{\theta} = .0347$ $\hat{\beta}_1 = \hat{\alpha} = .530$

Find the Box-Cox Transformation using PROC TRANSREG

The TRANSREG Procedure

Dox-Cox TRANSFORM ATTON

(Mean	y Std Dev
Mean	Std Dev
3.2500000	1.90862703
0.0000000	3.77964473
3.1250000	3.72011905
9.5000000	5.23722937
	6.17454452
	9.5000000 0.1250000

		sqrty			sqrty		
Level of trt	N	Mean	Std Dev				
1	8	1.72499261	0.56000051				
2	8	3.10359092	0.64827099				
3	8	3.58746278	0.53995849				
4	8	4.38144283	0.58842037				
5	8	5.46489064	0.54507700				

SIMILAR VARIABILITY
AFTER TAKING A
SQUARE ROOT
TRANSFORMATION

Boxplots of the Original Data (9)

PLOT 1

Boxplots of the Square Root Transformed Data $\left(\sqrt{\frac{1}{4}}\right)$

PLOT 2

HOU ASSUMPTION
IS NOT VIOLATED
USING JY
AS THE RESPONSE

This page contains the SAS output using the original response values. Note the funneling pattern in the *Residuals vs Predicted Value* plot. This suggests that a transformation should be considered.

ANOVA -- ORIGINAL DATA

The GLM Procedure

Variable: y

Source	DF	Sum of Squares		F Value	Pr > F
Model	4	3323.150000	830.787500	42.68	<.0001
Error	35	681.250000	19.464286		
Corrected Total	39	4004.400000			

R-Square	Coeff Var	Root MSE	y Mean
0.829875	29.02523	4.411835	15.20000

Source	DF	Type III SS	Mean Square	F Value	Pr > F
trt	4	3323.150000	830.787500	42.68	<.0001

Dependent Variable: y

This page contains the SAS output using the square root transformation of the response values. Note that the variances are stabilized (nearly constant) in the *Residuals vs Predicted Value* plot.

ANOVA -- SQUARE ROOT TRANSFORMATION

The GLM Procedure

Variable: sqrty

Source	DF	Sum of Squares		F Value	Pr > F
Model	4	62.69546580	15.67386645	46.96	<.0001
Error	35	11.68130939	0.33375170		
Corrected Total	39	74.37677520			

R-Square	Coeff Var	Root MSE	sqrty Mean
0.842944	15.81701	0.577712	3.652476

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
trt	4	62.69546580	15.67386645	46.96	<.0001	

