

内容回顾: 物体检测环境配置

环境管理软件Anaconda

物体检测平台Detectron2

代码调试软件PyCharm

内容回顾: 通用物体检测概述

环境管理软件Anaconda

物体检测平台Detectron2

代码调试软件PyCharm

通用物体检测数据集

\$ 目录

- 物体检测环境配置
- 通用物体检测概述
- 基于锚框的检测算法
- 无需锚框的检测算法
- 物体检测算法的对比总结
- 实用检测算法的研究思路

基于锚框的物体检测

\$

基于锚框的物体检测

基于锚框的物体检测

锚框机制是该类物体检测算法的核心

多阶段法

单阶段法

单阶段法

\$

基于锚框的多阶段检测算法

- 基于锚框的多阶段检测算法的集大成者是Faster R-CNN
- Faster R-CNN是一系列算法,从2013年的R-CNN出现,到2015年中旬的Faster R-CNN成熟,再到后来的开 枝散叶
- 下面简单介绍R-CNN和Fast R-CNN,接着详细介绍Faster R-CNN
- 掌握了Faster R-CNN,便可以掌握绝大部分的物体检测算法

基于锚框的多阶段检测算法: R-CNN

R-CNN的检测步骤:

- ① 输入图像:输入一张待检测的图像
- ② 候选区域生成:使用Selective Search算法,在输入图像上生成~2K个候选区域
- ③ 候选区域处理:在输入图像上裁剪出每个候选区域,并缩放到227*227大小
- ④ 特征提取:每个候选区域输入CNN网络提取一定维度(如4096维)的特征
- ⑤ 类别判断:把提取的特征送入每一类的SVM分类器,判别是否属于该类
- ⑥ 位置精修:使用回归器精细修正候选框位置

基于锚框的多阶段检测算法: R-CNN

- Selective Search算法:利用图像分割产生初始分割区域 -> 利用相似度进行区域合并
- 如何计算两个区域的相似度? 计算颜色、纹理、大小和形状交叠的差异, 利用不同的权重相加

基于锚框的多阶段检测算法: R-CNN

相比传统方法,检测精度得到大幅度提升,但是速度太慢,原因是:

- ① 使用Selective Search生成候选区域非常耗时
- ② 一张图像上有~2K个候选区域,需要使用~2K次CNN来提取特征,存在大量重复计算
- ③ 特征提取、图像分类、边框回归是三个独立的步骤,要分别训练,测试效率也较低

Fast R-CNN

Fast R-CNN的检测步骤:

- ① 输入图像:输入一张待检测的图像
- ② 候选区域生成:使用Selective Search算法,在输入图像上生成~2K个候选区域
- ③ 特征提取:将整张图像传入CNN提取特征
- ④ 候选区域特征:利用RolPooling分别生成每个候选区域的特征
- ⑤ 候选区域分类和回归:利用扣取的特征,对每个候选区域进行分类和回归
- *注:步骤④⑤仍会存在一些重复计算,但是相对R-CNN少了很多

■ RolPooling:利用<mark>特征采样</mark>,把不同空间大小的特征,变成空间大小一致的特征

为什么要使用RolPooling把不同大小的特征变成固定大小?

- ① 网络后面是全连接层 (FC层),要求输入有固定的维度
- ② 各个候选区域的特征大小一致,可以组成batch进行处理

- 端到端的多任务训练
- Fast R-CNN比R-CNN快了200多倍,并且精度更高

- Fast R-CNN = Selective Search + Fast R-CNN
- Faster R-CNN = RPN + Fast R-CNN
- RPN取代了耗时的Selective Search
- RPN与Fast RCNN共享卷积层
- 引入计算量小,耗时少
- 可以端到端地训练
- Faster R-CNN确定了基于锚框算法的检测流程

