

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Offenlegungsschrift

_® DE 197 11 389 A 1

② Aktenzeichen:

197 11 389.3

② Anmeldetag:

19. 3.97

(3) Offenlegungstag:

24. 9.98

(5) Int. Cl.6: F 16 C 19/22 F 16 C 43/08 B 23 P 13/00

(7) Anmelder:

INA Wälzlager Schaeffler oHG, 91074 Herzogenaurach, DE

(72) Erfinder:

Bucklisch, Richard, 91325 Adelsdorf, DE; Geinzer, Helmut, 91074 Herzogenaurach, DE; Träg, Günter, 91086 Aurachtal, DE; Soyka, Wilfried, 91074 Herzogenaurach, DE; Knebel, Michael, 91056 Erlangen, DE; Ammon, Reinhard, 90451 Nürnberg, DE; Jansen, Manfred, 91085 Weisendorf, DE; Gmelch, Alfons, 91083 Baiersdorf, DE; Müntnich, Leo, 91086 Aurachtal, DE; Steinberger, Wolfgang, Dipl.-Ing. (FH), 91074 Herzogenaurach, DE

55 Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE-PS 10 34 932 DE-AS 12 54 408

DE-AS 10 14 795 DE

195 28 506 A1 30 49 112 A1

ALBERT, M., KÖTTRITSCH, H.: Wälzlager, Springer-Verlag, Wien, New York, 1987, S.13,14;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Verfahren zum Herstellen eines Wälzlagers
- Ein Verfahren zur Herstellung eines Wälzlagers zeichnet sich dadurch aus, daß die Wälzlagerelemente durch formschlüssiges Hintergreifen eine unverlierbare Baueinheit bilden, aus einem durchhärtbaren Werkstoff gefertigt sind und das Wälzlager nach dem Zusammenbau in seiner endgültigen Form einer Gesamthärtung unterworfen

BEST AVAILABLE COPY

Beschreibung

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zum Herstellen eines Wälzlagers, wobei Wälzlagerelemente wie Wälzkörper, Käfig, Laufringe oder Laufscheiben einem Härteprozeß unterworfen sind und durch formschlüssiges Hintergreifen der Wälzlagerelemente eine unverlierbare Baueinheit in ihrer endgültigen Form gebildet ist.

Hintergrund der Erfindung

Ein derartiges Verfahren zur Herstellung eines Nadellagers ist aus der DE-PS 10 14 795 vorbekannt. Dabei wird 15 zunächst ein zylindrischer Außenring hergestellt und auf einer Seite im weichen Zustand mit einem Bord versehen. Nachdem der so geformte Außenring bis auf den zur Bildung des zweiten Bordes dienenden Teil gehärtet ist, wird ein Käfig mit Nadeln in diesen Außenring eingesetzt. Durch 20 Umlegen des zweiten, nicht gehärteten Bordes entsteht ein komplettes Lagerelement, in welchem der Käfig mit den Nadeln in beiden Richtungen geführt und gehalten ist. Dieses an sich fertige Elemente wird nun in eine geeignete Vorrichtung eingesetzt und durch eine Hochfrequenzspule, von der 25 eine Windung an der Stirnseite und eine Windung radial innerhalb des Bordes liegt, auf die gewünschte Härtetemperatur erwärmt. Durch anschließendes Abschrecken wird die Wärme dann so schnell abgeführt, daß nur der Bord gehärtet wird, während die übrigen Lagerteile unbeeinflußt bleihen. 30

Nachteilig dabei ist, daß bei dieser Verfahrensweise die Nadeln bzw. der Außenring des komplett zusammengefügten Lagers keiner Wärmebehandlung unterzogen werden dürfen, um ihre Härte bzw. ihre präzise zylindrische Form nicht zu beeinträchtigen. Die Wärmebehandlung erfolgte 35 daher nur durch eine sehr schnelle Hochfrequenzerwärmung und anschließendes Abschrecken des nicht gehärteten Bordes. Eine solche Verfahrensweise ist allerdings recht umständlich und teuer.

Zusammenfassung der Erfindung

Aufgabe der Erfindung ist es daher, die Herstellung eines gehärteten Wälzlagers wesentlich zu vereinfachen.

Erfindungsgemäß wird diese Aufgabe nach dem kenn- 45 zeichnenden Teil von Anspruch 1 dadurch gelöst, daß die Wälzlagerelemente spanlos aus einem durchhärtbaren Werkstoff gefertigt sind und das Wälzlager nach dem Zusammenbau einer Gesamthärtung unterworfen ist.