Dependent Variable: sqrty


```
DM 'LOG; CLEAR; OUT; CLEAR;';
ODS GRAPHICS ON;
ODS PRINTER PDF file='C:\COURSES\ST541\BOXCOX.PDF';
OPTIONS NODATE NONUMBER:
*** Variance Stabilizing Transformations ***;
**************
DATA in; INPUT(trt(y)00; CARDS;
                   1 5
2 7
            1
      1 1
                         1 2
                                1
                                  6
2 13
      2 13
                          2 11
                                      2 14
3 12
             3 9
                   3 18
                                3 7
                         3 16
                                      3 14
                                             3 13
      3 16
4 17
      4 13
             4 16
                   4 19
                          4 26
                                4 15
                                      4 23
      5 30
             5 27
                   5 32
                         5 32
                                5 43
*** Find the transformation using the empirical method ***;
                                                        REGRESSION OF
                                                        log(5:) vs log(5:)
PROC SORT DATA=in; BY(trt)
PROC MEANS DATA=in NOPRINT; BY trt;
VAR(y;) OUTPUT OUT=yset MEAN=mean STD=std;
DATA yset; SET yset;
     logstd =LOG(std);
                      logmean=LOG(mean);
PROC PRINT DATA=yset;
                                                      EMPIRICAL METHOD TO
    VAR mean std logstd logmean;
TITLE 'EMPIRICAL SELECTION OF ALPHA';
                                                      FIND .
PROC GLM DATA=yset;
    MODEL logstd=logmean / SS3 solution;
TITLE 'ANOVA TO FIND EMPIRICAL SELECTION OF ALPHA';
*** Use the output of the GLM procedure regressing the ***;
*** log standard deviations on the log means. Apply the ***;
                                                   ***;
*** Apply the transformation to the response and
*** rerun the analysis with the transformed response.
                                                          41 POSSIBLE ) VALUES ARE
*** Find the transformation using the Box-Cox method ***;
                                                         CHECKED (-2,-1.9, --, 1.9, 2.0)
********************
PROC TRANSREG DATA=in;
                                                           =) 41 ANOVAS ARE PERFORMED
    MODEL BOXCOX(y / LAMBDA=-2 to 2 by .1) = CLASS(trt);
TITLE 'Find the Box-Cox Transformation using PROC TRANSREG';
                                                              TO FIND THE LARGEST
*** Use the output of the TRANSREG procedure to find the ***;
                                                              r2 VALUE. (SEE PAGE 55)
*** the Box-Cox transformation. Apply the transformation ***;
*** to the response and rerun the analysis with the
                                                    ***;
*** transformed response
*************
*** ANOVA BEFORE A TRANSFORMATION ***;
***********
PROC GLM DATA=in PLOTS=(DIAGNOSTICS);
    CLASS trt;
MODEL y = trt / SS3;
MEANS trt;
                                ANOVA USING 4 (NO TRANSFORMATION)
TITLE 'ANOVA -- ORIGINAL DATA';
***********
*** ANOVA AFTER A TRANSFORMATION ***:
************
DATA in; SET in;; sqrty = SQRT(y);
PROC GLM DATA=in PLOTS=(DIAGNOSTICS);
                                    ANOVA USING JY TRANSFORMATION
    CLASS trt:
    MODEL sqrty = trt / SS3;
MEANS trt;
TITLE 'ANOVA -- SQUARE ROOT TRANSFORMATION';
RUN;
```

2.13 Simulations to Study the ANOVA HOV Assumption

- The file simanova.r posted on the course webpage contains R code that will do the following assessing the impact of equal ($\sigma_1 = \sigma_2 = \sigma_3$) and unequal (not all σ_i are equal) on the probability of rejecting $H_0: \mu_1 = \mu_2 = \mu_3$.
- Various cases can be studied by varying the following:
 - The values of σ_1, σ_2 , and σ_3 .
 - The values of μ_1, μ_2 , and μ_3 .
 - The values of n_1, n_2 , and n_3 .
- The program will output the estimated probability of rejecting $H_0: \mu_1 = \mu_2 = \mu_3$ assuming α levels of .01. .05, and .10 from a oneway ANOVA. That is, the proportion of samples that lead to a rejection of H_0 using $\alpha = .01..05, .10$.
- If $H_0: \mu_1 = \mu_2 = \mu_3$ is <u>true</u>, these estimated probabilities represent estimates of the **Type I error** (i.e. the probability of incorrectly rejecting H_0 when H_0 it is true). Thus, the values should be close to the nominal (stated) α levels of .01, .05, and .10.
- If $H_0: \mu_1 = \mu_2 = \mu_3$ is <u>false</u>, these estimated probabilities represent estimates of the **power of the** F-test.

The **power** of a test equals the probability of correctly rejecting H_0 when H_0 is false

- =1 the probability of not rejecting H_0 when H_0 is false
- =1 Type II error.

Case	n_1	n_2	n_3	σ_1	σ_2	σ_3		μ_1	μ_2	μ_3	H_0
1	9	9	9	1	1	1	-	10	10	10	True
2	9	9	9	1	2	3		10	10	10	True
3	9	6	3	1	2	3		10	10	10	True
4	3	6	9	1	2	3		10	10	10	True
	9	9	9	1	1	1	-	10	10	11	False
6	3	3	3	1	1	1		10	10	11	False
7	20	20	20	1	1	1		10	10	11	False

			Sample	Treatment	Rejection Probability for		
Case	H_0	HOV	sizes	means	$\alpha = .01$	$\alpha = .05 \ \alpha = .10$	
1	True	OK	=				
2	True	Violated	=				
3	True	Violated	\neq				
4	True	Violated	\neq				
5	False	OK	=				
6	False	OK	=				
7	False	OK	=				