4x4输入图像

4x4输入图像

■ 理论感受野:感受野的大小、感受野的中心

\$

Faster R-CNN算法之RPN的原理和流程

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计:锚框的大小、锚框的长宽比、锚框的铺设间隔

\$

Faster R-CNN算法之RPN的原理和流程

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计:锚框的大小、锚框的长宽比、锚框的铺设间隔

■ 锚框的匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ-;③忽略样本:非正非负

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计:锚框的大小、锚框的长宽比、锚框的铺设间隔

■ 锚框的匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ-;③忽略样本:非正非负

■ 锚框的分类:正样本和负样本 + 二分类Softmax损失函数

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计:锚框的大小、锚框的长宽比、锚框的铺设间隔

■ 锚框的匹配: ①正样本: 最佳匹配或IoU≥θ+; ②负样本: IoU < θ-; ③忽略样本: 非正非负

■ 锚框的分类:正样本和负样本 +二分类Softmax损失函数

■ 锚框的回归:正样本 + SmoothL1损失函数

■ 锚框的回归目标值的计算

真实标注框的位置和大小

$$x_c^* = \frac{x_1^* + x_2^*}{2}$$

$$y_c^* = \frac{y_1^* + y_2^*}{2}$$

$$w^* = x_2^* - x_1^* + 1$$

$$h^* = y_2^* - y_1^* + 1$$

■ 锚框的回归目标值的计算

真实标注框的位置和大小

$$x_c^* = \frac{x_1^* + x_2^*}{2}$$
 $y_c^* = \frac{y_1^* + y_2^*}{2}$
 $w^* = x_2^* - x_1^* + 1$
 $h^* = y_2^* - y_1^* + 1$

锚框的位置和大小

$$x_{c} = \frac{x_{1} + x_{2}}{2}$$

$$y_{c} = \frac{y_{1} + y_{2}}{2}$$

$$w = x_{2} - x_{1} + 1$$

$$h = y_{2} - y_{1} + 1$$

锚框的回归目标值的计算

真实标注框的位置和大小

$$x_c^* = \frac{x_1^* + x_2^*}{2}$$
 $x_c = \frac{x_1 + x_2}{2}$ $y_c^* = \frac{y_1^* + y_2^*}{2}$ $y_c = \frac{y_1 + y_2}{2}$ $w^* = x_2^* - x_1^* + 1$ $w = x_2 - x_1 + 1$ $h^* = y_2^* - y_1^* + 1$ $h = y_2 - y_1 + 1$

锚框的位置和大小

$$x_{c} = \frac{x_{1} + x_{2}}{2}$$

$$y_{c} = \frac{y_{1} + y_{2}}{2}$$

$$w = x_{2} - x_{1} + 1$$

$$h = y_{2} - y_{1} + 1$$

锚框的回归目标值

$$\Delta x_c^* = \frac{x_c - x_c^*}{w}, \qquad \Delta y_c^* = \frac{y_c - y_c^*}{h}$$

$$\Delta w^* = ln \frac{w^*}{w}, \qquad \Delta h^* = ln \frac{h^*}{h}$$

\$

Faster R-CNN算法之RPN的原理和流程

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计: 锚框的大小、锚框的长宽比、锚框的铺设间隔

■ 锚框的匹配: ①正样本: 最佳匹配或IoU≥θ+; ②负样本: IoU < θ-; ③忽略样本: 非正非负

■ 锚框的分类:正样本和负样本 +二分类Softmax损失函数

■ 锚框的回归:正样本 + SmoothL1损失函数

IE								
	1 * _{△x}	2 *	1 *	2 <u>*</u>	1 *	2 _{△w} *	1 *	2* _{-h}
	3* _{△x}	4 [*] _{△x}	3 *	4 [*]	3 _{△w}	4 [*] _{△w}	3 *	4 [*] _{△h}

SmoothL

■ Softmax Loss的形式:

$$f(z_k) = e^{z_k}/(\sum_j e^{z_j})$$

$$l(y,z) = -\sum_{k=0}^C y_c log(f(z_c))$$

■ SmoothL1 Loss的形式:

$$Smooth_{L_1}(x) = \begin{cases} 0.5x^2\sigma^2, if |x| < \frac{1}{\sigma^2} \\ |x| - \frac{0.5}{\sigma^2}, otherwise \end{cases}$$

$$Smooth_{L_1}(x) = \begin{cases} 0.5x^2, if |x| < 1 \\ |x| - 0.5, otherwise \end{cases}$$

