Problem 0 [1 bonus mark]. Write your name and student ID (number) on every submitted answer sheet.

Problem 1 [10+10=20 marks]. Let x be a discrete variable.

a) Give the formula for $\mathbb{E}_{x \sim P(x)}[f(x)]$. No proof is needed.

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \mathbb{E}_{x} p(x) f(x)$$

b) Consider two distributions $P_1(x)$ and $P_2(x)$. We define a new distribution $P(x) = \lambda P_1(x) + (1 - \lambda) P_2(x)$ for $\lambda \in [0, 1]$.

Prove that

$$\mathbb{E}_{x \sim P(x)}[f(x)] = \lambda \mathbb{E}_{x \sim P_1(x)}[f(x)] + (1 - \lambda) \mathbb{E}_{x \sim P_2(x)}[f(x)]$$

LHS=
$$\mathbb{E}_{x \to p(x)} \Gamma f(x)$$
]
= $\mathbb{E}_{x \to p(x)} \Gamma f(x)$
= $\mathbb{E}_{x \to p(x)} \Gamma f(x)$

Problem 2. [10+20=30 marks] Consider a binary random variable $x \in \{0,1\}$. A Bernoulli distribution is characterized by a scalar parameter $\pi \in [0,1]$. The probability distribution of x is given by $P(x=1)=\pi$ and $P(x=0)=1-\pi$. The two cases can be unified as $P(x)=\pi^x(1-\pi)^{1-x}$.

a) Derive the likelihood of π on the dataset $\mathcal{D} = \{x^{(m)}\}_{m=1}^{M}$, where samples are independent and identically distributed (iid).

$$\mathcal{L}(\pi; \mathcal{D}) = \rho(\mathcal{D}; \pi) = \prod_{m=1}^{M} \rho(x^{(m)}; \pi)$$

$$= \prod_{m=1}^{M} \pi^{x^{(m)}} (1-\pi)^{1-x^{(m)}} \qquad [ok]$$

$$= \pi^{\frac{M}{M-1}} x^{(m)} (1-\pi)^{M-\frac{M}{M-1}} x^{(m)}$$

b) Derive the closed-form solution of the maximum likelihood estimation of π on \mathcal{D} .

$$\begin{aligned} \log \chi(\pi; \mathfrak{D}) &= M_1 \log \pi + (M - M_1) \log (1 - \pi) \\ \frac{\partial}{\partial \pi} \log \chi(\pi; \mathfrak{D}) &= M_1 \cdot \frac{1}{\pi} + (M - M_1) \cdot \frac{1}{1 - \pi} \cdot (-1) & \overset{\text{set}}{=} 0 \\ M_1 - M_1 \mathcal{T} - M_1 \mathcal{T} + M_1 \mathcal{T} &= 0 \\ \mathcal{T} &= \frac{M_1}{M} \end{aligned}$$
where M_1 is defined as $M_1 = \overset{M}{\succeq} \chi^{(m)}$

Problem 3 [10+10+10+20=50 marks].

a) Give the formal definition of a convex set. *Hint:* Intuitively, a convex set means that, for every two points in the set, any middle point is also in the set.

S is a convex set if
for every
$$X$$
, y in S , for every $\lambda \in (0,1)$

$$\lambda \times + (1-\lambda) y \text{ is also in } S.$$

b) Give the formal definition of a convex function. *Hint*: Intuitively, a convex function means that the average of function values is less than or equal to the function value of the average input.

f is a convex function if

(i) domain of f is a convex set

(ii) for every
$$X_1, y \in \text{dom} f$$
, for every $\lambda f(0,1)$

$$\lambda f(x) + (1-\lambda)f(y) \geq f(\lambda x + (1-\lambda)y)$$

c) A hinge loss function is commonly used in machine learning.

Consider $J(y)=\max\{0,1-y\}$ for $y\in\mathbb{R}$, where $\max\{a,b\}$ chooses the maximum value between a and b. Draw the function J(y) in the right plot.

J(y)

$$\max \{0, |-(\lambda y_1 + (1-\lambda)y_2)\}$$

d) Prove that J(y) is a convex function in \mathcal{Y} . Requirement: Rigorous derivations are needed

dom
$$J = IR$$
 convex (may be omitted)

Consider any two points $y_1, y_2 \in IR$ and $\lambda \in \{0,1\}$

$$\lambda J(y_1) + (1-\lambda)J(y_2)$$

$$= \max_{X} \{0, \lambda - \lambda y_1\} + \max_{X} \{0, (1-\lambda) - (1-\lambda)y_2\} \quad (1)$$

$$J(\lambda X + (1-\lambda)y_2) = \max_{X} \{0, 1 - [\lambda y_1 + (1-\lambda)y_2]\}$$

Goal is to show $(1) \geq (2)$ (2)

We see $\{9, (1) \geq 0 + 0 = 0.$ (3)
$$\{9, (1) \geq \lambda - \lambda y_1 + (1-\lambda) - (1-\lambda)y_2\} \quad (4)$$

Combing (3) and (4), we can conclude
$$(1) \geq (2)$$

Scrap paper

- Can be detached
- Can be used as an answer sheet. If so, please
 - o Mark the problem ID clearly,
 - o Write your name on every submitted answer sheet, and
 - o Ask TAs to staple all sheets by the end of the exam