R Code to perform the simulations

Enter number of treatments
Enter sigma_1 1 1 1
Enter sigma_2 1 2 2
Enter sigma_3 1 3 3 FENTER J, JUZ, J3 # Enter n_1 } ENTER n, n2, n3 n.2 <- 9 n.3 <- 9 9 9 6 9 9 3 # Enter n_2 # Enter n_3 mu.1 <- 10 # Enter mu_1 # Enter mu_2 mu.3 <- 10 # Enter mu_2 # Enter mu_3 10 10 10 10 10 10 10 10 10 ENTER M, Mz, M3 iter <- 10000 # Enter the number of t-statistics to simulate ## Simulate F-statistics $N \leftarrow n.1 + n.2 + n.3$ df.MSE $\leftarrow N - a$ > PERFORM 10,000 ANOVAS USING RANDOMLY GENERATED SAMPLES df.MSE df.MStrt <- a -1 df.MStrt OF SIZES N, N2, N3 FROM F.stat <- numeric(iter) N(M, J,2), N(M2, J2), N(M3, J2) for (i in 1:iter) { sample1 <- rnorm(n.1, mean=mu.1, sd=sd.1)</pre> sample2 <- rnorm(n.2, mean=mu.2, sd=sd.2) DISTRIBUTIONS, RESPECTIVELY. sample3 <- rnorm(n.3, mean=mu.3, sd=sd.3)</pre> var.1 <- var(sample1) var.2 <- var(sample2)</pre> var.3 <- var(sample3) SS.E <- (n.1-1)*var.1 + (n.2-1)*var.2 + (n.3-1)*var.3 MS.E <- SS.E/df.MSEall.dat <- c(sample1, sample2, sample3) SS.TOTAL <- (N-1)*var(all.dat) <- SS.TOTAL - SS.E <- SS.TRT/df.MStrt F.stat[i] <- MS.TRT/MS.E windows() Fmax = max(F.stat)hist(F.stat, freq=FALSE, nclass=50, xlim=c(-.01,Fmax), ylim=c(0,.8), main="Histogram of F-statistics with superimposed F pdf") curve(df(x,df.MStrt,df.MSE), add=TRUE, col=2, lwd=2) F.01 <- qf(.99,df.MStrt,df.MSE) F.05 <- qf(.95,df.MStrt,df.MSE) F.10 <- qf(.90,df.MStrt,df.MSE) F.01 F.05 F.10 # Simulated rejection probabilities for alpha = .01, .05, .10. # If Ho: mu.1 = mu.2 = mu.3 is true, this is the estimated Type I error. # If Ho is not true, this is the estimated Power = 1 - Type II error. reject.01 \leftarrow ifelse(F.stat >= F.01,1,0) OUTPUT THE PROPORTION OF GSES pvalue.01 <- sum(reject.01)/iter pvalue.01 THAT REJECT HO: MI = M2 = M3 <- ifelse(F.stat >= F.05,1,0) reject.05 pvalue.05 <- sum(reject.05)/iter USING d=.01, ,05, ,10. pvalue.05

<- ifelse(F.stat >= F.10,1,0)

<- sum(reject.10)/iter

reject.10 pvalue.10

pvalue.10

2.14 Power and Design Size

• The GLMPOWER procedure in SAS can be used to

FIND N, GIVEN POWER

- Determine the number of replicates needed to achieve a specified power for ANOVA F-tests.
- Determine the power for ANOVA F-tests given a specified number of replicates. This can be used after an experiment is run to estimate the actual power for tests related to that experiment.
- The experimenter must specify
 - An estimate of σ .

- Information about the mean responses (such as preliminary estimates or a minimum difference the researcher would like to detect as significant).
- The desired power for tests if the goal is to determine the number of replicates.
- The number of replicates if the goal is to determine an estimated power for tests.
- In the SAS output Ntotal is the total number of experimental runs. This must be divided to determine the number of replicates. by a

2.14.1 Example 1: Sample size determination and power estimation

Determine N given a nominal power level (Case 1) and determine power given N (Case 2) for a specified pattern of means or effects

• Suppose there are 5 treatments, and that one mean (say μ_1) is 2 units larger than the other four means which are equal. That is:

$$\mu_2 = \mu_3 = \mu_4 = \mu_5$$
 and $\mu_1 = \mu_i + 2$ for $i = 2, 3, 4, 5$

• Or, equivalently in terms of effects

RUN;

• Our prior estimate of
$$\sigma$$
 is 1.25, and the significance level is set to $\alpha = .05$ for tests.