4x4输入图像

2x2 conv stride=2

 1
 2

 3
 4

2x2特征

,	1 _{背景}	2 _{背景}	1 _{前景}	2 _{前景}	1背景	2背景	1前景	2 _{前景}
	3 _{背景}	4 _{背景}	3 _{前景}	4 _{前景}	3前景	4前景	3前景	4前景

第二层锚框

第一层锚框

第一层锚框

_								
	1 △ <i>x</i>	2 _{△x}	1 _{△y}	2 _{△y}	1 _{△w}	2 _{△w}	1 △ <i>h</i>	2 _{△h}
	3 _△ χ	4 _{△x}	3 _{△y}	4 _{△y}	3 _{△w}	4 _{△w}	$3_{\scriptscriptstyle{\triangle}h}$	4 _{△h}
	1 △ _x	2 △ <i>x</i>	1 △ <i>y</i>	2 △ <i>y</i>	1 _{△w}	2 △ <i>w</i>	$1_{\scriptscriptstyle eta h}$	2 △ <i>h</i>
	3 △ _{<i>x</i>}	4 △ <i>x</i>	3 △y	4 △ <i>y</i>	3 _{△w}	4 △ <i>w</i>	3 △ <i>h</i>	4 △ <i>h</i>
	1							

■ 理论感受野:感受野的大小、感受野的中心

■ 锚框的设计: 锚框的大小、锚框的长宽比、锚框的铺设间隔

■ 锚框的匹配: ①正样本: 最佳匹配或IoU≥θ+; ②负样本: IoU < θ-; ③忽略样本: 非正非负

第二层锚框

■ 锚框的分类: 正样本和负样本 +二分类Softmax损失函数

■ 锚框的回归:正样本 + SmoothL1损失函数

4x4输入图像 2x2特征

2x2特征

Faster R-CNN算法之RPN的原理和流程

4x4输入图像

32x32输入图像

2x2特征

0.5

Faster R-CNN算法之RPN的原理和流程

2x2特征

0.5

Faster R-CNN算法之RPN的原理和流程

① 选出候选区域:利用锚框分类中所预测的前景得分,筛选出是前景的锚框

① 选出候选区域:利用锚框分类中所预测的前景得分,筛选出是前景的锚框

② 调整候选区域:利用锚框回归中所预测的偏移值,调整前景锚框的位置和长宽

① 选出候选区域:利用锚框分类中所预测的前景得分,筛选出是前景的锚框

② 调整候选区域:利用锚框回归中所预测的偏移值,调整前景锚框的位置和长宽

③ 最终候选区域:利用非极大值抑制 (NMS) 去掉冗余的候选区域,输出最终的候选区域

① 选出候选区域:利用锚框分类中所预测的前景得分,筛选出是前景的锚框

② 调整候选区域:利用锚框回归中所预测的偏移值,调整前景锚框的位置和长宽

③ 最终候选区域:利用非极大值抑制 (NMS) 去掉冗余的候选区域,输出最终的候选区域

④ 增强候选区域(仅训练时): 把真实标注框也当做候选区域, 放入候选区域子集中去

Fast R-CNN的检测步骤:

- ① 输入图像:输入一张待检测的图像
- ② 候选区域生成:使用Selective Search算法,在输入图像上生成~2K个候选区域
- ③ 特征提取:将整张图像传入CNN提取特征
- ④ 候选区域特征:利用RolPooling生成每个候选区域的特征
- ⑤ 候选区域分类和回归:利用扣取的特征,对每个候选区域进行分类和回归

Fast R-CNN的检测步骤:

- ① 输入图像:输入一张待检测的图像
- ② 候选区域生成:使用Selective Search算法,在输入图像上生成~2K个候选区域
- ③ 特征提取:将整张图像传入CNN提取特征
- ④ 候选区域特征:利用RolPooling生成每个候选区域的特征
- ⑤ 候选区域分类和回归:利用扣取的特征,对每个候选区域进行分类和回归