Unter Durchhärtung ist dabei in bekannter Weise die Erzielung eines gleichmäßigen martensitischen Gefüges über den gesamten Querschnitt zu verstehen. Dies hat den Vorteil, daß auch über den gesamten Querschnitt des Bauteiles die gleiche Härte vorhanden ist. Durch die Härtung des Lagers in seiner Gesamtheit erfahren alle Lagerkomponenten eine gleiche Behandlung, so daß Verzüge aufgrund dieser gleichartigen Behandlung minimiert werden können. Durch die Bildung einer unverlierbaren Baueinheit vor der Wärmebehandlung, beispielsweise durch Verbördelung, entfällt auch ein Verschnappen der einzelnen Wälzlagerelemente aneinander nach der Wärmebehandlung. Ein solches Verschnappen kann nach einer Wärmebehandlung aufgrund der erzeugten Härteverzüge problematisch bzw. überhaupt nicht mehr möglich sein.

Aus Anspruch 2 geht hervor, daß die Wälzlagerelemente 65 aus dem gleichen Werkstoff gefertigt sein sollen. Dies hat den Vorteil, daß aufgrund der chemischen Gleichartigkeit aller Komponenten der Verzug, bedingt durch Gefügeum-

wandlungen, in ganz geringen Grenzen gehalten werden kann.

Nach Anspruch 3 sollen als durchhärtbare Werkstoffe Stähle der Marken Ck 67, C 75, 100 Cr 2, 100 Cr 6,100 Cr Mn 6 oder 100 Cr Mo 7 eingesetzt werden. Diese durchhärtbaren Wälzlagerstähle sind bereits seit langem bekannt und haben sich bestens bewährt. Die zusätzlichen Legierungsanteile gewährleisten eine gleichmäßige Durchhärtung auch mit wachsendem Querschnitt. Für dünnwandige Bauteile, z. B. gestanzte Laufscheibe für Axial-Nadelkränze werden auch unlegierte Kohlenstoffstähle wie Ck 67 oder C 75 eingesetzt.

Nach einem weiteren Merkmal der Erfindung gemäß Anspruch 4 ist vorgesehen, daß die Gesamthärtung mit einer Karbidanreicherung verbunden ist.

Durch diese Karbidanreicherung wird in bekannter Weise die Verschleißfestigkeit des Wälzlagers erhöht. Dies ist besonders dann von Bedeutung, wenn im praktischen Betrieb das Wälzlager durch Mangelschmierung oder Verunreinigungen besonders stark beansprucht ist. Unter Karbiden sind dabei die Karbide des Eisens bzw. die Mischkarbide des Eisens mit den Legierungselementen wie beispielsweise Chrom oder Mangan zu verstehen.

Zur Herstellung eines Hülsenlagers ist nach Anspruch 5 vorgesehen, daß zunächst eine zylindrische Hülse hergestellt wird, die anschließend auf einer Seite mit einem Bord versehen wird, in die so geformte Hülse ein Käfig mit Wälzkörpern axial eingeschoben wird, anschließend ein zweiter Bord angeformt wird, bevor das Lager einer Gesamthärtung unterworfen wird.

Nach Anspruch 6 kann ein Axialwälzlager derart hergestellt werden, daß eine Laufscheibe an einer peripheren Kante mit einem axial sich erstreckenden Kragen versehen wird, in diese Laufscheibe ein mit Wälzkörpern bestückter Käfig eingesetzt ist, so daß der axial sich erstreckende Kragen den Käfig an dessen Außenumfang oder in seiner Bohrung übergreift, anschließend vom Kragen Haltevorsprünge angeformt werden, so daß sie den Käfig radial umgreifen, bevor das Lager einer Gesamthärtung unterworfen wird.

Natürlich ist diese Verfahrensweise nicht auf Axiallager mit nur einer Laufscheibe beschränkt. Unter den Erfindungsgedanken fallen auch Axiallager mit zwei Laufscheiben, die aneinander durch Verbördelungen gehalten sind.

Die Erfindung wird an nachstehendem Ausführungsbeispielen näher erläutert.

Kurze Beschreibung der Zeichnungen

Es zeigen:

Fig. 1 einen Teil-Längsschnitt durch eine Axiallagerbaueinheit, bestehend aus einem Käsig und zwei Lausscheiben, Fig. 2 eine Ansicht in Richtung des Pfeiles II von Fig. 1,

Fig. 3 das Ausgangsrohr für ein Nadellager im Längsschnitt,

Fig. 4 den einseitig gebördelten Außenring mit eingesetztem Käfig im Längsschnitt und

Fig. 5 ein Nadellager mit beidseitig umgebördeltem Bord im Längsschnitt.

Ausführliche Beschreibung der Zeichnungen

Das in den Fig. 1 und 2 dargestellte Axialwälzlager besteht aus den beiden Laufscheiben 1 und 2, die zwischen ihren einander zugewandten Laufbahnen in einem Käfig 3 geführte Zylinderrollen 4 aufnehmen. Beide Laufscheiben 1 und 2 weisen an ihrem Außenumfang je einen axial verlaufenden Kragen 5 und 6 auf, die einander entgegengerichtet sind. Der Kragen 5 der Laufscheibe 1 ist mit einem in radia-

35

ler Richtung nach außen weisenden Vorsprung 7 versehen, der wiederum in radialer Richtung von einer Haltezunge 8 überdeckt ist. Die Haltezunge 8 ist an mehreren Umfangsstellen durch Ausstanzungen 9 gebildet und bogenförmig radial nach innen verformt. Auf diese Weise ist ein sicherer Zusammenhalt der aus den beiden Laufscheiben 1 und 2 und aus den in einem Käfig 3 geführten Wälzkörpern 4 bestehenden Baueinheit gewährleistet.