- For <u>Case 1</u>, determine the total sample size N = 5n setting the power for the ANOVA F-test at power levels $1 - \beta = .50$, .80, .85, .90, .95, and .99.
- For Case 2, determine the power 1β for the ANOVA F-test when the total sample size N =10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60.

SAS code for Case 1: Determine N for a nominal power level

```
DATA oneway;
     DO level = 1 to 5; INPUT delta @@; OUTPUT;
LINES;

20000 → EFFECT PATTERN FOR (T, Tz, T3, T4, T5) OR FOUR MEANS ARE;

PROC GLMPOWER DATA=oneway;

CLASS level;

EQUAL (Mz= M3-My=M5)
     CLASS level;
                                                                      AND I MEAN IS 2 UNITS
LARGER (MI)
     MODEL delta = level;
     POWER
         STDDEV = 1.25
                                                <-- sigma estimate
         ALPHA = 0.05 -
                                                <-- alpha level
         NTOTAL = .
                                                <-- determine N
         POWER = .50 .80 .85 .90 .95 .99;
                                                <-- choices for power
TITLE 'Case 1: Determining sample size for detecting a 2-unit difference';
```

TITLE2 'for 4 equal means and 1 unequal mean (power=.50 .80 .85 .90 .95 .99)';

SAS output for Case 1: Determine N for a nominal power level

Case 1: Determining sample size for detecting a 2-unit difference for 4 equal means and 1 unequal mean (with power=.50 .80 .85 .90 .95 .99)

The GLMPOWER Procedure

Dependent Variable Alpha Error Standard Deviation					delta 0.05 1.25	_d			
		Compu	ted N Total	۸ ۱	aln-i)	O	an		
Index	Туре	Source	Nominal 7 Power		_" ' '/ /	Actual Power	=5n N Total	n=N/a	
1 2 3 4 5 6	Effect Effect Effect Effect Effect Effect	level level level level level	0.50 0.80 0.85 0.90 0.95 0.99	4 4 4 4 4	20 30 35 40 50 65	0.612 0.812 0.875 0.919 0.968 0.993	25 35 40 45 55 70	578917	
SAS co	ode for Ca	ase 2: Determ	ine power f	or a gi	$\mathbf{ven}\ N$				EST N (or n)
DATA of DELINES;	DATA oneway2; DO level = 1 to 5; INPUT delta 00; OUTPUT; END; NOMINAL POWER LINES;								
PROC G	20000 (COMPARE NOMINAL POWER PROC GLMPOWER DATA=oneway2; CLASS level; MODEL delta = level; POWER STDDEV = 1.25 ALPHA = 0.05 NTOTAL = 10 15 20 25 30 35 40 45 50 55 60								
	NTOTAL POWER	= 10 15 20 25 = .;	5 30 35 40 4	15 50 1	55 60		oices for ermine p	LT Cont	PUT POWER
TITLE TITLE2 TITLE3 RUN;	'for 4 ed	Determining plant means and tall sample size	d 1 unequal	mean	Ū				

SAS output for Case 2: Determine power for given N

Case 2: Determining power for detecting a 2-unit difference for 4 equal means and 1 unequal mean

(for total sample size N=10 15 ... 55 60)

SUPPOSE YOU WANT

The GLMPOWER Procedure POWER 2,90. Dependent Variable delta Alpha 0.05 Error Standard Deviation 1.25 Computed Power Test Error Index Type Total Source DF DF Power M Effect 1 level 10 5 0.162 2 3 Effect level 4 15 10 0.318 Effect level 20 4 15 0.474 4 5 6 7 Effect level 25 4 20 0.612 Effect level 30 25 0.725 4,90 4 Effect level 35 30 0.812 0.875 Effect level 40 4 35 8 Effect level 45 4 40 0.919 > FIRST CASE WITH 9 Effect level 50 4 45 0.948 10 Effect level 55 4 50 0.968 POWER > ,90 11 Effect level 55 0.980

=) N=9 REPLICATES
PER TREATMENT

2.14.2 Example 2: Sample size determination and power estimation using estimated means

Determine total sample size N given a nominal power level (Case 3) and determine power given N (Case 4) assuming $\mu_1 = 35.6$, $\mu_2 = 33.7$, $\mu_3 = 30.2$, $\mu_4 = 28.0$, and $\mu_5 = 25.9$.