\$

Faster R-CNN算法之Fast R-CNN原理和流程

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ↓;②负样本:IoU < θ¸;③忽略样本:非正非负

128x128输入图像

8x8特征

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ_;③忽略样本:非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

128x128输入图像

8x8特征

■ 候选区域匹配: ①正样本: 最佳匹配或IoU≥θ+; ②负样本: IoU < θ_; ③忽略样本: 非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

128x128输入图像

8x8特征

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ_;③忽略样本:非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

■ 子区域取整调整:子区域的位置不为整数的,根据四舍五入的规则进行取整

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ-;③忽略样本:非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

■ 子区域取整调整:子区域的位置不为整数的,根据四舍五入的规则进行取整

■ 子区域取最大值:在每个子区域里取最大值,生成2x2的特征

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ+;②负样本:IoU < θ-;③忽略样本:非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

■ 子区域取整调整:子区域的位置不为整数的,根据四舍五入的规则进行取整

■ 子区域取最大值:在每个子区域里取最大值,生成2x2的特征

■ 候选区域特征:把2x2的特征输入到Conv或FC子网络,以输出候选区域的最终特征

■ 候选区域匹配:①正样本:最佳匹配或IoU≥θ↓;②负样本:IoU < θ₂;③忽略样本:非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

■ 子区域取整调整:子区域的位置不为整数的,根据四舍五入的规则进行取整

■ 子区域取最大值:在每个子区域里取最大值,生成2x2的特征

■ 候选区域特征: 把2x2的特征输入到Conv或FC子网络, 以输出候选区域的最终特征

■ 候选区域分类:正样本和负样本 + 多分类Softmax损失函数

■ 候选区域匹配: ①正样本: 最佳匹配或IoU≥θ₁; ②负样本: IoU < θ₂; ③忽略样本: 非正非负

■ 候选区域映射:根据下采样倍数,把候选区域映射到特征上去

■ 候选区域分块:把候选区域等分成指定大小的子区域,例如2x2

■ 子区域取整调整:子区域的位置不为整数的,根据四舍五入的规则进行取整

■ 子区域取最大值:在每个子区域里取最大值,生成2x2的特征

■ 候选区域特征: 把2x2的特征输入到Conv或FC子网络, 以输出候选区域的最终特征

■ 候选区域分类:正样本和负样本 + 多分类Softmax损失函数

■ 候选区域回归:正样本 + SmoothL1损失函数

Faster R-CNN中RPN步骤:

① 整张图传入VGG16或ResNet提取特征

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框(9个)

\$

Faster R-CNN算法的整体流程

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中Fast R-CNN步骤:

① 利用RolPooling在检测层的特征上提取每个候选区域对 应的特征

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中Fast R-CNN步骤:

- ① 利用RolPooling在检测层的特征上提取每个候选区域对 应的特征
- ② 输入CNN/FC子网络来增强候选区域的特征

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中Fast R-CNN步骤:

- ① 利用RolPooling在检测层的特征上提取每个候选区域对 应的特征
- ② 输入CNN/FC子网络来增强候选区域的特征
- ③ 对候选区域进行多分类和回归得到检测结果

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中Fast R-CNN步骤:

- ① 利用RolPooling在检测层的特征上提取每个候选区域对 应的特征
- ② 输入CNN/FC子网络来增强候选区域的特征
- ③ 对候选区域进行多分类和回归得到检测结果

S R-CNN系列算法总结

算法名称	R-CNN	Fast R-CNN	Faster R-CNN
候选区域	Selective Search	Selective Search	RPN
分类方式	SVM	SoftmaxLoss	SoftmaxLoss
回归方式	边缘提取	SmoothL1Loss	SmoothL1Loss
重复计算	非常多	较多	比较少
训练方式	每个步骤都是独立训练	除候选区域生成外,其他 步骤是端到端训练	端到端训练
检测速度	~0.002 FPS	~0.5 FPS	~5 FPS