Ein solches Axiallager ist aus einem durchhärteten Standardstahl der Marke 100 Cr 6 d. h. einem Stahl mit 1% Koh- 10 lenstoff und 1.5% Chrom durch einen spanlosen Formgebungsvorgang hergestellt. Nach seinem Komplettzusammenbau wird es in seiner endgültigen Form in bekannter Weise einem Gesamthärten unterworfen, d. h. es wird zunächst auf Austenitisierungstemperatur erwärmt und an- 15 schließend zur Umwandlung in Martensit abgeschreckt. Dabei wurde für alle Lagerbestandteile eine Härte von 60 HRC über den gesamten Querschnitt realisiert.

Die in Fig. 3 gezeigte zylindrische Hülse 10 wird durch einen spanlosen Formgebungsvorgang in bekannter Weise 20 hergestellt und wie Fig. 4, zeigt auf einer Seite im weichen Zustand mit einem Bord 11 versehen. In die so umgeformte Hülse 10 wird anschließend ein Käfig 12 mit Nadeln 13 eingeschoben. Durch Umlegen des rechten Teils der Hülse 10 entsteht der zweite Bord 14, und wie aus Fig. 5 entnehmbar, 25 auf diese Weise ein komplettes Lagerelement, in dem der Käfig 12 mit den Nadeln 13 in beiden Richtungen axial geführt und gehalten ist.

Dieses spanlos gefertigte komplette Hülsenlager aus Ck 67 wird nun in bekannter Weise im Austenitgebiet erwärmt 30 und anschließend abgekühlt bzw. abgeschreckt. Dabei werden das Austenitisieren und das Abkühlen so eingestellt, daß eine Durchhärtung des gesamten Lagers eintritt, d. h. die einzelnen Lagerkomponenten weisen an jeder Stelle ihres Querschnitts einen gleichen Härtewert auf.

Bezugszeichenliste

1 Laufscheibe 2 Laufscheibe 40 3 Käfig 4 Zylinderrolle 5 Kragen 6 Kragen 7 Vorsprung 8 Haltezunge 9 Ausstanzung 10 Hülse 11 Bord 12 Käfig 50 13 Nadel 14 Bord

Patentansprüche

1. Verfahren zum Herstellen eines Wälzlagers, wobei Wälzlagerelemente wie Wälzkörper (4, 13), Käfig (3, 12), Laufringe (10) oder Laufscheiben (1, 2) einem Härteprozeß unterworfen sind und durch formschlüssiges Hintergreifen der Wälzlagerelemente (1, 2, 3, 4, 10, 60 12, 13) eine unverlierbare Baueinheit in ihrer endgültigen Form gebildet ist, dadurch gekennzeichnet, daß die Wälzlagerelemente (1, 2, 3, 4, 10, 12, 13) spanlos aus einem durchhärtbaren Werkstoff gefertigt sind und das Wälzlager nach dem Zusammenbau einer Gesamt- 65 härtung unterworfen ist.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Wälzlagerelemente (1, 2, 3, 4, 10, 12, 13) aus dem gleichen Werkstoff gefertigt sind.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Stähle der Marken Ck 67, C 75, 100 Cr 2, 100 Cr 6,100 Cr Mn 6 und 100 Cr Mo 7 eingesetzt sind.

- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Gesamthärtung mit einer Karbidanreicherung verbunden ist.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine zylindrische Hülse (10) hergestellt wird. die anschließend auf einer Seite mit einem Bord (11) versehen wird, in die so geformte Hülse (10) ein Käfig (12) mit Wälzkörpern (13) axial eingeschoben wird, anschließend ein zweiter Bord (14) angeformt wird, bevor das Lager einer Gesamthärtung unterworfen wird.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Laufscheibe (2) an einer peripheren Kante mit einem axial sich erstreckenden Kragen (6) versehen wird, in diese Laufscheibe (2) ein mit Wälzkörpern (4) bestückter Käfig (3) eingesetzt wird, so daß der axial sich erstreckende Kragen (6) den Käfig (3) an dessen Außenumfang oder in seiner Bohrung übergreift, anschließend vom Kragen (6) Haltevorsprünge (8) an geformt werden, so daß sie den Käfig (3) radial umgreifen, bevor das Axiallager einer Gesamthärtung unterworfen wird.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

BEST AVAILABLE COPY

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 197 11 389 A1 F 16 C 19/22 24. September 1998

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 197 11 389 A1 F 16 C 19/22 24. September 1998

Fig. 4

Fig.5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.