- Suppose there are 5 treatments, and using data from a previous study, we have estimates of the treatment means: $\hat{\mu}_1 = 35.6$, $\hat{\mu}_2 = 33.7$, $\hat{\mu}_3 = 30.2$, $\hat{\mu}_4 = 28.0$, and $\hat{\mu}_5 = 25.9$.
- Our prior estimate of σ is 3.75, and the significance level is set to $\alpha = .05$ for tests.
- For <u>Case 3</u>, determine the total sample size N = 5n setting the power for the ANOVA F-test at levels $1 \beta = .80, .90, .95,$ and .99.
- For <u>Case 4</u>, determine the power 1β for the ANOVA F-test when the total sample size N = 10, 15, 20, 25, 30, 35, 40, 45,and 50.

SAS Code for Case 3: Find N given a nominal power level and specified treatment means.

SAS output for Case 3: Determine N for given a nominal power level assuming

$$\mu_1 = 35.6, \ \mu_2 = 33.7, \ \mu_3 = 30.2, \ \mu_4 = 28.0, \ \mu_5 = 25.9$$

Case 3: Determining sample size for given power and specified means for a oneway ANOVA with 5 treatments (power .80 .90 .95 .99)

The GLMPOWER Procedure Fixed Scenario Elements

Dependent Variable	meanest 🗸 🗸
Alpha	
Error Standard Deviation	3.75

Computed N Total

Index	Туре	Source	Nominal Power	Test DF	Error DF	Actual Power	N Total
1	Effect	level	0.80	4	15	0.844	20
2	Effect	level	0.90	4	20	0.941	25
3	Effect	level	0.95	4	25	0.980	30
4	Effect	level	0.99	4	30	0.994	35
			1				

COMPART NOMINAL POWER.

SAS Code for Case 4: Determine power given N and specified treatment means.

```
DATA oneway4;
     INPUT level $ meanest @@;
LINES;
                     A3 30.2 A4 28.0 A5 25.9 - INPUT MEANS
A1 35.6
          A2 33.7
PROC GLMPOWER DATA=oneway4;
     CLASS level;
     MODEL meanest = level;
     POWER
        STDDEV = 3.75
        NTOTAL = 10 15 20 25 30 35 40 45 50

POWER = . :
                                         - OUTPUT POWER
TITLE 'Case 4: Determining power for given design size and specified means';
TITLE2 'for a oneway ANOVA with 5 treatments';
TITLE3 '(total sample size N = 10 15 \dots 45 50)';
RUN;
```

SAS output for Case 4: Determine power for given N assuming

$$\mu_1 = 35.6, \ \mu_2 = 33.7, \ \mu_3 = 30.2, \ \mu_4 = 28.0, \ \mu_5 = 25.9$$

Case 4: Determining power for given design size and specified means for a oneway ANOVA with 5 treatments (total sample size $N = 10 \ 15 \ ... \ 45 \ 50$)

The GLMPOWER Procedure Fixed Scenario Elements

		- Company	1000011101
Dependent Variable	meanest		Marine and a proper
Alpha	0.05	POWE/L	2,95
Error Standard Deviation	3.75		

Computed Power

				N	Test	Error		
Index	Туре	Source	N	Total	DF	DF	Power	
1	Effect	level	Z	10	4	5	0.317	
2	Effect	level	3	15	4	10	0.641	
3	Effect	level	4	20	4	15	0.844	4,95
4	Effect	level	5	25	4	20	0.941	, ,
5	Effect	level	6	30	4	25	0.980	minorial may,
6	Effect	level	-	35	4	30	0.994	
7	Effect	level	ક્ર	40	4	35	0.998	
8	Effect	level	9	45	4	40	>.999	
9	Effect	level	10	50	4	45	>.999	

USE N= 6 REPULATES TO ACHIEVE POWER 2.95

SUPPOSE YOU WAS